

Shaplet method to classify GRS1915+105 black hole signal anomalies

Bouzid Aymane Supervisor: Gangler Emmanuel

Summary

- 1. Introduction to GRS 1915+105
- 2. Shaplets in action
- 3. Library building and main results

1. Introduction to GRS 1915+105: X ray binaries evolution

- 1. Evolution of binary system
- 2. Death of the primary star \rightarrow compact remnant
- 3. Mass transfer begins: The second star radius exceeds Roche Lobe
- 4. Formation of accretion disk \rightarrow X ray emission

A special type of x binaries: Microquasars

Stellar black hole

Emission of relativistic particles and generation of strong radio wave emission.

Introduction to GRS 1915+105 : X ray emission & Data

- RXTE observatory
- Use Crab Nebula for calibration
- light curves with 3 energy bands :
 - low: 2-5 keV
 - mid: 5-13 keV
 - o high: 13-60keV

1. Introduction to GRS 1915+105 : GRS 1915+105

-14 modes of outburst compared to 3 for usual microquasars

- -modes are indicate transition from accretion state to another
- -Classifying the states and identifying them helps us understand the physics in the disk

How to address the variability?

- Are there similar patterns?
- Classification questions? (human classification?)
- Can we see transitions between classes?
- Are there anomalies?

=> Exploration tool

Shapelet algorithm

Supervised learning technique to identify and classify time series

Use a maximally representative subsequence

Advantages:

Interpretability

Robust: more resistant to artifacts

Translation invariant

Computational efficiency

How to define similarity metric? How to choose useful set of shaplets?

How to choose a shaplet

Windowing

Windowing

Windowing

chi^2 test

$$\chi^2 = \sum_{i=0}^{ ext{len(signal)-len(shaplet)}} rac{(ext{signal} - ext{shaplet})^2}{\sigma_{ ext{signal}}^2 + \sigma_{ ext{shaplet}}^2}$$

Will help us use an optimized method to compute sum (signal - shaplet)

$$\chi^2 = \sum_{i=0}^{ ext{len(signal)-len(shaplet)}} rac{(ext{signal} - ext{shaplet})^2}{2\langle ext{shaplet}
angle}$$

For a invariant chi^2 test with respect to the length of the shaplet we divide by the ndf

Ndf in our case is len(shaplet)

We expect an average value of 1 for the good matches

Chi² on Ic181 example

Metric used for a light curve, and a first overview

We used "min(chi^2)" as a metric to define difference (Shaplet, light curve)

Lc examples

Same Lcs but plotted at high resemblance only:

Partial match is considered a good match, overall' the matching is close (try a shaplet of smaller length)

Robustness Testing

We take a new shaplet:

Chi^2 results comparison replace with chi^2U vs chi^lambda schema

Averaging

$$\langle shaplet, \{S \subseteq L \mid \chi^2_{res}(S, shaplet) < 2\} \rangle$$

Scaling

Observation:

Scaling: Affine transformation, not coherent with averaging process

Normalisation: Process in the normalized space

Resulting shaplets

future work:

- Developed a dictionary encoding for all lightcurves using sequences of discrete shapelets -> facilitates effective anomaly detection by analyzing patterns and deviations in the shapelet sequences
- Use shapelets to generalize feature analysis.