

DSI321 Wildfire Alert System Project

Project Overview

This project aims to develop a **near real-time wildfire alert system** for Thailand using data from **NASA FIRMS** and **OpenWeatherAPI**, orchestrated by **Prefect** and visualized via **Streamlit**. It supports the work of the National Disaster Management Subcommittee by integrating technical data workflows with practical data governance and machine learning analysis.

The system includes:

- ETL pipeline via Prefect
- Data versioning with LakeFS
- Interactive map-based dashboard (Streamlit + Folium)
- · Fire prediction analysis using Random Forest

Part 1: Technical Implementation (90 Points)

1. Repository Setup (10 Points)

- Repository created within the first week.
- Repository name: dsi321_2025
- File Structure:
 - data/ Wwather data in Parquet format
 - visualization/shape_file/ Geospatial shape files
 - Machine learning.ipynb ML model
 - api/ Scripts for ETL (e.g., firmapiflow.py, apiweatherflow.py)
 - visualization/ Streamlit dashboard

2. Commit Frequency (10 Points)

- Maintained a steady commit frequency:
 - ° ≥ 5 commits/week for 3 consecutive weeks

3. README Quality (10 Points)

- README contains > 1,000 characters
- Provides detailed breakdown of project objective, tools used, architecture, grading alignment

4. Dataset Quality (50 Points)

Criteria	Status	Notes
≥ 1,000 Records	abla	Data collected every 15 min; > 96 records/day
24-Hour Time Coverage	abla	Daily collection via Prefect schedule

Criteria	Status	Notes
Data Completeness ≥ 90%	\vee	Verified during ingestion using quality checks in Prefect
No object Columns	\checkmark	Parquet format with clearly defined schema
No Duplicate Records	\checkmark	Deduplication logic in Prefect ETL pipeline

5. Schema Consistency (10 Points)

- Structured fields:
 - timestamp (datetime), latitude, longitude, brightness, confidence
 - temperature, humidity, wind_speed all numeric
- Data types enforced via Parquet and LakeFS schema tracking

Part 2: Project Report (10 Points)

- 1. Data Visualization (5 Points)
 - Tools used: Streamlit, Folium, GeoPandas
 - Key Visuals:
 - Heatmap of fire hotspots by province
 - Correlation matrix (weather vs brightness)
 - Scatter plots (e.g., temp vs brightness)
 - Features:
 - Interactive map
 - Zoomable and filterable timeline

2. Machine Learning (5 Points)

- Model: Random Forest Regression
- Target: brightness
- Features: temperature, humidity, wind_speed
- Results:
 - Feature importance analysis highlights temperature and humidity as key indicators
 - o Correlation matrix supports feature relationships
- Tools: Scikit-learn, Matplotlib

% Tools & Architecture

Component	Tool/Technology
Data Ingestion	Prefect
Data Storage	LakeFS + Parquet
Dashboard	Streamlit + Folium
Geospatial Handling	GeoPandas
Machine Learning	Scikit-learn (RandomForest)
Metadata Management	CKAN

Outcomes

- Automated ETL pipeline for real-time fire + weather data
- Complete interactive dashboard for decision makers
- Validated model identifying environmental factors affecting fire intensity
- Designed with scalability and data governance in mind

Getting Started Locally

1. Clone the Repository

```
git clone <repo-url>
cd <repo-folder>
```

2. Start Services

```
docker-compose up --build
```

After successful deployment, you can access: **Prefect Dashboard**: http://localhost:4200

JupyterLab: http://localhost:8888 LakeFS: http://localhost:8000 Stramlit: http://localhost:8501

[!IMPORTANT]

Before executing deploy.py, you must first create a repository named weather in LakeFS.

3. **Deploy Prefect Flow**: Deploy the pipeline .:

```
# via JupyterLab at http://localhost:8888
## Start new terminal session

python apiweatherdeploy.py
python firmsapideploy.py
```

This creates a deployment in the default-agent-pool work

Before deploying, ensure a weather repository exists in LakeFS.