A Continuous Relaxation of Beam Search for End-to-end Training of Neural Sequence Models

Kartik Goyal, Graham Neubig, Chris Dyer, Taylor Berg-Kirkpatrick
CMU & Deep Mind – AAAI18

AntNLP - Tao Ji

taoji.cs@gmail.com

Outline

- Motivation
- Standard Beam Search (BS)
- Discontinuity in BS
- Continuous Approximation to BS
- Training & Decoding
- Comparison with Max-Margin Objectives
- Experiments and Results
- Discussions

Beam Search Example

Beam = 2

- All search branches
- Beam Search extended branches
- Beam Search selected branches

Neural Sequence Model

Motivation

Advantage

Potentially avoids search errors made by simpler greedy methods.

Problem

- Training procedures don't consider the behavior of the decoding.
- "Direct BS loss" objective is discontinuous and difficult to optimize.

Approach

 Form a sub-differentiable surrogate objective by introducing a novel continuous approximation of the beam search decoding procedure.

Model Definition

• $\mathcal{M}(\theta)$ denote the seq2seq model parameterized.

• Assume :
$$L(\hat{y}, y^*) = \sum_{t=1}^{T} d(\hat{y}_t, y^*)$$

$$\min_{\theta} G_{\text{DL}}(x, \theta, y^*) = \min_{\theta} L(Beam(x, \mathcal{M}(\theta)), y^*)$$
 (1)

$$\min_{\theta} \tilde{G}_{DL}(x, \theta, y^*) = \min_{\theta} softLB(x, \mathcal{M}(\theta), y^*)$$
 (2)

Standard Beam Search

Algorithm 1 Standard Beam Search

```
1: Initialize:
           h_{0,i} \leftarrow \vec{0}, e_{0,i} \leftarrow embedding(\langle s \rangle), s_{0,i} \leftarrow 0, i = 1, \dots, k
 2: for t = 0 to T do
           for i = 1 to k do
                for all v \in V do
                      \tilde{s}_t[i,v] \leftarrow s_{t,i} + f(h_{t,i},v)
                                                                                                                                    \triangleright f is the local output scoring function
        s_{t+1} \leftarrow top\text{-}k\text{-}max(\tilde{s}_t)
                                                                                                                                           \triangleright Top k values of the input matrix
         b_{t+1,*}, y_{t,*} \leftarrow top\text{-}k\text{-}argmax(\tilde{s}_t)
                                                                                                                        \triangleright Top k argmax index pairs of the input matrix
           for i = 1 to k do
                 e_{t+1,i} \leftarrow embedding(y_{t,i})
10:
                h_{t+1,i} \leftarrow r(h_{t,i}, e_{t+1,i})
                                                                                            \triangleright r is a nonlinear recurrent function that returns state at next step
11: \hat{y} \leftarrow follow-backpointer((b_{1,*}, y_{1,*}), \dots, (b_{T,*}, y_{T,*}))
12: s(\hat{y}) \leftarrow max(s_T)
```

Discontinuity in BS

 Beam search decoding (referred to as the function Beam) involves discrete argmax decisions and thus represents a discontinuous function.

 The output of the Beam function, which is the input to the loss function is discrete and hence the evaluation of the final loss is also discontinuous.

Continuous Approximation to argmax

Algorithm 2 continuous-top-k-argmax

1: **Inputs:**

$$s \in \mathbb{R}^{k \times |V|}$$

2: Outputs:

$$p_i \in \mathbb{R}^{k \times |V|}$$
, s.t. $\sum_i p_{ij} = 1, i = 1, \dots, k$

- 3: $m \in \mathbb{R}^k = top\text{-}k\text{-}max(s)$
- 4: **for** i = 1 to k **do**
- 5: $p_i = peaked\text{-}softmax_{\alpha}(-(s-m_i \cdot \mathbf{1})^2)$

 \triangleright peaked-softmax will be dominated by scores closer to m_i \triangleright The square operation is element-wise

$$\hat{z} = \sum_{i} z_{i} \mathbb{1}[\forall i' \neq i, \ s_{i} > s_{i'}], \quad \tilde{z} = \sum_{i} z_{i} \frac{\exp(\alpha s_{i})}{\sum_{i'} \exp(\alpha s_{i'})} = z^{T} \cdot \frac{\text{elem-exp}(\alpha s)}{\sum_{i'} \exp(\alpha s_{i'})}$$
$$= z^{T} \cdot peaked\text{-softmax}_{\alpha}(\mathbf{s})$$

Continuous Approximation to BS

Continuous Approximation to BS

Algorithm 3 Continuous relaxation to beam search

```
1: Initialize:
           h_{0,i} \leftarrow \vec{0}, e_{0,i} \leftarrow embedding(\langle s \rangle), s_{0,i} \leftarrow 0, D_t \in \mathbb{R}^k \leftarrow \vec{0}, i = 1, \dots, k
 2: for t = 0 to T do
           for all w \in V do
 3:
                for i=1 to k do
                    \tilde{s}_t[i,w] \leftarrow s_{t,i} + f(h_{t,i},w)
                                                                                                                                \triangleright f is a local output scoring function
         \tilde{D}_{t,w} = d(w)
                                                                                                                                          \triangleright \tilde{D}_t is used to compute D_{t+1}
          p_1, \ldots, p_k \leftarrow continuous\text{-}top\text{-}k\text{-}argmax(\tilde{s}_t)
                                                                                                                                                          ⊳ Call Algorithm 2
          for i = 1 to k do
                \tilde{b}_{t.i} \leftarrow row\_sum(p_i)
                                                                                                                                       ▶ Soft back pointer computation
                a_i \in \mathcal{R}^{|V|} \leftarrow column\_sum(p_i)

    Contribution from vocabulary items

10:
               e_{t+1,i} \leftarrow a_i^T \times E
                                                                                              \triangleright Peaked distribution over the candidates to compute e, D, S
11:
               D_{t+1,i} \leftarrow a_i^T \cdot \tilde{D}_t
               s_{t+1,i} = sum(\tilde{s}_t \odot p_i)
                h_{t,i} \leftarrow \vec{0}
15:
                for j = 1 to k do
                                                                                      ▶ Get contributions from soft backpointers for each beam element
                     \tilde{h}_{t,i} += h_{t,j} * \tilde{b}_{t,i}[j]
16:
                     D_{t+1,i} + = D_{t,j} * \tilde{b}_{t,i}[j]
                h_{t+1,i} \leftarrow r(\tilde{h}_{t,i}, e_{t+1,i})
18:
                                                                                       \triangleright r is a nonlinear recurrent function that returns state at next step
                                                        ▶ Pick the loss for the sequence with highest model score on the beam in a soft manner.
19: L = peaked - softmax_{\alpha}(s_T) \cdot D_T
```

Training & Decoding

Training

$$\tilde{G}_{\mathrm{DL},\alpha}(x,\mathcal{M}(\theta),y^*) \xrightarrow{\alpha \to \infty} G_{\mathrm{DL}}(x,\theta,y^*)$$
 (3)

• Starting with non-peaked softmax moving toward peaked-softmax across epochs.

Decoding

- soft beam search
- hard beam search

Comparison with Max-Margin Objectives

$$G_{hinge} = \max(0, \max_{y \in \mathcal{Y}} (\Delta(y, y^*) + s(y)) - s(y^*))$$

$$\tilde{s}_t[i, w] \leftarrow s_{t,i} + d(w) + f(h_{t,i}, w)$$

$$s_{max} = peaked\text{-}softmax_{\alpha}(s_T) \cdot s_T$$

$$\tilde{G}_{hinge,\alpha} = \max(0, s_{max} - s(y^*))$$

- CCG Supertagging
- The output vocabulary length (label space) is 1284.
- Beam size = 3

Training procedure	Greedy		Hard Beam Search		Soft Beam Search	
	Dev	Test	Dev	Test	Dev	Test
Baseline CE	80.15	80.35	82.17	82.42	81.62	82.00
$ ilde{G}_{ ext{hinge},lpha}$ annealed $lpha$	-	-	83.03	83.54	82.82	83.05
$\tilde{G}_{\mathrm{hinge},\alpha}\alpha$ =1.0	-	-	83.02	83.36	82.49	82.85
$\tilde{G}_{\mathrm{DL},\alpha}\alpha$ =1.0	-	-	83.23	82.65	82.58	82.82
$ ilde{G}_{\mathrm{DL},lpha}$ annealed $lpha$	-	-	85.69	85.82	85.58	85.78

Named Entity Recognition

- The output vocabulary length (label space) is 10.
- Beam size = 3

Training procedure	CE Greedy		Hard Beam Search		Soft Beam Search	
	Dev	Test	Dev	Test	Dev	Test
Baseline CE	50.21	54.92	46.22	51.34	47.50	52.78
$ ilde{G}_{ ext{hinge},lpha}$ annealed $lpha$	-	-	41.10	45.98	41.24	46.34
$\tilde{G}_{\mathrm{hinge},\alpha}\alpha=1.0$	-	-	40.09	44.67	39.67	43.82
$\tilde{G}_{\mathrm{DL},\alpha}\alpha$ =1.0	-	-	49.88	54.08	50.73	54.77
$\tilde{G}_{\mathrm{DL},lpha}$ annealed $lpha$	-	-	51.86	56.15	51.96	56.38

Q&A