

What Kind of Motion in Uniform B Field?

Cyclotron Motion

(1) r: radius of the circle

$$qvB = \frac{mv^2}{r} \implies r = \frac{mv}{qB}$$

(2) T: period of the motion

$$T = \frac{2\pi r}{v} = \frac{2\pi m}{qB}$$

$$\omega = 2\pi f = \frac{2\pi}{T} = \frac{qB}{m}$$

Magnetic Force on **Current-Carrying Wire**

Current is moving charges, and we know that moving charges feel a force in a magnetic field

Magnetic Force on **Current-Carrying Wire**

$$\vec{\mathbf{F}}_{B} = q\vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

$$= (\mathbf{C}) \frac{\mathbf{m}}{\mathbf{s}} \times \vec{\mathbf{B}}$$

$$= \frac{(\mathbf{C})}{\mathbf{s}} \mathbf{m} \times \vec{\mathbf{B}}$$

$$\vec{\mathbf{F}}_{B} = I(\vec{\mathbf{L}} \times \vec{\mathbf{B}})$$

Summary Magnetic Force

$$\vec{\mathbf{F}}_{B} = q\vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

$$d\mathbf{F}_{R} = Id\mathbf{\vec{s}} \times \mathbf{B}$$

$$d\vec{\mathbf{F}}_{B} = Id\vec{\mathbf{s}} \times \vec{\mathbf{B}}$$
$$\vec{\mathbf{F}}_{B} = I\left(\vec{\mathbf{L}} \times \vec{\mathbf{B}}\right)$$

Air Gap of a Magnet

- The air space between the poles of a magnet is its air gap.
- The shorter the air gap, the stronger the field in the gap for a given pole strength.

Fig. 1: The horseshoe magnet in (a) has a smaller air gap than the bar magnet in (b).

Air Gap of a Magnet

- The shorter the air gap, the more intense the field. Eliminating the air gap eliminates the external field. This concentrates the lines within the field.
- Magnets are sometimes stored with "keepers" that eliminate the external field.

Fig. 2: Example of a closed magnetic ring without any air gap. (a) Two PM horseshoe magnets with opposite poles touching.

Air Gap of a Magnet

- A toroid coil has very little external field.
- Toroid cores (doughnut shaped) are used to greatly reduce unwanted magnetic induction.

Fig. 3(b): Toroid magnet.

9

Types of Magnets

- There are two main classes of magnets:
 - An electromagnet is made up of coils of wire, and must have an external source of current to maintain a magnetic field.
 - Applications: buzzers, chimes, relays (switches whose contacts open or close by electromagnetism), tape recording.
 - A permanent magnet retains its magnetic field indefinitely.

Types of Magnets

- Classification of Magnetic and Nonmagnetic Materials
 - Magnetic materials:
 - Ferromagnetic materials include iron, steel, nickel, cobalt, and certain alloys. They become strongly magnetized in the same direction as the magnetizing field, with high values of permeability.
 - Paramagnetic materials include aluminum, platinum, manganese, and chromium. They become weakly magnetized in the same direction as the magnetizing field. The permeability is slightly more than 1.

11

Types of Magnets

- Diamagnetic materials include copper, zinc, mercury, gold, silver, and others. They become weakly magnetized in the opposite direction from the magnetizing field. The permeability is less than 1.
- Nonmagnetic materials:
 - air, paper, wood, and plastics

Ferrites

- **Ferrites** are nonmetallic materials that have the ferromagnetic properties of iron.
 - They have high permeability.
 - However, a ferrite is a non-conducting ceramic material.
 - Common applications include ferrite cores in the coils for RF transformers, and ferrite beads, which concentrate the magnetic field of the wire on which they are strung.

http://www.mag-inc.com/ferrites/ferrites.asp

13

Magnetic Shielding

- Shielding is the act of preventing one component from affecting another through their common electric or magnetic fields.
- Examples:
 - The braided copper wire shield around the inner conductor of a coaxial cable
 - A shield of magnetic material enclosing a cathode-ray tube.

How does Magnetic Shielding Work?

- When magnetic lines of flux encounter high permeability material, the magnetic forces are both absorbed by the material and redirected away from its target.
- The most effective shields are constructed as enclosures such as boxes or better yet, cylinders with end caps.

15

What is EMI?

- EMI is the abbreviation for Electro Magnetic Interference.
- EMI is an electrical or magnetic disturbance that causes unwanted interference.

P1

A proton is moving in a circular orbit of radius *14 cm* in a uniform magnetic field of magnitude *0.35 T*, directed perpendicular to the velocity of the proton. Find the orbital speed of the proton.

Solution:

Because,

$$r = \frac{mv}{qB} \implies v = \frac{rqB}{m} = \frac{(0.14 \text{ m})(1.60 \times 10^{-19} \text{ C})(0.35 \text{ T})}{(1.67 \times 10^{-27} \text{ kg})}$$
$$= \frac{(0.14 \text{ m})(1.60 \times 10^{-19} \text{ C})(0.35 \text{ kg/C.s})}{(1.67 \times 10^{-27} \text{ kg})}$$

NOTE

$$v = 4.7 \text{x} 10^6 \text{ m/s}$$

17

P2

A proton moves in a direction perpendicular to a uniform magnetic field B at 1.00×10^7 m/s and experiences an acceleration of 2.00×10^{13} m/s² in the +x direction when its velocity is in the +z direction. Determine the magnitude and direction of the field.

Solution:

F = ma =
$$(1.67 \times 10^{-27} \text{ kg})(2.00 \times 10^{13} \text{ m/s}^2)$$

= $3.34 \times 10^{-14} \text{ N}$

$$F = qvBsin90^{\circ} => B = \frac{F}{qv} = \frac{(3.34 \times 10^{-14} \text{ N})}{(1.60 \times 10^{-19} \text{ C})(1.00 \times 10^{7} \text{ m/s})}$$
$$= 2.09 \times 10^{-2} \text{ N.s/C.m} = 2.09 \times 10^{-2} \text{ N/A.m}$$
$$= 2.09 \times 10^{-2} \text{ T} = 20.9 \times 10^{-3} \text{ T}$$
$$= 20.9 \text{ mT}$$

P2 (Continue...)

From FIGURE, the right-hand rule shows that B must be in the -y direction to yield a force in the +x direction when v is in the z direction. Therefore,

FIGURE

$$\vec{\mathbf{B}} = -20.9 \; \hat{\mathbf{j}} \; \text{mT}$$

19

•A proton moving at 4.00×10^6 m/s through a magnetic field of 1.70 T experiences a magnetic force of magnitude 8.20×10^{-13} N. What is the angle between the protons velocity and the field?

•An electron is accelerated from rest by a potential difference of 350~V. It then enters a uniform magnetic field of magnitude 200~mT, its velocity being at right angles to this field. Calculate (a) the speed of the electron and (b) the radius of its path in the magnetic field.

Hall Effect

- In 1879, Edwin H. Hall, a 24-year-old graduate student at the Johns Hopkins University, showed that the drifting conduction electrons in a copper wire can also be deflected by a magnetic field.
- This Hall effect allows to find out whether the charge carriers in a conductor are positively or negatively charged.
- The number of such carriers per unit volume of the conductor can also be measured.
- Fig.1.a shows a copper strip of width d, carrying a current i whose conventional direction is from the top of the figure to the bottom.
- The charge carriers are electrons and, as we know they drift (with drift speed v_D) in the opposite direction, from bottom to top.

Fig.1.a

21

<u> Hall Effect</u>

- At the instant shown in Fig.1.a, an external magnetic field B, pointing into the plane of the figure, has just been turned on.
 - From Eq. (\$\vec{F_B}\$ = q(\$\vec{v}\$ \times \$\vec{B}\$) we see that a magnetic deflecting force \$\vec{F_B}\$ will act on each drifting electron, pushing it toward the right edge of the strip.
 - As time goes on, electrons move to the right, mostly piling up on the right edge of the strip, leaving uncompensated positive charges in fixed positions at the left edge.
 - The separation of positive and negative charges produces an electric field E within the strip, pointing from left to right in Fig.1.b.
 - This field exerts an electric force $\overline{F_E}$ on each electron, tending to push it to the left.

Fig.1.b

Hall Effect

- When this happens, as Fig.1.b shows, the force due to B and the force due t
 B are in balance.
- The drifting electrons then move along the strip toward the top of the page at velocity $\overrightarrow{v_p}$, with no further collection of electrons on the right edge of the strip and thus no further increase in the electric field \overrightarrow{E} .

- A Hall potential difference V is associated with the electric field across strip width d.
- From Eq. $(E = -\Delta V/\Delta s)$, the magnitude of that potential difference is

$$V = Ed$$

Fig.1.b

23

Hall Effect

When the electric and magnetic forces are in balance, then

$$F_E = F_B$$

$$eE = ev_D B$$
 ... (2)

As the drift speed v_D is

$$v_D = \frac{J}{ne} = \frac{i}{neA} \qquad \dots (3)$$

in which J (= I/A) is the current density in the strip, A is the cross-sectional area of the strip, and n is the number density of charge carriers (their number per unit volume). In Eq.2, substituting for E with Eq.1 and substituting for v_D with Eq.3, we obtain

$$n = \frac{Bi}{Vle} \qquad ... (4)$$

in which I = A/a) is the thickness of the strip. With this equation we can find n from measurable quantities.

