SETS

INTRODUCTION

- Why Mathematics?
 - Natural language is not always precise and unambiguous
 - Meaning often depends on context

Consider:

He drives a red car He drives a hard bargain

or:

She sang like her sister She sang like a nightingale He sang like a canary

INTRODUCTION

- Mathematics
 - has a *proven track record* in science and engineering
 - o is *precise*
 - is *concise* and self-contained
 - has *clarity* with little scope for misunderstanding
 - helps us concentrate on the essentials
 - is independent of natural language
 - may prove *correctness*
- We shall be concerned with the mathematics of *sets* and *logic* rather than numbers (though sets of *integer numbers* will be of interest)

DEFINITION & NOTATION

- A *set* is (informally) a:
 - o well-defined,
 - unordered

collection of *similar* items where each item is

- o identifiable, and
- distinct from the other items
- A set may be defined by listing (or *enumerating*) its *members* or *elements* inside curly braces:

{a, e, i, o, u} is the set of vowels, and

{England, France, Ireland, Italy, Scotland, Wales}

is the set of countries which participate in Rugby Union's six-nations' championship

SPECIAL SETS

• A set with just **one** member is a *singleton* set:

{February} is the set of months with less than 30 days

- A set with no members is called the *null* set or *empty* set and is denoted either by $\{\}$ or \emptyset
 - e.g. the set of all humans over twenty feet tall is empty or null (i.e. = {})
- Certain sets of integers are denoted by generally accepted special symbols:

N represents the set of *natural numbers* (≥ 0)

 \mathbb{N}_1 represents the non-zero natural numbers (≥ 1)

and

Z represents the set of positive and negative integers (i.e. whole numbers)

EQUIVALENCE & EQUALITY

• Two sets are *equal* or *equivalent* if, and only if, they have the same members

e.g. {1, 2, 3, 5, 7, 11} and {3, 1, 2, 11, 5, 7} are equal/equivalent sets

• Set *definition* (i.e. *syntactic equivalence*) will be shown by = =

e.g.
$$Vowels = \{a, e, i, o, u\}$$

- Here *Vowels* is a shorthand 'name' for the set enumerated to the right of the = = sign
- The single = sign is often used to show equivalence between two sets but it may also be used to 'define' a set where the members of that set may change

e.g. *CourseTeam* = {Smith, Jones, Patel}

SET MEMBERSHIP

- Set membership is denoted by \in which is read as
 - is a member of, or
 - o is an element of, or
 - o belongs to
 - e.g. $u \in Vowels$ (the set defined above) $0 \in \mathbb{N}$ and $-7 \in \mathbb{Z}$
- Non-membership is denoted by ∉ which is read as
 - o is not a member of, or
 - o is not an element of, or
 - o does not belong to
 - e.g. $p \notin Vowels$ $0 \notin \mathbb{N}_1$ and $3.14 \notin \mathbb{Z}$

OPERATIONS ON SETS - CARDINALITY

 The number of unique elements in a set is denoted by #

e.g.
$$\#Vowels = 5$$
 and $\#\{\} = 0$

- For a set P, #P is often called the *size* or cardinality of the set P
- If #P is a finite number then P is said to be a *finite* set (otherwise it is an *infinite* set)
- Examples of infinite sets are: \mathbb{Z} , \mathbb{N} and \mathbb{N}_1
- The arithmetic of infinite sets can seem 'weird':

If
$$A==\{1, 2, 8\}$$
 and $B==\{5, 7, 9, 17\}$ then we can see $\#A=3$ and $\#B=4$ and so $\#B>\#A$

What, though, of $\#\mathbb{N}$ and $\#\mathbb{N}_1$?

OPERATIONS ON SETS - UNION

- The *union* of two sets A and B is the set of all elements contained in both A and B with any element occurring in **both** A and B being listed **once only** in the union
- The *union* of A and B is written $A \cup B$.
- If $A = \{p, q, u, v\}$ and $B = \{g, h, k, u, v, y\}$ then $A \cup B = \{g, h, k, p, q, u, v, y\}$
- A Venn diagram provides a graphic illustration with the union of sets A and B (i.e. A ∪ B) depicted by the whole area shaded like

• The enclosing rectangle represents the *universal* set (i.e. **all** the elements in the domain in which we are interested)

OPERATIONS ON SETS - INTERSECTION

- The *intersection* of sets A and B is the set of those elements **common to both A and B** and is written $A \cap B$
- If $A = \{p, q, u, v\}$ and $B = \{g, h, q, t, v, y\}$ then $A \cap B = \{q, v\}$
- The corresponding Venn diagram might be as shown with the intersection of the two sets A and B (i.e. A ∩ B) represented by the area shaded like

• If A and B have no members in common they are said to be *disjoint* and we can then write:

$$A \cap B = \{\}$$
 or $A \cap B = \emptyset$ or, less often, *disjoint* $\langle A, B \rangle$

OPERATIONS ON SETS - DIFFERENCE

- The difference (or relative complement) of sets A and B is the set of all those elements which occur in A but not in B
- The *difference* of A and B is written A \ B

e.g. if
$$A = \{p, q, u, v\}$$
 and $B = \{g, h, k, u, v, y\}$ then $A \setminus B = \{p, q\}$

• The corresponding *Venn* diagram might be as shown where A \ B is depicted by the area shaded similar to

SUBSETS

- Suppose A = = {d, f, h, p, t} and B = = {h, t}
 then we notice that all members of set B are also members of set A. In such a case we say:
 - O B is a *subset* of A, or
 - set B is included in set A
- If we know all members of set B are also in set
 A we can write B ⊆ A
- $B \subseteq A$ allows that the two sets may
 - be equivalent and
 - have exactly the same members
- An obvious corollary is that any set *must* be a subset of itself (i.e. for any set $A, A \subseteq A$)
- Note that (unlike \in) set inclusion (\subseteq) is transitive

SUBSETS

- If we know all of the members of B are also in A (i.e. $B \subseteq A$) but that A also has members which are not in B, then we should strictly write $B \subseteq A$
- For example:

$$\{g, m\} \subseteq \{f, g, k, m, p\}$$
 is true
 $\{a, p, t\} \subseteq \{p, t, a\}$ is true
 $\emptyset \subseteq \{k, y\}$ is true
 $\{a, p, t\} \subseteq \{p, t, a\}$ is false
 $\{a, t\} \subseteq \{p, t, a\}$ is true

and, in particular:

$$\mathbb{N}_1 \subseteq \mathbb{N}$$
 is true $\mathbb{N} \subseteq \mathbb{Z}$ is true

POWERSETS

- The set of all possible subsets of a set A is called the *powerset* of A and is written PA
- Since $\{\}$ (i.e. \emptyset) is a valid subset of *any* set, the powerset of $\{a, b, c\}$ is:

$$\{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}\}$$

- An example of one of the uses of a powerset is the construction of *Braille* characters:
 - Each *Braille* character is based upon a 'cell' of 6 dots:

- Each *Braille* "cell" can be regarded as a set of 6 possible dot-positions
 - The set of possible characters is the powerset of C (i.e. all possible subsets selected from C)
 - How *many* are there?

SET COMPREHENSION

- Enumeration is, generally, used to define sets only when there are not many members
- When *enumeration* is used
 - the set members can be analysed only by inspecting each and every member, and
 - even careful inspection does not always clarify the characteristic(s) shared by members of a set (e.g. consider {1, 3, 5})
- Sets are collections of objects which share similar characteristics and this fact provides a better mechanism (abstraction) for defining what a set contains

SET COMPREHENSION

• If *Big_Countries* is the set of countries with more than 100 million people and *C* represents the set of all countries, we could write:

 $Big_Countries = \{c:C|c \text{ has more than } 100 \text{ million people}\}$

- 'c:C' (the *signature*) means the values of c are drawn from the set C, and
- the vertical bar '|' (called the *constraint* bar) is read as 'such that'
- The 'rule', 'condition' or 'constraint', appearing to the right of the *constraint bar* '|' is called a *predicate* and is either *false* or *true*
- The above way of specifying a set according to the characteristics shared by its members rather than by *enumeration* is called *set comprehension*

SET COMPREHENSION

- An alternative form of set comprehension specifies set elements by using a *pattern*
- If Evens is the set $\{0, 2, 4, 6, 8, ...\}$ we can specify Evens as:

$$Evens = \{ x: \mathbb{N} \cdot 2x \}$$

which is read as:

'the set Evens is defined to comprise elements generated by the pattern or term "2 multiplied by x" where x is taken from the set of natural numbers'

• Similarly, if $Non_Zero_Evens = = \{2, 4, 6, ...\}$ we may write: $Non_Zero_Evens = = \{x: \mathbb{N} \mid x>0 \cdot 2x\}$ where the constraining predicate (x > 0) acts as a filter to ensure non-zero values. Do we need it?

Recall our (informal) definition of a set:

A set is a well-defined, unordered collection of similar items where each item is clearly identifiable and distinct from the other items

- Well-defined means that given a 'value' we are able to decide whether it is a member of the set
- Sets are *homogeneous* in the sense that all members of a set are in some way similar
- All possible values that a set may have as members is said to define the *type* of the set

- If we attempted to model a *Library* system we would deal with sets of books and sets of people
- Suppose PERSON represents the set of all people that might ever be associated with our library, then
- At any given time, the set of Library staff
 - would be one particular *subset* of PERSON, and, hence
 - the set of Library staff, would be **one** of the sets defined by the powerset of PERSON

Remember: The powerset of a set A (i.e. $\mathbb{P}A$) is the set of **all** possible subsets of A

- Similarly, if BOOK represents the set of all books that might ever be associated with our library, then
- At any given time, the set of books actually on loan (or, similarly, the set of books available for loan)
 - would be one particular *subset* of BOOK, and, hence
 - o at that time, the set of books on loan, say, would be one of the sets defined by the powerset of BOOK

- When using sets to specify systems we start by declaring *basic set types* (or *given sets*) which characterize the universal sets of objects we anticipate having to deal with
- These *basic types* are declared by writing them using upper-case letters in *square brackets*:

[BOOK] and [PERSON] for a *Library* system [STUDENT] and [COURSE] for a *College Admin* system

and, several types can be given in one declaration: [BOOK, PERSON]

• If each *member* of a set, which is based upon a given set, is of type T, then that set has type \mathbb{P} T (remember, the *type* of the set is the set of *all possible* values the set may contain)

- In an academic *course-administration* system,
 - a given set could be [STUDENT]
 - enrolled could be the set of students who enrol on the BSc Computing, and
 - o graduated could be the set of students who successfully complete the course
 - o any *member* of each of the sets *enrolled* and *graduated* will be of type STUDENT
 - the type of **both** of the sets *enrolled* and *graduated* will be P STUDENT
 - we write: enrolled, graduated : P STUDENT
- Equivalent statements to enrolled, graduated : ℙ STUDENT

are:

 $enrolled \in \mathbb{P} \ STUDENT \ ; \ graduated \in \mathbb{P} \ STUDENT$

or:

 $enrolled \subseteq STUDENT$; $graduated \subseteq STUDENT$

FREE TYPES

• Free types or enumerated types can also be declared by enumerating the allowed identifiers for each of their elements:

where the vertical bar, "|", is read as "or"

• "RESPONSE ::= yes | no" is a shorthand for the following declarations and predicates:

[RESPONSE]	RESPONSE is a given
	set
yes: RESPONSE	yes is a value of the set
no: RESPONSE	no is a value of the set
yes ≠ no	yes and no are distinct
$RESPONSE = \{yes, no\}$	yes and no are the only
	values of the type

WELL-FORMED EXPRESSIONS

- When dealing with *typed* sets, the set operations considered previously (such as \in , #, \cap , etc) must only be applied to sets of compatible types
- If Benelux == {Belgium, Holland, Luxembourg} and Reference is a set of books which may **not** be borrowed, then the members of the sets Benelux and Reference (and hence the sets themselves) are of different types
- It is, therefore, meaningless to write expressions such as

Holland ∉ Reference

since *Holland* is **not of the same type** as the members of the set *Reference*

• Expressions involving **incompatible** types are said to be **not** well-formed

SUMMARY OF SET SYMBOLS

- Z Set of integers (positive or negative whole numbers)
- \mathbb{N} Set of natural numbers (≥ 0)
- \mathbb{N}_1 Set of positive natural numbers (≥ 1)
- $t \in S$ t is an element of set S
- $t \notin S$ t is not an element of set S
- $S \subseteq T$ Set S is contained in set T
- $S \subseteq T$ Set S is not contained in set T
- $S \subset T$ Set S is strictly contained in set $T(S \neq T)$
- \emptyset or $\{\}$ empty set
- $\{t_1, t_2, \dots t_n\}$ the set containing elements $t_1, t_2, \dots t_n$
 - $\mathbb{P}S$ Powerset of set S: the set of all possible subsets of S
 - $S \cup T$ Union of sets S and T: the set of elements which are in S or in T or in both
 - $S \cap T$ Intersection of sets S and T: the set of elements which are both in S and in T
 - $S \setminus T$ Difference of sets S and T: the set of elements which are in S but not in T
 - #S Size or cardinality of set S: the number of elements contained in set S
 - $\{D \mid P \bullet t\}$ Set of elements t such that declarations D and P hold true

EXERCISES

- 1. Translate the following *symbolic* statements into *English*:
 - (a) $x \in S$
 - (b) $x \notin S$
 - (c) $X \subseteq Y$
 - (d) $A \subseteq B$
 - (e) $A \in B$
 - (f) B ∉ C
- 2. If NATO = = {Belgium, Canada, Denmark, Iceland, Italy, Luxembourg, Holland, Norway, Portugal, United Kingdom, United States, Greece, Turkey, Spain, Germany}
 - EC = {Belgium, France, Germany, Italy, Luxembourg, Holland, Denmark, Greece, Ireland, United Kingdom, Spain, Portugal}

Scandinavia = = {Denmark, Finland, Norway, Sweden, Iceland}

Benelux = = {Belgium, Holland, Luxembourg}

Central America = { Costa Rica, Honduras, El Salvador, Guatemala, Nicaragua, Belize, Panama},

enumerate the following sets:

- (a) $EC \cup NATO$
- (b) $EC \cap NATO$
- (c) NATO \setminus EC
- (d) EC\NATO
- (e) Scandinavia \ NATO
- (f) $EC \cup Benelux$
- (g) EC \ Benelux
- (h) Benelux \ EC
- (i) NATO ∩ Scandinavia
- (j) Central America ∩ Benelux
- (k) $EC \cap (NATO \cap Scandinavia)$
- (1) $(EC \cap NATQ) \cap Scandinavia$
- (m) $EC \cup (NATO \cup Scandinavia)$
- (n) $(EC \cup NATO) \cup Scandinavia$
- 3. Suppose A, B and C are three sets such that $A \subseteq B$ and $B \cap C$ is the empty set.
 - (a) Draw a Venn diagram that illustrates this situation.
 - (b) Draw another Venn diagram for the case when $A \subseteq B$ and $A \cap C$ is the empty set.

- 4. Use Venn diagrams to demonstrate
 - (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 5. In what circumstances will $A \setminus B = B \setminus A$?
- 6. The concepts of *union* and *intersection* of two sets can be extended to any number of sets. The symbols used are like those already encountered but are *larger* and and are written in front of the set of sets on which it operates. For example, the *union* of the sets {2, 5}, {2, 7, 8} and {3, 7, 8, 11} would be written:

$$\bigcup \{\{2,5\}, \{2,7,8\}, \{3,7,8,11\}\} = \{2,3,5,7,8,11\}$$

Similarly the intersection of the three sets is written:

$$\bigcap \{\{2,5\}, \{2,7,8\}, \{3,7,8,11\}\} = \{\} = \emptyset$$

If $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8, 19\}$ and $C = \{2, 3, 5, 7\}$ write down the sets:

- (a) $\bigcup \{A, B, C\}$
- (b) $\bigcap \{A, B, C\}$
- (c) $A \setminus (B \cap C)$
- 7. Given $A = \{a, b, c\}$, $B = \{b, c, d, e\}$ and $C = \{a, b, c, d, e, f\}$, find:
 - (a) #A
 - (b) #C
 - (c) $A \cup B$
 - (d) $A \cap B$
 - (e) A \ B
 - (f) $A \cap (B \cup C)$
 - (g) $A \cap (B \cap C)$

State, giving reasons, whether the following statements are true for the above sets:

- (h) $b \in B$
- (i) $h \in B$
- (j) $A \in A$
- 8. Enumerate the following sets (e.g. $\{n : \mathbb{N} \mid n < 2\} = \{0, 1\}$):
 - (a) $\{n : \mathbb{N} \mid n^2 < 17\}$
 - (b) $\{n : \mathbb{Z} \mid n^2 < 17\}$
 - (c) $\{n : \mathbb{N} \cdot n + 2\}$
 - (d) $\{n : \mathbb{N} \mid n = 4 \cdot 2n\}$
 - (e) $\{n : \mathbb{N} \mid n < 4 \cdot 2n\}$

9.	Describe the following sets using set comprehension (there may be more than one
	answer!) (e.g. $\{0, 1, 8, 27\} = \{n: \mathbb{N} \mid n \le 3 \cdot n^3\}$):

```
(a) \{0, 1, 2, 3, 4\}
```

(c)
$$\{1, 2, 4, 8, 16, 32\}$$

- (d) The set of natural numbers greater than 15
- (e) The set of integers whose square is more than 40

```
10. Find the sets defined by
```

```
(a) \{n:\mathbb{N} \mid n > 7\} \cap \{n:\mathbb{N} \mid n < 10\}
```

(b)
$$\{n: \mathbb{N} \mid n > 7 \cdot n^2 + 4\} \cap \{\}$$

11. Which of the following predicates are *true* and which are *false*?

(a)
$$\{3, 4, 5\} \cup \{\} = \{\}$$

(b)
$$\{3,4,5\} \cap \{\} = \{\}$$

(c)
$$\{n:\mathbb{N} \mid n^2 < 20\} \cap \{1, 2, 3\} = \{2, 3\}$$

(d)
$$\{n: \mathbb{N} \mid n > 5 \text{ and } n < 10\} \cup \{n: \mathbb{N} \mid n \le 5\} = \{n: \mathbb{N} \mid n < 10\}$$

12. Set comprehension may be used to define *set union* as follows:

Suppose the elements of the sets A and B are of type T, then the *union* of the sets A and B (written $A \cup B$) is defined by: $A \cup B = \{ x : T \mid (x \in A) \mid OR \mid (x \in B) \}$ or, if we use \forall as a shorthand for OR: $A \cup B = \{ x : T \mid (x \in A) \mid \forall (x \in B) \}$

Using, where necessary, \land for AND with \lor for OR write set comprehensions for

- (a) set intersection (\cap)
- (b) set *difference* (\)

13. Given the declarations:
$$x, y, z : \mathbb{Z}$$
; $a : AUTHOR$; $b : BOOK$; $on_shelves : \mathbb{P} BOOK$; novelists : $\mathbb{P} AUTHOR$

say whether the following notations are well-formed

- (a) x > y
- (b) $x \in \text{on shelves}$
- (c) $a \in \text{on shelves}$
- (d) $a \in novelists$
- (e) on shelves \subseteq novelists
- (f) on shelves \subseteq Book
- (g) {on_shelves, novelists}
- (h) $\{a, b\}$

14. Given the following definitions:

$$s = \{ 1, 4, 6, 7, 8, 9 \}$$

$$t = \{ x : \mathbb{N} \mid x^2 < 10 \cdot x^2 \}$$

write down the results of the following expressions:

- (a) $s \cup t$
- (b) $s \cap t$
- (c) $s \setminus t$
- 15. Suppose int_sets is a set containing sets of integers (i.e. int_sets : \mathbb{P} (\mathbb{P} \mathbb{N})), with:

int sets =
$$\{\{1, 2, 3\}, \{\}, \{3, 4, 5\}, \{3, 4\}\}$$

- (a) What is produced by $\bigcup int_sets$?
- (b) What is produced by $\bigcap int_sets$?