空间解析几何与多元函数微分学专题

一、空间解析几何

$$\mathbf{I} \mu = \frac{abc}{3\sqrt{3}} \mathbf{J}$$

例 2、 (2021 年一 (4)) 过三条直线
$$L_1$$
:
$$\begin{cases} x=0, \\ y-z=2, \end{cases} L_2$$
:
$$\begin{cases} x=0, \\ x+y-z+2=0, \end{cases}$$
 与

$$L_3: \begin{cases} x=\sqrt{2}, \\ y-z=0, \end{cases}$$
的圆柱面方程为_____.

$$[2x^2 + y^2 + z^2 - 2yz = 4]$$

例 3、已知二次锥面
$$4x^2 + 12y^2 - 3z^2 = 0$$
 与平面 $x - y + z = 0$ 的交线是一条直线 L ,

- (1) 试求直线 L 的标准(对称式)方程;
- (2) 平面 Π 通过直线 L, 且与球面 $x^2 + y^2 + z^2 + 6x 2y 2z + 10 = 0$ 相切, 试求平面 Π 的方程.

【(1)
$$\frac{x}{-3} = \frac{y}{1} = \frac{z}{4}$$
. (2) $2x + 2y + z = 0$ 或 $2x - 14y + 5z = 0$.】

例 4、求与两直线 $L_1: y=0, z=c$ 与 $L_2: x=0, z=-c (c\neq 0)$ 均相交,且与双曲线

 Γ : $xy + c^2 = 0$, z = 0 也相交的动直线所产生的曲面方程.

[
$$xy = z^2 - c^2 (c \neq 0)$$
]

例 5、经过定点 $M_0(x_0,0,0)$ 作椭球面 $S: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的切平面,其中 $x_0 > a > 0, b > 0$,

c > 0. 当切点 M(X,Y,Z) 在 S 上运动时,求直线 M_0M (包括它的延长线)的轨迹的方程.

例 6、设 P 为曲面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 处的切平面总与 xOy 平面垂直.

- (1)求点P的轨迹C的方程:
- (2)说明C是平面封闭曲线,并求该C在此平面上所围成的区域的面积.

(1)
$$C:\begin{cases} 2z - y = 0, \\ x^2 + \frac{3}{4}y^2 = 1. \end{cases}$$
 (2) $\sqrt{\frac{5}{3}}\pi$]

例 7、在椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上求一切平面,使得它在坐标轴的正半轴截取相等的线段.

$$[x + y + z = \sqrt{a^2 + b^2 + c^2}]$$

练习 1、设直线 $l: \begin{cases} x+y+b=0 \\ x+ay-z-3=0 \end{cases}$ 在平面 Π 上,而平面 Π 与曲面 $z=x^2+y^2$ 相切于点 (1,-2,5),求 a,b 的值.

$$[a = -5, b = -2]$$

练习 2、设直线
$$L: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$$
 及 $\Pi: x-y+2z-1=0$.

(1) 求直线 L 在平面 Π 上的投影直线 L_0 ; (2) 求 L 绕 y 轴旋转一周所成曲面的方程.

$$\begin{bmatrix} x-3y-2z+1=0 \\ x-y+2z-1=0 \end{bmatrix}, \quad x^2-2y^2+z^2-2=0 \end{bmatrix}$$

练习 3、在过直线 $\begin{cases} x+y+z+1=0\\ 2x+y+z=0 \end{cases}$ 的所有平面中,求和原点距离最大的平面.

$$[x-y-z-3=0]$$

二、多元函数微分学

例 8、(2021 年一 (2)) 设 z = z(x,y) 是由方程 $2\sin(x+2y-3z) = x+2y-3z$ 所确

例 9、(2019 年一 (4)) 已知
$$du(x,y) = \frac{ydx - xdy}{3x^2 - 2xy + 3y^2}$$
, 则 $u(x,y) = \underline{\qquad}$

$$[u(x,y)=\frac{1}{2\sqrt{2}}\arctan\frac{3}{2\sqrt{2}}(\frac{y}{x}-\frac{1}{3})+C.$$

例 10、(2020 年四)已知 $z = xf\left(\frac{y}{x}\right) + 2y\varphi\left(\frac{x}{y}\right)$,其中 f, φ 均为二次可微函数.

(1)
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial^2 z}{\partial x \partial y}$; (2) $\stackrel{\text{def}}{=} f = \varphi$, $\mathbb{E} \left. \frac{\partial^2 z}{\partial x \partial y} \right|_{x=a} = -by^2$ $\mathbb{E} \left. \frac{\partial^2 z}{\partial x \partial y} \right|_{x=a}$

例 11、(2018 年五)设
$$f(x,y)$$
 在区域 D 内可微,且 $\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \le M$,

 $A(x_1,y_1)$, $B(x_2,y_2)$ 是D内两点,线段AB包含在D内,证明

$$|f(x_1, y_1) - f(x_2, y_2)| \le M |AB|,$$

其中|AB|表示线段AB的长度.

【证明略】

例 12、(2017 年二)设二元函数 f(x,y) 在平面上有连续的二阶偏导数. 对任何角度 α ,定义一元函数 $g_{\alpha}(t)=f(t\cos\alpha,t\sin\alpha)$. 若对任何 α 都有 $\frac{\mathrm{d}g_{\alpha}(0)}{\mathrm{d}t}=0$ 且 $\frac{\mathrm{d}^2g_{\alpha}(0)}{\mathrm{d}t^2}>0$. 证明

f(0,0) 是 f(x,y) 的极小值.

 $[d = \frac{\sqrt{2}}{4}]$

【证明略】

例 14、设函数 z = f(x,y) 有连续的偏导数且在单位圆周 $L: x^2 + y^2 = 1$ 上的值为零,L 围成的闭区域记为 D , k 为任意常数.

(1)利用格林公式计算:

$$\iint_{D} [(x-ky)f'_{x}(x,y) + (kx+y)f'_{y}(x,y) + 2f(x,y)] dxdy ;$$

(2) 若 f(x,y) 在 D 上任意点处沿任意方向的方向导数的值都不超过常数 M, 证明:

$$\left| \iint_D f(x, y) \mathrm{d}x \mathrm{d}y \right| \leq \frac{1}{3} \pi M .$$

【(1)0; (2)证明略】

练习 4、设函数 z = f(x, y) 在点 (x_0, y_0) 处有 $f_x'(x_0, y_0) = a$, $f_y'(x_0, y_0) = b$,

则下列结论正确的是()

- (A) $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 存在,但f(x,y)在点 (x_0,y_0) 处不连续;
- (B) f(x,y)在点 (x_0,y_0) 处连续;
- (C) dz = adx + bdy;

(D)
$$\lim_{x \to x_0} f(x, y_0)$$
, $\lim_{y \to y_0} f(x_0, y)$ 都存在. 【 D 】

练习 5、已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续,且 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-xy}{(x^2+v^2)^2} = 1$,则 ().

- (A) 点(0,0)不是f(x,y)的极值点;
- (B) 点(0,0)是f(x,y)的极大值点;
- (C) 点 (0,0) 是 f(x,y) 的极小值点; (D) 无法判断点 (0,0) 是否为 f(x,y) 的极值点.

[A]

练习 6、设z=z(u,v)具有二阶连续偏导数,且z=z(x-2y,x+3y)满足

$$6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$$
, 求 $z = z(u, v)$ 的一般表达式.

$$z = \Phi(v)e^{\frac{u}{5}} + \psi(u), u = x - 2y, v = x + 3y$$

练习 7、设
$$\Sigma_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
,其中 $a > b > c > 0$, $\Sigma_2: z^2 = x^2 + y^2$, Γ 为 Σ_1 与 Σ_2 的

交线,求椭球面 Σ_1 在 Γ 上各点的切平面到原点距离的最大值和最小值.

$$\mathbf{I} d_{\text{max}} = ac \sqrt{\frac{a^2 + c^2}{a^4 + c^4}}, \quad d_{\text{min}} = bc \sqrt{\frac{b^2 + c^2}{b^4 + c^4}} \mathbf{I}$$