再证原题:

证明:对任何非空集合 $A \subseteq \mathbb{Z}_+$,令 $B = f(A) = \{f(x) \mid x \in A\}$ 。则由 f 的定义知, $B \subseteq \mathbb{N}$,由 \mathbb{N} 上的良序定理知,B 中有关于 < 关系的最小元 b。记 $C = A \cap f^{-1}(b) = \{x \mid x \in A \land f(x) = b\}$ 。则 $C \subset \mathbb{Z}_+$ 。从而 C 也有关于 < 的最小元 c。下面证明 c 就是 A 中关于 R 的最小元。

 $\forall x \in A$,若 $x \neq c$,则:由 f(c) = b 是 f(A) 中的最小元知,f(c) < f(x) 或 f(c) = f(x)。若 f(c) < f(x),则由 R 的定义有 cRx。若 f(x) = f(c) = b,则 $x, c \in f^{-1}(b)$,从而由 $x, c \in A$ 知, $x, c \in C = A \cap f^{-1}(b)$ 。但 c 是 C 中的最小元,且 $x \neq c$,从而必有 c < x。于是,由 R 的定义也有 cRx。

这就证明了 c 是 A 中关于 R 的最小元。由 A 的任意性知, \mathbb{Z}_+ 中任何非空集合都有最小元。 从而由引理 6.1 知, $\langle \mathbb{Z}_+, R \rangle$ 是良序集。

6.5

证明:记 $B = \{x \mid x \in A \land f(x) \prec x\}$ 。只需证明 $B = \emptyset$ 。

反设 $B \neq \emptyset$,则 B 是良序集 A 的非空子集,从而存在最小元 t。由 B 的定义知, $f(t) \prec t$ 。由 f 的保序性知, $f(f(t)) \prec f(t)$,从而 $f(t) \in B$ 。但 $f(t) \prec t$,这与 t 的最小性矛盾。

6.6

(1) 由题设知:

$$F(0) = A \cup (\cup \cup \operatorname{ran}(F \upharpoonright (\operatorname{seg} 0))) \qquad (\gamma 定义)$$

$$= A \cup (\cup \cup \{F(x) \mid x \in \operatorname{seg} 0\}) \qquad (値域、限制定义)$$

$$= A \cup (\cup \cup \emptyset) \qquad (\operatorname{seg} 0 = \varnothing)$$

$$= A$$

$$F(1) = A \cup (\cup \cup \operatorname{ran}(F \upharpoonright (\operatorname{seg} 1))) \qquad (\gamma 定义)$$

$$= A \cup (\cup \cup \{F(x) \mid x \in \operatorname{seg} 1\}) \qquad (値域、限制定义)$$

$$= A \cup (\cup \cup \{F(0)\}) \qquad (\operatorname{seg} 1 = \{0\})$$

$$= A \cup (\cup \cup \{A\}) \qquad (F(0) = A)$$

$$= A \cup (\cup A)$$

$$F(2) = A \cup (\cup \cup \operatorname{ran}(F \upharpoonright (\operatorname{seg} 2))) \qquad (\gamma 定义)$$

$$= A \cup (\cup \cup \{F(x) \mid x \in \operatorname{seg} 2\}) \qquad (値域、限制定义)$$

$$= A \cup (\cup \cup \{F(0), F(1)\}) \qquad (\operatorname{seg} 2 = \{0, 1\})$$

$$= A \cup (\cup \cup \{A, A \cup (\cup A)\}) \qquad (F(0) = A, F(1) = A \cup (\cup A))$$

$$= A \cup (\cup (A \cup (A \cup (\cup A)))) \qquad (\Gamma \nearrow \mathcal{X} \neq \mathbb{Z})$$

$$= A \cup (\cup (A \cup (\cup A))) \qquad (\Pi - \mathbb{Z})$$

下面证明, $\forall n \in \mathbb{N}, F(n^+) = A \cup (\cup F(n)).$

证明:用强数学归纳法证明: $\forall n \in \mathbb{N}$,有 $F(n^+) = A \cup (\cup F(n))$ 和 $F(n) \subseteq F(n^+)$ 。

由于 $F(0) = A \subset A \cup (\cup A) = A \cup (\cup F(0)) = F(1)$, 所以 $0 \in S$ 。

对任何 $n \in \mathbb{N}$, $n \ge 1$, 若 $\forall x \in \mathbb{N}, x < n \Rightarrow x \in S$, 则:

$$F(n^+) = A \cup (\cup \cup \operatorname{ran}(F \upharpoonright (\operatorname{seg}(n^+)))) \qquad (\gamma \not \mathbb{Z} \not \mathbb{Z})$$