## Van der Waerden's Theorem - Part 2

- 1. **Quote.** Mathematics is really there for you to discover.
  - Ron Graham, American mathematician, 1935 -
- 2. Van der Waerden's Theorem any number of colours, length 3: Let  $k \in \mathbb{N}$ . Any k-colouring of positive integers contains a monochromatic 3-term arithmetic progression. Moreover, there is a natural number N such that any k colouring of the segment of positive integers [1, N] contains a monochromatic 3-term arithmetic progression.
  - (a) **Note:** The smallest N guaranteed by the theorem is annotated by W(3, k).
  - (b) **Proof the main tool: Colour-focused arithmetic progressions and spikes:** Let c be a finite colouring of an interval of positive integers [1, m] and  $l, r \in \mathbb{N}$ . We say that the set of l-term arithmetic progressions  $A_1, A_2, \ldots, A_r$ , i.e., for all  $i \in [1, r]$  we have, for some  $a_i, d_i \in \mathbb{N}$ ,

$$A_i = \{a_i + jd_i : j \in [0, l-1]\}$$

is *colour-focused* at  $f \in \mathbb{N}$  if

- i.  $A_i \subseteq [1, m]$  for each  $i \in [1, r]$ .
- ii. Each  $A_i$  is monochromatic.
- iii. If  $i \neq j$  the  $A_i$  and  $A_j$  are not of the same colour.

iv.

$$a_1 + ld_1 = a_2 + ld_2 = \cdots = a_r + id_r = f$$
.

We call elements of a colour-focussed set spikes.



Figure 1:  $\{1,4\}$  and  $\{3,5\}$  are *colour-focussed* at 7.

(c) **Proof - a detail:** What happens when r = k?



Figure 2: What happens when r = k? Do you see how a monochromatic 3-term arithmetic progression emerges?

- 3. **Baudet's Conjecture:** If the sequence of integers  $1, 2, 3, \ldots$  is divided into two classes, at least one of the classes contains an arithmetic progression of l terms, no matter how large the length l is.
- 4. Van der Waerden's Theorem two colours, any length: If the sequence of integers  $1, 2, 3, \ldots$  is divided into two classes, at least one of the classes contains an arithmetic progression of l terms, no matter how large the length l is.
- 5. Van der Waerden's Theorem any number of colours, any length: Let  $l, k \in \mathbb{N}$ . Any k-colouring of positive integers contains a monochromatic l-term arithmetic progression. Moreover, there is a natural number N such that any k-colouring of the segment of positive integers [1, N] contains a monochromatic l-term arithmetic progression.

6. **Note:** The smallest N guaranteed by the theorem is annotated by W(l, k). We have seen that W(3, 2) = 9 and that W(3, k) exists for any  $k \in \mathbb{N}$ .

## 7. **Proof:**

- (a) **Strategy:** We use induction on l.
- (b) **The base case:** We already know that W(l, k) exists if  $l \le 3$  and  $k \in \mathbb{N}$ , i.e., that the claim of the theorem is true for l = 1, 2, 3.
- (c) **The inductive step:** Let  $l \ge 4$  be such that W(l-1,k) exists for all k.

i. Claim: For all  $r \le k$ , there exists a natural number M such that whenever [1, M] is k-coloured, either there exists a monochromatic l-term arithmetic progression or there exist r coloured-focussed (l-1)-term arithmetic progressions.

A. The base case: Let r = 1 and let M = 2W(l - 1, k). Any k-colouring of [1, M] contains or a monochromatic l-term arithmetic progression or at least **one** coloured-focused (l - 1)-term arithmetic progression focused at some  $f \in [1, M]$ .



Figure 3: Any k-colouring of the set [1, M] produces or a monochromatic l-term arithmetic progression or **one** coloured-focused (l-1)-term arithmetic progression.

B. The inductive step: Suppose that  $r \in [2, k]$  is such that there is an M such that any k-colouring of [1, M] contains a monochromatic l-term arithmetic progression or r - 1 'spikes', i.e., r - 1 colour focussed (l - 1)-term arithmetic progressions.



Figure 4: Where are you?

C. Observe that any k-colouring of [1, 2M] contains or a monochromatic l-term arithmetic progression or at least r-1 coloured-focused (l-1)-term arithmetic progression focused at some  $f \in [1, 2M]$ .



Figure 5: There are r-1 spikes.

D. Consider the interval of positive integers  $[1, 2M \cdot W(l-1, k^{2M})]$ . (How do we know that  $W(l-1, k^{2M})$  exists?)

Divide this interval into  $W(l-1,k^{2M})$  consecutive blocks  $B_i, 1 \le i \le W(l-1,k^{2M})$ , of length 2M.



Figure 6: The interval  $[1, 2M \cdot W(l-1, k^{2M})]$  is divided into  $W(l-1, k^{2M})$  consecutive blocks  $B_i$ ,  $1 \le i \le W(l-1, k^{2M})$ , of length 2M.

E. Why 
$$W(l-1, k^{2M})$$
?

F. Suppose that c is a k-colouring of  $[1, 2M \cdot W(l-1, k^{2M})]$  that does not contain a monochromatic l-term arithmetic progression. Each block  $B_i$  is k-coloured in one of the possible  $k^{2M}$  ways.



Figure 7: The k-colouring c of  $[1, 2M \cdot W(l-1, k^{2M})]$  induces a  $k^{2M}$ -colouring of  $[1, W(l-1, k^{2M})]$ .

G. Any  $k^{2M}$ -colouring of  $[1, W(l-1, k^{2M})]$  contains a monochromatic (l-1)-term arithmetic progression.



Figure 8: The  $k^{2M}$ -colouring of  $[1, W(l-1, k^{2M})]$  induced by the colouring c contains a monochromatic (l-1)-term arithmetic progression. This means that there are l-1 blocks  $B_{i_j}$ ,  $1 \le j \le l-1$ , that are coloured by c in the same way and they are equally spaced between each other.

- H. Every  $B_{i_j}$ ,  $1 \le j \le l 1$ :
  - is *k*-coloured the same way
  - contains r-1 spikes (monochromatic (l-1)-term arithmetic progressions) together with their focus. Note that there are no two spikes of the same colour (by definition!) and that the focus is of a different colour. (Why?)
- I. The key step! The rth spike appears!



Figure 9: The  $k^{2M}$ -colouring of  $[1, W(l-1, k^{2M})]$  induced by the colouring c contains a monochromatic (l-1)-term arithmetic progression. This means that there are l-1 blocks  $B_{i_j}$ ,  $1 \le j \le l-1$ , that are coloured by c in the same way and they are equally spaced between each other.

Take a closer look:



Figure 10: Do you see how r - 1 initial spikes generate r new spikes?

## ii. Where are we?



Figure 11: Almost there!

## iii. Let r = k:



Figure 12: Done!