question (1)

Понятие множества, основные способы задания множеств. Понятие принадлежности элемента множеству. Подмножества. Понятие включения. Свойства отношения включения. Равенство множеств. Теоретикомножественные операции над множествами. Диаграммы Эйлера-Венна.

Множество - набор, совокупность любых объектов - элементов этого множества, обладающих общим свойством, которая рассматривается как единое целое.

Множества бывают конечными и бесконечными.

Основные способы задания множества:

- 1. Перечислить элементы: указываются все элементы множества через запятую в фигурных скобках. $A = \{1, 2, 3\}$.
- 2. Задание характеристическим свойством: указывается свойство P, которому удовлетворяют элементы множества. Такое свойство выделяет элементы этого множества среди всех элементов юниверса (U). Если x имеет свойство P, записывают так: P(x). Множество из U со свойством P: $\{x \in U : P(x)\}$.

Пустое множество не содержит ни одного элемента. $|\emptyset| = 0$.

Мощность, это число элементов в конечном множестве.

Обозначение того, что элемент x принадлежит множеству A: $x \in A$.

Обозначение того, что элемент x не принадлежит множеству A: $x \not\in A$.

Множество A называется подмножеством множества B, если каждый элемент их множества A принадлежит B. Символически это записывается так: $A \subseteq B$. Это можно прочитать как "A включено в B".

Свойства отношения включения:

- $1. \emptyset \subseteq \forall A$
- 2. $A \subseteq \forall A$
- 3. Если $A \subseteq B$ и $B \subseteq A$, то A = B.
- 4. Если $A \subseteq B$ и $B \subseteq C$, то $A \subseteq C$.

Запись подмножества: $B \subseteq A \iff \forall x \ (x \in B \implies x \in A) \iff \forall x \in B \implies x \in A.$

Равенство множеств. Множества A и B равны, если они состоят из одних и тех же элементов. Формально: $A = B \iff (A \subseteq B \text{ и } B \subseteq A)$.

Операции над множествами:

 $A \cup B = \{x : x \in A$ или $x \in B\}$

2. $A\cap B=\{x\in A$ и $x\in B\}$. Если $A\cap B=\emptyset$, то множества не пересекаются.

3.
$$A-B=\{x:x\in A$$
 и $x\not\in B\}$

4.
$$\overline{A} = U - A$$

5.
$$A \otimes B = (A - B) \cup (B - A)$$

Некоторые тождества:

1.
$$A - B = A \cap \overline{B}$$

2.
$$A \cap \overline{A} = \emptyset$$
, $A \cup \overline{A} = U$

$$3.\overline{\overline{A}} = A$$

4.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

5.
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

4 и 5 - законы де Моргана.

Доказательство:

$$x \in \overline{A \cup B} \iff x \not \in A \cup B \iff x \not \in A \text{ if } x \not \in B \iff x \in \overline{A} \cap \overline{B}$$

Свойства объединения и пересечения:

1.
$$A \cup A = A$$

2.
$$A \cup \emptyset = A$$

3.
$$A \cup U = U$$

4.
$$A \cap A = A$$

5.
$$A \cap \emptyset = \emptyset$$

6.
$$A \cap U = A$$

7. Коммутативность:
$$\forall A,\ B\hookrightarrow (A\cup B=B\cup A)\land (A\cap B=B\cap A)$$

8. Ассоциативность:

$$\forall A,\ B,\ C \hookrightarrow (A \cup (B \cup C) = (A \cup B) \cup C) \land (A \cap (B \cap C) = (A \cap B) \cap C)$$

9. Дистрибутивность:

$$\forall A,\ B,\ C \hookrightarrow (A \cap (B \cup C) = (A \cap B) \cup (A \cap C)) \land (A \cup (B \cap C) = (A \cup B) \cap (A \cup C))$$

С помощью операций можно выразить отношения между множествами:

1.
$$A \subseteq B \iff A \cup B = B$$

$$2. A \subseteq B \iff A \cap B = A$$

$$3. A \subseteq B \iff A - B = \emptyset$$

$$4. A = B \iff A \otimes B = \emptyset$$

Приоритет операций:

- 1. Дополнение
- 2. Пересечение
- 3. ...

Диаграмма Элейца-Венна - способ графического представления отношений между множествами и иллюстрации операций над множествами. Множества изображаются в виде кругов или других фигур, а универс, если он есть - в виде прямоугольника, охватывающего другие фигуры.

question (2)

Основные тождества алгебры множеств и их доказательства. Способы доказательства тождеств (по определению равенства множеств и с помощью основных тождеств). Обобщённые законы де Моргана, ассоциативности, коммутативности и дистрибутивности.

Основные тождества алгебры множеств и их доказательства

1. Коммутативность:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Доказательство: Для объединения: $x \in A \cup B \iff x \in A$ или $x \in B$, что эквивалентно $x \in B \cup A$. Для пересечения: $x \in A \cap B \iff x \in A$ и $x \in B$, что эквивалентно $x \in B \cap A$.

2. Ассоциативность:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Доказательство: Для объединения: $x \in (A \cup B) \cup C \iff x \in A, x \in B$ или $x \in C$, что совпадает с $x \in A \cup (B \cup C)$. Аналогично для пересечения.

3. Дистрибутивность:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

Доказательство: Рассмотрим первый случай. Если $x \in A \cup (B \cap C)$, то $x \in A$ или $x \in B \cap C$. В обоих случаях $x \in (A \cup B) \cap (A \cup C)$. Обратное аналогично.

4. Законы де Моргана:

$$(A \cup B) = A \cap \overline{B}$$

$$\overline{(A\cap B)}=\overline{A}\cup\overline{B}$$

Доказательство: $x\in \overline{(A\cup B)}\iff x\not\in A\cup B\iff x\not\in A$ и $x\not\in B\iff x\in \overline{A}\cap \overline{B}$. Для пересечения аналогично.

5. Идемпотентность:

$$A \cup A = A$$

$$A \cap A = A$$

Доказательство: $x \in A \cup A \iff x \in A$. Для пересечения аналогично.

6. Поглощение:

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

Доказательство: Используя дистрибутивность,

$$A \cup (A \cap B) = (A \cup A) \cap (A \cup B) = A \cap (A \cup B) = A.$$

7. Дополнение:

$$A\cup\overline{A}=U$$

$$A\cap\overline{A}=\emptyset$$

Доказательство: По определению дополнения, A' содержит все элементы не из A.

8. Действия с U и \emptyset :

$$A \cup U = U$$
, $A \cap U = A$

$$A \cup \emptyset = A, A \cap \emptyset = \emptyset$$

Доказательство: Следует из определений универсального и пустого множеств.

9. Инволюция:

$$\overline{\overline{A}} = A$$

Доказательство: Дополнение к дополнению возвращает исходное множество.

Способы доказательства тождеств:

- 1. По определению равенства множеств: Показать, что $\forall x, (x \in A \iff x \in B)$.
- 2. С использованием основных тождеств: Преобразовать выражения, применяя известные законы (например, дистрибутивность или де Моргана).

Обобщённые законы:

Де Моргана:

$$\frac{\overline{\left(\bigcup_{i} A_{i}\right)}}{\left(\bigcap_{i} A_{i}\right)} = \bigcap_{i} \overline{A_{i}}$$

Ассоциативность и коммутативность: Группировка и порядок множеств не влияют на результат объединения/пересечения.

Дистрибутивность:

$$A \cup (\bigcap_i B_i) = \bigcap_i (A \cup B_i)$$

$$A \cap (\bigcup_i B_i) = \bigcup_i (A \cap B_i)$$

Пример доказательства через преобразования: Докажем $A\cap (B\cup A)=A$:

$$A\cap (B\cup A)\stackrel{ ext{kommyt}}{=} A\cap (A\cup B)\stackrel{ ext{поглощ}}{=} A.$$

Принцип двойственности: Замена $\cup \leftrightarrow \cap$ и $U \leftrightarrow \emptyset$ в верном тождестве даёт новое верное тождество.

question (3)

Множество всех подмножеств множества (булеан). Теорема о числе подмножеств конечного множества.

Если элементами множества X являются подмножества A, то говорят, что X есть семейство подмножеств A. Семейство всех подмножеств A обозначается через 2^A . Например $A = \{a, b\}$, то $2^A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}.$

Теорема о числе подмножеств.

Если A - конечное множество, то $|2^A|=2^{|A|}$.

Доказательство:

Пусть |A| = n.

При n=0: $2^0=1$ - верно.

При n>0 возьмем $x\in A$ и обозначим $B=A\backslash\{x\}$. Тогда |B|=n-1. Предположим что $\forall B$ с |B|=n-1 утверждение верно: $|2^B|=2^{n-1}$.

Тогда подмножества A делятся на 2 типа: содержащие x и не содержащие x.

- 1. Это подмножества множества B. Их количество равно 2^{n-1} .
- 2. Каждое такое подмножество можно получить, взяв любое подмножество B и добавив к нему элемент x. Количество таких подмножеств также равно 2^{n-1} .

Общее число подмножеств A: $|2^A| = 2^{n-1} + 2^{n-1} = 2^n$.

question (4)

Декартово (прямое) произведение множеств. Теорема о мощности декартова произведения. Декартова степень множества. Характеристический вектор подмножества.

Декартовым произведением множеств A и B называется множество всех упорядоченных пар (a, b), где $a \in A, b \in B$:

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Множество $A \times A$ называется декартовым квадратом множества A и обозначается A^2 . $(A \times B \neq B \times A)$.

Теорема о мощности декартова произведения.

Если A и B конечные множества, то мощность их декартова произведения равна произведению их мощностей:

$$|A \times B| = |A| \cdot |B|$$

Доказательство:

$$A = \{x_1, \ x_2, \ \dots, \ x_m\}$$
 $B = \{y_1, \ y_2, \ \dots, \ y_n\}$
 $\left\{egin{array}{l} (x_1, \ y_1)(x_1, \ y_2)\dots(x_1, \ y_n) - n \ ext{пар} \ \dots \ (x_m, \ y_1)(x_m, \ y_2)\dots(x_m, \ y_n) - n \ ext{пар} \end{array}
ight.$
 $\underbrace{n+n+\dots+n}_{m \ par} = m \cdot n$

Несколько множеств:

$$A_1 imes A_2 imes\cdots imes A_n=\{(x_1,\ x_2,\ \ldots,\ x_n)\ |\ x_i\in A_i,\ i=\overline{1,\ n}\}$$

Декартова n-я степень множества A: $A^n = \underbrace{A \times A \times \cdots \times A}_{n \text{ pas}}$. Элементы A^n - упорядоченные

наборы (кортежи) длинны n.

Теорема. Если $A_1,\ A_2,\ \dots,\ A_n$ - конечные, то $|A_1 \times A_2 \times \dots \times A_n| = |A_1| \cdot |A_2| \cdot \dots \cdot |A_n|$. Доказательство:

n = 1 - верно.

Пусть верна для n = k.

Докажем для n=k+1. Обозначим $|A_1|=m_1,\ldots,\ |A_k|=m_k$. По предположению $|A_1\times\cdots\times A_k|=m_1\cdot\cdots\cdot m_k$. Возьмем какую-нибудь вектор-строку $(x_1,\ x_2,\ \ldots,\ x_k)$ из $A_1\times\cdots\times A_k$ и припишем $a_{k+1}\in A_{k+1}$. Это можно сделать m_{k+1} раз. Получим m_{k+1} различных

векторов из $A_1 imes \cdots imes A_{k+1}$. Получим $m_1 \cdot \cdots \cdot m_{k+1}$ различных векторов \implies теорема верна для n=k+1.

Характеристический вектор подмножества.

Пусть дано множество $S=\{s_1,s_2,\ldots,s_n\}$. Для любого подмножества $A\subseteq S$ можно определить **характеристический вектор** как n-битную строку $\mathbf{b}=(b_1,b_2,\ldots,b_n)$, где:

$$egin{cases} b_i = 1 & s_i \in A \ b_i = 0 & s_i
otin A \end{cases}$$

question (5)

Уравнения и системы уравнений в алгебре множеств. Алгоритм нахождения решений. Необходимые и достаточные условия существования решения. Число решений.

Система уравнений в алгебре множеств - совокупность нескольких уравнений, объединенных условием одновременного выполнения. Уравнения в алгебре множеств - теоретикомножественное отношение над множествами, среди которых есть неизвестное множество X.

Алгоритм решения уравнения:

$$1. A \subseteq B \iff A\overline{B} = \emptyset$$

$$2. A = B \iff A \otimes B = \emptyset$$

Рассмотрим уравнение $\varphi(A_1, \ldots, A_k, X) = \psi(A_1, \ldots, A_k, X)$. В нем $A_1, \ldots, A_k \subseteq U, X$ неизвестное множество, φ , ψ - формулы, содержащие теоретико-множественные операции. X_0 -частное решение уравнения, если при подстановке φ , ψ задают одно и то же множество.

Применим лемму 2 к уравнению:

$$\varphi(A_1, \ldots, A_k, X) \otimes \psi(A_1, \ldots, A_k, X) = \emptyset$$

Применим основные тождества и приведем к такому виду:

$$F_1X \cup F_2\overline{X} \cup F_3 = \emptyset$$

 $F_1,\ F_2,\ F_3$ - множества, не содержащие X, зависящие от $A_1,\ \dots,\ A_k$. Чтобы такое уравнение было равно пустому множеству, необходимо, чтобы каждое множество было равно \emptyset :

$$\begin{cases} F_1X = \emptyset \\ F_2\overline{X} = \emptyset \\ F_3 = \emptyset \end{cases} \iff \begin{cases} X \subseteq \overline{F_1} \\ F_2 \subseteq X \\ F_3 = \emptyset \end{cases} \implies \begin{cases} F_2 \subseteq \overline{F_1} \\ F_3 = \emptyset \end{cases} \implies \begin{cases} F_2F_1 = \emptyset \\ F_3 = \emptyset \end{cases}$$

 $F_2F_1 \cup F_3 = \emptyset$ - необходимым и достаточным условием существования уравнения.

Различное число решений будет получаться, если к наименьшему числу решений $X_0=F_2$ добавлять любые подмножества разности $\overline{F_1}-F_2=\overline{F_1}$ Всего таких подмножеств $2^{|\overline{F_1}|\overline{F_2}|}$ - число различных решений уравнения.

Число решений - всевозможные множества, при подстановке которых уравнение превращается в верное тождество.

question (6)

Отношения между множествами. Бинарные отношения. Способы задания бинарных отношений. Примеры. Операции над отношениями. Обратное отношение.

Бинарным отношением между множествами A и B называется любое подмножество R прямого произведения $A \times B$. Если R - отношение и $(x, y) \in R$, то говорят, что элемент x находится в отношении R с элементом y. Запись - xRy. В случае, когда A = B, мы говорим просто об отношении R на A.

Элементы множества $A \times B$ - упорядоченные пары, поэтому из того, что $xRy \implies yRx$. Пример: $2 < 5 \implies 5 < 2$.

$$R\subseteq A_1 imes\cdots imes A_n$$
 — n-мерное отношение между множествами A_1,\ldots,A_n

Пример:

$$A$$
 - люди B - страны $R \subseteq A imes B$ $xRy \iff x$ бывал в y

Способы задания бинарных отношений:

$$A,B$$
 – конечные $R\subseteq A imes B$

- 1. Перечисление: $R = \{(x_1, y_1), (x_3, y_7), \ldots\}$
- 2. Таблица $A = \{a_1, \dots, a_n\}; B = \{b_1, \dots, b_m\}$

$$\begin{cases} 1, & a_i R b_j \\ 0, & a_i \mathcal{K} b_j \end{cases}$$

Отношение делимости

	1	2	3	4
1	1	1	1	1
2	0	1	0	1
3	0	0	1	0
4	0	0	0	1

3. Граф отношений. Это диаграмма, которая строится следующим образом. Пусть R - отношение на множестве A. Элементы множества A изобразим кружками, эти кружки

называют вершинами графа. Если xRy, то рисуем стрелку от x к y.

Рис. 2.1. Граф отношения делимости

Операции над отношениями: так как отношение есть множество пар, то любые операции над множествами можно применять к отношениям. Если $R_1,\ R_2$ - отношения, то $R_1\cup R_2,\ R_1\cap R_2$ и т.д. - тоже отношения на A. Если R - отношение на A, то \overline{R} - дополнение отношения R на A. Обратное отношение R^{-1} к отношению R: $R^{-1}=\{(x,\ y):(y,\ x)\in R\}$.

question (7)

Важнейшие свойства бинарных отношений: рефлексивные, симметричные, антисимметричные, транзитивные отношения. Примеры.

\sim	_	
Своиства	оинарных	отношений
	0 111100 P 11D111	• • • • • • • • • • • • • • • • • • • •

- 1. Рефлексивность: $\forall x \in A: xRx$
- 2. Симметричность: $\forall x, \ y \in A : xRy \implies yRx$
- 3. Антисимметричность: $\forall x,\; y \in A: egin{cases} xRy \\ yRx \end{cases} \Longrightarrow \; x=y$
- 4. Транзитивность: $\forall x, y, z \in A : xRy \land yRz \implies xRz$

 $R=\emptyset$ - транзитивно, симметрично, антисимметрично.

Отношение равенства =:

Рефлексивное.

Симметричное.

Антисимметричное.

Транзитивное.

Отношение "меньше или равно" ≤:

Рефлексивное.

Антисимметричное.

Транзитивное.

Отношение "быть подмножеством" ⊆:

Рефлексивное.

Антисимметричное.

Транзитивное.

Симметричное, но не транзитивное: отношение "быть братьями".

Антисимметричное, но не симметричное: отношение "быть старше" на множестве людей.

question (8)

Отношение эквивалентности. Примеры. Разбиение множества. Показать, что любое разбиение множества задает на нем отношение эквивалентности. Классы эквивалентности. Свойства классов эквивалентности (каждый класс однозначно определяется любым своим элементом; два любых класса либо совпадают, либо не пересекаются). Теорема о факторизации. Фактор множество A/R.

 $R\subseteq A^2$ - отношение эквивалентности, если R - рефлексивно, симметрично, транзитивно.

Отношение равенства на любом множестве есть отношение эквивалентности.

Отношение параллельности прямых на плоскости - отношение эквивалентности.

Если xRy, то говорят что x и y сравнимы по модулю n: $x \equiv y \mod n$

Разбиение множества A – это такое семейство его непустых подмножеств, что \forall элемент из A принадлежит ровно одному подмножеству этого семейства. Подмножество семейства – это часть разбиения. Части разбиения не пересекаются.

Пусть A – конечно.

$$F=\{F_1,F_2,\dots,F_k\}$$
 — F разбиение A 1. $F_i\subseteq A$ и $F_i
eq \emptyset$ 2. $A=F_1\cup F_2\cup\dots\cup F_k$ 3. $F_i\cap F_j=\emptyset,\ i
eq j$

Любое разбиение множества A задает на нем отношение эквивалентности, и обратно — каждое отношение эквивалентности задает разбиение.

Доказательство:

1. Разбиение → отношение эквивалентности:

 $aRb \iff a, b$ принадлежат одному подножеству разбиения

Рефлексивность: а, а лежат в одном подмножестве.

Симметричность: если a, b в одном подмножестве, b, a тоже.

Транзитивность: если a, b в одном подмножестве и b, c в одном, то a, c тоже.

2. Отношение эквивалентности \rightarrow разбиение:

Классы эквивалентности $[a] = \{b \in A \mid aRb\}$ образуют разбиение.

Непересекаемость: если $[a] \cap [b] = \emptyset$, то [a] = [b]

Объединение:
$$\bigcup_{a \in A} [a] = A$$
.

Класс эквивалентности a - это множество всех элементов, связанных с a отношением R:

$$[a] = \{b \in A \mid aRb\}$$

 $a \in [a]$, так как aRa.

Пример: $A=\mathbb{Z},\; x\sim y\iff x-y$ $\stackrel{\cdot}{:} 2$

$$[0]=\{y\in\mathbb{Z}:0-y\ \dot{:}\ 2\}=\{2n:n\in\mathbb{Z}\}$$
 $[1]=\{y\in\mathbb{Z}:1-y\ \dot{:}\ 2\}=\{2n+1:n\in\mathbb{Z}\}$ $[2]=[0],\ [5]=[1]$ $F=\{[0],\ [1]\}$ — разбиение \mathbb{Z}

Утверждение. $y \in [x] \implies [y] = [x]$

Доказательство: $x \sim y$ по определению.

$$\forall z \in [y] \implies y \sim z \implies x \sim z \implies z \in [x] \implies [y] \subseteq [x]$$

$$\forall a \in [x] \implies x \sim a \implies y \sim a \implies a \in [y] \implies [x] \subseteq [y]$$

Следствие: $\forall x,\ y\in A$ либо [x]=[y], либо $[x]\cap [y]=\emptyset$.

Доказательство: пусть $\exists z \in [x] \cap [y] \implies z \in [x], \ [y] \implies [z] = [x] = [y] \implies [x] = [y].$ Если пусто, то нечего доказывать.

Теорема о факторизации. Если существует отношение эквивалентности на множестве A, тогда такое множество $F=\{[x]:x\in A\}$ - разбиение A. При этом F называют фактор множеством A по отношению к R (\sim) и обозначается $F=A/R(\sim)$.

Доказательство: $\forall x \in A : x \in [x]$. Если $x \in [y]$, то $[x] = [y] \implies x$ принадлежит только одному классу эквивалентности.

question (9)

Отношение порядка. Упорядоченное множество. Частичный и линейный порядки. Примеры. Лексикографический и покомпонентный порядки на множестве A^n , где A — линейно упорядоченное множество. Отношение непосредственного предшествования R^* для порядка R. Диаграмма Хассе. Теорема о конечных упорядоченных множествах. Следствие о том, что по отношению R^* однозначно восстанавливается порядок R на конечном множестве. Наибольший, наименьший, максимальный, минимальный элементы. Утверждение о том, что любой наибольший/наименьший элемент является максимальным/минимальным. Утверждение о единственности наибольшего и наименьшего элементов. Существование максимального и минимального элементов на конечном множестве. Примеры.

Отношение порядка - это бинарное отношение R на A, если оно рефлексивно, антисимметрично, транзитивно.

Примеры: "=" на A, " \leq " на \mathbb{Z}/\mathbb{R} , делимость на \mathbb{N} , включение на 2^U . < - не является отношением частичного порядка, так как оно не рефлексивно.

Упорядоченное множество - пара (A, R), где R - отношение порядка на A.

Частичный порядок - не все элементы множества сравнимы $(\exists x, y \in A \ (x \not R \ y \ u \ y \not R \ x))$. Пример: множество подмножеств $\{a, b, c\}$ с отношением включения \subseteq . Не все подмножества сравнимы, например $\{a\}, \{b\}$.

Линейный порядок - все элементы множества сравнимы $(\forall x, y \in A : xRy$ или yRx). Пример: натуральные числа $\mathbb N$ с отношением <.

Пусть A - линейно упорядоченное множество.

1. Лексикографический порядок - сравниваются элементы покомпонентно до первого различия.

Пример: $A=\{0,\ 1\},\ A^2:(0,\ 1)<(1,\ 0),$ так как 0<1 на первой позиции.

2. Покомпонентный порядок: $(a_1, \ldots, a_n) \leq (b_1, \ldots, b_n)$, если $\forall i \ a_i \leq b_i$. Пример: $A = \mathbb{N}, \ A^2$: $(2, 3) \leq (2, 4)$, но (2, 3) и (3, 2) несравнимы.

Пусть R - порядок на $A,\,x,\,y\in A,\,x\neq y$. Говорят x непосредственно предшествует $y\iff (xR^*y)$

- 1. xRy
- 2. $\not\exists z \in A, z \neq x, z \neq y, xRz \land zRy.$

Граф отношения R^* называется диаграммой Хассе для R.

Пусть R - порядок на A:

 $1.\ x$ - максимальный $\iff \not\exists y \in A,\ y \neq x,\ xRy$ (нет элемента больше чем x)

 $2. \ x$ - минимальный $\iff \not\exists y \in A, \ y \neq x, \ yRx$ (нет элемента меньшего чем x)

 $3. \ x$ - наибольший $\iff \forall y \in A \ yRx$ (все остальное меньше x)

 $4. \ x$ - наименьший $\iff \forall y \in A \ xRy$ (все остальные меньше чем x)

Утверждение.

- 1. Если x наибольший $\implies x$ максимальный.
- 2. Если x наименьший $\implies x$ минимальный.
- 3. Если существует наибольший/наименьший элементы, то он единственен.
- 4. В любом конечном упорядоченном множестве существует максимальные и минимальные элементы.

Доказательства

1. Если x наибольший $\implies x$ максимальный

Доказательство:

Пусть x является наибольшим элементом множества A. По определению наибольшего:

$$\forall y \in A, \ yRx.$$

Это означает, что x не меньше любого элемента $y \in A$. В частности, не существует такого $y \neq x$, для которого xRy:

$$\exists y \in A, y \neq x, xRy$$
.

Следовательно, x удовлетворяет определению максимального элемента.

2. Если x наименьший $\implies x$ минимальный

Доказательство:

Пусть x является наименьшим элементом множества A. По определению наименьшего:

$$\forall y \in A, \ xRy.$$

Это означает, что x меньше или равен любому элементу $y \in A$. В частности, не существует такого $y \neq x$, для которого yRx:

$$\exists y \in A, \ y \neq x, \ yRx$$
.

Следовательно, x удовлетворяет определению минимального элемента.

3. Если существует наибольший/наименьший элемент, то он единственен Доказательство:

Пусть x и x' — два наибольших элемента множества A. Тогда по определению наибольшего:

$$orall y \in A, \ yRx$$
 и $orall y \in A, \ yRx'.$

Применяя это для x':

$$x'Rx$$
.

Применяя это для x:

$$xRx'$$
.

Так как отношение R антисимметрично, то из xRx^\prime и $x^\prime Rx$ следует:

$$x = x'$$
.

Аналогично доказывается уникальность наименьшего элемента.

4. В любом конечном упорядоченном множестве существует максимальные и минимальные элементы

Доказательство:

Пусть A — конечное упорядоченное множество с отношением порядка R. Рассмотрим элементы A как конечную последовательность. Выберем произвольный $x_0 \in A$ и будем искать такой элемент x, который не меньше любого другого элемента:

- 1. Для любого $y \in A$ либо x_0Ry , либо yRx_0 .
- 2. Если yRx_0 , заменяем x_0 на y.
- 3. Процесс завершается, так как A конечно.

В результате находим элемент x, который удовлетворяет:

$$\exists y \in A, \ y \neq x, \ xRy \ .$$

то есть x — максимальный.

Аналогично, минимальный элемент можно найти, рассматривая обратное отношение.

question (10)

Функциональные отношения (отображения, функции). Символика. Образ и прообраз эле мента. Образ и прообраз подмножества. Равенство отображений. Преобразование множества. Бинарная алгебраическая операция на множестве. Инъективные, сюръективные, биективные отображения. Правило равенства. Пример его использования. Тождественное отображение. Композиция отображений. Ассоциативность композиции. Обратное отображение. Композиция биекций — биекция.

Функциональные отношения (отображения, функции)

1. Определения и символика

Функция (отображение) $f:A \to B$ — это правило, сопоставляющее каждому элементу $a \in A$ единственный элемент $b \in B$. Обозначение: b = f(a).

Образ элемента a: f(a).

Прообраз элемента b: $f^{-1}(b) = \{a \in A \mid f(a) = b\}$.

Образ подмножества $A_1 \subseteq A$: $f(A_1) = \{f(a) \mid a \in A_1\}$.

Прообраз подмножества $B_1\subseteq B$: $f^{-1}(B_1)=\{a\in A\mid f(a)\in B_1\}.$

Пример:

Пусть $A = \{1, 2, 3\}, B = \{x, y\}, f(1) = x, f(2) = y, f(3) = x.$

Образ $\{1,3\}$: $f(\{1,3\}) = \{x\}$.

Прообраз $\{x\}$: $f^{-1}(\{x\}) = \{1, 3\}$.

2. Равенство отображений

Две функции $f:A \to B$ и $g:A \to B$ равны, если:

$$\forall a \in A \quad f(a) = g(a).$$

Доказательство:

По определению, функции совпадают, если их значения на всех элементах области определения одинаковы.

3. Типы отображений

Инъекция (инъективное отображение):

$$\forall a_1, a_2 \in A \quad f(a_1) = f(a_2) \implies a_1 = a_2.$$

Пример: $f: \mathbb{N} \to \mathbb{N}$, f(n) = 2n.

Сюръекция (субъективное отображение):

$$\forall b \in B \quad \exists a \in A \quad f(a) = b.$$

Пример: $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$.

Биекция (биективное отображение):

Функция одновременно инъективна и сюръективна.

Пример: $f: \mathbb{R} \to \mathbb{R}, f(x) = x+1$.

4. Тождественное отображение

Тождественное отображение $\mathrm{id}_A:A o A$ определяется как:

$$\operatorname{id}_A(a) = a \quad orall a \in A.$$

Пример:

Для
$$A = \{1, 2\}$$
, $\mathrm{id}_A(1) = 1$, $\mathrm{id}_A(2) = 2$.

5. Композиция отображений

Композиция $g\circ f:A o C$ функций f:A o B и g:B o C:

$$(g \circ f)(a) = g(f(a)).$$

Ассоциативность композиции:

Для функций $f:A \to B, g:B \to C, h:C \to D$:

$$h\circ (g\circ f)=(h\circ g)\circ f.$$

Доказательство:

Для любого $a \in A$:

$$h\circ (g\circ f)(a)=h(g(f(a)))=(h\circ g)\circ f(a).$$

6. Обратное отображение

Обратное отображение $f^{-1}: B \to A$ существует только для биекций и удовлетворяет:

$$f^{-1}\circ f=\mathrm{id}_A,\quad f\circ f^{-1}=\mathrm{id}_B.$$

Пример:

Для биекции $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 5, обратная функция: $f^{-1}(x) = x - 5$.

7. Композиция биекций

Теорема: Если $f:A \to B$ и $g:B \to C$ — биекции, то $g \circ f:A \to C$ — биекция.

Доказательство:

Инъективность:

Если $g(f(a_1))=g(f(a_2))$, то $f(a_1)=f(a_2)$ (так как g инъективна), откуда $a_1=a_2$ (так как f инъективна).

Сюръективность:

Для любого $c \in C$ найдётся $b \in B$, такой что g(b) = c, и $a \in A$, такой что f(a) = b. Тогда g(f(a)) = c.

8. Бинарная алгебраическая операция

Бинарная операция на множестве A — это функция $*: A \times A \to A$.

Примеры:

Сложение: $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$.

Умножение: $\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

question (11)

Сравнение мощностей множеств, равномощные множества: $|A| = |B|, \ |A| \le |B|, \ |A| < |B|.$ Свойства равномощности (рефлексивность, симметричность, транзитивность). Равномощность интервалов, полуинтервалов и отрезков в \mathbb{R} . Счетные множества. Несчетные множества. Свойства счетных множеств. Примеры. Несчетность множества \mathbb{R} . Мощность континуума. Теорема Кантора ($|A| < |2^A|$ для любого множества A). Следствие: несчетность множества $2^\mathbb{N}$. Равномощность $2^\mathbb{N}$ и множества $\{0, 1\}^\infty$ бесконечных последовательностей из 0 и 1.

Сравнение бесконечных множеств.

A, B — конечные.

Утверждение.

$$|A| \leq |B| \iff \exists$$
 инъекция $f:A o B$ $|A| \geq |B| \iff \exists$ сюрьекция $f:A o B$ $|A| = |B| \iff \exists$ биекция $f:A o B$

Определение. А, В любые множества

$$A\sim B$$
 или $|A|=|B|\iff\exists$ биекция $f:A o B$ $|A|\le |B|\iff\exists$ инъекция $f:A o B$ $|A|<|B|\iff\begin{cases} |A|\le |B|\ A
ot\subset B\$ (нет биекции)

Утверждение.

$$|A|\leq |B|\iff\exists B'\subseteq B,\ A\sim B'$$
 $\exists g:A o B'$ биекция Доказательство: (\Longrightarrow) $\exists f:A o B$ инъкекция $B'=f(A)(\Longleftrightarrow)$ $\widetilde{g}:A o B$ инъекция $\widetilde{g}(x)=g(x)$ $orall x\in A$

Утверждение 2.

$$A\sim B,\ |B|<|C|\implies |A|<|C|$$
 Доказательство: $f:A\to B$ биекция , $g:B\to C$ инъекция $\implies g\circ f:A\to C$ инъекция $\implies |A|\le |C|$ Докажем, что $A\not\sim C$ От противного: Пусть $A\sim C\implies \exists\ h:A\to C$ биекция $h\circ f^{-1}:B\to C$ биекция — противоречние.

Свойства ∼:

$$1.~A \sim A ~~(id_A:A
ightarrow A)$$

2.
$$A \sim B \implies B \sim A$$

3.
$$A \sim B$$
, $B \sim C \implies A \sim C$

Пример.

$$\mathbb{N} \sim \{1,\ 4,\ 9,\ 16,\ 25,\ \ldots\} = \{n^2|n\in\mathbb{N}\}$$
 $n\longmapsto n^2$

Пример.

$$\mathbb{Z} \sim \mathbb{N}$$
 $f: \mathbb{Z}
ightarrow \mathbb{N}$ биекция

Пример.

$$f(x) = egin{cases} [0;1) &\sim (0;1) \ f:[0;1)
ightarrow (0;1) \ rac{1}{2}, \ x
eq 0 \ rac{x}{2}, \ x = rac{1}{2^k}, \ k \in \mathbb{N} \ x, \ ext{иначе} \end{cases}$$

Теорема Кантора-Шрёдера-Бернштейна.

Если
$$\exists$$
 инъекц. $f:A \to B$ и $g:B \to A$, то $A \sim B$

Счётные множества.

Определение.

$$A-\,$$
 счетное, если $A\sim \mathbb{N}$ (\exists биекция $f:A o \mathbb{N},\;g:\mathbb{N} o A$)

Определение.

$$A$$
 — несчетное, если A — бесконечное и A $omega$ $\mathbb N$

Теорема.

$$(0;1)$$
 — несчётные

Доказательство от противного.

Сноска.
$$x\in (0;1)$$
 $x=0,\ x_1,\ x_2,\ \dots$ $0,\ a_1,\ \dots a_n,9,\ 9\dots=0,\ a_1,\ \dots a_{n+1},\ 0,\ 0$

Пусть
$$(0,\ 1) \sim \mathbb{N}$$
 \exists биекция $f: \mathbb{N} o (0;1)$ $f(1)=0,\ x_{11},\ x_{12},\ \ldots$ $f(2)=0,\ x_{21},\ x_{22},\ \ldots$ $f(3)=0,\ x_{31},\ x_{32},\ \ldots$

Рассматриваем цифры $x_{jj},\ j=1,\ 2\dots$

Строим число $y = 0, y_1 y_2 y_3 \dots y_n \dots$

$$y_n = \left\{egin{array}{ll} 2, & ext{если } x_{nn} = 1 \ 1, & ext{если } x_{nn}
eq 1 \end{array}
ight.$$

 $y \neq f(1)$ (отлич. в первой цифре после запятой)

$$y
eq f(n) \quad orall n \in \mathbb{N}(y_n
eq x_{nn})$$
 Противоречие.

Следствие.

$$\mathbb{R}$$
 — несчетные , $|\mathbb{N}| < |\mathbb{R}|$

Все счетные множества равномощны.

Определение.

Если $A \sim \mathbb{R}$, то A имеет можщность континуума

Теорема Кантора.

$$orall$$
 ин. $A \quad |A| < |2^A|$ Доказательство: $|A| \leq |2^A \quad \exists i: A o 2^A$ Докажем, что $A \nsim 2^A$ От противного. Пусть \exists биекция $f: A o 2^A$ $f(x) \subseteq A$ $M = \{x \in A | x \not\in f(x)\} \subseteq A \quad M \in 2^A$ $f: A o 2^A$ $m \longmapsto M = f(m)$ Вопрос: $m \in f(m)$? $m \in f(m) = M \implies m \not\in f(m)$ противоречие $m \not\in f(m) = M \implies m \in f(m)$ противоречие

Бесконечная иерархия мощностей.

$$|\mathbb{N}|<|2^{\mathbb{N}}|<|2^{2^{\mathbb{N}}}|<\dots$$

Утверждение.

Множество бесконечно последовательно из 0 и 1 равномощно $2^\mathbb{N}$ Доказательсвто: $f:2^\mathbb{N}\to S$ биекция $\emptyset\longmapsto 000\dots$ $\{1,\ 3\}\longmapsto 1010\dots$

question (12)

Принцип Дирихле. Альтернативная формулировка на языке отображений. Обобщенный принцип Дирихле. Примеры.

Принцип Дирихле

Принцип: Если k+1 кролика разместить по k клеткам, то найдется клетка, в которой окажется ≥ 2 кроликов.

$$|A|=k+1$$
 $|B|=k$ $orall f:A o B$ не инъективна

Обобщенный Принцип Дирихле: Если n кроликов разместить по k клеткам, то найдется клетка, в которой окажется $\geq \left\lceil \frac{n}{k} \right\rceil$ кроликов.

Доказательство: Пусть в любой клетка оказалось $<\left\lceil \frac{n}{k} \right\rceil$ кроликов.

Случай 1: Если $\frac{n}{k} \in \mathbb{Z} \implies$ всего кроликов $< \frac{n}{k} \cdot k = n$, противоречие.

Случай 2: Если $\frac{n}{k} \notin \mathbb{Z} \implies$ в любой клетке оказалось $\leq \left\lceil \frac{n}{k} \right\rceil - 1 = \left\lceil \frac{n}{k} \right\rceil$ кроликов. Значит всего кроликов $\leq \left\lceil \frac{n}{k} \right\rceil \cdot k < \frac{n}{k} \cdot k = n$, противоречие.

question (13)

Основные правила комбинаторики: правило суммы, правило произведения, правило равенства. Теорема о последовательном выборе.

Основные правила комбинаторики

1. Правило равенства

Если |A| = |B|, то между множествами A и B существует **биекция**.

Пример:

Множества $A=\{1,2,3\}$ и $B=\{a,b,c\}$ равномощны (|A|=|B|=3). Биекция: $1\leftrightarrow a, 2\leftrightarrow b$, $3\leftrightarrow c$.

2. Правило суммы

Если множества A_1, A_2, \ldots, A_k попарно не пересекаются, то:

$$|A_1 \cup A_2 \cup \cdots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|.$$

Пример:

В магазине 5 видов яблок и 3 вида груш. Сколько способов выбрать один фрукт?

Ответ: 5 + 3 = 8.

3. Правило произведения

Для декартова произведения множеств:

$$|A_1 \times A_2 \times \cdots \times A_k| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_k|.$$

Пример:

Сколько существует трёхзначных чисел, если цифры не повторяются?

Ответ: $9 \times 9 \times 8 = 648$.

4. Теорема о последовательном выборе

Если элемент x_i можно выбрать n_i способами, то последовательность (x_1, x_2, \dots, x_k) можно сформировать:

$$n_1 \cdot n_2 \cdot \cdots \cdot n_k$$
 способами.

Доказательство (индукция по k):

- База: Для k = 1 утверждение очевидно.
- Шаг: Предположим, утверждение верно для k-1. Тогда для k-го элемента есть n_k вариантов, и общее число способов:

$$n_1 \cdot n_2 \cdot \cdots \cdot n_{k-1} \cdot n_k$$
.

question (14)

Размещения с повторениями, размещения без повторений, перестановки. Сочетания без повторений. Их число.

Определение:

Размещения с повторениями — это упорядоченные выборки k элементов из n-элементного множества, где элементы могут повторяться. Порядок элементов важен.

Формула:

Количество размещений с повторениями вычисляется по формуле:

$$\overline{A_n^k}=n^k$$

Пример:

Сколько существует трёхсимвольных паролей, если используются буквы A, B, C? Каждая позиция пароля может быть занята любой из 3 букв:

$$3 \times 3 \times 3 = 3^3 = 27$$
 вариантов.

Определение:

Размещения без повторений — это упорядоченные выборки k элементов из n-элементного множества, где элементы **не повторяются**. Порядок элементов важен.

Формула:

Количество размещений без повторений:

$$A_n^k = rac{n!}{(n-k)!}.$$

Доказательство: по теореме о последовательном выборе (x_1, x_2, \ldots, x_n) каждый элемент можно выбрать $n, n-1, \ldots, n-(k-1)$ раз соответственно.

Пример:

Сколько способов распределить 1-е, 2-е и 3-е места среди 5 участников?

$$A_5^3=rac{5!}{(5-3)!}=rac{5!}{2!}=5 imes4 imes3=60$$
 способов.

Определение:

Перестановки — это упорядоченные выборки всех n элементов множества. Порядок элементов важен.

Формула:

Количество перестановок:

$$P_n = n!$$
.

Пример:

Сколько способов расставить 4 книги на полке?

$$P_4 = 4! = 4 imes 3 imes 2 imes 1 = 24$$
 способа.

Определение:

Сочетания без повторений — это неупорядоченные выборки k элементов из n-элементного множества, где элементы **не повторяются**. Порядок элементов не важен.

Формула:

Количество сочетаний без повторений (биномиальный коэффициент):

$$C_n^k = inom{n!}{k} = rac{n!}{k!(n-k)!}.$$

Пример:

Сколько способов выбрать 3 книги из 5?

$$C_5^3=rac{5!}{3!\cdot 2!}=rac{120}{6\cdot 2}=10$$
 способов.

question (15)

Бином Ньютона и его комбинаторное доказательство. Следствия. Свойства биномиальных коэффициентов. Треугольник Паскаля.

Формула бинома Ньютона позволяет раскрыть степень суммы двух слагаемых:

$$(a+x)^n=\sum_{k=0}^n inom{n}{k}a^{n-k}x^k,$$

где:

- $\binom{n}{k}$ биномиальный коэффициент (число сочетаний из n по k),
- a и b любые числа или переменные,
- n натуральное число.

Комбинаторное доказательство

Запишем выражение $(a+x)^n$ как произведение:

$$(a+x)^n = (a+x)(a+x)\dots(a+x)$$
 (*n* pas).

При раскрытии скобок мы получаем произведения, состоящие из n множителей, где каждый множитель — либо a, либо x. Например:

- Для n=2: $(a+x)^2=aa+ax+xa+xx$.
- ullet Для n=3: $(a+x)^3=aaa+aax+axa+xaa+xax+xxa+axx+xxx$.

После раскрытия всех скобок в формуле мы получим всевозможные размещения с повторениями букв x и a из n элементов. Приведем подобные члены. Подобными членами будут члены, содержащие одинаковое количество букв x (тогда и букв a в них будет поровну). Найдем сколько будет членов, в которые входит k букв x и n-k букв a. Эти члены являются перестановками с повторениями, составленными из k букв x и n-k букв a.

$$P(k,\ n-k)=rac{n!}{k!(n-k)!}$$

Отсюда вытекает, что после приведения подобных членов выражение $x^k a^{n-k}$ войдет с коэффициентом $\binom{n}{k}$.

Суммируя эти члены, получаем:

$$(a+x)^n = \sum_{k=0}^n inom{n}{k} a^{n-k} x^k.$$

Следствия из бинома Ньютона

1. Сумма биномиальных коэффициентов:

Если a = 1 и b = 1:

$$(1+1)^n = \sum_{k=0}^n inom{n}{k} = 2^n.$$

2. Чередующаяся сумма:

Если a = 1 и b = -1:

$$(1-1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k = 0.$$

Свойства биномиальных коэффициентов

1. Симметрия:

$$\binom{n}{k} = \binom{n}{n-k}.$$

2. Правило сложения (основа треугольника Паскаля):

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

3. Сумма квадратов:

$$\sum_{k=0}^n inom{n}{k}^2 = inom{2n}{n}.$$

Треугольник Паскаля — таблица, где каждая строка n содержит биномиальные коэффициенты для разложения $(a+b)^n$

question (16)

Сочетания с повторениями. Их число. Распределение одинаковых предметов по различным ящикам.

Сочетания с повторениями — это выбор k элементов из n-элементного множества, где элементы могут повторяться, а порядок выбора не важен.

Формула для числа сочетаний с повторениями:

$$\widetilde{C}_n^k = inom{n+k-1}{k} = rac{(n+k-1)!}{k!\cdot (n-1)!}.$$

Доказательство:

$$\{\underbrace{a_1, \cdots, a_1}_{x_1}, \underbrace{a_2, \cdots, a_2}_{x_2}, \underbrace{\cdots, a_n, \cdots, a_n}_{x_n}\} \stackrel{*}{=}$$

соч. с повторениями из n по k

$$ightarrow$$
 биекция $ightharpoonup \left(\underbrace{x_1 \quad x_2 \quad x_3 \quad x_3 \quad x_n}_{k+n-1=n+k-1} \right)$

- слово длинны n+k-1 в алфавите $\{0, 1\}$, в котором n-1 штук нулей.

Пример:

Сколько способов выбрать 3 фрукта из 4 видов (яблоко, груша, банан, апельсин):

$$\widetilde{C}_4^3 = inom{4+3-1}{3} = inom{6}{3} = 20.$$

Распределение одинаковых предметов по различным ящикам. Сколько способов распределить k одинаковых предметов по n различным ящикам. Это эквивалентно сочетаниям с повторениями, где n — количество ящиков, k — количество предметов. Формула:

$$\binom{n+k-1}{k}$$
.

Пример:

Сколько способов разложить 5 одинаковых шаров в 3 разных ящика:

$$\binom{3+5-1}{5} = \binom{7}{5} = 21.$$

Свойства сочетаний с повторениями.

Связь с обычными сочетаниями:

$$\widetilde{C}_n^k = C_{n+k-1}^k.$$

Симметрия:

$$inom{n+k-1}{k}=inom{n+k-1}{n-1}.$$

Пример. Сколько существует вариантов купить 10 пирожных, если в магазине 4 вида:

$$\widetilde{C}_4^{10} = inom{4+10-1}{10} = inom{13}{10} = 286.$$

question (17)

Упорядоченные и неупорядоченные разбиения конечного множества (распределения раз личных предметов по различимым и неразличимым ящикам). Число упорядоченных разбиений конечного множества на k частей (среди которых могут быть пустые). Число упорядоченных разбиений конечного множества на k подмножеств заданных мощностей. Задача о количестве слов с заданным составом букв.

Упорядоченные и неупорядоченные разбиения конечного множества

- 1. Упорядоченные разбиения (ящики различимы)
- С пустыми частями:

Количество способов распределить n различимых предметов по k различимым ящикам:

$$k^n$$

Пример: Для n = 3, k = 2: $2^3 = 8$ способов.

• Без пустых частей:

Используется принцип включения-исключения:

$$\sum_{j=0}^{k} (-1)^{j} \binom{k}{j} (k-j)^{n}$$

При n < k: результат 0, так как нельзя заполнить все ящики без пустых.

При n = k: результат n! (перестановки элементов по ящикам).

Пример: Для n = 4, k = 3:

$$\sum_{j=0}^3 (-1)^j {3 \choose j} (3-j)^4 = 81 - 3 \cdot 16 + 3 \cdot 1 - 0 = 36.$$

- 2. Неупорядоченные разбиения (ящики неразличимы)
- С пустыми частями:

Количество способов разбить n элементов на неупорядоченные подмножества (включая пустые):

$$\sum_{m=1}^k S(n,m)$$

где S(n,m) — число Стирлинга II рода (разбиения на m непустых подмножеств).

• Без пустых частей:

Число Стирлинга II рода:

$$S(n,k)=rac{1}{k!}\sum_{j=0}^k (-1)^{k-j}inom{k}{j}j^n$$

Задача о количестве слов с заданным составом букв.

Если слово содержит n символов, где каждая буква a_i повторяется k_i раз ($k_1+k_2+\cdots+k_m=n$), количество уникальных анаграмм:

$$\frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!}$$

Примечание: Числа Стирлинга II рода S(n,k) можно вычислить рекуррентно:

$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

question (18)

Полиномиальная теорема и её комбинаторное доказательство. Следствие: малая теорема Ферма.

Полиномиальная теорема и её комбинаторное доказательство

Полиномиальная теорема обобщает бином Ньютона на случай суммы нескольких слагаемых. Формулировка:

Для любых чисел $x_1, x_2, ..., x_m$ и натурального n:

$$(x_1+x_2+\ldots+x_m)^n = \sum_{k_1+k_2+\ldots+k_m=n} rac{n!}{k_1!\cdot k_2!\cdot\ldots\cdot k_m!}\cdot x_1^{k_1}x_2^{k_2}\ldots x_m^{k_m},$$

где сумма берётся по всем наборам неотрицательных целых чисел k_1,k_2,\dots,k_m , таким что $k_1+k_2+\dots+k_m=n$.

Комбинаторное доказательство

Рассмотрим выражение $(x_1 + x_2 + \ldots + x_m)^n$ как произведение n множителей:

$$\underbrace{(x_1+x_2+\ldots+x_m)\cdot\ldots\cdot(x_1+x_2+\ldots+x_m)}_{n \text{ pa3}}.$$

Каждый член в разложении получается выбором одного слагаемого (x_1, x_2, \dots, x_m) из каждого множителя.

Формирование члена $x_1^{k_1}x_2^{k_2}\dots x_m^{k_m}$:

Чтобы получить такой член, нужно выбрать:

- x_1 ровно k_1 раз,
- x_2 ровно k_2 раз,
- ...,
- ullet x_m ровно k_m раз, где $k_1+k_2+\ldots+k_m=n.$

Количество способов:

Число способов выбрать k_1 позиций для x_1 , k_2 позиций для x_2 и так далее равно мультиномиальному коэффициенту:

$$\frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!}.$$

Следствие: Малая теорема Ферма

Формулировка:

Если p — простое число, и a — целое число, не делящееся на p, то:

$$a^{p-1} \equiv 1 \mod p$$
.

Доказательство через полиномиальную теорему:

Пусть
$$p-$$
 простое число, число $a\in\mathbb{Z},\ a
otag\ .$

Тогда $a^p\equiv a,\ a^{p-1}\equiv 1$ (остаток от деления a^{p-1} на p равен 1)
$$(a_1+a_2+\cdots+a_k)^n=\sum_{\vdots}\frac{n!}{n_1!\cdot n_2!\dots n_k!}\cdot a_1^{n_1}\cdot a_2^{n_2}\cdots a_k^{n_k}$$
 пусть $a\in\mathbb{N}$ $a=1+1+\cdots+1$
$$(1+1+\cdots+1)^p=\sum_{\substack{(n_1,n_2,\cdots,n_a)\\ n_1+n_2+\cdots+n_a=p\\ 0\le n_1,n_2,\cdots,n_a\le p}}\frac{p!}{n_1!\cdot n_2!\cdots n_a!}=$$

$$=\underbrace{1+1+\cdots+1}_{a\ \text{слагаемых}}+\sum_{\substack{(n_1,n_2,\cdots,n_a)\\ 0\le n_1,n_2,\cdots,n_a< p}}\frac{p!}{n_1!\cdot n_2!\cdots n_a!}\in\mathbb{N}=a+p\cdot x^{\in\mathbb{Z}}\implies$$

$$\Longrightarrow \boxed{a^p=a+p\cdot x}$$

question (19)

Формула включений и исключений. Альтернативная формулировка на языке объектов и их свойств. Задача о беспорядках.

Формула включений и исключений (ФВИ)

Формулировка:

Для конечных множеств A_1, A_2, \ldots, A_n :

$$\left| igcup_{i=1}^n A_i
ight| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|.$$

Интуиция:

Суммируются мощности отдельных множеств, вычитаются пересечения пар, добавляются пересечения троек и так далее, чтобы избежать двойного учёта.

Альтернативная формулировка через объекты и свойства

Контекст:

Пусть имеется множество объектов U, и каждому объекту могут быть приписаны свойства P_1, P_2, \ldots, P_n .

Обозначим через N(S) количество объектов, обладающих всеми свойствами из подмножества $S \subset \{P_1, \dots, P_n\}$.

Формула:

Количество объектов, не обладающих ни одним из свойств:

$$N(\emptyset) = |U| - \sum_{i=1}^n N(\{P_i\}) + \sum_{1 \leq i < j \leq n} N(\{P_i, P_j\}) - \ldots + (-1)^n N(\{P_1, \ldots, P_n\}).$$

Пример:

В группе из 100 человек:

- 40 знают Python (P_1) ,
- 30 знают Java (P_2) ,
- 20 знают оба языка $(P_1 \cap P_2)$.

Количество людей, не знающих ни Python, ни Java:

$$N(\emptyset) = 100 - (40 + 30) + 20 = 50.$$

Задача о беспорядках (Derangements)

Определение:

Беспорядок — это перестановка элементов, в которой ни один элемент не остаётся на своём

месте.

Обозначение: D_n — число беспорядков для n элементов.

Формула через ФВИ:

$$D_n = n! \left(1 - rac{1}{1!} + rac{1}{2!} - rac{1}{3!} + \ldots + (-1)^n rac{1}{n!}
ight).$$

Доказательство:

Всего перестановок: n!.

Пусть A_i — множество перестановок, где элемент i остаётся на своём месте.

Число перестановок, фиксирующих хотя бы один элемент:

$$\sum_{i=1}^n |A_i| - \sum_{i < j} |A_i \cap A_j| + \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|.$$

Мощность $|A_{i_1}\cap\ldots\cap A_{i_k}|=(n-k)!.$

Подставляя в ФВИ:

$$D_n = n! - inom{n}{1}(n-1)! + inom{n}{2}(n-2)! - \ldots + (-1)^n inom{n}{n} 0!.$$

Упрощая:

$$D_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}.$$

question (20)

Неупорядоченные разбиения множества на k непустых частей. Числа Стирлинга второго рода. Явная формула и рекуррентное соотношение для них. Неупорядоченные разбиения множества на произвольное число непустых частей. Числа Белла. Связь с отношениями эквивалентности.

Неупорядоченные разбиения множества и связанные понятия

1. Неупорядоченные разбиения на k непустых частей Неупорядоченное разбиение множества A на k непустых частей — это представление A в виде объединения k попарно непересекающихся непустых подмножеств. Порядок подмножеств не важен.

Пример:

Для $A = \{a, b, c\}$ и k = 2:

$$\{\{a\},\{b,c\}\},\quad \{\{b\},\{a,c\}\},\quad \{\{c\},\{a,b\}\}.$$

2. Числа Стирлинга второго рода

Обозначение: S(n,k) — количество неупорядоченных разбиений n-элементного множества на k непустых частей.

Явная формула (через включения-исключения):

$$S(n,k) = rac{1}{k!} \sum_{j=0}^k (-1)^{k-j} inom{k}{j} j^n.$$

Рекуррентное соотношение:

$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k).$$

Пояснение:

- S(n-1,k-1): Добавить новый элемент как отдельную часть.
- $k \cdot S(n-1,k)$: Добавить новый элемент в одну из k существующих частей.

Пример:

Для n = 3, k = 2:

$$S(3,2) = S(2,1) + 2 \cdot S(2,2) = 1 + 2 \cdot 1 = 3.$$

3. Неупорядоченные разбиения на произвольное число частей Число Белла B_n — количество всех возможных неупорядоченных разбиений n-элементного множества (на любое число непустых частей).

Связь с числами Стирлинга:

$$B_n = \sum_{k=1}^n S(n,k).$$

Рекуррентное соотношение:

$$B_{n+1} = \sum_{k=0}^n inom{n}{k} B_k.$$

Пример:

Для n=3:

$$B_3 = S(3,1) + S(3,2) + S(3,3) = 1 + 3 + 1 = 5.$$

4. Связь с отношениями эквивалентности

Каждое разбиение множества A соответствует отношению эквивалентности на A, где:

- Классы эквивалентности это части разбиения.
- Два элемента эквивалентны, если они принадлежат одной части разбиения.

Число Белла B_n равно количеству различных отношений эквивалентности на множестве из n элементов.

question (21)

Упорядоченные разбиения натуральных чисел на заданное количество слагаемых и на произвольное количество слагаемых.

Упорядоченные разбиения натуральных чисел

Определение:

Упорядоченное разбиение числа $n \in \mathbb{N}$ на k слагаемых — это представление n в виде суммы натуральных чисел, где порядок слагаемых важен:

$$n=x_1+x_2+\cdots+x_k,\quad x_i\geq 1.$$

Пример:

Для n = 4 и k = 3:

$$4 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2$$
 (3 упорядоченных разбиения).

Теорема о количестве упорядоченных разбиений

1. На заданное число слагаемых k:

Количество упорядоченных разбиений
$$= \binom{n-1}{k-1}$$
.

Доказательство:

Используем метод "звёзд и полос". Представим число n как n звёзд (\star). Чтобы разделить их на k частей, нужно поставить k-1 полосу (|) между звёздами.

Например, для n = 5 и k = 3:

$$\star\star \mid\star\mid\star\star$$
 \leftrightarrow $2+1+2$.

Число способов расставить k-1 полос в n-1 промежутках:

$$\binom{n-1}{k-1}$$
.

2. На произвольное число слагаемых:

Общее количество упорядоченных разбиений $=2^{n-1}$.

Доказательство:

Суммируем количество разбиений для всех k от 1 до n:

$$\sum_{k=1}^{n} \binom{n-1}{k-1} = 2^{n-1}.$$

Неупорядоченные разбиения натуральных чисел

Определение:

Неупорядоченное разбиение числа n — это представление n в виде суммы натуральных чисел, где порядок слагаемых не важен:

$$n=x_1+x_2+\cdots+x_k,\quad x_1\geq x_2\geq\cdots\geq x_k\geq 1.$$

Пример:

Для n=4:

$$4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 + 1$$
 (5 неупорядоченных разбиений).

Обозначения и свойства

- $p_k(n)$ число неупорядоченных разбиений n на k слагаемых.
- p(n) число всех неупорядоченных разбиений n на любое число слагаемых.

Пример:

Для n=4:

$$p(4) = 5, \quad p_2(4) = 2 \quad (3+1, \, 2+2).$$

Особенности неупорядоченных разбиений

1. Нет явной формулы:

В отличие от упорядоченных разбиений, для p(n) и $p_k(n)$ не существует простой формулы. Они вычисляются через рекуррентные соотношения или производящие функции.

2. Рекуррентное соотношение:

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \dots,$$

где вычитаются числа, кратные 5, 7, 12, ... (формула Харди-Рамануджана-Айерса).

3. Асимптотика:

При больших n:

$$p(n)pprox rac{1}{4n\sqrt{3}}e^{\pi\sqrt{rac{2n}{3}}}.$$

question (22)

Неупорядоченные разбиения натуральных чисел на заданное количество слагаемых и на произвольное количество слагаемых. Диаграмма Юнга. Рекуррентное соотношение для $p_k(n)$ Теорема о связи $p_k(n)$ и p(n) с количеством решений в целых числах некоторой системы уравнений. Утверждение: количество всех неупорядоченных разбиений числа n на не более k слагаемых равно количеству неупорядоченных разбиений числа n+k ровно на k слагаемых. Утверждение: количество всех неупорядоченных разбиений числа n+k неупорядоченных разбиений числа n+k слагаемых равно количеству неупорядоченных разбиений числа n+k(k+1)/2 ровно на k различных слагаемых.

Неупорядоченные разбиения натуральных чисел

- 1. Основные определения
- Неупорядоченное разбиение числа n представление n в виде суммы натуральных чисел, где порядок слагаемых не важен:

$$n=x_1+x_2+\cdots+x_k,\quad x_1\geq x_2\geq\cdots\geq x_k\geq 1.$$

- Диаграмма Юнга графическое представление разбиения, где каждое слагаемое соответствует строке из точек (или квадратов).
- 2. Рекуррентное соотношение для $p_k(n)$ Количество неупорядоченных разбиений числа n на k слагаемых удовлетворяет соотношению:

$$p_k(n)=p_k(n-k)+p_{k-1}(n-1).$$

Доказательство:

- Случай 1: Каждое слагаемое в разбиении ≥ 2 . Уменьшив все слагаемые на 1, получим разбиение n-k на k слагаемых: $p_k(n-k)$.
- Случай 2: Одно из слагаемых равно 1. Удалив его, получим разбиение n-1 на k-1 слагаемых: $p_{k-1}(n-1)$.

3. Теорема о связи разбиений

Утверждение 1:

Количество неупорядоченных разбиений числа n на не более k слагаемых равно количеству разбиений числа n+k ровно на k слагаемых.

Доказательство:

Добавим 1 к каждому слагаемому в разбиениях n на $t \leq k$ слагаемых. Получим разбиения n+t на t слагаемых ≥ 2 . Добавив k-t слагаемых 1, получим разбиения n+k на k слагаемых.

Утверждение 2:

Количество неупорядоченных разбиений числа n на не более k слагаемых равно количеству разбиений числа $n+\frac{k(k+1)}{2}$ на k различных слагаемых.

Доказательство:

Если в разбиениях n на $t \leq k$ слагаемых добавить k-t нулей и преобразовать слагаемые в различные числа, увеличивая их на $k,k-1,\ldots,1$, получим разбиения $n+\frac{k(k+1)}{2}$ на k различных слагаемых.

question (23)

Однородные и неоднородные линейные рекуррентные соотношения порядка k. Равенство последовательностей, удовлетворяющих л.о.р.с., при совпадении начальных условий. Связь решений л.н.р.с. и л.о.р.с. Подпространство последовательностей L_k . Его размерность и базис. Характеристический многочлен $P(\lambda)$ л.о.р.с. Экспоненциальная последовательность, порождённая корнем α характеристического многочлена $P(\lambda)$, как частное решение л.о.р.с. Теорема об общем решении л.о.р.с., у которого все корни $P(\lambda)$ кратности 1. Теорема об общем решении л.о.р.с. для корней произвольной кратности (без док-ва). Вид частного решения л.н.р.с. с правой частью $f(n) = Q(n)\beta^n$, где $\beta \in \mathbb{C}$, а Q(n) — полином от n. Теоремы об общем решении л.н.р.с. 1-го и л.о.р.с. 2-го порядков (различные корни, кратный корень). Примеры (арифметическая и геометрическая прогрессии). Ханойские башни. Числа Фибоначчи.

Линейные рекуррентные соотношения (л.р.с.)

- 1. Основные определения
- Линейное однородное рекуррентное соотношение (л.о.р.с.) порядка k:

$$a_n = d_1 a_{n-1} + d_2 a_{n-2} + \cdots + d_k a_{n-k}, \quad n \ge k,$$

где d_1, d_2, \ldots, d_k — постоянные коэффициенты, $d_k \neq 0$.

• Линейное неоднородное рекуррентное соотношение (л.н.р.с.):

$$a_n = d_1 a_{n-1} + d_2 a_{n-2} + \cdots + d_k a_{n-k} + f(n), \quad n \ge k,$$

где f(n) — некоторая функция.

- 2. Теоремы и свойства
- Утверждение 1 (единственность решения): Если две последовательности удовлетворяют одному и тому же л.о.р.с. или л.н.р.с. и совпадают на начальных k элементах, то они тождественно равны.
- Утверждение 2 (линейность пространства решений): Множество решений л.о.р.с. образует векторное пространство \mathcal{L}_k размерности k.
- Характеристический многочлен: Для л.о.р.с. $a_n + d_1 a_{n-1} + \cdots + d_k a_{n-k} = 0$ характеристический многочлен:

$$P(\lambda) = \lambda^k + d_1 \lambda^{k-1} + \cdots + d_k.$$

- 3. Общее решение л.о.р.с.
- Случай простых корней:

Если $P(\lambda)$ имеет k различных корней $\lambda_1, \lambda_2, \ldots, \lambda_k$, то общее решение:

$$a_n = C_1 \lambda_1^n + C_2 \lambda_2^n + \dots + C_k \lambda_k^n,$$

где C_1, C_2, \dots, C_k — константы, определяемые начальными условиями.

• Случай кратных корней:

Если λ_i — корень кратности s_i , то соответствующие решения:

$$a_n = Q_j(n)\lambda_j^n,$$

где $Q_j(n)$ — полином степени s_j-1 .

4. Решение л.н.р.с.

Общее решение л.н.р.с. имеет вид:

$$a_n = a_n^{(od ext{ iny hop})} + a_n^{(ext{ iny vacm})},$$

где:

- $a_n^{(o\partial hop)}$ общее решение соответствующего л.о.р.с.,
- $a_n^{(\textit{часm})}$ частное решение л.н.р.с.

Пример:

Для правой части $f(n) = Q(n)\beta^n$, где Q(n) — полином:

- Если β не корень $P(\lambda)$, то $a_n^{(\textit{часm})} = R(n)\beta^n$, где R(n) полином той же степени, что и Q(n).
- Если eta корень кратности m, то $a_n^{(\textit{час}m)} = n^m R(n) eta^n.$
- 5. Примеры
- Арифметическая прогрессия:

$$a_n = a_{n-1} + b \quad \Rightarrow \quad a_n = a_0 + b \cdot n.$$

• Геометрическая прогрессия:

$$a_n = d \cdot a_{n-1} \quad \Rightarrow \quad a_n = a_0 \cdot d^n.$$

• Ханойские башни:

$$t_n=2t_{n-1}+1\quad\Rightarrow\quad t_n=2^n-1.$$

• Числа Фибоначчи:

$$F_n = F_{n-1} + F_{n-2}, \ F_0 = 0, \ F_1 = 1$$

Характеристическое уравнение $\lambda^2-\lambda-1=0,\;\lambda=rac{1\pm\sqrt{5}}{2}$

Общее решение:

$$F_n = C_1 \Bigg(rac{1+\sqrt{5}}{2}\Bigg)^n + C_2 \Bigg(rac{1-\sqrt{5}}{2}\Bigg)^n$$

Диаграмма Юнга и разбиения чисел

Неупорядоченные разбиения числа n - представления n в виде суммы натуральных числе без учета порядка.

Рекуррентное соотношение для $p_k(n)$ (число разбиений n на k слагаемых):

$$p_k(n)=p_k(n-k)+p_{k-1}(n-1)$$

question (24)

Формальные степенные ряды. Производящие функции. Операции над формальными степенными рядами. Критерий обратимости ряда. Примеры. Решение линейных рекуррентных соотношений с помощью степенных рядов. Теорема Эйлера о производящей функции для p(n). Производящие функции для числа разбиений $p_{\rm odd}(n)$, $p_{\rm dist}(n)$ на нечётные слагаемые и различных слагаемые. Доказательство равенства $p_{\rm odd}(n) = p_{\rm dist}(n)$ (без док-ва). Пентагональная теорема Эйлера. Рекуррентная формула для p(n).

Формальные степенные ряды и производящие функции

Формальный степенной ряд — это алгебраическая структура вида $f(x) = \sum_{n=0}^{\infty} a_n x^n$, где коэффициенты a_n образуют последовательность. Операции над рядами:

- Сложение/вычитание: поэлементно.
- Умножение (свёртка): $f(x)g(x) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) x^n$.
- Обращение: ряд f(x) обратим тогда и только тогда, когда $a_0 \neq 0$. Обратный ряд g(x) находится рекуррентно из условия f(x)g(x) = 1.

Решение линейных рекуррентных соотношений Для уравнения второго порядка:

$$x_n + d_1 x_{n-1} + d_2 x_{n-2} = 0 \quad (n \ge 2),$$

характеристический многочлен $P(\lambda) = \lambda^2 + d_1\lambda + d_2$.

Случай 1: Различные корни $\lambda_1 \neq \lambda_2$:

$$x_n = C_1 \lambda_1^n + C_2 \lambda_2^n.$$

Случай 2: Кратный корень $\lambda_1=\lambda_2=\alpha$:

$$x_n = (C_1 + C_2 n)\alpha^n.$$

Производящая функция для рекуррентного соотношения:

$$f(x) = rac{a_0 + (a_1 + d_1 a_0)x}{1 + d_1 x + d_2 x^2}.$$

После разложения на простые дроби коэффициенты a_n выражаются через корни λ_1, λ_2 .

Теорема Эйлера о разбиениях

Число разбиений p(n) — количество способов представить n в виде суммы натуральных чисел.

Производящая функция:

$$\sum_{n=0}^{\infty} p(n)x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}.$$

Разбиения на нечётные слагаемые $(p_{\text{odd}}(n))$:

$$\prod_{k=1}^{\infty} \frac{1}{1-x^{2k-1}}.$$

Разбиения на различные слагаемые $(p_{\text{dist}}(n))$:

$$\prod_{k=1}^{\infty} (1+x^k).$$

Доказательство равенства $p_{\mathrm{odd}}(n) = p_{\mathrm{dist}}(n)$:

$$\prod_{k=1}^{\infty} (1+x^k) = \prod_{k=1}^{\infty} rac{1-x^{2k}}{1-x^k} = \prod_{k=1}^{\infty} rac{1}{1-x^{2k-1}}.$$

Здесь каждое чётное слагаемое x^{2k} исключается, остаются только нечётные.

Пентагональная теорема Эйлера

Связывает производящую функцию разбиений с пентагональными числами:

$$\prod_{k=1}^{\infty} (1-x^k) = \sum_{n=-\infty}^{\infty} (-1)^n x^{rac{n(3n-1)}{2}}.$$

Пентагональные числа имеют вид $\frac{n(3n-1)}{2}$.

Рекуррентная формула для p(n):

$$p(n) = \sum_{k=1}^{\infty} (-1)^{k+1} \left[p \left(n - rac{k(3k-1)}{2}
ight) + p \left(n - rac{k(3k+1)}{2}
ight)
ight].$$