Feature Selection Analysis

Dataset:

mob_dataset														
	product id	price	sale	weight	resolution	ppi	cpu core	cpu freq	internal mem	ram	rearcam	front cam	battery	thickness
0	203	2357	10.0	135.0	5.20	424.0	8	1.350	16.0	3.000	13.00	8.0	2610	7.4
1	880	1749	10.0	125.0	4.00	233.0	2	1.300	4.0	1.000	3.15	0.0	1700	9.9
2	40	1916	10.0	110.0	4.70	312.0	4	1.200	8.0	1.500	13.00	5.0	2000	7.6
3	99	1315	11.0	118.5	4.00	233.0	2	1.300	4.0	0.512	3.15	0.0	1400	11.0
4	880	1749	11.0	125.0	4.00	233.0	2	1.300	4.0	1.000	3.15	0.0	1700	9.9
156	1206	3551	899.5	178.0	5.46	538.0	4	1.875	68.0	6.000	12.00	16.0	4080	8.4
157	1296	3211	899.5	170.0	5.50	534.0	4	1.975	68.0	6.000	20.00	8.0	3400	7.9
158	856	3260	899.5	150.0	5.50	401.0	8	2.200	64.0	4.000	20.00	20.0	3000	6.8
159	1296	3211	899.5	170.0	5.50	534.0	4	1.975	68.0	6.000	20.00	8.0	3400	7.9
160	1131	2536	899.5	202.0	6.00	367.0	8	1.500	16.0	3.000	21.50	16.0	2700	8.4

161 rows × 14 columns

Quantitative Dataset:

	product id	price	sale	weight	resolution	ppi	cpu core	cpu freq	internal mem	ram	rearcam
mean	675.559006	2214.329193	259.571429	154.198758	5.159627	333.993789	4.857143	1.514478	21.520348	2.204994	10.378261
median	774.0	2258.0	106.0	153.0	5.15	294.0	4.0	1.4	16.0	2.0	12.0
mode	14	1734	899.5	223.85	5.5	294.0	4	1.2	16.0	1.0	13.0
Q1:25%	237.0	1734.0	37.0	134.1	4.8	233.0	4.0	1.2	8.0	1.0	5.0
Q2:50%	774.0	2258.0	106.0	153.0	5.15	294.0	4.0	1.4	16.0	2.0	12.0
Q3:75%	1026.0	2744.0	382.0	170.0	5.5	428.0	8.0	1.875	32.0	3.0	16.0
99%	1331.8	4005.8	899.5	223.85	6.55	634.4	8.0	2.7	68.0	6.0	22.1
Q4:100%	1339.0	4259.0	899.5	223.85	6.55	720.5	8.0	2.7	68.0	6.0	23.0
IQR	789.0	1010.0	345.0	35.9	0.7	195.0	4.0	0.675	24.0	2.0	11.0
1.5rule	1183.5	1515.0	517.5	53.85	1.05	292.5	6.0	1.0125	36.0	3.0	16.5
lesser_outlier	-946.5	219.0	-480.5	80.25	3.75	-59.5	-2.0	0.1875	-28.0	-2.0	-11.5
greater_outlier	2209.5	4259.0	899.5	223.85	6.55	720.5	14.0	2.8875	68.0	6.0	32.5
min	10.0	614.0	10.0	80.25	3.75	121.0	0.0	0.1875	0.0	0.0	0.0
max	1339.0	4259.0	899.5	223.85	6.55	720.5	8.0	2.7	68.0	6.0	23.0
kurtosis	-1.318761	-0.14346	0.095916	0.152568	-0.159611	-0.521551	-0.863429	0.453594	0.528894	0.044367	-0.960575
skew	-0.216869	0.020099	1.250054	0.115564	-0.17094	0.41233	-0.009077	-0.27533	1.164121	0.792698	0.106929
var	168799.023059	584769.184705	94414.183929	1219.109998	0.535324	17261.828086	5.973214	0.326577	379.78112	2.591557	38.211993
std_deviation	410.851583	764.702023	307.268911	34.915756	0.731658	131.384276	2.444016	0.57147	19.487974	1.609831	6.181585

Select K algorithm:

Best features:

array(['ppi', 'cpu core', 'cpu freq', 'internal mem', 'ram', 'rearcam', 'thickness'], dtype=object)

```
# result of k =7
result

Linear SVMI SVMnI Decision Random

ChiSquare 0.91888 0.791191 0.028079 0.988373 0.938287
```

As per the result, Decision Tree is giving more accuracy than other algorithms

RFE:

Best Features:

array(['ppi', 'cpu core', 'internal mem', 'ram', 'battery', 'thickness'], dtype=object)

```
# result of k = 6
result

Linear SVMI Decision Random

Linear 0.916932 0.623416 0.972924 0.96528

SVC 0.89431 0.714925 0.982146 0.939624

Random 0.89217 0.654752 0.967002 0.948969

DecisionTree 0.918884 0.716311 0.98725 0.937138
```

Here Decision Tree is giving more accuracy than other algorithms

feature_importance_regression:

Best Features:

```
# print selected features
ensemble_feature_list

['ppi',
    'cpu core',
    'sale',
    'internal mem',
    'resolution',
    'front cam',
    'battery',
    'rearcam',
    'weight',
    'ram',
    'cpu freq']
```

```
# result of k = 8
result
```

	Linear	SVMI	SVM_NL	Decision	Random	
R2 score	0.885651	0.732562	0.010548	0.959535	0.923341	

Decision Tree has more accuracy than the other algorithms

Overall we got the best feature with max counts i.e 6, 7 and 8. we can take max count i.e 8.

These features we will take top 8 most frequent features selected by above three methods

```
final_features

features_list

ppi 3

cpu core 3

internal mem 3

ram 3

cpu freq 2

rearcam 2

thickness 2

battery 2

Name: count, dtype: int64
```