Cognome:	Nome:	Matricola:	
· · · · · · · · · · · · · · · · · · ·	-		

Università degli Studi della Calabria

Corso di Laurea in Ingegneria Informatica

Esercizio 2

Dire quali delle seguenti affermazioni sono vere e quali false.

	V	F	Affermazione
1			Può esistere un algoritmo che abbia complessità spaziale $\theta(n^2)$ e complessità
			temporale $\theta(n)$, dove n indica la dimensione dell'input.
2			La funzione $f(n) = n^2 \ ensuremath{\mbox{e}} \ \Omega \ (n * \lg n).$
3			L'algoritmo QuickSort ha complessità temporale $\theta(n * \lg n)$ nel caso peggiore.
4			L'inserimento di un elemento in un heap binario ha complessità temporale $\theta(\lg n)$ nel caso peggiore (dove n è il numero dei nodi).
5			Sia dato un algoritmo A risolutore del problema P. Se la complessità di A è $\Omega(f(n))$ allora la complessità intrinseca di P è $\Omega(f(n))$.
6			L'algoritmo di $Prim$, preso in input un grafo pesato G , restituisce un albero ricoprente A tale che, per ogni coppia di nodi u , v , il cammino in A tra u e v è il cammino minimo tra u e v in G .
7			Sia G un grafo non orientato ed aciclico. Il grafo G è un albero.
8			Un grafo non orientato è connesso se e solo se ogni nodo è raggiungibile da ogni altro tramite un cammino.
9			Un albero binario è bilanciato se la differenza fra l'altezza del sottoalbero sinistro della radice e l'altezza del sottoalbero destro della radice è minore o uguale ad 1.
10			Un albero binario è detto di ricerca se, per ognuno dei suoi nodi <i>u</i> , la radice del figlio sinistro di <i>u</i> contiene un valore minore di quello contenuto in <i>u</i> e la radice del figlio destro di <i>u</i> contiene un valore maggiore o uguale di quello contenuto in <i>u</i> .

Esercizio 3

Preso un generico algoritmo divide et impera che ad ogni passo suddivide l'istanza corrente in 3 sotto-istanze dello stesso problema, ciascuna di dimensione $n/3$ (dove n é la dimensione dell'istanza in esame), si ricavi la complessità dell'algoritmo supponendo che al netto delle chiamate ricorsive la singola chiamata abbia complessità $b * n^2$, dove b è costante.					