

TensorFlow

一个异构分布式系统的大规模机器学习系统

深度学习在Google的应用

NLP
Photos
Robotics
Speech
Translation
many research uses..
YouTube

... many others

神经网络的重要特性

Results get better with

- · more data +
- bigger models +
- more computation

迭代周期与效果

- · Minutes, Hours:
 - Interactive research! Instant gratification!
- · 1-4 days
 - · Tolerable
 - Interactivity replaced by running many experiments in parallel
- · 1-4 weeks:
 - High value experiments only
 - · Progress stalls
- · >1 month
 - Don't even try

TensorFlow特点

- Google第二代深度学习系统
- 目前支持CNN、RNN和LSTM算法
- 跨平台运行
 - 移动设备、单机、集群
- 弹性 (flexible)
- 可扩展 (Extensible)

TensorFlow特点

- 核心部分C++实现
- 支持不同的前端
 - 当前支持python、C++
 - 可扩展

安装

- 源码: <a href="https://github.com/tensorflow/tensorflo
 - 当前仅开源单机版
- 安装命令
 - Ubuntu/Linux
 - # 仅使用 CPU 的版本
 - \$ pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux x86 64.whl
 - # 开启 GPU 支持的版本 (安装该版本的前提是已经安装了 CUDA sdk)
 - \$ pip install https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
 - Mac OS X
 - # 当前版本只支持 CPU
 - \$ pip install https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl

- 有向图描述计算
 - 节点集合组成
 - 一些类型的节点保持和更新持久状态
 - 分支和循环结构
- 在 TensorFlow 图中
 - 每个节点 (node) 有零或者多个输入和零个或者多个输出,表示一种操作 (operation) 的实例化
 - 流过图中正常的边(从输出到输入)的值叫做张量(tensor)
 - 特殊的边,叫做控制依赖(control dependencies)

基本用法

- 使用图 (graph) 来表示计算任务.
- 在被称之为 会话 (Session) 的上下文 (context) 中执行图.
- 使用 tensor 表示数据.
- 通过 变量 (Variable) 维护状态.
- 使用 feed 和 fetch 为任意操作输入和输出数据.

例子

```
import tensorflow as tf
                  b = tf.Variable(tf.zeros([100]))
                                                                    # 100-d vector, init to zeroes
                  W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
                  x = tf.placeholder(name="x")
                                                                    # Placeholder for input
                  relu = tf.nn.relu(tf.matmul(W, x) + b)
                                                                    # Relu(Wx+b)
                  C = [...]
                                                                    # Cost computed as a function
                                                                     # of Relu
ReLU
                  s = tf.Session()
                  for step in xrange(0, 10):
                    input = ...construct 100-D input array ...
                                                                   # Create 100-d vector for input
                    result = s.run(C, feed_dict={x: input})
                                                                    # Fetch cost, feeding x=input
Add
                    print step, result
(MatMul
```

弹性

- 通用计算基础设置
 - 支持深度学习的核心库
 - 也可用在其他的机器学习算法
 - high performance computing (HPC)
 - 与底层设备和硬件无关的抽象

可扩展

核心系统定义了一系列标准操作和kernel (操作在特定设备上的实现)

• 很容易定义一个新的operator和kernel

核心库支持操作

Category	Examples
Element-wise mathematical operations	Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal,
Array operations	Concat, Slice, Split, Constant, Rank, Shape, Shuffle,
Matrix operations	MatMul, MatrixInverse, MatrixDeterminant,
Stateful operations	Variable, Assign, AssignAdd,
Neural-net building blocks	SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool,
Checkpointing operations	Save, Restore
Queue and synchronization operations	Enqueue, Dequeue, MutexAcquire, MutexRelease,
Control flow operations	Merge, Switch, Enter, Leave, NextIteration

两种实现

单机和分布式系统架构

设备分配

- 设备 (Devices)
 - TensorFlow 的计算核心
 - 每个 worker 负责一个或者多个设备
 - 每个设备有一个设备类型和一个名字
 - 由识别设备类型、设备索引, job和任务等这些标志组成
 - 例如: "/job:localhost/device:cpu:0 "或者 "/job:worker/task:17/device:gpu:3"
 - 当前已实现了 CPU 和 GPU 的设备接口,其他的设备类型也可以通过注册机制来实现
 - 每个设备对象负责管理分配和释放设备内存
- 分配算法
 - 代价模型
 - 贪心策略
 - 模拟选择

设备间通信

容错机制

- Send and Receive node间的通信错误
- master和worker进程之间的定期心跳检查。

梯度计算

部分执行

其他运行机制

- 设备限制
- 控制流
- 输入操作
- 队列
- 容器

优化

- Common Subexpression Elimination
- Controlling Data Communication and Memory Usage
- Asynchronous Kernels
- Optimized Libraries for Kernel Implementations
- Lossy Compression

模型并行

模型并行

模型并行

性能

- 官方当前未给出全面的性能评价
- 有人实测貌似比竞品慢

辅助工具

- TensorBoard
- Performance Tracing

计算可视化

数据可视化

性能追踪

参考资料

- http://www.tensorflow.org/
- https://github.com/tensorflow/tensorflow/
- http://download.tensorflow.org/paper/ whitepaper2015.pdf
- https://github.com/jikexueyuanwiki/tensorflow-zh
- 白皮书翻译

Q&A