Título: Mapeamento de Suscetibilidade a Inundações Utilizando o Google Earth Engine

Resumo

Este trabalho apresenta uma metodologia para o mapeamento da suscetibilidade a inundações utilizando o Google Earth Engine (GEE). A análise se baseia em diversos fatores de suscetibilidade, como o Índice Topográfico de Umidade (TWI), elevação, uso e cobertura da terra (LULC), declividade, precipitação, densidade de drenagem, Índice de Vegetação (NDVI), e distância de rios e estradas, além do tipo de solo. A ponderação da importância de cada fator foi realizada através do método do Processo Analítico Hierárquico (AHP). O objetivo principal é identificar e classificar áreas de acordo com o seu grau de risco de inundação, fornecendo informações cruciais para o planejamento e a gestão territorial. A implementação no GEE permitiu a análise eficiente de grandes volumes de dados geoespaciais, resultando na geração de um mapa de suscetibilidade com diferentes níveis de risco.

Palavras-chave: Suscetibilidade a Inundações, Google Earth Engine, Sensoriamento Remoto, Processo Analítico Hierárquico, AHP.

1. Introdução

As inundações representam um dos desastres naturais mais frequentes e impactantes em todo o mundo, causando significativos danos socioeconômicos e ambientais. O mapeamento da suscetibilidade a inundações é uma etapa fundamental para a identificação de áreas vulneráveis e para o desenvolvimento de estratégias de prevenção e mitigação. Nesse contexto, o uso de ferramentas de sensoriamento remoto e Sistemas de Informação Geográfica (SIG), como o Google Earth Engine (GEE), tem se mostrado altamente eficaz devido à sua capacidade de processar e analisar grandes volumes de dados geoespaciais de forma eficiente.

Este trabalho tem como objetivo apresentar uma metodologia para o mapeamento da suscetibilidade a inundações utilizando o GEE, combinando diversos fatores ambientais relevantes e o método do Processo Analítico Hierárquico (AHP) para a ponderação da importância de cada fator. A análise resultante permite a identificação e classificação de áreas com diferentes níveis de risco de inundação, fornecendo subsídios importantes para o planejamento e a gestão territorial.

2. Materiais e Métodos

A metodologia desenvolvida para o mapeamento da suscetibilidade a inundações envolveu a seleção e análise de diversos fatores ambientais, a aplicação do método AHP para a determinação dos pesos de cada fator, e a implementação da análise no ambiente do Google Earth Engine.

2.1. Fatores de Suscetibilidade a Inundações

Foram considerados os seguintes fatores de suscetibilidade a inundações, cada um representando uma característica específica do ambiente que contribui para a probabilidade de ocorrência de inundações:

 Índice Topográfico de Umidade (TWI): Mede o potencial de acúmulo de água no terreno, calculado pela fórmula TWI = In(A/tan(β)), onde A é a área de contribuição (acúmulo de água na encosta) e β é o declive em radianos.
 Valores altos indicam maior risco de inundação devido ao maior acúmulo de água.

- Elevação: Áreas de menor altitude tendem a acumular mais água, sendo mais propensas a inundações. Os dados de elevação foram obtidos através de modelos como o SRTM (Shuttle Radar Topography Mission).
- Uso e Cobertura da Terra (LULC): Classifica a superfície terrestre em diferentes categorias de ocupação. Áreas urbanas e com solo exposto geralmente apresentam maior escoamento superficial, aumentando o risco de inundações.
- **Declive (Slope):** Representa a inclinação do terreno. Declives muito suaves podem favorecer o acúmulo de água, enquanto declives acentuados tendem a promover o escoamento.
- **Precipitação:** O volume de chuva em um determinado período influencia diretamente o risco de inundações, especialmente em eventos de precipitação intensa.
- **Densidade de Drenagem:** Mede a extensão dos cursos d'água por unidade de área. Uma alta densidade de drenagem pode indicar maior risco em alguns contextos devido ao aumento das vias de escoamento.
- Índice de Vegetação (NDVI): Indica a quantidade de vegetação saudável.
 Áreas com vegetação densa tendem a ter maior infiltração de água, reduzindo o risco de inundações.
- Distância dos Rios: A proximidade a corpos d'água aumenta significativamente o risco de inundações, principalmente em eventos de cheia.
- **Distância das Estradas:** Estradas podem interferir na drenagem natural, atuando como barreiras ou canais de escoamento, o que pode levar ao acúmulo de água em áreas próximas.
- Tipo de Solo: A capacidade de infiltração do solo é um fator crucial. Solos arenosos permitem maior infiltração, enquanto solos argilosos possuem menor capacidade de infiltração, aumentando o risco de escoamento superficial.

2.2. Processo Analítico Hierárquico (AHP)

O método do Processo Analítico Hierárquico (AHP) foi utilizado para determinar os pesos de importância de cada fator de suscetibilidade. Este método envolve a comparação pareada dos fatores utilizando uma escala de importância (Escala de

Saaty), que varia de 1 (mesma importância) a 9 (extremamente mais importante). Uma matriz de comparação é construída com base nas avaliações dos especialistas ou no julgamento técnico do pesquisador. Os pesos finais de cada fator são então calculados a partir desta matriz.

ANEXO 1 - Matriz AHP

Após a construção da matriz de comparação, foram realizados os cálculos para obter os pesos normalizados de cada critério, seguindo os passos de soma das colunas, normalização da matriz e cálculo da média das linhas.

ANEXO 2 – Matriz Normalizada

É importante ressaltar que a consistência das comparações realizadas no AHP deve ser verificada através do cálculo do Índice de Consistência (IC) e da Razão de Consistência (RC).

Verificação da Consistência da Matriz AHP

Após a construção da matriz de comparação pareada (Anexo 1), foi realizada a verificação de consistência, uma etapa essencial para garantir a coerência dos julgamentos utilizados no método AHP.

A verificação se baseia no cálculo do **Índice de Consistência (IC)** e da **Razão de Consistência (RC)**, conforme proposto por Saaty (1980). Primeiramente, foi calculado o **autovalor máximo** (λma'x | lambda_{\text{máx}}\)λma'x) a partir da multiplicação da matriz original pelo vetor de pesos obtido (médias das linhas da matriz normalizada). Para este estudo, obteve-se:

- λma'x≈9,26\lambda_{\text{máx}} \approx 9,26\na'x ≈9,26
- n=9n=9n=9 (número de critérios)
- RI=1,45RI=1,45RI=1,45 (Índice Aleatório de Saaty para n=9n=9n=9)

Aplicando as fórmulas:

```
 \begin{split} IC &= \lambda ma'x - nn - 1 = 9,26 - 98 = 0,0325IC = \frac{\{\{\lambda mbda_{\{\lambda max\}\}\} - n\}\}\{\{n - 1\}\} = \{frac\{\{9\},\}26 - 9\}\}\{\{8\}\}\} = 0\},0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 89,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 80,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 80,26 - 9 = 0,0325IC = n-1\lambda ma'x - n = 80,26 - 9 = 0,0325IC = n-1\lambda
```

A Razão de Consistência (RC) foi inferior a 0,1, indicando que os julgamentos realizados na matriz de comparação são consistentes. Dessa forma, os pesos atribuídos aos fatores são confiáveis e podem ser utilizados na composição do mapa de suscetibilidade.

2.3. Implementação no Google Earth Engine e Cálculo do TWI

A metodologia foi implementada no Google Earth Engine (GEE), uma plataforma baseada em nuvem para análise de dados geoespaciais. As etapas de implementação incluíram:

- Importação da área de estudo: Delimitação da área de análise através da importação de um shapefile ou definição de um polígono.
- Importação dos conjuntos de dados: Carregamento dos dados de elevação (SRTM), água superficial (JRC Global Surface Water), Landsat para NDVI e cobertura da terra, dados de precipitação e outros relevantes.
- Geração de mapas de corpos d'água: Detecção de áreas com presença frequente de água para o cálculo da distância dos rios.
- Cálculo da distância da água: Geração de um mapa com a distância euclidiana de cada pixel ao corpo d'água mais próximo.
- Geração de mapa de elevação e declive: Utilização dos dados de elevação para gerar o mapa de elevação e o mapa de declive através da função ee.Terrain.slope().

Um dos desafios encontrados durante a implementação no GEE foi a ausência de uma função nativa para o cálculo do Índice Topográfico de Umidade (TWI) na API JavaScript. A fórmula do TWI requer a área de contribuição do fluxo (flowAccumulation), uma funcionalidade não diretamente disponível nessa interface do GEE. Para superar esta limitação, adotou-se uma abordagem alternativa para estimar a acumulação de fluxo, conforme detalhado a seguir:

- Preenchimento de depressões: Utilizou-se a função ee.Terrain.fillMinima() para preencher pequenas depressões no modelo de elevação (SRTM), minimizando artefatos que poderiam influenciar o fluxo da água.
- 2. Cálculo do declive: O declive em radianos foi calculado a partir da elevação utilizando as funções ee.Terrain.slope() e conversão para radianos (.multiply(Math.PI).divide(180)). A tangente do declive (.tan()) foi então obtida.

- 3. Correção de valores baixos de declive: Para evitar divisões por zero ou valores próximos de zero, que poderiam gerar instabilidade no cálculo do TWI, valores de tangente de declive menores ou iguais a zero foram substituídos por um valor mínimo de 0.001.
- 4. Aproximação da acumulação de fluxo: Dada a indisponibilidade de uma função direta para acumulação de fluxo em JavaScript no GEE, utilizou-se uma aproximação baseada em convolução. Um kernel circular com um raio de 300 metros foi aplicado à imagem de elevação preenchida (filled.convolve(kernel)). Esta operação de convolução soma os valores de elevação dentro da janela circular, fornecendo uma estimativa da área de contribuição para cada pixel.
- 5. **Cálculo do TWI:** O TWI foi então calculado dividindo a imagem aproximada da acumulação de fluxo (accProxy) pela tangente corrigida do declive (tanSlopeFixed) e aplicando o logaritmo natural (.log()).
- 6. **Normalização do TWI:** Finalmente, os valores do TWI foram normalizados para uma escala de 0 a 1 utilizando a função unitScale(5, 15) e limitados a este intervalo com clamp(0, 1).
- Combinação dos fatores: Normalização dos valores de cada fator para uma escala comum (geralmente de 0 a 1) e aplicação dos pesos obtidos no AHP através da multiplicação de cada camada pelo seu respectivo peso. A soma ponderada dos fatores resultou no mapa de suscetibilidade final.

3. Resultados e Discussão

O mapa de suscetibilidade a inundações gerado no GEE classificou a área de estudo em diferentes níveis de risco, que podem ser categorizados em: muito alto risco, alto risco, médio risco, baixo risco e muito baixo risco. Esta classificação é resultado da combinação ponderada dos fatores de suscetibilidade, onde áreas com maior probabilidade de inundação apresentam os níveis mais altos de risco.

```
var mapaSuscetibilidade = decliveNorm.multiply(0.10)
    .add(distRiosNorm.multiply(0.16))
    .add(NDVINorm.multiply(0.07))
```

```
.add(chuvaAcumuladaNorm.multiply(0.09))
.add(twiManualNorm.multiply(0.15))
.add(densidadeDrenagemNorm.multiply(0.09))
.add(lulcNorm.multiply(0.22))
.add(elevacaoNorm.multiply(0.03))
.add(distNorm.multiply(0.09))
.rename('suscetibilidade');
Mapa de Risco=(Fator1 ×Peso1 )+(Fator2 ×Peso2 )+...
```

A análise dos pesos obtidos no AHP permitiu identificar a importância relativa de cada fator na determinação da suscetibilidade a inundações na área de estudo. Fatores como a distância dos rios e o TWI, por exemplo, podem ter apresentado pesos maiores, indicando sua maior influência no risco de inundação.

A visualização do mapa de suscetibilidade permite identificar espacialmente as áreas mais vulneráveis, auxiliando no planejamento de ações preventivas e na tomada de decisões para a gestão do uso do solo. Áreas classificadas com alto e muito alto risco podem demandar medidas específicas, como restrições de ocupação, implementação de sistemas de drenagem eficientes ou realocação de infraestruturas críticas.

IMAGEM 1: Mapa final de suscetibilidade

4. Conclusão

A metodologia apresentada demonstrou a eficácia da integração entre o Google Earth Engine e o método do Processo Analítico Hierárquico para o mapeamento da suscetibilidade a inundações. A capacidade do GEE de processar grandes volumes de dados de sensoriamento remoto e a flexibilidade do AHP na incorporação de múltiplos critérios e na definição de seus pesos de importância, tornam esta abordagem uma ferramenta poderosa para a análise de riscos ambientais.

A aplicação desta metodologia pode ser adaptada a diferentes áreas geográficas, bastando ajustar a área de estudo, os conjuntos de dados utilizados e a matriz de comparação AHP de acordo com as características específicas de cada região. Os resultados obtidos fornecem informações valiosas para o planejamento territorial, a gestão de recursos hídricos e a implementação de medidas para a redução dos impactos causados por inundações.

ANEXO 1 Matriz AHP

	TWI — Indice Topográfico de Umidade	Elevação	LULC — Uso e Cobertura da Terra	Declive (Slope)			NDVI — Índice de Vegetação	Distância dos Rios	Distância das Estradas	
TWI — Índice Topográfico de Umidade	1	5	1/2		2	3	2	1/2	1	
Elevação	1/5	1	1/5	1/3	1/3	1/2	1/2	1/5	1/3	
LULC — Uso e Cobertura da Terra	2	5	1	3	3	2	2	2	2	
Declive (Slope)	1/3	3	1/3	1	2	2	2	1/2	1	
Precipitação	1/2	3	1/3	1/2	1	2	2	1/2	1	
Densidade de Drenagem	1/3	2	1/2	1/2	1/2	1	2	1	1	
NDVI — Índice de Vegetação	1/2	2	1/2	1/2	1/2	1/2	1	1/2	1	
Distância dos Rios	2	5	1/2	2	2	1	2	1	2	
Distância das Estradas	1	3	1/2		1	1_	1	1/2		
peso coluna	7,87	29,00	4,37	11,83	12,33	13,00	14,50	6,70	10,33	

ANEXO 2

Matriz com valores normalizado e média

	TWI — Índice Topográfico de Umidade	Elevação	LULC — Uso e Cobertura da Terra	Declive (Slope)		Densidade de Drenagem	NDVI — Índice de Vegetação	Distância dos Rios	Distância das Estradas	MEDIA
TWI — Indice Topográfico de Umidade	0,13	0,17	0,11	0,25	0,16	0,23	0,14	0,07	0,10	0,15
Elevação	0,03	0,03	0,05	0,03	0,03	0,04	0,03	0,03	0,03	0,03
LULC — Uso e Cobertura da Terra	0,25	0,17	0,23	0,25	0,24	0,15	0,14	0,30	0,19	0,22
Declive (Slope)	0,04	0,10	0,08	0,08	0,16	0,15	0,14	0,07	0,10	0,10
Precipitação	0,06	0,10	0,08	0,04	0,08	0,15	0,14	0,07	0,10	0,09
Densidade de Drenagem	0,04	0,07	0,11	0,04	0,04	0,08	0,14	0,15	0,10	0,09
NDVI — Índice de Vegetação	0,06	0,07	0,11	0,04	0,04	0,04	0,07	0,07	0,10	0,07
Distância dos Rios	0,25	0,17	0,11	0,17	0,16	0,08	0,14	0,15	0,19	0,16
Distância das Estradas	0,13	0,10	0,11	0,08	0,08	0,08	0,07	0,07	0,10	0,09
	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	<u>1,00</u>