

热插拔双通道 I²C隔离器

ADuM1250/ADuM1251

产品特性

双向 I²C通信

开漏接口

适合热插拔应用

30 mA 吸电流能力

工作频率: 1,000 kHz

电源电压 /逻辑电平: 3.0 V 至 5.5 V 8引脚 SOIC封装,符合 RoHS标准 工作温度最高可达: 125°C

通过汽车应用认证

安全和法规认证

UL 认证

1 分钟 2,500 Vrms ,符合 UL 1577

CSA 元件验收通知 #5A

VDE 合格证书

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

IORM = 560 V 峰值

应用

I²C、SMBus或PMBus接口隔离

多级 I²C接口

电源

网络

以太网供电

混合动力汽车电池管理

概述

ADuM1250/ADuM1251 ¹均为热插拔数字隔离器,内置非闩 锁双向通信通道,且与 l^2C ?接口兼容。这样就不需要将 l^2C 信号分成单独的发送信号与接收信号,供独立光耦合器使用。

ADuM1250 提供两个双向通道,支持完全隔离的 I²C接口。 ADuM1251 提供一个双向通道和一个单向通道,适合不需 要双向时钟的应用。

功能框图

ADuM1250 和 ADuM1251 均内置热插拔电路,可防止将无 源卡插入有源总线时产生干扰数据。

这些隔离器都采用 ADI 公司的 iCoupler?芯片级变压器技 术。 i Coupler 是磁隔离技术,其功能、性能、尺寸和功耗 ADuM1250/ADuM1251 将i Coupler 通道 均优于光耦器件。 与半导体电路集成,在小型封装中实现完全隔离的 I²C接口

¹受美国专利 5.952.849号、 6.873.065号和 7.075.329号保护。

Rev. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com

Fax: 781.461.3113 ?2006 – 2011 Analog Devices, Inc. All rights reserved.

目录	
产品特性	1
应用	1
功能框图	1
概述	1
修订历史	2
技术规格	3
电气特性	3
封装特性	5
法规信息	5
隔离和安全相关特性	5
DIN V VDE V 0884-10 (VDE V 0884-10)	
隔离特性	6
建议工作条件	6
修订历史	
2011年7月—修订版 C至修订版 D	
更改'典型应用图'部分	11
2010年5月—修订版 B至修订版 C	
更改'产品特性'部分和'应用'部分	1.
将V _{DD1} = 5 V且V _{DD2} = 5 V更改为 V _{DD1} = 3.3 V或5 V且V _{DD2} = 3.	
或5 V	3
将V _{DD1} = 5 V且V _{DD2} = 5 V更改为V _{DD1} = 3.3 V或5 V且V _{DD2} = 3	3.3 V

绝对最大额定值	7
ESD 警告	
引脚配置和功能描述	
测试条件	9
应用信息	10
功能描述	10
启动	10
典型应用图	1.1
磁场抗扰度	11
外形尺寸	12
订购指南	12
汽车应用奶 产品	12

修订历史
2011年7月—修订版 C至修订版 D
更改 "典型应用图 "部分11
2010年5月—修订版 B至修订版 C
更改 "产品特性"部分和 "应用"部分1.
将V _{DD1} = 5 V且V _{DD2} = 5 V更改为 V _{DD1} = 3.3 V或5 V且V _{DD2} = 3.3 V
或5 V
将V _{DD1} = 5 V且V _{DD2} = 5 V更改为V _{DD1} = 3.3 V或5 V且V _{DD2} = 3.3 V
或5 V44
更改 '典型应用图 '部分和图 911.
更改 "订购指南 "12
增加 "汽车应用级产品 "部分
2009年12月—修订版 A至修订版 B
更改 "产品特性"部分1
更改表 7中的工作温度 (T _A)参数6.
更改表 8中的工作环境温度(T _A)参数
更改 "订购指南 "

2007年6月—修订版 0至修订版 A	
全面更新 VDE 认证	1
更改 '产品特性 '和注释 1	1
更改表 4和表 5	5
更改表 6	6
更新 '外形尺寸 "	12
更改 '订购指南 "	12

2006年10月—修订版 0:初始版

技术规格

电气特性

直流规格 1

除非另有说明,所有最小值 /最大值规格适用于整个推荐的工作范围。除非另有说明,所有的典型值规格在 $T_A = 25$ 、。 C $V_{DD1} = 3.3 \text{ V或 } 5 \text{ V且 } V_{DD2} = 3.3 \text{ V或 } 5 \text{ V条件下测得}$ 。

表1.

参数	符号	最小值	典型值	最大值	单位	测试条件
ADuM1250						
第1侧输入电源电流 (5 V)	I _{DD1}		2.8	5.0	mA	$V_{DD1} = 5 V$
第2侧输入电源电流 (5 V)	I _{DD2}		2.7	5.0	mA	$V_{DD2} = 5 V$
第1侧输入电源电流 (3.3 V)	I _{DD1}		1.9	3.0	mA	V _{DD1} = 3.3 V
第2侧输入电源电流 (3.3 V)	I _{DD2}		1.7	3.0	mA	V _{DD2} = 3.3 V
ADuM1251						
第1侧输入电源电流 (5 V)	I _{DD1}		2.8	6.0	mA	$V_{DD1} = 5 V$
第2侧输入电源电流 (5 V)	I _{DD2}		2.5	4.7	mA	$V_{DD2} = 5 V$
第1侧输入电源电流 (3.3 V)	I _{DD1}		1.8	3.0	mA	$V_{DD1} = 3.3 \text{ V}$
第2侧输入电源电流 (3.3 V)	I _{DD2}		1.6	2.8	mA	$V_{DD2} = 3.3 \text{ V}$
漏电流	I _{SDA1} I _{SDA2}		0.01	10	μΑ	$V_{SDA1} = V_{DD1}$ $V_{SDA2} = V_{DD2}$
	I _{SCL1} I _{SCL2}					$V_{SCL1} = V_{DD1}$ $V_{SCL2} = V_{DD2}$
第1侧逻辑电平						
逻辑输入阈值 2	V _{SDA1T} V _{SCL1_T}	500		700	mV	
逻辑低电平输出电压	V _{SDA1OL} , V _{SCL1OL}	600		900	mV	$I_{SDA1} = I_{SCL1} = 3.0 \text{ mA}$
		600		850	mV	$I_{SDA1} = I_{SCL1} = 0.5 \text{ mA}$
输入/输出逻辑低电平差值 3	?V _{SDA1} ∆V _{SCL1}	50			mV	
第2侧逻辑电平	,					
逻辑低电平输入电压	V _{SDA2IL} V _{SCL2IL}			$0.3 V_{DD2}$	V	
逻辑高电平输入电压	V _{SDA2IH} V _{SCL2IH}	0.7 V ^{DD2}			V	
逻辑低电平输出电压	V _{SDA2OL} V _{SCL2OL}			400	mV	$I_{SDA2} = I_{SCL2} = 30 \text{ mA}$

¹所有电压均参照各自的地。

 $^{^2}$ $V_{_{IL}}$ < 0.5 $V \perp V_{_{IH}}$ > 0.7 $V_{_{\circ}}$

 $^{^3}$ $V_{S1}=V_{S1OL}-V_{S1OL}$ 这是特定器件内输出逻辑低电平和输入逻辑阈值之间的最小差值,可确保器件不会造成其所连接的总线出现闩锁。

交流规格 1

除非另有说明,所有最小值 /最大值规格适用于整个推荐的工作范围。除非另有说明,所有的典型值规格在 $T_A = 25$ 、。 C $V_{DD1} = 3.3 \ V \to V_{DD2} = 3.3 \ V \to V_{DD2} = 3.3 \ V \to V_{DD3} = 3.3 \ V$

表2.

	符号	最小值	典型值	最大值	单位	测试条件
最高频率		1000			kHz	
输出下降时间						
5 V电源						4.5 V $_{DD1}$ V V_{DD2} 5.5, VC $_{L1}$ = 40 pF , R1 = 1.6 k , C $_{L2}$ = 400 pF , R2 = 180
第1侧输出 (0.9 V _{DD1} 至0.9 V)	t _{f1}	13	26	120	ns	$KT = 1.0 K$, $O_{L2} = 400 \text{ pr}$, $KZ = 100$
第2侧输出 (0.9 V _{DD2} 至0.1 V _{DD2})	t _{f2}	32	52	120	ns	
3 V电源	1.2					3.0 V $_{DD1}$ V V_{DD2} 3.6 V C_{L1} = 40 pF ,
						R1 = 1.0 k , C_{L2} = 400 pF , R2 = 120
第1侧输出 (0.9 V _{DD1} 至0.9 V)	t _{f1}	13	32	120	ns	, siz
第2侧输出 (0.9 V _{DD2} 至0.1 V _{DD2})	t f2	32	61	120	ns	
传播延迟						
5 V电源						4.5 $_{DD1}V$, V_{DD2} 5.5, V $C_{L1} = C_{L2} = 0 pF$,
						R1 = 1.6 k , R2 = 180
第1侧至第 2侧上升沿 ²	t _{PLH12}		95	130	ns	
第1侧至第 2侧下降沿 ³	t PHL12		162	275	ns	
第2侧至第 1侧上升沿 ⁴	t _{PLH21}		31	70	ns	
第2侧至第 1侧下降沿 ⁵	t _{PHL21}		85	155	ns	
3 V电源						3.0 V $_{DD1} \text{ V} \text{ V}_{DD2}$ $3.6 \text{ ,VC}_{L1} = \text{C}_{L2} = 0 \text{ pF}$, $R1 = 1.0 \text{ k}$, $R2 = 120$
第1侧至第 2侧上升沿 2	t _{PLH12}		82	125	ns	K1 = 1.6 K , K2 = 126
第1侧至第 2侧下降沿 ³	t _{PHL12}		196	340	ns	
第2侧至第 1侧上升沿 ⁴	t PLH21		32	75	ns	
第2侧至第 1侧下降沿 ⁵	t _{PHL21}		110	210	ns	
脉冲宽度失真						
5 V电源						4.5 V $_{DD1}$ V V_{DD2} 5.5 $VC_{L1} = C_{L2} = 0 \text{ pF}$,
						R1 = 1.6 k? , R2 = 180 ?
第1侧至第 2侧 t _{plH12} - t _{pHL12}	PWD ₁₂		67	145	ns	
第2侧至第 1侧 t _{PLH21} - t _{PHL21}	PWD ₂₁		54	85	ns	
3 V电源						3.0 V $_{DD1} \text{ V} \text{ V}_{DD2}$ $3.6 \text{ ,V C}_{L1} = \text{C}_{L2} = 0 \text{ pF}$, $R1 = 1.0 \text{ k}$? , $R2 = 120$?
第1侧至第 2侧 t _{PLH12} - t _{PHL12}	PWD ₁₂		114	215	ns	1 1.0 K. / 1.2 = 1.20 .
第2侧至第 1侧 t _{PLH21} - t _{PHL21}	PWD ₂₁		77	135	ns	
	CM _H , CM _L	25	35		kV/ μ	s

¹所有电压均参照各自的地。

 $^{^2}$ $t_{_{PLH12}}$ 传播延迟根据第 1侧输入逻辑阈值到 $0.7~V_{_{DD2}}$ 输出值测得。

³ t_{PHL12}传播延迟根据第 1侧输入逻辑阈值到 0.4 V输出值测得。

 $^{^{4}}t_{PLH21}$ 传播延迟根据第 2侧输入逻辑阈值到 $0.7~V_{DD1}$ 输出值测得。

⁵ t_{PHL21}传播延迟根据第 2侧输入逻辑阈值到 0.9 V输出值测得。

 $^{^6}$ CM_H是在维持 $V_o > 0.8$ V_{DD2}时能保持的最大共模电压压摆率。 CM_L是在维持 $V_o < 0.8$ V时能保持的最大共模电压压摆率。共模电压压摆率适用于共模电压的上升沿和下降沿。瞬变幅度是共模压摆的范围。

封装特性

表3.

参数	符号	最小值 典型值	最大值	单位	测试条件
电阻 (输入至输出)	R₀	10 ¹²		?	
电容 (输入至输出)1	C _{I-O}	1.0		pF	f = 1 MHz
输入电容	G	4.0		pF	
IC结至外壳热阻,第 1侧	JCI	46		° C/W	/ 热电偶位于封装底部正中间
IC结至外壳热阻,第 2侧	JCO	41		° C/W	/

¹假设器件为双端器件;引脚 1至引脚4短接,引脚5至引脚8短接。

法规信息

ADuM1250/ADuM1251 已获得表 4所列机构的认证。

表4.

UL	CSA	VDE
1577器件认可程序 认可 ¹	CSA元件验收通知 #5A批准	DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 认证 ²
单一/基本 2500 V rms隔离电压	加强绝缘符合 CSA 60950-1-03和 IEC 60950-1标准, 125 V rms(177 V峰值) 最大工作电压 基本绝缘符合 CSA 60950-1-03和 IEC 60950-1标准, 400 V rms(566 V峰值) 最大工作电压	加强绝缘, 560 V峰值
文件 E214100	文件 205078	文件 2471900-4880-0001

 $^{^1}$ 依据UL 1577,每个 ADuM125x 器件都经过 1秒钟绝缘测试电压 3,000 V rm的验证测试 (漏电流检测限值为 5 μ)。

隔离和安全相关特性

表5.

参数	符号	值	单位	条件
额定电介质隔离电压		2500	V rms	持续 1分钟
最小外部气隙 (间隙)	L(I01)	4.90 min	mm	测量输入端至输出端 ,
				空气最短距离
最小外部爬电距离	L(I02)	4.01 min	mm	测量输入端至输出端 ,
				沿壳体最短距离
最小内部间隙		0.017 min	mm	隔离距离
漏电阴抗 (相对漏电指数)	СТІ	>175	V	DIN IEC 112/VDE 0303第1部分
隔离组		Illa		材料组 (DIN VDE 0110,1/89,表 1)
最大工作电压下具有 50年使用寿命	V _{IORM}	565	V _{峰值}	隔离栅两端持续的峰值电压

²依据 DIN V VDE V 0884-10, 每个 ADuM125x 器件都经过 1秒钟绝缘测试电压 1050 V峰值的验证测试 (局部放电检测限值为 5 pC)。 器件标识中的 *表示通过 DIN V VDE V 0884-10从证。

DIN V VDE V 0884-10 (VDE V 0884-10) 隔离特性

此隔离器适合安全限制数据范围内的增强隔离。通过保护电路保持安全数据。封装上的星号工作电压的 DIN V VDE V 0884-10 认证。

(*)标志表示通过 560 V峰值

表6.

描述	条件	符号	特性	単位
DIN VDE 0110裝置分类				
额定电源电压 150 V rms			I 至IV	
额定电源电压 300 V rms			│ I至 III	
额定电源电压 400 V rms			Ⅰ至Ⅱ	
环境分类			40/105/21	
污染度 (DIN VDE 0110 , 表 1)			2	
最大工作绝缘电压		V_{IORM}	560	V _{峰值}
输入至输出测试电压,方法 B1	V _{IORM} × 1.875 = ¼ , 100%生产测试, t _m = 1秒 , 局部放电 < 5 pC	V_{PR}	1050	$V_{\!\scriptscriptstyle{ ext{$f f eta}}}$
输入至输出测试电压,方法 A	V _{IORM} × 1.6 = ¼ , t _m = 60 秒 , 局部放电 < 5 pC	V_{PR}		
跟随环境测试,子类 1			896	│ V _{峰值}
跟随输入和/或安全测试,子类 2和	V _{IORM} × 1.2 = ¼ , t _m = 60 秒 , 局部放电 < 5 pC		672	│ V _{峰值}
子类 3				
最高允许过压	│ 瞬变过压 , t _{TR} = 10秒	V_{TR}	4000	V _{峰值}
安全限值	出现故障时允许的最大值			
	(见图 3)			
売温		T _S	150	° C
V _{DD1} + V _{DD2} 电流		I _{TMAX}	212	mA
在T _s 的绝缘电阻	$V_{10} = 500 \text{ V}$	R⁵	>10 ⁹	?

图3. 热减额曲线,依据 DIN V VDE V 0884-1鋏得的 安全限值与壳温的关系

建议工作条件

表7.

187.	
参数	额定值
工作温度 (T _A)	
A 级	-40 ° 蚕 +105 ° C
S级	-40 ° 蚕 +125 ° C
电源电压(V _{DD1} 、V _{DD2}) ¹	3.0 V至 5.5 V
输入/输出信号电压	5.5 V
(V _{SDA1,} V _{SCL1,} V _{SDA2,} V _{SCL2}) 容性负载	
第 1侧 (C _{L1})	40 pF
第2侧 (C₂)	400 pF
静态输出负载	
第 1侧 (I _{SDA1,} I _{SCL1})	0.5 mA 至3 mA
第 2侧 (I _{SDA2,} I _{SCL2})	0.5 mA 至 30 mA

绝对最大额定值

除非另有说明,环境温度 = 25 °。C

表8.

10.	
参数	额定值
存储温度 (T _{st})	-55 ° 蚕 +150 ° C
工作环境	
温度 (TA)	
A级	-40 ° 蚕 +105 ° C
S级	-40 ° 蚕 +125 ° C
电源电压 (V _{DD1} ,V _{DD2})¹	-0.5 V 至 +7.0 V
输入/输出电压	
第1侧(V _{SDA1,} V _{SCL1})¹	-0.5 V 至 以 _{D1} + 0.5 V
第2侧(V _{SDA2,} V _{SCL2}) ¹	-0.5 V 至 Vbp2 + 0.5 V
每个引脚的平均输出电流 2	
第1侧(I _{o1})	± 18 mA
第2侧(I _{⊙2})	± 100 mA
共模瞬变 ³	-100 kV/ 棄 s+100 kV/ μs

¹ 所有电压均参照各自的地。

注意,超出上述绝对最大额定值可能会导致器件永久性损坏。这只是额定最值,并不能以这些条件或者在任何其它超出本技术规范操作章节中所示规格的条件下,推断器件能否正常工作。长期在绝对最大额定值条件下工作会影响器件的可靠性。

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。尽管本产品具有专利或专有保护电路,但在遇到高能量 ESI对,器件可能会损坏。因此,应当采取适当的 ESI防范措施,以避免器件性能下降或功能丧失。

² 不同温度下的最大额定电流值参见图 3。

³ 指隔离栅上的共模瞬变。超过绝对最大额定值的共模瞬变可能导致闩锁 或永久损坏。

引脚配置和功能描述

图4. ADuM1250/ADuM1251 引脚配置

表9. ADuM1250 引脚功能描述

- 1		
引脚编号	引脚名称	描述
1	V _{DD1}	电源电压 (3.0 V至5.5 V)。
2	SDA₁	数据输入/输出(第1侧)。
3	SCL	时钟输入/输出(第1侧)。
4	GND₁	地1。隔离器第 1侧的接地基准点。
5	GND ₂	地2。隔离器第 2侧的隔离接地基准点。
6	SCL2	时钟输入/输出(第2侧)。
7	SDA₂	数据输入/输出(第2侧)。
8	V _{DD2}	电源电压 (3.0 V至5.5 V)。

表10. ADuM1251 引脚功能描述

引脚编号	引脚名称	描述
1	V_{DD1}	电源电压 (3.0 V至5.5 V)。
2	SDA ₁	数据输入/输出(第1侧)。
3	SCL1	时钟输入 (第1侧)。
4	GND₁	地1。隔离器第 1侧的接地基准点。
5	GND ²	地2。隔离器第 2侧的隔离接地基准点。
6	SCL ₂	时钟输出 (第2侧)。
7	SDA ₂	数据输入/输出(第2侧)。
8	V _{DD2}	电源电压 (3.0 V至5.5 V)。

测试条件

应用信息

功能描述

ADuM1250/ADuM1251 在每一侧上都与双向 I^2 C信号接口。在内部, I^2 C接口拆分成以相反方向通过各自专用 iCoupler隔离通道通信的两个单向通道。其中一个通道 (图 6所示各通道对的下方通道)检测第 1侧 I^2 C引脚的电压状态,并将其状态传送至相应的第 2侧 I^2 C引脚。

第1侧和第2侧I²C引脚设计用来与采用 3.0V至5.5V工作电压范围的 I²C总线接口。任一引脚上的逻辑低电平均会导致相对引脚被拉低,足以满足总线上其它 I²C设备的逻辑低电平阈值要求。通过保证 SDA₁或SCL₁处的输入低电平阈值至少比相同引脚处输出低电平信号小 50mV,避免出现 I²C总线竞争。这样可防止第 1侧的输出逻辑低电平被传送回第 2侧并拉低 I²C总线。

由于第 2侧逻辑电平/阈值是标准 I^2C 值,因此通过第 2侧引脚连接到总线的多个 ADuM1250/ADuM1251 器件可以彼此通信以及与兼容 I^2C 的其它器件通信。 I^2C 兼容性和 I^2C 一致性之间存在区别。 I^2C 兼容性是指器件的逻辑电平不一定满足 I^2C 规格要求但仍允许该器件与 I^2C 兼容型器件通信的情况。 I^2C 一致性是指器件的逻辑电平满足 I^2C 规格要求的情况。

不过,由于第 1侧引脚具有经过修改的输出电平 /输入阈值,因此 ADuM1250/ADuM1251 的该侧只能与符合 I^2 C标准的器件通信。也就是说, ADuM1250/ADuM1251 的第 2侧符合 I^2 C标准,第 1侧仅兼容 I^2 C。

输出逻辑低电平与 V_{DD1} 和 V_{DD2} 电压无关。第 1侧的输入逻辑低电平阈值也与 V_{DD1} 无关。不过,第 2侧的输入逻辑低电平阈值则设计为 $0.3\,V_{DD2}$,与 I^2 C要求保持一致。第 1侧和第 2侧引脚具有开集输出,其高电平通过上拉电阻设为相应的电源电压。

启动

V_{DD1}和V_{DD2}电源均具有欠压闭锁功能,以确保信号通道仅在满足特定条件情况下才工作。这样可以避免上电 /关断期间输入逻辑低电平信号意外拉低 I²C总线。

必须满足以下两个条件,才会使能信号通道:

- ? 两个电源均必须至少为 2.5 V。
- ? 两个电源超过内部启动阈值 2.0 V后必须过去至少 40 μs 在两个电源达到上述两个条件之前 , ADuM1250/ADuM1251 输出会被拉高 , 确保启动期间总线不会出现任何干扰。图 7和图 8显示了快速和低输入电源压摆率的电源条件。

图7. 启动条件 (电源压摆率 > 12.5 V/ms)

图8. 启动条件 (电源压摆率 < 12.5 V/ms)

典型应用图

图 9所示为典型应用电路,其中包括第 1侧和第 2侧总线所需的上拉电阻。 V_{DD1} 和GND₁之间以及 V_{DD2} 和GND₂之间均需要介于 0.1 μ 加的旁路电容。如果环境温度介于 105° 和 125° 之间,则需要使用图 9所示的 200 电阻来提供防闩锁功能。

磁场抗扰度

ADuM125x 具有极强的抗扰性能,不易受外部磁场的影响。 ADuM125x 磁场抗扰度的限制由变压器接收线圈中的感应电压状态决定,电压足够大就会错误地置位或复位解码器。下面的分析说明此情况发生的条件。检测ADuM125x的3V工作条件是因为这是最易受干扰的工作模式。变压器输出端的脉冲幅度大于 1.0 V。解码器的检测阈值大约是 0.5 V,因此有一个 0.5 V的噪声容限。接收线圈上的感应电压由以下公式计算:

$$V = (-d\beta/dt) \sum \prod_{n=1}^{\infty} r_n^2; n = 1, 2, ...N$$

其中:

是磁通密度 (高斯)。

N是接收线圈匝数。

r □是接收线圈第 n圈的半径 (cm)。

给定 ADuM1250接收线圈几何形状及感应电压,解码器最多能够有 0.5 V余量的50%,允许的最大磁场见图 10所示计算。

图10. 最大允许外部磁通密度

例如,在 1 MHz 的磁场频率下,最大允许 0.2 K高斯的磁场在接收线圈可以感应出 0.25 V 的电压。这大约是检测阈值的 50%并且不会引起输出转换错误。同样的,如果这样的情况在发送脉冲时发生(最差的极性),这会使接收到的脉冲从大于 1.0 V下降到 0.75 V。注意,这仍然高于解码器检测阈值 0.5 V。

先前的磁通密度值对应于与 ADuM125x 变压器给定距离的 额定电流幅度。图 11表明这些允许的电流幅度是频率与所 选距离的函数。如图 11所示 , ADuM125x 具有极强的抗干 扰性能 , 仅在离器件很近的高频、大电流条件下才会受影响。在 1 MHz 时 , 0.5 kA 电流必须置于距离 ADuM125x 5 mm 以内才会影响器件的工作。

图11.不同电流至 ADuM125x 距离下的 最大允许电流

请注意,在强磁场和高频率的叠加作用下,印刷电路板走线形成的任何回路都会感应出足够大的错误电压,触发后续电路的阈值。在布局的时候需要格外小心以避免发生这种情况。

外形尺寸

(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR

REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

图 12. 8引脚标准小型封装
[SOIC_N]窄体

(R-8) 尺寸单位: mm和(inch)

订购指南

	输入通	输入通	最大数据	最大传播			
	道数 ,	道数 ,	速率	延迟	温度	封装	封装
型号 ^{1, 2}	V _{DD1} 侧	V _{DD2} 侧	(Mbps)	(ns)	范围	描述	选项
ADuM1250ARZ	2	2	1	150	-40 ° 至 +105 °C	8引脚 SOIC_N	R-8
ADuM1250ARZ-RL7	2	2	1	150	-40 ° 至 +105 °C	8引脚 SOIC_N	R-8
ADuM1250SRZ	2	2	1	150	-40 ° 蚕 +125 ° C	8引脚 SOIC_N	R-8
ADuM1250 SRZ-RL7	2	2	1	150	-40 ° 蚕 +125 ° C	8引脚 SOIC_N	R-8
ADuM1250WSRZ	2	2	1	150	-40 ° 蚕 +125 ° C	8引脚 SOIC_N	R-8
ADuM1250 WSRZ-RL7	2	2	1	150	-40 ° 蚕 +125 ° C	8引脚 SOIC_N	R-8
ADuM1251ARZ	2	1	1	150	-40 ° 至 +105 °C	8引脚 SOIC_N	R-8
ADuM1251ARZ-RL7	2	1	1	150	-40 ° 琵 +105 °C	8引脚 SOIC_N	R-8

¹Z = RoHS兼容器件。

汽车应用级产品

ADuM1250W 生产工艺受到严格控制,以提供满足汽车应用的质量和可靠性要求。请注意,车用型号的技术规格可能不同于商用型号;因此,设计人员应仔细阅读本数据手册的技术规格部分。只有显示为汽车应用级的产品才能用于汽车应用。欲了解特定产品的订购信息并获得这些型号的汽车可靠性报告,请联系当地 ADI 客户代表。

I²C指最初由 Philips Semiconductors(现为NXP Semiconductors) 开发的一种通信协议。

² W =通过汽车应用认证。