NeRF & Pienoxeis

MEGVII 旷视

Yi Yang

2022年5月

保密信息

- 0 Overview
- 1 Volume Rendering
- 2 Neural Radiance Field
- **3** Plenoxels

保密信息

Overview

17

Computer Graphics meets Computer Vision

Differentiable Rendering

家(e)自

6 DoF Camera Pose

+ (x, y, z)

Differentiable Rendering

Richard Total Control of the Control

Differentiable Rendering

8

Applications

Scene Representation

| Applications

Scene Representation

主商

| Applications

Scene Representation Rendering

Export mesh

R密信息

| Applications

Scene Representation

Computer Vision tasks (e.g. Depth Estimation, iNeRF)

黎信自

, ,

| Volume Density

Opacity = 0.6

$$\sigma = \frac{d(opacity)}{dh}$$

$$\log T = \int_0^{h_t} \log(1 - opacity)$$

$$T = \exp\left(-\int_0^{h_t} \sigma(h)dh\right)$$

京家住自

2家住自

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t)) dt \text{ , where } T(t) = \exp\left(-\int_{t_n}^{t} \sigma(\mathbf{r}(s)) ds\right)$$

密信息

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^{t} \sigma(\mathbf{r}(s)) ds\right)$$

保密信息

Discretization

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^{t} \sigma(\mathbf{r}(s))ds\right)$$

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$$
, where $T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$

Neural Radiance Fi eld

Neural Radiance Field Rendering Scene **Novel View Dense Input** Equation Representation Or memorized View

(a) Inference, scene memorization loop (time intensive)

Coordinate MLP (2D)

$$(x,y) \longrightarrow (r,g,b)$$

保密信息

Coordinate MLP (2D)

| Positional Encoding

2家信息

3D Coordinate MLP

Pape(自) 27

3D Coordinate MLP

28/20/20

The Model

R 家住自

Coarse to Fine

密信息 3

More Examples

MEGVII 旷视

Plenoxels

MEGVII 旷视

Faster training & inference

No neural networks

Custom CUDA implementation

Voxels

黎信<u>自</u>

Voxels

MEGVII 旷视

黎信<u>自</u>

"Plenoptic" : Spherical Harmonics

保密信息

"Plenoptic" : Spherical Harmonics

I Trilinear Interpolation

I Trilinear Interpolation of Density

B信息 39

| Sparsity: Voxel Pruning

Weight:

$$T_i(1 - \exp(-\sigma_i \delta_i))$$

where
$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

8倍自 40

Regularization: Total Variation

Adjacent voxels should be similar

$$\frac{1}{|\mathcal{V}|} \sum_{\substack{v \in \mathcal{V} \\ d \in [D]}} \sqrt{\Delta_x^2(\mathbf{v}, d) + \Delta_y^2(\mathbf{v}, d) + \Delta_z^2(\mathbf{v}, d)}$$

Coarse to Fine

Coarse Model w/ Regularization

Pruning

Interpolation

Fine Model w/o Regularization

2家信自

THANK YOU

MEGVII 旷视