Advanced Parallel School 2022 Quantum Computing – Day 3 Advanced QA applications

Mengoni Riccardo, PhD

16 Feb 2022

Quantum Computing @ CINECA

CINECA: Italian HPC center
 CINECA Quantum Computing Lab:

- Collaborate with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it

Breaking RSA security with Quanutm Annealing

Overview:

Today we use several encryption schemes

Cryptographic Algorithm	Туре
AES-256	Symmetric
SHA-256, SHA-3	Hash functions
Diffie-Hellman	Asymmetric (DLP)
RSA	Asymmetric (Factorization)
ECDSA, ECDH	Asymmetric (Elliptic Curve)
DSA	Asymmetric (DLP)

Overview: Shor's algorithm (1994)

Exponential Speedup

Overview: Grover search

Run-time brute-force algorithm: d^N

Run-time Grover search:

$$\sqrt{d^N}$$

Quadratic Speedup

Overview

Impact of Shor and Grover algorithms of cybersecurity

Cryptographic Algorithm	Туре	Affected by	Threat Level
AES-256	Symmetric	Grover's Algorithm	Low
SHA-256, SHA-3	Hash functions	Grover's Algorithm	Low
Diffie-Hellman	Asymmetric (DLP)	Shor's Algorithm	Very High
RSA	Asymmetric (Factorization)	Shor's Algorithm	Very High
ECDSA, ECDH	Asymmetric (Elliptic Curve)	Shor's Algorithm	Very High
DSA	Asymmetric (DLP)	Shor's Algorithm	Very High

Overview

Impact of Shor and Grover algorithms of cybersecurity

Cryptographic Algorithm	Туре	Affected by	Threat Level
AES-256	Symmetric	Grover's Algorithm	Low
SHA-256, SHA-3	Hash functions	Grover's Algorithm	Low
Diffie-Hellman	Asymmetric (DLP)	Shor's Algorithm	Very High
RSA	Asymmetric (Factorization)	Shor's Algorithm	Very High
ECDSA, ECDH	Asymmetric (Elliptic Curve)	Shor's Algorithm	Very High
DSA	Asymmetric (DLP)	Shor's Algorithm	Very High

Overview

Quantum Computing

In theory could hack Cryptosystems

WHY?

Shor's quantum factorization algorithm is exponentially faster than the best classical algorithm

But there is currently no <u>scalable</u> general purpose quantum computer that implements Shor's algorithm

Circuit	N Qubits	N Operations	Time
Simplicity	10240	$\simeq 8$ billions	$\simeq 23~{ m mins}$
Speed	$\simeq 5$ millions	$\simeq 15000$	$\simeq 2.5~\mathrm{ms}$
Qubits	4096	$\simeq 256$ billions	$\simeq 12~\mathrm{hours}$
Tradeoff I	$\simeq 100000$	$\simeq 1$ billion	$\simeq 3 \text{ mins}$
Tradeoff II	$\simeq 10000$	$\simeq 6$ millions	$\simeq 1~{ m sec}$

Objective

It is possible to formulate the factorization problem as a QUBO problem solvable via Quantum Annealing

Objective

Factorization of prime numbers ($N = p \times q$) with D-Wave quantum annealer

Problem formulation

Given N integer umber

The problem is to find prime numbers p and q such that

$$N = p \times q$$

Eg. For N=143, its prime factors are p=11 and q=13

$$N = p \times q$$

Expressing the above numbers N, p and q in binary

$$N = \sum_{i=0}^{L_n - 1} 2^i n_i, \qquad p = \sum_{j=0}^{L_p - 1} 2^j p_j \qquad \text{and} \qquad q = \sum_{k=0}^{L_q - 1} 2^k q_k.$$

Eg. N =143 in binary (1, 0, 0, 0, 1, 1, 1, 1)

1) Direct Method

Objective function:

$$O(p,q) = (N - p \cdot q)^2$$

Substituting binary form

$$O(p,q) = \left[\left(\sum_{i=0}^{L_n - 1} 2^i n_i \right) - \left(\sum_{j=0}^{L_p - 1} 2^j p_j \right) \cdot \left(\sum_{k=0}^{L_q - 1} 2^k q_k \right) \right]^2$$

1) Multiplication Table Method

Columns	7	6	5	4	3	2	1	0
					1	p_2	p_1	1
n . a				q_1	p_2q_1	p_1q_1	q_1	
$\mathbf{p} \cdot \mathbf{q}$			q_2	p_2q_2	p_1q_2	q_2		
		1	p_2	p_1	1			
Corries	c_{67}	c_{56}	c_{45}	c_{34}	c_{23}	c_{12}		
Carries	c_{57}	c_{46}	c_{35}	c_{24}				
N	n_7	n_6	n_5	n_4	n_3	n_2	n_1	n_0

Multiplication table associated to N=p*q

Columns	7	6	5	4	3	2	1	0
					1	p_2	p_1	1
n. a				q_1	p_2q_1	p_1q_1	q_1	
$\mathbf{p} \cdot \mathbf{q}$			q_2	p_2q_2	p_1q_2	q_2		
		1	p_2	p_1	1			
Carries	c_{67}	c_{56}	c_{45}	c_{34}	c_{23}	c_{12}		
Carries	c_{57}	c_{46}	c_{35}	c_{24}				
N	n_7	n_6	n_5	n_4	n_3	n_2	n_1	n_0

Columns	7	6	5	4	3	2	1	0
					1	p_2	p_1	1
n . a				q_1	p_2q_1	p_1q_1	q_1	
$\mathbf{p} \cdot \mathbf{q}$			q_2	p_2q_2	p_1q_2	q_2		
		1	p_2	p_1	1			
Carries	$c_{67} \\ c_{57}$	c_{56} c_{46}	$c_{45} \ c_{35}$	$c_{34} \\ c_{24}$	c_{23}	c_{12}		
N	n_7	n_6	n_5	n_4	n_3	n_2	n_1	n_0

Columns	7	6	5	4	3	2	1	0
n · a					1	p_2	p_1	1
				q_1	p_2q_1	p_1q_1	q_1	
$\mathbf{p} \cdot \mathbf{q}$			q_2	p_2q_2	p_1q_2	q_2		
		1	p_2	p_1	1			
Carries	c_{67}	c_{56}	c_{45}	c_{34}	c_{23}	c_{12}		
Carries	c_{57}	c_{46}	c_{35}	c_{24}				
N	n_7	n_6	n_5	n_4	n_3	n_2	$\overline{n_1}$	n_0

$$p_{1} + q_{1} - 2c_{12} = n_{1}$$

$$p_{2} + p_{1}q_{1} + q_{2} + c_{12} - (2c_{23} + 4c_{24}) = n_{2}$$

$$1 + p_{2}q_{1} + p_{1}q_{2} + 1 + c_{23} - (2c_{34} + 4c_{35}) = n_{3}$$

$$q_{1} + p_{2}q_{2} + p_{1} + c_{24} + c_{34} - (2c_{45} + 4c_{46}) = n_{4}$$

$$p_{2} + q_{2} + c_{45} + c_{35} - (2c_{56} + 4c_{57}) = n_{5}$$

$$1 + c_{56} + c_{46} - 2c_{67} = n_{6}$$

$$c_{57} + c_{67} = n_{7}$$

Columns	7	6	5	4	3	2	1	0
n · a					1	p_2	p_1	1
				q_1	p_2q_1	p_1q_1	q_1	
$\mathbf{p} \cdot \mathbf{q}$			q_2	p_2q_2	p_1q_2	q_2		
		1	p_2	p_1	1			
Carries	c_{67}	c_{56}	c_{45}	c_{34}	c_{23}	c_{12}		
Carries	c_{57}	c_{46}	c_{35}	c_{24}				
N	n_7	n_6	n_5	n_4	n_3	n_2	n_1	n_0

$$p_1 + q_1 - 2c_{12} = n_1$$

$$p_2 + p_1q_1 + q_2 + c_{12} - (2c_{23} + 4c_{24}) = n_2$$

$$1 + p_2q_1 + p_1q_2 + 1 + c_{23} - (2c_{34} + 4c_{35}) = n_3$$

$$q_1 + p_2q_2 + p_1 + c_{24} + c_{34} - (2c_{45} + 4c_{46}) = n_4$$

$$p_2 + q_2 + c_{45} + c_{35} - (2c_{56} + 4c_{57}) = n_5$$

$$1 + c_{56} + c_{46} - 2c_{67} = n_6$$

$$c_{57} + c_{67} = n_7$$

$$O(p,q) = (p_1 + q_1 - n_1 - 2c_{12})^2 + (p_2 + p_1q_1 + q_2 + c_{12} - n_2 - 2c_{23} - 4c_{24})^2 + \dots + (1 + c_{56} + c_{46} - n_6 - 2c_{67}) + (c_{57} + c_{67} - n_7)^2$$

Columns	7	6	5	4	3	2	1	0
p·q					1	p_2	p_1	1
				q_1	p_2q_1	p_1q_1	q_1	
p·q			q_2	p_2q_2	p_1q_2	q_2		
		1	p_2	p_1	1			
Corries	c_{67}	c_{56}	c_{45}	c_{34}	c_{23}	c_{12}		
Carries	c_{57}	c_{46}	c_{35}	c_{24}				
N	n_7	n_6	n_5	n_4	n_3	n_2	n_1	n_0

$$\begin{cases} p_1 + q_1 - 2c_{12} = n_1 \\ p_2 + p_1q_1 + q_2 + c_{12} - (2c_{23} + 4c_{24}) = n_2 \\ 1 + p_2q_1 + p_1q_2 + 1 + c_{23} - (2c_{34} + 4c_{35}) = n_3 \\ q_1 + p_2q_2 + p_1 + c_{24} + c_{34} - (2c_{45} + 4c_{46}) = n_4 \\ p_2 + q_2 + c_{45} + c_{35} - (2c_{56} + 4c_{57}) = n_5 \\ 1 + c_{56} + c_{46} - 2c_{67} = n_6 \\ c_{57} + c_{67} = n_7 \end{cases}$$

$$O(p,q) = (p_1 + q_1 - n_1 - 2c_{12})^2 + (p_2 + p_1q_1 + q_2 + c_{12} - n_2 - 2c_{23} - 4c_{24})^2 + \dots + (1 + c_{56} + c_{46} - n_6 - 2c_{67}) + (c_{57} + c_{67} - n_7)^2$$

7	6	5	4	3	2	1	0
				1	p_2	p_1	1
			q_1	p_2q_1	p_1q_1	q_1	
		q_2	p_2q_2	p_1q_2	q_2		
	1	p_2	p_1	1			
c_{67}	c_{56}	c_{45}	c_{34}	c_{23}	c_{12}		
c_{57}	c_{46}	c_{35}	c_{24}				
20-	na	n-	n	no	no	n	n_0
	22 00	1 c ₆₇ c ₅₆ c ₅₇ c ₄₆	$\begin{array}{c cccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & 1 & p_2 \\ & & c_{67} & c_{56} & c_{45} \\ & & c_{57} & c_{46} & c_{35} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$\begin{cases} p_1 + q_1 - 2c_{12} = n_1 \\ p_2 + p_1q_1 + q_2 + c_{12} - (2c_{23} + 4c_{24}) = n_2 \\ 1 + p_2q_1 + p_1q_2 + 1 + c_{23} - (2c_{34} + 4c_{35}) = n_3 \\ q_1 + p_2q_2 + p_1 + c_{24} + c_{34} - (2c_{45} + 4c_{46}) = n_4 \\ p_2 + q_2 + c_{45} + c_{35} - (2c_{56} + 4c_{57}) = n_5 \\ 1 + c_{56} + c_{46} - 2c_{67} = n_6 \\ c_{57} + c_{67} = n_7 \end{cases}$$

$$O(p,q) = (p_1 + q_1 - n_1 - 2c_{12})^2 +$$

$$+ (p_2 + p_1q_1 + q_2 + c_{12} - n_2 - 2c_{23} - 4c_{24})^2 + \dots +$$

$$+ (1 + c_{56} + c_{46} - n_6 - 2c_{67}) + (c_{57} + c_{67} - n_7)^2$$

1) Block-Multiplication Table Method

Blocks		III		I	Ι	I		
					1	p_2	p_1	1
n.a				q_1	p_2q_1	p_1q_1	q_1	
$\mathbf{p} \cdot \mathbf{q}$			q_2	p_2q_2	p_1q_2	q_2		
		1	p_2	p_1	1			
Carries		c_4	c_3	c_2	c_1			
N	n_7	n_6	n_5	n_4	n_3	n_2	n_1	n_0

Multiplication table associated to N=p*q is divided in blocks in order to reduce the number of carries, hence variables involved

Blocks	III		II		I			
$\mathbf{p} \cdot \mathbf{q}$					1	p_2	p_1	1
				q_1	p_2q_1	p_1q_1	q_1	
			q_2	p_2q_2	p_1q_2	q_2		
		1	p_2	p_1	1			
Carries		c_4	c_3	c_2	c_1			
N	n_7	n_6	n_5	n_4	n_3	n_2	$ n_1 $	n_0

$$\begin{cases} (p_1 + q_1) + 2(p_2 + p_1q_1 + q_2) - (8c_2 + 4c_1) = n_1 + 2n_2 \\ (1 + p_2q_1 + p_1q_2 + 1 + c_1) + 2(q_1 + p_2q_2 + p_1 + c_2) - \\ -(8c_4 + 4c_3) = n_3 + 2n_4 \\ (q_2 + p_2 + c_3) + 2(1 + c_4) = n_5 + 2n_6 + 4n_7 \end{cases}$$

$$O(p,q) = [(p_1 + q_1) + 2(p_2 + p_1q_1 + q_2) - (8c_2 + 4c_1) - (n_1 + 2n_2)]^2 + [(1 + p_2q_1 + p_1q_2 + 1 + c_1) + (2q_1 + p_2q_2 + p_1 + c_2) - (8c_4 + 4c_3) - (n_3 + 2n_4)]^2 + [(q_2 + p_2 + c_3) + 2(1 + c_4) - (n_5 + 2n_6 + 4n_7)]^2$$

Blocks	III		II		I			
D 6					1	p_2	p_1	1
				q_1	p_2q_1	p_1q_1	q_1	
$\mathbf{p} \cdot \mathbf{q}$			q_2	p_2q_2	p_1q_2	q_2		
		1	p_2	p_1	1			
Carries		c_4	c_3	c_2	c_1			
N	n_7	n_6	n_5	n_4	n_3	n_2	$ n_1 $	n_0

$$\begin{cases} (p_1 + q_1) + 2(p_2 + p_1q_1 + q_2) - (8c_2 + 4c_1) = n_1 + 2n_2 \\ (1 + p_2q_1 + p_1q_2 + 1 + c_1) + 2(q_1 + p_2q_2 + p_1 + c_2) - \\ -(8c_4 + 4c_3) = n_3 + 2n_4 \end{cases}$$

$$(q_2 + p_2 + c_3) + 2(1 + c_4) = n_5 + 2n_6 + 4n_7$$

$$O(p,q) = [(p_1 + q_1) + 2(p_2 + p_1q_1 + q_2) + (8c_2 + 4c_1) - (n_1 + 2n_2)]^2 + [(1 + p_2q_1 + p_1q_2 + 1 + c_1) + (2(q_1 + p_2q_2 + p_1 + c_2) - (8c_4 + 4c_3) - (n_3 + 2n_4)]^2 + [(q_2 + p_2 + c_3) + 2(1 + c_4) - (n_5 + 2n_6 + 4n_7)]^2$$

Blocks	III		II		Ι			
$\mathbf{p} \cdot \mathbf{q}$					1	p_2	p_1	1
				q_1	p_2q_1	p_1q_1	q_1	
			q_2	p_2q_2	p_1q_2	q_2		
		1	p_2	p_1	_1_			
Carries		c_4	c_3	c_2	c_1			
N	n_7	n_6	n_5	n_4	n_3	n_2	$ n_1 $	n_0

$$\begin{cases} (p_1 + q_1) + 2(p_2 + p_1q_1 + q_2) - (8c_2 + 4c_1) = n_1 + 2n_2 \\ (1 + p_2q_1 + p_1q_2 + 1 + c_1) + 2(q_1 + p_2q_2 + p_1 + c_2) - \\ -(8c_4 + 4c_3) = n_3 + 2n_4 \end{cases}$$

$$(q_2 + p_2 + c_3) + 2(1 + c_4) = n_5 + 2n_6 + 4n_7$$

$$O(p,q) = [(p_1 + q_1) + 2(p_2 + p_1q_1 + q_2) - (8c_2 + 4c_1) - (n_1 + 2n_2)]^2 + [(1 + p_2q_1 + p_1q_2 + 1 + c_1) + (2q_1 + p_2q_2 + p_1 + c_2) - (8c_4 + 4c_3) \neq (n_3 + 2n_4)]^2 + [(q_2 + p_2 + c_3) + 2(1 + c_4) - (n_5 + 2n_6 + 4n_7)]^2$$

Only three terms in the Objective function

Analysis of QUBO resources

N	p	q	Length in bit of <i>N</i> : len(N)	Number of variables in QUBO: $n_{logical}$	Number of quadratic terms in QUBO
143	13	11	8	12	55
3127	59	53	12	29	252
8881	107	83	14	41	463
59989	251	239	16	59	737
103459	307	337	17	73	1159
231037	499	363	18	73	1159
376289	659	571	19	94	1467

Analysis of QUBO resources

Nuber of logical variables in QUBO

Bit-length of N

Number of Quadratic terms in QUBO

Bit-length of N

Embedding QUBO problem into the D-Wave topology

Embedding:

- The "logical" graph (QUBO) is mapped into the physical structure of the D-Wave (side image) using a heuristic algorithm
- This **heuristic algorithm** searches for the best minor embedding and returns the **"embedded" graph**
 - In the embedded graph, single logical variables are mapped into chains of physical variables. This leads to an increase in the size of the embedded problem.

Embedding QUBO problem into the D-Wave topology

Embedding:

- The "logical" graph (QUBO) is mapped into the physical structure of the D-Wave (side image) using a heuristic algorithm
- This **heuristic algorithm** searches for the best minor embedding and returns the **"embedded" graph**
 - In the embedded graph, single logical variables are mapped into chains of physical variables. This leads to an increase in the size of the embedded problem.

Embedding QUBO problem into the D-Wave topology

Logical VS Physical variables

- n_physical: number of physical variables (physical qubits) found with minor embedding algorithm
- n_logical: number of logical variables of the QUBO problem
- Increase in the gap between physical qubits and logical variables as the number to be factored increases N

D-Wave Runs: Time To Solution (TTS)

Average time to solution (milliseconds)

Advanced settings:

- Extended J range
- Flux drift compensation
- Annealing offsets

advanced settings

default settings

$$\text{TTS} = \frac{total \; QPU \; access \; time}{number \; of \; times \; N \; is \; factored \; correctly}$$

D-Wave Runs: Time To Solution (TTS)

N	Bit-length of N : len (N)	TTS: Default settings (milliseconds)	TTS: Advanced settings (milliseconds)
143	8	9,055	9,055
3127	12	22,109	22,109
8881	14	161,92	85,754
59989	16	56,418	72,903
103459	17	728,96	91,12
231037	18	not found	not found
376289	19	not found	not found

Stimiamo che il più potente supercomputer al mondo, Summit (150mila TFlop/s), riesca a fattorizzare un RSA-80 in 90 millisecondi

Expected QUBO variables increasing problem size

Expected QUBO variables increasing problem size

RSA type	N Qubits (with actual graph)	Supposed Date	N Qubits (with full graph)	Supposed Date
RSA-768	589824	$\simeq 2033$	147456	$\simeq 2029$
RSA-1024	1048576	$\simeq 2035$	262144	$\simeq 2031$
RSA-2048	4194304	$\simeq 2039$	1048576	$\simeq 2035$

Bit-length of N

Conclusions

Factorization of prime numbers with D-Wave quantum annealer

- Formulation and analysis of the associated QUBO problem:
 - Block matrix importance
 - - Linear scaling of logic variables
 - Embedding of QUBO into D-Wave hardware topology:
 - Polinomial Scaling polinomiale of physical variables
 - Max embedding found for *len(N)=17*
 - Average Time To Solution (TTS) found using D-Wave:
- Max problem dimension \rightarrow factorization N=103459 i.e. len(N)=17
- Average Time To Solution (TTS) below 100 millisecondis (with advanced settings)

Molecule Unfolding with Quantum Annealing

Molecular Docking for Virtual Screening

- Molecular docking is a method to calculate the preferred position and shape of one molecule to a second when bound to each other
 - Shape Complementarity
 - Scoring function to evaluate the binding affinity

3 Phases Process

Ligand Expansion

- MOL2 ligand elaboration
- Identification of the rotatable bonds
- Internal distances maximization
- Removes tool related bias (e.g. smile-to-3D)

Initial Placement

- Ligand main fragments decomposition
- Ligand initial poses
 Identification
- Placement of the ligand into the pocket with rigid roto-translations

Shape Refinement

- Use of the rotatable bonds to modify the ligand shape and to match the protein pocket
- Docking Score
 Maximization

3 Phases Process

Ligand Expansion

- MOL2 ligand elaboration
- Identification of the rotatable bonds
- Internal distances maximization
- Removes tool related bias (e.g. smile-to-3D)

Initial Placement

- Ligand main fragments decomposition
- Ligand initial poses
 Identification
- Placement of the ligand into the pocket with rigid roto-translations

Shape Refinement

- Use of the rotatable bonds to modify the ligand shape and to match the protein pocket
- Docking Score
 Maximization

Problem Definition

Objective: **find** the unfolded **torsion configuration** that maximizes the molecular volume, or equivalently, that **maximizes the distances between fragments.**

Problem Definition

To each torsion is associated is a rotation matrix R.

$$\vec{a}(\theta_1) = R(\theta_1) \overrightarrow{a_0}$$

$$\vec{a}(\theta_1, \theta_2) = R(\theta_2)R(\theta_1)\overrightarrow{a_0}$$

Overview of the problem size (ComplexDB)

Molecule Unfolding: Rotatable Betweenness Centrality

Betweenness centrality:

$$g(v) = \sum_{s
eq v
eq t} rac{\sigma_{st}(v)}{\sigma_{st}}$$

Molecule Unfolding: Rotatables Influence Set

Rotatables Influence set:

$$I_{S} = E_{C_{a},a_{k}} \cap E_{R}$$

 $E_R = Rotable bonds;$

 $E_{C_a,a_k} = Bonds$ on the shortest path σ_{C_a,a_k}

Molecule Unfolding

Original 2D molecule:

Without Hydrogen:

Molecule Conformation Exploration: Random Search

Random Search

Molecule Conformation Exploration: Greedy

M= Measure total sum of internal distances

GeoDock-inspired

= physical rotation of torsion#
for all possible angles

Greedy:

- GeoDock = $\vartheta 1$ M $\vartheta 2$ M $\vartheta 3$ M $\vartheta 4$ M
- Batch = i) ϑ 1, ϑ 2 M ϑ 3, ϑ 4 M ii) ϑ 1, ϑ 2, ϑ 3 M ϑ 4 M iii) ϑ 1, ϑ 2, ϑ 3, ϑ 4 M

Combinatorial Optimization Problem Definition

is convenient to identify a **conformation of a molecule** with M torsions by a **torsion vector**

$$[\theta_1, \ldots, \theta_M]$$

Where each torsion θ_N can assume values in $[0, 2\pi)$.

Objective: find the unfolded torsion configuration that maximizes the molecular volume, or equivalently, that maximizes the distances between fragments

Combinatorial Optimization Problem Definition

Objective: find the unfolded torsion configuration

$$[\theta_1^{unfold}, \ldots, \theta_M^{unfold}]$$

that maximizes the sum of distances $D_{ab}(\theta)$ between fragments a and b

$$D(\theta) = \sum_{a,b} D_{ab}(\theta)^2$$

where
$$D_{ab}(\theta)^2 = ||\vec{a}_0 - R(\theta)\vec{b}_0||^2$$

Constructing the Binary Optimization problem

Consider a discretization of the torsion angle θ_i into d possible values

$$\theta_i = [\theta_i^1, \theta_i^2, \theta_i^3, ..., \theta_i^d]$$

And introduce a **binary variable** x_{ik} with $1 \le k \le d$, such that

$$x_{ik} = \begin{cases} 1 & \text{if } \theta_i = \theta_i^k; \\ 0 & \text{otherwise.} \end{cases}$$
 with the constraint $\sum_{k=1}^a x_{ik} = 1$

Constructing the Binary Optimization problem

This also induces a discretization of the sine and cosine for each torsion

$$\sin(\theta_i) = \sum_{k=1}^d \sin(\theta_i^k) \ x_{ik} \qquad \cos(\theta_i) = \sum_{k=1}^d \cos(\theta_i^k) \ x_{ik}$$

With such encoding, the rotation matrix $R(\theta_i)$ associated the torsion angle θ_i becomes a function of all the binary variables x_{ik} needed to represent the angle θ_i

$$R(\theta_i) = R(x_{i1}, x_{i2}, ..., x_{id})$$

Constructing the High-order Unconstrained Binary Optimization (HUBO) problem

The general form of the HUBO optimization function is

$$O(x_{ik}) = A \sum_{i} \left(\sum_{k=1}^{d} x_{ik} - 1 \right)^{2} - \sum_{a,b} D_{ab}(\theta)^{2}$$

where the pairwise distances are expressed using the binary variables

$$D_{ab}(\theta)^2 = ||\vec{a}_0 - R(\theta)\vec{b}_0||^2$$

In general, if $D_{ab}(\theta)$ depends on m torsions, $D_{ab}(\theta)$ contains terms up to the m-th order, hence the **highest order in the HUBO is** 2m

HUBO Problem Structure

In order to obtain a precision of $\Delta\theta_i$, the number of variables needed for each torsion is

$$d = \frac{2\pi}{\Delta\theta_i} = \frac{2\pi}{\theta_i^{k+1} - \theta_i^k}$$

Given a molecule with M torsions, the total number of binary variables x_{ik} in the HUBO

$$n = d \times M = \frac{2\pi}{\Delta\theta_i} \times M$$

Molecules: 20 to 50 atoms - 10 torsions

Angle subsampling effect on the unfolding degradation

Unfolded vs Initial

HUBO Problem Structure at $\Delta\theta_i = \pi/4$

HUBO linear terms

HUBO high order terms (Log-scale)

HUBO Problem Approximation

Delete HUBO terms below a certain **threshold.** Applied in **two phases:**

- Speed up the construction of the HUBOs;
- 2. Speed up the transformation of HUBOs into QUBOs (done via dimod.make_quadratic);

Approximated HUBO problems solvable with *DW2000Q* and *Advantage*

HUBO high order terms (Log-scale)

Form HUBOs to QUBOs

QUBO linear terms

QUBO quadratic terms

Embeddings DW2000Q & Advantage

Number of physical qubits

AVG chain length

Results, 4 Torsions: Volume Gain in Time (seconds)

Results, 6 Torsions: Volume Gain in Time (seconds)

Results, 8 Torsions: Volume Gain in Time (seconds)

Results, 8 Torsions: Volume Gain in Time (seconds)

Results: Time To Solution (TTS) & Volume Gain

Results: Normalized Volume Gain per TTS

Normalized Volume Gain per TTS:

- Takes into account both quality of solution and TTS
- Measures how fast the method fails to provide good solutions
- Advantage has lower avg. slope with respect to SA and DW2000Q

sa	two	adv
1.609948	6.0189816	1.36206524

Conclusions

- We tackled the problem of Molecular Unfolding, an important step in molecular docking.
- New HUBO formulation that can be solved on D-WAVE annealers has been developed.
- We have observed that by **increasing** the **approximation threshold with** the **problem size**, it is **possible to embed** formulations that couldn't be otherwise.
- Embedding our problems on Advantage, compared to the DW2000Q, cost 51% less in terms of physical qubits and with chains 52% shorter.
- In terms of absolute time (seconds), SA is the fastest method to provide close to optimal solutions.
- Advantage significantly outperforms DW2000Q in terms of TTS and VolumeGain by increasing torsions. Advantage also show a better NormalizedVolumeGain/TTS scaling w.r.t. SA

Quantum Computing @ CINECA

CINECA Quantum Computing Lab:

- Collaborate with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it

r.mengoni@cineca.it

d.ottaviani@cineca.it

