Introduction to Machine Learning - Exercise 1

Mikko Ahro

Problem 1

Task a

Read p1.csv into dataframe and drop columns "id", "SMILES", "InChIKey"

```
p1data <- read.csv("data/p1.csv", header=TRUE, sep=",")
p1data <- subset(p1data, select=-c(id, SMILES, InChIKey))</pre>
```

Task b

Summary statistics for variables "pSat_PA", "NumOfConf" and "ChemPot_kJmol":

pSat_Pa	NumOfConf	ChemPot_kJmol
Min.: 0.0000	Min.: 2.00	Min. :-3.160
 1st Qu.: 0.0000	1st Qu.: 73.25	1st Qu.: 9.723
 Median : 0.0001	Median: 172.50	Median :12.781
Mean: 2.9620	Mean: 223.50	Mean :12.434
3rd Qu.: 0.0023	3rd Qu.: 324.25	3rd Qu.:15.659
Max. :562.8970	Max. :1058.00	Max. :28.096

Task c

Mean and standard deviation of column 'ChemPot $_kJmol$ ' are:

[1] "Mean: 12.4344270896"

[1] "Standard deviation: 4.77887217784492"

Task d

```
par(mfrow=c(1,2))
hist(log10(p1data$pSat_Pa))
boxplot(p1data$NumOfConf)
```

Histogram of log10(p1data\$pSat_I

log10(p1data\$pSat_Pa)

Task e

scatter_subset <- subset(p1data, select=c(MW, HeatOfVap_kJmol, FreeEnergy_kJmol))
pairs(scatter_subset)</pre>

Problem 2

Task a

Degree	Train	Validation	Test	TestTRVA	CV
0	4.5122613	4.512261	4.512261e+00	4.587239	10.7949568
1	4.0885351	3.494124	5.206372e+00	4.786172	7.5235639
2	0.2185859	7.021118	1.424954e + 01	14.791603	0.1589217
3	0.2168190	7.154893	1.383458e+01	14.096042	0.1588743
4	0.1187955	8.776121	1.968113e+01	15.009734	0.1598923
5	0.0965322	7.221166	2.975686e+01	20.134323	0.1591377
6	0.0075741	6.050151	1.564333e+02	12.060633	0.1604102
7	0.0049994	11.394430	1.104038e+03	15.628661	0.1594904
8	0.0020825	407.157118	1.561695e + 05	10.979288	0.1608696

Task b

Fitted Polynomial Curves

$Task\ c$

Loading required package: ggplot2
Loading required package: lattice
##
Attaching package: 'lattice'
The following object is masked from 'package:boot':
##
melanoma
randomForest 4.7-1.1
Type rfNews() to see new features/changes/bug fixes.

```
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
## margin
## Loading required package: Matrix
## Loaded glmnet 4.1-8
```


Task a

Problem 4
Not done

Problem 5

Task a

Data	Intercept	Int_SE	Int_p_value	Slope	Slope_SE	Slope_p_value	R_Squared
d1	3.000091	1.124747	0.0257341	0.5000909	0.1179055	0.0021696	0.6665425
d2	3.000909	1.125302	0.0257589	0.5000000	0.1179637	0.0021788	0.6662420
d3	3.002454	1.124481	0.0256191	0.4997273	0.1178777	0.0021763	0.6663240
d4	3.001727	1.123921	0.0255904	0.4999091	0.1178189	0.0021646	0.6667073

Potential problems with regression models:

- 1. Non-linearity of the response predictor relationship
- 2. Correlation of error terms
- 3. Non-constant variance of error terms
- 4. Outliers
- 5. High-leverage points
- 6. Collinearity

Problem 6

Task a

Task b

 $\mathbf{Task}\ \mathbf{c}$

Problem 7

Task a

Task b