AM221 Final Project Proposal

Taylor Killian & Leonhard Spiegelberg

April 29, 2016

Abstract

To be filled with an interesting summary of our work and results

1 Dictionary Learning as 2-stage supermodular minimzation

The introduced problem of Dictionary learning, which in its general form can be seen as

$$\min_{D,R,\theta,\lambda} f(D,R,X) + g(D,\theta) + h(R,\lambda)$$

where f describes the objective function used to measure goodness of approximation of X through D, R, g describing suitable constraints on the dictionary, h on the representation respectively. With an input dataset $X = [x_1, \ldots, x_k], x_i \in \mathbb{R}^d, X \in \mathbb{R}^{d \times k}$ we wish to find a dictionary $D \in \mathbb{R}^{d \times n}, \mathcal{D} = [d_1, \ldots, d_n]$ and a representation $\mathcal{R} = [r_1, \ldots, r_k], r_i \in \mathbb{R}^n, \mathcal{R} \in \mathbb{R}^{n \times k}$, such that both $\|X - \mathcal{D}\mathcal{R}\|_F^2$ is minimized and the representations r_i are "sparse enough". To limit the dictionary becoming infinitely large (or small) we introduce a constraint on the dictionary's columns. For this any sufficient norm can be used. An often used norm is the l_2 -norm. Thus for the dictionary learning problem we introduce the problem with constraints

$$\min_{D,R} \|X - DR\|_F^2 \tag{1}$$

s.t.
$$||d_i||_2 \le 1, \forall j = 1, ..., n$$
 (2)

$$||r_i||_0 \le t, \forall i = 1, ..., k$$
 (3)

Description of constraints here

Using Lagrange multipliers this can be brought to the general form above

$$\min_{D,R,\theta,\lambda} \|X - DR\|_F^2 + \sum_{j=1}^m \theta_j(\|d_j\|_2 - 1) + \sum_{i=1}^k \lambda_i(\|r_i\|_0 - t)$$

Figure 1: contour plot of the l_0, l_1, l_2 norm at level set $L_1(f) := \{x \in \mathbb{R}^2 : f(x) = 1\}$. Note that for any space \mathbb{R}^d , the image of the l_0 consists of d+1 values $(\{0,...,d\})$.

I.e. the functions are

$$f(D, R, X) := \|X - DR\|_F^2$$

$$g(D, \theta) := \sum_{j=1}^m \theta_j(\|d_j\|_2 - 1)$$

$$h(R, \lambda) := \sum_{i=1}^k \lambda_i(\|r_i\|_0 - t)$$

How to bring this to the penalty function form?

The difficulty in solving this problem comes from the mathematical challenge the $\|.\|_0$ norm yields. To understand this better confer Figure 1. Let $x \in \mathbb{R}^d$

$$l_0(x) := (\#i : x_i \neq 0)$$

here describe different norms...

Put here section about possible relaxations of l0 norm

2 Introduction

Introduce the problem and it's complexities

3 Background Information

3.1 Background

Here we'll want to add some information about Sparse regression, set functions and definitions of sub modular and super modular, Dictionary Selection, Greedy Methods, etc.

3.2 Related Work

A simple overview of prior work

4 Methods

Place holder section to begin to outline our work

Algorithm 1 Notional algorithm

```
Figure out optimal arrangement of rows and columns of input data while there's still time in the semester do if f(p_k + s_k \lambda_i) < f(p_k) for some \lambda_i then p_{k+1} = p_k + s_k \lambda_i s_{k+1} = s_k else p_{k+1} = p_k s_{k+1} = \alpha s_k end if end while return VICTORIOUS
```

5 Experiments

Hold for applying our methods

5.1 Results

The results of our algorithms against others

6 Conclusions & Future Work

6.1 Conclusions

We will have done it!

6.2 Future Work

Rule the world

References

- [1] Das, A., Kempe, D., (2011). Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection. Proceedings of the 28th International Conference on Machine Learnings.
- [2] Cevher, V., Krause, A., (2011). Greedy Dictionary Selection for Sparse Representation. Selected Topics in Signal Processing, IEEE Journal of 5 (5), pp. 979 988.
- [3] Doshi-Velez, F., Williamson, S., (2015). Restricted Indian Buffet Processes. *In submission*. arXiv:1508.06303 [stat.ME]