수업계획서

과목명	인공지능 종합설계	수업시간	월 18:30~20:00
구분(학점)	2학점	과목번호	기초/중급

	성명: 하정욱	홈페이지:	
담당교수	E-mail: jwha6169@sogang.ac.kr	연락처: 010-2270-4461	
(사진)	장소: 최양업관 502호 면담시간:		

I. 교과목 개요(Course Overview)

1. 수업개요

- 학생 소속 전공에서 다루는 다양한 데이터를 인공지능 기술을 이용하여 수집/분석/시각화할수 있는 인공지능 기반 데이터 분석 능력과 각과의 전문 지식을 인공지능과 융합하여 새로운 가치 창출 및 인공지능 응용 종합 설계 능력을 배양한다.
- 산업체가 집중하는 인공지능 관련 기술 분야와 응용 분야에 대하여 대학의 이론적 지식 접목
 을 통해 프로젝트를 추진하며 인공지능 기반 전반적 지식을 습득한다.
- 산업체의 연구원들이 멘토로서 코칭하며 실제 산업체의 프로젝트 운영방식과 유사하게 진행 하여 산업체의 프로젝트 진행방식에 대해 선 경험한다.
- 2. 선수학습내용
- Python 언어를 이용한 기초 SW 프로그래밍 개념
- Python 이용한 중급 빅데이터 처리 프로그래밍 학습 및 Tensorflow, Pytorch 등을 이용한 빅데이터 분류/예측 처리
- 각 대학/ 전공별 인공지능 융합 교과목
- 3. 수업방법 (%)

강의	토의/토론	실험/실습	현장학습	개별/팀 별 발표	기타
80%	%	%	%	20%	%

4. 평가방법 (%)

중간고사	기말고사	퀴즈	발표	프로젝트	과제물	참여도	기타
%	%	%	10%	70%	10%	10%	%

П. 교과목표(Course Objectives)

지식: AI 기반 지식(센서, 통신, 반도체, 클라우드 등) 머신러닝의 기반 지식, 딥러닝의 설계 지식

기술: Python 기술, 빅데이터 처리 기술, 인공지능 알고리즘 응용 기술

태도: 창의력을 기반으로 열정적이고 능동적으로 이론을 학습하고 프로젝트를 수행

皿. 수업운영방식(Course Format)

(T-3의 수업방법의 구체적 설명)

- 인공지능의 핵심 기술인 데이터 처리, 머신러닝, 딥러닝 등 인공지능의 주요 모델 알고리즘과 인공지능의 주요 기능인 인식, 예측, 자동화, 분석 등의 응용 및 설계와 이를 활용한 애플리케 이션 개발에 대해 학습한다.
- 인공지능의 주요 알고리즘과 기술에 대해 실제 적용방안에 대해 실습하여 인공지능 핵심 기술의 이해하고 융합 능력의 증진을 통해 인공지능 종합 설계 능력을 배양한다.
- 구성원의 특징과 전문 지식 수준을 고려하여 3~5명으로 구성된 프로젝트 팀을 산업체의 프로젝트 운영방식과 유사하게 진행하여 실질적이고 창의적인 프로젝트를 수행한다.

IV. 학습 및 평가활동(Course Requirements and Grading Criteria)

- 인공지능의 지식을 이해하고 새로운 가치와 사용자 경험의 창출을 학습하고 평가합니다.
- 인공지능의 지식과 통찰력을 기반으로 창조적 응용 능력을 학습한다.
- 정의된 문제를 해결하고 월등한 성능의 알고리즘과 양질의 데이터 확보를 통해 기술적 가치 와 기능적 가치를 제시할 수 있도록 학습하고 평가한다.
- 개인 과제 수행(중간고사 대체)
- 팀 과제 수행 (기말고사 대체)

V. 수업규정(Course Policies)

- 본 수업은 다양한 전공을 수행 중인 학생들 대상으로 진행하는 인공지능 활용 과목으로 프로 젝트 수행에 필요한 이론과 실제 융합 및 응용설계 능력을 중시한다.
- 수업 방식은 중간고사까지는 대면 수업으로 진행하고 중간고사 이후는 비대면 수업을 기본으로 진행한다. 단, 학생들과 사전에 수업 방식을 논의하여 대다수의 학생이 희망하는 방식으로 진행 방식을 논의후 결정 한다.

VI. 교재 및 참고문헌(Materials and References)

- [1] Jouppi, Norman P " Deep learning with limitted numerical precision." 2015
- [2] stanford University CS 224d: deep learning for Natural Language Processing
- [3] Mikolov, Tomas, et al: "Efficient estimation of word representation in vector space." 2013
- [4] Talathi, sachin., Aniket Vartak: "Improving performance of recurrent neural network with relu nonlinearity."
- [5] Al and Machine Learning for Coders, O'REILLY
- [6] Deep Learning from scratch, ORELLY

VII. 주차별 수업계획(Course Schedule)(* 추후 변경될 수 있음)

	학습목표	인공지능 기반 주요 IT 기술
1 주차	주요학습내용	- 인공지능의 발전에 영향을 미치는 IT 핵심 기술 학습 (Cloud Computing Tech. ICT Core 기술, 미래 무선 통신, NPU) - 인공지능 설계 프로젝트 계획
(3/10)	수업방법	강의/토론
	수업자료	- 인공지능 기반 IT 기술의 현실과 발전 방향 - WBS 기반 프로젝트 진행을 위한 전략과 계획 수립
	과제	미래 AI 기술 전망 분석
	학습목표	- 인공지능 프로젝트 기획 및 전략 수립 - 프로젝트의 협업 수행을 위한 Tool 학습
2 주차	주요학습내용	- 인공지능 프로젝트 서비스 기획, 개발 계획 및 추진 전략 수립 - 프로젝트 개발 Tool 학습 - 프로젝트 팀 Kick off
(3/17)	수업방법	강의/ 팀빌딩 관련 토론
	수업자료	- 인공지능 프로젝트 전략 수립 - Git With Pycharm
	과제	Brain storming 등을 통한 프로젝트 Ideation
	학습목표	- 인공지능 UX(User Experience) 개념 및 발굴 학습 - AI 프로젝트의 유스케이스(Usecase) 도출
3 주차	주요학습내용	- 인공지능 UX 개발 방향 및 설계
(3월/24)	수업방법	강의
	수업자료	- AI UX의 특징과 개발 방안
	과제	AI 프로젝트의 UX 발굴과 Usecase 작성
	학습목표	- 인공지능 기반 기술 학습 - 각 프로제트 Kick off
4 주차	주요학습내용	- AI 알고리즘 기반 기술 이해 - 각 팀별 프로젝트 추진 전략
(3/31)	수업방법	강의/ 프로젝트 Kick Off 발표
	수업자료	- 프로젝트 추진 전략
	과제	프로젝트의 Kick off 자료

		,			
5 주차	학습목표	- 인공지능 프로젝트 추진을 위한 기반 기술 학습 - 주요 머신러닝 알고리즘 이해와 응용			
	주요학습내용	- AI 알고리즘의 기반 기술 이해 - 머신러닝 알고리즘의 핵심 이론과 실전 응용 방법			
(4 <i>월/</i> 7 <i>일</i>)	수업방법	강의			
	수업자료	- 인공지능의 기반 기술			
	과제	- 지도학습 머신러닝과 비지도 학습 머신러닝			
	학습목표	- 프로젝트 목적에 맞는 머신러닝 알고리즘 이해 및 응용 - 프로젝트 진행에 사용할 데이터 관리와 데이터 훈련			
6 주차	주요학습내용	- 주요 머신러닝 알고리즘의 이해와 Tensorflow 응용 - 다양한 실례를 통한 AI 알고리즘 이해와 응용 방안			
(4/14 <i>≌</i>)	수업방법	강의			
	수업자료	- 머신러닝 학습 유형과 실전 알고리즘 이해 - 머신러닝의 분류, 예측 알고리즘을 사용한 모델 이해 - TensorFlow, Keras 등을 사용하여 실제 프로젝트 학습			
	과제	GPT 활용 Project 진행 계획 및 개발 전략수립			
	학습목표	GPT/Bard 활용 Project 진행			
	주요학습내용	GPT 활용 방안 (API/ Plug In 등)			
7 주자 (4 <u>월</u> /21)	수업방법	발표			
	수업자료				
	과제				
주차 (4 <u>월</u> /22 <u>일</u>)	학습목표	중간고사			
	주요학습내용				
	수업방법				
	수업자료				

8 주차	학습목표	- Deep Leaning 활용한 이미지 분류 및 프로젝트 적용 방안 학습 - 이미지 처리를 위한 CNN 알고리즘 학습			
	주요학습내용	- Deep Learning 이해와 실전 알고리즘 구현 - CNN의 핵심 알고리즘 기법 학습과 실전 알고리즘 구현			
(4/28 월)	수업방법	강의 및 알고리즘 구현 실습			
	수업자료	- Deep Learning Algorithm - Convolution Neural Network Algorithm			
	과제	- CNN 등을 활용한 각 프로젝트 적용 검토와 결과			
	학습목표	- 순환 신경망 RNN, LSTM, GRU 학습			
	주요학습내용	- 각 프로젝트 적용 및 응용 가능한 순환 신경망 구조 설계			
9 주차 (5/12)	수업방법	강의			
(3) 12)	수업자료	순환 신경망 처리 알고리즘 - RNN, LSTM, GRU 알고리즘			
	과제	- 진행 중인 프로젝트의 핵심 이론 분석			
	학습목표	- Transformer 이론과 응용 학습			
10 주차 (5 <i>월</i> /19 <i>일</i>)	주요학습내용	- Attention is all you need : Attention 등 Transformer 관련 기술			
_	수업방법	강의			
	수업자료	- Transformer 이론과 기술			
	과제	- Transformer 분석 및 응용			
11 주차	학습목표				
	주요학습내용	- 진행 중인 프로젝트의 Technical Review			
(5 <u></u> <u>8</u> /26)	수업방법				
	수업자료	- 프로젝트의 기술 중간 보고서			

	과제	- Technical Review 개선 및 대책서
	학습목표	- 창의적 AI 생성을 위한 GAN 학습 - LLM 이론과 응용
12 주차 (6/2)	주요학습내용	- 생성적 대립 신경망의 이해와 이를 활용한 생성 - LLM 이론과 응용(API 활용)
	수업방법	강의
	수업자료	- GAN 모델 응용설계 - LLM 모델
	과제	GAN을 이용한 생성 및 창작물
	학습목표	- 프로젝트 최종 완료 보고 1차
13 주차 (6/9 <i>일</i>)	주요학습내용	- 추진 프로젝트의 최종 성과 보고 - Lesson & Learn - Best Practices 발표 및 선정
	수업방법	팀 발표 및 토론
	수업자료	- 프로젝트 완료
	과제	- 프로젝트 최종 결과물
	학습목표	- 프로젝트 최종 완료 보고 2차
14 주차	주요학습내용	- 추진 프로젝트의 최종 성과 보고 - Lesson & Learn - Best Practices 발표 및 선정
(6 <i>월</i> /16)	수업방법	팀 발표 및 토론
	수업자료	- 프로젝트 완료
	과제	- 프로젝트 최종 결과물
주차 (6 <i>월</i> /17)	학습목표	기말고사
	주요학습내용	

	수업방법	
	수업자료	
	과제	

때. 참고사항(Special Accommodations)

- 수업 방식은 중간고사까지는 대면 수업으로 진행하고 중간고사 이후는 비대면 수업을 기본으로 진행한다. 단, 학생들과 사전에 수업 방식을 논의하여 대다수의 학생이 희망하는 방식으로 진행 방식을 논의후 결정 한다.
- 수업방식은 강의를 기본으로 진행하고 팀 프로젝트는 팀과 상의해서 자율적으로 진행한다.
- 개인 과제 수행(중간고사 대체)
- 팀 과제 수행 (기말고사 대체)

