Introduksjon

IN2010 – Algoritmer og Datastrukturer

Lars Tveito

Institutt for informatikk, Universitetet i Oslo larstvei@ifi.uio.no

Høsten 2023

Litt om algoritmer

- Hvis du gir en *presis* beskrivelse for hvordan man skal løse et *problem*, så har du beskrevet det vi kaller en algoritme
- Algoritmer er en serie med små og entydige steg
- En algoritme må
 - terminere etter et endelig antall steg
 - hvert steg må være helt presist definert
 - ta null eller flere input
 - produsere et output som står i forhold til input
- En algoritme *bør* være effektiv

Litt om datastrukturer

- En samling av verdier som følger en fast struktur utgjør en datastruktur
- Algoritmer er avhengig av gode datastrukturer for å bli enkle og raske
- Datastrukturer er avhengig av gode algoritmer for å opprettholde strukturen
- Et godt valg av datastruktur bør gjøre data vi trenger ofte lett tilgjengelig

Perspektiv

- Vi vil fokusere på å forstå, analysere, anvende og lage algoritmer
- Vi vil bygge forståelse ved å studere, og helst implementere, mange eksempler
- Vi vil analysere dem i form av å forutsi hvor effektive de er
- Dere vil anvende algoritmer når dere løser oppgaver
 - da må dere finne en algoritme som løser problemet
- Ofte vil dere ikke finne algoritmen dere leter etter, og dere må lage den selv
 - da gjelder det å studere *lignende* problemer
 - eller løse et enklere problem først

Noen råd

- Vær en god medstudent
- Dra på gruppetimer
- Skriv *litt* kode hver dag
- Finn på egne oppgaver
- Gjør en av disse om til din nye hobby
 - https://open.kattis.com/
 - https://leetcode.com/
 - https://projecteuler.net/
 - https://projectedterinet/
 - https://cses.fi/problemset/

Undervisningstilbud

- Forelesninger mandag kl. 10:15
 - Opptak vil publiseres etter forelesning
 - Videoene fra høsten 2020 kan brukes som ekstra læringsressurser
- Det er ukentlige gruppetimer
 - Vi har en gjeng med 11 enestående gruppelærere og rettere
- Det er to større fellestimer der dere kan jobbe med oppgaver

Én obligatorisk innlevering

- Det vil være fire innleveringer
- Kun den første innleveringen er obligatorisk
- Den første innleveringen publiseres i løpet av uken, og har frist 28. september
- Alt relevant stoff vil være forelest 4. september
 - Noen av oppgavene kan løses så fort den publiseres
- Vi vil benytte oss av samretting i utbredt grad
 - Der går vi gjennom oppgaven din sammen, enten fysisk eller over Zoom

Innleveringer

- Hensikten med innleveringene er å hjelpe deg jobbe jevnt, gi deg et visst inntrykk av egen progresjon og en mulighet til å få verdifull tilbakemelding
- En som kjenner faget godt vil lese og gi deg tilbakemelding på arbeidet ditt
- Dersom du ønsker å adressere kommentarene i tilbakemelding kan du be om å få levere en gang til
- Som andreårsstudent tror vi du kan ta et større ansvar for din egen læring
 - Den første obligatoriske innleveringen er der for å hjelpe deg med overgangen
- Dette gir deg mer frihet og mer ansvar
- Dersom du ikke leverer innleveringene tolker vi deg slik:

Jeg velger å ikke levere. Ved å ikke levere forstår jeg at jeg frasier meg det som regnes som et helt essensielt undervisningstilbud for de fleste studenter. Jeg skjønner at ved å trosse dette rådet så påtar meg selv et større ansvar for å oppnå ønsket progresjon i emnet.

Hvorfor levere

- Å få en som kjenner faget godt til å lese over arbeidet ditt er et stort privilegium
- Oppgavene er gode, lærerike og hjelper deg mestre faget og eksamen
- I fjor hadde vi to frivillige innleveringer, en på begynnelsen av semesteret og en på slutten av semesteret:
 - Omtrent halvparten gjorde den første innleveringen
 - Blant de som leverte den første innleveringen var det
 - over dobbelt så mange som fikk A
 - ca. dobbelt så mange som fikk B
 - Blant de som ikke leverte den første frivillige innleveringen var det
 - over dobbelt så mange som strøk
 - ca. dobbelt så mange som fikk E
 - Det var bare rundt 10% prosent som leverte den siste frivillige innleveringen
 - Blant dem var den vanligste karakteren B
 - De sto for nesten halvparten av dem som fikk A

Ukeplan

Dette er en omtrentlig kjøreplan for semesteret.

Uke	Tema
34	Introduksjon, abstrakte datatyper, binærsøk og kjøretidskompleksitet
35	Sortering: Bubble, Selection, Insert og Merge
36	Trær, Binære søketrær og Balanserte Søketrær
37	Prioritetskøer, Heaps og Huffman-koding
38	Sortering: Heap, Quick, Bucket og Radix
39	Grafer: Representasjon, traversering og topologisk sortering
40	Grafer: Korteste vei og minimale spenntrær
41	Repetisjon
42	Grafer: 2-sammenhengenende grafer og sterkt sammenhengende komponenter
43	Hashing
44	Bonuspensum! (annonseres når det nærmer seg)
:	Paratition and and
:	Repetisjon og moro!
50	Eksamen 15. desember kl. 09:00

9

Abstrakte datatyper

- En abstrakt datatype (ADT) sier om *oppførsel*, men ingenting om implementasjon
- En abstrakt datatype kan ha flere ulike konkrete implementasjoner
- En abstrakt datatype realiseres som en konkret datastruktur
- Grensesnitt (interface) er Java sin måte å snakke om abstrakte datatyper
- En stor del av IN2010 handler om å finne *effektive* implementasjoner for noen sentrale abstrakte datatyper

Stack

- Legg til elementer på toppen av stacken: stack.push(x)
- Plukk ut elementet som sist ble lagt på stacken: stack.pop() $\mapsto x$

• Kan for eksempel implementeres med lenkede lister eller dynamisk arrayer

Set

- Den abstrakte datatypen for mengder kalles Set, hvor vi forventer å kunne
 - Sjekke om x forekommer i mengden A: $x \in A$
 - Sett inn i mengden: Insert(A, x)
 - Fjern et element fra mengden: Remove(A, x)
 - Operasjonene union, snitt og differanse:

- Implementeres oftest som ordnede trær (TreeSet) eller ved hashing (HashSet)
- Hverken rekkefølge eller antall forekomster noen rolle i mengder
- OrderedSet
 - Vi forventer å kunne gjøre akkurat de samme operasjonene som på et Set
 - I tillegg kommer elementene sortert ved iterering

Map

• Et Map, eller *ordbok* (dict), assosierer en nøkkel med nøyaktig én verdi

- Den abstrakte datatypen for maps krever at vi kan
 - sette inn: M_2 .put(\square , •)
 - slå opp: M_2 .get(\square) \mapsto •
 - slette: M_2 .remove(\square)
- Implementeres oftest som ordnede trær (TreeMap) eller ved hashing (HashMap)
- OrderedMap
 - Vi forventer å kunne gjøre akkurat de samme operasjonene som på et Map
 - I tillegg kommer nøklene sortert ved iterering

Litt om pseudokode

- Vi bruker pseudokode for å formidle algoritmer
- Vi kan se for oss at pseudokode ligger langs en skala:

Python/Java —— Naturlig språk

• Slideren er posisjonert *veldig omtrentlig* der vi ønsker (ta det med en klype salt)

Notasjon

- Notasjonen vi bruker inneholder:
 - Aritmetiske uttrykk
 - Sammenligninger
 - Tilordninger
 - Antall elementer i en datastruktur
 - While-løkker
 - For-løkker

 $\begin{array}{c}
a+b-\frac{c}{2} \\
a \le b \\
i \leftarrow 0
\end{array}$

while test do body

for $i \leftarrow 0$ to n-1 do body

• Pseudokoden vi skriver skal være lett å oversette til et programmeringsspråk

Søk – spesifikasjon

ALGORITHM: SØK (SPESIFIKASJON)

Input: Et array A og et element x

Output: Hvis x er i arrayet A, returner true ellers false

- Dette er en spesifikasjon for en algoritme som avgjør om et element er tilstede i et array eller ikke
- Vi har to input, et array A og et element x
- Output er **true** eller **false**, avhengig av om *x* er med i A eller ikke
- En algoritme som oppfyller spesifikasjonen må
 - terminere på et endelig antall steg
 - gi riktig svar uansett hva A og x er

Rett-frem søk – implementasjon

ALGORITHM: RETT FREM SØK

```
Input: Et array A og et element x
Output: Hvis x er i arrayet A, returner true ellers false

Procedure Search(A, x)

for i \leftarrow 0 to |A| - 1 do

if A[i] = x then

return false
```

- Denne algoritmen oppfyller spesifikasjonen fra forrige slide
- I verste tilfelle må vi løpe gjennom hele arrayet
 - Det vil si vi må gjøre A sammenligninger
 - Her angir | A | størrelsen på A
 - Vi bruker 0-indekserte arrayer
 - (Merk at boken bruker 1-indekserte arrayer)

Binærsøk – spesifikasjon

ALGORITHM: BINÆRSØK (SPESIFIKASJON)

Input: Et ordnet array A og et element x
Output: Hvis x er i arrayet A, returner true ellers false

- Merk ordet ordnet
- Det vil si at hvis $0 \le i \le j < |A|$, så $A[i] \le A[j]$
- Et rett-frem søk (som på forrige slide) vil fungere fint!
- Ved å anta at arrayet er ordnet, kan vi finne på noe mye lurere

Binærsøk - idé

- Vi bruker samme idé som du helt naturlig ville brukt, dersom du skal slå opp et navn i en ordliste
- Utfordringen er å formulere dette som en presis algoritme
 - Altså oversette fremgangsmåten din til entydige steg

Binærsøk – implementasjon

```
ALGORITHM: BINÆRSØK
  Input: Et ordnet array A og et element x
  Output: Hvis x er i arrayet A, returner true ellers false
1 Procedure BinarySearch(A, x)
        1 ow \leftarrow 0
       high \leftarrow |A| - 1
       while low < high do
            i \leftarrow |\frac{\text{low} + \text{high}}{2}|
5
             if A[i] = x then
                  return true
             else if A[i] < x then
                  low \leftarrow i + 1
             else if A[i] > x then
10
                 high \leftarrow i-1
11
       return false
12
```


Introduksjon til kjøretidskompleksitet

Noe mer presist enn raskt

- Det er vanskelig å si om et program er raskt eller ikke
- Hvordan skiller vi mellom hastigheten til programmet og til maskinen det kjører på?
 - Det samme programmet kjører mye tregere på en gammel datamaskin enn en ny
- I stedet for å snakke om hastighet snakker vi om effektivitet

Effektivitet og ytelse

- Vi definerer effektivitet som å ikke gjøre unødvendig arbeid
 - En effektiv algoritme er en algoritme som ikke gjør mange unødvendige steg
- Vi definerer ytelse som å utføre arbeidet raskt
 - En algoritme kan ikke ha god ytelse i seg selv
 - Den kan gi opphav til god ytelse under ulike omstendigheter
- I dette kurset bryr vi oss primært om effektivitet, og lite om ytelse
 - Det er fordi en effektiv løsning er effektiv for alltid
 - For å snakke om ytelse trenger vi vite alt om maskinvaren, kompilatoren, temperaturen i rommet, og så videre...

Kompleksitet

- Kompleksiteten til en algoritme defineres av hvor mye ressurser den bruker
- De viktigste ressursene er
 - Tid
 - Minne
- Kompleksitet defineres relativt til størrelsen på input
- Tid måles i antall steg algoritmen bruker i forhold til hvor stort input er
 - Vi kaller dette kjøretidskompleksiteten til algoritmen
- Minne måles i hvor mange elementer som lagres i samlinger
- I dette kurset fokuserer vi på kjøretidskompleksitet

Størrelsen av input

- Et input kan være stort eller lite
 - Vi kan jobbe med en kort eller lang binærstreng
 - En liste med få eller mange noder
 - Et array med få eller mange elementer
 - En mengde med få eller mange elementer
 - Et tall med lav eller høy verdi
 - •
- Størrelsen på input angis konvensjonelt ved en variabel *n*
 - Merk at det ikke er noe spesielt med n

Telle steg

• Vi anser følgende som primitive steg

Aksessering på index i arrayerReturnering	A[i] return a
Sammenligninger	a < b
Aritmetiske operasjoner	a + b
 Tilordninger 	$x \leftarrow 3$

- De koster alle 1 i tidsbruk
- En **while**-løkke arver kostnaden fra testen og kroppen **while** test **do** body
 - Der kostnaden ganges med antall iterasjoner
- Tilsvarende for **for**-løkker
- Kostnaden arves også fra prosedyre- og metodekall

En enkel omskrivning

• Den samme koden som tidligere, der **for** byttes med **while**

```
Procedure Search(A, x)

for i \leftarrow 0 to |A| - 1 do

| if A[i] = x then

| return true
| return false
```

```
Procedure Search(A, x)

i \leftarrow 0

while i < |A| do

if A[i] = x then

| return true

i \leftarrow i + 1

return false
```

Telle steg (eksempel)

- La n = |A| og anta at x ikke er i arrayet
- Vi ønsker å finne antall steg algoritmen bruker som et uttrykk av *n*
- Variabelen i tilordnes en verdi; det utgjør 1 primitivt steg
- Testen til **while**-løkken kjøres n+1 ganger
 - Hver gang gjøres det én sammenligning, som er ett primitivt steg
- **while**-løkken vil ha *n* iterasjoner:
 - I **if**-testen sammenlignes A[i] med x
 - En aksessering og en sammenligning utgjør 2 primitive steg
 - I hver iterasjon økes i med én
 - En tilordning og en addisjon utgjør 2 primitive steg
- Til slutt returnerer vi, som utgjør 1 primitivt steg
- Samlet antall steg blir $5 \cdot n + 3$, fordi $1 + (n+1) + n \cdot (2+2) + 1 = 3 + n + n \cdot 4 = 5 \cdot n + 3$

```
Procedure Search(A,x)
|i \leftarrow 0|
|i \leftarrow 0|
|if \land [i] = x \text{ then}
|return \text{ true}
|i \leftarrow i + 1|
|return \text{ false}
```

Verste tilfelle

- Som regel ønsker vi en verste tilfelle analyse
 - Det vil si at vi finner det høyeste antall steg algoritmen kan bruke
- En analyse av gjennomsnittet er mye vanskeligere å gjennomføre
 - Vi ville trengt sannsynlighetsfordelingen for alle mulig input
- Med verste tilfelle kan vi finne trygget i at det ikke kan bli verre enn verst!
- Det viktigste spørsmålet er: Hvordan utvikler kjøretiden seg når input blir stort?

Store \mathcal{O}

- Vi bruker et verktøy, kalt store \mathcal{O} -notasjon, for å uttrykke kjøretidskompleksitet
- Intuisjonen for store $\mathcal O$ er å se for seg at input blir veldig stort
- Da tillater vi oss å gjøre alle konstanter om til 1:

$$\mathcal{O}(5 \cdot n + 3) = \mathcal{O}(1 \cdot n + 1) = \mathcal{O}(n + 1)$$

• Og å stryke alt bortsett fra det største leddet:

$$\mathcal{O}(n+1) = \mathcal{O}(n)$$

- Det lar oss regne mye grovere
- Og bevare hovedtrenden i hvordan kjøretiden vokser når input blir stor
- Vi vil med $f\mathring{a}$ unntak foretrekke en algoritme med lavere kjøretidskompleksitet

Vanlige uttrykk for kjøretidskompleksitet

• De fleste algoritmene vi ser på i dette kurset faller inn under en av disse kategoriene

Notasjon	Uttrykk
$\mathcal{O}(1)$	Konstant tid
$\mathcal{O}(\log(n))$	Logaritmisk tid
$\mathcal{O}(n)$	Lineær tid
$\mathcal{O}(n \cdot \log(n))$	Lineæritmisk tid
$\mathcal{O}(n^2)$	kvadratisk tid
:	
$\mathcal{O}(n^k)$	polynomiell tid
$\mathcal{O}(2^n)$	eksponensiell tid

Vanlige uttrykk for kjøretidskompleksitte (graf)

Bildet er hentet fra Wikipedia

Kodeeksempler

```
1 Procedure Constant(n)
                                         // O(1)
     return n \cdot 3
 Procedure Log(n)
    i \leftarrow n
    while i > 0 do
       Constant(i)
       i \leftarrow \frac{i}{2}
                                    // \mathcal{O}(\log(n))
5
1 Procedure Linear(n)
     for i \leftarrow 0 to n-1 do
                                         // O(n)
       Constant(i)
3
1 Procedure Linearithmic(n)
     for i \leftarrow 0 to n-1 do
       Log(n)
                                //\mathcal{O}(n \cdot \log(n))
3
```

```
1 Procedure Quadratic(n)
    for i \leftarrow 0 to n-1 do
       for i \leftarrow 0 to n-1 do
         Constant(i)
                                        // O(n^2)
4
1 Procedure Polynomial(n)
    for i_0 \leftarrow 0 to n-1 do
       for i_1 \leftarrow 0 to n-1 do
3
          for i_k \leftarrow 0 to n-1 do
5
              Constant(i)
                                       //\mathcal{O}(n^k)
6
1 Procedure Exponential(n)
    if n = 0 then
       return
    a \leftarrow \text{Exponential}(n-1)
    b \leftarrow \text{Exponential}(n-1)
    return a + b
                                       //\mathcal{O}(2^n)
```