Lab Manual 6

Basic Plotting-2D and 3D

Course Objective: understand the basic features and commands of MATLAB

Part A: Theory

plot3	plots curves in space,	
stem3	creates discrete data plot with stems in 3-D,	
bar3	plots 3-D bar graph,	
bar3h	plots 3-D horizontal bar graph,	
pie3	makes 3-D pie chart,	
comet3	makes animated 3-D line plot,	
fill3	draws filled 3-D polygons,	
contour3	makes 3-D contour plots,	
quiver3	draws vector fields in 3-D,	
scatter3	makes scatter plots in 3-D,	
mesh	draws 3-D mesh surfaces (wire-frame),	
meshc	draws 3-D mesh surfaces along with contours,	
meshz	draws 3-D mesh surfaces with reference plane curtains,	
surf	creates 3-D surface plots,	
surfc	creates 3-D surface plots along with contours,	
surfl	creates 3-D surface plots with specified light source,	
trimesh	mesh plot with triangles,	
trisurf	surface plot with triangles,	
slice	draws a volumetric surface with slices,	
waterfall	creates a waterfall plot of 3-D data,	
cylinder	generates a cylinder,	
ellipsoid	generates an ellipsoid, and	
sphere	generates a sphere.	

Function	Example Script	Output
plot3	Plot of a parametric space curve: $x(t) = t, \ y(t) = t^2, \ z(t) = t^3.$ $0 \le t \le 1.$ $t = linspace(0,1,100);$ $x = t; \ y = t.^2; \ z = t.^3;$ $plot3(x,y,z), \ grid$ $xlabel('x(t) = t')$ $ylabel('y(t) = t\hat{2}')$ $zlabel('z(t) = t\hat{3}')$	0.8 0.8 0.8 0.8 0.0 0.0 0.0 0.0
fill3	Plot of four filled polygons with three vertices each. X = [0 0 0 0; 1 1 -1 1; 1 -1 -1 -1]; Y = [0 0 0 0; 4 4 4 4; 4 4 4 4]; Z = [0 0 0 0; 1 1 -1 -1; -1 1 1 -1]; fillcolor=rand(3,4); fill3(X,Y,Z,fillcolor) view(120,30)	0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-
contour3	Plot of 3-D contour lines of $z = -\frac{5}{1 + x^2 + y^2},$ $ x \le 3, y \le 3.$ $r = linspace(-3,3,50);$ $[x,y] = meshgrid(r,r);$ $z = -5./(1 + x.^2 + y.^2);$ $contour3(x,y,z)$	0.5 .1 .1.5 .2 .2.5 .3 .35 .4 .4 .5 .3 .2 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3

Part B: Practical

1. Plot voltage vs time for various RC time constants

$$\frac{\vartheta}{V} = e^{-t/\tau}$$

2. Plot a sphere, which is defined as $[x(t, s), y(t, s), z(t, s)] = [\cos(t) \cos(s), \cos(t) \sin(s), \sin(t)]$ (use 'surf'). for t, s = [0, 2]. Make first equal axes, then remove them. Use 'shading interp' to remove black lines