

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران) دانشکده ...

پایاننامه کارشناسیارشد گرایش ...

عنوان پایان نامه-دستورالعمل و راهنمای نگارش پایاننامه

نگارش نام و نام خانوادگی کامل نویسنده

> استاد راهنما نام کامل استاد راهنما

> استاد مشاور نام کامل استاد مشاور

> > ماه و سال

صفحه فرم ارزیابی و تصویب پایان نامه - فرم تأیید اعضاء کمیته دفاع

در این صفحه فرم دفاع یا تایید و تصویب پایان نامه موسوم به فرم کمیته دفاع- موجود در پرونده آموزشی- را قرار دهید.

نكات مهم:

- نگارش پایان نامه/رساله باید به زبان فارسی و بر اساس آخرین نسخه دستورالعمل و راهنمای تدوین پایان نامه های دانشگاه صنعتی امیرکبیر باشد.(دستورالعمل و راهنمای حاضر)
- رنگ جلد پایان نامه/رساله چاپی کارشناسی، کارشناسی ارشد و دکترا باید به ترتیب مشکی، طوسی و سفید رنگ باشد.
- چاپ و صحافی پایان نامه/رساله بصورت پشت و رو(دورو) بلامانع است و انجام آن توصیه می شود.

به نام خدا

تعهدنامه اصالت اثر

اینجانب نام و نام خانوادگی کامل نویسنده متعهد می شوم که مطالب مندرج در این پایان نامه حاصل کار پژوهشی اینجانب تحت نظارت و راهنمایی اساتید دانشگاه صنعتی امیر کبیر بوده و به دستاوردهای دیگران که در این پژوهش از آنها استفاده شده است مطابق مقررات و روال متعارف ارجاع و در فهرست منابع و مآخذ ذکر گردیده است. این پایان نامه قبلاً برای احراز هیچ مدرک هم سطح یا بالاتر ارائه نگردیده است.

در صورت اثبات تخلف در هر زمان، مدرک تحصیلی صادر شده توسط دانشگاه از درجه اعتبار ساقط بوده و دانشگاه حق پیگیری قانونی خواهد داشت.

کلیه نتایج و حقوق حاصل از این پایاننامه متعلق به دانشگاه صنعتی امیرکبیر میباشد. هرگونه استفاده از نتایج علمی و عملی، واگذاری اطلاعات به دیگران یا چاپ و تکثیر، نسخهبرداری، ترجمه و اقتباس از این پایان نامه بدون موافقت کتبی دانشگاه صنعتی امیرکبیر ممنوع است. نقل مطالب با ذکر ماخذ بلامانع است.

نام و نام خانوادگی کامل نویسنده

امضا

نویسنده پایان نامه، درصورت تایل میتواند برای سیاسکزاری پایان نامه خود را به شخص یا اشخاص و یا ارگان خاصی تقدیم نماید.

نویسنده پایاننامه می تواند مراتب امتنان خود را نسبت به استاد راهنما و استاد مشاور و یا دیگر افرادی که طی انجام پایاننامه به نحوی او را یاری و یا با او همکاری نمودهاند ابراز دارد.

نام و نام خانواد کی کامل نویسنده ماه و سال

چکیده

در این قسمت چکیده پایان نامه نوشته می شود. چکیده باید جامع و بیان کننده خلاصهای از اقدامات انجام شده باشد. در چکیده باید از ارجاع به مرجع و ذکر روابط ریاضی، بیان تاریخچه و تعریف مسئله خودداری شود.

واژههای کلیدی:

کلیدواژه اول، ...، کلیدواژه پنجم (نوشتن سه تا پنج واژه کلیدی ضروری است)

فهرست مطالب

صفحه

سفحه		وان	عنر
١	مای استفاده از الگوی لاتک دانشگاه صنعتی امیر کبیر(پلی تکنیک تهران)	راهن	١
۲	مقدمه	1-1	
۲	این همه فایل؟!	۲-۱	
٣	ً از كجا شروع كنم؟	۳-۱	
۴	مطالب پایاننامه را چطور بنویسم؟	4-1	
۴	۱-۴-۱ نوشتن فصلها		
۵	۲-۴-۱ مراجع		
۵	۱-۴-۳ واژهنامه فارسی به انگلیسی و برعکس		
۵	اگر سوالی داشتم، از کی بپرسم؟	۵-۱	
ç	ر <mark>کارهای پیشین</mark>		۲
γ	مقدمه		'
Υ	یادگیری پیوسته		
	ین تیری پیوستنی بر تنظیم		
	-7-7 رویکرد مبتنی بر بازپخش		
	۲-۲-۳ رویکرد مبتنی بر بهینهسازی		
	رری ر ی .ر		
	رویکرد ترکیب رویکردها و سناریوها		
	۲-۲-۶ کاربردها		
	ٔ یادگیری پیوسته در بینایی کامپیوتر	٣-٢	
	۲-۳-۲ دستهبندی تصویر		
	۲-۳-۲ تشخیص عمل		
	مدلهای بینایی–زبان	۴-۲	
	۲–۴–۲		
18	۲-۴-۲ یادگیری انتقالی مدلهای بینایی-زبان		

۱۹	۵-۲ یادگیری پیوسته در مدلهای بینایی-زبان
۱۹	۲-۵-۲ روشهای مبتنی بر حافظه
۲.	۲–۵–۲ روشهای مبتنی بر تنظیم
۲.	۲–۵–۳ روشهای مبتنی بر تقطیر دانش
۲.	۲-۵-۴ روشهای مبتنی بر معماری
79	۱ روش پیشنهادی
	۳-۱ مقدمه
	۳-۳ روش پیشنهادی برای یادگیری پیوسته تشخیص حرکت انسان
	۳-۳ مدل Pen-VCLIP مدل
	۳-۳-۳ تبدیل CLIP مبتنی بر تصویر به CLIP مبتنی بر ویدیو
	۳-۳-۲ منظمسازی وزنهای میانیابی
	۳-۳-۳ میانگین گیری تصادفی وزنها
	۳- مدل ۲-۳ مدل ۲-۳
	۳-۴-۳ انتخاب پرامپت
٣٢	۰ ۳٫۰ ۳ ۳–۴–۲ یادگیری پرامپت
٣٣	ت یرک پر پ ۵-۳ مرحلهی آموزش
٣۴	۳–۵–۱ کدگذار ویدیو
٣۵	۳–۵–۳ يادگيري پرامپت
	۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔
	۳–۵–۴ نقطه
	٣-۵-۵ دونقطه
	۳–۵–۶ گیومه
	۳–۵–۳ نشانه پرسش <i>ی</i>
	۳–۵–۸ خط تیره
	۳-۶ جدا یا سرهم نوشتن برخی کلمات
49	ا مشخصات یک بایان نامه م گذارش ما ه

۴.																																							
۴.			•				•	•				•	•		 	 	•		گر	د	ه د	اب	من	ه ه	ئ با	يح	حر	ِ ص	، و	قع	،مو	به	اع	رج	1	۲-	۴		
۴.																																							
۴١																																							
۴١							•	•				•	•		 	 	•															ار	ص	خت	1	۵-	۴		
۴١																																							
۴١										•					 	 					ب	ط	خاه	مخ	ی	ەن,	ذ	ت	ما	ىلو	م	به	ئە	نوج	i	٧-	۴		
۴۱																																							
۴٣																			ن	ات	اد	و	نىن	يىث	ِ پ	9 (زی	ئير	đ٩	ج	ئتي	و ا	ی	ندو	ن	عم	ج	4	۵
44	•						•	•		•		•		 	 	 										•				. (ات	هاد	ىنې	پیش	ļ.	۱-	۵		
40		•												•			•	•		•						•					•		ځ	ِاج	مر	9	بع	نا	۵
۵٣									•	•							•	•							•		•		•	٠	•					ت	ٍس	يو	ڍ
54			•	•	•					•	•		•	•			•	•		•						ى	w,	ئلي	انگ	1 a	ي ب	ىى	رس	فا	ی	مه	ەنا	اژ	9
۵۶																										ے	w	فار	ا ط	, ب	ىي	یس	گل	انً	ی	مه	ەنا	اژ	و

فهرست شكلها

صفحه

شكل

فهرست جدولها

جدول جدول

فهرست نمادها

نماد مفهوم n فضای اقلیدسی با بعد \mathbb{R}^n n کره یکه n بعدی \mathbb{S}^n M جمینهm-بعدی M^m M وی هموار روی M $\mathfrak{X}(M)$ (M,g) مجموعه میدانهای برداری هموار یکه روی $\mathfrak{X}^1(M)$ M مجموعه p-فرمیهای روی خمینه $\Omega^p(M)$ اپراتور ریچی Qتانسور انحنای ریمان \mathcal{R} تانسور ریچی ricمشتق لي L۲-فرم اساسی خمینه تماسی Φ التصاق لوى-چويتاي ∇ لايلاسين ناهموار Δ عملگر خودالحاق صوری القا شده از التصاق لوی-چویتای ∇^* متر ساساکی g_s التصاق لوی-چویتای وابسته به متر ساساکی ∇ عملگر لایلاس-بلترامی روی p-فرمها Δ فصل اول راهنمای استفاده از الگوی لاتک دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)

1-1 مقدمه

حروفچینی پروژه کارشناسی، پایانامه یا رساله یکی از موارد پرکاربرد استفاده از زیپرشین است. از طرفی، یک پروژه، پایانامه یا رساله، احتیاج به تنظیمات زیادی از نظر صفحهآرایی دارد که ممکن است برای یک کاربر مبتدی، مشکل باشد. به همین خاطر، برای راحتی کار کاربر، یک کلاس با نام AUTthesis برای حروفچینی پروژهها، پایاننامهها و رسالههای دانشگاه صنعتی امیرکبیر با استفاده از نرمافزار زیپرشین، آماده شده است. این فایل به گونهای طراحی شده است که کلیه خواستههای مورد نیاز مدیریت تحصیلات تکمیلی دانشگاه صنعتی امیرکبیر را برآورده می کند و نیز، حروفچینی بسیاری از قسمتهای آن، به طور خودکار انجام می شود.

کلیه فایلهای لازم برای حروف چینی با کلاس گفته شده، داخل پوشهای به نام AUTthesis قرار داده شده است. توجه داشته باشید که برای استفاده از این کلاس باید فونتهای PGaramond ،B Nazanin شده است. و IranNastaliq روی سیستم شما نصب شده باشد.

1−1 این همه فایل؟!

از آنجایی که یک پایانامه یا رساله، یک نوشته بلند محسوب می شود، لذا اگر همه تنظیمات و مطالب پایانامه را داخل یک فایل قرار بدهیم، باعث شلوغی و سردرگمی می شود. به همین خاطر، قسمتهای مختلف پایاننامه یا رساله داخل فایلهای جداگانه قرار گرفته است. مثلاً تنظیمات پایهای کلاس، داخل مختلف پایاننامه یا رساله داخل فایلهای جداگانه قرار گرفته است. مثلاً تنظیمات پایهای کلاس، داخل فایل مشخصات فایل مست. مشخصات فایل نامه، داخل tattle.tex و ... قرار داده شده است. فارسی پایاننامه، داخل tattle.tex و ... قرار داده شده است. نکته مهمی که در اینجا وجود دارد این است که از بین این فایلها، فقط فایل را اجرا کرد. بقیه اجرا است. یعنی بعد از تغییر فایلهای دیگر، برای دیدن نتیجه تغییرات، باید این فایل را اجرا کرد. بقیه فایلها به این فایل، کمک می کنند تا بتوانیم خروجی کار را ببینیم. اگر به فایل کمک می کنند تا بتوانیم خروجی کار را ببینیم. اگر به فایل مانند مسروکار داریم، کنید، متوجه می شوید که قسمتهای مختلف پایاننامه، توسط دستورهایی مانند toclude و input کنید، متوجه می شوید که قسمتهای مختلف پایاننامه، توسط دستورهایی مانند میل از سروکار داریم، فایل اصلی، یعنی AUTthesis.tex معرفی شده است که پایاننامه یا رساله شما، از ۵ فصل و یک پیوست، تشکیل شده است. با این حال، اگر پایاننامه یا رساله شما، بیشتر از ۵ فصل و یک پیوست، تشکیل شده است. با این فایل، اضافه کنید. این کار، بسیار ساده است. فرض کنید بخواهید باید خودتان فصلهای بیشتر را به این فایل، اضافه کنید. این کار، بسیار ساده است. فرض کنید بخواهید

یک فصل دیگر هم به پایاننامه، اضافه کنید. برای این کار، کافی است یک فایل با نام AUTthesis و با پسوند tex. بسازید و آن را داخل پوشه AUTthesis قرار دهید و سپس این فایل را با دستور \include{chapter6} و بعد از دستور \include{chapter6} قرار دهید.

1-7 از کجا شروع کنم؟

قبل از هر چیز، بدیهی است که باید یک توزیع تِک مناسب مانند TeX Live و یک ویرایش گر تِک مانند Texmaker را روی سیستم خود نصب کنید. نسخه بهینه شده Texmaker را می توانید از سایت پارسی لاتک و TeX Live را هم می توانید از سایت رسمی آن 7 دانلود کنید.

در مرحله بعد، سعی کنید که یک پشتیبان از پوشه AUTthesis بگیرید و آن را در یک جایی از هارددیسک سیستم خود ذخیره کنید تا در صورت خراب کردن فایلهایی که در حال حاضر، با آنها کار می کنید، همه چیز را از دست ندهید.

حال اگر نوشتن پایان نامه اولین تجربه شما از کار با لاتک است، توصیه می شود که یک بار به طور سرسری، کتاب «مقدمه ای نه چندان کوتاه بر 2ε " $\mathrm{MTEX}(2\varepsilon)$ " ترجمه دکتر مهدی امیدعلی، عضو هیات علمی دانشگاه شاهد را مطالعه کنید. این کتاب، کتاب بسیار کاملی است که خیلی از نیازهای شما در ارتباط با حروف چینی را برطرف می کند.

بعد از موارد گفته شده، فایل AUTthesis.tex و AUTthesis.tex را باز کنید و مشخصات پایاننامه خود مثل نام، نام خانوادگی، عنوان پایاننامه و ... را جایگزین مشخصات موجود در فایل fa_title خود مثل نام، نام خانوادگی، عنوان پایاننامه و ... را جایگزین مشخصات در فایل پی دی اف خروجی باشید. کنید. دقت داشته باشید که نیازی نیست نگران چینش این مشخصات در فایل پی دی اف خروجی باشید فایل AUTthesis.cls همه این کارها را به طور خودکار برای شما انجام می دهد. در ضمن، موقع تغییر دادن دستورهای داخل فایل fa_title کاملاً دقت کنید. این دستورها، خیلی حساس هستند و ممکن است با یک تغییر کوچک، موقع اجرا، خطا بگیرید. برای دیدن خروجی کار، فایل fa_title را اجرا کنید. حال اگر را اجرا کنید. حال اگر و مشخصات انگلیسی پایاننامه را هم عوض کنید، فایل en_title را باز کنید و مشخصات را می خواهید مشخصات انگلیسی پایاننامه را هم عوض کنید، فایل en_title را باز کنید و مشخصات

¹http://www.parsilatex.com

²http://www.tug.org/texlive

³http://www.tug.ctan.org/tex-archive/info/lshort/persian/lshort.pdf

داخل آن را تغییر دهید. * در اینجا هم برای دیدن خروجی، باید این فایل را Save کرده و بعد به فایل AUTthesis.tex برگشته و آن را اجرا کرد.

برای راحتی بیشتر، فایل AUTthesis.cls طوری طراحی شده است که کافی است فقط یکبار مشخصات پایاننامه را وارد کنید. هر جای دیگر که لازم به درج این مشخصات باشد، این مشخصات به طور خودکار درج میشود. با این حال، اگر مایل بودید، میتوانید تنظیمات موجود را تغییر دهید. توجه داشته باشید که اگر کاربر مبتدی هستید و یا با ساختار فایلهای cls آشنایی ندارید، به هیچ وجه به این فایل، یعنی فایل AUTthesis.cls دست نزنید.

نکته دیگری که باید به آن توجه کنید این است که در فایل AUTthesis.cls، سه گزینه به نامهای شوره و مسلم بروژه پایاننامه و رساله، طراحی شده است. بنابراین اگر قصد تایپ پروژه شده است به ترتیب از گزینههای AUTthesis.tex کارشناسی، پایاننامه یا رساله را دارید، در فایل AUTthesis.tex باید به ترتیب از گزینههای کارشناسی، پایاننامه یا رساله را دارید، در فایل و کینههای تنظیمات مربوط به آنها به طور خودکار، اعمل می شود.

f-1 مطالب پایاننامه را چطور بنویسمf

۱-۴-۱ نوشتن فصلها

همان طور که در بخش ۱-۲ گفته شد، برای جلوگیری از شلوغی و سردر گمی کاربر در هنگام حروف چینی، قسمتهای مختلف پایان نامه از جمله فصلها، در فایلهای جداگانهای قرار داده شدهاند. بنابراین، اگر می خواهید مثلاً مطالب فصل ۱ را تایپ کنید، باید فایلهای AUTthesis.tex و AUTthesis.tex را باز کنید و محتویات داخل فایل دا در از مطالب خود را تایپ کنید. توجه کنید که همان طور که قبلاً هم گفته شد، تنها فایل قابل اجرا، فایل AUTthesis.tex است. لذا برای دیدن حاصل (خروجی) فایل خود، باید فایل AUTthesis.tex را اجرا کنید. یک نکته فایل خود، باید فایل دارد، این است که لازم نیست که فصلهای پایان نامه را به ترتیب تایپ کنید. می توانید ابتدا مطالب فصل ۳ را تایپ کنید.

نکته بسیار مهمی که در اینجا باید گفته شود این است که سیستم $T_{\rm E}$ ، محتویات یک فایل تِک

^{*} برای نوشتن پروژه کارشناسی، نیازی به وارد کردن مشخصات انگلیسی پروژه نیست. بنابراین، این مشخصات، به طور خودکار، نادیده گرفته میشود.

را به ترتیب پردازش می کند. به عنوان مثال، اگه فایلی، دارای \raisepsilon خط \raisepsilon بعد خط \raisepsilon و \raisepsilon و \raisepsilon مشغول تایپ مطالب فصل خط \raisepsilon بعد خط \raisepsilon و \raisepsilon (مثلاً مشغول تایپ مطالب فصل \raisepsilon (مثلاً مشغول تایپ مطالب فصل \raisepsilon (مثلاً مشغول \raisepsilon در فایل مستید، بهتر است که دو دستور \raisepsilon (مثلاً مطالب فصل \raisepsilon و \raisepsilon بنده (که به درد ما نمی خورد؛ چون ما می خواهیم خروجی فصل \raisepsilon را ببینیم) و سپس مطالب فصل \raisepsilon پردازش می شود و این کار باعث طولانی شدن زمان اجرا می شود. زیرا هر چقدر حجم فایل اجرا شده، بیشتر باشد، زمان بیشتری هم برای اجرای آن، صرف می شود.

۱-۴-۱ مراجع

برای وارد کردن مراجع به فصل ۲ مراجعه کنید.

r-4-1 واژهنامه فارسی به انگلیسی و برعکس

برای وارد کردن واژهنامه فارسی به انگلیسی و برعکس، بهتر است مانند روش بکار رفته در فایلهای dicfa2en

۱-۵ اگر سوالی داشتم، از کی بپرسم؟

برای پرسیدن سوالهای خود در مورد حروفچینی با زیپرشین، میتوانید به تالار گفتگوی پارسیلاتک^۶ مراجعه کنید. شما هم میتوانید روزی به سوالهای دیگران در این تالار، جواب بدهید.

^۵ برای غیرفعال کردن یک دستور، کافی است پشت آن، یک علامت ٪ بگذارید.

⁶http://www.forum.parsilatex.com

فصل دوم مرور کارهای پیشین

۱-۲ مقدمه

در این فصل به معرفی یادگیری پیوسته در دو حوزه ی تصویر و ویدیو و مدلهای بینایی-زبان در این حوزهها میپردازیم. روشهای یادگیری پیوسته به بخشهای مبتنی بر تنظیم، بازپخش، بهینهسازی و معماری تقسیم میشوند که به مرور هرکدام از دستههای فوق میپردازیم.

۲-۲ یادگیری پیوسته

یادگیری پیوسته به توانایی یک سامانه ی هوشمند برای کسب، بهروزرسانی، جمعآوری و بهرهبرداری از دانش در طول عمر آن اشاره دارد. این، شامل یادگیری یک دنباله از مطالب یا وظایف یکی پس از دیگری و سازگاری با اطلاعات جدید بدون فراموشی دانش قبلاً آموخته شده است. به علت تدریجی اضافه شدن مطالب، یادگیری مداوم به عنوان یادگیری افزایشی ، یادگیری مستمر و یادگیری مادامالعمر نیز شناخته میشود. هدف یادگیری پیوسته حفظ تعادل بین یادگیری اطلاعات جدید و حفظ دانش قبلاً کسب شده، با غلبه بر چالش فراموشی فاجعهبار است. در ادامه به معرفی چالش ها، سناریوها، رویکردها و کاربردهای این حوزه می پردازیم.

چالش اصلی که در این نوع یادگیری به وجود میآید، چالشی با نام فراموشی فاجعه بار است. علت این امر این است که وقتی داده های جدید برای یادگیری اضافه میشوند، سامانه مجبور میشود اطلاعات قبل را تا حدی به فراموشی بسپرد و شرایط جدید را در نظر بگیرد. برای همین به نوعی یک تعادل بین حالتی که حافظه ثابت است و حالتی که یادگیری انعطاف پذیر است، نیاز میباشد. در واقع هدف بر این است که یادگیری مستمر تعمیم پذیری خوبی برای تطبیق در شرایط مختلف با دادههای جدید و با توزیعهای جدید داشته باشد، همچنین کارایی منابع را نیز تضمین کند [۱، ۲].

همچنین، بر اساس نوع دادهها و وظیفههایی که باید انجام شود، سناریوهای مختلفی برای یادگیری یبوسته ارائه شده است [۱]:

¹Incremental learning

²Continuous learning

³Lifelong learning

• یادگیری نمونهای افزاینده

در یادگیری نمونهای-افزاینده ^۴ نمونه های داده ی جدید به طور پیوسته به مدل معرفی می شوند که هر یک نقطه داده جدید را نشان می دهد. این مدل باید با توزیع دادههای در حال تکامل سازگار شود و در عین حال نمونههای جدید را نیز در نظر بگیرد.

• یادگیری افزایشی دامنه

در یادگیری افزایشی دامنه 0 ، دامنه تغییر می کند و به معنای افزایش یا تغییر در توزیع دادهها، ویژگیها یا محیطها در مسئلهای که مدل در حال یادگیری آن است، می باشد. این تغییر می تواند به صورت افزودن دادههای جدید از دامنههای جدید، تغییر در ویژگیها، یا حتی تغییر مفهوم برخی اجزاء از دادهها (مثلاً تغییر تعبیر برچسبها) اتفاق بیافتد. چالش این است که اطمینان حاصل شود که مدل می تواند با این حوزههای جدید سازگار شود، بدون اینکه عملکرد آن در حوزههایی که قبلا دیده شده اند، کاهش یابد [۲، ۳، ۴].

• یادگیری افزایشی وظیفه

در یادگیری افزایشی وظیفه ^۶ وظایف جدید در طول زمان معرفی میشوند و مدل باید یاد بگیرد که در هر وظیفه ی جدید به خوبی عمل کند و در عین حال عملکرد خود را در وظایفی که قبلاً آموختهاست حفظ کند [۳].

• یادگیری افزایشی دستهای

دسته های جدید به تدریج به دادههای آموزشی مدل اضافه می شوند. مدل باید بیاموزد که دسته های جدید را تشخیص دهد و بین آنها تمایز قائل شود بدون اینکه دانش خود را در مورد دسته های آموخته شده قبلی فراموش کند [۲، ۳، ۵، ۶].

همانطور که پیشتر گفته شد، رویکردهای متفاوتی برای یادگیری پیوسته ارائه شده است. ونگ و همکاران [۱] ، به صورت زیر رویکردها را تقسیمبندی کردهاند:

⁴Instance incremental learning

⁵Domain incremental learning

⁶Task incremental learning

رویکرد مبتنی بر تنظیم 1-Y-Y

این رویکرد بر اساس این است که از تکنیک های مبتنی بر تنظیم $^{\vee}$ برای ایجاد تعادل در وظایف قدیم و جدید استفاده کند. در حالت کلی نیز تکنیکهای منظم سازی با ایجاد تغییراتی در محاسبات باعث جلوگیری از بیش برازش مدل می شوند و در این جا نیز هدف این است که بین تاثیر مدل های قبلی و جدید تعادل ایجاد کند. برای رسیدن به این هدف نیز نیاز است که یک کپی از مدل های قبلی داشته باشد تا باعث فراموشی نشود. بر اساس اینکه چه نوع روشی استفاده شود، منظم سازی به دو دسته تقسیم می شود: منظم سازی وزن (که وزن هایی که اهمیت بیشتری در نتیجه دارند را بیشتر نگه می دارد و وزن های بی اهمیت به مدل جدید با ضریب خیلی کم یا صفر انتقال می یابند). و منظم سازی تابع (مدل جدید که با نام شاگرد از آن یاد می کند، تلاش می کند از اطلاعات خروجی مدل قبلی که با نام معلم از آن یاد می شود، برای ایجاد خروجی وظیفه ی خودش راهنمایی بگیرد) [۷، ۸].

۲-۲-۲ رویکرد مبتنی بر بازپخش

هدف این رویکرد در واقع این است که بخشی از دادههای قبلی را در حافظه ذخیره کرده و آن ها را در وظیفه ی جدید با دادههای جدید آموزش دهد و به این صورت هم مدل جدید آموزش داده می شود و هم اطلاعات قبلی فراموش نمی شوند. این رویکرد نیز به سه دسته ی بازپخش تجربه $^{\wedge}$ (انتقال بخشی از دادههای قبلی به حافظه)، بازپخش مولد $^{\circ}$ (ایجاد یک مدل مولد اضافی برای بازپخش دادههای تولید شده)، بازپخش ویژگی $^{\wedge}$ (انتقال ویژگی های مهم دادههای قبلی به وظیفه ی جدید و جلوگیری از فراموشی فاجعه بار). به عنوان مثال شین و همکاران [۹] ، مدلی به نام مدل مولد عمیق ارائه داده اند که چارچوبی است از یک معماری مدل دوگانه تعاونی، با یک مدل مولد عمیق (مولد) و یک مدل حل وظیفه (حلکننده) تشکیل شده است. مولد، مسئول تولید ورودی های جعلی است که شبیه داده های گذشته است، در حالی که حل کننده برای حل وظیفه فعلی آموزش دیده است. با درهم آمیختن دادههای آموزشی برای وظایف قبلی با دادههای مربوط به وظیفه جدید، مدل می تواند بدون فراموش کردن دانش وظایف قدیمی، وظایف جدید را یاد بگیرد. این رویکرد از ماهیت مولد هیپوکامپ، یک سامانه حافظه کوتاه مدت در مغز یستانداران الهام گرفته شده است.

⁷Regularization based

⁸Experience replay

⁹Generative replay

¹⁰Feature replay

T-T-T رویکرد مبتنی بر بهینهسازی

رویکرد مبتنی بر بهینه سازی ۱۱ به جای تغییر در تابع خطا، به دستکاری برنامه های بهینه سازی می پردازد مثلا به روزرسانی عاملها ۱۲ به گونه ای صورت گیرد که با جهت هایی مانند فضای ورودی قبلی عمود یا هم تراز باشند تا اطلاعات وظایف قبلی نیز حفظ شود.

\mathfrak{r} رویکرد مبتنی بر معماری \mathfrak{r}

رویکرد مبتنی بر معماری ۱۳ به ساخت عاملهای خاص هر وظیفه برای جلوگیری از دخالت وظیفه ها در یکدیگر می پردازد و در واقع هدف بر کاهش محدودیت استفاده از عاملهای مشترک وظیفههاست زیرا با وجود این محدودیتها، اطلاعات کمتری از وظیفهی قبل به بعد منتقل می شود و فراموشی فاجعهبار با احتمال بیشتری رخ می دهد. در این رویکرد نیز تکنیکهای مختلفی ارائه شده است مانند تخصیص عامل، تجزیه مدل و شبکه پیمانهای.

-7-7 رویکرد ترکیب رویکردها و سناریوها

یکی از راه حلها این است که از ترکیب رویکردهای ذکر شده با یکدیگر یا با دیگر رویکردهای شبکه عصبی استفاده شود. مثلا استفاده از ترکیب رویکردهای مبتنی بر منظم سازی و مبتنی بر بازپخش.

۲-۲-۶ کاربردها

یادگیری پیوسته در حوزه بینایی ماشین کاربردهای گستردهای دارد که از مهمترین آنها میتوان به تشخیص چهره، دستهبندی تصویر، تشخیص اعمال در ویدیو، بخشبندی معنایی و تلفیق زبان و بینایی اشاره کرد. این قابلیتها امکان آموزش پیوسته مدلها را بدون فراموشی اطلاعات قبلی فراهم میسازند و باعث میشوند سامانههای هوشمند در مواجه شدن با دادههای جدید، ضمن حفظ دانش گذشته، عملکرد خود را ارتقا دهند.

¹¹Optimization based approach

¹²Parameters

¹³Architecture based

۳-۲ یادگیری پیوسته در بینایی کامپیوتر

یادگیری پیوسته در زمینههای مختلفی مورد استفاده قرار گرفته است. یکی از این زمینهها بینایی کامپیوتر است که دو حوزه پرکاربرد به نام دستهبندی تصویر و تشخیص عمل را شامل شده و در ادامه به بررسی مقالات مطرح درباره ی آن ها می پردازیم.

۲–۳–۲ دستهبندی تصویر

مای و همکاران [۲] ، مقایسه ای بین رویکردهای مطرح ارائه شده برای دسته بندی تصویر انجام داده اند که در ادامه به معرفی مختصر رویکردها و مقایسه آن ها می پردازیم.

روش تثبیت وزن کشسان

جیمز و همکاران [۷] مقالهای در رابطه با روش جدیدی در زمینهی منظمسازی ارائه دادهاند. تثبیت وزن کشسان ۱۴ یک الگوریتم است که به شبکههای عصبی عمیق اجازه می دهد تا مجموعهای از وظایف پیچیده را بدون فراموش کردن فاجعه آمیز یاد بگیرند. این کار را با کاهش انتخابی انعطاف پذیری وزن انجام می دهد. این روش با محدود کردن هر وزن با یک جریمه درجه دوم کار می کند که آن را به مقداری متناسب با اهمیت آن برای عملکرد در وظایفی که قبلاً یاد گرفته شده، به سمت مقادیر قدیمی خود می کشاند. در واقع از ماتریسی به نام ماتریس اطلاعات فیشر برای محاسبه ی اهمیت وزنها در مدل قبلی استفاده می کند.

روش یادگیری بدون فراموشی

لی و همکاران [Λ] ، الگوریتم یادگیری بدون فراموشی 10 را ارائه داده اند. این الگوریتم برای یادگیری بدون فراموشی بدون فراموشی یک الگوریتم یادگیری پیوسته است که هدف آن یادگیری وظایف جدید بدون فراموشی دانش وظایف قبلی می باشد. با آموزش یک مدل اولیه بر روی یک مجموعه وظایف اولیه کار میکند. این مدل اولیه به عنوان مدل استاد نامیده میشود. هنگامی که با یک وظیفه جدید مواجه میشود، یک مدل جدید با نام مدل شاگرد، با استفاده از دادههای وظیفه جدید، آموزش میبیند. مدل شاگرد همچنین با استفاده از دادههای وظیفههای قدیمی، آموزش میبیند تا از مدل استاد پیروی کند. این به صورت

¹⁴Elastic weight consolidation (EWC)

¹⁵Learning without forgetting (LWF)

محاسبه خروجی مدل استاد برای دادههای جدید و سپس استفاده از آن خروجی به عنوان هدف برای آموزش مدل شاگرد انجام میشود. این روند به مدل شاگرد کمک میکند تا دانش وظایف قدیمی را حفظ کند، در حالی که در عین حال برای وظیفه جدید نیز بهینه میشود. از این روند به عنوان تقطیر دانش ۱۶ نیز یاد می کنند. عملکرد آن میتواند در صورتی که وظیفه جدید بسیار متفاوت از وظایف قدیمی باشد، کاهش یابد.

روش میانگین حافظه رخدادی گرادیان

چودری و همکاران [۱۰] ، الگوریتمی به نام الگوریتم میانگین حافظه رخدادی گرادیان ۱۷ ارائه کردند که با استفاده از یک حافظه ذخیره شده برای ذخیره اطلاعات مربوط به وظایف قبلی، از فراموشی فاجعه بار جلوگیری می کند. در هر مرحله از یادگیری، مدل از حافظه ذخیره شده برای تولید یک زیرمجموعه تصادفی از تجارب استفاده می کند. این تجربیات سپس برای محاسبه گام های گرادیان استفاده می شوند. گام های گرادیان فعلی سپس با گام های گرادیان زیرمجموعه تصادفی از حافظه ذخیره شده میانگین گیری می شوند. این میانگین گیری به مدل کمک می کند تا یک دیدگاه کلی تر از وظیفه فعلی به دست آورد. این دیدگاه کلی تر به مدل کمک می کند تا دانش وظایف قبلی خود را حفظ کند، حتی زمانی که در حال یادگیری یک وظیفه جدید است.

روش طبقه بندی افزایشی و یادگیری بازنمایی

ربوفی و همکاران [۱۱] ، روش طبقه بندی افزایشی و یادگیری بازنمایی ۱۸ در یادگیری پیوسته ارائه دادند که مدل با استفاده از نمونه هایی از همه دسته ها، از جمله دسته های جدید و قدیمی، آموزش داده می شود. تابع ضرر شامل یک ضرر طبقه بندی برای تشویق مدل به پیش بینی برچسب های صحیح برای دسته های جدید و یک ضرر تقطیر دانش برای تشویق مدل به بازتولید خروجی های مدل قبلی برای دسته های قدیمی است. همچنین یک روش به روزرسانی حافظه را پیشنهاد می دهد که بر اساس فاصله در فضای ویژگی های نهفته است. این روش برای انتخاب زیرمجموعه ای از نمونه ها از هر دسته استفاده می شود که میانگین ویژگی های نهفته آنها به میانگین همه نمونه ها در این دسته نزدیک ترین است.

¹⁶Knowledge distillation (KD)

¹⁷Averaged Gradient Episodic Memory (A-GEM)

¹⁸Incremental Classifier and Representation Learning (iCaRL)

روش حداكثر تداخل ارزيابي

الجاندی و همکاران [۱۲] ، روشی به نام حداکثر تداخل ارزیابی ۱۹ را ارائه داده اند که یک روش مبتنی بر بازپخش است که اخیراً با هدف بهبود راهبرد بازیابی حافظه پیشنهاد شده است. این روش، نمونههای بازپخش را با توجه به افزایش ضرر با داشتن به بهروزرسانی عامل تخمین زده شده بر اساس دسته های کوچک ورودی انتخاب می کند. نمونههای حافظه را که بیشترین تداخل (افزایش ضرر) را با بهروزرسانی حافظه عامل با دسته ورودی جدید دارند، انتخاب می کند. همچنین نمونه گیری مخزن را در بهروزرسانی حافظه اعمال می کند و نمونههای حافظه انتخابی را با نمونههای جدید در بهروزرسانی مدل دوباره پخش می کند.

۲-۳-۲ تشخیص عمل

تشخیص عمل یکی از مباحث پیشرفته امروزی است که به علت اضافه شدن عامل زمان، پیچیدگیهای بیشتری نسبت به تصویر پیدا کرده است. همچنین به علت حجیم بودن دادهها در این مسائل، یادگیری مدوام ضرورت پیدا می کند. زیرا در طول زمان مثلاً دستهها و دادههای بیشتری به مدل اضافه می شوند و مدل نمی تواند دوباره از ابتدا این حجم داده را آموزش دهد. پس چند سال اخیر، مطالعههایی نیز در این زمینه شده و روشهای جدید با مجموعه دادههای مختلف ارائه شده است. که به چندین مقاله در ادامه می پردازیم.

روش مین هاس

مین هاس و همکاران [۱۳] ، یک روش یادگیری پیوسته برای تشخیص اعمال انسان ارائه دادهاند. این روش بر پایه یک چارچوب است که دو تکنیک، یعنی تقریب شکل و یادگیری تحلیلی، را با هم ترکیب می کند. تقریب شکل برای ثبت شکل بازیگر در ویدیو استفاده می شود. به این صورت که با تغییراتی که به شکل می دهیم، از تصاویر شدت نور بهره برداری می کنیم تا ویژگی های مربوط به جهت گرادیان ها را استخراج کنیم. هنگامی که حرکت در ویدیو پیش می رود، شکل با تغییر و تنظیم چندین قطعه کوچک داخل یک پنجره ی پیگیری، به طور دقیق به تغییرات مرزها پیگیری می کند. به منظور یادگیری دینامیکهای غیر خطی حرکتها، از یادگیری تحلیلی استفاده می شود. این فرآیند یادگیری به شکل بازگشتی انجام می شود و از طریق آن آموزش به نمایش خطی ساده تبدیل می شود. این روش دو مزیت دارد: کمینه کردن خطاها و کاهش قابل توجه زمان محاسباتی، و از بین بردن محدودیتهای آموزش دارد: کمینه کردن خطاها و کاهش قابل توجه زمان محاسباتی، و از بین بردن محدودیتهای آموزش

¹⁹Maximally Interfered Retrieval (MIR)

به صورت دستهای برای تشخیص اعمال. این روش یادگیری پیوسته اجازه میدهد که مدل به تدریج با ورودی دادههای جدید بهروز شود. این روش مقابل یادگیری دستهای است که در آن برای آموزش دستهبند تمام مجموعه داده آموزشی استفاده میشود.

روش الزنت

لی و همکاران [۱۴] روشی به نام الزنت را ارائه کردند که با انتخاب و بهروزرسانی پویاترین بلوکهای یادگیری از فراموشی فاجعهبار در شناسایی عمل جلوگیری می کند. هنگام یادگیری اعمال جدید، الزنت به دنبال بلوکهای یادگیری می گردد که بیشترین ارتباط را با عمل فعلی دارند و عاملهای آنها را بهروزرسانی می کند، در حالی که عاملهای بلوکهای غیرانتخابی را حفظ می کند. این راهبرد بهروزرسانی انتخابی به حفظ دانش حرکات قبلاً یادگیری شده کمک می کند و مشکل فراموشی را کاهش می دهد. با بهروزرسانی فقط بلوکهای مرتبط، از وارد کردن نویز و اختلالات غیرمرتبط به دانش قبلی جلوگیری می کند، که منجر به عملکرد بهتر در یادگیری اعمال جدید می شود.

روش تعبیه همسایه تی تصادفی موقت تحت نظارت

چنگ و همکاران [۱۵] یک روش برای تشخیص حرکات انسان با استفاده از تعبیهسازی همسایگی تصادفی زمانی نظارت شده و یادگیری پیوسته ارائه کرده اند. الگوریتم برای یادگیری ارتباط بین قابهای عمل به کار میرود و اطلاعات دسته و زمانی را تلفیق می کند. یادگیری پیوسته برای تعبیهسازی کمبعدی دادههای جدید با استفاده از رویکردهایی نظیر تعبیه خطی محلی و پیش بینی حفظ محلی استفاده می کند. می شود. همچنین سه روش برای یادگیری پیوسته در زمینه تشخیص حرکات انسان توصیف می کند.

روش پاریزی

پاریزی و همکاران [۱۶] رویکردی را ارائه کردهاند که باعث جلوگیری از فراموشی دانش با شبکهی سلسله مراتبی خودسازمانده می شود. در این شبکهی سلسله مراتبی هر لایه به صورت شبکه رشد هنگام نیاز است به این صورت که نورونهای جدید را تخصیص می دهد یا نورونهای موجود را بر اساس اختلاف بین توزیع ورودی و وزنهای نورونهای نمونهای بهروز می کند.

۴-۲ مدلهای بینایی-زبان

مدلهای زبانی بزرگ ۲۰ شبکههای عصبی ترنسفورمر مقیاس پذیری هستند که با آموزش بر حجم عظیمی از دادههای متنی، قادرند زبان طبیعی را تولید، درک و تحلیل کنند. این مدلها به دلیل ظرفیت بالای خود در یادگیری، نقش اساسی در پیشرفتهای اخیر پردازش زبان طبیعی ۲۱ ایفا کردهاند. به دنبال این پیشرفتها پژوهشهای زیادی انجام شده است که از این مدلها در کاربردهای بینایی ماشین نیز استفاده کردهاند [۱۷]. مدلهای بینایی-زبان ۲۲ دستهای از مدلهای هوش مصنوعی هستند که به طور همزمان قادر به تحلیل و درک دادههای بصری (تصویر یا ویدیو) و زبانی (متن) میباشند. این مدلها با استفاده از حجم انبوهی از دادههای تصویر-متن که به صورت گسترده در وب موجود است، آموزش میبینند. ایده اصلی پشت این مدلها، یادگیری همبستگی میان نمایشهای تصویری و متنی در یک فضای مشترک نهفته ۲۳ است. به عنوان نمونه، مدل [۱۸] که توسط OpenAI ارائه شده است، با بهره گیری از صدها میلیون جفت تصویر و متن، توانسته است عملکرد قابل قبولی در وظایف مختلف بینایی و زبانی ارائه دهد. مدلهای بینایی-زبان به دلایل متعددی مورد توجه پژوهشگران قرار گرفتهاند که به برخی از ارائه دهد. مدلهای بینایی-زبان به دلایل متعددی مورد توجه پژوهشگران قرار گرفتهاند که به برخی از ارتها در ادامه اشاره میکنیم [۱۷]:

- توانایی پیشبینی در حالت یادگیری بدون نمونه: این مدلها قادرند وظایف جدید را بدون نیاز به بازآموزی ^{۲۵}، انجام دهند. به این حالت، یادگیری بدون نمونه ^{۲۶} گفته می شود.
- چند کاربردی بودن: یک مدل واحد می تواند در وظایف متنوعی همچون دسته بندی تصویر، تشخیص اشیا، بازیابی تصویر بر اساس متن و تولید توضیح برای تصویر به کار گرفته شود.
- قابلیت مقیاسپذیری بالا: امکان آموزش بر روی میلیاردها جفت تصویر-متن و دستیابی به تعمیمپذیری قابل توجه در دامنههای گوناگون را دارد.

آموزش این مدلها هزینه ی محاسباتی بالایی دارد اما طریقه ی استفاده از آنها به صورتی است که این چالش تعدیل شود. استفاده از این مدلها به سه مرحله ی اصلی تقسیم می شود: پیش آموزش، یادگیری انتقالی و تقطیر دانش که در ادامه بررسی می گردد.

²⁰Large Language Models (LLMs)

²¹Natural language processing

²²Vision language models (VLMs)

²³Embedding space

²⁴Contrastive Language-Image Pre-training (CLIP)

²⁵Retraining

²⁶Zero-shot learning

۲-۴-۲ پیش آموزش مدلهای بینایی-زبان

،در مرحله ی پیش آموزش مدلهای بینایی-زبان 77 مدل با بهره گیری از حجم انبوهی از دادههای تصویر متن بدون برچسب، به گونهای آموزش میبیند که توانایی در ک همزمان مفاهیم زبانی و تصویری را کسب کند. سه نوع هدف آموزشی عمده در این بخش عبارتاند از:

اهداف تقابلي

در روش اهداف تقابلی 7 مدل یاد می گیرد تا نمایش جفتهای صحیح تصویر-متن را به یکدیگر نزدیک و جفتهای نادرست را از هم دور کند. به عنوان مثال مدل CLIP که با هدف تقابلی و دادههای وبمقیاس آموزش داده شد و توانست در بیش از 7 وظیفه نمونه-صفر عملکرد موفقی ارائه دهد.

اهداف مولد

در اهداف مولد ^{۲۹} مدل به بازسازی بخشهای حذفشده از تصویر یا متن میپردازد یا توصیف متنی برای تصویر و تصویر تولید می کند. به عنوان نمونه، مدل FLAVA [۱۹] با بهره گیری همزمان از ماسک کردن تصویر و زبان، دانش چندحالتهای را در یک مدل واحد می آموزد.

اهداف هم ترازي

اهداف همترازی ^{۳۰} بر همخوانی معنایی میان تصویر و متن، به صورت کلی ^{۳۱} یا حتی به صورت محلی ^{۳۲} تحست تمرکز دارند. مدل GLIP [۲۰] با همترازی زبان-ناحیه توانست به شناسایی اشیای واژگان-باز ^{۳۳} دست یابد.

۲-۴-۲ یادگیری انتقالی مدلهای بینایی-زبان

برای استفاده از مدلهای بینایی-زبان در وظایف خاص مانند دستهبندی تصویر، تشخیص اشیا یا بازیابی تصویر، لازم است که مدل با روشهایی کمهزینه و تطبیقی انتقال یابد. مهمترین روشها عبارتاند از:

²⁷Vision-language model pre-training

²⁸Contrastive objectives

²⁹Generative objectives

³⁰Alignment objectives

³¹image-text matching

³²region-word matching

³³Open-vocabulary

تنظيم پرامپت

در روش تنظیم پرامپت ^{۱۲}، بهجای تغییر ساختار داخلی مدل یا بازآموزی کامل آن، تلاش می شود تا ورودی های متنی (و در برخی موارد تصویری) به گونهای هوشمندانه طراحی یا بهینه شوند که مدل بتواند عملکرد بهتری در وظیفهٔ موردنظر ارائه دهد. در واقع، مدل اصلی ثابت می ماند و تنها شکل ورودی هایی که به آن داده می شود، به کمک الگوریتم هایی قابل یادگیری، تغییر می کند. این رویکرد به ویژه برای وظایف با یادگیری محدود بسیار کارآمد است؛ زیرا به مدل اجازه می دهد با استفاده از اطلاعات آموخته شده قبلی، خود را با وظیفه ی جدید تطبیق دهد بدون آنکه عامل هایش خیلی تغییر کند. لیو و همکاران [۲۱]، تشخیص حرکت را به مسئله ی تطبیق ویدیو – متن تبدیل کرده اند تا از قدرت نمایش های زبانی بهره ببرند. پرامپتسازی نقش کلیدی در نزدیکسازی وظیفه ی هدف به ساختار داده های پیش تمرین شده دارد و پرامپتسازی نقش کلیدی در شرایط یادگیری بدون نمونه می شود. در مدل CoOp [۲۲] بهجای استفاده از پرامپتهایی از کلمات به صورت بردارهایی آموزش پذیر به مدل داده می شوند و نقش آنها تقویت طراحی شدند. این کلمات به صورت بردارهایی آموزش پذیر به مدل داده می شوند و نقش آنها تقویت معنای دسته بندی برای مدل است. این روش، که در بخش بعدی بیشتر به آن پرداخته می شود، باعث شد دقت مدل CLIP در دسته بندی چنددسته به ویژه در شرایط یادگیری محدود به طور قابل توجهی شد دقت مدل CLIP در دسته بندی چنددسته به ویژه در شرایط یادگیری محدود به طور قابل توجهی

وفق دهندهی ویژگی

وفق دهنده ی ویژگی ^{۲۵} یکی از روشهای مؤثر برای انتقال مدلهای بینایی-زبان به وظایف جدید بدون نیاز به بازآموزی کامل شبکه است. در این رویکرد، بهجای تغییر عاملهای اصلی مدل، لایههایی سبک و کمعامل به انتهای یا میانه ی شبکه اضافه می شود تا ویژگیهای استخراج شده از تصویر یا متن را با نیازهای وظیفه ی خاص منطبق کند. این تطبیق دهنده ها می توانند به صورت افزونه هایی جدا از معماری اصلی عمل کنند، بنابراین هسته ی مدل بدون تغییر باقی می ماند. در روش CLIP-Adapter [۲۳] مجموعه ای از لایههای سبکوزن به مدل CLIP افزوده شد تا ویژگیهای استخراج شده از تصویر و متن پیش از تصمیم گیری نهایی پردازش و تطبیق یابند. این کار برای وظایف یادگیری کم نمونه نیز مؤثر بود، زیرا بدون نیاز به تغییر در مدل پایه، عملکرد بسیار مناسبی حاصل شد. این روش انتقالی به دلیل کمهزینه بودن و عدم نیاز به تغییر مجدد کل مدل، برای بسیاری از کاربردهای عملی مناسب است.

³⁴Prompt Tuning

³⁵Feature adapter

ساير روشها

در کنار تنظیم پرامپت و تطبیق دهنده های ویژگی، برخی روشها نیز با تغییر مستقیم در عاملهای مدل، در بهبود عملکرد مدل برای وظایف خاص، نقش دارند. این روشها معمولاً شامل تنظیم دقیق کامل یا تلفیق مدلهای یادگرفته شده با مدل اولیه هستند. در روش Wise-FT ، یک رویکرد ساده اما مؤثر ارائه شده است که در آن وزنهای مدل پایه و مدل تنظیم دقیق شده به صورت میانگین گیری وزنی ترکیب می شوند. این تکنیک باعث می شود که مدل هم از تعمیم پذیری مدل اولیه بهره ببرد و هم بتواند دانش خاص وظیفه ی جدید را بیاموزد، بدون آنکه دچار بیش برازش شود. در توسعه ی این روش، ونگ و همکاران [۲۵]، روش Open-VCLIP را برای تطبیق مدل CLIP برای داده های ویدیویی ارائه دادند به صورتی که دانش مدل CLIP نیز حفظ شود. این مدل در فصل بعد به صورت مفصل تری توضیح داده خواهد شد.

۲-۴-۲ تقطیر دانش

در تقطیر دانش ^{۳۶} دانش مدل بینایی-زبان به یک مدل سبکتر منتقل می شود تا بتوان از آن در کاربردهای خاص و با منابع محدود استفاده کرد. دو کاربرد اصلی عبارتاند از:

تقطیر دانش برای تشخیص شیء

در حوزه ی بینایی کامپیوتر، یکی از چالشهای مهم، شناسایی اشیائی است که در دادههای آموزش مدل پایه وجود نداشتهاند. روشهای متداول تشخیص شیء نیازمند برچسبگذاری دقیق و پرهزینه ی دادهها برای هر دسته هستند. در این میان، مدلهای بینایی-زبان مانند CLIP که از دادههای وبمقیاس و متنهای توصیفی متنوع آموزش دیدهاند، دارای دانش گستردهای درباره ی مفاهیم بصری و زبانی هستند که میتوان از آنها برای توسعه ی مدلهای تشخیص شیء استفاده کرد. در مدل VILD [۲۶] نمونهای برجسته از این رویکرد است. این مدل با استفاده از تقطیر دانش از CLIP یک آشکارساز دو مرحلهای توسعه داده است که میتواند اشیاء خارج از مجموعه ی برچسبگذاری شده ی اولیه را شناسایی کند؛ به این صورت که ویژگیهای بصری استخراج شده از تصاویر با تعبیه های متنی مدل CLIP مقایسه می شوند تا به جای اتکا به دستههای از پیش تعریف شده، اشیاء جدید نیز قابل شناسایی باشند. این روش نوعی تشخیص شیء واژگان-باز را ممکن می سازد که در بسیاری از کاربردهای دنیای واقعی اهمیت بالایی دارد.

³⁶Knowledge distillation

تقطیر دانش برای بخشبندی معنایی

بخشبندی معنایی به معنای اختصاص یک برچسب معنایی به هر پیکسل از تصویر است و از وظایف کلیدی در درک صحنه محسوب می شود. پیاده سازی موفق این وظیفه معمولاً نیازمند مجموعه داده های پر حجم و برچسب خورده در سطح پیکسل است، که تولید آنها بسیار پرهزینه و زمان بر است. با این حال، مدلهای بینایی-زبان که از داده های ضعیف برچسب خورده یا بدون برچسب بهره می برند، می توانند دانش انتزاعی خود را به مدلهای سبک تر انتقال دهند تا نیاز به برچسب گذاری کاهش یابد. در CLIPSeg انتزاعی خود را به مدلهای استخراج شده توسط CLIP برای هر تصویر استفاده می کند و با افزودن یک رمزگشای سبک ۲۰ امکان پیش بینی نقشه های بخش بندی معنایی را تنها بر اساس توصیف متنی (prompt) فراهم می کند؛ برای مثال، با دادن جمله ای مانند «گربه در تصویر کجاست؟»، مدل قادر به تولید نقشه ای است که که این مدل به یادگیری بدون که نواحی مربوط به گربه را برجسته کند. نکته قابل توجه این است که که این مدل به یادگیری بدون نمونه دست یافته و برای انجام این کار نیازی به آموزش مجدد بر روی داده های هدف ندارد، که آن را برای کاربردهای در دنیای واقعی بسیار کار آمد و مقیاس پذیر می سازد.

۵-۲ یادگیری پیوسته در مدلهای بینایی-زبان

بیشتر مدلهای زبانی بزرگ و بینایی-زبان، در شرایط ایستا آموزش میبینند و توانایی کمی در انطباق با دادههای جدید، بدون بازآموزی کامل، دارند. این محدودیت، باعث توسعه و پیادهسازی روشهای متنوع یادگیری پیوسته در این مدلها شده است. در این زمینه، ژنگ و همکاران [۲۸] طبقهبندی شکل ۲-۱ را برای روشهای متفاوت یادگیری پیوسته ارائه دادهاند که در ادامه به آن پرداخته می شود.

$1-\Delta-1$ روشهای مبتنی بر حافظه

در این روش، مدل بخشی از دادههای قدیمی را ذخیره کرده و در کنار دادههای جدید برای آموزش مجدد استفاده می کند. این رویکرد با هدف کاهش پدیده ی فراموشی طراحی شده است، که در آن مدل، دانش قبلی خود را هنگام یادگیری اطلاعات جدید از دست می دهد. محدودیت در ذخیره سازی داده های قدیمی چالش اصلی این روش است [۲۸]. گارگ و همکاران [۲۹]، روشی برای آموزش پیوسته ی مدلهای بینایی - زبان مانند CLIP، در مواجه شدن با داده های و بمقیاس و در حال تغییر زمانی، ارائه کرده اند.

³⁷Lightweight decoder

شکل ۲-۱: طبقهبندی روشهای یادگیری پیوسته در مدلهای بینایی بزرگ و بینایی-زبان [۲۸]

این روش با بهره گیری از بازپخش دادههای گذشته و استفاده از مدل پیش آموخته به عنوان نقطه شروع، امکان به روزرسانی کارامد مدل را، بدون نیاز به باز آموزی کامل، فراهم می کند.

$7-\Delta-7$ روشهای مبتنی بر تنظیم

در این روش، مدل از مکانیزمهایی مانند جریمه یا محدودسازی برای حفظ اطلاعات قبلی استفاده می کند. هدف این است که عاملهایی که در یادگیری گذشته مهم بودهاند، هنگام آموزش جدید کمتر تغییر کنند. در این روش، در صورت حجم زیاد وظایف، اثربخشی کاهش می یابد [۲۸].

$\Upsilon - \Delta - \Upsilon$ روشهای مبتنی بر تقطیر دانش

مدل دانش خود را از مدلهای قبلی یا معلم یاد می گیرد و توجه به مواردی مانند حساسیت به دقت مدل معلم و انتخاب صحیح داده ها برای تقطیر حائز اهمیت است [۲۸]. لو و همکاران [۳۰]، با هدف کاهش فراموشی در یاد گیری افزایشی ویدیو، از روشی به نام تقطیر توجه 74 استفاده کردهاند که در آن ویژ گیهای توجه از خروجی کدگشای ترنسفورمر CLIP، به مدل جدید منتقل می شود. این رویکرد به مدل کمک می کند تا دانش مراحل قبلی را حفظ کرده و در عین حال بتواند دسته های جدید را بدون نیاز به آموزش کامل مجدد یاد بگیرد.

\mathfrak{r} روشهای مبتنی بر معماری \mathfrak{r}

در این رویکرد، معماری مدل برای جذب وظایف جدید، بدون تداخل با وظایف قبلی، تغییر می کند؛ مانند افزودن پیمانه ^{۳۹} استفاده از تطبیق دهندهها و ژنگ و همکاران [۲۸]، با بررسی روشهای مختلف

³⁸Attention distillation

³⁹Module

شکل ۲-۲: روشهای یادگیری پیوسته مبتنی بر معماری در مدلهای زبانی بزرگ و بینایی-زبان [۲۸] ارائهشده در این رویکرد، طبقهبندی مطابق با شکل ۲-۲ ارائه داده اند که در ادامه به بررسی آنها پرداخته میشود.

تنظيم يراميت

همانطور که در بخش یادگیری انتقالی مدلهای بینایی-زبان ذکر شد، در روش تنظیم پرامپت، به جای بازآموزی کامل یا تغییر در عاملهای اصلی مدل، مجموعهای از بردارهای قابل آموزش به عنوان پرامپت به ابتدای نشانههای ورودی * اضافه میشوند. این بردارها بدون دست کاری در ساختار درونی مدل، نقش راهنما را ایفا کرده و جهت گیری مدل در تفسیر دادههای جدید را مشخص میسازند. در واقع، مدل با همان دانش قبلی خود به تحلیل ورودی میپردازد، اما به واسطهی پرامپتهای جدید، قادر به تطبیق با وظایف تازه میشود [۲۸]. این روش به دلیل مصرف کم منابع محاسباتی و عدم نیاز به تغییر در عاملهای اصلی، به ویژه برای سناریوهایی با دسترسی محدود به مدل یا منابع، بسیار مناسب است و الگوی مورد استفاده در این روش، می تواند به خوبی برای مسائل یادگیری پیوسته نیز استفاده شود [۲۸]. ژو و همکاران [۲۲]، رویکردی به نام بهینه سازی بافت یادگرفتنی تا که در کنار برچسب متنی دادهها قرار پرامپتهای ثابت، از پرامپت به صورت بردارهای بافت یادگرفتنی ۲^{**} که در کنار برچسب متنی دادهها قرار می گیرند، استفاده می کند. مطابق شکل ۲-۳، تمام وزنهای مدل CLIP، ثابت نگه داشته شده و تنها بردارهای پرامپت، قابل آموزش هستند. به دنبال توسعه ی روش های پرامپت گذاری، روش (۲۲] ارائه شده است، یک چارچوب نوآورانه برای یادگیری پیوسته بدون نیاز به شناسایی وظیفه در زمان آزمون می باشد. همان طور که در شکل ۲-۴ مشاهده می شود، این روش به جای شناسایی وظیفه در زمان آزمون می باشد. همان طور که در شکل ۲-۴ مشاهده می شود، این روش به جای تغییر وزنهای مدل پیش آموخته، از مجموعهای از پرامپتهای یادگرفتنی بهره می برد که در یک فضای

⁴⁰Input tokens

⁴¹Context Optimization (CoOp)

⁴²Learnable context vectors

⁴³Learning to Prompt for Continual Learning

شکل ۲-۳: نمایش روش CoOp [۲۲]

شکل ۲-۴: نمایش روش L2P در زمان آزمون [۳۱]

حافظه اشتراکی به نام استخر یرامیت ^{۴۴} نگهداری میشوند. L2P از یک مکانیزم پرسوجوی مبتنی بر جفتهای کلید-مقدار بهره میبرد تا بهصورت پویا و متناسب با ورودی، پرامپتهای مرتبط را انتخاب کرده و به نشانههای ورودی مدل، اضافه کند. سپس این نشانههای توسعه یافته به مدل پیش آموخته تزریق شده و پیشبینی انجام میشود. در این روش، پرامپتها، دانش خاص هر وظیفه یا دانش مشترک بین وظایف را بهصورت فشرده ذخیره می کنند و باعث کاهش چشمگیر فراموشی مخرب در یادگیری وظایف متوالی می شوند. ساختار طراحی شده در L2P همان طور که در شکل ۲-۴ نشان داده شده، از یک بخش انتخاب پرامیت، لایههای کدگذار پیش آموخته ۴۵، و دستهبند نهایی تشکیل شده است. جهت بهبود و مقاومسازی نسبت به فراموشی در انتخاب پرامیت روشهای پیشین، مارتین و همکاران [۳۲]، روش STAR-Prompt را معرفی کردهاند که از رویکردی دوسطحی برای تنظیم پرامیت، پیروی می کند. ابتدا از CLIP، برای تولید پرامیتهای متنی و ساخت نمونههای اولیه ۴۶ پایدار دستهها، استفاده می شود و سیس این نمونههای اولیه بهعنوان کلید برای بازیابی پرامیتهای تصویری در ترنسفورمر تصویر به کار می روند. همچنین روشهای DualPrompt [۳۴] و H-prompts و ۳۳]، مانند مطالعات مذکور، در زمینهی تولید پرامپتهای مشترک و خاص وظایف ارائه شدهاند. داهویین و همکاران [۲۵]، از پرامپت اختصاصی برای هر نمونه به جای هر دسته، استفاده کر دهاند. بر خلاف روشهای پر امیت گذاری قبلی، هنگ و همکاران [۳۶]، علاوه بر استفاده از یک پرامپت به جای چندپرامپت، از نمونه های پرت مصنوعی برای ایجاد مرز دستهبندی بهتر استفاده کردهاند. در مطالعات دیگری مانند روش یکپارچهسازی دانش بدون تداخل و آگاه از توزیع [۳۷] ۴۰، به رفع چالش مداخلهی پرامیت در تصمیمگیری مکانیزم توجه پرداخته شده است. به دنبال پیشرفتهای روشهای پرامپت در حوزهی تصویر، ویلا و همکاران [۲۸]، روشی به نام PIVOT را معرفی کردهاند که با بهره گیری از دانش پیش آموخته مدل تصویر -متن CLIP و استفاده از پرامپتهای مکانی ^{۴۸} و زمانی، وابستگیهای زمانی و مکانی ویدیوها را مدل کرده است. وانگ و همکاران [۳۹] نیز با هدف ارتقای عملکرد مدل CLIP در تشخیص حرکتهای انسانی در ویدیوها، چارچوبی معرفی کردهاند که با استفاده از مدل سازی حرکتی و پرامیتهای پویا، به شکلی مؤثر اطلاعات حرکتی را وارد فرآیند یادگیری می کند بدون اینکه به تغییر عاملهای اصلی CLIP نیاز باشد. در مواردی نیز مانند روش ViLT-CLIP [۴۰]، از هر دو نوع پرامپت برای تصویر و متن برای درک ویژگیهای ویدیویی

⁴⁴Prompt pool

⁴⁵Pretrained encoder layers

⁴⁶Prototypes

⁴⁷Distribution-aware Interference-free Knowledge Integration (DIKI)

⁴⁸Spatial prompts

استفاده شدهاست.

تنظيم پيشوند

در روش تنظیم پیشوند ۴۹، مجموعهای از عاملهای قابل آموزش به عنوان پیشوند به ابتدای هر لایه ی ترنسفورمر افزوده می شود تا رفتار مدل را در انجام وظایف خاص تنظیم کند. این پیشوندها نقش تغییرات زمینهای را ایفا کرده و برخلاف تنظیم پرامپت، چندین لایه از مدل را تحت تأثیر قرار می دهند [۲۸]. روی و همکاران [۴۱]، روشی معرفی کردهاند که با استفاده از پیشوندهای قابل یادگیری در هر لایهی مدل، امکان یادگیری وظایف جدید را بدون فراموشی وظایف قبلی فراهم می کند. این پیشوندها با ترکیب کانولوشن و اطلاعات مشترک بین وظایف، باعث انتقال بهتر دانش و کاهش تعداد عاملهای لازم در یادگیری پیوسته می شوند.

سازگارسازی رتبهپایین

با وارد کردن ماتریسهای رتبهپایین در لایههای معینی از مدل پیش آموخته و منجمد، روش سازگارسازی رتبهپایین ^{۵۰}، امکان تنظیم هدفمند بخشهایی از مدل را بدون باز آموزی کامل فراهم میسازد [۲۸]. مارتین و همکاران [۴۲]، به نتیجه رسیدند که در زمینهی یادگیری پیوسته، جایگزینی روش مذکور به بهباود عملکرد مدل می گردد.

وفق دهنده

همانطور که در بخش یادگیری انتقالی مدلهای بینایی-زبان ذکر شد، وفق دهندهها شبکههای عصبی کوچک با ساختار فشردهای هستند که بین لایههای مدل اصلی قرار می گیرند و به مدل امکان میدهند ویژگیهای جدید را یاد بگیرد، بدون آن که نیازی به تغییر عاملهای اصلیِ از پیش آموزش دیده باشد [۲۸]. به همین دلیل، میتوان این روش را نیز در یادگیری پیوسته استفاده نمود. در برخی روشها مانند DIA [۴۳] و EASE [۴۴]، از وفق دهندههای سبکوزن و اختصاصی برای هر وظیفهی جدید استفاده میشود تا مدل بتواند بدون بازآموزی کامل یا ذخیره دادههای قدیمی، دانش جدید را جذب کند. این دو روش، امکان بهروزرسانی مدل را بدون آسیب به دانش قبلی فراهم کرده و تصمیم گیری ترکیبی میان دستههای قدیم و جدید را ممکن میسازند. دانگ و همکاران [۴۵]، در مطالعهای دیگر،

⁴⁹Prefix tuning

⁵⁰Low-Rank Adaptation (LoRA)

روشی به نام C-ADA، ارائه دادهاند که با استفاده از وفق دهندههایی با قابلیت گسترش عاملی، یادگیری وظایف جدید را بدون نیاز به ذخیره دادههای گذشته ممکن میسازد. این روش با حفظ عاملهای قبلی و افزودن وزنهای جدید، از تداخل دانش جلوگیری کرده و عملکرد و سرعت آموزش را بهطور محسوسی بهبود می دهد. برای رفع چالش تداخل عاملهای دستههای مشابه در یادگیری پیوسته، هانگ و همکاران بهبود می دهد. برای رفع چالش تداخل عاملهای دستههای مشابه در یادگیری پیوسته، هانگ و همکاران [۴۶]، با استفاده از وفق دهندههای قابل تنظیم، ابتدا بازنماییهای متنی را متناسب با تأثیر دستههای جدید بر دستههای قدیمی اصلاح می کنند و سپس با یک راهبرد تجزیه و ادغام عاملها، فراموشی مدل در حین تنظیم وفق دهندهها را کاهش می دهند. در حوزه ی ویدیو نیز، پن و همکاران [۴۷]، روشی به نام در حین تنظیم وفق دهندهها را کاهش می دهند. در حوزه ی ویدیو نیز، پن و همکاران ایش آموخته، آن در برای وظایف ویدیویی قابل استفاده کرده است.

مخلوط خبرهها

روش مخلوط خبرهها ^{۱۵}، با استفاده از یک مکانیزم دروازهای، بهصورت پویا تعدادی از شبکههای عصبی خبره را برای انجام هر وظیفه فعال می کند. این ساختار باعث می شود مدل بخشهای مختلف خود را به وظایف متنوع اختصاص دهد و عملکرد بهتر و مقیاس پذیری بیشتری پیدا کند. ونگ و همکاران [۴۸]، در این زمینه رویکردی را ارائه دادهاند که مدل بهصورت خودکار تصمیم می گیرد که بسته به تغییر داده یا وظیفه، از کدام وفق دهندههای موجود استفاده کند یا وفق دهندهی جدیدی اضافه نماید، تا تعادلی میان حفظ دانش قبلی و یادگیری دانش جدید ایجاد شود. در ادامه نیز، یو و همکاران [۴۹]، با استفاده از همین روش و با گسترش تدریجی مدل CLIP و استفاده از مسیرهای انتخابی میان وفق دهندههای خبره و مدل اصلی، قابلیت تشخیص یادگیری بدون نمونه حفظ شده و در عین حال بار محاسباتی به شکل چشم گیری کاهش می یابد.

⁵¹Mixture of Experts (MoE)

فصل سوم روش پیشنهادی

۳–۱ مقدمه

روشهای موجود در زمینه یادگیری پیوسته برای دادههای ویدیویی با وجود پیشرفتهای اخیر، همچنان با مشکلات اساسی روبهرو هستند. اغلب این روشها برای مقابله با فراموشی فاجعهبار به استفاده از بافرهای بازپخش یا ذخیرهسازی دادههای قبلی متکی هستند که نیازمند حافظه بالا و ناسازگار با محدودیتهای حریم خصوصی است. از طرفی، برخی رویکردها به مدلهای از پیش آموزشدیده متکیاند، اما برای انطباق با دادههای ویدیویی نیاز به آموزش یا تنظیم مجدد کدگذارهای زمانی دارند، که فرآیندی زمانبر، پرهزینه و وابسته به منابع سختافزاری سنگین است. علاوه بر این، بسیاری از این روشها از ساختارهای مبتنی بر وظیفه ۱ استفاده میکنند که مدیریت و نگهداری آنها در سناریوهای واقعی و وظایف متوالی دشوار بوده و باعث کاهش تعمیمپذیری میشود.

با توجه به این محدودیتها، نیاز به رویکردهایی احساس می شود که بتوانند بدون وابستگی به ذخیرهسازی وسیع دادههای گذشته یا آموزش سنگین کدگذارها، عملکرد بهتری در دادههای ویدیویی ارائه دهند و در عین حال ماهیت مستقل از وظیفه ۲ داشته باشند. هدف چنین رویکردهایی این است که از ظرفیت مدلهای بزرگ و از پیش آموزش دیده استفاده کرده و با اضافه کردن لایههای سبک یا پرامپتهای یادگیرنده، بدون تغییر مستقیم عاملهای اصلی مدل، دانش قبلی را حفظ و با دادههای جدید تطبیق یابند.

در این راستا، ما روشی پیشنهادی ارائه می دهیم که با ترکیب قابلیتهای روش Open-VCLIP [۳۱] از پرامپتهای سبک و پویا برای انطباق با وظایف جدید استفاده می کند و نیاز به آموزش سنگین کدگذارهای زمانی را برطرف می سازد. این روش با بهره گیری بهینه از دانش مدلهای پیش آموزش دیده، کاهش فراموشی فاجعه بار و حفظ کارایی در سناریوهای واقعی را هدف قرار داده است. انتظار می رود این روش با مصرف سخت افزاری کمتر، وظایف جدید را به طور پیوسته فراگرفته و بدون وابستگی به شناسه وظایف، عملکردی کارآمد و مقیاس پذیر ارائه دهد.

¹Task specific

²Task-agnostic

۲-۳ روش پیشنهادی برای یادگیری پیوسته تشخیص حرکت انسان

در این بخش، روش پیشنهادی ما برای یادگیری پیوسته تشخیص حرکت انسان معرفی میشود که بر پایه ترکیب دو رویکرد Open-VCLIP و Open-VCLIP بنا شده است. ایده این روش آن است که از قابلیتهای Open-VCLIP برای استخراج ویژگیهای چندماهیتی (تصویر-متن) بهره گرفته و در عین حال از سازوکار پرامپتهای یادگیرنده در L2P استفاده شود تا مدل بتواند بدون نیاز به تغییر مستقیم عاملهای کدگذار اصلی، خود را با وظایف متوالی تطبیق دهد. این ترکیب باعث میشود که مشکل فراموشی فاجعهبار کاهش یافته، حافظهی مورد نیاز برای ذخیرهسازی نمونهها به حداقل برسد و مدل به صورت مستقل از وظیفه، وظایف جدید را پردازش کند. به عبارت دیگر، ما با این رویکرد سعی کردهایم مزیتهای هر دو روش را با هم ترکیب کنیم: قدرت تعمیمدهی و دانش وسیع Open-VCLIP کردهایم مزیتهای هر دو روش را با هم ترکیب کنیم: قدرت تعمیمدهی و دانش وسیع ProActionCLIP نامگذاری و انعطاف پذیری L2P در مدیریت وظایف پیوسته. مدل پیشنهادی ما که ProActionCLIP تامگذاری شده است، شامل دو مرحلهی آموزش و آزمون میباشد که پس از معرفی مدلهای پایهی استفاده شده،

۳-۳ مدل Open-VCLIP

مدلهای بینایی-زبان مانند CLIP، به دلیل توانایی یادگیری نمایشهای مشترک تصویر و متن، عملکرد قابل توجهی در وظایف بینایی و زبانی داشته اند. با این حال، این مدلها در حالت پایه برای دادههای ایستا (تصاویر) طراحی شده اند. Open-VCLIP با گسترش معماری CLIP و افزودن قابلیت درک اطلاعات زمانی، این محدودیت را برطرف می کند و روشی کارآمد برای تحلیل ویدیو ارائه می دهد. هم چنین برای جلوگیری از فراموشی اطلاعات مدل CLIP پس از یادگیری دادههای ویدیویی، از دو فن استفاده میکند که در ادامه همه ی آنها را بررسی می کنیم.

آاین نام مخفف Prompt Action recognition CLIP میباشد که به استفاده از روش پرامپت گذاری برای تشخیص حرکت توسط مدل کلیپ، اشاره میکند.

شکل ۳-۱: وصلههای درنظر گرفته شده برای هر وصله از قاب در سازوکار تغییر یافتهی توجه

مبتنی بر ویدیو CLIP مبتنی بر تصویر به $^{-}$

در این بخش، ورودی ویدیویی به دنبالهای از فریمها تبدیل میشود و هر فریم توسط کدگذار تصویری CLIP به یک بردار ویژگی تبدیل میگردد. سپس این ویژگیها در قالب دنبالهای زمانی قرار گرفته و با سازوکار توجه ترکیب میشوند. در سازوکار توجه فرمول محاسبه ی خروجی مطابق (۱-۱) میباشد.

$$y_{s,t} = \operatorname{Softmax}\left(\frac{q_{s,t}K_t^{\mathrm{T}}}{\sqrt{d}}\right)V_t,$$
 (1-7)

در این رابطه، $q_{s,t}$ بردار پرسمان † برای یک وصله $^{\circ}$ از تصویر، K_t ماتریس کلید و t ماتریس مقدار برای قاب یا تصویر t هستند که از طریق سازوکار توجه ترکیب می شوند. در این حالت، ارتباط یک وصله از تصویر با خودش و بقیه ی وصله های تصویر مشخص می شود. برای سازگار کردن مدل برای ویدیو در مدل Open-VCLIP، بردار پرسمان وصله ی قاب فعلی را در ماتریس کلید قاب فعلی، بعدی و قبلی ضرب می کند و می کند و پس از اجرای تابع softmax نیز در ماتریس مقدار قاب فعلی، بعدی و قبلی ضرب می کند و سازوکار توجه را مانند (t-t)، محاسبه می کند. در این صورت نه تنها ارتباط وصله ی قاب فعلی با قاب خودش، بلکه با قاب قبلی و بعدی خود نیز در نظر گرفته می شود (مطابق با شکل t-t). این راهکار به ظاهر ساده، توانست تحول خوبی در زمینه ی سازگاری مدل CLIP با داده ی ویدیویی ایجاد کند.

$$y_{s,t} = \operatorname{Softmax}\left(\frac{q_{s,t} \left[K_{(t-1)\sim(t+1)}\right]^{\mathrm{T}}}{\sqrt{d}}\right) \left[V_{(t-1)\sim(t+1)}\right],\tag{Y-Y}$$

⁴Query

⁵Patch

Υ – Υ منظم سازی وزنهای میان یابی

همانطور که ذکر شد، برای جلوگیری از فراموشی دانش پیش آموزش و در عین حال سازگار کردن مدل با دادههای جدید، منظمسازی وزنهای میانیابی 7 معرفی شده است. در این روش، وزنهای مدل به صورت ترکیبی از عاملهای اولیه (پیش آموزش) و عاملهای به روزرسانی شده در وظیفه جدید، تنظیم می شوند. این میانیابی به مدل کمک می کند تا در حین یادگیری، تعادلی میان دانش قدیمی و اطلاعات تازه برقرار کرده و از بیش برازش $^{\vee}$ جلوگیری کند. روش به کار رفته، تعمیم ایده ی گابریل و همکاران [$^{\circ}$]، که مطابق با ($^{\circ}$) است، می باشد.

$$\theta = \lambda \theta_A + (1 - \lambda)\theta_B \tag{(Y-Y)}$$

در این رابطه، θ از ترکیب خطی وزنهای مدل پایه A و مدل بهروزرسانی شده B با ضریب A تشکیل می شود تا دقت مدل در وظایف جدید افزایش یابد، بدون آنکه عملکرد آن در سایر وظایف که از پیش بهینه بودهاند، کاهش پیدا کند. با توجه به این که A یک ابرعامل A است، مقدار انتخابی آن، می تواند باعث بیشبرازش یا زیربرازش روی دادههای قبلی و جدید شود. پس به جای بهینه سازی مدل برای یک مقدار ثابت از A, راه حلی باید ارائه شود که عملکرد مدل ترکیبی را در برابر بازهای از مقادیر A بهینه کند. بنابراین، مطابق با A, وزنهای جدید را در آموزش به سمتی می برد که هم زیان مدل جدید و هم زیان مدل ترکیبی با ضریب A روی دادههای جدید حداقل شود. در این حالت، ترکیبهای مختلف مدل زیان مدل ترکیبی با ضریب A روی دادههای جدید حداقل شود. در واقع، عملکرد بهتری در تحلیل قبلی و جدید در مراحل مختلف آموزش در نظر گرفته می شود که در واقع، عملکرد بهتری در تحلیل دادههای نادیده خواهد داشت. در انتها مطابق با A, مدل جدید و قدیم ترکیب خواهند شد. با این تفاوت که وزنهای مدل جدید، در طول آموزش با در نظر گرفتن عدم فراموشی مدل قبلی، یاد گرفته شده اند.

$$\arg\min_{\theta_B} \mathcal{L} = L(\theta_B; D_B) + \beta L(\alpha \theta_A + (1 - \alpha)\theta_B; D_B)$$
(4-7)

عامل α از یک توزیع یکنواخت در بازه $(0,\lambda)$ نمونهبرداری میشود و ضریب β به عنوان یک عامل تنظیم کننده برای کنترل میزان تاثیر عبارت میان یابی تعریف شده است. همچنین مقدار β به صورت

⁶Interpolation Weight Regularization (IWR)

⁷Overfitting

⁸Hyper parameter

.ست. β محاسبه میشود که در آن C یک مقدار ثابت برای کنترل بزرگی $\beta=C\frac{1}{1-\alpha}$

۳-۳-۳ میانگین گیری تصادفی وزنها

هم چنین به منظور تثبیت بیشتر مدل و بهبود قابلیت تعمیم آن، روش میانگین گیری تصادفی وزنها به هم چنین به منظور تثبیت بیشتر مدل و بهبود قابلیت تعمیم آن، روش میانگین گیری تصادفی وزنها و کلر گرفته شده است. در این مرحله، عاملهای مدل جدید در طول چند مرحله از آموزش، ذخیره شده و میانگین آنها به عنوان عامل نهایی انتخاب می شود. این رویکرد باعث کاهش نوسانات وزنها و دستیابی به عملکرد پایدار تر در داده های آزمایشی می گردد. در نهایت، فرمول نهایی مدل مطابق با (-1) خواهد بود.

$$\sum_{i}^{N} \frac{\lambda \theta_{A} + (1 - \lambda)\theta_{i}}{N} = \lambda \theta_{A} + (1 - \lambda) \left(\frac{1}{N} \sum_{i}^{N} \theta_{i} \right) \tag{2-7}$$

بنابراین، مدل نهایی، تنظیم دقیق مدل CLIP با تغییر سازوکار توجه بوده و برای جلوگیری از فراموشی مدل قبلی و حفظ قابلیت یادگیری بدون نمونه، دو فن مناسب بکار گرفته شده است.

۴-۳ مدل L2P

روش ارائهشده در این مقاله، با هدف بهبود یادگیری پیوسته، از سازوکاری مبتنی بر «استخر پرامپت» استفاده می کند. در این رویکرد، به جای تغییر عاملهای اصلی مدل، مجموعهای از پرامپتهای قابل آموزش طراحی می شود که مدل با استفاده از آنها قادر به استخراج اطلاعات مهم از دادههای ورودی است. در هر مرحله یادگیری، پرامپتهای مناسب بر اساس شباهت با دادههای جدید انتخاب می شوند و این امر باعث می شود مدل بتواند دانش جدید را یاد بگیرد، بدون آنکه دانش قبلی را فراموش کند. این روش با بهره گیری از معماری ترنسفورمر، توانسته است تعادل موثری میان حفظ دانش گذشته و یادگیری وظایف جدید برقرار کند. همانطور که در شکل ۳-۲ قابل مشاهده است، این مدل دارای دو بخش انتخاب پرامپتها و یادگیری و بهروزرسانی پرامپتها است که هر یک در ادامه توضیح داده می شود.

⁹Stochastic Weight Averaging (SWA)

شكل ٣-٢: طرح كلى مدل L2P [٣١]

۳-۴-۳ انتخاب پرامپت

در بخش انتخاب پرامپت ۱٬ از استخر پرامپت تعدادی پرامپت متناسب با ورودی تصویری انتخاب می شود. هر پرامپت دارای یک کلید است و فرآیند انتخاب بر اساس شباهت این کلیدها با بردار ویژگی مرتبط با کلاس ورودی انجام می گیرد. بردار ویژگی موردنظر از طریق استخراج کننده ویژگی، به دست می آید و سپس با کلیدهای موجود در استخر مقایسه می شود. در نهایت، تعدادی از پرامپتهای کلیدهایی که بیشترین شباهت را با بردار ویژگی دارند انتخاب می شوند (مطابق با شکل ۲-۲). علاوه بر این، به روش انتخاب پرامپت، قابلیت اختیاری نیز اضافه شده است به این صورت که برای پرامپتهای قبلا به روزرسانی شده، جریمه در نظر گرفته است تا متناسب با تعداد تکرارشان در وظایف قبلی، جریمه ی بیشتری برای انتخاب بگیرند. در این حالت، پرامپتهای با تکرار کم نیز شانس انتخاب شدن پیدا می کنند و پرامپتها با تکرار بیشتر، کمتر تغییر می کنند و تداخل کمتر می شود.

۳-۴-۳ یادگیری پرامپت

در بخش یادگیری پرامپت، پرامپتهای انتخابشده بههمراه دادهی ورودی به مدل تغذیه شده و پس از عبور از لایههای ترنسفورمر، بخش خروجی مربوط به پرامپتها، استخراج شده و با میانگینگیری، به دسته بند ۱۱ منتقل میشود. سپس با انجام عملیات پسانتشار ۱۲، وزنهای پرامپتها و کلیدهای متناظر آنها بهروزرسانی میشوند. این فرآیند باعث میشود مدل ضمن یادگیری وظایف جدید، قابلیت تعمیم خود را افزایش داده و دانش قبلی را حفظ کند (مطابق با شکل ۲-۲).

¹⁰Prompt selection

¹¹Classifier

¹²Backpropagation

شكل ٣-٣: طرح كلى مرحلهى آموزش مدل ProActionCLIP

در ادامه به توضیح مدل پیشنهادی و اجزای آن میپردازیم.

۳-۵ مرحلهی آموزش

همانطور که پیش تر اشاره شد، در مرحله ی آموزش، تمر کز بر یادگیری پرامپتهای مناسب برای دستههای مختلفی است که به صورت پیوسته به مدل اضافه میشوند. طرح کلی مدل در مرحله ی آموزش در شکل ۳-۳، نشان داده شده است که الگو گرفته از مدل CLIP میباشد. این مدل شامل یک کدگذار ویدیو (قابل بهروزرسانی) از مدل Open-VCLIP است ویدیو (قابل بهروزرسانی) از مدل الموست منجمد ۱۳ (غیر قابل بهروزرسانی) از مدل مدل ویژگی برچسبهای به این صورت که بردار ویژگی ویدیوی استخراج شده از کدگذار ویدیو و بردارهای ویژگی برچسبهای موجود استخراج شده از کدگذار متن، طبق روش تقابلی مقایسه شده و طبق نزدیک شدن موارد متناظر و دور شدن موارد نامتناظر، وزنهای پرامپتها تغییر داده میشوند. دو بخش اصلی مدل به نام کدگذار ویدیو و یادگیری پرامپت در ادامه توضیح داده خواهند شد.

¹³Frozen

-8-8 کدگذار ویدیو

این بخش، از ترکیب L2P و Open-VCLIP تشکیل شده است. به طور کلی مطابق شکل $^{7-7}$ ، ویدیو به عنوان ورودی، وارد کدگذار Open-VCLIP و لایهی کانولوشنی دوبعدی می شود. ویژگی کلاس 11 از خروجی کدگذار Open-VCLIP بعد، با کلیدهای داخل استخر پرامپت مقایسه می شود. به تعداد K پرامپت از مشابه ترین کلیدها انتخاب می شوند. از طرف دیگر ویدیو از لایهی کانولوشنی عبور کرده و پرامپتها به هر قاب، به صورت جداگانه متصل می شوند. سپس به کدگذار ترنسفورمر معرفی شده در Open-VCLIP وارد شده و به ازای هر قاب، یک ویژگی کلاس بدست می آید که میانگین آنها محاسبه و به عنوان خروجی نهایی این بخش، ارائه می گردد. در مدل پیشنهادی، صرفا پرامپتها و کلیدهای متناظر آنها، قابل یادگیری هستند و بقیهی اجزا به صورت منجمد استفاده می شوند. در این بخش از تحقیق، آزمایشهای مختلفی اجرا شد که بر اساس نوع انتخاب پرامپت و شرایط استخر پرامپت می توان تحقیق، آزمایشهای زیر تقسیم نمود:

- مقداردهی اولیه یه صورت تصادفی هستند، در این آزمایش، مقادیر کلیدها را معادل ویژگیهای برچسب دستههای استخراج شده از کدگذار متن قرار دادیم. در این صورت، مقایسه ی ویژگی ویدیو و کلیدها به صورت بهینه تر و دقیق تری صورت می گیرد.
- وزندهی به کلید پرامپتهای از قبل انتخاب شده: مطابق با روش اضافهای که برای انتخاب پرامپت در L2P مطرح شد، تعداد تکرار پرامپتها در هر وظیفه محاسبه میشود. در وظیفه بعدی، هرچه تکرار پرامپت بیشتر بوده باشد، تاثیرش در انتخاب کمتر میشود.
- منجمد کردن پرامپتهای قبلی: یکی از راههای استفاده از وزنهای قبلی، این است که به صورت منجمد استفاده شوند و بهروزرسانی نشوند. این روش کمک میکند اطلاعات اختصاصی هر وظیفه از بین نرود و اگر داده ی جدید اشتراکی با قبلیها داشته باشد، پرامپت آنها را انتخاب خواهد کرد.
- پویا بودن تعداد پرامپتهای استخر پرامپت: در فرض اولیه، در استخر پرامپت تعدادی ثابت پرامپت و جود داشت اما برای بهینهبودن مدل برای دستههای بیشتر و موجود بودن پرامپت کافی در هر وظیفه، در این قسمت پرامپتها را ابتدای هر وظیفه افزایش می دهیم.

¹⁴Class feature (CLS)

شكل ٣-٣: سازوكار بخش كدگذار ويديو مدل ProActionCLIP

ترکیب برخی از این روشها نیز آزمایش شده است مانند استفاده از استخر پویا و مقداردهی اولیه کلیدها.

۳-۵-۳ یادگیری پرامپت

وقتی ویدیو از کدگذار ویدیوی پیشنهادی عبور کرد، وارد مرحله ی نهایی برای بهروزرسانی وزنهای پرامپتها و کلیدهای متناظرشان می شود. مطابق با شکل T-T، ویژگی برچسبها از طریق کدگذار متن مدل Open-VCLIP بدست می آید. تابع زبان شامل دو بخش است. اولین بخش شامل زبان بین ویژگی استخراجی از ویدیو و ویژگی برچسب متناظر آن و بخش بعدی مختص زبان بین ویدیو و کلیدهای انتخاب شده برای آن می باشد. در این صورت پرامپتها در بخش اول و کلیدها در بخش دوم تابع زبان مورد تمرکز قرار می گیرند.

-3-7 ویرگول

ویر گول نشانه ضرورت یک مکث کوتاه است و در موارد زیر به کار می رود:

• در میان دو کلمه که احتمال داده شود خواننده آنها را با کسره اضافه بخواند، یا نبودن ویرگول موجب بروز اشتباه در خواندن جمله شود.

- در موردی که کلمه یا عبارتی بهعنوان توضیح، در ضمن یک جمله آورده شود. مثلاً برای کنترل وضعیت فضاپیماها، بهدلیل آن که در خارج از جو هستند، نمی توان از بالکهای آیرودینامیکی استفاده کرد.
 - جداکردن بخشهای مختلف یک نشانی یا یک مرجع
 - موارد دیگر از این قبیل

پیش از ویرگول نباید فاصله گذاشته شود و پس از آن یک فاصله لازم است و بیشتر از آن صحیح نیست.

۳-۵-۳ نقطه

نقطه نشانه پایان یک جمله است. پیش از نقطه نباید فاصله گذاشته شود و پس از آن یک فاصله لازم است و بیشتر از آن صحیح نیست.

$\Delta - \Delta - \Upsilon$ دونقطه

موارد كاربرد دونقطه عبارتند از:

- پیش از نقل قول مستقیم
- پیش از بیان تفصیل مطلبی که به اجمال به آن اشاره شدهاست.
 - پس از واژهای که معنی آن در برابرش آورده و نوشته میشود.
 - پس از کلمات تفسیر کننده از قبیل «یعنی» و ...

پیش از دونقطه نباید فاصله گذاشته شود و پس از آن یک فاصله لازم است و بیشتر از آن صحیح نیست.

٣-۵-٣ گيومه

موارد کاربرد گیومه عبارتند از:

- وقتی که عین گفته یا نوشته کسی را در ضمن نوشته و مطلب خود میآوریم.
- در آغاز و پایان کلمات و اصطلاحات علمی و یا هر کلمه و عبارتی که باید بهصورت ممتاز از قسمتهای دیگر نشان داده شود.

• در ذکر عنوان مقالهها، رسالهها، اشعار، روزنامهها و ...

۷-۵-۳ نشانه پرسشی

پیش از «؟» نباید فاصله گذاشته شود و پس از آن یک فاصله لازم است و بیشتر از آن صحیح نیست.

۸-۵-۳ خط تیره

موارد کاربرد خط تیره عبارتند از:

- جداکردن عبارتهای توضیحی، بدل، عطف بیان و ...
- بهجای حرف اضافه «تا» و «به» بین تاریخها، اعداد و کلمات

۳-۵-۳ پرانتز

موارد کاربرد پرانتز عبارتند از:

- بهمعنی «یا» و «یعنی» و وقتی که یک کلمه یا عبارت را برای توضیح بیشتر کلام بیاورند.
 - وقتی که نویسنده بخواهد آگاهیهای بیشتر (اطلاعات تکمیلی) به خواننده عرضه کند.
 - برای ذکر مرجع در پایان مثالها و شواهد.

نکته: بین کلمه یا عبارت داخل پرانتز و پرانتز باز و بسته نباید فاصله وجود داشته باشد.

۳-۶ جدا یا سرهم نوشتن برخی کلمات

تقریباً تمامی کلمات مرکب در زبان فارسی باید از هم جدا نوشته شوند؛ به استثنای صفات فاعلی مانند «عملگر»، «باغبان» و یا «دانشمند» و کلماتی نظیر «اینکه»، «آنها». در ادامه به نمونههایی از مواردی که باید اجزای یک کلمه جدا، اما بدون فاصله نوشته شوند، اشاره می شود:

۱. در افعال مضارع و ماضی استمراری که با «می» شروع میشوند، لازم است که در عین جدا نوشتن، «می» از بخش بعدی فعل جدا نیافتد. برای این منظور باید از «فاصله متصل» استفاده و «می» در اول فعل با ۱۵SS از آن جدا شود. به طور مثال «میشود» به جای «می شود».

¹⁵ Shift+Ctrl+@

- ۲. «ها»ی جمع باید از کلمه جمع بسته شده جدا نوشته شود؛ مگر در برخی کلمات مانند «آنها». این امر در مورد کلمات غیرفارسی که وارد زبان فارسی شده اند و با حرف «ها» جمع بسته می شوند، مانند «کانالها» یا «فرمولها» مورد تاکید است.
- ۳. حروف اضافه مانند «به» وقتی بهصورت ترکیب ثابت همراه کلمه پس از خود آورده میشوند، بهتر است با SS از آن جدا شوند. مانند «بهصورت»، «بهعنوان» و «بهلحاظ». لازم به ذکر است هنگامی که حرف اضافه «به» با کلمه پس از خود معنای قیدی داشته باشد، مثل «بشدت» یا «بسادگی»، بهتر است که بهصورت چسبیده نوشته شود.
- ۴. کلمات فارسی نباید با قواعد عربی جمع بسته شوند؛ پس «پیشنهادها» صحیح و «پیشنهادات»
 اشتباه است.
 - ۵. اسمها و صفتهای دوقسمتی مثل «خطچین» و «نوشتهشده» با SS از هم جدا میشود.
 - ۶. شناسهها با SS از کلمه اصلی جدا می شود. مثل «شدهاند» و «شدهاست».
- ۷. «است» هنگامی که نقش شناسه را داشته باشد توسط SS از قسمت اصلی جدا میشود. مانند «گفتهاست».
- ۸. بند پیشین نباید باعث افراط در استفاده از فاصله متصل شود. مثلاً عبارت «نوشته می شود»
 صحیح و عبارت «نوشته می شود» ناصحیح است.
- ۹. فعلهای دوکلمهای که معنای اجزای آنها کاملاً با معنای کل متفاوت است، بهتر است که با SS از هم جدا شوند.
 - ۱۰. کلمات مرکب مثل کلمه «دوکلمهای» در عبارت «فعلهای دوکلمهای» و «یادداشتبرداری».
 - ۱۱. مصدرهای دو قسمتی با SS از هم جدا میشوند. مثل «ذوب کردن» و «وارد کردن».
 - ۱۲. صفات تفضیلی مثل « آسانتر».

فصل چهارم مشخصات یک پایان نامه و گزارش علمی اگرچه برای همه انواع نوشتهها، مشخصات و ویژگیهای واحد و معینی نمیتوان ذکر کرد، با این حال در یک پایان نامه یا گزارش علمی باید نکات و موارد کلی که در این فصل ذکر میشود، بطور کامل رعایت شده باشد.

دقت کنید که پس از عنوان فصل باید حداقل توضیحی کوتاه در مورد موضوع نوشته شود و نمی توان مستقیماً بعد از آن عنوان بخش را نوشت و همین طور پس از عناوین بخشها و زیربخشها.(مانند دستورالعمل حاضر)

۱-۴ برخورداری از غنای علمی

یک پایان نامه باید پیش از هر چیز بهلحاظ علمی از غنای لازم برخوردار باشد. یعنی هدف و پیام روشنی داشته باشد و از پیشزمینه علمی، بیان دلایل علمی، ارجاعات مورد نیاز و نتیجه گیری شفاف بهره ببرد.

7-4 ارجاع بهموقع و صحیح به منابع دیگر

هر جملهای که در یک پایان نامه نوشته می شود یا یک جمله کاملاً بدیهی است یا باید دلیل آن بیان شود و یا اینکه باید به منبعی که آن موضوع را نقل یا اثبات کرده، ارجاع داده شود. اگر مطلب یا گفتاری از منبعی عیناً در گزارش نقل می شود، باید آن مطلب داخل گیومه قرار گیرد و با ذکر ماخذ و شماره صفحه، به آن اشاره گردد.

۳-۴ سادهنویسی

سادگی از ضروریات یک نوشته است. نویسنده باید ساده، روان و در عین حال شیوا و رسا بنویسد و عبارات مبهم، جملات پیچیده و کلمات نامأنوس در نوشته خود به کار نبرد. اگر چه افراط در این امر نیز، به شیوایی نوشته صدمه میزند. به کارگیری لغات و اصطلاحات دشوار و دور از ذهن و عبارات و جملات نامنظم و مبهم موجب ایجاد اشکال در فهم خواننده خواهد شد.

برای سادهنویسی باید در حد امکان از به کارگیری کلمات «میبایست»، «بایستی»، «گردید»، «بوده باشد» و مانند آنها که تکلفآور، غلط مصطلح و یا غیرشیوا هستند، به جای «باید»، «است»، «شد» و مثل آنها، اجتناب شود. همین طور، «درجهت» نمی تواند جایگزین خوبی برای کلمه روانی مثل «برای» باشد. کلمات و جملات روان و ساده می توانند اغلب مفاهیم را براحتی منتقل کنند.

دقت در تنظیم بندها (پاراگرافها) نیز کمک شایانی به روانی و سادگی فهم مطلب میکند. بندهای طولانی نیز مانند جملات طولانی میتوانند خستهکننده باشند و خواننده را سردرگم کنند. یک بند نباید کمتر از سه یا چهار سطر یا بیشتر از 10 تا ۱۵ سطر باشد.

۴-۴ وحدت موضوع

نویسنده باید در سراسر نوشته از اصل موضوع دور نیافتد و تمام بحثها، مثالها و اجزای نوشته با هماهنگی کامل، پیرامون موضوع اصلی باشد و تاثیری واحد در ذهن خواننده القا کند.

۴-۵ اختصار

پایان نامه یا گزارش علمی باید در حد امکان، مختصر و مفید باشد و از بحثهای غیر ضروری در آن پرهیز شود. نوشتن مطالب ارزشمندی که هیچ ربطی به موضوع ندارد، فاقد ارزش علمی است.

۶-۴ رعایت نکات دستوری و نشانه گذاری

در سراسر پایان نامه باید قواعد دستوری رعایت شود و ارکان و اجزای جمله در جای مناسب خود آورده شود. همچنین رعایت قواعد نشانه گذاری سبب می شود که بیان نویسنده روشن باشد و خواننده به سهولت و با کمترین صرف انرژی مطالب را مطالعه و درک کند.

ν توجه به معلومات ذهنی مخاطب ν

نویسنده باید همواره مخاطب خود را در برابر خود تصور کند و با توجه به معلومات ذهنی مخاطب تمامی پیشنیازهای لازم برای درک مطالب مورد بحث را، از پیش برای مخاطب فراهم کند.

رعایت مراحل اصولی نگارش $\Lambda-\mathfrak{r}$

هر کار علمی زمانی به بهترین شکل قابل انجام است که بر اساس یک برنامهریزی مشخص انجام شود. تهیه یک متن علمی با کیفیت نیز نیازمند برنامهریزی مناسب و اجرای منظم آن میباشد. مراحل نگارش

را عموماً می توان به ترتیب زیر درنظر گرفت:

- تهیه فهرستی از عناوین اصلی و فرعی که باید نوشته شود
- اولویتبندی و تعیین ترتیب منطقی فصلها و بخشهای گزارش
 - گردآوری اطلاعات اولیه راجع به هر بخش و زیربخش
- تدوین مطالب جدیدی که باید به قلم نگارنده به گزارش اضافه شود
- تایپ کردن مطالب با رعایت کامل نکاتی که در این دستورالعمل آموزش داده میشود

رعایت نظم و ترتیب در اجرای مراحل ذکر شده هم فرآیند تهیه پایان نامه یا گزارش علمی را برای نگارنده آسان می کند و هم کیفیت نگارش را به میزان قابل توجهی افزایش می دهد.

فصل پنجم جمع بندی و نتیجه گیری و پیشنهادات در پایان گزارشهای علمی و فنی لازم است که جمعبندی یا نتیجه گیری نهایی ارائه شود. در این موارد می توان آخرین فصل پایان نامه که پیش از مراجع قرار می گیرد را به این امر اختصاص داد.

۱-۵ پیشنهادات

در این بخش پیشنهاداتی که محقق جهت ادامه تحقیقات دارد ارایه می گردد. دقت شود که پیشنهادات باید از تحقیق انجام شده و نتایج ان حاصل شده باشد و از ذکر جملات کلی باید پرهیز کرد.

منابع و مراجع

- [1] Wang, Liyuan, Zhang, Xingxing, Su, Hang, and Zhu, Jun. A comprehensive survey of continual learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
- [2] Mai, Zheda, Li, Ruiwen, Jeong, Jihwan, Quispe, David, Kim, Hyunwoo, and Sanner, Scott. Online continual learning in image classification: An empirical survey. Neurocomputing, 469:28–51, 2022.
- [3] van de Ven, Gido M. and Tolias, Andreas S. Three scenarios for continual learning, 2019.
- [4] Churamani, Nikhil, Kara, Ozgur, and Gunes, Hatice. Domain-Incremental Continual Learning for Mitigating Bias in Facial Expression and Action Unit Recognition. IEEE Transactions on Affective Computing, 14(04):3191–3206, October 2023.
- [5] Ma, Jiawei, Tao, Xiaoyu, Ma, Jianxing, Hong, Xiaopeng, and Gong, Yihong. Class incremental learning for video action classification. in 2021 IEEE International Conference on Image Processing (ICIP), pp. 504–508, 2021.
- [6] Park, Jaeyoo, Kang, Minsoo, and Han, Bohyung. Class-incremental learning for action recognition in videos. in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13678–13687, 2021.
- [7] Kirkpatrick, James, Pascanu, Razvan, Rabinowitz, Neil, Veness, Joel, Desjardins, Guillaume, Rusu, Andrei A., Milan, Kieran, Quan, John, Ramalho, Tiago, Grabska-

- Barwinska, Agnieszka, Hassabis, Demis, Clopath, Claudia, Kumaran, Dharshan, and Hadsell, Raia. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.
- [8] Li, Zhizhong and Hoiem, Derek. Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40:2935–2947, 2016.
- [9] Shin, Hanul, Lee, Jung Kwon, Kim, Jaehong, and Kim, Jiwon. Continual learning with deep generative replay. in Guyon, I., Luxburg, U. Von, Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., eds., Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., 2017.
- [10] Chaudhry, Arslan, Ranzato, Marc'Aurelio, Rohrbach, Marcus, and Elhoseiny, Mohamed. Efficient lifelong learning with a-gem. ArXiv, abs/1812.00420, 2018.
- [11] Rebuffi, Sylvestre-Alvise, Kolesnikov, Alexander, Sperl, Georg, and Lampert, Christoph H. icarl: Incremental classifier and representation learning. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5533–5542, 2017.
- [12] Aljundi, Rahaf, Caccia, Lucas, Belilovsky, Eugene, Caccia, Massimo, Lin, Min, Charlin, Laurent, and Tuytelaars, Tinne. Online continual learning with maximally interfered retrieval. ArXiv, abs/1908.04742, 2019.
- [13] Minhas, Rashid, Mohammed, Abdul Adeel, and Wu, Q. M. Jonathan. Incremental learning in human action recognition based on snippets. IEEE Transactions on Circuits and Systems for Video Technology, 22(11):1529–1541, 2012.
- [14] Li, Tianjiao, Ke, Qiuhong, Rahmani, Hossein, Ho, Rui En, Ding, Henghui, and Liu, Jun. Else-net: Elastic semantic network for continual action recognition from skeleton data. in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13414–13423, 2021.

- [15] Cheng, Jian, Liu, Haijun, Wang, Feng, Li, Hongsheng, and Zhu, Ce. Silhouette analysis for human action recognition based on supervised temporal t-sne and incremental learning. IEEE Transactions on Image Processing, 24(10):3203–3217, 2015.
- [16] Parisi, German I., Tani, Jun, Weber, Cornelius, and Wermter, Stefan. Lifelong learning of human actions with deep neural network self-organization. Neural Networks, 96:137–149, 2017.
- [17] Zhang, Jingyi, Huang, Jiaxing, Jin, Sheng, and Lu, Shijian. Vision-language models for vision tasks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(8):5625–5644, 2024.
- [18] Radford, Alec, Kim, Jong Wook, Hallacy, Chris, Ramesh, Aditya, Goh, Gabriel, Agarwal, Sandhini, Sastry, Girish, Askell, Amanda, Mishkin, Pamela, Clark, Jack, Krueger, Gretchen, and Sutskever, Ilya. Learning transferable visual models from natural language supervision. in International Conference on Machine Learning, 2021.
- [19] Singh, Amanpreet, Hu, Ronghang, Goswami, Vedanuj, Couairon, Guillaume, Galuba, Wojciech, Rohrbach, Marcus, and Kiela, Douwe. Flava: A foundational language and vision alignment model. in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15617–15629, 2022.
- [20] Li, Liunian Harold, Zhang, Pengchuan, Zhang, Haotian, Yang, Jianwei, Li, Chunyuan, Zhong, Yiwu, Wang, Lijuan, Yuan, Lu, Zhang, Lei, Hwang, Jenq-Neng, Chang, Kai-Wei, and Gao, Jianfeng. Grounded language-image pre-training. in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10955–10965, 2022.
- [21] Wang, Mengmeng, Xing, Jiazheng, and Liu, Yong. Actionclip: A new paradigm for video action recognition. ArXiv, abs/2109.08472, 2021.

- [22] Zhou, Kaiyang, Yang, Jingkang, Loy, Chen Change, and Liu, Ziwei. Learning to prompt for vision-language models. International Journal of Computer Vision, 130(9):2337–2348, July 2022.
- [23] Gao, Peng, Geng, Shijie, Zhang, Renrui, Ma, Teli, Fang, Rongyao, Zhang, Yongfeng, Li, Hongsheng, and Qiao, Yu. Clip-adapter: Better vision-language models with feature adapters. International Journal of Computer Vision, 132(2):581–595, Feb 2024.
- [24] Wortsman, Mitchell, Ilharco, Gabriel, Kim, Jong Wook, Li, Mike, Kornblith, Simon, Roelofs, Rebecca, Lopes, Raphael Gontijo, Hajishirzi, Hannaneh, Farhadi, Ali, Namkoong, Hongseok, and Schmidt, Ludwig. Robust fine-tuning of zero-shot models. in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7949–7961, 2022.
- [25] Weng, Zejia, Yang, Xitong, Li, Ang, Wu, Zuxuan, and Jiang, Yu-Gang. Open-vclip: Transforming clip to an open-vocabulary video model via interpolated weight optimization. in ICML, 2023.
- [26] Gu, Xiuye, Lin, Tsung-Yi, Kuo, Weicheng, and Cui, Yin. Open-vocabulary detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921, 2021.
- [27] Lüddecke, Timo and Ecker, Alexander. Image segmentation using text and image prompts. in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7076–7086, 2022.
- [28] Zheng, Junhao, Qiu, Shengjie, Shi, Chengming, and Ma, Qianli. Towards lifelong learning of large language models: A survey. ACM Comput. Surv., 57(8), March 2025.
- [29] Garg, Saurabh, Farajtabar, Mehrdad, Pouransari, Hadi, Vemulapalli, Raviteja, Mehta, Sachin, Tuzel, Oncel, Shankar, Vaishaal, and Faghri, Fartash. Tic-clip: Continual train-

- ing of clip models. in The Twelfth International Conference on Learning Representations (ICLR), 2024.
- [30] Lu, Shuyun, Jiao, Jian, Wang, Lanxiao, Qiu, Heqian, Lin, Xingtao, Mei, Hefei, and Li, Hongliang. Video class-incremental learning with clip based transformer. in 2024 IEEE International Conference on Image Processing (ICIP), pp. 500–506, 2024.
- [31] Wang, Zifeng, Zhang, Zizhao, Lee, Chen-Yu, Zhang, Han, Sun, Ruoxi, Ren, Xiaoqi, Su, Guolong, Perot, Vincent, Dy, Jennifer, and Pfister, Tomas. Learning to prompt for continual learning. in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 139–149, 2022.
- [32] Menabue, Martin, Frascaroli, Emanuele, Boschini, Matteo, Sangineto, Enver, Bonicelli, Lorenzo, Porrello, Angelo, and Calderara, Simone. Semantic residual prompts for continual learning. in Leonardis, Aleš, Ricci, Elisa, Roth, Stefan, Russakovsky, Olga, Sattler, Torsten, and Varol, Gül, eds., Computer Vision ECCV 2024, pp. 1–18, Cham, 2025. Springer Nature Switzerland.
- [33] Wang, Zifeng, Zhang, Zizhao, Ebrahimi, Sayna, Sun, Ruoxi, Zhang, Han, Lee, Chen-Yu, Ren, Xiaoqi, Su, Guolong, Perot, Vincent, Dy, Jennifer, and Pfister, Tomas. Dual-prompt: Complementary prompting for rehearsal-free continual learning. in Computer Vision ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVI, p. 631–648, Berlin, Heidelberg, 2022. Springer-Verlag.
- [34] Zuo, Yukun, Yao, Hantao, Yu, Lu, Zhuang, Liansheng, and Xu, Changsheng. Hierarchical prompts for rehearsal-free continual learning. ArXiv, abs/2401.11544, 2024.
- [35] Jung, Dahuin, Han, Dongyoon, Bang, Jihwan, and Song, Hwanjun. Generating instance-level prompts for rehearsal-free continual learning. in 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11813–11823, 2023.

- [36] Huang, Wei-Cheng, Chen, Chun-Fu, and Hsu, Hsiang. OVOR: Oneprompt with virtual outlier regularization for rehearsal-free class-incremental learning. in The Twelfth International Conference on Learning Representations, 2024.
- [37] Tang, Longxiang, Tian, Zhuotao, Li, Kai, He, Chunming, Zhou, Hantao, Zhao, Hengshuang, Li, Xiu, and Jia, Jiaya. Mind the interference: Retaining pre-trained knowledge in parameter efficient continual learning of vision-language models. in Leonardis, Aleš, Ricci, Elisa, Roth, Stefan, Russakovsky, Olga, Sattler, Torsten, and Varol, Gül, eds., Computer Vision ECCV 2024, pp. 346–365, Cham, 2024. Springer Nature Switzerland.
- [38] Villa, Andrés, Alcázar, Juan León, Alfarra, Motasem, Alhamoud, Kumail, Hurtado, Julio, Heilbron, Fabian Caba, Soto, Alvaro, and Ghanem, Bernard. Pivot: Prompting for video continual learning. in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 24214–24223, 2023.
- [39] Wang, Qiang, Du, Junlong, Yan, Ke, and Ding, Shouhong. Seeing in flowing: Adapting clip for action recognition with motion prompts learning. in Proceedings of the 31st ACM International Conference on Multimedia, MM '23, p. 5339–5347, New York, NY, USA, 2023. Association for Computing Machinery.
- [40] Wang, Hao, Liu, Fang, Jiao, Licheng, Wang, Jiahao, Hao, Zehua, Li, Shuo, Li, Lingling, Chen, Puhua, and Liu, Xu. Vilt-clip: Video and language tuning clip with multimodal prompt learning and scenario-guided optimization. Proceedings of the AAAI Conference on Artificial Intelligence, 38(6):5390–5400, Mar. 2024.
- [41] Roy, Anurag, Moulick, Riddhiman, Verma, Vinay, Ghosh, Saptarshi, and Das, Abir. Convolutional prompting meets language models for continual learning. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2024.

- [42] Wistuba, Martin, Teja Sivaprasad, Prabhu, Balles, Lukas, and Zappella, Giovanni. Choice of PEFT Technique in Continual Learning: Prompt Tuning is Not All You Need. arXiv e-prints, p. arXiv:2406.03216, June 2024.
- [43] Li, Jiashuo, Wang, Shaokun, Qian, Bo, He, Yuhang, Wei, Xing, Wang, Qiang, and Gong, Yihong. Dynamic integration of task-specific adapters for class incremental learning, 2025.
- [44] Zhou, Da-Wei, Sun, Hai-Long, Ye, Han-Jia, and Zhan, De-Chuan. Expandable subspace ensemble for pre-trained model-based class-incremental learning. in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23554–23564, 2024.
- [45] Gao, Xinyuan, Dong, Songlin, He, Yuhang, Wang, Qiang, and Gong, Yihong. Beyond prompt learning: Continual adapter for efficient rehearsal-free continual learning. in Leonardis, Aleš, Ricci, Elisa, Roth, Stefan, Russakovsky, Olga, Sattler, Torsten, and Varol, Gül, eds., Computer Vision ECCV 2024, pp. 89–106, Cham, 2025. Springer Nature Switzerland.
- [46] Huang, Linlan, Cao, Xusheng, Lu, Haori, and Liu, Xialei. Class-incremental learning with clip: Adaptive representation adjustment and parameter fusion. in Computer Vision ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LIV, p. 214–231, Berlin, Heidelberg, 2024. Springer-Verlag.
- [47] Pan, Junting, Lin, Ziyi, Zhu, Xiatian, Shao, Jing, and Li, Hongsheng. ST-adapter: Parameter-efficient image-to-video transfer learning. in Oh, Alice H., Agarwal, Alekh, Belgrave, Danielle, and Cho, Kyunghyun, eds., Advances in Neural Information Processing Systems, 2022.
- [48] Wang, Huiyi, Lu, Haodong, Yao, Lina, and Gong, Dong. Self-expansion of pre-trained models with mixture of adapters for continual learning. in NeurIPS 2024 Workshop on Scalable Continual Learning for Lifelong Foundation Models, 2024.

- [49] Yu, Jiazuo, Zhuge, Yunzhi, Zhang, Lu, Hu, Ping, Wang, Dong, Lu, Huchuan, and He, You. Boosting continual learning of vision-language models via mixture-of-experts adapters. pp. 23219–23230, 06 2024.
- [50] Ilharco, Gabriel, Wortsman, Mitchell, Gadre, Samir Yitzhak, Song, Shuran, Hajishirzi, Hannaneh, Kornblith, Simon, Farhadi, Ali, and Schmidt, Ludwig. Patching openvocabulary models by interpolating weights. in Oh, Alice H., Agarwal, Alekh, Belgrave, Danielle, and Cho, Kyunghyun, eds., Advances in Neural Information Processing Systems, 2022.

پیوست

موضوعات مرتبط با متن گزارش پایان نامه که در یکی از گروههای زیر قرار می گیرد، در بخش پیوستها آورده شوند:

```
۱. اثبات های ریاضی یا عملیات ریاضی طولانی.
```

۲. داده و اطلاعات نمونه (های) مورد مطالعه (Case Study) چنانچه طولانی باشد.

۳. نتایج کارهای دیگران چنانچه نیاز به تفصیل باشد.

۴. مجموعه تعاریف متغیرها و پارامترها، چنانچه طولانی بوده و در متن به انجام نرسیده باشد.

کد میپل

```
with(DifferentialGeometry):
with(Tensor):
DGsetup([x, y, z], M)
frame name: M
a := evalDG(D_x)
D_x
b := evalDG(-2 y z D_x+2 x D_y/z^3-D_z/z^2)
```

واژهنامهی فارسی به انگلیسی

حاصل ضرب دکارتی Cartesian product	Ĩ
Ċ	اسکالر
خودریختی Automorphism	ب
s	بالابر
Degree	پ
J	پایا
microprocessor	ت
ز	تناظر Correspondence
زيرمدول	ث
س	ثابتساز Stabilizer
	τ
سرشت	جایگشت
ص	~
صادقانه	چند جملهای Polynomial
ض	τ

انگلیسی	ىە	فارسی	مهي	ژەنا	ا
	-	(5)-	0	,	7

همبند	ضرب داخلی
ى	ط
Edge	طوقه Loop
	ظ
	ظرفیت
	3
	عدم مجاورت Nonadjacency
	ف
	فضای برداری Vector space
	ک
	کاملاً تحویلپذیر Complete reducibility
	گ
	گراف
	م
	ماتریس جایگشتی Permutation matrix
	ڹ
	ناهمبند Disconnected
	9
	وارون پذیر Invertible
	٥

واژهنامهی انگلیسی به فارسی

A	همریختی Homomorphism
خودریختی	I
В	ال Invariant
Bijection	L
C	بالابر
گروه دوری	M
D	مدول
Degree	N
E	
Edge	نگاشت طبیعی Natural map
F	О
Function تابع	یک به یک
G	P
گروه	Permutation group گروه جایگشتی
Н	Q

گراف خارجقسمتی Quotient graph	سرشت بدیهی Trivial character
R	U
تحویل پذیر	منحصر بفر د
S	
Sequence	V
T	فضای برداری Vector space

Abstract

This page is accurate translation from Persian abstract into English.

Key Words:

Write a 3 to 5 KeyWords is essential. Example: AUT, M.Sc., Ph. D,..

Amirkabir University of Technology (Tehran Polytechnic)

Department of ...

M. Sc. Thesis

Title of Thesis

By

Name Surname

Supervisor

Dr.

Advisor

Dr.

Month & Year