2 octobre 2020 version 1

Ces exercices mettent en application, dans des cas simples, les notions et exemples vus au cours. Ils sont à faire avant les problèmes proposés en séance d'exercice.

Série 3 : cinématique

1. Vecteur position, vitesse et accélération

On considère les trajectoires de deux points matériels, comme représenté ci-dessous.

Lesquels des vecteurs position, vitesse et accélération indiqués sur la figure sont réalistes ?

2. Vecteurs vitesse et accélération

Sur la figure ci-dessous, on a représenté la trajectoire d'un objet et la position de ce dernier aux instants $t=0,\,1,\,2,\,3,\,4,\,5$ et $6\,\mathrm{s}$.

En visualisant le mouvement de l'objet, dessiner approximativement, à chacun de ces instants,

- le vecteur vitesse,
- le vecteur accélération tangentielle,
- le vecteur accélération normale.

3. Produit scalaire

Soient \vec{a} et \vec{b} deux vecteurs de l'espace.

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| \, ||\vec{b}|| \, \cos \varphi$$

où φ est l'angle formé par \vec{a} et \vec{b} .

Pour chacune des questions ci-dessous, faire une esquisse et donner la réponse en fonction des vecteurs \vec{a} , \vec{b} , et $\vec{a} \cdot \vec{b}$ et de leurs normes.

- (a) Déterminer la longueur de la projection de \vec{a} sur \vec{b} .
- (b) Exprimer le vecteur obtenu par projection de \vec{b} sur \vec{a} . Dans quel cas cette projection et \vec{a} sont-ils opposés?
- (c) Soit \vec{r} un vecteur quelconque de l'espace. A quelle condition doit-il satisfaire pour être normal à \vec{a} ?

4. Produit vectoriel

Soient \vec{a} et \vec{b} deux vecteurs de l'espace.

$$\vec{a} \times \vec{b} = ||\vec{a}|| \, ||\vec{b}|| \, |\sin \varphi| \, \hat{n}$$

où φ est l'angle formé par \vec{a} et \vec{b} et \vec{n} le vecteur unitaire normal à \vec{a} et à \vec{b} , de sens donné par la règle du tire-bouchon (ou des trois doigts, ou de la main droite).

Pour chacune des questions ci-dessous, donner la réponse en fonction des vecteurs $\vec{a}, \vec{b},$ et $\vec{a} \times \vec{b}.$

- (a) Donner l'aire du parallélogramme défini par \vec{a} et \vec{b} .
- (b) En prenant \vec{b} comme base, donner la hauteur de ce parallélogramme.