# Are Transformers Effective for Time Series Forecasting?

Ailing Zeng, Muxi Chen (2022)

Presenter: Jae-Hoon Kim and Yong-Won Seo

November 27, 2023

#### **Contents**

- 1. Time series forecasting
- 2. The Transformer models
- 3. LTSF-Linear model
- 4. Performance comparison
- 5. Forecasting with LTSF-Linear models

# 1. Time series forecasting

## Time series forecasting

ullet For time series containing C variables, given historical data

$$\mathcal{X} = \left\{X_1^t, \dots, X_C^t\right\}_{t=1}^L, \text{ where }$$

- L is the look-back window size.
- $X_i^t$  is the value of the  $i_{th}$  variate at the  $t_{th}$  time step.

## Time series forecasting

• The time series forecasting task is to predict the values

$$\hat{\mathcal{X}} = \left\{\hat{X_1^t}, \dots, \hat{X_C^t}
ight\}_{t=L+1}^{L+T}, ext{ where}$$

- *T* is the number of future steps.
- Two types of time series forecasting
  - IMS: Iterated multi-step forecasting
  - DMS: Direct multi-step forecasting

## **IMS** forecasting

- IMS forecasting learns a single step forecaster and iteratively applies it to obtain multi-step predictions.
- The general properties of IMS forecasting is that
  - have smaller variance.
  - have error accumulation effects.
- Thus, it is preferable
  - with a highly-accurate single-step forecaster.
  - when T is relatively small.

# IMS forecasting: Visualization



## **DMS** forecasting

- DMS forecasting directly optimizes the multi-step forecasting objective at once.
- It generates more accurate predictions when
  - obtaining an unbiased single-step forecasting model is hard.
  - T is relatively large.
- In long-term time series forecasting, DMS forecasting generally shows better performance
- Most of the existing transformer models improve their performances due to this strategy.

# **DMS** forecasting: Visualization



## 2. The Transformer models

## The Seq2Seq models

- The Transformer models are more advanced and efficient alternative to the traditional Seq2Seq models.
- The limitation of the traditional Seg2Seg models
  - fixed context vector dimension acts as a bottleneck
  - gradient vanishing problem in the context of long sequences



#### The Transformer models

- The Transformer models solved these problems using
  - Positional encoding techniques
  - Multi-head self attention mechanisms
- Become the most successful sequence modeling architecture demonstrating unparalleled performance
- Surge of Transformer-based solutions for time series analysis with these notable models: FED-former, Autoformer, Informer, · · ·

#### The Transformer models: Visualization



#### **Self-attention mechanism**

- Main working power of transformer models
- Extracting semantic correlations among elements in a long sequence
- Inevitable to have temporal information loss despite positional encoding techniques
- Especially serious for Time series data since
  - · Lack of semantics in the numerical data itself
  - The order plays the most crucial role

## 3. LTSF-Linear model

#### LTSF-Linear model

- The writer proposes the model
  - $\hat{X}_i = WX_i$ , where  $W \in \mathbb{R}^{T \times L}$  is a linear layer among the temporal axis.
- Two variants with two pre-processing methods: DLinear and NLinear models.



Figure 2. Illustration of the basic linear model.

#### **DLinear model**

- The combination of the decomposition scheme used in Autoformer and FEDformer.
- Using a moving average kernel, decompose raw data into
  - a trend component
  - a remainder (seasonal) component
- DLinear enhances the performance when there is a clear trend in the data



#### **NLinear model**

- Boost the performance when there is a distribution shift in the dataset by
  - 1. Normalizing input data by subtracting them by the last value
  - 2. The input goes through a linear layer
  - 3. The subtracted part is added back



Figure 5. Distribution of ETTh1, ETTh2, Electricity, and ILI dataset. A clear distribution shift between training and testing data can be observed in ETTh1, ETTh2, and ILI.

# 4. Experiments

## **Data description**

- The writer conducts experiments on nine widely-used real-world datasets, including ETT (Electricity Transformer Temperature), Traffic, Electricity, Weather, ILI, and Exchange rate.
- Detailed information such as the number of variables, timesteps and granularity is

| Datasets    | ETTh1&ETTh2 | ETTm1 &ETTm2 | Traffic | Electricity | Exchange-Rate | Weather | ILI   |
|-------------|-------------|--------------|---------|-------------|---------------|---------|-------|
| Variates    | 7           | 7            | 862     | 321         | 8             | 21      | 7     |
| Timesteps   | 17,420      | 69,680       | 17,544  | 26,304      | 7,588         | 52,696  | 966   |
| Granularity | 1hour       | 5min         | 1hour   | 1hour       | 1day          | 10min   | 1week |

Table 1. The statistics of the nine popular datasets for the LTSF problem.

## **Experiment settings**

- The writer compares the models
  - Linear methods: LTSF-Linear, NLinear, DLinear.
  - Transformers: FED-former, Autoformer, Informer, Pyraformer, and LogTrans.
  - Closest Repeat (Repeat): repeats the last value in the look-back window.
- The writer uses Mean Squared Error(MSE) and Mean Absolute Error(MAE) as the core metrics to compare performance.
- The writer uses various forecasting horizon  $T \in \{96, 192, 336, 720\}$

# Performances comparison

| Me       | thods | IMP.   | Lin   | ear*  | NLin  | ear*  | DLi   | near* | FEDf  | ormer | Autof | ormer | Info  | rmer  | Pyrafo | rmer* | Log   | Trans | Rep   | eat*  |
|----------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|
| Me       | etric | MSE    | MSE   | MAE   | MSE    | MAE   | MSE   | MAE   | MSE   | MAE   |
| Ţ.       | 96    | 27.40% | 0.140 | 0.237 | 0.141 | 0.237 | 0.140 | 0.237 | 0.193 | 0.308 | 0.201 | 0.317 | 0.274 | 0.368 | 0.386  | 0.449 | 0.258 | 0.357 | 1.588 | 0.946 |
| ctricity | 192   | 23.88% | 0.153 | 0.250 | 0.154 | 0.248 | 0.153 | 0.249 | 0.201 | 0.315 | 0.222 | 0.334 | 0.296 | 0.386 | 0.386  | 0.443 | 0.266 | 0.368 | 1.595 | 0.950 |
| ect      | 336   | 21.02% | 0.169 | 0.268 | 0.171 | 0.265 | 0.169 | 0.267 | 0.214 | 0.329 | 0.231 | 0.338 | 0.300 | 0.394 | 0.378  | 0.443 | 0.280 | 0.380 | 1.617 | 0.961 |
| Elec     | 720   | 17.47% | 0.203 | 0.301 | 0.210 | 0.297 | 0.203 | 0.301 | 0.246 | 0.355 | 0.254 | 0.361 | 0.373 | 0.439 | 0.376  | 0.445 | 0.283 | 0.376 | 1.647 | 0.975 |
| - Se     | 96    | 45.27% | 0.082 | 0.207 | 0.089 | 0.208 | 0.081 | 0.203 | 0.148 | 0.278 | 0.197 | 0.323 | 0.847 | 0.752 | 0.376  | 1.105 | 0.968 | 0.812 | 0.081 | 0.196 |
| xchange  | 192   | 42.06% | 0.167 | 0.304 | 0.180 | 0.300 | 0.157 | 0.293 | 0.271 | 0.380 | 0.300 | 0.369 | 1.204 | 0.895 | 1.748  | 1.151 | 1.040 | 0.851 | 0.167 | 0.289 |
| cch      | 336   | 33.69% | 0.328 | 0.432 | 0.331 | 0.415 | 0.305 | 0.414 | 0.460 | 0.500 | 0.509 | 0.524 | 1.672 | 1.036 | 1.874  | 1.172 | 1.659 | 1.081 | 0.305 | 0.396 |
| Ξ        | 720   | 46.19% | 0.964 | 0.750 | 1.033 | 0.780 | 0.643 | 0.601 | 1.195 | 0.841 | 1.447 | 0.941 | 2.478 | 1.310 | 1.943  | 1.206 | 1.941 | 1.127 | 0.823 | 0.681 |
|          | 96    | 30.15% | 0.410 | 0.282 | 0.410 | 0.279 | 0.410 | 0.282 | 0.587 | 0.366 | 0.613 | 0.388 | 0.719 | 0.391 | 2.085  | 0.468 | 0.684 | 0.384 | 2.723 | 1.079 |
| Fraffic  | 192   | 29.96% | 0.423 | 0.287 | 0.423 | 0.284 | 0.423 | 0.287 | 0.604 | 0.373 | 0.616 | 0.382 | 0.696 | 0.379 | 0.867  | 0.467 | 0.685 | 0.390 | 2.756 | 1.087 |
| Ira      | 336   | 29.95% | 0.436 | 0.295 | 0.435 | 0.290 | 0.436 | 0.296 | 0.621 | 0.383 | 0.622 | 0.337 | 0.777 | 0.420 | 0.869  | 0.469 | 0.734 | 0.408 | 2.791 | 1.095 |
|          | 720   | 25.87% | 0.466 | 0.315 | 0.464 | 0.307 | 0.466 | 0.315 | 0.626 | 0.382 | 0.660 | 0.408 | 0.864 | 0.472 | 0.881  | 0.473 | 0.717 | 0.396 | 2.811 | 1.097 |
| - H      | 96    | 18.89% | 0.176 | 0.236 | 0.182 | 0.232 | 0.176 | 0.237 | 0.217 | 0.296 | 0.266 | 0.336 | 0.300 | 0.384 | 0.896  | 0.556 | 0.458 | 0.490 | 0.259 | 0.254 |
| Weather  | 192   | 21.01% | 0.218 | 0.276 | 0.225 | 0.269 | 0.220 | 0.282 | 0.276 | 0.336 | 0.307 | 0.367 | 0.598 | 0.544 | 0.622  | 0.624 | 0.658 | 0.589 | 0.309 | 0.292 |
| Ne.      | 336   | 22.71% | 0.262 | 0.312 | 0.271 | 0.301 | 0.265 | 0.319 | 0.339 | 0.380 | 0.359 | 0.395 | 0.578 | 0.523 | 0.739  | 0.753 | 0.797 | 0.652 | 0.377 | 0.338 |
| >        | 720   | 19.85% | 0.326 | 0.365 | 0.338 | 0.348 | 0.323 | 0.362 | 0.403 | 0.428 | 0.419 | 0.428 | 1.059 | 0.741 | 1.004  | 0.934 | 0.869 | 0.675 | 0.465 | 0.394 |
|          | 24    | 47.86% | 1.947 | 0.985 | 1.683 | 0.858 | 2.215 | 1.081 | 3.228 | 1.260 | 3.483 | 1.287 | 5.764 | 1.677 | 1.420  | 2.012 | 4.480 | 1.444 | 6.587 | 1.701 |
| 7        | 36    | 36.43% | 2.182 | 1.036 | 1.703 | 0.859 | 1.963 | 0.963 | 2.679 | 1.080 | 3.103 | 1.148 | 4.755 | 1.467 | 7.394  | 2.031 | 4.799 | 1.467 | 7.130 | 1.884 |
| =        | 48    | 34.43% | 2.256 | 1.060 | 1.719 | 0.884 | 2.130 | 1.024 | 2.622 | 1.078 | 2.669 | 1.085 | 4.763 | 1.469 | 7.551  | 2.057 | 4.800 | 1.468 | 6.575 | 1.798 |
|          | 60    | 34.33% | 2.390 | 1.104 | 1.819 | 0.917 | 2.368 | 1.096 | 2.857 | 1.157 | 2.770 | 1.125 | 5.264 | 1.564 | 7.662  | 2.100 | 5.278 | 1.560 | 5.893 | 1.677 |

# Performances comparison(Cond.)

|          | 06  | 0.0007 | 0.275 | 0.207 | 0.374 | 0.204 | 0.275 | 0.200 | 0.276 | 0.410 | 0.440 | 0.450 | 0.065 | 0.712 | 0.664 | 0.613 | 0.070 | 0.740 | 1.205 | 0.712 |
|----------|-----|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -        | 96  | 0.80%  | 0.375 | 0.397 | 0.374 | 0.394 | 0.375 | 0.399 | 0.376 | 0.419 | 0.449 | 0.459 | 0.865 | 0.713 | 0.664 | 0.612 | 0.878 | 0.740 | 1.295 | 0.713 |
| 년        | 192 | 3.57%  | 0.418 | 0.429 | 0.408 | 0.415 | 0.405 | 0.416 | 0.420 | 0.448 | 0.500 | 0.482 | 1.008 | 0.792 | 0.790 | 0.681 | 1.037 | 0.824 | 1.325 | 0.733 |
| (T)      | 336 | 6.54%  | 0.479 | 0.476 | 0.429 | 0.427 | 0.439 | 0.443 | 0.459 | 0.465 | 0.521 | 0.496 | 1.107 | 0.809 | 0.891 | 0.738 | 1.238 | 0.932 | 1.323 | 0.744 |
| _        | 720 | 13.04% | 0.624 | 0.592 | 0.440 | 0.453 | 0.472 | 0.490 | 0.506 | 0.507 | 0.514 | 0.512 | 1.181 | 0.865 | 0.963 | 0.782 | 1.135 | 0.852 | 1.339 | 0.756 |
| - 61     | 96  | 19.94% | 0.288 | 0.352 | 0.277 | 0.338 | 0.289 | 0.353 | 0.346 | 0.388 | 0.358 | 0.397 | 3.755 | 1.525 | 0.645 | 0.597 | 2.116 | 1.197 | 0.432 | 0.422 |
| 3        | 192 | 19.81% | 0.377 | 0.413 | 0.344 | 0.381 | 0.383 | 0.418 | 0.429 | 0.439 | 0.456 | 0.452 | 5.602 | 1.931 | 0.788 | 0.683 | 4.315 | 1.635 | 0.534 | 0.473 |
| <u> </u> | 336 | 25.93% | 0.452 | 0.461 | 0.357 | 0.400 | 0.448 | 0.465 | 0.496 | 0.487 | 0.482 | 0.486 | 4.721 | 1.835 | 0.907 | 0.747 | 1.124 | 1.604 | 0.591 | 0.508 |
| _        | 720 | 14.25% | 0.698 | 0.595 | 0.394 | 0.436 | 0.605 | 0.551 | 0.463 | 0.474 | 0.515 | 0.511 | 3.647 | 1.625 | 0.963 | 0.783 | 3.188 | 1.540 | 0.588 | 0.517 |
| _        | 96  | 21.10% | 0.308 | 0.352 | 0.306 | 0.348 | 0.299 | 0.343 | 0.379 | 0.419 | 0.505 | 0.475 | 0.672 | 0.571 | 0.543 | 0.510 | 0.600 | 0.546 | 1.214 | 0.665 |
| ع        | 192 | 21.36% | 0.340 | 0.369 | 0.349 | 0.375 | 0.335 | 0.365 | 0.426 | 0.441 | 0.553 | 0.496 | 0.795 | 0.669 | 0.557 | 0.537 | 0.837 | 0.700 | 1.261 | 0.690 |
| E        | 336 | 17.07% | 0.376 | 0.393 | 0.375 | 0.388 | 0.369 | 0.386 | 0.445 | 0.459 | 0.621 | 0.537 | 1.212 | 0.871 | 0.754 | 0.655 | 1.124 | 0.832 | 1.283 | 0.707 |
| -        | 720 | 21.73% | 0.440 | 0.435 | 0.433 | 0.422 | 0.425 | 0.421 | 0.543 | 0.490 | 0.671 | 0.561 | 1.166 | 0.823 | 0.908 | 0.724 | 1.153 | 0.820 | 1.319 | 0.729 |
| - 2      | 96  | 17.73% | 0.168 | 0.262 | 0.167 | 0.255 | 0.167 | 0.260 | 0.203 | 0.287 | 0.255 | 0.339 | 0.365 | 0.453 | 0.435 | 0.507 | 0.768 | 0.642 | 0.266 | 0.328 |
| Ē        | 192 | 17.84% | 0.232 | 0.308 | 0.221 | 0.293 | 0.224 | 0.303 | 0.269 | 0.328 | 0.281 | 0.340 | 0.533 | 0.563 | 0.730 | 0.673 | 0.989 | 0.757 | 0.340 | 0.371 |
| E        | 336 | 15.69% | 0.320 | 0.373 | 0.274 | 0.327 | 0.281 | 0.342 | 0.325 | 0.366 | 0.339 | 0.372 | 1.363 | 0.887 | 1.201 | 0.845 | 1.334 | 0.872 | 0.412 | 0.410 |
|          | 720 | 12.58% | 0.413 | 0.435 | 0.368 | 0.384 | 0.397 | 0.421 | 0.421 | 0.415 | 0.433 | 0.432 | 3.379 | 1.338 | 3.625 | 1.451 | 3.048 | 1.328 | 0.521 | 0.465 |

## Performances regarding look-back sizes

- A powerful TSF model with a strong temporal relation extraction capability should be able to achieve better results with larger look-back window sizes.
- Unlike Linear models, existing Transformer-based models' performance deteriorates or stays stable when the look-back window size increases.



# 5. Forecasting with LTSF-Linear models

## Data analysis

- Time series data sampled from an ARMA(1,1) model.
- Data provided in the midterm examination.
- Daily usage data of Seoul's public bike, TTareungyi, in Gwangjin-gu.
- Data on Won-Dollar exchange rates since the 1990s.

## **Data analysis**





# **Data analysis**





# ARMA(1,1)



|     | N 100 | N 200 | N 300 | D 100 | D 200 | D 300 | ARIMA |
|-----|-------|-------|-------|-------|-------|-------|-------|
| MSE | 4.357 | 4.352 | 4.635 | 2.764 | 2.754 | 2.727 | 2.638 |
| MAE | 1.592 | 1.665 | 1.729 | 1.291 | 1.268 | 1.298 | 1.251 |

### Midterm



|     | N 50   | N 100  | D 50   | D 100  | ARIMA  |
|-----|--------|--------|--------|--------|--------|
| MSE | 0.0181 | 0.0178 | 0.0111 | 0.0088 | 0.0133 |
| MAE | 0.1067 | 0.1043 | 0.0838 | 0.0726 | 0.0914 |

# **Bicycle**



|     | N 100   | N 200  | N 300   | D 100  | D 200  | D 300  | FARIMA |
|-----|---------|--------|---------|--------|--------|--------|--------|
| MSE | 10.8722 | 8.5861 | 10.7723 | 5.8166 | 5.4810 | 4.9605 | 6.4405 |
| MAE | 2.6724  | 2.2851 | 2.5849  | 1.9026 | 1.7908 | 1.6977 | 1.9932 |

# Exchange90



|     | L 100   | L 200   | L 300   | D 100    | D 200    | D 300    | FARIMA    |
|-----|---------|---------|---------|----------|----------|----------|-----------|
| MSE | 2382.25 | 2195.04 | 1544.35 | 60014.19 | 32784.19 | 19531.17 | 2181.0359 |
| MAE | 41.75   | 38.64   | 30.34   | 242.44   | 177.83   | 135.49   | 41.2548   |



"All models are wrong, but some are useful".

-George Box-