MATPLOTLIB

```
import numpy as n #importing numpy library
x=n.linspace(0,5,11)
y=x ** 2

x #for plotting as x vales in graph
    array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ])

y #for plotting as y vales in graph
    array([ 0. , 0.25,  1. , 2.25,  4. , 6.25,  9. , 12.25, 16. , 20.25, 25. ])
```

import matplotlib .pyplot as p #importing matplotlib library

```
p.plot(x,y,'b') #'b' is color blue
p.xlabel('X axis label') #like number,frequency
p.ylabel('Y axis label') #like time..
p.title('Plotted x against y')
p.show()
```


Using multiple plots

```
p.subplot(1,2,1)  #(no of rows in the canvas. no of cols in the same canvas,fi
p.plot(x,y,'r--')  # 1st row ile 1st col for graph no:1
p.subplot(1,2,2)
p.plot(x,y,"b*-")  # 1st row ile 2nd col for graph no:2
```


p.subplot(2,1,1)

p.plot(x,y,'r--')

p.subplot(2,1,2)

p.plot(x,y,"b^-")

[<matplotlib.lines.Line2D at 0x7f6adef82450>]

p.subplot(2,2,1)

p.plot(x,y,'r--')

p.subplot(2,2,2)

p.plot(x,y,"b^-")

p.subplot(2,2,3)

p.plot(x,y,'r--')

p.subplot(2,2,4)

p.plot(x,y,"b^-")

f=p.figure()
axes=f.add_axes([0.5,0.5,0.8,0.8]) #(left,bottom,height,width)


```
f=p.figure()
axes=f.add_axes([0.5,0.5,0.8,0.8])
axes.set_xlabel('X label')
axes.set_ylabel('Y label')
axes.set_title('X plotted against Y')
axes.plot(x,y,"y^-")
```

```
[<matplotlib.lines.Line2D at 0x7f6ada7323d0>]
```

```
X plotted against Y
```

GRAPH WITHIN ANOTHER GRAPH

```
f=p.figure()
axes1=f.add_axes([0.5,0.5,0.9,0.9])
axes1.set_xlabel('X1 label')
axes1.set_ylabel('Y1 label')
axes1.set_title('Graph1')
axes1.plot(x,y,"y^-")
axes2=f.add_axes([0.6,1,0.2,0.3]) #to make the 2nd graph come within the 1st, change the f
axes2.set_xlabel('X2 label')
axes2.set_ylabel('Y2 label')
axes2.set title('Graph2')
axes2.plot(x,y,"g.-")
axes3=f.add axes([0.9,1,0.2,0.3]) #to make the 2nd graph come within the 1st, change the f
axes3.set_xlabel('X3 label')
axes3.set ylabel('Y3 label')
axes3.set title('Graph3')
axes3.plot(y,x,"g.-") #when plot(y,x) is given the graph becomes inverse(opp direction)
```

[<matplotlib.lines.Line2D at 0x7f6ad9a46b50>]


```
f,axes=p.subplots()
axes.plot(x,y,'g*-')
axes.set_xlabel("X label")
```

```
axes.set_ylabel("Y label")
axes.set_title("Title")
```


CONCEPT OF SUBPLOTS IN OOP's

```
fig,axes=p.subplots(1,2)
```

```
for ax in axes:
    ax.plot(x,y,'g*-')
    ax.set_xlabel("X label")
    ax.set_ylabel("Y label")
    ax.set_title("Title")
    fig.tight_layout()
```


CONTROLLING FIGURE SIZE AND DPI

fig,axes=p.subplots(1,2,figsize=(4,6),dpi=100) #figsize(width,height)

fig.tight_layout()

fig,axes=p.subplots(1,2,figsize=(4,6),dpi=40) #figsize(width,height)
fig.tight_layout()


```
fig,axes=p.subplots(1,2,figsize=(4,6),dpi=80) #figsize(width,height)
for axes in axes:
    axes.set_xlabel('X label')
    axes.set_ylabel('Y label')
    axes.set_title('X plotted against Y')
    axes.plot(x,y,"y^-")
fig.tight_layout()
```


ADDING LEGENDS TO GRAPH

```
f=p.figure()
axes=f.add_axes([0.5,0.5,0.8,0.8])
axes.plot(x,x**2,label="x**2")
axes.plot(x,x**4,label="x**4")
axes.legend()
```

<matplotlib.legend.Legend at 0x7f6adaa68f90>


```
f=p.figure()
axes=f.add_axes([0.5,0.5,0.8,0.8])
axes.plot(x,x**2,label="x**2")
axes.plot(x,x**4,label="x**4")
axes.legend(loc=1)
```

<matplotlib.legend.Legend at 0x7f6ad9bb7690>


```
f=p.figure()
axes=f.add_axes([0.5,0.5,0.8,0.8])
axes.plot(x,x**2,label="x**2")
axes.plot(x,x**4,label="x**4")
axes.legend(loc=2)
```

<matplotlib.legend.Legend at 0x7f6ad9be2cd0>

```
600 - x**2
500 - x**4
```

```
f=p.figure()
axes=f.add_axes([0.5,0.5,0.8,0.8])
axes.plot(x,x**2,label="x**2")
axes.plot(x,x**4,label="x**4")
axes.legend(loc=3)
```

<matplotlib.legend.Legend at 0x7f6ad98940d0>


```
f=p.figure()
axes=f.add_axes([0.5,0.5,0.8,0.8])
axes.plot(x,x**2,label="x**2")
axes.plot(x,x**4,label="x**4")
axes.legend(loc=4)
```

<matplotlib.legend.Legend at 0x7f6ad990fa50>

LINECOLOR, LINEWIDTH, LINETYPE

p.plot(x,x+3,color='b',lw=3,ls='-',marker='o',markersize=12,linestyle='dashed',markeredgecolo

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: MatplotlibDeprecationWar """Entry point for launching an IPython kernel.

[<matplotlib.lines.Line2D at 0x7f5e0e51d5d0>]

×

import seaborn as s

dataset=s.load_dataset('tips')
dataset.head()

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

BARPLOT

s.barplot(x='sex',y='total_bill',data=dataset)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd87322a850>

import numpy as n

s.barplot(x='sex',y='total_bill',data=dataset,estimator=n.std)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd85e51ef10>

COUNTPLOT here y is implicitly set as count of x co ordinate

s.countplot(x='sex',data=dataset)

BOXPLOT

s.boxplot(x='day',y='total_bill',data=dataset,palette='rainbow')

cmatnlotlih axes subnlots AxesSubnlot at Ax7fd85e3d9c1A>

For horizontal representation

s.boxplot(data=dataset,palette='coolwarm',orient='h')

<matplotlib.axes._subplots.AxesSubplot at 0x7fd850d4ee10>

s.boxplot(x='day',y='total_bill',data=dataset,palette='rainbow',hue='smoker')

<matplotlib.axes._subplots.AxesSubplot at 0x7fd85cbf6410>

VIOLINPLOT

s.violinplot(x='day',y='total_bill',data=dataset,palette='rainbow',hue='sex')

<matplotlib.axes._subplots.AxesSubplot at 0x7fd85cb747d0>

s.violinplot(x='day',y='total_bill',data=dataset,palette='rainbow',hue='sex',split=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8597ccd10>

STRIP PLOT

s.stripplot(x='day',y='total_bill',data=dataset)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd859777350>

s.stripplot(x='day',y='total_bill',data=dataset,jitter=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd85971f510>

s.stripplot(x='day',y='total_bill',data=dataset,jitter=True,hue='sex',palette='coolwarm')

<matplotlib.axes._subplots.AxesSubplot at 0x7fd85971c750>

FACTORPLOT

s.factorplot(x='sex',y='total_bill',data=dataset,kind='bar')

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:3717: UserWarning: The `fawarnings.warn(msg)

<seaborn.axisgrid.FacetGrid at 0x7fd859771ad0>

• ×

DISTPLOT

import seaborn as s

LOADING DATA SET CALLED 'tips'

dataset=s.load_dataset('tips')

dataset.head(10)

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
5	25.29	4.71	Male	No	Sun	Dinner	4
6	8.77	2.00	Male	No	Sun	Dinner	2
7	26.88	3.12	Male	No	Sun	Dinner	4
8	15.04	1.96	Male	No	Sun	Dinner	2
9	14.78	3.23	Male	No	Sun	Dinner	2

Uinsg distplot(univariate)

s.distplot(dataset['tip'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7fcae50a3950>

s.distplot(dataset['total_bill'],kde=False)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7fcad67ce890>

s.distplot(dataset['total bill'],kde=False,bins=30)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `diwarnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7fcad67c15d0>

s.jointplot(x='total_bill',y='tip',data=dataset,kind='scatter')

<seaborn.axisgrid.JointGrid at 0x7fcae1cdd790>

hex=density

s.jointplot(x='total_bill',y='tip',data=dataset,kind='hex')

<seaborn.axisgrid.JointGrid at 0x7fcaea125390>

s.jointplot(x='total_bill',y='tip',data=dataset,kind='reg')

<seaborn.axisgrid.JointGrid at 0x7fcad8d2ced0>

s.jointplot(x='total_bill',y='tip',data=dataset,kind='resid')

<seaborn.axisgrid.JointGrid at 0x7fcad8c1f3d0>

s.pairplot(dataset)

To identify the geneder type for each data point

s.pairplot(dataset,hue='sex',palette='coolwarm')

RUGPLOT

s.rugplot(dataset['tip'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fcad8a26050>
0.06

Also univariant, only creates a dashed line, KDE is implememented using RUGPLOT Very important

import seaborn as s
import matplotlib.pyplot as p

iris_dataset=s.load_dataset('iris')
iris_dataset.head(5)

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

PAIR PLOT

s.PairGrid(iris_dataset)

С→

MAPPING THE DATATSET TO THE PAIRPLOT AND PLOTTING USING SCATTER PLOT

<u>8</u> 0.4 1 1 1 -

mapping=s.PairGrid(iris_dataset)
mapping.map(p.scatter)

0.0 1.0

0.8

FACET GRID

tips_dataset=s.load_dataset('tips')
tips_dataset.head(5)

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

MAPPING DATASET

=>here the graph 1 represe the thotal_bill trend for smokers at lunch time graph 2: total_bill for a smoker at dinner time graph 3:total_bill for non smoker at lunch time

mapping=s.FacetGrid(tips_dataset,col='time',row='smoker')
mapping.map(p.hist,'total_bill')

mapping=s.FacetGrid(tips_dataset,col='time',row='day')
mapping.map(p.hist,'total_bill')

<seaborn.axisgrid.FacetGrid at 0x7f519ce6b9d0>

mapping=s.FacetGrid(tips_dataset,col='time',row='sex')
mapping.map(p.hist,'total_bill')

<seaborn.axisgrid.FacetGrid at 0x7f519d188110>

REGRESSION PLOT

s.lmplot(x='total_bill',y='size' ,data=tips_dataset)

<seaborn.axisgrid.FacetGrid at 0x7f519ca04910>

s.lmplot(x='total_bill',y='size',hue='sex',data=tips_dataset)

COUNT PLOT

s.countplot(x='day', data=tips_dataset)

TO MAKE BACKGROUND AS WHITE

```
s.set_style('white')
s.countplot(x='day', data=tips_dataset)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f519c8aa910>

s.set_style('ticks')

s.countplot(x='day', data=tips_dataset,palette='deep')

<matplotlib.axes._subplots.AxesSubplot at 0x7f519c86afd0>

s.countplot(x='day', data=tips_dataset)

s.despine()

- s.countplot(x='day', data=tips_dataset)
- s.despine(left='true')

- s.countplot(x='day', data=tips_dataset)
- s.despine(bottom='true',left='true')

×