PROBLEM

Build a sophisticated Machine Learning model that predicts the probability percentage of marketing leads purchasing their product, based on information provided in the given dataset.

- IMPORTING ALL THE NECESSARY LIBRARIES

```
import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
import plotly.express as pe
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error
```

GETTING TO KNOW THE DATASET

df=pd.read_csv("marketing_leads.csv")
df.head()

	Deal_title	Lead_name	Industry	Deal_value	Weighted_amount	Date_of_creati
0	TitleM5DZY	Davis, Perkins and Bishop Inc	Restaurants	320506\$	2067263.7\$	2020-03-
1	TitleKIW18	Bender PLC LLC	Construction Services	39488\$	240876.8\$	2019-07-
2	TitleFXSDN	Carter- Henry and Sons	Hospitals/Clinics	359392\$	2407926.4\$	2019-07-
3	TitlePSK4Y	Garcia Ltd Ltd	Real Estate	76774\$	468321.4\$	2021-01-
4	Title904GV	Lee and Sons PLC	Financial Services	483896\$	NaN	2019-05-

df2=pd.read_csv("marketing_leads1.csv")
df2.head()

	Deal_title	Lead_name	Industry	Deal_value	Weighted_amount	Date_of_creati
0	TitleAD16O	Bonilla Ltd Inc	Investment Bank/Brokerage	200988\$	NaN	2020-04
1	TitleOW6CR	Williams, Rogers and Roach PLC	Electronics	409961\$	2541758.2\$	2021-01
2	TitleVVJQ5	Wood, Vaughn and Morales Ltd	Banks	434433\$	3041031.0\$	2020-07
3	TitleUS8NA	Durham- Crawford Inc	Music	218952\$	1521716.4\$	2020-02
4	Title5VGWW	Simpson, Duncan and Long LLC	Real Estate	392835\$	2455218.75\$	2020-10

df.shape

(7007, 23)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7007 entries, 0 to 7006

Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	Deal_title	7007 non-null	object
1	Lead_name	7007 non-null	object
2	_ Industry	7006 non-null	object
3	Deal_value	6956 non-null	object
4	Weighted_amount	6482 non-null	object
5	Date_of_creation	7007 non-null	object
6	Pitch	7007 non-null	object
7	Contact_no	7007 non-null	object
8	Lead_revenue	7007 non-null	object
9	Fund_category	7007 non-null	object
10	Geography	6035 non-null	object
11	Location	6996 non-null	object
12	POC_name	6999 non-null	object
13	Designation	7007 non-null	object
14	Lead_POC_email	7007 non-null	object
15	<pre>Hiring_candidate_role</pre>	7007 non-null	object
16	Lead_source	7007 non-null	object
17	Level_of_meeting	7007 non-null	object
18	Last_lead_update	6374 non-null	object
19	Internal_POC	7007 non-null	object
20	Resource	6858 non-null	object
21	Internal_rating	7007 non-null	int64

```
22 Success_probability 7007 non-null float64 dtypes: float64(1), int64(1), object(21) memory usage: 1.2+ MB
```

df.columns

df.isnull().sum()

Deal_title	0
Lead_name	0
Industry	1
Deal_value	51
Weighted_amount	525
Date_of_creation	0
Pitch	0
Contact_no	0
Lead_revenue	0
Fund_category	0
Geography	972
Location	11
POC_name	8
Designation	0
Lead_POC_email	0
Hiring_candidate_role	0
Lead_source	0
Level_of_meeting	0
Last_lead_update	633
Internal_POC	0
Resource	149
Internal_rating	0
Success_probability	0
dtype: int64	

df.nunique()

Deal_title	7007
Lead_name	7007
Industry	171
Deal_value	6907
Weighted_amount	6480
Date_of_creation	777
Pitch	2
Contact_no	7007
Lead_revenue	3
Fund_category	4
Geography	2
Location	597
POC_name	5261
Designation	10
Lead_POC_email	7007

```
639
Hiring_candidate_role
Lead_source
                           4
Level of meeting
                           3
Last_lead_update
                           11
Internal POC
                           60
Resource
                           6
Internal_rating
                           5
                          248
Success_probability
dtype: int64
```

DATA CLEANING/DROPPING UNWANTED COLUMNS

```
df = df.drop(columns=['Lead_name', 'Contact_no', 'Lead_POC_email', 'POC_name', 'Date_of_creat

df2 = df2.drop(columns=['Lead_name', 'Contact_no', 'Lead_POC_email', 'POC_name', 'Date_of_cre

df.drop(['Deal_title', 'Lead_name', 'Date_of_creation', 'Contact_no', 'Geography', 'POC_name', '
```

HANDLING ERRORS IN DATATYPES OF COLUMNS

```
df['Deal_value'] = df['Deal_value'].str.replace('$', '')
df2['Deal_value'] = df2['Deal_value'].str.replace('$', '')
df['Weighted_amount'] = df['Weighted_amount'].str.replace('$', '')
df2['Weighted amount'] = df2['Weighted amount'].str.replace('$', '')
df['Industry'].fillna('Hotels/Motels', inplace = True)
df2['Industry'].fillna('Hotels/Motels', inplace = True)
df['Deal_value']
     0
             320506
     1
             39488
     2
             359392
     3
             76774
             483896
     7002
             192800
     7003
             220208
     7004
             253608
     7005
             118615
```

```
7006  258627
Name: Deal_value, Length: 7007, dtype: object

df["Deal_value"]= df["Deal_value"].astype(float)

df["Weighted_amount"]= df["Weighted_amount"].astype(float)

df2["Deal_value"]= df2["Deal_value"].fillna(0).astype(int)

df2["Weighted_amount"]= df2["Weighted_amount"].fillna(0).astype(float)
```

HANDLING MISSING VALUES

```
df.Location.fillna("NA",inplace=True)

df["Deal_value"]= df["Deal_value"].fillna(0).astype(int)

df["Weighted_amount"]= df["Weighted_amount"].fillna(0).astype(float)

df.Location.fillna(0,inplace=True)
```

ONE HOT ENCODING

```
cat=list(df.select_dtypes(exclude=(np.number)).columns)
cat
     ['Industry',
      'Pitch',
      'Lead_revenue',
      'Fund_category',
      'Location',
      'Lead_source',
      'Level_of_meeting',
      'Last_lead_update',
      'Resource']
df.isnull().sum()
     Industry
     Deal_value
                               0
     Weighted_amount
     Pitch
                               0
     Lead_revenue
     Fund_category
     Location
                               0
     Lead source
```

Level_of_meeting	0
Last_lead_update	633
Resource	149
Internal_rating	0
Success_probability	0

dtype: int64

df.dropna(inplace=True)

df

	Industry	Deal_value	Weighted_amount	Pitch	Lead_revenue	Fund_cate{
1	Construction Services	39488.0	2.408768e+05	Product_2	500 Million - 1 Billion	Catego
2	Hospitals/Clinics	359392.0	2.407926e+06	Product_1	500 Million - 1 Billion	Catego
3	Real Estate	76774.0	4.683214e+05	Product_2	500 Million - 1 Billion	Catego
4	Financial Services	483896.0	1.569884e+06	Product_2	50 - 100 Million	Catego
5	Banks	418674.0	2.637646e+06	Product_1	50 - 100 Million	Catego
6999	Financial Services	31429.0	2.200030e+05	Product_2	500 Million - 1 Billion	Catego
7000	Beverages (Alcoholic)	152908.0	9.709658e+05	Product_1	100 - 500 Million	Catego
7002	Banks	192800.0	1.195360e+06	Product_1	100 - 500 Million	Catego
7003	Hospitals/Clinics	220208.0	1.453373e+06	Product_2	100 - 500 Million	Catego
7006	Financial Services	258627.0	1.642281e+06	Product_2	500 Million - 1 Billion	Catego

6237 rows × 13 columns

df=pd.get_dummies(df)

- EDA - EXPLORATORY DATA ANALYSIS

```
import seaborn as sb
from matplotlib import pyplot as plt
g=sb.distplot(np.log1p(df['Success_probability']),color="Cyan")
```

/usr/local/lib/python3.7/dist-packages/pandas/core/series.py:726: RuntimeWarning:

invalid value encountered in log1p

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please a


```
f = np.mean(df['Deal_value'])
f

247838.9200799201
```

f1 = np.mean(df2['Deal_value'])
f1

247459.56330625896

```
for i in range (0,len(df)):
   if(df['Deal_value'][i] == 0):
      df['Deal_value'][i] = 247839
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarnir

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us

```
→
```

for i in range (0,len(df2)):

boxplot = df.boxplot(column=['Deal_value'])

df[df['Industry'].isnull()]

	Industry	Deal_value	Weighted_amount	Pitch	Lead_revenue	Fund_category	ı
465	B NaN	209418\$	1266978.9\$	Product_2	50 - 100 Million	Category 4	

df["Industry"].value_counts().plot(kind='bar',width = 1.5,figsize = (30,10))

<matplotlib.axes._subplots.AxesSubplot at 0x7f1c58078650>

```
1400 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
1200 -
12
```

```
import seaborn as sb
plt.figure(figsize=(50, 10))
sb.boxplot(x="Industry", y="Success_probability", data=df,palette="cubehelix")
plt.xticks(rotation=90)
plt.show()
```

```
100
```

plt.figure(figsize=(50, 50))
sb.jointplot(x='Deal_value',y='Success_probability',data=df, color = 'red' , height =10, r
plt.show()

df['Weighted_amount']

- 0 2067263.7\$ 1 240876.8\$ 2 2407926.4\$
- 3 468321.4\$

```
10/31/21, 11:09 PM

4

7002
7003
7004
7005
7006
Name

g = np.mea
g
```

NaN ... 1195360.0\$ 1453372.8\$ NaN 794720.5\$

Name: Weighted_amount, Length: 7007, dtype: object

```
g = np.mean(df['Weighted_amount'])
g
```

1642281.45\$

1452260.0168117583

```
g2 = np.mean(df2['Weighted_amount'])
g2
```

1512284.5661968442

```
for i in range (0,len(df)):
   if(df['Weighted_amount'][i] == 0):
     df['Weighted_amount'][i] = 1452260.0
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarnir

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us


```
for i in range (0,len(df2)):
  if(df2['Weighted_amount'][i] == 0):
    df2['Weighted_amount'][i] = 1512284.5
```

boxplot = df.boxplot(column=['Weighted_amount'])

plt.figure(figsize=(50, 50))
sb.jointplot(x='Weighted_amount',y='Success_probability',data=df, color = 'brown' , height
plt.show()


```
plt.figure(figsize=(100, 10))
sb.barplot(x="Industry", y="Deal_value", data=df)
plt.xticks(rotation=90)
plt.show()
```



```
plt.figure(figsize=(100, 10))
sb.barplot(x="Industry", y="Weighted_amount", data=df)
plt.xticks(rotation=90)
plt.show()
```



```
Deal_title
                             Industry Deal_value Weighted_amount
                                                                           Pitch Lead revenue F
                                                                                         50 - 100
         T:41 - 1.45 D 7\/
                           D - -1-----
                                            202502
                                                            for i in range(0,len(df)):
  if(df['State'][i] == None):
    df['Geography'][i] = "India"
    df['Geography'][i] = "USA"
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarnir
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/us">https://pandas.pydata.org/pandas-docs/stable/us</a>
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarnir
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/us">https://pandas.pydata.org/pandas-docs/stable/us</a>
for i in range(0,len(df2)):
  if(df2['State'][i] == None):
    df2['Geography'][i] = "India"
  else:
    df2['Geography'][i] = "USA"
df['Geography'].isnull().sum()
     0
df = df.drop(columns=['Location', 'City', 'State', 'Last_lead_update'])
df2 = df2.drop(columns=['Location', 'City', 'State', 'Last_lead_update'])
df['Resource'].unique()
     array([nan, 'No', 'We have all the requirements', 'Deliverable',
              'Cannot deliver', 'Not enough', 'Yes'], dtype=object)
df["Resource"].mode()
           No
     dtype: object
df['Resource'].fillna("No", inplace = True)
```

```
10/31/21, 11:09 PM
```

```
df2['Resource'].fillna("No", inplace = True)
df.reset_index(inplace=True)
df.drop('index',axis=1,inplace=True)
l=list(df.columns)
1.remove('Success_probability')
1
     ['Deal_title',
      'Industry',
      'Deal_value',
      'Weighted_amount',
      'Pitch',
      'Lead_revenue',
      'Fund_category',
      'Geography',
      'Designation',
      'Hiring_candidate_role',
      'Lead_source',
      'Level_of_meeting',
      'Internal_POC',
      'Resource',
      'Internal_rating']
```

X = df[['Deal_title', 'Industry', 'Pitch', 'Lead_revenue', 'Fund_category', 'Geography', 'D X2 = df[['Deal_title', 'Industry', 'Pitch', 'Lead_revenue', 'Fund_category', 'Geography', ' X = df[1]X.head()

itle	Industry	Deal_value	Weighted_amount	Pitch	Lead_revenue	Fund_catego
5DZY	Restaurants	320506	2067263.7	Product_2	50 - 100 Million	Category
IW18	Construction Services	39488	240876.8	Product_2	500 Million - 1 Billion	Category
SDN	Hospitals/Clinics	359392	2407926.4	Product_1	500 Million - 1 Billion	Category
3K4Y	Real Estate	76774	468321.4	Product_2	500 Million - 1 Billion	Category
)4GV	Financial Services	483896	1452260.0	Product_2	50 - 100 Million	Category

```
X2 = pd.get dummies(data=X, drop first=True)
X2.head()
```

Deal_title_Title00IIZ Deal_title_Title00VOR Deal_title_Title013QQ Deal_title_T

0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0

5 rows × 7899 columns

```
Y = df['Success_probability']
```

```
num=list(df.select_dtypes(include=(np.number)).columns)
```

```
count=1
plt.subplots(figsize=(15,15))
for i in num:
   plt.subplot(5,3,count)
   sb.distplot(df[i])
   count+=1
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plt.show()
```



```
0.04
0.02
0.00
0 25 50 75 100
Success probability
```

```
count=1
plt.subplots(figsize=(15,15))
for i in num:
   plt.subplot(5,3,count)
   sb.boxplot(df[i])
   count+=1
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plt.show()
```


count=1

```
plt.subplots(figsize=(15,15))
for i in num:
   plt.subplot(5,3,count)
   sb.scatterplot(x=df[i],y=df['Success_probability'])
   count+=1
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plt.show()
```


df.reset_index(inplace=True)
df.drop('index',axis=1,inplace=True)

df

	Deal_title	Industry	Deal_value	Weighted_amount	Pitch	Lead_revenue
0	TitleM5DZY	Restaurants	320506	2067263.70	Product_2	50 - 100 Millior
1	TitleKIW18	Construction Services	39488	240876.80	Product_2	500 Million - 1 Billior
2	TitleFXSDN	Hospitals/Clinics	359392	2407926.40	Product_1	500 Million - 1 Billior
3	TitlePSK4Y	Real Estate	76774	468321.40	Product_2	500 Million - 1 Billior
4	Title904GV	Financial Services	483896	1452260.00	Product_2	50 - 10(Millior
7002	TitleJ7TDY	Banks	192800	1195360.00	Product_1	100 - 500 Millior
7003	TitleO1IIN	Hospitals/Clinics	220208	1453372.80	Product_2	100 - 50(Millior

l=list(df.columns)

x=df[1]
y=df['Success_probability']

df.drop(columns=['Deal_title'])

^{1.}remove('Success_probability')

	Industry	Deal_value	Weighted_amount	Pitch	Lead_revenue	Fund_cate{
0	Restaurants	320506	2067263.70	Product_2	50 - 100 Million	Catego
1	Construction Services	39488	240876.80	Product_2	500 Million - 1 Billion	Catego
2	Hospitals/Clinics	359392	2407926.40	Product_1	500 Million - 1 Billion	Catego
3	Real Estate	76774	468321.40	Product_2	500 Million - 1 Billion	Catego
4	Financial	483896	1452260.00	Product_2	50 - 100	Catego

X = df[['Deal_title', 'Industry', 'Pitch', 'Lead_revenue', 'Fund_category', 'Geography', 'D

X = pd.get_dummies(data=X, drop_first=True)
X.head()

Deal_title_Title00IIZ Deal_title_Title00VOR Deal_title_Title013QQ Deal_title_T

0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0

5 rows × 7899 columns

```
Y = df['Success_probability']
```

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,y_train)
```

Internal_POC_Green, Candy Internal_POC_Hameier,Kurt E Internal_POC_Hanyok, John J Internal_POC_Hebron,Artenia D Internal_POC_Heidelberg, Andre D Internal_POC_Himes,Maurice C

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

print(model.intercept_)

56.15975114272731

coeff_parameter = pd.DataFrame(model.coef_,X.columns,columns=['Coefficient']) coeff_parameter

_r				
	Coefficient			
Deal_title_Title00IIZ	2.357888			
Deal_title_Title00VOR	7.933857			
Deal_title_Title013QQ	0.440326			
Deal_title_Title017NC	-3.619940			
Deal_title_Title01ANN	-32.834445			
Resource_Deliverable	-0.395741			
Resource_No	-0.759543			
Resource_Not enough	-0.610481			
Resource_We have all the requirements	0.912920			
Resource_Yes	-0.361731			
7899 rows × 1 columns				
<pre>predictions = model.predict(X_test) predictions array([60.00355909, 65.76964256, 67.2 62.27983245, 59.95131948])</pre>	26488284,, 69.25676			
<pre>import statsmodels.api as sm X_train_Sm= sm.add_constant(X_train) X_train_Sm= sm.add_constant(X_train) ls=sm.OLS(y_train,X_train_Sm).fit() print(ls.summary())</pre>	T			

```
Internal POC Houston, Arnold E
    Internal_POC_Irizarry, Yolanda
     Internal_POC_Jones,Eyvette W
     Internal_POC_Jones,Michael L
    Internal_POC_Kiepea, Prince A
     Internal POC Knox, Antonio D
    Internal_POC_Leu,Darren L
     Internal POC Logan, Kevin N
    Internal_POC_Mabrey, Kevin C
    Internal_POC_Maine, John P
    Internal_POC_Massiah,Gerard F
     Internal POC McKenstry, Loretta A
    Internal_POC_Meli,Teresa V
    Internal_POC_Moran, Natalie A
     Internal_POC_Morsy,Omar A
    Internal_POC_Murray, Younetta
     Internal_POC_Pappas,Mark S
    Internal_POC_Robinson, John C
     Internal POC Rocks, Michael J
    Internal_POC_Ross, Eric L
    Internal_POC_Ryker,David
    Internal_POC_Salyers,Daniel L
     Internal_POC_Shelton, Sidney P
    Internal POC Smith, Keenan H
    Internal_POC_Sutton,Michelle R
     Internal_POC_Thomas,Lori E
    Internal_POC_Tondeur, Keith D
    Internal_POC_Turner,Marlon D
    Internal_POC_Ullrich,Rose Anne
     Internal POC Van Arter, Derrick
     Internal_POC_Vickers Jr., Henry J
     Internal_POC_Young, Valerie K
    Resource_Deliverable
     Resource No
    Resource_Not enough
    Resource We have all the requirements
    Resource Yes
     3254.379
    Omnibus:
                                           Durbin-Watson:
                                                                           1.823
    Prob(Omnibus):
                                   0.000
                                           Jarque-Bera (JB):
                                                                 680796.322
    Skew:
                                   -2.765
                                           Prob(JB):
                                                                            0.00
     Kurtosis:
                                   65.097
                                           Cond. No.
                                                                            258.
    Warnings:
     [1] Standard Errors assume that the covariance matrix of the errors is correctly s
     [2] The input rank is higher than the number of observations.
Predict = model.predict(X2)
solution = pd.DataFrame(Predict)
id = df2['Deal_title']
sample solution = pd.concat([id,solution],axis=1)
sample_solution.columns = ['Deal_title','Success_Probability']
```

sample_solution.to_csv('sample_solution.csv')

ss=pd.read_csv("sample_solution.csv")

ss.head()

	Unnamed:	0	Deal_title	Success_Probability
0		0	TitleAD16O	76.467936
1		1	TitleOW6CR	58.900000
2		2	TitleVVJQ5	68.800000
3		3	TitleUS8NA	64.500000
4		4	Title5VGWW	62.400000

✓ 0s completed at 11:06 PM