Algèbre linéaire pour Microtechnique

Exercice 1. Soient les matrices suivantes

$$A = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 10 & -9 & 0 & 0 \\ 4 & -2 & 0 & 0 \\ 0 & 0 & -2 & 7 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$

- a) Trouver les espaces propres des matrices A et B.
- b) Les matrices A et B sont-elles diagonalisables?
- c) Dans le cas où la matrice $X \in \{A, B\}$ est diagonalisable, trouver une matrice inversible P telle que $P^{-1}XP$ soit diagonale.

Exercice 2. Vérifier que $\pi - 1$ et $\pi + 3$ sont des valeurs propres de la matrice

$$\begin{pmatrix} \pi & 1 & 1 & 1 \\ 1 & \pi & 1 & 1 \\ 1 & 1 & \pi & 1 \\ 1 & 1 & 1 & \pi \end{pmatrix}.$$

Exercice 3. a) Soit P une matrice inversible de taille 2×2 et D une matrice diagonale. On pose $A = PDP^{-1}$. Montrer que $A^2 = PD^2P^{-1}$, puis déduire une formule qui permet de calculer A^{10} .

b) On considère les matrices

$$A = \begin{pmatrix} 5 & -6 \\ 3 & -4 \end{pmatrix}, \ P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \ et \ D = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}.$$

Vérifier que $A = PDP^{-1}$, puis calculer A^{10} en utilisant le point a).

Exercice 4. Soit $S_2(\mathbb{R})$ l'espace vectoriel des matrices symétriques de taille 2×2 , dont une base est donnée par $\mathcal{B} = \{S_1, S_2, S_3\}$ où

$$S_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 $S_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $S_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Soit $T: \mathcal{S}_2(\mathbb{R}) \to \mathcal{S}_2(\mathbb{R})$ la transformation linéaire définie par

$$T\begin{pmatrix} a & b \\ b & d \end{pmatrix} = \begin{pmatrix} 2a - d & -b \\ -b & -a + 2d \end{pmatrix}.$$

- a) Calculer les 3 valeurs propres (distinctes) $\{\lambda_1, \lambda_2, \lambda_3\}$ de T.
- b) Pour $i \in \{1, 2, 3\}$, trouver un vecteur propre $M_i \in \mathcal{S}_2(\mathbb{R})$ associé à λ_i . Montrer que $\mathcal{B}' = \{M_1, M_2, M_3\}$ est une base de $\mathcal{S}_2(\mathbb{R})$.
- c) Ecrire la matrice $[T]_{\mathcal{B}'}$ de T par rapport à la base \mathcal{B}' .
- d) Calculer $T^{10}(A)$, où $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$.

Exercice 5. a) Vérifier que les vecteurs

$$v_1 = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -2 & 2 \\ 3 & 2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \text{ et } v_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

forment une base orthogonale de $M_{2\times 2}(\mathbb{R})$ par rapport au produit scalaire

$$(A|B) = A_{11}B_{11} + A_{12}B_{12} + A_{21}B_{21} + A_{22}B_{22}, pour A, B \in M_{2\times 2}(\mathbb{R})$$

b) Calculer ensuite les coordonnées dans la base (v_1, v_2, v_3, v_4) du vecteur $v = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{4}{3} \end{pmatrix}$.

Exercice 6. Supposons que le polynôme caractéristique d'une matrice A soit de la forme

$$p_A(x) = (x-1)(x-3)^2(x-4)^3.$$

- a) Quelles sont les valeurs propres de A?
- b) Que peut-on dire de la dimension des espaces propres de A?
- c) Que peut-on dire de la dimension des espaces propres de A si on sait de plus que A est diagonalisable?
- d) Si $\{v_1, v_2, v_3\}$ est une famille de vecteurs linéairement indépendants associés au même espace propre de A, que peut-on dire sur la valeur propre?
- e) Donner deux matrices non semblables C et D avec polynôme caractéristique $(x-1)(x-3)^2(x-4)^3$.

Exercice 7. On munit \mathbb{R}^2 du produit scalaire euclidien. Soient

$$\vec{u} := \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{v} := \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \vec{w} := \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Representer les vecteurs et essayer de repondre aux questions suivantes sans faire des calculs. Vérifier après.

- 1. Est-ce que \vec{u} et \vec{v} sont orthogonaux?
- 2. Est-ce que \vec{u} et \vec{w} sont orthogonaux?
- 3. Ecrire un vecteur \vec{z} orthogonal à \vec{w} de norme 30.
- 4. Parmi \vec{u} et \vec{v} , qui est le vecteur le plus distant de \vec{w} ?

Exercice 8. On munit \mathbb{R}^3 du produit scalaire euclidien. Soient

$$\vec{u} = \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, \quad \vec{w} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}, \quad \vec{z} = \begin{pmatrix} 5 \\ -3 \\ 1 \end{pmatrix}.$$

- 1. Montrer que $\mathcal{B} := (\vec{u}, \vec{v}, \vec{w})$ est une base orthogonale de \mathbb{R}^3 .
- 2. En utilisant le fait que \mathcal{B} est orthogonale, écrire $[\vec{z}]_{\mathcal{B}}$.
- 3. Exprimer le vecteur \vec{z} comme une combinaison linéaire de \vec{u} , \vec{v} et \vec{w} .

Exercice 9. Soit les vecteurs

$$\overrightarrow{u} = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}, \quad \overrightarrow{v} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}.$$

- (a) Calculer $\overrightarrow{u} \cdot \overrightarrow{u}$, $\overrightarrow{v} \cdot \overrightarrow{v}$, $\overrightarrow{u} \cdot \overrightarrow{v}$, $\|\overrightarrow{u}\|$ et $\|\overrightarrow{v}\|$.
- (b) Calculer la distance entre \overrightarrow{u} et \overrightarrow{v} .
- (c) Trouver une base de l'espace orthogonal au plan engendré par \overrightarrow{u} et \overrightarrow{v} .

Exercice 10. Démontrer que les applications

$$(\ |\): V \times V \to \mathbb{R}.$$

suivantes définissent des produits scalaires sur l'espace vectoriel V.

a) $V = C^{\infty}([0,1])$ (l'espace vectoriel des fonctions infiniment dérivables et définis sur [0,1] à valeurs dans \mathbb{R}) avec

$$(f|g) := \int_0^1 (f'(x)g'(x) + f(x)g(x))dx, \ pour \ f, g \in V.$$

b) $V = \mathcal{P}_2(\mathbb{R})$ avec

$$(p|q) := a_0b_0 + 2a_1b_1 + 3a_2b_2$$
, où $p = a_0 + a_1x + a_2x^2$ et $q = b_0 + b_1x + b_2x^2$.

c) $V = \mathbb{R}^4$ avec

$$(\mathbf{v}|\mathbf{w}) := v_1 w_1 + 2v_2 w_2 + v_3 w_3 + 3v_4 w_4,$$

lorsque $\mathbf{v} = (v_1, v_2, v_3, v_4)$ et $\mathbf{w} = (w_1, w_2, w_3, w_4)$.

Exercice 11. Choix Multiple.

- a. Soit A une matrice de taille 3×3 telle que $A^3 = I_3$. Parmi les affirmations suivantes laquelle est toujours vraie?
 - \square Alors dim KerA = 1 et 0 est valeur propre de A.
 - \square Alors dim KerA = 0 et 0 est valeur propre de A.
 - \square Alors dim KerA = 0, mais 0 n'est pas valeur propre de A.
 - \square Alors 2 est une valeur propre de A.
- b. Soit A une matrice de taille 3×3 avec $c_A(t) = (t-1)^2(t+1)$.
 - \square Alors A est toujours diagonalisable.
 - \square Alors A a pour valeurs propres 1 et -1.
 - \square Alors A n'est jamais diagonalisable.
 - \square Si A est diagonalisable, alors il existe des vecteurs linéairement indépendants $v_1, v_2 \in \mathbb{R}^2$ tels que $Av_i = -v_i$ pour i = 1, 2

Exercice 12. Vrai ou faux, avec justification.

- a) Soit $A \in M_{n \times n}(\mathbb{R})$. Si A est diagonalisable, alors A est inversible.
- b) Soit $A \in M_{n \times n}(\mathbb{R})$. Si 0 est une valeur propre de A, alors A n'est pas inversible.
- c) Soit $T: V \to V$ une transformation linéaire avec polynôme caractéristique

$$p_T(t) = (1 - t^2)(t - 1)(t - 2).$$

 $Alors, \ T \ est \ diagonalisable.$

d) Soit $A, P \in M_{3\times 3}(\mathbb{R})$, avec P inversible, telles que $P^{-1}AP = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \end{pmatrix}$. Alors, $\lambda_1 = 0$, $\lambda_2 = 1$ et

 $\lambda_3 = 2$ sont les valeurs propres de A et par conséquent A est diagonalisable.

Exercice 13 (Facultatif). Dans l'espace vectoriel des fonctions réelles continues définies sur l'intervalle $[-\pi, \pi]$, considérons le produit scalaire

$$(f|g) = \int_{-\pi}^{\pi} f(x)g(x)dx.$$

Montrer que pour tout n la famille de vecteurs $\{\cos x, \cos 2x, \dots, \cos nx\}$ est orthogonale (c'est-à-dire que ses vecteurs sont orthogonaux deux à deux).

Exercice 14 (A faire plus tard si vous souhaitez voir d'autres exercices sur la diagonalisation, pendant la période de révision.). Soient

$$A = \begin{pmatrix} 3 & -1 \\ 1 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 0 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{pmatrix}, \quad D = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix} \quad et \quad E = \begin{pmatrix} 5 & 1 \\ 0 & 5 \end{pmatrix}.$$

- 1. Ecrire pour chaque matrice le polynôme caractéristique.
- 2. Trouver pour chaque matrice les valeurs propres et les espaces propres correspondants.
- 3. Dites lesquelles sont diagonalisables et trouver une base et une forme diagonale où elle existe.