B Anomalies: Still HQETing

Zoltan Ligeti

Caltech, HEP Seminar

November 5, 2018

- Introduction
- The data
- Mesons
- Baryons
- Outlook

Details: Bernlochner, ZL, Robinson, Sutcliffe, arXiv:1808.09464 to appear in PRL; 1811.?????

Bernlochner, ZL, Papucci, Robinson, 1703.05330

Disclaimers.... first the title...

Plagiarizing: David Politzer, "Still QCDing" (1979 lectures)

Abstract: "... The exposition is purposefully informal, in the hope that anyone familiar with Feynman diagrams might profit from a single, casual reading. However, the text is sprinkled with sufficiently many outrageous claims, slanderous libels, and inadequate references that a serious student or even a practicing expert will find much upon which to chew."

Disclaimers.... first the title...

Plagiarizing: David Politzer, "Still QCDing" (1979 lectures)

Abstract: " ... The exposition is purposefully informal, in the hope that anyone familiar with Feynman diagrams might profit from a single, casual reading. However, the text is sprinkled with sufficiently many outrageous claims, slanderous libels, and inadequate references that a serious student or even a practicing expert will find much upon which to chew."

"Who ordered that?"

If you try it, you may like it...

Disclaimers.... first the title...

Plagiarizing: David Politzer, "Still QCDing" (1979 lectures)

Abstract: " ... The exposition is purposefully informal, in the hope that anyone familiar with Feynman diagrams might profit from a single, casual reading. However, the text is sprinkled with sufficiently many outrageous claims, slanderous libels, and inadequate references that a serious student or even a practicing expert will find much upon which to chew."

"Who ordered that?"

If you try it, you may like it...

I could have (almost) given this talk as a postoc here... (no one would have cared)

CKM fit: plenty of room for new physics

- SM dominates CP viol. \Rightarrow KM Nobel
- The implications of the consistency are often overstated
- Much larger allowed region if the SM is not assumed
- Tree-level (mainly V_{ub} & γ) vs. loop-dominated measurements

• In loop (FCNC) processes NP/SM $\sim 20\%$ is still allowed (mixing, $B \to X \ell^+ \ell^-$, $X\gamma$, etc.)

Many open questions about flavor

- Theoretical prejudices about new physics did not work as expected before LHC
 After Higgs discovery, no more guarantees, situation may resemble around 1900
 (Michelson 1894: "... it seems probable that most of the grand underlying principles have been firmly established ...")
- Flavor structure and CP violation are major pending questions
- Related to Yukawa couplings, scalar sector, maybe connected to hierarchy puzzle
 Only know that Higgs field is responsible for (bulk of) the heaviest fermion masses
- Important cosmological implications (Baryogenesis)
- Sensitive to new physics at high scales, beyond LHC direct search reach
 Establishing any of the flavour anomalies would set upper bound on NP scale
- Experiment: expect huge improvements, many new measurements
- Theory: Progress and new directions both in SM calculations and model building

Some intriguing tensions with SM

Could become clear evidence for NP

- 1) R_K and R_{K^*} $\sim 20\%$ correction to SM loop diagram $(B \to X \mu^+ \mu^-)/(B \to X e^+ e^-)$
- 2) R(D) and $R(D^*)$ $\sim 20\%$ correction to SM tree diagram $(B \to X \tau \bar{\nu})/(B \to X(e,\mu)\bar{\nu})$
- 3) P_5' angular distribution (in $B \to K^* \mu^+ \mu^-$)
- 4) $B_s \rightarrow \phi \mu^+ \mu^-$ rate
- Theoretically cleanest: 1) and 2) both relate to lepton non-universality Can fit 1), 3), 4) simultaneously: $C_{9,\mu}^{(\mathrm{NP})}/C_{9,\mu}^{(\mathrm{SM})}\sim -0.2$, $C_{9,\mu}=(\bar{s}\gamma_{\alpha}P_Lb)(\bar{\mu}\gamma^{\alpha}\mu)$
- Focus on $R(D^{(*)})$, b/c theory can be improved a lot, independent of current data
- What are smallest deviations from SM, which can be unambiguously established?

R_K and R_{K^*} : theoretically cleanest

• LHCb: $R_{K^{(*)}}=\frac{B o K^{(*)}\mu^+\mu^-}{B o K^{(*)}e^+e^-} < 1$ both ratios over 2.5σ from lepton universality

- Theorists' fits quote $4-5\sigma$ (sometimes including P_5' and/or $B_s \to \phi \mu^+ \mu^-$)
- Modifying one Wilson coefficient in $\mathcal{H}_{\mathrm{eff}}$ gives good fit: $\delta C_{9,\mu} \sim -1$

E.g., leptoquarks & flavor structures

Leptoquarks are some of the most often discussed models for $R_{\kappa^{(*)}}$ and $R(D^{(*)})$

A-priori no reason for the leptoquark couplings to be (approx.) flavor conserving

Need this to explain $b \to s\ell^+\ell^-$ data

Need to worry about all $b \to q \ell_1^+ \ell_2^-$ couplings

$$\lambda = egin{pmatrix} \lambda_{de} & \lambda_{d\mu} & \lambda_{d au} \ \lambda_{se} & \lambda_{s\mu} & \lambda_{s au} \ \lambda_{be} & \lambda_{b\mu} & \lambda_{b au} \end{pmatrix}$$

- R_K implies: $0.7 \lesssim \text{Re}(\lambda_{se}\lambda_{be}^* \lambda_{s\mu}\lambda_{b\mu}^*) \frac{(24 \text{ TeV})^2}{M^2} \lesssim 1.5$
- Search for LFV in $B \to K^{(*)} \mu^{\pm} e^{\mp}$, $B \to K^{(*)} \mu^{\pm} \tau^{\mp}$, etc., similarly in D and K decays, and LFV in purely leptonic processes

[E.g.: de Medeiros Varzielas, Hiller, 1503.01084; Freytsis, ZL, Ruderman, 1506.08896; many more]

The b o c auar
u data

R(D) and $R(D^*)$ — $4\,\sigma$ tension with SM

▶ BaBar, Belle, LHCb: enhanced τ rates, $R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)} \tau \bar{\nu})}{\Gamma(B \to D^{(*)} l \bar{\nu})}$ $(l = e, \mu)$

Notation: $\ell = e, \mu, \tau$ and $l = e, \mu$

Another look at the data

• Separate R(D) and $R(D^*)$ measurements — all central values above SM:

Not decisive yet, consistent with both an emerging signal or fluctuations

Not discussed 1981 – 2012?

CLNS 51/505
CLEO 81/05
JULY 1981

CORNELL HARVARD ROCHESTER RUTGERS SYRACUSE VANDERBILT

WHAT CAN WE HOPE TO LEARN
FROM B MESON DECAY?

Proceedings of a
CLEO Collaboration Workshop

Fig. 3. A Program to Understand B Decay

Search for exotic B decays.

If found, explore details;

-otherwise-

Search for flavor changing neutral currents.

If found, measure $(b \rightarrow dZ^{0})/(b \rightarrow sZ^{0})$;

-otherwise-

- 3. Measure semileptonic decay branching ratio.
- 4. Measure ratio $(b \rightarrow uW^{-})/(b \rightarrow cW^{-})$.
- 5. Measure ev:μν:τν ratio in semileptonic decay.

Non-b-Decay Features of B Decay

- 6. Look for lifetime difference between B^{\pm} and B° .
- 7. Look for BO-BO mixing.
- [8. CP violation?]

⇒ dark sector searches? violating symmetries?

- ⇒ big part of the program
- ⇒ big part of the program
- $\Rightarrow |V_{ub}/V_{cb}|$: essential to constrain NP
- \Rightarrow Prophecy of $R(D^{(*)})$?

- ⇒ Seems less important now
- ⇒ Was the first item accomplished
- ⇒ Became a central focus of the field

[Ed Thorndike's overview; Mark discussed Higgs in B decay]

Reasons (not) to take the tension seriously

- Measurements with τ leptons are difficult
- Need a large tree-level contribution, SM suppression only by m_{τ} NP was expected to show up in FCNCs need fairly light NP to fit the data
- ullet Strong constraints on concrete models from flavor physics, as well as high- p_T
- Results from BaBar, Belle, LHCb are consistent
- Often when measurements disagreed in the past, averages were still meaningful
- Enhancement is also seen in similar ratio in $\Gamma(B_c \to J/\psi \, \ell \bar{\nu})$
- If Nature were as most theorist imagined (until ~ 10 years ago), then the LHC (Tevatron, LEP, DM searches) should have discovered new physics already

Exciting future

- LHCb: $R_{K^{(*)}}$ sensitivity with Run 1–2 data $>5\sigma$ for current central values
- LHCb and Belle II: increase $pp \to b\bar{b}$ and $e^+e^- \to B\bar{B}$ data sets by factor ~ 50
- LHCb:

Belle II (50/ab, at SM level):

$$\delta R(D) \sim 0.005 \ (2\%)$$

$$\delta R(D^*) \sim 0.010 \ (3\%)$$

Measurements will improve a lot!

(Even if central values change, plenty of room for establishing deviations from SM)

- Competition, complementarity, cross-checks between LHCb and Belle II
- Focus on the 3 modes that are expected to be most precise in the long trem.

Other players: CMS?

ullet CMS collected $\sim\!10^{10}~B$ decays this year with new trigger

[CMS @ LHCC, May 2018]

B - parking

CMS is attempting to collect a large dataset enriched in B physics.
One specific and one general use cases:

- Allow CMS to measure R_K and R_{K*} in a competitive way
- Prepare a O(10 B) sample of unbiased B hadron decays
 - Trigger on "the other B"
- How: on average, we need to increase our parking rate from 500Hz to 2kHz
 - This collects ~10B of Bs
- This is new: after a lot of internal discussions, green light on May 10th

Trigger Strategy:

- Muon trigger at L1 (as inclusive as possible)
- Minimal cleanup at HLT
- Requirement on impact parameter, to enhance b-quark content

Usage:

- Offline, look for the other b
- Measure ratios: Trigger efficiency will cancel out

$$R_{K^{(*)}} = \frac{\mathcal{B}\left(B \to K^{(*)}\mu^{+}\mu^{-}\right)}{\mathcal{B}\left(B \to K^{(*)}e^{+}e^{-}\right)}$$

Some key questions — now and in the future

- Can it be a theory issue? not at the current level
- Can it be an experimental issue? someone else's job
- Can [reasonable] models fit the data? yes [subjective] (won't say much)
- What is the smallest deviation from SM in $R(D^{(*)})$ that can be established as NP? ... we know how to make progress
- Which channels are most interesting? (To establish deviation from SM / understand NP?) $B_{(s)} \to D_{(s)}^{(*,**)} \ell \bar{\nu}, \ \Lambda_b \to \Lambda_c^{(*)} \ell \bar{\nu}, \ B_c \to \psi \ell \bar{\nu}, \ B \to X_c \ell \bar{\nu}, \ \text{etc.}$
- Which calculations can be made most robust (continuum & lattice QCD)?
- What else can we learn from studying these anomalies?

SM predictions — mesons

Heavy quark symmetry 101

- $Q \, \overline{Q}$: positronium-type bound state, perturbative in the $m_Q \gg \Lambda_{\rm QCD}$ limit
- $Q \overline{q}$: wave function of the light degrees of freedom ("brown muck") insensitive to spin and flavor of Q

(A B meson is a lot more complicated than just a $b\bar{q}$ pair)

In the $m_Q\gg \Lambda_{\rm QCD}$ limit, the heavy quark acts as a static color source with fixed four-velocity v^μ [Isgur & Wise]

SU(2n) heavy quark spin-flavor symmetry at fixed v^{μ} [Georgi]

- Similar to atomic physics: $(m_e \ll m_N)$
 - 1. Flavor symmetry \sim isotopes have similar chemistry [Ψ_e independent of m_N]
 - 2. Spin symmetry \sim hyperfine levels almost degenerate $[\vec{s}_e \vec{s}_N \text{ interaction} \rightarrow 0]$

Spectroscopy of heavy-light mesons

• In $m_Q\gg \Lambda_{\rm QCD}$ limit, spin of the heavy quark is a good quantum number, and so is the spin of the light d.o.f., since $\vec{J}=\vec{s}_Q+\vec{s}_l$ and

angular momentum conservation:
$$[\vec{J},\mathcal{H}]=0$$
 heavy quark symmetry: $[\vec{s}_Q,\mathcal{H}]=0$ \Rightarrow $[\vec{s}_l,\mathcal{H}]=0$

For a given s_l , two degenerate states:

$$J_{\pm} = s_l \pm \frac{1}{2}$$

 $\Rightarrow \Delta_i = \mathcal{O}(\Lambda_{\rm QCD})$ — same in B and D sector

Doublets are split by order $\Lambda_{\rm QCD}^2/m_Q$, e.g.:

$$m_{D^*} - m_D \sim 140 \, {
m MeV}$$
 $m_{B^*} - m_B \sim 45 \, {
m MeV}$ ratio $\sim m_c/m_b$

$B o D^{(*)}\ellar u$ or $\Lambda_b o \Lambda_c\ellar u$ decay

- In the $m_{b,c} \gg \Lambda_{\rm QCD}$ limit, configuration of brown muck only depends on the four-velocity of the heavy quark, but not on its mass and spin
- On a time scale $\ll \Lambda_{\rm QCD}^{-1}$ weak current changes $b \to c$ i.e.: $\vec{p_b} \to \vec{p_c}$ and possibly $\vec{s_Q}$ flips

In $m_{b,c}\gg \Lambda_{\rm QCD}$ limit, brown muck only feels $v_b\to v_c$

Form factors independent of Dirac structure of weak current \Rightarrow all form factors related to a single function of $w=v\cdot v'$, the Isgur-Wise function, $\xi(w)$

Contains all nonperturbative low-energy hadronic physics

- $\xi(1) = 1$, because at "zero recoil" configuration of brown muck not changed at all
- Same holds for $\Lambda_b \to \Lambda_c \ell \bar{\nu}$, different Isgur-Wise fn, $\xi \to \zeta$ [also satisfies $\zeta(1) = 1$]

$B o D^{(*)} \ellar u$ and HQET

- "Idea": fit 4 functions with 4 observables...
- Lorentz invariance: 6 functions of q^2 , only 4 measurable with e, μ final states

$$\langle D | \, \bar{c} \gamma^{\mu} b \, | \, \overline{B} \rangle \, = \, f_{+}(q^{2}) (p_{B} + p_{D})^{\mu} + \left[f_{0}(q^{2}) - f_{+}(q^{2}) \right] \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}} \, q^{\mu}$$

$$\langle D^{*} | \, \bar{c} \gamma^{\mu} b \, | \, \overline{B} \rangle \, = \, -ig(q^{2}) \, \epsilon^{\mu\nu\rho\sigma} \, \varepsilon_{\nu}^{*} \, (p_{B} + p_{D^{*}})_{\rho} \, q_{\sigma}$$

$$\langle D^{*} | \, \bar{c} \gamma^{\mu} \gamma^{5} b \, | \, \overline{B} \rangle \, = \, \varepsilon^{*\mu} f(q^{2}) + a_{+}(q^{2}) \, (\varepsilon^{*} \cdot p_{B}) \, (p_{B} + p_{D^{*}})^{\mu} + a_{-}(q^{2}) \, (\varepsilon^{*} \cdot p_{B}) \, q^{\mu}$$

The a_- and f_0-f_+ form factors $\propto q^\mu=p^\mu_B-p^\mu_{D^{(*)}}$ do not contribute for $m_l=0$

- HQET: 1 Isgur-Wise function in heavy quark limit +3 more at $\mathcal{O}(\Lambda_{\rm QCD}/m_{c,b})$
- Constrain all 4 functions from $B \to D^{(*)} l \bar{\nu} \Rightarrow \mathcal{O}(\Lambda_{\mathrm{QCD}}^2/m_{c,b}^2\,,\,\alpha_s^2)$ uncertainties

[Bernlochner, ZL, Papucci, Robinson, 1703.05330]

• Observables: $B o Dl \bar{
u}$: $\mathrm{d}\Gamma/\mathrm{d}w$ (Only Belle published fully corrected distributions)

 $B \to D^* l \bar{\nu}$: $d\Gamma/dw$ and $R_{1,2}(w)$ form factor ratios

Available for the first time in 2017

Belle published the unfolded $B \rightarrow D^* l \bar{\nu}$ distributions [1702.01521]

- Can perform different fits to data
- Need input on the fitted shape:

BGL: Boyd, Grinstein, Lebed, '95-97

CLN: Caprini, Lellouch, Neubert, '97

Explored 7 fit scenarios

Our fits:

Fit	QCDSR	Lattice QCD			Belle Data
<u>ги</u>		$\mathcal{F}(1)$	$f_{+,0}(1)$	$f_{+,0}(w > 1)$	Delle Dala
$L_{w=1}$	_	+	+		+
$L_{w=1} + SR$	+	+	+	_	+
NoL				_	+
NoL+SR	+		_	_	+
$L_{w\geq 1}$		+	+	+	+
$L_{w\geq 1} \ L_{w\geq 1} + SR$	+	+	+	+	+
th:L $_{w\geq 1}+$ SR	+	+	+	+	

• Role of QCD SR in CLN: $R_{1,2}(w) = \underbrace{R_{1,2}(1)}_{\text{fit}} + \underbrace{R'_{1,2}(1)}_{\text{fixed}} (w-1) + \underbrace{R''_{1,2}(1)}_{\text{fixed}} (w-1)^2/2$

In HQET:
$$R_{1,2}(1) = 1 + \mathcal{O}(\Lambda_{\rm QCD}/m_{c,b}, \alpha_s)$$
 $R_{1,2}^{(n)}(1) = 0 + \mathcal{O}(\Lambda_{\rm QCD}/m_{c,b}, \alpha_s)$

Same parameters determine $R_{1,2}(1)-1$ (fit) and $R_{1,2}^{(n)}(1)$ (rely on QCDSR)

Sometimes calculations using QCD sum rule predictions for $\Lambda_{
m QCD}/m_{c,b}$ corrections are called the HQET predictions

SM predictions for $R(D^{(st)})$

Small variations: heavy quark symmetry & phase space leave little wiggle room

Reference (Scenario)	R(D)	$R(D^*)$	Correlation
Data [HFLAV]	0.407 ± 0.046	0.306 ± 0.015	-20%
Lattice [HFLAV]	0.300 ± 0.008	_	_
Fajfer et al. '12		0.252 ± 0.003	
Bernlochner <i>et al.</i> '17 ($L_{w\geq 1}$)	0.298 ± 0.003	0.261 ± 0.004	19%
Bernlochner <i>et al.</i> '17 ($L_{w\geq 1}+SR$)	0.299 ± 0.003	0.257 ± 0.003	44%
Bigi, Gambino '16	0.299 ± 0.003	_	_
Bigi, Gambino, Schacht '17	_	0.260 ± 0.008	
Jaiswal, Nandi, Patra '17 (case-3)	0.302 ± 0.003	0.262 ± 0.006	14%
Jaiswal, Nandi, Patra '17 (case-2)	0.302 ± 0.003	0.257 ± 0.005	13%

- HFLAV SM expectation neglects correlations present in any theoretical framework
 (Light-cone QCD SR & HQET QCD SR inputs are model dependent)
- None of these are "ultimate" results can be improved in coming years

SM predictions — baryons

No $R(\Lambda_c)$ measurement yet — maybe soon?

Ancient knowledge: baryons simpler than mesons

Used to be well known — forgotten by experimentalists as well as theorists...

VOLUME 75, NUMBER 4

PHYSICAL REVIEW LETTERS

24 July 1995

Form Factor Ratio Measurement in $\Lambda_c^+ \to \Lambda e^+ \nu_e$

G. Crawford, C. M. Daubenmier, R. Fulton, D. Fujino, K. K. Gan, K. Honscheid, H. Kagan, R. Kass, Lee, [CLEO]

element $|V_{cs}|$ is known from unitarity [1]. Within heavy quark effective theory (HQET) [2], Λ -type baryons are more straightforward to treat than mesons as they consist of a heavy quark and a spin and isospin zero light diquark.

Ancient knowledge: baryons simpler than mesons

Used to be well known — forgotten by experimentalists as well as theorists...

VOLUME 75, NUMBER 4

PHYSICAL REVIEW LETTERS

24 JULY 1995

Form Factor Ratio Measurement in $\Lambda_c^+ \to \Lambda e^+ \nu_e$

G. Crawford, ¹ C. M. Daubenmier, ¹ R. Fulton, ¹ D. Fujino, ¹ K. K. Gan, ¹ K. Honscheid, ¹ H. Kagan, ¹ R. Kass, ¹ J. Lee, ¹ [CLEO]

element $|V_{cs}|$ is known from unitarity [1]. Within heavy quark effective theory (HQET) [2], Λ -type baryons are more straightforward to treat than mesons as they consist of a heavy quark and a spin and isospin zero light diquark.

Combine LHCb measurement of $d\Gamma(\Lambda_b\to\Lambda_c\mu\bar{\nu})/dq^2$ shape [1709.01920] with LQCD results for (axial-)vector form factors [1503.01421]

[Bernlochner, ZL, Robinson, Sutcliffe, 1808.09464 to appear in PRL; 1811.?????]

Intro to $\Lambda_b \to \Lambda_c \ell \bar{ u}$

- Ground state baryons are simpler than mesons: brown muck in (iso)spin-0 state
- SM: 6 form factors, functions of $w=v\cdot v'=(m_{\Lambda_b}^2+m_{\Lambda_c}^2-q^2)/(2m_{\Lambda_b}m_{\Lambda_c})$ $\langle \Lambda_c(p',s')|\bar{c}\gamma_\nu b|\Lambda_b(p,s)\rangle=\bar{u}_c(v',s')\Big[f_1\gamma_\mu+f_2v_\mu+f_3v'_\mu\Big]u_b(v,s)$ $\langle \Lambda_c(p',s')|\bar{c}\gamma_\nu\gamma_5 b|\Lambda_b(p,s)\rangle=\bar{u}_c(v',s')\Big[g_1\gamma_\mu+g_2v_\mu+g_3v'_\mu\Big]\gamma_5\,u_b(v,s)$

Heavy quark limit: $f_1 = g_1 = \zeta(w)$ Isgur-Wise fn, and $f_{2,3} = g_{2,3} = 0$ [$\zeta(1) = 1$]

• Include α_s , $\varepsilon_{b,c}$, $\alpha_s \varepsilon_{b,c}$, ε_c^2 : $m_{\Lambda_{b,c}} = m_{b,c} + \bar{\Lambda}_{\Lambda} + \dots$, $\varepsilon_{b,c} = \bar{\Lambda}_{\Lambda}/(2m_{b,c})$ $(\bar{\Lambda}_{\Lambda} \sim 0.8 \, \text{GeV} \, \text{larger than } \bar{\Lambda} \, \text{for mesons, enters via eq. of motion} \Rightarrow \text{expect worse expansion?})$

$$f_1 = \zeta(w) \left\{ 1 + \frac{\alpha_s}{\pi} C_{V_1} + \varepsilon_c + \varepsilon_b + \frac{\alpha_s}{\pi} \left[C_{V_1} + 2(w-1)C'_{V_1} \right] (\varepsilon_c + \varepsilon_b) + \frac{b_1 - b_2}{4m_c^2} + \dots \right\}$$

- No $\mathcal{O}(\Lambda_{\mathrm{QCD}}/m_{b,c})$ subleading Isgur-Wise function, only 2 at $\mathcal{O}(\Lambda_{\mathrm{QCD}}^2/m_c^2)$
- Can do more using HQET than for meson decays In $B \to D^{(*)} \ell \bar{\nu}$ decay, there are 6 sub-subleading Isgur-Wise functions at $\mathcal{O}(\Lambda_{\rm QCD}^2/m_c^2)$

Fits and form factor definitions

Standard HQET form factor definitions: $\{f_1, g_1\} = \zeta(w) \left[\mathbf{1} + \mathcal{O}(\alpha_s, \varepsilon_{c,b}) \right]$ $\{f_{2,3}, g_{2,3}\} = \zeta(w) \left[\mathbf{0} + \mathcal{O}(\alpha_s, \varepsilon_{c,b}) \right]$

Form factor basis in LQCD calculation: $\{f_{0,+,\perp}, g_{0,+,\perp}\} = \zeta(w) \left[1 + \mathcal{O}(\alpha_s, \varepsilon_{c,b})\right]$

LQCD results published as fits to 11 or 17 BCL parameters, including correlations

All 6 form factors computed in LQCD \sim Isgur-Wise fn \Rightarrow despite good precision, limited constraints on subleading terms and their w dependence

• Only 4 parameters (and m_b^{1S}): $\{\zeta', \zeta'', \hat{b}_1, \hat{b}_2\}$ $\zeta(w) = 1 + (w-1)\zeta' + \frac{1}{2}(w-1)^2\zeta'' + \dots \qquad b_{1,2}(w) = \zeta(w)\left(\hat{b}_{1,2} + \dots\right)$

(Expanding in w-1 or in conformal parameter, z, makes no difference)

ullet Current LHCb and LQCD data do not yet allow constraining ζ''' and/or $\hat{b}'_{1,2}$

Fit to lattice QCD form factors and LHCb (1)

• Fit 6 form factors w/ 4 parameters: $\zeta'(1)$, $\zeta''(1)$, \hat{b}_1 , \hat{b}_2 [LQCD: Detmold, Lehner, Meinel, 1503.01421]

Fit to lattice QCD form factors and LHCb (2)

Our fit, compared to the LQCD fit to LHCb:

• Obtain: $R(\Lambda_c) = 0.324 \pm 0.004$

A factor of ~ 3 more precise than LQCD prediction — data constrains combinations of form factors relevant for predicting $R(\Lambda_c)$

Our results will make their way into Hammer

[Bernlochner, Duell, ZL, Papucci, Robinson, soon]

The fit requires the $1/m_c^2$ terms

- E.g., fit results for g_1 blue band shows fit with $\hat{b}_{1,2}=0$
- Find: $\hat{b}_1 = -(0.46 \pm 0.15) \, \mathrm{GeV}^2$... of the expected magnitude

Well below the model-dependent estimate: $\hat{b}_1=-3\bar{\Lambda}_{\Lambda}^2\simeq -2\,{
m GeV}^2$ [Falk & Neubert, hep-ph/9209269]

• Expansion in $\Lambda_{\rm QCD}/m_c$ appears well behaved (contrary to some claims in literature)

The ratios of form factors

• $f_1(q^2)/g_1(q^2) = \mathcal{O}(1)$, whereas $\left\{ f_{2,3}(q^2)/f_1(q^2), \; g_{2,3}(q^2)/g_1(q^2) \right\} = \mathcal{O}(\alpha_s, \varepsilon_{c,b})$

• It all looks rather good!

BSM: tensor form factors — problems?

There are 4 form factors

We get parameter free predictions!

HQET:
$$h_1 (= \widetilde{h}_+) = \mathcal{O}(1)$$

 $h_{2,3,4} = \mathcal{O}(\alpha_s, \varepsilon_{c,b})$

LQCD basis: all 4 form factors calculated are $\mathcal{O}(1)$

[Datta, Kamali, Meinel, Rashed, 1702.02243]

Compare at
$$\mu = \sqrt{m_b m_c}$$

 Heavy quark symmetry breaking terms consistent, double checking possible issues for the leading term

Spinoffs, byproducts, etc.

Has $|V_{cb}|$ been settled?

- $|V_{cb}|$ important to assess if there is an ε_K tension, predict $K \to \pi \nu \bar{\nu}$, $B \to \mu^+ \mu^-$
- The $b \to c \tau \bar{\nu}$ data will make $|V_{cb}|$ much better understood are we there yet? To understand the τ mode thoroughly, must understand the e, μ modes better
- Inclusive / exclusive tension resolved? Fits to Belle $B \to D^* l \bar{\nu}$ data (all good χ^2):

Bigi, Gambino, Schacht, 1703.06124,
$$|V_{cb}|_{\mathrm{BGL}} = (41.7^{+2.0}_{-2.1}) \times 10^{-3}$$

Grinstein & Kobach, 1703.08170, $|V_{cb}|_{\mathrm{BGL}} = (41.9^{+2.0}_{-1.9}) \times 10^{-3}$
Belle, 1702.01521, $|V_{cb}|_{\mathrm{CLN}} = (38.2 \pm 1.5) \times 10^{-3}$

lacktriangle Besides BGL, CLN, we considered 2 other frameworks to "interpolate" [1708.07134]

form factors	BGL	CLN	CLNnoR	noHQS
axial $\propto \epsilon_{\mu}^*$	b_0, b_1	$h_{A_1}(1), \ \rho_{D^*}^2$	$h_{A_1}(1), \ \rho_{D^*}^2$	$h_{A_1}(1), \ \rho_{D^*}^2, \ c_{D^*}$
vector	a_0, a_1	$\begin{cases} R_1(1), R_2(1) \end{cases}$	$\int R_1(1), \ R'_1(1)$	$\int R_1(1), \ R'_1(1)$
${\cal F}$	c_1, c_2	$\begin{cases} H_1(1), H_2(1) \\ \end{cases}$	$R_2(1), R'_2(1)$	$R_2(1), R'_2(1)$

Understanding $|V_{cb}|$

Besides FNAL, JLQCD is also calculating the $B \to D^* \ell \bar{\nu}$ form factors Independent formulations: staggered vs. Mobius domain-wall actions

Therefore, this issue is still open. These parametrizations should be eventually replaced by a lattice-based parametrization.

[T. Kaneko, JLQCD poster at Lattice 2018, 1811.00794 today]

ullet No qualitative difference between the LQCD calculation at w=1 or slightly above

Importance of lepton flavor violation searches

- Quark sector: If TeV-scale NP couples to quarks, some mechanism is needed to align couplings with SM Yukawas in order not to generate too large FCNCs
- Lepton sector: New lepton non-universal interaction would in general yield lepton flavor violation (LFV) at some level
- Many LFV searches became more interesting, not previously of high profile:

E.g.:
$$B \to K^{(*)} e^{\pm} \mu^{\mp}$$
, $B \to K^{(*)} e^{\pm} \tau^{\mp}$, $B \to K^{(*)} \mu^{\pm} \tau^{\mp}$, also in D & K decay

$$\mu \to e\gamma$$
, $\mu \to eee$, $\mu + N \to e + N^{(\prime)}$,

 τ decays: $\tau \to \mu \gamma$, $\mu \mu \mu$, eee, $\mu \mu e$, etc. Belle II: improve 2 orders of magnitude

Any discovery
 ⇒ broad program to map out the detailed structure

ATLAS & CMS: extend high p_T searches

- In some sense unusual & unexpected models: mediator masses, couplings, generation (non-)universality patterns differ from NP signals expected years ago
- Even just extending prior searches can be interesting
 (allowed regions of masses & couplings in strange models can be ... strange)
 - Extend \tilde{t} and \tilde{b} searches to higher production cross section
 - Search for $t \to b\tau\bar{\nu}$, $c\tau^+\tau^-$ nonresonant decays
 - Search for states on-shell in t-channel, but not in s-channel
 - Search for $t\tau$ resonances
 - ... Could be an entire talk

Conclusions

- Measurable NP contribution to $b \to c\ell\bar{\nu}$ would imply NP at a fairly low scale Viable BSM models (leptoquarks? no clear connection to DM & hirearchy puzzle)
- HQET predictions systematically improvable with more e, μ data
- The $\Lambda_{\rm QCD}/m_c$ terms are important, no evidence for bad behavior of expansion
- Measurements will improve in the next decade by nearly an order of magnitude (Even if central values change, plenty of room for significant deviations from SM)
- New directions: model building, high- p_T searches, lepton flavor violation searches
- Best case: discover new physics
 Worst case: better SM tests, better CKM determination, better NP sensitivity
- We will find out: more data + improved predictions

Ultimately, data will tell

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong."

[Feynman]

Extra slides

Aside: the P_5' anomaly in $B o K^*\mu^+\mu^-$

• "Optimized observables" [1202.4266 + long history] $\tilde{\lambda}$ " (some assumptions about what's optimal)

Global fits: best solution: NP reduces C_9

[Altmannshofer, Straub; Descotes-Genon, Matias, Virto; Jager, Martin Camalich; Bobet, Hiller, van Dyk; many more]

Difficult for lattice QCD, large recoil

What is the calculation which detremines how far below the J/ψ this comparison can be trusted?

NP, fluctuation, SM theory?

- Tests: other observables, q^2 dependence, B_s and Λ_b decays, other final states
- Connected to many other processes: Is the $c\bar{c}$ loop tractable perturbatively at small q^2 ? Can one calculate form factors (ratios) reliably at small q^2 ? Impacts: semileptonic & nonleptonic, interpreting CP viol., etc.

Hadronic physics starts to enter

Rate determined (mostly) by:

$$egin{align} O_7 &= \overline{m}_b \, ar{s} \sigma_{\mu
u} e F^{\mu
u} P_R b \ O_9 &= e^2 (ar{s} \gamma_\mu P_L b) (ar{\ell} \gamma^\mu \ell) \ O_{10} &= e^2 (ar{s} \gamma_\mu P_L b) (ar{\ell} \gamma^\mu \gamma_5 \ell) \ \end{pmatrix} \end{split}$$

Most often debated: validity of perturbative methods for:

$$\mathcal{B}(B\to \psi X_s)\sim 4\times 10^{-3}$$

$$\downarrow \\ \mathcal{B}(\psi\to \ell^+\ell^-)\sim 6\times 10^{-2} \quad \text{their product: } \sim 2\times 10^{-4}$$

Much bigger than the short distance contribution...

Lattice QCD details

Baryons have been thought to be harder than mesons on lattice (more stat noise)

Horizontal axis: source-sink separation

Is plateau reached before signal dies? Fit with multi-exp?
Is ground state extraction robust?

[See: Hashimoto, Lattice 2018 plenary]