EE2023 Signals & Systems Quiz Semester 2 AY2012/13

Date: 7 March 2013 Time Allowed: 1.5 hours

•	4	4 •		
In	ctri	11/t1	ons	•
			.,,,	•

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz.
- 3. Tables of Fourier transforms and trigonometric identities are given on Pages 11 and 12.
- 4. No programmable or graphic calculator is allowed.
- 5. Write your answers in the spaces indicated in this question paper. Attachment is not allowed.
- 6. Write your name, matric number and lecture group in the spaces indicated below.

Name :	
Matric # :	
Lecture Group #:	

For your information:

Group 1: A/Prof Loh Ai Poh Group 2: A/Prof Ng Chun Sum Group 3: A/Prof Tan Woei Wan Group 4: Prof Lawrence Wong

Question #	Marks
1	
2	
3	
4	
Total Marks	

Q.1 The signal x(t) has an amplitude spectrum given in Figure Q.1 below.

- (a) What is the minimum sampling frequency that will allow x(t) to be recovered from its samples?
- (b) Suppose that x(t) is sampled at a rate of $f_s = 38$ kHz. What part of X(f) can be recovered without error from the samples? Explain your answer with an illustration of the appropriate spectrum.
- (c) Is x(t) a power or energy signal? Explain your answer.

Q.1 ANSWER

Q.1 ANSWER ~ continued

Q2. Consider the complex signal $x(t) = \operatorname{sinc}(t) + j \operatorname{sinc}(t)$. (a) Find the energy spectral density of $x(t)$. Hence, or otherwise, determine the total energy of $x(t)$.	
(b) Suppose $y(t) = x(t) ^2$. Find the 3dB bandwidth of $y(t)$.	
Q.2 ANSWER	
Q.271115 W LIK	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Q.2 ANSWER ~ continued

Q.3 The complex exponential Fourier Series representation of a periodic signal, x(t), is

$$\sum_{k=-\infty}^{\infty} c_k e^{jkt}$$

 $\text{where the Fourier Series coefficients are } c_k = \begin{cases} 0.49 - 0.1j & : & k = -2 \\ 1.5j \ e^{j0.1} & : & k = -1 \\ 2 & : & k = 0 \\ -1.5j \ e^{-j0.1} & : & k = 1 \\ 0.49 + 0.1j & : & k = 2 \\ 0 & : otherwise \end{cases}$

- (a) What is the fundamental period (seconds) and fundamental frequency (Hz) of the signal, x(t)?
- (b) Write an equation for the continuous frequency spectrum, X(f), of the signal.
- (c) Express x(t) as a function of real sinusoids and constant.

Q.3 ANSWER

Q.3 ANSWER ~ continued

Q.4 The signal x(t) is shown in Figure Q.4(a).

- (a) Determine the Fourier transform, X(f), of the signal x(t).
- (b) Using the replication property of the Dirac- δ function, obtain an expression for the periodic signal $x_p(t)$ shown in Figure Q.4(b) in terms of x(t).
- (c) Derive the Fourier transform, $X_p(f)$, of the periodic signal $x_p(t)$.

Figure Q.4(a)

Q.4 ANSWER

Q.4 ANSWER ~ continued

This page is intentionally left blank to facilitate detachment of the formula sheet for easy reference. Anything written on this page will not be graded.

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k \, t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k \, t/T) \end{cases}$$

Fourier Transform:
$$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt \\ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi ft) df \end{cases}$$

FOURIER TRANSFORMS OF BASIC FUNCTIONS				
	x(t)	X(f)		
Constant	K	$K\delta(f)$		
Unit Impulse	$\delta(t)$	1		
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$		
Sign (or Signum)	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$		
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$		
Triangle	$\operatorname{tri}\!\left(rac{t}{T} ight)$	$T\operatorname{sinc}^2(fT)$		
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$		
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$		
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta \big(f - f_o \big) + \delta \big(f + f_o \big) \Big]$		
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta \big(f - f_o \big) - \delta \big(f + f_o \big) \Big]$		
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp\!\left(-\alpha^2\pi^2f^2\right)$		
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$		

FOURIER TRANSFORM PROPERTIES		
	Time-domain	Frequency-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
Time scaling	$x(\beta t)$	$\frac{1}{ \beta }X\bigg(\frac{f}{\beta}\bigg)$
Duality	$X\left(t ight)$	x(-f)
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi ft_o)$
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
Integration in the time-domain	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)}{\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0}$

TRIGONOMETRIC IDENTITIES		
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	
$\cos(\theta) = \frac{1}{2} \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	
$\sin(\theta) = \frac{1}{j2} \left[\exp(j\theta) - \exp(-j\theta) \right]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$	
$\sin^2(\theta) + \cos^2(\theta) = 1$		
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = \frac{1}{2}\left[\cos(\alpha-\beta)-\cos(\alpha+\beta)\right]$	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = \frac{1}{2}\left[\cos(\alpha-\beta) + \cos(\alpha+\beta)\right]$	
$\sin^2(\theta) = \frac{1}{2} \left[1 - \cos(2\theta) \right]$	$\sin(\alpha)\cos(\beta) = \frac{1}{2}\left[\sin(\alpha-\beta) + \sin(\alpha+\beta)\right]$	
$\cos^2(\theta) = \frac{1}{2} \Big[1 + \cos(2\theta) \Big]$	$\mathbf{C}\cos(\theta) - \mathbf{S}\sin(\theta) = \sqrt{\mathbf{C}^2 + \mathbf{S}^2}\cos\left[\theta + \tan^{-1}\left(\frac{\mathbf{S}}{\mathbf{C}}\right)\right]$	