Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 75%. We keep your highest score

Next item →

1/1 point

- 1. Convert $\frac{1}{49}$ to exponential form, using 7 as the factor.
 - $\odot 7^{-2}$
 - $O(7^2)$
 - \bigcirc 49 $^{-1}$
 - $\bigcirc \ \frac{7}{7^3}$
 - ⊘ Correct

The rule for a factor to a Negative exponent is to divide by the same factor to a positive exponent with the same absolute value

2. A light-year (the distance light travels in a vacuum in one year) is $9,460\,\mathrm{trillion}$ meters. Express in scientific notation.

1/1 point

- $\bigcirc~0.946\times10^{16}$
- $\bigcirc \ 9460 \times 10^{12} \, \text{meters}$
- $\bigcirc \ 9.46 \times 10^{15} \, \text{kilometers}$
- $\ \, \bigcirc \, \, 9.46 \times 10^{15} \, \text{meters.}$
- \odot correct 9,460 is (9.4×10^3) meters and one trillion meters is 10^{12} meters. $(9.4\times10^3)(10^{12})$ = 9.4×10^{15} . A kilometer is 1000 meters.
- 3. Simplify $(x^8)(y^3)(x^{-10})(y^{-2})$

1/1 point

- $igodentural(x^{-2})(y)$
- $\bigcirc \ (x^{-80})(y^{-6})$
- $\bigcirc \ (x)(y^{-2})$
- $\bigcirc (x^2)(y)$
- **⊘** Correct By the Division and Negative Powers Rule, this is $(x^{(8-10)})(y^{(3-2)})$
- 4. Simplify $[(x^4)(y^{-6})]^{-1}$

1/1 point

- \bigcirc (x^-4) (y^6)
- $\bigcirc (x^3)(y^{-7})$
- $\bigcirc \ rac{(x^4)}{(y^{-6})}$
- **⊘** Correct By the Power to a Power Rule, each of the exponents is multiplied by $\left(-1\right)$
- 5. Solve for x:

1/1 point

$$\log_2{(39x)} - \log_2{(x-5)} = 4$$

- (a) $\frac{-80}{23}$ (b) $\frac{80}{38}$

- $\bigcirc \frac{23}{80}$ $\bigcirc \frac{39}{23}$
- \odot correct $\frac{39x}{\log_2{\frac{39x}{(x-5)}}}=4$ by the Quotient Rule.

Since both sides are equal, we can use them as exponents in an equation.

$$2^{\log_2 \frac{39x}{(x-5)}} = 2^4$$

$$\frac{39x}{(x-5)} = 16$$

$$39x=16 imes(x-5)$$

$$39x=16x-80$$

6. Simplify this expression: 1/1 point $(x^{\frac{1}{2}})^{\frac{-3}{2}}$ $\bigcirc x^{-1}$ $\bigcirc x^{\frac{4}{3}}$ $\odot x^{\frac{-3}{4}}$ $\bigcirc \ x^{\frac{1}{3}}$ ⊘ Correct
We use the Power to a Power Rule -- multiply exponents: $x^{\frac{1}{2} imes \frac{-3}{2}} = x^{\frac{-3}{4}}$ 7. Simplify $\log_2 8 - \log_2 4 - (\log_3 4.5 + \log_3 2)$ 1/1 point O 2 ● -1 O 0 O 1 This is equivalent to: $\log_2(\tfrac{8}{4}) - \log_3(4.5 \times 2) = 1 - 2 = -1$ s. If $\log_3 19 = 2.680$, what is $\log_9 19$? 1/1 point 0.4347 **1.304** 0.8934 O 5.216 **⊘** Correct To convert from \log_3 to \log_9 , divide by $\log_3 9.$ Which is equal to 2 , so the $\mathsf{answer}\,\mathsf{is}\,1.34$ 1/1 point 9. If $\log_{10}b=1.8$ and $log_ab=2.5752$, what is a? 0 4 \bigcirc 3 \bigcirc 6 To solve for a in the formula; $\log_a b = rac{\log_x b}{\log_x a}$ $\log_a b = 2.5752$ and $\log_{10} b = 1.8$ Therefore, $\log_{10} a$ must equal to $\dfrac{1.8}{2.5752} = 0.69897$ Treating both sides of equation $\log_{10}a=0.69897$ as exponents of 10 gives $a=10^{0.69897}=5$ 10. An investment of 1,600 is worth 7,400 after 8.5 years. What is the continuously 1/1 point compounded rate of return of this investment? **18.02%** O 20.01 O 17.01% O 19.01%

 $\frac{ \ln \frac{7400}{1600}}{8.5} = 0.18017$

- 11. A pearl grows in an oyster at a continuously compounded rate of $.24\,\mathrm{per}$ year. If a 25year old pearl weighs 1 gram, what did it weigh when it began to form?
- 1/1 point

- $\bigcirc\ 0.02478$
- 0.0002478
- \bigcirc 0.2478
- 0.002478
- $\stackrel{\odot}{e}^{ ext{correct}} e^{(0.24 imes25)} = rac{1}{2}$ $\mathit{x} = \frac{1}{\left(e^{0.24 imes 25}
 ight)}$
 - $x = \frac{1}{403.4288}$
 - x = 0.002478
- 12. $\log_2 z = 6.754$. What is $\log_{10}(z)$?

1/1 point

- 0.82956
- \bigcirc 0.49185
- \bigcirc 1.3508
- ② 2.03316
- $\stackrel{\textstyle \odot}{=} \frac{\stackrel{\rm Correct}{\log_2 z}}{\log_2 10} =$

 $(\log_{10}z)\times(\log_210)=3.321928$

Therefore, $\log_{10}z=~rac{6.754}{3.321928}=2.03316$

- 13. Suppose that $g:\mathbb{R} o\mathbb{R}$ is a function, and that g(1)=10. Suppose that g'(a) is negative for every single value of a . Which of the following could possibly be g(1.5)?
- 1/1 point

- $\bigcirc g(1.5) = 10.1$
- $\bigcirc g(1.5) = 11$
- $\bigcirc g(1.5) = 103.4$

 \odot correct Since the slope of the tangent line to the graph of g is negative everywhere on the graph, we know that g is accreasing function! And therefore we must have g(1.5) < g(1). That is the case here, so this value is at least possible.