Introduction to Aerial Robotics Lecture 5

Shaojie Shen
Associate Professor
Dept. of ECE, HKUST

2 March 2021

Course Outline

Dynamics, Planning & Control

Vision

Estimation

Week	Lecture Date Tu 13:30-16:20	Topic	Assignment (due by 11:59 PM on the corresponding lecture date)
1	2/2	Introduction	
2	2/9	Rigid Body Transformation Quadrotor Modeling	
3	2/16	Control Basics Quadrotor Control Trajectory Generation	Project 1 Phase 1 Out
4	2/23	Trajectory Generation Path Planning	Project 1 Phase 1 Due Project 1 Phase 2 Out
5	3/2	Camera Modeling & Calibration Feature Detection & Matching	Project 1 Phase 2 Due Project 1 Phase 3 Out
6	3/9	Midterm Exam	Project 1 Phase 3 Due
7	3/16	Multi-View Geometry Pose Estimation	Project 2 Phase 1 Out
8	3/23	Optical Flow Dense Stereo	Project 2 Phase 1 Due Project 2 Phase 2 Out
9	3/30	Probability Basics Bayesian Inferencing Kalman Filter	
10	4/6	Midterm Break	
11	4/13	Extended Kalman Filter Augmented State EKF Particle Filter	Project 2 Phase 2 Due Project 3 Phase 1 Out
12	4/20	SLAM	Project 3 Phase 1 Due Project 3 Phase 2 Out
13	4/27	X	
14	5/4	x	Project 3 Phase 2 Due

Outline

- Camera Modeling
- Robot Vision Pipeline
- Point Feature Detection & Matching

Camera Modeling

Goal: Fly Like Birds

How can gannets' eyes and brain estimate distance to water?

Nature Vol. 293 24 September 1981

- 5. Spiess, F. N. et al. Science 207, 1421-1433 (1980).
- 6. Corliss, J. B. Science 203, 1073-1083 (1979).
- 7. Edmond, J. M. et al. Earth planet. Sci. Lett. 46, 19-30 (1979).
- 8. Ruby, E. G., Wirsen, C. O. & Jannasch, H. W. Appl. envir. Microbiol. (in the press).
- Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Science 213, 340-342 (1981).
- 10. Felbeck, H. Science 213, 336-338 (1981).
- 11. Jones, M. L. Science 213, 333-336 (1981).
- 12. Peck, H. D. Jr Enzymes 10, 651-669 (1974).
- 13. Latzko, E. & Gibbs, M. Pl. Physiai. 44, 295-300 (1969).
- 14. Reid, R. G. B. Can. J. Zool. 58, 386-393 (1980).
- 15. Los Angeles County (California) Sanitation District files.
- 16. Rau, G. H. Science 213, 338-340 (1981).
- 17. Rau, G. H. Nature 289, 484-485 (1981).
- 18. Rau, G. H. & Hedges, J. I. Science 203, 648-649 (1979).
- 19. Emery, K. O. & Hulsemann, J. Deep-Sea Res. 8, 165-180 (1962).
- 20. Hartman, O. & Barnard, J. L. Allan Hancock Pacific Exped. 22, (1958).
- 21. Nicholas, D. J. D., Ferrante, J. V. & Clarke, G. R. Analyt. Biochem. 95, 24-31 (1979).
- 22. Lonsdale, P. Nature 281, 531-534 (1979).

Plummeting gannets: a paradigm of ecological optics

David N. Lee & Paul E. Reddish

Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK

Robot Sees with Cameras

Cameras

- Monocular
 - Simplest setup
 - Depth unknown
- Stereo
 - Able to compute depth
 - Depth accuracy affected by baseline, resolution, and calibration
- Multi-Camera
 - Overlapping / Non-overlapping field-of-view

Cameras

- RGB-D Sensor
 - Great depth
 - Does not work outdoors

- Omnidirectional camera
 - 360 capture
 - Strong distortion

Cameras

Sensor

• Lens

Thin Lens

 A lens with a thickness that is negligible compared to the radii of curvature of the lens surfaces

Thin Lens

- Rays parallel to the optical axis meet focus after leaving the lens
- Rays through center of the lens do not change direction

Thin Lens

• De-focus if
$$\frac{1}{f} \neq \frac{1}{a} + \frac{1}{b}$$

- The object comes closer, the image becomes bigger
- A point moving on the same ray does not change its image
- If we only look at rays going through center of the lens:

• If we replace b with f and include a minus because the object image is upside down (Z=a,f=b)

$$-y = -f\frac{Y}{Z}$$

Assume that the image plane is in front of the lens:

$$-y = f \frac{Y}{Z}$$

Effect of f = b?

- Theoretically ,we expect an offset in the x and y coordinates caused by the error (f-b)
- If the object is on focus: $\frac{b-f}{f} = \frac{b}{Z}$
 - Relative error depends on the ratio of focus length to depth.
 - This matters if we actually use the focus length from camera specs
 - In practice, we use a procedure called calibration to obtain f that best satisfies: $y = f \frac{Y}{Z}$

Camera Coordinate System

- Optical axis is the z-axis
- The image plane (u, v) is perpendicular to the optical axis
- Intersection of the image plane and the optical axis is the image center (u_0,v_0)
- *f* is the distance of the image plane from the origin (in pixels)

• Formulation:

$$-u = \frac{fX_c}{Z_c} + u_0$$
$$-v = \frac{fY_c}{Z_c} + v_0$$

Matrix form:

$$\lambda \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f & 0 & u_o \\ 0 & f & v_o \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{pmatrix}$$

From camera to world:

$$\begin{pmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{pmatrix} = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix}$$

Radial Distortions

- Wide angle lenses have radial distortions
 - Straight lines become curves
- Formulation:

$$- r^2 = u^2 + v^2$$

$$- u^{dist} = u(1 + k_1 r + k_2 r^2 + k_3 r^3 + \cdots)$$

$$- v^{dist} = v(1 + k_1 r + k_2 r^2 + k_3 r^3 + \cdots)$$

Camera Calibration

- Requires:
 - Calibration object
- Obtains:
 - Intrinsic parameters
 - Distortion parameters

Camera Calibration

• Straight lines should be straight

Robot Vision Pipeline

Vision-based State Estimation Pipeline

Feature Detection

- We cannot process the entire image directly
- Requirements:
 - Repeatability
 - Saliency
 - Locality
 - Compactness and efficiency
- Popular features
 - Corners (FAST, Harris, ...)
 - Blob (SIFT, SURF, ...)
 - Line (Canny, ...)

Feature Matching

- Match features in different images
 - Across multiple cameras
 - Across time
- Common methods:
 - Descriptor matching
 - Optical flow

Pose Estimation

Visual-Inertial SLAM

Visual-Inertial SLAM

II. Go out laboratory

Single camera: mvBluefox

IMU: DJI A3

VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator

Point Feature Detection & Matching

Image matching

by **Diva Sian**

by swashford

Harder case

by <u>Diva Sian</u>

by scgbt

Even harder case

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

38

Harder still?

NASA Mars Rover images

Answer below (look for tiny colored squares...)

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Image Matching

Image Matching

Invariant local features

- Find features that are invariant to transformations
 - geometric invariance: translation, rotation, scale
 - photometric invariance: brightness, exposure, ...

Advantages of local features

- Locality
 - Features are local, so robust to occlusion and clutter
- Distinctiveness
 - Can differentiate a large database of objects
- Quantity
 - Hundreds or thousands in a single image
- Efficiency
 - Real-time performance achievable
- Generality
 - Exploit different types of features in different situations

More motivation...

- Feature points are used for:
 - Image alignment (e.g., mosaics)
 - 3D reconstruction
 - Motion tracking
 - Object recognition
 - Indexing and database retrieval
 - Robot navigation
 - ... other

Image Mosaics

Image Mosaics

Motion Tracking

Want uniqueness

- Look for image regions that are unusual
 - Lead to unambiguous matches in other images
- How to define "unusual"?

Local measures of uniqueness

Suppose we only consider a small window of pixels

— What defines whether a feature is a good or bad candidate?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Feature detection

- Local measure of feature uniqueness
 - How does the window change when you shift it?
 - Shifting the window in any direction causes a big change

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Feature detection

- Consider shifting the window W by (u,v)
 - How do the pixels in W change?
 - Compare each pixel before and after by summing up the squared differences (SSD)
 - This defines an SSD "error" of E(u,v):

$$E(u,v) = \sum_{(x,y) \in W} [I(x+u,y+v) - I(x,y)]^2$$

Small motion assumption

Taylor Series expansion of I:

$$I(x + u, y + v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

$$\approx I(x, y) + \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand:
$$I_{\chi} = \frac{\partial I}{\partial \chi}$$

Plugging this into the formula on the previous slide...

Image Gradients

l

$$I_x = I(x + 1, y) - I(x - 1, y)$$

$$I_y = I(x, y + 1) - I(x, y - 1)$$

- Consider shifting the window W by (u,v)
 - How do the pixels in W change?
 - Compare each pixel before and after by summing up the squared differences
 - This defines an "error" of E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^{2}$$

$$\approx \sum_{(x,y)\in W} [I(x,y) + [I_{x} \quad I_{y}] \begin{bmatrix} u \\ v \end{bmatrix} - I(x,y) \end{bmatrix}^{2}$$

$$\approx \sum_{(x,y)\in W} [[I_{x} \quad I_{y}] \begin{bmatrix} u \\ v \end{bmatrix}]^{2}$$

This can be rewritten:

- For the example above
 - You can move the center of the green window to anywhere on the blue unit circle
 - Which directions will result in the largest and smallest E values?
 - We can find these directions by looking at the eigenvectors of H

Quick eigenvalue/eigenvector review

• The eigenvectors of a matrix A are the vectors x that satisfy:

$$Ax = \lambda x$$

- The scalar λ is the **eigenvalue** corresponding to **x**
 - The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

- In our case, $\mathbf{A} = \mathbf{H}$ is a 2x2 matrix, so we have

$$det \begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} = 0$$

– The solution:

$$\lambda_{\pm} = \frac{1}{2} \Big[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \Big]$$

• Once you know λ , you find **x** by solving

$$\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

This can be rewritten:

- Eigenvalues and eigenvectors of H
 - Define shifts with the smallest and largest change (E value)
 - $-x_{+}$ = direction of **largest** increase in E.
 - $-\lambda_{+}$ = amount of increase in direction x_{+}
 - $-x_{.}$ = direction of **smallest** increase in E.
 - $-\lambda$ = amount of increase in direction x_{+}

$$Hx_{+} = \lambda_{+}x_{+}$$
$$Hx_{-} = \lambda_{-}x_{-}$$

- How are λ_+ , x_+ , λ_- , and x_- relevant for feature detection?
 - What's our feature scoring function?

- How are λ_+ , \mathbf{x}_+ , λ_- , and \mathbf{x}_- relevant for feature detection?
 - What's our feature scoring function?
- Want E(u,v) to be large for small shifts in all directions
 - the minimum of E(u,v) should be large, over all unit vectors [u v]
 - this minimum is given by the smaller eigenvalue ($\lambda_{\underline{\cdot}}$) of **H**

Feature detection summary

- Here's what you do
 - Compute the gradient at each point in the image
 - Create the *H* matrix from the entries in the gradient
 - Compute the eigenvalues.
 - Find points with large response (λ_{-} > threshold)
 - Choose those points where $\lambda_{\underline{\ }}$ is a local maximum as features

Feature detection summary

- Here's what you do
 - Compute the gradient at each point in the image
 - Create the *H* matrix from the entries in the gradient
 - Compute the eigenvalues.
 - Find points with large response (λ_{-} > threshold)
 - \perp Choose those points where λ_{\cdot} is a local maximum as features

The Harris operator

• $\lambda_{\underline{}}$ is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
$$= \frac{determinant(H)}{trace(H)}$$

- The trace is the sum of the diagonals, i.e., $trace(H) = h_{11} + h_{22}$
- Very similar to λ_{-} but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

The Harris operator

Harris detector example

f value (red high, blue low)

Threshold (f > value)

Find local maxima of f

Harris features (in red)

Invariance

- Suppose you rotate the image by some angle
 - Will you still pick up the same features?
- What if you change the brightness?
- Scale?

Scale invariant detection

Suppose you're looking for corners

- Key idea: find scale that gives local maximum of f
 - f is a local maximum in both position and scale

Lindeberg et al., 1996

Normalize: rescale to fixed size

Feature descriptors

We know how to detect good points Next question: How to match them?

Feature descriptors

We know how to detect good points

Next question: How to match them?

Lots of possibilities (this is a popular research area)

- Simple option: match square windows around the point
- Better approach: SIFT
 - David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

Invariance

Suppose we are comparing two images I₁ and I₂

- I₂ may be a transformed version of I₁
- What kinds of transformations are we likely to encounter in practice?

Invariance

- Suppose we are comparing two images I₁ and I₂
 - I₂ may be a transformed version of I₁
 - What kinds of transformations are we likely to encounter in practice?
- We'd like to find the same features regardless of the transformation
 - This is called transformational *invariance*
 - Most feature methods are designed to be invariant to
 - Translation, 2D rotation, scale
 - They can usually also handle
 - Limited 3D rotations (SIFT works up to about 60 degrees)
 - Limited affine transformations (some are fully affine invariant)
 - Limited illumination/contrast changes

How to achieve invariance

Need both of the following:

- 1. Make sure your detector is invariant
 - Harris is invariant to translation and rotation
 - Scale is trickier
 - common approach is to detect features at many scales using a Gaussian pyramid (e.g., MOPS)
 - More sophisticated methods find "the best scale" to represent each feature (e.g., SIFT)
- 2. Design an invariant feature descriptor
 - A descriptor captures the information in a region around the detected feature point
 - The simplest descriptor: a square window of pixels
 - What's this invariant to?
 - Let's look at some better approaches...

Rotation invariance for feature descriptors

Find dominant orientation of the image patch

- This is given by \mathbf{x}_{+} , the eigenvector of **H** corresponding to λ_{+}
 - λ_{+} is the *larger* eigenvalue
- Rotate the patch according to this angle

Figure by Matthew Brown

Multiscale Oriented PatcheS descriptor

Take 40x40 square window around detected feature

- Scale to 1/5 size (using prefiltering)
- Rotate to horizontal
- Sample 8x8 square window centered at feature
- Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window

Detections at multiple scales

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.

Scale Invariant Feature Transform

• Basic idea:

- Take 16x16 square window around detected feature
- $-\,\,$ Compute edge orientation (angle of the gradient 90 $^\circ$) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations

SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Slide adapted from David Lowe

Properties of SIFT

- Extraordinarily robust matching technique
 - Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available
 - http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known implementations of SIFT

Feature matching

Given a feature in I_1 , how to find the best match in I_2 ?

- Define distance function that compares two descriptors
- 2. Test all the features in I₂, find the one with min distance

Feature distance

- How to define the difference between two features f₁, f₂?
 - Simple approach is SSD(f₁, f₂)
 - sum of square differences between entries of the two descriptors
 - can give good scores to very ambiguous (bad) matches

Feature distance

- How to define the difference between two features f₁, f₂?
 - Better approach: ratio distance = $SSD(f_1, f_2) / SSD(f_1, f_2')$
 - f_2 is best SSD match to f_1 in I_2
 - f_2 ' is 2nd best SSD match to f_1 in I_2
 - gives small values for ambiguous matches

Evaluating the results

How can we measure the performance of a feature matcher?

feature distance

True/false positives

feature distance

- The distance threshold affects performance
 - True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
 - False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

Evaluating the results

How can we measure the performance of a feature matcher?

Evaluating the results

How can we measure the performance of a feature matcher?

- Generated by counting # current/incorrect matches, for different thresholds
- Want to maximize area under the curve (AUC)
- Useful for comparing different feature matching methods

Lots of applications

Features are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other

Object recognition (David Lowe)

Logistics

- Project 1, phase 2 will be due tonight (03/02)
- Project 1, phase 3 is released (03/02)
 - Due in one week: 03/09
- Midterm next Tuesday (03/09)
 - Open book, open notes, open Internet
 - No communication with your classmates, honor code is strictly enforced
 - Video connection or physical attendance is required during the exam
 - Covers lectures 1-4
 - 2 hours exam