CSC212 Tutorial #3 Performance Analysis-2

Question 1: Find the total number of primitive operations and the Big Oh notation of the following methods:

	Statements	S/E	Freq.	Total
1	for (int i = 0; i < n-5; i++)	1	n-4	n-4
2	for (int j = n; j >= 2; j)	1	n(n-5)	n²-5n
3	S.O.P(i);	1	(n-5)(n-1)	n²-6n+5
	Total Operations	$2n^2 - 10n + 1$		
	Big Oh	$O(n^2)$		

	Statements	S/E	Freq.	Total
1	for (int i = 0; i < n; i++)	1	n+1	n+1
2	for (int j = 0; j <= i; j++)	1	$\frac{n^2}{2} + \frac{3n}{2}$	$\frac{n^2}{2} + \frac{3n}{2}$
3	S.O.P(i);	1	$\frac{n^2}{2} + \frac{n}{2}$	$\frac{n^2}{2} + \frac{n}{2}$
	Total Operations	$n^2 + 3n + 1$		
	Big Oh	$O(n^2)$		

Line 2:

$$\sum_{i=0}^{n-1} i + 2 = \sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} 2$$

$$= \frac{n-1(n-1+1)}{2} + 2n$$

$$= \frac{n^2-n}{2} + \frac{4n}{2}$$

$$= \frac{n^2}{2} + \frac{3n}{2}$$
Line 3:

$$\sum_{i=0}^{n-1} i + 1 = \sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} 1$$

$$= \frac{n-1(n-1+1)}{2} + n$$

$$= \frac{n^2-n}{2} + \frac{2n}{2}$$

$$= \frac{n^2}{2} + \frac{n}{2}$$

Question 2: Find the simplest g(n), c and n_0 for the following f(n) s.t: $f(n) \le cg(n)$, $\forall n \ge n_0$.

$$5 {\rm n}^3 \log {\rm n} + 20 {\rm n}^2 - 4 {\rm n} + 3 \le 5 n^3 log n + 20 n^3 log n + 3 n^3 log n$$

$$\le 28 n^3 log n$$

$$C = 28$$

$$g(n) = n^3 log n$$

$$n_0 = 2$$

Question 3: Find the big Oh notation for the following functions:

$$2^{4logn+2} + n^3logn$$

$$= 2^{4logn} * 2^2 + n^3logn$$

$$= n^4 * 4 + n^3logn$$

$$= 4n^4 + n^3logn$$

$$O(n^4)$$