Topology Analysis * (v1.5)

Xingyu Zhou [†] Beihang University

November 19, 2018

^{*}This package is implemented with reference to a program called Topo, which is developed by Prof. Shuxian Du from Zhengzhou University in China and has been widely used by people in BESIII collaboration. Several years ago, when I was a PhD student working on BESIII experiment, I learned the idea of topology analysis and a lot of programming techniques from the Topo program. So, I really appreciate Prof. Du's original work very much. To meet my own needs and to practice developing analysis tools with C++, ROOT and LaTex, I wrote the package from scratch. At that time, the package functioned well but was relatively simple. At the end of last year (2017), my co-supervisor, Prof. Chengping Shen reminded me that it could be a useful tool for Belle II experiment as well. So, I revised and extended it, making it more well-rounded and suitable for Belle II experiment. Here, I would like to thank Prof. Du for his original work, Prof. Shen for his suggestion and encouragement, and Wencheng Yan, Sen Jia, Yubo Li, Suxian Li, Longke Li and Guanda Gong for their efforts in helping me test the program. †Email: zhouxy@buaa.edu.cn

List of Tables

1	Event trees and their respective initial-final states	
2	Event initial-final states	2
3	Event branches of B^0	29
4	Event branches of \bar{B}^0	30

Table 1: Event trees and their respective initial-final states.

	Table 1: Event trees and their respective initial-linal states.				
index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
1	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{0}\pi^{0}\rho^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \rightarrow \pi^{+}D^{0}D_{s}^{*-}, \rho^{0} \rightarrow \pi^{+}\pi^{-}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0},$ $D^{0} \rightarrow \rho^{+}K^{*-}, D_{s}^{*-} \rightarrow D_{s}^{-}\gamma, \bar{D}^{0} \rightarrow \eta\eta', \rho^{+} \rightarrow \pi^{0}\pi^{+}, K^{*-} \rightarrow \pi^{-}\bar{K}^{0}, D_{s}^{-} \rightarrow e^{-}\bar{\nu}_{e}\phi,$ $\eta \rightarrow \pi^{0}\pi^{0}, \eta' \rightarrow \pi^{0}\pi^{0}\eta, \bar{K}^{0} \rightarrow K_{S}, \phi \rightarrow K^{+}K^{-}, \eta \rightarrow \gamma\gamma, K_{S} \rightarrow \pi^{0}\pi^{0}$ $(e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$	0	0	1	1
2	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{*+}J/\psi, \bar{B}^{0} \to \pi^{0}\pi^{-}D^{*+}, K^{*+} \to \pi^{+}K^{0}, J/\psi \to \pi^{+}K^{0}K^{*-},$ $\pi^{0} \to e^{+}e^{-}, D^{*+} \to \pi^{+}D^{0}, K^{0} \to K_{S}, K^{0} \to K_{S}, K^{*-} \to \pi^{-}\bar{K}^{0}, D^{0} \to \pi^{+}\pi^{-}\bar{K}^{*},$ $K_{S} \to \pi^{0}\pi^{0}, K_{S} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S}, \bar{K}^{*} \to \pi^{+}K^{-}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma)$	1	1	1	2
3	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}\bar{D}^{*-}D^{*0}, \bar{B}^{0} \to \pi^{0}\rho^{0}\rho^{-}\eta D^{+}, K^{*+} \to \pi^{+}K^{0}, \bar{D}^{*-} \to \pi^{0}D^{-}, \\ D^{*0} \to \pi^{0}D^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \gamma\gamma, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}, K^{0} \to K_{L}, \\ D^{-} \to K_{L}\pi^{-}\pi^{-}K^{+}, D^{0} \to \pi^{0}\eta K_{S}, \bar{K}^{0} \to K_{S}, \eta \to \pi^{0}\pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{0}\pi^{0} \\ (e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	2	2	1	3
4	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, \bar{B}^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, a_{1}^{+} \to \pi^{0}\rho^{+},$ $D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{-}K^{+}\eta', \rho^{+} \to \pi^{0}\pi^{+}, D^{0} \to e^{+}\nu_{e}\pi^{-}, \eta' \to \pi^{+}\pi^{-}\eta, \pi^{0} \to e^{+}e^{-},$ $\eta \to \gamma\gamma$ $(e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma)$	3	3	1	4
5	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to D^{-}D'_{s1}^{+}, B^{0} \to \pi^{0}\rho^{+}\omega\bar{D}^{*-}, D^{-} \to \pi^{0}\pi^{-}, D'_{s1}^{+} \to \pi^{0}D_{s}^{*+},$ $\rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{s}^{*+} \to D_{s}^{+}\gamma, \bar{D}^{0} \to K_{L}\omega, D_{s}^{+} \to e^{+}\nu_{e}\phi,$ $\omega \to \pi^{0}\gamma, \phi \to K^{+}K^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	4	4	1	5
6	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{+} \to e^{+}\nu_{e}\pi^{+}K^{-},$ $D_{s}^{-} \to \pi^{0}\pi^{-}\omega, \bar{D}^{0} \to \omega K_{S}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{+}\nu_{e}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	5	5	1	6
7	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}K^{*}K^{-}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, K^{*} \to \pi^{-}K^{+},$ $D^{+} \to \pi^{0}\pi^{+}\eta', \bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{+}, \eta' \to \pi^{+}\pi^{-}\eta, \eta \to \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	6	6	1	7
8	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}B^{0}, B^{0} \rightarrow \tau^{+}\nu_{\tau}\bar{D}^{*-}, B^{0} \rightarrow \pi^{0}\pi^{+}\eta\eta\bar{D}^{-}, \tau^{+} \rightarrow e^{+}\nu_{e}\bar{\nu}_{\tau}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0},$ $\eta \rightarrow \gamma\gamma, \eta \rightarrow \gamma\gamma, D^{-} \rightarrow \pi^{0}\pi^{-}K^{*}, \bar{D}^{0} \rightarrow \pi^{0}\pi^{+}\pi^{-}K^{*}, K^{*} \rightarrow \pi^{0}K^{0}, K^{*} \rightarrow \pi^{0}K^{0},$ $K^{0} \rightarrow K_{S}, K^{0} \rightarrow K_{L}, K_{S} \rightarrow \pi^{+}\pi^{-}$ $(e^{+}e^{-} \rightarrow e^{+}\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	7	7	1	8
9	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{*+} \to \pi^{+}D^{0},$ $D^{-} \to \pi^{-}\omega K^{0}, D^{0} \to K_{L}\omega, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	8	8	1	9
10	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}D^{-}D^{*+}, \bar{B}^{0} \to D^{*+}D_{s}^{*-}, K^{0} \to K_{S}, D^{-} \to \pi^{-}\pi^{-}K^{+},$ $D^{*+} \to \pi^{0}D^{+}, D^{*+} \to \pi^{0}D^{+}, D_{s}^{*-} \to D_{s}^{-}\gamma, K_{S} \to \pi^{+}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}, D^{+} \to \pi^{+}\eta',$ $D_{s}^{-} \to K^{*}K^{*-}, \bar{K}^{0} \to K_{L}, \eta' \to \rho^{0}\gamma, K^{*} \to \pi^{-}K^{+}, K^{*-} \to \pi^{0}K^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	9	9	1	10

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{0}K^{0}K^{*-}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-},$				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
11	$K \to K_L, K \to \pi^- K^-, D \to \mu^- \nu_\mu K^-, D \to p^- K^-, K \to K_L, p^- \to \pi^- K^-, K^{*+} \to \pi^0 K^+$	10	10	1	11
	$(e^+e^- \to \mu^+\mu^+\nu_\mu\nu_\mu K_L K_L \pi^+\pi^-\pi^- \pi^- K^+ K^- \gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{-}K^{+}J/\psi, \bar{B}^{0} \to D^{+}D_{s}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, J/\psi \to e^{+}e^{-},$				
12	$D^+ \to \pi^0 \pi^+ K_S, D_s^{*-} \to D_s^- \gamma, K_S \to \pi^0 \pi^0, D_s^- \to \tau^- \bar{\nu}_\tau, \tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$	11	11	1	12
	$(e^+e^- \to e^+e^-\mu^-\bar{\nu}_\mu\nu_\tau\bar{\nu}_\tau\pi^+\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to \pi^+\pi^-K^0D^0\bar{D}^0, \bar{B}^0 \to \pi^0\pi^+\rho^-\rho^-D^+, K^0 \to K_L, D^0 \to K_S\eta',$				
13	$\bar{D}^0 \to \rho^- K^{*+}, \rho^- \to \pi^0 \pi^-, \rho^- \to \pi^0 \pi^-, D^+ \to \mu^+ \nu_\mu \bar{K}^0, K_L \to \pi^0 \pi^0 \pi^0, K_S \to \pi^+ \pi^-,$	12	12	1	13
	$\eta' o \pi^+ \pi^- \eta, ho^- o \pi^0 \pi^-, K^{*+} o \pi^0 K^+, ar{K}^0 o K_L, \eta o \pi^0 \pi^+ \pi^-$				
	$\frac{(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\eta\bar{D}^{*-}, \bar{B}^{0} \to K^{0}K^{*-}D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{*-} \to \pi^{0}D^{-},}$				
	$e^{+}e^{-} o \Gamma(4S), \Gamma(4S) o B^{-}B^{-}, B^{-} o \pi^{+}\eta D^{-}, B^{-} o K^{-}K^{-}D^{-}, \eta o \pi^{-}\pi^{-}\pi^{-}, D^{-} o \pi^{-}D^{-}, K^{0} o K_{S}, K^{*-} o \pi^{0}K^{-}, D^{*+} o \pi^{+}D^{0}, D^{-} o \mu^{-}\bar{\nu}_{\mu}K^{0}, K_{S} o \pi^{+}\pi^{-}, D^{0} o \pi^{0} ho^{0}, K^{0} o \pi^{0}K^{0}$				
14	$K \to K_S, K \to \pi^- K^-, D \to \pi^- D^-, D \to \pi^- V_\mu K^-, K_S \to \pi^- \pi^-, D \to \pi^- p^-, K_L, \rho^0 \to \pi^+ \pi^-$	13	13	1	14
	$\frac{(e^+e^- \to \mu^- \bar{\nu}_\mu K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma)}{e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to \rho^+ D^-, \bar{B}^0 \to \pi^- K^+ K^- D^{*+}, \rho^+ \to \pi^0 \pi^+, D^- \to K_S a_1^-,}$				
15	$D^{*+} \to \pi^+ D^0, K_S \to \pi^0 \pi^0, a_1^- \to \pi^0 \rho^-, D^0 \to \pi^0 \pi^+ K^-, \rho^- \to \pi^0 \pi^-$	14	14	1	15
	$(e^+e^- \to \pi^+\pi^+\pi^+\pi^-\pi^-K^+K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}n\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, n \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{*-} \to \pi^{0}D^{-},$				
16	$D^{*+} \to \pi^0 D^+, D^- \to \pi^+ \pi^- \pi^- \pi^- K^+, D^+ \to \mu^+ \nu_\mu \bar{K}^*, \bar{K}^* \to \pi^+ K^-$	15	15	1	16
	$\frac{(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}K^{*-}D^{0}\bar{D}^{*0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, K^{*-} \to \pi^{-}\bar{K}^{0},}$				
	$e^{+}e^{-} o \Upsilon(4S), \Upsilon(4S) o B^{0}B^{0}, B^{0} o e^{+}\nu_{e}D^{*-}, B^{0} o \pi^{0}\pi^{+}K^{*-}D^{0}D^{*0}, D^{*-} o \pi^{-}D^{0}, K^{*-} o \pi^{-}K^{0},$				
17	$D^0 o K_L \pi^+ \pi^-, ar{D}^{*0} o \pi^0 ar{D}^0, ar{D}^0 o \mu^- ar{ u}_\mu K^+, ar{K}^0 o K_S, ar{D}^0 o \pi^+ \pi^- K_S K_S, K_S o \pi^+ \pi^-,$	16	16	1	17
	$K_S \to \pi^0 \pi^0, K_S \to \pi^+ \pi^-$				
	$\frac{(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*}D^{-}D^{*+}, \bar{B}^{0} \to \pi^{0}\eta\bar{K}^{0}K^{-}D^{*}_{s}, K^{*} \to \pi^{0}K^{0}, D^{-} \to \pi^{-}\pi^{-}K^{+},}$				
	$D^{*+} \rightarrow \pi^+ D^0, \eta \rightarrow \gamma \gamma, \bar{K}^0 \rightarrow K_L, D_s^+ \rightarrow \mu^+ \nu_\mu \phi, K^0 \rightarrow K_S, D^0 \rightarrow \pi^0 \pi^+ K^{*-},$				
18	$\phi \to K^+K^-, K_S \to \pi^0\pi^0, K^{*-} \to \pi^-\bar{K}^0, \bar{K}^0 \to K_L$	17	17	1	18
	$\frac{(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D_{s}^{*+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{s}^{*+} \to D_{s}^{+}\gamma,}$				
10	$D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, D^{+}_{s} \to \rho^{+}\eta, D^{0} \to \pi^{+}\eta K^{-}, K_{S} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \\ \eta \to \pi^{0}\pi^{0}\pi^{0}, \eta \to \pi^{0}\pi^{0}\pi^{0}$	10	10	1	10
19		18	18	1	19
	$(e^+e^- \to e^-\bar{\nu}_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}B^{0}, B^{0} \rightarrow \mu^{+}\nu_{\mu}D_{2}^{*-}, B^{0} \rightarrow \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D}^{*0}, D_{2}^{*-} \rightarrow \pi^{-}\bar{D}^{*0}, \rho^{-} \rightarrow \pi^{0}\pi^{-}, D_{2}^{*-} \rightarrow \pi^{0}\pi^{-}, D_{2}^$				
20	$\bar{D}^{*0} \to \pi^0 \bar{D}^0, \bar{D}^{*0} \to \pi^0 \bar{D}^0, \bar{D}^{*0} \to K^+ \bar{a}_1^-, \bar{D}^0 \to \pi^0 K_L \pi^+ \pi^-, \bar{a}_1^- \to \bar{\rho}^0 \pi^-, \bar{\rho}^0 \to \pi^+ \pi^-$	19	19	1	20
	$(e^+e^- \to \mu^+\nu_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				

$ \begin{array}{c} e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^0 \bar{B}^0, \bar{B}^0 \to \mu^- \bar{\nu}_\rho D^+, \bar{B}^0 \to \pi^0 K^+ K^+ K^-, D^{++} \to \pi^+ D^0, K^+ \to \pi^0 K^0, \\ D^0 \to \pi^0 K_L, \bar{K}^0 \to K_L \\ (e^+e^- \to \mu^- \nu_\mu K_K K_\mu \pi^+ K^+ K^- \gamma \gamma \gamma \gamma \gamma \gamma) \\ \end{array} \\ \begin{array}{c} e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^0 \bar{B}^0, \bar{B}^0 \to \pi^+ \pi^+ \bar{\nu} K^0 K^- D^-, \bar{B}^0 \to e^- \bar{\nu}_b D^+, \bar{\nu}_b \to \pi^0 K^+, \bar{K}^0 \to K_S, \\ K^- \to \pi^0 K^-, \bar{D}^0 \to \pi^0 D^-, \bar{\nu}^+ \to \eta^0 D^-, \bar{\nu}^+ \to \eta^0 D^+, \bar{K}^0 \to K_S, \bar{K}^+ \to \pi^+ K^-, \bar{\nu}^+ K^0 \to K_S, \bar{K}^+ \to \pi^0 K^-, \bar{N}^0 \to K_S, \bar{N}^0 \to \pi^0 K^-, \bar{N}^0 \to \pi^0 K^-,$	index	event tree	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(event initial-final states)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 B^0, B^0 o \mu^- \bar{\nu}_\mu D^{*+}, B^0 o \pi^0 K^* K^+ K^-, D^{*+} o \pi^+ D^0, K^* o \pi^0 K^0,$				
$ \begin{array}{c} e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 B^0, B^0 \to \pi^+ \pi^+ \log K^0 K^- D^+, B^0 \to e^- \overline{\nu}_\mu D^+ + \omega \to \pi^0 \pi^+ \pi^-, K^0 \to K_S, \\ K^- \to \eta^0 K^-, D^{+-} \to \eta^0 D^-, D^{++} \to \pi^0 D^+, K_S \to \pi^+ \pi^-, D^- \to \pi^- \pi^- K^+, D^+ \to K_L a_1^+, \\ (e^+e^- \to e^- \overline{\nu}_\mu \mu_\mu \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ K^- f_0(600) \gamma \gamma \gamma \gamma \gamma \gamma \gamma) \\ e^+e^- \Upsilon(4S), \Upsilon(4S) \to B^0 B^0, B^0 \to D^+ T^+ f_0^+ f_0(600) \gamma \gamma \gamma \gamma \gamma \gamma \gamma) \\ (e^+e^- \to \pi^0 \pi^-, \eta^- \pi^0 \pi^0 \eta^0, \omega^- \pi^0 \pi^-, \eta^+ \to \eta^0 \eta^- \eta \omega D^+ H^-, D^+ \to \eta^0 D^+, D^- \to \eta^0 D^-, D^+ \to \eta^0 D^+, D^- \to \eta^0 D^-, D^+ \to \eta^0 D^+, D^- \to \eta^0 D^-, D^+ \to \eta^0 D^-, D^- \to \eta^0 D^-, D^- \to \eta^0 D^-, D^+ \to \eta^0 D^-, D^- \to \eta^0 D^-, D^- \to \eta^0 D^-, D^+ \to \eta^0 D^-, D^- \to \eta^0 D^-$	21		20	20	1	21
$ \begin{array}{c} 22 \\ & K^{*-} \to \pi^0 K^-, \bar{D}^{*-} \to \pi^0 D^-, D^+ \to \pi^0 D^+, K_S \to \pi^+ \pi^-, D^- \to \pi^- \pi^- K^+, D^+ \to K_L a_1^+, \\ & K_L \to \mu^+ \nu_\mu \pi^-, a_1^+ \to \pi^+ \beta^- (600) \\ & (e^+e^- \to e^- \bar{\nu}_e \mu^+ \nu_\mu \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ K^- f_0(600) \gamma \gamma \gamma \gamma \gamma \gamma \gamma) \\ & e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 B^0, B^0 \to D^+ D^+, D^+ \to \pi^+ D^- D^- \to \pi^+ \pi^- D^+, D^+, \\ & \rho^- \to \pi^0, \eta^- \to \eta^0 \pi^0, \omega \to \eta^0 \eta^+ \pi^-, D^+ \to \pi^+ D^0, D^- \to \pi^+ K^-, D^+ \to \eta^+ \eta^+, \\ & D^0 \to K^- a_1^+, K_S \to \pi^0 \eta^-, \rho^+ \to \eta^0 \pi^+, \eta^+ \to \rho^0, A^+ \to \pi^+ \pi^-, \rho^0 \to \pi^+ \pi^-, \\ & D^0 \to K^- a_1^+, K_S \to \pi^0 \eta^-, \rho^+ \to \eta^0 \pi^+, \eta^+ \to \rho^0, A^+ \to \pi^+ \pi^-, \rho^0 \to \pi^+ \pi^-, \\ & (e^+e^- \to \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+, D^+ \to \pi^0 K_L \pi^+, \\ & D^{*-} \to \pi^- D^0, \rho^- \to \pi^0 \pi^-, \omega \to \pi^0 \pi^+ \pi^-, K^+ \to \eta^0 K^+, D^0 \to K^+ a_1^-, a_1^- \to \rho^0 \pi^-, \\ & (e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^- K^+ K^+ + \gamma \gamma \gamma \gamma \gamma \gamma \gamma) \\ & e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 B^0, B^0 \to \pi^0 \pi^- \pi^- h^0 \pi^+, K^+ \to \pi^0 K^+, D^0 \to \pi^+ \pi^-, \rho^0 \to \pi^+, \\ & \rho^+ \to \eta^0 \pi^+, \eta^- \eta^0 \pi^- \pi^- D^- \to \pi^- \pi^- K^- K^- \to \pi^+ K^- D^- D^0, \eta^0 \to \pi^+ \pi^-, \rho^0 \to \pi^+, \\ & \rho^+ \to \eta^0 \pi^+, \eta^- \eta^0 \pi^- \pi^- D^- \to \pi^- \pi^- K^- K^- K^+ K^+ K^- \gamma \gamma \gamma \gamma \gamma \gamma) \\ & e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 B^0, B^0 \to \pi^0 \pi^- D^0 \pi^- D^0, h^0 \to h^- \pi^-, h^0 \to h^-, \\ & (e^+e^- \to e^+ e^+ e^- \nu_\mu \mu^- \mu_\mu \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^+ K^- K^- \gamma \gamma \gamma \gamma \gamma \gamma) \\ & e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 B^0, B^0 \to \pi^0 K^- D^0 D^0, B^0 \to \pi^+ K^- D^0 \to h^0 \to h^0 K^-, \\ & (e^+e^- \to e^+ \nu_\mu K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ K^- K^- \gamma \gamma \gamma \gamma \gamma \gamma) \\ & e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 B^0, B^0 \to e^+ \nu_\nu D^-, B^0 \to \pi^+ K^- D^-, D^0, D^+ \to \pi^0 \pi^-, D^0, D^0 \to h^0 \pi^-, D^0 \to h^0 \to h^0 \pi^-, D^0 \to h^0 \to h^0 \pi^-, D^0 \to h^0 \to h^0 \to h^0 \to h^0 \to$		$(e^+e^-\to\mu^-\nu_\mu K_L K_L \pi^+ K^+ K^- \gamma \gamma \gamma \gamma \gamma)$				
$ \begin{array}{c} Z \\ (e^{+}e^{-} \rightarrow e^{-}\nu_{L}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}f_{0}(600)\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}B^{0}, B^{0} \rightarrow D^{-}D^{+}, B^{0} \rightarrow \pi^{+}\pi^{0}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}f_{0}(600)\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}B^{0}, B^{0} \rightarrow D^{-}D^{+}, B^{0} \rightarrow \pi^{+}\pi^{0}\pi^{0}\pi^{0}\pi^{0} \rightarrow D^{0}\pi^{+}, D^{-} \rightarrow \pi^{0}D^{-}, D^{+} \rightarrow \pi^{0}D^{-}, D^{+} \rightarrow \pi^{0}D^{-}, D^{+} \rightarrow \pi^{0}D^{-}, D^{-} \rightarrow \pi^{0}D^{-$		$e^+e^- ightarrow 1 (4S), 1 (4S) ightarrow B^o B^o, B^o ightarrow \pi^+\pi^+\omega K^o K^o D^o$, $B^o ightarrow e^- u_e D^{*+}, \omega ightarrow \pi^0\pi^+\pi^-$, $K^o ightarrow K_S$,				
$ \begin{array}{c} (e^+e^- \to v_\mu + v_\mu + \tau_\mu + $	22	$K \longrightarrow \pi^* K$, $D \longrightarrow \pi^* D$, $D \longrightarrow \pi^* D$, $K_S \longrightarrow \pi^* \pi$, $D \longrightarrow \pi$ $\pi^* K$, $D \longrightarrow K_L a_1$,	21	21	1	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$KL \to \mu^+ \nu_\mu \pi^-, a_1 \to \pi^+ f_0(000)$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$e^+e^- \rightarrow \Upsilon(AS) \Upsilon(AS) \rightarrow R^0 \bar{R}^0 R^0 \rightarrow \bar{D}^{*-}D^{*+} \bar{R}^0 \rightarrow \pi^0\pi^0 e^- n_{\nu} D^{*+} \bar{D}^{*-} \rightarrow \pi^0D^- D^{*+} \rightarrow D^+ \gamma$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c} (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	23		22	22	1	23
$ \begin{array}{c} e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^0B^0, B^0 \to K^*D^+\bar{D}^-, B^0 \to \pi^+\pi^-\rho^-\omega K^{++}, K^* \to \pi^-K^+, D^+ \to \pi^0K_L\pi^+, \\ \bar{D}^* \to \pi^-\bar{D}^0, \rho^- \to \pi^0\pi^-, \omega \to \pi^0\pi^+\pi^-, K^{*+} \to \pi^0K^+, \bar{D}^0 \to K^+a_1^-, a_1^- \to \rho^0\pi^-, \\ (e^+e^- \to K_L\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^+K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0B^0, B^0 \to \pi^0\rho^0\pi^-\rho^-\rho^+\eta^-, \bar{B}^0 \to \pi^+K^-D^0, \rho^0 \to \pi^+\pi^-, \rho^+ \to \pi^0\pi^+, \\ \rho^+ \to \pi^0\pi^+, \eta \to \pi^0\pi^+\pi^-, D^- \to \pi^-K^+, K^* \to \pi^+K^-, \bar{D}^* \to \pi^-D^0, D^0 \to \pi^+\pi^-, \rho^+ \to \pi^0\pi^+, \\ \eta^0 \to e^+e^-, \bar{D}^0 \to \mu^-\nu_\mu K^+, K^* \to \pi^+K^-, \bar{D}^* \to \pi^-D^0, D^0 \to e^+\nu_\mu \pi^0 K^-, \\ (e^+e^- \to e^+e^+e^-\nu_\mu \mu^-\bar{\nu}_\mu \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^-K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0B^0, B^0 \to K^0D^0, B^0 \to \pi^0\pi^-\lambda^0 K^-, K^0 \to K^-, \bar{K}^0 \to $		$(e^+e^- o \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0B^0, B^0 \to K^*D^+\bar{D}^{*-}, B^0 \to \pi^+\pi^-\rho^-\omega K^{*+}, K^* \to \pi^-K^+, D^+ \to \pi^0K_L\pi^+,$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4		00	0.0	1	0.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	$ ho^0 o\pi^+\pi^-$	23	23	1	24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{-}\rho^{+}\rho^{+}\eta D^{-}, \bar{B}^{0} \to \pi^{+}\bar{K}^{*}\bar{D}^{*-}D^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, h. $				
$\begin{array}{c} \pi^{0} \to e^{+}e^{-}, D^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{+}, K^{+} \to \pi^{+}K^{0}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}\bar{D}^{0}\bar{D}^{0}, \bar{B}^{0} \to \pi^{0}\pi^{-}\omega D^{+}, K^{0} \to K_{L}, \bar{D}^{0} \to K^{+}a_{1}^{-}, \\ D^{*0} \to D^{0}\gamma, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{+} \to \pi^{+}K^{0}\bar{K}^{*}, a_{1}^{-} \to \rho^{0}\pi^{-}, D^{0} \to e^{+}\nu_{e}K^{-}, K^{0} \to K_{L}, \\ \bar{K}^{*} \to \pi^{+}K^{-}, \rho^{0} \to \pi^{+}\pi^{-}, K^{*-} \to \pi^{0}K^{-} \\ (e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ \hline e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{-}, \bar{D}^{*} \to \pi^{-}\bar{D}^{0}, D^{-} \to \pi^{0}\pi^{-}K^{*}, \\ \bar{D}^{0} \to \pi^{-}K^{+}, K^{*} \to \pi^{-}K^{+} \\ \hline e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{-}, B^{0} \to \mu^{-}\bar{\nu}_{\mu}\bar{D}^{+}, D^{-} \to \pi^{-}\bar{D}^{0}, D^{+} \to \pi^{+}\bar{\pi}^{-}\bar{D}^{+}, \\ \hline e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{\nu}^{-}, B^{0} \to \mu^{-}\bar{\nu}_{\mu}\bar{D}^{+}, D^{-} \to \pi^{-}\bar{D}^{0}, D^{+} \to \pi^{+}\bar{\pi}^{-}\bar{D}^{+}, \\ \hline e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\nu_{\mu}\bar{\nu}^{-}, B^{0} \to \mu^{-}\bar{\nu}_{\mu}\bar{\nu}^{+}, D^{+} \to \pi^{-}\bar{D}^{0}, D^{+} \to \pi^{+}\bar{\pi}^{-}\bar{D}^{-}, \\ \hline e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\bar{\nu}^{-}\bar{\nu}^{-}, B^{0} \to \rho^{-}\bar{\nu}^{+}, \pi^{+}\bar{\nu}^{-}\bar{\nu}^{-}, \pi^{-}\bar{\nu}^{-}\bar{\nu}^{+}\gamma\gamma\gamma\gamma\gamma) \\ \hline e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\bar{\nu}^{-}\bar{\nu}^{-}, B^{0} \to \mu^{-}\bar{\nu}^{-}\bar{\nu}^{-}, \pi^{-}\bar{\nu}^{-}\bar{\nu}^{-}\bar{\nu}^{-}, \pi^{-}\bar{\nu}^{-}\bar{\nu}^{-}\bar{\nu}^{-}\bar{\nu}^{-}, \pi^{-}\bar{\nu}^{-}\bar{\nu}^{-}\bar{\nu}^{-}, \pi^{-}\bar{\nu}^{-}\bar{\nu}^{-}\bar{\nu}^{-}\bar{\nu}^{-}\bar{\nu}^{-}, \pi^{-}\bar{\nu}^{-}\nu$	25	$\rho^{+} \to \pi^{0} \pi^{+}, \eta \to \pi^{0} \pi^{+} \pi^{-}, D^{-} \to \pi^{-} \pi^{-} K^{+}, K^{*} \to \pi^{+} K^{-}, D^{*-} \to \pi^{-} D^{0}, D^{0} \to e^{+} \nu_{e} \pi^{0} K^{-},$	24	24	1	25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\pi^{0} \to e^{+}e^{-}, D^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{*+}, K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$			_	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(e^+e^- \rightarrow e^+e^+e^-\nu_e\mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 B^0, B^0 o K^0 D^0 D^{*0}, B^0 o \pi^0 \pi^- \omega D^+, K^0 o K_L, D^0 o K^+ a_1^-,$				
$(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma})$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, B^{0} \to \mu^{+}\nu_{\mu}D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{-} \to \pi^{0}\pi^{-}K^{*},$ $\bar{D}^{0} \to \pi^{-}K^{+}, K^{*} \to \pi^{-}K^{+}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{+}_{1}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{+}_{1} \to \pi^{+}\pi^{-}D^{+},$ $\bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{+} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{-}D^{+}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}, \bar{D}^{0} \to \pi^{-}\omega K^{+}, \bar{K}^{0} \to K_{L}, \omega \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $e^{+}e^{-} \to \Phi^{+}\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{B}^{0} \to \pi^{+}\rho^{-}\rho^{-}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{0}K_{L}\pi^{+},$	26	$D^{*\circ} o D^{\circ} \gamma, \omega o \pi^{\circ} \pi^{+} \pi^{-}, D^{+} o \pi^{+} K^{\circ} K^{+}, a_{1} o ho^{\circ} \pi^{-}, D^{\circ} o e^{+} u_{e} K^{+}, K^{\circ} o K_{L}, $	25	25	1	26
$\begin{array}{c} e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, B^{0} \to \mu^{+}\nu_{\mu}D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{-} \to \pi^{0}\pi^{-}K^{*}, \\ \bar{D}^{0} \to \pi^{-}K^{+}, K^{*} \to \pi^{-}K^{+} \\ (e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma) \\ \hline 28 & e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{+}_{1}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{+}_{1} \to \pi^{+}\pi^{-}D^{+}, \\ \hline 28 & (e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma) \\ \hline 29 & e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{-}D^{+}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \\ \hline 29 & (e^{+}e^{-} \to e^{+}\nu_{e}\bar{K}^{0}, \bar{D}^{0} \to \pi^{-}\omega K^{+}, \bar{K}^{0} \to K_{L}, \omega \to \pi^{0}\pi^{+}\pi^{-} \\ \hline 28 & 28 & 1 & 29 \\ (e^{+}e^{-} \to e^{+}\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma) \\ \hline e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{B}^{0} \to \pi^{+}\rho^{-}\rho^{-}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{0}K_{L}\pi^{+}, \end{array}$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(e^{-}e^{-}\rightarrow e^{-}\nu_{e}K_{L}K_{L}K_{L}K_{L}K_{L}K_{L}K_{L}K_{L$				
$(e^{+}e^{-} \rightarrow e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma)$ $e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \rightarrow \mu^{-}\bar{\nu}_{\mu}D_{1}^{+}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, D_{1}^{+} \rightarrow \pi^{+}\pi^{-}D^{+},$ $\bar{D}^{0} \rightarrow \pi^{0}\pi^{-}K^{+}, D^{+} \rightarrow \pi^{0}\pi^{+}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \rightarrow \rho^{-}D^{+}, \tau^{+} \rightarrow \bar{\nu}_{\tau}\pi^{0}\pi^{+}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0},$ $\rho^{-} \rightarrow \pi^{0}\pi^{-}, D^{+} \rightarrow e^{+}\nu_{e}\bar{K}^{0}, \bar{D}^{0} \rightarrow \pi^{-}\omega K^{+}, \bar{K}^{0} \rightarrow K_{L}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}$ $e^{+}e^{-} \rightarrow e^{+}\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \rightarrow \pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{B}^{0} \rightarrow \pi^{+}\rho^{-}\rho^{-}D^{+}, \rho^{-} \rightarrow \pi^{0}\pi^{-}, D^{+} \rightarrow \pi^{0}K_{L}\pi^{+},$	27		26	26	1	27
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2'		20	20	1	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to u^+ \nu_u \bar{D}^{*-}, \bar{B}^0 \to u^- \bar{\nu}_u D_+^+, \bar{D}^{*-} \to \pi^- \bar{D}^0, D_+^+ \to \pi^+ \pi^- D^+.$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	$ar{D}^0 o \pi^0 \pi^- K^+, D^+ o \pi^0 \pi^+ \pi^+ \pi^-$	27	27	1	28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma)$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \rightarrow \rho^{-}D^{+}, \tau^{+} \rightarrow \bar{\nu}_{\tau}\pi^{0}\pi^{+}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0},$				
$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{B}^{0} \to \pi^{+}\rho^{-}\rho^{-}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{0}K_{L}\pi^{+},$	29	$ ho^- ightarrow \pi^0 \pi^-, D^+ ightarrow e^+ u_e ar K^0, ar D^0 ightarrow \pi^- \omega K^+, ar K^0 ightarrow K_L, \omega ightarrow \pi^0 \pi^+ \pi^-$	28	28	1	29
$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{B}^{0} \to \pi^{+}\rho^{-}\rho^{-}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{0}K_{L}\pi^{+},$		$(e^+e^- \to e^+\nu_e\nu_\tau\bar{\nu}_\tau K_L\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma)$				
_ 0 0 _ + 1 _ 0 + 0 + 0 + _ 0 + 0 4 0 0		$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{B}^{0} \to \pi^{+}\rho^{-}\rho^{-}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{0}K_{L}\pi^{+},$				
	30	$\rho^- \to \pi^0 \pi^-, \rho^- \to \pi^0 \pi^-, D^+ \to K_L a_1^+, a_1^+ \to \rho^0 \pi^+, \rho^0 \to \pi^+ \pi^-$	29	29	1	30
$(e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$		$(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
31	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{-}, \bar{B}^{0} \to \bar{K}_{1}^{0}\gamma, D_{1}^{-} \to \pi^{+}\pi^{-}D^{-}, \bar{K}_{1}^{0} \to \pi^{+}\pi^{-}\bar{K}^{0},$ $D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, \bar{K}^{0} \to K_{S}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma)$	30	30	1	31
32	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\dot{B}^{0}, B^{0} \to \pi^{-}K^{+}D^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{0}\rho^{-}\eta\omega D^{+}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{+}\pi^{-}, D^{+} \to e^{+}\nu_{e}\pi^{+}K^{-}, D^{0} \to K_{L}\pi^{+}\pi^{-},$ $\bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \pi^{0} \to e^{+}e^{-}, K_{L} \to \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma$	31	31	1	32
33	$ \begin{array}{c} (e^{+}e^{-} \rightarrow e^{+}e^{+}e^{-}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	32	32	1	33
34	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{\bar{0}}B^{0}, B^{0} \to \tau^{+}\nu_{\tau}D_{0}^{*-}, B^{0} \to \rho^{+}\eta\omega\bar{D}^{*-}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}K^{+}, D_{0}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}, \bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{+}, D^{-} \to K_{L}a_{1}^{-},$ $a_{1}^{-} \to \rho^{0}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\nu}\nu_{\nu}\bar{\nu}_{\nu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma$	33	33	1	34
35	$\frac{(e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \bar{D}^{*-}\bar{\Delta}^{0}\Delta^{+}, \bar{B}^{0} \rightarrow K^{*}\chi_{c1}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \bar{\Delta}^{0} \rightarrow \pi^{0}\bar{n},}$ $\Delta^{+} \rightarrow \pi^{0}p, \bar{K}^{*} \rightarrow \pi^{+}K^{-}, \chi_{c1} \rightarrow \eta K^{+}K^{-}, \bar{D}^{0} \rightarrow \mu^{-}\bar{\nu}_{\mu}K^{*+}, \eta \rightarrow \gamma\gamma, K^{*+} \rightarrow \pi^{+}K^{0},}$ $K^{0} \rightarrow K_{L}$ $(e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{-}K^{+}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma)$	34	34	1	35
36	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{0}\bar{p}\Delta^{+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D_{1}^{+}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \Delta^{+} \to \pi^{+}n,$ $D_{1}^{+} \to \pi^{+}\pi^{-}D^{+}, D^{+} \to K_{L}\pi^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}n\bar{p}\gamma\gamma)$	35	35	1	36
37	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \mu^{+}\nu_{\mu}D^{-}, \bar{B}^{0} \rightarrow \pi^{0}\pi^{-}D^{*+}, D^{-} \rightarrow K_{L}a_{1}^{-}, D^{*+} \rightarrow \pi^{+}D^{0},$ $K_{L} \rightarrow \pi^{0}\pi^{0}\pi^{0}, a_{1}^{-} \rightarrow \pi^{0}\rho^{-}, D^{0} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}, \rho^{-} \rightarrow \pi^{0}\pi^{-}$ $(e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \rightarrow \eta D^{+}p\bar{\Delta}^{++}, \bar{B}^{0} \rightarrow \pi^{0}\pi^{+}\pi^{-}\rho^{-}D^{+}, \eta \rightarrow \gamma\gamma, D^{+} \rightarrow \pi^{+}K_{S},$	36	36	1	37
38	$ar{\Delta}^{++} ightarrow \pi^-ar{p}, ho^- ightarrow \pi^0\pi^-, D^+ ightarrow \pi^0K_L\pi^+, K_S ightarrow \pi^+\pi^- \ (e^+e^- ightarrow K_L\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-par{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	37	37	1	38
39	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{-}D^{+}, \bar{B}^{0} \to \pi^{0}\pi^{0}K^{*}K^{*-}D^{+}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}, K^{*} \to \pi^{0}K^{0}, K^{*-} \to \pi^{-}\bar{K}^{0}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{0}, \bar{K}^{*} \to \pi^{+}K^{-}, K^{0} \to K_{L}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0} $ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	38	38	1	39
40	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{-}D^{*+}\gamma, \rho^{0} \to \pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $\rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, D^{-} \to \rho^{-}K^{*}, D^{0} \to \rho^{0}\pi^{+}K^{-}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*} \to \pi^{-}K^{+},$ $\rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}D^{*+}, D^{*+} \to \pi^{0}D^{+}, D^{*+} \to \pi^{+}D^{0},$	39	39	1	40
41	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}D^{*+}, D^{*+} \to \pi^{0}D^{+}, D^{*+} \to \pi^{+}D^{0},$ $D^{+} \to \pi^{+}K^{-}K^{*+}, D^{0} \to \pi^{0}\pi^{+}K^{-}, K^{*+} \to \pi^{0}K^{+}$ $(e^{+}e^{-} \to \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	40	40	1	41

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
42	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\omega D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \\ D^{*+} \to \pi^{0}D^{+}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{+} \to \pi^{+}\pi^{+}K^{-} \\ (e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	41	41	1	42
43	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}K^{-}\eta_{c}(2S), \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}D^{+}\Sigma^{-}\bar{\Sigma}^{0}, \eta_{c}(2S) \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}\pi^{-}\rho^{+}\eta, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*},$ $\Sigma^{-} \to \pi^{-}n, \bar{\Sigma}^{0} \to \bar{\Lambda}\gamma, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \gamma\gamma, \bar{K}^{*} \to \pi^{+}K^{-},$ $\bar{\Lambda} \to \pi^{+}\bar{p}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}n\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \eta D^{-}D^{+}_{s}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, D^{-} \to \rho^{-}K^{*},$	42	42	1	43
44	$D_s^+ \to \pi^+ \eta', D^{*+} \to \pi^+ D^0, \rho^- \to \pi^0 \pi^-, K^* \to \pi^0 K^0, \eta' \to \pi^0 \pi^0 \eta, D^0 \to \pi^0 \pi^+ K^-, K^0 \to K_S, \eta \to \gamma \gamma, K_S \to \pi^+ \pi^- (e^+ e^- \to e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma \gamma)$	43	43	1	44
45	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \omega K^{+}\bar{D}^{*-}, \bar{B}^{0} \to D^{*+}D_{s}^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D^{*+} \to \pi^{0}D^{+}, D_{s}^{-} \to \pi^{-}f_{0}(980), \bar{D}^{0} \to \pi^{-}\omega K^{+}, D^{+} \to K_{S}K^{*+}, f_{0}(980) \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-},$ $K_{S} \to \pi^{+}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)$	44	44	1	45
46	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \eta \bar{D}^{*-}D_{s}^{+}, B^{0} \to \pi^{0}\pi^{-}\rho^{+}\bar{K}^{0}K^{+}D^{-}, \eta \to \gamma\gamma, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{+}_{s} \to \mu^{+}\nu_{\mu}\eta, \rho^{+} \to \pi^{0}\pi^{+}, \bar{K}^{0} \to K_{S}, D^{-} \to K_{S}K^{*-}, D^{-} \to \pi^{-}\pi^{-}K^{+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, K_{S} \to \pi^{0}\pi^{0}, K_{S} \to \pi^{+}\pi^{-}, K^{*-} \to \pi^{-}\bar{K}^{0}, \pi^{0} \to e^{+}e^{-}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-} (e^{+}e^{-} \to e^{+}e^{-}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	45	45	1	46
47	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\eta\eta\bar{K}^{0}K^{+}D^{-}, \bar{B}^{0} \to \pi^{0}\rho^{0}\pi^{-}D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \gamma\gamma,$ $\eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{K}^{0} \to K_{L}, D^{-} \to \pi^{-}K_{S}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{0}D^{+}, K_{S} \to \pi^{+}\pi^{-},$ $D^{+} \to \pi^{0}K_{L}\pi^{+}$ $(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}K^{-}D^{+}D^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+},$	46	46	1	47
48	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}K^{-}D^{+}D^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, \bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{+}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, K^{0} \to K_{S},$ $\bar{K}^{0} \to K_{L}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\rho^{+}D^{-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+},$	47	47	1	48
49	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\rho^{+}D^{-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+},$ $D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{*}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}, K^{*} \to \pi^{0}K^{0}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, K^{0} \to K_{L}, \bar{K}^{0} \to K_{S},$ $K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\rho^{+}\eta D^{-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{0}\pi^{0}\pi^{0},$	48	48	1	49
50	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\rho^{+}\eta D^{-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{0}\pi^{0}\eta^{0},$ $D^{-} \to K_{S}K^{-}, D^{*+} \to \pi^{+}D^{0}, \pi^{0} \to e^{+}e^{-}, K_{S} \to \pi^{+}\pi^{-}, D^{0} \to \pi^{0}\pi^{+}\pi^{-}\bar{K}^{*}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0},$ $\bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{+}e^{-}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	49	49	1	50

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}\eta D^{-}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \eta \to \pi^{+}\pi^{-}, D^{-} \to K_{L}a_{1}^{-},$				
51	$\bar{D}^{*-} \rightarrow \pi^- \bar{D}^0, a_1^- \rightarrow \pi^- f_0(600), \bar{D}^0 \rightarrow \mu^- \bar{\nu}_\mu K^+$	50	50	1	51
91	$(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}f_{0}(600)\gamma\gamma)$	30	30	1	51
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{0}\pi^{+}\pi^{+}\rho^{-}D^{-}, \bar{B}^{0} \rightarrow e^{-}\bar{\nu}_{e}D^{+}, \rho^{-} \rightarrow \pi^{0}\pi^{-}, D^{-} \rightarrow \pi^{0}\pi^{+}\pi^{-}\pi^{-}K^{0},$				
52	$D^+ ightarrow \pi^+ \pi^+ K^-, K^0 ightarrow K_L$	51	51	1	52
"-	$(e^+e^- \rightarrow e^- \bar{\nu}_e K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^- \gamma \gamma \gamma \gamma \gamma)$			_	_
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \rho^{0}\pi^{+}\pi^{+}\pi^{-}\omega D^{-}, \bar{B}^{0} \rightarrow \rho^{+}\rho^{-}D^{*0}, \rho^{0} \rightarrow \pi^{+}\pi^{-}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, \omega \rightarrow \pi^{0}\pi^{+}, \omega \rightarrow \pi^{0}\pi^{+},$				
F0	$D^- o \pi^- K_1^{'0}, \rho^+ o \pi^0 \pi^+, \rho^- o \pi^0 \pi^-, D^{*0} o D^0 \gamma, K_1^{'0} o \pi^- K^{*+}, D^0 o e^+ \nu_e K^{*-},$	F0.	50	1	F 0
53	$K^{*+} \to \pi^0 K^+, K^{*-} \to \pi^- \bar{K}^0, \bar{K}^0 \to K_L$	52	52	1	53
	$(e^+e^- \to e^+\nu_e K_L \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}\bar{D}^{0}D_{s}^{+}, \bar{B}^{0} \to D^{*+}D_{s}^{*-}, \bar{D}^{0} \to \rho^{-}K^{*+}, D_{s}^{+} \to \rho^{+}\eta,$				
54	$D^{*+} \to \pi^{+} D^{0}, D^{*-}_{s} \to D^{-}_{s} \gamma, \rho^{-} \to \pi^{0} \pi^{-}, K^{*+} \to \pi^{0} K^{+}, \rho^{+} \to \pi^{0} \pi^{+}, \eta \to \gamma \gamma,$	53	53	1	54
	$D^0 o K_S K^+ K^-, D_s^- o \pi^- \eta', K_S o \pi^0 \pi^0, \eta' o \pi^+ \pi^- \eta, \eta o \pi^0 \pi^+ \pi^-$			_	04
	$\frac{(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, \bar{B}^{0} \to \pi^{0}\rho^{0}\rho^{0}\rho^{-}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, a_{1}^{+} \to \pi^{+}K^{0}\bar{K}^{0},}$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to D^{*-}a_{1}^{+}, B^{0} \to \pi^{0}\rho^{0}\rho^{0}\rho^{-}D^{+}, D^{*-} \to \pi^{-}D^{0}, a_{1}^{+} \to \pi^{+}K^{0}K^{0}, \\ \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{0}\pi^{+}K_{S}, \bar{D}^{0} \to K^{+}a_{1}^{-}, K^{0} \to K_{S},$				
55	$ ho^{\circ} ightarrow\pi^{+}\pi^{-}, ho^{\circ} ightarrow\pi^{+}\pi^{-}, ho^{-} ightarrow\pi^{-}\pi^{-}K_{S}, D^{\circ} ightarrow K^{+}a_{1}^{-},K^{\circ} ightarrow K_{S}, \ ar{K}^{0} ightarrow K_{S},K_{S} ightarrow\pi^{0}\pi^{0},a_{1}^{-} ightarrow ho^{0}\pi^{-},K_{S} ightarrow\pi^{+}\pi^{-},K_{S} ightarrow\pi^{0}\pi^{0}, ho^{0} ightarrow\pi^{+}\pi^{-}$	54	54	1	55
	$(e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^+e^- \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^0\bar{B}^0, B^0 \rightarrow \pi^0\Delta^+\bar{\Xi}_c^{*-}, \bar{B}^0 \rightarrow \pi^0\pi^+D^0D_s^{*-}, \Delta^+ \rightarrow \pi^+n, \bar{\Xi}_c^{*-} \rightarrow \bar{\Xi}_c^-\gamma,$				
	$D^{0} \to u^{+}\nu_{+}K^{*-}, D^{*-} \to D^{-}\gamma_{-}\bar{\Xi}^{-} \to \pi^{0}\pi^{-}\bar{\Xi}^{0}, K^{*-} \to \pi^{-}\bar{K}^{0}, D^{-} \to K^{0}K^{*-}, \bar{\Xi}^{0} \to \pi^{0}\bar{\Lambda}.$				
56	$D^{0} \to \mu^{+} \nu_{\mu} K^{*-}, D_{s}^{*-} \to D_{s}^{-} \gamma, \bar{\Xi}_{c}^{-} \to \pi^{0} \pi^{-} \bar{\Xi}^{0}, K^{*-} \to \pi^{-} \bar{K}^{0}, D_{s}^{-} \to K^{0} K^{*-}, \bar{\Xi}^{0} \to \pi^{0} \bar{\Lambda}, \\ \bar{K}^{0} \to K_{L}, K^{0} \to K_{L}, K^{*-} \to \pi^{0} K^{-}, \bar{\Lambda} \to \pi^{+} \bar{p}, K_{L} \to \mu^{-} \nu_{\mu} \pi^{+}$	55	55	1	56
	$(e^+e^- o \mu^+\mu^- u_\mu u_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^-n\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 B^0, B^0 o e^+ \nu_e D^{*-}, B^0 o \pi^0 \Delta^+ \Sigma_c^+, D^{*-} o \pi^0 D^-, \Delta^+ o \pi^- ar{n},$				
57	$\Sigma_c^+ \to \pi^0 \Lambda_c^+, D^- \to \pi^0 \pi^- \phi, \Lambda_c^+ \to \pi^+ \eta \Lambda, \phi \to K_L K_S, \eta \to \pi^0 \pi^+ \pi^-, \Lambda \to \pi^- p,$	56	56	1	57
01	$K_S o \pi^+\pi^-$		00	1	01
	$(e^+e^- \to e^+\nu_e K_L\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 ar{B}^0, B^0 o ho^0 \pi^+ \pi^- ar{D}^{*0}, ar{B}^0 o \mu^- ar{ u}_\mu D^{*+}, ho^0 o \pi^+ \pi^-, ar{D}^{*0} o ar{D}^0 \gamma,$				
58	$D^{*+} \to D^{+} \gamma, \bar{D}^{0} \to \rho^{-} K^{*+}, D^{+} \to \mu^{+} \nu_{\mu} \bar{K}^{0}, \rho^{-} \to \pi^{0} \pi^{-}, K^{*+} \to \pi^{+} K^{0}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0} \pi^{0}, K_{S} \to \pi^{0} \pi^{0}$	57	57	1	58
	$K \to K_S, K_S \to \pi \pi, K_S \to \pi \pi$ $(e^+e^- \to \mu^+\mu^- \mu^- \mu^- \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^-$				
	$\frac{(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \rightarrow D^{+}\Delta^{0}\bar{\Delta}^{+}, \bar{B}^{0} \rightarrow \pi^{0}\rho^{0}\pi^{+}\pi^{-}\eta\eta, D^{+} \rightarrow \mu^{+}\nu_{\mu}\bar{K}^{*}, \Delta^{0} \rightarrow \pi^{0}n,}$				
59	$ar{\Delta}^+ ightarrow \pi^0 ar{p}, ho^0 ightarrow \pi^+ \pi^-, \eta ightarrow \gamma \gamma, \eta ightarrow \pi^0 \pi^+ \pi^-, ar{K}^* ightarrow \pi^+ K^-$	58	58	1	59
	$(e^+e^- ightarrow \mu^+ u_\mu \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^- n \bar{p} \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$			_	
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \rightarrow \pi^{0}\pi^{0}\pi^{0}\rho^{0}\rho^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-}, \bar{D}^{*-}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \bar{D}^{0} \rightarrow \pi^{+}\pi^{-}, \bar{D}^{0}, \bar{D}^{0} \rightarrow \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$				
60	$\rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to K^{+}a_{1}^{-}, D^{0} \to \mu^{+}\nu_{\mu}\pi^{-}, a_{1}^{-} \to \rho^{0}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}$	59	59	1	60
	$(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$				

index	event tree	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	(event initial-final states)				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\bar{K}^{0}D^{+}\bar{D}^{*0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-},$				
61	$ar{K^0} o K_S, D^+ o \pi^0 \pi^+ ar{K}^*, ar{D}^{*0} o ar{D}^0 \gamma, D^- o e^- ar{ u}_e K^0, K_S o \pi^+ \pi^-, ar{K}^* o \pi^+ K^-, \ ar{D}^0 o \pi^0 \pi^0 \pi^0 \pi^+ \pi^-, K^0 o K_S, K_S o \pi^0 \pi^0$	60	60	1	61
	$D^{\circ} ightarrow \pi^{\circ} \pi^{\circ}$				
	$\frac{(e^+e^- \to e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^- \gamma \gamma)}{e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to e^+ \nu_e \bar{D}^{*-}, \bar{B}^0 \to \pi^+ \bar{K}^* \bar{D}^{*-} D^0, \bar{D}^{*-} \to \pi^- \bar{D}^0, \bar{K}^* \to \pi^0 \bar{K}^0,}$				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
62	$D \to \mathcal{K} D \to \mathcal{K} K , D \to \mathcal{K} a_1, K \to K_L, D \to \mathcal{K} K , \rho \to \mathcal{K} K , K \to K_L$ $K^{*-} \to \pi^- \bar{K}^0, a_1^- \to \pi^- f_0(600), \bar{K}^0 \to K_L$	61	61	1	62
	$(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}f_{0}(600)\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, B^{0} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{-}\Delta^{+}\bar{\Delta}^{+}, \bar{D}^{*-}\to \pi^{-}\bar{D}^{0}, a_{1}^{+}\to \rho^{0}\pi^{+},$				
	$D^- o e^- ar{ u}_e \pi^- K^+, \Delta^+ o \pi^0 p, ar{\Delta}^+ \overset{1}{ o} \pi^0 ar{p}, ar{D}^0 o \mu^- ar{ u}_\mu K^{*+}, ho^0 o \pi^+ \pi^-, K^{*+} o \pi^+ K^0,$	40	0.0		20
63	$K^0 ightarrow K_S$, $K_S ightarrow \pi^+\pi^-$	62	62	1	63
	$\frac{(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\eta\bar{D}^{0}, \bar{B}^{0} \to \pi^{-}\pi^{-}\pi^{-}\rho^{+}\rho^{+}\omega D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+},}$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\eta\bar{D}^{0}, \bar{B}^{0} \to \pi^{-}\pi^{-}\pi^{-}\rho^{+}\rho^{+}\omega D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \eta \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \eta \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{$				
64	$\rho^{+} \to \pi^{0} \pi^{+}, \rho^{+} \to \pi^{0} \pi^{+}, \omega \to \pi^{0} \pi^{+} \pi^{-}, D^{*+} \to \pi^{+} D^{0}, D^{0} \to e^{+} \nu_{e} \pi^{0} K^{-}$	63	63	1	64
	$\frac{(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}K^{-}K^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{0}\rho^{0}\pi^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, K^{*+} \to \pi^{+}K^{0},}$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \rho^{0}\pi^{+}K^{-}K^{*+}D^{*-}, B^{0} \to \pi^{0}\pi^{0}\rho^{0}\rho^{0}\pi^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, K^{*+} \to \pi^{+}K^{0},$				
65	$\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}, K^{0} \to K_{S}, \bar{D}^{0} \to K_{L}\eta', \\ \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}, \eta' \to \pi^{+}\pi^{-}\eta, K_{S} \to \pi^{+}\pi^{-}, \eta \to \gamma\gamma$	64	64	1	65
	$(e^+e^- \to e^+\nu_e K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^-$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}p\bar{p}, D^{-} \to \pi^{+}\pi^{-}\pi^{-}K_{S}, D^{*+} \to \pi^{+}D^{0},$				
66	$K_S \to \pi^0 \pi^0, D^0 \to \pi^0 \pi^+ \pi^- \bar{K}^*, \bar{K}^* \to \pi^+ K^-$	65	65	1	66
	$(e^+e^- \rightarrow e^+ \nu_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^- p \bar{p} \gamma \gamma$			_	
	$\frac{(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{0}^{*-}, \bar{B}^{0} \to \tau^{-}\bar{\nu}_{\tau}D^{*+}, D_{0}^{*-} \to \pi^{-}\bar{D}^{0}, \tau^{-} \to \nu_{\tau}\pi^{0}\pi^{-},}$				
67	$D^{*+} ightarrow \pi^+ D^0, D^0 ightarrow \pi^+ \pi^- K^*, D^0 ightarrow \pi^0 \pi^0 K^*, K^* ightarrow \pi^- K^+, K^* ightarrow \pi^+ K^-$	66	66	1	67
	$(e^+e^- \to \mu^+\nu_\mu\nu_\tau\bar{\nu}_\tau\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^+e^- \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^0\bar{B}^0, B^0 \rightarrow \pi^+\omega\omega\bar{D}^{*-}, \bar{B}^0 \rightarrow \eta D^+D_s^{*-}, \omega \rightarrow \pi^0\gamma, \omega \rightarrow \pi^0\pi^+\pi^-,$				
68	$ar{D}^{*-} o \pi^- ar{D}^0, \eta o \gamma \gamma, D^+ o K_L \pi^+, D_s^{*-} o D_s^- \gamma, ar{D}^0 o \pi^- \eta K^+, D_s^- o K^0 K^{*-},$	67	67	1	68
	$\eta o \pi^0 \pi^0 \pi^0, K^0 o K_L, K^{*-} o \pi^0 K^-$	"		_	
	$(e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^+ K^- \gamma \gamma$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{+}, \bar{B}^{0} \to \rho^{0}\rho^{-}\eta D^{*+}, D^{+} \to \pi^{0}\pi^{+}K_{S}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \gamma\gamma, D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{+}\pi^{-}, D^{0} \to \omega\bar{K}^{*}, \omega \to \pi^{+}\pi^{-}, \eta^{-}, \bar{A}^{0}, \bar{A}^{0} \to \bar{A}^{0} \to \bar{A}^{0}, \bar{A}^{0} \to \bar{A}^{0} \to \bar{A}^{0} \to \bar{A}^{0}, \bar{A}^{0} \to \bar{A}^{0}, \bar{A}^{0} \to \bar{A}^{0} \to \bar{A}^{0}, \bar{A}$				
69	$ ho \rightarrow \pi \ \pi \ , \eta \rightarrow \gamma \gamma, D \ \rightarrow \pi \ D \ , K_S \rightarrow \pi \ \pi \ , D \ \rightarrow \omega K \ , \omega \rightarrow \pi \ \pi \ , \ ar{K}^* \rightarrow \pi^+ K^-$	68	68	1	69
	$(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}D^{-}, \bar{B}^{0} \to \rho^{-}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, D^{-} \to \pi^{0}\pi^{-}\phi,$				
70	$ ho^- o \pi^0 \pi^-, D^{*+} o \pi^+ D^0, \phi o K^+ K^-, D^0 o e^+ u_e \pi^-$	69	69	1	70
	$(e^+e^- ightarrow e^+ u_e\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma)$				

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{+}D^{0}\bar{D}^{0}, \bar{B}^{0} \to K^{*-}D^{+}, D^{0} \to \rho^{+}K^{*-}, \bar{D}^{0} \to \rho^{0}\rho^{0},$				
71	$K^{*-} \to \pi^- \bar{K}^0, D^+ \to e^+ \nu_e \bar{K}^*, \rho^+ \to \pi^0 \pi^+, K^{*-} \to \pi^- \bar{K}^0, \rho^0 \to \pi^+ \pi^-, \rho^0 \to \pi^+ \pi^-, \kappa^0 \to \pi^- \pi^- \pi^-, \kappa^0 \to \pi^- \pi^- \pi^-, \kappa^0 \to \pi^- \pi^- \pi^-, \kappa^0 \to \pi^- \pi^-$	70	70	1	71
11	$ar{K}^0 ightarrow K_L, ar{K}^* ightarrow \pi^+ K^-, ar{K}^0 ightarrow K_L$	10	10	1	/1
	$\frac{(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\rho^{+}\rho^{-}D^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-},}$				
	$e^{+}e^{-} o \Upsilon(4S), \Upsilon(4S) o B^{0}B^{0}, B^{0} o \pi^{0}\pi^{0}\pi^{+}\rho^{+}\rho^{-}D^{-}, B^{0} o e^{-}\bar{\nu}_{e}D^{+}, \rho^{+} o \pi^{0}\pi^{+}, \rho^{-} o \pi^{0}\pi^{-},$				
72	$D^- \to e^- \bar{\nu}_e \pi^- K^+, D^+ \to \pi^0 \pi^+ \pi^+ K^-$	71	71	1	72
	$\frac{(e^+e^- \to e^-e^-\bar{\nu}_e\bar{\nu}_e\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to K^*n\bar{\Sigma}_c^{*0}, \bar{B}^0 \to \pi^-D^+, K^* \to \pi^-K^+, \bar{\Sigma}_c^{*0} \to \pi^+\bar{\Lambda}_c^-,}$				
73	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	72	1	73
10	$(e^+e^- \to \pi^+\pi^+\pi^-\pi^-\pi^-K^+K^+K^-n\bar{p}\gamma\gamma\gamma\gamma)$	'2	12	1	10
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 \bar{B}^0, B^0 o e^+ \nu_e \bar{D}^{*-}, \bar{B}^0 o \pi^- \pi^- D^{*+} \bar{n} \Delta^+, \bar{D}^{*-} o \pi^- \bar{D}^0, D^{*+} o \pi^+ D^0,$				
74	$\Delta^{+} \to \pi^{0} p, \bar{D}^{0} \to e^{-} \bar{\nu}_{e} \pi^{+} K^{0}, D^{0} \to K^{-} a_{1}^{+}, K^{0} \to K_{L}, a_{1}^{+} \to \pi^{+} f_{0}(600)$	73	73	1	74
	$(e^+e^- \to e^+e^- \nu_e \bar{\nu}_e K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^- \bar{n}p f_0(600) \gamma \gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}\bar{D}^{*-}D^{0}, \bar{B}^{0} \to D^{*+}D^{*-}_{s0}, K^{*+} \to \pi^{+}K^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$				
75	$D^0 \to \pi^0 \pi^+ K^-, D^{*+} \to \pi^0 D^+, D^{*-}_{s0} \to \pi^0 D^s, K^0 \to K_L, \bar{D}^0 \to \rho^- K^{*+}, D^+ \to \mu^+ \nu_\mu \pi^+ K^-,$	74	74	1	75
	$D_s^- o K^*K^-, ho^- o \pi^0\pi^-, K^{*+} o \pi^0K^+, K^* o \pi^0K^0, K^0 o K_L$	'-	, , ,	_	
	$\frac{(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}Y^{\gamma}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{+}\bar{D}^{*-}D^{*0}, \bar{D}^{*-} \to \pi^{0}D^{-}, \rho^{+} \to \pi^{0}\pi^{+},}$				
76	$e^+e^- o 1(4S), 1(4S) o B^*B^*, B^* o \mu^+ u_\mu D^-, B^+ o \pi^+ \pi^+ \pi^- \rho^+ D^- D^+, D^- o \pi^+ D^-, \rho^+ o \pi^+ \pi^+, \ ar{D}^{*-} o \pi^0 D^-, D^{*0} o \pi^0 D^-, D^- o K_L \pi^- K^+ K^-, D^- o \pi^0 \pi^- \pi^- K^+, D^0 o \pi^0 \pi^+ K^-$	75	75	1	76
70	$(e^+e^- \to \mu^+\nu_\mu K_L\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^+K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	13	10	1	10
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{+}\omega\omega D^{-}, \bar{B}^{0} \to K^{-}D^{*+}\bar{D}^{*0}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{+}\pi^{-},$				
	$\omega o \pi^0 \pi^+ \pi^-, D^- o \pi^0 K_L \pi^-, D^{*+} o \pi^0 D^+, ar{D}^{*0} o \pi^0 ar{D}^0, D^+ o \pi^+ ar{K}_1^{'0}, ar{D}^0 o ho^- K^{*+},$				
77	$\bar{K}_1^{'0} \to \pi^+ K^{*-}, \rho^- \to \pi^0 \pi^-, K^{*+} \to \pi^+ K^0, K^{*-} \to \pi^- \bar{K}^0, K^0 \to K_L, \bar{K}^0 \to K_S,$	76	76	1	77
	$K_S ightarrow \pi^0 \pi^0$			_	
	$(e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^- \gamma \gamma$				
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 B^0, B^0 o e^- \bar{\nu}_e D^{*+}, B^0 o \pi^0 \pi^+ \pi^- \rho^- \omega K^0 D^{*+}, D^{*+} o \pi^+ D^0, \rho^- o \pi^0 \pi^-,$				
78	$\omega \to \pi^0 \pi^+ \pi^-, \bar{K}^0 \to K_S, D^{*+} \to \pi^+ D^0, D^0 \to \pi^0 \eta K_S, D^0 \to \mu^+ \nu_\mu K^{*-}, \eta \to \gamma \gamma,$	77	77	1	78
10	$K_S \to \pi^+ \pi^-, K^{*-} \to \pi^- \bar{K}^0, \bar{K}^0 \to K_S, K_S \to \pi^+ \pi^-$	''	''	1	10
	$(e^+e^- \to e^- \bar{\nu}_e \mu^+ \nu_\mu \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K_S \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\eta D^{-}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to e^{-}\bar{\nu}_{e}K_{1}^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, K_{1}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{0} \to e^{+}\nu_{e}K^{-}$				
79	$ ho^{\circ} ightarrow\pi^{+}\pi^{-}, D^{\circ}^{+} ightarrow\pi^{+}D^{\circ}, K_{1}^{\circ} ightarrow\pi^{\circ}\pi^{-}K^{+}, D^{\circ} ightarrow e^{+} u_{e}K$ $(e^{+}e^{-} ightarrow e^{+}e^{+}e^{-} u_{e} u_{e}ar{ u}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma)$	78	78	1	79
	$(e^+e^- \to e^+e^+e^- \nu_e \nu_e \nu_e \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^- K^- \gamma \gamma \gamma \gamma)$ $e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to \rho^0 \pi^+ \pi^- \rho^+ \eta \eta \bar{D}^{*-}, \bar{B}^0 \to \mu^- \bar{\nu}_\mu D^{*+}, \rho^0 \to \pi^+ \pi^-, \rho^+ \to \pi^0 \pi^+,$				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
80	$egin{aligned} \eta ightarrow \pi & \pi & \eta ightarrow \pi & \pi & \pi & \pi & \pi \\ & \bar{K}^* ightarrow \pi^+ K^- & & & & & & & & & & & & & & & & & & &$	79	79	1	80
	$(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
81	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}D_{0}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{-}\omega K^{0}\bar{K}^{0}\bar{K}^{*}D^{*+}, \tau^{+} \to \mu^{+}\nu_{\mu}\bar{\nu}_{\tau}, D_{0}^{*-} \to \pi^{-}\bar{D}^{0},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S}, \bar{K}^{0} \to K_{L}, \bar{K}^{*} \to \pi^{+}K^{-}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{0} \to \pi^{+}\pi^{-}\pi^{-}K^{+},$ $K_{S} \to \pi^{+}\pi^{-}, D^{+} \to \pi^{0}\pi^{+}K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D^{-}a_{1}^{+}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{*-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}\omega, a_{1}^{+} \to \rho^{0}\pi^{+},$	80	80	1	81
82	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to D^{-}a_{1}^{+}, B^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{*-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}\omega, a_{1}^{+} \to \rho^{0}\pi^{+},$ $D^{+} \to \pi^{+}\pi^{+}K^{-}, D_{s}^{*-} \to D_{s}^{-}\gamma, \omega \to \pi^{0}\pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, D_{s}^{-} \to \rho^{-}\phi, \rho^{-} \to \pi^{0}\pi^{-},$ $\phi \to K^{+}K^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}_{s}^{0}, B^{0} \to \rho^{+}\eta\omega D^{-}, \bar{B}^{0} \to \pi^{+}D^{0}D_{s}^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{+}\pi^{-},$	81	81	1	82
83	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}\eta\omega D^{-}, \bar{B}^{0} \to \pi^{+}D^{0}D_{s}^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{+}\pi^{-}, \\ \omega \to \pi^{0}\gamma, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{*}, D^{0} \to K_{S}K^{+}K^{-}, D_{s}^{-} \to \rho^{-}\phi, K^{*} \to \pi^{-}K^{+}, K_{S} \to \pi^{+}\pi^{-}, \\ \rho^{-} \to \pi^{0}\pi^{-}, \phi \to \pi^{-}\rho^{+}, \rho^{+} \to \pi^{0}\pi^{+} \\ (e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}K^{0}D^{-}, \bar{B}^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}D^{*+}, K^{0} \to K_{S}, D^{-} \to \pi^{-}K^{+}K^{-},$	82	82	1	83
84	$D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{0}\pi^{0}, D^{0} \to \rho^{+}K^{*-}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{0}K^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	83	83	1	84
85	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\rho^{-}\bar{D}^{*0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}\eta\bar{D}^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0},$ $\eta \to \pi^{0}\pi^{+}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}, \bar{D}^{0} \to K_{S}\eta', \bar{K}^{0} \to K_{L}, K_{S} \to \pi^{0}\pi^{0}, \eta' \to \pi^{+}\pi^{-}\eta,$ $\eta \to \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	84	84	1	85
86	$ \begin{array}{c} (e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}B^{0}, B^{0} \rightarrow \eta'D^{+}\bar{D}^{*-}, B^{0} \rightarrow \omega\bar{D}^{*-}\bar{n}p, \eta' \rightarrow \pi^{0}\pi^{0}\eta, D^{+} \rightarrow \pi^{+}\phi, \\ \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \eta \rightarrow \pi^{0}\pi^{+}\pi^{-}, \phi \rightarrow K^{+}K^{-}, \bar{D}^{0} \rightarrow e^{-}\bar{\nu}_{e}\rho^{+}, \\ \bar{D}^{0} \rightarrow e^{-}\bar{\nu}_{e}K^{+}, \rho^{+} \rightarrow \pi^{0}\pi^{+} \\ (e^{+}e^{-} \rightarrow e^{-}e^{-}\bar{\nu}_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{+}\pi^{-}\rho^{+}D^{-}, \bar{B}^{0} \rightarrow e^{-}\bar{\nu}_{e}D_{2}^{*+}, \rho^{+} \rightarrow \pi^{0}\pi^{+}, D^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}K^{*}, \end{array} $	85	85	1	86
87	$D_2^{*+} o \pi^+ D^0, K^* o \pi^- K^+, D^0 o K_L \omega, \omega o \pi^0 \pi^+ \pi^- \ (e^+ e^- o e^- ar{ u}_e \mu^- ar{ u}_\mu K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ \gamma \gamma \gamma \gamma)$	86	86	1	87
88	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\eta D^{-}, \bar{B}^{0} \to \pi^{-}\rho^{+}K^{0}K^{*-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \eta \to \gamma\gamma,$ $D^{-} \to \pi^{-}\pi^{-}K^{+}, \rho^{+} \to \pi^{0}\pi^{+}, K^{0} \to K_{L}, K^{*-} \to \pi^{0}K^{-}, D^{+} \to \rho^{0}\pi^{+}, K_{L} \to \mu^{+}\nu_{\mu}\pi^{-},$ $\rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma)$	87	87	1	88
89	$(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}p\bar{\Sigma}_{c}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D_{0}^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{\Sigma}_{c}^{*-} \to \pi^{0}\bar{\Lambda}_{c}^{-},$ $D_{0}^{*+} \to \pi^{+}D^{0}, \bar{\Lambda}_{c}^{-} \to K^{+}\bar{\Delta}^{++}, D^{0} \to \pi^{+}\pi^{-}\bar{K}^{*}, \bar{\Delta}^{++} \to \pi^{-}\bar{p}, \bar{K}^{*} \to \pi^{+}K^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}p\bar{p}\gamma\gamma)$	88	88	1	89
90	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\pi^{-}D^{+}\bar{n}p, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{+} \to K_{S}a_{1}^{+},$ $D^{-} \to \pi^{0}\pi^{0}\pi^{-}\pi^{-}K^{+}, K_{S} \to \pi^{0}\pi^{0}, a_{1}^{+} \to \pi^{+}f_{0}(600)$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\bar{n}pf_{0}(600)\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	89	89	1	90

	event tree			_	
index	(event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to \pi^0 \pi^+ \pi^- \rho^+ D^-, \bar{B}^0 \to \mu^- \bar{\nu}_\mu D^{*+}, \rho^+ \to \pi^0 \pi^+, D^- \to \mu^- \bar{\nu}_\mu \pi^- K^+,$				
91	$D^{*+} \to \pi^0 D^+, D^+ \to \pi^+ \pi^+ K^-$	90	90	1	91
	$(e^{+}e^{-} \to \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to \pi^-K^{*+}J/\psi, \bar{B}^0 \to \pi^0\pi^+K^-\eta_c(2S), K^{*+} \to \pi^0K^+, J/\psi \to e^+e^-,$				
92	$\pi^0 \to e^+e^-, \eta_c(2S) \to \eta \Sigma^+\bar{\Sigma}^-, \eta \to \pi^0\pi^0\pi^0, \Sigma^+ \to \pi^+n, \bar{\Sigma}^- \to \pi^0\bar{p}$	91	91	1	92
	$(e^+e^- \to e^+e^+e^-e^-\pi^+\pi^+\pi^-K^+K^-n\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o ar{B}^0 ar{B}^0, ar{B}^0 o ar{K}^0 \psi', ar{B}^0 o \pi^- ho^+ ho^- D^+, ar{K}^0 o K_S, \psi' o \pi^0 \pi^0 J/\psi,$				
93	$\rho^+ \to \pi^0 \pi^+, \rho^- \to \pi^0 \pi^-, D^+ \to \bar{K}^* a_1^+, K_S \to \pi^+ \pi^-, J/\psi \to \mu^+ \mu^-, \bar{K}^* \to \pi^+ K^-, a_1^+ \to \pi^+ f_0(600)$	92	92	1	93
	$(e^+e^- \to \mu^+\mu^-\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^-f_0(600)\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \rho^{0}\rho^{+}\bar{D}^{*-}, \bar{B}^{0} \rightarrow \pi^{-}K^{0}D^{+}, \rho^{0} \rightarrow \pi^{+}\pi^{-}, \rho^{+} \rightarrow \pi^{0}\pi^{+},$				
94	$\bar{D}^{*-} \to \pi^- \bar{D}^0, K^0 \to K_L, D^+ \to K_L a_1^+, \bar{D}^0 \to \pi^- K^+, a_1^+ \to \pi^+ f_0(600)$	93	93	1	94
	$(e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ f_0(600) \gamma \gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}\omega D^{-}, \bar{B}^{0} \to \pi^{0}\omega K^{0}K^{-}D^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-},$				
95	$D^{-} \to \pi^{-}\pi^{-}K^{+}, \pi^{0} \to e^{+}e^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}, K_{S} \to \pi^{+}\pi^{-},$	94	94	1	95
90	$ar{K}^* ightarrow \pi^+ K^-$	34	34	1	95
	$\frac{(e^{+}e^{-} \to e^{+}e^{-}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{+}D^{0},}$				
96	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 B^0, B^0 o e^+ \nu_e D^-, B^0 o e^- \bar{\nu}_e D^+, D^- o \pi^- D^0, D^{*+} o \pi^+ D^0, \ \bar{D}^0 o K^+ a_1^-, D^0 o \pi^0 \pi^+ K^-, a_1^- o \pi^- f_0(600)$	05	95	1	0.6
96		95	95	1	96
	$\frac{(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}f_{0}(600)\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{-}D^{*+}\Delta^{+}\bar{\Delta}^{+}, K^{*+} \to \pi^{+}K^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},}$				
	$D^{*+} \rightarrow \pi^+ D^0, \Delta^+ \rightarrow \pi^+ n, \bar{\Delta}^+ \rightarrow \pi^0 \bar{p}, K^0 \rightarrow K_L, \bar{D}^0 \rightarrow \pi^0 \pi^- K^+, D^0 \rightarrow \pi^+ \pi^- K_S,$				
97	$K_S ightarrow \pi^+\pi^-$	96	96	1	97
	$(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{p}\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D_{2}^{*-}D_{s}^{*+}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{-}, D_{2}^{*-} \to \pi^{0}\bar{D}^{*-}, D_{s}^{*+} \to D_{s}^{+}\gamma,$				
	$D^+ \to \pi^+ \bar{K}_1^{'0}, D_s^- \to e^- \bar{\nu}_e \eta', \bar{D}^{*-} \to \pi^- \bar{D}^0, D_s^+ \to \pi^+ \phi, \bar{K}_1^{'0} \to \pi^+ K^{*-}, \eta' \to \pi^0 \pi^0 \eta,$				
98	$\bar{D}^0 \to \pi^- \omega K^+, \phi \to \pi^- \rho^+, K^{*-} \to \pi^- \bar{K}^0, \eta \to \pi^0 \pi^+ \pi^-, \omega \to \pi^0 \pi^+ \pi^-, \rho^+ \to \pi^0 \pi^+,$	97	97	1	98
	$ar{K}^0 o K_S, K_S o \pi^0 \pi^0$				
	$(e^+e^- \to e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K_{L}\eta_{c}, \bar{B}^{0} \to \pi^{-}\pi^{-}\rho^{+}D^{*+}, \eta_{c} \to \pi^{0}K^{0}\bar{K}^{0}\bar{K}^{0}K^{*}, \rho^{+} \to \pi^{0}\pi^{+}, D^{*+} \to \pi^{0}D^{+}, K^{0} \to K_{S}, \bar{K}^{0} \to K_{L}, \bar{K}^{0} \to K_{S}, K^{*} \to \pi^{-}K^{+}, D^{+} \to \pi^{0}\pi^{+}K_{S},$				
99	$D^{++} ightarrow \pi^* D^+, K^- ightarrow K_S, K^- ightarrow K_L, K^- ightarrow K_S, K^+ ightarrow \pi^- K^+, D^+ ightarrow \pi^* \pi^+ K_S, K^- ightarrow \pi^0 \pi^0, K_S ightarrow \pi^+ \pi^-, K_S ightarrow \pi^+ \pi^-$	98	98	1	99
	$\frac{(e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma)}{e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to \pi^0 \pi^0 \rho^0 \pi^+ \bar{D}^{*-}, \bar{B}^0 \to K^* K^- D^+, \rho^0 \to \pi^+ \pi^-, \bar{D}^{*-} \to \pi^- \bar{D}^0,}$				
100	$K^* \to \pi^0 K^0, D^+ \to \pi^+ \pi^+ K^-, \bar{D}^0 \to \pi^- \rho^+, K^0 \to K_S, \rho^+ \to \pi^0 \pi^+, K_S \to \pi^0 \pi^0$	99	99	1	100
	$(e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
			T.		

index	event tree	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
mucx	(event initial-final states)	1127011	ILVIII 503	IILVUS	nonnezves
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\rho^{-}\eta\bar{D}^{0}, \bar{B}^{0} \to \pi^{-}\rho^{+}\rho^{-}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \eta \to \pi^{0}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$				
101	$\bar{D}^0 \to \pi^0 \pi^+ \pi^- K_S, \rho^+ \to \pi^0 \pi^+, \rho^- \to \pi^0 \pi^-, D^+ \to e^+ \nu_e \bar{K}^0, \pi^0 \to e^+ e^-, K_S \to \pi^+ \pi^-,$	100	100	1	101
	$ar{K}^0 o K_S, K_S o \pi^0 \pi^0$				
	$(e^+e^- \to e^+e^+e^-\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$				
102	$\begin{array}{c} e^+e^- \rightarrow 1 (4S), 1 (4S) \rightarrow B^+B^+, B^+ \rightarrow \pi^+\pi^+\eta\omega D^+, B^+ \rightarrow \pi^+\pi^- D^+D_s, \eta \rightarrow \pi^+\pi^-, \omega \rightarrow \pi^+\pi^+\pi^-, \\ \bar{D}^0 \rightarrow \pi^0\pi^-K^+, D^+ \rightarrow \pi^0\pi^+K_S, D_s^- \rightarrow e^-\bar{\nu}_e \eta, K_S \rightarrow \pi^+\pi^-, \eta \rightarrow \pi^+\pi^- \end{array}$	101	101	1	102
102	$(e^+e^- \rightarrow e^-\bar{\nu}_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	101	101	1	102
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{+}\omega\omega D^{-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{0}\pi^{-}\pi^{-}\rho^{+}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-},$				
103	$\omega \to \pi^0 \pi^+ \pi^ D^- \to \pi^- \pi^- K^+$ $\rho^0 \to \pi^+ \pi^ \rho^+ \to \pi^0 \pi^+$ $D^{*+} \to \pi^+ D^0$ $D^0 \to \pi^0 \pi^+ K^-$	102	102	1	103
100	$(e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma$	102	102	_	100
	$\frac{(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$				
104	$ ho^0 o\pi^+\pi^-, ho^+ o\pi^0\pi^+, D^0 o\mu^+ u_\mu K^-, K_S o\pi^+\pi^-, D_s^+ o\pi^0\pi^+\omega, \omega o\pi^0\pi^+\pi^-$	103	103	1	104
	$(e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{-}\omega D^{-}, \bar{B}^{0} \to \pi^{+}D^{*0}D^{-}_{s}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{-}$				
105	$D^{-} \to \pi^{0} \pi^{-} K^{*}, D^{*0} \to \pi^{0} D^{0}, D_{s}^{-} \to e^{-} \bar{\nu}_{e} \eta', K^{*} \to \pi^{-} K^{+}, D^{0} \to \pi^{+} \pi^{-} \bar{K}^{*}, \eta' \to \pi^{+} \pi^{-} \eta,$	104	104	1	105
	$ar{K}^* ightarrow \pi^+ K^-, \eta ightarrow \gamma \gamma$	101	101	_	100
	$\frac{(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$				
106	$e^{+}e^{-} o 1(4S), 1(4S) o B^{\circ}B^{\circ}, B^{\circ} o ho^{+}K^{+}K^{-}D^{+}, B^{\circ} o e^{-} u_{e}D^{++}, ho^{+} o \pi^{\circ}\pi^{+}, D^{+-} o \pi^{-}D^{\circ}, \\ D^{*+} o \pi^{0}D^{+}, ar{D}^{0} o K_{L}\pi^{+}\pi^{-}, D^{+} o \pi^{0}\pi^{+}K_{S}, K_{S} o \pi^{0}\pi^{0}$	105	105	1	106
100	$D \xrightarrow{\leftarrow} \pi D \xrightarrow{\leftarrow}, D \xrightarrow{\rightarrow} K_L \pi^+ \pi^-, D \xrightarrow{\leftarrow} \pi^- \pi^- K_S, K_S \xrightarrow{\rightarrow} \pi^- \pi^- K_S \xrightarrow{\leftarrow} \pi^- \pi^- \pi^- \pi^- K_S \xrightarrow{\leftarrow} \pi^- \pi^- \pi^- K_S \xrightarrow{\leftarrow} \pi^- \pi^- $	100	103	1	100
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}J/\psi, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, K^{0} \to K_{S}, J/\psi \to e^{+}e^{-},$				
107	$D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{+}\pi^{-}, D^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-}$	106	106	1	107
101	$(e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma)$	100	100	1	101
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\rho^{-}\bar{D}^{*0}, \bar{B}^{0} \to \rho^{-}\eta\omega\omega D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*0} \to \bar{D}^{0}\gamma,$				
100	$\rho^- \to \pi^0 \pi^-, \eta \to \pi^0 \pi^0 \pi^0, \omega \to \pi^0 \pi^+ \pi^-, \omega \to \pi^0 \pi^+ \pi^-, D^{*+} \to \pi^0 D^+, \bar{D}^0 \to \pi^- \omega K^+,$	107	107	1	100
108	$\pi^0 ightarrow e^+e^-, D^+ ightarrow \pi^0\pi^+ar{K}^*, \omega ightarrow \pi^0\gamma, ar{K}^* ightarrow \pi^0ar{K}^0, ar{K}^0 ightarrow K_L, K_L ightarrow \mu^- u_\mu\pi^+$	107	107	1	108
	$(e^+e^- \to e^+e^-\mu^-\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$				
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{+}\pi^{-}\bar{D}^{*0}, \bar{B}^{0} \rightarrow \pi^{0}\pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{D}^{*0} \rightarrow \pi^{0}\bar{D}^{0}, \rho^{-} \rightarrow \pi^{0}\pi^{-},$				
109	$D^{+} \to \pi^{+} K_{S}, \bar{D}^{0} \to \mu^{-} \bar{\nu}_{\mu} K^{+}, K_{S} \to \pi^{+} \pi^{-}$	108	108	1	109
	$\frac{(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, \bar{B}^{0} \to \bar{K}^{0}\bar{\Sigma}^{*0}\Sigma_{c}^{*0}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0},}$				
	$e^+e^- \rightarrow \Gamma(4S), \Gamma(4S) \rightarrow B^oB^o, B^o \rightarrow \rho^o\pi^- D^{++}, B^o \rightarrow K^o\Sigma^{+o}\Sigma^{-o}_c, \rho^o \rightarrow \pi^+\pi^-, D^{++} \rightarrow \pi^+D^o, \\ \bar{K}^0 \rightarrow K_L, \bar{\Sigma}^{*0} \rightarrow \pi^0\bar{\Lambda}, \Sigma^{*0}_c \rightarrow \pi^-\Lambda^+_c, D^0 \rightarrow \pi^0\pi^0\bar{K}^*, \bar{\Lambda} \rightarrow \pi^+\bar{p}, \Lambda^+_c \rightarrow \pi^+\eta\Lambda,$				
110	$K^* o K_L, \Sigma^* o \pi^*\Lambda, \Sigma_c^* o \pi^*\Lambda_c^*, D^* o \pi^*\pi^*K^*, \Lambda o \pi^*p, \Lambda_c^* o \pi^*\eta\Lambda, \ ar{K}^* o \pi^+K^-, \eta o \pi^0\pi^0\pi^0, \Lambda o \pi^-p$	109	109	1	110
	$(e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^- p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^0\bar{B}^0, \bar{B}^0 \to D^{*+}D_s^{*-}, \bar{B}^0 \to \rho^0\pi^+\bar{\Delta}^{++}\Lambda_c^+, D^{*+} \to \pi^0D^+, D_s^{*-} \to \pi^0D_s^-,$				
	$\rho^0 \rightarrow \pi^+\pi^-, \bar{\Delta}^{++} \rightarrow \pi^-\bar{p}, \Lambda_c^+ \rightarrow \rho^0 \Sigma^+, D^+ \rightarrow \pi^0 K_L \pi^+, D_s^- \rightarrow \mu^-\bar{\nu}_\mu \eta, \rho^0 \rightarrow \pi^+\pi^-, \bar{\Delta}^{++} \rightarrow \pi^0 K_L \pi^+, D_s^- \rightarrow \mu^-\bar{\nu}_\mu \eta, \rho^0 \rightarrow \pi^+\pi^-, \bar{\Delta}^{++} \rightarrow \pi^0 K_L \pi^+, D_s^- \rightarrow \mu^-\bar{\nu}_\mu \eta, \rho^0 \rightarrow \pi^+\pi^-, \bar{\Delta}^{++} \rightarrow \pi^0 K_L \pi^+, D_s^- \rightarrow \mu^-\bar{\nu}_\mu \eta, \rho^0 \rightarrow \pi^+\pi^-, \bar{\Delta}^{++} \rightarrow \pi^0 K_L \pi^+, D_s^- \rightarrow \mu^-\bar{\nu}_\mu \eta, \rho^0 \rightarrow \pi^+\pi^-, \bar{\Delta}^{++} \rightarrow \pi^0 K_L \pi^+, D_s^- \rightarrow \mu^-\bar{\nu}_\mu \eta, \rho^0 \rightarrow \pi^+\pi^-, \bar{\Delta}^{++} \rightarrow \pi^0 K_L \pi^+, D_s^- \rightarrow \mu^0 K_L \pi$				
111	$\Sigma^+ o \pi^0 p, \eta o \gamma \gamma$	110	110	1	111
	$(e^+e^- \to \mu^- \bar{\nu}_\mu K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- p \bar{p} \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$				
	·				

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
112	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D_{2}^{*-}, \bar{B}^{0} \to \rho^{-}D^{*+}, D_{2}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-},$ $D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{0}K_{1}^{0}, D^{0} \to K^{-}a_{1}^{+}, K_{1}^{0} \to \omega K^{0}, a_{1}^{+} \to \pi^{0}\rho^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-},$ $K^{0} \to K_{S}, \rho^{+} \to \pi^{0}\pi^{+}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	111	111	1	112
113	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, \bar{B}^{0} \to D_{s}^{*+}\bar{\Delta}^{+}\Lambda, D^{-} \to \pi^{-}\pi^{-}K^{+}, D_{s}^{*+} \to D_{s}^{+}\gamma,$ $\bar{\Delta}^{+} \to \pi^{-}\bar{n}, \Lambda \to \pi^{0}n, D_{s}^{+} \to \pi^{+}\eta, \eta \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{n}\gamma\gamma\gamma\gamma\gamma)$	112	112	1	113
114	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to K^{-}D^{*+}\bar{D}^{*0}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{*+} \to \pi^{+}D^{0},$ $\bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{-} \to K_{L}\pi^{+}\pi^{-}K^{-}, D^{0} \to \pi^{-}\rho^{+}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	113	113	1	114
115	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D_{s1}^{'+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{s1}^{'+} \to \pi^{0}D_{s}^{*+}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{-}\eta K^{+}, D_{s}^{*+} \to D_{s}^{+}\gamma, D^{0} \to K_{L}K^{+}K^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, D_{s}^{+} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-} (e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	114	114	1	115
116	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{*+}D_{s}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D_{1}^{\prime+}, D^{*+} \to \pi^{+}D^{0}, D_{s}^{*-} \to D_{s}^{-}\gamma,$ $D_{1}^{\prime+} \to \pi^{0}D^{*+}, D^{0} \to \pi^{0}\pi^{+}K^{-}, D_{s}^{-} \to \rho^{-}\eta, D^{*+} \to \pi^{+}D^{0}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-},$ $D^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	115	115	1	116
117	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\eta\bar{K}^{0}K^{*}D^{-}, \bar{B}^{0} \to D^{*+}D_{s}^{*-}, \eta \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{L},$ $K^{*} \to \pi^{-}K^{+}, D^{-} \to \pi^{0}\pi^{-}K^{*}, D^{*+} \to \pi^{+}D^{0}, D_{s}^{*-} \to D_{s}^{-}\gamma, K^{*} \to \pi^{-}K^{+}, D^{0} \to e^{+}\nu_{e}K^{*-},$ $D_{s}^{-} \to \rho^{-}\eta', K^{*-} \to \pi^{0}K^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \eta' \to \pi^{+}\pi^{-}\eta, \eta \to \gamma\gamma$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	116	116	1	117
118	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{-}\eta\bar{K}^{0}K^{+}\bar{D}^{*0}, \bar{B}^{0} \to \pi^{-}\eta D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{\pi}^{0}, \bar{K}^{0} \to K_{S}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, \eta \to \pi^{0}\pi^{0}\pi^{0}, D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \bar{D}^{0} \to e^{+}\nu_{e}K^{-} \\ = \frac{(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{(e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{0}\pi^{0}\bar{D}^{0}, B^{0} \to \pi^{0}\rho^{0}\rho^{+}\omega D^{-}, \bar{D}^{0} \to \rho^{0}\pi^{-}K^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{\rho}^{0}, \bar{\rho}^{0}$	117	117	1	118
119	$ ho^+ ightarrow \pi^0 \pi^+, \omega ightarrow \pi^0 \pi^+ \pi^-, D^- ightarrow e^- ar{ u}_e \pi^- K^+, ho^0 ightarrow \pi^+ \pi^- \ (e^+ e^- ightarrow e^- ar{ u}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ K^+ \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$	118	118	1	119
120	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}D^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, K^{0} \to K_{S}, D^{*+} \to \pi^{0}D^{+},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{+}\pi^{-}, D^{+} \to \pi^{+}\pi^{+}K^{-}, \bar{D}^{0} \to \pi^{-}K_{S}K^{+}, D^{0} \to K_{L}\pi^{-}K^{+},$ $K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, D^{*+} \to \pi^{+}D^{0}, D^{*+} \to \pi^{+}D^{0},$	119	119	1	120
121	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, D^{*+} \to \pi^{+}D^{0}, D^{*+} \to \pi^{+}D^{0}, D^{*+} \to \pi^{+}D^{0} \to \pi^{0}\pi^{+}K^{-}, D^{0} \to \rho^{+}K^{*-}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{-}\bar{K}^{0}, \bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{-}\gamma\gamma\gamma\gamma)$	120	120	1	121

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
122	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\pi^{-}\omega D^{*0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*0} \to \pi^{0}D^{0}, \bar{D}^{0} \to \pi^{-}K_{S}K^{+}, D^{0} \to \mu^{+}\nu_{\mu}\pi^{-}\bar{K}^{0}, K_{S} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)$	121	121	1	122
123	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{+}D^{0},$ $\bar{D}^{0} \to e^{-}\bar{\nu}_{e}K^{+}, D^{0} \to \rho^{+}K^{*-}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{0}K^{-}$ $(e^{+}e^{-} \to e^{-}e^{-}\bar{\nu}_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma)$	122	122	1	123
124	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\omega K^{*-}D_{s}^{+}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, K^{*-} \to \pi^{-}\bar{K}^{0}, D_{s}^{+} \to \pi^{+}f_{0}(980), D^{-} \to e^{-}\bar{\nu}_{e}K^{0}, \bar{K}^{0} \to K_{L}, f_{0}(980) \to \pi^{+}\pi^{-},$ $K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	123	123	1	124
125	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}\bar{K}^{0}K^{+}\bar{D}^{*0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{+}, \bar{K}^{0} \to K_{L}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0},$ $D^{+} \to K_{L}K^{*+}, \bar{D}^{0} \to \omega K_{S}, K^{*+} \to \pi^{+}K^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}, K^{0} \to K_{S},$ $\pi^{0} \to e^{+}e^{-}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}e^{-}\mu^{-}\bar{\nu}_{\mu}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{'-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, D_{1}^{'-} \to \pi^{-}\bar{D}^{*0}, D^{*+} \to \pi^{0}D^{+},$	124	124	1	125
126	$\bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}, \bar{D}^{0} \to \rho^{-}K^{*+}, \bar{K}^{*} \to \pi^{+}K^{-}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0} $ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	125	125	1	126
127	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to D_{2}^{*+}D_{s}^{-}, \pi^{0} \to e^{+}e^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D_{2}^{*+} \to \pi^{+}D^{0}, D_{s}^{-} \to \pi^{0}\pi^{0}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{0} \to \rho^{+}K^{*-}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{-}\bar{K}^{0},$ $\bar{K}^{0} \to K_{L}, K_{L} \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{B}^{0} \to \bar{K}^{*}D^{+}D^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{K}^{*} \to \pi^{+}K^{-},$	126	126	1	127
128	$D^{+} \to e^{+}\nu_{e}\bar{K}^{0}, D^{-} \to e^{-}\bar{\nu}_{e}K^{*}, D^{0} \to \pi^{0}\pi^{+}K^{-}, \bar{K}^{0} \to K_{S}, K^{*} \to \pi^{0}K^{0}, K_{S} \to \pi^{+}\pi^{-}, K^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{+}e^{-}e^{-}\nu_{e}\bar{\nu}_{e}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma)$	127	127	1	128
129	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D_{1}^{\prime}^{\prime}, \bar{B}^{0} \to \pi^{+}D^{0}D_{s}^{-}, D_{1}^{\prime}^{\prime} \to \pi^{-}\bar{D}^{*0}, D^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S},$ $D_{s}^{-} \to \tau^{-}\bar{\nu}_{\tau}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, K_{S} \to \pi^{+}\pi^{-}, \tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau}, \bar{D}^{0} \to \pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\nu_{\tau}\bar{\nu}_{\tau}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma)$	128	128	1	129
130	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{0}D^{-}, a_{1}^{+} \to \pi^{0}\rho^{+},$ $D^{*+} \to \pi^{0}D^{+}, D^{-} \to \pi^{-}\pi^{-}K^{+}, \rho^{+} \to \pi^{0}\pi^{+}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}, \bar{K}^{0} \to K_{L}, K_{L} \to e^{-}\nu_{e}\pi^{+}$ $(e^{+}e^{-} \to e^{+}e^{-}e^{-}\nu_{e}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	129	129	1	130
131	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \eta \bar{K}^{0}K^{+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{-}\eta D^{+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S},$ $\bar{D}^{*-} \to \pi^{0}D^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \gamma\gamma, D^{+} \to \pi^{0}\pi^{0}\pi^{+}, K_{S} \to \pi^{0}\pi^{0}, D^{-} \to K_{L}a_{1}^{-},$ $a_{1}^{-} \to \rho^{0}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	130	130	1	131

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
132	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{-}D^{+}, \bar{B}^{0} \to \rho^{0}\pi^{-}\omega D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to e^{+}\nu_{e}\pi^{+}K^{-},$ $\rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{+} \to \pi^{+}\pi^{+}K^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \bar{D}^{*-}D^{+}_{s}, B^{0} \to e^{+}\nu_{e}D^{*-}_{2}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{+}_{s} \to \mu^{+}\nu_{\mu}\phi,$	131	131	1	132
133	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \bar{D}^{*-}D_{s}^{+}, B^{0} \to e^{+}\nu_{e}D_{2}^{*-}, \bar{D}^{*-} \to \pi^{0}D^{-}, D_{s}^{+} \to \mu^{+}\nu_{\mu}\phi,$ $D_{2}^{*-} \to \pi^{-}\bar{D}^{*0}, D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+}, \phi \to K^{+}K^{-}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, \bar{D}^{0} \to K^{+}a_{1}^{-}, a_{1}^{-} \to \rho^{0}\pi^{-},$ $\rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{+}K^{-}\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to D_{2}^{*+}D_{s}^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$	132	132	1	133
134	$D_{2}^{*+} \to \pi^{+}D^{0}, D_{s}^{-} \to \tau^{-}\bar{\nu}_{\tau}, \bar{D}^{0} \to \pi^{0}K_{L}\pi^{+}\pi^{-}, D^{0} \to \rho^{+}K^{*-}, \tau^{-} \to \nu_{\tau}\pi^{0}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{-}\bar{K}^{0}, \bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to \nu_{\tau}\bar{\nu}_{\tau}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	133	133	1	134
135	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\omega K^{+}D_{s}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D_{s}^{*-} \to D_{s}^{-}\gamma,$ $D^{*+} \to \pi^{+}D^{0}, D_{s}^{-} \to \rho^{-}\eta', D^{0} \to \pi^{+}\pi^{-}K^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \eta' \to \rho^{0}\gamma, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	134	134	1	135
136	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D_{s}^{*+}D_{1}^{'-}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, D_{s}^{*+} \to D_{s}^{*}\gamma, D_{1}^{'-} \to \pi^{-}\bar{D}^{*0},$ $\rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, D_{s}^{+} \to K_{L}\pi^{+}\pi^{-}K^{+}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, D^{0} \to K^{-}a_{1}^{+}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K^{*},$ $a_{1}^{+} \to \pi^{+}f_{0}(600), K^{*} \to \pi^{-}K^{+}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}f_{0}(600)\gamma\gamma\gamma\gamma)$	135	135	1	136
137	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{-}\rho^{+}\rho^{+}K^{0}D^{-}, \bar{B}^{0} \to \pi^{0}\rho^{0}\pi^{-}\eta\omega D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+},$ $\rho^{+} \to \pi^{0}\pi^{+}, K^{0} \to K_{S}, D^{-} \to K_{L}\pi^{+}\pi^{-}K^{-}, \pi^{0} \to e^{+}e^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \eta \to \pi^{+}\pi^{-},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, D^{+} \to K_{L}a_{1}^{+}, K_{S} \to \pi^{+}\pi^{-}, a_{1}^{+} \to \pi^{0}\rho^{+}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to e^{+}e^{-}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	136	136	1	137
138	$D_s^- \to \rho^- \eta', D^0 \to \pi^+ K^-, \rho^- \to \pi^0 \pi^-, \eta' \to \rho^0 \gamma, \rho^0 \to \pi^+ \pi^- \\ (e^+ e^- \to \pi^+ \pi^+ \pi^- \pi^- K^+ K^- n \bar{n} \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$	137	137	1	138
139	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, B^{0} \to K^{+}\Delta^{+}\bar{\Sigma}_{c}^{*-}, D^{-} \to K_{L}\pi^{+}\pi^{-}K^{-}, \Delta^{+} \to \pi^{0}p,$ $\bar{\Sigma}_{c}^{*} \to \pi^{-}\bar{\Lambda}_{c}^{-}, \bar{\Lambda}_{c}^{-} \to \pi^{0}\pi^{-}\bar{\Delta}^{0}, \bar{\Delta}^{0} \to \pi^{+}\bar{p}$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}p\bar{p}\gamma\gamma\gamma\gamma)$	138	138	1	139
140	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{+}\rho^{+}\rho^{-}\eta\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}K^{*}K^{+}K^{*-}, \rho^{+} \to \pi^{0}\pi^{+}, \rho$	139	139	1	140
141	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\rho^{0}\pi^{-}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-},$ $D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}, \bar{D}^{0} \to e^{-}\bar{\nu}_{e}K^{+}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)$	140	140	1	141

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
142	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D^{-}D_{s}^{*+}\gamma, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, D^{-} \to \pi^{0}\pi^{-}K^{+}K^{-}, D_{s}^{*+} \to D_{s}^{+}\gamma,$ $\rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}, D_{s}^{+} \to \bar{K}^{*}K^{*+}, \bar{K}^{*} \to \pi^{+}K^{-}, \bar{K}^{*} \to \pi^{+}K^{-}, K^{*+} \to \pi^{0}K^{+}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}X^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	141	141	1	142
143	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}n\bar{\Sigma}_{c}^{-}, \bar{B}^{0} \to D^{*+}D_{s1}^{\prime-}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{\Sigma}_{c}^{-} \to \pi^{0}\bar{\Lambda}_{c}^{-},$ $D^{*+} \to \pi^{+}D^{0}, D_{s1}^{\prime-} \to \pi^{0}D_{s}^{*-}, \bar{\Lambda}_{c}^{-} \to \bar{K}^{*}\bar{\Sigma}^{-}, D^{0} \to \pi^{0}\pi^{+}K^{-}, D_{s}^{*-} \to D_{s}^{-}\gamma, \bar{K}^{*} \to \pi^{+}K^{-},$ $\bar{\Sigma}^{-} \to \pi^{-}\bar{n}, D_{s}^{-} \to K^{*}K^{-}, K^{*} \to \pi^{-}K^{+}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}K^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	142	142	1	143
144	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{+}, \bar{B}^{0} \to \bar{K}^{*}K^{-}D^{*+}, D^{+} \to K_{S}K^{*+}, \bar{K}^{*} \to \pi^{+}K^{-},$ $D^{*+} \to \pi^{0}D^{+}, K_{S} \to \pi^{+}\pi^{-}, K^{*+} \to \pi^{0}K^{+}, D^{+} \to \pi^{0}\pi^{0}\pi^{+}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}K^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	143	143	1	144
145	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{+}\pi^{-}\omega\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to e^{-}\bar{\nu}_{e}\pi^{+}K^{0}, D^{0} \to \rho^{+}K^{*-}, K^{0} \to K_{S}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{-}\bar{K}^{0},$ $K_{S} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	144	144	1	145
146	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}K^{0}\bar{K}^{*}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}K^{-}D^{-}D^{*+}, K^{0} \to K_{L}, \bar{K}^{*} \to \pi^{+}K^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{-} \to K_{S}a_{1}^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to K_{S}\eta', K_{S} \to \pi^{+}\pi^{-}, a_{1}^{-} \to \rho^{0}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-}, \eta' \to \rho^{0}\gamma, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	145	145	1	146
147	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{-}D_{2}^{*+}, \bar{B}^{0} \to \rho^{0}\pi^{+}K^{*-}\eta_{c}, \rho^{-} \to \pi^{0}\pi^{-}, D_{2}^{*+} \to \pi^{+}D^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, K^{*-} \to \pi^{-}\bar{K}^{0}, \eta_{c} \to \pi^{0}\pi^{+}\pi^{-}\omega, D^{0} \to \pi^{+}\omega K^{-}, \bar{K}^{0} \to K_{L}, \omega \to \pi^{0}\pi^{+}\pi^{-},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	146	146	1	147
148	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\pi^{+}\rho^{-}D^{-}, \bar{B}^{0} \to D_{s}^{*-}D_{1}^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-},$ $D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, D_{s}^{*-} \to D_{s}^{-}\gamma, D_{1}^{+} \to \pi^{+}D^{*0}, K^{0} \to K_{S}, D_{s}^{-} \to \pi^{+}\pi^{-}K_{S}K^{-}, D^{*0} \to D^{0}\gamma,$ $K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-}, D^{0} \to \pi^{+}\omega K^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	147	147	1	148
149	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}D^{-}, \bar{B}^{0} \to \pi^{+}\pi^{-}\pi^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, D^{-} \to \pi^{-}K_{1}^{'0},$ $D^{+} \to K_{S}a_{1}^{+}, K_{1}^{'0} \to \pi^{-}K^{*+}, K_{S} \to \pi^{+}\pi^{-}, a_{1}^{+} \to \pi^{0}\rho^{+}, K^{*+} \to \pi^{0}K^{+}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}D_{0}^{*-}, \bar{B}^{0} \to \pi^{0}\omega K^{*}K^{-}D^{+}, \tau^{+} \to \mu^{+}\nu_{\mu}\bar{\nu}_{\tau}, D_{0}^{*-} \to \pi^{-}\bar{D}^{0},$	148	148	1	149
150	$\omega \to \pi^0 \pi^+ \pi^-, K^* \to \pi^0 K^0, D^+ \to \pi^+ \pi^+ K^-, \bar{D}^0 \to \pi^0 \pi^- K^+, K^0 \to K_L$ $(e^+ e^- \to \mu^+ \nu_\mu \nu_\tau \bar{\nu}_\tau K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- K^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$	149	149	1	150
151	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{0}D^{+},$ $\bar{D}^{0} \to \pi^{-}K^{+}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{+}K^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma)$	150	150	1	151

: 1	event tree	:E-+T-	:E-+IEC+-	E+-	C14 E4
index	(event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\bar{D}^{*-}\bar{\Sigma}^{0}\Sigma^{+}, \bar{B}^{0} \to \eta\bar{K}^{0}J/\psi, \rho^{0} \to \pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-},$				
152	$\bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \Sigma^+ \to \pi^+ n, \eta \to \pi^0 \pi^0 \pi^0, \bar{K}^0 \to K_L, J/\psi \to \pi^- \eta K_S K^+, D^- \to \mu^- \bar{\nu}_\mu K^0,$	151	151	1	152
192	$\bar{\Lambda} \to \pi^+ \bar{p}, K_L \to e^- \nu_e \pi^+, \eta \to \pi^0 \pi^+ \pi^-, K_S \to \pi^+ \pi^-, K^0 \to K_S, K_S \to \pi^0 \pi^0$	101	101	1	152
	$(e^+e^- \to e^- \nu_e \mu^- \bar{\nu}_\mu \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ n \bar{p} \gamma \gamma$				
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 ar{B}^0, B^0 o ho^0 ho^0 ho^0 ho^+ ar{D}^{*-}, ar{B}^0 o e^- ar{ u}_e D^{*+}, ho^0 o \pi^+ \pi^-, ho^0 o \pi^- \pi^-, ho^0 o \pi^-, ho^0 o \pi^-, ho^0 o \pi^- \pi^-, ho^0 o \pi^- \pi^-, ho^0 o \pi^-, ho^$				
153	$\rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to D^{+}\gamma, \bar{D}^{0} \to \rho^{-}K^{*+}, D^{+} \to K_{S}K^{*+}, \\ \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{0}K^{+}, K_{S} \to \pi^{+}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{L}, K_{L} \to \mu^{-}\nu_{\mu}\pi^{+}$	152	152	1	153
	$\rho \to \pi^+\pi^-, K^+ \to \pi^+K^+, K_S \to \pi^+\pi^-, K^+ \to \pi^+K^-, K^+ \to K_L, K_L \to \mu^-\nu_\mu\pi^+$ $(e^+e^- \to e^-\bar{\nu}_e\mu^-\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow K^{*+}D^{-}, \bar{B}^{0} \rightarrow \pi^{+}K^{-}\chi_{c1}, K^{*+} \rightarrow \pi^{0}K^{+}, D^{-} \rightarrow \pi^{-}K_{1}^{'0},$				
	$e^+e^- \rightarrow \Gamma(4S), \Gamma(4S) \rightarrow B^+B^+, B^+ \rightarrow K^- D^-, B^+ \rightarrow \pi^+ K^- \chi_{c1}, K^+ \rightarrow \pi^+ K^+, D^- \rightarrow \pi^- K_1^+,$ $\chi_{c1} \rightarrow \pi^- \eta \eta \bar{K}^0 K^+, K_1^{'0} \rightarrow \pi^- K^{*+}, \eta \rightarrow \gamma \gamma, \eta \rightarrow \pi^0 \pi^0 \pi^0, \bar{K}^0 \rightarrow K_S, K^{*+} \rightarrow \pi^0 K^+,$				
154	$\chi_{c1} ightarrow \pi^- \eta \eta K^- K^+, K_1^- ightarrow \pi^- K^-, \eta ightarrow \gamma \gamma, \eta ightarrow \pi^- \pi^- \pi^- K^-, K^- ightarrow \pi^+ \pi^-$	153	153	1	154
	$\frac{(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}D^{-}D^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D_{2}^{*+}, K^{*+} \to \pi^{0}K^{+}, D^{-} \to \pi^{0}\pi^{-}K_{S},}$				
155	$D^{0} \to \pi^{0} \pi^{0} \pi^{+} \pi^{-}, D_{2}^{*+} \to \pi^{+} D^{0}, K_{S} \to \pi^{+} \pi^{-}, D^{0} \to \pi^{0} \pi^{+} K^{*-}, K^{*-} \to \pi^{0} K^{-}$	154	154	1	155
	$(e^+e^- o e^- ar{ u}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$				
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \rho^{+}D^{-}, \bar{B}^{0} \rightarrow \pi^{-}\pi^{-}\rho^{+}D^{*+}, \rho^{+} \rightarrow \pi^{0}\pi^{+}, D^{-} \rightarrow \rho^{-}K^{*},$				
156	$\rho^{+} \rightarrow \pi^{0}\pi^{+}, D^{*+} \rightarrow \pi^{+}D^{0}, \rho^{-} \rightarrow \pi^{0}\pi^{-}, K^{*} \rightarrow \pi^{-}K^{+}, D^{0} \rightarrow \pi^{0}\pi^{0}\bar{K}^{*}, \bar{K}^{*} \rightarrow \pi^{+}K^{-}$	155	155	1	156
	$(e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} o \Upsilon(4S), \Upsilon(4S) o B^{0}\bar{B}^{0}, B^{0} o e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} o \pi^{0}\rho^{0}\rho^{-}D^{*+}\gamma, \bar{D}^{*-} o \pi^{-}\bar{D}^{0}, \rho^{0} o \pi^{+}\pi^{-},$	1.50	170		
157	$ ho^- o \pi^0 \pi^-, D^{*+} o \pi^+ D^0, \bar{D}^0 o \pi^0 \pi^- K^+, \bar{D}^0 o e^+ u_e ho^-, ho^- o \pi^0 \pi^-$	156	156	1	157
	$\frac{(e^{+}e^{-} \to e^{+}e^{+}\nu_{e}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{+}\bar{D}^{*-}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\eta\omega D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-},}$				
158	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	157	157	1	158
100	$(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	101	101	1	100
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{-}K^{0}D^{+}\bar{D}^{*0}, \bar{B}^{0} \rightarrow e^{-}\bar{\nu}_{e}D^{+}, K^{0} \rightarrow K_{S}, D^{+} \rightarrow K_{S}a_{1}^{+},$				
150	$\bar{D}^{*0} \to \bar{D}^0 \gamma, D^+ \to \mu^+ \nu_\mu \bar{K}^*, K_S \to \pi^+ \pi^-, K_S \to \pi^+ \pi^-, a_+^+ \to \pi^+ f_0(600), \bar{D}^0 \to \pi^0 \pi^- K^+,$	150	150		150
159	$ar{K}^* ightarrow \pi^0 ar{K}^0, ar{K}^0 ightarrow K_S, K_S ightarrow \pi^+ \pi^-$	158	158	1	159
	$(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}f_{0}(600)\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \mu^{+}\nu_{\mu}D_{1}^{-}, \bar{B}^{0} \rightarrow e^{-}\bar{\nu}_{e}D^{*+}, D_{1}^{-} \rightarrow \pi^{-}\bar{D}^{*0}, D^{*+} \rightarrow \pi^{0}D^{+},$				
160	$\bar{D}^{*0} \to \pi^0 \bar{D}^0, D^+ \to e^+ \nu_e \pi^0, \bar{D}^0 \to \pi^0 K_S, K_S \to \pi^+ \pi^-$	159	159	1	160
	$(e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
1.01	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{K}^{0}K^{+}D^{-}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, \bar{K}^{0} \to K_{L}, D^{-} \to K^{*}a_{1}^{-},$ $\rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, K^{*} \to \pi^{-}K^{+}, a_{1}^{-} \to \pi^{-}f_{0}(600), D^{0} \to \pi^{+}\omega K^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}$	1.00	1.00	1	1.01
161	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160	160	1	161
	$\frac{(e^+e^- \to K_L\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-F^-)_{0}(600)\gamma\gamma)}{e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^0\bar{B}^0, \bar{B}^0 \to D^{*+}D_s^-, \bar{B}^0 \to \pi^0\pi^0\pi^-\omega D^+, D^{*+} \to \pi^+D^0, D_s^- \to \mu^-\bar{\nu}_\mu\eta,}$				
162	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	161	161	1	162
	$(e^+e^- \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^-\pi^-K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	101		_	102
	X1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
	· · · · · · · · · · · · · · · · · · ·				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to D^{*+}D_{s}^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D^{*+} \to \pi^{0}D^{+}, D_{s}^{-} \to \mu^{-}\bar{\nu}_{\mu}\eta', \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, D^{+} \to \pi^{+}\pi^{+}K^{-}, \eta' \to \rho^{0}\gamma, K_{S} \to \pi^{+}\pi^{-},$				
163	$D^+ \to \pi^+ D^+, D_s^- \to \mu^- \nu_\mu \eta , D^+ \to \pi^+ \pi^+ \pi^- K_S, D^+ \to \pi^+ \pi^+ K^-, \eta^- \to \rho^+ \gamma, K_S \to \pi^+ \pi^-, $	162	162	1	163
	$\rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\Sigma^{0}\bar{\Xi}^{0}_{c}, \bar{B}^{0} \to D^{+}D^{+}_{s1}, \Sigma^{0} \to \Lambda\gamma, \bar{\Xi}^{0}_{c} \to \pi^{-}K^{+}\bar{\Sigma}^{0},$				
	$e^{+}e^{-} \rightarrow \Upsilon(4S) \Upsilon(4S) \rightarrow B^{0} \overline{B^{0}} B^{0} \rightarrow \pi^{0} \Sigma^{0} \overline{\Xi^{0}} \overline{B^{0}} \rightarrow D^{+} D'^{-} \Sigma^{0} \rightarrow \Lambda_{2} \overline{\Xi^{0}} \rightarrow \pi^{-} K^{+} \overline{\Sigma^{0}}$				
	$D^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{K}^{*}, D_{s1}^{'-} \rightarrow \pi^{0} D_{s}^{-}, \Lambda \rightarrow \pi^{-} p, \bar{\Sigma}^{0} \rightarrow \bar{\Lambda} \gamma, \bar{K}^{*} \rightarrow \pi^{+} K^{-}, D_{s}^{*-} \rightarrow D_{s}^{-} \gamma,$				
164	$ar{\Lambda} o \pi^+ ar{p}, D_s^- o ho^- \eta', ho^- o \pi^0 \pi^-, \eta' o \pi^+ \pi^- \eta, \eta o \gamma \gamma$	163	163	1	164
	$\frac{(e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to \rho^0\eta\omega\bar{D}^{*0}, \bar{B}^0 \to \pi^0\rho^-\omega D^{*+}, \rho^0 \to \pi^+\pi^-, \eta \to \pi^0\pi^+\pi^-, \eta \to \pi^0\pi^-, \eta \to \pi^0\pi$				
165	$\omega \to \pi^0 \pi^+ \pi^-, \bar{D}^{*0} \to \pi^0 \bar{D}^0, \rho^- \to \pi^0 \pi^-, \omega \to \pi^0 \pi^+ \pi^-, D^{*+} \to \pi^+ D^0, \bar{D}^0 \to \pi^0 \pi^- K^+,$	164	164	1	165
100	$D^0 \to e^+ \nu_e K^{*-}, K^{*-} \to \pi^- \bar{K}^0, \bar{K}^0 \to K_S, K_S \to \pi^+ \pi^-$	104	104	1	105
	$\frac{(e^+e^- \to e^+\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to \bar{D}^{*-}\bar{\Delta}^-\Delta^0, \bar{B}^0 \to \rho^-D^+, \bar{D}^{*-}\to \pi^0D^-, \bar{\Delta}^-\to \pi^+\bar{n},}$				
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0B^0, B^0 o D^{*-}\Delta^-\Delta^0, B^0 o ho^-D^+, D^{*-}\to \pi^0D^-, \Delta^-\to \pi^+\bar{n},$				
166	$\Delta^0 o \pi^0 n, ho^- o \pi^0 \pi^-, D^+ o \mu^+ u_\mu \pi^+ K^-, D^- o \mu^- ar{ u}_\mu K^0, K^0 o K_L$	165	165	1	166
	$\frac{(e^+e^- \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu K_L\pi^+\pi^+\pi^-K^-n\bar{n}\gamma\gamma\gamma\gamma\gamma)}{e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to \rho^-p\bar{\Sigma}^0_c, \bar{B}^0 \to \tau^-\bar{\nu}_\tau D^{*+}, \rho^- \to \pi^0\pi^-, \bar{\Sigma}^0_c \to \pi^+\bar{\Lambda}^c,}$				
	$e^+e^- ightarrow 1 (4S), 1 (4S) ightarrow B^*B^*, B^* ightarrow ho p\Sigma_c^*, B^* ightarrow au u_{ au}D^{++}, ho ightarrow \pi^*\pi , \Sigma_c^* ightarrow \pi^+\Lambda_c , onumber at at at at at at at at at at$				
167	$ au o u_{ au}\pi^{-}\pi^{-}, D^{-} o \pi^{-}D^{-}, \Lambda_{c} o \pi^{-}\eta\Lambda, D^{-} o K_{S}\phi, \eta o e^{+}e^{-}, \Lambda o \pi^{-}\eta, K_{S} o \pi^{+}\pi^{-}, \phi o K^{+}K^{-}$	166	166	1	167
	$(e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{\tau}\bar{\nu}_{\tau}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma)$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}K^{*-}J/\psi, \bar{B}^{0} \to \bar{K}^{0}D^{*0}\bar{D}^{*0}, K^{*-} \to \pi^{-}\bar{K}^{0}, J/\psi \to K^{*}\bar{K}^{*}\gamma.$				
100	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}K^{*-}J/\psi, \bar{B}^{0} \to \bar{K}^{0}D^{*0}\bar{D}^{*0}, K^{*-} \to \pi^{-}\bar{K}^{0}, J/\psi \to K^{*}\bar{K}^{*}\gamma, \\ \bar{K}^{0} \to K_{L}, D^{*0} \to D^{0}\gamma, \bar{D}^{*0} \to \bar{D}^{0}\gamma, \bar{K}^{0} \to K_{L}, K^{*} \to \pi^{-}K^{+}, \bar{K}^{*} \to \pi^{+}K^{-},$	4.0-		1	4.00
168	$D^0 \to \pi^0 \pi^+ K^-, \bar{D}^0 \to \pi^0 \pi^+ \pi^- K^*, K^* \to \pi^- K^+$	167	167		168
	$\frac{(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{*+}D^{0}\bar{D}^{*0}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, K^{*+} \to \pi^{+}K^{0}, D^{0} \to K^{-}a_{1}^{+},}$				
	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{-}K^{*+}D^{0}\bar{D}^{*0}, \bar{B}^{0} \rightarrow \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, K^{*+} \rightarrow \pi^{+}K^{0}, D^{0} \rightarrow K^{-}a_{1}^{+},$				
169	$\bar{D}^{*0} \to \pi^0 \bar{D}^0, D^{*+} \to \pi^+ D^0, K^0 \to K_S, a_1^+ \to \pi^+ \pi^+ \pi^-, \bar{D}^0 \to \rho^- K^{*+}, D^0 \to \pi^+ K^-,$	168	168	1	169
103	$K_S \to \pi^+ \pi^-, \rho^- \to \pi^0 \pi^-, K^{*+} \to \pi^0 K^+$	100	100	1	109
	$\frac{(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}$				
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \mu^{+}\nu_{\mu}D^{-}, B^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\eta K^{+}K^{+}D^{*-}_{s}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, \eta \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, \eta \to \pi^{0}\pi^{-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, \eta \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^$				
170	$D_s^{*-} o D_s^- \gamma, K^0 o K_L, D_s^- o \pi^0 \pi^+ \pi^+ \pi^- \pi^- \pi^-$	169	169	1	170
	$\frac{(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{0}\bar{K}^{0}D^{-}\Delta^{0}\bar{\Sigma}^{+}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D}^{0}, \bar{K}^{0} \to K_{L}, D^{-} \to \pi^{0}\pi^{-}K_{S},}$				
171	$e^+e^- ightarrow 1 (4S), 1 (4S) ightarrow B^0 B^0, B^0 ightarrow \pi^0 K^0 D^- \Delta^0 \Sigma^+, B^0 ightarrow \pi^0 \pi^+ \pi^- \pi^- ho^- D^0, K^0 ightarrow K_L, D^- ightarrow \pi^0 \pi^- K_S, \ \Delta^0 ightarrow \pi^0 n, ar{\Sigma}^+ ightarrow \pi^+ ar{n}, ho^- ightarrow \pi^0 \pi^-, ar{D}^0 ightarrow \pi^- ho^+, K_S ightarrow \pi^0 \pi^0 ho^+ ightarrow \pi^0 \pi^+$	170	170	1	171
1/1	$\Delta \to \pi \ n, \Sigma' \to \pi' \ n, \rho \to \pi' \ \pi', D \to \pi' \ \rho', K_S \to \pi' \ \pi', \rho' \to \pi' \ \pi'$ $(e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- n \bar{n} \gamma \gamma)$	170	170	1	171
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to \mu^+\nu_\mu\bar{D}^{*-}, \bar{B}^0 \to \pi^+\rho^-\rho^-\omega D^{*+}, \bar{D}^{*-} \to \pi^-\bar{D}^0, \rho^- \to \pi^0\pi^-,$				
	$\rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, D^{+} \to K_{S}K^{*+}, K_{S} \to \pi^{+}\pi^{-},$			1	
172	$K_S ightarrow \pi^0 \pi^0, K^{*+} ightarrow \pi^0 K^+$	171	171 171		172
	$(e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$				
					1

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
173	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D_{s1}^{'+}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{+}K^{-}D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{s1}^{'+} \to \pi^{0}D_{s}^{*+},$ $D^{-} \to K_{S}K^{*-}, \bar{D}^{0} \to \omega K_{S}, D_{s}^{*+} \to D_{s}^{+}\gamma, K_{S} \to \pi^{0}\pi^{0}, K^{*-} \to \pi^{-}\bar{K}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-},$ $K_{S} \to \pi^{+}\pi^{-}, D_{s}^{+} \to \rho^{+}\phi, \bar{K}^{0} \to K_{S}, \rho^{+} \to \pi^{0}\pi^{+}, \phi \to K^{+}K^{-}, K_{S} \to \pi^{0}\pi^{0},$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}X^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	172	172	1	173
174	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*}D^{-}D^{*+}, \bar{B}^{0} \to \rho^{0}\rho^{-}\eta D^{*+}, K^{*} \to \pi^{-}K^{+}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0},$ $D^{*+} \to \pi^{+}D^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, K^{0} \to K_{S},$ $D^{0} \to K^{-}a_{1}^{+}, D^{0} \to \pi^{0}\rho^{+}K^{-}, K_{S} \to \pi^{+}\pi^{-}, a_{1}^{+} \to \pi^{0}\rho^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	173	173	1	174
175	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{-}\omega D^{+}\gamma, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{+}K^{0}K^{0}K^{-}K^{-}D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-},$ $D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}, K^{0} \to K_{L}, K^{0} \to K_{L}, D^{*+} \to \pi^{+}D^{0}, \bar{K}^{*} \to \pi^{+}K^{-}, D^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}$ $(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}Y\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	174	174	1	175
176	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\bar{n}\Sigma_{c}^{0}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\Sigma_{c}^{0} \to \pi^{-}\Lambda_{c}^{+}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \Lambda_{c}^{+} \to \pi^{0}\pi^{+}K^{-}p$ $(e^{+}e^{-} \to \nu_{\tau}\bar{\nu}_{\tau}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	175	175	1	176
177	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{-}D^{-}\bar{\Delta}^{0}\Delta^{++}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{-} \to K_{L}K_{L}K^{-},$ $\bar{\Delta}^{0} \to \pi^{0}\bar{n}, \Delta^{++} \to \pi^{+}p, D^{*+} \to \pi^{0}D^{+}, D^{+} \to K_{L}\pi^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma)$	176	176	1	177
178	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}D^{-}\bar{n}p, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}K^{*-}\bar{D}^{*0}, D^{-} \to K_{L}a_{1}^{-}, K^{*-} \to \pi^{0}K^{-}, \\ \bar{D}^{*0} \to \bar{D}^{0}\gamma, a_{1}^{-} \to \pi^{0}\rho^{-}, \bar{D}^{0} \to K_{L}K^{+}K^{-}, \rho^{-} \to \pi^{0}\pi^{-}, K_{L} \to \pi^{0}\pi^{0}\pi^{0} \\ (e^{+}e^{-} \to K_{L}\pi^{+}\pi^{-}K^{+}K^{-}K^{-}\bar{n}p\gamma$	177	177	1	178
179	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \to D^{+}\Delta^{-}\bar{n}, D^{*+} \to \pi^{0}D^{+}, D^{+} \to \pi^{+}\pi^{+}K^{-},$ $\Delta^{-} \to \pi^{-}n, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}, \bar{K}^{*} \to \pi^{+}K^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{-}K^{-}n\bar{n}\gamma\gamma)$	178	178	1	179
180	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}D^{0}D_{s}^{*-}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{0} \to e^{+}\nu_{e}K^{*-},$ $D_{s}^{*-} \to D_{s}^{-}\gamma, D^{-} \to \pi^{0}\pi^{-}K_{S}, K^{*-} \to \pi^{-}\bar{K}^{0}, D_{s}^{-} \to \pi^{-}\eta, K_{S} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S},$ $\eta \to \gamma\gamma, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}X_{u}^{-}, \bar{B}^{0} \to \bar{K}^{*}\bar{\Lambda}\Xi_{c}^{*0}, X_{u}^{-} \to \pi^{0}\rho^{-}, \bar{K}^{*} \to \pi^{+}K^{-},$	179	179	1	180
181	$ar{\Lambda} ightarrow \pi^+ ar{p}, \Xi_c^{*0} ightarrow \Xi_c^0 \gamma, ho^- ightarrow \pi^0 \pi^-, \Xi_c^0 ightarrow \pi^+ K^{*-} \Sigma^0, K^{*-} ightarrow \pi^- ar{K}^0, \Sigma^0 ightarrow \Lambda \gamma, \ ar{K}^0 ightarrow K_S, \Lambda ightarrow \pi^- p, K_S ightarrow \pi^+ \pi^- \ (e^+ e^- ightarrow \mu^+ u_\mu \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^- p ar{p} \gamma \gamma \gamma \gamma \gamma)$	180	180	1	181
182	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{-},$	181	181	1	182
183	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{*+}D'_{s1}, \bar{B}^{0} \to \pi^{-}\eta D^{*+}, D^{*+} \to \pi^{0}D^{+}, D'_{s1} \to \pi^{0}D^{*-}, \\ \eta \to \pi^{0}\pi^{0}\pi^{0}, D^{*+} \to \pi^{+}D^{0}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}, D^{*-}_{s} \to D^{-}_{s}\gamma, D^{0} \to K_{L}\pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{+}K^{-}, \\ D^{-}_{s} \to K^{*}K^{-}, K^{*} \to \pi^{0}K^{0}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	182	182	1	183

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
184	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{\prime-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{-}D^{*+}, D_{1}^{\prime-} \to \pi^{0}\bar{D}^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to K_{S}\eta^{\prime}, \bar{D}^{0} \to \pi^{-}K^{+}, K_{S} \to \pi^{0}\pi^{0}, \eta^{\prime} \to \pi^{0}\pi^{0}\eta, q^{\prime} \to \pi^{0}\pi^{0}\eta, q^{\prime} \to \eta^{0}\eta^{0}\eta, q^{\prime} \to \eta^{0}\eta^{0}\eta^{0}, q^{\prime} \to \eta^{0}\eta^{0}\eta^{0}\eta^{0}\eta^{0}\eta^{0}\eta^{0}\eta^{0}$	183	183	1	184
185	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}B^{0}, B^{0} \rightarrow \mu^{+}\nu_{\mu}D^{*-}, B^{0} \rightarrow \pi^{0}\omega D^{-}\Delta^{-}\Delta^{0}, D^{*-} \rightarrow \pi^{-}D^{0}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-},$ $D^{-} \rightarrow e^{-}\bar{\nu}_{e}K^{0}, \bar{\Delta}^{-} \rightarrow \pi^{+}\bar{n}, \Delta^{0} \rightarrow \pi^{0}n, \bar{D}^{0} \rightarrow \pi^{0}K_{S}, K^{0} \rightarrow K_{S}, K_{S} \rightarrow \pi^{0}\pi^{0},$ $K_{S} \rightarrow \pi^{0}\pi^{0}$ $(e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \rightarrow \omega\bar{K}^{0}K^{*}K^{*}, \bar{D}^{*-} \rightarrow \pi^{0}D^{-}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-},$	184	184	1	185
186	$\bar{K}^0 \to K_L, K^* \to \pi^- K^+, \bar{K}^* \to \pi^0 \bar{K}^0, D^- \to \pi^0 \pi^- K^*, \bar{K}^0 \to K_L, K^* \to \pi^- K^+ $ $(e^+ e^- \to e^+ \nu_e K_L K_L \pi^+ \pi^- \pi^- \pi^- K^+ K^+ \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$	185	185	1	186
187	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{2}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, D_{2}^{*-} \to \pi^{-}\bar{D}^{*0}, D^{*+} \to \pi^{0}D^{+},$ $\bar{D}^{*0} \to \bar{D}^{0}\gamma, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}, \bar{D}^{0} \to \rho^{-}K^{*+}, \bar{K}^{0} \to K_{L}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{+}K^{0},$ $K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\mu^{+}\mu^{-}\nu_{\mu}\nu_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\rho^{+}\rho^{-}\bar{D}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-},$	186	186	1	187
188	$\bar{D}^{0} \to K^{+}a_{-}^{-}, D^{*+} \to \pi^{+}D^{0}, a_{1}^{-} \to \rho^{0}\pi^{-}, D^{0} \to e^{+}\nu_{e}\pi^{0}K^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	187	187	1	188
189	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D'_{s1}^{*+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D_{2}^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D'_{s1}^{*+} \to \pi^{0}D_{s}^{*+},$ $D_{2}^{*+} \to \pi^{+}D^{*0}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D_{s}^{*+} \to D_{s}^{+}\gamma, D^{*0} \to \pi^{0}D^{0}, D_{s}^{+} \to \bar{K}^{*}K^{*+}, D^{0} \to K_{L}\eta',$ $\bar{K}^{*} \to \pi^{+}K^{-}, K^{*+} \to \pi^{+}K^{0}, \eta' \to \pi^{+}\pi^{-}\eta, K^{0} \to K_{L}, \eta \to \gamma\gamma$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	188	188	1	189
190	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \rho^{+}\eta\eta\bar{D}^{*-}, \bar{B}^{0} \rightarrow \pi^{0}\pi^{+}\eta K^{*-}, \rho^{+} \rightarrow \pi^{0}\pi^{+}, \eta \rightarrow \pi^{0}\pi^{0}\pi^{0}, $ $\eta \rightarrow \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \eta \rightarrow \pi^{0}\pi^{0}\pi^{0}, K^{*-} \rightarrow \pi^{0}K^{-}, \bar{D}^{0} \rightarrow \pi^{+}\pi^{-}K^{*}, K^{*} \rightarrow \pi^{0}K^{0}, $ $K^{0} \rightarrow K_{L}$ $(e^{+}e^{-} \rightarrow K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma)$	189	189	1	190
191	$\frac{(e^{+}e^{-} \rightarrow K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma$	190	190	1	191
192	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, \bar{B}^{0} \to \rho^{0}\rho^{-}D^{*+}, D^{-} \to e^{-}\bar{\nu}_{e}K^{0}, \rho^{0} \to \pi^{+}\pi^{-},$ $\rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, K^{0} \to K_{L}, D^{0} \to \pi^{+}\eta K^{-}, \eta \to \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	191	191	1	192
193	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{0}\pi^{-}K^{0}\bar{K}^{*}D^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, K^{0} \to K_{S}, \bar{K}^{*} \to \pi^{+}K^{-}, D^{+} \to K_{L}a_{1}^{+}, \bar{D}^{0} \to \pi^{0}K_{L}\eta, K_{S} \to \pi^{+}\pi^{-},$ $a_{1}^{+} \to \rho^{0}\pi^{+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	192	192	1	193

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
194	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, \bar{B}^{0} \to K^{*-}D^{*+}\bar{D}^{0}, D^{-} \to K^{*}K^{-}, K^{*-} \to \pi^{-}\bar{K}^{0},$ $D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, K^{*} \to \pi^{-}K^{+}, \bar{K}^{0} \to K_{L}, D^{0} \to \pi^{+}\pi^{-}, K_{L} \to \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	193	193	1	194
195	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow J/\psi K_{1}^{0}, \bar{B}^{0} \rightarrow \pi^{0}D^{+}D_{s}^{*-}, J/\psi \rightarrow \pi^{0}\eta\eta, K_{1}^{0} \rightarrow \pi^{+}\pi^{-}K^{0},$ $D^{+} \rightarrow e^{+}\nu_{e}\bar{K}^{0}, D_{s}^{*-} \rightarrow D_{s}^{-}\gamma, \eta \rightarrow \gamma\gamma, \eta \rightarrow \gamma\gamma, K^{0} \rightarrow K_{S}, \bar{K}^{0} \rightarrow K_{S},$ $D_{s}^{-} \rightarrow \rho^{-}\eta, K_{S} \rightarrow \pi^{0}\pi^{0}, K_{S} \rightarrow \pi^{+}\pi^{-}, \rho^{-} \rightarrow \pi^{0}\pi^{-}, \eta \rightarrow \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	194	194	1	195
196	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to K^{*}D^{+}D^{-}, B^{0} \to \bar{D}^{*-}\bar{\Delta}^{-}\Delta^{0}, K^{*} \to \pi^{0}K^{0}, D^{+} \to \pi^{+}\bar{K}_{1}^{'0},$ $D^{-} \to e^{-}\bar{\nu}_{e}K_{2}^{*0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \bar{\Delta}^{-} \to \pi^{+}\bar{n}, \Delta^{0} \to \pi^{0}n, K^{0} \to K_{L}, \bar{K}_{1}^{'0} \to \pi^{+}K^{*-},$ $K_{2}^{*0} \to \pi^{0}K^{0}, \bar{D}^{0} \to e^{-}\bar{\nu}_{e}\pi^{+}K^{0}, K^{*-} \to \pi^{0}K^{-}, K^{0} \to K_{S}, K^{0} \to K_{L}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}e^{-}\bar{\nu}_{e}\bar{\nu}_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	195	195	1	196
197	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{-}\eta\bar{D}^{*0}D_{s}^{*+}, \bar{B}^{0} \to D^{*0}\Delta^{0}\bar{\Delta}^{0}, \eta \to \gamma\gamma, \bar{D}^{*0} \to \bar{D}^{0}\gamma,$ $D_{s}^{*+} \to D_{s}^{+}\gamma, D^{*0} \to \pi^{0}D^{0}, \Delta^{0} \to \pi^{0}n, \bar{\Delta}^{0} \to \pi^{0}\bar{n}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D_{s}^{+} \to \mu^{+}\nu_{\mu},$ $D^{0} \to e^{+}\nu_{e}\pi^{-}\bar{K}^{0}, \pi^{0} \to e^{+}e^{-}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\mu^{+}\nu_{\mu}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	196	196	1	197
198	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to D^{0}n\bar{n}, \rho^{0} \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to K_{L}\eta, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \eta \to \gamma\gamma \\ (e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma)$	197	197	1	198
199	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, B^{0} \to \rho^{0}\pi^{+}\pi^{-}\rho^{+}\omega\bar{D}^{*-}, \bar{D}^{*-} \to \pi^{0}D^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+}, D^{-} \to \pi^{0}\pi^{-}K^{*}, K^{*} \to \pi^{-}K^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	198	198	1	199
200	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}\pi^{+}D^{0}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{1}^{0}, D^{0} \to \pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-} $ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-})$	199	199	1	200

Table 2: Event initial-final states.

index	event initial-final states.	iEvtIFSts	nEvts	nCmltEvts
1	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$	0	1	1
2	$e^{+}e^{-} \to e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	1	1	2
3	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma$	2	1	3
4	$e^{+}e^{-} \rightarrow e^{+}e^{+}e^{-}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma$	3	1	4
5	$e^+e^- \rightarrow e^+ \nu_e K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	4	1	5
6	$e^{+}e^{-} \rightarrow e^{+}e^{+}\nu_{e}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma$	5	1	6
7	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma$	6	1	7
8	$e^+e^- \to e^+\nu_e\nu_\tau\bar{\nu}_\tau K_L\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\gamma$	7	1	8
9	$e^+e^- o \mu^- \bar{\nu}_\mu K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \gamma \gamma$	8	1	9
10	$e^+e^- o \mu^+ \nu_\mu K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ K^+ K^- \gamma \gamma$	9	1	10
11	$e^+e^- \to \mu^+\mu^+\nu_\mu\nu_\mu K_L K_L \pi^+\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma$	10	1	11
12	$e^+e^- o e^+e^- \mu^- ar{ u}_\mu u_ au ar{ u}_ au^+ \pi^- K^+ \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	11	1	12
13	$e^+e^- \to \mu^+\nu_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	12	1	13
14	$e^+e^- \to \mu^-\bar{\nu}_\mu K_L \pi^+\pi^+\pi^+\pi^-\pi^-K^-\gamma$	13	1	14
15	$e^+e^- \to \pi^+\pi^+\pi^+\pi^-\pi^-K^+K^-K^-\gamma$	14	1	15
16	$e^+e^- \rightarrow e^- \bar{\nu}_e \mu^+ \nu_\mu \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	15	1	16
17	$e^+e^- \to e^+\nu_e\mu^-\bar{\nu}_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	16	1	17
18	$e^+e^- \to \mu^+\nu_\mu K_L K_L \pi^+\pi^+\pi^-\pi^-\pi^-K^+K^+K^-K^-\gamma$	17	1	18
19	$e^+e^- \to e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^- \gamma \gamma$	18	1	19
20	$e^+e^- \to \mu^+\nu_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	19	1	20
21	$e^+e^- \to \mu^-\bar{\nu}_\mu K_L K_L \pi^+ K^+ K^- \gamma \gamma \gamma \gamma \gamma \gamma$	20	1	21
22	$e^+e^- \rightarrow e^-\bar{\nu}_e\mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-f_0(600)\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	21	1	22
23	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma$	22	1	23
24	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{+}\gamma$	23	1	24
25	$e^{+}e^{-} \rightarrow e^{+}e^{+}e^{-}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	24	1	25
26	$e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	25	1	26
27	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma$	26	1	27
28	$e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma$	27	1	28
29	$e^+e^- \to e^+\nu_e\nu_\tau\bar{\nu}_\tau K_L\pi^+\pi^+\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma$	28	1	29
30	$e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \gamma \gamma$	29	1	30
31	$e^+e^- o \mu^+\mu^- u_\mu \bar{\nu}_\mu \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma$	30	1	31
32	$e^{+}e^{-} \rightarrow e^{+}e^{+}e^{-}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	31	1	32
33	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma$	32	1	33
34	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma$	33	1	34
35	$e^+e^- \to \mu^-\bar{\nu}_\mu K_L \pi^+\pi^+\pi^-K^+K^-K^-\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma$	34	1	35
36	$e^+e^- \rightarrow e^- \bar{\nu}_e K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^+ n \bar{p} \gamma \gamma$	35	1	36
37	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma$	36	1	37
38	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- p \bar{p} \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	37	1	38
39	$e^+e^- \to e^+\nu_e\mu^+\nu_\mu K_L\pi^+\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	38	1	39
40	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	39	1	40

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
41	$e^+e^- \to \mu^-\mu^-\bar{\nu}_\mu\bar{\nu}_\mu\pi^+\pi^+\pi^+K^+K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	40	1	41
42	$e^+e^- \rightarrow \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma$	41	1	42
43	$e^+e^- o \mu^+ u_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-K^-n\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	42	1	43
44	$e^+e^- o e^- \bar{ u}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma \gamma$	43	1	44
45	$e^+e^- ightarrow\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^+\gamma\gamma\gamma\gamma\gamma\gamma$	44	1	45
46	$e^+e^- o e^+e^-\mu^+ u_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^+\gamma$	45	1	46
47	$e^{+}e^{-} \to K_L K_L \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-} \pi^{-} \pi^{-} \pi^{-} K^{+} \gamma \gamma$	46	1	47
48	$e^{+}e^{-} \to \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma$	47	1	48
49	$e^+e^- \to e^+\nu_e\mu^-\mu^-\bar{\nu}_\mu\bar{\nu}_\mu K_L\pi^+\pi^+\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	48	1	49
50	$e^+e^- \to e^+e^-\mu^-\bar{\nu}_\mu K_L \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^-\gamma$	49	1	50
51	$e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}f_{0}(600)\gamma\gamma$	50	1	51
52	$e^+e^- \rightarrow e^-\bar{\nu}_e K_L \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma$	51	1	52
53	$e^+e^- o e^+ u_e K_L\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	52	1	53
54	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma$	53	1	54
55	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	54	1	55
56	$e^+e^- \to \mu^+\mu^-\nu_\mu\nu_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^-n\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	55	1	56
57	$e^+e^- \to e^+\nu_e K_L \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	56	1	57
58	$e^+e^- o \mu^+\mu^- u_\muar u_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	57	1	58
59	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}n\bar{p}\gamma$	58	1	59
60	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	59	1	60
61	$e^+e^- ightarrow e^-ar{ u}_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^-\gamma$	60	1	61
62	$e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}f_{0}(600)\gamma\gamma\gamma\gamma\gamma$	61	1	62
63	$e^+e^- o e^-ar u_e\mu^-ar u_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+par p\gamma\gamma\gamma\gamma$	62	1	63
64	$e^+e^- \to e^+\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma$	63	1	64
65	$e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	64	1	65
66	$e^+e^- \to e^+\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-p\bar{p}\gamma$	65	1	66
67	$e^+e^- \to \mu^+\nu_\mu\nu_\tau\bar{\nu}_\tau\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma$	66	1	67
68	$e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	67	1	68
69	$e^+e^- \rightarrow e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^- \gamma \gamma$	68	1	69
70	$e^+e^- \to e^+\nu_e\pi^+\pi^+\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma$	69	1	70
71	$e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma$	70	1	71
72	$e^{+}e^{-} \rightarrow e^{-}e^{-}\bar{\nu}_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	71	1	72
73	$e^+e^- \to \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^+K^-n\bar{p}\gamma\gamma\gamma\gamma$	72	1	73
74	$e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\bar{n}pf_{0}(600)\gamma\gamma$	73	1	74
75	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma$	74	1	75
76	$e^+e^- \to \mu^+\nu_\mu K_L\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^+K^-K^-\gamma$	75	1	76
77	$e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma$	76	1	77
78	$e^+e^- \to e^-\bar{\nu}_e\mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K_S\gamma$	77	1	78
79	$e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma$	78	1	79
80	$e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	79	1	80

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
81	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$	80	1	81
82	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma$	81	1	82
83	$e^+e^- \to \mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^+K^-\gamma$	82	1	83
84	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-K^-\gamma$	83	1	84
85	$e^+e^- \to e^- \bar{\nu}_e \mu^+ \nu_\mu K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- \gamma \gamma$	84	1	85
86	$e^+e^- \to e^-e^-\bar{\nu}_e\bar{\nu}_e\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^+K^-\bar{n}p\gamma$	85	1	86
87	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma$	86	1	87
88	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma$	87	1	88
89	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}p\bar{p}\gamma\gamma$	88	1	89
90	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^-\pi^-\pi^-\pi^-K^+\bar{n}pf_0(600)\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	89	1	90
91	$e^{+}e^{-} \rightarrow \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma$	90	1	91
92	$e^+e^- \rightarrow e^+e^+e^-e^-\pi^+\pi^+\pi^-K^+K^-n\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	91	1	92
93	$e^{+}e^{-} \to \mu^{+}\mu^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}f_{0}(600)\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	92	1	93
94	$e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ f_0(600) \gamma \gamma$	93	1	94
95	$e^{+}e^{-} \rightarrow e^{+}e^{-}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma$	94	1	95
96	$e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}f_{0}(600)\gamma\gamma$	95	1	96
97	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ n \bar{p} \gamma \gamma \gamma \gamma \gamma$	96	1	97
98	$e^+e^- \to e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma$	97	1	98
99	$e^+e^- o K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma$	98	1	99
100	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}K^{-}\gamma$	99	1	100
101	$e^+e^- \rightarrow e^+e^+e^-\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	100	1	101
102	$e^+e^- \to e^-\bar{\nu}_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	101	1	102
103	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma$	102	1	103
104	$e^+e^- o \mu^+ u_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	103	1	104
105	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	104	1	105
106	$e^+e^- \to e^- \bar{\nu}_e K_L \pi^+ \pi^+ \pi^- \pi^- K^+ K^- \gamma \gamma$	105	1	106
107	$e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma$	106	1	107
108	$e^+e^- \to e^+e^-\mu^-\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	107	1	108
109	$e^+e^- \to \mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma$	108	1	109
110	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^- p\bar{p}\gamma$	109	1	110
111	$e^+e^- \to \mu^- \bar{\nu}_\mu K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- p \bar{p} \gamma \gamma$	110	1	111
112	$e^+e^- ightarrow e^+ u_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^- \gamma \gamma$	111	1	112
113	$e^+e^- \rightarrow e^+\nu_e\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+n\bar{n}\gamma\gamma\gamma\gamma\gamma$	112	1	113
114	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ K^- K^- \gamma \gamma$	113	1	114
115	$e^+e^- \rightarrow e^- \bar{\nu}_e K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ K^+ K^- \gamma \gamma$	114	1	115
116	$e^+e^- \to \mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^-\gamma$	115	1	116
117	$e^+e^- o e^+ u_e K_L \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^+K^-\gamma$	116	1	117
118	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma$	117	1	118
119	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma$	118	1	119
120	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma$	119	1	120

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
121	$e^+e^- \rightarrow e^-\bar{\nu}_e\mu^-\bar{\nu}_\mu K_L\pi^+\pi^+\pi^+\pi^-K^-\gamma\gamma\gamma\gamma$	120	1	121
122	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma$	121	1	122
123	$e^+e^- \rightarrow e^-e^-\bar{\nu}_e\bar{\nu}_e\mu^+\nu_\mu\pi^+\pi^+\pi^-K^+K^-\gamma\gamma\gamma\gamma$	122	1	123
124	$e^+e^- \to e^- \bar{\nu}_e \nu_\tau \bar{\nu}_\tau K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \gamma \gamma$	123	1	124
125	$e^+e^- \to e^+e^-\mu^-\bar{\nu}_\mu K_L K_L \pi^+\pi^+\pi^-\pi^- K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	124	1	125
126	$e^+e^- \to e^+\nu_e\mu^+\mu^-\nu_\mu\bar{\nu}_\mu\pi^+\pi^+\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	125	1	126
127	$e^+e^- o e^+e^-\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	126	1	127
128	$e^+e^- \rightarrow e^+e^-e^-\nu_e\bar{\nu}_e\bar{\nu}_e K_L\pi^+\pi^+\pi^+\pi^+\pi^-K^-K^-\gamma\gamma\gamma\gamma$	127	1	128
129	$e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\nu_{\tau}\bar{\nu}_{\tau}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma$	128	1	129
130	$e^+e^- \to e^+e^-e^-\nu_e\nu_e\bar{\nu}_e\pi^+\pi^+\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	129	1	130
131	$e^+e^- \to K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma$	130	1	131
132	$e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma$	131	1	132
133	$e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{+}K^{-}\gamma\gamma\gamma$	132	1	133
134	$e^+e^- ightarrow u_ au ar{ u}_ au K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	133	1	134
135	$e^+e^- o \mu^- \bar{\nu}_\mu \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	134	1	135
136	$e^{+}e^{-} \rightarrow K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}f_{0}(600)\gamma\gamma\gamma\gamma\gamma$	135	1	136
137	$e^{+}e^{-} \rightarrow e^{+}e^{-}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	136	1	137
138	$e^+e^- \to \pi^+\pi^+\pi^-\pi^-K^+K^-n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	137	1	138
139	$e^+e^- ightarrow e^+ u_e K_L\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-par p\gamma\gamma\gamma\gamma$	138	1	139
140	$e^+e^- \rightarrow e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^+ K^+ K^+ \gamma \gamma$	139	1	140
141	$e^+e^- \rightarrow e^- \bar{\nu}_e \mu^+ \nu_\mu \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma \gamma \gamma \gamma \gamma$	140	1	141
142	$e^+e^- \rightarrow \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^+K^-K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	141	1	142
143	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^+K^-K^-K^-n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	142	1	143
144	$e^+e^- \to \mu^-\bar{\nu}_\mu \pi^+\pi^+\pi^+\pi^-K^+K^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	143	1	144
145	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	144	1	145
146	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	145	1	146
147	$e^+e^- o K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^- \gamma \gamma$	146	1	147
148	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	147	1	148
149	$e^+e^- o \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	148	1	149
150	$e^+e^- o \mu^+ \nu_\mu \nu_\tau \bar{\nu}_\tau K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- K^- \gamma \gamma$	149	1	150
151	$e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma$	150	1	151
152	$e^+e^- \rightarrow e^-\nu_e\mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+n\bar{p}\gamma$	151	1	152
153	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{-}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	152	1	153
154	$e^+e^- \rightarrow \pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^+K^-\gamma$	153	1	154
155	$e^+e^- o e^-ar{ u}_e\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma$	154	1	155
156	$e^{+}e^{-}\rightarrow\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$	155	1	156
157	$e^+e^- \rightarrow e^+e^+\nu_e\nu_e\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	156	1	157
158	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	157	1	158
159	$e^{+}e^{-} e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}f_{0}(600)\gamma\gamma\gamma\gamma\gamma$	158	1	159
160	$e^+e^- \rightarrow e^+e^-\nu_e\bar{\nu}_e\mu^+\nu_\mu\pi^+\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	159	1	160

index	event initial-final states	iEvtIFSts	nEvts	nCmltEvts
161	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ K^+ K^- f_0(600) \gamma \gamma$	160	1	161
162	$e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}K^{-}\gamma$	161	1	162
163	$e^+e^- \to \mu^- \bar{\nu}_\mu \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^- \gamma \gamma$	162	1	163
164	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}p\bar{p}\gamma$	163	1	164
165	$e^+e^- \to e^+\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	164	1	165
166	$e^+e^- \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu K_L\pi^+\pi^+\pi^-K^-n\bar{n}\gamma\gamma\gamma\gamma\gamma$	165	1	166
167	$e^+e^- \to e^+e^-\nu_\tau\bar{\nu}_\tau\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma$	166	1	167
168	$e^{+}e^{-} \rightarrow K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	167	1	168
169	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-K^-\gamma$	168	1	169
170	$e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma$	169	1	170
171	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- n \bar{n} \gamma \gamma$	170	1	171
172	$e^+e^- ightarrow \mu^+ u_\mu\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	171	1	172
173	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-K^-\gamma$	172	1	173
174	$e^+e^- o \mu^-ar u_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-K^-\gamma$	173	1	174
175	$e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^- K^- K^- \gamma \gamma$	174	1	175
176	$e^+e^- \to \nu_\tau \bar{\nu}_\tau \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \bar{n} p \gamma $	175	1	176
177	$e^+e^- \to e^-\bar{\nu}_e K_L K_L K_L \pi^+ \pi^+ \pi^- K^- \bar{n} p \gamma \gamma \gamma \gamma \gamma \gamma$	176	1	177
178	$e^+e^- \to K_L \pi^+ \pi^- K^+ K^- K^- \bar{n} p \gamma $	177	1	178
179	$e^+e^- o e^+ u_e\mu^-ar u_\mu\pi^+\pi^+\pi^+\pi^-K^-K^-nar n\gamma\gamma$	178	1	179
180	$e^+e^- \to e^+\nu_e\mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	179	1	180
181	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma$	180	1	181
182	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$	181	1	182
183	$e^+e^- \rightarrow e^+\nu_e K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^- K^- \gamma \gamma$	182	1	183
184	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma$	183	1	184
185	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}n\bar{n}\gamma$	184	1	185
186	$e^+e^- \to e^+\nu_e K_L K_L \pi^+\pi^-\pi^-\pi^-\pi^-K^+K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	185	1	186
187	$e^+e^- \to \mu^+\mu^+\mu^-\nu_\mu\nu_\mu\bar{\nu}_\mu K_L\pi^+\pi^+\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma$	186	1	187
188	$e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma$	187	1	188
189	$e^+e^- \rightarrow e^- \bar{\nu}_e K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^+ K^- \gamma \gamma$	188	1	189
190	$e^+e^- \to K_L \pi^+ \pi^+ \pi^- \pi^- K^- \gamma \gamma$	189	1	190
191	$e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma$	190	1	191
192	$e^+e^- \to e^+e^-\nu_e\bar{\nu}_eK_L\pi^+\pi^+\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	191	1	192
193	$e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma$	192	1	193
194	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma$	193	1	194
195	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma$	194	1	195
196	$e^+e^- o e^-e^- \bar{\nu}_e \bar{\nu}_e K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- n \bar{n} \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	195	1	196
197	$e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\mu^{+}\nu_{\mu}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{n}\gamma$	196	1	197
198	$e^+e^- \to K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ n \bar{n} \gamma \gamma \gamma \gamma \gamma \gamma$	197	1	198
199	$e^+e^- \to e^-\bar{\nu}_e\mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^+\gamma$	198	1	199
200	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	199	1	200

Table 3: Event branches of B^0 .

index	event branch of B^0	iEvtBrOfP1	nEtrs	nCmltEtrs
1	$B^0 \to \mu^+ \nu_\mu \bar{D}^{*-}$	12	11	11
2	$B^0 \to e^+ \nu_e \bar{D}^{*-}$	6	9	20
3	$B^0 \to \pi^0 \pi^+ \pi^+ \pi^- \bar{D}^{*-}$	10	5	25
4	$B^0 \to e^+ \nu_e D^-$	54	5	30
5	$B^0 o au^+ u_ au ar D^{*-}$	8	4	34
6	$B^0 o \bar{D}^{*-} a_1^+$	3	4	38
7	$B^0 \to \mu^+ \nu_\mu D^-$	27	3	41
8	$B^0 o au^+ u_{ au} D_0^{*-}$	31	3	44
9	$B^0 \to \rho^+ D^-$	16	3	47
10	$B^0 \to \bar{D}^{*-} D_{s1}^{\prime+}$	86	3	50
rest	$B^0 \to \text{others}$	_	146	196

Table 4	: Event	branches	of	\bar{B}^0 .

indon	Table 4: Event			n Cmalt Etma
index	event branch of \bar{B}^0	iEvtBrOfP2	nEtrs	nCmltEtrs
1	$\bar{B}^0 \to e^- \bar{\nu}_e D^{*+}$	13	16	16
2	$\bar{B}^0 \to \mu^- \bar{\nu}_\mu D^{*+}$	6	14	30
3	$\bar{B}^0 \to D^{*+}D_s^{*-}$	7	5	35
4	$\bar{B}^0 \rightarrow e^- \bar{\nu}_e D^+$	42	4	39
5	$\bar{B}^0 \to \rho^0 \pi^- D^{*+}$	64	4	43
6	$\bar{B}^0 \to \pi^+ \pi^- \rho^- D^+$	22	3	46
7	$\bar{B}^0 \to D^{*+} D_s^-$	38	3	49
8	$\bar{B}^0 \to \mu^- \bar{\nu}_\mu D^+$	41	3	52
9	$\bar{B}^0 \to \pi^+ \pi^- D^+ D_s^-$	4	3	55
10	$\bar{B}^0 \to \rho^- D^+$	21	3	58
11	$\bar{B}^0 \to e^- \bar{\nu}_e D_2^{*+}$	69	3	61
12	$\bar{B}^0 \to \pi^0 \pi^+ \pi^- \pi^- D^{*+}$	84	3	64
13	$ar{B}^0 ightarrow \pi^0 \pi^- D^{*+}$	1	2	66
14	$\bar{B}^0 \to \pi^+ \pi^+ \pi^- \pi^- \pi^- D^{*+}$	3	2	68
15	$\bar{B}^0 \to \pi^0 \pi^+ D^0 D_s^{*-}$	45	2	70
16	$\bar{B}^0 \to \tau^- \bar{\nu}_\tau D^{*+}$	54	2	72
17	$\bar{B}^0 \to \rho^0 \rho^- \eta D^{*+}$	56	2	74
18	$\bar{B}^0 \rightarrow \rho^- D^{*+}$	57	2	76
19	$\bar{B}^0 \to K^- D^{*+} \bar{D}^{*0}$	62	2	78
20	$\bar{B}^0 \to \pi^0 \pi^+ \pi^- \rho^- D^+$	30	2	80
21	$\bar{B}^0 \rightarrow \pi^+ D^0 D_s^-$	67	2	82
22	$\bar{B}^0 o \pi^- D^+$	31	2	84
23	$\bar{B}^0 \to \pi^- \rho^+ \rho^- D^+$	75	2	86
24	$\bar{B}^0 \to \pi^- \pi^- \rho^+ D^{*+}$	79	2	88
25	$\bar{B}^0 \to \pi^+ \bar{K}^* \bar{D}^{*-} D^0$	18	2	90
26	$\bar{B}^0 \to \pi^- \eta D^{*+}$	90	2	92
27	$\bar{B}^0 \to D_2^{*+} D_s^-$	93	2	94
28	$\bar{B}^0 \to D^{*+} D_{s1}^{'-}$	101	2	96
29	$\bar{B}^0 \rightarrow e^- \bar{\nu}_e D_1^+$	28	1	97
30	$\bar{B}^0 \to \eta D^+ p \bar{\Delta}^{++}$	29	1	98
31	$\bar{B}^0 \to D^+ D_s^{*-}$	9	1	99
32	$\bar{B}^0 \to \pi^0 \pi^+ \rho^- \bar{\rho}^- D^+$	10	1	100
33	$\bar{B}^0 \to \pi^0 \pi^0 K^* K^{*-} D^+$	32	1	101
34	$\bar{B}^0 \to \rho^- D^{*+} \gamma$	33	1	102
35	$\bar{B}^0 \to \mu^- \bar{\nu}_\mu \pi^0 \pi^0 D^{*+}$	34	1	103
36	$\bar{B}^0 \to \pi^- \omega D^{*+}$	35	1	104
37	$\bar{B}^0 \to \pi^+ K^- \eta_c(2S)$	36	1	105
38	$\bar{B}^0 \to \pi^0 \pi^+ \pi^- D^+ \Sigma^- \bar{\Sigma}^0$	37	1	106
39	$\bar{B}^0 \to K^0 K^{*-} D^{*+}$	11	1	107
40	$\bar{B}^0 \to \pi^0 \rho^0 \pi^- D^{*+}$	39	1	108
	D / N P N D	99	1	100

index	event branch of \bar{B}^0	iEvtBrOfP2	nEtrs	nCmltEtrs
41	$\bar{B}^0 \to \pi^+ K^- D^+ D^-$	40	1	109
42	$\bar{B}^0 \to \pi^- K^+ K^- D^{*+}$	12	1	110
43	$\bar{B}^0 \to \pi^0 K^* K^- D^+$	5	1	111
44	$\bar{B}^0 o ho^+ ho^- D^{*0}$	43	1	112
45	$ar{B}^0 ightarrow \pi^0 ho^0 ho^0 ho^- D^+$	44	1	113
46	$\bar{B}^0 \to \pi^0 \pi^+ K^{*-} D^0 \bar{D}^{*0}$	14	1	114
47	$\bar{B}^0 \to \pi^0 \bar{\Delta}^+ \Sigma_c^+$	46	1	115
48	$\bar{B}^0 \to D^+ \Delta^0 \bar{\Delta}^+$	47	1	116
49	$ar{B}^0 ightarrow \pi^0 ho^0 \pi^+ \pi^- \eta \eta$	48	1	117
50	$\bar{B}^0 \to \pi^0 \pi^0 \pi^0 \rho^0 \rho^0 \pi^+ \pi^- \pi^- D^{*+}$	49	1	118
51	$\bar{B}^0 \to \pi^- \bar{K}^0 D^+ \bar{D}^{*0}$	50	1	119
52	$\bar{B}^0 \to \pi^- \pi^- \pi^- \rho^+ \rho^+ \omega D^{*+}$	51	1	120
53	$\bar{B}^{0} \to \pi^{-}\pi^{-}\pi^{-}\rho^{+}\rho^{+}\omega D^{*+}$ $\bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{0}\rho^{0}\pi^{-}D^{+}$	52	1	121
54	$\bar{B}^0 \to \pi^0 \pi^0 \pi^+ \pi^- \pi^- D^{*+} p \bar{p}$	53	1	122
55	$ar{B}^0 ightarrow \pi^0 \eta ar{K}^0 K^- D_s^+$	15	1	123
56	$\bar{B}^0 \to \eta D^+ D_s^{*-}$	55	1	124
57	$ar{B}^0 ightarrow \pi^0 ar{K}^* K^+ K^-$	16	1	125
58	$ar{B}^0 ightarrow \pi^0 \pi^0 ho^- \eta \omega D^{*+}$	17	1	126
59	$\bar{B}^0 o K^{*-}D^+$	58	1	127
60	$\bar{B}^0 \to \pi^- \pi^- D^{*+} \bar{n} \Delta^+$	59	1	128
61	$\bar{B}^0 \to D^{*+} D_{s0}^{*-}$	60	1	129
62	$B^0 \to \pi^0 \pi^+ \pi^- \rho^+ D^{*-} D^{*0}$	61	1	130
63	$\bar{B}^0 \to \pi^+ D^0 D_s^{*-}$	0	1	131
64	$\bar{B}^0 \to \pi^0 \pi^+ \pi^- \rho^- \omega \bar{K}^0 D^{*+}$	63	1	132
65	$\bar{B}^0 \to \pi^0 \pi^- \omega D^+$	19	1	133
66	$\bar{B}^0 \to \pi^0 \pi^- \omega K^0 \bar{K}^0 \bar{K}^* D^{*+}$	65	1	134
67	$\bar{B}^0 \to \pi^+ \pi^- D^+ D_s^{*-}$	66	1	135
68	$\bar{B}^0 \to \mu^- \bar{\nu}_\mu D_1^+$	20	1	136
69	$\bar B^0 o e^- \bar u_e \eta D^+$	68	1	137
70	$ar{B}^0 ightarrow \pi^0 ho^0 ho^- \eta D^+$	2	1	138
71	$\bar{B}^0 \to \pi^- \rho^+ K^0 K^{*-} D^+$	70	1	139
72	$ar{B}^0 o \mu^- ar{ u}_\mu D_0^{*+}$	71	1	140
73	$B^0 o \pi^-\pi^- D^+ \bar{n} p$	72	1	141
74	$\bar{B}^0 \to \pi^0 \pi^+ K^- \eta_c(2S)$	73	1	142
75	$ar{B}^0 o ar{K}^0 \psi'$	74	1	143
76	$\bar{B}^0 \to ho^0 K^0 K^{*-} D^+$	8	1	144
77	$\bar{B}^0 \to \pi^- K^0 D^+$	76	1	145
78	$\bar{B}^0 \to \pi^0 \omega K^0 K^- D^+$	77	1	146
79	$\bar{B}^0 \to \pi^0 \pi^- D^{*+} \Delta^+ \bar{\Delta}^+$	78	1	147
80	$\bar{B}^0 \to \pi^+ \rho^- \rho^- D^+$	23	1	148

index	event branch of \bar{B}^0	iEvtBrOfP2	nEtrs	nCmltEtrs
81	$\bar{B}^0 o K^*K^-D^+$	80	1	149
82	$\bar{B}^0 \to \pi^0 \pi^0 \rho^0 \pi^- \pi^- \rho^+ D^{*+}$	81	1	150
83	$\bar{B}^0 \to \rho^0 \pi^- \rho^+ D^0$	82	1	151
84	$\bar{B}^0 \to \pi^+ D^{*0} D_s^-$	83	1	152
85	$ar{B}^0 ightarrow ar{K}_1^0 \gamma$	24	1	153
86	$\bar{B}^0 \to \rho^- \eta \omega \omega D^{*+}$	85	1	154
87	$\bar{B}^0 o \bar{K}^0 \bar{\Sigma}^{*0} \Sigma_c^{*0}$	86	1	155
88	$ar{B}^0 ightarrow ho^0 \pi^+ ar{\Delta}^{++} \Lambda_c^+$	87	1	156
89	$ar{B}^0 o D_s^{*+} ar{\Delta}^+ \Lambda$	88	1	157
90	$\bar{B}^0 \to \mu^- \bar{\nu}_\mu D_1^{\prime +}$	89	1	158
91	$ar{B}^0 ightarrow ho^0 ho^- \eta \omega D^+$	25	1	159
92	$\bar{B}^0 o \pi^+\pi^-\omega D^{*0}$	91	1	160
93	$ar{B}^0 ightarrow \pi^0 \omega K^{*-} D_s^+$	92	1	161
94	$\bar{B}^0 \to \pi^0 \pi^0 \rho^0 \pi^+ \pi^- \pi^- D^+$	26	1	162
95	$\bar B^0 o ar K^* D^+ D^-$	94	1	163
96	$\bar{B}^0 \to \rho^- \eta D^+$	95	1	164
97	$\bar{B}^0 \rightarrow \rho^0 \pi^- \omega D^+$	96	1	165
98	$ar{B}^0 ightarrow \pi^0 ho^0 \pi^- \eta \omega D^+$	97	1	166
99	$\bar{B}^0 o D^{*0} n \bar{n}$	98	1	167
100	$\bar{B}^0 \to \pi^0 \pi^+ \pi^+ \pi^- \pi^- \bar{K}^0 K^* K^+ K^{*-}$	99	1	168
101	$ar{B}^0 ightarrow \pi^0 ho^0 \pi^- D^+$	100	1	169
102	$\bar B^0 o ar K^* \gamma_{c1}$	27	1	170
103	$\bar{B}^0 \to \bar{K}^* K^- D^{*+}$	102	1	171
104	$\bar{B}^0 \to \pi^+ K^- D^- D^{*+}$	103	1	172
105	$\bar{B}^0 o ho^- D_2^{*+}$	104	1	173
106	$ \bar{B}^{0} \to \rho^{-} D_{2}^{*+} \bar{B}^{0} \to \rho^{0} \pi^{+} K^{*-} \eta_{c} $	105	1	174
107	$B^0 \to D_s^{*-} D_1^+$	106	1	175
108	$\bar{B}^0 \to \pi^+ \pi^- \pi^- D^+$	107	1	176
109	$\bar{B}^0 \to \pi^0 \omega K^* K^- D^+$	108	1	177
110	$ar{B}^0 o \eta ar{K}^0 J/\psi$	109	1	178
111	$\bar{B}^0 o \pi^+ K^- \chi_{c1}$	110	1	179
112	$ar{B}^0 ightarrow \pi^0 ho^0 ho^- D^{*+} \gamma$	111	1	180
113	$\bar{B}^0 \to \pi^0 \pi^0 \pi^- \omega D^+$	112	1	181
114	$\bar{B}^0 \to D^+ D_{s1}^{\prime -}$	113	1	182
115	$ar{B}^0 o \pi^0 ho^- \omega D^{*+}$	114	1	183
116	$\bar{B}^0 \to \pi^+ K^{*-} J/\psi$	115	1	184
117	$\bar{B}^0 o \bar{K}^0 D^{*0} D^{*0}$	116	1	185
118	$\bar{B}^0 \to \pi^+ \rho^- \rho^- \omega D^{*+}$	117	1	186
119	$\bar{B}^0 \to \pi^0 \pi^+ \pi^+ K^- D^-$	118	1	187
120	$\bar{B}^0 \to \rho^- \omega D^+ \gamma$	119	1	188

index	event branch of \bar{B}^0	iEvtBrOfP2	nEtrs	nCmltEtrs
121	$\bar{B}^0 \to \pi^0 \pi^0 \pi^+ K^0 K^0 K^- K^- D^{*+}$	120	1	189
122	$ar{B}^0 o \pi^0 ar{n} \Sigma_c^0$	121	1	190
123	$\bar{B}^0 \to \pi^0 \pi^0 \pi^0 \pi^+ K^{*-} \bar{D}^{*0}$	122	1	191
124	$\bar{B}^0 \to D^+ \Delta^- \bar{n}$	123	1	192
125	$\bar{B}^0 o \bar{K}^* \bar{\Lambda} \Xi_c^{*0}$	124	1	193
126	$\bar{B}^0 \to \pi^0 \pi^+ \pi^- \rho^- D^{*+}$	125	1	194
127	$\bar{B}^0 o \omega \bar{K}^0 K^* \bar{K}^*$	126	1	195
128	$ar{B}^0 ightarrow \pi^0 \pi^+ \eta K^{*-}$	127	1	196
129	$\bar{B}^0 \to \rho^0 \pi^- \pi^- \rho^+ \bar{K}^* D^{*+}$	128	1	197
130	$\bar{B}^0 \to \rho^0 \rho^- D^{*+}$	129	1	198
131	$\bar{B}^0 \to \rho^0 \pi^- K^0 \bar{K}^* D^+$	130	1	199
132	$\bar{B}^0 \to K^{*-} D^{*+} \bar{D}^0$	131	1	200
133	$\bar{B}^0 \to \pi^0 D^+ D_s^{*-}$	132	1	201
134	$ar{B}^0 o D^{*0} \Delta^0 \bar{\Delta}^0$	133	1	202
135	$ar{B}^0 o D^0 n ar{n}$	134	1	203
136	$\bar{B}^0 o e^- \bar{\nu}_e \pi^+ D^0$	135	1	204