Product Roulette Design

Requirement: Dynamic recommendation system for B2B products based on user category

Basic details:

- 1. **Prediction**: Could be broken down into two categories as follows —>
 - A. Existing User:
 - Top N Based on the collaborative filtering for the user
 - Top N best rated in the given category (to incorporate the item range issue)
 - Few picks from the new products in the category
 - B. New User:
 - Top N best rated in the given category
 - Few picks from the new products in the category

2. Feedback Collection:

For second and further logins of a user, show the list of recommendations in the previous login and ask to choose 3 relevant items and rate them on a scale of 1 to 5

** Rating part included later on to make the process quantitatively more accurate as number of hits would not be be that good a stat.

3. Derivations:

- A. user_id -> integer number generated as hash of mail_id
- B. product_id -> integer number generated as hash of product_id

4. Process pointers:

- A. Data needs to be already computed and present so that at run-time the API just hits the table to fetch results for a user/user-category
- B. Initially till a certain cap on users/ feedbacks, batch processing to be done every few hours
- C. Later on, frequent updates at category levels in parallel

5. Computations:

- A. For existing users ->
 - Similarity of items in a category
 - · Prediction for individual product entries for users
- B. For new users ->
 - Depends on item ratings in the category
 - To incorporate number of ratings for a product, weighted rating to be used

^{**} Margin of new products and best rated ones to be decided as per business.

Flow Diagram

Broken down pipes:

First login:

Re-login:

Computation details:

- 1. User based ->
 - Content based causes major bias and also new(different) products are usually never recommended
 - Collaborative filtering is a better option
 - Issues and resolution in the current approach :
 - New user:
 - Recommendations to be made based on best products in the user category
 - New product:
 - New products to be included as a small percentage of overall products recommended at any time
 - User-user filtering not to be preferred as it included heavy computations, can recommend a given product even in case of very less evidence(ratings)
 - Item-item on the other hand will be more stable and more data driven result
 - The issue of conservative recommendations could be handled by recommending top products also as a percentage

Item-item similarity to be computed first based on user-ratings

$$w_{ij} = \operatorname{sim}(i,j) = \frac{\sum_{u \in U_i \cap U_j} \hat{r}_{ui} \hat{r}_{uj}}{\sqrt{\sum \hat{r}_{uj}} \sqrt{\sum \hat{r}_{uj}}}$$

Prediction to be computed based on rating given by user and corresponding rating for similar products.

$$s(i; u) = \mu_i + \frac{\sum_{j \in I_u} (r_{uj} - \mu_j) w_{ij}}{\sum_{j \in I_u} |w_{ij}|}$$

- 2. New user(content) based ->
 - · Top products in each category can be recommended based on user
 - The issue here is whether to prefer a product with 1*5 star rating or 10*4 star ratings
 - This could be handled with weighted rating where a mean rating term could be added to handle fluctuations due to small set of user ratings

weighted rating (WR) = $(v \div (v+m)) \times R + (m \div (v+m)) \times C$

where:

R = average for the product (mean)

v = number of ratings for the product

m = tuneable parameter, ratings to be added with average rating to smoothen the result-set(more significant initially)

and ratings don't fluctuate the average drastically

C = the mean rating across the whole product set

Reference: https://stackoverflow.com/questions/1411199/what-is-a-better-way-to-sort-by-a-5-star-rating

Database selection:

- Initially for smaller data-sets, database is not needed as such.
- Data could be saved in csv files and processed using adhoc clusters
- While scaling, OLTP based database will be needed as there are many data update scenarios in the pipeline and need to be fast
- Redshift(more on OLAP side though) or Aurora seem to be two options
- Partitioning also needed so as to process the data in parallel for different categories
- Based on the current dataset, the number of dimensions are very limited and hence even with more incoming data, we are good to go with Aurora having a upper limit of 64TB

Data processing:

- Initially batch processing for the data using lambda function / airflow cron job
- Later on, for real time pipeline, Kinesis could be used to induct the data and micro-batching for running the updates and other computations using a runtime spark based processing cluster

Tables needed:

- 1. Two target tables:
 - a) User level recommendations
 - b) Category level recommendations
- 2. Dimension tables:
 - a) User table
 - b) Product table
 - c) User product rating table
 - d) Similarity results table

- 3. Feedback related ones:
- a) Feedback forward pipe -- collecting user rating, prod name and user identifier -- same as 2c.
 - b) Feedback reverse pipe -- Backup of user level for previous login
- 4. Process related ones:
 - a) Timestamp of data pulled in till last run

Table schemas:

```
1.a User level recommendations ->
```

fields: user id

product_name

product_manufacturer

product_rating semantic ts

category (partition column)

1.b Category level recommendations ->

fields: product_name

product_manufacturer

product_rating semantic ts

category (partition column)

2.a User table ->

fields: user id

user_mail_id user_company

category (partition column)

2.b Product table ->

fields: product_id

product_name

product_manufacturer
mean_product_rating

no_of_ratings

category (partition column)

2.c User product rating table ->

fileds: user id

product_id user_rating semantic_ts

category (partition column)

2.d Similarity results table

--> fields : current_product_id related_product_id similarity_score category (partition column)

3.a Feedback forward pipe(reduntant) ->

fields: user_id product_id user_rating timestamp

- 3.b Feedback reverse pipe —> same as 1.a (preferably subset as only product names are needed at user level)
- 4.a Process related ones ->

fields : category_name interface_name last_processed_ts