## 2014 Physics

## AI24BTECH11003 - Badde Vijaya Sreyas

1) Neutrons moving with speed  $10^3 \frac{m}{s}$  are used for the determination of crystal structure. If the Bragg angle for the first order diffraction is 30°, the interplanar spacing of the crystal is \_\_\_\_\_ Å.

(Given:  $m_n = 1.675 \times 10^{-27} \text{kg}, h = 6.625 \times 10^{-34} J.s$ )

2) The Hamiltonian of a particle of mass m is given by  $H = \frac{p^2}{2m} - \frac{\alpha q^2}{2}$ . Which of the following figured describes the motion of the particle in phase space?



- 3) The intensity of a laser in free space is  $150\frac{mW}{m^2}$ . The corresponding amplitude of the electric field of the laser is  $\frac{V}{m}$ .  $\left(\epsilon_0 = 8.854 \times 10^{-12} \frac{C^2}{N.m^2}\right)$
- 4) The emission wavelength for the transition  ${}^{1}D_{2} \rightarrow {}^{1}F_{3}$  is 3122Å. The ratio of populations of the final to initial states at a temperature 5000K is  $\left(h = 6.626 \times 10^{-34} J.s, c = 3 \times 10^8 \frac{m}{s}, k_B = 1.380 \times 10^{-23} \frac{J}{K}\right)$ 
  - a)  $2.03 \times 10^{-5}$
- b)  $4.02 \times 10^{-5}$
- c)  $7.02 \times 10^{-5}$  d)  $9.83 \times 10^{-5}$
- 5) Consider a system of 3 fermions, each of which can occupy any of the 4 available energy states with equal probability. The entropy of the system is:

- a)  $k_B \ln 2$
- b)  $2k_B \ln 2$
- c)  $2k_B \ln 4$
- d)  $3k_B \ln 4$
- 6) A particle is confined to a one-dimensional potential box with the potential

$$V(x) = \begin{cases} 0, & 0 < x < a \\ \infty, & \text{otherwise} \end{cases}$$

If the particle is subjected to a perturbation within the box,  $W = \beta x$ , where  $\beta$  is a small constant, the first-order correction to the ground state energy is:

a) 0

c)  $\frac{\beta a}{2}$  d)  $\beta a$ 

b)  $\frac{\beta a}{4}$ 

- 7) Consider the process  $\mu^- + \mu^+ \rightarrow \pi^- + \pi^+$ . The minimum kinetic energy of the muons  $(\mu)$  in the center-of-mass frame required to produce the pion  $(\pi)$  pairs at rest is \_\_\_\_\_ MeV. (Given:  $m_{\mu} = 105 \,\text{MeV}/c^2$ ,  $m_{\pi} = 140 \,\text{MeV}/c^2$ )
- 8) A one-dimensional harmonic oscillator is in the superposition of number states,  $|\psi\rangle$  =  $\frac{\sqrt{2}}{3}|2\rangle + \frac{1}{\sqrt{3}}|3\rangle$ . The average energy of the oscillator in the given state is \_\_\_\_\_  $\omega$ . 9) A nucleus X undergoes a first-forbidden  $\beta$ -decay to a nucleus Y. If the angular
- momentum (I) and parity (P), denoted by  $I^P$ , are  $\frac{7}{2}$  for X, which of the following is a possible  $I^P$  value for Y?
  - a)  $\frac{1}{2}^{+}$

b)  $\frac{1}{2}^{-}$ 

- c)  $\frac{3}{2}^{+}$
- d)  $\frac{3}{2}^{-}$
- 10) The current gain of the transistor in the following circuit is  $\beta_{dc} = 100$ . The value of the collector current  $I_C$  is \_\_\_\_ mA.



- 11) In order to measure a maximum of 1 V with a resolution of 1 mV using an n-bit A/D converter working under the principle of a ladder network, the minimum value of n is
- 12) If  $L_{+}$  and  $L_{-}$  are the angular momentum ladder operators, then the expectation value of  $(L_+L_- + L_-L_+)$ , in the state  $|l=1, m=1\rangle$  of an atom is \_\_\_\_\_  $2\hbar$ .
- 13) A low-pass filter is formed by a resistance R and a capacitance C. At the cut-off angular frequency  $\omega_c = \frac{1}{RC}$ , the voltage gain and the phase of the output voltage relative to the input voltage are, respectively:

  - a) 0.71 and  $45^{\circ}$  b) 0.71 and  $-45^{\circ}$  c) 0.5 and  $-90^{\circ}$
- d) 0.5 and 90°