KDS 47 10 15 : 2019

철도계획

2019년 4월 8일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 철도에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제·개 정 연혁은 다음과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
철도설계기준(철도교편)	• 철도설계기준(철도교편)을 제정	제정 (1999.7)
철도설계기준(철도교편)	• 국제흐름에 부응하기 위해 단위체계를 국제단위 계인 SI단위로 통일하여 반영, 미비사항을 보완하여 안전한 구조물이 되도록 함	개정 (2004.12)
철도설계기준(노반편)	• 철도노반공사의 총괄적인 시행기준과 총 6편으로 구성되어 설계에 필요한 일반적인 기준을 가급적 쉽게 이해하도록 서술	제정 (2001.12)
철도설계기준(노반편)	• 철도건설을 위한 기본계획 수립방법과 각 편에 공통으로 포함된 환경입지조사, 지반조사, 선로측량 을 추가	개정 (2004.12)
철도설계기준(노반편)	• 철도건설규칙 수정 및 보완, 친환경철도 노선선 정 및 설계의 단계별 업무구분 추가 • 허용한계의 명확화, 내진설계기준 보완	개정 (2011.5)
철도설계기준(노반편)	• 신기술·신공법 기준 마련 등 기술적 환경변화에 대응하기 위하여 관련 법규 및 규정의 폐지, 신설 및 개정내용 과 설계기준 개정 내용 반영, 기술적 환경변화 대응을 위한 기준을 마련	개정 (2011.12)

건설기준	주요내용	제정 또는 개정 (년.월)
철도설계기준(노반편)	기존철도 등 일반철도의 열차속도를 시속 200km 이상으로 속도향상 시키는데 필요한 기준들을 중심으로 검토 철도건설 경쟁력 확보를 위한 제반 연구 결과 및 철도관련 상위 법령, 설계기준 및 시방서 등의 개정된 내용을 반영 궤도, 전기 분야와의 인터페이스를 고려하였으며 향후 철도관련 기술발전 등의 변화에 대응할 수 있도록 개정	개정 (2013.11)
철도설계기준(노반편)	• 향후 국내외 철도건설기술 발전 등 기술적 환경 변화에 대응하는 방법 • 안전기준 강화 및 철도관련 상위법령, 규정, 기 준 등의 개정된 내용을 반영	개정 (2015.12)
KDS 47 10 15 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)
KDS 47 10 15 : 2019	• 철도 건설기준 적합성평가에 의해 코드를 정비함	개정 (2019.04)

제 정: 2016년 6월 30일 개 정: 2019년 4월 08일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 한국철도시설공단 작성기관 : 한국철도기술연구원

목 차

1.	일반사항	· 1
	1.1 목적	
	1.2 적용 범위	· 1
	1.3 참고 기준	· 1
	1.4 용어의 정의	· 1
	1.5 기호의 정의	· 1
2.	조사 및 계획	· 1
	2.1 철도건설 및 개량계획	· 1
	2.2 타당성 조사(학술분야)	
	2.3 철도노반계획	. 9
	2.4 사업시행 환경조사	12
3.	재료	16
4.	설계1	16
	4.1 설계 일반사항	16
	4.2 설계의 단계별 업무구분	21
	4.3 내진설계	24
부	록 내진설계기준 별표	31

철도계획 KDS 47 15 05 : 2019

1. 일반사항

1.1 목적

(1) 이 기준은 철도건설에 대한 계획, 예비타당성조사, 기본계획수립, 기본설계, 실시설계, 공사 집행 시공, 준공, 개통, 영업개시에 관한 기술적 사항을 제시하는 것을 목적으로 한다.

1.2 적용 범위

내용 없음

1.3 참고 기준

내용 없음

1.4 용어의 정의

내용 없음

1.5 기호의 정의

내용 없음

2. 조사 및 계획

내용 없음

2.1 철도건설 및 개량계획

2.1.1 계획의 일반

(1) 건설사업계획

- ① 철도건설 및 개량사업(이하 '건설사업'이라 한다.)은 건설계획, 예비타당성조사, 기본계획수립, 기본설계, 실시설계, 공사 집행·시공, 준공·시운전, 개통·영업개시 등 단계별로 구분하여 효율적으로 추진한다.
- ② 건설계획은 건설사업의 목적과 필요성, 철도시스템, 선로구간 및 연장, 정거장입지, 건설기간 및 건설비추정 등을 구상하여 예비타당성조사, 기본계획수립, 기본설계, 실시설계, 공사 집행·시공, 준공·시운전, 개통·영업개시 등 단계별 시행계획을 수립하여 추진한다.
- ③ 예비타당성조사는 도로·철도부분의 예비타당성조사 표준지침(한국개발연구원)에 따라 타당성조사 업무를 시행한다.
- ④ 기본계획 수립은 예비타당성조사를 토대로 건설사업의 시스템 및 사업규모검토,

1

노선 및 정거장입지 선정, 교통영향 분석에 따른 수송수요 등 기술성과 경제성을 평가하여 노선 및 시설계획, 투자계획, 재원조달계획, 연차별 시행계획 등 건설사 업계획을 수립할 수 있도록 시행한다.

(2) 철도건설사업 시행

- ① 철도건설사업의 시행은 철도건설사업 시행지침(국토교통부)에 의하여 시행하며 필요할 경우 다른 지침 등에서 특별히 규정하고 있는 바에 따를 수 있다.
- ② 공사방식 결정은 철도건설사업 기본계획이 수립되면 대형공사 등의 입찰방법 심의 기준(국토교통부)에 따른 중앙건설심의위원회 심의 등을 거쳐 결정한다.

가. 기타공사방식

(3) 기본계획수립 조사 일반

- ① 기본계획수립 조사는 당해 사업의 수행을 결정하기 위하여 예비타당성조사 결과를 토대로 기본계획을 수립하기 위해 철도시스템 및 노선선정과 정거장입지선정, 선 로시설물과 지장물 보상, 건설비의 적정성과 경제적 타당성을 검토한다.
- ② 최적대안으로 선정된 노선 및 정거장계획과 사업비산정, 수송수요예측 및 경제적 타당성분석 등 대상 사업에 대한 기술 및 학술적 검토분석을 거쳐 사업의 기본계획을 수립한다.
- ③ 기본계획수립조사는 그림 2.1.1-1의 흐름도와 같은 내용으로 실시한다.

철도계획 KDS 47 15 05 : 2019

그림2.1.1-1기본계획수립조사흐름도

2.1.2 관련 계획 조사 분석

- (1) 상위계획 및 관련 계획을 조사 분석한다.
- (2) 기존철도 시설현황 및 시설계획을 조사하여 분석한다.
- (3) 현지답사 등 현장조건을 조사하여 분석한다.
- (4) 수리, 수문 및 하천, 기상, 해양 등 참고문헌 및 자료를 조사한다.

- (5) 필요한 경우 연약지반 등 지반조사를 한다.
- (6) 지장물보상, 민원 및 용지 등의 실태조사를 한다.
- (7) 필요한 경우 당해 사업과 관계된 지역의 자연환경을 조사한다.

2.1.3 인문사회 현황 조사 분석

- (1) 사회·경제지표 등 교통 관련 자료 분석, 직접 및 간접 대상지역의 인구·고용·산 업·교육 등 수송수요에 영향을 미칠 수 있는 주요 사회·경제적 자료를 수집 분석한 다.
- (2) 대상지역의 토지이용계획, 도시기본계획, 지역개발계획, 교통수요를 유발시키는 산업 단지 개발계획, 대규모 위락시설계획 등 관련 계획의 개발방향을 분석하고, 장기 철도 망 정비계획과 주변 도로망의 신설 및 확장 등 교통시설 개발계획을 분석한다.
- (3) 신설역에 대한 역세권, 향후 발전계획, 수요유발 등을 분석한다.
- (4) 교통 현황조사 및 분석
 - ① 장래의 시설기준, 애로구간 판단 및 시설용량 등의 설정을 위해 철도·도로·항공 등 수송수단별로 현재의 시설상태, 운영체계, 수송능력, 한계용량 도달시기 및 연계 교통체계 등을 조사 분석한다.
 - ② 교통수단별 특성과 역할을 정립하기 위하여 교통량은 당해 지역 내의 수단별 통계 자료 및 기존 관련조사 보고서를 활용하고 차종별, 방향별 통과량에 대한 교통량을 조사 분석한다.
 - ③ 기존의 여객 이용실태 및 화물 유통체계를 감안한 장래 수송체계를 수립하기 위하여 수단별, 여객·화물별 지역 간 시·종점을 조사한다.
 - ④ 새로운 교통체계의 도입 및 개선에 따른 여객 성향조사, 이용실태 조사를 통하여 차종별 평균 승차인원, 수단별 통행량 및 새로운 수단에 대한 전환율을 분석하고 화물은 차종별·품목별 평균적재톤수, 차종별 공차율 등의 실태를 분석한다.
 - ⑤ 철도, 공로, 항공 등 수단별 운행비용 및 물류 시가가치를 분석하다.

2.1.4 자연환경 현황조사

- (1) 자연환경 현황조사는 기본계획 및 노선선정 단계에서 실시하는 광역 환경조사와 실시 설계 및 시공 단계에서 실시하는 철도입지 주변 환경조사로 구분하여 실시한다.
- (2) 자연환경 현황조사는 시공에 의하여 발생되는 시설물 주변환경 변화의 예측, 환경보 전 대책의 입안, 대책의 효과확인 등을 위하여 실시하며 5를 따른다.

2.1.5 문화재 지표조사

- (1) 노선구간의 문화유적을 조사하여 노선계획에 반영한다.
- (2) 향후 설계노선의 급격한 변동이 없는 대안노선의 범위까지 조사하여 후속 단계에서도 활용한다.

2.1.6 각종 영향조사 결과 반영

- (1) 철도건설사업의 행정계획수립 단계에서는 환경정책기본법에 의한 사전환경성검토 및 자연재해대책법에 의한 사전재해영향성 검토 결과를 반영한다.
- (2) 철도건설사업의 설계단계에서는 환경영향평가법에 의한 환경영향평가 및 도시교통정 비촉진법에 의한 교통영향분석·개선대책 수립 결과를 반영한다.

2.1.7 철도 시스템 계획

- (1) 열차운행 최고속도, 여객 및 화물 혼용, 급행 및 완행, 열차 편성 등 열차운행 능력은 수송수요를 고려하여 수립한다.
- (2) 기존철도의 개량 및 복선화, 신선건설, 전철화, 장대레일화 등은 선로 구조물의 상태를 검토하여 계획한다.
- (3) 정거장배선은 시·종점 정거장, 중간정거장, 중간분기 정거장 등의 기능에 따라 통과 대피선 및 유효장을 고려하여 계획한다.
- (4) 선로구축물 및 궤도구조는 궤간, 레일, 침목, 체결구, 유·무도상의 유지보수 관리를 고려하여 계획한다.
- (5) 구조물은 여객열차와 화물열차의 속도향상과 서비스(안전성, 쾌적성, 안락성 등)를 고려하여 계획한다.
- (6) 열차폐색장치, 열차제어 장치 등 신호체계는 급행 또는 완행열차의 운행성능 및 열차 운행속도 향상을 고려하여 계획한다.
- (7) 전기체계는 비전철 또는 전철화, 열차운행 및 선로 시스템, 궤도구조 시스템 등을 고려하여 계획한다.
- (8) 통신체계는 열차무선, 열차운전실 내부, 정거장 열차운용계획과 철도종합정보처리 설비 기능을 고려하여 계획한다.
- (9) 정거장시설은 여객취급, 화물취급, 철도서비스 향상 등을 고려하여 타 교통수단과 쉽고 편리하게 환승 연계할 수 있는 종합교통터미널 기능을 검토하여 계획한다.
- (10) 차량기지, 보수기지, 현장사무소 등 기타 부대시설은 철도운용 및 유지보수 등을 고려하여 계획한다.

2.1.8 건설기준 계획

- (1) 노선의 기능과 성능수준을 토대로 하여 설계속도를 정한다.
- (2) 설계속도와 열차운행계획에 따라 철도시스템을 선정한다.
- (3) 설계속도와 운행할 차량의 성능 특성에 따라 노반, 궤도, 신호, 전기, 통신 등 시설계획을 수립하기 위한 적용기준을 선정한다.
- (4) 노반과 궤도의 선로구축물을 설계하기 위한 표준활하중, 곡선반경, 선로기울기, 건축 한계 등의 건설기준을 선정한다.
- (5) 시·종점 및 중간 분기정거장 등 그 기능적 특성에 따라 정거장 유효장 등 배선계획 기준을 선정한다.

KDS 47 10 15: 2019 철도계획

2.1.9 노선선정 및 정거장 입지 선정

(1) 예비타당성 노선을 토대로 1/25,000지도로 현지 상황을 사전 조사하여 노선 및 정거 장입지를 계획한다.

- (2) 관련 계획 조사분석 결과와 현지조건을 고려하여 실제 실현 가능한 대안노선 및 정거 장입지를 계획한다.
- (3) 정거장은 여객 및 화물의 집산이 쉽게 이루어지도록 다른 교통수단과 연결되는 곳에 계획하되, 여객수와 화물수송량이 많은 지역에는 여객전용역과 화물전용역을 구분한다.
- (4) 대안노선 및 정거장입지는 철도건설규칙 등 관계규정에 적합하도록 한다.
- (5) 대안별 평면선형과 종단선형, 선로구조물을 선정하여 비교 계획한다.
- (6) 대안별 수송수요 예측에 따른 열차운영 계획을 비교 계획한다.
- (7) 대안별 선로구조물 등에 대한 노반공사비를 개략 산출하고 비교 계획한다.
- (8) 대안별 노선 및 정거장입지를 종합 비교 계획하여 관계기관 협의 후 최적대안을 선정하다.
- (9) 1/25,000지도로 계획한 최적대안을 1/5,000지도로 재검토하고 현지를 조사하여 측량 노선을 결정한다.
- (10) 대안별 노선의 입지는 주변 자연 생태계에 미치는 영향을 검토하여 최적노선을 선정한다.

2.1.10 노반구조물 및 정거장 계획

- (1) 측량성과물을 토대로 선로평면선형과 선로종단선형을 계획한 후 현장을 답사하여 토 공, 교량, 터널, 정거장 위치 등 선로구조물을 계획하고 선로평면도와 선로종단면도, 정거장 평면도를 작성한다.
- (2) 선로평면 및 종단면도, 선로구조물 계획을 기준하여 연약지반 등 특수한 지역은 추가로 지반조사를 하고 수리, 수문, 지장물 등 현지조건을 조사하여 선로구조물 표준을 계획한다.
- (3) 선로구조물 표준은 기존철도의 표준도와 정규도, 철도건설규칙 등을 참고하여 노반공 사비를 추정하는데 필요한 표준공법을 설정하고 토공, 교량, 터널, 정거장 등 표준단 면도와 일반측면도, 평면도를 작성할 수 있도록 계획한다.
- (4) 정거장은 열차운행계획에 따른 통과, 대피, 정차, 여객승강장, 화물적하장, 운전취급 및 영업시설, 지하도 광장 등을 고려하여 정거장 배선과 시설을 계획 한다.
- (5) 정거장시설은 1/1,000 평면도로 계획하여 정거장 선로평면도를 작성한다.

2.1.11 열차 운행계획 검토

- (1) 수송수요에 따른 열차운행방식 및 소요 차량수, 1개열차 차량편성수, 선로용량, 열차 운행 최고속도, 표정속도 등에 따른 열차운행능력을 검토한다.
- (2) 최적노선으로 선정한 선형에 대한 열차운행능력을 검토하고 이에 따른 차량 소요판단

등 열차 운행계획을 수립한다.

2.1.12 노반공사 수량산출 및 공사비 추정

- (1) 토공, 교량, 터널, 정거장 등 표준공법을 선정하여 노반공사 수량을 산출하고 사토량, 토취량 등 토공배분, 용지면적, 지장물 이설 등의 수량을 산출한다.
- (2) 노반공사 수량에 대한 표준단가를 추정하여 노반공사비를 산출한다.

2.1.13 총 건설비 및 총 공사기간 추정

- (1) 건설사업에 따른 용지 및 지장물 보상비 추정, 노반, 궤도, 건물, 신호, 전기, 통신, 부대시설 등 세부사업별 건설비를 추정한다.
- (2) 세부사업별 공정을 검토하여 건설사업 총공정을 계획하고 연차별 투자계획을 추정한다.

2.2 타당성 조사(학술분야)

2.2.1 일반사항

(1) 학술분야는 2.2.2~2.2.10을 기준으로 하여 별도의 기준을 정하여 적용한다.

2.2.2 사회경제지표 현황 분석

- (1) 도시화 현황 및 토지이용 현황 분석
- (2) 총인구현황, 지역별 인구분포, 해당권역 인구현황 분석
- (3) 경제성장 및 자동차 보유대수 추이분석

2.2.3 교통현황 분석

- (1) 도로, 철도, 항공, 항만 등 교통현황 분석
- (2) 여객 및 화물 수송 실적과 수송수단별 분담구조 분석
- (3) 해당권역의 교통현황과 수송실적 분석

2.2.4 장래 여건 분석

- (1) 국토종합개발계획, 국가기간 교통망 계획, 지역사회 개발계획 등을 검토하여 장래 여건에 미치는 영향을 조사분석
- (2) 대상지역 및 주변지역에 대해 장래 사회 · 경제지표를 전망하고 분석

2.2.5 장래 교통수요 예측

- (1) 교통수요 모형을 정립하고 통행발생, 통행분포, 수단분담 및 노선배정 등을 통해 장래 교통수요예측
- (2) 대안노선 및 정거장 입지별, 속도수준별, 교통수요예측

KDS 47 10 15 : 2019 철도계획

(3) 교통수요분담 및 연도별 수요예측

2.2.6 경제성 분석

- (1) 경제성 평가기간, 기준연도, 사회적 할인율, 비용 및 편익 항목 등 기초지표의 결정
- (2) 차량운행비용 절감편익, 통행시간 절감편익, 교통사고 절감편익, 환경비용 절감편익 등을 검토
- (3) 편익/비용 비율(B/C Ratio), 순현재가치(NPV), 내부수익률(IRR) 등 경제적 타당성 분석기법과 판단기준 등을 검토
- (4) 건설비, 보상비 등 직접 건설비용과 개량 후 유지관리 등 시설운영에 따른 비용, 차량 소요량과 차량운행비용 등을 추정하여 검토
- (5) 민감도 분석과 위험도를 분석하여 검토
- (6) 투자시기에 따른 경제성 변화를 분석하여 최적투자시기 분석
- (7) 대안노선 및 정거장 입지별 경제성을 비교 분석하여 최적대안을 선정

2.2.7 재무성 분석

- (1) 수송수입을 추정하여 손익분석과 재무상태 변동분석 등을 검토
- (2) 단기흑자연도, 누적흑자연도, 대체비용, 잔존가치 등을 검토하여 수익률을 분석
- (3) 대안노선 및 정거장 입지별 재무성 분석을 비교 검토하여 최적대안을 선정

2.2.8 최적대안노선 세부분석 및 건설효과 분석

- (1) 최적대안노선의 기능성 정립과 대안노선의 속도수준별 비용 및 성능 분석
- (2) 대안노선 및 정거장 입지별, 경제성, 재무성 및 기타 효과분석에 따라 최적 대안노선 및 정거장 입지를 선정하고 총사업비 및 공사기간에 대한 연차별 투자계획 및 재원대 책 방안을 계획
- (3) 경제성, 재무성 세부검토 외 지역개발효과, 관광개발효과, 환경영향효과, 교통 접근성 변화에 따른 토지이용계획 및 지역개발효과 등을 분석
- (4) 에너지 절감, 관련 사업발전, 기술발전 등 효과 분석

2.2.9 재원조달방안 검토

- (1) 투입가능 자기자본 계획, 금융기관 등 타인자본 조달계획 등 투자재원 구성계획수립
- (2) 재원조달의 적정성 분석
- (3) 연차별 투자계획에 따른 재원대책을 계획

2.2.10 설명회 등 지자체 협의 및 자문 기타

(1) 설명회를 개최할 필요성이 있는 경우에는 지자체의 의견 청취와 민원해소 검토를 위한 설명회를 개최하며, 그러하지 않을 경우는 자자체의 의견청취와 민원해소방안을 계획

(2) 전문가의 자문과 발주자의 의견을 수렴하여 계획을 조정

2.3 철도노반계획

2.3.1 철도노반계획 일반사항

- (1) 노선 및 정거장입지는 철도건설규칙 등 관계규정에 적합해야 한다.
- (2) 관련 계획 조사분석 결과와 현지조건을 고려하여 노선 및 정거장입지를 대안별로 계획해야 한다.
- (3) 평면선형과 종단선형은 선로구조물 계획과 관련 분야 간 인터페이스를 고려하여 계획 해야 한다.
- (4) 대안별 비교는 선로구조물 등에 대한 노반공사비를 개략 산출하고 비교, 계획해야 한다.
- (5) 노선의 입지는 주변 경관 및 자연생태계에 미치는 영향을 검토하여 최적노선을 선정해야 한다.
- (6) 토공, 교량, 터널, 정거장위치 등 선로구조물 계획을 반영한 지반조사를 시행하고, 특히 연약지반 등 특수한 지역의 지반조건 변화에 의한 사업비 변동이 예상되는 구간은 세부지반조사를 시행하여 수리, 수문, 지장물 등 현지조건의 조사결과와 지반조사 결과를 반영한 선로구조물 계획을 수립해야 한다.
- (7) 정거장은 열차운행계획, 운전취급 및 영업시설, 건축시설계획, 각종시스템 시설계획, 교통영향평가 및 환경영향평가 결과 등을 고려하여 배선과 시설을 계획해야 한다.
- (8) 노선은 지역사회의 편익이 크고 사업주체의 이익 또한 고려해야 하므로 많은 비교안을 검토하여 최적의 노선으로 계획해야 한다.
- (9) 노선선정 시 경합관계에 있는 건설비와 운영비는 수송수요 및 열차운행계획을 고려한 노선을 선정해야 한다.

2.3.2 친환경적 철도노선선정

- (1) 환경친화적인 철도건설을 할 수 있게 철도노선선정은 타당성조사 및 기본계획단계에 서부터 환경영향성을 검토해야 한다.
- (2) 철도노선계획수립을 위한 관련 계획 검토와 현장조사에는 철도, 구조, 토질, 교통, 환경, 문화재 등 관련 분야 전문가가 참여하여 의견수렴을 거쳐 노선대안을 선정한다.
- (3) 초기단계 설계자문에서는 철도, 구조, 토질, 교통, 수자원, 시공 및 안전, 문화재, 환경 분야 전문가 또는 관계기관이 참여하여 주요사항을 검토한다.
- (4) 노선설명회 등을 통해 주민 및 관계기관의 의견을 수렴하여 환경영향 저감대책 등을 수립한다.

2.3.3 선형계획

(1) 평면선형

KDS 47 10 15: 2019 철도계획

① 평면선형은 노선의 기능과 설계속도에 따라 가능한 대안노선에 대하여 열차운행성 등 기술성과 경제성 검토 결과를 토대로 하여 관계기관 등의 의견을 수렴하여 최적노선으로 계획해야 한다.

- ② 평면선형의 곡선반경은 설계속도에 따라 철도건설규칙 등 관계규정에서 정한 최소 곡선반경 이상이어야 한다.
- ③ 평면선형은 노선의 기능과 설계속도에 적합해야 하고, 노선 전구간의 평면 및 종단선형 상 균형성을 유지하며 장래 속도향상을 고려해야 한다.
- ④ 지형 상 상습 홍수범람 지역이나 대규모의 연약지반, 비탈길이가 긴 깎기 지형 등의 취약지형은 가급적 피해야 한다.
- ⑤ 급경사의 비탈지형으로 토사붕괴나 눈사태지역, 용수 등의 상시 습한 지역은 피하고, 가급적 양지지형으로 계획한다.
- ⑥ 주요 도로의 평면교차, 밀집시가지지역, 문화유적보전지역 및 대규모의 묘지지역은 최대한 피해야 한다.

(2) 종단선형

- ① 종단선형은 해당 노선의 설계속도 수준과 차량성능을 감안하여 표정속도를 향상시킬 수 있게 선정해야 한다.
- ② 종단선형은 전 구간에 걸쳐 평면 및 종단선형의 균형성을 확보할 수 있게 긴 구간 의 최급기울기나 수평기울기를 무리하게 설정하지 않도록 한다.
- ③ 선로의 시공기면은 가급적 자연지반 경사도를 감하여 지나치게 높거나, 얕지 않게 정해야 한다.
- ④ 선로의 시공기면은 하천의 최대홍수위와 도로 등 입체교차시설의 다리밑 공간높이를 확보할 수 있게 정해야 한다.
- ⑤ 하향최급기울기에서 상향기울기 변경점설정은 가급적 피하고, 부득이한 경우에는 양쪽 기울기 차이가 최소화되도록 설정해야 한다.
- ⑥ 기울기의 변경점은 평면선형의 직선 또는 원곡선 구간에 설치한다.

2.3.4 구조물 계획

(1) 교량 계획

- ① 하천지역에 설치되는 교량은 KDS 51 40 05에 따라 경간장 등을 정해야 한다.
- ② 교량은 해당 하천의 하천정비계획 등 수리·수문 조사결과에 따라 경간장과 교량 의 높이와 길이를 정해야 하며, 하천정비계획이 수립되지 않은 하천은 수리·수문 조사를 시행해야 한다.
- ③ 하천정비계획은 수립되었으나, 하천정비사업이 시행되지 않은 하천은 하천정비계획을 토대로 하여 제방의 여유고 등을 확보할 수 있게 교량을 계획해야 한다.
- ④ 교량은 가급적 하천의 유수방향에 직각되게 계획하여 홍수 시 등에 유수 상 지장을 최소화하게 해야 한다.
- ⑤ 교량 전후에 작은 교량이나 구교를 연속해서 설치하는 것을 피할 수 있게 경간길

- 이나 교량길이를 정해야 한다.
- ⑥ 교대 등 하천공작물을 제방에 설치하는 것은 피해야 한다. 부득이한 경우 제방의 안정이 확보 될 수 있는 조치를 해야 한다.
- ⑦ 하천의 종방향을 따라 설치되는 교량의 경우, 교각이 하천의 전체 폭에 걸쳐서 배치되지 않게 계획해야 한다.
- ⑧ 다리밑 공간높이는 하천의 경우 KDS 51 40 05를, 도로의 경우는 KDS 44 20 25에 따라야 하며, 해상 등 선박이 통행하는 교량은 이를 고려하여 교량을 계획해야 한다.
- ⑨ 농경지의 농로와 마을간 도로에 설치되는 교량은 농경용 차량·장비와 농산품 운 반차량이 원활하게 통행할 수 있게 교량의 경간과 다리밑 공간높이를 정해야 한다.
- ① 주거지역에 근접한 교량은 환경영향 평가결과 등을 토대로 하여 경관성 및 환경성을 최적화할 수 있게 해야 한다.

(2) 터널 계획

- ① 터널은 단층, 파쇄대, 퇴적토, 편압 등 취약한 지형이나, 계곡을 피하여 가급적 능선을 따라 그 위치를 정해야 한다.
- ② 터널의 길이는 평면곡선과 종단기울기, 갱구부의 편압이나 깎기 토량, 열차운행상 안정성과 유지보수성을 검토하여 정해야 한다.
- ③ 터널구간의 선로기울기는 배수 및 자연환기를 위해 가급적 한 방향 기울기로 해야 하며 부득이 양방향기울기로 할 경우 배수와 환기가 원활하게 해야 한다.
- ④ 터널의 갱구는 계곡부의 수로 등을 피하고, 갱문 뒤의 비탈길이를 가급적 짧게 해야 하며, 지형상 낙석 등이 예상되는 구간은 터널길이를 길게 하거나 낙석방지시설을 설치하여 열차안전운행에 지장이 없도록 해야 한다.
- ⑤ 터널내의 배수시설은 배수로 수위를 시공기면보다 낮게 하여 터널내배수가 용이하게 해야 한다.
- ⑥ 시가지나 집단마을 등의 하부를 통과하는 터널은 공사 중이나 열차운행 중에 생활 환경 또는 터널의 안전성에 지장이 없도록 터널의 구조와 시공법 등을 정해야 한 다
- ⑦ 1 km 이상의 터널은 안전성 분석결과에 따라 방재시설에 대한 검토를 해야 한다.
- ⑧ 터널단면은 열차고속주행에 따른 공기압 영향과, 곡선구간에서 선로중심간격 및 건축한계의 변화를 고려하여 정해야 한다.

(3) 정거장 계획

- ① 정거장위치는 선형 상 철도건설규칙 등 관계규정에서 정한 범위내에서 가급적 수 평의 직선구간으로서 장래 확장 개량이 가능하고, 노선 및 정거장의 기능과 규모 에 따라 필요한 시설을 배치할 수 있게 선정해야 한다.
- ② 정거장은 노선의 기능과 열차운행계획 등에 따라 시·종착정거장, 중간 또는 분기 정거장으로 구분하여 여객과 화물혼용이나 여객전용설비를 해야 한다.

KDS 47 10 15 : 2019 철도계획

③ 정거장 부지규모는 최종 목표연도를 기준으로 하여 계획하되 장래 확장 가능성을 감안해야 하며, 정거장설비는 장·단기로 구분하여 단계별 건설계획을 검토해야 한다.

- ④ 정거장시설은 기능과 교통영향평가에 따라 계획하며 여객접근과 편의시설, 운전취급과 열차제어설비, 환승 및 연계 교통시설, 역세권 개발 등을 감안하여 시설종류와 규모를 검토해야 한다.
- ⑤ 시·종점에 위치하는 정거장은 차량의 차량기지 진출입을 고려하여 시설의 종류와 규모를 검토해야 한다.
- ⑥ 정거장의 배선은 열차운행계획에 따라 열차운행이 원활하도록 계획해야 한다.
- ⑦ 차량기지와 보수기지 등은 그 기능과 취급규모에 따라 시설의 종류와 규모를 계획 하여, 철도운영성을 최적화해야 한다.

2.3.5 자재선정

(1) 모든 공사용 자재는 산업표준화법에 의한 한국산업규격 표시품(이하 'KS 표시품'이라 한다) 또는 이와 동등 이상의 성능을 지닌 자재이어야 하며, 녹색제품 구매촉진에 관한 법률에 의한 녹색제품 또는 중소기업진흥 및 제품구매촉진에 관한 법률에 따른 우선구매대상 기술개발제품이 설계에 반영될 수 있는지 검토해야 한다.

2.4 사업시행 환경조사

2.4.1 일반사항

- (1) 사업시행 환경조사는 환경영향평가, 교통영향평가, 수리·수문조사 외 실시설계 및 시 공단계에서 철도입지주변을 조사하는 것이다.
- (2) 사업시행 환경조사는 목적물의 건설에 영향을 미치거나 이로 인해 영향을 받을 수 있는 사항에 대한 조사로서 지장물 조사, 지표수리시설과 지하수 부존 특성조사, 공사용설비조사, 보상 및 관계 법령, 지형조사, 환경조사, 사토장 및 토취장조사 등으로 구분하여 시행한다.

2.4.2 지형 및 개발현황조사

- (1) 철도건설에 영향을 미치거나 공사로 영향을 받을 수 있는 지형을 지형도나 항공사진 등을 이용하여 분석하고 현장답사를 통하여 조사한다.
- (2) 불안정 지형이나 재해가 예측되는 지형 즉, 애추(talus), 붕괴지, 산사태로 매몰된 과거 의 수로, 홍수 등으로 발생한 장소나 이러한 우려가 있는 지형은 자료조사, 항공사진 판독, 지표지질조사 및 유사공사 시공사례 조사 등을 시행한다.
- (3) 자료조사는 지형도(1/5,000~1/50,000), 지질도, 응용지질도, 산사태위험도, 수문기상자료, 인접지역 시추자료, 유사공사의 시공사례 등을 조사한다.
- (4) 노선경유지의 철도, 도로, 하천 기존 도시 등의 시설현황과 각종 개발계획현황을 조사

한다.

2.4.3 측량과 지반조사

(1) 측량과 지반조사는 KDS 47 10 20을 적용하며 필요한 경우에는 별도로 정할 수 있다.

2.4.4 생태 및 환경현황조사

- (1) 생태 및 환경현황조사는 기본계획 및 노선선정 단계에서 실시하는 광역 환경조사와 기본계획수립 후 설계 및 시공 단계에서 철도입지 주변 환경현황조사로 구분하여 실시하다.
- (2) 환경현황조사에서는 해당 지역의 도시계획, 각종상위 계획에 대한 조사를 해야 한다.
- (3) 광역 환경현황조사는 구조물시공 및 사용에 의한 자연환경 및 사회환경에 대한 악영 향을 최소로 줄이기 위하여 광범위하게 실시해야 하며, 다음 사항을 포함해야 한다.
 - ① 수리수문: 지형 및 하곡의 성상, 하천유량, 지하수위, 물이용 현황, 지하수에 영향을 미치는 타 공사의 유무, 대수층의 존재 여부
 - ② 기상: 기온, 강우, 강설, 바람 등의 영향, 눈보라와 돌풍의 발생빈도 및 현황
 - ③ 재해: 산사태, 눈사태, 붕괴, 지진, 홍수 등의 발생지 및 피해 정도
 - ④ 토지: 토지이용 현황, 주요 구조물, 법에 의한 용도구분의 범위
 - ⑤ 교통: 기존철도, 도로 규격 등의 교통시설현황
 - ⑥ 공공 시설물: 학교, 병원, 요양소, 자연공원 등 공공시설물의 위치 및 규모
 - (7) 문화재: 사적, 문화재, 천연기념물 등의 위치, 규모 및 법 지정 현황
 - ⑧ 지하자원: 권리설정 현황, 광산현황 및 광물의 부존상태 등
 - ⑨ 광산개발: 광산의 갱도나 폐갱도와 지하공동의 위치 및 규모
 - ⑩ 기타: 동식물의 분포상태 및 경관, 지역 개발계획 등
- (4) 자연환경현황조사는 시공에 의하여 발생되는 시설물 주변환경 변화의 예측, 환경보전 대책의 입안, 대책의 효과확인 등을 위하여 실시하며 다음 사항을 포함한다.
 - ① 물이용 현황
 - 가. 지표수 및 지하수의 수질, 수원 현황, 탁수발생 가능성이 있는 인접공사, 유로 및 수위 변화 가능성
 - 나. 시공 중 발생하는 용수나 건설공사가 주변의 지표수 및 지하수에 미치는 영향예측
 - 다. 건설공사로 인하여 갈수가 예상되는 우물, 저수지, 용천, 하천 등은 그 분포, 수량의 계절적 변화, 이용상황 등을 조사하여 갈수대책의 자료로 이용
 - ② 소음 및 진동: 소음 및 진동의 영향을 받을 수 있는 주변현황
 - ③ 지반과 구조물의 변형: 건물, 구조물 상태, 지형 및 지질, 토지이용 현황, 구조물의 변형발생 가능성이 있는 인접공사
 - ④ 수질오염: 하천의 상태, 배수 상태, 수로의 상태, 공사로 인한 폐수 및 폐유 발생상 태, 법규제 상태

- ⑤ 대기오염: 대기중의 유해물, 기상현황
- ⑥ 교통장애: 구조, 교통량 혼잡상태, 도로관리자, 도로주변의 환경 등

2.4.5 지장물 조사

- (1) 건설공사 전에 지역 내에 이미 설치되어 있는 상수도 및 하수도관, 송유관, 통신 및 전력 케이블, 도시가스관, 지하통로 등의 지하지장물의 종류, 심도 및 크기를 파악하여 안전한 시공을 할 수 있도록 한다.
- (2) 시추조사 시는 관계 기관으로부터 지장물 매설도를 구하여 참조하고 반드시 터파기나 지구물리탐사를 이용하여 지하 지장물의 유무를 확인하고 유관기관과 협의하여 시행한다.
- (3) 사업노선에 저촉되는 지상지장물 및 지하매설 지장물을 관계기관과 협의, 이설 및 보상이 가능토록 상세히 조사해야 한다.
 - ① 지상지장물: 송유관, 광케이블, 철탑, 통신시설, 전기시설, 공공시설물, 분묘 등
 - ② 지하매설 지장물: 전기, 통신, 송유관, 상하수도, 가스 등
- (4) 조사된 지장물은 시설물 관리기관별로 정리하여 필요한 협의를 할 수 있게 자료를 작성해야 한다.

2.4.6 골재원 조사

- (1) 골재원 조사는 사용할 골재종류별로 매장량, 생산가능성 향후 여건변화 등 소정공사 기간중 소정량의 공급이 가능한지를 검토해야 한다.
- (2) 골재원은 품질기준에 적합해야 하고, 운반거리와 운반방법을 조사 해야 한다.
- (3) 터널이나 흙깎기에서 발파암 등이 발생될 경우, 콘크리트 굵은 골재나 혼합골재, 쇄석 골재 등으로 발생되는 암석류의 사용을 검토해야 한다.
- (4) 콘크리트는 레미콘의 구입과 현장생산에 대하여 품질확보와 시공성, 경제성을 검토해야 한다.

2.4.7 토취장 및 사토장 조사

- (1) 공사시행성과 경제성을 감안하여 토취 및 사토장을 선정해야 하며 주변의 지형, 운반 방법과 거리, 운반도로상태, 교통규제와 교통안전상의 특성, 환경적인 조건, 토취 및 사토 후 처리방안, 법령에 의한 규제 등을 사전에 조사해야 한다.
- (2) 공사기간 중 소정량의 토사를 처리할 수 있어야 하며, 국토교통부의 토석정보공유시 스템(TOCYCLE)의 활용과 지역 내 공사현장의 토석정보도 조사해야 한다.
- (3) 토취장은 시추조사 등으로 품질기준에 적합여부를 확인해야 하고, 인허가 기관의 인 허가와 토지소유자 및 지역주민의 동의 가능여부를 조사해야 한다.
- (4) 사토장은 지반의 안전성, 토사유출, 환경상 피해 발생여부를 조사해야 한다.
- (5) 토취장과 사토장은 토취 및 사토 완료 후 경관 및 환경생태 보존방안에 대하여 조사 해야 한다.

2.4.8 공사용 시설 및 설비조사

- (1) 공사용 시설 및 설비로는 터널입구 설비, 환기 및 집진설비, 운반설비, 골재 및 콘크리트 플랜트 설비, 수배전 설비, 용배수 설비, 임시건물 설비 등이 있으며, 공사용 설비계획에 필요한 자료를 얻기 위하여 다음의 사항을 조사한다.
 - ① 지형과 지질 및 기상: 설비기능 저해 혹은 위험 가능성이 있는 지형, 지질 및 기상
 - ② 주변환경: 주변환경에 영향을 미치는 공사용 설비의 소음, 진동, 배수 및 교통
 - ③ 전력의 사용: 기가설 송배전선의 용량, 주파수, 전압, 수변전의 난이, 수전소요시간, 개략산출비용, 발전설비 등의 동력원, 공사용 장비운용시의 소요 전력량
 - ④ 화약고 설치계획: 화약취급에 관한 법률이나 지방자치단체 조례 등
 - ⑤ 용배수: 콘크리트 혼합용수, 음용수, 기타 잡용수의 취수조건, 터널시공에 수반한 용출수의 처리, 세척수의 방류조건
 - ⑥ 자재 및 버력 운반 등에 필요한 공사용 도로, 궤도 등의 규격, 교통량, 안전, 교통 규제의 현황 및 주변도로 이용현황
 - ① 노무자재: 터널 외부 설비에 관계되는 콘크리트용 골재, 굳지 않은 콘크리트, 기타 자재의 공급경로, 공급사정의 현황 및 관리방법, 노무사정의 현황
 - ⑧ 법령, 기타에 의한 규제: 인접 지역의 공사 유무, 규제사항

2.4.9 토지 등 보상권 조사

(1) 건설공사에 있어서의 보상대상 사항은 용지취득에 수반되는 토지, 건물, 수목 등의 매수 및 이전, 각종 권리(지상권, 지하권, 수리권, 온천권, 어업권, 광업권, 채석권 등)의침해, 농림 및 어업 수익의 감소, 영업손실 등이 있고, 이들의 보상을 위한 자료를 얻기 위하여 착공 전의 제반사항에 대하여 충분한 조사를 한다.

2.4.10 사업시행 관계 법령 조사

- (1) 건설공사에 있어서 법령에 의한 규제를 받는 경우에는 공사에 미치는 영향의 범위, 이에 대한 규제의 정도, 수속, 대책 등에 관한 관계법을 조사해야 한다.
- (2) 공사시행과 관계하여 국내법, 국제협약 등 모든 표준 및 기준은 계약일 현재 유효한 최신본을 적용해야 하며, 공사시행 중 개정되는 경우 개정본 적용여부는 협의 후 결 정해야 한다.

2.4.11 사업시행(사후) 환경영향 조사

- (1) 철도건설법 제2조 제1항 및 제2항 또는 국토의 계획 및 이용에 관한 법률 제2조 제6 항에 따른 철도 또는 고속철도의 건설사업 중 4 km 이상이거나 철도시설의 면적이 10만 m^2 이상의 경우에는 환경영향을 조사 하고 그 결과를 승인기관의 장과 환경부장 관에게 통보해야 한다.
- (2) 사후환경영향조사 결과 해당 사업으로 인한 주변환경의 피해를 방지하기 위하여 조치

KDS 47 10 15 : 2019 철도계획

가 필요한 경우에는 지체 없이 이를 승인기관의 장과 환경부장관에게 통보하고 필요 한 조치를 해야 한다.

- (3) 사후환경영향조사의 조사내용, 조사방법, 조사주기, 그 밖에 필요한 사항은 환경부장 관이 정한 고시 내용으로 한다.
- (4) 철도건설 사업의 사후환경영향조사 기간은 사업 착수 시부터 사업 준공 후 3년까지로 한다.

3. 재료

내용 없음

4. 설계

4.1 설계 일반사항

4.1.1 일반사항

- (1) 기본 원칙
 - ① 노반시설은 설계속도에 대하여 안정성, 기술성, 시공성, 경제성이 확보되고, 노선의 기능과 성능이 적합해야 한다.
 - ② 노반시설은 차량한계내의 차량이 안전하게 운행될 수 있도록 건축한계를 저촉하지 않아야 한다.
 - ③ 노반시설은 환경친화적으로 설계해야 한다.
 - ④ 노반시설은 사용기간 중 화학적, 물리적 작용에 대하여 충분한 내구성을 확보해야 한다.

(2) 하중

- ① 노반시설의 설계는 시공 중, 완성 후 구조물에 작용하는 모든 종류의 하중에 의한 영향을 고려해야 한다.
 - 가. 재료, 자연환경의 하중과 같은 영구하중
 - 나. 빈도에 관계없이 변동성 있는 하중
 - 다. 차량과 보행자 같은 준영구적인 하중
 - 라. 교통 또는 자연 환경 재해상 우발적인 하중
- ② 열차하중은 표준 활하중을 기준으로 하며, 충격과 함께 열차운행에 의한 피로의 영향과 따로 정한 설계기준 등 관계 규정을 따른다.
- ③ 장대레일 적용구간의 구조물은 온도변화에 대한 고려를 해야 한다.

4.1.2 철도시설 계획

- (1) 일반사항
 - ① 철도시설의 계획은 해당 노선의 기능과 성능, 안전성과 승차감을 확보할 수 있도

록 계획해야 한다.

- ② 시설물형식은 시공 시 품질관리가 용이하고, 완공 후 유지관리가 용이한 단순한 구조형식을 적용할 수 있도록 계획해야 한다.
- ③ 주위의 자연환경과 어울리는 환경친화적인 계획을 하고, 특히 소음·진동이 적거 나 또는 소음·진동 저감방안을 검토해야 한다.
- ④ 철도운행으로 인하여 인접구조물에 미치는 영향이 예상될 경우 최소화 시킬 수 있는 대책을 강구하는 계획을 해야 한다.
- ⑤ 구조물의 변형 및 안정성과 관계되는 규정 외에 재료의 거동, 고속차량운행에 따른 공진 등 구조물과 차량의 운행조건이 만족되는 계획을 해야 한다.
- ⑥ 원활한 철도시스템 운영을 위한 인터페이스를 고려하여 계획해야 한다.
- ⑦ 도로, 하천, 기타 기존시설물과 교차 되는 경우에는 교차조건에 대하여 면밀히 검 토 후 입지여건을 고려하여 계획해야 한다.
- ⑧ 고속철도 계획 시 운행에 따른 다음 사항을 특별히 고려하여 계획해야 한다. 가. 열차풍의 영향
 - 나. 공진발생의 영향
 - 다. 터널구간의 공기압 영향

(2) 인터페이스

- ① 노반구조물은 궤도구조를 고려하여 계획해야 한다.
- ② 차량형식과 구조물은 열차 속도유지, 승객의 쾌적성 및 안락성 등을 고려하여 계획 해야 한다.
- ③ 전기철도, 전차선로, 전력설비시스템 등을 고려하여 계획해야 한다.
- ④ 열차폐색장치, 열차제어장치 등 신호체계는 열차운행속도를 고려하여 계획해야 한다.
- ⑤ 전기체계는 열차운행 및 선로시스템, 궤도구조시스템 등을 고려하여 계획해야 한다.
- ⑥ 통신체계는 열차운용계획과 철도종합 정보처리 설비기능을 고려하여 계획해야 한다.
- ⑦ 정거장시설은 타 교통수단과 환승, 연계할 수 있는 기능을 검토하여 계획해야 한다.
- ⑧ 부대시설은 철도운용 및 유지보수 등을 고려하여 계획해야 한다.
- ⑨ 노반시설의 방재설비는 차량 및 열차운행조건을 감안하여 계획해야 한다.

(3) 유지관리

- ① 세부적인 설계과정에서 필요할 경우 유지관리에 필요한 최소기준을 제시해야 한다.
- ② 방재설비는 차량 및 열차운행조건에 따라 방재기준을 정하고, 안정성과 경제성을 종합적으로 분석 검토하여 노반구조물의 방재설비를 계획해야 한다.
- ③ 유지관리용 접근로 및 방호울타리
 - 가. 유지관리용 접근로

토공, 교량, 터널 등의 구조물에 차량이 접근할 수 있는 진입로 설치는 가급적 기존도

KDS 47 10 15 : 2019 철도계획

로를 최대한 활용하고, 신설할 경우는 용지 및 공사비를 최대한 절감할 수 있도록 계획해야 한다.

나. 주차장

접근로 종점부에는 점검차량과 유지보수용 자재를 적치할 수 있는 주차장을 설치하되 대상구조물에서 이용이 편리한 위치를 선정해야 한다.

다. 방호울타리

- (가) 열차안전에 지장을 초래할 우려가 있는 장소에는 안전사고를 사전예방하기 위한 방호울타리를 설치해야 한다.
- (나) 깎기나 쌓기부, 교량구간은 용지경계선에, 터널갱구부 주위는 비탈면에 맞추어 설치해야 한다. 다만, 다른 구조물과 접속개소는 연속설치하고 인근 주민의 통행 등 현지여건을 고려하여 설치해야 한다.
- (다) 교량하부에 쓰레기 등 유해적치물 등을 방치할 수 있는 장소에는 교량 방호울타 리를 설치해야 한다.

4.1.3 허용한계

- (1) 철도의 건축한계 일반
 - ① 건축한계 내에서는 건물, 기타 건조물을 설치하지 못한다. 다만, 가공전차선 및 그 현수장치와 작업상 필요한 일시적 시설로서 열차 및 차량운전에 지장이 없는 경우에는 그러하지 않는다.
 - ② 직선 선로구간 건축한계는 그림 4.1-1에 따른다.

철도계획 KDS 47 15 05 : 2019

③ 전기동차 전용선인 경우에는 표 4.1-1을 따른다. 다만, 도시철도와 연결 되는 경우에는 연계성을 고려하여 이에 맞도록 해야 한다.

표4.1-1전기동차전용선의건축한계및구축한계(단위:mm)

항목	구	<u>가</u> 별	폭	높이	비고
지상 건축한계		・고가	3,600	5,300	
신국인계	ス	하	3,600	4,800	높이: RL기준
	지상	・고가	3,600	5,800]
구축한계	지하	단선	4,700	4,850	
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	복선	4,100	4,850	폭: 중앙기둥제외

④ 곡선구간 건축한계

가. 곡선 선로구간 건축한계의 폭은 직선구간

건축한계에서 식 (4.1-1)에 의하여 산출한 치수 이상을 확보해야 한다. 다만, 가공 전 차선과 그 현수장치를 제외한 상부의 한계는 그러하지 않는다.

KDS 47 10 15: 2019 철도계획

$$W = \frac{50,000}{R}$$
(전기동차 전용선인 경우 $\frac{24,000}{R}$) (4.1-1)

여기서, W: 궤도중심의 각 측으로 확대할 치수(mm) R: 선로 곡선반경(m)

- 나. 위의 규정에 의한 확대치수는 완화곡선구간에서 이를 체감해야한다. 완화곡선이 없는 경우에는 원곡선 시·종점에 접속한 직선 구간 26 m 이상의 길이에서 이를 체감해야 한다.
- 다. 곡선구간 건축한계는 캔트에 따라 경사된 건축한계로 해야 한다.
- 라. 철도를 횡단하는 시설물이 설치되는 구간의 건축한계의 높이는 전차선 가설높이에 지장이 없도록 건축한계의 높이를 일반철도는 RL에서 7,010 mm 이상, 고속 철도는 RL에서 8,050 mm 이상 확보해야 한다. 다만, 기존선 개량 등 부득이한 경우에는 승인을 받아 전차선 가설에 지장이 없는 범위로 축소할 수 있다.

(2) 도로횡단 시설한계

- ① 도로횡단 시설한계(도로의 구조·시설기준에 관한 규칙 제18조.)의 통과높이 H는 4.5 m로 한다. 동계 적설에 의한 한계높이의 감소 또는 포장 덧씌우기 등이 예상되는 경우를 고려하여 5.0 m 이상으로 하는 것이 바람직하다. 다만, 부득이한 경우에는 도로의 구조·시설기준에 관한 규칙에 따라 축소할 수 있다.
- ② 도로횡단 철도구조물이 규정된 다리밑 공간을 확보한 경우에도 적재높이 제한 위반차량으로 인한 충격이나 파손이 우려되는 개소는 차량통과한계틀을 설치해야한다.
- ③ 도로횡단 구조물의 다리밑 공간이 4.7 m(고속철도 5.0 m) 미만의 개소에는 차량통 과한계를 및 차높이 제한표지를 설치하되 전후 고가도로 또는 보도육교 등 현지여 건을 감안하여 설치여부 결정해야 한다.
 - 가. 차량통과한계를 설치위치
 - (가) 교량: 전방 20 m~50 m 부근에 지형여건 감안 설치
 - (나) 통로박스: 전방 5 m~15 m 부근에 지형여건 감안 설치
 - 나. 차량통과한계틀 설치높이는 구조물의 실제 통과높이보다 0.1 m 낮게 설치한다.
 - 다. 차높이 제한표지에는 구조물의 실제 통과높이보다 0.2 m 낮게 표기한다.
 - 라. 차높이 제한표지는 도로교통법의 관계 규정을 따른다.
- (3) 하천 등의 다리밑 공간
 - ① 교량 밑의 통행에 사용되는 공간 또는 교량 밑에서 수위(水位)까지의 공간높이를 말하며, 배가 지나다니는 수로 위의 공간높이는 다음과 같다.
 - 가. 범선 또는 소기선 통과 ····· 최고수면에서 30 m
 - 나. 대기선 군함 ····· 최고수면에서 45 m~60 m
 - 다. 소증기선 ······ 최고수면에서 4.5 m
 - 라. 폰툰(pontoon), 바지선(barge) ····· 최고수면에서 3.0 m

② 교량 계획 시 조사한 계획 홍수위가 주거더 밑에 있도록 계획해야 한다. 선박의 운항이 없는 하천의 경우에는 하천설계 기준의 계획홍수량에 따라 표 4.1-2의 값을 표준으로 하되, 하상변동에 의한 수위상승과 만곡부의 수위상승, 수리계산 오차등을 고려하여 제방여유고 이상을 확보해야 한다.

표4.1-2계획홍수량에따른다리밑공	곡가	밑	리	루디	따	수량이	호=	획	1-2계	Ŧ 4.1	
--------------------	----	---	---	----	---	-----	----	---	------	--------------	--

계획홍수량(m^3/sec)	다리밑공간(m)
200 미만	0.6 이상
200 이상 ~ 500 미만	0.8 이상
500 이상 ~ 2,000 미만	1.0 이상
2,000 이상 ~ 5,000 미만	1.2 이상
5,000 이상 ~ 10,000 미만	1.5 이상
10,000 이상	2.0 이상

- 1) 하천에서의 다리밑 공간은 홍수위로부터 교각이나 교대 중 가장 낮은 위치의 받침하면까지의 높이를 말하며, 라멘교의 경우에는 헌치 하단까지의 높이를 말한다.
- 2) 다만, 계획홍수량이 50 $m^3/{
 m sec}$ 이하이고 제방고가 1.0 m 이하이고 다리밑 공간은 0.3 m 이상을 확보해야 한다.

(4) 지하 구조물의 최소토피

- ① 철도 관련 지하시설물의 윗면에서부터 도로면, 지상면, 하천 하상고까지의 최소토 피는 다른 지하매설물의 영향이 철도 운행에 미치지 않고, 철도시설물의 보호 및 안전이 확보되어 일정 이상의 토피를 유지 할 수 있도록 계획·설계해야 한다.
- ② 도로 및 지상부 최소토피는 기존도로 지하에 기 매설되어있는 시설물의 안전을 고려하고, 그 이외의 구간은 장래시설물의 설치 필요 공간을 확보하기 위하여, 도로면 또는 지면으로부터 지하구조물 윗면까지 일정 이상의 토피를 유지 할 수 있도록 계획해야 한다. 다만 현지여건상 부득이한 사유가 있거나 도로개구부 등 지형상 특별한 경우에는 철도 시설물의 성능을 저하시키지 않는 범위에서 관리청과 협의하여 최소토피를 조정할 수 있다.
- ③ 하천을 횡단하는 철도 지하구조물 윗면까지 최소토피는 하천의 장래 계획 및 홍수 시 세굴 등을 고려하여 하상고(저수로 기준)와 일정한 깊이를 유지 할 수 있도록 계획해야 한다.
- ④ 최소 토피에 관한 설계기준은 관계 법령 및 설계기준의 각 장에서 정한 기준을 따른다.

4.2 설계의 단계별 업무구분

4.2.1 일반사항

(1) 철도노반공사의 설계업무는 사업추진단계별로 과업목적과 특성에 맞게 표준화하여 설

계성과의 품질향상과 설계업무의 효율화 및 내실화 할 수 있게 해야 한다.

- (2) 조사업무는 현지답사 각종 자연환경조사, 자료수집 등 각 설계용역단계에서 명시한 내용들을 조사·검토 분석하고, 그 결과를 종합해야 한다.
- (3) 계획업무는 조사업무를 토대로 하여, 실행 가능한 여러 대안을 계획하고, 비교·분석 하여 과업목적에 적합한 최적안을 선정할 수 있게 해야 한다.
- (4) 설계업무는 조사와 계획업무의 결과에 따라 선정된 최적안을 바탕으로 하여 과업목적에 적합한 시설물과 부대사항 등을 기술적으로 구체화 해야 한다.
- (5) 설계도면은 과업계획에서 제시된 목적물의 형상과 규격 등을 표현하기 위해 설계자가 작성한 도면으로서 물량산출과 내역산출의 기초가 되고, 시공자가 시공상세도를 작성할 수 있는 모든 지침이 표현되어야 하며, 복잡한 부분을 판독할 수 있는 상세 설계 도와 구조계산을 포함해야 한다.
- (6) 시공상세도면은 시공자가 목적물의 품질확보와 안전시공을 할 수 있게 공사진행 단계 별로 요구되는 시공방법과 순서 등을 설계도면을 근거로 하여 작성해야 하며 감리자의 승인을 받아야 한다.

4.2.2 설계의 단계별 업무내용

- (1) 일반사항
 - ① 설계는 사업추진단계에 따라 타당성조사(기본계획 포함), 기본설계, 실시설계를 순 차적으로 시행하는 것으로 하며 다만, 공사의 규모와 특성에 따라 타당성조사와 기본설계 또는 실시설계를 함께 시행할 수 있다.
 - ② 타당성조사와 기본설계 또는 기본설계와 실시설계를 함께 시행할 경우 통합 과업 지시서는 개별 과업지시서의 내용을 충분히 반영하도록 작성해야 한다.
 - ③ 철도토목분야의 설계는 설계상 연계성이 많은 궤도, 건축, 전기, 통신, 신호 등 관계 기술분야의 설계를 동시에 시행하여 기술적 연계성을 최적화할 수 있게 해야 한다.
- (2) 설계업무의 구분
 - ① 타당성조사(기본계획 포함)

대상사업의 기본구상을 토대로 하여 사업목표와 이를 위한 수단을 설정하여 경제적 및 기술적, 사회적, 환경적 타당성을 종합적으로 검토하여 사업시행의 타당성을 판단하며, 목적시설물의 실현방법에 대한 여러 대안을 비교·검토하여 최적대안을 선정한 후 이에 대한 기본계획을 수립하고, 기본설계에 대한 기본방침과 기술자료를 작성하는 단계

- ② 기본설계
 - 타당성조사를 토대로 하여 목적 시설물의 규모, 배치, 형태, 공사방법, 공사기간, 공사비 등에 대한 일반적인 조사 및 분석, 비교·검토를 거쳐 최적안을 선정하고, 주요시설에 대해서만 예비설계를 수행하며, 설계기준과 설계조건 등 실시설계에 필요한 기술자료를 작성하는 단계
- ③ 실시설계

철도계획 KDS 47 15 05 : 2019

기본설계를 토대로 하여 목적 시설물의 규모, 배치, 형태, 공사방법, 공사기간, 공사비, 유지관리 등에 대한 세부조사 및 분석, 비교·검토를 거쳐 최적안을 선정하고, 상세 설계를 수행하며, 시공 및 유지관리에 필요한 기술자료를 작성하는 단계

④ 설계용역수행을 위한 각 단계별 업무는 조사업무와 계획업무, 설계업무로 표 4.2-1 와 같으며, 건설기술진흥법 시행령 제75조 설계의 경제성 등 검토에 의한 설계의 경제성 등 검토를 시행해야 한다.

표4.2-1설계용역수행을위한각단계별업무 ○:수행하는업무 △:필요시수행하는업무

	구분	<u>1</u>	타당성 조사	기본 설계	실시 설계	비고
	1. 관련 계획 조	사 및 검토	0	Δ	Δ	
	2. 현지조사/답시		0	0	0	
조	3. 수리·수문조 (기상, 해상, 선		O (△)	O (△)	Δ	
	4. 교통량 및 교	통시설조사	0	Δ	Δ	
사	5. 환경영향조사	(문화재조사)	Δ	0	Δ	
업	6. 측량	- 1/	Δ	0	0	
무	7. 지질 및 지반	조사(폐광, 지하공동)	Δ	0	0	
	8. 지장물, 구조	물조사(지하매설물)		0	0	
	9. 토취장, 사토	장, 재료원		Δ	0	
	10. 용지조사		,	Δ	0	
	1. 전 단계 성과	물 검토		0	0	
	2. 수송수요 예측	0	1/4			
	3. 철도시스템 김	검토(인터페이스 검토)	0	(△)	(△)	
	4. 건설기준/설계	기준 검토	0	0	0	
	C 1 11 11 T1	노선대안	0			
계	5. 노선선정	최적 노선선정	Δ	0	Δ	
획	6. 정거장선정	경유지 선정	0			
	6. 경기경신경	위치선정	Δ	0	Δ	
업	7. 구조물계획(타	널, 교량 등)	Δ	0	0	
무	8. 열차운행계획	검토	0	Δ	Δ	
	9. 경제성, 재무분석		0			
	10. 환경 및 교통영향성 검토		0	0	0	
	11. 수리 • 수문검	토	Δ	0	0	
	12. 관계기관 협의	<u></u>	0	0	0	
	13. 민원 검토		0	0	0	

	구분	타당성 조사	기본 설계	실시 설계	비고
	1. 개략설계	0			
설계 업무	2. 예비설계		0		
	3. 상세설계			0	

4.3 내진설계

(1) 기본방침

KDS 24 17 10 (1.2)를 따른다.

- (2) 설계일반
 - ① 내진등급 철도 구조물은 구조물의 중요도를 고려하여 표 4.3-1과 같이 내진등급을 분류한다.

표4.3-1철도의내진등급

내진등급	구분내용	설계지진의 평균재 현주기
내진 1등급	설계지진 발생 후에도 교통수단을 유지하기 위한 중요시설물	1000년 (단, 열차주행안전성 검토는 100년)
내진 2등급	내진1등급에 속하지 않는 철도구조물	500년

- ② 철도의 내진설계 시 검토해야 할 사항
 - 가. 기본적인 검토사항
 - (가) 내진등급여부
 - (나) 지반의 분류
 - (다) 지진구역계수 결정
 - (라) 재현주기별 지진 위험도계수결정
 - (마) 설계지진의 응답스펙트럼 결정
 - 나. 전반적인 검토 사항
 - (가) 열차 주행안전성 검토
 - ② 설계지진 발생 시 감속된 상태로 운행하는 열차의 주행안전성을 보장하는 것으로 철도 구조물의 변형, 응력, 진동 및 궤도 틀림 등이 열차의 안전성을 위협해서는 안 되며, 탄성영역의 거동이 지배적이어야 한다. 또한 기초지반의 영구적인침하나 융기, 액상화를 검토하여 열차주행안전성을 확보해야 한다.
 - ① 구조물 진동에 의한 열차의 탈선을 방지하기 위하여 열차속도별 허용침하량을 만족해야 하며 교축 직각 방향에 대한 충분한 강성을 확보토록 탄성설계를 해야 한다.
 - 때 재현주기는 100년을 기준으로 한다.
 - ② 하중조합 U = 1.0(D+L+E+Q+H)이며 이 경우 활하중(L)은 단선에만 적용한다. 다만, 하중기호는 KDS 24 12 10에 따른다.

철도계획 KDS 47 15 05 : 2019

(나) 구조물 설계

- ⑦ 설계지진 발생 후의 피해 정도를 최소화하고 구조물을 구성하는 부재들의 부분 적인 피해는 허용하나 구조물의 전체적인 붕괴는 방지해야 한다.
- (i) 기초지반 및 말뚝의 극한지지력, 기초 및 구조물의 설계지진력을 적용해야 한다.
- © 구조물은 표 4.4-1 내진등급에 따라 설계하며 비탄성 변형을 허용하는 경우에는 구조물의 연성거동을 확보해야 한다.
- 한 하중조합 U = 1.0(D+L+E+Q+H)이며 이 경우 활하중(L)은 단선에만 적용한다.
 다만, 하중기호는 KDS 24 12 10에 따른다.
- 교량의 내진설계에서는 연성 확보를 위해서 교각에 소성힌지를 형성시키거나,
 필요한 경우 합리적이고 타당성 있는 지진격리장치를 사용할 수 있다. 소성힌지의 형성 위치는 유지관리와 보수, 보강이 가능한 곳을 선택하는 것으로 한다.

(다) 철도구조물별 검토사항

- ⑦ 구조물별 내진설계기준에 따라 검토한다.
- ⊕ 별도의 내진 기준이 언급되지 않은 경우 지진하중을 고려하지 않는다.

다. 궤도, 정거장, 신호 및 통신체계 관련 고려사항

- (가) 궤도: 모든 유형의 궤도에 있어서 각 궤도구성품(레일, 체결장치, 침목, 도상 등) 은 모든 수준의 지진하중에 견딜 수 있다고 인식되고 있기 때문에 궤도 구조 자 체에 대해서는 별도의 내진 설계를 수행할 필요는 없다.
- (나) 전차선주 및 전차선: 고가교 상에 건설되는 전차선주의 경우에는, 지지되는 구조 물과의 동적 상호작용을 고려한 내진설계법을 적용해야 한다.
- (다) 신호 및 통신설비: 신호 및 통신설비에 대한 내진설계의 기본방침과 그 설계 방법은 전차선주 및 전차선의 경우와 동일하며, 지중 또는 궤도상에 설치된 신호및 통신설비는 별도의 내진설계를 수행하지 않는다.

③ 설계지반운동

가. 설계지진은 시설물의 사용연한과 해당 기간 내 지진의 초과발생확률로서 정한다. 이를 반영한 지진·화산재해대책법 제12조 국가지진위험지도에 의한 50년, 100년, 200년, 500년, 1000년, 2400년, 4800년 재현주기(7가지) 지진을 설계지진으로 정할 수 있다

(가) 평균재현주기별 분류

- ② 평균재현주기 50년 지진지반운동 (5년내 초과발생확률 10%)
- ④ 평균재현주기 100년 지진지반운동 (10년내 초과발생확률 10%)
- ⑤ 평균재현주기 200년 지진지반운동 (20년내 초과발생확률 10%)
- 환 평균재현주기 500년 지진지반운동 (50년내 초과발생확률 10%)
- ⑨ 평균재현주기 1000년 지진지반운동 (100년내 초과발생확률 10%)
- 평균재현주기 2400년 지진지반운동 (250년내 초과발생확률 10%)
- ④ 평균재현주기 4800년 지진지반운동 (500년내 초과발생확률 10%)

KDS 47 10 15: 2019 철도계획

④ 지역에 따른 설계지진의 세기

가. 지진구역 및 지진구역계수(Z, 재현주기 500년 기준)는 표 4.3-2와 같다.

표 4.3-2 지진구역구분

지진구역		행정구역	구역계수, Z
	시	서울, 인천, 대전, 부산, 대구, 울산, 광주, 세종	
I	도	경기, 충북, 충남, 경북, 경남, 전북, 전남, 강원 남부*	0.11g
П	도	강원 북부**, 제주	0.07g

- * 강원 남부 : 영월, 정선, 삼척, 강릉, 동해, 원주, 태백
- ** 강원 북부: 홍천, 철원, 화천, 횡성, 평창, 양구, 인제, 고성, 양양, 춘천, 속초
- 나. 위험도계수(I)는 각 내진등급에 따른 평균재현주기별로, 500년 평균재현주기에 대한 최대지진지반가속도의 비를 나타내며 표 4.3-3과 같다.

표 4.3-3 위험도계수, 1

평균재현주기 (년)	50	100	200	500	1,000	2,400	4,800
위험도계수, I	0.4	0.57	0.73	1.0	1.4	2.0	2.6

- 다. 유효수평지반가속도(S)는 다음과 같이 결정한다.
 - (가) '유효수평지반가속도(S)'란 지진하중을 산정하기 위하여 국가지진위험지도나 행정구역을 기준으로 제시된 암반지반의 수평지반운동수준을 말한다.
 - (나) 행정구역에 의한 방법으로 재현주기에 따른 유효수평지반가속도(S)는 지진구역 계수(Z)에 각 재현주기의 위험도계수(I)를 곱하여 결정한다.

$$S = Z \times I \tag{4.3-1}$$

(다) 국가지진위험지도를 이용하여 결정한 유효수평지반가속도(S)는 행정구역에 의한 방법으로 결정된 유효수평지반가속도(S) 값의 80% 보다 작지 않아야 한다.

⑤ 지반분류

- 가. '지반분류'란 국지적인 토질조건과 지표 및 지하 지형이 지반운동에 미치는 정도를 공학적인 특성에 근거하여 지반을 분류하는 등급을 말한다.
- 나. 국지적인 토질조건, 지표 및 지하 지형이 지반운동에 미치는 영향을 고려하기 위하여 다음 각 (가) ~ (다) 까지를 따른다.
 - (Y) 내진설계를 위한 지반분류는 기반암의 깊이(H)와 기반암 상부 토층의 평균전단 파속도 $(V_{Sr,Soil})$ 에 근거한다.
 - (나) 지반은 표 4.3-4와 같이 S_1 , S_2 , S_3 , S_4 , S_5 , S_6 등 6종류로 분류한다.
 - (다) 토층의 평균전단파속도($V_{S,Soil}$)는 탄성파시험 결과가 있을 경우 이를 우선적으로 적용하다.
 - 다. 지반의 자세한 분류 절차는 [별표1]과 같다.

철도계획 KDS 47 15 05: 2019

표 4.3-4 지반분류체계

		분류기준				
지반종류	지반종류의 호칭	기반암 *깊이, H (m)	토층 평균전단파속도, $V_{s,soil}$ (m/s)			
S_1	암반 지반	1 미만	_			
$\overline{S_2}$	얕고 단단한 지반	1 - 00 01=1	260 이상			
S_3	얕고 연약한 지반	1∼20 이하	260 미만			
S_4	깊고 단단한 지반	20 초고	180 이상			
$\overline{S_5}$	깊고 연약한 지반	- 20 초과	180 미만			
S_6	부지 고유의 특성평가 및 지반응답해석이 요구되는 지반					

^{*}기반암(bed rock) : 전단파속도가 760m/s 이상을 나타내는 지층

- 라. 지반종류 S_6 는 별도로 부지에 대한 고유의 특성 평가 및 지반응답해석이 요구되는 지반으로서 다음의 경우에는 전문가가 작성한 부지종속 설계응답스펙트럼을 사용해야 한다.
 - (가) 액상화가 일어날 수 있는 지반, 매우 민감한 점토지반, 붕괴될 정 도로 결합력이 약한 지반과 같이 지진하중 작용 시 잠재적인 파괴나 붕괴에 취약한 지반, 이탄이나 유기성이 매우 높은 점토지반.
 - (나) 매우 높은 소성을 가진 점토지반
 - (다) 층이 매우 두꺼우며 연약하거나 중간정도로 단단한 점토
 - (라) 기반암이 깊이 50 m 를 초과하여 존재하는 지반
- ⑥ 설계지반운동의 특성표현
 - 가. 암반지반 설계지반운동의 가속도 표준설계응답스펙트럼
 - (γ) 암반지반인 S_I 의 5 % 감쇠비에 대한 수평설계지반운동의 가속도 표준설계응답 스펙트럼은 그림 4.3-1과 같다.

그림 4.3-1 암반지반 수평설계지반운동의 가속도 표준설계응답스펙트럼

⑦ 전이주기(절점주기)는 표 4.3-5와 같다.

^{*}기반암 깊이와 무관하게 토층 평균 전단파속도가 $120 \mathrm{m/s}$ 이하인 지반은 S_{ϵ} 지반으로 분류

KDS 47 10 15: 2019 철도계획

# 43-5	수평설계지반운동의	가속도	표준설계응답스펙트럼	저이주기
<u> </u>		<i></i>	# E = 1 O E = 1 = D	

	α_A		전이주기(sec)	
수 문	구 분 (단주기스펙트럼 증폭계수)	T_o	T_S	T_L
 수 평	2.8	0.06	0.3	3

- H 감쇠비(ξ , %단위)에 따른 스펙트럼 형상은 다음에 제시한 감쇠보정계수 C_D 를 표준 설계응답스펙트럼에 곱해서 구할 수 있다. 단, 감쇠비가 0.5 %보다 작은 경우에는 적용하지 않으며 해당 구조물의 경우 시간이력해석을 권장한다.
 - · T=0 초 , 모든 감쇠비에 대해서 $C_D=1.0$
 - \cdot $0 \leq T \leq T_0$, T=0 초에서 $C_D=1.0$, $T=T_0$ 에서 $C_D=\left(\frac{6.42}{1.42+\xi}\right)^{0.48}$ 이며 그 사이는 직선보간
 - $\cdot \ T_0 \leq \ T \ , \ C_D = \left(\frac{6.42}{1.42 + \xi} \right)^{0.48}$
- ④ 표준설계응답스펙트럼에 대응하는 비탄성응답스펙트럼이 필요한 경우 [별표2]의 기준을 적용할 수 있다.
- (나) 수직설계지반운동의 가속도 표준설계응답스펙트럼은 다음과 같다.
 - ② 5% 감쇠비에 대한 수직설계지반운동의 가속도 표준설계응답스펙트럼은 (가)에 있는 수평설계지반운동의 가속도 표준설계응답스펙트럼과 같은 전이주기와 감쇠보 정계수를 갖는다.
 - () 최대 유효 수평지반가속도에 대한 최대 유효 수직지반가속도의 비는 0.77이다.
- (다) 표준설계응답스펙트럼에 대응하는 가속도시간이력 생성 기준은 [별표3]의 기준을 적용할 수 있다.
- 나. 토사지반 설계지반운동의 가속도 표준설계응답스펙트럼
 - (가) 토사지반인 S_2 , S_3 , S_4 , S_5 지반의 5% 감쇠비에 대한 수평설계지반운동의 가속도 표준설계응답스펙트럼은 기반암의 스펙트럼 가속도와 지표면의 스펙트럼 가속도의 증폭비율을 의미하는 '지반증폭계수(F_a , F_v)'로부터 그림 4.3-2와 같이 구할 수있다.

철도계획 KDS 47 15 05 : 2019

그림 4.3-2 토사지반 수평설계지반운동의 가속도 표준설계응답스펙트럼

- ① 토사지반에서 감쇠비에 따른 스펙트럼 형상은 해당 토사지반에 적합한 가속도시간 이력을 이용하여 공학적으로 적절한 분석과정을 통해 결정 할 수 있다
- (나) 유효수평지반가속도(S)에 따라 단주기 지반증폭계수(F_a)와 장주기 지반증폭계수 (F_v)는 표 4.3-6을 이용하여 결정한다. 유효수평지반가속도(S)의 값이 중간 값에 해당할 경우 직선보간하여 결정한다.
- (다) 수직설계지반운동의 가속도 표준설계응답스펙트럼은 다음과 같다.
 - $\% 5\% 감쇠비에 대한 <math> S_2 \sim S_5$ 지반의 수직설계지반운동의 가속도 표준설계응답스펙트 럼은 (가)에 있는 수평설계지반운동의 가속도 표준설계응답스펙트럼과 같은 전이 주기를 갖는다.

표 4.3-6 지반증폭계수

지반분류	단주기 중폭계수, Fa		장주기 중폭계수, F_{v}			
시민단표	S≤0.1	S=0.2	S=0.3	S≤0.1	S=0.2	S=0.3
S_2	1.4	1.4	1.3	1.5	1.4	1.3
S_3	1.7	1.5	1.3	1.7	1.6	1.5
S_4	1.6	1.4	1.2	2.2	2.0	1.8
S_5	1.8	1.3	1.3	3.0	2.7	2.4

- ①최대 유효 수평지반가속도에 대한 최대 유효 수직지반가속도의 비는 공학적 판단에 의해 값을 결정할 수 있다.
- (라) $S_2 \sim S_5$ 지반의 경우 그림 4.3-2의 표준설계응답스펙트럼 대신 부지고유의 지반응답해석을 이용하여 결정한 스펙트럼을 사용할 수 있다.
- (마) S6 지반의 경우 부지고유의 지반응답해석을 이용하여 결정한 스펙트럼을 사용한다.
- (바) 가속도시간이력은 암반지반에 대해 작성된 가속도시간이력을 사용하여 지반응답

KDS 47 10 15 : 2019 철도계획

해석을 통해 결정한다.

(3) 품질보증 요구사항

- ① 내진시설물의 적절한 품질보증요건을 만족시키기 위하여 설계, 시공, 완공 후 공용기간의 단계별로 이루어져야 한다.
- ② 설계는 시설물 부재 재료의 특성과 세부사항 및 치수를 제시해야 하며, 특별한 장치가 도입될 경우에는 이에 대한 특성도 포함해야 한다.
- ③ 시공중에 특별한 검토를 요구하는 중요한 시설물의 부재는 설계도면에서 확인이 되어야 하고, 이에 대한 검토방법이 제시되어야 한다.

부록.내진설계기준별표

[별표1] 지반분류(S₁, S₂, S₃, S₄, S₅, S₆)

□ 지반분류 절차

1. 범위

여기서는 표 4.3-4에 따라서 지반을 S/부터 S6까지 6종으로 분류하는 절차를 기술한다.

2. 정의

(1) 지반의 종류는 다음과 같이 정의된다.

 S_{l} : 전단파속도가 760 m/s 이상인 기반암의 깊이(H)가 1m 미만인 지반

 $S_2: H \leq 20 \text{ m이고}, V_{S,Soil} \geq 260 \text{ m/s}$ 인, 기반암 깊이가 얕고 단단한 지반

 $S_3: H \leq 20$ m이고, $V_{S,Soil} < 260$ m/s인, 기반암 깊이가 얕고 연약한 지반

 $S_4: H > 20$ m이고, $V_{S,Soil} \ge 180$ m/s인, 기반암 깊이가 깊고 단단한 지반

 $S_5: H > 20$ m이고, $V_{SSoil} < 180$ m/s인, 기반암 깊이가 깊고 연약한 지반

 S_6 : 부지 고유의 특성 평가 및 지반응답해석이 요구되는 다음 경우에 속하는 지반

- ① 액상화가 일어날 수 있는 흙, 예민비가 8이상인 점토, 붕괴될 정도로 결합력이 약한 붕괴성 흙과 같이 지진하중 작용 시 잠재적인 파괴나 붕괴에 취약한 지반
- ② 이탄 또는 유기성이 매우 높은 점토지반(지층의 두께 > 3 m)
- ③ 매우 높은 소성을 띤 점토지반(지층의 두께 > 7 m 이고, 소성지수(PI: Plasticity Index) > 75)
- ④ 층이 매우 두껍고 연약하거나 중간 정도로 단단한 점토(지층의 두께 > 36 m)
- ⑤ 기반암이 깊이 50 m 를 초과하여 존재하는 지반

※ 예외: $V_{S,Soil}$ 이 120m/s 이하인 지반은 기반암 깊이에 관계없이 S_5 지반으로 분류한다.

부지 고유의 특성 평가 및 지반응답해석이 요구되는 지반, 즉 S_6 로 분류할 때는 상기 S_6 에 대한 정의에서 제시한 기준이 고려되어야 한다. 만약 해당 부지가 이 기준과 일치하면 그부지는 지반 종류 S_6 으로 분류되어야 하며, 부지 고유의 특성 평가 및 지반응답해석이 이루어져야 한다.

2.1 기반암에 대한 정의

기반암은 전단파속도 760 m/s 이상을 나타내는 지층이다.

2.2 토층 평균 전단파속도($V_{S,Soil}$)

 $V_{S,Soil}$ 은 다음 공식에 따라 결정된다.

$$V_{S,Soil} = \frac{\sum_{i=1}^{n} d_i}{\sum_{i=1}^{n} \frac{d_i}{V_{Si}}}$$

여기서, d= 기반암 깊이까지의 i번째 토층의 두께, m V_{Si} = 기반암 깊이까지의 i번째 토층의 전단파속도, m/s

2.3 표준관입시험 관입저항치의 전단파속도로의 변환

표준관입시험 관입저항치(SPT-N치)를 전단파속도로 변환할 수 있다. 변환에는 국내 지반에 대해 제안된 상관관계식(Sun et al. 2013*, 등)을 활용할 수 있다. 표준

31

KDS 47 10 15: 2019 철도계획

관입시험 시 단단한 암질에 도달하여 항타수가 50에 이르러도 30cm 깊이를 관입하지 못할 경우 50타수 이상의 Λ 값은 선형적인 비례관계를 토대로 30cm 두께 관입 시 Λ 값으로 환산한다. 이때 환산 Λ 치의 최대값은 300이다.

* Sun, C. G., Cho, C. S., Son, M., & Shin, J. S. (2013). Correlations between shear wave velocity and in-situ penetration test results for Korean soil deposits. Pure and Applied Geophysics, 170(3), 271-281.

[별표2] 표준설계응답스펙트럼에 대응하는 비탄성응답스펙트럼

- 1. 표준설계응답스펙트럼에 대응하는 수평지반운동에 대한 비탄성응답스펙트럼은 변위연 $성 \mathbf{E}(\mu)$ 와 감쇠비 (ξ) 의 함수로 정의된다.
- 2. 감쇠비 5%에 대한 표준설계응답스펙트럼에 대응하는 비탄성응답스펙트럼의 형상은 그림 1의 수평설계응답스펙트럼과 같은 형상을 갖는다.

그림 1. 표준설계용답스펙트럼에 대응하는 비탄성용답스펙트럼 기준(T=0.01초에서 Sa=1g로 정규화)

3. 비탄성응답스펙트럼의 유사가속도 스펙트럼에 대한 단주기스펙트럼증폭계수 (α_A) 와 전이주기는 표 1를 따른다.

<i>≖</i> 1. 21	100H-4-	= 타리 ㅠ시기국エ	그럭트립과 언어구	~ I
7 H			전이주기(sec)	
구 분	α_A	T_o	T_S	T_L
μ=1.0(표준설계응답스펙 트럼)	2.8	0.06	0.30	3
<u>μ</u> =1.5	2.0	0.05	0.27	3
μ=2	1.65	0.044	0.24	3
μ=3	1.33	0.036	0.21	3
μ =4	1.17	0.03	0.20	3
μ =5	1.07	0.02	0.18	3
μ=8	0.74	0.2	0.2	3
μ=10	0.64	0.2	0.2	3

표 1 비타성응단스펠트럼의 유사가속도 스펠트럼과 전이주기

※ 표 1에 열거된 변위연성도(μ)는 대표적인 값들이며 예시된 변위연성도 이외의 사이값에 대해서는 보간한 값을 적용할 수 있다. 단, 변위연성도에 대하여 증폭비와 전이주기를 로그단위로 보간하도록 한다.

4. 감쇠비에 대한 스펙트럼 형상은 다음에 제시한 감쇠보정계수 C_D 를 비탄성응답스펙트럼에 곱해서 구할 수 있다. 각 변위연성도에 대한 감쇠보정계수는 표 2의 값을 따른다. 변위연성 도가 8이상의 경우 감쇠보정계수는 1을 사용한다. 단, 감쇠비가 0.5%보다 작은 경우에는 적용하지 않으며 해당 구조물의 경우 시간이력해석을 권장한다.

표 2. 비탄성스펙트럼의 감쇠보정계수

변위연성도 1.5	변위연성도 2	변위연성도 3
$C_{D,1.5} = \left(\frac{7.23}{2.23 + \xi}\right)^{0.42}$	$C_{D,2} = \left(\frac{7.70}{2.70 + \xi}\right)^{0.37}$	$C_{D,3} = \left(\frac{6.68}{1.68 + \xi}\right)^{0.24}$
변위연성도 4	변위연성도 5	변위연성도 8 이상
$C_{D,4} = \left(\frac{6.47}{1.47 + \xi}\right)^{0.20}$	$C_{D,5} = \left(\frac{6.17}{1.17 + \xi}\right)^{0.16}$	$C_D = 1$

- ※ 표 2에 열거된 변위연성도(μ)는 대표적인 값들이며 예시된 변위연성도 이외의 사이값에 대해서는 가까 운 변위연성도의 감쇠보정계수 중 큰 값을 사용한다.
- ① T=0초, 모든 감쇠비에 대해서 $C_D=1.0$
- $\textcircled{2} \ 0 \leq T \leq T_o$, T = 0초에서 $C_D = 1.0$, $T = T_O$ 에서 $C_D = C_{D,\mu}$ 이며 그 사이는 직선보간
- $\Im T \geq T_o$, $C_D = C_{D,u}$

[별표3] 표준설계응답스펙트럼에 대응하는 가속도시간이력 작성 기준

- □ 인공합성 가속도시간이력 작성
 - 인공합성가속도시간이력의 포락함수에 대한 최소 요구조건은 다음과 같다.
 - 1. 시간이력의 절단(cut off) 진동수는 최소 50Hz 이상이어야 한다.
 - 2. 규모에 따른 구간선형 포락함수의 형상과 지속시간은 그림 2 및 표 3과 같다.

그림 2. 가속도시간이력의 구간선형 포락함수

표 3. 가속도시간이력 구간선형 포락함수에 대한 지진규모별 지속시간

지진규모	상승시간 (_{t_r})	강진동지속시간 (t_m)	하강시간 (_{t_d})
7.0이상-7.5미만	2	12.5	13.5
6.5이상-7.0미만	1.5	9	10.5
6.0이상-6.5미만	1	7	9
5.5이상-6.0미만	1	5.5	8.0
5.0이상-5.5미만	1	5	7.5

KDS 47 10 15 : 2019 철도계획

강진동지속시간 (t_m) 의 한쪽 파워스펙트럼밀도(PSD; Power Spectral Density)는 다음과 같이 구할 수 있다.

$$S\!(f) = \frac{\mid F\!(f) \mid^2}{\pi \ t_m}$$

여기서, F(f)는 강진동지속시간의 푸리에 변환이다.

3. 그림 2의 포락함수가 적용되지 않은 경우 강진동지속시간 t_m 은 가속도시간이력의 누적에 너지가 5%에서 75%에 도달하는 구간으로 정의된다. 누적 에너지는 다음과 같이 정의된다.

$$E(t) = \int_0^t a^2(\tau) d\tau$$

여기서, $a(\tau)$ 는 지반가속도시간이력이다.

- 4. 다수의 인공합성 가속도시간이력으로부터 계산된 5% 감쇠비 응답스펙트럼의 평균은 전체 주기 영역에서 표준설계응답스펙트럼의 10%보다 작아서는 안 된다.
- 5. 다수의 인공합성 가속도시간이력으로부터 계산된 5% 감쇠비 응답스펙트럼의 평균은 0.04 초와 10초 주기 영역에서 표준설계응답스펙트럼의 30%를 초과해서는 안 된다.
- 6. 어떤 두 개의 가속도시간이력 간의 상관계수는 0.16을 초과할 수 없다.
- 7. 시간이력 생성을 위해 표준설계응답스펙트럼에 대응하는 파워스펙트럼이 필요한 경우 수 정 Kanai-Tajimi 모델로 정해지는 파워스펙트럼 형상을 사용할 수 있다.

그림 3. 수정 Kanai-Tajimi 모델의 형상

표 4. 수정 Kanai-Tajimi 모델 파라미터 (제곱평균제곱근 가속도 0.5g)

수정 Kanai-Tajimi 파라미터	S_o	ω_g	ξ_g	ω_{cp}	ξ_{cp}
값	0.35 m2/s3	25.02 rad/s	1.00	5.63 rad/s	0.64

$$S_g^{1-sided}(\omega) = S_o^{1-sided} \frac{1 + 4\xi_g^2(\omega/\omega_g)^2}{\left[1 - (\omega/\omega_g)^2\right]^2 + 4\xi_g^2(\omega/\omega_g)^2} \times \frac{(\omega/\omega_{cp})^4}{\left[1 - (\omega/\omega_{cp})^2\right]^2 + 4\xi_{cp}^2(\omega/\omega_{cp})^2}$$

철도계획 KDS 47 15 05 : 2019

8. 제곱평균제곱근(RMS; Root Mean Square) 지반가속도가 0.5g가 아닌 경우에는 목표 파워스 펙트럼밀도를 제곱평균제곱근 지반가속도의 제곱으로 눈금을 바꾸어야 한다.

- □ 실지진기록을 활용한 가속도시간이력 작성
- 1. 실지진 기록은 국내여건과 유사한 판 내부(intra-plate) 지역에서 계측된 기록을 선정한다. 이때, 관측소 하부지반이 S1 지반 혹은 이에 준하는 보통암 지반에서 계측된, 고려하는 설계지진과 유사규모의 기록을 선정하여야 한다.
- 2. 선정된 지진기록은 S1 지반의 수평설계지반운동의 가속도 표준설계응답스펙트럼(그림 4.4-1)에 맞추어 수정 적용한다. 수정 시, 원본파형의 왜곡을 최소화하기 위해 기존파형의 응답스펙트럼을 설계응답스펙트럼에 맞추어 보정(Spectral Matching)하는 것을 추천한다. 이때, 설계 대상구조물의 탁월주기(dominant period)를 주 대상으로 보정하는 것이 바람직하다.
- 3. 입력 지진기록 최대지반가속도(PGA; Peak Ground Acceleration)의 절대크기가 중요한 경우, 상기 절차로 보정된 지진기록에 대하여 최대지반가속도를 보정할 수 있다.

KDS 47 10 15 : 2019 철도계획

집필위원

성 명	소 속	성 명	소 속
황선근	한국철도기술연구원	신지훈	한국철도기술연구원

자문위원

성 명	소 속	성 명	소 속
구웅회	㈜서영엔지니어링	정혁상	동양대학교
안태 봉	우송대학교	조성호	중앙대학교

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	정혁상	동양대학교
구재동	한국건설기술연구원	구자안	한국철도공사
김기현	한국건설기술연구원	김석수	㈜수성엔지니어링
김태송	한국건설기술연구원	김재복	㈜태조엔지니어링
김희석	한국건설기술연구원	소민섭	회명정보통신㈜
류상훈	한국건설기술연구원	여인호	한국철도기술연구원
원훈일	한국건설기술연구원	이성혁	한국철도기술연구원
주영경	한국건설기술연구원	이승찬	㈜평화엔지니어링
최봉혁	한국건설기술연구원	이진욱	한국철도기술연구원
허원호	한국건설기술연구원	이찬우	한국철도기술연구원
		최상철	㈜한국건설관리공사
_		최찬용	한국철도기술연구원

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김현기	한국철도기술연구원	최상현	한국교통대학교
이광명	성균관대학교	정광섭	포스코건설
신수봉	인하대학교	손성연	씨앤씨종합건설(주)
이용재	삼부토건(주)		

철도계획 KDS 47 15 05 : 2019

국	투	亚	톳	부

성 명	소 속	성 명	소 속
임종일	철도건설과	홍석표	철도건설과
문재웅	철도건설과		

KDS 47 10 15: 2019

철도계획

2019년 4월 08일 개정

소관부서 국토교통부 철도건설과

관련단체 한국철도시설공단

34618 대전광역시 동구 중앙로 242 한국철도시설공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 031-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

Tel: 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr