2017 GRADUATE PRELIMINARY EXAM

All problems are weighted equally. Throughout $\mathbb R$ denotes the real numbers and $\mathbb C$ the complex numbers.

- (1) Negate the following statements in a "non-cheap" way especially, avoid using the word "not."
 - (a) For all real numbers x, there is a real number y such that $|x-y| \ge 2017$.
 - (b) The function $f: \mathbb{R} \to \mathbb{R}$ is continuous.
- (2) Let $V = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + 4y + 5z = 0\}.$
 - (a) Show that V is a linear subspace of \mathbb{R}^3 .
 - (b) Prove or disprove: there is a linear transformation $S: \mathbb{R}^3 \to \mathbb{R}^3$ with kernel equal to V.
 - (c) Prove or disprove: there is a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ with image equal to V.
 - (d) Prove or disprove: there is a linear transformation $U: \mathbb{R}^3 \to \mathbb{R}^3$ with kernel and image equal to V.
- (3) Show (we suggest by induction) that for all non-negative integers n, we have

$$\int_0^\infty x^n e^{-x} dx = n!$$

- (4) For a positive integer n, let I_n denote the $n \times n$ identity matrix.
 - (a) Let A be a 2 × 2 real matrix with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$. Show: $A^2 = I_2$.
 - (b) Find a 3 × 3 real matrix whose only eigenvalues (in \mathbb{C}) are 1 and -1 such that $A^2 \neq I_3$.
 - (c) Let A be an $n \times n$ real symmetric matrix whose only eigenvalues (in \mathbb{C}) are 1 and -1. Show that $A^2 = I_n$.
- (5) Let $\{f_n: [0,1] \to \mathbb{R}\}_{n=1}^{\infty}$ be a sequence of continuous functions that converges uniformly to 0. Show that the sequence $\int_0^1 f_n(x) dx$ converges to 0.
- (6) Use the ϵ , δ definition of the limit to show: $\lim_{x\to 1} \frac{x^2+1}{x} = 2$.
- (7) Let z = f(x, y) be a smooth surface. Show that the gradient is perpendicular to the level curves. (Suggestion: let $\gamma(t)$ be a curve contained in a level set of f, and consider the derivative of $f \circ \gamma$.)
- (8) Let X and Y be sets and let $f: X \to Y$ and $g: Y \to X$ be functions. We suppose throughout that g(f(x)) = x for all $x \in X$.
 - (a) Show that f is injective.
 - (b) Show that q is surjective.
 - (c) Give an example in which neither f nor g is bijective.