AISEC Unit 2

Lecture "Machine Learning for Computer Security"
Prof. Dr. Christian Wressnegger
Artificial Intelligence & Security
Karlsruher Institute für Technologie (KIT)

	Define the "Expected risk" and the "Empirical risk"
	Solution:
(b)	What do we need the latter for?
	Solution:
kern	nel functions. Kernel functions can be constructed by combining other kernels. Let us consider two els $k_a: X \times X \to \mathbb{R}$ and $k_b: X \times X \to \mathbb{R}$. Verify whether the following combinations yield valid el functions. Recall that a kernel needs to be symmetric and positive semi-definite.
` ,	$k_1(x,z) = k_a(x,z) + k_b(x,z)$
. ,	$k_2(x, z) = k_a(x, z) - k_b(x, z)$ $k_3(x, z) = k_a(z, z) + k_b(x, x)$
(0)	$N_3(\omega, \omega) = N_a(\omega, \omega) + N_b(\omega, \omega)$
So	olution:

2.

with ϕ representing the ir	erive the kernalized version of the Euclidean distance between $\phi(x)$ and $\phi(z)$ and $\phi(z)$
Solution:	
. Bag-of-Words. Impleme	nt a $\operatorname{\textit{polynomial}}$ bag-of-words kernel k for two strings x and z as follows
	$k(x,z) = \left(\sum_{w \in L} occ(w,x) \cdot occ(w,z)\right)^{d}.$
	the number of occurrences of the word w in x . The language L is define strings using space and punctation characters.
Compute, (pretty) print a	and plot 4×4 kernel matrices for the following strings with $d \in \{1, 2, 3, 4\}$.
• They call it a R	oyale with cheese.
• A Royale with ch	eese. What do they call a Big Mac?
• Well, a Big Mac	is a Big Mac, but they call it le Big-Mac.
• Le Big-Mac. Ha	ha ha ha. What do they call a Whopper?
Solution:	
Bonus: Why is it called a	a Royale with cheese?