Analyze the Healthcare cost and Utilization in Wisconsin hospitals

```
getwd() ## to see which is our current working directory
```

Reading the data from the csv file

Hospital <- read.csv("HospitalCosts.csv")

View(Hospital) ## first look at the dataset for further analysis

str(Hospital) ## structure of the dataset

dim(Hospital) ## get dimension of the dataset

1 To record the patient statistics, the agency wants to find the age category of people who frequent the hospital and has the maximum expenditure

library(tidyverse) ## loading required package for visualization

Let's create a histogram which shows the counts of age category which is frequent in the hospital

```
Hospital_Histogram <- ggplot(data = Hospital, mapping = aes(x = AGE)) + geom_histogram(color = "black", fill = "green") + ggtitle("Frequency of Hospital visits by age")
```

Hospital Histogram

age <- as.factor(Hospital\$AGE) # convering age into factor for further analysis

summary(age)

from histogram and summary we can see that 0 or newborns has maximum visits 307 in the hospital

Now we will use the aggregate function to see which age category has maximum expenditure

```
cost <- aggregate(TOTCHG~AGE, FUN = sum, data = Hospital)
```

cost

cost[which.max(cost\$TOTCHG),] ## to get which is the maximum

Also from above analysis we found that age 0 or newborns have maximum expenditure

##2 find the diagnosis related group that has maximum hospitalization and expenditure

Here we will also create a histogram to see which diagnosis related group has maximum hospitalization

```
aprdrg_histogram <- ggplot(data = Hospital, mapping = aes(x = APRDRG)) +
geom_histogram(color = "black", fill = "blue") +
ggtitle("Frequency of Diagnosis Related Groups")</pre>
```

aprdrg_histogram

```
aprdrg <- as.factor(Hospital$APRDRG)
summary(aprdrg)
which.max(summary(aprdrg))
## So from above analysis the diagnosis related group 640 has maximum hospitalization compared
to other
## Let's check which diagnosis related group has maximum expenditure using the same aggregate
function
Treatment_cost <- aggregate(TOTCHG~APRDRG, FUN = sum, data = Hospital)
Treatment cost
Treatment_cost[which.max(Treatment_cost$TOTCHG),]
## Here we found that diagnosis related group 640 has maximum hospitalization as well as
maximum expenditure of 437978
## 3 To make sure that there is no malpractice, the agency needs to analyze if the race of the
patient is related to the hospitalization costs
## Lets check if there is any missing values in data ##
sum(is.na(Hospital))
View(Hospital[is.na(Hospital)])
## So we found that there is only one missing value and also we can use following function to remove
any missing data ##
Hospital <- na.omit(Hospital)
dim(Hospital)
Hospital$RACE <- as.factor(Hospital$RACE)
## We will use ANOVA Table to check if RACE of the patient is related to the hospitalization costs.
race_anova <- aov(TOTCHG~RACE, data = Hospital)
race_anova
summary(race_anova)
summary(Hospital$RACE)
```

As the P value is very high so there is no relationship between the race and hospital cost.

Also from summary of race we found that RACE 1 has max number of records = 484 out of 500 so maybe there is no sufficient data of other RACES to see if there is any effect of RACE on hospital costs.

4 To properly utilize the costs, the agency has to analyze the severity of the hospital costs by age and gender for proper allocation of resources.

Here we will use basic linear regression function Im to analyze if AGE and GENDER has any effect on cost

Hospital\$FEMALE <- as.factor(Hospital\$FEMALE)

Severity model <- Im(formula = TOTCHG~AGE+FEMALE, data = Hospital)

summary(Severity_model)

summary(Hospital\$FEMALE)

By looking at the summary of the model we found that age has more impact than gender on the hospital cost as per the p-values. Also the summary of Gender shows there are 244 Male and 245 Female which are almost equal

Let's explore further using ANOVA function to analyze

Severity_anova <- aov(TOTCHG~AGE+FEMALE, data = Hospital)

Severity_anova

summary(Severity_anova)

Here also the ANOVA table shows that AGE has more impact than GENDER on the hospital costs

5 Since the length of stay is the crucial factor for inpatients, the agency wants to find if the length of stay can be predicted from AGE, GENDER, and RACE.

We will use the same linear regression method to analyze if the length of stay can be predicted from age, gender, and race

Hospital\$RACE <- as.factor(Hospital\$RACE)

LOS model <- Im(formula = LOS~AGE+FEMALE+RACE, data = Hospital)

summary(LOS_model)

from above analysis we found that the p-values are high for AGE, GENDER and RACE so we can say that there is no relationship found that can predict the length of stay of a patient based on AGE, GENDER and RACE.

6 To perform a complete analysis, the agency wants to find the variable that mainly affects the hospital costs.

Complete_Analysis <- Im(formula = TOTCHG~., data = Hospital)

summary(Complete_Analysis)

from above analysis model we can see that AGE and LOS has main effect on the hospital cost