Math 302 Fall 2011 Homework #8

Due Nov. 7, Mon. in class

- 1. Textbook, page 181, Section 4.1, 1, 2, and 3.
- 2. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Show that $f:\mathbb{R}^n\to\mathbb{R}$ defined by $f(x):=\|x\|$ is continuous on \mathbb{R}^n .
- 3. Let (M,d) be a metric space. Given $z \in M$, define $f: M \to \mathbb{R}$ by f(x) := d(z,x). Show that f is continuous on M.
- 4. Define $f: \mathbb{R}^2 \to \mathbb{R}$ as follows:

$$f(x,y) := \left\{ \begin{array}{ll} 0, & \text{if } x \text{ is rational and } y \text{ is irrational} \\ 1, & \text{otherwise} \end{array} \right.$$

Show that f is discontinuous at any point of \mathbb{R}^2 . (*Hint*: recall that for any real number a, there is a rational (resp. irrational) sequence converging to a.)

- 5. Let $f, g: (M, d) \to (V, \|\cdot\|)$ be two functions, where (M, d) is a metric space and $(V, \|\cdot\|)$ is a normed vector space.
 - (1) Use the sequential argument to show that if f and g are continuous at $x_0 \in M$, so is f + g;
 - (2) Let λ be a scalar. Use the $\varepsilon \delta$ definition to show that if f is continuous at $x_0 \in M$, so is λf .