DAILY ASSESSMENT FORMAT

Date:	27/05/2020	Name:	Sachin Krishna Moger
Course:	Digital Signal Processing	USN:	4AL17EC103
Topic:	Fourier Transforms	Semester & Section:	6-B
Github	Sachin-Courses		
Repository:			

FORENOON SESSION DETAILS

Fourier Series and Gibbs Phenomena [Python]

Fourier series AfundamentalresultinFourieranalysisisthatiff(x) is periodicand piecewise smooth, then it can be written in terms of a Fourier series, which is an infinite sum of cosines and sines of increasing frequency. In particular, if f(x) is $2\pi periodic$, it may be written as:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)).$$

FOURIER SERIES AND FOURIER TRANSFORMS

The coefficients ak and bk are given by

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx,$$

which may be viewed as the coordinates obtained by projecting the function onto the orthogonal cosine and sine basis $\{\cos(kx), \sin(kx)\} > \infty$ k=0. In other words, the integrals in (2.6) may be re-written in terms of the inner product as:

$$a_k = \frac{1}{\|\cos(kx)\|^2} \langle f(x), \cos(kx) \rangle$$
$$b_k = \frac{1}{\|\sin(kx)\|^2} \langle f(x), \sin(kx) \rangle,$$

where $k\cos(kx)k2 = k\sin(kx)k2 = \pi$. This factor of $1/\pi$ is easy to verify by numerically integrating $\cos(x)2$ and $\sin(x)2$ from $-\pi$ to π . The Fourier series for an L-periodic function on [0,L) is similarly given by:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi kx}{L}\right) + b_k \sin\left(\frac{2\pi kx}{L}\right) \right),$$

with coefficients ak and bk given by

$$a_k = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{2\pi kx}{L}\right) dx$$
$$b_k = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{2\pi kx}{L}\right) dx.$$

The DFT is tremendously useful for numerical approximation and computation, but it does not scale well to very large n-1, as the simple formulation involves multiplication by a dense $n \times n$ matrix, requiring O(n2) operations. In 1965, James W. Cooley (IBM) and

John W. Tukey (Princeton) developed the revolutionary fast Fourier transform (FFT) algorithm [137, 136] that scales as O(nlog(n)). As n becomes very large, the log(n) component grows slowly, and the algorithm approaches a linear scaling. Their algorithm was based on afractal symmetry in the Fourier transform that allows an n dimensional DFT to be solved with a number of smaller dimensional DFT computations. Although the different computational scaling between the DFT and FFT implementations may seem like a small difference, the fast O(nlog(n)) scaling is what enables the ubiquitous use of the FFT in real-time communication, based on audio and image compression

Discrete Fourier transform

AlthoughwewillalwaysusetheFFTforcomputations, it is illustrative to begin with the simplest formulation of the DFT. The discrete Fourier transform is given by:

$$\hat{f}_k = \sum_{i=0}^{n-1} f_j e^{-i2\pi jk/n},$$

and the inverse discrete Fourier transform (iDFT) is given by:

$$f_k = \frac{1}{n} \sum_{j=0}^{n-1} \hat{f}_j e^{i2\pi jk/n}.$$

Thus, the DFT is a linear operator (i.e., a matrix) that maps the data points in f to the frequency domain f:

$$\{f_1, f_2, \cdots, f_n\} \stackrel{\text{DFT}}{\Longrightarrow} \{\hat{f}_1, \hat{f}_2, \cdots \hat{f}_n\}.$$

For a given number of points n, the DFT represents the data using sine and cosine functions with integer multiple so fundamental frequency, $\omega n = e-2\pi i/n$. The DFT may be computed by matrix multiplication:

$$\begin{bmatrix} \hat{f}_1 \\ \hat{f}_2 \\ \hat{f}_3 \\ \vdots \\ \hat{f}_n \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_n & \omega_n^2 & \cdots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \cdots & \omega_n^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \cdots & \omega_n^{(n-1)^2} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{bmatrix}.$$

Fast Fourier transform to compute derivatives: n = 128; L = 30;dx = L/(n); x = -L/2:dx:L/2-dx; $f = \cos(x).*\exp(-x.^2/25);$ % Function df = $-(\sin(x).*\exp(-x.^2/25) + (2/25)*x.*f)$; % Derivative %% Approximate derivative using finite Difference... for kappa=1:length(df)-1 dfFD(kappa) = (f(kappa+1)-f(kappa))/dx;end dfFD(end+1) = dfFD(end); %% Derivative using FFT (spectral derivative) fhat = fft(f); kappa = (2*pi/L)*[-n/2:n/2-1]; kappa = fftshift(kappa); % Re-order fft frequencies dfhat = i*kappa.*fhat; dfFFT = real(ifft(dfhat)); %% Plotting commands plot(x,df,'k','LineWidth',1.5), hold on plot(x,dfFD,'b--','LineWidth',1.2) plot(x,dfFFT,'r--','LineWidth',1.2)

Code to simulate the 1D heat equation using the Fourier transform.

legend('True Derivative', 'Finite Diff.', 'FFT Derivative')

```
a = 1; % Thermal diffusivity constant
L = 100;
             % Length of domain
N = 1000;
             % Number of discretization points
dx = L/N;
x = -L/2:dx:L/2-dx; % Define x domain
% Define discrete wavenumbers
kappa = (2*pi/L)*[-N/2:N/2-1];
kappa = fftshift(kappa); % Re-order fft wavenumbers
% Initial condition
\mathbf{u0} = 0 \star \mathbf{x};
u0((L/2 - L/10)/dx:(L/2 + L/10)/dx) = 1;
% Simulate in Fourier frequency domain
t = 0:0.1:10;
[t,uhat]=ode45(@(t,uhat)rhsHeat(t,uhat,kappa,a),t,fft(u0));
for k = 1:length(t) % iFFT to return to spatial domain
    u(k,:) = ifft(uhat(k,:));
end
```

