UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 21, 2001

MIE562F SCHEDULING
Exam Type: A
All non-programmable calculators are allowed

INSTRUCTOR: I. B. TURKSEN

Final examination is two hours from 9:30-12:00 Be explicit and provide all necessary explanations

pts. Question 1.

(15) Consider the $1/r_i$, prmp/Lmax problem with the following data,

Jobs	1	2	3	4	5	6
p_i	7	6	4	5	4	4
d_{j}	28	18	30	14	16	12
r_i	0	8	7	8	5	0

Determine the optimum schedule and the value of optimal L_{max}.

Question 2

(15) Consider $F_4/prmu/C_{max}$ with the following jobs

Jobs	1	2	3	4
p_{Ij}	12	13	13	10
p_{2j}	8	10	9	8
p_{3j}	8	5	7	4
p_{4i}	15	5	10	25

Determine the optimal sequence and estimate the value of C_{max}.

Question 3

(15) Consider the following 5 job 3 machine proportionate flow shop problem $(F_{3}/p_{ij}=p_{j}/\Sigma U_{j})$. Find the optimal schedule that minimizes the number of tardy jobs and calculate the optimal value.

Jobs	1	2	3	4	5	6
p_i	7	6	4	5	4	4
\vec{d}_i	29	33	35	32	31	27

Question 4

(15) Consider the following instance of O_4 //Cmax problem.

Jobs	1	2	3	4
p_{Ij}	5	5	13	0
p_{2j}	5	7	3	8
p_{3j}	12	5	7	0
p_{4i}	0	5	0	15

Apply the *longest total remaining processing on other machine first* (LTRPOM) rule. Consider at time 0 first machine 1, then machine 2, followed by machines 3 and 4. Compute the makespan.

Question 5.

(20) Consider the job shop problem with the following processing times

jobs	Operation 1	Operation 2	Operation 3
1	5	3	*
2	2	5	3
3	1 4	1 3 1	*

and with the routing data as

Apply the branch and bound algorithm for two levels. Branch for all possible active nodes and calculate the bounds.

Question 6

(20) Consider the following 2 job 5 machine job shop problem.

 $\begin{array}{l} J_1: A \ B \ C \ D \ E \\ J_2: E \ C \ A \ D \ B \end{array}$

- a) How many possible programs (schedules) are there?
- b) Show which ones are in feasible and climinate all infeasible schedules.
- c) Eliminate the non-optimal programs.
- d) Determine the optimal schedule.

Note: You can use the following optimality rules: