Cálculo 1

Prof. Angelo Papa Neto

Nome:_______ 16 de março de 2016

Questão 1: [2 pontos]

Prova 1

Calcule os seguintes limites:

(a) [1 ponto]
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$
.

(b) [1 ponto]
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
.

Questão 2: [2 pontos]

Calcule os seguintes limites.

(a) [1 ponto]
$$\lim_{x \to +\infty} \frac{3x^3 - 4x^2 + 2x + 1}{5x^3 - x^2 + 7x + 1}$$
.

(b) [1 ponto]
$$\lim_{x \to +\infty} \left(\frac{x}{1+x}\right)^x$$

Questão 3: [2 pontos]

A sequência

$$\sqrt{2}$$
, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$, $\sqrt{2+\sqrt{2+\sqrt{2}+\sqrt{2}}}$, ...

converge? Por quê? Em caso afirmativo, para que número real esta sequência converge?

Questão 4: [2 pontos

Para cada afirmação a seguir, assinale V ou F, se a afirmação for verdadeira ou falsa, respectivamente. Justifique cada uma de suas respostas.

- () Se $a, L \in \mathbb{R}$, L > 0 e $\lim_{x \to a} f(x) = L$, então existe $\delta > 0$ tal que, se $a \delta < x < a + \delta$, então f(x) > 0.
- () Se $f:[a,b]\to\mathbb{R}$ é uma função contínua em]a,b[e tal que f(a)<0 e f(b)>0, então existe $c\in]a,b[$ tal que f(c)=0.
- () Se f(x) e g(x) são funções descontínuas em a, então f(x)+g(x) é uma função descontínua em a.
- () A função $f: \mathbb{R} \{0\} \to \mathbb{R}$, dada por $f(x) = \frac{1}{x}$, é contínua.

Questão 5: [2 pontos]

A equação $2^x = x^2$ admite duas soluções positivas: x = 2 e x = 4. Além dessas duas soluções, há alguma outra? Justifique sua resposta e, em caso afirmativo, exiba um intervalo fechado que contenha essa solução em seu interior.