

Washington Steam Bridge British State

- Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y

- Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

$$EN = 0$$
 $EN = 1$
 $Y = 'Z'$ $Y = A$

Nonrestoring mux uses two transmission gates

- Only 4 transistors

D0

S- - Y

D1 - - S

Restoring gates mux

Traymission gate Notes

Transmission Gate

Transmission Gate

Scanned by CamScanner

Scanned by CamScanner

2:1 mux

Nonrestoring mux uses two transmission gates

(c) Sum of-products circuit

(d) Circuit with transmission gates

When S=0, $\overline{S}=1$, then, PMOS and NMOS of B will be ON and Z=A.0+B.1=B

When S=1, $\overline{S}=0$, then, PMOS and NMOS of A will be ON and Z=A.1+B.0=A

D Latch

D-Flipflop

D-Flipflop

