Internationaler Waffenhandel

Die Anwendung neuer Verfahren der statistischen Netzwerkanalyse

Projektpartner: Prof. Dr. Paul W. Thurner

Betreuer: Prof. Dr. Göran Kauermann

Referent: Felix Loewe

Ludwig-Maximilians-Universität München Institut für Statistik

15. August 2015

- Einleitung
- 2 Einführung in die Graphentheorie
- 3 Datensituation
- Deskriptive Analyse
 - Netzwerkmaßzahlen
 - Degree-Sequenz
 - Zentrale Akteure
 - Visualisierungen
- Inferentielle Analyse
 - ERGM Exponential Random Graph Model
 - Simulation von Zufallsgraphen
 - Schätzung der Modellparameter
 - Anwendung des ERGM
 - Vergleich mit Großwaffenhandel
- 6 Fazit

1 Einleitung

Was ist ein Netzwerk?

Ein Netzwerk besteht aus Akteuren und ihren Verbindungen

Anwendungsgebiete:

• Biologie: DNA

• Soziologie: Freundesnetzwerk, Kollegenkreis

• Politik: internationale Beziehungen

Informatik: Internet, Facebook, LAN

Notation:

• G = (V, E) ... ein Graph

Notation:

- \bullet G = (V, E) ... ein Graph
- ullet $V=\{1,...,N_V\}$... Menge der Knoten

Notation:

- \bullet G = (V, E) ... ein Graph
- $V = \{1, ..., N_V\}$... Menge der Knoten
- $E = \{(i,j)|i,j \in V, i \neq j\}$... Menge der Kanten

Notation:

- \bullet G = (V, E) ... ein Graph
- $V = \{1, ..., N_V\}$... Menge der Knoten
- $E = \{(i,j)|i,j \in V, i \neq j\}$... Menge der Kanten
- $A \in N_V \times N_V$... eine Nachbarschaftsmatrix

$$a_{ij} = egin{cases} 1 \;,\; ij \in E \ 0 \;,\; ij
otin E \end{cases}$$

Notation:

- G = (V, E) ... ein Graph
- $V = \{1, ..., N_V\}$... Menge der Knoten
- $E = \{(i,j)|i,j \in V, i \neq j\}$... Menge der Kanten
- $A \in N_V \times N_V$... eine Nachbarschaftsmatrix

$$a_{ij} = egin{cases} 1 \;,\; ij \in E \ 0 \;,\; ij
otin E \end{cases}$$

Begriffe:

• Gerichteter vs. ungerichteter Graph

Notation:

- G = (V, E) ... ein Graph
- $V = \{1, ..., N_V\}$... Menge der Knoten
- $E = \{(i,j)|i,j \in V, i \neq j\}$... Menge der Kanten
- $A \in N_V \times N_V$... eine Nachbarschaftsmatrix

$$a_{ij} = egin{cases} 1 \;,\; ij \in E \ 0 \;,\; ij
otin E \end{cases}$$

Begriffe:

- Gerichteter vs. ungerichteter Graph
- (In-/Out-) Degree

Notation:

- \bullet G = (V, E) ... ein Graph
- $V = \{1, ..., N_V\}$... Menge der *Knoten*
- $E = \{(i,j)|i,j \in V, i \neq j\}$... Menge der Kanten
- $A \in N_V \times N_V$... eine Nachbarschaftsmatrix

$$a_{ij} = egin{cases} 1 \;,\; ij \in E \ 0 \;,\; ij
otin E \end{cases}$$

Begriffe:

- Gerichteter vs. ungerichteter Graph
- (In-/Out-) Degree
- Dichte: $den(G) = \frac{|E_G|}{N_V(N_V 1)/2}$

3 Datensituation

Datensituation

NISAT-Datenbank (Norwegian Initiative on Small Arms Transfers) von *PRIO* (Peace Research Institute Oslo)

Kantenliste mit zusätzlichen Variablen:

- Correlates of War Code
- Monetärer Wert in US\$
- Waffentyp
- Datenquelle
- Jahr

Dimensionen:

- 239 Länder
- 20 Jahre
- 109522 Waffentransaktionen

4 Deskriptive Analyse

Netzwerkmaßzahlen

Abbildung: Netzwerkmaßzahlen des Kleinwaffenhandels von 1992 bis 2011

Degree-Sequenz

Abbildung: In-/ Out- Degree der Länder von 1992 bis 2011

Zentrale Akteure I

Platz	Land	Exportvol. [Mrd.]
1	USA	9.2
2	Italy	7.9
3	Germany	4.6
4	Brazil	3.7
5	Austria	2.7
6	United Kingdom	2
7	Belgium	1.8
8	Switzerland	1.5
9	Russia	1.4
10	Czech Republic	1.4

Platz	Land	Importvol. [Mrd.]
1	USA	16
2	Germany	2.3
3	France	2.3
4	Canada	1.9
5	United Kingdom	1.8
6	Saudi Arabia	1.7
7	Belgium	1.2
8	Spain	1.2
9	Australia	1.2
10	Turkey	1

Tabelle: Summierte Handelswerte der Top-Exporteure und Top-Importeure des Netzwerkes von 1992 bis 2011

Zentrale Akteure II

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Exporteure von 1992 bis 2011

Zentrale Akteure III

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Importeure von 1992 bis 2011

Zentrale Akteure IV

Platz	Land	Exportvol. / BIP pro Kopf	Platz	Land	Importvol. / BIP pro kopf
1	China	114735	1	Tanzania	54562
2	Brazil	53225	2	Thailand	49636
3	Italy	48862	3	India	32416
4	Spain	40822	4	Pakistan	30290
5	Germany	38039	5	South Korea	27208
6	Turkey	36174	6	China	25402
7	South Korea	29131	7	Indonesia	24268
8	United States	26539	8	Kenya	22907
9	India	24615	9	Malaysia	22330
10	Austria	23149	10	Bukina Faso	22183

Tabelle: Summierte Handelswerte der Top-Exporteure und Top-Importeure relativ zum BIP pro Kopf des Netzwerkes von 1992 bis 2011

Zentrale Akteure V

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Exporteure von 1992 bis 2011

Zentrale Akteure VI

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Importeure von 1992 bis 2011

Visualisierungen 1

Abbildung: Netzwerk des Kleinwaffenhandels 1992 (li.) und 2011(re.)

Visualisierungen 2

Abbildung: Handelsströme zwischen den Kontinenten von 1992 bis 2011

5 Inferientielle Analyse

ERGM - Exponential Random Graph Model

$$P_{\theta,\mathcal{X}}(X=x) = \frac{\exp\left\{\theta^{T}g(x)\right\}}{\kappa(\theta,\mathcal{X})} \tag{1}$$

mit

- X zufällige Nachbarschaftsmatrix
- $x \in \mathcal{X}$, Menge aller möglichen Netzwerke
- $\theta \in \Omega \subset \mathbb{R}^q$... Vektor der Modellparameter
- g(x) ... q-Vektor aus Statistiken basierend auf der Nachbarschaftsmatrix x

• Problem: $\kappa(\theta, \mathcal{X}) = \sum_{x \in \mathcal{X}} exp\{\theta^T g(x)\}$

Simulation einer Sequenz von Graphen aus Zielverteilung $P_{\theta}(x)$ via Makrov Chain Monte Carlo Algorithmus:

Beliebiges Netzwerk mit fester Knotenzahl N als Startpunkt.

- Beliebiges Netzwerk mit fester Knotenzahl N als Startpunkt.
- ② Aus dem aktuellen Graphen $x^{(m-1)}$ wird ein zufälliges Knotenpaar i, j $(i, j \in 1, ..., N)$ ausgewählt.

- Beliebiges Netzwerk mit fester Knotenzahl N als Startpunkt.
- ② Aus dem aktuellen Graphen $x^{(m-1)}$ wird ein zufälliges Knotenpaar i, j $(i, j \in 1, ..., N)$ ausgewählt.
- **3** Vorgeschlagener Graph: $x^* = x^{(m-1)}$ bis auf $x_{ij}^{(m-1)} = 1 x_{ij}^{(m-1)}$.

- Beliebiges Netzwerk mit fester Knotenzahl N als Startpunkt.
- ② Aus dem aktuellen Graphen $x^{(m-1)}$ wird ein zufälliges Knotenpaar i, j $(i, j \in 1, ..., N)$ ausgewählt.
- Vorgeschlagener Graph: $x^* = x^{(m-1)}$ bis auf $x_{ij}^{(m-1)} = 1 x_{ij}^{(m-1)}$.
- Akzeptanz mit der Wahrscheinlichkeit $min\{1, \frac{P_{\theta}(x^*)}{P_{\theta}(x^{(m-1)})}\}.$

- Beliebiges Netzwerk mit fester Knotenzahl N als Startpunkt.
- ② Aus dem aktuellen Graphen $x^{(m-1)}$ wird ein zufälliges Knotenpaar i, j $(i, j \in 1, ..., N)$ ausgewählt.
- Vorgeschlagener Graph: $x^* = x^{(m-1)}$ bis auf $x_{ij}^{(m-1)} = 1 x_{ij}^{(m-1)}$.
- **1** Akzeptanz mit der Wahrscheinlichkeit $min\{1, \frac{P_{\theta}(x^*)}{P_{\theta}(x^{(m-1)})}\}.$
- **3** Bei Akzeptanz $x^{(m)} = x^*$ und $x^{(m)} = x^{(m-1)}$ sonst.
- Iteration der Schritte 2 5.

- Beliebiges Netzwerk mit fester Knotenzahl N als Startpunkt.
- ② Aus dem aktuellen Graphen $x^{(m-1)}$ wird ein zufälliges Knotenpaar i, j $(i, j \in 1, ..., N)$ ausgewählt.
- Vorgeschlagener Graph: $x^* = x^{(m-1)}$ bis auf $x_{ij}^{(m-1)} = 1 x_{ij}^{(m-1)}$.
- **1** Akzeptanz mit der Wahrscheinlichkeit $min\{1, \frac{P_{\theta}(x^*)}{P_{\theta}(x^{(m-1)})}\}.$
- **5** Bei Akzeptanz $x^{(m)} = x^*$ und $x^{(m)} = x^{(m-1)}$ sonst.
- Iteration der Schritte 2 5.
- Algorithmus ist unabhängig vom Startpunkt bei ausreichendem Burn In.
- Algorithmus ermöglicht unabhängige Ziehungen aus gleicher Kette durch Thinning.

Schätzung der Modellparameter

Ziel: Zentrierung der Statistiken der simulierten Netzwerke über denen des beobachteten Netzwerkes:

$$E_{\theta}(g(X)) - g(x_{obs}) = 0 \tag{2}$$

- Problem: $E_{\theta}(g(X)) = \sum_{x \in \mathcal{X}} g(x) P_{\theta}(x)$
- Lösung: Importance Sampling

Schätzung der Modellparameter

Ziel: Zentrierung der Statistiken der simulierten Netzwerke über denen des beobachteten Netzwerkes:

$$E_{\theta}(g(X)) - g(x_{obs}) = 0 \tag{2}$$

- Problem: $E_{\theta}(g(X)) = \sum_{x \in \mathcal{X}} g(x) P_{\theta}(x)$
- Lösung: Importance Sampling
 - ① Ziehung einer großen Stichprobe von Graphen auf Basis eines vorläufigen Parametervektors $\tilde{\theta}$.

Schätzung der Modellparameter

Ziel: Zentrierung der Statistiken der simulierten Netzwerke über denen des beobachteten Netzwerkes:

$$E_{\theta}(g(X)) - g(x_{obs}) = 0 \tag{2}$$

- Problem: $E_{\theta}(g(X)) = \sum_{x \in \mathcal{X}} g(x) P_{\theta}(x)$
- Lösung: Importance Sampling
 - ① Ziehung einer großen Stichprobe von Graphen auf Basis eines vorläufigen Parametervektors $\tilde{\theta}$.
 - Benutzung gewichteter Stichprobendurchschnitte der Statistiken.

Schätzung der Modellparameter

Ziel: Zentrierung der Statistiken der simulierten Netzwerke über denen des beobachteten Netzwerkes:

$$E_{\theta}(g(X)) - g(x_{obs}) = 0 \tag{2}$$

- Problem: $E_{\theta}(g(X)) = \sum_{x \in \mathcal{X}} g(x) P_{\theta}(x)$
- Lösung: Importance Sampling
 - ① Ziehung einer großen Stichprobe von Graphen auf Basis eines vorläufigen Parametervektors $\tilde{\theta}$.
 - Benutzung gewichteter Stichprobendurchschnitte der Statistiken.
 - **3** Erzeugen einer Sequenz von Parametern $\widetilde{\theta}, \theta^{(1)}, \theta^{(2)}, ..., \theta^{(G)}$ durch Fisher Scoring.

Schätzung der Modellparameter

Ziel: Zentrierung der Statistiken der simulierten Netzwerke über denen des beobachteten Netzwerkes:

$$E_{\theta}(g(X)) - g(x_{obs}) = 0 \tag{2}$$

- Problem: $E_{\theta}(g(X)) = \sum_{x \in \mathcal{X}} g(x) P_{\theta}(x)$
- Lösung: Importance Sampling
 - ① Ziehung einer großen Stichprobe von Graphen auf Basis eines vorläufigen Parametervektors $\tilde{\theta}$.
 - Benutzung gewichteter Stichprobendurchschnitte der Statistiken.
 - **③** Erzeugen einer Sequenz von Parametern $\widetilde{\theta}, \theta^{(1)}, \theta^{(2)}, ..., \theta^{(G)}$ durch Fisher Scoring.
 - **4** Neustart mit $\theta^{(G)}$ als $\tilde{\theta}$.

Degeneration

Problem : Hohe Wahrscheinlichkeit auf unrealistischen Netzwerken (z.B. volles oder leeres Netzwerk) führt zur Divergenz des Schätz-Algorithmus.

Degeneration

Problem : Hohe Wahrscheinlichkeit auf unrealistischen Netzwerken (z.B. volles oder leeres Netzwerk) führt zur Divergenz des Schätz-Algorithmus.

Ursachen:

- Instabilität von einfachen Zählstatistiken
- fehlende exogene Unterscheidungsmerkmale für Knoten und Kanten
- Beschränkung auf lineare Effekte der Statistiken unrealistisch

Degeneration

Problem : Hohe Wahrscheinlichkeit auf unrealistischen Netzwerken (z.B. volles oder leeres Netzwerk) führt zur Divergenz des Schätz-Algorithmus.

Ursachen:

- Instabilität von einfachen Zählstatistiken
- fehlende exogene Unterscheidungsmerkmale für Knoten und Kanten
- Beschränkung auf lineare Effekte der Statistiken unrealistisch

Lösungsansatz:

- Aufnahme von exogenen Kovariablen
- Aufnahme von nicht linearen Einflüssen durch Curved Exponential Family Models

Curved Exponential Family Models

Geometrically Weighted Degree (GWD):

$$u(x,\phi_s) = e^{\phi_s} \sum_{i=1}^{n-1} \left\{ 1 - (1 - e^{-\phi_s})^i \right\} D_i(x)$$
 (3)

- Kombination aus Zählstatistiken $D_i(x)$
- ullet Abhängig von zusätzlichen Decay-Parameter ϕ

Curved Exponential Family Models

Geometrically Weighted Degree (GWD):

$$u(x,\phi_s) = e^{\phi_s} \sum_{i=1}^{n-1} \left\{ 1 - (1 - e^{-\phi_s})^i \right\} D_i(x)$$
 (3)

- Kombination aus Zählstatistiken $D_i(x)$
- ullet Abhängig von zusätzlichen Decay-Parameter ϕ
- Geometrically Weighted Edgewise Shared Partners (GWESP):

$$v(x,\phi_t) = e^{\phi_t} \sum_{i=1}^{n-2} \left\{ 1 - (1 - e^{-\phi_t})^i \right\} EP_i(x)$$
 (4)

Geometrically Weighted Dyadic Shared Partners (GWDSP):

$$w(x,\phi_p) = e^{\phi_p} \sum_{i=1}^{n-2} \left\{ 1 - (1 - e^{-\phi_p})^i \right\} DP_i(x)$$
 (5)

Anwendung des ERGM

Endogene Statistiken

- edges
- mutual
- gwesp(0.2, fixed)
- gwdsp(0.2, fixed)
- gwidegree(0.2, fixed)
- gwodegree(0.2, fixed)

Exogene Statistiken

- CINC
- GDP
- Conflict
- Polity
- Continent

Annahme:

 $X^{(1)}$ und $X^{(2)}$ seien Netzwerke mit identischen Statistiken bis auf Statistik $g_i(X)$ und

$$\delta_i(X) = g_i(X^{(1)}) - g_i(X^{(2)})$$

.

Dann gilt:

$$\frac{P(X^{(1)})}{P(X^{(2)})} = \exp(\theta_i \delta_i(X))$$

Annahme:

 $X^{(1)}$ und $X^{(2)}$ seien Netzwerke mit identischen Statistiken bis auf Statistik $g_i(X)$ und

$$\delta_i(X) = g_i(X^{(1)}) - g_i(X^{(2)})$$

.

Dann gilt:

$$\frac{P(X^{(1)})}{P(X^{(2)})} = exp(\theta_i \delta_i(X))$$

 \implies für positives $\delta_i(X)$ gilt also:

- Ist $\theta_i > 0$, so ist $X^{(1)}$ plausibler als $X^{(2)}$.
- Ist $\theta_i = 0$, so sind sie gleich plausibel.
- Ist $\theta_i < 0$, so ist $X^{(1)}$ plausibler als $X^{(2)}$.

Tabelle: Summary von Modell 1 (1996)

ergm-term	Estimate	Std.Error	p-Value
edges	-6.111e+00	2.281e-01	<1e-04 ***
mutual	2.120e+00	9.507e-02	<1e-04 ***
gwidegree	1.895e+00	4.818e-01	<1e-04 ***
gwodegree	-1.311e+00	3.307e-01	<1e-04 ***
gwesp.fixed.0.2	2.641e+00	1.778e-01	<1e-04 ***
gwdsp.fixed.0.2	-5.686e-02	6.008e-03	<1e-04 ***
nodeicov.ext_cinc	3.071e+00	1.291e+00	0.01740 *
nodeocov.ext_cinc	-5.967e+00	1.361e+00	<1e-0 ***
nodeicov.ext_gdp	3.479e-06	2.099e-06	0.09749 .
nodeocov.ext_gdp	4.392e-06	1.586e-06	0.00562 **
nodeicov.ext_conflict	2.310e-02	1.704e-02	0.17530
nodeocov.ext_conflict	-1.398e-01	2.763e-02	<1e-04 ***
nodeifactor.Continent.America	6.645e-02	6.799e-02	0.32839
nodeifactor.Continent.Asien	9.525e-02	6.473e-02	0.14116
nodeifactor.Continent.Europe	5.353e-03	7.312e-02	0.94164
nodeifactor.Continent.Oceania	-2.323e-02	1.136e-01	0.83795
nodeofactor.Continent.America	2.055e-01	6.589e-02	0.00182 **
nodeofactor.Continent.Asien	1.494e-01	6.452e-02	0.02055 *
nodeofactor.Continent.Europe	8.579e-01	7.226e-02	<1e-04 ***
nodeofactor.Continent.Oceania	2.311e-01	9.602e-02	0.01611 *
absdiff.ext_polity	-9.360e-03	3.249e-03	0.00397 **

- \bullet **Edges** -6.111: Tendenz zu wenig Kanten
- Mutual 2.120: Tendenz zu gegenseitigen Handel
- Import CINC 3.071: "mächtige" Länder als Importland wahrscheinlich
- Export CINC —5.967: "mächtige" Länder als Exportland unwahrscheinlich
- Export/Import GDP > 0: wirtschaftsstarke L\u00e4nderals Handelspartner wahrscheinlich
- Export Conflict -0.1398: In Konflikte verwickelte Länder als Exporteure unwahrscheinlich
- Export Faktor Continent: Europäische Länder als Exporteure am wahrscheinlichsten, Afrikanische Länder als Exporteure am unwahrscheinlichsten.
- **Diff Polity** -0.00936: Handel zwischen Ländern mit geringem Unterschied im Demokratiescore wahrscheinlich.

- \bullet **Edges** -6.111: Tendenz zu wenig Kanten
- Mutual 2.120: Tendenz zu gegenseitigen Handel
- Import CINC 3.071: "mächtige" Länder als Importland wahrscheinlich
- Export CINC -5.967: "mächtige" Länder als Exportland unwahrscheinlich
- Export/Import GDP > 0: wirtschaftsstarke L\u00e4nderals Handelspartner wahrscheinlich
- Export Conflict -0.1398: In Konflikte verwickelte Länder als Exporteure unwahrscheinlich
- Export Faktor Continent: Europäische Länder als Exporteure am wahrscheinlichsten, Afrikanische Länder als Exporteure am unwahrscheinlichsten.
- **Diff Polity** -0.00936: Handel zwischen Ländern mit geringem Unterschied im Demokratiescore wahrscheinlich.

- \bullet **Edges** -6.111: Tendenz zu wenig Kanten
- Mutual 2.120: Tendenz zu gegenseitigen Handel
- Import CINC 3.071: "mächtige" Länder als Importland wahrscheinlich
- Export CINC —5.967: "mächtige" Länder als Exportland unwahrscheinlich
- Export/Import GDP > 0: wirtschaftsstarke L\u00e4nderals Handelspartner wahrscheinlich
- Export Conflict -0.1398: In Konflikte verwickelte Länder als Exporteure unwahrscheinlich
- Export Faktor Continent: Europäische Länder als Exporteure am wahrscheinlichsten, Afrikanische Länder als Exporteure am unwahrscheinlichsten.
- **Diff Polity** -0.00936: Handel zwischen Ländern mit geringem Unterschied im Demokratiescore wahrscheinlich.

- **Edges** −6.111: Tendenz zu wenig Kanten
- Mutual 2.120: Tendenz zu gegenseitigen Handel
- Import CINC 3.071: "mächtige" Länder als Importland wahrscheinlich
- Export CINC -5.967: "mächtige" Länder als Exportland unwahrscheinlich
- Export/Import GDP > 0: wirtschaftsstarke L\u00e4nderals Handelspartner wahrscheinlich
- Export Conflict -0.1398: In Konflikte verwickelte Länder als Exporteure unwahrscheinlich
- Export Faktor Continent: Europäische Länder als Exporteure am wahrscheinlichsten, Afrikanische Länder als Exporteure am unwahrscheinlichsten.
- **Diff Polity** -0.00936: Handel zwischen Ländern mit geringem Unterschied im Demokratiescore wahrscheinlich.

- \bullet **Edges** -6.111: Tendenz zu wenig Kanten
- Mutual 2.120: Tendenz zu gegenseitigen Handel
- Import CINC 3.071: "mächtige" Länder als Importland wahrscheinlich
- Export CINC -5.967: "mächtige" Länder als Exportland unwahrscheinlich
- Export/Import GDP > 0: wirtschaftsstarke L\u00e4nderals Handelspartner wahrscheinlich
- Export Conflict -0.1398: In Konflikte verwickelte Länder als Exporteure unwahrscheinlich
- Export Faktor Continent: Europäische Länder als Exporteure am wahrscheinlichsten, Afrikanische Länder als Exporteure am unwahrscheinlichsten.
- Diff Polity -0.00936: Handel zwischen Ländern mit geringem Unterschied im Demokratiescore wahrscheinlich.

- \bullet **Edges** -6.111: Tendenz zu wenig Kanten
- Mutual 2.120: Tendenz zu gegenseitigen Handel
- Import CINC 3.071: "mächtige" Länder als Importland wahrscheinlich
- Export CINC -5.967: "mächtige" Länder als Exportland unwahrscheinlich
- Export/Import GDP > 0: wirtschaftsstarke Länderals Handelspartner wahrscheinlich
- Export Conflict -0.1398: In Konflikte verwickelte Länder als Exporteure unwahrscheinlich
- Export Faktor Continent: Europäische Länder als Exporteure am wahrscheinlichsten, Afrikanische Länder als Exporteure am unwahrscheinlichsten.
- **Diff Polity** -0.00936: Handel zwischen Ländern mit geringem Unterschied im Demokratiescore wahrscheinlich.

- Edges -6.111: Tendenz zu wenig Kanten
- Mutual 2.120: Tendenz zu gegenseitigen Handel
- Import CINC 3.071: "mächtige" Länder als Importland wahrscheinlich
- Export CINC -5.967: "mächtige" Länder als Exportland unwahrscheinlich
- Export/Import GDP > 0: wirtschaftsstarke L\u00e4nderals Handelspartner wahrscheinlich
- Export Conflict -0.1398: In Konflikte verwickelte Länder als Exporteure unwahrscheinlich
- Export Faktor Continent: Europäische Länder als Exporteure am wahrscheinlichsten, Afrikanische Länder als Exporteure am unwahrscheinlichsten.
- **Diff Polity** -0.00936: Handel zwischen Ländern mit geringem Unterschied im Demokratiescore wahrscheinlich.

- Edges -6.111: Tendenz zu wenig Kanten
- Mutual 2.120: Tendenz zu gegenseitigen Handel
- Import CINC 3.071: "mächtige" Länder als Importland wahrscheinlich
- Export CINC -5.967: "mächtige" Länder als Exportland unwahrscheinlich
- **Export/Import GDP** > 0: wirtschaftsstarke Länderals Handelspartner wahrscheinlich
- Export Conflict -0.1398: In Konflikte verwickelte Länder als Exporteure unwahrscheinlich
- Export Faktor Continent: Europäische Länder als Exporteure am wahrscheinlichsten, Afrikanische Länder als Exporteure am unwahrscheinlichsten.
- **Diff Polity** -0.00936: Handel zwischen Ländern mit geringem Unterschied im Demokratiescore wahrscheinlich.

Curved ERGM Terms am Beispiel von Geometrically Weighted Degree (GWD):

Curved ERGM Terms am Beispiel von Geometrically Weighted Degree (GWD):

• Änderung der Degree Sequenz eines Knotens:

$$(D_k, D_{k+1}) \to (D_k - 1, D_{k+1} + 1)$$

Curved ERGM Terms am Beispiel von Geometrically Weighted Degree (GWD):

• Änderung der Degree Sequenz eines Knotens: $(D_k, D_{k+1}) \rightarrow (D_k - 1, D_{k+1} + 1)$

$$ullet \; rac{p_{ ext{after}}}{p_{ ext{before}}} = exp(heta
ho^k)$$
 , $ho = 1 - e^{-\phi}$

Curved ERGM Terms am Beispiel von Geometrically Weighted Degree (GWD):

• Änderung der Degree Sequenz eines Knotens: $(D_k, D_{k+1}) \rightarrow (D_k - 1, D_{k+1} + 1)$

$$ullet$$
 $rac{p_{ extit{after}}}{p_{ extit{before}}} = exp(heta
ho^k)$, $ho = 1 - e^{-\phi}$

⇒ Interpretation der beiden Parameter:

Curved ERGM Terms am Beispiel von Geometrically Weighted Degree (GWD):

 Anderung der Degree Sequenz eines Knotens: $(D_k, D_{k+1}) \to (D_k - 1, D_{k+1} + 1)$

$$\frac{p_{\text{after}}}{e^{-\phi}} = \exp(\theta \rho^k) \quad \rho = 1 - e^{-\phi}$$

 $ullet \; rac{p_{ ext{after}}}{p_{ ext{before}}} = exp(heta
ho^k)$, $ho = 1 - e^{-\phi}$

⇒ Interpretation der beiden Parameter:

- $\theta > 0$: Tendenz zum Hinzufügen von Kanten
- θ < 0: Tendenz zum Löschen von Kanten Kanten

Curved ERGM Terms am Beispiel von Geometrically Weighted Degree (GWD):

• Änderung der Degree Sequenz eines Knotens: $(D_k, D_{k+1}) \rightarrow (D_k - 1, D_{k+1} + 1)$

$$ullet rac{p_{ ext{after}}}{p_{ ext{before}}} = exp(heta
ho^k)$$
 , $ho = 1 - e^{-\phi}$

⇒ Interpretation der beiden Parameter:

- \bullet $\theta > 0$: Tendenz zum Hinzufügen von Kanten
- \bullet $\theta < 0$: Tendenz zum Löschen von Kanten Kanten
- $\phi = 0$: Tendenz verschwindet komplett
- $\phi \to \infty$: Tendenz bleibt konstant

- GWIDEGREE 1.895: Tendenz zu vielen Importpartner
- GWODEEGREE −1.211: Tendenz zu wenigen Exportpartnern
- GWESP 2.641: Tendenz zur Schließung von Deiecken
- ullet GWDSP -0.05686: Tendenz gegen Schließung von offenen Dreiecken

• **DECAY** 0.2: Tendenz verschwindet schnell!

MCMC Diagnose

Abbildung: MCMC Diagnose von Modell 1 (1996) - edges und mutual

MCMC Diagnose 2

Abbildung: MCMC Diagnose von Modell 1 (1996) - gwidegree und gwodegree

Abbildung: Goodness of Fit von Modell 1 (1996) - In Degree

Abbildung: Goodness of Fit von Modell 1 (1996) - Out Degree

Abbildung: Goodness of Fit von Modell 1 (1996) - Minimum Geodesic Distance

Abbildung: Goodness of Fit von Modell 1 (1996) - Dyadwise Shared Partners

Abbildung: Goodness of Fit von Modell 1 (1996) - Edgewise Shared Partners

Probleme bei der Modellierung

- Instabilität bezüglich Wahl der Statistiken, Jahr und Decay-Parameter
- Sehr lange Rechenzeit bei Einbindung von Kantenattributen und freiem Decay-Parameter
- Wahl der richtigen Statistiken schwierig / nicht eindeutig

Idee: Anwendung von Modell aus Vorgängerarbeit (Großwaffenhandel) auf Daten des Kleinwaffenhandels

⇒ funktioniert in keinem der 20 Jahre.

⇒ Netzwerke des Kleinwaffenhandels und Großwaffenhandels haben strukturelle Unterschiede

Vergleich mit Großwaffenhandel

Unterschiede:

Merkmal	Großwaffen	Kleinwaffen
Zeitraum	1950 -2012	1992 -2011
Anzahl Nationen	218	239
Anzahl Transaktionen	ca 300-400 pro Jahr	4000-7000 pro Jahr
Dichte	0.025 - 0.035	0.045 - 0.065

Gemeinsamkeiten:

- Degree Verteilung
- Zentrale Akteure
- Ansteigender Trend

6 Fazit

Fazit

Netzwerkdaten über Handel mit Kleinwaffen von 1992 bis 2011

Fazit:

- Zentrale Akteure dominieren den Handel
- Trend: mehr Handel, mehr beteiligte Nationen, größere Ausgaben
- Modellierung mit ERGM schwierig

Mögliche Verbesserungen:

- Einbeziehung zusätzlicher Kovariablen
- Testen zusätzlicher Kombinationen von endogenen Statistiken und exogenen Kovariablen
- Berücksichtigung der zeitlichen Struktur durch Temporal Exponential Random Graph Model (TERGM)
- Modellierung von Teilnetzwerken

Literatur

David R Hunter.

Curved exponential family models for social networks.

Social networks, 29(2):216-230, 2007.

David R Hunter, Mark S Handcock, Carter T Butts, Steven M Goodreau, and Martina Morris.

ergm: A package to fit, simulate and diagnose exponential-family models for networks.

Journal of statistical software, 24(3), 2008.

Eric D Kolaczyk and Gabor Csardi. Statistical Analysis of Network Data with R.

Springer New York, 2014.

Dean Lusher, Johan Koskinen, and Garry Robins.

Exponential random graph models for social networks: Theory, methods, and applications.

Cambridge University Press, 2012.

Ende