Contents

1. The Chernoff-Cramer method	2
1.1. The Chernoff bound and Cramer transform	2
1.2. Hoeffding's and related inequalities	
2. The variance method	G
2.1. The Efron-Stein inequality	C

Question: toss a fair coin n = 10000 times. How many heads?

$$X = \sum_{i=1}^{n}, \ X_i \sim \text{Bern}(1/2). \ \mathbb{E}[X] = 5000. \ \text{But} \ \mathbb{P}(X = 5000) = \left(\begin{smallmatrix} 10^4 \\ 5000 \end{smallmatrix} \right) \cdot 2^{-10^4} \approx 0.008.$$
 By WLLN, $\mathbb{P}(X \in [5000 - n\varepsilon, 5000 + n\varepsilon]) \approx 1.$

Theorem 0.1 (Central Limit Theorem) Let $X_1,...,X_n$ be IID RVs with mean $\mathbb{E}[X_1]=\mu$. Let $\mathrm{Var}(X_1)=\sigma^2<\infty$. Then $\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^n(X_i-\mu)\underset{D}{\to}N(0,1)$, i.e.

$$\mathbb{P}\Bigg(\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^n(X_i-\mu)\in A\Bigg)\to \int_A\frac{1}{\sqrt{2n}}e^{-x^2/2}\,\mathrm{d}x$$

for all A.

So $\mathbb{P}\left(X \in \left[\frac{n}{2} - \frac{\sqrt{n}}{2}Q^{-1}(\delta), \frac{n}{2} + \frac{\sqrt{n}}{2}Q^{-1}(\delta)\right]\right) \ge 1 - \delta$, for n large enough, where $Q(\delta) = \int_{\delta}^{\infty} \frac{1}{\sqrt{2n}} e^{-x^2/2d} \, \mathrm{d}x$. We have $Q^{-1}(x) \propto \sqrt{\log \frac{1}{x}}$. So interval has length $\propto \sqrt{n} \sqrt{\log \frac{1}{\delta}}$.

Theorem 0.2 (Chebyshev's Inequality) $\mathbb{P}(|X - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$ for all $\varepsilon > 0$.

Corollary 0.3
$$\mathbb{P}\left(\left|\sum_{i=1}^{n}(X_i)-\frac{n}{2}\right|\geq t\right)\leq \frac{\operatorname{Var}\left(\sum_{i=1}^{n}X_i\right)}{t^2}=n\frac{\sigma^2}{t^2}\leq \delta \text{ where }t=\sqrt{n}\sigma/\sqrt{\delta}.$$
 So $\mathbb{P}(X\in\left[\frac{n}{2}-,\frac{n}{2}\right])\geq 1-\delta.$

Question 2: we have N coupons. Each day receive one uniformly at random independent of the past. How many days until all coupons received?

We have
$$X = \sum_{i=1}^n X_i$$
, $X_i \sim \text{Geom}(\frac{i}{n})$. $\mathbb{E}[X] = \sum_i \mathbb{E}[X_i] \approx n \log n$ (verify this).

Question 3: Let $(X_1,...,X_n),(Y_1,...,Y_n)$ be IID. What is the longest common subsequence, i.e. $f(X_1,...,X_n,Y_1,...,Y_n)=\max\{k:\exists i_1,...,i_k,j_1,...,j_k \text{ s.t. } X_{i_j}=Y_{i_j} \ \forall j\in [k]\}$. Computing f is NP-hard. f is smooth.

Principle: a smooth function of many independent random variables concentrates around its mean.

Tower property of conditional expectation: $\mathbb{E}(\mathbb{E}(Z \mid X, Y) \mid Y) = \mathbb{E}(Z \mid Y)$.

Theorem 0.4 (Holder's Inequality) Let $p \ge 1$ and 1/p + 1/q = 1. Then

$$\mathbb{E}[XY] \le \mathbb{E}[|X|^p]^{1/p} \cdot \mathbb{E}[|X|^q]^{1/q}.$$

1. The Chernoff-Cramer method

1.1. The Chernoff bound and Cramer transform

Theorem 1.1 (Weak Law of Large Numbers) Let $X_1, ..., X_n$ be IID RVs with mean $\mathbb{E}[X_1] = \mu$. Then, for all $\varepsilon > 0$,

$$\mathbb{P}\bigg(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| > \varepsilon\bigg) \to 0 \quad \text{as } n \to \infty.$$

Theorem 1.2 (Markov's Inequality) Let Y be a non-negative RV. For any $t \geq 0$,

$$\mathbb{P}(Y \ge t) \le \frac{\mathbb{E}[Y]}{t}.$$

 $Proof\ (Hints)$. Split Y using indicator variables.

Proof. We have $Y = Y \cdot \mathbb{I}_{\{Y \geq t\}} + Y \cdot \mathbb{I}_{\{Y < t\}} \geq t \cdot \mathbb{I}_{\{Y \geq t\}}$. Taking expectations gives the result.

Corollary 1.3 Let $\varphi : \mathbb{R} \to \mathbb{R}_+$ be non-decreasing, then

$$\mathbb{P}(Y \geq t) \leq \mathbb{P}(\varphi(Y) \geq \varphi(t)) \leq \frac{\mathbb{E}[\varphi(Y)]}{\varphi(t)}.$$

For $\varphi(t)=t^2$, we can use $\operatorname{Var}\Bigl(\sum_{i=1}^n X_i\Bigr)=\sum_{i=1}^n \operatorname{Var}(X_i).$

Corollary 1.4 (Chebyshev's Inequality) For any RV Y and t > 0,

$$\mathbb{P}(|Y - \mathbb{E}[Y]| \ge t) \le \frac{\mathrm{Var}(Y)}{t^2}.$$

Proof (Hints). Straightforward.

Proof. Take $Z = |Y - \mathbb{E}[Y]|$ and use Corollary 1.3 with $\varphi(t) = t^2$.

Exercise 1.5 Prove WLLN, assuming that $\operatorname{Var}(X_1) < \infty$, using Chebyshev's inequality.

Remark 1.6 If higher moments exist, we can use them in a similar way: let $\varphi(t) = t^q$ for q > 0, then for all t > 0,

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t) \le \frac{\mathbb{E}[|Z - \mathbb{E}[Z]|^q]}{t^q}.$$

We can then optimise over q to pick the lowest bound on $\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t)$. Note that Chebyshev's Inequality is the most popular form of this bound due to the additivity of variance.

Definition 1.7 The moment generating function (MGF) of F is

$$F(\lambda) \coloneqq \mathbb{E}\big[e^{\lambda Z}\big] = \sum_{k=0}^{\infty} \frac{\lambda^k \mathbb{E}\big[Z^k\big]}{k!}.$$

Definition 1.8 The log-MGF of Z is $\psi_Z(\lambda) = \log F(\lambda)$.

Note that $\psi_Z(\lambda)$ is additive: if $Z = \sum_{i=1}^n Z_i$, with $Z_1, ..., Z_n$ independent, then

$$\psi_Z(\lambda) = \log \left(\mathbb{E} \big[e^{\lambda Z} \big] \right) = \sum_{i=1}^n \log \mathbb{E} \big[e^{\lambda Z_i} \big] = \sum_{i=1}^n \psi_{Z_i}(\lambda).$$

Definition 1.9 The Cramer transform of Z is

$$\psi_Z^*(t) = \sup\{\lambda t - \psi_Z(\lambda): \lambda > 0\}.$$

Proposition 1.10 (Chernoff Bound) Let Z be an RV. For all t > 0,

$$\mathbb{P}(Z \ge t) \le e^{-\psi_Z^*(t)}.$$

Proof. By Corollary 1.3, we have

$$\mathbb{P}(Z \geq t) \leq \frac{\mathbb{E}\big[e^{\lambda Z}\big]}{e^{\lambda t}} = e^{-(\lambda t - \psi_Z(\lambda))}.$$

Taking the infimum over all $\lambda > 0$ gives $\mathbb{P}(Z \ge t) \le \inf\{e^{-(\lambda t - \psi_Z(\lambda))} : \lambda > 0\}$, which gives the result.

Remark 1.11 Our goal is to obtain an upper bound on $\psi_Z(\lambda)$, as this will give exponential concentration. The function $\psi_{Z-\mathbb{E}[Z]}(\lambda)$ gives upper bounds on $\mathbb{P}(Z-\mathbb{E}[Z]\geq t)$, the function $\psi_{-Z+\mathbb{E}[Z]}(\lambda)$ gives upper bounds on $\mathbb{P}(Z-\mathbb{E}[Z]\leq -t)$.

Proposition 1.12

- 1. $\psi_Z(\lambda)$ is convex and infinitely differentiable on (0,b), where $b=\sup_{\lambda>0}\{\mathbb{E}[e^{\lambda Z}]<\infty\}$.
- 2. $\psi_Z^*(t)$ is non-negative and convex.
- 3. If $t > \mathbb{E}[Z]$, then $\psi_Z^*(t) = \sup_{\lambda \in \mathbb{R}} \{\lambda t \psi_Z(\lambda)\}$, the **Fenchel-Legendre** dual.

Proof (Hints).

- 1. Differentiability proof omitted. For convexity, use Holder's Inequality.
- 2. Straightforward (note that each $t \mapsto \lambda t \psi_Z(\lambda)$ is linear).
- 3. Straightforward.

Proof.

- $\begin{array}{l} 1. \ \psi_Z(\alpha\lambda_1+(1-\alpha)\lambda_2) = \log \mathbb{E}\big[e^{\alpha\lambda_1Z}\cdot e^{(1-\alpha)\lambda_2Z}\big] \leq \alpha\log \mathbb{E}\big[e^{\lambda_1Z}\big] + (1-\alpha)\log \mathbb{E}\big[e^{\lambda_2Z}\big] \ \ \text{by Holder's inequality. The differentiability proof is omitted.} \end{array}$
- 2. $\lambda t \psi_Z(\lambda)|_{\lambda=0} = 0$, so $\psi_Z^*(t) \ge 0$ by definition. Convexity follows since it is a supremum of linear functions.
- 3. By convexity and Jensen's inequality, $\mathbb{E}[e^{\lambda Z}] \geq e^{\lambda \mathbb{E}[Z]}$. So for $\lambda < 0$, $\lambda t \psi_Z(\lambda) \leq \lambda (t \mathbb{E}[Z]) < 0 = \lambda t \psi_Z(\lambda)|_{\lambda=0}$.

Example 1.13 Let $Z \sim N(0, \sigma^2)$. Then the MGF of Z is

$$\begin{split} \mathbb{E}[e^{\lambda Z}] &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2} e^{\lambda x} \, \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x^2-2\lambda\sigma^2x+\lambda^2\sigma^4)/2\sigma^2} e^{\lambda^2\frac{\sigma^2}{2}} \, \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\lambda\sigma^2)^2/2\sigma^2} e^{\lambda^2\frac{\sigma^2}{2}} \, \mathrm{d}x \\ &= e^{\lambda^2\sigma^2/2}. \end{split}$$

By Proposition 1.12, for $t > 0 = \mathbb{E}[Z]$, the Cramer transform is

$$\psi_Z^*(t) = \sup_{\lambda \in \mathbb{R}} \{\lambda t - \lambda^2 \sigma^2 / 2\} =: \sup_{\lambda \in \mathbb{R}} g(\lambda).$$

We have $g'(\lambda)=t-\lambda\sigma^2=0$ iff $\lambda=t/\sigma^2$. So $\psi_Z^*(t)=t^2/\sigma^2-\sigma^2t^2/2\sigma^4=t^2/2\sigma^2$. So Chernoff Bound gives

$$\mathbb{P}(Z \ge t) \le e^{-t^2/2\sigma^2}.$$

Definition 1.14 Let X be an RV with $\mathbb{E}[X] = 0$. X is sub-Gaussian with variance parameter ν if

$$\psi_X(\lambda) \le \frac{\lambda^2 \nu}{2} \quad \forall \lambda \in \mathbb{R}.$$

The set of all such variables is denoted $\mathcal{G}(\nu)$.

Proposition 1.15 For any sub-Gaussian RV X,

- 1. If $X \in \mathcal{G}(\nu)$, then $\mathbb{P}(X \geq t)$, $\mathbb{P}(X \leq -t) \leq e^{-t^2/2\nu}$ for all t > 0.
- 2. If $X_1, ..., X_n$ are independent with each $X_i \in \mathcal{G}(\nu_i)$ then $\sum_{i=1}^n X_i \in \mathcal{G}(\sum_{i=1}^n \nu_i)$.
- 3. If $X \in \mathcal{G}(\nu)$, then $Var(X) \leq \nu$.

Proof. Exercise.

Definition 1.16 The **Gamma function** is defined as

$$\Gamma(z) \coloneqq \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t.$$

Theorem 1.17 Let $\mathbb{E}[X] = 0$. TFAE for suitable choices of ν, b, c, d :

- 1. $X \in \mathcal{G}(\nu)$.
- 2. $\mathbb{P}(X \ge t), \mathbb{P}(X \le -t) \le e^{-t^2/2b}$ for all t > 0.
- 3. $\mathbb{E}[X^{2q}] \le q!c^q$ for all $q \ge \mathbb{N}$. 4. $\mathbb{E}[e^{dX^2}] \le 2$.

Proof (Hints).

- $(1 \Rightarrow 2)$: straightforward.
- $(2 \Rightarrow 3)$: Explain why we can assume b = 1. Use that $\mathbb{E}[Y] = \int_0^\infty \mathbb{P}(Y > t) \, \mathrm{d}t$ for $Y \ge 1$ 0, and the Γ function.
- $(3 \Rightarrow 1)$: show that $\mathbb{E}[e^{\lambda X}] \leq \mathbb{E}[e^{\lambda(X-X')}]$ where X' is an IID copy of X. Show that $\mathbb{E}[(X-X')^{2q}] \leq \mathbb{E}[X^{2q}]$. Expand $\mathbb{E}[e^{\lambda(X-X')}]$ as a series. Conclude that $X \in \mathcal{G}(4c)$.

• $(3 \Leftrightarrow 4)$: exercise.

Proof. $(1 \Rightarrow 2)$ instantly follows (with $b = \nu$) by Proposition 1.15.

 $(2\Rightarrow 3)$: WLOG, b=1. Otherwise consider $\widetilde{X}=X/\sqrt{b}$. Recall that for $Y\geq 0,$ $\mathbb{E}[Y]=$ $\int_0^\infty \mathbb{P}(Y > t) \, \mathrm{d}t$. Now

$$\mathbb{E}[X^{2q}] = \int_0^\infty \mathbb{P}(X^{2q} > t) \, \mathrm{d}t = \int_0^\infty \mathbb{P}(|X| > t^{1/2q}) \, \mathrm{d}t$$

$$\leq 2 \int_0^\infty e^{-t^{1/q}/2} \, \mathrm{d}t$$

$$= 2 \cdot 2^q \cdot q \int_0^\infty u^{q-1} e^{-u} \, \mathrm{d}u$$

$$= 2 \cdot 2^q \cdot q \cdot \Gamma(q)$$

$$= 2^{q+1} \cdot q! < c^q q!$$

for some constant c, where we use the substitution $t^{1/q}/2 = u$, so $t = (2u)^q$, so $dt = 2^q q u^{q-1} du$.

 $(3 \Rightarrow 1)$: $\mathbb{E}[e^{-\lambda X}] \cdot \mathbb{E}[e^{\lambda X}] = \mathbb{E}[e^{\lambda (X - X')}]$, where X' is an IID copy of X. By Jensen's inequality, $\mathbb{E}[e^{-\lambda X}] \geq e^{-\lambda \mathbb{E}[X]} = 1$. So

$$\mathbb{E}\big[e^{\lambda X}\big] \leq \mathbb{E}\big[e^{\lambda(X-X')}\big] = \sum_{q=0}^{\infty} \frac{\lambda^{2q} \mathbb{E}\big[(X-X')^{2q}\big]}{(2q)!}$$

(we can ignore odd powers since X - X' is a symmetric RV: X - X' has the same distribution as X' - X). Now

$$\mathbb{E}[(X-X')^{2q}] = \sum_{k=0}^{2q} \binom{2q}{k} \mathbb{E}[X^k] \mathbb{E}[(X')^{2q-k}] \le \sum_{k=0}^{2q} \binom{2q}{k} \mathbb{E}[X^{2q}] = 2^{2q} \cdot \mathbb{E}[X^{2q}],$$

by Holder's inequality with p = 2q/k and q = 2q/(2q - k) for each k. Thus,

$$\begin{split} \mathbb{E}[e^{\lambda X}] &\leq \sum_{q=0}^{\infty} \frac{\lambda^{2q} \mathbb{E}[X^{2q}] \cdot 2^{2q}}{(2q)!} \\ &\leq \sum_{q=0}^{\infty} \frac{\lambda^{2q} c^q q! 2^{2q}}{(2q)!} \\ &\leq \sum_{q=0}^{\infty} \frac{\lambda^{2q} \cdot c^q 2^q}{q!} = \sum_{q=0}^{\infty} \frac{(\lambda^2 \cdot 2c)^q}{q!} = e^{2\lambda^2 c}, \end{split}$$

where we used that $(2q)!/q! = \prod_{j=1}^q (q+1)! \ge 2^q \cdot q!$. Hence $\psi_X(\lambda) = 2\lambda^2 c = \frac{\lambda^2 \cdot 4c}{2}$, hence $X \in \mathcal{G}(4c)$.

$$(3 \Leftrightarrow 4)$$
: exercise.

1.2. Hoeffding's and related inequalities

Lemma 1.18 (Hoeffding's Lemma) Let Y be a RV with $\mathbb{E}[Y] = 0$ and $Y \in [a, b]$ almost surely (with probability 1). $\psi_Y''(\lambda) \leq (b-a)^2/4$ and $Y \in \mathcal{G}((b-a)^2/4)$.

Proof (Hints).

• Define a new distribution based on λ , which should be obvious after expanding $\psi'_{Y}(\lambda)$.

• To conclude the result, use a Taylor expansion at 0 of $\psi_Y(\lambda)$.

Proof. Let Y have distribution P. We have

$$\psi_Y'(\lambda) = \frac{\mathbb{E}_{Y \sim P}[Ye^{\lambda Y}]}{\mathbb{E}_{Y \sim P}[e^{\lambda Y}]} = \mathbb{E}_{Y \sim P}\left[Y \cdot \frac{e^{\lambda Y}}{\mathbb{E}[e^{\lambda Y}]}\right] = \mathbb{E}_{Y \sim P_{\lambda}}[Y],$$

where if P is discrete, then P_{λ} is the discrete distribution with PMF

$$P_{\lambda}(y) = \frac{e^{\lambda y} P(y)}{\sum_{z} P(z) e^{\lambda z}},$$

and if P is continuous with PDF f, then P_{λ} is the continuous distribution with PDF

$$f_{\lambda}(y) = \frac{e^{\lambda y} f(y)}{\int_{-\infty}^{\infty} f(z) e^{\lambda z} \, \mathrm{d}z}.$$

Now

$$\begin{split} \psi_Y''(\lambda) &= \frac{\mathbb{E}_{Y \sim P} \big[Y^2 e^{\lambda Y} \big] \cdot \mathbb{E}_{Y \sim P} \big[e^{\lambda Y} \big] - \mathbb{E}_{Y \sim P} \big[Y e^{\lambda Y} \big]^2}{\mathbb{E}_{Y \sim P} \big[e^{\lambda Y} \big]^2} \\ &= \mathbb{E}_{Y \sim P} \left[Y^2 \frac{e^{\lambda Y}}{\mathbb{E}_{Y \sim P} [e^{\lambda Y}]} \right] - \mathbb{E} \left[Y \frac{e^{\lambda Y}}{\mathbb{E}_{Y \sim P} [e^{\lambda Y}]} \right]^2 \\ &= \mathbb{E}_{Y \sim P_\lambda} \big[Y^2 \big] - \mathbb{E}_{Y \sim P_\lambda} \big[Y \big]^2 = \mathrm{Var}_{Y \sim P_\lambda} (Y). \end{split}$$

Note that if $Y \in [a, b]$, then $\left| Y - \frac{b-a}{2} \right|^2 \le (b-a)^2/4$. So we have

$$\mathrm{Var}_{Y \sim P_{\lambda}}(Y) = \mathrm{Var}_{Y \sim P_{\lambda}}\big(Y - (b-a)/2\big) \leq \mathbb{E}_{Y \sim P_{\lambda}}\left[\left(Y - \frac{b-a}{2}\right)^2\right] \leq \frac{(b-a)^2}{4}.$$

Finally, using a Taylor expansion at 0, we obtain

$$\psi_Y(\lambda) = \psi_Y(0) + \lambda_Y'(0)\lambda + \psi_Y''(\xi)\frac{\lambda^2}{2} = \psi_Y''(\xi)\frac{\lambda^2}{2} \leq \lambda^2\frac{(b-a)^2}{8},$$

for some $\xi \in [0, \lambda]$, since $\mathbb{E}_{Y \sim P}[Y] = \mathbb{E}_{Y \sim P_0}[Y] = 0$.

Remark 1.19 The distribution P_{λ} in the above proof is called the **exponentially tilted** distribution.

Theorem 1.20 (Hoeffding's Inequality) Let $X_1, ..., X_n$ be independent RVs where each X_i takes values in $[a_i, b_i]$. Then for all $t \ge 0$,

$$\mathbb{P}\Biggl(\sum_{i=1}^n (X_i - \mathbb{E}[X_i]) \geq t\Biggr) \leq \exp\Biggl(-\frac{2t^2}{\sum_{i=1}^n \left(b_i - a_i\right)^2}\Biggr).$$

Proof. Apply Hoeffding's Lemma to $X_i - \mathbb{E}[X_i]$ and use the additivity of $\psi_{\sum_{i=1}^n X_i}(\lambda)$.

Remark 1.21 A drawback of Hoeffding's Inequality is that the bound does not involve $Var(X_i)$. This is addressed by Bennett's inequality:

Theorem 1.22 (Bennett's Inequality) Let $X_1, ..., X_n$ be independent RVs with $\mathbb{E}[X_i] = 0$ and $|X_i| \leq c$ for all i. Let $\nu = \text{Var}(X_1) + \cdots + \text{Var}(X_n)$. Then for all $t \geq 0$,

$$\mathbb{P}\bigg(\sum_{i=1}^n X_i \geq t\bigg) \leq \exp\bigg(-\frac{\nu}{c^2}h_1\bigg(\frac{ct}{\nu}\bigg)\bigg),$$

where $h_1(x) = (1+x)\log(1+x) - x$ for x > 0.

Proof. Denote $\sigma_i^2 = \text{Var}(X_I)$. We have

$$\begin{split} \mathbb{E}[e^{\lambda X_i}] &= \sum_{k=0}^{\infty} \frac{\lambda^k \mathbb{E}\left[X_i^k\right]}{k!} \\ &= 1 + \sum_{k=1}^{\infty} \frac{\lambda^k \mathbb{E}\left[X_i^{k-2} X_i^2\right]}{k!} \\ &\leq 1 + \frac{\sigma_i^2}{c^2} \sum_{k=2}^{\infty} \frac{\lambda^k c^k}{k!} \\ &= 1 + \frac{\sigma_i^2}{c^2} \left(\sum_{k=0}^{\infty} \frac{\lambda^k c^k}{k!} - \lambda c - 1\right) \\ &= 1 + \frac{\sigma_i^2}{c^2} \left(e^{\lambda c} - \lambda c - 1\right). \end{split}$$

So $\psi_{X_i}(\lambda) = \log \left(1 + \frac{\sigma_i^2}{c^2} \left(e^{\lambda c} - \lambda c - 1\right)\right) \le \frac{\sigma_i^2}{c^2} \left(e^{\lambda c} - \lambda c - 1\right)$. So by additivity of ψ , we have

$$\psi_{\sum_{i=1}^n X_i}(\lambda) \leq \frac{\nu}{c^2} e^{\lambda c} - \frac{\nu}{c^2} \lambda c - \frac{\nu}{c^2}.$$

So for $t \geq 0$,

$$\psi_{\sum X_i}^*(t) \geq \sup_{\lambda \in \mathbb{R}} \Bigl\{ \lambda t - \frac{\nu}{c^2} e^{\lambda c} + \frac{\nu}{c} \lambda + \frac{\nu}{c^2} \Bigr\} =: \sup_{\lambda \in \mathbb{R}} \{g(\lambda)\}$$

We have $g'(\lambda) = t - \frac{\nu}{c}e^{\lambda c} + \frac{\nu}{c}$ which is 0 iff $t + \frac{\nu}{c} = \frac{\nu}{c}e^{\lambda c}$, i.e. iff $\lambda = \frac{1}{c}\log(1 + t\frac{c}{v}) = \lambda^*$. So

$$\begin{split} \psi_{\sum X_i}^*(t) &\geq \frac{1}{c}t\log\left(1+\frac{tc}{\nu}\right) - \frac{\nu}{c^2}\bigg(1+\frac{tc}{\nu}\bigg) + \frac{\nu}{c^2}\log\left(1+\frac{tc}{\nu}\right) + \frac{\nu}{c^2}\\ &= \frac{\nu}{c^2}\bigg(\bigg(1+\frac{tc}{\nu}\bigg)\log\bigg(1+\frac{tc}{\nu}\bigg) - \frac{tc}{\nu}\bigg)\\ &= \frac{\nu}{c^2}h_1\bigg(\frac{tc}{\nu}\bigg). \end{split}$$

So we are done by the Chernoff Bound.

Remark 1.23 We can show that $h_1(x) \ge \frac{x^2}{2(\frac{x}{3}+1)}$ for $x \ge 0$. So by Bennett's Inequality, we obtain

$$\mathbb{P}\Biggl(\sum_{i=1}^n X_i \geq t\Biggr) \leq \exp\Biggl(-\frac{t^2}{2\bigl(\frac{tc}{3} + \nu\bigr)}\Biggr),$$

which is **Bernstein's inequality**. If $\nu \gg ct$, then this yields a sub-Gaussian tail bound, and if $\nu \ll tc$, then this yields an exponential bound. So Bernstein misses a log factor.

Remark 1.24 If
$$Z \sim \text{Pois}(\lambda)$$
, then $\psi_Z(\lambda) = \nu \left(e^{\lambda} - \lambda - 1\right)$

2. The variance method

2.1. The Efron-Stein inequality