Fonctions récursives - exponentiation effiace

laurent.jospin.59@free.fr, http://jospin.lstl.fr

Lycée Saint-Louis, Paris

Le mot clef rec de Caml permet de définir des fonctions récursives telles que :

1. Ecrire une fonction récursive qui calcule $\binom{n}{k}$ par récurrence à l'aide de la formule du triangle de Pascal :

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

pour tous entiers naturels n et k tels que 0 < k < n.

De plus, on rappelle que : $\binom{n}{n} = \binom{n}{0} = 1$ pour tout entier naturel n.

1 Exponentiation

Soit E un ensemble muni d'une loi de composition interne associative notée * et on note 1 l'élément neutre. On s'intéresse au calcul des puissances entières de a. La multiplication sur E est considérée comme l'opération coûteuse de nos programmes (on pourra par exemple imaginer que $E=\mathbb{K}[X]$ ou $E=\mathscr{M}_k(\mathbb{K})$ pour justifier cette considération). On ne comptera pas la multiplication par 1 comme une multiplication dans les nombres de multiplications demandés et on évitera cette multiplication autant que possible dans les programmes.

Pour tout $a \in E$, on définit a^n par : $a^0 = 1$, et par récurrence $a^{n+1} = a^n * a$.

- 2. En se basant uniquement sur cette définition, ecrire une fonction récursive puissance n a qui calcule a^n . On utilisera la multiplication entière. Préciser le nombre de multiplications en fonction de n. Quel est le type de puissance 3 et que représente puissance 3?
- **3.** Soit $k \in \mathbb{N}$. Justifier que tout entier compris entre 2^k et $2^{k+1} 1$ s'écrit avec exactement k+1 bits (significatifs). En déduire le nombre de bits significatifs d'un entier n non nul en fonction de n.
- **4** (Méthode binaire). En remarquant que $\forall p \in \mathbb{N}^*$ $\left\{ \begin{array}{l} a^{2p} = a^p * a^p \\ a^{2p+1} = a^p * a^p * a \end{array} \right.$, écrire une fonction *récursive* plus efficace pour calculer a^n . Préciser le nombre de multiplications effectuées en fonction du nombre $\nu(n)$ de 1 dans son écriture binaire, puis montrer que le nombre C(n) de multiplications sur l'entrée n est en $\Theta(\log_2 n)$ (c'est-à-dire qu'il existe $a,b\in\mathbb{R}_+^*$ tel que $a\log_2 n\leqslant C(n)\leqslant b\log_2 n$ pour tout n à partir d'un certain rang).
- 5. Justifier que le calcul de a^{15} correspond à un pire cas pour l'algorithme puis montrer que le calcul de a^{15} n'est pas optimal avec cet algorithme.
- **6** (Méthode des facteurs). La méthode peut, en réalité, être adaptée en fonction du plus petit diviseur p non trivial de n. En effet si, n=pq, donner une méthode pour calculer a^n .
- 7. En déduire une fonction *récursive* basée sur la méthode des facteurs qui commencera par tester (uniquement) si n est divisible par 2, 3, 5 ou 7 et effectuera les calculs adaptés dans ces cas, puis sinon se raménera au cas n-1.
- **8.** Montrer que pour tout entier k, la méthode binaire est meilleure que la méthode des facteurs pour $n=33\times 2^k$ et que la méthode des facteurs est meilleure que la méthode binaire pour $n=15\times 2^k$.

2 Flèches de Knuth

Donald Knuth définit pour $a,b \in \mathbb{N}$: $a \uparrow b = a^b, a \uparrow \uparrow b = a^a$ avec b exemplaires de a, et plus généralement pour n > 1, $a \uparrow^n 0 = 1$ et pour tout entier $b \geqslant 0$, $a \uparrow^n b = a \uparrow^{n-1} (a \uparrow^n (b-1))$. Cette notation est parfois utilisée pour exprimer des majorants dans des problèmes combinatoires complexes.

- **9.** Définir une fonction récursive fleches_Knuth n a b qui calcule $a \uparrow^n b$ pour tous entiers naturels a,b,n.
- **10.** L'exécution de fleches_Knuth 2 3 4 ;; produit le résultat : int = -2124021781892527813. Calculer une valeur approchée du nombre de bits nécessaires pour écrire l'entier 3 ↑↑ 4 puis justifier le résultat obtenu.