Ethernet Switching

Kameswari Chebrolu

Recap

- Switching scales networks
- Packet switching helps utilize resources more efficiently
 - Predominant use: Datagram switching
- Apply packet switching to interconnect Ethernet segments

LAN Switches

- Also called layer-2 switches or bridges
- Overall network: Extended LAN
- Multi-input Multi-output device with buffers
- Why used?
 - Different administrators
 - Load or Length restrictions
 - Isolate Networks (helps in security)

Forwarding

- How to forward?
 - Host A sending packet to Host B
 - Host A sending packet to Host E
- Manual configuration: Tedious
- Automatic simple strategy:
 Forward on all interfaces except
 the one on which received

Learning Bridges

- Idea: Inspect source address and map it to port on which the frame was received
 - Each entry purged after some period unless refreshed

Host F

Host G

Algorithm

- If a frame received at bridge for destination D on port p
 - No entry for D in the table, forward on all ports except port p
 - If entry for D in forwarding table corresponds to p, drop frame

 Hot A Hot B = 0
 - If entry for D in forwarding table corresponds to i
 != p, then forward on i

Points to Note

- Plug and play operation (very desirable)
 - No change of hardware/software in hosts
 - No manual configuration in switches
- Learning process is an optimization, not required for correctness

Problem: Loops

- Why loops?
 - Mis-configuration, redundancy
- Host A sends a packet to Host B
 - Assume empty tables
 - Frames can loop indefinitely

Summary

- Ethernet switching extends LANs to form 'Extended LANs'
- Can interconnect few thousands of hosts
- Plug-n-play mode of operation
- Learning feature improves efficiency
- Switching fails in presence of loops
- Ahead: Solution in the form of Spanning Tree Algorithm