

# Data Mining 資料探勘

## Sequential Pattern

#### General time-series data

(<a href="https://www.kaggle.com/c/LANL-Earthquake-Prediction">https://www.kaggle.com/c/LANL-Earthquake-Prediction</a> )







**Data Mining** 

## Sequence Data

#### **Sequence Database:**

| Object | Timestamp | Events     |
|--------|-----------|------------|
| Α      | 10        | 2, 3, 5    |
| Α      | 20        | 6, 1       |
| Α      | 23        | 1          |
| В      | 11        | 4, 5, 6    |
| В      | 17        | 2          |
| В      | 21        | 7, 8, 1, 2 |
| В      | 28        | 1, 6       |
| С      | 14        | 1, 8, 7    |





## Examples of Sequence Data

| Sequence<br>Database | Sequence                                      | Element<br>(Transaction)                                                 | Event<br>(Item)                          |
|----------------------|-----------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|
| Customer             | Purchase history of a given customer          | A set of items bought by a customer at time t                            | Books, diary products, CDs, etc          |
| Web Data             | Browsing activity of a particular Web visitor | A collection of files viewed by a Web visitor after a single mouse click | Home page, index page, contact info, etc |
| Event data           | History of events generated by a given sensor | Events triggered by a sensor at time t                                   | Types of alarms generated by sensors     |
| Genome sequences     | DNA sequence of a particular species          | An element of the DNA sequence                                           | Bases A,T,G,C                            |



## Formal Definition of a Sequence

A sequence is an ordered list of elements (transactions)

$$s = \langle e_1 e_2 e_3 ... \rangle$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)
  - a 8-sequence of length 5 for the example in the last slide



## Examples of Sequence

- Web sequence:
  - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff\_reports/summary\_SOE\_the\_initiating\_event.htm)

- < {clogged resin} {outlet valve closure} {loss of feedwater}
   {condenser polisher outlet valve shut} {booster pumps trip}
   {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:
  - <{Fellowship of the Ring} {The Two Towers} {Return of the King}>



#### Formal Definition of a Subsequence

A sequence  $\langle a_1 a_2 ... a_n \rangle$  is contained in another sequence  $\langle b_1 b_2 ... b_m \rangle$  ( $m \geq n$ ) if there exist integers  $i_1 < i_2 < ... < i_n$  such that  $a_1 \subseteq b_{i1}$ ,  $a_2 \subseteq b_{i1}$ , ...,  $a_n \subseteq b_{in}$ 

| Data sequence         | Subsequence   | Contain? |
|-----------------------|---------------|----------|
| < {2,4} {3,5,6} {8} > | < {2} {3,5} > | Yes      |
| < {1,2} {3,4} >       | < {1} {2} >   | No       |
| < {2,4} {2,4} {2,5} > | < {2} {4} >   | Yes      |

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is  $\geq minsup$ )  $_{i1=1}$   $_{i2=2}$   $_{i3=4}$

b = {Milk,Bread}{Apples}{Sausages}{Beer,Bread}



## What Is Sequential Pattern Mining?

 Given a set of sequences, find the complete set of frequent subsequences

A <u>sequence database</u>

| SID | sequence                              |
|-----|---------------------------------------|
| 10  | <a(<u>abc)(a<u>c</u>)d(cf)&gt;</a(<u> |
| 20  | <(ad)c(bc)(ae)>                       |
| 30  | <(ef)( <u>ab</u> )(df) <u>c</u> b>    |
| 40  | <eg(af)cbc></eg(af)cbc>               |



An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

$$<$$
a(bc)dc> is a subsequence of  $<$ a(abc) (ac)d(cf)>

Given <u>support threshold</u> min\_sup =2, <(ab)c> is a <u>sequential pattern</u>



### Sequential Pattern Mining: Definition

- □ Given:
  - a database of sequences
  - a user-specified minimum support threshold, minsup

- □ Task:
  - $\square$  Find all subsequences with support  $\ge minsup$



## **Extracting Sequential Patterns**

- $\square$  Given n events:  $i_1, i_2, i_3, ..., i_n$
- □ Candidate 1-subsequences:

$$<\{i_1\}>, <\{i_2\}>, <\{i_3\}>, ..., <\{i_n\}>$$

Candidate 2-subsequences:

$$<\{i_1, i_2\}>, <\{i_1, i_3\}>, ..., <\{i_2\} \{i_1\}>, <\{i_2\} \{i_2\}>, ..., <\{i_{n-1}\} \{i_n\}>$$

Candidate 3-subsequences:



### Sequential Pattern Mining: Challenge

- $\square$  Given a sequence: <{a b} {c d e} {f} {g h i}>
  - Examples of subsequences:<{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.
- How many k-subsequences can be extracted from a given n-sequence?



#### Mining Sequential Patterns

- Sequential Patterns [Agrawal, Shrikant ICDE1995]
  - Rakesh Agrawal and Ramakrishnan Srikant. "Mining sequential patterns". IEEE Intern'l Conf. on Data Eng., Mar. 1995, pp. 3-14.
  - Customer, time sequenced, not transaction
  - rents "Star Wars", then "Empire Strikes Back", then "Return of the Jedi" in that order
  - transform transactional to customer-sequenced
  - mine maximal sequence using Apriori\* (AprioriAll, AprioriSome,...)
- Apriori-based SP algorithm
  - □ GSP (R. Srikant, R. Agrawal, "Mining quantitative association rules in large relation tables", SIGMOD 1996.)



# Issues in Apriori-like sequential pattern mining methods

- A huge set of candidate sequences could be generated in a large sequence database.
- Many scan of databases in mining.
- Encountering difficulty when mining long sequential patterns.



## Algorithm

- Sort phase
  - customer id (primary key), time (second primary key)
- Litemset (large itemset) phase
  - support: the fraction of customers who bought the itemset in any one of their possibly many tx's

| Transaction Time | Customer Id | Items Bought |
|------------------|-------------|--------------|
| June 10 '93      | 2           | 10, 20       |
| June 12 '93      | 5           | 90           |
| June 15 '93      | 2           | 30           |
| June 20 '93      | 2           | 40, 60, 70   |
| June 25 '93      | 4           | 30           |
| June 25 '93      | 3           | 30, 50, 70   |
| June 25 '93      | 1           | 30           |
| June 30 '93      | 1           | 90           |
| June 30 '93      | 4           | 40, 70       |
| July 25 '93      | 4           | 90           |

| Customer Id | TransactionTime | Items Bought |
|-------------|-----------------|--------------|
| 1           | June 25 '93     | 30           |
| 1           | June 30 '93     | 90           |
| 2           | June 10 '93     | 10, 20       |
| 2           | June 15 '93     | 30           |
| 2           | June 20 '93     | 40, 60, 70   |
| 3           | June 25 '93     | 30, 50, 70   |
| 4           | June $25$ '93   | 30           |
| 4           | June 30 '93     | 40,70        |
| 4           | July 25 '93     | 90           |
| 5           | June 12 '93     | 90           |

Figure 1: Database Sorted by Customer Id and Transaction Time



## Algorithm (cont'd)

- Transformation phase
  - each tx is replaced by the set of all litemsets contained in that tx
- Sequence phase
- Maximal phase



# Customer-Sequence Version of the Database

| Customer Id | Customer Sequence           |
|-------------|-----------------------------|
| 1           | < (30) (90) >               |
| 2           | < (10 20) (30) (40 60 70) > |
| 3           | < (30 50 70) >              |
| 4           | < (30) (40 70) (90) >       |
| 5           | < (90) >                    |



# Large itemset Phase (support:2)

| Large Itemsets | Mapped To |
|----------------|-----------|
| (30)           | 1         |
| (40)           | 2         |
| (70)           | 3         |
| (40 70)        | 4         |
| (90)           | 5         |



## **Transformation Phase**

| Customer Id | Original                                   | Transformed                                            | After                                    |
|-------------|--------------------------------------------|--------------------------------------------------------|------------------------------------------|
|             | Customer Sequence                          | Customer Sequence                                      | Mapping                                  |
| 1           | < (30) (90) >                              | < {(30)} {(90)} >                                      | < {1} {5} >                              |
| 2           | < (10 20) (30) ( <mark>40 60 70</mark> ) > | < {(30)} {(40) (70) (40 70)} >                         | < {1} {2, 3, 4} >                        |
| 3           | < (30 50 70) >                             | < {(30), (70)} >                                       | < {1, 3} >                               |
| 4           | < (30) (40 70) (90) >                      | <pre>&lt; {(30)} {(40) (70) (40 70)} {(90)} &gt;</pre> | <pre> &lt; {1} {2, 3, 4} {5} &gt; </pre> |
| 5           | < (90) >                                   | < {(90)} >                                             | < {5} >                                  |



## Sequence Phase

- Apriori-like algorithm
- An example of Apriori candidate generation

| Sequence | Support |           |
|----------|---------|-----------|
| <1 2 3>  | 2       |           |
| <1 2 4>  | 2       |           |
| <1 3 4>  | 3       |           |
| <1 3 5>  | 2       |           |
| <2 3 4>  | 2       | <1 2 3 4> |
|          |         | <1 2 4 3> |

## Example

| Sequence | Support |
|----------|---------|
| <1 2>    | 2       |
| <1 3>    | 4       |
| <1 4>    | 3       |
| <1 5>    | 2       |
| <2 3>    | 2       |
| <2 4>    | 2       |
| <3 4>    | 3       |
| <3 5>    | 2       |

| <{1 5} {2} {3} {4}> |
|---------------------|
| <{1} {3} {4} {3 5}> |
| <{1} {2} {3} {4}>   |
| <{1} {3} {5}>       |
| <{4} {5}>           |

| Sequence | Support |
|----------|---------|
| <1>      | 4       |
| <2>      | 2       |
| <3>      | 4       |
| <4>      | 4       |
| <5>      | 4       |

Large 1-Sequences

| Large | 2-Sequences |
|-------|-------------|
|       |             |

<4 5>

| Sequence | Support |
|----------|---------|
| <1 2 3>  | 2       |
| <1 2 4>  | 2       |
| <1 3 4>  | 3       |
| <1 3 5>  | 2       |
| <2 3 4>  | 2       |

Large 3-Sequences

| Sequence  | Support |
|-----------|---------|
| <1 2 3 4> | 2       |

Large 4-Sequences

| Sequence  | Support |
|-----------|---------|
| <1 2 3 4> | 2       |
| <1 3 5>   | 2       |
| <4 5>     | 2       |

Maximal Large Sequences



## Maximal Sequence

- <(3) (4 5) (8)> is contained by <(7) (3 8) (9) (4 5</li>6) (8)>
- $\square < (3) (5) >$  is not contained in < (35) >, and vice versa
- In a set of sequences, a sequence s is maximal if s is not contained in any other sequences in the set



#### Notes

```
Step 1: SORT phase : into customer sequence
DB sorted major(customer id), minor(transaction_time)
Step 2: Litemset Phase: support+1 / per satisfied customer
Association rule problem with support count increment
difference
Step 3: Transformation Phase: transform by Litemset
Transaction transformed into contained Litemset
sequence, drop useless Ti.
Step 4: Sequence Phase : Key Algorithm
Step 5: Maximal Phase : find max. from large sequences
for (k=n; k > 1; k--) do
 for each k-sequence sk do delete from S all
subsequence of sk
```

#### Rule Discovery from Time Sequences

- (Das, Lin, Mannila, Renganathan, Smyth 98)
- Algorithm:
  - Cluster sliding windows
  - Label the windows in the same cluster with their cluster id
  - Generate association rule-like rules



## Sequential Patterns (cont'd)

- Discovering Episodes [Mannila, Toivonen; KDD 1995 and KDD 1996]
  - Collection of ordered events within an interval
  - Web page C is accessed 2 min after A, B



# **Episode Mining**

- Episode
  - A partially ordered collection of events occurring together
  - Can be described as DAG
- Serial Episode
- Parallel Episode
- Non-Serial and Non-Parallel





B

# Example of Episode Mining

#### Alarm data sequence:



#### Here:

- A, B, C and D are event (or here alarm) types
- 10...150 are occurrence times
- $s = \langle (D, 10), (C, 20), ..., (A, 150) \rangle$
- $T_s$  (starting time) = 10 and  $T_e$  (ending time) = 150
- Note: There needs <u>not</u> to be events on every time slot!



## **Event Sequence**

- Event Sequence S=(s,29,68) s=<(E,31),(D, 32),(F33),...,(D,67)>
- Window W=(w,35,40) w=<(A,35),(B,37),(C,38), (E,39)>





## Sliding Window

Example alarm data sequence:



The window width is 40 seconds



## Frequency of an Episode

- The fraction of windows in which the episode occurs
- An episode is frequent if its frequency >= min\_fr a given frequency threshold

$$fr(\alpha, S, W) = |S_w \in W(S, W)| \alpha \text{ occurs in } S_w|$$

$$|W(S, W)|$$

where W(S, W) is the set of all windows  $S_w$  of sequence S such that the window width is W

 Once the frequent episodes are known, they can be used to obtain rules



## Find Frequent Episodes

- Task: discover all frequent episodes from a given class(ex. all parallel or all serial) of episodes
  - Start from the episodes with one event
  - Do a level-wise search in the episode lattice
  - On each level, compute the candidates and check their frequencies



## FreeSpan

- Frequent pattern-projected Sequential pattern mining (KDD'00)
- Main Idea
  - project sequence databases into a set of smaller projected databases
  - grow subsequence fragments in each projected database
  - Divide-and-conquer approach
  - Complete set of sequential patterns can be divided into several subsets without overlaps



## Example of FreeSpan

Example database: min support = 2

| Sequence id | Sequence                            |
|-------------|-------------------------------------|
| 10          | <a(abc)(ac)d(cf)></a(abc)(ac)d(cf)> |
| 20          | <(ad)c(bc)(ae)>                     |
| 30          | <(ef)(ab)(df)cb>                    |
| 40          | <eg(af)cbc></eg(af)cbc>             |

f\_list = a:4,b:4,c:4,d:3,e:3,f:3 (frequent item list, sorted) g is deleted because of support of g <2.



## Example of FreeSpan (cont'd)

#### Finding sequential patterns containing only item a

| Sequence id | Sequence                            |
|-------------|-------------------------------------|
| 10          | <a(abc)(ac)d(cf)></a(abc)(ac)d(cf)> |
| 20          | <(ad)c(bc)(ae)>                     |
| 30          | <(ef)(ab)(df)cb>                    |
| 40          | <e(af)cbc></e(af)cbc>               |

{a}-projected database

10 <aaa>
20 <aa>
30 <a>
40 <a>

Frequent Patterns <a> <a>



## Example of FreeSpan (cont'd)

• Finding sequential patterns containing item b but no item after b in f\_list {b}-projected database

| Sequence id | Sequence                            |
|-------------|-------------------------------------|
| 10          | <a(abc)(ac)d(cf)></a(abc)(ac)d(cf)> |
| 20          | <(ad)c(bc)(ae)>                     |
| 30          | <(ef)(ab)(df)cb>                    |
| 40          | <e(af)cbc></e(af)cbc>               |

| _  |    |                   |
|----|----|-------------------|
|    | 10 | <a(ab)a></a(ab)a> |
| :> | 20 | <aba></aba>       |
|    | 30 | <(ab)b>           |
|    | 40 | <ab></ab>         |

Frequent Patterns <b> <ab> <ab> <(ab)>



## Example of FreeSpan (cont'd)

Finding other subsets of sequential patterns.

Sequence id Sequence

10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <e(af)cbc>

=> \begin{aligned} 10 & <a(abc)(ac)c> \\ 20 & <ac(bc)a> \\ 30 & <(ab)cb> \end{aligned}

<acbc>

{c}-projected database

Frequent Patterns
<c> <ac> <bc> <(bc)> <ca> <cb> <(ab)c> <acc> <acb>

40

How about {f}-projected database?

## PrefixSpan

- Prefix-projected Sequential pattern mining (Jian Pei, ICDE'01)
  - Projection-based
  - Prefix-based projection: less projections and quickly

shrinking sequences



## PrefixSpan - Concepts

- Prefix
  - e.g.  $s1 = \langle a(abc)(ac)d(cf) \rangle$ 
    - The prefixes of s1 are <a>,<aa>,<a(ab)>,<a(abc)>...
    - but <ab> and <a(bc)> are not
- Projection
  - e.g.  $s1 = \langle a(abc)(ac)d(cf) \rangle$ 
    - the projection of s1 w.r.t <bd> is <bd(cf)>



### PrefixSpan — Concepts

- Postfix
  - e.g.  $s1 = \langle a(abc)(ac)d(cf) \rangle$ 
    - The postfix of s1 w.r.t <aa> is  $<(_bc)(ac)d(cf)>$
    - The postfix of s1 w.r.t <bd> is <(cf)>



## Example of PrefixSpan

| Sequence id | Sequence                            |
|-------------|-------------------------------------|
| 10          | <a(abc)(ac)d(cf)></a(abc)(ac)d(cf)> |
| 20          | <(ad)c(bc)(ae)>                     |
| 30          | <(ef)(ab)(df)cb>                    |
| 40          | <e(af)cbc></e(af)cbc>               |

<a>-projected database

| 10 | <(abc)(ac)d(cf)> |
|----|------------------|
| 20 | <(_d)c(bc)(ae)>  |
| 30 | <(_b)(df)cb>     |
| 40 | <(_f)cbc>        |

By scanning <a>-projected database once, all the length-2 sequential patterns having prefix <a> can be found.

<aa>:2 <ab>:4 <(ab)>:2 <ac>:4 <ad>:2 <af>:2

Recursively, patterns with prefix <a> can be partitioned into 6 subsets.



## Example of PrefixSpan (cont'd)

<aa>-projected database

| Sequence<br>id | Sequence                            |
|----------------|-------------------------------------|
| 10             | <( <mark>ab</mark> c)<br>(ac)d(cf)> |
| 20             | <(_d)c(bc)<br>(ae)>                 |
| 30             | <(_b)(df)cb>                        |
| 40             | <(_f)cbc>                           |

| => | 10 | <(_bc)(ac)d(cf)> |
|----|----|------------------|
| ·  | 20 | <(_e)>           |

<ab>-projected database

|    | 10 | <(_c)(ac)d(cf)> |
|----|----|-----------------|
| => | 20 | <(_c)(ae)>      |
|    | 40 | <c></c>         |

Sequential patterns of <ab>-projected db: <(\_c)>,<(\_c)a>,<a><c>



#### Example of PrefixSpan (cont'd)

| Sequence id | Sequence                            |
|-------------|-------------------------------------|
| 10          | <a(abc)(ac)d(cf)></a(abc)(ac)d(cf)> |
| 20          | <(ad)c(bc)(ae)>                     |
| 30          | <(ef)(ab)(df)cb>                    |
| 40          | <e(af)cbc></e(af)cbc>               |

<br/>b>-projected database

Sequential patterns <br/> <b> <ba> <bc> <(bc)> <(bc)a> <bd> <bd> <bf>



#### References

- Rakesh Agrawal and Ramakrishnan Srikant. "Mining sequential patterns".
   IEEE Intern'l Conf. on Data Eng., Mar. 1995, pp. 3-14.
- R. Srikant and R. Agrawal, "Mining Sequential Patterns: Generations and Performance Improvements," Proc. 5th Int'l Conf. Extending Database Technology, Mar. 1996, pp. 3-17
- Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, Padhraic Smyth: Rule Discovery from Time Series. KDD 1998: 16-22
- Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen,
   Umeshwar Dayal, Meichun Hsu: PrefixSpan: Mining Sequential Patterns by
   Prefix-Projected Growth. ICDE 2001: 215-224
- loan Alfred Letia, Florin Craciun, Zoltan Köpe, Alexandru Lelutiu: First Experiments for Mining Sequential Patterns on Distributed Sites with Multi-Agents. IDEAL 2000: 187-192
- Shiby Thomas, Sunita Sarawagi: Mining Generalized Association Rules and Sequential Patterns Using SQL Queries. KDD 1998: 344-348



## References (cont'd)

- C.-R. Lin and M.-S. Chen, ``On the Optimal Clustering of Sequential Data," Proc. of the 2nd SIAM Intern'l Conference on Data Mining (SDM-02), April 11-13, 2002, pp. 141-157.
- Takahiko Shintani, Masaru Kitsuregawa: Mining Algorithms for Sequential Patterns in Parallel: Hash Based Approach. PAKDD 1998: 283-294
- F. Masseglia, Fabienne Cathala, Pascal Poncelet: The PSP Approach for Mining Sequential Patterns. PKDD 1998: 176-184
- P.-H. Wu, W.-C. Peng and M.-S. Chen, ``Mining Sequential Alarm Patterns in a Telecommunication Database," Workshop on Databases in Telecommunications (in conjunction with VLDB 2001), September 10, 2001

