

	α, β, γ, ε	C ₁ C ₂ C ₃ C ₄	L, S, €
	$\beta \gamma - \alpha^2 = 1$ $il = \frac{1}{2}(\beta + \gamma)$	$\epsilon = c_1 c_4 - c_2 c_3$ $ii = \frac{1}{2} \left(c_1^2 + c_2^2 + c_3^2 + c_4^2 \right) / \epsilon$	$H = \frac{1}{2L} (L^2 + S^2 + 1)$
У1	√e/ _Y	$\varepsilon/\sqrt{c_3^2+c_4^2}$	$\sqrt{\epsilon L}$
У2	$\sqrt{arepsiloneta}$	$\sqrt{c_1^2 + c_2^2}$	$\sqrt{\varepsilon/L} \sqrt{S^2 + L^2}$
y 5	 α√ε/β 	$(c_1c_3 + c_2c_4)/\sqrt{c_1^2 + c_2^2}$	$S\sqrt{\varepsilon/L}/\sqrt{S^2 + L^2}$
У3	- α√ε/γ	$(c_1c_3 + c_2c_4)/\sqrt{c_3^2 + c_4^2}$	S √€/L
у ś	$\sqrt{arepsilon_{\Upsilon}}$	$\sqrt{c_3^2 + c_4^2}$	√€/L
у 4	$\sqrt{\epsilon/eta}$	$\epsilon/\sqrt{c_1^2 + c_2^2}$	$\sqrt{\epsilon L}/\sqrt{S^2 + L^2}$
a	$\sqrt{\epsilon/2} \left(\sqrt{H + 1} + \sqrt{H - 1} \right)$		
ь	$\sqrt{2\varepsilon}/(\sqrt{H+1}+\sqrt{H-1})=\sqrt{\varepsilon/2}(\sqrt{H+1}-\sqrt{H-1})$		
a/b > 1	$H + \sqrt{\Pi^2 - 1}$		
tan ξ	$[-\alpha(H + \sqrt{H^2 - 1})]/[\beta(H + \sqrt{H^2 - 1}) - 1]$	$[c_2 + c_3(H + \sqrt{H^2 - 1})]/[c_1(H + \sqrt{H^2 - 1}) - c_4]$	$S/[L(H + \sqrt{H^2 - 1}) - 1]$
sin 28	$-\alpha/\sqrt{11^2-1}$	$(c_1c_3 + c_2c_4)/\epsilon\sqrt{11^2 - 1}$	$S/L\sqrt{H^2-1}$
cos 2ç̂	$(\beta - \gamma)/2\sqrt{\ln^2 - 1}$	$(c_1^2 + c_2^2 - c_3^2 - c_4^2)/2\epsilon\sqrt{ll^2 - 1}$	$(L^2 + S^2 - 1)/2L\sqrt{H^2 - 1}$
tan 2¢	- 2α/(β - γ)	$2(c_1c_3 + c_2c_4)/(c_1^2 + c_2^2 - c_3^2 - c_4^2)$	$2S/(L^2 + S^2 - 1)$
1			

- 19 -