Chem 30324, Spring 2018, Homework 11

Due May 5 2018

Thermodynamics from scratch.

Let's calculate the thermodynamic properties of an ideal gas of CO molecules at 1 bar pressure. CO has a rotational constant B = 1.931 cm^{-1} and vibrational frequency ν = 2156.6 cm^{-1} . Suppose you have a 20 dm^3 cubic bottle containing 1 mole of CO gas that you can consider to behave ideally.

- 1. The characteristic temperature Θ of a particular degree of freedom is the characteristic quantum of energy for the degree of freedom divided by k_B . Calculate the characteristic translational, rotational, and vibrational temperatures of CO.
- 2. Calculate the *translational partition function* of a CO molecule in the bottle at 298 K. What are the units of the partition function?
- 3. Plot the *rotational and vibrational partition functions* of a CO molecule in the bottle from T = 200 to 2000 K (assume the CO remains a gas over the whole range). *Hint:* Use your answer to Problem 1 to simplify calculating the rotational partition function.
- 4. Plot the *total translational, rotational, and vibrational energies* of CO in the bottle from T = 200 to 2000 K (assume the CO remains a gas over the whole range). Which (if any) of the three types of motions dominate the total energy?
- 5. Plot the total translational, rotational, and vibrational constant volume molar heat capacities of CO in the bottle from T = 200 to 2000 K. Which (if any) of the three types of motions dominate the heat capacity?
- 6. Plot the *total translational, rotational, and vibrational Helmholtz energies* of CO in the bottle from T = 200 to 2000 K. Which (if any) of the three types of motions dominate the Helmholtz energy?

7. Use your formulas to calculate Δ P, Δ U, Δ A, and Δ S associated with isothermally expanding the gas from 20 dm 3 to 40 dm 3 .

Equilibrium constants from first principles.

In 1996, Schneider and co-workers reported calculations on the energetics of decomposition of trifluoromethanol, a reaction of relevance to the atmospheric degradation of hydrofluorocarbon refrigerants (*J. Phys. Chem.* 1996, *100*, 6097- 6103): $CF_3OH \rightarrow COF_2 + HF$

Following are some of the reported results, computed at 298 K:

	CF ₃ OH	[CF ₃ OH] [‡]	COF_2	HF	
$E^{\rm elec}$	-412.90047	-412.82771	-312.57028	-100.31885	(Hartree)
ZPE	0.02889	0.02313	0.01422	0.00925	(Hartree)
U^{trans}	3.7	3.7	3.7	3.7	(kJ mol ⁻¹)
$U^{ m rot}$	3.7	3.7	3.7	2.5	(kJ mol ⁻¹)
$U^{ m vib}$	4.3	4.1	1.2	0	$(kJ mol^{-1})$
$q^{ m trans}/{ m V}$	7.72×10^{32}	7.72×10^{32}	1.59×10^{32}	8.65×10^{31}	$(1/m^3)$
$q^{ m rot}$	61830	68420	679	9.59	
q^{vib}	2.33	2.28	1.16	1	

- 8. Make a rough estimate of ΔS° (298 K), in J mol $^{-1}$ K $^{-1}$, assuming a 1 bar standard state. (*Hint:* What degrees of freedom will dominate the entropy?)
- 9. Using the data provided, determine ΔU° (298 K) and ΔH° (298 K), in kJ mol $^{-1}$.
- 10. Using the data provided, determine K_c (298 K), assuming a 1 mole/liter standard state.
- 11. 1 mole of CF_3OH is generated in a 20 L vessel at 298 K and left long enough to come to equilibrium with respect to its decomposition reaction. What is the composition of the gas (concentrations of all the components) at equilibrium (in mol/L)?

- 12. How, directionally, would your answer to Question 11 change if the vessel was at a higher temperature? Why, in statistical mechanical terms?
- 13. How, directionally, would your answer to Question 11 change if the vessel had a volume of 5 L? Why, in statistical mechanical terms?