TD1 1A SRI – SED - Manipulation de représentations

I. À partir d'une représentation tabulaire

Soit la table des états nommés suivante :

Qi\e1e2	00	01	11	10
Q_1	$\bigcirc 0$	\mathbb{Q}_{1} 0	\mathbb{Q}_{1} 0	Q_2
Q_2	Q_1	-	Q ₄	$\mathbb{Q}_{2}/0$
Q ₃	Q ₃)1	Q_1	-	Q ₄
Q ₄	Q_3	$(Q_4)(0)$	Q ₄)1	Q ₂ /0

- 1°) Déterminer une représentation graphique de ce système
- 2°) Donner la table des états codés lorsqu'on choisit le codage suivant :

Qi	Q_1	Q ₂	Q ₃	Q ₄
Code	10	00	11	01

3°) En déduire une représentation algébrique

II. À partir d'une représentation algébrique

Soit le système séquentiel, fonctionnant en mode fondamental, décrit par les équations suivantes. [A,B] est le vecteur d'entrée, [O,F] est le vecteur de sortie et [Y1,Y2,Y3] est le vecteur d'état :

$$\begin{cases} y1 = Y1.\overline{Y2} + \overline{A}.\overline{B}.\overline{Y2}.Y3 + (A + \overline{B}).Y1 \\ y2 = \overline{Y1}.Y2.Y3 + A.Y2 + B.Y1.Y2 + \overline{Y1}.Y3.\overline{A}.B + Y1.\overline{Y2}.A.\overline{B} \\ y3 = Y1 + \overline{Y2}.Y3 + A.\overline{Y2} + \overline{A}.Y3 \\ O = Y1.\overline{Y2}.Y3.A.\overline{B} \\ F = \overline{Y1}.Y2.\overline{Y3}.B \end{cases}$$

- 1°) Donner la table des états codés correspondant à ce système
- 2°) De quelles natures sont les sorties O et F?
- 3°) Déterminer le graphe d'état.

III. Table de Karnaugh à variables introduites

Dans le graphe d'états suivant, les conditions portées sur les arcs sont booléennes. Par contre, un changement d'état ne peut avoir lieu qu'à l'occurrence de l'événement H↑ (non représenté sur les arcs).

- 1. Donner une représentation schéma bloc de ce système.
- 2. Pour le codage indiqué dans le tableau suivant, déterminer les tables de Karnaugh à variables introduites décrivant ce système.

Q_{i}	Q_1	\mathbf{Q}_2	Q_3	Q ₄
Code	00	01	11	10

3. En déduire une représentation algébrique.

Ya Xa AB	100	01	10	10	
000	(000)	000	001	001	
001	101	011	(CC1)	(001)	
011	(011)	011	010	010	
010	000	000/	010	(10)	
100	101	011	111	(1)	
101	101	3011	(11)	(1)	
lal	TOD	101	101	11/0	
100	19	101	101	111	

Renarque: les états (40) ot (100) no set pos stable

2) On oot pas stable waie que las du possege de l'état (4u) - (4u)

=> c'est u evenount

la serie est wail à l'étet

(C10) est actif et à B=1 e) il r'agit d'une sertie de type nivear

