Coprime actions with supersolvable fixed-point groups

Hangyang Meng and Xiuyun Guo

Communicated by John S. Wilson

Abstract. Let A be an elementary abelian r-group acting on a finite r'-group G. Suppose that the fixed-point group $C_G(a)$ is supersolvable for each $a \in A^{\#}$. We show that G is supersolvable if $|A| \ge r^4$ and that $G' \le F_3(G)$ if $|A| \ge r^3$. Moreover, we prove some other results for cases when the fixed-point group $C_G(a)$ is abelian, p-nilpotent or satisfies the Sylow tower property.

1 Introduction

All groups considered in this paper are finite.

Let G be a group admitting an action of a group A and let

$$C_G(A) = \{x \in G \mid x^a = x \text{ for all } a \in A\}$$

be the fixed-point group of A in G. Thompson proved in [8] that if A is cyclic of prime order and $C_G(A) = 1$, then G must be nilpotent. In general it seems interesting to investigate how the structure of $C_G(A)$ influences the structure of G.

Throughout this paper, r is a fixed prime, A is an elementary abelian r-group and G is an r'-group. We write $A^{\#}$ for the set of non-identity elements of A.

From Glauberman's solvable signalizer functor theorem [3] it follows that G must be solvable if $|A| \ge r^3$ and $C_G(a)$ is solvable for each $a \in A^\#$. Moreover, it was proved in [4] using the classification of the finite simple groups that the above result is still true when $|A| \ge r^2$. On the other hand, Ward [9] showed that if $|A| \ge r^3$ and $C_G(a)$ is nilpotent for each $a \in A^\#$, then G is nilpotent. Ward also proved in [10] that if $|A| \ge r^4$ and $C_G(a)'$ is nilpotent for each $a \in A^\#$, then the derived group G' of G is nilpotent.

Recall a group G is called *supersolvable* if every chief factor of G is cyclic. In this paper, we mainly focus on the following question.

The research of the work was partially supported by the National Natural Science Foundation of China (11771271).

Question. What can be said about the structure of G if $C_G(a)$ is supersolvable for each $a \in A^{\#}$?

We shall prove the following result.

Theorem 1.1. Let A be an elementary abelian r-group of order at least r^4 acting on an r'-group G. Suppose that $C_G(a)$ is supersolvable for each $a \in A^{\#}$. Then G is supersolvable.

The following example essentially due to Ward [10] shows that the conclusion of Theorem 1.1 may fail if $|A| = r^3$. Let r, q, s, p be distinct primes such that

$$r \mid q-1, r, q \mid s-1 \text{ and } r, q, s \mid p-1;$$

it is easy to obtain such primes using Dirichlet's theorem on primes in arithmetic progression. Let $\alpha_1, \alpha_2, \alpha_3$ be primitive r-th roots of unity in the fields $\mathbb{F}_q, \mathbb{F}_s, \mathbb{F}_p$, respectively.

Let $U_2 = W_1 \rtimes \langle \phi_1 \rangle$, where $W_1 = \langle x \rangle$, o(x) = q, $o(\phi_1) = r$ and $x^{\phi_1} = x^{\alpha_1}$, and consider the regular wreath product $V_2 = C_s \wr_{\text{reg}} U_2$ (see [1, Chapter A, Definition 18.7]), where C_s is the cyclic group of order s. Let W_2 be the normal Sylow s-subgroup of V_2 ; clearly $V_2 = W_2U_2$. Define an automorphism ϕ_2 of V_2 by

$$wu \mapsto w^{\alpha_2}u$$
 for $w \in W_2$, $u \in U_2$.

Similarly, let $U_3 = W_2 \rtimes \langle \phi_2 \rangle$, and set $V_3 = C_p \wr_{\text{reg}} U_3$. Let W_3 be the normal Sylow p-subgroup of V_3 and let ϕ_3 be an automorphism of V_3 given by

$$wu \mapsto w^{\alpha_3}u$$
 for $w \in W_3$, $u \in U_3$.

Let

$$H = V_3 \rtimes \langle \phi_3 \rangle = W_3 W_2 W_1 \langle \phi_1 \rangle \langle \phi_2 \rangle \langle \phi_3 \rangle$$

and take $G = W_3 W_2 W_1$ and $A = \langle \phi_1 \rangle \langle \phi_2 \rangle \langle \phi_3 \rangle$. Observe that G is an r'-group and A is elementary abelian of order r^3 . The action of A on G is defined by conjugation in H. For each $a = \phi_1^i \phi_2^j \phi_3^k \in A^\#$, where $i, j, k \in \{0, 1, \ldots, r-1\}$, Lemma 2.1 (d) below gives

$$C_G(a) = \begin{cases} C_{W_3}(a) C_{W_2}(a) & \text{if } i \neq 0, \\ C_{W_3}(a) W_1 & \text{if } i = 0 \text{ and } j \neq 0, \\ W_2 W_1 & \text{if } i = j = 0 \text{ and } k \neq 0. \end{cases}$$

It is easy to see from Lemma 3.1 below that $C_G(a)$ is supersolvable and it is also easy to show that G' is not nilpotent. Hence G is not supersolvable.

Denote by $\mathbf{F}(G)$ the Fitting subgroup of a group G and denote by $\mathbf{F}_i(G)$ the inverse image of $\mathbf{F}(G/\mathbf{F}_{i-1}(G))$ in G for $i \ge 2$.

Theorem 1.2. Let A be an elementary abelian r-group of order at least r^3 acting on an r'-group G. Suppose that $C_G(a)$ is supersolvable for each $a \in A^{\#}$. Then $G' \leq F_3(G)$. Furthermore, $G' \leq F_2(G)$ if one of the following statement holds:

- (a) $C_G(a)'$ is of odd order for each $a \in A^{\#}$, or
- (b) r is not a half-Fermat prime.

Recall that a prime r is called *half-Fermat* if there exists a prime p such that $r = \frac{1}{2}(p^m + 1)$ for some $m \in \mathbb{N}$. In the proof of Theorems 1.1 and 1.2, the following theorem plays an important role.

Theorem 1.3. Let A be an elementary abelian r-group of order at least r^3 acting on an r'-group G. If p is a prime and $C_G(a)$ is p-nilpotent for each $a \in A^{\#}$, then G is p-nilpotent.

2 Proof of Theorem 1.3

First we recall some basic results on coprime action.

Lemma 2.1. Let G be a group admitting an action of a group A with (|G|, |A|) = 1. Then the following assertions hold.

- (a) Suppose that A is abelian and G is a non-trivial elementary abelian group. If $C_G(a) = 1$ for every $a \in A^{\#}$, then A is cyclic.
- (b) If G has the Sylow π -property for a set π of primes, then G has an A-invariant Hall π -subgroup.
- (c) If $N \subseteq G$ and N is A-invariant, then $C_{G/N}(A) = C_G(A)N/N$.
- (d) If G = XY, where X and Y are A-invariant subgroups, then

$$C_G(A) = C_X(A) C_Y(A)$$
.

(e) Suppose that A is non-cyclic. Then

$$G = \langle C_G(B) \mid B \leq A \text{ and } A/B \text{ is cyclic} \rangle.$$

In particular, $G = \langle C_G(a) \mid a \in A^{\#} \rangle$.

(f) If H is an A-invariant Hall π -subgroup of G, then $C_H(A)$ is a Hall π -subgroup of $C_G(A)$.

Proof. Assertions (a)–(f) follow from [6, 8.3.2, 8.2.6 (a), 8.2.2, 8.2.11, 8.3.4 (a,b), 8.2.6 (e)], respectively.

Lemma 2.2 ([2, Theorem 2.3]). Let \mathbb{F} be a field, G a group and V an $\mathbb{F}[G]$ -module. Suppose that $H \leq G$, $\operatorname{char}(\mathbb{F})$ does not divide |G:H| and V is a completely reducible $\mathbb{F}[H]$ -module. Then V is a completely reducible $\mathbb{F}[G]$ -module.

Proof of Theorem 1.3. Suppose the theorem false and let G be a counter-example of minimal order. By the properties of coprime action and the minimality of G, all proper A-invariant subgroups of G and all quotient groups G/N modulo nontrivial A-invariant normal subgroups N of G are p-nilpotent. We complete the proof in three steps.

Step 1: We claim that G is p-solvable and $O_{p'}(G) = 1$.

If p=2, then $C_G(a)$ is solvable and by [6, Theorem 11.3.3], G is solvable, as desired. Now assume that p is odd. By Lemma 2.1 (b), there exists an A-invariant Sylow p-subgroup P of G. If P=1, then clearly G is p-solvable so we may assume that $P \neq 1$; thus $Z(J(P)) \neq 1$. Observe that Z(J(P)) and $N_G(Z(J(P)))$ are both A-invariant. If $N_G(Z(J(P))) < G$, then $N_G(Z(J(P)))$ is p-nilpotent by the minimality of G, and then G is p-nilpotent by Glauberman's ZJ-theorem [5, Chapter X, Theorem 9.10], which is a contradiction. Hence $N_G(Z(J(P))) = G$ and it follows that G/Z(J(P)) is p-nilpotent, so that G is p-solvable. If $O_{p'}(G) \neq 1$, then by the minimality of G, $G/O_{p'}(G)$ is p-nilpotent, which implies that G is p-nilpotent, a contradiction.

Step 2: We claim that G is p-closed.

Observe that $O_p(G) \neq 1$ by Step 1. It follows from the minimality of G that $G/O_p(G)$ is p-nilpotent. Let $L/O_p(G)$ be the Hall p'-subgroup of $G/O_p(G)$; thus G/L is a p-group and L is A-invariant. If L < G, then L is p-nilpotent. For the normal p-complement $L_{p'}$ of L we have $L_{p'} \leq O_{p'}(G) = 1$. Thus L is a p-subgroup and so is G, which is a contradiction. Hence G = L is p-closed.

Step 3: Final contradiction.

Write $P = O_p(G)$. As $C_G(P) \le G$, we have $O_{p'}(C_G(P)) \le O_{p'}(G) = 1$. Hence $C_G(P) = Z(P)$. Observe that

$$G = \langle C_G(B) \mid B \leq A \text{ and } A/B \text{ is cyclic} \rangle$$

by Lemma 2.1 (e). Since G is not p-nilpotent, there exists a subgroup B of A such that $C_G(B) \nleq P$. By hypothesis $C_G(B)$ has a normal p-complement $K \neq 1$. Now $K \leqslant C_G(B) \leqslant C_G(b)$ for all $b \in B^{\#}$. Since G is p-closed, each $C_G(b)$ is p-closed and has a normal p-complement. As $K \leqslant C_G(b)$, K centralizes $C_P(b)$. This means that K centralizes $\langle C_P(b) \mid b \in B^{\#} \rangle$. As $|B| = r^2$, we have that K centralizes $P = \langle C_P(b) \mid b \in B^{\#} \rangle$ and this contradicts $C_G(P) = Z(P)$. This is the final contradiction.

Corollary 2.3 ([9]). Let A be an elementary abelian r-group of order at least r^3 acting on an r'-group G. If $C_G(a)$ is nilpotent for each $a \in A^{\#}$, then G is nilpotent.

Let \leq be a total order relation on the set $\mathbb P$ of all primes. Recall that a group G is said to satisfy the Sylow tower property with respect to \leq if G has a normal Hall π_p -subgroup for each prime p, where $\pi_p = \{q \mid p \leq q\}$. If \leq is the natural order relation on $\mathbb P$, then G is said to satisfy the Sylow tower property of supersolvable type.

Corollary 2.4. Let A be an elementary abelian r-group of order at least r^3 acting on an r'-group G. Let \leq be a total order relation on \mathbb{P} . Suppose that $C_G(a)$ satisfies the Sylow tower property with respect to \leq for each $a \in A^{\#}$. Then G satisfies the Sylow tower property with respect to \leq .

Proof. We work by induction on |G|. Let p be the smallest prime with respect to \leq dividing the order of G. Observe that $C_G(a)$ is p-nilpotent for each $a \in A^\#$. It follows from Theorem 1.3 that G is p-nilpotent. The normal Hall p'-subgroup H of G is clearly A-invariant. For each $a \in A^\#$, $C_H(a)$ is a subgroup of $C_G(a)$ satisfying the Sylow tower property with respect to \leq . Observe that H < G since p divides the order of G. By induction, H satisfies the Sylow tower property with respect to \leq . Thus G satisfies the Sylow tower property with respect to \leq .

Corollary 2.5. Let A be an elementary abelian r-group of order at least r^3 acting on an r'-group G. Suppose that n is a positive integer. If $C_G(a)$ is abelian of exponent dividing n for each $a \in A^{\#}$, then G is abelian of exponent dividing n. In particular, if $C_G(a)$ is abelian for each $a \in A^{\#}$, then G is abelian.

Proof. We have $G = \langle C_G(B) \mid B \leq A \text{ and } A/B \text{ is cyclic} \rangle$ by Lemma 2.1 (e). By hypothesis $C_G(B)$ is abelian of exponent dividing n for all subgroups B of A with A/B cyclic. Suppose that B_1 and B_2 are maximal subgroups of A. Then, as $|A| = r^3$, there exists $b \in A^\#$ such that $b \in B_1 \cap B_2$. Hence $C_G(B_1) C_G(B_2) \leq C_G(b)$, which is abelian by hypothesis. Therefore $C_G(B_1)$ and $C_G(B_2)$ commute and it follows that G is abelian of exponent dividing g. □

3 Proof of Theorem 1.1

The following is a reformulation of a supersolvability criterion due to Reinhold Baer.

Lemma 3.1. The group G is supersolvable if and only if

(a) G satisfies the Sylow tower property of supersolvable type and

(b) $N_G(G_p)/C_G(G_p)G_p$ is abelian of exponent dividing p-1 for every prime p and every Sylow p-subgroup G_p of G.

Proof of Theorem 1.1. Suppose Theorem 1.1 is false. Let G be a counter-example of minimal order. By the minimality of G, all proper A-invariant subgroups of G and all quotient groups G/N modulo non-trivial A-invariant normal subgroups N of G are supersolvable. Let P be the largest prime dividing |G| and let P be a Sylow P-subgroup of G. It follows from Corollary 2.4 that G satisfies the Sylow tower property of supersolvable type, and so $P \subseteq G$ and $P \in F(G)$. The rest of the proof is divided into three steps:

Step 1: We claim that $\Phi(G) = 1$ and $P = \mathbf{F}(G)$ is the unique minimal A-invariant normal subgroup of G.

If $\Phi(G) \neq 1$, then $G/\Phi(G)$ is supersolvable by the minimality of G. Hence G is supersolvable, which is a contradiction. Let

$$\mathfrak{X} = \{1 < N \le G \mid N^A = N\}.$$

Suppose that there exist minimal elements $N_1, N_2 \in \mathcal{X}$ such that $N_1 \neq N_2$. Then $N_1 \cap N_2 = 1$ and since both G/N_1 and G/N_2 are supersolvable, so is $G = G/(N_1 \cap N_2)$, contrary to the choice of G. Therefore \mathcal{X} has a unique minimal member, and $\mathbf{F}(G) = P$ is a p-group since $P \leq \mathbf{F}(G)$.

Since $\Phi(P) \leqslant \Phi(G) = 1$, P is an elementary abelian p-group, and it can be viewed as a $\mathbb{F}_p[AG]$ -module. By [7, Theorem 1.12], $P = \mathbf{F}(G)$ is a completely reducible $\mathbb{F}_p[G]$ -module; since (|A|, |G|) = 1, it follows from Lemma 2.2 that P is a completely reducible $\mathbb{F}_p[AG]$ -module. However $P \in \mathcal{X}$ and since \mathcal{X} has a unique minimal member, P must be an irreducible $\mathbb{F}_p[AG]$ -module, that is, P is the unique minimal A-invariant normal subgroup of G, as claimed.

Step 2: Let H be the A-invariant Hall p'-subgroup of G. We claim that every A-invariant proper subgroup of H is abelian of exponent dividing p-1.

Let X be an A-invariant proper subgroup of H. Then Y = PX is an A-invariant proper subgroup of G. By the minimality of G, Y is supersolvable. It follows from Lemma 3.1 that Y/P $C_Y(P) = N_Y(P)/P$ $C_Y(P)$ is abelian of exponent dividing p-1. Observe that $C_G(P) \le P$ since P = F(G). Hence $C_Y(P) \le P$ and thus $C_Y(P) = P$ since P is abelian. Then we have that $X \cong Y/P$ is abelian of exponent dividing p-1, as claimed.

Step 3: Final contradiction.

Let $B = C_A(H)$. First assume that $|B| \ge r^2$. For each $b \in B^{\#}$, we have the identity $C_G(b) = C_P(b)H$ since $H \le C_G(b)$. This implies that $C_P(b)$ is normalized by H since $C_G(b)$ is supersolvable. Observe that P is abelian. Immediately we have that $C_P(b) \le G$. It is easy to see that $C_P(b)$ is an A-invariant normal

subgroup of G. By Step 1, P is the minimal A-invariant normal subgroup of G. Thus $C_P(b) = 1$ or $C_P(b) = P$ for each $b \in B^\#$. It follows from Lemma 2.1 (a) that $C_P(b_1) = P$ for some $b_1 \in B^\#$. This implies that $G = PH \leq C_G(b_1)$ is supersolvable, which is a contradiction. Hence $|B| \leq r$.

For each $b \in A \setminus B$, we have that $C_H(b)$ is an A-invariant proper subgroup of H. By Step 2, $C_H(b)$ is abelian of exponent dividing p-1. Considering the faithful action of A/B on H, we see that $C_H(bB) = C_H(b)$ is abelian of exponent dividing p-1 for each $bB \in (A/B)^{\#}$. Since $|A/B| \ge r^3$, it follows from Corollary 2.5 that H is abelian of exponent dividing p-1. It now follows easily from Lemma 3.1 that G is supersolvable. This contradiction completes the proof. \Box

4 Proof of Theorem 1.2

The following lemma is a special case of [2, Theorem A].

Lemma 4.1. Let R be a group of order r that acts on the solvable r'-group H. Let V be an RH-module and a faithful, completely reducible H-module. Suppose that K is a nilpotent normal subgroup of $C_H(R)$ such that

$$K \leq \text{Ker}(C_H(R) \text{ on } C_V(R)).$$

Then $K \leq \mathbf{F}_2(H)$. Furthermore, if r is not a half-Fermat prime or K is of odd order, then $K \leq \mathbf{F}(H)$.

Proof. Let L be the subnormal closure of K in H. By [2, Theorem A] we have L = K[L, R] and [L, R] is nilpotent. Since L/[L, R] is isomorphic to a quotient of K and K is nilpotent, L/[L, R] is nilpotent. Observe that $L = \mathbb{F}_2(L) \leq \mathbb{F}_2(H)$ since L is subnormal in H. Hence $K \leq L \leq \mathbb{F}_2(H)$.

Write $[L, R] = S \times P$ with S a 2-group and P a 2'-group. Using [2, Theorem A] again, we conclude from the nilpotency of K that S = 1 and we also find that P = 1 if r is not a half-Fermat prime or K is of odd order. Hence in these cases, [L, R] = 1 and K = L is subnormal in H and so $K \leq F(H)$.

For the proof of Theorem 1.2, we need the following two results.

Theorem 4.2. Let A be an elementary abelian r-group of order at least r^3 acting on an r'-group G. Suppose that $C_G(a)$ is supersolvable for each $a \in A^{\#}$. Then $G' \leq F_3(G)$.

Proof. Suppose that the theorem is false and let G be a counter-example of minimal order. Thus all proper A-invariant subgroups M of G satisfy $M' \leq \mathbb{F}_3(M)$,

and all quotient groups G/N with N a non-trivial A-invariant normal subgroup N of G satisfy $(G/N)' \leq \mathbb{F}_3(G/N)$. By Corollary 2.4, G satisfies the Sylow tower property of supersolvable type. Let p be the largest prime dividing |G| and let V be the Sylow p-subgroup of G. Clearly V is an A-invariant normal subgroup of G and $V \leq \mathbb{F}(G)$.

Step 1: We claim that $\Phi(G) = 1$ and $V = \mathbf{F}(G)$ is an irreducible $\mathbb{F}_p[AG]$ -module.

Suppose that $\Phi(G) \neq 1$. Considering the quotient group $G/\Phi(G)$, we conclude from the minimality of G that $(G/\Phi(G))' \leq \mathbf{F}_3(G/\Phi(G)) = \mathbf{F}_3(G)/\Phi(G)$. This implies that $G' \leq \mathbf{F}_3(G)$, contrary to the choice of G. Hence $\mathbf{F}(G)$ can be viewed as an AG-module, possibly of mixed characteristic. By [7, Theorem 1.12] and Lemma 2.2, $\mathbf{F}(G)$ is a completely reducible AG-module. If the AG-module $\mathbf{F}(G)$ is reducible, then we may assume $\mathbf{F}(G) = V_1 \times V_2$, where $1 \neq V_i$ is an AG-module for each i. Consider the group G/V_i and let $T_i/V_i = \mathbf{F}_3(G/V_i)$. By the minimality of G we have $G' \leq G'V_i \leq T_i$. Observe that

$$T_1 \cap T_2 \lesssim (T_1 \cap T_2)V_1/V_1 \times (T_1 \cap T_2)V_2/V_2$$

is a subgroup of $T_1/V_1 \times T_2/V_2$ whose Fitting height is at most 3. We have $T_1 \cap T_2 = \mathbf{F}_3(T_1 \cap T_2) \leq \mathbf{F}_3(G)$ since $T_1 \cap T_2 \leq G$. Observe that $\mathbf{F}_3(G) \leq T_1 \cap T_2$. Thus $T_1 \cap T_2 = \mathbf{F}_3(G)$ and so $G' \leq T_1 \cap T_2 = \mathbf{F}_3(G)$, which is a contradiction. Hence $\mathbf{F}(G)$ is an irreducible $\mathbb{F}_p[AG]$ -module. Since $1 \neq V \leq \mathbf{F}(G)$ and V is an A-invariant normal subgroup of G, we have $V = \mathbf{F}(G)$, as claimed.

Step 2: We claim that $\mathbf{F}(\mathbf{C}_G(a)) \leq \mathbf{F}_3(G)$ for each $a \in A^{\#}$.

Let H be the A-invariant Hall p'-subgroup of G. For each $a \in A^{\#}$, we see from Lemma 2.1 (f) that $C_V(a) \in \operatorname{Syl}_p(C_G(a))$ and $C_H(a) \in \operatorname{Hall}_{p'}(C_G(a))$. Since $V \subseteq G$, we have $C_V(a) \subseteq C_G(a)$. Clearly $C_V(a) \subseteq \operatorname{F}(C_G(a))$ and $C_V(a) \in \operatorname{Syl}_p(\operatorname{F}(C_G(a)))$. Let K be the Hall p'-subgroup of $\operatorname{F}(C_G(a))$. Then K is a nilpotent normal subgroup of $C_H(a)$ such that

$$K \leq \text{Ker}(C_H(a) \text{ on } C_V(a)).$$

By Step 1, V is an irreducible AG-module. It is easy to see that V is an irreducible AH-module. Thus V is a completely reducible H-module and H acts faithfully on V since $C_G(V) \leq V$. Applying Lemma 4.1, we have $K \leq F_2(H)$. Thus $F(C_G(a)) = C_V(a)K \leq VF_2(H) \leq F_3(G)$, as claimed.

Step 3: Final contradiction.

Considering the action of A on $G/\mathbf{F}_3(G)$, by Lemma 2.1 (c) we see that

$$C_{G/\mathbb{F}_3(G)}(a) = C_G(a)\mathbb{F}_3(G)/\mathbb{F}_3(G) \cong C_G(a)/C_{\mathbb{F}_3(G)}(a)$$

is a homomorphic image of $C_G(a)/F(C_G(a))$ since $F(C_G(a)) \leq F_3(G)$ by Step 2. Observe that $C_G(a)/F(C_G(a))$ is abelian since $C_G(a)$ is supersolvable. Hence $C_{G/F_3(G)}(a)$ is abelian for each $a \in A^{\#}$. Since $|A| \geq r^3$, by Corollary 2.5 the group $G/F_3(G)$ is abelian and so $G' \leq F_3(G)$. This is a contradiction and the proof is complete.

Theorem 4.3. Let A be an elementary abelian r-group of order at least r^3 acting on an r'-group G. Suppose that $C_G(a)$ is supersolvable for each $a \in A^{\#}$. If either

- (a) $C_G(a)'$ has odd order for each $a \in A^{\#}$, or
- (b) r is not a half-Fermat prime,

then $G' \leq \mathbf{F}_2(G)$.

Proof. Suppose the theorem false and let G be a counter-example of minimal order. Let p be the largest prime dividing |G|. Let V be the Sylow p-subgroup of G. Arguing as in the proof of Theorem 4.2, we see that $\Phi(G) = 1$ and $V = \mathbf{F}(G)$ is an irreducible $\mathbb{F}_p[AG]$ -module.

Next we claim that $C_G(a)' \leq F_2(G)$ for each $a \in A^{\#}$. Let H be the A-invariant Hall p'-subgroup of G. For each $a \in A^{\#}$, by Lemma 2.1, $C_V(a) \in \operatorname{Syl}_p(C_G(a))$ and $C_H(a) \in \operatorname{Hall}_{p'}(C_G(a))$. Since $V \subseteq G$, we have $C_V(a) \subseteq C_G(a)$ and clearly $C_V(a) \leq F(C_G(a))$.

Let K be a Hall p'-subgroup of $C_G(a)'$. Since $C_G(a)'$ is nilpotent, K is a characteristic subgroup of $C_G(a)'$. Hence K is a nilpotent normal p'-subgroup of $C_G(a)$, moreover, $K \leq C_H(a)$. Observe that $C_V(a) \leq F(C_G(a))$ and $K \leq C_G(a)' \leq F(C_G(a))$. Hence $[C_V(a), K] = 1$, that is,

$$K \leq \text{Ker}(C_H(a) \text{ on } C_V(a)).$$

Since V is an irreducible AG-module, we have $V \leq \operatorname{Ker}(AG \text{ on } V)$. Let U be a non-zero AH-module of V. Since U is V-invariant, U is AG-invariant, that is, U is an AG-submodule of V. Thus V is also an irreducible AH-module, and therefore V is a completely reducible H-module and H acts faithfully on V since $\operatorname{C}_G(V) \leq V$. By hypothesis, either |K| is odd or V is not a half-Fermat prime. Applying Lemma 4.1, we conclude that $K \leq \operatorname{F}(H)$. Thus

$$C_G(a)' \leq C_V(a)K \leq VF(H) \leq F_2(G),$$

as claimed.

Finally, considering the action of A on $G/\mathbb{F}_2(G)$, for each $a \in A^{\#}$, we see from Lemma 2.1 (c) that $\mathbb{C}_{G/\mathbb{F}_2(G)}(a)$ is abelian. Since $|A| \ge r^3$, by Corollary 2.5, $G/\mathbb{F}_2(G)$ is abelian, that is, $G' \le \mathbb{F}_2(G)$. This is a contradiction and the proof is complete.

Acknowledgments. The authors would like to thank the referee for valuable suggestions and useful comments.

Bibliography

- [1] K. Doerk and T.O. Hawkes, *Finite Soluble Groups. Volume 4*, Walter de Gruyter, Berlin, 1992.
- [2] P. Flavell, Automorphisms of soluble groups, *Proc. Lond. Math. Soc.* (3) **112** (2016), 623–650.
- [3] G. Glauberman, On solvable signalizer functors in finite groups, *Proc. Lond. Math. Soc.* (3) **33** (1976), 1–27.
- [4] R. Guralnick and P. Shumyatsky, Derived subgroups of fixed points, *Israel J. Math.* **126** (2001), 345–362.
- [5] B. Huppert and N. Blackburn, *Finite Groups. Volume 3*, Springer, Berlin, 1982.
- [6] H. Kurzweil and B. Stellmacher, *The Theory of Finite Groups: An Introduction*, Springer, New York, 2006.
- [7] O. Manz and T. R. Wolf, *Representations of Solvable Groups*, London Math. Soc. Lecture Note Ser. 185, Cambridge University Press, Cambridge, 1993.
- [8] J. G. Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proc. Natl. Acad. Sci. USA 45 (1959), 578–581.
- [9] J. N. Ward, On finite groups admitting automorphisms with nilpotent fixed-point group, *Bull. Aust. Math. Soc.* **5** (1971), 281–282.
- [10] J. N. Ward, On finite soluble groups and the fixed-point groups of automorphisms, *Bull. Aust. Math. Soc.* **5** (1971), 375–378.

Received December 7, 2017; revised January 14, 2018.

Author information

Hangyang Meng, Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China.

E-mail: hangyangmenges@gmail.com

Xiuyun Guo, Department of Mathematics, Shanghai University,

Shanghai 200444, P. R. China.

E-mail: xyguo@staff.shu.edu.cn