CLEMSON UNIVERSITY, SCHOOL OF COMPUTING CPSC 3500 FOUNDATIONS OF COMPUTER SCIENCE

Assignment 2: Finite Automata

Return by 11:59pm 9/20/2019

Problem 1 20%

Choose any 4 items out of (a)-(k). In each part below: (a) draw an FA accepting the indicated language over $\{a, b\}$; (b) explain why your FA accepts the indicated language.

- (a) The language of all strings containing exactly two a's.
- (b) The language of all strings containing at least two a's.
- (c) The language of all strings including Λ that do not end with ab.
- (d) The language of all strings that begin or end with aa or bb.
- (e) The language of all strings including Λ not containing the substring aa.
- (f) The language of all strings in which the number of a's is even.
- (g) The language of all strings in which both the number of a's and the number of b's are even.
- (h) The language of all strings containing no more than one occurrence of the string aa. (The string aaa contains two occurrences of aa.)
- (i) The language of all strings in which every a (if there are any) is followed immediately by bb.
- (j) The language of all strings containing both bb and aba as substrings.
- (k) The language of all strings containing both aba and bab as substrings.

Problem 2 20%

For each of the FAs pictured bellow, give a simple verbal description of the language it accepts.

Problem 3 10%

- (a) Draw a transition diagram for an FA that accepts the string *abaa* and no other strings.
- (b) For a string $x \in \{a, b\}^*$ with |x| = n, how many states are required for an FA accepting x and no other strings? For each of these states, describe the strings that cause the FA to be in that state.
- (c) For a string $x \in \{a, b\}^*$ with |x| = n, how many states are required for an FA accepting the language of all strings in $\{a, b\}$ that begin with x? For each of these states, describe the strings that cause the FA to be in that state.

Problem 4 20%

Draw and describe FA that accepts language L_5 , the set of strings in $\{0,1\}^*$ that are binary representations of integers divisible by 5.

Problem 5 15%

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA, $q \in Q$, and $x, y \in \Sigma^*$. Using structural induction on y, prove the formula

$$\delta^*(q, xy) = \delta^*(\delta^*(q, x), y).$$

Problem 6 15%

Let M_1 , and M_2 be the FA pictured below. They accept languages L_1 , and L_2 , respectively. Draw and explain FAs accepting the following languages: (a) $L_1 \cup L_2$; (b) $L_1 \cap L_2$; and (c) $L_1 - L_2$.

