28 The table shows four possible combinations of values for the laser wavelength, slit separation and slit-screen distance in a two-slit interference experiment to show the interference of visible light on a white screen.

Which combination will result in visible fringes being observed?

	laser wavelength /nm	slit separation /mm	slit-screen distance/m
Α	200	0.10	5.0
В	200	100	1.0
С	600	0.10	5.0
D	600	100	1.0

29 Light of wavelength λ is incident normally on a diffraction grating, as shown.

The angle between the two second-order maxima is φ .

Which expression gives the spacing of the lines on the diffraction grating?

- $\mathbf{A} \quad \frac{\lambda}{\sin \varphi}$
- $\mathbf{B} = \frac{\lambda}{\sin(\varphi/2)}$
- c $\frac{2\lambda}{\sin\varphi}$
- $\mathbf{D} \quad \frac{2\lambda}{\sin\left(\varphi/2\right)}$