

Presentación del equipo

Federico Velez

José David Gómez

Rafael Villegas

Manuela Franco

Simón Marín

Mauricio Toro

Proceso de entrenamiento

Imágenes de ganado enfermo

Imágenes del ganado sano

Proceso de validación

Diseño del algoritmo de compresión con pérdida

Diseño del algoritmo de compresión sin pérdida

Complejidad del algoritmo de compresión

	La complejidad del tiempo	Complejidad de la memoria
Algoritmo de descompresion sin per dida(huffman)	O(NLOGN)	O(NLOGN)
Algoritmo de compresion sin perdida(huffman)	O(NLOGN)	O(NLOGN)

N es el numero de nodos que recorre del arbol que se crea con el algortimo de Huffman

Consumo de tiempo y memoria

Huffman	Tiempo promedio de ejecución (s)	Tamaño promedio del archivo (MB)
Compresión sin perdidas	0.69333 s	0.0621111111 MB
Descompresión sin perdidas	0.6051 s	0.0621111111 MB

Informe aceptado en arXiv

C. Patiño-Forero, M. Agudelo-Toro y M. Toro. Planning system for deliveries in Medellín. ArXiv e-prints, noviembre de 2016. Disponible en: https://arxiv.org/abs/1611.04156

arXiv.org > cs > arXiv:1611.04156

Computer Science > Data Structures and Algorithms

[Submitted on 13 Nov 2016]

Planning system for deliveries in Medellín

Catalina Patiño-Forero, Mateo Agudelo-Toro, Mauricio Toro

Here we present the implementation of an application capable of planning the shortest delivery route in the city of Medellín, Colombia. We discuss the different approaches to this problem which is similar to the famous Traveling Salesman Problem (TSP), but differs in the fact that, in our problem, we can visit each place (or vertex) more than once. Solving this problem is important since it would help people, especially stores with delivering services, to save time and money spent in fuel, because they can plan any route in an efficient way.

Comments: 5 pages, 9 figures

Subjects: Data Structures and Algorithms (cs.DS)

ACM classes: F.2.0; G.2.2

Cite as: arXiv:1611.04156 [cs.DS]

(or arXiv:1611.04156v1 [cs.DS] for this version)

GRACIAS!

Apoyado por

Los dos primeros autores son apoyados por una beca Sapiencia financiada por el municipio de Medellín. Todos los autores quieren agradecer a la Vicerrectoría de Descubrimiento y Creación, de la Universidad EAFIT, por su apoyo en esta investigación.