TAIGA 0.8.0

Felhasználói kézikönyv

plazma

user: taiga

pwd: Remszarvas

Tartalomjegyzék

1.	TAIGA futtatása		3
	1.1.	Fordítás	3
	1.2.	Program indítása	3
2.	Futtatás különböző input paraméterekkel		3
	2.1.	Banánpálya kapcsoló	3
	2.2.	Régi szemi-Runge–Kutta	3
	2.3.	ABP számítás azzal a feltétellel, hogy minden ion adott R -ből jön	4
	2.4.	ABP számítás az n_e -ből és a T_e -ből számolt ionpopulációval	4
	2.5.	Hány részecske fusson?	4
	2.6.	Detektorpozíció megadása R -ben	4
	2.7.	Nyalábparaméterek	5
	2.8.	Futási paraméterek megadása	5
3.	Adatbázisadatok beolvasása		
	3.1.	Mágneses tér legenerálása	7
	3.2.	Mágneses tér spline-együtthatóinak legenerálása – ELM-ek nélkül	7
	3.3.	Mágneses tér spline-együtthatóinak legenerálása – ELM-et	
		modellező áramfonalak esetén	7
	3.4.	Ionpopuláció legenerálása	7
4.	Kin	neneti fájlok	8
5 .	Ionpályák kirajzolása		9
	5.1.	Radiális-vertikális síkban a nyaláb koordinátái	9
	5.2.	Háromdimenziós nyalábalak	9
	5.3	Detektorsík	g

1. TAIGA futtatása

1.1. Fordítás

A programot először le kell fordítani végrehajtás előtt.

A fordítás a **projects/taiga**_#verziószám könyvtárban található **compile** bash fájl indításával lehet elvégezni. Pl. így:

taiga@plazma:~/projects/taiga_0.8.0\$./compile

1.2. Program indítása

A program automatikusan elindul fordítás után.

Ha ezt nem akarjuk, akkor a compile-ból ki kell szedni a -run kapcsolót.

Ha máskor is futtatni akarjuk, akkor a ./taiga.exe fájllal tudjuk indítani.

taiga@plazma:~/projects/taiga_0.8.0\$./taiga.exe

2. Futtatás különböző input paraméterekkel

Hogyha különböző paraméterekkel akarjuk futtatni a kódot, csak a **main.cu**-t kell módosítani.

Minden fontos paraméter a compiler kapcsolójába van építve, ezért csak az első néhány sorral kell foglalkozni!

taiga@plazma:~/projects/taiga_0.8.0\$ vi main.cu

2.1. Banánpálya kapcsoló

Állítsuk a BANANA kapcsoló értékét 1-re. Máskülönben 0.

A részecskék vertikálisan felfelé indulnak. A nyaláb szélessége radiálisan diameter milliméter, közepe $R=\mathbf{R}$ _midions méter.

```
#define BANANA 1
#define R_midions 0.675
#define diameter 50
```

2.2. Régi szemi-Runge-Kutta

Ezt ne használd!!!

Ez hamarosan ki lesz véve. Ha 0-ra állítod, akkor az új kód fut, ha 1-re, akkor a régi.

```
#define RKOLD 0
```

2.3. ABP számítás azzal a feltétellel, hogy minden ion adott R-ből jön

Állítsuk a RADIONS értékét 0-ra. A nyaláb szélessége vertikálisan diameter milliméter, közepe $R=\mathbf{R}$ midions méter.

```
#define BANANA 0
#define RADIONS 1
#define R_midions 0.69
#define diameter 5
```

2.4. ABP számítás az n_e -ből és a T_e -ből számolt ionpopulációval

Állítsuk a RADIONS értékét 1-re. A nyaláb szélessége vertikálisan **diameter** milliméter.

```
#define BANANA 0
#define RADIONS 1
#define diameter 5
```

Az ionpopulációt le kell gyártani, ha eltérő lövés esetén dolgozunk!

2.5. Hány részecske fusson?

A részecskék számát nem lehet direktben megadni, az a blokkok számának és a blokkonkénti szálak számának szorzata lesz.

A blokk az az egység, ami egy maghoz rendelhető. Azaz érdemes a blokkok számát magasan tartani!

Jó tudni: Az Nvidia Geforce GTS450-es kártyán 192 mag van.

2.5.1. Blokkok száma

```
#define n_blocks 192
```

2.5.2. Szálak száma

```
#define block_size 1
```

2.6. Detektorpozíció megadása R-ben

A detektorpozíció megadása a **main.cu** 128. sorában kezdődő részben lehetséges (detector position).

Itt megadhatjuk az a R radiális koordinátát, melyen lévő vertikális–toroidális síkra kiinterpolálja a kilépő részecskéket.

```
1_{ri} = 0.7089;
```

A banánpályák esetén ennek nincs jelentőssége. Azonban azért, hogy a kód ne haljon le, meg kell adni egy olyan értéket, ami kellően nagy (pl. R=1)

2.7. Nyalábparaméterek

Külön meg kell adni a nyalábparamétereket ABP-számolásra és banánpályaszámolásra.

2.7.1. Nyalábenergia

A nyalábenergiát keV-ben kell megadni.

```
#define energy 80
```

2.7.2. Nyalábrészecskék tömege

A nyaláb részecskéinek tömegét AMU-ban kell megadni, azaz a ^{12}C tömegének $1/12\text{-}\mathrm{\acute{e}ben}.$

```
#define mass 7.016004558
```

2.7.3. Nyalábátmérő

A nyalábátmérőt mm-ben kell megadni.

```
#define diameter 5
```

2.8. Futási paraméterek megadása

Külön meg kell adni a futási paramétereket ABP-számolásra és banánpályaszámolásra is.

2.8.1. Időlépés

Időlépés másodpercben.

```
#define dt 1e-9
```

2.8.2. Léptetések száma

Léptetések száma egy GPU futás alatt.

```
#define Nstep 1000
```

2.8.3. Futtatások száma

Ha ABP-módban vagyunk ez mindenképpen legyen 1.

Banánpálya esetén érdemes megadni, hogy hányszor futtassuk egymás után a kódot. A kód kimenete a következő GPU-ciklus bemenete lesz. A kimenet kiíródik a results mappába.

```
#define Nloop 1
```

3. Adatbázisadatok beolyasása

A projects/taiga_0.8.0/matlab mappából kell hívni a fájlokat. A bemeneti fájlokat a projects/taiga_0.8.0/matlab/shot/#shot_number mappába kell másolni.

A fájlok az EFIT és a THOMSON adatsorokból jönnek, amit az adatbázisból kézzel kell kimenteni.

Figyelem! Az EFIT time mezője nem exportálható hdf5-be, ezért azt ASCII-ként kell lementeni, .txt kiterjesztéssel!

A többi adat hdf5-ben van kimentve .h5 kiterjesztéssel.

1. ábra. Fájlok a lövés adatait tartalmazó mappában

3.1. Mágneses tér legenerálása

A mágneses teret a reader.m segítségével lehet lefuttatni.

taiga@plazma: \sim /projects/taiga_0.8.0/matlab\$ matlab -nojvm -r reader

Legenerálja a mágneses tér rácsát a fluxus segítségével. A rácsadatokat a **projects/field/default** mappába rakja.

3.2. Mágneses tér spline-együtthatóinak legenerálása – ELM-ek nélkül

A spline együtthatókat a **readerSpl.m** segítségével lehet kinyerni.

taiga@plazma:~/projects/taiga_0.8.0/matlab\$ matlab -nojvm -r readerSpl

A spline együtthatókat a **projects/field/cuda/field** mappába rakja.

3.3. Mágneses tér spline-együtthatóinak legenerálása – ELM-et modellező áramfonalak esetén

A spline együtthatókat a **readerSpl2.m** segítségével lehet kinyerni.

matlab -nojvm -r readerSpl2(1000)

A spline együtthatókat a projects/field/cuda/ipol mappába rakja.

3.4. Ionpopuláció legenerálása

Az ionpopulációt a readerDens.m segítségével lehet lefuttatni.

matlab -nojvm -r readerDens(100000)

Legenerálja a nyalábmenti ionpopulációt a hőmérséklet és a sűrűség segítségével. A zárójelben lévő szám a részecskék számát adja meg.

Alapértelmezett érték: 100 000 részecske.

Az ionpopulációt a **projects/taiga** 0.8.0/dataio/data/rad.dat fájlba rakja.

Minden egyes valós populáció előtt le kell generálni a rad.dat fájlt, azért, hogy garantáljuk, hogy ugyanannyi részecskét generáljuk, mint a CUDA számol!

4. Kimeneti fájlok

A program a futása során hat darab ASCII file-t generál. Ezeket a results/#timestamp mappába rakja a program.

Az időbélyeg formátuma:

10Dec2014_133635

Ennek jelentése: a futtatás 2014. december 10-én 13:36:35-kor kezdődött.

A három fájl, ami a detektálás helyét megmondja:

rad.dat

A detektáláskor a részecskék radiális (R) koordinátái

z.dat

A detektáláskor a részecskék – a középsík feletti – vertikális (z) koordinátái

tor.dat

A detektáláskor a részecskék toroidális koordinátái. A toroidális irány – a tokamak felülnézetéből – negatív körbejárású (mint az óramutató).

Ezek egy sorból álló, tabulátorral elválasztott, double-ként tárolt számok. Az oszlopok száma a részecskeszám.

A másik három fájl a pályaadatokat tartalmazza.

t rad.dat

Az ionpályák radiális (R) koordinátái

t z.dat

Az ionpályák vertikális (z) koordinátái

t tor.dat

Az ionpályák toroidális koordinátája. A toroidális irány – a tokamak felülnézetéből – negatív körbejárású (mint az óramutató).

Hasonlóan a korábbiakhoz, oszlopokként, tabulátorral elválasztva találjuk az egyes részecskéket. Sortöréssel pedig az egyes kimentési időközhöz tartozó adatokat (lásd a 2.8.2 alfejezetben).

Hogyha a kimentési időköz nagyobb, vagy egyenlő, mint a lépésszám, akkor csak a végén írjuk ki a kártyáról a koordinátákat. Azaz a t_...fájlokban csak a kezdeti és a detektált koordinátákat tároljuk el!

5. Ionpályák kirajzolása

Az ionpályákat a **projects/plotter** mappából indítva lehet futtatni. Minden egyes futtatás után a kimenet pályáit át kell másolni a **traj** almappába! Hol találom meg a futtatásból kijövő ionpályákat? Ugorj a 4. fejezethez!

5.1. Radiális-vertikális síkban a nyaláb koordinátái

${\tt taiga@plazma:} \sim / {\tt projects/plotter\$ \ matlab \ -nojvm \ -r \ taigaPlot}$

A piros pálya jelenti a toroidális geometriára (R 'es z) visszatranszformált, míg a kék a $\phi = 0$ -hoz illesztett descartes-i, amiben a program számol.

5.2. Háromdimenziós nyalábalak

taiga@plazma:~/projects/plotter\$ matlab -nojvm -r plot3dtaiga

5.3. Detektorsík

taiga@plazma:~/projects/plotter\$ matlab -nojvm -r detPlot

2. ábra. Detektorsík a **detPlot.m**-ből