Exercícios teórico-práticos

1 Otimização não linear sem restrições

- **1.1** Dada a função $f(x) = x^3 6x^2 + 9x + 4$ calcule os seus pontos estacionários e classifique-os.
- 1.2 Na cidade de Ulam Bator surgiu uma epidemia de gripe asiática. A evolução da doença foi descrita pela fórmula

$$P(t) = e^{0.4t - 0.01t^2}$$

onde P(t) representa a percentagem de pessoas doentes e t é o tempo em dias.

Usando o método DSC (baseado em interpolação quadrática), calcule o pior momento da epidemia identificando a percentagem de doentes nesse momento. Inicie o processo iterativo com $t_1=30$ dias. Considere ainda $\delta=2,\,M=0.05$ e $\varepsilon=0.1$ (duas iterações). Use 4 casas decimais nos cálculos.

1.3 Uma empresa precisa de usar x_1 horas de equipamento ao preço (unitário) de 6 unidades monetárias (u.m.) e x_2 horas de mão-de-obra ao preço (unitário) de 4 u.m. para colocar no mercado um certo número fixo de produtos. As horas utilizadas de equipamento e mão-de-obra verificam a relação

$$x_1^2 + x_1 x_2 = 2500.$$

Calcule x_1 e x_2 de modo a minimizar os custos da empresa.

a) Comece por formular esta situação como um problema de otimização sem restrições de uma só variável (por exemplo, em função de x_1).

b) Resolva o problema resultante usando o método DSC (baseado em interpolação quadrática). Na implementação do DSC inicie o processo iterativo com a aproximação inicial $x_1=50$. Use $\delta=5,\, \varepsilon=0.05$ e M=0.1.

Com a aproximação calculada identifique os valores obtidos para as duas variáveis e o custo mínimo.

1.4 [ABCD] representa uma cartolina quadrada de lado 60 cm. Pretende-se montar uma caixa de volume máximo cortando em cada canto um quadrado de lado x, como mostra a figura.

Usando o método DSC (baseado em interpolação quadrática), calcule x. Use duas casas decimais nos cálculos e inicie o processo iterativo com $x_1 = 5$. Considere ainda $\delta = 1$, M = 0.5 e $\varepsilon = 0.5$ (duas iterações).

1.5 A função

$$f(t) = 10 + 3\sin(\frac{2\pi}{365}(t - 80))$$

dá o número de horas com luz do dia numa certa região do país.

O dia 1 de Janeiro corresponde a t=0. Determine o dia do ano (t) em que o número de horas com luz do dia é máximo, usando o método DSC (baseado em interpolação quadrática). Use 2 casas decimais nos cálculos, $\pi=3.14$ e inicie o processo iterativo com $t_1=200$. Considere ainda $\delta=10$, M=0.1 e $\varepsilon=2$ (duas iterações). Use radianos nos cálculos.

 ${\bf 1.6}\,$ Dada a função $f:{\mathbb R}^2\to{\mathbb R}$ definida por

$$f(x_1, x_2) = x_1^2 (1 - x_1)^2 + x_1 x_2$$

verifique se tem maximizantes, minimizantes e/ou pontos sela.

1.7 Considere a função

$$f(x,y) = 3x^2 - y^2 + x^3$$

Mostre que a função dada tem um máximo local em (-2,0), tem um ponto sela em (0,0); e não tem mínimos.

 $\mathbf{1.8}\,$ Dada a função $f:\mathbb{R}^3\to\mathbb{R}$ definida por

$$f(x_1, x_2, x_3) = 5x_1^2 + 2x_2^2 + x_3^4 - 32x_3 + 6x_1x_2 + 5x_2$$

verifique que ela tem apenas um ponto estacionário. Classifique-o.

1.9 Mostre que qualquer ponto da linha $x_2-2x_1=0$ é um mínimo de $f:\mathbb{R}^2\to\mathbb{R}$ definida por

$$f(x_1, x_2) = 4x_1^2 - 4x_1x_2 + x_2^2.$$

1.10 Considere a função

$$f(x_1, x_2) = -\sin(x_1 - 1) - x_2^4.$$

Implemente, no máximo, duas iterações do método de segurança de Newton para determinar o máximo da função $f(x_1, x_2)$. Considere $\eta = 10^{-6}$, $\mu = 10^{-6}$, $\varepsilon = 1$ e $x^{(1)} = (1, 1)^T$.

1.11 A soma de três números $(x_1, x_2 e x_3)$ positivos é igual a 40. Determine esses números de modo que a soma dos seus quadrados seja mínima.

Use a relação da soma para colocar x_3 em função das outras 2 variáveis. Formule o problema como um problema de otimização sem restrições.

A partir da aproximação inicial $(x_1, x_2)^{(1)} = (10, 10)$, use o método de Segurança de Newton (com $\eta = 0.00001$) para calcular esses números, considerando no critério de paragem $\varepsilon = 0.001$. Na condição de Armijo tome $\mu = 0.001$.

1.12 Uma empresa fabrica e comercializa dois tipos de computadores portáteis. O custo de fabrico de cada um deles decresce à medida que o número de unidades produzidas aumenta e é dado pelas seguintes relações empíricas:

$$c_1 = 5 + \frac{1500}{x_1} \qquad c_2 = 7 + \frac{2500}{x_2},$$

em que x_1 e x_2 são o número de unidades de cada um dos portáteis produzidos. O preço de venda dos computadores é tanto menor quanto maior for o número de unidades produzidas, de acordo com as seguintes relações:

$$p_1 = 15 - 0.001x_1$$
 e $p_2 = 25 - 0.0015x_2$.

- a) Formule o problema de otimização que consiste em determinar quantas unidades de cada computador a firma deve produzir de modo a maximizar os lucros.
- b) Resolva o problema usando o método de Segurança de Newton (com $\eta=0.00001$). Considere a seguinte aproximação inicial $(x_1,x_2)^{(1)}=(20,30)$ e $\varepsilon=0.001$. Na condição de Armijo tome $\mu=0.001$.
- c) Com base na aproximação calculada na alínea anterior ao número de computadores produzidos, a empresa terá lucro?

1.13 Três estações elétricas vão fornecer energia a uma certa região da forma mais económica possível. Os custos individuais de operação de cada uma das estações são dados por

$$f_1 = 0.1 + 0.25x$$

$$f_2 = 0.08 + 0.12y + 0.00125y^2$$

$$f_3 = 0.05 + 0.09z + 0.001z^2 + 0.0001z^3$$

em que x, y e z são as energias fornecidas pelas três estações (em MWatt). Determine os valores de x, y e z que minimizam o custo total, se a energia a ser fornecida for de 100 MWatt, recorrendo ao método de segurança de Newton.

Como valores iniciais use $(x, y)^{(1)} = (30, 50)$, no critério de paragem considere $\varepsilon = 0.05$ e tome $\eta = 0.0001$. Como estratégia de procura unidimensional utilize o critério de Armijo com $\mu = 0.01$. Use a relação relacionada com a energia a fornecer para eliminar uma das variáveis, por exemplo, x = 100 - y - z.

1.14 Numa situação monopolista, o rendimento de uma empresa face à venda de um produto ou serviço depende do nível de produção z. O rendimento é uma função crescente de z mas tende em direção a uma assímtota assim que o mercado fica saturado.

Considere a seguinte função rendimento

$$R(z) = z^2/(1+z^2)$$

que depende da produção z dada por $z=x_1^{1/2}x_2^{1/2}$, em que x_1 representa o capital e x_2 o trabalho.

Supondo que a função lucro é dada por

$$\pi(x_1, x_2) = R(z) - 0.04x_1 - 0.06x_2$$

calcule o lucro máximo que a empresa pode ter. Use o método quasi-Newton (com fórmula BFGS). Como aproximação inicial considere o ponto (2,1). Use na paragem do processo iterativo $\varepsilon = 0.1$. No critério de Armijo use $\mu = 0.001$.

1.15 Suponha que pretendia representar um número A positivo na forma de um produto de quatro fatores positivos x_1, x_2, x_3 e x_4 . Para A = 2401, determine esses fatores de tal forma que a sua soma seja a menor possível.

Formule o problema como um problema de otimização sem restrições em função das 3 variáveis x_1, x_2 e x_3 .

A partir da aproximação inicial $(x_1, x_2, x_3)^{(1)} = (6, 7, 5)$, use o método quasi-Newton (com fórmula DFP), para calcular esses fatores. Na paragem do processo iterativo use $\varepsilon = 0.1$. No critério de Armijo use $\mu = 0.001$.

1.16 O lucro, em milhares de euros, da colocação de um sistema elétrico é dado por

$$\mathcal{L}(x_1, x_2) = 20x_1 + 26x_2 + 4x_1x_2 - 4x_1^2 - 3x_2^2$$

em que x_1 e x_2 designam, respectivamente, o custo da mão de obra e do material. Calcule o lucro máximo usando o método quasi-Newton baseado na fórmula DFP, considerando na paragem do processo iterativo $\varepsilon = 0.0001$. Tome a seguinte aproximação inicial (0,0). No critério de Armijo use $\mu = 0.001$.

1.17 Considere um circuito elétrico em que existem duas resistências variáveis, R e X. O valor médio da energia do circuito é dado por

$$P = \frac{10^4 R}{\left(R + 20\right)^2 + X^2}.$$

Determine os valores de R e X para os quais se obtém uma energia de saída máxima. Use o método quasi-Newton (fórmula DFP) e os valores iniciais $(R,X)^{(1)}=(10,5)$. Considere $\mu=0.001$ e $\varepsilon=0.5$.

1.18 Considere um sistema de duas molas em que é aplicada uma força de deformação P com duas componentes P_1 e P_2 . Pretende-se determinar os deslocamentos x_1 e x_2 das molas que minimizam a energia potencial total EP, definida pela seguinte expressão:

$$EP(x_1, x_2) = \frac{1}{2}K_1\left(\sqrt{x_1^2 + (l_1 - x_2)^2} - l_1\right)^2 + \frac{1}{2}K_2\left(\sqrt{x_1^2 + (l_2 + x_2)^2} - l_2\right)^2 - P_1x_1 - P_2x_2.$$

Sabendo que as caraterísticas do sistema são: $l_1 = 10$, $l_2 = 10$, $K_1 = 8$, $K_2 = 1$, $P_1 = 5$ e $P_2 = 5$, resolva o problema através do método de Nelder-Mead com $\varepsilon = 0.5$ (ou duas iterações). Considere os seguintes pontos iniciais: (5,2), (3.25,2.5) e (0,0).

1.19 Calcule o mínimo da função f(x) definida por

$$f(x_1, x_2) = \max((x_1 - 1)^2, x_1^2 + 4(x_2 - 1)^2)$$

implementando o método de Nelder-Mead, tomando para conjunto inicial os vetores

$$\left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle$$
.

e $\varepsilon = 0.5$.

1.20 Calcule o mínimo da função f(x) definida por

$$f(x_1, x_2) = \max(|x_1|, |x_2 - 1|)$$

implementando o método de Nelder-Mead, tomando para conjunto inicial os vetores

$$\left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0.5 \\ 0 \end{pmatrix} \right\rangle$$
.

e $\varepsilon = 0.5$.

1.21 Calcule o máximo da seguinte função não diferenciável

$$f(x_1, x_2) = -|x_1x_2| - x_2^2$$

usando o método de Nelder-Mead. Inicie o processo iterativo com o seguinte simplex:

$$\left\langle \begin{pmatrix} -1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} -1\\-1 \end{pmatrix} \right\rangle.$$

Para a paragem do processo iterativo use $\varepsilon = 0.5$ ou $n_{\text{max}} = 4$.

Soluções

- **1.1** $x^* = 1$ é maximizante; x = 3 é minimizante.
- 1.2 2 iterações; $P_{\text{max}} = 51.5982\%$; $t_{\text{max}} = 20$ dias.
- **1.3** a) min $6x_1 + 4\frac{2500 x_1^2}{x_1}$.
 - b) 3 iterações; $x_1\approx 70.7107;\, x_2\approx -35.3554;$ custo mínimo
 $\approx 282.8427.$
- **1.4** 2 iterações; $x_{\text{max}} \approx 10.00$; $v_{\text{max}} \approx 16000$.
- **1.5** 2 iterações; $t_{\text{max}} \approx 171.74$; $f_{\text{max}} \approx 13.00$.
- **1.6** $x^* = (0,0)$ é ponto sela.
- 1.7 $x^* = (-2,0)$ é maximizante; $x = (0,0)^*$ é ponto sela.
- **1.8** $x^* = (7.5, -12.5, 2)$ é minimizante.
- 1.9 Os pontos da linha são minimizantes ou pontos sela.
- **1.10** 2 iterações; $x_{\text{max}} \approx \begin{pmatrix} -1.3305 \\ -0.6667 \end{pmatrix}$; $f_{\text{max}} = 0.5275$.
- **1.11** a) min $x_1^2 + x_2^2 + (40 x_1 x_2)^2$.
 - b) 1 iteração; $x_1 = 13.3333$; $x_2 = 13.3333$; $x_3 = 13.3333$; $f_{\min} = 533.3333$.
- **1.12** a) min $0.001x_1^2 + 0.0015x_2^2 10x_1 18x_2 + 4000$.
 - b) 1 iteração; $x_{\text{max}} = \begin{pmatrix} 5000 \\ 6000 \end{pmatrix}$; $f_{\text{max}} = 75000$.
 - c) Sim, o lucro é positivo.
- **1.13** a) min $25.23 0.13y + 0.00125y^2 0.16z + 0.001z^2 + 0.0001z^3$.
 - b) 2 iterações; $(x, y, z)_{\min} \approx \begin{pmatrix} 26.8794 \\ 52 \\ 21.1206 \end{pmatrix}$; $f_{\min} \approx 19.8589$.
- **1.14** 2 iterações; $x_{\text{max}} \approx \begin{pmatrix} 2.3111 \\ 1.6365 \end{pmatrix}$; $\pi_{\text{max}} \approx 0.6003$.

1.15 3 iterações; $x_1 \approx 7.0417$; $x_2 \approx 7.4110$; $x_3 \approx 6.7836$; $x_4 \approx 6.7823$; soma máxima ≈ 28.0186 .

1.16
$$x_{\text{max}} \approx \begin{pmatrix} 7.0001 \\ 9.0002 \end{pmatrix}$$
; $\mathcal{L} \approx 187$.

1.17 3 iterações; $R_{\rm max}\approx 19.0402;$ $X_{\rm max}\approx 1.1263;$ $P_{\rm max}\approx 124.8206.$

1.18 2 iterações;
$$x_{\min} \approx \begin{pmatrix} 8.25 \\ 4.5 \end{pmatrix}$$
; $f_{\min} \approx -41.3920$

1.19 4 iterações;
$$x_{\min} \approx \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}$$
; $f_{\min} \approx 0.25$

1.20 4 iterações;
$$x_{\min} \approx \begin{pmatrix} -0.1875 \\ 0.875 \end{pmatrix}$$
; $f_{\min} \approx 0.1875$

1.21 4 iterações;
$$x_{\min} \approx \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
; $f_{\min} \approx 0$