Intégration sur un segment

Continuité uniforme

Exercice 1 [01818] [correction]

Montrer que $x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ .

Exercice 2 [01819] [correction]

Montrer que $x \mapsto \ln x$ n'est pas uniformément continue sur $\mathbb{R}^{+\star}$.

Exercice 3 [01820] [correction]

Montrer que $x \mapsto x \ln x$ est uniformément continue sur [0,1].

Exercice 4 [02821] [correction]

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ uniformément continue. Montrer qu'il existe des réels positifs a et b tels que

$$\forall x \geqslant 0, |f(x)| \leqslant ax + b$$

Exercice 5 [03034] [correction]

Soit $f:[0,1[\to\mathbb{R}$ uniformément continue. Montrer que f est bornée.

Exercice 6 [03035] [correction]

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue et tendant vers 0 à l'infini.

Montrer que f est uniformément continue.

Exercice 7 [03153] [correction]

Soit $f: \mathbb{R}^{+\star} \to \mathbb{R}$ une fonction uniformément continue vérifiant

$$\forall x > 0, f(nx) \xrightarrow[n \to \infty]{} 0$$

Montrer que f converge vers 0 en $+\infty$.

Fonctions continues par morceaux

Exercice 8 [02642] [correction]

Soit $f:[a,b]\to\mathbb{R}$ une fonction en escalier.

Montrer qu'il existe une subdivision σ du segment [a,b] adaptée à f telle que toute autre subdivision adaptée à f soit plus fine que σ .

Exercice 9 [00246] [correction]

La fonction $t \mapsto \sin \frac{1}{t}$ si t > 0 et 0 si t = 0 est-elle continue par morceaux sur [0,1]?

Calcul d'intégrales

Exercice 10 [01964] [correction]

Calculer les intégrales suivantes :

a)
$$\int_{1}^{2} \frac{dt}{t^{2}}$$
 b) $\int_{0}^{1} \frac{dt}{1+t^{2}}$ c) $\int_{0}^{1/2} \frac{dt}{\sqrt{1-t^{2}}}$

Exercice 11 [00284] [correction]

Calculer les intégrales suivantes :

a)
$$\int_0^{2\pi} \cos^2 t \, dt$$
 b) $\int_1^2 \ln t \, dt$ c) $\int_0^1 \frac{t}{\sqrt{1+t^2}} \, dt$

Exercice 12 [01963] [correction]

Pour $m, n \in \mathbb{N}$, calculer

$$I_{m,n} = \int_0^{2\pi} \cos(mt) \cos(nt) dt$$

Exercice 13 [01547] [correction]

Démontrer que, pour tout $Q \in \mathbb{R}[X]$,

$$\int_{-1}^{1} Q(t) dt = -i \int_{0}^{\pi} Q(e^{i\theta}) e^{i\theta} d\theta$$

Enoncés

Exercice 14 [02508] [correction]

Soit λ un réel tel que $|\lambda| \neq 1$

a) Etudier la fonction

$$f_{\lambda}(x) = \frac{\sin x}{\sqrt{1 - 2\lambda \cos x + \lambda^2}}$$

b) Calculer

$$\int_0^{\pi} f_{\lambda}(x) \, \mathrm{d}x$$

Exercice 15 [00285] [correction]

Calculer

$$I = \int_0^{\pi/4} \ln(1 + \tan x) \, \mathrm{d}x$$

Calcul de primitives

Exercice 16 [01960] [correction]

Déterminer les primitives suivantes :

a)
$$\int t e^{t^2} dt$$
 b) $\int \frac{\ln t}{t} dt$ c) $\int \frac{dt}{t \ln t}$

Exercice 17 [00279] [correction]

Déterminer les primitives suivantes :

a)
$$\int \cos t \sin t \, dt$$
 b) $\int \tan t \, dt$ c) $\int \cos^3 t \, dt$

Exercice 18 [00280] [correction]

Déterminer les primitives suivantes :

a)
$$\int \frac{t^2}{1+t^3} dt$$
 b) $\int \frac{t}{\sqrt{1+t^2}} dt$ c) $\int \frac{t}{1+t^4} dt$

Exercice 19 [01962] [correction]

Déterminer les primitives suivantes :

a)
$$\int \frac{dt}{it+1}$$
 b) $\int e^t \cos t dt$ c) $\int t \sin t e^t dt$

Exercise 20 [01961] [correction]
Soit $\lambda \in \mathbb{C} \setminus \mathbb{P}$ $a = \text{Po}(\lambda)$ et $b = \text{Im}(\lambda)$ Etabli

Soit
$$\lambda \in \mathbb{C}\backslash\mathbb{R}$$
, $a = \text{Re}(\lambda)$ et $b = \text{Im}(\lambda)$. Etablir

$$\int \frac{\mathrm{d}t}{t-\lambda} = \ln|t-\lambda| + i\arctan\left(\frac{t-a}{b}\right) + C^{te}$$

Intégration par parties

Exercice 21 [01979] [correction]

Déterminer les primitives suivantes :

a)
$$\int t \ln t \, dt$$
 b) $\int t \arctan t \, dt$ f) $\int t \sin^3 t \, dt$

Exercice 22 [00263] [correction]

Déterminer les primitives suivantes :

a)
$$\int (t^2 - t + 1)e^{-t} dt$$
 b) $\int (t - 1)\sin t dt$ c) $\int (t + 1)\operatorname{ch} t dt$

Exercice 23 [01980] [correction]

Calculer les intégrales suivantes :

a)
$$\int_0^1 \ln(1+t^2) dt$$
 b) $\int_1^e t^n \ln t dt$ (avec $n \in \mathbb{N}$) c) $\int_1^{e^{\pi}} \sin(\ln t) dt$

Exercice 24 [00287] [correction]

Calculer les intégrales suivantes :

a)
$$\int_0^1 \arctan t \, dt$$
 b) $\int_0^{1/2} \arcsin t \, dt$ c) $\int_0^1 t \arctan t \, dt$

Exercice 25 [00283] [correction]

Calculer

$$\int_0^1 \ln(1+t^2) \,\mathrm{d}t$$

Exercice 26 [03089] [correction]

Soient $(a,b) \in \mathbb{R}^2$, $\mu \in \mathbb{R}^{+\star}$ et $f \in \mathcal{C}^2([a,b],\mathbb{R})$ telles que

 $\forall x \in [a, b], |f'(x)| \geqslant \mu \text{ et } f' \text{ monotone}$

Montrer:

$$\left| \int_{a}^{b} e^{2i\pi f(t)} dt \right| \leqslant \frac{1}{\mu \pi}$$

Changement de variable

Exercice 27 [01982] [correction]

Déterminer les primitives suivantes en procédant par un changement de variable adéquat :

a)
$$\int \frac{\mathrm{d}t}{\sqrt{t} + \sqrt{t^3}}$$
 b) $\int \frac{\ln t \, \mathrm{d}t}{t + t(\ln t)^2}$ c) $\int \frac{\mathrm{e}^{2t} \, \mathrm{d}t}{\mathrm{e}^t + 1}$

Exercice 28 [00290] [correction]

Déterminer

$$\int \frac{\mathrm{d}t}{t\sqrt{t^2 - 1}}$$

Exercice 29 [01983] [correction]

Calculer les intégrales suivantes via un changement de variable adéquat :

a)
$$\int_1^e \frac{dt}{t + t(\ln t)^2}$$
 b) $\int_1^e \frac{dt}{t\sqrt{\ln t + 1}}$ c) $\int_0^1 \frac{dt}{e^t + 1}$

Exercice 30 [00260] [correction]

Calculer les intégrales suivantes via un changement de variable adéquat

a)
$$\int_0^1 \sqrt{1-t^2} dt$$
 b) $\int_0^1 t^2 \sqrt{1-t^2} dt$ c) $\int_1^2 \frac{\ln t}{\sqrt{t}} dt$

Exercice 31 [01984] [correction]

a) Observer

$$\int_0^{\pi/4} \ln(\cos t) dt = \int_0^{\pi/4} \ln\cos\left(\frac{\pi}{4} - t\right) dt$$

b) En déduire

$$\int_0^{\pi/4} \ln(1+\tan t) \,\mathrm{d}t$$

Exercice 32 [01985] [correction]

a) Montrer que

$$\int_0^{\pi/2} \frac{\cos t}{\cos t + \sin t} dt = \int_0^{\pi/2} \frac{\sin t}{\cos t + \sin t} dt = \frac{\pi}{4}$$

b) En déduire

$$\int_0^1 \frac{\mathrm{d}t}{\sqrt{1-t^2}+t}$$

Exercice 33 [01986] [correction]

Soit $f:[a,b]\to\mathbb{R}$ continue telle que

$$\forall x \in [a, b], f(a + b - x) = f(x)$$

Montrer que

$$\int_{a}^{b} x f(x) \, \mathrm{d}x = \frac{a+b}{2} \int_{a}^{b} f(x) \, \mathrm{d}x$$

Exercice 34 [00188] [correction]

a) Soit $f \in \mathcal{C}([0,1], \mathbb{R})$. Etablir

$$\int_0^{\pi} t f(\sin t) dt = \frac{\pi}{2} \int_0^{\pi} f(\sin t) dt$$

b) En déduire la valeur de

$$I_n = \int_0^{\pi} \frac{x \sin^{2n}(x)}{\sin^{2n}(x) + \cos^{2n}(x)} \, \mathrm{d}x$$

Exercice 35 [03337] [correction]

- a) Etudier les variations de la fonction $x \mapsto 3x^2 2x^3$.
- b) Soit $f:[0,1]\to\mathbb{R}$ continue. Montrer

$$\int_{-1/2}^{3/2} f(3x^2 - 2x^3) \, \mathrm{d}x = 2 \int_0^1 f(3x^2 - 2x^3) \, \mathrm{d}x$$

Exercice 36 [03193] [correction]

Pour a et b des réels tels que ab > 0, on considère

$$I(a,b) = \int_{a}^{b} \frac{1 - x^{2}}{(1 + x^{2})\sqrt{1 + x^{4}}} dx$$

- a) Calculer I(-b, -a), I(1/a, 1/b) et I(1/a, a) en fonction I(a, b).
- b) Pour a, b > 1, calculer I(a, b) via changement de variables v = x + 1/x puis v = 1/t.
- c) Montrer que la relation ainsi obtenue est valable pour tout a, b tels que ab > 0.

Exercice 37 [00282] [correction]

Calculer les intégrales suivantes via un changement de variable ad hoc :

a)
$$\int_0^{\pi} \frac{\sin t}{3 + \cos^2 t} dt$$
 b) $\int_1^2 \frac{dt}{\sqrt{t} + 2t}$ c) $\int_1^2 \frac{\ln(1+t) - \ln t}{t^2} dt$

Exercice 38 [02436] [correction]

Calculer

$$\int_0^{\sqrt{3}} \arcsin\left(\frac{2t}{1+t^2}\right) \, \mathrm{d}t$$

Intégrales fonctions des bornes

Exercice 39 [01987] [correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue.

Justifier que les fonctions $g: \mathbb{R} \to \mathbb{R}$ suivantes sont de classe \mathcal{C}^1 et exprimer leur dérivée :

a)
$$g(x) = \int_{2x}^{x^2} f(t) dt$$
 b) $g(x) = \int_{0}^{x} x f(t) dt$ c) $g(x) = \int_{0}^{x} f(t+x) dt$

Exercice 40 [01988] [correction]

Soit $\varphi : \mathbb{R} \to \mathbb{R}$ la fonction définie par :

$$\varphi(t) = \frac{\sinh t}{t}$$
 pour $t \neq 0$ et $\varphi(0) = 1$

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par :

$$f(x) = \int_{x}^{2x} \varphi(t) \, \mathrm{d}t$$

- a) Montrer que f est bien définie et étudier la parité de f.
- b) Justifier que f est dérivable et calculer f'(x).
- c) Dresser le tableau de variation de f.

Exercice 41 [01989] [correction]

Soit $f:[0,1]\to\mathbb{R}$ continue. On définit $F:[0,1]\to\mathbb{R}$ par

$$F(x) = \int_0^1 \min(x, t) f(t) dt$$

- a) Montrer que F est de classe C^2 et calculer F''(x).
- b) En déduire

$$F(x) = \int_0^x \int_u^1 f(t) \, \mathrm{d}t \, \mathrm{d}u$$

Exercice 42 [01990] [correction]

Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue. On pose, pour tout $x \in \mathbb{R}$,

$$f(x) = \int_0^x \sin(x - t)g(t) dt$$

a) Montrer que f est dérivable et que

$$f'(x) = \int_0^x \cos(t - x)g(t) dt$$

- b) Montrer que f est solution de l'équation différentielle y'' + y = g(x).
- c) Achever la résolution de cette équation différentielle.

Exercice 43 [01991] [correction]

Soient $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 et $F: \mathbb{R}^* \to \mathbb{R}$ définie par

$$\forall x \neq 0, F(x) = \frac{1}{2x} \int_{-x}^{x} f(t) dt$$

- a) Montrer que F peut être prolongée par continuité en 0. On effectue ce prolongement.
- b) Montrer que F est dérivable sur \mathbb{R}^* et exprimer F'(x) à l'aide d'une intégrale
- c) Montrer que F est dérivable en 0 et observer F'(0) = 0.

Exercice 44 [00088] [correction]

Soit f continue de \mathbb{R} dans \mathbb{R} telle que

$$\forall (x,y) \in \mathbb{R}^2, f(x) - f(y) = \int_{2x+y}^{2y+x} f(t) dt$$

Montrer que f est de classe C^1 et déterminer f.

Exercice 45 [00276] [correction]

Pour $x \in]0,1[$, on pose

$$\varphi(x) = \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln t}$$

- a) Montrer que φ est bien définie et que cette fonction se prolonge par continuité en 0 et en 1.
- b) En déduire la valeur de

$$\int_0^1 \frac{x-1}{\ln x} \, \mathrm{d}x$$

Exercice 46 [02444] [correction]

Soit

$$f(x) = \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln t}$$

- a) Calculer les limites de f en 0^+ et $+\infty$, la limite en $+\infty$ de f(x)/x et montrer que f(x) tend vers $\ln 2$ quand x tend vers 1.
- b) Montrer que f est de classe \mathcal{C}^{∞} sur $\mathbb{R}^{+\star}$ mais qu'elle ne l'est pas sur \mathbb{R}^{+} .
- c) Etudier les variations de f et tracer sa courbe représentative.

Exercice 47 [03788] [correction]

a) Montrer que la fonction

$$f: x \mapsto \int_{x}^{2x} \frac{\mathrm{e}^{t}}{t} \, \mathrm{d}t$$

est définie et dérivable sur \mathbb{R}^* .

b) Déterminer la limite de f en 0.

Exercice 48 [00275] [correction] Soit

 $f \cdot x$

$$f: x \in \mathbb{R}^* \mapsto \int_x^{2x} \frac{\operatorname{ch} t}{t} \, \mathrm{d}t$$

- a) Etudier la parité de f. On étudie désormais f sur $]0, +\infty[$.
- b) Prolonger f par continuité en 0.
- c) Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^+ .
- d) Branches infinies, allure.

Exercice 49 [00277] [correction]

Soient $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ et $g : \mathbb{R}^* \to \mathbb{R}$ définie par

$$g(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t$$

- a) Prolonger g par continuité en 0.
- b) Montrer que la fonction ainsi obtenue est de classe \mathcal{C}^1 sur \mathbb{R} .

Exercice 50 [03789] [correction]

Etude et graphe de la fonction

$$x \mapsto \int_{x}^{2x} \frac{\mathrm{d}t}{\sqrt{1+t^2+t^4}}$$

On préciser le comportement de la fonction quand $x \to 0$ et quand $x \to \pm \infty$.

Exercice 51 [02617] [correction]

Pour tout $x \in [1, +\infty[$, on pose

$$F(x) = \int_1^x \frac{t}{\sqrt{t^3 - 1}} \, \mathrm{d}t$$

a) Montrer que la fonction F est bien définie, continue sur $[1, +\infty[$ et de classe \mathcal{C}^{∞} sur $]1, +\infty[$.

Exprimer sa dérivée F'(x)

- b) Etudier la dérivabilité de F en 1. Préciser la tangente au graphe de F en 1.
- c) Etudier la limite de F en $+\infty$.
- d) Justifier que F réalise une bijection de $[1, +\infty[$ sur un intervalle à préciser.
- e) Justifier que F^{-1} est dérivable sur $]0,+\infty[$ et solution de l'équation différentielle

$$yy' = \sqrt{y^3 - 1}$$

f) Etudier la dérivabilité de F^{-1} en 0.

Sommes de Riemann

Exercice 52 [01998] [correction]

Déterminer les limites des suites définies par le terme général suivant :

a)
$$\sum_{k=1}^{n} \frac{n}{n^2 + k^2}$$
 b) $\sum_{k=1}^{n} \frac{k}{n^2 + k^2}$ c) $\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 2kn}}$

Exercice 53 [01999] [correction]

En faisant apparaître une somme de Riemann, déterminer un équivalent simple de

$$S_n = \sum_{k=1}^n \sqrt{k}$$

Exercice 54 [00744] [correction]

Déterminer la limite de la suite de terme général

$$\left(\frac{(2n)!}{n^n n!}\right)^{\frac{1}{n}}$$

Exercice 55 [02785] [correction]

Etudier les limites de
$$\left(\prod_{k=1}^{n} \left(1 + \frac{k}{n}\right)\right)^{1/n}$$
 et de $\left(\prod_{k=1}^{n} \left(1 + \frac{k}{n^2}\right)\right)^{1/n}$.

Exercice 56 [02786] [correction]

Calculer les limites de

$$\sum_{k=1}^{n} \sin\left(\frac{k}{n}\right) \sin\left(\frac{k}{n^2}\right) \text{ et } \sum_{k=1}^{n} \sin^2\frac{1}{\sqrt{k+n}}$$

lorsque $n \to +\infty$.

Exercice 57 [02787] [correction]

Si $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, soit $f_n(x) = \sum_{k=1}^n \frac{\sin(kx)}{k}$.

Soit x_n le plus petit réel strictement positif en lequel f_n atteint un maximum local. Calculer $\lim f_n(x_n)$.

Exercice 58 [03198] [correction]

Déterminer un équivalent quand $n \to +\infty$ de

$$u_n = \sum_{k=1}^{n} \frac{1}{(n+2k)^3}$$

Exercice 59 [03768] [correction]

Etudier la suite suivante

$$u_n = \frac{r(1) + r(2) + \dots + r(n)}{n^2}$$

avec r(k) le reste de la division euclidienne de n par k.

Indice : étudier la suite suivante

$$v_n = \frac{(n-r(1)) + (n-r(2)) + \dots + (n-r(n))}{n^2}$$

Exercice 60 [03428] [correction]

a) Déterminer

$$\lim_{n \to +\infty} \sum_{p=n+1}^{2n} \frac{1}{p}$$

b) Pour $\alpha > 1$, déterminer

$$\lim_{n \to +\infty} \sum_{n=n+1}^{2n} \frac{1}{p^{\alpha}}$$

Enoncés

7

c) En déduire

$$\lim_{n \to +\infty} \sum_{p=n+1}^{2n} \sin\left(\frac{1}{p}\right)$$

Exercice 61 [02664] [correction]

a) Soit $n \in \mathbb{N}^*$. Montrer que

$$X^{2n} - 1 = (X^2 - 1) \prod_{k=1}^{n-1} (X^2 - 2X \cos \frac{k\pi}{n} + 1)$$

b) Soit un réel $a \neq \pm 1$; déduire de a) la valeur de

$$\int_0^{\pi} \ln(a^2 - 2a\cos t + 1) \,\mathrm{d}t$$

Formules de Taylor

Exercice 62 [02816] [correction]

Enoncer et établir la formule de Taylor avec reste intégrale.

Exercice 63 [00291] [correction]

Etablir que pour tout $x \in [0, \pi/2]$

$$x - \frac{1}{6}x^3 \le \sin x \le x - \frac{1}{6}x^3 + \frac{1}{120}x^5$$

Exercice 64 [03217] [correction]

[Egalité de Taylor-Lagrange]

Soient $f: I \to \mathbb{R}$ et $a \in I$. Montrer que si f est de classe C^{n+1} alors

$$\forall x \in I, \exists c \in I, f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

Exercice 65 [02001] [correction]

Montrer que pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{|x|^{n+1} e^{|x|}}{(n+1)!}$$

En déduire

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^k}{k!}$$

Exercice 66 [02002] [correction]

En appliquant l'inégalité de Taylor-Lagrange à la fonction $x\mapsto \ln(1+x)$ entre 0 et 1, montrer que :

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n} \xrightarrow[n \to +\infty]{} \ln 2$$

Exercice 67 [00295] [correction]

En exploitant une formule de Taylor adéquate établir

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k}{k+1} = \ln 2$$

Exercice 68 [02000] [correction]

Soit $g:[0,1]\to\mathbb{R}$ une fonction continue.

Déterminer les fonctions $f:[0,1]\to\mathbb{R}$, deux fois dérivables, telles que

$$f(0) = f(1) = 0$$
 et $f'' = g$

Exercice 69 [02003] [correction]

Soient $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 et $a \in \mathbb{R}$.

Déterminer

$$\lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}$$

Exercice 70 [00293] [correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 .

On suppose

$$f(x), f''(x) \xrightarrow[x \to +\infty]{} 0$$

Montrer que

$$f'(x) \xrightarrow[x \to +\infty]{} 0$$

Exercice 71 [00297] [correction]

Soient $f:[0,1]\to\mathbb{R}$ une application de classe \mathcal{C}^2 et

$$S_n = \sum_{k=1}^{n} f(k/n^2) - nf(0)$$

Déterminer la limite de la suite (S_n) .

Exercice 72 [00296] [correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 telle que $f''(0) \neq 0$.

a) Montre que pour chaque $x \in \mathbb{R}^*$, il existe $\theta \in]0,1[$ vérifiant la relation

$$f(x) = f(0) + xf'(\theta x)$$

- b) Montrer qu'au voisinage de 0 ce θ est unique.
- c) Déterminer la limite de θ quand $x \to 0$.

Exercice 73 [02817] [correction]

a) Montrer, pour tout $x \in [0, \pi/2[$, l'existence de $\theta_x \in [0, 1[$ tel que

$$\sin x = x - \frac{x^3}{6}\cos(x\theta_x)$$

b) Etudier la limite de θ_x quand x tend vers 0 par valeur supérieure.

Exercice 74 [00255] [correction]

Soient $n \in \mathbb{N}^{\star}$ et $\varphi : \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^n telle que

$$\varphi(x) = o(x^n)$$

a) Montrer que

$$\forall 0 \leqslant p \leqslant n, \varphi^{(p)}(x) = o(x^{n-p})$$

b) On introduit $\psi: \mathbb{R} \to \mathbb{R}$ définie par

$$\psi(x) = \begin{cases} \varphi(x)/x & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

Montrer que

$$\forall 0 \le p < n, \psi^{(p)}(x) = o(x^{n-p-1})$$

En déduire que ψ est de classe \mathcal{C}^{n-1} sur \mathbb{R} .

c) Soient $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^n et $g: \mathbb{R} \to \mathbb{R}$ définie par

$$g(x) = \begin{cases} \frac{f(x) - f(0)}{x} & \text{si } x \neq 0\\ f'(0) & \text{sinon} \end{cases}$$

8

Montrer que g est de classe C^{n-1} .

d) Soient $f, g : \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^n telles que

$$f(0) = 0, g(x) = 0 \Leftrightarrow x = 0 \text{ et } g'(0) \neq 0$$

Montrer que f/g est de classe C^{n-1} .

Propriétés de l'intégrale

Exercice 75 [01965] [correction]

Soient $f:[a,b]\to\mathbb{R}$ une fonction continue par morceaux et $c\in]a,b[.$ Montrer que

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt \leq \max \left(\frac{1}{c-a} \int_{a}^{c} f(t) dt, \frac{1}{b-c} \int_{c}^{b} f(t) dt \right)$$

Exercice 76 [01967] [correction]

Soit $f:[a,b]\to\mathbb{R}$ continue. Montrer

$$\left| \int_a^b f(t) \, \mathrm{d}t \right| = \int_a^b |f(t)| \, \mathrm{d}t \text{ si, et seulement si, } f \geqslant 0 \text{ ou } f \leqslant 0$$

Exercice 77 [01767] [correction]

f étant continue sur [a,b] et à valeurs dans \mathbb{R} , trouver une condition nécessaire et suffisante pour que

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| = \int_{a}^{b} |f(x)| \, \mathrm{d}x$$

Exercice 78 [03051] [correction]

Soient $(a, b) \in \mathbb{R}^2$ avec a < b et $f \in \mathcal{C}^0([a, b], \mathbb{C})$.

A quelle condition portant sur f a-t-on

$$\left| \int_{a}^{b} f \right| = \int_{a}^{b} |f| ?$$

Exercice 79 [01968] [correction]

Soit $f:[0,1]\to\mathbb{R}$ continue telle que

$$\int_0^1 f(t) \, \mathrm{d}t = \frac{1}{2}$$

Montrer que f admet un point fixe.

Exercice 80 [01969] [correction]

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue.

Montrer:

$$\exists c \in \left] a, b \right[, \frac{1}{b-a} \int_{a}^{b} f(t) \, \mathrm{d}t = f(c)$$

Exercice 81 [01970] [correction]

[Formule de la moyenne]

Soient $f, g : [a, b] \to \mathbb{R}$ continues avec $g \ge 0$.

Montrer qu'il existe $c \in [a, b]$ tel que

$$\int_{a}^{b} f(t)g(t) dt = f(c) \int_{a}^{b} g(t) dt$$

Exercice 82 [03092] [correction]

[Seconde formule de la moyenne]

Soient $f,g:[a,b]\to\mathbb{R}$ deux fonctions continues avec f décroissante et positive.

a) Pour $n \in \mathbb{N}^*$, on pose

$$S_n = \sum_{k=0}^{n-1} f(a_k) \int_{a_k}^{a_{k+1}} g(t) dt \text{ avec } a_k = a + k \frac{(b-a)}{n}$$

Montrer que

$$S_n \xrightarrow[n \to +\infty]{} \int_a^b f(t)g(t) dt$$

b) On introduit G la primitive de g s'annulant en a. Montrer que

$$f(a) \min_{[a,b]} G \leqslant S_n \leqslant f(a) \max_{[a,b]} G$$

c) En déduire qu'il existe $c \in [a, b]$ vérifiant

$$\int_{a}^{b} f(t)g(t) dt = f(a) \int_{a}^{c} g(t) dt$$

d) Soient $f,g:[a,b]\to\mathbb{R}$ continues avec f monotone. Montrer qu'il existe $c\in[a,b]$ tel que

$$\int_a^b f(t)g(t) dt = f(a) \int_a^c g(t) dt + f(b) \int_c^b g(t) dt$$

Exercice 83 [03188] [correction]

Soit f une fonction réelle de classe C^1 positive et décroissante sur I = [a, b]. Soit g une fonction continue sur I. On définit $G: I \to \mathbb{R}$ par la relation

$$G(x) = \int_{a}^{x} g(t) \, \mathrm{d}t$$

a) Montrer qu'il existe $m, M \in \mathbb{R}$ tel que

$$G([a,b]) = [m,M]$$

b) Montrer que

$$\int_a^b f(t)g(t) dt = f(b)G(b) - \int_a^b f'(t)G(t) dt$$

c) En déduire qu'il existe $c \in [a, b]$ tel que

$$\int_{a}^{b} f(t)g(t) dt = f(a) \int_{a}^{c} g(t) dt$$

Exercice 84 [01971] [correction]

Soit $f:[0,\pi]\to\mathbb{R}$ continue.

a) Montrer que si

$$\int_0^{\pi} f(t) \sin t \, \mathrm{d}t = 0$$

alors il existe $a \in]0, \pi[$ tel que f s'annule en a.

b) Montrer que si

$$\int_0^{\pi} f(t) \sin t \, dt = \int_0^{\pi} f(t) \cos t \, dt = 0$$

alors f s'annule 2 fois sur $]0, \pi[$. (indice: on pourra regarder $\int_0^{\pi} f(t) \sin(t-a) dt$).

Exercice 85 [01972] [correction]

Soient $(a,b) \in \mathbb{R}^2$ tel que $a < b, f : [a,b] \to \mathbb{R}$ continue et $n \in \mathbb{N}$ telle que

$$\forall k \in \{0, 1, ..., n\}, \int_{a}^{b} t^{k} f(t) dt = 0$$

Montrer que la fonction f s'annule au moins n+1 fois sur [a,b].

Exercice 86 [01974] [correction]

Soit $f:[a,b]\to\mathbb{R}$. Montrer que la fonction

$$x \mapsto \int_a^b f(t) \sin(xt) dt$$

est lipschitzienne.

Exercice 87 [02966] [correction]

Soient $f:[0,1]\to\mathbb{R}$ continue telle que

$$\int_0^1 f(t) \, \mathrm{d}t = 0$$

m le minimum de f et M son maximum.

Prouver

$$\int_0^1 f^2(t) \, \mathrm{d}t \leqslant -mM$$

Exercice 88 [02967] [correction]

Soient f et g deux fonctions croissantes et continues sur [0,1]. Comparer

$$\int_0^1 f(t)g(t) dt \text{ et } \left(\int_0^1 f(t) dt\right) \times \left(\int_0^1 g(t) dt\right)$$

Limites d'intégrales

Exercice 89 [01978] [correction]

Déterminer les limites suivantes sans pour autant calculer les intégrales correspondantes :

a)
$$\lim_{x \to 0^+} \int_{-x}^x \sin t^2 dt$$
 b) $\lim_{x \to +\infty} \int_x^{2x} \frac{dt}{\ln t}$ c) $\lim_{x \to +\infty} \int_x^{2x} \frac{\sin t}{t} dt$

Exercice 90 [00286] [correction]

Déterminer les limites suivantes sans pour autant calculer les intégrales correspondantes :

a)
$$\lim_{x \to 0^+} \int_x^{2x} \frac{e^t dt}{t}$$
 b) $\lim_{x \to +\infty} \int_x^{2x} \frac{e^{1/t}}{t} dt$ c) $\lim_{x \to +\infty} \int_x^{2x} \frac{\cos(1/t)}{t} dt$

Exercice 91 [01976] [correction]

Soit $f:[0,1]\to\mathbb{R}$ continue. Montrer que

$$\int_0^1 t^n f(t) \, \mathrm{d}t \xrightarrow[n \to \infty]{} 0$$

Exercice 92 [01977] [correction]

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue. Déterminer

$$\lim_{x\to 0^+} \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t$$

Utilisation de primitives

Exercice 93 [03380] [correction]

Soit $f:[0,1]\to\mathbb{R}$ continue vérifiant

$$\int_0^1 f(t) \, \mathrm{d}t = 0$$

Montrer qu'il existe $x \in [0, 1]$ vérifiant

$$\int_0^x t f(t) \, \mathrm{d}t = 0$$

Exercice 94 [01966] [correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue et T > 0. On suppose que

$$\int_{x}^{x+T} f(t) \, \mathrm{d}t = C^{te}$$

Montrer que f est périodique.

Exercice 95 [01973] [correction]

Soit $f:[0,1]\to\mathbb{R}$ continue. Montrer que f possède une unique primitive F telle que

$$\int_0^1 F(t) \, \mathrm{d}t = 0$$

Inégalité de Cauchy-Schwarz

Exercice 96 [00057] [correction]

Soit $f \in \mathcal{C}^1([0,1],\mathbb{R})$ avec f(0) = 0.

a) Montrer que

$$\int_0^1 f(t)^2 \, \mathrm{d}t \leqslant \frac{1}{2} \int_0^1 f'(t)^2 \, \mathrm{d}t$$

b) Si f(1) = 0, améliorer l'inégalité obtenue en a).

Suites dont le terme général est défini par une intégrale

Exercice 97 [01994] [correction]

Pour p et q entiers naturels, on pose :

$$I_{p,q} = \int_a^b (t-a)^p (b-t)^q dt$$

- a) Former une relation de récurrence liant $I_{p,q}$ et $I_{p+1,q-1}$.
- b) Donner une expression de $I_{p,q}$ à l'aide de factoriels.

Exercice 98 [01997] [correction]

[Intégrales de Wallis]

Pour $n \in \mathbb{N}$, on pose

$$I_n = \int_0^{\pi/2} \sin^n t \, \mathrm{d}t$$

- a) Montrer que $I_n = \int_0^{\pi/2} \cos^n t \, dt$ et $I_n > 0$
- b) Montrer que pour tout $n \in \mathbb{N}$, on a

$$I_{n+2} = \frac{n+1}{n+2}I_n$$

- c) Donner une expression de I_n à l'aide de factoriels en distinguant les cas n=2p et n=2p+1.
- d) Etablir que pour tout $n \in \mathbb{N}$,

$$(n+1)I_{n+1}I_n = \frac{\pi}{2} \text{ et } I_{n+2} \leqslant I_{n+1} \leqslant I_n$$

e) Déterminer un équivalent de I_n .

Exercice 99 [01992] [correction]

On pose, pour $n \in \mathbb{N}$

$$I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x \, \mathrm{d}x$$

- a) Montrer que la suite (I_n) tend vers 0.
- b) Montrer que

$$I_n = \frac{1}{(n+1)!} + I_{n+1}$$

c) En déduire que

$$e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!}$$

Exercice 100 [01993] [correction]

Pour $n \in \mathbb{N}$, on pose

$$I_n = \int_1^e (\ln x)^n \, \mathrm{d}x$$

- a) Calculer I_0 et I_1 .
- b) Etablir une relation liant I_n et I_{n+1} .
- c) En déduire que

$$\forall n \in \mathbb{N}, \ 0 < I_n < \frac{\mathrm{e}}{n+1}$$

- d) Déterminer la limite puis un équivalent simple de (I_n) .
- e) Soit (u_n) une suite réelle définie par

$$u_0 = a \text{ et } \forall n \in \mathbb{N}, u_{n+1} = e - (n+1)u_n$$

On suppose que $a \neq I_0$, montrer, en étudiant $D_n = |u_n - I_n|$, que $|u_n| \to +\infty$.

Exercice 101 [01995] [correction]

Soient $n \in \mathbb{N}$ et $x \in]0, \pi[$.

a) Justifier l'existence de

$$I_n = \int_0^{\pi} \frac{\cos(nt) - \cos(nx)}{\cos t - \cos x} dt$$

b) Exprimer I_n . On pourra commencer par calculer $I_{n+1} + I_{n-1}$.

Exercice 102 [01996] [correction]

Pour $n \in \mathbb{N}$, on pose

$$u_n = \int_0^1 \frac{\mathrm{d}x}{1 + x^n}$$

- a) Calculer u_0, u_1, u_2 .
- b) Montrer que (u_n) est une suite strictement croissante.
- c) Montrer que $u_n \to 1$.
- d) Etablir

$$\forall n \in \mathbb{N}^{\star}, \ \int_{0}^{1} \frac{x^{n} dx}{1 + x^{n}} = \frac{\ln 2}{n} - \frac{1}{n} \int_{0}^{1} \ln(1 + x^{n}) dx$$

e) Montrer que

$$\lim_{n \to \infty} \int_0^1 \ln(1+x^n) \, \mathrm{d}x = 0$$

et en déduire que

$$u_n = 1 - \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$

Exercice 103 [00288] [correction]

Pour $p, q \in \mathbb{N}$, calculer

$$I_{p,q} = \int_0^1 t^p (1-t)^q dt$$

Exercice 104 [00289] [correction]

Pour $n \in \mathbb{N}$, posons

$$I_n = \int_0^{\pi/2} (\sin t)^n \, \mathrm{d}t$$

- a) Pour $n \ge 2$, former une relation de récurrence liant I_n et I_{n-2} .
- b) En déduire l'expression de I_n selon la parité du naturel n.

Exercice 105 [02981] [correction]

Déterminer un équivalent lorsque $n \to +\infty$ de

$$I_n = \int_0^1 \left(\frac{t}{1+t^2}\right)^n \, \mathrm{d}t$$

Exercice 106 [00322] [correction]

Soit

$$I_n = \int_0^1 \frac{x^n}{x+1} \, \mathrm{d}x$$

- a) Montrer que $I_n \to 0$ en décroissant.
- b) Simplifier $I_n + I_{n+1}$ et en déduire une expression de I_n à l'aide d'un symbole sommatoire.
- c) Déterminer

$$\lim_{N \to +\infty} \sum_{n=1}^{N} \frac{(-1)^{n-1}}{n}$$

d) Exploiter

$$J_n = \int_0^1 \frac{x^n}{x^2 + 1} \mathrm{d}x$$

pour déterminer

$$\lim_{N \to +\infty} \sum_{n=0}^{N} \frac{(-1)^n}{2n+1}$$

Exercice 107 [01860] [correction]

a) Calculer

$$\int_0^1 \frac{\mathrm{d}t}{1+t^2}$$

b) Etablir, pour tout $n \in \mathbb{N}$

$$\int_0^1 \sum_{k=0}^n (-1)^k t^{2k} dt = \frac{\pi}{4} + \int_0^1 \frac{(-1)^n t^{2n+2}}{1+t^2} dt$$

c) Justifier

$$0 \leqslant \int_0^1 \frac{t^{2n+2}}{1+t^2} dt \leqslant \int_0^1 t^{2n+2} dt = \frac{1}{2n+3}$$

d) En déduire

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \xrightarrow[n \to \infty]{} \frac{\pi}{4}$$

Calcul de primitives de fonctions rationnelles

Exercice 108 [01232] [correction]

Déterminer les primitives des expressions proposées en indiquant l'ensemble de validité :

a)
$$\frac{x^5}{1+x^{12}}$$
 b) $\frac{1}{x(x^2-1)}$ c) $\frac{x+1}{x^2-x+1}$ d) $\frac{1}{x^2-2x+2}$ e) $\frac{x}{x^2+2x+2}$ f) $\frac{1}{x(x^2+1)}$ g) $\frac{1}{x^3+1}$ h) $\frac{x}{x^3-1}$ i) $\frac{x^4+1}{x^4-1}$ j) $\frac{1}{x^4+x^2+1}$ k) $\frac{1}{(x^2+x+1)^2}$ l) $\frac{1}{x^4+1}$

Exercice 109 [01233] [correction]

Calculer les intégrales suivantes :

a)
$$\int_0^1 \frac{dx}{x^2 + x + 1}$$
 b) $\int_0^1 \frac{x}{x^3 + 1} dx$ c) $\int_0^1 \frac{\arctan x}{(x+1)^2} dx$

Exercice 110 [01234] [correction]

Soit $n \in \mathbb{N}^{\star}$. On désire déterminer la primitive sur \mathbb{R} s'annulant en 0 de la fonction

$$f_n: x \mapsto \frac{1}{(1+x^2)^n}$$

- a) Justifier l'existence et l'unicité de la fonction cherchée. Celle-ci est désormais notée ${\cal F}_n.$
- b) Calculer $F_1(x)$.
- c) En procédant au changement de variable $x = \tan \theta$, déterminer $F_2(x)$.
- d) En s'aidant d'une intégration par parties, former une relation de récurrence entre $F_{n+1}(x)$ et $F_n(x)$.
- e) Calculer $F_3(x)$.

Calcul de primitives ou d'intégrales se ramenant à une fonction rationnelle

Exercice 111 [01235] [correction]

Déterminer les primitives des expressions proposées en indiquant l'ensemble de validité :

a)
$$\frac{1}{e^x + 1}$$
 b) $\frac{1}{e^{2x} + e^x}$ c) $\sqrt{e^x - 1}$ c) $\frac{1}{\sqrt{1 + e^{2x}}}$

Exercice 112 [01236] [correction]

Calculer

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{\mathrm{e}^x + 1}}$$

Exercice 113 [01237] [correction]

Déterminer les primitives des expressions proposées en indiquant l'ensemble de validité :

a)
$$\frac{\cos x}{1 + \cos^2 x}$$
 b) $\frac{\sin x}{1 + \sin^2 x}$
c) $\frac{1}{\cos^4 x}$ d) $\frac{1}{\cos^3 x}$

Exercice 114 [01238] [correction]

Déterminer une primitive sur \mathbb{R} de la fonction

$$x \mapsto \frac{1}{3 + \cos x}$$

Exercice 115 [03774] [correction]

Calculer pour tout $x \in \mathbb{R}$ l'intégrale

$$\int_0^x \frac{\mathrm{d}t}{3 + \cos^2 t}$$

Exercice 116 [01239] [correction]

Calculer:

a)
$$\int_0^{\pi/2} \frac{dx}{2 + \cos x}$$
 b) $\int_0^{\pi/4} \frac{dx}{1 + \sin x \cos x}$ c) $\int_0^{2\pi} \frac{dx}{1 + \cos^2 x}$

Exercice 117 [01240] [correction]

Pour $\alpha \in]0, \pi[$, calculer

$$\int_0^{\pi/2} \frac{\sin \alpha}{1 + \cos \alpha \cos x} \, \mathrm{d}x$$

Exercice 118 [01241] [correction]

Déterminer les primitives des fonctions proposées en indiquant l'ensemble de validité :

a)
$$\frac{\text{th}x}{1 + \text{ch}x}$$
 b) $\frac{\text{ch}x}{1 + \text{ch}^2x}$ c) $\frac{\text{ch}x}{\text{sh}x + \text{ch}x}$ d) $\frac{1}{\text{ch}^3x}$

Exercice 119 [01242] [correction]

Calculer

$$\int_0^1 \frac{\mathrm{d}x}{\mathrm{ch}x}$$

Exercice 120 [01243] [correction]

Déterminer les primitives des fonctions proposées en indiquant l'ensemble de validité :

a)
$$\frac{x}{1+\sqrt{x+1}}$$
 b) $\frac{1-\sqrt{x}}{1+\sqrt{x}}$ c) $\sqrt{\frac{x-1}{x-2}}$

Exercice 121 [01244] [correction]

Déterminer les primitives des fonctions proposées en indiquant l'ensemble de validité :

a)
$$\frac{x+1}{\sqrt{2-x^2}}$$
 b) $\frac{x}{\sqrt{(x-1)(3-x)}}$ c) $\sqrt{x-x^2+6}$ d) $\frac{x+1}{\sqrt{x^2+1}}$ e) $\frac{1}{x+\sqrt{1+x^2}}$ f) $\frac{\sqrt{x^2-1}}{x}$

Exercice 122 [01245] [correction]

Sur $]-1/2, +\infty[$, déterminer

$$\int \frac{\mathrm{d}x}{(2x+1)\sqrt{x^2+x+1}}$$

Exercice 123 [01246] [correction]

Calculer les intégrales suivantes :

a)
$$\int_{1}^{3} \frac{dx}{\sqrt{x(x+3)}}$$
 b) $\int_{0}^{2} \frac{dx}{\sqrt{x+1}(x+4)}$ c) $\int_{-1}^{1} \frac{dx}{\sqrt{1+x}+\sqrt{1-x}}$

Corrections

Exercice 1 : [énoncé]

Pour $y \geqslant x \geqslant 0$,

$$(\sqrt{y} - \sqrt{x})^2 = y + x - 2\sqrt{xy} \leqslant y - x$$

donc

$$\sqrt{y} - \sqrt{x} \leqslant \sqrt{y - x}$$

Par symétrie

$$\forall x, y \geqslant 0, \left| \sqrt{y} - \sqrt{x} \right| \leqslant \sqrt{|y - x|}$$

Soit $\varepsilon > 0$. Considérons $\eta = \varepsilon^2 > 0$.

Pour tout $x, y \geqslant 0$,

$$|y - x| \leqslant \eta \Rightarrow |\sqrt{y} - \sqrt{x}| \leqslant \sqrt{|y - x|} \leqslant \sqrt{\eta} = \varepsilon$$

La fonction racine carrée est donc uniformément continue.

Exercice 2 : [énoncé]

Par l'absurde supposons que $x \mapsto \ln x$ soit uniformément continue sur $\mathbb{R}^{+\star}$. Pour $\varepsilon = 1$, il existe $\eta > 0$ tel que

$$\forall x, y > 0, \ |y - x| \le \eta \Rightarrow |\ln y - \ln x| \le \varepsilon$$

Pour $y = x + \eta$,

$$|\ln y - \ln x| = \ln\left(\frac{x+\eta}{x}\right) \xrightarrow[x\to 0^+]{} +\infty$$

Absurde.

Exercice 3: [énoncé]

Soit $f:[0,1]\to\mathbb{R}$ définie par

$$f(x) = \begin{cases} x \ln x & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

f est continue sur le segment [0,1], donc uniformément continue sur [0,1] et donc a fortiori sur [0,1].

Exercice 4 : [énoncé]

Pour $\varepsilon=1>0$ l'uniforme continuité assure l'existence d'un $\alpha>0$ tel que

$$\forall x, y \in \mathbb{R}, |x - y| \le \alpha \Rightarrow |f(x) - f(y)| \le 1$$

Posons $n = \lfloor x/\alpha \rfloor$. On a $|f(\alpha) - f(0)| \le 1$, $|f(2\alpha) - f(\alpha)| \le 1$,..., $|f(n\alpha) - f((n-1)\alpha)| \le 1$ et $|f(x) - f(n\alpha)| \le 1$ donc en sommant $|f(x) - f(0)| \le n + 1$ puis $|f(x)| \le \lfloor x/\alpha \rfloor + 1 + |f(0)| \le ax + b$ avec $a = 1/\alpha$ et b = 1 + |f(0)|.

Exercice 5: [énoncé]

Pour $\varepsilon = 1$, il existe $\alpha > 0$ tel que

$$\forall x, y \in [0, 1[, |y - x| \leqslant \alpha \Rightarrow |f(y) - f(x)| \leqslant 1$$

Par suite, pour tout $x \in [1 - \alpha, 1[$, on a $|f(x) - f(1 - \alpha)| \le 1$ puis $|f(x)| \le 1 + |f(1 - \alpha)|$.

De plus, la fonction f est continue donc bornée sur le segment $[0, 1-\alpha]$ par un certain M.

On a alors f bornée sur [0,1[par max $\{M,1+|f(1-\alpha)|\}.$

Exercice 6: [énoncé]

Soit $\varepsilon > 0$.

Puisque f tend vers 0 en $+\infty$, il existe $A \in \mathbb{R}^+$ tel que pour tout $x \in [A, +\infty[, |f(x)| \leq \varepsilon/2]$.

Puisque la fonction f est continue, elle est continue sur le segment [0, A+1] et donc uniformément continue sur ce segment en vertu du théorème de Heine.

Par suite il existe $\alpha > 0$ tel que

$$\forall (x,y) \in [0, A+1]^2, |y-x| \leqslant \alpha \Rightarrow |f(y)-f(x)| \leqslant \varepsilon$$

Posons $\alpha' = \min \{\alpha, 1\} > 0$.

Soient $x, y \in \mathbb{R}^+$ tels que $|x - y| \le \alpha'$.

Quitte à échanger, supposons que x est le plus petit de x et y.

Si $x \in [0, A]$ alors $x, y \in [0, A+1]$ et $|y-x| \le \alpha$ donc $|f(y)-f(x)| \le \varepsilon$.

Si $x \in [A, +\infty[$ alors $x, y \in [A, +\infty[$ donc $|f(y) - f(x)| \le |f(y)| + |f(x)| \le \varepsilon$.

Exercice 7 : [énoncé]

Soit $\varepsilon > 0$. Puisque f est uniformément continue, il existe $\alpha > 0$ vérifiant

$$\forall x, y > 0, |y - x| \leq \alpha \Rightarrow |f(y) - f(x)| \leq \varepsilon$$

Considérons alors la suite $(f(n\alpha))$. Puisque celle-ci converge vers 0, il existe $N\in\mathbb{N}$ vérifiant

$$\forall n \geqslant N, |f(n\alpha)| \leqslant \varepsilon$$

Posons $A = N\alpha$. Pour $x \ge A$, il existe $n \ge N$ vérifiant

$$|n\alpha - x| \leqslant \alpha$$

et donc

$$|f(x)| \le |f(x) - f(n\alpha)| + |f(n\alpha)| \le 2\varepsilon$$

On peut alors conclure que f converge vers 0 en $+\infty$.

Exercice 8: [énoncé]

Soit A l'ensemble des $n \in \mathbb{N}$ tel qu'il existe une subdivision $\sigma = (a_0, \dots, a_n)$ adaptée à f.

A est une partie non vide de \mathbb{N} , elle possède donc un plus petit élément p. Il existe une subdivision $\sigma = (a_0, \dots, a_p)$ adaptée à f.

Montrons que toute subdivision $\sigma' = (b_0, b_1, ..., b_n)$ adaptée à f est plus fine que σ . Par l'absurde : supposons $\exists i \in \{1, 2, ..., p-1\}$ tel que $a_i \notin \{b_0, b_1, ..., b_n\}$. On peut alors affirmer qu'il existe $j \in \{1, 2, ..., n\}$ tel que $a_i \in]b_{j-1}, b_j[$. Comme σ et σ' sont adaptées à f on peut affirmer que f est constante sur $]a_{i-1}, a_i[,]a_i, a_{i+1}[$ et $]b_{j-1}, b_j[$ puis que f est constante sur $]a_{i-1}, a_{i+1}[$. Par suite la subdivision $\sigma' = (a_0, ..., a_{i-1}, a_{i+1}, ..., a_p)$ est adaptée à f or cela contredit la définition de p.

Exercice 9: [énoncé]

Cette fonction n'a pas de limite en 0, elle n'est donc pas continue par morceaux.

Exercice 10: [énoncé]

Dans chaque cas la détermination d'une primitive est (assez) immédiate a)

$$\int_{1}^{2} \frac{\mathrm{d}t}{t^{2}} = \left[-\frac{1}{t} \right]_{1}^{2} = \frac{1}{2}$$

b)
$$\int_{0}^{1} \frac{dt}{1+t^{2}} = [\arctan t]_{0}^{1} = \frac{\pi}{4}$$

c)
$$\int_0^{1/2} \frac{\mathrm{d}t}{\sqrt{1-t^2}} = \left[\arcsin t\right]_0^{1/2} = \frac{\pi}{6}$$

Exercice 11: [énoncé]

a) En linéarisant

$$\int_0^{2\pi} \cos^2 t \, dt = \int_0^{2\pi} \frac{1 + \cos 2t}{2} \, dt = \left[\frac{t}{2} + \frac{\sin 2t}{4} \right]_0^{2\pi} = \pi$$

b) On connaît une primitive du logarithme ou l'on intègre par parties

$$\int_{1}^{2} \ln t \, dt = \left[t \ln t - t \right]_{1}^{2} = 2 \ln 2 - 1$$

c) On reconnaît une forme u'/\sqrt{u}

$$\int_0^1 \frac{t}{\sqrt{1+t^2}} \, \mathrm{d}t = \left[\sqrt{1+t^2}\right]_0^1 = \sqrt{2} - 1$$

Exercice 12: [énoncé]

Si m=n=0 alors

$$I_{n,n} = \int_0^{2\pi} \mathrm{d}t = 2\pi$$

Si $m = n \neq 0$ alors

$$I_{n,n} = \int_0^{2\pi} \cos^2(nt) dt = \int_0^{2\pi} \frac{1}{2} + \frac{1}{2} \cos(2nt) dt = \pi$$

Si $m \neq n$, en exploitant

$$\cos(mt)\cos(nt) = \frac{1}{2}\left(\cos(m+n)t + \cos(m-n)t\right)$$

on obtient

$$I_{m,n} = \frac{1}{2} \int_0^{2\pi} \cos(m+n)t \, dt + \frac{1}{2} \int_0^{2\pi} \cos(m-n)t \, dt = \frac{\left[\sin(m+n)t\right]_0^{2\pi}}{2(m+n)} + \frac{\left[\sin(m-n)t\right]_0^{2\pi}}{2(m-n)} = \frac{1}{2} \int_0^{2\pi} \cos(m+n)t \, dt + \frac{1}{2} \int_0^{2\pi} \cos(m-n)t \, dt = \frac{\left[\sin(m+n)t\right]_0^{2\pi}}{2(m+n)} + \frac{\left[\sin(m-n)t\right]_0^{2\pi}}{2(m-n)} = \frac{1}{2} \int_0^{2\pi} \cos(m+n)t \, dt + \frac{1}{2} \int_0^{2\pi} \cos(m-n)t \, dt = \frac{\left[\sin(m+n)t\right]_0^{2\pi}}{2(m+n)} + \frac{\left[\sin(m-n)t\right]_0^{2\pi}}{2(m-n)} = \frac{1}{2} \int_0^{2\pi} \cos(m+n)t \, dt = \frac{1}{2} \int_0^{2\pi} \cos$$

Exercice 13 : [énoncé]

Par linéarité de l'intégrale, il suffit de vérifier la relation pour $Q=X^n$ avec $n\in\mathbb{N}.$ D'une part

$$\int_{-1}^{1} Q(t) dt = \left[\frac{1}{n+1} t^{n+1} \right]_{-1}^{1} = \frac{1 - (-1)^{n+1}}{n+1}$$

et d'autre part

$$\int_0^{\pi} Q(e^{i\theta})e^{i\theta} d\theta = \left[\frac{1}{i(n+1)}e^{i(n+1)\theta}\right]_0^{\pi} = \frac{e^{i(n+1)\pi} - 1}{i(n+1)}$$

Si n est impair alors

$$\int_{-1}^{1} Q(t) dt = 0 = -i \int_{0}^{\pi} Q(e^{i\theta}) e^{i\theta} d\theta$$

Si n est pair alors

$$\int_{-1}^{1} Q(t) dt = \frac{2}{n+1} \text{ et } \int_{0}^{\pi} Q(e^{i\theta}) e^{i\theta} d\theta = \frac{-2}{i(n+1)}$$

et la relation voulue est encore vérifiée.

Une alternative plus courte, mais moins élémentaire consister à exploiter que la forme différentielle

$$\omega(x,y) = Q(z) dz = Q(x+iy) (dx + i dy)$$

est exacte et que donc son intégrale curviligne le long d'un pourtour fermée est nulle.

Exercice 14 : [énoncé]

a) On peut écrire

$$1 - 2\lambda \cos x + \lambda^2 = (\lambda - \cos x)^2 + \sin^2 x$$

et par conséquent $1 - 2\lambda \cos x + \lambda^2 > 0$ pour tout $x \in \mathbb{R}$ car $|\lambda| \neq 1$.

La fonction f_{λ} est donc définie sur \mathbb{R} . Elle est de classe \mathcal{C}^{∞} , 2π -périodique et impaire. Nous limitons son étude à l'intervalle $[0,\pi]$.

Le cas $\lambda = 0$ est immédiat puisque $f_0(x) = \sin x$. On suppose dans la suite $\lambda \neq 0$. On a

$$f_{\lambda}'(x) = \frac{\cos x(1 - 2\lambda\cos x + \lambda^2) - \lambda\sin^2 x}{(1 - 2\lambda\cos x + \lambda^2)^{3/2}}$$

 $f'_{\lambda}(x)$ est du signe de

$$\lambda^2 \cos(x) - \lambda(1 + \cos^2 x) + \cos x = (\lambda \cos x - 1)(\lambda - \cos x)$$

Cette expression s'annule en changeant de signe pour $\cos x = \lambda$ ou $\cos x = 1/\lambda$.

Pour $|\lambda| < 1$,

x	0		$\arccos \lambda$		π
$f'_{\lambda}(x)$		+	0	_	
$f_{\lambda}(x)$	0	7	1	×	0

Pour $|\lambda| > 1$,

x	0		$\arccos 1/\lambda$		π
$f'_{\lambda}(x)$		+	0	_	
$f_{\lambda}(x)$	0	7	$1/\lambda$	\searrow	0

b) Pour $\lambda = 0$, on a

$$\int_0^{\pi} f_0(x) \, \mathrm{d}x = \int_0^{\pi} \sin(x) \, \mathrm{d}x = 2$$

Pour $\lambda \neq 0$, on peut directement calculer l'intégrale en reconnaissant une former u'/\sqrt{u} . On obtient

$$\int_0^{\pi} f_{\lambda}(x) dx = \frac{1}{\lambda} \left[\sqrt{1 - 2\lambda \cos x + \lambda^2} \right]_0^{\pi} = \frac{|1 + \lambda| - |1 - \lambda|}{\lambda}$$

Pour $|\lambda| < 1$,

$$\int_{0}^{\pi} f_{\lambda}(x) \, \mathrm{d}x = 2$$

Pour $|\lambda| > 1$,

$$\int_0^{\pi} f_{\lambda}(x) \, \mathrm{d}x = \frac{2}{|\lambda|}$$

Exercice 15: [énoncé]

La fonction $x \mapsto \ln(1 + \tan x)$ est définie et continue sur $[0, \pi/4]$ donc I existe. $\ln(1 + \tan x) = \ln(\cos x + \sin x) - \ln(\cos x)$ et $\cos x + \sin x = \sqrt{2}\cos\left(\frac{\pi}{4} - x\right)$. Ainsi

$$I = \frac{\pi \ln 2}{8} + \int_0^{\pi/4} \ln \cos \left(\frac{\pi}{4} - x\right) dx - \int_0^{\pi/4} \ln(\cos x) dx$$

or

$$\int_0^{\pi/4} \ln \cos \left(x - \frac{\pi}{4} \right) dx = \int_0^{\pi/4} \ln \cos(t) dt$$

$$I = \frac{\pi \ln 2}{8}$$

Exercice 16: [énoncé]

a) On reconnaît une forme $u'e^u$

$$\int t e^{t^2} dt = \frac{1}{2} e^{t^2} + C^{te}$$

b) On reconnaît une forme u'u

$$\int \frac{\ln t}{t} \, \mathrm{d}t = \frac{1}{2} (\ln t)^2 + C^{te}$$

c) On reconnaît une forme u'/u

$$\int \frac{\mathrm{d}t}{t \ln t} = \ln|\ln t| + C^{te}$$

Exercice 17: [énoncé]

a) C'est une forme u'u donc

$$\int \cos t \sin t \, \mathrm{d}t = \frac{1}{2} \sin^2 t + C^{te}$$

b) C'est une forme u'/u donc

$$\int \tan t \, \mathrm{d}t = -\ln|\cos t| + C^{te}$$

c) On se ramène à une forme $u'u^2$ via $\cos^2 t = 1 - \sin^2 t$

$$\int \cos^3 t \, dt = \int \cos t - \int \cos t \sin^2 t = \sin t - \frac{1}{3} \sin^3 t + C^{te}$$

Exercice 18: [énoncé]

Dans chaque cas on reconnaît une forme u'f(u)

- a) $\int \frac{t^2}{1+t^3} dt = \frac{1}{3} \ln |1+t^3| + C^{te} \text{ sur }]-\infty, -1[\text{ ou }]-1, +\infty[.$
- b) $\int \frac{t}{\sqrt{1+t^2}} dt = \sqrt{1+t^2} + C^{te} \text{ sur } \mathbb{R}.$
- c) $\int \frac{t}{1+t^4} dt = \frac{1}{2} \arctan t^2 + C^{te} \operatorname{sur} \mathbb{R}$.

Exercice 19 : [énoncé]

a) En isolant partie réelle et imaginaire

$$\int \frac{\mathrm{d}t}{it+1} = \frac{1}{i} \int \frac{\mathrm{d}t}{t-i} = -i \int \frac{t+i}{t^2+1} \, \mathrm{d}t$$

puis

$$\int \frac{\mathrm{d}t}{it+1} = \arctan t - \frac{i}{2}\ln(t^2+1) + C^{te}$$

b) On observe

$$\int e^t \cos t \, dt = \operatorname{Re} \left(\int e^{(1+i)t} \, dt \right)$$

 $_{
m et}$

$$\int e^{(1+i)t} dt = \frac{1}{1+i} e^{(1+i)t} + C^{te}$$

donc

$$\int e^t \cos t \, dt = \frac{e^t}{2} (\cos t + \sin t) + C^{te}$$

c) On observe

$$\int t \sin t e^t dt = \operatorname{Im} \left(\int t e^{(1+i)t} dt \right)$$

et par intégration par parties

$$\int t e^{(1+i)t} dt = \frac{t+i(1-t)}{2} e^{(1+i)t} + C^{te}$$

donc

$$\int t \sin t e^t dt = \frac{e^t}{2} (t \sin t + (1 - t) \cos t) + C^{te}$$

Exercice 20 : [énoncé]

On peut écrire

$$\frac{1}{t-\lambda} = \frac{t-a+ib}{(t-a)^2+b^2} = \frac{t-a}{(t-a)^2+b^2} + i\frac{b}{(t-a)^2+b^2}$$

or

$$\int \frac{t-a}{(t-a)^2 + b^2} dt = \frac{1}{2} \ln \left| (t-a)^2 + b^2 \right| + C^{te} = \ln |t-\lambda| + C^{te}$$

et

$$\int \frac{b}{(t-a)^2 + b^2} dt = \arctan \frac{t-a}{b} + C^{te}$$

puis la formule proposée.

Exercice 21 : [énoncé]

a) Par intégration par parties

$$\int t \ln t \, \mathrm{d}t = \frac{1}{2} t^2 \ln t - \int \frac{1}{2} t \, \mathrm{d}t = \frac{1}{2} t^2 \ln t - \frac{1}{4} t^2 + C^{te}$$

b)Par intégration par parties

$$\int t \arctan t \, \mathrm{d}t = \frac{1}{2}t^2 \arctan t - \frac{1}{2} \int \frac{t^2 \, \mathrm{d}t}{1 + t^2}$$

puis en écrivant

$$\frac{t^2}{t^2+1} = 1 - \frac{1}{1+t^2}$$

on obtient

$$\int t \arctan t \, dt = \frac{1}{2} \left((t^2 + 1) \arctan t - t \right) + C^{te}$$

c) En écrivant $\sin^2 t = 1 - \cos^2 t$

$$\int t \sin^3 t \, dt = \int t \sin t \, dt - \int t \sin t \cos^2 t \, dt$$

D'une part

$$\int t \sin t \, \mathrm{d}t = \sin t - t \cos t + C^{te}$$

D'autre part, par intégration par parties

$$\int t \sin t \cos^2 t \, \mathrm{d}t = -\frac{1}{3} t \cos^3 t + \frac{1}{3} \int \cos^3 t \, \mathrm{d}t$$

avec

$$\int \cos^3 dt = \int \cos t dt - \int \cos t \sin^2 t dt = \sin t - \frac{1}{3} \sin^3 t$$

Finalement

$$\int t \sin^3 t \, dt = \frac{2}{3} \sin t - t \cos t + \frac{1}{3} t \cos^3 t + \frac{1}{9} \sin^3 t + C^{te}$$

Exercice 22 : [énoncé]

Par intégration par parties

- a) $\int (t^2 t + 1)e^{-t} dt = -(t^2 + t + 2)e^{-t} + C^{te}$.
- b) $\int (t-1)\sin t \, dt = \sin t + (1-t)\cos t + C^{te}$.
- c) $\int (t+1) \cosh t \, dt = (t+1) \sinh t \cosh t + C^{te}$

Exercice 23: [énoncé]

Par intégration par parties

a)

$$\int_0^1 \ln(1+t^2) \, \mathrm{d}t = \left[t \ln(1+t^2) \right]_0^1 - \int_0^1 \frac{2t^2}{1+t^2} \, \mathrm{d}t$$

En écrivant

$$\frac{2t^2}{1+t^2} = 2 - \frac{2}{1+t^2}$$

on obtient

$$\int_0^1 \ln(1+t^2) dt = \ln 2 - 2 \left[t - \arctan t\right]_0^1 = \ln 2 - 2 + \frac{\pi}{2}$$

b) Par intégration par parties

$$\int_{1}^{e} t^{n} \ln t \, dt = \left[\frac{1}{n+1} t^{n+1} \ln t \right]_{1}^{e} - \frac{1}{n+1} \int_{1}^{e} t^{n} \, dt = \frac{n e^{n+1} + 1}{(n+1)^{2}}$$

c) Par deux intégrations par parties

$$\int_1^{\mathrm{e}^\pi} \sin(\ln t) \, \mathrm{d}t = \left[t \sin(\ln t)\right]_1^{\mathrm{e}^\pi} - \int_1^{\mathrm{e}^\pi} \cos(\ln t) \, \mathrm{d}t = -\left[t \cos(\ln t)\right]_1^{\mathrm{e}^\pi} - \int_1^{\mathrm{e}^\pi} \sin(\ln t) \, \mathrm{d}t$$

donc

$$\int_{1}^{e^{\pi}} \sin(\ln t) dt = -\frac{1}{2} \left[t \cos(\ln t) \right]_{1}^{e^{\pi}} = \frac{e^{\pi} + 1}{2}$$

Exercice 24 : [énoncé]

Par intégration par parties

a)

$$\int_0^1 \arctan t \, \mathrm{d}t = \left[t \arctan t\right]_0^1 - \int_0^1 \frac{t}{1+t^2} \, \mathrm{d}t = \frac{\pi}{4} - \frac{1}{2} \left[\ln(1+t^2)\right]_0^1 = \frac{\pi}{4} - \frac{\ln 2}{2}$$

b)

$$\int_0^{1/2} \arcsin t \, \mathrm{d}t = \left[t \arcsin t\right]_0^{1/2} - \int_0^{1/2} \frac{t}{\sqrt{1 - t^2}} \, \mathrm{d}t = \frac{\pi}{12} + \left[\sqrt{1 - t^2}\right]_0^{1/2} = \frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1$$

c)

$$\int_0^1 t \arctan t \, \mathrm{d}t = \frac{1}{2} \left[t^2 \arctan t \right]_0^1 - \frac{1}{2} \int_0^1 \frac{t^2}{1+t^2} \, \mathrm{d}t = \frac{\pi}{8} - \frac{1}{2} \left[t - \arctan t \right]_0^1 = \frac{\pi}{4} - \frac{1}{2}$$

Exercice 25 : [énoncé]

Par intégration par parties

$$\int_0^1 \ln(1+t^2) dt = \left[t \ln(1+t^2)\right]_0^1 - \int_0^1 \frac{2t^2}{1+t^2} dt = \ln 2 + \frac{\pi}{2} - 2$$

Exercice 26: [énoncé]

Ecrivons

$$\int_{a}^{b} e^{2i\pi f(t)} dt = \int_{a}^{b} \frac{f'(t)}{f'(t)} e^{2i\pi f(t)} dt$$

Par intégration par parties

$$\int_{a}^{b} \frac{f'(t)}{f'(t)} e^{2i\pi f(t)} dt = \left[\frac{e^{2i\pi f(t)}}{2i\pi f'(t)} \right]_{a}^{b} + \frac{1}{2i\pi} \int_{a}^{b} \frac{f''(t)}{f'(t)^{2}} e^{2i\pi f(t)} dt$$

Quitte à considérer -f, supposons $f'' \ge 0$

$$\left| \int_a^b \frac{f''(t)}{f'(t)^2} e^{2i\pi f(t)} dt \right| \le \int_a^b \frac{f''(t)}{f'^2(t)} dt = \frac{1}{f'(a)} - \frac{1}{f'(b)}$$

et donc

$$\left| \int_{a}^{b} \frac{f'(t)}{f'(t)} e^{2i\pi f(t)} dt \right| \leqslant \frac{1}{2\pi} \left[\frac{1}{|f'(b)|} + \frac{1}{|f'(a)|} + \frac{1}{f'(a)} - \frac{1}{f'(b)} \right]$$

Selon le signe (constant) de f', le terme en f'(b) ou le terme en f'(a) se simplifie et on obtient

$$\left| \int_a^b \frac{f'(t)}{f'(t)} e^{2i\pi f(t)} dt \right| \leqslant \frac{1}{\mu \pi}$$

Exercice 27: [énoncé]

$$\int \frac{\mathrm{d}t}{\sqrt{t} + \sqrt{t^3}} = \int \frac{2u \,\mathrm{d}u}{u + u^3} = \int \frac{2 \,\mathrm{d}u}{1 + u^2} = 2 \arctan u + C^{te} = 2 \arctan \sqrt{t} + C^{te}$$

b)

$$\int \frac{\ln t \, \mathrm{d}t}{t + t (\ln t)^2} = \int \frac{u \mathrm{e}^u \, \mathrm{d}u}{\mathrm{e}^u + \mathrm{e}^u u^2} = \int \frac{u \, \mathrm{d}u}{1 + u^2} = \frac{1}{2} \ln(1 + u^2) + C^{te} = \frac{1}{2} \ln(1 + \ln^2 t) + C^{te}$$
 Exercise 31 : [énoncé]

$$\int \frac{e^{2t} dt}{e^t + 1} = \int \frac{u du}{u + 1} = \int 1 - \frac{1}{u + 1} du = u - \ln(1 + u) + C^{te} = e^t - \ln(1 + e^t) + C^{te}$$

Exercice 28 : [énoncé]

Par le changement de variable $u = \sqrt{t^2 - 1}$

$$\int \frac{\mathrm{d}t}{t\sqrt{t^2 - 1}} = \int \frac{\mathrm{d}u}{u^2 + 1} = \arctan(\sqrt{t^2 - 1}) + C^{te}$$

Exercice 29 : [énoncé]

$$\int_{1}^{e} \frac{dt}{t + t(\ln t)^{2}} = \int_{0}^{1} \frac{du}{1 + u^{2}} = \frac{\pi}{4}$$

b)

$$\int_{1}^{e} \frac{dt}{t\sqrt{\ln t + 1}} = \int_{0}^{1} \frac{du}{\sqrt{u + 1}} = \left[2\sqrt{u + 1}\right]_{0}^{1} = 2(\sqrt{2} - 1)$$

c)

$$\int_0^1 \frac{\mathrm{d}t}{\mathrm{e}^t + 1} = \int_1^{\mathrm{e}} \frac{\mathrm{d}u}{u(u+1)} = \int_1^{\mathrm{e}} \frac{1}{u} - \frac{1}{u+1} \, \mathrm{d}u = [\ln u - \ln(u+1)]_1^{\mathrm{e}} = \ln 2 - \ln(\mathrm{e}+1) + 1$$

Exercice 30 : [énoncé]

$$\int_0^1 \sqrt{1 - t^2} \, dt = \int_0^{\pi/2} \cos^2 u \, du = \frac{\pi}{4}$$

b)

$$\int_0^1 t^2 \sqrt{1-t^2} \, \mathrm{d}t = \int_{t=\sin u}^{\pi/2} \int_0^{\pi/2} \sin^2 u \cos^2 u \, \mathrm{d}u = \frac{1}{4} \int_0^{\pi/2} \sin^2 2u \, \mathrm{d}u = \frac{\pi}{16}$$

$$\int_{1}^{2} \frac{\ln t}{\sqrt{t}} dt = \int_{1}^{\sqrt{2}} 2 \ln u^{2} du = 4 \left[u \ln u - u \right]_{1}^{\sqrt{2}} = 2\sqrt{2} \ln 2 - 4\sqrt{2} + 4$$

a) Par le changement de variable $u = \pi/4 - t$

$$\int_0^{\pi/4} \ln \cos t \, dt \int_{\pi/4}^0 -\ln \cos \left(\frac{\pi}{4} - u\right) \, du = \int_0^{\pi/4} \ln \cos \left(\frac{\pi}{4} - t\right) \, dt$$

b) On a

$$\int_0^{\pi/4} \ln(1 + \tan t) \, dt = \int_0^{\pi/4} \ln(\cos t + \sin t) - \ln \cos t \, dt$$

or

$$\cos t + \sin t = \sqrt{2}\cos\left(\frac{\pi}{4} - t\right)$$

donc

$$\int_0^{\pi/4} \ln(1 + \tan t) dt = \int_0^{\pi/4} \ln \sqrt{2} + \ln \cos \left(\frac{\pi}{4} - t\right) - \ln \cos t dt = \frac{\pi \ln 2}{8}$$

Exercice 32 : [énoncé]

a) Par le changement de variable $x = \frac{\pi}{2} - t$ on a

$$\int_0^{\pi/2} \frac{\cos t}{\cos t + \sin t} dt = \int_0^{\pi/2} \frac{\sin t}{\cos t + \sin t} dt$$

Or

$$\int_0^{\pi/2} \frac{\cos t}{\cos t + \sin t} dt + \int_0^{\pi/2} \frac{\sin t}{\cos t + \sin t} dt = \int_0^{\pi/2} dt = \frac{\pi}{2}$$

donc

$$\int_0^{\pi/2} \frac{\cos t}{\cos t + \sin t} dt = \int_0^{\pi/2} \frac{\sin t}{\cos t + \sin t} dt = \frac{\pi}{4}$$

b) Via le changement de variable $t = \sin x$ (avec $x \in [0, \pi/2]$)

$$\int_{0}^{1} \frac{dt}{\sqrt{1-t^{2}+t}} = \int_{0}^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx = \frac{\pi}{4}$$

Exercice 33: [énoncé]

Par le changement de variable t = a + b - x

$$\int_{a}^{b} x f(x) dx = \int_{a}^{b} (a+b-t)f(t) dt$$

donc

$$2\int_a^b x f(x) dx = (a+b) \int_a^b f(x) dx$$

Exercice 34: [énoncé]

a) Par le changement de variable $u = \pi - t$, on obtient

$$I = \int_0^{\pi} t f(\sin t) dt = \int_0^{\pi} (\pi - u) f(\sin u) du$$

et donc

$$2I = \int_0^{\pi} t f(\sin t) dt + \int_0^{\pi} (\pi - u) f(\sin u) du = \pi \int_0^{\pi} f(\sin u) du$$

puis l'identité proposée.

b) En observant $\cos^{2n} x = (1 - \sin^2 x)^n$, on peut appliquer la relation précédente

$$I_n = \frac{\pi}{2} \int_0^{\pi} \frac{\sin^{2n}(x)}{\sin^{2n}(x) + \cos^{2n}(x)} dx$$

En coupant l'intégrale en $\pi/2$

$$I_n = \frac{\pi}{2} \left[\int_0^{\pi/2} \frac{\sin^{2n}(x)}{\sin^{2n}(x) + \cos^{2n}(x)} dx + \int_{\pi/2}^{\pi} \frac{\sin^{2n}(x)}{\sin^{2n}(x) + \cos^{2n}(x)} dx \right]$$

En procédant au changement de variable $y = \pi - x$ dans la seconde intégrale

$$I_n = \pi \int_0^{\pi/2} \frac{\sin^{2n}(x)}{\sin^{2n}(x) + \cos^{2n}(x)} dx$$

Enfin, en procédant au changement de variable $y = \pi/2 - x$, on observe

$$I_n = \pi \int_0^{\pi/2} \frac{\cos^{2n}(x)}{\sin^{2n}(x) + \cos^{2n}(x)} dx$$

et on en déduit

$$2I_n = \pi \left[\int_0^{\pi/2} \frac{\sin^{2n}(x)}{\sin^{2n}(x) + \cos^{2n}(x)} dx + \int_0^{\pi/2} \frac{\cos^{2n}(x)}{\sin^{2n}(x) + \cos^{2n}(x)} dx \right] = \frac{\pi^2}{2}$$

Finalement

$$I_n = \frac{\pi^2}{4}$$

Exercice 35 : [énoncé]

a) L'étude des variations de $\varphi: x \mapsto 3x^2 - 2x^3$ est facile et l'on obtient

b) On remarque

$$\varphi\left(\frac{1}{2} + \sin t\right) = \frac{1}{2} + \frac{1}{2}\sin 3t$$

car il est connu que $\sin 3a = 3\sin a - 4\sin^3 a$.

On a alors

$$\int_0^1 f(3x^2 - 2x^3) \, \mathrm{d}x = \int_{-\pi/6}^{\pi/6} f\left(\frac{1}{2} + \frac{1}{2}\sin 3t\right) \cos t \, \mathrm{d}t$$

 $_{
m et}$

$$\int_{-1/2}^{3/2} f(3x^2 - 2x^3) \, \mathrm{d}x = \int_{-\pi/2}^{\pi/2} f\left(\frac{1}{2} + \frac{1}{2}\sin 3t\right) \cos t \, \mathrm{d}t$$

Par le changement de variable u = 3t,

$$\int_0^1 f(3x^2 - 2x^3) \, \mathrm{d}x = \frac{1}{3} \int_{-\pi/2}^{\pi/2} f\left(\frac{1}{2} + \frac{1}{2}\sin u\right) \cos\frac{u}{3} \, \mathrm{d}u$$

et

$$\int_{-1/2}^{3/2} f(3x^2 - 2x^3) \, \mathrm{d}x = \frac{1}{3} \int_{-3\pi/2}^{3\pi/2} f\left(\frac{1}{2} + \frac{1}{2}\sin u\right) \cos\frac{u}{3} \, \mathrm{d}u$$

En découpant cette dernière intégrale en trois et en procédant aux changements de variables affines $v = -\pi - u$, v = u et $v = \pi - u$, on obtient

$$\int_{-1/2}^{3/2} f(3x^2 - 2x^3) \, \mathrm{d}x = \frac{1}{3} \int_{-\pi/2}^{\pi/2} f\left(\frac{1}{2} + \frac{1}{2}\sin v\right) \left(\cos\frac{v + \pi}{3} + \cos\frac{v}{3} + \cos\frac{v - \pi}{3}\right) \, \mathrm{d}v$$

Enfin, en développant

$$\int_{-1/2}^{3/2} f(3x^2 - 2x^3) \, \mathrm{d}x = \frac{2}{3} \int_{-\pi/2}^{\pi/2} f\left(\frac{1}{2} + \frac{1}{2}\sin v\right) \cos\frac{v}{3} \, \mathrm{d}v$$

puis la relation demandée.

Exercice 36 : [énoncé]

a) Par parité de la fonction intégrée, on a

$$I(-b, -a) = I(a, b)$$

Par le changement de variable u = 1/t, on obtient

$$I(1/a, 1/b) = \int_{a}^{b} \frac{1 - \frac{1}{t^{2}}}{\left(1 + \frac{1}{t^{2}}\right)\sqrt{1 + \frac{1}{t^{4}}}} \frac{-dt}{t^{2}} = I(a, b)$$

En particulier

$$I(1/a, a) = I(a, 1/a)$$

alors que par échange des bornes

$$I(1/a, a) = -I(a, 1/a)$$

On en déduit

$$I(1/a, a) = 0$$

b) En procédant aux changements de variable proposés

$$I(a,b) = \int_{a+1/a}^{b+1/b} \frac{-dv}{v\sqrt{v^2 - 2}} = \int_{a/(a^2 + 1)}^{b/(b^2 + 1)} \frac{dt}{\sqrt{1 - 2t^2}}$$

et donc

$$I(a,b) = \frac{1}{\sqrt{2}} \left[\arcsin \sqrt{2}t \right]_{a/(a^2+1)}^{b/(b^2+1)}$$

c) Le changement de variable v = x + 1/x n'est pas bijectif quand x parcourt $]0, +\infty[$ mais dans les calculs précédents, il était possible de l'exploiter sans exprimer x en fonction de v. L'hypothèse a, b > 1 n'a donc pas été utilisée dans l'étude qui précède et donc le résultat proposé se généralise immédiatement.

Exercice 37 : [énoncé]

a) Via $x = \cos t$

$$\int_0^{\pi} \frac{\sin t}{3 + \cos^2 t} dt = \int_{-1}^1 \frac{dx}{3 + x^2} = \frac{1}{\sqrt{3}} \left[\arctan \frac{x}{\sqrt{3}} \right] = \frac{\pi}{3\sqrt{3}}$$

b) Via $x = \sqrt{t}$

$$\int_{1}^{2} \frac{\mathrm{d}t}{\sqrt{t+2t}} = \int_{1}^{\sqrt{2}} \frac{2\,\mathrm{d}x}{1+2x} = \left[\ln(1+2x)\right]_{1}^{\sqrt{2}} = \ln(1+2\sqrt{2}) - \ln 3$$

c) Via x = 1/t

$$\int_{1}^{2} \frac{\ln(1+t) - \ln t}{t^{2}} dt = -\int_{1}^{1/2} \ln(x+1) dx = \int_{3/2}^{2} \ln x dx = \frac{7}{2} \ln 2 - \frac{3}{2} \ln 3 - \frac{1}{2}$$

Exercice 38 : [énoncé]

On réalise le changement de variable $t = \tan \frac{x}{2}$ pour lequel $\sin x = \frac{2t}{1+t^2}$. On obtient

$$\int_0^{\sqrt{3}} \arcsin\left(\frac{2t}{1+t^2}\right) dt = \int_0^{2\pi/3} \frac{1}{2} \arcsin(\sin x) \left(1 + \tan^2 \frac{x}{2}\right) dx$$

On simplifie

$$\arcsin(\sin x) = x \text{ pour } x \in [0, \pi/2]$$

et

$$\arcsin(\sin x) = \pi - x \text{ pour } x \in [\pi/2, 2\pi/3]$$

Enfin on calcule

$$\int_0^{\pi/2} x \left(1 + \tan^2 \frac{x}{2} \right) \, \mathrm{d}x$$

par intégration par parties sachant

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(2\tan\frac{x}{2}\right) = 1 + \tan^2\frac{x}{2}$$

ce qui donne

$$\int_0^{\pi/2} x \left(1 + \tan^2 \frac{x}{2} \right) dx = \left[2x \tan \frac{x}{2} \right]_0^{\pi/2} - \int_0^{\pi/2} 2 \tan \frac{x}{2} dx$$

puis

$$\int_0^{\pi/2} x \left(1 + \tan^2 \frac{x}{2} \right) dx = \pi + \left[4 \ln \left| \cos \frac{x}{2} \right| \right]_0^{\pi/2} = \pi - 2 \ln 2$$

et de même

$$\int_{\pi/2}^{2\pi/3} (\pi - x) \left(1 + \tan^2 \frac{x}{2} \right) dx = \frac{2\pi}{\sqrt{3}} + 2 \ln 2 - \pi$$

Au final, on obtient

$$\int_0^{\sqrt{3}} \arcsin\left(\frac{2t}{1+t^2}\right) \, \mathrm{d}t = \frac{\pi}{\sqrt{3}}$$

Exercice 39 : [énoncé]

On introduit F primitive de f sur \mathbb{R} .

- a) $g(x) = F(x^2) F(2x)$ est \mathcal{C}^1 par opérations et $g'(x) = 2xf(x^2) 2f(2x)$.
- b) g(x) = x(F(x) F(0)) est C^1 par opérations et $g'(x) = \int_0^x f(t) dt + xf(x)$.
- c) $g(x) = \int_{u=t+x}^{2x} \int_{x}^{2x} f(u) du = F(2x) F(x)$ est \mathcal{C}^1 par opérations et g'(x) = 2f(2x) f(x).

Exercice 40: [énoncé]

a) φ est continue sur \mathbb{R} donc f(x) existe.

$$\forall x \in \mathbb{R}^*, -x \in \mathbb{R}^* \text{ et } f(-x) = \int_{-x}^{-2x} \frac{\sinh t}{t} dt = \int_{x}^{2x} \frac{\sin u}{u} du = -f(x)$$

Ainsi f est impaire.

b) φ est continue donc possède une primitive F. Comme f(x) = F(2x) - F(x) f est dérivable et

$$f'(x) = \frac{\sinh 2x - \sinh x}{x}$$

pour $x \in \mathbb{R}^*$ et f'(0) = 1.

c) Pour tout $x \ge 0$, on a $\mathrm{sh}2x \ge \mathrm{sh}x$ donc $f'(x) \ge 0$. Ainsi f est croissante sur \mathbb{R}^+ . Puisque

$$f(x) \geqslant \int_{x}^{2x} \frac{\sinh x}{t} dt = \sinh x \ln 2$$

on a $f(x) \to +\infty$ quand $x \to +\infty$.

On complète le tableau de variation par parité.

Exercice 41 : [énoncé]

a) En découpant l'intégrale en deux

$$F(x) = \int_0^x t f(t) dt + x \int_x^1 f(t) dt$$

On en déduit que F est dérivable et

$$F'(x) = xf(x) + \int_{x}^{1} f(t) dt - xf(x) = \int_{x}^{1} f(t) dt$$

Finalement F est de classe C^2 et F''(x) = -f(x)

b) F'(1) = 0 donc

$$F'(u) = -\int_{1}^{u} f(t) dt = \int_{u}^{1} f(t) dt$$

Puisque F(0) = 0, on a

$$F(x) = \int_0^x F'(u) du = \int_0^x \int_u^1 f(t) dt du$$

Exercice 42: [énoncé]

a) En développant

$$f(x) = \int_0^x (\sin x \cos t - \cos x \sin t) g(t) dt = \sin x \int_0^x \cos t g(t) dt - \cos x \int_0^x \sin t g(t) dt$$

f est donc dérivable et

$$f'(x) = \cos x \int_0^x \cos t g(t) dt + \sin x \int_0^x \sin t g(t) dt = \int_0^x \cos(t - x) g(t) dt$$

b) f' est dérivable et

$$f''(x) = -\sin x \int_0^x \cos t g(t) \, dt + \cos x \int_0^x \sin t g(t) \, dt + g(x) = -\int_0^x \sin(x - t) g(t) \, dt + g(x)$$

donc f''(x) + f(x) = g(x).

c) C'est une équation différentielle linéaire d'ordre 2 à coefficients constants.

Solution homogène $y(x) = \lambda \cos x + \mu \sin x$.

Solution particulière y(x) = f(x).

Solution générale

$$y(x) = \lambda \cos x + \mu \sin x + \int_0^x \sin(x - t)g(t) dt$$

Exercice 43: [énoncé]

a) Soit \tilde{f} une primitive de f.

$$F(x) = \frac{\tilde{f}(x) - \tilde{f}(-x)}{2x} = \frac{\tilde{f}(x) - \tilde{f}(0)}{2x} + \frac{\tilde{f}(0) - \tilde{f}(-x)}{2x} \xrightarrow[x \to 0]{} \tilde{f}'(0) = f(0)$$

On prolonge F par continuité en 0 en posant F(0) = f(0).

b) F est dérivable par opérations et

$$F'(x) = \frac{f(x) + f(-x)}{2x} - \frac{1}{2x^2} \int_{-x}^{x} f(t) dt$$

Par intégration par parties

$$\int_{-x}^{x} f(t) dt = [tf(t)]_{-x}^{x} - \int_{-x}^{x} tf'(t) dt$$

et on peut donc simplifier

$$F'(x) = \frac{1}{2x^2} \int_{-x}^{x} t f'(t) dt$$

c) Sachant

$$\int_{-x}^{x} tf'(0) \, \mathrm{d}t = 0$$

on peut écrire

$$F'(x) = \frac{1}{2x^2} \int_{-x}^{x} t \left(f'(t) - f'(0) \right) dt$$

En posant

$$M_x = \sup_{t \in [-x,x]} |f'(t) - f'(0)|$$

on a alors

$$|F'(x)| \le \frac{1}{2x^2} \int_{-x}^{x} t M_x \, \mathrm{d}t = \frac{1}{2} M_x$$

Or f' est continue en 0, donc $M_x \xrightarrow[x\to 0]{} 0$ puis

$$F'(x) \xrightarrow[x \to 0]{} 0$$

En vertu du théorème du prolongement C^1 , on peut affirmer que F est dérivable en 0 et F'(0) = 0.

Exercice 44: [énoncé]

Puisque continue, la fonction f admet une primitive F sur $\mathbb R$ et

$$\forall (x,y) \in \mathbb{R}^2, f(x) - f(y) = F(2y+x) - F(2x+y)$$

Pour $y \in \mathbb{R}$ fixé, on obtient

$$f: x \mapsto f(y) + F(2y+x) - F(2x+y)$$

Puisque la fonction F est de classe \mathcal{C}^1 , on obtient que f est de classe \mathcal{C}^1 et

$$f'(x) = f(2y + x) - 2f(2x + y)$$

En dérivant cette relation en la variable y, on obtient

$$0 = 2f'(2y + x) - 2f'(2x + y)$$

et donc

$$f'(2y+x) = f'(2x+y)$$

Puisque pour tout $(s,t) \in \mathbb{R}^2$, il existe $(x,y) \in \mathbb{R}^2$ vérifiant

$$\begin{cases} 2x + y = s \\ x + 2y = t \end{cases}$$

on peut affirmer que la fonction f' est constante.

On en déduit que la fonction f est affine.

Par le calcul, on vérifie que, parmi les fonctions affines, seule la fonction nulle vérifie la relation proposée.

Exercice 45: [énoncé]

a) Soit $x \in]0,1[$, $[x,x^2] \subset]0,1[$ et $t \mapsto \frac{1}{\ln t}$ est définie et continue sur]0,1[donc $\varphi(x) = \int_x^{x^2} \frac{\mathrm{d}t}{\ln t}$ existe. Pour $t \in [x^2,x]$,

$$\frac{1}{\ln x} \leqslant \frac{1}{\ln t} \leqslant \frac{1}{\ln x^2}$$

donc

$$\frac{x^2 - x}{\ln x^2} \leqslant \varphi(x) \leqslant \frac{x^2 - x}{\ln x}$$

Quand $x \to 0^+$, $\varphi(x) \to 0$.

On a aussi

$$\varphi(x) = \int_{x}^{x^{2}} \frac{t \, \mathrm{d}t}{t \ln t}$$

donc

$$\int_{x}^{x^{2}} \frac{x^{2} dt}{t \ln t} \leqslant \varphi(x) \leqslant \int_{x}^{x^{2}} \frac{x dt}{t \ln t}$$

or

$$\int_{x}^{x^{2}} \frac{\mathrm{d}t}{t \ln t} = [\ln(\ln t)]_{x}^{x^{2}} = \ln 2$$

Quand $x \to 1^-$, $\varphi(x) \to \ln 2$.

Finalement φ peut être prolongée par continuité en 0 et en 1.

b) Soit F une primitive de $\frac{1}{\ln t}$ sur]0,1[.

On a $\varphi(x) = F(x^2) - F(x)$ ce qui permet de dériver φ et d'obtenir

$$\varphi'(x) = \frac{x-1}{\ln x}$$

L'intégrale $\int_0^1 \frac{x-1}{\ln x} dx$ est définie car on vérifie aisément que la fonction intégrée peut être prolongée par continuité en 0 et en 1 et on a

$$\int_0^1 \frac{x-1}{\ln x} \, \mathrm{d}x = [\varphi(x)]_0^1 = \ln 2$$

Exercice 46: [énoncé]

a) La fonction f est définie sur $]0,1[\,\cup\,]1,+\infty[$ car pour chaque x dans ce domaine, la fonction $t\mapsto 1/\ln t$ est définie et continue sur le segment d'extrémités x et x^2 car 1 n'y appartient pas. Pour $x\in]0,1[$, on a pour tout $t\in [x^2,x]$, $2\ln x\leqslant \ln t\leqslant \ln x$ puis par encadrement d'intégrales

$$\frac{x^2 - x}{2\ln x} \leqslant f(x) \leqslant \frac{x^2 - x}{\ln x}$$

et donc $f(x) \xrightarrow[x \to 0^+]{} 0$.

L'encadrement est identique pour x>1 ce qui permet d'affirmer $f(x)\xrightarrow[x\to+\infty]{}+\infty$ et $f(x)/x\xrightarrow[x\to+\infty]{}+\infty$.

On peut aussi écrire

$$f(x) = \int_{x}^{x^{2}} \frac{t}{t \ln t} \, \mathrm{d}t$$

et par encadrement du t du numérateur par x et x^2 , on obtient f(x) encadré par xI(x) et $x^2I(x)$ avec

$$I(x) = \int_{x}^{x^{2}} \frac{dt}{t \ln t} = [\ln |\ln t|]_{x}^{x^{2}} = \ln 2$$

d'où $f(x) \xrightarrow{\pi \to 1} \ln 2$.

b) On introduit H primitive de $t \mapsto 1/\ln t$ et on démontre que f est de classe \mathcal{C}^1 sur $]0,1[\,\cup\,]1,+\infty[$ avec $f'(x)=\frac{x-1}{\ln x}$. Cette dérivée étant de classe \mathcal{C}^{∞} , on conclut que f est \mathcal{C}^{∞} sur $]0,1[\,\cup\,]1,+\infty[$. On prolonge f par continuité en 1 en posant $f(1)=\ln 2$ et puisque $f'(x)\xrightarrow[x\to 1]{}1$, la fonction f est de classe \mathcal{C}^1 sur $]0,+\infty[$ avec

f'(1)=1. Par développement en série entière $h\mapsto \frac{\ln(1+h)}{h}$ est \mathcal{C}^{∞} au voisinage de 0 donc $x\mapsto \frac{\ln x}{x-1}$ est \mathcal{C}^{∞} au voisinage de 1 et par passage à l'inverse $x\mapsto f'(x)$ est \mathcal{C}^{∞} au voisinage de 1. Finalement f est \mathcal{C}^{∞} sur $]0,+\infty[$. Le calcul de f''(x) permet de justifier que f'' n'a pas de limite finie en 0 et donc f ne peut être prolongée en une fonction de classe \mathcal{C}^{∞} au voisinage de 0.

c) f est croissante, convexe, branche parabolique verticale en $+\infty,$ tangente horizontale en l'origine.

Exercice 47 : [énoncé]

a) La fonction $t\mapsto {\rm e}^t/t$ est définie et continue sur $]0,+\infty[,$ elle y admet donc une primitive F.

Pour x > 0, on a $[x, 2x] \subset]0, +\infty[$, donc l'intégrale définissant f(x) existe et

$$f(x) = F(2x) - F(x)$$

Puisque la fonction F est dérivable, la fonction f l'est aussi et

$$f'(x) = 2F'(2x) - F'(x) = \frac{e^x(e^x - 1)}{x}$$

L'étude pour x < 0 est similaire en considérant $t \mapsto e^t/t$ définie et continue sur $]-\infty, 0[\supset [2x, x].$

b) Pour x > 0,

$$\forall t \in [x, 2x], e^x \leqslant e^t \leqslant e^{2x}$$

donc

$$e^x \ln 2 \leqslant f(x) \leqslant e^{2x} \ln 2$$

puis

$$f(x) \xrightarrow[x \to 0^+]{} \ln 2$$

L'étude est analogue en 0⁻

Exercice 48 : [énoncé]

- a) Par le changement de variable u = -t, on obtient que f est paire.
- b) Pour tout x > 0, on a

$$\forall t \in [x, 2x], \frac{\operatorname{ch} x}{t} \leqslant \frac{\operatorname{ch} t}{t} \leqslant \frac{\operatorname{ch} 2x}{t}$$

En intégrant, on obtient

$$\operatorname{ch} x \cdot \ln 2 \leqslant f(x) \leqslant \operatorname{ch} 2x \cdot \ln 2$$

et on en déduit

$$f(x) \xrightarrow[x \to 0]{} \ln 2$$

c) La fonction $t \mapsto \operatorname{ch} t/t$ est continue sur $]0, +\infty[$ donc y admet une primitive G et puisque f(x) = G(2x) - G(x), on obtient que f est de classe \mathcal{C}^1 sur $]0, +\infty[$ et

$$f'(x) = \frac{\operatorname{ch}2x - \operatorname{ch}x}{x}$$

De plus

$$f'(x) \xrightarrow[x \to 0]{} 0$$

donc, par le théorème du prolongement \mathcal{C}^1, f est de classe \mathcal{C}^1 sur \mathbb{R}^+ .

d) Puisque $f(x) \ge \operatorname{ch} x \cdot \ln 2$, f présente une branche parabolique verticale.

Exercice 49 : [énoncé]

a) On a

$$g(x) - f(0) = \frac{1}{x} \int_0^x f(t) - f(0) dt$$

Pour $\varepsilon > 0$, il existe $\alpha > 0$ vérifiant

$$|x| \le \alpha \Rightarrow |f(x) - f(0)| \le \varepsilon$$

Par suite, si $|x| \le \alpha$, pour tout t compris entre 0 et x, $|f(t) - f(0)| \le \varepsilon$ puis par intégration, $|g(x) - f(0)| \le \varepsilon$. Ainsi $g(x) \xrightarrow[x \to 0]{} f(0)$. On pose g(0) = f(0).

b) Par opération, g est de classe \mathcal{C}^1 sur \mathbb{R}^*

$$g'(x) = -\frac{1}{x^2} \int_0^x f(t) dt + \frac{f(x)}{x}$$

Procédons à une intégration par parties,

$$\int_0^x f(t) dt = x f(x) - \int_0^x t f'(t) dt$$

On a alors

$$g'(x) = \frac{1}{x^2} \int_0^x t f'(t) dt$$

De façon semblable à ce qui précède, on obtient

$$g'(x) \xrightarrow[x \to 0]{} \frac{1}{2}f'(0)$$

Ainsi la fonction continue g est de classe \mathcal{C}^1 sur \mathbb{R} et

$$g'(0) = \frac{1}{2}f'(0)$$

Exercice 50 : [énoncé]

Posons

$$F(x) = \int_{x}^{2x} \frac{\mathrm{d}t}{\sqrt{1 + t^2 + t^4}}$$

On a

$$F(x) = \int_0^{2x} \frac{\mathrm{d}t}{\sqrt{1 + t^2 + t^4}} - \int_0^x \frac{\mathrm{d}t}{\sqrt{1 + t^2 + t^4}}$$

ce qui assure que F est définie et de classe \mathcal{C}^{∞} sur \mathbb{R} . Le changement de variable t = -u assure que F est impaire. Par dérivation de primitive

$$F'(x) = \frac{2}{\sqrt{1 + (2x)^2 + (2x)^4}} - \frac{1}{\sqrt{1 + x^2 + x^4}}$$

En réduisant au même dénominateur et en multipliant par la quantité conjuguée, F'(x) est du signe de

$$4(1+x^2+x^4) - (1+(2x)^2+(2x)^4) = 3(1-4x^4)$$

F est donc croissante que $\left[0,1/\sqrt{2}\right]$ puis décroissante sur $\left[1/\sqrt{2},+\infty\right[$ En 0, le graphe de la fonction passe par l'origine avec une tangente d'équation y=x.

Quand $x \to +\infty$,

$$0 \leqslant F(x) \leqslant \int_{x}^{2x} \frac{\mathrm{d}t}{\sqrt{1 + x^2 + x^4}} = \frac{x}{\sqrt{1 + x^2 + x^4}} \to 0$$

et donc F tend vers 0 en $+\infty$.

Exercice 51 : [énoncé]

a)

$$f: t \mapsto \frac{t}{\sqrt{t^3 - 1}} = \frac{t}{\sqrt{(t - 1)(t^2 + t + 1)}}$$

est définie et continue sur]1,x] et

$$f(t) \sim \frac{1}{\sqrt{3}\sqrt{t-1}}$$

donc F(x) existe.

F est primitive de la fonction continue f sur $]1, +\infty[$ donc F est \mathcal{C}^1 et F'(x) = f(x).

Comme f est \mathcal{C}^{∞} , F est finalement \mathcal{C}^{∞} et sur $]1, +\infty[$

$$F'(x) = \frac{x}{\sqrt{x^3 - 1}}$$

- b) F est continue en 1 et $F'(x) \xrightarrow[x \to 1]{} +\infty$. Tangente verticale en 1.
- c) $\sqrt{t^3 1} \le t^{3/2} \text{ donc}$

$$F(x) \geqslant \int_{1}^{x} \frac{\mathrm{d}t}{\sqrt{t}} = 2\sqrt{x} - 2 \xrightarrow[x \to +\infty]{} + \infty$$

donc $F(x) \xrightarrow[+\infty]{} +\infty$.

d) F est continue et strictement croissante sur $[1, +\infty[$ donc F réalise une bijective de $[1, +\infty[$ sur $[0, +\infty[$.

F réalise une bijection de classe \mathcal{C}^{∞} de $]1, +\infty[$ sur $]0, +\infty[$ avec $F'(x) \neq 0$ donc F^{-1} est \mathcal{C}^{∞} sur $]0, +\infty[$.

$$(F^{-1})' = \frac{1}{F' \circ F^{-1}} = \frac{\sqrt{(F^{-1})^3 - 1}}{F^{-1}}$$

donc F^{-1} est solution de l'équation différentielle considérée.

e) F^{-1} est continue en 0 et $F^{-1}(0) = 1$. En vertu de la relation

$$(F^{-1})' = \frac{\sqrt{(F^{-1})^3 - 1}}{F^{-1}}$$

on obtient

$$(F^{-1})'(x) \xrightarrow[x \to 0]{} 0$$

 F^{-1} est donc dérivable en 0 et $(F^{-1})'(0) = 0$.

Exercice 52 : [énoncé]

a)

$$\sum_{k=1}^{n} \frac{n}{n^2 + k^2} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + (k/n)^2} \xrightarrow[n \to +\infty]{} \int_{0}^{1} \frac{\mathrm{d}t}{1 + t^2} = \frac{\pi}{4}$$

$$\sum_{k=1}^{n} \frac{k}{n^2 + k^2} = \frac{1}{n} \sum_{k=1}^{n} \frac{k/n}{1 + (k/n)^2} \xrightarrow[n \to +\infty]{} \int_{0}^{1} \frac{x}{1 + x^2} dx = \frac{1}{2} \ln 2$$

c)

$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 2kn}} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + 2k/n}} \xrightarrow[n \to +\infty]{} \int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{1 + 2x}} = \left[\sqrt{1 + 2x}\right]_{0}^{1} = \sqrt{3} - 1$$

Exercice 53: [énoncé]

On peut écrire

$$S_n = n\sqrt{n} \left(\frac{1}{n} \sum_{k=1}^n \sqrt{\frac{k}{n}} \right)$$

et

$$\frac{1}{n}\sum_{k=1}^{n}\sqrt{\frac{k}{n}} = \frac{1}{n}\sum_{k=1}^{n}f\left(\frac{k}{n}\right)$$

avec $f: t \mapsto \sqrt{t}$ définie et continue sur [0,1].

Par somme de Riemann

$$\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \to \int_{0}^{1} f(t) dt = \left[\frac{2}{3} t^{3/2}\right]_{0}^{1} = \frac{2}{3}$$

donc

$$S_n \sim \frac{2}{3}n^{3/2}$$

Exercice 54 : [énoncé]

On a

$$\ln\left(\left(\frac{(2n)!}{n^n n!}\right)^{\frac{1}{n}}\right) = \frac{1}{n} \sum_{k=1}^n \left(\ln(n+k) - \ln n\right) = \frac{1}{n} \sum_{k=1}^n \ln\left(1 + \frac{k}{n}\right)$$

La fonction $x \to \ln(1+x)$ étant continue sur [0,1], on obtient

$$\ln\left(\left(\frac{(2n)!}{n^n n!}\right)^{\frac{1}{n}}\right) \xrightarrow[n \to +\infty]{} \int_0^1 \ln(1+x) \, \mathrm{d}x = 2\ln 2 - 1$$

On en déduit

$$\left(\frac{(2n)!}{n^n n!}\right)^{\frac{1}{n}} \to \frac{4}{e}$$

Exercice 55 : [énoncé]

$$\ln\left(\prod_{k=1}^{n} \left(1 + \frac{k}{n}\right)\right)^{1/n} = \frac{1}{n} \sum_{k=1}^{n} \ln\left(1 + \frac{k}{n}\right) \to \int_{0}^{1} \ln(1+t) dt = 2\ln 2 - 1$$

donc

$$\left(\prod_{k=1}^{n} \left(1 + \frac{k}{n}\right)\right)^{1/n} \to \frac{4}{e}$$

Pour $k \in \{1, \ldots, n\}, \frac{k}{n^2} \leqslant \frac{1}{n}$ donc

$$1 \leqslant \left(\prod_{k=1}^{n} \left(1 + \frac{k}{n^2}\right)\right)^{1/n} \leqslant 1 + \frac{1}{n}$$

puis

$$\left(\prod_{k=1}^{n} \left(1 + \frac{k}{n^2}\right)\right)^{1/n} \to 1$$

Exercice 56: [énoncé]

Pour $x \ge 0$, $x - \frac{1}{6}x^3 \le \sin x \le x$ donc $|\sin x - x| \le Mx^3$ avec M = 1/6. On a alors

$$\left|\sin\frac{k}{n^2} - \frac{k}{n^2}\right| \leqslant M \cdot \frac{k^3}{n^6} \leqslant \frac{M}{n^3}$$

donc

$$\left| \sum_{k=1}^{n} \sin\left(\frac{k}{n}\right) \sin\left(\frac{k}{n^2}\right) - \sum_{k=1}^{n} \sin\left(\frac{k}{n}\right) \frac{k}{n^2} \right| \leqslant \frac{M}{n^2} \to 0$$

Or

$$\sum_{k=1}^{n} \sin\left(\frac{k}{n}\right) \frac{k}{n^2} \to \int_0^1 t \sin t \, \mathrm{d}t$$

donc

$$\sum_{k=1}^{n} \sin\left(\frac{k}{n}\right) \sin\left(\frac{k}{n^2}\right) \to \sin 1 - \cos 1$$

Pour $x \ge 0$, $x - \frac{1}{6}x^3 \le \sin x \le x$ donne aussi $\left| \sin^2 x - x^2 \right| \le M' x^4$ avec M' = 1/3. Ainsi

$$\left| \sum_{k=1}^{n} \sin^2 \frac{1}{\sqrt{k+n}} - \sum_{k=1}^{n} \frac{1}{k+n} \right| \leqslant M' \sum_{k=1}^{n} \frac{1}{(k+n)^2} \leqslant \frac{M'}{n} \to 0$$

Or

$$\sum_{k=1}^{n} \frac{1}{k+n} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+k/n} \to \int_{0}^{1} \frac{\mathrm{d}x}{1+x} = \ln 2$$

donc

$$\sum_{k=1}^{n} \sin^2 \frac{1}{\sqrt{k+n}} \to \ln 2$$

Exercice 57 : [énoncé]

On a

$$f'_n(x) = \sum_{k=1}^n \cos kx = \cos \frac{(n+1)x}{2} \frac{\sin \frac{nx}{2}}{\sin \frac{x}{2}}$$

donc

$$x_n = \frac{\pi}{n+1}$$

Par suite

$$f_n(x_n) = \sum_{k=1}^n \frac{\sin\frac{k\pi}{n+1}}{k} = \frac{1}{n+1} \sum_{k=1}^n \frac{\sin\frac{k\pi}{n+1}}{\frac{k}{n+1}}$$

Or la fonction $t \mapsto \sin(\pi t)/t$ peut être prolongée en une fonction continue sur [0, 1] donc par somme de Riemann

$$f_n(x_n) \to \int_0^1 \frac{\sin(\pi t)}{t} dt$$

Exercice 58 : [énoncé]

On peut écrire

$$u_n = \frac{1}{n^3} \sum_{k=1}^n \frac{1}{(1+2k/n)^3} = \frac{1}{n^2} S_n$$

avec

$$S_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{(1+2k/n)^3}$$

Par les sommes de Riemann, on a

$$S_n \xrightarrow[n \to +\infty]{} \int_0^1 \frac{\mathrm{d}t}{(1+2t)^3} = \left[-\frac{1}{4(1+2t)^2} \right]_0^1 = \frac{2}{9}$$

On en déduit

$$u_n \sim \frac{2}{9n^2}$$

Exercice 59 : [énoncé]

La division euclidienne de n par k s'écrit

$$n = [n/k] \, k + r(k)$$

et donc

$$n - r(k) = k \left[n/k \right]$$

puis

$$v_n = \frac{1}{n} \sum_{k=1}^n \frac{k}{n} \left[\frac{n}{k} \right]$$

ce qui fait penser à une somme de Riemann associée à la fonction $f: t \mapsto t[1/t]$ définie et continue par morceaux sur [0, 1]. Bien qu'elle soit prolongeable par continuité en 0, ce prolongement n'est pas continue par morceaux sur [0,1] (il n'existe pas de subdivision finie du segment [0, 1] qui soit adaptée) et l'on ne peut donc pas employer directement le théorème du cours relatif aux sommes de Riemann: cela va nous obliger à un petit découpage... Soit $N \in \mathbb{N}^*$. On peut écrire

$$v_n = \frac{1}{n} \sum_{k=1}^{[n/N]} \frac{k}{n} \left[\frac{n}{k} \right] + \frac{1}{n} \sum_{k=[n/N]+1}^{n} \frac{k}{n} \left[\frac{n}{k} \right]$$

D'une part

$$\left|\frac{1}{n}\sum_{k=1}^{[n/N]}\frac{k}{n}\left[\frac{n}{k}\right]\right|\leqslant\frac{1}{n}\sum_{k=1}^{[n/N]}1\leqslant\frac{[n/N]}{n}\leqslant\frac{1}{N}$$

et d'autre part, par les sommes de Riemann

$$\frac{1}{n - [n/N]} \sum_{k=\lfloor n/N \rfloor + 1}^{n} \frac{k}{n} \left[\frac{n}{k} \right] \xrightarrow[n \to +\infty]{} \int_{1/N}^{1} t \left[1/t \right] dt$$

Par le changement de variable u = 1/t

$$\int_{1/N}^{1} t \left[1/t \right] dt = \int_{1}^{N} \frac{[u]}{u^{3}} du = \sum_{k=1}^{N} \int_{k}^{k+1} \frac{k}{u^{3}} du$$

puis

$$\int_{1/N}^{1} t \left[1/t \right] dt = \frac{1}{2} \sum_{k=1}^{N} \left(\frac{1}{(k+1)^2} - \frac{1}{k+1} + \frac{1}{k} \right) = \frac{1}{2} \sum_{k=1}^{N+1} \frac{1}{k^2}$$

et l'on remarque que

$$\frac{1}{2} \sum_{k=1}^{N+1} \frac{1}{k^2} \xrightarrow[N \to +\infty]{} \frac{\pi^2}{12}$$

En choisissant N assez grand pour que $1/N \leqslant \varepsilon$ et $\frac{1}{2} \sum_{k=N+2}^{+\infty} \frac{1}{k^2} \leqslant \varepsilon$, on a

$$\left| v_n - \frac{\pi^2}{12} \right| \le \varepsilon + \frac{n - [n/N]}{n} \left(\frac{1}{n - [n/N]} \sum_{k=[n/N+1]}^N \frac{k}{n} \left[\frac{n}{k} \right] - \frac{\pi^2}{12} \right) + \frac{[n/N]}{n} \frac{\pi^2}{12}$$

Puis pour n assez grand

$$\left| v_n - \frac{\pi^2}{12} \right| \leqslant \varepsilon + \frac{n - [n/N]}{n} \left(\sum_{k=N+2}^{+\infty} \frac{1}{k^2} + \varepsilon \right) + \frac{[n/N]}{n} \frac{\pi^2}{12}$$

ce qui donne

$$\left| v_n - \frac{\pi^2}{12} \right| \leqslant \varepsilon + 2\varepsilon + \varepsilon \frac{\pi^2}{12}$$

Finalement $v_n \to \pi^2/12$ puis $u_n \to 1 - \pi^2/12$

Exercice 60: [énoncé]

a) Par somme de Riemann

$$\sum_{p=n+1}^{2n} \frac{1}{p} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} \to \int_{0}^{1} \frac{\mathrm{d}t}{1 + t} = \ln 2$$

b) Par somme de Riemann

$$\sum_{p=n+1}^{2n} \frac{1}{p^{\alpha}} = n^{1-\alpha} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left(1 + \frac{k}{n}\right)^{\alpha}} \to 0 \times \int_{0}^{1} \frac{\mathrm{d}t}{(1+t)^{\alpha}} = 0$$

c) Sachant pour x > 0

$$x - \frac{x^3}{6} \leqslant \sin x \leqslant x$$

on obtient

$$\left| \sum_{p=n+1}^{2n} \sin \left(\frac{1}{p} \right) - \sum_{p=n+1}^{2n} \frac{1}{p} \right| \leqslant \frac{1}{6} \sum_{p=n+1}^{2n} \frac{1}{p^3}$$

et donc

$$\lim_{n \to +\infty} \sum_{p=n+1}^{2n} \sin\left(\frac{1}{p}\right) = \lim_{n \to +\infty} \sum_{p=n+1}^{2n} \frac{1}{p} = \ln 2$$

Exercice 61: [énoncé]

- a) Les deux polynômes de l'égalité sont unitaires, de degré 2n et ont pour racines les racines 2n-ième de l'unité car les racines du polynôme $X^2 2X \cos(k\pi/n) + 1$ sont les $\mathrm{e}^{\pm ik\pi/2n}$.
- b) Par les sommes de Riemann,

$$\int_0^{\pi} \ln(a^2 - 2a\cos t + 1) dt = \lim_{n \to +\infty} \frac{\pi}{n} \sum_{k=1}^{n-1} \ln(a^2 - 2a\cos\frac{k\pi}{n} + 1)$$

Or

$$\frac{\pi}{n} \sum_{k=1}^{n-1} \ln(a^2 - 2a \cos \frac{k\pi}{n} + 1) = \frac{\pi}{n} \ln \frac{a^{2n} - 1}{a^2 - 1}$$

Si |a| < 1 alors $\frac{\pi}{n} \ln \frac{1-a^{2n}}{1-a^2} \to 0$ et donc

$$\int_0^{\pi} \ln(a^2 - 2a\cos t + 1) \, \mathrm{d}t = 0$$

Si |a| > 1 alors $\frac{\pi}{n} \ln \frac{1 - a^{2n}}{1 - a^2} \to 2\pi \ln |a|$ et donc

$$\int_{0}^{\pi} \ln(a^2 - 2a\cos t + 1) dt = 2\pi \ln|a|$$

Exercice 62: [énoncé]

C'est du cours.

Exercice 63: [énoncé]

Par la formule de Taylor avec reste intégral :

$$\sin x = x - \frac{1}{3!}x^3 + \int_0^x \frac{(x-t)^4}{4!}\cos(t)\,dt$$

or

$$0 \leqslant \int_0^x \frac{(x-t)^4}{4!} \cos(t) dt \leqslant \frac{x^5}{120}$$

$$x - \frac{1}{6}x^3 \le \sin x \le x - \frac{1}{6}x^3 + \frac{1}{120}x^5$$

Exercice 64: [énoncé]

Soit $x \in I$

Cas x = a

N'importe quel c convient.

 $\operatorname{Cas} x > a$

Par la formule de Taylor-Laplace

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt$$

Posons

$$m = \min_{[a,x]} f^{(n+1)}$$
 et $M = \max_{[a,x]} f^{(n+1)}$

On a

$$m\frac{(x-a)^{n+1}}{(n+1)!} \leqslant \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) \, \mathrm{d}t \leqslant M \frac{(x-a)^{n+1}}{(n+1)!}$$

En appliquant le théorème des valeurs intermédiaires à $f^{(n+1)}$, il existe $c \in I$ tel que

$$\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt = f^{(n+1)}(c) \frac{(x-a)^{n+1}}{(n+1)!}$$

Cas x < aSemblable

Exercice 65 : [énoncé]

En appliquant la formule de Taylor reste intégrale à la fonction $x \mapsto e^x$ entre 0 et x on obtient :

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{x} dt$$

donc

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| = \left| \int_0^x \frac{(x-t)^n}{n!} e^t dt \right|$$

Si $x \ge 0$ alors

$$\left| \int_0^x \frac{(x-t)^n}{n!} e^t dt \right| = \int_0^x \frac{(x-t)^n}{n!} e^t dt \leqslant \int_0^x \frac{(x-t)^n}{n!} e^x dt = \frac{x^{n+1} e^x}{(n+1)!} = \frac{|x|^{n+1} e^{|x|}}{(n+1)!}$$

Si $x \leq 0$ alors

$$\left| \int_0^x \frac{(x-t)^n}{n!} e^t dt \right| = \int_x^0 \frac{(t-x)^n}{n!} e^t dt \leqslant \int_x^0 \frac{(t-x)^n}{n!} dt = \frac{|x|^{n+1}}{(n+1)!} \leqslant \frac{|x|^{n+1} e^{|x|}}{(n+1)!}$$

On aurait aussi pu appliquer directement l'inégalité de Taylor-Lagrange à la restriction de f sur [-|x|,|x|].

Quand $n \to +\infty$,

$$\frac{|x|^{n+1} e^{|x|}}{(n+1)!} \to 0$$

donc

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x$$

Exercice 66: [énoncé]

La fonction $f: x \mapsto \ln(1+x)$ est définie et de classe \mathcal{C}^{∞} sur \mathbb{R}^+ avec

$$f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k}$$

f(0)=0, $f^{(k)}(0)=(-1)^{k-1}(k-1)!$ pour k>0 et $\left|f^{(n+1)}(x)\right|\leqslant n!=M$ sur \mathbb{R}^+ . Par l'inégalité de Taylor Lagrange :

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} \right| \le \frac{M x^{n+1}}{(n+1)!}$$

Pour x = 1, on obtient :

$$\left| \ln 2 - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \right| \leqslant \frac{1}{n+1} \to 0$$

donc

$$\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n} \xrightarrow[n \to +\infty]{} \ln 2$$

Exercice 67 : [énoncé]

Considérons la fonction $f: t \to \ln(1+t)$. f est de classe C^{∞} , f(0) = 0,

$$\forall k \geqslant 1, f^{(k)}(t) = \frac{(-1)^{k-1}(k-1)!}{(1+t)^k}$$

$$f^{(k)}(0) = (-1)^{k-1}(k-1)!$$

Sur [0,1], $|f^{(n+1)}(t)| \leq n!$ donc l'inégalité de Taylor Lagrange donne

$$\left| f(1) - f(0) - \sum_{k=1}^{n} \frac{f^{(k)}(0)}{k!} \right| \le \frac{n!}{(n+1)!} = \frac{1}{n+1}$$

i.e.

$$\left| \ln 2 - \sum_{k=0}^{n-1} \frac{(-1)^k}{k+1} \right| \leqslant \frac{1}{n+1} \to 0$$

d'où

$$\sum_{k=0}^{n} \frac{(-1)^k}{k+1} \to \ln 2$$

Exercice 68: [énoncé]

Si f est solution alors f est de classe \mathcal{C}^2 et par la formule de Taylor reste-intégrale :

$$\forall x \in [0,1], f(x) = f(0) + xf'(0) + \int_0^x (x-t)f''(t) dt = xf'(0) + \int_0^x (x-t)g(t) dt$$

Or f(1) = 0 donc $f'(0) = \int_0^1 (t-1)g(t) dt$ puis

$$f(x) = x \int_0^1 (t - 1)g(t) dt + \int_0^x (x - t)g(t) dt$$

Inversement, considérons f définie par :

$$f(x) = x \int_0^1 (t-1)g(t) dt + \int_0^x (x-t)g(t) dt$$

On a f(0) = f(1) = 0. De plus

$$f(x) = x \int_0^1 (t-1)g(t) dt + x \int_0^x g(t) dt - \int_0^x tg(t) dt$$

donc f est dérivable et

$$f'(x) = \int_0^1 (t-1)g(t) dt + \int_0^x g(t) dt + xg(x) - xg(x)$$

f est donc deux fois dérivable et

$$f''(x) = g(x)$$

Exercice 69 : [énoncé]

En vertu du théorème de Taylor-Young :

$$f(a+h) = f(a) + hf'(a) + \frac{1}{2}h^2f''(a) + o(h^2)$$

donc

$$f(a+h) - 2f(a) + f(a-h) = h^2 f''(a) + o(h^2)$$

puis

$$\lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} = f''(a)$$

Exercice 70: [énoncé]

Par Taylor avec reste intégral

$$f(x+1) = f(x) + f'(x) + \int_{x}^{x+1} (x+1-t)f''(t) dt$$

donc

$$|f'(x)| \le |f(x)| + |f(x+1)| + \max_{x \le t \le x+1} |f''(t)| \xrightarrow[x \to +\infty]{} 0$$

Exercice 71 : [énoncé]

Par l'inégalité de Taylor Lagrange avec $M = \max_{[0,1]} |f''|$:

$$\left| f\left(\frac{k}{n^2}\right) - f(0) - \frac{k}{n^2} f'(0) \right| \leqslant \frac{M}{2} \left(\frac{k}{n^2}\right)^2$$

Par suite

$$\left| S_n - \sum_{k=1}^n \frac{k}{n^2} f'(0) \right| \leqslant \frac{M}{2n^4} \sum_{k=1}^n k^2 \leqslant \frac{M}{2n} \to 0$$

or

$$\sum_{k=1}^{n} \frac{k}{n^2} f'(0) = \frac{n+1}{2n} f'(0)$$

$$S_n \xrightarrow[n \to +\infty]{} f'(0)/2$$

Exercice 72: [énoncé]

- a) L'existence de θ est assurée par le théorème des accroissements finis.
- b) Si deux réels θ et θ' sont solutions distinctes alors, par le théorème de Rolle, f'' s'annule entre θx et $\theta' x$. Or $f''(0) \neq 0$, donc il existe un voisinage de 0 sur lequel f'' ne s'annule pas et sur ce voisinage on a l'unicité de θ .
- c) Par la formule de Taylor-Young appliquée à f':

$$f'(\theta x) = f'(0) + x\theta f''(0) + o(x)$$

En substituant dans la relation initiale, on obtient

$$f(x) = f(0) + xf'(0) + x^2\theta f''(0) + o(x^2)$$

Or la formule de Taylor-Young appliquée à f donne

$$f(x) = f(0) + xf'(0) + \frac{1}{2}x^2f''(0) + o(x^2)$$

On en déduit

$$x^{2}\theta f''(0) + o(x^{2}) = \frac{1}{2}x^{2}f''(0) + o(x^{2})$$

Sachant $f''(0) \neq 0$, on en déduit $\theta \to 1/2$ quand $x \to 0$.

Exercice 73: [énoncé]

Par l'égalité de Taylor-Lagrange (hors-programme) :

$$\forall x \in]0, \pi/2[, \exists \xi \in]0, x[, \sin x = x - \frac{1}{6}x^3\cos(\xi)]$$

Le réel $\theta_x = \xi/x$ convient alors

A défaut de connaître l'égalité de Taylor-Lagrange, par l'égalité de Taylor avec reste-intégrale

$$\sin x = x - \int_0^x \frac{(x-t)^2}{2!} \cos t \, \mathrm{d}t$$

Or pour $t \in [0, x]$, on a

$$\cos x \leqslant \cos t \leqslant 1$$

avec inégalité stricte pour $t \in]0, x[$ donc

$$\frac{x^3}{6}\cos x < \int_0^x \frac{(x-t)^2}{2!}\cos t \,dt < \frac{x^3}{6}$$

Ainsi

$$\int_0^x \frac{(x-t)^2}{2!} \cos t \, dt = \lambda \frac{x^3}{6} \text{ avec } \cos x < \lambda < 1 = \cos 0$$

Par le théorème des valeurs intermédiaires, on peut écrire

$$\lambda = \cos(x\theta_x) \text{ avec } \theta_x \in]0,1[$$

Quand $x \to 0$, $x\theta_x \to 0$ donc

$$\cos(x\theta_x) = 1 - \frac{1}{2}x^2\theta_x^2 + o(x^2)$$

puis

$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{12}x^5\theta_x^2 + o(x^5)$$

or

$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + o(x^5)$$

donc $\theta_x^2 \to 1/10$ puis

$$\theta_x o rac{1}{\sqrt{10}}$$

Exercice 74: [énoncé]

a) Par la formule de Taylor Young:

$$\varphi(x) = \varphi(0) + x\varphi'(0) + \dots + \frac{x^n}{n!}\varphi^{(n)}(0) + o(x^n)$$

 $\varphi(x) = o(x^n)$ entraı̂ne alors $\varphi(0) = \varphi'(0) = \dots = \varphi^{(n)}(0) = 0$.

En appliquant la formule de Taylor Young à $\varphi^{(p)}$, on obtient la conclusion.

b) $x\psi(x) = \varphi(x) = o(x^n) \text{ donc } \psi(x) = o(x^{n-1}).$

 $x\psi'(x) + \psi(x) = \varphi'(x) = o(x^{n-1}) \text{ donc } \psi'(x) = o(x^{n-2})$

$$x\psi''(x) + 2\psi'(x) = \varphi''(x) = o(x^{n-2}) \text{ donc } \psi''(x) = o(x^{n-3})...$$

Par le théorème du prolongement \mathcal{C}^1 , la fonction ψ est de classe \mathcal{C}^{n-1} .

c) On introduit

$$\varphi(x) = f(x) - \left(f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) \right)$$

On a $\varphi(x) = o(x^n)$ donc ψ est de classe \mathcal{C}^{n-1} puis

$$g(x) = \psi(x) + \left(f'(0) + \dots + \frac{x^{n-1}}{n!}f^{(n)}(0)\right)$$

est de classe C^{n-1} .

d)

$$\frac{f(x)}{g(x)} = \frac{f(x)}{x} \frac{1}{g(x)/x}$$

avec $x \mapsto f(x)/x$ et $x \mapsto g(x)/x$ qui se prolongent en 0 en des fonctions de classe \mathcal{C}^{n-1} .

Exercice 75 : [énoncé]

Supposons

$$\frac{1}{c-a} \int_{a}^{c} f \geqslant \frac{1}{b-c} \int_{c}^{b} f$$

On a alors

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f \leqslant \int_{a}^{c} f + \frac{b - c}{c - a} \int_{a}^{c} f = \frac{b - a}{c - a} \int_{a}^{c} f$$

Le cas

$$\frac{1}{c-a} \int_{a}^{c} f < \frac{1}{b-c} \int_{c}^{b} f$$

est semblable et on peut conclure.

Exercice 76: [énoncé]

(**⇐**) ok

 (\Rightarrow) Si $\int_a^b f \ge 0$ alors $\int_a^b f = \int_a^b |f|$ donne $\int_a^b |f(t)| - f(t) dt = 0$. Or la fonction |f| - f est continue et positive donc elle est nulle.

Le cas $\int_a^b f < 0$ est semblable.

Exercice 77: [énoncé]

Montrons que l'égalité proposée a lieu si, et seulement si, la fonction f est de signe constant

Si f est positive alors |f| = f et donc l'égalité a lieu.

Si f est négative alors |f| = -f et à nouveau l'égalité a lieu.

Inversement, supposons

$$\left| \int_{a}^{b} f \right| = \int_{a}^{b} |f|$$

Si $\int_a^b f \ge 0$ alors on obtient

$$\int_{a}^{b} f = \int_{a}^{b} |f|$$

et donc

$$\int_a^b |f(x)| - f(x) \, \mathrm{d}x = 0$$

La fonction |f| - f est continue, positive et d'intégrale nulle, c'est donc la fonction nulle. Par suite f = |f| et donc f est positive.

Si $\int_a^b f \leq 0$, l'étude en analogue en observant

$$\int_a^b |f(x)| + f(x) \, \mathrm{d}x = 0$$

Exercice 78: [énoncé]

Supposons $\left| \int_a^b f \right| = \int_a^b |f|$.

On peut écrire $\int_a^b f = r e^{i\theta}$ avec $r = \left| \int_a^b f \right|$ et $\theta \in \mathbb{R}$.

Considérons alors $g: t \mapsto f(t)e^{-i\theta}$.

On a $\int_a^b g = \left| \int_a^b f \right| \in \mathbb{R}$ donc $\int_a^b g = \int_a^b \operatorname{Re}(g)$.

Or |g| = |f| et l'hypothèse de départ donne $\int_a^b |g| = \int_a^b \text{Re}(g)$ puis $\int_a^b |g| - \text{Re}(g) = 0$.

Puisque la fonction réelle |g| - Re(g) est continue, positive et d'intégrale nulle, c'est la fonction nulle.

Par suite Re(g) = |g| et donc la fonction g est réelle positive.

Finalement, la fonction f est de la forme $t \mapsto g(t)e^{i\theta}$ avec g fonction réelle positive. La réciproque est immédiate.

Exercice 79 : [énoncé]

La fonction $\varphi: t \mapsto f(t) - t$ est définie, continue sur [0,1] et

$$\int_0^1 \varphi(t) \, \mathrm{d}t = \int_0^1 f(t) \, \mathrm{d}t - \frac{1}{2} = 0$$

donc φ s'annule.

Exercice 80 : [énoncé]

Posons

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(t) \, \mathrm{d}t$$

La fonction $\varphi: t \mapsto f(t) - \mu$ est définie, continue sur [a,b] et

$$\int_{a}^{b} \varphi(t) dt = \int_{a}^{b} f(t) dt - \mu(b - a) = 0$$

donc φ s'annule.

Exercice 81: [énoncé]

Si $\int_a^b g(t) dt = 0$ alors g = 0 (car on sait g continue et positive) et le problème est immédiatement résolu.

Sinon, puisque f est continue sur le segment [a, b], elle admet un minimum et maximum en des points c et d.

Posons m = f(c) et M = f(d).

Par positivité de la fonction g, on a

$$mg(t) \leqslant f(t)g(t) \leqslant Mg(t)$$

donc

$$m \leqslant \frac{\int_a^b f(t)g(t) dt}{\int_a^b g(t) dt} \leqslant M$$

Il suffit alors d'appliquer le théorème des valeurs intermédiaires entre c et d pour conclure.

Exercice 82 : [énoncé]

a) En exploitant la relation de Chasles, on peut écrire

$$S_n - \int_a^b f(t)g(t) dt = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} (f(a_k) - f(t)) g(t) dt$$

Soit $\varepsilon > 0$. Puisque f est continue sur le segment [a,b], elle y est uniformément continue et donc il existe $\alpha > 0$ tel que

$$\forall s, t \in [a, n], |s - t| \leq \alpha \Rightarrow |f(s) - f(t)| \leq \varepsilon$$

Pour n assez grand, on a $|(b-a)/n| \le \alpha$ et alors pour tout $t \in [a_k, a_{k+1}]$ on a $|a_k - t| \le \alpha$ donc $|f(a_k) - f(t)| \le \varepsilon$. On en déduit

$$\left| S_n - \int_a^b f(t)g(t) \, \mathrm{d}t \right| \leqslant \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} \varepsilon |g(t)| \, \mathrm{d}t \leqslant \varepsilon M(b-a) \text{ avec } M = \sup_{[a,b]} |g|$$

Par suite

$$S_n \xrightarrow[n \to +\infty]{} \int_a^b f(t)g(t) dt$$

b) En exprimant l'intégrale à l'aide de la primitive G

$$S_n = \sum_{k=0}^{n-1} f(a_k) \left(G(a_{k+1}) - G(a_k) \right)$$

En séparant la somme en deux, puis en procédant à un décalage d'indice sur la première

$$S_n = \sum_{k=1}^n f(a_{k-1})G(a_k) - \sum_{k=0}^{n-1} f(a_k)G(a_k)$$

puis en recombinant les deux sommes

$$S_n = f(a_{n-1})G(a_n) + \sum_{k=1}^{n-1} (f(a_{k-1}) - f(a_k))G(a_k) - f(a_0)G(a_0)$$

Or $G(a_0) = G(a) = 0$ et puisque la fonction f est décroissante et positive

$$S_n \le f(a_{n-1})M + \sum_{k=1}^{n-1} (f(a_{k-1}) - f(a_k)) M \text{ avec } M = \max_{[a,b]} G$$

Enfin par télescopage

$$S_n \leqslant f(a_0)M = f(a)M$$

De façon symétrique, on a aussi

$$S_n \geqslant f(a)m$$
 avec $m = \min_{[a,b]} G$

c) En passant à la limite ce qui précède, on obtient

$$f(a)m \leqslant \int_{a}^{b} f(t)g(t) dt \leqslant f(a)M$$

Si f(a) = 0, le problème est immédiatement résolu, sinon, ce qui précède affirme que

$$\frac{1}{f(a)} \int_{a}^{b} f(t)g(t) dt$$

est valeur intermédiaire à deux valeurs prises par G et le théorème des valeurs intermédiaires permet de conclure.

d) Quitte à considérer -f, ce qui ne change rien au problème posé, on peut supposer que la fonction f est croissante. En appliquant le résultat précédent à la fonction $t\mapsto f(b)-f(t)$ décroissante et positive, on peut affirmer qu'il existe $c\in [a,b]$ tel que

$$\int_{a}^{b} (f(b) - f(t))g(t) dt = (f(b) - f(a)) \int_{a}^{c} g(t) dt$$

et il suffit de réorganiser les membres de cette identité pour former celle voulue.

Exercice 83: [énoncé]

- a) La fonction G est continue donc l'image d'un segment est un segment.
- b) Il suffit de procéder à une intégration par parties.
- c) Puisque la fonction -f' est positive, on a

$$m(f(a) - f(b)) \leqslant -\int_{a}^{b} f'(t)G(t) dt \leqslant M(f(a) - f(b))$$

et donc

$$mf(a) + [G(b) - m] f(b) \le \int_a^b f(t)g(t) dt \le Mf(a) + [G(b) - M] f(b)$$

puis

$$mf(a) \leqslant \int_{a}^{b} f(t)g(t) dt \leqslant Mf(a)$$

Ainsi, que f(a) soit nul ou non, il existe $c \in [a, b]$ tel que

$$\int_{a}^{b} f(t)g(t) dt = f(a)G(c)$$

Exercice 84 : [énoncé]

- a) $\int_0^{\pi} f(t) \sin t \, dt = 0$ et $t \mapsto f(t) \sin t$ est continue donc il existe $a \in]0, \pi[$ tel que $f(a) \sin a = 0$ i.e. f(a) = 0.
- b) Par l'absurde si f ne s'annule qu'une seule fois alors le tableau de signe de f est de l'une des quatre formes suivantes

	t	0		a		π		t	0		a		π	
	f(t)	0	+	0	+	0	7	f(t)	0	_	0	_	0	
		·												
	t	0		a		π	011	t	0		a		π	
ſ	f(t)	0	+	0	_	0	ou	f(t)	$\Box 0$	_	0	+	0	

Les deux premiers cas sont à exclure car

$$\int_0^{\pi} f(t) \sin t \, \mathrm{d}t$$

est l'intégrale nulle d'une fonction non nulle de signe constant.

Les deux autres cas sont à exclure car

$$\int_0^{\pi} f(t)\sin(t-a)\,\mathrm{d}t = \cos a \int_0^{\pi} f(t)\sin t\,\mathrm{d}t - \sin a \int_0^{\pi} f(t)\cos t\,\mathrm{d}t$$

est l'intégrale nulle d'une fonction non nulle de signe constant. Absurde.

Exercice 85 : [énoncé]

Notons que l'hypothèse initiale donne par linéarité que pour toute fonction polynomiale P de degré $\leq n$

$$\int_{a}^{b} P(t)f(t) \, \mathrm{d}t = 0$$

Par l'absurde supposons que la fonction f ne s'annule pas plus de n fois et notons $x_1 < \ldots < x_p$ (avec $p \leqslant n$) les points où f s'annule tout en changeant de signe. On peut dresser le tableau de signe de la fonction continue f et affirmer que la fonction

$$x \mapsto (x - x_1) \dots (x - x_p) f(x)$$

est de signe constant. Or cette fonction est continue et d'intégrale nulle, c'est donc la fonction nulle. Il en découle que la fonction f est nulle sur $[a,b] \setminus \{x_1,\ldots,x_p\}$ puis nulle sur [a,b] par argument de continuité.

Exercice 86 : [énoncé]

Posons $g(x) = \int_a^b f(t) \sin(xt) dt$.

$$g(x) - g(y) = \int_a^b f(t) \left(\sin(xt) - \sin(yt) \right) dt$$

Puisque la fonction sinus est lipschitzienne

$$\left|\sin(xt) - \sin(yt)\right| \leqslant |x - y| \, |t|$$

donc

$$|g(x) - g(y)| \le |x - y| \int_a^b |tf(t)| dt$$

Ainsi g est lipschitzienne.

Exercice 87: [énoncé]

La fonction $t \mapsto (M - f(t))(f(t) - m)$ est positive donc

$$\int_0^1 (M - f(t))(f(t) - m) dt \ge 0$$

En développant et par linéarité, on obtient $-mM - \int_0^1 f^2(t) dt \ge 0$ sachant $\int_0^1 f(t) dt = 0$.

On en déduit l'inégalité demandée.

Exercice 88 : [énoncé]

Nous allons établir l'inégalité

$$\left(\int_0^1 f(t) \, \mathrm{d}t\right) \times \left(\int_0^1 g(t) \, \mathrm{d}t\right) \leqslant \int_0^1 f(t)g(t) \, \mathrm{d}t$$

On peut commencer par observer que si cette inégalité est vraie pour f et q, elle l'est encore pour $f + \lambda$ et $g + \mu$ avec $\lambda, \mu \in \mathbb{R}$. On peut donc, sans perte de généralités, supposer $\int_0^1 f(t) dt = \int_0^1 g(t) dt = 0$ et il s'agit alors d'établir $\int_0^1 f(t)g(t) \, \mathrm{d}t \geqslant 0.$

Il existe alors $a \in [0,1]$ tel que $f(x) \leq 0$ pour $x \in [0,a]$ et $f(x) \geq 0$ pour $x \in [a,1]$. Il existe aussi $b \in [0,1]$ tel que $g(x) \leq 0$ pour $x \in [0,b]$ et $g(x) \geq 0$ pour $x \in [b,1]$. Quitte à échanger f et g, on peut supposer $a \leq b$

$$\int_0^1 f(t)g(t) \, dt = \int_0^a f(t)g(t) \, dt + \int_a^b f(t)g(t) \, dt + \int_b^1 f(t)g(t) \, dt$$

 $\int_0^a f(t)g(t)\,\mathrm{d}t \geqslant 0 \text{ car } f(t),g(t)\leqslant 0 \text{ sur } [0,a].$ $\int_a^b f(t)g(t)\,\mathrm{d}t \geqslant f(b)\int_a^b g(t)\,\mathrm{d}t \text{ car } f(t)\leqslant f(b) \text{ et donc } f(t)g(t)\geqslant f(b)g(t) \text{ puisque}$

 $\int_{b}^{1} f(t)g(t) dt \ge f(b) \int_{b}^{1} g(t) dt \operatorname{car} f(t) \ge f(b)$ et donc $f(t)g(t) \ge f(b)g(t)$ puisque $q(t) \geqslant 0$.

On en déduit

$$\int_0^1 f(t)g(t) dt \ge f(b) \int_a^1 g(t) dt \ge 0$$

et on peut conclure.

Notons que la comparaison

$$\left(\int_0^1 f(t) \, \mathrm{d}t\right) \times \left(\int_0^1 g(t) \, \mathrm{d}t\right) \leqslant \int_0^1 f(t)g(t) \, \mathrm{d}t$$

ne peut être améliorée car c'est une égalité quand f et q sont des fonctions constantes.

Exercice 89 : [énoncé]

a) Quand $x \to 0^+$,

$$\left| \int_{-x}^{x} \sin t^{2} dt \right| \leqslant \int_{-x}^{x} \left| \sin t^{2} \right| dt \leqslant \int_{-x}^{x} 1 dt = 2x \to 0$$

donc $\int_{-x}^{x} \sin t^2 dt \to 0$.

b) Quand $x \to +\infty$,

$$\int_{x}^{2x} \frac{\mathrm{d}t}{\ln 2x} \leqslant \int_{x}^{2x} \frac{\mathrm{d}t}{\ln t}$$

donc

$$\frac{x}{\ln 2x} \leqslant \int_{x}^{2x} \frac{\mathrm{d}t}{\ln t}$$

puis

$$\int_{x}^{2x} \frac{\mathrm{d}t}{\ln t} \to +\infty$$

c) Par intégration par parties

$$\int_{x}^{2x} \frac{\sin t}{t} dt = \left[-\frac{\cos t}{t} \right]_{x}^{2x} - \int_{x}^{2x} \frac{\cos t}{t^2} dt$$

Or quand $x \to +\infty$.

$$\left[-\frac{\cos t}{t} \right]_x^{2x} \to 0 \text{ et } \left| \int_x^{2x} \frac{\cos t}{t^2} \, \mathrm{d}t \right| \leqslant \int_x^{2x} \frac{\mathrm{d}t}{t^2} = \left[-\frac{1}{t} \right]_x^{2x} \to 0$$

donc

$$\int_{x}^{2x} \frac{\sin t}{t} \, \mathrm{d}t \to 0$$

Exercice 90 : [énoncé]

a) Quand $x \to 0^+$, par croissance de la fonction exponentielle

$$\int_{x}^{2x} \frac{e^{x}}{t} dt \leqslant \int_{x}^{2x} \frac{e^{t}}{t} dt \leqslant \int_{x}^{2x} \frac{e^{2x}}{t} dt$$

donc

$$e^x \ln 2 \leqslant \int_x^{2x} \frac{e^t}{t} dt \leqslant e^{2x} \ln 2$$

puis par encadrement

$$\int_{x}^{2x} \frac{e^{t}}{t} dt \to \ln 2$$

b) Quand $x \to +\infty$, par décroissance de la fonction $t \mapsto e^{1/t}$

$$\int_{x}^{2x} \frac{e^{1/2x}}{t} dt \leqslant \int_{x}^{2x} \frac{e^{1/t}}{t} dt \leqslant \int_{x}^{2x} \frac{e^{1/x}}{t} dt$$

donc

$$e^{1/x} \ln 2 \int_x^{2x} \frac{e^{1/t}}{t} dt \le e^{1/2x} \ln 2$$

puis par encadrement

$$\int_{T}^{2x} \frac{e^{1/t}}{t} dt \to \ln 2$$

c) Quand $x \to +\infty$, pour x assez grand, la fonction $t \mapsto \cos(1/t)$ est croissante sur [x,2x] donc

$$\int_{x}^{2x} \frac{\cos(1/x)}{t} dt \leqslant \int_{x}^{2x} \frac{\cos(1/t)}{t} dt \leqslant \int_{x}^{2x} \frac{\cos(1/2x)}{t} dt$$

puis

$$\cos\left(\frac{1}{x}\right)\ln 2\leqslant \int_{x}^{2x}\frac{\cos(1/t)}{t}\,\mathrm{d}t\leqslant \cos\left(\frac{1}{2x}\right)\ln 2$$

et par encadrement

$$\int_{x}^{2x} \frac{\cos(1/t)}{t} \, \mathrm{d}t \to \ln 2$$

Exercice 91 : [énoncé]

f est continue sur un segment, elle y est donc bornée par un certain M et alors

$$\left| \int_0^1 t^n f(t) \, \mathrm{d}t \right| \leqslant \int_0^1 |t^n| \, |f(t)| \, \mathrm{d}t \leqslant M \int_0^1 t^n \, \mathrm{d}t = \frac{M}{n+1} \to 0$$

Exercice 92 : [énoncé]

On a

$$\left| \frac{1}{x} \int_0^x f(t) dt - f(0) \right| \le \frac{1}{x} \int_0^x |f(t) - f(0)| dt$$

Par la continuité de f en 0, Pour tout $\varepsilon > 0$, il existe $\alpha > 0$ vérifiant

$$\forall x \in \mathbb{R}^+, x \leqslant \alpha \Rightarrow |f(x) - f(0)| \leqslant \varepsilon$$

et donc

$$\left| \frac{1}{x} \int_{0}^{x} f(t) dt - f(0) \right| \leqslant \varepsilon$$

On peut donc conclure que

$$\lim_{x \to 0^+} \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t = f(0)$$

On peut aussi très efficacement obtenir le résultat en introduisant une primitive de f et en exploitant

$$\frac{1}{x} \int_0^x f(t) dt = \frac{F(x) - F(0)}{x} \xrightarrow[x \to 0]{} F'(0) = f(0)$$

Exercice 93: [énoncé]

Introduisons

$$F: x \mapsto \int_0^x f(t) dt$$
 et $G: x \mapsto \int_0^x t f(t) dt$

Par intégration par parties

$$G(x) = xF(x) - \int_0^x F(t) dt = \int_0^x [F(x) - F(t)] dt$$

Cas F n'est pas de signe constant Il existe alors $a, b \in]0, 1[$ tel que

$$F(a) = \min_{[0,1]} F < 0 \text{ et } F(b) = \max_{[0,1]} F > 0$$

Par intégration d'une fonction continue, non nulle et de signe constant sur un intervalle non singulier, on a

$$G(a) < 0 \text{ et } G(b) > 0$$

et le théorème des valeurs intermédiaires assure que G s'annule.

Cas F est de signe constant

Quitte à considérer -f, supposons F positive.

Si F est nulle, il en est de même de f et la propriété est immédiate, sinon, on peut introduire $b \in [0,1[$ tel que

$$F(b) = \max_{[0,1]} F > 0$$

On a alors

$$G(b) > 0$$
 et $G(1) = -\int_{0}^{1} F(t) dt < 0$

 $\operatorname{car} F(1)$ est nul.

A nouveau, le théorème des valeurs intermédiaires permet de conclure.

Exercice 94: [énoncé]

On introduit F une primitive de la fonction continue f.

La fonction $x \mapsto F(x+T) - F(x)$ est constante, elle est donc de dérivée nulle et par suite f(x+T) - f(x) = 0.

Exercice 95: [énoncé]

Unicité : soient F et G deux primitives solutions. Il existe $C \in \mathbb{R}$ tel que F = G + C.

$$\int_0^1 F = 0 = \int_0^1 G$$

donne alors C = 0 puis F = G.

Existence: Posons $\mathcal{F}(x) = \int_0^x f(t) dt$. La fonction

$$F: x \mapsto \mathcal{F}(x) - \int_0^1 \mathcal{F}(u) \, \mathrm{d}u$$

résout le problème.

Exercice 96 : [énoncé]

a) Puisque f(0) = 0, on a

$$f(x) = \int_0^x f'(t) \, \mathrm{d}t$$

Par l'inégalité de Cauchy-Schwarz

$$|f(x)| \le \left(\int_0^x dt\right)^{1/2} \left(\int_0^x f'(t)^2 dt\right)^{1/2}$$

et donc

$$f(x)^2 \le x \int_0^x f'(t)^2 dt \le x \int_0^1 f'(t)^2 dt$$

puis

$$\int_0^1 f(x)^2 \, \mathrm{d}x \le \int_0^1 x \left(\int_0^1 f'(t)^2 \, \mathrm{d}t \right) \, \mathrm{d}x = \frac{1}{2} \int_0^1 f'(t)^2 \, \mathrm{d}t$$

b) En reprenant ce qui précède

$$\int_0^{1/2} f(x)^2 \, \mathrm{d}x \le \int_0^{1/2} x \left(\int_0^{1/2} f'(t)^2 \, \mathrm{d}t \right) \, \mathrm{d}x = \frac{1}{8} \int_0^{1/2} f'(t)^2 \, \mathrm{d}t$$

Sachant f(1) = 0, on a aussi de façon symétrique

$$\int_{1/2}^{1} f(x)^{2} dx \leqslant \frac{1}{8} \int_{1/2}^{1} f'(t)^{2} dt$$

et en sommant ces deux majorations, on obtient

$$\int_0^1 f(x)^2 \, \mathrm{d}x \le \frac{1}{8} \int_0^1 f'(t)^2 \, \mathrm{d}t$$

Exercice 97 : [énoncé]

a) Par intégration par parties, on obtient

$$I_{p,q} = \frac{q}{p+1} I_{p+1,q-1}$$

b) On en déduit

$$I_{p,q} = \frac{q(q-1)\dots 1}{(p+1)(p+2)\dots (p+q)}I_{p+q,0}$$

or

$$I_{p+q,0} = \frac{(b-a)^{p+q+1}}{p+q+1}$$

donc

$$I_{p,q} = \frac{p!q!}{(p+q+1)!}(b-a)^{p+q+1}$$

Exercice 98 : [énoncé]

a) En appliquant le changement de variable $u = \pi/2 - t$ on obtient

$$I_n = \int_0^{\pi/2} \cos^n u \, \mathrm{d}u$$

 $t\mapsto \sin^n t$ est continue, positive sans être la fonction nulle et $0<\pi/2$ donc $I_n>0$ b) Par intégration par parties

$$I_{n+2} = \int_0^{\pi/2} \sin t \sin^{n+1} t \, dt = \left[-\cos t \sin^{n+1} t \right]_0^{\pi/2} + (n+1) \int_0^{\pi/2} \cos^2 t \sin^n t \, dt$$

$$I_{n+2} = (n+1) \int_0^{\pi/2} (1 - \sin^2 t) \sin^n t \, dt = (n+1)I_n - (n+1)I_{n+2}$$

Corrections

puis

$$(n+2)I_{n+2} = (n+1)I_n$$

c)

$$I_{2p} = \frac{2p-1}{2p}I_{2p-2} = \frac{2p-1}{2p}\frac{2p-3}{2p-2}\cdots\frac{1}{2}I_0 = \frac{(2p)!}{2^{2p}(p!)^2}\frac{\pi}{2}$$

sachant $I_0 = \pi/2$.

$$I_{2p+1} = \frac{2p}{2p+1} \frac{2p-2}{2p-1} \cdots \frac{2}{3} I_1 = \frac{2^{2p}(p!)^2}{(2p+1)!}$$

sachant $I_1 = 1$.

d) Posons $u_n = (n+1)I_{n+1}I_n$. On

$$u_{n+1} = (n+2)I_{n+2}I_{n+1} = (n+1)I_nI_{n+1} = u_n$$

et $u_0 = I_1 I_0 = \pi/2$ donc pour tout $n \in \mathbb{N}$

$$(n+1)I_{n+1}I_n = \pi/2$$

Pour tout $t \in [0, \pi/2]$,

$$\sin^{n+2} t \le \sin^{n+1} t \le \sin^n t$$

donc

$$I_{n+2} \leqslant I_{n+1} \leqslant I_n$$

e) On a

$$\frac{n+1}{n+2}I_n \leqslant I_{n+1} \leqslant I_n$$

donc $I_{n+1}/I_n \to 1$. Ainsi $I_{n+1} \sim I_n$.

Par suite

$$\frac{\pi}{2} = (n+1)I_{n+1}I_n \sim nI_n^2$$

et donc

$$I_n \sim \frac{\sqrt{\pi}}{\sqrt{2n}}$$

sachant $I_n > 0$.

Exercice 99: [énoncé]

a) On a

$$0 \leqslant I_n \leqslant \int_0^1 \frac{\mathrm{e}}{n!} \, \mathrm{d}x = \frac{\mathrm{e}}{n!} \to 0$$

donc par encadrement $I_n \to 0$.

b) Par intégration par parties

$$I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx = \left[-\frac{(1-x)^{n+1}}{(n+1)!} e^x \right]_0^1 + \int_0^1 \frac{(1-x)^{n+1}}{(n+1)!} e^x dx = \frac{1}{(n+1)!} + I_{n+1}$$

40

c) Pour $k \geqslant 1$,

$$\frac{1}{k!} = I_{k-1} - I_k$$

donc

$$\sum_{k=0}^{n} \frac{1}{k!} = 1 + \sum_{k=1}^{n} I_{k-1} - I_k = 1 + I_0 - I_n$$

avec

$$I_0 = \int_0^1 e^x dx = e - 1$$

Ainsi

$$\sum_{k=0}^{n} \frac{1}{k!} = e - I_n \xrightarrow[n \to +\infty]{} e$$

Exercice 100 : [énoncé]

a) $I_0 = e - 1$.

 $I_1 = \int_1^e \ln x \, dx = [x \ln x - x]_1^e = 1.$

b) Par intégration par parties

$$I_{n+1} = \int_{1}^{e} (\ln x)^{n+1} dx = \left[x(\ln x)^{n+1} \right]_{1}^{e} - (n+1) \int_{1}^{e} (\ln x)^{n} dx = e - (n+1)I_{n}$$

c) Par intégration d'une fonction continue, positive et non nulle, on a $I_n > 0$.

Puisque $I_{n+1} > 0$, on a aussi $I_n < \frac{e}{n+1}$.

d) Par encadrement $I_n \to 0$.

Puisque $I_{n+1} = e - (n+1)I_n \to 0$ on a $(n+1)I_n \to e$ puis

$$I_n \sim \frac{\mathrm{e}}{n+1} \sim \frac{\mathrm{e}}{n}$$

e) On a

$$D_{n+1} = (n+1)D_n$$

donc $D_n = n!D_0$.

Si $a \neq I_0$ alors $D_n \to +\infty$ puis $|u_n| \geqslant D_n - I_n \to +\infty$.

Exercice 101 : [énoncé]

a) $f: t \mapsto \frac{\cos(nt) - \cos(nx)}{\cos t - \cos x}$ est définie et continue sur $[0, \pi] \setminus \{x\}$. Sachant

$$\cos p - \cos q = -2\sin\frac{p-q}{2}\sin\frac{p+q}{2}$$

on obtient

$$f(t) = \frac{\sin\frac{n(t-x)}{2}\sin\frac{n(t+x)}{2}}{\sin\frac{t-x}{2}\sin\frac{t+x}{2}} \underset{t \to x}{\sim} n \frac{\sin(nx)}{\sin x}$$

On peut donc prolonger f par continuité en x ce qui assure l'existence de I_n . b) On a :

$$I_{n+1} + I_{n-1} = \int_0^\pi \frac{\cos(n+1)t + \cos(n-1)t - (\cos(n+1)x + \cos(n-1)x)}{\cos t - \cos x} dt$$

$$I_{n+1} + I_{n-1} = \int_0^\pi \frac{2\cos(nt)\cos t - 2\cos(nx)\cos x}{\cos t - \cos x} dt$$

$$I_{n+1} + I_{n-1} = 2 \int_0^\pi \frac{\cos(nt)\cos t - \cos(nt)\cos x}{\cos t - \cos x} dt + 2\cos x \int_0^\pi \frac{\cos(nt) - \cos(nx)}{\cos t - \cos x} dt$$

enfin

$$I_{n+1} + I_{n-1} = 2 \int_0^{\pi} \cos(nt) dt + 2 \cos x \cdot I_n = 2 \cos x \cdot I_n$$

 (I_n) est une suite récurrente linéaire double d'équation caractéristique $r^2 - 2\cos xr + 1 = 0$ de racines e^{ix} et e^{-ix} . Donc il existe $\lambda, \mu \in \mathbb{R}$ tel que

$$\forall n \in \mathbb{N}, I_n = \lambda \cos(nx) + \mu \sin(nx)$$

 $I_0 = 0$ et $I_1 = \pi$ donc $\lambda = 0$ et $\mu = \frac{\pi}{\sin x}$ d'où

$$I_n = \pi \frac{\sin(nx)}{\sin x}$$

Exercice 102 : [énoncé]

- a) $u_0 = 1/2$, $u_1 = \ln 2$ et $u_2 = \pi/4$.
- b) On a

$$u_{n+1} - u_n = \int_0^1 \frac{x^n (1-x)}{(1+x^n)(1+x^{n+1})} dx$$

or la fonction

$$x \mapsto \frac{x^n(1-x)}{(1+x^n)(1+x^{n+1})}$$

est continue, positive sans être la fonction nulle et 0 < 1 donc $u_{n+1} - u_n > 0$.

c) On a

$$|u_n - 1| = \int_0^1 \frac{x^n dx}{1 + x^n} \le \int_0^1 x^n dx = \frac{1}{n+1} \to 0$$

donc $u_n \to 1$.

d) Par intégration par parties

$$I_n = \int_0^1 x \frac{x^{n-1}}{1+x^n} dx = \left[\frac{1}{n} x \ln(1+x^n)\right]_0^1 - \frac{1}{n} \int_0^1 \ln(1+x^n) dx = \frac{\ln 2}{n} - \frac{1}{n} \int_0^1 \ln(1+x^n) dx$$

e) On a

$$0 \le \int_0^1 \ln(1+x^n) \, dx \le \int_0^1 x^n \, dx = \frac{1}{n+1} \to 0$$

car il est connu que $\ln(1+t) \leq t$ pour t > -1.

On a alors

$$\int_0^1 \ln(1+x^n) \, \mathrm{d}x \to 0$$

donc

$$u_n = 1 - \int_0^1 \frac{x^n}{1+x^n} dx = 1 - \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$

Exercice 103: [énoncé]

Par intégration par parties, on obtient pour $q \neq 0$

$$I_{p,q} = \frac{q}{p+1} I_{p+1,q-1}$$

Puisque $I_{n,0} = \frac{1}{n+1}$, on obtient

$$I_{p,q} = \frac{q!p!}{(p+q+1)!}$$

Exercice 104 : [énoncé]

a) Pour $n \ge 2$, par intégration par parties (avec $u' = \sin t$ et $v = \sin^{n-1} t$)

$$I_n = (n-1)I_{n-2} - (n-1)I_n$$

donc

$$I_n = \frac{n-1}{n} I_{n-2}$$

b) $I_0 = \pi/2$ et $I_1 = 1$ puis

$$I_{2p} = \frac{(2p)!}{2^{2p}(p!)^2} \frac{\pi}{2} \text{ et } I_{2p+1} = \frac{2^{2p}(p!)^2}{(2p+1)!}$$

Exercice 105 : [énoncé]

On a

$$2^n I_n = \int_0^1 \left(\frac{2t}{1+t^2}\right)^n \, \mathrm{d}t$$

où l'on remarque que la fonction $t \mapsto 2t/(1+t^2)$ croît de [0,1] sur [0,1]. Introduisons

$$J_n = \int_0^1 \frac{2}{1+t^2} \left(\frac{2t}{1+t^2}\right)^n dt = \int_0^{\pi/2} (\sin x)^n dx$$

On sait

$$J_n \sim \frac{\sqrt{\pi}}{\sqrt{2n}}$$

(via $nJ_nJ_{n+1}=\pi/2$ et $J_n\sim J_{n+1}$, cf. intégrales de Wallis) Montrons $2^n I_n \sim J_n$ en étudiant la différence

$$J_n - 2^n I_n = \int_0^1 \frac{1 - t^2}{1 + t^2} \left(\frac{2t}{1 + t^2}\right)^n dt$$

On a

$$0 \leqslant \int_0^1 \frac{1 - t^2}{1 + t^2} \left(\frac{2t}{1 + t^2}\right)^n dt \leqslant \int_0^1 \frac{2}{1 + t^2} \frac{1 - t^2}{1 + t^2} \left(\frac{2t}{1 + t^2}\right)^n dt$$

et le changement de variable $t = \tan x/2$ donne

$$0 \leqslant \int_0^1 \frac{1 - t^2}{1 + t^2} \left(\frac{2t}{1 + t^2}\right)^n dt \leqslant \int_0^{\pi/2} \cos x (\sin x)^n dx = \frac{1}{n+1}$$

On peut alors affirmer

$$2^n I_n - J_n = o\left(\frac{1}{\sqrt{n}}\right)$$

puis

$$2^n I_n \sim \frac{\sqrt{\pi}}{\sqrt{2n}}$$

et finalement

$$I_n \sim \frac{\sqrt{\pi}}{2^n \sqrt{2n}}$$

Exercice 106 : [énoncé]

$$0 \leqslant I_n \leqslant \int_0^1 x^n \, \mathrm{d}x = \frac{1}{n+1} \to 0$$

donc $I_n \to 0$.

De plus, pour tout $x \in [0, 1]$,

$$\frac{x^n}{x+1} \leqslant \frac{x^{n+1}}{x+1}$$

donc $I_n \leqslant I_{n+1}$.

$$I_n + I_{n+1} = \frac{1}{n+1}$$

donc

$$I_n = \sum_{k=1}^{n} \frac{(-1)^{n-k}}{k} + (-1)^n I_0$$

c) $I_0 = \ln 2$ et $(-1)^n I_n \to 0$ donc

$$\sum_{k=1}^{n} \frac{(-1)^{-k}}{k} + \ln 2 \to 0$$

puis la conclusion.

d) Comme ci-dessus, $J_n \to 0$. De plus

$$J_n + J_{n+2} = \frac{1}{n+1}$$

donc

$$J_{2n} = \sum_{k=0}^{n-1} \frac{(-1)^{n-1-k}}{2k+1} + (-1)^n J_0$$

puis

$$\sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{2k+1} + \frac{\pi}{4} \to 0$$

d'où

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \to \frac{\pi}{4}$$

Exercice 107: [énoncé]

- a) $\int_0^1 \frac{dt}{1+t^2} = [\arctan t]_0^1 = \frac{\pi}{4}$. b) Par sommation géométrique

$$\int_0^1 \sum_{k=0}^n (-1)^k t^{2k} dt = \int_0^1 \frac{1 + (-1)^n t^{2n+2}}{1 + t^2} dt = \frac{\pi}{4} + \int_0^1 \frac{(-1)^n t^{2n+2}}{1 + t^2} dt$$

c) $\int_0^1 \frac{t^{2n+2}}{1+t^2} dt \ge 0$ par intégration d'une fonction positive sur [0,1].

$$\int_0^1 \frac{t^{2n+2}}{1+t^2} dt \leqslant \int_0^1 t^{2n+2} dt = \frac{1}{2n+3}$$

 $car \frac{1}{1+t^2} \leq 1.$

d) On a

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = \sum_{k=0}^{n} \int_0^1 (-1)^k t^{2k} dt = \int_0^1 \sum_{k=0}^{n} (-1)^k t^{2k} dt$$

donc

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = \frac{\pi}{4} + (-1)^n \int_0^1 \frac{t^{2n+2}}{1+t^2} dt \to \frac{\pi}{4}$$

car

$$\int_0^1 \frac{t^{2n+2}}{1+t^2} \, \mathrm{d}t \to 0$$

Exercice 108 : [énoncé]

- a) $\int \frac{x^5}{1+x^{12}} dx = \frac{1}{6} \int \frac{du}{1+u^2} = \frac{1}{6} \arctan x^6 + C^{te} \text{ sur } \mathbb{R}.$
- b) $\int \frac{dx}{x(x^2-1)} = \int -\frac{1}{x} + \frac{1}{2} \frac{1}{x-1} + \frac{1}{2} \frac{1}{x+1} dx = -\ln|x| + \frac{1}{2} \ln|x^2-1| + C^{te}$ sur
- c) $\int \frac{x+1}{x^2-x+1} dx = \int \frac{\left(x-\frac{1}{2}\right)+\frac{3}{2}}{\left(x-\frac{1}{2}\right)^2+\frac{3}{2}} dx = \frac{1}{2}\ln(x^2-x+1) + \sqrt{3}\arctan\frac{2x-1}{\sqrt{3}} + C^{te} \text{ sur } \mathbb{R}.$
- d) $\int \frac{1}{x^2 2x + 2} dx = \int \frac{1}{(x 1)^2 + 1} = \arctan(x 1) + C^{te} \text{ sur } \mathbb{R}.$
- e) $\int \frac{x}{x^2+2x+2} dx = \frac{1}{2} \int \frac{(2x+2)-2}{(x+1)^2+1} dx = \frac{1}{2} \ln(x^2+2x+2) \arctan(x+1) + C^{te} \text{ sur } \mathbb{R}$
- f) $\int \frac{dx}{x(x^2+1)} = \int \frac{1}{x} \frac{x}{x^2+1} dx = \ln|x| \frac{1}{2}\ln(x^2+1) + C^{te} \text{ sur }]-\infty, 0[\text{ ou }]0, +\infty[.$
- g) $\int \frac{1}{x^3+1} dx = \frac{1}{3} \int \frac{1}{x+1} \frac{x-2}{x^2-x+1} dx =$
- $\frac{1}{3}\ln|x+1| \frac{1}{6}\ln(x^2 x + 1) + \frac{1}{\sqrt{2}}\arctan\frac{2x-1}{\sqrt{2}} + C^{te} \text{ sur }]-\infty, -1[\text{ ou }]-1, +\infty[.$
- h) $\int \frac{x \, dx}{x^3 1} = \frac{1}{3} \ln|x 1| \frac{1}{6} \ln(x^2 + x + 1) + \frac{1}{\sqrt{3}} \arctan\left(\frac{2x + 1}{\sqrt{3}}\right) + C^{te} \text{ sur }] \infty, 1$ ou $]1, +\infty[$.
- i) $\int \frac{x^4+1}{x^4-1} dx = \int 1 + \frac{1}{2} \frac{1}{x-1} \frac{1}{2} \frac{1}{x+1} \frac{1}{x^2+1} dx = x + \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| \arctan x + C^{te}$ sur
-] $-\infty$, -1[,]-1, 1[ou]1, $+\infty$ [. j) $\int \frac{1}{x^4+x^2+1} dx = \int \frac{1}{2} \frac{x+1}{x^2+x+1} \frac{1}{2} \frac{x-1}{x^2-x+1} dx$ puis
- $\int \frac{1}{x^4 + x^2 + 1} \, dx = \frac{1}{4} \ln \frac{x^2 + x + 1}{x^2 x + 1} + \frac{1}{2\sqrt{3}} \arctan \frac{2x + 1}{\sqrt{3}} + \frac{1}{2\sqrt{3}} \arctan \frac{2x 1}{\sqrt{3}} + C^{te} \text{ sur } \mathbb{R}.$
- k) $\frac{1}{(x^2+x+1)^2} = \frac{-1/3}{(x-j)^2} + \frac{-1/3}{(x-j^2)^2} + \frac{2/3}{x^2+x+1}$ donc $\int \frac{1}{(x^2+x+1)^2} dx = \frac{2x+1}{3(x^2+x+1)} + \frac{4}{3\sqrt{3}} \arctan \frac{2x+1}{\sqrt{3}} + C^{te} \text{ sur } \mathbb{R}.$
- l) $\int \frac{1}{x^4+1} dx = \frac{1}{4} \int \frac{-\sqrt{2}x+2}{x^2-\sqrt{2}x+1} + \frac{\sqrt{2}x+2}{x^2+\sqrt{2}x+1} dx$ donc

 $\int \frac{1}{x^4+1} dx = \frac{1}{4\sqrt{2}} \ln \frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1} + \frac{1}{2\sqrt{2}} \arctan(\sqrt{2}x-1) + \frac{1}{2\sqrt{2}} \arctan(\sqrt{2}x+1) + C^{te}$

Exercice 109 : [énoncé]

- a) $\int_0^1 \frac{dx}{x^2 + x + 1} = \left[\frac{2}{\sqrt{3}} \arctan \frac{2x + 1}{\sqrt{3}} \right]_0^1 = \frac{\pi}{3\sqrt{3}}$
- b) $\int_0^1 \frac{x}{x^3+1} dx = \left[\frac{1}{6} \ln \frac{x^2-x+1}{(x+1)^2} + \frac{1}{\sqrt{2}} \arctan \frac{2x-1}{\sqrt{2}} \right]^1 = -\frac{1}{3} \ln 2 + \frac{\pi}{2\sqrt{2}}$
- c) $\int_0^1 \frac{\arctan x}{(x+1)^2} dx = \left[-\frac{\arctan x}{x+1} \right]_0^1 + \int_0^1 \frac{dx}{(x+1)(x^2+1)}$ $\frac{1}{(x+1)(x^2+1)} = \frac{1}{2} \frac{1}{x+1} + \frac{1}{2} \frac{-x+1}{x^2+1}$ donc

 $\int \frac{\mathrm{d}x}{(x+1)(x^2+1)} = \frac{1}{2} \ln|x+1| - \frac{1}{4} \ln(x^2+1) + \frac{1}{2} \arctan x + C^{te}$ puis $\int_0^1 \frac{\arctan x}{(x+1)^2} dx = -\frac{\pi}{8} + \frac{1}{2} \ln 2 - \frac{1}{4} \ln 2 + \frac{\pi}{8} = \frac{\ln 2}{4}$.

Exercice 110: [énoncé]

a) f_n est définie et continue sur \mathbb{R} donc possède une unique primitive s'annulant :

$$F_n(x) = \int_0^x f_n(t) \, \mathrm{d}t$$

b) Immédiatement

$$F_1(x) = \int_0^x \frac{\mathrm{d}t}{1+t^2} = \arctan x$$

c) Par le changement de variable

$$F_2(x) = \int_0^x \frac{\mathrm{d}t}{(1+t^2)^2} = \int_0^{\arctan x} \frac{\mathrm{d}\theta}{1+\tan^2\theta} = \int_0^{\arctan x} \cos^2\theta \,\mathrm{d}\theta$$

puis

$$F_2(x) = \frac{1}{4}\sin 2\arctan x + \frac{1}{2}\arctan x$$

et donc

$$F_2(x) = \frac{1}{2} \frac{x}{1+x^2} + \frac{1}{2} \arctan x$$

d) Astucieusement

$$F_{n+1}(x) = \int_0^x \frac{1+t^2-t^2}{(1+t^2)^{n+1}} dt = F_n(x) - \int_0^x \frac{t^2}{(1+t^2)^{n+1}} dt$$

puis par intégration par parties :

$$F_{n+1}(x) = F_n(x) + \left[\frac{1}{2n} \frac{t}{(1+t^2)^n}\right]_0^x - \frac{1}{2n} \int_0^x \frac{dt}{(1+t^2)^n}$$

et donc

$$F_{n+1}(x) = \frac{1}{2n} \frac{x}{(1+x^2)^n} + \frac{2n-1}{2n} F_n(x)$$

e) En particulier

$$F_3(x) = \frac{1}{4} \frac{x}{(1+x^2)^2} + \frac{3}{8} \frac{x}{1+x^2} + \frac{3}{8} \arctan x$$

Exercice 111 : [énoncé]

- a) Sur \mathbb{R} , $\int \frac{dx}{e^x + 1} = \int 1 \frac{e^x}{e^x + 1} dx = x \ln(e^x + 1) + C^{te}$.

$$\int \frac{\mathrm{d}u}{\mathrm{e}^{2x} + \mathrm{e}^{x}} = \int \frac{\mathrm{d}u}{u^{2}(u+1)} = -\ln|u| + \ln|u+1| - \frac{1}{u} + C^{te} = -x + \ln(\mathrm{e}^{x} + 1) - \mathrm{e}^{-x} + C^{te}.$$

$$\int \sqrt{e^x - 1} dx = \int \frac{2t^2}{t^2 + 1} dt = 2\sqrt{e^x - 1} - 2\arctan\sqrt{e^x - 1} + C^{te}.$$

$$\int \frac{\mathrm{d}x}{\sqrt{1+\mathrm{e}^{2x}}} = \int \frac{\mathrm{d}u}{u^{2}-1} = \frac{1}{2} \ln \frac{\sqrt{1+\mathrm{e}^{2x}}-1}{\sqrt{1+\mathrm{e}^{2x}}+1} + C^{te} = \ln(\sqrt{1+\mathrm{e}^{2x}}-1) - x + C^{te}.$$

Exercice 112: [énoncé]

Par le changement de variable $u = \sqrt{e^x + 1}$

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{\mathrm{e}^x + 1}} = \int_{\sqrt{2}}^{\sqrt{\mathrm{e}+1}} \frac{2\,\mathrm{d}u}{u^2 - 1} = \left[\ln\frac{u - 1}{u + 1}\right]_{\sqrt{2}}^{\sqrt{\mathrm{e}+1}} = \ln\frac{(\sqrt{\mathrm{e}+1} - 1)(\sqrt{2} + 1)}{(\sqrt{\mathrm{e}+1} + 1)(\sqrt{2} - 1)}$$

Exercice 113 : [énoncé]

a) Sur \mathbb{R} ,

$$\int \frac{\cos x}{1 + \cos^2 x} \, \mathrm{d}x = \int \frac{\mathrm{d}u}{2 - u^2} = \frac{1}{2\sqrt{2}} \int \frac{1}{u + \sqrt{2}} - \frac{1}{u - \sqrt{2}} \, \mathrm{d}u = \frac{1}{2\sqrt{2}} \ln \left| \frac{\sin x + \sqrt{2}}{\sin x - \sqrt{2}} \right|$$

b) Sur \mathbb{R} ,

$$\int \frac{\sin x}{1+\sin^2 x} \,\mathrm{d}x = \int -\frac{\mathrm{d}u}{2-u^2} = \frac{1}{2\sqrt{2}} \ln \left| \frac{\cos x - \sqrt{2}}{\cos x + \sqrt{2}} \right| + C^{te}$$

c) Sur
$$I_k = \frac{\pi}{2} + k\pi, \frac{\pi}{2} + (k+1)\pi, k \in \mathbb{Z}$$
,

$$\int \frac{dx}{\cos^4 x} = \int 1 + u^2 du = \tan x + \frac{1}{3} \tan^3 x + C^{te}$$

d) Sur
$$I_k = \frac{\pi}{2} + k\pi, \frac{\pi}{2} + (k+1)\pi, k \in \mathbb{Z}$$

$$\int \frac{\mathrm{d}x}{\cos^3 x} = \int \frac{\cos(x)\mathrm{d}x}{(1-\sin^2(x))^2} \underset{t=\sin x}{=} \int \frac{\mathrm{d}t}{(1-t^2)^2} = \frac{1}{4} \int \frac{1}{1-t} + \frac{1}{(1-t)^2} + \frac{1}{1+t} + \frac{1}{(1+t)^2}$$

donc

$$\int \frac{\mathrm{d}x}{\cos^3 x} = \frac{1}{4} \ln \frac{1 + \sin x}{1 - \sin x} + \frac{1}{2} \frac{\sin x}{\cos^2 x} + C^{te}$$

Exercice 114: [énoncé]

Sur $I_k =]-\pi + 2k\pi, \pi + 2k\pi[$ avec $k \in \mathbb{Z}$

$$\int \frac{\mathrm{d}x}{3 + \cos x} = \int \frac{\mathrm{d}t}{t^2 + 2} = \frac{1}{\sqrt{2}} \arctan \frac{\tan x/2}{\sqrt{2}} + C^{te}$$

La fonction $x \mapsto \frac{1}{3+\cos x}$ est définie et continue sur \mathbb{R} , cherchons F primitive de celle-ci sur \mathbb{R} .

Pour tout $k \in \mathbb{Z}$, F est primitive sur I_k , donc il existe $C_k \in \mathbb{R}$ tel que sur I_k ,

$$F(x) = \frac{1}{\sqrt{2}} \arctan \frac{\tan x/2}{\sqrt{2}} + C_k$$

Par limite à droite et à gauche en $\pi + 2k\pi$

$$F(\pi + 2k\pi) = \frac{\pi}{2\sqrt{2}} + C_k = -\frac{\pi}{2\sqrt{2}} + C_{k+1}$$

Par suite

$$\forall k \in \mathbb{Z}, C_k = \frac{k\pi}{\sqrt{2}} + C_0$$

On peut résumer :

$$\int \frac{\cos x}{1+\cos^2 x} \, \mathrm{d}x = \int \frac{\mathrm{d}u}{2-u^2} = \frac{1}{2\sqrt{2}} \int \frac{1}{u+\sqrt{2}} - \frac{1}{u-\sqrt{2}} \, \mathrm{d}u = \frac{1}{2\sqrt{2}} \ln \left| \frac{\sin x + \sqrt{2}}{\sin x - \sqrt{2}} \right| + C \frac{te}{\exists C_0 \in \mathbb{R}}, \forall x \in \mathbb{R}, F(x) = \begin{cases} \frac{1}{\sqrt{2}} \arctan \frac{\tan x/2}{\sqrt{2}} + \frac{k\pi}{\sqrt{2}} + C_0 & \text{si } x \in I_k \\ \frac{2k+1}{2\sqrt{2}}\pi + C_0 & \text{si } x = \pi + 2k\pi \end{cases}$$

Ceci détermine la fonction F à une constante près.

Inversement, étant assuré de l'existence de F, on peut affirmer que de telles fonctions sont bien primitives de $x \mapsto \frac{1}{3 + \cos x}$

Exercice 115: [énoncé]

L'intégrale est bien définie et détermine la primitive s'annulant en 0 de la fonction continue

$$x \mapsto \frac{1}{3 + \cos^2 x}$$

Notons F cette primitive.

Pour calculer, l'intégrale on est tenté de procéder au changement de variable $u = \tan t$ mais celui-ci n'est possible que pour $x \in [-\pi/2, \pi/2[$ et alors

$$F(x) = \int_0^{\tan x} \frac{\mathrm{d}u}{(4+3u^2)} = \frac{1}{2\sqrt{3}} \arctan\left(\frac{\sqrt{3}}{2}\tan x\right)$$

Par continuité

$$F(\pi/2) = \frac{\pi}{4\sqrt{3}}$$
 et $F(-\pi/2) = -\frac{\pi}{4\sqrt{3}}$

Puisque la fonction intégrée est π -périodique, on a

$$F(x+\pi) - F(x) = C^{te}$$

avec

$$C^{te} = F(\pi/2) - F(-\pi/2) = \frac{\pi}{2\sqrt{3}}$$

On peut alors calculer F(x) en commençant par déterminer $k \in \mathbb{Z}$ tel que

$$x+k\pi\in\left]-\pi/2,\pi/2\right]$$

puis en exploitant

$$F(x) = F(x + k\pi) - \frac{k\pi}{2\sqrt{3}}$$

avec

$$F(x + k\pi) = \frac{1}{2\sqrt{3}}\arctan\left(\frac{\sqrt{3}}{2}\tan x\right)$$

Exercice 116 : [énoncé] a)
$$\int_0^{\pi/2} \frac{dx}{2 + \cos x} = \int_{t = \tan \frac{\pi}{3}}^1 \int_0^1 \frac{2dt}{3 + t^2} = \frac{\pi}{3\sqrt{3}}$$
.

b)
$$\int_0^{\pi/4} \frac{dx}{1+\sin x \cos x} = \int_0^1 \frac{dt}{t^2+t+1} = \frac{\pi}{3\sqrt{3}}$$

c) Par la relation de Chasles

$$I = \int_0^{2\pi} \frac{\mathrm{d}x}{1 + \cos^2 x} = \int_0^{\pi/2} \frac{\mathrm{d}x}{1 + \cos^2 x} + \int_{\pi/2}^{\pi} \frac{\mathrm{d}x}{1 + \cos^2 x} + \int_{\pi}^{\pi} \frac{\mathrm{d}x}{1 + \cos^2 x} + \int_{\pi}^{3\pi/2} \frac{\mathrm{d}x}{1 + \cos^2 x} + \int_{\pi/2}^{2\pi} \frac{\mathrm{d}x}$$

Via des changements de variable affines adéquates :

$$I = 4 \int_0^{\pi/2} \frac{\mathrm{d}x}{1 + \cos^2 x}$$

Sur $]-\pi/2, \pi/2[$,

$$\int \frac{\mathrm{d}x}{1 + \cos^2 x} = \int \frac{\mathrm{d}t}{t^2 + 2} = \frac{1}{\sqrt{2}} \arctan \frac{\tan x}{\sqrt{2}} + C$$

Soit F une primitive de $\frac{1}{1+\cos^2 x}$ sur $[0,\pi/2]$. Il existe $C \in \mathbb{R}$ tel que $F(x) = \frac{1}{\sqrt{2}} \arctan \frac{\tan x}{\sqrt{2}} + C$ sur $[0,\pi/2[$ et par continuité

$$F(\pi/2) = \frac{\pi}{2\sqrt{2}} + C$$

Finalement $\int_0^{\pi/2} \frac{dx}{1+\cos^2 x} = [F(x)]_0^{\pi/2} = \frac{\pi}{2\sqrt{2}}$ puis $I = \sqrt{2}\pi$.

Exercice 117 : [énoncé]

Par le changement de variable $t = \tan x/2$

$$\int_0^{\pi/2} \frac{\sin \alpha}{1 + \cos \alpha \cos x} \, \mathrm{d}x = \int_0^1 \frac{\sin \alpha}{1 + \cos \alpha \frac{1 - t^2}{1 + t^2}} \frac{2 \, \mathrm{d}t}{1 + t^2} = \int_0^1 \frac{2 \sin \alpha}{(1 + \cos \alpha) + (1 - \cos \alpha)t^2} \, \mathrm{d}t$$

$$\int_0^{\pi/2} \frac{\sin \alpha}{1 + \cos \alpha \cos x} \, \mathrm{d}x = \frac{2 \sin \alpha}{1 - \cos \alpha} \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} t \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{\sqrt{1 - \cos^2 \alpha}} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha} \arctan \left[\arctan \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \right]_0^1 = \frac{2 \sin \alpha}{1 - \cos \alpha$$

et finalement

$$\int_0^{\pi/2} \frac{\sin \alpha}{1 + \cos \alpha \cos x} dx = 2 \arctan \sqrt{\frac{\sin^2 \alpha/2}{\cos^2 \alpha/2}} = \alpha$$

- Exercice 118 : [énoncé] a) Sur \mathbb{R} , $\int \frac{\text{th}x}{1+\text{ch}x} dx = \int \frac{du}{u(1+u)} = \ln \text{ch}x \ln(\text{ch}x+1) + C^{te}$.
- b) Sur \mathbb{R} , $\int \frac{\operatorname{ch} x}{1+\operatorname{ch}^2 x} dx = \int \frac{du}{2+u^2} = \frac{1}{\sqrt{2}} \arctan \frac{\operatorname{sh} x}{\sqrt{2}} + C^{te}$.
- c) Sur \mathbb{R} , $\int \frac{\operatorname{ch} x \, dx}{\operatorname{sh} x + \operatorname{ch} x} = \int -\frac{\operatorname{d} u}{(u-1)(u+1)^2} = \frac{1}{4} \ln \left| \frac{\operatorname{th} x + 1}{\operatorname{th} x 1} \right| \frac{1}{2} \frac{1}{1 + \operatorname{th} x} + C^{te}$

Exercice 119 : [énoncé]

Par changement de variable

$$\int_0^1 \frac{\mathrm{d}x}{\mathrm{ch}\ x} \mathop{=}_{t=\mathrm{e}^x} \int_1^\mathrm{e} \frac{2\mathrm{d}t}{t^2+1} = 2\arctan\mathrm{e} - \frac{\pi}{2}$$

Exercice 120 : [énoncé]

a) Sur $[-1, +\infty[$,

$$\int \frac{x \, dx}{1 + \sqrt{x+1}} = \int \frac{2u(u^2 - 1)}{1 + u} \, du = \int 2u(u - 1) \, du = \frac{2}{3} \sqrt{x+1}^3 - x + C^{te}.$$

$$\int \frac{1-\sqrt{x}}{1+\sqrt{x}} dx = \int 2u \frac{1-u}{1+u} du = 2 \int -u + 2 - \frac{2}{1+u} du = -x + 4\sqrt{x} - 4\ln(1+\sqrt{x}) + C^{te}.$$

c) Sur $]-\infty$, 1] ou $]2, +\infty[$,

$$\int \sqrt{\frac{x-1}{x-2}} \, \mathrm{d}x = \int \frac{-2y^2 \, \mathrm{d}y}{(y-1)^2 (y+1)^2} = \frac{1}{2} \frac{1}{y-1} + \frac{1}{2} \frac{1}{y+1} - \frac{1}{2} \ln \left| \frac{y-1}{y+1} \right| + C^{te}$$

donc
$$\int \sqrt{\frac{x-1}{x-2}} dx = \sqrt{(x-1)(x-2)} - \frac{1}{2} \ln \frac{\sqrt{|x-1|} - \sqrt{|x-2|}}{\sqrt{|x-1|} + \sqrt{|x-2|}} + C^{te}$$
.

Exercice 121 : [énoncé] a) Sur
$$]-\sqrt{2}, \sqrt{2}[, \int \frac{x+1}{\sqrt{2-x^2}} dx = \int \sqrt{2} \sin t + 1 dt = -\sqrt{2} \cos t + t + C^{te} = -\sqrt{2-x^2} + \arcsin \frac{x}{\sqrt{2}} + C^{te}.$$

b) Sur]1,3[,
$$\int \frac{x \, dx}{\sqrt{(x-1)(3-x)}} = \int 2 + \sin t \, dt = 2\arcsin(x-2) - \sqrt{(x-1)(3-x)} + C^{te}.$$

c) $x - x^2 + 6 = -(x - 3)(x + 2)$, $x = \frac{1}{2} + \frac{5}{2} \sin t$, Sur [-2, 3],

$$\int \sqrt{x - x^2 + 6} \, dx = \int \frac{25}{4} \cos^2 t \, dt = \frac{25}{8} \int \cos 2t + 1 \, dt =$$

 $\frac{2x-1}{4}\sqrt{x-x^2+6} + \frac{25}{8}\arcsin\frac{2x-1}{5} + C^{te}$

d) Sur
$$\mathbb{R}$$
, $\int \frac{x+1}{\sqrt{x^2+1}} dx = \int \sinh t + 1 dt = \sqrt{1+x^2} + \ln(x+\sqrt{x^2+1}) + C^{te}$.

e) Sur \mathbb{R} , $\int \frac{\mathrm{d}x}{x+\sqrt{1+x^2}} = \int \frac{\mathrm{ch}t\,\mathrm{d}t}{\mathrm{sh}\,t+\mathrm{ch}\,t} = \int \frac{1}{2} + \frac{1}{2}\mathrm{e}^{-2t}\,\mathrm{d}t = \int \frac{1}{2} + \frac{1}{2}\mathrm{e}^{-2t}\,\mathrm{d}t$

 $\frac{1}{2}\ln(x+\sqrt{x^2+1})-\frac{1}{4}\frac{1}{(x+\sqrt{x^2+1})^2}+C^{te}$.

f) Sur $[1, +\infty[$ (et de même sur $]-\infty, -1]$)

$$\int \frac{\sqrt{x^2 - 1}}{x} dx = \int \frac{\sinh^2 t}{\coth t} dt = \int \frac{u^2}{1 + u^2} du = \sqrt{x^2 - 1} - \arctan \sqrt{x^2 - 1} + C^{te}.$$

Exercice 122: [énoncé]

On écrit le trinôme sous forme canonique

$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$

ce qui invite au changement de variable

$$x + \frac{1}{2} = \frac{\sqrt{3}}{2} \operatorname{sh}t, \ dx = \frac{\sqrt{3}}{2} \operatorname{ch}t \, dt$$

qui donne

$$\int \frac{\mathrm{d}x}{(2x+1)\sqrt{x^2+x+1}} = \int \frac{\mathrm{d}t}{\sqrt{3}\mathrm{sh}t} = \frac{1}{\sqrt{3}} \int \frac{\mathrm{sh}t}{\mathrm{ch}^2t-1} = \frac{1}{u=\mathrm{ch}t} \frac{1}{\sqrt{3}} \int \frac{\mathrm{d}u}{u^2-1}$$

et enfin

$$\int \frac{\mathrm{d}x}{(2x+1)\sqrt{x^2+x+1}} = \frac{1}{2\sqrt{3}} \ln \frac{2\sqrt{x^2+x+1} - \sqrt{3}}{2\sqrt{x^2+x+1} + \sqrt{3}} + C^{te}$$

Exercice 123 : [énoncé]

a)
$$\int_{1}^{3} \frac{dx}{\sqrt{x(x+3)}} = \int_{t=\sqrt{x}}^{\sqrt{3}} \int_{1}^{2} \frac{2dt}{t^{2}+3} = \frac{2}{\sqrt{3}} \left[\arctan \frac{t}{\sqrt{3}} \right]_{1}^{3} = \frac{\pi}{6\sqrt{3}}.$$

b)
$$\int_0^2 \frac{dx}{\sqrt{x+1}(x+4)} = \int_{t=\sqrt{x+1}}^{\sqrt{3}} \int_1^{2dt} \frac{2dt}{t^2+3} = \frac{2}{\sqrt{3}} \left[\arctan \frac{t}{\sqrt{3}}\right]_1^{\sqrt{3}} = \frac{\pi}{6\sqrt{3}}.$$

c)
$$\int_{-1}^{1} \frac{dx}{\sqrt{1+x}+\sqrt{1-x}} = \int_{0}^{\sqrt{2}} \frac{2u}{u+\sqrt{2-u^2}} = 2\sqrt{2} \int_{0}^{\pi/2} \frac{\sin\theta\cos\theta}{\sin\theta+\cos\theta} d\theta$$
.

$$\int_{-1}^{1} \frac{\mathrm{d}x}{\sqrt{1+x}+\sqrt{1-x}} = 2\sqrt{2} \int_{0}^{1} \frac{4t(1-t^{2})}{(-t^{2}+2t+1)(1+t^{2})^{2}} =$$

$$2\sqrt{2}\int_0^1 -\frac{1}{1+t^2} + 2\frac{1+t}{(1+t^2)^2} + \frac{1}{t^2-2t-1}dt$$

Au final
$$\int_{-1}^{1} \frac{dx}{\sqrt{1+x}+\sqrt{1-x}} = 2\sqrt{2} - 2\ln(\sqrt{2}+1)$$
.