On considère un plateau à k+1 cases avec n jetons initialement placés sur la case k.

Déroulement d'une partie

Une partie dure $r \in \mathbb{N}$ reprise, et chaque reprise se déroule suivant:

- Le joueur \clubsuit donne une partie J des jetons en jeu
- Le joueur \blacklozenge choisit un ensemble J^{\dagger} de jetons à déplacer parmi $\{J, J^c\}$
- Tous les jetons de J^\dagger sont déplacés vers la gauche
- Si des jetons se retrouvent sur la case -1, ils sont exclus du jeu

Si à la fin des r reprises le nombre de jetons est réduit à 0 ou 1, alors le joueur \clubsuit gagne.

Le joueur ♦ gagne sinon.

Analyse du jeu

- Qu'aurait on pu dire si la condition de victoire était "le nombre de jetons est réduit à 0"?
- $\stackrel{P}{\leftarrow}$ Question 1 Donner une valeur de r telle que le joueur \clubsuit a une stratégie gagnante.
- $\stackrel{ ext{\rotate}}{\sim}$ Question 2 Donner une valeur de r telle que le joueur \blacklozenge a une stratégie gagnante.
- **Question 3** Montrer qu'un joueur a toujours une stratégie gagnante.

Jouer au hasard

Considérons que \spadesuit joue au hasard, choisissant J ou J^c avec une probabilité $p=\frac{1}{2}$ à chaque reprise.

Question 4 Exprimer l'espérance du nombre de jetons restants à la fin d'une partie.

Jouer très mal

On suppose désormais

$$\sum_{i=0}^{k} {r \choose i} \ge \frac{2^r}{n}$$

Question 5 Montrer que le joueur ♦ a une stratégie gagnante.