Linear Algebra Notes Gilbert Strang

sriharshamoparthy

April 2024

Chapter-6 Eigenvalues and Eigenvectors

- An eigenvector x lies along the same line as Ax: $Ax = \lambda x$. The eigenvalues is λ
- If $Ax = \lambda x$ then $A^2x = \lambda^2 x$ and $A^{-1}x = \lambda^{-1}x$ and $(A + cI)x = (\lambda + c)x$: the same x
- If $Ax = \lambda x$ then $(A \lambda I)$ is singular and $det(A = \lambda I) = 0$. :n eignevalues
- Check $\lambda's$ by $det(A) = (\lambda_1)(\lambda_2)...(\lambda_n)$ and diagonal sum or trace $a_{11} + a_{22}...a_{nn} = \text{sum of } \lambda's$
- Projections have $\lambda = 1$ and 0. Reflections have 1 and -1. Rotations have $e^{i\theta}$ and $e^{-i\theta}$: complex!

Diagonalizing matrix

- The columns of $AX = X\Lambda$ are $Ax_k = \lambda_k x_k$. The eigenvalue matrix Λ is diagonal
- n independent eigenvectors in X diagonalize A $A = X\Lambda X^{-1}$ and $\Lambda = X^{-1}AX$
- The eigenvector matrix X also diagonalizes all powers of A^k : $A^k = X\Lambda^k X^{-1}$
- Solve $u_{k+1} = Au_k$ by $u_k = A^k u_0 = X\Lambda^k X^{-1} u_0 = c_1(\lambda_1)^k x_1 + ... + c_n(\lambda_n)^k x_n$
- No equal eigenvalues \Longrightarrow X is invertible and diagonalizable Equal eigenvalues \Longrightarrow A might have too few independent eignevectors. Then X^{-1} fails
- Every matrix $C = B^{-1}AB$ has the same eigenvalues of A. Then C is similar to A

Symmetric Matrices

- A symmetric matrix S has n real eigenvalues λ_i and n orthonormal eignevectors $q_1...q_n$
- Every real symmetric matrix S can be diagonalized: $S = Q\Lambda Q^{-1} = Q\Lambda Q^T$
- The number of positive eigenvalues of S equals the number of positive pivots
- Antisymmetric matrices $A=-A^T$ have imaginary $\lambda's$ and orthonormal q's

Positive Definite Matrices

- Symmetric S: all eigenvalues $> 0 \iff$ all pivots $> 0 \iff$ all upper left determinants > 0
- The matrix S is then positive definite. Then energy test $x^T S x > 0$ for all vectors $x \neq 0$
- One more test for positive definitenes is $S = A^T A$ with independent columns of A
- Positive Semi definiteness S allows $\lambda = 0$ pivot=0 and determinant=0 and energy $x^T S x = 0$
- The equations $x^T S x = 1$ gives an ellipse in \mathbb{R}^n when S is symmetric positive definite.

Chapter-5 Determinants

- The determinant of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is ad bc
- Row exchange reverse signs PA = bc-ad = det(A)
- Elimination EA = $\begin{bmatrix} a & b \\ 0 & d \frac{c}{a}b \end{bmatrix}$ = product of pivots = det A
- $det(AB) = det(A) det(B) and det(A^T) = det(A)$
- Minor is the determinant of sub matrix produced by closing ith row and jth column M_{ij}
- Cofactor of $a_{ij}=(-1)^{i+j}M_{ij}$ and det $A=a_{i1}C_{i1}+...+a_{in}C_{in}$

Inverse

- $A^{-1} = C^T/detA (A^{-1})_{ij} = cofactor C_{ji} divided by detA$
- Cramer's rule computes $x = A^{-1}b$ from $x_j = \det(A \text{ with column j changed to b}) / \det A$
- Area of parallelogram = |ad bc| if four corners are (0,0),(a,b),(c,d) and (a+b,c+d)
- The cross product w = u * v is $det \begin{bmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$

Chapter-4 Orthogonality

- Orthogonal vectors have $v^T w = 0$. Then $||v||^2 + ||w||^2 = ||v + w||^2 = ||v w||^2$
- Subspaces V and W are orthogonal when $v^T w = 0$ for every v in V and every w in W
- The row space of A is orthogonal to nullspace. The column space is orthogonal to $N(A^T)$
- One pair of dimensions add to r + (n-r) = n. The other pair r + (m-r) = m
- Row space and nullspace are orthogonal complements. Every x in \mathbb{R}^n splits into $x_{row} + x_{null}$
- Suppose a space S has dimension d. Then every basis for S consists of d vectors
- If d vectors in S are independent, they span S. If d vectors span S, they are independent

Projections

- The projection of a vector b onto the line through a is the closest point $p = a(a^Tb/a^Ta)$
- The error e = b p is perpendicular to a. Right triangle bpe has $||p||^2 + ||e||^2 = ||b||^2$
- The projection of b onto a subspace S is the closest vector p in S; b-p orthogonal to S
- A^TA is invertible (and symmetric) only if A has independent columns $N(A^TA) = N(A)$
- Then the projection of b onto the column space of A is the vector $p = A(A^TA)^{-1}A^Tb$
- The projection matrix onto C(A) is $P = A(A^TA)^{-1}A^T$. It has p = Pb and $P^2 = P = P^T$

Least Squares Approximations

- Solve $A^T A \hat{x} = A^T b$ gives the projection $p = A \hat{x}$ of b onto the column space of A
- When Ax = b has no solution, \hat{x} is the "least squares solution": $||b A\hat{x}||^2 = minimum$
- Setting partial derivatives of $E = ||Ax b||^2$ to zero $\frac{\partial E}{\partial x_i} = 0$ also produces $A^T A \hat{x} = A^T b$
- To fit points $(t_1, b_1), ..., (t_m, b_m)$ by a straight line, A has columns (1,...) and $(t_1,...,t_m)$
- In that case A^TA is the 2 by 2 matrix $\begin{bmatrix} m & \sum t_i \\ \sum t_i & \sum t_i^2 \end{bmatrix}$ and A^Tb is the vector $\begin{bmatrix} \sum b_i \\ \sum t_i b_i \end{bmatrix}$

Orthonormal Bases and Gram-Scmidt

- The columns $q_1, ..., q_n$ are orthonormal if $q_i^T q_j = \begin{cases} 0 & \textit{for } i \neq j \\ 1 & \textit{for } i = j \end{cases}$
- If Q is also square, then $QQ^T=I$ and $Q^T=Q^{-1}$. Q is an "orthonormal matrix"
- The least squares solution to Qx = b is $\hat{x} = Q^T b$. Projection of b: $p = QQ^T b = Pb$
- The Gram-Schmidt process takes independent a_i to orthonormal q_i . Start with $q_1 = a_1/||a_1||$
- $q_i = (a_i projection p_i)/||a_i p_i||$; projection $p_i = (a_i^T q_i)q_1 + ... + (a_i^T q_{i-1})q_{i-1}$
- Each a_i will be a combination of q_1 to q_i . Then A = QR; orthogonal Q and traiangular R

Chapter-3 Vector spaces and subspaces

- The standard n-dimensional space Rⁿ contains all real columns vectors with n components
- If v and w are in a vector space S, every combination cv + dw must be in S
- The "vectors" in S can be matrices or functions of x. The 1-point space Z consists of x=0
- A subspace of R^n is a vector space inside R^n

Ex

The line y=3x inside R^2

- The column space of A contains all combinations of the columns of A: a subspace of R^m
- The column space contains all the vectors Ax. So Ax= b is solvable when b is in C(A)

Nullspace

- The nullspace N(A) in Rⁿ contains all solutions x to Ax=0.
 This includes x=0
- Elimination (from A to U to R) does not change the nullspace; N(A) = N(U) = N(R)
- The reduced row echelon form R = rref(A) has all pivots=1, with zeros above and below
- If column j of R is free (no pivot), there is a "special solution" to Ax=0 with x_i = 1
- Number of pivots = number of nonzero rows in R = rank r. There are n-r free columns
- Every matrix with m < n has nonzero solutions to Ax=0 in its nullspace

Solution to Ax=b

- Complete solution to Ax=b: $x = (\text{one particular solution } x_p) + (\text{any } x_n \text{ in the nullspace})$
- Ax=b and Rx=d are solvable only when all zero rows of R have zeros in d
- When Rx=d is solvable, only very particular solution to x_p has all free variables equal to zero
- A has full column rank r=n when its nullspace N(A) = zero vector : no free variables
- A has full row rank r= m when its column space C(A) is R^m:
 Ax=b is always solvable

```
r=m=n Square, Invertible 1 Perfect r=m < n Short and Wide \infty More variable r=n < m Tall and Thin 0 or 1 More equation r < min(m,n) Not full rank 0 or \infty 2 same eq b1=b2 or
```

Table: Caption

Independence

- Independent columns of A: The only solution to Ax=0 is x=0.
 The nullspace is Z
- Independent vectors: The only zero combination $c_1v_1 + ... + c_kv_k$ has all c's =0
- A matrix with m < n has dependent columns; At least n-m free variable /special columns
- The vectors $v_1, ..., v_k$ span the space S if S = all combinations of the v's
- The vectors $v_1, ..., v_k$ are basis for S if they are independent and they span S
- The dimension of a space S is the number of vectors in every basis for S
- If A is 4 by 4 and invertible, its columns are basis for R^4 . The dimension of R^4 is 4

Dimensions of Four Subspaces

- The column space C(A) and the row space $C(A^T)$ both have dimension r (rank of A)
- The nullspace N(A) has dimension of n-r. The left nullspace $N(A^T)$ has dimension m-r, left mean $A^Ty=0$
- Elimination produces bases for the row space and nullspace of A. They are same as for R
- Elimination often changes the column space and left nullspace (but dimensions don't change)
- Rank one matrices $A = uv^T = \text{column times row}$; C(A) has basis u and $C(A^T)$ has basis v

Chapter-2 Solving Linear Equations

- The column picture of Ax=b: a combination of n columns of A produces the vector b
- This is a vector equation $Ax = x_1a_1 + ... + x_na_n = b$: the columns of A are $a_1, ..., a_n$
- (AB)C = A(BC) , $A^{-1}A = AA^{-1} = I$, A must have n (non zero pivots)
- Ax=0 \rightarrow x = 0 is the only solution then A is invertible, $(AB)^{-1}=B^{-1}A^{-1}$, Gauss Jordan [A I] to [I A^{-1}]
- A = LU factorization (lower triangular)(upper triangular)
- $(AB)^T = B^T A^T$, the dot product $x.y = x^T y$, the outer product xy^T
- The idea behind A^T is that $Ax.y = (Ax)^T y = x^T A^T y = x^T (A^T y) = x.(A^T y)$
- A symmetric matrix has $S^T = S$ (and the product $A^T A$ is always symmetric)
- A orthogonal matrix has $Q^T = Q^{-1}$. The columns of Q are orthonormal unit vectors

Sample frame title

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".