Interpreting the Geochemistry of Southern California Granitic Rocks using Machine Learning

Germán H. Alférez¹, Jocksan Rodríguez¹, Benjamin Clausen², and Lance Pompe²

- Global Software Lab, Facultad de Ingeniería, Universidad de Montemorelos, Montemorelos, N.L., Mexico
- 2. Geoscience Research Institute, Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA

Geochemistry

Geochemistry helps one to determine:

- The physical conditions under which the rocks formed.
- The chemical distribution or redistribution of elements over geologic time [1].

Area of Interest

- Cretaceous batholithic rocks in southern
 California [2], which were emplaced in a plate tectonic subduction zone.
 - A batholith (or large granitic body) covers more than one hundred square kilometers in the crust [3, 4].

Northern Peninsular Ranges batholith (PRB) in southern California

Contribution

- To compare:
 - Our previous geochemical interpretation of the Californian northern Peninsular Ranges Batholith based on Principal Component Analysis (PCA) and Geographic Information Systems (GIS).
 - The results from machine learning (K-Means)
 based on a larger data set with almost 800 samples
 that comes from a larger area in southern
 California.

Our Previous Work

- 1. In our previous work [5], we identified multivariate outliers using **Mahalanobis distance** [9], and excluded.
- 2. Then four components, identified by PCA, were mapped with GIS to observe their spatial distribution.

Our Previous Work (Cont.)

- PCA is a statistical method based on the variance between variables where high-dimensional data is transformed into low dimensional data [7].
 - Reduce 40 geochemical variables to 4 components.
- **GIS** is a system designed to capture, store, manipulate, analyze, manage, and present all types of **spatial or geographical data.**
 - We approximated the values of the discrete sample points over the whole study region to recreate the continuous geochemical variation that was discretely sampled in the field [8].

Our Previous Work (Cont.)

- Four components were identified:
 - **Compatible:** compatible (and negatively correlated incompatible) elements indicate extent of differentiation as typified by SiO₂ (*Silicon dioxide*).
 - High Field Strength (HFS): HFS elements indicate crustal contamination as typified by Sri (Initial 87 Sr/86 Sr ratios).
 - **Heavy Rare Earth (HRE):** HRE elements indicate source depth as typified by the Gd/Yb (*Gadolinium/Ytterbium*) ratio.
 - Large Ion Lithophile (LIL) elements: LIL elements indicate alkalinity as typified by the K₂O/SiO₂ (*Potassium oxide/Silicon dioxide*) ratio.

Geochemical Analysis by Means of Machine Learning

WEKA was used to carry out the geochemical analysis of the southern California granitic rocks [14].

- Free tool
- Written in Java
- Large number of data analysis techniques
- Facilitates data visualization

Geochemical Analysis by Means of Machine Learning (Cont.)

- **Clustering** to group the set of samples by geochemical factor (SiO₂, Sri, Gd/Yb, and K₂O/SiO₂).
 - Samples in the same cluster are more similar to each other than to those in other clusters.
 - **K-Means:** aims to partition *n* observations into *k* clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster.

SiO₂ (Silicon Dioxide) Analysis

Figure. 1. Spatial distribution and concentration of SiO₂. The zones in red have a concentration above 70%. The zones in blue have a concentration below 60%

Figure 2. Cluster assignment visualization for SiO₂.

Cluster 0 is in blue, Cluster 1 is in yellow, Cluster 2 is in red, and Cluster 3 is in green

Table 1. WEKA results for percent SiO2

Cluster #	Number of samples	Oxide concentration
0	104	54.4%
_ 1	294	63.4%
2	181	73.4%
3	192	68.0%

Sri (Initial 87Sr/86Sr ratios) Analysis

Figure 3. Spatial distribution and concentration of Sr_i . The zones in red have a value greater than 0.707 for this variable. The zones in blue have a value less than 0.705

Figure 4. Cluster assignment visualization for Sri.

Cluster 0 is in yellow, Cluster 1 is in green, Cluster 2 is in red, and Cluster 3 is in blue

Table 2. WEKA results for Sr_i

Cluster #	Number of samples	Isotope ratio
0	135	0.7091
1	358	0.7068
2	31	0.7126
3	243	0.7042

Gd/Yb (Gadolinium/Ytterbium) Analysis

Figure. 5. Spatial distribution and concentration ratios of Gd/Yb. The zones in red have a high concentration above 2 for this ratio. The zones in blue have a low concentration below 2 for this ratio

Figure. 6. Cluster assignment visualization for Gd/Yb. Cluster 0 is in yellow, Cluster 1 is in red, Cluster 2 is in blue, and Cluster 3 is in green

Table 3. WEKA results for Gd/Yb

Cluster #	Number of samples	Element ratios
0	461	2.4
1	96	3.6
2	119	1.8
3	95	1.3

K₂O/SiO₂ (Potassium Oxide/Silicon Dioxide) Analysis

Figure 7. Spatial distribution and concentration of K₂O/SiO₂. The zones in red have a high ratio above 0.03. The zones in blue have a low ratio below 0.03

Figure. 8. Cluster assignment visualization for K₂O/SiO₂. Cluster 0 is in yellow, Cluster 1 is in blue, Cluster 2 is in red, and Cluster 3 is in orange

Table 4. WEKA results for K2O/SiO2

Cluster #	Number of samples	Ratio values
0	277	0.045
1	81	0.007
2	164	0.066
3	249	0.029

Related Work

Instead of using only two or three elements to group the data into clusters [15-18], this research used PCA, GIS, and machine learning:

- To group large geochemical data sets more effectively
- To find new patterns

Discrimination

Related Work (Cont.)

- Some of the most recent machine learning techniques have been used in:
 - Analyzing large quantities of spatially referenced seafloor video mosaics of mud volcanoes [25]
 - Discriminating tsunami deposits in Japan
 [26]
 - Predicting acid mine drainage [27]
 - Prospecting for minerals [28, 29]

Machine Learning

Conclusions

- An approach to carry out geochemical analysis by means of machine leaning.
 - K- Means.
- We demonstrated that the results with PCA and GIS are similar to the results found with K- Means.
 - This is an important finding because geologists will be able to: 1) use machine learning to validate what they find with statistical tools; or 2) use machine learning to obtain fast results with easily available tools.

Future Work

- Explore other ways to use machine learning to analyze geochemical data and geological events.
 - For instance, Could we predict possible earthquakes by means of generating forecasts based on historical data?

Thank you!