Quasi-arithmetic centers, quasi-arithmetic mixtures, and the Jensen-Shannon ∇-divergences

GSI'23

Frank Nielsen

Sony Computer Science Laboratories Inc

June 2023

arXiv:2301.10980

Talk outline, and contributions

Goals:

- I. Generalize scalar quasi-arithmetic means to multivariate cases
- II. Show that the dually flat spaces of information geometry yields a natural framework for defining and studying this generalization

Outline of the talk:

- 1. Weighted quasi-arithmetic means
- 2. Quasi-arithmetic centers and their invariance and equivariance properties
- 3. Quasi-arithmetic mixtures
- 4. Jensen-Shannon ∇-divergences

examples of α-geodesics with midpoints in the probability simplex

Weighted quasi-arithmetic means (QAMs)

Standard (n-1)-dimensional simplex: $\Delta_{n-1} = \{(w_1, \dots, w_n) : w_i \geq 0, \sum_i w_i = 1\}$

Definition (Weighted quasi-arithmetic mean (1930's)). Let $f: I \subset \mathbb{R} \to \mathbb{R}$ be a strictly monotone and differentiable real-valued function. The weighted quasi-arithmetic mean (QAM) $M_f(x_1, \ldots, x_n; w)$ between n scalars $x_1, \ldots, x_n \in I \subset \mathbb{R}$ with respect to a normalized weight vector $w \in \Delta_{n-1}$, is defined by

$$M_f(x_1, \dots, x_n; w) := f^{-1} \left(\sum_{i=1}^n w_i f(x_i) \right).$$

QAMs enjoy the in-betweenness property:

$$\min\{x_1, \dots, x_n\} \le M_f(x_1, \dots, x_n; w) \le \max\{x_1, \dots, x_n\}$$

Quasi-arithmetic means (QAMs)

• Classes of generators [f]=[g] with $f \equiv g$ yieldings the same QAM:

$$M_g(x,y) = M_f(x,y)$$
 if and only if $g(t) = \lambda f(t) + c$ for $\lambda \in \mathbb{R} \setminus \{0\}$

• So let us fix wlog. strictly increasing and differentiable f since we can always either consider either f or -f (i.e., λ =-1, c=0).

• QAMs include p-power means for the smooth family of generators $f_p(t)$:

$$M_p(x,y) := M_{f_p}(x,y) \qquad f_p(t) = \begin{cases} \frac{t^p - 1}{p}, & p \in \mathbb{R} \setminus \{0\}, \\ \log(t), & p = 0. \end{cases}, \quad f_p^{-1}(t) = \begin{cases} (1 + tp)^{\frac{1}{p}}, & p \in \mathbb{R} \setminus \{0\}, \\ \exp(t), & p = 0. \end{cases}$$

- Pythagoras means: Harmonic (p=-1), Geometric (p=0), Arithmetic (p=1)
- Homogeneous QAMs $M_f(\lambda x, \lambda y) = \lambda M_f(x, y)$ for all $\lambda > 0$ are exactly p-power means

Quasi-Arithmetic Centers (QACs) = Multivariate QAMs:

Univariate QAMs:
$$M_f(x_1, \dots, x_n; w) := f^{-1} \left(\sum_{i=1}^n w_i f(x_i) \right)$$

Two problems we face when going from univariate to multivariate cases:

- 1. Define the proper notion of "multivariate increasing" function F and its equivalent class of functions
- 2. In general, the implicit function theorem only proves locally and inverse function F^{-1} of F: $R^d \rightarrow R^d$ provided its Jacobian matrix is not singular

Information geometry provides the right framework to generalize QAMs to quasi-arithmetic centers (QACs) and study their properties.

Consider the dually flat spaces of information geometry

Legendre-type functions

 $\Gamma_0(E)$: Cone of lower semi-continuous (lsc) convex functions from E into $\mathbb{R} \cup \{+\infty\}$

Legendre-Fenchel transformation of a convex function: $F^*(\eta) := \sup_{\theta \in \Theta} \{\theta^\top \eta - F(\theta)\}$

Problem: Domain H of η may not be convex...

$$F^* \in \Gamma_0(E) \qquad F^{**} = F$$

counterexample with $h(\xi_1, \xi_2) = [(\xi_1^2/\xi_2) + \xi_1^2 + \xi_2^2]/4$

[Rockafeller 1967]

To by pass this problem:

Definition Legendre type function . (Θ, F) is of Legendre type if the function $F: \Theta \subset \mathbb{X} \to \mathbb{R}$ is strictly convex and differentiable with $\Theta \neq \emptyset$ an open convex set and

$$\lim_{\lambda \to 0} \frac{d}{d\lambda} F(\lambda \theta + (1 - \lambda)\bar{\theta}) = -\infty, \quad \forall \theta \in \Theta, \forall \bar{\theta} \in \partial \Theta. \tag{1}$$

Convex conjugate of a Legendre-type function $(\Theta, F(\theta))$ is of Legendre-type:

Given by the Legendre function: $F^*(\eta) = \langle \nabla F^{-1}(\eta), \eta \rangle - F(\nabla F^{-1}(\eta))$

Gradient map ∇F is globally invertible: ∇F⁻¹

Comonotone functions in inner product spaces

• Comonotone functions: $\forall \theta_1, \theta_2 \in \mathbb{X}, \theta_1 \neq \theta_2, \quad \langle \theta_1 - \theta_2, G(\theta_1) - G(\theta_2) \rangle > 0$ (i.e., comonotone = monotone with respect to the identity function)

Proposition (Gradient co-monotonicity). The gradient functions $\nabla F(\theta)$ and $\nabla F^*(\eta)$ of the Legendre-type convex conjugates F and F^* in F are strictly increasing co-monotone functions.

Proof using symmetrization of Bregman divergences = Jeffreys-Bregman divergence:

$$B_{F}(\theta_{1}:\theta_{2}) + B_{F}(\theta_{2}:\theta_{1}) = \langle \theta_{2} - \theta_{1}, \nabla F(\theta_{2}) - \nabla F(\theta_{1}) \rangle > 0, \quad \forall \theta_{1} \neq \theta_{2}$$

$$B_{F^{*}}(\eta_{1}:\eta_{2}) + B_{F^{*}}(\eta_{2}:\eta_{1}) = \langle \eta_{2} - \eta_{1}, \nabla F^{*}(\eta_{2}) - \nabla F^{*}(\eta_{1}) \rangle > 0, \quad \forall \eta_{1} \neq \eta_{2}$$

because Bregman divergences(and sums thereof) are always non-negative

$$B_F(\theta_1:\theta_2) = F(\theta_1) - F(\theta_2) - \langle \theta_1 - \theta_2, \nabla F(\theta_2) \rangle \ge 0,$$

$$B_{F^*}(\eta_1:\eta_2) = F^*(\eta_1) - F^*(\eta_2) - \langle \eta_1 - \eta_2, \nabla F^*(\eta_2) \rangle \ge 0,$$

Remark: Generalization of monotonicity because when d=1, f(x) is strictly monotone iff $f(x_1)-f(x_2)$ is of same sign of x_1-x_2 that is, $(f(x_1)-f(x_2))$ $(x_1-x_2)>0$

Quasi-arithmetic centers: Definition generalizing QAMs

Definition (Quasi-arithmetic centers, QACs)). Let $F : \Theta \to \mathbb{R}$ be a strictly convex and smooth real-valued function of Legendre-type in \mathcal{F} . The weighted quasi-arithmetic average of $\theta_1, \ldots, \theta_n$ and $w \in \Delta_{n-1}$ is defined by the gradient map ∇F as follows:

$$M_{\nabla F}(\theta_1, \dots, \theta_n; w) := \nabla F^{-1} \left(\sum_i w_i \nabla F(\theta_i) \right),$$
$$= \nabla F^* \left(\sum_i w_i \nabla F(\theta_i) \right),$$

where $\nabla F^* = (\nabla F)^{-1}$ is the gradient map of the Legendre transform F^* of F.

This definition generalizes univariate quasi-arithmetic means : $M_f(x_1, \dots, x_n; w) := f^{-1}\left(\sum_{i=1}^n w_i f(x_i)\right)$

Let
$$F(t) = \int_a^t f(u) du$$

Then we have $M_f = M_{F'}$

An illustrating example: The matrix harmonic mean

- Consider the real-value minus logdet function $F(\theta) = -\log \det(\theta)$
- Domain F: $\operatorname{Sym}_{++}(d) \to \mathbb{R}$ the cone of symmetric positive-definite matrices
- Inner product: $\langle A, B \rangle := \operatorname{tr}(AB^{\top})$
- We have: $F(\theta) = -\log \det(\theta), \qquad \leftarrow \text{Legendre-type function}$ $\nabla F(\theta) = -\theta^{-1} =: \eta(\theta), \\ \nabla F^{-1}(\eta) = -\eta^{-1} =: \theta(\eta)$ $F^*(\eta) = \langle \theta(\eta), \eta \rangle F(\theta(\eta)) = -d \log \det(-\eta) \qquad \leftarrow \text{Legendre-type function}$

The quasi-arithmetic center with respect to F: $M_{\nabla F}(\theta_1,\theta_2) = 2(\theta_1^{-1} + \theta_2^{-1})^{-1}$ The quasi-arithmetic center with respect to F*: $M_{\nabla F^*}(\eta_1,\eta_2) = 2\left(\eta_1^{-1} + \eta_2^{-1}\right)^{-1}$

Generalize univariate harmonic mean with F(x)= log x, f(x)=F'(x)=1/x: $H(a,b)=\frac{2ab}{a+b}$ for a,b>0

A Legendre-type function F gives rise to a pair of dual quasi-arithmetic centers $M_{\nabla F}$ and $M_{\nabla F}$: dual operators

Dually flat structures of information geometry

• A Legendre-type Bregman generator F() induces a dually flat space structure:

$$(\Theta, g(\theta)) = \nabla_{\theta}^2 F(\theta), \nabla, \nabla^*$$

• A point P can be either parameterized by θ -coordinate and dual η -coordinate

Quasi-arithmetic barycenters and dual geodesics

 The dual geodesics induced by the dual flat connections can be expressed using dual weighted quasi-arithmetic centers:

n-Variable Quasi-arithmetic centers as centroids in dually flat spaces

Consider $n \text{ points } P_1, \ldots, P_n \text{ on the DFS } (M, g, \nabla, \nabla^*)$ (canonical divergence = Bregman divergence)

Right-sided centroid:

$$\bar{C}_R = \arg\min_{P \in M} \sum_{i=1}^n \frac{1}{n} D_{\nabla, \nabla^*}(P_i : P)$$

$$\bar{\theta}_R = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n B_F(\theta_i : \theta)$$

$$\bar{\theta}_R = \theta(\bar{C}_R) = \frac{1}{n} \sum_{i=1}^n \theta_i = M_{\mathrm{id}}(\theta_1, \dots, \theta_n)$$

$$\bar{\eta}_R = \nabla F(\bar{\theta}_R) = M_{\nabla F^*}(\eta_1, \dots, \eta_n). \leftarrow \mathsf{dual QAC}$$

Reference duality

Left-sided centroid:

$$\bar{C}_L = \arg\min_{P \in M} \sum_{i=1}^n \frac{1}{n} D_{\nabla, \nabla^*}(P : P_i)$$
$$\bar{\theta}_L = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n B_F(\theta : \theta_i)$$

$$ar{ heta}_L = M_{
abla F}(heta_1, \dots, heta_n), \quad \leftarrow \text{primal QAC}$$
 $ar{\eta}_L =
abla F(ar{ heta}_L) = M_{\mathrm{id}}(\eta_1, \dots, \eta_n)$

Notice that when n=2, weighted dual quasi-arithmetic barycenters define the dual geodesics

Invariance/equivariance of quasi-arithmetic centers

Information geometry is well-suited to study the properties of QACs:

A dually flat space (DFS) can be realized by a class of Bregman generators:

$$(M, g, \nabla, \nabla^*) \leftarrow \mathrm{DFS}([\theta, F(\theta); \eta, F^*(\eta)])$$

Affine Legendre invariance of dually flat spaces:

By adding an affine term...

Same DFS with
$$\bar{F}(\theta) = F(\theta) + \langle c, \theta \rangle + d$$
.

Invariance of quasi-arithmetic center:
$$M_{\nabla \bar{F}}(\theta_1,\ldots;\theta_n;w) = M_{\nabla F}(\theta_1,\ldots;\theta_n;w)$$

By an affine change of coordinate...

Equivariance of quasi-arithmetic center:

$$\nabla \bar{F}(x) = (A^{-1})^{\top} \nabla F(A^{-1}(x-b))$$

$$M_{\nabla \bar{F}}(\bar{\theta}_1, \dots, \bar{\theta}_n; w) = A M_{\nabla F}(\theta_1, \dots, \theta_n; w) + b$$

$$B_{\bar{F}(\overline{\theta_1}:\overline{\theta_2})} = B_F(\theta_1:\theta_2)$$

Same canonical divergence of the DFS

(= constrast function on the diagonal of the product manifold)

Canonical divergence versus Legendre-Fenchel/Bregman divergences

- Canonical divergence induced by dual flat connections is between points
- dual Bregman divergences B_F and B_{F*} between dual coordinates
- Legendre-Fenchel divergence Y_F between mixed coordinates

$$F(\theta) + F^{*}(\eta) - \langle \theta, \eta \rangle = 0 \qquad \eta = \nabla F(\theta)$$

$$B_{F}(\theta_{1} : \theta_{2}) := F(\theta_{1}) - \underbrace{F(\theta_{2})}_{=\langle \theta_{2}, \eta_{2} \rangle - F^{*}(\eta_{2})} - \langle \theta_{1} - \theta_{2}, \nabla F(\eta_{2}) \rangle$$

$$= F(\theta_{1}) + F^{*}(\eta_{2}) - \langle \theta_{1}, \eta_{2} \rangle =: Y_{F}(\theta_{1} : \eta_{2})$$

$$(M, g, \nabla, \nabla^{*}) \leftarrow \text{DFS}([\Theta, F(\theta), H, F^{*}(\eta)])$$

$$\leftarrow \text{DFS}([\Theta, \bar{F}(\bar{\theta}), \bar{H}, \bar{F}^{*}(\bar{\eta})])$$

$$D_{\nabla,\nabla^*}(P_1:P_2) = B_F(\theta_1:\theta_2) = B_{F^*}(\eta_1,\eta_2) = Y_F(\theta_1:\eta_2) = Y_{F^*}(\eta_2:\theta_1)$$
$$= B_{\bar{F}}(\overline{\theta_1}:\overline{\theta_2}) = B_{\bar{F}^*}(\overline{\eta_1},\overline{\eta_2}) = Y_F(\overline{\theta_1}:\overline{\eta_2}) = Y_{F^*}(\overline{\eta_2}:\overline{\theta_1})$$

Affine Legendre invariance of dually flat spaces plus setting the unit scale of divergences

• Affine Legendre invariance: $\bar{F}(\theta) = F(A\theta + b) + \langle c, \theta \rangle + d$

$$\dot{\bar{F}}^*(\bar{\eta}) = F^*(A^*\eta + b^*) + \langle c^*, \eta \rangle + d^*$$

• Set the unit scale of canonical divergence (DFS differ here, rescaled):

(does not change the quasi-arithmetic center) $D_{\lambda,\nabla,\nabla^*}:=\lambda D_{\nabla,\nabla^*}$

amount to scale the potential function $\lambda F(\theta)$ vs $F(\theta)$

Proposition (Invariance and equivariance of QACs). Let $F(\theta)$ be a function of Legendre type. Then $\bar{F}(\bar{\theta}) := \lambda(F(A\theta+b)+\langle c,\theta\rangle+d)$ for $A \in \mathrm{GL}(d)$, $b,c \in \mathbb{R}^d$, $d \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}_{>0}$ is a Legendre-type function, and we have

$$M_{\nabla \bar{F}} = A M_{\nabla F} + b.$$

Illustrating example: Mahalanobis divergence

• Mahalanobis divergence = squared Mahalanobis metric distance

$$\Delta^2(\theta_1,\theta_2) = B_{F_Q}(\theta_1:\theta_2) = \frac{1}{2}(\theta_2-\theta_1)^\top \, Q \, (\theta_2-\theta_1) \quad \text{fails triangle inequality of metric distances}$$

Primal potential function: $F_Q(\theta) = \frac{1}{2}\theta^\top Q\theta + c\theta + \kappa$

Dual potential function: $F^*(\eta) = \frac{1}{2} \eta^{\mathsf{T}} Q^{-1} \eta = F_{Q^{-1}}(\eta),$

• The dual QACs induced by the dual Mahalanobis generators F and F* coincide to weighted arithmetic mean M_{id}:

$$M_{\nabla F_{Q}}(\theta_{1}, \dots, \theta_{n}; w) = Q^{-1} \left(\sum_{i=1}^{n} w_{i} Q \theta_{i} \right) = \sum_{i=1}^{n} w_{i} \theta_{i} = M_{id}(\theta_{1}, \dots, \theta_{n}; w),$$

$$M_{\nabla F_{Q}^{*}}(\eta_{1}, \dots, \eta_{n}; w) = Q \left(\sum_{i=1}^{n} w_{i} Q^{-1} \eta_{i} \right) = M_{id}(\eta_{1}, \dots, \eta_{n}; w).$$

Quasi-arithmetic mixtures (QAMixs), and α -mixtures

Definition . The M_f -mixture of n densities p_1, \ldots, p_n weighted by $w \in \Delta_n^{\circ}$ is defined by

$$(p_1,\ldots,p_n;w)^{M_f}(x) := \frac{M_f(p_1(x),\ldots,p_n(x);w)}{\int M_f(p_1(x),\ldots,p_n(x);w)d\mu(x)}.$$

Centroid of n densities with respect to the α -divergences yields a QAMix:

$$(p_1,\ldots,p_n;w)^{M_\alpha} = \arg\min_p \sum_i w_i D_\alpha(p_i,p)$$

 D_{α} denotes the α -divergences:

$$D_{\alpha} [m(s):l(s)] = \begin{cases} \int m(s)ds - \int l(s)ds + \int m(s)\log\frac{m(s)}{l(s)}ds & \alpha = -1\\ \int l(s)ds - \int m(s)ds + \int l(s)\log\frac{l(s)}{m(s)}ds + \int l(s)\log\frac{l(s)}{m(s)}ds & \alpha = 1\\ \frac{2}{1+\alpha} \int m(s)ds + \frac{2}{1-\alpha} \int l(s)ds - \frac{4}{1-\alpha^2} \int m(s)^{\frac{1-\alpha}{2}}l(s)^{\frac{1+\alpha}{2}}ds, & \alpha \neq \pm 1. \end{cases}$$

k=2 QAMixs and the ∇-Jensen-Shannon divergence

• Jensen-Shannon divergence is bounded symmetrization of KL divergence:

$$D_{\mathrm{JS}}(p,q) = \frac{1}{2} \left(D_{\mathrm{KL}} \left(p : \frac{p+q}{2} \right) + D_{\mathrm{KL}} \left(q : \frac{p+q}{2} \right) \right) \le \log(2)$$

- Interpret arithmetic mixture as the midpoint of a mixture geodesic (wrt to the flat non-parametric mixture connection ∇^m in information geometry).
- Generalize Jensen-Shannon divergence with arbitrary ∇-connections:

Definition (Affine connection-based ∇ -Jensen-Shannon divergence).

Let ∇ be an affine connection on the space of densities \mathcal{P} , and $\gamma_{\nabla}(p,q;t)$ the geodesic linking density $p = \gamma_{\nabla}(p,q;0)$ to density $q = \gamma_{\nabla}(p,q;1)$. Then the ∇ -Jensen-Shannon divergence is defined by:

$$D_{\nabla}^{\mathrm{JS}}(p,q) := \frac{1}{2} \left(D_{\mathrm{KL}} \left(p : \gamma_{\nabla} \left(p, q; \frac{1}{2} \right) \right) + D_{\mathrm{KL}} \left(q : \gamma_{\nabla} \left(p, q; \frac{1}{2} \right) \right) \right).$$

∇^{α} -connections and geodesics in the probability simplex, ∇^{α} -Jensen-Shannon divergence

$$D_{\nabla^{\alpha}}^{\mathrm{JS}}(p,q) = \frac{1}{2} \left(D_{\mathrm{KL}} \left(p : \gamma_{\nabla^{\alpha}} \left(p, q; \frac{1}{2} \right) \right) + D_{\mathrm{KL}} \left(q : \gamma_{\nabla^{\alpha}} \left(p, q; \frac{1}{2} \right) \right) \right)$$

α-geodesics coincide when they pass through a standard simplex vertex

grateful for fruitful discussions with Fábio Meneghetti and Sueli Costa

Inductive Means: Geodesics/quasi-arithmetic centers

 Gauss and Lagrange independently studied the following convergence of pairs of iterations:

$$a_{t+1} = \frac{a_t + b_t}{2}$$
 and proves quadratic convergence to the arithmetic-geometric mean AGM

$$AGM(a_0, b_0) = \frac{\pi}{4} \frac{a_0 + b_0}{K\left(\frac{a_0 - b_0}{a_0 + b_0}\right)}$$

where K is complete elliptic integral of the first kind AGM also used to approximate ellipse perimeter and π

- In general, choosing two strict means M and M' with interness property will converge but difficult to analytically express the common limits of iterations
- When M=Arithmetic and M'=Harmonic, the arithmetic-harmonic mean AHM yields the geometric mean:

$$a_{t+1} = A(a_t, h_t)$$

$$h_{t+1} = H(a_t, h_t)$$

$$AHM(x,y) = \lim_{t \to \infty} a_t = \lim_{t \to \infty} h_t = \sqrt{xy} = G(x,y)$$

Inductive matrix arithmetic-harmonic mean

• Consider the cone of symmetric positive-definite matrices (SPD cone), and extend the AHM to SPD matrices:

$$A_{t+1} = \frac{A_t + H_t}{2} = A(A_t, H_t) \qquad \leftarrow \text{arithmetic mean}$$

$$H_{t+1} = 2(A_t^{-1} + H_t^{-1})^{-1} = H(A_t, H_t) \qquad \leftarrow \text{harmonic mean}$$

• Then the sequences converge quadratically to the matrix geometric mean:

$$AHM(X,Y) = \lim_{t \to +\infty} A_t = \lim_{t \to +\infty} H_t.$$

$$AHM(X,Y) = X^{\frac{1}{2}} (X^{-\frac{1}{2}} Y X^{-\frac{1}{2}})^{\frac{1}{2}} X^{\frac{1}{2}} = G(X,Y)$$

which is also the Riemannian center of mass with respect to the trace metric:

$$G(X,Y) = \arg\min_{M \in \mathbb{P}(d)} \frac{1}{2} \rho^2(X,M) + \frac{1}{2} \rho^2(Y,M). \qquad \rho(P_1,P_2) = \sqrt{\sum_{i=1}^d \log^2 \lambda_i \left(P_1^{-\frac{1}{2}} P_2 P_1^{-\frac{1}{2}}\right)} \quad \text{Riemannian distance}$$

$$g_P(V_1, V_2) = \operatorname{tr}\left(P^{-1}V_1P^{-1}V_2\right)$$

[Nakamura 2001, Atteia-Raissouli 2001]

Geometric interpretation of the AHM matrix mean

$$A_{t+1} = \frac{A_t + H_t}{2} = A(A_t, H_t)$$

$$H_{t+1} = 2(A_t^{-1} + H_t^{-1})^{-1} = H(A_t, H_t)$$

$$P_{t+1} = \gamma \left(P_t, Q_t : \frac{1}{2}\right)$$

$$Q_{t+1} = \gamma^* \left(P_t, Q_t : \frac{1}{2}\right)$$

(SPD, g^G , ∇^A , ∇^H) is a dually flat space, ∇^G is Levi-Civita connection

Dually flat space (SPD, g^G , ∇^A , ∇^H) in information geometry defines

quasi-arithmetic centers as geodesic midpoints

Primal geodesic midpoint is the arithmetic center wrt Euclidean metric $g_P^A(X,Y) = \operatorname{tr}(X^\top Y)$ Dual geodesic midpoint = harmonic center wrt an isometric Eucl. metric $g_P^A(X,Y) = \operatorname{tr}(P^{-2}XP^{-2}Y)$ Levi-Civita geodesic midpoint is geometric Karcher mean (not QAC) $g_P^G(X,Y) = \operatorname{tr}(P^{-1}XP^{-1}Y)$

[Nakamura 2001]

 $G_{\alpha}(P,Q) = P^{\frac{1}{2}} \left(P^{-\frac{1}{2}} Q P^{-\frac{1}{2}} \right)^{\alpha} P^{\frac{1}{2}}$

Summary: Beyond scalar quasi-arithmetic means

Information geometry of dually flat spaces yields a generalization of quasi-arithmetic means:

$$M_f(x_1, \dots, x_n; w) := f^{-1} \left(\sum_{i=1}^n w_i f(x_i) \right)$$

• 1d monotone function generalize to gradient map of a Legendre-type multivatiate function (comonotone)

 $M_{\nabla F}(\theta_1, \dots, \theta_n; w) := \nabla F^{-1}\left(\sum_i w_i \nabla F(\theta_i)\right)$ dual quasi-arithmetic centers induced by a Legendre-type function QACs:

Applications of QACs:

- dual centers of mass of n≥2 points expressed using weighted quasi-arithmetic centers
- dual geodesics expressed in coordinate systems as weighted quasi-arithmetic centers (n=2)
- invariance/equivariance analyzed from the viewpoint of information geometry

$$\bar{F}(\bar{\theta}) := \lambda(F(A\theta + b) + \langle c, \theta \rangle + d) \longrightarrow M_{\nabla \bar{F}} = A M_{\nabla F} + b.$$

- define quasi-arithmetic mixtures which provides a way to integrate density components
- define ∇-Jensen-Shannon divergences
- Inductive arithmetic-harmonic geometric matrix mean expressed using QACs

- Amari, Shun-ichi: Information Geometry and Its Applications. Applied Mathematical Sciences, Springer Japan (2016)
- Masrani, V., Brekelmans, R., Bui, T., Nielsen, F., Galstyan, A., Ver Steeg, G., Wood, F.: q-paths: Generalizing the geometric annealing path using power means. In: Uncertainty in Articial Intelligence. pp. 1938-1947.
 PMLR (2021)
- Nakamura, Y.: Algorithms associated with arithmetic, geometric and harmonic means and integrable systems. Journal of computational and applied mathematics 131(1-2), 161174 (2001)
- Rockafellar, R.T.: Conjugates and Legendre transforms of convex functions. Canadian Journal of Mathematics 19, 200205 (1967)
- Zhang, J.: Nonparametric information geometry: From divergence function to referential-representational biduality on statistical manifolds. Entropy 15(12), 5384-5418 (2013)
- Nielsen, Frank. "The many faces of information geometry." Not. Am. Math. Soc 69.1 (2022): 36-45.
- Atteia, Marc, and Mustapha Raïssouli. "Self dual operators on convex functionals: Geometric mean and square root of convex functionals." *Journal of Convex Analysis* 8.1 (2001): 223-240.
- Ben-Tal, A., Charnes, A., Teboulle, M.: Entropic means. Journal of Mathematical Analysis and Applications 139(2), 537551 (1989)
- Amari, Shun-ichi: Integration of stochastic models by minimizing -divergence. Neural computation 19(10), 27802796 (2007)
- Nielsen, F.: On the Jensen-Shannon symmetrization of distances relying on abstract means. Entropy 21(5), 485 (2019)