

Presented by Dean Banerjee
Prepared by Liam Keese

Phase lock loop (PLL) block diagram

Voltage controlled oscillator (VCO)

VCO resonator

$$f = \frac{1}{2\pi\sqrt{L \cdot C}}$$

f = resonant frequency

L = inductance

C = capacitance

$$\tau = 2\pi \sqrt{\frac{L}{g}}$$

Tau = period

L = length of the pendulum

g = acceleration due to gravity

The real-world inductor

$$Q_{L}(f) = \frac{X_{L}}{R_{L}} = \frac{2\pi \cdot f \cdot L}{R}$$

5

Now add the stimulus

Amplified signal from emitter is lightly coupled into the circuit to sustain oscillation

Example VCO circuit

VCO tuning range

Switched Capacitor Bank

Phase lock loop overview

High-frequency feedback (N) divider

N counter value

$$-N = f_{VCO}/f_N = f_{VCO}/f_{PD}$$

- Input to this counter can be high frequency
- Prescalers are typically inside this counter

High frequency feedback (N) divider

Single Modulus Prescaler

High-frequency feedback (N) divider

Dual modulus prescaler

Fractional dividers (Simple 1st order modulator)

Fractional dividers (Simple 1st order modulator)

N Dividers (ns) **Detector** ator **Value** Cycle (Cycles) Actual **Desired** Fractional divide timing error 0.2 999.7778 900 1000 2 1999.5557 2000 0.4 900 3 0.6 900 2999.3335 3000 0.8 3999.1113 4000 900 4 0 901 5000.0000 5000

Phase

Accumul

Time for Rising Edge for

Fractional dividers (High-order modulators)

Fractional dividers performance ($f_{PD} = 10 \text{ MHz}$)

Spur and Fractional Noise Shaping

Spur Example for fraction of 1/10

To find more clocks and timing technical resources and search products, visit ti.com/clocks

1. True or False:

The relationship between f_{VCO} (VCO frequency), f_{PD} (phase detector frequency), f_n (N divider output frequency) is $f_{VCO}/f_N = f_{VCO}/f_{PD} = N$

1. True or False:

The relationship between f_{VCO} (VCO frequency), f_{PD} (phase detector frequency), f_n (N divider output frequency) is $f_{VCO}/f_N = f_{VCO}/f_{PD} = N$

2. Choose one:

Which techniques can be used to increase VCO tuning range?

- (a) Fractional N divider
- (b) Switchable capacitor or inductor array
- (c) Output divider

2. Choose one:

Which techniques can be used to increase VCO tuning range

- (a) Fractional N divider
- (b) Switchable capacitor or inductor array
- (c) Output divider

3. True or False:

A fractional N modulator decreases the noise generated at higher frequencies.

3. True or False:

A fractional N modulator decreases the noise generated at higher frequencies

4. Choose all that apply:

Which of below statements apply when using a dual modulus prescaler?

- a) Counter will divide by (P+1) A times
- b) B < A
- c) $N = P \times B + A$

4. Choose all that apply:

Which of below statements apply when using a dual modulus prescaler?

- a) Counter will divide by (P+1) A times
- b) B < A
- c) $N = P \times B + A$

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com