Cognoms:	ognoms: Nom:				
1er Control Arqu	itectura de Computa	adors		•	Curs 2013-2014 Q2
Problema 1. (5 puntos	s)				
	o producir un sistema de o ador RISC similar al MIPS siguiente bucle infinito:				
<pre>while (true) do { leer_muestras_ procesar_muest: modificar_paramate</pre>		;			
el tiempo usado por el re	e esta totalmente domina esto del código. Se desea r_muestras() ejecuta	poder procesar	una muestra	cada milisegu	ndo y sabemos que cada
a) Calcula el rendimie	ento mínimo en MIPS y e	n MFLOPS que o	leberia tener	el procesador	
b) Calcula el ancho de	e banda mínimo que deb	eria poder soste	ner la cache	de instruccion	es
La siguiente tabla mues procesar_muestra:	stra la distribución de ir s()		tipos y el C	PI medio de d	cada tipo para la rutina
		punto flotante	enteras	memoria	
	% de instrucciones	50%	25%	25%	

	punto flotante	enteras	memoria
% de instrucciones	50%	25%	25%
СРІ	2	1	5

Calcula la frecuencia mínima a la que deberia funcionar el procesador

código recompilado para el nuevo repertorio de instrucciones el número de instrucciones de punto flotante se ha reducido a la mitad.

d) Calcula a que frecuencia mínima debería operar el nuevo procesador SIMD

Operando a esta nueva frecuencia se puede reducir el voltaje del procesador en un 10%.

e) Calcula la ganancia en potencia (porcentaje de mejora) del procesador con instrucciones SIMD respecto el original.

La corriente de fugas de dicho procesador es despreciable. Sin embargo, la potencia dinámica consumida se considera excesiva (recuerda: potencia dinámica = CV²F). Nuestros arquitectos han sugerido añadir instrucciones SIMD al repertorio de instrucciones. La carga capacitiva del nuevo procesador SIMD ha aumentado un 20%. En el

Cognoms:	Nom:
1er Control Arquitectura de Computadors	Curs 2013-2014 Q2

Problema 2. (5 puntos)

Dado el siguiente código escrito en C, que compilamos para un sistema linux de 32 bits:

```
typedef struct {
    short a;
    int *b;
    char c;
    int d[5];
} s1;

void ExaBA(S1 parl, S2 *par2, S1 v[100], char c) {
    int i,j;
    int w[100];
    ...
}
```

 a) Dibuja como quedarían almacenadas en memoria las estructuras s1 y s2, indicando claramente los deplazamientos respecto al inicio, el tamaño de todos los campos y el tamaño de los structs.

b)	Dibuja el bloque de activación de la rutina ExaBa.

Dado el siguiente código escrito en C, que compilamos para un sistema linux de 32 bits:

c)	Traduce las subrutinas Code1 y Code2 a ensamblador del x86: