1

Assignment 17

Rubeena Aafreen

Download the latex-tikz codes from

https://github.com/rubeenaafreen20/EE5609/tree/master/Assignment17

1 Problem

Let **T** be the diagonalizable linear operator on \mathbb{R}^3 which we discussed in example 3 of section 6.2. Use the Lagrange polynomials to write the representing matrix **A** in the form

$$A = E_1 + 2E_2, \quad E_1 + E_2 = I, E_1E_2 = 0$$
 (1.0.1)

2 OUTLINE

Diagonalizable Operator	For a linear operator $T \colon V \longrightarrow V$, T is a diagonalizable operator if \exists some basis for V such that the matrix representing T is a diagonal matrix i.e. $T(X) = AX,$ $\Longrightarrow A$ is a diagonalizable matrix
Characteristic Polynomial	For an $n \times n$ matrix \mathbf{A} , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that, $m(\mathbf{A}) = 0$ Every root of characteristic polynomial should be the root of minimal polynomial
Lagrange Polynomials	For a set of scalars $c_0, c_1, \ldots, c_n \in \mathbb{F}$, Lagrange Polynomial is defined as: $p_j = \prod_{i \neq j} \frac{(x - c_i)}{\left(c_j - c_i\right)}$

TABLE 1: Definitions

3 Solution

Given	$\mathbf{A} = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$
Characteristic polynomial	$p(x) = \begin{vmatrix} x\mathbf{I} - \mathbf{A} \\ x & -1 & 0 \\ -2 & x + 2 & -2 \\ -2 & 3 & x - 2 \end{vmatrix}$ $= x^3 - 5x^2 + 8x - 4$ $= (x - 1)(x - 2)^2$ $\implies \lambda = 1, 2$
Minimal Polynomial	$p(x) = (x-1)(x-2)^b, b \le 2$ $(\mathbf{A} - \mathbf{I})(\mathbf{A} - 2\mathbf{I}) = \begin{pmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & -5 \end{pmatrix} \begin{pmatrix} 3 & -6 & -6 \\ -1 & 2 & 2 \\ 3 & -6 & -6 \end{pmatrix} = 0$ Therefore, $(x-1)(x-2)$ is the minimal polynomial.
Lagrange Polynomial	$p_{j} = \prod_{i \neq j} \frac{(x - c_{i})}{(c_{j} - c_{i})}$ For characteristic values $c_{1} = 1$, $c_{2} = 2$, $\implies p_{1} = \frac{(x-1)}{2-1}, \qquad p_{2} = \frac{(x-2)}{1-2}$ $\implies p_{1} = (x-1), \text{ and }$ $p_{2} = (2-x)$
Projection Maps	We know that, $\mathbf{E_{j}} = p_{j}(\mathbf{T})$ $\implies \mathbf{E_{1}} = \mathbf{A} - \mathbf{I} \text{ and } \mathbf{E_{2}} = 2\mathbf{I} - \mathbf{A}$ $\implies \mathbf{E_{1}} = \begin{pmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & -5 \end{pmatrix}, \text{ and}$ $\mathbf{E_{2}} = \begin{pmatrix} -3 & 6 & 6 \\ 1 & -2 & -2 \\ -3 & 6 & 6 \end{pmatrix}$

Verification

We have,
$$E_{1} = A - I$$

$$\Rightarrow A - E_{1} = I$$

$$E_{2} = 2I - A$$
From (1),
$$\Rightarrow E_{2} = 2(A - E_{1}) - A$$

$$\Rightarrow A = 2E_{1} + E_{2}$$
Also,
$$E_{1} = \begin{pmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & -5 \end{pmatrix}, \quad E_{2} = \begin{pmatrix} -3 & 6 & 6 \\ 1 & -2 & -2 \\ -3 & 6 & 6 \end{pmatrix}$$

$$\Rightarrow E_{1} + E_{2} = \begin{pmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & -5 \end{pmatrix} + \begin{pmatrix} -3 & 6 & 6 \\ 1 & -2 & -2 \\ -3 & 6 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow E_{1} + E_{2} = I$$

$$E_{1}E_{2} = \begin{pmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & -5 \end{pmatrix} \begin{pmatrix} -3 & 6 & 6 \\ 1 & -2 & -2 \\ -3 & 6 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow E_{1}E_{2} = 0$$

TABLE 2: Using Lagrange Polynomials to represent A