The RISC-V 32I project aims to implement a 32-bit RISC-V processor that supports the base integer instruction set (I), as specified by the RISC-V Foundation. The processor design follows the principles of reduced instruction set computing (RISC) and incorporates several key features, such as a load/store architecture, a fixed instruction size, and a large register file.

The project involves the development of a complete processor pipeline, including an instruction fetch unit, an instruction decode unit, an execution unit, a memory access unit, and a write-back unit. The pipeline is designed to support pipelining and employed with data forwarding mechanism.

The processor is implemented in Verilog RTL flow, which enables designers to create a detailed hardware description of the processor's behaviour. The Verilog RTL implementation includes a simulation environment, which allows developers to verify the correctness of the design and test its functionality.

Contents

1	Intr	roduction	5
2	RIS	SC-V Architecture	8
	2.1	Stage1: IF (Instruction Fetch)	7
		2.1.1 2:1 Multiplexer	7
		2.1.2 Instruction Fetch	7
		2.1.3 Instruction Memory	7
	2.2	IF - ID Pipeline Registers	7
	2.3	Stage2: ID (Instruction Decode)	7
		2.3.1 Decode stage control unit	7
		2.3.2 Register file	8
		2.3.3 2 4:1 MUX	8
		2.3.4 Sign Extension	9
		2.3.5 Comparator	9
		2.3.6 NextPC	9
		2.3.7 2:1 Multiplexer	9
	2.4	ID - EX Pipeline Registers	9
	2.5	Stage3: EX (Execution)	1
		2.5.1 2:1 Mux	1
		2.5.2 ALU	1
		2.5.3 Execution stage Control unit	1
	2.6	EX - MEM Pipeline Registers	1
	2.7	Stage4: MEM (Memory)	1
		2.7.1 Memory stage control unit	1
		2.7.2 Byte select	1
		2.7.3 Data Memory	1
		2.7.4 2:1 Multiplexer	1
	2.8	MEM - WB Pipeline Registers	1
	2.9	Stage5: WB (Write Back)	1
	-	2.9.1 Write Back stage control unit	1
		2.9.2 Write Back Extension	1
		2.9.3 2:1 Multiplexer	1
3	Inst	truction Set Architecture and Instructions Used	14
	3.1	Register to Register Instructions	14
	3.2	Register to Immediate Instructions	14
	3.3	Load Instructions	15
	3 /		1 4

3 5	Branch	Instructions															1 4	ς
J.J	Dianch	msuuchons															Ι.	J

Chapter 1

Introduction

There has been drastic changes in chip technology and implementations in a single chip are widespread now. With these, the significance of Instruction Set Architectures (ISAs) has increased rapidly. Reduced Instruction Set RISC based ARM architectures already dominated the mobile systems like Android and Apple. RISC-V is a open ISA based on RISC.

In this work, we represent a hardware design architecture for RV32I base integer system for 32-bit addresses. RV32I is a form of RISC-V that was designed to be adequate for generating compiler targets and supporting modern system environments.

Chapter 2

RISC-V Architecture

The design of the RISCV architecture is done using the Register Transfer Level (RTL). In RTL code, the circuit is defined using operations and transfer of data between different registers. This code can then be synthesized to generate a schematic which produces a graphical representation of the modules used and the connections in-between them.

Figure 2.1: Block Diagram of RISC-V 32I Architecture

Stages Of Pipeline:

- 1. IF: Instruction Fetch Unit
- 2. ID: Instruction Decode Unit
- 3. EX: Execution Unit
- 4. MEM: Memory Unit
- 5. WB: Write Back Unit

2.1 Stage1: IF (Instruction Fetch)

This unit consists of three modules:

- 1. 2:1 Multiplexer
- 2. Instruction Fetch
- 3. Instruction Memory

2.1.1 2:1

Multiplexer

MUX selects the next PC i.e, PC+4 or the PC location from branch instructions based on the select line pcsrc generated from the control id unit

2.1.2 Instruction

Fetch

It is nothing but a register. At positive edge of the clock, the address which is pointing to the instruction memory gets updated.

2.1.3 Instruction

Memory

The instructions are stored in the Instruction memory. Each instruction is of 32-bit. Those instructions are from standard RV32I Base Instruction Set[1]

2.2 IF - ID Pipeline Registers

Two registers are included. One is for instruction code to decode type of instruction, immediate address, ALU function source and destination registers and other is for PC location to calculate next address of Branch instructions

2.3 Stage2: ID (Instruction Decode)

This unit consists of seven modules:

- 1. Decode stage control unit
- 2. Register file
- 3. 2 4:1 Multiplexer
- 4. Sign Extension
- 5. Comparator
- 6. NextPC
- 7. 2:1 Multiplexer

2.3.1 Decode stage control

unit

This unit generates control signal for the modules in this unit like regdst, forward a, forward b etc

control_id:controlunit_id ext_sign[1..0] instr[31..0] forward_a[1..0] forward_b[1..0] regdst

Figure 2.2: Control decode block diagram

2.3.2 Register file

If fetches the register contents for the given source registers//

Figure 2.3: Regsiter file block diagram

2.3.3 2 4:1 MUX

Two MUXes are used to select which stage ouput as taken as inputs that are required for ALU

Figure 2.4: Forward source 1 block diagram

in0[31..0] in1[31..0] in2[31..0] s[1..0]

Figure 2.5: Forward source 2 block diagram

2.3.4 Sign

Extension

Sign extension is needed to extend the immediate address

Figure 2.6: sign extension block diagram

2.3.5

Comparator

This unit checks if both the registers are having same content and generates zero flag if equal

2.3.6

NextPC

Based on the control signals beq,bne generated from control_id module its get to know the type of instruction and then it calculates the next PC address relative to its base address

2.3.7 2:1

Multiplexer

This MUX is used to select the destination register from Rt and Rd

2.4 ID - EX Pipeline Registers

Five registers are included for immediate address, two inputs of ALU, destination register, instruction code

2.5 Stage3: EX (Execution)

This unit consists of 3 module:

- 1. 2:1 Multiplexer
- 2. ALU (Arithmetic Logic Unit)
- 3. Control Unit

2.5.1 2:1 Mux

This unit is used to select the second source to the input depending on the type of input.

2.5.2 ALU

This unit does all the Arithmetic Operations need be done.

Figure 2.7: ALU block diagram

The operations included in the ALU unit are:

- 1. Addition
- 2. Subtraction
- 3. Bit wise AND, OR, XOR
- 4. Shifting Operations

2.5.3 Execution stage Control unit

This unit generates the control signals required for ALU unit. Such as

Figure 2.8: Control unit ALU block diagram

- 1. Selection of operation (ALUOp)
- 2. Selection of source (rs2sel)

2.6 EX - MEM Pipeline Registers

Four registers are included for Destination register, data to stored in memory,output of Execution Unit, Instruction Code

2.7 Stage4: MEM (Memory)

This unit consists of four modules:

- 1. Memory stage control unit
- 2. Byte select
- 3. Data Memory
- 4. 2:1 Multiplexer

2.7.1 Memory stage control unit

This unit generates the contol signals required in the memory stage. Such as

Figure 2.9: Control memory block diagram

- 1. memWr when to write into a data memory
- 2. BEextOp tell about which type store instruction it is
- 3. mem_mux_sel selection signal used to select the signal between alu output or memory output (dout).
- 4. memrd it is read enable for memory.

2.7.2 Byte select

This unit generates a signal which is used in selecting which part of the 32 bit data (byte or half word or word) has to be written based on the type of Store instructions.

2.7.3 Data Memory

It is the data memory where the data is stored and used when required.

Figure 2.10: Data memory block diagram

The size of the memory can be varied as per requirement. Depending upon the control signals either it read or write the data. Byte selecting is possible with this memory type.

2.7.4 2:1 Multiplexer

This mux is used to select either the output of ALU or memory output (dout).

2.8 MEM - WB Pipeline Registers

Four registers are included for Destination register, data from the memory unit that is needed to write back, output of Execution Unit, Instruction Code

2.9 Stage5: WB (Write Back)

This unit consists of three modules:

- 1. Write Back stage control unit
- 2. 2:1 Multiplexer
- 3. Write Back Extension

2.9.1 Write Back stage control unit

This unit generates the control signal required for Write Back stage. Such as

Figure 2.11: Control WriteBack block diagram

- 1. WDSel used to select the destination address.
- 2. regWr this acts as register file write enable signal.
- 3. WBextOp this 3 bit signal is used to select whic byte or half word or word to write in the destination.

2.9.2 Write Back

Extension

This unit takes the data to be written into register file as input and gives the data out based on the type of instructions (i.e. whether to write byte or half word or word).

2.9.3 2:1

Multiplexer

Mux selects which data to be written. i.e. the data which we got from ALU or from the WB extension stage.

Chapter 3

Instruction Set Architecture and Instructions Used

All the instructions are a fixed 32 bits in length and must be aligned on a four-byte boundary in memory.

The different type of instructions that the processor can handle are

- 1. Register to Register
- 2. Register to Immediate
- 3. Load and Store
- 4. Branch

3.1 Register to Register Instructions

	Opcode(7)	Rd(5)	Funct3(3)	Rs1(5)	Rs2(5)	Funct7(7)
0110011 ADI	rd	000	rs1	rs2)	0000000
0110011 SUE	rd	000	rs1	rs2)	0100000
0110011 SLL	rd	001	rs1	rs2		.0000000
0110011 SLT	rd	010	rs1	rs2)	0000000
0110011 SLT	rd	011	rs1	rs2)	0000000
0110011 XOI	rd	100	rs1	rs2)	0000000
0110011 SRI	rd	101	rs1	rs2)	0000000
0110011 SRA	rd	101	rs1	rs2)	0100000
0110011 OR	rd	110	rs1	rs2)	0000000
0110011 ANI	rd	111	rs1	rs2)	0000000

Figure 3.1: Register to Register Instructions

3.2 Register to Immediate Instructions

Funct7(7)	Rs2(5)	Rs1(5)	Funct3(3)	Rd(5)	Opcode(7)
-----------	--------	--------	-----------	-------	-----------

:0]	rs1	100	$_{\mathrm{rd}}$	0010011	XORI
:0]	rs1	110	$_{\mathrm{rd}}$	0010011	ORI
[0]	rs1	111	rd	0010011	ANDI
shamt	rs1	001	$_{\mathrm{rd}}$	0010011	SLLI
shamt	rs1	101	$_{\mathrm{rd}}$	0010011	SRLI
shamt	rs1	101	rd	0010011	SRAI
	shamt	10	0 rs1 110 110 111 111 111 111	110 rd 110 rd 110 rd 111 rd 111 rd 111 rd	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 3.2: Register to Immediate type Instructions

3.3 Load Instructions

Immediate(12)	Rs1(5)	Funct3(3)	Rd(5)	Opcode(7)		
imm[11:0]	rs1	000	rd	0000011	LB
imm	11:0]	rs1	001	rd	0000011	LH
imm	11:0]	rs1	010	rd	0000011	LW
imm	11:0]	rs1	100	rd	0000011	LBU
imm[11:0]	rs1	101	rd	0000011	LHU

Figure 3.3: Load Instructions

3.4 Store Instructions

Immediate(7)	Rs2(5)	Rs1(5)	Funct3	(3)	Immediate(5) Opcode(7)	
						1	10000
imm[11:5]	rs	32	rs1	00	0 imm[4:0]	0100011	SB
imm[11:5]	rs	s2	rs1	00	1 imm[4:0	0100011	SH
imm[11:5]	rs	s2	rs1	01	0 imm[4:0	0100011	SW

Figure 3.4: Store Instructions

3.5 Branch Instructions

Immediate(7)	Rs2(5)	Rs1(5)	Func	et3(3)	Immediate(5)	Opcode(7)
imm[12 10:5]	rsź)	rs1	000	imm[4:1 11	1	1100011	BEQ
imm[12 10:5]	rs2	0.5	rs1	001	imm[4:1 11	4	1100011	BNE
imm[12 10:5]	rs2		rs1	100		3	1100011	BLT
imm[12 10:5] $ imm[12 10:5]$	rs2	2 4	rs1 rs1	101 110	imm[4:1 11 imm[4:1 11	1	1100011 1100011	BGE BLTU
imm[12 10:5]	rs2	2	rs1	111	imm[4:1 11	j	1100011	BGEU

Figure 3.5: Branch Instructions