

SLD-Resolution Reduction of Second-Order Horn Fragments

Sophie Tourret Andrew Cropper

Max Planck Institute for Informatics University of Oxford

SLD-Resolution Reduction of Second-Order Horn Fragments

Prolog-based systems

- on Horn clauses
- using SLD-resolution
 - refutationally complete on Horn clauses
 - without factorization and duplication of literals

SLD-Resolution Reduction of Second-Order Horn Fragments

Prolog-based Inductive Logic Programming (ILP) systems

SLD-Resolution Reduction of Second-Order Horn Fragments

Second-Order Horn Fragment \mathcal{H}

 $P_0(A) \leftarrow P_1(A,B), P_2(C,C)$

[not interesting]

Connected Fragment \mathcal{H}^c

 $P_0(A) \leftarrow P_1(A,B), P_2(B,C)$

[mildly interesting]

2-Connected Fragment \mathcal{H}^{2c}

 $P_0(A, C) \leftarrow P_1(A, B), P_2(B, C), P_4(A)$

[very interesting]

SLD-Resolution Reduction of Second-Order Horn Fragments

What is the best set of metarules to use?

- Describes the desired fragment completely.
- Does not take too much memory.
- Allows for an efficient exploration of the search space

Can we <u>reduce</u> a fragment to a <u>finite</u> subset with these properties?

First Idea: Entailment Reduction

[Cropper, Muggleton, ILP'14]

$$C_{1} = P_{0}(A, B) \leftarrow P_{1}(A, B)$$

$$C_{2} = P_{0}(A, B) \leftarrow P_{1}(A, B), P_{2}(A)$$

$$C_{3} = P_{0}(A, B) \leftarrow P_{1}(A, B), P_{3}(A, B)$$

$$C_{4} = P_{0}(A, B) \leftarrow P_{1}(A, B), P_{3}(A, B), P_{4}(A, B)$$

 $\{C_1\} \models \{C_1, C_2, C_3, C_4\}$

Loss of completeness

 $C_1 \not\vdash_{\mathsf{SLD}} C_2, C_3, C_4$

Better Idea: Derivation Reduction

$$C_{1} = P_{0}(A, B) \leftarrow P_{1}(A, B)$$

$$C_{2} = P_{0}(A, B) \leftarrow P_{1}(A, B), P_{2}(A)$$

$$C_{3} = P_{0}(A, B) \leftarrow P_{1}(A, B), P_{3}(A, B)$$

$$C_{4} = P_{0}(A, B) \leftarrow P_{1}(A, B), P_{3}(A, B), P_{4}(A, B)$$

$$\{C_1, C_2, C_3\} \vdash_{\mathsf{SLD}} \{C_1, C_2, C_3, C_4\}$$

This problem is undecidable!

Can this be done for the fragments of interest?

Reduction of Connected Fragments

Given a fragment \mathcal{F} , the fragment $\mathcal{F}_{a,b}$ is such that:

- a is the maximal arity of the predicates,
- b is the maximal number of literals in the body of clauses,
- ∞ means unbounded.
- \mathcal{F} is <u>reducible</u> from \mathcal{F}' if any clause in \mathcal{F} can be derived using SLD-resolution from clauses in \mathcal{F}' .

 $\forall a \in \mathbb{N}^*, \mathcal{H}^c_{a,\infty}$ is reducible to $\mathcal{H}^c_{a,2}$.

The fragment \mathcal{H}^c is reducible to $\mathcal{H}^c_{\infty,2}$.

Reduction of the Connected Fragment $\mathcal{H}_{2,\infty}^c$

$$P_0(x_1, x_2) \leftarrow P_1(x_3, x_1), P_2(x_1), P_3(x_3), P_4(x_3)$$

$$P_0(x_1, x_2) \leftarrow P_2(x_1), H(x_1)$$

$$P_0(x_1, x_2) \leftarrow P_2(x_1), H(x_1)$$
 $H(x_1) \leftarrow P_1(x_3, x_1), P_3(x_3), P_4(x_3)$

Proof Idea of the Reduction of Connected Fragments

find a <u>spanning tree</u> where two adjacent vertices have at most a outgoing edges [here a = 2]

Reduction of the 2-Connected Fragment $\mathcal{H}^{2c}_{2,\infty}$

Not possible

Counter-example for $\mathcal{H}_{2.5}^{2c}$

$$P_0(x_1, x_2) \leftarrow P_1(x_1, x_3), P_2(x_1, x_4), P_3(x_2, x_3), P_4(x_2, x_4), P_5(x_3, x_4)$$

Counter-example for $\mathcal{H}^{2c}_{2,\infty}$

This transformation preserves irreducibility while increasing the size of the clause.

Summary

	SLD-resolution	resolution
connected (\mathcal{H}^c)	$\mathcal{H}^{c}_{\infty,2}$	$\mathcal{H}^{c}_{\infty,2}$
2-connected $(\mathcal{H}^{2c}_{2,\infty})$	NO	$\mathcal{H}^{2c}_{2,2}$

Counter-measures for the 2-Connected Fragment $\mathcal{H}^{2c}_{2,\infty}$

- Use standard resolution
- Allow a restricted use of triadic predicates
- Add irreducible clauses dynamically
- **...** ?

