АСТРАДЬ

Содержание

1	Неб	есная механика	2
	1.1	Закон всемирного тяготения	2

1 Небесная механика

1.1 Закон всемирного тяготения

Согласно *закону всемирного тяготения*, сила притяжения между двумя точечными телами с массами M и m, находящимися на расстоянии R выражается следующим образом:

$$F = \frac{GMm}{R^2},\tag{1}$$

где $G \simeq 6.67 \cdot 10^{-11} \; \mathrm{m}^3 / \left(\mathrm{kg} \cdot \mathrm{c}^2\right) -$ гравитационная постоянная.

 Γ равитационный потенциал поля точечной (или сферически симметричной) массы M на расстоянии R от нее равен работе, которую необходимо затратить, чтобы принести единичную массу с бесконечности в данную точку. Так как гравитационные силы между двумя массами — это силы притяжения, то эта работа отрицательна. Данная величина также является потенциальной энергией точечной массы на расстоянии R от массы M, а выражение для нее имеет следующий вид:

$$U = -\frac{GM}{R} \tag{2}$$

Напряженность гравитационного поля часто называют ускорением свободного падения g, где

$$g = \frac{GM}{R^2} \tag{3}$$

Тогда (1) можно переписать, как

$$F = mg (4)$$

Планета	$\mathbf{g}, \mathbf{m/c^2}$	Планета	$\mathbf{g}, \mathbf{m/c^2}$
Солнце	276.	Mapc	3.73
Меркурий	3.73	Юпитер	25.9
Венера	8.87	Сатурн	11.2
Земля	9.82	Уран	9.01
Луна	1.63	Нептун	11.3

 Таблица 1: Ускорение свободного падения на поверхности тел солнечной системы