Nordic probabilistic Al school Variational Inference and Optimization

Helge Langseth, Andrés Masegosa, and Thomas Dyhre Nielsen

June 14, 2022

ProbAl - 2022

Deep Bayesian Learning - VAE

The Variational Auto Encoder (VAE)

Model of interest

- $p(\mathbf{z}_i)$ is (usually) an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i | g_{\omega}(\mathbf{z}_i))$, where g is a deep neural network.

$$p_{\boldsymbol{\omega}}(\mathbf{x}_i|\mathbf{z}_i) \sim \mathsf{Bernoulli}(\mathsf{logits} = g_{\boldsymbol{\omega}}(\mathbf{z}_i))$$

- $g_{\omega}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- **Goal:** Learn ω to maximize the model's fit to \mathcal{D} .
 - We will cheat and find a **point estimate** for ω .

The Variational Auto Encoder (VAE)

Model of interest

- $p(\mathbf{z}_i)$ is (usually) an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i | g_{\omega}(\mathbf{z}_i))$, where g is a deep neural network.

$$p_{\boldsymbol{\omega}}(\mathbf{x}_i|\mathbf{z}_i) \sim \mathsf{Bernoulli}(\mathsf{logits} = g_{\boldsymbol{\omega}}(\mathbf{z}_i))$$

- $g_{\omega}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- **Goal:** Learn ω to maximize the model's fit to \mathcal{D} .
 - We will cheat and find a **point estimate** for ω .

Variational Inference

• We will need $p_{\omega}(\mathbf{z}_i | \mathbf{x}_i)$ for each data-point \mathbf{x}_i :

$$p_{\boldsymbol{\omega}}(\mathbf{z}_i \mid \mathbf{x}_i) = \frac{p_{\boldsymbol{\omega}}(\mathbf{z}_i) \cdot p_{\boldsymbol{\omega}}(\mathbf{x}_i \mid g_{\boldsymbol{\omega}}(\mathbf{z}_i))}{\int_{\mathbf{z}_i} p_{\boldsymbol{\omega}}(\mathbf{z}_i) \cdot p_{\boldsymbol{\omega}}(\mathbf{x}_i \mid g_{\boldsymbol{\omega}}(\mathbf{z}_i)) \, d\mathbf{z}_i}.$$

• Initial plan: Fit $q(\mathbf{z}_i | \boldsymbol{\lambda}_i)$ to $p_{\boldsymbol{\omega}}(\mathbf{z}_i | \mathbf{x}_i)$ using variational inference.

Variational inference and the VAE

Initial plan:

Optimize the ELBO

$$\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N) = -\mathbb{E}_q \left[\log rac{\prod_{i=1}^N q(\mathbf{z}_i \, | \, \boldsymbol{\lambda}_i)}{\prod_{i=1}^N p_{\boldsymbol{\omega}}(\mathbf{z}_i, \mathbf{x}_i)}
ight].$$

- A natural model for $q(\mathbf{z}_i | \lambda_i)$ is a Gaussian with parameters $\lambda_i = \{\mu_i, \Sigma_i\}$.
- If \mathbf{Z}_i is d-dim and we for simplicity assume diagonal $\mathbf{\Sigma}_i$, this still gives 2Nd variational parameters to learn.

Variational inference and the VAE

Initial plan:

Optimize the ELBO

$$\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N) = -\mathbb{E}_q \left[\log rac{\prod_{i=1}^N q(\mathbf{z}_i \, | \, \boldsymbol{\lambda}_i)}{\prod_{i=1}^N p_{\boldsymbol{\omega}}(\mathbf{z}_i, \mathbf{x}_i)}
ight].$$

- A natural model for $q(\mathbf{z}_i | \lambda_i)$ is a Gaussian with parameters $\lambda_i = \{\mu_i, \Sigma_i\}$.
- If \mathbf{Z}_i is d-dim and we for simplicity assume diagonal $\mathbf{\Sigma}_i$, this still gives 2Nd variational parameters to learn.

A better plan

• Assume $g_{\omega}(\mathbf{z})$ is "smooth": if \mathbf{z}_i and \mathbf{z}_j are "close", then so are \mathbf{x}_i and \mathbf{x}_j .

 $\rightsquigarrow \lambda_i$ and λ_j should be "close" if \mathbf{x}_i and \mathbf{x}_j are "close".

- Therefore: Let's assume there exists a (smooth) function $h(\mathbf{x})$ so that $h(\mathbf{x}_i) = \lambda_i$.
- ullet $h(\cdot)$ is unavailable, so represent it using a deep neural net and learn the weights.
- $h(\mathbf{x}_i)$ plays the role of an **ENCODER NETWORK**.

Amortized inference

Amortized inference:

To learn a model $h(\cdot)$, typically a deep neural network, so that $h(\mathbf{x}_i) = \lambda_i$. $h(\cdot)$ is parameterized with weights, often (abusing notation) denoted by λ .

Note! Amortized inference is useful also outside VAEs!

Benefits:

- The 2Nd parameters $\{\lambda_i\}_{i=1}^N$ are replaced by the fixed-sized vector λ .
 - $\bullet\,$ If N is large we may get a simpler learning problem.
- Smoothness of $h(\cdot)$ implies regularization.
- We only change the parameterization, not the model itself!

VAE: Full setup

The full VAE approach:

- $p(\mathbf{z}_i)$ is an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i|\mathbf{z}_i) \sim \text{Bernoulli}(\text{logits} = g_{\omega}(\mathbf{z}_i)),$ where g_{ω} is a DNN with weights ω .
- $q(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\lambda}) \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i),$ where $\{\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}$ is given by $h_{\boldsymbol{\lambda}}(\mathbf{x}_i).$ $h_{\boldsymbol{\lambda}}$ is a DNN with weights $\boldsymbol{\lambda}.$

Goal:

Learn **both** ω and λ by maximizing the ELBO:

$$\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\omega}) = -\mathbb{E}_q \left[\log \frac{q(\mathbf{z} \mid \mathbf{x}, \boldsymbol{\lambda})}{p_{\boldsymbol{\omega}}(\mathbf{z}, \mathbf{x} \mid \boldsymbol{\omega})} \right].$$

ELBO for VAEs

- For each \mathbf{x}_i , sample M (typically 1) ϵ -values.
- ② Calculate $\nabla_{\lambda,\omega} \mathcal{L}(\lambda,\omega)$ using the reparameterization-trick.
- Update parameters using a standard DL optimizer (like Adam).

ProbAI - 2022 Deep Bayesian Learning – VAE

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9").

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each x_i is a picture of a handwritten digit ("0" "9").

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- The encoder network $X \rightsquigarrow Z$.

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each x_i is a picture of a handwritten digit ("0" "9").

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- The encoder network $X \rightsquigarrow Z$.
- The **decoder network Z** \leadsto X is a 64 + 256 neural net with ReLU units.

 $\mathbf{z}_i: 2 \text{ dim} \xrightarrow{\text{ReLU}} \text{Hidden, 64-d} \xrightarrow{\text{ReLU}} \text{Hidden, 256-d} \xrightarrow{\text{Linear}} \text{logit}(\mathbf{p}_i), 784\text{-d} \xrightarrow{} p_{\boldsymbol{\omega}}(\mathbf{x}_i \mid \mathbf{z}_i, \boldsymbol{\omega}) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784\text{-d}$

Learning progress; learning rate $\rho = 10^{-4}$, M = 1

Note! SGD algorithm uses the negative ELBO as loss.

Trying to reconstruct \mathbf{x}_i by $\mathbb{E}_{p_{\boldsymbol{\omega}}}\left[\mathbf{X} \,|\, \mathbf{Z} = \mathbb{E}_{q_{\boldsymbol{\lambda}}}\left[\mathbf{Z} \,|\, \mathbf{x}_i\right]\right]$

After 1 epoch

After 250 epochs

After 500 epoch

Using separate test-set

Averaged distribution over \mathbf{Z} – per class

The picture manifold $-\mathbb{E}_{p_{\boldsymbol{\omega}}}\left[\mathbf{X}\,|\,\mathbf{z}\right]$ for different values of \mathbf{z}^{-}

Manifold after 1 epoch

Manifold after 250 epochs

Manifold after 500 epochs

Variational Auto-Encoders in Pyro

```
class Decoder (nn. Module) :
    def init (self, z dim, hidden dim):
        super (Decoder, self) .__init__()
        # Setup the two linear transformations used
        self.fcl = nn.Linear(z dim, hidden dim)
        self.fc21 = nn.Linear(hidden dim, 784)
        # Setup the non-linearities
        self.softplus = nn.Softplus()
        self.sigmoid = nn.Sigmoid()
   def forward(self, z):
        # Define the forward computation on the latent z
        # First compute the hidden units
        hidden = self.softplus(self.fcl(z))
        # Return the parameter for the output Bernoulli
        # Each is of size batch size x 784
        loc img = self.sigmoid(self.fc21(hidden))
       return loc img
# define the model p(x|z)p(z)
def model(self, x):
    # register PyTorch module 'decoder' with Pyro
    pyro.module("decoder", self.decoder)
    with pyro.plate("data", x.shape[0]):
        # setup hyperparameters for prior p(z)
        z loc = x.new zeros(torch.Size((x.shape[0], self.z dim)))
        z scale = x.new ones(torch.Size((x.shape[0], self.z dim)))
        z = pyro.sample("latent", dist.Normal(z_loc, z_scale).to_event(1))
        # decode the latent code z
        loc img = self.decoder.forward(z)
        # score against actual images
       pyro.sample("obs", dist.Bernoulli(loc img).to event(1),
                    obs=x.reshape(-1, 784))
```

Notes

- The PYRO.MODULE call registers the parameters in the decoder network with Pyro.
- The decoder network is a subclass of NN.MODULE; the class inherits methods such as PARAMETERS() and BACKWARD for calculating gradients.


```
class Encoder (nn. Module) :
    def init (self, z dim, hidden dim):
        super(Encoder, self).__init__()
        # Setup the three linear transformations used
        self.fcl = nn.Linear(784, hidden dim)
        self.fc21 = nn.Linear(hidden dim, z dim)
        self.fc22 = nn.Linear(hidden_dim, z_dim)
        # Setup the non-linearities
        self.softplus = nn.Softplus()
    def forward(self, x):
        # Define the forward computation on the image x
        # First shape the mini-batch to have pixels in
        # the rightmost dimension
        x = x.reshape(-1, 784)
        # then compute the hidden units
       hidden = self.softplus(self.fcl(x))
        # Return a mean vector and a (positive) square
        # root covariance each of size batch size x z dim
        z loc = self.fc21(hidden)
        z scale = torch.exp(self.fc22(hidden))
       return z loc, z scale
# define the guide (i.e. variational distribution) q(z|x)
def quide (self, x):
    # register PyTorch module 'encoder' with Pyro
```

use the encoder to get the parameters used to define q(z|x)

pyro.sample("latent", dist.Normal(z loc, z scale).to event(1))

pyro.module("encoder", self.encoder)
with pyro.plate("data", x.shape[0]):

sample the latent code z

z loc, z scale = self.encoder.forward(x)

Notes

 The encoder and guide follow the same structure as the encoder and model

Code Task: VAEs in Pyro

Code Task: VAEs in Pyro

- Learn how a VAE is coded in Pryo.
- We provide a VAE with a linear decoder.
- Exercise 1: Define a Non-Linear Decoder
 - A MLP with a hidden layer with non-linearities (e.g. Relu).
- Exercise 2: Explore the latent space
 - Moving from linear to non-linear decoders with different capacity.
- Notebook:

Day2-Evening/students_VAE.ipynb.

Conclusions

- Bayesian Machine Learning
 - Represents unobserved quantities using distributions
 - \bullet Models **epistemic** uncertainty using $p(\boldsymbol{\theta}\,|\,\mathcal{D})$

- Bayesian Machine Learning
- Variational inference
 - **Provides** $q(\theta \mid \lambda)$: A distributional approximation to $p(\theta \mid \mathcal{D})$
 - Objective: $\arg\min_{\lambda} \mathrm{KL}\left(q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) || p(\boldsymbol{\theta} \mid \mathcal{D})\right) \Leftrightarrow \arg\max_{\lambda} \mathcal{L}\left(q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})\right)$
 - Mean-field: Divide and conquer strategy for high-dimensional posteriors
 - Main caveat: $q(\theta \,|\, \pmb{\lambda})$ underestimates the uncertainty of $p(\theta \,|\, \mathcal{D})$

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
 - Analytic expressions for some models (i.e., conjugate exponential family)
 - CAVI is very efficient and stable if it can be used
 - In principle requires manual derivation of updating equations
 - There are tools to help (using variational message passing)

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
 - Provides the tools for VI over arbitrary probabilistic models
 - Directly integrates with the tools of deep learning
 - Automatic differentiation, sampling from standard distributions, and SGD
 - Sampling to approximate expectations: Beware of the variance!

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
- Probabilistic programming languages
 - PPLs fuel the "build compute critique repeat" cycle through
 - ease and flexibility of modelling
 - powerful inference engines
 - efficient model evaluations
 - Many available tools (Pyro, TF Probability, Infer.net, Turing.jl, . . .)

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
- Probabilistic programming languages
- What's next?
 - The "VI toolbox" is reaching maturity
 - From only a research area to almost a prerequisite for Probabilistic Al
 - ... yet there are still things to explore further!
 - Today's material should suffice to read (and write!) Prob-Al papers