OLAP Indexes

Dr. Rim Moussa

University of Carthage rim.moussa@gmail.com

Indexes

- Indexes
 - B-trees, hash tables,
 - Grids, quad-trees, R-trees (spatial data)
- OLAP indexes
 - Bitmaps, inverted lists,
 - Join Indexes, Bitmap join indexes
 - Column store indexes
- ROWID
 - physical address of a row
 - Oracle
 - OOOOOO.FFF.BBBBBB.RRR
 - OOOOOO is the object ID
 - FFF is the file number
 - BBBBBB is the block number
 - RRR is the row number

Inverted List Index

By Hector Garcia Molina: Data Warehousing and OLAP

Bitmap Index

Operations on Bit Vectors

SELECT * FROM survey WHERE Gender='Male' AND MaritialStatus='Single' AND HomeOwner='Y'

Male		Single		Y	1 [
		0		- 0		0		This row
1		1	S	1		1	-	 satisfies the
U	-	0	AND	0	FOULE	. 0		query
0	AND	0	AND	1	EQUALS -	0		
0		0		1		0		
1		1		0	1	0		
0		0		0		0		
				and a second] [110000		

Join Index

join index

product	t id	name	price	jlndex		
	p1	bolt	10	r1,r3,r5,r6		
	p2	nut	5	r2,r4		
						j
						i
sale	rld	prodld	store	ld date	amt	
sale	rld r1	prodld p1	store c1	ld date	amt 12	<u> </u>
sale		•		_		← −
sale	r1	p1	c1	1	12	← −
sale	r1 r2	p1 p2	c1 c1	1 1	12 11	<
sale	r1 r2 r3	p1 p2 p1	c1 c1 c3	1 1 1	12 11 50	← — ← — ← —

Bitmap Join Index

ColumnStore Index (Microsoft)

- A rowgroup is a group of rows that are compressed into columnstore format at the same time.
- The maximum number of rows per rowgroup is 1,048,576 rows.

RLE: Run Length Encoding

https://www.slideshare.net/abadid/vldb-2009-tutorial-on-columnstores

Bit-vector Encoding

Re-use permitted when acknowledging the

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Bit-vector Encoding

- For each unique value, v, in column c, create bit-vector b
 - b[i] = 1 if c[i] = v
- Good for columns with few unique values
- Each bit-vector can be further compressed if sparse

Dictionary Compression

Re-use permitted when acknowledging the

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Dictionary Encoding

- For each unique value create dictionary entry
- Dictionary can be per-block or per-column
- Column-stores
 have the
 advantage that
 dictionary
 entries may
 encode multiple
 values at once

Dictionary Compression vs RLE

Classical DB

Company [CHAR50]	Region [CHAR30]	Group [CHAR5]
INTEL	USA	Α
Siemens	Europe	В
Siemens	Europe	С
SAP	Europe	Α
SAP	Europe	Α
IBM	USA	Α

NewDB Column Store: Dictionary compressed

NewDB Column Store:

Run length compressed*

Frame of Reference Encoding

- Encodes values as b bit offset from chosen frame of reference
- Special escape code (e.g. all bits set to 1) indicates a difference larger than can be stored in b bits
 - After escape code, original (uncompressed) value is written

"Compressing Relations and Indexes " Goldstein, Ramakrishnan, Shaft, ICDE'98

Differential Encoding

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Differential Encoding

- Encodes values as b bit offset from previous value
- Special escape code (just like frame of reference encoding) indicates a difference larger than can be stored in b bits
 - After escape code, original (uncompressed) value is written
- Performs well on columns containing increasing/decreasing sequences
 - inverted lists
 - 1 timestamps
 - object IDs
 - sorted / clustered columns

"Improved Word-Aligned Binary Compression for Text Indexing" Ahn, Moffat, TKDE'06

What compression scheme to use?

