Листок № 7

Литература: boolean, main, compactness.

- 1. Найдите мощность множества всех булевых функций.
- 2. Вспомните определение пропозициональной формулы: инфиксный («естественный») и префиксный варианты (в т. ч. с произвольным множеством связок). Рассмотрев несколько выражений, определите, какие из них являются формулами. Для обоснования используйте теорию индуктивных определений.
- **3.** Вспомните определение свойства однозначности разбора. Зачем нужно такое свойство? Вспомните определения функции V (множество атомов, имеющих свободные вхождения в формулу), значения формулы при оценке и на наборе. Вычислите значения нескольких формул.
- 4^* . Докажите, что язык пропозициональных формул в инфиксной записи является беспрефиксным и выведите отсюда свойство однозначности разбора для соответствующего определения.
- **5.** В каком смысле формула задает булеву функцию? Почему при этом существен порядок переменных и каков его «программистский» смысл?
- **6.** Что такое д. н. ф. и к. н. ф.? Приведите несколько примеров и контрпримеров. Как могут быть устроены формулы, одновременно являющиеся тем и другим?
- 7. Постройте таблицу истинности формулы φ и найдите эквивалентные ей д. н. ф. и к. н. ф., где

$$\varphi = (\neg p \to (q \lor \neg r)) \land ((q \lor p) \to (r \land p)).$$

- **8.** Верно ли, что каждая формула эквивалентна некоторой формуле, где из связок есть лишь:
 - а) ∧ и ¬;
 - б) \wedge , \vee и \rightarrow ;
 - $B) \wedge H \rightarrow$;
 - Γ) $\neg \mu \rightarrow ?$
 - 9. Выполнены ли следующие эквивалентности:
 - a) $\varphi \vee (\varphi \wedge \psi) \equiv \varphi$;
 - $6) \ \neg(\varphi \to \psi) \equiv \neg\psi \land \varphi;$
 - B) $\varphi \to \psi \equiv \neg \varphi \lor \psi$;
 - Γ) $\varphi \wedge \top \equiv \varphi$;
 - д) $\varphi \lor \bot \equiv \varphi$;
 - e) $\varphi \to \psi \equiv \neg \psi \to \neg \varphi$;

ж)
$$\varphi \to \neg \psi \equiv \neg \psi \to \neg \neg \varphi$$
;

3)
$$\varphi \to (\psi \to \theta) \equiv (\varphi \land \psi) \to \theta$$
?

10. Верно ли, что существует единственная функция ()*: $\operatorname{Fm}(\neg, \wedge, \vee) \to \operatorname{Fm}(\neg, \wedge, \vee)$, т. ч. для всех $p \in \operatorname{At}$ и $\varphi, \psi \in \operatorname{Fm}(\neg, \wedge, \vee)$ верно:

•
$$p^* = p$$
;

$$\bullet \ (\neg \varphi)^* = \neg \varphi^*;$$

•
$$(\varphi \wedge \psi)^* = \varphi^* \vee \psi^*$$
;

•
$$(\varphi \vee \psi)^* = \varphi^* \wedge \psi^*$$
?

Формула φ^* называется двойственной формуле φ .

11. Докажите, что для всех формул $\varphi, \psi \in \operatorname{Fm}(\neg, \land, \lor)$ и всех оценок $\xi \colon \operatorname{At} \to \underline{2}$ верно:

a)
$$(\varphi^*)^* = \varphi$$
;

б)
$$[\varphi](\xi) = [\neg \varphi^*](\xi^*)$$
, где $\xi^* = \text{not} \circ \xi$;

в)
$$\varphi \equiv \psi$$
 равносильно $\varphi^* \equiv \psi^*$;

- г) φ тавтология тогда и только тогда, когда φ^* невыполнима.
- **12.** Используя двойственность и соответствующий результат для д. н. ф., докажите, что каждая каждая формула эквивалентна некоторой к. н. ф.
- **13.** Формализуйте следующее рассуждение¹ с помощью пропозициональных формул и проверьте его на корректность:

Если инвестиции останутся постоянными, то вырастут правительственные расходы или возникнет безработица. Если правительственные расходы не вырастут, то налоги будут снижены. Если налоги будут снижены и инвестиции останутся постоянными, то безработица не возникнет. Следовательно, правительственные расходы вырастут.

14. Предположив существование опровергающей оценки, проверьте, являются ли следующие формулы тавтологиями:

a)
$$((p \to q) \to p) \to p$$
;

$$6) (p \to r) \to ((p \to q) \to (r \to q)).$$

15. Существует ли формула A, т. ч. обе формулы:

¹из книги С. Клини «Математическая логика».

- а) $(p \land A) \rightarrow (p \rightarrow q)$ и $(p \lor r) \rightarrow (p \lor A)$;
- б) $(p \lor A) \to (p \lor (q \to r))$ и $(r \to p) \to (q \land A)$

являются тавтологиями?

- 16. Укажите просто проверяемый критерий:
- а) тавтологичности к. н. ф.;
- б) выполнимости д. н. ф.
- **17.** Вычислите значение нескольких формул при подстановках вида $[\psi/q]$.
- 18. Докажите, что подстановки, вообще говоря, не коммутируют.
- **19.** Дайте рекурсивное определение одновременной подстановки $(\cdot)[\psi_1/q_1,\ldots,\psi_n/q_n]$.
- **20.** Покажите, как можно обойтись без одновременных подстановок, используя лишь подстановки вида $[\psi/q]$ и некоторый запас «свежих», не встречающихся в рассматриваемых формулах атомов. Иначе говоря, докажите, что для любых $q_1, \ldots, q_n \in \operatorname{At}$ и $\varphi, \psi_1, \ldots, \psi_n \in \operatorname{Fm}(\hat{F})$ существуют $r_1, \ldots, r_m \in \operatorname{At}$ и $\theta_1, \ldots, \theta_m \in \operatorname{Fm}(\hat{F})$, т. ч.

$$\varphi[\psi_1/q_1,\ldots,\psi_n/q_n]=\varphi[\theta_1/r_1]\ldots[\theta_m/r_m].$$

Назовем абстрактной подстановкой любую функцию $\sigma\colon \mathrm{Fm} \to \mathrm{Fm}$, коммутирующую со связками:

$$\sigma(\hat{f}\varphi_1\dots\varphi_n)=\hat{f}\sigma(\varphi_1)\dots\sigma(\varphi_n).$$

- **21.** Докажите, что любая абстрактная подстановка σ выражается через одновременную в следующем смысле: для любых $q_1, \ldots, q_n \in \text{At}$ существуют формулы $\psi_1, \ldots, \psi_n \in \text{Fm т. ч. } \sigma(\varphi) = \varphi[\psi_1/q_1, \ldots, \psi_n/q_n]$ для каждой $\varphi \in \text{Fm}(\vec{q})$.
 - 22. Проверьте следующие свойства логического следования:
 - a) $\Gamma, \psi \models \varphi \iff \Gamma \models \psi \rightarrow \varphi$;
 - 6) $\Gamma, \psi_1, \psi_2, \dots, \psi_n \models \varphi \iff \Gamma \models \psi_1 \rightarrow (\psi_2 \rightarrow (\dots (\psi_n \rightarrow \varphi) \dots));$
 - B) $\Gamma, \psi_1, \psi_2, \dots, \psi_n \models \varphi \iff \Gamma \models (\psi_1 \land \psi_2 \land \dots \land \psi_n) \rightarrow \varphi$;
 - Γ) Γ , $\varphi \models \varphi$;
 - д) $\Gamma \models \varphi$ и $\Gamma \models \psi \iff \Gamma \models \varphi \land \psi$;
 - e) $\Gamma, \varphi, \psi \models \theta \iff \Gamma, \varphi \land \psi \models \theta$;
 - ж) $\Gamma \models \varphi$ или $\Gamma \models \psi \Longrightarrow \Gamma \models \varphi \lor \psi$;
 - 3) $\Gamma, \varphi \models \theta$ и $\Gamma, \psi \models \theta \iff \Gamma, \varphi \lor \psi \models \theta$;
 - и) $\Gamma \models \varphi$ и $\Gamma, \psi \models \theta \Longrightarrow \Gamma, \varphi \to \psi \models \theta$:

- к) $\Gamma, \varphi \models \bot \iff \Gamma \models \neg \varphi;$
- л) $\Gamma \models \varphi$ и $\Gamma \subseteq \Delta \Longrightarrow \Delta \models \varphi$;
- м) $\Gamma \models \varphi$ и $\Delta \models \gamma$ для всех $\gamma \in \Gamma \Longrightarrow \Delta \models \varphi$.
- **23.** Граф G=(V,E) называется k-дольным, где $k\in\mathbb{N}_+$, если существуют попарно непересекающиеся множества V_1,\ldots,V_k , в объединении дающие V, т. ч. из $x,y\in V_i$ следует $xy\notin E$ для всех i. Используя теорему о компактности, докажите, что граф является k-дольным тогда и только тогда, когда каждый конечный его подграф k-дольный.
- 24. Докажите, не используя никакой формы аксиомы выбора, что на конечном множестве любой порядок можно продолжить до линейного.
- **25.** Используя теорему о компактности, докажите, что на счетном множестве любой порядок можно продолжить до линейного.
- **26***. Решите задачу про черта и купца с помощью теоремы о компактности. (Можно вывести лемму Кёнига в качестве промежуточного шага.)

Пусть U есть некоторое непустое множество. Рассматриваем теоретико-множественную интерпретацию формул из $\operatorname{Fm}(\neg, \wedge)$ над U.

- 27. Вычислите значения нескольких формул в такой интерпретации.
- **28.** Докажите, что формула φ является U-тавтологией тогда и только тогда, когда $\neg \varphi$ не U-выполнима. Выразите U-эквивалентность через U-тавтологии.
- **29.** Докажите, что φ является U-выполнимой тогда и только тогда, когда φ выполнима.
- **30.** Докажите, что φ является U-выполнимой тогда и только тогда, когда при некоторой U-оценке α верно $[\varphi](\alpha)=U$.
- **31.** Докажите, что φ является U-тавтологией тогда и только тогда, когда φ тавтология.
 - **32.** Докажите, что $\varphi \equiv_U \psi$ равносильно $\varphi \equiv \psi$.
- **33.** Объясните, как можно дать теоретико-множественную интерпретацию формуле над любым множеством связок.
- **34.** Используя построенную теорию, докажите, что если какое-то равенство, построенное с помощью символов операций \cap , \cup и $\overline{(\cdot)}$ из букв A_1, \ldots, A_n , не является тождеством, то его всегда можно опровергнуть, придав буквам значение пустого множества и некоторого синглетона.
- **35.** Докажите, что если какое-то выражение, построенное с помощью символов операций \cap , \cup и $\overline{(\cdot)}$ из букв A_1, \ldots, A_n , не равно тождественно пустому множеству, то в любом непустом универсуме U можно выбрать множества A_1, \ldots, A_n так, что значение выражения будет все U.
- **36.** Объясните, какую роль играет требование непустоты U и что будет, если его отбросить.