Deriving the Envelop condition ("Benvenish - Scheinkman $W(k, k_{+})$ $W(k) = \max \left\{ u \left[f(k) - k_{+} \right] + \beta V(k_{+}) \right\} \quad (1)$ $0 \le k_{+} \le f(k_{+})$ For what $U' \left[f(k_{+}) - k_{+} \right] \left(-1 \right) + \max \left[(k_{+}) \right] = 0$

 $u'[f(k)-k+](-1)+\beta v'(k+)=0$ (2) An ophnal southon function g s.t. $k_{+}=g(k)$ satisfies (1).

Evaluate objective function W at $k_{+} = g(k)$, given fixed k:

v(k) = W[k, g(k)]by definition
of value function v(k) = W[k, g(k)] v(k) = 0 v(k

Benvenish - Scheinkman Theorem $X \ni k$ is a convex set. $V: X \to IR$ is concare. Let $k_0 \in Int(X)$ and D is a neighborhood of k_0 . If $\exists W: D \to R$ which is concare and differentiable with $W(k_0) = V(k_0)$ and $W(k) \leqslant V(k_0)$. If $k \in D$, then $V'(k_0)$ exists and $V'(k_0) = W'(k_0)$.

Using the B-5 formula on (3):

$$v'(k) = W'[k, g(k)] \qquad (4)$$

$$\frac{\partial v(k)}{\partial k} \qquad \frac{\partial W[k, g(k)]}{\partial k}$$
Note that RHS of (c4) is just

$$W'[h, g(k)] = u'[f(k) - g(k)] f'(k)$$

$$- u'[f(k) - g(k)] g'(k)$$

$$= u'[f(k) - g(k)] f'(k)$$

$$= u'[f(k) - g(k)] f'(k)$$

$$+ \left\{\beta v'[g(k)] - u'[f(k) - g(k)]\right\}g'(k)$$
(5)

From FOC (2), evaluated at $k + g(k)$, we have
$$u'[f(k) - g(k)] = \left\{\beta v'[g(k)] \right\} \qquad (2')$$
Pluy (2') into (5), Roberto es tu fio ...

$$v'(k) = W'[k, g(k)] = u'[c^{*}) f'(k) \qquad (6)$$

Where c* = f(h) - g(k). This is B-5!