公式

1

1 公式

1.1 二维邻域

以点 $P_0(x_0, y_0)$ 为圆心, δ 为半径围成一个圆。圆内所有的点 (不包括圆的边) 的集合称为 P_0 的 δ 邻域,记为 $U(P_0, \delta)$

1.2 二元函数

- 二元函数 z = f(x, y) 的图像在三维坐标里是曲面
- 二元函数的可导与连续无关

1.3 二元函数的极限

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = A$$

注意: 二元函数求极限不能使用洛必达法则和单调有界准则

若
$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y) = f(x_0,y_0)$$
,则 $f(x,y)$ 在点 (x_0,y_0) 连续

1.4 偏导数

偏导数的定义

$$\begin{split} f_x^{'}(x_0,y_0) &= \lim_{x \to x_0} \frac{f(x,y_0) - f(x_0,y_0)}{x - x_0} \\ f_y^{'}(x_0,y_0) &= \lim_{y \to y_0} \frac{f(x_0,y) - f(x_0,y_0)}{y - y_0} \end{split}$$

求偏导数

1、对x 求偏导:将y 看作常数后再对x 求导

2、对 y 求偏导:将 x 看作常数后再对 y 求导

偏导数的几何意义

设 $M_0(x_0, y_0, f(x_0, y_0))$ 为曲面 z = f(x, y) 上的一点,过 M_0 作平面

y = y₀ , 与曲面相截 得一条曲线,其方程为

$$\begin{cases} y = y_0 \\ z = f(x, y_0) \end{cases}$$

而偏导数 $f_x(x_0, y_0)$ 显然就是导数

$$\frac{d}{dx}f(x,y_0)\bigg|_{x=x_0}$$

在几何上,它代表该曲 线在点 M_0 处的切线 M_0T_x 对 x 轴的斜率

$$tg\alpha = f_x(x_0, y_0)$$

1.5 二阶偏导数

按照对变量的求导顺序不同, 二阶偏导数有以下四个

1,
$$\frac{\partial}{\partial x}(\frac{\partial z}{\partial x}) = \frac{\partial^2 z}{\partial x^2} = f_{xx}^{"}(x,y)$$

2.
$$\frac{\partial}{\partial y}(\frac{\partial z}{\partial x}) = \frac{\partial^2 z}{\partial x \partial y} = f''_{xy}(x,y)$$

3.
$$\frac{\partial}{\partial x}(\frac{\partial z}{\partial y}) = \frac{\partial^2 z}{\partial y \partial x} = f''_{yx}(x,y)$$

4.
$$\frac{\partial}{\partial y}(\frac{\partial z}{\partial y}) = \frac{\partial^2 z}{\partial y^2} = f''_{yy}(x,y)$$

其中 $\frac{\partial^2 z}{\partial x \partial y}$ 和 $\frac{\partial^2 z}{\partial y \partial x}$ 称为混合偏导数

定理

若 z = f(x,y) 的两个二阶混合偏导数 $\frac{\partial^2 z}{\partial x \partial y}$ 和 $\frac{\partial^2 z}{\partial y \partial x}$ 在点 (x_0,y_0) 处连续,则 $\frac{\partial^2 z}{\partial x \partial y}|_{(x_0,y_0)} = \frac{\partial^2 z}{\partial y \partial x}|_{(x_0,y_0)}$

1.6 全微分

设 z = f(x,y),若全增量 $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ 可表示为 $\Delta z = A\Delta x + B\Delta y + o(\rho)$,其中 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$,则称 z 在 (x_0, y_0) 处可微

$$\begin{array}{l} A\Delta x + B\Delta y \; 称为\; z \; 在\; (x_0,y_0) \; 处的微分, 记为 \\ dz|_{(x_0,y_0)} = A\Delta x + B\Delta y , \;\; 且 \lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0\end{subarray}} \frac{\Delta z - (A\Delta x + B\Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0 \end{array}$$

若 z=f(x,y) 在点 (x_0,y_0) 处可微,则 f(x,y) 在点 (x_0,y_0) 处连续且可偏导,且微分 $dz=\frac{\partial f}{\partial x}|_{(x_0,y_0)}dx+\frac{\partial f}{\partial y}|_{(x_0,y_0)}dy$

若 z=f(x,y) 的两个偏导数 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$ 都在点 (x_0,y_0) 处连续,则 z=f(x,y) 在点 (x_0,y_0) 处可微

1.7 多元复合函数求偏导

1、将函数 z = f(u(x,y),v(x,y)) 画成如下的关系图:

2,
$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x}$$

3, $\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y}$

1.8 隐函数求导

隐函数存在定理 1

设 F(x,y) 有连续一阶偏导数,且 $F_y^{'}\neq 0$,则方程 F(x,y)=0 确定 y=y(x),且 $\frac{dy}{dx}=-\frac{F_x^{'}}{F_y^{'}}$

隐函数存在定理 2

设 F(x,y,z) 有连续一阶偏导数,且 $F_z^{'} \neq 0$,则方程 F(x,y,z) = 0 确定 z = z(x,y),且 $\frac{\partial z}{\partial x} = -\frac{F_x^{'}}{F_z^{'}}$, $\frac{\partial z}{\partial y} = -\frac{F_y^{'}}{F_z^{'}}$

1.9 方程组求偏导

设
$$u=u(x,y),\ v=v(x,y)$$
 由方程组
$$\begin{cases} F(x,y,u,v)=0\\ G(x,y,u,v)=0 \end{cases}$$
 确定,在方程两端直接对 x 求偏导,有
$$\begin{cases} F_x^{'}+F_u^{'}\frac{\partial u}{\partial x}+F_v^{'}\frac{\partial v}{\partial x}\\ G_x^{'}+G_u^{'}\frac{\partial u}{\partial x}+G_v^{'}\frac{\partial v}{\partial x} \end{cases}$$
,可以解出
$$\frac{\partial u}{\partial x}$$
 和 $\frac{\partial v}{\partial x}$

1.10 多元函数微分学的几何应用

曲面的切平面与法线

- 1、若曲面以隐式 F(x,y,z)=0 给出,则法向量 $\vec{n}=(F_x^{'},F_y^{'},F_z^{'})$
- 2、若曲面以显式 z = f(x,y) 给出,则法向量 $\vec{n} = (f_x^{'}, f_y^{'}, -1)$

切平面为
$$F_x^{'}(P_0)(x-x_0)+F_y^{'}(P_0)(y-y_0)+F_z^{'}(P_0)(z-z_0)=0$$
 法线为 $\frac{x-x_0}{F_x^{'}(P_0)}=\frac{y-y_0}{F_y^{'}(P_0)}=\frac{z-z_0}{F_z^{'}(P_0)}$

空间曲线的切线与法平面

1、若空间曲线以参数形式 $\begin{cases} x=x(t)\\ y=y(t) \text{ 给出,且} \alpha \leq t \leq \beta, \text{ 则切向} \\ z=z(t) \end{cases}$ 量 $\vec{\tau}=(x^{'}(t),y^{'}(t),z^{'}(t))$

2、若空间曲线以一般形式 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 给出,则切向量 $\vec{\tau} = \vec{n_1} \times \vec{n_2}$,其中 $\vec{n_1}$ 和 $\vec{n_2}$ 是两个曲面的法向量

1.11 方向导数

二元函数 z = f(x, y) 在点 $P_0(x_0, y_0)$ 处沿着方向 $\vec{e}_l(\cos\alpha, \cos\beta)$ 的方向导数为 $\frac{\partial f}{\partial l}|_{P_0} = \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\cos\beta) - f(x_0, y_0)}{t}$

方向导数是单侧的导数

方向导数的计算

若二元函数 z = f(x, y) 在点 $P_0(x_0, y_0)$ 处可微,则 z = f(x, y) 在点 P_0 沿任一方向导数都存在,

其中 $\cos\alpha$ 和 $\cos\beta$ 是方向 l 的方向余弦

1.12 梯度

梯度是一个向量,且

 $gradf(x_0,y_0) = f_x^{'}(x_0,y_0)\vec{i} + f_y^{'}(x_0,y_0)\vec{j} = (f_x^{'}(x_0,y_0),f_y^{'}(x_0,y_0))$

方向导数与梯度向量的关系

 $\frac{\partial f}{\partial l}|_{(x_0, y_0)} = |gradf(x_0, y_0)| cos\theta,$

其中 θ 是方向导数的方向与梯度方向的夹角,且 $|\vec{a}| = \sqrt{x^2 + y^2}$

- $1, \theta = 0$ 时,方向导数最大,且值为梯度的值
- 2、 $\theta = \pi$ 时,方向导数最小
- $3, \theta = \frac{\pi}{2}$ 时,方向导数为零