

C2SM workshop Scientific Programming in Python

Harald von Waldow (C2SM) Bas Crezee (IAC/Atm.Dyn.) Nicolas Piaget (IAC/Atm.Dyn.) Marina Dütsch (IAC/Atm.Dyn.)

2014-09-11

Other language features

try - except

- catch exceptions
- handle exceptions
- throw your own exceptions

Other language features

try - except

- catch exceptions
- handle exceptions
- throw your own exceptions

Other language features

try - except

- catch exceptions
- handle exceptions
- throw your own exceptions

random

- generate random numbers
- various distributions
- sampling

- OS independent pathname manipulation
- prefer to constructing paths with string methods
- many convenience methods, e.g.
 os walk: traverses directory-tree
- file information, e.g. os.path.exists,

random

- generate random numbers
- various distributions
- sampling

- OS independent pathname manipulation
- prefer to constructing paths with string methods
- many convenience methods, e.g. os.walk: traverses directory-tree
- file information, e.g. os.path.exists,

random

- generate random numbers
- various distributions
- sampling

- OS independent pathname manipulation
- prefer to constructing paths with string methods
- many convenience methods, e.g.
 os.walk: traverses directory-tree
- file information, e.g. os.path.exists,

random

- generate random numbers
- various distributions
- sampling

- OS independent pathname manipulation
- prefer to constructing paths with string methods
- many convenience methods, e.g.
 os.walk: traverses directory-tree
- file information, e.g. os.path.exists, os.path.mtime...

random

- generate random numbers
- various distributions
- sampling

- OS independent pathname manipulation
- prefer to constructing paths with string methods
- many convenience methods, e.g. os.walk: traverses directory-tree
- file information, e.g. os.path.exists, os.path.mtime...

random

- generate random numbers
- various distributions
- sampling

- OS independent pathname manipulation
- prefer to constructing paths with string methods
- many convenience methods, e.g.
 os.walk: traverses directory-tree
- file information, e.g. os.path.exists, os.path.mtime...

random

- generate random numbers
- various distributions
- sampling

- OS independent pathname manipulation
- prefer to constructing paths with string methods
- many convenience methods, e.g.
- os.walk: traverses directory-tree
- file information, e.g. os.path.exists,
 - os.path.mtime ...

glob

• glob.glob: finds pathnames matching Unix shell patterns

os

operating system functionality

- os.environ: environment variables
- os.chdir, os.getcwd, ...
- os.getpid, os.getuid, ...

- sys.exit: terminates program
- sys.argv: gets command line arguments for python script

glob

• glob.glob: finds pathnames matching Unix shell patterns

os

operating system functionality

- os.environ: environment variables
- os.chdir, os.getcwd, ...
- os.getpid, os.getuid, ...

- sys.exit: terminates program
- sys.argv: gets command line arguments for python script

glob

• glob.glob: finds pathnames matching Unix shell patterns

os

operating system functionality

- os.environ: environment variables
- os.chdir, os.getcwd, ...
- os.getpid, os.getuid, ...

- sys.exit: terminates program
- sys.argv: gets command line arguments for python script

glob

glob.glob: finds pathnames matching Unix shell patterns

os

operating system functionality

- os.environ: environment variables
- os.chdir, os.getcwd, ...
- os.getpid, os.getuid, ...

- sys.exit: terminates program
- sys.argv: gets command line arguments for python script

glob

glob.glob: finds pathnames matching Unix shell patterns

os

operating system functionality

- os.environ: environment variables
- os.chdir, os.getcwd, ...
- os.getpid, os.getuid, ...

- sys.exit: terminates program
- sys.argv: gets command line arguments for python script

glob

glob.glob: finds pathnames matching Unix shell patterns

os

operating system functionality

- os.environ: environment variables
- os.chdir, os.getcwd, ...
- os.getpid, os.getuid, ...

- sys.exit: terminates program
- sys.argv: gets command line arguments for python script

subprocess

spawn new processes, connect to their input/output/error pipes, and obtain their return codes.

- subprocess.call: launch subprocess
- subprocess.Popen: lower level process handling

multiprocessing

- good to use multiple cores
- interprocess communication (Queues and Pipes
- use a "pool of workers"

- supports "test-driven" programming
- very useful for larger projects

subprocess

spawn new processes, connect to their input/output/error pipes, and obtain their return codes.

- subprocess.call: launch subprocess
- subprocess.Popen: lower level process handling

multiprocessing

- good to use multiple cores
- interprocess communication (Queues and Pipes
- use a "pool of workers"

- supports "test-driven" programming
- very useful for larger projects

subprocess

spawn new processes, connect to their input/output/error pipes, and obtain their return codes.

- subprocess.call: launch subprocess
- subprocess.Popen: lower level process handling

multiprocessing

- good to use multiple cores
- interprocess communication (Queues and Pipes
- use a "pool of workers"

- supports "test-driven" programming
- very useful for larger projects

subprocess

spawn new processes, connect to their input/output/error pipes, and obtain their return codes.

- subprocess.call: launch subprocess
- subprocess.Popen: lower level process handling

multiprocessing

- good to use multiple cores
- interprocess communication (Queues and Pipes
- use a "pool of workers"

- supports "test-driven" programming
- very useful for larger projects

subprocess

spawn new processes, connect to their input/output/error pipes, and obtain their return codes.

- subprocess.call: launch subprocess
- subprocess.Popen: lower level process handling

multiprocessing

- good to use multiple cores
- interprocess communication (Queues and Pipes
- use a "pool of workers"

- supports "test-driven" programming
- very useful for larger projects

subprocess

spawn new processes, connect to their input/output/error pipes, and obtain their return codes.

- subprocess.call: launch subprocess
- subprocess.Popen: lower level process handling

multiprocessing

- good to use multiple cores
- interprocess communication (Queues and Pipes
- use a "pool of workers"

- supports "test-driven" programming
- very useful for larger projects

subprocess

spawn new processes, connect to their input/output/error pipes, and obtain their return codes.

- subprocess.call: launch subprocess
- subprocess.Popen: lower level process handling

multiprocessing

- good to use multiple cores
- interprocess communication (Queues and Pipes
- use a "pool of workers"

- supports "test-driven" programming
- very useful for larger projects

pandas

- data-structures for data analysis
- a "Dataframe". like in R. but better.
- a timeseries-object
- huge number of utility functions
- integrated with matplotlib and statsmodels

- statistical models, e.g.
 - GLMs
 - robust linear models
 - nonparametric estimators
 - many tests
 - verv fast developing

pandas

- data-structures for data analysis
- a "Dataframe", like in R, but better.
- a timeseries-object
- huge number of utility functions
- integrated with matplotlib and statsmodels

- statistical models, e.g.
 - robust linear models
 - nonparametric estimators time-series analysis
 - many tests
- very fast developing

pandas

- data-structures for data analysis
- a "Dataframe", like in R, but better.
- a timeseries-object
- huge number of utility functions
- integrated with matplotlib and statsmodels

- statistical models, e.g.
 - robust linear models
 nonparametric estimators
 - many tests
 - very fast developing

pandas

- data-structures for data analysis
- a "Dataframe", like in R, but better.
- a timeseries-object
- huge number of utility functions
- integrated with matplotlib and statsmodels

- statistical models, e.g.
 GLMs
 - nonparametric estimators time-series analysis
 - many tests
- very fast developing

pandas

- data-structures for data analysis
- a "Dataframe", like in R, but better.
- a timeseries-object
- huge number of utility functions
- integrated with matplotlib and statsmodels

- statistical models, e.g.
 GLMs
 robust linear models
 nonparametric estimators
 time-series analysis
 many tests
- very fast developing

pandas

- data-structures for data analysis
- a "Dataframe", like in R, but better.
- a timeseries-object
- huge number of utility functions
- integrated with matplotlib and statsmodels

- statistical models, e.g.
 GLMs
 robust linear models
 nonparametric estimators
 time-series analysis
 many tests
- very fast developing

pandas

- data-structures for data analysis
- a "Dataframe", like in R, but better.
- a timeseries-object
- huge number of utility functions
- integrated with matplotlib and statsmodels

- statistical models, e.g. GLMs
 - robust linear models nonparametric estimators
 - time-series analysis
 - many tests
- very fast developing

Sympy

Symbolic math. Like Matlab's symbolic toolbox.

scikit-learn

- machine learning
- "big-data" analysis
- data-mining

Sympy

Symbolic math. Like Matlab's symbolic toolbox.

scikit-learn

- machine learning
- "big-data" analysis
- data-mining

Sympy

Symbolic math. Like Matlab's symbolic toolbox.

scikit-learn

- machine learning
- "big-data" analysis
- data-mining