Topology and Groups - MATH0074

Based on lectures by Dr Lars Louder

Notes taken by Imran Radzi

Notes based on the Autumn 2021 Topology and Groups lectures by Dr Lars Louder.

Contents

1	Review of metric topology	1
2	Topological spaces	1

1 Review of metric topology

A metric space is a pair (X, d) where X is a set and d is a metric on X. Recall the notions of an open and closed ball around a point $x \in X$

$$B_{\epsilon}(x) = \{ x' \in X : d(x, x') < \epsilon \}$$

$$\overline{B_{\epsilon}(x)} = \{ x' \in X : d(x, x') < \epsilon \}$$

Definition. A map $f: X \to Y$ (X, Y metric space) is continuous at $x \in X$, if $\forall \epsilon > 0$, $\exists \delta > 0$ such that

$$f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$$

We say f is continuous if it is continuous at every point in X.

If X is a metric space then $U \subseteq X$ is said to be open if

$$\forall x \in U, \exists \epsilon > 0 \text{ such that } B_{\epsilon}(x) \subseteq U$$

2 Topological spaces

Definition (Topological space). A topological space is a pair (X, \mathcal{T}) , where X is a set and $T \subseteq 2^X (= \mathcal{P}(X))$ satisfying the following

- 1. $\phi, X \in \mathcal{T}$
- 2. \mathcal{T} is closed under finite intersections and closed under arbitrary unions

Example.

- 1. A metric space (X, d) can be considered as a topological space in its own right with the topology \mathcal{T} (called the metric topology) on X being the collection of open sets determined by d.
- 2. $(X, 2^X)$, the topology on X being the collection of all subsets of X is called the discrete topology.

- 3. $(X, \{\emptyset, X\}, \text{ with the topology on } X \text{ consisting of only } \phi \text{ and } X \text{ is called the indiscrete topology.}$
- 4. $(X, \{U \subseteq X : |X \setminus U| < \infty \text{ or } U = \emptyset\})$, the cofinite topology on X.

Definition. If (X, \mathcal{T}) is a topological space, $x \in X$, $U \in \mathcal{T}$ then we say U is an open neighbourhood of x if $x \in U$.

Definition (Hausdorff space). A topological space is *Hausdorff* if given $x, y \in X$, $x \neq y$, $\exists U, V \in \mathcal{T}$ such that

$$U \cap V = \emptyset$$

Definition (Continuous map). A map $f: X \to Y$ is *continuous* if $f^{-1}(U)$ is open in X, for U open in Y, i.e., the preimage of every open set is open.

Definition (Homeomorphism). A continuous map $f: X \to Y$ is a homeomorphism if

- 1. f is a bijection
- 2. $f^{-1}: Y \to X$ is continuous

We say that a property of a space is topological if it is preserved under homeomorphism.