Микро-БЭСМ

Технический проект

Ревизия	Дата
A0	9 октября 2016 г.

Авторы:

Сергей Вакуленко

1. Назначение

Микро-БЭСМ, она же МКБ-8601, она же Ретро-86 — настольный компьютер конца 80-х, совместимый по архитектуре с ЭВМ БЭСМ-6. Он был разработан в конце 80-х в Лаборатории Вычислительной Техники и Автоматизации ОИЯИ в Дубне под руководством Левчановского Ф.В. и Силина И.Н. МКБ-8601 был способен выполнять все программы оригинальной БЭСМ-6, от теста АУ/УУ и до фортранного транслятора. Имел собственную ОС, способную интерпретировать экстракоды ОС Дубна и ОС Диспак. Система команд включала команды старой Б6 и собственный оригинальный набор. Процессор был построен на микросхемах серии К1804 (аналог Am2900). Настоящий проект ставит задачу повторить микро-БЭСМ на современной элементной базе (FPGA), используя сохранившиеся исходные тексты микрокоманд, тестов и операционной системы.

Миссия проекта:

• Сохранение исторического наследия советской инженерной школы и, в частности, архитектурной линии БЭСМ-6.

Требования к проекту:

- Сохранение программной совместимости, с БЭСМ-6 на уровне системы команд и мониторной системы «Дубна».
- Поддержка 64-битного режима процессора как расширения архитектуры БЭСМ-6.
- Реализация схемотехнической части на языке Verilog (SystemVerilog) и возможность запуска всей системы на симуляторе, включая операционную систему.
- Возможность запуска на современных широко доступных платах FPGA.
- Ценовая доступность компонентов нового БК по цене. Предполагается упор на продажу в виде недорогих комплектов для самостоятельной сборки (конструкторов).
- Открытые исходные тексты и техническая документация;

2. Блок-схема процессора

3. Формат микрокомандного слова

112	111 11	10 109	108	107	106	105	104 1	03 10	02 10)1 10	00 9	9	98 9	7 90	6 9.	5 9	4	93	92	91	90	89	88	87	86 85
	SQI							A						N	1AP	AI	U	A	LUD)	F	UNO		Al	LUS
84	83 82	2 81	80	79	78 7	77 7	6 75	74	73	72	71	70	69	68	67	66	65	64	63	62	2 61	60	59	58	57 56
Н		RB			D A			CI		СПИ	иUX				STO	DC			MOI		INSA		M	ODN	М
п		ND		RA				CI		SIII	VIUA	-		STOPC					MOD		PSHF			F	
55	54 5	53 52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
	DSR	-		* * * * * * * * * * * * * * * * * * * *	D.O.T.		Q.			4 D.	0.1		D.I.D.	T D.D.				a a t	101		TOP	253.6	GEN.	001	11/12/16
	RTIM WTIM			YDST		YDST		DST SHF ARBI R		RLD	LETC		YST	R	SCI	ICI	ICC	ISE	JEM	CEN	CSM	WEM			
28	27	26 25	24	23	22	21	20	9 18	8 17	7 1	6 1	5 1	4 13	3	12	11	10	9	8	7	6	5	4	3	2 1
ECT	O W/D D	DD A	ECA	WD	A A T		YD	EV	WR	v	DDI	EV	WI	D IO	MD		F	FCN	ΙΤ			C	OND		MPS
ECE	ECB WRB BRA ECA WRA ARA YDEVT WI		WK	. I	YDT	ΊM	WR	טוע	IOMP		MPA		PADR		COND			WIPS							

Описание полей микрокомандного слова:

Поле	Биты	Ширина	Описание
SQI	112-109	4	Код операции селектора адреса микропрограмм (СУАМ). 0 — JZ, переход по нулевму адресу; 1 — CJS, условный переход к подпрограмме по адресу, подаваемому на
			вход D СУАМ; 2 — JMAP, переход по адресу D, выработка сигнала /МЕ; 3 — СЈР, условный переход по адресу, подаваемому на вход D СУАМ; 4 — PUSH, загрузка стека и условная загрузка счетчика; 5 — JSRP, условный переход к подпрограмме по адресу, выбираемому
			из регистра/счетчика или со входа D СУАМ; 6 — СЈV, условный переход по адресу D, выработка сигнала /VE; 7 — ЈЯР, усл. переход по адресу, выбираемому из регистра/счетчика или со входа D СУАМ;
			8 — RFCT, повторение цикла, если счетчик не равен 0; 9 — RPCT, повторение по адресу, подаваемому на вход D СУАМ, если счетчик не равен 0; 10 — CRTN, условный возврат из подпрограммы;
			11 — СЈРР, условный переход по адресу, подаваемому на вход D СУАМ, и извлечение из стека;
			12 — LDCT, загрузка счетчика и последовательная выборка; 13 — LOOP, проверка условия окончания цикла; 14 — CONT, последовательная выборка; 15 — TWB, переход по одному из 3 адресов.
A	108-97	12	Адрес следующей микрокоманды или адрес ПЗУ констант.

MAP	96-95	2	Выбор истоиние эпраса поступающего на руот D СУАМ
MAP	96-93	2	Выбор источника адреса, поступающего на вход D СУАМ. 0 — РЕ, конвейерный регистр; 1 — МЕ, ПНА КОП основного или дополнительного формата, в зависимости от КОП основного формата (3FH = 077B); 2 — GRP, ПНА групп и микропрограммные признаки "След0" И "След1"; 3 — не используется (по умолчанию).
ALU	94	1	Разрешение выдачи информации из МПС на шину Y. По умолчанию — нет вывода (0).
ALUD	93-91	3	Управление приемниками результата АЛУ МПС. По умолчанию — нет загрузки в регистры (1).
			0 — Q, загрузка в регистр Q; 1 — NO, выдача результата только на выход У, содержитое регистров не изменяется; 2 — ВА, загрузка в регистр в рзу, на выход У подается значение регистра А; 3 — В, загрузка в регистр в РЗУ; 4 — RSBQ, сдвиг вправо, загрузка F/2 в B, Q/2 в Q; 5 — RSB, сдвиг вправо, загрузка F/2 в B; 6 — LSBQ, сдвиг влево, загрузка 2F в B, 2Q в Q; 7 — LSB, сдвиг влево, загрузка 2F в B.
FUNC	90-88	3	Код операции АЛУ МПС. 0 — ADD, R + S + C0; 1 — SUBR, S - R - 1 + C0; 2 — SUBS, R - S - 1 + C0; 3 — OR, R S; 4 — AND, R & S;
			5 — NOTRS, ~R & S; 6 — EXOR, R ^ S; 7 — EXNOR, ~(R ^ S).
ALUS	87-85	3	Управление источниками операндов на входы АЛУ. 0 — AQ; 1 — AB; 2 — ZQ; 3 — ZB; 4 — ZA; 5 — DA; 6 — DQ; 7 — DZ.
Н	84	1	Управление числом разрядов, участвующих в операции АЛУ: 32 или 64. По умолчанию — 32 разряда (0).

RB	83-80	4	Адрес регистра канала В МПС. По умолчанию — регистр WR6 (10).
			64-разрядные регистры: 0 — А, сумматор; 1 — У, регистр младших разрядов; 2 — INTR, ГРП;
			32-разрядные регистры (старшие 32 разряда не используются): 3 — PC, СЧАС; 4 — PCCOPУ, РОП; 5 — DADR, ИАОП;
			Рабочие константы микропрограмм: 6 — HALF, FFFF_FFFF_0000_0000; 7 — BУТЕ, 0000_0000_0000_00FF; 8 — EXPN, FFF0_0000_0000_0000; 9 — MANT, 000F_FFFF_FFFFFF;
			Рабочие регистры микропрограмм: 10 — WR6, номер прерывания при внутренних прерываниях; 11 — WR5, данные при чт/зп в часы, таймеры CB; 12 — WR4; 13 — WR3; 14 — WR2; 15 — WR1.
RA	79-76	4	Адрес регистра канала А МПС. (Аналогично RB выше)
CI	75-74	2	Управление входным переносом C0 АЛУ МПС, разряды I12-I11. 0 — CI0, C0 МПС = 0; 1 — CI1, C0 МПС = 1; 2 — CIX, C0 МПС = CX; 3 — CIC, входной перенос c0 принимает значения NC, /NC, MC, /MC в зависимости от кодов операции I5-I1 СУСС.
SHMUX	73-70	4	Управление организацией сдвигов в МПС, разряды I9-I6 КОП СУСС. Направление сдвига I10 задается разрядом I7 МПС. Сдвиги вправо при I10=0: 0 — LSLSL, логический сдвиг вправо одинарный, освобождающийся разряд заполняется "0", МС не изменяется; 1 — NSNSL, сдвиг вправо одинарный, МС не изменяется, освобождающийся разряд заполняется "1"; 2 — ASLLS, РЗУ: логический сдвиг вправо, освобождающийся разряд заполняется "0", выдвинутый бит попадает в МС; Q: арифметический сдвиг вправо, освобождающийся разряд заполняется значением МN; используется с К1804ВС2 при операции нормализации чисел обычной длины в качестве последнего шага нормализации (сдвиг в сторону младших разрядов); 3 — NDNS, сдвиг вправо двойной, освобождающиеся разряды заполняются "1", МС не изменяется; 4 — CDLDL, сдвиг вправо двойной, освобождающиеся разряды

заполняются значением МС, МС не изменяется;

- 5 ADNDL, арифметический сдвиг вправо двойной, МС не изеняется, освобождающиеся разряды заполняются значением MN; используется с K1804BC2 при нормализации чисел двойной длины; 6 LDLD, логический сдвиг вправо двойной, освобождающиеся разряды заполняются "0", МС не изменяется;
- 7 LDLND, логический сдвиг вправо двойной, освобождающиеся разряды заполняются "0", выдвинутый из Q бит записывается в МС; 8 RSLRSL, циклический сдвиг вправо одинарный, выдвинутый из РЗУ бит записывается в МС;
- 9 RSSRSS, P3У: циклический сдвиг вправо совместно с содержимым MC, освобождающийся разряд заполняется значением MC, выдвинутый бит попадает в MC; Q: циклический сдвиг вправо;
- 10 RSRS, циклический сдвиг вправо одинарный, МС не изменяется;
- 11 IDCS, двойной сдвиг вправо с загрузкой в освобождающийся разряд значения IC (выходной перенос МПС), МС не изменяется; используется в повторяющихся микрокомандах сложения и сдвига при умножении и усреднении в арифметике без знака;
- 12 RDSRDS, циклический сдвиг вправо двойной совместно с содержимым MC, освобождающийся разряд заполняется значением MC, выдвинутый разряд попадает в MC;
- 13 RDLRDL, Циклический сдвиг вправо двойной, выдвинутый из Q разряд попадает в МС и старший разряд P3У;
- 14 VDCD, двойной сдвиг вправо с загрузкой значения IN^{IV} в освобождающийся разряд, МС не изменяется; используется в повторяющихся микрокомандах сложения и сдвига в двоичной дополнительной арифметике (при умножении);
- 15 RDRD, циклический сдвиг вправо двойной, МС не изменяется.

Сдвиги влево при I10=1:

- 0 LSLSL, логический сдвиг влево одинарный с загрузкой МС, освобождающийся разряд заполняется "0";
- 1 NSNSL, сдвиг влево одинарный с загрузкой МС, освобождающийся разряд заполняется "1";
- 2 ASLLS, логический сдвиг влево одинарный, МС не изменяется, освобождающиеся разряды заполняются "0";
- 3 NDNS, сдвиг влево одинарный, освобождающиеся разряды заполняются "1", MC не изменяется;
- 4 CDLDL, сдвиг влево двойной с загрузкой MC, освобожд. разряды заполняются "0";
- 5 ADNDL, сдвиг влево двойной с загрузкой MC, освобожд. разряды заполняются "1";
- 6 LDLD, сдвиг влево двойной, освобождающиеся разряды заполняются "0", MC не изменяется;
- 7 LDLND, сдвиг влево двойной, освобождающиеся разряды заполняются "1", МС не изменяется;
- 8 RSLRSL, циклический сдвиг влево одинарный с загрузкой МС;
- 9 RSSRSS, циклический сдвиг влево одинарный совместно с MC, освобождающийся разряд заполняется значением MC, выдвинутый разряд попадает в MC;
- 10 RSRS, циклический сдвиг влево одинарный, МС не изменяется;
- 11 IDCS, сдвиг влево одинарный, MC не изменяется, РЗУ: освобождающийся разряд заполняется значением MC; Q: освобождающийся разряд заполняется "0";
- 12 RDSRDS, циклический сдвиг влево двойной совместно с

	содержимым МС, освобождающийся разряд заполняется значением МС, выдвинутый разряд попадает в МС; 13 — RDLRDL, циклический сдвиг влево двойной, выдвинутый бит попадает в МС и в освобождающийся разряд Q; 14 — VDCD, сдвиг влево двойной, МС не изменяется, освобождающиеся разряды заполняются значением МС; 15 — RDRD, циклический сдвиг влево двойной, МС не изменяется.
STOPC 69-64	6 Разряды 15-10 КОП СУСС, управляющие: - микромашинным статусным регистром N; - машинным статусным регистром М; - выходом V; - выходом кода условия; - входным переносом СО АЛУ МПС. 0 — УТОМ, МТОN; 1 — SETM, SETN; 2 — МСN, NСМ; 3 — CLRN, CLRM; 5 — INVM; 7 — OPC7; 8 — CLRNC; 10 — CLRNC; 11 — SETNC; 12 — CLRNN; 13 — SETNN; 14 — CLRNN; 15 — SETNV; 18 — OPC18; 19 — OPC19; 20 — NZ, по умолчанию; 21 — /NZ; 22 — NV; 23 — /NV; 26 — NC; 27 — /NC; 30 — NN; 31 — OPC34; 34 — OPC34; 36 — MZ; 37 — /MZ; 38 — MV; 39 — /MV; 42 — MC; 43 — /MC; 44 — MC; 43 — /MC; 44 — MC; 43 — /MC; 45 — MC; 45 — MC; 47 — /MN; 52 — IZ; 53 — /IZ; 54 — IV; 55 — /IV;

MOD	63	1	58 — IC; 59 — /IC; 62 — IN; 63 — /IN. Режим привилегированных команд 002 и 032, разрешающий обращение к специальным регистрам.
PSHF	62-56	7	Параметр сдвига сдвигателя, задающий число сдвигов и направление. 0x40 - SH0, параметр сдвига на 0 разрядов
MNSA	62-61	2	Адрес источника номера модификатора. По умолчанию — отсутствующий источник (2). 0 — U, регистр исполнительного адреса; 1 — IRA, поле модификатора команды; 3 — MP, микропрограмма.
MODNM	60-56	5	Номер модификатора в группе регистров, используемый в микропрограмме. Регистры 8-3 - область упрятывания регистров общего назначения и рабочие регистры микропрограмм. 0 — MREZ, резерв; 1 — PROCNC, номер процесса, равен содержимому РНП у активного процесса; 2 — SVFA, регистр адреса поля упрятывания; 3 — PCCC, POII; 4 — PCC, CЧаС; 5 — YCR, правая половина PMP; 6 — YCL, левая половина PMP; 7 — ACR, правая половина сумматора; 8 — ACL, левая половина сумматора; 9 — CTR, регистр счетного времени процесса, правая половина; 10 — CTL, регистр счетного времени процесса, левая половина; 11 — CTT, таймер счетного времени процесса, за вая половина; 11 — CTT, таймер счетного времени процесса; 12 — SPRADR, указатель стека адресов возврата из подпрограмм PAB; 13 — RRR, расширение регистра режимов, содержащее область упрятывания тега результата, номер предыдущей группы регистров и номер резервной группы регистров; 14 — RR, регистр режимов; 15 — С, регистр изменения адреса; 16 — SP, указатель магазина; 17 — M14; 18 — M13; 19 — M12; 20 — M11; 21 — M10; 22 — M9; 23 — M8; 24 — M7; 25 — M6; 26 — M5;

			27 — M4; 28 — M3; 29 — M2; 30 — M1; 31 — M0.
DSRC	55-52	4	Управление источниками информации на шину D. 1 — МОDGN, регистр номера группы ОЗУ модификаторов; 2 — PROCN, регистр номера процесса; 3 — CNT, триггеры признаков; 4 — PHYSPG, регистр физической страницы; 5 — ARBOPC, регистр КОП арбитра (для анализа при прерываниях); 6 — MULRZ1, младшие разряды произведения; 7 — MULRZ2, старшие разряды произведения; 8 — COMA, адресная часть команды; 9 — SHIFT, результат сдвига; 10 — OPC, код операции команды; 11 — LOS, результат поиска левой единицы; 12 — PROM, ППЗУ констант.
RTIME	55-52	4	Управление чтением информации с часов и таймера счетного времени. 14 — RT, сигнал чтения часов, таймеров на шину У.
WTIME	55-52	4	Управление записью информации в часы и таймер счетного времени. 15 — WT, сигнал записи в часы, таймеры с шины У (совместно с сигналом WRD).
YDST	51-48	4	Управление приемниками информации с шины Y ЦП. 1 — МОДОМ, регистр номера группы ОЗУ модификаторов; 2 — PROCN, регистр номера процесса РНП; 3 — CNT, регистр режимов и триггеры признаков; 4 — PHYSPG, регистр физической страницы РФС; 5 — ARBOPC, КОП арбитра (для пультового останова); 6 — MUL1, множимое (1-ый сомножитель); 7 — MUL2, множитель (2-ой сомножитель), одновременно - запуск умножителя; 8 — ADRREG, регистр исполнительного адреса (запись); 9 — PSHIFT, регистр параметра сдвига (только запись); 10 — CCLR, запуск сброса кэша; 11 — BTRCLR, "сброс" арбитра или сброс признака BTR (вместе в НОП арбитра).

0 — СІСІ, шиклический сдвиг; 2 — АКІРИ, арифметический сдвиг; 2 — АКІРИ, арифметический сдвиг; 3 — ЕМULF, "расхлопывание" - переход к формату БЭСМ-6.	SHF	47-46	2	Код операции сдвигателя.
1 — LOG, логический сдвиг; 2 — ARIPH, арифметический сдвиг; 3 — EMULF, "расхлопывание" - переход к формату БЭСМ-6.				0 — CICL, пиклический слвиг вправо.
2 — ARIPH, арифметический едвиг; 3 — EMULF, "расхлопывание" - переход к формату БЭСМ-6.				
3 — EMULF, "расхлопывание" - переход к формату БЭСМ-6. ARBI 45-42 4 Код операции арбитра общей пины. 1 — CCRD, чтение кэш команд; 2 — CCWR, запись в кэш команд; 3 — DCRD, чтение кэш операндов; 4 — DCWR, запись в кэш операндов; 8 — FETCH, чтение команды; 9 — DRD, чтение операнда; 10 — DWR, запись результата; 11 — RDMWR, чтение-модификация-запись (семафорная); 12 — BTRWR, запись в режиме блочной передачи; 13 — BTRRD, чтение в режиме блочной передачи; 14 — BICLR, сброе прерываний и шины. 15 — BIRD, чтение прерываний и шины. 15 — BIRD, чтение прерываний и шины. 15 — BIRD, чтение прерываний и шины. 16 — Will и D CYAM. 17 — Will и D CYAM. 18 — Will и D CYAM. 19 — Will и D CYAM. 10 — Will и D CYAM. 19 — Will и D CYAM. 10 — Will и D				
ARBI 45-42 4 Код операции арбитра общей шины. 1 — ССRD, чтение кэш команд; 2 — ССWR, запись в кэш команд; 3 — DCRD, чтение кэш операндов; 4 — DCWR, запись в кэш операндов; 8 — FETCH, чтение команды; 9 — DRD, чтение операнда; 10 — DWR, запись результата; 11 — RDMWR, чтение-модификация-запись (семафориая); 12 — BTRWR, запись в режиме блочной передачи; 13 — BTRRD, чтение в режиме блочной передачи; 14 — BICLR, сброе прерываний с шины. RLD 41 1 Управление загрузкой регистра селектора адреса СУАМ и ШФ шин У Щп и D СУАМ. LETC 40 1 Управление прохождением признака ПИА на вход ПНА команд. CYSTR 39-37 3 Управление длительностью тактового импульса. 1 — NT3, 3 нанотакта; 0 — NT4, 4 нанотактов; 2 — NT7, 7 нанотактов; 3 — NT8, 8 нанотактов; 2 — NT7, 7 нанотактов; 5 — NT10, 10 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36 1 Управление передачей условия на вход инкрементора регистра адреса микропрограммы. Условие, выбираемое полем COND, подается на вход СI СУАМ ("жду"). ICI 35 1 Инверсия условия, передаваемого на вход инкрементора регистра адреса микропрограммы (CD CУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих				
1 — ССRD, чтение кэш команд; 2 — ССWR, запись в кэш команд; 3 — DCRD, чтение кэш операндов; 4 — DCWR, запись в кэш операндов; 8 — FETCH, чтение команды; 9 — DRD, чтение операнда; 10 — DWR, запись результата; 11 — RDMWR, чтение операнда; 10 — DWR, запись результата; 11 — RDMWR, чтение в режиме блочной передачи; 13 — BTRRD, чтение в режиме блочной передачи; 14 — BICLR, сброс прерываний на шине; 15 — BIRD, чтение прерываний с шины. RLD				, the state of the
2 — ССWR, запись в кэш команд; 3 — DCRD, чтение кызи операндов; 4 — DCWR, запись в кэш операндов; 8 — FETCH, чтение команды; 9 — DRD, чтение команды; 9 — DRD, чтение операнда; 10 — DWR, запись результата; 11 — RDMWR, чтение-модификация-запись (семафорная); 12 — BTRWR, запись в режиме блочной передачи; 13 — BTRRD, чтение в режиме блочной передачи; 14 — BICLR, сброс прерываний на шине; 15 — BIRD, чтение прерываний с шины. RLD	ARBI	45-42	4	Код операции арбитра общей шины.
3 — DCRD, чтение кэш операндов; 4 — DCWR, запись в кэш операндов; 8 — FETCH, чтение команды; 9 — DRD, чтение команды; 9 — DRD, чтение операнда; 10 — DWR, запись результата; 11 — RDMWR, чтение операнда; 11 — RDMWR, чтение модификация-запись (семафорная); 12 — BTRRD, чтение в режиме блочной передачи; 14 — BICLR, сброс прерываний на шине; 15 — BIRD, чтение прерываний с шины. RLD				
4 — DCWR, запись в кэш операндов; 8 — FETCH, чтение команды; 9 — DRD, чтение операнда; 10 — DWR, запись результата; 11 — RDMWR, чтение-модификация-запись (семафорная); 12 — BTRWR, запись в режиме блочной передачи; 13 — BTRRD, чтение в режиме блочной передачи; 14 — BICLR, сброс прерываний на шине; 15 — BIRD, чтение прерываний с шины. RLD				
8 — FETCH, чтение команды; 9 — DRD, чтение операнда; 10 — DWR, запись результата; 11 — RDMWR, запись результата; 11 — RDMWR, чтение-модификация-запись (семафорная); 12 — BTRWR, запись в режиме блочной передачи; 13 — BTRRD, чтение в режиме блочной передачи; 14 — BICLR, сброс перываний на шине; 15 — BIRD, чтение прерываний с шины. RLD				
9 — DRD, чтение операнда; 10 — DWR, запись результата; 11 — RDMWR, утение-модификация-запись (семафорная); 12 — BTRWR, запись в режиме блочной передачи; 13 — BTRRD, чтение в режиме блочной передачи; 14 — BICLR, сброс прерываний на шине; 15 — BIRD, чтение прерываний с шины. RLD				* · · · · · · · · · · · · · · · · · · ·
10 — DWR, запись результата;				
11 — RDMWR, чтение-модификация-запись (семафорная); 12 — BTRWR, запись в режиме блочной передачи; 13 — BTRRD, чтение в режиме блочной передачи; 14 — BICLR, сброс прерываний на шине; 15 — BIRD, чтение прерываний с шины. RLD 41				
12 — ВТRWR, запись в режиме блочной передачи; 13 — ВТRRD, чтение в режиме блочной передачи; 14 — ВІСLR, сброс прерываний на шине; 15 — ВІRD, чтение прерываний с шины.				
13 — ВТRRD, чтение в режиме блочной передачи; 14 — ВІСLR, сброс прерываний на шине; 15 — ВІRD, чтение прерываний с шины.				
14 — ВІСІ, сброс прерываний на шине; 15 — ВІRD, чтение прерываний с шины. RLD				
15 — ВІRD, чтение прерываний с шины.				· · · · · · · · · · · · · · · · · · ·
RLD 41 1 Управление загрузкой регистра селектора адреса СУАМ и ШФ шин У ЦП и D СУАМ. LETC 40 1 Управление прохождением признака ПИА на вход ПНА команд. CYSTR 39-37 3 Управление длительностью тактового импульса. 1 — NT3, 3 нанотакта; 0 — NT4, 4 нанотакта; 4 — NT5, 5 нанотактов; 6 — NT6, 6 нанотактов; 2 — NT7, 7 нанотактов; 3 — NT8, 8 нанотактов; 7 — NT9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36 1 Управление передачей условия на вход инкрементора регистра адреса микропрограммы. Условие, выбираемое полем COND, подается на вход CI СУАМ ("жду"). ICI 35 1 Инверсия условия, передаваемого на вход инкрементора регистра адреса микропрограммы (CI) СУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих				
LETC 40 1 Управление прохождением признака ПИА на вход ПНА команд. CYSTR 39-37 3 Управление длительностью тактового импульса. 1 — NT3, 3 нанотакта; 0 — NT4, 4 нанотакта; 4 — NT5, 5 нанотактов; 6 — NT6, 6 нанотактов; 2 — NT7, 7 нанотактов; 3 — NT8, 8 нанотактов; 7 — NТ9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36 1 Управление передачей условия на вход инкрементора регистра адреса микропрограммы. Условие, выбираемое полем COND, подается на вход CI CYAM ("жду"). ICI 35 1 Инверсия условия, передаваемого на вход инкрементора регистра адреса микропрограммы (CI) СУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих				15 — BIRD, чтение прерываний с шины.
 СҮSTR 39-37 3 Управление длительностью тактового импульса. 1 — NT3, 3 нанотакта; 0 — NT4, 4 нанотакта; 4 — NT5, 5 нанотактов; 6 — NT6, 6 нанотактов; 2 — NT7, 7 нанотактов; 3 — NT8, 8 нанотактов; 7 — NT9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36 1 Управление передачей условия на вход инкрементора регистра адреса микропрограммы. Условие, выбираемое полем COND, подается на вход CI СУАМ ("жду"). ICI 35 1 Инверсия условия, передаваемого на вход инкрементора регистра адреса микропрограммы (CI) СУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих 	RLD	41	1	
1 — NT3, 3 нанотакта; 0 — NT4, 4 нанотакта; 4 — NT5, 5 нанотактов; 6 — NT6, 6 нанотактов; 2 — NT7, 7 нанотактов; 3 — NT8, 8 нанотактов; 7 — NT9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36	LETC	40	1	Управление прохождением признака ПИА на вход ПНА команд.
0 — NT4, 4 нанотакта; 4 — NT5, 5 нанотактов; 6 — NT6, 6 нанотактов; 2 — NT7, 7 нанотактов; 3 — NT8, 8 нанотактов; 7 — NT9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36 1 Управление передачей условия на вход инкрементора регистра адреса микропрограммы. Условие, выбираемое полем COND, подается на вход CI СУАМ ("жду"). ICI 35 1 Инверсия условия, передаваемого на вход инкрементора регистра адреса микропрограммы (CI) СУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих	CYSTR	39-37	3	Управление длительностью тактового импульса.
0 — NT4, 4 нанотакта; 4 — NT5, 5 нанотактов; 6 — NT6, 6 нанотактов; 2 — NT7, 7 нанотактов; 3 — NT8, 8 нанотактов; 7 — NT9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36 1 Управление передачей условия на вход инкрементора регистра адреса микропрограммы. Условие, выбираемое полем COND, подается на вход CI СУАМ ("жду"). ICI 35 1 Инверсия условия, передаваемого на вход инкрементора регистра адреса микропрограммы (CI) СУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих				1 — NT3. 3 нанотакта:
4 — NT5, 5 нанотактов; 6 — NT6, 6 нанотактов; 2 — NT7, 7 нанотактов; 3 — NT8, 8 нанотактов; 7 — NT9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36 1 Управление передачей условия на вход инкрементора регистра адреса микропрограммы. Условие, выбираемое полем COND, подается на вход CI СУАМ ("жду"). ICI 35 1 Инверсия условия, передаваемого на вход инкрементора регистра адреса микропрограммы (CI) СУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих				
6 — NT6, 6 нанотактов; 2 — NT7, 7 нанотактов; 3 — NT8, 8 нанотактов; 3 — NT9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36				
2 — NT7, 7 нанотактов; 3 — NT8, 8 нанотактов; 7 — NT9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию).				
3 — NT8, 8 нанотактов; 7 — NT9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36				
7 — NT9, 9 нанотактов; 5 — NT10, 10 нанотактов = 500 нсек (по умолчанию). SCI 36				
SCI 36 1 Управление передачей условия на вход инкрементора регистра адреса микропрограммы. Условие, выбираемое полем COND, подается на вход CI СУАМ ("жду"). ICI 35 1 Инверсия условия, передаваемого на вход инкрементора регистра адреса микропрограммы (CI) СУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих				
микропрограммы. Условие, выбираемое полем COND, подается на вход CI СУАМ ("жду"). ICI 35 1 Инверсия условия, передаваемого на вход инкрементора регистра адреса микропрограммы (CI) СУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих				5 — NT10, 10 нанотактов = 500 нсек (по умолчанию).
микропрограммы. Условие, выбираемое полем COND, подается на вход CI СУАМ ("жду"). ICI 35 1 Инверсия условия, передаваемого на вход инкрементора регистра адреса микропрограммы (CI) СУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих	SCI	36	1	Управление передачей условия на вход инкрементора регистра адреса
адреса микропрограммы (CI) СУАМ. ICC 34 1 Инверсия условий, выбираемых полем COND, управляющих	5			микропрограммы. Условие, выбираемое полем COND, подается на
	ICI	35	1	
	ICC	34	1	

ISE	33	1	Разрешение внешних и внутренних прерываний. Признак последней микроинструкции, разрешающий прохождение некоторых прерываний и копирование ТКК в ППК.
CEM	32	1	Разрешение записи в машинный регистр состояния М СУСС.
CEN	31	1	Разрешение записи в микромашинный регистр состояния N СУСС.
CSM	30	1	Управление обращением к ОЗУ модификаторов.
WEM	29	1	Разрешение записи в ОЗУ модификаторов.
ECB	28	1	Выбор канала В БОИ данных.
WRB	27	1	Запись по каналу В в БОИ данных и БОИ тега.
BRA	26-25	2	Адрес регистра канала В БОИ даннных и БОИ тега. По умолчанию — 3 (чтобы не было случайной записи в RG0).
			 0 — RG0, физический адрес, в БОИ тега не используется; 1 — RG1, регистр левой-правой команды, в БОИ тега - тег команды; 2 — RG2, регистр операнда, в БОИ тега - тег операнда; 3 — RG3, регистр результата, в БОИ тега - тег результата (сумматора).
ECA	24	1	Выбор канала А БОИ данных.
WRA	23	1	Запись по каналу А в БОИ данных.
ARA	22-21	2	Адрес регистра канала А БОИ даннных. По умолчанию — 3 (чтобы не было случайной записи в RG0).
			0 — RG0, физический адрес;
			1 — RG1, регистр левой-правой команды; 2 — RG2, регистр операнда;
			3 — RG3, регистр результата.
YDEV	20-18	3	Выбор источника или приемника информации с шины Y, управление — WRY.
			2 — PHYSAD, физический адрес (только на чтение); 3 — RADRR, регистр исполнительного адреса (чтение); 4 — PSMEM, ОЗУ приписок (СЅ); 5 — MPMEM, ОЗУ обмена с ПП; 6 — STOPM0, ОЗУ останова 0 (только на запись); 7 — STOPM1, ОЗУ останова 1 (только на запись). Выборка ОЗУ останова совмещена с сигналом записи.

YDEVT	20-18	3	Выбор регистров БОИ тега, управление — WRB.
			1 — ECBTAG, канал в БОИ тега (сигнал ЕСВ БОИ).
WRY	17	1	Запись в источники или приемники шины Ү.
DDEV	16-14	3	Выбор источника или приемника информации с шины D, управление — WRD. 1 — ВВ, БОБР, БИЗМ; 2 — МОДВ, БМСП; 3 — CLRCD, сброс ПИА, дополнительный сигнал; 5 — STATUS, CYCC; 6 — РРМЕМ0, ОЗУ приоритетов страниц 0; 7 — РРМЕМ1, ОЗУ приоритетов страниц 1.
YDTIM	16-14	3	Выбор часов и таймера счетного времени, управление — RTIME, WTIME, WRD. 4 - CTIME, регистр и таймер счетного времени (сигнал CS).
WRD	13	1	Управление записью в источники или приемники шины D.
IOMP	12	1	Выбор блока обмена с ПП, дешифратора триггеров признаков (0) или управляющих сигналов часов и таймера счетного времени (1).
FFCNT	11-7	5	Установка/сброс триггеров признаков или управляющие сигналы A1, A0 для обращения к часам и таймеру. 1 — LOGGRP, установка логической группы; 2 — MULGRP, установка группы умножения; 3 — ADDGRP, установка труппы сложения; 5 — SETC, установка тг. ПИА; 6 — CLRRCB, сброс тг. ППК; 7 — SETRCB, установка тг. ППК; 8 — CLRJMP, сброс тт. ППУ; 9 — SETJMP, установка тт. ППУ; 10 — SETEI, сброс маски прерываний (разрешение прерываний); 11 — CLREI, установка маски прерываний (запрет прерываний); 12 — CLRTRO, сброс микропрограммного признака "След0"; 13 — SETTRO, установка мп признака "След1"; 15 — SETTR1, установка мп признака "След1"; 16 — CLRCT, сброс прерывания от часов счетного времени; 17 — CLRCTT, сброс прерывания от таймера счетного времени; 18 — CLRTKK, сброс тг. коммутации команд - ТКК (ППК стандартизатора); 19 — SETTK, установка ТКК; 20 — SETNR, установка НР; 21 — STRTLD, запуск загрузки ОЗУ БМСП единицами; 22 — SETER, установка РЭ; 23 — CHTKK, переброс ТКК (работает в счетном режиме!);

		24 — SETHLT, установка тг. "Останов" (Halt); 25 — CLRINT, сброс прерываний (кроме прерываний от таймеров); 26 — CLRRUN, сброс тг. "Пуск"; 27 — RDMPCP, установка признака "ОЗУ обмена ПП -> ЦП прочитано"; 28 — LDMPCP, установка признака "в ОЗУ обмена ПП -> ЦП есть информация"; 29 — LDCPMP, установка признака "в ОЗУ обмена ЦП -> ПП есть информация"; 30 — PRGINT, установка программного прерывания с номером 31; 31 — EXTINT, установка внешнего прерывания на магистраль.
MPADR 10-7	7 4	Адрес регистра в блоке обмена с ПП. Информационные байты обращений ЦП к ПП (используются ОС через WMOD): 0 — INFB1; 1 — INFB2; 2 — FCP, флаг для ПП по инициативе ЦП; 3 — FMP, флаг ПП-ЦП по инициативе ПП. Байты адреса регистра или внутренней памяти ЦП при обращениях ПП (в младшем по номеру регистре - старший байт адреса): 4 — ADRB1; 5 — ADRB2; 6 — ADRB3; 7 — ADRB4. Байты данных при обращениях ПП (в младшем по номеру регистре - старший байт данных): 8 — DATAB1; 9 — DATAB1; 9 — DATAB2; 10 — DATAB3; 11 — DATAB4; 12 — DATAB6; 13 — DATAB6; 14 — DATAB8.

COND	6-2	5	Выбор условия, подлежащего проверке.
			 0 — YES, "да"; 1 — NORMB, блокировка нормализации (БНОР); 2 — RNDB, блокировка округления (БОКР); 3 — OVRIB, блокировка прерывания по переполнению (БПП); 4 — BNB, блокировка выхода числа за диапазон БЭСМ-6 (ББЧ); 5 — OVRFTB, блокировка проверки переполнения поля упрятывания (БППУ); 6 — DRG, режим диспетчера; 7 — EMLRG, режим эмуляции; 8 — RCB, ППК; 9 — CB, ПИА; 10 — CEMLRG, РЭС, 20-й разряд РР (резерв); 11 — CT, сигнал CT CУСС; 12 — TR1, След1; 13 — INTSTP, ПОП; 14 — IR15, ИР15; 15 — TKKB, TKK; 16 — RUN, "пуск" от ПП; 17 — NMLRDY, отсутствие готовности умножителя; 19 — INT, признак наличия прерываний; 20 — FULMEM, ОЗУ БМСП единицами заполнено; 21 — ARBRDY, готовность арбитра; 22 — TR0, След0; 23 — СРМР, ОЗУ обмена "ЦП -> ПП" свободно.
MPS	1	1	Управление выбором источника параметра сдвига. Задание параметра сдвига из микропрограммы, 56-62 разряды (1) или из регистра параметра сдвига (0).