学号:	姓名:	成绩:
1.1 选择题	第一章 振动	
(1) 一物体作简谐振动,振动方程	为 $x = A\cos(\omega t + \frac{\pi}{2})$,则该物体	$\cot t = 0$ 时刻的动能与 $t = T/8$ (T
为振动周期)时刻的动能之比为: (A)1: 4; (B) 1: 2; (G) 弹簧振子在光滑水平面上作简(A) kA²; (B) kA²/2; 1.2 填空题 (2) 一水平弹簧简谐振子的振动的位移为零,速度为一ωA、加速度	- () . C) 1: 1; (D) 2: 1. б谐振动时,弹性力在半个周期的 (C) kA ² //4; (D) 0. 曲线如题 1.2(2)图所示. 振子在 医为零和弹性力为零的状态,对 振子处在位移的绝对值为 A、速	的所作的功为(). A A B C C C A C C C C C C C C C C C C
(a) 若 <i>t</i> =0 时质点过 <i>x</i> =0 处且 (b) 若 <i>t</i> =0 时质点过 <i>x</i> = <i>A</i> /2 处	及速度与加速度的最大值; 平均动能和平均势能,在那些位置	$\exists x = $

- 1.9 一质量为 $10\times10^{-3}~kg$ 的物体作简谐振动,振幅为 24 cm,周期为 4.0 s,当 $t_1=0$ 时位移为 +24 cm.
- 求: (1) t = 0.5 s 时,物体所在的位置及此时所受力的大小和方向;
- (2) 由起始位置运动到 x = 12 cm 处时所需的最短时间;
- (3) 在x = 12 cm 处物体的总能量.

1.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为 $\begin{cases} x_1 = 0.4\cos(2t + \frac{\pi}{6}) \ m \\ x_2 = 0.3\cos(2t - \frac{5}{6}\pi) \ m \end{cases}$

试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程.

学号:	姓名:	成绩:
	第2章 波	动
2.1 选择题		
(1) 一平面简谐波在弹性媒质中传播	f, 在媒质质元从 ^平	平衡位置运动到最大位移处的过程中:
().		
(A) 它的动能转化为势能; (B) 它的势	的能转化为动能;	
(C) 它从相邻的一段质元获得能量其能	_{比量逐渐增大} ;	
(D) 它把自己的能量传给相邻的一段原	质元,其能量逐渐减少	A
(2) 某时刻驻波波形曲线如图所示, [则 a, b 两点位相差	是 b
().		0
(A) π ; (B) $\pi/2$;		$-A$ $\frac{\lambda}{2}$ $\frac{9\lambda}{8}$
(C) $5\pi/4$; (D) 0.		2 8
		图 2.1(2)
2.2 填空题		
(2) 一横波的波动方程是 $y = 0.02$ si	$\ln 2\pi (100t - 0.4x)(x^2)$	SI),则振幅是,波长
是,频率是	_,波的传播速度是_	·
(3) 设入射波的表达式为 $y_1 = A\cos[2x]$	$\pi(vt+\frac{x}{\lambda})+\pi$],波有	在x=0处反射,反射点为一固定端,则反
射波的表达式为,	驻波的表达式为	,入射波和反射波
合成的驻波的波腹所在处的坐标为	·	
2.12 加颢2.12图所示,已知 <i>t</i> = 0.s 时利	$a_t = 0.5$ s 时的波形	曲线分别为图中曲线(a)和(b),周期 $T > 0.5 s$,
2.12 如 2.12 图 $//$ 0、 1.12		m ~ (1.0 0.0) 1 m ~ (w) m / (w) 1 m ~ (w) 1 m
(1) 波动方程;	11.44.	
(2) <i>P</i> 点的振动方程.		

- 2.14 如题2.14图所示,有一平面简谐波在空间传播,已知P点的振动方程为 $y_P = A\cos(\omega t + \varphi_0)$.
- (1) 分别就图中给出的两种坐标写出其波动方程;
- (2) 写出距P点距离为b的Q点的振动方程.

2.19 如题2.19图所示,设 B 点发出的平面横波沿 BP 方向传播,它在 B 点的振动方程为 $y_1 = 2 \times 10^{-3}\cos 2\pi t$; C 点发出的平面横波沿 CP 方向传播,它在 C 点的振动方程为 $y_2 = 2 \times 10^{-3}\cos (2\pi t + \pi)$,本题中 y 以m计, t 以s计. 设 BP = 0.4 m, CP = 0.5 m ,波速 u = 0.2 m/s ,求:

- (1) 两波传到P点时的位相差;
- (2) 当这两列波的振动方向相同时,P处合振动的振幅.

学号:	姓名:	成绩:	
	第4章 光的		
4.1 选择题			
(1) 在双缝干涉实验中,为使原	屏上的干涉条纹间距变大,	可以采取的办法是:().
(A) 使屏靠近双缝;	(B) 使两缝的间距变小;		
(C) 把两个缝的宽度稍微调窄;	(D) 改用波长较小的单色	光源.	
(2) 两块平玻璃构成空气劈形	莫,左边为棱边,用单色平征	亍光垂直入射. 若上面的	平玻璃以棱边为轴,沿逆
时针方向作微小转动,则干涉条	:纹的: ().		
(A) 间隔变小,并向棱边方向 ⁵	P移; (B) 间隔变大,	并向远离棱边方向平移;	
(C) 间隔不变,向棱边方向平积	多; (D) 间隔变小,	并向远离棱边方向平移.	
4.2 填空题			
(1) 如图所示,波长为 λ 的平征	厅单色光斜入射到距离为 d l	的双缝上,入射	~
角为 $ heta$. 在图中的屏中央 O	处($\overline{S_1O} = \overline{S_2O}$),两束标	目干光的相位差为	$\theta = S_1$ δd
 (2)在双缝干涉实验中,所用 ^真	单色光波长为 $\lambda=$ 562.5 nm ((1nm=10 ⁻⁹ m),双缝	
与观察屏的距离 $D=1.2 \text{m}$,若测	得屏上相邻明条纹间距为	x=1.5 mm, 则双缝	$\lambda \longrightarrow S_2$
的间距 <i>d</i> =			I
(4) 在杨氏双缝干涉实验中:	整个装置的结构不变,	全部由空气中浸入水中	,则干涉条纹的间距将
变(填疏或密)			
(6)在杨氏双缝干涉实验中,用	一块透明的薄云母片盖住下	面的一条缝,则屏幕上的	干涉条纹将向方
移动.			
4.7 在杨氏双缝实验中,双缝间	距 d =0.20 mm,缝屏间距 L	D=1.0m,试求:	
(1) 若第二级明条纹离屏中心的	距离为6.0 mm,计算此单色	光的波长;	
(2) 相邻两明条纹间的距离.			

4.8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置。若入射光的波长为550 nm, 求此云母片的厚度。

4.13 如题4.13图,波长为680 nm的平行光垂直照射到 L=0.12 m长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径 d=0.048 mm的细钢丝隔开. 求:

- (1) 两玻璃片间的夹角 θ =?
- (2) 相邻两明条纹间空气膜的厚度差是多少?
- (3) 相邻两暗条纹的间距是多少?
- (4) 在这0.12 m内呈现多少条明条纹?

2017-2018 年第一学期——大学物理波动光学作业

学号:	姓名:	成绩:
5.1 选择题	第5章 光	的衍射
(1)在夫琅禾费单缝衍射实验中 各级衍射条纹().	,对于给定的入射单色。	光,当缝宽度变小时,除中央亮纹的中心位置不变外,
(A) 对应的衍射角变小; (B) 对	` ')对应的衍射角也不变; (D)光强也不变.
(3) 波长为 λ 的单色光垂直入射则决定出现主极大的衍射角 θ 的		为 a 、总缝数为 N 的光栅上. 取 $k=0$, ± 1 , ± 2 ,
i	数级次的主极大都恰好	$Nd\sin\theta = k\lambda$; (D) $d\sin\theta = k\lambda$. 在单缝衍射的暗纹方向上,因而实际上不出现,那么 b 的关系为().
(A) a=0.5b; (B) a=b; 5.2 填空题	(C) $a=2b$; (D)	a=3b.
	- 2111	对应于衍射图样的第一级暗纹位置的衍射角的绝对值
i		f射条纹变;当入射波长变长时,则衍射条纹
成的衍射条纹. 若屏上离中央明(1)入射光的波长;		单缝,缝后凸透镜的焦距 f = 40.0 cm,观察屏幕上形 点为一明条纹;求:
(2) P 点处条纹的级数; (3) 从 P 点看,对该光波而言,	狭缝处的波面可分成厂	L个半波带?

5.14 波长 $\lambda = 600$ nm的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在 $\sin \varphi_2 = 0.20$ 与
$\sin \varphi_3 = 0.30$ 处,第四级缺级. 求: (1) 光栅常数; (2) 光栅上狭缝的宽度;
(3) 在90°> φ >-90°范围内,实际呈现的全部级数.
5.15 一双缝,两缝间距为 0.1 mm,每缝宽为 0.02 mm,用波长为 480 nm的平行单色光垂直入射双缝,双
缝后放一焦距为 50cm 的透镜. 试求: (1)透镜焦平面上单缝衍射中央明条纹的宽度;
(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?

2017-2018年第一学期——大学物理波动光学作业

学号:	姓名:	成绩: _	
6.1 选择题	第6章 光		450名 刚穷计亚人伯托山
(1) 一東光强为 <i>I</i> ₀ 的自然光垂直第 后的光强 <i>I</i> 为 ().			。45°用,则穿过两个偏振厅
(A) $I_0/4\sqrt{2}$; (B) $I_0/4$ (3) 在双缝干涉实验中,用单色自 (A) 干涉条纹的间距不变,但明纹 (C) 干涉条纹的间距变窄,且明纹	l然光,在屏上形成日 (的亮度加强; (B)	F涉条纹.若在两缝后放一 干涉条纹的间距不变,但	
6.2 填空题	$-I \cos^2 \alpha$ $\Rightarrow \pm I$	小通过校位盟的添针业的 2	早度 1 头 2 卧
 (1) 马吕斯定律的数学表达式为 I 强度; α 为入射光	方向和检偏器 特 角 入 射 到 两 种 姨	方向之间的夹角 某质的分界面上时,就	ı .
(4) 光的干涉和衍射现象反映了光			波.
6.9 投射到起偏器的自然光强度为1	0,开始时,起偏器	和检偏器的透光轴方向平征	宁. 然后使检偏器绕入射光
的传播方向转过 30°, 45°, 60°, 记	分别求出在上述三种	中情况下,透过检偏器后光	的强度是 I_0 的几倍?
6.12 一束自然光从空气入射到折射(1) 入射角等于多少? (2) 折射角为多少?	率为 1.40 的液体表面	五上,其反射光是完全偏振	光. 试求: