Неравенства вида |A| < |B|

Решая неравенство вида |A| < |B| (знак неравенства тут может быть любым), удобно действовать следующим образом: коль скоро обе части неравенства неотрицательны, можно возвести неравенство в квадрат:

$$|A| < |B| \Leftrightarrow A^2 < B^2 \Leftrightarrow A^2 - B^2 < 0 \Leftrightarrow (A-B)(A+B) < 0.$$

Последнее неравенство решается, например, методом интервалов.

Задача 10. ($M\Gamma Y$, экономич. ϕ -т, 2001) Решить неравенство

$$|x^2 + 10x + 16| \ge |x^2 - 16|$$
.

РЕШЕНИЕ. Данное неравенство равносильно неравенству

$$(x^2 + 10x + 16)^2 \ge (x^2 - 16)^2 \Leftrightarrow (10x + 32)(2x^2 + 10x) \ge 0 \Leftrightarrow (x + \frac{16}{5})x(x+5) \ge 0.$$

Дальнейшее элементарно.

Otbet: $\left[-5; -\frac{16}{5} \right] \cup [0; +\infty).$

5 Задачи

Во всех задачах по умолчанию требуется решить неравенство.

Геометрический смысл модуля

1. a)
$$|x - 6| \le 4$$
; 6) $|2x + 3| > 11$.

a) $[2;10]; 6) (-\infty; -7) \cup (4; +\infty)$

2. $(M\Gamma Y, \ \phi$ изический ϕ -т, 1996) $-1 < |x^2 - 7| < 29$.

(9:9-)

3. $(M\Gamma Y, UCAA, 2007) |x+3| \cdot (|x-1|-3) \le 0.$

 $[\mathbb{4};\mathbb{2}-]\cup\{\mathbb{E}-\}$

4. (*MГУ*, *МШЭ*, *2007*)

$$\left| \frac{x}{10} - \frac{1}{5} \right| \geqslant \left| \frac{x}{4} - \frac{1}{2} \right|.$$

7

Замена переменной

5. (МГУ, географич. ф-т, 1997)

$$\frac{|x-1|+10}{4|x-1|+3} > 2.$$

 $\left(\frac{11}{7};\frac{\epsilon}{7}\right)$

6. (МГУ, ф-т почвоведения, 1998)

$$\frac{1}{|x+1|-1} \geqslant \frac{1}{|x+1|-2} \, .$$

 $(1;0) \cup (2-;\varepsilon-)$

7. (МГУ, физический ф-т, 2004)

$$\frac{|x-1|}{1-\frac{6}{|x-1|}} < -1.$$

 $(7;8) \cup (1-;3-)$

8. (MΓY, ΦHM, 2004)

$$|3x+1|+2+\frac{3}{|3x+1|-2} \le \frac{1}{|3x+1|+2}$$
.

 $\left(\frac{1}{8}; \frac{2-\overline{8}}{8}\right) \cup \left(\frac{1}{8}; \frac{1}{8}\right) \cup \left(\frac{1}{8}; \frac{1}{8}\right)$

9. $(M\Gamma Y, \text{ reorpa} \text{ fur. } \text{ fi-m}, 1987) \quad x^2 + 2|x| < 8.$

(-2;2)

10. $(M\Gamma Y, \phi - m \text{ noveosedenus}, 2003)$

$$\frac{3x^2}{2} - |x| \geqslant 0.$$

 $\left(\infty + ; \frac{2}{\varepsilon}\right] \cup \{0\} \cup \left[\frac{2}{\varepsilon} - ; \infty - \right)$

11. a)
$$x^2 + 2x - |x+1| > 5$$
; 6) $x^2 - 4x + 8 - 5|x-2| \le 0$.

[$0;\xi$] \cup [$1;\xi$] ($0;(\infty+;\xi)$) (0

Перебор промежутков

12. $(M\Gamma Y, \text{ геологич. } \text{\mathfrak{g}-m}, \text{ 2005}) \quad (|x|-1) (2x^2+x-1) \leqslant 0.$

 $\left[1;\frac{1}{2}\right]\cup\{1-\}$

13. (МГУ, геологич. ф-т, 2006)

$$\frac{x^2 - 9}{|x| - 3} \cdot (x + 4) \geqslant 0.$$

 $(\infty+;\xi)\cup(\xi;\xi-)\cup(\xi-;k-]$

14. (*MΓY*, *UCAA*, 1998)

$$\frac{3|x|-11}{x-3} > \frac{3x+14}{6-x} \,.$$

 $(\infty+;3)\cup(\xi;2)\cup(\zeta;2-)$

$$\frac{x|x|+1}{x-2}+1\geqslant x.$$

 $(\infty+;2)\cup [\frac{1}{8};\infty-)$

16. (МГУ, геологич. ф-т, 2004)

$$\frac{x-2}{|x-2|} \leqslant 4 - x^2.$$

 $\left[2;\overline{6} \right]$

17. (МГУ, химический ф-т, 2007)

$$\frac{x^2 + 4x + 4}{2x + 12} \leqslant 1 - \frac{\sqrt{x^2 + 8x + 16}}{x + 4}.$$

 $\boxed{\{\Sigma-\}\cup\left(\mathbb{A}-;\overline{6}\sqrt{2}-\right]\cup(\partial-;\infty-)}$

18. (*MΓY*, *ΦHM*, 2003)

$$\frac{4x}{|x-2|-1} \geqslant 3.$$

 $(\infty + ; \varepsilon) \cup (1; \frac{\varepsilon}{7}]$

19. (МГУ, геологич. ф-т, 2003)

$$\frac{x-2}{|x+2|} + \frac{2x+5}{x+2} \leqslant 0.$$

 $[1-;2-) \cup (2-;7-]$

20. $(M\Gamma Y, MexMam, 1985)$

$$\frac{1}{x-1} + \frac{3}{|x|+1} \geqslant \frac{1}{|x|-1} \,.$$

 $(\infty + ; 1) \cup (1; 1-) \cup [\xi - ; \infty -)$

21. (ΜΓΥ, мехмат, 2004-07.2)

$$\frac{(x^2+x+1)^2-2|x^3+x^2+x|-3x^2}{10x^2-17x-6} \geqslant 0.$$

$$\boxed{(\infty; -2 - 2 - \sqrt{3}) \cup \left[\frac{3}{10}; -2 + \sqrt{3}\right] \cup \left[\overline{5} \vee -2 - 2 - \sqrt{3}\right]}$$

22. (МГУ, социологич. ф-т, 1999)

$$\frac{2|2-x|}{2-|x|} \leqslant |x-2|.$$

 $(\infty+;2) \cap \{0\} \cap (2-;\infty-)$

23. $(M\Gamma Y, \ \mathfrak{I})$ \mathfrak{I} \mathfrak{I}

 $[\frac{5}{2};0]$

24. (МГУ, ф-т гос. управления, 2003) $|2x+8| \ge 8 - |1-x|$.

 $(\infty+;\Gamma-]\cup[\delta-;\infty-)$

25. $(M\Gamma Y, BMK, 2003)$ $3|x+2|-4|x+1| \ge 2$.

 $[0; \frac{8}{7} -]$

26. (МГУ, филологич. ф-т, 1991)

$$\frac{|x+1|+|x-2|}{x+199} < 1.$$

 $(002;69-) \cup (001-;\infty-)$

27. (МГУ, геологич. ф-т, 1985)

$$\frac{|x-2|}{|x-1|-1} \geqslant 1.$$

 $(\infty+;2) \cup (0;\infty-)$

28. (MГУ, ИСАА, 1992)

$$\frac{|x+3|-1}{4-2|x+4|} \geqslant -1.$$

 $(\infty; -2) \cup (2-; -3) \cup (8-; \infty)$

29. (МГУ, ф-т психологии, 1979)

$$\frac{3}{|x+3|-1} \geqslant |x+2|.$$

 $\boxed{\left[\overline{5} + 2 + 2 - ;2 - \right) \cup (4 - ;3 -]}$

30. (МГУ, химический ф-т, 2000) |x + |1 - x|| > 3.

 $(\infty + : \tau)$

31. (МГУ, геологич. ф-т, 1998)

$$\left| \frac{x^2}{2} + x - \frac{1}{\sqrt{2}} \right| - 3x + 3\frac{\sqrt{2}}{2} < \frac{3x^2}{2} - \left| \frac{x^2}{2} + x - \sqrt{2} \right|.$$

$$\boxed{\left(\infty+;\overline{I+\frac{\overline{C}\sqrt{4}}{\epsilon}}\sqrt{+I-}\right)\cup\left(\overline{I+\frac{\overline{C}\sqrt{4}}{\epsilon}}\sqrt{-I-;\infty-}\right)}$$

$$\frac{20 - 4|x|}{|x^2 + 11x + 21| - 3} \leqslant 1.$$

$$\boxed{\left(\infty + ; \frac{1}{2} \frac{21}{5} \right] \cup (2 - ; 5 -) \cup [4 - ; 8 -) \cup (6 - ; \infty -)}$$

Равносильные переходы

33.
$$(@\Phi u \exists mex >, 2017, 9) \quad x^2 - 2x + 1 - |x^3 - 1| - 2(x^2 + x + 1)^2 \ge 0.$$

 $\left[\frac{1}{2}-;I-\right]$

34. (MГУ, мехмат, 2000-03.1)

$$\frac{|x-4|-|x-1|}{|x-3|-|x-2|} < \frac{|x-3|+|x-2|}{|x-4|}.$$

 $(7; 4) \cup (4; 5)$

35. $(M\Gamma Y, \text{ геологич. } \phi\text{-m}, 1998) \quad (x^2 + 5x - 6) \cdot |x + 4|^{-1} < 0.$

 $(1;4-)\cup(4-;3-)$

36. $(M\Gamma Y, \ \phi$ илологич. ϕ - $m, \ 2006)$

$$\frac{5-4x}{|x-2|} \leqslant |2-x|.$$

 $(\infty + ;2) \cup (2;1] \cup [1-;\infty -)$

37. (*ΜΓУ*, *ΒШБ*, 2004)

$$\frac{x+1}{|x-1|} \geqslant 1.$$

 $(\infty+;1) \cup (1;0]$

38. (МГУ, географич. ф-т, 2003)

$$\frac{6}{|x|} \geqslant 7 + x.$$

 $\left[\frac{7-\overline{57}\sqrt{}}{2};0\right)\cup(0;1-]\cup[3-;\infty-)$

39. (*MΓY*, *BMK*, 1998)

$$2x > \frac{5x+3}{|x+2|} \,.$$

 $\boxed{\left(\infty+;\frac{\varepsilon}{2}\right)\cup\left(1-;2-\right)\cup\left(2-;\frac{\overline{57}\sqrt{+9}}{4}-\right)}$

40. (МГУ, биологич. ф-т, 1999)

$$\frac{3}{|x-1|} \geqslant 2x + 5.$$

 $\left[\frac{\varepsilon - \overline{\varepsilon 7} \vee}{\hbar} ; I\right) \cup \left(I ; \frac{1}{2}\right] \cup [\Omega - ; \infty -)\right]$

$$\frac{1}{x+1} + \frac{1}{|x|} \geqslant 2.$$

$$\left[\frac{1}{\overline{\varsigma \backslash }};0\right) \cup (0;1-)$$

42. (МГУ, геологич. ф-т, 2002)

$$\frac{x+1}{|2-x|} + \frac{x+1}{x-5} \leqslant 0.$$

$$\left(\overline{3;\frac{7}{2}}\right]\cup[\underline{1-;\infty-)}$$

43. (МГУ, геологич. ф-т, 2007)

$$|x - 12| \leqslant \frac{x}{12 - x}.$$

(21;6]

44. $(@\Phi u \exists mex >, 2017, 9) |x^3 - 2x^2 + 2| \ge 2 - 3x.$

$$(\infty+;0] \cup \left[\frac{1}{2}(\infty+;0)\right]$$

45. $(M\Gamma Y, \phi u s u v e c \kappa u \dot{u} \phi - m, 1998) |x^2 + 2x - 7| < 2x.$

$$(\overline{7}\sqrt{11}\sqrt{11})$$

46. $(M\Gamma Y, \ \phi u s u v e c \kappa u \ddot{u} \ \phi - m, \ 2003) \ |x^2 + 3x| + x^2 - 2 \geqslant 0.$

$$\left(\infty + \frac{1}{2}\right] \cap \left[\frac{1}{2} + \infty - \right)$$

47. $||x^3 - x - 1| - 5| \ge x^3 + x + 8.$

$$\left[\overline{9}\sqrt{-\infty}\right]$$

48. $(M\Gamma Y, BMK, 2000) ||x^2 + 3x - 8| - x^2| \ge 8 - x.$

$$(\infty+; \rlap{$\rlap{$\rlap{$}$}}) \cup [0; \hskip{1pt} \hbox{$\rlap{$}$} -] \cup [\rlap{$\rlap{$}$} -; \infty -)$$

49. $(M\Gamma Y, \phi - m \ глобальных процессов, 2006)$

$$\frac{|x^2 + x - 12|}{x - 3} \geqslant 1.$$

 $(\infty + : \varepsilon)$

50. (МГУ, ф-т почвоведения, 2005) $|x-1| \le |x|$.

 $\left(\infty + \frac{1}{2}\right]$

51. (*Mock. mamem. perama, 2001, 8*) |x + 2000| < |x - 2001|.

 $\left(\frac{z}{1} : \infty -\right)$

52. (МГУ, экономич. ф-т, 2001) $|x^2 - 8x + 15| \le |15 - x^2|$.

53. (МГУ, химический ф-т, 2001)

$$\frac{1}{|x-1|} > \frac{1}{|x+1|} \,.$$

 $(\infty+;1)\cup(1;0)$

54. $(M\Gamma Y, \text{ биологич. } \text{\mathfrak{g}-m, 1998}) \quad |x^2 + 3x| + |x + 5| \leqslant x^2 + 4x + 9.$

 $(\infty+;I-]\cup[2-;7-]$

55. («Покори Воробъёвы горы!», 2006) $|x+3| - |x^2 + x - 2| \ge 1$.

 $[2;0] \cup \{2-\}$

56. $(M\Gamma Y, \text{ мехмат}, 2008) ||1 - x^2| - |x^2 - 3x + 2|| \ge 3|x - 1|.$

 $(\infty+;2]\cup\{1\}\cup[1-;\infty-)$

57. («Покори Воробъёвы горы!», 2012, 10-11)

$$||2 + x - x^2| - |x + 1|| \ge |x^2 - 2x - 3|.$$

 $(\infty+\,;\!2]\cup\{1-\}$

58. ($M\Gamma Y$, мехмат, 1999-05.3) Найти все x, при которых хотя бы одно из двух выражений

$$|x-3| (|x-5|-|x-3|) - 6x$$
 и $|x| (|x|-|x-8|) + 24$

неположительно, а его модуль не меньше модуля другого.

[3;5]