Интерполяция функций.

Введем на отрезке [a;b] для простоты равномерную сетку

$${t_n}_{n=0}^N$$
, $t_n = a + n\tau$, (3.1)

где $\tau = \frac{b-a}{N}$ — шаг сетки. Построим проекцию непрерывной функции f(t) на отрезке [a;b] на сетку (3.1). Получаем табличную функцию $\{f_n\}_{n=0}^N$.

$$f(t) \xrightarrow{P} \{f_n\}_{n=0}^N \xrightarrow{I} F(t). \tag{3.2}$$

Задача заключается в восстановлении сеточной функции $\{f_n\}_{n=0}^N$ в непрерывную F(t). В соответствии с (3.2) P — оператор проецирования непрерывной функции на сетку, I — оператор интерполяции табличной функции. Восстановление табличной функции неоднозначно, оно зависит от оператора I.

Основное требование, которому должен удовлетворять интерполянт F(t) заключается в том, что восстановленная функция должна проходить через все значения табличной функции, то есть

$$F(t_n) = f_n = f(t_n). \tag{3.3}$$

В качестве простейшего примера рассмотрим кусочно-линейную интерполяцию.

$$F(t) = \frac{(t_n - t) f(t_{n+1}) + (t - t_{n+1}) f(t_n)}{t_n - t_{n+1}}, \ t \in [t_n, t_{n+1}].$$

Данная интерполяция есть ничто иное как соединение двух соседних точек отрезком.

Из кусочно-линейной интерполяции вытекает метод конечных элементов. Сетке $\left\{t_n\right\}_{n=0}^N$ (3.1) ставится в соответствии набор базисных функций $\varphi_n\left(t_k\right) = \delta_{nk}$ таких, что интерполянт представляется в виде

$$F(t) = \sum_{n=0}^{N} \varphi_n(t) f_n.$$
 (3.4)

Видно, что интерполянт (3.4) соответствует основному требованию интерполяции (3.3).

Базисные функции определяют тип интерполяции. Существуют, различные Интерполяции, например, алгебраическая и тригонометрическая.

Алгебраическая или полиномиальная интерполяция

Задача заключается в поиске полинома степени N , удовлетворяющего соотношениям

$$P_{N}(t) = a_{0} + a_{1}t + ... + a_{n}t^{N}, P_{N}(t_{0}) = f_{0}, P_{N}(t_{1}), ..., P_{N}(t_{N}) = f_{N},$$
(3.5)

то есть построении полином степени N по N+1-ой точке, интерполирующим требуемую табличную функцию (3.3). Для таких полиномов справедлива следующая важная теорема. Теорема 3.1.

Если все узлы сетки t_n , n = 0,...,N различны, то существует и единственный многочлен степени не выше N (3.5).

Приведем пример полинома, интерполирующего некоторую табличную функцию $\left\{f_n\right\}_{n=0}^N$. Попробуем подобрать базисные функции согласно (3.4).

$$\varphi_{N}^{i}(t) = \frac{\prod_{j=0, j\neq i}^{N} (t - t_{j})}{\prod_{j=0, j\neq i}^{N} (t_{i} - t_{j})},$$
(3.6)

легко проверить, что с одной стороны

$$\varphi_N^i\left(t_k\right) = \delta_{ik}\,,$$

а с другой (3.6) является полином степени N.

Определение 3.1.

Интерполяционный многочлен степени не выше N

$$P_{N}(t) = \sum_{i=0}^{N} \varphi_{N}^{i}(t) f_{i},$$

с базисными функциями (3.6) называется интерполяционным многочленом в форме Лагранжа.

Пример 3.1. Интерполяция в форме Лагранжа и через решение СЛАУ

Для сеточной функции

t_n	-3	-2	-1	0
f_n	16	7	4	1

построить интерполяционный многочлен степени не выше 3 в форме Лагранжа и в виде $P_3\left(t\right)=a_0+a_1t+a_2t^2+a_3t^3$.

Одним из самых простых способ получения $P_{N}(t)$ является решение линейной системы уравнений (3.3). В таком случае получаем

$$\begin{cases} a_0 - 3a_1 + (-3)^2 a_2 + (-3)^3 a_3 = 16, \\ a_0 - 2a_1 + (-2)^2 a_2 + (-2)^3 a_3 = 7, \\ a_0 - a_1 + a_2 - a_3 = 4, \\ a_0 = 1; \end{cases}$$

подстановка $a_0 = 1$ и деление на общие множители дает

$$\begin{cases}
-a_1 + 3a_2 - 9a_3 = 5, \\
-a_1 + 2a_2 - 4a_3 = 3, \\
-a_1 + a_2 - a_3 = 3, \\
a_0 = 1;
\end{cases}$$

вычитая из первых двух уравнений третье, получаем

$$\begin{cases} a_2 - 4a_3 = 1, \\ a_2 - 3a_3 = 0, \\ -a_1 + a_2 - a_3 = 3, \\ a_0 = 1; \end{cases}$$

решая систему из первых двух уравнений, получаем

$$\begin{cases} a_0 = 1, \\ a_1 = -5, \\ a_2 = -3, \\ a_3 = -1. \end{cases}$$

Искомый полином имеет вид

$$P_3(t) = 1 - 5t - 3t^2 - t^3. (3.7)$$

Получим теперь интерполяционный полином в форме Лагранжа. Базисные функции (3.6) для данной задачи выглядят следующим образом

$$\varphi_{3}^{0}(t) = \frac{(t+2)(t+1)(t-0)}{(-3+2)(-3+1)(-3-0)} = \frac{t(t+1)(t+2)}{-6},$$

$$\varphi_{3}^{1}(t) = \frac{(t+3)(t+1)(t-0)}{(-2+3)(-2+1)(-2-0)} = \frac{t(t+1)(t+3)}{2},$$

$$\varphi_{3}^{2}(t) = \frac{(t+3)(t+2)(t-0)}{(-1+3)(-1+2)(-1-0)} = \frac{t(t+2)(t+3)}{-2},$$

$$\varphi_{3}^{3}(t) = \frac{(t+3)(t+2)(t+1)}{(3+0)(0+2)(0+1)} = \frac{(t+1)(t+2)(t+3)}{6}.$$

Таким образом, полином в форме Лагранжа

$$P_{3}(t) = 16 \frac{t(t+1)(t+2)}{-6} + 7 \frac{t(t+1)(t+3)}{2} + 4 \frac{t(t+2)(t+3)}{-2} + 1 \frac{(t+1)(t+2)(t+3)}{6}.$$
 (3.8)

В силу теоремы 3.1. полиномы (3.7) и (3.8) совпадают, в чем легко убедиться преобразовав выражение (3.8).

Получение интерполяционного многочлена через алгебраическую систему требует большого числа арифметических операций и уже, например, при n=20 искажения коэффициентов a_i становятся существенными. Таким образом, построение алгебраического полинома как результат решения системы линейных уравнений не используется на практике. С другой стороны, не смотря на то, что получение полинома в форме Лагранжа требует существенно меньшего числа арифметических операций, следует обратить внимание на существенный недостаток этого подхода. При увеличении степени полинома потребуется практически заново перестраивать базисные функции, что для задач с большой сеткой может оказаться неприемлемым. Более экономичной с этой точки зрения является форма Ньютона. Перед введением этой формы построения полинома дадим понятие конечной разности.

Определение 3.2.

Конечной разделенной разностью первого порядка для табличной функции $\left\{f_n\right\}_{n=0}^N$ на сетке (3.1) называется

$$f_{nk} = f\left(t_n, t_k\right) = \frac{f_n - f_k}{t_n - t_k}.$$

Не трудно заметить, что $f_{nk} \approx f'(t_n)$.

Определение 3.3.

Конечной разделенной разностью второго порядка для табличной функции $\left\{f_n\right\}_{n=0}^N$ на сетке (3.1) называется

$$f_{nkm} = f\left(t_n, t_k, t_m\right) = \frac{f\left(t_n, t_k\right) - f\left(t_k, t_m\right)}{t_n - t_m}.$$

Для конечной разности второго порядка справедливо следующее $f_{n,k,m} \approx \frac{f''}{2!} (t_k)$.

Аналогичным образом вводятся конечные разности следующих порядков. Общую формулу конечной разности n-1-ого порядка дает следующая лемма.

Лемма 3.1.

Справедливо общее равенство

$$f(t_1,...,t_n) = \sum_{j=1}^{k} \frac{f(t_j)}{\prod_{i \neq j} (t_j - t_i)}.$$

Наконец, конечные разности обладают следующими важными свойствами.

Свойство 3.1.

Свойство линейности оператора конечной разности:

$$(\alpha_1 f_1 + \alpha_2 f_2)(t_1,...,t_k) = \alpha_1 f_1(t_1,...,t_k) + \alpha_2 f_2(t_1,...,t_k).$$

Свойство 3.2.

Разделенная разность является симметричной функцией своих аргументов $x_1,...,x_n$.

В частности справедливо очевидное равенство $f\left(t_{\scriptscriptstyle k},t_{\scriptscriptstyle m}\right)=f\left(t_{\scriptscriptstyle m},t_{\scriptscriptstyle k}\right).$

Свойство 3.2.

Существует точка
$$\xi \in [t_1; t_k]$$
 такая, что $f(t_1, ..., t_k) = \frac{f^{(k)}(\xi)}{k!}$.

Определение 3.4.

Интерполяционный многочлен степени не выше N

$$P_{N}(t) = f(t_{1}) + f(t_{1}, t_{2})(t - t_{1}) + f(t_{1}, t_{2}, t_{3})(t - t_{1})(t - t_{2}) + \dots + f(t_{1}, t_{2}, \dots, t_{n+1})(t - t_{1})(t - t_{2}) \dots (t - t_{n}),$$

называется интерполяционным многочленом в форме Ньютона.

Следует обратить внимание на сходство записи в форме Ньютона с частичным разложением функции в ряд Тейлора.

Пример 3.2. Интерполяция в форме Ньютона

Построить полином в форме Ньютона для примера 3.2.

Поиск полинома удобно осуществлять при помощи следующей таблицы конечных разностей.

разностси.				
t_k	$\int_{\mathbb{R}}$	$f_{\it km}$	$f_{\it kmn}$	$f_{\it kmnl}$
-3	16	$\frac{7-16}{2-(-3)}$ -9		
-2	7		$\frac{-3 - (-9)}{-1 - (-3)} = 3$	
-1	4	$\frac{4-7}{-1-(-2)} = -3$	$\frac{-3 \cdot (-3)}{} = 0$	$\frac{0.3}{0.(-3)} = -1$
		$\frac{1-4}{0-(-1)} = -3$	0-(-2)	
0				

Искомый полицом получается при использовании конечных разностей из первой или второй групп. Возьмем для определенности первую группу конечных разностей, тогда

$$P_3(t) = 16 + (-9)(t+3) + 3(t+3)(t+2) - (t+3)(t+2)(t+1)$$

$$P_3(t) = 1 - 3t - t(t+1)(t+2)$$
.

После простых преобразований получаем полином, полученный в примере 3.1.

$$P_3(t) = 1 - 3t - t(t^2 + 3t + 2) = 1 - 3t - t^3 - 3t^2 - 2t = 1 - 5t - 3t^2 - t^3$$

Этот факт, разумеется, следует из теоремы 3.1.

По количеству арифметических операций форма Ньютона не уступает форме Лагранжа. Однако есть некоторые преимущества, рассмотрим их на следующем простом примере.

Пример 3.3. Преимущество формы Ньютона

Найти значение F(t) в точке $t_0 = -2,5$ в случае с примером 3.2. Воспользоваться линейной, квадратичной и кубической интерполяциями.

Для интерполяции (не экстраполяции) следует использовать только набор точек, таких, чтобы требуемая точка попадала в интервал, описываемый ими. Таким образом, для линейно интерполяции следует использовать точки $\{-3,-2\}$, для квадратичной — $\{-3,-2,-1\}$ и кубической — $\{-3,-2,-1,0\}$. Тогда получаем

$$P_1(t) = 16 - 9(t+3),$$

$$P_2(t) = P_1(t) + 3(t+3)(t+2) = 16 - 9(t+3) + 3(t+3)(t+2),$$

$$P_3(t) = P_2(t) - (t+3)(t+2)(t+1) = 16 - 9(t+3) + 3(t+3)(t+2) - (t+3)(t+2)(t+1).$$

Очевидно, что получение полинома большей степени не составит большого труда. Искомое значение интерполянта в точке $t_0 = -2.5\,$ для каждого случая

$$P_1(t_0) = 11.5$$
,
 $P_2(t_0) = 10.75$,
 $P_3(t_0) = 10.375$.

Не удивительно, что разброс значений существенный. Однако на этом примере можно проследить некоторую закономерность, а именно $\Delta_1 = \left| P_2\left(t_0\right) - P_1\left(t_0\right) \right| = 0.75$ больше, чем $\Delta_2 = \left| P_3\left(t_0\right) - P_2\left(t_0\right) \right| = 0.375$. Таким образом, ожидается некоторая сходимость к определенному значению.

<u>Замечание</u>. Интересно посмотреть на полиномы первой и второй степеней, построенные по «нижней диагонали».

$$P_1(t) = 1 - 3t$$
, $P_2(t) = 1 - 3t$.

Видим, что полиномы друг от друга не отличаются, хотя и построены по разным числам точек. Дело в том, что коэффициент перед t^2 во втором выражении обратился в ноль. Именно этим примером поясняются слова «многочлен степени не выше N » в теореме 3.1.

Определение 3.4.

Остаточным членом интерполяции называется

$$R_N(t) = f(t) - P_N(t), \tag{3.9}$$

где f(t) — интерполируемая функция, $P_{N}(t)$ — ее интерполянт.

Теорема 3.2.

Пусть f(t) имеет N+1 ограниченную производную на отрезке [a;b], тогда для алгебраической интерполяции остаточный член интерполяции (3.9) есть

$$R_{N}(t) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \prod_{j=0}^{N} (t - t_{i}), \ \xi \in [a; b],$$
 (3.10)

 t_i — узлы интерполяции, i = 0, ..., N.

В связи теоремой 3.2 существует следующая лемма, которая может оказаться полезной для оценки остаточного члена интерполяции в некоторых случаях.

Лемма 3.2.

Справедливо следующее равенство

$$f(t,t_0,...,t_N) = \frac{f^{(N+1)}(\xi)}{(N+1)!}, \ \xi \in [t_0;t_N].$$

Таким образом, остаточный член интерполяции (3.10) может быть записан в виде

$$R_N(t) = f(t,t_0,...,t_N) \prod_{i=0}^{N} (t-t_i).$$

Выражение (3.10) используется для оценки погрешности алгебраической интерполяции в конкретной точке.

На практике больший интерес представляет оценка погрешности интерполяции в целом. Для этого оценивается максимальное значение, которое может принимать (3.10), на всем отрезке интерполяции,

$$\Delta_{[a;b]} = \frac{\max_{\xi \in [a;b]} \left| f^{(N+1)}(\xi) \right|}{(N+1)!} \max_{t \in [a;b]} \left| \prod_{j=0}^{N} (t - t_i) \right| = \frac{M_{N+1}}{(N+1)!} \max_{t \in [a;b]} \left| \prod_{j=0}^{N} (t - t_i) \right|. \tag{3.11}$$

Пример 3.4. Пример точной оценки погрешности интерполяции

Оценить погрешность интерполяции функции $f(t) = \cos(t)$ на отрезке $t \in \left[0; \frac{\pi}{2}\right]$ по 3-м равноотстоящим точкам.

$$M_{3} = \max_{\xi \in \left[0; \frac{\pi}{2}\right]} \left| f'''(\xi) \right| = \max_{\xi \in \left[0; \frac{\pi}{2}\right]} \left| \cos(\xi) \right| = 1,$$

$$\Delta = \frac{M_{3}}{3!} \max_{t \in \left[0; \frac{\pi}{2}\right]} \left| (t - t_{0})(t - t_{1})(t - t_{2}) \right| = \frac{1}{3!} \max_{t \in \left[0; \frac{\pi}{2}\right]} \left| t\left(t - \frac{\pi}{4}\right)(t - \frac{\pi}{2}) \right|.$$

Рассмотрим отдельно

$$t\left(t-\frac{\pi}{4}\right)\left(t-\frac{\pi}{2}\right)=t^3-\frac{3\pi}{4}t^2+\frac{\pi^2}{8}t$$
.

Определяем экстремум полинома

$$\frac{d}{dt}\left(t^3 - \frac{3\pi}{4}t^2 + \frac{\pi^2}{8}t\right) = 3t^2 - \frac{3\pi}{2}t + \frac{\pi^2}{8} = 0,$$

$$t = \frac{\frac{3\pi}{2} \pm \sqrt{\frac{9\pi^2}{4} + \frac{3\pi^2}{4}}}{6} = \frac{\pi}{4} \pm \frac{\sqrt{3}}{6}\pi.$$

В силу симметричности полинома относительно оси t=0 в качестве точки экстремума можно взять $t^* = \frac{\pi}{4} + \frac{\sqrt{3}}{6}\pi$. Отсюда

$$\max_{t \in \left[0, \frac{\pi}{2}\right]} \left| t \left(t - \frac{\pi}{4} \right) \left(t - \frac{\pi}{2} \right) \right| = t^* \left(t^* - \frac{\pi}{4} \right) \left(t^* - \frac{\pi}{2} \right) = \frac{\pi^3}{48} \frac{\sqrt{3}}{6}.$$

Искомая погрешность интерполяции есть

$$\Delta = \frac{\pi^3 \sqrt{3}}{48 \cdot 24 \cdot 6} = \frac{\pi^3 \sqrt{3}}{6912} \approx 7.77 \cdot 10^{-3}.$$

Пример 3.5. Минимальное число узлов интерполяции

Определить минимальное число узлов интерполяции на равномерной сетке, что бы на отрезке $t\in \left[0;\frac{\pi}{2}\right]$ $f\left(t\right)=\cos\left(t\right)$ приближалась с точностью $\varepsilon=10^{-3}$.

Основная сложность заключается в определении

$$\max_{t \in [a;b]} \left| \left(t - t_0 \right) \left(t - t_1 \right) ... \left(t - t_N \right) \right|$$

в общем виде. Можно показать, что для равномерной сетки (с шагом h) с достаточно большой точностью максимум достигается при $t=a+\frac{h}{2}=t_0+\frac{h}{2}$.

$$\begin{aligned} & \max_{t \in [a;b]} \left| \left(t - t_0 \right) \left(t - t_1 \right) ... \left(t - t_N \right) \right| \approx \left| \left(t_0 + \frac{h}{2} - t_0 \right) \left(t_0 + \frac{h}{2} - t_1 \right) ... \left(t_0 + \frac{h}{2} - t_N \right) \right| = \\ & = \left| \frac{h}{2} \left(-\frac{h}{2} \right) \left(-\frac{3h}{2} \right) ... \left(-\frac{\left(2N - 1 \right) h}{2} \right) \right| < h \cdot h \cdot 2h \cdot 3h \cdot ... \cdot Nh = N! h^{N+1} \end{aligned}$$

Таким образом, справедлива следующая оценка

$$\max_{t \in [a;b]} |R_N(t)| < \frac{\max_{\xi \in [a;b]} |f^{(N+1)}(\xi)|}{(N+1)!} N! h^{N+1} = \frac{M_{N+1}}{N+1} h^{N+1}.$$

В нашем случае $M_{N+1} = 1$, поэтому необходимо определить N, при котором

$$\varepsilon \ge \frac{h^{N+1}}{N+1} = \frac{1}{N+1} \left(\frac{\pi}{2}\right)^{N+1} = \frac{1}{N+1} \left(\frac{\pi}{2N}\right)^{N+1},$$

где шаг равномерной сетки $h = \frac{b-a}{N} = \frac{\pi}{2N}$.

Последняя задача обычно решается перебором целых значений N . В частности для текущей постановки задачи неравенство выполняется при $N \geq 5$. То есть, минимальное число точке N+1=6 .

Пример 3.6. Зависимость погрешности от полиномиального члена

Сравнить погрешность линейной интерполяции функции $f(t) = \cos(t)$ с погрешностью примера 3.4.

Повторяя рассуждения, получаем, что

$$\Delta = \frac{M_2}{2!} \max_{t \in \left[0; \frac{\pi}{2}\right]} \left| \left(t - t_0\right) \left(t - t_1\right) \right| = \frac{1}{2} \max_{t \in \left[0; \frac{\pi}{2}\right]} \left| \left(t - t_0\right) \left(t - t_1\right) \right|,$$

при этом легко получить, что

$$\max_{t \in \left[0; \frac{\pi}{2}\right]} \left| \left(t - t_0\right) \left(t - t_1\right) \right| = \max_{t \in \left[0; \frac{\pi}{2}\right]} \left| t \left(t - \frac{\pi}{2}\right) \right| = \frac{\pi^2}{16} > \max_{t \in \left[0; \frac{\pi}{2}\right]} \left| t \left(t - \frac{\pi}{4}\right) \left(t - \frac{\pi}{2}\right) \right| = \frac{\pi^3}{48} \frac{\sqrt{3}}{6}.$$

Искомая погрешность $\Delta = \frac{1}{2} \frac{\pi^2}{16} \approx 0.308$.

На основании свойств конечных разностей погрешность может быть выражена следующим образом

$$f(t)-P_N(t)=(t-t_0)(t-t_1)...(t-t_N)f(t,t_0,...,t_N),$$

где $f(t,t_0,...,t_N)$ — разделенная разность порядка N

$$f(t,t_0,...,t_N) = \frac{f(t)}{(t-t_0)...(t-t_N)} + ... + \frac{f(t_N)}{(t_N-t_0)...(t_N-t_{N-1})}.$$

Последнее становится очевидным, если из правой части выразить f(t)

$$f(t) = f(t_0) \frac{(t - t_1) ... (t - t_N)}{(t_0 - t_1) ... (t_0 - t_N)} + ... + f(t_N) \frac{(t - t_0) ... (t - t_{N-1})}{(t_N - t_0) ... (t_N - t_{N-1})} + (t - t_0) (t - t_1) ... (t - t_N) f(t, t_0, ..., t_N).$$

Пример 3.7. Вычисление погрешности для таблично заданной функции

Привести пример.

Из приведенных примеров 3.5 и 3.7 видно, что существенный вклад в погрешность метода делает полиномиальный член (3.11). Неполиномиальная часть погрешности зависит только от свойств интерполируемой функции и количества узлов интерполяции, величина же максимального значения модуля полинома определяется самими узловыми точками интерполяции t_i , i=0,...,N. Таким образом, выбор расположения узлов может повлиять на величину погрешности интерполяции. Другими словами требуется найти полном степени N+1, наименее уклоняющийся от нуля. Тогда нули это полинома и будут оптимальными узлами интерполяции с точки зрения погрешности.

$$\mathfrak{I}_{N}(x) = (x - x_{0})(x - x_{1})...(x - x_{N}).$$

Такой полином существует, это полином Чебышёва. Его запись в явном виде

$$T_N(x) = \cos(N\arccos(x)), x \in [-1; 1], \tag{3.12}$$

в рекуррентном виде

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$. (3.13)

В некоторых приложениях используются нормированные полиномы Чебышева

$$\overline{T}_0(x) = T_0(x), \ \overline{T}_n(x) = \frac{T_n(x)}{2^{n-1}}.$$

Для будущих рассуждений будут использоваться также приведенные полиномы Чебышева, которые отличаются от обычных (3.13) только полином нулевой степени, все остальные остаются теми же без исключения.

$$\tilde{T}_0(x) = \frac{T_0(x)}{\sqrt{2}}, \ \tilde{T}_n(x) \equiv T_n(x). \tag{3.14}$$

Выпишем несколько полином Чебышева

Степень Обычный		Нормированный	Приведенный	
0	1	1	$1/\sqrt{2}$	
1	x	x	x	
2	$2x^2-1$	$x^2 - \frac{1}{2}$	$2x^2-1$	

3	$4x^3 - 3x$	$x^3 - \frac{3}{4}x$	$4x^3 - 3x$
4	$8x^4 - 8x^2 - 1$	$x^4 - x^2 - \frac{1}{8}$	$8x^4 - 8x^2 - 1$

В таком случае в качестве узлов интерполяции берутся нули полином Чебышева $t_k = x_k$, которые легко можно получить, приравняв (3.12) к нулю. Для полинома степени N+1 нули на отрезке $x \in [-1;1]$

$$x_n = \cos\left(\frac{2n+1}{2(N+1)}\pi\right), \ n = 0,...,N.$$
 (3.15)

Для отрезка [a;b] нули получаются линейным преобразование

$$x_n = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{2n+1}{2(N+1)}\pi\right), \ n = 0,...,N$$
 (3.16)

Совершенно аналогичными свойствами обладает сетка из экстремумов полинома Чебышева.

Пример 3.8. Экстремумы полинома Чебышева

Получить экстремумы полинома Чебышева.

Надо найти нули следующего полинома степени N+1 (поскольку предполагается наличие N+1-ой точки-нуля)

$$D_N = \frac{d}{dx} ((N+1)\arccos(x)) = \sin((N+1)\arccos(x)) \frac{N+1}{\sqrt{1-x^2}}$$

ИЛИ

$$D_N = \sin((N+1)\arccos(x)).$$

В таком случае на отрезке $x \in [-1; 1]$ получаем

$$(N+1)\arccos(x) = \pi n, \quad n = 0,...,N$$
,
 $x = \cos\left(\frac{\pi n}{N+1}\right), \quad n = 0,...,N$. (3.17)

Аналогично для отрезка [a;b] экстремумы

$$x_n = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{n\pi}{N+1}\right), \quad n = 0, ..., N$$
 (3.18)

Интерполяция в форме Чебышева

На сетке, состоящей из нулей полинома Чебышева степени N+1, можно построить алгебраический интерполянт в форме Чебышева.

$$C_N(x) = \sum_{j=0}^N a_j \tilde{T}_j(x),$$

где $a_j = \frac{2}{N+1} \sum_{k=0}^{N} f(x_k) \tilde{T}_j(x_k)$, $\tilde{T}_n(x)$ — приведенные полиномы Чебышева (3.14). Данная

интерполяция основана на следующей лемме, отражающей свойство ортонормированности приведенных полиномов.

Лемма 3.3.

Справедливо следующее равенство

$$\frac{2}{N+1}\sum_{j=1}^{N}\tilde{T}_{n}\left(x_{j}\right)\tilde{T}_{m}\left(x_{j}\right)=\delta_{mn},\ 0\leq n,m\leq N.$$

Пример 3.9. Интерполяция в форме Чебышева

Построить интерполяционный многочлен $C_2(x)$ и привести его к виду $P_N(x) = a_0 + a_1 x + ... + a_N x^N$ для функции, заданной таблично

x	x_0	x_1	x_2
У	2	1	3

где x_i — нули полинома Чебышева на отрезке [-1;1].

Из условия задачи следует, что N=2 . Выпишем коэффициенты интерполянта в общем виде

$$a_{j} = \frac{2}{N+1} \left(y_{0} \tilde{T}_{j}(x_{0}) + y_{1} \tilde{T}_{j}(x_{1}) + y_{2} \tilde{T}_{j}(x_{3}) \right) = \frac{2}{3} \left(2 \tilde{T}_{j}(x_{0}) + \tilde{T}_{j}(x_{1}) + 3 \tilde{T}_{j}(x_{3}) \right).$$

Первые три нуля полинома Чебышева на отрезке [-1;1] $x_k = \cos \frac{\pi (2k+1)}{6}$,

$$x_0 = \frac{\sqrt{3}}{2}$$
, $x_1 = 0$, $x_2 = -\frac{\sqrt{3}}{2}$.

Вычислим значения полиномов до второй степени включительно (см. (3.14)) в узловых точках сетки

$$T_{0}(x_{0}) = T_{0}(x_{1}) = T_{0}(x_{2}) = \frac{1}{\sqrt{2}},$$

$$T_{1}(x_{0}) = \frac{\sqrt{3}}{2}, T_{1}(x_{1}) = 0, T_{1}(x_{2}) = -\frac{\sqrt{3}}{2},$$

$$T_{2}(x_{0}) = \frac{3}{2} - 1 = \frac{1}{2}, T_{2}(x_{1}) = -\frac{1}{\sqrt{2}}, T_{2}(x_{2}) = \frac{3}{2} - 1 = \frac{1}{2}.$$

Вычисляем коэффициенты интерполяции

$$a_0 = \frac{2}{3} \left(\frac{1}{\sqrt{2}} (2 + 1 + 3) \right) = 2\sqrt{2} ,$$

$$a_1 = \frac{2}{3} \left(2\frac{\sqrt{3}}{2} - 3\frac{\sqrt{3}}{2} \right) = -\frac{\sqrt{3}}{3} ,$$

$$a_2 = \frac{2}{3} \left(2\left(\frac{3}{2} - 1\right) - 1 - 3\left(-\frac{3}{2} + 1\right) \right) = \frac{2}{3} \left(1 - 1 + \frac{9}{2} - 3 \right) = 2\left(\frac{3}{2} - 1\right) = 1 .$$

Итоговый интерполянт выглядит следующим образом

$$C_2(x) = 2\sqrt{2}\tilde{T}_0(x) - \frac{\sqrt{3}}{3}\tilde{T}_1(x) + \tilde{T}_2(x).$$

Теперь приведем полином к виду многочлена

$$C_2(x) = 2\sqrt{2} \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{3}x + (2x^2 - 1) = 2 - \frac{\sqrt{3}}{3}x + 2x^2 - 1 = 2x^2 - \frac{\sqrt{3}}{3}x + 1$$

На этом этапе легко проверить основное требование интерполяции, а именно

$$C_2(x_0) = 2\frac{3}{4} - \frac{3}{6} + 1 = 2,$$

 $C_2(x_1) = 1,$

$$C_3(x_2) = 2\frac{3}{4} + \frac{1}{2} + 1 = 3$$
.

В заключение, для алгебраических интерполянтов можно заметить, что все описанные интерполяционные многочлены приводятся к виду

$$F_N(t) = \sum_{n=0}^N \varphi_n(t) f_n.$$

Тригонометрическая интерполяция

Для периодических функций с периодом T используется тригонометрическая интерполяция. В качестве базисных функций используется

$$\varphi_n(t) = a_n \cos \frac{2\pi nt}{T} + b_n \sin \frac{2\pi nt}{T}.$$

В таком случае интерполяция — тригонометрический полином и2и частичная сумма тригонометрического ряда

$$F_{N}(t) = \sum_{n=0}^{N} \varphi_{n}(t) = a_{0} + \sum_{n=1}^{N} \left(a_{n} \cos \frac{2\pi nt}{T} + b_{n} \sin \frac{2\pi nt}{T} \right).$$

Пример 3.10. Тригонометрическая интерполяция

Дана четная функция с периодом 1, заданная таблично

	· TJ 1	- <u>F</u> - F 1 - F 1	1		
x	0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	0
y	0	1	-2	8	0

Построить ее тригонометрическую интерполяцию.

Полином для четной функции по четырем точкам (именно 4 точки умещаются в один период) имеет следующий вид

$$F_3(t) = a_0 + a_1 \cos 2\pi t + a_2 \cos 4\pi t + a_3 \cos 6\pi t.$$

Задачи тригонометрической интерполяции решаются через систему линейных уравнений

$$F_N(t_k) = f_k, k = 0,...,N$$
.

Для данной задачи система выглядит следующим образом

$$\begin{cases} 0 = a_0 + a_1 + a_2 + a_3, \\ 1 = a_0 + a_1 \frac{\sqrt{2}}{2} - a_3 \frac{\sqrt{2}}{2}, \\ -2 = a_0 - a_2, \\ 8 = a_0 - a_1 + a_2 - a_3. \end{cases}$$

Выполняем рад преобразований

$$\begin{cases} 8 = -2a_1 - 2a_3, \\ 3 = a_2 + a_1 \frac{\sqrt{2}}{2} - a_3 \frac{\sqrt{2}}{2}, \\ 10 = 2a_2 - a_1 - a_3, \\ a_0 = a_2 - 2. \end{cases} \begin{cases} -4 = a_1 + a_3, \\ 3 = a_2 + a_1 \frac{\sqrt{2}}{2} - a_3 \frac{\sqrt{2}}{2}, \\ 4 = -\left(\sqrt{2} + 1\right)a_1 + \left(\sqrt{2} - 1\right)a_3, \\ a_0 = a_2 - 2. \end{cases} \begin{cases} -4 = a_1 + a_3, \\ \sqrt{2}a_1 = \sqrt{2}a_3, \\ a_2 = 3, \\ a_0 = 1. \end{cases}$$

В итоге

$$\begin{cases} a_0 = 1, \\ a_1 = -2, \\ a_2 = 3, \\ a_3 = -2. \end{cases}$$

Искомый интерполянт (разложение в тригонометрический ряд)

$$F_3(t) = 1 - 2\cos 2\pi t + 3\cos 4\pi t - 2\cos 6\pi t$$
.

Обусловленность задачи

Рассмотрим два существенно разных механизма накопления погрешности интерполяции. Неустранимая и вычислительная погрешности приводят к тому, что сеточные значения функции «возмущены» и имеют вид

$$f_n^* = f_n + \delta_n$$
.

Положим, что $\left|\delta_n\right| \leq \delta$. Тогда погрешность построения такого интерполяционного многочлена

$$\left|F_{N}^{*}\left(t\right)-F_{N}\left(t\right)\right|\leq\left|\sum_{n=0}^{N}\left(\varphi_{n}\left(t\right)f_{n}^{*}-\varphi_{n}\left(t\right)f_{n}\right)\right|\leq\left|\sum_{n=0}^{N}\varphi_{n}\left(t\right)\left(f_{n}+\delta_{n}-f_{n}\right)\right|\leq\left|\sum_{n=0}^{N}\varphi_{n}\left(t\right)\right|\delta\leq\delta\sum_{n=0}^{N}\left|\varphi_{n}\left(t\right)\right|.$$

Величина $L(t) = \sum_{n=0}^{N} \left| \varphi_n(t) \right|$ называется функцией Лебега, а $\max_{t} \sum_{n=0}^{N} \left| \varphi_n(t) \right|$ — кон-

стантой Лебега L. Очевидно, что она целиком и полностью зависит от выбора базисных функций $\varphi_n(t)$. Оценка влияния возмущения на точности

$$\Delta = \delta L$$
.

Такая оценка погрешности достигается. Значение L также напрямую зависит от выбора узлов интерполяции. Существуют оценки, для равномерной сетки

$$L \square 2^N$$

для сетки с узлами в нулях полинома Чебышева

$$L \square \ln N$$
.

Таким образом, выбор неравномерной сетки с узлами в нулях полинома Чебышева обеспечивает один из оптимальных способов построения интерполяционного многочлена с малой погрешностью интерполяции и хорошей обусловленностью задачи.

Пример 3.11. Оценка константы Лебега

Определить константу Лебега для линейной и квадратичной интерполяции в форме Лагранжа.

Рассмотрим более общий случай кусочно-линейной и кусочно-квадратичной интерполяций. Интерполянты будем представлять в форме Лагранжа. Для начала, пусть $x \in [x_i, x_{i+1}]$, тогда функцию f(x) можно приблизить

$$f(x) \square P_1(x) = f_i \frac{x - x_{i+1}}{x_i - x_{i+1}} + f_{i+1} \frac{x - x_i}{x_{i+1} - x_i},$$

по определению

$$L = \max_{x \in [x_i, x_{i+1}]} \left(\left| \frac{x - x_{i+1}}{x_i - x_{i+1}} \right| + \left| \frac{x - x_i}{x_{i+1} - x_i} \right| \right) = \frac{x - x_{i+1}}{x_i - x_{i+1}} + \frac{x - x_i}{x_{i+1} - x_i} = 1.$$

Таким образом, в случае кусочно-линейной интерполяции для неустранимой и вычислительной погрешностей справедлива оценка

$$\Delta P_1(x) \leq \delta$$
.

Пусть теперь $x \in [x_{i-1}, x_{i+1}]$, тогда функция приближается квадратичным образом

$$f(x) \square P_2(x) = f_{i-1} \frac{(x-x_i)(x-x_{i+1})}{(x_{i-1}-x_i)(x_{i-1}-x_{i+1})} + f_i \frac{(x-x_{i-1})(x-x_{i+1})}{(x_i-x_{i-1})(x_i-x_{i+1})} + f_{i+1} \frac{(x-x_{i-1})(x-x_i)}{(x_{i+1}-x_{i-1})(x_{i+1}-x_i)}.$$

Для константы Лебега получаем

$$L = \max_{x \in [x_{i-1}, x_{i+1}]} \left(\frac{(x - x_i)(x - x_{i+1})}{(x_{i-1} - x_i)(x_{i-1} - x_{i+1})} + \frac{(x - x_{i-1})(x - x_{i+1})}{(x_i - x_{i-1})(x_i - x_{i+1})} + \frac{(x - x_{i-1})(x - x_i)}{(x_{i+1} - x_{i-1})(x_{i+1} - x_i)} \right) \right).$$

Для равномерной сетки применим оценки, описанные в Примере 3.6, учтем также, что расстояние между узлами интерполяции равно h.

$$L = \frac{1}{h^{2}} \max_{x \in [x_{i-1}, x_{i+1}]} \left(\left| (x - x_{i})(x - x_{i+1}) \right| + \left| (x - x_{i-1})(x - x_{i+1}) \right| + \left| (x - x_{i-1})(x - x_{i}) \right| \right) \le \frac{1}{h^{2}} \left(\left| -\frac{h}{2} \cdot \frac{h}{2} \right| + \left| -\frac{h}{2} \cdot \frac{3h}{2} \right| + \left| -\frac{h}{2} \cdot \frac{h}{2} \right| \right) = \frac{1}{4} + \frac{3}{4} + \frac{1}{4} = 1.25.$$

Следует обратить внимание на то, что теорема об остаточном члене интерполяции работает только для достаточно гладких функций. Для разрывных функций она не применима. В таких случаях следует доопределять производные для обеспечения требуемой гладкости теоремы.

Пример 3.12. Не достаточно гладкая функция

Оценить погрешность интерполяции функции f(x) = |x| по узловым точкам $\{-1, 0, 1\}$.

Замечаем, что
$$f'(x) = \text{sign}(x) = \begin{cases} 1, x > 0, \\ 0, x = 0, \\ -1, x < 0 \end{cases}$$

Ниже представлены графики функции и ее производной.

Первая производная разрывна. Теорема в таком случае не применима. Доопределим первую производную в окрестности δ точки 0. Например, возьмем в качестве функции сшивки производной $f'(x) = \sin \frac{x}{\delta} \frac{\pi}{2}, x \in [-\delta, \delta]$.

Тогда

$$f''(x) = \begin{cases} 0, x \le -\delta, \\ \frac{\pi}{2\delta} \cos\left(\frac{\pi}{2\delta}x\right), -\delta < x < \delta, \\ 0, x \ge \delta. \end{cases}$$

График функции второй производной

Как видим, существует f'''(x)

$$f'''(x) = \begin{cases} 0, x \le -\delta, \\ -\left(\frac{\pi}{2\delta}\right)^2 \sin\left(\frac{\pi}{2\delta}x\right), -\delta < x < \delta, \\ 0, x \ge \delta. \end{cases}$$

Очевидно, что максимум $\max_{\xi \in [-1,1]} \left| f'''(\xi) \right| = \frac{\pi^2}{4\delta^2}$. Отсюда

$$\Delta = \frac{\pi^2}{4\delta^2 3!} \max_{t \in [-1, 1]} \left| (t-1)t(t+1) \right|.$$

Определим отдельно максимум

$$\frac{d}{dt}(t^3 - t) = 3t^2 - 1 = 0, \ t^* = \pm \frac{1}{\sqrt{3}}$$

$$\max_{t \in [-1, 1]} \left| (t - 1)t(t + 1) \right| = -\frac{1}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{2}{3\sqrt{3}}.$$

Таким образом, можем сделать оценку погрешности

$$\Delta = \frac{\pi^2}{\delta^2 36\sqrt{3}} \, .$$

Если
$$\delta = 1$$
, то $\Delta = \frac{\pi^2}{36\sqrt{3}}$.

Как видим, погрешность целиком определяется функцией склеивания, для различных функций оценки будут разными.

Задача обратной интерполяции

Задача интерполяции может быть эффективно применима при решении различных алгебраических задач. В частности при поиске решения алгебраического уравнения, при поиске экстремума. Данный поиск осуществляется при помощи построения интерполяционного полинома, решения поставленной задачи для полинома и последующим уточнением. Для решения алгебраических уравнений вида

$$F(x) = y^*$$

удобна задача обратной интерполяции, которая заключается в поиске интерполяционного полинома для

$$x = F^{-1}(y).$$

То есть используется перевернутая сеточная функция

\mathcal{Y}_0	\mathcal{Y}_1	 \mathcal{Y}_N
x_0	x_1	 x_N

Далее вычисляется значение

$$P_N^{-1}(y^*) = x^*.$$

Пример 3.13. Обратная интерполяция

По заданным значениям функции

X_n	-4	-1	3	4
\mathcal{Y}_n	1	2	3	4

решить уравнение y(x) = 0.

Построим интерполяционный полином для обратной функции в форме Ньютона.

t_k	X_n	f_{km}	f_{kmn}	f_{kmnl}
1	-4	-1-(-4)		· Kimii
2	-1	2-1 $3-(-1)$.	$\frac{4-3}{3-1} = \frac{1}{2}$	3 1
3	3	$\frac{3 - (-1)}{3 - 2} = 4$	$\frac{1-4}{4-2} = -\frac{3}{2}$	$\frac{2}{4-1}$ $\frac{2}{3}$
4	4	$\frac{4-3}{4-3} = 1$		

$$X_3(y) = -4 + 3(y-1) + \frac{1}{2}(y-1)(y-2) - \frac{3}{2}(y-1)(y-2)(y-3).$$

Отсюда решение находится тривиально

$$x^* = X_3(0) = -4 + 3(-1) + \frac{1}{2}(-1)(-2) - \frac{3}{2}(-1)(-2)(-3) = -4 - 3 + 1 + 9 = 3$$
.

Сплайны

Определение 3.5.

Пусть на отрезке [a,b] задана система узловых точек $\{t_n\}_{n=0}^N$. Сплайном $S_m(t)$ называется $S_m(t), t \in [a,b]$ функция, имеющая l непрерывных производных и на отрезке $[t_{n-1},t_n]$ и являющийся многочленом степени m.

Определение 3.6.

Дефектом сплайна называется разность d=m-l, где m — степень полинома, l — показатель гладкости.

Приведем несколько примеров. Кусочно-линейная функция — сплайн 1-ого порядка с дефектом 1. Кусочно-квадратичная функция — сплайн второй степени с дефектом 1. На практике наиболее часто используются сплайны 3-ей степени дефекта 1. Приведем условие получения сплайна 3-ей степени.

- 1) $S(t_n) = f_n$ условие интерполяции,
- 2) $S(t) \in C^2[a,b]$,
- 3) Ha $[t_n, t_{n+1}], n = 0,..., N$,
- 4) Краевые условия (одно из)
 - a) S'(a) = f'(a), S'(b) = f'(b),
 - b) S''(a) = f''(a), S''(b) = f''(b),
 - c) S(a) = S(b), S'(a) = S'(b).

Сплайн S(t) получается единственным образом как результат решения системы линейных уравнений.

Теорема 3.3. (О насыщаемости гладкостью)

Для функции $f(t) \in C^4[a,b]$ и интерполирующего ее сплайна S(t), построенного на сетке $\{t_n\}_{n=0}^N$ справедливо

$$||f(t) - S(t)|| \le M_4 \tau^4,$$

$$||f'(t) - S'(t)|| \le M_3 \tau^3,$$

$$||f''(t) - S''(t)|| \le M_2 \tau^2,$$

Широкое распространение сплайнов во многом связано с тем, что они являются наиболее гладкими среди интерполяционных функций. Сплайны степени выше 1 в случае гладкой f(x) хорошо приближают не только саму функцию, но и ее производные.

Пример 3.14 Линейный сплайн

Построить линейный сплайн по значениям функции f(t) в точках $\{0,1\}$.

Строим кусочно-линейную интерполяцию

$$S_1(x) = f_0 \frac{x_1 - x}{x_1 - x_0} + f_1 \frac{x - x_0}{x_1 - x_0},$$

$$S_1(x) = f_0 \frac{1 - x}{1} + f_1 \frac{x}{1} = f_0(1 - x) + f_1 x.$$

Пример 3.15. Квадратичный сплайн

Построить сплайн второй степени по значениям функции f(t) в точках $\{0,1,2\}$.

Строим кусочно-линейную интерполяцию производной

$$S_2'(x) = m_i \frac{x_{i+1} - x}{x_{i+1} - x_i} + m_{i+1} \frac{x - x_i}{x_{i+1} - x_i},$$

где $S_2'(x_i) = m_i$, $S_2''(x_{i+1}) = m_{i+1}$. Первообразная производной

$$S_2(x) = -\frac{m_i}{h_i} \frac{(x_{i+1} - x)^2}{2} + \frac{m_{i+1}}{h_i} \frac{(x - x_i)^2}{2} + d$$

где шаг сетки $h_i = x_{i+1} - x_i$. Из условия $S(x_i) = f$ получаем

$$\begin{split} f_i &= -\frac{m_i}{2} h_i + d \; , \; m_i = \frac{2 \left(d - f_i \right)}{h_i} \; , \\ f_{i+1} &= \frac{m_{i+1}}{2} h_i + d \; , \; m_{i+1} = \frac{2 \left(f_{i+1} - d \right)}{h_i} \; . \end{split}$$

Для $x \in [x_i, x_{i+1}]$ можем записать

$$S_2(x) = -\frac{m_i}{2h_i}(x_{i+1} - x)^2 + \frac{m_{i+1}}{2h_i}(x - x_i)^2 + f_i + \frac{m_i h_i}{2}.$$

Воспользуемся граничным условием

$$S_2'(x_0) = S_2'(x_N) = 0$$
.

Тогда

$$S_2'(0) = m_0 \frac{1-0}{1-0} + m_1 \frac{0-0}{1-0} = m_0 = 0,$$

$$S_2'(2) = m_1 \frac{2-2}{2-1} + m_2 \frac{2-1}{2-1} = m_2 = 0.$$

Для $x \in [0,1]$ $d = f_0$

$$S_2(x) = \frac{1}{2h_i} \frac{2(f_1 - f_0)}{h_i} (x - 0)^2 + f_0 = (f_1 - f_0)x^2 + f_0,$$

для $x \in [1, 2]$ $d = f_2$

$$S_2(x) = -\frac{1}{2h_{i+1}} \frac{2(f_2 - f_1)}{h_{i+1}} (2 - x)^2 + f_2 = (f_1 - f_2)(2 - x)^2 + f_2.$$

Не трудно убедиться в том, что это интерполянт.

В-сплайны

В-сплайнами называются сплайны с конечным носителем. Пример простого линейного В-сплайна.

$$B_{i}(x) = \begin{cases} 0, x_{i-1} > x, \\ \frac{x - x_{i-1}}{x_{i} - x_{i-1}}, x_{i-1} \le x < x_{i}, \\ \frac{x_{i+1} - x}{x_{i+1} - x_{i}}, x_{i} \le x < x_{i+1}, \\ 0, x > x_{i-1} \end{cases}$$

Пример 3.16. Квадратичный В-сплайн

Построить квадратичный В-сплайн

Сплайн строиться с использованием квадратичных полиномов

Спользованием квадратичных поль
$$B_2(x) = \begin{cases} t^2, t = \frac{x - x_{i-2}}{x_{i-1} - x_{i-2}}, \\ a + bt + ct^2, t = \frac{x - x_{i-1}}{x_i - x_{i-1}}, \\ d + et + ft^2, t = \frac{x - x_i}{x_{i+1} - x_i}, \\ (1 - t)^2, t = \frac{x - x_{i+1}}{x_{i+2} - x_{i+1}}. \end{cases}$$

При построении сплайна используются следующие свойства

- 1) $S'_x(x_{i-2}) = S'_x(x_{i+2}) = 0$,
- 2) $S(x_{i-1}) = S(x_{i+1}) = 1$,
- 3) $S(x_{i-2}) = S(x_{i+2}) = 0$.
- 4) симметричность.

В силу гладкости должно выполняться требование сшивки

1)
$$S'_x(+x_i) = S'_x(-x_i) = 0$$
,

2)
$$S'_{x}(+x_{i-1}) = S'_{x}(-x_{i-1})$$
.

Получаем систему уравнений

$$\begin{cases} a+b\cdot 0 + c\cdot 0^2 = 1, \\ b+2c\cdot 0 = 2\cdot 1, \\ b+2c\cdot 1 = 0; \end{cases} \begin{cases} a=1, \\ b=2, \\ c=-1. \end{cases}$$

В итоге,

$$B_{2}(x) = \begin{cases} t^{2}, t = \frac{x - x_{i-2}}{x_{i-1} - x_{i-2}}, \\ 1 + 2t - t^{2}, t = \frac{x - x_{i-1}}{x_{i} - x_{i-1}}, \\ 1 + (1 - t) - 2(1 - t)^{2}, t = \frac{x - x_{i}}{x_{i+1} - x_{i}}, \\ (1 - t)^{2}, t = \frac{x - x_{i+1}}{x_{i+2} - x_{i+1}}. \end{cases}$$

Сплайн интерполяция строиться следующим образом

$$B_{i-1}b_{i-1} + B_ib_i + B_{i+1}b_{i+1} = f_i, i = 0,...,N.$$

План лабораторной работы

- 1. Вручную оценить погрешность интерполяции и сравнить с результатами работы программы лабораторного практикума для функций $\sin(x)$ или $\cos(x)$ на отрезке [-1,1].
- 2. Построить зависимость погрешности интерполяции Δ от числа узлов N (N=5,10,15,20,25) при машинном нуде $\delta=2^{-24}$ для
 - а. интерполяции в форме Лагранжа на равномерной сетке,
 - b. интерполяции в форме Ньютона на равномерной сетке,
 - с. интерполяции через решение СЛАУ,
 - d. интерполяции в форме Лагранжа на сетке из нулей полинома Чебышева.
- 3. Найти значение константы Лебега для кусочно-линейно, квадратичной и кубической интерполяции, сравнить с результатами, полученными на семинаре.
- 4. Построить зависимость константы Лебега на равномерной и неравномерной в нулях полинома Чебышева сетках от числа узлов интерполяции (N = 5, 10, 15, 20, 25).
- 5. На примере функции y = 0 увидеть влияние неустранимой погрешности на интерполяцию.