大物一复习课讲义

一、质点运动学

1. 概念辨析

请注意以下概念的区别与联系:

①位矢 \vec{r} , 位移 $\Delta \vec{r}$, 路程s

位矢增量的大小: $|\Delta \vec{r}| = |\vec{r}(t + \Delta t) - \vec{r}(t)|$

位矢大小的增量: $\Delta r = |\vec{r}(t + \Delta t)| - |\vec{r}(t)|$

②平均速度 \overline{v} , 平均速率 \overline{v}

瞬时速度 \vec{v} , 瞬时速率v

③平均加速度 \bar{a} ,瞬时加速度 \bar{a}

2. 大小与方向

直角坐标系:

大小:	$ \vec{r} = \sqrt{x^2 + y^2 + z^2}$	$ \vec{v} \!=\!\sqrt{v_x^2+v_y^2+v_z^2}$	$ ec{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$
方向角:	eg. $\cos \alpha = x/ \vec{r} $	eg. $\cos lpha = v_{\it x}/ ec{v} $	eg. $\cos lpha = a_x/ ec{a} $

自然坐标系:

速度: $\vec{v} = \frac{ds}{dt}\vec{\tau} = v\vec{\tau}$, 加速度: $\vec{a} = a_n\vec{n} + a_\tau\vec{\tau}$

加速度大小: $|ec{a}| = \sqrt{a_n^2 + a_{ au}^2}$, 其中 $a_n = v^2 /
ho$, $a_{ au} = dv / dt$

3. 微积分关系

运动状态 $(t,\vec{r},\vec{v},\vec{a})$

已知
$$\vec{r}(t)$$
求 $\vec{v}(t)$ 、 $\vec{a}(t)$: $\vec{v} = \frac{d\vec{r}}{dt}$, $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$

已知
$$ec{a}(t)$$
求 $ec{v}(t)$ 、 $ec{r}(t)$: $\int dec{r} = \int ec{v} dt$, $\int dec{v} = \int ec{a} dt$

已知加速度与位置的关系a(x): $a(x) = v \frac{dv}{dx}$, $\int a(x) dx = \int v dv$

4. 圆周运动

 θ , ω , α

①角量关系:

微分关系:
$$\omega = \frac{d\theta}{dt}$$
, $\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$

积分关系:
$$\int d heta = \int \omega dt$$
, $\int d\omega = \int lpha dt$

匀变速:
$$\omega = \omega_0 + \alpha t$$
, $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$, $\omega^2 - \omega_0^2 = 2\alpha (\theta - \theta_0)$

②角量与线量关系:

$$s = R\theta$$
 , $v = R\omega$, $a = R\alpha$

③加速度

加速度: $\vec{a} = a_n \vec{n} + a_\tau \vec{\tau}$

加速度大小: $|\vec{a}| = \sqrt{a_n^2 + a_\tau^2}$, 其中 $a_n = \frac{v^2}{r}$, $a_\tau = \frac{dv}{dt}$ (这里挺重要)

5. 相对运动

绝对运动=牵连运动+相对运动

$$ec{v}_{ ext{ iny ext}} = ec{v}_{ ext{ iny ext}} + ec{v}_{ ext{ iny HM}}$$

自己找个作业题做做

二、质点动力学

1. 牛顿第二定律

$$ec{F}=rac{d\left(mec{v}
ight)}{dt}$$
,低速 $ec{F}=mrac{dec{v}}{dt}=mec{a}$

2. 动量定理

$$\vec{F}dt = d(m\vec{v})$$

$$\underbrace{\int ec{F} dt}_{\stackrel{}{ ext{in}} = ec{ar{p}_1}} = \underbrace{mec{v}_2}_{\stackrel{}{ ext{in}} \pm ec{p}_2} - \underbrace{mec{v}_1}_{\stackrel{}{ ext{in}} \pm ec{p}_1}$$

力的时间积累效应=动量的改变

3. 动量守恒

若
$$\sum_i ec{F}_i = 0$$
,则 $\sum_i m_i ec{v}_i = ec{C}$

若
$$\sum_i F_{xi} = 0$$
,则 $\sum_i m_i v_{xi} = C$

4. 动能定理

$$\underbrace{ec{ec{F}} \cdot dec{r}}_{ec{ au ec{ au}_J dA}} = \underbrace{digg(rac{1}{2} m v^2igg)}_{dE}$$

$$\underbrace{\int ec{F} \cdot dec{r}}_{ec{ ext{J}}A} = \underbrace{rac{1}{2} m v_2^2}_{ ext{diff} E_{k_2}} - \underbrace{rac{1}{2} m v_1^2}_{ ext{diff} E_{k_1}}$$

力的空间积累效应=动能的改变

5. 势能

$$E_p = -\int_{"0"}^p \! ec{F}_{\mathbb{R}} \cdot dec{r} = \! \int_p^{"0"} \! ec{F}_{\mathbb{R}} \cdot dec{r}$$

- P 的势能等于从零势能点到该点保守力做功的负值,或
- P的势能等于从该点到零势能点保守力做功

重力势能: $E_p = mgh$

弹性力势能: $E_p = \frac{1}{2}kx^2$

万有引力势能: $E_p = -G \frac{m_1 m_2}{r}$

势能定理: $dA_{\mathrm{K}} = -dE_{p}$, $A_{\mathrm{K}} = -(E_{p2} - E_{p1})$

6. 机械能守恒

$$A_{\rm M}+A_{\rm Rh}+A_{\rm \#Rh}=E_{\it kb}-E_{\it ka}$$

$$A_{\text{外}}+A_{$$
非保內 $}=E_{b}-E_{a}$ (机械能 $E=E_{k}+E_{p}$)

三、刚体定轴转动

1. 对比

1. 灯比	田 占 テ コ	则休完劫无劫		
质点运动		刚体定轴运动		
运动状态	$ec{r}$, $ec{v}=rac{dec{r}}{dt}$, $ec{a}=rac{dec{v}}{dt}$	转动 方程	$ heta$, $\omega=rac{d heta}{dt}$, $lpha=rac{d\omega}{dt}$	
力	$ec{F}$	力矩	$ec{M}=ec{r} imesec{F}$	
质量	m	转动 惯量	$J=\int r^2 dm$	
动量与角动量	动量: $\vec{p}=m\vec{v}$ 角动量: $\vec{L}=\vec{r} imes m\vec{v}$ 角动量大小 $L=mvr_{\perp}$	角动量	$L=J\omega$	
动 能 定理	$ec{F}\cdot dec{r}=digg(rac{1}{2}mv^2igg) \ \int ec{F}\cdot dec{r}=rac{1}{2}mv_2^2-rac{1}{2}mv_1^2$	动能定理	$Md heta=d\Big(rac{1}{2}J\omega^2\Big) \ \int Md heta=rac{1}{2}J\omega_2^2-rac{1}{2}J\omega_1^2$	
牛二	$ec{F}=mrac{dec{v}}{dt}=mec{a}$	刚体定 轴转动 定律	$M = J \frac{d\omega}{dt} = J\alpha$	
动量定理	$ec{F}dt = d\left(mec{v} ight) \ \int ec{F}dt = mec{v}_2 - mec{v}_1$	角动量定理	$Mdt=d\left(J\omega ight) $ $\int Mdt=J\omega_{2}-J\omega_{1}$	
机 械 能 守恒	$E=rac{1}{2}mv^2+E_{_{p}}\!=\!C$	机械能守恒	$E=rac{1}{2}J\omega^2+rac{1}{2}mv^2+rac{mgh}{}{}$ 重力势能 $=C$	
动量守恒	$ec{F}=0$,则 $mec{v}=ec{C}$ $ec{M}=0$,则 $ec{r} imes mec{v}=ec{C}$	角动量守恒	$J\omega_2 \!=\! J\omega_1$	

2. 刚体质点系统, 找题目做做

3. 转动惯量
$$J = \int r^2 dm$$

杆: 轴在质心
$$J=rac{1}{12}ml^2$$
; 轴在端点 $J=rac{1}{3}ml^2$

环: 轴在质心
$$J=mR^2$$

盘: 轴在质心
$$J = \frac{1}{2}mR^2$$

四、真空中的静电场

1. 电场的计算

①点电荷:
$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \vec{r}_0$$

②点电荷系:
$$\vec{E} = \frac{1}{4\pi arepsilon_0} \sum_i rac{q}{r_i^2} ec{r}_{i0}$$

③连续带电体:
$$\vec{E} = \int_Q d\vec{E} = \int_Q \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} \vec{r}_0$$
, 其中 $dq = \begin{cases} \lambda dl \\ \sigma ds \\ \rho dv \end{cases}$

④高斯定理求电场:
$$\Phi = \iint_s \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \sum_{S \mapsto} q_i$$

⑤利用电势求电场:
$$\vec{E} = -grad\varphi$$

⑥典型电场分布

杆:
$$\vec{E} = rac{\lambda}{4\piarepsilon_0 r}igl[\left(\cos heta_1 - \cos heta_2
ight)ec{i} - \left(\sin heta_1 - \sin heta_2
ight)ec{j}igr]$$

$$\mathfrak{F}: \ \vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \cos\theta \, \vec{i} = \frac{1}{4\pi\varepsilon_0} \frac{qx}{r^3} \, \vec{i}$$

盘:
$$\vec{E} = \frac{\sigma}{2\varepsilon_0} (1 - \cos\theta) \vec{i}$$

无限长杆:
$$E=rac{\lambda}{2\piarepsilon_0 a}$$

无限大平面:
$$E = \frac{\sigma}{2\varepsilon_0}$$

球面:
$$E = \begin{cases} 0, r < R \\ \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}, r > R \end{cases}$$

2. 电势

(1) 已知电场分布:
$$\varphi = \int_{r}^{\omega_0} \vec{E} \cdot d\vec{l}$$
, $\varphi_{ab} = \int_{r}^{b} \vec{E} \cdot d\vec{l}$

(2) 已知电荷分布:

①点电荷:
$$\varphi = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

②点电荷系:
$$\varphi = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q}{r_i}$$

③连续带电体:
$$\varphi = \int_Q \frac{1}{4\pi\varepsilon_0} \frac{dq}{r}$$
, 其中 $dq = \begin{cases} \lambda dl \\ \sigma ds \\ \rho dv \end{cases}$

(3) 典型电势分布

$$orall \mathfrak{F}: \; arphi = rac{1}{4\piarepsilon_0}rac{q}{r} = rac{1}{4\piarepsilon_0}rac{q}{\sqrt{x^2+R^2}}$$

盘:
$$\varphi = \frac{\sigma}{2\varepsilon_0}(r-x) = \frac{\sigma}{2\varepsilon_0}(\sqrt{x^2+R^2}-x)$$

球面:
$$\varphi = \begin{cases} \frac{1}{4\pi\varepsilon_0} \frac{q}{R}, r < R \\ \frac{1}{4\pi\varepsilon_0} \frac{q}{r}, r > R \end{cases}$$

3. 导体重的静电场

(1)静电平衡条件

电场:
$$\left\{ egin{aligned} ec{E}_{eta} = 0 \ ec{E}_{s} ot Surface \end{aligned}
ight.$$
 , $E_{eta \hspace{-0.5em} ext{.}} = rac{\sigma}{arepsilon_{0}}$

电势:导体是等势体,导体表面是等势面

- (2) 电荷分布
- ①实心
- ②腔内无电荷
- ③腔内有电荷
- ④电荷分布与曲律 书上例题 6-3,6-4 看看

4. 电容

$$(1) \ C = \frac{q}{\varphi} \ , \ \ \vec{\boxtimes} \ C = \frac{q}{U}$$

- (2) 求电容步骤
- ①电场: \vec{E}

②电势差:
$$U = \int \vec{E} \cdot d\vec{r}$$

$$\Im C = \frac{q}{U}$$

(3) 典型电容(你会求吗?)

孤立球形导体:
$$C = 4\pi\varepsilon_0 R$$

平行板电容器:
$$C = \frac{\varepsilon_0 S}{d}$$

球形电容器:
$$C = \frac{4\pi\varepsilon_0 R_1 R_2}{R_2 - R_1}$$

柱形电容器:
$$C = \frac{2\pi\varepsilon_0 L}{\ln(R_2/R_1)}$$

(4) 串并联电容

串联:
$$\frac{1}{C} = \sum \frac{1}{C_i}$$

并联:
$$C = \sum C_i$$

五、稳恒磁场

1. 求磁场分布

- ①运动电荷: $\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{r}_0}{r^2}$
- ②电流元: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}_0}{r^2}$
- ③安培环路定理: $\oint_{L} \vec{B} \cdot d\vec{l} = \mu_0 \sum I$
- ④典型磁场分布

直导线:
$$B = \frac{\mu_0 I}{4\pi r} (\cos \theta_1 - \cos \theta_2)$$

长直导线:
$$B = \frac{\mu_0 I}{2\pi r}$$

圆电流:
$$B = \frac{\mu_0 I}{2R}$$

长直螺线管:
$$B = \mu_0 nI$$

2. 磁力

- (1) 洛伦兹力: $\vec{F} = q\vec{v} \times \vec{B}$
- (2) 安培力: $d\vec{F} = Id\vec{l} \times \vec{B}$
- (3) 磁力矩: $M = \vec{p}_m \times \vec{B} = IS\vec{n} \times \vec{B}$
- (4) 带电粒子在均匀磁场中的运动
- ① $\vec{v} \parallel \vec{B}$,匀速直线运动
- $2\vec{v} \perp \vec{B}$,匀速圆周运动。半径,周期
- ③其他,螺旋线。回旋半径,螺距
- (5) 霍尔效应

六、变化的电磁场

1. 求电动势

(1) 法拉第电磁感应定律

$$arepsilon = -\,rac{darPhi_m}{dt} = -\,rac{d}{dt}\!\iint_s\!ec{B}dec{S}$$

①规定绕行方向, ②求磁通量, ③关于时间 t 求导

(2)动生电动势

$$arepsilon = \int_{l} ec{E}_{k} \cdot d \, ec{l} \, = \int_{l} ec{V} imes ec{B} \cdot d \, ec{l} \,$$

(3) 感生电动势

$$arepsilon = \int_{l} ec{E}_{i} \cdot d \, ec{l} \, = - \iint_{s} rac{\partial ec{B}}{\partial t} \, d ec{S} \, .$$

2. 位移电流

$$I_D = rac{d arPhi_D}{dt} = \iint_{\mathbb{R}} rac{\partial ec{D}}{\partial t} dec{S}$$

3. 麦克斯韦方程组

找几道作业做做(选择填空)