

L'angle \widehat{ABC} mesure 116 °.

L'angle \widehat{ABC} mesure 83 °.

Compléter l'image du triangle ABC par la symétrie d'axe (d) en utilisant les propriétés de conservation de la symétrie axiale et en justifiant ses démarches.

5G13

L'angle \widehat{ABC} mesure 43 °.

L'angle \widehat{ABC} mesure 76 °.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Compléter l'image de la droite (d_1) par la symétrie d'axe (d) en utilisant les propriétés de

conservation de la symétrie axiale et en justifiant ses démarches.

L'angle \widehat{ABC} mesure 73 °.

L'angle \widehat{ABC} mesure 89 °.

L'angle \widehat{ABC} mesure 68 °.

L'angle \widehat{ABC} mesure 49 °.

5G13

L'angle \widehat{ABC} mesure 56 °.

Compléter l'image du triangle ABC par la symétrie d'axe (d) en utilisant les propriétés de

5G13

L'angle \widehat{ABC} mesure 77 °.

5G13

L'angle \widehat{ABC} mesure 68 °.

Compléter l'image du triangle ABC par la symétrie d'axe (d) en utilisant les propriétés de conservation de la symétrie axiale et en justifiant ses démarches.

(d)

5G13

L'angle \widehat{ABC} mesure 63 °.

L'angle \widehat{ABC} mesure 70 °.

Compléter l'image du triangle ABC par la symétrie d'axe (d) en utilisant les propriétés de

5G13

L'angle \widehat{ABC} mesure 61 °.

5G13

L'angle \widehat{ABC} mesure 81 °.

5G13

L'angle \widehat{ABC} mesure 56 °.

5G13

L'angle \widehat{ABC} mesure 65 °.

5G13

L'angle \widehat{ABC} mesure 54 °.

Compléter l'image du triangle ABC par la symétrie d'axe (d) en utilisant les propriétés de conservation de la symétrie axiale et en justifiant ses démarches.

(*d*)

5G13

L'angle \widehat{ABC} mesure 49 °.

5G13

L'angle \widehat{ABC} mesure 45 °.

5G13

L'angle \widehat{ABC} mesure 53 °.

5G13

L'angle \widehat{ABC} mesure 73 °.

5G13

L'angle \widehat{ABC} mesure 131 °.

5G13

L'angle \widehat{ABC} mesure 91 °.

5G13

L'angle \widehat{ABC} mesure 70 °.

5G13

L'angle \widehat{ABC} mesure 80 °.

L'angle \widehat{ABC} mesure 53 °.

5G13

L'angle \widehat{ABC} mesure 48 °.

L'angle ABC mesure 48°. Compléter l'image du triangle ABC par la symétrie d'axe (d) en utilisant les propriétés de

5G13

L'angle \widehat{ABC} mesure 65 °.

5G13

L'angle \widehat{ABC} mesure 91 °.

Corrections •

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

Donc la droite (d'_1) est parallèle au segment [A'B'] et passe par le point C'.

L'angle \widehat{ABC} mesure 116 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 116 °.

Le segment [BC] mesure 3,2 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,2 cm.

Corrections •

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

Donc la droite (d'_1) est parallèle au segment [A'B'] et passe par le point C'.

L'angle \widehat{ABC} mesure 83 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 83 °.

Le segment [BC] mesure 3,2 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,2 cm.

Corrections •

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

Donc la droite (d'_1) est parallèle au segment [A'B'] et passe par le point C'.

L'angle \widehat{ABC} mesure 43 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 43 °.

Le segment [BC] mesure 3,5 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,5 cm.

Corrections

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

Donc la droite (d'_1) est parallèle au segment [A'B'] et passe par le point C'.

L'angle \widehat{ABC} mesure 76 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 76 °.

Le segment [BC] mesure 3,1 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,1 cm.

Corrections -

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

Donc la droite (d'_1) est parallèle au segment [A'B'] et passe par le point C'.

L'angle \widehat{ABC} mesure 73 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 73 °.

Le segment [BC] mesure 4,9 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,9 cm.

(d)

Corrections

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

Donc la droite (d'_1) est parallèle au segment [A'B'] et passe par le point C'.

L'angle \widehat{ABC} mesure 89 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 89 °.

Le segment [BC] mesure 4,1 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,1 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 68 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 68 °.

Le segment [BC] mesure 3,9 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,9 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

B

L'angle \widehat{ABC} mesure 49 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 49 °.

Le segment [BC] mesure 4,2 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,2 cm.

(d)

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 56 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 56 °.

Le segment [BC] mesure 4,8 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,8 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 77 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 77 °.

Le segment [BC] mesure 5 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 5 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 68 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 68 °.

Le segment [BC] mesure 3,1 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,1 cm.

(*d*)

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 63 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 63 °.

Le segment [BC] mesure 3,7 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,7 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 70 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 70 °.

Le segment [BC] mesure 4,6 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,6 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 61 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 61 °.

Le segment [BC] mesure 4,6 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,6 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 81 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 81 °.

Le segment [BC] mesure 3,5 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,5 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 56 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 56 °.

Le segment [BC] mesure 4,8 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,8 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 65 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 65 °.

Le segment [BC] mesure 4,2 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,2 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 54 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 54 °.

Le segment [BC] mesure 4,5 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,5 cm.

(d)

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 49 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 49 °.

Le segment [BC] mesure 3,9 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,9 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 45 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 45 °.

Le segment [BC] mesure 4,7 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,7 cm.

 (d_1)

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 53 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 53 °.

Le segment [BC] mesure 4,1 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,1 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 73 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 73 °.

Le segment [BC] mesure 4,2 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,2 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 131 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 131 °.

Le segment [BC] mesure 3,3 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,3 cm.

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 91 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 91 °.

Le segment [BC] mesure 4 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4 cm.

Corrections -

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 70 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 70 °.

Le segment [BC] mesure 4,6 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,6 cm.

Corrections •

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 80 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 80 °.

Le segment [BC] mesure 4,3 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,3 cm.

(d)

Corrections

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 53 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 53 °.

Le segment [BC] mesure 4,5 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,5 cm.

(*d*)

Corrections '

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 48 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 48 °.

Le segment [BC] mesure 4,6 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 4,6 cm.

Corrections -

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 65 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 65 °.

Le segment [BC] mesure 3 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3 cm.

Corrections

La droite (d_1) est parallèle au segment [AB] et passe par le point C. Or, la symétrie axiale conserve le parallélisme.

L'angle \widehat{ABC} mesure 91 °.

Or, la symétrie axiale conserve les angles.

Donc l'angle $\widehat{A'B'C'}$ mesure lui aussi 91 °.

Le segment [BC] mesure 3,8 cm.

Or, la symétrie axiale conserve les longueurs.

Donc le segment [B'C'] mesure lui aussi 3,8 cm.

