Fluxo em redes

Algoritmos em Grafos

Marco A L Barbosa

Conteúdo

Introdução

Problema do fluxo máximo

O método de Ford-Fulkerson

Algoritmo básico de Ford-Fulkerson

Algoritmo de Edmonds-Karp

Referências

O estudo utilizando apenas este material **não é suficiente** para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os exercícios indicados.

Introdução

- ▶ Uma **rede** G = (V, E) é um grafo direcionado no qual cada aresta $(u, v) \in E$ tem uma capacidade $c(u, v) \ge 0$
- ▶ Se G contém a aresta (u, v) ele não pode conter (v, u)
- ▶ Se $(u, v) \notin E$, então c(u, v) = 0
- Destacamos dois vértice s (fonte) e t (sumidouro)
- ▶ Para cada vértice $v \in V$, temos $s \rightsquigarrow v \rightsquigarrow t$

Introdução

- ▶ Um **fluxo** em G é uma função $f: V \times V \rightarrow \mathbb{R}$ que satisfaz as seguintes propriedades
 - ▶ **Restrição de capacidade**: Para todo $u, v \in V$, $0 \le f(u, v) \le c(u, v)$
 - ▶ Conservação do fluxo: Para todo $u \in V \{s, t\}$

$$\sum_{v\in V} f(v,u) = \sum_{v\in V} f(u,v)$$

A quantidade f(u, v) é chamada de fluxo entre u e v. Quando $(u, v) \not\in E$, não pode haver fluxo de u para v e portanto f(u, v) = 0

Introdução

ightharpoonup O valor | f | do fluxo f é definido como

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

ou seja, o fluxo total que saí de s menos o fluxo total que entra em s

Exemplo

Problema do fluxo máximo

Dado uma rede G, uma fonte s e um sumidouro t, o **problema do fluxo máximo** consiste em encontrar um fluxo em G de valor máximo.

- Arestas antiparalelas
 - Suponha que a firma de caminhões oferecesse para Lucky Puck a oportunidade de transportar 10 engradados nos caminhões indo de Edmonton para Calgary
 - Parecesse uma boa oportunidade
 - O problema é que isto viola a restrição de que se (v₁, v₂) ∈ E, então (v₂, v₁) ∉ E (as arestas (v₁, v₂) e (v₂, v₁) são chamadas de antiparalelas)

Arestas antiparalelas

- Suponha que a firma de caminhões oferecesse para Lucky Puck a oportunidade de transportar 10 engradados nos caminhões indo de Edmonton para Calgary
- Parecesse uma boa oportunidade
- O problema é que isto viola a restrição de que se (v₁, v₂) ∈ E, então (v₂, v₁) ∉ E (as arestas (v₁, v₂) e (v₂, v₁) são chamadas de antiparalelas)
- ► Podemos transformar a rede em uma rede equivalente sem arestas antiparalelas
 - Escolhemos uma aresta, neste caso (v_1, v_2) , e a dividimos adicionando um v' substituindo a aresta (v_1, v_2) pelas arestas (v_1, v') e (v', v_2)

- Redes com múltiplas fontes e sumidouros
 - A empresa poderia ter mais que uma fábrica e mais que um depósito
 - Não está de acordo com a definição de rede
 - Transformamos em uma rede equivalente
 - ightharpoonup Adicionamos uma super fonte s e arestas com capacidade ∞ de s para cada fonte original
 - ► Adicionamos um super sumidouro e arestas com capacidade ∞ de cada sumidouro original para o super sumidouro

O método de Ford-Fulkerson

- Chamamos de método e não algoritmo pois engloba diversas implementações com tempo de execução diferentes
- Utiliza os conceitos: rede residual, caminho aumentante e corte. Estes conceitos são importantes para muitos algoritmos e problemas de fluxo em rede
- Ideia
 - Incrementar iterativamente o valor do fluxo
 - ► Começamos com f(u, v) = 0 para todo $u, v \in G$, o que gera um fluxo de valor 0
 - ► A cada iteração, aumentamos o valor do fluxo encontrado um "caminho aumentante" na "rede residual" *G*_f associada a *G*
 - O processo continua até que nenhum caminho aumentante é encontrado
 - O teorema do fluxo máximo e corte mínimo garante que este processo produz o fluxo máximo no término

ford-fulkerson-method

▶ A fim de implementar e analisar o método de Ford-Fulkerson, precisamos de vários conceitos

Redes residuais

- ► Intuitivamente, uma rede residual G_f de uma rede G e um fluxo f consiste de arestas com capacidades que representam como o fluxo das arestas de G podem ser alterados
 - O fluxo em uma aresta pode aumentar ou diminuir

Redes residuais

- ► Intuitivamente, uma rede residual G_f de uma rede G e um fluxo f consiste de arestas com capacidades que representam como o fluxo das arestas de G podem ser alterados
 - O fluxo em uma aresta pode aumentar ou diminuir
- ▶ Seja G = (V, E) uma rede com fonte s e sumidouro t, f um fluxo em G e u, $v \in V$
- ▶ A capacidade residual $c_f(u, v)$ é definida como

$$c_f(u,v) = egin{cases} c(u,v) - f(u,v) & \text{se } (u,v) \in E \\ f(v,u) & \text{se } (v,u) \in E \\ 0 & \text{caso contrário} \end{cases}$$

▶ A **rede residual** de G induzida por f é $G_f = (V, E_f)$, onde

$$E=\{(u,v)\in V imes V: c_f(u,v)>0\}$$
e $|E_f|\leq 2|E|$

Exemplo de rede residual

Redes residuais

▶ Se f é um fluxo em G e f' é um fluxo na rede residual G_f correspondente, definimos $f \uparrow f'$, o **aumento** do fluxo f por f', como sendo a função $V \times V \to \mathbb{R}$

$$(f \uparrow f')(u, v) =$$

$$\begin{cases} f(u, v) + f'(u, v) - f'(v, u) & \text{se } (u, v) \in E \\ 0 & \text{caso contrário} \end{cases}$$

Redes residuais

- ▶ Lema 26.1
 - ▶ Seja G = (V, E) um rede com fonte s e sumidouro t e seja f um fluxo em G. Seja G_f uma rede residual de G induzida por f e seja f' um fluxo em G_f . Então a função $f \uparrow f'$ definida na equação (26.4) é um fluxo em G com valor $|f \uparrow f'| = |f| + |f'|$
 - Prova vista em sala (veja o livro)

Caminho aumentante

- Dado uma rede G = (V, E) e um fluxo f, um caminho aumentante p é um caminho simples de s para t na rede residual G_f
- O valor máximo que pode ser aumentado no fluxo de cada aresta no caminho aumentante p é chamado capacidade residual de p, e é dado por

$$c_f(p) = \min\{c_f(u,v) : (u,v) \in p\}$$

Caminho aumentante

- ▶ Lema 26.2
 - ▶ Seja G = (V, E) um rede, f um fluxo em G e p um caminho aumentante em G_f . Seja a função $f_p : V \times V \to \mathbb{R}$, definida como

$$f_p(u,v) = \begin{cases} c_f(p) & \text{se } (u,v) \in p \\ 0 & \text{caso contrário} \end{cases}$$

Então, f_p é um fluxo em G_f com valor $|f_p|=c_f(p)>0$

Caminho aumentante

- Corolário 26.3
 - Seja G=(V,E) um rede, f um fluxo em G e p um caminho aumentante em G_f . Seja a função f_p como definido na equação (26.8) e suponha que nós aumentamos f por f_p . Então a função $f \uparrow f_p$ é um fluxo em G com valor $|f \uparrow f_p| = |f| + |f_p| > |f|$
 - ▶ Prova: a partir dos lemas 26.1 e 26.2

Exemplo de caminho aumentante

Corte de rede

- ▶ Um corte (S, T) de uma rede G = (V, E) é uma partição de V em S e T = V S, tal que $s \in S$ e $t \in T$
- Se f é um fluxo, então o fluxo líquido f(S, T) através do corte (S, T) é definido como

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

▶ A **capacidade** do corte (S, T) é

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Um corte mínimo de uma rede é um corte que tem capacidade mínima entre todos os cortes da rede

Exemplo de corte

Corte de rede

- ▶ Lema 26.4
 - ▶ Seja f um fluxo em uma rede G com fonte s e sumidouro t, e seja (S,T) qualquer corte de G. Então o fluxo líquido através do corte (S,T) é f(S,T)=|f|
 - Prova vista em sala (veja o livro)

Corte de rede

- ▶ Lema 26.4
 - ▶ Seja f um fluxo em uma rede G com fonte s e sumidouro t, e seja (S,T) qualquer corte de G. Então o fluxo líquido através do corte (S,T) é f(S,T)=|f|
 - Prova vista em sala (veja o livro)
- Corolário 26.5
 - O valor do fluxo f em uma rede G é limitado superiormente pela capacidade de qualquer corte de G
 - Prova vista em sala (veja o livro)

Teorema do fluxo máximo e corte mínimo

- ► Teorema 26.6
 - O valor do fluxo máximo é igual a capacidade de um corte mínimo.
 - Seja f um fluxo em uma rede G = (V, E) com fonte s e sumidouro t, então as seguintes condições são equivalentes:
 - 1. f é um fluxo máximo em G
 - 2. A rede residual G_f não contém nenhum caminho aumentante
 - 3. |f| = c(S, T) para algum corte (S, T) de G
 - Prova vista em sala (veja o livro)

Algoritmo básico de Ford-Fulkerson

- Em cada iteração do método de Ford-Fulkerson é encontrado algum caminho aumentante p que é utilizado para modificar o fluxo f
- ▶ Como o Lema 26.2 e o Corolário 26.3 sugerem, o fluxo f pode ser substituído por $f \uparrow f_p$, gerando um novo fluxo com valor $|f| + |f_p|$
- Vamos ver uma implementação
 - Cada aresta residual em p é uma aresta na rede original ou uma aresta contrária na rede original
 - ► Fluxo é adicionado se a aresta é a original
 - Fluxo é removido se a aresta é contrária
 - Quando não existe mais caminho aumentante, f é máximo

Algoritmo básico de Ford-Fulkerson

```
ford-fulkerson(G, s, t)
1 for cada aresta (u, v) \in G.E
      (u, v).f = 0
3 while existe um caminho p de s até t na
          rede residual G_{\mathcal{E}}
      c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}
     for cada aresta (u, v) \in p
5
6
         if (u, v) \in E
           (u, v).f = (u, v).f + c_f(p)
8
         else
           (v, u).f = (v, u).f - c_f(p)
9
```

Exemplo de execução

Exemplo de execução

Algoritmo básico de Ford-Fulkerson

- Análise do tempo de execução
 - Depende de como o caminho p é escolhido
 - Vamos supor que todas as capacidades sejam inteiras
 - Seja f* o fluxo máximo na rede residual
 - Então, o laço while das linhas 3-8 executa no máximo |f*|, isto porque o valor do fluxo aumenta em pelo menos uma unidade em cada iteração
 - O conteúdo dentro do while pode ser executado de forma eficiente se escolhermos a estrutura correta para representar a rede e se o caminho aumente for encontrado em tempo linear
 - Manter um grafo G' = (V, E'), onde $E' = \{(u, v) : (u, v) \in E \text{ ou } (v, u) \in E\}$
 - Encontrar o caminho aumente com dfs ou bfs, tempo O(V + E') = O(E)
 - ▶ Cada iteração demora O(E)
 - ▶ Portanto, o tempo de execução do algoritmo é $O(E|f^*|)$

Exemplo ruim

Algoritmo de Edmonds-Karp

- ► Encontrar o caminho aumentante *p* com a busca em largura
- ► Escolher o menor caminho entre s e t, sendo que o tamanho do caminho é o número de arestas no caminho
- ▶ Executa em O(VE²)

Referências

► Thomas H. Cormen et al. Introduction to Algorithms. 3rd edition. Capítulo 26.