Eli Griffiths Homework #6

Problem 2

$$4\mathbb{Z} + 0 = \{\dots, -8, -4, 0, 4, 8, \dots\}$$
$$4\mathbb{Z} + 2 = \{\dots, -6, -2, 2, 4, 6, \dots\}.$$

Problem 4

$$\langle 2 \rangle + 0 = \{0, 2, 4, 6, 8, 10\}$$

 $\langle 2 \rangle + 1 = \{1, 3, 5, 7, 9, 11\}.$

Problem 12

The cosets of $\langle 3 \rangle$ in \mathbb{Z}_{24} are

$$\langle 3 \rangle + 0 = \{0, 3, 6, 9, 12, 15, 18, 21\}$$

 $\langle 3 \rangle + 1 = \{1, 4, 7, 10, 13, 16, 19, 22\}$
 $\langle 3 \rangle + 2 = \{2, 5, 8, 11, 14, 17, 20, 23\}.$

Therefore

$$[\mathbb{Z}_{24}:\langle 3\rangle]=3.$$

Problem 15

Rewriting σ as disjoint cycles gives

$$\sigma = (1, 2, 3, 5, 4).$$

meaning that $|\sigma| = 5$, hence

$$[S_5:\langle\sigma
angle]=rac{|S_5|}{|\sigma|}=rac{5!}{5}=24.$$

Problem 27

Proof. Let G be a group, H be a subgroup of G, and $g \in G$. Define the mapping $\phi: H \to Hg$ where $\phi(h) = hg$. Let $a, b \in H$ and assume $\phi(a) = \phi(b)$. Then ag = bg which be the cancellation law implies a = b, hence ϕ is injective. Let $y \in Hg$. Then there exists some $x \in H$ such that y = xg. $\phi(x) = g$, meaning ϕ is onto. Therefore ϕ is onto and one-to-one.

Eli Griffiths Homework #6

Problem 28

Proof. Let H be a subgroup of a group G such that $g^{-1}hg \in H$ for all $g \in G$ and $h \in H$. Let $g \in G$ and consider its cosets. Let $x \in Hg$. Then $\exists h_1 \in H$ such that $x = hg = gg^{-1}hg$. Let $r = g^{-1}$. Then $x = gr^{-1}h_1r$, meaning $x \in H$ and therefore $x \in gH$. Therefore $Hg \subseteq gH$. Let $x \in gH$. Then $\exists h_2 \in H$ such that $x = gh_2 = gh_2g^{-1}g = r^{-1}h_2rg$, meaning $x \in Hg$. Therefore $gH \subseteq Hg$. Hence gH = Hg for any g, meaning all left cosets and right cosets of H are the same.

Problem 30

Consider the subgroup $\{\rho_0, \mu_1\}$ of S_3 . It follows that

$$\rho_1\{\rho_0,\mu_1\} = \mu_3\{\rho_0,\mu_1\} = \{\rho_1,\mu_2\}.$$

However,

$$\{\rho_0, \mu_1\}\rho_1 = \{\rho_1, \mu_2\} \neq \{\rho_2, \mu_3\} = \{\rho_0, \mu_1\}\mu_3.$$

Problem 32

It is true. Since $H \leq G$, $\{h^{-1}: h \in H\} = H$. Therefore

$$Ha^{-1} = \{ha^{-1} : h \in H\} = \{h^{-1}a^{-1} : h \in H\} = \{(ah)^{-1} : h \in H\}.$$

That is Ha^{-1} contains all the inverses of aH. If aH = bH, then the inverse of all the elements in both cosets are the same, meaning $Ha^{-1} = Hb^{-1}$.

Problem 35

Proof. Let G be a group and $H \leq G$. Define the mapping ϕ where $\phi(aH) = Ha^{-1}$ for all $a \in G$. First check if ϕ is well defined. Assume that aH = bH. Then $a^{-1}bH = H$ meaning $a^{-1}b \in H$. Note that $a^{-1}b = a^{-1}(b^{-1})^{-1} \in H$. Since $a^{-1}(b^{-1})^{-1} \in H$, $Ha^{-1}\{b^{-1}\}^{-1} = H$ implying $Ha^{-1} = Hb^{-1}$. Therefore ϕ is well defined. Let $x, y \in G$ and assume $\phi(xH) = \phi(yH)$. Then $Hx^{-1} = Hy^{-1}$, meaning there is some $h \in H$ such that $x^{-1} = hy^{-1}$. Therefore $h = x^{-1}y$ and $h^{-1} = y^{-1}x$. Since $H \leq G$, $h^{-1} \in H$ and therefore $y^{-1}x \in H$. Therefore $y^{-1}xH = H$ meaning xH = yH, hence ϕ is injective. Let Ha be a right coset of G. Note that $\phi(a^{-1}H) = Ha$, hence ϕ is surjective. Therefore ϕ is a bijection between the left and right cosets of H, meaning the left and right cosets of H are equinumerous.

Eli Griffiths Homework #6

Problem 36

Proof. Let G be an abelian group of order 2n where n is an odd number. Suppose that there are two elements a and b of G both with order a. That is $a^2 = e$ and $b^2 = e$. Note that $(ab)^2 = a^2b^2 = e$. $ab \neq e$ since a is its own inverse and $b \neq a$. Therefore ab also has an order of a. It also follows that $\{e, a, b, ab\}$ is a subgroup with order a. Since a is odd, a is a such that a is a subgroup with order a. In that a is a subgroup with order a is a subgroup with order a. In that a is a subgroup with a is a subgroup with order a. In that a is a is a subgroup with a is a subgroup with a is a in that a