Introduction to Statistical Methods

S1-23_AIMLCZC418 – Assignment 2

AIML Section - 4

Each question carries 2.5 Marks (4 x 2.5 = 10 Marks)

1. The article "Effect of Internal Gas Pressure on the Compression Strength of Beverage Cans and Plastic Bottles" (*J. of Testing and Evaluation*, 1993: 129–131) includes the accompanying data on compression strength (lb) for a sample of 15-oz aluminium cans filled with strawberry drink and another sample filled with cola.

Does the data suggest that the extra carbonation of cola results in a higher average compression strength?

	sample size	sample mean	sample SD
Strawberry drink	15	540	21
Cola	15	554	15

SOLUTION:

Sol: Given that $n_1=15, n_2=15, \bar{x}_1=540, \bar{x}_2=554, s_1=21$ and $s_2=15$.

Null hypothesis $H_0: \mu_1 = \mu_2$

Alternate hypothesis H_1 : $\mu_1 < \mu_2$ (one tailed test)

Level of significance ∝ = 0.05

t-table value for 28 d.f is $t_{tab} = t_{\alpha} = 1.701$

Test Statistic:

$$\mathbf{t_{cal}} = \frac{\overline{\mathbf{x_1}} - \overline{\mathbf{x_2}}}{\sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}} = \frac{540 - 554}{\sqrt{\frac{21^2}{15} + \frac{15^2}{15}}} = -2.1$$

 $\left|t_{cal}\right| = \left|-2.1\right| > t_{tab} = 1.701$ at α = 5 % LOS.

<u>Decision</u>: we reject the Null hypothesis at $\alpha = 5 \%$ LOS.

i.e., we accept H_1 .

2. An automobile tyre manufacturer claims that the average life of a particular grade of tyre is more than 20,000 km. A random sample of 16 tyres is having mean 22,000 km with a standard deviation of 5000 km. Validate the claim of the manufacturer at 5% LoS.

SOLUTION:

```
H0 (Null Hypothesis) : \mu <= 20000 H1 (Alternate Hypothesis): \mu > 20000 (less than mean one tailed test) LoS (\alpha) = 5% (Take 5% if not given in question) n = 16 \text{ (Sample size)} \\ \bar{x} = 22000 \text{ (Sample mean)} \\ s = 5000 \text{ (sample Standard deviation)} \\ n < 30 \text{ hence will go with t-test} \\ \text{step 1:} \\ \text{calculate t value from the t-test formula:} \\ t = (\bar{x} - \mu)/(s/\sqrt{n}) \\ t = (22000 - 20000) / 5000/\sqrt{16} \\ t = 1.60 \\ \text{step 2:} \\ \text{get t critical value from t-table for } \alpha = 5\% \text{ and degree of freedom} = 16-1 = 15. \\ \text{t critical value} = 1.753
```

step 3:

check if t calculate < t critical then accept the null hypothesis else reject the null hypothesis. Here, t calculated 1.60 < t critical 1.753, hence will accept the null hypothesis.

Conclusion: from the data given, it is significantly proven that average life of the tyres is more than 20000. ie., **accept null hypothesis**.

3. The severity of a disease and blood group were studied in a research projest. The findings are given in the following table, known as the m xn contingency table. Can this severity of the condition and blood group are associated. Severity of a disease classified by blood group in 1500 patients.

Condition		Total			
Collaition	О	A	В	AB	Total
Severe	51	40	10	9	110
Moderate	105	103	25	17	250
Mild	384	527	125	104	1140
Total	540	670	160	130	1500

SOLUTION:

Solution:

H₀: The two attributes severity of the condition and blood groups are not associated.

H1: The two attributes severity of the condition and blood groups are associated.

Calculation of Expected frequencies

Condition	Blood Groups				
Condition	O	A	В	AB	Total
Severe	39.6	49.1	11.7	9.5	110
Moderate	90.0	111.7	26.7	21.7	250
Mild	410.4	509.2	121.6	98.8	1140

Total	540	670	160	130	1500

Test statistic:

$$\chi^2 = \sum_{i=j}^{m} \sum_{j=1}^{n} \frac{\left(o_{ij} - E_{ij}\right)}{E_{ij}} \sim \chi^2(m-1)(n-1) \text{ df}$$

Here m= 3.,n =4

Calculations:

Oi	Ei	O _i E _i	$(O_i.E_i)^2$	$(O_i.E_i)^2/E$
51	39.6	11.4	129.96	3.2818
40	49.1	-9.1	82.81	1.6866
10	11.7	-1.7	2.89	0.2470
9	9.5	-0.5	0.25	0.0263
105	90.0	15	225.00	2.5000
103	111.7	-8.7	75.69	0.6776
25	26.7	-1.7	2.89	0.1082
17	21.7	-4.7	22.09	1.0180
384	410.4	-26.4	696.96	1.6982
527	509.2	17.8	316.84	0.6222
125	121.6	3.4	11.56	0.0951
104	98.8	5.2	27.04	0.2737
		<u> </u>		12.2347

$$\therefore \chi^2 = 12.2347$$

Table value:

$$\chi^{2}$$
 (3-1)(4-1)= χ^{2} (6) at 5 % l.os)= 12.59

Inference

$$\chi^2$$
 cal $< \chi^2$ tab

We accept the null hypothesis.

(i.e) the two attributes severity of the condition and blood group are independent.

2x2 - contingency table

$$\chi^2 = \frac{N(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)} \sim \chi^2 (2-1) (2-1) df = \chi^2 (1) df$$

4. A random sample is selected from each of three makes of ropes and their breaking strength(pounds) are measured with the following results: Test whether the breaking strength of ropes differs significantly. Note: Take LOS as $5\,\%$

I	II	III
70	100	60
72	110	65
75	108	57
80	112	84
83	113	87
	120	73
	107	

SOLUTION

groups does not differ si ili
toaps does not dille
NO - MAIL LIE FA
to simplifying colouber
common (origin) and the new values given below
1-10 20 -20
-8 30 -15
-5 28 -23
0 32 4
3 33 7
40 -7
27
T, =-20 T2=210 T3=-54.
G= E E Yij = Grand Total = -20+210-54=136.
correction factor = 1027.56.
1 Sum of squares = SST = EE yij - at = 7992-1027.56
tween Sum of squares = 5838,44. = 6964,44.
Erord sum of squares = 1126.
source of of SS Mean Fratio
Btween 2 5838.44 2919.22 F= 2919.2L
Fame 1 1 1126 25,07 75,07
total / 17 6994.44 = 38.89