Evolução em várias dimensões

Seleção e covariação

Diogo Melo diogro@gmail.com LEM-USP

Variação e seleção

Variação e seleção

Diferencial de seleção

Resposta à seleção

Seleção

- Separação entre seleção e resposta à seleção
 - Seleção é a relação entre caracteres e aptidão
 - Processo ecologico
 - Resposta à seleção é a mudança na próxima geração, ligada à herança

Seleção

- Separação entre seleção e resposta à seleção
 - Seleção é a relação entre caracteres e aptidão
 - Processo ecologico
 - Resposta à seleção é a mudança na próxima geração, ligada à herança

$$\Delta \overline{z} = \frac{1}{\overline{W}} \left[Cov(W, z^o) \right] + \overline{\delta}_T$$

$$\Delta \overline{z} = \frac{1}{\overline{W}} \left[Cov(W, z) + E(W\overline{\delta}) \right]$$

Aptidão

- Seleção depende de diferenças de aptidão
- Aptidão pode ser definida como o número de indivíduos descendentes na próxima geração
 Ou algo do genero...
- Aptidão relativa é a quantidade importante:

$$\left(\omega = rac{W}{\overline{W}}
ight)$$

Nós raramente temos acesso à aptidão

$$\Delta \overline{z} = \frac{1}{\overline{W}} \left[Cov(W, z^o) \right] + \overline{\delta}_T$$

$$\Delta \overline{z} = \frac{1}{\overline{W}} \left[Cov(W, z) + E(W\overline{\delta}) \right]$$

Aptidão

- Seleção depende de diferenças de aptidão
- Aptidão pode ser definida como o número de indivíduos descendentes na próxima geração
 Ou algo do genero...
- Aptidão relativa é a quantidade importante:

$$\left[\omega = rac{W}{\overline{W}}
ight]$$

Nós raramente temos acesso à aptidão

$$\Delta \overline{z} = Cov(w, z^o) + \overline{\delta}_T$$

$$\Delta \overline{z} = Cov(w, z) + E(W\overline{\delta})$$

Relação entre S e R

Equação do criador (breeder, não Nosso Senhor)

S funciona bem em uma dimensão

Gradiente de seleção (β)

- Outra medida de seleção
- Funciona melhor que o diferencial em mais dimensões

Regressão linear entre fitness e o caráter

$$\omega = \mu + \beta z$$

Equação do criador com β

Gradiente de seleção (β)

Diferencial em várias dimensões

Diferencial em várias dimensões

Relação entre S e β

- Gradientes de seleção expressam a relação entre caracteres individuais e o fitness
- Diferenciais de seleção descrevem como a média de cada caráter muda com a seleção
- O problema dos diferenciais é que eles podem ser não nulos mesmo quando a seleção em um determinado caráter é nula

Relação entre S e β

- Gradientes de seleção expressam a relação entre caracteres individuais e o fitness
- Diferenciais de seleção descrevem como a média de cada caráter muda com a seleção
- O problema dos diferenciais é que eles podem ser não nulos mesmo quando a seleção em um determinado caráter é nula

$$S = Cov(w, z) = Var(z)\beta_{w,z}$$
$$S_1 = \sigma_1^2 \beta_1 + \sigma_{12}\beta_2$$
$$S_2 = \sigma_2^2 \beta_2 + \sigma_{12}\beta_1$$

Superficie de fitness individual

Gradiente de seleção

Gradiente de seleção

Resposta à seleção multivariada

Resposta à seleção multivariada

Equação de Lande

dos pais e fitness

Resposta

$$\Delta \overline{z}_{1} = G_{11}\beta_{1} + G_{12}\beta_{2} + G_{13}\beta_{3}$$

$$\Delta \overline{z}_{2} = G_{21}\beta_{1} + G_{22}\beta_{2} + G_{23}\beta_{3}$$

$$\Delta \overline{z}_{3} = G_{31}\beta_{1} + G_{32}\beta_{2} + G_{33}\beta_{3}$$

Seleção direta!

$$\Delta \overline{z}_{1} = G_{11}\beta_{1} + G_{12}\beta_{2} + G_{13}\beta_{3}$$

$$\Delta \overline{z}_{2} = G_{21}\beta_{1} + G_{22}\beta_{2} + G_{23}\beta_{3}$$

$$\Delta \overline{z}_{3} = G_{31}\beta_{1} + G_{32}\beta_{2} + G_{33}\beta_{3}$$

Seleção direta!

$$\Delta \overline{z}_1 = \left(\begin{bmatrix} \beta_1 \\ \beta_2 \\ \Delta \overline{z}_3 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ 0 \\ 0 \end{bmatrix} + G_{13}\beta_3 + G_{23}\beta_3 + G_{33}\beta_3$$

Resposta esperada

$$\Delta \overline{z}_1 = G_{11}\beta_1$$
 $\Delta \overline{z}_2 = G_{21}\beta_1$
 $\Delta \overline{z}_3 = G_{31}\beta_1$

Covariação e superficie adaptativa

Modularidade e a resposta

Autovetores e seleçao

- Diferenciais e gradientes de seleção são informativos em relação à mudanças na média dos caracteres
- Mas seleção também pode alterar os padrões de variação e covariação
- Esse componentes de seleção são os componentes não lineares
- Relacionados à curvatura da superfície de seleção

- Diferenciais e gradientes de seleção são informativos em relação à mudanças na média dos caracteres
- Mas seleção também pode alterar os padrões de variação e covariação
- Esse componentes de seleção são os componentes não lineares
- Relacionados à curvatura da superfície de seleção

$$\Delta \overline{z} = \frac{1}{\overline{W}} \left[Cov(W, z) + E(W\overline{\delta}) \right]$$

$$\Delta Var(z) = \left[Cov(w, (z - \overline{z})^2) + E(W\overline{\delta}_{(z - \overline{z})^2}) \right]$$

Seleção linear

Seleção linear

Seleção linear

Superficie de fitness não-linear

Fig. 3.—Survival (recruitment) of juvenile male song sparrows in relation to wing length and body mass. Symbols on *left panel* indicate measurements of individuals and whether they survived (filled) or disappeared (open). Fitness contours describe a ridge oriented from lower left to upper right, with survival decreasing to either side. Right panel gives a three-dimensional perspective of the surface. $\ln(\lambda) = -6$; n = 152.

Matriz γ

$$\gamma = \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{bmatrix}$$

Estabilizadora e estabilizadora

Estabilizadora correlacionada

Disruptiva e disruptiva

$$\gamma_{11} > 0$$
 $\gamma_{22} > 0$
 $\gamma_{12} = 0$

Estabilizadora e disruptiva

Estabilizadora e disruptiva

$$\gamma_{11} > 0$$

$$\gamma_{22} < 0$$

$$\gamma_{12} = 0$$

