Math. Econ. Statistics

2021년 1학기 학기말 고사

남 준 우

학번:

성명:

1. (15 points)

Suppose that
$$\underline{y} \sim \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \sim N(\underline{\mu}, \Sigma)$$
 with $\underline{\mu} = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 4 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

What is the distribution of $W = \frac{(y_1 - 3)^2}{2} + y_3^2$. Provide **concretely** your argument.

<다음 문제의 답안은 A4 용지 새 종이에 답안을 기록하세요.>

2. (15 points) Suppose that $Y_1=X+U_1$ and $Y_2=X+U_2$, where X= permanent income, $U_1=$ current income in year 1, and $U_2=$ current income in year 2. It is known that U_1 and U_2 have zero expectations and are uncorrelated with X. It is also known that $V(X)=400,\ V(U_1)=200,\ V(U_2)=100$, and that $C(U_1,U_2)=300$. A random sample of size 10 is drawn from the joint probability distribution of Y_1 and Y_2 . The objective is to estimate $\mu=E(X)$, which is unknown. The sample means are \overline{Y}_1 and \overline{Y}_2 . Consider all the linear combinations of \overline{Y}_1 and \overline{Y}_2 which are unbiased estimators of μ , and find the one that has minimum variance.

<다음 문제의 답안은 A4 용지 새 종이에 답안을 기록하세요.>

- 3. (15 점*2=30 점) Suppose that X_1, \dots, X_n form a random sample from $N(\mu, \sigma^2)$. Consider the following random variable: $\frac{n(\overline{X}_n \mu)^2}{\sigma^2}$.
- (1) Derive the distribution of the random variable and state your logic as concrete as possible. What is mean of the above statistics?
- (2) Suppose that the above parental distribution is NOT $N(\mu, \sigma^2)$. Find the limiting distribution of $\left(\overline{X}_n\right)^2$.

<다음 문제의 답안은 A4 용지 새 종이에 답안을 기록하세요.>

- 4. (각 10점씩 40점) Let (X_1,\cdots,X_n) be an i.i.d. sample of Bernoulli random variables; that is, each X_i has density $f(x;\theta)=\theta^x(1-\theta)^{1-x}$.
- (1) Find the MLE of θ .
- (2) Sketch the asymptotic distribution of MLE.
- (3) Suppose that you are interested in $\gamma = 1/\theta$. What is the MLE for γ ?
- (4) Deduce the asymptotic distribution of the MLE for γ .