Bakalářská práce

České vysoké učení technické v Praze

F3

Fakulta elektrotechnická Katedra elektromagnetického pole

Přenos telemetrických dat z meteorologického balónu

Jakub Dvořák

Vedoucí: Ing. Tomáš Kořínek, Ph.D.

Květen 2022

Poděkování

Prohlášení

Děkuji vedoucímu Tomáši Kořínkovi za cenné rady a pomoc při realizaci práce. Děkuji Ing. Martinu Motlovi za pomoc s vypouštěním sondy. (tmobile tracker)

Prohlašuji, že jsem tuto práci vypracoval samostatně s použitím literárních pramenů a informací, které cituji a uvádím v seznamu použité literatury a zdrojů informací.

V Praze, 20. května 2022

Abstrakt

Abstract

Aaabstrakt

Abstract

Klíčová slova: slovo, klíč

Keywords: word, key

Vedoucí: Ing. Tomáš Kořínek, Ph.D.

Technická 2,

Praha 6

Title translation: Telemetric Data Transmission from Meteorological

Balloon

Obsah	4.5 Testování	8
1 Úvod 1	5 Experiment	9
1.1 Cíl práce	5.1 Průběh experimentu	9
1.2 Způsob řešení	5.2 Naměřená data	9
2 Návrh experimentu 3	6 Výsledky	11
2.1 Šíření vln ve troposféře 3	6.1 Zpracování dat	11
2.2 Měřená data	6.2 Výstup z experimentu	11
2.3 Součásti experimentu 3	6.3 Vizualizace dat	11
3 Návrh systému 5	7 Závěr	13
3.1 Požadavky 5	7.1 Shrnutí experimentu	13
3.2 Hardware 5	7.2 Možná vylepšení	13
3.3 Software 5	8 Conclusions	15
4 Realizace 7	8.1 Test — this is just a little test of something in the table of contents	15
4.1 Hardware	8.1.1 Yes, table of contents	15
4.2 Firmware	A Literatura	17
4.3 Software	B Zadání práce	19
4.4 Mechanická zástavba 8	•	-

Obrázky Tabulky

7.1 Black logo of the CTU in Pragueueue	14	7.1 Foobar 1	.4
7.2 Blue logo of the CTU in Pragueueue	14		

Úvod

1.1 Cíl práce

Tato práce ze zabývá...

výroba sondy schopná měřit podmínky ve tropo a posílat je na zem, měření příchozího signálu na zemi, vyrobit model šíření

1.2 Šíření vln ve troposféře

jak to funguje, na čem to závisí (přešíst literaturu)

1.3 Způsob řešení / návrh experimentu

naměření dat z tropo a naměření dat na zemi a kombinace do modelu šíření vlny

1.3.1 Měřená data

jaká data budou měřena

1.4 Součásti experimentu

co je potřeba udělat - hw, firmware, sw, mechaniku, naměření dat, naměření charakteristik antény, zpracování dat

Návrh systému

2.1 Požadavky

 $520~{\rm g},$ telemetrie, teplota, tlak vlhkost, gps, fungování do -40 - baterky, kompaktnost

2.2 Hardware

senzory do -40, nízký tlak, dosah 30+ km

2.3 Software

čtení ze senzorů, parsování dat, posílání na zem a na sd kartu, odolnost, měření náklonu - jak?

2. Návrh systému • • •

2.3.1 Měření náklonu sondy

Acc, vektor mag pole, kalmanův filtr, co bylo použito

2.4 Možné způsoby řešení elektroniky

2.4.1 Samostatná deska plošných spojů

kompaktní, spolehlivé, obtížné na debug, časové náročné

2.4.2 Vývojové moduly

snadné na vývoj a odladění, snadná změna zapojení pří psaní kódu

Realizace

- 3.1 Elektronika
- 3.1.1 Testování modulů

měření odběru, energie pro poslání dat

3.1.2 Realizace elektroniky

Navrženy shieldy, nakresleny modely. Spínaný zdroj + LDO, ochrany vstupů, volné GPIO na rozšíření

3.2 Mechanická zástavba

model PCB, model sondy, iterace, odlehčování

3. Realizace

3.3 Firmware

výstřizky z driverů, sample GPS dat, parsovací funkce, změřené minimum accelerace v z-ose, sešití dat, watchdog, reset při erroru

3.4 Software

parsování příchozích dat, doplnění NMEA zprávy pro tracker, python - parsování a přepočítání souřadnic, zobrazení na mapě, zobrazení v terminálu

3.5 Testování a měření

směrová charakteristika, teplotní odolnost, proudový odběr telitu

Experiment

příjem dat, umístění antény, nastavení spektráku

4.1 Průběh experimentu

jak to probíhalo, co se stalo, proč sonda přestala vysílat, proč doletěla jen do 17 km, nalezení pomocí sondy čhmú, sundání sondy

4.2 Naměřená data

co bylo na SD kartě, výsledky měření - čístě změřená data

Výsledky

5.1 Zpracování dat

zkombinovat data ze země a data ze strato, vzorečky, určit refrakci, výkonnovou bilanci podle podmínek, vzít v potaz směrovou charstiku. vyrobit model šíření, grafy

5.2 Výstup z experimentu

výsledky, co bylo změřeno a zjištěno

Závěr

a

6.1 Shrnutí experimentu

co se povedlo, co se nepovedlo. Vyrobil jsem sondu a sw, přestala vysílat - proč?

6.2 Možná vylepšení

malé pcb bez modulů, optimalizace sw, nepoužívat HAL, programovat přes registry, měření náklonu sondy, častější posílání dat, nezávislost na GPS

Příloha A Literatura

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

	Příjmení:	Dvořák	Jméno: Jakub	Osobní číslo: 4	192178
--	-----------	--------	---------------------	-----------------	--------

Fakulta/ústav: Fakulta elektrotechnická

Zadávající katedra/ústav: Katedra elektromagnetického pole

Studijní program: Elektronika a komunikace

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Přenos telemetrických dat z meteorologického balónu

Název bakalářské práce anglicky:

Telemetric Data Transmission from Meteorological Balloon

Pokyny pro vypracování:

Navrhněte a realizujte rádiový spoj mezi meteorologickým balónem a pozemním segmentem.

Přenášená data z meteorologického balónu musí obsahovat minimálně informace o jeho poloze (GNSS). Ostatní data ze senzorů (poloha, teplota, tlak, vlhkost, inerciální informace) budou logovány přímo v měřícím systému balónu.

Na základě parametrů vysílaného / přijímaného signálu a informací z telemetrie vytvořte model šíření pro daný typ spoje (případně i jiné možnosti propojení) během jeho vzestupné trasy.

Za předpokladu možnosti vypuštění meteorologického balónu vše experimentálně ověřte a porovnejte model šíření zahrnující měřený profil atmosférických parametrů s reálnými daty.

Seznam doporučené literatury:

- [1] PECHAČ, Pavel, ZVÁNOVEC, Stanislav. Základy šíření vln pro plánování pozemních rádiových spojů. Praha: BEN technická literatura. 2007. ISBN 978-80-7300-223-7.
- [2] ŘEZÁČOVÁ, Daniela. Fyzika oblaků a srážek. Praha: Academia, 2007. Gerstner, sv. 2. ISBN 978-80-200-1505-1.
- [3] McNamara, Marilyn C. An Analysis of Burst Altitude for Weather Balloons. Antonian Scholars Honors Program, 2016, [online], citováno 27.1.2022, dostupné z: https://sophia.stkate.edu/shas honors/43.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Tomáš Kořínek, Ph.D. katedra elektromagnetického pole FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Datum zadání bakalářské práce: 30.01.2022 Termín odevzdání bakalářské práce: 20.05.2022

Platnost zadání bakalářské práce: 30.09.2023

Ing. Tomáš Kořínek, Ph.D. podpis vedoucí(ho) ústavu/katedry prof. Mgr. Petr Páta, Ph.D. podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ

Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

Datum převzetí zadání Podpis studenta