Teoría de los números II – semestre 2020-2

Sobre los números armónicos.

Cuando se aborda cualquier tema de las matemáticas, desde la perspectiva que se quiera, siempre es apropiado recordar el origen y las inquietudes que llevaron a los interesados en ellas, a observar determinados elementos que los motivaron a adentrarse posteriormente en ese tópico. Es en este contexto con el que damos inicio a la exposición de los números armónicos.

Los números armónicos son el resultado de sumas finitas de la serie armónica

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$

Los primeros resultados formales que se conocen sobre la serie armónica son los aportados por Nicolas Oresme (1320-1382). Este personaje escribió en 1360 el *De proportionibus proportionum* y allí proporciona una base teórica para el tratamiento de las relaciones y proporciones que emplean exponentes. Oresme usó métodos gráficos para encontrar la convergencia de series como:

$$\frac{1 \times 3}{4} + \frac{2 \times 3}{16} + \frac{3 \times 3}{64} + \frac{n \times 3}{4^n} + \dots = \frac{4}{3}$$

$$\frac{a}{n} + \frac{a}{n} \left(1 - \frac{1}{n} \right) + \frac{a}{n} \left(1 - \frac{1}{n} \right)^2 + \dots + \frac{a}{n} \left(1 - \frac{1}{n} \right)^n = a,$$

y en otro de sus estudios trató el tema de las series, éste es el *Questiones super geometriam Euclides*, donde demostró por primera vez que la serie armónica

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots \text{ es divergente.}$$

Fue hasta mediados del siglo XVIII cuando Leonhard Euler tuvo la necesidad de trabajar con sumas parciales finitas de la serie armónica, y en 1730 se adentró en el estudio de encontrar la convergencia de la serie

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots,$$

que es lo que hoy se conoce como el problema de Basilea; por otro lado, también se enfrentó a una función que hoy conocemos como Gamma. Estas dos rutas llevaron a Euler a tener que usar sumas parciales finitas de la serie armónica, pero fue hasta *Institutiones Calculi Differentialis* (1755 Parte II, cap. VI) donde dedicó una parte del capítulo a la construcción de la suma

$$\sum_{n=1}^{m} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{m},$$

y de manera ejemplar enunció un resultado que se expresa en términos de números de Bernoulli, pero esto lo retomaremos más adelante.

1.1Naturaleza de los números armónicos.

Ya se mencionó que los números armónicos son sumas parciales de la serie $\sum_{k=1}^{\infty} \frac{1}{k}$. Entonces, para cada n en $\sum_{k=1}^{n} \frac{1}{k}$ designamos la notación H_n , a la que identificamos como el n-ésimo número armónico. A continuación, se presentan los primeros n números armónicos:

$$\begin{split} H_1 &= 1 \\ H_2 &= 1 + \frac{1}{2} \\ H_3 &= 1 + \frac{1}{2} + \frac{1}{3} \\ \vdots \\ H_{n-1} &= 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} \\ H_n &= 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} + \frac{1}{n}, \text{ con } n \in \mathbb{N}. \end{split}$$

Acto seguido, la primera pregunta que nos hacemos es ¿cuál es el valor de la suma? para cada número armónico. Sabemos que cada H_n es un racional y el camino más apropiado para obtenerlo cuando n es grande puede ser el de las aproximaciones. En ocasiones es necesario saber el valor exacto de H_n (que es fácil llegar a él para n pequeña), sin embargo, al estudiar a los números armónicos es muy valioso estudiar las aproximaciones ya que éstas nos

permiten conocer más de la naturaleza de los mismos. A continuación, se construirán algunas cotas que serán de utilidad para poder llegar a dichas aproximaciones de H_n .

1.2 Aproximaciones

Una manera interesante de recorrer esta ruta es con el uso de logaritmos y para esto es recomendable tener presente que:

$$\ln(n) = \int_{1}^{n} \frac{1}{x} dx.$$

Veamos que el teorema que sigue nos proporciona una manera de acotar al logaritmo de n, y se hará a través de los números armónicos. Esto nos aportará lo necesario para que posteriormente podamos obtener una primera aproximación de H_n .

Teorema (1)

 $H_n - 1 < \ln(n) < H_{n-1}$ para toda n > 1 en los enteros positivos.

Demostración: Primera parte

Primero demostraremos la desigualdad:

$$H_n - 1 < \ln(n)$$

y lo haremos con base en la comparación de las representaciones geométricas, tanto de $H_n - 1$ como de $\ln(n) = \int_1^n \frac{1}{x} dx$, es decir, recurriremos al área bajo la curva de $y = \frac{1}{x}$ en el intervalo [1, n].

Sabemos que $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, y de esto se obtiene que

$$H_n - 1 = \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

Ahora, pasamos a representar geométricamente a H_n-1 . Para esto colocamos rectángulos de ancho uno sobre el eje x, en el intervalo [1,n] (Ver Figura 1.1); y en lo que corresponde al eje de y se levantan las alturas $\frac{1}{2},\frac{1}{3},\frac{1}{4},\dots,\frac{1}{n}$, de esta forma se consiguen n-1 rectángulos de áreas $\frac{1}{2},\frac{1}{3},\frac{1}{4},\dots,\frac{1}{n}$, cuya suma de sus áreas es igual a H_n-1 .

A continuación comparamos el área bajo la curva $y=\frac{1}{x}$ en el intervalo [1,n], con la suma delas áreas de los n-1 rectángulos, que representan a H_n-1 . Como se muestra en la Figura 1.1, H_n-1 es menor que el área bajo la curva $y=\frac{1}{x}$ en dicho intervalo. De esta forma queda demostrado que $H_n-1<\ln(n)$.

Figura 1.1. Comparacion entre el área que representa H_{n-1} y la que representa $\ln(n)$.

Segunda parte

Se demostrará que $\ln(n) < H_{n-1}$. La ruta a seguir es semejante a lo hecho en la demostración anterior. Considérense nuevamente rectángulos sobre el intervalo [1, n] con ancho 1, pero ahora el primero de ellos tiene altura 1 (Fig. 1.2), el segundo $\frac{1}{2}$, y así hasta el n-1 rectángulo con altura $\frac{1}{n-1}$. Entonces la suma de las áreas es igual a

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$$

que representa a H_{n-1} .

Figura 1.2. Comparación entre el área que represente H_{n-1} y la que representa $\ln(n)$.

En la Figura 1.2 se aprecia la representación de los rectángulos, pero si comparamos a la suma de las áreas de los rectángulos con el $\ln(n)$, esto es, con $\ln(n) = \int_1^n \frac{1}{x} dx$, entonces el área de todos los rectángulos es superior al área bajo la curva $y = \frac{1}{x}$, por lo se tiene que $\ln(n) < H_{n-1}$.

CDMX 23 de marzo de 2020

La próxima clase veremos este teorema:

Teorema (2)

Demostrar que $H_n = \ln(n) + O(1)$ para $n \ge 1$.

Que nos proporciona una aproximación para el *n*-ésimo armónico.