Question 19 (19 marks)

Hubble's law states:

For copyright reasons definition cannot be reproduced in the online version of this document, but may be viewed at the link listed on the acknowledgements page.

From this law comes Hubble's equation:

$$v = H_o d$$

where v= recessional velocity

d = distance from the Earth

 H_a = Hubble's constant.

Below is some data Hubble used to graphically determine his constant.

Galaxy	Distance (Mpc)	Velocity (x103 km s-1	
NGC 1357	24.7	2.19	
NGC 1832	31.0	2.82	
NGC 2775	17.9	1.46	
NGC 2903	6.96	0.45	
NGC 3368	C 3368 11.9 0.88		

 (a) Graph the recessional velocity versus distance on the set of axes provided below and draw a line of best fit. Do not take your line through the origin.
 (3 marks)

(b)		two non-data points on your line of best fit to calculate Hubble's constant. Circle to coints you used and give your answer to two significant figures. (4 main	
		10 ³ km s ⁻¹ M	pc ⁻¹
		sured the red shift of the galaxies to calculate their recessional velocities. In for the Doppler effect is shown below:	
		$\frac{\Delta \lambda}{\lambda_0} = \frac{\nu}{c}$	
		$\Delta\lambda$ = wavelength shift λ_0 = wavelength of source not moving ν = velocity of source – line of sight c = speed of light.	
(c)	(i)	The galaxy NGC 2013 is 7.42 x 10 ⁷ ly away from the Earth. Convert this distantinto megaparsecs (Mpc). (2 mail	
			Mpc
	(ii)	Using your line of best fit and the value from part (c)(i), calculate the observed red-shifted wavelength emitted from NGC 2013 if $\lambda_{\rm p}$ is 840.0 nm. (6 mar	rks)
			nm

occur.	(4
20	
101 (F	
*	
á	
2	