Series Complejas

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Verano 2019-2020

Recordatorios en R

Sucesiones

 Una sucesión o secuencia se puede definir como una lista de elementos (números) en un orden específico:

$$a_0, a_1, a_2, a_3, \dots \circ \{a_n\} \circ \{a_n\}_{n=0}^{\infty}$$

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=0}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

b)
$$\{\sqrt{n-3}\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, n \ge 3 \quad \{0,1,\sqrt{2},\sqrt{3},...,\sqrt{n-3},...\}$

c)
$$\left\{\cos\left(\frac{n\pi}{6}\right)\right\}_{n=0}^{\infty}$$
 $a_n = \cos\left(\frac{n\pi}{6}\right), n \ge 0$ $\left\{0, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \dots, \cos\left(\frac{n\pi}{6}\right)\right\}$

Series

Una serie es la suma de los elementos de una secuencia:

$$a_0 + a_1 + a_2 + a_3 + \cdots \circ \sum_{n=0}^{\infty} a_n \circ \sum_{n=0}^{\infty} a_n$$

a) Suma o serie parcial de $N - \acute{e}simos$ términos:

$$S_N = \sum_{n=0}^N a_n$$

a) Serie (total):

$$S = \sum_{n=0}^{\infty} a_n \text{ ó } \lim_{N \to \infty} \sum_{n=0}^{N} a_n$$

Sucesiones y series

Series complejas

Si la función $f: \mathbb{R} \to \mathbb{R}$ tiene desarrollo

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + \dots$$

Entonces se puede continuar analíticamente en $f: \mathbb{C} \to \mathbb{C}$

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \dots + a_k z^k + \dots$$

Serie de potencias

Serie de potencias

La serie de potencias

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots + a_k (z - z_0)^k + \dots$$

Con $a_n, z_0 \in \mathbb{C}$. Se dice que la serie está centrada en z_0 .

Sin pérdida de generalidad se estudiará la serie centrada en cero, haciendo la sustitución $z' = z - z_0$.

Convergencia de la suma de potencias

La serie de potencias

$$S_N = \sum_{n=0}^{N-1} z^n = \frac{1 - z^N}{1 - z}$$

Demostración

$$S_{N} = 1 + z + z^{2} + \dots + z^{N-1}$$

$$-zS_{N} = -z - z^{2} - \dots - z^{N-1} - z^{N}$$

$$(1-z)S_{N} = 1$$

$$-z^{N}$$

$$S_N = \frac{1 - z^N}{1 - z}$$

Convergencia de suma de potencias

Si $z=|z|e^{j\theta}$ entonces $z^N=|z|^Ne^{jN\theta}$, y si $N\to\infty$ entonces z^N converge solo si...

y converge a cero, por lo que

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$$

Región de convergencia

Generalización de series de potencias

La serie de potencias extendida con coeficientes constantes de ponderación a_n para cada término z^n

$$\sum_{n=0}^{\infty} a_n z^n$$

Converge si |z| < R, y diverge si |z| > R, donde a R se le denomina radio de convergencia.

El caso |z| = R deberá analizarse por separado.

Razón de D'Alambert

El radio de convergencia *R* se puede determinar utilizando la razón de D'Alambert:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

Convergencia de la serie de potencias positivas

La serie

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots + a_k (z - z_0)^k + \dots$$

Converge cuando $|z - z_0| < R$.

Convergencia de series de potencias negativas

Por otro lado, la serie

$$\sum_{n=0}^{\infty} a_n (z - z_0)^{-n} = a_0 + \frac{a_1}{z - z_0} + \frac{a_2}{(z - z_0)^2} + \dots + \frac{a_k}{(z - z_0)^k} + \dots$$

Puede transformarse en la serie

$$\sum_{n=0}^{\infty} a_n z'^n$$

Con $z' = \frac{1}{z-z_0}$, lo que implica que la región de convergencia es

$$|z'| < R \Rightarrow \left| \frac{1}{z - z_0} \right| < R \Rightarrow |z - z_0| > \frac{1}{R}$$

(1)

Determine la serie de potencias que representa a la función

$$f(z) = \frac{1}{z - a}$$

y su radio de convergencia.

(2)

Solución: Existe un número infinito de representaciones para esta función, cada una con su propio radio de convergencia, dependiendo de dónde se centre la serie de potencias; sin embargo, puesto que f(a) no está definido, ninguna de las representaciones convergerá para z = a.

(3)

Por ejemplo, si se realiza la división polinomial de 1 entre z - a, se obtiene:

Ing. José Miguel Barboza Retana

(4)

Por lo tanto:

$$\frac{1}{z-a} = \sum_{n=1}^{\infty} \frac{a^{n-1}}{z^n} = \sum_{n=1}^{\infty} a^{n-1} \left(\frac{1}{z}\right)^n$$

Ahora si se hace el cambio de variable z'=1/z y se aplica la razón de D'Alambert entonces se tiene que el radio de convergencia de $\sum_{n=1}^{\infty} a^{n-1}(z')^n$ es

$$R = \lim_{n \to \infty} \left| \frac{a^{n-1}}{a^n} \right| = \left| \frac{1}{a} \right|$$

Lo que quiere decir que la serie converge si

$$|z'| < \left|\frac{1}{a}\right| \Rightarrow \left|\frac{1}{z}\right| < \left|\frac{1}{a}\right| \Rightarrow |z| > |a|$$

(5)

Por otro lado, si ahora se realiza la división polinomial de 1 entre -a + z, se obtiene:

$$\begin{array}{c|c}
1 & -a+z \\
-(1-\frac{z}{a}) & -\frac{1}{a} - \frac{z}{a^2} - \frac{z^2}{a^3} - \frac{z^3}{a^4} - \dots \\
-(\frac{z}{a} - \frac{z^2}{a^2}) & \frac{z^2}{a^2} \\
-(\frac{z^2}{a^2} - \frac{z^3}{a^3}) & \frac{z^3}{a^3} \\
-(\frac{z}{a^3} - \frac{z^4}{a^4}) & \vdots
\end{array}$$

(6)

Por lo tanto:

$$\frac{1}{z - a} = -\sum_{n=0}^{\infty} \frac{z^n}{a^{n+1}}$$

Si se aplica la razón de D'Alambert entonces se tiene que el radio de convergencia es

$$R = \lim_{n \to \infty} \left| \frac{a^{n+2}}{a^{n+1}} \right| = |a|$$

lo que quiere decir que la serie converge si

(7)

- El primer caso se centró la serie de potencias en $z = \infty$.
- El segundo caso en z = 0.
- Sin embargo, es posible centrar la serie en cualquier otro punto, siempre que z=a no esté incluido dentro de la región de convergencia.

(8)

Para encontrar la serie centrada en z_0 , $(z_0 \neq a)$ la función puede reescribirse sumando y restando z_0 en el denominador como:

$$\frac{1}{z-a} = \frac{1}{(z-z_0) - (a-z_0)} = \frac{1}{z'-a'}$$

Con $z' = z - z_0$ y $a' = a - z_0$. Esta expresión puede a su vez descomponerse en las dos versiones de series de potencia descritas anteriormente:

$$\frac{1}{z-a} = \begin{cases} \sum_{n=1}^{\infty} \frac{(a-z_0)^{n-1}}{(z-z_0)^n} & para |z-z_0| > |a-z_0| \\ -\sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(a-z_0)^{n+1}} & para |z-z_0| < |a-z_0| \end{cases}$$

(9)

Las regiones de convergencia son ahora regiones internas o externas a un círculo centrado en z_0 de radio $|a - z_0|$.

$$\frac{1}{z-a} = -\sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(a-z_0)^{n+1}}$$

$$\frac{1}{z-a} = \sum_{n=1}^{\infty} \frac{(a-z_0)^{n-1}}{(z-z_0)^n}$$

Series de Taylor

Series de Taylor

Sea f(z) una función compleja analítica dentro y sobre una curva cerrada simple C (como por ejemplo, un círculo) en el plano z. La serie de Taylor especifica que si se tiene:

$$f(z_0 + h) = f(z_0) + hf'(z_0) + \frac{h^2}{2!}f''(z_0) + \dots + \frac{h^n}{n!}f^{(n)}(z_0) + \dots$$
 (3)

Series de Taylor: forma alternativa

Con $h = z - z_0$ se tiene

$$f(z) = f(z_0) + (z - z_0)f'(z_0) + \frac{(z - z_0)^2}{2!}f''(z_0) + \dots + \frac{(z - z_0)^n}{n!}f^{(n)}(z_0) + \dots$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n$$

$$= \sum_{n=0}^{\infty} a_n(z - z_0)^n$$

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

Convergencia de series de Taylor

- La serie de Taylor centrada en z_0 converge para $|z-z_0| < R$.
- El caso especial $z_0 = 0$ se conoce también como desarrollo en Serie de MacLaurin.

Ejemplo: Serie de Taylor de la función cosenoidal (1)

• Encuentre la serie de Taylor centrada en $z_0 = 1/2$ de la función $f(z) = \cos(\pi z)$.

Ejemplo: Serie de Taylor de la función cosenoidal (2)

Solución:

Utilizando la definición el lector puede demostrar que

$$\cos(\pi z) = \sum_{n=0}^{\infty} a_n \left(z - \frac{1}{2} \right)^n$$

Donde los coeficientes a_n están dados por

$$a_n = \begin{cases} 0 \\ (-1)^{\frac{n+1}{2}} \frac{\pi^n}{n!} \end{cases}$$

para n par

para n impar

Ejemplo: Serie de Taylor de la función cosenoidal (3)

Aproximación de la función de variable y valor reales $f(x) = \cos(\pi x)$ con los primeros N términos de la serie de Taylor centrada en $x_0 = 1/2$.

Ejemplo: Serie de Taylor de la función cosenoidal (4)

Magnitud de la aproximación por medio de series de Taylor de la función $cos(\pi z)$ para N=1,3,5,7,9,11 términos de la serie.

Ejemplo: Serie de Taylor de la función cosenoidal (5)

Parte real de la aproximación por medio de series de Taylor de la función $\cos(\pi z)$ para N=1,3,5,7,9,11 términos de la serie.

Ejemplo: Serie de Taylor

(1)

Encuentre el desarrollo en serie de Taylor de la función

$$f(z) = \frac{1}{z(z-2j)}$$

Alrededor del punto $z_0 = j$.

Ejemplo: Serie de Taylor

(2)

Solución: la derivada de $f(z) = \frac{1}{z(z-2j)}$ se calcula más fácilmente con su representación de fracciones parciales:

$$f(z) = \frac{1}{z(z-2j)} = \frac{A}{z} + \frac{B}{z-2j}$$

Multiplicando la ecuación anterior por z a ambos lados y haciendo z=0 se encuentra que A=-1/(2j), y multiplicando por z-2j y haciendo z=2j se despeja B=1/(2j) con lo que finalmente

$$f(z) = \frac{1}{2j} \left(\frac{1}{z - 2j} - \frac{1}{z} \right)$$

Ejemplo: Serie de Taylor

(3)

Las derivadas y sus evaluaciones en z = j son entonces

$$f(z) = \frac{1}{2j} \left(\frac{1}{z - 2j} - \frac{1}{z} \right) \qquad \Rightarrow f(j) = 1$$

$$f'(z) = \frac{1}{2j} \left(-\frac{1}{(z - 2j)^2} + \frac{1}{z^2} \right) \qquad \Rightarrow f'(j) = 0$$

$$f''(z) = \frac{1}{2j} \left(\frac{1}{(z - 2j)^3} - \frac{2}{z^3} \right) \qquad \Rightarrow f''(j) = -2$$

$$f^{(3)}(z) = \frac{1}{2j} \left(-\frac{1}{(z - 2j)^4} + \frac{6}{z^4} \right) \qquad \Rightarrow f^{(3)}(j) = 0$$

$$f^{(4)}(z) = \frac{1}{2j} \left(\frac{24}{(z - 2j)^5} - \frac{24}{z^5} \right) \qquad \Rightarrow f^{(4)}(j) = 24$$

Ejemplo: Serie de Taylor

(4)

Que se puede generalizar como

$$f^{(n)}(z) = \frac{(-1)^n}{2j} \left(\frac{n!}{(z-2j)^{n+1}} - \frac{n!}{z^{n+1}} \right)$$

$$\Rightarrow f^{(n)}(j) = \begin{cases} 0 & \text{si n impar} \\ (-1)^{\frac{n}{2}} n! & \text{si n par} \end{cases}$$

Esto implica que el $n - \acute{e}simo$ término de la serie de Taylor

$$\frac{(z-j)^n}{n!}f^{(n)}(j) = \begin{cases} 0 & \text{si n impar} \\ \frac{(z-j)^n}{n!}(-1)^{\frac{n}{2}}n! = (z-j)^n(-1)^{\frac{n}{2}} & \text{si n par} \end{cases}$$

Por lo tanto

$$\frac{1}{z(z-2j)} = 1 - (z-j)^2 + (z-j)^4 - (z-j)^6 + \cdots$$

Ejemplo: Serie de Taylor

(4)

En este caso $z_0 = j$, y puesto que los dos puntos donde f(z) no está definido son z = 0 y z = 2j el radio de convergencia es igual a uno. En otras palabras, la serie de Taylor anterior es válida solo en puntos z que se encuentran dentro de un círculo de radio uno centrado en j.

Series de Laurent

Series de Laurent

Las series de Laurent son una generalización de las series de potencias, donde la región de convergencia es de forma anular, lo que permite excluir singularidades.

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

$$= \cdots + \frac{c_{-k}}{(z - z_0)^k} + \frac{c_{-k+1}}{(z - z_0)^{k-1}} + \cdots + \frac{c_{-1}}{z - z_0} + c_0 + c_1(z - z_0)$$

$$+ \cdots + c_k(z - z_0)^k + \cdots$$

Series de Laurent: Descomposición en dos partes

La serie

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

Puede descomponerse como

$$f(z) = \sum_{n=-\infty}^{-1} c_n (z - z_0)^n + \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
Parte principal

Parte de Taylor

Región de convergencia anular de las series de Laurent

(1)

Calcule la serie de Laurent para la función

$$f(z) = \frac{1}{z^2(z+1)}$$

Centrada en $z_0 = 0$ y $z_0 = -1$, para una región de convergencia anular.

(2)

Solución: Región de convergencia para el caso $z_0 = 0$.

(3)

(4)

Anteriormente se demostró para el caso de $z_0 = 0$ que

$$\frac{1}{1+z} = 1 - z + z^2 - z^3 + z^4 - \cdots$$

Con radio de convergencia |z| < 1, por lo tanto

$$\frac{1}{z^2(1+z)} = \frac{1}{z^2} (1 - z + z^2 - z^3 + z^4 - \cdots)$$
$$= \frac{1}{z^2} - \frac{1}{z} + 1 - z + z^2 - \cdots$$

Donde debe excluirse a z=0 de la región de convergencia debido a los dos primeros términos de la serie.

(5)

Solución: Región de convergencia para el caso $z_0 = -1$.

(7)

Con $z_0 = -1$ la serie se expresa en términos de $(z + 1)^k$

$$\frac{1}{z^2} = \frac{1}{(z+1-1)^2} = \frac{1}{(z'-1)^2} = \frac{1}{z'^2 - 2z' + 1}$$

Con z' = (z + 1). Realizando la división polinomial para obtener la región de convergencia |z'| < 1 se obtiene:

$$\frac{1}{z^2} = 1 + 2z' + 3z'^2 + 4z'^3 + 5z'^4 + \cdots$$

$$= 1 + 2(z+1) + 3(z+1)^{2} + 4(z+1)^{3} + 5(z+1)^{4} + \cdots$$

(8)

Combinando, se obtiene para la función original la expansión de Laurent centrada en $z_0 = -1$.

$$\frac{1}{z^2(z+1)} = \frac{1+2(z+1)+3(z+1)^2+4(z+1)^3+5(z+1)^4+\cdots}{z+1}$$

$$= \frac{1}{z+1} + 2 + 3(z+1) + 4(z+1)^2 + 5(z+1)^3 + \cdots$$

Con región de convergencia 0 < |z + 1| < 1.

(1)

Determine la expresión en serie de Laurent de

$$f(z) = \frac{1}{(z+1)(z+3)}$$

Para las regiones de convergencia

- 1 < |z| < 3
- |z| > 3
- | 0 < |z+1| < 2
- |z| < 1
- |z-1| < 2

(3)

Solución: Descomponiendo la función en fracciones parciales

$$f(z) = \frac{1}{(z+1)(z+3)} = \frac{A}{(z+1)} + \frac{B}{(z+3)}$$

Multiplicando ambos lados por (z + 1) y evaluando en z = -1 se obtiene A = 1/2.

Multiplicando ambos lados por (z+3) y evaluando en z=-3 resulta B=-1/2.

$$f(z) = \frac{1}{(z+1)(z+3)} = \frac{1}{2} \left[\frac{1}{z+1} - \frac{1}{z+3} \right]$$

(4)

Para el primer término se tiene (por división polinomial) centrado el desarrollo $z_0 = 0$.

$$\frac{1}{z+1} = 1 - z + z^2 - z^3 + \cdots, \qquad si |z| < 1$$

$$= \frac{1}{z} - \frac{1}{z^2} + \frac{1}{z^3} - \cdots, \qquad si |z| > 1$$

(5)

Para el segundo término (también centrado en $z_0 = 0$):

$$\frac{1}{z+3} = \frac{1}{3} - \frac{1}{3^2}z + \frac{1}{3^3}z^2 - \frac{1}{3^4}z^3 + \cdots, \qquad si |z| < 3$$

$$= \frac{1}{z} - \frac{3}{z^2} + \frac{3^2}{z^3} - \dots, \quad si |z| > 3$$

(6)

Para el caso 1 < |z| < 3 se utiliza

$$\frac{1}{z+1} = \frac{1}{z} - \frac{1}{z^2} + \frac{1}{z^3} - \cdots$$

$$\frac{1}{z+3} = \frac{1}{3} - \frac{1}{3^2}z + \frac{1}{3^3}z^2 - \frac{1}{3^4}z^3 + \cdots$$

Para obtener:

$$\frac{1}{(z+1)(z+3)} = \cdots \frac{1}{2z^3} - \frac{1}{2z^2} + \frac{1}{2z} - \frac{1}{6} + \frac{1}{18}z - \frac{1}{54}z^2 + \frac{1}{162}z^3 - \cdots$$

(7)

Para el caso |z| > 3 utiliza

$$\frac{1}{z+1} = \frac{1}{z} - \frac{1}{z^2} + \frac{1}{z^3} - \cdots$$

$$\frac{1}{z+3} = \frac{1}{z} - \frac{3}{z^2} + \frac{3^2}{z^3} - \cdots$$

Para obtener la serie de Laurent centrada en $z_0 = \infty$

$$\frac{1}{(z+1)(z+3)} = \frac{1}{z^2} - \frac{4}{z^3} + \frac{13}{z^4} - \frac{40}{z^5} + \cdots$$

(8)

El caso 0 < |z+1| < 2 está centrado en una singularidad por lo que debe procederse de diferente forma:

El factor
$$\frac{1}{z+3} = \frac{1}{(z+1)+2} = \frac{1}{z'+2} = \frac{1}{2} - \frac{1}{2^2}z' + \frac{1}{2^3}z'^2 - \frac{1}{2^4}z'^3 + \cdots$$

1 < |z| < 3 |z| < 1 0 < |z + 1| < 2 |z| > 3

Se desarrolla centrado en $z_0 = -1$ como

$$\frac{1}{z+3} = \frac{1}{2} - \frac{1}{2^2}(z+1) + \frac{1}{2^3}(z+1)^2 - \frac{1}{2^4}(z+1)^3 + \cdots$$

Por lo que se tiene finalmente el desarrollo

$$\frac{1}{(z+1)(z+3)} = \frac{1}{2(z+1)} - \frac{1}{4} + \frac{1}{8}(z+1) - \frac{1}{16}(z+1)^2 + \cdots$$

(9)

El caso |z| < 1 utiliza

$$\frac{1}{z+1} = 1 - z + z^2 - z^3 + \cdots$$

$$\frac{1}{z+3} = \frac{1}{3} - \frac{1}{3^2}z + \frac{1}{3^3}z^2 - \frac{1}{3^4} + \cdots$$

Que resulta en la serie de Laurent centrada en $z_0 = 0$

$$\frac{1}{(z+1)(z+3)} = \frac{1}{3} - \frac{4}{9}z + \frac{13}{27}z^2 - \frac{40}{81}z^3 + \cdots$$

Que es a su vez una serie de Taylor

(10)

En el último caso |z-1| < 2 se centra la serie en 1, por lo que cada uno de los términos debe reevaluarse. Considerando que se requiere la convergencia solo para el interior del circulo se tiene:

$$\frac{1}{z+1} = \frac{1}{z-1+1+1} = \frac{1}{z'+2}$$

$$= \frac{1}{2} - \frac{z'}{2^2} + \frac{z'^2}{2^3} - \frac{z'^3}{2^4} + \frac{z'^4}{2^5} - \cdots$$

$$= \frac{1}{2} - \frac{z-1}{2^2} + \frac{(z-1)^2}{2^3} - \frac{(z-1)^3}{2^4} + \frac{(z-1)^4}{2^5} - \frac{$$

(11)

Para el otro término

$$\frac{1}{z+3} = \frac{1}{z-1+1+3} = \frac{1}{z'+4}$$

$$= \frac{1}{4} - \frac{z'}{4^2} + \frac{z'^2}{4^3} - \frac{z'^3}{4^4} + \frac{z'^4}{4^5} - \cdots$$

Y combinando ambos términos con

$$f(z) = \frac{1}{(z+1)(z+3)} = \frac{1}{2} \left[\frac{1}{z+1} - \frac{1}{z+3} \right]$$

(12)

Se obtiene

$$f(z) = \frac{1}{8} - \frac{3}{32}(z - 1) + \frac{7}{128}(z - 1)^2 - \frac{15}{512}(z - 1)^3 + \frac{31}{2048}(z - 1)^4 + \cdots$$

$$=\sum_{k=0}^{\infty} (z-1)^k \frac{(-1)^k}{8} \left(\frac{2^{k+1}-1}{2^{2k}}\right)$$

(13)

Este resultado se pude obtener también por medio de la división polinomial

$$\frac{1}{(z-1+2)(z-1+4)} = \frac{1}{(z'+2)(z'+4)} = \frac{1}{z'^2+6z'+8}$$

Sustituyendo en el resultado z' = z - 1

Bibliografía

• [1] P. Alvarado, Señales y Sistemas. Fundamentos Matemáticos. Instituto Tecnológico de Costa Rica: Centro de Desarrollo de Material Bibliográfico, 2008.

