

Robotermodellierung I

Prof. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Inhalt

- Freiheitsgrade eines Robotersystems
- Geometrisches Modell
- Kinematisches Modell
- Direktes Kinematisches Problem
- Inverses Kinematisches Problem
- Dynamisches Modell

Freiheitsgrad f eines Objektes in E_3

- Anzahl möglicher unabhängiger Bewegungen in Bezug auf das BKS
 - Minimale Anzahl von Translationen und Rotationen zur vollständigen Beschreibung der Lage des Objektes
- Für im 3D-Raum frei bewegliche Objekte gilt f = 6
 - 3 Translationen
 - 3 Rotationen

Bewegungsfreiheitsgrade eines Roboters F

- Freiheitsgrad eines rotierenden Gelenks: $F_R \leq 3$
 - Scharniergelenk, Kardangelenk, Kugelgelenk
- Freiheitsgrad eines Translationsgelenks: $F_T = 1$
- Anzahl der Gelenke eines Roboters: n (i.d.R. $n \ge 6$)
- Bewegungsfreiheitsgrade: $F = \sum_{i=1}^{n} (F_{R_i} + F_{T_i})$

Zusammenhang von f und F

- Es gilt: $F \ge f$
- Beispiele
 - 8-achsiger Roboter: Freiheitsgrad f = 6, Bewegungsfreiheitsgrad F = 8
 - Menschliche Hand: f = 6, F = 22
 - Menschlicher Arm inkl. Schulter: f = 6, F = 12
- Um Freiheitsgrad f = 6 für den Effektor eines Roboters zu erreichen, sind mindestens F = 6 Bewegungsachsen nötig

Begriffserklärung

- Geometrie: Mathematische Beschreibung der Roboterform
- Kinematik: Lehre der geometrischen und analytischen Beschreibung der Bewegungszustände mechanischer Systeme
- Dynamik: Untersucht Bewegung von Körpern als Folge der auf sie wirkenden Kräfte und Momente.

Geometrisches Modell

- Stellt Körper graphisch dar
- Grundlage zur Berechnung der Bewegungen
- Ermittlung der wirkenden Kräfte und Momente
- Ausgangspunkt der Abstandsmess- und Kollisionserkennung

Kinematisches Modell

- Beschreibt mit Hilfe des geometrischen Modells die Stellung (Position und Orientierung) von Körpern im Raum
- Kinematische Kette: Mehrere Körper, die durch Gelenke kinematisch verbunden sind (z.B. Roboterarm)
 - Geschlossene kinematische Ketten
 - Offene kinematische Ketten
- Zweck des kinematischen Modells
 - Bestimmung des Zusammenhangs zwischen Gelenkwerten und Stellungen
 - Erreichbarkeitsanalyse

Dynamisches Modell

- Beschreibt Kräfte und Momente, welche in einem mechanischen Mehrkörpersystem wirken
- Zweck des dynamischen Modells
 - Dimensionierung der Antriebsaggregate
 - Optimierung der Konstruktion (Leichtbauweise)
 - Berücksichtigung von Biegung und Steifigkeiten
 - Unterstützung der Reglerentwurfs

Geometrische Modelle

Klassifizierung:

- 2D-Modell
- 2,5D-Modelle
- 3D-Modelle
- Kanten- bzw. Drahtmodelle
- Flächen- bzw. Oberflächenmodelle
- Volumenmodell

Geometrische Modelle: Blockwelt

- Körper werden durch einhüllende Quader dargestellt
- Einfache Berechnung bzgl. Kollisionsvermeidung

Geometrische Modelle: Kantenmodell

- Körper werden durch Polygonzüge (Kanten) dargestellt
- Schnelle Visualisierung

Geometrische Modelle: Volumenmodell

- Genaue Darstellung der Körper
- Genaue Berechnung der Kontaktpunkte zur Kollisionsvermeidung
- Darstellung in Animationen

Direktes kinematisches Problem

Inverses kinematisches Problem

Wie soll ich meine Hand dorthin bewegen?

Bestimmt die Gelenkwinkel

Kinematisches Modell: Glieder und Gelenke

Kinematisches Modell: Puma 260

Volumenmodell

- Jedes Armelement entspricht einem starren Körper
- Jedes Armelement ist mit dem nächsten durch ein Schub- oder Rotationsgelenk verbunden
- Jedes Gelenk hat nur einen Freiheitsgrad (rot. oder transl.)
- Kin. Par. = Gelenk- + Armelementpar.

Puma 260

- 6-achsiger Roboter
- Basis und 6 Armelemente (Glieder)

Kinematisches Modell: Koordinatensysteme

Zur Beschreibung der Kinematik eines Roboters (kinematische Kette) ist die Lage jedes einzelnen Armelements bezogen auf ein Referenzsystem zu definieren.

- In jedes Armelement wird ein festes lokales KS gelegt
- Ursprung des KS liegt in dem Armgelenk, welches das jeweilige Armelement bewegt
- Für jedes Armelement muss eine Transformationsmatrix bestimmt werden, die das jeweilige lokale KS in das Bezugskoordinatensystem überführt
- Überführung der lokalen Koordinatensysteme in das Bezugskoordinatensystem durch Beschreibungsvektor oder 4 × 4 homogene Transformationsmatrix

Parameter der Armelemente

- Jedes Armelement i ist durch 2 begrenzende Gelenke i und i+1 eingebunden
- Seien g_i und g_{i+1} die Bewegungsachsen der Gelenke (Windschief zueinander)
- Sei a_i das Lot zwischen g_i und g_{i+1}
- Abstand der Lotfußpunkte von a_{i-1} und a_i auf g_i wird als Abstand der Gelenke d_i bezeichnet
- Winkel θ_i zwischen a_{i-1} und a_i wird als Gelenkwinkel (joint angle) bezeichnet
- Länge von a_i (kürzester Abstand zw. g_i und g_{i+1}) wird als Armelementlänge (link length) bezeichnet
- Winkel α_i zwischen g_i und g_{i+1} wird als Armelementverwindung (link twist) bezeichnet

Parameter der Gelenke

Parameter	Symbol	Rotationsgelenk	Schubgelenk
Armelementlänge	а	Invariant	Invariant
Verwindung	α	Invariant	Invariant
Gelenkabstand	d	Invariant	Variabel
Gelenkwinkel	θ	Variabel	Invariant

Herleitung von Gelenkabstand und -winkel

Denavit-Hartenberg-Konvention

Festlegung der Koordinatensysteme für jedes Gelenk:

- Ursprung von KS i liegt im Schnittpunkt von a_i und g_{i+1}
- Achse z_i liegt entlang der Gelenkachse g_{i+1}
- Achse x_i ergibt sich als Verlängerung des Lotes a_i
- Ergänzung um Achse y_i , sodass sich ein rechtsdrehendes Koordinatensystem ergibt
- Ursprung von KS 0 kann beliebig auf g_1 festgelegt werden
- Das letzte Koordinatensystem liegt im Endeffektor

Denavit-Hartenberg-Konvention

Kinematisches Modell

- Transformation vom OKS des Armelements i auf das OKS von Armelement i-1 mit Denavit-Hartenberg-Transformation
- Voraussetzungen
 - Alle KS entsprechen der Denavit-Hartenberg-Konvention
 - Parameter von Armelement i bekannt

 Literatur: Denavit, Hartenberg: "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices", Journal of Applied Mechanics, vol 77, pp 215-221

Denavit-Hartenberg-Transformation

Transformation von OKS_i auf OKS_{i-1}

(1) Rotation θ_i um die z_{i-1} -Achse damit die x_{i-1} -Achse parallel zur x_i -Achse liegt

$$R_{z_{i-1}}(\theta_i) = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & 0 & 0\\ \sin \theta_i & \cos \theta_i & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(2) Translation d_i entlang der z_{i-1} -Achse zu dem Punkt, in dem sich z_{i-1} und x_i schneiden

$$T_{Z_{i-1}}(d_i) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg-Transformation

Transformation von OKS_{i+1} auf OKS_i

(3) Translation a_i entlang der x_i -Achse, um die Ursprünge der Koordinatensysteme in Deckung zu bringen

$$T_{x_i}(a_i) = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(4) Rotation α_i um die x_i -Achse, um die z_{i-1} -Achse in die z_i Achse zu überführen

$$R_{x_i}(\alpha_i) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_i & -\sin \alpha_i & 0 \\ 0 & \sin \alpha_i & \cos \alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg-Transformation

In Matrizenschreibweise lautet die DH-Transformation der Koordinatensysteme des Armelement i-1 auf i:

$$\begin{aligned} & \stackrel{i-1}{i}A = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(\alpha_i) \\ & = \begin{bmatrix} \cos\theta_i & -\sin\theta_i \cdot \cos\alpha_i & \sin\theta_i \cdot \sin\alpha_i & a_i \cdot \cos\theta_i \\ \sin\theta_i & \cos\theta_i \cdot \cos\alpha_i & -\cos\theta_i \cdot \sin\alpha_i & a_i \cdot \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Denavit-Hartenberg-Transformation (Inverse)

Die Inverse der Transformationsmatrix ${}^{i-1}_iA$ entspricht der Transformation aus dem KS_{i-1} in das KS_i :

$$\begin{aligned} & \stackrel{i-1}{i}A^{-1} = \underset{i-1}{\overset{i}{A}}A \\ & = \begin{bmatrix} \cos\theta_i & \sin\theta_i & 0 & -a_i \\ -\cos\alpha_i\sin\theta_i & \cos\theta_i\cdot\cos\alpha_i & \sin\alpha_i & -d_i\sin\alpha_i \\ \sin\theta_i\cdot\sin\alpha_i & -\sin\alpha_i\cos\theta_i & \cos\alpha_i & -d_i\cos\alpha_i \\ 0 & 0 & 1 \end{bmatrix}$$

Direktes kinematisches Modell

Um die Stellung des Greifers (engl.: Tool Center Point, TCP) in Bezug auf das BKS zu bestimmen, werden die DH-Matrizen in der Reihenfolge der Armelemente multipliziert:

$$\underset{\mathsf{TCP}}{\mathsf{Basis}} A = \underset{1}{\mathsf{Basis}} A(\theta_1) \cdot \underset{2}{\overset{1}{\mathsf{2}}} A(\theta_2) \cdots \underset{n-1}{\overset{n-2}{\mathsf{2}}} A(\theta_{n-1}) \cdot \underset{n}{\overset{n-1}{\mathsf{1}}} A(\theta_n)$$

Direkte Kinematik: Vorgehensweise mit DH

(1) Bestimmung der Normalen ai

- Gelenkachsen g_i
- a_i zeigt von g_i nach g_{i+1}

(2) Festlegung des KS

- Ursprung O_i liegt im Schnittpunkt von a_i mit g_{i+1}
- x_i liegt auf Normalen a_i und zeigt in gleiche Richtung
- z_i liegt auf g_{i+1} in der Richtung, sodass Gelenkrot. bzw. -translation in math. pos. Sinn erfolgt
- y_i ergänzt zu Rechtssystem, bei TCP gibt y_i Öffnungsbreite des Greifers an

Direkte Kinematik: Vorgehensweise mit DH

Sonderfälle bei (1), (2)

- g_i und g_{i+1} schneiden sich
 - Richtung von x_i nicht eindeutig
 - x_i entsteht aus x_{i-1} durch kleinstmögliche Drehung um z_{i-1}
- g_i und g_{i+1} sind parallel oder fallen zusammen
 - Schnittpunkt von a_i und g_{i+1} nicht eindeutig
 - Rückwärtsgehend die Normalen bestimmen
 - Ausgehend vom nächsten eindeutig bestimmbaren Ursprung O_i mit j > i
 - Beim letzten Gelenk ist Ursprung im Zentrum des TCP

Direkte Kinematik: Vorgehensweise mit DH

- (3) Bestimmung der Transformationsmatrix i+1_iA
 - Rotation des KS von Gelenk i um z_{i-1} mit Gelenkwinkel θ_i $\rightarrow x'_{i-1}$ liegt parallel zu x_i
 - Translation entlang z_{i-1} um d_i
 - \rightarrow Ursprung liegt auf Schnittpunkt von z_{i-1} und x_i
 - Translation entlang x_i um $|a_i|$
 - → Ursprünge liegen aufeinander
 - Rotation um x_i mit Verdrehwinkel α_i
 - $\rightarrow Z'_{i-1}$ liegt parallel zu z_i
 - $^{i-1}_{i}A = R_{z_{i-1}}(\theta_{i}) \cdot T_{z_{i-1}}(d_{i}) \cdot T_{x_{i}}(|a_{i}|) \cdot R_{x_{i}}(\alpha_{i})$

Gelenk	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$oldsymbol{ heta_2}$
3	a_3	0	0	$ heta_3$

$$\begin{bmatrix} \cos \theta_i & -\sin \theta_i \cdot \cos \alpha_i & \sin \theta_i \cdot \sin \alpha_i & a_i \cdot \cos \theta_i \\ \sin \theta_i & \cos \theta_i \cdot \cos \alpha_i & -\cos \theta_i \cdot \sin \alpha_i & a_i \cdot \sin \theta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow i^{-1}A = \begin{bmatrix} c_i & -s_i & 0 & a_i \cdot c_i \\ s_i & c_i & 0 & a_i \cdot s_i \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ergebnis

$${}_{3}^{0}A = {}_{1}^{0}A \cdot {}_{2}^{1}A \cdot {}_{3}^{2}A = \begin{bmatrix} c_{123} & -s_{123} & 0 & a_{1} \cdot c_{1} + a_{2} \cdot c_{12} + a_{3} \cdot c_{123} \\ s_{123} & c_{123} & 0 & a_{1} \cdot s_{1} + a_{2} \cdot s_{12} + a_{3} \cdot s_{123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Gelenk	a_i	α_i	d_i	θ_i
1	0	-90°	0	$oldsymbol{ heta}_1$
2	0	90° d ₂		$oldsymbol{ heta}_2$
3	0	0	d_3	0

$${}_{1}^{0}A = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}A = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}_{3}A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow {}^{3}_{0}A = {}^{0}_{1}A \cdot {}^{1}_{2}A \cdot {}^{2}_{3}A = \begin{bmatrix} c_{1} \cdot c_{2} & -s_{1} & c_{1} \cdot s_{2} & c_{1} \cdot s_{2} \cdot d_{3} - s_{1} \cdot d_{2} \\ s_{1} \cdot c_{2} & c_{1} & s_{1} \cdot s_{2} & s_{1} \cdot s_{2} \cdot d_{3} + c_{1} \cdot d_{2} \\ -s_{2} & 0 & c_{2} & c_{2} \cdot d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Gelenk	a_i	α_i	d_i	θ_i
1	0	90°	0	$ heta_1$
2	a_2	0	0	θ_2
3	a_3	0	0	θ_3

Gelenk	a_i	α_i	d_i	$ heta_i$
1	0	90°	0	$ heta_1$
2	a_2	0	0	$ heta_2$
3	0	90°	0	$\theta_3 + 90^{\circ}$
4	0	-90°	d_4	$oldsymbol{ heta_4}$
5	0	90°	0	$\theta_5 - 90^{\circ}$
6	0	0	d_6	$\theta_6 + 90^{\circ}$

Roboterkinematik

- Beschreibt Zusammenhänge zwischen dem Raum der Gelenkwinkel und dem Raum der Position und Orientierung des Endeffektor in Weltkoordinaten
 - Raum der Gelenkwinkel:
 Roboterkoordinaten, Konfigurationsraum
 - EE: Abk. für Endeffektor
- Direktes kinematisches Problem (Vorwärtskinematik)
- Inverses kinematisches Problem (Rückwärtskinematik)

Direktes kinematisches Problem

- Aus DH-Parametern und Gelenkwinkeln soll Stellung des Greifers (TCP) ermittelt werden
- Stellung des TCP in Bezug auf das BKS (Basis)

$$\underset{\mathsf{TCP}}{\mathsf{BASIS}} A = \underset{1}{\mathsf{BASIS}} A(\theta_1) \cdot \underset{2}{\overset{1}{\mathsf{2}}} A(\theta_2) \cdots \underset{n-1}{\overset{n-2}{\mathsf{2}}} A(\theta_{n-1}) \cdot \underset{n}{\overset{n-1}{\mathsf{1}}} A(\theta_n)$$

• $\vec{ heta}$ gegeben

Direkte Kinematik: Übersicht

- Skizze des Manipulators
- Glieder nummerieren: Basis = 0, letztes Glied = n
- Identifiziere und nummeriere die Gelenke
- Zeichne Achsen z_i für jedes Gelenk i
- Bestimme Parameter a_i zwischen z_{i-1} und z_i
- Zeichne x_{i-1} -Achsen
- Bestimme Parameter α_{i-1} (Twist um die x_{i-1} -Achsen)
- Bestimme Parameter d_i (Offset)
- Bestimme Winkel θ_i um z_i -Achsen
- Gelenk-Transformation-Matrizen $A_{i-1,1}$

Nächste Vorlesung ...

Robotermodellierung

- Inverses kinematisches Problem
- Algebraische und geometrische Lösungen
- Numerische Methoden
- Optimierung