GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS

DESCRIPTION

The UTC **LMV358** are low voltage (2.7-5.5V) versions of the dual and quad commodity op amps, LM358, which currently operate at 5-30V. The UTC **LMV358** are the most cost effective solutions for the applications where low voltage operation, space saving and low price are needed. They offer specifications that meet or exceed the familiar LM358. The UTC **LMV358** have rail-to-rail output swing capability and the input common-mode voltage range includes ground. They all exhibit excellent speed-power ratio, achieving 1MHz of bandwidth and $1V/\mu s$ of slew rate with low supply current.

The chips are built with National's advanced submicron silicon-gate BiCMOS process. The UTC **LMV358** have bipolar input and output stages for improved noise performance and higher output current drive.

■ FEATURES

(For V¹ =5V and V=0V. Typical Unless Otherwise Noted)

*Guaranteed 2.7V and 5V Performance

*No Crossover Distortion

*Space Saving Package

*Industrial Temp. Range

*Gain-Bandwidth Product

*Low Supply Current: 210μA

*Rail-to-Rail Output Swing

@10k Ω Load V^1 -10mV

V +65mV

*V_{CM} -0.2V to V¹ -0.8V

SOP-8 DIP-8 TSSOP-8

*Pb-free plating product number: LMV358L

ORDERING INFORMATION

Order Number		Package	Packing	
Normal	Normal Lead Free Plating			
LMV358-D08-T	LMV358L-D08-T	DIP-8	Tube	
LMV358-P08-R	LMV358L-P08-R	TSSOP-8	Tape Reel	
LMV358-P08-T	LMV358L-P08-T	TSSOP-8	Tube	
LMV358-S08-R	LMV358L-S08-R	SOP-8	Tape Reel	
LMV358-S08-T	LMV358L-S08-T	SOP-8	Tube	

<u>www.unisonic.com.tw</u> 1 of 12

■ PIN CONFIGURATIONS

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
ESD Tolerance(Note 2)			
Machine Model		100	V
Human Body Model		2000	V
Differential Input Voltage	$V_{I(DIFF)}$	±Supply Voltage	
Supply Voltage (V ¹ -V)	V_{SS}	5.5	V
Output Short Circuit to V ¹		(Note 3)	
Output Short Circuit to V		(Note 4)	
Infrared (15 sec)		215	°C
Junction Temp. (Tj, max) (Note 5)	T_J	+150	°C
Storage Temp. Range	T _{STG}	-65 to 150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ OPERATING RATINGS (NOTE 1)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{SS}	2.7 to 5.5	V
Temperature Range		-40≦T _J ≦85	°C

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Thermal Resistance (Note 8)	$\theta_{\sf JA}$	235	°C/W

■ 2.7V DC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^1 = 2.7V$, V = 0V, $V_{CM} = 1.0V$, $V_{OUT} = V^1/2$ and $R_L = 1M\Omega$

Chiese strict wise specified, all little ga	arantooa ioi	1) 20 0, 0 2.7 0, 0	ov, veivi ii	00,000	V /Z ana i	(<u> </u>
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Input Offset Voltage	Vos			1.7	7	mV
Input Offset Voltage Average Drift	TCVos			5		μV/°C
Input Bias Current	I _{I(BIAS)}			11	250	nA
Input Offset Current	I _{I(OFF)}			5	50	nA
Common Mode Rejection Ratio	CMRR	$0V \leq V_{CM} \leq 1.7V$	50	63		dB
Power Supply Rejection Ratio	PSRR	$2.7V \le V^{1} \le 5V$ $V_{OUT} = 1V$	50	60		dB
Innut Common Made Valtage Dange	\/	For CMRR ≧ 50dB	0	-0.2		V
Input Common-Mode Voltage Range	V _{CM}	FUI CIVIRR = 30UD		1.9	1.7	V
Output Swing	\/	D =10kO to 1 25V	V ¹ -100	V ¹ -10		mV
Output Swing	V_{OUT}	R_L =10k Ω to 1.35V		60	180	mV
Supply Current	I _{SS}	Both amplifiers		140	340	μΑ

■ 2.7V AC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, all limits guaranteed for T_J =25°C, V^1 =2.7V, V=0V, V_{CM} =1.0V, V_{OUT} = V^1 /2 and R_L >1M Ω

			- , (1)	- , 001		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Gain-Bandwidth Product	GBWP	C _L =200pF		1		MHz
Phase Margin	Ф(Т)			60		Deg
Gain Margin	G(r)			10		dB
Input-Referred Voltage Noise	θr1	F=1kHz		46		<u>nV</u> √ Hz
Input-referred Current Noise	lr1	F=1kHz		0.17		<u>pA</u> √Hz

■ 5V DC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, all limits guaranteed for T_J =25°C, V^1 =5V, V=0V, V_{CM} =2.0V, V_{OUT} = V^1 /2 and R_L >1M Ω . Boldface limits apply at the temperature extremes.

bolulace illillo apply at the temperature	extremes.					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Input Offset Voltage	Vos		7	1.7	9	mV
Input Offset Voltage Average Drift	TCVos			5		μV/°C
Input Bias Current	I _{I(BIAS)}		250	15	500	nA
Input Offset Current	I _{I(OFF)}		50	5	150	nA
Common Mode Rejection Ratio	CMRR	$0V \le V_{CM} \le 4V$	50	65		dB
Power Supply Rejection Ratio	PSRR	$2.7V \le V^1 \le 5V$ $V_{OUT}=1V$ $V_{CM}=1V$	50	60		dB
Innut Common Made Valtage Dange	V _{CM}	V _{CM} For CMRR≥50dB —	0	-0.2		V
Input Common-Mode Voltage Range				4.2	4	V
Large Signal Voltage Gain(Note 6)	Av	$R_L=2k\Omega$	10	100	15	V/mV
		$R_1 = 2k\Omega$ to 2.5V	V ⁺ -400	V ¹ -40	V ¹ -300	mV
Output Suring	.,	R _L =2KΩ (0 2.5V	300	120	400	mV
Output Swing	VOUT	R_L =10k Ω to 2.5V	V ⁺ -200	V ¹ -10	V ¹ -100	mV
			180	65	280	mV
0 1 10 10 10		Sourcing, V _{OUT} =0V	5	60		mA
Output Short Circuit Current	lout	Sinking, V _{OUT} =5V	10	160		mA
Supply Current	I _{SS}	Both amplifiers	440	210	615	μΑ

■ 2.5V AC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, all limits quaranteed for T_J =25°C, V¹=2.7V, V=0V, V_{CM}=2.0V, V_{OUT}=V1/2 and R_L>1MΩ

offices office specified, all lifting guaranteed for Ty =25 G, V =2.7 V, V=0 V, VCM=2.0 V, V001=V 1/2 and TCF 110122						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Slew Rate	SR			1		V/μs
Gain-Bandwidth Product	GBWP	C _L =200pF		1		MHz
Phase Margin	Ф(Т)			60		Deg
Gain Margin	G(r)			10		dB
Input-Referred Voltage Noise	θr1	f=1kHz		39		<u>nV</u> √ Hz
Input-referred Current Noise	lr1	f=1kHz		0.21		<u>pA</u> √ Hz

- Note1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performances is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
- Note2: Human body model $1.5k\Omega$ in series with 100pF. Machine model, 0Ω in series with 200pF.
- Note3: Shorting output to V¹ will adversely after reliability.
- Note4: Shorting output to V⁺ will adversely affect reliability.
- Note5: The maximum power dissipation is a function of $T_J(max)$ θ_{JA} and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.
- Note6: R_L is connected to V. The output voltage is $0.5V \le V_{OUT} \le 4.5V$.
- Note7: Connected as voltage follower with 3V step input. Number specified is these lower of the positive and negative slew rates.
- Note8: all numbers are typical, and apply for packages soldered directly note a PC board is still air.

TYPICAL CHARACTERISTICS

(Unless otherwise specified, V_E =+5V, single supply. T_A =25°C)

Non-Inverting Large Signal Pulse Response

Non-Inverting Small Signal Pulse Response

Time (1 µ s/div)

Non-Inverting Small Signal Pulse Response

Time (1 µ s/div)

Non-Inverting Large Signal Pulse Response

Time (1 µ s/div)

Time (1 µ s/div)

Non-Inverting Small Signal Pulse Response

Time (1 µ s/div)

Non-Inverting Small Signal Pulse Response

Stability vs Capacitive Load 10000 +2.5V Capacitive Load (pF) 1000 $V_{SS} = \pm 2.5 V$ $A_{V} = +1$ $R_1 = 1M\Omega$ $V_{OUT} = 100 \text{mV}_{PF}$ 100 25% Overshoot 10 -2 -1.5 -1 -0.5 0 0.5 1.5 1 Output Voltage (V)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.