СПб ВШЭ, 3-й курс, 3-й модуль 2023/24 Конспект лекций по алгоритмам

Собрано 23 января 2024 г. в 00:09

Содержание

1. Действия над многочленами		1
1.1. Над \mathbb{F}_2		
1.2. Умножение многочленов		. 1
2. FFT и его друзья		2
2.1. FFT		. 3
2.1.1. Прелюдия		
2.1.2. Собственно FFT		
2.1.3. Крутая нерекурсивная реализация FFT		
2.1.4. Обратное преобразование		
2.1.5. Два в одном		
2.1.6. Умножение чисел, оценка погрешности		
2.2. Разделяй и властвуй		
2.2.1. Перевод между системами счисления		
2.2.2. Деление многочленов с остатком		
2.2.3. Вычисление значений в произвольных точках		
2.2.4. Интерполяция		
2.2.5. Извлечение корня		
2.3. Литература		
3. Деление многочленов		8
3.1. Быстрое деление многочленов		
3.2. (*) Быстрое деление чисел		
3.3. (*) Быстрое деление чисел		
3.4. (*) Обоснование метода Ньютона		
3.5. Линейные рекуррентые соотношения		
3.5.1. Через матрицу в степени		
3.5.2. Через умножение многочленов		
5.5.2. Терез умножение многочленов	• •	. 10
4. Применение умножения многочленов		11
4.1. Факторизация целых чисел		. 11
4.2. CRC-32		. 11
4.3. Кодирование бит с одной ошибкой		. 11
4.4. Коды Рида-Соломона		. 12
4.5. Применения fft в комбинаторике		. 13
4.5.1. Покраска вершин графа в k цветов		. 13
4.5.2. Счастливые билеты		. 13
4.5.3. 3-SUM		
4.5.4. Применение к задаче о рюкзаке		. 13

$4.5.5.$ (*) Сверхбыстрый рюкзак за $ ilde{O}(\sqrt{n}S)$	14
4.5.6. (*) Сверхбыстрый рюкзак за $\tilde{O}(n+S)$	14
4.6. Литература	. 14

Лекция #1: Действия над многочленами

8 апреля 2019

1.1. Над \mathbb{F}_2

Умножение/деление/gcd можно делать битовым сжатием за $\approx \frac{nm}{w}$, где w – word size.

• Хранение

```
A(x) = a_0 + a_1 x + \dots + a_n x^n \to \mathbb{N} = \mathbb{n} + 1; bitset<N> а Обобзначения: n = \deg A, \ m = \deg B, \ N = \deg A + 1, \ M = \deg B + 1. Многочлен степени n = \max коэффициентов длины N.
```

• Умножение

Время работы: $\mathcal{O}(n \cdot \lceil \frac{m}{w} \rceil)$. Можно n заменить на «число не нулей в \mathfrak{a} ».

• Деление

```
1 for i=n..m
2 if a[i]
3 a ^= b << (i-m), c[i-m] = 1
```

Результат: в «а» лежит остаток, в «с» частное.

Время работы: $\mathcal{O}((n-m) \cdot \lceil \frac{m}{w} \rceil)$.

• gcd

Запускаем Евклида. Один шаг Евклида – деление. Деление работает за $\mathcal{O}((n-m)\cdot \lceil \frac{m}{w}\rceil)$ и уменьшает n на $n-m\Rightarrow$ суммарно все деления отработают за $\mathcal{O}((n-m)\cdot \lceil \frac{m}{w}\rceil+\frac{m^2}{w})=\mathcal{O}(\frac{nm}{w})$.

1.2. Умножение многочленов

Над произвольным кольцом умеем за $\mathcal{O}(nm)$.

Точнее за «(число не нулей в a) · (число не нулей в b)».

• Карацуба

Пусть $N=2^k$. Если нет, дополним оба массива нулями (нулевые старшие коэффициенты). Делим многочлены на две части: $A=A_0+x^{N/2}A_1,\ B=B_0+x^{N/2}B_1$

$$A \cdot B = A_0 B_0 + x^N A_1 B_1 + x^{N/2} (A_0 B_1 + A_1 B_0) = C_0 + x^N C_1 + x^{N/2} ((A_0 + B_0)(A_1 + B_1) - C_0 - C_1)$$

Умножение многочленов длины N – сложение, вычитание и 3 умножения многочленов длины $\frac{N}{2}$.

$$T(n) = 3T(\frac{n}{2}) + n = \Theta(n^{\log 3})$$

Такой способ умножения работает над произвольным кольцом.

• Оптимальное над \mathbb{F}_2

У нас уже есть Карацуба и битовое сжатие. Соединим. Внутри Карацубы реализуем сложение, вычитание и разделение многочлена на две части за $\lceil \frac{n}{w} \rceil$. Казалось бы мы ускорили всё в w раз, но нет, время работы равно числу листьев рекурсии.

$$T(n) = 3T(\frac{n}{2}) + \lceil \frac{n}{w} \rceil = \Theta(n^{\log 3})$$

Асимптотическая оптимизация: в рекурсии при $N\leqslant w$ будем умножать за $\mathcal{O}(n)$. Улучшили $w^{\log 3}$ до $w\Rightarrow$ новое время работы в $w^{(\log 3)-1}$ раз меньше.

ullet Над \mathbb{Z} , над \mathbb{R} , над \mathbb{C}

Фурье за $\mathcal{O}(n \log n)$. Смотри главу про Фурье (FFT).

• Над конечным полем

Все конечные поля изоморфны \Rightarrow умножить над $\mathbb{F}_p \Leftrightarrow$ умножить над $\mathbb{Z}/p\mathbb{Z}$.

Умножим в Z (Карацуба или FFT), затем возьмём по модулю.

Для некоторых p, например $p = 3 \cdot 2^{18} + 1$, можно напрямую применить «Фурье по модулю».

Лекция #2: FFT и его друзья

5 сентября

2.1. FFT

2.1.1. Прелюдия

Пусть есть многочлены $A(x) = \sum a_i x^i$ и $B(x) = \sum b_i x^i$. Посчитаем их значения в точках x_1, x_2, \dots, x_n : $A(x_i) = fa_i, B(x_i) = fb_i$. Значения C(x) = A(x)B(x) в точках x_i можно получить за линейное время:

$$fc_i = C(x_i) = A(x_i)B(x_i) = fa_i fb_i$$

Схема быстрого умножения многочленов:

$$a_i, b_i \xrightarrow{\mathcal{O}(n \log n)} fa_i, fb_i \xrightarrow{\mathcal{O}(n)} fc_i = fa_i fb_i \xrightarrow{\mathcal{O}(n \log n)} c_i$$

Осталось подобрать правильные точки x_i .

FFT расшифровывается Fast Fourier Transform и за $\mathcal{O}(n\log n)$ вычисляет значения многочлена в комплексных точках $w_j = e^{\frac{2\pi i j}{n}}$ для $n = 2^k$ (то есть, только для степеней двойки).

Что нужно помнить про комплексные числа? При умножении комплексных чисел углы складываются, длины перемножаются.

В частности, если обозначить $w=e^{\frac{2\pi i}{n}}=\cos\frac{2\pi i}{n}+i\sin\frac{2\pi i}{n}$, то $w_j=w^j$ (все корни из единицы – это степени главного корня, и они образуют циклическую группу). Также $w^{-j}=w^{n-j}$.

2.1.2. Собственно FFT

 $A(x) = \sum a_i x^i = (a_0 + x^2 a_2 + x^4 a_4 + \dots) + x(a_1 x + a_3 x^3 + a_5 x^5 + \dots) = B(x^2) + xC(x^2)$ – обозначили все чётные коэффициенты многочлена A многочленом B, а нечётные соответственно C.

Посчитаем рекурсивно $B(w_j)$ и $C(w_j)$, зная их, за $\mathcal{O}(n)$ посчитаем $A(w_j) = B(w_j) + w_j C(w_j)$.

Заметим, что $\forall j \ w_j = w_{j \bmod n} \Rightarrow \forall j \ w_j^2 = w_{n/2+j}^2 \Rightarrow B$ и C нужно считать только в $\frac{n}{2}$ точках.

Итого алгоритм:

```
def FFT(a):
    n = len(a)
    if n == 1: return a[0] # посчитать значение многочлена A(x) \equiv a[0] в точке x = 1
    for j=0..n-1: (j%2 ? c : b)[j / 2] = a[j]
    b, c = FFT(b), FFT(c) # самое важное - две ветки рекурсии
    for j=0..n-1: a[j] = b[j % (n/2)] + exp(2\pi i * j/n) * c[j % (n/2)]
    return a
```

Время работы $T(n) = 2T(n/2) + \mathcal{O}(n) = \mathcal{O}(n \log n).$

2.1.3. Крутая нерекурсивная реализация FFT

Чтобы преобразование работало быстро, нужно заранее предподсчитать все $w_j = e^{\frac{2\pi i j}{n}}$.

Заметим, что b и c можно хранить прямо в массиве a. Тогда получается, что на прямом ходу рекурсии мы просто переставляем местами элементы a, на обратном ходу рекурсии делаем какие-то полезные действия. Число a_i перейдёт на позицию $a_{rev(i)}$, где rev(i) — перевёрнутая битовая запись i. Кстати, rev(i) мы уже умеем считать динамикой для всех i.

При реализации на C++ можно использовать стандартные комплексные числа complex<double>, но свои рукописные будут работать немного быстрее.

```
1 const int K = 20, N = 1 << K; // N - ограничение на длину результата умножения многочленов complex <double > root [N]; int rev [N]; void init(): for (int j = 0; j < N; j++): root[j] = \exp(2\pi i * j/N); // \cos(2\pi j/N), \sin(2\pi j/N) rev[j] = \operatorname{rev}[j >> 1] + ((j & 1) << (K - 1));
```

Теперь, корни из единицы степени k хранятся в root[j*N/k], $j \in [0, k)$.

Доступ к памяти при этом не последовательный, проблемы с кешом.

Чтобы посчитать все корни, мы 2N раз вычисляли тригонометрические функции.

• Улучшенная версия вычисления корней

```
1 for (int k = 1; k < N; k *= 2):
2 num tmp = exp(πi/k);
3 root[k] = {1, 0}; // в root[k..2k) хранятся первые к корней степени 2k
4 for (int i = 1; i < k; i++)
5 root[k+i] = (i&1) ? root[(k+i) >> 1] * tmp : root[(k+i) >> 1];
```

Теперь код собственно преобразования Фурье может выглядеть так:

```
FFT(a): // a \rightarrow f = FFT(a)
1
2
       vector < complex > f(N);
3
       for (int i = 0; i < N; i++) // прямой ход рекурсии превратился в один for =)
4
            f[rev[i]] = a[i];
5
       for (int k = 1; k < N; k *= 2) // пусть уже посчитаны FFT от кусков длины k
            for (int i = 0; i < N; i += 2 * k) // [i..i+k) [i+k..i+2k) \rightarrow [i..i+2k)
6
7
                 for (int j = 0; j < k; j++): // оптимально написанный главный цикл FFT
8
                     num tmp = root[k + j] * f[i + j + k]; // root[] из «улучшенной версии»
9
                     f[i + j + k] = f[i + j] - tmp; // w_{i+k} = -w_i при n = 2k
10
                     f[i + j] = f[i + j] + tmp;
11
       return f;
```

2.1.4. Обратное преобразование

```
Обозначим w=e^{2\pi i/n}. Нам нужно из f_0=a_0+a_1+a_2+a_3+\dots f_1=a_0+a_1w+a_2w^2+a_3w^3+\dots f_2=a_0+a_1w^2+a_2w^4+a_3w^3+\dots
```

научиться восстанавливать коэффициенты a_0, a_1, a_2, \dots

Заметим, что $\forall j \neq 0$ $\sum_{k=0}^{n-1} w^{jk} = 0$ (сумма геометрической прогрессии). И напротив при j=0 получаем $\sum_{k=0}^{n-1} w^{jk} = \sum 1 = n$.

Поэтому $f_0 + f_1 + f_2 + \dots = a_0 n + a_1 \sum_k w^k + a_2 \sum_k w^{2k} + \dots = a_0 n$ Аналогично $f_0 + f_1 w^{-1} + f_2 w^{-2} + \dots = \sum_k a_0 w^{-k} + a_1 n + a_2 \sum_k w^k + \dots = a_1 n$

И в общем случае $\sum_k f_k w^{-jk} = \boxed{a_j n}$

Рассмотрим $F(x) = f_0 + x f_1, x^2 \overline{f_2 + \ldots} \Rightarrow F(w^{-j}) = a_i n$, похоже на FFT(f).

Осталось заметить, что множества чисел $w^{-j} = w^{n-j} \Rightarrow$

```
FFT_inverse(f): // f \rightarrow a
1
2
        a = FFT(f)
        reverse(a + 1, a + N) // w^j \leftrightarrow w^{-j}
3
        for (int i = 0; i < N; i++) a[i] /= N;</pre>
4
5
        return a;
```

2.1.5. Два в одном

Часто коэффициенты многочленов – вещественные или даже целые числа.

Если у нас есть многочлены $A(x), B(x) \in \mathbb{R}[x]$, возьмём числа $c_i = a_i + ib_i$, коэффициенты C(x) = A(x) + iB(x), посчитаем fc = FFT(c). Тогда по f за $\mathcal{O}(n)$ можно восстановить fa и fb.

Для этого вспомним про сопряжения комплексных чисел:

```
\overline{x+iy} = x-iy, \ \overline{u\cdot v} = \overline{u}\cdot \overline{v}, \ w^{n-j} = w^{-j} = \overline{w^j} \ \Rightarrow \ \overline{\underline{fc_{n-j}}} = \overline{C(w^{n-j})} = \overline{C}(w^j) = A(w^j) - iB(w^j) \ \Rightarrow \ \overline{C(w^j)} = \overline{C(w^
     fc_j + \overline{fc_{n-j}} = 2A(w^j) = 2 \cdot fa_j. Аналогично fc_j - \overline{fc_{n-j}} = 2B(w^j) = 2i \cdot fb_j.
```

Итого для умножения двух многочленов можно использовать | не 3 вызова FFT, а 2 |.

2.1.6. Умножение чисел, оценка погрешности

Число длины n в системе счисления $10 \to$ система счисления $10^k \to$ многочлен длины n/k. Умножения многочленов такой длины будет работать за $\frac{n}{k}\log\frac{n}{k}$.

Отсюда возникает вопрос, какое максимальное k можно использовать?

Коэффициенты многочлена-произведения будут целыми числами до $(10^k)^2 \cdot \frac{n}{h}$.

Чтобы в типе double целое число хранилось с погрешностью меньше 0.5 (тогда мы его сможем правильно округлить к целому), оно должно быть не более 10^{15} .

Получаем при $n \leq 10^6$, что $(10^k)^2 \cdot 10^6/k \leq 10^{15} \Rightarrow k \leq 4$.

Аналогично для типа long double имеем $(10^k)^2 \cdot 10^6 / k \le 10^{18} \Rightarrow k \le 6$.

Это оценка сверху, предполагающая, что само FFT погрешность не накапливает... на самом деле эта оценка очень близка к точной.

2.2. Разделяй и властвуй

2.2.1. Перевод между системами счисления

Задача: перевести число X длины $n=2^k$ из a-ичной системы счисления в b-ичную.

Разобьём число X на $\frac{n}{2}$ старших цифр и $\frac{n}{2}$ младших цифр: $X = X_0 \cdot a^{n/2} + X_1 \Rightarrow$

$$F(X) = F(X_0)F(a^{n/2}) + F(X_1)$$

Умножение за $\mathcal{O}(n \log n)$ и сложение за $\mathcal{O}(n)$ выполняются в системе счисления b. Предподсчёт $F(a^1), F(a^2), F(a^4), F(a^8), \ldots, F(a^n)$ займёт $\sum_k \mathcal{O}(2^k k) = \mathcal{O}(n \log n)$ времени. Итого $T(n) = 2T(n/2) + \mathcal{O}(n \log n) = \mathcal{O}(n \log^2 n)$.

2.2.2. Деление многочленов с остатком

Задача: даны $A(x), B(x) \in \mathbb{R}[x]$, найти Q(x), R(x): $\deg R < \deg B \wedge A(x) = B(x)Q(x) + R(x)$.

Зная Q мы легко найдём R, как A(x) - B(x)Q(x) за $\mathcal{O}(n\log n)$. Сосредоточимся на поиске Q. Пусть $\deg A = \deg B = n$, тогда $Q(x) = \frac{a_n}{b_n}$. То есть, Q(x) можно найти за $\mathcal{O}(1)$. Из этого мы делаем вывод, что Q зависит не обязательно от всех коэффициентов A и B.

<u>Lm</u> 2.2.1. $\deg A = m, \deg B = n \Rightarrow \deg Q = m - n,$ и Q зависит только от m-n+1 коэффициентов A и m-n+1 коэффициентов B.

Доказательство. У A и $B \cdot Q$ должны совпадать m-n+1 старший коэффициент ($\deg R < n$). В этом сравнении участвуют только m-n+1 старших коэффициентов A. При домножение B на $x^{\deg Q}$, сравнятся как раз m-n+1 старших коэффициентов A и B. При домножении B на меньшие степени x, в сравнении будут участвовать лишь какие-то первые из этих m-n+1 коэффициентов.

Теперь будем решать задачу: даны n старших коэффициентов A и B, найти такой C из n коэффициентов, что у A и BC совпадает n старших коэффициентов. Давайте считать, что младшие коэффициенты лежат в первых ячейках массива.

```
Div(int n, int *A, int *B)

C = Div(n/2, A + n/2, B + n/2) // нашли старших n/2 коэффициентов ответа

A' = Subtract(n, A, n + n/2 - 1, Multiply(C, B))

D = Div(n/2, A', B + n/2) // сейчас A' состоит из n/2 не нулей и n/2 нулей

return concatenate(D, C) // склеили массивы коэффициентов
```

Здесь Subtract – хитрая функция. Она знает длины многочленов, которые ей передали, и сдвигает вычитаемый многочлен так, чтобы старшие коэффициенты совместились.

2.2.3. Вычисление значений в произвольных точках

Задача. Дан многочлен $A(x), \ \deg A = n$ и точки $x_1, x_2, \dots x_n$. Найти $A(x_1), A(x_2), \dots A(x_n)$.

Вспомним теорему Безу: $A(w) = A(x) \mod (x - w)$.

```
Обобщение: B(x) = A(x) \mod (x - x_1)(x - x_2) \dots (x - x_n) \implies \forall j \ B(x_j) = A(x_j)
```

```
def Evaluate(n, A, x[]): # n = 2^k

if n == 1: return list(A[0])

return Evaluate(n/2, A mod (x - x_1) \cdot ... \cdot (x - x_{n/2}), [x<sub>1</sub>, ..., x<sub>n/2</sub>]) +

Evaluate(n/2, A mod (x - x_{n/2+1}) \cdot ... \cdot (x - x_n), [x<sub>n/2+1</sub>, ..., x<sub>n</sub>])
```

Итого $T(n) = 2T(n/2) + \mathcal{O}(\operatorname{div}(n))$. Если деление реализовано за $\mathcal{O}(n \log n)$, получим $\mathcal{O}(n \log^2 n)$.

2.2.4. Интерполяция

Задача. Даны пары $(x_1, y_1), \dots, (x_n, y_n)$. Найти многочлен A: $\deg A = n-1, \ \forall i \ A(x_i) = y_i$.

Сделаем интерполяцию по Ньютону методом разделяй и властвуй.

Сперва найдём интерполяционный многочлен B для $(x_1, y_1), (x_2, y_2), \dots, (x_{n/2}, y_{n/2}).$

$$A=B+C\cdot D$$
, где $D=\prod_{j=1..rac{n}{2}}(x-x_j)$, а C нужно найти

Подгоним правильные значения в точках $x_{n/2+1}, \ldots, x_n$, вычислим b_j, d_j — значения B и D в точках $x_{n/2+1}, \ldots, x_n \Rightarrow C$ — интерполяционный многочлен точек $(x_j, -\frac{b_j}{d_j})$ при $j = \frac{n}{2} + 1 \ldots n$.

Итого $T(n) = 2T(n/2) + 2\mathcal{O}(\text{evaluate}(n/2))$. При $\text{evaluate}(n) = \mathcal{O}(n\log^2 n)$ имеем $\mathcal{O}(n\log^3 n)$.

2.2.5. Извлечение корня

Дан многочлен A(x): $\deg A \equiv 0 \mod 2$. Задача — найти R(x): $\deg(A-R^2)$ минимальна. Пусть мы уже нашли старшие k коэффициентов R, обозначим их R_k . Найдём 2k коэфф-тов: $R_{2k} = R_k x^k + X, R_{2k}^2 = R_k^2 x^{2k} + 2R_k X \cdot x^k + X^2$. Правильно подобрав X, мы можем "обнулить" k коэффициентов $A - R_{2k}^2$, для этого возьмём $X = (A - R_k^2 x^{2k})/(2R_k)$. В этом частном нам интересны только k старших коэффициентов, поэтому переход от R_k к R_{2k} происходит за $\mathcal{O}(\mathfrak{mul}(k) + \operatorname{div}(k))$. Итого суммарное время на извлечение корня — $\mathcal{O}(\operatorname{div}(n))$.

2.3. Литература

[sankowski]. Слайды по FFT и всем идеям разделяй и властвуй.

[e-maxx]. Про FFT и оптимизации к нему.

[codeforces]. Задачи на тему FFT.

[vk]. Краткий конспект похожих идей от Александра Кулькова.

Лекция #3: Деление многочленов

12 сентября

3.1. Быстрое деление многочленов

Цель – научиться делить многочлены за $\mathcal{O}(n \log n)$.

Очень хочется считать частное многочленов A(x)/B(x), как $A(x)B^{-1}(x)$. К сожалению, у многочленов нет обратных. Зато обратные есть у рядов, научимся сперва искать их.

• Обращение ряда

Задача. Дан ряд $A \in [[\mathbb{R}]], \ a_0 \neq 0$. Найти ряд $B \colon A(x)B(x) = 1$.

Первые n коэффициентов B можно найти за $\mathcal{O}(n^2)$:

 $b_0 = 1/a_0$

 $b_1 = -(a_1b_0)/a_0$

 $b_2 = -(a_2b_0 + a_1b_1)/a_0$

. . .

A можно за $\mathcal{O}(n \log n)$.

Обозначим $B_k(x) = b_0 + b_1 x + \dots + b_{k-1} x^{k-1}$. Заметим, что $\forall k \ A(x) B_k(x) = 1 + x^k C_k(x)$.

 $B_1 = b_0 = 1/a_0$. Научимся делать переход $B_k \to B_{2k}$ за $\mathcal{O}(k \log k)$.

 $B_{2k} = B_k + x^k Z \Rightarrow A \cdot B_{2k} = 1 + x^k C_k + x^k A \cdot Z = 1 + x^k (C_k - A \cdot Z).$

Выберем $Z = B_k \cdot C_k \Rightarrow C_k - A \cdot Z = C_k - C_k (A \cdot B_k) = C_k - C_k (1 + x^k C_k) = -x^k C_k^2$.

Итого $B_{2k} = B_k + B_k(x^k C_k) = B_k + B_k(1 - A \cdot B_k) \Rightarrow B_{2k} = B_k(2 - A \cdot B_k)$

Два умножения = $\mathcal{O}(k \log k)$. Общее время работы $n \log n + \frac{n}{2} \log \frac{n}{2} + \frac{n}{4} \log \frac{n}{4} + \cdots = \mathcal{O}(n \log n)$. Конечно, мы обрежем B_{2k} , оставив лишь 2k первых членов.

• Деление многочленов

 A^R – reverse многочлена. $a_0 + a_1x + \cdots + a_nx^n \to a_n + a_{n-1}x + \cdots + a_0x^n$.

Умножение: $A^R B^R = (AB)^R$ (доказательство: в $c_{ij} += a_i b_j$ поменяли индексы на n-i и m-j).

Новое определение деления: по A, B хотим C: $A^R \equiv (BC)^R \bmod x^n$.

Здесь n – число коэффициентов у A, у B ровно столько же.

Обращение ряда нам даёт умение по многочлену $Z\colon z_0\neq 0$ строить $Z^{-1}\colon Z\cdot Z^{-1}\equiv 1 \bmod x^n.$

$$C^R = (B^R)^{-1} A^R$$

Время работы: обращение ряда + умножение = $\mathcal{O}(n \log n)$.

Над кольцом делить странно, а вот над произвольным полем Фурье может не работать, тогда деление работает за $\mathcal{O}(\mathtt{mul}(n) + \mathtt{mul}(\frac{n}{2}) + \dots) = \mathcal{O}(\mathtt{mul}(n))$ для $\mathtt{mul}(n) = \Omega(n)$.

3.2. (*) Быстрое деление чисел

Для нахождение частного чисел, достаточно научиться с большой точностью считать обратно. Рассмотрим метод Ньютона поиска корня функции f(x):

 $x_0 =$ достаточно точное приближение корня

$$x_{i+1} = x_i - f(x_i)/f'(x_i)$$

Решим с помощью него уравнение $f(x) = x^{-1} - a = 0$.

 $x_0 =$ обратное к старшей цифре a

$$x_{i+1} = x_i - (\frac{1}{x_i} - a)/(-\frac{1}{x_i^2}) = x_i + (x_i - a \cdot x_i^2) = x_i(2 - ax_i).$$

Любопытно, что очень похожую формулу мы видели при обращении формального ряда...

Утверждение: каждый шаг метода Ньютона удваивает число точных знаков х.

Итого, имея x_i с k точными знаками, мы научились за $\mathcal{O}(k \log k)$ получать x_{i+1} с 2k точными знаками. Суммарное время получения n точных знаков $\mathcal{O}(n \log n)$.

3.3. (*) Быстрое извлечение корня для чисел

Продолжаем пользоваться методом Ньютона.

$$x_{i+1} = \frac{1}{2}(x_i + \frac{a}{x_i})$$

Если у x_i k_i верных знаков, то $k_{i+1} = k_i + \Theta(1)$, а

 $x_i \to x_{i+1}$ вычисляется одним делением многочленов длины k_i за $\mathcal{O}(k_i \log k_i)$.

3.4. (*) Обоснование метода Ньютона

Цель: доказать, что каждый шаг удваивает число точных знаков x.

Сдалем замену переменных, чтобы было верно $f(0) = 0 \Rightarrow$ корень, который мы ищем, – 0.

Сейчас находимся в точке x_i . По Тейлору $f(0) = f(x_i) - x_i f'(x_i) + x_i^2 f''(\alpha)$ ($\alpha \in [0...x_i]$).

Получаем $\frac{f(x_i)}{f'(x_i)} = x_i + x_i^2 \frac{f''(\alpha)}{f'(x_i)}$. Передаём Ньютону $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - x_i - x_i^2 \frac{f''(\alpha)}{f'(x_i)}$. Величина $\frac{f''(\alpha)}{f'(x_i)}$ ограничена сверху константой C.

Получаем, что если $x_i \leqslant 2^{-n}$, то $x_{i+1} \leqslant 2^{-2n + \log C}$.

То есть, число верных знаков почти удваивается.

3.5. Линейные рекуррентые соотношения

Задача. Дана последовательность $f_0, f_1, \ldots, f_{k-1}, \forall n \geqslant k$ $f_n = f_{n-1}a_1 + \cdots + f_{n-k}a_k$, найти f_n . Вычисления "в лоб" можно произвести за $\mathcal{O}(nk)$.

3.5.1. Через матрицу в степени

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_k \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \end{bmatrix}, \ \forall i \ A \cdot \begin{bmatrix} f_{i-1} \\ f_{i-2} \\ \vdots \\ f_{i-k} \end{bmatrix} = \begin{bmatrix} f_i \\ f_{i-1} \\ \vdots \\ f_{i-k+1} \end{bmatrix} \Rightarrow A^n \cdot \begin{bmatrix} f_{k-1} \\ f_{k-2} \\ \vdots \\ f_0 \end{bmatrix} = \begin{bmatrix} f_{n+k-1} \\ f_{n+k-2} \\ \vdots \\ f_n \end{bmatrix}$$

Умножать матрицы умножаем за $\mathcal{O}(k^3) \Rightarrow$ общее время работы $\mathcal{O}(k^3 \log n)$.

3.5.2. Через умножение многочленов

На самом деле можно возводить в степень не матрицу, а многочлен по модулю... Умножение матриц за $\mathcal{O}(k^3)$ заменяется на умножение многочленов по модулю за $\mathcal{O}(k \log k)$.

Будем выражать f_n через f_i : i < n. В каждый момент времени $f_n = \sum_j f_j b_j$.

Изначально
$$f_n = f_n \cdot 1$$
. Пока $\exists j \geqslant k \colon b_j \neq 0$, меняем $f_j b_j$ на $\left(\sum_{i=1}^k f_{j-i} a_i\right) \cdot b_j$. (*)

Посмотрим, как меняются коэффициенты b_j . Пусть $B(x) = \sum b_j x^j$, $A(x) = x^k - \sum_{i=1}^k x^{k-i} a_i$.

Тогда (*) – переход от B(x) к $B(x) - A(x)x^{j-k}b_j$.

Изначально $B(x) = x^n \Rightarrow$ наш алгоритм – вычисление $x^n \mod A(x)$.

Возведение многочлена x в степень n по модулю $A(x) - \mathcal{O}(\log n)$ умножений и взятий по модулю.

Итого: $\mathcal{O}(k \log k \log n)$.

Лекция #4: Применение умножения многочленов

8 апреля 2019

4.1. Факторизация целых чисел

\bullet Вычисление $n! \mod m$

Возьмём $k = \lfloor \sqrt{n} \rfloor$, рассмотрим P(x) = x(x+k)(x+2k)...(x+k(k-1)). $P(1)P(2)P(3)...P(k) = (k^2)!$, чтобы дополнить до n!, сделаем руками $\mathcal{O}(k)$ умножений. Посчитать P(x) мы можем методом разделяй и властвуй за $O(k\log^2 k)$.

\bullet FFT над $\mathbb{Z}/m\mathbb{Z}$

Умножим в \mathbb{Z} (то же, что \mathbb{R} , что \mathbb{C}), в конце возьмём по модулю m.

Если не хватает точности обычного вещественного типа $(m=10^9\Rightarrow \texttt{long} \texttt{ double})$ уже слишком мал), то представим многочлен с коэффициентами до m, как сумму двух многочленов с коэффициентами до $k = \lceil m^{1/2} \rceil$: $P(x) = P_1(x) + k \cdot P_2(x), Q(x) = Q_1(x) + k \cdot Q_2(x)$.

Сделаем 3 умножения, как в Карацубе:

$$P(x)Q(x) = P_1Q_1 + k^2P_2Q_2 + k((P_1+Q_1)\cdot(P_2+Q_2) - P_1Q_1 - P_2Q_2)$$

• Факторизация

Найдём $\min d \colon gcd(d!,n) \neq 1$. Тогда d – минимальный делитель n. Можно искать бинпоиском, можно "двоичными подъёмами", тогда время = $\mathcal{O}(calc(n^{1/2}!)) = \mathcal{O}(n^{1/4}\log^2 n)$.

4.2. CRC-32

Один из вариантов хеширования последовательности бит $a_0, a_1, \ldots, a_{n-1}$ – взять остаток от деления многочлена $A(x) \cdot x^k$ на G(x), где G(x) – специальный многочлен, а $k = \deg G + 1$.

В CRC-32-IEEE-802.3 (в v.42, mpeg-2, png, cksum) k=32, G(x)=0хEDB88320 (32 бита). Если размер машинного слова $\geqslant k$, CRC вычисляется за $\mathcal{O}(n)$, в общем случаем за $\mathcal{O}(n \cdot \lceil \frac{k}{w} \rceil)$.

```
1 for i = n-1..k:
2    if a[i] != 0:
3        a[i..i-k+1] ^= G
```

 \mathbf{V} пражнение 4.2.1. $\mathtt{CRC}(\mathtt{A} \, \mathtt{B}) = \mathtt{CRC}(\mathtt{A}) \, \mathtt{CRC}(\mathtt{B}), \, \mathtt{CRC}(\mathtt{concat}(\mathtt{A}, 1)) = (\mathtt{CRC}(\mathtt{A}) \cdot 2 + 1) \bmod G$

4.3. Кодирование бит с одной ошибкой

Контекст. По каналу хотим передать n бит.

В канале может произойти не более 1 ошибки вида "замена бита".

Детектирование ошибки. Передадим a_1, a_2, \ldots, a_n и $b = \mathtt{XOR}(a_1, a_2, \ldots, a_n)$. Если b' равно $\mathtt{XOR}(a'_1, a'_2, \ldots, a'_n)$, ошибки при передачи не было.

Исправление ошибки.

Удвоение бит не работает – и из 0, и из 1 в результате одной ошибки может получиться 01. Работает утроение бит (3n) или "удвоение бит и дополнительно передать XOR" (2n+1).

Раскодирование для 2n+1: $00 \to 0$, $11 \to 1$, $01/10 \Rightarrow$ подгоняем, чтобы сошёлся XOR.

Исправление ошибки за $\lceil \log_2 n \rceil + 1$ дополнительных бит.

Передадим два раза $\mathtt{XOR}(a_1, a_2, \dots, a_n)$. Теперь мы знаем, есть ли ошибка среди a_1, a_2, \dots, a_n . Если ошибка есть, её нужно исправить. $\forall b \in [0, \lceil \log_2 n \rceil)$ передадим $\mathtt{XOR}_{i: bit(i,b) = 0}(a_i)$. В итоге мы знаем все $\lceil \log_2 n \rceil$ бит позиции ошибки.

4.4. Коды Рида-Соломона

Задача. Кодируем n элементов конечного поля \mathbb{F}_q .

Канал допускает k ошибок. Хотим научиться исправлять ошибки после передачи.

Замечание 4.4.1. Конченые поля имеют размер p^k ($p \in Prime, k \in \mathbb{N}$). Поле размера $p - \mathbb{Z}/p\mathbb{Z}$. Поле размера p^k – остатки по модулю неприводимого многочлена над \mathbb{F}_p степени k. Для кодирования битовых строк удобно использовать $q = 2^k$ при $k \in \{32, 64, 4096\}$.

<u>Lm</u> **4.4.2.** Если обозначить расстояние <u>Хэмминга</u> как D(s,t), а f(s) – код строки s, канал передачи допускает k ошибок, то исправить ошибки можно iff $\forall s \neq t \ D(f(s), f(t)) \geqslant 2k+1$.

Доказательство. С учётом ошибок строка s может перейти в любую точку шара радиуса k с центром в f(s). Если такие шары пересекаются, ∀ точку пересечения не раскодировать. ■

Код Рида-Соломона. Данные $a_0, \dots a_{n-1}$ задают многочлен $A(x) = \sum a_i x^i$. Передадим значения многочлена в произвольных n+2k+1 различных точках (здесь мы требуем $p \geqslant n$).

Теорема 4.4.3. Корректность кодов Рида-Соломона.

Доказательство. $A(x) \neq B(x) \Rightarrow (A-B)(x)$ имеет не более n корней $\Rightarrow A(x)$ и B(x) имеют не более n общих значений \Rightarrow хотя бы 2k+1 различных $\Rightarrow D(f(A), f(B)) \geqslant 2k+1$.

Выбор точек и q: хочется применить FFT. На практике можно отправлять данные такими порциями, что $n+2k+1=2^b$. Нужно q вида $a\cdot 2^b+1$ и x: $ord(x)=2^b$, точка $w_i=x^i,\ i\in [0,2^b)$.

• Декодирование

Мы доказали возможность однозначного декодирования, осталось предъявить алгоритм. Имели A(x), deg A = n-1, передали $A(w_0), A(w_1), \dots A(w_{n+2k})$. Получили на выходе данные с ошибками $A'(w_0), A'(w_1), \dots A'(w_{n+2k})$. Посчитали интерполяционный многочлен A'(x).

Утверждение 4.4.4. Если у A'(x) старшие 2k+1 коэффициентов нули, ошибок не было.

Итого, если ошибок нет, декодирование при желании можно сделать за $\mathcal{O}(n \log n)$ через FFT.

Обозначим позиции ошибок e_1, e_2, \dots, e_k .

Может быть, ошибок меньше. Главное, что в позициях кроме e_i ошибок точно нет. Многочлен ошибок $E(x) = (x - w_{e_1})(x - w_{e_2}) \dots (x - w_{e_k}), \ B(x) = A(x)E(x), \ B'(x) = A'(x)E(x).$ $\forall i \notin \{e_i\} \ A(w_i) = A'(w_i) \Rightarrow \forall i \ B(w_i) = B'(w_i).$ Запишем это, как СЛАУ $\forall i \ B(w_i) = A'(w_i)E(w_i),$

где неизвестные – коэффициенты многочленов B (n+k+1 штук) и E (k штук).

Теорема 4.4.5. Для записанной СЛАУ ∃! решение.

Cледствие 4.4.6. Декодирование: решим СЛАУ, найдём $A(x) = \frac{B(x)}{E(x)}$.

Асимптотика декодирования: Гаусс $\mathcal{O}((n+k)^3)$. Бэрликэмп-Мэсси $\mathcal{O}((n+k)^2)$.

Ссылка на более крутые алгоритмы декодирования в разд. 4.6.

4.5. Применения fft в комбинаторике

• Возведение в степень

 2^n бинпарным возведением в степень вычисляется за $T(n) = T(\frac{n}{2}) + n \log n = \mathcal{O}(n \log n)$.

• Умножение многочленов от нескольких переменных

Посчитать $C(x,y)=A(x,y)\cdot B(x,y)$, пусть $\deg_x\leqslant n,\deg_y\leqslant m$, тогда возьмём $y=x^{2n+1}$ и вычислим $C'(x) = A'(x) \cdot B'(x)$, мономы вида $ax^{(2n+1)i+j}$, $j \le 2n$ заменим на ax^jy^i . $\mathcal{O}(nm \log nm)$.

4.5.1. Покраска вершин графа в k цветов

Предподсчитаем за $\mathcal{O}(2^n)$ все независимые множества I (те, что можно покрасить в один цвет).

Рассмотрим любую корректную покраску в k цветов $I_1, I_2, \dots I_k : \sqcup I_i = V$, заметим $\sum I_j = 2^n - 1, \sum |I_j| = n.$ Рассмотрим $P(x,y) = \sum_I x^I y^{|I|}$, внимательно посмотрим на $P^k(x,y)$:

Теорема 4.5.1. Коэффициент в $P^k(x,y)$ монома $x^{2^n-1}y^n$ – это число покрасок в k цветов.

Lm 4.5.2.
$$A \cap B = \emptyset \Leftrightarrow |A| + |B| = |A \cup B|$$

Lm 4.5.3. $A \cap B \neq \emptyset \Leftrightarrow A + B > A \cup B$

(сложение/сравнение множеств – операции с битовыми масками)

Алгоритм – возведение многочлена степени $2^{n}n$ в степень k. Одно умножение работает за $\mathcal{O}(2^n n^2)$, возведение в степень за $\mathcal{O}(2^n n^2 \log k)$.

4.5.2. Счастливые билеты

Задача. Массив из 2n цифр из множества d_1, d_2, \ldots, d_k называется счастливым, если \sum первых n цифр совпадает с \sum последних n. Найти число счастливых массивов из 2n цифр.

Рассмотрим $P(x) = (x^{d_1} + x^{d_2} + \dots + x^{d_k})^n$. Ответ – сумма квадратов коэффициентов P. Алгоритм = возведение в степень. Время возведения в степень – $\mathcal{O}(\log n)$ умножений.

Точнее $\mathcal{O}(mul(N) + mul(\frac{N}{2}) + mul(\frac{N}{4}) + \dots) = \mathcal{O}(N \log N)$, где $\deg P = N = n \cdot \max d_i$.

4.5.3. 3-SUM

Задача. Даны n чисел $a_i \in \mathbb{Z} \cap [S]$, найти $i, j, k : a_i + a_j + a_k = S$.

Решение #1. Сортировка, далее $\forall i$ два указателя для j, k. $\mathcal{O}(n^2)$.

Решение #2. Возьмём $P(x) = \sum_i x^{a_i}$, рассмотрим P^3 , возьмём коэффициент при x^S . $\mathcal{O}(S \log S)$.

4.5.4. Применение к задаче о рюкзаке

Простая задача. Subsetsum. Даны n целых $a_i > 0$, выбрать подмножество: $\sum_j a_j = S$. Посчитаем $P(x) = \prod_i (1 + x^{a_i})$, возьмём коэффициент при x^S . n умножений $\Rightarrow \mathcal{O}(nS \log S)$.

Алгоритм 4.5.4. Сложная задача. То же, но выбрать подмножество размера ровно k.

Посчитаем $P(x,y) = \prod_{i} (1 + yx^{a_i})$, возьмём коэффициент при $x^S y^k$.

Будем вычислять разделяйкой: $T(n) = 2T(\frac{n}{2}) + nS\log nS \ (nS - \text{степень многочлена}).$

Получаем $\mathcal{O}(nS\log nS\log n)$, что лучше базовой динамики за $\mathcal{O}(n^2S)$ (dp[i,size,sum]).

4.5.5. (*) Сверхбыстрый рюкзак за $\tilde{O}(\sqrt{n}S)$

Решаем subsetsum. Пусть $A = \{a_i\}$. Если мы разобьём $A = A_1 \sqcup \cdots \sqcup A_k$ и для каждого A_i насчитаем массив $f_{ij} =$ можем ли мы набрать вес j, используя предметы из A_i , то останется только за $\mathcal{O}(kS \log S)$ перемножить $F_1(x) \cdot \cdots \cdot F_k(x)$, где $F_i(x) = \sum f_{ij}x^j$.

Возьмём $k \approx \sqrt{n}$, $A_i = \{x \in A : x \mod k = i\}$. $x \in A_i \Rightarrow x = ky + i \Rightarrow$ рассмотрим $B_i = \{y : ky + i \in A_i\}$ и для B_i воспользуемся 4.5.4, который насчитает $\sum f_{ijt}x^jy^t$, где $f_{ijt} =$ число способов набрать сумму ровно j, используя ровно t предметов из B_i , при этом $jk + it \leqslant S \Rightarrow j \leqslant \lfloor \frac{S}{k} \rfloor \Rightarrow 4.5.4$ отработает за $\mathcal{O}(\frac{S}{k}n_i\log n_i\log nS)$, где $n_i = |A_i|$.

Итого: решили subsetsum за $\mathcal{O}(kS\log S) + \sum n_i \mathcal{O}(\frac{S}{k}n_i\log n_i\log nS) = \mathcal{O}(kS\log S) + \mathcal{O}(\frac{S}{k}n\log n\log S) \Rightarrow$ оптимальное $k = \sqrt{n\log n}$, subsetsum за $\mathcal{O}(\sqrt{n\log n} \cdot S\log S)$. $\tilde{O}f = \mathcal{O}(f \cdot poly(\log))$.

4.5.6. (*) Сверхбыстрый рюкзак за $\tilde{O}(n+S)$

Будем решать задачу f(A): определить $\forall s \in [0,S]$, можно ли набрать вес s.

Если есть ответы f(A) и f(B), то fft за $\mathcal{O}(S \log S)$ даёт ответ для A+B. Назовём это свёрткой. Если мы разделим множество предметов A на $A=A_1 \sqcup A_2 \sqcup \cdots \sqcup A_k$, мы можем для каждой части A_i решить задачу и свёртками за $\mathcal{O}(kS \log S)$ получить ответ для A.

Хорошее разделение: $m = \lceil \log n \rceil$, $A_i = A \cap (\frac{S}{2^i}, \frac{S}{2^{i-1}}], i \in [1, m], A_{m+1} = A \cap [1, \frac{S}{2^m}].$ Для A_{m+1} делаем разделяйку с fft даёт $T(n) = 2T(\frac{n}{2}) + \mathrm{fft}(n\frac{S}{2^m}) = \mathcal{O}(S \cdot n \log n \cdot \log).$ Для A_i рассмотрим множество-ответ X_i , заметим $|X_i| < 2^i$. Обозначим $k = 2^i$. Поделим A_i случайным образом на k множеств: $A_i = \sqcup A_{ij}$, $\mathsf{E}(\max_j(X_i \cap A_{ij})) = \mathcal{O}(\log k) = \varepsilon$, чтобы решить задачу для A_{ij} разделим его на ε^2 случайных множеств A_{ijt} .

 $Pr[\forall t \mid A_{ijt} \cap X_i \mid \leqslant 1] \geqslant \frac{1}{2} \Rightarrow$ ответ для A_{ijt} тривиален: мы можем взять $\leqslant 1$ предмета \Rightarrow можем набрать только суммы $s \in A_{ijt}$. Ответ для $A_{ij} = \varepsilon^2$ свёрток, при этому в ответе нам нужны суммы не до S, а до $\frac{S}{2^i}\varepsilon$, так как $\max A_{ij} \leqslant \frac{S}{2^i}$ и $|A_{ij} \cap X_i| \leqslant \varepsilon$. Осталось свернуть ответы для A_{ij} в ответ для A_i – разделяйка длины 2^i , где в листьях fft от длины $\frac{S}{2^i}\varepsilon \Rightarrow$ время на свёртки для A_i : $2^i \log(2^i) M \log M$, где $M = \frac{S}{2^i}\varepsilon \Rightarrow \mathcal{O}(S \log 2^i \log M\varepsilon) = \mathcal{O}(S \log^3)$. Итак $\forall i \Rightarrow \mathcal{O}(S \log^4) = \tilde{O}(S)$.

4.6. Литература

[Shuhong Gao'2002]. Декодирование Рида-Соломона через расширенного Евклида. [Koiliaris Xu'2018]. Subset Sum in $\tilde{\mathcal{O}}(\sqrt{n}S)$.