Lecture1 part 2

Arnav Negi, Kriti Gupta, Manav Shah, Mohammed Shamil, Shiven Sinha , Shrikara A, Swayam Agrawal, Vineeth Bhat, Yash Adivarekar

January 31, 2023

1 Introduction

- Quantum computing "Natural generalization of computing".
- Quantum computers are computers that obey quantum physics.

1.1 Why quantum computing?

- Extended Church Turing Thesis (ECT): Any algorithmic process can be efficiently simulated by a probabilistic Turing machine.
- David Deutsch:-Is there a physical model of computation that violates ECT?
- Computation devices built using the principles of quantum physics can offer a stronger version to their thesis.
- Do quantum computers that obey quantum mechanics violate ECT?
- Feynman asks if we can simulate quantum physics on a classical computer.
- Number of variables to keep track of is exponential in the size of the quantum system. For example, for a 100 electron system, 2¹⁰⁰ bits are needed in comparison to 100 qubits.

2 Quantum computing in the circuit model (Postulates of Quantum mechanics in action)

2.1 State Preparation

- Prepare the quantum computer in a given initial state $|\psi_0\rangle = |0\rangle^{\otimes n}$
- $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $|0\rangle \otimes |0\rangle = |0\rangle^{\otimes 2} = |0\rangle |0\rangle = |00\rangle$

2.2 Evolution

• Schrodinger's equation :

$$i\frac{d|\psi\rangle}{dt} = H|\psi\rangle$$

 $|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$

- H: Hamiltonian observable for energy
- $u_t = e^{-iHt}$
- The initial state $|\psi_0\rangle$ evolves based on a series of unitary operators $|\psi_f\rangle = u_t u_{t-1} u_{t-2} ... u_2 u_1 |\psi_0\rangle$ where each u_i is a quantum gate

2.3 Measurement

- Measure the final state in the computational basis: M=|j\rangle j| where $j\in\{0,1\}^n$
- Observe $|f\rangle$ with probability p such that: $p = |\langle f | \psi_f \rangle|^2$