

1 **CLAIMS**

2 What is claimed is:

3
4 1. An apparatus comprising:

5 user mode logic;

6 kernel mode logic; and

7 kernel mode to user mode interface logic configured to receive at
8 least one data packet over a shared communication port and selectively
9 distribute said data packet to either said user mode logic or said kernel
10 mode logic.

11
12 2. The apparatus as recited in Claim 1, wherein said kernel mode to
13 user mode interface logic further includes:

14 bridge logic configured to individually determine if said received
15 data packet is a user mode data packet that is to be selectively distributed to
16 said user mode logic or a kernel mode data packet to be selectively
17 distributed to said kernel mode logic.

18
19 3. The apparatus as recited in Claim 2, further comprising:

20 memory operatively coupled to said bridge logic, and wherein said
21 bridge logic is further configured to store a plurality of user mode data
22 packets in said memory.

1 4. The apparatus as recited in Claim 3, wherein said bridge logic is
2 configured to store said plurality of user mode data packets in said memory
3 in a queued buffer configuration.

4
5 5. The apparatus as recited in Claim 3, wherein said kernel mode to
6 user mode interface logic further includes:

7 miniport logic operatively coupled to said bridge logic and said
8 memory and configured to selectively retrieve at least one of said plurality
9 of user mode data packets stored in said memory and provide said at least
10 one retrieved data packet to said user mode logic.

11
12 6. The apparatus as recited in Claim 3, further comprising:

13 a physical network communication port operatively coupled to said
14 bridge logic and configurable to receive both user mode data packets and
15 kernel mode data packets from an external device.

16
17 7. The apparatus as recited in Claim 1, wherein:

18 said user mode logic is further configured to generate at least one
19 outgoing user mode data packet;

20 said kernel mode logic is further configured to generate at least one
21 outgoing kernel mode data packet; and

22 said kernel mode to user mode interface logic is further configured
23 to receive said outgoing user mode data packet from said user mode logic
24 and said outgoing kernel mode data packet from said kernel mode logic.

- 1 8. The apparatus as recited in Claim 5, wherein:
- 2 said bridge logic is configured to receive said outgoing kernel mode
- 3 data packet from said kernel mode logic; and
- 4 said miniport logic is configured to receive said outgoing user mode
- 5 data packet from said user mode logic and further configured to store a
- 6 plurality of outgoing user mode data packets in said memory.
- 7
- 8 9. The apparatus as recited in Claim 8, wherein said miniport logic is
- 9 configured to store said plurality of plurality of outgoing user mode data
- 10 packets in said memory in a queued buffer configuration.
- 11
- 12 10. The apparatus as recited in Claim 8, wherein said bridge logic is
- 13 further configured to selectively retrieve at least one of said plurality of
- 14 outgoing user mode data packets stored in said memory.
- 15
- 16 11. The apparatus as recited in Claim 10, further comprising:
- 17 a physical network communication port operatively coupled to said
- 18 bridge logic and configurable to send both user mode data packets and
- 19 kernel mode data packets to an external device; and
- 20 wherein, said bridge logic is configured to provide said outgoing
- 21 kernel mode data packet and said retrieved outgoing user mode packet to
- 22 said network communication port.
- 23
- 24 12. The apparatus as recited in Claim 2, further comprising:
- 25

1 at least one processing unit operatively configured to selectively run
2 in kernel mode or user mode; and wherein said bridge logic includes virtual
3 bridge logic provided by said processing unit while running in said kernel
4 mode.

5
6 13. The apparatus as recited in Claim 5, further comprising:

7 at least one processing unit operatively configured to selectively run
8 in kernel mode or user mode; and wherein said miniport logic includes
9 virtual miniport logic provided by said processing unit while running in
10 said user mode.

11
12 14. The apparatus as recited in Claim 2, wherein said kernel mode logic
13 further includes:

14 kernel mode debugging logic coupled to said bridge logic.

15
16 15. The apparatus as recited in Claim 5, wherein said user mode logic
17 further includes:

18 network protocol logic operatively coupled to said miniport logic;
19 and

20 application level logic operatively coupled to said network protocol
21 logic.

22
23 16. The apparatus as recited in Claim 6, wherein said physical network
24 communication port is configurable to provide a network connection to a
25 TCP/IP network.

1
2 17. The apparatus as recited in Claim 6, wherein said physical network
3 communication port is configurable to provide a network connection to the
4 Internet.

5
6 18. The apparatus as recited in Claim 6, wherein said apparatus is
7 included within a device having only one said physical network
8 communication port.

9
10 19. A method comprising:

11 providing at least one processing unit to selectively run user mode
12 logic and kernel mode logic;

13 receiving at least one data packet through a shared communication
14 port; and

15 while said processing unit is running said kernel mode logic,
16 selectively handling said data packet for use with either said user mode
17 logic or said kernel mode logic.

18
19 20. The method as recited in Claim 19, wherein selectively handling said
20 data packet for use with either said user mode logic or said kernel mode
21 logic further includes:

22 determining if said received data packet is a user mode data packet
23 for use by said user mode logic or a kernel mode data packet for use by said
24 kernel mode logic; and

1 storing received data packets determined to be user mode data
2 packets in memory.

3
4 21. The method as recited in Claim 20, wherein storing received data
5 packets determined to be user mode data packets in memory further
6 includes storing a plurality of such user mode data packets in said memory
7 in a queued buffer configuration.

8
9 22. The method as recited in Claim 20, further comprising:

10 while said processing unit is running said user mode logic,
11 selectively retrieving at least one stored user mode data packet from said
12 memory, and

13 providing said at least one retrieved data packet to said user mode
14 logic.

15
16 23. The method as recited in Claim 19, wherein said shared
17 communication port includes a physical network communication port
18 operatively configurable to receive both user mode data packets and kernel
19 mode data packets from an external device.

20
21 24. The method as recited in Claim 19, further comprising:

22 while said processing unit is running said user mode logic, causing
23 said user mode logic to generate at least one outgoing user mode data
24 packet, and storing said at least one outgoing user mode data packet in said
25 memory; and

1 subsequently, while said processing unit is running said kernel mode
2 logic, causing said kernel mode logic to send said at least one outgoing user
3 mode data packet stored in said memory through said shared
4 communication port.

5
6 25. The method as recited in Claim 24, wherein storing said at least one
7 outgoing user mode data packet in said memory further includes storing a
8 plurality of plurality of outgoing user mode data packets in said memory in
9 a queued buffer configuration.

10
11 26. The method as recited in Claim 19, further comprising:

12 while said processing unit is running said kernel mode logic, causing
13 said kernel mode logic to generate at least one outgoing kernel mode data
14 packet, and sending said at least one outgoing kernel mode data packet
15 through said shared communication port.

16
17 27. The method as recited in Claim 19, wherein said kernel mode logic
18 includes debugging logic.

19
20 28. The method as recited in Claim 19, wherein said user mode logic
21 includes network protocol logic and application level logic.

22
23 29. The method as recited in Claim 19, wherein said processing unit is
24 included within a device having only one physical network communication
25 port, which operates as said shared communication port.

1
2 30. A computer readable media having computer instructions for
3 performing acts comprising:

4 selectively running at least one processing unit using either user
5 mode logic or kernel mode logic;

6 receiving at least one data packet through a shared communication
7 port; and

8 while running said kernel mode logic, selectively handling said data
9 packet for use with either said user mode logic or said kernel mode logic.

10
11 31. The computer readable media as recited in Claim 30, wherein
12 selectively handling said data packet for use with either said user mode
13 logic or said kernel mode logic further includes:

14 determining if said received data packet is a user mode data packet
15 for use by said user mode logic or a kernel mode data packet for use by said
16 kernel mode logic; and

17 storing received data packets determined to be user mode data
18 packets in memory.

19
20 32. The computer readable media as recited in Claim 31, wherein storing
21 received data packets determined to be user mode data packets in memory
22 further includes storing a plurality of such user mode data packets in said
23 memory in a queued buffer configuration.

1 33. The computer readable media as recited in Claim 31, having further
2 computer instructions for performing acts comprising:

3 while said processing unit is running said user mode logic,
4 selectively retrieving at least one stored user mode data packet from said
5 memory, and

6 providing said at least one retrieved data packet to said user mode
7 logic.

8

9 34. The computer readable media as recited in Claim 30, wherein said
10 shared communication port includes a physical network communication
11 port operatively configurable to receive both user mode data packets and
12 kernel mode data packets from an external device.

13

14 35. The computer readable media as recited in Claim 30, having further
15 computer instructions for performing acts comprising:

16 while said processing unit is running said user mode logic, causing
17 said user mode logic to generate at least one outgoing user mode data
18 packet, and storing said at least one outgoing user mode data packet in said
19 memory; and

20 subsequently, while said processing unit is running said kernel mode
21 logic, causing said kernel mode logic to send said at least one outgoing user
22 mode data packet stored in said memory through said shared
23 communication port.

1 36. The computer readable media as recited in Claim 35, wherein storing
2 said at least one outgoing user mode data packet in said memory further
3 includes storing a plurality of plurality of outgoing user mode data packets
4 in said memory in a queued buffer configuration.

5
6 37. The computer readable media as recited in Claim 30, having further
7 computer instructions for performing acts comprising:

8 while said processing unit is running said kernel mode logic, causing
9 said kernel mode logic to generate at least one outgoing kernel mode data
10 packet, and sending said at least one outgoing kernel mode data packet
11 through said shared communication port.

12
13 38. The computer readable media as recited in Claim 30, wherein said
14 kernel mode logic includes debugging logic.

15
16 39. The computer readable media as recited in Claim 30, wherein said
17 user mode logic includes network protocol logic and application level logic.

18
19 40. The computer readable media as recited in Claim 30, wherein said
20 processing unit is included within a device having only one physical
21 network communication port, which operates as said shared communication
22 port.