Homework 3 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

March 12, 2024

1. For all $\varepsilon > 0$, we can find a $N \in \mathbb{N}$ s.t. $|a_n - a| < \frac{\varepsilon}{2}$ for all n > N. And we can find a N' > N s.t.

$$\frac{\sum_{i=1}^{N} a_i - a}{N'} < \frac{\varepsilon}{2}.$$
 Thus, for any $n > N'$,

$$\left|\frac{\sum_{i=1}^{n} a_i}{n} - a\right| \le \left|\frac{\sum_{i=1}^{N} a_i - a}{n}\right| + \left|\frac{\sum_{i=N+1}^{n} a_i - a}{n - N'}\right|$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
$$= \varepsilon$$

Therefore, $\lim_{n\to\infty} b_n = a$.

2. Since $\lim_{n\to\infty} na_n = 0$, by 1., $\lim_{N\to\infty} \sum_{n=0}^N a_n = \lim_{N\to\infty} \sum_{n=0}^N \frac{na_n}{N} = 0$ Also, since $\lim_{n\to\infty} na_n = 0$, $\lim_{n\to\infty} a_n = 0$. Thus, for any $\varepsilon > 0$, there exists a $N \in \mathbb{N}$ s.t. $|\sum_{n=k+1}^\infty a_n| < \frac{\varepsilon}{3}$ for all k > N. Then, for $x \to 1^-$ s.t. $|f(x) - A| < \frac{\varepsilon}{3}$ and $|\sum_{n=1}^k a_n(1-x)| < \frac{\varepsilon}{3}$,

$$\left|\sum_{n=0}^{N} a_n - A\right| = \left|\sum_{n=0}^{N} a_n (1 - x^n) - \sum_{n=N+1}^{\infty} a_n x^n + (f(x) - A)\right|$$

$$\leq \left|\sum_{n=0}^{N} a_n (1 - x)\right| + \left|\sum_{n=N+1}^{\infty} a_n x^n\right| + \left|f(x) - A\right|$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Therefore,
$$\sum_{n=0}^{\infty} a_n = A$$
.

3. Since $\lim_{x\to 1^-}\sum_{n=1}^\infty a_nx^n=A$, for any $\varepsilon>0$, we can find a $x_1\in (0,1)$ s.t. $|\sum_{n=1}^\infty a_nx^n-A|<\frac{\varepsilon}{3}$ for all $x_1< x<1$. Then, there exists $N\in\mathbb{N}$ s.t. $|\sum_{n=N'+1}^\infty a_nx^n|<\frac{\varepsilon}{3}$ for all x and x'>N. And we have x_2 s.t. $|\sum_{n=1}^N a_n(1-x^n)|<\frac{\varepsilon}{3}$ for all $x_2< x<1$.

Thus, for any N' > N and $x > \max\{x_1, x_2\}$,

$$\left|\sum_{n=0}^{N} a_n - A\right| \le \left|\sum_{n=0}^{N'} a_n (1 - x^n)\right| + \left|\sum_{n=N'+1}^{\infty} a_n x^n\right| + \left|\sum_{n=1}^{\infty} a_n x^n - A\right|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon$$

Thus,
$$\sum_{n=1}^{\infty} a_n = A$$
.

4.

- (\Longrightarrow) Since $\sum_{n=1}^{\infty}a_n\sin(nx)$ converges uniformly, there exists a $N\in\mathbb{N}$ s.t. $|\sum_{n=N}^{2N-1}a_n\sin(nx)|<\varepsilon$ for all x. Let $x=\frac{1}{2N}$, then $\sin(nx)=\sin(\frac{n}{2N})\in[\sin(\frac{1}{2}),1)$. Thus, $\sum_{n=N}^{2N-1}a_n\sin(nx)>\sum_{n=N}^{2N-1}a_n\sin(\frac{1}{2})\geq\sum_{n=N}^{2N-1}a_2\sin(\frac{1}{2})=\frac{2n}{2}\sin(\frac{1}{2})a_{2n}$. Therefore, $2na_{2n}<\frac{2}{\sin(\frac{1}{2})}\varepsilon$. Using the similar way, we can get $(2n-1)a_{2n-1}\to 0$ as $n\to\infty$ also. Hence, we get $na_n\to 0$ as $n\to\infty$.
- (\iff) Since $na_n \to 0$ as $n \to \infty$, we can find an $N \in \mathbb{N}$ s.t. $na_n < \frac{\varepsilon}{\pi}$ for all n > N. And since $|\sin(nx)|$ is periodic function, we only need to check the series converges on $[0, \pi]$. Then, we want to $|\sum_{k=n}^{n+p} a_k \sin(kx)|$ uniformly converges for n > N and $p \in N$. We separate the interval into $[0, \frac{\pi}{n+p}], [\frac{\pi}{n+p}, \frac{\pi}{n}], [\frac{\pi}{n}, \pi]$ three interval. First one,

$$|\sum_{k=n}^{n+p} a_k \sin(kx)| \le \sum_{k=n}^{n+p} a_k \cdot k \cdot x$$

$$\le \frac{k=n}{n+p} k \cdot k \cdot \frac{\pi}{n+p}$$

$$\le (p+1)\frac{\varepsilon}{\pi} \cdot \frac{\pi}{n+p}$$

And the second interval, let $m = [\frac{\pi}{x}]$. We want to show that for any $n \in \mathbb{N}$ and $x \in [\frac{\pi}{n+p}, \pi]$, $\sum_{k=1}^{n} a_k \sin(n_k) \le \frac{1}{\sin(\frac{x}{2})}.$ Since $2\sin(\frac{x}{2})\sin(kx) = \cos((k-\frac{1}{2})x) - \cos((k+\frac{1}{2})x)$,

$$\begin{split} |\sum_{k=1}^{n} \sin(kx)| &= \frac{1}{2\sin(\frac{x}{2})} |\sum_{k=1}^{n} \cos((k - \frac{1}{2})x) - \cos((k + \frac{1}{2})x)| \\ &= \frac{1}{2\sin(\frac{x}{2})} |\cos(\frac{1}{2}x) - \cos((n - \frac{1}{2})x)| \\ &\leq \frac{1}{\sin(\frac{x}{2})}. \end{split}$$

Then, we want to show $|\sum_{k=m+1}^{n+p} a_k \sin(kx)| \le \frac{2a_{m+1}}{\sin(\frac{x}{2})}$. Using Abel's formula,

$$\begin{split} |\sum_{k=m+1}^{n+p} a_k \sin(kx)| &\leq a_{n+p} |\sum_{k=m+1}^{n+p} \sin(kx)| + \sum_{k=m+1}^{n+p-1} |\sum_{j=m+1}^{k} \sin(jx)| (a_k - a_{k-1}) \\ &\leq a_{n+p} \frac{2}{\sin(\frac{x}{2})} + \frac{2}{\sin(\frac{x}{2})} \sum_{k=m+1}^{n+p-1} (a_k - a_{k-1}) \\ &= \frac{2}{\sin(\frac{x}{2})} (a_{n+p} + a_{m+1} - a_{n+p}) \\ &= \frac{2a_{m+1}}{\sin(\frac{x}{2})} \end{split}$$

Thus,

$$\left|\sum_{k=n}^{n+p} a_k \sin(kx)\right| \le \sum_{k=n}^{m} a_k \sin(kx) + \left|\sum_{k=m+1}^{n+p} a_k \sin(kx)\right|$$

$$\le \sum_{k=n}^{m} k a_k \cdot x + \frac{2a_{m+1}}{\sin(\frac{x}{2})}$$

$$\le (m-n+1)\frac{\varepsilon}{\pi} x + 2a_{m+1} \frac{\pi}{x}$$

$$\le m \frac{x}{\pi} \varepsilon + 2a_{m+1} (m+1)$$

$$\le \varepsilon + 2\frac{\varepsilon}{\pi}$$

And the third one,

$$|\sum_{k=n}^{n+p} a_k \sin(kx)| \le \frac{2a_n}{\sin(\frac{x}{2})}$$

$$\le \frac{2\pi}{2x} a_n$$

$$\le na_n$$

$$< \frac{\varepsilon}{\pi}$$

Thus, $\sum_{n=1}^{\infty} a_n \sin(nx)$ converges uniformly.