Velagapudi Ramakrishna Siddhartha Engineering College::Vijayawada

(Autonomous)

II /IV B Tech Degree Examinations(February/2022)

VR20

Fourth Semester

Department of Information Technology 20IT4303:ADVANCED DATA STRUCTURES AND ALGORITHMS

Time: 3Hrs MODEL QUESTION PAPER Max Marks:70

Part – A is Compulsory

Answer one (01) question from each unit of Part – B

Answers to any single question or its part shall be written at one place only

		Cognitive Levels(K): K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-E	valuate; l	K6-Create	
Q.	No	Question	Marks	Course	Cog.
				Outcome	Level
Paı	t - A			10)	(1=10M
1	a	State the Properties of Red-Black Trees	1	CO1	K1
	b	Define Time and Space complexity.	1	CO1	K1
	С	What is time complexity of Quick sort in best, average and worst	1	CO2	K1
		cases?			
	d	State Knapsack Problem.	1	CO3	K1
	e	Define principle of optimality.	1	CO3	K1
	f	Differentiate between divide-and-conquer and dynamic	1	CO2	K2
		programming			
	g	Define E-node, live node and dead node	1	CO2	K1
	h	State graph coloring problem	1	CO2	K1
	I	Differentiate between LC-branch-and-bound and FIFO branch-and-	1	CO3	K2
		bound			
	j	Differentiate between P and NP problems	1	CO4	K2
Par	t - B			4X1	5 =60M
		UNIT - I	ı		Т
2	a	Explain top down insertion and deletion in Red-Black Trees with	8	CO1	K3
		suitable examples.			
	b	Write about linear time construction of suffix arrays and suffix trees.	7	CO1	K2
		(OR)	1		1
3	a	Define algorithm and discuss the criteria an algorithm must satisfy?	9	CO1	K2
		Describe asymptotic notations in detail with suitable examples.	_		
	b	Write an algorithm to find maximum and minimum elements of an	6	CO1	K3
		array. Evaluate its time complexity.			
		UNIT - II	I _		l
4	a	State the control abstraction for Divide and Conquer technique.	5	CO2	K2
	b	Sort the elements (12, 67, 33, 10, 9, 72, 45, 11) using quick sort and	10	CO2	K3
		derive its time complexity in average case.			
		(OR)			•
5	a	Explain about Job sequencing with deadlines problem with an	7	CO3	K2
		example.			
	b	Define Minimum cost spanning tree. Apply Kruskals algorithm on	8	CO3	K3
		the following example to find minimum cost spanning tree.			
		55 1 45			
		25 4 8			
		3) 50			
		5 40 15 7			
		(5) 10			
		35 6			
		33			
		UNIT - III		-	
6	a	State All-Pairs Shortest Path problem and Explain how it is solved	7	CO3	K2

		with an example using dynamic programming.										
	b	Describe 0/1 knapsack problem Find an optimal solution for 0/1									CO3	K3
		knapsack problem using dynamic programming where										
		n = 5, m = 12 (p1, p2, p3, p4, p5) = (4, 8, 6, 7, 9) and (w1, w2, w3, w4, w5) = (2, 3, 1, 4, 1)										
		(w1, w2, w3, w	v4, w5	= (2,	3, 1, 4	, 1)	(OR)					
7	a	Compare and	6	CO2	K2							
,	а	Compare and Contrast back tracking and branch & bound design techniques.							c bound design	U	CO2	KZ
	b	State n queen's problem. Solve the 4-Queens problem using							9	CO2	K3	
		backtracking. Also mention the algorithm steps in solving the problem with time complexity.										
	•					Ul	NIT - I	IV				
8	a	Write the control abstraction of LC search.									CO3	K2
	b	Apply LCBB to solve the following Travelling salesman problem							10	CO3	K3	
		(TSP). Represe	ent eac	h stag	e of co	omputa	ation u	sing s	tate space tree.			
		Here 1, 2, 3, 4,	ere 1, 2, 3, 4, 5 represents different cities and each cell value is the									
		distance between corresponding two cities.										
				1	2	3	4	5	1			
			1	∞	20	30	10	11				
			2	15	∞	16	4	2	=			
			3	3	5	∞	2	4	1			
			4	19	6	18	∞	3	-			
			5	16	4	7	16	∞				
	<u> </u>	<u> </u>		<u>I</u>	<u>I</u>	l	(OR)	<u>I</u>	<u> </u>	<u>I</u>	1	J
9	а	Illustrate deterministic and non-deterministic algorithms with									CO4	K2
		examples										
	b	Explain about P, NP, NP-Hard and NP-Complete.							7	CO4	K2	

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE::VIJAYAWADA

(AUTONOMOUS)

Dt.12-06-2019

GUIDELINES FOR FRAMING MODEL QUESTION PAPER

The model papers for all subjects in a semester are gathered from the departments whenever a course is offered for the first time adopting new regulation. All the Heads of the Departments are requested to direct their faculty to strictly adhere to the following guidelines while framing the model question papers for the subjects of UG and PG courses in the new curriculum.

- 1. Questions must be covered unit-wise uniformly as per the syllabus without missing the competency.
- 2. The question paper shall reflect the Bloom's Cognitive Levels of Learning.

Cognitive Levels (K): K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Create

The composition of question paper shall have questions at different complexity levels as listed below:

•	Questions that can be attempted by an average student (K1 & K2)	40%
•	Questions of intermediate complexity (K3 & K4)	40-50%
•	Questions of design and application oriented nature (K5 & K6)	10-20%

- 3. Question paper is to be set conforming to the OBE pattern clearly mentioning the Course Outcomes and Bloom's Cognitive Levels against each question.
- 4. The questions are to be set with minimum 2 sub-questions (a) & (b) for each main question to the extent possible covering entire syllabus in the unit.
- 5. Specify the marks against each question / part of a question in Part B.
- 6. The figures, if any, may be computer aided or neatly drawn with black pen indicating clearly the values/dimensions.
- 7. Prepare the one mark questions in only sentence form. Answers to these questions must be unique and having short answers limited to three/four lines.

PRINCIPAL