Chapitre 4

Intégration numérique

M.~Lahlou¹

¹Département de Mathématiques Faculté des Sciences Semlalia Mar<u>ra</u>kech

17/05/2021

Plan

- 1. Généralités
- 2. Les formules simples
- 2.1 Formule de rectangle
- 2.2 Formule de trapèze
- 2.3 Formule de Simpson
- 3. Les formules composées
- 3.1 Principe
- 3.2 Formule composée de trapèzes
- 3.3 Formule composée de Simpson
- 4. Stabilité numérique

- 2. Les formules simples
- 3. Les formules composées
- 4. Stabilité numérique

• On peut calculer **exactement** des intégrales comme

$$\int_{0}^{2} x^{3} dx, \int_{-\pi}^{\pi} \cos(x) dx, \cdots$$

- Mais impossible de calculer exactement beaucoup d'autres comme par exemple : $\int_{0}^{1} e^{\cos(x^2)} dx.$
- Méthodes d'approximation numérique des intégrales.

Formules basées sur l'interpolation:

- f une fonction continue sur [a, b] (a < b), connue aux points $a \le x_0 < x_1 < \cdots < x_n \le b$.
- Pour approcher $I(f) = \int_a^b f(x) dx$, on détermine le polynôme d'interpolation p_n par rapport aux x_i ,

et on remplace I(f) par $\int_a^b p_n(x)dx$

$$I(f) \approx I(p_n) = \int_a^b \sum_{i=0}^n f(x_i) L_i(x) dx$$
$$= \sum_{i=0}^n f(x_i) \int_a^b L_i(x) dx$$

$$I(f) \approx \sum_{i=0}^{n} \lambda_i f(x_i)$$

οù

$$\lambda_i = \int_a^b L_i(x) dx = \int_a^b \prod_{i=0}^n \frac{x - x_j}{x_i - x_j} dx$$

(1)

Définitions 1

- (1) est appelée formule de quadrature ou d'intégration approchée.
- x_0, x_1, \dots, x_n sont les noeuds d'intégration.
- $\lambda_0, \lambda_1, \dots, \lambda_n$ sont les coefficients ou les poids de la quadrature.

L'erreur d'intégration est définie par

$$R(f) = I(f) - I(p_n) = I(f - p_n)$$

Rappelons que l'erreur d'interpolation (voir chapitre 3) est :

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\zeta_x)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

D'où le théorème d'erreur suivant :

Théorème 1

 $Si\ f \in C^{n+1}[a,b],\ alors$

$$R(f) = \int_{a}^{b} \frac{1}{(n+1)!} f^{(n+1)}(\zeta_{x}) .\omega_{n+1}(x) dx$$
 (2)

où
$$\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$$
. En conséquence :

$$|R(f)| \le \frac{M_{n+1}}{(n+1)!} \int_a^b |\omega_{n+1}(x)| dx$$

avec
$$M_{n+1} = \max_{t \in [a,b]} |f^{(n+1)}(t)|$$

Nous avons:

Corollaire 1

Si f est un polynôme de degré $\leq n$, alors $f^{(n+1)} = 0$, donc R(f) = 0. Ainsi (1) est exacte sur tout polynôme $p \in \mathbb{P}_n$ espace des polynômes de degré $\leq n$.

Définition 1

Le degré de précision d'une formule de quadrature est la valeur maximale de n pour laquelle la formule est exacte sur \mathbb{P}_n :

- elle est exacte pour tout $f \in \mathbb{P}_n$,
- et il existe $f \in \mathbb{P}_{n+1}$ tel que la formule ne l'est pas.

Proposition 1

Puisque (X^0, X^1, \dots, X^n) est une base de \mathbb{P}_n , une formule de quadrature est de degré de précision n ssi :

- elle est exacte pour tout monôme X^k , $0 \le k \le n$
- et elle ne l'est pas pour X^{n+1} .

Remarque 1

On peut construire des formules de quadrature sans passer par les polynômes de Lagrange.

Exemple.

Construire la formule de la forme :

$$\int_{-1}^1 f(x) dx \simeq J(f) = \alpha f\left(\frac{-1}{2}\right) + \beta f\left(\frac{1}{2}\right)$$

de sorte qu'elle soit de degré de précision le plus élevé possible.

2 inconnues $\alpha, \beta \Rightarrow 2$ relations pour que J(f) soit exacte sur 1, x:

$$f = 1 \to \int_{-1}^{1} dx = \alpha + \beta$$

$$f = x \to \int_{-1}^{1} x dx = 0 = \alpha \times \left(\frac{-1}{2}\right) + \beta \times \left(\frac{1}{2}\right)$$

soit

$$\begin{cases} \alpha + \beta &= 2 \\ \alpha = \beta \end{cases} \Rightarrow \alpha = \beta = 1$$

$$J(f) = f\left(\frac{-1}{2}\right) + f\left(\frac{1}{2}\right)$$

Donc J des de degré de précision ≥ 1 .

Maintenant
$$\int_{-1}^{1} x^2 dx = \frac{2}{3}$$
 et $J(x^2) = \frac{1}{2} \neq I(x^2)$.

Conclusion J(f) est de degré de précision 1.

- 1. Généralités
- 2. Les formules simples
- 2.1 Formule de rectangle
- 2.2 Formule de trapèze
- 2.3 Formule de Simpson
- 3. Les formules composées
- 4. Stabilité numérique

- 2. Les formules simples
- 2.1 Formule de rectangle
- 2.2 Formule de trapèze
- 2.3 Formule de Simpson
- 3. Les formules composées
- 3.1 Principe
- 3.2 Formule composée de trapèzes
- 3.3 Formule composée de Simpson
- 4. Stabilité numérique

- La formule de ractangle est l'exemple le plus basique des quadratures basées sur l'interpolation.
- Ici on interpole f par une constante (n = 0) : un seul noeud $x_0 \in [a, b]$,

$$p_0(x) = f(x_0).$$

• Donc
$$\int_a^b f(x)dx \approx \int_a^b f(x_0)dx = \underbrace{(b-a)}_{\lambda_0} f(x_0) = \lambda_0 f(x_0).$$

$G\'{e}om\'{e}triquement$:

On remplace l'aire (au sens algébrique) entre la courbe de f et l'axe des x par l'aire du rectangle de largeur b-a et de hauteur $f(x_0)$.

• Par exemple la formule du point milieu $(x_0 = \frac{a+b}{2})$ est :

$$I(f) \approx (b-a)f\left(\frac{a+b}{2}\right)$$

• La formule du rectangle gauche $(x_0 = a)$ est :

$$I(f) \approx (b-a)f(a)$$

• La formule du rectangle droite $(x_0 = b)$ est :

$$I(f) \approx (b-a)f(b)$$

2. Les formules simples

- 2.1 Formule de rectangle
- 2.2 Formule de trapèze
- 2.3 Formule de Simpson

3. Les formules composées

- 3.1 Principe
- 3.2 Formule composée de trapèzes
- 3.3 Formule composée de Simpson

4. Stabilité numérique

Ici on utilise l'interpolation en 2 noeuds : p_1 interpole f en

$$x_0 = a, x_1 = b$$

 $\Rightarrow I(f) \approx I(p_1)$
 $I(p_1) = \int_a^b p_1(x) dx$ est l'aire du trapèze dans la figure suivante :

de (1)

$$I(f) \approx \lambda_0 f(a) + \lambda_1 f(b)$$

avec

$$\lambda_0 = \int_a^b \frac{x-b}{a-b} dx = \frac{b-a}{2}, \ \lambda_1 = \int_a^b \frac{x-a}{b-a} dx = \frac{b-a}{2}$$

Donc la quadrature simple de trapèze est :

$$I(f) \approx T(f) = \frac{b-a}{2}(f(a) + f(b))$$
(3)

Théorème 2

Soit $f \in C^2([a,b])$, l'erreur de la formule simple de trapèze est donnée par :

$$R(f) = I(f) - T(f) = -\frac{f''(\eta)}{12}(b - a)^3$$
(4)

 $où \eta \in [a,b].$

De plus le degré de précision de T(f) est 1.

Démonstration.

• D'après (2) on a

$$R(f) = \int_{a}^{b} (f(x) - p_1(x))dx = \int_{a}^{b} \frac{f''(\zeta_x)}{2} (x - a)(x - b)dx$$

où ζ_x strictement compris entre a et b.

$$(x-a)(x-b)$$

est négatif sur [a,b], alors par le 1er théorème de la moyenne, $\exists \eta \in [a,b]$ tel que

$$R(f) = \frac{f''(\eta)}{2} \int_{a}^{b} (x-a)(x-b)dx = -\frac{f''(\eta)}{12} (b-a)^{3}.$$

• Si $f \in \mathbb{P}_1$, f'' = 0 alors R(f) = 0. : T(f) est exacte sur \mathbb{P}_1 . \Rightarrow degré de précision ≥ 1

Maintenant si $f(x) = x^2$, alors

$$\int_{a}^{b} f(x) = \frac{b^{3} - a^{3}}{3} \neq T(f) = \frac{b - a}{2} \left(a^{2} + b^{2} \right)$$

degré de précision est exactement 1

Exemple.

On a
$$I = \int_0^{\pi/2} \sin x dx = 1$$
.

La valeur approchée par trapèzes est

$$\frac{\pi}{2} \left(\sin 0 + \sin \frac{\pi}{2} \right) = \frac{\pi}{4} = 0.78539$$

2. Les formules simples

- 2.1 Formule de rectangle
- 2.2 Formule de trapèze
- 2.3 Formule de Simpson

3. Les formules composées

- 3.1 Principe
- 3.2 Formule composée de trapèzes
- 3.3 Formule composée de Simpson

4. Stabilité numérique

Ici on utilise l'interpolation à 3 points $x_0 = a, x_1 = \frac{a+b}{2}, x_2 = b$: on interpole f par p_2 de degré au plus 2 en x_0, x_1, x_2 .

Donc:

$$p_2(x) = \sum_{i=0}^{2} f(x_i) L_i(x), \quad L_i(x) = \prod_{j \neq i}^{2} \frac{x - x_j}{x_i - x_j}$$

On approche $I(f) \approx I(p_2)$ et on a :

$$I(f) \approx \lambda_0 f(a) + \lambda_1 f\left(\frac{a+b}{2}\right) + \lambda_2 f(b)$$

$$\lambda_0 = \int_a^b L_0(x) dx = \frac{b-a}{6}$$

$$\lambda_1 = \int_a^b L_1(x) dx = 4\frac{b-a}{6}$$

$$\lambda_2 = \int_a^b L_2(x) dx = \frac{b-a}{6}$$

La formule simple de Simpson est :

$$I(f) \approx S(f) = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$
 (5)

On a le résultat suivant :

Théorème 3

• $Si\ f \in C^4[a,b]$ alors l'erreur de la formule de Simpson simple est donnée par :

$$R(f) = I(f) - S(f) = -\frac{f^{(4)}(\eta)}{90} \left(\frac{b-a}{2}\right)^5$$
 (6)

 $où \eta \in [a,b].$

• Le degré de précision de Simpson simple est 3.

Exemple.

Appliquons Simpson sur $\int_0^{\pi/2} \sin x = 1$:

$$\int_0^{\pi/2} \sin x \approx \frac{\pi}{12} \left(\sin 0 + 4 \sin \frac{\pi}{4} + \sin \frac{\pi}{2} \right)$$
$$= \frac{\pi}{12} (2\sqrt{2} + 1) \simeq 1.00228$$

Simpson est plus précise que Trapèze.

- 1. Généralités
- 2. Les formules simples
- 3. Les formules composées
- 3.1 Principe
- 3.2 Formule composée de trapèzes
- 3.3 Formule composée de Simpson
- 4. Stabilité numérique

2. Les formules simples

- 2.1 Formule de rectangle
- 2.2 Formule de trapèze
- 2.3 Formule de Simpson

3. Les formules composées

- 3.1 Principe
- 3.2 Formule composée de trapèzes
- 3.3 Formule composée de Simpson

4. Stabilité numérique

¹ Pourquoi composées?

- ullet si [a,b] est assez large et que f est oscillatoire, alors Trapèze simple par exemple ne donne pas de bons résultats.
- Augmenter le degré n de l'interpolation mais coûteux en calculs et engendre l'accumulation des erreurs d'arrondi.
- On préfère introduire une autre idée :
 - on subdivise [a,b] en $N\geq 1$ morceaux égaux $[x_i,x_{i+1}]$: on pose $h=\frac{b-a}{N},\ x_i=a+ih,\ i=0,\cdots,N.$
 - $I(f) = \int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} \int_{x_i}^{x_{i+1}} f(x)dx.$
 - Approximer chaque sous-intégrale $I_i(f) = \int_{x_i}^{x_{i+1}} f(x) dx$ par une quadrature simple $J_i(f)$ et on obtient

$$I(f) \approx J_h(f) = \sum_{i=0}^{N-1} J_i(f)$$

Remarque 2

Notons que cette dernière formule dépend de N donc du pas h.

Définitions 2

- a) On dit qu'une formule composée est convergente lorsque $\lim_{h\to 0} J_h(f) = I(f)$, c'est à dire $\lim_{h\to 0} R_h(f) = 0$. Où $R_h(f) = I(f) J_h(f)$ est l'erreur commise.
- b) On dit qu'une formule composée est convergente <u>d'ordre</u> k si l'erreur $R_h(f)$ est en $O(h^k)$, c.a.d.

$$|R_h(f)| \le Ch^k$$

où C est une constante positive indépendante de h.

2. Les formules simples

- 2.1 Formule de rectangle
- 2.2 Formule de trapèze
- 2.3 Formule de Simpson

3. Les formules composées

- 3.1 Principe
- 3.2 Formule composée de trapèzes
- 3.3 Formule composée de Simpson
- 4. Stabilité numérique

• Ici $J_i(f) = T_i(f)$:

$$\int_{x_i}^{x_{i+1}} f(x)dx \approx T_i(f) = \frac{x_{i+1} - x_i}{2} (f(x_i) + f(x_{i+1}))$$
$$= \frac{h}{2} (f(x_i) + f(x_{i+1}))$$

• Sachant que $x_0 = a, x_N = b, x_{i+1} - x_i = h, \forall i = 0, \dots, N-1$, on obtient la formule composée de trapèzes suivante :

$$I(f) \approx T_h(f) = \frac{h}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{N-1} f(x_i) \right]$$
 (7)

Interprétation géométrique : l'aire qui approche l'intégrale est la somme algébrique des aires des petits trapèzes :

Théorème 4

Si $f \in C^2[a,b]$, alors l'erreur de la formule de trapèzes composée est donnée par :

$$\exists \eta \in [a, b], \quad R_h(f) = I(f) - T_h(f) = -\frac{f''(\eta)}{12}(b - a)h^2$$
 (8)

On a en conséquence :

$$|R_h(f)| \le Ch^2$$

où C est une constante indépendante de h. Alors la méthode est convergente en $O(h^2)$ ou d'ordre 2.

Démonstration.

On a
$$R_h(f) = \sum_{i=0}^{N-1} R_i(f)$$
 où
$$R_i(f) = \int_{x_i}^{x_{i+1}} f(x) dx - \frac{h}{2} \left(f(x_i) + f(x_{i+1}) \right)$$
$$= -\frac{h^3}{12} f''(\eta_i), \ \eta_i \in [x_i, x_{i+1}]$$

(on utilise la formule d'erreur de quadrature simple (4))

Donc
$$R_h(f) = -\frac{h^3}{12} \sum_{i=0}^{N-1} f''(\eta_i).$$

Par ailleurs
$$\exists i_0, i_1, f''(\eta_{i_0}) \leq f''(\eta_i) \leq f''(\eta_{i_1})$$
.
Donc $f''(\eta_{i_0}) \leq \frac{\sum_{i=0}^{N-1} f''(\eta_i)}{N} \leq f''(\eta_{i_1})$
et puisque f'' continue sur $[a, b]$, par le théorème des valeurs
intermédiaires il existe $\eta \in [a, b]$ tel que $f''(\eta) = \frac{\sum_{i=0}^{N-1} f''(\eta_i)}{N}$.

Mais
$$h = \frac{b-a}{N}$$
. D'où

$$R_h(f) = -\frac{h^2}{12} \cdot \frac{b-a}{N} \sum_{i=0}^{N-1} f''(\eta_i) = -\frac{h^2(b-a)}{12} f''(\eta)$$

Maintenant
$$|R_h(f)| \le \underbrace{\frac{(b-a)}{12} \max_{x \in [a,b]} |f''(x)|}_{C} h^2$$
, C dépend seulement

de a, b et f

Exemple.

On reprend
$$\int_0^{\pi/2} \sin x dx$$
 et on applique trapèzes composites à 5 points $(N=4)$: $h=\frac{b-a}{4}=\frac{\pi}{8},\ x_i=ih,\ i=0,1,2,3,4.$ Alors
$$\int_0^{\pi/2} \sin x dx \approx \frac{\pi}{16} (\sin 0 + \sin \frac{\pi}{2}) + \frac{\pi}{8} \left(\sin \left(\frac{\pi}{8} \right) + \sin \left(\frac{\pi}{4} \right) + \sin \left(\frac{3\pi}{8} \right) \right)$$
 $\simeq 0.9871158$

L'erreur absolue est environ 0.1288×10^{-2} qui bien meilleure que l'erreur commise par trapèze simple.

1. Généralités

2. Les formules simples

- 2.1 Formule de rectangle
- 2.2 Formule de trapèze
- 2.3 Formule de Simpson

3. Les formules composées

- 3.1 Principe
- 3.2 Formule composée de trapèzes
- 3.3 Formule composée de Simpson
- 4. Stabilité numérique

Pour des raisons pratiques on intègre les milieux $\frac{x_i + x_{i+1}}{2}$ dans la subdivision de la manière suivante :

- On subdivise [a, b] en N = 2p, $(p \ge 1)$ sous-intervalles égaux par les points $x_i = a + ih$, $i = 0, \dots, 2p$, avec $h = \frac{b-a}{2p}$ (2p + 1 points).
- On applique la formule (5) sur chaque sous-intervale $[x_{2j}, x_{2j+2}]$, on a :

$$\int_{x_{2j}}^{x_{2j+2}} f(x)dx$$

$$\approx \frac{x_{2j+2} - x_{2j}}{6} \left[f(x_{2j}) + 4f\left(\frac{x_{2j} + x_{2j+2}}{2}\right) + f(x_{2j+2}) \right]$$

 \bullet Or $x_{2j+2}-x_{2j}=2h$ et $\frac{x_{2j}+x_{2j+2}}{2}=x_{2j+1}$ Soit en regroupant :

$$I(f) \approx S_h(f) = \frac{h}{3} \left[f(a) + f(b) + 2 \sum_{j=1}^{p-1} f(x_{2j}) + 4 \sum_{j=0}^{p-1} f(x_{2j+1}) \right]$$
(9)

On admet que l'erreur commise par Simpson composée est donnée dans le théorème :

Théorème 5

• Si $f \in C^4[a,b]$ alors l'erreur commise par la formule (9) est donnée par

$$\exists \eta \in [a, b], \quad R_h(f) = \int_a^b f(x) dx - S_h(f)$$
$$= -\frac{f^{(4)}(\eta)}{180} (b - a) h^4$$

2 On a en conséquence :

$$|R_h(f)| \leq Ch^4$$

où C est une constante indépendante de h. Alors la méthode est convergente en $O(h^4)$ ou d'ordre 4.

Exemple.

On applique Simpson composée à 5 points sur $\int_0^{\pi/2} \sin x dx$: $N = 4, h = \frac{\pi}{8}$ Donc $x_0 = 0, x_1 = \frac{\pi}{8}, x_2 = \frac{\pi}{4}, x_3 = \frac{3\pi}{8}, x_4 = \frac{\pi}{2}$ $\int_0^{\pi/2} \sin x \approx \frac{\pi}{24} \left[\sin 0 + 4 \sin \frac{\pi}{8} + 2 \sin \frac{\pi}{4} + 4 \sin \frac{3\pi}{8} + \sin \frac{\pi}{2} \right]$ = 1.0001346

L'erreur absolue est environ 0.1346×10^{-3} . Or on avait commis une erreur d'environ 0.1288×10^{-2} par trapèzes composée pour le même nombre de sous-intervalles.

Simpson composée est plus précise.

Résumé pour l'approximation de $\int_0^{\pi/2} \sin x dx = 1$:

N	Trapèze	Simpson
1	0.785	1.00228
4	0.9871158	1.0001346
8	0.9967852	1.000008296

Conclusion : Pour le même nombre de noeuds, Simpson composée approche beaucoup mieux la valeur exacte de l'intégrale.

- Généralités
- 2. Les formules simples
- 3. Les formules composées
- 4. Stabilité numérique

Les quadratures étudiées sont de la forme :

$$I(f) = \int_{a}^{b} f(x)dx \approx J_{m}(f) = h \sum_{i=0}^{m} \lambda_{i} f(x_{i})$$
 (10)

La machine commet une erreur sur $f(x_i)$, on note ϵ_i l'erreur d'arrondi commise :

$$f(x_i) = \tilde{f}(x_i) + \epsilon_i, \ 1 = 0, \dots, m.$$
 Donc

$$I(f) \approx h \sum_{i=0}^{m} \lambda_i \tilde{f}(x_i) + h \sum_{i=0}^{m} \lambda_i \epsilon_i$$

Définition 2

On appelle erreur de stabilité numérique la quantité

$$r_m = \sum_{i=0}^m \lambda_i \epsilon_i$$

Si $|\epsilon_i| < \epsilon_M$, $i = 0, \dots, m$ où ϵ_M dépend de la machine, alors

$$|r_m| \le h\epsilon_M \left(\sum_{i=0}^m |\lambda_i|\right)$$

Attention!

Accumuluation d'erreurs : C'est dangeureux de prendre h trop petit (m grand) :

 $\sum_{i=0}^{m} |\lambda_i|$ peut être très grand \Rightarrow perte de précision : $|r_m|$ risque d'être grand et on aurait une fausse valeur de l'intégrale.

Si les $\lambda_i \geq 0$ (par ex. trapèzes ou Simpson compoées), alors on peut borner r_m indépendement de h.

En effet : (10) est exacte au moins sur f=1 (cas de trapèzes et Simpson). Donc $b-a=h\sum_{i=0}^{m}\lambda_{i}$. D'où

$$|r_m| \le \epsilon_M(b-a) \longleftarrow \text{indépendant de } h.$$

Donc (10) est stable lorsque $m \to +\infty$.

Définitions 3

- La formule (10) est dite convergente si $\lim_{m\to\infty} J_m(f) = I(f)$.
- La formule (10) est dite stable s'il existe une constante M indépendante de h telle que $h \sum_{i=0}^{m} |\lambda_i| \leq M$.

Conclusion : Les formules de trapèzes et Simpson composées sont convergentes et stables.