DM N°7 (pour le 08/01/2016)

Autour des sommes d'Euler

Dans tout le problème, on note pour tout entier $n \ge 1$, $H_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$.

On note ζ la fonction définie pour x > 1 par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

Le but du problème est d'étudier des séries faisant intervenir la suite (H_n) et notamment d'obtenir une relation due à Euler qui exprime, pour r entier naturel supérieur ou égal à 2, $\sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r}$ à l'aide de la valeur de la fonction ζ en certains points entiers.

I. Représentation intégrale de sommes de séries

I.A.

- **I.A.1)** Justifier que la série de terme général $a_n = \frac{1}{n} \int_{n-1}^n \frac{\mathrm{d}t}{t}$ converge.
- **I.A.2)** Montrer qu'il existe une constante réelle A telle que $H_n = \ln n + A + o(1)$. En déduire que $H_n \sim \ln n$.
- **I.B.** Soit *r* un entier naturel.

Pour quelles valeurs de r la série $\sum_{n\geq 1} \frac{H_n}{(n+1)^r}$ est-elle convergente?

Dans toute la suite on notera $S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r}$ lorsque la série converge.

I.C.

- I.C.1) Donner sans démonstration les développements en série entière des fonctions $t\mapsto \ln(1-t)$ et $t\mapsto \frac{1}{1-t}$ ainsi que leur rayon de convergence.
- I.C.2) En déduire que la fonction

$$t \longmapsto -\frac{\ln(1-t)}{1-t}$$

est développable en série entière sur]-1;1[et préciser son développement en série entière à l'aide des réels H_n .

I.D. Pour tout couple d'entiers naturels (p,q) et pour tout $\varepsilon \in]0;1[$, on note :

$$I_{p,q} = \int_0^1 t^p (\ln t)^q dt \quad \text{et} \quad I_{p,q}^{\varepsilon} = \int_{\varepsilon}^1 t^p (\ln t)^q dt.$$

- **I.D.1**) Montrer que l'intégrale $I_{p,q}$ existe pour tout couple d'entiers naturels (p,q).
- I.D.2) Montrer que:

$$\forall p \in \mathbb{N}, \ \forall q \in \mathbb{N}^*, \ \forall \varepsilon \in \left]0;1\right[, \quad \mathrm{I}_{p,q}^\varepsilon = -\frac{q}{p+1}\mathrm{I}_{p,q-1}^\varepsilon - \frac{\varepsilon^{p+1}(\ln \varepsilon)^q}{p+1}\cdot$$

I.D.3) En déduire que l'on a :

$$\forall p \in \mathbb{N}, \ \forall q \in \mathbb{N}^*, \quad I_{p,q} = -\frac{q}{p+1}I_{p,q-1}.$$

I.D.4) En déduire une expression de $I_{p,q}$ en fonction des entiers p et q.

I.E.

Soit r un entier naturel non nul et f une fonction développable en série entière sur]-1;1[.

On suppose que pour tout $x \in]-1;1[$, $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et que $\sum_{n\geqslant 0} \frac{a_n}{(n+1)^r}$ converge absolument.

Montrer que:

$$\int_0^1 (\ln t)^{r-1} f(t) dt = (-1)^{r-1} (r-1)! \sum_{n=0}^{+\infty} \frac{a_n}{(n+1)^r}.$$

I.F.

I.F.1) Déduire des questions précédentes que pour tout entier $r \ge 2$:

$$S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r} = \frac{(-1)^r}{(r-1)!} \int_0^1 (\ln t)^{r-1} \frac{\ln(1-t)}{1-t} dt.$$

I.F.2) Établir que l'on a alors
$$S_r = \frac{(-1)^r}{2(r-2)!} \int_0^1 \frac{(\ln t)^{r-2} (\ln(1-t))^2}{t} dt$$

I.F.3) En déduire que
$$S_2 = \frac{1}{2} \int_0^1 \frac{(\ln t)^2}{1-t} dt$$
, puis trouver la valeur de S_2 en fonction de $\zeta(3)$.

II. La fonction β

II.A. La fonction Γ

II.A.1) Soit x > 0. Montrer que $t \mapsto t^{x-1}e^{-t}$ est intégrable sur $]0;+\infty[$.

Dans toute la suite, on notera Γ la fonction définie sur \mathbb{R}_+^* par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

On admettra que Γ est de classe \mathscr{C}^{∞} sur son ensemble de définition, à valeurs strictement positives et qu'elle vérifie, pour tout réel x > 0, la relation $\Gamma(x+1) = x\Gamma(x)$.

II.A.2) Soient x et α deux réels strictement positifs. Justifier l'existence de $\int_0^{+\infty} t^{x-1} e^{-\alpha t} dt$ et donner sa valeur en fonction de $\Gamma(x)$ et α^x .

II.B. La fonction β et son équation fonctionnelle

Pour
$$(x,y) \in (\mathbb{R}_+^*)^2$$
, on définit $\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$.

II.B.1) Justifier l'existence de $\beta(x,y)$ pour x > 0 et y > 0.

II.B.2) Montrer que pour tous réels x > 0 et y > 0, $\beta(x,y) = \beta(y,x)$.

II.B.3) Soient x > 0 et y > 0. Établir que $\beta(x+1,y) = \frac{x}{x+y}\beta(x,y)$.

II.B.4) En déduire que pour x > 0 et y > 0, $\beta(x + 1, y + 1) = \frac{xy}{(x + y)(x + y + 1)}\beta(x, y)$.

II.C. Relation entre la fonction β et la fonction Γ

On veut montrer que pour x > 0 et y > 0, $\beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$, relation qui sera notée (\mathcal{R}) .

II.C.1) Expliquer pourquoi il suffit de montrer la relation (\mathcal{R}) pour x > 1 et y > 1.

Dans toute la suite de cette question, on supposera que x > 1 et y > 1.

II.C.2) Montrer que
$$\beta(x,y) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} du$$
.

On pourra utiliser le changement de variable $t = \frac{u}{1+u}$.

II.C.3) On note $F_{x,y}$ la primitive sur \mathbb{R}_+ de $t\mapsto \mathrm{e}^{-t}t^{x+y-1}$ qui s'annule en 0. Montrer que :

$$\forall t \in \mathbb{R}_+, \ F_{x,y}(t) \leqslant \Gamma(x+y).$$

II.C.4) Soit
$$G(a) = \int_0^{+\infty} \frac{u^{x-1}}{(1+u)^{x+y}} F_{x,y} ((1+u)a) du$$
.

Montrer que G est définie et continue sur \mathbb{R}_+ .

- **II.C.5**) Montrer que $\lim_{a \to +\infty} G(a) = \Gamma(x+y)\beta(x,y)$.
- II.C.6) Montrer que G est de classe \mathscr{C}^1 sur tout segment [c;d] inclus dans \mathbb{R}_+^* , puis que G est de classe \mathscr{C}^1 sur \mathbb{R}_+^* .
- **II.C.7**) Exprimer pour a > 0, G'(a) en fonction de $\Gamma(x)$, e^{-a} et a^{y-1} .
- **II.C.8**) Déduire de ce qui précède la relation (R).

III. La fonction digamma

On définit la fonction ψ (appelée fonction digamma) sur \mathbb{R}_+^* comme étant la dérivée de $x\mapsto \ln(\Gamma(x))$. Pour tout réel x>0, $\psi(x)=\frac{\Gamma'(x)}{\Gamma(x)}$.

- III.A. Montrer que pour tout réel x > 0, $\psi(x+1) \psi(x) = \frac{1}{x}$.
- III.B. Sens de variation de ψ
- III.B.1) À partir de la relation (\mathcal{R}) , justifier que $\frac{\partial \beta}{\partial y}$ est définie sur $(\mathbb{R}_+^*)^2$.

Établir que pour tous réels x > 0 et y > 0, $\frac{\partial \beta}{\partial y}(x,y) = \beta(x,y) (\psi(y) - \psi(x+y))$.

- **III.B.2**) Soit x > 0 fixé. Quel est le sens de variations sur \mathbb{R}_+^* de la fonction $y \mapsto \beta(x, y)$?
- **III.B.3**) Montrer que la fonction ψ est croissante sur \mathbb{R}_+^* .
- III.C. Une expression de ψ comme somme d'une série de fonctions
 - III.C.1) Montrer que pour tout réel x > -1 et pour tout entier $n \ge 1$:

$$\psi(1+x) - \psi(1) = \psi(n+x+1) - \psi(n+1) + \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x}\right).$$

III.C.2) Soit n un entier ≥ 2 et x un réel > -1. On pose p = E(x) + 1, où E(x) désigne la partie entière de x.

Prouver que:

$$0 \le \psi(n+x+1) - \psi(n) \le H_{n+p} - H_{n-1} \le \frac{p+1}{n}$$

III.C.3) En déduire que, pour tout réel x > -1,

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right).$$

III.D. Un développement en série entière

On note g la fonction définie sur $[-1;+\infty[$ par :

$$g(x) = \sum_{n=2}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x} \right).$$

III.D.1) Montrer que g est de classe \mathscr{C}^{∞} sur $[-1;+\infty[$.

Préciser notamment la valeur de $g^{(k)}(0)$ en fonction de $\zeta(k+1)$ pour tout entier $k \ge 1$.

III.D.2) Montrer que pour tout entier n et pour tout $x \in]-1;1[$

$$\left| g(x) - \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} x^{k} \right| \le \zeta(2) |x|^{n+1}.$$

Montrer que g est développable en série entière sur]-1;1[.

III.D.3) Prouver que pour tout x dans]-1;1[,

$$\psi(1+x) = \psi(1) + \sum_{n=1}^{+\infty} (-1)^{n+1} \zeta(n+1) x^n.$$

IV. Une expression de S_r en fonction de valeurs entières de ζ

Dans cette partie, on note B la fonction définie sur \mathbb{R}_+^* par $\mathrm{B}(x) = \frac{\partial^2 \beta}{\partial v^2}(x,1)$.

IV.A. Une relation entre B et ψ

Justifier que B est définie sur \mathbb{R}_+^* .

À l'aide de la relation trouvée au **III.B.**, établir que pour tout réel x > 0:

$$xB(x) = (\psi(1+x) - \psi(1))^{2} + (\psi'(1) - \psi'(1+x)).$$

En déduire que B est \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} .

IV.B. Expression de S_r à l'aide de la fonction B

- **IV.B.1**) Montrer que pour tout réel x > 0, $B(x) = \int_0^1 (\ln(1-t))^2 t^{x-1} dt$.
- **IV.B.2)** Donner sans justification une expression, à l'aide d'une intégrale, de $B^{(p)}(x)$, pour tout entier naturel p et tout réel x > 0.
- **IV.B.3**) En déduire que pour tout entier $r \ge 2$, $S_r = \frac{(-1)^r}{2(r-2)!} \lim_{x \to 0^+} B^{(r-2)}(x)$.
- IV.B.4) Retrouver alors la valeur de S₂ déjà calculée au I.F.3.
- **IV.C.** Soit φ la fonction définie sur]-1; $+\infty[$ par $\varphi(x) = (\psi(1+x) \psi(1))^2 + (\psi'(1) \psi'(1+x))$.
- **IV.C.1**) Monter que φ est \mathscr{C}^{∞} sur son ensemble de définition et donner pour tout entier naturel $n \ge 2$ la valeur de $\varphi^{(n)}(0)$ en fonction des dérivées successives de ψ au point 1.
- **IV.C.2**) Conclure que, pour tout entier $r \ge 3$,

$$2S_r = r\zeta(r+1) - \sum_{k=1}^{r-2} \zeta(k+1)\zeta(r-k).$$