Bartosz Antczak January 13, 2017

Note:

I was away for this lecture, so today's notes will be substituted with a summary of key points on the respective topics pertaining to this lecture from the provided course notes online. (I'll cover sections 4.7 and 4.8 from the course notes here)

5.1 Equivalence Relations

We define a relation \mathscr{R} between two sets S and T as a subset of $S \times T$. For instance, if $a \in S$ and $b \in T$ (where our main set is $S \times T$), then a and b are related or incident. These relations can have several properties:

- Reflexivity: if each element in S is related to itself
- **Symmetric**: if *a* is related to *b*, then *b* is related to *a* (an example is the relation "divides" for integers. This relation is reflexive (i.e., 7 divides 7) but is not symmetric (i.e., 3 divides 9 does not imply that 9 divides 3))
- Transitive: if a is related to b and b is related to c, then a is related to c

We say a relation is an **equivalence relation** is it satisfies all three of the previous properties.

5.2 Connectedness

A graph G is connected if, for each two vertices u and v, there is a path from u to v.

5.2.1 Components

A **component** of G is a subgraph C such that

- 1. C is connected
- 2. No subgraph of G that properly contains C is connected