Semantic Mapping for Lexical Sparseness Reduction in Parsing

Simon Šuster, Gertjan van Noord University of Groningen

New Frontiers in Parsing and Generation Workshop 12. 4. 2013

Context and motivation

- we know semantics can help syntactic parsing
 - specifically: semantic classes for mostly data-driven systems
- classes provide generalization for reducing lexical sparseness
- obtain a baseline using human-built semantic inventories for Dutch
 - issues of such an approach

- "open with scissors" not in training ⇒
- but "knife" and "scissors" share the class (cutting tools) ⇒
- correct analysis possible

Comparison to related work

MacKinlay et al. 2012, Henestroza and Candito 2012, Agirre et al. 2011, Koo et al. 2008 . . .

- applying generalization indiscriminately
- ⇒ isolate relevant dependency types

Comparison to related work

MacKinlay et al. 2012, Henestroza and Candito 2012, Agirre et al. 2011, Koo et al. 2008 . . .

- 1 applying generalization indiscriminately
- ⇒ isolate relevant dependency types
- enhancing base parsers with semantic classes
- ⇒ enhance an already well-performing bilexical component of a system driven by a hand-crafted grammar

Comparison to related work

MacKinlay et al. 2012, Henestroza and Candito 2012, Agirre et al. 2011, Koo et al. 2008 . . .

- 1 applying generalization indiscriminately
- ⇒ isolate relevant dependency types
- 2 enhancing base parsers with semantic classes
- ⇒ enhance an already well-performing bilexical component of a system driven by a hand-crafted grammar
- 3 usually extremes of granularity are taken as representation level,
- ⇒ "appropriate" level of generality

Parser.

Alpino

- parser for Dutch
- manually crafted HPSG grammar, augmented to represent dependency structure
- MaxEnt disambiguation component

Lexical association component

- · part of disambiguation component
- bilexical preferences measured by normalized PMI and learned from a 500M word corpus
- improvement on the base parser (Van Noord, 2010)

Example

(verb,SU) dependency type:

$$($$
 "drink", verb, su , noun, "baby") 0.28, 4.89 mi feature weight

4112474444

Selection of dependency types

- identify types whose bilexical sparseness hurts parser the most
- \Rightarrow correlation between coverage and parsing accuracy: Cramer's Φ , odds ratio:

Туре	Odds	ϕ coef.
(adj,MOD)	2.653	0.2
(noun,CNJ)	2.042	0.12
(noun,MOD)	1.962	0.11

• correct parse of (noun, CNJ) is then **2 times** more likely with available bilexical preference

• use Cornetto, a Dutch wordnet

Fine: immediate synset (SYN)

- take the 1st most-prominent sense
- little generalization

Coarse: semantic type (ST)

- assigned to 50% of lexical units (LUs)
- ~20 POS-dependent labels: "action", "human", "concrete" . . .

top[NA] d n-28590[iets] d n-24103(object) d n-31770[voorwerp....]

◆□ → ◆□ → 11-

Intermediate (INT)

- find a level that is both general and precise
- calculate generality of a synset
- if too concrete, map to a more general synset
- treat Cornetto as a tree-like directed graph
 - hypernimic relations are arcs
 - · synsets are nodes
- Information Content is: (Sánchez et al. 2011)

$$IC(s) = -log rac{\frac{|leaves_s|}{|subsumers_s|} + 1}{total_leaves + 1}$$

top[NA]

d_n-28590[iets]

d_n-24103[object]

d_n-31770[voorwerp,...]

I_n-40118[kledingstuk]

d_n-26998[badkostuum,...] d_n-26542[zwembroek]

Intermediate (INT)

- find a level that is both general and precise
- calculate generality of a synset
- if too concrete, map to a more general synset
- treat Cornetto as a tree-like directed graph
 - hypernimic relations are arcs
 - synsets are nodes
- Information Content is: (Sánchez et al. 2011)

$$IC(s) = -log rac{\frac{|leaves_s|}{|subsumers_s|} + 1}{total_leaves + 1}$$

Intermediate (INT)

- find a level that is both general and precise
- calculate generality of a synset
- if too concrete, map to a more general synset
- treat Cornetto as a tree-like directed graph
 - hypernimic relations are arcs
 - synsets are nodes
- Information Content is: (Sánchez et al. 2011)

$$IC(s) = -log \frac{\frac{|leaves_s|}{|subsumers_s|} + 1}{total_leaves + 1}$$

Use of classes

For training

- 1 obtain relevant dependencies in Lexical Association model
- 2 make a copy with classes replacing words
- 3 calculate MI scores

For testing

 use bilexical preference when possible, back-off to generalized classes otherwise

Test set

- Alpino Treebank: 7,136 sentences of newspaper texts
- parts of Lassy Small: 3,917 sentences

Results I

Example of enhancement

"Utrechtse Camera bioscoop" (Camera cinema in Utrecht)

- ⇒ no bilexical preference for <Utrechtse, mod, bioscoop>
- ⇒ parser backs-off to a generalization of "Utrechtse"
- ⇒ new instance: "place_{adj} Camera bioscoop"
- ⇒ preference now exists for <place_{adj}, mod, bioscoop>
- \Rightarrow parse correct
 - Cornetto coverage in test: 60% (backed-off tokens only)

Results II

- SYN: number of improvements levels the number of deteriorations . . .
 - (noun/CNJ) is the best performing type
- ST: poor performance due to overgeneralizing
- **INT** ($\delta_{IC} = 6$): seems only slightly better than ST

All 3 dependency types					
	% found	# Improved	# Deteriorated		
SYN	7.8	33	29		
ST	62.1	178	299		

(noun/CNJ) only					
	# Improved	# Deteriorated			
SYN	7	2			
ST	20	26			
INT	16	19			

Remarks

- synset level: very modest improvement on nominal conjunction
- intermediate level: no improvement
- unlike Agirre et al. 2011 and MacKinlay et al. 2012, semantic types are the worst performer
- for more impact, more generalization is needed, but it introduces noise
- parser's degree of lexicalization might affect the "working" space
 - bilexical component gets "the low-hanging fruit"
- next: distributional semantic methods
 - · increased coverage
 - alternative granularity
 - sense disambiguation in context
 - composition