Valószínűségszámítás és statisztika, 2. minta ZH Programtervező informatikus BSc, B-C szakirány

Minden lapon legyen rajta a szerző **neve** és **Neptun kódja**. A zárthelyi dolgozaton egy- vagy kétsoros numerikus kijelzőjű, grafikus megjelenítésre, szöveg tárolására és szimbolikus számításra alkalmatlan **számológépet**, valamint egy A5 méretű papírra **kézzel írt "puskát"** használhatnak.

- 1. Tegyük fel, hogy Baktalórántházán a decemberi átlaghőmérséklet (*X* valószínűségi változó) normális eloszlású 3 fok várható értékkel, és 2 fok szórással.
 - a) Mi a valószínűsége, hogy a decemberi átlaghőmérséklet -1 és 6 fok közé esik?
 - b) Hány egymástól függetlennek tekintett évet kell megfigyelnünk, hogy az átlaghőmérsékletek átlaga legalább 0,9 valószínűséggel 2,5 és 3,5 közé essen?
- 2. Legyen az alábbi gyakorisági tábla 100 elemű minta a következő diszkrét eloszlásból: $P(X_i = -1) = c$, $P(X_i = 1) = 3c$, $P(X_i = 2) = 1 4c$ (c az ismeretlen paraméter).

érték	-1	1	2
gyakoriság	15	55	30

- a) Számolja ki a megfigyeléseink átlagát, mediánját és tapasztalati szórását!
- b) Határozza meg c ML becslését!
- 3. Az alábbi két adatsor egy sportoló 100 méteres futásban elért időeredményeit tartalmazza (másodpercben), 4 különböző versenyen és a közvetlenül megelőző edzéseken.

edzésen	10,9	10,2	10,8	10,2
versenyen	10,1	10,1	10,7	10,2

Mondhatjuk-e $\alpha = 0.05$ elsőfajú hiba valószínűség mellett, hogy a sportoló jó versenyző típus, azaz a verseny tétje jobb teljesítményre ösztönzi?

4. Tegyük fel, hogy a villamosmegállóban állva minden nap feljegyeztük, hogy hány villamos ment el a szemközti irányban, míg a mienk befutott. 90 nap megfigyelései alapján az alábbi gyakorisági tábla adódott. Vizsgálja meg $\alpha = 0.05$ mellett azt a nullhipotézist, hogy a szembejövő villamosok száma egyenletes eloszlású a $\{0, 1, 2\}$ számokon!

villamosok száma	0	1	2
gyakoriság	30	40	20

5. Tegyük fel, hogy három diák gyakorlati és vizsgajegye az alábbiak szerint alakult:

gyakorlati jegy (x)	2	3	4
vizsgajegy (y)	2	2	5

- a) Számolja ki az $y \sim aX + b$ alakú regressziós egyenes együtthatóinak becslését (a legkisebb négyzetes módszerrel)!
- b) Számolja ki a reziduálisokat és becsülje meg a hiba szórásnégyzetét, valamint az együttható-becslések szórásnégyzetét!

 $\Phi(1,5) = 0.9332$ $\Phi(2) = 0.9772$ $\Phi(1,645) = 0.95$ t-eloszlás kvantilisei: $t_{3;\;0.95} = 2.3$ $t_{4;\;0.95} = 2.13$ $t_{5;\;0.95} = 2.01$ $t_{6;\;0.95} = 1.94$ chi-négyzet eloszlás (0.95-ös kvantilisek): szabadságfok (sz.f.): sz.f.1: 3,84 sz.f.2: 5,99 sz.f.3: 7,81 sz.f.4: 9,49