

Week 2

- Basis wiskunde
- Vergelijkingen

Week 4

- Numeriek integreren
- Fitten van data

Week 6

- Simulaties

Week 7

- Data-analyse

1) N-body probleem (gravitatie)

2) geometrie

Punten op een bol equi-distant 3 / 10 ? Waar en afstanden ?

Gemiddelde afstand van 2 punten op een bol of in een vierkant?

Opgave deze week: deeltjes in een (2-dimensionale) doos

In een doos (0<x<1 en 0<y<1) worden vanuit een bron $(x_{bron}, y_{bron}) = (0.25, 0.75)$ worden op t=0 een aantal deeltjes gegenereerd met random snelheid en richting

Deeltjes hebben random snelheid en richting

snelheid (v_i) : $0 < v_i < 0.10$

hoek (α): $0 < \alpha < 2\pi$

Tip: op t=0: v en $\alpha \rightarrow v_x$ en v_y

Doel: kijk hoe het systeem evolueert

neem kleine stapjes in de tijd en hou voor elk deeltje de positie x, y en de snelheid v_x en v_y bij. Tuples als vorige week (of lists)

Basics

Aannames:

- de deeltjes botsen elastisch tegen de wanden
- de deeltjes hebben geen afmeting en botsen niet

Opgave 1 (basics)

Tip 1: Neem kleine stapjes Δt in de tijd en bepaal voor elk deeltje de nieuwe x en y positie

$$x(t+1) = x(t) + v_x(t) * \Delta t$$

Tip 2: Behandel x en y afzonderlijk

Opgave 1 (basics)

- 1/2) Plot aantal deeltjes aan de rechte kant van de doos (x>0.5) als functie van de tijd en plot de gemiddelde afstand tussen de deeltjes
 - → probeer altijdvooraf een inschatting te maken van het resultaat

Maak nu een gat in de doos $(y_{gat} = 0 \text{ en } 0.8 < x_{gat} < 0.9)$

- 3/4) Plot het aantal deeltjes in de doos als functie van de tijd. Hoe lang duurt het voor de helft van de deeltjes is verdwenen ?
 - → probeer altijdvooraf een inschatting te maken van het resultaat

Hacker

Realisme:

- deeltjes hebben een afmeting en kunnen botsen
- animatie (film) van de evolutie van het systeem

Hacker uitbreidingen:

- 1) Gebruik animaties (animation_template_circle.py)
- 2) Geef deeltjes een afmeting
- 3) Laat deeltjes botsen (puntdeeltjes)
- 4) Laat deeltjes 'echt' botsen, waarbij afmeting (= massa) van deeltjes apart kuinnen worden ingesteld en de botsing ook realistisch is.
- 5) Hacker hacker: Boltzman snelheidsverdeling

