

MEMS for High Speed Force Sensing

Joey Doll Feb. 23, 2011

Structure of the Cochlea

How to Sense Motion

Current Experimental Methods

Experiments

- I) Mechanics
- 2) Kinetics
- 3) Motility

Project image onto a photodiode

Mechanics: IkHz, ImN/m

Kinetics: 5-10kHz, >50 mN/m

Bundle Mechanics

- I) Stiffness changes with position, time
- 2) Measure stiffness quickly before adaptation mechanism kick in

Channel Kinetics

OHC Somatic Motility

- I) OHCs for tuning and amplification (how?)
- 2) High speed displacement measurement via nonlinear capacitance
- 3) Motile force not measured to date

membrane

Device Designs

- Mechanics / Motility
 - 0.3 4 mN/m
 - 2 20 kHz in water (20 100 kHz in air)
 - 3 30 pN RMS force noise
- Kinetics
 - 10 50 mN/m
 - 60 200 kHz in water (200 500 kHz in air)
- Both types
 - 300 nm thick, 1-2 um wide, 30-200 um long
 - On-chip actuation (thermal and piezoelectric)

Finished Devices

Finished Devices

Ongoing Work

E-Beam Mag Det FWD Spot Tilt 01/11/11 — 20 μm 5.00 kV 1.50 kX CDM-E 5.730 3 -0.0° 11:36:44