Lecture 7
MAL2, Spring 2025

- Setting the stage
- Char-RNNs
- Implementing Char-RNNs
- Text classification
- Generating music

Can we build a machine that can master written and spoken language?

- Setting the stage
- Char-RNNs
- Implementing Char-RNNs
- Text classification
- Generating music

A char-RNN is a **standard classifier** where each chara cter is a class

CHAR-RNNs

model.predict("hell")

HOW DO WE REPRESENT LETTERS?

$$"a" \rightarrow [1,0,0,0,0,0,0,...]$$

$$"b" \rightarrow [0,1,0,0,0,0,0,...]$$

$$"c" \rightarrow [0,0,1,0,0,0,0,...]$$

$$"d" \rightarrow [0,0,0,1,0,0,0,...]$$

$$"e" \rightarrow [0,0,0,0,1,0,0,...]$$

$$"f" \rightarrow [0,0,0,0,0,1,0,...]$$

HOW DO WE REPRESENT LETTERS?

IDEA #2: Embeddings

An embedding layer is a trainable layer that converts class labels into vectors

-yince it's trained the vectors will hopefully meaningful

"Enbeddig space arthuetic"

king-man twoman ~queen

copenhagen-denmark+germany ~berlin

- A dense vector is like giving each city its
 GPS coordinates:
 - o "Paris" = [48.8566, 2.3522]
 - "Berlin" = [52.5200, 13.4050]
 - "Rome" = [41.9028, 12.4964]

]

]

```
X = [
    "In a hole in the gro", "u"
    "hole in the ground t" "h"
```

```
X = [
    "In a hole in the gro", "u"
    "hole in the ground t", "h"
    "in the ground there " "l"
]
```

```
X = [
    "In a hole in the gro",
    "hole in the ground t",
    "in the ground there ",
    "e ground there lived"
    "",
]
```

```
X = [
    "In a hole in the gro", "u",
    "hole in the ground t", "h",
    "in the ground there ", "l",
    "e ground there lived", "",
    "und there lived a ho" "b"
]
```

WRITING LIKE TOLKIEN II: TRANSFORM LETTERS TO CLASS LABELS

```
X = [[9, 14, 0, 1, 0, 8, 15, 12, 5, 0, 9, 14, 0, 20, 8, 5, 0, 7, 18, 15],
    [8, 15, 12, 5, 0, 9, 14, 0, 20, 8, 5, 0, 7, 18, 15, 21, 14, 4, 0, 20],
    [9, 14, 0, 20, 8, 5, 0, 7, 18, 15, 21, 14, 4, 0, 20, 8, 5, 18, 5, 0],
    [5, 0, 7, 18, 15, 21, 14, 4, 0, 20, 8, 5, 18, 5, 0, 12, 9, 22, 5, 4],
    [21, 14, 4, 0, 20, 8, 5, 18, 5, 0, 12, 9, 22, 5, 4, 0, 1, 0, 8, 15]]
```



```
X =
                                        "u",
    "In a hole in the gro",
    "hole in the ground t",
                                        "h",
    "in the ground there ",
                                        "1",
    "e ground there lived",
                                        נו נו
    "und there lived a ho"
                                        "h"
```

WRITING LIKE TOLKIEN III: CHAR-RNN

classify next char understand time series -> RNN layer = GRU/LSTM meaningful repr -> Embedding layer = turn each number into water

- Setting the stage
- Char-RNNs
- Implementing Char-RNNs
- Text classification
- Generating music

LET'S DO IT

TWO THINGS TO THINK ABOUT

Do the embeddings represent anything meaningful?

What happens if we try to generate long text strings?

TWO THINGS TO THINK ABOUT

Do the embeddings represent anything meaningful?

TWO THINGS TO THINK ABOUT

What happens if we try to generate long text strings?

```
"gollum has some of the dwarves and the dwarves ..."
```

If we always pick the most probable character, we usually end up repeating ourselv es!

" wish"

GENERATING LONG SENTENCES

"I want" "I went"

a	b	С	d	е	f	O	h	i	•••
0.31	0.01	0.03	0.02	0.12	0.01	0.01	0.02	0.25	•••

Instead, sample from the probability distribution to get "a" 31 % of the time

Fully connected output layer

Embedding layer

SOFTMAX AND TEMPERATURE

0.04

0.04

0.04

0.04

temperate adjusted softmax
$$P_{i} = \frac{e^{2i}}{Z_{j}}$$
temperate adjusted softmax
$$P_{i} = \frac{e^{2i/T}}{Z_{j}}$$

$$LowT \Rightarrow large \stackrel{?}{=} \Rightarrow very large \stackrel{?}{=} very large large$$

0.04

0.04

0.04

0.04

0.04

- Setting the stage
- Char-RNNs
- Implementing Char-RNNs
- Text classification
- Generating music

TEXT CLASSIFICATION

Generating text can be fun, but is hardly the only use of language models

- Setting the stage
- Char-RNNs
- Implementing Char-RNNs
- Text classification
- Generating music

GENERATING MUSIC

 G-G-D-D-E-E-D C-C-B-B-A-A-G D-D-C-C-B-B-A D-D-C-C-B-B-A G-G-D-D-E-E-D C-C-B-B-A-A-G

Use a char-RNN to predict the next note