ALLARD Charlotte
FIAT Xavier
MEISSIREL Elise
RAPEGNO Virgile

Coding weeks: semaine 2

Application de l'automate cellulaire au transfert thermique

Dépôt GitLab: https://gitlab-ovh-04.cloud.centralesupelec.fr/virgile.rapegno/cw-semaine-2-xcev

Présentation du projet

- L'univers représente une tranche d'un matériau supposé infiniment long.
- Chaque case contient la température de la portion du matériau correspondante.
- A l'aide des équations régissant les transferts thermiques (loi de Newton et équation de la chaleur), on modifie les cellules en fonction de leur entourage.

Intérêts du projet

Usage pédagogique :

L'animation proposée peut servir aux élèves pour visualiser les phénomènes de transfert thermique et ainsi mieux les comprendre

Usage industriel :

En première approximation, le projet peut servir à connaître la température d'un matériau en fonction des conditions dans lesquelles il évolue. On peut par exemple trouver à quel instant il n'est plus dangereux de le toucher, quand est-ce qu'il atteint sa température de fusion...

Répartition en sprints

Sprint 1 : Initialisation

- Création d'un univers vide
- Placer une source
- Placer les sources
- Créer un dictionnaire contenant les données thermodynamiques de plusieurs matériaux

Sprint 2 : Evolution de l'univers

- •Faire évoluer une cellule selon son voisinage
- •Faire évoluer l'univers dans son ensemble

Répartition en sprints

Sprint 3 : Interface graphique

- Afficher l'univers en ajoutant des couleurs pour représenter le chaud et le froid (avec matplotlib)
- Créer l'interface utilisateur pour permettre à l'utilisateur d'entrer la taille de l'univers, choisir le matériau, placer les sources de chaleur... (avec tkinter)

Obtention d'un MVP

Répartition en sprints

Sprint 4 : Prise en compte de la conducto-convection

- Créer un dictionnaire contenant le coefficient conducto-convectif de plusieurs milieux
- Prendre en compte la conducto-convection lors de l'évolution de l'univers

Mode NATUREL

Le transfert de chaleur par

conduction provoque le

mouvement du fluide

Mode **FORCÉ** Le mouvement du fluide (mécanique) provoque le transfert de chaleur

Notre rôle au sein de l'équipe

Charlotte & Xavier
Responsables physique et
évolution de l'univers

Elise Responsable matplotlib et aide autres fonctionnalités

Virgile Responsable interface utilisateur et qualité du code

Partie physique

On s'appuie sur l'équation de la chaleur pour représenter la diffusion de la chaleur d'une cellule à l'autre : $\frac{\partial T}{\partial t} = D\Delta T$

On discrétise l'équation par la méthode d'Euler :

$$T(x,y,nt) = T(x,y,(n-1)t) + \Delta t D * \left[\frac{T(x+1,y,(n-1)t) + T(x-1,y,(n-1)t - 2T(x,y,(n-1)t)}{(\Delta x)^2} + \frac{T(x,y+1,(n-1)t) + T(x,y-1,(n-1)t - 2T(x,y,(n-1)t)}{(\Delta y)^2} \right]$$

Partie physique

La démarche est la même sur les bords, où les transferts sont régis par la loi de Newton :

$$\underset{j_{th}}{\rightarrow} = h * [T_{solide} - T_{fluide}] \underset{n}{\rightarrow}$$

On en déduit, par la loi de Fourrier et la continuité du vecteur densité de flux thermique à l'interface du matériau :

$$T(x, y_{bord}, n * t) = \frac{\lambda}{\lambda + h * \Delta y} * T(x, y_{bord} - 1, n * t) + \frac{h}{h + \frac{\lambda}{\Delta y}} * T_{fluide}$$