## **Transformaciones de funciones**

En esta sección se estudia cómo ciertas transformaciones de una función afectan su gráfica. Esto proporciona una mejor comprensión de cómo graficar funciones. Las transformaciones que se estudian son desplazamiento, reflexión y estiramiento.

#### **Desplazamiento vertical**

Sumar una constante a una función desplaza su gráfica en dirección vertical: hacia arriba si la constante es positiva y hacia abajo si es negativa.

#### **Ejemplo 1** Desplazamientos verticales de gráficas

Use la gráfica de  $f(x) = x^2$  para trazar la gráfica de cada función.

a) 
$$g(x) = x^2 + 3$$
 b)  $h(x) = x^2 - 2$ 

b) 
$$h(x) = x^2 - 2$$

**Solución** La función  $f(x) = x^2$  se graficó en el ejemplo 1(a), sección 2.2. Se traza de nuevo en la figura 1.

a) Observe que

$$g(x) = x^2 + 3 = f(x) + 3$$

Así que la coordenada y de cada punto sobre la gráfica de g está tres unidades arriba del punto correspondiente sobre la gráfica de f. Esto significa que para graficar g se desplaza la gráfica de f hacia arriba tres unidades, como en la figura 1.



Figura 1

b) De manera similar, para graficar h se desplaza la gráfica de f hacia abajo dos unidades, como se muestra.

En general, suponga que se conoce la gráfica de y = f(x). Cómo se obtienen de ésta las gráficas de

$$y = f(x) + c$$
  $y = f(x) - c$   $(c > 0)$ 

La coordenada y de cada punto sobre la gráfica de y = f(x) + c está c unidades arriba de la coordenada y del punto correspondiente sobre la gráfica de y = f(x). Así, la gráfica de y = f(x) + c se obtiene simplemente al desplazar c unidades hacia arriba la gráfica de y = f(x). De manera similar, se obtiene la gráfica de y = f(x) - cal desplazar c unidades hacia abajo la gráfica de y = f(x).

Recuerde que la gráfica de la función f es la misma que la gráfica de la ecuación y = f(x).

### Desplazamientos verticales de gráficas

Suponga que c > 0.

Para graficar y = f(x) + c, desplace c unidades hacia arriba la gráfica de y = f(x).

Para graficar y = f(x) - c, desplace c unidades hacia abajo la gráfica de





## Ejemplo 2 Desplazamientos verticales de gráficas

Use la gráfica de  $f(x) = x^3 - 9x$ , que se trazó en el ejemplo 12, sección 1.8, para bosquejar la gráfica de cada función.

a) 
$$g(x) = x^3 - 9x + 10$$
 b)  $h(x) = x^3 - 9x - 20$ 

b) 
$$h(x) = x^3 - 9x - 20$$

**Solución** La gráfica de *f* se traza de nuevo en la figura 2.

- a) Para graficar g la gráfica de f se desplaza 10 unidades hacia arriba, como se
- b) Para graficar h la gráfica de f se desplaza 20 unidades hacia abajo, como se muestra.



Figura 2

# **Desplazamiento horizontal**

Suponga que se conoce la gráfica de y=f(x). ¿Cómo se emplea para obtener las gráficas de

$$y = f(x + c)$$
  $y = f(x - c)$   $(c > 0)$ 

El valor de f(x - c) en x es el mismo que el valor de f(x) en x - c. Puesto que x - c está c unidades a la izquierda de x, se deduce que la gráfica de y = f(x - c) es la gráfica de y = f(x) desplazada a la derecha c unidades. Con un razonamiento similar se demuestra que la gráfica de y = f(x + c) es la gráfica de y = f(x) desplazada a la izquierda c unidades. En el cuadro siguiente se resumen estos hechos.

#### Desplazamientos horizontales de gráficas

Supóngase que c > 0.

Para graficar y = f(x - c), desplace la gráfica de y = f(x) a la derecha cunidades.

Para graficar y = f(x + c), desplace la gráfica de y = f(x) a la izquierda c unidades.





## Ejemplo 3 Desplazamientos horizontales de gráficas



Use la gráfica de  $f(x) = x^2$  para trazar la gráfica de cada función.

a) 
$$g(x) = (x + 4)^2$$
 b)  $h(x) = (x - 2)^2$ 

b) 
$$h(x) = (x-2)^2$$

#### Solución

- a) Para graficar g, la gráfica de f se desplaza 4 unidades a la izquierda.
- b) Para graficar h, la gráfica de f se desplaza 2 unidades a la derecha.

Las gráficas de g y h se bosquejan en la figura 3.



Figura 3

#### Ejemplo 4 Combinación de desplazamientos horizontales y verticales

Bosqueje la gráfica de  $f(x) = \sqrt{x-3} + 4$ .

**Solución** Se empieza con la gráfica de  $y = \sqrt{x}$  (ejemplo 1(c), sección 2.2) y se desplaza a la derecha 3 unidades para obtener la gráfica de  $y = \sqrt{x-3}$ . Luego, la gráfica resultante se desplaza 4 unidades hacia arriba para obtener la gráfica de  $f(x) = \sqrt{x-3} + 4$  mostrada en la figura 4.



Figura 4

#### Reflexión de gráficas

Suponga que se conoce la gráfica de y=f(x). ¿Cómo se emplea para obtener las gráficas de y=-f(x) y y=f(-x)? La coordenada y de cada punto sobre la gráfica de y=-f(x) es simplemente el negativo de la coordenada y del punto correspondiente en la gráfica de y=f(x). Por lo tanto, la gráfica deseada es la reflexión de la gráfica de y=f(x) en el eje x. Por otro lado, el valor de y=f(-x) en x es el mismo que el valor de y=f(x) en -x por consiguiente, la gráfica deseada aquí es la reflexión de la gráfica de y=f(x) en el eje y. En el cuadro siguiente se resumen estas observaciones.

#### Reflexión de gráficas

Para graficar y = -f(x), refleje la gráfica de y = f(x) en el eje x.

Para graficar y = f(-x), refleje la gráfica de y = f(x) en el eje y.





Figura 5

## Ejemplo 5 Reflexión de gráficas

Trace la gráfica de cada función

(a) 
$$f(x) = -x^2$$
 (b)  $g(x) = \sqrt{-x}$ 

#### Solución

a) Se empieza con la gráfica de  $y = x^2$ . La gráfica de  $f(x) = -x^2$  es la gráfica de  $y = x^2$  reflejada en el eje x (véase figura 5).

b) Se inicia con la gráfica de  $y = \sqrt{x}$  (ejemplo 1(c) en la sección 2.2). La gráfica de  $q(x) = \sqrt{-x}$  es la gráfica de  $y = \sqrt{x}$  reflejada en el eje y (véase figura 6). Note que el dominio de la función  $g(x) = \sqrt{-x} \operatorname{es} \{x \mid x \le 0\}.$ 



Figura 6

#### Estiramiento y acortamiento vertical

Suponga que se conoce la gráfica de y = f(x). ¿Cómo se usa para obtener la gráfica de y = cf(x)? La coordenada y de y = cf(x) en x es la misma que la coordenada ycorrespondiente de y = f(x) multiplicada por c. Multiplicar las coordenadas y por ctiene el mismo efecto de alargar y acortar verticalmente la gráfica por un factor de c.

### Estiramiento y acortamiento vertical de gráficas

Para graficar y = cf(x):

Si c > 1, alargue verticalmente la gráfica de y = f(x) por un factor de c.

Si 0 < c < 1, acorte verticalmente la gráfica de y = f(x) por un factor de c.





Figura 7

## **Ejemplo 6** Estiramiento y acortamiento vertical de gráficas



Use la gráfica de  $f(x) = x^2$  para trazar la gráfica de cada función.

a) 
$$q(x) = 3x^2$$
 b)  $h(x) = \frac{1}{3}x^2$ 

b) 
$$h(x) = \frac{1}{2}x^2$$

#### Solución

- a) La gráfica de g se obtiene al multiplicar la coordenada y de cada punto sobre la gráfica de f por 3. Es decir, para obtener la gráfica de g se alarga la gráfica de f verticalmente por un factor de 3. El resultado es la parábola más estrecha en la figura 7.
- b) La gráfica de *h* se obtiene al multiplicar la coordenada y de cada punto sobre la gráfica de f por  $\frac{1}{3}$ . Es decir, para obtener la gráfica de h se acorta verticalmente la gráfica de f por un factor de  $\frac{1}{3}$ . El resultado es la parábola más amplia en la figura 7.

En el ejemplo siguiente se ilustra el efecto de combinar desplazamientos, reflexiones y estiramiento.

# Ejemplo 7 Combinación de desplazamiento, estiramiento y reflexión

Bosqueje la gráfica de la función  $f(x) = 1 - 2(x - 3)^2$ .

**Solución** Comenzando con la gráfica  $y = x^2$ , se desplaza primero a la derecha 3 unidades para obtener la gráfica de  $y = (x - 3)^2$ . Luego se refleja en el eje x y se alarga por un factor de 2 para obtener la gráfica de  $y = -2(x - 3)^2$ . Por último, se desplaza 1 unidad hacia arriba para obtener la gráfica de  $f(x) = 1 - 2(x - 3)^2$  mostrada en la figura 8.



Figura 8

#### Alargamiento y estiramiento horizontal

Ahora abordaremos el acortamiento y alargamiento horizontal de gráficas. Si se conoce la gráfica de y=f(x), entonces ¿cómo se relaciona la gráfica de y=f(cx) con ésta? La coordenada y de y=f(cx) en x es la misma que la coordenada y de y=f(x) en cx. Así, las coordenadas x en la gráfica de y=f(x) corresponde a las coordenadas x en la gráfica de y=f(cx) multiplicadas por c. Considerado de otro modo, se puede observar que las coordenadas x en la gráfica de y=f(x) multiplicada por 1/c. En otras palabras, para cambiar la gráfica de y=f(x) a la gráfica de y=f(cx), se debe acortar (o alargar) la gráfica horizontalmente por un factor de 1/c, como se resume en el cuadro siguiente.

#### Acortamiento y alargamiento horizontal de gráficas

La gráfica de y = f(cx):

Si c > 1, acorte la gráfica de y = f(x) horizontalmente por un factor de 1/c.

Si 0 < c < 1, alargue la gráfica de y = f(x) horizontalmente por un factor de 1/c.



- **18.** a)  $y = \frac{1}{3}f(x)$
- **b**) y = -f(x + 4)
- c) y = f(x 4) + 3
- **d**) y = f(-x)



- 19. Se da la gráfica de f. Bosqueje las gráficas de las siguientes funciones.
  - a) y = f(x 2)
- **b)** y = f(x) 2
- c) y = 2f(x)
- **d**) y = -f(x) + 3
- e) y = f(-x)
- **f**)  $y = \frac{1}{2}f(x-1)$



- **20.** Se da la gráfica de g. Bosqueje las gráficas de las siguientes funciones.
  - **a)** y = g(x + 1)
- **b**) y = -g(x + 1)
- c) y = g(x 2)
- **d)** y = g(x) 2
- e) y = -g(x) + 2
- **f**) y = 2q(x)



- **21.** a) Bosqueje la gráfica de  $f(x) = \frac{1}{x}$  mediante la graficación de los puntos.
  - **b)** Use la gráfica de f para trazar las gráficas de las siguientes funciones.

- i)  $y = -\frac{1}{x}$  ii)  $y = \frac{1}{x-1}$  iii)  $y = \frac{2}{x+2}$  iv)  $y = 1 + \frac{1}{x-3}$

- **22.** a) Bosqueje la gráfica de  $g(x) = \sqrt[3]{x}$  graficando los puntos.
  - **b)** Use la gráfica de g para trazar las gráficas de las siguientes funciones.

    - i)  $y = \sqrt[3]{x 2}$  ii)  $y = \sqrt[3]{x + 2} + 2$  iii)  $y = 1 \sqrt[3]{x}$  iv)  $y = 2\sqrt[3]{x}$
- **23–26** Explique cómo se obtiene la gráfica de g a partir de la
- **23.** a)  $f(x) = x^2$ ,  $g(x) = (x + 2)^2$ 
  - **b**)  $f(x) = x^2$ ,  $g(x) = x^2 + 2$
- **24.** a)  $f(x) = x^3$ ,  $g(x) = (x-4)^3$ 
  - **b)**  $f(x) = x^3$ ,  $g(x) = x^3 4$
- **25.** a)  $f(x) = \sqrt{x}$ ,  $g(x) = 2\sqrt{x}$ 
  - **b**)  $f(x) = \sqrt{x}$ ,  $g(x) = \frac{1}{2}\sqrt{x-2}$
- **26.** a) f(x) = |x|, g(x) = 3|x| + 1
  - **b**) f(x) = |x|, g(x) = -|x+1|
- **27–32** Se da una función f y se aplican a su gráfica las transformaciones indicadas (en el orden dado). Escriba la ecuación para la gráfica transformada final.
- **27.**  $f(x) = x^2$ ; desplace hacia arriba 3 unidades y 2 unidades a la derecha.
- **28.**  $f(x) = x^3$ ; desplace hacia abajo 1 unidad y 4 unidades a la izquierda.
- **29.**  $f(x) = \sqrt{x}$ ; desplace 3 unidades a la izquierda, alargue verticalmente por un factor de 5 y refleje en el eje x.
- **30.**  $f(x) = \sqrt[3]{x}$ ; refleje en el eje y, acorte verticalmente por un factor de  $\frac{1}{2}$ , y desplace hacia arriba  $\frac{3}{5}$  unidades.
- **31.** f(x) = |x|; desplace a la derecha  $\frac{1}{2}$  unidad, acorte verticalmente por un factor de 0.1 y desplace hacia abajo 2 unidades.
- **32.** f(x) = |x|; desplace a la izquierda 1 unidad, alargue verticalmente por un factor de 3 y desplace hacia arriba 10 unidades.
- 33-48 Bosqueje la gráfica de la función, no mediante la graficación de puntos, sino iniciando con la gráfica de una función estándar y aplicando transformaciones.
- **33.**  $f(x) = (x-2)^2$
- **34.**  $f(x) = (x + 7)^2$
- **35.**  $f(x) = -(x+1)^2$
- **36.**  $f(x) = 1 x^2$
- **37.**  $f(x) = x^3 + 2$
- **38.**  $f(x) = -x^3$
- **39.**  $y = 1 + \sqrt{x}$
- **40.**  $y = 2 \sqrt{x+1}$
- **41.**  $y = \frac{1}{2}\sqrt{x+4} 3$ **43.**  $y = 5 + (x + 3)^2$
- **42.**  $y = 3 2(x 1)^2$
- **44.**  $y = \frac{1}{2}x^3 1$
- **45.** y = |x| 1
- **46.** y = |x 1|
- **47.** y = |x + 2| + 2
- **48.** y = 2 |x|