EE 242, Wi 22 Problem Set 1

For
$$t \in \mathbb{R}, n \in \mathbb{Z}$$
: $u(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$, $u[n] = \begin{cases} 0 & n < 0 \\ 1 & n \ge 0 \end{cases}$, $r(t) = tu(t)$, $r[n] = nu[n]$

- 1. For each of the following continuous and discrete examples, determine if the signal is periodic. If the signal is periodic, determine its fundamental period.
 - (a) $x(t) = \cos(\pi t) + 2\cos(2t)$ (Not periodic, π irrational while 2 is rational. i.e. no $k_1, k_2 \in \mathbb{Z}$ such that $k_1 \frac{1}{2} = k_2 \frac{1}{\pi}$)
 - (b) $x(t) = \sin(\pi t) 3\cos(2\pi t + \frac{\pi}{4})$ (Periodic, T = 2)
 - (c) $x(t) = 2\cos(\pi t) + e^{-t}\cos(2\pi t)$ (Not periodic, $e^{-t} \longrightarrow \nexists T \in \mathbb{R} : x(t) = (t+T) \quad \forall t \in \mathbb{R}$)
 - (d) $x[n] = A \sin(\frac{3\pi}{4}n)$ (Periodic, N = 8)
 - (e) $x[n] = (-1)^n$ (Periodic, N = 2)
 - (f) $x[n] = A\cos(3n)$ (Not periodic. no integer multiple of 3 is an integer multiple of 2π , the phase of cos.)
- 2. For each of the following continuous and discrete examples, determine if the signal is bounded. If so, determine the signal's minimal finite upper bound.
 - (a) $x(t) = e^{-2t}$ (Not bounded, $x(t) \to \infty$ as $t \to -\infty$)
 - (b) $x(t) = Ae^{-1.5|t|}$ (Bounded, upper bound at A.)
 - (c) x(t) = u(t-2)u(3-t)t such that $u(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$ (Bounded, upper bound of 3 at $t \to 3$)
 - (d) $x[n] = a^{0.1n}u[-n], |a| > 1$ (Bounded, maximum of 1 at n = 0)
 - (e) $x[n] = a^{-0.2n}$ (Not bounded, reaches ∞ as $n \to -\infty$)
- 3. For each of the finite-energy signals, compute the energy of the signal.

(a)
$$x(t) = 2e^{-\frac{1}{3}|t|} (E(x)) = \int_{t \in \mathbb{R}} x(t)^2 dt = 2 \int_{t \in \mathbb{R}^+} 4e^{-\frac{2}{3}t} dt = -12 \left(e^{-\frac{2}{3}t} \Big|_0^{\infty} = -12(0-1) = 12 \right)$$

(b)
$$x[n] = u[n-2]u[3-n]n$$
 $(E(x) = \sum_{n \in \mathbb{Z}} x^2[n] = (2^2 + 3^2) = 13$

4. Draw a plot of x(t) = u(1-t) + r(t) - r(t-2) - 2u(t-3) for $x \in [-5,5]$. r is the ramp function r(t) = tu(t).

1

5. Compute and sketch $y(t) = \frac{1}{2}x(2(t+1)) - 1$ where x(t) is defined in problem 4.

$$y(t) = \frac{1}{2} \left(u(-2t-1) + r(2t+2) - r(2t) - 2u(2t-1) \right) - 1$$

6. Draw a plot of x[n] = u[n+2] + 2u[n+1] - 5u[n] + 2u[n-2] for $n \in [-5,5]$.

Figure 1: Question 4 Plot

Figure 2: Question 5 Plot

Figure 3: Question 6 Plot

7. Compute and sketch the even and odd components of x(t) as defined in problem 4.

$$x_e(t) = \frac{1}{2} (x(t) + x(-t)) = \frac{1}{2} (u(1-t) + u(t+1) + r(t) + r(-t))$$
$$-r(t-2) - r(-t-2) - 2u(t-3) - 2u(t-3)$$

$$x_o(t) = \frac{1}{2}(x(t) - x(-t)) = \frac{1}{2}(u(1-t) - u(t+1) + t - r(t-2) + r(-t-2) - 2u(t-3) + 2u(t-3))$$

8. Compute and sketch the even and odd components of y(t) as defined in 5.

$$y_e(t) = \frac{1}{2} (y(t) + y(-t)) = \frac{1}{4} (u(-2t - 1) + u(2t - 1) + r(2t + 1) + r(-2t + 1) - r(2t - 1) - r(-2t - 1) - 2u(2t - 2) - 2u(-2t - 2)) - 1$$

$$y_o(t) = \frac{1}{2} (y(t) - y(-t)) = \frac{1}{4} (u(-2t - 1) - u(2t - 1) + r(2t + 1) - r(-2t + 1) - r(2t - 1) + r(-2t - 1) - 2u(2t - 2) + 2u(-2t - 2))$$

9. Compute and sketch the even and odd components of x[n] as defined in 6.

$$x_e[n] = \frac{1}{2}(x[n] + x[-n]) = \frac{1}{2}(u[n+2] + u[-n+2] + 2u[n+1] + 2u[-n+1] - 5u[n] - 5u[-n] + 2u[n-2] + 2u[-n-2])$$

Figure 4: Question 7 Plot

Figure 5: Question 8 Plot

$$x_o[n] = \frac{1}{2} (x[n] - x[-n]) = \frac{1}{2} (u[n+2] - u[-n+2] + 2u[n+1] - 2u[-n+1]$$
$$-5u[n] + 5u[-n] + 2u[n-2] - 2u[-n-2])$$

Figure 6: Question 9 Plot