$(\ell-1)$ -dimensional volume of the perimeter, respectively, and $Int(\sigma)$ its interior.

Lemma 2.5.7. For any fixed center **a** in the ℓ -simplex σ with $d < \ell \le p = d + k$,

$$\int_{\operatorname{Int}(\sigma)} J_d \phi(\mathbf{x}, \mathbf{a}) \, \mathrm{d} \mathcal{L}^{\ell}(\mathbf{x}) \leq \operatorname{diameter}(\sigma) \, \mathrm{P}(\sigma).$$

Proof. Consider the $(\ell - 1)$ -dimensional faces τ_j of σ , with perimeter $(\sigma) = \{ \cup_j \tau_j \mid \tau_j \in \sigma, \dim(\tau_j) = \ell - 1 \}$. Let σ_j denote the ℓ -simplex generated by \mathbf{a} and τ_j . Then

$$\int_{\operatorname{Int}(\sigma)} J_d \phi(\mathbf{x}, \mathbf{a}) \, d\mathcal{L}^{\ell}(\mathbf{x}) = \sum_j \int_{\operatorname{Int}(\sigma_j)} J_d \phi(\mathbf{x}, \mathbf{a}) \, d\mathcal{L}^{\ell}(\mathbf{x}).$$

Let $\tau_j(h)$ denote the $(\ell-1)$ -simplex formed by the intersection of σ_j and the $(\ell-1)$ -hyperplane parallel to τ_j at a distance h from \mathbf{a} . Thus, $\tau_j(\hat{h})$ is τ itself. We observe that our bound on $J_d\phi(\mathbf{x}, \mathbf{a})$ is constant in $\tau_j(h)$ for any h. The $(\ell-1)$ -dimensional volume of $\tau_j(h)$ is given by

$$V_{\ell-1}(\tau_j(h)) = \left(\frac{h}{\hat{h}}\right)^{\ell-1} V_{\ell-1}(\tau_j).$$

Using the bound on $J_d\phi(\mathbf{x}, \mathbf{a})$ from Lemma 2.5.6, and noting that diameter(σ_j) \leq diameter(σ) $\forall j$, we get

$$\int_{\operatorname{Int}(\sigma_j)} J_d \phi(\mathbf{x}, \mathbf{a}) \, d\mathcal{L}^{\ell}(\mathbf{x}) \leq \int_0^{\hat{h}} \left(\frac{h}{\hat{h}}\right)^{\ell-1} V_{\ell-1}(\tau_j) \left(\frac{\hat{h}}{h}\right)^d \frac{\operatorname{diameter}(\sigma)}{\hat{h}} \, dh$$

$$= \frac{V_{\ell-1}(\tau_j) \operatorname{diameter}(\sigma)}{\ell - d}.$$

Summing this quantity over all $\tau_j \in \text{perimeter}(\sigma)$ and replacing $\ell - d \ge 1$ with 1 gives the overall bound.

We now bound the integral of $J_d\phi(\mathbf{x}, \mathbf{a})$ over centers \mathbf{a} with a fixed \mathbf{x} that we are retracting onto perimeter(σ). Examination of the corresponding proof for the original deformation theorem [29, Section 7.7] shows that symmetry of the cubical mesh plays a very special role, which cannot be duplicated in the case of simplicial complex. In