parties?

Name:

Department of Computer Science Rochester Institute of Technology

CSCI-462 Introduction to Cryptography $\begin{array}{c} \text{Final Exam} \\ \text{May 2, 2018} \end{array}$

Question 1 (6 points)
Compute the two public keys and the common key for the DHKE scheme with the
parameters $p=467,\alpha=2.$ Private keys are $a=3$ and $b=5$
• Alice's public key:
Bob's public key:
• Common key:
Question 2 (2 points)
Assume a (small) company with 110 employees. A new security policy demands
encrypted message exchange with a symmetric cipher. How many keys are required,

if you are to ensure a secret communication for every possible pair of communicating

Question 3 (4 points)

An RSA encryption scheme has the set-up parameters p = 11 and q = 19. The public key is $K_{Pub} = (n, e)$, where e = 5.

a) Compute the corresponding private key $K_{Pr} = (n, d)$. Use the extended Euclidean algorithm for the inversion and point out every calculation step.

a) Decrypt the ciphertext y = 2.

Question 4 (6 points)

Let E be an elliptic curve defined over \mathbb{Z}_7 :

$$E: y^2 = x^3 + 3x + 2 \mod 7$$

For P=(0,3) calculate the point multiplication $3\cdot P$ on E. Show the details of computations.

Question 5 (2 points)

Find the value of the Euler totient function $\phi(n)$ for n=444.

Question 6 (6 points)

Hash functions. Let $X = \{0,1\}^m$ and $Y = \{0,1\}^n$ where m is much larger than n.

a) Explain what it means for a hash function $H: X \to Y$ to be one-way.

b) Explain what it means for a hash function $H: X \to Y$ to be collision resistant.

c) We consider a hash functions which produces output of lengths 128 bits (n = 128). After about how many random inputs do we have a probability at least 0.5 for a collision?

Question 7 (2 points)
What is the discrete logarithm problem?
Question 8 (3 points)
Give names of at least 3 well known hash functions. Which of those hash functions
are considered secure?

Question	9	(2	points)
----------	---	----	--------	---

Why hash functions are typically a part of digital signature schemes?

Question 10 (2 points)

Briefly describe what the digital signatures are used for.

Question 11 (6 points)

Public-key cryptography.

a) What is the main difference between symmetric cryptography and public-key cryptography.

b) Why do we still use symmetric cryptography in current applications?

c) Give 3 examples of applications where public-key cryptography can be used.

Notes/Calculations