

CS215 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

Solving Linear Recurrence Relations of degree k

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}.$$

Solving Linear Recurrence Relations of degree k

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}.$$

The characteristic equation (CE) is:

$$r^{k} - \sum_{i=1}^{k} c_{i} r^{k-i} = 0.$$

Solving Linear Recurrence Relations of degree k

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}.$$

The characteristic equation (CE) is:

$$r^{k} - \sum_{i=1}^{k} c_{i} r^{k-i} = 0.$$

Theorem If this CE has k distinct roots r_i , then the solutions to the recurrence are of the form

$$a_n = \sum_{i=1}^k \alpha_i r_i^n$$

for all $n \ge 0$, where the α_i 's are constants.

Theorem If the CE $r^2 - c_1 r - c_2 = 0$ has only 1 root r_0 , then

$$a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n,$$

for all $n \geq 0$ and two constants α_1 and α_2 .

Theorem If the CE $r^2 - c_1 r - c_2 = 0$ has only 1 root r_0 , then

$$a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n,$$

for all $n \geq 0$ and two constants α_1 and α_2 .

Theorem [Theorem 4, p.519] Suppose that there are t roots r_1, \ldots, r_t with multiplicities m_1, \ldots, m_t . Then

$$a_n = \sum_{i=1}^t \left(\sum_{j=0}^{m_i-1} \alpha_{i,j} n^j \right) r_i^n,$$

for all $n \geq 0$ and constants $\alpha_{i,j}$.

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$
.

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$

The only root is 2. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 n 2^n.$$

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$

The only root is 2. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 n 2^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 = 1$$

 $a_1 = 2\alpha_1 + 2\alpha_2 = 0$

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$

The only root is 2. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 n 2^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 = 1$$

 $a_1 = 2\alpha_1 + 2\alpha_2 = 0$

We get $\alpha_1 = 1$ and $\alpha_2 = -1$. Thus, $a_n = 2^n - n2^n$

■ **Definition** A *linear nonhomogeneous relation* with constant coefficients may contain some terms F(n) that depend only on n

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n)$$
.

The recurrence relation

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ is called the associated homogeneous recurrence relation.

Theorem If $a_n = p(n)$ is any particular solution to the linear nonhomogeneous relation with constant coefficients,

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n),$$

Then all its solutions are of the form

$$a_n = p(n) + h(n),$$

where $a_n = h(n)$ is any solution to the associated homogeneous recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

We try a degree-t polynomial as the particular solution p(n).

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

We try a degree-t polynomial as the particular solution p(n).

Let
$$p(n) = cn + d$$
, then $cn + d = 3(c(n-1) + d) + 2n$, which means $(2c + 2)n + (2d - 3c) = 0$.

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

We try a degree-t polynomial as the particular solution p(n).

Let
$$p(n) = cn + d$$
, then $cn + d = 3(c(n-1) + d) + 2n$, which means $(2c + 2)n + (2d - 3c) = 0$.

We get
$$c=-1$$
 and $d=-3/2$. Thus,
$$p(n)=-n-3/2$$
7 - 5

We may use generating functions to characterize sequences.

We may use generating functions to characterize sequences.

 \diamond The sequence $\{a_k\}$ with $a_k = 3$

We may use generating functions to characterize sequences.

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 3$

$$\sum_{k=0}^{\infty} 3x^k$$

We may use generating functions to characterize sequences.

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 3$

$$\sum_{k=0}^{\infty} 3x^k$$

 \diamond The sequence $\{a_k\}$ with $a_k = 2^k$

We may use generating functions to characterize sequences.

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 3$

$$\sum_{k=0}^{\infty} 3x^k$$

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 2^k$

$$\sum_{k=0}^{\infty} 2^k x^k$$

We may use generating functions to characterize sequences.

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 3$
$$\sum_{k=0}^{\infty} 3x^k$$

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 2^k$
$$\sum_{k=0}^{\infty} 2^k x^k$$

Definition The *generating funciton* for the sequence $a_0, a_1, \ldots, a_k, \ldots$ of real numbers is the infinite series

$$G(x) = a_0 + a_1 x + \cdots + a_k x^k$$

■ A finite sequence a_0, a_1, \ldots, a_n can be easily extended by setting $a_{n+1} = a_{n+2} = \cdots = 0$

A finite sequence a_0, a_1, \ldots, a_n can be easily extended by setting $a_{n+1} = a_{n+2} = \cdots = 0$

The generating function G(x) of this infinite sequence $\{a_n\}$ is a polynomial of degree n, i.e.,

$$G(x) = a_0 + a_1x + \cdots + a_nx^n$$

A finite sequence a_0, a_1, \ldots, a_n can be easily extended by setting $a_{n+1} = a_{n+2} = \cdots = 0$

The generating function G(x) of this infinite sequence $\{a_n\}$ is a polynomial of degree n, i.e.,

$$G(x) = a_0 + a_1x + \cdots + a_nx^n$$

 \diamond What is the generating function for the sequence a_0, a_1, \ldots, a_m , with $a_k = C(m, k)$?

A finite sequence a_0, a_1, \ldots, a_n can be easily extended by setting $a_{n+1} = a_{n+2} = \cdots = 0$

The generating function G(x) of this infinite sequence $\{a_n\}$ is a polynomial of degree n, i.e.,

$$G(x) = a_0 + a_1x + \cdots + a_nx^n$$

 \diamond What is the generating function for the sequence a_0, a_1, \ldots, a_m , with $a_k = C(m, k)$?

$$G(x) = C(m,0) + \cdots + C(m,$$

$$\phi G(x) = 1/(1-x) \text{ for } |x| < 1$$

$$\Leftrightarrow G(x) = 1/(1-x) \text{ for } |x| < 1$$

 $1, 1, 1, 1, 1, \dots$

$$\Rightarrow G(x) = 1/(1-x) \text{ for } |x| < 1$$

 $1, 1, 1, 1, 1, \dots$

$$\diamond G(x) = 1/(1 - ax)$$
 for $|ax| < 1$

- $\Rightarrow G(x) = 1/(1-x) \text{ for } |x| < 1$ $1, 1, 1, 1, 1, \dots$
- $\Leftrightarrow G(x) = 1/(1 ax) \text{ for } |ax| < 1$ $1, a, a^2, a^3, a^4, \dots$

- $\Leftrightarrow G(x) = 1/(1-x) \text{ for } |x| < 1$ $1, 1, 1, 1, 1, \dots$
- $\Leftrightarrow G(x) = 1/(1 ax) \text{ for } |ax| < 1$ $1, a, a^2, a^3, a^4, \dots$
- $\diamond G(x) = 1/(1-x)^2 \text{ for } |x| < 1$

- $\Rightarrow G(x) = 1/(1-x) \text{ for } |x| < 1$ $1, 1, 1, 1, 1, \dots$
- $\Leftrightarrow G(x) = 1/(1 ax) \text{ for } |ax| < 1$ $1, a, a^2, a^3, a^4, \dots$
- $\Rightarrow G(x) = 1/(1-x)^2 \text{ for } |x| < 1$ 1, 2, 3, 4, 5, . . .

Operations of Generating Functions

Theorem Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$, and $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

Operations of Generating Functions

Theorem Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$, and $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

$$\Leftrightarrow G(x) = 1/(1-x)^2 \text{ for } |x| < 1$$

Operations of Generating Functions

Theorem Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$, and $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

$$G(x) = 1/(1-x)^2 for |x| < 1$$

$$f(x) = 1/(1-x), g(x) = 1/(1-x)$$

$$G(x) = f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} 1\right) x^k = \sum_{k=0}^{\infty} (k+1)x^k$$

Operations of Generating Functions

Theorem Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$, and $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k)x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

$$\Leftrightarrow G(x) = 1/(1 - ax)^2 \text{ for } |x| < 1$$

Operations of Generating Functions

Theorem Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$, and $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

$$(1+x)^n = \sum_{k=0}^n C(n,k)x^k$$
$$(1+ax)^n = \sum_{k=0}^n C(n,k)a^kx^k$$
$$(1+x^r)^n = \sum_{k=0}^n C(n,k)x^{rk}$$

$$(1+x)^{n} = \sum_{k=0}^{n} C(n,k)x^{k}$$

$$(1+ax)^{n} = \sum_{k=0}^{n} C(n,k)a^{k}x^{k}$$

$$(1+x^{r})^{n} = \sum_{k=0}^{n} C(n,k)x^{rk}$$

$$\frac{1-x^{n+1}}{1-x} = \sum_{k=0}^{n} x^{k} = 1+x+x^{2}+\cdots+x^{n}$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k} = 1+x+x^{2}+\cdots$$

$$\frac{1}{1-ax} = \sum_{k=0}^{\infty} a^{k}x^{k} = 1+ax+a^{2}x^{2}+\cdots$$

$$\frac{1}{1-x^{r}} = \sum_{k=0}^{\infty} x^{rk} = 1+x^{r}+x^{2r}+\cdots$$

$$(1+x)^{n} = \sum_{k=0}^{n} C(n,k)x^{k}$$

$$(1+ax)^{n} = \sum_{k=0}^{n} C(n,k)a^{k}x^{k}$$

$$(1+x^{r})^{n} = \sum_{k=0}^{n} C(n,k)x^{rk}$$

$$\frac{1-x^{n+1}}{1-x} = \sum_{k=0}^{n} x^{k} = 1+x+x^{2}+\cdots+x^{n}$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k} = 1+x+x^{2}+\cdots$$

$$\frac{1}{1-ax} = \sum_{k=0}^{\infty} a^{k}x^{k} = 1+ax+a^{2}x^{2}+\cdots$$

$$\frac{1}{1-x^{r}} = \sum_{k=0}^{\infty} x^{rk} = 1+x^{r}+x^{2r}+\cdots$$

$$\frac{1}{1-x^{r}} = \sum_{k=0}^{\infty} x^{rk} = 1+x^{r}+x^{2r}+\cdots$$

$$\frac{1}{(1-x)^{2}} = \sum_{k=0}^{\infty} (k+1)x^{k} = 1+2x+3x^{2}+\cdots$$

$$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$$

$$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$$

$$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k$$

$$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$$

$$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$$

$$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

Problem 1 Find the number of solutions of

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers with $2 \le x_1 \le 5$, $3 \le x_2 \le 6$, $4 \le x_3 \le 7$.

Problem 1 Find the number of solutions of

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers with $2 \le x_1 \le 5$, $3 \le x_2 \le 6$, $4 \le x_3 \le 7$.

Using generating functions, the number is the coefficient of x^{17} in the expansion of

$$(x^2 + x^3 + x^4 + x^5)(x^3 + x^4 + x^5 + x^6)(x^4 + x^5 + x^6 + x^7)$$

Problem 2 In how many ways can eight identical cookies be distributed among three distinct children if each child receives at least two cookies and no more than four cookies?

Problem 2 In how many ways can eight identical cookies be distributed among three distinct children if each child receives at least two cookies and no more than four cookies?

The coefficient of x^8 in the expansion

$$(x^2 + x^3 + x^4)^3$$

Problem 3 How many solutions are there to the equation

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers?

Problem 3 How many solutions are there to the equation

$$x_1 + x_2 + x_3 = 17$$

where x_1, x_2, x_3 are nonnegative integers?

This is **equivalent** to the problem of *r*-combinations from a set with *n* elements when repetition is allowed.

Problem 3 How many solutions are there to the equation

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers?

This is **equivalent** to the problem of *r*-combinations from a set with *n* elements when repetition is allowed.

$$C(n+r-1,r)=C(19,17)=C(19,2)$$

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

This is equivalent to finding the # nonnegative solutions to $x_1 + x_2 + x_3 = 17$.

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

This is equivalent to finding the # nonnegative solutions to $x_1 + x_2 + x_3 = 17$.

Q: Use generating functions to find the number of r-combinations from a set with n elements when repetition of elements is allowed.

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

This is equivalent to finding the # nonnegative solutions to $x_1 + x_2 + x_3 = 17$.

Q: Use generating functions to find the number of r-combinations from a set with n elements when repetition of elements is allowed.

Read more on pp. 537-548.

Problem 4 Use generating functions to find the number of k-combinations of a set with n elements, C(n, k).

Problem 4 Use generating functions to find the number of k-combinations of a set with n elements, C(n, k).

Each of the n elements in the set contributes the term (1+x) to the generating function $f(x) = \sum_{k=0}^{n} a^k x^k$. Hence, $f(x) = (1+x)^n$.

Then by the binomial theorem, we have $a_k = \binom{n}{k}$.

Cartesian Product

Let $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$, the Cartesian product $A \times B$ is the set of pairs $\{(a_1, b_1), (a_2, b_2), \dots, (a_1, b_n), \dots, (a_m, b_n)\}$

Cartesian Product

Let $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$, the Cartesian product $A \times B$ is the set of pairs $\{(a_1, b_1), (a_2, b_2), \dots, (a_1, b_n), \dots, (a_m, b_n)\}$

Cartesian product defines a set of all ordered arrangements of elements in the two sets.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

We use the notation a R b to denote $(a, b) \in R$, and aRb to denote $(a, b) \notin R$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

We use the notation a R b to denote $(a, b) \in R$, and aRb to denote $(a, b) \notin R$.

Example: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$

- \diamond Is $R = \{(a,1),(b,2),(c,2)\}$ a relation from A to B?
- \diamond Is $Q = \{(1, a), (2, b)\}$ a relation from A to B?
- \diamond Is $P = \{(a, a), (b, c), (b, a)\}$ a relation from A to A?

• We can graphically represent a binary relation R as:

if a R b, then we draw an arrow from a to b: $a \rightarrow b$

We can graphically represent a binary relation R as: if a R b, then we draw an arrow from a to b: $a \rightarrow b$

Example: Let
$$A = \{0, 1, 2\}$$
 and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, v), (2, u)\}$. $(R \subseteq A \times B)$

• We can graphically represent a binary relation R as: if a R b, then we draw an arrow from a to b: $a \rightarrow b$

Example: Let $A = \{0, 1, 2\}$ and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, v), (2, u)\}$. $(R \subseteq A \times B)$

• We can also represent a binary relation R by a table showing the ordered pairs of R.

• We can also represent a binary relation R by a table showing the ordered pairs of R.

Example: Let
$$A = \{0, 1, 2\}$$
 and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, u), (2, v)\}$. $(R \subseteq A \times B)$

• We can also represent a binary relation R by a table showing the ordered pairs of R.

Example: Let
$$A = \{0, 1, 2\}$$
 and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, u), (2, v)\}$. $(R \subseteq A \times B)$

R	и	v
0	×	×
1	×	
2		×

Relations and Functions

Relations represent one to many relationships between elements in A and B.

Relations and Functions

Relations represent one to many relationships between elements in A and B.

Relations and Functions

Relations represent one to many relationships between elements in A and B.

What is the difference between a relation and a function from A to B?

■ **Definition**: A relation on the set *A* is a relation from *A* to itself.

■ **Definition**: A relation on the set A is a relation from A to itself.

Example: Let $A = \{1, 2, 3, 4\}$ and $R_{div} = \{(a, b) : a|b\}$. What does R_{div} consist of?

■ **Definition**: A relation on the set A is a relation from A to itself.

Example: Let $A = \{1, 2, 3, 4\}$ and $R_{div} = \{(a, b) : a|b\}$. What does R_{div} consist of?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

■ **Definition**: A relation on the set A is a relation from A to itself.

Example: Let $A = \{1, 2, 3, 4\}$ and $R_{div} = \{(a, b) : a|b\}$. What does R_{div} consist of?

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

■ **Definition**: A relation on the set A is a relation from A to itself.

Example: Let $A = \{1, 2, 3, 4\}$ and

 $R_{div} = \{(a, b) : a|b\}$. What does R_{div} consist of?

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Proof

If |A| = n, then the cardinality of the Cartesian product $|A \times A| = n^2$.

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Proof

If |A| = n, then the cardinality of the Cartesian product $|A \times A| = n^2$.

R is a binary relation on A if $R \subseteq A \times A$ (R is subset)

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Proof

If |A| = n, then the cardinality of the Cartesian product $|A \times A| = n^2$.

R is a binary relation on A if $R \subseteq A \times A$ (R is subset)

The number of subsets of a set with k elements is 2^k

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} reflexive?

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} reflexive?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} reflexive?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Yes.
$$(1,1),(2,2),(3,3),(4,4) \in R_{div}$$

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

A relation R is reflexive if and only if MR has 1 in every position on its main diagonal.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Is *R* reflexive?

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Is *R* reflexive?

No. $(1,1) \notin R$

■ Irreflexive Relation: A relation R on a set A is called irreflexive if $(a, a) \notin R$ for every element $a \in A$.

■ Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

■ Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{\neq} irreflexive?

■ Irreflexive Relation: A relation R on a set A is called irreflexive if $(a, a) \notin R$ for every element $a \in A$.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{\neq} irreflexive?

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

■ Irreflexive Relation: A relation R on a set A is called irreflexive if $(a, a) \notin R$ for every element $a \in A$.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{\neq} irreflexive?

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Yes.
$$(1,1),(2,2),(3,3),(4,4) \notin R_{\neq}$$

Irreflexive Relation

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Irreflexive Relation

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

$$MR = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Irreflexive Relation

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

$$MR = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

A relation R is irreflexive if and only if MR has 0 in every position on its main diagonal.

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

■ Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} symmetric?

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} symmetric?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} symmetric?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

No. $(1,2) \in R_{div}$ but $(2,1) \notin R$

Symmetric Relation

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Symmetric Relation

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Is R_{\neq} symmetric?

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Is R_{\neq} symmetric?

Yes. If $(a, b) \in R_{\neq}$ then $(b, a) \in R_{\neq}$.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

$$MR = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

A relation R is symmetric if and only if MR is symmetric.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if (b, a) ∈ R and (a, b) ∈ R implies a = b for all a, b ∈ A.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if (b, a) ∈ R and (a, b) ∈ R implies a = b for all a, b ∈ A.

Example: Assume that $R = \{(1, 2), (2, 2), (3, 3)\}$ on $A = \{1, 2, 3, 4\}$.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if (b, a) ∈ R and (a, b) ∈ R implies a = b for all a, b ∈ A.

Example: Assume that $R = \{(1, 2), (2, 2), (3, 3)\}$ on $A = \{1, 2, 3, 4\}$.

Is R antisymmetric?

Antisymmetric Relation: A relation R on a set A is called antisymmetric if (b, a) ∈ R and (a, b) ∈ R implies a = b for all a, b ∈ A.

Example: Assume that $R = \{(1, 2), (2, 2), (3, 3)\}$ on $A = \{1, 2, 3, 4\}$.

Is R antisymmetric?

Yes.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

$$MR = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

$$MR = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A relation R is antisymmetric if and only if $m_{ij} = 1$ implies $m_{ji} = 0$ for $i \neq j$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} antisymmetric?

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} antisymmetric?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} antisymmetric?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Yes. If a|b and b|a, then a=b.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} antisymmetric?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Yes. If a|b and b|a, then a=b.

Transitive Relation: A relation R on a set A is called *transitive* if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R for all a, b, c ∈ A.

Transitive Relation: A relation R on a set A is called *transitive* if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R for all a, b, c ∈ A.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Transitive Relation: A relation R on a set A is called *transitive* if $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} transitive?

Transitive Relation: A relation R on a set A is called *transitive* if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R for all a, b, c ∈ A.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} transitive?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Transitive Relation: A relation R on a set A is called *transitive* if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R for all a, b, c ∈ A.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} transitive?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Yes. If a|b and b|c, then a|c.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Is R_{\neq} transitive?

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Is R_{\neq} transitive?

No. $(1,2),(2,1)\in R_{\neq}$ but $(1,1)\notin R_{\neq}$.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Is R transitive?

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Is R transitive?

Yes.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Combining Relations: Since relations are sets, we can *combine* relations via set operations.

■ **Definition**: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Combining Relations: Since relations are sets, we can *combine* relations via set operations.

Set operations: union, intersection, difference, etc.

Example: Let $A = \{1, 2, 3\}$, $B = \{u, v\}$, and $R_1 = \{(1, u), (2, u), (2, v), (3, u)\}$, $R_2 = \{(1, v), (3, u), (3, v)\}$

Example: Let $A = \{1, 2, 3\}$, $B = \{u, v\}$, and $R_1 = \{(1, u), (2, u), (2, v), (3, u)\}$, $R_2 = \{(1, v), (3, u), (3, v)\}$

What is $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, $R_2 - R_1$?

Example: Let $A = \{1, 2, 3\}$, $B = \{u, v\}$, and $R_1 = \{(1, u), (2, u), (2, v), (3, u)\}$, $R_2 = \{(1, v), (3, u), (3, v)\}$

What is $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, $R_2 - R_1$?

We may also combine relations by matrix operations.

Composite of Relations

■ **Definition**: Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there is a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Composite of Relations

■ **Definition**: Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there is a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Example: Let $A = \{1, 2, 3\}$, $B = \{0, 1, 2\}$, and $C = \{a, b\}$

Composite of Relations

■ **Definition**: Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there is a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Example: Let $A = \{1, 2, 3\}$, $B = \{0, 1, 2\}$, and $C = \{a, b\}$

$$R = \{(1,0), (1,2), (3,1), (3,2)\}$$
$$S = \{(0,b), (1,a), (2,b)\}$$

■ **Definition**: Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there is a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Example: Let
$$A = \{1, 2, 3\}$$
, $B = \{0, 1, 2\}$, and $C = \{a, b\}$

$$R = \{(1,0), (1,2), (3,1), (3,2)\}$$

$$S = \{(0,b), (1,a), (2,b)\}$$

$$S \circ R = \{(1,b), (3,a), (3,b)\}$$

■ **Example**: Let $A = \{1, 2\}$, $B = \{1, 2, 3\}$, and $C = \{a, b\}$ $R = \{(1, 2), (1, 3), (2, 1)\}$ is a relation from A to B $S = \{(1, a), (3, b), (3, a)\}$ is a relation from B to C $S \circ R = \{(1, b), (1, a), (2, a)\}$

$$S \circ R = \{(1, b), (1, a), (2, a)\}$$

$$M_{R} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$S \circ R = \{(1,b),(1,a),(2,a)\}$$

$$M_{R} = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & M_{S} & = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$S \circ R = \{(1, b), (1, a), (2, a)\}$$

$$M_R = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & M_S & = & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$M_{R} \odot M_{S} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$

$$R^2 = R \circ R = \{(1,3), (1,4), (2,3), (3,3)\}$$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$

$$R^2 = R \circ R = \{(1,3), (1,4), (2,3), (3,3)\}$$

$$R^3 = R^2 \circ R = \{(1,3), (2,3), (3,3)\}$$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$

$$R^2 = R \circ R = \{(1,3), (1,4), (2,3), (3,3)\}$$

$$R^3 = R^2 \circ R = \{(1,3), (2,3), (3,3)\}$$

$$R^4 = R^3 \circ R = \{(1,3), (2,3), (3,3)\}$$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$

$$R^2 = R \circ R = \{(1,3), (1,4), (2,3), (3,3)\}$$

$$R^3 = R^2 \circ R = \{(1,3), (2,3), (3,3)\}$$

$$R^4 = R^3 \circ R = \{(1,3),(2,3),(3,3)\}$$

$$R^{k} = ? \text{ for } k > 3$$

Theorem The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Theorem The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof.

■ **Theorem** The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof.

```
"if" part: In particular, R^2 \subseteq R.
```


Theorem The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof.

```
"if" part: In particular, R^2 \subseteq R.
```

If $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, we have $(a, c) \in R^2 \subseteq R$.

Theorem The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof.

```
"if" part: In particular, R^2 \subseteq R.
```

If $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, we have $(a, c) \in R^2 \subseteq R$.

"only if" part: by induction.

Theorem The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

■ **Theorem** The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

Proof. A reflexive relation R on A must contain all pairs (a, a) for every $a \in A$.

■ **Theorem** The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

Proof. A reflexive relation R on A must contain all pairs (a, a) for every $a \in A$.

All other pairs in R are of the form (a, b) with $a \neq b$ s.t. $a, b \in A$.

■ **Theorem** The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

Proof. A reflexive relation R on A must contain all pairs (a, a) for every $a \in A$.

All other pairs in R are of the form (a, b) with $a \neq b$ s.t. $a, b \in A$.

How many of these pairs are there?

■ **Theorem** The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

Proof. A reflexive relation R on A must contain all pairs (a, a) for every $a \in A$.

All other pairs in R are of the form (a, b) with $a \neq b$ s.t. $a, b \in A$.

How many of these pairs are there?

How many subsets on n(n-1) elements are there?

Reflexive Relation: A relation R on a set A is called *reflexive* if $(a, a) \in R$ for every element $a \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Symmetric Relation: A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if $(b, a) \in R$ and $(a, b) \in R$ implies a = b for all $a, b \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Symmetric Relation: A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if $(b, a) \in R$ and $(a, b) \in R$ implies a = b for all $a, b \in A$.

Transitive Relation: A relation R on a set A is called *reflexive* if $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.

Next Lecture

■ relation II...

