AUTOMATED
PROCESSING
AND
VISUALIZATION
OF WIFI RTT
USING THE INTEL
OPEN DATASET

NEXT GENERATION NETWORKS

CONTRIBUTORS

ROY ALIA ASIKU 229759

EMIRU EYAEL SOLOMON

ZHANG BO

PHIRI MACDONALD

OUTLINE

Introduction

Dataset

Objectives

Design and implementation

Results

Conclusion

Introduction

- Wi-Fi systems are becoming ubiquitous
- ☐ Use of Wi-Fi based positioning systems is growing popular
- The 2016 release of IEEE 802.11 WLAN standard [1], defined a protocol for **fine timing measurement** (FTM)/round-trip time (RTT).
- This protocol enables two WLAN stations to measure their distance (range) with respect to one another.
- Experiments conducted in office environment
- ☐ Time delay is usually estimated using maximum-likelihood and super-resolution methods

FTM transactions

STA- Station

The range between the two stations is calculated using

Range =
$$c \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$$

 t_1 - the time of departure (ToD) measured by the RSTA,

t4 -the time of arrival (ToA), which is estimated by the RSTA and

c = 3 x 108m/s is the electromagnetic propagation speed.

Dataset

We use the intel open dataset [1]

29851 observations and 467 attributes (columns)

Size 105,207 KB

Project Goal

- Import the Intel Open Wi-Fi RTT dataset, and extract useful statistical information from it,
- Characterize the dataset, extract models of the data, and
- automate the process of data analysis.

Objectives

- Understand (analyze) dataset from a pure data science perspective (mode)
- Analyze dataset from a communications engineering mode
- Extract a statistical model of the data to assign a distribution to it
- Visualize the data in both modes
- Extract a model of the data for the purpose of prediction on interesting applications such as ranging, TOA estimation, navigation.
- Automate the above processes

Design – operational modes

- Data science mode
- Verbose Data science mode
- Communications engineering mode
- Verbose Communications engineering mode
- Default- verbose data science + communications theory

Design choices

- Selection of sample data points –
 Random
- Selection of data science libraries Include the most useful and most common
- Other parameters:
 - Inferred from the data
 - Calculated most optimal parameters for the given dataset
 - □ Inherit from the paper [1]

Implementation

```
Programming Language: Python
Inputs:
       RTT intel open dataset ['RTT_dataset_sample.csv']
       Operation modes:
               Pure Data Science (DS)
               Pure Communications Engineering (CE)
               DS + Verbose
               CE + Verbose
               Default (DS +CE+ Verbose)
Outputs: CLI text data, graphs, models, GUI text
GitHub: https://github.com/Asiku-Roy-
Alia/intel wifi dataset auto analysis
```

Implementation - CLI (CE mode)

Execution: python.exe main.py -p 'RTT_data.csv' -m 'c' -v 1 for doing a verbose analysis in the communications engineering mode with the input RTT_data.csv in the current directory.

```
python main.py -p "E:\work\masters\Trento\Academics\Semester
s\Year 1 Semester 1\146069 Next Generation Networks\project\execution\data\Data\RTT data.csv" -m
 'c' -v 1
Data loaded ...
Verbose communications mode
Communications mode
Tone frequencies used:
 [-18.125 -17.8125 -17.5
                           -17.1875 -16.875 -16.5625 -16.25
                                                              -15.9375
 -15.625 -15.3125 -15.
                           -14.6875 -14.375 -14.0625 -13.75
                                                              -13.4375
 -13.125 -12.8125 -12.5 -12.1875 -11.875 -11.5625 -11.25
                                                             -10.9375
 -10.625 -10.3125 -10. -9.6875 -9.375 -9.0625 -8.75
                                                             -8.4375
  -8.125
          -7.8125 -7.5
                            -7.1875 -6.875
                                             -6.5625 -6.25
                                                              -5.9375
```

Implementation – Graphs (CE mode)

GUI Mode

Data Visualization

Results-Statistical Model

Results-Distribution fitting

Multiple distributions. MSE performance benchmark.

Range&Time of Arrival(ToA) estimation

- Extract channels from the observation
- **Reshape** extracted channels [N,114, 2,2]
- Zero pad channels
- Typecasting from string to complex
- Add DC tones and guard subcarriers
- ☐ Time domain conversion using inverse fast Fourier
 Transform Shift (for index correction) and the Inverse
 Fast Fourier Transform

Time domain channel responses

Circular shifted channels

Range and ToA estimation cont'

- ☐ Channel circular shift for better estimation, N= 13
- ☐ Arg Max of Time Domain channel
- Correct circular shift using the inverse operation
- Get time **delta per sample**, delta_t=1/bandwidth, bandwidth = 40MHz
- ☐ ToA estimate = ToA index*delta_t
- Range estimate = ToD_factor + (est_ToA_client + est_ToA_AP)*c/2, c = 3x10^8m/s

Range estimates and errors 1D

Range estimates and errors 3D

Conclusion

- We used the Intel Open RTT Dataset
- A CLI-based software for automated analysis in 2 functional modes
- Statistical and ML model of RTT distributions

References

[1] N. Dvorecki, O. Bar-Shalom, L. Banin and Y. Amizur 'A Machine Learning Approach for Wi-Fi RTT Ranging' 2019 ITM of the ION, January 28-31, Reston, Virginia. Intel Communication & Device Group Intel Corp.

THANK YOU