On Monte Carlo Tree Search With Multiple Objectives

Michael Painter
Pembroke College
University of Oxford

A thesis submitted for the degree of $Doctor\ of\ Philosophy$ Trinity 2024

Acknowledgements

TODO: acknowledgements here

Abstract

TODO: abstract here

Contents

Li	st of	Figures	ix
Li	st of	Tables	xi
Li	st of	Notation	xiii
\mathbf{Li}	st of	Abbreviations	$\mathbf{x}\mathbf{v}$
1	Intr	roduction	1
	1.1	Overview	1
	1.2	Contributions	2
	1.3	Structure of Thesis	3
	1.4	Publications	4
2	Bac	kground	5
	2.1	Multi-Armed Bandits	5
	2.2	Reinforcement Learning	5
	2.3	Trial-Based Heuristic Tree Search and Monte-Carlo Tree Search $$	6
		2.3.1 Trial Based Heuristic Tree Search	7
		2.3.2 Monte-Carlo Tree Search	8
		2.3.3 Maximum Entropy Tree Search	9
	2.4	Multi-Objective Reinforcement Learning	9
	2.5	Multi-Objective Monte Carlo Tree Search	9
	2.6	Sampling Random Variables	10
3	Lite	erature Review	11
	3.1	Multi-Armed Bandits	11
	3.2	Reinforcement Learning	12
	3.3	Trial-Based Heuristic Tree Search and Monte-Carlo Tree Search	12
		3.3.1 Trial Based Heuristic Tree Search	12
		3.3.2 Monte-Carlo Tree Search	12
		3.3.3 Maximum Entropy Tree Search	12
	3.4	Multi-Objective Reinforcement Learning	12
	3.5	Multi-Objective Monte Carlo Tree Search	13
	3.6	Sampling Random Variables	13

viii Contents

4	Mo	nte Carlo Tree Search With Boltzmann Exploration	15
	4.1	Introduction	15
	4.2	Boltzmann Search	16
	4.3	Toy Environments	16
	4.4	Theoretical Results	16
	4.5	Empirical Results	16
	4.6	Full Results	17
5	Cor	nvex Hull Monte Carlo Tree Search	19
	5.1	Introduction	19
	5.2	Contextual Tree Search	19
	5.3	Contextual Zooming for Trees	20
	5.4	Convex Hull Monte Carlo Tree Search	20
	5.5	Results	20
6	Sim	plex Maps for Multi-Objective Monte Carlo Tree Search	21
	6.1	Introduction	21
	6.2	Simplex Maps	22
	6.3	Simplex Maps in Tree Search	22
	6.4	Theoretical Results	22
	6.5	Empirical Results	22
7	Cor	nclusion	23
	7.1	Summary of Contributions	23
	7.2	Future Work	23
Aı	ppen	dices	
\mathbf{A}	List	Of Appendices To Consider	27
В	Cor	nvex Hull Monte Carlo Tree Search - ICAPS2020	2 9
\mathbf{C}	Mo	nte Carlo Tree Search with Boltzmann Exploration	31
Ŋ	Sim	plex Maps for Multi-Objective Monte Carlo Tree Search	33
Bi	bliog	graphy	35

List of Figures

List of Tables

List of Notation

Markov Decision Processes

a_t	 TODO
r_t	 TODO
s_t	 TODO

 $t \dots \dots$ TODO: free variable for current timestep?

Trial Based Heuristic Tree Search

n Number of trials run $T \ \ . \ \ . \ \ . \ \ . \ \ . \ \ Computation time \ limit$

List of Abbreviations

Trial Based Heuristic Tree Search

CNODE The chance node class.

cnode An instance of CNODE, i.e. a chance node instance.

DNODE The decision node class.

dnode An intance of DNODE, i.e. a decision node instance.

MCTS Monte Carlo Tree Search

mcts_mode . . . TODO: definition of mcts_mode

MENTS Maximum ENtropy Tree Search

THTS++ TODO: thts++

UCT Upper Confidence Bound applied to Trees

Introduction

Contents

1.1	Overview	 	1
1.2	Contributions	 	2
1.3	Structure of Thesis	 	3
1.4	Publications	 4	4

TODO: chapter structure (i.e. in the introduction section I give some background in the field(s), cover the main contributions of this thesis, etc, etc).

1.1 Overview

- Give some context around MCTS (and talk about exploration and exploitation), and why we might use it
 - Larger scale than tabular methods
 - Can do probability and theory stuff (and some explainability, by looking at stats in the tree the agent used)
 - Can use tree search with neural networks to get some of the above (and use for neural network training as in alpha zero)

2. Contributions

• Argument from DENTS paper for exploration > exploitation (in context of planning in a simulator)

- Give high level overview of Multi-Objective RL, and why it can be useful
- Give an idea of how my work fits into MCTS and MORL as a whole
- Discuss research questions/issues with current literature (i.e. introduce some of the ideas from contributions section below)

1.2 Contributions

TODO: I'm not too happy with this section, I think most of the questions could be phrased better, but nothing I'm writing sounds quite right to me at the moment. I also just tried to come up with as many questions as I could with the idea of I don't need to keep them all

TODO: Also inline acronyms used,

Throughout this thesis, we will consider the following questions related to Monte Carlo Tree Search and Multi-Objective Reinforcement Learning:

- Q1 Exploration: When planning in a simulator, how can an algorithm best exploit the time it is given to produce the best recommendation action?
- **Q2 Entropy:** Entropy is often used as an exploration objective in RL, but can it be used soundly in MCTS?
- Q3 Complexity: MCTS algorithms typically run in O(nAH), but are there algorithms that can improve upon this?
- Q4 Scalability: How can the scalability (with respect to size of environments) of multi-objective MCTS methods be improved?
- Q5 Curse of Dimensionality: To what extent do Multi-Objective MCTS methods suffer from the curse of dimensionality? (basically Multi-Objective complexity)

1. Introduction 3

Q6 - Tree Evaluation: How can we best evaluate a search tree produced by a Monte Carlo Tree Search algorithm? TODO: add a matching contrib

Q7 - Multi-Objective Evaluation: Can we apply methods from the MORL literature to theoretically and empirically evaluate Multi-Objective MCTS?

TODO: some words about how below is the contributions we're making in this thesis and expand these bullets a bit more

- Max Entropy can be misaligned with reward maximisation (Q2 Entropy)
- Boltzmann Search Policies BTS and DENTS (Q1 Exploration, Q2 Entropy, and eval Q6 Tree Evaluation)
- Use the alias method to make faster algorithms (Q3 Complexity)
- Simple regret (Q1 Exploration)
- Contextual regret introduced in CHMCTS (Q4 Scalability, Q7 Multi-Objective Evaluation)
- Contextual Zooming and CHMCTS (runtimes cover Q5 Dimensionality, results Q6 - Tree Evaluation)
- Simplex maps (Q4 Scalability, Q5 Dimensionality)
- Contextual Simple Regret (Q6 Tree Evaluation, Q7 Multi-Objective Evaluation)

1.3 Structure of Thesis

TODO: a paragraph with a couple lines to a paragraph about each chapter. This is the high level overview/intro to the thesis paragraph. I.e. this section is "this is the story of my thesis in a page or two"

4.4. Publications

1.4 Publications

TODO: update final publication when submit

The work covered in this thesis also appears in the following publications:

- Painter, M; Lacerda, B; and Hawes, N. "Convex Hull Monte-Carlo Tree-Search." In *Proceedings of the international conference on automated planning and scheduling. Vol. 30. 2020*, ICAPS, 2020, (see Appendix B).
- Painter, M; Baioumy, M; Hawes, N; and Lacerda, B. "Monte Carlo Tree Search With Boltzmann Exploration." In Advances in Neural Information Processing Systems, 36, 2023, NeurIPS, 2023, (see Appendix C).
- Painter, M; Hawes, N; and Lacerda, B. "Simplex Maps for Multi-Objective Monte Carlo Tree Search." In TODO, Under Review at conf_name, (see Appendix D).

2 Background

Contents

2.1	Mul	ti-Armed Bandits	5
2.2	Rein	nforcement Learning	5
2.3	Tria	l-Based Heuristic Tree Search and Monte-Carlo	
	\mathbf{Tree}	Search	6
	2.3.1	Trial Based Heuristic Tree Search	7
	2.3.2	Monte-Carlo Tree Search	8
	2.3.3	Maximum Entropy Tree Search	9
2.4	Mul	ti-Objective Reinforcement Learning	9
2.5	Mul	ti-Objective Monte Carlo Tree Search	9
2.6	Sam	pling Random Variables	.0

TODO: Introduce that going to introduce notation and give the building blocks this thesis builds off

2.1 Multi-Armed Bandits

TODO: Introduce tree search using multi-armed bandits?

2.2 Reinforcement Learning

TODO: list

• MDPs definition

- 6
- Basic results and definitions we use
- Talk about entropy and some of that work (probably a subsection)

2.3 Trial-Based Heuristic Tree Search and Monte-Carlo Tree Search

TODO: list

- Give high level overview of MCTS (why use it etc)
- Outline that I'll present this as here is THTS, and then here's the THTS routines for MCTS

2.3.1 Trial Based Heuristic Tree Search

TODO: list

- Present thts++
- Indicate what parts are new versus the original paper (context function, optionally running mcts_mode and mutli-threading)
- Define terms precisely and consistently, for example mcts_mode (say that notation and terminology varies widely in literature, e.g. does uct run in mcts mode or not?)

2.3.2 Monte-Carlo Tree Search

- Give overview of MCTS
- Give UCT in terms of THTS schema
- Define terms precisely and consistently in terms of THTS functions, maybe
 mcts_mode should go here
- Define the value initialisation of THTS using a rollout policy for MCTS

2. Background 7

• Talk about the things that are ambiguous from literature (e.g. people will

just say UCT, which originally presented doesn't run in mcts_mode, but often

assumed it does)

• Should talk about multi-armed bandits here?

2.3.3 Maximum Entropy Tree Search

TODO: list

• Define MENTS here

2.4 Multi-Objective Reinforcement Learning

TODO: list

• MOMDP definition

• (Expected) utility

• Define an interface for pareto front and convex hull objects

• Define CHVI

• Should talk about multi-objective and/or contextual multi-armed bandits

here?

• I'm planning on aligning this section with the recent MORL survey [1]

• Mention some deep MORL stuff, say that this work (given AlphaZero) is

adjacent work

2.5 Multi-Objective Monte Carlo Tree Search

TODO: I think this whole section can just go in litrev

TODO: list

• Define the old methods (using the CH object methods, so clear that not doing

direct arithmetic)

DRAFT Printed on June 19, 2024

- Mention that old method could be written using the arithmetic of CHMCTS (but they don't)
- Different flavours copy UCT action selection, but with different variants
- Link back to contributions and front load our results showing that all of the old methods don't explore correctly

2.6 Sampling Random Variables

- Talk about the alias method here
- Reference to chapter 4 section where talk about using this with THTS

Literature Review

Contents

3.1	Multi-Armed Bandits	11
3.2	Reinforcement Learning	12
3.3	Trial-Based Heuristic Tree Search and Monte-Carlo	
	Tree Search	12
	3.3.1 Trial Based Heuristic Tree Search	12
	3.3.2 Monte-Carlo Tree Search	12
	3.3.3 Maximum Entropy Tree Search	12
3.4	Multi-Objective Reinforcement Learning	12
3.5	Multi-Objective Monte Carlo Tree Search	13
3.6	Sampling Random Variables	13

TODO: currently this is a copy and paste of what I originally wrote for background chapter 2. Deleted parts which are irrelevant for litreview here (and vice versa for the background section).

TODO: I'm also going to use this as a space to paste papers I should write about as they come up while writing later chapters

3.1 Multi-Armed Bandits

TODO: Just UCT/dont lit review?

3.2 Reinforcement Learning

TODO: list

• Talk about entropy and some of that work (probably a subsection)

3.3 Trial-Based Heuristic Tree Search and Monte-Carlo Tree Search

3.3.1 Trial Based Heuristic Tree Search

TODO: THTS paper

3.3.2 Monte-Carlo Tree Search

TODO: list

- Talk about the things that are ambiguous from literature (e.g. people will just say UCT, which originally presented doesn't run in mcts_mode, but often assumed it does)
- Should talk about multi-armed bandits here?

3.3.3 Maximum Entropy Tree Search

TODO: MENTS

3.4 Multi-Objective Reinforcement Learning

- Should talk about multi-objective and/or contextual multi-armed bandits here?
- Bunch of the work covered in recent MORL survey [1]
- Mention some deep MORL stuff, say that this work (given AlphaZero) is adjacent work

3. Literature Review 11

3.5 Multi-Objective Monte Carlo Tree Search

TODO: I think this whole section can just go in litrev

TODO: list

• Define the old methods (using the CH object methods, so clear that not doing

direct arithmetic)

• Mention that old method could be written using the arithmetic of CHMCTS

(but they don't)

• TODO: write about & make sure its implemented - its because just updating

for 1 is more efficient in deterministic, and say that the additions can be

implemented as updating for 1 value when determinstic

• Different flavours copy UCT action selection, but with different variants

• Link back to contributions and front load our results showing that all of the

old methods don't explore correctly

3.6 Sampling Random Variables

TODO: Just citing the alias method papers?

Monte Carlo Tree Search With Boltzmann Exploration

Contents

4.1	Introduction	15
4.2	Boltzmann Search	16
4.3	Toy Environments	16
4.4	Theoretical Results	16
4.5	Empirical Results	16
4.6	Full Results	17

4.1 Introduction

- high level overview of DENTS work
- discuss how DENTS answers the research questions from introduction chapter
- state clearly that we're in single objective land here
- Comment about work exploring multi-armed bandits motivating this work

4.2 Boltzmann Search

TODO: list

- Recall MENTS
- Define BTS using THTS functions
- Define DENTS using THTS functions
- Discuss alias method variant (and complexity analysis) in a subsection?

4.3 Toy Environments

TODO: list

- Define D-chain stuff from the paper
- Define the D-chain with entropy trap
- Front load some results still

4.4 Theoretical Results

TODO: list

• add theoretical results

4.5 Empirical Results

- DChain
- GridWorlds
- Go

4.6 Full Results

TODO: there's a lot of figures for the D-chain environment, work out how to best fit them in? Or put them in this seperate section?

Convex Hull Monte Carlo Tree Search

Contents

	Introduction	
	Contextual Tree Search	
	Contextual Zooming for Trees	
$\bf 5.4$	Convex Hull Monte Carlo Tree Search	20
5.5	Results	20

5.1 Introduction

TODO: list

- high level overview of CHMCTS work
- discuss how CHMCTS answers the research questions from introduction chapter
- moving into multi-objective land now
- Comment about CHVI and prior MOMCTS work motivating this

5.2 Contextual Tree Search

- Discuss need for context when doing multi-objective tree Search
 - Use an example env where left gives (1,0) and right gives (0,1), optimal policy picks just left or just right, but hypervolume based methods wont
 - Use previous work on these examples and show they dont do well bad
- Discuss how UCT = running a non-stationary UCB at each node, so given above discussion, there is work in contextual MAB
- Introduce contextual regret here

5.3 Contextual Zooming for Trees

TODO: list

- Give contextual zooming for trees algorithm
- Discussion on the contextual MAB to non-stationary contextual MAB stuff (CZT is to CZ what UCT is to UCB) (and what theory carry over)

5.4 Convex Hull Monte Carlo Tree Search

TODO: list

- Give convex hull monte carlo tree search
- Contextual zooming with the convex hull backups

5.5 Results

- Results from CHMCTS paper
- Get same plots from C++ code, but compare expected utility, rather than the confusing hypervolume ratio stuff

Simplex Maps for Multi-Objective Monte Carlo Tree Search

Contents

6.1	Introduction	21
6.2	Simplex Maps	22
6.3	Simplex Maps in Tree Search	22
6.4	Theoretical Results	22
6.5	Empirical Results	22
6.3 6.4	Simplex Maps in Tree Search	22 22

6.1 Introduction

- high level overview of simplex maps work
- discuss how simplex maps answer the research questions from introduction chapter
- staying in multi-objective land now
- Motivated by CHMCTS being slow

6.2 Simplex Maps

TODO: list

- Define simplex map interface
- Give details on how to efficiently implement the interface with tree structures
- (Good diagram is everything here I think)

6.3 Simplex Maps in Tree Search

TODO: list

- Come up with better title for section
- Use simplex maps interface to create algorithms from the dents work
- Give a high level idea of what δ parameter is (used in theory section)

6.4 Theoretical Results

TODO: list

- Convergence can build ontop of DENTS results
- Runtime bounds (better than $O(2^D)$ which is what using convex hulls has)
- Simplex map has a diameter δ (i.e. the furthest away a new context could be from a point in the map)
- Bounds can then come from that diameter (which is a parameter of the simplex map/algorithm) and DENTS results

6.5 Empirical Results

- Results from MO-Gymnasium
- Compare algorithms using expected utility

Conclusion

Contents

7.1	Summary of Contributions	23
7.2	Future Work	23

TODO: Something about we'll conclude by looking back at contributions and possible future work.

7.1 Summary of Contributions

TODO: go through each of the research questions and contributions, and write about how the work answers the research questions

7.2 Future Work

TODO: outline some avenues of potential future work

Appendices

List Of Appendices To Consider

- Multi Armed Bandits, maybe
- MAybe from of the things in background are more appropriate as appendices?

B

Convex Hull Monte Carlo Tree Search - ICAPS2020

TODO: something about paper appearing in ICAPS 2020 & reference to the chapter that covers this content.

TODO: c&p paper

C

Monte Carlo Tree Search with Boltzmann Exploration

TODO: something about paper appearing in NeurIPS 2023 & reference to the chapter that covers this content.

TODO: c&p paper

D

Simplex Maps for Multi-Objective Monte Carlo Tree Search

TODO: something about paper submitted to XXX & reference to the chapter that covers this content.

TODO: c&p paper

Bibliography

- [1] Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz, et al. A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems, 36(1):26, 2022.
- [2] Thomas Keller and Malte Helmert. Trial-based heuristic tree search for finite horizon mdps. In *Proceedings of the International Conference on Automated Planning and Scheduling*, volume 23, pages 135–143, 2013.
- [3] Michael Painter. THTS++,https://github.com/MWPainter/thts-plus-plus.