CSCE 411: Design and Analysis of Algorithms

Lecture 19: Computational Complexity: P and NP

Date: April 8 Nate Veldt, updated by Samson Zhou

1 The universe of computational problems

Refresher on computational problems It will be important for us to distinguish between three concepts in defining and solving computational problems:

- 1. Problem: a computational task that takes in an input and seeks a specific output.
- 2. Instance: one specific input for the problem
- 3. Candidate solution: the data encoding a possible solution to an instance.

1.1 Decision Problems and Optimization Problems

A computational problem Q is a decision problem if

An optimization problem is a problem that seeks the minimum or maximum value of a function subject to constraints.

Question 1. Which of the following is a decision problem?

- Find the maximum flow for a graph G = (V, E) with source/sink nodes s and t.
- Find if the graph G = (V, E) is connected.
- Find the shortest path of a graph G = (V, E)
- ullet Find if G = (V, E) is a directed acyclic graph
- More than one of the above

For any optimization problem, we can define a corresponding decision problem by taking an extra input k and asking:

1	.2	The	problem	class	P

A problem Q is said to be in P if there is problem.	a polynomial time algorithm that solves the
In other words, if n is the size of the inpu	t data, the problem has a runtime such as:
These are often referred to asproblems that can be solved	problems and are treated in theory as

All of the problems we have considered so far are polynomial time, but this is only a small sample of problems.

	1.3	The	problem	class	NP
--	-----	-----	---------	-------	----

We'll define NP problems using a few different levels of technical difficulty.

Level 1: informal, gets us most of the way there. A problem is in NP if we can check in polynomial time whether a given candidate solution solves the instance or not.

Level 2: certificates and verifiers. NP is the set of decision problems with the following property:

If the answer to an instance is *yes*, there exists some data called a *certificate* with which an algorithm can *verify* the answer is YES in polynomial time.

The *certificate* is

The verifier is

Level 3: the technically precise definition.	NP is the set of decision problems
that can be solved by	

This involves defining Turing machines, formal languages, and a whole lot more.

You do not need to process this definition (or all the textbook details) for this course. But it does tell us where the name "NP" comes from:

Examples A problem is in NP if for every YES instance there is a <i>certificate</i> that an
algorithm can use to \textit{verify} in polynomial time that it is truly a YES instance.
Example 1. Does $G = (V, E)$ have a clique of size at least k ?

Certificate

Verifier

Example 2. Is G = (V, E) a connected graph?

Certificate

Verifier

Proving something is in NP: If you can check in polynomial time whether a candidate solution solves the problem or not, then the problem is in NP.

1.4 The co-NP class	
A problem is in co-NP if for every	_ there is a certificate
(some data) that an algorithm can use to <i>verify</i> in polynomial	time that it is truly a
To be clear, we will often use the termscertificate and	verifier.
Example problem Is $G = (V, E)$ a directed acyclic graph?	
Certificate	
Certificate	
Verifier	

Conclusion: Checking whether G is a DAG is _____

Question 2. The verifier we showed for the clique problem will return YES if the k nodes are a clique, and will return NO if the k nodes are not a clique.

True or false: this means that this algorithm is also a NO-verifier, and so the clique problem is also in co-NP.

B False

Question 3. Checking whether G is a DAG in in co-NP. Is it also in NP?

f A Yes

 $oldsymbol{\mathsf{B}}$ No

2 Reductions

A reduction is a mapping from one computational problem to another.

Definition Let A and B be decision problems. We say that A can be reduced to B if

- \bullet For every instance of A we can define a corresponding instance of B such that
- \bullet All YES instances in A map to YES instances in B
- \bullet All NO instances in A map to NO instances in B

This is a polynomial-time reduction if this conversion process takes polynomial time.

This seems obvious: what's an example of a reduction that is not polynomial-time?

2.1 Reduction and complexity

If A can be reduced to B in polynomial time, we denote this by

This implies that:

- A is easier¹ than B, or equivalently
- \bullet B is at least as hard as A is to solve

Lemma 2.1. If $B \in P$ and ______, then _____

¹where easier might mean "no harder than"

3 NP-completeness

Definition: A problem Q is NP-complete if:

- 1. $Q \in NP$
- 2. for every problem $B \in NP$, $B \leq_p Q$.

In words:

This implies that NP-complete problems are the *hardest* problems in NP.

Why? Remember that $A \leq_p B$ means A is easier than B.

In fact, if you only take the second part of the definition, this defines the set of NP-hard problems.