Amazon Pets Product Reviews Sentiment Analysis

DATS 6312_11: Natural Language Processing

Contents

- Problem understanding
- Data understanding
- Data preparation
- Models
- Evaluation
- Conclusion

Problem understanding

The customer service team spends too much time on reading each product's review, which might delay the messages that could be more urgent, leading to more complaints.

Therefore, to mitigate this problem, I built a sentiment classifier to help the customer service team prioritize their tasks by categorizing the sentiment of product reviews. This sentiment classifier can detect whether the reviews are positive or negative.

Data understanding

Data: Amazon pets product reviews

Size: 1.2GB

Year: 2013-10 ~ 2018-10

Records: 5,816,874 rows and 3 columns

Source:

https://cseweb.ucsd.edu/~jmcauley/pdfs/emnlp19a.pdf

Data preparation

This project encompasses two parts -

Part1. Exploratory Data Analysis, which helps us know more about this dataset and gain insights into what customers talk about in their reviews

Part2. Sentiment Analysis using a baseline model and a fine tuned pre-trained model.

Part 1 - Exploratory Data Analysis

Part 1 - Exploratory Data Analysis

Text preprocessing

	overall	reviewText	year_month	Text	Text1
0	-1.0	I was not happy with product would like to ret	2016-12	i was not happy with product would like to ret	happy product would like return work
1	-1.0	This cd is scratched and it constantly skips	2016-12	this cd is scratched and it constantly skips d	cd scratched constantly skip disappointed
2	1.0	It works just fine and repeats when I'm not he	2016-12	it works just fine and repeats when i m not he	work fine repeat bird still talking stay quiet
3	0.0	I purchased this cd for my Pocket Parrot. It h	2016-12	i purchased this cd for my pocket parrot it ha	purchased cd pocket parrot woman man speaking
4	0.0	Maybe it's just my Amazon parrot, but she's no	2016-10	maybe it s just my amazon parrot but she s not	maybe amazon parrot picking quickly well
5	1.0	I bought this to help me teach my blue quaker	2016-09	i bought this to help me teach my blue quaker	bought help teach blue quaker named booger tal
6	0.0	Bird showed no interest in it	2016-08	bird showed no interest in it	bird showed interest
7	-1.0	did not like at all	2016-08	did not like at all	like
8	-1.0	Didn't do a thing for my African Grey! He hate	2016-08	didn t do a thing for my african grey he hated	thing african grey hated obnoxious
9	1.0	I like it - but the Cockatiel I am not so sure	2016-07	i like it but the cockatiel i am not so sure h	like cockatiel sure listens far speak

Part 1 - Exploratory Data Analysis

Part 2. Sentiment Analysis

Models

Logistic Regression Model	DistIBERT
1. The output can be interpreted as	DistilBERT is a small, fast, cheap and light
probabilities, making it easier to understand	Transformer model trained by distilling BERT
the impact of each variable on the outcome.	base. It has 40% less parameters than bert-
2. Lower risk of overfitting compared to	base-uncased, runs 60% faster while preserving
more complex models.	over 95% of BERT's performances as measured
	on the GLUE language understanding
	benchmark.

Models - Baseline

Logistic regression model

	F1-Score	Accuracy
0	0.71	
1	0.95	
		0.92

Table1. Imbalanced classes

	F1-Score	Accuracy
0	0.92	
1	0.92	
		0.92

Table 2. Balanced classes

Models - DistilBERT

After having a 0.92 accuracy as my benchmark, I fine tuned with my data with distilBERT, configuring the batch size 32, epoch 8, learning rate at 3e-5, and optimizer Adam. I experimented from batch size 16 to batch size 32 and epoch from 2 to 8.

```
Epoch 1/8
45133/45133 [==========]- 1651s 36ms/step- loss: 0.2074- accuracy: 0.9146
Epoch 2/8
45133/45133 [=======]- 1627s 36ms/step- loss: 0.1746- accuracy: 0.9303
Epoch 3/8
45133/45133 [=======]- 1627s 36ms/step- loss: 0.1560- accuracy: 0.9390
Epoch 4/8
45133/45133 [========]- 1627s 36ms/step- loss: 0.1404- accuracy: 0.9463
Epoch 5/8
45133/45133 [========]- 1627s 36ms/step- loss: 0.1259- accuracy: 0.9528
Epoch 6/8
45133/45133 [=========]- 1627s 36ms/step- loss: 0.1131- accuracy: 0.9581
Epoch 7/8
45133/45133 [=========]- 1627s 36ms/step- loss: 0.1019- accuracy: 0.9630
Epoch 8/8
45133/45133 [=========]- 1626s 36ms/step- loss: 0.0929- accuracy: 0.9666
```

loss: 0.05769692733883858 accuracy: 0.9819391965866089

Evaluation Baseline

	F1-Score	Accuracy
0	0.92	
1	0.92	
		0.92

Table 2. Balanced classes

DistilBERT

loss: 0.05769692733883858

accuracy: 0.9819391965866089

Conclusion

Even though the logistic model is a baseline model, the accuracy score is already good by industrial standards.

However, the fine-tuned distilBERT has so much better performance despite of its disadvantages in terms of time consumption and high cost. If the cost of training is the priority concern, then the business can choose a logistic model. Otherwise, fine-tuning a pre-trained model gives a better model.