Learn enumerative combinatorics in hyperbolic time chamber

Andersen Ang

What is the foundation of complete search

• IF ignore efficiency (speed, time, storage), THEN Complete search = brute force

Backbone of brute force is "list all possible cases"

• "list all possible case" in expert language is "enumerative combinatorics"

Enumerative combinatorics

• Enumeration := list all possible configurations

- Permutation ∈ configurations ok you learnt this
- Combination ∈ configurations ok you learnt this

- Permutation and Combination ARE NOT the full story
- Partition
- De-rangement
- 12-fold way

Partition

- Ground set: G, a given set we working on
- A k-partition P of G is a collection of non-empty subsets

$$P = \{ A_1, A_2, ..., A_k \}$$
) such that

- \circ Complete $A_1 \cup A_2 \cup ... \cup A_k = A$
- ono sharing $A_i \cap A_i = \emptyset$ ∀i≠j
- \bigcirc Nonempty $A_i \neq \emptyset$ for all (i)

• G =
$$\{1,2,3\}$$
 1. $\{\{1\},\{2,3\}\}$

- 2. {{2},{1,3}}
- 3. {{3}, {1,2}}
- 4. { {1}, {2},{3} }
- 5. {{1, 2,3}}

Num of partition of n-set: Bell's number

$$B_{n+1} = \sum_{k=0}^n inom{n}{k} B_k.$$

De-rangement

- Permutation map $\pi(i) = j$ means put i in j
- De-rangement := a $\pi(G)$ such that $\pi(i) \neq i$
- De-rangement {1,2,3}
 - 1. { 2,3,1 }
 - 2. {3,1,2}

Num of partition of de-rangement 1,0,1,2,9,...

$$!n=(n-1)\left(!\left(n-1
ight)+!\left(n-2
ight)
ight)$$

for $n \geq 2$, where !0 = 1 and !1 = 0. [6]

12-fold way

- Distribute n balls into k boxes
- Think of arranging things as a function f

	No restriction	Injective f	Surjective f
		1-to-1	Onto
		All balls distributed	All box filled
Distinct balls	k ⁿ	k-permute-n	k! S(n,k)
Distinct boxes		k! / (k-n)!	2nd Stirling number
InDistinct balls	(n+k-1)-choose-(k-1)	k-choose-n	(n-1)-choose-(k-1)
Distinct boxes	(n+k-1)-choose-(n)	(Combination)	
Distinct balls	$S(n,1) + \ldots + S(n,k)$	1 if $n \le k$	S(n,k)
InDistinct boxes		0 if n > k	
InDistinct balls	n-partition-k	1 if n <= k	n-partition-k - n-partition-(k-1)
InDistinct boxes		0 if n > k	

WTF are these, how daf**k to use: learn by yourself, practices & practise!!