

# **PowerFactory 2021**

**Technical Reference** 

**Sprecher SPRECON-E DD** 

#### Publisher:

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen / Germany Tel.: +49 (0) 7072-9168-0 Fax: +49 (0) 7072-9168-88

info@digsilent.de

Please visit our homepage at: https://www.digsilent.de

# Copyright © 2021 DIgSILENT GmbH

All rights reserved. No part of this publication may be reproduced or distributed in any form without written permission of DIgSILENT GmbH.

November 15, 2019 PowerFactory 2021 Revision 924

# **Contents**

| 1 | Mod | lel info           | rmation                              | 1  |  |  |  |
|---|-----|--------------------|--------------------------------------|----|--|--|--|
| 2 | Gen | eral de            | escription                           | 1  |  |  |  |
| 3 | Sup | pported features 2 |                                      |    |  |  |  |
|   | 3.1 | Meası              | urement and acquisition              | 2  |  |  |  |
|   |     | 3.1.1              | Available elements and input signals | 2  |  |  |  |
|   |     | 3.1.2              | Functionality                        | 3  |  |  |  |
|   |     | 3.1.3              | Data input                           | 3  |  |  |  |
|   | 3.2 | Distan             | ce Protection                        | 4  |  |  |  |
|   |     | 3.2.1              | Available elements                   | 4  |  |  |  |
|   |     | 3.2.2              | Functionality                        | 4  |  |  |  |
|   |     | 3.2.3              | Data input                           | 4  |  |  |  |
|   | 3.3 | Reclos             | sing                                 | 6  |  |  |  |
|   |     | 3.3.1              | Available elements                   | 6  |  |  |  |
|   |     | 3.3.2              | Functionality                        | 6  |  |  |  |
|   |     | 3.3.3              | Data input                           | 6  |  |  |  |
|   | 3.4 | IL sub             | relay                                | 8  |  |  |  |
|   |     | 3.4.1              | Available Units                      | 8  |  |  |  |
|   |     | 3.4.2              | Functionality                        | 8  |  |  |  |
|   |     | 3.4.3              | Data input                           | 8  |  |  |  |
|   | 3.5 | IE sub             | orelay                               | 10 |  |  |  |
|   |     | 3.5.1              | Available Units                      | 10 |  |  |  |
|   |     | 3.5.2              | Functionality                        | 10 |  |  |  |
|   |     | 3.5.3              | Data input                           | 11 |  |  |  |
|   | 3.6 | Ineg s             | ubrelay                              | 13 |  |  |  |
|   |     | 3.6.1              | Available Units                      | 13 |  |  |  |
|   |     | 3.6.2              | Functionality                        | 13 |  |  |  |
|   |     | 3.6.3              | Data input                           | 14 |  |  |  |
|   | 3.7 | Overlo             | pad subrelay                         | 15 |  |  |  |

## Contents

| 5 | Refe | erences | <b>3</b>                                    | 28 |
|---|------|---------|---------------------------------------------|----|
| 4 | Feat | ures n  | ot supported                                | 27 |
|   |      | 3.12.3  | Data input                                  | 26 |
|   |      | 3.12.2  | Functionality                               | 25 |
|   |      | 3.12.1  | Available elements and relay output signals | 25 |
|   | 3.12 | Output  | t logic                                     | 25 |
|   |      | 3.11.3  | Data input                                  | 23 |
|   |      | 3.11.2  | Functionality                               | 23 |
|   |      | 3.11.1  | Available Units and input signals           | 23 |
|   | 3.11 | Freque  | ency subrelay                               | 23 |
|   |      | 3.10.3  | Data input                                  | 20 |
|   |      | 3.10.2  | Functionality                               | 20 |
|   |      | 3.10.1  | Available Units and input signals           | 20 |
|   | 3.10 | Voltage | e subrelay                                  | 20 |
|   |      | 3.9.3   | Data input                                  | 18 |
|   |      | 3.9.2   | Functionality                               | 18 |
|   | -    | 3.9.1   | Available Units and input signals           | 18 |
|   | 3.9  |         | ubrelay                                     | 18 |
|   |      | 3.8.3   | Data input                                  | 17 |
|   |      | 3.8.2   | Functionality                               | 17 |
|   | 0.0  | 3.8.1   | Available Units and input signals           | 17 |
|   | 3.8  |         | ubrelay                                     | 17 |
|   |      | 3.7.3   | Data input                                  | 16 |
|   |      | 3.7.2   | Functionality                               | 15 |
|   |      | 3.7.1   | Available Units                             | 15 |

## 1 Model information

Manufacturer Sprecher

Model SPRECON-E DD

**Variants** This PowerFactory relay model simulates a reduced set of the features present in the Sprecher SPRECON-E DD relay.

# 2 General description

The Sprecher SPRECON-E DD devices are one-box solutions for protection and control, which allow protection of primary equipment by simultaneously accomplishing control and monitoring functions in electric power systems. The digital distance protectors DD...6 are preferably used as a selective protection for single- and double-fed lines (overhead lines and cables) in the medium-voltage or, respectively, the lower highvoltage level. They are suitable for all system configurations (radial, ring, and meshed systems) and methods of neutral-point connection (earthed with or without limiting resistance, inductive, isolated).

The protection functions available in the devices provide selective short-circuit protection, ground fault protection, voltage and frequency control and overload protection in medium- and high-voltage systems.

The PowerFactory Sprecher SPRECON-E DD relay model simulates a subset of the protective features available in the relay and consists of a main relay model and the following sub relays:

- IL
- IE
- Ineq
- Overload
- CBF
- SCD
- Voltage
- Frequency

The main relay contains the measurement and acquisition elements, the output element which operated the power breaker(s), the distance protection elements, the reclosing element and the sub relays.

The model implementation has been based on the information available in the relay manual [1].

## 3.1 Measurement and acquisition

It represents the interface between the power system and the relay protective elements.

The phase currents flowing in the power system are converted by a block which simulates a 3 phase CT and by a block which models a single phase CT detecting the earth current; the voltages are converted by a block which simulates a 3 phase VT and by a block which simulates an open delta VT. The secondary currents and voltages are then measured in the relay model by six elements which simulate the digital sampling of the relay.

#### 3.1.1 Available elements and input signals

The *Measurement and acquisition* feature consists of the following elements:

- One 3 phase current transformer ("Ct" block).
- One neutral current transformer ("Ct-E/N" block).
- One 3 phase voltage transformer ("Vt" block).
- One open delta voltage transformer ("Open Delta Vt" block).
- One 3 phase measurement element ("Measurement" block).
- One voltage sequence measurement element ("V seq Measurement" block).
- One single phase neutral measurement element ("Neutral measurement" block).
- One 3 phase phase-phase measurement element ("Delta Measurement" block).
- One zero sequence voltage measurement element ("U0 Measurement" block).
- One frequency measurement element ("Meas Freq" block).

The following relay input signals can be used:

- ExtBlock\_L1A;B;C (one for each phase) blocking the "IL>" element ("IL" subrelay).
- ExtBlock L2A;B;C (one for each phase) blocking the "IL>>" element ("IL" subrelay).
- ExtBlock L3A;B;C (one for each phase) blocking the "IL>>>" element ("IL" subrelay).
- ExtBlock L4A;B;C (one for each phase) blocking the "IL>>>>" element ("IL" subrelay).
- ExtBlock\_E1 blocking the "IE>" element ("IE" subrelay).
- ExtBlock\_E2 blocking the "IE>>" element ("IE" subrelay).
- ExtBlock\_E3 blocking the "IE>>>" element ("IE" subrelay).
- ExtBlock\_E4 blocking the "IE>>>>" element ("IE" subrelay).
- ExtBlock\_neg blocking the "Ineg" subrelay elements.
- ExtBlock\_overload blocking the thermal image element ("Overload" subrelay).

- ExtBlock\_CBF blocking the circuit breaker failure logic ("CBF" subrelay).
- extblock\_A; extblock\_B; extblock\_C\_UM blocking the "U>" element ("Voltage" subrelay).
- extblock A; extblock B; extblock C UMM blocking the "U>>" element ("Voltage" subrelay).
- extblock A; extblock B; extblock C Um blocking the "U<" element ("Voltage" subrelay).
- extblock\_A;extblock\_B;extblock\_C\_Umm blocking the "U<< " element ("Voltage" subrelay).
- extblock UNEM blocking the "UNE>" element ("Voltage" subrelay).
- extblock\_UNEMM blocking the "UNE>>"element ("Voltage" subrelay).
- ExtBlock\_f1 blocking the "F1><" element ("Frequency" subrelay).
- ExtBlock\_f2 blocking the "F2><" element ("Frequency" subrelay).
- ExtBlock\_f3 blocking the "F3><" element ("Frequency" subrelay).
- ExtBlock\_f4 blocking the "F4><" element ("Frequency" subrelay).

## 3.1.2 Functionality

The "Ct" and the "Ct-E/N" block represent ideal CTs. Using the CT default configuration the current at the primary side are converted to the secondary side using the CT ratio. The CT saturation and/or its magnetizing characteristic are not considered. Please set the "Detailed Model" check box in the "Detailed Data" tab page of the CT dialog and insert the data regarding the CT burden, the CT secondary resistance and the CT excitation parameter if more accurate simulation results are required.

The input current values are sampled by the "Measurement", the "Delta Measurement", , and the "Neutral measurement" block at 20 samples/cycle. The values are processed by a DFT filter, operating over a cycle, which then calculates the voltage and current RMS values used by the protective elements.

#### 3.1.3 Data input

The CT secondary rated current (1 or 5 A) value must be set in the "Measurement", the "Delta Measurement", and the "Neutral measurement". The VT secondary rated voltage must be set in the same measurement elements and in the "Measure Frequency", in the "V seq Measurement", and in the "U0 Measurement" block.

If no core CT is available please select the 3 phases CT also in the "Ct-E/N" slot: the earth current will be calculated assuming that an Holmgreen's connection of the phases is used.

#### 3.2 Distance Protection

The *Distance Protection* part models the polygonal distance shapes with directional characteristic and multiple type starting.

#### 3.2.1 Available elements

- Five 6 loops polygonal distance elements ("Z1Poly", "Z2Poly", "Z3Poly", "Z4Poly", and "Z1XPoly" block).
- One starting element ("Starting" block).
- One polarizing element ("Polarizing" block).
- Six timers ("T1", "T2", "T3", "T4", "T5", and "T6" block).
- One Distance directional element ("Dir-Z" block).

## 3.2.2 Functionality

The *Distance Protection* part simulate a 4 zones 6 loops distance relay with zone extension and polygonal shape. The distance elements are directional and are activated by a starting element which can be configures to use the following starting types:

- · Overcurrent.
- · Undervoltage.
- · Underimpedance.

#### 3.2.3 Data input

| Address | Relay Setting         | Model block | Model setting               | Note |
|---------|-----------------------|-------------|-----------------------------|------|
| 501     | Real Part Earth Fact  | Polarizing  | Re/RI                       |      |
| 502     | Imag.Part Earth Fact  | Polarizing  | Xe/XI                       |      |
| 531     | System Neutral        | Starting    | System Grounding (isysstar) |      |
| 5000    | Distance Detection    | Z1Poly      | Out of Service (outserv)    |      |
|         |                       | Z2Poly      | Out of Service (outserv)    |      |
|         |                       | Z3Poly      | Out of Service (outserv)    |      |
|         |                       | Z4Poly      | Out of Service (outserv)    |      |
|         |                       | Z1XPoly     | Out of Service (outserv)    |      |
| 5001    | Inclin.Angle Polygon  | Z1Poly      | Relay Angle (phi)           |      |
|         |                       | Z2Poly      | Relay Angle (phi)           |      |
|         |                       | Z3Poly      | Relay Angle (phi)           |      |
|         |                       | Z4Poly      | Relay Angle (phi)           |      |
|         |                       | Z1XPoly     | Relay Angle (phi)           |      |
| 5002    | Red.AnglePolygonZ1(x) | Z1Poly      | +X Angle (beta)             |      |
| 5100    | Zone Z1,t1            | Z1Poly      | Out of Service (outserv)    |      |
| 5131    | Direction Z1,t1       | Z1Poly      | Tripping Direction (idir)   |      |
| 5101    | X1s*In/A Reactance    | Z1Poly      | +X Reach (Xmax)             |      |

| Address | Relay Setting        | Model block | Model setting                             | Note                                                   |
|---------|----------------------|-------------|-------------------------------------------|--------------------------------------------------------|
| 5102    | R1sLL*In/A Resist.   | Z1Poly      | +R Resistance (Rmax)                      |                                                        |
| 5103    | R1sLE*In/A Resist.   | Z1Poly      | +R Resistance (Ph-E) (REmax)              |                                                        |
| 5111    | t1 Time Zone Z1      | T1          | Time Setting (Tdelay)                     |                                                        |
| 5231    | Direction Z1x,t1x    | Z1xPoly     | Tripping Direction (idir)                 |                                                        |
| 5201    | X1xs*In/A Reactance  | Z1xPoly     | +X Reach (Xmax)                           |                                                        |
| 5202    | R1xsLL*In/A Resist.  | Zx1Poly     | +R Resistance (Rmax)                      |                                                        |
| 5203    | R1xsLE*In/A Resist.  | Z1xPoly     | +R Resistance (Ph-E) (REmax)              |                                                        |
| 5211    | t1x Time Zone Z1     | T1          | Time Setting (Tdelay)                     |                                                        |
| 5331    | Direction Z2,t2      | Z2Poly      | Tripping Direction (idir)                 |                                                        |
| 5301    | X2s*In/A Reactance   | Z2Poly      | +X Reach (Xmax)                           |                                                        |
| 5302    | R2sLL*In/A Resist.   | Z2Poly      | +R Resistance (Rmax)                      |                                                        |
| 5303    | R2sLE*In/A Resist.   | Z2Poly      | +R Resistance (Ph-E) (REmax)              |                                                        |
| 5311    | t2 Time Zone Z2      | T2          | Time Setting (Tdelay)                     |                                                        |
| 5431    | Direction Z3,t3      | Z3Poly      | Tripping Direction (idir)                 |                                                        |
| 5401    | X3s*In/A Reactance   | Z3Poly      | +X Reach (Xmax)                           |                                                        |
| 5402    | R3sLL*In/A Resist.   | Z3Poly      | +R Resistance (Rmax)                      |                                                        |
| 5403    | R3sLE*In/A Resist.   | Z3Poly      | +R Resistance (Ph-E) (REmax)              |                                                        |
| 5411    | t3 Time Zone Z3      | T3          | Time Setting (Tdelay)                     |                                                        |
| 5531    | Direction Z4,t4      | Z4Poly      | Tripping Direction (idir)                 |                                                        |
| 5501    | X4s*In/A Reactance   | Z4Poly      | +X Reach (Xmax)                           |                                                        |
| 5502    | R4sLL*In/A Resist.   | Z4Poly      | +R Resistance (Rmax)                      |                                                        |
| 5503    | R4sLE*In/A Resist.   | Z4Poly      | +R Resistance (Ph-E) (REmax)              |                                                        |
| 5511    | t4 Time Zone Z4      | T4          | Time Setting (Tdelay)                     |                                                        |
| 5600    | Direct.BackupTime t5 | T5          | Time Setting (Tdelay)                     |                                                        |
| 5700    | Undir. Time Limit t6 | T6          | Time Setting (Tdelay)                     |                                                        |
| 5800    | Dist (U-)I Start     | Starting    | Undervoltage (iopt_u)                     | In the "Basic Data" tab page, "Type of Starting" frame |
| 5900    | Z< Impedance Start   | Starting    | Underimpedance (iopt_u)                   | In the "Basic Data" tab page, "Type of Starting" frame |
| 5901    | Zs*In/A              | Starting    | Forward Impedance, Ph-Ph (ZfPP)           |                                                        |
|         |                      | Starting    | Forward Impedance, Ph-E (ZfPG)            |                                                        |
| 5902    | Xs*In/A forward      | Starting    | Forward Reactance (Xfw)                   |                                                        |
| 5903    | Xs*In/A reverse      | Starting    | Backward/Forward Impedance Ratio (ZbwZfw) | Xs*In/A reverse = ZfPP*ZbwZfw                          |
| 5905    | Angle ZLL I.Quadr.   | Starting    | Load Angle (Beta)                         |                                                        |
| 5906    | Angle ZLL II.Quadr.  | Starting    |                                           | Fixed and equal to 110 deg                             |
| 5907    | Angle ZLL III.Quadr. | Starting    | Load Angle (Beta)                         |                                                        |
| 5908    | Angle ZLL IV.Quadr.  | Starting    |                                           | Fixed and equal to -70 deg                             |
| 5909    | RsmaxLL*In/A Resist  | Starting    | Forward Resistance,Ph-Ph (RfPP)           |                                                        |
| 5915    | Angle ZLE I.Quadr.   | Starting    | Load Angle (Beta)                         |                                                        |
| 5916    | Angle ZLE II.Quadr.  | Starting    |                                           | Fixed and equal to 110 deg                             |
| 5917    | Angle ZLE III.Quadr. | Starting    | Load Angle (Beta)                         |                                                        |
| 5918    | Angle ZLE IV.Quadr.  | Starting    |                                           | Fixed and equal to -70 deg                             |
| 5919    | RsmaxLE*In/A Resist. | Starting    | Forward Resistance,Ph-E (RfPE)            |                                                        |
| 5930    | Z< Monitoring of:    | Starting    | Z Operation Mode (iZOpMode)               | The <i>only LE loops</i> mode is not supported.        |

## 3.3 Reclosing

The purpose of the *Reclosing* feature is model, during the RMS and the EMT simulation, up to 5 shot 3-pole auto reclosures of the circuit breaker. It simulates a simplified version of the reclosing feature available in the Sprecher SPRECON-E DD relay.

#### 3.3.1 Available elements

The *Reclosing* feature is modeled by the "Reclosing" block.

## 3.3.2 Functionality

The "Reclosing" block models during a simulation the following features:

- · An user settable number of AR.
- Separated dead time for the first AR attempt and for the first reclosing attempt after an earth fault.
- User configurable reclosing/no reclosing logic for each overcurrent element.
- User configurable duration of the circuit breaker close command.
- User configurable reclosing sequence reclaim time.

#### 3.3.3 Data input

| Address | Relay Setting         | Model block | Model setting                                  | Note                         |
|---------|-----------------------|-------------|------------------------------------------------|------------------------------|
| 9900    | Auto-Reclosing AR     | Reclosing   | Out of Service                                 | In the "Basic data" tab page |
| 9930    | Number of AR Shots    | Reclosing   | Operations to lockout(oplockout)               |                              |
| 9950    | AR Shots Earthfault   | Reclosing   | Operations to lockout(oplockout)               |                              |
| 9931    | IL> AR Start          | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9932    | IL>> AR Start         | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9933    | IL>>> AR Start        | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9934    | IL>>>> AR Start       | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9935    | IE> AR Start          | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9936    | IE>> AR Start         | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9937    | IE>>> AR Start        | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9938    | IE>>>> AR Start       | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9940    | Ineg> AR Start        | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9941    | Ineg>> AR Start       | Reclosing   | Logic (ilogic)                                 | In the "Logic" tab page.     |
| 9955    | 1stDeadTimeEarthfault | Reclosing   | Reclosing int 1 1Ph-Grnd Faults (recltime11ph) | In the "Basic data" tab page |
| 9911    | First Dead Time(tD)   | Reclosing   | Reclosing interval 1 (recltime1)               | In the "Basic data" tab page |
| 9912    | Dead Time delayed R.  | Reclosing   | Reclosing interval 1 (recltime1)               | In the "Basic data" tab page |
|         |                       |             | Reclosing interval 2 (recltime2)               |                              |
|         |                       |             | Reclosing interval 3 (recltime3)               |                              |
|         |                       |             | Reclosing interval 4 (recltime4)               |                              |
|         |                       |             | Reclosing interval 5 (recltime5)               |                              |

| Ad | ddress | Relay Setting        | Model block | Model setting                             | Note                         |
|----|--------|----------------------|-------------|-------------------------------------------|------------------------------|
| 99 | 917    | tcl Duration CBCLOSE | Reclosing   | Closing command duration (closingcomtime) | In the "Basic data" tab page |
| 99 | 916    | tr Reclaim Time AR   | Reclosing   | Reset Time (resettime)                    | In the "Basic data" tab page |

## 3.4 IL subrelay

The *IL* subrelay contains the phase overcurrent protective logic.

#### 3.4.1 Available Units

- One inverse time phase overcurrent element ("IL>" block).
- Three time defined phase overcurrent element ("IL>>", "IL>>>", and "IL>>>>" block).
- Height logic elements ("IL> ILx Phase Start", "IL>> ILx Phase Start", "IL>>> ILx Phase Start", "IL>>> ILx Phase Start", "Blockage IL>>", "Blockage IL>>", "Blockage IL>>>", and "Blockage IL>>>>" block).
- Eight block combining the signals ("Or1", "Or2", "Or3", "Or4", "Opt1", "Opt2", "Opt3", and "Or4" block).

## 3.4.2 Functionality

The phase starting logic of each phase overcurrent element can be set to be triggered only if the current in at least 2 phases is greater than 2/3 of the maximum phase current.

Each phase overcurrent element can be configured to ignore an external block input signal.

The inverse time elements support the definite time characteristic and the following inverse time trip characteristics:

- Inverse
- · Very Inverse
- · Extremely Inverse
- · Longtime inverse

The inverse time element trip characteristic equations comply with the IEC standard equations.

## 3.4.3 Data input

| Address | Relay Setting       | Model block            | Model setting                        | Note                           |
|---------|---------------------|------------------------|--------------------------------------|--------------------------------|
| 207     | SYSTEMSTAR          | Starting               | System Grounding (isysstar)          | "Basic data" tab page          |
| 1100    | IL> Start           | IL>                    | Out of Service (outserv)             |                                |
| 1101    | IL> Definite Time   | IL>                    | Current Setting (Ipset)              |                                |
| 1102    | IL> Inverse Time    | IL>                    | Current Setting (Ipset)              |                                |
| 1111    | tIL> Time           | IL>                    | Time Dial (Tpset)                    |                                |
| 1112    | tL> Time Factor     | IL>                    | Time Dial (Tpset)                    |                                |
| 1113    | tIL> max Time Delay | IL>                    | Max. Time (udeftmax)                 |                                |
| 1132    | IL> Timer Module    | IL>                    | Characteristic (pcharac)             |                                |
| 1134    | ILx> Phase Start    | IL> ILx Phase<br>Start | Greater2_3_Imax<br>(Greater2_3_Imax) | In the "DIP Settings" tab page |

| Address | Relay Setting          | Model block               | Model setting                        | Note                           |
|---------|------------------------|---------------------------|--------------------------------------|--------------------------------|
| 1198    | Blockage IL>           | Blockage IL>              | blockage_ILM (blockage_ILM)          | In the "DIP Settings" tab page |
| 1200    | IL>> Start             | IL>>                      | Out of Service (outserv)             |                                |
| 1201    | IL>>                   | IL>>                      | Pickup Current (Ipset)               |                                |
| 1211    | tIL>> Time             | IL>>                      | Time Setting (Tset)                  |                                |
| 1234    | ILx>> Phase Start      | IL>> ILx Phase<br>Start   | Greater2_3_Imax<br>(Greater2_3_Imax) | In the "DIP Settings" tab page |
| 1298    | Blockage IL>>          | Blockage IL>>             | blockage_ILMM (blockage_ILMM)        | In the "DIP Settings" tab page |
| 1300    | IL>>> Start            | IL>>>                     | Out of Service (outserv)             |                                |
| 1301    | IL>>>                  | IL>>>                     | Pickup Current (Ipset)               |                                |
| 1334    | ILx>>> Phase Start     | IL>>> ILx Phase<br>Start  | Greater2_3_Imax<br>(Greater2_3_Imax) | In the "DIP Settings" tab page |
| 1398    | Blockage IL>>>         | Blockage IL>>>            | blockage_ILMMM (block-<br>age_ILMMM) | In the "DIP Settings" tab page |
| 1400    | IL>>>> Start           | IL>>>>                    | Out of Service (outserv)             |                                |
| 1401    | IL>>>>                 | IL>>>>                    | Pickup Current (Ipset)               |                                |
| 1434    | ILx>>>> Phase<br>Start | IL>>>> ILx Phase<br>Start | Greater2_3_Imax<br>(Greater2_3_Imax) | In the "DIP Settings" tab page |
| 1498    | Blockage IL>>>>        | Blockage IL>>>>           | blockage_ILMMMM (block-age_ILMMMM)   | In the "DIP Settings" tab page |

## 3.5 IE subrelay

The IE subrelay contains the earth overcurrent protective logic.

#### 3.5.1 Available Units

- One inverse time earth overcurrent element ("IE>" block).
- Three time defined Earth overcurrent element ("IE>>", "IL>>>", and "IE>>>>" block).
- Eight logic elements ( "Value for IE>", "Value for IE>>", "Value for IE>>>", "Value for IE>>>", "Value for IE>>>", "Blockage IE>>>", "Blockage IE>>>", and "Blockage IE>>>" block).
- Four block combining the signals ("Or1", "Or2", "Or3", and "Or4" block).

#### 3.5.2 Functionality

The earth current monitored by the overcurrent elements can be

- The current measured by the neutral CT.
- The current calculated adding together the phase currents.

The IE> stage pickup value can be increased in dependence of the amount of the sum of those phase currents that have exceeded the pickup value IL>.

If all three phase currents are greater than IL>, the following applies:

$$IE' >= IE > +ks(IL1 + IL2 + IL3 - 3IL >)$$

If only two phase currents are greater than IL>, biasing is reduced:

$$IE' >= IE > +ks(ILX + ILY - 2IL >)$$

If only one phase current pickup is exceeded, the following remains:

$$IE' >= IE > +ks(ILX - IL >)$$

with

IE'>: biased pickup value of the earth fault current stage

IE >: setpickupvalue of the DT earth current stage IE > "2101 IE > Definite Time"

ks: setting of biasing factor "2107 Biasing Factor"

IL1, IL2, IL3, ILX, ILY: r.m.s. value of phase currents, x, y = [1, 2, 3]

IL >: Setting of phase current starting" 1101 IL > Definite Time"

Each earth overcurrent element can be configured to start only if the "IL>" phase overcurrent element has started.

To model the *Earth Current Differential Protection (unbiased)*, the relay model can be configured to add together the phase current and the current measured by the neutral CT.

Each earth overcurrent element can be configured to ignore an external block input signal.

The inverse time elements support the definite time characteristic and the following inverse time trip characteristics:

- Inverse
- · Very Inverse
- · Extremely Inverse
- · Longtime inverse

The inverse time element trip characteristic equations comply with the IEC standard equations.

## 3.5.3 Data input

| Address | Relay Setting         | Model block                     | Model setting             | Note                           |
|---------|-----------------------|---------------------------------|---------------------------|--------------------------------|
| 2100    | IE> Start             | IE>                             | Out of Service (outserv)  |                                |
| 2101    | IE> Definite Time     | IE>                             | Current Setting (Ipset)   |                                |
| 2102    | IE> Inverse Time      | IE>                             | Current Setting (Ipset)   |                                |
| 2103    | IE> Definit.Time sens | IE>                             | Current Setting (Ipset)   |                                |
| 2105    | IE> Definit.Time sens | IE>                             | Current Setting (Ipset)   |                                |
| 2106    | IE> Inv. Time sens.   | IE>                             | Current Setting (Ipset)   |                                |
| 2107    | Biasing Factor        | Earth Current Biasing           | Ks (Ks)                   | In the "Logic" tab page        |
| 2108    | IE> Inv. Time sens.   | IE>                             | Current Setting (Ipset)   |                                |
| 2111    | tIE> Time             | IE>                             | Time Dial (Tpset)         |                                |
| 2112    | tE> Time Factor       | IE>                             | Time Dial (Tpset)         |                                |
| 2113    | tIE> max Time Delay   | IE>                             | Time Dial (Tpset)         |                                |
| 2131    | IE> Direction         | IE>                             | Tripping Direction (idir) |                                |
| 2132    | IE> Timer Module      | IE>                             | Characteristic (pcharac)  |                                |
| 2133    | Value for IE>         | Value for IE>                   | I0meas (I0meas)           |                                |
| 2137    | IE> Start             | Blockage IE> - IE><br>Start     | ILStart (ILStart)         | In the "DIP Settings" tab page |
| 2198    | Blockage IE>          | Blockage IE> - IE><br>Start     | Extblock (extblock)       | In the "DIP Settings" tab page |
| 2200    | IE>> Start            | IE>>                            | Out of Service (outserv)  |                                |
| 2201    | IE>>                  | IE>>                            | Pickup Current (Ipset)    |                                |
| 2203    | IE>> sensitive        | IE>>                            | Pickup Current (Ipset)    |                                |
| 2205    | IE>> sensitive        | IE>>                            | Pickup Current (Ipset)    |                                |
| 2211    | tIE>> Time            | IE>>                            | Time Setting (Tset)       |                                |
| 2231    | IE>> Direction        | IE>>                            | Tripping Direction (idir) |                                |
| 2233    | Value for IE>>        | Value for IE>>                  | I0meas (I0meas)           |                                |
| 2237    | IE>> Start            | Blockage IE>> - IE>><br>Start   | ILStart (ILStart)         | In the "DIP Settings" tab page |
| 2298    | Blockage IE>>         | Blockage IE>> - IE>><br>Start   | Extblock (extblock)       | In the "DIP Settings" tab page |
| 2300    | IE>>> Start           | IE>>>                           | Out of Service (outserv)  |                                |
| 2301    | IE>>>                 | IE>>>                           | Pickup Current (Ipset)    |                                |
| 2303    | IE>>> sensitive       | IE>>>                           | Pickup Current (Ipset)    |                                |
| 2305    | IE>>> sensitive       | IE>>>                           | Pickup Current (Ipset)    |                                |
| 2311    | tIE>>> Time           | IE>>>                           | Time Setting (Tset)       |                                |
| 2331    | IE>>> Direction       | IE>>>                           | Tripping Direction (idir) |                                |
| 2333    | Value for IE>>>       | Value for IE>>>                 | I0meas (I0meas)           |                                |
| 2337    | IE>>> Start           | Blockage IE>>> -<br>IE>>> Start | ILStart (ILStart)         | In the "DIP Settings" tab page |
| 2398    | Blockage IE>>>        | Blockage IE>>> -<br>IE>>> Start | Extblock (extblock)       | In the "DIP Settings" tab page |
| 2400    | IE>>>> Start          | IE>>>>                          | Out of Service (outserv)  |                                |

| Address | Relay Setting    | Model block                       | Model setting             | Note                           |
|---------|------------------|-----------------------------------|---------------------------|--------------------------------|
| 2401    | IE>>>>           | IE>>>>                            | Pickup Current (Ipset)    |                                |
| 2403    | IE>>>> sensitive | IE>>>>                            | Pickup Current (Ipset)    |                                |
| 2405    | IE>>>> sensitive | IE>>>>                            | Pickup Current (Ipset)    |                                |
| 2411    | tIE>>>> Time     | IE>>>>                            | Time Setting (Tset)       |                                |
| 2431    | IE>>>> Direction | IE>>>>                            | Tripping Direction (idir) |                                |
| 2433    | Value for IE>>>> | Value for IE>>>                   | I0meas (I0meas)           |                                |
| 2437    | IE>>>> Start     | Blockage IE>>>> -<br>IE>>>> Start | ILStart (ILStart)         | In the "DIP Settings" tab page |
| 2498    | Blockage IE>>>>  | Blockage IE>>>> -<br>IE>>>> Start | Extblock (extblock)       | In the "DIP Settings" tab page |

## 3.6 Ineg subrelay

The *Ineg* subrelay contains the negative sequence protective logic.

#### 3.6.1 Available Units

- One inverse time negative sequence overcurrent element ("Ineg>" block).
- One time defined negative sequence overcurrent element ("Ineg>>" block).
- One configuration interface element ("Blockage Ineg" block).
- One logic elements ("const"block).
- One output logic element ("Output Logic" block).

#### 3.6.2 Functionality

The *Ineg* subrelay models a inverse time negative sequence overcurrent element and a definite time negative sequence overcurrent element. Each element can be blocked by an unique relay input signal and for each element the user can decide if the input block signal is active. In the "Blockage Ineg" block the *BlockageInegM* dip switch allows to ignore the input block signal for the "Ineg>" element and the *BlockageInegMM* dip switch inhibits the blocking for the "Ineg>>" element.

The inverse time element supports the definite time characteristic and the following inverse time trip characteristics:

- Inverse
- · Very Inverse
- · Extremely Inverse
- · Longtime inverse

The inverse time element trip characteristic equations comply with the IEC standard equations.

## 3.6.3 Data input

| Address | Relay Setting            | Model block   | Model setting                 |        | Note                           |
|---------|--------------------------|---------------|-------------------------------|--------|--------------------------------|
| 3100    | Ineg> Start              | Ineg>         | Out of Service (outserv)      |        |                                |
| 3198    | Blockage Ineg>           | Blockage Ineg | Blockage_InegM (Eage_InegM)   | Block- | In the "DIP Settings" tab page |
| 3132    | Ineg> Timer Mod-<br>ule  | Ineg>         | Characteristic (pcharac)      |        |                                |
| 3101    | Ineg> Definite<br>Time   | Ineg>         | Current Setting (Ipset)       |        |                                |
| 3102    | Ineg> Inverse<br>Time    | Ineg>         | Current Setting (Ipset)       |        |                                |
| 3111    | tIneg> Time              | Ineg>         | Time Dial (Tpset)             |        |                                |
| 3112    | tIneg> Time Factor       | Ineg>         | Time Dial (Tpset)             |        |                                |
| 3113    | tIneg> max Time<br>Delay | Ineg>         | Max. Time (udeftmax)          |        |                                |
| 3200    | Ineg>> Start             | Ineg>>        | Out of Service (outserv)      |        |                                |
| 3298    | Blockage Ineg>>          | Blockage Ineg | Blockage_InegMM (Eage_InegMM) | Block- | In the "DIP Settings" tab page |
| 3201    | Ineg>>                   | Ineg>>        | Pickup Current (Ipset)        |        |                                |
| 3211    | tlneg>> Time             | Ineg>>        | Time Setting (Tset)           |        |                                |

## 3.7 Overload subrelay

The Overload subrelay contains the thermal image protective logic.

#### 3.7.1 Available Units

- One thermal image element with selectable cooling logic ("Overload" block).
- Two thermal warning threshold elements ("Thermal Warning 1", and "Thermal Warning 2" block).
- One maximum allowed current threshold element ("ILMax" block).
- Three logic elements ("const", and "Imax Logic" block).
- One output logic element ("Output Logic" block).

## 3.7.2 Functionality

The *Overload* subrelay implements a thermal replica with "memory", i.e. taking the preload into account in accordance with IEC 60255-8 or EN 60255-8. The r.m.s. values of the highest phase current or of the measured earth fault current are used. It is possible to insert a current threshold which permits limitation up to which current the replica is to be filled.

The overload trip logic is inhibited by the *extblock* input signal.

## 3.7.3 Data input

| Address | Relay Setting                                | Model block             | Model setting                               | Note                                                                                             |
|---------|----------------------------------------------|-------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------|
| 4100    | Overload Protection                          | Overload protection     | Out of Service (outserv)                    |                                                                                                  |
| 4137    | 4137 O.loadProt. Current O.loadProt. Current |                         | MeasuredEarthCurrent (MeasuredEarthCurrent) | In the "DIP Settings" tab<br>page. Set the dip <i>on</i> to<br>use the measured earth<br>current |
| 4101    | k Pickup Factor                              | Overload protection     | Current Setting (Ipset)                     |                                                                                                  |
| 4102    | tau therm.Timeconst.                         | Overload protection     | Time Dial (Tpset)                           |                                                                                                  |
| 4111    | OLoadProt. up to Imax                        | OLoadProt. up to Imax   | Pickup Current (Ipset)                      |                                                                                                  |
| 4131    | Therm. Warn.Level 1                          | Therm. Warn.Level 1     | Out of Service (outserv)                    |                                                                                                  |
| 4108    | Therm. Warn.Level 1                          | Therm. Warn.Level 1     | Pickup Current (Ipset)                      |                                                                                                  |
| 4132    | Therm. Warn.Level 2                          | Therm. Warn.Level 2     | Out of Service (outserv)                    |                                                                                                  |
| 4109    | Therm. Warn.Level 2                          | Therm. Warn.Level 2     | Pickup Current (Ipset)                      |                                                                                                  |
| 4196    | Blockage therm. TRIP                         | Blockage therm.<br>TRIP | BlockageThermTRIP (BlockageThermTRIP)       | In the "DIP Settings" tab page.                                                                  |

## 3.8 CBF subrelay

The CBF subrelay implements a simplified version of the circuit breaker failure logic.

## 3.8.1 Available Units and input signals

The CBF subrelay contains the following elements:

- One minimum current definite time threshold element ("IminCBF" block).
- One timer ("tCBF intern" block).
- One configuration interface element ("Blockage CBF" block).
- One output logic element ("Output Logic" block).

The following input signals are used

- *wtrip*: the trip input signals which is *on* when at least one protective element of the Sprecher SPRECON-E DD relay model is tripped.
- labs A;labs B;labs C: the phase currents measured by the relay model.
- extblock: a relay input signal which can be used to inhibit the CBF logic.

#### 3.8.2 Functionality

The *CBF* sub relay activates an output signal and operates the associated breaker when both the following conditions are verified:

- The trip input signal remains *on* for a time greater than "tCBF intern" (usually equal to the breaker operating time+ a safety margin).
- At least one phase of a 3 phase currents system remains always greater than "IminCBF" after that the trip signal became *on*.

The operation logic is inhibited by the *extblock* input signal. The signal can be ignored setting equal to *off* the *Blockage\_CBF* dip switch in the "Blockage CBF" block.

## 3.8.3 Data input

| Address | Relay Setting        | Model block  | Model setting            | Note                           |
|---------|----------------------|--------------|--------------------------|--------------------------------|
| 9300    | CB Fail.Protect. CBF | IminCBF      | Out of Service (outserv) |                                |
| 9398    | Blockage CBF         | Blockage CBF | Blockage_ CBF            | In the "DIP Settings" tab page |
| 9308    | IminCBF              | IminCBF      | Pickup Current (Ipset)   |                                |
| 9311    | tCBF intern          | tCBF intern  | Time Setting (Tdelay)    |                                |

## 3.9 SCD subrelay

The *SCD* subrelay implements the phase and the ground directional logic.

## 3.9.1 Available Units and input signals

The *SCD* subrelay contains the following elements:

- One 3 phase directional element ("SCD" block).
- One single phase earth directional element ("ESCD").
- Two configuration interface element ("Blockage SCD", and "Value for ESCD" block).
- One output logic element ("Output Logic" block).
- One logic element ("Const" block).

#### 3.9.2 Functionality

The *SCD* subrelay phase directional element compares the angle between each phase current vector and the relevant opposite (at 90° in a symmetric system) phase-phase voltage vector. If the angle is smaller then 90° the forward direction is declared. A minimum phase voltage activation threshold can be configured by the user. A 2 seconds voltage buffer is automatically activated when the phase-phase voltage drops below 4 % of the rated voltage. The phase directional element can be set to consider or not an external input blocking signal (in the "Blockage SCD" block).

The earth directional element declares the forward direction if the angle between the zero sequence current and the zero sequence voltage rotated by the *Max Torque Angle* is smaller then 90°. A minimum earth voltage activation threshold can be configured by the user. The earth directional element can be set to consider or not an external input blocking signal.

## 3.9.3 Data input

| Address | Relay Setting        | Model block    | Model setting                          | Note                                                                  |
|---------|----------------------|----------------|----------------------------------------|-----------------------------------------------------------------------|
| 1900    | Short Circ.Direction | SCD            | Out of Service (outserv)               |                                                                       |
| 1998    | Blockage SCD         | Blockage SCD   | Blockage_SCD (Blockage_SCD)            |                                                                       |
| 1905    | Charact.Angle SCD    | SCD            | Max. Torque Angle (mtau)               |                                                                       |
| 1908    | Umem if ULL <        | SCD            | Polarizing Voltage (upolu)             | In the "Voltage Polariz-<br>ing" tab page                             |
| 1911    | Validity Umem        | SCD            | Memory Time (tmem)                     | In the "Voltage Polar-<br>izing" tab page of the<br>SCD.TypDir dialog |
| 2900    | Earth SC Direction   | ESCD           | Out of Service (outserv)               |                                                                       |
| 2998    | Blockage ESCD        | Blockage SCD   | Blockage_ESCD (Blockage_ESCD)          |                                                                       |
| 2905    | Charact.Angle ESCD   | ESCD           | Max. Torque Angle (mtau)               |                                                                       |
| 2933    | Value for IE ESCD    | Value for ESCD | IE_ESCD_Measured<br>(IE_ESCD_Measured) | In the "DIP Settings" tab page                                        |

| Address | Relay Setting      | Model block    | Model setting                         | Note                                      |
|---------|--------------------|----------------|---------------------------------------|-------------------------------------------|
| 2935    | Value for UNE ESCD | Value for ESCD | UNE_ESCD_Measured (UNE_ESCD_Measured) | In the "DIP Settings" tab page            |
| 2902    | UNEmin ESCD        | ESCD           | Polarizing Voltage (upolu)            | In the "Voltage Polariz-<br>ing" tab page |

## 3.10 Voltage subrelay

The *Voltage* subrelay implements the phase and the zero sequence overvoltage and undervoltage protection logic.

#### 3.10.1 Available Units and input signals

The *Voltage* subrelay contains the following elements:

- Two definite time phase overvoltage elements ("U>", and "U>>" block).
- Two definite time phase undervoltage elements ("U<", and "U<< " block).
- Two definite time zero sequence overvoltage elements ("UNE<", and "UNE>>" block).
- Six configuration interface element which allow to set the input quantities("Value for U> U> Mode", "Value for U>> U>> Mode", "Value for U<- U< Mode", "Value for UNE> UNE> Mode", and "Value for UNE>> UNE>> Mode" block).
- Six configuration interface element enabling/disabling the blocking input("Blockage U>",
  "Blockage U>>", "Blockage U<", "Blockage UNE>", and "Blockage UNE>>"
  block).
- Four configuration interface element which allow to set the trip mode("U> Trip Mode", "U>> Trip Mode", "U< Trip Mode", and "U<< Trip Mode" block).</li>
- One output logic element ("Output Logic" block).
- One logic element ("Const" block).

#### 3.10.2 Functionality

The *Voltage* subrelay models two 3phase overvoltage elements, two 3phase undervoltage elements and two zero sequence overvoltage elements. Each phase voltage element can be set to use:

- · the phase-phase voltages
- · the phase-ground voltages.

Each voltage element can be configured to ignore an external block input signal.

#### 3.10.3 Data input

| Address | Relay Setting | Model block | Model setting             | Note                                                                                                              |
|---------|---------------|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------|
| 14100   | U> Stage      | U>          | Out of Service (outserv)  |                                                                                                                   |
| 14198   | Blockage U>   | Blockage U> | blockage_UM (blockage_UM) | In the "DIP Settings" tab<br>page, when the dip is<br>on the element can be<br>blocked by the external<br>element |

| Address | Relay Setting | Model block                 | Model setting                                        | Note                                                                                                                                             |
|---------|---------------|-----------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 14140   | Value for U>  | Value for U> - U> Mode      | Use_1stharmonic<br>(Use_1stharmonic)                 | In the "DIP Settings" tab page, when the dip is <i>on</i> only the voltage 1 <sup>st</sup> harmonic is used                                      |
| 14131   | U> Mode       | Value for U> - U> Mode      | Use_Phase_Phase_Voltage<br>(Use_Phase_Phase_Voltage) | In the "DIP Settings" tab<br>page, when the dip is on<br>the phase-Phase volt-<br>age is used otherwise<br>the phase-ground volt-<br>age is used |
| 14101   | U>            | U>                          | Input Setting (Ipset)                                |                                                                                                                                                  |
| 14111   | tU> Time      | U>                          | Time Dial (Tpset)                                    |                                                                                                                                                  |
| 14200   | U>> Stage     | U>>                         | Out of Service (outserv)                             |                                                                                                                                                  |
| 14298   | Blockage U>>  | Blockage U>>                | blockage_UMM (blockage_UMM)                          | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element                                            |
| 14240   | Value for U>> | Value for U>> - U>><br>Mode | Use_1stharmonic<br>(Use_1stharmonic)                 | In the "DIP Settings" tab page, when the dip is <i>on</i> only the voltage 1 <sup>st</sup> harmonic is used                                      |
| 14231   | U>> Mode      | Value for U>> - U>><br>Mode | Use_Phase_Phase_Voltage<br>(Use_Phase_Phase_Voltage) | In the "DIP Settings" tab<br>page, when the dip is on<br>the phase-Phase volt-<br>age is used otherwise<br>the phase-ground volt-<br>age is used |
| 14201   | U>>           | U>>                         | Input Setting (Ipset)                                |                                                                                                                                                  |
| 14211   | tU>> Time     | U>>                         | Time Dial (Tpset)                                    |                                                                                                                                                  |
| 15100   | U< Stage      | U<                          | Out of Service (outserv)                             |                                                                                                                                                  |
| 15198   | Blockage U<   | Blockage U<                 | blockage_Um (blockage_Um)                            | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element                                            |
| 15140   | Value for U<  | Value for U< - U< Mode      | Use_1stharmonic<br>(Use_1stharmonic)                 | In the "DIP Settings" tab page, when the dip is <i>on</i> only the voltage 1 <sup>st</sup> harmonic is used                                      |
| 15131   | U< Mode       | Value for U< - U< Mode      | Use_Phase_Phase_Voltage<br>(Use_Phase_Phase_Voltage) | In the "DIP Settings" tab<br>page, when the dip is on<br>the phase-Phase volt-<br>age is used otherwise<br>the phase-ground volt-<br>age is used |
| 15101   | U<            | U<                          | Input Setting (Ipset)                                |                                                                                                                                                  |
| 15111   | tU< Time      | U<                          | Time Dial (Tpset)                                    |                                                                                                                                                  |
| 15200   | U<< Stage     | U<<                         | Out of Service (outserv)                             |                                                                                                                                                  |
| 15298   | Blockage U<<  | Blockage U<<                | blockage_Umm (blockage_Umm)                          | In the "DIP Settings" tab<br>page, when the dip is<br>on the element can be<br>blocked by the external<br>element                                |
| 15240   | Value for U<< | Value for U<< - U<<br>Mode  | Use_1stharmonic<br>(Use_1stharmonic)                 | In the "DIP Settings" tab page, when the dip is <i>on</i> only the voltage 1 <sup>st</sup> harmonic is used                                      |
| 15231   | U<< Mode      | Value for U<< - U<<<br>Mode | Use_Phase_Phase_Voltage<br>(Use_Phase_Phase_Voltage) | In the "DIP Settings" tab<br>page, when the dip is on<br>the phase-Phase volt-<br>age is used otherwise<br>the phase-ground volt-<br>age is used |

| Address | Relay Setting   | Model block                     | Model setting                        | Note                                                                                                                               |
|---------|-----------------|---------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 15201   | U<<             | U<<                             | Input Setting (Ipset)                |                                                                                                                                    |
| 15211   | tU<< Time       | U<<                             | Time Dial (Tpset)                    |                                                                                                                                    |
| 14300   | UNE> Stage      | UNE>                            | Out of Service (outserv)             |                                                                                                                                    |
| 14398   | Blockage UNE>   | Blockage UNE>                   | blockage_UNEM (block-<br>age_UNEM)   | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element                              |
| 14340   | Value for UNE>  | Value for UNE> - UNE><br>Mode   | Use_1stharmonic<br>(Use_1stharmonic) | In the "DIP Settings" tab<br>page, when the dip is <i>on</i><br>only the voltage 1 <sup>st</sup> har-<br>monic is used             |
| 14335   | UNE> Mode       | Value for UNE> - UNE><br>Mode   | Use_Measured (Use_Measured)          | In the "DIP Settings" tab<br>page, when the dip is on<br>the neutral voltage mea-<br>sured by the open delta<br>Vt voltage is used |
| 14301   | UNE>            | UNE>                            | Input Setting (Ipset)                |                                                                                                                                    |
| 14311   | tUNE> Time      | UNE>                            | Time Dial (Tpset)                    |                                                                                                                                    |
| 14400   | UNE>> Stage     | UNE>>                           | Out of Service (outserv)             |                                                                                                                                    |
| 14498   | Blockage UNE>>  | Blockage UNE>>                  | blockage_UNEMM (block-<br>age_UNEMM) | In the "DIP Settings" tab<br>page, when the dip is<br>on the element can be<br>blocked by the external<br>element                  |
| 14440   | Value for UNE>> | Value for UNE>> -<br>UNE>> Mode | Use_1stharmonic<br>(Use_1stharmonic) | In the "DIP Settings" tab<br>page, when the dip is <i>on</i><br>only the voltage 1 <sup>st</sup> har-<br>monic is used             |
| 14435   | UNE>> Mode      | Value for UNE>> -<br>UNE>> Mode | Use_Measured (Use_Measured)          | In the "DIP Settings" tab<br>page, when the dip is on<br>the neutral voltage mea-<br>sured by the open delta<br>Vt voltage is used |
| 14401   | UNE>>           | UNE>>                           | Input Setting (Ipset)                |                                                                                                                                    |
| 14411   | tUNE>> Time     | UNE>>                           | Time Dial (Tpset)                    |                                                                                                                                    |

## 3.11 Frequency subrelay

The Frequency subrelay implements the overfrequency and the underfrequency protection logic.

## 3.11.1 Available Units and input signals

The *Frequency* subrelay contains the following elements:

- Four over/under frequency elements ("f1><", "f2><", "f3><", and "f4><" block).
- One undervoltage element ("ULLmin for fx><" block).
- Four configuration interface element which allow to enable/disable the blocking input("Blockage f1><", "Blockage f2><", "Blockage f3><", and "Blockage f4><" block).
- One output logic element ("Output Logic" block).
- · One logic element ("Const" block).

## 3.11.2 Functionality

The *Frequency* subrelay models contains 4 over/under frequency define time delay elements. Each frontage element can be configured to ignore an external block input signal. The frequency elements are blocked when any phase-phase voltage is smaller than a user configurable threshold (16008 ULLmin for fx><). Each frequency element can be set to

## 3.11.3 Data input

| Address | Relay Setting | Model block   | Model setting                 | Note                                                                                                               |
|---------|---------------|---------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 16100   | f1>< Start    | f1><          | Out of Service (outserv)      |                                                                                                                    |
| 16198   | Blockage f1>< | Blockage f1>< | blockage_f1Mm (blockage_f1Mm) | In the "DIP Settings" tab<br>page, when the dip is<br>on the element can be<br>blocked by the external<br>element  |
| 16130   | TRIP at tf1>< | Output Logic  | tf1Mm_Trip (tf1Mm_Trip)       | In the "DIP Settings" tab<br>page, when the dip is <i>on</i><br>the "f1><" element trip<br>triggers the relay trip |
| 16101   | f1><          | f1><          | Frequency (Fset)              |                                                                                                                    |
| 16111   | tf1>< Time    | f1><          | Time Delay (Tdel)             |                                                                                                                    |
| 16200   | f2>< Start    | f2><          | Out of Service (outserv)      |                                                                                                                    |
| 16298   | Blockage f2>< | Blockage f2>< | blockage_f2Mm (blockage_f2Mm) | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element              |
| 16230   | TRIP at tf2>< | Output Logic  | tf2Mm_Trip (tf2Mm_Trip)       | In the "DIP Settings" tab<br>page, when the dip is <i>on</i><br>the "f2><" element trip<br>triggers the relay trip |

| Address | Relay Setting        | Model block       | Model setting                    | Note                                                                                                        |
|---------|----------------------|-------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|
| 16201   | f2><                 | f2><              | Frequency (Fset)                 |                                                                                                             |
| 16211   | tf2>< Time           | f2><              | Time Delay (Tdel)                |                                                                                                             |
| 16300   | f3>< Start           | f3><              | Out of Service (outserv)         |                                                                                                             |
| 16398   | Blockage f3><        | Blockage f3><     | blockage_f3Mm (blockage_f3Mm)    | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element       |
| 16330   | TRIP at tf3><        | Output Logic      | tf3Mm_Trip (tf3Mm_Trip)          | In the "DIP Settings" tab<br>page, when the dip is on<br>the "f3><" element trip<br>triggers the relay trip |
| 16301   | f3><                 | f3><              | Frequency (Fset)                 |                                                                                                             |
| 16311   | tf3>< Time           | f3><              | Time Delay (Tdel)                |                                                                                                             |
| 16400   | f4>< Start           | f4><              | Out of Service (outserv)         |                                                                                                             |
| 16498   | Blockage f4><        | Blockage f4><     | blockage_f4Mm (blockage_f4Mm)    | In the "DIP Settings" tab page, when the dip is on the element can be blocked by the external element       |
| 16430   | TRIP at tf4><        | Output Logic      | tf4Mm_Trip (tf4Mm_Trip)          | In the "DIP Settings" tab page, when the dip is <i>on</i> the "f4><" element trip triggers the relay trip   |
| 16401   | f4><                 | f4><              | Frequency (Fset)                 |                                                                                                             |
| 16411   | tf4>< Time           | f4><              | Time Delay (Tdel)                |                                                                                                             |
| 16001   | No. of periods for f | Measure Frequency | Frequency Measurement Time (Tfe) | In the main relay                                                                                           |
| 16008   | ULLmin for fx><      | ULLmin for fx><   | Voltage (Uset)                   |                                                                                                             |

## 3.12 Output logic

It represents the output stage of the relay; it is the interface between the relay and the power breaker.

#### 3.12.1 Available elements and relay output signals

The trip logic is implemented by the "Output Logic" block. The "Closing Logic" block, controlled by the reclosing feature ("Reclosing" block), has the purpose of generating a closing command for the power breaker when a reclosing attempt is triggered.

The relay trip output signals are:

- yout
- Z1TRIP
- Z2TRIP
- Z3TRIP
- Z4TRIP
- Z5TRIP
- Z6TRIP
- START
- yout1
- yout2

"yout" is the trip signal operating the breaker. The other output signals are associated by the default logic available in the relay model to the different zone trip output. A different user logic can be inserted in the "Logic" tab page of the "Output Logic" block. The relay closing command output signal is "yout1". "yout2" is the ouput signal activated when the breaker failure condition has been detected.

#### 3.12.2 Functionality

The "Output Logic" block collects the trip signals coming from the overcurrent protective elements and, when any protective element trips, operates the power breaker and the "yout" relay output contact.

The trip logic is user configurable and can be set in the "Logic" tab page.

The additional output signal "yAlarm", as default logic, is triggered by the starting of any frequency element.

The "Closing Logic" block is controlled by the closing signal coming from the "Reclosing" block and, when a reclosing attempt is initiated, triggers the closing command for the power breaker and operates the "yout1" relay output contact.

## 3.12.3 Data input

To disable the relay model ability to open the power circuit breaker simply disable the "Output Logic" block.

To disable the relay model ability to close the power circuit breaker simply disable the "Closing Logic" block.

# 4 Features not supported

The following features are not supported:

- Wattmetric Earth-Fault Direction Decision, Compensated System.
- Wattmetric Earth-Fault Direction Decision, Isolated System.
- Switch-On Protection (SOP).
- Inrush Restraint (harmonic restraint.
- Current annunciations (2x IL> an, 1x IE> an).
- · Power Protection.
- Reactive Power Undervoltage Protection.
- Synchrocheck and Synchrocheck AR.
- Emergency Overcurrent-Time Protection.
- · Fault Location (FL).
- Switch-On Protection (SOP/SOTF).
- · Trip Circuit Supervision.
- Capture of external earth-fault directions.
- Permissive Overreach Protection (POP).
- · Reverse Interlock Function and H2 Logic.
- Teleprotection (TP).
- · CB TRIP by external signal.
- Phase-sequence reversal / direction.
- User configurable Reset Ratio.

# 5 References

[1] Sprecher Automation Deutschland GmbH, Moellendorffstr. 47 10367 Berlin Germany. SPRECON-E-P DD6 PROTECTION AND CONTROL DEVICES DISTANCE PROTECTION User manual for the protection part Structure version 5601 94.2.903.15en from software version 1.01 2012-10-10 Issue E, 2012.