() = + me,) == > (qe,) + m (qe,) = >.1+m.0= > ez _ - - - = p YEUM (U,V)

V;YEU*

V;YEU*

V;YEU* Dog. 4 EH-(U,V) 4 EH-(V*, u*): Ar - Drown respective of (En, -) 2 d' 6

∀ v * ∈ V * ~ ∀ v ∈ V (v * ∘ 4)(v) = 0, το 4 = 0 $v^* = e', \neg e'' = 1 \forall v \quad \forall (v) = 0$ - De UM (Ker & = 40); An Kom (u,v) = = dom Kom (v*, u*)) 3us. V*EV* (4++/(v*) = v*o(4++)=v*o4+v*+= = p*(v*) + + *(v*) = (+ + + *)(v*) =) (p++) x = p* + +*

YE Kan (U,V) en come me V i for, she - Some me V $A = M_{\ell}(\gamma)$; $\alpha_{ij} = f(\gamma(e_i))$ et = gyonne 5. (m U*; f' = gyonne 1 m U*

y* = Hom (U*, U*) B=Mgo(4x) $b_{ij} = (f^*(f^i))(e_i) = (f^*o_i)(e_i) = f^i(e_i) = a_{ji}$

Opp. A E Fmxn - Korp. B = At E Fnxmi by-=gi Thousand work. Ru A 305. Ho B pegelie a co-kar A the Ruft co Some to UnV; et uft en grønnint Some en Ut uV* 9 = Hom (u, u); A = Me (4); B = Mgs (4) Tours B=AE

Te. YE Fear (U,V), YEHA (V,W) => (Yo4) = P + + 4 305. U - V - W u = e v = w + D-C W* E W* (404) (w*)= w*o(+04)=(w*o+) o 4 = $= (\Psi^{\dagger}(w^{\dagger})) \circ \Psi - \Psi^{\dagger}(\Psi^{\dagger}(w^{\dagger})) = (\Psi^{\dagger} \circ \mathcal{T}^{\dagger}) (w^{\dagger})$ =) (Y 0 Y) = Y * 0 Y *

Co. 1/ A, B
$$\in$$
 Fm \times n =1 $(A+B)^t = A^t + B^t$
(Coegla of $(P+t)^b = P^k + F^k$)
2/ $A \in$ F, $A \in$ Fm \times n =1 $(AA)^t = A A^t$
(Coegla of $(AP)^t = AP^k$)
3/ $A \in$ Fn \times n , $B \in$ Fm \times k =1 $(AB)^t = B^t A^t$
(Coegla of $(PoF)^b = F^b = F^b$)
4) $A \in$ Fm \times n $(A^t)^t = A$

3as. PenA' At en et ; (At/t en (et/ = qto =) P => P & EH~ (u xx vxx) (t t tom (u, v), e * E km (v *, u *)) TP. V=F", e, m - correg. Some (1,0-0/, (6,1,-1), -(0,0,7) fev"; f: Fn-F $f \Rightarrow f(ei)^2 z = i = 1 - n$ $VEV_{i}v=\sum_{i=1}^{n}X_{i}e_{i}$, $f(v)=\sum_{i=1}^{n}X_{i}f(e_{i})=\sum_{i=1}^{n}X_{i}a_{i}=\sum_{i=1}^{n}X_{i}$ (In XNI

$$f: V \longrightarrow F$$

$$(x_1 - x_n) \longmapsto \sum_{i=1}^{n} a_i x_i \quad ; \quad a_i = f(x_i) = e^{i}(f)$$

$$3.5. \quad e^{i}: V \longrightarrow F$$

$$(x_1 - x_n) \longmapsto x_i$$

$$0.7. \quad 11 \quad U = V \qquad U^{0}: = \int_{V} v \in V \quad | \forall u_i \in U \quad v^{*}(u_i) = 0$$

$$a_{inix uno vo p} \quad km \quad U$$

$$2) \quad U^{*} = \int_{V} V \in V \quad | \forall u_i \in U \quad v^{*}(v_i) = 0$$

$$a_{inix uno vo p} \quad km \quad U$$

$$2) \quad U^{*} = \int_{V} V \in V \quad | \forall u_i \in U \quad v^{*}(v_i) = 0$$

$$a_{inix uno vo p} \quad km \quad U$$

$$a_{inix uno vo p} \quad km \quad U$$

$$a_{inix uno vo p} \quad km \quad U$$

3. u° < v ; u < V 30. 11 U < V ; Romer - Some ben 4 U = { v * E V * | v * (ei / = 0 zm i = 1 k 9 2) U* < U*; e'_ ek - Some (~ U * Uo={VEV/e'(V)=0 20 i=1_1 kg bromper: e'. - en - Donne au Ut. Congretyle on Some e. - en ha V: e' en e gyonen au En En