Special unipotent representations of real classical groups and theta correspondence

Ma, Jia-Jun

(joint with Dan Barbasch, Binyong Sun and Chengbo Zhu)

School of Mathematical Sciences Shanghai Jiao Tong University

2021, Jan 1st

Classical groups and special unipotent representations

	G	G	\mathbf{G}^\vee	
D_n	O(p, 2n - p)	$\mathrm{O}(2n,\mathbb{C})$	$\mathrm{O}(2n,\mathbb{C})$	D_n
C_n	$\mathrm{Sp}(2n,\mathbb{R})$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n
B_n	$\mathrm{O}(p, 2n + 1 - p)$	$O(2n+1,\mathbb{C})$	$\mathrm{Sp}(2n,\mathbb{C})$	C_n
\widetilde{C}_n	$\mathrm{Mp}(2n,\mathbb{R})$	$\mathrm{Sp}(2n,\mathbb{C})$	$\mathrm{Sp}(2n,\mathbb{C})$	C_n
$\overline{D_n}$	$O^*(n)$	$SO(2n, \mathbb{C})$	$\mathrm{SO}(2n,\mathbb{C})$	D_n
C_n	$\mathrm{Sp}(p,q)$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n

$$\mathbf{Nil}(\mathbf{G}^\vee) := \{ \text{ nilpotent oribt in } \mathbf{G}^\vee \, \}$$

Theorem (Barbasch-M.-Sun-Zhu)

Arthur-Barbasch-Vogan's conjecture on special unipotent repn. holds: All elements in $\mathrm{Unip}_{\check{O}}(\mathit{G})$ are *unitarizable*.

Barbasch-Vogan's definition of unipotent representation

nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

$$\leadsto \phi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \ \big(\mathsf{Jacobson\text{-}Morozov}\big)$$

$$\rightsquigarrow$$
 an infinitesimal character $\frac{1}{2}d\phi(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \leftrightarrow \chi_{\mathcal{O}^{\vee}}$

- \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}}$ with inf. char. $\chi_{\check{\mathcal{O}}}$
- *Definition* (Barbasch-Vogan):

An irreducible admissible G-representation is called unipotent if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

■ *Theorem* (Barbasch-Vogan):

An irr. G-module has inf. char. $\chi_{\check{\mathcal{O}}}$ is uninpotent \iff

associated variety of
$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \overline{\mathcal{O}}$$

Here $\mathcal O$ is the Lusztig-Spaltenstein-Barbasch-Vogan dual of $\mathcal O$.

Conjecture

- Conjecture: Unip $\check{o}(G)$ consists of unitary representations.
- Question: How to construct elements in $\mathrm{Unip}_{\check{\mathcal{O}}}(G)$?
- Question: How many elements are there in $\mathrm{Unip}_{\check{\mathcal{O}}}(G)$?

Nilpotent orbits with "good/bad parity"

■ Bad parity (must occurs with even multiplicity in $\check{\mathcal{O}}$):

$$\begin{cases} \text{even number,} & \text{when } \mathbf{G}^{\vee} \text{ is type } B, D \\ \text{odd number,} & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}$$

lacktriangle $\check{\mathcal{O}}$ has "good parity" if $\check{\mathcal{O}}$ only contains

$$\begin{cases} \text{odd rows} & \text{when } \mathbf{G}^{\vee} \text{ is type } B, D \\ \text{even rows} & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}$$

Example of good parity:

Reduction to the "good parity"

- Consider $G = \operatorname{Sp}(2n, \mathbb{R})$.
- lacktriangle $\check{\mathcal{O}}$ decompose into two parts $\check{\mathcal{O}}_g$ (good parity) and $\check{\mathcal{O}}_b$ (bad parity).
- Assume $\check{\mathcal{O}}_b=\{r_1,r_1,\cdots,r_k,r_k\}$, $\left|\check{\mathcal{O}}_b\right|=2n_1$ and $\left|\check{\mathcal{O}}_g\right|=2n_0$ Theorem (Let $\check{\mathcal{O}}_b'=\{\,r_1,\cdots,r_k\,\}\in\mathrm{GL}(2n_1,\mathbb{R})$.)

$$\begin{array}{ccc} \operatorname{Unip}_{\check{\mathcal{O}}_b'}(\operatorname{GL}(2n_1,\mathbb{R})) \times \operatorname{Unip}_{\check{\mathcal{O}}_g}(\operatorname{Sp}(2n_0,\mathbb{R})) & \longrightarrow & \operatorname{Unip}_{\check{\mathcal{O}}}(\operatorname{Sp}(2n,\mathbb{R})) \\ \\ (\pi_1,\pi_0) & \mapsto & \operatorname{Ind} \underset{\operatorname{GL}(2n_1,\mathbb{R}) \times \operatorname{Sp}(2n_0,\mathbb{R})}{\pi_1 \otimes \pi_0} \\ \end{array}$$

$$\operatorname{Unip}_{\check{\mathcal{O}}_b'}(\operatorname{GL}(2n_1,\mathbb{R})) = \left\{ \left. \operatorname{Ind} \underset{\operatorname{GL}(r_1) \times \cdots \times \operatorname{GL}(r_k)}{\operatorname{GL}(r_1) \times \cdots \times \operatorname{GL}(r_k)} \right| \epsilon_1, \cdots, \epsilon_k \in \mathbb{Z}/2\mathbb{Z} \right\}$$

- We assume $\check{\mathcal{O}}$ has good parity from now on.
- Use *theta correspondence* to construct $\operatorname{Unip}_{\tilde{\mathcal{O}}_a}(G)$.

Construct unipotent representations by theta lifting

- $\mathbf{G} = \operatorname{Sp}(2n, \mathbb{C}), \mathbf{G}^{\vee} = \operatorname{SO}(2n+1, \mathbb{C}).$
- Good parity orbit $\check{\mathcal{O}} \in \mathbf{Nil}^{gp}(\mathfrak{g}^{\vee}) \subset \mathbf{Nil}(\mathfrak{g}^{\vee})$ is an orbit satisfying

$$\check{\mathcal{O}} = (R_{2a} \geq R_{2a-1} \geq \cdots \geq R_0 > 0) \quad \text{all } R_i \text{ are odd}$$

- Quasi-distinguished: $R_{2i} > R_{2i-1}$ for $i = 1, \dots, a$.
- $\{ \text{good parity} \} \supset \{ \text{qusi-distinguished} \} \supset \{ \text{distinguished} \}$
- lacksquare infinitesimal character $\chi_{\check{\mathcal{O}}}:\mathcal{U}(\mathfrak{g})^\mathbf{G} \to \mathbb{C}$:

$$\chi_{\mathcal{O}} := (\rho(R_{2a}), \rho(R_{2a-1}), \cdots, \rho(R_0), 0, \cdots, 0)$$

where

$$\rho(R) := (1, 2, \cdots, \frac{R-1}{2}).$$

■ When $G = \operatorname{Sp}(p, q)$, $\operatorname{Unip}_{\check{\mathcal{O}}}(G) \neq \emptyset \iff \check{\mathcal{O}}$ is qusi-dist.

Descent of nilpotent orbits: $\mathbf{G} = \mathrm{Sp}(2n, \mathbb{C})$

- Take $\check{\mathcal{O}} \in \mathbf{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

 $\mathcal{O}_i^{\lor} = ext{removing the first rows of } \mathcal{O}_{i+1}^{\lor}.$

lacksquare A descent sequence for $\mathcal O$ is a sequence of real classical groups

$$G = G_{2a}$$
 G_{2a-1} \cdots G_0

- G_{2k} is a symplectic group allow $G_0 = \operatorname{Sp}(0,\mathbb{R}) =$ the trivial group.
- $G_{2k-1} = \mathcal{O}(p_k, q_k)$
- \mathcal{O}_i^{\vee} is nilpotent orbit of \mathbf{G}_i^{\vee}
- (G_i, G_{i-1}) forms a reductive dual pair.
- \mathcal{O}_i = delete the first column of \mathcal{O}_{i+1} and may add one box back to the remaining longest column making the size correct.

Example of descent sequences

Construction of elements in $\mathrm{Unip}_{\check{\mathcal{O}}}(\mathit{G})$

- Let $\chi = \chi_{2a-1} \otimes \mathbf{1} \otimes \chi_{2a-3} \otimes \cdots \otimes \chi_1 \otimes \mathbf{1}$ be an 1-dim repn. of $G_{2a-1} \times G_{2a-2} \times \cdots \times G_0$.
- $\chi_i \in \{1, \text{sgn}^{+,-}, \text{sgn}^{-,+}, \text{det}\}$
- Define a smooth representation of $G = G_{2a}$ (the symplectic group).

$$\pi_{\chi} := (\omega_{G_{2a}, G_{2a-1}} \widehat{\otimes} \omega_{G_{2a-2}, G_{2a-3}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_1, G_0} \otimes \chi)_{G_{2a-1} \times G_{2a-2} \times \cdots \times G_0}$$

Theorem (Barbasch-M.-Sun-Zhu)

Let $\check{\mathcal{O}}^{\vee}$ be an orbit with good parity. Then

- $\pi_{\chi} = 0$ or
- π_{χ} is in $\mathrm{Unip}_{\mathcal{O}}(G)$ and unitarizable.
- Moreover,

$$\mathrm{Unip}_{\mathcal{O}^{\vee}}(G) = \{ \pi_{\chi} \mid \pi_{\chi} \neq 0 \}.$$

Example: Coincidences of theta lifting

Lift to $G=\mathrm{Sp}(6,\mathbb{R})$ from real forms of $\mathbf{G}=\mathrm{O}(4,\mathbb{C}).$ $\check{\mathcal{O}}=[3,3,1]$ and $\mathcal{O}=(3,3).$

$$\theta(sgn^{+,-})$$
 $\theta(sgn^{+,-})$
 $\theta(sgn^{-,+})$
 $\theta(sgn^{-,+})$
 $\theta(sgn^{-,+})$
 $\theta(sgn^{-,+})$
 $\theta(sgn^{-,+})$
 $\theta(sgn^{-,+})$
 $\theta(sgn^{-,+})$
 $\theta(sgn^{-,+})$
 $\theta(sgn^{-,+})$

Some comments

- Unitarity:
 - Estimate of matrix coefficients using the explicit realization of the Weil representations.
 - Work of **Li**, **He**, and an idea of **Harris-Li-Sun** showing the nonnegativity of a matrix coefficient integral.
- non-vanishing, and compute associated cycle:
 - Geometry: moment maps provide the upper bound.
 - Analysis: degenerate principal series force the lower bound.
 - Geometry meets Analysis: the equality.
- Exhaustion: Combinatorics (very recent breakthrough!)
- \blacksquare Corollary: (using [Gomez-Zhu]) The Whittaker cycle of π_χ equals to its Wavefront cycle.

Counting unipotent representations I

- $\check{\mathcal{O}} \in \mathbf{Nil}^{gp}(\mathbf{G}^{\vee})$ \leadsto special representation $\tau \leftrightarrow \mathcal{O}$ Springer/Lusztig left cell $\mathcal{C}_{\mathcal{O}} = \{ \tau_1, \cdots, \tau_{2^l} \}$ containing τ
- $\mathcal{K}_{\rho}(G)$: the Grothendieck group of finite length Harish-Chandra modules with infinitesimal character ρ .

$$\#\mathrm{Unip}_{\mathcal{O}^{\vee}}(G) = \sum_{\tau_i} [\tau_i : \mathcal{K}_{\rho}(G)]$$

lacksquare Example $G=\mathrm{Sp}(2n,\mathbb{R})$

$$\mathcal{K}_{\rho}(G) = \sum_{\substack{p,q,t,s,\\\sigma \in \widehat{S}_s}} \operatorname{Ind}_{S_t \times W_{2s} \times W_p \times W_q}^{W_n} [\operatorname{sgn} \otimes (\sigma \times \sigma) \otimes \mathbf{1} \otimes \mathbf{1}].$$

- RHS of blue part can be counted by $PBP(\check{\mathcal{O}})$.
- $LS(\mathcal{O}) \subset \mathcal{K}_{\mathcal{O}}(\mathbf{K})$: all local systems could be obtained by theta lifting.
- When $\mathcal{O}^{\vee} \in \mathbf{Nil}^{qd}(\mathfrak{g}^{\vee})$, $\# \mathrm{PBP}(\mathcal{O}) = \# \mathrm{AOD}(\mathcal{O}) = \# \mathrm{LS}(\mathcal{O})$

Counting unipotent representations II

- $ightharpoonup \operatorname{PBP}(\check{\mathcal{O}})$ is complicate.
- $LS(\check{\mathcal{O}})$ is also complicate.
- Proof of Exhaustion

Define a bijection (inductively)

$$\begin{split} \operatorname{PBP}(\check{\mathcal{O}}) &\longleftrightarrow \operatorname{Unip}_{\check{\mathcal{O}}}(G) \\ \downarrow & \qquad \qquad \downarrow \operatorname{associate \ cycle} \\ MYD(\check{\mathcal{O}}) &\longleftrightarrow \operatorname{LS}(\check{\mathcal{O}}) \end{split}$$

compatible with the theta lifting.

■ The injectivity of theta lifting is crucial!

Unipotent Arthur packet

- Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle j \rangle$.
- $\hbox{ Arthur's Arthur packet $\Pi_\psi^A(G)$:} \\ \hbox{ \{local components of automorphic representations\}} \\ \hbox{ They are unitary by definition!}$
- Unipotent Arthur parameter: $\psi|_{\mathbb{C}^{\times}}$ is trivial. Moeglin: $\pi_{\psi,\eta}$ is zero or multiplicity free $(\eta \in \operatorname{Irr}(\pi_1(Z_{\mathbf{G}^{\vee}}(\psi))))$. Warning: $\Pi_{\eta h}^A(G) \cap \Pi_{\eta h'}^A(G) \neq \emptyset$ in general.
- "Corollary":

$$\Pi_{\psi}^{A}(\mathit{G}) = \Pi_{\psi}^{ABV}(\mathit{G})$$

Question: How to describe $\pi_{\psi,\eta}$ explicitly?

Thank you for your attention!