

Απαντήσεις στα προβλήματα, δεκτές ηλεκτρονικά μέσω ηλεκτρονικής αλληλογραφίας:

```
email: compPhysicsEKPA@gmail.com
attachments: *.ipynb .OR. *.txt
```

Η αποστολή ασχήσεων είναι προαιρετική και δεν έχει κάποιο βαθμολογικό αντίκτυπο. Το αρχείο κειμένου (*.txt) πρέπει να περιέχει σχολιασμένο κώδικα σε οποιαδήποτε γλώσσα προγραμματισμού καθώς και το αποτέλεσμα της εκτέλεσής του (printout). (Μη στέλνετε αρχεία τύπου *.doc, *.docx.) Σε περίπτωση που θέλετε να συμπεριλάβετε κάποιο διάγραμμα, προτιμήστε αυτό να το επισυνάψετε ως ξεχωριστό αρχείο τύπου (*.png, *.jpg, *.pdf) ή compiled latex (pdf). Εναλλακτικά (προτιμητέο) μπορείτε να στείλετε τα αποτελέσματα όλα μαζί (γραφικά, κώδικας και αποτελέσματα) σε μορφή jupyter notebook (*.ipynb) – για πιο γρήγορη διόρθωση/σχολιασμό από τον διδάσκοντα.

Πρόβλημα 1 (παραδοτέο έως 22.10.2021)

Τα παρακάτω δεδομένα συνοψίζουν τα αποτελέσματα διαδοχικών ρίψεων έξι διαφορετικών ζαριών. Εξετάστε τον μέσο όρο και την τυπική απόκλιση των έξι διαφορετικών δειγμάτων. Είναι όλα τα ζάρια τίμια; Τεκμηριώστε την απάντησή σας.

dice1

```
5, 4, 1, 3, 2, 3, 4, 5, 6, 3, 4, 1, 2, 3, 6, 6, 1, 6, 5, 3, 6, 6, 2, 3, 6, 6, 6, 2, 2, 2, 2, 2, 4, 3, 5, 5, 1, 2, 4, 6, 2, 4, 5, 6, 1, 4, 2, 3, 6, 3, 5, 3, 1, 6, 4, 4, 2, 1, 3, 5, 3, 4, 2, 1, 5, 4, 1, 4, 2, 2, 4, 3, 3, 1, 3, 4, 6, 3, 3, 1, 4, 1, 4, 1, 1, 6, 2, 6, 1, 1, 6, 2, 1, 1, 4, 2, 5, 1, 1, 6, 6, 2, 6, 5, 5, 6, 3, 5, 2, 3, 2, 1, 6, 4, 4, 4, 1, 5, 1, 6, 3, 4, 6, 3, 5, 3, 5, 5, 2, 6, 4, 4, 1, 2, 1, 3, 2, 4, 5, 4, 6, 2, 6, 6, 4, 5, 5, 1, 2, 3, 2, 2, 5, 5, 2, 6, 1, 2, 2, 5, 3, 4, 2, 2, 6, 5, 3, 2, 4, 3, 5, 1, 4, 6, 5, 6, 3, 4, 2, 1, 2, 2, 3, 5, 3, 2, 6, 5, 3, 5, 4, 6, 4, 1, 4, 6, 1, 2, 3, 5, 2, 6, 6, 2, 2, 3, 2, 4, 1, 5, 2, 5, 4, 6, 1, 2, 3, 4, 1, 5, 5, 2, 1, 1, 5, 1, 5, 4, 3, 2, 3, 3, 4, 5, 3, 4, 3, 6, 4, 4, 1, 5, 3, 1, 1, 4, 2, 1, 5, 6, 5, 2, 4, 3, 5, 3, 6, 6, 5, 1, 2, 2, 3, 2, 1, 5, 3, 6, 2, 2, 5, 5, 2, 4, 6, 3
```

dice2

2, 1, 2, 4, 2, 2, 5, 5, 5, 4, 2, 1, 3, 3, 4, 1, 1, 4, 6, 3, 6, 3, 4, 4, 6, 6, 6, 3, 5, 1, 2, 2, 3, 5, 4, 5, 2, 2, 3, 5, 3, 3, 1, 3, 1, 4, 2, 2, 2, 4, 4, 2, 5, 5, 6, 6, 1, 6, 1, 4, 5, 6, 3, 4, 1, 4, 2, 5, 2, 2, 5, 4, 2, 4, 3, 3, 5, 5, 3, 3, 3, 6, 1, 4, 4, 6, 3, 4, 3, 2, 3, 6, 1, 6, 5, 4, 4, 5, 6, 3, 4, 5, 4, 6, 6, 5, 4, 2, 2, 4, 4, 1, 4, 5, 5, 4, 6, 1, 2, 6, 2, 3, 2, 6, 6, 1, 2, 4, 6, 2, 5, 1, 4, 5, 3, 2, 4, 6, 2, 6, 4, 2, 5, 1, 2, 4, 3, 2, 5, 6, 3, 1, 5, 5, 2, 5, 6, 4, 1, 4, 2, 2, 2, 2, 4, 3, 4, 2, 4, 6, 4, 6, 2, 3, 5, 6, 5, 6, 3, 2, 4, 6, 1, 3, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 3, 1, 2, 4, 6, 1, 6, 6, 4, 5, 6, 6, 6, 5, 4, 6, 2, 2, 2, 2, 6, 2, 5, 5, 5, 5, 5, 5, 5, 1, 3, 2, 4, 4, 1, 5, 6, 6, 6, 2, 5, 1, 6, 2, 3, 6, 5, 5, 3, 1, 5, 3, 5, 1, 1, 5, 6, 1, 6, 5, 3, 4, 4, 6, 3, 1, 6, 4, 2, 4, 6, 6, 1, 1, 2, 2, 1, 5, 6, 4, 3, 5, 3, 3, 5, 4, 4, 4

dice3

dice4

6, 2, 1, 2, 6, 6, 2, 1, 1, 1, 3, 2, 1, 4, 6, 6, 2, 4, 1, 5, 4, 2, 6, 3, 4, 3, 6, 4, 2, 3, 6, 3, 6, 1, 6, 1, 4, 2, 2, 3, 6, 5, 2, 5, 2, 4, 2, 1, 6, 3, 6, 4, 1, 4, 6, 5, 4, 6, 2, 3, 6, 2, 5, 4, 1, 3, 4, 6, 4, 5, 5, 6, 3, 6, 6, 2, 5, 3, 6, 5, 6, 6, 3, 3, 1, 4, 2, 4, 3, 6, 4, 3, 2, 4, 2, 3, 3, 3, 1, 4, 1, 1, 1, 1, 4, 1, 6, 5, 3, 4, 1, 6, 5, 6, 6, 1, 2, 2, 6, 4, 5, 4, 1, 6, 1, 2, 2, 5, 1, 5, 6, 1, 2, 2, 2, 2, 4, 3, 2, 2, 2, 4, 1, 6, 1, 3, 3, 1, 5, 6, 6, 2, 2, 3, 1, 4, 5, 3, 3, 6, 1, 6, 5, 3, 6, 6, 1, 5, 5, 6, 2, 1, 1, 2, 6, 1, 1, 2, 1, 3, 6, 5, 5, 4, 6, 6, 6, 4, 6, 6, 1, 6, 3, 3, 2, 4, 2, 2, 3, 4, 2, 4, 2, 5, 6, 6, 6, 4, 3, 2, 1, 3, 1, 4, 2, 2, 6, 1, 2, 2, 2, 1, 5, 5, 5, 6, 1, 2, 2, 2, 4, 1, 5, 1, 4, 2, 2, 6, 5, 3, 5, 2, 4, 6, 2, 5, 5, 5, 2, 1, 3, 6, 2, 3, 6, 5, 1, 3, 2, 5, 5, 3, 1, 3, 2, 4, 6, 4, 2, 5, 5, 5, 5, 2, 1, 3, 4, 1, 3, 2, 1, 3, 4, 3, 6, 6, 6, 4, 2, 1, 4, 4, 1, 2, 4, 3, 3, 6, 2, 4, 2, 6, 3

dice5

4, 4, 6, 5, 1, 5, 5, 4, 6, 1, 1, 2, 1, 5, 6, 3, 1, 6, 6, 6, 5, 5, 4, 6, 2, 2, 6, 3, 4, 5, 3, 5, 5, 3, 2, 2, 1, 5, 1, 2, 4, 5, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 2, 2, 6, 5, 4, 4, 6, 3, 6, 4, 6, 6, 5, 1, 3, 6, 2, 1, 3, 2, 1, 5, 2, 2, 2, 2, 4, 6, 1, 1, 5, 5, 4, 1, 4, 5, 2, 5, 5, 6, 4, 2, 3, 6, 2, 2, 5, 1, 4, 5, 2, 2, 4, 1, 4, 6, 3, 5, 4, 4, 3, 2, 5, 5, 3, 4, 6, 2, 5, 5, 2, 3, 1, 1, 3, 4, 2, 6, 2, 4, 4, 4, 6, 6, 6, 5, 2, 4, 3, 5, 5, 1, 3, 2, 1, 6, 1, 4, 1, 6, 2, 2, 5, 5, 5, 1, 3, 4, 4, 4, 4, 6, 6, 6, 2, 1, 5, 1, 6, 1, 3, 1, 1, 5, 6, 2, 5, 4, 4, 5, 1, 6, 3, 6, 6, 4, 6, 1, 3, 3, 6, 2, 1, 4, 5, 6, 4, 4, 3, 3, 5, 5, 6, 4, 4, 1, 3, 5, 3, 4, 2, 6, 5, 2, 5, 6, 3, 4, 2, 4, 4, 6, 5, 6, 3, 4, 2, 3, 2, 2, 4, 6, 4, 5, 6, 2, 5, 4, 1, 3, 6, 2, 6, 2, 5, 4, 4, 4, 5, 6, 3, 5, 2, 3, 6, 1, 1, 2, 2, 1, 5, 4, 6, 5, 5, 6, 1, 5, 6, 2, 4, 6, 1, 2, 1, 5, 6, 6, 4, 5, 4, 6, 5, 5, 5, 5, 1, 1, 6

dice6

2, 1, 1, 2, 1, 5, 5, 1, 3, 3, 5, 2, 3, 5, 5, 2, 6, 5, 2, 3, 2, 2, 1, 1, 3, 4, 5, 3, 1, 6, 4, 1, 1, 3, 1, 2, 2, 3, 5, 1, 6, 1, 5, 4, 2, 2, 6, 1, 3, 2, 1, 5, 5, 5, 1, 4, 5, 6, 1, 1, 1, 5, 3, 6, 3, 3, 1, 6, 6, 3, 5, 2, 4, 5, 4, 3, 1, 6, 4, 6, 6, 4, 6, 6, 5, 5, 1, 1, 2, 3, 5, 4, 3, 6, 4, 6, 6, 4, 1, 2, 1, 2, 4, 1, 6, 3, 4, 6, 6, 1, 2, 4, 4, 6, 1, 6, 2, 4, 4, 5, 1, 2, 4, 4, 2, 1, 5, 1, 3, 2, 6, 6, 1, 5, 5, 3, 1, 3, 2, 5, 3, 3, 4, 6, 1, 6, 5, 1, 4, 5, 3, 1, 2, 2, 3, 4, 4, 1, 4, 2, 4, 3, 1, 4, 3, 5, 1, 6, 4, 6, 4, 5, 6, 3, 2, 6, 2, 1, 6, 6, 2, 1, 4, 6, 4, 4, 2, 1, 4, 3, 1, 3, 2, 3, 6, 1, 3, 2, 2, 6, 5, 6, 4, 3, 3, 5, 2, 6, 2, 5, 5, 5, 3, 2, 1, 5, 3, 6, 3, 4, 3, 1, 5, 5, 5, 3, 6, 2, 3, 2, 2, 6, 1, 4, 5, 1, 6, 4, 1, 1, 3, 3, 5, 5, 5, 3, 5, 2, 2, 2, 2, 4, 3, 5, 2, 5, 2, 4, 4, 5, 6, 1, 5, 5, 4, 6, 5, 6, 1, 2, 6, 1, 5, 1, 4, 1, 2, 5

Πρόβλημα 2 – (παραδοτέο έως 18.11.2021)

- Α) Βρείτε το λάθος 'λογικής' στο πρόγραμμα που γράψαμε στο τέλος τους μαθήματος της 09.11.2021, για τον υπολογισμό της μάζας μιας σφαίρας ακτίνας R=3 και πυκνότητας $\frac{5}{648\pi}(x^2+y^2)$, η οποία έχει ως κέντρο την αρχή των αξόνων (x,y,z)=(0,0,0). Το αρχείο που γράψαμε στην τάξη βρίσκεται στο $\frac{1}{648\pi}$
- B) Τροποποιήστε την λογική του προγράμματος ώστε να εκτελεί τον υπολογισμό της μάζας της σφαίρας με MC απόρριψης (accept/reject) αντί της απλοϊκής μεθόδου MC (crude) ολοκλήρωσης. Συγκρίνετε τις δύο μεθόδους ως προς την αποτελεσματικότητά τους για τον ίδιο αριθμό τυχαίων αριθμών N.
- Γ) Πόσο θα άλλαζε η μάζα της σφαίρας αν στο σημείο $(x_0,y_0,z_0)=(1,1,1)$ δημιουργούσαμε μια σφαιρική κοιλότητα μηδενικής πυκνότητας (δηλαδή μια τρύπα στο εσωτερικό του αντικειμένου) ακτίνας $R_0=0.5$;

Πρόβλημα 3 – (παραδοτέο έως 18.11.2021)

Να υπολογιστεί το ολοκλήρωμα $I=\int_0^{10}e^xdx$ (και η αβεβαιότητά του) με την μέθοδο της απλοϊκής (crude) Monte–Carlo ολοκλήρωσης, χρησιμοποιώντας N=1000 τυχαίους αριθμούς. Να δομήσετε το πρόγραμμά σας έχοντας ως αφετηρία γεννήτρια τυχαίων αριθμών ομοιόμορφης κατανομής στο [0,1].

- α) Να υπολογιστεί το σχετικό σφάλμα $\delta \hat{I}/\hat{I}$ της MC ολοκλήρωσης
- β) Να υπολογιστεί (αναλυτικά) το θεωρητικώς αναμενόμενο σχετικό σφάλμα $\delta I/I$ της μεθόδου, για το ίδιο πλήθος τυχαίων δειγμάτων (N=1000).
- γ) Να υπολογίσετε την τυπική απόκλιση $\sqrt{s^2}$ ενός δείγματος αποτελούμενο από $4\times 10^4~{\rm MC}$ ολοκληρώσεις (με N=1000 η κάθε μία) και να την συγκρίνετε με το δI και το $\delta \hat I$ που υπολογίσατε στα ερωτήματα (α) και (β). Να φτιάξετε ένα ιστόγραμμα που να δείχνει την κατανομή των $\hat I$ και να σχολιάσετε την μορφή της.
- δ) Εάν χωρίσουμε το διάστημα ολοκλήρωσης στα δύο, έτσι ώστε

$$I = I_1 + I_2 = \int_0^5 e^x dx + \int_5^{10} e^x dx$$

και 'επενδύσουμε' στις επιμέρους δύο ολοκληρώσεις τους διαθέσιμους τυχαίους αριθμούς χωρισμένους σε δύο ίσα δείγματα $N=N_1+N_2=500+500$, περιμένουμε το σχετικό σφάλμα της απλοϊκής MC ολοκλήρωσης να μεγαλώσει, να μικρύνει ή να μείνει το ίδιο; Να αποδείξετε τον ισχυρισμό σας επαναλαμβάνοντας το ερώτημα (β) για τα επιμέρους ολοκληρώματα I_1 , I_2 και υπολογίζοντας την συνολική αβεβαιότητα του αθροίσματός τους.

ε) Να επαναλάβετε τα ερωτήματα (α), (β) και (γ) για την ολοκλήρωση με την μέθοδο απόρριψης MC (hit-or-miss) θεωρώντας N=1000 ζευγάρια τυχαίων αριθμών (x,y) που έχουν παραχθεί ομοιόμορφα στο $[0,1]\times[0,1]$.

 $^{^{1}}$ Το s^{2} ορίστηκε στο πρόβλημα 1 ως η τετραγωνική διασπορά ενός δείγματος παρατηρήσεων (μετρήσεων).

Πρόβλημα 4 (μη παραδοτέο – λύσεις στο web)

Να υπολογιστεί με την απλοϊκή (crude) Monte-Carlo ολοκλήρωση, η μάζα των παρακάτω αντικειμένων και η αβεβαιότητά τους, για N=1000 γεγονότα.

α) Δισδιάστατη πλάκα που οριοθετείται στην περιοχή $\{x\geq 0,y\leq 1,y\geq x^2\}$ (διαστάσεις μήκους σε μέτρα) με πυκνότητα $\rho(x,y)=\frac{20}{13}(x+y)$ [kg/m³].

β) Κύβος πυχνότητας $\rho(x,y)=\frac{12}{31}(x^2+yz)\,[{\rm kg/m^3}]$ που οριοθετείται στην περιοχή $\{0\le x\le 1, 1\le y\le 2, 1\le z\le 2\}$ με διαστάσεις μήχους μετρημένες σε μέτρα.

 Δ ίνεται, προς σύγκριση, ο ακριβής υπολογισμός της μάζας των δυο σωμάτων είναι $M=1\,\mathrm{kg}.$

Η άσκηση αυτή είναι λυμένη στο web.

Η διδακτική της αξία ωστόσο παραμένει, υπό την προϋπόθεση ότι κάποιος θα προσπαθήσει να την λύσει δίχως να συμβουλευτεί (εξ αρχής) τις δοσμένες λύσεις.

Πρόβλημα 5 – (άνευ ημερομηνίας παράδοσης)

Χίλια σωματίδια Brown διαχέονται σε ένα δισδιάστατο επίπεδο, έχοντας ως σημείο εκκίνησης την αρχή των αξόνων. Βρείτε πόσο μακριά θα βρίσκεται κατά μέσο όρο το κάθε σωματίδιο μετά από t=100 βήματα του ενός δευτερολέπτου, υπολογίζοντας το

$$\bar{d} = \frac{1}{1000} \sum_{w=1}^{1000} \sqrt{x_w^2 + y_w^2}$$

όπου $(x_{\rm w},y_{\rm w})$ η θέση του κάθε σωματιδίου w=1,2,3...1000 για t=100s. Στην συνέχεια βρείτε τον μέσο όρο του τετραγώνου της απόστασης του καθενός σωματιδίου (για t=100s)

$$\bar{d}^2 = \frac{1}{1000} \sum_{\mathrm{w}=1}^{1000} x_{\mathrm{w}}^2 + y_{\mathrm{w}}^2$$

και συγκρίνετε τις απαντήσεις σας με το μονοδιάστατο πρόβλημα διάχυσης.

Πρόβλημα 6 (μη παραδοτέο)

Δίνεται η εξίσωση,

$$\tan x = \frac{x}{1 - x^2}.\tag{1}$$

- α) Να λυθεί η εξ.(1) στο διάστημα $x \in [2,4]$ χρησιμοποιώντας:
 - 1) την μέθοδο της διχοτόμησης με 15 επαναλήψεις. Θεωρήστε σαν τελική εκτίμηση της ρίζας (ρ) το μέσο του διαστήματος διχοτόμησης στην 15ή επανάληψη, δηλ. $\hat{\rho} = 0.5(b_{14} + a_{14}) \approx \rho$, με $a_0 = 2$ και $b_0 = 4$.
 - 2) την επαναληπτική σχέση 2

$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$

με

$$f(x) = \tan x - \frac{x}{1 - x^2}$$

χρησιμοποιώντας $x_0=3.0$ και θεωρώντας σαν εκτιμητή της ρίζας το $x_6=\hat{\rho}\approx \rho$.

Να εκτυπωθούν οι τιμές $\hat{\rho}$ και $f(\hat{\rho})$ για τις δυο περιπτώσεις. Ποια μέθοδος έδωσε $f(\hat{\rho})$ που να είναι περισσότερο συμβατό με το 0;

β) Να διερευνηθεί η ύπαρξη ριζών στο διάστημα $x \in [4, 10]$. - θέμα ελεύθερης ανάπτυξης ;-)

Υπόδειγμα κώδικα:

```
/* C/C++ */
#include "math.h"
double f(double x){return tan(x) - x/(1 - x*x);}
double df(double x){/* implement f'(x) */}
int main()
{
   double a = 2;
   double b = 4;
   double n = 0;
   double x = 3;
   while(n < 15)
   {
      // ... implement bisection logic
      double c = 0.5*(a + b);</pre>
```

 $^{^2\}mathrm{H}$ σχέση αυτή είναι διάσημη με το όνομα Newton-Raphson.

```
// ... implement newton-raphson
        if (n < 6)
        {
           // x = x - f(x)/f'(x)
           // if (n == 5) ektypwsi twn x, f(x)
        }
        n = n + 1;
      }
    }
                  */ ###
### /*
         Python
import numpy as np
import matplotlib.pyplot as plt # for exploratory graphics ;-)
def f(x): return np.tan(x) - x/(1-x**2)
def df(x): return 0. # implement here the derivative
# first: plot f(x) to get an idea how it varies
x = np.linspace(-10,10,100) # an array with 100 steps for x [-10, 10]
y = f(x)
ax, fig = plt.subplots(figsize=(10,10))
plt.plot(x, y)
                             # plots f(x)
plt.plot(x, [0. for i in x]) # plots y = 0, i.e., x-axis
plt.show()
# logic for bisection/newtwon similar as for the C/C++ example
```


Πρόβλημα 7 (μη παραδοτέο)

Απαντήσεις στην επομένη σελίδα.

α) Να υπολογιστούν οι τρεις πρώτες επαναλήψεις των μεθόδων Gauss-Seidel και Jacobi για το σύστημα AX=b, με

$$A = \begin{bmatrix} 2 & 2 & 3 \\ -1 & -3 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

και

$$b = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$

έχοντας σαν αρχική εκτίμηση το $X^{\rm T}=[0,0,0]^{\rm T}$. Να διερευνηθεί η συμπεριφορά των Gauss-Seidel και Jacobi για το ίδιο πρόβλημα και n=200 επαναλήψεις.

β) Να λυθεί το σύστημα³ AX = b, με

$$A = \begin{bmatrix} 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 \end{bmatrix}$$

και

$$b = [4, -1, -5, -2, \quad 2, \quad 2, -1, \quad 1, \quad 6]^{\mathrm{T}}$$

Να επαληθευθεί η ορθότητα των λύσεων υπολογίζοντας τη συμβατότητα του AX-b με το μηδενικό διάνυσμα (πίνακα-στήλη) για τα ερωτήματα α) και β).

 $^{^3}$ Πίναχες της μορφής A προχύπτουν κατά την διαχριτοποίηση της εξίσωσης Poisson σε τετραγωνικό πλέγμα στις δυο διαστάσεις, βλέπε σημειώσεις μαθήματος – παράδειγμα με $\nabla^2 \phi(x,y) = -\rho(x,y)/\epsilon$.

Απαντήσεις:

α) Για n = 3 παίρνουμε

$$X = [1.347, -1.116, 0.884]^{\mathrm{T}}$$

για την Gauss-Seidel και

$$X = [2.917, -1.389, 0.167]^{\mathrm{T}}$$

για την Jacobi. Για n=200 παίρνουμε

$$X = [1, -1, 1]^{\mathrm{T}}$$

για την Gauss-Seidel και

$$X = [\sim 10^{37}, \sim 10^{37}, \sim 10^{37}]^{\mathrm{T}}$$

για την Jacobi (δε συγκλίνει). Εκτελώντας τον πολλαπλασιασμό AX επαληθεύουμε ότι πράγματι το διάνυσμα που συγκλίνει η Gauss-Seidel αποτελεί την λύση του συστήματος.

β) Η λύση του συστήματος είναι η

$$X = [1, 0, -1, 0, 1, 1, 0, 1, 2]^T.$$

Εκτελώντας τον πολλαπλασιασμό AX επαληθεύουμε ότι πράγματι το διάνυσμα αυτό αποτελεί λύση του συστήματος.

Πρόβλημα 8 (μη παραδοτέο)

α) Χρησιμοποιώντας το υπόδειγμα της λογικής του κώδικα που παρατίθεται, να υπολογιστεί το $\epsilon>0$ που ικανοποιεί την σχέση $1.0+\epsilon=1.0$ για αριθμούς κινητής υποδιαστολής διπλής ακρίβειας (double precision – binary64). Έπειτα, για $p(x)=x^2$, να διερευνηθεί η τιμή του λόγου

$$\frac{p(x+n\epsilon) - p(x)}{n\epsilon} \Big|_{x=2},\tag{2}$$

για n=1,2,3,4,5,50000,50001,50002,50003. Θεωρώντας ότι η εξ. (2) αποτελεί έναν αριθμητικό εκτιμητή της παραγώγου της p(x) στο x=2, να υπολογιστεί το σχετικό σφάλμα για τις τιμές του n που δίνονται.

- β) Να υπολογιστούν οι λόγοι:
 - (I) $(0.1 + 0.1 0.2)/\epsilon$
 - (II) $(0.1 + 0.2 0.3)/\epsilon$
 - (III) $(7./3. 4./3. 3./3.)/\epsilon$

Υπόδειγμα κώδικα για τον υπολογισμό του ε:

```
/* C/C++ */
double e = 1.0;
while(1.0 + e != 1.0) e = 0.5*e;
# Python
e = 1.0
while(1.0 + e != 1.0): e = 0.5*e
```

 $^{^4\}Gamma$ ενικός ορισμός, αν \hat{w} εκτιμητής του w, το απολυτό σχετικό σφάλμα του \hat{w} είναι $|(w-\hat{w})/w|$.