

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: 0 352 675
A2

⑫

EUROPÄISCHE PATENTANMELDUNG

㉑ Anmeldenummer: 89113503.0

㉓ Int. Cl. 4: C07D 405/06 , C07D 233/92 ,
C07D 233/68 , C07D 233/90 ,
C07D 233/56 , C07D 405/14 ,
C07D 401/06 , C07D 401/14 ,
A01N 43/50

㉒ Anmeldetag: 22.07.89

㉔ Priorität: 28.07.88 DE 3825586

Grundwiesenweg 44
D-6730 Neustadt(DE)
Erfinder: Goetz, Norbert, Dr.
Schoefferstrasse 25
D-6520 Worms 1(DE)
Erfinder: Sauter, Hubert, Dr.
Neckarpromenade 20
D-6800 Mannheim 1(DE)
Erfinder: Ammermann, Eberhard, Dr.
Sachsenstrasse 3
D-6700 Ludwigshafen(DE)
Erfinder: Lorenz, Gisela, Dr.
Erlenweg 13
D-6730 Neustadt(DE)

㉕ Veröffentlichungstag der Anmeldung:
31.01.90 Patentblatt 90/05

㉖ Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI NL SE

㉗ Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
D-6700 Ludwigshafen(DE)

㉘ Erfinder: Seele, Rainer, Dr.
Leiblstrasse 3
D-6701 Fussgoenheim(DE)
Erfinder: Karbach, Stefan, Dr.

㉙ Substituierte Imidazolylmethyloxirane und substituierte Imidazolylpropene, Ihre Herstellung und sie enthaltende Fungizide.

㉚ Substituierte Imidazolylmethyloxirane und substituierte Imidazolylpropene der allgemeinen Formel

EP 0 352 675 A2

in welcher

R¹ und R² Alkyl, Cycloalkyl, Cycloalkenyl, Tetrahydropyranil, Norbornyl, Pyridyl, Naphthyl, Biphenyl oder Phenyl bedeuten,

D den Rest O oder eine Einfachbindung bedeutet,

E den Rest H, F, Cl oder Br bedeutet,

X, Y und Z Wasserstoff, Halogen, Nitro, Cyano, Alkyl, Halogenalkyl, Alkoxy, Amino, gegebenenfalls durch substituiertes Amino, Mercapto, gegebenenfalls substituiertes Mercapto, Acyl, Alkoxy carbonyl, Hydroxylalkyl und gegebenenfalls substituiertes Phenyl bedeuten,
sowie deren für Pflanzen verträgliche Säureadditionsalze und Metallkomplexe, Verfahren zu ihrer Herstellung und sie enthaltende Fungizide.

Substituierte Imidazolylmethyloxirane und substituierte Imidazolylpropene, ihre Herstellung und sie enthaltende Fungizide

Die vorliegende Erfindung betrifft neue substituierte Imidazolylmethyloxirane und substituierte Imidazolylpropene, Verfahren zu ihrer Herstellung und sie enthaltende Fungizide sowie Verfahren zur Bekämpfung von Pilzen.

Es ist bekannt, Imidazolylloxirane, z.B. das cis-2-(imidazol-1-yl-methyl)-2-(4-fluorphenyl)-3-(2,6-difluorphenyl)-oxiran (DE-32 18 130) als Fungizide zu verwenden. Die fungiziden Wirkungen sind jedoch unbefriedigend.

Es wurde nun gefunden, daß substituierte Imidazolylmethyloxirane und substituierte Imidazolylpropene der Formel I

10

15

in welcher

R¹ und R² gleich oder verschieden sind und C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₅-C₈-Cycloalkenyl, Tetrahydro-pyranyl, Norbornyl, Pyridyl, Naphthyl, Biphenyl oder Phenyl bedeuten, wobei diese Reste einfach bis dreifach durch Halogen, Nitro, Phenoxy, Amino, Alkyl, Alkoxy oder Halogenalkyl mit jeweils 1 bis 4-C-Atomen substituiert sein können,

D den Rest O oder eine Einfachbindung bedeutet,

E den Rest H, F, Cl oder Br bedeutet,

X, Y und Z gleich oder verschieden sind und Wasserstoff, Halogen, Nitro, Cyano, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, Amino, gegebenenfalls durch C₁-C₃-Alkyl, C₁-C₃-Acyl substituiertes Amino, Mercapto, gegebenenfalls Mercapto, C₁-C₃-Acyl, C₁-C₃-benenfalls durch C₁-C₃-Hydroxyalkyl oder gegebenenfalls substituiertes Phenyl bedeuten, wobei X, Y und Z nicht gleichzeitig Wasserstoff bedeuten, sowie deren für Pflanzen verträgliche Säureadditionssalze und Metallkomplexe eine bessere fungizide Wirkung besitzen als bekannte Azoverbindungen.

Die Verbindungen der Formel I enthalten asymmetrische C-Atome und können daher als Enantiomere und Diastereomere auftreten. Die Gemische von Diastereomeren lassen sich bei den erfindungsgemäßigen Verbindungen in üblicher Weise, beispielsweise aufgrund ihrer unterschiedlichen Löslichkeit oder durch Säulenchromatographie trennen und in reiner Form isolieren. Die Racemate lassen sich bei den erfindungsgemäßigen Verbindungen nach bekannten Methoden, beispielsweise durch Salzbildung mit einer optisch aktiven Säure, Trennung der diastereomeren Salze und Freisetzung der Enantiomeren mittels einer Base trennen. Als fungizide Mittel kann man sowohl die einheitlichen Diastereomere bzw. Enantiomere als auch deren bei der Synthese anfallenden Gemische verwenden.

R¹ bzw. R² bedeuten beispielsweise C₁-C₈-Alkyl, insbesondere C₁-C₄-Alkyl, (Methyl, Ethyl, Isopropyl, n-Propyl, n-Butyl, sec-Butyl, tert-Butyl, n-Pentyl, Neopentyl), 1-Naphthyl, 2-Naphthyl, p-Biphenyl, Phenyl, Halogenphenyl, 2-Chlorphenyl, 2-Fluorphenyl, 2-Bromphenyl, 3-Chlorphenyl, 3-Bromphenyl, 3-Fluorphenyl, 4-Fluorphenyl, 4-Chlorphenyl, 4-Bromphenyl, 2,4-Dichlorphenyl, 2,3-Dichlorphenyl, 2,5-Dichlorphenyl, 2,6-Dichlorphenyl, 2-Chlor-6-fluorphenyl, C₁-C₄-Alkoxyphenyl, 2-Methoxyphenyl, 3-Methoxyphenyl, 4-Methoxyphenyl, 2,4-Dimethoxyphenyl, C₁-C₄-Alkylphenyl, 4-Ethylphenyl, 4-Isopropylphenyl, 4-tert-Butylphenyl, 4-tert-Butyloxyphenyl, 2-Chlor-4-fluorphenyl, 2-Chlor-6-methylphenyl, 3,4-Dimethoxyphenyl, 3-Phenoxyphenyl, 4-Phenoxyphenyl, 3-Nitrophenyl, 4-Nitrophenyl, 3-Aminophenyl, 4-Aminophenyl, 2-Aminophenyl, 2-Trifluormethylphenyl, 3-Trifluormethylphenyl, 4-Trifluormethylphenyl, 3-Pyridyl, Tetrahydropyranil, Cyclopropyl, Cyclopentyl, Cyclohexyl, 2-Cyclohexenyl, 3-Cyclohexenyl, Norbornyl.

X, Y and Z bedeuten beispielsweise Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Trifluormethyl, Methoxy, Ethoxy, Methylamino, Dimethylamino, Acetylarnino, Diacetylarnino, Methythio, Acetyl, Methoxyacetyl, Phenyl, Halogenphenyl, Chlorphenyl, Hydroxyethyl, wobei X, Y and Z nicht gleichzeitig Wasserstoff bedeuten, d.h. mindestens einer der Reste X, Y oder Z verschieden von Wasserstoff ist.

Säureadditionssalze sind beispielsweise die Hydrochloride, Bromide, Sulfate, Nitrate, Phosphate, Oxalate, oder Dodecylbenzolsulfonate. Die Wirksamkeit der Salze geht auf das Kation zurück, so daß es auf das Anion i.a. nicht ankommt. Die erfindungsgemäßigen Wirkstoffsalze werden hergestellt durch Umsetzung der

Imidazolylmethyloxirane (I) mit den Säuren.

Metallkomplexe der Wirkstoffe I oder ihrer Salze können z.B. mit Kupfer, Zink, Zinn, Mangan, Eisen, Kobalt oder Nickel gebildet werden, indem man die Imidazolylmethyloxirane mit entsprechenden Metallsalzen umsetzt, z.B. mit Kupfersulfat, Zinkchlorid, Zinnchlorid, Mangansulfat.

5 Die Verbindungen der Formel I, in denen D den Rest O und E den Rest H bedeutet, können z.B. hergestellt werden, indem man

a) eine Verbindung der Formel II

10

II

15

in welcher R¹ und R² die oben angegebenen Bedeutungen haben und L eine nukleophil substituierbare Abgangsgruppe (z.B. Halogen, OH) bedeutet, mit einer Verbindung der Formel III

20

III

25

in der Me ein Wasserstoffatom, ein Metallatom (z.B. Na, K) oder eine Trimethylsilylgruppe bedeutet und X, Y und Z die oben angegebene Bedeutung hat, zur Umsetzung bringt, oder

b) eine Verbindung der Formel IV

30

IV

in welcher R¹, R², X, Y und Z die oben angegebene Bedeutung haben, in das Epoxid überführt.

Die Reaktion a) erfolgt z.B. - falls Me ein Wasserstoffatom bedeutet - gegebenenfalls in Gegenwart einer 35 Base, gegebenenfalls in Gegenwart eines Lösungs- oder Verdünnungsmittels, gegebenenfalls unter Zusatz eines Reaktionsbeschleunigers bei Temperaturen zwischen 10 und 120°C. Zu den bevorzugten Lösungs- und Verdünnungsmitteln gehören Ketone wie Aceton, Methylethylketon oder Cyclohexanon, Nitrile wie Acetonitril oder Propionitril, Alkohole wie Methanol, Ethanol, iso-Propanol, n-Butanol oder Glycol, Ester wie Essigsäureethylester, Essigsäuremethylester oder Essigsäurebutylester, Ether wie Tetrahydrofuran, Diethylether, Dimethoxyethan, Dioxan oder Diisopropylether, Amide wie Dimethylformamid, Dimethylacetamid oder N-Methylpyrrolidon ferner Dimethylsulfoxid, Sulfolan oder entsprechende Gemische.

40 Geeignete Basen, die gegebenenfalls auch als säurebindende Mittel bei der Reaktion verwendet werden können, sind beispielsweise Alkalihydroxid wie Lithium-, Natrium- oder Kaliumhydroxid, Alkalicarbonate wie Natrium-, Kalium- oder Cäsiumcarbonat oder Natrium-, Kalium- oder Cäsiumhydrogencarbonat, Pyridin oder 4-Dimethylaminopyridin. Es können aber auch andere übliche Basen verwendet werden.

Als Reaktionsbeschleuniger kommen vorzugsweise Metallhalogenide wie Natriumjodid, oder Kaliumjodid, quaternäre Ammoniumsalze wie Tetrabutylammoniumchlorid, -bromid, -jodid oder -hydrogensulfat, Benzyltriethylammoniumchlorid oder -bromid oder Kronenether wie 12-Krone-4, 15-Krone-5, 18-Krone-6, Dibenzo-18-Krone-6 oder Dicyclohexano-18-Krone-6 in Frage.

50 Die Umsetzung wird im allgemeinen z.B. bei Temperaturen zwischen 20 und 150°C, drucklos oder unter Druck, kontinuierlich oder diskontinuierlich durchgeführt.

Ist Me ein Metallatom wird die Reaktion a) z.B. gegebenenfalls in Gegenwart eines Lösungs- oder Verdünnungsmittels und gegebenenfalls unter Zusatz einer starken anorganischen oder organischen Base bei Temperaturen zwischen -10 und 120°C durchgeführt. Zu den bevorzugten Lösungs- und Verdünnungsmitteln gehören Amide wie Dimethylformamid, Diethylformamid, Dimethylacetamid, Diethylacetamid, N-Methylpyrrolidon, Hexamethyl-phosphortriamid, Sulfoxide wie Dimethylsulfoxid und schließlich Sulfolan.

Geeignete Basen, die gegebenenfalls auch als säurebindende Mittel bei der Reaktion verwendet werden können, sind beispielsweise Alkalihydride wie Lithium-, Natrium- und Kaliumhydrid, Alkaliamide wie

Natrium- und Kaliumamid, ferner Natrium- oder Kalium-tert.-butoxid, Lithium-, Natrium- oder Kalium-triphenylmethyl und Naphthalinlithium, -natrium oder -kalium.

Für die Reaktion b) kommen z.B. als Verdünnungsmittel polare organische Lösungsmittel wie Nitrite, z.B. Acetonitril, Sulfoxide, z.B. Dimethylsulf oxid, Formamide, z.B. Dimethylformamid, Ketone, z.B. Aceton, Ether, z.B. Diethylether, Tetrahydrofuran und insbesondere Chlorkohlenwasserstoffe, z.B. Methylenechlorid und Chloroform, in Frage.

Man arbeitet im allgemeinen z.B. zwischen 0 und 100°C, vorzugsweise bei 20 bis 80°C. Bei Anwesenheit eines Lösungsmittels wird zweckmäßig beim Siedepunkt des jeweiligen Lösungsmittels gearbeitet.

Die neuen Ausgangsverbindungen II erhält man z.B. durch Epoxidierung der entsprechenden Olefine V:

10

15

(vgl. G. Dittus in Houben-Weyl-Müller, Methoden der Organischen Chemie, Georg Thieme Verlag, Stuttgart, 1965, Bd. VI, 3, Seite 385 ff).

Die Verbindung V stellt man her, indem man Olefin der Formel IX

20

nach bekannten Methoden in Allylposition halogeniert oder oxidiert.

25 Geeignete Halogenierungsreagenzien sind N-Chlor- und N-Bromsuccinimid in halogenierten Kohlenwasserstoffen wie Tetrachlorkohlenstoff, Trichlorethan oder Methylenchlorid bei Temperaturen zwischen 20 und 100°C. Zur Allyloxidation verwendet man Perester wie Perbenzoësäure-tert.-butylester oder Peressigsäure-tert.-butylester in Anwesenheit eines Schwermetallsalzes wie z.B. Kupfer-I-chlorid oder Kupfer-I-bromid. Man arbeitet in inerten Lösungsmitteln bei Temperaturen zwischen 10 und 100°C.

30 Die so erhaltenen Allylhalogenide bzw. -alkohole V werden anschließend in die entsprechenden Epoxide II (L = Halogen, OH) übergeführt. Dazu oxidiert man die Olefine V mit Peroxycarbonsäuren wie Perbenzoësäure, 3-Chlorperbenzoësäure, 4-Nitroperbenzoësäure, Monoperphthalsäure, Peressigsäure, Perpropionsäure, Permaleinsäure, Monoperbernsteinsäure, Perpelargonsäure oder Trifluorperessigsäure in indifferenten Lösungsmitteln, vorzugsweise chlorierten Kohlenwasserstoffen, z.B. Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Dichlorethan, aber gegebenenfalls auch in Essigsäure, Essigester, Aceton oder Dimethylformamid, gegebenenfalls in Gegenwart eines Puffers wie Natriumacetat, Natriumcarbonat, Dinatriumhydrogenphosphat, Triton B. Man arbeitet zwischen 10 und 100°C und katalysiert die Reaktion gegebenenfalls z.B. mit Jod, Natriumwolframat oder Licht. Zur Oxidation eignen sich auch alkalische Lösungen von Wasserstoffperoxid (ca. 30 %ig) in Methanol, Ethanol, Aceton oder Acetonitril bei 25 bis 30°C sowie

35 Peralkylhydroperoxyde, z.B. tert.-Butylhydroperoxid, unter Zusatz eines Katalysators, z.B. Natriumwolframat, Perwolframsäure, Molybdänhexacarbonyl oder Vanadylacetylestern. Die genannten Oxidationsmittel lassen sich z.T. in situ erzeugen.

40 Während die so erhaltenen Epoxihalogenide II (L = Halogen) gemäß Verfahren a) sofort umgesetzt werden können, überführt man die entsprechenden Epoxialkohole II (L = OH) z.B. in reaktive Ester, die dann mit den Verbindungen III gemäß Verfahren a) umgesetzt werden.

45 Die Darstellung der reaktiven Ester, die mit III umgesetzt werden können, erfolgt nach allgemein bekannten Methoden (Houben-Weyl-Müller, Methoden der organischen Chemie, Georg Thieme Verlag, Stuttgart, 1955, Band 9, Seiten 388, 663, 671). Solche Ester sind beispielsweise Methansulfonsäureester, Trifluormethansulfonsäureester, 2,2,2-Trifluorethansulfonsäureester, Nonafuorbutansulfonsäureester, 4-Methylbenzolsulfonsäureester, 4-Brombenzolsulfonsäureester, 4-Nitrobenzolsulfonsäureester oder Benzolsulfonsäureester.

50 Die Verbindungen V lassen sich entsprechend allgemein bekannten Verfahren zur Olefinsynthese (Houben-Weyl-Müller, Methoden der organischen Chemie, Georg Thieme Verlag, Stuttgart, 1972 Bd. V, 1b) herstellen.

55 Die Verbindungen der Formel IV

werden z.B. erhalten, indem man
a) eine Verbindung der Formel V

15 in welcher R¹ und R² die oben angegebene Bedeutung haben und L eine nukleophil substituierbare
Abgangsgruppe bedeutet, mit einer Verbindung der Formel III

in der Me ein Wasserstoffatom, ein Metallatom oder eine Trimethylsilylgruppe bedeutet und X, Y und Z die
oben angegebene Bedeutung hat, zur Umsetzung bringt, oder
25 b) eine Verbindung der Formel VI

in welcher R¹, X, Y und Z die oben angegebene Bedeutung hat, mit einer Verbindung der Formel VII
35

40 In der R² die gleiche Bedeutung wie in Formel I hat und R³, R⁴ und R⁵, die gleich oder verschieden sein
können, den Phenylrest, den p-Carboxyphenylrest, den p-Dimethylaminophenylrest, die Dimethylamino,
45 Piperidino- oder Morphinoligruppe, Alkylreste mit 1 bis 3-C-Atomen oder die Cyclohexylgruppe darstellen,
zur Umsetzung bringt.

Die Verbindungen der Formel I, in denen E den Rest F, Cl oder Br bedeutet, können z.B. hergestellt
werden, indem man eine Verbindung der Formel VIII

55 in welcher R¹, R² und D die angegebenen Bedeutungen haben, mit einer Verbindung der Formel III

5

in der X, Y, Z und Me die oben genannten Bedeutungen haben, in Gegenwart eines Thionylhalogenids zur Umsetzung bringt.

Die Umsetzung erfolgt z.B. gegebenenfalls in Gegenwart eines Lösungs- oder Verdünnungsmittels bei Temperaturen zwischen -30 und 80°C. Zu den bevorzugten Lösungs- und Verdünnungsmitteln gehören 10 Nitrile wie Acetonitril oder Propionitril, Ether wie Tetrahydrofuran, Diethylether, Dimethoxyethan, Dioxan oder Diisopropylether und insbesondere Kohlenwasserstoffe und Chlorkohlenwasserstoffe wie Pentan, Hexan, Toluol, Methylchlorid, Chloroform, Tetrachlorkohlenstoff, Dichlorethan oder entsprechende Gemische.

15 Die neuen Ausgangsverbindungen VIII, in denen D den Rest O bedeutet, erhält man z.B. durch Epoxidierung der entsprechenden Olefine X

20

(vgl. G. Dittus in Houben-Weyl-Müller, Methoden der Organischen Chemie, Georg Thieme Verlag, Stuttgart, 1965, Bd VI, 3, Seite 38 ff).

25 Die Verbindungen X lassen sich entsprechend allgemein bekannten Verfahren zur Aldehydsynthese (Houben-Weyl-Müller, Methoden der Organischen Chemie, Georg Thieme Verlag, Stuttgart 1983, Bd E3) herstellen.

Die folgenden Beispiele erläutern die Herstellung der Wirkstoffe.

30 I. Herstellung der Ausgangsstoffe

Beispiel A

35 Zu einer Lösung von 85,5 g 2-Trifluormethylbenzaldehyd in 300 ml Methanol werden 8,4 g Natriumhydroxid in 40 ml Wasser gegeben. Das Reaktionsgemisch wird auf 10°C gekühlt und schnell 69 g 4-Fluorphenylacetaldehyd zugetropft, wobei die Temperatur in der Lösung 30°C nicht übersteigt. Nach zweistündigem Rühren bei Raumtemperatur wird der farblosen Reaktionslösung 300 ml Wasser zugesetzt und die entstandene Emulsion mit Methyl-tert.-butylether ausgeschüttelt. Die organische Phase wird abgetrennt, über Natriumsulfat getrocknet und im Vakuum eingedampft. Bei der anschließenden Destillation des verbleibenden Rückstandes werden bei 0,3 mbar und 118°C Übergangstemperatur 96 g (65 %) E-2-(4-Fluorphenyl)-3-(2-trifluormethylphenyl)-propenal erhalten.

45 Beispiel B

96 g E-2-(4-Fluorphenyl)-3-(2-trifluormethylphenyl)-propenal werden in 300 ml Methanol gelöst und 2,3 ml Natronlauge (konz.) zugesetzt. Die Reaktionslösung wird bei 0°C gerührt, während 27,7 g Wasserstoffperoxyd (ca. 50 %ig) langsam zugetropft werden, wobei die InnenTemperatur von 30°C nicht überschritten wird. Nach beendet Zugabe wird sechs Stunden bei Raumtemperatur (20°C) gerührt und anschließend 5 g Natriumborhydrid zugegeben, das in wenig 10 %iger Natronlauge gelöst war. Nachdem das Reaktionsgemisch 18 Stunden bei Raumtemperatur rührte, wird der Lösung 100 ml Wasser zugesetzt und die entstandene Emulsion mit Methylchlorid ausgeschüttelt. Die isolierte organische Phase wird daraufhin über Natriumsulfat getrocknet und eingeengt. Man erhält 90 g (89 %) cis-2-Hydroxymethyl-2-(4-fluorphenyl)-3-(2-trifluormethylphenyl)-oxiran.

Beispiel C

- Zu einer Lösung von 90 g *cis*-2-Hydroxymethyl-2-(4-fluorphenyl)-3-(2-trifluormethylphenyl)-oxiran in 300 ml Methylenechlorid und 58 g Triethylamin werden bei Raumtemperatur 61 g 4-Methylbenzolsulfonsäurechlorid zugesetzt. Nach 24 Stunden wird das Reaktionsgemisch mit wässriger Natriumhydrogencarbonat-Lösung und Wasser gewaschen und im Vakuum eingedampft. Aus dem Rückstand erhält man 128,4 g (95%) *cis*-2-(4-Methylphenylsulfonyloxy methyl)-2-(4-fluorphenyl)-3-(2-trifluormethylphenyl)-oxiran, das anschließend mit Triazol weiter verarbeitet wurde.

Beispiel D

- 10 Zu einer Lösung von 150 g E-2-(4-Fluorphenyl)-3-(2-chlorphenyl)-propenal (Darstellung analog Beispiel A) in 600 ml Isopropanol werden bei 0°C 7,3 g Natriumborhydrid gegeben, das in wenig 10 %iger Natronlauge gelöst war. Nachdem das Reaktionsgemisch zwei Stunden bei Raumtemperatur rührte, wird der Lösung 300 ml Wasser zugesetzt und die entstandene Emulsion mit Methylenechlorid ausgeschüttelt.
- 15 Die isolierte organische Phase wird daraufhin über Natriumsulfat getrocknet und eingeengt. Man erhält 150,7 g (100 %) E-2-(4-Fluorphenyl)-3-(2-chlorphenyl)-prop-2-enol.

Beispiel E

- 20 103,1 g E-2-(4-Fluorphenyl)-3-(2-chlorphenyl)-prop-2-enol werden in 700 ml Methyl-tert.-butylether gelöst und 2 ml Pyridin zugesetzt. Die Reaktionslösung wird unter Stickstoffatmosphäre bei 0°C gerührt, während innerhalb von 90 Minuten 27,2 g Phosphortribromid zugegeben werden. Nach beendeter Zugabe wird zwei Stunden unter Rückfluß erhitzt, anschließend auf 500 ml Wasser gegeben und mehrmals mit 25 Methyl-tert.-butylether extrahiert. Die organische Phase wird mit Natriumhydrogencarbonat-Lösung und Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum eingedampft. Man erhält aus Ethanol 77,2 g (61 %) E-1-Brom-2-(4-fluorphenyl)-3-(2-chlorphenyl)-prop-2-en; Fp.: 68°C.

30 Beispiel F

- 77,2 g E-1-Brom-2-(4-fluorphenyl)-3-(2-chlorphenyl)-prop-2-en werden für eine Stunde auf 180°C erhitzt. Das Reaktionsgemisch wird auf Raumtemperatur gekühlt und mit 200 ml Ethanol versetzt. Anschließend werden 10 g Aktivkohle zugegeben, auf 50°C erhitzt und heiß filtriert. Man erhält aus Ethanol 26,9 g (35 %) Z-1-Brom-2-(4-fluorphenyl)-3-(2-chlorphenyl)prop-2-en mit dem Schmelzpunkt 73-75°C.

Beispiel G

- 40 78,2 g E-2-(4-Fluorphenyl)-3-(2-chlorphenyl)-propenal werden in 300 ml Methanol gelöst und 1 ml Natronlauge (konz.) zugesetzt. Die Reaktionslösung wird bei 0°C gerührt, während 20,5 g Wasserstoffperoxyd (ca. 50 %ig) langsam zugetropft werden, wobei die Innentemperatur von 30°C nicht überschritten wird. Nach beendeter Zugabe wird sechs Stunden bei Raumtemperatur gerührt, anschließend 100 ml Wasser zugesetzt und die entstandene Emulsion mit Methyl-tert.-butylether ausgeschüttelt. Die isolierte organische Phase wird daraufhin über Natriumsulfat getrocknet und eingeengt. Man erhält 52,5 g (63%) *cis*-2-Formyl-2-(4-fluorphenyl)-3-(2-chlorphenyl)-oxiran.

II. Herstellung der Endprodukte

- 50
- Beispiel 1
- 55 g 4,5-Dichlorimidazol und 9,5 g Natriumhydrid (80 %ige Dispersion in Mineralöl) werden in 300 ml 55 N,N-Dimethylformamid suspendiert und bei Raumtemperatur mit einer Lösung aus 128,4 g *cis*-2-(4-Methylphenylsulfonyloxy methyl)-2-(4-fluorphenyl)-3-(2-trifluormethylphenyl)-oxiran in 200 ml N,N-Dimethylformamid versetzt. Nach acht Stunden wird die Reaktionslösung auf Wasser gegeben und mit Methyl-tert.-butylether extrahiert. Die organische Phase wird mit Wasser gewaschen, über Natriumsulfat getrocknet und

das Lösungsmittel im Vakuum eingedampft. Man erhält aus Methyl-tert.-butylether/n-Hexan 86,4 g (76 %) cis-2-(4,5-Dichlorimidazol-1-yl-methyl)-2-(4-fluorphenyl)-3-(2-trifluormethylphenyl)-oxiran mit dem Schmelzpunkt 158°C (Verbindung Nr. 1).

Entsprechend Beispiel 1 können die in der Tabelle 1 aufgeführten Verbindungen hergestellt werden.

5

Beispiel 2

Eine Lösung von 7,5 g Z-1-Brom-2-(4-fluorphenyl)-3-(2-chlorphenyl)-prop-2-en in 40 ml Dimethylformamid wird mit 15 g 5-Nitro-imidazol und 31 g Kaliumcarbonat versetzt. Nachdem das Reaktionsgemisch 24 Stunden bei Raumtemperatur rührte, wird 50 ml Wasser zugesetzt und mehrmals mit Methyl-tert.-butylether extrahiert; die organische Phase mit Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Man erhält aus Methyl-tert.-butylether/n-Hexan 6,7 g (81 %) Z-1-(5-Nitro-imidazol-1-yl)-2-(4-fluorphenyl)-3-(2-chlorphenyl)-prop-2-en mit dem Schmelzpunkt 161-165°C (Verbindung Nr. 1a).

15 Entsprechend Beispiel 2 können die in der Tabelle 2 aufgeführten Verbindungen hergestellt werden.

Beispiel 3

Zu einer Lösung von 27,7 g 4-Imidazolcarbonsäuremethylester in 150 ml Methylenchlorid wird bei 0°C 13,1 g Thionylchlorid zugesetzt. Nach beendeter Zugabe wird bei Raumtemperatur für 30 Minuten gerührt und anschließend 18,5 g cis-2-Formyl-2-(4-fluorphenyl)-3-(2-chlorphenyl)-oxiran zugegeben. Nachdem das Reaktionsgemisch 12-15 Stunden bei Raumtemperatur rührte, wird der Lösung 100 ml Wasser zugesetzt und die organische Phase abgetrennt. Die verbleibende wässrige Phase wird zweimal mit Methylenchlorid ausgeschüttelt und die gesammelten organischen Phasen zweimal mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen. Die isolierte organische Phase wird daraufhin über Natriumsulfat getrocknet und eingeengt. Man erhält aus Methyl-tert.-butylether 14,3 g (53 %) cis-2-[1-(4-Methoxycarbonylimidazol-1-yl)-1-chlor-methyl]-2-(4-fluorphenyl)-3-(2-chlorphenyl)-oxiran mit dem Schmelzpunkt 199-203°C (Verbindung Nr. 25).

30 Entsprechend Beispiel 3 können die in der Tabelle 1 aufgeführten Verbindungen hergestellt werden.

Beispiel 4

Zu einer Lösung von 30,1 g 4,5-Dichlorimidazol in 150 ml Methylenchlorid wird bei 0°C 13,1 g Thionylchlorid zugesetzt. Nach beendeter Zugabe wird bei Raumtemperatur für 30 Minuten gerührt und anschließend 17,4 g E-2-(4-Fluorphenyl)-3-(2-chlorphenyl)-propenal zugegeben. Nachdem das Reaktionsgemisch 12-15 Stunden bei Raumtemperatur rührte, wird der Lösung 100 ml Wasser zugesetzt und die organische Phase abgetrennt. Die verbleibende wässrige Phase wird zweimal mit Methylenchlorid ausgeschüttelt und die gesammelten organischen Phasen zweimal mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen. Die isolierte organische Phase wird daraufhin über Natriumsulfat getrocknet, eingeengt und durch Chromatographie an Kieselgel (Essigester/n-Hexan = 9:1) gereinigt. Man erhält 24,8 g (89 %) E-1-Chlor-1-(4,5-dichlorimidazol-1-yl)-2-(4-fluorphenyl)-3-(2-chlorphenyl)-prop-2-en (Verbindung Nr. 8a).

Endsprechend Beispiel 4 können die in der Tabelle 2 aufgeführten Verbindungen hergestellt werden.

45

50

55

Tabelle 1

Bsp.	R ¹	R ²	I			Schmp/IR	Isomer
			E	X	Y		
1	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	C1	H	158°C	cis
2	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	H	CO ₂ CH ₃	H	cis
3	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄				1699, 1514,	
4	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	H	H	1315, 1222,	
5	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	H	CN	1123, 771 cm ⁻¹	
6	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	H	NO ₂	164-167°C	cis
7	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	H	CH ₃		
8	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	C1	C1	C1		
9	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	C1	H	CO ₂ CH ₃		
10	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	C1	C1	CH ₃		
11	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	C1	H	H		
12	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	C1	H	CN		
13	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	C1	NO ₂	H		
14	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	Br	C1	C1		
15	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	Br	H	CO ₂ CH ₃		
16	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	Br	H	CH ₃		

Tabelle 1 - Forts.

Bsp.	R1	R2	E	X	Y	Z	Schmp./IR	Isomer
17	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	Cl	H	H	108-115°C	cis
18	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	H	CO ₂ CH ₃	H	Harz	cis
19	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	Cl	CH ₃	H	112-113°C	cis
20	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	H	H	CH ₃	100-103°C	cis
21	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	H	CN	H	128-131°C	cis
22	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	H	NO ₂	H	206-208°C	cis
23	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	H	CH ₃	H	Harz	cis
24	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	C ₁	Cl	Cl	H	156-158°C	cis
25	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	C ₁	H	CO ₂ CH ₃	H	199-203°C	cis
26	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	C ₁	Cl	CH ₃	H	146-156°C	01:02=1:1
27	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	C ₁	H	H	CH ₃	50-60°C	01:02=2:1
28	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	C ₁	H	CN	H		
29	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	C ₁	NO ₂	H	H		
30	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	C ₁	H	CH ₃	H		
31	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	Br	Cl	Cl	H	115-122°C	01:02=4:1
32	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	Br	H	CO ₂ CH ₃	H	162°C	cis
33	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	Br	Cl	CH ₃	H		
34	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	Br	H	H	CH ₃		
35	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	Br	H	CN	H		
36	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	Br	NO ₂	H	H		
37	4-F-C ₆ H ₄	4-Cl-C ₆ H ₄	H	Cl	Cl	H	146-148°C	cis
38	4-F-C ₆ H ₄	4-Cl-C ₆ H ₄	H	H	CO ₂ CH ₃	H	138-141°C	cis
39	4-F-C ₆ H ₄	4-Cl-C ₆ H ₄	H	Cl	CH ₃	H		cis
40	4-F-C ₆ H ₄	4-Cl-C ₆ H ₄	H	H	CH ₃	H	124-126°C	cis
41	4-F-C ₆ H ₄	4-Cl-C ₆ H ₄	H	H	CN	H		

Tabelle 1 - Forts.

Bsp.	R ¹	R ²	Isomer	Schmp/IR		
				X	Y	Z
4.2	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		H		H
4.3	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		H	COCH ₃	H
4.4	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		C1	C1	H
4.5	4-F-C ₆ H ₄	4-C1-C ₆ H ₄	cis	C1	H	CO ₂ CH ₃
4.6	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		C1	C1	H
4.7	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		C1	CH ₃	H
4.8	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		C1	H	CH ₃
4.9	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		C1	H	CN
5.0	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		Br	C1	C1
5.1	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		Br	H	CO ₂ CH ₃
5.2	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		Br	C1	CH ₃
5.3	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		Br	H	CH ₃
5.4	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		Br	H	CN
5.5	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		Br	NO ₂	H
5.6	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		Br	H	CH ₃
5.7	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃		H	C1	C1
5.8	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃		H	CO ₂ CH ₃	H
5.9	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃		C1	CH ₃	H
6.0	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃		H	H	CH ₃
6.1	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃		H	CN	H
6.2	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃		H	NO ₂	H
6.3	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃		H	CH ₃	H
6.4	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃		C1	C1	H
6.5	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃		C1	CO ₂ CH ₃	H
6.6	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃		C1	CH ₃	H

50

55

Tabelle 1 - Forts.

Bsp.	R1	R2	E	X	Y	Z	Schmp/IR	Isomer
67	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	C1	H	H	H		
68	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	C1	H	CN	H		
69	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	C1	H	H	H		
70	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	C1	H	NO ₂	H		
71	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	Br	C1	C1	H		
72	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	Br	H	CO ₂ CH ₃	H		
73	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	Br	C1	CH ₃	H		
74	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	Br	H	H	CH ₃		
75	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	Br	H	CN	H		
76	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	Br	H	NO ₂	H		
77	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	Br	H	CH ₃	H		
78	4-F-C ₆ H ₄	2-F-C ₆ H ₄	H	C1	C1	H		
79	4-F-C ₆ H ₄	2-F-C ₆ H ₄	H	C1	CH ₃	H		
80	4-F-C ₆ H ₄	2-F-C ₆ H ₄	H	C1	CO ₂ CH ₃	H		
81	4-F-C ₆ H ₄	2-F-C ₆ H ₄	C1	C1	H	H		
82	4-F-C ₆ H ₄	2-F-C ₆ H ₄	C1	H	CO ₂ CH ₃	H		
83	4-F-C ₆ H ₄	2-F-C ₆ H ₄	C1	C1	CH ₃	H		
84	4-F-C ₆ H ₄	2-F-C ₆ H ₄	Br	C1	C1	H		
85	4-F-C ₆ H ₄	2-F-C ₆ H ₄	Br	H	CO ₂ CH ₃	H		
86	4-F-C ₆ H ₄	2-F-C ₆ H ₄	Br	H	CH ₃	H		
87	4-F-C ₆ H ₄	4-F-C ₆ H ₄	H	C1	C1	H		
88	4-F-C ₆ H ₄	4-F-C ₆ H ₄	H	H	CO ₂ CH ₃	H		
89	4-F-C ₆ H ₄	4-F-C ₆ H ₄	H	C1	CH ₃	H		
90	4-F-C ₆ H ₄	4-F-C ₆ H ₄	H	CH ₃	CH ₃	H		

Tabelle 1 - Forts.

	Bsp.	R1	R2	E	X	Y	Z	Schmp/IR	Isomer
4	91	4-F-C ₆ H ₄	4-F-C ₆ H ₄	Cl	C1	H			
5	92	4-F-C ₆ H ₄	4-F-C ₆ H ₄	Cl	C1	CO ₂ CH ₃			
6	93	4-F-C ₆ H ₄	4-F-C ₆ H ₄	Cl	C1	CH ₃			
7	94	4-F-C ₆ H ₄	4-F-C ₆ H ₄	Cl	C1	H	CH ₃		
8	95	4-F-C ₆ H ₄	4-F-C ₆ H ₄	Br	C1	C1			
9	96	4-F-C ₆ H ₄	4-F-C ₆ H ₄	Br	H	CO ₂ CH ₃			
10	97	4-F-C ₆ H ₄	4-F-C ₆ H ₄	Br	C1	CH ₃			
11	98	4-F-C ₆ H ₄	4-F-C ₆ H ₄	Br	H	CH ₃			
12	99	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	H	C1	C1			
13	100	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	H	H	CO ₂ CH ₃			
14	101	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	H	C1	CH ₃			
15	102	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	H	H	COCH ₃			
16	103	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	H	H	H			
17	104	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	C1	C1	H			
18								1607, 1507, 1463, 1237, 964 cm ⁻¹	
19									
20	105	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	Cl	C1	CO ₂ CH ₃	H		
21	106	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	Cl	C1	CH ₃	H		
22	107	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	Cl	H	CH ₃	H		
23	108	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	Cl	H	H	CH ₃		
24	109	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	Br	C1	C1	H		
25	110	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	Br	H	CO ₂ CH ₃	H		
26	111	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃	Br	C1	CH ₃	H		
27	112	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃	H	C1	C1	H		
28	113	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃	H	H	CO ₂ CH ₃	H		
29	114	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃	H	C1	CH ₃	H		
30									
31								131-132°C	cis
32								Harz	cis
33								129-132°C	cis

50

55

Tabelle 1 - Forts.

	Bsp.	R1	R2		E	X	Y	Z	Schmp/IR	Isomer
40	115	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		H	C	H	H		
45	116	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		C	H	C	H		
50	117	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		C	C	Cl	CH ₃		
55	118	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		Br	C	C	H		
60	119	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		Br	H	C	H		
65	120	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		Br	H	C	H		
70	121	4-F-C ₆ H ₄	2,4-C ₁ 2-C ₆ H ₃		H	C	Cl	Cl		
75	122	4-F-C ₆ H ₄	2,4-C ₁ 2-C ₆ H ₃		H	C	Cl	Cl		
80	123	4-F-C ₆ H ₄	2,4-C ₁ 2-C ₆ H ₃		H	C	Cl	CH ₃		
85	124	4-F-C ₆ H ₄	2,4-C ₁ 2-C ₆ H ₃		C	C	Cl	Cl		
90	125	4-F-C ₆ H ₄	2,4-C ₁ 2-C ₆ H ₃		C	H	C	CO ₂ CH ₃		
95	126	4-F-C ₆ H ₄	2,4-C ₁ 2-C ₆ H ₃		C	C	Cl	CH ₃		
100	127	4-F-C ₆ H ₄	2,4-C ₁ 2-C ₆ H ₃		Br	C	Cl	Cl		
105	128	4-F-C ₆ H ₄	2,4-C ₁ 2-C ₆ H ₃		Br	H	C	CO ₂ CH ₃		
110	129	4-F-C ₆ H ₄	2,4-C ₁ 2-C ₆ H ₃		Br	C	Cl	CH ₃		
115	130	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄		H	C	Cl	H		
120	131	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄		H	C	CO ₂ CH ₃	H	1731, 1514, cis	
125	132	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄						1494, 1245,	
130	133	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄						1223, 758 cm ⁻¹	
135	134	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄							
140	135	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄							
145	136	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄							
150	137	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄							
155	138	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄							

Tabelle 1 - Forts.

Bsp.	R ¹	R ²	X	Y	Z	Schmp/IR	Isomer
139	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄	C1	CH ₃	H		
140	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄	C1	CH ₃	H		
141	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄	C1	H	H		CH ₃
142	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄	C1	H	CN		H
143	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄	C1	N ⁰ 2	H		H
144	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄	Br	C1	H		H
145	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄	Br	C1	H		H
146	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄	Br	C1	CO ₂ CH ₃		
147	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	CH ₃		
148	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	C1		
149	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	CO ₂ CH ₃		
150	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	CH ₃		
151	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	H		CH ₃
152	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	CN		H
153	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	C1		H
154	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	CO ₂ CH ₃		H
155	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	CH ₃		H
156	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	C1		H
157	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	CH ₃		H
158	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	CO ₂ CH ₃		H
159	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	CH ₃		H
160	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	Br	C1	CH ₃		H
161	4-F-C ₆ H ₄	C ₆ H ₅	H	C1	H		H
162	4-F-C ₆ H ₄	C ₆ H ₅	H	C1	CO ₂ CH ₃		
						125-128°C	cis
						116-120°C	cis

50

55

Tabelle 1 - Forts.

	Bsp.	R1	R2	X	Y	Z	Schmp/IR	Isomer
15	163	4-F-C6H ₄	C6H ₅	H	CH ₃	H		
20	164	4-F-C6H ₄	C6H ₅	H	CH ₃	H		
25	165	4-F-C6H ₄	C6H ₅	C1	C1	C1		
30	166	4-F-C6H ₄	C6H ₅	C1	H	CO ₂ CH ₃		
35	167	4-F-C6H ₄	C6H ₅	C1	C1	CH ₃		
40	168	4-F-C6H ₄	C6H ₅	C1	H	CH ₃		
45	169	4-F-C6H ₄	C6H ₅	Br	C1	CH ₃		
50	170	4-F-C6H ₄	C6H ₅	Br	H	CO ₂ CH ₃		
55	171	4-F-C6H ₄	C6H ₅	Br	C1	CH ₃		
60	172	4-F-C6H ₄	C6H ₅	Br	H	CH ₃		
65	173	4-F-C6H ₄	Cyclohexyl	H	C1	CH ₃	2929, 1513, 1253, cis 837 cm ⁻¹	
70	174	4-F-C6H ₄	Cyclohexyl	H	CO ₂ CH ₃	H		
75	175	4-F-C6H ₄	Cyclohexyl	H	C1	CH ₃		
80	176	4-F-C6H ₄	Cyclohexyl	C1	C1	C1		
85	177	4-F-C6H ₄	Cyclohexyl	C1	H	CO ₂ CH ₃		
90	178	4-F-C6H ₄	Cyclohexyl	C1	C1	CH ₃		
95	179	4-F-C6H ₄	Cyclohexyl	Br	C1	CH ₃		
100	180	4-F-C6H ₄	Cyclohexyl	Br	H	CO ₂ CH ₃		
105	181	C6H ₅	2-C1-C6H ₄	H	C1	C1	124-128°C	cis
110	182	C6H ₅	2-C1-C6H ₄	H	CO ₂ CH ₃	H	Harz	cis
115	183	C6H ₅	2-C1-C6H ₄	H	C1	CH ₃	142°C	cis
120	184	C6H ₅	2-C1-C6H ₄	H	H	CH ₃	89-90°C	cis
125	185	C6H ₅	2-C1-C6H ₄	H	CN	H	105-110°C	cis

	Bsp.	R1	R2	E	α	γ	Z	Schmp/IR	Isomer
5	186	C ₆ H ₅	2-C ₁ -C ₆ H ₄	H	NO ₂	H	H	200°C 91-95°C	cis cis/trans=
10	187	C ₆ H ₅	2-C ₁ -C ₆ H ₄	H	H	CH ₃	H		1,5:1
15	188	C ₆ H ₅	2-C ₁ -C ₆ H ₄	C ₁	C ₁		H		
20	189	C ₆ H ₅	2-C ₁ -C ₆ H ₄	C ₁	H	CO ₂ CH ₃	H		
25	190	C ₆ H ₅	2-C ₁ -C ₆ H ₄	C ₁	C ₁	CH ₃	H		
30	191	C ₆ H ₅	2-C ₁ -C ₆ H ₄	Br	C ₁	C ₁	H		
35	192	C ₆ H ₅	2-C ₁ -C ₆ H ₄	Br	H	CO ₂ CH ₃	H		
40	193	C ₆ H ₅	C ₆ H ₅	H	C ₁	C ₁	H		
45	194	C ₆ H ₅	C ₆ H ₅	H	H	CO ₂ CH ₃	H		
50	195	C ₆ H ₅	C ₆ H ₅	C ₁	C ₁	C ₁	H		
55	196	C ₆ H ₅	C ₆ H ₅	Br	H	CO ₂ CH ₃	H		
60	197	C ₆ H ₅	C ₆ H ₅	C ₁	C ₁	C ₁	H		
65	198	C ₆ H ₅	C ₆ H ₅	Br	H	CO ₂ CH ₃	H		
70	199	C ₆ H ₅	4-C ₁ -C ₆ H ₄	H	C ₁	C ₁	H		
75	200	C ₆ H ₅	4-C ₁ -C ₆ H ₄	C ₁	C ₁	C ₁	H		
80	201	C ₆ H ₅	4-C ₁ -C ₆ H ₄	Br	C ₁	C ₁	H		
85	202	C ₆ H ₅	2,4-C ₁ 2-C ₆ H ₃	H	H	CO ₂ CH ₃	H		
90	203	C ₆ H ₅	2,4-C ₁ 2-C ₆ H ₃	C ₁	C ₁	C ₁	H		
95	204	C ₆ H ₅	2,4-C ₁ 2-C ₆ H ₃	Br	C ₁	CH ₃	H		
100	205	C ₆ H ₅	4-NO ₂ -C ₆ H ₄	H	C ₁	C ₁	H		
105	206	C ₆ H ₅	3-NO ₂ -C ₆ H ₄	H	CH ₃	CH ₃	H		
110	207	C ₆ H ₅	Cyclohexyl	H	CH ₃	C ₁	H		
115	208	4-C ₁ -C ₆ H ₄	C ₆ H ₅	C ₁	C ₁	C ₁	H		

Tabelle 1 - Forts.

Tabelle 1 - Forts.

	Bsp.	R ¹	R ²		Schmp/IR	Isomer
45	209	4-C1-C ₆ H ₄	C ₆ H ₅			
46	210	4-C1-C ₆ H ₄	C ₆ H ₅			
47	211	4-C1-C ₆ H ₄	4-C1-C ₆ H ₄			
48	212	4-C1-C ₆ H ₄	4-C1-C ₆ H ₄			
49	213	4-C1-C ₆ H ₄	4-C1-C ₆ H ₄			
50	214	4-C1-C ₆ H ₄	2, 4-C12-C ₆ H ₃			
51	215	4-C1-C ₆ H ₄	2, 4-C12-C ₆ H ₃			
52	216	4-C1-C ₆ H ₄	4-F-C ₆ H ₄			
53	217	4-C1-C ₆ H ₄	4-F-C ₆ H ₄			
54	218	4-C1-C ₆ H ₄	4-F-C ₆ H ₄			
55	219	4-C1-C ₆ H ₄	2-F-C ₆ H ₄			
56	220	4-C1-C ₆ H ₄	2-F-C ₆ H ₄			
57	221	2-C1-C ₆ H ₄	2-C1-C ₆ H ₄			
58	222	2-C1-C ₆ H ₄	2-C1-C ₆ H ₄			
59	223	2-C1-C ₆ H ₄	2-C1-C ₆ H ₄			
60	224	2-C1-C ₆ H ₄	2-F-C ₆ H ₄			
61	225	2-C1-C ₆ H ₄	2-F-C ₆ H ₄			
62	226	2-C1-C ₆ H ₄	4-C1-C ₆ H ₄			
63	227	2-C1-C ₆ H ₄	4-C1-C ₆ H ₄			
64	228	2-F-C ₆ H ₄	2-C1-C ₆ H ₄			
65	229	2-F-C ₆ H ₄	2-C1-C ₆ H ₄			
66	230	2-F-C ₆ H ₄	4-F-C ₆ H ₄			
67	231	2-F-C ₆ H ₄	4-F-C ₆ H ₄			
68	232	2-F-C ₆ H ₄	4-C1-C ₆ H ₄			
69						cis:trans=3:1
70						87-94°C
71						
72						
73						
74						
75						
76						
77						
78						
79						
80						
81						
82						
83						
84						
85						
86						
87						
88						
89						
90						
91						
92						
93						
94						
95						
96						
97						
98						
99						
100						
101						
102						
103						
104						
105						
106						
107						
108						
109						
110						
111						
112						
113						
114						
115						
116						
117						
118						
119						
120						
121						
122						
123						
124						
125						
126						
127						
128						
129						
130						
131						
132						
133						
134						
135						
136						
137						
138						
139						
140						
141						
142						
143						
144						
145						
146						
147						
148						
149						
150						
151						
152						
153						
154						
155						
156						
157						
158						
159						
160						
161						
162						
163						
164						
165						
166						
167						
168						
169						
170						
171						
172						
173						
174						
175						
176						
177						
178						
179						
180						
181						
182						
183						
184						
185						
186						
187						
188						
189						
190						
191						
192						
193						
194						
195						
196						
197						
198						
199						
200						
201						
202						
203						
204						
205						
206						
207						
208						
209						
210						
211						
212						
213						
214						
215						
216						
217						
218						
219						
220						
221						
222						
223						
224						
225						
226						
227						
228						
229						
230						
231						
232						

Tabelle 1 - Forts.

Bsp.	R ¹	R ²	Z	Schmp/IR	Isomer
233	2-F-C ₆ H ₄	4-CI-C ₆ H ₄	H	C1	
234	2, 4-C ₁₂ -C ₆ H ₃	2-CI-C ₆ H ₄	H	C1	
235	2, 4-C ₁₂ -C ₆ H ₃	2-CI-C ₆ H ₄	H	C1	
236	2, 4-C ₁₂ -C ₆ H ₃	4-CI-C ₆ H ₄	H	C1	
237	2, 4-C ₁₂ -C ₆ H ₃	4-CI-C ₆ H ₄	H	C1	
238	2, 4-C ₁₂ -C ₆ H ₃	2, 4-C ₁₂ -C ₆ H ₃	H	C1	
239	2, 4-C ₁₂ -C ₆ H ₃	2, 4-C ₁₂ -C ₆ H ₃	C1	C1	
240	2, 4-C ₁₂ -C ₆ H ₃	4-F-C ₆ H ₄	H	C0 ₂ CH ₃	
241	2, 4-C ₁₂ -C ₆ H ₃	4-F-C ₆ H ₄	Br	C1	
242	Cyclohexyl	C ₆ H ₅	H	C1	
243	Cyclohexyl	C ₆ H ₅	C1	CN	
244	Cyclohexyl	C ₆ H ₅	Br	H	
245	Cyclohexyl	2-CI-C ₆ H ₄	H	C1	
246	Cyclohexyl	2-CI-C ₆ H ₄	C1	C1	
247	Cyclohexyl	2-CI-C ₆ H ₄	Br	H	
248	Cyclohexyl	4-CI-C ₆ H ₄	H	C1	
249	Cyclohexyl	4-CI-C ₆ H ₄	C1	C1	
250	Cyclohexyl	2, 4-C ₁₂ -C ₆ H ₃	H	C0 ₂ CH ₃	
251	Cyclohexyl	2, 4-C ₁₂ -C ₆ H ₃	C1	C0 ₂ CH ₃	
252	Cyclohexyl	2-F-C ₆ H ₄	H	CH ₃	
253	Cyclohexyl	2-F-C ₆ H ₄	C1	N0 ₂	
254	Cyclohexyl	4-F-C ₆ H ₄	H	C1	
255	Cyclohexyl	4-F-C ₆ H ₄	C1	C1	
256	Cyclohexyl	4-F-C ₆ H ₄	Br	C1	

Tabelle 1 - Forts.

	Bsp.	R1	R2				Schmp/IR	Isomer
5	257	Cyclohexyl	2-C1-4-F-C6H3			H		
10	258	Cyclohexyl	2-C1-4-F-C6H3			H		
15	259	Cyclohexyl	2-C1-4-F-C6H3			H		
20	260	tert.-C4H9	C6H5			H	CH3	
25	261	tert.-C4H9	C6H5			H	CH3	
30	262	tert.-C4H9	2-C1-C6H4			H	C1	
35	263	tert.-C4H9	2-C1-C6H4			H	C1	
40	264	tert.-C4H9	4-C1-C6H4			H	C1	
45	265	tert.-C4H9	4-C1-C6H4			H	C1	
50	266	tert.-C4H9	4-C1-C6H4			H	C1	
55	267	tert.-C4H9	4-C1-C6H4			H	C1	
	268	tert.-C4H9	4-C1-C6H4			H	C1	
	269	tert.-C4H9	4-C1-C6H4			H	C1	
	270	tert.-C4H9	4-C1-C6H4			H	C1	
	271	tert.-C4H9	4-C1-C6H4			H	C1	
	272	tert.-C4H9	4-C1-C6H4			H	C1	
	273	tert.-C4H9	4-C1-C6H4			H	C1	
	274	tert.-C4H9	4-C1-C6H4			H	C1	
	275	tert.-C4H9	4-C1-C6H4			H	C1	
	276	tert.-C4H9	4-C1-C6H4			H	C1	
	277	2,4-C12-C6H3	2-C1-C6H4			H	C1	
	278	2,4-C12-C6H3	2-C1-C6H4			H	C1	
	279	2,4-C12-C6H3	4-C1-C6H4			H	C1	
	280	2,4-C12-C6H3	4-C1-C6H4			H	C1	

Tabelle 1 - Forts.

Bsp.	R1	R2				Schmp/IR	Isomer
			E	X	Y	Z	
281	2,4-Cl ₂ -C ₆ H ₃	2,4-Cl ₂ -C ₆ H ₃	Cl	Cl	Cl	H	
282	2,4-Cl ₂ -C ₆ H ₃	2,4-Cl ₂ -C ₆ H ₃	H	H	CH ₃	H	
283	2,4-Cl ₂ -C ₆ H ₃	4-F-C ₆ H ₄	H	Cl	CH ₃	H	
284	2,4-Cl ₂ -C ₆ H ₃	2-F-C ₆ H ₄	H	H	CH ₃	CH ₃	
285	4-Br-C ₆ H ₄	4-C(CH ₃) ₃ -C ₆ H ₄	H	H	CH ₃	H	
286	2-OCH ₃ -C ₆ H ₄	2-Cl-C ₆ H ₄	H	Cl	Cl	H	
287	2-OCH ₃ -C ₆ H ₄	4-Cl-C ₆ H ₄	Cl	H	C ₂ CH ₃	H	
288	2-OCH ₃ -C ₆ H ₄	2-C ₁₀ H ₇	H	Cl	Cl	H	
289	2-OCH ₃ -C ₆ H ₄	4-F-C ₆ H ₄	H	H	C ₂ CH ₃	H	
290	2-OCH ₃ -C ₆ H ₄	2-F-C ₆ H ₄	H	Cl	Cl	H	
291	2-C ₁₀ H ₇	2-Cl-C ₆ H ₄	H	Cl	Cl	H	
292	2-C ₁₀ H ₇	4-F-C ₆ H ₄	Cl	Cl	Cl	H	
293	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	H	COCH ₃	CH ₃	
294	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	Cl	H	COCH ₃	CH ₃	
295	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	Br	H	COCH ₃	CH ₃	
296	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	F	Cl	Cl	H	
297	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	F	Cl	CH ₃	H	
298	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	F	Cl	Cl	H	
299	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	F	H	CN	H	
300	4-F-C ₆ H ₄	4-Cl-C ₆ H ₄	F	Cl	Cl	H	
301	4-F-C ₆ H ₄	4-Cl-C ₆ H ₄	F	C ₁	CH ₃	H	
302	4-F-C ₆ H ₄	2-C ₁ -4-F-C ₆ H ₃	F	C ₁	C ₁	H	
303	4-F-C ₆ H ₄	2-F-C ₆ H ₄	F	H	CN	H	
304	4-F-C ₆ H ₄	4-F-C ₆ H ₄	F	C ₁	CH ₃	H	

5
10
15
20
25
30
35
40
45
50

Tabelle 1 - Forts.

Bsp.	R1	R2	E	X	Y	Z	Schmp/IR	Isomer
305	4-F-C ₆ H ₄	2, 4-F ₂ -C ₆ H ₃	F	C1	C1	H		
306	4-F-C ₆ H ₄	2, 6-F ₂ -C ₆ H ₃	F	C1	C1	H		
307	4-F-C ₆ H ₄	2, 4-C12-C ₆ H ₃	F	H	COCH ₃	CH ₃		
308	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄	F	C1	C1	H		
309	4-F-C ₆ H ₄	4-OCH ₃ -C ₆ H ₄	F	H	CN	H		
310	4-F-C ₆ H ₄	C ₆ H ₅	F	C1	CH ₃	H		
311	4-F-C ₆ H ₄	Cyclohexyl	F	C1	C1	H		
312	C ₆ H ₅	4-C1-C ₆ H ₄	F	C1	C1	H		
313	4-C1-C ₆ H ₄	4-C1-C ₆ H ₄	F	C1	CH ₃	H		
314	Cyclohexyl	4-F-C ₆ H ₄	F	C1	C1	H		
315	4-F-C ₆ H ₄	2-C1-C ₆ H ₄	H	H	COCH ₃			
316	4-F-C ₆ H ₄	2-C1-C ₆ H ₄	H	COCH ₃	CH ₃	H	136-141°C	cis
317	4-F-C ₆ H ₄	2-C1-C ₆ H ₄	H	H	Phenyl	H		cis
318	4-F-C ₆ H ₄	2-C1-C ₆ H ₄	H	H	H	Phenyl		01:02=2:1
319	4-F-C ₆ H ₄	C ₆ H ₅	H	H	CN	H	126-130°C	cis
320	4-F-C ₆ H ₄	2-F-3C1-C ₆ H ₃	H	C1	C1	H	150-153°C	cis
321	4-F-C ₆ H ₄	4-OCF ₃ -C ₆ H ₄	H	H	CO ₂ CH ₃	H		
322	C ₆ H ₅	2-OCH ₃ -C ₆ H ₄	H	C1	C1	H		
323	4-F-C ₆ H ₄	2-Br-C ₆ H ₄	H	H	CO ₂ CH ₃	H		
324	4-F-C ₆ H ₄	2-C1-C ₆ H ₄	H	CO ₂ CH ₃	CO ₂ CH ₃	H	134-140°C	cis

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2

Bsp.	R1	R2	E	X	Y	Z	Schmp/IR	Isomer
1a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H		H	H	161-165°C	Z
2a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	C ₂ CH ₃		H	132-135°C	Z
3a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	C1		H	84-89°C	Z
4a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	CN		H	99-108°C	Z/E=6:1
5a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	C1	CH ₃	H	Harz	Z/E=3:2
6a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H	H	CH ₃		1603, 1509, 1228 cm ⁻¹	Z
7a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	H		CH ₃	H	846, 830, 759 cm ⁻¹	
8a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	C1	C1	C1	H	93-95°C	Z
9a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	C1	C1	CH ₃	H	1603, 1510, 1470, 1233, 847, 753 cm ⁻¹	E
10a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	Br	C1	C1	H	172-175°C	E
11a	4-F-C ₆ H ₄	2-Cl-C ₆ H ₄	Br	C1	CH ₃	H		
12a	4-F-C ₆ H ₄	4-Cl-C ₆ H ₄	H	C1	C1	H		
13a	4-F-C ₆ H ₄	4-Cl-C ₆ H ₄	C1	C1	C1	H		
14a	4-F-C ₆ H ₄	4-Cl-C ₆ H ₄	Br	C1	C1	H		
15a	4-F-C ₆ H ₄	2,4-Cl ₂ -C ₆ H ₃	H		CO ₂ CH ₃	H		

Tabelle 2 - Forts.

Bsp.	R1	R2	E	X	Y	Z	Schmp/IR	Isomer
16a	4-F-C ₆ H ₄	2,4-C12-C ₆ H ₃	C1	H	CO ₂ CH ₃	H		
17a	4-F-C ₆ H ₄	2,4-C12-C ₆ H ₃	Br	H	CO ₂ CH ₃	H		
18a	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	H	C1	C1	H		
19a	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	C1	C1	C1	H		
20a	4-F-C ₆ H ₄	2-C1-4-F-C ₆ H ₃	Br	C1	C1	H		
21a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	NO ₂	H	H		
22a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	H	CO ₂ CH ₃	H		
23a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	C1	C1	H		
							1604, 1561, 1316, 1126, 768 cm ⁻¹	
24a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	H	CN	H		
25a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	C1	CH ₃	H		
							1510, 1316, 1167 1123, 769 cm ⁻¹	
26a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	H	CH ₃			
27a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	H	H	CH ₃	H		
28a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	C1	C1	C1	H		
29a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	C1	H	CO ₂ CH ₃	H		
30a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	C1	C1	CH ₃	H		
31a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	Br	C1	C1	H		
32a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	Br	C1	CH ₃	H		
33a	4-F-C ₆ H ₄	2-CF ₃ -C ₆ H ₄	Br	H	CO ₂ CH ₃	H		
34a	4-F-C ₆ H ₄	4-CF ₃ -C ₆ H ₄	H	C1	C1	H		
35a	4-F-C ₆ H ₄	4-CF ₃ -C ₆ H ₄	C1	H	CO ₂ CH ₃	H		
36a	4-F-C ₆ H ₄	4-CF ₃ -C ₆ H ₄	Br	C1	CH ₃	H		
37a	4-F-C ₆ H ₄	2-F-C ₆ H ₄	H	C1	C1	H		
38a	4-F-C ₆ H ₄	2-F-C ₆ H ₄	H	C1	CH ₃	H		
39a	4-F-C ₆ H ₄	2-F-C ₆ H ₄	C1	C1	C1	H		
							E/Z=2:1	

5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

Bsp.	R1	R2	Schnpp/IR	Isomer		
				z	y	x
40a	4-F-C ₆ H ₄	2-F-C ₆ H ₄		H	CO ₂ CH ₃	
41a	4-F-C ₆ H ₄	2-F-C ₆ H ₄		H	C1	Br
42a	4-F-C ₆ H ₄	2-F-C ₆ H ₄		H	CH ₃	Br
43a	4-F-C ₆ H ₄	4-F-C ₆ H ₄		H	C1	H
44a	4-F-C ₆ H ₄	4-F-C ₆ H ₄		H	CO ₂ CH ₃	H
45a	4-F-C ₆ H ₄	4-F-C ₆ H ₄		H	C1	Br
46a	4-F-C ₆ H ₄	4-F-C ₆ H ₄		H	CO ₂ CH ₃	C1
47a	4-F-C ₆ H ₄	4-F-C ₆ H ₄		H	Br	C1
48a	4-F-C ₆ H ₄	4-C1-C ₆ H ₄		H	CO ₂ CH ₃	Br
49a	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃		H	C1	C1
50a	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃		H	CO ₂ CH ₃	H
51a	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃		C1	C1	H
52a	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃		C1	CO ₂ CH ₃	H
53a	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃		Br	C1	H
54a	4-F-C ₆ H ₄	2,4-F ₂ -C ₆ H ₃		Br	CO ₂ CH ₃	H
55a	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		H	C1	C1
56a	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		H	CO ₂ CH ₃	H
57a	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		C1	C1	H
58a	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		C1	CO ₂ CH ₃	H
59a	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		Br	C1	H
60a	4-F-C ₆ H ₄	2,6-F ₂ -C ₆ H ₃		Br	CO ₂ CH ₃	H
61a	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄		H	C1	H
62a	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄		H	CH ₃	Harz
63a	4-F-C ₆ H ₄	2-OCH ₃ -C ₆ H ₄		H	H	CN

55

EP 0 352 675 A2

				Isomer
				Schmp./IR
5				
10				
15				
20				
25				
30				
35				
40				
45				
50				
55				
60				
65				
70				
75				
80				
85				
90				
95				
100				
105				
110				

Tabelle 2 - Forts.

Die neuen Verbindungen zeichnen sich, allgemein ausgedrückt, durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten und Basidiomyceten, aus. Sie sind zum Teil systemisch wirksam und können als Blatt- und Bodenfungizide eingesetzt werden.

Besonders interessant sind die fungiziden Verbindungen für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen oder ihren Samen, insbesondere Weizen, Roggen, Gerste, Hafer, Reis, Mais, Rasen, Baumwolle, Soja, Kaffee, Zuckerrohr, Obst und Zierpflanzen im Gartenbau, Weinbau sowie Gemüse - wie Gurken, Bohnen und Kürbisgewächse -.

Die neuen Verbindungen sind insbesondere geeignet zur Bekämpfung folgender Pflanzenkrankheiten:

- Erysiphe graminis (echter Mehltau) in Getreide,
Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,
Podosphaera leucotricha an Äpfeln,
Uncinula necator an Reben,
- 5 Puccinia-Arten an Getreide,
Rhizoctonia-Arten an Baumwolle und Rasen,
Ustilago-Arten an Getreide und Zuckerrohr,
Venturia inaequalis (Schorf) an Äpfeln,
Helminthosporium-Arten an Getreide,
- 10 Septoria nodorum an Weizen,
Botrytis cinerea (Grauschimmel) an Erdbeeren, Reben,
Cercospora arachidicola an Erdnüssen,
Pseudocercosporella herpotrichoides an Weizen, Gerste,
Pyricularia oryzae an Reis,
- 15 Phytophthora infestans an Kartoffeln und Tomaten,
Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
Plasmopara viticola an Reben,
Alternaria-Arten an Gemüse und Obst.

Die Verbindungen werden angewendet, indem man die Pflanzen mit den Wirkstoffen besprüht oder
20 bestäubt oder die Samen der Pflanzen mit den Wirkstoffen behandelt. Die Anwendung erfolgt vor oder nach
der Infektion der Pflanzen oder Samen durch die Pilze.

Die neuen Substanzen können in die üblichen Formulierungen übergeführt werden, wie Lösungen,

Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsformen richten sich
ganz nach den Verwendungszwecken; sie sollen in jedem Fall eine feine und gleichmäßige Verteilung der

25 wirksamen Substanz gewährleisten. Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch
Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung
von Emulgiermitteln und Dispergiermitteln, wobei im Falle der Benutzung von Wasser als Verdünnungsmittel
auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe
kommen dafür im wesentlichen in Frage: Lösungsmittel wie Aromaten (z.B. Xylol), chlorierte Aromaten (z.B.

30 Chlorbenzole), Paraffine (z.B. Erdölfractionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon),
Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle
(z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kiesel säure,
Silikate); Emulgiermittel, wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettaalkohol-
Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel, wie Lignin, Sulfitablaugen und Methylcellulose.

35 Die fungiziden Mitteln enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und
90 Gew.% Wirkstoff.

Die Aufwandmengen liegen je nach Art des gewünschten Effektes zwischen 0,02 und 3 kg Wirkstoff
oder mehr je ha. Die neuen Verbindungen können auch im Materialschutz eingesetzt werden, z.B. gegen
Paecilomyces variotii.

40 Die Mittel bzw. die daraus hergestellten gebrauchsfertigen Zubereitungen, wie Lösungen, Emulsionen,
Suspensionen, Pulver, Stäube, Pasten oder Granulate werden in bekannter Weise angewendet, beispiels-
weise durch Versprühen, Vernebeln, Verstäuben, Verstreuen, Beizen oder Gießen.

Beispiele für solche Zubereitungen sind:

I. Man vermischt 90 Gew.-Teile der Verbindung Nr. 113 mit 10 Gew.-Teilen N-Methyl- α -pyrrolidon
45 und erhält eine Lösung, die zur Anwendung in Form kleinstter Tropfen geeignet ist.

II. 20 Gew.-Teile der Verbindung Nr. 115 werden in einer Mischung gelöst, die aus 80 Gew.-Teilen
Xylol, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-
monoethanolamid, 5 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gew.-Teilen des Anlage-
50 rungsproduktes und 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen
der Lösung in Wasser erhält man eine wässrige Dispersion.

III. 20 Gew.-Teile der Verbindung Nr. 113 werden in einer Mischung gelöst, die aus 40 Gew.-Teilen
Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylen-
oxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in Wasser erhält man
eine wässrige Dispersion.

55 IV. 20 Gew.-Teile der Verbindung Nr. 115 werden in einer Mischung gelöst, die aus 25 Gew.-Teilen
Cyclohexanol, 65 Gew.-Teilen einer Mineralölfaktion vom Siedepunkt 210 bis 280°C und 10 Gew.-Teilen
des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines
Verteilen der Lösung in Wasser erhält man eine wässrige Dispersion.

V. 80 Gew.-Teile der Verbindung Nr. 113 werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin- α -sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfatblauge und 7 Gew.-Teilen pulverförmigen Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in Wasser erhält man einer Spritzbrühe.

5 VI. 3 Gew.-Teile der Verbindung Nr. 115 werden mit 97 Gew.-Teilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.

VII. 30 Gew.-Teile der Verbindung Nr. 113 werden mit einer Mischung aus 92 Gew.-Teilen pulverförmigen Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprührt wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

10 VIII. 40 Gew.-Teile der Verbindung Nr. 115 werden mit 10 Gew.-Teilen Natriumsalz eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser innig vermischt. Man erhält eine stabile wäßrige Dispersion. Durch Verdünnen mit Wasser erhält man eine wäßrige Dispersion.

IX. 20 Gew.-Teile der Verbindung Nr. 113 werden mit 2 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gew.-Teilen Fettalkoholpolyglykolether, 2 Gew.-Teilen Natriumsalz eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensats und 68 Gew.-Teilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die erfindungsgemäßen Mittel können in diesen Anwendungsformen auch zusammen mit anderen Wirkstoffen vorliegen, wie z.B. Herbiziden, Insektiziden, Wachstumsregulatoren und Fungiziden, oder auch 20 mit Düngemitteln vermischt und ausgebracht werden. Beim Vermischen mit Fungiziden erhält man dabei in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen kombiniert werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken.

Fungizide, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, sind beispielsweise:

25 se:

Schwefel,

Dithiocarbamate und deren Derivate, wie

Ferridimethyldithiocarbamat,

Zinkdimethyldithiocarbamat,

30 Zinkethylenbisdithiocarbamat,

Manganethylenbisdithiocarbamat,

Mangan-Zink-ethylendiamin-bis-dithiocarbamat,

Tetramethylthiuramdisulfide,

Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat),

35 Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat),

Zink-(N,N'-propylen-bis-dithiocarbamat),

N,N'-Polypropylen-bis-(thiocarbamoyl)-disulfid;

Nitroderivate, wie

Dinitro-(1-methylheptyl)-phenylcrotonat,

40 2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat,

2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat;

5-Nitro-isophthalsäure-di-isopropylester

heterocyclische Substanzen, wie

2-Heptadecyl-2-imidazolin-acetat,

45 2,4-Dichlor-8-(o-chloranilino)-s-triazin,

O,O-Diethyl-phthalimidophosphonothioat,

5-Amino-1-[bis-(dimethylamino)-phosphinyl]-3-phenyl-1,2,4-triazol,

2,3-Dicyano-1,4-dithioanthrachinon,

2-Thio-1,3-dithiolo[4,5-b]chinoxalin,

50 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester,

2-Methoxycarbonylamino-benzimidazol,

2-(Furyl-(2))-benzimidazol,

2-(Thiazolyl-(4))-benzimidazol,

N-(1,1,2,2-Tetrachlorethylthio)-tetrahydrophthalimid,

55 N-Trichlormethylthio-tetrahydrophthalimid,

N-Trichlormethylthio-phthalimid,

N-Dichlormethylthio-N',N'-dimethyl-N-phenyl-schwefelsäurediamid,

5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol,

- 2-Rhodanmethyliothiobenzthiazol,
 1,4-Dichlor-2,5-dimethoxybenzol,
 4-(2-Chlorphenylhydroazano)-3-methyl-5-isoxazolon,
 Pyridin-2-thio-1-oxid,
- 5 8-Hydroxychinolin bzw. dessen Kupfersalz,
 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin,
 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid,
 2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilin,
 2-Methyl-furan-3-carbonsäureanilid,
- 10 2,5-Dimethyl-furan-3-carbonsäureanilid,
 2,4,5-Trimethyl-furan-3-carbonsäureanilid,
 2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid,
 N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid,
 2-methyl-benzoësäure-anilid,
- 15 2-Iod-benzoësäure-anilid,
 N-Formyl-N-morpholin-2,2,2-trichlorethylacetat,
 Piperazin-1,4-diylbis-(1-(2,2,2-trichlor-ethyl)-formamid,
 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan ,
 2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze,
- 20 2,6-Dimethyl-N-cyclodedecyl-morpholin bzw. dessen Salze,
 N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethylmorpholin,
 N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin,
 1-[2-(2,4-Dichlorphenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol
 1-[2-(2,4-Dichlorphenyl)-4-n-propyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol,
- 25 N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-harnstoff,
 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon,
 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol,
 α -(2-Chlorphenyl)- α -(4-chlorphenyl)-5-pyrimidin-methanol,
 5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin,
- 30 Bis-(p-chlorphenyl)-3-pyridinmethanol,
 1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol,
 1,2-Bis-(3-methoxycarbonyl-2-thioureido)-benzol,
 sowie verschiedene Fungizide, wie
 Dodecylguanidinacetat,
- 35 3-[3-(3,5-Dimethyl-2-oxy cyclohexyl)-2-hydroxyethyl]-glutarimid, Hexachlorbenzol,
 DL-Methyl-N-(2,6-dimethyl-phenyl)-N-furoyl(2)-alaninat,
 DL-N-(2,6-Dimethyl-phenyl)-N-(2-methoxyacetyl)-alanin-methylester,
 N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-aminobutyrolacton,
 DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)-alaninmethylester,
- 40 5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin,
 3-[3,5-Dichlorphenyl](-5-methyl-5-methoxymethyl)-1,3-oxazolidin-2,4-dion,
 3-(3,5-Dichlorphenyl)-1-isopropylcarbamoylhadtantoin,
 N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureimid,
 2-Cyano-[N-(ethylaminocarbonyl)-2-methoximino]-acetamid,
- 45 1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol,
 2,4-Difluor- α -(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalkohol,
 N-(3-Chlor-2,6-dinitro-4-trifluormethyl-phenyl)-5-trifluormethyl-3-chlor-2-aminopyridin,
 1-((bis-(4-Fluorophenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol.

50 Anwendungsbeispiel

Als Vergleichswirkstoff wurde cis-2-(imidazol-1-yl-methyl)-2-(4-fluorphenyl)-3-(2,6-difluorphenyl)-oxiran (A) - bekannt aus DE 3 218 130 -benutzt.

55

Anwendungsbeispiel

Wirksamkeit gegen Rebenperonospora

Blätter von Topfreben der Sorte "Müller Thurgau" wurden mit wässriger Spritzbrühe, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielt, besprüht. Um die Wirkungsdauer der Wirkstoffe 5 zu beurteilen zu können, wurden die Pflanzen nach dem Antrocknen des Spritzbelages 8 Tage im Gewächshaus aufgestellt. Erst dann wurden die Blätter mit einer Zoosporenaufschwemmung von Plasmopara viticola (Rebenperonospora) infiziert. Danach wurden die Reben zunächst für 48 Stunden in einer wasserdampfsättigten Kammer bei 24°C und anschließend für 5 Tage in einem Gewächshaus mit Temperaturen zwischen 20 und 30°C aufgestellt. Nach dieser Zeit wurden die Pflanzen zur Beschleunigung des 10 Sporangienträgerausbruches abermals für 16 Stunden in der feuchten Kammer aufgestellt. Dann erfolgte die Beurteilung des Ausmaßes des Pilzausbruches auf den Blattunterseiten. Das Ergebnis zeigt, daß die Wirkstoffe 113 und 115 bei der Anwendung als 0,05 %ige (Gew.-%) Spritzbrühe eine bessere fungizide Wirkung zeigen (95 %) als der bekannte Vergleichswirkstoff A (60 %).

15

Ansprüche

1. Substituierte Imidazolylmethyloxirane und substituierte Imidazolylpropene der allgemeinen Formel I

20

25

in welcher

R¹ und R² gleich oder verschieden sind und C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₅-C₈-Cycloalkenyl, Tetrahydro-pyran, Norbornyl, Pyridyl, Naphthyl, Biphenyl oder Phenyl bedeuten, wobei diese Reste einfach bis dreifach durch Halogen, Nitro, Phenoxy, Amino, Alkyl, Alkoxy oder Halogenalkyl mit jeweils 1 bis 4-C-Atomen substituiert sein können,

D den Rest O oder eine Einfachbindung bedeutet,
E den Rest H, F, Cl oder Br bedeutet,

X, Y und Z gleich oder verschieden sind und Wasserstoff, Halogen, Nitro, Cyano, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, Amino, gegebenenfalls durch C₁-C₃-Alkyl, C₁-C₃-Acyl substituiertes Amino, Mercapto, gegebenenfalls durch C₁-C₃-Alkyl substituiertes Mercapto, C₁-C₃-Acyl, C₁-C₃-Alkoxy carbonyl, C₁-C₃-Hydroxylalkyl oder gegebenenfalls substituiertes Phenyl bedeuten, wobei X, Y und Z nicht gleichzeitig Wasserstoff bedeuten,

sowie deren für Pflanzen verträgliche Säureadditionsalze und Metallkomplexe.

2. Substituierte Imidazolylmethyloxirane und substituierte Imidazolylpropene der allgemeinen Formel I, in denen R¹ und R² die Phenylgruppe bedeutet, welche unsubstituierte oder durch einen oder zwei Substituenten substituiert ist, die Fluor, Chlor, Brom oder die Trifluormethylgruppe bedeuten.

3. Verfahren zur Herstellung der substituierten Imidazolylmethyloxirane der Formel I gemäß Anspruch 1, in der D der Rest O und E den Rest H bedeutet, dadurch gekennzeichnet, daß man

a) eine Verbindung der Formel II

50

in welcher R¹ und R² die oben angegebenen Bedeutungen haben und L eine nukleophil substituierbare Abgangsgruppe darstellt, mit einer Verbindung der Formel III

55

in der Me ein Wasserstoffatom, ein Metallatom oder eine Trimethylsilylgruppe bedeutet und X, Y und Z die oben angegebene Bedeutung haben, umsetzt oder
b) eine Verbindung der Formel IV

15 in welcher R¹, R², X, Y und Z die oben angegebene Bedeutung haben, in das entsprechende Oxiran überführt und die so erhaltenen Verbindungen gegebenenfalls in ihre Salze mit für Pflanzen verträglichen Säuren überführt.

4. Verfahren zur Herstellung der substituierten Imidazolylpropene der Formel I gemäß Anspruch 1, in
20 der D den Rest - und E den Rest H bedeutet, dadurch gekennzeichnet, daß man
a) eine Verbindung der Formel V

in der R¹, R² und L die oben angegebene Bedeutung haben, mit einer Verbindung der Formel III

35 in der X, Y, Z und Me die oben angegebene Bedeutungen haben, umsetzt oder
b) eine Verbindung der Formel VI

45 in welcher R¹, X, Y und Z die oben angegebene Bedeutung hat, mit einer Verbindung der Formel VII

in der R² die oben angegebene Bedeutung hat und R³, R⁴ und R⁵, die gleich oder verschieden sein können, den Phenylrest, den p-Carboxyphenylrest, den p-Dimethylaminophenylrest, die Dimethylamino, 55 Piperidino- oder Morpholinogruppe, Alkylreste mit 1 bis 3-C-Atomen oder die Cyclohexylgruppe darstellen, umsetzt.

5. Verfahren zur Herstellung der substituierten Imidazolylmethyloxirane und der substituierten Imidazolylpropene der Formel I gemäß Anspruch 1, in der E den Rest F, Cl oder Br bedeutet, dadurch

gekennzeichnet, daß man eine Verbindung der Formel VIII

in welcher R¹, R² und D die angegebenen Bedeutungen haben, mit einer Verbindung der Formel III

15

in der X, Y, Z und Me die oben angegebenen Bedeutungen haben, in Gegenwart von Thionylhalogeniden umgesetzt.

6. Fungizides Mittel, enthaltend einen Trägerstoff und eine fungizid wirksame Menge eines Imidazolyl-methyloxirans der Formel I

25

in welcher

R¹ und R² gleich oder verschieden sind und C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₅-C₈-Cycloalkenyl, Tetrahydro-pyranil, Norbornyl, Pyridyl, Naphthyl, Biphenyl oder Phenyl bedeuten, wobei diese Reste einfach bis dreifach durch Halogen, Nitro, Phenoxy, Amino, Alkyl, Alkoxy oder Halogenalkyl mit jeweils 1 bis 4-C-Atomen substituiert sein können,

D den Rest O oder eine Einfachbindung bedeutet,

E den Rest H, F, Cl oder Br bedeutet,

X, Y and Z gleich oder verschieden sind und Wasserstoff, Halogen, Nitro, Cyano, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, Amino, gegebenenfalls durch C₁-C₃-Alkyl, C₁-C₃-Acyl substituiertes Amino, Mercapto, gegebenenfalls durch C₁-C₃-Alkyl substituiertes Mercapto, C₁-C₃-Acyl, C₁-C₃-Alkoxy carbonyl, C₁-C₃-Hydroxylalkyl oder gegebenenfalls substituiertes Phenyl bedeuten, wobei X, Y und Z nicht gleichzeitig Wasserstoff bedeuten,

oder dessen für Pflanzen verträglichen Säureadditionssalzes oder Metallkomplexes.

7. Verfahren zur Bekämpfung von Pilzen, dadurch gekennzeichnet, daß man eine fungizid wirksame Menge eines substituierten Imidazolylmethyloxirans oder eines substituierten Imidazolylpropens der Formel I

50

in welcher

R¹ und R² gleich oder verschieden sind und C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₅-C₈-Cycloalkenyl, Tetrahydro-pyranil, Norbornyl, Pyridyl, Naphthyl, Biphenyl oder Phenyl bedeuten, wobei diese Reste einfach bis dreifach durch Halogen, Nitro, Phenoxy, Amino, Alkyl, Alkoxy oder Halogenalkyl mit jeweils 1 bis 4-C-Atomen substituiert sein können,

D den Rest O oder eine Einfachbindung bedeutet,

E den Rest H, F, Cl oder Br bedeutet,

X, Y und Z gleich oder verschieden sind und Wasserstoff, Halogen, Nitro, Cyano, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, Amino, gegebenenfalls durch C₁-C₃-Alkyl, C₁-C₃-Acyl substituiertes Amino, Mercapto, gegebenenfalls durch C₁-C₃-Alkyl substituiertes Mercapto, C₁-C₃-Acyl, C₁-C₃-Alkoxycarbonyl, C₁-C₃-Hydroxyalkyl oder gegebenenfalls substituiertes Phenyl bedeuten, wobei X, Y und Z nicht gleichzeitig Wasserstoff bedeuten,

oder dessen für Pflanzen verträgliches Säureadditionssalz oder Metallkomplex auf die Pilze oder durch Pilzbefall bedrohte Materialien, Flächen, Pflanzen oder Saatgüter einwirken läßt.

8. Verbindung der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß R¹ 4-Fluorphenyl, R² 2,6-Difluorphenyl, D den Rest O, E den Rest H, X den Rest H, Z den Rest H und Y Methoxycarbonyl bedeuten.

9. Verbindung der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß R¹ 4-Fluorphenyl, R² 2,6-Difluorphenyl, D den Rest O, E den Rest H, Z den Rest H, X den Rest H und Y Acetyl bedeuten.

10. Verbindung der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß R¹ 4-Fluorphenyl, R² 2-Chlorphenyl, D den Rest O, E den Rest Chlor, Z den Rest Methoxycarbonyl und X und Y Wasserstoff bedeuten.

15

20

25

30

35

40

45

50

55