10 - Feb 8 Lecture

- 16 "equivalence statements" to use when solving problems
- information about test 2
- subspaces

1) goes through origin
$$\vec{o} \in V$$

2)
$$u_1 v \in V \Rightarrow u + v \in V$$

a)
$$\{\vec{0}\}$$
 = V : subspace

b)
$$x_1 = 2x_2 + 3$$

 $0 = 2(0) + 3$

· not a subspace

$$Ker (T) = \left\{ v \in \mathbb{R}^2 \middle| T(v) = 0 \right\} \qquad T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 3x - 2y \\ 2x + 3y \end{bmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 3x - 2y \\ 2x + 3y \end{bmatrix}$$

c) $\ker(T)$ $T: \mathbb{R}^2 \to \mathbb{R}^2$

 $T(\lceil x \rceil) = \lceil 0 \rceil$

prove 2) take
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

$$\begin{bmatrix} 3x-2y \\ 2x+3y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

solve
$$\rightarrow x, y = 0$$

10 Carrier as Chalan and	I ak A Januara sa sa
16 Equivalence Statements	Let A be a nxn matrix.
	The following statements are <u>equivalent</u> (all true or all false):
	1) A is invertible.
	2) A is row equivalent to In.
	3) A has n pivot positions.
	4) $A\vec{x} = \vec{0}$ implies $\vec{x} = \vec{0}$
	5) $A\vec{x} = \vec{b}$ is consistent for all $\vec{b} \in \mathbb{R}^n$.
	6) The linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(\vec{x}) = A\vec{x}$ is one-to-one.
	7) The linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(\vec{x}) = A\vec{x}$ is onto.
	8) The set of columns of A is linearly independent.
	9) The set of columns of A span R ⁿ .
	10) There exists a nxn matrix C such that CA = In.
	11) There exists a nxn matrix D such that AD = In.
	12) A ^T is invertible.
	13) The columns of A form a basis of IRh.
We haven't / covered these	14) Rank (A) = n
topics yet.	15) Det(A) ≠ 0
	16) All eigenvalues of A are non-zero.
Test 2 Information	Knowing these is not necessary for test 2, but it may help for 1 or 2 of the questions.
	Format:
	Q1-4: Multiple choice (4 marks each) * Marks subject to change
	Q5-7: Long answer (12/14/8 marks)
	The test will cover linear transformations and matrix "stuff"
	The corresponding textbook sections (should be) 1.8, 1.9, 2.1, and 2.2.
Getting ahead with some le	cture 11 material
Subspaces of IRn	Subspaces are sets of (same-length) vectors in 1R h that often show up when
,	dealing with matrices and linear transformations.
	• Ex. Ker (T) and Range (T) are subspaces

	e zen	o ve	ctor	:0 :										
2) 15				12 1	n th	ne se	t.							
C) IT	ti an	d \vec{v}	are	in ·	the	set,	thei	n 11+1	i is i	n the	set.			
								scalar				set.		
{ 8 6 }	(just	the	zen) vec	ct or) is	a su	ıbspace						
						1):		,						
						2):								
			С	ondit	ion	3): /	/							
	•							→ 20,	3D, 12	o, etc				
Any li	ine th	roud	ah ti	he c	ovi qi	n (i	n an	y dime				pace.		
					_			in is a				•		
_ , ,		28.												
		_												
	ı													
A11 -0	, _{ID} m	:c -		-000	_									
All of	: IR ^m	is a	sub	ospac	e.									
All of	R ^m	is a	sut	spac	e.									
All of	R ^m	is a	ı sut	ospac	e.									
All of	R ^m	is a	sub	os pa c	e.									
All of	R M	is a	ı sut	ospac	e.									
y = x ²														
y = x ²	is n	of a	Sub	ospac	:e.	the ov	rigin	is not	a su	ıbspac	e.			
y = x ²	is n	of a	Sub	ospac	:e.	the ov	rigin	is not	a su	ıbspac	e .			
y = x ²	is n	of a	Sub	ospac	:e.	the ov	rigin	is not	a su	ıbspaq	e .			
y = x ²	is n	of a	Sub	ospac	:e.	the ov	rigin	is not	a su	ıbspac	e .			
y = x ²	is n	of a	Sub	ospac	:e.	the ox	rigin	is not	a su	ıbspac	е.			
y = x ²	is n	of a	Sub	ospac	:e.	the or	rig)n	is not	a su	ıbspac	e .			

-end-

(Will be posted unline)

```
Let A be a nxn matrix The following statements are equivalent:
1) A is invertible.
                                                            ALL TRUE OF ALL FALSE
2) A is row equiv. to In.
3) A has n pivot portious.
4) A\vec{x} = \vec{0} implies \vec{x} = 0 # 4 false \Leftrightarrow there exists a nonzero \vec{x} s.t. A\vec{x} = 0
s) Ax= b is consistent for all be Rn
6) The linear transformation \underline{T:R^n \to R^n} defined by T(\vec{x}) = A\vec{x} is one-to-one.
7) The linear transformation T:R^n \to R^n defined by T(\vec{x}) = A\vec{x} is onto.
8) The set of columns of A is linearly independent.
9) The set of columns of A span Rh.
10) There exists a nxn matrix C s.t. CA=In
11) There exists a non matrix D s.t. AD=I
12) AT is invertible
13) The columns of A form a basis of Rh
14) Rank (A) = n
15) Det (A)≠ 0
16) All eigon values of A are non-zero
 So \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 2 \end{bmatrix} is not invertible because \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 2 \\ 0 & 1 & 0 \end{bmatrix} one of the fastest \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 2 \\ 0 & 1 & 0 \end{bmatrix} methods to show A is not invertible
                                                  linear depondance rith
          inearly dependant \Rightarrow not invertible \Rightarrow all other rules true
 5, 7, 9 are connected (Range (T) = \mathbb{R}^n)
T:\mathbb{R}^n \to \mathbb{R}^n implies T is either both one-to-one and onto or neither
     T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow both
```

	9: If at, az,, an one the columns of A then Span { at,, an } = 12
10 /	(1) If A is square and AC=In then CA=In and A is invertible.
.07	and $C = A^{-1}$, $C^{-1} = A$
	with de project of pro
	Columns of A Linearly independent AT is invertible
	Let $B = A^T$
	⇔ B is invertible
	columns of B are linearly independent
	This lets you replace "columns" with rows in 8 and 9
	This lets got replace establish with rouse in a which is
Alt. way of writing 4)	A invertible $\iff A^T$ invertible $(\vec{x} = \vec{0})$
•	$\Leftrightarrow A^{T}\vec{x} = \vec{0} \text{ only has trivial solution}$
	$\Leftrightarrow (A^T \vec{x})^T = \vec{O}^T \text{ only has trivial solution}$
	$\Leftrightarrow \vec{x} A = \vec{0}^{T} \text{ only has trivial solution}$
	- CO

	In 4) and 5) you can switch the eqns to $\vec{x}^T A = \vec{b}^T$
	Not necessary for test, but will help for 1-2 of the questions.
(1,2 → lin. trans.	Q1-4 Multiple choice (4 each) marks subject to
Q3,4 → matrix stuff	Q5-7 Long answer (12/14/8) change
5,6 7?	half get Q4 right
2 2	
trans stuff	Text book Sections Don't need to know
	1.8, 1.9, 2.1, 2.2, (2.3) specific trans-like rotations.

	(same length vectors)										
Subspaces of R ⁿ	Subspaces are sets of vectors in R ⁿ that often show up when dealing with matrices and linear transformations.										
	Ker(T) and Range (T) are subspaces										
	"range of T lies in the codomain"										
A A											
0 0000	A subspace of Rm is a set of vectors in Rm such that all que true:										
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1) The zero vector is in the set 2) If \vec{u} and \vec{v} are in the set then $\vec{u} + \vec{v}$ is in the set										
	Just the zero vector: { } is a subspace										
	1 🗸										
	2 V										
	3~										
	20,30,120,etc										
	Any line through the origin (any dimension) is a subspace.										
	Any plane/hyperplane through the origin is a subspace										
	defined by 2 ex. SD space in 12 D space										
:'": ::	vectors in 3D										
	All of R ^m is called a subspace										
	y=x² not a subspace										
	Any line not through the origin is not a subspace										