Mapping Unparalleled Clinical Professional and Consumer Languages with Embedding Alignment

Wei-Hung Weng, MD, MMSc MIT

2018 KDD Workshop on Machine Learning for Medicine and Healthcare Aug 20, 2018

Motivation

- Patient-clinician communication → patient-clinician relation
- Huge information gap between professionals and consumers
- Clinical documents
- Discharge summaries
 - On floor pt found to be hypoxic on O2 4LNC O2 sats 85 %, CXR c/w pulm edema, she was given 40mg IV x 2, nebs, and put out 1.5 L UOP, she was also put on a NRB with improvement in O2 Sats to 95 %

Problem

- Affect clinical decision making [Nickel 2017]
- Breast cancer / lesion / abnormal cells [Omer 2013]
- PCOS / hormone imbalance [Copp 2017]
- Result in...
 - Overtreatment
 - Overdiagnosis
 - Defensive medicine

Background

Previous studies

- Ontology / Dictionary [Zielstorff 2003, Zeng-Treitler 2007, Alfano 2015]
 - o UMLS
 - Consumer health vocabulary (CHV)
- Synonym replacement
- Explanation insertion
- Pattern-based mining with Wikipedia corpus [Vydiswaran 2014]

NLP Techniques

- Unsupervised word vector representation [Mikolov 2013, Bojanowski 2017]
- Embeddings alignment [Conneau 2018, Chung 2018, Lample 2018]

Proposed Approach

- Learning embeddings
 - Word2vec / Fasttext subword
- Procrustes iterative learning [Dinu 2015, Conneau 2018, Xing 2015]
 - Orthogonality constraint on W → Orthogonal Procrustes problem (solve the constrained quadratic problem)

$$W^{\star} = \underset{W \in \mathbb{R}^{d \times d}}{\operatorname{argmin}} \|WX - Y\|^{2} \qquad \underset{\bar{W}}{\min} \|W - \bar{W}\| \quad s.t. \quad \bar{W}^{T} \bar{W} = I.$$

$$W^{\star} = \operatorname{argmin}_{W \in \mathbb{R}^{d \times d}} ||WX - Y||^2 = UV^T$$
, where $U\Sigma V^T = SVD(YX^T)$

- Finding anchor points
 - Identical words
- Linear mapping from anchors between source and target
- Applying mapping to all words

Proposed Approach

- Adversarial training [Goodfellow 2014, Conneau 2018]
 - Discriminator identifying the origin of embedding

$$\mathcal{L}_D(\theta_D|W) = -\frac{1}{x} \sum_{i=1}^x \log \mathbb{P}_{\theta_D}(\text{Pro} = 1|Wp_i) - \frac{1}{y} \sum_{j=1}^y \log \mathbb{P}_{\theta_D}(\text{Pro} = 0|c_j).$$

• Generator (W) - making aligned source and target embeddings as similar as possible

$$\mathcal{L}_W(W|\theta_D) = -\frac{1}{x} \sum_{i=1}^x \log \mathbb{P}_{\theta_D}(\text{Pro} = 0|Wp_i) - \frac{1}{y} \sum_{j=1}^y \log \mathbb{P}_{\theta_D}(\text{Pro} = 1|c_j)$$

Ignoring all supervision

Dataset

- MIMIC-III [Johnson 2016]
 - 59,654 documents
- Professional language
 - History of present illness / Brief hospital course
 - 443,585 sentences
 - 26,333 unique words
- Consumer language
 - Discharge instruction / Followup instruction
 - o 73,349 sentences
 - o 6,752 unique words
- Ground truth
 - 100 professional-layman term pairs created by physician

epistaxis	nosebleed
tumor	mass
malignant	cancer
hallucination	confusion
vertigo	dizziness
diaphoresis	sweats
tremor	shake
icterus	jaundice
narcotic	sedative
epileptic	seizure

Domain-specific Corpus with Subword Embedding

Source	Target	Embedding	Window	P@1	P@5	P@10
MIMIC-P	MIMIC-C	word	3/3	0.17	0.39	0.48
MIMIC-P	MIMIC-C	word	5/5	0.19	0.42	0.54
MIMIC-P	MIMIC-C	subword	3/3	0.27	0.57	0.78
MIMIC-P	MIMIC-C	subword	5/5	0.30	0.55	0.68
PMC-Pubmed	MIMIC-C	word	30/3	0.26	0.40	0.44
PMC-Pubmed	MIMIC-C	word	30/5	0.18	0.39	0.44
PMC-Pubmed	MIMIC-C	subword	30/3	0.23	0.34	0.44
PMC-Pubmed	MIMIC-C	subword	30/5	0.23	0.41	0.49
PMC-Pubmed	Wikipedia	word	30/10	0.14	0.32	0.41

Clinician Qualitative Evaluation

epistaxis	cardiac	nephropathy	cholangiography	qd	tumor	hepatic	hematemesis
spontaneous	catheterization	renal	drug-eluting	EC	tumor	liver	coffee-ground
coffee-ground	heart	kidney	stent	once/day	cancer	hepatic	black
light-headed	attack	hepatitis	ureteral	QD	obstructing	Whipple	bloody
nosebleed	coronary	HIV	stented	Ramipril	resection	gastropathy	tarry
stools	cardiac	aka	circumflex	Zocor	mass	Pork	colored
melena	angioplasty	diastolic	bare	meq	metastatic	Mayonnaise	grounds
bleeds	myocardial	pancreatitis	stents	Mesalamine	cerebellum	belly	stools
bloody	cardioversion	Еро	sphincterotomy	3.125	occipital	portal	bright
black/tarry	bypass	Diabetes	metal	QHS	hepatocellular	scarring	black/tarry
10days	EP	lupus	biliary	162	polypectomy	Y	dark

Embeddings Visualization

Conclusion / Take Home Message

- Professional-Layman language mapping (translation)
- Embeddings alignment
- Supervised Procrustes iterative learning
- Domain-specific corpus with subword embeddings work well
- Future direction
 - Large corpus
 - Concept-level embedding
 - Ground truth
 - Stability of GAN

ckbjimmy@mit.edu

Find Neighbors

- Cross-Domain Similarity Local Scaling (CSLS) to decide mutual nearest neighbors
- Hubness problem
 - o points tending to be nearest neighbors of many points in high-dimensional spaces

$$r_{\mathrm{T}}(Wx_s) = \frac{1}{K} \sum_{y_t \in \mathcal{N}_{\mathrm{T}}(Wx_s)} \cos(Wx_s, y_t),$$

$$\mathrm{CSLS}(Wx_s, y_t) = 2\cos(Wx_s, y_t) - r_{\mathrm{T}}(Wx_s) - r_{\mathrm{S}}(y_t).$$