

Autor:

Andrés Delgado Domínguez

Tutores:

José Manuel Quero Reboul,

Francisco Antonio Perdigones Sánchez

Fecha:

12 /02/2025

Diseño, desarrollo, calibración y validación de

un espectrómetro portátil

Departamento de Electrónica

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Índice

Fundamentos

- Espectrometría.
- Espectrómetro.
- Ley de Lambert beer.
- Fluorescencia.
- Amplificación de AND mediante PRC y LAMP.
- Lab-on-chip.

Evaluación

- Caracterización de los ensayos.
- Prueba para espectrometría de emisión.
- Prueba para espectrometría de absorción.

Mediciones

- Medidas de ensayos PCR.
- Medidas de ensayos LAMP.

Fototranstistor

- Disposición del equipamiento.
- Medición de fuentes lumínicas.
- Primer ensayo.
- Diseño del circuito.
- Ensayo acondicionado.

Conclusiones

- Conclusiones.
- mejoras.

Espectrometría

Espectro continuo

• En el TFG asociado a fuentes lumínicas.

Fundamentos

Espectrómetro

Algunos parámetros de interés:

☐ Rango de respuesta espectral: [340,850]nm

☐ Resolución espectral: Typ 12, Max 15nm

Ley de Lamber-Beer.

$$T(\%) = \frac{I}{I_0} \cdot 100; T = \frac{I}{I_0}; \forall T \in [0,1]$$

Fundamentos

Fluorescencia

Diagrama de Jablobski

Estados fundamental
Estados excitados

Absorción
Fluorescencia
Fosforescencia
Cruce entre sistemas
Conversión interna
Relajación vibracional

Amplificación de ADN

PCR (Polymerase Chain Reaction)

- Variación de la temperatura en el proceso.
- ❖ Agente intercalante de ADN fluorescente: "SYBRSafe DNA gel Stai".
- ❖ Detección mediante espectrometría de emisión (fluorescencia).
 Absorción máxima en 502nm, emisión en torno a 530nm.

LAMP (Loop-mediated isothermal amplification)

- Proceso isotérmico.
- ❖ WarmStart® Colorimetric LAMP 2X Master Mix with UDG.
- ❖ Detección mediante espectrometría de absorción. Absorbancia máxima en 430 y 560nm.

Caracterización de los ensayos

Diagrama de flujo para la toma de muestras:

Entorno físico adecuado

Aplicación del Software y volcado de datos.

Interpretación de resultados

Caracterización de los ensayos

Diagrama de flujo para la toma de muestras:

Entorno físico adecuado

Aplicación del Software y volcado de datos.

Interpretación de resultados

Ensayo para espectrometría de emisión.

LEDs Azul y Verde

Modelo C503B-BCS/BCN/GCS/GCN

Coincidendia de resultados teóricos y prácticos

Resultados del espectrómetro

Hoja de datos del fabricante

	Dominant Wavelength		
Color	Min. (nm)	Max. (nm)	
Blue	465	480	
Blue	465	475	
Blue	465	475	
Green	520	535	
Green	520	530	
Green	525	535	
Green	520	530	

Ensayo para espectrometría de absorción.

DMEM con Phenol RED

Gráfica de resultados de Transmitancia con uso del espectrómetro

Ensayo para espectrometría de absorción.

Absorbancia de resultados medidos con espectrómetro

Coincidendia parcial de resultados teóricos y prácticos

Absorbancia teórica para diferentes niveles de PH

Medición ensayo PCR hiperdopado

Medición ensayo LAMP.

Determinar picos de absorbancia reales

Determinar la mejor fuente lumínica

Medición ensayo LAMP.

Longitud de onda (nm)	Control	Naranja	Positivo
433,40	1,14	1,13	1,22
435,94	1,13	1,13	1,22
558,99	1,12	0,91	0,79
561,26	1,10	0,90	0,79
Promedio			
Longitud de onda (nm)	Control	Naranja	Positivo
434,67	1,13	1,13	1,22
560,12	1,11	0,91	0,79

Determinar picos de absorbancia reales

Determinar la mejor fuente lumínica

Medición ensayo LAMP. LED 430nm

Absorbancia

Medición ensayo LAMP. LED 560nm

Absorbancia

Medición ensayo LAMP. LED 560nm

Tabla Absorbancia LAMP para LED 430nm

Long. de onda (nm)	Control	Naranja	Positivo
410,33	0,19	0,38	0,48
412,91	0,20	0,38	0,486
415,48	0,21	0,38	0,49
418,05	0,22	0,37	0,49
420,62	0,22	0,36	0,48
423,18	0,23	0,36	0,48
433,40	0,22	0,34	0,45
435,97	0,21	0,33	0,43
Promedio			
Long. de onda (nm)	Control	Naranja	Positivo
416,76	0,21	0,37	0,49
434,67	0,22	0,33	0,44

Determinar picos de absorbancia reales

Determinar la mejor fuente lumínica

Tabla Absorbancia LAMP para LED 560nm

Long. de onda (nm)	Control	Naranja	Positivo
549,84	0,99	0,65	0,57
552,14	1	0,65	0,55
554,43	0,95	0,57	0,47
558,99	0,76	0,38	0,28
561,26	0,66	0,28	0,19
Promedio			
Long. de onda (nm)	Control	Naranja	Positivo
552,14	0,98	0,62	0,53
560,12	0,71	0,33	0,23

Tabla comparativa de Resultados

Long. de onda (nm)	Positivo-	Naranja-	Positivo-
	Control	Control	Naranja
552,14	0,45	0,36	0,09
560,12	0,48	0,38	0,1
416,76	0,28	0,16	0,12
434,67	0,22	0,11	0,11

Disposición del equipamiento

Medición de fuentes lumínicas

Estadísticos	Control	Positivo
Rango	26	20
Varianza	55,33	26
Desviación estándar	7,15	5,02
Rango	10	12
Varianza	5,70	4,41
Desviación estándar	2,39	2,10

Primer ensayo

Ensayo realizado en tiempo real, SNR de 4,86dB con muestra en positivo.

Diseño del circuito

Circuito de amplificación y filtrado

Ensayo acondicionado

Ensayo realizado en tiempo real, SNR de 14,33dB con muestra en positivo.

Conclusiones

Ensayo de PCR

 Se detecta el efecto de la fluorescencia, pero sólo en muestras hiperdopadas.

Circuito auxiliar

- Se consigue atenuar el ruido, mejor SNR
- Se consigue amplificar señal a más del doble, aún así mejorable.

Ensayo de LAMP

- El espectrómetro diferencia entre tipos de muestras
- Uso de espectrómetro resulta ser una solución sobredimensionada

Fototransistor

- El fototransistor resulta ser favorable. Detecta con precisión entre tipos de muestras.
- La iluminación adecuada en torno a 560nm

Mejoras

4. Análisis de visibilidad materiales LOC.

5. Realizar más ensayos. Consolidar resultados.

1. Mejorar el circuito de iluminación.

4

(5)

6

2

6. Estudiar el efecto del aumento de temperatura en el funcionamiento del sistema.

2. Mejorar el sistema de alimentación del circuito.

3. Calibrar valores del circuito de amplificación y filtrado.