DETECTING PARKINSONS DISEASE USING MACHINE LEARNING

ASSIGNMENT - 4

Date	4th October 2022		
Team ID	PNT2022TMID27836		
Student Name	Paavarasan S(311519104042)		
Domain Name	HealthCare		
Project Name	Detecting Parkinsons Disease using Machine Learning		
Maximum Marks	2 Marks		

1.) IMPORT THE REQUIRED LIBRARIES

```
▼ 1.)IMPORT THE REQUIRED LIBRARIES

[1] import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
```

2.)DOWNLOAD AND UPLOAD THE DATASET

3.) HANDLE MISSING VALUES AND DEAL WITH THEM

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

5.) PERFORM VARIOUS VISUALISATIONS a.) UNIVARIANTE ANALYSIS

b.) MULTI - VARIANTE ANALYSIS

-	1 91		Age	Annual Income (k\$)	Spending Score (1-100)
Q	Os L-1	Age	1.000000	-0.012398	-0.327227
{x}		Annual Income (k\$)	-0.012398	1.000000	0.009903
()		Spending Score (1-100)	-0.327227	0.009903	1.000000

6.) FIND AND REPLACE THE OUTLIERS

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

8.) SCALING THE DATA

9.) PERFORMING ANY OF THE CLUSTERING ALGORITHMS

10.) ADD THE CLUSTER DATA WITH THE PRIMARY DATASET

11.)SPLITTING THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

12.) SPLIT THE DATA INTO TRAINING AND TESTING DATA

13.) BUILD THE MODEL

• 11.)BUILD THE MODEL	
<pre>[22] from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier()</pre>	

14.) TRAIN THE MODEL

▼ 12.)TRAIN THE MODEL	
<pre> via [23] model.fit(x_train,y_train) via [23] model.fit(x_train,y_train,y_train) via [23] model.fit(x_train,y_train,y_train,y_train) via [23] model.fit(x_train,y</pre>	
RandomForestClassifier()	

15.) TEST THE MODEL

16.) MEASURE THE PERFORMANCE USING METRICS


```
[ ] print(metrics.classification_report(y_test,y_predict))

precision recall fi-score support

0 1.00 1.00 1.00 1.00 2

1 1.00 1.00 1.00 3

2 0.83 1.00 0.91 5

3 1.00 1.00 1.00 7

4 1.00 1.00 1.00 7

5 1.00 0.80 0.89 5

6 1.00 1.00 1.00 6

7 7 1.00 1.00 1.00 5

accuracy 0.97 40

macro avg 0.98 0.97 0.97 40

weighted avg 0.98 0.97 0.97 40
```