Calculus III Homework 3 Question 2

November 24, 2021

Find a vector a with representation given by the directed line segment AB. Draw AB

5: A(-1,1), B(3,2): AB = <3-(-1), 2-1> = <4, 1>

$$6: A(-4,-1), B(1,2): AB = <1-(-4), 2-(-1))> = <5, 3>$$

7 : A(0,3,1), B(2,3,-1) : AB = <2-0,3-3,(-1)-1> = <2,0,-2> 8 : <math>A(4,0,-2), B(4,2,1) : AB = <4-4,2-0,1-(-2)> = <0,2,3>

Calculus III Homework 3 Question 3 Section 10.2 # 9 - 12

9. Find the sum of <-1,4> and <6,-2> and graph them

10. Find the sum of < 3, -1 > and < -1, 5 > and graph them

11. Find the sum of < 3, 0, 1 > and < 0, 8, 0 > and graph them

12. Find the sum of <1,3,-2> and <1,3,4> and graph them

Math215

Homework 3

November 24, 2021

Problem 8

Show that $\vec{A} \cdot (\vec{A} \times \vec{B}) = \vec{0}$ and $\vec{B} \cdot (\vec{A} \times \vec{B}) = \vec{0}$ for all $\vec{A} = \langle a_1, a_2, a_3 \rangle$ and $\vec{B} = \langle b_1, b_2, b_3 \rangle$

Proof:

$$\vec{A} \cdot (\vec{A} \times \vec{B}) = \tag{1}$$

$$\langle a_1, a_2, a_3 \rangle \cdot (\langle a_1, a_2, a_3 \rangle \times \langle b_1, b_2, b_3 \rangle) = \tag{2}$$

$$\langle a_1, a_2, a_3 \rangle \cdot (\langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle) = (3)$$

$$a_1(a_2b_3 - a_3b_2) + a_2(a_3b_1 - a_1b_3) + a_3(a_1b_2 - a_2b_1) =$$

$$(4)$$

$$a_1a_2b_3 - a_1a_3b_2 + a_2a_3b_1 - a_2a_1b_3 + a_3a_1b_2 - a_3a_2b_1 =$$
 (5)

$$a_1a_2b_3 - a_1a_2b_3 + a_2a_3b_1 - a_2a_3b_1 + a_1a_3b_2 - a_1a_3b_2 =$$
 (6)

$$\vec{B} \cdot (\vec{A} \times \vec{B}) = \tag{8}$$

$$\langle b_1, b_2, b_3 \rangle \cdot (\langle a_1, a_2, a_3 \rangle \times \langle b_1, b_2, b_3 \rangle) = \tag{9}$$

$$\langle b_1, b_2, b_3 \rangle \cdot (\langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle) = \tag{10}$$

$$b_1(a_2b_3 - a_3b_2) + b_2(a_3b_1 - a_1b_3) + b_3(a_1b_2 - a_2b_1) =$$
(11)

$$b_1 a_2 b_3 - b_1 a_3 b_2 + b_2 a_3 b_1 - b_2 a_1 b_3 + b_3 a_1 b_2 - b_3 a_2 b_1 =$$

$$\tag{12}$$

$$b_1 a_2 b_3 - b_1 a_2 b_3 + b_2 a_3 b_1 - b_2 a_3 b_1 + b_3 a_1 b_2 - b_3 a_1 b_2 = \tag{13}$$

$$(14)$$