Содержание

1	Введение		
2	Обзор литературы		
	2.1	Различные типы хромофоров	
	2.2	Споряженные донорно-акцепторные (push-pull) хромофоры	
	2.3	Хромофоры с донорным блоком на основе триарилпиразолинов	
	2.4	Различные акцепторные блоки	
	2.5	Влияние дендроидного заместителя	
	2.6	Нелинейные хромофоры и их применение	
	2.7	Подходы к синтезу триарилпиразолинов	
3	Резу	льтаты и обсуждение	
4	Экс	периментальная часть	
5	Заключение		
6	Спи	сок литературы	

1. Введение

2. Обзор литературы

2.1. Различные типы хромофоров

2.2. Споряженные донорно-акцепторные (push-pull) хромофоры

Споряженные донорно-акцепторные хромофоры представляют большой интерес из-за их электрооптических свойств: система сопряженных двойных связей позволяет образовать низколежащую провести внутримолекулярный перенос заряда. Они применяются в таких областях, как органическая электроника, электрооптика, фотовольтаика [1].

Рис. 2.2.1: Общая структура push-pull хромофоров

2.3. Хромофоры с донорным блоком на основе триарилпиразолинов

2.4. Различные акцепторные блоки

Рис. 2.4.1: Различные акцепторы [2]

2.5. Влияние дендроидного заместителя

2.6. Нелинейные хромофоры и их применение

2.7. Подходы к синтезу триарилпиразолинов

Рис. 2.7.1: Структура и нумерация атомов 2-пиразолина

Основным способом синтеза 1, 3, 5-триарилпиразолинов является реакция конденсации халконов с фенилгидразинами. Установлено, что обычно первым вступает в реакцию вторич-

ный атом азота, реагируя с двойной связью халкона. Далее второй атом азота реагирует с карбонильной группой, замыкая пиразолиновый цикл. Этот подход является достаточно общим, как было показано в работе [3], где таким способом была получена библиотека из 7680 соединений с различными заместителями во всех трех ароматических ядрах.

Схема 2.7.1: Синтез триарилпиразолинов с использованием халконов

Второй способ синтеза пиразолинов использует [3+2] циклоприсоединение илидов азометиновых иминов к алкинам. Использование хиральных комплексов металлов в качестве катализаторов позволяет стереоселективно получать энантиомерно чистые пиразолины. Циклоприсоединение илидов азометиновых иминов к алкенам дает полностью насыщенные аналоги пиразолинов — пиразолидины [4].

Схема 2.7.2: Синтез триарил пиразолинов с использовнием [3 + 2] циклоприсоединения

3. Результаты и обсуждение

4. Экспериментальная часть

5. Заключение

6. Список литературы

Список литературы

- 1. *Bureš F.* Fundamental aspects of property tuning in push–pull molecules // RSC Adv. 2014. T. 4, № 102. C. 58826—58851.
- 2. *Dalton L. R.*, *Sullivan P. A.*, *Bale D. H.* Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects // Chemical Reviews. 2010. T. 110, № 1. C. 25—55.
- 3. Automated parallel synthesis of chalcone-based screening libraries / D. G. Powers [и др.] // Tetrahedron. 1998. Т. 54, № 16. С. 4085—4096.
- 4. Synthesis of Non-Racemic Pyrazolines and Pyrazolidines by [3+2] Cycloadditions of Azomethine Imines / F. Požgan [и др.] // Molecules. 2017. Т. 23, № 1. С. 3.