

UNIVERSIDADE FEDERAL DE MINAS GERAIS – UFMG DEPARTAMENTO DE ENGENHARIA ELETRÔNICA - DELT Laboratório de Circuitos Eletrônicos II - Prof. Thiago Oliveira

PROJETO DE AMPLIFICADOR DE ÁUDIO ETAPA 4

Luis Henrique Lindgren Alves Vieira - 2015016176 Nander Santos do Carmo - 2018019931

SUMÁRIO

INTRODUÇÃO	4
TOPOLOGIA ATUAL	5
SIMULAÇÕES	7
Ganho de Malha Aberta e Fechada	9
Banda Passante em Malha Aberta e Fechada	10
Ganho de Modo-comum	11
Resistência de Entrada em Malha Aberta e Fechada	13
Resistência de Saída em Malha Aberta e Fechada	15
Fator de Rejeição de Fonte em Malha Fechada (PSRR)	17
Tensões de Saturação do Amplificador em Malha Fechada	18
Tensão de Offset	19
Slew Rate	20
Taxa de Distorção Harmônica (THD)	21
RESULTADOS E CONCLUSÃO	22
BIBLIOGRAFIA	24
LISTA DE IMAGENS	
Figura 1: Circuito Final da Etapa 3	6
Figura 2: Alteração do Circuito para o Multiplicador de V_{BE}	7
Figura 3: Topologia Emitter-follower	7
Figura 4: Topologia Complementary Feedback Pair Simples	8
Figura 5: Topologia Complementary Feedback Pair com Ganho de Te	nsão8
Figura 6: Topologia Final Escolhida para a Etapa 4	22
LISTA DE CÁLCULOS	

Texto 1: Cálculo do Ganho de Modo-comum.....11

Texto 2: Cálculo da Resistência de Entrada em Malha Aberta13
Texto 3: Cálculo da Resistência de Entrada em Malha Fechada13
Texto 4: Cálculo da Resistência de Saída em Malha Aberta15
Texto 5: Cálculo do Slew Rate20
LISTA DE TABELAS
Tabela 1: Parâmetros do Amplificador após a <i>Terceira</i> Etapa5
Tabela 2: Ganho Diferencial em Malha <i>Fechada</i> 9
Tabela 3: Ganho de Malha Aberta9
Tabela 4: Banda Passante em Malha Aberta10
Tabela 5: Banda Passante em Malha Fechada10
Tabela 6: <i>Ganho de Modo-comum em Malha Aberta</i> 11
Tabela 7: <i>Ganho de Modo-comum em Malha Fechada</i> 11
Tabela 8: Resistência de Entrada em Malha Aberta13
Tabela 9: Resistência de Entrada em Malha Fechada13
Tabela 10: Resistência de Saída em Malha Aberta15
Tabela 11: Resistência de Saída em Malha Fechada15
Tabela 12: PSRR Fonte Positiva
Tabela 13: PSRR Fonte Negativa17
Tabela 14: Saturação Positiva
Tabela 15: Saturação Negativa
Tabela 16: <i>Tensão de Offset</i> 19
Tabela 17: Slew Rate20
Tabela 18: Distorção Harmônica Total (THD)21

INTRODUÇÃO

Nesta etapa serão realizadas alterações no estágio de potência do amplificador de áudio. Esse estágio serve de interface entre a carga e o amplificador de tensão, enxergado até o estágio de ganho e é responsável por prover a potência demandada pela carga. Essa estágio afeta diretamente a linearidade do circuito e a resistência de saída,, logo as figuras de mérito de interesse para esse estágio são:

- Resistência de saída do amplificador operacional em malha aberta e fechada;
- THD;

Outros parâmetros podem se alterar de forma colateral no circuito, logo também serão levantados.

TOPOLOGIA ATUAL

Conforme discutido na etapa 3 desse projeto, optamos por utilizar uma célula de ganho do tipo cascode junto da polarização através da fonte de corrente. Após corrigido um problema de estabilidade do amplificador, através do ajuste do capacitor do estágio de ganho, chegamos aos seguintes valores do amplificador após a etapa 3 mostrados na Tabela 1.

Tabela 1: Parâmetros do Amplificador após a Terceira Etapa.

PARÂMETROS DO AMPLIFICADOR					
Ganho	Malha Aberta	Malha Fechada			
Ganno	103.602 dB	19.9993 dB			
Banda Bassanta	Malha Aberta	Malha Fechada			
Banda Passante	1.283 kHz	17.07 MHz			
Ganho de Modo-comum	Malha Aberta	Malha Fechada			
Gaillio de Modo-collidili	-80.7373 dB	2.8646 dB			
Resistência de Entrada	Malha Aberta	Malha Fechada			
	13.732 kΩ	189.01 MΩ			
Resistência de Saída	Malha Aberta	Malha Fechada			
Resistencia de Salda	5.77 Ω	419.07 μΩ			
DCDD (Malha Fachada)	Fonte Positiva	Fonte Negativa			
PSRR (Malha Fechada)	-89.508 dB	-78.758 dB			
Tensões de Saturação	Saturação Positiva	Saturação Negativa			
(Malha Fechada)	12.995 V	-12.440 V			
Tensão de Offset	8.41 mV				
Slew Rate	55.70 V/μs				
THD	0.002146 %				

Figura 1: Circuito Final da Etapa 3.

SIMULAÇÕES

Para essa etapa do projeto vamos analisar o circuito após a adição do multiplicador de V_{BE} , Figura 2, como polarizador do estágio de potência e, em sequência, implementar topologias diferentes de estágio de potência, sendo elas: um modelo do tipo Emitter-follower, Figura 3, e duas topologias distintas do tipo Complementary Feedback Pair, sendo que a última delas possui um ganho de tensão associado (Figura 4 e Figura 5).

Figura 2: Alteração do Circuito para o Multiplicador de V_{BE}.

Figura 3: Topologia Emitter-follower.

Figura 4: Topologia Complementary Feedback Pair Simples.

Figura 5: Topologia Complementary Feedback Pair com Ganho de Tensão.

Ganho de Malha Aberta e Fechada

Para obtenção do ganho diferencial em malha aberta, foi necessário colocar nas entradas diferenciais do amplificador uma fonte de tensão configurada para realizar um *AC Sweep* em uma das portas e o terra na outra. Para obter a magnitude do ganho em malha aberta, basta medir a tensão de saída Vout e dividir pela diferença de tensão entre as entradas Vp e Vn.

Para obtenção do ganho diferencial em malha fechada, foi realizado o mesmo procedimento descrito para o ganho em malha aberta, com a diferença de que nesse caso a entrada foi medida na saída da fonte Vsig. Assim, a obtenção do ganho se dá dividindo Vout por Vsig.

Tabela 2: Ganho Diferencial em Malha Fechada.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
19.9993 dB	19.9991 dB	19.9996 dB	19.9996 dB	19.9996 dB

Tabela 3: Ganho de Malha Aberta.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
103.602 dB	100.583 dB	107.398 dB	107.927 dB	108.638 dB

Como pode ser visto na Tabela 3, a alteração da polarização através de um circuito Multiplicador de V_{BE} provocou uma leve redução do ganho diferencial do circuito, enquanto a utilização das novas topologias do estágio de potência resultou em um aumento considerável de ganho de tensão, comportamento que não era esperado, visto que esse estágio é responsável por fornecer o ganho de corrente do amplificador. Contudo, conforme esperado há um ganho de tensão (ainda maior) no modelo CFP com Ganho. Dessa forma essa última topologia se mostra mais interessante.

Banda Passante em Malha Aberta e Fechada

Para obter o valor da banda passante basta encontrar o ponto em que a tensão Vout do circuito cai 3dB de intensidade.

Tabela 4: Banda Passante em Malha Aberta.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
1.283 kHz	1.663 kHz	743.145 Hz	844.441 Hz	1.126 kHz

Tabela 5: Banda Passante em Malha Fechada.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
17.07 MHz	16.3 MHz	16.08 MHz	17.85 MHz	22.06 MHz

Como esperado, é possível perceber através da Tabela 4 e da Tabela 5 de maneira geral, a redução do ganho em malha aberta provocada pela polarização através do Multiplicador de V_{BE} resultou em um alargamento da banda passante em malha aberta, enquanto para as outras topologias de estágio de potência, houve uma redução considerável da banda passante, devido ao aumento do ganho. Entretanto, ao contrário do que se esperava devido ao maior aumento do ganho, a topologia CFP com Ganho apresentou a melhor banda passante em malha aberta e fechada.

Ganho de Modo-comum

A partir do valor medido do ganho de modo-comum em malha fechada, dado como a razão entre a tensão de saída Vout e a tensão de entrada Vsig, e do ganho diferencial em malha aberta do amplificador (dados em V/V) é possível obter o valor do ganho de modo-comum em malha aberta do amplificador utilizando a fórmula apresentada no Texto 1.

$$A_{cm} = \frac{2 * (1 + A_d * R_1) * A_{cm, mf}}{2 * R_2 + R_1 * A_{cm, mf}}$$

$$\Rightarrow R_1 = 470 \ \Omega \ e \ R_2 = 4.7 \ k \ \Omega$$

Texto 1: Cálculo do Ganho de Modo-comum.

Tabela 6: Ganho de Modo-comum em Malha Aberta.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
2.8646 dB	-0.1600 dB	6.6647 dB	7.1942 dB	7.9051 dB

Tabela 7: Ganho de Modo-comum em Malha Fechada.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
-80.74 dB	-80.743 dB	-80.7333 dB	-80.7327 dB	-80.7328 dB

Como pode ser visto na Tabela 6 e na Tabela 7, as alterações pouco afetaram o ganho de modo-comum em malha fechada do amplificador, entrando, devido ao aumento considerável do ganho em malha aberta, houve

uma piora do ganho de modo-comum em malha aberta. Nesse caso a topologia com o Emitter-follower se saiu melhor.

Resistência de Entrada em Malha Aberta e Fechada

Para obter o valor da resistência de entrada em malha aberta do amplificador, é preciso adicionar uma fonte de entrada com uma componente AC de 1V. Assim, para obter a resistência de entrada basta obter a tensão e a corrente de entrada diferencial de entrada e, em seguida, realizar o cálculo da resistência de entrada através da Fórmula mostrada no Texto 2.

$$R_i = \frac{V_D}{2 * I_D}$$

Texto 2: Cálculo da Resistência de Entrada em Malha Aberta.

Assim, conhecendo o valor da resistência de entrada em malha aberta do amplificador, para obter o valor da resistência de entrada em malha aberta basta usar a seguinte expressão mostrada no Texto 3.

$$R_{if} = R_i * (1 + A_d * \beta)$$
$$\beta : \frac{1}{11}$$

Texto 3: Cálculo da Resistência de Entrada em Malha Fechada.

Tabela 8: Resistência de Entrada em Malha Aberta.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
13.732 kΩ	14.912 kΩ	11.963 kΩ	11.699 kΩ	11.341 kΩ

Tabela 9: Resistência de Entrada em Malha Fechada.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
189.01 MΩ	144.995 MΩ	254.91 MΩ	264.93 MΩ	278.72 MΩ

Como mostrado na Tabela 8 e Tabela 9 o valor da resistência de entrada em malha fechada é afetado positivamente com a adição das novas topologias de estágio de potência, apesar de uma piora inicial provocada pelo circuito Multiplicador de V_{BE} , devido à elevação do ganho diferencial do amplificador.

Resistência de Saída em Malha Aberta e Fechada

Como o amplificador analisado satura rapidamente em malha aberta não é possível obter diretamente o valor da resistência de saída em malha aberta. Para obter o valor da resistência de saída em malha fechada do amplificador, é preciso remover a fonte de entrada do amplificador, aterrando as duas entradas. Em seguida é adicionada uma fonte de auxiliar com uma componente AC de 1V na saída do amplificador. Assim, para obter a resistência de saída basta obter a corrente de saída dessa fonte auxiliar e dividir o valor de tensão por esse valor de corrente, através de uma simulação do tipo *AC Sweep*.

$$R_o = R_{of} * (1 + A_d * \beta)$$
$$\beta : \frac{1}{11}$$

Texto 4: Cálculo da Resistência de Saída em Malha Aberta.

Assim, conhecendo o valor da resistência de saída em malha fechada do amplificador, para obter o valor da resistência de saída em malha aberta basta usar a seguinte expressão mostrada no Texto 4.

Tabela 10: Resistência de Saída em Malha Aberta.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
5.77 Ω	6.53 Ω	4.35 Ω	4.10 Ω	4.50 Ω

Tabela 11: Resistência de Saída em Malha Fechada.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
419.07 μΩ	671.19 uΩ	204.13 uΩ	181.03 uΩ	183.12 uΩ

Conforme esperado e representado na Tabela 10 e na Tabela 11, o valor da resistência de saída, sobretudo em malha fechada, melhorou consideravelmente. Isso se deve ao fato de que o estágio de potência é responsável por realizar a redução da resistência de saída do amplificador. Essa melhoria foi suficiente para inclusive superar uma piora que havia acontecido ao utilizar o circuito Multiplicador de V_{BE} .

Nesse caso, o modelo CFP Simples apresentou os melhores valores de resistência de saída, tanto em malha aberta quanto fechada.

Fator de Rejeição de Fonte em Malha Fechada (PSRR)

Aplicando uma perturbação AC de 1V na alimentação positiva e negativa do amplificador, é possível obter os valores do PSRR para cada um dos terminais da alimentação medindo o valor da tensão de saída Vout.

Tabela 12: PSRR Fonte Positiva.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
-89.508 dB	-89.5027 dB	-89.5036 dB	-89.5051 dB	-89.5049 dB

Tabela 13: PSRR Fonte Negativa.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
-78.758 dB	-78.759 dB	-78.7581 dB	-78.758 dB	-78.758 dB

Conforme mostrado na Tabela 12 e na Tabela 13, o estágio de potência tem pouco efeito sobre o PSRR do amplificador, dessa forma não houveram alterações significativas nesse parâmetro.

Tensões de Saturação do Amplificador em Malha Fechada

Para obtenção das tensões de saturação positiva e negativa do amplificador em malha fechada, é realizada uma simulação transiente com uma fonte de tensão de entrada configurada como uma rampa de tensão de -15V a 15V, logo, as tensões de saturação são obtidas na região em que o amplificador perde o comportamento linear.

Tabela 14: Saturação Positiva.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
12.995 V	12.98 V	12.64 V	13.02 V	14.5054 V

Tabela 15: Saturação Negativa.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
-12.440 V	-12.44 V	-12.11 V	-12.44 V	-14.5037 V

Como mostrado na Tabela 14 e Tabela 15, o estágio de potência não exerce grandes influências nas tensões de saturação, com exceção da topologia CFP com Ganho que conhecidamente melhora esse nível de saturação. Novamente essa topologia se mostrou mais interessante.

Tensão de Offset

Através do arquivo de \log do LTSpice é possível obter o valor da tensão de offset de saída do amplificador após uma simulação do tipo transiente.

Tabela 16: Tensão de Offset.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
8.41 mV	8.41 mV	8.41 mV	8.42 mV	8.42 mV

A tensão de offset de saída do amplificador não foi afetada pelo estágio de potência e a análise não se faz necessária.

Slew Rate

O slew rate do amplificador pode ser obtido através do uso dos cursores do programa, estimando a variação de tensão e do tempo na região de variação linear de subida do sinal de saída do amplificador quando submetido a um sinal de pulso. Por fim basta calcular o valor da derivada do amplificador através da fórmula mostrada no Texto 5.

$$SR = \frac{\Delta V}{\Delta t} [V/us]$$

Texto 5: Cálculo do Slew Rate.

Tabela 17: Slew Rate.

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
55.70 V/μs	55.95 V/μs	55.11 V/μs	56.59 V/μs	79.25 V/μs

Conforme mostrado na Tabela 17, o slew rate do amplificador não foi consideravelmente afetado por nenhuma das alterações realizadas, com exceção do modelo CFP com Ganho em que houve um aumento expressivo do slew rate.

Taxa de Distorção Harmônica (THD)

Através do arquivo de *log* do LTSpice e da análise do tipo *four* é possível obter o valor da taxa de distorção harmônica (THD) do amplificador.

Tabela 18: Distorção Harmônica Total (THD).

Original	Multiplicador de V _{BE}	Emitter- follower	CFP Simples	CFP com Ganho
0.002146 %	0.001232 %	0.001158 %	0.000390 %	0.000375 %

Conforme adiantado na introdução e conforme esperado o estágio de potência é responsável por garantir a linearidade do amplificador, dessa forma, sabendo que o amplificador deverá operar como um classe AB, que elimina as distorções de crossover, era normal que o THD fosse consideravelmente melhorado. Novamente, o modelo CFP com ganho foi o mais interessante.

RESULTADOS E CONCLUSÃO

Observações realizadas nos tópicos anteriores é possível perceber que em praticamente todos os parâmetros houve um comportamento melhor do amplificador quando utilizando a topologia CFP com Ganho de Tensão. Quando consideradas apenas as figuras de mérito diretamente fortemente impactadas pelo estágio de potência foi possível perceber uma melhoria significativa de todas ao utilizar essa configuração. Além disso, essa topologia é a única que resulta numa melhora das tensões de saturação do amplificador e portanto foi a escolhida.

Figura 6: Topologia Final Escolhida para a Etapa 4.

Dessa forma, o circuito final dessa etapa ficou conforme mostrado na Figura 6. Pode-se perceber que devido ao surgimento de uma certa instabilidade do amplificador (apenas perceptível analisando a forma de onda de saída por causa de ruídos sobre a senoide), devido à redução da margem de fase do amplificador, foi preciso aumentar um pouco o valor de C1 de forma a reduzir a velocidade de resposta do amplificador e torná-lo estável. É

importante destacar que os valores levantados nas etapas anteriores já consideravam essa alteração.

BIBLIOGRAFIA

DESCONHECIDO, Autor. **Opamp Basics**. Disponível em: https://www.analog.com/media/en/training-seminars/design-handbooks/Op-Amp-Applications/Section1.pdf>. Acesso em 10 de março de 2021.