Dispersion Corrections in Density Field Theory

Samuel James Frost

Abstract

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Contents

§ I. Introduction

Covalent and ionic bonds are normally considered the most important interactions in terms of making a molecule, but the lesser known dispersion interaction (often known as Van der Waals interactions, or London Dispersion forces) plays just as an important role, if not more so in some highly important molecules like DNA. Primitive DFT methods neglected these interactions, causing DNA to unwind and benzene rings to repel each other. Whilst this wasn't as much a problem in basic solid state physics, where unit cells are only made up of purely covalent or ionic bonds, it affects all areas of science where complicated molecules are involved. Many diverse solutions were developed, and are still being developed today, to overcome this problem. They include methods which are fit to empirical data, like Grimme's DFT-D2 and DFT-D3, which are generally faster. And pure methods, such as VV10 and vdw-DFT, which are much more costly.

§ 2. Empirically Based Methods

§ 2.1. **DFT-D2.** In 2006 Stefan Grimme released DFT-D2[1], the successor to his more limited DFT-D method. The basis of DFT-D2 is in pairwise attraction between atoms, however, it doesn't take into account its chemical environment, see: DFT-D3. Despite being less accurate than D3, D2 is still widely used due to its relatively high accuracy and low cost.

§ 3. Pure Methods

VV10, vdW-DFT

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta

References

vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis portitor. Vestibulum portitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

References

[I] S. Grimme, 'Semiempirical gga-type density functional constructed with a long-range dispersion correction,' *Journal of Computational Chemistry*, vol. 27, no. 15, pp. 1787-1799, 2006. DOI: https://doi.org/10.1002/jcc.20495. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20495. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20495.