

Mestrado Integrado em Engenharia Eletrónica e Telecomunicações Licenciatura em Engenharia Aeroespacial

Propagação e Radiação de Ondas Eletromagnéticas – PROE

Ano letivo 2023/24

Prof. Pedro Pinho ptpinho@ua.pt

Canal de transmissão

Propagação guiada:

Propagação em espaço livre ou na atmosfera:

Propagação guiada

Propagação guiada: Pares de cobre

Pares de cobre UTP (Unshielded Twisted Pair);

Pares de cobre FTP (Foiled Twisted Pair);

Pares de cobre STP (Shielded Twisted Pair);

Pares de cobre SSTP (Screened Shielded Twisted Pair).

Propagação guiada: Cabo Coaxial

>Um cabo coaxial, na sua forma mais simples, consiste num condutor central, normalmente de cobre, envolvido por um material dielétrico ou isolante e sobre o qual assenta um condutor exterior, designado de malha.

Propagação guiada: Linha microstrip ou impressa

- \triangleright Uma linha *microstrip* ou impressa, consiste num condutor de cobre de largura w, comprimento L e espessura t colocada a uma altura h de um plano de massa sobre um dielétrico com permitividade relativa ε_r .
 - A espessura do cobre, t, tipicamente é de 35 μm;

Linha de transmissão: definição

- \triangleright Linha cujo comprimento físico (L) é da ordem de grandeza do comprimento de onda λ .
 - Se n = 1, $c = 3 \times 108 m/s$, para f = 50 Hz temos $\lambda = 6 \times 10^6$ m;
 - Se n = 1, $c = 3 \times 108 m/s$, para f = 1 GHz temos $\lambda = 0.3 m$;
 - Se n = 1, $c = 3 \times 108 m/s$, para f = 200 THz temos $\lambda = 1.5 \times 10^{-6}$ m;

Com o aumento de f, λ diminui podendo tender para valores da ordem de grandeza do comprimento físico da linha (L) ou do circuito em análise, resultando em implicações em termos de análise;

Z_L=100Ω Verifica-se uma variação da impedância de entrada da linha com a frequência!!

Frequência	0 Hz	1 kHz	100 kHz	1 MHz	100 MHz	300 MHz
$Z_{in}(\Omega)$	100	99.9-j0.0031	99.87-j0.314	99.87-j3.14	30.77+j19.99	100

Modelo da linha de transmissão

- Porque temos dois condutores separados por um dielétrico há um efeito capacitivo representado por uma capacidade C distribuída paralelo (F/m) relacionada com a permitividade do dielétrico;
- \triangleright Aos condutores que transportam a corrente está associada uma indutância L série distribuída (H/m), devida ao campo magnético entre os condutores;
- \triangleright Os condutores têm uma condutividade finita, pelo que possuem uma resistência R distribuída série (Ω/m), a qual causa as perdas ohmicas;
- ➤Os condutores estão separados por um dielétrico que pode não ser ideal (condutividade não nula) ou seja pode haver condução entre ambos. Uma condutância distribuída *G* paralelo (S/m) justificará as perdas no dielétrico;
 - As grandezas *L*, *C*, *R* e *G* estão uniformemente distribuídas ao longo da linha e o seu valor depende da frequência e da geometria da própria LT.

Parâmetros distribuídos

- São 4 os parâmetros distribuídos:
 - R (Ω/m) Resistência distribuída (em série)
 - · Resistência dos condutores (ida/retorno): Contribui para as perdas na linha
 - L (H/m)→ Indutância distribuída (em série)
 - Indutância devido ao fluxo magnético (entre e nos condutores)
 - ° C (F/m) → Capacidade distribuída (em paralelo)
 - Capacidade entre os condutores
 - G (S/m) → Condutância distribuída (paralelo)
 - Condutividade ou histerese no dielétrico: Contribui para perdas na linha

- Os parâmetros distribuídos dependem das características geométricas da linha:
 - Forma, dimensões e distância entre condutores;
 - Dielétrico: ε (permitividade: F/m) e μ (permeabilidade: H/m);

Parâmetros distribuídos: Linha bifilar, microstrip e cabo coaxial

Parâmetro	Cabo coaxial	Linha bifilar	L. Microstrip
C [F/m]	$\frac{2\pi\varepsilon}{\ln\left(\frac{b}{a}\right)}$	$\frac{\pi\varepsilon}{\ln\left(\frac{d}{a}\right)}$	$\epsilon \frac{w}{d}$
L [H/m]	$\frac{\mu}{2\pi}\ln\left(\frac{b}{a}\right)$	$\frac{\mu}{\pi} \ln \left(\frac{d}{a} \right)$	$\mu \frac{d}{w}$
R [Ω/m]	$\frac{R_s}{2\pi} \left[\frac{1}{a} + \frac{1}{b} \right]$	$\frac{R_s}{\pi a}$	$\frac{2}{w}R_s$
G [S/m]	$\omega C t g \delta$	$\omega C t g \delta$	$\sigma \frac{w}{d}$

$$R_s = \sqrt{\frac{\pi f \mu_0}{\sigma}}$$

Linhas microstrip e coplanar waveguide

Linha microstrip

- W aumenta $\rightarrow C$ aumenta
- h aumenta $\rightarrow C$ diminui
- Dois problemas (dadas as características do substrato):
 - $^{\circ}$ **Análise:** Dá-se a largura da linha e pede-se Z_0 e ϵ_{eff}
 - **Síntese:** Dá-se impedância característica pretendida e pede-se a largura da linha W
- https://www.microwaves101.com/calculators

Grounded coplanar waveguide

TXLine: a ferramenta grátis para dimensionar/analisar linhas de transmissão

"TX-LINE software is a FREE and interactive transmission-line utility for the analysis and synthesis of transmission-line structures that can be used directly in Microwave Office for matching-circuit and other high-frequency designs."

https://www.cadence.com/en_US/home/tools/system-analysis/rf-microwave-design/awr-tx-line.html

Linha de transmissão: modelo de circuito

> Aplicando a lei de Kirchhoff, malhas e nós, ao modelo equivalente de uma LT, temos:

Lei das malhas

$$-v(x,t) + (Rdx)i(x,t) + (Ldx)\frac{\partial i(x,t)}{\partial t} + v[(x+dx),t] = 0$$

Lei dos nós

$$-i(x,t) + (Gdx)V(x+dx,t) + (Cdx)\frac{\partial v(x+dx,t)}{\partial t} + i[(x+dx),t] = 0$$

Equações gerais da tensão e corrente numa LT

Recorrendo aos conceitos de limite e derivada de uma função, omitindo a variável t e x(simplificação das equações) e combinando ambas obtém-se as equações seguintes:

$$\frac{\partial v}{\partial x} + Ri + L \frac{\partial i}{\partial t} = 0$$

$$\frac{\partial^2 v}{\partial x^2} - (RC + LG)\frac{\partial v}{\partial t} - LC\frac{\partial^2 v}{\partial t^2} - RGv = 0$$

$$\frac{\partial i}{\partial x} + Gv + C\frac{\partial v}{\partial t} = 0$$

$$\frac{\partial^2 i}{\partial x^2} - (RC + LG)\frac{\partial i}{\partial t} - LC\frac{\partial^2 i}{\partial t^2} - RGi = 0$$

- Solução das equações anteriores:
 - O regime harmónico forçado sinusoidal é normalmente de grande interesse prático pois na maioria dos casos as linhas são usadas para transmitir sinais modulados com uma reduzida largura de banda em relação à frequência da portadora.

$$v(x,t) = V(x)\cos[\omega t + \varphi(x)] = R_{e}(V(x)e^{j\omega t})$$

$$V(x) = V(x)e^{j\varphi(x)}$$

$$i(x,t) = I(x)\cos[\omega t + \varphi(x)] = R_e(I(x)e^{j\omega t})$$

$$I(x) = I(x)e^{j\varphi(x)}$$

Solução para o regime forçado sinusoidal

Assumindo então a linha excitada por uma tensão sinusoidal pode-se aplicar às equações da tensão e corrente o conceito de fasor, o que faz com que as mesmas possam ser escritas da seguinte forma:

$$\frac{\partial V}{\partial x} + ZI = 0 \qquad Z = R + j\omega L$$

$$\frac{\partial^2 V}{\partial x^2} - ZYV = 0$$

$$\frac{\partial I}{\partial x} + YV = 0 \qquad Y = G + j\omega C$$

$$\frac{\partial^2 \mathbf{I}}{\partial x^2} - ZY\mathbf{I} = 0$$

- º Estas são equações diferenciais lineares homogéneas de coeficientes constantes cuja solução é bem conhecida.
- As soluções das equações anteriores são: $V = V_1 e^{-\sqrt{ZY}x} + V_2 e^{\sqrt{ZY}x}$ $I = \frac{V_1}{\sqrt{Z/Y}} e^{-\sqrt{ZY}x} \frac{V_2}{\sqrt{Z/Y}} e^{\sqrt{ZY}x}$

$$V = V_1 e^{-\gamma x} + V_2 e^{\gamma x}$$

$$I = \frac{V_1}{Z_0}e^{-\gamma x} - \frac{V_2}{Z_0}e^{\gamma x}$$

$$\gamma = \alpha + j\beta = \sqrt{ZY}$$

$$\gamma = \alpha + j\beta = \sqrt{ZY}$$
 $Z_0 = \sqrt{Z/Y} = |Z_0|e^{j\varphi_0}$

γ é designada por constante de propagação (m⁻¹) Z_0 é a impedância característica da linha (Ω) ;

Constante de propagação: γ (m⁻¹)

- γ é um valor complexo, $\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$ m^{-1}
 - · A raiz quadrada de um complexo tem duas soluções: aproveita-se a que tem parte real positiva;

$$V(x) = \underbrace{V_1 e^{-(\alpha + j\beta)x}}_{V_i(x)} + \underbrace{V_2 e^{+(\alpha + j\beta)x}}_{V_r(x)}$$

- >γ é a constante de propagação, formada por:
 - $\alpha \rightarrow$ Constante de atenuação [Np/m]
 - ° 1 Neper de atenuação $V \rightarrow V/e$ ou $A_t = 20 * \log_{10}(e) = 8.686 \; dB$
 - $\beta \rightarrow$ constante de fase [rad/m]
 - $\circ \lambda \rightarrow$ Comprimento de onda (m)
 - \circ Mesmo significado físico na distância x que T (período) no tempo t.

$$\beta = \frac{2\pi}{\lambda}$$

$$1Np = 8.686dB$$

O conceito de impedância característica: $Z_0(\Omega)$

- \triangleright A Impedância característica Z_0 é uma relação entre:
 - A tensão incidente e a corrente incidente;
 - º Ou o negativo da mesma relação para as correspondentes ondas refletidas;
 - Não deve ser vista como uma impedância tradicional mas apenas que... não podemos definir independentemente a tensão e a corrente na linha de transmissão: o elo entre as duas é um escalar!!
 - ° Matematicamente a fase de Z ou Y pode variar entre $[0^{\circ} 90^{\circ}]$;
 - ° Logo θ_0 teria fase entre [-45° 45°] mas

$$Z = R + j\omega L$$

 $Y = G + j\omega C$ $Z_0 = \sqrt{\frac{Z}{Y}} = Z_0 e^{j\theta_0}$

- \circ A altas frequências Z_0 é praticamente real (θ_0 é negativo mas muito pequeno) e constante com a frequência
 - $R \ll \omega L \ e \ G \ll \omega C$;
 - $Z_0 = R_o + jX_o \cong R_0 \ (\Omega).$

Solução da equação de onda

- Tensão/corrente no regime forçado sinusoidal é:
 - A soma de duas ondas progressivas (representadas por fasores rotativos com a distância x):
 - Uma <u>incidente</u> progride no sentido x^+ \Rightarrow Fasor roda no sentido dos ponteiros do relógio (CW);
 - Outra <u>refletida</u> progride no sentido $x^- \rightarrow$ Fasor roda no sentido contrário aos ponteiros do relógio (CCW);

- Linha com perdas → Amplitude das ondas diminui exponencialmente no seu sentido de propagação;
 - Onda incidente diminui com x^+ ;
 - Onda refletida diminui com x^- ;
- Havendo um só gerador a alimentar a LT como será possível existirem duas ondas, propagando-se em sentidos contrários?

Equações de tensão e corrente em regime sinusoidal, no domínio do tempo

Multiplicando a equação fasorial da tensão por $e^{j\omega t}$ e tomando a parte real do resultado obtemos o valor instantâneo da tensão:

$$v(x,t) = R_e(V_1 e^{-\gamma x} + V_2 e^{\gamma x}) e^{j\omega t}$$

$$v(x,t) = R_e(|V_1|e^{j\varphi_1}e^{-\alpha x}e^{j(\omega t - \beta x)} + |V_2|e^{j\varphi_2}e^{\alpha x}e^{j(\omega t + \beta x)})$$

$$v(x,t) = |V_1|e^{-\alpha x}\cos(\omega t - \beta x + \varphi_1) + |V_2|e^{\alpha x}\cos(\omega t + \beta x + \varphi_2)$$

- Soma de duas tensões que na direção de x+:
- o Incidente: Fasor roda CW e amplitude diminui exponencialmente;
- Refletida: Fasor roda CCW e amplitude aumenta exponencialmente;
- · Tensão refletida comporta-se de forma similar à tensão incidente se a virmos progredir no sentido x-;
 - A amplitude e a fase da tensão também diminui;
- De igual forma, a corrente na linha de transmissão é dada por:

$$i(x,t) = \frac{|V_1|}{|Z_0|} e^{-\alpha x} \cos(\omega t - \beta x + \varphi_1 - \varphi_0) - \frac{|V_2|}{|Z_0|} e^{\alpha x} \cos(\omega t + \beta x + \varphi_2 - \varphi_0)$$

Onda incidente de tensão

➤ Ver script Waves.m

 $e^{-\alpha x}$ Envolvente Envolvente t=0 t=T/4 t=2T/4 Amplitude 10 20 30 40 50 60 70 80 90 100 Distância

Linha sem perdas: onda incidente

Linha com perdas: onda incidente

Evolução temporal da tensão na LT

Tempo a decorrer: Preto → Azul → Verde → Vermelho

Exercício

- Consider the following equation (function of x that is the distance to the generator plane) for the voltage in a lossless 50 Ω characteristic impedance transmission line used at 300 MHz with dielectric air, $l = 10.5 \, m$ long and with $V_1 = 4 \, V$ and $V_2 = (\sqrt{3} + j1) \, V$.
 - \circ a) Calculate γ and write the full phasor equation for the voltage in the transmission line. $\gamma = j2\pi \ rad/m$
 - b) Write the phasor equation for the current I(x).
 - \circ c) Write both equations in the time domain as a function of x.
 - d) Calculate the voltage phasor and current phasor at the generator plane V(x=0) and I(x=0).
 - V(x = 0) = 5.73 + 1j V; I(x = 0) = 0.0454 0.02j A
 - e) Calculate the voltage phasor and current phasor at the load impedance plane V(x = 10.5) and I(x = 10.5) and also the load impedance Z_L .
 - $V(x = 10.5) = -5.73 1j V; I(x = 10.5) = -0.0454 + 0.02j A; Z_L = 97.7 + 65j \Omega$
 - f) Write the voltage equation as a function of d (note that x + d = l).
 - \circ g) Write the current equation as a function of d.

PROE

Resolução:

$$\gamma = \alpha + j\beta$$
 $\beta = \frac{2\pi}{\lambda}$ $\lambda = \frac{v}{f} = \frac{c}{f}$ $\lambda = 1 \text{ (m)}$ $\beta = 2\pi \text{ (rad/m)}$

$$V(x) = 4e^{-j2\pi x} + \left(\sqrt{3} + j\right)e^{+j2\pi x} = 4e^{-j2\pi x} + 2e^{j\frac{\pi}{6}}e^{+j2\pi x} \text{ (V)} \quad V(d) = 4e^{-j2\pi(\ell-d)} + 2e^{j\frac{\pi}{6}}e^{+j2\pi(\ell-d)}$$

$$I(x) = \frac{V_1}{Z_0}e^{-\gamma x} - \frac{V_2}{Z_0}e^{+\gamma x} = 80e^{-j2\pi x} - 40e^{j\frac{\pi}{6}}e^{+j2\pi x} \text{ (mA)} \quad V(d) = 4e^{-j2\pi(\ell-d)}\left(1 + \frac{2e^{j\frac{\pi}{6}}}{4}e^{+j2\times 2\pi\ell}e^{-j2\times 2\pi d}\right)$$

$$\begin{split} v(x,t) &= \Re \big(V(x) e^{j\omega t} \big) \\ v(x,t) &= 4 \cos \big(2\pi \times 300 \times 10^6 t - 2\pi x \big) + 2 \cos \left(2\pi \times 300 \times 10^6 t + 2\pi x + \frac{\pi}{6} \right) \text{ (V)} \\ i(x,t) &= \Re \big(I(x) e^{j\omega t} \big) \\ i(x,t) &= 80 \cos \big(2\pi \times 300 \times 10^6 t - 2\pi x \big) - 40 \cos \left(2\pi \times 300 \times 10^6 t + 2\pi x + \frac{\pi}{6} \right) \text{ (mA)} \end{split}$$

$$V(0) = 4e^{-j0} + (\sqrt{3} + j)e^{+j0} = (4 + \sqrt{3}) + j \text{ (V)} \quad V(x = 10.5) = 4e^{-j21\pi} + (\sqrt{3} + j)e^{+j21\pi} = -4 - 2e^{j\frac{\pi}{6}} \text{ (V)}$$

$$I(0) = 80 - 40e^{j\frac{\pi}{6}} \text{ (mA)}$$

$$I(x = 10.5) = 80e^{-j21\pi} - 40e^{j\frac{\pi}{6}}e^{+j21\pi} = -80 + 40e^{j\frac{\pi}{6}} \text{ (mA)}$$

Comportamento de uma LT em condições distintas

	Constante de atenuação α	Constante de fase β	Impedância característica	Velocidade de fase
Linha sem perdas $(R = G = 0)$	$\alpha = 0$	$\beta = \omega \sqrt{LC}$	$Z_0 = \sqrt{\frac{L}{C}}$	$v_p = \frac{1}{\sqrt{LC}}$
Condição de Heaviside $(R/L = G/C)$	$\alpha = \frac{R}{Z_0}$	$\beta = \omega \sqrt{LC}$	$Z_0 = \sqrt{\frac{L}{C}}$	$v_p = \frac{1}{\sqrt{LC}}$
Aproximação das altas frequências $\omega L >> R$ $\omega C >> G$	$\alpha = \frac{R}{2Z_0} + \frac{GZ_0}{2}$	$\beta = \omega \sqrt{LC}$	$Z_0 = \sqrt{\frac{L}{C}}$	$v_p = \frac{1}{\sqrt{LC}}$

$$\gamma = \sqrt{ZY} = \sqrt{(R + j\omega L)(G + j\omega C)} = j\omega\sqrt{LC}\sqrt{\left(1 + \frac{R}{j\omega L}\right)}\sqrt{\left(1 + \frac{G}{j\omega C}\right)} \qquad v_p = \frac{\omega}{\beta} = \frac{\omega}{\omega\sqrt{LC}} = \frac{1}{\sqrt{\mu_d \varepsilon_d}} = \frac{c}{\sqrt{\varepsilon_r}} \qquad Z_0 = \sqrt{\frac{Z}{Y}} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = \sqrt{\frac{L}{C}} \frac{1 + \frac{R}{j\omega L}}{1 + \frac{G}{j\omega C}} \quad (\Omega)$$

Constante de atenuação α em função da frequência

Temos:
$$\alpha_{Total}(f) = \frac{R}{2Z_0} + \frac{GZ_0}{2} = \frac{R(f)}{2Z_0} + \frac{G(f)Z_0}{2} = \alpha_R + \alpha_G$$

- R que é proporcional a \sqrt{f}
- G que é proporcional a f

 \triangleright A contribuição relativa de α_G para α_{Total} cresce

Cabo HJ4-50 Andrew

0.442 (1.45) 0.821 (2.69) 1.82 (5.96)
, ,
1.82 (5.96)
2.81 (9.23)
4.17 (13.7)
8.03 (26.3)
11.1 (36.4)
8.07 < 11.1

Coeficiente de reflexão de tensão p

- Havendo um só gerador a alimentar a LT como será possível existirem duas ondas, propagando-se em sentidos contrários?
 - \circ Só será possível se existirem reflexões na linha: reflexão no plano da carga Z_L da onda lançada pelo gerador;
- \triangleright À razão entre os fasores de tensão refletida e incidente num ponto x da linha, designamos por: Coeficiente de reflexão em tensão:

$$\rho(x) = \frac{V^{-}(x)}{V^{+}(x)}$$

- ° No plano da carga teremos: $\rho_L = \frac{V_2 e^{\gamma \ell}}{V_1 e^{-\gamma \ell}}$
- o Atendendo à definição anterior e à definição de impedância de carga podemos escrever:

$$Z_{L} = Z_{o} \frac{V_{1}e^{-\gamma\ell} + V_{2}e^{\gamma\ell}}{V_{1}e^{-\gamma\ell} - V_{2}e^{\gamma\ell}} = Z_{0} \frac{1 + V_{2}e^{\gamma\ell}/V_{1}e^{-\gamma\ell}}{1 - V_{2}e^{\gamma\ell}/V_{1}e^{-\gamma\ell}} = Z_{0} \frac{1 + \rho_{L}}{1 - \rho_{L}}$$

$$\rho_L = \frac{Z_L - Z_0}{Z_L + Z_0} = |\rho_L| e^{+j\varphi_L}$$

Círculo de coeficientes de reflexão

Coeficiente de reflexão da carga em função de d e de x

Coeficiente de reflexão à distância d da carga:

$$\rho(d) = \frac{V_2 e^{+\gamma l}}{V_1 e^{-\gamma l}} \frac{e^{-\gamma d}}{e^{+\gamma d}} \qquad \rho(d) = \rho_L \frac{e^{-\gamma d}}{e^{+\gamma d}} \rightarrow \rho(d) = \rho_L e^{-2\gamma d} = \underbrace{|\rho_L| e^{-2\alpha d}}_{M \acute{o} dulo} e^{j\underbrace{(\varphi_L - 2\beta d)}_{Fase}}$$

- Módulo do coeficiente de reflexão:
 - Mantém se constante, se a linha não tiver perdas ($\alpha = 0$) e diminui (d^+) se a linha tiver perdas ($\alpha > 0$);
- Fase do coeficiente de reflexão:
 - ° Roda no sentido dos ponteiros do relógio, ou seja a fase diminui 360° por cada $\lambda/2$ (no sentido d^+).
- Coeficiente de reflexão à distância x do gerador:

$$\rho(\mathbf{x}) = \rho_L e^{-2\gamma l} e^{+2\gamma x}$$

Coeficiente de reflexão $\rho(d)$

$\rho(d)$ em diagrama polar: d é fixo mas β e α aumentam com a frequência

- Linha microstrip terminada em CC (d fixo)
 - o Varrimento em frequência entre 10 MHz e 1300 MHz;
 - o Constante de atenuação e de fase aumentam com a frequência;

Coeficiente de transmissão de tensão

>Útil para calcular a amplitude onda que se propaga "para diante" da interface entre duas linhas

Uma vez que a tensão imediatamente à direita do plano de separação tem de ser igual à tensão imediatamente à esquerda então:

$$V^+(x) + V^-(x) = V^t(x)$$

No plano de separação das duas linhas pode-se definir um coeficiente de transmissão de tensão definido como:

$$\rho_t = \frac{V^t}{V^+}$$

$$\rho_t = \frac{V^+(x) + V^-(x)}{V^+(x)} = 1 + \frac{V^-(x)}{V^+(x)} = 1 + \rho(x)$$

Equação generalizada da tensão e corrente na linha

$$V(x) = V_1 e^{-\gamma x} + V_2 e^{\gamma x}$$

$$V(x) = V_1 e^{-\gamma x} + V_1 \rho_L e^{-2\gamma l} e^{\gamma x}$$

$$V(x) = V_1 e^{-\gamma x} \left(1 + \rho_L e^{-2\gamma (l-x)}\right)$$

$$I(x) = I_1 e^{-\gamma x} - I_2 e^{\gamma x}$$

$$I(x) = I_1 e^{-\gamma x} (1 - \rho_L e^{-2\gamma(1-x)})$$

$$V(d) = V_1 e^{-\gamma(1-d)} (1 + \rho_L e^{-2\gamma d})$$

$$I(d) = \frac{V_1}{Z_0} e^{-\gamma(\ell-d)} \left[1 - \rho_L e^{-2\gamma d} \right]$$

 \triangleright Qual a equação da tensão e corrente no circuito anterior dados V_g , Z_g , Z_0 , Z_L e γ ?

$$V_1 = ? V_2 = ?$$

Equação generalizada da tensão e corrente na linha

 \triangleright O gerador esta adaptado à linha: $Z_q = Z_0$;

$$V_1 = V_p = V_g/2;$$

 \triangleright O gerador não esta adaptado à linha: $Z_g \neq Z_0$

$$Z_0 \qquad \qquad \bigvee_{Z_L} \qquad V_p = V_g \frac{Z_0}{Z_0 + Z_g}$$

$$V(x) = \sum_{1}^{\infty} V^{+}(x) + \sum_{1}^{\infty} V^{-}(x) \qquad \boxed{r = e^{-2\gamma\ell} \rho_L \rho_g}$$

$$\sum_{1}^{\infty} V^{+}(x) = u_{1} \frac{1}{1 - r} = V_{p} e^{-\gamma x} \frac{1}{1 - e^{-2\gamma \ell} \rho_{L} \rho_{g}}$$

$$\sum_{1}^{\infty} V^{-}(x) = u_{1} \frac{1}{1 - r} = V_{p} e^{-2\gamma \ell} \rho_{L} e^{\gamma x} \frac{1}{1 - e^{-2\gamma \ell} \rho_{L} \rho_{g}}$$

Equação generalizada da tensão e corrente na linha

 \triangleright Assim, em regime estacionário, a tensão em função de x é dada por:

$$V(x) = V_g \frac{Z_0}{Z_0 + Z_g} \frac{1}{1 - \rho_L \rho_g e^{-2\gamma \ell}} \left(e^{-\gamma x} + \rho_L e^{-2\gamma \ell} e^{\gamma x} \right)$$

$$V_{1} = V_{g} \frac{Z_{0}}{Z_{0} + Z_{g}} \frac{1}{1 - \rho_{L} \rho_{g} e^{-2\gamma \ell}}$$

$$V_{2} = V_{g} \frac{Z_{0}}{Z_{0} + Z_{g}} \frac{\rho_{L} e^{-2\gamma \ell}}{1 - \rho_{L} \rho_{g} e^{-2\gamma \ell}}$$

Exercício

Considere uma linha de 50Ω com dielétrico ar e comprimento 10~m atacada por um gerador de impedância interna $50~\Omega$, amplitude 2~V e frequência 300~MHz. Sabendo que a impedância de carga é $50+j50~\Omega$:

- A equação dos fasores de tensão V(x) e corrente I(x) na linha;
- \circ A equação dos fasores de tensão V(d) e corrente I(d) na linha;
- · A equação da tensão e da corrente no domínio do tempo.

$$V(d) = e^{+j2\pi d} + 0.45e^{j(1.107 - 2\pi d)} V$$

$$I(d) = 20e^{+j2\pi d} - 8.94e^{j(1.107 - 2\pi d)} mA$$

Interferência entre ondas progressivas – Onda estacionária

- Sempre que numa linha existam duas ondas de frequência igual mas propagando-se em sentidos opostos, cria-se um fenómeno de interferência conhecido por onda estacionaria;
- A amplitude da tensão e da corrente não é constante ao longo da linha e em determinados locais fixos (daí o nome de "estacionaria") ocorrem os denominados extremos: ou seja valores máximos e valores mínimos de tensão ou de corrente;

 $V(x) = 2e^{-j\beta x} + 1e^{j\beta x}$

Interferência das duas ondas: onda estacionária

- Porquê "onda estacionária"?
 - · A amplitude da tensão (corrente) "ondula" ao longo da linha mas o padrão criado não se move (estacionário);
- As distâncias entre:
 - Dois máximos (ou mínimos) consecutivos é λ/2;
 - Máximo (mínimo) e mínimo (máximo) adjacentes é λ/4;
- \triangleright Para a corrente I(x)
 - o Máximos de corrente coincidem com os mínimos de tensão e vice-versa
- Outras conclusões:
 - · Nos pontos de máximo e mínimo a tensão e a corrente na linha estão em fase;
 - o A fase entre a tensão (corrente) num extremo (máximo ou mínimo) e no extremo mais próximo da mesma natureza é 180°;
 - A fase entre a tensão (corrente) num extremo (máximo ou mínimo) e o extremo de natureza oposta (mínimo ou máximo) é de +/-90° (estão em quadratura);

Envolvente da onda estacionária em linhas sem perdas

 \triangleright A equação da tensão em função de d, pode ser simplificada, sem perda de generalidade no respeitante a analise da interferência, se fizermos $Z_g=Z_0$ e $\alpha=0$.

$$V(d) = V_1 e^{-\gamma(1-d)} \left(1 + \rho_L e^{-2\gamma d} \right)$$

$$V(d) = \frac{V_g}{2} e^{-j\beta(1-d)} \left(1 + \rho_L e^{-j2\beta d} \right)$$

$$|V(d)| = \frac{|V_{g}|}{2} |1 + |\rho_{L}| e^{j(\phi_{L} - 2\beta d)}|$$

$$|V(d)| = \frac{|V_{g}|}{2} \sqrt{1 + |\rho_{L}|^{2} + 2|\rho_{L}| \cos(\phi_{L} - 2\beta d)}$$

Dois casos interessantes são o da carga adaptada ($Z_L = Z_0$) para o qual a amplitude da tensão na linha é constante e igual a $|V_g|/2$ e o caso de $|\rho_L| = 1$ (CC ou CA) em que a amplitude da tensão variará entre 0 e $|V_g|$;

Localização e amplitude dos extremos de tensão e corrente

A tensão na linha será máxima (e a corrente mínima) quando se verificar a condição:

$$\phi_L - 2\beta d_{max} = -2n\pi$$

$$d_{max} = \frac{\phi_L}{2\beta} + n\frac{\lambda}{2}$$

$$\phi_L - 2\beta d_{min} = -(2n-1)\pi$$

$$d_{min} = \frac{\phi_L}{2\beta} + (2n - 1)\frac{\lambda}{4}$$

A amplitude da tensão (máxima) é dada por:

$$|V(d)|_{max} \frac{\left|V_{g}\right|}{2} (1 + |\rho_{L}|)$$

$$|V(d)|_{min} \frac{\left|V_{g}\right|}{2} (1 - |\rho_{L}|)$$

A amplitude da corrente (mínima) é dada por: $|I(d)|_{min} \frac{|V_g|}{2Z_0} (1 - |\rho_L|)$

Onda estacionária: exemplos

 $V_{in} = 10V$ e linha sem perdas ($\alpha = 0$)

$$|\rho| = 0.83$$

PROE

Exemplos de envolventes de onda estacionária

Coeficiente de onda estacionária VSWR (Voltage Standing Wave Ratio)

Define-se como razão de onda estacionária a relação entre a amplitude máxima e a mínima da tensão na linha (igual à relação entre a amplitude máxima e mínima da corrente);

$$VSWR = \frac{|V(d)|_{Max}}{|V(d)|_{\min}}$$

$$VSWR = \frac{1 + |\rho_L|}{1 - |\rho_L|}$$

 \triangleright O VSWR varia na gama [1;+ ∞ [;

- Com potências elevadas e VSWR elevado nos pontos de:
 - Máximo de corrente -> sobreaquecimento pode danificar a linha (condutor interior mais crítico)
 - Máximo de tensão -> Sobretensão que pode causar arco elétrico entre condutores

VSWR numa linha com perdas $\alpha > 0$

$$VSWR = \frac{1 + |\rho_L|e^{-2\alpha d}}{1 - |\rho_L|e^{-2\alpha d}}$$

Fórmula útil em trabalhos de laboratório: Medição da constante atenuação de linhas de transmissão: Linha de comprimento conhecido d termina-se em CC ou CA e mede-se o VSWR ou ρ à entrada.

Exercício

- Considere uma linha de 50Ω com dielétrico ar e comprimento 10~m atacada por um gerador de impedância interna $50~\Omega$, amplitude 2~V e frequência 300~MHz. Sabendo que a impedância de carga é $50+j50~\Omega$:
 - Calcule o coeficiente de reflexão, o VSWR, o comprimento de onda, a constante de fase e a amplitude da onda incidente;
 - $ρ_L = 0.4472ej^{1.107}, VSWR = 2.62, λ = 1m, β = 2π rad/m, V_i = 1V$
 - A equação dos fasores tensão V(d) e corrente I(d) na linha.

$$V(d) = e^{+j2\pi d} + 0.45e^{j(1.107 - 2\pi d)} V$$

$$I(d) = 20e^{+j2\pi d} - 8.94e^{j(1.107 - 2\pi d)} mA$$

- · A localização do máximo e mínimo de tensão mais próximos da carga.
 - $d_{max} = 0.0881 \ m \ ; d_{min} = 0.3381 \ m$
- · A amplitude da tensão e corrente num máximo e num mínimo de tensão.
 - \circ $V_{max}=1.447~V$; $V_{min}=0.553~V$; $I_{max}=28.94~mA$; $I_{min}=11.06~mA$

PROE

Impedância ao longo de uma linha

$$Z(d) = Z_{0} \frac{e^{\gamma d} + \rho_{L} e^{-\gamma d}}{e^{\gamma d} - \rho_{L} e^{-\gamma d}} = Z_{0} \frac{e^{\gamma d} + \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} e^{-\gamma d}}{e^{\gamma d} - \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} e^{-\gamma d}} = Z_{0} \frac{Z_{L} (e^{\gamma d} + e^{-\gamma d}) + Z_{0} (e^{\gamma d} - e^{-\gamma d})}{Z_{0} (e^{\gamma d} + e^{-\gamma d}) + Z_{L} (e^{\gamma d} - e^{-\gamma d})}$$

$$= Z_{0} \frac{Z_{L} + Z_{0} \frac{(e^{\gamma d} - e^{-\gamma d})}{(e^{\gamma d} + e^{-\gamma d})}}{Z_{0} + Z_{L} \frac{(e^{\gamma d} - e^{-\gamma d})}{(e^{\gamma d} + e^{-\gamma d})}} = Z_{0} \frac{Z_{L} + Z_{0} \tanh(\gamma d)}{Z_{0} + Z_{L} \tanh(\gamma d)}$$

 \triangleright Se $\alpha = 0$ (linha sem perdas) a tanh() degenera na tangente trigonométrica

$$Z(d) = Z_0 \frac{Z_L + jZ_0 \tan(\beta d)}{Z_0 + jZ_L \tan(\beta d)}$$

Impedância ao longo de uma linha terminada em CC

- \triangleright A impedância é dada por: $Z_{cc} = jZ_0 \tan(\beta \ell)$
 - Podemos observar não apenas a mudança de natureza da carga, como a sua periodicidade com $\lambda/2$;

Impedância ao longo de uma linha terminada em CA

- \triangleright A impedância é dada por: $Z_{ca} = -jZ_0 \cot(\beta \ell)$
 - Podemos observar não apenas a mudança de natureza da carga, como a sua periodicidade com $\lambda/2$;

Propriedades da impedância ao longo de uma linha sem perdas

$$Z_L = 57.7 + j26.6 \Omega (\rho_L = 0.25e^{j\pi/3}; VSWR = 1.7)$$

$$Z(d_{\max}) = Z_0 V S W R$$

$$Z(d_{\min}) = \frac{Z_0}{VSWR}$$

Propriedades da impedância ao longo de uma linha sem perdas

$$> Z_L = 26.9 + j79.9\Omega (\rho_L = 0.75e^{j\pi/3}; VSWR = 7.0)$$

$$Z(d_{\text{max}}) = Z_0 V S W R$$

$$Z(d_{\min}) = \frac{Z_0}{VSWR}$$

Quanto maior for o VSWR mais vincadas serão as excursões na resistência de entrada (R_{in}) e na reactância de entrada (X_{in});

Natureza da impedância de entrada: impedância de carga arbitrária

Impedância de entrada de uma linha com perdas

- \triangleright Quanto mais nos afastamos da carga (aumento de d):
 - º Menor a onda refletida, apenas a onda incidente permanece e cada vez com mais força, ou seja:
 - O coeficiente de reflexão tende a 0 (como se veria) pela expressão de $\rho(d)$;
 - ° Logo a reactância de Z(d) tende a 0 e a resistência tende a Z_0 (50 Ω).

Impedância de entrada: pontos com resistência de entrada igual a ${\cal Z}_0$

 $Z_{in} = 50 - jXin$

É possível conseguir $Z_{in} = Z_0 = 50\Omega$ pondo em <u>série</u> na linha um condensador ou uma bobina (respetivamente): força-se uma ressonância série.

Admitância de entrada: pontos com condutância de entrada $1/Z_0$

$$> Z_L = 25 - j50$$
 $e Z_0 = 50 \Omega$

É possível conseguir $Y_{in} = Y_0 =$ 20 mS (50 Ω) pondo em paralelo uma bobina ou um condensador (respetivamente): força-se uma ressonância paralelo.

PROE

Transformadores com linhas de transmissão

- \triangleright Transformam a impedância de carga Z_L noutra Z_{in} com características particulares;
 - Transformador de $\lambda/2$;
 - Transformador de $\lambda/4$;
 - Transformador de $\lambda/8$;
- \triangleright Transformadores de $\lambda/2$
 - Impedância a jusante/montante $\lambda/2$ de um ponto, é igual à impedância desse ponto. Transformador de 1:1;
 - A impedância repete-se de $\lambda/2$ em $\lambda/2$.

Transformadores de $\lambda/4$

Consiste num troço de linha com um comprimento de $\lambda/4$, à frequência de interesse, que é colocado num local apropriado.

$$Z_{in} = \frac{Z_o^2}{Z_L}$$

- ° Caso particular: se Z_L é real então Z_{in} será real
- Se $Z_L = \infty \rightarrow Z_{in} = 0$; Se $Z_L = 0 \rightarrow Z_{in} = \infty$
- ° Se pretendermos obter Z_{in} real com Z_L real basta usar uma linha de $\lambda/4$ com Z_0 dado pela equação $Z_T=\sqrt{Z_{in}Z_L}$

- Z_L é uma impedância puramente resistiva;
- $d = 0 e Z_T = \sqrt{R_L Z_0}$

- Z_L é uma impedância complexa;
- d é obtido na carta de Smith e $Z_T = \sqrt{Z_d Z_0}$

Transformadores de $\lambda/8$

- \triangleright Considerando a linha terminada em CC ou CA, Z_{in} será:
 - $Z_{in} = jZ_0$ (se Z_L for um CC);
 - $Z_{in} = -jZ_0$ (se Z_L for um CA);

>Importante para os trabalhos laboratoriais;

Adaptação de uma carga com troço de linha de transmissão I

Dado o circuito qual o valor de l e Z_1 (Z_1 é real) de forma a ver Z_0 à entrada ($Z_{in} = Z_0$)?

$$Z_{in} = Z_1 \frac{Z_L + jZ_1 \tan \beta \ell}{Z_1 + jZ_L \tan \beta \ell}$$

$$z_{in} = \frac{Z_{in}}{Z_0}$$

$$z_L = \frac{Z_L}{Z_0} = \frac{R + jX}{Z_0} = r + jx$$

$$z_{in} = 1 + j0 = \frac{Z_1}{Z_0} \left[\frac{(r + jx) + j\left(\frac{Z_1}{Z_0}\right) \tan \beta \ell}{\frac{Z_1}{Z_0} + j(r + jx) \tan \beta \ell} \right]$$

$$Z_1 = Z_0 \left[\frac{r^2 + x^2 - r}{r - 1} \right]^{1/2} \longrightarrow \text{Deve ser positivo}$$

$$\tan \beta \ \ell = \frac{Z_1}{Z_0} \left[\frac{1-r}{x} \right] \to \tan \left(2\pi \frac{\ell}{\lambda} \right) = \frac{Z_1}{Z_0} \left[\frac{1-r}{x} \right] \to \frac{\ell}{\lambda} = \frac{1}{2\pi} \arctan \left(\frac{Z_1}{Z_0} \left[\frac{1-r}{x} \right] \right)$$

Adaptação de uma carga com troço de linha de transmissão II

$$Z_1 = Z_0 \left[\frac{r^2 + x^2 - r}{r - 1} \right]^{1/2} \longrightarrow \text{Deve ser positivo}$$

$$\left| \frac{r^2 + x^2 - r}{r - 1} > 0 \qquad \frac{(r - 0.5)^2 + x^2 - 0.5^2}{r - 1} > 0 \right|$$

Análise:

- Numerador é uma circunferência de raio 0.5 e centro em (0.5+j0);
- o Numerador e denominador devem ser ambos positivos ou ambos negativos;
 - Intersecção de zonas;
- Ona a tracejado → Impossível obter adaptação;
- Exemplos (em linha de 50Ω):
 - Exemplo 1: $Z_L = 25 + j50 \Omega (z_L = 0.5 + j1)$
 - Não pode ser adaptada com este circuito;
 - Exemplo 2: $Z_L = 100 + j50 \Omega (z_L = 2 + j1)$
 - Pode ser adaptada com este circuito;
 - · Veremos outros circuitos que se consegue sempre a adaptação.

Cargas possíveis de adaptar

 \nearrow Se a carga for resistiva, o sistema reduz-se ao transformador de $\lambda/4$.

 $\tan \beta \ell = \infty \Leftrightarrow l = \frac{\lambda}{4}$

Potência em função da amplitude de tensão incidente e refletida

- \triangleright Potência entregue à linha num ponto x qualquer (tal como em análise de circuitos):
 - $P(x) = Real(V(x)I^*(x))$

$$\gamma + \gamma *= 2\alpha$$

$$\gamma - \gamma *= 2j\beta$$

$$V_2 = V_1 \rho_L e^{-2\gamma i}$$

$$P(x) = \text{Real}\left((V_1 e^{-\gamma x} + V_2 e^{+\gamma x}) \left(\frac{V_1}{Z_0} e^{-\gamma x} - \frac{V_2}{Z_0} e^{+\gamma x} \right)^* \right)$$

$$P(x) = \text{Real}\left((V_1 e^{-\gamma x} + V_2 e^{+\gamma x}) \left(\frac{V_1^*}{Z_0} e^{-\gamma^* x} - \frac{V_2^*}{Z_0} e^{+\gamma^* x} \right) \right)$$

$$P(x) = \text{Real}\left(\frac{|V_1|^2}{Z_0} e^{-2\alpha x} - \frac{V_1 V_2^* e^{-2j\beta x}}{Z_0} + \frac{V_1^* V_2 e^{+2j\beta x}}{Z_0} - \frac{|V_2|^2}{Z_0} e^{+2\alpha x} \right)$$

$$P(x) = \frac{|V_1|^2}{Z_0} e^{-2\alpha x} - \frac{|V_1|^2 |\rho_L|^2}{Z_0} e^{+2\alpha x - 4\alpha l}$$

$$P(x) = \frac{|V_1|^2}{Z_0} e^{-2\alpha x} \left(1 - |\rho_L|^2 e^{4\alpha (x - l)} \right)$$

$$|V_1|^2 = \frac{|V_1|^2}{Z_0} e^{-2\alpha x} \left(1 - |\rho_L|^2 e^{4\alpha (x - l)} \right)$$

 $P(x) = \frac{|V_1|^2}{Z_0} e^{-2\alpha x} (1 - |\rho_L|^2 e^{4\alpha(x-l)})$

Balanço de potência

Exercício

- Considere uma linha de transmissão de 10m de comprimento, constante de atenuação α =0.02 Np/m e impedância característica $Z_0=50\Omega$. O gerador tem impedância interna de 50Ω e tensão $V_g=20V$. Sabendo que a impedância de carga é $50+j50\Omega$, calcule:
 - A potência disponível.
 - Resp: 2W;
 - · A potência incidente na carga.
 - Resp: 1.34W;
 - A potência entregue à carga.
 - Resp: 1.07W;
 - · A potência incidente dissipada na linha.
 - Resp:0.66W;
 - · A potência entregue pelo gerador ao sistema.
 - Resp: 1.82W;
 - A potência total dissipada na linha.
 - Resp: 0.75W;

Return Loss (Perdas de retorno)

➤O IEEE define as perdas por retorno como a relação (em dB) entre a potência incidente e a potência refletida na carga, sendo dado por:

$$RL = 10 \log \left(\frac{P_{in}}{P_{ref}} \right)$$

$$RL = -20 \log |\rho_L|$$

- Forma de especificação dos dispositivos de RF. Permite quantificar a proximidade das impedâncias de entrada/saída de um valor de referência usado em LT (normalmente 50 Ω);
- Exemplo: +20 dB significa 1% da potência é refletida ($|\rho|=0.1$).
 - Valores típicos:
 - +12 dB → dispositivo comercial (antena, recetor,..): 6% de potência refletida;
 - +35 dB (ou melhor): cargas adaptadas de laboratório;

Equipamentos de medida (VNA) representam o simétrico (format "Log magnitude")

$$RL = 20 \log |\rho_L|$$

PROE

Reflection/Mismatch Loss e Power Transmission Coefficient

Quantifica a fração da potência incidente entregue à carga devido à reflexão de potência nesta.

$$T_L = 10 \log_{10} \frac{P_{inc}}{P_{Load}} = -10 \log_{10} (1 - |\rho|^2)$$

- T_L =0 dB \rightarrow Toda a potência incidente é entregue à carga \leftarrow Potência refletida é nula ($|\rho|$ =0) \odot ;
- ∘ T_L =6 dB→ Apenas ¼ da potência incidente é entregue à carga ← 3/4 da potência incidente é refletida ($|\rho|$ =0.865) ⊗
- Power Transmission Coefficient (grandeza linear): T_{CP} [0 1]
 - $T_{CP} = 1 \rightarrow \text{Toda a potência incidente é entregue à carga } (|\rho| = 0)$
 - $T_{CP} = 0.5 \rightarrow \text{Metade da potência incidente é entregue à carga (<math>|\rho| = 0.707$)

$$T_{CP} = \frac{P_{inc} - P_r}{P_{inc}} = 1 - |\rho|^2$$

Return loss e Mismatch loss representação gráfica em função de $|\rho|$

Return Loss e Mismatch Loss

Potência em RF: dBm e dBW

Potência:

$$P_{dBm} = 10 \log_{10} \frac{P_{mW}}{1mW} \quad P_{dBW} = 10 \log_{10} \frac{P_{W}}{1W}$$

$$P_{dBm} \xrightarrow{-30} P_{dBW} \quad P_{dBW} \xrightarrow{+30} P_{dBm}$$

Exemplos de nível de potência em alguns ST: Telemóvel GSM → -80dBm WiFi → -71dBm (~50Mbps) -92dBm (1Mbps) TV TDT → -70 dBm

- Ex: 6 mW \rightarrow 7.78 dBm=-30+7.78 = -22.22 dBW
- \succ Conversão da potência logarítmica para tensão eficaz (sistema $Z_0 \Omega$)

$$\frac{{V_{ef}}^2}{{Z_0}} = P_{Watts} \quad V_{ef} = \sqrt{{Z_0}*10^{-3}*10^{\frac{{P_{dBm}}}{10}}} \quad V_{ef} = \sqrt{{Z_0}*10^{\frac{{P_{dBW}}}{10}}}$$

- Ex: 0 dBm \rightarrow V=223 mV em 50 Ω ou 373 mV em 75 Ω .
- ≻Tensão em dBµV
 - ∘ 22.3 μV →-80 dBm em 50 Ω

$$V_{dB\mu V} = 20 \log_{10} \frac{V_{\mu V}}{1\mu V}$$

Bibliografia:

Pedro Pinho, Armando Rocha e José Pereira, "Propagação Guiada de Ondas Eletromagnéticas". GEN/LTC, Julho de 2014;

Smith Chart

The Complete Smith Chart Black Magic Design

Auxiliar gráfico (apresentado em 1936-39?)

Carta de Smith

- Ferramenta gráfica para efetuar cálculos relacionados com LT, oferecendo soluções muito intuitivas para problemas de adaptação ou síntese de impedâncias;
- Como poderemos então representar os coeficientes de reflexão associados à impedância de entrada de uma LT terminada numa carga Z_L?

$$\mathbf{\rho}_{L} = |\mathbf{\rho}_{L}| e^{j\phi_{L}} = u + jv = \frac{\frac{\mathbf{Z}_{L}}{Z_{0}} - 1}{\frac{\mathbf{Z}_{L}}{Z_{0}} + 1} = \frac{(r + jx) - 1}{(r + jx) + 1}$$

$$r = \frac{1 - u^2 - v^2}{\left(1 - u\right)^2 + v^2} \qquad x = \frac{2v}{\left(1 - u\right)^2 + v^2}$$
$$\left(u - \frac{r}{1 + r}\right)^2 + v^2 = \frac{1}{\left(1 + r\right)^2} \qquad \left(u - 1\right)^2 + \left(v - \frac{1}{x}\right)^2 = \frac{1}{x^2}$$

Carta de Smith

Carta de Smith

Características da carta de Smith

- >É um círculo de raio unitário;
- \triangleright Cada ponto desse círculo é o afixo de um vetor cuja origem se situa no centro do círculo. O vetor representa o coeficiente de reflexão ρ_L ;
 - o O módulo do coeficiente de reflexão é o comprimento do vetor;
 - o A fase do coeficiente de reflexão é o ângulo do vetor com o eixo x-positivo;
- Estão desenhadas circunferências de r constante e x constante cuja intersecção define uma carga Z_L . A intersecção dessas linhas é assim o afixo do coeficiente de reflexão provocado pela carga.
- \triangleright A carga Z_L está normalizada à impedância característica da linha e portanto é adimensional.

Generalidades da Carta de Smith (CS)

Definições

- ►Impedância *Z*:
 - $\circ Z = R + jX$
 - \circ Z é a impedância em Ω ;
 - R é a resistência em Ω ;
 - X é a reatância em Ω ;
- > Admitância Y
 - $\circ Y = 1/Z$
 - $\circ Y = G + jB$
 - Y é a admitância, em S;
 - G é a condutância, em S;
 - B é a susceptância, em S;

Escalas periféricas

- Destinam-se a facilitar a:
 - \circ Marcação da fase de ρ e ρ_t
 - \circ Obter o ρ na linha a uma distância d/ a partir do mesmo, noutro ponto qualquer;
- Escalas (da direita para a esquerda)
 - 1 Distância em λ's crescente clockwise (CW);
 - 2 Distância em λ's crescente counter clockwise (CCW);
 - 3 Ângulo do coeficiente de reflexão;
 - 4 Ângulo do coeficiente de transmissão.

Escalas lineares externas

Facilitam a marcação de circunferências de $|\rho|$ (ou seja todos os coeficientes de reflexão possíveis ao longo de $\lambda/2$): lado esquerdo (de baixo para cima)

Escalas:

- 1 Coeficiente de transmissão (esquerda para a direita: máximo=2)
- 2 |ρ| (crescente da direita para a esquerda)
- 3 $|\rho|^2$ Coeficiente de reflexão de potência Ex: $|\rho| = 0.1 \rightarrow |\rho|^2 = 0.01$
- 4 Return Loss (com sinal -) $-20\log_{10} |\rho|$. Ex: $|\rho| = 0.1 \rightarrow 20dB$
- ∘ 5 − 20log₁₀(V_{max}/V_{min}) Ex: 6dB → $V_{max}/V_{min} = 2$ → VSWR=2
- ∘ 6 VSWR. Ex: $|\rho| = 0.5 \rightarrow VSWR = 3$, RL = 6dB

PROE

Escalas lineares externas

Escalas:

- 1 $|1 + \rho|$ Coeficiente de transmissão (esquerda para a direita: max=2)
- 2 $(1 |\rho|^2)$ (de crescente da direita para a esquerda)
- 3 $-10 \log_{10}(1-|\rho|^2)$ Reflection Loss. Ex: $|\rho| = 0.0 \rightarrow 0 dB$ (potência refletida é nula)
- º 4 e 5 Escalas para lidar com problemas em linhas de transmissão com perdas;

Marcações e leituras na CS

\triangleright Marcação de z_L ;

° Normaliza-se a carga Z_L à impedância característica da linha para obter r e x. Marca-se ponto de intersecção da circunferência de r constante com o arco x constante. O ponto é o afixo do ρ_L ;

► Marcação de y_L;

° Determina-se o ponto diametralmente oposto a z_L o que é equivalente a determinar a impedância de entrada da linha a uma distância de $\lambda/4$ como determina o transformador de $\lambda/4$;

\triangleright Marcação de ρ_L dado em representação polar;

 $^{\circ}$ Usando uma régua traça-se uma radial do centro da CS à fase do coeficiente de reflexão na escala azimutal correspondente. Usando um compasso, com uma abertura obtida da escala radial de $|\rho|$, traça-se um arco de circunferência centrado no centro da CS que intersecte a radial anterior;

Marcações e leituras na CS

ρ= 0.5∠45 °

 ρ_{t} = 1.4 \angle 14.6 °

z_L= 1.9∠43.3 °

y_L= 0.527∠-43.3 °

Smith Chart

Localização de extremos e d's para possível adaptação com C (ou L) série

- \triangleright Representar ρ_L ;
- Localização de máximos
 - ° Rodar ρ_L no sentido do gerador (CW) até encontrar o eixo real positivo -fase de $\rho(d_{max}) = 0^{\circ}$;
 - \circ Obter d_{max} pela diferença na escala periférica exterior;
- Localização de mínimos
 - ° Rodar $\rho_{\rm L}$ no sentido do gerador (CW) até encontrar o eixo real negativo -fase de $\rho(d_{min})=180^{\circ}$;
 - \circ Obter d_{min} pela diferença na escala periférica exterior;
- \triangleright Localização de locais d_a em que r = 1 + j *
 - \circ Intersecção com a circunferência r=1
 - ° Dois pontos por cada $\lambda/2$: um com reactância indutiva e outra capacitiva;

Exercício

- \triangleright Resolva, com a Carta de Smith sempre que possível. Considere $Z_0=50\Omega$.
 - Marque o coeficiente de reflexão $\rho = 0.5 e j^{40^\circ}$ e transmissão $\rho_t = 1.42 e j^{13^\circ}$;
 - b) Estime a carga que causa este coeficiente de reflexão; $Resposta: Z_L = (1.55 + j1.3) * 50 = 77.5 + j65 \Omega$
 - c) Calcule $Z(d = 0.1\lambda)$; Resposta: $Z(0.1\lambda) = (1.85 j1.3) * 50 \Omega$
 - d) Calcule a distância à carga a que encontra o 1° máximo e 1° mínimo de tensão; Resposta: $d_{max} = (0.25 0.194)\lambda$; $d_{min} = (0.5 0.194)\lambda$
 - e) Calcule o valor das impedâncias nestes pontos; Resposta: $Z(d_{max}) = 150\Omega e Z(d_{min}) = 16.67\Omega$
 - Dimensione um transformador de $\lambda/4$, a colocar num máximo de tensão, que promova a adaptação; **Resposta**: $\mathbf{Z_1} = \mathbf{86.6}\Omega$
 - Repita a alínea anterior se optar por colocar o transformador de $\lambda/4$ num mínimo de tensão; *Resposta:* $\mathbf{Z}_1 = \mathbf{Z}_1 = \mathbf{Z}_1$
 - h) A distância d da carga a que poderá conseguir $Z_{in} = 50 + j0\Omega$ colocando em série na linha um condensador de capacidade C_s ; Resposta: $d = (0.5 (0.194 0.166))\lambda = 0.472 \lambda$
 - i) Calcule C supondo f=300MHz; Resposta: $C_s=9.22pF$ (ressonância série com reactância de entrada da linha $X_{in}=1.15*50=57.5\Omega$)

PROE

Repita as duas alíneas anteriores mas agora usando uma bobina em série de indutância L_s .

O que é um stub?

- > Stub designa uma linha de transmissão sem perdas (normalmente de comprimento inferior a λ) terminada em CA ou CC;
- A admitância de entrada (ou impedância) de um *stub* é uma susceptância (reactância), que na CS se situa sobre a circunferência de raio unitário correspondente a r=0.
 - \circ O valor da susceptância (ou reactância) do *stub* é determinada pelo respetivo comprimento l_s .
- O projeto do *stub* e um problema trivial: trata-se de encontrar o comprimento de uma linha que terminada numa carga conhecida (CC ou CA) apresenta uma susceptância (impedância) de entrada pretendida.
- Em malhas de adaptação/síntese de impedâncias é habitualmente usado em paralelo com a linha
 - o O dimensionamento deve ser feito, por conveniência, em admitâncias;

Dimensionamento de um stub

Calcular o comprimento da linha l_s que, terminada em $z_L = 0$ (CC) ou $z_L = \infty$ (CA), apresenta uma susceptância y_s (ou reactância z_s).

- a) Ex: Stub em CC com $y_s = -j2 \rightarrow l_s = 0.0738\lambda$
- **b)** Ex: *Stub* em CA com $y_s = j1 \rightarrow l_s = 0.125\lambda$
- c) Ex: *Stub* em CA e com $y_s = -j2 \rightarrow l_s = 0.324\lambda$
- d) Ex: Stub em CC com $y_s = j1 \rightarrow l_s = 0.375\lambda$
- Os stubs mais curtos do tipo
 - Indutivo são realizados em curto (CC): a)
 - Capacitivo são realizados em aberto (CA): b)
 - · Caso contrário deverão ter:
 - Comprimento acrescido de $\lambda/4$: c) e d)

O que é um sistema de adaptação?

- \triangleright Sistema que transforma uma impedância Z_L numa impedância Z_0 com base numa malha de adaptação sem perdas;
 - o Dizemos que a carga está adaptada à linha: não existe tensão refletida na linha;
 - $^{\circ}$ Se a linha for atacada por um gerador de impedância $Z_g = Z_0$ há máxima transferência de potência do gerador à carga;
- Adaptação e máxima transferência de potência
 - o Máxima transferência de potência de uma fonte para a carga ocorre quando a carga tem uma impedância complexa conjugada da fonte.

• Uma carga adaptada à linha só proporciona máxima transferência de potência se a impedância do gerador for igual à impedância característica (são conjugadas)

Métodos de adaptação:

- \triangleright Uso do transformador de $\lambda/4$ aplicado num ponto de máximo ou mínimo de tensão (onde a impedância de entrada da linha é real)
 - \circ Necessário calcular impedância característica Z'_0 da linha do transformador;
- \triangleright Linha com impedância característica distinta de Z_0 e comprimento apropriado;
 - · Certas impedâncias de carga poderão não ser adaptáveis 🖰
- >Utilização de stubs;
 - *Stub* em <u>paralelo</u> com a linha colocado a uma distância d da carga onde a condutância de entrada normalizada é g=1 (0.02mS numa linha de Z_0 =50 Ω);
 - º Cria um circuito ressonante paralelo (impedância infinita) com a susceptância de entrada da linha;
 - o Stub série (menos usado por dificuldade de implementação)
 - Promoveria adaptação por uma ressonância série a uma distância d da carga onde a parte resistiva da impedância de entrada normalizada é r=1 (50 Ω numa linha de Z_0 =50 Ω)

Adaptação com um stub paralelo

- Determinação da localização do stub e o seu comprimento:
 - \circ Representar z_L e obter y_L
 - ° Deslocar y_L numa circunferência de VSWR (ou $|\rho|$) constante no sentido do gerador até encontrar a circunferência de condutância g=1; (plano π^-)
 - Temos duas soluções para a distância d (d_1 e d_2) por cada $\lambda/2$;
 - \circ A susceptância de y_{π}^- deverá formar um circuito ressonante com o stub de admitância $y_{stub}=jb_s$
 - Temos duas soluções do tipo $y_{\pi}^- = 1 + jbs$
 - A admitância vista de π^+ será $y_{\pi}^+ = 1 + j0$
 - \circ Dimensionar o comprimento do stub l_s

Bibliografia:

- Pedro Pinho, Armando Rocha e José Pereira, "Propagação Guiada de Ondas Eletromagnéticas". GEN/LTC, Julho de 2014;
- José R. Pereira e Pedro Pinho "Using the Smith Chart in a E-learning Approach", capítulo de E-Learning-Organizational Infrastructure and Tools for Specific Areas, InTech, ISBN 979-953-307-686-6,

 Dezembro de 2011;

 http://www.intechopen.com/download/get/type/pdfs/id/28701
- ▶ José R. Pereira e Pedro Pinho "Using modern tools to explain the use of the Smith chart", IEEE Antennas and Propagation Magazine, Volume 52, n° 2, página 145 a 150, Abril 2010;
- ▶J. Rocha Pereira e Pedro Pinho "Bandwidth Analysis of a Single-Stub Matching System Using the Smith Chart", IEEE Antennas and Propagation Magazine, Volume 54, n° 6, página 203 a 206, Dezembro 2012;

PROE

Demonstradores: http://bit.ly/2m8oBoe

