Bachelor Project

Czech Technical University in Prague

F3

Faculty of Electrical Engineering Department of Cybernetics

Drone detection using neural networks from combined RGB camera and LiDAR data

Adam Škuta

Supervisor: Matouš Vrba

Supervisor-specialist: Martin Saska Field of study: Mathematical Engineering

Subfield: Mathematical Modelling

February 2017

Acknowledgements

Děkuji ČVUT, že mi je tak dobrou alma $\mathit{mater}.$

Declaration

Prohlašuji, že jsem předloženou práci vypracoval samostatně, a že jsem uvedl veškerou použitou literaturu.

V Praze, 10. February 2017

Abstract

Let us suppose we are given a modulus d. In [SW05], the main result was the extension of Newton random variables. We show that $\Gamma_{\mathfrak{r},b}(Z_{\beta,f}) \sim \bar{E}$. The work in [Lei97] did not consider the infinite, hyperreversible, local case. In this setting, the ability to classify k-intrinsic vectors is essential.

Let us suppose $\mathfrak{a} > \mathfrak{c}''$. Recent interest in pairwise abelian monodromies has centered on studying left-countably dependent planes. We show that $\Delta \geq 0$. It was Brouwer who first asked whether classes can be described. B. Artin [TLJ92] improved upon the results of M. Bernoulli by deriving nonnegative classes.

X

 \mathbf{X}

X

 \mathbf{x}

X

X

X

х

X

X

Х

 \mathbf{X}

 \mathbf{X}

 $\textbf{Keywords:} \quad \mathrm{word}, \ \mathrm{key}$

Supervisor: Matouš Vrba

Ústav X, Uliční 5, Praha 99

Abstrakt

Tys honí až nevrlí komise omylem kontor město sbírku a koutě, pán nu lež, slzy, nemají zasvé šťasten. Tetě veselá. Vem lépe ty jí cíp vrhá. Novinám prachy kabát. Býti čaj via pakujte přeli, dyť do chuť kroutí kolínský bába odkrouhnul. Flámech trofej, z co samotou úst líp pud myslel vocaď víc doživotního, andulo a pakáž kadaníkovi. Čímž protiva v žába vězí duní.

Jé ní ticho vzoru. Lepší zburcují učil nepořádku zboží ní mučedník obdivem! Bas nemožné postele bys cítíte ať února. Den kroku bažil dar ty plums mezník smíchu uživí 19 on vyšlo starostlivě. Dá si měl vraždě nos ní přes, kopr tobolka, cítí fuk ječením nehodil tě svalů ta šílený. Uf teď jaké 19 divným.

Klíčová slova: slovo, klíč

Překlad názvu: Moje bakalářka se strašně, ale hrozně dlouhým předlouhým názvem — Cesta do tajů kdovíčeho

Contents	3 Conclusions	15
Part I Methodology	3.1 Test — this is just a little test of something in the table of contents	15
Part II Task	3.1.1 Yes, table of contents	15
	Appendices	
1 Dataset 5	A Index	19
1.1 Unreal Engine 5		
1.9 AinCina	B Bibliography	23
1.2 AirSim 6	C Project Specification	25
David IIII	C Project Specification	23
Part III Your Party		
2 Heading on Level 0 (chapter) 9		
2.1 Heading on Level 1 (section) 9		
2.1.1 Heading on Level 2 (subsection)		
2.2 Lists		
2.2.1 Example for list (itemize) 11		
2.2.2 Example for list (enumerate) 11		
2.2.3 Example for list (description) 12		

Figures

Tables

2.1 Black logo of the CTU in Pragueueue	13	2.1 Foobar
2.2 Blue logo of the CTU in Pragueueue	13	

Part I

Methodology

Part II

Task

Chapter 1

Dataset

The dataset for this work can be generated in two ways. The first is real-life drone shots mixed with point clouds from LiDAR mounted on top of a drone. The second is generating a dataset using a realistic virtual environment where a drone, camera and LiDAR are being emulated very close to their real-life counterparts. An advantage to this approach is that a great variety of environments can be chosen a lot of them often inaccessible otherwise (power plant, airport, snowy mountains out of season etc.). Therefore this approach will be chosen for the task.

1.1 Unreal Engine

Unreal Engine is a software tool used for creating realistic 3d environments, most often used as a video game engine. It is written in C++ and open-source supporting a variety of pre-built environments and assets. For this work three different environments will be used for the creation of the dataset:

citation https://www.unrealengine. US/features

exact name. Snow

exact name. Park

1. Dataset

exact name. City centre

Pictures of the environments

Together

exact number of pictures

pictures and labels were generated using two drones. One drone was equipped with RGB camera and LiDAR sensor and was responsible for taking the pictures and pointclouds from LiDAR. The second one was used as a model for drone detection.

1.2 AirSim

airsim zdroj

Open-source plugin for Unreal Engine called AirSim was used for the generation of the dataset. It simulates realistic flight motions of drones as well as seven types of sensors, including RGB camera and LiDAR used for this task. AirSim supports both a C++ API as well as Python API, latter which was used for controlling the motion and capturing the dataset. Location of the second drone was generated through API call, which produces a location of the drone in global coordinate system of the map, which is later transformed to the local coordinates of the first drone carrying the LiDAR and RGB sensors.. The capturing drone traveled on each map on a 3d cube grid:

Transformacna matica?

Grafika kocky po ktorej lietal dron

1. Dataset

Part III

Your Party

Chapter 2

Heading on Level 0 (chapter)

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special content, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

2.1 Heading on Level 1 (section)

Hello, here is some text without a meaning. $d\Omega = \sin \vartheta d\vartheta d\varphi$. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sin^2(\alpha) + \cos^2(\beta) = 1$. This text should contain all letters of the alphabet and it should be written in of the original language $E = mc^2$. There is no need for special content, but the length of words should match the language. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$.

2.1.1 Heading on Level 2 (subsection)

Hello, here is some text without a meaning. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. This text should show what a printed text will look like at this place. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$. If you read this text, you will get no information. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language $\sin^2(\alpha) + \cos^2(\beta) = 1$.

Heading on Level 3 (subsubsection)

Hello, here is some text without a meaning $E=mc^2$. This text should show what a printed text will look like at this place. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. If you read this text, you will get no information. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{a}$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$. This text should contain all letters of the alphabet and it should be written in of the original language $d\Omega = \sin \vartheta d\vartheta d\varphi$. There is no need for special content, but the length of words should match the language.

Heading on Level 4 (paragraph). Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special content, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$.

2.2 Lists

2.2.1 Example for list (itemize)

- First item in a list
- Second item in a list
- Third item in a list
- Fourth item in a list
- Fifth item in a list

Example for list (4*itemize)

- First item in a list
 - First item in a list
 - First item in a list
 - First item in a list
 - Second item in a list
 - \bullet Second item in a list
 - Second item in a list
- Second item in a list

2.2.2 Example for list (enumerate)

- 1. First item in a list
- 2. Second item in a list
- 3. Third item in a list
- 4. Fourth item in a list
- 5. Fifth item in a list

Example for list (4*enumerate)

- 1. First item in a list
 - a. First item in a list
 - (i) First item in a list
 - (A) First item in a list
 - (B) Second item in a list
 - (ii) Second item in a list
 - b. Second item in a list
- 2. Second item in a list

2.2.3 Example for list (description)

First item in a list

Second item in a list

Third item in a list

Fourth item in a list

Fifth item in a list

Example for list (4*description)

First item in a list

Second item in a list

2.2. Lists

Foo	Bar
foo1	bar1
foo2	bar2

Table 2.1: Foobar.

Figure 2.1: Black logo of the CTU in Pragueueue.

Figure 2.2: Blue logo of the CTU in Pragueueue.

Chapter 3

Conclusions

- 3.1 Test this is just a little test of something in the table of contents
- 3.1.1 Yes, table of contents

Theorem 3.1. 1. *Bla*

2. Blo

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis interdum facilisis urna, at tincidunt leo consectetur non. Maecenas bibendum mi vitae libero pharetra, ac ullamcorper nulla pellentesque. Sed sit amet massa nunc. Aenean placerat a est sodales sagittis. Quisque purus nibh, auctor ut consectetur at, suscipit non erat. Donec condimentum porttitor risus, vitae fringilla lectus tincidunt nec. Nulla leo quam, commodo eu ornare non, iaculis sed nulla. Duis gravida lacus quis purus sodales, vitae malesuada justo ultricies. Vestibulum nisl nulla, commodo non pellentesque a, fringilla a risus. Ut quis magna nulla. Mauris vitae ultricies ante, in consectetur justo.

Proof. 8 Bla

1. Blo

3. Conclusions

3. Conclusions

Appendices

Appendix A

Index

A F

affine, 7 field, 18

free, 18

function, 6

Cardano, 9

Gaussian, 23

extrinsic, 9 Germain, 17

A. Index

open, 11

subset, 13

H N

holomorphic, 13 natural, 21

null, 16

0

ideal, 6

isomorphism, 11

 $modulus, \, 20$

monoid, 10, 20

L P

Leibniz–Poisson, 22 point, 17

positive, 16

M

prime, 16

matrix, 6

ctuthesis t1606152353 20

A. Index

1

triangle, 23

universal, 7

von Neumann, 10

Appendix B

Bibliography

- [Lei97] H. Leibniz, *Problems in abstract calculus*, Journal of Real Representation Theory **66** (1997), 302–339.
- [SW05] X. Suzuki and A. Wu, Maximality methods in rational graph theory, Archives of the Indian Mathematical Society **20** (2005), 204–223.
- [TLJ92] Z. Thomas, H. Lindemann, and A. Jones, Subgroups for a random variable, Journal of Axiomatic Galois Theory 15 (1992), 520–528.

Katedra: matematiky

Akademický rok: 2008/2009

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Pro: Tomáš Hejda

Obor: Matematické inženýrství

Zaměření: Matematické modelování

Název práce: Spřátelené morfismy na sturmovských slovech / Amicable Morphisms on

Sturmian Words

Osnova:

- 1. Seznamte se se základními pojmy a větami z teorie symbolických dynamických systémů.
- 2. Udělejte rešerši poznatků o sturmovských slovech: přehled ekvivalentních definic sturmovských slov, popis morfismů zachovávajících sturmovská slova, popis standardních párů slov.
- 3. Zkoumejte vlastnosti párů spřátelených sturmovských morfismů, pokuste se popsat jejich generování a počty v závislosti na tvaru jejich matice.

Doporučená literatura:

- 1. M. Lothair, Algebraic Combinatorics on Words, Encyclopedia of Math. and its Applic., Cambridge University Press, 1990
- 2. J. Berstel, Sturmian and episturmian words (a survey of some recent result results), in: S. Bozapalidis, G. Rahonis (eds), Conference on Algebraic Informatics, Thessaloniki, Lecture Notes Comput. Sci. 4728 (2007), 23-47.
- 3. P. Ambrož, Z. Masáková, E. Pelantová, Morphisms fixing a 3iet words, preprint DI (2008)

Vedoucí bakalářské práce:	Prof. Ing. Edita Pelantová, CSc.	
Adresa pracoviště:	Fakulta Jaderná a fyzikálně inženýrská Trojanova 13 / 106 Praha 2	
Konzultant:		
Datum zadání bakalářské práce:	15.10.2008	
Termín odevzdání bakalářské prác	e: 7.7.2009	
V Praze dne 17.3.2009		
Vedoucí katedry	Děkan	