01076006 Digital System Fundamentals 2564/1

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

การทดลองที่ 5 BCD to 7Segment และวงจรนับ วัตถูประสงค์

- 1. เพื่อให้เข้าใจการทำงานของ BCD to 7 Segment
- 2. เพื่อให้สามารถออกแบบวงจรนับแบบ Synchronous ได้
- 3. เพื่อให้สามารถสร้างวงจรนับที่ออกแบบโดยใช้ JK Flip Flop ได้
- 4. เพื่อให้สามารถสร้างวงจรนับที่ออกแบบโดยใช้ โมดูล Counter ได้
- 5. เพื่อให้สามารถใช้งานโปรแกมช่วยออกแบบ ISE WebPack ได้

<u>บทนำ</u>

7 Segment Display

คือ ไดโอดเปล่งแสงแบบเลขเจ็ดส่วนเป็น LED (Light Emitting Diode) ที่นำมาจัดวางรูปแบบ แสดงผลตัวเลข และตัวอักษรภาษาอังกฤษบางตัว 7-Segment ประกอบด้วย LED จำนวนแปดตัว ดังรูปที่ 1 (ล่าง) คือ A, B, C, D, E, F, G, และ DP โดยเชื่อมต่อวงจรในสองแบบคือ Common Anode กับ Common Cathode ดังรูปที่ 1 (บน)

Common Anode คือจุดเชื่อมต่อของ LED ทั้งแปดดวงเชื่อมต่อกันหมดที่ขา Anode ส่วน Common Cathode คือจุดเชื่อมต่อของ LED ทั้งแปดดวงเชื่อมต่อกันหมดที่ขา Cathode หรือจำง่ายๆ ว่า Common Anode รวมจุดไฟบวกไว้ด้วยกัน Common Cathode รวมจุดไฟอบไว้ด้วยกัน

รูปที่ 1 แสดง 7 Segment Display

JK Flip Flop Characteristic Table

PRESET	\overline{CLEAR}	J	K	Clk	Q	$\overline{\varrho}$	State
0	1	X	X	X	1	0	Set
1	0	X	X	X	0	1	Reset
0	0	X	X	X	1	1	Unused
1	1	0	1	Ţ	0	1	Reset
1	1	1	0	—	1	0	Set
1	1	0	0	X	Q	$\overline{\mathcal{Q}}$	Unchanged
1	1	1	1		$\overline{\varrho}$	Q	Toggle

JK Flip Flop Excitation Table

Present State	Next State	In	put
Q	Q	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

7447/48

7447/48 เป็นไอซีที่ใช้ในการแปลงสัญญาณดิจิตอลขนาด 4 บิทไปเป็นสัญญาณที่ใช้ในการควบคุม 7 segment โดยให้ศึกษาการทำงานโดยละเอียดของไอซีเบอร์ 7447(48) ได้จาก Datasheet

7493 Synchronous 4-Bit Binary Counter

7493 คือ ไอซีที่ใช้เป็นวงจรนับแบบไบนารีขนาดสูงสุด 4 บิตแบบนับขึ้น โดยภายในบรรจุ JK Flip Flop เชื่อมต่อแบบ master/slave จำนวน 4 ตัว นอกจากนี้ไอซี 7493 มีสัญญาณรีเซต 2 สัญญาณ ได้แก่ และ เมื่อ สัญญาณทั้งสองเป็นลอจิก 0 ทั้งคู่ JK Flip Flop ทุกตัวจะอยู่ในสถานะรีเซต ศึกษารายละเอียดการทำงาน เพิ่มเติมได้จาก datasheet

<u>การทดลอง</u>

- ให้นักศึกษาออกแบบวงจรถอดรหัสเลขฐานสองขนาด 4 บิท ไปเป็นข้อมูลที่ใช้ขับสัญญาณให้ตัว 7 segment คล้ายกับไอซี 7447/48 แต่กำหนดให้แก้ไขการแสดงเลข 9 จาก ให้เป็น ส่วนแลข ยังคงเป็นเลขเดิม ไม่ใช่ แล้วทำการแสดงผลเป็นเลขฐาน 2 ออกทางหน้าต่าง console
- 2. ให้นักศึกษาออกแบบวงจรนับขึ้นจาก 1 ไป 6 (1 2 3 4 5 6 1 . . .) แบบ Synchronous (1-to-6 Synchronous Counter) โดยทำทั้งแบบที่ใช้ JK Flip Flop แล้วทดสอบการทำงานบนการ Simulation
 - 1.1 สร้างตารางค่าการนับ (Output, State transition)
 - 1.2 สร้างตารางความจริง (Truth Table) ของทุกๆ อินพุตของฟลิบฟลอบทุกตัว
 - 1.3 หาสมการอินพุตของฟลิบฟลอบด้วยวิธีพีชคณิตบูลีนหรือ K-Map
 - 1.4 วาดไดอะแกรมของวงจรบน ISE WebPack โดยใช้ JK Flip Flop มาต่อกัน
 - 1.5 ทดสอบการทำงานโดยการเขียนไฟล์ Verilog Test Fixture และ แสดงผลการนับเป็นเลขฐาน 2 และแสดงผลออกทางหน้าต่าง console

ตัวอย่างไฟล์ Verilog Test Fixture ของการทดสอบการทำงานของ T Flip Flop

```
// Verilog test fixture created from schematic D:\Xilinx\projectWorkSpa
timescale lns / lps
module main_main_sch_tb();
// Inputs
  reg CLK;
// Output
   wire D0;
// Bidirs
// Instantiate the UUT
   main UUT (
      .D0(D0),
      .CLK(CLK)
   initial begin
      CLK = 0; // กำหนดค่าเริ่มต้นของ port CLK เป็น 0
      #200; // หน่วงเวลา 100 ns
      $finish; // สิ้นสดการทดสอบ
   always #10 CLK = !CLK;//สั่งให้เปลี่ยนค่าของ port CLK เป็นค่าตรงข้ามทุก 10 ns
   initial begin
      $monitor("%d",D0); //แสดงค่า Output
endmodule
```

ลิ้งค์วิดีโอทดสอบการทำงานของ T Flip Flop

https://youtu.be/60bNGbG2IYw

•••••											
	$\boldsymbol{>}_{l}$	X 2		X)4	Λ	b	С	4	e	<i>f</i> '	9
. 6	0	0	0	O		1	1	1	1	1	6
.]	0	0	0	1	6	<u> </u>)	0	٥	0	6
.2	٥	0		0			0	1	1	G	1
3	0	0)))	1		Ø	0	1
4	0	1	O	0	Ö	1		O	٥	1	1
5	٥	1	0	1	1	0	ľ	1	0	j	j
1	Ō		1	O	J	0		1	J	1	
.7	0	1	1]	1	ı	1	0	0	1	0
9	1	0	D	0	Ť	1	1	1)	İ	1
G	1	0	Ô		1)	1	l l	0)
<u>l</u> ø	١	0	l	ð	×	×	×	×	×	٨	×
12	1	0	V	1	አ	×	λ	×	×	メ	×
12		١	O	۵	አ	×	χ	×	×	メ	X
13)	1	۵	1	λ	×	λ	×	X	X	X
19))	1	O	A	χ	χ	×	×	メ	
)5	1	l	l	1	×	×	×	×	×	X	X

ใบตรวจการทดลองที่ 5

วัน/เดือน/ปี	กลุ่ม 101	กลุ่ม 102	ิ กลุ่ม 103	ิ กลุ่ม 153
รหัสนักศึกษา	ชื่อ-นามสกุล			
การตรวจการทดลอง			บันทึกค	ะแนนแล้ว
การทดลองข้อ 1-2	ลายเซ็นผู้คุมการทดลอง			