

GLOBAL ACADEMY OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Subject Name	Project Work Phase II	Subject Code	17CSP85
Student Name	C.P YASHWANTH	USN	1GA17CS035
	MADDALI SOWMYA		1GA17CS080
	RAKSHITHA MURTHY		1GA17CS118
	SWARAJ PARIDA		1GA17CS163
Domain	DEEP LEARNING	Group No:	11
Project Title	"LANDMARK RECOGNITION USING CONVOLUTIONAL NEURAL NETWORKS"		
Under taken at	GLOBAL ACADEMY OF TECHNOLOGY		
Guide Name	Prof. KAMLESHWAR KUMAR YADAV		

1

Agenda

- Introduction
- Problem Statement
- Objectives
- Existing System
- Proposed System
- System Design
- High Level Design
- Implementation Modules
- Conclusion
- References

Introduction

- Computer Vision (CV) is a field of Machine Learning that deals with how computers can gain high-level understanding from digital images or videos.
- Some of its tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information.
- In the field of Artificial Intelligence (AI) and Computer Vision recognition of objects has become very common, feasible and realistic.

Introduction

- Looking ahead, there will come a time where instance-specific recognition will become a trend and be an everyday problem.
- Artificial Intelligence especially Convolutional Neural Networks (CNN) concept can be used to ease up the life of others.
- CNN is a class of Deep Neural Networks (DNN), most often used to analyze visual imagery.

Problem Statement

• Landmark recognition on Google landmark dataset using various algorithms. The goal is to efficiently recognize objects in an image at an instance level, just not at the base level.

Objectives

- To make a model which recognizes landmarks from an image using different algorithms such as Visual Geometry Group (VGG) and Deep Local Feature (DeLF)
- To improve our model such that it performs better than the present primitive models/techniques.

Existing System

Figure 1: DeLF Architecture

Existing System

DeLF architecture as shown in figure 1 can be decomposed into four main blocks:

- 1. Dense localized feature extraction
- 2. Keypoint selection
- 3. Dimensionality reduction and
- 4. Indexing and retrieval

Proposed System

Figure 2: Proposed System

System Architecture

Figure 3: System Architecture

Figure 4: Data Flow Diagram Level 0

In figure 4 -

- User provides the query image which is fed to the model.
- The model compares the query image with the already existing images in the Image Folder.
- It performs necessary functions and outputs a prediction back to the user.

Figure 5: Data Flow Diagram Level 1

In figure 5 -

- The user provides the query image, it is re-sized and converted into NumPy arrays.
- The model obtains the location and feature vectors from the NumPy arrays.
- The feature vectors are used to verify the query image with the database image.
- Finally the geometric verification retrieves the most similar image.

Figure 6: Data Flow Diagram Level 2

In figure 6 -

- Image Processing
 - o Resize Image
 - Noise Reduction
 - Image Augmentation
- Building a Model
 - Localized Feature Extraction
 - Dimensionality Reduction
 - RANSAC Geometric Verification

Implementation Modules

- 1. Image Acquisition
- 2. Image Pre-processing
- 3. Feature Extraction
- 4. Geometric Verification
- 5. Final Predictions

Image Acquisition

- Functionality:- Fetching images from the given Universal Resource Locators (URLs)
- Input:- Universal Resource Locators (URLs)
- Output:- Customized images

Image Pre-processing

 Functionality:- Re-sizing images and converting images into NumPy arrays

- Input:- Images of different sizes
- Output:- Uniform sized images

Feature Extraction

- Functionality:- Obtaining the location and feature vectors
- Input:- NumPy array
- Output :- Array of location and feature vectors

18 2020-21

Geometric Verification

- Functionality:- Verifying query image with database image
- Input:- Query image and database images
- Output:- Number of inliers among the matched images

19 2020-21

Final Prediction

- Functionality:- To retrieve the most similar image
- Input:- Number of inliers
- Output:- Image with the highest number of inliers

20 2020-21

Conclusion

- Image Processing is a challenging task.
- There is always a trade-off between scalability and accuracy.
- Hence, this technology can be a solution to predict landmark labels directly from image pixels, to help people better understand and organize their photo collections.

References

[1] André Araujo, Bingyi Cao, Jack Sim, Tobias Weyand. (2020). *Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval*. IEEE. pp. 2575-2584. DOI: 10.1109/CVPR42600.2020.00265

https://ieeexplore.ieee.org/document/9157053

[2] Christof Henkel, Philipp Singer. (2020). Supporting Large-scale Image Recognition with out-of-domain Samples. eprint arXiv:2010.01650

https://arxiv.org/abs/2010.01650

[3] Andre Araujo, Bohyung Han, Hyeonwoo Noh, Jack Sim, Tobias Weyand. (2017). *A Large-Scale Image Retrieval With Attentative Deep Local Features*. IEEE. pp. 3456-3465. DOI: 10.1109/ICCV.2017.374

https://ieeexplore.ieee.org/document/8237636

[4] Jeff Donahue, Jitendra Malik, Ross Girshick, Trevor Darrell. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation tech report (v5). IEEE

https://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html

• [5] Ross Girshick. (2015). Fast R-CNN. IEEE. pp. 1440-1448. DOI: 10.1109/ICCV.2015.169

https://ieeexplore.ieee.org/document/7410526

[6] SeungKee Jeon. (2020). 1st Place Solution to Google Landmark Retrieval. eprintarXiv:2009.05132

https://arxiv.org/abs/2009.05132#:~:text=The%20solution%20is%20based%20on,enhance%20the%20model's%20performance%20ther.

Thank You

Q & A