

2000

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

Examiner: B. Dowdell

(a) State the domain and range of $4\sin^{-1} 3x$

2

(b) Solve for *x*: $(x-2)^2 \le 4$

2

(c) Differentiate:

4

- (i) $x \cos^{-1} 2x$
- (ii) $\frac{1}{4+x^2}$

2

(d) Find x correct to 3 decimal places if $x^{\frac{3}{4}} = 10$

- 2
- The point P(11, 7) divides AB externally in the ratio 3:1. If B is (6, 5), find the coordinates of A.
- 2

Question 2: START A NEW BOOKLET

Marks

2

(a)

The angle between the lines y = mx and $y = \frac{1}{2}x$ is 135°. Find the exact value of m.

(b) Using
$$u = \sqrt{x}$$
 evaluate $\int_{1}^{4} \frac{dx}{x + \sqrt{x}}$

2

(c) Write down the exact value of
$$\cos^{-1}(\cos \frac{4\pi}{3})$$

2

4

$$(i) \quad \frac{2}{\sqrt{1-4x^2}}$$

(ii)
$$\frac{x}{4+x}$$

(e) Find the values of a for which
$$f(x) = e^{-ax}(x-a)$$
 is stationary at $x = \frac{5}{2}$.

2

Question 3: START A NEW BOOKLET

Marks

3

5

(a)

O is the centre of the circle, XA is a tangent.

$$XY = 3$$
 and $XA = 5$

Calculate the size of $\angle AXY$ correct to the nearest minute.

- (b) Sketch the graphs of $y = e^x$ and $y = \cos x$ on the same diagram for $0 \le x \le \frac{\pi}{2}$, clearly showing any points of intersection.

 Shade the area enclosed by the two curves and the line $x = \frac{\pi}{2}$.
 - (ii) Calculate the volume of the solid formed when this area is rotated about the x axis.
- (c) (i) Prove that $\frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$.
 - (ii) A particle moves in a straight line with velocity given by $v^2 = 36 4x^2$ where x is measured in metres and is the displacement from a fixed point O and t is the time measured in seconds.
 - (α) Show that the motion is simple harmonic
 - (β) Find the period and amplitude of the motion.

Question 4: START A NEW BOOKLET

(a) When $P(x) = ax^3 + bx + c$ is divided by x - 1 the remainder is -4. When P(x) is divided by $x^2 - 4$, the remainder is -4x + 3. Find a, b and c.

3

5

- (b) Prove by induction that $1 + (1+2) + (1+2+3) + \dots + (1+2+3+\dots+n) = \frac{n}{6}(n+1)(n+2)$ for all positive integers n.
- (c) (i) Show that the point A (6p, 3p²) lies on the parabola x² = 12y.
 (ii) The chord joining A (6p, 3p²) and B (6q, 3q²), when produced, passes through C (8, 0). Show that 4(p+q) = 3pq and hence find the locus of M, the midpoint of AB.

Question 5: START A NEW BOOKLET

Marks

2

6

(a) Prove that $2 \tan^{-1} \theta = \tan^{-1} \left(\frac{2\theta}{1 - \theta^2} \right)$ provided that $|\theta| < 1$.

(b) A balloon is being filled with helium at a constant rate of 30 cm³/s. Find the rate at which the surface area is increasing when its diameter is 40 cm.

A projectile is fired from a point P, a metres above O with an initial velocity $V \, \mathrm{ms}^{-1}$ at an angle of elevation of θ . It is subject to a constant downward acceleration of $g \, \mathrm{ms}^{-2}$.

(i) Find expressions for the horizontal (x) and vertical (y) displacements from P after t seconds.

(ii) Show that the time taken to reach Q, a metres from O in a horizontal direction is given by $\frac{2V(\sin\theta + \cos\theta)}{g}$ seconds.

(iii) Show that $a = \frac{V^2(\sin 2\theta + \cos 2\theta + 1)}{g}$ metres.

Question 6: START A NEW BOOKLET

- Eight people attend a meeting. They are provided with two circular tables, one seating 3 people, the other 5 people.
- 4

- (i) How many seating arrangements are possible?
- (ii) If the seating is done randomly, what is the probability that a particular couple are on different tables?
-) If $f(x) = u(x) \ln(u(x) + 1)$

4

- (i) Show that $f'(x) = \frac{u(x).u'(x)}{1 + u(x)}$.
- (ii) Hence or otherwise evaluate

$$\int_0^{\frac{\pi}{2}} \frac{\cos x \cdot \sin x}{1 + \sin x} dx$$

4

A function L(x) is defined by

 $L(x) = Pe^{\frac{x}{3}} + Qe^{-\frac{2x}{3}}$ where P and Q are constants.

It is given that L(0) = 30 and L'(0) = -14.

- (i) Find the values of P and Q.
- (ii) Find L'(3) and explain why L(x) must have a minimum for some value of x between 0 and 3.

Question 7: START A NEW BOOKLET

Mark

3

(a)

AB is any chord of a circle. AB is produced to P, and PT is a tangent. The bisector of $\angle APT$ meets TB at M and TA at N.

- (i) Copy the diagram into your answer booklet.
- (ii) Prove that ΔTMN is isosceles.

(b)

AOB is a sector of a circle, such that, when the radius is x cm, $\angle AOB = (\pi - x)$ radians and x varies from 0 to π .

- (i) Find the maximum value of the perimeter of sector AOB. Comment on the minimum value of the perimeter of the sector.
- (ii) If the area of **triangle** AOB is given by t(x)
 - (α) Show that $t(x) = \frac{x^2 \sin x}{2}$.
 - (β) Show that when t(x) is a maximum, $2 \tan x = -x$.
 - (γ) By sketching $y = \tan x$ and a suitable line, show that a solution to the equation in (β) is close to $x = \frac{3\pi}{4}$.
 - (δ) Taking $\frac{3\pi}{4}$ as a first approximation, use Newton's method once to obtain a better approximation (leave your answer in terms of π).

END OF DADED