Anéis de Inteiros Módulo n

Prof. Dr. Vinícius Wasques

Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro

22 de junho de 2020

Anéis de inteiros módulo n

Construiremos o anel de inteiros módulo n através do quociente de \mathbb{Z} pela relação $\equiv \pmod{n}$, ao qual denotamos por:

$$\mathbb{Z}_n = \mathbb{Z}/\sim$$

em que \sim é a relação congruência módulo n.

Lembrando que os elementos de \mathbb{Z}_n são classes de equivalência denotados por:

$$\bar{x} = \{ y \in \mathbb{Z} | x \sim y \}$$

Exemplo:

O anel \mathbb{Z}_2 é definido pela congruência módulo 2 e possui dois elementos:

$$\bar{0} = \{\dots, -4, -2, 0, 2, 4, \dots\}$$

e

$$\bar{1} = \{\ldots, -3, -1, 1, 3, \ldots\}$$

Sendo $\bar{0}$ e $\bar{1}$ conhecidos como conjunto dos números pares e ímpares, respectivamente.

A definição de \bar{x} como um subconjunto de \mathbb{Z} não será o foco desse curso.

Será utilizado apenas como uma maneira de formalizar o fato de que estamos "identificando" todos os inteiros que deixam o mesmo resto na divisão por n.

Assim, o importante é termos claro que

$$\bar{a} \equiv \bar{b} \iff a \equiv b \pmod{n}$$

 \Leftrightarrow a e b deixam o mesmo resto na divisão por n

Sen > 0, a divisão euclidiana diz que todo inteiro a é côngruo a um único inteiro b com $0 \le a0 < n$.

Escrevemos então:

$$\mathbb{Z}_n = \{\overline{0}, \dots, \overline{n-1}\}$$

Para esse quociente, definimos as operações:

(Soma)
$$\bar{a} + \bar{b} = \overline{a+b}$$

(Diferença)
$$\bar{a} - \bar{b} = \overline{a - b}$$

(Multiplicação)
$$\bar{a} \cdot \bar{b} = \overline{a \cdot b}$$

Exemplo:

Considere \mathbb{Z}_6 , assim:

+	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
$\frac{+}{0}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{4}{5}$	0	$ \frac{\overline{1}}{2} $ $ \frac{\overline{3}}{4} $ $ \frac{\overline{5}}{0} $		$ \begin{array}{c} \overline{3} \\ \overline{4} \\ \overline{5} \\ \overline{0} \\ \overline{1} \\ \overline{2} \end{array} $	$\begin{array}{c} \overline{4} \\ \overline{5} \\ \overline{0} \\ \overline{1} \\ \overline{2} \\ \overline{3} \end{array}$	$ \begin{array}{c c} \hline 5\\ \hline 0\\ \hline 1\\ \hline 2\\ \hline 3\\ \hline 4 \end{array} $
$\overline{1}$	$\frac{\overline{0}}{1}$ $\frac{\overline{2}}{2}$ $\frac{\overline{3}}{3}$ $\frac{\overline{4}}{4}$ $\frac{\overline{5}}{5}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{1}$
$\overline{3}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{4}$	$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{5}$	$\overline{5}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$

	0	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	<u>5</u>
$ \begin{array}{c} \overline{0} \\ \overline{1} \\ \overline{2} \\ \overline{3} \\ \overline{4} \\ \overline{5} \end{array} $	0 0 0 0 0 0	$ \begin{array}{c} \overline{0} \\ \overline{1} \\ \overline{2} \\ \overline{3} \\ \overline{4} \\ \overline{5} \end{array} $	$\begin{array}{c} \overline{2} \\ \overline{0} \\ \overline{2} \\ \overline{4} \\ \overline{0} \\ \overline{2} \\ \overline{4} \end{array}$	$ \begin{array}{c} \overline{0} \\ \overline{3} \\ \overline{0} \\ \overline{3} \\ \overline{0} \\ \overline{3} \end{array} $	$ \begin{array}{c} \overline{0} \\ \overline{4} \\ \overline{2} \\ \overline{0} \\ \overline{4} \\ \overline{2} \end{array} $	
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{0}$	$\overline{2}$	$\overline{4}$
$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{0}$	$\overline{3}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{2}$	$\overline{0}$	$\overline{4}$	$\overline{2}$
$\overline{5}$	$\overline{0}$	$\overline{5}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

 \mathbf{e}

Inverso multiplicativo

A próxima proposição revela quando existe o "inverso multiplicativo" de a módulo n.

Proposição. Sejam $a, n \in \mathbb{Z}$, n > 0. Então existe $b \in \mathbb{Z}$ com

$$ab \equiv 1 \pmod{n}$$
 se, e somente se, $mdc(a, n) = 1$

Demonstração

Temos que $ab \equiv 1 \pmod{n}$ admite solução na variável b se, e somente se, existem $b, k \in \mathbb{Z}$ tais que

$$ab - 1 = nk \Leftrightarrow ab - nk = 1.$$

Pelo Corolário obtido através do teorema de Bachet-Bézout, isto acontece se, e somente se, mdc(a, n) = 1.

Dizemos portanto que a é invertível módulo n quando mdc(a,n)=1 e chamamos b com $ab\equiv 1 \pmod n$ de inverso multiplicativo de a módulo n.

Denotaremos o conjunto formado por todos os elementos invertíveis de \mathbb{Z}_n , por

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid mdc(a, n) = 1 \}.$$

Exemplo:

Considere \mathbb{Z}_{15}^* . A tabela de multiplicação entre seus elementos é dada por:

	1	$\overline{2}$	$\overline{4}$	$\overline{7}$	$\overline{8}$	$\overline{11}$	$\overline{13}$	$\overline{14}$
1	ī	$\overline{2}$	$\overline{4}$	7	8	11	13	14
$ \begin{array}{c} \hline 2 \\ \hline 4 \\ \hline 7 \\ \hline 8 \\ \hline \hline 11 \\ \end{array} $	$\overline{2}$	_	-	$\frac{1}{14}$	$\overline{1}$	$\overline{7}$	$\overline{11}$	$\overline{13}$
$\overline{4}$	$\frac{2}{4}$	$\overline{8}$	$\overline{1}$	$\overline{13}$	$\overline{2}$	$\overline{14}$	7	$\overline{11}$
7	7	$\overline{14}$	$\overline{13}$	$\overline{4}$	$\overline{11}$	$\overline{2}$	$\overline{1}$	$\overline{8}$
$\overline{8}$	8	$\overline{1}$	$\overline{2}$	$\overline{11}$	$\overline{4}$	$\overline{13}$	$\overline{14}$	7
$\overline{11}$	$\overline{11}$	7	$\overline{14}$	$ \begin{array}{c} 14 \\ \overline{13} \\ \overline{4} \\ \overline{11} \\ \overline{2} \\ \overline{1} \\ \overline{8} \end{array} $	$\overline{13}$	$\overline{1}$	8	$\overline{4}$
$\overline{13}$	$\overline{13}$	$\overline{11}$	7	$\overline{1}$	$\overline{14}$	$\overline{8}$	$\overline{4}$	$\overline{2}$
$\overline{14}$	14	$\overline{13}$	$\overline{11}$	$\overline{8}$	7	$\overline{4}$	$\overline{2}$	$\overline{1}$

Anel dos Inteiros Módulo n

O conjunto

$$(\mathbb{Z}_n,+,\cdot)$$

possui uma estrutura de anel.

Anel dos Inteiros Módulo n

O conjunto

$$(\mathbb{Z}_n,+,\cdot)$$

possui uma estrutura de anel.

Mostre esse fato.

Referências

MARTINEZ, F.E.B; MOREIRA, C.G.T; SALDANHA, N.,T.; TENGAN, E. Teoria dos Números. Um passeio com Primos e outros Números Familiares pelo Mundo Inteiro. IMPA, 2013.

GRAHAM, R. L., KNUTH, D. E., PATASHNIK, O Matemática Concreta. LTC, São Paulo, 1995

NIVEN, I. E.; ZUCKERMAN, N.S. An Introduction to the Theory of Numbers, NY, John Wiley & Sons, 1991.

Contato

Prof. Dr. Vinícius Wasques

email: viniciuswasques@gmail.com

Departamento de Matemática

site: https://viniciuswasques.github.io/home/

