Nested Quantifiers 중첩된 한정기호

Section 1.4

Nested Quantifiers 중첩된 한정기호

Example: "Every real number 실수 has an inverse 역" is

$$\forall x \ \exists y(x + y = 0)$$

where the domains 정의역 of x and y are the real numbers 실수.

We can also think of nested propositional functions:

 $\forall x \ \exists y(x+y=0)$ can be viewed as $\forall x \ Q(x)$ where Q(x) is $\exists y \ P(x,y)$ where P(x,y) is (x+y=0)

Order of Quantifiers 한정기호의 순서

(순서가 중요!!!)

Examples:

- 1. Let P(x,y) be the statement "x + y = y + x." Assume that U is the real numbers 실수. Then $\forall x \ \forall y P(x,y)$ and $\forall y \ \forall x P(x,y)$ have the same truth value.
- 2. Let Q(x,y) be the statement "x + y = 0." Assume that U is the real numbers. Then $\forall x \exists y Q(x,y)$ is true, but $\exists y \ \forall x Q(x,y)$ is false.

Questions on Order of Quantifiers 1

Example 1: Let *U* be the real numbers 정의역이 실수,

Define $P(x,y): x \cdot y = 0$

What is the truth value of the following:

- 1. $\forall x \forall y P(x, y)$
 - **Answer**:False
- 2. $\forall x \exists y P(x, y)$
 - **Answer**:True
- 3. $\exists x \forall y P(x, y)$
 - **Answer**:True
- 4. $\exists x \exists y P(x, y)$
 - **Answer**:True

Questions on Order of Quantifiers²

Example 2: Let *U* be the real numbers,

Define P(x,y): x / y = 1

What is the truth value of the following:

1. $\forall x \forall y P(x, y)$

Answer:False

2. $\forall x \exists y P(x, y)$

Answer:False

3. $\exists x \forall y P(x, y)$

Answer:False

4. $\exists x \exists y P(x, y)$

Answer:True

Quantifications of Two Variables

Statement	When True?	When False
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x,y) is true for every pair x,y.	There is a pair x , y for which $P(x,y)$ is false.
$\forall x \exists y P(x,y)$	For every x there is a y for which $P(x,y)$ is true.	There is an x such that $P(x,y)$ is false for every y .
$\exists x \forall y P(x,y)$	There is an x for which $P(x,y)$ is true for every y .	For every x there is a y for which P(x,y) is false.
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x , y for which $P(x,y)$ is true.	P(x,y) is false for every pair x,y

Translating Mathematical Statements into Predicate Logic

Example: Translate "The sum of two positive integers is always positive" into a logical expression.

Solution:

- 1. 한정기호와 정의역을 구체적으로 적어보면: "For every two integers, if these integers are both positive, then the sum of these integers is positive."
- 2. Introduce the variables x and y, and specify the domain, to obtain: "For all positive integers x and y, x + y is positive."
- 3. The result is:

$$\forall x \forall y ((x>0) \land (y>0)) \rightarrow (x+y>0)$$

여기서 x, y 두 변수의 정의역은 모든 정수

Questions on Translation from English

Choose the obvious predicates and express in predicate logic.

Example 1: "Brothers are siblings."

Solution: $\forall x \forall y (B(x,y) \rightarrow S(x,y))$

Example 2: "Everybody loves somebody."

Solution: $\forall x \exists y \ L(x,y)$

Example 3: "There is someone who is loved by everyone."

Solution: $\exists y \ \forall x \ L(x,y)$

Example 4: "There is someone who loves someone."

Solution: $\exists x \exists y \ L(x,y)$

Example 5: "Everyone loves himself"

Solution: $\forall x \ L(x,x)$

Negating Nested Quantifiers

Example 1: 아래 논리 수식을 부정하시오.

$$\exists w \forall a \exists f (P(w, f) \land Q(f, a))$$

Solution:

$$\neg \exists w \forall a \exists f (P(w, f) \land Q(f, a))$$

Part 2: Now use De Morgan's Laws to move the negation as far inwards as possible.

Solution:a

1.
$$\neg \exists w \forall a \exists f (P(w, f) \land Q(f, a))$$

2.
$$\forall w \neg \forall a \exists f (P(w, f) \land Q(f, a))$$
 by De Morgan's for \exists

3.
$$\forall w \exists a \neg \exists f \big(P(w,f) \land Q(f,a) \big)$$
 by De Morgan's for \forall

4.
$$\forall w \exists a \forall f \neg (P(w, f) \land Q(f, a))$$
 by De Morgan's for \exists

5.
$$\forall w \exists a \forall f (\neg P(w, f) \lor \neg Q(f, a))$$
 by De Morgan's for \land .