

Method for producing liquid particles of a dispersed solution

Patent Number: DE3327137

Publication date: 1984-02-09

Inventor(s): AKIYAMA MASAMI (JP); HADA GENTARO (JP); NISHIMURA YOKO (JP)

Applicant(s): KONISHIROKU PHOTO IND (JP)

Requested Patent: DE3327137

Application Number: DE19833327137 19830727

Priority Number(s): JP19820135665 19820805

IPC Classification: B01F3/08; B01F5/06

EC Classification: B01F7/00G5, G03C1/95, G03F7/115, G03G9/10

Equivalents: JP59026129

Abstract

The invention relates to a device for the production of liquid particles of a dispersed solution, in which an internal cylinder (5) and an external cylinder (4) rotate relative to one another. This produces either gradual or stepwise changes of a shear load or shear stress to which a mixture of a dispersant and a dispersed

solution is subjected which flows through a gap between the internal and external cylinder (5, 4).

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 33 27 137 A 1

(51) Int. Cl. 3:
B 01 F 3/08
B 01 F 5/08

DE 33 27 137 A 1

(21) Aktenzeichen: P 33 27 137.2
(22) Anmeldetag: 27. 7. 83
(43) Offenlegungstag: 9. 2. 84

(30) Unionspriorität: (32) (33) (31)
05.08.82 JP P135665-82

(71) Anmelder:
Konishiroku Photo Industry Co., Ltd., Tokyo, JP

(74) Vertreter:
Henkel, G., Dr.phil., 8000 München; Pfenning, J.,
Dipl.-Ing., 1000 Berlin; Feiler, L., Dr.rer.nat.; Hänzel,
W., Dipl.-Ing., 8000 München; Meinig, K.,
Dipl.-Phys.; Butenschön, A., Dipl.-Ing. Dr.-Ing..
Pat.-Anw., 1000 Berlin

(72) Erfinder:
Nishimura, Yoko, Kunitachi, Tokyo, JP; Hada,
Gentaro, Hachioji, Tokyo, JP; Akiyama, Masami,
Hino, Tokyo, JP

(54) Verfahren zur Herstellung von flüssigen Teilchen einer dispergierten Lösung

Die Erfindung betrifft eine Vorrichtung zur Herstellung von flüssigen Teilchen einer dispergierten Lösung, wobei sich ein Innenzylinder (5) und ein Außenzylinder (4) relativ zueinander drehen. Dabei ändert sich eine Scherbelastung bzw. -beanspruchung, die auf ein einen Spalt zwischen Innen- und Außenzylinder (5, 4) durchströmendes Gemisch eines Dispersionsmittels mit einer dispergierten Lösung ausgeübt wird. (33 27 137)

F I G . 1

DE 33 27 137 A 1

1 Patentansprüche

5 1. Vorrichtung zur Herstellung von flüssigen Teilchen einer dispergierten Lösung, gekennzeichnet durch einen Innenzylinder (5) und einen Außenzylinder (4), die relativ zueinander drehbar sind und zwischen sich einen Spalt bzw. Zwischenraum festlegen, in welchem ein Gemisch aus einem Dispersionsmittel und einer (darin) dispergierten Lösung in einer Quetschströmung (plug-flow)führbar und dabei einer sich fortlaufend oder stufenweise allmählich ändernden Scherbelastung bzw. -beanspruchung unterwerfbar ist.

15 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Scherbelastung oder -beanspruchung zunimmt.

20 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Außenzylinder (4) vorrichtungsfest ist bzw. stillsteht.

25 4. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Spaltweite zwischen Innen- und Außenzylinder (5, 4) im Bereich von 0,1 - 10 mm liegt.

30 5. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Spaltweite zwischen Innen- und Außenzylinder (5, 4) im Bereich von 0,1 - 10 mm liegt.

30

- 2 -

1 Die Erfindung betrifft eine verbesserte Vorrichtung zur
Herstellung von flüssigen Teilchen einer dispergierten
Lösung in einem Dispersionsmittel.

5 Bei bisherigen Vorrichtungen dieser Art werden flüssige
Teilchen einer dispergierten Lösung durch Zugabe eines
Dispersionsmittels zu der zu dispergierenden Lösung
in einem zweckmäßigen Verhältnis in einem Lösungsbe-
hälter vermischt und das Gemisch mittels einer Disper-
giereinrichtung, etwa eines statischen Mischers, eines
10 Homogenisierapparats oder einer Kolloidmühle, bewegt
bzw. gerührt. Wenn bei solchen Vorrichtungen von Anfang
an eine starke Dispergierwirkung in kurzer Zeit auf das
Gemisch ausgeübt wird, so hat dies einen ungünstigen
15 (extreme) Einfluß auf die noch nicht vollständig zu
Teilchen umgeformte dispergierte Lösung, so daß deren
flüssige Teilchen eine weite Teilchengrößenverteilung
mit zahlreichen sehr kleinen Teilchen erhalten. Aus
diesem Grund erweist es sich als notwendig, die Kraft
20 der Dispergierwirkung zunächst schwach zu wählen und
dann allmählich zu vergrößern, um (damit) die Ent-
stehung sehr kleiner Teilchen zu verhindern und eine
enge Teilchengrößenverteilung zu erreichen. Zur Gewähr-
leistung dieser Ergebnisse muß der Dispergierungsvorgang
25 charakteristisch durchgeführt werden; dabei ist es jedoch
nötig, die Dispergierwirkung in den einzelnen Stufen
fortzusetzen, bis der Dispersionszustand ausreichend
gesättigt ist. Andernfalls würden sich kleine
Teilchen auf dieselbe Weise wie dann bilden, wenn eine
30 starke Dispergierwirkung von Anfang an ausgeübt wird,
was zu einer weiteren Teilchengrößenverteilung führt.
Die Erzielung einer gleichmäßigen Dispersion und einer
engen Teilchengrößenverteilung nimmt also viel Zeit
in Anspruch; außerdem ergibt sich dabei das Problem,
35 daß die Gewinnung der erforderlichen Menge dieser

3327137

- 3 -

1 flüssigen Teilchen in einem chargenweise arbeitenden
System schwierig ist.

5 Aufgabe der Erfindung ist damit die Schaffung einer ver-
besserten Vorrichtung zur Herstellung von flüssigen
Teilchen einer dispergierten Lösung unter Vermeidung
der vorstehend geschilderten Probleme und unter Gewähr-
leistung einer sehr engen Teilchengrößeverteilung.

10 Diese Aufgabe wird durch die in den beigefügten Patent-
ansprüchen gekennzeichneten Merkmale gelöst.

15 Die erfindungsgemäße Vorrichtung ist dadurch gekenn-
zeichnet, daß ein Innenzylinder und ein Außenzylinder
vorgesehen sind, die mit unterschiedlichen Drehzahlen
bzw. relativ zueinander drehbar sind, wobei eine auf
ein Gemisch aus einem Dispersionsmittel und einer
dispergierten Lösung, das unter Aufrechterhaltung einer
Quetschströmung (plug-flow) durch einen Spalt zwischen
20 Innen- und Außenzylinder strömt, ausgeübte Scherbe-
lastung oder -beanspruchung fortlaufend oder stufenweise
allmählich variiert wird, so daß eine gleichmäßige Dis-
persion der flüssigen Teilchen mit engerer Teilchen-
größeverteilung erzielt wird. Als Folge dieser
Eigenschaften können mit dieser Vorrichtung kontinuier-
25 lich flüssige Teilchen gleichmäßiger Teilchengröße aus
der dispergierten Lösung gewonnen werden.

30 Im folgenden sind bevorzugte Ausführungsformen der Er-
findung anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1 eine schematische Schnittansicht einer Vorrich-
tung gemäß einer Ausführungsform der Erfindung,

35 Fig. 2 bis 5 Teilschnittansichten anderer Ausführungs-
formen von Innen- und Außenzylinder der Vor-
richtung und

- 4 -

1 Fig. 6 eine graphische Darstellung der Beziehung
5 zwischen Gewicht und Teilchengröße.

Gemäß Fig. 1 werden ein Dispersionsmittel und eine zu dis-
5 persierende Lösung im zweckmäßigen Mischverhältnis
in einem Mischbehälter 1 gemischt. Die so gemischte
Lösung wird mittels einer Dispergiereinrichtung 2 so
dispergiert, daß sich Teilchen einer zweckmäßigen Größe
bilden. Bevorzugt besitzt das auf diese Weise herge-
10 stellte Dispersionsgemisch einen homogen gemischten
Zustand. Das Gemisch wird sodann mittels einer Pumpe 3
in dem Spalt zwischen einem Außenzyylinder 4 und einem
Innenzyylinder 5 über einen Einlaß 4a in einem unteren
Abschnitt kleinen Durchmessers der Vorrichtung einge-
15 führt. Im Außenzyylinder 4 wird der trömmelförmige Innen-
zyylinder 5 mittels einer Welle 5a in Drehung gesetzt.
Die Mischlösung tritt in einen Spalt an der Mantel-
fläche des Innenzyinders 5 über einen Spalt zwischen
seiner Unterseite und dem Außenzyylinder 4 ein, um
20 dann in einen Spalt (Zwischenraum) an der Oberseite
des Innenzyinders 5 einzutreten und über einen Auslaß
4b in einem oberen Abschnitt kleinen Durchmessers der
Vorrichtung aus dieser auszutreten, worauf das Gemisch
25 über ein Ventil 6 zu einem nicht dargestellten Sammel-
behälter überführt wird. Während dieses Vorgangs wirkt
auf die Mischlösung, die den Spalt unter der Unter-
seite des Innenzyinders 5 passiert, eine sich allmäh-
lich vergrößernde Scherbelastung bzw. -beanspruchung
aufgrund der Umfangsgeschwindigkeit des Innenzyinders
30 5 ein. Infolgedessen wird das Gemisch anfänglich keiner
übermäßigen Scherbeanspruchung unterworfen, so daß
aus der dispergierten Lösung unter Vermeidung der
Entstehung sehr kleiner Teilchen allmählich Teilchen
gebildet werden. Wenn die Lösung den Spalt an der
35 Mantelfläche des Innenzyinders 5 erreicht, wird sie

3327137

- 5 -

1 einer stabilen bzw. gleichbleibenden Scherbeanspruchung
unterworfen, weil die Umfangsgeschwindigkeit des Innen-
zylinders 5 in diesem Bereich konstant ist. Die Lösung
wird dabei vergleichmäßigt, wobei die Teilchen be-
5 züglich ihrer Größe an die vorher gebildeten kleinen
Teilchen angepaßt werden. Das den Spalt an der Mantel-
fläche des Innenzyllinders 5 passierende Gemisch wird
somit zu einer Flüssigkeit umgewandelt, die gleich-
mäßig große Teilchen der dispergierten Lösung enthält.
10 Der Dispersionszustand des Gemisches ändert sich nach
dem Durchgang durch den Spalt an der Mantelfläche des
Innenzyllinders 5 nicht, weil anschließend die durch
die Drehung des Innenzyllinders 5 ausgeübte Scherbe-
anspruchung abnimmt. Die flüssigen Teilchen der disper-
15 gierten Lösung in dem über das Ventil 6 ausgetragenen
Gemisch besitzen infolgedessen eine enge Teilchen-
größenverteilung. Außerdem kann mittels des Ventils 6
die Verweilzeit des Gemisches in der Vorrichtung
zwecks Einstellung der Teilchengrößenverteilung der
dispergierten flüssigen Teilchen gesteuert werden.
20

Bei der Ausführungsform gemäß Figur 2 ist der Innen-
zylinder 5 kreiselförmig ausgebildet, so daß im Spalt
zwischen seiner Kegelfläche und dem (konischen) Außen-
25 zylinder 4 eine sich allmählich erhöhende Scherbean-
spruchung auf das Gemisch ausgeübt wird. Mit dieser
Ausführungsform können ebenfalls dispergierte flüssige
Teilchen enger Teilchengrößenverteilung gewonnen werden.

30 Bei der Ausführungsform gemäß Figur 3 ist der Innen-
zylinder ähnlich einer abgestuften Riemenscheibe ausge-
bildet. Während die auf das Lösungsgemisch einwirkende
Scherbeanspruchung im Zwischenraum an der Mantelfläche
jeder Stufe konstant ist, wirkt in den radialen
35 Zwischenräumen (in Richtung auf den Außenumfang) jeder
Stufe eine allmählich ansteigende Scherbeanspruchung

3327137

- 6 -

1 auf das Lösungsgemisch ein.

Bei der Ausführungsform gemäß Figur 4 besitzt der Außenzyylinder 4 einen konstanten Innendurchmesser, während der Innenzyylinder 5 in Form einer konischen Trommel ausgebildet ist. Dabei verändert sich der Spalt bzw. Zwischenraum zwischen Außen- und Innenzyylinder, und das Lösungsgemisch strömt aus einem Bereich eines weiteren Spalts in einen engeren Spalt ein. Im Verlauf der Strömung des Lösungsgemisches vergrößert sich die Umfangsgeschwindigkeit des Innenzyinders 5 und verkleinert sich die Weite des vom Gemisch durchströmten Spalts, so daß sich die Strömungsgeschwindigkeit des Gemisches erhöht und damit die auf dieses ausgeübte Scherbeanspruchung allmählich ansteigt.

Im Gegensatz zu Figur 4 veranschaulicht Figur 5 eine Ausführungsform, bei welcher sich der Innendurchmesser des Außenzyinders 4 konisch bzw. kegelförmig ändert, während der Innenzyylinder 5 die Form einer Trommel gleichmäßigen Durchmessers besitzt. Während bei dieser Ausführungsform die Umfangsgeschwindigkeit des Innenzyinders 5 konstant ist, verengt sich der Spalt im Strömungsverlauf des Lösungsgemisches. Infolgedessen erhöht sich die Strömungsgeschwindigkeit bei allmählicher Zunahme der auf die Lösung ausgeübten Scherbeanspruchung.

Bei den vorstehend beschriebenen Ausführungsformen wird somit ein Lösungsgemisch in der erfundungsgemäßen Vorrichtung einer sich allmählich oder fortlaufend ändernden Scherbeanspruchung unterworfen, so daß dispergierte flüssige Teilchen einer engen Teilchengrößenverteilung kontinuierlich hergestellt werden können. Bei den beschriebenen Ausführungsformen liegen die Spaltbreiten zwischen Innen- und Außenzyylinder vorzugsweise in der Größenordnung von 0,1 bis 10mm.

1 Die erfindungsgemäße Vorrichtung eignet sich insbesondere für die Herstellung von Tonerteilchen für elektrophotographische Zwecke sowie Mattiermittelteilchen für photographische Filme und dergleichen. Ein aus gleichmäßig
5 großen Teilchen bestehender Toner bzw. ein Mattiermittel kann aus einer Lösung von Bestandteilen des Toners oder Mattiermittels, wie Kohlenstoff usw., und eines Polymerisations-Anspringmittels in einem monomeren Kunstharz sowie einem durch Eintragen eines Dispersionsstabilisators
10 in Wasser hergestellten Dispersionsmittels und durch Polymerisieren und Aushärten der flüssigen Teilchen der dispergierten Lösung durch Erwärmen eines Lösungsgemisches in einem Auffang- oder Sämmelbehälter oder Erwärmen des durch das Ventil 6 strömenden Lösungsgemisches
15 gewonnen werden.

Im folgenden ist die Erfindung anhand eines Beispiels und eines Vergleichsbeispiels näher erläutert.

20 Beispiel

Die Erzeugung dispergierter flüssiger Teilchen erfolgt mittels einer Lösung, die durch Zugabe einer zweckmäßigen Menge von Benzoylperoxid als Polymerisationskatalysator zu einem Styrolmonomeren zubereitet worden ist, und eines
25 Dispersionsmittels, das durch Zugabe einer zweckmäßigen Menge eines Polyvinylalkohols und/oder von Natrium-dodecylbenzolsulfonat als Dispersionsstabilisator zu destilliertem Wasser zubereitet worden ist. Das Verhältnis von Lösung zu Dispersionsmittel beträgt 3:7.
30 Die Lösung wird im Mischbehälter der Vorrichtung gemäß Figur 1 in Form von Teilchen einer Größe von etwa 200 µm im Dispersionsmittel vordispersiert. Das vordispersierte Lösungsgemisch wird mit einer Strömungs- oder Durchsatzmenge von 1 l/min der Vorrichtung zugeführt, deren Innen-
35 zylinder mit 2500/min umläuft. Die über das Ventil (6) austretenden dispergierten flüssigen Teilchen besitzen eine sehr gleichmäßige Teilchengröße

- 8 -

1 von etwa 20 μm . Aus diesem Lösungsgemisch kann ein Pulver einer sehr engen Teilchengrößenverteilung gewonnen werden.

5 Vergleichsbeispiel

Eine Lösung aus einer zweckmäßigen Menge Benzoylperoxid als Polymerisationskatalysator in 300 ml Styrolmonomeres und ein Dispersionsmittel aus einer zweckmäßigen Menge Polyvinylalkohol und/oder Natriumdodecylbenzolsulfonat 10 als Dispersionsstabilisator in 700 ml destilliertem Wassers werden in einen Flüssigkeitsbehälter eingebracht und mittels eines handelsüblichen Homogenisier-Strahlmischapparats (HOMO-JETTER) miteinander vermischt, wobei die Turbinendrehzahl des Mischapparats von anfänglich 15 1000/min in Schritten von 1000/min stufenweise bis zu einer Enddrehzahl von 4000/min erhöht wird. Jede Drehzahlstufe wird 20 Minuten lang eingehalten.

Die auf diese Weise hergestellten dispergierten flüssigen 20 Teilchen besitzen eine mittlere Teilchengröße von 20 μm .

Die Teilchengrößenverteilungen der nach dem erfindungsgemäßen Beispiel und dem Vergleichsbeispiel erhaltenen Teilchen sind in Figur 6 dargestellt. Wie aus Figur 6 25 hervorgeht, besitzen die mittels der erfindungsgemäßen Vorrichtung hergestellten dispergierten flüssigen Teilchen eine engere Teilchengrößenverteilung als beim Vergleichsbeispiel, bei dem die Scherbelastung bzw. -beanspruchung stufenweise geändert wurde.

30

-9-
Leerseite

THIS PAGE BLANK (USPTO)

- 10 -

3327137

F I G . 6

DEUTSCHE
PATENT- UND
MARKENBLATT

- 11 -

Nummer:
Int. Cl. 3:
Anmeldetag:
Offenlegungstag:

33 27 137
B 01 F 3/08
27. Juli 1983
9. Februar 1984

F I G. 1

F I G. 2

F I G. 3

F I G. 4

F I G. 5

