Experimentalphysik II im Sommersemester 2014 Übungsserie 10

Abgabe am 19.06.14 bis 08:15 (vor der Vorlesung)

Alle Aufgaben (!) müssen gerechnet werden. Die mit * gekennzeichneten Aufgaben sind schriftlich abzugeben. Zu jeder Lösung gehören eine oder im Bedarfsfalle mehrere Skizzen, die den Sachverhalt verdeutlichen.

- 29. Eine "kleine" Zylinderspule mit der Windungszahl w₁ befinde sich koaxial und symmetrisch in einer "großen" Zylinderspule mit der Windungszahl w₂. Berechnen Sie die Gegeninduktivität M dieser Anordnung!
- 30.* Ein Elektromagnet erzeugt ein Magnetfeld von B = 1 Tesla. Wie groß ist die maximale Haltekraft dieses Magneten, wenn er als eine Ringstruktur gemäß Skizze (grau = Eisen!) ausgeführt ist? ($R_1 = 0.5 \, \mathrm{m}$; $R_2 = \sqrt{2} \, \mathrm{m}$; $R_3 = 1.5 \, \mathrm{m}$)

31.* Man berechne für die skizzierte Wechselstromschaltung das Verhältnis der Amplitudenquadrate von Ausgangs- und Eingangsspannung U_a und U_e sowie die Phasenverschiebung $\Delta \phi$ zwischen beiden Spannungen als Funktion der Frequenz!

Wie groß ist für
$$\left| \frac{U_a}{U_e} \right|^2 = 0,5~$$
 die Linien-

breite $\Delta\omega$? (FWHM)

Wie groß ist die dazugehörige Phasenverschiebung $\Delta \phi$?

32.* Zwischen die Platten eines Kondensators, an dem eine Wechselspannung der Frequenz f anliegt, wird ein (leitfähiges) Dielektrikum mit der spezifischen elektrischen Leitfähigkeit $\sigma_{el}=1\,\mathrm{S}\,\mathrm{m}^{-1}$ und der Dielektrizitätskonstante $\epsilon_{r}=2$ gebracht. Bei welcher Frequenz f sind Leitungsstrom und Verschiebungsstrom durch den Kon-

Bei welcher Frequenz f sind Leitungsstrom und Verschiebungsstrom durch den Kondensator betragsmäßig gleich groß? Was bedeutet das für die Phase?

Kontakt: <u>gerhard.paulus@uni-jena.de</u> <u>michael.duparre@uni-jena.de</u>