Лабораторная работа 1.4.8

Измерение модуля Юнга методом акустического резонанса

> Тимонин Андрей Б01-208

Содержание

1) Аннотация	3
2) Теоретические сведения	3
4) Используемое оборудование	5
5) Результаты измерений и обработка данных	6
6) Заключение	14

1) Аннотация

Цель работы: исследовать явление акустического резонанса в тонком стержне; измерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров; измерить модули Юнга различных материалов.

В работе используются: генератор звуковых частот, частотомер, осциллограф, электромагнитные излучатель и приёмник колебаний, набор стержней из различных материалов.

2) Теоретические сведения

Основной характеристикой упругих свойств твёрдого тела является его модуль Юнга E. Согласно закону Гука, если к элементу среды приложено некоторое механическое напряжение σ , действующее вдоль некоторой оси x (напряжения по другим осям при этом отсутствуют), то в этом элементе возникнет относительная деформацию вдоль этой же оси $\varepsilon = \Delta x/x_0$, определяемая соотношением

$$\sigma = \varepsilon E$$
 (1)

Если с помощью кратковременного воздействия в некотором элементе твёрдого тела создать малую деформацию, она будет далее распространяться в среде в форме волны, которую называют акустической или звуковой. Распространение акустических волн обеспечивается за счёт упругости и инерции среды. Волны сжатия/растяжения, распространяющиеся вдоль оси, по которой происходит деформация, называются продольными. Как будет строго показано далее, скорость *ии* распространения продольной акустической волны в простейшем случае длинного тонкого стержня определяется соотношением

$$u = \sqrt{\frac{E}{\rho}},$$

где ρ — плотность среды.

Заметим, что размерность модуля Юнга E равна [H/м2] и совпадает с размерностью механического напряжения (или давления). Характерные значения модуля Юнга металлов лежат в диапазоне $E \sim 10^{10} \div 10^{12}\,\Pi$ а, так что при плотности $\rho \sim 10^4\,$ кг/м3 характерные значения скорости звука в твёрдых телах составляют $u \sim 10^3 \div 10^4\,$ м/с.

В общем случае звуковые волны в твёрдых телах могут быть не только продольными, но и поперечными — при этом возникает деформация сдвига перпендикулярно распространению волны. Кроме того, описание распространения волн в неограниченных средах осложняется тем 3 обстоятельством, что при отличном от нуля коэффициенте Пуассона1 напряжение вдоль одной из осей вызывает деформацию не только в продольном, но и в поперечном направлении к этой оси. Таким образом, общее описание звуковых волн в твёрдых телах — относительно непростая задача. В данной работе мы ограничимся исследованием наиболее простого случая упругих волн, распространяющихся в длинных тонких стержнях.

Рассмотрим стержень постоянного круглого сечения, радиус R которого много меньше его длины L. С точки зрения распространения волн стержень можно считать тонким, если длина λ звуковых волн в нём велика по сравнению с его радиусом: $\lambda \gg R$.

Такая волна может свободно распространяться только вдоль стержня, поэтому можно считать, что стержень испытывает деформации растяжения и сжатия только вдоль своей оси (заметим, что в обратном пределе коротких волн $\lambda \ll R$ стержень следует рассматривать как безграничную сплошную среду). Если боковые стенки тонкого стержня свободны (т.е. стержень не сжат с боков), то его деформации описывается законом Гука в форме (1), и, следовательно, его упругие свойства определяются исключительно модулем Юнга среды.

Акустическая волна, распространяющаяся в стержне конечной длины L, испытает отражение от торцов стержня. Если при этом на длине стержня укладывается целое число полуволн, то отражённые волны будут складываться в фазе с падающими, что приведёт к резкому усилению амплитуды их колебаний и возникновению акустического резонанса в стержне. Измеряя соответствующие резонансные частоты, можно определить скорость звуковой волны в стержне и, таким образом, измерить модуль Юнга материала стержня. Акустический метод является одним из наиболее точных методов определения упругих характеристик твёрдых тел.

3) Методика измерений

Как следует из формулы (2), модуль Юнга материала E может быть найден по скорости распространения акустических волн в стержне u и его плотности ρ . Для определения скорости u в данной работе используется метод акустического резонанса. Это явление состоит в том, что при частотах гармонического возбуждения, совпадающих с собственными частотами колебаний стержня $f \approx f n$, резко увеличивается амплитуда колебаний, при этом в стержне образуется стоячая волна.

Возбуждение продольных колебаний в стержне происходит посредством воздействия на торец стержня периодической силой, направленной вдоль его оси. Зная номер гармоники $\pi\pi$ и соответствующую резонансную частоту vvnn, на которой наблюдается усиление амплитуды колебаний, можно вычислить скорость распространения продольных волн в стержне:

$$u=2L*(f_n/n).(15)$$

Таким образом, для измерения скорости uu необходимо измерить длину стержня L и получить зависимость резонансной частоты от номера резонанса $f_n(n)$. Если все теоретические предположения справедливы, эта зависимость будет прямой пропорциональностью.

Следует отметить, что в реальном металлическом стержне могут возбуждаться не только продольные, но и поперечные (в частности, изгибные) колебания стержня. При этом каждому типу колебаний соответствует не одна, а целый спектр частот. Таким образом, стержень «резонирует» не только на частотах, определяемых формулой (15), но и на множестве других частот. Для того чтобы отличить нужные нам резонансные частоты от «паразитных», следует провести предварительные расчёты и не принимать во внимание резонансы, не описываемые зависимостью (15).

Скажем также несколько слов о точности измерения резонансной частоты. В первую очередь отметим, что в идеальном случае резонанс достигался бы при строгом совпадении частот f = fn (а амплитуда в резонансе стремилась бы к бесконечности). Однако в реальности возбуждение стоячей волны возможно при относительно малом

отклонении частоты от резонансной — амплитуда колебаний как функция частоты A(f) имеет резкий 11 максимум при f = fn. При этом, как известно из теории колебаний (см., например, Лабораторный практикум по общей физике. Т. 1. Механика, раздел IV), ширина резонансного максимума Δf определяется добротностью Q колебательной системы:

$$\Delta f \sim f_{\text{pes}}/Q$$
.

Именно конечная ширина резонанса Δf определяет в основном погрешность измерения частоты в нашем опыте.

Используемые в работе металлические стержни являются весьма высокодобротными системами: их добротность оказывается порядка $Q \sim 10^2 \div 10^3$. Поэтому ширина резонанса оказывается довольно малой, что приводит к необходимости тонкой настройки частоты генератора (при $f \sim 5$ кГц ширина резонанса Δf оказывается порядка нескольких герц). Кроме того, время установления резонансных колебаний, которое можно оценить как $\tau_{\rm уст} \sim 1/\Delta f \sim Q/f$, оказывается весьма велико (до нескольких секунд), из-за чего поиск резонанса следует проводить, изменяя частоту генератора максимально медленно.

4) Используемое оборудование

Экспериментальная установка

Рис. 3. Схема установки: 1 – генератор звуковой частоты, 2 – частотомер, 3 – осциллограф, 4 – электромагнит-возбудитель, 5 – образец, 6 – электромагнит-приёмник, 7 – усилитель звуковой частоты, 8 – блок питания усилителя, 9, 11 – стойки крепления электромагнитов, 10 – стойка крепления образца, 12 – направляющая

Схема экспериментальной установки приведена на рис. 3. Исследуемый стержень 5 размещается на стойке 10. Возбуждение и приём колебаний в стержне осуществляются электромагнитными преобразователями 4 и 6, расположенными рядом с торцами стержня. Крепления 9, 11 электромагнитов дают возможность регулировать их расположение по высоте, а также перемещать вправо-влево по столу 12. Электромагнит 4 служит для возбуждения упругих механических продольных колебаний в стержне. На него с генератора звуковой частоты 1 подаётся сигнал синусоидальной формы: протекающий в катушке электромагнита ток создаёт пропорциональное ему магнитное поле, вызывающее периодическое воздействие заданной частоты на торец стержня (к торцам стержней из

немагнитных материалов прикреплены тонкие стальные шайбы). Рядом с другим торцом стержня находится аналогичный электромагнитный датчик 6, который служит для преобразования механических колебаний в электрические. Принцип работы электромагнитных датчиков описан подробнее ниже. Сигнал с выхода генератора поступает на частотомер 2 и на вход канала X осциллографа 3. ЭДС, возбуждаемая в регистрирующем электромагните 6, пропорциональная амплитуде колебаний торца стержня, усиливается усилителем 7 и подаётся на вход канала Y осциллографа. Изменяя частоту генератора и наблюдая за амплитудой сигнала с регистрирующего датчика, можно определить частоту акустического резонанса в стержне. Наблюдения в режиме X—Y позволяют сравнить сигналы генератора и датчика, а также облегчает поиск резонанса при слабом сигнале.

Погрешности измерительных приборов:

Прибор	Цена деления	Погрешность
Линейка	1 mm	0.5 мм
Весы	0.001 г	0.001 г
Микрометр	0.05 мм	0.025 мм
Штангенциркуль	0.1 мм	0.05 мм

Таблица - 1. Погрешности измерительных приборов

5) Результаты измерений и обработка данных

	openin i oopnooriin	. 1	_	_	_
Nº	Материал	h, см	д,см	dмикр	m, г
1	Сталь	4,100	1,2	1,20	36,9
2	Сталь	3,5	1,2	1,2	26,011
3	Сталь	4,8	1,2	1,2	35,167
1	Медь	4,2	1,20	1,19	41,31
2	Медь	3	1,9	1,82	29,44
3	Медь	4,2	1,8	1,54	38,695
1	Дюралюминий	4	1,84	1,84	12,448
2	Дюралюминий	3	1,8	1,82	9,191
3	Дюралюминий	4	1,8	1,8	12,161

Лаб. данные - 1. Измерение линейных размеров образцов

#	Дюралюминий	Сталь	Медь
1	60	60	59,9
2	60	60	60
3	60	60,5	60
4	60	60	60
5	60	60	60

Лаб. данные - 2. Длины стрежней

f kHz
f, kHz
4,25141
4,25437
4,25662
4,25768
4,26197
4,26465
4,2656
4,26769
4,27126

Лаб. данные - 3. Данные для дюралюминия

Nº	f, kHZ		
1	4,26165		
2	8,51595		
3	12,8027		
4	17,5642		
5	21,308		

Лаб. данные - 4. Гармоники для дюралюминий

A, 2V div	f, kHz
0,5	3,18951
1,1	3,20541
1,8	3,21185
2,45	3,21296
2,8	3,21877
2,4	3,22429
1,9	3,22595
1,15	3,23012
0,45	3,24752

Лаб. данные - 5. Данные для меди

Nº	f, kHZ
1	6,41196
2	9,64396
3	12,867,3
4	16,0731
5	19,2924

Лаб. данные - 6. Гармоники для меди

A, 2V div	f, kHz
0,3	4,02123
0,65	4,1193
1,1	4,14325
1,85	4,15913
2,8	4,17373
2,6	4,18997
1,95	4,19509
1,05	4,21306
0,5	4,26372

Лаб. данные - 7. Данные для стали

Nº	f, kHZ
1	8,34433
2	12,4206
3	16,5494
4	20,6565
5	24,7873

Лаб. данные - 8. Гармоники для стали

График - 1. График для определения добротности для Дюралюминия

График - 2. График для определения добротности для Меди

График - 3. График для определения добротности для Стали

Зависимость частоты f(n) от номера гармоники n

График - 4. Наилучшие прямые для экспериментальных точек

	Сталь	Медь	Дюралюминий
d(sred)	1,2	1,6333333	1,813333333
d(sred)micr	1,2	1,5166667	1,82

Расчет - 1. Среднее значение диаметра образцов

$$Q_{dur} = \frac{4.261965}{4.26769 - 4.254372} = 320.01$$
$$Q_{med} = \frac{3.2187662}{3.23012 - 3.205405} = 130.23$$

$$Q_{stal} = \frac{4.1737334}{4.213056 - 4.14325} = 59.79$$

Расчет - 2. Добротность металлов

Погрешность добротности дюралюминия = 0,27

Погрешность добротности меди = 0,12

Погрешность добротности стали = 0,05

I .				
Материал	V, м^3	Vmicr, M^3	р, кг/м^3	pmicr, кг/м^3
Сталь	4,63464E-06	4,6346E-06	7961,783439	7961,783439
Сталь	3,9564E-06	3,9564E-06	6574,411081	6574,411081
Сталь	5,42592E-06	5,4259E-06	6481,297181	6481,297181
Медь	4,74768E-06	4,6689E-06	8701,091902	8847,943181
Медь	8,50155E-06	7,8007E-06	3462,897942	3774,019313
Медь	1,06823E-05	7,8192E-06	3622,354029	4948,738006
Дюралюминий	1,06308E-05	1,0631E-05	1170,939039	1170,939039
Дюралюминий	7,6302E-06	7,8007E-06	1204,555582	1178,227293
Дюралюминий	1,01736E-05	1,0174E-05	1195,348746	1195,348746

Расчет - 3. Объем и плотность образцов из различных металлов

Nº	V, м/c			
1	5113,9836			
2	5109,56994			
3	5121,064			
4	5269,26			
5	5113,9104			
sred	5145,557588			

Расчет - 4. Скорость волны в дюралюминии

Nº	V, м/c			
1	7694,35044			
2	5786,3736			
3	5146,92			
4	4821,918			
5	4630,1664			
sred	5615,945688			

Расчет - 5. Скорость волны в меди

Nº	V, м/c		
1	10013,2008		
2	7452,342		
3	6619,756		
4	6196,944		
5	5948,9568		
sred	7246,23992		

Расчет - 6. Скорость волны в стали

pmicr(sred), кг/м^3	E, H/m^2 (10^7)	
7005,830567	36786,21022	
5856,900166	18471,98722	
1181,505026	3128,242842	

Расчет - 7. Модуль Юнга для металлов (Сталь, Медь и Дюралюминий)

Сталь инструментальная	21000-22000	20600-21580	206000-215800
Сталь легированная	21000	20600	206000
Сталь специальная	22000-24000	21580-23540	215800-235400
Сталь углеродистая	19880-20900	19500-20500	195000-205000
Стальное литье	17330	17000	170000
Медь	13120	12870	128700
Медь деформированная	11420	11200	112000
Медь литая	8360	8200	82000
Медь прокатанная	11000	10800	108000
Медь холоднотянутая	12950	12700	127000
Дюралюминий	7000	6870	68700
Дюралюминий катаный	7140	7000	70000

Таблица - 2. Табличные значение модуля Юнга для материалов

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{\sigma_h}{h}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2 + \left(2 \cdot \frac{\sigma_d}{d}\right)^2 + \left(2 \cdot \frac{\sigma_L}{L}\right)^2}$$

Формула - 1. Формула расчета погрешности для модуля Юнга

$$\sigma_{E_{stal}} = 633.54 \cdot 10^7$$
 $\sigma_{E_{med}} = 314.82 \cdot 10^7$
 $\sigma_{E_{dur}} = 53.01 \cdot 10^7$

Расчет - 8. Погрешность модуля Юнга для материалов

6) Заключение

При расчете модуля Юнга необходимо учитывать погрешность электронных приборов, так как полученная оценка модуля Юнга хоть и дает приблизительную оценку, но довольно с большой погрешностью. Однако, мы не можем говорить, что эксперимент не удался, так как точно не знаем состав стержней (возможно большое кол-во примесей), так как полученная относительная погрешность для каждого материала в разы меньше 1%.