Exercice 01

Solution:

La résultante de deux forces $\vec{F_1}$ et $\vec{F_2}$ est égale à 50 N et fait un angle de 30° avec la force $\vec{F_1} = 15N$. Trouver le module de la force $\vec{F_2}$ et l'angle entre les deux forces.

 $R = 50 \, N$; $V_1 = 15 \, N$; $\alpha = 30^{\circ}$, n ous avons : $\overrightarrow{R} = \overrightarrow{F_1} + \overrightarrow{F_2}$ Dans le triangle rectangle: ACD rectangle en D, nous avons : $\overrightarrow{R} = \overrightarrow{F_1} + \overrightarrow{F_2}$ $AC^2 = AD^2 + DC^2$ $AD = AB + BD = F_1 + F_2 \cos\theta$ $DC = F_2 \sin\theta$

On obtient alors: $R^2 = (F_1 + F_2 \cos \theta)^2 + (F_2 \sin \theta)^2 = F_1^2 + F_2^2 + 2F_1F_2 \cos \theta$ $R^2 = F_1^2 + F_2^2 + 2F_1F_2 \cos \theta$ (1)

Nous avons aussi : $\sin \alpha = \frac{CD}{R} \implies CD = R \sin \alpha \\
\sin \theta = \frac{CD}{F_2} \implies CD = F_2 \sin \theta$ $\Rightarrow R \sin \alpha = F_2 \sin \theta$ (2)

et
$$\cos \alpha = \frac{AD}{R} = \frac{F_1 + F_2 \cos \theta}{R} \Rightarrow \cos \theta = \frac{R \cos \alpha - F_1}{F_2}$$
 (3)

en remplaçant l'expression (3) dans (1), on aboutit à :

$$R^{2} = F_{1}^{2} + F_{2}^{2} + 2F_{1}F_{2}\left(\frac{R\cos\alpha - F_{1}}{F_{2}}\right) = F_{1}^{2} + F_{2}^{2} + 2F_{1}(R\cos\alpha - F_{1})$$

d'où:
$$F_2 = \sqrt{R^2 - F_1^2 - 2F_1(R\cos\alpha - F_1)}$$

$$F_2 = \sqrt{50^2 - 15^2 - 2x15(50\cos 30^\circ - 15)} = 44,44N$$

L'expression (3) nous donne :
$$\cos \theta = \frac{50 \cos 30 - 15}{50} = 0,566 \implies \theta = 55,528^{\circ}$$

Exercice 02

La ligne d'action d'une force \vec{F} de 800 N, passe par les points $A \begin{cases} 1,22 \\ 0 \end{cases}$ et $B \begin{cases} 0 \\ 1,22 \\ 0,61 \end{cases}$

dans un repère orthonormé. Déterminer les composantes de cette force

Solution:

Nous avons : $\overrightarrow{AB} = AB \overrightarrow{u}_{AB} \implies \overrightarrow{u}_{AB} = \frac{\overrightarrow{AB}}{AB}$ vecteur unitaire porté par la ligne d'action.

$$\vec{u}_{AB} = \frac{\vec{AB}}{AB} = \frac{-1,22\vec{i}+1,22\vec{j}-2,13\vec{k}}{\sqrt{(-1,22)^2+(1,22)^2+(-2,13)^2}} = \frac{-1,22\vec{i}+1,22\vec{j}-2,13\vec{k}}{2,74}$$

$$\vec{u}_{AB} = -0.445 \vec{i} + 0.445 \vec{j} - 0.777 \vec{k}$$

La force \overrightarrow{F} s'écrira :

$$\vec{F} = F \vec{u}_{AB} = 800(-0.445 \vec{i} + 0.445 \vec{j} - 0.777 \vec{k}) = -356 \vec{i} + 356 \vec{j} - 621.6 \vec{k})$$

Les composantes de la force sont ainsi connues suivant les trois axes du repère.

Exercice 03

Soient deux forces \vec{F}_1 et \vec{F}_2 faisant chacune respectivement un angle de 25° et 35° avec la résultante \vec{R} qui a une valeur de 400 N. Déterminer les modules des deux forces.

Solution:

Utilisons la règle des sinus :

$$\frac{BC}{\sin 25^{\circ}} = \frac{AB}{\sin 35^{\circ}} = \frac{AC}{\sin \alpha}$$
$$\alpha = 180^{\circ} - (25^{\circ} + 35^{\circ}) = 120^{\circ}$$

or nous avons: $AB = F_1$, $BC = F_2$ et AC = R

Exercice 04:

La vis de la figure ci-contre est soumise à deux forces $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$. Déterminer la résultante $\overrightarrow{F_R}$ de $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$.

Solution:

Figure . Vis soumise à deux forces $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$.

On peut déterminer facilement le vecteur $\overrightarrow{F_R}$ qui résulte de l'addition des deux vecteurs $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ en se utilisant le parallelogramme ou le triangle de construction montrés sur la figure ... Ainsi, le module de ce vecteur est :

$$\|\overrightarrow{F_R}\| = \sqrt{100^2 + 150^2 - 2 \times 100 \times 150 \times \cos 115^{\circ}} = 212.6N$$

on peut identifier également identifier l'angle d'orientation en utilisant la loi des sinus dans un triangle.

$$\frac{150}{\sin\theta} = \frac{212.6}{\sin(115^\circ)} \,\mathrm{d'où} \, \sin\theta = \frac{150}{212.6} \sin(115^\circ) \, \, \mathrm{donc} \, \, \theta = 39.8^\circ$$

La force $\overrightarrow{F_{\rm R}}$ fait un angle φ =39.8+15=54.8°

En utilisant les coordonnées cartésiennes des forces $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$, on a :

$$\overrightarrow{F_1} = 100cos15^{\circ} \overrightarrow{u}_x + 100sin15^{\circ} \overrightarrow{u}_y = 96.6 \overrightarrow{u}_x + 25.9 \overrightarrow{u}_y$$

$$\overrightarrow{F_2} = 150 cos 80^{\circ} \overrightarrow{u}_x + 150 \sin 80^{\circ} \overrightarrow{u}_y = 26.0 \overrightarrow{u}_x + 147.7 \overrightarrow{u}_y$$

$$\overrightarrow{F_{\mathrm{R}}} = 122.55 \overrightarrow{u}_x + 173.7 \overrightarrow{u}_y$$

Exercice 05:

Un étagère est fixé au mur par des câbles comme indiqué sur la figure. Si les câbles exercent les forces $\overrightarrow{F_{AB}}$ et $\overrightarrow{F_{AC}}$, avec $\|\overrightarrow{F_{AB}}\| = 100N$ et $\|\overrightarrow{F_{AC}}\| = 120N$, sur les anneaux de fixation, déterminer la force résultante agissant au point A. Exprimer le résultat en utilisant les coordonnées cartésiennes.

Figure . Etagère fixé au mur par des câbles

Solution:

La force résultante \vec{F}_R est montrée sur la figure ... on peut exprimer cette force en coordonnées cartésiennes en formulant d'abord les vecteurs $\overrightarrow{F_{AB}}$ et $\overrightarrow{F_{AC}}$ comme vecteurs cartésiens qui seront par la suite additionnés, composante par composante, pour obtenir \vec{F}_R . Les directions de ces forces dans l'espace sont spécifiées à travers les vecteurs unitaires \vec{u}_{AB} et \vec{u}_{AC} définis le long des câbles en se basant sur les vecteurs positions \vec{r}_{AB} et \vec{r}_{AC} .

Figure . Résultante des forces appliquées le long des câbles.

A partir de la figure, on en déduit que pour le câble AB

$$\vec{u}_{AB} = 4\vec{\iota} - 4\vec{k} \text{ avec } ||\vec{u}_{AB}|| = \sqrt{4^2 + (-4)^2} = 5.66m$$
Alors:
$$\vec{F}_{AB} = ||\vec{F}_{AB}|| \cdot \frac{\vec{u}_{AB}}{||\vec{u}_{AB}||} = 100 \cdot \left(\frac{4}{5.66}\vec{\iota} - \frac{4}{5.66}\vec{k}\right)$$
D'où: $\vec{F}_{AB} = 70.7\vec{\iota} - 70.7\vec{k}$ N

De même pour le câble AC :

$$\vec{u}_{AC} = 4\vec{\iota} + 2\vec{j} - 4\vec{k}$$
 avec $\|\vec{u}_{AB}\| = \sqrt{4^2 + 2^2 + (-4)^2} = 6m$

Alors:

$$\vec{F}_{AC} = \|\vec{F}_{AC}\| \cdot \frac{\vec{u}_{AC}}{\|\vec{u}_{AC}\|} = 120 \cdot \left(\frac{4}{6}\vec{i} + \frac{2}{6}\vec{j} - \frac{4}{6}\vec{k}\right)$$

D'où: $\vec{F}_{AC} = 80\vec{i} + 40\vec{j} - 80\vec{k}$ N

La force résultante est donc :

$$\vec{F}_R = \vec{F}_{AC} + \vec{F}_{AB} = (70.7\vec{\iota} - 70.7\vec{k}) + (80\vec{\iota} + 40\vec{\jmath} - 80\vec{k}) = 150.7\vec{\iota} + 40\vec{\jmath} - 150.7\vec{k}$$

Exercice 06:

Dans le repère (O, \vec{u}_x , \vec{u}_y , \vec{u}_z), modéliser l'action mécanique due à la pression hydrostatique de l'eau sur la paroi verticale du barrage de la figure ; sachant que chaque élément de surface ds situé autour d'un point M_i de la paroi verticale subit un effort élémentaire $d\vec{f}_i = p_{M_i} \cdot ds$. (Modèle élémentaire). Selon les lois de l'hydrostatique on a $p_{M_i} = \rho g(h - y)$, avec ρ la masse volumique de l'eau et g l'accélération de la pesanteur.

Figure. Pression de l'eau sur la paroi verticale d'un barrage

Solution:

Chaque élément de surface ds situé autour d'un point M_i de la paroi verticale subit un effort élémentaire $d\vec{f_i} = p_{M_i} \cdot ds \cdot \vec{u}_x$ (Modèle élémentaire). Selon les lois de l'hydrostatique on a $p_{M_i} = \rho g(h - y)$, avec ρ la masse volumique de l'eau et g l'accélération de la pesanteur.

Les coordonnées cartésiennes du point M_i de la paroi sont (0, y, z), avec $y \in [0, h]$ et $z \in [-L/2, L/2]$. L'élément de surface est ds = dy. dz.

L'intégration des actions élémentaires de l'eau sur la paroi nous donne la résultante $\vec{R}_{eau/paroi}$:

$$\vec{R}_{eau/paroi} = \iint_{paroi} d\vec{f}_{i} = \iint_{paroi} p_{M_{i}} . ds. \vec{u}_{x} = \int_{0}^{h} \int_{-L/2}^{L/2} \rho g(h - y) . dy. dz. \vec{u}_{x} = \rho g \int_{0}^{h} (h - y) . dy \int_{-L/2}^{L/2} dz. \vec{u}_{x}$$

$$= \rho g L \frac{h^{2}}{2} \vec{u}_{x}$$

Déterminons le moment de ces actions élémentaires au niveau d'un point Q de la verticale $(\overrightarrow{OQ} = Y\overrightarrow{u}_y)$.

$$\begin{split} \overrightarrow{\boldsymbol{M}}_{Q} &= \iint_{paroi} \overrightarrow{Q} \overrightarrow{\boldsymbol{M}_{l}} \times d \overrightarrow{f_{l}} = \iint_{paroi} \left((y - Y) \ \overrightarrow{\boldsymbol{u}}_{y} + z \ \overrightarrow{\boldsymbol{u}}_{z} \right) \times \rho g(h - y). \, dy. \, dz. \overrightarrow{\boldsymbol{u}}_{x} \\ &= \iint_{paroi} \left(-(y - Y). \, \rho g(h - y). \, dy. \, dz \ \overrightarrow{\boldsymbol{u}}_{z} + z \rho g(h - y). \, dy. \, dz \ \overrightarrow{\boldsymbol{u}}_{y} \right) \\ &= \rho g \int\limits_{0}^{h} (h - y). \, dy. \int\limits_{-L/2}^{L/2} z dz. \, \overrightarrow{\boldsymbol{u}}_{y} - \rho g \int\limits_{0}^{h} (y - Y)(h - y). \, dy. \int\limits_{-L/2}^{L/2} dz. \, \overrightarrow{\boldsymbol{u}}_{z} \\ &= -\rho g L \left[\frac{h^{3}}{6} - \frac{Yh^{2}}{2} \right] \overrightarrow{\boldsymbol{u}}_{z} \end{split}$$

Ainsi, on peut dire que l'ensemble des actions mécaniques de pression hydrostatique exercées par l'eau sur la paroi verticale du barrage peut être modélisé en tout point Q par le torseur suivant :

$$\vec{\tau}_{eau/paroi} = \left\{ \rho g L \frac{h^2}{2} \vec{u}_x - \rho g L \left[\frac{h^3}{6} - \frac{Y h^2}{2} \right] \vec{u}_z \right\}_Q$$

Ce torseur se réduit à un glisseur (moment nul), au niveau du point Q de coordonnées (Y=h/3, z=0).