```
In [4]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import rcParams
```

In [5]:

pwd

Out[5]:

'C:\\Users\\mohit'

In [6]:

```
df = pd.read_csv(r'C:\\Users\\mohit\\data.txt')
df.sample(5)
```

Out[6]:

	Т	TM	Tm	SLP	Н	VV	٧	VM	PM 2.5
749	12.7	19.5	8.0	1017.6	69.0	1.3	8.3	18.3	179.116667
655	31.9	35.0	28.3	1001.3	72.0	2.1	2.8	9.4	38.250000
928	15.9	22.4	8.4	1017.6	66.0	2.4	7.2	16.5	332.708333
136	28.6	35.6	25.3	1005.4	79.0	2.6	5.7	13.0	43.958333
544	14.4	21.1	6.8	1019.1	65.0	1.6	5.6	13.0	245.916667

In [7]:

```
print("df.shape : ", df.shape)
```

df.shape: (1093, 9)

In [8]:

```
print(df.columns)
```

```
Index(['T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM', 'PM \ 2.5'], \ dtype='object')
```

In [9]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1093 entries, 0 to 1092
Data columns (total 9 columns):
          1093 non-null float64
TM
          1093 non-null float64
          1093 non-null float64
Tm
SLP
          1093 non-null float64
          1093 non-null float64
Н
          1093 non-null float64
VV
          1093 non-null float64
٧
VM
          1093 non-null float64
          1092 non-null float64
PM 2.5
dtypes: float64(9)
memory usage: 76.9 KB
In [10]:
df[df['PM 2.5'].isnull()]
```

Out[10]:

```
        T
        TM
        Tm
        SLP
        H
        VV
        V
        VM
        PM 2.5

        184
        14.3
        19.2
        10.9
        1020.5
        91.0
        1.6
        4.8
        11.1
        NaN
```

In [11]:

```
df.fillna(method='ffill', inplace = True)
```

In [12]:

```
rcParams['figure.figsize'] = 11.7,8.27

sns.lineplot(data = df["PM 2.5"], color="red", label="PM2.5")
plt.title('Visualising PM2.5 Data')
plt.show()
```


In [13]:

```
duplicateRowsDF = df[df.duplicated()]
print("Duplicate Rows except first occurrence based on all columns are :")
print(duplicateRowsDF)
```

Dupli	.cate R	ows ex	cept f	irst occ	urrenc	e bas	ed on	all co	lumns are :
	Т	TM	Tm	SLP	Н	VV	V	VM	PM 2.5
731	16.9	25.1	6.6	1021.3	65.0	1.1	2.0	7.6	284.795833
732	15.5	24.1	7.7	1021.0	71.0	1.1	3.5	11.1	219.720833
733	14.9	22.8	8.0	1018.4	73.0	1.1	5.9	13.0	182.187500
734	18.3	24.7	11.5	1018.1	85.0	0.5	1.1	7.6	154.037500
735	16.5	24.7	12.0	1017.4	82.0	0.6	8.0	13.0	223.208333
736	16.6	22.2	10.2	1015.4	65.0	1.8	10.0	20.6	200.645833
737	18.2	25.1	12.0	1014.4	77.0	0.6	5.0	11.1	285.225000
738	15.6	23.2	10.9	1015.6	82.0	0.6	4.3	9.4	236.825000
739	13.0	19.0	9.6	1016.9	85.0	0.8	10.7	16.5	276.908333
740	12.3	19.0	8.9	1015.8	91.0	0.5	4.6	9.4	108.000000
741	11.9	15.7	7.5	1018.9	86.0	0.8	6.1	11.1	107.625000
742	12.0	17.0	6.7	1019.8	75.0	1.3	7.6	13.0	125.891667
743	11.7	18.0	6.4	1017.3	76.0	0.8	4.4	13.0	181.012500
744	14.6	21.0	6.8	1015.6	81.0	0.6	2.4	7.6	152.554167
745	17.7	24.0	9.0	1014.5	69.0	1.4	4.4	9.4	152.320833
746	17.4	27.2	12.2	1016.4	79.0	1.1	7.8	18.3	319.737500
747	15.9	22.4	8.4	1017.6	66.0	2.4	7.2	16.5	332.708333
748	15.2	22.6	6.6	1017.0	56.0	1.9	8.9	22.2	279.600000
748 749	12.7	19.5	8.0	1018.2	69.0	1.3	8.3	18.3	179.116667
7 4 9 750	15.6	24.6	10.7	1017.0	81.0	1.3	2.8	9.4	54.791667
75 0 751	17.1	23.2	9.0	1017.1	69.0	1.8		11.1	93.375000
751 752		24.0	10.1		67.0	1.4	5.9 5.9	14.8	
	17.6			1014.8					103.000000
753	17.2	26.0	11.5	1014.7	65.0	2.3	5.7	14.8	132.208333
754 755	17.7	24.4	9.7	1017.0	64.0	2.1	8.0	18.3	127.708333
755 756	17.4	24.4	10.1	1018.9	61.0	2.3	6.1	11.1	109.333333
756	23.1	30.0	15.6	1014.9	71.0	1.4	4.1	9.4	56.458333
757	23.7	29.8	18.7	1014.0	75.0	1.4	11.1	18.3	135.833333
758	20.9	27.8	15.8	1014.4	62.0	2.6	17.2	27.8	122.500000
759	22.6	30.3	11.5	1015.4	57.0	2.4	5.4	11.1	69.666667
760 	22.7	30.4	12.8	1017.7	56.0	2.6	2.4	7.6 	79.833333
1063	23.4	31.1	14.2	1016.0	60.0	1.1	3.0	7.6	217.375000
1064	22.6	30.6	15.8	1015.4	69.0	0.5	1.1	5.4	309.375000
1065	23.9	32.0	14.5	1015.6	63.0	1.0	2.0	5.4	166.916667
1066	23.2	30.2	14.0	1012.6	55.0	1.1	7.4	18.3	278.000000
1067	22.5	29.5	15.6	1013.3	56.0	1.1	11.7	22.2	192.333333
1068	21.7	30.0	12.2	1014.5	52.0	1.1	6.3	16.5	235.333333
1069	22.2	30.2	13.6	1015.6	63.0	1.6	1.5	3.5	221.541667
1070	20.8	29.3	12.1	1016.7	58.0	1.8	3.5	9.4	210.541667
1071	20.7	28.8	10.6	1017.8	56.0	1.8	6.1	16.5	251.208333
1072	20.8	29.0	10.5	1013.9	61.0	1.8	2.6	7.6	194.708333
1073	22.0	31.0	10.7	1013.2	56.0	1.8	2.4	14.8	250.875000
1074	21.4	30.6	10.8	1011.9	54.0	2.6	7.8	18.3	274.875000
1075	24.2	31.0	16.5	1013.0	36.0	2.9	13.9	22.2	160.000000
1076	22.7	30.8	13.6	1012.0	38.0	3.4	11.9	20.6	217.916667
1077	21.4	29.6	12.7	1013.7	40.0	2.6	8.0	20.6	184.208333
1078	19.2	25.9	11.9	1017.0	84.0	0.8	2.6	9.4	176.375000
1079	18.9	25.8	11.5	1017.9	77.0	0.6	5.0	13.0	185.958333
1080	19.3	27.0	11.7	1019.6	57.0	1.8	5.2	11.1	195.375000
1081	17.8	24.8	11.2	1017.0	74.0	0.6	0.7	7.6	365.291667
1082	15.8	24.3	8.7	1017.8	77.0	0.8	1.7	7.6	312.208333
1082	18.2	27.0	7.7	1013.7	72.0	0.6	1.1	7.6	237.625000
1083	19.0	27.1	10.5	1015.7	61.0	1.6	3.3	9.4	202.875000
1085	18.0	26.6	10.5	1017.1	61.0	1.9	8.0	14.8	260.166667
1085	17.2	24.2	10.0	1017.1	58.0	1.6	9.3	22.2	403.958333
1087	16.3	23.0	6.6	1017.2	61.0	1.0	9.4	20.6	284.166667
1087	18.1	24.0	11.2	1015.4	56.0	1.8	15.9	25.9	288.416667
1088	17.8	25.0	10.7	1015.4	54.0	2.3	9.4	22.2	256.833333
1089	13.9	24.5		1015.8		2.3 0.6		14.8	169.000000
TODE	13.3	44.0	11.4	TOTO . A	95.0	0.0	8.7	14.0	109.601

```
    1091
    16.3
    23.0
    9.8
    1016.9
    78.0
    1.1
    7.4
    16.5
    186.041667

    1092
    16.3
    23.4
    9.0
    1017.3
    68.0
    1.3
    7.8
    18.3
    185.583333
```

[362 rows x 9 columns]

In [14]:

```
df = df[df.duplicated() == False]
print(df.shape)
```

(731, 9)

In [15]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 731 entries, 0 to 730
Data columns (total 9 columns):
          731 non-null float64
TM
          731 non-null float64
          731 non-null float64
\mathsf{Tm}
          731 non-null float64
SLP
Н
          731 non-null float64
VV
          731 non-null float64
          731 non-null float64
          731 non-null float64
VM
PM 2.5
          731 non-null float64
```

dtypes: float64(9)
memory usage: 57.1 KB

In [16]:

```
df.describe().T
```

Out[16]:

	count	mean	std	min	25%	50%	75%	max
Т	731.0	25.556908	7.286760	6.7	18.850000	27.700000	31.2000	38.5
TM	731.0	32.231874	6.852548	9.8	27.550000	34.100000	36.9000	45.5
Tm	731.0	19.273598	7.454202	0.0	12.000000	21.000000	25.9000	32.7
SLP	731.0	1008.196854	7.564601	991.5	1001.300000	1008.500000	1015.0000	1023.2
Н	731.0	64.134063	15.460460	20.0	55.000000	66.000000	75.0000	98.0
VV	731.0	1.891929	0.686446	0.3	1.400000	1.900000	2.4000	5.8
V	731.0	6.630369	3.967064	0.4	3.500000	6.300000	9.1000	24.4
VM	731.0	15.696580	7.654019	1.9	11.100000	14.800000	18.3000	57.6
PM 2.5	731.0	108.036007	82.570588	0.0	43.583333	81.833333	154.0375	404.5

In [17]:

```
sns.lineplot(data = df["PM 2.5"], color="orange", label="PM2.5 (No Duplicates)")
plt.title('Visualising the PM2.5 Data (with No Duplicates)')
plt.show()
```


In [18]:

```
pm_ = list(df['PM 2.5'])
Acceptable = []

for pm in pm_:
    if pm >= 151:
        Acceptable.append(0)
    else:
        Acceptable.append(1)

df['Acceptable'] = Acceptable

df.sample(3)
```

Out[18]:

	Т	TM	Tm	SLP	Н	VV	V	VM	PM 2.5	Acceptable
282	35.9	40.5	29.6	996.3	46.0	1.9	13.7	27.8	71.000000	1
546	13.7	21.0	5.6	1018.8	71.0	1.3	1.5	7.6	253.291667	0
139	29.1	34.0	23.8	1007.8	72.0	1.9	6.5	13.0	30.333333	1

In [19]:

```
rcParams['figure.figsize'] = 4.75,4.75

print(df.Acceptable.value_counts())

sns.countplot(y = "Acceptable", data = df, palette = 'winter_r')
plt.show()
```

536
 195

Name: Acceptable, dtype: int64

In [20]:

```
cols = list(df.columns)

plt.figure(figsize=(20, 20))

for i in range(1, 9):
    plt.subplot(3, 4, i)
    sns.scatterplot(x = cols[i - 1], y = df['PM 2.5'],data = df, hue = "Acceptable", pa
lette = "husl")
```


In [21]:

```
corrmat = df.corr()
top_corr_features = corrmat.index[:-1] # dropping 'Acceptable'

plt.figure(figsize=(7,7))

#plot heat map
sns.heatmap(df[top_corr_features].corr(),annot = True, linewidths=.5)
# print(corrmat)
plt.show()
```


In [124]:

```
df=df.drop(columns=['Acceptable'])
sns.pairplot(df)
```

Out[124]:

<seaborn.axisgrid.PairGrid at 0x2ac1b822048>


```
In [111]:
```

```
from sklearn.model_selection import train_test_split

X = df[[ 'T','TM','Tm','SLP', 'H', 'VV','VM','V']]
y = df['PM 2.5']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.10, random_stat e = 45)
```

In [112]:

```
print('Length of X_train', len(X_train))
print('Length of X_test', len(X_test))
print('Length of y_train', len(y_train))
print('Length of y_test', len(y_test))
```

```
Length of X_train 657
Length of X_test 74
Length of y_train 657
Length of y_test 74
```

In [113]:

```
from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X_train, y_train)

print("lr.score : ", lr.score(X_test, y_test))
print("lr.coef_ : ",lr.coef_)
print("lr.intercept_ : ",lr.intercept_)
```

```
lr.score : 0.5815697908768345
lr.coef_ : [ 2.47563967e+00  1.18110511e-01 -6.76615900e+00  6.82122386e-01
    -8.52242344e-01 -5.11596250e+01  4.83066566e-04 -2.38566327e+00]
lr.intercept_ : -347.7946587578919
```

In [114]:

```
print("lr.score of training data: ", lr.score(X_train, y_train))
```

lr.score of training data: 0.5830171993914903

In [115]:

```
from sklearn.model_selection import cross_val_score
score = cross_val_score(lr , X, y, cv = 5)
print(score)
print("Mean score : ",score.mean())
```

```
[0.51308156 0.48833908 0.64009098 0.5746025 0.11785428]
```

Mean score: 0.46679367929828236

In [116]:

```
coeff_df = pd.DataFrame(lr.coef_, X.columns, columns = ['Coefficient'])
coeff_df
```

Out[116]:

	Coefficient
Т	2.475640
TM	0.118111
Tm	-6.766159
SLP	0.682122
Н	-0.852242
VV	-51.159625
VM	0.000483
٧	-2.385663

In [117]:

```
from sklearn import metrics

prediction = lr.predict(X_test)

print('MAE:', metrics.mean_absolute_error(y_test, prediction))
print('MSE:', metrics.mean_squared_error(y_test, prediction))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, prediction)))
```

MAE: 35.85179578758336 MSE: 2346.3462266920264 RMSE: 48.43909812013459

In [118]:

```
print("Prediction Values:",prediction)
```

```
Prediction Values: [ 84.9000544
                                 70.09310635 194.48334457 61.98594328 20
6.53816528
 72.53579137 77.54957535 161.77080028 115.81803067 112.77372192
 62.29374444 180.84318833 218.25113149 125.97593756 185.52993937
 245.14122294 75.59316248 166.43686914 176.44095854 99.84425111
 24.35985227 57.85442018 75.85377473 83.16723478 134.77803406
 74.21361449 120.21984023 68.83337599 205.93042145 55.5785411
 44.15169644 132.404925
                           43.54120596 157.35196631 196.2669262
 165.13133185 192.93915462 80.65740297 210.28494422
                                                    65.59881865
 72.73257801 185.87864154 103.6041744
                                        68.79168989 187.04457541
 63.65788708 117.76850183 33.08776217 49.31486929 90.3951732
 68.19873978 116.0178151 182.22027739 117.03277852 217.72724318
 64.61171007 80.74515108 119.04699867 109.62013309
                                                    98.3338109
 184.40469849 76.26861545 120.20854029 78.76025376 91.14734821
 200.98936259 120.24557938 189.34429322 25.38968336 149.52164827
  -9.30565996 39.38568419 75.26452782 188.11108454]
```

In [119]:

```
plt.scatter(y_test,prediction)
plt.show()
```


In [120]:

```
plt.title("Prediction and actual value Comparison")
plt.plot(prediction)
plt.ylabel('y_test[i],pediction[i]')
plt.xlabel('i')
plt.plot(y_test)
plt.legend(['Prediction','Actual'],loc='upper left')
plt.show()
```


Prediction and actual value Comparison

In []:

50

0

Ò

200

400

600

In []:			