Advanced MOSFETs and Novel Devices

Dr.-Ing. Josef Biba

4. Tutorial & Exercise

Shrinking

Shrinking - Introduction

Constant Field scaling (ideal):

Factor S > 1

Lateral dimensions (L, W)

• Vertical dimensions (d_{OX}, r_i) 1/S

• Channel doping (N_A, N_D) *S

• Supply voltage (V_{DD}) 1/S

electric field in transistor remains constant

Constant Voltage scaling:

Lateral dimensions 1/S

Vertical dimensions
 1/S

Channel doping*S

Shrinking - Exercise

Determine the influence of constant field scaling on a p-channel MOSFET of the 180 nm technology node ($S = \sqrt{2}$). Calculate the threshold voltage V_T and draw the output characteristics for different gate-source voltages ($|V_{GS}| = V_{DD}$, 0.75^*V_{DD} , 0.5^*V_{DD} and 0.25^*V_{DD}) for the original and the scaled device. Use the gradual channel approximation. Neglect fixed and trapped oxide charges.

Technology parameters:

V_{DD}	d _{OX}	N_{D}	L	W	∕p _M -χ _{Si}	$\mu_{ ho}$
1.8 V	3 nm	1e18 cm ⁻³	140 nm	3*L	1.12 V	500 cm ² / Vs

Shrink – Solution

Threshold voltage:

$$V_T = \Phi_{MS} - |\frac{Q_{Depl}''}{C_{Ox}''}| - |2\Psi_B| - \frac{Q_{Ox}''}{C_{Ox}''}$$

Workfunction difference:

$$\Phi_{MS} = \Phi_M - \left(\chi_{Si} + \frac{E_g}{2q} - |\Psi_B|\right)$$

Electrostatic bulk potential:

$$\Psi_B = \frac{k_B T}{q} \cdot \ln(\frac{N_{dop}}{n_i})$$

Normalized Capacitor:

$$C_{Ox}^{\prime\prime} = \frac{C_{Ox}}{A} = \frac{\epsilon_0 \epsilon_{SiO_2}}{d_{Ox}}$$

Space charge:

$$Q_{Depl}^{"} = \int_{0}^{w_{max}} \rho_{S}(x) dx = w_{max} e N_{D}$$

Depletion region:

$$w_{max} = \sqrt{\frac{4\epsilon_o \epsilon_{Si} |\Psi_B|}{e N_D}}$$

Shrinking - Results

Selected points of the output characteristic

$$V_{\rm DD1} = V_{\rm DD} = 1.8 \mathrm{V}$$

$$V_{DD2} = V_{DD1} / S = 1.27V$$

V_{GS}	- ¼ V _{DD}	- ½ V _{DD}	- ¾ V _{DD}	- V _{DD}
$V_{\rm GS1} - V_{\rm T1}$				
/ _{Dsat1}				
$V_{\rm GS2} - V_{\rm T2}$				
I _{Dsat2}				

Shrink – Solution

$$V_{\text{DD orig}} = 1.8 \text{ V}$$

$$V_{\text{DD scaled}} = 1.8 \text{ / S V}$$

$$= 1.27 \text{ V}$$

Result:

Shrinked device shows lower I, but because following C_{gate} is shrinked as well, the lower I can charge the next gate faster?

