Ant-Colony Optimization

```
TSP-ACO:
  Initialize pheromone values
  repeat
     for ant k \in \{1, ..., m\} {solution construction
        S := \{1, \dots, n\} {set of selectable cities}
        choose city i with probability p_{0i}
        repeat
          choose city j \in S with probability p_{ij}
          S := S - \{j\}
          i := j
        until S = \emptyset
     endfor
     forall i, j do
      \tau_{ij} := (1 - \rho) \cdot \tau_{ij} \{ \text{evaporation} \}
     endfor
     forall i, j in iteration best solution do
      \tau_{i,j} := \tau_{ij} + \Delta \text{ {intensification}}
     endfor
  until stopping criterion is met
```

10 - 10 + 4 = + 4 = + 9 Q P

Function Choices

Heuristics

Function Choices

Heuristics

► Intensification

Best m' ants

soluMat[:p_ants][soluMat[:p_ants] > 0] = intensification # substitute costs with intensification rate for p_a nts best solutions for a in soluMat[:p_ants]:

pheroMat += a # add intensification to pheromone matrix

Softmax over all ants

pheroMat += k

```
soluta - ((solutao))**e)* intensification
classed silvations of lowest how biggest value
N_inv = 1./(np.arcey(N))
n_inv - 1./(np.arcey(N))
N_inv / - np.max(M_inv)
N_inv / - np.max(M_inv)
sm_n = softwax(M_inv="100)
sm_n = softwax(M_inv="100)
k = soluta(M_inv="100)
```

Hyperparameters

- M Number of ants per iteration
- M' Number of ants that increase pheromones
- ightharpoonup Initial Pheromone Value
- $ightharpoonup \alpha$ Influence Of Pheromone
- β Influence of Heuristic
- evap_rate Amount of pheromone removed in second phase
- inten rate Amount of pheromone added in third phase
- q Probability to follow the strongest trail

Hyperparameter search

- Optimal Results
 - ▶ Values for α and β in a previous search
 - ▶ Different combinations for M, M', \(\tau\), evap_rate, inten_rate, q in a systematic search as well as random search
- ▶ Fixed Parameters α and β
 - Different combinations for M, M', \(\tau\), evap_rate, inten_rate, q
 in a random search

```
trials = 5
iterations = 400
alphas must = [1, 1]
betas must = [1, 0]
                                                           param sets small = []
alphas best = [1, 2, 3]
                                                           for i in range(6):
betas best = [4, 5, 8]
                                                               n set = [10, 1]
# num ants. p ants. tau. evap rate. intensification. a
                                                               n set.append(np.random.randint(low=2, high=10))
param sets large = [
                                                               n set.append(np.random.uniform(low=0.1, high=0.4))
    [100, 10 , 10, 0.2, 1, 0.1],
                                                               n set.append(np.random.uniform(low=0.8, high=2.5))
    [100, 10 , 10, 0.2, 2, 0.1],
                                                               n set.append(np.random.uniform(low=0.05, high=0.3))
    [100, 1 , 10, 0.2, 1, 0.1],
                                                               param sets small.append(n set)
    [100, 1 , 10, 0.2, 2, 0.1],
    [50, 5 , 10, 0.2, 1, 0.1],
    [50, 1 , 10, 0.2, 2, 0.1]
```

Results Hyperparameter search

alpha	beta	ants	p_ants	tau	evap_rate	inten	q	best res	mean res
PROBLEM	1 (Nicos	s optimur	n: 3632)				•	_	_
1	4	100	10	10	0.2	2	0.1	3642.0	3696.0
1	4	100	10	10	0.2	1	0.1	3670.0	3730.4
1	4	50	5	10	0.2	1	0.1	3724.0	3766.8
2	5	100	10	10	0.2	2	0.1	3740.0	3777.2
PROBLEM	2 (Nicos	s Optimur	n: 2878)						
1	4	100	10	10	0.2	2	0.1	2918.0	2943.4
1	4	100	10	10	0.2	1	0.1	2904.0	2947.2
1	4	50	5	10	0.2	1	0.1	2902.0	2960.2
3	8	100	1	10	0.2	1	0.1	2948.0	2966.6
PROBLEM	3 (Nicos	s Optimur	n: 2617)						
1	4	100	10	10	0.2	1	0.1	2662.0	2685.6
1	4	100	10	10	0.2	2	0.1	2668.0	2701.4
1	4	50	5	10	0.2	1	0.1	2663.0	2712.0
2	5	100	10	10	0.2	1	0.1	2668.0	2731.6

Best results

Params	Problem 1	Problem 2	Problem 3
α =1, β = 0	12372	9721	8662
α =1, β = 1	5980	4462	4490
α =1, β =4	3642	2918	2662
Nico's Results	3632	2878	2617

Observations

- ▶ Extreme punishing of high distances (\rightarrow high β -values) lead to faster finding of better results (compare hillclimbing)
- ► Finding optimal values for pheromone-values didn't lead to much improvement
- ▶ More ants (higher M and M') increased performance
- Results almost always converge in the first few iterations

Importance of heuristics

