Álgebra I. Hoja de ejercicios 10: Productos de grupos Universidad de El Salvador, ciclo impar 2018

Por cualquier pregunta, no duden en contactarme por correo electrónico cadadr@gmail.com.

Ejercicio 10.1. Demuestre que la sucesión

$$0 \to \mathbb{Z} \xrightarrow{n \mapsto (n,-n)} \mathbb{Z}[1/p] \times \mathbb{Z}_{(p)} \xrightarrow{(x,y) \mapsto x+y} \mathbb{Q} \to 0$$

es exacta. Aquí $\mathbb{Z}[1/p]$ es el subgrupo de \mathbb{Q} formado por las fracciones con potencias de p en el denominador y $\mathbb{Z}_{(p)}$ es el subgrupo de fracciones con el denominador no divisible por p.

Ejercicio 10.2. Demuestre que si $\mathbb{Q} \cong A \times B$ para algunos grupos abelianos A y B, entonces A = 0 o B = 0. Sugerencia: supongamos que A y B son subgrupos no triviales de \mathbb{Q} . Demuestre que $A \cap B \neq \{0\}$.

Ejercicio 10.3. *Demuestre que* $\mathbb{Q}/\mathbb{Z} \cong \mathbb{Z}[1/p]/\mathbb{Z} \times \mathbb{Z}_{(p)}/\mathbb{Z}$.

Ejercicio 10.4. Sea $Isom(\mathbb{R}^2)$ el grupo de isometrías del plano euclidiano. Demuestre que

$$Isom(\mathbb{R}^2) \cong \mathbb{R}^2 \rtimes_{\phi} O_2(\mathbb{R}),$$

donde \mathbb{R}^2 es el grupo aditivo $\mathbb{R} \times \mathbb{R}$ y el homomorfismo

$$\phi \colon O_2(\mathbb{R}) \to \operatorname{Aut}(\mathbb{R}^2)$$

viene dado por la multiplicación de vectores $\binom{x}{y} \in \mathbb{R}^2$ por matrices $A \in O_2(\mathbb{R})$:

$$\phi_A \begin{pmatrix} x \\ y \end{pmatrix} := A \cdot \begin{pmatrix} x \\ y \end{pmatrix}.$$

Ejercicio 10.5. Demuestre que $O_n(\mathbb{R}) \cong SO_n(\mathbb{R}) \rtimes_{\phi} \{\pm 1\}$ para algún homomorfismo $\phi \colon \{\pm 1\} \to \operatorname{Aut}(SO_n(\mathbb{R}))$. Indicación: demuestre que la sucesión exacta corta

$$1 \to SO_n(\mathbb{R}) \xrightarrow{i} O_n(\mathbb{R}) \xrightarrow{p} \{\pm 1\} \to 1$$

(donde i es la inclusión de subgrupo y p es la proyección sobre el grupo cociente) admite un homomorfismo $s: \{\pm 1\} \to O_n(\mathbb{R})$ tal que $i \circ s = \mathrm{id}$.

Ejercicio 10.6. Encuentre todas las posibles extensiones de $\mathbb{Z}/2\mathbb{Z}$ por $\mathbb{Z}/2\mathbb{Z}$

$$0 \to \mathbb{Z}/2\mathbb{Z} \to A \to \mathbb{Z}/2\mathbb{Z} \to 0$$

salvo isomorfismo.

Ejercicio 10.7. *Demuestre que toda sucesión exacta corta de grupos abelianos*

$$0 \to A \to B \to \mathbb{Z} \to 0$$

es equivalente a la extensión

$$0 \to A \xrightarrow{a \mapsto (a,0)} A \times \mathbb{Z} \xrightarrow{(a,n) \mapsto n} \mathbb{Z} \to 0$$

Indicación: demuestre que todo epimorsifmo $p: B \twoheadrightarrow \mathbb{Z}$ admite un homomorfismo $s: \mathbb{Z} \to B$ tal que $p \circ s = \mathrm{id}_{\mathbb{Z}}$.

Ejercicio 10.8. Sea A un grupo abeliano que satisface la siguiente propiedad: todo monomorfismo de grupos abelianos $i: A \rightarrow B$ admite un homomorfismo $r: B \rightarrow A$ tal que $r \circ i = \mathrm{id}_A$. En este ejercicio vamos a demostrar que A es divisible.

Sea $n = 1, 2, 3, \dots y$ $a \in A$.

- 1) Consideremos el homomorfismo $f: \mathbb{Z} \to A$ definido por f(1) = a.
- 2) Demuestre que $C := \{ (f(x), -nx) \mid x \in \mathbb{Z} \}$ es un subgrupo de $A \times \mathbb{Z}$.
- 3) Consideremos el cuadrado de homomorfismos de grupos abelianos

$$\mathbb{Z} \xrightarrow{\times n} \mathbb{Z}$$

$$f \downarrow \qquad \qquad \downarrow \overline{f}$$

$$A \xrightarrow{i} (A \times \mathbb{Z})/C$$

donde la primera flecha horizontal es la multiplicación por n, la flecha i viene dada por $a\mapsto (a,0)+C$ y la flecha \overline{f} viene dada por $x\mapsto (0,x)+C$. Demuestre que el cuadrado es conmutativo y que i es un monomorfismo.

4) Por la hipótesis sobre A, existe un homomorfismo $r: (A \times \mathbb{Z})/C \to A$ tal que $r \circ i = \mathrm{id}_A$.

$$\mathbb{Z} \xrightarrow{\times n} \mathbb{Z}$$

$$f \downarrow \qquad \qquad \downarrow \overline{f}$$

$$A \xrightarrow{i} (A \times \mathbb{Z})/C$$

Usando esto, encuentre un elemento b \in *A tal que b* = $n \cdot a$. *Concluya que A es divisible.*

Ejercicio 10.9. Sea

$$1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$$

una sucesión exacta corta de grupos finitos. Demuestre que $|G| = |H| \cdot |K|$.

Ejercicio 10.10. Se dice que una sucesión de homomorfismos

$$1 \xrightarrow{f_n} G_{n-1} \xrightarrow{f_{n-1}} G_{n-2} \xrightarrow{f_{n-2}} G_{n-3} \to \cdots \to G_1 \xrightarrow{f_1} G_0 \xrightarrow{f_0} 1$$

es exacta si im $f_i = \ker f_{i-1}$ para todo $i = 1, \ldots, n$. Es una generalización de la noción de sucesión exacta corta

$$1 \xrightarrow{f_3} G_2 \xrightarrow{f_2} G_1 \xrightarrow{f_1} G_0 \xrightarrow{f_0} 1$$

Demuestre que para una sucesión exacta de grupos finitos se cumple

$$\prod_{0 \le i \le n-1} |G_i|^{(-1)^i} = 1.$$

Esto generaliza la fórmula del ejercicio precedente.