Churchill Equation

$$f = 8 \left[\left(\frac{8}{\text{Re}} \right)^{12} + \frac{1}{(B+C)^{1.5}} \right]^{1/12}$$
where $B = \left[2.457 \ln \frac{1}{(7/\text{Re})^{0.9} + (0.27\epsilon/D)} \right]^{16}$

$$C = \left(\frac{37530}{\text{Re}} \right)^{16}$$

P. Pressure Drop Calculations

$$\Delta p_p = \frac{f_p L}{ID_p} \frac{\rho_p V_p^2}{2g_c} =$$

$$\Delta p_a = \left(\frac{f_a L}{D_h} + 1\right) \frac{\rho_a V_a^2}{2g_c} =$$

Q. Summary of Information Requested in Problem Statement

EXAMPLE 7.4. Water at a temperature of 175°F and a mass flow rate of 5000 lbm/hr is to be used to heat ethylene glycol. The ethylene glycol is available at 90°F with a mass flow rate of 30,000 lbm/hr. A double pipe heat exchange consisting of a 1¹/4-standard type M copper tubing inside of 2-standard type M copper tubing is to be used. The exchanger consists of two double hairpin exhangers, each of ft long. The flow configuration is such that both fluid travel in series throughout. Determine the outletemperature of both fluids using counterflow and against using parallel flow.

Discussion

Water loses energy only to the ethylene glycol and heat is transferred, fluid properties change temperature changes. Outlet temperatures are unknown so in order to evaluate properties, we use either the temperatures or the average of both inlet temperature. The fluid with the higher flow rate should be placed the passage (annular or tubular) having the greater consectional area so that pressure losses are minimal. With the piping arrangement all in series, the system equivalent to having one 24-ft-long double pipe exchanger.

Assumptions

Steady-state conditions exist.

Fluid properties remain constant and are evaluated at 132°F [≈ (175 + 90)/2].

- Nomenclature 1. T refers to the temperature of the warmer fluid.
 - 2. t refers to the temperature of the cooler fluid.
 - 3. w subscript refers to the warmer fluid.
 - h subscript refers to hydraulic diameter.
 - c subscript refers to the cooler fluid.
 - a subscript refers to the annular flow area or dimension.
 - 7. p subscript refers to the tubular flow area or dimension.
 - 8. 1 subscript refers to an inlet condition.
 - 2 subscript refers to an outlet condition.
 - e subscript refers to equivalent diameter.

A. Fluid Properties (interpolated from the property tables in the appendix)

Water $\dot{m}_w = 5000 \, \text{lbm/hr}$ 132°F

 $T_1 = 175^{\circ} F$

 $\rho = 61.8 \, lbm/ft^3$

 $C_p = 0.9966 \, \text{BTU/lbm} \cdot ^{\circ} \text{R}$ $\alpha = 6.12 \times 10^{-3} \, \text{ft}^2/\text{hr}$

 $k_f = 0.378 \text{ BTU/hr-ft-}^{\circ}\text{R}$ $v = 0.484 \times 10^{-5} \, \text{ft}^2/\text{s}$

Pr = 2.84

Ethylene $m_c = 30,000 \, \text{lbm/hr}$

 $t_1 = 90^{\circ} F$

Glycol $\rho = 68.0 \, \text{lbm/ft}^3$ 132°F

 $C_p = 0.608 \,\mathrm{BTU/lbm} \cdot \mathrm{^{\circ}R}$ $\alpha = 3.61 \times 10^{-3} \, \text{ft}^2/\text{hr}$

 $k_f = 0.150 \text{ BTU/hr} \cdot \text{ft} \cdot ^{\circ} \text{R}$ $= 5.93 \times 10^{-5} \text{ ft}^2/\text{s}$

Pr = 59.0

B. Tubing Sizes

2-std M

 $ID_a = 0.1674 \, \text{ft}$

11/4-std M $ID_p = 0.1076 \text{ ft}$

 $OD_p = 1.375/12 = 0.1146$ ft

C. Flow Areas $A_p = \pi I D_p^2/4 = 0.00909 \text{ ft}^2$ $A_a = \pi (I D_a^2 - O D_p^2)/4 = 0.0117 \text{ ft}^2$

D. Fluid Velocities [Because $A_a > A_p$, we route the ethylene glycol (the fluid with the higher flow rate) through the annulus.]

Water

 $V_p = \dot{m}_w/\rho A_p = 2.47 \text{ ft/s}$

Ethylene Glycol

 $V_a = \dot{m}_c / \rho A_a = 10.48 \text{ ft/s}$

E. Annulus Equivalent Diameters

Friction

 $D_h = ID_a - OD_p = 0.0528 \text{ ft}$

Ht Transfer

 $D_e = (ID_a^2 - OD_p^2)/OD_p = 0.1299 \text{ ft}$

F. Reynolds Numbers

Water
$$Re_p = V_p I D_p / v = 5.5 \times 10^4$$

Ethylene
$$Re_a = V_a D_e / v = 2.3 \times 10^4$$

Glycol

G. Nusselt Numbers

Water
$$Nu_p = 0.023(Re_p)^{4/5} Pr^{0.3} = 194$$

Ethylene
$$Nu_a = 0.023(Re_a)^{4/5} Pr^{0.4} = 362$$

Glycol

H. Convection Coefficients

Water
$$h_i = Nu_p k_p / ID_p = 684$$

$$h_p = h_i I D_p / O D_p = 642$$

Ethylene
$$h_a = \text{Nu}_a k_f / D_e = 417 \text{ BTU/hr·ft}^2 \cdot \text{°R}$$

Glycol

I. Exchanger Coefficient

$$\frac{1}{U_o} = \frac{1}{h_p} + \frac{1}{h_a}$$

$$U_o = 253 \text{ BTU/hr} \cdot \text{ft}^2 \cdot ^{\circ} \text{R}$$

J. Outlet Temperature Calculations (Exchanger length L=24 ft)

$$R = \frac{\dot{m}_c C_{pc}}{\dot{m}_{to} C_{pw}} = 3.66 \qquad A_o = \pi O D_p L = 8.64 \text{ ft}^2$$

Counterflow
$$E_{counter} = \exp \left[U_o A_o (R - 1) / \dot{m}_c C_{pc} \right] = 1.375$$

$$T_2 = \frac{T_1(R-1) - Rt_1(1 - E_{counter})}{RE_{counter} - 1} = 146.1$$
°F

$$t_2 = t_1 + \frac{T_1 - T_2}{R} = 97.9$$
°F

Parallel Flow
$$E_{para} = \exp[U_o A_o (R+1)/\dot{m}_c C_{pc}] = 1.747$$

$$T_2 = \frac{(R + E_{para})T_1 + Rt_1(E_{para} - 1)}{(R + 1)E_{para}} = 146.5^{\circ}F$$

$$t_2 = t_1 + \frac{T_1 - T_2}{R} = 97.8$$
°F

Now at this point, we should re-evaluate the fluid properties at new temperatures. So for the water and for the ethylene glycol, we find the average of inlet and outlet temperatures as

Water
$$T = \frac{175 + 146.1}{2} = 160.6$$
°F

Ethylene Glycol
$$t = \frac{90 + 97.8}{2} = 93.9$$
°F

The system is now re-analyzed using properties evaluated at these temperatures. If necessary, a third iteration should be made so that a good estimate of the outlet temperatures is obtained. (With a spreadsheet, many iterations can be made in a very short time.) If this is done, the temperatures we use to find properties are:

Temperature at which to evaluate properties (after several iterations):

Water T = 162.5

Ethylene

Glycol t = 95.0

and the final results are:

K. Summary of Requested Information (Outlet temperatures)

Water $T_2 = 150^{\circ} F$ Counterflow $t_2 = 97.1^{\circ}F$ Ethylene Counterflow

Glycol

Parallel Flow Water $T_2 = 150^{\circ} F$ Ethylene $t_2 = 97.1^{\circ}F$ Parallel Flow Glycol

L. Heat Balance (as a check on the results)

Counterflow

Water $q_w = \dot{m}_w C_{ow} (T_1 - T_2) = 34.8 \text{ BTU/s}$

 $q_c = \dot{m}_c C_{pc}(t_2 - t_1) = 34.8 \text{ BTU/s}$ Ethylene Glycol

q = UALMTD = 34.8 BTU/sOverall

Parallel Flow

 $q_w = \dot{m}_w C_{pw} (T_1 - T_2) = 34.8 \text{ BTU/s}$ Water

Ethylene $q_c = \dot{m}_c C_{pc} (t_2 - t_1) = 34.8 \text{ BTU /s}$

Glycol

q = UALMTD = 34.8 BTU/sOverall

The results show that little difference exists between parallel flow and counterflow for this example. This is not always the case, however Counterflow is usually the preferred flow configuration.

Outlet temperatures for the first iteration were: water $T=146^{\circ}\mathrm{F}$ ethylene glycol $t=98^{\circ}\mathrm{F}$ for counterflow. When the properties were evaluated at the new temperatures, the final results were (after severiterations): water $T=150^{\circ}\mathrm{F}$ and ethylene glycol $t=97^{\circ}\mathrm{F}$. In this example the temperature at which properties were evaluated had a simple influence on the outlet temperatures. This occurred for these fluids under the conditions of the problem statement. For some fluids, however (some soils), properties change more drastically with temperature evaluating properties at a reasonable temperature becomes important.

Temperature Profile

Calculations made using the data of the previous example revenumber of details worth mentioning. In order to examine the perform of the exchanger, we allow the length to increase and calculate temperatures for both parallel and counterflow configurations. results are graphed in Figures 7.7 and 7.8.

Figure 7.7 shows temperature variation with length for a counterfarrangement. Length on the horizontal axis has been allowed to variation to the fluids to equal outlet temperatures. The temperature of the warm fluid at increases, and as length increases, the temperature decreases, following curve that is concave downward. The cooler fluid enters the exchangement is also concave downward. Throughout the exchanger, the fluid must travel a comparatively considerable distance for even a stemperature increase, whereas the warmer fluid experiences a greatemperature change. This is due to what is known as the capacitation, $\dot{m}_c C_{pc} > m$ which means that $(t_2 - t_1) < (T_1 - T_2)$, because

$$\dot{m}_c C_{pc}(t_2 - t_1) = \dot{m}_w C_{pw}(T_1 - T_2) = q$$

The curve shapes are typical for this condition.

Figure 7.8 shows temperature profiles for the same exchoperating in parallel (or unidirectional) flow. Note that even after ft, the outlet temperatures are not equal, nor can they be made theoretically, unless the surface area (proportional to length) is in (Actually, for this exchanger, outlet temperatures are equal at a length.)

TABLE C.6. Properties of gases at atmospheric pressure (101.3 kPa = 14.7 psia).

Water Vapor or Steam (gas constant = 461.5 J/(kg·K) = 85.78 ft·lbf/(lbm·°R); $\gamma = C_p/C_v = 1.333$)

					ecific			1	Thermal			
-				Heat C_p		Kine	Kinematic		Conductivity k		Thermal	
Ten		Dens		J	BTU	Visc	osity v	W	BTU	Diffusiv	itv α	Prandtl
K	°R	kg/m ³	lbm/ft ³	kg·K	lbm.°R	$m^2/s \times 10^5$	$ft^2/s \times 10^4$	m·K	hr·ft·°R	$m^2/s \times 10^4$		
380	684	0.586	0.0366	2 060	0.492	2.16	2.33	0.024 6	0.0142	0.293 6	0.789	1.060
400	720	0.554	0.0346	2014	0.481	2.42	2.61	0.026 1	0.0151	0.233 8	0.906	1.040
450	810	0.490	0.0306	1980	0.473	3.11	3.35	0.029 9	0.0173	0.307	1.19	
500	900	0.440	0.0275	1 985	0.474	3.86	4.16	0.033 9	0.0196	0.386	1.50	1.010
550	990	0.400	0.0250	1997	0.477	4.70	5.06	0.037 9	0.0219	0.475	1.84	0.996
600	1080	0.0365	0.0228	2 0 2 6	0.484	5.66	6.09	0.042 2	0.0244	0.573		0.991
650	1170	0.338	0.0211	2 056	0.491	6.64	7.15	0.0464	0.0268	0.666	2.22	0.986
700	1260	0.314	0.0196	2 085	0.498	7.72	8.31	0.050 5	0.0292	0.772	2.58	0.995
750	1350	0.293	0.0183	2119	0.506	8.88	9.56	0.054 9	0.0317	0.883		1.000
800	1440	0.274	0.0171	2 152	0.514	10.20	10.98	0.059 2	0.0317	1.001	3.42	1.005
850	1530	0.258	0.0161	2 186	0.522	11.52	12.40	0.063 7	0.0368	1.130	3.88 4.38	1.010 1.019

Example of reading values: kinematic viscosity at 380 K is $\nu = 2.16 \times 10^{-5} \text{ m}^2/\text{s}$

Source: Data taken from a number of references.

TABLE B.5. Properties of saturated liquids: water H2O.

				ecific			Th	nermal			
The state of the s			He	eat Cp	Kine	ematic	Cond	uctivity k	Thermal		
Temp		Specific		BTU	Visco	sity v	W	BTU		ivity α	Prandtl
°C	°F	Gravity	kg-K	lbm-°R	$m^2/s \times 10^7$	$ft^2/s \times 10^6$	m·K	hr-ft-°R		$ft^2/hr \times 10^3$	Number Pr
0	32	1.002	4 217	1.0074	17.88	19.25	0.552	0.319	1.308	5.07	13.6
20	68	1.000	4 181	0.9988	10.06	10.83	0.597	0.345	1.430	5.54	7.02
40		0.994	4 178	0.9980	6.58	7.08	0.628	0.363	1.512	5.86	4.34
60	140	0.985	4 184	0.9994	4.78	5.14	0.651	0.376	1.554	6.02	3.02
80		0.974	4 196	1.0023	3.64	3.92	0.668	0.386	1.636	6.34	2.22
100	212	0.960	4 216	1.0070	2.94	3.16	0.680	0.393	1.680	6.51	1.74
120	248	0.945	4 250	1.015	2.47	2.66	0.685	0.396	1.708	6.62	1.446
140	284	0.928	4 283	1.023	2.14	2.30	0.684	0.395	1.724	6.68	1.241
160	320	0.909	4 342	1.037	1.90	2.04	0.670	0.393	1.729	6.70	1.099
180	356	0.889	4 417	1.055	1.73	1.86	0.675	0.390	1.724	6.68	1.004
200	392	0.866	4 505	1.076	1.60	1.72	0.665	0.384	1.706	6.61	0.937
220	428	0.842	4610	1.101	1.50	1.61	0.572	0.377	1.680	6.51	0.891
240	464	0.815	4756	1.136	1.43	1.54	0.635	0.367	1.639	6.35	0.871
260	500	0.785	4 949	1.182	1.37	1.48	0.611	0.353	1.577	6.11	
280	537	0.752	5 208	1.244	1.35	1.45	0.580	0.335	1.481	5.74	0.874
300	572	0.714	5 728	1 368	1.35	1.45	0.540	0.312	1.324	5.13	0.910 1.109

TABLE C.1. Physical properties of gases at room temperature and pressure.

			Specific	Heat Cp	Kine	matic	Gas Co		
	Densi			BTU	Visco	sity v		ft·lbf	
Gas	kg/m ³	lbm/ft ³	kg-K	lbm∙°R	$m^2/s \times 10^6$	$ft^2/s \times 10^5$	kg·K	lbm.°R	$\gamma = C_p/C_s$
Air Carbon	1.177	0.0735	1 005.7	0.240	15.68	16.88	0.026 24	0.01516	1.4
dioxide	1.797	0.1122	871	0.208	8.321	8.957	0.016 572	0.009575	1.3
Nitrogen	1.142	0.0713	1 040.8	0.2486	15.63	16.82	0.026 20	0.01514	1.4
Oxygen	1.300	0.0812	920.3	0.2198	15.86	17.07	0.026 76	0.01546	1.4

Example of reading values: kinematic viscosity of air is $v = 15.68 \times 10^{-6} \text{ m}^2/\text{s}$

MW = molecular weight (engineering units) = molecular mass (SI units)

Gas constant $R = R_u/MW$; $R_u = 1545$ ft·lbf/lbmol·°R = 49,700 ft·lbf/slugmol·°R = 8 312 N·m/(mol·K)

1 BTU = 778 ft-lbf

Source: Data taken from a number of sources; see Bibliography at the end of the text.

TABLE B.3. Properties of saturated liquids: ethylene glycol C2H4(OH2).

			He	Jeat C,	Kinematic	matic	Cond	onductivity k	Thormal	lem	
C	remp °F	Specific Gravity	L kg·K	Briu Ibm.ºR	$\frac{\text{Viscos}}{\text{m}^2/\text{s} \times 10^6}$	/iscosity v 106 ft ² /s x 10 ⁵	M K	BTU hr.ft.°R	Diffusivity of m2/cv 108 62/h	vity α	Prandtl
1									or ve/in	01 × 111/ 11	I I I I I I I I I I I I I I I I I I I
0	32	1.130	2 2 9 4	0.548	57.53	61.92	0.242	0.140	9.34	3.62	615
20		1.116	2382	0.569	19.18	20.64	0.249	0.144	9.39	3.64	202
40		1.101	2474	0.591	8.69	9.35	0.256	0.148	939	3.64	20
09		1.087	2562	0.612	4.75	5.11	0.260	0.150	6 32	3.61	2 5
80	176	1.077	2650	0.633	2.98	3.21	0.261	0.151	9.21	3.57	32.4
00		1.058	2742	0.655	2.03	2.18	0.263	0.152	80.6	3.52	22.4

Source: Data taken from Analysis of Heat and Mass Transfer, by E. R. G. Eckert and R. M. Drake, Ir., Taylor & Francis Group—Hemisphere Publishing Corp., New York, © 1987. Used with permission of the publisher.

TABLE B.4. Properties of saturated liquids: glycerin C₃H₅(OH)₃.

1	1
Prandtl	84 700 31 000 12 500
mal vity α $f_{\rm f}^2/{\rm hr} \times 10^3$	3.81 3.47 3.67
Thermal Diffusivity m ² /s x 10 ⁸ ft ² ,	9.83
Thermal Conductivity k W BTU m·K hr·ft·°R m	0.163 0.164 0.156
Condu W M·K	0.282 0.284 0.286
Kinematic Viscosity v 10³ ft²/s x 10²	8.95 3.23 1.27
Kiner Viscos m²/s x 10³	8.31 3.00 1.18
Specific Heat C _p BTU Ibm·°R	0.540 0.554 0.570
Sp H _{re} kg·K	2 261 2 319 2 386 2 386
Specific Gravity	1.276 1.270 1.264 1.264
J.o.	32 50 88 84 84
°C T	0 10 30 80