Методы обноружения мошеннических операций

Eгор Горюнов yegor_goryunov@vk.com

МТУСИ

13.12.2023

Введение

Проблема мошенничества в финансовой сфере

Подходы к детектированию мошеннических транзакций

1. Традиционная ручная проверка

000

- 2. Правила и эвристические методы
- 3. Методы машинного обучения

ററ

Машинное обучение для обнаружения мошенничества

- 1. Supervised подход: решаем задачу классификации
 - 1.1 NaiveBayes
 - 1.2 Logistic Regression
 - 1.3 SVM
 - 1.4 Gradient Boosting
 - 1.5 Multilayer perceptron (MLP)
- 2. Unsupervised подход: решаем задачу обнаружения аномалий
 - 2.1 Метрические методы (PCA, LOF, etc.)
 - 2.2 Кластеризация (DBSCAN, GMM, etc.)
 - 2.3 OneClassSVM
 - 2.4 Isolation Forest
 - 2.5 Autoencoder
- 3. Гибридный подход

Обучение с учителем для Fraud Detection

Проблема: экстремально редкий класс

Сравнение различных алгоритмов

Метод	Точность	Время	Время	Количество	Количество
		тренировки,	предсказания,	ложноположительных	ложноотрицательных
		c	С	результатов	результатов
Наивный	0.692	0.1479	0.0749	566	44
Байес					
k-ближайших соседей	0.349	4.265	5.2474	17	95
Логистическая регрессия	0.881	1.2275	0.006	3730	11
Метод	0.9185	3.8093	0.008	1694	9
опорных					
векторов					
Случайный лес	0.8081	11.6932	0.128	11	28
XGBoost -	0.8149	0.8328	0.1971	17	27
CPU					
XGBoost -	0.8081	0.5453	0.1899	14	28
GPU					
LightGBM	0.8012	0.8809	0.2443	13	29
CatBoost –	0.9041	3.8849	0.1366	589	13
CPU					
CatBoost -	0.913	1.754	0.1099	413	12
GPU					

Unsupervised подход: поиск аномалий

Примеры аномалий

Примеры аномалий

AAABBCCAABBBCAAABBCABBCCABAABBCCAAABBBBCABBBCC

Статистический подход

Кластеризация

Метрические методы

Метрические методы

PCA

Изолирующий лес

OneClassSVM

Автокодировщики: обучаем восстанавливать неаномальные данные

Execution of the Network:

$$\sqrt{(x_{new}-x_{new}')^2}>\delta\Rightarrow$$
 anomaly

Датасет

MACHINE LEARNING GROUP - ULB - UPDATED 6 YEARS AGO

New Notebook

Credit Card Fraud Detection

Anonymized credit card transactions labeled as fraudulent or genuine

Data Card Code (4497) Discussion (103)

About Dataset

Context

It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase.

Content

The dataset contains transactions made by credit cards in September 2013 by European cardholders.

This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions.

It contains only numerical input variables which are the result of a PCA transformation, Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features VI, V2, ... V2 are the principal components obtained with PCA, the only features which have not been transformed with PCA are "Time" and "Amount". Feature "Time" contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature "Amount" is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. Feature "Class" is the response variable and it takes value in case of fraud of otherwise.

Given the class imbalance ratio, we recommend measuring the accuracy using the Area Under the Precision-Recall Curve (AUPRC). Confusion matrix accuracy is not meaningful for unbalanced classification.

Usability ①

License

Database: Open Database, Cont...

Expected update frequency Not specified

....

Tags

Эксперемент

	precision	recall	f1-score	support
0	1.00	1.00	1.00	56856
1	0.52	0.90	0.66	105
accuracy			1.00	56961
macro avg	0.76	0.95	0.83	56961
weighted avg	1.00	1.00	1.00	56961

CatBoost

	precision	recall	f1-score	support
0	1.00	1.00	1.00	56856
1	0.54	0.90	0.68	105
accuracy			1.00	56961
macro avg	0.77	0.95	0.84	56961
weighted avg	1.00	1.00	1.00	56961

RBF SVM

	precision	recall	f1-score	support
0	1.00	1.00	1.00	56856
1	0.90	0.85	0.87	105
accuracy			1.00	56961
macro avg	0.95	0.92	0.94	56961
weighted avg	1.00	1.00	1.00	56961

Ссылки

Обсудим?