Ayudantía 3

Tomás Contreras Susana Figueroa Andrés Gonzalez Jorge Schenke Sebastián Ramos Rocío Hernández

Opcodes

Delays

Pulsos

Opcodes

Codificaciones más cortas de las instrucciones en lenguaje de máquina. Evita que sobren tantas posibilidades de instrucciones.

Opcodes

Codificaciones más cortas de las instrucciones en lenguaje de máquina. Evita que sobren tantas posibilidades de instrucciones.

00000

Opcodes

Codificaciones más cortas de las instrucciones en lenguaje de máquina. Evita que sobren tantas posibilidades de instrucciones.

00000 \ 1010 0000

Opcodes

Codificaciones más cortas de las instrucciones en lenguaje de máquina. Evita que sobren tantas posibilidades de instrucciones.

Opcode

Instrucción

Opcode	La	Lb	Sa0	Sb0	Sb1	Sop2	Sop1	Sop0	Operación
000000	1	0	1	0	0	0	0	0	A=B
000001	0	1	0	1	1	0	0	0	B=A
000010	1	0	0	0	1	0	0	0	A=Lit
000011	0	1	0	0	1	0	0	0	B=Lit
000100	1	0	0	0	0	0	0	0	A=A+B
000101	0	1	0	0	0	0	0	0	B=A+B
000110	1	0	0	0	1	0	O	0	A=A+Lit
000111	1	0	0	0	0	0	O	1	A=A-B
001000	0	1	0	0	0	0	0	1	B=A-B
001001	1	0	0	0	1	0	0	1	A=A-Lit
001010	1	0	0	0	0	0	1	0	A=A and B
001011	0	1	0	0	0	0	1	0	B=A and B
001100	1	0	0	0	1	0	1	0	A=A and Lit
001101	1	0	0	0	0	0	1	1	A=A or B
001110	0	1	0	0	0	0	1	1	B=A or B
001111	1	0	0	0	1	0	1	1	A=A or Lit
010000	1	0	0	0	0	1	0	0	A=notA
010001	0	1	0	0	0	1	0	0	B=notA
010010	1	0	0	0	1	1	0	0	A=notLit
010011	1	0	0	0	0	1	O	1	A=A xor B
010100	0	1	0	0	0	1	0	1	B=A xor B
010101	1	0	0	0	1	1	0	1	A=A xor Lit
010110	1	0	0	0	0	1	1	0	A=shift left A
010111	0	1	0	0	0	1	1	0	B=shift left A
011000	1	0	0	0	1	1	1	0	A=shift left Lit
011001	1	0	0	0	0	1	1	1	A=shift right A
011010	0	1	0	0	0	1	1	1	B=shift right A
011011	1	0	0	0	1	1	1	1	A=shirtigittlay

Delay

Delay

Delay

Generador de pulsos

Generador de pulsos

$$C = 0$$
 $b = 1$
 $a = 0$
 $C' = ?$

$$C = 0$$
 $b = 1$
 $a = 0$
 $C' = 0$

$$C = 0$$
 $C = 1$
 $b = 1$ $b = 0$
 $a = 0$ $a = 1$
 $C' = 0$ $C' = 0$

$$C = 0$$
 $C = 1$
 $b = 1$ $?$ $b = 0$
 $a = 0$ $a = 1$
 $C' = 0$ $C' = 0$

$$C = 0$$
 $C = 1$
 $b = 1$ $?$ $b = 0$
 $a = 0$ $a = 1$
 $C' = 0$ $C' = 0$

$$C = 0$$
 $C = 1$
 $b = 1$ 0 $a = 0$
 $a = 0$ $a = 1$
 $C' = 0$

$$C = 0$$
 $C = 1$
 $b = 1$ $?$ $b = 0$
 $a = 0$ $a = 1$
 $C' = 0$ $C' = 0$

$$C = 0$$
 $C = 1$
 $b = 1$ $?$ $b = 0$
 $a = 0$ $a = 1$
 $C' = 0$ $C' = 0$

Base: 3.6 GHz

Turbo: 4.3 GHz

Ejercicios

Caso 1:

Tomemos como ejemplo el número positivo de n bits: 0000 ... abcd

Caso 1:

Tomemos como ejemplo el número positivo de n bits: 0000 ... abcd

Calculemos su valor numérico en base 10:

Caso 1:

Tomemos como ejemplo el número positivo de n bits: 0000 ... abcd

Calculemos su valor numérico en base 10:

0 = positivo

Caso 1:

Tomemos como ejemplo el número positivo de n bits: 0000 ... abcd

Calculemos su valor numérico en base 10:

$$0*2^{(n-1)}+0*2^{(n-2)}+0*2^{(n-3)}+...+a*2^{(3)}+b*2^{(2)}+c*2^{(1)}+d*2^{(0)}$$

$$=0+8a+4b+2c+d$$

Caso 1:

Tomemos como ejemplo el número positivo de n bits: 0000 ... abcd

Calculemos su valor numérico en base 10:

0 = positivo

 $0*2^{(n-1)}+0*2^{(n-2)}+0*2^{(n-3)}+...+a*2^{(3)}+b*2^{(2)}+c*2^{(1)}+d*2^{(0)}$

=0+8a+4b+2c+d

No importa cuantos 0s pongamos a la izquierda, se mantiene el valor.

Caso 2:

Tomemos como ejemplo el número negativo de n bits: 1111 ... abcd

Caso 2:

Tomemos como ejemplo el número negativo de n bits: 1111 ... abcd

Calculemos su valor numérico en base 10:

- 1 = negativo
- 1) invertimos bit a bit (a' = not(a)):

0000 ... a'b'c'd'

Caso 2:

Tomemos como ejemplo el número negativo de n bits: 1111 ... abcd

Calculemos su valor numérico en base 10:

1 = negativo

1) invertimos bit a bit (a' = not(a)): 2) sumamos 1:

0000 ... a'b'c'd' 0000 ... a'b'c'(d'+1)

Caso 2:

Tomemos como ejemplo el número negativo de n bits: 1111 ... abcd

Calculemos su valor numérico en base 10:

3) en base 10:

0000 ... a'b'c'(d'+1) =
$$0*2^{(n-1)}+0*2^{(n-2)}+0*2^{(n-3)}+...$$

+a'*2^(3)+b'*2^(2)+c'*2^(1)+d'*2^(0) + $1*2^{0}$ = $8a'+4b'+2c'+d'+1$

Caso 2:

Tomemos como ejemplo el número negativo de n bits: 1111 ... abcd

Calculemos su valor numérico en base 10:

3) en base 10:

0000 ... a'b'c'(d'+1) =
$$0*2^{(n-1)}+0*2^{(n-2)}+0*2^{(n-3)}+...$$

+a'*2^(3)+b'*2^(2)+c'*2^(1)+d'*2^(0) + $1*2^{0}$ = $8a'+4b'+2c'+d'+1$

4) agregamos el negativo: = -(8a'+4b'+2c'+d'+1)

Caso 2:

Tomemos como ejemplo el número negativo de n bits: 1111 ... abcd

Calculemos su valor numérico en base 10:

3) en base 10:

0000 ... a'b'c'(d'+1) =
$$0*2^{(n-1)}+0*2^{(n-2)}+0*2^{(n-3)}+...$$

+a'*2^(3)+b'*2^(2)+c'*2^(1)+d'*2^(0) + 1*2^0 = 8a'+4b'+2c'+d'+1

4) agregamos el negativo: = -(8a'+4b'+2c'+d'+1)

No importa cuantos 0s pongamos a la izquierda, se mantiene el valor.

2) Don Ignacio se entera de tus conocimientos en arquitectura de computadores y te pone a cargo del generador de pulsos del nuevo procesador desarrollado por la universidad, el "PUChip". El equipo de desarrollo diseñó el siguiente generador de pulsos y se describieron los siguientes datos:

- Tiempo desde C hasta inicio del NOT: 0.5(ns)
- Tiempo de ejecucuión del NOT: 0.25 (ns)
- Tiempo en recorrer el cable b: 0.5 (ns)
- Tiempo desde C hasta el final de a: 1 (ns)

¿Cual es la frecuencia máxima teórica del "PUChip"?

$$\bigcirc t = 0 \text{ (ns)}$$

 \bigcirc t = 0.5 (ns)

() 0.5 (ns) < t < 0.75 (ns)

 \bigcirc 1 (ns) < t < 1.25 (ns)

(1) 1 (ns) < t < 1.25 (ns)

El pulso dura 0.25 (ns)

P = 0.25 (ns)

ns +> Hz

$ns \rightarrow Hz$ 1 (ns) $- \rightarrow 1*10^{-9}$ (s)

 $ns \rightarrow Hz$ 1 (ns) $\rightarrow 1*10^{-9}$ (s)

1/T $\rightarrow F$

T = 0.25 (ns) $T = 0.25 * 10^{-9} \text{ (s)}$ T = 0.25 (ns) $T = 0.25 * 10^{-9} (s)$

1/T = F $1/(0.25*10^{-9}) = F$

P = 0.25 (ns) T = 2*P = 0.5 (ns) $T = 0.5*10^{-9} (s)$

P = 0.25 (ns)
T =
$$2*P = 0.5$$
 (ns)
T = 0.5 * 10^-9 (s)
1/T = F
1/(0.05*10^-9) = F

P = 0.25 (ns)
T =
$$2*P = 0.5$$
 (ns)
T = $0.5 * 10^{-9}$ (s)
 $1/T = F$
 $1/(0.05*10^{-9}) = F$

$$F = 2 (GHz)$$

3) ¿En qué casos es posible soportar la instrucción ADD B, Lit en el computador básico, sin modificar su hardware? Para los casos negativos, indique modificaciones al hardware y/o assembly que se deberían hacer para soportarlos. [I1-2016-1]

3) ¿En qué casos es posible soportar la instrucción ADD B, Lit en el computador básico, sin modificar su hardware? Para los casos negativos, indique modificaciones al hardware y/o assembly que se deberían hacer para soportarlos. [I1-2016-1]

	Instrucción	Operandos	Opcode	$_{\mathrm{La}}$	$_{\mathrm{Lb}}$	Sa0	Sb0	Sb1	Sop2	Sop1	Sop0	Operación
	MOV	A,B	000000	1	0	1	0	0	0	0	0	A=B
		$_{\mathrm{B,A}}$	000001	0	1	0	1	1	0	0	0	B=A
		A,Lit	000010	1	0	0	0	1	0	0	0	A=Lit
		B,Lit	000011	0	1	0	0	1	0	0	0	B=Lit
	ADD	$_{\mathrm{A,B}}$	000100	1	0	0	0	0	0	0	0	A=A+B
		$_{\mathrm{B,A}}$	000101	0	1	0	0	0	0	0	0	B=A+B
		A,Lit	000110	1	0	0	0	1	0	0	0	A=A+Lit
	SUB	$_{\mathrm{A,B}}$	000111	1	0	0	0	0	0	0	1	A=A-B
		$_{\mathrm{B,A}}$	001000	0	1	0	0	0	0	0	1	B=A-B
		A,Lit	001001	1	0	0	0	1	0	0	1	A=A-Lit
	AND	$_{\mathrm{A,B}}$	001010	1	0	0	0	0	0	1	0	A=A and B
		$_{\mathrm{B,A}}$	001011	0	1	0	0	0	0	1	0	B=A and B
		A,Lit	001100	1	0	0	0	1	0	1	0	A=A and Lit
	OR	$_{A,B}$	001101	1	0	0	0	0	0	1	1	A=A or B
		$_{\mathrm{B,A}}$	001110	0	1	0	0	0	0	1	1	B=A or B
		A,Lit	001111	1	0	0	0	1	0	1	1	A=A or Lit
	NOT	A,A	010000	1	0	0	0	0	1	0	0	A=notA
		$_{\mathrm{B,A}}$	010001	0	1	0	0	0	1	0	0	B=notA
		A,Lit	010010	1	0	0	0	1	1	0	0	A=notLit
	XOR	A,A	010011	1	0	0	0	0	1	0	1	A=A xor B
		$_{\mathrm{B,A}}$	010100	0	1	0	0	0	1	0	1	B=A xor B
		A,Lit	010101	1	0	0	0	1	1	0	1	A=A xor Lit
	$_{ m SHL}$	A,A	010110	1	0	0	0	0	1	1	0	A=shift left A
		$_{\mathrm{B,A}}$	010111	0	1	0	0	0	1	1	0	B=shift left A
		A,Lit	011000	1	0	0	0	1	1	1	0	A=shift left Lit
	SHR	A,A	011001	1	0	0	0	0	1	1	1	A=shift right A
		B,A	011010	0	1	0	0	0	1	1	1	B=shift right A
		A,Lit	011011	1	0	0	0	1	1	1	1	A=shift right Lit
				-				-	-	-		

Diagrama del computador basico

Diagrama del computador basico

Las instrucciones soportadas sin cambiar el hardware son:

- ADD B, 0
- ADD B, 1

Las instrucciones soportadas sin cambiar el hardware son:

- ADD B, 0
- ADD B, 1

Como podemos modificar el hardware para que ahora se pueda realizar cualquier operación tipo ADD B, Lit?

Se debe agregar el bus de literales al Mux A

Se debe agregar el bus de literales al Mux A

Y que pasa con los opcodes?

	Instrucción	Operandos	Opcode	La	Lb	Sa0	Sb0	Sb1	Sop2	Sop1	Sop0	Operación
Ι.	MOV	A,B	000000	1	0	1	0	0	0	0	0	A=B
		$_{\mathrm{B,A}}$	000001	0	1	0	1	1	0	0	0	B=A
		A,Lit	000010	1	0	0	0	1	0	0	0	A=Lit
		$_{ m B,Lit}$	000011	0	1	0	0	1	0	0	0	B=Lit
	ADD	A,B	000100	1	0	0	0	0	0	0	0	A=A+B
		$_{\mathrm{B,A}}$	000101	0	1	0	0	0	0	0	0	B=A+B
		A,Lit	000110	1	0	0	0	1	0	0	0	A=A+Lit
		B, Lit	000111	0	1	0	0	0	0	0	0	B=B+Lit