Fiche TD4: Automates et langages rationnels

Exercice 1 (*) Algorithme de Berry-Sethi

En appliquant l'algorithme de Berry-Sethi, déterminer pour chacune des expressions rationnelles suivantes un automate qui reconnaît le langage qu'elle dénote. Déterminiser les automates obtenus aux questions 1 et 2.

- 1. $a(ba+b)^*b$
- 2. $(a+c)^*(abb+\varepsilon)$
- 3. $aab^*(ab)^* + ab^* + a^*bba$

Exercice 2 (*) Méthode d'élimination des états

Déterminer le langage reconnu via la méthode d'élimination des états pour chacun des automates suivants. Pour l'automate A_1 , on éliminera les états par ordre croissant de numéro, pour A_2 , l'ordre est laissé libre.

Exercice 3 (**) Algorithme de MacNaugthon et Yamada

On présente dans cet exercice une variante de l'algorithme de Floyd-Warshall permettant de déterminer une expression rationnelle pour le langage reconnu par un automate.

On considère que l'automate A (potentiellement non déterministe et dont on note I les états initiaux et F les finaux) en entrée de cet algorithme voit ses n états être numérotés de 0 à n-1. On définit pour tous $i,j\in [\![0,n-1]\!]$ et tout $k\in [\![0,n]\!]$ le langage $L_{i,j}^{(k)}$ formé par les étiquettes des chemins allant de l'état i à l'état j et dont les sommets intermédiaires ont tous un numéro strictement inférieur à k. L'objectif est de calculer pour tout $k\in [\![0,n]\!]$ une matrice $R^{(k)}$ contenant des expressions rationnelles de sorte à ce que la case (i,j) de cette matrice contienne une expression rationnelle dénotant $L_{i,j}^{(k)}$.

1. Que choisir pour la matrice $R^{(0)}$ pour répondre à cette contrainte ?

Si on a construit la matrice $R^{(k)}$, on en déduit $R^{(k+1)}$ comme suit :

pour tout
$$i, j \in [0, n-1]$$
, $R_{i,j}^{(k+1)} = R_{i,j}^{(k)} + R_{i,k}^{(k)} \left(R_{k,k}^{(k)}\right)^{\star} R_{k,j}^{(k)}$

L'expression renvoyée par l'algorithme de MacNaugthon-Yamada est alors $\sum_{i \in I, i \in F} R_{i,j}^{(n)}$.

- 2. Expliquer la correction de cet algorithme.
- 3. Calculer la matrice $R^{(1)}$ pour l'automate suivant sans simplifier les expressions rationnelles obtenues :

- 4. Simplifier la matrice $R^{(1)}$ obtenue.
- 5. Sans simplifications, quel est l'ordre de grandeur de la taille de l'expression rationnelle obtenue en fin d'algorithme en fonction du nombre d'états de l'automate en entrée ?
- 6. Déterminer le langage reconnu par cet automate en appliquant l'algorithme de MacNaughton-Yamada :

Exercice 4 (*) Et les Shadocks pompaient

En utilisant le lemme de l'étoile, montrer que les langages suivants ne sont pas rationnels :

- 1. $L_1 = \{u \in \{a, b\}^* \mid |u|_a = |u|_b\}.$
- 2. L_2 est l'ensemble des palindromes sur l'alphabet $\{0,1\}$.
- 3. $L_3 = \{a^{(n^2)} \mid n \in \mathbb{N}\}.$
- 4. L_4 est le langage de Dyck sur l'alphabet $\{(,)\}$.

Exercice 5 (**) Rationnel ou pas rationnel?

On considère deux langages L et L' sur un même alphabet Σ . Pour chacune des propositions suivantes, la démontrer si elle est vraie et fournir un contre-exemple si elle est fausse.

- 1. Si L est rationnel et $L \cap L'$ ne l'est pas alors L' n'est pas rationnel.
- 2. Si L est rationnel et L' ne l'est pas alors $L \cap L'$ n'est pas rationnel.
- 3. Si L^* est rationnel alors L est rationnel.
- 4. Si L et L' sont rationnels alors $L \setminus L'$ aussi.
- 5. Si LL' est rationnel alors L est rationnel ou L' est rationnel.

Exercice 6 (***) La pompe est cassée

On considère sur $\Sigma = \{a, b\}$ le langage L suivant :

$$L = \{v^t v w \mid v, w \in \Sigma^* \text{ tels que } |v| \ge 1, |w| \ge 1\}$$

- 1. Montrer que le langage L vérifie les conclusions du lemme de l'étoile.
- 2. Montrer que L n'est pas un langage rationnel.
- 3. Que vient-on de montrer?