Math 505 HW7

Anonymous

March 10, 2024

- 1. Recall that an (eventually the) identity morphism is defined as the following: $id_A \in Mor(A, A)$ satisfies $id_A \circ f = f$ and $g \circ id_A = g$ for all $f \in Mor(B, A)$ and $g \in Mor(A, B)$ for every object B. Let i be another identity element. Then $i \circ id_A = i = id_A$, where in the first equality we used the right identity property for id_A and in the second we used the left identity property for i.
- 2. (a) We claim that $\varphi: M_2 \to M_1 \oplus M_3$ defined by $\varphi(m_2) = (\pi(m_2), g(m_2))$ is the desired isomorphism. By a similar argument from part (b) this is an R-module homomorphism, so we just need to show that φ is bijective. Assuming that $\pi(m_2) = 0$ and $g(m_2) = 0$, we would have $m_2 \in \operatorname{Im} f$, so write $m_2 = f(m_1)$. Then $m_1 = \pi(f(m_1)) = \pi(0) = 0$, so $m_1 = 0$ and thus $m_2 = f(m_1) = 0$ as well, which shows injectivity. Let $(m_1, m_3) \in M_1 \oplus M_3$. Since g is surjective, find m_2 so that $g(m_2) = m_3$. Restricting the codomain of f to $\operatorname{Im} f$ and the domain of f to $\operatorname{Im} f$ will still have the property that f of f id f so that f is still surjective. This means we can find f if f so that f is one f if f is expression of f in f in f in f in f is still surjective. This means we can find f if f is one of f in f is surjective. The f is surjective. The f is surjective. The f is part is precisely the f if f is one of f in f is surjective. The f is surjective. The f is part is precisely the f if f is one of f in f is surjective. The f is surjective. The f is part is precisely the f if f is one of f in f is surjective. The f is surjective. The f is part is precisely the f if f is one of f in f is surjective. The f is surjective. The f is surjective. The f is part is precisely the f if f is f in f in f in f is surjective.
 - (b) Suppose there exists an R-module homomorphism $\iota: M_3 \to M_2$ such that $g \circ \iota = \mathrm{id}_{M_3}$. We claim that

$$\psi: M_1 \oplus M_3 \to M_2$$

$$\psi(m_1, m_3) = f(m_1) + \iota(m_3)$$

Is the desired *R*-module isomorphism. First,

$$\psi((m_1, m_3) + (m'_1, m'_3)) = f(m_1) + \iota(m_3) + f(m'_1) + \iota(m'_3) = f(m_1 + m'_1) + \iota(m_3 + m'_3)$$

$$= \psi(m_1 + m'_1, m_3 + m'_3)$$

$$r\psi(m_1, m_3) = rf(m_1) + r\iota(m_3) + f(rm_1) + \iota(rm_3) = \psi(rm_1, rm_3) = \psi(r(m_1, m_3))$$

So ψ is indeed an R-module homomorphism. If $\psi(m_1, m_3) = 0$, then $f(m_1) = -\iota(m_3)$. Applying g to both sides shows that $g(f(m_1)) = -m_3$. Since Im $f = \ker g$, $g(f(m_1)) = 0$ and $m_3 = 0$. Thus $f(m_1) = -\iota(m_3) = -\iota(0) = 0$. Since f is injective, $m_1 = 0$, which shows that ψ is injective.

Now let $m_2 \in M_2$ and consider $k = m_2 - \iota(g(m_2))$. By applying g, we see that $g(k) = g(m_2) - (g \circ \iota)(g(m_2)) = g(m_2) - g(m_2) = 0$, since $g \circ \iota = \mathrm{id}_{M_3}$. Since $\ker g = \mathrm{Im} f$, $k \in \mathrm{Im} f$, so find m_1 so that $k = f(m_1)$. Then $m_2 = f(m_1) + \iota(g(m_2))$, so m_2 is the image of $(m_1, \iota(g(m_2)))$ which shows surjectivity. Now we claim the following diagram commutes:

$$0 \longrightarrow M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \longrightarrow 0$$

$$\downarrow^{\mathrm{id}_{M_1}} \qquad \downarrow^{\psi^{-1}} \qquad \downarrow^{\mathrm{id}_{M_3}}$$

$$0 \longrightarrow M_1 \longrightarrow M_1 \oplus M_3 \longrightarrow M_3 \longrightarrow 0$$

We see that $\psi^{-1}(f(m_1)) = \psi^{-1}(f(m_1) + \iota(0)) = (m_1, 0)$ as desired. Similarly, writing $m_2 = f(m_1) + \iota(m_3)$ uniquely as above, and letting $\pi : M_1 \oplus M_3 \to M_3$ be the canonical projection, we see that $\pi \circ \psi^{-1}(m_2) = \pi((m_1, m_3)) = m_3 = g(m_2)$, as desired.

- (c) We show that this part implies the last two parts, which will complete the equivalence. Let $\psi: M_2 \to M_1 \oplus M_3$ be the isomorphism, let $\pi: M_1 \oplus M_3 \to M_3$ be the natural projection, and consider the map $\iota: M_3 \to M_2$ by $\iota(m_3) = \psi^{-1}(0, m_3)$. It is clear that ψ is a R-module homomorphism, so we need only verify that $g \circ \iota(m_3) = m_3$. We know that $g(m_2) = \pi(\psi(m_2))$ holds for every m_2 , so $g(\iota(m_3)) = \pi(\psi(\psi^{-1}(0, m_3))) = \pi(0, m_3) = m_3$, as desired.
 - Similarly, let $\iota: M_1 \to M_1 \oplus M_3$ be the canonical embedding, $\eta: M_1 \oplus M_3 \to M_1$ the canonical projection, and define $\pi(m_2) = \eta(\psi(m_2))$. Most importantly notice that $(\eta \circ \iota)(m_1) = m_1$. Then $\pi \circ f(m_1) = \eta(\psi(f(m_1))) = \eta(\iota(m_1)) = m_1$, as desired.
- 3. (a) We shall show that projective \implies (1) \implies (2) \implies projective. Suppose that P

is projective, and let

$$0 \longrightarrow N \stackrel{g}{\longrightarrow} M \stackrel{f}{\longrightarrow} P \longrightarrow 0$$

be an exact sequence. Then,

$$0 \longrightarrow N \stackrel{g}{\longrightarrow} M \stackrel{\text{id}_{P}}{\longrightarrow} P \longrightarrow 0$$

By the projective property. This precisely says that $f \circ \iota = \mathrm{id}_P$, so the exact sequence splits by question 2.

Now suppose that any exact sequence

$$0 \longrightarrow N \stackrel{g}{\longrightarrow} M \stackrel{f}{\longrightarrow} P \longrightarrow 0$$

splits. Let $F = \bigoplus_{p \in P} R$ be the free module indexed by P, and let $\{x_p\}_{p \in P}$ be a basis. Let ψ be the unique R-module homomorphism sending x_p to p, as per the universal property. ψ is clearly surjective, so the following sequence is exact:

$$0 \longrightarrow \ker \psi \longrightarrow F \stackrel{\psi}{\longrightarrow} P \longrightarrow 0$$

By hypothesis this sequence is split, so $P \oplus \ker \psi \cong F$, as desired.

Suppose we are given maps $\varphi : P \to N$ and $f : M \twoheadrightarrow N$. Let Q be so that $P \oplus Q$ is free, let $\{x_i\}_{i \in I}$ be a basis, and define $\psi(p,q) = (\varphi \circ \pi)(p,q) = \varphi(p)$. Then the following diagram commutes:

$$P \longleftrightarrow P \oplus Q$$

$$\varphi \downarrow \qquad \qquad \psi$$

$$M \xrightarrow{f} N$$

Since f is surjective, for each x_i let m_i be any element of M satisfying $f(m_i) = \psi(x_i)$. In particular, m_i need not be unique. Extend the map sending each x_i to m_i to an R-module homomorphism $\overline{\psi}: P \oplus Q \to M$, as per the universal property of free

modules. We now have the following commutative diagram:

This diagram commutes precisely because if $m = \sum_{i \in I} r_i x_i$, with only finitely many $r_i \neq 0$, then

$$f(\overline{\psi}(m)) = f\left(\overline{\psi}\left(\sum_{i \in I} r_i x_i\right)\right) = \sum_{i \in I} r_i f(\overline{\psi}(x_i)) = \sum_{i \in I} r_i f(m_i) = \sum_{i \in I} r_i \psi(x_i) = \psi(m)$$

By construction, and if we let $\iota: P \to P \oplus Q$ be the canonical inclusion, $f \circ \overline{\psi} \circ \iota(p) = f \circ \overline{\psi}(p,0) = \psi(p,0) = \varphi(p)$ as desired, which completes the proof.

(b) Added this part before the deadline but forgot to submit... Oops. Let R be a ring and $I \subset R$ an ideal. We claim there is a natural bijection

$$\{R/I\text{-modules}\} \leftrightarrow \{R\text{-modules }M \text{ annihilated by }I\}$$

Let M be an R-module annihilated by I, i.e. $i \cdot m = 0$ for every $m \in M$ and $i \in I$. We seek to define $\overline{r} \cdot m = r \cdot m$. We need to show that this is well-defined: suppose that $\overline{r}_1 = \overline{r}_2$. Then $r_2 = r_1 + i$ for some $i \in I$, and we see that $r_2 \cdot m = (r_1 + i) \cdot m = r_1 \cdot m + 0$. Thus M can be made into an R/I-module. Similarly, if M is an R/I-module, simply define $r \cdot m := \overline{r} \cdot m$. Since M is an R/I module this shows that this action makes M into an R-module. Lastly notice that under this definition, I annihilates M, so we have verified the above correspondence.

This in particular shows that the \mathbb{Z} -module $\mathbb{Z}/2$ can be made into a $\mathbb{Z}/6$ module since (6) annihilates $\mathbb{Z}/2$. Similarly $\mathbb{Z}/3$ is a $\mathbb{Z}/6$ module. The inclusion map $\iota: \mathbb{Z}/3 \to \mathbb{Z}/6$ by $\iota(1) = 2$ and extending linearly, and the map $f: \mathbb{Z}/6 \to \mathbb{Z}/2$ by $1 \mapsto 3$ form the following exact sequence:

$$0 \longrightarrow \mathbb{Z}/3 \xrightarrow{\iota} \mathbb{Z}/6 \xrightarrow{f} \mathbb{Z}/2 \longrightarrow 0$$

The ring isomorphism $\mathbb{Z}/2 \oplus \mathbb{Z}/3 \cong \mathbb{Z}/6$ forgets to a module isomorphism, so $\mathbb{Z}/2$ is projective by the previous part. However, $\mathbb{Z}/2$ cannot be free since if it

was, since it is obviously finitely generated it would be of the form $(\mathbb{Z}/6)^{\oplus n}$, but the latter has order $6^n \neq 2$ for any n.