

Departamento de Engenharia Electrotécnica Instituto Superior de Engenharia do Porto

TESISTeoria dos Sistemas

Álgebra dos Diagramas de Blocos

_

Exercícios Propostos e Soluções

Ano Lectivo: 2007/2008

1. Considere os dois sistemas de diagrama de blocos representados nas figuras. Exprima W(s) em função de G(s) de forma a que a função de transferência dos dois sistemas seja igual.

a) $R(s) + \longrightarrow G(s) \longrightarrow W(s) \longrightarrow GH(s)$ $GH(s) \longrightarrow GH(s)$

H(s)

Solução:

a)
$$W(s) = \frac{1}{H(s)}$$

b)
$$W(s) = \frac{1}{G(s)}$$

2. Determine a Função de Transferência dos diagramas de blocos representados nas figuras seguintes:

c)

d)

e)

f)

g)

h)

i)

j)

k)

1)

m)

n)

o)

p)

q)

r)

s)

t)

Solução:

a)
$$\frac{Y(s)}{R(s)} = \frac{G}{1 + G.H}$$

b)
$$\frac{Y(s)}{R(s)} = \frac{G1.G2.G3}{(1+G1.H1).(1+G3)+G1.G2.G3.H1}$$

c)
$$\frac{C(s)}{R(s)} = \frac{G1+G2}{1+(G1+G2).(G3-G4)}$$

d)
$$\frac{C(s)}{R(s)} = \frac{G_1(s)G_2(s)G_3(s)}{1+G_2(s)H(s)}$$

e)
$$\frac{Y(s)}{R(s)} = \frac{G2.(G1 + G3.G4)}{1 + G2.H1.G3}$$

f)
$$\frac{Y(s)}{R(s)} = \frac{G1.G2.G3(1+H1.H2)}{(1+G1.G2).(1+H1.H2)+G1.G2.G3.H1.H2.H3}$$

g)
$$\frac{C(s)}{R(s)} = 0$$

h)
$$Y(s) = \frac{G1.G2}{1 + G1.G2.H}.R(s) + \frac{G2}{1 + G1.G2.H}.N(s)$$

i)
$$\frac{Y(s)}{R(s)} = \frac{G1.G3 + G2.G3}{1 + G3.H1 + G2.G3}$$

$$j) \quad \frac{C(s)}{R(s)} = \frac{b}{\left(s+a\right)^2 + b^2}$$

k)
$$\frac{C(s)}{R(s)} = \left(\frac{G_1}{1 + G_1 H_1} + G_3\right) \frac{G_2}{1 + G_2 H_2}$$

1)
$$\frac{Y(s)}{R(s)} = \frac{G1.G2.G3}{1 - G1.G2.H2 + G2.G3.H1 + G1.G2.G3}$$

m)
$$\frac{Y(s)}{R(s)} = \frac{G2.G3.G4 - G1.G2}{1 - G2.H1 + G2.G3.H2}$$

n)
$$\frac{Y(s)}{R(s)} = \frac{G1.G2 + G3.(1 + G1.H2 + G1.H3)}{1 + G1.H2 + G1.H3 + G1.G2.H1}$$

o)
$$\frac{Y(s)}{R(s)} = \frac{G1.G2.G3.G4}{1 + G1.G2 + G3.G4 + G2.G3 + G1.G2.G3.G4}$$

p)
$$\frac{Y(s)}{R(s)} = \frac{G1.G2}{1 + G2.H2 - G1.H1 + G1.G2}$$

q)
$$\frac{Y(s)}{R(s)} = \frac{(1+G1).G2}{1+G2}$$

r)
$$\frac{Y(s)}{R(s)} = \frac{G1}{1 + G1 + G1.H1}$$

s)
$$\frac{Y(s)}{R(s)} = \frac{(G3.G4 + G2).G1.G5}{1 + G4.G5 + G3.G4.G5}$$

t)
$$C(s) = \frac{G_1(s)G_2(s)G_3(s)}{1 + G_2(s)G_3(s)[H_1(s) + G_1(s)H_2(s)]}R(s) + \frac{G_3(s)}{1 + G_2(s)G_3(s)[H_1(s) + G_1(s)H_2(s)]}d(s)$$

u)
$$\frac{C(s)}{R(s)} = \frac{G_3(s) \left[G_1(s) G_2(s) + G_4(s) \right]}{1 + G_2(s) G_3(s) H(s)}$$

v)
$$\frac{C(s)}{R(s)} = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)[H_1(s) + H_2(s)]}$$