Modeling Aveolar Stability with Modified Duffing Equations

Allison Torsey¹,

¹CSEM, University of Texas Austin

January 13, 2023

Impact

- ▶ 500,000 premature infants born annually in US
- Majority of those have pauses in breathing (apnea)
- Apnea can be life threatening
- Has both acute and life long consequences
- Average cost NICU stay \$3k-\$10k US per day
- ▶ Total market for medical treatment of prematurity is \$26B US annually
- Care in developing nations is difficult

Apnea of Prematurity

- ▶ One in 9 live births is preterm (<37 wks)</p>
- Over 70% of preterm infants experience apnea of prematurity (AOP)
- AOP is associated with acute multi-organ failure and long term complications including retinopathy, developmental delay, and neuropsychiatric disorders

Apnea in Prematurity

Figure: Martin RJ & Wilson CG (2012). Compr Physiol 2: 2923-31. DiFiore JM et al.(2010). Pediatr 157: 69-73.

Switching from rhythmic breathing to apneic state

Motivating Study

Mechanosensory Enhancement of Breathing

Figure: 10 preterm infants. Study Wt:1500 gm (1020-2175); PCA: 33.3 weeks (31.4-35.7) (Bloch-Salisbury E, Indic P, Bednarek F, Paydarfar D. J Appl Physiol. 2009 107(4): 1017-1027)

- ▶ 50% decrease incidence of apnea (p=0.001)
- ▶ 50 % decreased variance of inter-breath intervals (p=0.001)
- ▶ 70% decreased duration of hypoxia (p=0.02)
- No effect on infant sleep

Reduction of Desaturation

Figure: Average segments over 30 minutes of treatment (Gee AH, Temple C, Smith VC, Paydarfar D (in prep).)

A Focus on Mechanically Ventilated Infants

Despite artificial ventilation administration, these infants suffer from severe episodes of hypoxia.

Does Stochastic mechanical stimulation of the thorax improve pulmonary O_2 uptake?

Improving Oxygenation

Figure: 10 preterm infants requiring mechanical ventilation. Study wt. 850 gm (470-1275); PCA 28.8 weeks (25-30); On ventilator for 16 days (2-35)

- ➤ 30% decreased duration of hypoxia (p=0.04)
- \triangleright 20 % decrease variance in SaO_2 (p=0.025)
- Improvements correlated in infant weight
- No change in ariway pressure, exhaled CO_2 , inspired O_2

Oxygen Improvement Corresponding to Weight

Reduction of Desaturation Time with Vent

Figure: Average of Segments over 30 minutes of treatment (Gee AH, Temple C, Smith VC, Paydarfar D (in prep).)

How does stochastic resonance improve pulmonary O_2 uptake?

- ► Increase gas mixing (Ventre & Arnold. (2004))
- Decrease Atelectasis (Suki et al. (1994))
- Increase surfactant (Arold et al. (2003))
- Increase Mucociliary function (King et al. (1983))

Figure: Wolf & Arnold. Paediatr Child Health. 2007 17(3):77-81

Focus on Decrease Atelectsis

We want to focus on the collapsing of the alveoli

Objective: To create a model of one bistable alveolus using a set of differential equations

Goals for the Model

- periodic forcing function is required for the system to oscillate
- prefer two state variables only
- system must be bistable
- the trapping region of the phaseless set bounds a fixed point and occupies a small region
- the ability to shift the system to the left and right
- Fixed point at r=0

Expansion on objectives

Periodic forcing function:

► To model the opening and closing of the aveolus

Two state variables

► The state variables are the radius of the aveolus and velocity of the radius

Bistable system

The system has to have an open and collapse state

Trapping region

► With added noise, the system must be able to switch between the open and collapsed states

Expansion on objectives cont.

Ability to shift the system left and right

An aveolus on a ventilator might expand more then one that is breathing spontaneously

Fixed point at r = 0

► The collapsed state of the aveolus will occur when the radius is equal to zero

Original Duffing Equations

$$\ddot{r} + \beta r + \alpha r^3 + \delta \dot{r} = \gamma \cos(\omega t) \tag{1}$$

where

- \blacktriangleright δ : controls the amount of damping
- \triangleright β : controls the linear stiffness
- ightharpoonup lpha: controls the amount of non-linearity in the restoring force
- $ightharpoonup \gamma$ amplitude of the periodic driving force
- $ightharpoonup \omega$: angular frequency of the driving force

Modified Duffing Equations

$$\ddot{r} + \beta r + \alpha r^3 + (\delta - r)\dot{r} = \gamma \cos(\omega t)$$
 (2)

where

- \blacktriangleright δ : controls the amount of damping
- \triangleright β : controls the linear stiffness
- lacktriangle lpha: controls the amount of non-linearity in the restoring force
- lacksquare γ amplitude of the periodic driving force
- $ightharpoonup \omega$: angular frequency of the driving force

Scaled Duffing Equations

$$\ddot{r} + \beta (r - \sqrt{\frac{\beta}{\alpha}}) + \alpha (r - \sqrt{\frac{\beta}{\alpha}})^3 + (2\sqrt{\frac{\beta}{\alpha}} - r)\dot{r} = \gamma \cos(\omega t) \quad (3)$$

▶ This assures there will be a stable fixed point at r = 0

Rewriting as a system of ODE

$$u' = v \tag{4}$$

$$v' = \beta(u - \sqrt{\frac{\beta}{\alpha}}) - \alpha(u - \sqrt{\frac{\beta}{\alpha}})^3 - (2\sqrt{\frac{\beta}{\alpha}} - u)v + \gamma\cos(\omega t)$$
 (5)

where

$$ightharpoonup u = r$$

$$ightharpoonup v = r'$$

Two fixed points

There are two fixed points, r=0 and $r=2\sqrt{rac{eta}{lpha}}$

Figure: The phase plot for the right fixed point in the shifted modified duffing equations. Parameter values: $\beta=1$, $\alpha=1$, $\gamma=0.1$, $\omega=1$

Closed State

Open State with no forcing function

Open State with forcing function

Shifting the open state

Adding Noise to the Model

$$I(t) = \gamma \cos(\omega t) + A \cdot w \tag{6}$$

where w is a random number with a mean of 0

Figure: The U vs T from XPP with added noise. The limit cycle collapsed to the fixed point.

Goals of the Model

- periodic forcing function is required for the system to oscillate
- prefer two state variables only
- system must be bistable
- the trapping region of the phaseless set bounds a fixed point and occupies a small region
- the ability to shift the system to the left and right
- Fixed point at r=0

Considerations of the Model

► If the forcing functions amplitude is high enough, it does cause small oscillations at the 0 fixed point

Future Goals

- 1. Couple the model to include two or more alveoli
- 2. Include lung mechanic properties of the surrounding tissue

Figure: Microscopy of the aveoli (left) and bronchiole (right)

Ideas for Expansion

