Bab 1 Review Sistem Bilangan dan Fungsi

Muhammad Okky Ibrohim

Fakultas Ilmu Komputer, Universitas Indonesia

Referensi, Kredit, dan Kontak

Referensi Utama

Varberg, Dale; Edwin J. Purcell; Steven E. Rigdon. Calculus, 9th Edition, Prentice Hall, 2006.

Kredit

Slide ini menggunakan tema Blue Connections Cordelia Presentation Template (https://www.slidescarnival.com/cordelia-free-presentation-template/216).

Kontak

Segala bentuk pertanyaan, kritik, dan saran mengenai slide ini dapat disampaikan via email ke okkyibrohim@cs.ui.ac.id.

Outline

- Sistem bilangan dan bilangan riil
- Pertidaksamaan dan harga mutlak
- Fungsi riil sederhana (fungsi aljabar): polinomial, rasional, dan irrasional
- Fungsi transendental: trigonometri dan eksponensial
- Aljabar dan sifat-sifat fungsi
- Grafik fungsi
- Invers fungsi

Sub 1.1 Sistem bilangan dan bilangan riil

Sistem Bilangan

Sistem Bilangan

Sistem Bilangan

Operasi Dasar Bilangan Riil

- Penjumlahan (+)
 Pengurangan (-) merupakan bentuk lain dari penjumlahan. a-b dapat ditulis sebagai a+(-b)
- Perkalian (\times)

 Pembagian (:) dan pangkat (a^n) merupakan bentuk lain dari perkalian.
 - $\frac{a}{b}$ dapat ditulis sebagai $a \times \frac{1}{b}$
 - a^n dapat ditulis sebagai $a \times a \times \cdots \times a$ sebanyak n

Sifat Aljabar Bilangan Riil

- Tertutup (*closure property*) $\forall x, y \in \mathbb{R}, \text{ maka } x + y \in \mathbb{R} \text{ dan } xy \in \mathbb{R}$
- O Asosiatif $\forall x, y, z \in \mathbb{R}, \text{ berlaku } x + (y + z) = (x + y) + z$ dan x(yz) = (xy)z
- O Distributif $\forall x, y, z \in \mathbb{R}, \text{ berlaku } x(y+z) = (xy) + (xz)$

Sifat Aljabar Bilangan Riil (2)

- Unsur identitas penjumlahan dan perkalian Penjumlahan: $\forall x \in \mathbb{R}, \exists \ 0$ sehingga berlaku x + 0 = xPerkalian: $\forall x \in \mathbb{R}, \exists \ 1$ sehingga berlaku x(1) = x
- Invers penjumlahan dan perkalian Penjumlahan: $\forall x \in \mathbb{R}, \exists (-x) \in \mathbb{R}$ sehingga berlaku x + (-x) = 0Penjumlahan: $\forall x \in \mathbb{R}, \exists \frac{1}{x} \in \mathbb{R}$ sehingga berlaku $x\left(\frac{1}{x}\right) = 1$

Bagaimana dengan invers dari 0?

0 mempunyai invers penjumlahan, yaitu 0 sendiri karena 0 + (-0) = 00 tidak mempunyai invers perkalian, mengapa?

Sifat Aljabar Bilangan Riil (3)

- Kanselasi (*cancellation property*)
 - $x, y, z \in \mathbb{R} \operatorname{dan} z \neq 0$, berlaku $xz = yz \Longrightarrow x = y \operatorname{dan} \frac{xz}{yz} = \frac{x}{y}$
- Pengali nol (zero product property) $\forall x, y \in \mathbb{R}, xy = 0 \Rightarrow x = 0 \lor y = 0$

Sifat Urutan Bilangan Riil

- *Trichotomy* $\forall x, y \in \mathbb{R}$, maka akan memenuhi **tepat satu** dari kondisi x < y,
 - x > y, atau x = y

 - Addition $\forall x, y, z \in \mathbb{R}, x < y \Leftrightarrow x + z < y + z$

Sifat Urutan Bilangan Riil (2)

- Multiplication
 - $\forall x, y, z \in \mathbb{R}$, jika $z \in \mathbb{R}^+$ maka berlaku $x < y \Leftrightarrow xz < yz$, jika $z \in \mathbb{R}^-$ maka berlaku $x < y \Leftrightarrow xz > yz$
- Infinity
 - Bilangan riil tidak memiliki nilai maksimum (terbesar) maupun minimum (terkecil).
- Continuity $\forall x, y \in \mathbb{R}, \text{ jika } x \neq y \text{ maka } \exists z \in \mathbb{R} \text{ sehingga berlaku } x < z < y \text{ atau}$ y < z < x.

Apa maksud x < y?

Untuk mengatakan x < y, hal ini berarti x terletak disebelah kiri y pada suatu garis bilangan.

Selang (*Interval*)

Selang adalah himpunan bagian dari bilangan riil yang mempunyai sifat relasi tertentu.

Set Notation	Interval Notation	Graph
$\{x: a < x < b\}$	(a,b)	(
$x: a \le x \le b\}$	[a,b]	а b
$x: a \le x < b\}$	[a,b)	a b
$x: a < x \le b\}$	(a,b]	a b
$: x \leq b$	$(-\infty,b]$	a b
$x: x < b\}$	$(-\infty, b)$	b
$x\colon x\geq a\}$	$[a, \infty)$	<i>b</i>
$x\colon x>a\}$	(a, ∞)	a
R	$(-\infty, \infty)$	à

Sub 1.2 Pertidaksamaan dan harga mutlak

Apa maksud pertidaksamaan?

Pertidaksamaan adalah salah satu bentuk pernyataan matematika yang mengandung satu peubah atau lebih yang dihubungkan oleh relasi <, >, \leq , atau \geq .

Contoh pertidaksamaan:

- 1. 5x < 15
- 2. 6y > 12
- $3x + 6y \le 12$
- 4. $5x 6y \ge 12$

Bentuk umum pertidaksamaan

$$\frac{A(x)}{B(x)}(relasi)\frac{C(x)}{D(x)}$$

dengan (relasi) bisa berupa $<,>,\leq$, atau \geq ; A(x),B(x),C(x), dan D(x) merupakan suku banyak (polinom); $B(x),D(x)\neq 0$.

Penyelesaian pertidaksamaan bilangan riil.

Menyelesaikan suatu pertidaksamaan bilangan riil berarti mencari semua himpunan bilangan riil yang membuat pertidaksamaan berlaku. Himpunan bilangan real ini disebut juga Himpunan Penyelesaian (HP).

Contoh 1 Penyelesaian Pertidaksamaan

Tentukan HP untuk pertidaksamaan $13 \ge 2x - 3 \ge 5$

Contoh 2 Penyelesaian Pertidaksamaan

Tentukan HP untuk pertidaksamaan $-2 < 6 - 4x \le 8$

Contoh 3 Penyelesaian Pertidaksamaan

Tentukan HP untuk pertidaksamaan $2x^2 - 5x < -3$

Apa maksud nilai mutlak?

Nilai (harga) mutlak x (dinotasikan |x|) adalah jarak x dari titik pusat pada garis bilangan. Karena didefinisikan sebagai jarak, maka nilainya selalu positif.

Definisi formal nilai mutlak:

$$|x| = \begin{cases} x & ; x \ge 0 \\ -x & ; x < 0 \end{cases}$$

Sifat-sifat nilai mutlak

1.
$$|x| = \sqrt{x^2}$$

2.
$$|x| \le a, a \ge 0 \iff -a \le x \le a$$

3.
$$|x| \ge a, a \ge 0 \iff x \ge a \text{ atau } x \le -a$$

4.
$$|x| \le |y| \iff x^2 \le y^2$$

$$5. \quad \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$$

Contoh 1 Penyelesaian Pertidaksamaan Nilai Mutlak

Tentukan HP untuk pertidaksamaan |2x - 5| < 3

Contoh 2 Penyelesaian Pertidaksamaan Nilai Mutlak

Tentukan HP untuk pertidaksamaan $|2x + 3| \ge |4x + 5|$

Contoh 3 Penyelesaian Pertidaksamaan Nilai Mutlak

Tentukan HP untuk pertidaksamaan $\left|\frac{x}{2} + 7\right| \ge 2$

Fungsi riil sederhana (fungsi aljabar): polinomial, rasional, dan irrasional

Apa itu fungsi?

Relasi $f: D \to K$ merupakan suatu **fungsi** jika untuk setiap x pada himpunan domain D terdapat **tepat satu** nilai tunggal y pada himpunan kodomain K sedemikian sehingga y = f(x). Himpunan daerah hasil dari f(x) selanjutnya disebut sebagai Range(R) fungsi.

Jika $f: D \to K$ tidak diberikan pada saat pendefinisian f(x), maka kita anggap bahwa D adalah himpunan bilangan riil yang terbesar sehingga fungsi tersebut berlaku, yang disebut dengan **daerah asal alami** (*natural domain*), dan kita anggap K sebagai himpunan semua bilangan riil (\mathbb{R}).

Fungsi riil sederhana

Fungsi polinomial

Fungsi polinomial dinyatakan dalam bentuk

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

di mana $a_i \in \mathbb{R}$; i = (0, 1, ..., n) dan a_i tidak semuanya nol.

Fungsi rasional

Fungsi rasional dinyatakan dalam bentuk

$$f(x) = \frac{P(x)}{Q(x)},$$

di mana P(x) dan Q(x) merupakan fungsi polynomial dan $Q(x) \neq 0$.

Fungsi irasional

Fungsi irrasional dinyatakan dalam bentuk

$$f(x) = \sqrt[n]{g(x)},$$

di mana g(x) merupakan fungsi rasional.

Fungsi riil lainnya

Fungsi konstan

f(x) = k, di mana $k \in \mathbb{R}$ adalah suatu konstanta.

Fungsi identitas

$$f(x) = x$$

Fungsi linier

$$f(x) = ax + b$$

Fungsi kuadrat

$$f(x) = ax^2 + bx + c$$

Fungsi aljabar eksplisit

$$f(x) = 3x^{\frac{2}{5}} = 3\sqrt[5]{x^2}; \ g(x) = \frac{(x+2)\sqrt{x}}{x^3 + \sqrt[3]{x^2 - 1}}$$

Dua fungsi khusus

Fungsi nilai mutlak

Untuk setiap x, fungsi nilai mutlak f(x)=|x| dinyatakan sebagai

$$f(x) = \begin{cases} x & ; x \ge 0 \\ -x & ; x < 0 \end{cases}$$

Fungsi integer terbesar

Untuk setiap x, fungsi integer terbesar f(x)=[x] dinyatakan sebagai f(x)= integer terbesar yang lebih kecil atau sama dengan x.

Sub 1.4 Fungsi transendental: trigonometri, eksponensial, logaritma

Fungsi trigonometri

Definisi:

Misalkan pada suatu lingkaran dengan radius r, dan terdapat suatu sudut θ , maka dapat dinyatakan

$$\sin \theta = \frac{y}{r} \operatorname{dan} \cos \theta = \frac{x}{r}.$$

Identitas genap-ganjil

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\tan(-x) = -\tan x$$

Identitas pythagorean

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

Identitas fungsi bersama

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$

Identitas penjumlahan

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

Identitas sudut-ganda

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 2 \cos^2 x - 1$$

$$= 1 - 2 \sin^2 x$$

Identitas seperdua-sudut

$$\sin\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1-\cos x}{2}}$$
$$\cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1+\cos x}{2}}$$

Identitas sum

$$\sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)$$
$$\cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)$$

Fungsi eksponensial

Definisi:

Fungsi eksponensial merupakan fungsi yang dapat dinyatakan dalam bentuk $f(x) = b^x$

di mana basis b > 0; $b \neq 1$.

Sifat eksponensial:

Untuk setiap konstan a, b > 0 dan untuk setiap $x, y \in \mathbb{R}$

1.
$$b^{x} . b^{y} = b^{x+y}$$

$$2. \frac{b^x}{b^y} = b^{x-y}$$

$$3.(b^x)^y = b^{xy}$$

$$4. (ab)^x = a^x b^x$$

$$5. \ \frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$$

Fungsi logaritma

Definisi:

Fungsi logaritma merupakan fungsi yang dapat dinyatakan dalam bentuk

$$f(x) = \log_b(x)$$

untuk suatu konstanta b > 0; $b \neq 1$.

Perhatikan bahwa

$$\log_b(x) = y \iff b^y = x$$

Sifat logaritma:

Untuk setiap konstan $a, b, c > 0, b \neq 1$, dan untuk setiap $r \in \mathbb{R}$

- 1. $\log_b(ac) = \log_b a + \log_b c$
- $2.\log_b\left(\frac{a}{c}\right) = \log_b a \log_b c$
- $3.\log_b(a^r) = r\log_b a$

Sub 1.5 Aljabar dan sifat-sifat fungsi

Operasi aljabar fungsi

Operasi penjumlahan, pengurangan, perkalian, dan pembagian fungsi:

- 1. (f + g)(x) = f(x) + g(x);
- 2. (f g)(x) = f(x) g(x);
- 3. (f.g)(x) = f(x).g(x);
- 4. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}; g(x) \neq 0.$

Operasi komposisi fungsi:

Misalkan diberikan fungsi f dengan domain A dan range B, serta fungsi g dengan domain E dan range F. Jika Suatu komposisi fungsi g terhadap f ($g \circ f$), dinyatakan sebagai

$$(g \circ f)(x) = g(f(x)).$$

Perhatikan bahwa $(g \circ f)(x) = (f \circ g)(x)$ berlaku **jika dan hanya jika** f = g.

Fungsi genap dan fungsi ganjil

Untuk setiap fungsi yang diberikan oleh persamaan y = f(x), x disebut sebagai **variabel bebas** dan y disebut sebagai **variabel tak bebas**.

Grafik suatu persamaan atau fungsi pada sumbu x dan y memuat sekumpulan titik pada bidang dua dimensi, dimana koordinat titik (x,y) memenuhi persamaan tersebut, yaitu terbukti benar (true equality).

Definisi:

Untuk setiap x,

- 1. Jika f(x) = f(-x), maka grafik fungsi kedua persamaan tersebut akan simetri terhadap sumbu y. Fungsi yang memenuhi kondisi ini disebut sebagai **fungsi genap (even function)**.
- 2. Jika -f(x) = f(-x), maka grafik fungsi kedua persamaan tersebut akan simetri terhadap titik asal O(0,0). Fungsi yang memenuhi kondisi ini disebut sebagai **fungsi ganjil (odd function)**.

 $\rightarrow f(x)$ fungsi genap

 $\rightarrow f(x)$ fungsi ganjil

 \rightarrow g(x) fungsi ganjil

Contoh fungsi genap dan fungsi ganjil

1.
$$f(x) = x^2 + 1$$
 $\Rightarrow f(-x) = (-x)^2 + 1 = x^2 + 1 = f(x)$

2.
$$f(x) = x^3 - x$$
 $\Rightarrow f(-x) = (-x)^3 - (-x) = -x^3 + x = -(x^3 - x) = -f(x)$

3.
$$g(x) = \frac{x^3 - 5x}{x^2 + 1}$$
 $\Rightarrow g(-x) = \frac{(-x)^3 - 5(-x)}{(-x)^2 + 1} = \frac{-x^3 + 5x}{x^2 + 1} = -\frac{(x^3 - 5)}{x^2 + 1} = -g(x)$

4.
$$f(x) = x^4 - 2x^2 + 5$$
 $\rightarrow f(-x) = (-x)^4 - 2(-x)^2 + 5 = x^4 - 2x^2 + 5 = f(x)$ $\rightarrow f(x)$ fungsi genap

5.
$$h(x) = \sqrt{x^2 - 2x - 1} \rightarrow h(-x) = \sqrt{(-x)^2 - 2(-x) - 1} = \sqrt{x^2 + 2x - 1} \neq h(x)$$
 ataupun $-h(x) \rightarrow h(x)$ bukan fungsi genap ataupun fungsi ganjil

Injektif, Surjektif, Bijektif

Injektif:

Fungsi f dikatakan sebagai fungsi satu-satu (injektif) jika dan hanya jika $f(x_1) \neq f(x_2)$ ketika $x_1 \neq x_2$.

Surjektif:

Fungsi f dikatakan sebagai fungsi pada (surjektif) jika $\forall y \in K \exists x \in D$ sedemikian sehingga y = f(x). Dengan kata lain, suatu fungsi f dikatakan surjektif apabila kodomain (K) sama dengan range(R).

Bijektif:

Fungsi f dikatakan sebagai fungsi bijektif jika fungsi tersebut injektif dan surjektif.

Contoh Fungsi Injektif

1.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 1 \longrightarrow f(x)$ fungsi injektif

2.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^3 \longrightarrow f(x)$ fungsi injektif

3.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2 - 1 \longrightarrow f(x)$ bukan fungsi injektif, mengapa?

4.
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^3 - x \longrightarrow f(x)$ bukan fungsi injektif, mengapa?

Contoh Fungsi Surjektif

$$1. f: \mathbb{R} \to \mathbb{R}, f(x) = 2x + 1$$

$$f(x)$$
 fungsi surjektif

2.
$$g: \mathbb{N} \to \mathbb{N}, g(x) = \begin{cases} x + 1, jika \ x \ ganjil \\ x - 1, jika \ x \ genap \end{cases} \longrightarrow g(x)$$
 fungsi surjektif

$$3. f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

$$f(x)$$
 bukan fungsi surjektif, mengapa?

$$4. g: \mathbb{N} \rightarrow \mathbb{N}, g(x) = 2x + 1$$

$$g(x)$$
 bukan fungsi surjektif, mengapa?

Contoh Fungsi Bijektif

$$1. f: \mathbb{R} \to \mathbb{R}, f(x) = 2x + 1$$

$$f(x)$$
 fungsi bijektif

2.
$$g: \mathbb{N} \to \mathbb{N}, g(x) = \begin{cases} x + 1, jika \ x \ ganjil \\ x - 1, jika \ x \ genap \end{cases} \longrightarrow g(x)$$
 fungsi bijektif

$$3. f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

$$f(x)$$
 bukan fungsi bijektif, mengapa?

4.
$$g: \mathbb{N} \to \mathbb{N}, g(x) = 2x + 1$$

$$g(x)$$
 bukan fungsi bijektif, mengapa?

Sub 1.6 Grafik Fungsi

Beberapa grafik fungsi riil

Kesimetrisan grafik fungsi

Misal diberikan suatu grafik y,

- 1. Grafik y dikatakan **simetri terhadap sumbu** y, jika untuk setiap (x,y) berada pada grafik y maka untuk setiap (-x,y) juga berada pada grafik y.
- 2. Grafik y dikatakan **simetri terhadap sumbu** x, jika untuk setiap (x, y) berada pada grafik y maka untuk setiap (x, -y) juga berada pada grafik y.
- 3. Grafik y dikatakan **simetri terhadap titik asal** O(0,0), jika untuk setiap (x,y) berada pada grafik y maka untuk setiap (-x,-y) juga berada pada grafik y.

Contoh grafik fungsi simetris

Translasi fungsi

Translasi merupakan suatu proses transformasi geometri yang menggeser setiap titik pada fungsi ke titik lainnya, di mana jarak geser tiap adalah sama, dan dengan arah tertentu.

Contoh:

Bentuk umum translasi fungsi

Untuk h dan k positif, berlaku

graph

Sub 1.7 Invers Fungsi

Apa itu invers fungsi?

Jika fungsi $f: A \to B$ dinyatakan dalam pasangan terurut $f = \{(x,y) | x \in A \text{ dan } y \in B\}$, maka **invers dari fungsi** (selanjutnya sering dipersingkat menjadi **invers fungsi**) f (dinotasikan f^{-1}) adalah relasi yang memetakan balik B ke A (f^{-1} : $B \to A$), yang mana dalam pasangan terurut dinyatakan sebagai $f^{-1} = \{(y,x) | y \in B \text{ dan } x \in A\}$.

Jika f^{-1} memenuhi definisi fungsi (setiap elemen domain f^{-1} punya pasangan di kodomain f^{-1}), serta $f^{-1}(f(x)) = x \operatorname{dan} f(f^{-1}(y)) = y$, maka f^{-1} disebut **fungsi invers**.

Dengan syarat diatas, maka fungsi f mempunyai fungsi invers f^{-1} **jika dan hanya jika** f merupakan **fungsi bijektif**.

Jika f mempunyai fungsi invers f^{-1} , maka f^{-1} juga mempunyai fungsi invers, yaitu f.

Contoh 1 Invers Fungsi

Diberikan $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 2x + 4$. Cari f^{-1} (invers fungsi dari f) kemudian tentukan apakah f^{-1} merupakan fungsi invers atau bukan.

Contoh 2 Invers Fungsi

Diberikan $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1. Cari f^{-1} (invers fungsi dari f) kemudian tentukan apakah f^{-1} merupakan fungsi invers atau bukan.

Muhammad Okky Ibrohim

Fakultas Ilmu Komputer, Universitas Indonesia

