Applied Deep Learning

Homework 1

Q1: Data processing

	自己建的	使用助教 sample code
Tokenize data	nltk.word_tokenize	Spacy en_core_web_sm
Turncation length	max_sum=307	max_sum=80
	max_text=541	max_text=300
Pretrain embedding	word2vec-goog1e-news-	glove. 840B. 300d
	300	

自己建的 processing 是用 nltk tokenize 的和助教使用的 spacy 略有不同,而我自己建的 turncation length 則是取 trainData、valData 裡的每個的max_text、max_sum 的 length,助教 smaple code 部份我沒有調整參數,pretrain embedding 的部分我是使用 word2vec-google-news-300 當 pretrain,再用 corpus(train、val、test 裡所有的 word)來 fine tune word vector,利用 genism Word2Vec Model train 5 個 epoch ,沒有使用 lowercase、也沒有設定 unk,所以最後 vocab_size 約 24 萬個字、而助教 sample code 部分則是用 glove. 840B. 300d 當作 wordvector,並且有使用 unk 及 lowercase,vocab_size 約 9 萬多字。

之後的 extractive. sh, seq2seq. sh, attention. sh 皆是使用助教的 sample code 因為在我的 preprocess 下 extractive 的表現不好最佳狀況約:

rouge-1: 0.1658 | rouge-2: 0.0256 | rouge-1: 0.1145

而在助教的 sample code 下表現提升許多約:

rouge-1: 0.1835 | rouge-2: 0.0290 | rouge-1: 0.1271

可能造成的原因應該是 max_sum、max_text 太大了 padding 增多,再加上 vocab_size 又很大 model 要能完全學習很困難。

Q2: Describe your extractive summarization

mode1

a. Describe model

Input(batch, seq_len) embedding(vocab_size, hidden=300) →
embedded(batch, seq_len, 300)
embedded(batch, seq_len, 300) biLSTM → out(batch, seq_len, 600)
out(batch, seq_len, 600) Linear(600, 2)+sigmoid → out(batch, seq, 2)

b. performance of your model.

rouge-1: 0.186 \ rouge-2: 0.0286 \ rouge-L: 0.130 (when epoch=30)

- c. loss function BCEwithLogitsLoss, 其中 pos_weight 設為 11.63
- d. optimization algorithm
 adam \ 1r=0.001 \ \cdot batch_size=64
- e. Post-processing strategy.

每筆 data 裡取 sentence 中有包含最多 target word 的前兩名 sentence 當作最後的 summary, 所以每筆 summary 做多會有兩個 sentence 最少則沒有 sentence。

Q3: Describe your Seq2Seq + Attention model.

a. Describe model

attnEncoder:

input(batch, seq,) embedding(vocab_size, hidden=300)→
(batch, seq_len, 300)

Embedded(batch, seq_len, 300) biLSTM → out(batch, seq_len, 600), hidden 取最後一個 seq 的 hidden(batch, 1, 300)

decoder_hidden=hidden
decoder_key=out

一次進去一個一個 word(第一個(sos))

```
attnDecoder:
input(batch, 1) embedding(vocab_size, hidden=300) → (batch, 1, 300)

Embedded(batch, seq_len, 300) GRU(hidden=decoder_hidden) →
gruout(batch, 1, 300), hidden(batch, 1, 300)(下一個 word 要用的 hidden)

decoder_key (batch, seq_len, 600) Linear(600, 300) →
key=value (batch, seq_len, 300)

gruout(batch, 1, 300). transpose(1, 2) → query(batch, 300, 1)

softmax(key*query) → attn_weight (batch, seq_len, 1)
attn_weight. transpose(1, 2)*value → weight_sum (batch, 1, 300)

weight_sum, query concat → out(batch, 1, 600)
```

接著再進去下一個 summary word 直到 summary word_len(80)結束、此處使用的是老師上課教的 general attn,不過 train 不太起來、debug 很久找步道原因…

out Linear(600, vocab_size)+Logsoftmax→ out(batch, 1, vaocab_size)

b. performance of your model.

rouge-1: 0.2282 rouge-2: 0.0564 rouge-1: 0.1866

c. loss function

NLLLoss with ignore_idx=padding_idx

d. optimization algorithm

adam \cdot 1r=0.001 \cdot batch_size=32

Q4:Plot the distribution of relative locations (1%)

下圖是針對 validation dataset(20000 筆資料)所做的 relative locations plot

結果顯示大部分預測的 data 會選取在第一個句子、最後一句則完全沒被選到 過,其他地方分布蠻平均的,不過很奇異的是 relative location 在 0~1 之間 很像是對稱的。

Q5: Visualize the attention weights (2%).

左圖 x 軸為 summary t、y 軸為 text,由左圖可看到下方 一直條白線,代表 text 最後一 個 pad 貢獻給 summary 部分 後半的 pad

左圖為上面那張圖放大之 後的 attention,可以看到有 某些字 text 會貢獻給 summary 比較多所以 attention weight 會比較高。

Q6: Explain Rouge-L (1%)

首先要知道 LCS(longest common subsequence),每一個給定序列中最長的子序列,例如 s1: $2\ 5\ 7\ 9\ 3\ 1\ 2\ s2$: $3\ 5\ 3\ 2\ 8$,LCS(s1, s2) 就是 $5\ 3\ 2$ 長度為 3 ,

左下是 Rouge-L Recall、precision 公式,其中 m 是 reference sentence words count、n 是 prediction sentence words count、LCS(X, Y)則是兩個 sentence 的最長的子序列長度,再將左邊多出結果帶入右下 F1-score 公式得出 Rouge-L.

$$R_{lcs} = \frac{LCS(X,Y)}{m} \qquad (2) P_{lcs} = \frac{LCS(X,Y)}{n} \qquad (3) \qquad 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}.$$

Rouge-L 的優勢在於不需要連續匹配,而是按順序匹配。