

## SEQUENCE LISTING

```
<110> Genencor International, Inc.
      Jones, Brian E.
     Grant, William D.
     Heaphy, Shaun
     Grant, Susan
<120> Novel Bacillus 029cel Cellulase
<130> GC796-2-PCT
<140> PCT/US2004/013258
<141> 2004-04-28
<150> US 60/466,831
<151> 2003-04-29
<160> 3
<170> FastSEO for Windows Version 4.0
<210> 1
<211> 3410
<212> DNA
<213> Bacillus sp.
<220>
<221> misc feature
<222> (1)...(3410)
<223> isolated from environmental sample from Sonachi Lake, Kenya
<400> 1
atcaacacgc tggaaagtaa tttcaagggt aaggccatcg gttgccgccg gggtagaaat
                                                                        60
gtgcggttgg atttcgttga gcggcgtcgc cggcgttcca ccgagggcat agcgcagcag
                                                                       120
qttqqcqatg ccaccggtga ggccttcggg gccgcctacg atgttgtgct cagccgccca
                                                                       180
tgcgatgtag ccgtccggct cgggttcgct cgcgggggtg aagaagacaa tgtcgtcgag
                                                                       240
ataaaggttg ccgcttccgc tctcaacgcc gccgaggttg aattggattt cgcaaattct
                                                                       300
cqttaqqtcc agcacggaat cgccgacgag gtcggctatg ggaatctgaa tgcgcccata
                                                                       360
gggttgggta cgcggaaggg acacgtaggg acccactttg tcattgggcg agacgagccg
                                                                       420
                                                                       480
qacaaaqatt tqqtqcqccq cctqcqaqgq gccttqqaqg gcgaqaqaaa ggtacqtqaq
ggcgctgatg tcgtgcgtgg gaccgtctcc ccagttgtcg agattgagcc caaatccggc
                                                                       540
ccaccatccq qcqataqtqt aqctccaatq qtaqtgacgc tcaccctcga agccgccgct
                                                                       600
qqaqaqttcc tgcaagccgt cgccccaaat gcccgtgatg agcgttgcct cgtcacggta
                                                                       660
gatcacaagt tcggcggcgg gtgccggggg aagatcgcct tgagtgatca cgagagtggc
                                                                       720
qqtqqcqctg ccttcgtgat tagggtcggt aatggtggcg acgaccgtgt agctaccggg
                                                                       780
                                                                       840
ccccactggc gcatgggtgg aaccgttgta ggtaaaggag acgtcaagcc ccacgggatg
                                                                       900
qqtctcqqca agagcggcct tgggggtgcc gtcgaaaacg tgttccaaat tggagagcgt
gatggtggcg ggtgccttga gcacagtcac agaaacagtg gattgcacgg gatcgtgcgc
                                                                       960
tgccgtgtct gcaggtgtga agaccacgct gtaaaaacgg gttccggcgg acggtgcaag
                                                                      1020
                                                                      1080
qccqqacagg acaaaggcaa agtcgccggg gacggcggct actccgccgc tcaggccggc
ctccgcaagg gtttgcccga aggtgatggg tgcggctgtg ggccacatct ccacaaggcc
                                                                      1140
ggtgtccccc tcgtcacgca ccggcatgag ggcggagagg agatgaatgt aactggcttg
                                                                      1200
                                                                      1260
gtaattgatg tegggetegg tgattteeca tgagttetee ggeeaaaaac catteeaate
```

aaggtagget ttttgeaegg gttggteteg gategeetga atgetteege tgtatttggg

1320

```
cattgggacc cgcccgaaag aaaaccagga gcgggaccgt agagtgaagt gagggcattg
                                                                      1380
                                                                      1440
teccaqteeg gecategegg aaccaatggt ggtagattte attggetgea eggteagege
cgctggcata catgttgcta agatagacca tgcccattgg gttcactccg tggagatagt
                                                                      1500
gcaggtagcc catcgcggca tcgcgatgcg cggccgcgtc ggcggggttg agcccaagcc
                                                                      1560
tccgtacccc ctcgaagaaa aagccagcct gagactttgt tttgttcgag ccccacgtgt
                                                                      1620
                                                                      1680
aatcctgatc cttcaggtag gegeggtagg egteggtetg gttattccat geaccgagaa
                                                                      1740
actocccaco gtttatagaa googocatoo ggttgoggat gtoggoagag acgotaggog
                                                                      1800
tcgctcccqg gagggtcgtg tagtgggcga gagctttttg tagctcacct tgaaagggga
                                                                      1860
agaaatacca ccactgcacg ggctccatat cgagatagcg cacatcgaag aaatcgcgat
agaccgcacc gcccgtgcgc tcgaagagca tggcggcggc catcacacgg ttggctagcg
                                                                      1920
tatcgtgggc attgcgcgag gggctcacgg aagcaaatcc ggtgttgtcg aaaggcacat
                                                                      1980
                                                                      2040
gaggatggac catggtccaa ttccatgcgg cgatggcagc ggattcgagg gtgacggcat
aatcgctcat gcctacgctc tcaaagacag tcgccccgag ggcgaaagcg gcggcagcca
                                                                      2100
tggcagtggc ctcggtcgag acggggccgt agtaacgcgg atgggtgtcg gtgctcggcg
                                                                      2160
                                                                      2220
ggctggcgct ctggtgcccc gtcacggaaa ctttcccgag aatagccccg ctcggctcct
                                                                      2280
gcatgcgtaa gagccagtcc attccccatt tgacttcgtc aagcaggtcg gggacaccgt
                                                                      2340
tgccggattc cgggatgcca aaatcatcgg taaagacgtc aggccgccct tgataggcaa
                                                                      2400
ggagcagete caggatgaeg egeceegtee actegetgta ettgttgaaa tegecegeat
cgaaccaacc gccgctgaga tcgcgctcca aggaggcatt ccccatatcc cagatggggc
                                                                      2460
ggctggcgac gtcctgcggg tgagaagcgg catcggccca gttcgcgtgg gcgtagggca
                                                                      2520
cctccttggc aaacccggag cgctgataga agaacatgcg cacggcctcg cgcaggacaa
                                                                      2580
                                                                      2640
categtaaac ateegegeea atggegaaac tateggaatg agtgttgttg geaggategt
ggatgcggta gtggccgggc tcggcaacta ccgtaaaatc aaaccaccac acgcggtctc
                                                                      2700
                                                                      2760
ccqattqaat atqqatggcg ccgccgttcc acgggaccgg tgagccggag aaaaccacga
                                                                      2820
cgccatcgtt cacgcgacgg acctccagcg ttgcgccggg gctgtagctc tcggcgctgt
                                                                      2880
tccagccaat ctgcgggtcg gcgatcaccg ccaccttggt ggcatcggcg gggtaaccga
                                                                      2940
attggtcgat gcggatttta tcggtgtggg tggaggcgac gagggcggag ctgcccatga
                                                                      3000
gcagcaagaa aaagcccgct gtcggcccga taccaaaaaa acgaataggg agagaaaaat
                                                                      3060
tcatagcagg atgtggatac ggaaaggggg aaaacggtgc aaagacccaa gcccaacgct
tggcgaaaac tggatggttg gtttatcaag aaaagcgctt ttgagccaaa agctgcgggc
                                                                      3120
                                                                      3180
aatccttatt gcgtttcaca atattttcac atcgtcggcg gcacgacttt tcgatgggcg
                                                                      3240
acttgacage gtattetete aggegegagg etgeaaacet tatgaaaaaa ggeeegegea
gcgatctgtc cccggtcaaa atccagtcaa ggtttgttca agggtttgag gtctgataga
                                                                      3300
ggcacagtcg agccatcagc agtcgcattg agtagggttg ttggagaaag tgtgcaaatg
                                                                      3360
accgctgccg aaggaactgt ggagacaaaa agcatatttt cctcgccaag
                                                                      3410
<210> 2
<211> 1746
<212> DNA
<213> Bacillus sp.
<220>
<221> misc_feature
<222> (1)...(1746)
<223> isolated from environmental sample from Sonachi Lake, Kenya
<400> 2
                                                                        60
atgaattttt ctctccctat tcgttttttt ggtatcgggc cgacagcggg ctttttcttg
                                                                       120
ctqctcatqq qcagctccgc cctcgtcgcc tccacccaca ccgataaaat ccgcatcgac
caatteggtt acceegecga tgccaccaag gtggcggtga tegeegacce gcagattgge
                                                                       180
tggaacagcg ccgagagcta cagccccggc gcaacgctgg aggtccgtcg cgtgaacgat
                                                                       240
                                                                       300
ggcgtcgtgg ttttctccgg ctcaccggtc ccgtggaacg gcggcgccat ccatattcaa
tegggagace gegtgtggtg gtttgatttt aeggtagttg eegageeegg eeactaeege
                                                                       360
                                                                       420
atccacgate etgecaacaa cactcattee gatagttteg ceattggege ggatgtttae
gatgttgtcc tgcgcgaggc cgtgcgcatg ttcttctatc agcgctccgg gtttgccaag
                                                                       480
                                                                       540
gaggtgccct acgcccacgc gaactgggcc gatgccgctt ctcacccgca ggacgtcgcc
                                                                       600
ageegeecea tetgggatat ggggaatgee teettggage gegateteag eggeggttgg
```

```
ttcgatgcgg gcgatttcaa caagtacagc gagtggacgg ggcgcgtcat cctggagctg
ctccttqcct atcaaggqcq qcctqacqtc tttaccqatg attttggcat cccggaatcc
ggcaacggtg tccccgacct gcttgacgaa gtcaaatggg gaatggactg gctcttacgc
atgcaggagc cgagcggggc tattctcggg aaagtttccg tgacggggca ccagagcgcc
agcccgccga gcaccgacac ccatccgcgt tactacggcc ccgtctcgac cgaggccact
gccatggctg ccgccgcttt cgccctcggg gcgactgtct ttgagagcgt aggcatgagc
gattatgccg tcaccctcga atccgctgcc atcgccgcat ggaattggac catggtccat
cctcatgtqc ctttcgacaa caccggattt gcttccqtga gcccctcqcq caatqcccac
gatacqctaq ccaaccqtqt qatqqccqcc qccatqctct tcqaqcqcac qqqcqqtqcq
gtctatcgcg atttcttcga tgtgcgctat ctcgatatgg agcccgtgca gtggtggtat
ttcttcccct ttcaaggtga gctacaaaaa gctctcgccc actacacgac cctcccggga
gcgacgccta gcgtctctgc cgacatccgc aaccggatgg cggcttctat aaacggtggg
gagtttctcg gtgcatggaa taaccagacc gacgcctacc gcgcctacct gaaggatcag
gattacacgt ggggctcgaa caaaacaaag tctcaggctg gctttttctt cgagggggta
eggaggettg ggeteaacce egeegaegeg geegegeate geqatgeege gatgggetae
ctgcactatc tccacggagt gaacccaatg ggcatggtct atcttagcaa catgtatgcc
ageggegetg acegtgeage caatgaaate taccaccatt ggtteegega tggeeggaet
gggacaatgc cctcacttca ctctacggtc ccgctcctgg ttttctttcg ggcgggtccc
aatgcccaaa tacagcggaa gcattcaggc gatccgagac caacccgtgc aaaaagccta
ccttga
<210> 3
<211> 581
<212> PRT
<213> Bacillus sp.
<220>
<221> VARIANT
<222> (1) . . . (581)
<223> isolated from environmental sample from Sonachi Lake, Kenya
<400> 3
Met Asn Phe Ser Leu Pro Ile Arg Phe Phe Gly Ile Gly Pro Thr Ala
                                    10
Gly Phe Phe Leu Leu Met Gly Ser Ser Ala Leu Val Ala Ser Thr
His Thr Asp Lys Ile Arg Ile Asp Gln Phe Gly Tyr Pro Ala Asp Ala
Thr Lys Val Ala Val Ile Ala Asp Pro Gln Ile Gly Trp Asn Ser Ala
                        55
                                            60
Glu Ser Tyr Ser Pro Gly Ala Thr Leu Glu Val Arg Arg Val Asn Asp
                    70
                                        75
Gly Val Val Phe Ser Gly Ser Pro Val Pro Trp Asn Gly Gly Ala
                                    90
Ile His Ile Gln Ser Gly Asp Arg Val Trp Trp Phe Asp Phe Thr Val
                                105
Val Ala Glu Pro Gly His Tyr Arg Ile His Asp Pro Ala Asn Asn Thr
                            120
                                                125
His Ser Asp Ser Phe Ala Ile Gly Ala Asp Val Tyr Asp Val Val Leu
                        135
                                            140
Arg Glu Ala Val Arg Met Phe Phe Tyr Gln Arg Ser Gly Phe Ala Lys
                    150
                                        155
Glu Val Pro Tyr Ala His Ala Asn Trp Ala Asp Ala Ala Ser His Pro
                                                         175
Gln Asp Val Ala Ser Arg Pro Ile Trp Asp Met Gly Asn Ala Ser Leu
                                185
Glu Arg Asp Leu Ser Gly Gly Trp Phe Asp Ala Gly Asp Phe Asn Lys
```

660

720

780

840

900

960 1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

1620

1680

1740 1746

|            |            | 195        |            |            |            |            | 200        |            |            |            |            | 205        |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Tyr        | Ser<br>210 | Glu        | Trp        | Thr        | Gly        | Arg<br>215 | Val        | Ile        | Leu        | Glu        | Leu<br>220 | Leu        | Leu        | Ala        | Tyr        |
| Gln        | Gly        | Arg        | Pro        | Asp        | Val        | Phe        | Thr        | Asp        | Asp        | Phe        | Gly        | Ile        | Pro        | Glu        | Ser        |
| 225        |            |            |            |            | 230        |            |            |            |            | 235        |            |            |            |            | 240        |
| Gly        | Asn        | Gly        | Val        | Pro<br>245 | Asp        | Leu        | Leu        | Asp        | Glu<br>250 | Val        | Lys        | Trp        | Gly        | Met<br>255 | Asp        |
| Trp        | Leu        | Leu        | Arg<br>260 | Met        | Gln        | Glu        | Pro        | Ser<br>265 | Gly        | Ala        | Ile        | Leu        | Gly<br>270 | Lys        | Val        |
| Ser        | Val        | Thr<br>275 | Gly        | His        | Gln        | Ser        | Ala<br>280 | Ser        | Pro        | Pro        | Ser        | Thr<br>285 | Asp        | Thr        | His        |
| Pro        | Arg<br>290 | Tyr        | Tyr        | Gly        | Pro        | Val<br>295 | Ser        | Thr        | Glu        | Ala        | Thr<br>300 | Ala        | Met        | Ala        | Ala        |
| Ala<br>305 | Ala        | Phe        | Ala        | Leu        | Gly<br>310 | Ala        | Thr        | Val        | Phe        | Glu<br>315 | Ser        | Val        | Gly        | Met        | Ser<br>320 |
| Asp        | Tyr        | Ala        | Val        | Thr<br>325 | Leu        | Glu        | Ser        | Ala        | Ala<br>330 | Ile        | Ala        | Ala        | Trp        | Asn<br>335 | Trp        |
| Thr        | Met        | Val        | His<br>340 | Pro        | His        | Val        | Pro        | Phe        | Asp        | Asn        | Thr        | Gly        | Phe<br>350 | Ala        | Ser        |
| Val        | Ser        | Pro<br>355 | Ser        | Arg        | Asn        | Ala        | His<br>360 | Asp        | Thr        | Leu        | Ala        | Asn<br>365 | Arg        | Val        | Met        |
| Ala        | Ala<br>370 | Ala        | Met        | Leu        | Phe        | Glu<br>375 | Arg        | Thr        | Gly        | Gly        | Ala<br>380 | Val        | Tyr        | Arg        | Asp        |
| Phe<br>385 | Phe        | Asp        | Val        | Arg        | Tyr<br>390 | Leu        | Asp        | Met        | Glu        | Pro<br>395 | Val        | Gln        | Trp        | Trp        | Tyr<br>400 |
| Phe        | Phe        | Pro        | Phe        | Gln<br>405 | Gly        | Glu        | Leu        | Gln        | Lys<br>410 | Ala        | Leu        | Ala        | His        | Tyr<br>415 | Thr        |
| Thr        | Leu        | Pro        | Gly<br>420 | Ala        | Thr        | Pro        | Ser        | Val<br>425 | Ser        | Ala        | Asp        | Ile        | Arg<br>430 | Asn        | Arg        |
| Met        | Ala        | Ala<br>435 | Ser        | Ile        | Asn        | Gly        | Gly<br>440 | Glu        | Phe        | Leu        | Gly        | Ala<br>445 | Trp        | Asn        | Asn        |
| Gln        | Thr<br>450 | Asp        | Ala        | Tyr        | Arg        | Ala<br>455 | Tyr        | Leu        | Lys        | Asp        | Gln<br>460 | Asp        | Tyr        | Thr        | Trp        |
| Gly<br>465 | Ser        | Asn        | Lys        | Thr        | Lys<br>470 | Ser        | Gln        | Ala        | Gly        | Phe<br>475 | Phe        | Phe        | Glu        | Gly        | Val<br>480 |
| _          |            |            | _          | 485        |            |            |            |            | 490        |            |            |            |            | Asp<br>495 |            |
| Ala        | Met        | Gly        | Tyr<br>500 | Leu        | His        | Tyr        | Leu        | His<br>505 | Gly        | Val        | Asn        | Pro        | Met<br>510 | Gly        | Met        |
| Val        | Tyr        | Leu<br>515 | Ser        | Asn        | Met        | Tyr        | Ala<br>520 | Ser        | Gly        | Ala        | Asp        | Arg<br>525 | Ala        | Ala        | Asn        |
| Glu        | Ile<br>530 | Tyr        | His        | His        | Trp        | Phe<br>535 | Arg        | Asp        | Gly        | Arg        | Thr<br>540 | Gly        | Thr        | Met        | Pro        |
| Ser<br>545 | Leu        | His        | Ser        | Thr        | Val<br>550 | Pro        | Leu        | Leu        | Val        | Phe<br>555 | Phe        | Arg        | Ala        | Gly        | Pro<br>560 |
| Asn        | Ala        | Gln        | Ile        | Gln<br>565 | Arg        | Lys        | His        | Ser        | Gly<br>570 | Asp        | Pro        | Arg        | Pro        | Thr<br>575 | Arg        |
| Ala        | Lys        | Ser        | Leu<br>580 | Pro        |            |            |            |            |            |            |            |            |            |            |            |