Standard Tantalum

- General purpose SMT chip tantalum series
- 7 case sizes available
- Low profile options available
- CV range: 0.10-2200µF / 2.5-50V

SnPb termination option is not RoHS compliant.

CASE DIMENSIONS: millimeters (inches)

For part marking see page 151

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)		A+0.30 (0.012) -0.20 (0.008)	S Min.			
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)			
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)			
С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)			
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)			
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)			
U	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.120)	1.30 (0.051)	4.40 (0.173)			
V	2924	7361-38	7.30 (0.287)	6.10 (0.240)	3.55 (0.140)	3.10 (0.120)	1.30 (0.051)	4.40 (0.173)			
	W₁ dimension applies to the termination width for A dimensional area only.										

HOW TO ORDER

002=2.5Vdc K=±10% M=±20% 004=4Vdc 006=6.3Vdc 010=10Vdc 016=16Vdc 020=20Vdc 025=25Vdc

035

Rated DC Voltage

035=35Vdc 050=50Vdc

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel

A = Gold Plating 7" Reel B = Gold Plating 13" Reel H = Tin Lead 7" Reel

(Contact Manufacturer) K = Tin Lead 13" Reel (Contact Manufacturer) H, K = Non RoHS

NJ

Specification Suffix NJ = StandardSuffix

Additional characters may be added for special requirements

V = Dry pack Option (selected codes only)

TECHNICAL SPECIFICATIONS

All technical data relate to an ambient temperature of +25°C											
0.10 μF to 2200 μF											
±10%; ±20%											
≤ +85°C: 2.5 4 6.3 10 16 20 25 35 50											
≤ +125°C:	1.7	2.7	4	7	10	13	17	23	33		
≤ +85°C:	3.3	5.2	8	13	20	26	32	46	65		
≤ +125°C:	2.2	3.4	5	8	13	16	20	28	40		
	-55°	°C to +12	25°C								
	1%	per 1000) hours a	t 85°C, \	I_R with 0	.1Ω/V se	ries impe	edance,			
	60%	6 confide	nce level								
	CEC	CC 3080	1 - 005 i	ssue 2							
	EIA	535BAA	С								
	Sn	Plating (s	tandard)	, Gold ar	nd SnPb	Plating u	ıpon requ	uest			
	For	AEC-Q2	00 availa	bility, ple	ase cont	act AVX					
	≤ +125°C: ≤ +85°C:	0.10 ±10 ≤ +85°C: 2.5 ≤ +125°C: 1.7 ≤ +85°C: 3.3 ≤ +125°C: 2.2 -55° 1% 60% CEC EIA Sn	0.10 μ F to 2 ±10%; ±20% ≤ +85°C: 2.5 4 ≤ +125°C: 1.7 2.7 ≤ +85°C: 3.3 5.2 ≤ +125°C: 2.2 3.4 -55°C to +12 1% per 1000 60% confide CECC 3080 EIA 535BAA Sn Plating (s	0.10 μF to 2200 μF ±10%; ±20% ≤ +85°C: 2.5 4 6.3 ≤ +125°C: 1.7 2.7 4 ≤ +85°C: 3.3 5.2 8 ≤ +125°C: 2.2 3.4 5 -55°C to +125°C 1% per 1000 hours a 60% confidence level CECC 30801 - 005 is EIA 535BAAC Sn Plating (standard)	0.10 µF to 2200 µF ±10%; ±20% ≤ +85°C: 2.5 4 6.3 10 ≤ +125°C: 1.7 2.7 4 7 ≤ +85°C: 3.3 5.2 8 13 ≤ +125°C: 2.2 3.4 5 8 -55°C to +125°C 1% per 1000 hours at 85°C, \ 60% confidence level CECC 30801 - 005 issue 2 EIA 535BAAC Sn Plating (standard), Gold ar	0.10 μF to 2200 μF ±10%; ±20% ≤ +85°C: 2.5 4 6.3 10 16 ≤ +125°C: 1.7 2.7 4 7 10 ≤ +85°C: 3.3 5.2 8 13 20 ≤ +125°C: 2.2 3.4 5 8 13 -55°C to +125°C 1% per 1000 hours at 85°C, V_R with 0 60% confidence level CECC 30801 - 005 issue 2 EIA 535BAAC Sn Plating (standard), Gold and SnPb	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.10 μF to 2200 μF ±10%; ±20% ≤ +85°C: 2.5 4 6.3 10 16 20 25 ≤ +125°C: 1.7 2.7 4 7 10 13 17 ≤ +85°C: 3.3 5.2 8 13 20 26 32 ≤ +125°C: 2.2 3.4 5 8 13 16 20 -55°C to +125°C 1% per 1000 hours at 85°C, V_R with 0.1Ω/V series imperation of the series of the	0.10 μF to 2200 μF ±10%; ±20% ≤ +85°C: 2.5 4 6.3 10 16 20 25 35 ≤ +125°C: 1.7 2.7 4 7 10 13 17 23 ≤ +85°C: 3.3 5.2 8 13 20 26 32 46 ≤ +125°C: 2.2 3.4 5 8 13 16 20 28 -55°C to +125°C 1% per 1000 hours at 85°C, V_R with 0.1Ω/V series impedance, 60% confidence level CECC 30801 - 005 issue 2 EIA 535BAAC Sn Plating (standard), Gold and SnPb Plating upon request	0.10 μF to 2200 μF ±10%; ±20% ≤ +85°C: 2.5 4 6.3 10 16 20 25 35 50 ≤ +125°C: 1.7 2.7 4 7 10 13 17 23 33 ≤ +85°C: 3.3 5.2 8 13 20 26 32 46 65 ≤ +125°C: 2.2 3.4 5 8 13 16 20 28 40 -55°C to +125°C 1% per 1000 hours at 85°C, V_R with 0.1Ω/V series impedance, 60% confidence level CECC 30801 - 005 issue 2 EIA 535BAAC Sn Plating (standard), Gold and SnPb Plating upon request	

CAPACITANCE AND RATED VOLTAGE, VR (VOLTAGE CODE) RANGE (LETTER DENOTES CASE SIZE)

	Rated voltage DC (V _R) to 85°C											
Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)			
104 154 224								A A A	A A/B A/B			
334 474 684						A	A A	A A/B A/B	A/B A/B/C A/B/C			
105 155 225			А	A A	A A A/B	A A A/B	A A/B A/B	A/B A/B/C A/B/C	AM/B/C B/C/D B/C/D			
335 475 685		A A	A A A/B	A A/B A/B	A/B A/B A/B/C	A/B A/B/C A/B/C	A/B/C A/B/C B/C	B/C B/C/D C/D	C/D C/D C/D			
106 156 226		A A/B A	A/B A/B A/B/C	A/B/C A/B/C A/B/C	A/B/C AM/B/C B/C/D	AM*/B/C B/C/D B/C/D	B/C/D C/D C/D	C/D/E C/D D/E	D/E/V D/E/V V			
336 476 686	A A A	A/B A/B A/B/C	A/B/C A/B/C/D B/C/D	A/B/C/D B/C/D B/C/D	B/C/D C/D C/D	C/D C/D/E CM/D/E	D/E D/E E/V	D/E/V E/V V				
107 157 227	A/B B B/D	A/B/C B/C BM/C/D	B/C/D BM/C/D C/D/E	BM/C/D/E C/D/E C/D/E	C/D/E D/E/V E/V	D/E/V E/V	E(M)/V V(M)					
337 477 687	D C/D C/D/E	C/D/E C/D/E D/E	C/D/E D/E/V E/V	D/E/V E/U/V	E(M)							
108 158	DM/E D/E/VM	D/E/V E/V ^(M)	E(M)/V(M)									
	104 154 224 334 474 684 105 155 225 335 475 685 106 156 226 336 476 686 107 157 227 337 477 687	104 154 224 334 474 684 105 155 225 335 475 685 106 156 226 336 A A 476 A A 686 A A 107 157 B 227 B/D 337 477 687 C/D/E 108 D/E///////////////////////////////////	104 154 224 334 474 684 105 155 225 335 475 685 A 106 156 226 A 336 A 476 A A A/B A/B A/B A/B C 107 A/B A/B A/B B/C 107 A/B B/C 157 B B/C 227 B/D B/M/C/D 337 D C/D/E C/D/E 687 C/D/E D/E 108 D/E/V/M E/V/M	104 154 224 334 474 684 105 155 225 A 335 A75 AA AAB AAB AAB AAB AAB AAB AAB AAB AAB	104 154 224 334 474 684 105 155 225 A A A A A A A A A B A A A A B A A A A	104 154 224 334 474 684 105 155 225 A A A A A A A B A A A A B A A A A A A	104 154 224 334 474 684 105 155 225 A A A A A A A A A A A A A A A A A	104 154 224 334 474 684 105 155 225 A A A A A A A A A A A A A A A A	104 154 224 334 474 684 105 105 155 225 A A A A A A A A A A A A A A A A A			

Not recommended for new designs, higher voltage or smaller case size substitution are offered.

Released codes (M tolerance only)

Engineering samples - please contact manufacturer

*Codes under development - subject to change

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher ratings in the same case size, to the same reliability standards.

Standard Tantalum

RATINGS & PART NUMBER REFERENCE

			Rated	DCL	DF	ESR	
AVX	Case	Сар	Voltage	(µA)	%	Max. (Ω)	MSL
Part No.	Size	(μF)	(V)	Max.	Max.	@100kHz	
TA 14 000+000 (IN)			C (1.7 Vo			47	-
TAJA336*002#NJ	A	33	2.5	0.8	8	1.7	1
TAJA476*002#NJ	A	47	2.5	0.9	6	3	1
TAJA686*002#NJ	A	68	2.5	1.4	8	1.5	1
TAJA107*002#NJ	A B	100	2.5	2.5	30	1.4	1
TAJB107*002#NJ TAJB157*002#NJ				3	10	1.6	1
TAJB137 002#NJ	<u>В</u> В	150 220	2.5	4.4	16	1.6	1
TAJD227*002#NJ	D	220	2.5	5.5	8	0.3	1
TAJD337*002#NJ	D	330	2.5	8.2	8	0.3	1
TAJC477*002#NJ	C	470	2.5	9.4	12	0.2	1
TAJD477*002#NJ	D	470	2.5	11.6	8	0.2	1
TAJC687*002#NJ	C	680	2.5	17.0	18	0.2	1
TAJD687*002#NJ	D	680	2.5	17.0	16	0.2	1
TAJE687*002#NJ	E	680	2.5	17	10	0.2	11)
TAJD108M002#NJ	D	1000	2.5	25	20	0.2	1
TAJE108*002#NJ	E	1000	2.5	20	14	0.2	11)
TAJD158*002#NJ	D	1500	2.5	37.5	60	0.4	1
TAJE158*002#NJ	E	1500	2.5	37.3	20	0.2	11)
TAJV158M002#NJ	V	1500	2.5	30	20	0.2	11)
TAJV228M002#NJ	V	2200	2.5	55	50	0.2	11)
TAJVZZOIVIUUZ#INJ			∠.ე C (2.7 Vol			0.2	1 '
TAJA336*004#NJ	A	33	4	1.3	6	3	1
TAJA476*004#NJ	A	47	4	1.9	8	2.6	1
TAJA686*004#NJ	A	68	4	2.7	10	1.5	1
TAJB686*004#NJ	В	68	4	2.7	6	1.8	1
TAJA107*004#NJ	A	100	4	4	30	1.4	1
TAJB107*004#NJ	В	100	4	4	8	0.9	1
TAJB157*004#NJ	В	150	4	6	10	1.5	1
TAJC157*004#NJ	C	150	4	6	6	0.3	1
TAJB227M004#NJ	В	220	4	8.8	12	1.1	1
TAJC227*004#NJ	C	220	4	8.8	8	1.2	1
TAJD227*004#NJ	D	220	4	8.8	8	0.9	1
TAJC337*004#NJ	C	330	4	13.2	8	0.3	1
TAJD337*004#NJ	D	330	4	13.2	8	0.9	1
TAJC477*004#NJ	C	470	4	18.8	14	0.3	1
TAJD477*004#NJ	D	470	4	18.8	12	0.9	1
TAJE477*004#NJ	Ē	470	4	18.8	10	0.5	11)
TAJD687*004#NJ	D	680	4	27.2	14	0.5	1
TAJE687*004#NJ	Е	680	4	27.2	14	0.9	11)
TAJD108*004#NJ	D	1000	4	40	60	0.2	1
TAJE108*004#NJ	E	1000	4	40	14	0.4	11)
TAJV108*004#NJ	V	1000	4	40	16	0.2	11)
TAJE158*004#NJ	Е	1500	4	60	30	0.2	11)
TAJV158M004#NJ	V	1500	4	60	30	0.2	11)
	6.3 V		°C (4 Vol				
TAJA106*006#NJ	Α	10	6.3	0.6	6	4	1
TAJA156*006#NJ	Α	15	6.3	0.9	6	3.5	1
TAJA226*006#NJ	Α	22	6.3	1.4	6	3	1
TAJA336*006#NJ	Α	33	6.3	2.1	8	2.2	1
TAJA476*006#NJ	Α	47	6.3	2.8	10	1.6	1
TAJB476*006#NJ	В	47	6.3	3	6	2	1
TAJC476*006#NJ	С	47	6.3	3	6	1.6	1
TAJB686*006#NJ	В	68	6.3	4	8	0.9	1
TAJC686*006#NJ	С	68	6.3	4.3	6	1.5	1
TAJB107*006#NJ	В	100	6.3	6.3	10	1.7	1
TAJC107*006#NJ	С	100	6.3	6.3	6	0.9	1
TAJB157M006#NJ	В	150	6.3	9.5	10	1.2	1
TAJC157*006#NJ	С	150	6.3	9.5	6	1.3	1

AVX	Case	Сар	Rated Voltage	DCL (µA)	DF %	ESR Max. (Ω)	MSL
Part No.	Size	(μ F)	(V)	Max.	Max.	@100kHz	
TAJD157*006#NJ	D	150	6.3	9.5	6	0.9	1
TAJC227*006#NJ	С	220	6.3	13.9	8	1.2	1
TAJD227*006#NJ	D	220	6.3	13.9	8	0.4	1
TAJE227*006#NJ	Е	220	6.3	13.9	8	0.4	1 ¹⁾
TAJC337*006#NJ	С	330	6.3	19.8	12	0.5	1
TAJD337*006#NJ	D	330	6.3	20.8	8	0.4	1
TAJE337*006#NJ	E	330	6.3	20.8	8	0.4	11)
TAJD477*006#NJ	D	470	6.3	28	12	0.4	1
TAJE477*006#NJ	E	470	6.3	28	10	0.4	11)
TAJV477*006#NJ	V	470	6.3	28	10	0.4	11)
TAJE687*006#NJ	E	680	6.3	42.8	10	0.5	11)
TAJV687*006#NJ	V	680	6.3	42.8	10	0.5	11)
TAJE108M006#NJ	E	1000	6.3	60	20	0.2	11)
TAJV108M006#NJ	10.1/	1000	6.3	60	16	0.2	11)
TAJA475*010#NJ	10 V	4.7	°C (7 Volt	@ 125	6	5	1
	A		10				1
TAJA685*010#NJ TAJA106*010#NJ	A	6.8 10	10	0.7	6	3	1
TAJA106 010#NJ	A	15	10	1.5	6	3.2	1
TAJB156*010#NJ	В	15	10	1.5	6	2.8	1
TAJA226*010#NJ	A	22	10	2.2	8	3	1
TAJB226*010#NJ	В	22	10	2.2	6	2.4	1
TAJA336*010#NJ	A	33	10	3.3	8	1.7	1
TAJB336*010#NJ	В	33	10	3.3	6	1.8	1
TAJC336*010#NJ	C	33	10	3.3	6	1.6	1
TAJB476*010#NJ	В	47	10	4.7	8	1	1
TAJC476*010#NJ	С	47	10	4.7	6	1.2	1
TAJB686*010#NJ	В	68	10	6.8	6	1.4	1
TAJC686*010#NJ	С	68	10	6.8	6	1.3	1
TAJB107M010#NJ	В	100	10	10	8	1.4	1
TAJC107*010#NJ	С	100	10	10	8	1.2	1
TAJD107*010#NJ	D	100	10	10	6	0.9	1
TAJC157*010#NJ	С	150	10	15	8	0.9	11
TAJD157*010#NJ	D	150	10	15	8	0.9	1
TAJE157*010#NJ	E	150	10	15	8	0.9	11)
TAJC227*010#NJ	С	220	10	22	16	0.5	1
TAJD227*010#NJ	D	220	10	22	8	0.5	1
TAJE227*010#NJ	E	220	10	22	8	0.5	11)
TAJD337*010#NJ	D	330	10	33	8	0.9	1 11)
TAJE337*010#NJ	E	330	10	33	8	0.9	
TAJV337*010#NJ TAJE477*010#NJ	V E	330	10	33	10	0.9	1 ¹⁾
TAJU477*010RNJ	U	470 470	10	47 47	12	0.5 0.5	11)
TAJV477*010#NJ	\/	470	10	47	10	0.5	11)
1/10 V 7/ / O 10 m/NO	16 Vc		C (10 Vol			0.0	
TAJA225*016#NJ	A	2.2	16	0.5	6	6.5	1
TAJA335*016#NJ	A	3.3	16	0.5	6	5	1
TAJB335*016#NJ	В	3.3	16	0.5	6	4.5	1
TAJA475*016#NJ	A	4.7	16	0.8	6	4	1
TAJB475*016#NJ	В	4.7	16	0.8	6	3.5	1
TAJA685*016#NJ	A	6.8	16	1.1	6	3.5	1
TAJB685*016#NJ	В	6.8	16	1.1	6	2.5	1
TAJA106*016#NJ	A	10	16	1.6	6	3	1
TAJB106*016#NJ	В	10	16	1.6	6	2.8	1
TAJC106*016#NJ	С	10	16	1.6	6	2	1
TAJA156M016#NJ	Α	15	16	2.4	6	2	1
TAJB156*016#NJ	В	15	16	2.4	6	2.5	1
TAJC156*016#NJ	С	15	16	2.4	6	1.8	1
TAJB226*016#NJ	В	22	16	3.5	6	2.3	1
TAJC226*016#NJ	С	22	16	3.5	6	1	1

 $^{1^{\}circ}$ Dry pack option (see How to order) recommended for reduction of stress during soldering. Dry pack parts should be treated as MSL 3.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

For AEC-Q200 availability, please contact AVX.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 144.

NOTE: AVX reserves the right to supply a higher voltage rating or tighter tolerance part in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

HATHIGO G			OIVIE				
AVX Part No.	Case Size	Cap (µF)	Rated Voltage (V)	DCL (µA) Max.	DF % Max.	ESR Max. (Ω) @100kHz	MSL
TAJD226*016#NJ	D	22	16	3.5	6	1.1	1
TAJB336*016#NJ	В	33	16	5.3	8	2.1	1
TAJC336*016#NJ	C	33	16	5.3	6	1.5	1
TAJD336*016#NJ	D	33	16	5.3	6	0.9	1
TAJC476*016#NJ	C	47	16	7.5	6	0.5	1
TAJD476*016#NJ	D	47	16	7.5	6	0.9	1
TAJC686*016#NJ	C	68	16	10.9	6	1.3	1
TAJD686*016#NJ	D	68	16	10.9	6	0.9	1
TAJC107*016#NJ	C	100	16	16	8	1	1
TAJD107*016#NJ	D	100	16	16	6	0.6	1
TAJE107*016#NJ	E	100	16	16	6	0.9	11)
TAJD157*016#NJ	D	150	16	24	6	0.9	1
TAJE157*016#NJ	E	150	16	23	8	0.3	11)
TAJV157*016#NJ	V	150	16	24	8	0.5	11)
TAJE227*016#NJ	Ē	220	16	35.2	10	0.5	11)
TAJV227*016#NJ	V	220	16	35.2	8	0.9	11)
TAJE337M016#NJ	Ē	330	16	52.8	30	0.4	11)
17 10 2007 10 10 11 10			C (13 Vol			0.1	'
TAJA105*020#NJ	A	1	20	0.5	4	9	1
TAJA155*020#NJ	A	1.5	20	0.5	6	6.5	1
TAJA225*020#NJ	A	2.2	20	0.5	6	5.3	1
TAJB225*020#NJ	В	2.2	20	0.5	6	3.5	1
TAJA335*020#NJ	A	3.3	20	0.7	6	4.5	1
TAJB335*020#NJ	В	3.3	20	0.7	6	3	1
TAJA475*020#NJ	A	4.7	20	0.9	6	4	1
TAJB475*020#NJ	В	4.7	20	0.9	6	3	1
TAJA685*020#NJ	A	6.8	20	1.4	6	2.4	1
TAJB685*020#NJ	В	6.8	20	1.4	6	2.5	1
TAJC685*020#NJ	C	6.8	20	1.4	6	2	1
TAJB106*020#NJ	В	10	20	2	6	2.1	1
TAJC106*020#NJ	C	10	20	2	6	1.2	1
TAJB156*020#NJ	В	15	20	3	6	2	1
TAJC156*020#NJ	C	15	20	3	6	1.7	1
TAJB226*020#NJ	В	22	20	4.4	6	1.8	1
TAJC226*020#NJ	C	22	20	4.4	6	1.6	1
TAJD226*020#NJ	D	22	20	4.4	6	0.9	1
TAJC336*020#NJ	C	33	20	6.6	6	1.5	1
TAJD336*020#NJ	D	33	20	6.6	6	0.9	1
TAJC476*020#NJ	C	47	20	9.4	6	0.5	1
TAJD476*020#NJ	D	47	20	9.4	6	0.9	1
TAJE476*020#NJ	Ē	47	20	9.4	6	0.9	11)
TAJC686M020#NJ	C	68	20	13.6	8	0.5	1
TAJD686*020#NJ	D	68	20	13.6	6	0.4	1
TAJE686*020#NJ	E	68	20	13.6	6	0.9	1 ¹⁾
TAJD107*020#NJ	D	100	20	20	6	0.5	1
TAJE107*020#NJ	Ē	100	20	20	6	0.4	1 ¹⁾
TAJV107*020#NJ	V	100	20	20	8	0.9	11)
TAJE157*020#NJ	Ė	150	20	30	8	0.3	11)
TAJV157*020#NJ	V	150	20	30	8	0.3	11)
			C (17 Vol				
TAJA474*025#NJ	A	0.47	25	0.5	4	14	1
TAJA684*025#NJ	A	0.68	25	0.5	4	10	1
TAJA105*025#NJ	A	1	25	0.5	4	8	1
TAJA155*025#NJ	A	1.5	25	0.5	6	7.5	1
TAJB155*025#NJ	В	1.5	25	0.5	6	5	1
TAJA225*025#NJ	A	2.2	25	0.6	6	7	1
TAJB225*025#NJ	В	2.2	25	0.6	6	4.5	1
TAJA335*025#NJ	A	3.3	25	0.8	6	3.7	1
							<u> </u>

AVX Part No.	Case Size	Cap (μF)	Rated Voltage (V)	DCL (µA) Max.	DF % Max.	ESR Max. (Ω) @100kHz	MSL
TAJB335*025#NJ	В	3.3	25	0.8	6	3.5	1
TAJA475*025#NJ	A	4.7	25	1.2	6	3.1	1
TAJB475*025#NJ	В	4.7	25	1.2	6	1.5	1
TAJB685*025#NJ	В	6.8	25	1.7	6	2.8	1
TAJC685*025#NJ	С	6.8	25	1.7	6	2.0	1
TAJB106*025#NJ	В	10	25	2.5	6	2.5	1
					_		
TAJC106*025#NJ	C	10	25	2.5	6	1.8	1
TAJD106*025#NJ	D	10	25	2.5	6	1.2	1
TAJC156*025#NJ	C	15	25	3.8	6	1.6	1
TAJD156*025#NJ	D	15	25	3.8	6	1	1
TAJC226*025#NJ	С	22	25	5.5	6	1.4	1
TAJD226*025#NJ	D	22	25	5.5	6	0.9	1
TAJD336*025#NJ	D	33	25	8.3	6	0.9	1
TAJE336*025#NJ	Е	33	25	8.3	6	0.9	1 ¹⁾
TAJD476*025#NJ	D	47	25	11.8	6	0.9	1
TAJE476*025#NJ	E	47	25	11.8	6	0.9	11)
TAJE686*025#NJ	Ē	68	25	17	6	0.9	11)
TAJV686*025#NJ	V	68	25	17	6	0.9	11)
TAJE107M025#NJ	E	100	25	25	10	0.9	11)
							11)
TAJV107*025#NJ	V	100	25	25	8	0.4	
TAJV157M025#NJ	V	150	25	37.5	10	0.4	11)
	35 Vc		C (23 Vol				
TAJA104*035#NJ	Α	0.1	35	0.5	4	24	1
TAJA154*035#NJ	Α	0.15	35	0.5	4	21	1
TAJA224*035#NJ	Α	0.22	35	0.5	4	18	1
TAJA334*035#NJ	Α	0.33	35	0.5	4	15	1
TAJA474*035#NJ	Α	0.47	35	0.5	4	12	1
TAJB474*035#NJ	В	0.47	35	0.5	4	10	1
TAJA684*035#NJ	A	0.68	35	0.5	4	8	1
TAJB684*035#NJ	В	0.68	35	0.5	4	8	1
TAJA105*035#NJ		1	35		4	7.5	1
	A B	1		0.5	4		
TAJB105*035#NJ			35	0.5		6.5	1
TAJA155*035#NJ	<u>A</u>	1.5	35	0.5	6	7.5	1
TAJB155*035#NJ	В	1.5	35	0.5	6	5.2	1
TAJC155*035#NJ	C	1.5	35	0.5	6	4.5	1
TAJA225*035#NJ	Α	2.2	35	0.8	6	4.5	1
TAJB225*035#NJ	В	2.2	35	0.8	6	4.2	1
TAJC225*035#NJ	С	2.2	35	0.8	6	3.5	1
TAJB335*035#NJ	В	3.3	35	1.2	6	3.5	1
TAJC335*035#NJ	С	3.3	35	1.2	6	2.5	1
TAJB475*035#NJ	В	4.7	35	1.6	6	3.1	1
TAJC475*035#NJ	C	4.7	35	1.6	6	2.2	1
TAJD475*035#NJ	D	4.7	35	1.6	6	1.5	1
TAJC685*035#NJ	C	6.8	35	2.4	6	1.8	1
TAJD685*035#NJ	D				_		
		6.8	35	2.4	6	1.3	1
TAJC106*035#NJ	0	10	35	3.5	6	1.6	1
TAJD106*035#NJ	D	10	35	3.5	6	1	1
TAJE106*035#NJ	E	10	35	3.5	6	0.9	11)
TAJC156*035#NJ	С	15	35	5.3	6	1.4	1
TAJD156*035#NJ	D	15	35	5.3	6	0.9	1
TAJD226*035#NJ	D	22	35	7.7	6	0.9	1
TAJE226*035#NJ	Е	22	35	7.7	6	0.5	1 ¹⁾
TAJD336*035#NJ	D	33	35	11.6	6	0.9	1
TAJE336*035#NJ	E	33	35	11.6	6	0.9	11)
TAJV336*035#NJ	V	33	35	11.6	6	0.5	11)
	E	47					11)
TAJE476*035#NJ			35	16.5	6	0.9	-
TAJV476*035#NJ	V	47	35	16.5	6	0.4	11)
TAJV686*035#NJ	V	68	35	23.8	6	0.5	11)

 $^{1^{\}circ}$ Dry pack option (see How to order) recommended for reduction of stress during soldering. Dry pack parts should be treated as MSL 3.

NOTE: AVX reserves the right to supply a higher voltage rating or tighter tolerance part in the same case size, to the same reliability standards.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

For AEC-Q200 availability, please contact AVX.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 144.

RATINGS & PART NUMBER REFERENCE

AVX Part No.	Case	Cap	Rated Voltage	DCL (μA)	DF %	ESR Max. (Ω)	MSL
Part No.	Size	(μF)	(V)	Max.	Max.	@100kHz	
TA 14404050 (INT.)			C (33 Vol			00	-
TAJA104*050#NJ	Α	0.1	50	0.5	4	22	1
TAJA154*050#NJ	Α	0.15	50	0.5	4	15	1
TAJB154*050#NJ	В	0.15	50	0.5	4	17	1
TAJA224*050#NJ	Α	0.22	50	0.5	4	18	1
TAJB224*050#NJ	В	0.22	50	0.5	4	14	1
TAJA334*050#NJ	Α	0.33	50	0.5	4	17	1
TAJB334*050#NJ	В	0.33	50	0.5	4	12	1
TAJA474*050#NJ	Α	0.47	50	0.5	4	9.5	1
TAJB474*050#NJ	В	0.47	50	0.7	4	9.5	1
TAJC474*050#NJ	С	0.47	50	0.5	4	8	1
TAJA684*050#NJ	Α	0.68	50	0.5	4	7.9	1
TAJB684*050#NJ	В	0.68	50	0.5	4	8	1
TAJC684*050#NJ	С	0.68	50	0.5	4	7	1
TAJA105M050#NJ	Α	1	50	0.5	4	6.6	1
TAJB105*050#NJ	В	1	50	0.5	6	7	1
TAJC105*050#NJ	С	1	50	0.5	4	5.5	1
TAJB155*050#NJ	В	1.5	50	0.8	8	5.4	1
TAJC155*050#NJ	С	1.5	50	0.8	6	4.5	1
TAJD155*050#NJ	D	1.5	50	0.8	6	4	1
TAJB225*050#NJ	В	2.2	50	1.1	8	4.5	1
TAJC225*050#NJ	С	2.2	50	1.1	8	2.5	1
TAJD225*050#NJ	D	2.2	50	1.1	6	2.5	1
TAJC335*050#NJ	С	3.3	50	1.6	6	2.5	1
TAJD335*050#NJ	D	3.3	50	1.7	6	2	1
TAJC475*050#NJ	С	4.7	50	0.5	4	1.4	1
TAJD475*050#NJ	D	4.7	50	2.4	6	1.4	1
TAJC685*050#NJ	С	6.8	50	3.4	6	1	1
TAJD685*050#NJ	D	6.8	50	3.4	6	1	1
TAJD106*050#NJ	D	10	50	5	6	0.8	1
TAJE106*050#NJ	Е	10	50	5	6	1	11)
TAJV106*050#NJ	V	10	50	5	6	0.65	11)
TAJD156*050#NJ	Ď	15	50	7.5	6	0.6	1
TAJE156*050#NJ	Ē	15	50	7.5	6	0.6	11)
TAJV156*050#NJ	V	15	50	7.5	6	0.6	11)
TAJV226*050#NJ	V	22	50	11	8	0.6	11)

^{1&}lt;sup>1)</sup> Dry pack option (see How to order) recommended for reduction of stress during soldering. Dry pack parts should be treated as MSL 3. For AEC-Q200 availability, please contact AVX.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 144.

NOTE: AVX reserves the right to supply a higher voltage rating or tighter tolerance part in the same case size, to the same reliability standards.

