§ 8.4: Trigonometric Substitution

Common Trig. Substitutions:

Integral contains:	Substitution	Domain	Identity
$\sqrt{a^2-x^2}$	$x = a\sin\left(\theta\right)$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$1 - \sin^2(\theta) = \cos^2(\theta)$
$\sqrt{a^2 + x^2}$	$x = a \tan (\theta)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$1 + \tan^2(\theta) = \sec^2(\theta)$
$\sqrt{x^2-a^2}$	$x = a \sec(\theta)$	$\left[0,rac{\pi}{2} ight)$	$\sec^2(\theta) - 1 = \tan^2(\theta)$

Example 1: Evaluate $\int \frac{\sqrt{9-x^2}}{x^2} dx$.

Example 2: Find $\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$.

Example 3: Evaluate $\int \frac{x^2}{\sqrt{9-x^2}} dx$.

Example 4: Evaluate $\int \frac{dx}{\sqrt{25x^2 - 4}}$, $x > \frac{2}{5}$.

Example 5: Evaluate $\int \frac{x}{\sqrt{9-x^2}} dx$.

Example 6: Evaluate $\int \frac{2 dx}{x^3 \sqrt{x^2 - 1}}$, x > 1.