Lecture 2: 回归, Lasso, RKHS

Tianjun Ke

Renmin University of China

Introduction to basic statistical learning, April 2023

Tianjun Ke (RUC)

Table of Contents

- 1 引入
- 2 背景知识
- ③ 回归
- 4 Lasso
- 5 核方法与 RKHS

Table of Contents

- ① 引入
- 2 背景知识
- 3 回归
- 4 Lasso
- 5 核方法与 RKHS

引入

一套完整的数据分析流程:

- 1. Q: 数据? ⇒ A: 概率分布 (Lecture 1)
- 2. Q: 建模? ⇒ A: 统计学习 (Lecture 2)
- 3. Q: 算法? ⇒⇒ A: 优化
- 4. Q: 决策 (预测) ? ⇒ A: 统计推断

引入

本节课的内容主要基于 BST235: Advanced Regression and Statistical Learning 的 Lecture Notes, A Primer on Reproducing Kernel Hilbert Spaces¹以及 CS229T/STAT231: Statistical Learning Theory 的 Lecture Notes²。

本节课内容包括:

- 回归(线性模型)
- Lasso
- 核方法与 RKHS (非线性模型)

Tianjun Ke (RUC) Lecture 2 RUC 2023 5/48

¹https://arxiv.org/pdf/1408.0952.pdf

引入

相比传统课程,我们更关注统计学习角度的内容:

- 模型的应用场景 (e.g., 什么时候用 Lasso)
- 模型的学习率 (learning rate)

Table of Contents

- 1 引入
- 2 背景知识
- ③ 回归
- 4 Lasso
- 5 核方法与 RKHS

背景知识

在课程中,我们会用到以下的背景知识

ullet (中心化的) 亚高斯随机变量。如果一个随机变量 $X\in\mathbb{R}$ 满足 $\mathbb{E}[X]=0$ 且

$$\mathbb{E}[\exp(sX)] \le \exp\left(\frac{\sigma^2 s^2}{2}\right), \quad \forall s \in \mathbb{R}$$

我们称这个随机变量服从参数(variance proxy)为 σ^2 的亚高斯分布。亚高斯随机变量可以看作是高斯随机变量的推广,它具有很好的薄尾性质。(作业题 1)

• O_P 记号。如果任取 $\epsilon > 0$,存在 C > 0 以及 N > 0 使得对于所有的 n > N 都有

$$\mathbb{P}\left(|X_n/a_n|>C\right)<\epsilon,$$

则称 $X_n = O_P(a_n)$ 。

RUC 2023

8 / 48

Table of Contents

- 1 引入
- 2 背景知识
- ③ 回归
- 4 Lasso
- 5 核方法与 RKHS

回归

给定 i = 1, ..., n 时的响应变量 Y_i 和协变量 X_i ,回归模型假设

$$Y_i = f(X_i) + \varepsilon_i$$
, for all $i = 1, ..., n$.

其中 ε_i 是误差/噪声。通常我们假设误差项满足 $\mathbb{E}\varepsilon_i = 0$ 且 $\varepsilon_1, \ldots, \varepsilon_n$ 是独立的。

Tianjun Ke (RUC)

线性回归模型是一种特殊的回归模型,其中我们假设 $f(x)=x^{\top}\beta$, $\beta\in\mathbb{R}^d$,因此回归模型变为

$$Y_i = X_i^{\top} \beta + \varepsilon_i$$
, for all $i = 1, ..., n$.

我们还要引入一些矩阵符号来更方便地表达线性回归问题。我们定义设计矩阵 $\mathbb{X}=(X_1^\top,\ldots,X_n^\top)^\top\in\mathbb{R}^{n\times d}$,响应向量 $Y=(Y_1,\ldots,Y_n)^\top\in\mathbb{R}^n$ 以及噪声向量 $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)^\top\in\mathbb{R}^n$ 。我们可以将线性模型写作

$$Y = X\beta + \varepsilon$$
.

我们也将设计矩阵写为列 $\mathbb{X}=(\tilde{X}_1,\ldots,\tilde{X}_d)$,其中 \tilde{X}_j 是 \mathbb{X} 的第 j 列。

线性回归有两种典型情形:

- 非随机: 协变量 X₁,...,X_n 是确定的。
- 随机:协变量 X_1, \ldots, X_n 是随机的,并且我们通常假设 ε 独立于 \mathbb{X} 。在本次讲座及回归分析中,我们都关注了非随机情形。如果 \mathbb{X} 实际上是随机的,我们可以对 \mathbb{X} 取条件并还原到非随机的情形。

12 / 48

Tianjun Ke (RUC) Lecture 2 RUC 2023

我们在统计学习理论中主要关心两件事情:预测与参数估计。

• 预测。我们可以用估计 \hat{f} 与真实函数 f^* 之间的均方误差(Mean Squared Error,MSE)来衡量预测准确性:

$$\mathrm{MSE}(\widehat{f}) = \frac{1}{n} \sum_{i=1}^{n} (\widehat{f}(X_i) - f^*(X_i))^2.$$

在线性回归场景下,我们可以将均方误差表示为:

$$\begin{aligned} \text{MSE}(\mathbb{X}\widehat{\beta}) &= \frac{1}{n} \sum_{i=1}^{n} (X_{i}^{\top} \widehat{\beta} - X_{i}^{\top} \beta^{*})^{2} = \frac{1}{n} \|\mathbb{X}(\widehat{\beta} - \beta^{*})\|^{2} \\ &= (\widehat{\beta} - \beta^{*})^{\top} \widehat{\Sigma}(\widehat{\beta} - \beta^{*}), \end{aligned}$$

其中 $\widehat{\Sigma} = \mathbb{X}^{\top} \mathbb{X}/n = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{\top} X_{i}$ 是样本的协方差矩阵。

• 参数估计。我们关心估计 $\hat{\beta}$ 与 β^* 的差距,也即 $\|\hat{\beta} - \beta^*\|$ 的收敛速度。

Tianjun Ke (RUC) Lecture 2 RUC 2023 13/48

下面我们以最常见的最小二乘估计为例,阐释统计学习理论中一个很重要的概念——收敛速度。一般而言,收敛速度是刻画模型好坏最直观的统计结果。让我们首先引入最小二乘估计:

$$\widehat{\beta}^{\mathrm{LS}} = \operatorname*{arg\,min}_{\beta} \sum_{i=1}^{n} (Y_i - X_i^{\top} \beta)^2 = \operatorname*{arg\,min}_{\beta} \|Y - \mathbb{X}\beta\|^2.$$

下面给出了普通最小二乘估计的闭式解。

最小二乘估计的闭式解

$$\widehat{\beta}^{\mathrm{LS}} = (\mathbb{X}^{\top} \mathbb{X})^{\dagger} \mathbb{X}^{\top} Y,$$

其中 A[†] 是 A 的 Moore-Penrose 伪逆。

◆ロト→御ト→きト→き → 9へ(~)

14 / 48

Tianjun Ke (RUC) Lecture 2 RUC 2023

我们给出简单的证明。

证明

根据定义,最小二乘损失在 $\widehat{eta}^{ ext{LS}}$ 处的临界点有

$$0 = \frac{\partial}{\partial \beta} \|\mathbf{Y} - \mathbb{X}\beta\|^2 \bigg|_{\beta = \widehat{\beta}^{LS}} = 2\mathbb{X}^{\top} (\mathbf{Y} - \mathbb{X}\widehat{\beta}^{LS}).$$

解上述方程,可得 $\mathbb{X}^{\top}\mathbb{X}\widehat{\beta}^{\mathrm{LS}} = \mathbb{X}^{\top}Y$,因此 $\widehat{\beta}^{\mathrm{LS}} = (\mathbb{X}^{\top}\mathbb{X})^{\dagger}\mathbb{X}^{\top}Y$ 。

Tianjun Ke (RUC)

下面我们来讲一讲最小二乘估计得到的估计的收敛速度。

最小二乘估计下 MSE 的收敛速度

对独立的误差项 ε_1 ... ε_n 而言,如果它们满足 $\mathbb{E}\varepsilon_i=0$ 且服从参数 (variance proxy) 为 σ^2 的亚高斯 (sub-Gaussian) 分布,则

$$\mathbb{E}[\mathrm{MSE}(\mathbb{X}\widehat{\beta}^{\mathrm{LS}})] \lesssim \frac{\sigma^2 r}{n},$$

并且至少以 $1-\delta$ 的概率,

$$\mathrm{MSE}(\mathbb{X}\widehat{\beta}^{\mathrm{LS}}) \lesssim \frac{\sigma^2 r}{n} + \frac{\sigma^2}{n} \log(\frac{1}{\delta}).$$

其中 $\operatorname{rank}(\mathbb{X})=r,\ a_n\lesssim b_n$ 表示存在一个与 n 无关的常数 C,使得对于 所有 $n,\ a_n\leq Cb_n$ 。

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q

16 / 48

为了证明这个定理,我们先引入刻画亚高斯噪声性质的极大值不等式 (maximal inequality)。

*ℓ*₂ 范数的极大值不等式

给定随机向量 $X \in \mathbb{R}^d$ 。如果对所有 $u \in \mathbb{R}^d$, $\langle u, X \rangle$ 都是参数为 $\sigma^2 ||u||^2$ 的亚高斯随机变量,则有

$$\mathbb{E}\|X\| \le 4\sigma\sqrt{d}.$$

并且以不低于 $1 - \delta$ 的概率有

$$||X|| \le 4\sigma\sqrt{d} + 2\sigma\sqrt{2\log(1/\delta)}.$$

由于该不等式的证明需要引入 ε 网与覆盖数的概念,时间关系,我们在此只给出结果 3 。

Tianjun Ke (RUC) Lecture 2 RUC 2023 17/48

³见 Theorem 1.19, https:

^{//}ocw.mit.edu/courses/18-s997-high-dimensional-statistics-spring-2015/a69e2f53bb2eeb9464520f3027fc61e6_MIT18_S997S15_Chapter1.pdf \times 2 \times 2 \times

证明

我们使用优化中的零阶条件作为证明的起点,也即 $\widehat{eta}^{ ext{LS}}$ 是 $\|Y - \mathbb{X}\widehat{eta}\|^2$ 的最优解。我们可以建立起 $\hat{\beta}^{\mathrm{LS}}$ 与 $\hat{\beta}^*$ 的联系

$$\|\mathbf{Y} - \mathbb{X}\widehat{\boldsymbol{\beta}}^{\mathrm{LS}}\|^2 \leq \|\mathbf{Y} - \mathbb{X}\boldsymbol{\beta}^*\|^2 = \|\mathbb{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon} - \mathbb{X}\boldsymbol{\beta}^*\|^2 = \|\boldsymbol{\varepsilon}\|^2.$$

另一方面,

$$\|\mathbf{Y} - \mathbb{X}\widehat{\beta}^{\mathrm{LS}}\|^2 = \|\mathbb{X}\beta^* + \varepsilon - \mathbb{X}\widehat{\beta}^{\mathrm{LS}}\|^2 = \|\mathbb{X}(\widehat{\beta} - \beta^*)\|^2 - 2\langle \varepsilon, \mathbb{X}(\widehat{\beta} - \beta^*)\rangle + \|\varepsilon\|^2.$$

因此,将上述两个不等式结合起来,可得

$$\|\mathbb{X}(\widehat{\beta} - \beta^*)\|^2 \le 2\langle \varepsilon, \mathbb{X}(\widehat{\beta} - \beta^*) \rangle = 2\|\mathbb{X}(\widehat{\beta} - \beta^*)\|\langle \varepsilon, \frac{\mathbb{X}(\widehat{\beta} - \beta^*)}{\|\mathbb{X}(\widehat{\beta} - \beta^*)\|}\rangle.$$
 (1)

18 / 48

(续)

下一步,我们将通过"sup-out"技巧对 $\langle \varepsilon, \frac{\mathbb{X}(\widehat{\beta}-\beta^*)}{\|\mathbb{X}(\widehat{\beta}-\beta^*)\|} \rangle$ 进行放缩。定义 $\mathcal{C}(\mathbb{X})$ 为 \mathbb{X} 的列向量张成的线性空间。设 $\Phi = (\phi_1, \dots, \phi_r) \in \mathbb{R}^{n \times r}$ 的列向量为 $\mathcal{C}(\mathbb{X})$ 的标准正交基,满足 $\Phi^\top \Phi = \mathbf{I}_r$ 。由于 $\mathbb{X}(\widehat{\beta}-\beta^*) \in \mathcal{C}(\mathbb{X})$,因此存在 $\nu = (\nu_1, \dots, \nu_r)^\top \in \mathbb{R}^r$,使得 $\mathbb{X}(\widehat{\beta}-\beta^*) = \sum_{j=1}^r \nu_j \phi_j = \Phi \nu$ 。定义 $\widetilde{\varepsilon} = \Phi^\top \varepsilon \in \mathbb{R}^r$,可得

$$\langle \varepsilon, \frac{\mathbb{X}(\widehat{\beta} - \beta^*)}{\|\mathbb{X}(\widehat{\beta} - \beta^*)\|} \rangle = \langle \varepsilon, \frac{\Phi \nu}{\|\Phi \nu\|} \rangle = \frac{\varepsilon^{\top} \Phi \nu}{\|\nu\|} = \langle \Phi^{\top} \varepsilon, \frac{\nu}{\|\nu\|} \rangle \leq \sup_{\|u\| \leq 1} \langle \widetilde{\varepsilon}, u \rangle = \|\widetilde{\varepsilon}\|.$$

其中我们在上述第一个不等号中使用了"sup-out"技巧。将上述不等式与上页的 (1) 结合起来,

$$\mathrm{MSE}(\mathbb{X}\widehat{\beta}^{\mathrm{LS}}) = \frac{1}{n} \|\mathbb{X}(\widehat{\beta} - \beta^*)\|^2 \leq \frac{4}{n} \langle \varepsilon, \frac{\mathbb{X}(\widehat{\beta} - \beta^*)}{\|\mathbb{X}(\widehat{\beta} - \beta^*)\|} \rangle^2 \leq \frac{4 \|\widetilde{\varepsilon}\|^2}{n}.$$

Tianjun Ke (RUC) Lecture 2 RUC 2023 19 / 48

(续)

因此我们可以求出 MSE 的期望的上界

$$\mathbb{E}\left[\mathrm{MSE}\left(\mathbb{X}\widehat{\beta}^{\mathrm{LS}}\right)\right] \leq \frac{4\mathbb{E}\|\widetilde{\varepsilon}\|^2}{n} = \frac{4}{n} \sum_{i=1}^{r} \mathbb{E}\left[\widetilde{\varepsilon}_{i}^{2}\right] \leq \frac{16\sigma^2 r}{n}.$$

其中我们用到了 $\mathbb{E}\left[\widehat{\varepsilon}_{i}^{2}\right]=\mathbb{E}\left(\phi_{i}^{\top}\varepsilon\right)^{2}\leq4\sigma^{2}$ 。这是亚高斯的性质(作业题2)。

Tianjun Ke (RUC)

(续)

为了证明 MSE 的尾部概率不等式,我们需要 ℓ_2 范数的最大不等式。因此,我们需要验证对于任何 $u\in\mathbb{R}^r$, $\langle u,\widetilde{\varepsilon}\rangle$ 是具有参数为 $\sigma^2\|u\|^2$ 的亚高斯分布:

$$\mathbb{E} e^{\lambda \langle u, \tilde{\varepsilon} \rangle} = \mathbb{E} e^{\lambda \langle u, \Phi^{\top} \varepsilon \rangle} = \mathbb{E} e^{\lambda \langle \Phi u, \varepsilon \rangle} \leq e^{\frac{\lambda^2}{2} \|\Phi u\|^2 \sigma^2} = e^{\frac{\lambda^2}{2} \sigma^2 \|u\|^2}.$$

现在我们可以使用极大值不等式了。把结果代入"sup-out"得到的 MSE 上界,以至少 $1-\delta$ 的概率可得

$$\mathrm{MSE}\left(\mathbb{X}\widehat{\beta}^{\mathrm{LS}}\right) \leq \frac{4\|\widetilde{\varepsilon}\|^2}{n} \leq \frac{4}{n}[4\sigma\sqrt{r} + 2\sigma\sqrt{2\log(1/\delta)}]^2 \lesssim \frac{\sigma^2 r}{n} + \frac{\sigma^2}{n}\log\left(\frac{1}{\delta}\right).$$

Table of Contents

- 1 引入
- 2 背景知识
- 3 回归
- 4 Lasso
- 5 核方法与 RKHS

Lasso

仍然考虑带噪声的线性回归

$$Y = \mathbb{X}\beta + \varepsilon$$
.

Lasso(Least Absolute Shrinkage and Selection Operator) 是通过求解

$$\min_{\beta} \frac{1}{2n} \| \mathbf{Y} - \mathbb{X}\beta \|_{2}^{2} + \lambda \| \beta \|_{1}$$

得到的估计。

Tianjun Ke (RUC)

Lecture 2

Lasso

为什么要使用 Lasso?

- 实际使用的角度:限制模型的复杂度,使得模型更加稀疏(即某些 参数为零),从而提高模型的泛化能力和可解释性,解决过拟合问 **题。同时它还可以进行特征选择**
- 统计模型的角度: 稀疏性假设

稀疏性假设

特征维度 d 可能很大,但只有少数特征真正发挥作用。

在线性回归的背景下,这意味着我们假设 β^* 是稀疏的. 即有

$$\|\beta^*\|_0 = s << d.$$

因此,我们希望通过 Lasso 估计来复原真实的稀疏 β^* 。那么自然地,我 们会关注 Lasso 估计的效率,也即 $\|\hat{\beta}^{Lasso} - \beta^*\|$ 的收敛速度。

Tianjun Ke (RUC) Lecture 2 **RUC 2023** 24 / 48 在高维情况下,最小二乘的损失函数 $\mathcal{L}_n(\beta) = \frac{1}{2n} \|Y - \mathbb{X}\beta\|_2^2$ 有一些不妙,因为它不太凸。这是因为 $\nabla^2 \mathcal{L}_n(\widehat{\beta}) = \mathbb{X}^\top \mathbb{X}/n = \widehat{\Sigma}$,当 d >> n 时, $\lambda_{\min}(\widehat{\Sigma}) = 0$,意味着 $\nabla^2 \mathcal{L}_n(\widehat{\beta})$ 只是半正定的,不太行。

图: 左边比较凸,右边不太凸。不太凸的时候就会使 \widehat{eta} 和 eta^* 离得比较远。

所以我们需要一些条件才能够对 Lasso 的收敛速度进行描述。

Tianjun Ke (RUC)

Lecture 2

RUC 2023 25/48

Lasso

RE 条件 (Restricted Eigenvalue condition)

RE condition

定义 $S:=\{j\mid \beta_j^*\neq 0\}$ 为 β^* 的支撑集合。如果在 $\mathbb{C}_{\alpha}(S):=\{\Delta\mid \|\Delta_{S^c}\|_1\leq \alpha\,\|\Delta_S\|_1\}$ 中任取 $\Delta\in\mathbb{C}_{\alpha}(S)$ 都有

$$\frac{1}{n} \| \mathbb{X} \Delta \|_2^2 \ge \kappa \| \Delta \|_2^2,$$

则称 \mathbb{X} 满足 $\mathrm{RE}(\kappa, \alpha)$ 条件。

由于样本协方差 $\widehat{\Sigma} = \mathbb{X}^{\top}\mathbb{X}/n$ 的最小特征值可以用下面的方法表示

$$\lambda_{\min}(\widehat{\Sigma}) = \min_{\Delta} \frac{\Delta^{\top} \widehat{\Sigma} \Delta}{\|\Delta\|_{2}^{2}} = \min_{\Delta} \frac{\Delta^{\top} \mathbb{X}^{\top} \mathbb{X} \Delta}{n \|\Delta\|_{2}^{2}} = \min_{\Delta} \frac{1}{n} \frac{\|\mathbb{X} \Delta\|_{2}^{2}}{\|\Delta\|_{2}^{2}},$$

所以 RE 条件就是限制了它的最小特征值在锥中会大于等于 κ

$$\min_{\Delta \in \mathbb{C}_{\alpha}(S)} \frac{1}{n} \frac{\|\Delta\|_{2}^{2}}{\|\Delta\|_{2}^{2}} \geq \kappa.$$

26 / 48

Tianjun Ke (RUC) Lecture 2 RUC 2

这个锥 $\mathbb{C}_{\alpha}(S)$ 的直观含义是什么呢?实际上就是在 S 能控制 S^{c} 的方向上,最小二乘损失是凸的。

27 / 48

Tianjun Ke (RUC) Lecture 2 RUC 2023

引入了这个条件,我们就不加证明地给出 Lasso 的收敛速度⁴。

Lasso 估计的收敛速度

如果模型满足:

- 噪声 $\varepsilon_1, \ldots, \varepsilon_n$ 是独立的,且对于所有 $i = 1, \ldots, n$, ε_i 是具有参数为 σ^2 的亚高斯随机变量
- 设计矩阵 \mathbb{X} 已归一化,使得设计矩阵的第 j 列 \mathbb{X}_j 的方差满足 $\frac{1}{n} \|\mathbb{X}_j\|_2^2 \le 1$,其中 $1 \le j \le d$
- \mathbb{X} 满足 $\mathrm{RE}(\kappa,3)$, 且我们选择 $\lambda = \sigma \sqrt{\log(2\mathsf{d}/\delta)/(2\mathsf{n})}$

则至少以 $1 - \delta$ 的概率有

$$\|\widehat{\beta} - \beta^*\|_2 \le \frac{3\sigma}{2\kappa} \sqrt{\frac{2s\log(2d/\delta)}{n}}.$$

Tianjun Ke (RUC) Lecture 2 RUC 2023 28 / 48

⁴可以参见这个 note 的 Theorem 15.2 的证明,只使用了 Hölder 不等式: https://www.stat.cmu.edu/~arinaldo/Teaching/36710/F18/Scribed_Lectures/0ct22.pdf. ~

Lasso

这个结果意味着,如果我们的惩罚项系数选为 $\lambda = C\sqrt{\log d/n}$ (C 为某个充分大的常数),则 Lasso 估计器具有如下的收敛速度

$$\|\widehat{\beta} - \beta^*\|_2 = O_P\left(\sqrt{\frac{s\log d}{n}}\right).$$

只要 $s \log d/n = o(1)$,Lasso 估计就是相合的。还可以注意到,如果 s 固定,维数 d 可以以样本大小的指数增长速度增加。

29 / 48

Tianjun Ke (RUC) Lecture 2 RUC 2023

Group Lasso

Lasso 估计器可用于从高维特征中选择变量。有时,这些特征是分组的, 我们想要选择分组中的变量。例如,我们想要预测明天的 COVID 病例 数。预测 Y 的协变量是分组的:

- (1) 与过去病例数量相关的特征组: 今天的病例数、昨天的病例数、过去一个月的病例数等
- (2) 与天气相关的特征组: 温度、降水等
- (3) 与隔离相关的特征组: 在家工作的人数、开放餐馆的数量等
- (4) 与特朗普相关的特征组:特朗普的推文数量、特朗普从 COVID 中康复的天数等

我们可能期望 COVID 病例数与其中某个特征组相关。假设 $\beta\in\mathbb{R}^d$ 有 J 个组。我们将每个组表示为 $S_j\subset 1,\ldots,d,\ j=1,\ldots,J$ 。因此,我们想要选择子向量 $\beta_{S_1},\ldots,\beta_{S_J}$.

Group Lasso

如果 β 是以组为单位稀疏的,那么向量 $\left(\|\beta_{S_1}\|_2,\|\beta_{S_2}\|_2,\dots,\|\beta_{S_J}\|_2\right)^{\top}\in\mathbb{R}^J$ 是稀疏的。因此,可以考虑 Group Lasso 惩罚项

$$\|(\|\beta_{S_1}\|_2, \|\beta_{S_2}\|_2, \dots, \|\beta_{S_J}\|_2)\|_1 = \sum_{j=1}^J \|\beta_{S_j}\|_2.$$

Group Lasso 估计器可以表示如下:

$$\min_{\beta} \| \mathbf{Y} - \sum_{j=1}^{J} \mathbb{X}_{S_{j}} \beta_{S_{j}} \|_{2}^{2} + \lambda \sum_{j=1}^{J} \| \beta_{S_{j}} \|_{2}.$$

Tianjun Ke (RUC)

Group Lasso in spAM

Group Lasso 的一个重要应用场景是在稀疏加和模型(sparse additive model, spAM)⁵:

$$Y_i = \sum_{j=1}^d f_j(X_{ij}) + \varepsilon_i$$
, for $i = 1, \dots, n$,

其中只有 s 个函数 f_j 是非零的。为了估计 f_j ,我们用基函数将函数展开为:

$$f_j(x_j) = \sum_{k=1}^{\infty} \beta_{jk}^* \phi_k(x_j), \text{ for } j = 1, \dots, d.$$

其中 $\{\phi_k\}_{k=1}^{\infty}$ 是我们选择的一种基函数,比如多项式基 $\{x^k\}_{k=1}^{\infty}$,三角基 $\{\sin(kx),\cos(kx)\}_{k=1}^{\infty}$,B 样条(B-splines)等等。

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト . 差 . か Q (C)

RUC 2023

32 / 48

Tianjun Ke (RUC) Lecture 2

⁵https://arxiv.org/pdf/0711.4555.pdf

Group Lasso in spAM

因此,如果我们想要选出正确的 f_j ,就等价于选择组内的基函数的系数 $\beta_{jk_{k=1}}^{*\infty}$,其中 $j=1,\ldots,d$ 。因此,我们就可以使用 Group Lasso 进行估计了。

spAM 的 Group Lasso 估计

$$\min_{\beta_{jk}} \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{j=1}^{d} \sum_{k=1}^{m} \beta_{jk} \phi_k(X_{ij}) \right)^2 + \lambda \sum_{j=1}^{d} \left(\sum_{k=1}^{m} \beta_{jk}^2 \right)^{\frac{1}{2}},$$

其中 m 是我们选择用于近似真实函数的基函数的个数。

33 / 48

Tianjun Ke (RUC) Lecture 2 RUC 2023

Table of Contents

- 1 引入
- 2 背景知识
- 3 回归
- 4 Lasso
- 5 核方法与 RKHS

核方法与 RKHS

在前面的回归中,我们基本上只关注了线性模型: $f(x) = x^{\top}\beta = \langle x, \beta \rangle$ 。 然而它难以对非线性关系进行建模。但是我们可以巧妙地将 $\langle x, \beta \rangle$ 替换为 $\langle \phi(x), \beta \rangle$,其中 $\phi: \mathcal{X} \to \mathbb{R}^d$ 是任意的特征映射,例如:

- 对于 $x \in \mathbb{R}$, $\phi(x) = (1, x, x^2)$
- **对于一个字符**串 x, $\phi(x) = ($ 出现的 a 的次数,...)

因此,我们可以通过控制 $\phi(x)$ 来获得我们所需要的非线性特征。

Tianjun Ke (RUC) Lecture 2 RUC 2023 35 / 48

核方法与 RKHS

然而 $\phi(x)$ 可能有很高的维度(甚至无穷维!),如果我们先把 x 映射到 $\phi(x)$ 再来求解 $f(x) = \langle \phi(x), \beta \rangle$ 会带来非常高的计算开销。但是如果我们可以用一些简单的运算"绕开" ϕ 的话,这个问题就会比较简单。让我们考虑回归的最小二乘损失函数。

$$L(\widehat{\beta}) = \frac{1}{2n} \sum_{i=1}^{n} (Y_i - \langle \widehat{\beta}, \phi(X_i) \rangle)^2.$$

对 $\widehat{\beta}$ 求导,由一阶条件可得

$$\nabla L(\widehat{\beta}) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \langle \widehat{\beta}, \phi(X_i) \rangle) \phi(X_i) = 0.$$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

如果把 $\phi(X_i)$ 视为一组基的话,我们可以把 $\widehat{\beta}$ 分解为

$$\widehat{\beta} = \sum_{j=1}^{N} w_j \phi(X_j) + v,$$

其中 v 垂直于 $\operatorname{span}\{\phi(X_i), j=1,\ldots,N\}$ 。代入上面的式子就有

$$\frac{1}{n}\sum_{i=1}^{n}(Y_i-\langle\sum_{j=1}^{N}w_j\phi(X_j),\phi(X_i)\rangle)\phi(X_i)=0.$$

我们发现,只要计算内积 $\langle \phi(X_i), \phi(X_j) \rangle$ 就可以求解上述问题。那我们只要找到一个对应的函数 k,使得计算 k 相对比较简单,就"绕开"了 ϕ 。即找到下面这样的 k

$$k(X_i, X_j) = \langle \phi(X_j), \phi(X_i) \rangle.$$

这就是核技巧 (kernel trick)。

我们进一步引入核函数的定义:

核函数

函数 $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ 是一个核函数当且仅当对于所有有限的点集 $x_1, \ldots, x_n \in \mathcal{X}$,由 $K_{ij} = k(x_i, x_j)$ 定义的核矩阵 $K \in \mathbb{R}^{n \times n}$ 是半正定的。

在有惩罚项的情况下,一定有 v=0 (由 representer theorem 得到),从而对于新的数据 X,我们有 $\widehat{f}(X)=\sum_{j=1}^N w_j\langle\phi(X_j),\phi(X)\rangle$ 。也就是说,预测函数 $\widehat{f}(X)$ 同样也可以用核函数表示。我们给出一些常见的核函数:

- 线性核: $k(x,x') = \langle x,x' \rangle$
- 多项式核: $k(x,x') = (\langle x,x' \rangle + c)^p$, 其中 c 为某个常数, p 为多项式的指数。
- 高斯/rbf 核: $k(x, x') = \exp\left(\frac{-\|x-x'\|_2^2}{2\sigma^2}\right)$, 最常用的核。

那么很自然的,我们想知道 ϕ , \widehat{f} 以及 k 之间的关系。尤其是对于 \widehat{f} , 能否直接地进行刻画呢?这就需要引入 RKHS(reproducing kernel hilbert space)。

- 映射函数 ϕ : 从一个数据点 $x \in \mathcal{X}$ 映射到一个内积空间 \mathcal{H} 中的无穷维向量。
- 核函数 k: 将一对数据点 $x, x' \in \mathcal{X}$ 映射到 \mathbb{R} 。它刻画了某种内积关系(也即刻画了一对数据点之间的相似性)。
- RKHS \mathcal{H} : 定义了内积 $\|\cdot\|_{\mathcal{H}}$ 的函数 $f:\mathcal{X}\to\mathbb{R}$ 的集合(函数空间)。RKHS 描述了预测函数 \widehat{f} 的性质。

Tianjun Ke (RUC)

我们给出严格的定义:

RKHS

先定义 Hilbert Space: Hilbert Space 是带有内积 $\langle \cdot, \cdot \rangle$: $\mathcal{H} \times \mathcal{H} \to \mathbb{R}$ 的 完备向量空间,其中内积满足:

- 对称性: 〈f,g〉 = 〈g,f〉
- 线性: $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle = \alpha_1 \langle f_1, g \rangle + \alpha_2 \langle f_2, g \rangle$
- 正定性: $\langle f, f \rangle \ge 0$,且只在 f = 0 的时候取等

然后定义 RKHS: 对 $f: \mathcal{X} \to \mathbb{R}$ 定义的 Hilbert Space, RKHS 满足对所有的 $x \in \mathcal{X}$, 评估泛函 (evaluation functional) $L_x := f \mapsto f(x)$ 有界。

例子: 对于 $\mathcal{X} = \mathbb{R}^d$ 以及 $\mathcal{H} = \left\{ f_c : c \in \mathbb{R}^d \right\}$, 其中 $f_c(x) = \langle c, x \rangle$ 是线性 函数, 则 evaluation functional 为 $L_x(f_c) = \langle c, x \rangle$ 。

如何理解这个定义: Hilbert Space 定义了内积,而 RKHS 使得任何在 \mathcal{H} 中的函数 f 在数据点 $x \in \mathcal{X}$ 上有良好的定义,也就是说我们可以算 f(x) 了。

我知道了 RKHS 使得 f(x) 有良好的定义,可是为什么叫RKHS 呢?

再生核

对于包含 $f: \mathcal{X} \to \mathbb{R}$ 的 RKHS \mathcal{H} ,它的再生核 $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ 满足对于所有 $f \in \mathcal{H}$ 以及 $y \in \mathcal{X}$,有 $\langle f, k(\cdot, y) \rangle = f(y)$ 。这里, $k(\cdot, y)$ 是指函数 $x \mapsto k(x, y)$,且它是 \mathcal{H} 中的一个元素。给定 $x \in \mathcal{X}$,可以进一步证明这个 $k(x, \cdot) \in \mathcal{H}$ 是唯一的 (Riez representation theorem)

如何理解 $k(x,\cdot)$?我们可以把它理解为 f 的 "坐标"。 在欧式空间中,坐标是一个这样的东西: 对于某个属于 \mathbb{R}^n 的元素 (x_1,\cdots,x_n) ,我们可以用 x_i 表示它第 i 维的坐标。也就是说坐标函数 $\pi_i:\mathbb{R}^n\to\mathbb{R}$ 把 (x_1,\cdots,x_n) 送去了 x_i ,而且它是连续的。那么对于 RKHS 来说,根据定义我们知道 $L_x(f)=f(x)=\langle f,k(\cdot,x)\rangle$,其中 L_x 是我们所说的 evaluation functional。因此,我们也有这样的坐标函数 $L_x:\mathcal{H}\to\mathbb{R}$ 把 f 送去了 f(x),而且它也是连续的 6 。

Tianjun Ke (RUC) Lecture 2 RUC 2023 41/48

⁶线性泛函有界和连续等价,而根据定义,L_x 在 RKHS 上有界 → ⟨臺 → ⟨臺 → │ ≥ → へへへ

坐标真的很炫酷!正如 \mathbb{R}^n 中我们可以用坐标表示所有元素,在 RKHS 中我们也可以用坐标表示所有元素 7 (更严格地说,借助核函数 k 指定的坐标来构建 RKHS)。

任取 $n \in \mathbb{N}$,我们可以用 $f := \sum_{i=1}^{n} \alpha_{i} k(x_{i}, \cdot)$ 定义 RKHS 的元素(坐标的有限线性组合, $\alpha_{i} \in \mathbb{R}$),并定义内积: $\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha'_{j} k(x_{i}, x_{j})$ 。 完备化后即可得到一个 k 对应的 RKHS⁸。

Tianjun Ke (RUC) Lecture 2 RUC 2023 42 / 48

⁷关于坐标系统的讨论,见https://arxiv.org/pdf/1408.0952.pdf的 1.3

⁸Moore-Aronszajn theorem, 见

https://web.stanford.edu/class/cs229t/notes.pdf的 Theorem 22 或者https://en.wikipedia.org/wiki/Reproducing kernel_Hilbert_space。

现在我们能够描述它们之间的关系了!

- ϕ 确定 k: 给定 $\phi: \mathcal{X} \to \mathcal{H}$, $k(x,x') := \langle \phi(x), \phi(x') \rangle$ 是核函数
- k 确定 ϕ : 给定 k, 存在一个 Hilbert Space \mathcal{H} 和映射函数 $\phi: \mathcal{X} \to \mathcal{H}$ 使得 $k(x,x') = \langle \phi(x), \phi(x') \rangle$
- RKHS 确定 k: 每个 RKHS 升 都有唯一一个再生核 k: X × X → ℝ
- k 确定 RKHS: 对所有的核函数 k, 都存在唯一一个再生核为 k 的 RKHS 升
- RKHS 确定预测函数 f: representer theorem!

Representer theorem

令 $\mathcal H$ 为核函数 k 对应的 RKHS, $\|f\|_{\mathcal H}$ 表示空间 $\mathcal H$ 中的函数 f 的范数。 \forall 单调递增函数 $\Omega:[0,\infty]\to\mathbb R$ 和 \forall 非负损失函数 $\ell:\mathbb R^n\to[0,\infty]$ 优化问题

$$\min_{f \in \mathcal{H}} L(f) = \Omega\left(\|f\|_{\mathcal{H}}\right) + \ell\left(f(x_1), \dots, f(x_n)\right)$$

的解总可以写成

$$f^*(x) = \sum_{i=1}^n \alpha_i k(x, x_i)$$

一方面,当我们给定了一个核 k 之后,预测函数 \hat{f} 一定会在 k 对应的 RKHS 里,从而 RKHS 描述了 \hat{f} 的所有性质。另一方面,representer theorem 给出了现实中求解 kernel 相关优化问题的方法,见下一个例子。

Tianjun Ke (RUC) Lecture 2 RUC 2023 44 / 48

例子:

核岭回归 (kernel ridge regression):

$$\min_{f \in \mathcal{H}} \sum_{i=1}^{n} \frac{1}{2} \left(f(x_i) - y_i \right)^2 + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2$$

用 representer theorem, 我们等价于解决以下的问题:

$$\min_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \frac{1}{2} \left(\sum_{j=1}^n \alpha_j k(x_i, x_j) - y_i \right)^2 + \frac{\lambda}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_i, x_j).$$

定义 $K \in \mathbb{R}^{n \times n}$ 为核矩阵, $Y \in \mathbb{R}^n$ 为向量形式的响应变量,则有

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \| \mathbf{K} \alpha - \mathbf{Y} \|_2^2 + \frac{\lambda}{2} \alpha^\top \mathbf{K} \alpha.$$

使用优化的一阶条件 (对 α 求导置 0):

$$K(K\alpha - Y) + \lambda K\alpha = 0.$$

得到解为

$$\alpha = (K + \lambda I)^{-1} Y.$$

对于一个新的输入 x,怎么获得 $\hat{f}(x)$ 呢 ? (作业题 3)

总结

我们最后通过一些问题回顾本节课的内容

- 统计学习如何描述一个模型的性质?
- 统计角度下,为什么我们热爱 Lasso?
- 什么时候可以用 Group Lasso?
- 为什么引入核方法?
- 我们已经有 kernel 了, RKHS 有什么用?
- 用 kernel 有什么缺陷呢?
- kernel 如何在深度学习中登场? (Neural tangent kernel, Deep kernel learning, etc.)

作业

- 1. 对于一个服从参数为 σ^2 的亚高斯分布的随机变量,证明任取 t>0,都有 $\mathbb{P}(X>t) \leq \exp\left(-\frac{t^2}{2\sigma^2}\right)^9$ 。
- 2. 证明 P20 的 $\mathbb{E}\left[\widetilde{\varepsilon}_{i}^{2}\right] = \mathbb{E}\left(\phi_{i}^{\top}\varepsilon\right)^{2} \leq 4\sigma^{2}$ 10。
- 3. 写出 P46 的 $\widehat{f}(x)$ 的具体形式。
- 4. 利用 representer theorem 和 RKHS 的性质,解释为什么 P46 中 $\|f\|_{\mathcal{H}} = \alpha^{\top} K \alpha$ 。进一步的,定义 n-norm 为 $\|f\|_n^2 = \frac{1}{n} \sum_{i=1}^n f(x_i)$,给出它的矩阵形式。

 10 Hint: 利用 $\mathbb{E}\left[|X|^k\right] = \int_0^\infty \mathbb{P}\left(|X|^k > t\right) \mathrm{d}t$

Tianjun Ke (RUC) Lecture 2 RUC 2023 48/48

⁹Hint: Chernoff bound $\mathbb{P}(X > t) \leq \mathbb{P}\left(e^{sX} > e^{st}\right) + \text{Markov's inequality}$