ECE 544- Homework 2

Ahmadreza Eslaminia (Ae15)

Questions:

Aha	AE15	ECE 544	Hm5 ¾	
	1. [Mus Margia 5	VM] D. { " CR"	76{1.13	
	min = w 2 wb 2	V(", ") & D " (Jr(1), 6) >1	
) we will have 4 cour	traints as follows:		
		y1(uTx1,6)>1 =>		W(+ 157,1
w: [w]	With I all	j2 (J2+b) >1 => h	The Hard State of	W2+631
		> y (wh +b) > 1 => -6	1 1	W14W27,1+b
<u>C</u>	100	ey b 1/-1 Condition => 11	- (69)	19/1/2
		> with 2 => oftime =		70.[1]
	p:-1 \	0 × (-5) = 1	1 (d+10) - Uz 1 = 1	1/1/1
	b,-1, (w146) >1 =>	2 0 γtime ω* [1 4	
the the little	101.21		+3	- (3) \ \
March 1219	() () () () () () () () () ()	5 2 wint of for	this objective function ?	sface who be-1
PARTIS AND L	- (F. P. 9. 8)	F 20.0 J	(1 1,4 1-1)	
3	molyn and the	the second of the	September 19 man	
CS \$	canned with C	amScanner		Pz
				X-1

	2. e) The lagrangian would be as follow:
· flor	L(w,b,7, di), c,0)= 1 wtw + & E (3") = E x"(5" (7") -1+3")
₩: ≧>	(i) 7,0
1	(1) 7,0 (1) 7, (1) 12, (1) 12, (1) 12, (1) 12, (1)
	f) show the dual of proframis muse - 2 at (Q+I =) x = 7 a
(10)	June Qij = jiji Xi Xj av spol y spol
	Take belling patial odvaisedises:
	VωL 20 => ω_ ξ' αὐς ψ') x (1) = 0 => ω 2 ξ' αὐς ψ') x (i)
	766 = 0 => \(\frac{10}{2} \times \frac{1}{2} \time
A	The 20 => CJ'' - a(i) = 0 => J') = a'i) / Placing above in Lagrangian:
	1 (E (x') x') T (E x) 1 x') + 5 E (x') 1 2 11 (2 11)
	2 in c2 in c
121	-12 at (E E 7 17, x[x]) a - 2 at (I =) a + Ta = -12 at (Q+I =)x+Ta]
CS S	canned with CamScanner 0 .
	canned with Camscanner

3. [Support Vidor Machie] min / 11 w112 s.t y(1)(wTx")+6/7, V(w":4") ED a) => lagrangium with multiples ai: VwL.0 => w - \(\frac{\(\beta\)}{2} \alpha^{\(\beta\)} \g^{\(\beta\)} \g^{\(\beta\ => + L = \frac{10}{2} \quad \q = \(\alpha \) \(5.1 2:7,0 ViED c) k(x,2), $(x^{T}2)^{2}+1 = p(x)^{T}p(2) \Longrightarrow p(x) = p(x^{T})^{T}$ 2,3 support ventors -> midfiret is 1 P₁ = [1] = > ω^Tρ₄b₂ = 1

ρ₂ : [1] = > ω^Tρ₄b₂ = 0

εs εείπε ε ω with CamScanner = 012-1, 6.2

	3. d) points of Q, B are support vectors.	1
	~ ii	
	$u_{\epsilon} \text{ have}; w^{\dagger} = \sum_{i=1}^{N} u^{(i)} y^{(i)} z^{(i)}$	
(4) X = X	()	
3	=> [-1] = x2x1x[1] + x3x-1x[3]=[==================================	
	(1) (4) (1) (4)	
	(", T. (", 1) (3, 3" - full for tond on) I have (8	Vector)
	143 3 was 12 12 13 3 - 6 - 6.1 N	
11000	Kee	
x (2, 4)		
100,42	37/	
	The Property of the same of th	A
	61 at 25 web	
150	1 /2/19 - 1 / (1) x 7/20 = 1 / (1) 1 (8/20) (8/20) (8	
6 1		
de Com	indone for the set of the	
D 1) 100 1		
0 0%		
	TO BERT TO BERT TO BERT TO BERT TO BE	W 24
0 0	Markette 1000 for soffer	- 3

	5. [Milliclass classification via NN]
J	a) since it has to be affout one class. & F(2) 21 => Softman and 0 / fiziji
4.00	$f_{(2)} = \frac{e^{2i}}{\sum_{e} e^{2i}}$
S SAVE	b) 6(2) = (21 , 22 , 23)
	Since f uses exponential function we know that fis translation invariant.
	$ \frac{\text{chant } G_{1} > G\left(2^{(1)}\right) = \left(\frac{0,1}{0.4}, \frac{0.1}{0.4}, \frac{0.2}{0.2}\right) = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)}{\text{G is not translation}} $ $ \frac{G\left(2^{(1)}\right) = \left(\frac{101}{3.04}, \frac{101}{3.04}, \frac{1.04}{3.04}\right) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)}{\text{Invariant}} $
	$G(2^{(1)}) = (\frac{101}{3.04}, \frac{101}{3.04}, \frac{1.04}{3.04}) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ invariant
	we can undrestan as translation invariant function (such as f) is more
	desirable the a non Freution (such as 6) since the nontransition
	one of othe number, got larg is co-Parison to their difference they are
	going to give same out for all the infats.
	() ((y, f(2)) = - ln (e + e + e) = - 23 + ln (c + e + e)
	δ ε (), f () = -1 + e ² () = -2 (
	(F(7, 16(2)) = -12 (23) = -123 +122223) As you consec At 22(1,10-5,10-5)
0	S CE (7. 6(2)) 2 -1 + 1 /gradient of CE(y,6(2))
	des 23 ti+tz+t3 will explode and will
<u>C3</u> 5	canned with Camscanner , result to officient in issue - P2

	5.d) one vs - rest is going to be slower . On Since in Multin class
i just s	classification Although the last layer has more farameters (3x), the whole
	competation for Got (torward) for 3 of one-us-vest and which is
	newled to completly cassign are correct class to infact is higher than multi
5,33	chais chaisitication.
and the second	57 3 - 2 - 13 - (-3.0 - 12 - 1.0) , (-3.0 - 1.0) , (
Cop lande	1
	In a later than the second of
and one of	
	the state of the s
	(12 a f a f a f a f a f a f a f a f a f a
	The state of the s
vaj eka	
(4. 4.1	
and the	Control of the second of the s
cs Sc	anned with CamScanner P10,

Codes A3-SVM:

```
C: > DriveA > UIUCcourses > Fall 2023 > ECE 544 pattern recognition > HWS > hw2 > homework2 > 🕏 A3_SVM.
       import torch
      import torch.optim as optim
      import torch.nn as nn
      import matplotlib.pyplot as plt
      torch.manual seed(1)
      X = torch.tensor([[1, 0, 0, -1],[0, 1, 0, -1]], dtype=torch.float32)
      y = torch.tensor([1, 1, -1, -1], dtype=torch.float32)
      w = torch.tensor([0.0, 0.0], requires grad=True)
      b = torch.tensor([0.0], requires grad=True)
      alpha = 0.001
      C = 1
 15
      optimizer = optim.SGD([w,b], lr=alpha, weight decay=0)
      optimizer.zero_grad()
      grads = []
      losses = []
       for iter in range(10000):
           if iter==0:
               print('1-y(w^T*x+b): {}'.format(1 - y*(torch.matmul(X.T, w)+b)))
           ## Dimensions: loss (scalar)
```

```
## Dimensions: loss (scalar)
 28
          New term = 1 - y^*(torch.matmul(X.T, w)+b)
          loss = C/2 * torch.matmul(w, w) + torch.sum(torch.clamp(New term, min=0))
          loss.backward()
          gn = torch.norm(w.grad)**2 + torch.norm(b.grad)**2
          print("Iter: %d; Loss: %f; ||Grad||: %f" % (iter, loss, gn))
          optimizer.step()
          optimizer.zero grad()
          losses.append(loss.item())
          grads.append(gn)
          print('w: {}'.format(w.data))
          print('b: {}'.format(b.data))
      plt.figure()
      plt.plot(losses, label='Loss')
      plt.title('Loss')
      plt.show()
      plt.figure()
      plt.plot(grads, label='Grad')
      plt.title('||Grad||')
      nlt.show()
                                  TERMINAL
Iter: 9997; Loss: 1.778837; ||Grad||: 1.891705
w: tensor([0.6671, 0.6671])
b: tensor([0.3320])
Iter: 9998; Loss: 1.778868; ||Grad||: 1.221706
w: tensor([0.6674, 0.6674])
b: tensor([0.3330])
Iter: 9999; Loss: 1.778391; ||Grad||: 1.890811
w: tensor([0.6667, 0.6667])
b: tensor([0.3320])
```


A4-Multiclass:

```
import torch
import torch.optim as optim
import torch.nn as nn
torch.manual seed(1)
alpha = 1
C = 0
## encode the dataset to fit the one specified in HW4.pdf (note that bias
## is part of the network now)
## Dimensions: X (2x3); y (3)
X = \text{torch.Tensor}([[1, 0, 0], [0, 1, 0]])
y = torch.LongTensor([0, 1, 2])
class ShallowNet(nn.Module):
   def init (self):
       super(ShallowNet, self). init ()
       self.fc1 = nn.Linear(2,3, bias=True)
   def forward(self, X):
       return self.fc1(X)
net = ShallowNet()
print(net)
print(net(torch.transpose(X,0,1)).squeeze())
optimizer = optim.SGD(net.parameters(), lr=alpha, weight decay=C)
optimizer.zero_grad()
criterion = nn.CrossEntropyLoss()
for iter in range(10000):
   netOutput = net(torch.transpose(X,0,1))
```

```
C: > DriveA > UIUCcourses > Fall 2023 > ECE 544 pattern recognition > HWS > hw2 > homework2 > 🌻 A4_Multiclass.py
      optimizer = optim.SGD(net.parameters(), lr=alpha, weight decay=C)
      optimizer.zero_grad()
      criterion = nn.CrossEntropyLoss()
 36 \vee for iter in range(10000):
           netOutput = net(torch.transpose(X,0,1))
           ## provide the arguments for the criterion function
           ## Dimensions: loss (scalar)
           loss = criterion( netOutput , y )
           loss.backward()
           gn = 0
           for f in net.parameters():
               gn = gn + torch.norm(f.grad)
           print("Loss: %f; ||g||: %f" % (loss, gn))
           ## Use two functions within the optimizer instance to perform the update step
 52
           optimizer.step()
           optimizer.zero grad()
PROBLEMS
                                    TERMINAL
Parameter containing:
tensor([[ 8.7387, -1.6501],
[-1.9086, 9.0514],
[-7.2685, -6.9575]], requires_grad=True)
Parameter containing:
tensor([-2.5121, -2.5161, 5.3407], requires grad=True)
tensor([[9.9981e-01, 1.7380e-05, 6.9603e-04],
         [3.0772e-05, 9.9987e-01, 9.4992e-04],
         1.6024e-04, 1.1721e-04, 9.9835e-01]], grad fn=<SoftmaxBackward0>)
PS C:\DriveA\UIUCcourses\Fall 2023\ECE 544 pattern recognition\HWS\hw2\homework2> 🗍
```