Go based content filtering software on FreeBSD

Ganbold Tsagaankhuu, Mongolian Unix User Group Esbold Unurkhaan, Mongolian University of Science and Technology Erdenebat Gantumur, Mongolian Unix User Group

> AsiaBSDCon Tokyo, 2015

Content

- Introduction
- Rationale behind our choices
- Related projects
- Experienced challenges
- Benchmark Case 1, 2 and results
- Conclusions and future works

Introduction

What is the meaning of Shuultuur?

- Why content filter?
 - Some control over unwanted content from web
 - Enforce security policies in corporates
 - Parental control
 - Schools
 - Libraries
 - Inappropriate content depending from age
 - Adult
 - Violence
 - Drugs etc.

- Why Go?
 - Fast, lightweight, easy to prototype
 - Productive
 - Performance

- Why Go?
 - Go is
 - · Compiled, statically typed
 - Garbage collected
 - Object oriented
 - Performance of Go's
 - Somewhat comparable to C
 - Better than some of interpreted languages
 - Concurrency
 - Part of the programming language features
 - It has strong support for multiprocessing

- Why Go?
 - Go includes multiple useful built-in data structures such as maps and slices
 - Goroutines and channels
 - A goroutine is a function executing concurrently with other goroutines in the same address space.
 - It is lightweight and communicates with other goroutines via channels
 - In contrast coroutines communicate via yield and resume operations
 - Built-in profiling tool
 - Extensive number of libraries
 - BSD licensed

- Why FreeBSD is platform of choice?
 - Powerful, mature and stable
 - Complete, reliable and self-consistent distribution
 - FreeBSD's networking stack is very solid and fast
 - Easy to install and deploy the necessary applications and software using port and package system
 - Making custom FreeBSD image easily (such as NanoBSD)
 - We love FreeBSD

Related projects

- goproxy
 - Customizable HTTP proxy library for Go.
 - Supports regular HTTP proxy,
 - HTTPS through CONNECT,
 - "hijacking" HTTPS connection using "Man in the Middle" style attack

The intent of the proxy is to be usable with reasonable amount of traffic yet, customizable and programmable

- gcvis
 - Visualizes Go program gctrace data in real time
- profile
 - Simple profiling support package for Go
- go-nude
 - Nudity detection with Go

Related projects

- xxhash-go
 - Go wrapper for C xxhash an extremely fast Hash algorithm
 - Working at speeds close to RAM limits
- powerwalk
 - Go package for walking files
 - Concurrently calling user code to handle each file
- redigo
 - Go client for the Redis database
- Redis
 - Open source, BSD licensed, advanced key-value cache and store

- Problems during development:
 - The Shallalist blacklist
 - 1.8 million URL/Domain entries.

```
...
// Store URL/Domains as a key and
// category as a value
conn.Do("SET", urls_or_domain, category)
...
```

Solution. Changed the code to:

```
// use xxhash to get checksum from URL/Domain
blob := []byte(url or domain)
h32g := xxh.GoChecksum32(blob)
/*
 * Store it as hash in Redis in following way:
      key = 0xXXXX (first half of URL/Domain),
     field = XXXX (second half of URL/Domain),
    value = category
 */
hash str := fmt.Sprintf("0x%08x", h32q)
key := hash str[0:6]
value := hash str[6:]
conn.Do("HSET", key, value, category)
```

- Banned and weighted phrase lookup problem
 - Problem: Storing all phrases in Redis
 - Slow and not efficient
 - Loop is expensive
 - Solution: Graph and map
 - Every unique word is an edge of the graph
 - Edges and Vertices are stored in the map
 - Map Go's implementation of hash table
 - Problem: Regular expression based search
 - CPU intensive
 - Solution: Graph and Boyer Moore search algorithm

Graph representation

For example: "sex woman", "sex man" and "drunk woman sex" words in Graph.

Man: 2-1

Sex: 2-1, 2-3, 4-3-2

Drunk: 4-3-2

Woman: 2-3, 4-3-2

- Reading HTTP response bodies into memory
 - Heap memory usage grow very large
 - Lots of allocations
 - When the rate of connections per second is high
- Solution
 - Streaming parser by utilizing the io.Reader interface
 - Limiting incoming requests
 - CPU and memory profiling
 - · Go's built-in profiler pprof

```
# go tool pprof --alloc space ./shuultuur mem /tmp/profile228392328/mem.pprof
Adjusting heap profiles for 1-in-4096 sampling rate
Welcome to pprof! For help, type 'help'.
(pprof) top15
Total: 11793.7 MB
 3557.7 30.2% 30.2%
                       3557.7 30.2\% runtime.convT2E
 1212.1 10.3% 40.4%
                       1212.1 10.3% container/list.(*List).insertValue
  832.3 7.1% 47.5%
                       2434.8 20.6% github.com/garyburd/redigo/redis.
(*conn).readReply
                       1874.6
  807.9
          6.9% 54.4%
                               15.9% github.com/garyburd/redigo/redis.
(*Pool).Get
  673.8 5.7% 60.1%
                       673.8
                                5.7% github.com/garyburd/redigo/redis.Strings
  544.5 4.6% 64.7%
                        549.4
                                4.7% main.regexBannedWordsGo
  521.1 4.4% 69.1%
                        521.1
                                4.4% bufio.NewReaderSize
  490.9 4.2% 73.3% 490.9
                                4.2% bufio.NewWriter
  438.2 3.7%
                                3.7% runtime.convT2I
               77.0%
                       438.2
  369.8 3.1% 80.1%
                       7622.9
                               64.6% main.workerWeighted
  255.0 2.2% 82.3%
                       255.9
                                2.2% main.regexWeightedWordsGo
  235.5 2.0%
               84.3%
                     235.5
                                2.0% bytes.makeSlice
  229.9
          1.9% 86.2% 397.1
                                3.4% io.Copy
  168.3
          1.4% 87.6%
                       168.3
                                1.4% github.com/garyburd/redigo/redis.String
  162.6
                               34.3% main.getHkeysLen
          1.4% 89.0%
                       4048.9
(pprof)
```

```
# go tool pprof --alloc space ./shuultuur /tmp/profile287823990/mem.pprof
Adjusting heap profiles for 1-in-4096 sampling rate
Welcome to pprof! For help, type 'help'.
(pprof) top30
Total: 2156.3 MB
  596.9 27.7% 27.7%
                      1066.4 49.5% io.Copy
  406.3 18.8% 46.5% 406.3 18.8% compress/flate.NewReader
  113.5 5.3% 60.0%
                      115.4
                               5.4% code.google.com/p/go.net/html.
(*Tokenizer).Token
   78.3 3.6% 63.6%
                         78.3
                               3.6% code.google.com/p/go.net/html.
(*parser).addText
   68.4 3.2% 66.8%
                       68.4
                               3.2% strings.Map
   37.7 1.7% 78.9%
                        736.6 34.2% main.ProcessResp
   27.9 1.3% 80.2%
                         27.9
                                1.3% makemap c
   12.8
          0.6% 91.8%
                         44.5
                                2.1% bitbucket.org/hooray-976/shuultuur/
db.GraphBuild
   12.5 0.6% 92.4%
                       12.5 0.6% strings.genSplit
   10.7 0.5% 92.9%
                        595.5 27.6% main.getContentFromHtml
```

CPU usage

998 tsgan

```
lastpid: 1189; load averages: 7.30, 2.42, 0.93 up 0+00:30:51 14:57:41
61 processes: 1 running, 60 sleeping
CPU: 20.5% user, 0.0% nice, 42.0% system, 6.6% interrupt, 31.0% idle
Mem: 104M Active, 63M Inact, 225M Wired, 234M Buf, 7502M Free
Swap: 16G Total, 16G Free
```

PID	USERNAME	THR	PRI	NICE	SIZE	RES	STATE	С	TIME	WCPU CO	MMAND
1131	tsgan	22	52	0	182M	46196K	uwait	4	9:29	685.50% s	huultuur
900	redis	3	52	0	69952K	42512K	uwait	6	1:11	88.48% re	dis-
server	-										
1130	tsgan	6	20	0	37856K	9084K	piperd	1	0:01	0.00% gc	vis
918	tsgan	1	20	0	72136K	5832K	select	5	0:00	0.00% ss	hd
889	squid	1	20	0	70952K	16412K	kqread	5	0:00	0.00% sq	uid
1049	tsgan	1	20	0	38388K	5168K	select	11	0:00	0.00% ss	h

1 20 0 72136K 5904K select 9 0:00 0.00% sshd

1 20 0 17564K 3528K pause 2 0:00 0.00% csh 919 tsgan 868 root 1 20 0 22256K 3284K select 11 0:00 0.00% ntpd

CPU usage after optimizations

```
lastpid: 1253; load averages: 0.15, 0.31, 0.32 up 0+00:55:22 11:55:42
45 processes: 1 running, 44 sleeping
CPU: 1.4% user, 0.0% nice, 0.0% system, 0.0% interrupt, 98.6% idle
Mem: 96M Active, 72M Inact, 279M Wired, 310M Buf, 7445M Free
Swap: 16G Total, 16G Free
PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMANS
```

USERNAME	THR	PRI	NICE	SIZE	RES	STATE	С	TIME	WCPU	COMMAND
root	17	20	0	142M	37348K	uwait	0	7:28	14.31%	shuultuur
redis	3	52	0	78144K	62896K	uwait	3	0:52	0.00%	redis-
-										
root	6	20	0	45048K	16840K	uwait	9	0:16	0.00%	gcvis
tsgan	1	20	0	72136K	6744K	select	9	0:06	0.00%	sshd
tsgan	1	20	0	9948K	1600K	kqread	10	0:03	0.00%	tail
tsgan	1	20	0	16596K	2548K	CPU8	8	0:02	0.00%	top
tsgan	1	20	0	38388K	5164K	select	5	0:00	0.00%	ssh
tsgan	1	20	0	72136K	5904K	select	1	0:00	0.00%	sshd
squid	1	20	0	70952K	16384K	kqread	0	0:00	0.00%	squid
	root redis root root tsgan tsgan tsgan tsgan tsgan tsgan squid	root 17 redis 3 root 6 tsgan 1 tsgan 1 tsgan 1 tsgan 1 tsgan 1	root 17 20 redis 3 52 root 6 20 tsgan 1 20	root 17 20 0 redis 3 52 0 root 6 20 0 tsgan 1 20 0	root 17 20 0 142M redis 3 52 0 78144K root 6 20 0 45048K tsgan 1 20 0 72136K tsgan 1 20 0 9948K tsgan 1 20 0 16596K tsgan 1 20 0 38388K tsgan 1 20 0 72136K	root 17 20 0 142M 37348K redis 3 52 0 78144K 62896K root 6 20 0 45048K 16840K tsgan 1 20 0 72136K 6744K tsgan 1 20 0 9948K 1600K tsgan 1 20 0 16596K 2548K tsgan 1 20 0 38388K 5164K tsgan 1 20 0 72136K 5904K	root 17 20 0 142M 37348K uwait redis 3 52 0 78144K 62896K uwait root 6 20 0 45048K 16840K uwait tsgan 1 20 0 72136K 6744K select tsgan 1 20 0 9948K 1600K kqread tsgan 1 20 0 16596K 2548K CPU8 tsgan 1 20 0 38388K 5164K select tsgan 1 20 0 72136K 5904K select	root 17 20 0 142M 37348K uwait 0 redis 3 52 0 78144K 62896K uwait 3 root 6 20 0 45048K 16840K uwait 9 tsgan 1 20 0 72136K 6744K select 9 tsgan 1 20 0 9948K 1600K kqread 10 tsgan 1 20 0 16596K 2548K CPU8 8 tsgan 1 20 0 38388K 5164K select 5 tsgan 1 20 0 72136K 5904K select 1	root 17 20 0 142M 37348K uwait 0 7:28 redis 3 52 0 78144K 62896K uwait 3 0:52 root 6 20 0 45048K 16840K uwait 9 0:16 tsgan 1 20 0 72136K 6744K select 9 0:06 tsgan 1 20 0 9948K 1600K kqread 10 0:03 tsgan 1 20 0 16596K 2548K CPU8 8 0:02 tsgan 1 20 0 38388K 5164K select 5 0:00 tsgan 1 20 0 72136K 5904K select 1 0:00	root 17 20 0 142M 37348K uwait 0 7:28 14.31% redis 3 52 0 78144K 62896K uwait 3 0:52 0.00% root 6 20 0 45048K 16840K uwait 9 0:16 0.00% tsgan 1 20 0 72136K 6744K select 9 0:06 0.00% tsgan 1 20 0 9948K 1600K kqread 10 0:03 0.00% tsgan 1 20 0 16596K 2548K CPU8 8 0:02 0.00% tsgan 1 20 0 38388K 5164K select 5 0:00 0.00% tsgan 1 20 72136K 5904K select 1 0:00 0.00%

•••

Memory usage

./shuultuur

Memory usage after optimizations

./shuultuur

- Other improvements
 - Learned mode (caching)
 - To not check HTTP response bodies every time
 - Rate limiting on incoming requests utilizing Redis
 - Limit the listener to accept a specified number of simultaneous connections

Learned mode

```
// Learn and store this URL to redisdb temporarily
// use xxhash to get checksum from URL/Domain
blob1 := []byte(requrl)
h32g := xxh.GoChecksum32(blob1)
// key = 0xXXXXXXXX for expire time seconds,
// 1 for BLOCK, 2 for PASS
key := fmt.Sprintf("%s0x%08x", policy, h32q)
// SET key value [EX seconds]
// [PX milliseconds] [NX|XX]
db.Exec("SET", key, BLOCK, "EX", EXPIRE, "NX")
```

Limit listener:

```
type Server struct {
        *http.Server
        ListenLimit int // Limit the number of outstanding requests
func (srv *Server) ListenAndServe() error {
        l, err := net.Listen("tcp", addr)
        l = netutil.LimitListener(l, srv.ListenLimit)
        return srv.Serve(1)
if LISTEN LIMIT ENABLE == 1 {
        srv := &Server {
              ListenLimit: LISTEN LIMIT,
              Server: &http.Server{Addr: ":8080", Handler: proxy},}
        log.Fatal(srv.ListenAndServe())
} else {
        log.Fatal(http.ListenAndServe(":8080", proxy))
```

- Slow image filtering on HTTP response
 - Used go-nude, but temporarily disabled until we find a proper solution
- High number of goroutines under heavy load
 - High CPU and memory usage.
 - Currently we are investigating the issue

- Problem: Our program panics sometimes with following message:
 - panic: dial tcp 127.0.0.1:6379: connection reset by peer
- Solution:
 - This was related to OS settings.
 - netstat -anL shows the limits.
 - Increased:
 - kern.ipc.somaxconn sysctl value
 - Increased tcp-backlog in redis.conf

- Test environment (Case 1):
 - Server OS
 - FreeBSD 9.2-RELEASE amd64
 - Server hardware:
 - CPU Intel(R) Xeon(R) X5670 2.93GHz
 - Memory 8192MB
 - FreeBSD/SMP -12 CPUs (package(s) x 6 core(s) x 2 SMT threads)
 - Go version 1.3.2
 - Dansguardian version 2.12.0.3
 - Squid version 3.4.8_2

 Increased some sysctl and /etc/sysctl.conf includes following:

```
kern.ipc.somaxconn = 27737
kern.maxfiles = 123280
kern.maxfilesperproc = 110950
kern.ipc.maxsockets = 85600
kern.ipc.nmbclusters = 262144
net.inet.tcp.maxtcptw = 47120
```

- Increased tcp-backlog setting to high value in the Redis config file
- http_load-14aug2014 (parallel and rate test)
- Tested URL/Domains:
 - http://fxr.watson.org/fxr/source/arm/lpc/lpc_dmac.c
 - http://www.news.mn/news.shtml
 - http://mongolian-it.blogspot.com/
 - http://www.patrick-wied.at/static/nudejs/demo/
 - http://news.gogo.mn/
 - http://www.amazon.com/
 - http://edition.cnn.com/?refresh=1
 - http://www.uefa.com/

- http://www.tmall.com/
- http://www.reddit.com/r/aww.json
- http://nginx.com
- http://www.yahoo.com
- http://slashdot.org/?nobeta=1
- http://www.ikon.mn
- http://www.gutenberg.org
- http://en.wikipedia.org/wiki/BDSM
- http://www3.nd.edu/~dpettifo/tutorials/testBAD.html
- http://penthouse.com/#cover_new?{}
- http://www.playboy.com
- http://www.bbc.com/earth/story/20141020-chicks-tumble-of-terrorfilmed
- http://173.244.215.173/go/indexb.html
- http://breakingtoonsluts.tumblr.com/

Test commands used for HTTP load tests:

```
./http_load -proxy 172.16.2.1:8080 -parallel 10 -seconds 600 urls ./http_load -proxy 172.16.2.1:8080 -rate 10 -jitter -seconds 600 urls
```

- -parallel: number of concurrent connections to establish and maintain
- -rate: number of requests sent out per second
- -jitter: varies the rate by about 10%
- -seconds: number of seconds to run the test

No	Result names		Paralle	el test	Rate test			
NO	Result names		Shuultuur	Dansguardian	Shuultuur	Dansguardian		
1	Fetches		17654	4298	5991	5389		
2	Max parallel		10	10	95	606		
3	Mean		79213.8	94820.7	72666.3	27437.2		
	bytes/connec	tion						
4	Fetches/sec		29.4233	7.16333	9.985	8.98166		
5	Msecs/connec	t	0.189717	0.184428	0.177924	0.345489		
			mean,	mean,	mean, 2.037	mean, 0.782		
			13.855 max,	0.485 max,	max,	max,		
			0.088 min	0.088 min	0.106 min	0.12 min		
6	Msecs/first-		229.182 mean,	1374.9 mean,	1189.41	26442.1		
	response		5114.55 max,	40977.9 max,	mean,	mean,		
			8.049 min	0.779 min	59271.7 max,	59925.3 max,		
					11.144 min	3.322 min		
7	Timeouts		-	-	107	3432		
8	Bad byte cou	nts	6660	1415	2470	3691		
9		200	12120	3595	4015	1744		
10		301	714	191	249	105		
11	HTTP	302	819	171	273	114		
12	response	403	3843	-	1325	-		
13	codes	_		-	-	-		
14		500		-	70	-		
15		503	-	341	-	-		

- Shuultuur has some advantages and disadvantages
 - Internal Server Error (500) more often than Dansguardian
 - More successful responses (200).
- Dansguardian
 - Responded 341 times with Service Unavailable (503)
 - Much more timeouts.
- On the performance side, in average, Shuultuur's performance was higher than Dansguardian in most cases for both tests.

- Test environment (Case 2)
 - Server OS
 - FreeBSD 10.1-RELEASE amd64
 - Server hardware:
 - CPU –AMD G series T40E, 1 GHz dual Bobcat core with 64 bit support,
 32K data + 32K instruction + 512K L2 cache per core
 - Memory 4096MB
 - Go version 1.4.1
 - Squid and Dansguardian versions are same as before

/etc/sysctl.conf includes following:

```
kern.ipc.somaxconn = 4096
kern.maxfiles = 10000
kern.maxfilesperproc = 8500
kern.ipc.maxsockets = 6500
kern.ipc.nmbclusters = 20000
net.inet.tcp.maxtcptw = 4000
```

- Changed tcp-backlog setting to 4096 in the Redis config file
- http_load-03feb2015 (parallel and rate test)

No	Result names		Paralle	el test	Rate test		
NO	Result names		Shuultuur	Dansguardian	Shuultuur	Dansguardian	
1	Fetches		4319	2643	5877	5225	
2	Max parallel		10	10	392	584	
3	Mean		120364	134945	103568	11322.7	
	bytes/connec	tion					
4	Fetches/sec		7.19813	4.405	9.795	8.70832	
5	Msecs/connec	t	19.193 mean,	6.23727	13.3234	12.1561	
			3009.89 max,	mean,	mean,	mean,	
			0.925 min	53.385 max,	295.472 max,	3023.61 max,	
				0.991 min	0.721 min	0.903 min	
6	Msecs/first-		764.861 mean,	1337.36	8371.04	35975.6	
	response		59830.3 max,	mean,	mean,	mean, 59984	
			36.664 min	55849.5 max,	59971.6 max,	max,	
				16.704 min	36.453 min	56.747 min	
7	Timeouts		28	35	329	4618	
8	Bad byte cou	nts	1787	2160	3023	4255	
9		200	3677	2397	4181	542	
10		301	9	191	609	-	
11	HTTP	302	366	217	458	70	
12	response	403	233	-	279	-	
13	codes	codes 404		-	-	-	
14		500	5	-	38	_	
15		503	-	-	-	-	

- Shuultuur's performance was higher than Dansguardian in most cases for both tests
- System load average especially CPU usage was high when Shuultuur was working

lastpid: 1317; load averages: 1.52, 1.00, 0.58
71 processes: 1 running, 64 sleeping, 6 stopped

20

top report when running Shuultuur:

1031 nobody

```
CPU: 31.4% user, 0.0% nice, 5.9% system, 1.6% interrupt, 61.2% idle
Mem: 58M Active, 189M Inact, 158M Wired, 70M Buf, 3519M Free
Swap: 978M Total, 978M Free
  PID USERNAME
                 THR PRI NICE
                               SIZE
                                       RES STATE
                                                       TTMF.
                                                              WCPU COMMAND
 1300 user
                 18 25
                            0 84540K 43672K uwait
                                                       6:16
                                                             91.85% shuultuur
 1299 user
                  5 21
                           0 28544K 9484K piperd 1
                                                       0:18
                                                              4.10% gcvis
                   3 52
                           0 28108K 6540K uwait
                                                              0.29% redis-server
  822 redis
                                                       0:21
                   1 20
                            0 43580K 17092K select
                                                       3:42
 1024 root.
                                                              0.00% dansquardian
                   1 20
                                                       1:20
                                                              0.00% squid
 794 squid
                               164M 68400K kgread
                   1 20
                                                       0:02
 1030 nobody
                            0 43580K 18660K select 1
                                                              0.00% dansquardian
 1028 nobody
                   1 20
                           0 43580K 18664K select 1
                                                       0:02
                                                              0.00% dansquardian
 1029 nobody
                   1 20
                         0 43580K 18672K select 1
                                                       0:02
                                                              0.00% dansquardian
 1033 nobody
                   1 20
                         0 43580K 18664K select 0
                                                       0:02
                                                              0.00% dansquardian
 1032 nobody
                   1 20 0 43580K 18660K select 0
                                                       0:02
                                                              0.00% dansquardian
```

0 43580K 18672K select 1

0:02

0.00% dansquardian

Dansguardian:

```
lastpid: 1151; load averages: 0.42, 0.68, 0.81
156 processes: 1 running, 152 sleeping, 3 stopped
CPU: 0.2% user, 0.0% nice, 10.2% system, 1.8% interrupt, 87.8% idle
Mem: 103M Active, 245M Inact, 161M Wired, 58M Buf, 3415M Free
Swap: 978M Total, 978M Free
```

PID	USERNAME	THR	PRI	NICE	SIZE	RES	STATE	С	TIME	WCPU	COMMAND
1024	root	1	35	0	43580K	17092K	nanslp	0	1:13	23.49%	dansguardian
794	squid	1	26	0	160M	62060K	kqread	0	0:13	4.59%	squid
1002	user	19	42	0	93636K	51320K	STOP	0	9:58	0.00%	shuultuur
1001	user	6	20	0	33856K	10692K	STOP	0	0:32	0.00%	gcvis
822	redis	3	52	0	28108K	6452K	uwait	1	0:15	0.00%	redis-server
932	user	1	20	0	21916K	3244K	CPU0	0	0:06	0.00%	top
1028	nobody	1	20	0	43580K	18152K	select	0	0:01	0.00%	dansguardian
1033	nobody	1	20	0	43580K	18172K	select	0	0:01	0.00%	dansguardian
926	user	1	20	0	86472K	7240K	select	1	0:01	0.00%	sshd
1025	nobody	1	20	0	31292K	5328K	select	1	0:00	0.00%	dansguardian
1030	nobody	1	20	0	43580K	18304K	select	0	0:00	0.00%	dansguardian
1053	nobody	1	20	0	43580K	18664K	select	0	0:00	0.00%	dansguardian

Conclusions and future works

- Developing application in Go is simple
 - Using built-in data structures such as maps and slices
 - Many open source projects were useful
- http_load test was run multiple times and results were consistent
- Results will be lot better when we solve problems

Conclusions and future works

- Lack of fast and stable image checking feature
- High number of goroutines problem when load is high
 - Use channels for incoming requests to have some queuing mechanism
- Last but not least
 - The memory usage and CPU load problem is a major issue for embedded system applications
 - Planning to do more research on this to stabilize the resource usages.
- Any comments and ideas related to Shuultuur
 - Contact: ganbold@gmail.com

Thank you for your attention

Questions?