

REPUBLICA FEDERATIVA DO BRASIL Ministério do Desenvolvimento, da Indústria e Comércio Exterior. Instituto Nacional da Propriedade Industrial Diretoria de Patentes

CÓPIA OFICIAL

PARA EFEITO DE REIVINDICAÇÃO DE PRIORIDADE

O documento anexo é a cópia fiel de um Pedido de Patente de Invenção Regularmente depositado no Instituto Nacional da Propriedade Industrial, sob Número PI 0305905-7 de 11/12/2003.

Rio de Janeiro, 10 de Janeiro de 2005.

Oscar Paulo Bueno Chefe do NUCAD Mat. 449117

BEST AVAILABLE COPY

Número (21)

DEPÓSITO

Pedido de Patente ou de Certificado de Adição P10305905 — 7

depósito / /

O4

Ao Instituto Nacional da Propriedade Industrial:

O rec	querente solicita a conces	ssão de uma patente na natu	reza e nas condições abaixo indicadas:				
1.	Depositante (71):						
1.1	Nome: EMPRESA BRASILEIRA DE COMPRESSORES S/A - EMBRACO						
1.2	Qualificação: Empresa brasileira						
1.3	CGC/CPF: 84.720.630/0001-20						
1.4	Endereço completo: Rua Rui Barbosa, 1020 /						
		inville- SC	•				
1.5	Telefone: ()					
	FAX: ()	continua em folha anexa				
2.	Natureza:						
X_2	2.1 Invenção / 2.	1.1. Certificado de Adição	2.2 Modelo de Utilidade				
<u> </u>		,	/				
Escre	va, obrigatoriamente e por ex	ctenso, a Natureza desejada: inve	enção				
3.	Título da Invenção.	do Modelo de Utilidade ou	do Certificado de Adição (54):				
•	"SISTEMA DE PARTII	DA PARA MOTOR A INDUÇÃ	O MONOFÁSICO"				
		Continua er	n folha anexa				
4.	Pedido de Divisão do pedido nº, de/						
5.	Prioridade Interna - O depositante reivindica a seguinte prioridade:						
		Data de Depósito					
6.	Prioridade - o depos	itante reivindica a(s) seguint	te(s) prioridade(s):				
País	ou organização de origem	Número do depósito	Data do depósito				
L		<u> </u>					
			Continua em folha anexa				

Formulário 1.01 - Depósito de Pedido de Patente ou de Certificado de Adição (folha 1/2)

7.	Inventor (72):						
() Assinale aqui se o(s) mesi	mo(s) requ	uer	(em) a rão divulgação de	seu(s) notate(s)		
	(art. 6° § 4° da LPI e item 1.1 c	do Ato Norr	nativ	70 nº 127/97)			
7.1	Nome: MARCOS GUILHERME SCHWARZ						
1.2	Qualificação: brasileiro, casado, engenheiro eletricista, CPF 380.907.679-15						
7.3	Endereço: Rua General Osório, Joinville- SC	257 - casa	02				
7.4		elefone ()			
		`		continua em	folha anexa		
8.	Declaração na forma do item :	3.2 do Ato	N	ormativo nº 127/97:			
				em anexo			
9.	Declaração de divulgação ante	erior não	pre	judicial (Período de graça):			
art. 1	12 da LPI e item 2 do Ato Normat	ivo nº 127/9	97):				
•							
							
				em anexo			
10.	Procurador (74):						
10.1	Nome e CPF/CGC: ANTONIO	MAURIC	OIC	PEDRAS ARNAUD	<== == ==		
	brasileiro, enger	iheiro, CR	EΑ	/SP n°30.806, CPF 212.281.	.677-53		
10.2	Endereço: Rua José Bonifácio,	93 - 7°, 8°	, e ?	9º andares - Centro			
	São Paulo - SP	10.4	,	Telefone (011) 3291-2444			
10.3	CEP: 01003-901	10.4	•	Telefone (011) 3291-2444			
11.	Documentos anexados (assina	le e indiau	e ta	embém o número de folhas):	!		
	erá ser indicado o nº total de some	ente uma d	las i	vias de cada documento)			
	1.1 Guia de recolhimento			11.5 Relatório descritivo	8 fls.		
	1.2 Procuração	1 fls.		11.6 Reivindicações	2 fls.		
	1.3 Documentos de prioridade	fls.	x	11.7 Desenhos	2 fls.		
11	1.4 Doc. de contrato de Trabalho	fls.	x	11.8 Resumo	1 fls.		
11	1.9 Outros (especificar):			•	fls.		
	1.10 Total de folhas anexadas:				15 fls;		
^					1 10 1103		
10	Declaro, sob penas da Lei, qu	o todos o	in	formações acima prestada	s são completas		
12.	dadeiras da Lei, qu	ie iouas as	5 III	ioi mações acima prestada	s suo compicuis		
e ver	dadeiras						
				seed 1			
				fllhemand			
São 1	Paulo, 11 de dezembro de 2003	/		Antonio M. P. Arnaud	1)		
		A ===		ura e Carimbo	V		
	Local e Data	ASS	шаі	ura e Carmitou			

02

Formulário 1.01 - Depósito de Pedido de Patente ou de Certificado de Adição (folha 2/2)

"SISTEMA DE PARTIDA PARA MOTOR A INDUÇÃO MONOFÁSICO" Campo da invenção

05

Refere-se a presente invenção a um sistema de partida eletrônica do tipo utilizado em motores elétricos, particularmente motores a indução monofásicos.

Histórico da invenção

partida é o capacitor.

10

35

Motores a indução monofásicos são amplamente utilizados devido a sua simplicidade, robustez e alta performance. Sua aplicação é encontrada em eletrodomésticos em geral, refrigeradores, freezers, condicionadores de ar, compressores herméticos, lavadoras, motobombas,

ventiladores e algumas aplicações industriais.
Os motores a indução conhecidos são geralmente dotados de

um rotor do tipo gaiola e um estator bobinado,

15 constituído de dois enrolamentos, sendo um deles enrolamento de marcha e o outro um enrolamento partida. Durante a operação normal do compressor, marcha é alimentado por uma enrolamento de é que de partida sendo o enrolamento alternada, 20 alimentado temporariamente, no início da operação de

partida, criando um campo magnético girante no entreferro do estator, condição esta necessária para acelerar o rotor e promover sua partida.

O campo magnético girante pode ser obtido alimentando-se
a bobina de partida com uma corrente defasada, no tempo,
relativamente à corrente circulante pelo enrolamento de
marcha, preferencialmente num ângulo próximo de 90 graus.
Esta defasagem entre a corrente circulante nos dois
enrolamentos é obtida por características construtivas
dos enrolamentos ou pela instalação de uma impedância
externa em série com um dos enrolamentos, mas geralmente
em série com o enrolamento de partida, sendo que o
elemento mais utilizado para prover essa defasagem entre
as correntes do enrolamento principal e do enrolamento de

Este valor de corrente circulante pelo enrolamento de partida, durante o processo de partida do motor é,

geralmente, elevado, fazendo-se necessário o uso de algum tipo de chave que interrompa esta corrente, após transcorrido o tempo necessário para promover a aceleração do motor.

5 Após o motor ser colocado em giro, o campo magnético criado pelo enrolamento de marcha interage com o campo induzido no rotor e mantém o campo girante necessário para o funcionamento do motor.

Nos casos em que o motor é projetado para não utilizar 10 dispositivos em série com o enrolamento de partida, ou seja, quando a defasagem entre as correntes é garantida através das características construtivas do enrolamento de partida, normalmente se emprega, nesse enrolamento, de mais finos е menor número espiras, condutores 15 garantindo uma relação resistência para reatância mais alta e, portanto, menor defasagem entre tensão e corrente em relação ao enrolamento de marcha.

A desvantagem dessa técnica está no fato de que normalmente não se consegue grande defasagem entre as correntes do enrolamento de marcha e o de partida somente alterando aspectos construtivos do enrolamento de partida, de modo que o torque do motor fica comprometido durante a partida.

Essa técnica normalmente é utilizada em motores que serão aplicados em cargas que não requerem um momento de partida muito alto e, portanto, o motor é capaz de acelerar a carga, mesmo sem um grande torque de rotor bloqueado. Como vantagem, o custo final da utilização desses motores é reduzido pelo fato de dispensarem a utilização de qualquer elemento adicional acoplado ao enrolamento de partida.

A outra solução para garantir a aceleração do motor, a partir da inércia, é com a utilização de um capacitor de alto valor de capacitância em série com o enrolamento auxiliar, tipicamente com capacitância na faixa de 40μF a 300μF, dependendo do tamanho do motor. A utilização de um capacitor de alta capacidade garante que a corrente no

estará adiantada de partida enrolamento de do graus em relação а corrente aproximadamente 90 enrolamento principal e o torque de partida valores superiores àqueles alcançados sem a utilização de enrolamentos. O problema em série com os elementos relacionado ao uso de capacitor de partida está no custo elevado desse componente, na vida útil relativamente curta dos capacitores e no aumento do número de itens de estoque da solução final.

10 Objetivos da invenção

Assim, é um objetivo da presente invenção prover um sistema de partida para motor a indução monofásico, para incrementar o torque de partida de tal tipo de motores, sem a utilização de capacitores.

É também outro objetivo da presente invenção prover um sistema tal como acima citado, de forma a incrementar o torque máximo fornecido pelo motor durante a aceleração. É também outro objetivo da presente invenção prover um sistema de partida tal como acima e que reduza o consumo de energia do motor durante a partida e o período de aceleração.

Sumário da invenção

Estes e outros objetivos são alcançados através de um sistema de partida para motor a indução monofásico 25 compreendendo: um estator tendo um enrolamento de marcha e um enrolamento de partida; uma fonte de alimentação de aos referidos enrolamentos de marcha corrente partida; uma chave de marcha e uma chave de partida, respectivamente conectando o enrolamento de marcha e o 30 enrolamento de partida à fonte, quando em uma condição fechada, dita chave de partida sendo conduzida a uma condição aberta quando terminada a partida do motor; e controle alimentada pela fonte, unidade de operativamente conectada às chaves de marcha de 35 partida, de modo a instruir suas condições aberta e fechada, dita unidade de controle sendo programada para operar a chave de marcha, de modo a provocar um atraso na ωz

alimentação de corrente fornecida ao enrolamento de marcha, em relação à alimentação da corrente fornecida ao enrolamento de partida, durante a partida do motor, por um determinado intervalo de tempo previamente definido e considerado a partir do momento de passagem por zero da corrente de alimentação ao estator.

Breve descrição dos desenhos

A invenção será descrita com referência aos desenhos em anexo, nos quais:

- 10 A figura 1 representa, esquematicamente, uma configuração de um sistema de partida construído de acordo com a presente solução;
 - A figura 2 representa, esquematicamente, a tensão modulada e as correntes moduladas para os enrolamentos de
- 15 marcha e de partida, defasadas entre si, de acordo com a presente invenção, durante a partida do motor;
 - A figura 3 representa, esquematicamente, curvas de aceleração do motor para partida convencional e para partida utilizando o sistema de partida proposto; e
- 20 A figura 4 representa, esquematicamente, curvas de potência obtidas durante a aceleração do motor, para partida convencional deste e utilizando o sistema de partida proposto.

Descrição da configuração ilustrada

- O sistema de partida de motor a indução monofásico da 25 presente invenção será descrito para um compreendendo: um estator tendo um enrolamento de marcha e um enrolamento de partida 12, alimentados por corrente alternada de uma fonte F; uma chave de marcha S1 30 e uma chave de partida S2, respectivamente conectando o enrolamento de marcha 11 e o enrolamento de partida 12 à fonte F, quando em uma condição fechada, dita chave de S2 sendo conduzida a uma condição
- interrompendo a alimentação de corrente elétrica ao 35 enrolamento de partida 12, quando terminada a partida do motor.
 - O sistema de partida em descrição inclui também um sensor

de corrente 20, conectado em série entre a fonte F e o estator, de modo a medir a corrente que circula pelos enrolamentos de marcha 11 e de partida 12 do estator do motor 10 e operativamente conectado a uma unidade de controle 30 alimentada pela fonte F e sendo operativamente conectada às chaves de marcha S1 e de partida S2, de modo a instruir a abertura e o fechamento destas em função de determinadas condições de operação detectadas pelo sensor de corrente 20.

As chaves de marcha S1 e de partida S2 podem ser contatos eletromecânicos ou chaves semicondutoras estáticas para corrente alternada como, por exemplo, triacs, sendo que, de acordo com a presente invenção, pelo menos a chave de marcha S1 é um semicondutor do tipo triac.

Na solução em questão, o sensor de corrente 20 informa à unidade de controle 30 sobre cada momento de passagem de zero da corrente, para permitir o controle da modulação sobre a chave de marcha S1 do enrolamento de marcha 11 do motor 10.

Os métodos usualmente utilizados para geração do torque 20 de partida nos motores de indução monofásicos consistem em criar meios de adiantar a corrente circulante no à relação enrolamento partida 12 em de circulante no enrolamento de marcha 11. Para tanto o motor é fabricado de modo a garantir essa defasagem ou 25 um capacitor é posicionado em série com então enrolamento de partida 12 durante a fase de partida, como descrito anteriormente.

A presente invenção consiste em atrasar a corrente 30 circulante no enrolamento de marcha 11 do motor 10, durante o período de partida, através do controle do ângulo de disparo do triac que atua como chave de marcha S1.

De acordo com a presente invenção, a unidade de controle 35 30 é programada para operar a chave de marcha S1, de modo a provocar um atraso na alimentação de corrente fornecida ao enrolamento de marcha 11, em relação à alimentação da corrente fornecida ao enrolamento de partida 12, durante a partida do motor, por um determinado intervalo de tempo previamente definido e considerado a partir do momento de passagem por zero da corrente de alimentação ao estator.

passagem por zero da corrente de alimentação ao estator. Na solução em questão, a cada passagem por zero da corrente de alimentação de pelo menos um dos enrolamentos de marcha 11 e de partida 12, a unidade de controle 30 instrui uma condição de abertura da chave de marcha S1, o determinado sendo mantida durante condição dita intervalo de tempo, após o qual a unidade de controle 30 10 instrui uma condição de fechamento da chave de marcha S1. A figura 2 mostra a forma de onda de tensão aplicada ao enrolamento de marcha 11 durante o período de arranque do motor. O triac que atua como chave de marcha S1 é é determinado instante e, como disparado em 15 característico desses componentes, quando a corrente circulante se extingue, caso não haja sinal aplicado ao gate, o triac que atua como chave de marcha S1 retorna para o estado aberto, o que é conhecido como auto-20 comutação. A unidade de controle 30 então aguarda um intervalo de tempo Δt , medido em relação à passagem por qualquer corrente circulante por

sensor de corrente 20, para aplicar novo sinal ao 25 terminal gate e disparar, novamente, o triac que atua como chave de marcha S1.

enrolamentos de marcha 11 e de partida 12, detectado pelo

Como resultado do retardo no disparo do triac que atua como chave de marcha S1, a corrente circulante pelo enrolamento de marcha 11 terá a forma apresentada na figura 2, onde pode ser observado que a corrente obtida através da comutação está atrasada em relação àquela que se obteria sem o controle do triac que atua como chave de marcha S1. Uma vez que a corrente no enrolamento de marcha 11 está mais atrasada do que a condição original sem a modulação, o torque de partida e aceleração do motor 10 serão incrementados à medida que se aumenta o atraso do disparo do triac correspondente à chave de

30

marcha S1. Ou seja, atrasando a corrente do enrolamento de marcha 11, obtêm-se efeito semelhante ao adiantamento da corrente no enrolamento de partida 12.

eficaz fornecida corrente а Por outro lado, enrolamento de marcha 11 diminui na medida que o ângulo de disparo aumenta, de modo que existe um ponto máximo para atraso da comutação do triac correspondente à chave de marcha S1, para garantir aumento do torque. O atraso disparo deste triac depende da indutância ideal de característica do enrolamento de marcha 11 e o comportamento durante o arranque do motor 10 e é ajustado de acordo com as características construtivas do motor 10 para atingir o máximo incremento de torque possível alimentação da dito atraso na durante o arranque, 15 corrente ao enrolamento de marcha 11 sendo, por exemplo, de até 90 graus.

A figura 3 mostra as curvas de torque durante a aceleração para o sistema de partida da presente invenção e para os sistemas convencionais sem elementos auxiliares de partida.

20

30

A potência consumida pelo motor 10 durante a partida e a aceleração com a solução da presente invenção diminui em relação à partida feita diretamente a partir da rede de alimentação, já que a corrente fornecida ao enrolamento de marcha 11 é bastante reduzida em relação à situação sem controle de disparo.

A figura 4 mostra as curvas comparativas de potência consumida pelo motor durante a aceleração. Em função do incremento da curva de torque durante o período de aceleração, a carga será acelerada mais rápido, reduzindo o tempo de partida e o consumo de energia associado.

Após finalizado o tempo predeterminado para partida do motor 10, o triac correspondente à chave de partida S2, associada à alimentação do enrolamento de partida 12, é comandado a permanecer no estado aberto e o triac associado à chave de marcha S1, de alimentação do enrolamento de marcha 11, é comandado a manter a conexão

u a

entre a fonte de alimentação F e o enrolamento de marcha 11 sem atraso na condução, ou seja, após concluído o arranque, a tensão da rede é aplicada diretamente ao enrolamento de marcha 11 do motor 10, garantindo então máxima tensão e torque no motor 10 durante o período de funcionamento normal.

REIVINDICAÇÕES

- 1- Sistema de partida para motor a indução monofásico compreendendo: um estator tendo um enrolamento de marcha (11) e um enrolamento de partida (12); uma fonte (F) de 5 alimentação de corrente aos referidos enrolamentos de marcha (11) e de partida (12); uma chave de marcha (S1) e uma chave de partida (S2), respectivamente conectando o enrolamento de marcha (11) e o enrolamento de partida (12) à fonte (F), quando em uma condição fechada, dita chave de partida (S2) sendo conduzida a uma condição aberta quando terminada a partida do motor; e uma unidade pela alimentada controle (30)operativamente conectada às chaves de marcha (S1) partida (S2), de modo a instruir suas condições aberta e fechada, caracterizado pelo fato de a unidade de controle 15 (30) ser programada para operar a chave de marcha (S1), de modo a provocar um atraso na alimentação de corrente fornecida ao enrolamento de marcha (11), em relação à alimentação da corrente fornecida ao enrolamento de durante a partida do motor, por partida (12), 20 determinado intervalo de tempo previamente definido e considerado a partir do momento de passagem por zero da corrente de alimentação ao estator.
- 1, reivindicação com a 2-Sistema. de acordo caracterizado pelo fato de a cada passagem por zero da 25 corrente de alimentação do enrolamento de partida (12), a instruir uma condição (30) controle de unidade abertura da chave de marcha (S1), dita condição sendo mantida durante o determinado intervalo de tempo, após o 30 qual a unidade de controle (30) instrui uma condição de fechamento da chave de marcha (S1).
- 3- Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de o atraso na alimentação da corrente ao enrolamento de marcha (11) ser de até 90 35 graus.
 - 4- Sistema, de acordo com a reivindicação 1 e incluindo um sensor de corrente (20) conectado entre a fonte (F) e

o estator e operativamente conectado à unidade controle (30), caracterizado pelo fato de o sensor de corrente (20) informar à unidade de controle (30) cada momento de passagem por zero da corrente de alimentação 5 ao estator.

NA

- reivindicação l, acordo COM а Sistema, de caracterizado pelo fato de pelo menos a chave de marcha (11) ser um semicondutor.
- reivindicação a Sistema, acordo com de caracterizado pelo fato de a chave de marcha (11) ser um triac.
- reivindicação 1, 7-Sistema, de acordo com intervalo de fato de 0 caracterizado pelo predeterminado (Δt) ser previamente definido em função 15 das características construtivas do motor (11).

FIG. 2

FIG. 3

FIG. 4

RESUMO

"SISTEMA DE PARTIDA PARA MOTOR A INDUÇÃO MONOFÁSICO" compreendendo: um estator tendo um enrolamento de marcha (11) e um enrolamento de partida (12); uma fonte (F) de 5 alimentação de corrente aos referidos enrolamentos de marcha (11) e de partida (12); uma chave de marcha (S1) e uma chave de partida (S2), respectivamente conectando o enrolamento de marcha (11) e o enrolamento de partida (12) à fonte (F), quando em uma condição fechada; e uma 10 unidade de controle (30) sendo programada para operar a chave de marcha (S1), de modo a provocar um atraso na alimentação de corrente fornecida ao enrolamento em relação à alimentação da corrente (11), marcha fornecida ao enrolamento de partida (12), durante a 15 partida do motor, por um determinado intervalo de tempo previamente definido e considerado a partir do momento de passagem por zero da corrente de alimentação ao estator.

2011 035 2 01217

Número (21) DEPOSITO depósito Pedido de Patente ou de Certificado de Adição o e data de depósito) Ao Instituto Nacional da Propriedade Industrial: O requerente solicita a concessão de uma patente na natureza e nas condições abaixo indicadas: Depositante (71): 1. Nome: EMPRESA BRASILEIRA DE COMPRESSORES S.A. - EMBRACO 1.1 Qualificação: SOCIEDADE BRASILEIRA CGC/CPF: 84.720.630/0001-20 1.3 1.2 Endereço completo: RUA RUI BARBOSA, 1020, 89219-901 JOINVILLE - SC, BR-1.4 BRASIL 1.5 Telefone: continua em folha anexa FAX: Natureza: 2.1.1. Certificado de Adição 2.2 Modelo de Utilidade 2.1 Invenção Escreva, obrigatoriamente e por extenso, a Natureza desejada: Patente de Invenção Título da Invenção, do Modelo de Utilidade ou do Certificado de Adição (54): 3. "CONJUNTO DE SISTEMA DE CONTROLE DE MOTOR DE INDUÇÃO E UM MOTOR DE INDUÇÃO, SISTEMA DE CONTROLE DE MOTOR DE INDUÇÃO, MÉTODO DE CONTROLE DE MOTOR DE INDUÇÃO E COMPRESSOR" continua em folha anexa Pedido de Divisão do pedido nº. , de 4. Prioridade Interna - O depositante reivindica a seguinte prioridade: 5. (66)Nº de depósito Data de Depósito **Prioridade** - o depositante reivindica a(s) seguinte(s) prioridade(s): Número do depósito Data do depósito País ou organização de origem continua em folha anexa

P122930 (ccs)

Dannemann, Slemsen, Bigler & Ipanema Moreira, Agente de Propriedade Industrial, matricula nº 192

Formulário 1.01 - Depósito de Pedido de Patente ou de Certificado de Adição (folha 1/3)

7.	Inventor (72):							
	Assinale aqui se o(s) mesmo(s) requer(cm) a não divulgação de seu(s) nome(s)							
7.1	(art. 6° § 4° da LPI e item 1.1 do Ato Normativo nº 127/97) Nome: MARCOS GUILHERME SCHWARZ							
7.1	CPF: 380.907.679-15	. 30	I IVVAIVA			1		
7.2	Qualificação: brasileira					d		
7.3		osc	ORIO, 257 (CAS	A 02 JOINVILLE SC, 8	9204-320, BR		
		, _	60 - 1 - 6- · ·					
7.4	CEP: 7.5)	Telefone:		Continua e	m folha anexa		
8.	Declaração na forma do item 3	3.2 d	o Ato Nori	nat				
.								
			ė					
						m folha anexa		
9.	Declaração de divulgação ante (art. 12 da LPI e item 2 do Ato N							
	(art. 12 da El 1 e Rem 2 do Ato 1	10111	MUVO II 12	.,,,	<i>i j.</i>			
		<u></u>			Continua e	m folha anexa		
10.	Procurador (74):		NIKI CICSIC	ENI	DICLED 9 IDANIEMA	MODEIDA		
10.1			NN, SIENIS 10001-14	ŒIV,	BIGLER & IPANEMA	WOREINA		
10.2	Endereço: Rua Ma		ês de Oline eiro	da, ˈ	70			
10.3	CEP: 22251-040 10).4	Telefone:		(0xx21) 2553 1811			
11.	Documentos anexados (assinal	le e	indique tan	ıbén	n o número de folhas):			
	(Deverá ser indicado o nº total o	de so	omente uma	da:	s vias de cada document	(0)		
1 1.	.1 Guia de recolhimento		1 fls.	\boxtimes	11.5 Relatório descritivo	12 fls.		
11 .	2 Procuração		1 fls.	\boxtimes	11.6 Reivindicações	5 fls.		
	3 Documentos de prioridade		fls.	冈	11.7 Desenhos	2 fls.		
	4 Doc. de contrato de Trabalho		· · · · · · · · · · · · · · · · · · ·		11.8 Resumo	2 fls.		
=	9 Outros (especificar):				•	fls.		
 				23 fls.				
× 11.	10 Total de folhas anexadas:					25 115.		
12.								
	e verdadeiras							
Rio de Janeiro 78 /11/2003								
Local e Data Assinatura e Carimbo						·		
Dannemann, Siemsen, Bigler & Ipanema Moreira								
					, ======			
P12293	30 (ccs)				1			

Dannemann, Siemsen, Bigler & Ipanema Moreira, Agente de Propriedade Industrial, matricula nº 192

ANEXO

7.	Inventor (72)	: Continuação)	·
7.1	Nome: RONA	ALDO RIBEIRO DUA	RTE	2
	CPF: 962.190).849-34		Ú
7.2	Qualificação:	brasileira		
7.3	Endereço:	RUA HENRIQUE M	IERS, 574 APTO 05, JOINVILLE, SC, 89218-6	00, BR
7.4	CEP:	7.5	Telefone:	

P122930 (ccs)

Relatório Descritivo da Patente de Invenção para "CONJUNTO DE SISTEMA DE CONTROLE DE MOTOR DE INDUÇÃO E UM MOTOR DE INDUÇÃO, SISTEMA DE CONTROLE DE MOTOR DE INDUÇÃO, MÉTODO DE CONTROLE DE MOTOR DE INDUÇÃO E COMPRESSOR".

5 Campo da invenção

10

15

20

25

30

A presente invenção refere-se a um conjunto de sistema de controle de motor de indução e um motor de indução, sistema de controle de motor de indução, método de controle de motor de indução, além de um compressor controlado com um motor de indução segundo os ensinamentos da presente invenção.

Descrição do estado da técnica

Motores à indução monofásicos são amplamente utilizados devido a sua simplicidade, robustez e alta performance. Sua aplicação é encontrada em eletrodomésticos, em geral, refrigeradores, freezeres, condicionadores de ar, compressores herméticos, lavadoras, motobombas, ventiladores e algumas aplicações industriais.

Os motores à indução conhecidos são geralmente dotados de um rotor do tipo gaiola e um estator bobinado, constituído de dois enrolamentos, sendo um deles um enrolamento de marcha e o outro um enrolamento de partida. Durante a operação normal do compressor, o enrolamento de marcha é alimentado por uma tensão alternada, sendo que o enrolamento de partida é alimentado temporariamente, no início da operação de partida, criando um campo magnético girante no entreferro do estator, condição esta necessária para acelerar o rotor e promover sua partida.

O campo magnético girante pode ser obtido alimentando-se a bobina de partida com uma corrente defasada, no tempo, relativamente à corrente circulante pelo enrolamento principal, preferencialmente num ângulo próximo de 90 graus. Esta defasagem entre a corrente circulante nos dois enrolamentos é obtida por características construtivas dos enrolamentos ou pela instalação de uma impedância externa em série com um dos enrolamentos, mas geralmente em série com o enrolamento de partida. Este valor de corrente circulante pelo enrolamento de partida, durante o processo

de partida do motor é, geralmente, elevado, fazendo-se necessário o uso de algum tipo de chave que interrompa esta corrente depois de transcorrido o tempo necessário para promover a aceleração do motor. Após o motor ser colocado em giro, o campo magnético criado pelo enrolamento de marcha interage com o campo induzido no rotor e mantém o campo girante necessário para o funcionamento do motor.

Ainda com relação à partida desse tipo de motor, tendo em vista que o rotor não gira com a simples aplicação de uma tensão no estator, deve-se prover meios de iniciar que o rotor gire para que a máquina possa operar.

Exemplos de formas usuais para se dar a partida de um motor de indução são descritas no livro de autoria de FITZGERALD, A. E., KINGS-LEY, C. & KUSKO, A. - Máquinas Elétricas, Ed. McGraw-Hill do Brasil, 1975.

Por conta das características construtivas, os motores de indução devem trabalhar dentro de faixas limitadas de tensão e freqüência. Uma tensão de alimentação muito acima daquela de projeto aumenta em demasia a corrente de excitação, aumentando o campo magnético no entreferro e, conseqüentemente, saturando o material ferromagnético do rotor e estator. Se a tensão for aumentada acima deste ponto a corrente se eleva muito rapidamente devido à baixa relutância do circuito magnético. Em contrapartida, uma tensão de alimentação muito abaixo à tensão de projeto reduz significativamente a corrente de excitação do motor e reduz o torque disponível no eixo, de modo que, nesse caso, o motor não tem condições de sustentar a carga nominal aplicada a seu eixo, que então entra em estado de bloqueio. Situação semelhante é ocasionada pela variação da freqüência.

Deficiências do estado da técnica

5

10

15

20

25

30

No que se refere às formas de partida dos motores de indução monofásicos, apesar de as técnicas atuais viabilizarem a partida do rotor, tais soluções resultam de construções mais complicadas já que, no caso do uso de um capacitor em série com o enrolamento de partida há um bom resultado no que se refere ao arranque do motor, mas eleva os custos da solução final do equipamento.

No que se refere ao problema da variabilidade do nível de tensão da rede em determinadas regiões, uma das formas utilizadas para solucionar o problema em questão, tem sido o emprego de motores superdimensionados para funcionarem em uma ampla faixa de tensão. Esses motores trabalham abaixo da sua carga máxima, de modo que se houver redução na tensão de alimentação ainda assim o motor tem condições de tracionar a carga. Devido também à robustez do motor, o motor pode sofrer uma sobretensão maior que os motores menores sem problemas de sobrecorrente e aquecimento. Isso soluciona o problema de variação da tensão de alimentação mas, evidentemente, resulta na necessidade da construção de motores de grande tamanho e peso e, conseqüentemente, custo elevado.

No que se refere aos problemas de variabilidade de freqüência em diferentes regiões de aplicação do motor, a solução tem sido o emprego de motores distintos para diferentes freqüências da rede de alimentação, gerando maior complexidade no gerenciamento de produção e estoque e dificultando/impedindo que produtos possam ser usados em regiões com diferentes freqüências de alimentação.

Ainda uma outra solução empregada atualmente, é o uso de motores com "taps" para seleção de vários valores de tensão da rede de alimentação. Tal solução resolve o problema de variação de tensão mas exige o emprego de várias chaves de potência para comutação dos "taps" dos motores multitensão.

Uma outra opção usada para sanar o problema é o emprego de estabilizadores de tensão associados ao motor. Tal solução também se mostra pouco prática e ainda tem custo elevado.

Objetivos da invenção

5

10

15

20

25

30

Os objetivos da presente invenção são um conjunto de sistema de controle de motor de indução e um motor de indução, sistema de controle de motor de indução, método de controle de motor de indução, além de um compressor controlado com um motor de indução segundo os ensinamentos da presente invenção, onde seja possível operar com o motor em uma ampla faixa de valores da tensão da rede de alimentação.

São também objetivos da presente invenção prever tal conjunto, sistema, método e compressor com a possibilidade de correção da tensão aplicada em função da freqüência da rede de alimentação.

11

Ainda, segundo os ensinamentos da presente invenção, é ainda prevista a possibilidade de arranque do motor montado isoladamente ou em conjunto com um compressor dispensando-se o uso do capacitor de partida.

Ainda, segundo os ensinamentos da presente invenção, um outro objetivo é de se evitar sobredimensionamento do motor e consequente elevação de custo de material, tamanho e peso desses equipamentos.

É ainda previsto de acordo com a presente invenção evitar-se o sobreaquecimento do motor quando a tensão da rede for elevada, melhorando sua performance e vida esperada.

Breve descrição da invenção

5

10

15

20

25

30

De modo a sanar os problemas existentes no estado da técnica e alcançar os objetivos da presente invenção, o conjunto, sistema, método e compressor, objetos da presente invenção, prevêem o uso de um motor de indução monofásico que seja projetado para operar abaixo do valor usual da rede para que sempre seja possível alimentar o motor, bastando que o valor da tensão controlada seja inferior ao valor da tensão de rede mínima, ou seja, o valor da tensão de rede seja reduzido.

O dimensionamento do motor é feito de tal forma que o mínimo torque necessário para partir a carga é obtido com uma tensão inferior à mínima tensão esperada na rede de alimentação. Dessa forma, o torque fornecido pelo motor sempre poderá ser maior que o mínimo necessário, em qualquer condição de tensão fornecida pela rede.

Para adequar a operação da flutuação da freqüência de rede, ou mesmo para ajustar o motor quando este for instalado em uma região onde a freqüência de rede é deferente da freqüência nominal do motor, é previsto estabelecer uma tensão nominal alterada do motor, para que se possa ajustar o nível de tensão necessário para que o motor opere com corrente nominal e assim sejam evitados os problemas de baixo torque ou aquecimento e queima do motor.

13

Os objetivos da presente invenção são alcançados através de um conjunto de sistema de controle de motor de indução de um motor de indução, o motor e indução tendo uma tensão nominal de operação, o sistema de controle compreendendo uma unidade de processamento central, a unidade de processamento central modulando o nível de uma tensão de rede para um nível de uma tensão controlada, a tensão controlada sendo aplicada ao motor de indução, a tensão de rede flutuando a partir de uma tensão de rede mínima, a tensão de rede tendo uma freqüência de rede, e o motor de indução tendo uma tensão nominal de operação e uma freqüência nominal de operação, o motor de indução tendo uma tensão nominal de operação abaixo do valor da tensão de rede mínima, a unidade de processamento medindo a freqüência de rede, e quando houver diferença entre a frequência de rede e a frequência nominal de operação, a unidade de processamento estabelece um valor de uma tensão nominal alterada, a tensão nominal alterada sendo aplicada ao motor de indução, e quando a freqüência de rede for igual à freqüência de rede, a unidade de processamento altera o valor da tensão controlada para o nível da tensão nominal.

5

10

15

20

25

30

Os objetivos da presente invenção são também alcançados através de um sistema de controle de motor de indução, compreendendo uma unidade de processamento central associada a uma tensão de rede, a unidade de processamento sendo associável ao motor de indução, o motor de indução tendo uma tensão nominal de operação, a tensão de rede flutuando a partir de uma tensão de rede mínima, o motor de indução sendo alimentado por uma tensão controlada obtida a partir da tensão de rede, a tensão controlada sendo ajustada pela unidade de processamento central, o motor de indução tendo uma tensão nominal de operação, o valor da tensão de rede mínima tendo um valor superior ao valor da tensão nominal de operação do motor de indução, a unidade de processamento central ajustando a tensão controlada em função de variações na tensão de rede e, em partida, aplica a tensão de rede ao motor de indução.

Os objetivos da presente invenção são ainda traduzidos por um método de controle de um motor de indução, o motor de indução tendo uma

tensão nominal de operação e uma freqüência nominal de operação, o motor de indução sendo alimentado por uma tensão controlada que é obtida a partir da modulação de uma tensão de rede, a tensão de rede tendo uma freqüência de rede, o método compreendendo etapas de: (a) medir a tensão de rede, medir a tensão controlada e medir a freqüência de rede, (b) comparar o valor da freqüência de rede medida com a freqüência nominal de operação e, quando houver diferença entre a freqüência de rede e a freqüência nominal de operação, estabelecer um valor de uma tensão nominal alterada e aplicar a tensão controlada no valor da tensão nominal alterada ao motor de indução, e quando a freqüência de rede for igual à freqüência nominal de operação, ajustar o valor da tensão controlada para o nível da tensão nominal.

Breve descrição dos desenhos

5

10

15

20

25

30

A presente invenção será, a seguir, mais detalhadamente descrita com base em um exemplo de execução representado nas figuras anexadas:

A figura 1 - representa um diagrama de blocos do sistemas objeto da presente invenção; e

A figura 2 - representa um diagrama temporal da flutuação da tensão de rede.

Descrição detalhada das figuras

Como pode ser visto a partir da figura 1, um motor elétrico de indução 10 é alimentado por uma tensão controlada $V_{\rm C}$ que é obtida a partir da modulação de uma tensão de rede $V_{\rm AC}$.

Para realizar essa modulação, uma unidade de processamento central 8 controla um conjunto de chaves 6 e 7, que são seletivamente acionadas, controlando-se o nível da tensão controlada V_C.

O conjunto de chaves 6,7 compreende essencialmente chaves de marcha 6 eletricamente interligadas ao enrolamento de marcha do motor de indução 10, e chaves de partida 7 que são eletricamente interligadas ao enrolamento de partida do motor 10, o que possibilita que tais enrolamentos sejam selecionados pela central de processamento 8.

NY

Ainda é previsto um sensor de freqüência 5, que é associado à unidade de processamento central 8 e a tensão de rede V_{AC}. Tal sensor de freqüência 9 pode ser um contador digital de ciclos por segundo efetuados pela tensão da rede, pode ser um conversor analógico de freqüência para tensão ou qualquer circuito que determine os ciclos efetuados pela tensão da rede em um certo intervalo de tempo.

De acordo com os ensinamentos da presente invenção, é previsto que o sistema 1 meça a tensão e a corrente aplicadas ao motor 10 e ajuste essas grandezas, por intermédio da unidade de processamento central 8, o nível da tensão controlada V_C que efetivamente é aplicado ao motor 10, além de ser previsto a medição da freqüência de rede f_{AC} para que o valor da tensão controlada V_C seja adequado quando a freqüência de rede f_{AC} for diferente da freqüência nominal de operação f_{NM} do motor 10, além da forma de partida do motor 10 prevista de acordo com os ensinamentos da presente invenção.

Controle do nível da tensão controlada Vc

5

10

15

20

25

30

Conforme pode ser visto na figura 2, a tensão de rede V_{AC} irá flutuar dentro de uma faixa previsível de tensão de rede máxima V_{AC-MAX} e de uma tensão de rede mínima V_{AC-MIN}.

De acordo com os ensinamentos da presente invenção, deve-se fazer uso de um motor 10 que tenha tensão nominal de operação V_{NM} inferior à tensão de rede mínima $V_{\text{AC-MIN}}$.

O motor 10 deve ser projetado para funcionar com uma tensão nominal de operação V_{NM} ou valor de tensão eficaz que seja inferior ao valor mínimo esperado na tensão de rede V_{AC} de alimentação, isto é, inferior à tensão de rede mínima V_{AC-MIN} conforme figura 2.

Com essa configuração, tendo em vista que a tensão nominal de operação V_{NM} fica sempre abaixo do valor da tensão de rede mínima V_{AC-MIN}, sempre será possível alimentar o motor 10, bastando que o valor da tensão controlada V_C seja inferior ao valor da tensão de rede mínima V_{AC-MIN}, ou seja, o valor da tensão de rede V_{AC} seja reduzido através da modulação da chave de marcha 6. Com esse sistema de controle 1, é possível operar o motor em uma ampla faixa de valores da:tensão da rede V_{AC} de alimentação.

Partida do motor 10

Uma vantagem decorrente dessa forma de aplicação do motor operando em conjunto com o sistema de controle 1, objeto da presente invenção, ou mesmo sendo controlado por um sistema de controle 1 tendo a sua tensão de operação V_{NM} projetada para ficar abaixo da tensão mínima de rede V_{AC-MIN}, está no fato de que não é necessário o uso do capacitor de partida para aumentar o torque de partida, já que este aumento é obtido através da aplicação de uma tensão superior à nominal durante o período de arranque.

Tal vantagem ocorre, pois, no instante da partida do motor 10, as chaves de marcha 6 e chaves de partida 7 são comandadas a aplicar a tensão controlada V_C sobre o motor 10, por exemplo, no mesmo valor da tensão de rede V_{AC}. Sendo o valor da tensão de rede V_{AC} superior ao valor da tensão nominal de operação V_{NM}, garante-se uma maior corrente i circulante no motor 10 para que esta tenha o torque necessário para que o rotor do motor 10 passe a girar, mesmo sem o uso do capacitor de partida. Além disso, o conjunto, objeto da presente invenção, ainda evita o sobredimensionamento do motor 10, resultando em redução do custo de material, tamanho e peso desses equipamentos.

Tendo em vista que em determinadas condições a tensão de rede V_{AC} pode ter valores muito elevados para proceder com a aplicação da tensão controlada V_{C} no mesmo valor da tensão de rede V_{AC} conforme descrito acima, pode-se fazer necessário que durante a partida a tensão controlada V_{C} aplicada ao motor 10 seja apenas ajustado para um valor superior à tensão nominal de operação V_{NM} motor.

De qualquer forma, deve ser observado que o valor de tensão nominal de operação V_{NM} deve ser projetado de modo a garantir que a unidade de processamento central 8 sempre possa impor um valor de tensão controlada $V_{\rm C}$ maior que o valor necessário para obter o torque nominal do motor 10.

Operacionalmente, a partida do motor 10 ocorre energizando-se simultaneamente os enrolamentos de partida e marcha, até que o rotor do motor 10 tenha alcançado a rotação nominal ou, pelo menos, tenha uma rotação substancialmente próxima à rotação nominal para que o seu funcionamento normal seja garantido, mesmo após o desligamento da chave de partida 7, que ocorre após um tempo predefinido para arranque do motor. Ajuste da tensão controlada Vo em função da freqüência de rede faç

Para que o motor 10 esteja sempre em condição ótima, a unidade de processamento central 8 deve ajustar a tensão controlada V_C em função de variações na tensão de rede V_{AC}, para manter o valor da tensão controlada V_C constante. Isso é feito a partir da medição da freqüência da tensão de rede f_{AC} por intermédio do sensor de freqüência 5 que, a partir da unidade de processamento central 8 ajusta a tensão controlada V_C para mantê-la adequada às condições normais do motor 10.

Assim, se houver variação na freqüência da tensão de rede V_{AC} , a tensão controlada V_C deverá ser aumentada ou diminuída para evitar a diminuição ou o aumento da corrente i do estator do motor 10, causada pela variação da respectiva impedância para o novo valor de freqüência de rede f_{AC} . As variações de corrente ocasionadas pela variação da carga no eixo não afetarão o valor de tensão de saída imposto pelo controlador, que somente será ajustada para variações na freqüência.

Para que isto seja implementado, deve-se projetar o conjunto de sistema de controle 1 de motor 10 e o motor 10 bem como o sistema de controle 1 tomado isoladamente, para que a unidade de processamento 8 meça a freqüência de rede f_{AC} e compare o valor desta medida com o valor da freqüência de operação do motor f_{NM}, sendo esta última previamente estabelecida em função do tipo de motor 10 que se pretende utilizar. Quando a

unidade de processamento detectar que existe diferença entre a freqüência de rede f_{AC} e a freqüência nominal de operação f_{NM}, a unidade de processamento 8 deve estabelecer um novo valor de tensão nominal V_{NM} que passará a ser uma tensão nominal alterada V_{NM-A}. O valor da tensão nominal alterada V_{NM-A} é corrigida em função da freqüência da rede e a correção será proporcional à diferença entre o valor da freqüência de rede f_{AC} e a freqüência nominal de operação f_{NM} do motor 10 e a tensão controlada V_C aplicada ao motor 10 terá o valor da tensão nominal alterada V_{NM-A}.

NB

Com o valor da tensão nominal alterada V_{NM-A} , o sistema pode aplicar uma tensão controlada V_C corrigida para o novo valor da tensão nominal a ser aplicada ao motor 10, que irá operar com um nível de tensão diferenciado quando comparado ao nível de tensão nominal do motor V_{NM} e assim evitará que a corrente i do estator do motor 10 seja elevada ou diminuída em função da variabilidade da freqüência de rede f_{AC} .

15

10

5

Além de viabilizar um controle adequado do motor 10 em situações onde a freqüência de rede f_{AC} não é constante, pode-se ainda evitar problemas de uso de um motor projetado para uma determinada freqüência de rede f_{AC} de uma determinada região que é aplicado em uma outra região que tenha freqüência de rede f_{AC} diferente.

20

25

30

O sistema da presente invenção evita problemas de queima do motor 10 ou baixo torque no mesmo, isso pode ser entendido com base no seguinte exemplo: Um motor 10 que é projetado para operar com uma freqüência de rede f_{AC} de 50 Hz, caso seja alimentado com uma freqüência de rede f_{AC} de 60 Hz, isto é, acima daquela prevista em projeto, a impedância do motor irá aumentar e a corrente i do motor 10 irá baixar, resultando em baixa do torque. Em uma situação inversa, se o motor for projetado para uma freqüência de rede f_{AC} de 60 Hz e for alimentado com uma freqüência de rede f_{AC} de 50 Hz, terá uma sobrecorrente i, o que resultará no aquecimento excessivo e até mesmo na queima do motor 10.

Método de controle de um motor 10

Para controlar o sistema de controle 1 de motor 10 objeto da presente invenção, é previsto um método tendo as seguintes etapas de inici-

almente medir a tensão de rede V_{AC} , a tensão controlada V_{C} e a frequência de rede f_{AC} .

O valor medido da freqüência de rede f_{AC} deve ser comparado com o valor da freqüência nominal de operação f_{NM}, sendo que este último já é previamente conhecido por conta das características construtivas do motor 10. Caso seja detectada uma diferença entre o valor medido da freqüência de rede f_{AC} e a freqüência nominal de operação f_{NM}, pode-se concluir que o motor 10 está operando fora das condições ideais, devendo-se elevar ou diminuir a tensão controlada V_C aplicada ao motor 10, conforme já descrito. Tal elevação ou diminuição do nível da tensão controlada V_C é realizada através de uma etapa onde a unidade de processamento 8 estabelece um valor novo para a tensão controlada V_C, designada como tensão nominal alterada V_{NM-A} e, a partir desse momento, poderá operar sob essa nova condição de freqüência de rede f_{AC} sem os problemas de baixo torque ou aquecimento excessivo do motor 10.

Quando a unidade de processamento 8 conclui que não há diferença entre o valor da freqüência de rede f_{AC} e a freqüência nominal de operação f_{NM} , o valor da tensão controlada V_C deve ser reduzido para o nível da tensão nominal V_{NM} .

No que se refere às etapas do método da presente invenção por ocasião da partida do motor 10, deve-se aplicar a tensão controlada $V_{\rm C}$ de valor igual à tensão de rede $V_{\rm AC}$ ao enrolamento de partida do motor 10 e manter tal tensão aplicada por um tempo de partida que deve ser suficientemente longo para que o motor encontre-se encontra-se substancialmente próximo a rotação nominal e possa operar normalmente.

Conforme descrito acima, tendo em vista que em determinadas condições a tensão de rede V_{AC} pode ter valores muito elevados para proceder com a aplicação da tensão controlada V_C no mesmo valor da tensão de rede V_{AC}, pode-se fazer necessário que durante a partida a tensão controlada V_C aplicada ao motor 10 seja apenas ajustada para um valor superior à tensão nominal de operação V_{NM} motor, neste caso, sendo inferior ao da tensão de rede V_{AC}.

Ainda, segundo os ensinamentos da presente invenção, deve-se prever um compressor acionado por um motor 10 provido com um sistema de controle 1 conforme descrito acima, podendo-se empregar esse compressor em conjunto ou separadamente do compressor.

20

Tendo sido descrito um exemplo de concretização preferido, deve ser entendido que o escopo da presente invenção abrange outras possíveis variações, sendo limitado tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes.

REIVINDICAÇÕES

 Conjunto de sistema de controle (1) de motor de indução (10) e um motor de indução (10), o motor e indução (10) tendo uma tensão nominal de operação (V_{NM}),

21

o sistema de controle (1) compreendendo uma unidade de processamento central (8), a unidade de processamento central (8) modulando o nível de uma tensão de rede (V_{AC}) para um nível de uma tensão controlada (V_C), a tensão controlada (V_C) sendo aplicada ao motor de indução (10),

5

10

15

20

25

30

a tensão de rede (V_{AC}) flutuando a partir de uma tensão de rede mínima (V_{AC-MIN}),

a tensão de rede (V_{AC}) tendo uma freqüência de rede (f_{AC}), e o motor de indução (10) sendo projetado para uma tensão nominal de operação (V_{NM}) e uma freqüência nominal de operação (f_{NM}),

o conjunto sendo caracterizado pelo fato de que

o motor de indução (10) tem uma tensão nominal de operação (V_{NM}) abaixo do valor da tensão de rede mínima (V_{AC-MIN}) ,

a unidade de processamento (8) mede a freqüência de rede (f_{AC}), e

quando houver diferença entre a freqüência de rede (f_{AC}) e a freqüência nominal de operação (f_{NM}), a unidade de processamento (8) estabelece um valor de uma tensão nominal alterada (V_{NM-A}), a tensão nominal alterada (V_{NM-A}) sendo aplicada ao motor de indução (10), e

quando a freqüência de rede (f_{AC}) for igual à freqüência de rede (f_{AC}), a unidade de processamento altera o valor da tensão controlada (V_C) para o nível da tensão nominal (V_{NM}).

- 2. Conjunto de acordo com a reivindicação 1, caracterizado pelo fato de que o valor da tensão nominal alterada (V_{NM-A}) é corrigido em função da freqüência da rede e a correção é proporcional à diferença entre o valor da freqüência de rede (f_{AC}) e a freqüência nominal de operação (f_{NM}) do motor de indução (10).
- Conjunto de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que a unidade de processamento (8) reduz o valor da tensão

de rede (V_{AC}) para o valor de tensão controlada (V_{C}), o valor da tensão controlada (V_{C}) sendo inferior ao valor da tensão de rede mínima (V_{AC-MIN}).

4. Conjunto de acordo com a reivindicação 1, 2 ou 3, caracterizado pelo fato de que a unidade de processamento (8) compreende um primeiro e um segundo dispositivos de medição de tensão (4,11),

5

10

15

20

25

J.L

o primeiro dispositivo de medição de tensão (4) medindo a tensão de rede (V_{AC}) e o segundo dispositivo de medição de tensão (11) medindo a tensão controlada (V_{C}),

a unidade de processamento (8) controlando o nível da tensão controlada (V_C) a partir das medidas do primeiro e segundo dispositivos de medição de tensão (4,11).

- 5. Conjunto de acordo com a reivindicação 4, caracterizado pelo fato de que o sistema de controle (1) compreende um conjunto de chaves (6,7) controlado pela unidade de processamento central (8), o conjunto de chaves (6,7) compreendendo:
- uma chave de marcha (6) eletricamente interligada a um enrolamento de marcha do motor de indução (10), e
- uma chave de partida (7) eletricamente interligada a um enrolamento de partida do motor de indução (10),
- o enrolamento de partida sendo seletivamente acionado pela central de processamento (8) quando o motor de indução (10) está em partida,
- o circuito de processamento (8) aplicando a tensão de rede (V_{AC}) ao enrolamento de partida e ao enrolamento de marcha.
- 6. Conjunto de acordo com a reivindicação 5, caracterizado pelo fato de que a unidade de processamento (8) comanda o desligamento da chave (7) do enrolamento de partida do motor de indução (10), quando finalizar o tempo previamente definido para arranque do motor.
- 7. Sistema de controle (1) de motor de indução (10), compre-30 endendo uma unidade de processamento central (8) associada com uma tensão de rede (V_{AC}), a unidade de processamento sendo associável com o motor de indução (10),

o motor de indução (10) tendo uma tensão nominal de operação (V_N) ,

a tensão de rede (V_{AC}) flutuando a partir de uma tensão de rede mínima (V_{AC-MIN}),

23

o motor de indução (10) sendo alimentado por uma tensão controlada (V_C) obtida a partir da tensão de rede (V_{AC}), a tensão controlada (V_C) sendo ajustada pela unidade de processamento central (8),

5

10

15

20

25

30

o motor de indução (10) tendo uma tensão nominal de operação (V_{NM}) ,

o sistema sendo caracterizado pelo fato de que

a valor da tensão de rede mínima (V_{AC-MIN}) tem valor superior ao valor da tensão nominal de operação (V_{NM}) do motor de indução (10),

a unidade de processamento central (8) ajusta a tensão controlada (V_C) em função de variações na tensão de rede (V_{AC}) e, em partida, aplica a tensão de rede (V_{AC}) ao motor de indução (10).

- 8. Sistema de acordo com a reivindicação 7, caracterizado pelo fato de que compreende:
- um primeiro e um segundo dispositivos de medição de tensão
 (4,11);
- um sensor de freqüência (5) medindo uma freqüência de rede (f_{AC}) da tensão de rede (V_{AC}), e
- o motor de indução (10) tem uma tensão nominal de operação (V_{NM}) abaixo do valor da tensão de rede mínima (V_{AC-MIN}) ,
- a unidade de processamento (8) mede a freqüência de rede (f_{AC}) , e

quando houver diferença entre a freqüência de rede (f_{AC}) e a freqüência nominal de operação (f_{NM}) a unidade de processamento (8) estabelece um valor de uma tensão nominal alterada (V_{NM-A}), o valor da tensão nominal alterada (V_{NM-A}) é corrigido em função da freqüência da rede e a correção é proporcional à diferença entre o valor da freqüência de rede (f_{AC}) e a freqüência nominal de operação (f_{NM}) do motor de indução (10), a tensão nominal alterada (V_{NM-A}) sendo aplicada ao motor de indução (10), e

quando a freqüência de rede (f_{AC}) for igual à freqüência de rede (f_{AC}), a unidade de processamento altera o valor da tensão controlada (V_C) para o nível da tensão nominal (V_{NM}).

24

9. Sistema de acordo com a reivindicação 8, caracterizado pelo fato de que compreende uma chave de partida (7) sendo eletricamente interligável a um enrolamento de partida do motor de indução (10),

5

10

15

20

25

30

o enrolamento de partida é seletivamente acionado pela central de processamento (8) a partir da chave de partida (7) quando o motor de indução (10) está em partida,

o circuito de processamento (8) aplica a tensão de rede (V_{AC}) ao enrolamento de partida.

10. Sistema de acordo com a reivindicação 9, caracterizado pelo fato de que o circuito de processamento (8) aplica a tensão de rede (V_{AC}) por um tempo de partida, o tempo de partida correspondendo a um tempo necessário para que o motor de indução (10) encontre-se substancialmente em rotação nominal.

11. Método de controle de um motor de indução (10), o motor de indução (10) tendo uma tensão nominal de operação (V_{NM}) e uma freqüência nominal de operação (f_{NM}) , o motor de indução (10) sendo alimentado por uma tensão controlada (V_C) que é obtida a partir da modulação de uma tensão de rede (V_{AC}) , a tensão de rede (V_{AC}) tendo uma freqüência de rede (f_{AC}) ,

o método sendo caracterizado pelo fato de que compreende etapas de:

- (a) Medir a tensão de rede (V_{AC}), a tensão controlada (V_{C}) e a frequência de rede (f_{AC}),
 - (b) Comparar o valor da freqüência de rede (V_{AC}) medida com a freqüência nominal de operação (f_{NM}) e, quando houver diferença entre a freqüência de rede (f_{AC}) e a freqüência nominal de operação (f_{NM}),
 - estabelecer um valor de uma tensão nominal alterada (V_{NM-A}) e aplicar a tensão controlada (V_C) no valor da tensão nominal alterada (V_{NM-A}) ao motor de indução (10), e

quando a freqüência de rede (f_{AC}) for igual à freqüência nominal de operação (f_{NM}), ajustar o valor da tensão controlada (V_C) para o nível da tensão nominal (V_{NM}).

25

12. Método de acordo com a reivindicação 11, caracterizado pelo fato de que antes da etapa (a), em partida do motor (10), é prevista uma etapa de aplicar a tensão controlada (V_C) igual à tensão de rede (V_{AC}) a um enrolamento de partida e de marcha do motor de indução (10).

5

10

- 13. Método de acordo com a reivindicação 11, caracterizado pelo fato de que antes da etapa (a), em partida do motor (10), é prevista uma etapa de aplicar a tensão controlada (V_C) inferior à tensão de rede (V_{AC}) a um enrolamento de partida e de marcha do motor de indução (10).
- 14. Método de acordo com a reivindicação 12 ou 13, caracterizado pelo fato de que a aplicação da tensão da rede (V_{AC}) ao enrolamento de partida do motor de indução (10) é mantida por um tempo de partida, o tempo de partida correspondendo a um tempo necessário para que o motor de indução encontre-se substancialmente em rotação nominal.
- 15. Compressor caracterizado pelo fato de que é acionado por um motor de indução (10), o motor compreendendo um sistema de controle (1) tal como definido nas reivindicações 7 a 10.

FIG. 1

FIG. 2

RESUMO

Patente de Invenção: "CONJUNTO DE SISTEMA DE CONTROLE DE MOTOR DE INDUÇÃO E UM MOTOR DE INDUÇÃO, SISTEMA DE CONTROLE DE MOTOR DE INDUÇÃO, MÉTODO DE CONTROLE DE MOTOR DE
INDUÇÃO E COMPRESSOR".

28

Descreve-se um conjunto de sistema de controle (1) de motor de indução (10) e um motor de indução (10), um sistema de controle de motor de indução (10), um método de controle de motor de indução (10), além de um compressor controlado com um motor de indução segundo os ensinamentos da presente invenção, tendo-se como objetivos um conjunto, um sistema e um método onde seja possível operar com o motor (10) em uma ampla faixa de valores da tensão da rede (V_{AC}) de alimentação, bem com uma forma de ajuste de uma tensão controlada (V_C) que possibilite a correção da tensão aplicada em função da freqüência da rede (f_{AC}).

15

20

25

30

10

5

Os objetivos da presente invenção são alcançados através de um conjunto de sistema de controle (1) de motor de indução (10) e motor de indução (10), o motor de indução (10) tendo uma tensão nominal de operação (V_{NM}), o sistema de controle (1) compreendendo uma unidade de processamento central (8) que modula o nível da tensão de rede (VAC) para um nível da tensão controlada (Vc), a tensão controlada (Vc) sendo aplicada ao motor de indução (10), a tensão de rede (VAC) flutuando a partir de uma tensão de rede mínima (V_{AC-MIN}), a tensão de rede (V_{AC}) tendo uma freqüência de rede (f_{AC}), e o motor de indução (10) tendo uma tensão nominal de operação (V_{NM}) e uma freqüência nominal de operação (f_{NM}), o motor de indução (10) tendo uma tensão nominal de operação (V_{NM}) abaixo do valor da tensão de rede mínima (VAC-MIN), a unidade de processamento (8) medindo a freqüência de rede (fAC), e quando houver diferença entre a frequência de rede (fAC) e a frequência nominal de operação (fNM), a unidade de processamento (8) estabelece um valor de uma tensão nominal alterada (V_{NM-A}), a tensão nominal alterada (V_{NM-A}) sendo aplicada ao motor de indução (10), e quando a freqüência de rede (f_{AC}) for igual à freqüência de rede (f_{AC}), a unidade de processamento altera o valor da tensão controlada (Vc) para o nível da ten

são nominal (V_{NM}).

5

São ainda previstos um sistema de controle (1), um método de controle do sistema objeto da presente invenção, bem como um compressor acionado por um motor (10) que compreenda o sistema (1) objeto da presente invenção.

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/BR04/000241

International filing date: 09 December 2004 (09.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: BR

Number: PI0305905-7

Filing date: 11 December 2003 (11.12.2003)

Date of receipt at the International Bureau: 03 February 2005 (03.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

