AAE 538: Air-Breathing Propulsion

Lecture 22: Introduction to Supersonic Propulsion

Prof. Carson D. Slabaugh

Purdue University
School of Aeronautics and Astronautics
Maurice J. Zucrow Laboratories

Overview of High-Speed AB Propulsion

- The terms 'supersonic' and 'hypersonic propulsion are generally delineated by the flight Mach number
 - Supersonic:
 - Hypersonic:
- The boundaries are somewhat loosely determined and some 'traditional' ramjet and turbojet engines find their way into both categories.
- Current/near-term applications:

Schematic diagram of the X-51a Waverider

Challenges of High-Speed Propulsion

From a system-level perspective...

- Efficient and reliable operation over a wide range of operating conditions
 - Mach number could range from
- Stable, efficient mixing and combustion in a supersonic flow within a burner of a reasonable size
- Achieving sufficient structural integrity for a reusable system,

Developing analytical tools that enable

- Engine/Airframe Integration
 - Traditional methods no longer viable

The X-51a required a booster rocket to achieve suitable conditions for scramjet operation.

Engine – Vehicle Integration

- Modern engineering of high-speed vehicles is
- Axisymmetric, hypersonic engines mounted to an airframe with a pylon or a strut removes all margin in the

The integrated designs allows us to take advantage of the shape of the vehicle as part of the design process.

Engine – Vehicle Integration

- There is a major change in the characteristic look of hypersonic aircraft from subsonic aircraft for this reason: the need for good aerodynamic integration.
- High speed vehicles tend to operate at very high altitudes in order to avoid the
 _____ that would result from hypersonic speeds.
 - The problem is that the air at these altitudes is also very rare, with densities
 ______ that at sea-level conditions.
 - Engines need a lot of air-flow to generate
 - One strategy to capture the required air-flow is to use the entire fore-body underneath the vehicle
 - Similarly, the entire after-body can be utilized as ______

Challenges of High-Speed Propulsion

From a propulsion standpoint - everything is hot!

- Pulling 'free' oxidizer from the surrounding air-flow.
 - \circ Engine inlet temperatures (T_2) are
- Fuel is used as a coolant and, usually, injected as a gas

 \circ

Combustor typically operate near the stoichiometric condition to add any energy.

 \circ

0

Thermal expansion

$$\alpha_{Ti} = 5 \times 10^{-6} / F$$

Entry panels, drains, vents, etc.: cannot be accomplished by standard means.

 \circ

- Extremely high cooling requirements on turbomachinery
- High levels of compression create small internal passages

0

Turbojet Engines

Strengths:

• Weaknesses:

Ramjet Engines

- Strengths:
 - Extremely simple
 - Highest specific impulse (I_{sp}) in the $M \approx$ range.

Weaknesses:

• I_{sp} drops rapidly around

Scramjet Engines

- Strengths:
 - Highest specific impulse (I_{sp}) in the $M \approx 4 10/15$ range.

Weaknesses:

 Long combustor required for high combustion efficiency

Rockets

- Strengths:
 - Highest specific impulse (I_{sp}) in the M > 10/15 range.

Weaknesses:

 Very (very) low I_{sp} compared to turbojets, ramjets, and scramjets at lower Mach number.

AERONAUTICS & ASTRONAUTICS

• Composite propulsion systems (combined cycle) alternatives offer the best approach to maximizing the average I_{sp} .

PURDUE AERONAUTICS & ASTRONAUTICS

1) Air Turbo-Rockets

Expand hot gas from a rocket combustion chamber through a turbine to drive a fan.

 \subset

- Provide high ______ and good performance at low speeds.
- Limited to ______flow through the engine
 - \circ Shocks on the fan will reduce the efficiency and I_{sp}
 - \circ Engine concept limited to modest Mach numbers, less than $\sim 3-5$

2a) Ducted Rocket

- Here, a rocket is used as an ______to pump a large air flow through the outer duct
 - The air mass-flow can be 5-9 times the rocket combustor to achieve the necessary static thrust
- Requires a long subsonic diffuser with small angles (3-5 deg)
- Often marketed for missile applications, this configuration has no real Mach limit.
 - As long as you still have air to 'breath' and enough nozzle/duct cooling.

2b) Integrated Rocket-Ramjet

- Very similar to the ducted rocket, but with augmented combustion using an afterburner.
 - Consuming the oxygen in the air duct flow, as well.
- Augmented thrust with minimal increase in complexity
- As with the ducted rocket, a variable geometry is necessary to achieve a large Mach number range.

PURDUE AERONAUTICS & ASTRONAUTICS

2c) Liquid Air Cycle Engine

- Using the cooling capacity of the liquid H₂ to
- Use the liquid air in the combustor or pump it to a tank for later use
- Strength: minimize the tank/vehicle size to support the rocket combustor
- Weakness: This heat exchanger is really difficult to design
 - 0
 - \circ
 - 0
 - 0

PURDUE AERONAUTICS & ASTRONAUTICS

3) Turbo Ramjet

- At low Mach number, the engine operates as a normal Turbojet or Turbofan
- At high Mach number, the turbomachinery is bypassed by a large percentage of the total air mass-flow through the inlet and nozzle

0

 \bigcirc

PURDUE AERONAUTICS & ASTRONAUTICS

3) Turbo Ramjet

The Pratt and Whitney J-58 was able to power the SR-71 to achieve M = 3.5 with this design. Modest for a ramjet, but very respectable considering the turn-down capability.

4) Turbo-Rocket-Ramjet

The most complex, but also the most capable combined cycle

- This is a _____
 - Effectively an Air-Turbo Rocket with an afterburner
- At low-speed, the first rocket combustor powers the turbine and
- Transition to Ramjet mode is accomplished by
- Final transition to pure-rocket operation with Rocket 2 for high-speed flight

Back to Integration

A myriad of options exist...

- Can it all be fully-embedded?
- Is it worth the expense to do so?

