#### Recall...

 John is a cop. John knows first aid. Therefore, all cops know first aid





Chapter 1.5 & 1.6

#### Recall...

 Some students work hard to study. Some students fail in examination. So, some work hard students fail in examination.



#### **Argument**

p: It rainsq: The floor is wet

 $p_1$ 

 $oldsymbol{p}_{\mathsf{n}}$ 



- Argument in propositional logic is a sequence of propositions
  - Premises / Hypothesis: All except the final proposition
  - Conclusion: The final proposition
- Argument form represents the argument by variables

Chapter 1.5 & 1.6 5

### **Argument: Valid?**

Given an argument, where

•  $p_1, p_2, ..., p_n$  be the premises

q be the conclusion

The argument is valid when

 $(p_1 \land p_2 \land \dots \land p_n) \rightarrow q$  is a tautology

- When all premises are true, the conclusion should be true
- When not all premises are true, the conclusion can be either true or false

| р | q | $p \rightarrow q$ |                    |
|---|---|-------------------|--------------------|
| Т | Т | Т                 | Focus on this c    |
| Т | F | F                 | Check if it happ   |
| F | Т | Т                 | — Спеск ії ії парр |
| F | F | Т                 |                    |

#### **Argument**

Example:

#### **Argument is valid**

 $\mathbf{p} \rightarrow \mathbf{q}$  If it rains, the floor is wet

P It rains

q ∴ The floor is wet



Chapter 1.5 & 1.6 7

#### **Rules of Inference**

- How to show an argument is valid?
  - Truth Table
    - May be tedious when the number of variables is large
  - Rules of Inference
    - Firstly establish the validity of some relatively simple argument forms, called rules of inference
    - These rules of inference can be used as building blocks to construct more complicated valid argument forms

#### **Rules of Inference**

- Modus Ponens
  - Affirm by affirming

$$p \rightarrow q$$

- Modus Tollens
  - Deny by denying

$$\begin{array}{c}
 \neg q \\
 p \rightarrow q
\end{array}$$

$$\therefore \neg p$$

Chapter 1.5 & 1.6 9

#### **Rules of Inference**

Hypothetical Syllogism

$$\begin{array}{c}
p \to q \\
q \to r
\end{array}$$

$$\therefore p \to r$$

Disjunctive Syllogism

#### **Rules of Inference**

Addition

Simplification

Conjunction

Chapter 1.5 & 1.6 11

#### **Rules of Inference**

Resolution

$$\begin{array}{c}
p \lor q \\
\neg p \lor r \\
\hline
\cdot \quad a \lor r
\end{array}$$

- Example
  - I go to swim or I play tennis
  - I do not go to swim or I play football
  - Therefore, I play tennis or I play football

## Rules of Inference $(\rightarrow)$

| Modus Ponens           | $((p\toq)\land(p))\toq$                                     |
|------------------------|-------------------------------------------------------------|
| Modus Tollens          | $((\neg q) \land (p \rightarrow q)) \rightarrow \neg p$     |
| Hypothetical Syllogism | $((p \to q) \land (q \to r)) \to (p \to r)$                 |
| Disjunctive Syllogism  | $((b \land d) \lor (\neg b)) \to \mathbf{d}$                |
| Addition               | $(p) \to p \vee q$                                          |
| Simplification         | $((b) \lor (d)) \to b$                                      |
| Conjunction            | $((b) \lor (d)) \to (b \lor d)$                             |
| Resolution             | $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$ |

Chapter 1.5 & 1.6

## Rules of Equivalence (↔)

Recall...

| Identify Laws       | $p \wedge T \equiv p$                                       |
|---------------------|-------------------------------------------------------------|
| lacinity Laws       | $p \lor F \equiv p$                                         |
| Damination Laura    | '                                                           |
| Domination Laws     | $p \vee T \equiv T$                                         |
|                     | $p \wedge F \equiv F$                                       |
| Idempotent Laws     | $p \lor p \equiv p$                                         |
|                     | $p \wedge p \equiv p$                                       |
| Negation Laws       | p ∨ ¬p ≡ T                                                  |
|                     | $p \wedge \neg p \equiv F$                                  |
| Double Negation Law | ¬ (¬p) = p                                                  |
| Commutative Laws    | $p \lor q \equiv q \lor p$                                  |
|                     | $p \wedge q \equiv q \wedge p$                              |
| Associative Laws    | $p \lor (q \lor r) \equiv (p \lor q) \lor r$                |
|                     | $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$        |
| Distributive Laws   | $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$     |
|                     | $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ |
| Absorption Laws     | $p \lor (p \land q) \equiv p$                               |
|                     | $p \wedge (p \vee q) \equiv p$                              |
| De Morgan's Laws    | ¬(p ∨ q) ≡ ¬p ∧ ¬q                                          |
|                     | $\neg (p \land q) \equiv \neg p \lor \neg q$                |
|                     |                                                             |

# **Comparison between Inference and Equivalence**

- Inference (p → q)
  - Meaning: If p, then q
  - p → q does not mean q → p
  - Either inference or equivalence rules can be used
  - $p \leftrightarrow q$  implies  $p \rightarrow q$
  - ⇒ is used in proof

- Equivalence (p ↔ q)
  - Meaning: p is equal to q
  - $p \leftrightarrow q \text{ mean } q \leftrightarrow p$
  - Only equivalence rules can be used
  - p ↔ q can be proved by showing p → q and q → p
  - ⇔ is used in proof
- Equivalence (↔) is a more restrictive relation than
   Inference (→)

Chapter 1.5 & 1.6 15

#### **Using Rules of Inference**

- Example 1:
  - Given:
    - It is not sunny this afternoon and it is colder than yesterday.
    - We will go swimming only if it is sunny
    - If we do not go swimming, then we will take a canoe trip
    - If we take a canoe trip, then we will be home by sunset
  - Can these propositions lead to the conclusion "We will be home by sunset"?

Let p: It is sunny this afternoon
q: It is colder than yesterday
r: We go swimming
s: We take a canoe trip
t: We will be home by sunset

It is not sunny this afternoon and it is colder than yesterday
 r → p
 We will go swimming only if it is sunny
 If we do not go swimming, then we will take a canoe trip
 If we take a canoe trip, then we will be home by sunset

We will be home by sunset

Chapter 1.5 & 1.6 17

#### **Using Rules of Inference**

|                        | Step |                                     | Reason                          |  |
|------------------------|------|-------------------------------------|---------------------------------|--|
|                        | 1.   | ¬p ∧ q                              | Premise                         |  |
| Hypothesis:            | 2.   | ¬р                                  | Simplification using (1)        |  |
| ¬p ∧ q                 | 3.   | $r \rightarrow p$                   | Premise                         |  |
| $r \rightarrow p$      | 4.   | ٦r                                  | Modus tollens using (2) and (3) |  |
| $\neg r \rightarrow s$ | 5.   | $\neg r \rightarrow s$              | Premise                         |  |
| $s \rightarrow t$      | 6.   | S                                   | Modus ponens using (4) and (5)  |  |
| , ,                    | 7.   | $\boldsymbol{s} \to \boldsymbol{t}$ | Premise                         |  |
| Conclusion:            | 8.   | t                                   | Modus ponens using (6) and (7)  |  |
| t                      |      |                                     |                                 |  |

Therefore, the propositions can lead to the conclusion We will be home by sunset

#### **Using Rules of Inference**

Or, another presentation method:

Chapter 1.5 & 1.6

#### **<sup>☉</sup> Small Exercise <sup><sup>☉</sup>**</sup>

- Given:
  - If you send me an e-mail message, then I will finish writing the program
  - If you do not send me an e-mail message, then I will go to sleep early
  - If I go to sleep early, then I will wake up feeling refreshed
- Can these propositions lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."

Let p: you send me an e-mail message q: I will finish writing the program r: I will go to sleep early s: I will wake up feeling refreshed

 p → q
 If you send me an e-mail message, then I will finish writing the program

¬p → r
If you do not send me an e-mail message, then I will go to sleep early

If I go to sleep early, then I will wake up feeling refreshed

Chapter 1.5 & 1.6 21

#### **<sup>☉</sup> Small Exercise <sup><sup>☉</sup>**</sup>

|                                    | Ste | p                      | Reason                                   |  |
|------------------------------------|-----|------------------------|------------------------------------------|--|
|                                    | 1.  | $p \rightarrow q$      | Premise                                  |  |
| Hypothesis:                        | 2.  | $q \rightarrow p$      | Contrapositive of (1)                    |  |
| $p \to q$                          | 3.  | $\neg p \to r$         | Premise                                  |  |
| abla p 	o r $r 	o s$               | 4.  | $\neg q \rightarrow r$ | Hypothetical Syllogism using (2) and (3) |  |
| 1 –7 3                             | 5.  | $r \rightarrow s$      | Premise                                  |  |
| Conclusion: $\neg q \rightarrow s$ | 6.  | ¬q → s                 | Hypothetical Syllogism using (4) and (5) |  |

Therefore, the propositions can lead to the conclusion If I do not finish writing the program, then I will wake up feeling refreshed

#### **<sup>☉</sup> Small Exercise <sup><sup>☉</sup>**</sup>

Or, another presentation method:

Chapter 1.5 & 1.6 23

#### **Using Rules of Inference**

#### **Fallacies**

- Are the following arguments correct?
  - Example 1 (Fallacy of affirming the conclusion) Hypothesis
    - If you success, you work hard
      p -
    - You work hard

Conclusion

You success



- Example 2 (Fallacy of denying the hypothesis)
  - **Hypothesis**
  - If you success, you work hard

You do not success

Conclusion

You do not work hard



#### Rules of Inference for Quantifiers

Universal Instantiation

 $\forall x P(x)$ 

 $\therefore P(a)$ 

where a is a particular member of the domain

Existential Instantiation

 $\exists x P(x)$ 

 $\therefore$  P(c) for some element c

Universal Generalization

P(b) for an arbitrary b

 $\therefore \forall x P(x)$ 

Be noted that b that we select must be an arbitrary, and not a specific

Existential Generalization

P(d) for some element d

 $\therefore \exists x P(x)$ 

Chapter 1.5 & 1.6 25

#### **Rules of Inference for Quantifiers**

- Example 1
  - Given
    - Everyone in this discrete mathematics class has taken a course in computer science
    - Marla is a student in this class
  - These premises imply the conclusion
     "Marla has taken a course in computer science"

LetDC(x):x studies in discrete mathematicsCS(x):x studies in computer scienceDomain of x:student

Everyone in this discrete mathematics class has taken a course in computer science
 DC(Marla)
 Everyone in this discrete mathematics class has taken a course in computer science
 Marla is a student in this class

CS(Marla)

 Marla has taken a course in computer science

Chapter 1.5 & 1.6 27

#### **Rules of Inference for Quantifiers**

Premise: Conclusion:  $\forall x (DC(x) \rightarrow CS(x))$  CS(Marla) DC(Marla)

| Ste | р                                     | Reason                           |
|-----|---------------------------------------|----------------------------------|
| 1.  | $\forall x (DC(x) \rightarrow CS(x))$ | Premise                          |
| 2.  | DC(Maria) → CS(Maria)                 | Universal Instantiation from (1) |
| 3.  | DC(Maria)                             | Premise                          |
| 4.  | CS(Marla)                             | Modus ponens using (2) and (3)   |

Therefore, the propositions can lead to the conclusion Marla has taken a course in computer science

# Using Rules of Inference for Quantifiers

Or, another presentation method:

```
Premise: Conclusion:
\forall x \ (DC(x) \to CS(x)) \quad CS(Marla)
DC(Marla)
\forall x \ (DC(x) \to CS(x)) \land DC(Marla)
By \ Universal \ Instantiation
\Rightarrow (DC(Marla) \to CS(Marla)) \land DC(Marla)
\Rightarrow CS(Marla) \quad By \ Modus \ ponens
```

Chapter 1.5 & 1.6 29

#### **<sup>☉</sup> Small Exercise <sup><sup>☉</sup>**</sup>

- Given
  - A student in this class has not read the book
  - Everyone in this class passed the first exam
- These premises imply the conclusion "Someone who passed the first exam has not read the book"

Let C(x): x in this class

RB(x): x reads the book

PE(x): x passes the first exam

Domain of x: any person

$$\exists x (C(x) \land \neg RB(x))$$

 A student in this class has not read the book

$$\forall x (C(x) \rightarrow PE(x))$$

Everyone in this class passed the first exam

$$\exists x \ (PE(x) \land \neg RB(x))$$
 Someone who passed the first exam has not read the book

We cannot define the domain as student in this class since the conclusion means anyone

Chapter 1.5 & 1.6 31

#### **◎ Small Exercise ◎**

Premise: Conclusion:  $\exists x \ (C(x) \land \neg RB(x)) \\ \forall x \ (C(x) \rightarrow PE(x))$   $\exists x \ (PE(x) \land \neg RB(x))$ 

| Ste | p                                    | Reason                              |
|-----|--------------------------------------|-------------------------------------|
| 1.  | ∃x (C(x) ∧ ¬RB(x))                   | Premise                             |
| 2.  | C(a) ∧ ¬RB(a)                        | Existential Instantiation from (1)  |
| 3.  | C(a)                                 | Simplification from (2)             |
| 4.  | $\forall x (C(x) \rightarrow PE(x))$ | Premise                             |
| 5.  | $C(a) \rightarrow PE(a)$             | Universal Instantiation from (4)    |
| 6.  | PE(a)                                | Modus ponens from (3) and (5)       |
| 7.  | ¬RB(a)                               | Simplification from (2)             |
| 8.  | PE(a) ∧ ¬RB(a)                       | Conjunction from (6) and (7)        |
| 9.  | $\exists x (PE(x) \land \neg RB(x))$ | Existential Generalization from (8) |

Therefore, the propositions can lead to the conclusion Someone who passed the first exam has not read the book

#### **<sup>☉</sup> Small Exercise <sup><sup>☉</sup>**</sup>

Or, another presentation method:

$$(\exists x (C(x) \land \neg RB(x))) \land (\forall x (C(x) \rightarrow PE(x)))$$

$$\Rightarrow$$
 C(a)  $\land \neg RB(a) \land (\forall x (C(x) \rightarrow PE(x)))$  By Existential Instantiation

$$\Rightarrow$$
 C(a)  $\land$  ¬RB(a)  $\land$  (C(a)  $\rightarrow$  PE(a)) By Universal Instantiation

$$\Rightarrow$$
 **PE(a)**  $\land$  **¬RB(a)** By Modus ponens

$$\Rightarrow \exists x (PE(x) \land \neg RB(x))$$
 By Existential Generalization

Premise: Conclusion: 
$$\exists x \ (C(x) \land \neg RB(x)) \\ \forall x \ (C(x) \rightarrow PE(x))$$
 
$$\exists x \ (PE(x) \land \neg RB(x))$$

Chapter 1.5 & 1.6 33

### **Combining Rules of Inference**

- The rules of inference of Propositions and Quantified Statements can be combined
  - Universal Modus Ponens

$$\forall x (P(x) \rightarrow Q(x))$$
  
 $P(a)$ , where a is a particular element in the domain

- ∴ Q(a)
- Universal Modus Ponens

$$\forall x (P(x) \rightarrow Q(x))$$
  
 $\neg Q(a)$ , where a is a particular element in the domain

$$(\forall x \ (P(x) \to Q(x))) \land (P(a))$$

By Universal Instantiation

 $\Rightarrow (P(a) \to Q(a)) \land (P(a))$ 
 $\Rightarrow Q(a)$ 

By Modus Ponens

$$(\forall x \ (P(x) \to Q(x))) \land (\neg Q(a))$$

By Universal Instantiation

 $\Rightarrow (P(a) \to Q(a)) \land (\neg Q(a))$ 
 $\Rightarrow \neg P(a)$ 

By Modus Tollens