Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа Р3224	К работе допущен
Студенты Кобик Никита, Маликов Глеб	Работа выполнен <u>а</u>
Преподаватель Иванов Виктор Юрьевич	Отчет принят

Рабочий протокол и отчет по лабораторной работе

№1.03

Изучение центрального соударения двух тел. Проверка второго
Закона Ньютона.

1. Цель работы.

Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.

Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

2. Задачи, решаемые при выполнении работы.

Расчет импульсов тел в каждом из опытов, относительных изменений импульса и энергии. Вычисление силы натяжения нити при проведении опытов с разной массой тележек.

3. Объект исследования.

Упругие и неупругие соударения тележек. Движение тележки под действием постоянной силы.

4. Метод экспериментального исследования.

Замер таких величин как: масса тележек, скорость тележек.

5. Рабочие формулы и исходные данные.

Для задания 1:

 m_1 — масса первой тележки, m_2 - масса второй тележки, v_{10} - скорость первой тележки до соударения, v_{1x} - скорость первой тележки после соударения, v_{2x} - скорость второй тележки после соударения, p_{1x} - импульс первой тележки до соударения, p_{1x} - импульс первой тележки до соударения, p_{2x} — импульс второй тележки после соударения, δ_p - относительное изменения импульса системы при соударении, δ_W - относительное изменения кинетической энергии системы при соударении, $\overline{\delta_p}$ и $\overline{\delta_W}$ —средние значения данных величин соответственно, погрешности данных величин - $\Delta \overline{\delta_p}$, $\Delta \overline{\delta_W}$; $\delta_W^{(T)}$ - теоретическое значение относительного изменения механической энергии.

$$p_{10x} = m_1 v_{10x}, \ p_{1x} = m_1 v_{1x}, \ p_{2x} = m_2 v_{2x}.$$

$$\delta_p = \Delta p_x / p_{10x} = \frac{\left(p_{1x} + p_{2x}\right)}{p_{10x}} - 1 \quad \delta_W = \Delta W_{\kappa} / W_{\kappa 0} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$$

$$\Delta \overline{\delta}_{p} = t_{\alpha_{\text{aoa}},N} \sqrt{\frac{\displaystyle\sum_{i=1}^{N} \left(\delta_{pi} - \overline{\delta}_{p}\right)^{2}}{N\left(N-1\right)}} \; ; \; \Delta \overline{\delta}_{W} = t_{\alpha_{\text{aoa}},N} \sqrt{\frac{\displaystyle\sum_{i=1}^{N} \left(\delta_{Wi} - \overline{\delta}_{W}\right)^{2}}{N\left(N-1\right)}}$$

где $t_{\alpha_{\text{max}},N}$ – коэффициент Стьюдента для доверительной вероятности $\alpha_{\text{дов}} = 0.95$

$$\delta_W^{(\tau)} = -\frac{W_{\text{not}}}{\frac{m_1 v_{10}^2}{2}} = -\frac{m_2}{m_1 + m_2}$$

 v_{10} - скорость первой тележки до соударения, v - скорость системы тележек после неупругого соударения

 $p_{10} = m_1 v_{10}$ — импульс системы до соударения;

 $p = (m_1 + m_2)v$ – импульс системы после соударения;

$$\delta_p = \Delta p/p_{10} = \frac{p_1}{p_{10}} - 1$$
 — относительное изменение импульса;

 $\delta_W^{(3)}$ — экспериментальное значение относительного изменения механической энергии, вычисляемое по формуле

$$\delta_W^{(3)} = \Delta W_{\kappa} / W_{\kappa 0} = \frac{(m_1 + m_2) v_2^2}{m_1 v_{\kappa 0}^2} - 1$$
,

 $\delta_W^{(\tau)}$ — теоретическое значение относительного изменения механической энергии, вычисляемое по формуле

$$\delta_W^{(\tau)} = -\frac{W_{\text{not}}}{\frac{m_1 v_{10}^2}{2}} = -\frac{m_2}{m_1 + m_2}$$

Для задания 2:

m — масса гирьки, v_1 - скорость тележки при прохождении первых ворот, v_2 - скорость тележки при прохождении вторых ворот, a - ускорение тележки, T - сила натяжения нити, M_1 - масса тележки, b — коэффициент наклона экспериментальной зависимости, $F_{\rm Tp}$ — сила трения действующая на тележку.

$$a = \frac{(v_2)^2 - (v_1)^2}{2(x_2 - x_1)}, \quad T = m(g - a)$$

$$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2};$$

$$ma = mg - T$$

6. Измерительные приборы.

Таблица 1.

Наименование средства измерения	Прелел измерений	Пена деления	Класс точности	Погрешность
Линейка на рельсе	1,30 м	1 см/дел	_	0,5 см
ПКЦ-3 в режиме измерения скорости	9,99 м/с	0,01 м/с.	_	0,01 м/с
Лабораторные весы	250 г	0,01 г	_	0,01 г

7. Схема установки.

Рис. 1 Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Для задания 1:

Таблица №1.1

№ опыта	m1, г	m2, Г	V _{10x} , M/c	V _{1x} , M/c	V2x, M/C
1			0,24	0	0,22
2			0,24	0	0,22
3	49,8	47,2	0,24	0	0,21
4			0,25	0,05	0,19
5			0,23	0	0,22

№ опыта	m1, г	m2, г	V _{10x} , M/c	V _{1x} , M/c	V2x, M/c
1			0,24	0	0,14
2			0,25	0	0,14
3	49,8 96,1	96,1	0,24	0	0,14
4			0,24	0	0,14
5			0,24	0	0,14

Таблица №2.1

№ опыта	m ₁ , г	m ₂ , г	v ₁₀ , м/с	v, m/c
1			0,22	0,11
2			0,21	0,09
3	52,8		0,22	0,1
4			0,22	0,11
5			0,21	0,1

Таблица №2.2

№ опыта	m1, Γ	m2, г	V ₁₀ , M/c	v, m/c
1			0,24	0,06
2			0,23	0,07
3	52,8	99,3	0,24	0,07
4			0,23	0,06
5			0,23	0,07

Таблица №4.1

№ опыта	р _{10х} , мН*с	р _{1х} , мН*с	р _{2х} , мН*с	$\delta_{ m p}$	δ_{W}
1	11,952	0	10,384	-0,13	-0,2
2	11,952	0	10,384	-0,13	-0,2
3	11,952	0	9,912	-0,17	-0,27
4	12,45	2,49	8,968	-0,08	-0,41
5	11,952	0	10,384	-0,09	-0,13

Таблица №4.2

№ опыта	р10х, мН*с	ріх, мН*с	р2х, мН*с	δ_{p}	δ_{W}
1	11,952	0	13,454	0,13	-0,34
2	12,45	0	13,454	0,08	-0,39

3	11,952	0	13,454	0,13	-0,34
4	11,952	0	13,454	0,13	-0,34
5	11,952	0	13,454	0,13	-0,34

Таблица №5.1

№ опыта	р10, мН*с	р, мН*с	δ_p	$\delta_W^{(\mathfrak{i})}$	$\delta_W^{(T)}$
1	11,62	11,341	-0,02	-0,51	
2	11,09	9,279	-0,16	-0,64	
3	11,62	10,31	-0,11	-0,6	-0,487875849
4	11,62	11,341	-0,02	-0,51	
5	11,09	10,31	-0,07	-0,56	

Таблица №5.2

№ опыта	р10, мН*с	р, мН*с	δ_{p}	$\delta_W^{(\mathfrak{i})}$	$\delta_W^{(T)}$
1	12,67	9,13	-0,28	-0,82	
2	12,14	10,65	-0,12	-0,73	
3	12,67	10,65	-0,16	-0,75	-0,652859961
4	12,14	9,13	-0,25	-0,8	
5	12,14	10,65	-0,12	-0,73	

Для задания 2:

Таблица №3.1

№ опыта	Состав гирьки	т, г	v ₁ , _M /c	v2, M/c
1	подвеска	50,6	0,12	0,39
2	подвеска + одна шайба	51,5	0,16	0,48
3	подвеска + две шайбы	52,3	0,19	0,55
4	подвеска + три шайбы	53,2	0,2	0,61
5	подвеска + четыре шайбы	54,1	0,22	0,66
6	подвеска + пять шайб	55	0,23	0,71
7	подвеска + шесть шайб	55,8	0,24	0,75

Масса тележки M₁=48,5 г

Таблица №3.2

№ опыта	Состав гирьки	т, г	v ₁ , м/c	v ₂ , _M /c
1	подвеска	99,3	0,09	0,28
2	подвеска + одна шайба	100,4	0,12	0,28
3	подвеска + две шайбы	101	0,12	0,34
4	подвеска + три шайбы	101,8	0,12	0.35
5	подвеска + четыре шайбы	102,7	0,13	0,41
6	подвеска + пять шайб	103,5	0,14	0,46
7	подвеска + шесть шайб	104,4	0,16	0,5

Масса тележки М1=98,2 г

Таблица №6.1

№ опыта	т, г	$a, M/c^2$	Т, мН
1	50,6	0,11	491,33
2	51,5	0,16	497,49
3	52,3	0,2	503,13
4	53,2	0,26	508,59
5	54,1	0,3	515,03
6	55	0,35	520,85
7	55,8	0,39	526,19

Таблица №6.2

№ опыта	т, г	a, m/c ²	Т, мН
1	99,3	0,05	970,16
2	100,4	0,05	980,91
3	101	0,08	983,74
4	101,8	0,08	991,53
5	102,7	0,12	996,19
6	103,5	0,15	1000,85
7	104,4	0,17	1007,46

9. Графики.

Графики зависимостей Т от а для случаев с разгоном неутяжеленной и утяжеленной тележки.

10. Окончательные результаты.

Доверительные интервалы для относительных изменений импульса и энергии при упругом соударении двух легких тележек и соударении легкой тележки с утяжеленной $\overline{\delta_p}$, $\overline{\delta_W}$

1)
$$\overline{\delta_p} = -0.12 \pm 0.044826153 \text{ MH*c}$$

$$\overline{\delta_W} = -0.242 \pm 0.131984141$$

2)
$$\overline{\delta_p} = 0.12 \pm 0.0278 \,\text{mH*c}$$
 $\overline{\delta_W} = -0.35 \pm 0.0278$

Теоретическое значение относительного изменения механической энергии

$$\delta_{W}^{(T)} = -0.487875849$$

Доверительные интервалы для относительных изменений импульса и энергии при неупругом соударении двух легких тележек и соударении легкой тележки с утяжеленной δ_p , $\delta_W^{(3)}$

1)
$$\delta_p = -0.076 \pm 0.681990153 \, \text{мH*c}$$

$$\delta_W^{(9)} = -0.564 \pm 0.071$$

2)
$$\delta_p = -0.186 \pm 0.808 \,\text{MH} * c$$

$$\delta_W^{(3)} = -0.766 \pm 0.051710989$$

Масса M_1 неутяжеленной тележки и доверительный интервал этой величины

$$M_1 = 123,29 \ \Gamma \pm 5,292 \ \Gamma$$

Сила трения $F_{\text{Тр1}} = 478,12 \text{ мH}$

Масса M_1 утяжеленной тележки и доверительный интервал этой величины

$$M_1 = 252,18 \,\mathrm{r} \pm 69,12 \,\mathrm{r}$$

Сила трения $F_{Tp2} = 964,9 \text{ мH}$

11. Выводы и анализ результатов работы.

В ходе исследования упругого и неупругого центрального соударения тележек были получены данные об относительных изменениях импульса и энергии. Обнаружено, что при упругом соударении $\overline{\delta_p}$ и $\overline{\delta_W}$ равны -0,12 и -0,242 соответственно, при неупругом соударении $\overline{\delta_p}$ и $\overline{\delta_W}$ составляют -0,076 и -0,564 соответственно.

Теоретическое значение относительного изменения механической энергии $\delta_W^{(T)}$ составляет - 0,487875849. Проведенные исследования подтверждают соответствие теоретического значения диапазонам изменений, полученным в эксперименте. Важно отметить, что оценка массы тележек может быть осложнена значительной силой трения, действующей в системе.

Также были оценены значения силы трения $F_{\rm Tp1}$ и $F_{\rm Tp2}$, которые равны 478,1170833 и 964,9023529 соответственно, и которые могут оказывать влияние на итоговые результаты.

На основе полученных данных исследования можно сделать вывод о соответствии полученных результатов с теоретическими ожиданиями и о подтверждении закономерностей, описанных в классической механике, для упругих и неупругих соударений тележек. Тем не менее, необходимо учитывать влияние силы трения при оценке массы тележек, что может привести к небольшим погрешностям в результатах исследования.