CST 370 Homework (Complexity Analysis)

1. Consider the following algorithm.

ALGORITHM *Mystery(n)*

//Input: A nonnegative integer n

 $S \leftarrow 0$

for $i \leftarrow 1$ to n do

$$S \leftarrow S + i*i$$

return S

- a. What does this algorithm compute? = $S(n) = \sum_{i=1}^{n} i^2$
- b. What is its basic operation? = Multiplication, (i * i)
- c. How many times is the basic operation executed? = \mathbf{n} times
- d. What is the efficiency class of this algorithm? = O(n)
- 2. Consider the following algorithm.

ALGORITHM *Secret*(A[0...n-1])

//Input: An array A[O..n - 1] of n real numbers

 $minval \leftarrow A[O]; maxval \leftarrow A[O]$

for i \leftarrow 1 to n- 1 do

if
$$(A[i] \le minval)$$

 $minval \leftarrow A[i]$

if (A[i] > maxval)

 $maxval \leftarrow A[i]$

return maxval - minval

- a. What does this algorithm compute? = The difference between the maximum and minimum values of the array's elements.
- b. What is its basic operation? = The comparison operations, A[i] < minval or A[i] > maxval

- c. How many times is the basic operation executed? = 2(n-1) times
- d. What is the efficiency class of this algorithm? = O(n)
- 3. Compute the following sums.

$$a.1 + 3 + 5 + 7....999 = 250.000$$

$$1 + 2n = 999$$
 $S(n) = ((1 + 999)500)/2$
 $n = 500$ $= 500,000/2$
 $= 250,000$

b.
$$2 + 4 + 8 + 16 + \ldots + 1024 = 2,046$$

$$\begin{array}{lll} 1024 = 2 * 2^n - 1 & S(n) = 2(1 - 2^1 0) / 1 - 2 \\ 1024 = 4^n - 1 & = 2(-1023) / - 1 \\ 512 = 2^n - 1 & = -2,046 / - 1 \\ 2^n = 10 & = 2,046 & = 2,04$$

4. Climbing stairs Problem: Find the number of different ways to climb an n-stair stair- case if each step is either one or two stairs.

$$F(n) = F(n-1) + F(n-2)$$

for n>=3, $F(1) = 1$, $F(2) = 2$

5. Solve the following recurrence relations.

a.
$$x(n) = x(n-1) + 5$$
 for $n > 1$, $x(1) = 0 = 5(n-1)$

b.
$$x(n) = 3x(n-1)$$
 for $n > 1$, $x(1) = 4$ = $3^n-1 * 4$

c.
$$x(n) = x(n-1) + n$$
 for $n > 0$, $x(0) = 0 = n(n+1) / 2$

a.
$$= x(n) = x(n-1) + 5$$

 $x(n-1) = x(n-2) + 5$
 $x(n) = x(n-2) + 5 + 5$
 $= x(n) = x(n-2) + 5 + 5$
 $= x(n) = x(n-2) + 5 + 5$
 $x(n-2) = x(n-3) + 5 + 5$
 $x(n) = x(n-3) + 5 + 5 + 5$
 $= x(n) = x(n-3) + 5 + 5 + 5$
 $= x(n) = x(n-3) + 5 + 5 + 5$
 $= x(n) = 3x(n-2)$
 $= x(n) = 3x(n-2)$

c. =
$$x(n) = x(n-1) + n$$

 $x(n-1) = x(n-2) + n-1$
 $x(n) = x(n-2) + n-1 + n$
= $x(n) = x(n-2) + 2n - 1$
 $x(n-2) = x(n-3) + 2(n-1) - 1$
 $x(n) = x(n-3) + 2n - 2 - 1 + n$
= $x(n) = x(n-3) + 3n - 3$
 $x(n-3) = x(n-4) + 3(n-1) - 3$
 $x(n) = x(n-4) + 3n - 3 - 3 + n$
= $x(n) = x(n-4) + 4n - 6$
 $x(n-4) = x(n-5) + 4(n-1) - 6$
 $x(n) = x(n-5) + 4n - 4 - 6 - n$
= $x(n) = x(n-5) + 5n - 10$
= $x(n-k) + kn - n(n+1)/2$
= $x(n-(n-1) + n(n-1) - n(n+1)/2$
= $x(0) + n(n-1) - n(n+1)/2$
= $x(n+1)/2$