- Problem
 - ▶ Input: Set of integers $S = \{w_1, ..., w_n\}$, integer W
 - ▶ Question: Is there $S' \subseteq S$ that adds up to exactly W?

Example

- $S = \{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\}, W = 3754\}$
- > Yes!

$$0.1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754$$

- Claim: Subset Sum is in NP
 - Recall: We need to show that there is a polynomial-time algorithm which
 - Can accept every YES instance with the right polynomial-size advice
 - Will not accept a NO instance with any advice
 - \triangleright Advice: the actual subset S'
 - \triangleright Algorithm: check that S' is indeed a subset of S and sums to W
 - Simple!

- Claim: Exact 3SAT \leq_p Subset Sum
 - \succ Given a formula φ of Exact 3SAT, we want to construct (S,W) of Subset Sum with the same answer
 - > In the table in the following slide:
 - Columns are for variables and clauses
 - Each row is a number in *S*, represented in decimal
 - \circ Number for literal ℓ : has 1 in its variable column and in the column of every clause where that literal appears
 - Number selected = literal set to TRUE
 - "Dummy" rows: can help make the sum in a clause column 4 if and only if at least one literal is set to TRUE

Decimal representation

• Claim: Exact 3SAT \leq_p Subset Sum

$$C_1 = \overline{x} \lor y \lor z$$

$$C_2 = x \lor \overline{y} \lor z$$

$$C_3 = \overline{x} \lor \overline{y} \lor \overline{z}$$

dummies to get clause columns to sum to 4

	×	у	z	C_1	C ₂	C ₃
×	1	0	0	0	1	0
· x	1	0	0	1	0	1
у	0	1	0	1	0	0
- y	0	1	0	0	1	1
z	0	0	1	1	1	0
- z	0	0	1	0	0	1
	0	0	0	1	0	0
	0	0	0	2	0	0
	0	0	0	0	1	0
	0	0	0	0	2	0
	0	0	0	0	0	1
	0	0	0	0	0	2
w	1	1	1	4	4	4

Note

- > The Subset Sum instance we constructed has "large" numbers
 - \circ Their values are exponentially large (~10^{#variables+#clauses})
 - But the number of bits required to write them is polynomial
- Can we hope to construct Subset Sum instance with numbers whose values are only poly(#variables, #clasuses) large?
 - \circ Unlikely, as that would prove P = NP!
 - Like Knapsack, Subset Sum can be solved in pseudo-polynomial time
 - That is, in polynomial time if the numbers are only polynomially large in value

- Problem
 - > Input: Undirected graph G = (V, E)
 - Question: Can we color each vertex of G using at most three colors such that no two adjacent vertices have the same color?

- Claim: 3-coloring is in NP
 - Recall: We need to show that there is a polynomial-time algorithm which
 - Can accept every YES instance with the right polynomial-size advice
 - Will not accept a NO instance with any advice
 - Advice: colors of the nodes in a valid 3-coloring
 - Algorithm: check that this is a valid 3-coloring
 - Simple!

- Claim: Exact 3SAT \leq_p 3-Coloring
 - \Rightarrow Given an Exact 3SAT formula φ , we want to construct a graph G such that G is 3-colorable if and only if φ has a satisfying assignment
 - > *G* will have the following nodes:
 - \circ Type 1: true, false, base, one for each x_i , one for each $\overline{x_i}$
 - \circ Type 2: additional nodes for each clause C_i
 - > 1-1 correspondence between valid 3-colorings of type 1 nodes and valid truth assignments:
 - All literals with the same color as "true" node are set to true
 - All literals with the same color as "false" node are set to false
 - ▶ Claim: Fix any colors of type 1 nodes. There exists a valid 3-coloring of G giving these colors to type 1 nodes if and only if the corresponding truth assignment is satisfying for φ .

- > Create 3 new nodes T, F, and B, and connect them in a triangle
- > Create a node for each literal, connect it to its negation and to B
- \succ T-F-B must have different colors, and so must B- x_i - \bar{x}_i
 - Each literal has the color of T or F; its negation has the other color
 - Valid 3-coloring ⇔ valid truth assignment (set all with color T to true)

- ➤ We also need valid 3-coloring ⇔ satisfying truth assignment
 - o For each clause, add the following gadget with 6 nodes and 13 edges
 - Claim: Clause gadget is 3-colorable
 ⇔ at least one of the nodes corresponding to the literals in the clause is assigned color of T

- ▶ Claim: Valid 3-coloring \Rightarrow truth assignment satisfies φ
 - \circ Suppose a clause C_i is not satisfied, so all its three literals must be F
 - Then the 3 nodes in top layer must be B
 - Then the first two nodes in bottom layer must be F and T
 - No color left for the remaining node ⇒ contradiction!

- \rightarrow We just proved: valid 3-coloring \Rightarrow satisfying assignment
- Claim: satisfying assignment ⇒ valid 3-coloring
 - Each clause has at least one literal with color T
 - Exercise: Regardless of which literal has color T and which color (T/F) the other literals have, the clause widget can always be 3-colored

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 1: Show that B is in NP
 - Some polynomial-size advice should be sufficient to verify a YES instance in polynomial time
 - No advice should work for a NO instance
 - > Usually, the solution of the "search version" of the problem works
 - But sometimes, the advice can be non-trivial
 - For example, to check LP optimality, one possible advice is the values of both primal and dual variables, as we saw in the last lecture

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 2: Find a known NP-complete problem A and reduce it to B (i.e., show $A \leq_p B$)
 - This means taking an arbitrary instance of A, and solving it in polynomial time using an oracle for B
 - Caution 1: Remember the direction. You are "reducing known NPcomplete problem to your current problem".
 - Caution 2: The size of the B-instances you construct should be polynomial in the size of the original A-instance
 - This would show that if B can be solved in polynomial time, then A can be as well
 - Some reductions are trivial, some are notoriously tricky...

Binary Integer Linear Programming (BILP)

- Problem
 - ▶ Input: $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, $k \in \mathbb{R}$
 - **Question:** Does there exist $x \in \{0,1\}^n$ such that $c^T x \ge k$ and $Ax \le b$?
 - > Decision variant of "maximize $c^T x$ subject to $Ax \leq b$ " but instead of any $x \in \mathbb{R}^n$ with $x \geq 0$, we are restricting x to binary.
 - Does restricting search space make the problem easier or harder?
 - o This is actually NP-complete!

BILP Feasibility

- An even simpler problem
 - > Special case where c = k = 0, so $c^T x \ge k$ is always true
- Problem
 - \triangleright Input: $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$
 - ▶ Question: Does there exist $x \in \{0,1\}^n$ such that $Ax \le b$?
 - > Just need to find a feasible solution
 - > This is still NP-complete!

BILP Feasibility

- Claim: BILP Feasibility is in NP
 - Recall: We need to show that there is a polynomial-time algorithm which
 - Can accept every YES instance with the right polynomial-size advice
 - Will not accept a NO instance with any advice
 - Advice: simply a vector x satisfying $Ax \leq b$
 - ightharpoonup Algorithm: Check if $Ax \leq b$
 - > Simple!

BILP Feasibility

- Claim: Exact 3SAT \leq_p BILP Feasibility
 - \succ Take any formula φ of Exact 3SAT
 - \triangleright Create a binary variable x_i for each variable x_i in φ
 - \circ We'll represent its negation \bar{x}_i with $1-x_i$
 - > For each clause C, we want at least one of its three literals to be TRUE
 - o Just make sure their sum is at least 1

○ E.g.,
$$C = x_1 \lor \bar{x}_2 \lor \bar{x}_3 \Rightarrow x_1 + (1 - x_2) + (1 - x_3) \ge 1$$

- > Easy to check that
 - o this is a polynomial reduction
 - \circ Resulting system has a feasible solution if and only if ϕ is satisfiable

ILP Feasibility

- Problem
 - \triangleright Input: $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$
 - **Question:** Does there exist $x \in \mathbb{Z}^n$ such that $Ax \leq b$?
 - To prove that this is NP-hard, there is an obvious reduction from BILP feasibility to ILP feasibility
 - > What about membership in NP?
 - Advice: simply a vector x satisfying $Ax \leq b$
 - \rightarrow Algorithm: Check if $Ax \leq b$
 - Simple?
 - \circ No, not clear if, in every YES instance, there's a polynomial-length "advice" vector x satisfying $Ax \leq b$

On the Complexity of Integer Programming

CHRISTOS H. PAPADIMITRIOU

Massachusetts Institute of Technology, Cambridge, Massachusetts, and National Technical University, Athens, Greece

ABSTRACT. A simple proof that integer programming is in \mathcal{NP} is given. The proof also establishes that there is a pseudopolynomial-time algorithm for integer programming with any (fixed) number of constraints.

KEY WORDS AND PHRASES: integer linear programming, P, NP, pseudopolynomial algorithms

CR CATEGORIES 5 25, 5.3, 5.4

So far...

- To establish NP-completeness of problem B, we always reduced Exact 3SAT to B
 - But we can reduce any other problem A that we have already established to be NP-complete
 - Sometimes this might lead to a simpler reduction because A might already be "similar" to B
- Let's see an example!

- Problem
 - ▶ Input: Undirected graph G = (V, E), integer k
 - Question: Does there exist a vertex cover of size k?
 - \circ That is, does there exist $S \subseteq V$ with |S| = k such that every edge is incident to at least one vertex in S?

Example:

- Does this graph have a vertex cover of size 4?
 - Yes!
- Does this graph have a vertex cover of size 3?
 - No!

- Problem
 - ▶ Input: Undirected graph G = (V, E), integer k
 - Question: Does there exist a vertex cover of size k?
 - \circ That is, does there exist $S \subseteq V$ with |S| = k such that every edge is incident to at least one vertex in S?

Question:

- Did we see this graph in the last lecture?
 - Yes!
 - For independent set of size 6

- = vertex cover
- = independent set

- Problem
 - ▶ Input: Undirected graph G = (V, E), integer k
 - Question: Does there exist a vertex cover of size k?
 - \circ That is, does there exist $S \subseteq V$ with |S| = k such that every edge is incident to at least one vertex in S?

Question:

- Did we see this graph in the last lecture?
 - Yes!
 - For independent set of size 6

- = vertex cover
- = independent set

- Vertex cover and independent set are intimately connected!
- Claim: G has a vertex cover of size k if and only if G has an independent set of size n-k
- Stronger claim: S is a vertex cover if and only if $V \setminus S$ is an independent set

• Claim: S is a vertex cover if and only if $V \setminus S$ is an independent set

• Proof:

- > S is a vertex cover
- > IFF: For every $(u, v) \in E$, at least one of $\{u, v\}$ is in S
- ▶ IFF: For every $(u, v) \in E$, at most one of $\{u, v\}$ is in $V \setminus S$
- \triangleright IFF: No two vertices of $V \setminus S$ are connected by an edge
- > IFF: $V \setminus S$ is an independent set

- Claim: Independent Set \leq_p Vertex Cover
 - \triangleright Take an arbitrary instance (G, k) of Independent Set
 - \triangleright We want to check if there is an independent set of size k
 - > Just convert it to the instance (G, n k) of Vertex Cover
 - > Simple!
 - \circ A reduction from Exact 3SAT would have basically repeated the reduction we already did for Exact 3SAT \leq_p Independent Set
 - Note: I didn't argue that Vertex Cover is in NP
 - This is simple as usual. Just give the actual vertex cover as the advice.

Set Cover

Problem

- \triangleright Input: A universe of elements U, a family of subsets S, and an integer k
- \triangleright Question: Do there exist k sets from S whose union is U?

Example

- $\rightarrow U = \{1,2,3,4,5,6,7\}$
- $> S = \{\{1,3,7\}, \{2,4,6\}, \{4,5\}, \{1\}, \{1,2,6\}\}\}$
- > k = 3? Yes! $\{\{1,3,7\}, \{4,5\}, \{1,2,6\}\}$
- > k = 2? No!

Set Cover

- Claim: Set Cover is in NP
 - \triangleright Easy. Let the advice be the actual k sets whose union is U.
- Claim: Vertex Cover ≤_p Set Cover
 - > Given an instance of vertex cover with graph G = (V, E) and integer k, create the following set cover instance
 - \circ Set U = E
 - \circ For each $v \in V$, S contains a set S_v of all the edges incident on v
 - \circ Selecting k set whose union is U = selecting k vertices such that union of their incident edges covers all edges
 - Hence, the two problems obviously have the same answer

Polynomial-Time Reductions

• We did not prove "the first NP-completeness" result

- Theorem: Exact 3SAT is NP-complete
 - We need to prove this without using any other "known NPcomplete" problem
 - We want to directly show that every problem in NP can be reduced to Exact 3SAT
- We will first reduce any NP problem to SAT, and then reduce SAT to Exact 3SAT

- We're not going to prove it in this class, but the key idea is as follows
 - \rightarrow If a problem is in NP, then \exists Turing machine T(x, y) which
 - \circ takes as input a problem instance x and an advice y of size p(|x|)
 - \circ verifies in q(|x|) time whether x is a YES instance
 - both p and q are polynomials
 - > x is a YES instance iff $\exists y \ T(x,y) = ACCEPT$

NOT IN SYLLABUS

- x is a YES instance iff $\exists y \ T(x,y) = ACCEPT$
 - > We need to convert $\exists y \ T(x,y) = ACCEPT$ into whether a SAT formula φ is satisfiable
- Recall that a Turing machine T consists of a memory tape, a head pointer, a state, and a transition function
- What describes T at any given step of its computation?
 - What is written in each cell of its memory tape?
 - Which cell of the tape is the read/write head currently pointing to?
 - What state is the Turing machine in?

NOT IN SYLLABUS

- x is a YES instance iff $\exists y \ T(x,y) = ACCEPT$
 - > We need to convert $\exists y \ T(x,y) = ACCEPT$ into $\exists z \ \varphi(z) = TRUE$, where z consists of Boolean variables and φ is a SAT formula

Variables:

- > $T_{i,j,k}$ = True if machine's tape cell i contains symbol j at step k of the computation
- > $H_{i,k}$ = True if the machine's read/write head is at tape cell i at step k of the computation
- $>Q_{q,k}$ = True if machine is in state q at step k of the computation
- \blacktriangleright Cell index i and computation step k only need to be polynomially large as T works in polynomial time

NOT IN SYLLABUS

- x is a YES instance iff $\exists y \ T(x,y) = ACCEPT$
 - > We need to convert $\exists y \ T(x,y) = ACCEPT$ into $\exists z \ \varphi(z) = TRUE$, where z consists of Boolean variables and φ is a SAT formula

Clauses:

- Express how the variables must be related using the transition function
- > Express that the Turing machine must reach the state ACCEPT at some step of the computation
- This establishes that SAT is NP-complete.
- Next: SAT \leq_p Exact 3SAT.

- Claim: SAT \leq_p Exact 3SAT
 - ightarrow Take an instance $\varphi = \mathcal{C}_1 \wedge \mathcal{C}_2 \wedge \cdots$ of SAT
 - > Replace each clause with multiple clauses with exactly 3 literals each
 - > For a clause with one literal, $C = \ell_1$:
 - \circ Add two variables z_1, z_2 , and replace C with four clauses

$$(\ell_1 \lor z_1 \lor z_2) \land (\ell_1 \lor \bar{z}_1 \lor z_2) \land (\ell_1 \lor z_1 \lor \bar{z}_2) \land (\ell_1 \lor \bar{z}_1 \lor \bar{z}_2)$$

- \circ Verify that this is logically equivalent to ℓ_1
- > For a clause with two literals, $C = (\ell_1 \lor \ell_2)$:
 - \circ Add variable z_1 and replace it with the following:

$$(\ell_1 \vee \ell_2 \vee z_1) \wedge (\ell_1 \vee \ell_2 \vee \bar{z}_1)$$

 \circ Verify that this is logically equal to $(\ell_1 \lor \ell_2)$

- Claim: SAT \leq_p Exact 3SAT
 - > For a clause with three literals, $C = \ell_1 \vee \ell_2 \vee \ell_3$:
 - o Perfect. No need to do anything!
 - > For a clause with 4 or more literals, $C = (\ell_1 \lor \ell_2 \lor \cdots \lor \ell_k)$:
 - o Add variables $z_1, z_2, ..., z_{k-3}$ and replace it with:

$$(\ell_1 \vee \ell_2 \vee z_1) \wedge (\ell_3 \vee \bar{z}_1 \vee z_2) \wedge (\ell_4 \vee \bar{z}_2 \vee z_3) \wedge \cdots \\ \wedge (\ell_{k-2} \vee \bar{z}_{k-4} \vee z_{k-3}) \wedge (\ell_{k-1} \vee \ell_k \vee \bar{z}_{k-3})$$

- o Check:
 - If any ℓ_i is TRUE, then there exists an assignment of z variables to make this TRUE
 - If all ℓ_i are FALSE, then no assignment of z variables will make this TRUE