

What is claimed is:

1. A method of preparing (S)-chiral alcohol comprising:
 - (a) reacting in organic solvent a compound of the following chemical formula 1 as a starting material,
 - 5 a racemization metal catalyst,
 - an acyl donor being capable of acylating an alcohol compound, and
 - a protein hydrolysis enzyme being capable of stimulating the enantioselective acylation of a racemic compound to obtain a chiral ester compound of chemical formula 3; and
 - (b) hydrolyzing the chiral ester compound of chemical formula 3 to obtain (S)-chiral alcohol;
- [chemical formula 1]

15 [chemical formula 3]

wherein X is --OH or $=\text{O}, \text{R}_1, \text{R}_2$ and R_3 are independently substituted or unsubstituted $\text{C}_1\text{-C}_{15}$ alkyl, substituted or unsubstituted $\text{C}_2\text{-C}_{15}$ alkenyl, substituted or unsubstituted $\text{C}_2\text{-C}_{15}$ alkynyl, substituted or unsubstituted $\text{C}_5\text{-C}_{18}$ aryl, substituted or unsubstituted $\text{C}_6\text{-C}_{18}$ arylalkyl, substituted or unsubstituted $\text{C}_2\text{-C}_{20}$ heterocycle, substituted or unsubstituted $\text{C}_3\text{-C}_{20}$ heteroarylalkyl, substituted or unsubstituted $\text{C}_3\text{-C}_{15}$ cycloalkyl, substituted or unsubstituted $\text{C}_3\text{-C}_{15}$ cycloalkenyl, substituted or unsubstituted $\text{C}_6\text{-C}_{15}$ cycloalkynyl, or substituted or unsubstituted $\text{C}_3\text{-C}_{20}$ heterocycloalkyl, wherein the R_1 group and the R_2 group can be linked together, and wherein a size of a circular arc indicates that the R_1 group is larger than the R_2 group.

2. The method of preparing (S)-chiral alcohol according to claim 1, further comprising adding a hydrogen donor in the (a) step when the starting material of chemical formula 1 comprises ketone such that X is =O.

3. The method of preparing (S)-chiral alcohol according to claim 1:
5 wherein the starting material of chemical formula 1 is the compound of the following chemical formula 1a;

[chemical formula 1a]

10 wherein R₁ and R₂ are independently substituted or unsubstituted C₁-C₁₅ alkyl, substituted or unsubstituted C₂-C₁₅ alkenyl, substituted or unsubstituted C₂-C₁₅ alkynyl, substituted or unsubstituted C₅-C₁₈ aryl, substituted or unsubstituted C₆-C₁₈ arylalkyl, substituted or unsubstituted C₂-C₂₀ heterocycle, substituted or unsubstituted C₃-C₂₀ heteroarylalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkyl, 15 substituted or unsubstituted C₃-C₁₅ cycloalkenyl, substituted or unsubstituted C₆-C₁₅ cycloalkynyl, or substituted or unsubstituted C₃-C₂₀ heterocycloalkyl; and
wherein R₁ and R₂ can be linked together.

20 4. The method of preparing (S)-chiral alcohol according to claim 3, further comprising:

obtaining an alcohol compound of chemical formula 1a by adding hydrogen donor to ketone compound of the following chemical formula 1b to reduce it;

[chemical formula 1a]

25

[chemical formula 1b]

wherein R₁ and R₂ are independently substituted or unsubstituted C₁-C₁₅ alkyl, substituted or unsubstituted C₂-C₁₅ alkenyl, substituted or unsubstituted C₂-C₁₅ alkynyl, substituted or unsubstituted C₅-C₁₈ aryl, substituted or unsubstituted C₆-C₁₈ arylalkyl, substituted or unsubstituted C₂-C₂₀ heterocycle, substituted or unsubstituted C₃-C₂₀ heteroarylalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkenyl, substituted or unsubstituted C₆-C₁₅ cycloalkynyl, or substituted or unsubstituted C₃-C₂₀ heterocycloalky; and
10 wherein R₁ and R₂ can be linked together.

5. The method of preparing (S)-chiral alcohol according to claim 1, further comprising:
adding hydrogen donor to reduce a ketone group in (a) step;
wherein the compound of chemical formula 1 comprises chemical
15 formula 1b;

[chemical formula 1b]

wherein R₁ and R₂ are independently substituted or unsubstituted C₁-C₁₅ alkyl, substituted or unsubstituted C₂-C₁₅ alkenyl, substituted or unsubstituted C₂-C₁₅ alkynyl, substituted or unsubstituted C₅-C₁₈ aryl, substituted or unsubstituted C₆-C₁₈ arylalkyl, substituted or unsubstituted C₂-C₂₀ heterocycle, substituted or unsubstituted C₃-C₂₀ heteroarylalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkenyl, substituted or unsubstituted C₆-C₁₅ cycloalkynyl, or substituted or unsubstituted C₃-C₂₀ heterocycloalky; and
20 wherein R₁ and R₂ can be linked together.

6. The method of preparing (S)-chiral alcohol according to claim 1, wherein the (a) step reaction comprises a one-pot reaction and wherein the reaction is performed in one vessel.

5 7. The method of preparing (S)-chiral alcohol according to claim 1, wherein the metal catalyst comprises a ruthenium complex compound.

8. The method of preparing (S)-chiral alcohol according to claim 1, wherein the metal catalyst is selected from the group consisting of ruthenium complex compounds represented by the following chemical formulas 4 to 8:

[chemical formula 4]

10

[chemical formula 5]

[chemical formula 6]

15

[chemical formula 7]

[chemical formula 8]

wherein A₁, A₂, A₃, A₄, A₅, A₆, A₇ and A₈ are independently hydrogen, substituted or unsubstituted C₁-C₁₀ alkyl, substituted or unsubstituted C₅-C₁₈ aryl, or substituted or unsubstituted C₂-C₂₀ heterocycle;

5 wherein R₅ and R₆ are independently hydrogen, substituted or unsubstituted C₁-C₁₅ alkyl, substituted or unsubstituted C₂-C₁₅ alkenyl, substituted or unsubstituted C₂-C₁₅ alkynyl, substituted or unsubstituted C₅-C₁₈ aryl, substituted or unsubstituted C₆-C₁₈ arylalkyl, substituted or unsubstituted C₂-C₂₀ heterocycle, substituted or unsubstituted C₃-C₂₀ heteroarylalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkyl, 10 substituted or unsubstituted C₃-C₁₅ cycloalkenyl, substituted or unsubstituted C₆-C₁₅ cycloalkynyl, or substituted or unsubstituted C₃-C₂₀ heterocycloalkyl;

 wherein B comprises a substituent selected from the group consisting of hydrogen, carbonyl, halogen and trifluoromethanesulfonate or there is no substituent in B site; and

15 wherein W is hydrogen or a halogen.

9. The method of preparing (S)-chiral alcohol according to claim 2, wherein the acyl donor comprises 2,4-dimethyl-3-pentanol, 2,6-dimethyl-4-heptanol, formic acid, or hydrogen.

10. The method of preparing (S)-chiral alcohol according to claim 1, 20 wherein the acyl donor is linked to the R₁ group or the R₂ group of the chemical formula 1.

11. The method of preparing (S)-chiral alcohol according to claim 10, wherein the acyl donor is a substituent including -OCO-R₃ terminal group linked to the R₁ or R₂ of the chemical formula 1.

25 The method of preparing (S)-chiral alcohol according to claim 1, wherein the acyl donor is the compound of the chemical formula 2; and

[chemical formula 2]

wherein R₃ and R₄ are independently substituted or unsubstituted C₁-C₁₅ alkyl, substituted or unsubstituted C₂-C₁₅ alkenyl, substituted or unsubstituted C₂-C₁₅ alkynyl, substituted or unsubstituted C₅-C₁₈ aryl, substituted or unsubstituted C₆-C₁₈ 5 arylalkyl, substituted or unsubstituted C₂-C₂₀ heterocycle, substituted or unsubstituted C₃-C₂₀ heteroarylalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkenyl, substituted or unsubstituted C₆-C₁₅ cycloalkynyl, or substituted or unsubstituted C₃-C₂₀ heterocycloalkyl.

13. The method of preparing (S)-chiral alcohol according to claim 1, 10 wherein the protein hydrolysis enzyme is selected from the group consisting of stabilized or fixed subtilisin, chymotrypsin, papain, protease from *Aspergillus oryzae*, protease from *Aspergillus melleus*, protease from *Streptomyces griseus*, and protease from *Bacillus stearothermophilus*.

14. The method of preparing (S)-chiral alcohol according to claim 1, 15 wherein the protein hydrolysis enzyme is subtilisin.

15. The method of preparing (S)-chiral alcohol according to claim 1, 20 wherein the organic solvent is benzene, toluene, C₅-C₁₀ alkane, C₅-C₁₀ cycloalkane, tetrahydrofuran, dioxane, C₂-C₁₀ dialkylether, C₃-C₁₀ alkylate, C₂-C₁₀ cyanoalkane, C₃-C₁₀ dialkyl ketone, dichloromethane, chloroform, carbon tetrachloride, C₄-C₁₀ tertiary alcohol, or a room temperature ionic liquid .

16. The method of preparing (S)-chiral alcohol according to claim 1, wherein the reaction temperature in (a) step is room temperature to 80°C.

17. A (S)-chiral alcohol prepared according to claim 1.

18. A method of preparing (S)-chiral ester comprising: 25 reacting in organic solvent the compound of the following chemical formula 1 as a starting material,

a racemization metal catalyst,

an acyl donor being capable of acylating an alcohol compound, and

30 a protein hydrolysis enzyme being capable of stimulating the enantioselective acylation of a racemic compound to obtain a chiral ester compound of chemical formula 3.

[chemical formula 1]

[chemical formula 3]

5

wherein R_1 and R_2 are independently substituted or unsubstituted C_1-C_{15} alkyl, substituted or unsubstituted C_2-C_{15} alkenyl, substituted or unsubstituted C_2-C_{15} alkynyl, substituted or unsubstituted C_5-C_{18} aryl, substituted or unsubstituted C_6-C_{18} arylalkyl, substituted or unsubstituted C_2-C_{20} heterocycle, substituted or unsubstituted C_3-C_{20} heteroarylalkyl, substituted or unsubstituted C_3-C_{15} cycloalkyl, substituted or unsubstituted C_3-C_{15} cycloalkenyl, substituted or unsubstituted C_6-C_{15} cycloalkynyl, or substituted or unsubstituted C_3-C_{20} heterocycloalkyl, and R_1 and R_2 can be linked together; and

wherein a size of a circular arc indicates that the R_1 group is larger than the R_2 group.

19. The method of preparing (S)-chiral ester according to claim 18, further comprising adding a hydrogen donor in the (a) step and when the starting material comprises ketone where $X = O$.

20. A (S)-chiral ester of the following chemical formula 3 prepared according to claim 18;

[chemical formula 3]

wherein R₁, R₂ and R₃ are independently substituted or unsubstituted C₁-C₁₅ alkyl, substituted or unsubstituted C₂-C₁₅ alkenyl, substituted or unsubstituted C₂-C₁₅ alkynyl, substituted or unsubstituted C₅-C₁₈ aryl, substituted or unsubstituted C₆-C₁₈ 5 arylalkyl, substituted or unsubstituted C₂-C₂₀ heterocycle, substituted or unsubstituted C₃-C₂₀ heteroarylalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkenyl, substituted or unsubstituted C₆-C₁₅ cycloalkynyl, or substituted or unsubstituted C₃-C₂₀ heterocycloalkyl;

10 wherein the R₁ group and the R₂ group can be linked together; and
wherein a size of a circular arc indicates that the R₁ group is larger than the R₂ group.

21. A method of preparing (S)-chiral alcohol of the following chemical formula 1 comprising:

15 hydrolyzing the chiral ester of the chemical formula 3 prepared according to claim 18.

[chemical formula 1]

[chemical formula 3]

20

wherein X -OH or =O,

wherein R₁, R₂ and R₃ are independently substituted or unsubstituted C₁-C₁₅ alkyl, substituted or unsubstituted C₂-C₁₅ alkenyl, substituted or unsubstituted C₂-C₁₅ 25 alkynyl, substituted or unsubstituted C₅-C₁₈ aryl, substituted or unsubstituted C₆-C₁₈ arylalkyl, substituted or unsubstituted C₂-C₂₀ heterocycle, substituted or

unsubstituted C₃-C₂₀ heteroarylalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkyl, substituted or unsubstituted C₃-C₁₅ cycloalkenyl, substituted or unsubstituted C₆-C₁₅ cycloalkynyl, or substituted or unsubstituted C₃-C₂₀ heterocycloalkyl;

wherein R₁ and R₂ can be linked together; and

5 wherein a size of a circular arc indicates that the R₁ group is larger than the R₂ group.