

INF 302 : Langages & Automates

Chapitre 5 : Automates à États Finis Déterministes — Distinguabilité, Équivalence, Minimisation

Yliès Falcone

ylies.falcone@univ-grenoble-alpes.fr — www.ylies.fr

Univ. Grenoble-Alpes, Inria

Laboratoire d'Informatique de Grenoble - www.liglab.fr Équipe de recherche LIG-Inria, CORSE - team.inria.fr/corse/

Année Académique 2018 - 2019

Intuition et objectifs

- Ingrédients de base : états (accepteurs), symboles, transitions syntaxe.
- Exécution, mot accepté, langage accepté sémantique.
- Problèmes de décision : langage vide, langage infini.
- Opérations sur automate/opérations sur langage : négation/complémentation, produit/intersection.

- Tester l'équivalence entre états
- 2 Tester l'équivalence entre automates
- 3 Minimisation d'automates à états finis déterministes
- 4 Résumé

Équivalence et Minimisation : motivations par un exemple

Questions

- Quels états peuvent être "distingués"?
- Quels états sont "équivalents"?

De manière plus générale :

- Peut-on définir une équivalence entre états?
- Peut-on dire si des automates sont équivalents?
- Peut-on avoir une représentation « canonique » (on dira minimale) d'un automate?

Équivalence/distinguabilité sont reliées à la notion d'acceptation.

Nous considérons $A = (Q, \Sigma, \delta, q_{\text{init}}, F)$ un AEFD dont tous les états sont accessibles.

- Tester l'équivalence entre états
- 2 Tester l'équivalence entre automates
- Minimisation d'automates à états finis déterministes
- Résume

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Distinguabilité entre états Définition et exemple

"Deux états sont distinguables s'il existe un mot qui, à partir de l'un des états, mène à un état accepteur, et à partir de l'autre état, mène à un état non accepteur."

Définition (Relation de distinguabilité entre états)

La relation de distinguabilité \neq entre états sur Q est définie par :

$$\forall p,q \in Q:$$
 $\left(p \neq q \text{ ssi } \exists u \in \Sigma^*: \left(\delta^*(p,u) \in F \iff \delta^*(q,u) \in F\right)\right)$ \subseteq riting which transitions. We'll elasts \in make

Deux états non-distinguables sont dits équivalents (relation \equiv).

Exemple (États (non) distinguables)

- distinguables : $1 \neq 2$, $1 \neq 3$, $1 \neq 4$, $1 \neq 6$, $2 \neq 3$, ...
- équivalents : $4 \equiv 6$, $2 \equiv 8$, mais aussi $1 \equiv 5$ et $x \equiv x$ pour tout état x.

Distinguabilité entre états

Propriétés de la relation

$$p \neq q$$
 ssi $\exists u \in \Sigma^* : \left(\delta^*(p, u) \in F \iff \delta^*(q, u) \in F\right)$

Théorème : à propos de la relation de distinguabilité

La relation de distinguabilité \neq entre états de Q est :

- anti-réflexive : $\forall q \in Q : \neg (q \neq q)$,
- symétrique : $\forall p, q \in Q : p \neq q \implies q \neq p$.

Distinguabilité entre états à k pas

Question

Comment calculer \neq ?

- Limiter la relation de distinguabilité à k symboles.
- ullet Calculer \neq de manière itérative.

Définition (Distinguabilité à k pas)

Pour chaque $k \in \mathbb{N}$, on introduit la relation \neq_k sur Q:

- 2 Pour $k \in \mathbb{N}$, $p \neq_{k+1} q$ ssi

$$(p \neq_k q) \lor (\exists a \in \Sigma : \delta(p, a) \neq_k \delta(q, a)).$$

Construction de \neq à partir de \neq_k

Lemme

Pour tout $k \in \mathbb{N}$, $q \neq_k q'$ ssi

$$\exists u \in \Sigma^* : |u| \leq k \wedge \left(\delta^*(q, u) \in F \iff \delta^*(q', u) \in F\right).$$

Corollaire

$$\bigcup_{k\in\mathbb{N}}\neq_k = \neq$$

Nous pouvons en déduire un algorithme de calcul des états distinguables.

Distinguabilité entre états

Algorithme 1 Calcul des états distinguables

Sortie : $D \subseteq Q \times Q$ relation de distinguabilité entre états de Q1: ensemble de couples d'états D, D_{pre} ; (* D contient les couples d'états distinguables *)

2: ensemble de couples d'états X;

3: $D := (F \times (Q \setminus F)) \cup (Q \setminus F) \times F)$; (* D initialisé avec états accepteurs/non accepteurs *)

4: $D_{pre} := \emptyset$; (* maj de D_{pre} *)

5: tant que $D_{pre} \neq D$ faire

6: $D_{\text{ore}} := D$:

7:
$$X := \{(p,q), (q,p) \in Q \times Q \mid \exists a \in \Sigma : (\delta(p,a), \delta(q,a)) \in D)\};$$

Entrée: $A = (Q, \Sigma, \delta, q_{init}, F)$ un AEFD dont tous les états sont accessibles

(* calcul des nouveaux états distinguables *)

8:
$$D:=D\cup X$$
; (* ajouter les états distinguables à D *)

- 9: fin tant que
- 10: **retourner** *D*;

Distinguabilité entre états : exemple

Distinction entre états : correction de l'algorithme

Soit $A = (Q, \Sigma, \delta, q_{\text{init}}, F)$ un AEFD dont tous les états sont accessibles.

Théorème : Correction de l'algorithme de distinction entre états

- L'algorithme distingue *uniquement* des états distinguables.
- L'algorithme distingue tous les états distinguables.

- Pour le premier point, il suffit de montrer que l'algorithme calcule la limite de la suite (D_i)_{i∈N} définie comme suit :
 - $D_0 = F \times (Q \setminus F) \cup (Q \setminus F) \times F$;
 - $X_{n+1} = \{(p,q), (q,p) \mid \exists a \in \Sigma : (\delta(p,a), \delta(q,a)) \in D_n\};$
 - $D_{n+1} = D_n \cup X_{n+1}$.
- Pour le second point, nous faisons une preuve par l'absurde. La démonstration utilise δ^* , la fonction de transition δ étendue aux mots.

Distinction entre états : correction de l'algorithme - preuve

Démonstration.

Supposons que le théorème soit faux (cad, il y a un automate contre-exemple). Alors, il existe au moins une "mauvaise paire" d'états $\{p,q\}$ t.q. :

- p et q sont distinguables : il existe $w \in \Sigma^*$ tel que soit $\delta^*(p, w) \in F$ soit $\delta^*(q, w) \in F$ (ou exclusif),
- l'algorithme ne distingue pas ces états.

Soit $w = a_1 \cdot a_2 \cdots a_n$ le plus court mot distinguant une mauvaise paire $\{p, q\}$

- $w \neq \epsilon$ d'après l'initialisation de l'algorithme (ligne 5)
- soient $p' = \delta(p, a_1)$ et $q' = \delta(q, a_1)$
 - p' et q' sont distingués par $a_2 \cdots a_n$ car $\delta^*(p', a_2 \cdots a_n) = \delta^*(p, w)$ et $\delta^*(q', a_2 \cdots a_n) = \delta^*(q, w)$
 - $a_2 \cdots a_n$ est plus court que n'importe quel mot distinguant une mauvaise paire
 - $\{p', q'\}$ ne peut pas être une mauvaise paire
- l'algorithme déclarera donc $\{p', q'\}$ comme distinguables
- d'après le corps de la boucle de l'algorithme, dans le pire des cas, à l'itération suivante, $\{p,q\}$ sera marquée.

- Tester l'équivalence entre états
- Tester l'équivalence entre automates
- Minimisation d'automates à états finis déterministes
- 4 Résume

Tester l'équivalence entre deux automates

Considérons deux AEFDs complets :

- $A = (Q^A, \Sigma, q_{\text{init}}^A, \delta^A, F^A),$
- $B = (Q^B, \Sigma, q_{\text{init}}^B, \delta^B, F^B).$

Question

Comment savoir si A et B acceptent le même langage?

Procédure pour tester l'équivalence entre deux automates

- **1** Construire l'automate $E = (Q^A \cup Q^B, \Sigma, q_{\text{init}}^A, \delta^A \cup \delta^B, F^A \cup F^B)$.
- 2 Tester si q_{init}^A et q_{init}^B sont distinguables dans E.

Tester l'équivalence entre deux automates Exemple

Exemple (Deux automates équivalents)

1	Х			
2		х		
3		Х		
4	×		X	Х
	0	1	2	3

- 1 Tester l'équivalence entre états
- 2 Tester l'équivalence entre automates
- 3 Minimisation d'automates à états finis déterministes
- Résume

Univ. Grenoble Alpes, Département Licence Sciences et Technologies, Licence deuxième année

Équivalence entre états

Soit $A = (Q, \Sigma, \delta, q_{\mathrm{init}}, F)$ un AEFD dont tous les états sont accessibles

Définition (Relation d'équivalence entre états)

La relation d'équivalence pprox entre états sur Q est définie par :

$$\forall p, q \in Q: \qquad p pprox q \quad \mathrm{ssi} \quad \forall u \in \Sigma^*: \left(\delta^*(p, u) \in F \iff \delta^*(q, u) \in F\right)$$

pprox est effectivement une relation d'équivalence. C'est une relation :

- réflexive,
- symétrique,
- transitive.

Notations :

- [q] : la classe d'équivalence de l'état q
- $Q_{/\approx}$: l'ensemble des classes d'équivalence (dans un automate avec ensemble d'états Q).

Équivalence et distinguabilité sont duales

Deux états sont équivalents si et seulement s'ils ne sont pas distinguables.

Minimisation : automate minimisé et équivalence

Soit $A = (Q, \Sigma, \delta, q_{\text{init}}, F)$ un AEFD complet dont tous les états sont accessibles.

Définition (Minimisé d'un automate)

Le minimisé de A est l'automate $A_{/\approx}=(Q_{/\approx},\Sigma,[q_{\mathrm{init}}],\delta_{/\approx},F_{/\approx})$ où :

ullet $\delta_{/pprox}$ est l'application de transition t.q. :

$$\begin{array}{ccc} \delta_{/\approx} & : & Q_{/\approx} \times \Sigma \to Q_{/\approx} \\ \delta_{/\approx}([q],a) & \stackrel{\mathrm{def}}{=} & [\delta(q,a)] \end{array}$$

• $F_{/\approx} = \{ [q] \mid q \in F \}.$

Théorème

Étant donnés A et son minimisé $A_{/\approx}$:

- $L(A_{/\approx}) = L(A);$
- **Q** $A_{/\approx}$ est minimal pour L(A): il n'existe pas d'AEFD complet qui reconnaît L(A) et contient moins d'états que $A_{/\approx}$

Minimisation d'automate : exemple

=0	\equiv_1	=2	≡3
1	2	2	2
2 3 5 6	3	3	3
3	1	1	1
5	5 6	5	5 6
6	6	6	6
4	4	4	4
7	7	7	7

Pourquoi l'algorithme de minimisation est optimal

Soit $A = (Q, \Sigma, \delta, q_{\text{init}}, F)$ un AEFD complet dont tous les états sont accessibles.

Soit M l'automate minimisé par l'algorithme de minimisation.

Supposons qu'il existe un automate minimisé N qui accepte le même langage que A mais avec moins d'états que M.

- Appliquer la procédure pour tester l'équivalence entre automates sur M et N.
- Les états initiaux de M et N sont indistinguables car L(M) = L(N).
- Remarquer que si p et q sont indistinguables alors tous les successeurs sur n'importe quel symbole sont indistinguables (sinon p et q seraient distinguables).
- Tous les états de M sont indistinguables d'au moins un état de N.
 - prenons p de M, il existe $w \in \Sigma^*$ depuis l'état initial de M vers p
 - ullet par w nous pouvons atteindre un état de N depuis sont état initial
 - \bullet par induction, p et l'état atteint dans N par w sont indistinguables
- Comme N a moins d'états que M, il y a deux états de M qui sont indistinguables du même état dans N.
- Par transitivité de la relation d'indistinguabilité, ces deux états sont indistinguables l'un de l'autre.
- ullet Contradiction : M a été conçu tel que tous ses états sont distinguables.

- Tester l'équivalence entre états
- Tester l'équivalence entre automates
- Minimisation d'automates à états finis déterministes
- 4 Résumé

Résumé du Chapitre 5 : Équivalence et Minimisation d'Automate à États Fini Déterministes

Équivalence et Minimisation d'Automate à États Fini Déterministes

- équivalence entre états,
- équivalence entre automates,
- minimisation d'automate.

Pour le prochain cours

- Déterminer pourquoi les algos de calculs des relations d'états distinguables et équivalents terminent.
- (Chapitre précédent) Définir des procédures permettant de calculer des automate reconnaissant l'union et le xor des langages d'automates passés en paramètres.