Devoir Surveillé 6 complément

La calculatrice est autorisée

9 Janvier 2021 8h30-12h30

Modèle autodynamo et fluctuations du champ

Un modèle possible pour la circulation des courants électriques dans le noyau méetallique liquide de la Terre, couplée à la rotation de la Terre, est le modèle autodynamo (voir figure ci-dessous). Le système comporte N spires (circulaires de rayon a, de centre O et d'axe (Oz), qui créent le champ géomagnétique). Il comporte aussi un disque central de rayon b < a, qui peut tourner autour de l'axe (Oz) avec la vitesse angulaire $\omega(t)$ et le moment d'inertie I (il modélise les interactions mécaniques avec la rotation de la Terre). Ce disque, conducteur, est parcouru par le même courant i(t) que les spires ; il est aussi entraîné par la rotation de la Terre avec un couple moteur $\vec{\Gamma} = \Gamma_0 \vec{e}_z$. Enfin, la résistance électrique totale du circuit est notée R.

FIGURE - Le modèle autodynamo pour le champ géomagnétique

On note \vec{B} (P) le champ magnétique créé par ce dispositif en un point P du disque tournant, avec $\mathbf{r}=\mathbf{OP}$; on supposera $\mathbf{N}\gg 1$. Si $\mathbf{i}(\mathbf{t})\neq 0$, on note $M_{r_{max}}=-\frac{1}{i(t)}\int_0^{r_{max}}r\vec{e}_z.\vec{B}(P)dr$; en particulier on pourra utiliser dans ce qui suit les intégrales \mathbf{M}_a et \mathbf{M}_b pour $r_{max}=\mathbf{a}$ ou b respectivement.

- 1. Quelle est la direction de $\vec{B}(P)$? Quels sont les signes de M_a et M_b ? Comparer M_a et M_b . Expliciter l'inductance propre L du circuit électrique de la figure ci-dessus en fonction notamment d'une de ces intégrales.
- 2. On suppose d'abord que le courant i(t) traverse le disque uniquement en ligne droite du point A de sa périphérie à O. Exprimer la force de Laplace $d\vec{F}_L$ s'exerçant sur un élément de longueur du segment AO. Exprimer alors le moment $\Gamma_L = \vec{\Gamma}.\vec{e}_z$ des forces de Laplace exercées sur ce disque en fonction de i(t) et M_b . Même si le courant se répartit de manière arbitraire sur ce disque de A à O, on peut montrer, et on admettra, que l'expression établie ici du moment des forces de Laplace reste inchangée.

- 3. En faisant l'hypothèse de la conservation de la puissance lors de la conversion électromécanique, relier la force électro-motrice e(t) induite par les mouvements de rotation du disque à M_b , i(t) et $\omega(t)$.
- 4. Établir les équations régissant les évolutions du courant dans le noyau et de sa vitesse de rotation sous la forme d'un système différentiel couplé

$$\frac{di}{dt} = i(t) \left[\alpha \omega(t) - \beta\right]$$
$$\frac{d\omega}{dt} = \gamma - \delta i^{2}(t)$$

On exprimera les constantes positives α , β , γ , et δ en fonction de R, L, M_b , I et Γ_0 .

FIGURE — Courbes de valeurs constante définies par la fonction $f(x,y)=\frac{1}{2}x^2+\frac{1}{2}y^2-\ln(x)-y=c$. Les valeurs de c sont indiquées sur les courbes.

Soit i_0 un courant constant arbitraire, on considère la fonction

$$H(\omega,i) = \frac{1}{2}I\omega^2 + \frac{1}{2}Li^2 - \frac{L\Gamma_0}{M_b}\ln\left|\frac{i}{i_0}\right| - \frac{IR}{M_b}\omega$$

- 5. Calculer $\frac{dH}{dt}$ et simplifier son expression. Comment peut on interpréter la fonction H? Déterminer les points du plan (i,ω) pour lesquels le gradient de H s'annule. Comment s'interprètent ces points?
- 6. Décrire la stabilité des équilibres du champ géomagnétique associés à la portion du plan de phase représenté sur la figure ci-dessus.