Federated Learning using PHE

Training a Machine Learning Model on Shared Data

Presenters -Vibhav Agarwal (IMT2016003) Aayush Grover (IMT20<u>16005)</u>

Content

- Motivation
- Related Work
- Approach
- Results

Motivation

Motivation

Constraints -

- Data should not leave a hospital, even in the encrypted format.
- 2. Origin of data should not be inferred at any time.

Each party is "honest but curious"

Related Work

Secure Model Fusion for Distributed Learning Using Partial Homomorphic Encryption - 2019

- Each client computes individual weights
- Sends encrypted weights to server
- Server sums them up and sends to one of the clients
- Client decrypts it and sends it to all clients

Privacy-Preserving Ridge Regression with only Linearly-Homomorphic Encryption - 2018

Takes about 40s to train on student dataset

Scalable and Secure Logistic Regression via Homomorphic Encryption - 2016

- Encrypted data is sent to the server by each client
- The model is computed by server by using mathematical approximations
- Outputs the model weights
- Use R-LWE

Approach

Approach: Data

- Use the breast_cancer dataset from scikit-learn
- The hospitals will have different patient records but with the same feature set.
- Data split into test and train set in 1:3 ratio.
- This train set is further split into n shares for n hospitals.
 - Represents the idea of horizontal split of the dataset.
- The test set is common for all parties and for all experiments.

Approach: Model

- Use Logistic Regression Classification model for classifying breast cancer into benign or malignant.
- Federated learning on the complete data of all the n hospitals.
- Our approach is to not share data in its true or encrypted format
 - Instead share the derived information i.e. gradients in the encrypted format.
- The company X creates the public-private key pair using Paillier scheme (PHE).
 - Public key is shared with the hospitals for the gradient encryption
 - Private key is kept with the company itself.

Approach: Training

Approach: Training

... Model is trained on the whole data

```
Algorithm 1 Pseudocode

for hospital h_i in n do

g_i \leftarrow \text{compute gradient for } h_i on data X_i

ag_i \leftarrow g_i + ag_{i-1} where aggregated gradient ag_{i-1} from h_{i-1}

end for

d_{ag} \leftarrow \text{Company decrypts } ag

for hospital h_i in n do

h_i performs gradient descent using d_{ag}

end for
```

Approach: Security

- We consider all parties to be honest but curious.
- No hospital will be able to point out where patients' data originated.
 - True if the protocol is run by at least 3 hospitals preventing the reconstruction of each others' gradients.
- The company X cannot learn anything about the underlying data from the total aggregated gradient, thereby preserving patients' privacy.
- Centralized aggregation vs coupled: O(1) vs O(logn) aggregation. Security issue in O(1) since Server can pinpoint patients' data origins.

Results

Results

- 2 different datasets
- Test data is common in all scenarios (for a given dataset)
- Key length = 1024

Results - breast cancer

Number of Hospitals (n)	Avg Acc (LL) (in %)	$\begin{array}{c} \text{Train Time} \\ \text{(LL)} \\ \text{(in s)} \end{array}$	Avg Acc (FL) (in %)	$\begin{array}{c} {\rm Train\ Time} \\ {\rm (FL)} \\ {\rm (in\ s)} \end{array}$	$\begin{array}{c} \text{Avg Acc} \\ \text{(sklearn)} \\ \text{(in \%)} \end{array}$	$\begin{array}{c} \text{Train Time} \\ \text{(sklearn)} \\ \text{(in s)} \end{array}$
3	96.27	0.003	95.80	2.821	95.80	0.123
7	96.00	0.006	95.80	6.315	95.80	0.028
10	95.38	0.008	95.80	9.987	95.80	0.033
20	94.93	0.161	95.80	18.343	95.80	0.036
27	94.17	0.209	95.80	24.681	95.80	0.038

Table 1: Comparison of our model's performance on breast cancer data with the one without combining data and also, against scikit-learn's Logistic Regression. The best performances are indicated in bold. LL-Local Learning; FL-Federated Learning

Results - grad admission

Number of Data Owners (n)	Avg Acc (LL) (in %)	$\begin{array}{c} \text{Train Time} \\ \text{(LL)} \\ \text{(in s)} \end{array}$	Avg Acc (FL) (in %)	$\begin{array}{c} \text{Train Time} \\ \text{(FL)} \\ \text{(in s)} \end{array}$	Avg Acc (sklearn) (in %)	Train Time (sklearn) (in s)
3	70.40	0.003	86.40	0.777	86.40	0.024
7	80.46	0.006	86.40	1.709	86.40	0.029
10	79.28	0.014	86.40	2.594	86.40	0.027
20	75.24	0.017	86.40	5.143	86.40	0.030
27	77.16	0.020	86.40	6.802	86.40	0.024

Table 2: Comparison of our model's performance on grad-admission data with the one without combining data and also, against scikit-learn's Logistic Regression.

Thank you!