Universidad

de Huelva

Departamento de Tecnologías de la Información

Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1,5 puntos)

- (a) ¿Qué es una Autómata de Pila?
- (b) ¿Qué diferencia hay entre un Automata de Pila Determinista e Indeterminista?
- (c) ¿Tienen la misma capacidad? Razone la respuesta.

EJERCICIO 2 (1,5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky.

$S \rightarrow B M$	$M \rightarrow O B$	$Q \rightarrow L S$
$S \rightarrow T M$	$M \rightarrow O T$	$T \rightarrow \text{term}$
$S \rightarrow Q R$	$N \rightarrow A B$	$A \rightarrow and$
$S \rightarrow term$	$N \rightarrow A T$	$O \rightarrow or$
$M \rightarrow N M$	$N \to O B$	extstyle L o lparen
$M \rightarrow A B$	$N \rightarrow O T$	$R \rightarrow rparen$
$M \rightarrow A T$	$B \rightarrow Q R$	

Verifique que la cadena "**Iparen term or term rparen and term**" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Desarrolle una Máquina de Turing que calcule la suma de dos números en formato binario. Los números se expresarán de izquierda a derecha. Se utilizará el símbolo "#" para marcar el comienzo de la cinta, la separación de los sumandos y el final de la entrada. La máquina debe generar como salida el valor de la suma, escrito de izquierda a derecha.

Por ejemplo, el número 13 se escribe en binario como "1101" y el número 20 se escribe como "10100". Para sumar 13+20 la cadena de entrada debe ser "#1011#00101#" y la de salida debe ser "#100001".

EJERCICIO 4 (1.5 puntos)

Sea $E_{\rm TM}$ el lenguaje formado por las cadenas $<\!\!M\!\!>$ tales que M es la codificación de una máquina de Turing que no reconoce ninguna entrada, es decir, cuyo lenguaje es el lenguaje vacío. Demuestre que el lenguaje $E_{\rm TM}$ es indecidible.

EJERCICIO 5 (2 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y).

Demuestre que la función Div(x,y), que calcula la división entera, es primitiva recursiva.

$$Div(x, y) = x / y$$

EJERCICIO 6 (1.5 puntos)

¿Qué es un problema NP-completo? Enuncie el Teorema de Cook y Levin y describa brevemente su demostración.