

Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM

ENGENHARIA QUÍMICA E BIOLÓGICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

SOLUÇÃO DA PROVA MODELO 2016

Apenas são apresentadas as soluções. Respostas que exijam demonstrações ou desenvolvimento não são apresentadas.

$\boldsymbol{\alpha}$	4
Grupo	
Olupo	

- **1.** (C)
- **2.** (C)
- **3.** (D)

Grupo 2

a) Recorrendo à regra de Ruffini

$$(x^3 - 3x^2 - 9x + 27) = (x - 3)(x^2 - 9)$$

logo os zeros são -3 e 3 (3 com multiplicidade 2).

b)

$$p(x)$$
 é crescente em:] $-\infty$, -1] \cup [3, $+\infty$ [

p(x) é decrescente em: [-1,3]

Grupo 3

- **1.** (A)
- **2.** (E)
- **3.** (C)

Grupo 4

- a) $W = \Delta E_c = -602 \text{ kJ}$
- b) $a = -6.02 \text{ m/s}^2$

Grupo 5

- 1. (C) Quando átomos ou moléculas perdem ou ganham eletrões, transformam-se em iões.
- 2. (B) Os metais deste grupo têm propriedades semelhantes.
- **3.** (B) A função da água é dissolver o soluto.
- 4. (D) Uma cetona.
- 5. (E) Pontos de ebulição.

Grupo 6

- a) $2 \text{ NaN}_3 (s) \rightarrow 3 \text{ N}_2 (g) + 2 \text{ Na} (s)$ (A) $\text{N}_2 (g) + 3 \text{ H}_2 (g) \rightarrow 2 \text{ NH}_3 (g)$ (B)
- b) 1 mole de moléculas de N₂ reage com 3 moles de moléculas de H₂ para formar 2 moles de NH₃.
- c) Reação (A).
- d) São formadas 12 moles de N₂.

Grupo 7

(Desenvolvimento)