PATENT SPECIFICATION

(11) 1 581 428

(21) Application No. 9860/78

(22) Filed 13 March 1978

(44) Complete Specification published 10 Dec. 1980

(51) INT CL3 CO7C 37/16 39/06

(52) Index at acceptance

5

10

15

20

25

30

C2C 220 227 22Y 269 27Y 30Y 365 36Y 618 633 662 776 AB

(72) Inventors BRUCE EUGENE LEACH and CHARLES MASTERSON STARKS

5

10

15

20

25

30

(54) ALKYLATION OF AROMATIC HYDROXY COMPOUNDS

(71) We, CONOCO INC. formerly Continental Oil Company, a corporation organized and existing under the laws of the State of Delaware, United States of America, located at 1000 South Pine Street, Ponca City, Oklahoma 74601, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to the liquid phase alkylation of hydroxy aromatic components to produce n-alkylated cresylic acids by contacting a cresylic acid with an n-alkanol. For example, this invention enables the production of n-hexyl resorcinol by direct alkylation of resorcinol under liquid phase conditions.

Many commercial applications exist for n-alkylated cresylics. For example, 4-n-hexyl resorcinol is an antiseptic and an anthelmintic. This particular compound is commonly prepared by condensing hexanoic acid with resorcinol and reducing the resulting ketone using a mercury-zinc amalgam. The prior art reaction is shown in Equation I.

$$\xrightarrow{\text{Zn-Hg}} \bigoplus_{\text{C}_{6}\text{H}_{13}}^{\text{OH}}$$

The condensation step encountered in the prior art is not exceedingly difficult, although a glass-lined reactor is normally required because of the zinc chloride involved. The zinc chloride can be regenerated and reused. The main problem with the prior art procedure arises from the reduction using a zinc-mercury amalgam because of mercury contamination problems. These contamination problems, combined with the exceedingly high cost of the zinc-mercury amalgam, contribute to the high cost of this 4-hexyl resorcinol.

It would therefore be distinctly advantageous to provide a process for the production of compounds such as n-hexyl resorcinol using a method which does not involve the expensive zinc-mercury amalgam with its attendant contamination problems nor the condensation in the presence of toxic zinc chloride, requiring glass-lined reactors and recovery of materials, and to produce primarily an nalkylated side chain. Previous attempts to directly alkylate resorcinol such as described in U.S. Patent 2,448,942, produced not n-hexyl resorcinol, but isohexyl resorcinol, which does not have the properties necessary to act as an antiseptic and anthelmintic in humans.

In one aspect our invention provides a method for the production of an alkylated phenolic product containing predominantly n-alkylated side chains which

purposes.

5

10

15

20

25

30

Hexenes 1-hexanol

Resorcinol

2-n-hexylresorcinol 4-n-hexylresorcinol Sec-hexylresorcinol

Dihexylresorcinols Non-Eluting Material

Monohexylether of Resorcinol

5

10

15

30

45

60

Example 3

In a 500 ml flask fitted with thermometer, mechanical stirrer, addition funnel, and a Dean-Stark trap, with attached condenser is placed 110 g of resorcinol and 71.4 g of 1-hexanol. The reaction mixture was heated at 160—200°C for 4 hours with no apparent reaction taking place. Alumina (15 g) was added and the mixture heated gradually to 255°C over a period of 4 hours, 1.8 ml of water having been produced. Hexanol was removed from the reaction by drawing off through the Dean-Stark trap to allow the temperature to reach 255°C. Refluxing was continued at 240—255°C with the reflux temperature being controlled by the periodic addition of hexanol (that which had been removed) back to the reaction mixture. This procedure was continued over a period of about 8 hours, during which time all of the original hexanol had been added back to the reaction mixture, and during which 16.7 ml of produced water had been collected in the Dean-Stark trap. The reaction mixture was analyzed at this point (using o-cresol as an external standard) and was found to have the following composition, as determined by area under a gas chromatograph curve.

	Area %	
	Area % 2.25	•
•	7.31	
	16.23	20
	3.37	
	1.93	
	18.93	
	1.82	
	8.89	25

39.27

A part of the crude reaction product (ca 90 g was taken up in 500 ml of diisopropyl ether and washed with one 300 ml portion of 1N sulfuric acid and then with five 300 ml portions of water. The combined aqueous phases were back-extracted with 100 ml of diisopropyl ether, and this was combined with the other organic phase. Isopropyl ether was mostly removed from the organic material on a rotary evaporator. The residue 142 g was charged to a 4-foot spinning band fractional distillation column and distilled, the results shown in Table 1.

•		TABLE 1		
35	Cut No.	b.p.	wt. g.	35
	1	50-71° 1 atm.	67.Ög	_
	2	48—138 @ 2 torr	9.6 g	
	3	142—162 @ 2 torr	9.1 g	
<u></u>	4	174—176 @ 2 torr	20.2 g	
40	5	176-219 @ 2 torr	8.3 g	40
	Residue		17.4 g	
	Trap		2.0 g	
	Loss and Ho	old-up —	8.8 g	

The individual cuts were analyzed by gas chromatography. Cut 1 was essentially pure diisopropyl ether with about 8 percent hexenes. The compositions of the other cuts are listed in Table 2.

TABLE 2 Analysis of Distillation Cuts

50	Component		Area % of Cut				50
		2	3	4	5	Grams	
	Hexanol	53.92	0.52			5.22	
	Resorcinol	31.62	38.98	0.52		6.58	
Mono-n-l	Mono-n-hexylethyl of resorcinol	3.10	24.70	2.58	0.99	3.15	
55	2-n-hexylresorcinol	0.11	7.05	4.05	1.18	1.56	55
	4-n-hexylresorcinol	0.10	3.47	84.62	14.17	18.60	•
	Sec-hexylresorcinols	_	0.54	5.47	10.61	2.03	
	Dihexylresorcinols	_		2.10	64.00	5.73	
	Others	11.15	24.74	0.66	9.05	_	

The isolated yield of 4-n-hexylresorcinol amounts to about 24 wt %.

4		1,581,428					4
	A portion of cut 4, 5 g, was re yellow platelets, m.p. 57°C (m.p. magnetic resonance spectrum of th of a known sample of 4-n-hexylres	of 4-n-hexylre le recrystallized	esorcinol	18 61	_). Ine	proton	
5		Example 4					5
10	The reaction of 1-hexanol with resorcinol over alumina was repeated, except that samples of the reaction mixture were removed at various conversion levels and analyzed. Thus, to a mixture of 110 g (1.0 mole) of resorcinol and 20 g of calcined powdered Catapals SB alumina, heated to 255°C, was added 102 g (1.0 mole) of 1-hexanol at such a rate as to maintain the temperature at 250—260°C (about 8—10 hours) with vigorous reflux. Samples of the reaction mixture were removed as follows:						10
	Described Times	ml of Water		c	ample		
	Reaction Time Hours	ml of Water Produced		3	No.		
15		7	•		1		15
	3, 5	10			2		
	7 10	14 18			3		
	14	22			5		
20	These samples were weighed external gas chromatography sta chromatography column progran Results of these analyses are liste	ndard) and and nmed from 100	alvzed o	n a 10':	×1/8" SI	E-30 gas	20
	•	TABLE 3					
25	Analysis of	Samples from	Example	: 5			25
			Percent,				
30	Component 1-Hexanol Resorcinol Light Unknowns Hexyl Resorcyl Ether 2-n-hexylresorcinol	1 14.48 46.77 2.57 4.66 1.63 9.61	2 6.44 28.03 2.67 4.12 1.59 16.87	3 6.42 19.40 2.12 4.19 2.04 20.74	4 12.97 9.68 2.42 3.46 1.64 18.81	5 3.57 4.83 1.13 3.31 2.82 15.86	30
	4-n-hexylresorcinol Sec-hexylresorcinols	3.26	0.76	3.18	*	1.71	
35	Di- & trihexylresorcinols	4.23	5.80	12.21	*	*	35
	Non-Eluting Material	12.79	33.72	29.70	51.02	66.77	
	* These components were not wel material figure.						
40	The data of Table 3 allows where weight percent selective hexylresorcinolx 100/wt % of all unreacted resorcinol, and hexyl to the second secon	ity is defined components ex	as the xcept wa	e perce ater, un	reacted	4 - n -	40
	amounted resolution, and then,		2 Sa	ample N 3	o. 4	5	
45	Approximate Wt % Conversion	. 1	2	3	4	,	45
40	of Resorcinol	42.6	57.8	66.9	81.5	90.8	
	Wt % Selectivity to 4-n-Hexylresorcinol	14.6	27.5	29.6	25.5	18.0	
		Enamala 6					
50	The reaction of Example 3 autoclave wherein the pressure m the reactor by a pump, which, i	ay be maintain n turn, is conti	ed at 75 rolled by	psig. 1-h / a temp	exanoi i erature	actuated	50
55	switch, so that as the temperatur reflux temperature drops to just b water removed via the trap, the the pump is again actuated and n concentration of hexanol in the	e reaches 250°C. As elow 250°C. As emperature rise nore hexanol ac	c, nexant the hexages to just and the hexages to the hexages to just and the hexages to hexages the h	anol is contained anol is contained above 3 this way	mped in onsumed 50°C w	d, and the	55

5

10

15

20

25

30

35

40

45

Example 6

4-n-octyl resorcinol is prepared by heating 1-octanol with resorcinol in the presence of 20 wt % alumina. The 1-octanol is added at such a rate that the temperature is maintained at 275°C, with continuous removal of the water formed.

Example 7 (comparative)

5

10

15

The reaction of 1-hexanol and resorcinol, as conducted in Example 3, was repeated except that the alumina used was Alcoa F1 alumina, (derived from sodium aluminate) rather than Catapalo alumina. No 4-n-hexylresorcinol production was observed.

It will be apparent from the process described herein that a much improved process is provided for the preparation of n-alkylated cresylic acids. The use of toxic, expensive, and corrosive materials such as zinc chloride for condensation is avoided as is the use of an expensive and polluting zinc-mercury amalgam. The process of the instant invention consists of but a single step and can be carried out in a continuous reactor to produce a mixture containing the products desired.

While certain embodiments and details have been shown for the purpose of illustrating this invention, it will be apparent to those skilled in the art that various changes and modifications may be made herein without departing from the scope

of the invention.

WHAT WE CLAIM IS:—

20

25

30

40

45

1. A method for the production of an alkylated phenolic product containing predominantly n-alkylated side chains which comprises directly alkylating a phenolic compound selected from resorcinol, phenol, isomerized xylenols, hydroquinone, o-cresol, p-cresol and m-cresol with an n-alkanol having from 4 to 10 carbon atoms, at pressures up to 20 atmospheres and temperatures of from 200° to 400°C in the presence of an alumina catalyst derived from aluminum alkoxide hydrolysis.

2. A method according to claim 1, wherein the reaction mixture in addition contains water at a level of from 0.1 to 1 mole per mole of said phenolic

3. A method as claimed in claim 2, wherein from 0.4 to 0.6 mole of water is employed per mole of said phenolic compound.

4. A method as claimed in any of the preceding claims, wherein the reaction is

carried out in a continuous reactor.

35 5. A method as claimed in any of the preceding claims, wherein said phenolic compound is resorcinol and said n-alkanol is n-hexanol.

6. A method as claimed in any of the preceding claims, wherein the reaction is

carried out at temperatures of from 230 to 300°C.

7. A method according to claim 1, wherein the reaction temperature is from 230 to 300°C and wherein water is continuously removed from the reaction as it is

8. A method as claimed in claim 7, wherein the n-alkanol is n-hexanol. 9. A method according to claim 1, substantially as described herein.

10. A method according to claim 1, substantially as described herein with reference to any one of Examples 1—6.

11. Alkylated phenolic products when prepared by the process of any of the preceding claims.

> For the Applicants, FRANK B. DEHN & CO., Imperial House, 15—19 Kingsway, London, WC2B 6UZ.

Printed for Her Majesty's Stationery Office, by the Courier Press, Learnington Spa. 1980 Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.