## **Sabbir Ahmed**

**DATE:** May 10, 2018 **CMPE 320:** HW 09

- 1. Let X be a random variable with PDF  $f_X$ . Find the PDF of the random variable |X| in the following three cases.
  - (a) X is exponentially distributed with parameter  $\lambda$ .
  - **(b)** X is uniformly distributed in the interval [-1,2].
  - (c)  $f_X$  is a general PDF.
- **2**. Let *X* and *Y* be independent random variables, uniformly distributed in the interval [0,1]. Find the CDF and the PDF of |X-Y|.
- 3. Your driving time to work is between 30 and 45 minutes if the day is sunny, and between 40 and 60 minutes if the day is rainy, with all times being equally likely in each case. Assume that a day is sunny with probability 2/3 and rainy with probability 1/3.
  - (a) Find the PDF, the mean, and the variance of your driving time.
  - **(b)** On a given day your driving time was 45 minutes. What is the probability that this particular day was rainy?
  - (c) Your distance to work is 20 miles. What is the PDF, the mean, and the variance of your average speed (driving distance over driving time)?
- **4**. The random variables *X* and *Y* have the join PDF

$$f_{X,Y}(x,y) = \begin{cases} 2, & \text{if } x > 0 \text{ and } y > 0 \text{ and } x + y \le 1, \\ 0, & \text{otherwise} \end{cases}$$

Let *A* be the event  $\{Y \le 0.5\}$  and let *B* be the event  $\{Y > X\}$ .

(a) Calculate  $P(B \mid A)$ .

| (b) Calculate $f_{X Y}(x \mid 0.5)$ . Calculate also the conditional expectation and the conditional variance of $X$ , |
|------------------------------------------------------------------------------------------------------------------------|
| given that $Y = 0.5$ .                                                                                                 |
| (c) Calculate $f_{X B}(x)$ .                                                                                           |

- (d) Calculate E[XY].
- (e) Calculate the PDF of Y/X.
- 5. The random variables  $X_1, \ldots, X_n$  have common mean  $\mu$ , common variance  $\sigma^2$  and, furthermore,  $E[X_iX_j = c]$  for every pair of distinct i and j. Derive a formula for the variance  $X_1 + \ldots + X_n$ , in terms of  $\mu$ ,  $\sigma^2$ , c, and n.
- **6.** Consider n independent tosses of a die. Each toss has probability  $p_i$  of resulting in i. Let  $X_i$  be the number of tosses that result in i. Show that  $X_1$  and  $X_2$  are negatively correlated (i.e., a large number of ones suggests a smaller number of twos).
- 7. Let X = Y Z where Y and Z are nonnegative random variables such that YZ = 0.
  - (a) Show that  $cov(Y, Z) \le 0$ .
  - **(b)** Show that  $var(X) \ge var(Y) + var(Z)$ .
  - (c) Use the result of part (b) to show that

$$var(X) \ge var(\max\{0, X\}) + var(\max\{0, -X\})$$

- **8**. Consider two random variables *X* and *Y*. Assume for simplicity that they both have zero mean.
  - (a) Show that X and  $E[X \mid Y]$  are positively correlated.
  - (b) Show that the correlation coefficient of Y and  $E[X \mid Y]$  has the same sign as the correlation coefficient of X and Y.