1B Paper 6: Communications

Handout 2: Analogue Modulation

Ramji Venkataramanan

Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

Lent Term 2024

1/32

Modulation

Modulation is the process by which some characteristic of a carrier wave is varied in accordance with an information bearing signal

A commonly used carrier is a sinusoidal wave, e.g., $\cos(2\pi f_c t)$. f_c is called the *carrier frequency*.

- We are allotted a certain bandwidth centred around f_c for our information signal
- E.g. BBC Cambridgeshire: $f_c = 96$ MHz, information bandwidth ≈ 200 KHz
- Q: Why is f_c usually large?

A: Antenna size $\propto \lambda_c \Rightarrow$ larger frequency, smaller antennas!

Analogue vs. Digital Modulation

Analogue Modulation: A continuous information signal x(t) (e.g., speech, audio) is used to directly modulate the carrier wave.

We'll study two kinds of analogue modulation:

- 1. Amplitude Modulation (AM): Information x(t) modulates the amplitude of the carrier wave
- 2. Frequency Modulation (FM): Information x(t) modulates the frequency of the carrier wave

We'll learn about:

- Power & bandwidth of AM & FM signals
- Tx & Rx design

In the last 4 lectures, we will study digital modulation:

- x(t) is first digitised into bits
- Digital modulation then used to transport bits across the channel

3/32

Amplitude Modulation (AM)

- Information signal x(t), carrier $\cos(2\pi f_c t)$
- The transmitted AM signal is

$$s_{\mathsf{AM}}(t) = [a_0 + x(t)] \cos(2\pi f_c t)$$

- ullet a_0 is a positive constant chosen so that $\max_t \lvert x(t) \rvert < a_0$
- The modulation index of the AM signal is defined as

$$m_A = \frac{\max_t |x(t)|}{a_0}$$

"The percentage that the carrier's amplitude varies above and below its unmodulated level"

Why is the modulation index important?

 $m_a < 1$ is desirable because we can extract the information signal x(t) from the modulated signal by *envelope detection*.

When modulation index > 1:

- Phase reversals occur
- x(t) cannot be detected by tracing the +ve envelope

5/32

AM Receiver - Envelope Detector

- On the positive half-cycle of the input signal, capacitor C charges rapidly up to the peak value of input $s_{AM}(t)$
- When input signal falls below this peak, diode becomes reverse-biased: capacitor discharges slowly through load resistor R_L
- In the next positive half-cycle, when input signal becomes greater than voltage across the capacitor, diode conducts again until next peak value
- Process repeats . . .

Very inexpensive receiver, but envelope detection needs $m_A < 1$.

Spectrum of AM

$$a_o \longrightarrow a_o S(f)$$

$$\chi(t) \rightarrow \chi(t)$$

$$\chi(t) e^{j2\pi f_c t} \rightarrow \chi(f - f_c)$$

Next, let's look at the spectrum of $s_{\mathsf{AM}}(t) = [a_0 + x(t)] \cos(2\pi f_c t)$

$$S_{AM}(f) = \mathcal{F}[s_{AM}(t)]$$

$$= \mathcal{F}\left[[a_0 + x(t)] \frac{(e^{j2\pi f_c t} + e^{-j2\pi f_c t})}{2}\right]$$

$$= \frac{a_0}{2} \left[\delta(f - f_c) + \delta(f + f_c)\right] + \frac{1}{2} \left[X(f - f_c) + X(f + f_c)\right]$$
carrier information

 $(\mathcal{F}[.]$ denotes the Fourier transform operation)

Example

$$S_{\text{AM}}(f) = \frac{a_0}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right] + \frac{1}{2} \left[X(f - f_c) + X(f + f_c) \right]$$

9/32

Properties of AM

$$s_{\mathsf{AM}}(t) = [a_0 + x(t)] \cos(2\pi f_c t)$$
 $S_{\mathsf{AM}}(f) = rac{a_0}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right] + rac{1}{2} \left[X(f - f_c) + X(f + f_c) \right]$

1. **Bandwidth**: From spectrum calculation, we see that if x(t) is a baseband signal with (one-sided) bandwidth W, the AM signal $s_{\rm AM}(t)$ is passband with bandwidth

$$B_{AM} = 2W$$

2. Power: We now prove that the power of the AM signal is

$$P_{\mathsf{AM}} = \frac{\mathsf{a}_0^2}{2} + \frac{P_X}{2}$$

where P_X is the power of x(t).

er of AM signal
$$\frac{1}{T} \int_{0}^{T} \frac{(a_{0} + x + 1)^{2}}{2at} dt = \frac{1}{T} \int_{0}^{a_{0}^{2}} dt + \frac{1}{2T} \int_{0}^{\pi} (a_{0} + x + 1)^{2} dt$$

$$P_{AM} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} [a_{0} + x(t)]^{2} \cos^{2}(2\pi f_{c}t) dt + \frac{1}{T} \int_{0}^{\pi} (a_{0} + x + 1)^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} [a_{0} + x(t)]^{2} \frac{1 + \cos(4\pi f_{c}t)}{2} dt = \frac{a_{0}^{2}}{2} + \frac{P_{X}}{Z}$$

(We assume that $\frac{1}{T} \int_0^T x(t) dt = 0$ as a non-zero-mean can be absorbed into a_0 .)

Now show that the last the last term is ≈ 0 .

• $cos(4\pi f_c t)$ is a high-frequency sinusoid with period $T_c = \frac{1}{2f_c}$.

 $= \frac{a_0^2}{2} + \frac{P_X}{2} + \lim_{T \to \infty} \frac{1}{T} \int_0^T \frac{[a_0 + x(t)]^2}{2} \cos(4\pi f_c t) dt$

• $g(t) = (a_0 + x(t))^2/2$ is a baseband signal which changes

Hence, with $T = nT_c$, we have

$$\frac{1}{T} \int_{0}^{T} g(t) \cos(4\pi f_{c}t) dt \approx \frac{1}{nT_{c}} \Big(\int_{0}^{T_{c}} g(0) \cos(4\pi f_{c}t) dt + \int_{T_{c}}^{2T_{c}} g(T_{c}) \cos(4\pi f_{c}t) dt \dots + \int_{(n-1)T_{c}}^{nT_{c}} g((n-1)T_{c}) \cos(4\pi f_{c}t) dt \Big) \\
= 0.$$

Hence
$$P_{AM} = \frac{a_0^2}{2} + \frac{P_X}{2}$$
.

Double Sideband Suppressed Carrier (DSB-SC)

The power of AM signal is

$$P_{AM} = \underbrace{\frac{a_0^2}{2}}_{carrier} + \frac{P_X}{2}$$

- The presence of a_0 makes envelope detection possible, but requires extra power of $\frac{a_0^2}{2}$ corresponding to the carrier
- In DSB-SC, we eliminate the a₀:
 We transmit only the sidebands, and suppress the carrier

13 / 32

The transmitted DSB-SC waveform is

$$s_{\mathsf{dsb-sc}}(t) = x(t) \cos(2\pi f_c t)$$

How to recover x(t) at the receiver?

Phase reversals ⇒ cannot use envelope detection

DSB-SC Receiver: Product Modulator + Low-pass filter

Step 1: Multiplying received signal by $cos(2\pi f_c t)$ gives

DSB-SC receiver

Step 2: Low-pass filter eliminates the high-frequency component. Ideal low-pass filter has $H(f) = \text{constant for } -W \leq f \leq W$, and zero otherwise

Properties of DSB-SC

$$s_{ ext{dsb-sc}}(t) = x(t) \cos(2\pi f_c t)$$
 $S_{ ext{dsb-sc}}(f) = rac{1}{2}(X(f + f_c) + X(f - f_c))$

- Bandwidth of DSB-SC is $B_{dsb-sc} = 2W$, same as AM
- **Power** of DSB SC is $P_{dsb-sc} = \frac{P_X}{2}$ (follows from AM power calculation)
- DSB-SC requires less power than AM as the carrier is not transmitted
- But DSB-SC receiver is more complex than AM!
 We assumed that receiver can generate locally generate a frequency f_c sinusoid that is synchronised perfectly in phase and frequency with transmitter's carrier
- Effect of phase mismatch at Rx is explored in Examples paper

17/32

Single Sideband Suppressed Carrier (SSB-SC)

DSB-SC transmits less power than AM. Can we also save bandwidth?

- x(t) is real $\Rightarrow X(-f) = X^*(f)$ \Rightarrow Need to specify X(f) only for f > 0
- In other words, transmission of both sidebands is not strictly necessary: we could obtain one sideband from the other!

- Bandwidth is $B_{ssb-sc} = W$, half of that of AM or DSB-SC!
- **Power** is is $P_{\text{ssb-sc}} = \frac{P_X}{4}$, half of DSB-SC

Summary: Amplitude Modulation

You can now do Questions 1–5 on Examples Paper 8.

Frequency Modulation (FM)

In FM, the information signal x(t) modulates the *instantaneous* frequency of the carrier wave.

The instantaneous frequency f(t) is varied linearly with x(t):

$$f(t) = f_c + k_f x(t)$$

This translates to an instantaneous phase $\theta(t)$ given by

$$\theta(t) = 2\pi \int_0^t f(u) du = 2\pi f_c t + 2\pi k_f \int_0^t x(u) du$$

The modulated FM signal

$$s_{\mathsf{FM}}(t) = A_c \cos(\theta(t)) = A_c \cos\left(2\pi f_c t + 2\pi k_f \int_0^t x(u) du\right)$$

- \bullet A_c is the carrier amplitude
- k_f is called the frequency-sensitivity factor

21/32

Example

What information signal does this FM wave correspond to?

(a) a constant, (b) a ramp, (c) a sinusoid, (d) no clue

FM Demodulation

At the receiver, how do we recover x(t) from the FM wave? (ignoring effects of noise)

$$s_{\mathsf{FM}}(t) = A_c \cos\left(2\pi f_c t + 2\pi k_f \int_0^t x(u) du\right)$$

The derivative is

$$\frac{ds_{\mathsf{FM}}(t)}{dt} = -2\pi A_c [f_c + k_f x(t)] \sin \left(2\pi f_c t + 2\pi k_f \int_0^t x(u) du\right)$$

- The derivative is a passband signal with amplitude modulation by $[f_c + k_f x(t)]$
- If f_c large enough, we can recover x(t) by envelope detection of $\frac{ds_{\text{FM}}(t)}{dt}$!
- Hence FM demodulator is a differentiator + envelope detector
- Differentiator: $\frac{d}{dt} \xrightarrow{\mathcal{F}} j2\pi f$ (frequency response). See Haykin-Moher book for details on how to build a differentiator

23 / 32

Properties of FM

$$s_{\mathsf{FM}}(t) = A_c \cos \left(2\pi f_c t + 2\pi k_f \int_0^t x(u) du \right)$$

- **Power** of FM signal = $\frac{A_c^2}{2}$, regardless of x(t)
- Non-linearity: $FM(x_1(t) + x_2(t)) \neq FM(x_1(t)) + FM(x_2(t))$
- FM is more robust to additive noise than AM.
 Intuitively, this is because the message is "hidden" in the frequency of the signal rather than the amplitude.
- But this robustness comes at the cost of increased transmission bandwidth
- What is the bandwidth of the FM signal $s_{FM}(t)$? The spectral analysis is a bit complicated, but we will do it for a simple case . . . where x(t) is a sinusoid (a pure tone)

FM modulation of a tone

Consider FM modulation of a tone $x(t) = a_x \cos(2\pi f_x t)$. We have

$$f(t) = f_c + k_f a_x \cos(2\pi f_x t)$$

$$\theta(t) = 2\pi f_c t + \frac{k_f a_x}{f_x} \sin(2\pi f_x t)$$

- $\Delta f = k_f a_x$ is called the *frequency deviation* Δf is the max. deviation of the carrier frequency f(t) from f_c
- $\beta = \frac{k_f a_x}{f_x} = \frac{\Delta f}{f_x}$ is called the *modulation index* β is the max. deviation of the carrier phase $\theta(t)$ from $2\pi f_c t$

Then the FM signal becomes

$$s_{\mathsf{FM}}(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_{\times} t))$$

25 / 32

The spectrum of the FM signal

We want to study the frequency spectrum of

$$s_{\mathsf{FM}}(t) = A_c \cos\left(2\pi f_c t + \beta \sin(2\pi f_{\mathsf{x}} t)\right)$$

You will show in the Examples Paper that

$$S_{\text{FM}}(f) = \frac{A_c}{2} \sum_{n=-\infty}^{\infty} \int_{n(\beta)} \delta(f - f_c - nf_x) + \delta(f + f_c + nf_x)]$$

where
$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin u - nu)} du$$

 $J_n(.)$ is called the *nth order Bessel function* of the first kind.

Plots of $J_n(\beta)$ vs β

27 / 32

Example

What is the spectrum of the FM signal when x(t) is a pure tone and the modulation index $\beta=5$?

The spectrum is

$$S_{\text{FM}}(f) = \frac{A_c}{2} \sum_{n=-\infty}^{\infty} J_n(5) \left[\delta(f - f_c - nf_x) + \delta(f + f_c + nf_x) \right]$$

29 / 32

Bandwidth of FM signals

To summarise, even for the case where x(t) has a single frequency f_x , the spectrum of the FM wave is rather complicated:

- There is a carrier component at f_c , and components located symmetrically on either side of f_c at $f_c \pm f_x$, $f_c \pm 2f_x$,...
- The absolute bandwidth is infinite, but . . . the side components at $f_c \pm nf_x$ become negligible for large enough n

Carson's rule for the effective bandwidth of FM signals:

1. The bandwidth of an FM signal generated by modulating a single tone is

$$B_{\mathsf{FM}} \approx 2\Delta f + 2f_{\mathsf{x}} = 2\Delta f \left(1 + \frac{1}{\beta}\right)$$

2. For an FM signal generated by modulating a general signal x(t) with bandwidth W, the bandwidth $B_{\text{FM}} \approx 2\Delta f + 2W$

(Recall: for any FM wave, Δf is the frequency deviation around f_c)

Example

BBC Radio Cambridgeshire: $f_c=96$ MHz and $\Delta f=75$ kHz. Assuming that the voice/music signals have W=15 kHz, we have

$$\beta = \frac{\Delta f}{W} = \frac{75}{15} = 5$$

and the bandwidth

$$B_{\text{FM}} = 2(\Delta f + W) = 2(75 + 15) = 180 \,\text{kHz},$$

while

$$B_{AM} = 2W = 30 \text{ kHz}$$

FM signals have larger bandwidth than AM, but have better robustness against noise.

31/32

Summary: Analogue Modulation

Amplitude Modulation with information signal of bandwidth W

- AM modulated signal: Bandwidth 2W, high power, simple Rx using envelope detection
- **DSB-SC**: Bandwidth 2W, lower power, more complex Rx
- **SSB-SC**: Bandwidth W, even lower power, Rx similar to DSB-SC

Frequency Modulation with information signal of bandwidth W:

- FM signal has constant carrier amplitude ⇒ constant power
- Bandwidth of FM signal depends on both β and WCan be significantly greater than 2W
- Better robustness to noise than AM as the information is "hidden" in the phase