

Introduction à l'ingénierie des système basée sur les modèles (2)

L'ingénierie systèmes basée sur les modèles

L'approche MBSE facilite les éléments suivants :

- Identifier des incertitudes.
- Utiliser les modèles comme moyens de communication pour partager des idées sur la conception du système entre les différentes parties impliquées dans le projet.
- Utiliser également les modèles comme guides lors des phases d'implémentation du système.

L'ingénierie systèmes basée sur les modèles

- Les modèles explicatifs cherchent à fournir une représentation fidèle du monde réel en rendant compte des relations et des mécanismes sous-jacents.
- Les modèles prédictifs anticipent le comportement futur d'un système.
- Les modèles prédictifs, qu'ils soient physiques, structurels, ou comportementaux, offrent des anticipations sur les caractéristiques physiques, l'organisation des éléments, et le fonctionnement futur d'un système à venir.
- Les modèles structurels servent à déterminer la configuration des divers éléments du futur système, tandis que les modèles comportementaux visent à définir le fonctionnement dynamique anticipé de ce système à venir.

Récapitulatif

- La définition de la chaise dans le dictionnaire est un métamodèle.
- Une photo de la chaise est un modèle.
- La chaise en elle même est un système.

Architecture en 4 couches

Approches et outils de Transformation

- Les transformations de modèles sont au cœur de l'approche de l'ingénierie basée par les modèles.
- Pour réaliser des transformations de modèles,
 ces derniers doivent être exprimés dans un
 certain langage de modélisation ou métamodèle.

Approches et outils de transformation

La transformation de modèles implique la création d'un ou de plusieurs modèles cibles en respectant leur méta-modèle, à partir d'un ou de plusieurs modèles sources conformes à leur propre méta-modèle. On la désigne comme:

- Endogène lorsque les modèles sources et cibles respectent le même méta-modèle (source et cible se trouvent dans le même espace technologique).
- Exogène lorsqu'elle s'effectue entre deux méta-modèles différents (source et cible appartiennent à deux espaces technologiques distincts).

Les caractéristiques de transformation

Types de transformation

• Les transformations verticales.

• Les transformations horizontales.

• Les transformations obliques.

Les transformations verticales

- Une transformation est dite **verticale** lorsque la source et la cible sont définies à des niveaux d'abstraction différents.
- La réduction du niveau d'abstraction dans une transformation est appelée raffinement. À l'inverse, l'abstraction correspond à une augmentation du niveau.

Les transformations horizontales

- On qualifie une transformation de **horizontale** lorsque son modèle source et son modèle cible sont situés au même niveau d'abstraction.
- Cela implique l'application d'une modification à la représentation source, pouvant prendre la forme d'un ajout, d'une mise à jour, d'une suppression ou d'une restructuration d'informations.

Les transformations obliques

• Une transformation oblique intègre à la fois des aspects horizontaux et verticaux.

• Ces transformations sont généralement utilisées par les compilateurs qui optimisent le code source avant la génération du code exécutable.

Les approches de transformation des Modèles

- Les transformations Modèles vers Modèles.
 - ➤ Approche par manipulation directe
 - ➤ Approche relationnelle
 - ➤ Approche basée sur les transformations de graphes
 - ➤ Approche basée sur la structure
 - ➤ Approche hybride, Exemple: ATL.
- Les transformations modèles vers code.

Que signifie la MBSE pour les projets?

- Implications de la MBSE pour les projets
 - > Livrable.
 - ➤ Calendrier du projet/Jalons.
 - Organisation du Projet.
 - Processus (par exemple, Conception, Revues, Gestion de Configuration, Gestion de Modèles, Méthodologie).
 - > Infrastructure.
 - Mesures.

MBSE & Livrable

- Le projet doit toujours produire des livrables pour chaque partie prenante.
- Certains documents peuvent être générés automatiquement à partir du modèle système. Cela garantit que la conception et les documents restent synchronisés.

MBSE & Calendrier du projet/jalons

- Déploiement de l'infrastructure et formation de la main-d'œuvre:
 - > Déploiement de l'infrastructure.
 - > Formation des parties prenantes.
- Intégration du développement des modèles dans le calendrier de développement du système:
 - > Alignement avec le calendrier de développement du système.

MBSE et Organisation du Projet

- Tout le monde a besoin de formation, mais pas à la même profondeur.
- Des niveaux de formation différents pour des niveaux de modélisation différents

MBSE & les parties prenantes de projet

Reviewers

- Influence sur les parties prenantes.
- Exploiter le modèle.
- Concentration sur les vues du modèle système.

Models

MBSE & Infrastructure

MBSE nécessite une infrastructure spécifique pour être mise en œuvre efficacement.

Voici les éléments nécessaires :

- Outils de modélisation système.
- Formation (en modélisation et en utilisation des outils).
- Normes (guide de style de modélisation, gestion des modèles).
- Méthodologie.

MBSE & Mesures de Projet

- Plus facile d'obtenir des données à partir des modèles et de mettre à jour les mesures.
- Exemples de mesures:
 - Qualité de la conception.
 - Progrès de la conception et des efforts de développement.
 - > Effort estimé pour achever la conception et le développement.
- Autres mesures:
 - > Stabilité des exigences et des changements de conception dans le temps.
 - > Taux potentiel de défauts.

Points à considérer lors de l'évaluation d'un modèle de système

- Signification du modèle:
 - La notation de modélisation est-elle assez expressive pour le domaine ?
 - Reflète-t-il les connaissances conventionnelles du domaine?
 - La sémantique des éléments du modèle est-elle sans ambiguïté?
 - Les questions pertinentes sur le domaine peuvent-elles être répondues ?
- Correction logique du modèle :
 - > Soutient-il le "raisonnement" sur le modèle ?
 - Le modèle est-il complet ?
 - Soutient-il les analyses requises ?
 - > Soutient-il le raisonnement sur la conception ?
 - > Soutient-il le raisonnement sur les aspects programmatiques ?

Ingénierie des systèmes

