EE6320 RF Integrated Circuits Project: PA Design

PA Performance Summary Table

Design Parameter	Design Metric	Performance	Specification
	f 。= 5.17 GHz	10.2609	≥ +10 dBm
Output P1dB	f 。 = 5.245 GHz	10.2793	> +10 dBm
	f o = 5.32 GHz	10.2963	> +10 dBm
AM-PM Deviation (at P1dB)	f 。 = 5.17 GHz	1.3 deg	
	f 。 = 5.245 GHz	1.3 deg	< 5 degrees
	f o = 5.32 GHz	1.3 deg	< 5 degrees
Voltage Gain (from Gate to Drain)	f 。= 5.17 GHz	10.65	≥ 2
	f 。 = 5.245 GHz	10.61	≥ 2
	f o = 5.32 GHz	10.58	≥ 2
Power (at 5.245 GHz)	PA Average Consumption (excluding bias)	27.156 mW	Minimize
	Bias Circuit Consumption	27.1 uW	Minimize
Other	Sum of all Capacitances (including ac coupling)	20.838p	-
	Inductance Used	3.7	-
	Device Width	1.4mm	-

Simulator Used Virtuoso -

Name: Pragadeeswaran Kannan

Roll No: <u>EE21B103</u>

PA Testbench

Component Values Table

(W, L) MOS Amplifier = 1.4 mm, 120nm	(L, C, L2) Drain Tank = 1.517n, 868.3f, 2.03n	
(W, L) Current Mirror MOS = 2.7um, 120nm	Bias Current = 50u	
R_bias = 1 MΩ, C_coupling = 10p	V_DD = 1.2V , R_load = 50 ohms	

Output 1dB Compression Point Plots

At 5.17 GHz

At 5.245 GHz

AM-PM Deviation Plots

At 5.17 GHz

At 5.245 GHz

PA Volatge Gain Plot (from Gate to Drain)

Current through VDD Plot (at 5.245 GHz)

Design Procedure

- 1) Down converted the R_load to a lower value of 20 ohms to increase the swing limits at the drain. The Q of the matching network is 1.
- 2) The current through the amplifier mosfet has to be at least more than 20mAs based on the specs given.
- 3) An appropriate bias current of 50uA was chose, the W parameters of the mosfets were decided on that.
- 4) Based on the DC parameters of the cascode mosfet, the value of bias voltage of the cascode mosfet was chosen.
- 5) Then I made slight adjustments to both inductances, as the AM-PM plots were little off.

Path to Project Files

Amplifier: home/ee21b103/cadence_project/RFIC_2024/poweramp Testbench: home/ee21b103/cadence_project/RFIC_2024/pa_testbench

Note: All the schematic/plots put up here are for reference only. Please replace them with the respective plots/schematic used or obtained by you.