Álgebra Lineal 2020 (LCC- LM- PM) Cap.2: Espacios vectoriales

Graciela Nasini - Yanina Lucarini - Eduardo Martinez

nasini, lucarini, eduardom@fceia.unr.edu.ar

Interpretación geométrica de sistemas lineales

$$x + 2y = 3$$
 (1)
 $4x + 5y = 6$ (2)

Geometría por filas:

$$(r_1) x + 2y = 3$$
 $(r_2) 4x + 5y = 6$

Ejercicio: encontrar gráficamente la solución del sistema como intersección de las rectas r_1 y r_2 en \mathbb{R}^2 .

Geometría por columnas:

$$\left[\begin{array}{c}1\\4\end{array}\right]x+\left[\begin{array}{c}2\\5\end{array}\right]y=\left[\begin{array}{c}3\\6\end{array}\right]$$

Buscamos una combinación lineal de los vectores u = (1,4) y v = (2,5) que nos dé el vector b = (3,6).

Ejercicio: Dibujar en \mathbb{R}^2 los vectores u, v y b y mostrar (gráficamente) que b es combinación lineal de u y v.

Interpretación geométrica

¿En
$$n = 3$$
?

Ejercicio: Mostrar gráficamente que el sistema tiene solución utilizando ambas *geometrías*, por filas y columnas.

¿En
$$n = 10$$
?

Deberemos ser capaces de imaginar planos 9-dimesionales en \mathbb{R}^{10} y en combinaciones lineales de vectores 10- dimensionales...

$$u + v + w = 2$$
 (1)
 $2u + + 3w = 5$ (2)
 $3u + v + 4w = 6$ (3)

Algebraicamente:

$$ec(1) + ec(2) : 3u + v + 4w = 7 \text{ y } ec(3) : 3u + v + 4w = 6$$

Inconsistente (no hay solución).

Geométricamente "por filas": no hay puntos en la intersección de los tres planos.

¿ Qué situaciones pueden darse?

- dos de los tres planos no se intersectan (dos planos paralelos) o
- todos los planos se intersecten dos a dos pero no se intersectan entre los tres.

Ejercicio: ¿Qué sucede con las soluciones del sistema en cada uno de los casos anteriores? ¿Cuál es nuestro caso?.

$$u + v + w = 2$$
 (1)
 $2u + + 3w = 5$ (2)
 $3u + v + 4w = 6$ (3)

Geométricamente "por columnas":

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} u + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} v + \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} w = b = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

Buscamos una combinación lineal de $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$ que nos dé

$$b = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}.$$

Observemos que (1,2,3) está en el plano determinado por (1,0,1) y (1,3,4).

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

Ejercicio: Sabemos que el sistema no tienen solución. ¿Qué podemos decir del vector *b* y el plano determinado por los vectores columna de la matriz de coeficientes?

Ejercicio: ¿Qué situación geométrica se da si cambiamos el lado derecho b por b'=(2,5,7)? ¿Qué podemos decir de las soluciones del sistema en este caso? ¿Qué estaría pasando en la geometría por filas?

Vimos que (1,2,3) está en el plano determinado por (1,0,1) y (1,3,4).

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

De otra forma:

$$3\begin{bmatrix}1\\2\\3\end{bmatrix}-\begin{bmatrix}1\\0\\1\end{bmatrix}-2\begin{bmatrix}1\\3\\4\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

Existe una combinación lineal no nula de los vectores columna que da el vector nulo

Los tres vectores NO son linealmente independientes

En general:

El sistema es singular \leftrightarrow los n planos no tienen puntos en común o tienen infinitos puntos en común \leftrightarrow los n vectores columna subyacen en un mismo plano (n-1)-dimensional \leftrightarrow los n vectores columna no son linealmente independientes.

Nos interesa entonces estudiar, entre otros, el *espacio que generan* los vectores columna de una matriz.

Espacios vectoriales

espacios vectoriales \longleftrightarrow combinaciones lineales \longleftrightarrow conjunto de vectores que pueden ser sumados y multiplicados por escalares.

- ▶ escalares: \mathbb{R} , \mathbb{C} , cualquier cuerpo \mathbb{K} (conjunto de escalares, con suma, producto, con elementos neutros, opuestos, recíproco, etc....)
- ¿vectores? cualquier tipo de elementos, siempre que podamos definir suma y producto por escalares.

Espacios vectoriales

Definición: $(V, +, \cdot)$ es un *espacio vectorial sobre* \mathbb{K} si, para todo $u, v, w \in V$ y todo $\alpha, \beta \in \mathbb{K}$, se verifica:

- 1. (suma cerrada en V), $u + v \in V$,
- 2. (suma asociativa y conmutativa) u + (v + w) = (u + v) + w y u + v = v + u,
- 3. (neutro de la suma) existe $0 \in V$ tal que v + 0 = v
- 4. (elemento opuesto para la suma) existe $v^* \in V$ tal que $v + v^* = 0$,
- 5. $\alpha \cdot \mathbf{v} \in V$,
- 6. $1 \in \mathbb{K}$ elemento neutro del producto en \mathbb{K} , entonces $1 \cdot v = v$,
- 7. $(\alpha\beta) \cdot \mathbf{v} = \alpha(\beta \cdot \mathbf{v})$,
- 8. $\alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v$,
- 9. $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}$.

De ahora en más $\mathbb{K} = \mathbb{R}$, salvo que aclaremos. O sea, trabajamos con espacios vectoriales reales, salvo aclaración.

Espacios vectoriales reales

Ejemplos: No explicitamos las operaciones suma y producto porque consideramos las habituales.

- 1. $\mathbb{R}^2, \mathbb{R}^3, \dots, \mathbb{R}^n$ también \mathbb{R} !
- 2. \mathbb{R}^{∞} =sucesiones reales
- 3. matrices reales $m \times n \longleftrightarrow \mathbb{R}^{m \times n}$
- 4. funciones reales definidas en [a, b],
- 5. funciones reales continuas
- 6. funciones derivables en x_0 ,
- 7. $\{\text{polinomios a coef. reales}\} \cup \{\text{polinomio nulo}\}\$
- 8. $\{polinomios \ de \ grado \ a \ lo \ sumo \ n\} \cup \{polinomio \ nulo\}$
- 9. {0}?

Espacios vectoriales reales

 $V=(\{0\},+,\cdot)$ con suma y producto en \mathbb{R} , ¿es un espacio vectorial? Verifiquemos:

- 1. ¿suma cerrada en V? $0+0=0 \in V$ \checkmark
- 2. ¿suma asociativa y conmutativa? lo hereda de $(\mathbb{R}, +, \cdot)$.
- 3. ¿neutro de la suma? Si, el propio 0.
- 4. ¿elemento opuesto? Si, 0 es su propio opuesto.
- 6. 1.0 = 0 \checkmark

Es fácil ver que se verifican también las propiedades 7., 8. y 9..

Observación: $\{0\} \subset \mathbb{R}$ y la suma y producto por escalares son las de $(\mathbb{R},+,\cdot)$ que ya sabemos es un espacio vectorial. En estos casos diremos que $(0,+,\cdot)$ es un subespacio de $(\mathbb{R},+,\cdot)$ y veremos más adelante que no es necesario chequear las 9 condiciones.

Espacios vectoriales reales

Verifiquemos algún otro ejemplo:

Funciones reales derivables en $x_0 \in \mathbb{R} = \mathcal{F}$

- ▶ (suma) (f+g)(x) = f(x) + g(x) para todo $x \in \mathbb{R}$
- ▶ (producto por escalares) $(\alpha f)(x) = \alpha f(x)$ para todo $x \in \mathbb{R}$.
- 1. $f + g \in \mathcal{F}$? \checkmark Por qué?
- 2. suma asociativa y conmutativa ✓
- 3. ¿Neutro de la suma? La función nula. ¿Está en ${\cal F}$ la función nula? ¿Por qué?
- 4. ¿Quién es el opuesto de $f \in \mathcal{F}$? ¿Pertenece a \mathcal{F} su opuesto?
- 5. $i \alpha f \in \mathcal{F}$? i Por qué?
- 6. 1f = f
- 7. $(\alpha\beta)f = \alpha(\beta f)$ \checkmark
- 8. $\alpha(f+g) = \alpha f + \alpha g$ \checkmark
- 9. $(\alpha + \beta)f = \alpha f + \beta f$ \checkmark

Espacios vectoriales sobre otros cuerpos

El conjunto $\mathbb C$ de números complejos es un cuerpo algebraico.

- 1. \mathbb{C} es un espacio vectorial sobre $\mathbb{K} = \mathbb{C}$
- 2. Matrices $m \times n$ con entradas complejas, también definen un espacio vectorial sobre $\mathbb C$

Ejercicio: Verificar que los ejemplos mencionados anteriormente son espacios vectoriales sobre $\mathbb C.$

Veamos un ejemplo de un cuerpo algebraico distinto de \mathbb{R} y \mathbb{C} :

Sea $(\mathbb{Z}_2,\oplus,\odot)$ con $\mathbb{Z}_2=\{0,1\}$, 0 el elemento neutro de \oplus , $1\oplus 1=0$, 1 el elemento neutro de \odot y $0\odot 0=0$. Aceptamos que $(\mathbb{Z}_2,\oplus,\odot)$ es un cuerpo algebraico.

Ejercicio: Verificar que \oplus y \odot son asociativas, que todo elemento de \mathbb{Z}_2 tiene opuesto, que todo elemento distinto del neutro de \oplus tiene recíproco y que \odot es distributiva respecto de \oplus .

Ejercicio: Probar que el conjunto de *n*-uplas con componentes en \mathbb{Z}_2 es un espacio vectorial sobre \mathbb{Z}_2 , (con la suma y el producto de un escalar realizado componente a componente).

Pregunta: ¿Es \mathbb{R}^n un espacio vectorial sobre \mathbb{Z}_2 ?

Propiedades de los espacios vectoriales

Unicidad del neutro: si $\mathbf{0}' \in V$ es tal que $\mathbf{0}' + x = x$ para todo $x \in V$, entonces $\mathbf{0}' = \mathbf{0}$.

Prueba:

 $\mathbf{0}' + x = x$ para todo $x \in V$ y $\mathbf{0} + x = x$ para todo $x \in V$.

En particular, 0' + 0 = 0 y 0 + 0' = 0'.

Por conmutatividad de la suma, $\mathbf{0} = \mathbf{0}' + \mathbf{0} = \mathbf{0} + \mathbf{0}' = \mathbf{0}'$.

Propiedad: 0v = 0 para todo $v \in V$.

Prueba: Sea $v \in V$ y w = 0v. Por la distributiva del producto respecto a la suma de escalares (prop. 9.) y la prop. 7. (1v = v para todo v) tenemos que,

$$w + v = 0v + v = 0v + 1v = (0+1)v = 1v = v$$

O sea, w + v = v y w resulta elemento neutro de la suma. Por la unicidad del elemento neutro, w = 0v = 0.

Unicidad del opuesto: dado $x \in V$, si $\bar{x} \in V$ es tal que $x + \bar{x} = \mathbf{0}$, entonces $\bar{x} = x^*$.

Prueba: En práctica.

Propiedades de los espacios vectoriales

Propiedad: $(-1) \cdot x$ es el opuesto de x.

Prueba: Ejercicio

La unicidad del opuesto nos permite definir un símbolo para indicarlo. En función de la propiedad anterior, a partir de ahora notamos con -v al opuesto de v.

Propiedad : $\alpha \cdot \mathbf{0} = \mathbf{0} \ \forall \alpha \in \mathbb{K}$.

Prueba: Ejercicio

Propiedad : Si $\alpha \cdot v = \mathbf{0}$ entonces $\alpha = 0$ o $v = \mathbf{0}$.

Prueba:

Observar que es suficiente probar que si $\alpha \neq 0$ entonces $v = \mathbf{0}$.

Sean $\alpha \neq 0 \in \mathbb{K}$ y $v \in V$ tal que $\alpha \cdot v = \mathbf{0}$. Como $\alpha \neq 0$, existe $\alpha^{-1} \in \mathbb{K}$ tal que $\alpha \alpha^{-1} = 1 \in \mathbb{K}$.

Tenemos entonces:

$$\alpha \cdot \mathbf{v} = \mathbf{0} \Longrightarrow \alpha^{-1}(\alpha \cdot \mathbf{v}) = \alpha^{-1}\mathbf{0} \Longrightarrow (\alpha^{-1}\alpha) \cdot \mathbf{v} = \mathbf{0} \Longrightarrow 1 \cdot \mathbf{v} = \mathbf{v} = \mathbf{0}$$

Propiedad cancelativa de la suma: si z + x = z + y entonces x = y.

Prueba: Ejercicio

Espacios vectoriales

Otro ejemplo de espacio vectorial:

Sea $\Pi = \{x \in \mathbb{R}^3 : 3x_1 + 2x_2 + x_3 = 0\}$. Entonces $(\Pi, +, \cdot)$, con $+ y \cdot las$ operaciones del espacio vectorial \mathbb{R}^3 , es un espacio vectorial.

Prueba: para todo $u, v, w \in \Pi$ y todo $\alpha, \beta \in \mathbb{R}$ debemos verificar:

- 2. ¿suma asociativa y conmutativa? Se hereda del espacio vectorial \mathbb{R}^3 .
- 3. ¿existe $0 \in \Pi$ tal que v + 0 = v? $0 \in \mathbb{R}^3$, ¿ $0 \in \Pi$? Claramente si.
- 4. $\underline{i} v \in \Pi$? Verificar que si.
- 5. $\alpha \cdot v \in \Pi$? Verificar que si.

Espacios vectoriales

- 6. $i \cdot 1 \cdot v = v$?
- 7. $\iota(\alpha\beta) \cdot v = \alpha(\beta \cdot v)$?
- 8. $\lambda \alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v$?
- 9. $\lambda(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}$?.

Todas estas se heredan de \mathbb{R}^3

Observación: Tenemos $\Pi \subset \mathbb{R}^3$, lo dotamos de las mismas operaciones del espacio vectorial real \mathbb{R}^3 y resultó ser también un espacio vectorial. Además, para probarlo, no fue necesario verificar muchas de las propiedades ya que se heredan naturalmente de \mathbb{R}^3 .

Subespacios vectoriales

Definición: Sea $(V, +, \cdot)$ un espacio vectorial y $U \subset V$. Entonces, U es un *subespacio vectorial de* V si $(U, +, \cdot)$ es un espacio vectorial.

Lema:Sea $(V,+,\cdot)$ un espacio vectorial y $U\subset V$. Entonces, U es un subespacio (vectorial) de V si y sólo si toda combinación lineal de elementos de U pertenece a U; i.e. para todo $u_1,u_2\in U$, $\alpha,\beta\in\mathbb{K}$, resulta $\alpha u_1+\beta u_2\in U$.

Prueba: Sólo hay que verificar que la suma y el producto por escalares son cerrados en U, además de que $0 \in U$ y $-v \in U$ para todo $v \in U$. El resto de las condiciones se heredan de V. Completar la prueba como ejercicio.

Subespacios vectoriales

Ejercicio: Determinar cuales de estos subconjuntos definen subespacios vectoriales.

- $ightharpoonup \mathbb{R}^2_+ \subset \mathbb{R}^2$
- ightharpoons $\mathbb{Z} \subset \mathbb{R}$
- $\Gamma = \{ x \in \mathbb{R}^3 : 4x_1 6x_2 + x_3 = 5 \} \subset \mathbb{R}^3$
- ▶ matrices triangulares $n \times n \subset$ matrices $n \times n$.
- ▶ matrices simétricas $n \times n \subset$ matrices $n \times n$.

Definición: Dado un espacio vectorial V y un subconjunto de vectores $U \subset V$, llamamos *subespacio generado por U* y lo notamos < U > al subespacio determinado por todas las combinaciones lineales de elementos de U.

Pregunta: ¿Por qué < U > es un subespacio vectorial?

Espacios vectoriales asociados a matrices

Dada una matriz A, $m \times n$, definimos:

- ▶ Espacio columna de A: es el subespacio de \mathbb{R}^m generado por los vectores columna de A. Lo notamos C(A).
- Espacio nulo de A: es el subespacio de \mathbb{R}^n definido por $N(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$

Ejercicio: Probar la correcta definición de N(A), o sea, probar que N(A) es un subespacio vectorial.

Pregunta: Si A es una matriz 1×3 , ¿qué interpretación geométrica tiene su espacio nulo? ¿Y su espacio columna? ¿Qué relación geométrica hay entre ambos espacios?

Espacio columna

Dada una matriz A y un vector b, ¿cómo sabemos si $b \in C(A)$?

 $b \in C(A)$ si existe una combinación lineal de las columnas de A que nos dé b.O sea, si existen $x_1, \ldots, x_n \in \mathbb{R}$ tales que

$$\sum_{i=1}^n A^i x_i = b.$$

Equivalentemente, si existe $x \in \mathbb{R}^n$ tal que Ax = b.

observación: El espacio columna está definido para todas las matrices, no necesariamente cuadradas. Con lo cual, el sistema Ax = b no necesariamente tiene mismo número de ecuaciones e incógnitas.

Para matrices cuadradas tenemos:

Lema: Si A es una matriz no singular $n \times n$, $C(A) = \mathbb{R}^n$.

Prueba: De acuerdo a lo anteriormente observado, $C(A) = \mathbb{R}^n$ si y sólo si, para todo $b \in \mathbb{R}^n$, el sistema Ax = b tiene solución. Si A es no singular, sabemos que Gauss encuentra siempre una solución del sistema. De otra manera, si A es no singular, sabemos que A es inversible y por lo tanto $x = A^{-1}b$ es (la única) solución del sistema.

Espacio columna

Pregunta: Si A es la matriz nula $m \times n$, ¿quién es C(A)?

Veamos algunos casos donde C(A) no es todo \mathbb{R}^m ni el vector nulo.

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right].$$

$$C(A) = \{x_1(1,0,0) + x_2(0,1,0) : x_1, x_2 \in \mathbb{R}\} = \{(x_1, x_2, 0) : x_1, x_2 \in \mathbb{R}\} =$$
$$= \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$$

C(A) es el plano xy de \mathbb{R}^3 .

Espacio columna

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array} \right].$$

 $C(A) = \{x_1(1,1,1) + x_2(2,2,2) + x_3(3,3,3) + x_4(4,4,4) : x_1, x_2, x_3, x_4 \in \mathbb{R}\} = \{x_1(1,1,1) + x_2(2,2,2) + x_3(3,3,3) + x_4(4,4,4) : x_1, x_2, x_3, x_4 \in \mathbb{R}\}$

$$= \{(x_1+2x_2+3x_3+4x_4, x_1+2x_2+3x_3+4x_4, x_1+2x_2+3x_3+4x_4) : x_1, x_2, x_3, x_4 \in \mathbb{R}\}$$

$$=\{(x,y,z)\in\mathbb{R}^3: x=y=z\}.$$

C(A) es el la recta en \mathbb{R}^3 que pasa por el origen y tiene vector dirección (1,1,1).

Observación: Si A es una matriz $m \times n$, C(A) es un subespacio de \mathbb{R}^m . Veremos que este subespacio puede ser de cualquier *dimensión*, entre 0 (A matriz nula) y m (A matriz no singular).

Espacio nulo

Recordemos que, dada una matriz $m \times n$ A, $N(A) = \{x \in \mathbb{R}^n : Ax = 0\}$ es un espacio vectorial.

Observación 1: N(A) es un subespacio de \mathbb{R}^n .

Observación 2: Si A es una matriz cuadrada no singular,

 $N(A) = \{0\} \subset \mathbb{R}^n$. ¿Por qué?

Observación 3: Si A es la matriz nula $m \times n$, $N(A) = \mathbb{R}^n$. ¿Por qué?

Veremos que el espacio nulo de una matriz $m \times n$ es un subespacio de \mathbb{R}^n que puede tener cualquier *dimensión* entre 0 (A matriz singular) y n (A matriz nula).

Espacio columna y espacio nulo

Ejercicio: Dada A una matriz $m \times n$, sea A' la matriz que se obtiene de agregar una columna A^{n+1} a A, donde A^{n+1} es una combinación lineal de las columnas de A. Probar que C(A) = C(A').

Pregunta: ¿Puede ser N(A) = N(A')? Claramente no, $N(A) \subseteq \mathbb{R}^n$ mientras que $N(A') \subseteq \mathbb{R}^{n+1}$. ¿Puede ser $N(A) = \{0\} \subset \mathbb{R}^n$ y $N(A') \neq \{0\} \subset \mathbb{R}^{n+1}$? Veamos que si con un ejemplo.

Espacio columna y espacio nulo

Sean

$$A = \left[\begin{array}{ccc} 1 & 0 \\ 5 & 4 \\ 2 & 4 \end{array} \right] \quad \text{y} \quad B = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 5 & 4 & 9 \\ 2 & 4 & 6 \end{array} \right].$$

Observar que B se obtiene agregando a A una columna que es la suma de sus columnas. Por lo tanto C(A) = C(B).

Es fácil ver que $N(A) = \{(0,0)\}$. (Verificar) ¿Cómo sabemos que $N(B) \neq \{(0,0,0)\}$? Es fácil ver que $(1,1,-1) \in N(B)$. (Verificar) ¿Puede ser éste el único elemento no nulo de N(B)? Justificar.

Queremos poder describir C(A) y N(A) para cualquier matrix $m \times n$. En ese camino vamos...