Introduction to Information Retrieval

- Scoring and Term Weighting
 - The Vector Space Model

Contents

- Parametric and zone indexes
- Ranked retrieval
- Term Weighting schemes
- Vector space scoring

Parametric and zone indexes

- Each document has, in addition to text, some "meta-data" in <u>fields</u> e.g.,
 - Language = French

Fields Format = pdf

- Subject = Physics etc.
- Date = Feb 2000
- A parametric search interface allows the user to combine a full-text query with selections on these field values e.g.,
 - language, date range, etc.

User view

▶ Figure 6.1 Parametric search. In this example we have a collection with fields allowing us to select publications by zones such as Author and fields such as Language.

Zones

- A zone is an identified region within a doc
 - E.g., <u>Title</u>, <u>Abstract</u>, <u>Bibliography</u>
- Contents of a zone are free text
 - Not a "finite" vocabulary
- Indexes for each zone allow queries like
 - find documents with merchant in the title and william in the author list and the phrase gentle rain in the body

Zone indexes – simple view

Term	Middae	·
ambidous	1	[
be	1	Ī
brurus	2	\longrightarrow
cagirol .	1	
CSSESS	2	
dd	1	
enacc	1	
hath	1	\rightarrow
I .	1	
l e	1	\longrightarrow
t	1	
julius .	1	
ki led	1	
le:	1	
me	1	
noble	1	\longrightarrow
60	1	
ta .	2	
old .	1	
you	1	L
WS E	2	[
with	1	\longrightarrow
		L

etc.

Title

Author

Body

Zone indexes – common view

► Figure 6.2 Basic zone index ; zones are encoded as extensions of dictionary entries.

▶ Figure 6.3 Zone index in which the zone is encoded in the postings rather than the dictionary.

Weighted zone scoring

- Given a Boolean query q and a document d, weighted zone scoring assigns to the pair (q, d) a score in the interval [0, 1],
 - by computing a linear combination of zone scores
 - where each zone of the document contributes a Boolean value.
- Specifically,
 - let there are L zones. Let $g1, \ldots, gL \in [0, 1]$ such that
 - let s be the Boolean score denoting a match (or absence thereof) between q and the ith zone.
 - Then, the weighted zone score is defined to be si

Example: Weighted zone scoring

- Query Q= shakespeare
- consider a collection in which each document has three zones: author, title and body
- Suppose we set g1 = 0.2, g2 = 0.3 and g3 = 0.5 where g1, g2 and g3 represents the author, title and body zone weights.
- If the term shakespeare appear in the title and body zones but not the author zone of a document, the score of this document would be
- **0.8**.

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language

Recall (Lecture 1): Binary termdocument incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
m ercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	O th ello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	1 0	0	0	0	0
Cleopatra	57	0	0	0	0	0
m ercy	2	0	3	5	5	1
worser	2	0	1	1	1	0
			•			

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the <u>bag of words</u> model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing querydocument match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not incr NB: frequency = count in IR term frequency.

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4, etc.
- Score for a document-query pair: sum over terms t in both q and d:
- score $=\sum_{t\in q\cap d} (1 + \log tf_{t,d})$
- The score is 0 if none of the query terms is present in the document.

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- We want a high weight for rare terms.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - df_t ≤ N
- We define the idf (inverse document frequency) of t by idf $_t = \log_{10} (N/df_t)$
 - We use log (N/df_t) instead of N/df_t to "dampen" the effect of idf.

Will turn out the base of the log is immaterial.

idf example, suppose N = 806791

term	df_t	idf _t
car	18,165	1.65
auto	6723	2.08
insurance	19,241	1.62
best	25,235	1.5

$$idf_{t} = log_{10} (N/df_{t})$$

There is one idf value for each term *t* in a collection.

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

tf - idf
$$= \log(1 + tf_{t,d}) \times \log_{10}(N / df_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the

Binary → count → tf-idf weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
m ercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf

Score for a document given a query

Score
$$(q, d) = \sum_{t \in q \cap d} \text{tf.idf}_{t, d}$$

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - •

The Vector Space Model for Scoring

- The set of documents in a collection may be viewed as a set of vectors in a vector space.
 - Terms are axes of the space
 - Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Vector Similarity

- How do we quantify the similarity between two documents in this vector space?
- A first attempt: the magnitude of the vector difference between two document vectors.
 - <u>Drawback</u>: two documents with very similar content can have a significant vector difference simply because one is much longer than the other.
- Solution to compensate for the effect of document length is to compute the cosine similarity.

Cosine similarity illustrated

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query, document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

cosine(document,document)

The dot product $\vec{x} \cdot \vec{y}$ of two vectors is defined as $\sum_{i=1}^{M} x_i y_i$.

The Euclidean length of d is defined to be $\sqrt{\sum_{i=1}^{M} \vec{V}_{i}^{2}(d)}$.

Cosine for length-normalized vectors

The effect of the denominator of Equation (2) is thus to length-normalize the vectors $\vec{V}(d_1)$ and $\vec{V}(d_2)$ to unit vectors $\vec{v}(d_1) = \vec{V}(d_1)/|\vec{V}(d_1)|$ and $\vec{v}(d_2) = \vec{V}(d_2)/|\vec{V}(d_2)|$.

Then we can rewrite the previous equation as:

$$sim(d_1, d_2) = \vec{v}(d_1) \cdot \vec{v}(d_2).$$
 (3)

Example: N = 1,000,000

Document: car insurance auto insurance

Query: best car insurance

DF	Term
5000	auto
50000	best
10000	car
1000	insurance

Example: N = 1,000,000

Document: car insurance auto insurance

Query: best car insurance

Term	Query					Document				Prod	
auto											
best											
car											
insurance											

Example: N = 1,000,000

Document: car insurance auto insurance

Query: best car insurance

Term			Que	гу		Document				Prod	
	tf- raw	tf- wt	df	idf	wt	n'lize	tf- raw	tf-wt	wt	n'lize	
auto	0	0	5000	2.3	0	0	1	1	2.3	0.47	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.53	1	1	2.0	0.41	0.22
insurance	1	1	1000	3.0	3.0	0.79	2	1.3	3.9	0.80	0.63

Query length =
$$\sqrt{0^2 + 1.3^2 + 2^2 + 3^2} \approx 3.8$$

Doc length =
$$\sqrt{2.3^2 + 0^2 + 2^2 + 3.9^2} \approx 4.9$$

Score =
$$0+0+0.22+0.63 = 0.85$$