Examen de fin d'études secondaires 2015

Sections: B et C

Branche: Chimie

Numéro d'ordre du candidat

QC : question de cours (17) AT : application et transfert (23) AN : application numérique (20)

A. Des molécules puantes (14 points)

Le putois (all. : Illtis) et la moufette (all. : Stinktier ; angl. : skunk) sécrètent un mélange de substances puantes et irritantes sur un animal présentant une menace potentielle. La plus grande partie de ce mélange est constituée par les molécules A et B représentées cidessous.

A:

B:

- Sachant que le groupement –S-H prend en nomenclature la terminaison « –thiol » (fonction prioritaire dans les exemples ci-dessus), donner les noms des molécules A et B selon IUPAC. (AT2)
- 2) a) Laquelle des molécules **A** ou **B** présente une isomérie de configuration ? Justifier ! (AT1)
 - b) Indiquer la configuration correspondante. (AT1)
- 3) Ecrire l'équation pour la réaction de A avec le dibrome. (AT1)
- 4) La substance **B** peut être préparée par réaction du 1-iodo-3-méthylbutane avec l'hydrogénosulfure de sodium Na⁺HS⁻.
 - a) Ecrire l'équation de la réaction. (AT2)
 - b) Proposer un mécanisme pour cette réaction et nommer ce mécanisme par un sigle à 2 lettres. (QC3)
 - c) Calculer la masse d'hydrogénosulfure de sodium nécessaire pour préparer 100 g de **B**, si le rendement de la réaction est de 80 %. (AN3)
- 5) Ecrire l'équation générale pour la polymérisation de A. (AT1)

Examen de fin d'études secondaires 2015

Sections: B et C

Branche: Chimie

Numéro d'ordre du candidat

B. Le « GHB » (18 points)

La molécule **C** représentée ci-contre, aussi appelée « GHB », est un psychotrope dépresseur utilisé à des fins médicales, mais aussi à des fins détournées (parfois comme produit dopant ou comme « drogue de viol » ; *all. : K.O.-Tropfen*).

° ,

- 1) Donner le nom selon IUPAC de la molécule C. (AT1)
- 2) Expliquer le caractère acide du groupement -COOH en vous basant sur sa structure électronique. (QC3)
- 3) a) Ecrire l'équation de la réaction de C avec le méthanol en présence de quelques gouttes d'acide sulfurique concentré. (AT2)
 - b) Comment peut-on déplacer l'équilibre de la réaction dans le sens des produits respectivement dans le sens des réactifs ? (QC3)
 - c) On fait réagir 2 mol de **C** avec 1 mol de méthanol. Sachant que la constante d'équilibre K_c vaut 4, calculer les quantités de matière présentes à l'équilibre. (AN3)
 - d) Calculer le rendement de la réaction. (AN1)
- 4) Ecrire l'équation de la réaction de C avec PCI₅. (QC2)
- 5) Classer **C**, l'acide butanoïque et l'acide α -fluorobutanoïque selon leur caractère acide croissant. Justifier ! (AT3)

Examen de fin d'études secondaires 2015

Sections: B et C

Branche: Chimie

Numéro d'ordre du candidat

C. L'acide sorbique (15 points)

L'acide sorbique **D**, représenté ci-contre, est utilisé comme agent de conservation (E200) dans les aliments à base de fruits et légumes (yaourts, cidres, ...) et dans les mayonnaises et margarines allégées.

1. L'acide sorbique présente un pK_A de 4,76.

a) Calculer le pH d'une solution 0,1 M d'acide sorbique. (AN3)

b) Calculer la masse de sorbate de sodium qu'il faut ajouter à 50 mL d'acide sorbique 0,1 M pour obtenir un pH = 4,76. (AN3)

c) On ajoute 1 g d'hydroxyde de potassium à 50 mL d'acide sorbique 0,1 M. Quel est le pH de la solution finale ? (AN3)

2. Titrage de l'acide sorbique

 a) On réalise le titrage de 20 mL d'une solution d'acide sorbique avec une solution d'hydroxyde de potassium 0,01 M.
 Jusqu'au point d'équivalence le titrage consomme 8 mL d'hydroxyde de potassium.
 Calculer la concentration initiale de la solution d'acide sorbique. (AN1)

b) Calculer le pH au point d'équivalence. (AN3)

c) Quel indicateur sera le plus approprié pour ce titrage ? Justifer ! (AT2)

indicateur	pΚ _A
méthylorange	3,7
rouge de crésol	8,5
jaune d'alizarine R	11,0

Epreuve écrite

Examen de fin d'études secondaires 2015 Sections: B et C Branche: Chimie	Numéro d'ordre du candidat
D. <u>Le propofol</u> (13 points)	
Le propofol ou 2,6-diisopropylphénol E, représer un anésthésique général intraveineux à courte Actuellement le propofol est l'anésthésique le plublocs opératoires en France. Il est également util vétérinaire. Cet anésthésique est impliqué dans le déce Michael Jackson le 25 juin 2009.	e durée d'action. les utilisé dans les lisé en médecine
d'un halogénoalcane en présence d'un cat 2) Dans le propofol, les deux substituants iso rapport au groupement -OH. Ce fait est-il d phénol ? Justifier en étudiant la mésomérie	propyle se trouvent dans les positions ortho- par compatible avec la mésomérie dans la molécule de le dans le phénol. (AT3) propofol, en se limitant à l'introduction d'un Ecrire l'équation d'une réaction permettant de C2) atomes de carbone dans le propofol. (AT1)

TABLEAU PERIODIQUE DES ELEMENTS

	groupe	s princip	aux											Ç	groupes	principa	ux	
	ı		1										111	N	TV	VI	VII	VII
1	1,0 H		•															4,0 H 6
_	6,9	9,0	1										10,8	12,0	14,0	16,0	19,0	20,2
2	Li	Be											В	C	N	0	F	N
	3	4											5	6	7	8	9	10
	23,0	24,3	1			g	roupes s	econdai	res				27,0	28,1	31,0	32,1	35,5	39,9
3	Na	Mg											Ai	Si	P	S	CI	A
	11	12	JII	IV	V	VI	VII		VIII				13	14	15	16	17	18
	39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
4	Ī	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85,5	87,6	88,9	91,2	92,9	95,9	(97)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,
5	•	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		X
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
_	132,9	137,3	175,0	178,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222
6	Cs 55	Ba 56	Lu 71	Hf 72	Ta	W 74	Re	Os 76	ir 77	Pt 78	Au 79	Hg	TI 81	Pb 82	Bi 83	Po	At 85	R
	(223)	226,0	(260)	(261)	(262)	(266)	(264)	(269)	(268)	(281)	(272)	(285)	01	(289)	103	(293)	100	86
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	1	FI		Lv		
	87	88	103	104	105	106	107	108	109	110	111	112		114		116	1	
Lanthanides		138,9 La 57 227,0	140,1 Ce 58 232,0	140,9 Pr 59 231,0	144,2 Nd 60 238,0	(145) Pm 61 237,0	150,4 Sm 62 (244)	152,0 Eu 63 (243)	157,3 Gd 64 (247)	158,9 Tb 65 (247)	162,5 Dy 66 (251)	164,9 Ho 67 (254)	167,3 Er 68 (257)	168,9 Tm 69 (258)	173,0 Yb 70 (259)		-	
	Actinio	des	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
			89	90	91	92	93	94	95	96	97	98	99	100	101	102		

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H₃O ⁺	H₂O	eau	-1,74
ac. chlorique	HCIO ₃	CIO ₃ .	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl3COO.	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃	an. iodate	0,80
cat. hexaqua thallium III	TI(H ₂ O) ₆ ³⁺	TI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	НООССООН	HOOCCOO.	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl ₂ COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄	SO ₄ ²	an. sulfate	1,92
ac. chloreux	HCIO ₂	CIO ₂	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH ₂ FCOO	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	Ga(H ₂ O) ₆ ³⁺	Ga(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	Fe(H ₂ O) ₆ ³⁺	Fe(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH ₂ CICOOH	CH ₂ CICOO	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH ₂ BrCOOH	CH ₂ BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	V(H ₂ O) ₆ ³⁺	V(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂ -	an. nitrite	3,14
ac. iodoéthanoïque	CH ₂ ICOOH	CH ₂ ICOO	an. iodoéthanoate	3,14
	HF	F	an. fluorure	
ac. fluorhydrique	 			3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO ⁻	an. acétylsalicylate	3,48
ac. cyanique	HOCN		an. cyanate	3,66
ac. méthanoïque	НСООН	HCOO.	an. méthanoate	3,75
ac. lactique	CH₃CHOHCOOH	CH₃CHOHCOO	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO ⁻	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH₃COO ⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH₃CH₂COO ⁻	an. propanoate	4,87
cat. hexaqua aluminium	AI(H ₂ O) ₆ ³⁺	Al(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C₅H₅NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH⁺	NH ₂ OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H₂S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO₃⁻	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO ⁻	an. hypochlorite	7,55
cat. hexaqua cadmium	Cd(H ₂ O) ₆ ²⁺	Cd(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	Zn(H ₂ O) ₆ ²⁺	Zn(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH₃)₃N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO.	an. hypoiodite	10,64
cat. méthylammonium	CH₃NH₃ ⁺	CH₃NH₂	méthylamine	10,70
cat. éthylammonium	CH₃CH₂NH₃ ⁺	CH₃CH₂NH₂	éthylamine	10,75
cat. triéthylammonium	(C ₂ H ₅) ₃ NH ⁺	(C₂H₅)₃N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH₃)₂NH	diméthylamine	10,87
cat. diéthylammonium	(C ₂ H ₅) ₂ NH ₂ ⁺	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H₂O	OH-	anion hydroxyde	15,74

acides de force négligeable

bases fortes(plus fortes que OH⁻)
O²⁻, NH₂⁻, anion alcoolate RO⁻)