Verification of Programmable Logic Controllers for Critical Infrastructures

McKenzy Heavlin CS 584 Spring 2025

Background & Problem Statement

Programmable Logic Controllers (PLCs) are computers specifically designed to **manage** and run industrial plant processes reliably and repeatedly.

PLC programs must **operate safely** and **adhere to strict safety principles** assigned by system operators.

Goal: verify simple PLC controller code in a simplified system.

Problem Setting: Water Treatment Facility

- Sensor's monitor the thresholds, maximums, and chemical input rate
- Valve actuators enable opening/closing of all input and output valves

 Focus on water thresholds, flow rates first; then add in chemical dosing if time allows

Converting to a Simple Automaton

Explored adding an 'Idle' state where the 'iv=0' and 'ov=0' but ran into C2E2 difficulties

C2E2 Conversion – Sanity Check

Most simple automaton with one variable, two modes

C2E2 Conversion – Sanity Check

Requirement Li		
Requirement	Status	Result
high_level	Verified	Safe
low_level	Verified*	Expired

C2E2 Conversion – Adding in Valves

Updated Modes: 3 variables

C2E2 Conversion – Adding in Valves

- Requirement List

 Requirement Status Result

 level_w_valves Simulated Safe

 valve_states Simulated Safe
- Need initial states for the valves and a new unsafe set
- Checking that 'iv' and 'ov' aren't open at the same time

C2E2 Simulation

"Sequence of initial states are drawn randomly from the starting set. Once the simulation is computed, the result is checked to see if any guards are hit"

- C2E2 User Manual

C2E2 Conversion – Adding in Valves

- | Requirement List | Requirement | Status | Result |
 | level_w_valves | Simulated | Safe |
 | valve_states | Simulated | Safe |
- Need initial states for the valves and a new unsafe set
- Checking that 'iv' and 'ov' aren't open at the same time

Requirement List

Requirement Status Result

level_w_valves Verified Safe

valve_states Verified Safe

C2E2 Conversion – Adding in Flow Rates

Update model to reflect variable flow rates (5 vars)

C2E2 Conversion – Adding in Flow Rates

Update initial set and check a new condition

C2E2 Conversion – Adding in Flow Rates

The issue:

- Values quickly bypass the I < 1000 condition
- Appears to never make the transition from filling -> emptying
- Implies there is some error in the transition between modes which I have yet to debug
 - User manual not too helpful
 - ChatGPT suggested it may be an issue with the time step granularity and how C2E2 progresses – not too convinced of this though

Challenges

- Interaction between transition guards/actions and mode invariants
- Software would buffer for a while if too many variables were added at once
- C2E2 documentation was not very helpful—lots of trial and error
- Poor warning/error messages made debugging a pain

Challenges

- Interaction between transition guards/actions and mode invariants
- Software would buffer for a while if too many variables were added at once
- C2E2 documentation was not very helpful—lots of trial and error
- Poor warning/error messages made debugging a pain

Next Steps

- Finish integrating the flow rate variables with a possible third 'Idle' state
- Add a timer variable to ensure that the valves don't change state too frequently
- Attempt to add chemical dosing [if time allows]

Questions?