

Улучшение качества тональной классификации с использованием лексиконов

Русначенко Н.Л.

kolyarus@yandex.ru

1. Задача

- ➤ Построение модели на основе методов ML для задачи тональной классификации сообщений сети *Twitter*. (соревнования SentiRuEval)
- **Тональность определяется** для сообщения в целом, и по отношению к рассматриваемым в сообщении организациям:
- ▶ Задача решается отдельно для каждой организации (коллекции данных):
 - **▶ ВАNК** банковские компании;
 - ➤ ТКК телекоммуникационные компании.
- ➤ Сообщению может быть проставлена одна из следующих тональных оценок: {1, 0, -1}

2. Идея

- Использование признаков <u>на основе лексиконов</u> словарей, состоящих из пар (t, v), где t терм, $v \in \mathbb{R}$ тональная окраска терма.
- Увеличение объема обучающей коллекции (авторазметка и пополнение сообщениями внешних источников);

3. Смежные работы

- Автообучение: авторазметка сообщений с целью дополнения тональных классов обучающих коллекций (Severyn A., Moshitti A., 2015)
- Построение лексиконов на основе:
 - РМІ меры взаимной информации
 - SO сематической ориентации

(Turney P., 2002)

• Использование вспомогательных признаков, в т.ч. на основе лексиконов (Saif. M. Kiritchenko S., Xiaodan Z., 2015)

4. Построение лексиконов

На основе меры **взаимной информации** термов t_1, t_2 :

PMI
$$(t_1, t_2) = \log_2 \frac{P(t_1 \wedge t_2)}{P(t_1) \cdot P(t_2)}$$

Введем маркер в качестве одного из параметров РМІ. Возможные значения:

- Excellent -- хороший
- Poor -- плохой

Семантической ориентацией, называется величина:

$$SO(t) = PMI(t, Excellent) - PMI(t, Poor)$$

- Знак SO(t) определяет один из двух маркеров, к которому принадлежит t
- |SO(t)| степень принадлежности маркеру.

Лексикон составляется на основе коллекции K:

$$S: \{ \langle t, SO(t) \rangle \mid t \in K_{Excellent} \lor K_{Poor} \}$$

- $K_{Excellent}$ -- сообщения с меткой Excellent.
- K_{Poor} -- сообщения с меткой Poor.

5. Автогенерация коллекций

- Прием трансляции сообщений сети *Twitter*.
- Разбиение полученной коллекции сообщений K на $K_{Excellent}$ и K_{Poor} с помощью:
 - Эмотиконов в сообщении.

6. Построенные лексиконы

- 1. На основе корпуса коротких текстов **Ю. Рубцовой**;
- 2. Сообщений сети Twitter за январь 2016 года
- 3. Тональный словарь созданный вручную экспертами

N:	K _{Excellent} термов	К _{Роог} термов	Всего термов
1	62 637 (56%)	50 177 (44%)	112 814
2	7 370 (3%)	228 721 (97%)	236 091
3	2 774 (26%)	7 148 (67%)	10 668

7. Подход

Классификация *методом опорных векторов*, **SVM** (библиотека LibSVM, Python)

Обработка сообщений:

- Лемматизация сообщений (**Mystem**, Yandex)
- Удаление символов 'RT', @пользователей,
 URL (из метаинформации остаются #хэштеги).Используемая весовая мера *TF-IDF*;
- Использование стоп слов;
- Замена лемм на тональные префиксы'+','-': Сейчас хорошо работать не то что раньше Сейчас +работать -то что раньше.

Признаки классификации:

- Учет эмотиконов (смайликов 🙂, 🙁);
- Число слов записанных в верхнем регистре;
- Число подряд идущих знаков {'?', '...', '!'}.
- Вычисление суммы $x = \sum SO(t), t \in S$, термов t, составляющих сообщение и в входящих в лексикон S.

8. Обучающие коллекции

- Несбалансированные:
 - Предоставленные организаторами

2015					
Коллекция	③	①	(i)	всего	
BANK	356	3 482	1 077	4.015	
DANK	(7%)	(71%)	(21%)	4 915	
ТКК	956	2 269	1 634	1 950	
IKK	(19%)	(47%)	(34%)	4 859	
	2016				
BANK	1 354	4 870	2 550	8 783	
DAINK	(15%)	(55.4%)	(29%)	0 703	
TICIC	704	6 756	1 741	0.102	
ТКК	(7%)	(74.22%)	(19%)	9 102	

- Сбалансированные:
 - Балансировка на основе коллекции **Ю. Рубцовой** построен лексикон и произведен отбор сообщений $m = \{t_i\}_{i=1}^N$ из той же коллекции по формуле:

$$\max_{i=1..N} |SO(t_i)| > P$$

P — пороговое значение, t_i — термы сообщения.

- α сбалансированная коллекция 2015.
- β балансировка коллекций 2015 и 2016 (их объединений) годов.

Сбалансированные			
Коллекция	α	eta	
TTK	6888	14610 (+112%)	
BANK	10446	20268 (+94%)	

9. Результаты

Параметры прогонов:

- **№1** только русскоязычные термы и хэштеги;
- №2 №1 + применение тональных префиксов, использование лексиконов 1 и 2, учет всех признаков;
- $N_{2}3 N_{2}2 +$ использование всех лексиконов.

Обучение на коллекции β показывает прирост оценки (правый столбец).

Мера оценки качества: $F_1 macro_{(neg,pos)}$

BANK (SentiRuEval-2016)			
$N_{\underline{0}}$	α	β	
1	0.384	0.4536 (+18.1%)	
2	0.3849	0.4672 (+ 20.9%)	
3	0.3862	0.4683 (+21.25%)	
TKK (SentiRuEval-2016)			
No	2016	β	
№ 1	`	β 0.5103 (+5,2%)	
№ 1 2	2016	β	
1	2016 0.4849	β 0.5103 (+ 5,2%)	

10. Улучшение

- b **baseline** результаты, относительно которых отмечается изменение качества.
- Настройка параметра С штрафной функции SVM классификатора (влияет на размер отступа разделяющей гиперплоскости):

$$C = 0.5$$

Улучшенные результаты, $C = 0.5$			
No	BANK	TKK	
b	0.4536	0.5103	
1	0.4558 (+0.48)	0.5235 (+ 2,58%)	
2	0.4795 (+5.70)	0.5338 (+4,60%)	
3	0.4768 (+5.11)	0.5452 (+6,83%)	

• Добавление новых признаков y, z: вычисление min и max значений (с учетом нормализации) среди всех термов t_i сообщения m по каждому из лексиконов.

$$y = \min_{i=1..N} SO(t_i), \ t_i \in m, t_i \in S$$
$$z = \max_{i=1..N} SO(t_i), \ t_i \in m, t_i \in S$$

Улучшенные результаты, С = 0.5. использование новых призна

C = 0.5, использование новых признаков			
No	BANK	TKK	
	0.4795	0,5452	
1	0.4955 (+3.34%)	0.5259 (-3.53%)	
2	0.5012 (+4.53%)	0.5283 (-3.09%)	
3	0.5239 (+9.52%)	0.5453 (+0.01%)	

Вывод

- Стабильное повышение качества классификации.
- Наибольший прирост достигается для задачи BANK

Прирост качества	BANK	TKK
Общий	+36,4%	+12,4%

Возможные дальнейшие улучшения:

- Использование иерархической классификации;
- В вычисление признаков на основе лексиконов добавить зависимость от TF-IDF весов.