9.6 Soit $v \in \mathcal{E}_{\lambda_1} \cap \mathcal{E}_{\lambda_2}$.

Comme $v \in \mathcal{E}_{\lambda_1}$, on a $h(v) = \lambda_1 \cdot v$.

De $v \in \mathcal{E}_{\lambda_2}$ on tire que $h(v) = \lambda_2 \cdot v$.

Il en résulte $0 = h(v) - h(v) = \lambda_1 \cdot v - \lambda_2 \cdot v = (\lambda_1 - \lambda_2) \cdot v$.

D'après l'exercice 3.1 3), $0 = (\lambda_1 - \lambda_2) \cdot v$ implique $\lambda_1 - \lambda_2 = 0$ ou v = 0.

L'hypothèse $\lambda_1 \neq \lambda_2$ donne $\lambda_1 - \lambda_2 \neq 0,$ si bien que v = 0 .

On a ainsi montré que $E_{\lambda_1}\cap E_{\lambda_2}=\{0\}\,.$