ESPALHAMENTO ELETROMAGNÉTICO POR UM CILINDRO CONDUTOR ELÉTRICO PERFEITO

SÉRGIO CORDEIRO

RESUMO. A configuração do campo eletromagnético em uma dada região do espaço, num intervalo de tempo determinado, precisa ser obtida, no caso geral, resolvendo-se as equações de Maxwell. O presente trabalho versa sobre a determinação dos campos no entorno de um cilindro condutor perfeito, localizado no espaço livre, sobre o qual incide uma onda eletromagnética viajante; sob essas condições ideais, soluções analíticas podem ser encontradas para as equações mencionadas. Para a geometria do problema, essas soluções envolvem funções transcendentais: as conhecidas funções de Bessel e funções de Hankel.

Os conceitos e derivações menos comuns são apresentados em detalhe; para os mais comuns remete-se à bibliografia de referência. Um programa para cálculo dos campos é apresentado, bem como alguns gráficos obtidos por meio dele.

SUMÁRIO

1. Introdução	3
2. Equações de Maxwell em coordenadas cilíndricas	4
2.1. Forma das equações para o problema proposto	4
2.2. Forma das equações em coordenadas cilíndricas	6
2.3. Solução da equação 25	7
3. Solução das equações de onda	11
3.1. Os potenciais vetores elétrico e magnético	11
3.2. Os modos transversais	13
3.3. Ondas refletidas	14
3.4. Onda plana em coordenadas cilíndricas	14
3.5. Onda espalhada	16
3.6. Corrente na superfície do cilindro	17
4. Implementação	17
Referências	24

1. Introdução

A configuração do campo eletromagnético em uma dada região do espaço, num intervalo de tempo determinado, precisa ser obtida, no caso geral, resolvendo-se as equações de Maxwell [BALANIS 2012 1]. A forma usual dessas equações, para aplicações de eletromagnetismo clássico, é a que emprega conceitos de cálculo vetorial:

(1)
$$\vec{\nabla} \cdot \vec{D} = \boldsymbol{\rho}$$

$$(2) \qquad \vec{\nabla} \cdot \vec{B} = 0$$

(3)
$$\vec{\nabla} \times \vec{E} = -\vec{M} - \mathbf{\mu} \frac{\partial \vec{H}}{\partial t}$$

(4)
$$\vec{
abla} imes \vec{H} = \vec{P} + oldsymbol{
ho} \vec{v} + oldsymbol{\sigma} \vec{E} + oldsymbol{\epsilon} rac{\partial \vec{H}}{\partial t}$$

No espaço livre, as equações 1 a 4 podem ser simplificadas, uma vez que não há campos externos ($\vec{M}=\vec{P}=\vec{0}$ e $\rho=0$) e o meio é homogêneo, linear e isotrópico (portanto $\mathbf{p}=\mathbf{p}$, $\mathbf{v}=\mathbf{v}$ e $\mathbf{v}=\mathbf{v}$). Assim, chegamos ao que chamaremos de *equações canônicas*:

$$(5) \qquad \vec{\nabla} \cdot \vec{D} = 0$$

(6)
$$\vec{\nabla} \cdot \vec{B} = 0$$

(7)
$$\vec{\nabla} \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}$$

(8)
$$\vec{\nabla} \times \vec{H} = \sigma \vec{E} + \epsilon \frac{\partial \vec{H}}{\partial t}$$

Estas, por sua vez, podem ser manipuladas de forma a obter-se um conjunto alternativo, usualmente chamado de *equações de onda vetoriais* ¹:

(9)
$$\vec{\nabla}^2 \vec{E} = \operatorname{pr} \frac{\partial \vec{E}}{\partial t} + \operatorname{pr} \frac{\partial^2 \vec{E}}{\partial t^2}$$

(10)
$$\vec{\nabla}^2 \vec{H} = \operatorname{pr} \frac{\partial \vec{H}}{\partial t} + \operatorname{pr} \frac{\partial^2 \vec{H}}{\partial t^2}$$

 $^{^1\}mathrm{Para}$ a derivação das equações de onda vetoriais a partir das equações canônicas, consultar [BALANIS 2012 1] .

Ambos os conjuntos consistem de equações diferenciais parciais, por isso a forma da solução é determinada também pelas *condições de contorno*, que variam de problema para problema. Em casos mais simples, podese obter uma solução analítica; nos demais, é necessário recorrer a métodos numéricos e, em consequência, a solução obtida estará em forma de sequências de valores. No presente trabalho, estudaremos a configuração dos campos no entorno de um cilindro condutor perfeito sobre o qual incide uma onda eletromagnética viajante, no espaço livre; sob essas condições ideais, soluções analíticas podem ser encontradas [BALANIS 2012 1].

Tanto 5 a 8 quanto 9 a 10 são úteis em aplicações práticas. A opção entre os dois conjuntos é uma questão de conveniência, o que por sua vez depende das condições do problema específico a ser resolvido, como geometria, condições de contorno e parâmetros constitutivos. Para este trabalho, estabelecemos o seguinte roteiro:

- 1) Derivar as equações canônicas e as equações de onda vetoriais para as condições idealizadas do problema (ver 2.1 e 2.2);
- Obter a solução dessas equações para as condições dadas (ver 2.3);
- 3) Obter a solução analítica dessas equações (ver ??);

Neste trabalho, os conceitos e derivações menos comuns são apresentados em detalhe; para os mais comuns remete-se à bibliografia de referência. A notação segue de perto a das principais referência, mas diverge em pontos onde buscamos maior clareza ou precisão.

2. EQUAÇÕES DE MAXWELL EM COORDENADAS CILÍNDRICAS

2.1. **Forma das equações para o problema proposto.** No espaço livre, as perdas por polarização e magnetização são nulas; isso equivale a fazer $\sigma = 0$ nas equações 5 a 8 e 9 a 10. Além disso, como o meio é linear, todas essas equações são lineares e vale o teorema integral de Fourier:

(11)
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbb{F}(\omega) e^{j\omega t} d\omega$$

(12) onde
$$\mathbb{F}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}$$

Quando f(t) é uma função periódica, com período τ , a integral 11 degenera na somatória discreta

(13)
$$f(t) = \frac{1}{\tau} \sum_{\omega = -\infty}^{\infty} \mathbb{F}_{\omega} e^{j\omega t}$$

Podemos agora representar, nas equações do problema, o vetor genérico \vec{A} , que é uma função do tempo e da posição, como o produto $A(t)\vec{A}(x,y,z)^2$, e então substituir A(t) por $\mathbb{A}(\omega)e^{j\omega t}$, uma vez que, encontrada a solução para o caso geral $\vec{A}=\mathbb{A}_{\omega}e^{j\omega t}\vec{A}(x,y,z)$, a solução específica consistirá na soma das soluções para cada \mathbb{A}_{ω} não-nulo, devido à linearidade das equações. Campos que podem ser representados dessa forma são chamados *campos harmônicos*.

Em condições de *regime permanente*, pode-se simplificar ainda mais o problema com a introdução da notação fasorial, substituindo $\mathbb{A}e^{j\omega t}$ pelo fasor $\mathcal{A}=\Re\left(\mathbb{A}e^{j\omega t}\right)$. Podemos ainda, sem perda de generalidade, fazer todos os fasores unitários, o que equivale a considerar A(t) como uma função cujo máximo é 1; com isso, o máximo de \vec{A} passa a ser dado pelo máximo de $\vec{A}(x,y,z)$. Com isso, chegamos a:

$$\vec{\nabla} \cdot \left(\mathcal{D}\vec{D}(x,y,z)\right) = 0$$

$$\vec{\nabla} \cdot \left(\mathcal{B}\vec{B}(x,y,z)\right) = 0$$

$$\vec{\nabla} \times \left(\mathcal{E}\vec{E}(x,y,z)\right) = -\mathbb{P}\frac{\partial}{\partial t}\left(\mathcal{H}\vec{H}(x,y,z)\right)$$

$$\vec{\nabla} \times \left(\mathcal{H}\vec{H}(x,y,z)\right) = \mathbb{E}\frac{\partial}{\partial t}\left(\mathcal{E}\vec{E}(x,y,z)\right)$$

$$\vec{\nabla}^2\left(\mathcal{E}\vec{E}(x,y,z)\right) = \mathbb{E}\frac{\partial^2}{\partial t^2}\left(\mathcal{H}\vec{H}(x,y,z)\right)$$

$$\vec{\nabla}^2\left(\mathcal{H}\vec{H}(x,y,z)\right) = \mathbb{E}\frac{\partial^2}{\partial t^2}\left(\mathcal{E}\vec{E}(x,y,z)\right)$$
 mas, se
$$\frac{\partial A}{\partial t} = 0$$
 então
$$\frac{\partial Ae^{j\omega t}}{\partial t} = (jA\omega)e^{j\omega t} = j\omega(Ae^{j\omega t})$$
 e
$$\frac{\partial^2 Ae^{j\omega t}}{\partial t^2} = (j\omega)^2(Ae^{j\omega t}) = -\omega^2(Ae^{j\omega t})$$

 $^{^2}$ Essa notação configura um certo abuso, uma vez que são duas funções distintas, uma do tempo e outra da posição. O mais correto seria escrever algo como $A_1(t)\vec{A_2}(x,y,z)$

 $^{^3\!}A$ técnica de substituição de uma função f(x,y) pelo produto g(x)h(y) é chamada técnica da substituição de variáveis.

o que resulta:

$$\frac{\partial}{\partial t}\mathcal{A} = j\omega\mathcal{A}$$

e

$$\frac{\partial^2}{\partial t^2} \mathcal{A} = -\omega^2 \mathcal{A}$$

Assim, temos [BALANIS 2012 2, BALANIS 2012 3]:

(14)
$$\vec{\nabla} \cdot \left(\mathcal{D} \vec{D}(x, y, z) \right) = 0$$

(15)
$$\vec{\nabla} \cdot \left(\mathcal{B} \vec{B}(x, y, z) \right) = 0$$

(16)
$$\vec{\nabla} \times \left(\mathcal{E}\vec{E}(x,y,z) \right) = - \mu j \omega \left(\mathcal{H}\vec{H}(x,y,z) \right)$$

(17)
$$\vec{\nabla} \times \left(\mathcal{H} \vec{H}(x, y, z) \right) = \varepsilon j \omega \left(\mathcal{E} \vec{E}(x, y, z) \right)$$

(18)
$$\vec{\nabla}^2 \left(\mathcal{E} \vec{E}(x,y,z) \right) = - \mathbb{I} \epsilon \omega^2 \left(\mathcal{H} \vec{H}(x,y,z) \right)$$

(19)
$$\vec{\nabla}^2 \left(\mathcal{H} \vec{H}(x,y,z) \right) = - \operatorname{pe} \omega^2 \left(\mathcal{E} \vec{E}(x,y,z) \right)$$

2.2. **Forma das equações em coordenadas cilíndricas.** Obviamente, o sistema de coordenadas mais adequado ao problema proposto é o cilíndrico. As equações de onda vetoriais, 18 a 19, após todas as manipulações, são simples o suficiente para permitir uma solução analítica, e por isso são as mais indicadas, em lugar das demais. No sistema

escolhido [MACEDO 1988 1]:

(20)
$$\vec{A} = A_{\rho}\hat{a}_{\rho} + A_{\phi}\hat{a}_{\phi} + A_{z}\hat{a}_{z}$$

(21)
$$\vec{\nabla}^2 \vec{A} = \left[\nabla^2 A_\rho - \frac{1}{\rho^2} \left(A_\rho + 2 \frac{\partial A_\phi}{\partial \phi} \right) \right] \hat{a}_\rho + \dots + \left[\nabla^2 A_\phi + \frac{1}{\rho^2} \left(2 \frac{\partial A_\rho}{\partial \phi} - A_\phi \right) \right] \hat{a}_\phi + \dots + \left[\nabla^2 A_z \right] \hat{a}_z$$

(22)
$$\nabla^2 A = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial A_{\rho}}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 A_{\phi}}{\partial \phi^2} + \frac{\partial^2 A_z}{\partial z^2}$$

Combinando 20 e 21 com 18 e 19, obtemos o sistema de equações a ser resolvido:

(23)
$$\nabla^2 A_\rho - \frac{1}{\rho^2} \left(A_\rho + 2 \frac{\partial A_\phi}{\partial \phi} \right) = - \operatorname{dec} \omega^2 A_\rho$$

(24)
$$\nabla^2 A_\phi + rac{1}{
ho^2} \left(2 rac{\partial A_
ho}{\partial \phi} - A_\phi
ight) = - \mathbb{I} \epsilon \omega^2 A_\phi$$

$$\nabla^2 A_z = -\mu \epsilon \omega^2 A_z$$

$$\vec{A}$$
: \vec{E} ou \vec{H} $A_a = A_a(t, \rho, \phi, z) = \mathcal{A}_a A_a(\rho, \phi, z)$

As equações 23 e 24 estão *acopladas*, isto é, possuem termos tanto em ρ quanto em ϕ ; a equação 25, por sua vez, está desacoplada: possui apenas termos em z. Entretanto, em diversas situações práticas é possível escolher o sistema de coordenadas de forma a obter-se o que se chama **modo transversal elétrico (TE)** ou o **modo transversal magnético (TM)**, para os quais basta resolver a equação 25.

2.3. **Solução da equação 25.** Como 25 é a mais simples, comecemos por ela. De acordo com a técnica de separação de variáveis, façamos a substituição:

(26)
$$A(\rho, \phi, z) = A_1(\rho)A_2(\phi)A_3(z)$$

(27)

em 22 e 25. O que obtemos é:

$$\frac{\partial A}{\partial \rho} = A_2 A_3 \frac{\partial A_1}{\partial \rho}$$

$$\frac{\partial}{\partial \rho} (\rho \frac{\partial A}{\partial \rho}) = A_2 A_3 \left(\frac{\partial A_1}{\partial \rho} + \rho \frac{\partial^2 A_1}{\partial \rho^2} \right)$$

$$\frac{\partial A}{\partial \phi} = A_1 A_3 \frac{\partial A_2}{\partial \phi}$$

$$\frac{\partial^2 A}{\partial \phi^2} = A_1 A_3 \frac{\partial^2 A_2}{\partial \phi^2}$$

$$\frac{\partial A}{\partial z} = A_1 A_2 \frac{\partial A_3}{\partial z}$$

$$\frac{\partial^2 A}{\partial z^2} = A_1 A_2 \frac{\partial^2 A_3}{\partial z^2}$$

$$\nabla^{2} A_{z} = \frac{1}{\rho} A_{2} A_{3} \left(\frac{\partial A_{1}}{\partial \rho} + \rho \frac{\partial^{2} A_{1}}{\partial \rho^{2}} \right) + \frac{1}{\rho^{2}} A_{1} A_{3} \frac{\partial^{2} A_{2}}{\partial \phi^{2}} + A_{1} A_{2} \frac{\partial^{2} A_{3}}{\partial z^{2}}$$

$$= \frac{A_{2} A_{3}}{\rho} \frac{\partial A_{1}}{\partial \rho} + A_{2} A_{3} \frac{\partial^{2} A_{1}}{\partial \rho^{2}} + \frac{A_{1} A_{3}}{\rho^{2}} \frac{\partial^{2} A_{2}}{\partial \phi^{2}} + A_{1} A_{2} \frac{\partial^{2} A_{3}}{\partial z^{2}}$$

$$\therefore \frac{A_2 A_3}{\rho} \frac{\partial A_1}{\partial \rho} + A_2 A_3 \frac{\partial^2 A_1}{\partial \rho^2} + \frac{A_1 A_3}{\rho^2} \frac{\partial^2 A_2}{\partial \phi^2} + A_1 A_2 \frac{\partial^2 A_3}{\partial z^2} = -\operatorname{pe}\omega^2 A_1 A_2 A_3$$

$$\frac{1}{A_1 \rho} \frac{\partial A_1}{\partial \rho} + \frac{1}{A_1} \frac{\partial^2 A_1}{\partial \rho^2} + \frac{1}{A_2 \rho^2} \frac{\partial^2 A_2}{\partial \phi^2} + \frac{1}{A_3} \frac{\partial^2 A_3}{\partial z^2} = -\operatorname{pe}\omega^2$$

$$\frac{\partial}{\partial z} \left[\frac{1}{A_1 \rho} \frac{\partial A_1}{\partial \rho} + \frac{1}{A_1} \frac{\partial^2 A_1}{\partial \rho^2} + \frac{1}{A_2 \rho^2} \frac{\partial^2 A_2}{\partial \phi^2} + \frac{1}{A_3} \frac{\partial^2 A_3}{\partial z^2} \right] = \frac{\partial}{\partial z} \left[- \mathbb{I} \in \omega^2 \right]$$

$$\frac{\partial}{\partial z} \left[\frac{1}{A_3} \frac{\partial^2 A_3}{\partial z^2} \right] = 0$$

$$\therefore \frac{1}{A_2} \frac{\partial^2 A_3}{\partial z^2} = \text{constante}$$

$$\frac{\partial}{\partial \phi} \left[\frac{1}{A_1} \frac{\partial A_1}{\partial \rho} + \frac{1}{A_1} \frac{\partial^2 A_1}{\partial \rho^2} + \frac{1}{A_2} \frac{\partial^2 A_2}{\partial \phi^2} + \frac{1}{A_3} \frac{\partial^2 A_3}{\partial z^2} \right] = \frac{\partial}{\partial \phi} \left[- \operatorname{pe}\omega^2 \right]
\frac{1}{\rho^2} \frac{\partial}{\partial \phi} \left[\frac{1}{A_2} \frac{\partial^2 A_2}{\partial \phi^2} \right] = 0$$
(28)
$$\therefore \frac{1}{A_1} \frac{\partial^2 A_1}{\partial \rho} + \frac{1}{A_1} \frac{\partial^2 A_1}{\partial \rho^2} + \frac{1}{\rho^2} \mathbf{C}_{\phi} + \mathbf{C}_z = - \operatorname{pe}\omega^2$$

$$\therefore \frac{1}{A_1 \rho} \frac{1}{\partial \rho} + \frac{1}{A_1} \frac{1}{\partial \rho^2} + \frac{1}{\rho^2} \mathbf{C}_{\phi} + \mathbf{C}_z = -\mathbb{D} \in \mathcal{C}_{\phi}$$

$$\rho \frac{\partial A_1}{\partial \rho} + \rho^2 \frac{\partial^2 A_1}{\partial \rho^2} + \mathbf{C}_{\phi} A_1 + \rho^2 A_1 (\mathbf{C}_z + \mathbb{D} \in \omega^2) = 0$$

$$(29) \qquad \rho^2 \frac{\partial^2 A_1}{\partial \rho^2} + \rho \frac{\partial A_1}{\partial \rho} + A_1 \left[\mathbf{C}_{\phi} + \rho^2 (\mathbf{C}_z + \mathbb{D} \in \omega^2) \right] = 0$$

$$\left[\mathbf{C}_z = \frac{1}{A_3} \frac{\partial^2 A_3}{\partial z^2} \qquad \mathbf{C}_{\phi} = \frac{1}{A_2} \frac{\partial^2 A_2}{\partial \phi^2} \right]$$

Temos agora 3 equações diferenciais ordinárias desacopladas a resolver, o que detalharemos a seguir [BALANIS 2012 4].

. Solução da equação 29

29 tem a forma da equação diferencial de Bessel na versão de Bowman:

(30)
$$u^{2} \frac{d^{2}v}{du^{2}} + (2p+1)u \frac{dv}{du} + [a^{2}u^{2c} + b^{2}]v = 0$$

$$p = 0 \qquad c = 1 \qquad a^{2} = (\mathbf{C}_{z} + \mathbf{p} \in \omega^{2}) \qquad b^{2} = \mathbf{C}_{\phi}$$

cuja solução é:

(31)
$$v = u^{-p} \left[\mathbf{C}_1 \mathbf{J}_{\frac{q}{c}} \left(\frac{a}{c} u^c \right) + \mathbf{C}_2 \mathbf{Y}_{\frac{q}{c}} \left(\frac{a}{c} u^c \right) \right]$$
$$q = \sqrt{p^2 - b^2}$$

onde J é uma função de Bessel de primeira espécie, Y é uma função de Bessel de segunda espécie e C_1 e C_2 são constantes, determinadas pelas

condições de contorno de cada problema [WEISSTEIN 2015 1]. Fazendo as devidas substituições em 29, chegamos a:

$$f(\rho) = \rho^{0} \left[\mathbf{C}_{1} \mathbf{J}_{q} \left(\sqrt{\mathbf{C}_{z} + \mathbf{p} \varepsilon \omega^{2}} \ \rho \right) + \mathbf{C}_{2} \mathbf{Y}_{q} \left(\sqrt{\mathbf{C}_{z} + \mathbf{p} \varepsilon \omega^{2}} \ \rho \right) \right]$$

$$= \mathbf{C}_{1} \mathbf{J}_{q} \left(\sqrt{\mathbf{C}_{z} + \mathbf{p} \varepsilon \omega^{2}} \ \rho \right) + \mathbf{C}_{2} \mathbf{Y}_{q} \left(\sqrt{\mathbf{C}_{z} + \mathbf{p} \varepsilon \omega^{2}} \ \rho \right)$$
(32)

$$(33) q = \sqrt{-\mathbf{C}_{\phi}}$$

De acordo com 33, C_{ϕ} deve ser um valor negativo para que tal solução seja possível; de maneira similar, conforme 32, $C_z + \mu \varepsilon \omega^2$ deve ser postitivo. Assim, definamos $C_{\phi} = -m^2$ e $C_z + \mu \varepsilon \omega^2 = \beta_{\rho}^2$. Com isso, 32 se torna

(34)
$$A_1 = \mathbf{C}_1 \mathbf{J}_m (\beta_{\rho} \rho) + \mathbf{C}_2 \mathbf{Y}_m (\beta_{\rho} \rho)$$

. Solução das equações 27 e 28

Essas equações são de fácil solução, uma vez que se trata de equações lineares na forma:

(35)
$$\frac{d^2v}{du^2} + a\frac{dv}{du} + bv = 0$$
$$a = 0 \qquad b = -\mathbf{C_z}$$

cuja solução geral depende do sinal de $\Delta=a^2-4b$, que, no caso presente, é igual a $4\mathbf{C}_z$. Como estamos interessados em soluções ondulatória, é preciso que $\mathbf{C}_z<0$. Escrevemos então:

$$\frac{d^2 A_2}{d\phi^2} = -m^2 A_2$$
$$\frac{d^2 A_3}{dz^2} = -\beta_z^2 A_3$$

e as soluções serão

(36)
$$A_2 = \mathbf{C}_3 \cos(m\phi) + \mathbf{C}_4 \sin(m\phi)$$

(37)
$$A_3 = \mathbf{C}_5 \cos(\beta_z z) + \mathbf{C}_6 \sin(\beta_z z)$$

ESPALHAMENTO ELETROMAGNÉTICO POR UM CILINDRO CONDUTOR ELÉTRICO PERFEITO

As equações 34 a 37 podem ser reescritas em uma forma alternativa:

(38)
$$A_1 = \mathbf{C}_7 \mathbf{H}_m^{(1)}(\beta_\rho \rho) + \mathbf{C}_8 \mathbf{H}_m^{(2)}(\beta_\rho \rho)$$

(39)
$$A_2 = \mathbf{C}_9 e^{-jm\phi} + \mathbf{C}_{10} e^{jm\phi}$$

(40)
$$A_3 = \mathbf{C}_{11}e^{-j\beta_z z} + \mathbf{C}_{12}e^{j\beta_z z}$$

onde ${\rm H}_m^{(n)}$ é a função de Hankel de espécie n, relacionada às funções de Bessel por [WEISSTEIN 2015 2, WEISSTEIN 2015 3]:

$$\mathbf{H}_m^{(1)}(x) = \mathbf{J}_m(x) + j \, \mathbf{Y}_m(x)$$

$$\mathbf{H}_m^{(2)}(x) = \mathbf{J}_m(x) - j \mathbf{Y}_m(x)$$

O primeiro conjunto é mais apropriado ao tratamento de ondas estacionárias; o segundo, ao de ondas viajantes [BALANIS 2012 4].

3. SOLUÇÃO DAS EQUAÇÕES DE ONDA

3.1. Os potenciais vetores elétrico e magnético. A solução da equação de onda em um problema prático pode ser obtida através de dois roteiros. O primeiro consiste na solução direta do conjunto de equações formuladas em termos das coordenadas escolhidas, cilíndricas no nosso caso. O segundo contempla um passo intermediário, que consiste na obtenção de duas quantidades auxiliares, os vetores potencial elétrico \vec{F} e potencial magnético \vec{A} ; esta alternativa normalmente é mais fácil e será a utilizada aqui.

a solução das equações:

(41)
$$\vec{D} = -\vec{\nabla} \times \vec{F}$$
 $/\vec{\nabla} \cdot \vec{D} = 0$

(42)
$$\vec{B} = \vec{\nabla} \times \vec{A} \qquad / \vec{\nabla} \cdot \vec{B} = 0$$

Substituindo essas equações em 17 e 16, respectivamente, obtém-se:

$$\vec{\nabla} \times (\mathcal{H}\vec{H}) = \epsilon j\omega \mathcal{E}\vec{E}$$

$$= -j\omega \vec{\nabla} \times (\mathcal{F}\vec{F}) \implies$$

$$\vec{\nabla} \times (\mathcal{H}\vec{H} + j\omega \mathcal{F}\vec{F}) = \vec{0} \implies$$

$$\mathcal{H}\vec{H} + j\omega \mathcal{F}\vec{F} = -\vec{\nabla}V^{(m)}$$

e

$$\vec{\nabla} \times (\vec{z}\vec{E}) = -\mu j\omega \mathcal{H}\vec{H}$$

$$= -j\omega \vec{\nabla} \times (\mathcal{A}\vec{A}) \implies$$

$$\vec{\nabla} \times (\vec{z}\vec{E} + j\omega \mathcal{A}\vec{A}) = \vec{0} \implies$$

$$\vec{E}\vec{E} + j\omega \mathcal{A}\vec{A} = -\vec{\nabla}V^{(e)}$$

onde $V^{(m)}$ é uma função que representa o potencial magnético devido ao campo elétrico e $V^{(e)}$ é uma função que representa o potencial elétrico devido ao campo magnético. Definem-se então os divergentes de \vec{F} e \vec{A} como:

(45)
$$\vec{\nabla} \cdot F = -j\omega \in \mu V^{(m)}$$

(46)
$$\vec{\nabla} \cdot A = -j\omega \in \mathbb{P}^{V^{(e)}}$$

Por outro lado, manipulando as equações 41 e ??, teremos:

$$\vec{\nabla} \times \vec{D} = -\vec{\nabla} \times \vec{\nabla} \times (\vec{F})$$

$$= -\vec{\nabla}(\vec{\nabla} \cdot F) + \vec{\nabla}^2 (\mathcal{F} \vec{F}) \in \vec{\nabla} \times \vec{E} = -\vec{\nabla}(\vec{\nabla} \cdot F) + \vec{\nabla}^2 (\mathcal{F} \vec{F})$$

$$= (\vec{M} + i\omega \mathbf{H} \vec{H} = \vec{\nabla}(\vec{\nabla} \cdot (\mathcal{F} \vec{F})) - \vec{\nabla}^2 (\mathcal{F} \vec{F})$$

(47)

e

$$\begin{split} \vec{\nabla} \times \vec{B} &= \vec{\nabla} \times (\vec{\nabla} \times \vec{A}) \\ &= \vec{\nabla} (\vec{\nabla} \cdot A) - \vec{\nabla}^2 (\mathcal{A} \vec{A}) \\ \\ \mathbb{\mu} \vec{\nabla} \times \vec{H} &= \vec{\nabla} (\vec{\nabla} \cdot A) - \vec{\nabla}^2 (\mathcal{A} \vec{A}) \end{split}$$

(48)
$$\mu(\vec{J} + j\omega \in \mathcal{E}\vec{E}) = \vec{\nabla}(\vec{\nabla} \cdot A) - \vec{\nabla}^2(\mathcal{A}\vec{A})$$

Combinando 43 com 45 e 47 por um lado e 44 com 46 e 48 por outro, e lembrando que $\vec{M} = \vec{J} = 0$ no nosso problema, chegaremos aos pares de equações:

(49)
$$\vec{\nabla}^2(\mathcal{F}\vec{F}) + \omega^2 \operatorname{de} \mathcal{F}\vec{F} = \vec{0}$$

(50)
$$j \frac{1}{\omega \mu \epsilon} \vec{\nabla} (\vec{\nabla} \cdot (\mathcal{F}\vec{F})) + j\omega \mathcal{F}\vec{F} + \vec{H} = \vec{0}$$

e

(51)
$$\vec{\nabla}^2(\mathcal{A}\vec{A}) + \omega^2 \mu \in \mathcal{A}\vec{A} = \vec{0}$$

(52)
$$j \frac{1}{\omega \log} \vec{\nabla} (\vec{\nabla} \cdot (\mathcal{A} \vec{A})) + j \omega \mathcal{A} \vec{A} + \vec{E} = \vec{0}$$

As equações 49 e 51 são equações de onda, na forma das equações 18 e 19, e sua solução geral já foi derivada. Uma vez calculados os potenciais \vec{F} e \vec{A} , obtêm-se os respectivos \vec{E} e \vec{H} por meio da combinação das equações 41 e 42 com 50 e 52 ou, alternativamente, com 47 e 48. O campo total será dado pela soma de todas essas componentes. Para ondas planas, o segundo termo das equações 52 e 50 é desprezível, por isso essas equações são as mais recomendadas para os problemas a elas relacionados [BALANIS 2012 5].

3.2. **Os modos transversais.** Em um modo transversal, o sistema de coordenadas foi escolhido de forma a que os vetores \vec{E} e/ou \vec{H} sejam ortogonais à direção de propagação. Em tais configurações do campo eletromagnético, diversos componentes de \vec{E} , \vec{H} , \vec{A} e \vec{F} são nulos. No modo mais simples, chamado transversal eletromagnético (TEM), ambos o são; neste caso, teremos o mmáximo de componentes nulos. Os modos transversal elétrico (TE) e transversal magnético (TM) são um pouco mais complexos e menos componentes serão nulos em cada caso. Pode-se demonstrar, com o auxílio da teoria desenvolvida nas seções anteriores, que, em um sistema de coordenadas cartesianas, partindo das equações 52 e 50 e considerando os vetores na forma geral $\vec{\psi} = \psi_x \hat{a}_x + \psi_y \hat{a}_y + \psi_z \hat{a}_z$, com $\psi = \psi(x,y,z)$, para $\vec{E} = \mathcal{E}\hat{a}_x$ e $\vec{H} = \mathcal{H}\hat{a}_y$, teremos uma onda plana no

modo TEM^z e [BALANIS 2012 6]:

(53)
$$\mathcal{E}_x = \mathcal{E}_x^+ e^{-\jmath \beta z} + \mathcal{E}_x^- e^{\jmath \beta z}$$

(54)
$$\mathcal{H}_{y} = \mathcal{H}_{y}^{+} e^{-\jmath \beta z} + \mathcal{H}_{y}^{-} e^{\jmath \beta z}$$

(55)
$$\mathcal{E}_{x}^{+} = -\frac{1}{\sqrt{\mathbb{P}^{\epsilon}}} \frac{\partial \mathcal{A}_{z}^{+}}{\partial x} - \frac{1}{\epsilon} \frac{\partial \mathcal{F}_{z}^{+}}{\partial y}$$

(56)
$$\mathcal{E}_{x}^{-} = \frac{1}{\sqrt{\mathbb{I}^{\mathbb{E}}}} \frac{\partial \mathcal{A}_{z}^{-}}{\partial x} - \frac{1}{\varepsilon} \frac{\partial \mathcal{F}_{z}^{-}}{\partial y}$$

(57)
$$\mathcal{H}_{y}^{+} = \sqrt{\frac{\epsilon}{\mu}} \mathcal{E}_{x}^{+}$$

(58)
$$\mathcal{H}_{y}^{-} = -\sqrt{\frac{\epsilon}{\mathbb{I}}}\mathcal{E}_{x}^{-}$$

3.3. **Ondas refletidas.** Nas proximidades do cilindro condutor, existirá uma onda refletida que interferirá com a onda incidente. A onda resultante será a somatória de ambas, uma vez que vale o princípio da superposição [BALANIS 2012 7]:

(59)
$$\vec{E} = \vec{E}^{(i)} + \vec{E}^{(r)}$$

(60)
$$\vec{H} = \vec{H}^{(i)} + \vec{H}^{(r)}$$

onde ^(r) e ⁽ⁱ⁾ identificam as ondas refletida e incidente, respectivamente. Se suposermos, como vimos fazendo, uma onda incidente plana, a onda refletida será uma onda cilíndrica. Para o modo TEM°, com $\vec{E} = \mathcal{E} \hat{a}_z$ e $\vec{H} = \mathcal{H} \hat{a}_\phi$, e considerando apenas a propagação na direção positiva, que é a significativa para os nossos propósitos, teremos [BALANIS 2012 6]:

(61)
$$\mathcal{E}_{z} = \mathcal{E}_{z} \mathbf{H}_{1}^{(2)}(\beta \rho) \qquad \mathcal{E}_{z} = -\jmath \frac{1}{\omega \mathbb{H}^{\varepsilon}} \frac{\partial}{\partial z} \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \mathcal{A}_{\rho}) \right] + \frac{1}{\rho \varepsilon} \frac{\partial \mathcal{F}_{\rho}}{\partial \phi}$$

$$\mathcal{H}_{\phi} = \mathcal{H}_{\phi} \mathbf{H}_{1}^{(2)}(\beta \rho) \qquad \mathcal{H}_{\phi} = -\jmath \frac{1}{\rho \omega \mathbb{H}^{\varepsilon}} \frac{\partial}{\partial \phi} \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \mathcal{F}_{\rho}) \right] + \frac{1}{\mathbb{H}} \frac{\partial \mathcal{A}_{\rho}}{\partial z}$$

3.4. **Onda plana em coordenadas cilíndricas.** Como estamos trabalhando em coordenadas cilíndricas, será preciso reescrever as equações 53 a neste sistema. A melhor opção é decompor cada função exponencial como uma soma de funções de Bessel, que, como vimos anteriormente,

ESPALHAMENTO ELETROMAGNÉTICO POR UM CILINDRO CONDUTOR ELÉTRICO PERFEI**TO**

são as funções mais adequadas para representar ondas em coordenadas esféricas. Assim:

(62)
$$e^{-\jmath\beta x} = e^{-\jmath\beta\rho\cos\phi}$$

(63)
$$= \sum_{n=-\infty}^{\infty} a_n \mathbf{J}_n(\beta \rho)$$

É possível demostrar, aplicando as condições de contorno, que os coeficientes a_n são dados por

$$(64) a_n = j^{-n}e^{jn\phi}$$

Assim, considerando o modo TM^z, a onda incidente sobre o cilindro pode ser escrita como:

$$\vec{E}^i = \mathcal{E}_z^+ \hat{a}_z$$

(65)
$$\mathcal{E}_z^+ = E_0 \sum_{n=-\infty}^{\infty} j^{-n} \mathbf{J}_n(\beta \rho) e^{jn\phi}$$

e

$$ec{H}^i = \mathcal{H}_{\!
ho} \hat{a}_{
ho} + \mathcal{H}_{\!\phi} \hat{a}_{\phi}$$

(66)
$$\mathcal{H}_{\rho} = -\frac{E_0}{\Im \omega \rho} \sum_{n=-\infty}^{\infty} n \jmath^{1-n} \mathbf{J}_n(\beta \rho) e^{\jmath n \phi}$$

(67)
$$\mathcal{H}_{\phi} = -\frac{\beta E_0}{\jmath \mathbb{I} \omega} \sum_{n=-\infty}^{\infty} \jmath^{-n} \left[\frac{\partial}{\partial (\beta \rho)} J_n(\beta \rho) \right] e^{\jmath n \phi}$$

Para TE^z, por sua vez, teremos:

$$\vec{H}^i = \mathcal{H}_z \hat{a}_z$$

(68)
$$\mathcal{H}_z = H_0 \sum_{n=-\infty}^{\infty} j^{-n} e^{-jn\phi} \mathbf{J}_n(\beta \rho)$$

e [BALANIS 2012 8]

$$\vec{E}^i = \mathcal{E}^i_\rho \hat{a}_\rho + \mathcal{E}^i_\phi \hat{a}_\phi$$

(69)
$$\mathcal{E}_{\rho} = \frac{H_0}{j\omega\in\rho} \sum_{n=-\infty}^{\infty} n j^{1-n} e^{-jn\phi} \mathbf{J}_n(\beta\rho)$$

(70)
$$\mathcal{E}_{\phi} = \frac{\jmath \beta H_0}{\omega \epsilon} \sum_{n=-\infty}^{\infty} \jmath^{-n} e^{-jn\phi} \frac{\partial}{\partial (\beta \rho)} \mathbf{J}_n(\beta \rho)$$

3.5. **Onda espalhada.** De forma similar, a onda espalhada deve ser escrita como uma composição de funções de Hankel de segunda espécie, uma vez que se trata de uma onda viajante. Para o modo TM^z:

$$\vec{E}^s = \mathcal{E}_z^s \hat{a}_z$$

(71)
$$\mathcal{E}_z^s = E_0 \sum_{n=-\infty}^{\infty} \mathbf{c}_n \mathbf{H}_n^{(2)}(\beta \rho)$$

onde os coeficientes c_n são dados por:

(72)
$$\mathbf{c}_n = (-j)^{-n} \frac{\mathbf{J}_n(\beta R)}{\mathbf{H}_n^{(2)}(\beta R)} e^{jn\phi}$$

sendo R o raio do cilindro. Combinando 72 com 71 e aplicando as equações 66 e 67 ao resultado, chegamos a:

(73)
$$\mathcal{H}_{\rho}^{(s)} = \frac{E_0}{j \mu \omega \rho} \sum_{n=-\infty}^{\infty} n j^{1-n} \frac{J_n(\beta R)}{H_n^{(2)}(\beta R)} H_n^{(2)}(\beta \rho) e^{jn\phi}$$

(74)
$$\mathcal{H}_{\phi} = -\frac{\beta E_0}{\beta \mathbb{I} \omega} \sum_{n=-\infty}^{\infty} \jmath^{-n} \frac{\mathbf{J}_n(\beta R)}{\mathbf{H}_n^{(2)}(\beta R)} \left[\frac{\partial}{\partial (\beta \rho)} \mathbf{H}_n^{(2)}(\beta \rho) \right] e^{\jmath n \phi}$$

Para o modo TEz, por sua vez, teremos [BALANIS 2012 8]:

$$\vec{H}^s = \mathcal{H}_z^s \hat{a}_z$$

(75)
$$\mathcal{H}_z^s = H_0 \sum_{n=-\infty}^{\infty} \mathbf{d}_n \, \mathbf{H}_n^{(2)}(\beta \rho)$$

(76)
$$\mathbf{d}_{n} = -(j)^{-n} \left[\frac{\frac{\partial}{\partial (\beta \rho)} \mathbf{J}_{n}(\beta \rho)}{\frac{\partial}{\partial (\beta \rho)} \mathbf{H}_{n}^{(2)}(\beta \rho)} \right] \Big|_{\rho = R} e^{jn\phi}$$

(77)
$$\mathcal{E}_{\rho}^{(s)} = \frac{jH_0}{\varepsilon\omega\rho} \sum_{n=-\infty}^{\infty} n j^{1-n} \left[\frac{\frac{\partial}{\partial(\beta\rho)} \mathbf{J}_n(\beta\rho)}{\frac{\partial}{\partial(\beta\rho)} \mathbf{H}_n^{(2)}(\beta\rho)} \right] \Big|_{\rho=R} \mathbf{H}_n^{(2)}(\beta\rho) e^{jn\phi}$$

(78)
$$\mathcal{E}_{\phi} = \frac{\beta H_0}{j \in \omega} \sum_{n = -\infty}^{\infty} j^{-n} \left[\frac{\frac{\partial}{\partial (\beta \rho)} \mathbf{J}_n(\beta \rho)}{\frac{\partial}{\partial (\beta \rho)} \mathbf{H}_n^{(2)}(\beta \rho)} \right]_{\rho = R} \left[\frac{\partial}{\partial (\beta \rho)} \mathbf{H}_n^{(2)}(\beta \rho) \right] e^{jn\phi}$$

3.6. Corrente na superfície do cilindro. A densidade de corrente J na superfície do cilindro é igual à componente tangencial do campo magnético no local ($\rho = R$). Assim [BALANIS 2012 8]:

(79)
$$J = \mathbf{H}_{\phi}^{(t)}(\beta R)$$

4. IMPLEMENTAÇÃO

As equações 65 a 79 foram implementadas no Matlab conforme a listagem seguinte:

LISTING 1. probcyl.m

```
% Parâmetros do problema (em metros)
                 % raio do cilindro
 3 | lambda = [0.3 1 3]; % comprimento de onda
   % Outros valores
                     % controla quantas componentes serão integradas
   infty = 20;
   step = 10;
                     % resolução angular
 7
    prec = 10;
                    % resolução radial
    scale = pi()/step; % conversão de unidades
 8
 9
   Eo = 1;
                   % intensidade do campo incidente
10
   % Funções auxiliares
11
12
   function [b,c] = Calc_bc(m, alpha)
13
    % Calcula os coeficientes an, bn e cn, com 0 <= n <= m
14
     b = c = zeros(m, 1);
15
      for n = 1:m
16
        a = j^{(-n)} * (2 * n + 1) / (n * (n + 1));
        b(n) = -a * Jotalinha(n, alpha) / Haga2linha(n, alpha);
17
18
        c(n) = -a * Jota(n, alpha) / Haga2(n, alpha);
19
20
21
    function [Jlinha] = Jotalinha(n, alpha)
22
    % Calcula a derivada da função de Bessel de primeira espécie esférica modificada
23
24
     Jlinha = Jota(n - 1, alpha) - n / alpha * Jota(n, alpha);
25
26
27
    function [H2linha] = Haga2linha(n, alpha)
   % Calcula a derivada da função de Hankel de segunda espécie esférica modificada
28
29
     H2linha = Haga2(n - 1, alpha) - n / alpha * <math>Haga2(n, alpha);
30
    function [H2linhalinha] = Haga2linhalinha(n, alpha)
32
   % Calcula a derivada segunda da função de Hankel de segunda espécie esférica modificada
33
      H2linhalinha = alpha * Haga2(n - 2, alpha) + 2 / alpha * Haga2(n - 1, alpha) + n ^2 /
34
           alpha * Haga2(n, alpha);
35
   end
36
37
    function [Hn2] = Haga2(n, alpha)
38
   % Calcula a função de Hankel de segunda espécie esférica modificada
     Hn2 = sqrt(pi/2 * alpha) * besselh(n + 1/2, 2, alpha, 0);
39
40
   end
41
```

```
42 | function [Jn] = Jota(n, alpha)
43
   % Calcula a função de Bessel de primeira espécie esférica modificada
     Jn = sqrt(pi/2 * alpha) * besselj(n + 1/2, alpha, 0);
44
45
    end
46
    function [pl] = Pl(n, theta)
47
48
   % Calcula a função de Legendre associada
      if n \le 0
49
       pl = 0;
50
51
      else
52
       Pn = legendre(n, cos(theta));
53
        pl = Pn(end);
54
      end
55
    end
56
57
    function [p1] = Pe1(n, theta)
   % Calcula a função de Legendre associada
58
    pl = n / (theta^2 - 1) * (theta * Pl(n, theta) - Pl(n - 1, theta));
59
60
  end
61
62
    function [p1] = Pelinhal(n, theta)
63
  % Calcula a função de Legendre associada
64
      theta2 = theta^2;
65
      c1 = (n - 1) * theta2 - 1;
66
      c2 = 2 * (n + 1) * theta;
     pl = n / sin(theta) / (theta2 - 1)^2 * (c1 * Pl(n, theta) + c2 * Pl(n - 1, theta) + n
67
           * Pl(n-2, theta));
68
69
70
    function [E] = Calc_E(m, alpha, theta, phi, b, c)
71
   % Calcula o campo elétrico espalhado na posição dada
72
      costheta = cos(theta);
73
      sentheta = sin(theta);
74
      cosphi = cos(phi);
      senphi = sin(phi);
75
76
      sEr = sEphi1 = sEphi2 = sEtheta1 = sEtheta2 = 0;
77
      for n = 1:m
78
        sEr = sEr + b(n) * (Haga2linhalinha(n, alpha) + Haga2(n, alpha)) * Pel(n, theta);
79
        if sentheta != 0
80
          sEtheta1 = sEtheta1 + j * b(n) * Haga2linha(n, alpha) * Pelinha1(n, theta);
          sEtheta2 = sEtheta2 + c(n) * Haga2(n, alpha) * Pe1(n, theta);
81
82
          sEphil = sEphil + j * b(n) * Haga2linha(n, alpha) * Pel(n, theta);
          sEphi2 = sEphi2 + c(n) * Haga2(n, alpha) * Pelinha1(n, theta);
83
84
        end
85
86
      Er = -j * cosphi * sEr;
87
      if sentheta != 0
88
        Etheta = cosphi / alpha * (sentheta * sEtheta1 - sEtheta2 / sentheta);
89
        Ephi = senphi / alpha * (sEphil / sentheta - sEphi2 * sentheta);
90
      else
91
       Etheta = Ephi = 0;
92
      end
93
     E = [Er, Etheta, Ephi];
94
95
96
    function [Er,Etheta,Ephi] = Calc_Esfera(1, prec, step, scale, m)
97
   % Calcula as componentes do campo elétrico em cada ponto do espaço, para a geometria
        dada
98
     Er=zeros(prec, step, step);
```

```
99
       Etheta=zeros(prec, step, step);
100
       Ephi=zeros(prec, step, step);
101
       for qr = 1:prec
102
         alpha = 2 * pi * qr * 1 ;
         for qphi = 1:step
103
           phi = qphi * 2 * scale;
104
105
           for qtheta = 1:step
             theta = qtheta * scale;
106
             [b,c] = Calc_bc(m, alpha);
107
             E = Calc_E(m, alpha, theta, phi, b, c);
108
109
             Er(qr, qphi, qtheta) = E(1);
             Etheta(qr, qphi, qtheta) = E(2);
110
111
             Ephi(qr, qphi, qtheta) = E(3);
112
113
         end
114
       end
115
     end
116
117
     for i=1:3
       [Er, Etheta, Ephi] = Calc_Esfera(R / lambda(i), prec, step, scale, infty);
118
119
    end
```

Foram simuladas situações onde o comprimento da onda λ assume os valores de 0.01R (onda curta), R (onda média) e 100R (onda longa). O valor de n pôde variar de -5 a 5, apenas, com resultados satisfatórios, e o incremento a ser usado para ρ e para ϕ para os quais se calcularam os campos) foram fixadas em 1 m e 1° , respectivamente. Essas constantes podem ser alteradas facilmente com a edição do programa.

Para as derivadas das funções de Bessel e de Hankel que aparecem nas equações, utilizaram-se as identidades [WOLFRAM 2015 1, WEISSTEIN 2015 3]:

(80)
$$\frac{\partial \mathbf{J}_n(z)}{\partial (z)} = \mathbf{J}_{n-1}(z) - \frac{n}{z} \mathbf{J}_n(z)$$

(81)
$$\frac{\partial \mathbf{H}_n^{(2)}(z)}{\partial(z)} = \frac{1}{2} \left[\mathbf{H}_{n-1}^{(2)}(z) - \mathbf{H}_{n+1}^{(2)}(z) \right]$$

Para expressar as equações em função de λ , substituimos $\beta=\frac{2\pi}{\lambda}$ e:

$$\omega = 2\pi f$$

$$= \frac{2\pi c}{\lambda}$$
(82)
$$= \frac{2\pi}{\lambda\sqrt{\mu\epsilon}}$$

Assim,

(83)
$$\omega \mathbb{I} = \frac{2\pi}{\lambda} \sqrt{\frac{\mathbb{I}}{\epsilon}} = \frac{2\pi \mathbb{I}}{\lambda}$$

(84)
$$\omega \in = \frac{2\pi}{\lambda} \sqrt{\frac{\epsilon}{\mu}} = \frac{2\pi}{\hbar \lambda}$$

(85)
$$\frac{\beta}{\omega_{\mathbb{B}}} = \frac{2\pi}{\lambda} \frac{\lambda}{2\pi_{\mathbb{B}}} = \frac{1}{\mathbb{B}}$$

(86)
$$\frac{\beta}{\omega \in} = \frac{2\pi}{\lambda} \frac{\mathbb{I}\lambda}{2\pi} = \mathbb{I}$$

onde \P é a impedância do meio. Os gráficos traçados pelo programa foram os seguintes:

Corrente na superfície do cilindro para $\lambda=0.01~R$, modo TM^z

Intensidade dos campos na superfície do cilindro para $\lambda = 0.01~R$, modo TM^z

ESPALHAMENTO ELETROMAGNÉTICO POR UM CILINDRO CONDUTOR ELÉTRICO PERFEIZO

Corrente na superfície do cilindro para $\lambda=R$, modo $\mathrm{TM^z}$

Intensidade dos campos na superfície do cilindro para $\lambda=R$, modo TMz

Corrente na superfície do cilindro para $\lambda=100~R,~{\rm modo~TM^z}$

Intensidade dos campos na superfície do cilindro para $\lambda=100~R$, modo TMz

Intensidade dos campos em função Intensidade dos campos em função da distância em da distância em $\phi=0$ para $\lambda=0.01~R$, modo TM² $\phi = 0$ para $\lambda = 100~R$, modo TM^z

para $\lambda = 0.01 R$, modo TE^z

Corrente na superfície do cilindro Corrente na superfície do cilindro para $\lambda = 100 R$, modo TE^z

Intensidade dos campos na superfície do cilindro para $\lambda = 0.01~R$, modo TE^z

Intensidade dos campos na superfície do cilindro para $\lambda=R$, modo TE^{z}

Intensidade dos campos na superfície do cilindro para $\lambda=100~R,$ modo $\mathrm{TE^z}$

Intensidade dos campos em função R, da distância em $\phi=0$ para $\lambda=100~R$, modo TE $^{\rm z}$

As figuras mostram que, em cada caso, os campos elétrico e magnético variam da mesma forma. Pode-se notar que, como não há perdas, a intensidade do campo eletromagnético não varia com a distância ao cilindro. Além disso, só aparece corrente na superfície do cilindro no modo TM^z .

REFERÊNCIAS

[BALANIS 2012 1] Constantine A. BALANIS, **Advanced Engineering Electromagnetics**, 2nd edition, Wiley, 2012, ISBN 978-0-470-58948-9, itens 3.1 e 3.2, pp. 99 a 101.

[BALANIS 2012 2] Constantine BALANIS, op. cit., item 1.7, pp. 21 a 22.

[BALANIS 2012 3] Constantine BALANIS, op. cit., item 3.3, pp. 101 a 102.

[BALANIS 2012 4] Constantine BALANIS, op. cit., item 3.4.2 pp. 110 a 114.

[BALANIS 2012 5] Constantine BALANIS, op. cit., itens 6.1 a 6.4, pp. 259 a 265.

[BALANIS 2012 6] Constantine BALANIS, op. cit., item 6.5.1, pp. 265 a 272.

[BALANIS 2012 7] Constantine BALANIS, op. cit., item 11, pag. 575.

[BALANIS 2012 8] Constantine BALANIS, op. cit., itens 11.4 a 11.5.2, pp. 599 a 614.

[MACEDO 1988 1] Annita MACEDO, **Eletromagnetismo**, Guanabara, 1988, Formulário, pp. 619 a 628.

[WEISSTEIN 2015 1] Eric WEISSTEIN, WolframMathWorld: Bessel Differential Equation. Disponível em http://mathworld.wolfram.com/BesselDifferentialEquation.html, acesso em 11/09/2015.

[WEISSTEIN 2015 2] Eric WEISSTEIN, **WolframMathWorld**: Hankel Function of the First Kind. Disponível em http://mathworld.wolfram.com/HankelFunctionoftheFirstKind.html, acesso em 12/09/2015.

[WEISSTEIN 2015 3] Eric WEISSTEIN, **WolframMathWorld**: Hankel Function of the Second Kind. Disponível em http://mathworld.wolfram.com/HankelFunctionoftheSecondKind.html, acesso em 12/09/2015.

[WOLFRAM 2015 1] Stephen WOLFRAM, **WolframResearch**: Bessel function of the first kind: Differentiation. Disponível em http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/20/01/02/, acesso em 27/11/2015.

A solução de algumas integrais indefinidas foi obtida no site **Wolfram Alpha**:

(http://www.wolframalpha.com/widget/widgetPopup.jsp?p=v&id=7d800d10b8bfcd949b17866c0679e786)

Os gráficos foram preparados pelo **Octave** 4.0.0

(https://www.gnu.org/software/octave/)

O texto foi formatado com **pdflatex** em ambiente MiKTeX 2.9

(http://miktex.org/download/)