Madhavan Mukund

https://www.cmi.ac.in/~madhavan

 $\begin{array}{c} \text{Mathematics for Data Science 1} \\ \text{Week 10} \end{array}$

■ Cartesian product $A \times B$

$$\{(a,b)\mid a\in A,b\in B\}$$

■ Cartesian product $A \times B$

$$\{(a, b) \mid a \in A, b \in B\}$$

 \blacksquare A relation is a subset of $A \times B$

■ Cartesian product $A \times B$

$$\{(a, b) \mid a \in A, b \in B\}$$

- \blacksquare A relation is a subset of $A \times B$
- Teachers and courses
 - T, set of teachers in a college
 C, set of courses being offered

■ Cartesian product $A \times B$

$$\{(a, b) \mid a \in A, b \in B\}$$

- \blacksquare A relation is a subset of $A \times B$
- Teachers and courses
 - T, set of teachers in a college
 C, set of courses being offered
 - $A \subseteq T \times C$ describes the allocation of teachers to courses
 - $\blacksquare A = \{(t,c) \mid (t,c) \in T \times C, t \text{ teaches } c\}$

■ Cartesian product $A \times B$

$$\{(a, b) \mid a \in A, b \in B\}$$

- A relation is a subset of $A \times B$
- Teachers and courses
 - T, set of teachers in a collegeC, set of courses being offered
 - $A \subseteq T \times C$ describes the allocation of teachers to courses
 - $\blacksquare A = \{(t,c) \mid (t,c) \in T \times C, t \text{ teaches } c\}$

■ Cartesian product $A \times B$

$$\{(a, b) \mid a \in A, b \in B\}$$

- A relation is a subset of $A \times B$
- Teachers and courses
 - T, set of teachers in a collegeC, set of courses being offered
 - $A \subseteq T \times C$ describes the allocation of teachers to courses
 - $\blacksquare A = \{(t,c) \mid (t,c) \in T \times C, t \text{ teaches } c\}$
- Introduce graphs formally

- Graph: G = (V, E)
 - V is a set of vertices or nodes
 - One vertex, many vertices
 - **E** is a set of edges
 - $E \subseteq V \times V$ binary relation

- Graph: G = (V, E)
 - V is a set of vertices or nodes
 - One vertex, many vertices
 - **E** is a set of edges
 - $E \subseteq V \times V$ binary relation
- Directed graph
 - $(v, v') \in E$ does not imply $(v', v) \in E$
 - The teacher-course graph is directed

- Graph: G = (V, E)
 - V is a set of vertices or nodes
 - One vertex, many vertices
 - **E** is a set of edges
 - $E \subseteq V \times V$ binary relation
- Directed graph
 - $(v, v') \in E$ does not imply $(v', v) \in E$
 - The teacher-course graph is directed
- Undirected graph
 - $(v, v') \in E \text{ iff } (v', v) \in E$
 - Effectively (v, v'), (v', v) are the same edge
 - Friendship relation

Priya needs some help that Radhika can provide. How will Priya come to know about this?

- Priya needs some help that Radhika can provide. How will Priya come to know about this?
- Priya Aziz Badri Radhika

- Priya needs some help that Radhika can provide. How will Priya come to know about this?
- Priya Aziz Badri Radhika
- Priya Feroze Kumar Radhika

- Priya needs some help that Radhika can provide. How will Priya come to know about this?
- Priya Aziz Badri Radhika
- Priya Feroze Kumar Radhika
- A path is a sequence of vertices $v_1, v_2, ..., v_k$ connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$

- Priya needs some help that Radhika can provide. How will Priya come to know about this?
- Priya Aziz Badri Radhika
- Priya Feroze Kumar Radhika
- A path is a sequence of vertices $v_1, v_2, ..., v_k$ connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$
- Normally, a path does not visit a vertex twice
 - Kumar Feroze Colin Aziz Priya Feroze — Sheila
 - Such a sequence is usually called a walk

■ Paths in directed graphs

- Paths in directed graphs
- How can I fly from Madurai to Delhi?

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?
 - What are the vertices reachable from u?

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?
 - What are the vertices reachable from u?
 - Is the graph connected? Are all vertices reachable from each other?

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?
 - What are the vertices reachable from u?
 - Is the graph connected? Are all vertices reachable from each other?

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?
 - What are the vertices reachable from u?
 - Is the graph connected? Are all vertices reachable from each other?

Summary

- A graph represents relationships between entities
 - Entities are vertices/nodes
 - Relationships are edges
- A graph may be directed or undirected
 - A is a parent of B directed
 - A is a friend of B undirected
- Paths are sequences of connected edges
- Reachability: is there a path from u to v?