Monotone k-Submodular Function Maximization with Size Constraints

Naoto Ohsaka (UTokyo)

Joint work with Yuichi Yoshida (NII & PFI)

Introduction

My research interests:

Graph algorithms in practice & theory

Work in [Ohsaka, Akiba, Yoshida, Kawarabayashi. AAAI'14]

Fast algorithm for influence maximization

[Kempe, Kleinberg, Tardos. KDD'03]

Q. How to distribute free items to *B* people to maximize the spread of influence? (e.g., rumors & product adoptions)

Instance of monotone submodular maximization

Monotone submodular maximization

Monotonicity:

$$f(S) \le f(T)$$
 for $S \subseteq T$

Submodularity (diminishing return):

$$f(S+e) - f(S) \ge f(T+e) - f(T)$$

for $S \subseteq T \& e \notin T$

Goal: $\max f(S)$ s.t. |S| = B

Naturally arise & 0.63-approx. in poly time Invest. [Nemhauser, Wolsey, Fisher. Math. Program. '78]

Document summarization [Lin,Bilmes. ACL-HLT'11]

Network inference [Gomez-Rodriguez,Leskovec,Krause. KDD'10] Sensor placement [Krause,Singh,Guestrin. J. Mach. Learn. Res.'08]

Motivation of this research

We often have **multiple** kinds of items 1, 2, 3 Each has a different topic ⇒ different cascades

Q. How to distribute k kinds of items to B people?

Can be modeled as k-submodular functions

Our contributions

Presented in [Ohsaka, Yoshida. NIPS'15]

Monotone k-submodular function maximization under

Total size constraint

$$#1 + #2 + #3 = B$$

Individual size constraint

$$#1 = B_1$$
, $#2 = B_2$, $#3 = B_3$

Approximation algorithms

Approx. ratio = 1/2

function eval. =

Greedy: Quadratic

Randomized: Almost linear

Approx. ratio = 1/3

function eval. =

Greedy: Quadratic

Randomized: Almost linear

Experimental evaluations

Influence maximization with k topics

Sensor placement with kinds of sensors

Related work

Theoretical results under **NO** constraint

[Iwata, Tanigawa, Yoshida. SODA'16]

Non-monotone: 1/2-approx. alg.

Monotone: $\left(\frac{k}{2k-1}\right)$ -approx. alg.

 $\left(\frac{k+1}{2k} + \epsilon\right)$ -approx. needs exponentially many queries

Application of bi(2-)submodular functions [Singh,Guillory,Bilmes. AISTATS'12]

Sensor placement & feature selection

Function form

We consider a function of form

$$f: \{0,1,\dots,k\}^V \to \mathbb{R}$$
$$|V| = n$$

e	a	b	С	d	e	f
x(e)	1	3	2	1	0	3

one-to-one

correspondence

Another interpretation

$$f: \underline{(k+1)^V} \to \mathbb{R}$$

the family of *k* disjoint subsets of *V*

Characterization of k-submodular functions

[Huber, Kolmogorov. ISCO'12] [Ward, Živný. ACM Trans. Algor. '15]

f is monotone k-submodular iff 1 & 2

1 Monotone

$$\Delta_{e,i}f(\mathbf{x}) \geq 0$$
 for \mathbf{x} s.t. $\mathbf{x}(e) = 0$

2 Orthant submodular

$$\Delta_{e,i}f(x) \ge \Delta_{e,i}f(y)$$
 for $x \le y$ s.t. $y(e) = 0$

 $\Delta_{e,i} f(\mathbf{x}) = \text{change of } f \text{ by assigning } i \text{ to } e^{\text{th}} \text{ element } \mathbf{8}$

Modeling influence maximization with k topics

We have k graphs $G_1, ..., G_k$ and a strategy $\mathbf{s} \in (k+1)^V$

а	b	c	d	e	f
1	0	3	3	0	2

Influence from v ($\mathbf{s}(v) = i$) stochastically spreads in G_i

$$f(s) :=$$

 \rightarrow 5 Exp. # vertices influenced in one of the k graphs

fis

Monotone & k-submodular

Monotone submodular maximization by greedy algorithm with lazy evaluations

[Nemhauser, Wolsey, Fisher. Math. Program. '78] [Minoux. '78]

for
$$j = 1$$
 to B

$$e_{j} \leftarrow \underset{e}{\operatorname{argmax}} \Delta_{e}(S_{j-1}) \coloneqq f(S_{j-1} + e) - f(S_{j-1})$$

$$S_{j} \leftarrow S_{j-1} + e_{j}$$

j	S_{j}	$\Delta_a(S_{j-1})$	$\Delta_b(S_{j-1})$	$\Delta_c(S_{j-1})$	$\Delta_d(S_{j-1})$	$\Delta_e(S_{j-1})$
1	{b}	7	10	3	8	6
2	{b,e}		_	≤ 3	2	5
3		_	_	≤ 3	≤ 2	

Proposed algorithms

Greedy algorithm for the total size constraint

Constraint: #1 + #2 + #3 + \cdots + # \mathbf{k} = Bk-Greedy-TS (total size)

- # function eval. = O(knB)
- Approx. ratio = 1/2

Proof sketch

Construct a sequence from o^* to s_B preserving (#nonzero in o_i) = B

$$f(\mathbf{s}_{j}) - f(\mathbf{s}_{j-1})$$

$$| \lor$$

$$f(\mathbf{o}_{j-1}) - f(\mathbf{o}_{j})$$

Proof sketch

Speeding-up by random sampling

— O(knB) may be quadratic (e.g., B = n/2)

Can be reduced?

Combining random sampling

[Mirzasoleiman, Badanidiyuru, Karbasi, Vondrák, Krause. AAAI'15]

At step *j*:

Looking at all elements a single random element

$$W.p. \ge \frac{B-j+1}{n-j+1}, \quad f(s_j) - f(s_{j-1}) \ge f(o_{j-1}) - f(o_j)$$

Looking more elements gains success probability

Proposed algorithms

Almost linear-time algorithm for the total size constraint

k-Stochastic-Greedy-TS

```
s_0 \leftarrow \mathbf{0}

\mathbf{for} \ j = 1 \ \mathbf{to} \ B

R_j \leftarrow \text{a random subset of size } \min \left\{ \frac{n-j+1}{B-j+1} \log \frac{B}{\delta}, n \right\}

\left( e_j, i_j \right) \leftarrow \underset{e \in R_j: s_{j-1}(e) = 0, i}{\operatorname{argmax}} \Delta_{e,i} f(s_{j-1})

s_j \leftarrow \text{assign } i_j \text{ to the } e_j^{\text{st}} \text{ element in } s_{j-1}
```

- # function eval. = $O(kn \log(B) \cdot \log(B/\delta))$
- Approx. ratio = 1/2 w.p. 1δ

Influence maximization with k topics

Given: k graphs G_1, \ldots, G_k & a budget B

Goal: max f(s) s.t. #1 + #2 + #3 + \cdots + #k = B

f(s) := Exp. # vertices influenced in one of the k graphs

Exact computation of $f(\cdot)$ is #P-hard [Chen,Wang,Wang. KDD'10] Averaging 100 simulations

Experimental evaluations

Settings

Digg dataset (a social news website)
http://www.isi.edu/~lerman/downloads/digg2009.html

- A friendship network n = 3,522 vertices & 90,244 edges
- A log of user votes for stories

Learning parameters

- Using the method by [Barbieri, Bonchi, Manco. ICDM'12]
- Edge probabilities in k = 10 graphs

Experimental evaluations

Algorithms

k-Greedy-TS w/ lazy evaluations

k-Stochastic-Greedy-TS ($\delta = 0.1$) w/ lazy evaluations

Baselines

Single(i)

Greedy strategy that considers only the i^{th} topic

Degree

Select vertices of high degree & assign random topics

Random

Select vertices randomly & assign random topics

Result: Objective function value

Our methods outperformed baselines

Result: Objective function value

Single(3) was worse than Degree

(Effectiveness of assigning multiple kinds of items)

Result: # function evaluations

Random sampling works well

k-Greedy-TS rapidly grows

- (e, i) gives similar marginal gains at 40th iteration
- \Rightarrow we need to check $\Delta_{e,i} f(s)$ for most of the (e,i)'s

Summary

Monotone k-submodular function maximization

Constraint	Approx. ratio	# function eval.
Total size	1/2	O(knB)
#1 + #2 + #3 = B	$1/2$ w.p. $1 - \delta$	$ ilde{O}(kn)$
Individual size	1/3	$O(kn\sum_i B_i)$
$#1 = B_1$, $#2 = B_2$, $#3 = B_3$	1/3 w.p. $1 - \delta$	$\tilde{O}(k^2n)$

Influence maximization with k topics

Sensor placement with k kinds of sensors