$\begin{array}{c} {\rm Math}~440-{\rm Real}~{\rm Analysis}~{\rm II} \\ {\rm Final}~{\rm Exam} \end{array}$

Amandeep Gill

May 13, 2015

Problem 1 Determine which of the following series are divergent, conditionally convergent, or absolutely convergent.

(a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k k}{2k^2 - 1}$$
 converges conditionally.

Proof: Let $b_k = \frac{k}{2k^2-1}$. Since $b_{k+1} = \frac{k+1}{2(k+1)^2-1} = \frac{k+1}{2k^2+4k+1} < b_k$ for all $k \in \mathbb{K}$ and $\lim_{k\to\infty} b_k = 0$, by the Alternating Series Test $\sum_{k=1}^{\infty} \frac{(-1)^k k}{2k^2-1}$ converges conditionally.

(b)
$$\sum_{k=0}^{\infty} \frac{(-1)^{a_k}}{k^2+1}$$
 where $a_k = \lfloor \frac{k}{2} \rfloor$ converges absolutely.

Proof: Let $b_k = \left| \frac{(-1)^{a_k}}{k^2 + 1} \right| = \frac{1}{k^2 + 1}$. For all $k \in \mathbb{N}$, $b_k < \frac{1}{k^2}$, therefore since $\frac{1}{k^2}$ is a convergent P-series $\sum_{k=1}^{\infty} b_k$ converges. Thus $\sum_{k=0}^{\infty} \frac{(-1)^{a_k}}{k^2 + 1}$ converges absolutely.

- **Problem 2** Let $\{q_k\}_{k\in\mathbb{N}}$ be an enumeration of the rational numbers on [0,1], and for each $k\in\mathbb{N}$ define $C_k=\{q_1,q_2,\ldots,q_k\}$. Let $f:[0,1]\to\mathbb{R}$ be defined by $f(x)=\sum\limits_{k=1}^{\infty}2^{-k}\chi_{C_k}$.
 - (a) The series defining f converges uniformly on [0,1].

Proof: Let f be defined piecewise as

$$f(x) = \begin{cases} 0 & \text{if } x \in [0,1] \backslash \mathbb{Q} \\ 2^{1-i} & \text{if } x = q_i \text{ for some } q_i \in \{q_k\}_{k \in \mathbb{N}} \end{cases}$$

Let $\epsilon > 0$ be given, $f_n(x) = \sum_{k=1}^n 2^{-k} \chi_{C_k}$, and let $m, n_{\circ} \in \mathbb{N}$ such that $m > n_{\circ}$ and $2^{-n_{\circ}} < \epsilon$. If $x \in [0, 1] \setminus \mathbb{Q}$, then $f_m(x) = 0$ and $|f_m(x) - f(x)| = 0 < \epsilon$. Otherwise, $x = q_i$ for some $i \in \mathbb{N}$.

case i > m:

$$f_m(x) = 0$$
 and $|f_m(x) - f(x)| = 2^{1-i} < 2^{-n_0} < \epsilon$.

case $i \leq m$:

$$f_m(x) = 2^{1-i} - 2^{-m}$$
 and $|f_m(x) - f(x)| = 2^{-m} < 2^{-n_0} < \epsilon$.

Thus f_n converges to f uniformly on [0,1].

(b) Calculate $f(q_1), f(q_2), f(q_3), \text{ and } f(\sqrt{2}/2)$

Solution:

$$f(q_1) = 1$$

$$f(q_2) = \frac{1}{2}$$

$$f(q_3) = \frac{1}{4}$$

$$f(\sqrt{2}/2) = 0$$

(c)
$$f$$
 is Riemann integrable on $[0,1]$ and $\int_{0}^{1} f dx = 0$

Proof: For each $n \in \mathbb{N}$ let $\mathcal{P}_n = \{x_0, x_1, \dots, x_{2^n}\}$ partition [0, 1] where $x_i = \frac{i}{2^n}$. For each $n, \mathcal{U}(\mathcal{P}_n, f) \leqslant \sum_{k=1}^{2^n} 2^{1-k} \frac{1}{2^n} = 2^{1-n} - 2^{1-n-2^n}$ as the sup of an interval in the partition must be $f(q_1)$ or less, which means that the sup of one of the remaining intervals must be $f(q_2)$ or less, and so on up to $f(q_{2^n})$ in the final interval. Thus by Lemma 6.1.3

$$\inf \mathcal{U}(\mathcal{P}, f) \leqslant \lim_{n \to \infty} \mathcal{U}(\mathcal{P}_n, f) \leqslant \lim_{n \to \infty} 2^{1-n} - 2^{1-n-2^n} = 0$$

f is non-negative, so by Theorem 6.1.4,

$$0 \leq \sup \mathcal{L}(\mathcal{P}, f) \leq \inf \mathcal{U}(\mathcal{P}, f) \leq 0$$

Therefore $\int_{0}^{1} f dx = 0$ by Defintion 6.1.5.

(c)
$$f$$
 is Lebesgue integrable on $[0,1]$ and $\int_{0}^{1} f d\lambda = 0$

Proof: By Corollary 10.6.8 if the Riemann integral exists, then the Lebesgue integral exists and is equal to the Riemann integral. Thus $\int_{0}^{1} f d\lambda = 0$.

- **Problem 3** Let A be a measurable subset of \mathbb{R} , and let $\mathcal{L}(A)$ denote the set of all Lebesgue integrable functions on A. Given $f, g \in \mathcal{L}(A)$ and $c \in \mathbb{R}$, define (f+g)(x) = f(x) + g(x) and (cf)(x) = cf(x) for all $x \in \mathbb{R}$
 - (a) $\mathcal{L}(A)$ forms a vector space over \mathbb{R} .
 - **Proof:** Let $f, g \in \mathcal{L}(A)$ and $c \in \mathbb{R}$, then $\int_A (f+g)d\lambda = \int_A f d\lambda + \int_A f d\lambda$ by Theorem 10.7.8(a), as both f and g are Lebesgue integrable functions by assumption, so (f+g)(x) is Lebesgue integrable and $\mathcal{L}(A)$ is closed under function addition. Similarly by Theorem 10.7.8(a), $\int_A c f d\lambda = c \int_A f d\lambda$, hence (cf)(x) is Lebesgue integrable and $\mathcal{L}(A)$ is closed under scalar multiplication. Because the eight vector space axioms hold trivially, $\mathcal{L}(A)$ is a vector space over \mathbb{R} .
 - (c) If $||\cdot|| : \mathcal{L}(A) \to \mathbb{R}$ is defined as $||f|| = \int_A |f| \, d\lambda$, then $||\cdot||$ is not a norm on $\mathcal{L}(A)$

Proof: Let A = [0,1] and $f(x) = \chi_E$ where $E = [0,1] \setminus \mathbb{Q}$. Then $||f|| = \int_A |f| d\lambda = \int_A \chi_E d\lambda$. By Theorem 10.6.10, $\int_A \chi_E d\lambda = \int_E 1 d\lambda + \int_{E^c} 0 d\lambda$. Let $x_n \in E$ such that $\bigcup_{n \in \mathbb{N}} \{x_n\} = E$, and let $\epsilon > 0$ be given. Then for each $I_n = (x_n - \frac{\epsilon}{2^{n+1}}, x_n + \frac{\epsilon}{2^{n+1}})$, $E \subset \bigcup_{n \in \mathbb{N}} I_n$ and $\sum_{n \in \mathbb{N}} \lambda(I_n) = \epsilon$. Thus, by Theorem 6.1.11, $\lambda(E) = 0$ and $\int_E 1 d\lambda + \int_{E^c} 0 d\lambda = 1\lambda(E) + 0\lambda(E^c) = 0$. Since $f \neq 0$, $||\cdot||$ does not satisfy the property that ||f|| = 0 if and only if f = 0, and therefore $||\cdot||$ is not a norm on $\mathcal{L}(A)$.

Problem (4) Let $a \in \mathbb{R}$ such that $0 < a < \frac{1}{2}$, and let $C_0 = [0, 1]$ be the first step in the generalized Cantor set with C_n comprised of 2^n disjoint intervals of length a^n such that $C_n \subset C_{n-1}$, and define

$$C_a = C_0 \cap C_1 \cap C_2 \cap \cdots$$

- (a) If $a \in \mathbb{R}$ with $0 < a < \frac{1}{2}$ then the set C_a is measurable with measure 0.
- **Proof:** For each $n \in \mathbb{N}$, C_n is the union of 2^n disjoint intervals of length a^n , so by Theorem 10.4.5(b) $\lambda(C_n) = 2^n a^n = (2a)^n$. Let $\{c_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers such that $c_n = \lambda(C_n) = (2a)^n$. Because the number of intervals is countable for all n, Theorem 10.4.5(b) holds for all n, and since $a < \frac{1}{2}$, 2a < 1 and c_n is a monotonically decreasing sequence bounded by [0,1] and thus $\lim_{n \to \infty} c_n = 0$. As $C_a \subset C_n$, for each open cover $U \supset C_n$ so $C_a \subset U$ and so $\lambda^*(C_a) \leqslant \lambda^*(C_n)$ by Definition 10.3.1. By Theorem 10.3.4(a) $\lambda(C_n) = \lambda^*(C_n)$, hence $\lambda^*(C_a) \leqslant c_n$ for all n. Therefore $0 \leqslant \lambda_*(C_a) \leqslant \lambda^*(C_a) \leqslant \lim_{n \to \infty} c_n = 0$, and by Definition 10.3.4(a) C_a is measurable with $\lambda(C_a) = 0$.
 - (b) $\frac{\log 2}{\log(1/a)}$ is an upper bound on the Hausdorff dimension of C_a .
- **Proof:** Let A_n be defined as a ball in \mathbb{R} such that $|A_n| = a^n$ is a δ_n cover for each $n \in \mathbb{N}$. The number of A_n balls needed to cover C_a is then $N = 2^n$. By Definition D.2.4, $\mathcal{H}^s_{\delta_n}(C_a) \leqslant \sum_{k=1}^N |A_n|^s = 2^n a^{sn}$. Therefore, as $\mathcal{H}^s(C_a) = \lim_{\delta \to 0^+} \mathcal{H}^s_{\delta}(C_a) \leqslant \lim_{n \to \infty} 2^n a^{sn}$. Thus $s = \frac{\log 2}{\log(1/a)}$ is an upper bound on $\dim_H(C_a)$.

Problem 5 The Hausdorff dimension of any countable subset of \mathbb{R}^d is zero.

Proof: Let $\epsilon > 0$ be given, and let $X = \{x_1, x_2, \dots, x_k\}$ for some $k \in \mathbb{N}$ be a subset of \mathbb{R}^d with a δ_{ϵ} -cover defined as $\bigcup_{n=1}^k C_n$ where $x_n \in C_n$ and $|C_n| = \frac{\epsilon}{2^n}$. By Definition D.2.4, $\mathcal{H}^s_{\delta_{\epsilon}} \leqslant \sum_{n=1}^k (\frac{\epsilon}{2^n})^s = (\epsilon - \frac{\epsilon}{2^k})^s$. Thus $\lim_{\delta_{\epsilon} \to 0^+} \mathcal{H}^s_{\delta_{\epsilon}} \leqslant 0^s = 0$ for all s > 0 and therefore as k is arbitrary, $\dim_H(X) = 0$ for all $k \in \mathbb{N}$.

Problem 6 Let $\{E_k\}_{k\in\mathbb{N}}$ be a sequence of subsets of \mathbb{R} . If there exists a sequence $\{U_k\}_{k\in\mathbb{N}}$ of pairwise disjoint open sets such that $E_k \subset U_k$ for all $k \in \mathbb{N}$, then

$$\lambda^* \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} \lambda^*(E_k)$$

Proof: Let $\{U_k\}_{k\in\mathbb{N}}$ be a sequence of disjoint open sets such that $E_k \subset U_k$ for all k, and let U be the union of all U_k and E be the union of all E_K . By Theorem 10.4.4(a), $\lambda^*(E) \leqslant \sum_{k=1}^{\infty} \lambda^*(E_k)$. For each k, $E_k \subset U_k$ and $E \subset U$, so by Definition 10.3.1 $\lambda^*(E_k) \leqslant \lambda(U_k) = \lambda^*(U_k)$ and $\lambda^*(E) \leqslant \lambda(U) = \lambda^*(U)$. Hence $\sum_{k=1}^{\infty} \lambda^*(E_k) \leqslant \sum_{k=1}^{\infty} \lambda(U_k) = \lambda(U)$ by Theorem 10.4.5(b) and Definition 10.3.4(a).