Автоматическая обработка текстов на естественном языке. Метод частотного анализа.

Евгений Борисов

о языке и задачае автоматичекой его обработки

обработка текстов на естественом языке (ЕЯ)

natural language processing (NLP)

NLU / natural language understatnding

NLG / natural language generation

SP / speech processing (recognition/generation)

обработка текстов на естественом языке

NLP/ NLU natural language understatnding

- natural entity recognition распознавание именованных сущностей
- classification intent классификация намерений
- sentiment analysis оценка тона

метод частотного анализа

Какие задачи можно решать?

сортировка по заданным темам

определение авторства

определение тона текста

поиск похожих текстов

текст должен содержать слова в достаточном количестве

схема системы обработки текстов

подбор текстов для обучения извлечение признаков из текста обучение модели ML тестирование результата

извлечение признаков из текста

предварительная очистка

токенизация

дополнительная очистка

составление словаря

частотный анализ текстов по словарю

(bag of words, BoW)

извлечение признаков из текста

токенизация

разбиения текста на отдельные слова и/или словосочетания

n-gram - последовательность из n слов

```
Законодательная дума Хабаровского края (duma.khv.ru)
[ 'Законодательная', 'дума', 'Хабаровского', 'края', '(duma.khv.ru)']
```

извлечение признаков из текста

<u>очистка</u>

способ очистки зависит от задачи

извлечение признаков из текста

очистка

способ очистки зависит от задачи

удаление стоп-слов (предлоги и т.п.)

извлечение признаков из текста

очистка

способ очистки зависит от задачи

удаление стоп-слов (предлоги и т.п.)

удаление лишних символов (знаки препинания и т.п.) «смайлики» - отдельное слово

извлечение признаков из текста

очистка

способ очистки зависит от задачи

удаление стоп-слов (предлоги и т.п.)

удаление лишних символов (знаки препинания и т.п.) «смайлики» - отдельное слово

преобразование чисел, интернет ссылок и т.п.

извлечение признаков из текста

очистка

способ очистки зависит от задачи

удаление стоп-слов (предлоги и т.п.)

удаление лишних символов (знаки препинания и т.п.) «смайлики» - отдельное слово

преобразование чисел, интернет ссылок и т.п.

лемматизация - приведение слов к нормальному виду или стеминг - выделение основ слов

извлечение признаков из текста

очистка

способ очистки зависит от задачи

удаление стоп-слов (предлоги и т.п.)

удаление лишних символов (знаки препинания и т.п.) «смайлики» - отдельное слово

преобразование чисел, интернет ссылок и т.п.

лемматизация - приведение слов к нормальному виду или стеминг - выделение основ слов Законодательная дума Хабаровского края (duma.khv.ru) Состоялось очередное заседание Думы На последнем перед каникулами очередном заседании Законодательной Думы Хабаровского края, состоявшемся 28

```
['законодательн',
 'дум',
 'хабаровск',
 'кра',
 'url',
 'состоя',
 'очередн',
 'заседан',
 'дум',
 'последн',
 'перед',
 'каникул',
 'очередн',
 'заседан',
 'законодательн',
 'дум',
 'хабаровск',
 'кра',
 'состоя',
 'digit',
```

извлечение признаков из текста составление словаря

из очищенного текста извлекаем словарь

```
[
    'digit',
    'url',
    'aдминистрац',
    'большинств',
    'бюджетн',
    'верхнебуреинск',
    'власт',
    'войдет',
    'вопрос',
    'врем',
    'втор',
    'вызва',
    'год',
    ...
]
```

извлечение признаков из текста

частотный анализ текстов по словарю

простой частотный анализ считаем в тексте t количество повторов x_i каждого слова v_i из словаря V

текст должен содержать слова в достаточном количестве

извлечение признаков из текста

частотный анализ текстов по словарю

простой частотный анализ считаем в тексте t количество повторов х_і каждого слова v_і из словаря V

значения x зависят от размера текста t, чем больше текст тем больше повторов

нормализованны частотный анализ (TF, term frequency) значения частоты х делятся на общее число слов в тексте t.

$$TF(t,V) = x(t,V) / size(t)$$

извлечение признаков из текста <u>частотный анализ текстов по словарю</u>

Удалять часто употребляемые слова или нет?

извлечение признаков из текста частотный анализ текстов по словарю

Удалять часто употребляемые слова или нет?

TF-IDF - компромиссный вариант формирования вектор-признаков.

не выбрасывает часто употребляемые слова из словаря но уменьшает их вес в вектор-признаке

извлечение признаков из текста частотный анализ текстов по словарю

Удалять часто употребляемые слова или нет?

TF-IDF - компромиссный вариант формирования вектор-признаков.

не выбрасывает часто употребляемые слова из словаря но уменьшает их вес в вектор-признаке

коэффициент обратной частоты (IDF, inverse document frequency) чем чаще встречается слово тем меньше значение его IDF

$$IDF(v) = log size(T) / size(T(v))$$

количество текстов Т разделить на количество текстов Т содержащих слово v

$$TF-IDF(t,T,v) = TF(t,v) * IDF(v,T)$$

извлечение признаков из текста частотный анализ текстов по словарю

хэш-векторизация

заменяем слова на их хэш ограниченной длины

сокращаем размер словаря и число признаков

экономия ресурсов для больших датасетов

практическое применение

сортировка по заданным темам - классификация собираем и размечаем тексты чистим текст применяем частотный анализ обучаем классификатор тестируем

практическое применение

сортировка по заданным темам - классификация собираем и размечаем тексты чистим текст применяем частотный анализ обучаем классификатор тестируем

определение авторства - классификация собираем и размечаем тексты чистим текст (частота употребления предлогов - важный признак) применяем частотный анализ обучаем классификатор тестируем

практическое применение

сортировка по заданным темам - классификация собираем и размечаем тексты чистим текст применяем частотный анализ обучаем классификатор тестируем

определение авторства - классификация

собираем и размечаем тексты чистим текст (частота употребления предлогов - важный признак) применяем частотный анализ обучаем классификатор тестируем

поиск похожих текстов - кластеризация собираем тексты чистим текст применяем частотный анализ

выполняем кластеризацию (размечаем тексты)

Тематическое моделирование

автоматическое извлечение тем из набора текстов наборы ключевых слов

Тематическое моделирование

W - конечное множество слов

D - конечное множество документов

T - конечное множество тем

Тематическое моделирование

W - конечное множество слов

D - конечное множество документов

Т - конечное множество тем

слово w в документе d связано с темой t

 $D \times W \times T$ - дискретное вероятностное пространство

порядок слов в документе не важен

d, w - наблюдаемые, t - скрытая

Тематическое моделирование

W - конечное множество слов

D - конечное множество документов

Т - конечное множество тем

<u>слово w в документе d связано с темой t</u>

 $D \times W \times T$ - дискретное вероятностное пространство

порядок слов в документе не важен

d, w - наблюдаемые, t - скрытая

гипотеза независимости p(w|d,t)=p(w|t)

Тематическое моделирование

W - конечное множество слов

D - конечное множество документов

Т - конечное множество тем

слово w в документе d связано с темой t

 $D \times W \times T$ - дискретное вероятностное пространство

порядок слов в документе не важен

d, w - наблюдаемые, t - скрытая

<u>гипотеза независимости</u> p(w|d,t)=p(w|t)

<u>гипотеза разреженности</u> - документ d и термин w связаны с небольшим числом тем t, значительная часть вероятностей p(t|d) и p(w |t) должна обращаться в нуль.

Тематическое моделирование

слово w в документе d связано с темой t

d, w - наблюдаемые, t - скрытая

<u>гипотеза независимости</u> p(w|d,t)=p(w|t)

<u>гипотеза разреженности</u> - документ d и термин w связаны с небольшим числом тем t, значительная часть вероятностей p(t|d) и p(w |t) должна обращаться в нуль.

тематическая модель:

$$p(w|d) = \sum_{t} p(w|t)p(t|d)$$

Тематическое моделирование

частотный анализ

матрица частот употребления слова w в документе d

[слова х документы]

вероятность p(w|d) "слово w принадлежит документу d". можно оценивать как частоту

Тематическое моделирование

разложение частотной матрицы

[слова x документы] = [слова x темы] * [темы x документы]

$$p(w|d) = p(w|t) \cdot p(t|d)$$

p(w|t) - матрица с описанием тем [слова х темы] или оценки вероятностей "слово w принадлежит теме t",

p(t|d) - матрица [темы х документы], или оценки вероятностей "тема t описывает документ d".

Тематическое моделирование

разложение частотной матрицы

[слова x документы] = [слова x темы] * [темы x документы] $p(w|d) = p(w|t) \cdot p(t|d)$

задача стохастического матричного разложения

стохастическая матрица — неотрицательная, сумма любого столбца/строки = 1

методы решения

PLSA - probabilistic latent semantic analysis

LDA - latent Dirihlet allocation / латентное размещение Дирихле

NMF - non-negative matrix factorization / неотрицательная матричная факторизация

примеры текстов

Около 18 тысяч человек покинули подконтрольные боевикам районы Алеппо За минувшие сутки из подконтрольных боевикам районов сирийского города Алеппо было выведено около 17,971 тысячи жителей, в их числе 7,542 тысячи детей. Об этом в субботу, 10 декабря, сообщает ТАСС со ссылкой на российский Центр примирения враждующих сторон в Арабской Республике.

Лидер Радикальной партии Украины Олег Ляшко назвал Надежду Савченко госизменницей. Политик призвал лишить наводчицу мандата народного депутата "То, что сейчас чудит Савченко, — это государственная измена. За подобные действия ей надо немедленно запретить доступ к государственной тайне, отозвать из ПАСЕ и лишить мандата народного депутата Украины", — написал Ляшко на странице в Facebook.

Финальная распродажа! Chery Tiggo от 19990 руб (199,9 млн) «Китайские автомобили» объявляют финальную распродажу популярных кроссоверов Chery Tiggo FL! На автомобили в максимальной комплектации установлена специальная цена 19 990 рублей (199,9 млн). Количество автомобилей ограничено!

Темы и ключевые слова

- Тема 0: рублей млн компания компании млрд модели долларов
- Тема 1: трамп сша трампа дональд президент избранный президента
- Тема 2: by tut декабря фото беларуси ноября беларусь
- Тема 3: дтп водитель результате мвд области происшествия аварии
- Тема 4: савченко украины надежда заявила партии лидер действия
- Тема 5: народов севера коренных малочисленных края фестиваль июля
- Тема 6: ученые университета специалисты исследователи жизни часов человека
- Тема 7: flash adobe player javascript браузер проигрывателя html5
- Тема 8: россии путин рф президент заявил глава президента
- Тема 9: динамо матче чемпионата очков матча лиги шахтера

Литература

git clone https://github.com/mechanoid5/ml_lectorium.git

К.В. Воронцов Вероятностные тематические модели коллекций текстовых документов.

Евгений Борисов Автоматизированная обработка текстов на естественном языке, с использованием инструментов языка Python http://mechanoid.su/ml-text-proc.html

Евгений Борисов О задаче определения темы текста на естественном языке http://mechanoid.su/ml-topic-modeling.html

Sebastian Raschka Python Machine Learning - Packt Publishing Ltd, 2015

Вопросы?