Since the task is to prove the claim for any $n \ge 0$, induction seems like a good way to go. (But you don't have to explain that in your proof)

We proceed by induction. Let P(n) be a statement on $n \in \mathbb{Z}$ which means $n^2 + 15n + 12$ is even.

Base case: We will show P(0) is true: $3(0^2) + 15(0) + 12 = 12$ and 12 is even. So P(0) is true.

Inductive Step: Assume P(k) is true for some $k \ge 0$. Then $3(k^2) + 15(k) + 12$ is even. We will now prove P(k+1) is true. That is, we will show $3(k+1)^2 + 15(k+1) + 12$ is even. We can expand the expression:

$$3(k+1)^2 + 15(k+1) + 12 = 3(k^2 + 2k + 1) + 15k + 15 + 12$$

= $3k^2 + 6k + 3 + 15k + 17$ (see note*.)
= $(3k^2 + 15k + 12) + 6k + 8$

note*: At this point the goal is to try to use what we know about the k case to figure out something about the k+1 case.) So we want **something** of the form $3k^2+15k+12$. You don't have to explain that in your proof either.

By the inductive hypothesis, $3k^2 + 15k + 12$ is even.

Furthermore, the quantity 6k + 8 can be written 2(3k + 4) which is even by definition of even. The entire expression is thus the sum of two even numbers. Since the sum of even numbers is even, $3(k+1)^2 + 15(k+1) + 12$ is even, which is what we were trying to show. The claim follows by induction.