Step	Algorithm:		
1a			
4			
	where		
2			
3	while do		
2,3		٨	
5a			
	where		
6			
8			
5b			
7			
2			
	endwhile		
2,3		^ ¬()
1b			

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_var}5(A, B, C)$
1a	$C = \hat{C}$
4	$A o \left(\frac{A_T}{A_B}\right), B o \left(\frac{B_T}{B_B}\right)$ where A_T has 0 rows, B_T has 0 rows
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
3	while $m(A_T) < m(A)$ do
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge m(A_T) < m(A)$
5a	Determine block size b
	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{B_1}\right) $ where A_1 has b rows, B_1 has b rows
6	$C = A_0^T B_0 + B_0^T A_0 + \widehat{C}$
8	$C := A_1^T B_1 + B_1^T A_1 + \widehat{C}$
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{B_1}\right)$
7	$C = A_0^T B_0 + B_0^T A_0 + A_1^T B_1 + B_1^T A_1 + \widehat{C}$
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
	endwhile
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A))$
1b	$[C] = \operatorname{Syr}2\mathrm{k.lt}(A, B, \widehat{C})$

Algorithm: $[C] := SYR2K_LT_BLK_VAR5(A, B, C)$

$$A o \left(\frac{A_T}{A_B}\right) , B o \left(\frac{B_T}{B_B}\right)$$

where A_T has 0 rows, B_T has 0 rows

while $m(A_T) < m(A)$ do

Determine block size b

$$\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{B_1}\right)$$

where A_1 has b rows, B_1 has b rows

$$C := A_1^T B_1 + B_1^T A_1 + \widehat{C}$$

$$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{B_1}\right)$$

endwhile

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}5(A, B, C)$
1a	$C = \widehat{C}$
4	
1	
	where
2	
3	while do
2,3	\wedge
5a	Determine block size
	where
6	
8	
5b	
7	
2	
	endwhile
2,3	$\wedge \neg ($
1b	$[C] = \operatorname{Syr}2k lt(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}5(A, B, C)$
1a	$C = \hat{C}$
4	
	where
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
3	while do
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge$
5a	Determine block size
C	where
6	
8	
5b	
7	
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
	endwhile
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge \neg () $
1b	$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}5(A, B, C)$
$C = \hat{C}$
where
$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
while $m(A_T) < m(A)$ do
$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge m(A_T) < m(A)$
Determine block size
where
$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
endwhile
$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A))$
$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}5(A, B, C)$
1a	$C = \widehat{C}$
4	$A o \left(\frac{A_T}{A_B}\right), B o \left(\frac{B_T}{B_B}\right)$ where A_T has 0 rows, B_T has 0 rows
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
3	while $m(A_T) < m(A)$ do
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge m(A_T) < m(A)$
5a	Determine block size
	wh one
6	where
8	
5b	
7	
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
	endwhile
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A))$
1b	$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}5(A, B, C)$
1a	$C = \widehat{C}$
4	$A o \left(\frac{A_T}{A_B}\right), B o \left(\frac{B_T}{B_B}\right)$ where A_T has 0 rows, B_T has 0 rows
2	$C = A_T^T B_T + B_T^T A_T + \hat{C}$
3	while $m(A_T) < m(A)$ do
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge m(A_T) < m(A)$
5a	Determine block size b
	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{B_1}\right) $ where A_1 has b rows, B_1 has b rows
6	
8	
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{B_1}\right)$
7	
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
	endwhile
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A))$
1b	$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}5(A, B, C)$
1a	$C = \widehat{C}$
4	$A \to \left(\frac{A_T}{A_B}\right), B \to \left(\frac{B_T}{B_B}\right)$ where A_T has 0 rows, B_T has 0 rows
2	$C = A_T^T B_T + B_T^T A_T + \hat{C}$
3	while $m(A_T) < m(A)$ do
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge m(A_T) < m(A)$
5a	Determine block size b
	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{B_1}\right) $ where A_1 has b rows, B_1 has b rows
6	$C = A_0^T B_0 + B_0^T A_0 + \widehat{C}$
8	
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{B_1}\right)$
7	
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
	endwhile
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A))$
1b	$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}5(A, B, C)$
1a	$C = \widehat{C}$
4	$A o \left(\frac{A_T}{A_B}\right)$, $B o \left(\frac{B_T}{B_B}\right)$ where A_T has 0 rows, B_T has 0 rows
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
3	while $m(A_T) < m(A)$ do
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge m(A_T) < m(A)$
5a	Determine block size b
	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{B_1}\right) $ where A_1 has b rows, B_1 has b rows
6	$C = A_0^T B_0 + B_0^T A_0 + \widehat{C}$
8	
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{B_1}\right)$
7	$C = A_0^T B_0 + B_0^T A_0 + A_1^T B_1 + B_1^T A_1 + \widehat{C}$
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
	endwhile
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A))$
1b	$[C] = \operatorname{Syr}2k \operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}5(A, B, C)$
1a	$C = \widehat{C}$
4	$A o \left(\frac{A_T}{A_B}\right)$, $B o \left(\frac{B_T}{B_B}\right)$ where A_T has 0 rows, B_T has 0 rows
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
3	while $m(A_T) < m(A)$ do
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge m(A_T) < m(A)$
5a	Determine block size b
	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{B_1}\right) $ where A_1 has b rows, B_1 has b rows
6	$C = A_0^T B_0 + B_0^T A_0 + \hat{C}$
8	$C := A_1^T B_1 + B_1^T A_1 + \widehat{C}$
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{B_1}\right)$
7	$C = A_0^T B_0 + B_0^T A_0 + A_1^T B_1 + B_1^T A_1 + \widehat{C}$
2	$C = A_T^T B_T + B_T^T A_T + \widehat{C}$
	endwhile
2,3	$C = A_T^T B_T + B_T^T A_T + \widehat{C} \wedge \neg (m(A_T) < m(A))$
1b	$[C] = \operatorname{Syr}2k_{-}\operatorname{lt}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}5(A, B, C)$
	$A o \left(\frac{A_T}{A_B}\right), B o \left(\frac{B_T}{B_B}\right)$ where A_T has 0 rows, B_T has 0 rows
	while $m(A_T) < m(A)$ do
	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{B_1}\right) $ where A_1 has b rows, B_1 has b rows
	$C := A_1^T B_1 + B_1^T A_1 + \widehat{C}$
	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{B_1}\right)$
	endwhile

Algorithm: $[C] := \text{Syr}2\text{K_LT_BLK_VAR}5(A, B, C)$

$$A o \left(\frac{A_T}{A_B}\right) , B o \left(\frac{B_T}{B_B}\right)$$

where A_T has 0 rows, B_T has 0 rows

while $m(A_T) < m(A)$ do

Determine block size b

$$\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{B_1}\right)$$

where A_1 has b rows, B_1 has b rows

$$C := A_1^T B_1 + B_1^T A_1 + \hat{C}$$

$$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{A_1}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{B_1}\right)$$

endwhile