Московский физико-технический институт

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ (дата выполнения работы: 27.09.2024)

Изучение селективности глюкозооксидазы в окислении различных углеводов методом спектрофотометрии

выполнили студенты группы Б04-202 Гомзин Александр Горячев Арсений Игумнов Дмитрий

Содержание

1	Аннотация	2	
2	Теоретические сведения		
	2.1 Уравнение Михаэлиса — Ментен	2	
	2.2 Ферментативное окисление углеводов кислородом в присут-		
	ствии глюкозооксидазы	3	
3	Методика измерений	5	
4	Используемое оборудование и материалы	6	
5	Результаты измерений	7	
	5.1 Первичные данные	8	
6	Обработка данных	9	
7	Выводы	14	

1 Аннотация

Ферменты (энзимы) — это сложные белковые молекулы, являющиеся природными катализаторами. Ферменты обладают высокой хемо-, регио-, и стереоспецифичностью по отношению к субстрату и типу реакции. Исследуемая в данной работе глюкозооксидаза активно применяется в клинических анализах для определения концентрации глюкозы в крови.

Цель работы: сравнение скоростей окисления трех моносахаридов (глюкозы, маннозы, ксилозы) растворенным кислородом воздуха в присутствии глюкозооксидазы.

2 Теоретические сведения

2.1 Уравнение Михаэлиса — Ментен

Схема ферментативной реакции в простейшем односубстратном случае может быть представлена следующим образом:

$$E + S \xrightarrow{k_1 \atop k_{-1}} E - S \xrightarrow{k_2} E + P$$

где Е — фермент, S — субстрат, Е—S — фермент-субстратный комплекс, Р — продукт реакции.

Выпишем выражение для скорости изменения концентрации фермент-субстратного комплекса:

$$\frac{d[E-S]}{dt} = k_1[E][S] - (k_{-1} + k_2)[E-S]$$

Для фермент-субстратного комплекса обычно применимо квазистационарное приближение: $\frac{d[\mathrm{E-S}]}{dt} \approx 0$, т.к. в большинстве реакций скорость образования конечного продукта из комплекса много больше скорости образования самого комплекса.

Фермент, исходно находившийся только в свободной форме, в процессе реакции может находиться как в виде свободных молекул, так и в виде комплекса:

$$[E]_0 = [E] + [E - S]$$

Подставим в предыдущее уравнение:

$$\frac{d[E-S]}{dt} = k_1[E]_0[S] - (k_1[S] + k_{-1} + k_2)[E-S] \approx 0$$

$$[E-S] = \frac{k_1[E]_0[S]}{k_1[S] + k_{-1} + k_2}$$

Скорость ферментативной реакции:

$$w = k_2[E-S] = \frac{k_1 k_2[E]_0[S]}{k_1[S] + k_{-1} + k_2} = \frac{k_2[E]_0[S]}{\frac{k_{-1} + k_2}{k_1} + [S]} = \frac{w_{\text{max}} \cdot [S]}{K_{\text{M}} + [S]}$$

где $K_{\mathrm{M}}=rac{k_{-1}+k_{2}}{k_{1}}$ — константа Михаэлиса.

2.2 Ферментативное окисление углеводов кислородом в присутствии глюкозооксидазы

Глюкоза — моносахарид из класса альдогексоз. Фрагмент глюкозы входит в состав множества природных олиго- и полисахаридов, таких как сахароза, крахмал или целлюлоза.

В природе встречается только D-глюкоза. Также различают α - и β -формы (аномеры), отличающиеся пространственным расположением полуацетального гидроксила в закрыой циклической форме. В водных растворах при нормальных условиях глюкоза состоит из смеси аномеров: α (36%) и β (64%). Самый термодинамически устойчивый таутомер — β -D-глюкоза в конформации кресла.

$$\alpha$$
-D-глюкоза β -D-глюкоза

Рис. 1: Аномеры D-глюкозы в конформации кресла.

 Γ люкозооксидазы (D-глюкозо-1-оксидазы) — это ферменты различного происхождения, окисляющие β -D-глюкозу молекулярным кислородом до глюконо-1,5-лактона. В процессе этой трансформации образуется также перекись водорода.

Глюкозооксидазы выделены из бактерий, плесневых грибов и т.д. Молекула глюкозооксидазы имеет четвертичную структуру. Этот фермент состоит, как правило, из двух субъединиц ($puc.\ 2$).

Рис. 2: 3D-структура глюкозооксидазы плесневого гриба Aspergillius Niger.

Каждая субъединица содержит одну молекулу флавинадениндинуклеотидфосфата (ФАД). Именно этот фрагмент энзима ответственен за окислительно-восстановительные превращения субстратов — глюкозы (углеводов) и кислорода.

Рис. 3: Трансформация $\Phi A \mathcal{I} \iff \Phi A \mathcal{I} H_2$.

В процессе трансформации $\Phi A Д$ восстанавливается до $\Phi A Д H_2$, принимая два электрона и два протона. При взаимодействии $\Phi A Д H_2$ с молекулярным кислородом образуется перекпись водорода и регенерируется $\Phi A Д$ в окисленной форме.

Ферментативное окисление β -D-глюкозы до глюконо-1,5-лактона в присутствии глюкозооксидазы протекает с высоко скоростью уже при комнатной температуре (25 °C):

Рис. 4: Ферментативное окисление глюкозы до лактона.

Образующийся глюконо-1,5-лактон гидролизуется водой в условиях реакции до глюконовой кислоты:

$$\begin{array}{c} \mathsf{CH_2OH} \\ \mathsf{OH} \\ \mathsf{O$$

Рис. 5: Гидролиз лактона.

Постулируется, что реакция протекает по т.н. *пинг-понг*-механизму. Он предполагает постадийность с последовательным присоединением сначала первого субстрата (глюкозы), затем второго (кислорода), без образования тройного фермент-субстратного комплекса:

Рис. 6: Пинг-понг-механизм.

где S — глюкоза, P'' — глюконолактон, E_o — фермент с коферментом $\Phi A \square$ в окисленной форме, E_B — фермент с коферментом $\Phi A \square H_2$ в восстановленной форме.

Та же схема в упрощенном виде:

$$E_{o} + S \xrightarrow[k_{-1}]{k_{1}} E_{B}P''$$

$$E_{B}P'' \xrightarrow{k_{3}} E_{B} + P''$$

$$E_{B} + O_{2} \xrightarrow{k_{5}} E_{o} + H_{2}O_{2}$$

Предполагаем первую стадию рановесной:

$$K_{1} = \frac{k_{1}}{k_{-1}} = \frac{[E_{B}P'']}{[E_{O}][S]}$$

$$\frac{d[E_{B}]}{dt} = k_{3}[E_{B}P''] - k_{5}[O_{2}][E_{B}] \approx 0$$

$$[E_{B}] = \frac{k_{3}[E_{B}P'']}{k_{5}[O_{2}]}$$

Выразим полную концентрацию фермента:

$$[E]_0 = [E_0] + [E_B] + [E_BP''] = \frac{[E_BP'']}{K_1[S]} + \frac{k_3[E_BP'']}{k_5[O_2]} + [E_BP'']$$

Скорость реакции — скорость образования продукта P'':

$$w = \frac{d[P'']}{dt} = k_3[E_B P''] = \frac{k_3[E]_0}{\frac{1}{K_1[S]} + \frac{k_3}{k_5[O_2]} + 1} = \frac{k_3[E]_0[S]}{\frac{1}{K_1} + \left(\frac{k_3}{k_5[O_2]} + 1\right)[S]}$$

Рассмотрим предельные случаи:

•
$$\frac{k_3}{k_5[O_2]} \ll 1$$
: $w = \frac{k_3[E]_0[S]}{\frac{1}{K_1} + [S]}$; $w_{max} = k_3[E]_0$

•
$$\frac{k_3}{k_5[\mathcal{O}_2]} \gg 1$$
: $w = \frac{k_5[\mathcal{E}]_0[\mathcal{O}_2][\mathcal{S}]}{\frac{k_5[\mathcal{O}_2]}{k_3K_1} + [\mathcal{S}]}$; $w_{max} = k_5[\mathcal{E}]_0[\mathcal{O}_2]$

Если принять, что концентрация кислорода постоянна, то оба уравнения по форме совпадают с классическим уравнением Михаэлиса — Ментен для односубстратной реакции.

3 Методика измерений

Запись кинетических кривых проводится на спектрофотометре Solar (время съемки — 15 мин, шаг — 1 с) на 390 нм. С помощью термостата устанавливается температура 30° С. Для каждого углевода кинетика записывается 2 раза. Методика приготовления рабочего раствора в кювете описана в следующем пункте. Здесь отдельно отметим, что **очень важно достичь равномерного распределения фермента по раствору**.

Выделившаяся в результате ферментативной реакции перекись водорода взаимодействует с І-реактивом с образованием трийодид-аниона:

$$H_2O_2 + 3I^- + 2H^+ \longrightarrow 2H_2O + I_3^-$$

Трийодид обладает обладает интенсивным поглощением в ближней УФ-области. В максимуме линии поглощения при 350 нм коэффициент экстинкции $\varepsilon=2.5\cdot 10^4~\frac{\rm J}{\rm MOJD\cdot CM}$, а при 390 нм $\varepsilon\approx 3\cdot 10^3~\frac{\rm J}{\rm MOJD\cdot CM}$. Результаты измерений записываются в таблицу.

4 Используемое оборудование и материалы

Оборудование и лабораторное стекло:

- мерная колба на 250 мл 1 шт.;
- стакан на 250 мл 1 шт.;
- стаканчики на 25 мл 4 шт.;
- рН-метр;
- UV-VIS спектрофотометр или анлогичный;
- кварцевая кювета толщиной 1 см;
- автоматические пипетки на 20 мкл;

Реактивы:

- набор углеводов;
- дигидрофосфат калия;
- кали йодистый;
- раствор молибдата натрия (9%);
- раствор NaOH (0.1 М);
- раствор глюкозооксидазы (хранится в холодильнике);
- стандартный раствор с известным рН для калибровки рН-метра;

Приготовление 0.05 М фосфатного буфера рН 6.0:

Перед началом опыта pH-метр проверяется по стандартному раствору с известным pH (25°C). 1.71 г дигидрофосфата калия растворяются в 200 мл воды в химическом стакане. pH полученного буферного раствора доводится 1 М NaOH до значения 6.0. Содержимое стакана переносят в мерную колбу на 250 мл и доводят до метки дистиллированной водой.

Приготовление реактива йодида (І-реактив):

0.83 г йодида калия растворяются в 8 мл буферного раствора рН 6.0, добавляются 2 мл 9% раствора молибдата натрия, полученный раствор перемешивается. КІ-реактив готовится непосредственно перед опытом и использоваться в течение одного занятия.

3 Приготовление 10% растворов углеводов:

0.5 г углевода (ксилозы, маннозы или глюкозы) растворяются в 5 мл буферного раствора рН 6.0.

Рабочий раствор для измерения скорости ферментативной реакции готовится непосредственно в кювете спектрофотометра. Для этого в кювете смешиваются приготовленные заранее реагенты (0.5 мл І-реактива, 0.4 мл раствора углевода, 1.1 мл буферного раствора +20 мкл фермента при интенсивном перемешивании).

5 Результаты измерений

Рис. 7: Базовая линия (буферный раствор).

5.1 Первичные данные

Рис. 8: Зависимости оптических плотностей растворов от времени (старый энзим).

Рис. 9: Зависимости оптических плотностей растворов от времени (использован свежий энзим).

Рис. 10: Полный набор полученных первичных данных.

6 Обработка данных

Для сравнения активностей субстратов в реакции ферментативного окисления оценим максимальные скорости реакций, достигаемые на начальных участках полученных зависимостей.

Подберем эмпирические формулы для начальных участков кривых, соответствующих реакциям с участием глюкозы и маннозы, в следующем виде (параметры D_0, D_∞, τ_0, T определим численно):

$$D(t) = D_0 + D_{\infty} \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi T^2}} e^{-\frac{(\tau - \tau_0)^2}{2T^2}} d\tau$$

Все данные для ксилозы аппроксимируем линейными зависимостями.

Рис. 11: Начальный участок зависимости D(t) (глюкоза, первое измерение).

Рис. 12: Начальный участок зависимости D(t) (глюкоза, второе измерение).

Рис. 13: Начальный участок зависимости D(t) (глюкоза, третье измерение).

Рис. 14: Начальный участок зависимости D(t) (глюкоза, четвертое измерение).

Рис. 15: Начальный участок зависимости D(t) (манноза).

 ${f Puc.}\ 16:\ 3$ ависимости D(t) для реакционных смесей с участием ксилозы, аппроксимированные линейными законами.

Считая известными коэффициент экстинкции $\varepsilon = 3 \cdot 10^3 \, \frac{\pi}{\text{моль·см}}$ и толщину кюветы l=1 см, а основании данных о временных зависимостях оптических плотностей оценим зависимость скорости образования трийодид-иона от времени: $\frac{d[\mathbf{I}_3]}{dt} = \frac{1}{\varepsilon l} \frac{dD}{dt}$.

Рис. 17: Зависимости скоростей образования трийодида от времени — функции Гаусса (пунктиром отмечены максимумы).

Приведем максимальные значения скоростей:

Таблица 2. Максимальные скорости образования трийодид-иона в опытах с участием глюкозы и маннозы.

Опыт	Глюкоза, 1	Глюкоза, 2	Глюкоза, 3	Глюкоза, 4	Манноза
$\left(\frac{d[I_3^-]}{dt}\right)_{max}$, $10^{-4} \frac{M}{MUH}$	0.522 ± 0.004	0.521 ± 0.004	0.549 ± 0.005	4.4 ± 0.1	1.22 ± 0.02

• Среднее по первым трем опытам: $(5.307 \pm 0.025) \cdot 10^{-5} \frac{\text{М}}{\text{мин}}$

Наконец, воспользуемся тем, что $\frac{d[\mathrm{I}_3^-]}{dt} = \frac{d[\mathrm{H}_2\mathrm{O}_2]}{dt}$ и представим скорость реакции в виде величины $\frac{V_\Sigma}{N_{\mathrm{MKR}}[V_{\mathrm{p-pa}}(GOx)]} \left(\frac{d[\mathrm{H}_2\mathrm{O}_2]}{dt}\right)_{max}$, где V_Σ — полный объем раствора в кювете, $N_{\mathrm{MKR}}[V_{\mathrm{p-pa}}(GOx)]$ — число добавленных микролитров раствора энзима (глюкозоосидазы). Представим полученные результаты в виде таблиц со значениями этой скорости и относительных активностей субстратов (отношений скоростей к соответствующим максимальным значениям).

Таблица 3. Скорости реакций и относительные активности субстратов при использовании старого энзима.

Опыт	Глюкоза (среднее)	Ксилоза, 1–2
$\frac{V_{\Sigma}}{N_{\text{MKJ}}[V_{\text{p-pa}}(GOx)]} \left(\frac{d[\text{H}_2\text{O}_2]}{dt}\right)_{max}, \frac{\text{моль}}{\text{мин}}$	$(5.307 \pm 0.025) \cdot 10^{-9}$	~ 0 (более точная оценка невозможна)
Отн. активность, %	100	~ 0

Таблица 4. Скорости реакций и относительные активности субстратов при использовании *свежего* энзима.

Опыт	Глюкоза, 4	Ксилоза, 3	Манноза
$\frac{V_{\Sigma}}{N_{\text{мкл}}[V_{\text{p-pa}}(GOx)]} \left(\frac{d[\text{H}_2\text{O}_2]}{dt}\right)_{max}, \frac{\text{моль}}{\text{мин}}$	$(4.4 \pm 0.1) \cdot 10^{-8}$	$(2.22 \pm 0.06) \cdot 10^{-11}$	$(1.22 \pm 0.02) \cdot 10^{-8}$
Отн. активность, %	100	0.05	27.7 ± 0.7

7 Выводы

По результатам измерений, как и ожидалось, была выявлена специфичность глюкозооксидазы к глюкозе, что видно по оцененным величинам скоростей соответствующих реакций: при использовании в качестве субстратов ксилозы и маннозы скорости падали до $\sim 30\%$ и $\sim 0\%$ соответственно, считая от уровня скорости с субстратом — глюкозой.

В условиях опыта было выявлено интересное явление — наличие у всех реакций некоторого варьирующегося инкубационного периода, когда реакци практически не идет, с более или менее плавным переходом к пику скорости реакции. Затем, как и ожидалось, наблюдается спад скорости. В данной работе начальные участки кинетических кривых были приближены с помощью эмпирической формулы, вид которой позволил оценить время достижения максимальной скорости реакции и само значение скорости в максимуме.

Наличие инкубационного периода во всех данных, в том числе при применении свежеприготовленного энзима, может быть связано, например, с недостаточным количеством молибдат-ионов в растворе. Данная гипотеза требует экспериментальной проверки.