Centrality in terms of how you connect others (information broker)

Betweenness Centrality

Another way of looking at centrality is by considering how important nodes are in connecting other nodes

Linton Freeman

$$C_b(v_i) = \sum_{s \neq t \neq v_i} \frac{\sigma_{st}(v_i)}{\sigma_{st}}$$

 σ_{st} The number of shortest paths from vertex s to t – a.k.a. information pathways

 $\sigma_{st}(v_i)$ The number of **shortest paths** from s to t that pass through v_i

Normalizing Betweenness Centrality

• In the best case, node v_i is on all shortest paths from s to t, hence, $\frac{\sigma_{st}(v_i)}{\sigma_{st}}=1$

$$C_b(v_i) = \sum_{s \neq t \neq v_i} \frac{\sigma_{st}(v_i)}{\sigma_{st}}$$
$$= \sum_{s \neq t \neq v_i} 1 = 2\binom{n-1}{2} = (n-1)(n-2)$$

Therefore, the maximum value is (n-1)(n-2)

Betweenness centrality: $C_b^{\text{norm}}(v_i) = \frac{C_b(v_i)}{2\binom{n-1}{2}}$

Betweenness Centrality: Example 1

Betweenness Centrality: Example 2

Node	Betweenness Centrality	Rank
Α	16 + 1/2 + 1/2	1
В	7+5/2	3
С	0	7
D	5/2	5
Е	1/2 + 1/2	6
F	15 + 2	1
G	0	7
Н	0	7
I	7	4

Centrality in terms of how fast you can reach others

Closeness Centrality

 The intuition is that influential/central nodes can quickly reach other nodes

Linton Freeman

 These nodes should have a smaller average shortest path length to others

Closeness centrality:
$$C_c(v_i) = \frac{1}{\overline{l}_{v_i}}$$

$$\bar{l}_{v_i} = \frac{1}{n-1} \sum_{v_i \neq v_i} l_{i,j}$$

Closeness Centrality: Example 1

$$C_c(v_1) = 1 / ((1+2+2+3)/4) = 0.5,$$

 $C_c(v_2) = 1 / ((1+1+1+2)/4) = 0.8,$
 $C_c(v_3) = C_b(v_4) = 1 / ((1+1+2+2)/4) = 0.66,$
 $C_c(v_5) = 1 / ((1+1+2+3)/4) = 0.57.$

Closeness Centrality: Example 2 (Undirected)

											Closeness	
Node	A	В	C	D	<u>E</u>	F	G	H		D_Avg	Centrality	Rank
Α	0	1	2	1	2	1	2	3	2	1.750	0.571	1
В	1	0	1	2	1	2	3	4	3	2.125	0.471	3
С	2	1	0	3	2	3	4	5	4	3.000	0.333	8
D	1	2	3	0	1	2	3	4	3	2.375	0.421	4
Е	2	1	2	1	0	3	4	5	4	2.750	0.364	7
F	1	2	3	2	3	0	1	2	1	1.875	0.533	2
G	2	3	4	3	4	1	0	3	2	2.750	0.364	7
Н	3	4	5	4	5	2	3	0	1	3.375	0.296	9
I	2	3	4	3	4	1	2	1	0	2.500	0.400	5

Closeness Centrality: Example 3 (Directed)

											Closeness	
Node	Α	В	C	D	E	F	G	Н		D_Avg	Centrality	Rank
Α	0	1	2	3	2	2	1	3	3	2.125	0.471	1
В	3	0	1	2	1	4	4	2	3	2.500	0.400	2
С	4	5	0	7	6	3	5	1	2	4.125	0.242	9
D	1	2	3	0	3	3	2	4	5	2.875	0.348	3
Е	2	3	4	1	0	4	3	5	5	3.375	0.296	6
F	1	2	3	4	3	0	2	4	4	2.875	0.348	4
G	2	3	4	5	4	1	0	5	2	3.250	0.308	5
Н	4	4	5	6	5	2	4	0	1	3.875	0.258	8
	2	3	4	5	4	1	4	5	0	3.500	0.286	7

Centrality for a group of nodes

Group Centrality

- All centrality measures defined so far measure centrality for a single node. These measures can be generalized for a group of nodes.
- A simple approach is to replace all nodes in a group with a super node
 - The group structure is disregarded.
- Let S denote the set of nodes in the group and V S the set of outsiders

Group Centrality

I. Group Degree Centrality

$$C_d^{\text{group}}(S) = |\{v_i \in V - S | v_i \text{ is connected to } v_j \in S\}|$$

– Normalization: divide by |V - S|

II. Group Betweenness Centrality

$$C_b^{\text{group}}(S) = \sum_{s \neq t, s \notin S, t \notin S} \frac{\sigma_{st}(S)}{\sigma_{st}}$$

- **Normalization**: divide by $2\binom{|V-S|}{2}$

Group Centrality

III. Group Closeness Centrality

$$C_c^{\text{group}}(S) = \frac{1}{\bar{l}_S^{\text{group}}}$$

It is the average distance from non-members to the group

$$\bar{l}_S^{\text{group}} = \frac{1}{|V - S|} \sum_{v_j \notin S} l_{S, v_j}$$
$$l_{S, v_j} = \min_{v_i \in S} l_{v_i, v_j}$$

 One can also utilize the maximum distance or the average distance

Group Centrality Example

• Consider $S = \{v_2, v_3\}$

- Group degree centrality = 3
- Group betweenness centrality = 6
- Group closeness centrality = 1