Roll No.

Total Pages: 5

MCA/D-15

10613

COMPUTER ORIENTED NUMERIC AND STATISTICAL METHODS

Paper-MCA-14-15

Time Allowed: 3 Hours]

[Maximum Marks: 80

Note: Attempt five questions in all, selecting at least one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

Compulsory Question

- 1. (a) Define Algebraic and transdental equations with examples.
 - (b) Define interpolation with examples.
 - (c) Discuss the superiority on Runge-Kutta method in Taylor-Series.
 - (d) Write the noymal equations of Parabola of second degree.
 - (e) Define Frequency distribution with suitable examples.
 - (f) Define Range with suitable examples.
 - (g) Explain sample distribution in brief.
 - (h) Define t test in brief.

 $2 \times 8 = 16$

UNIT-I

- 2. (a) The equation $x^6 x^4 x^3 1 = 0$ has one root between 1.4 and 1.5. Find the root to four decimal places by False position method.
 - (b) Show that the convergence of Newton-Raphson method is quadratic.
- 3. (a) Solve the following system of equations by Gaussseidal iterative method :

$$8x + 15y + 2z = 72$$

 $27x + 6y - z = 85$
 $x + y + 54z = 110$.

(b) Find the form of function F(x) from the following data and obtain F(5) by Langrange's formula.

x : 1 3 4 6 10 F(x) : 0 18 48 180 900

UNIT-II

4. (a) Use Runge-Kutta method to approximate y, when x = 0.1 given that x = 0 when y = 1 and

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y .$$

(b) Find $\frac{d}{dx}[F(x)]$ at x = 10 from the following data:

x : 3 5 11 27 34

F(x): -13 23 899 17315 35606

5. (a) Evaluate
$$\int_{0}^{1} \frac{dx}{(1+x^2)}$$
 by using Simpson's $\frac{1}{3}$ and $\frac{3}{\theta}$ rule. Hence obtain the approximate value of π in each case.

(b) Fit a straight line to the given data:

x: 1 2 3 4 5 6

y: 1200 900 600 200 110 150

UNIT-III

- 6. (a) Define Chebyshev polynomial and its types.
 - (b) Find the Mode of the following frequency distribution:

Size (x)	Frequency (f)
1	3
2	8
3	15
4	23
5	35
6	40
7	32
8	28

Size (x)	Frequency (f)
9	20
10	45
11	14
12	6

- 7. (a) What do you understand by Skewness? How is it measured? Distinguish clearly by figures, between positive and negative skewness.
 - (b) Write short notes on the following:
 - (i) Bionomial distribution.
 - (ii) Regression.

UNIT-IV

8. (a) The following figures show the distribution of digits in numbers Chosen at random from a telephone directory:

Digits	Frequency
0	1026
1	1107
2	997
3	966
4	1075
5	933
6	1107

Digits	Frequency
7	972
8	964
9	853
Total	10,000

Test whelther the digits may be taken to occur equally fequently in directory the tabulated value on χ^2 for 9 d.f. = (16.919)

- (b) What is "Analysis of Variance" and where is it used? Discuss it.
- 9. (a) What is meant by a Time series? Discuss its importance in business and economics.
 - (b) Write short notes on the following:
 - (i) Cyclic movement
 - (ii) ANOVA Table.