Consider the following Python dictionary data and Python list labels:

data = {'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes', 'plovers', 'Cranes', 'spoonbills', 'spoonbills'], 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'yes', 'no', 'no']}

```
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
```

1. Create a DataFrame birds from this dictionary data which has the index labels.

```
In [92]:
```

```
import pandas as pd
import numpy as np
data = {'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes', 'plovers', '
Cranes', 'spoonbills', 'spoonbills'], 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.5, np.nan, 8, 4],
'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no',
'yes', 'no', 'no']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
```

In [93]:

```
s = pd.DataFrame(data=data , index= labels)
```

In [94]:

```
S
```

Out[94]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

2. Display a summary of the basic information about birds DataFrame and its data.

In [95]:

```
s.describe()
```

Out[95]:

	age	visits
count	8.000000	10.000000
mean	4.437500	2.900000
std	2.007797	0.875595
min	1.500000	2.000000
25%	3.375000	2.000000
50%	4.000000	3.000000

```
75% 5.625000 3.750000 Visits

max 8.000000 4.000000
```

3. Print the first 2 rows of the birds dataframe

```
In [96]:
```

```
s[:2]
```

Out[96]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes

4. Print all the rows with only 'birds' and 'age' columns from the dataframe

```
In [97]:
```

```
s[['birds','age']]
```

Out[97]:

	birds	age
а	Cranes	3.5
b	Cranes	4.0
С	plovers	1.5
d	spoonbills	NaN
е	spoonbills	6.0
f	Cranes	3.0
g	plovers	5.5
h	Cranes	NaN
i	spoonbills	8.0
j	spoonbills	4.0

5. select [2, 3, 7] rows and in columns ['birds', 'age', 'visits']

```
In [98]:
```

```
s.iloc[[2,3,7] , [0,1,2]]
```

Out[98]:

	birds	age	visits
С	plovers	1.5	3
d	spoonbills	NaN	4
h	Cranes	NaN	2

6. select the rows where the number of visits is less than 4

```
In [99]:
```

```
s.loc[s['visits']<4]
```

Out[99]:

	birds birds	age age	visits visits	priority priority
а	Cranes	3.5	2	yes
С	plovers	1.5	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

7. select the rows with columns ['birds', 'visits'] where the age is missing i.e NaN

```
In [100]:
```

```
col = ['birds', 'visits']
age = s.age.isnull()
s.loc[age , col]
```

Out[100]:

	birds	visits
d	spoonbills	4
h	Cranes	2

8. Select the rows where the birds is a Cranes and the age is less than 4

```
In [101]:
```

```
bird = s['birds'] == 'Cranes'
age = s['age'] < 4
s[bird & age]</pre>
```

Out[101]:

birds age visits priority a Cranes 3.5 2 yes f Cranes 3.0 4 no

9. Select the rows the age is between 2 and 4(inclusive)

```
In [102]:
```

```
cond1 = s['age'] >= 2
cond2 = s['age'] <= 4
s[cond1 & cond2]</pre>
```

Out[102]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
f	Cranes	3.0	4	no
i	spoonbills	4.0	2	no

10. Find the total number of visits of the bird Cranes

```
In [103]:
```

```
s.loc[s.birds == 'Cranes' , 'visits'].sum()
```

```
Out[103]:
12
11. Calculate the mean age for each different birds in dataframe.
In [104]:
s.groupby(['birds'])['age'].mean()
Out[104]:
birds
              3.5
Cranes
plovers
plovers 3.5 spoonbills 6.0
Name: age, dtype: float64
12. Append a new row 'k' to dataframe with your choice of values for each column. Then delete that row to return the
original DataFrame.
In [105]:
s.loc['k'] = ['Sparrow' , 4 , 5 , 'yes']
In [106]:
S
Out[106]:
     birds age visits priority
   Cranes
                          yes
 b
    Cranes
            4.0
                    4
                          yes
     plovers
            1.5
                    3
                          no
 С
 d spoonbills NaN
                    4
                          yes
 e spoonbills
            6.0
                    3
                          no
     Cranes
            3.0
                          no
                  2
     plovers
           5.5
                         no
     Cranes NaN
                          yes
 i spoonbills
            8.0
                    3
                          no
 j spoonbills
           4.0
                          no
           4.0
                    5
   Sparrow
                          yes
In [107]:
s = s.drop(['k'])
13. Find the number of each type of birds in dataframe (Counts)
In [108]:
s.groupby('birds')['birds'].count()
Out[108]:
birds
               4
Cranes
plovers
               2
spoonbills
```

Name: birds. dtvne: int64

name. Dirac, acipe. incoi

14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order.

```
In [109]:
```

```
s.sort_values('age' , ascending=False).sort_values('visits' , ascending = True)
```

Out[109]:

	birds	age	visits	priority
g	plovers	5.5	2	no
j	spoonbills	4.0	2	no
а	Cranes	3.5	2	yes
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
е	spoonbills	6.0	3	no
С	plovers	1.5	3	no
b	Cranes	4.0	4	yes
f	Cranes	3.0	4	no
d	spoonbills	NaN	4	yes

15. Replace the priority column values with yes' should be 1 and 'no' should be 0

```
In [110]:
```

```
s.priority.replace(['yes','no'] , [1,0] , inplace=True)
```

```
In [111]:
```

```
s
```

Out[111]:

	birds	age	visits	priority
а	Cranes	3.5	2	1
b	Cranes	4.0	4	1
С	plovers	1.5	3	0
d	spoonbills	NaN	4	1
е	spoonbills	6.0	3	0
f	Cranes	3.0	4	0
g	plovers	5.5	2	0
h	Cranes	NaN	2	1
i	spoonbills	8.0	3	0
j	spoonbills	4.0	2	0

16. In the 'birds' column, change the 'Cranes' entries to 'trumpeters'.

```
In [112]:
```

```
s.birds.replace(['Cranes'] , ['trumpeters'] , inplace=True)
```

```
In [113]:
```

S

Out[113]:

	birds	age	visits	priority
а	trumpeters	3.5	2	1
b	trumpeters	4.0	4	1
С	plovers	1.5	3	0
d	spoonbills	NaN	4	1
е	spoonbills	6.0	3	0
f	trumpeters	3.0	4	0
g	plovers	5.5	2	0
h	trumpeters	NaN	2	1
i	spoonbills	8.0	3	0
j	spoonbills	4.0	2	0