Hung-yi Lee

李宏毅

Sophisticated Input

Input is a vector

Input is a set of vectors

cat =
$$[0 \ 0 \ 1 \ 0 \ 0 \dots]$$

$$dog = [0 \ 0 \ 0 \ 1 \ 0 \dots]$$

elephant =
$$[0 \ 0 \ 0 \ 1 \dots]$$

To learn more: https://youtu.be/X7PH3NuYW0Q (in Mandarin)

• Graph is also a set of vectors (consider each **node**

• Graph is also a set of vectors (consider each **node**

as a vector)

$$H = [1 \ 0 \ 0 \ 0 \ \dots]$$

$$C = [0 \ 1 \ 0 \ 0 \ 0 \dots]$$

$$O = [0 \ 0 \ 1 \ 0 \ 0 \dots]$$

What is the output?

Example Applications

7

What is the output?

• Each vector has a label.

The whole sequence has a label.

Example Applications

this is good
Sentiment
analysis
positive

What is the output?

• Each vector has a label.

focus of this lecture

The whole sequence has a label.

Translation (HW5)

Sequence Labeling

saw

10

https://arxiv.org/abs/1706.03762₁₂

Find the relevant vectors in a sequence

秋到每个a5a1品的表现得没

Additive

$$\alpha'_{1,i} = exp(\alpha_{1,i}) / \sum_{j} exp(\alpha_{1,j})$$

$$k^1 = W^k a^1$$

Self-attention Extract information based

on attention scores

$$v^1 = W^v a^1 \qquad v^2 = W^v a^2$$

$$v^3 = W^v a^3$$

$$v^4 = W^v a^4$$

Self-attention b, b, b, parallel 水面域计算工,和技术

Can be either input or a hidden layer

 a^2

$$\alpha_{1,1} = \begin{bmatrix} \mathbf{k^1} & \mathbf{q^1} & \alpha_{1,2} = \begin{bmatrix} \mathbf{k^2} & \mathbf{q^1} \end{bmatrix}$$

$$\alpha_{1,3} = k^3 q^1 \alpha_{1,4} = k^4 q^1$$

$$\alpha_{1,1} = k^1 q^1 \alpha_{1,2} = k^2 q^1$$

$$\alpha_{1,3} = k^3 q^1 \alpha_{1,4} = k^4 q^1$$

$$egin{array}{ccc} lpha_{1,1} & & & k^1 \ lpha_{1,2} & & & k^2 \ lpha_{1,3} & & & k^3 \ lpha_{1,4} & & & k^4 \ \end{array}$$

 $egin{array}{llll} lpha_{1,2} & lpha_{2,2} & lpha_{3,2} & lpha_{4,2} \\ lpha_{1,3} & lpha_{2,3} & lpha_{3,3} & lpha_{4,3} \\ lpha_{1,4} & lpha_{2,4} & lpha_{3,4} & lpha_{4,4} \end{array}$

 q^1 q^2 q^3 q^4

 k^4 Q

Multi-head Self-attention Different types of relevance

Multi-head Self-attention Different types of relevance

Multi-head Self-attention Different types of relevance

Positional Encoding

Each column represents a positional vector e^i

- No position information in self-attention.
- Each position has a unique positional vector e^i
- hand-crafted
- learned from data

Table 1. Comparing position representation methods

https://arxiv.org/abs/ 2003.09229

Methods	Inductive	Data-Driven	Parameter Efficient
Sinusoidal (Vaswani et al., 2017)	✓	X	✓
Embedding (Devlin et al., 2018)	X	✓	X
Relative (Shaw et al., 2018)	×	✓	✓
This paper	✓	✓	✓

Many applications ...

Transformer

https://arxiv.org/abs/1706.03762

BERT

https://arxiv.org/abs/1810.04805

Widely used in Natural Langue Processing (NLP)!

Self-attention for Speech

Speech is a very long vector sequence.

10_{ms}

If input sequence is length L

A'Attention Matrix

Self-attention for Image

Source of image: https://www.researchgate.net/figure/Color-image-representation-and-RGB-matrix_fig15_282798184

DEtection Transformer (DETR)

https://arxiv.org/abs/2005.12872

Self-attention v.s. CNN

CNN: self-attention that can only attends in a receptive field

> CNN is simplified self-attention.

Self-attention: CNN with learnable receptive field

➤ Self-attention is the complex version of CNN.

Self-attention v.s. CNN

CNN

On the Relationship between Self-Attention and Convolutional Layers

https://arxiv.org/abs/1911.03584

Self-attention v.s. CNN

Good for more data

Self-attention

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/pdf/2010.11929,pdf

Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention https://arxiv.org/abs/2006.16236

To learn more about RNN

https://youtu.be/xCGidAeyS4M (in Mandarin)

https://youtu.be/Jjy6ER0bHv8
(in English)

Self-attention for Graph

Consider edge: only attention to connected nodes

This is one type of Graph Neural Network (GNN).

Self-attention for Graph

To learn more about GNN ...

https://youtu.be/eybCCtNKwzA (in Mandarin)

https://youtu.be/M9ht8vsVEw8 (in Mandarin)

To Learn More ...

Long Range Arena: A Benchmark for Efficient Transformers

https://arxiv.org/abs/2011.04006

(Dai et al., 2019) Recurrence Performer Set Transformer Compressive (Choromanski et al., 2020) Transformer Memory Low Rank / Memory Linformer Kernels Compressed (Wang et al., 2020b) (Liu et al., 2018) Longformer Routing Transformer. ETC Synthesizer Linear Transformer Big Bird Learnable Fixed/Factorized/ **Patterns** Sinkhorn Random Patterns Transformer Reformer Blockwise Transformer (Kitaev et al., 2020) Sparse Transformer Image Transformer **Axial Transformer**

56

54

LRA Score

48

46

Big Bird

Reformer

50

Transformer

Synthesizer

Performer

Linear Transformer

300

Transformer-XL

350

42

Linformer

Local Attention

Sinkhorn

Speed (examples per sec)

Efficient Transformers: A Survey https://arxiv.org/abs/2009.06732

