Odmocňování v R a v C

Odmocňování v $\mathbb R$ a v $\mathbb C$

Jana Ernekerová, 2014

Odmocňování v \mathbb{R}

Definujeme **přirozené odmocniny**, ozn.

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

jako reálné řešení rovnice $x^n = a$. V závislosti na n rozlišujeme mezi následujícími případy.

Je-li n=2k, $k\in\mathbb{N}$, **sudé**, pak $x^n\geq 0$ pro všechna $x\in\mathbb{R}$, což znamená, že rovnice $x^n=a$ má reálné řešení jen pro $a\geq 0$.

```
g1 = plot(x^2, (x, -3, 3), legend_label = '$y=x^2$', figsize=4,
axes_labels=['$x$','$x^2$'])
g2 = plot(3, (x, -3, 3), legend_label = '$a>0$', linestyle='--',
color='green')
g3 = plot(-3, (x, -3, 3), legend_label = '$a<0$', linestyle='--',
color='red')
g1+g2+g3</pre>
```


Pro a>0 jsou tato řešení dvě, neboť $x^{2k}=(-x)^{2k}$. Sudou odmocninu $\sqrt[2k]{a}$ definujeme jako **nezáporné** řešení. Je proto $\sqrt{x^2}=|x|$ a nikoli x, protože nevíme, jestli je x kladné nebo záporné.

Je-li $n=2k-1, k\in\mathbb{N}$, **liché**, pak rovnice $x^{2k-1}=a$ má jediné řešení, které značíme $\sqrt[2k-1]{a}$. Například $\sqrt[3]{-8}=-2$.

$$f1 = plot(x^3, (x, -3, 3), legend_label = '$y=x^3$', figsize=4,$$

```
axes_labels=['$x$','$x^3$'])
f2 = plot(15, (x, -3, 3), legend_label = '$a>0$', linestyle='--',
color='red')
f3 = plot(-15, (x, -3, 3), legend_label = '$a<0$', linestyle='--
', color='green')
f1+f2+f3</pre>
```


Poznamenejme ještě, že často používáme zápis $\sqrt[k]{x}=x^{\frac{1}{k}}.$

Jak je ale patrné z následujícího výpočtu, Sage se takto zavedeným odmocňováním neřídí. Implicitně pracuje v komplexním oboru. Tím se budeme zabývat dále.

```
# Komplexní číslo! Ne očekávaná -1.
n((-1)^(1/3))
```

Odmocňování v C

Nechť $n \in \mathbb{N}$ a $z \in \mathbb{C}$. Pak n-tou odmocninou z komplexního čísla z nazýváme každé číslo $x \in \mathbb{C}$, pro které platí $x^n = z$ a značíme $\sqrt[n]{z}$.

Rovnice

$$x^n=|a|(\coslpha+i\sinlpha),\;|a|
eq 0,$$

má v oboru komplexních čísel právě n různých kořenů:

$$x_k=\sqrt[n]{|a|}(\cosrac{lpha+2k\pi}{n}+i\sinrac{lpha+2k\pi}{n})$$
, $k=0,1,2,\ldots,n-1$

Obrazy čísel x_k jsou vrcholy pravidelného n-úhelníku vepsaného do kružnice se středem v počátku a s poloměrem $\sqrt[n]{|a|}$.

Co bychom jistě měli zmínit je základní věta algebry, jejíž důkaz si uvedeme později v lineární algebře a která říká, že každý nekonstantní polynom, tedy polynom stupně $n \geq 1$ s komplexními koeficienty má alespoň jeden komplexní kořen.

V následující demonstraci si ukažme komplexní odmocniny z 1, tedy komplexní řešení rovnice $x^n=1$. V dříve uvedeném vzorci proto máme a=1 a $\alpha=0$. Proto

$$x_k=\cosrac{2k\pi}{n}+i\sinrac{2k\pi}{n}\,,\quad k=0,1,2,\ldots,n-1.$$

```
@interact
def roots(n=slider(1,10,step_size=1)):
    roots = [ [cos(2*k*pi/n), sin(2*k*pi/n)] for k in range(n) ]
    pts = points(roots, size=30, color='red')
    circ = circle((0,0),1)
    show(circ + pts, figsize=4)
```

n () 1