Lecture 29: The maximum principle

Math 660—Jim Fowler

Friday, July 30, 2010

Corollary

A nonconstant analytic function is an open map (meaning it maps open sets to open sets).

The maximum principle

Theorem

If f(z) is analytic and non-constant in a region Ω , then |f(z)| does not attain a maximum in Ω .

The maximum principle

Theorem

If f(z) is analytic and non-constant in a region Ω , then |f(z)| does not attain a maximum in Ω .

Proof.

A nonconstant analytic function is an open map.

The maximum principle

Theorem

If f(z) is analytic and non-constant in a region Ω , then |f(z)| does not attain a maximum in Ω .

Proof.

A nonconstant analytic function is an open map.

Note that the maximum principle holds generally for open maps.

The maximum principle, version two

Theorem

If f(z) is continuous on the closed, bounded set $\overline{\Omega}$, and analytic in the region Ω , then the maximum of |f(z)| is attained somewhere on $\partial\Omega$.

Apply Cauchy's theorem, get

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta$$

Apply Cauchy's theorem, get

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta$$

so

$$|f(a)| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(a+re^{i\theta})| d\theta$$

Apply Cauchy's theorem, get

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta$$

SO

$$|f(a)| \leq rac{1}{2\pi} \int_0^{2\pi} |f(a+re^{i heta})| d heta$$

and the theorem follows.

Theorem

Suppose f(z) is analytic in the unit disk, and $|f(z)| \le 1$, and f(0) = 0. Then $|f(z)| \le |z|$ and $|f'(0)| \le 1$.

Theorem

Suppose f(z) is analytic in the unit disk, and $|f(z)| \le 1$, and f(0) = 0. Then $|f(z)| \le |z|$ and $|f'(0)| \le 1$.

In fact, if |f(z)| = |z| for some z or if |f'(0)| = 1, then $f(z) = \lambda z$ for $|\lambda| = 1$.

Theorem

Suppose f(z) is analytic in the unit disk, and $|f(z)| \le 1$, and $|f(0)| \le 1$. Then $|f(z)| \le |z|$ and $|f'(0)| \le 1$.

In fact, if |f(z)| = |z| for some z or if |f'(0)| = 1, then $f(z) = \lambda z$ for $|\lambda| = 1$.

Apply maximum principle to F(z) = f(z)/z.

Theorem

Suppose f(z) is analytic in the unit disk, and $|f(z)| \le 1$, and f(0) = 0. Then $|f(z)| \le |z|$ and $|f'(0)| \le 1$. In fact, if |f(z)| = |z| for some z or if |f'(0)| = 1, then $f(z) = \lambda z$ for $|\lambda| = 1$.

Apply maximum principle to F(z) = f(z)/z. On the circle |z| = r, then $|F(z)| \le 1/r$, so |F(z)| < 1 for all $|z| \le 1$.

Theorem

Suppose f(z) is analytic in the unit disk, and $|f(z)| \le 1$, and f(0) = 0. Then $|f(z)| \le |z|$ and $|f'(0)| \le 1$.

In fact, if |f(z)| = |z| for some z or if |f'(0)| = 1, then $f(z) = \lambda z$ for $|\lambda| = 1$.

Apply maximum principle to F(z) = f(z)/z. On the circle |z| = r, then $|F(z)| \le 1/r$, so $|F(z)| \le 1$ for all $|z| \le 1$. If F(z) attains its maximum, F(z) is a constant, so f(z) = F(0)z.