

Informatik der Systeme – Chapter 1: Units and Number Formats

Prof. Dr. Michael Menth

http://kn.inf.uni-tuebingen.de

Principal Metric Prefixes

Exp.	Explicit	Prefix	Ехр.	Explicit	Prefix
10 ⁻³	0.001	milli	10³	1,000	Kilo
10-6	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 ⁻¹²	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.00000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000,000	Exa
10 ⁻²¹	0.0000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 ⁻²⁴	0.00000000000000000000000000001	yocto	1024	1,000,000,000,000,000,000,000	Yotta

Source: A. Tanenbaum, Structured Computer Organization, 5/E, © Pearson

Information Units

- Storage mostly as 2^X bytes (8 bits)
 - Sometimes "rounded" to 10^{X/10*3} bytes
 - Kilobyte 2¹⁰ or 10³ bytes
 - Megabyte 2²⁰ or 10⁶ bytes
 - Gigabyte 2³⁰ or 10⁹ bytes
 - Terabyte 2⁴⁰ or 10¹² bytes
 - Petabyte 2⁵⁰ or 10¹⁵ bytes
 - Exabyte 2⁶⁰ or 10¹⁸ bytes
- Transmission speeds always come in 10^X bits per second
- Convention in MIPS architecture (specific to ISA)
 - Word: 32 bits
 - Halfword: 16 bits

Hexadecimal Encoding of Bit Strings

- ► Base 16
 - Compact representation of bit strings
 - 4 bits per hex digit

0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	d	1101
2	0010	6	0110	a	1010	е	1110
3	0011	7	0111	b	1011	f	1111

- Notation of hex numbers
 - 72₁₆, 72_{hex}, 72h, 72_H, 0x72, "72, \$72 and X'72,
 - Prefix 0x most widely used in programming
- ► Example: 0x ECA8 6420
 - 1110 1100 1010 1000 0110 0100 0010 0000

Unsigned Binary Integers

Unsigned binary integer

$$x = x_{n-1}x_{n-2} \dots x_1x_0$$

Interpretation as decimal

$$X = x_{n-1} \cdot 2^{n-1} + \dots + x_0 \cdot 2^0$$

- ► Range: 0 to +2ⁿ 1
- Example using 32 bits
 - 0000 0000 0000 0000 0000 0000 0000 1011₂

$$= 0 + ... + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

= $0 + ... + 8 + 0 + 2 + 1 = 11_{10}$

Range: 0 to +4,294,967,295

Hex	Binary	Decimal	
0x00000000	00000	0	
0x00000001	00001	1	
0x00000002	00010	2	
0x00000003	00011	3	
0x00000004	00100	4	
0x00000005	00101	5	
0x00000006	00110	6	
0x00000007	00111	7	
0x00000008	01000	8	
0x00000009	01001	9	
0xFFFFFFC	11100		
0xFFFFFFD	11101		
0xFFFFFFE	11110		
0xFFFFFFF	11111		

2s-Complement Signed Integers

$$X = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- ► Range: -2ⁿ⁻¹ to +2ⁿ⁻¹ 1
 - $-(-2^{n-1})$ can't be represented
- ► Example using 32 bits

 - Range: -2,147,483,648 to +2,147,483,647
- ► Bit 31 is sign bit
 - 1 for negative numbers
 - 0 for non-negative numbers
 - Non-negative numbers have the same unsigned and 2scomplement representation

- ► Some specific numbers
 - 0: 0000 0000 ... 0000
 - -1: 1111 1111 ... 1111
 - Most-negative: 1000 0000 ... 0000
 - Most-positive: 0111 1111... 1111
- ► Complement (\bar{x}) means $1 \rightarrow 0$, $0 \rightarrow 1$
- "Signed negation"

•
$$x + \bar{x} = 1111 \dots 111_2 = -1_{10} \Rightarrow \bar{x} + 1_{10} = -x$$

 Complement and add 1 to obtain negated value

Negation of 2'sc Signed Integers

- Representing a number using more bits
 - Preserve the numeric value
 - Convert from byte to halfword or word
- Unsigned binary integers
 - Extend with 0s to the left (zero extension)
- 2'sc signed integers
 - Extend with the sign bit to the left (sign extension)
 - Examples: 8-bit to 16-bit
 - $+2: 0000 \ 0010 \Rightarrow 0000 \ 0000 \ 0010$
 - -2: 1111 1110 \Rightarrow 1111 1111 1110

Binary Floating Point Numbers

- What's 18 in binary?
 - 18/2 = 9 remainder 0 (least significant bit)
 - 9/2 = 4 remainder 1
 - 4/2 = 2 remainder 0
 - 2/2 = 1 remainder 0
 - 1/2 = 0 remainder 1 (most significant bit)
 - = 10010
- What's 0.4 in binary?
 - $0.4 \cdot 2 = 0.8 = 0$ remainder 0.8 (most significant bit)
 - $0.8 \cdot 2 = 1.6 = 1$ remainder 0.6
 - 0.6.2 = 1.2 = 1 remainder 0.2
 - 0.2.2 = 0.4 = 0 remainder 0.4
 - 0.4.2 = 0.8 = 0 remainder 0.8
 - $0.8 \cdot 2 = 1.6 = 1$ remainder 0.6 (least significant bit)
 - ...
 - = 0.0110011001100110011...
- What's 18.4 in binary?
 - = 10010.011001100110011...

IEEE 754 Format

Definition

Vorzeichen

- Sign V, exponent E, significand M
 - r: number of E-bits
 - p : number of M-bits
- Precision
 - Single: 32 bit, r=8, p=23
 - Double: 64 bit, r=11, p=52
- Interpretation: $x = s \cdot f \cdot 2^e$
 - $s = (-1)^V$
 - $f = 1 + M/2^p$
 - e = E B
 - $B = 2^{r-1} 1$ (exponential offset)
- Exceptions
 - E=0, M=0: +/-Null
 - $E = 2^r 1$, M = 0: +/-infinity
 - $E = 2^r 1, M > 0$: not a number (NaN)
 - E=0, M>0: denormalized number, interpretation: $(-1)^{V} \times M / 2^{p} \times 2^{1-B}$

- Conversion from decimals to IEEE 754
- Example
 - 18.4 = 10010.0110011001100110011 2
 - Normalized binary float
 - $1,0010011001100110011 \dots \cdot 2^{(4_{10})}$
 - IEEE 754 representation (single precision)
 - $B = 2^{r-1} 1 = 2^7 1 = 127$
 - V = 0
 - E = e + B = 4 + 127 = 131 = 10000011₂
 - $-M = 0010011001100110011_{2}$