Introduction to machine learning

Maksim Kretov

Lecture 7: Training deep neural networks

Course information I

Course

10 lectures + 2 seminars; February-May 2017.

Schedule and up-to-date syllabus

https://goo.gl/xExEuL

Contact information and discussion

Maksim Kretov (<u>kretovmk@gmail.com</u>)

Alexey Seleznev (a.o.seleznev@gmail.com)

Slack group: https://miptmlcourse.slack.com

to get an invite, send e-mail to kretovmk@gmail.com.

Course information II

Grading policy

3 practical assignments, each

gives 25, exam: 25

=> Total: 100. Pass: >=50

Maksim Kretov

Lectures 1-7, PA1 and exam

Alexey Seleznev

Lectures 8-12, PA2-3 and exam

Plan of the course

Math and basics of ML (1-2)Theoretical Some of ML methods (3) tasks Seminar on ML basics (4)Basics of neural networks (5) (6)Deep learning overview Training deep networks Today +Practical tasks **DL** for Computer Vision (8-9)**Solving more** complex ML DL for time series prediction (10-11)tasks using NNs Concluding seminar (12)

Plan for the lecture

- A. Previous lecture
 - 1. ERM framework
 - 2. Deep learning
- B. Improving convergence of BP
 - 1. Cross-entropy
 - 2. Weights initialization
- C. Gradient descent
 - 1. Stochastic approximation
 - 2. Advanced GD: momentum, adagrad etc.
- D. Regularization: Dropout, Batch normalization.
- E. Baseline models
- F. Practical assignments

A.1 Previous lectures: ERM framework

Empirical risk minimization approach (ERM)

Formula for fitting the model within ERM framework:

$$\theta^{opt} = \operatorname{argmin}_{\theta} \frac{1}{N} \sum_{n=1}^{N} L(y_n, \hat{y}_n) + \lambda \Omega(\theta)$$

 $L(y_n, f(\mathbf{x}_n, \theta))$ is loss function; $\hat{y}_n = f(\mathbf{x}_n, \theta)$ is prediction

 $\Omega(\theta)$ is a regularizer => learning converted into optimization task!

Training neural networks with ERM. Probabilistic interpretation:

Maximizing likelihood of correct class in predicted distribution.

A.2 Previous lectures: Deep learning

Just an informal definition of "deep" networks

Networks with up to 3 (2 hidden) layers \rightarrow <u>shallow</u> More than 3 layers \rightarrow <u>deep</u>

Traditional methods: local smoothness assumption

Deep learning methods: complement with "compositionality" prior.

Deep Learning

Machine learning algorithms based on learning multiple levels of representation / abstraction.*

B. Improving convergence

Why do we need special training protocol for deep networks?

- Loss function is complex and non-convex (underfitting)
- Lots of parameters, more than examples in training set (overfitting)
- Huge datasets (slow, don't fit in memory)
- NN-specific problems (vanishing gradient)

B.1 Improving convergence: Cross-entropy

Cross-entropy cost

$$L(Y, f(\mathbf{X}, \theta)) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} y_{nk} \ln \hat{y}_{nk}$$

 y_{nk} are true labels and \hat{y}_{nk} are predictions.

N – number of training examples; K is number of classes in classification task.

Each term is log probability of sampling true label from predicted distribution.

Such loss function meets our criteria:

- connected to a clear proxy such as accuracy
- smooth and easy to differentiate (accuracy is not smooth!)
- probabilistic interpretation: MLE estimation $f(\mathbf{x}, \theta) = p(y|\mathbf{x}, \theta)$ or statistics

B.1 Improving convergence: Cross-entropy

Cross-entropy + sigmoid output

Cross-entropy allows to avoid vanishing gradient for some activation functions in neural networks.

$$\frac{\partial L_{CE}(y_n, \hat{y}_n)}{\partial \omega_i} = x_{ni}(\hat{y}_n - y_n)$$

$$\frac{\partial L_{MSE}(y_n, \hat{y}_n)}{\partial \omega_i} = x_{ni}(\hat{y}_n - y_n)\sigma'(z_n)$$

If weighted input to neuron is close to 1, then $\sigma'(z_n)$ is close to 0 and learning starts to slowing down ("saturation").

^{*} Image from http://neuralnetworksanddeeplearning.com/chap3.html

B.1 Improving convergence: Cross-entropy

Cross-entropy + softmax output

Also provides non-saturated architecture:

$$\log softmax(z)_i = z_i - \log \sum_j \exp z_j$$
 Exercise: check it and MSE+softmax.

Other considerations

- 1. In practice, logits are used as outputs: $z_i = \omega_i \ a_{i-1} + b_i$ (weighted input)
- 2. Multi-label classification:

Cross entropy can be recorded separately for each neuron with sigmoid:

$$L(Y, f(\mathbf{X}, \theta)) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_{nk} \ln \hat{y}_{nk} + (1 - y_{nk}) \ln(1 - \hat{y}_{nk}))$$

B.2 Improving convergence: Weights init.

Weights initialization

Is the simplest solution possible?

If initialize with zeroes => equal gradient for all neurons.

Simple random initialization ("breaking symmetry"):

Use independent Gaussian RV with $\mu = 0$, $\sigma = 1$ (or uniform noise).

Problems with that approach:

Standard deviation increases as $\sim \sqrt{n}$, where n is number of inputs => may cause saturation of neurons or gradient exploding

Solution:

Initialize with variation $\sim 1/\sqrt{n_{inputs}}$.

B.2 Improving convergence: Weights init.

Weights initialization examples

1. Uniform distributions

$$\omega_{ij} \sim U\left(-\frac{1}{\sqrt{m}}, -\frac{1}{\sqrt{m}}\right)$$

$$\omega_{ij} \sim U\left(-\frac{\sqrt{6}}{\sqrt{m+n}}, -\frac{\sqrt{6}}{\sqrt{m+n}}\right)$$
 "Glorot uniform"

2. Normal distribution

$$\omega_{ij} \sim N\left(0, \frac{2}{m}\right)$$
 "He normal"

3. Initialization with random orthogonal matrices

5 minute break...

Questions?

C.1 Gradient descent: Stochastic appr.

Robbins-Monro algorithm

Task is to compute root of $f(\theta) = E_{\tau \sim p(\tau)}[\varphi(\theta, \tau)]$

If $p(\tau)$ is not known => algorithm:

$$\theta_n = \theta_{n-1} - \mu_n \varphi(\theta_{n-1}, \tau_n)$$
 converges to root of $f(\theta)$ under conditions:

$$\sum_n \mu_n^2 < \infty$$
 and $\sum_n \mu_n \to \infty$

Adaptation to ML tasks

$$\tilde{L}(\theta) = E_{x,y \sim p_{data}}[L(\theta, x, y)]$$

We interested in extremum (i.e. root of the corresponding gradient):

$$\nabla \tilde{L}(\theta) = \mathbf{E}_{x,y \sim p_{data}} [\nabla L(\theta, x, y)] \quad \Rightarrow \quad \theta_n = \theta_{n-1} - \mu_n \nabla L(\theta_{n-1}, x_n, y_n)$$

Gradient Descent flavors:

Batch GD:
$$\theta^{(i)} = \theta^{(i-1)} - \alpha_i \nabla_{\theta} L(Y, f(\mathbf{X}, \theta)) \qquad \text{[all training set]}$$

Redundant computations (many correlated examples in dataset)

Online GD:
$$\theta^{(i)} = \theta^{(i-1)} - \alpha_i \nabla_{\theta} L(y, f(\mathbf{x}, \theta))$$
 [one example]

Variance is too big and not speed up from matrix computations

Mini-batch GD:
$$\theta^{(i)} = \theta^{(i-1)} - \alpha_i \nabla_{\theta} L(Y_m, f(\mathbf{X}_m, \theta))$$
 [mini-batch]
Most widely-used now

Selecting better learning schedule

1. Momentum

$$v_t = \gamma v_{t-1} + \alpha \nabla_{\theta} L(\theta)$$
$$\theta = \theta - v_t$$

2. Nesterov accelerated gradient $v_t = \gamma v_{t-1} + \alpha \nabla_{\theta} L(\theta - \gamma v_{t-1})$ $\theta = \theta - v_t$

^{*} Images from

Annealing (scheduling) learning rate

1. Step decay:

Reduce the learning rate by some factor every few epochs.

2. Exponential decay

$$\alpha_t = \alpha_0 \exp(-kt)$$

3. 1/t decay

$$\alpha_t = \alpha_0/(1+kt)$$

4. Linear decay

Reason: to prevent "bouncing" around minimums.

^{*} Image from http://sebastianruder.com/optimizing-gradient-descent/

Per-parameter adaptive learning rate methods

1. Adagrad

$$c = c + [\nabla_{\theta} L(\theta)]^2$$
 [this is a vector of sum of squared gradients] $\theta^{(i)} = \theta^{(i-1)} - \alpha_i \nabla_{\theta} L(\theta) / (\sqrt{c} + \varepsilon)$ [ε is for numerical stability]

2. RMSprop

$$c = \gamma c + (1 - \gamma) [\nabla_{\theta} L(\theta)]^2$$
 [this is a vector of av. squared gradients] $\theta^{(i)} = \theta^{(i-1)} - \alpha_i \nabla_{\theta} L(\theta) / (\sqrt{c} + \varepsilon)$ [ε is for numerical stability]

Different SGD techniques, demonstration

3. Adam

$$b = \alpha c + (1 - \alpha) \nabla_{\theta} L(\theta)$$

$$c = \gamma c + (1 - \gamma) [\nabla_{\theta} L(\theta)]^{2}$$

$$\theta^{(i)} = \theta^{(i-1)} - \alpha_{i} b / (\sqrt{c} + \varepsilon)$$

^{*} Picture from http://sebastianruder.com/optimizing-gradient-descent/

Overfitting problem

To prevent neural network from "memorizing" inputs.

[Number of parameters >> with numbers of training examples]

<u>Techniques</u>

- 1. Early stopping: stop training once validation error starts to increase.
- 2. L2 regularization

L2 regularization

Regularization L2: control over weights in neural network.

L2 regularization: add term $\frac{\lambda}{2n} ||\omega||^2$ to cost function ($\lambda > 0$).

L2 regularization ("weight decay")

Ideas behind regularization:

to make model "simpler"

to make model more stable to random noise in input data

fewer weights ⇒ smaller VC dimension

^{*} Image from http://cs231n.github.io/neural-networks-1/#power

Dropout:

- Randomly and temporarily delete neurons
 [forward and backward passes through modified NN]
- 2. Repeat for another mini-batch (select new subset of neurons for deletion).

Intuition behind procedure:

Training different neural networks

^{*} Image from http://neuralnetworksanddeeplearning.com/chap3.html

Batch normalization:

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Normalizing activations of layer. γ , β are learnable parameters.

Robust to "bad" initializations of weights.

Address internal covariance shift problem for deeper layers of NN.

^{*} Algorithm taken from original article https://arxiv.org/pdf/1502.03167.pdf

Other regularization techniques

- 1. Batch normalization
- 2. L1 regularization (weights selection)
- 3. Dataset augmentation (object recognition in CV, NLP)
- 4. Adding noise to inputs / hidden / weights / targets and labels smoothing
- 5. Pre-training

E. Baseline models

After the simplest approaches tried...

Neural networks

1. Type of input determines general structure of NN:

Images => CNN with common sets of layers

Sequential data => LSTM / GRU with FC layers

Other => few FC layers

- 2. Activation function: ReLU (leaky ReLU)
- 3. Optimizer: Adam (RMSprop, SGD with momentum and decaying Ir)
- 4. Regularizer: Batch Normalization and early stopping (Dropout)

F. Practical assignments

Practical assignment #2: starting 12 Apr

Working with simplified version of Diabetic Retinopathy Detection competition on Kaggle.

Work with 512x512 images. Images already preprocessed. Baseline solution is provided.

Ref: https://github.com/5vision/miptmlcourse

Practical assignment #3: starting 19 Apr

Detection of types of physical activities.

Next week

Lecture 8 "Convolutional neural networks"

- 1. Motivation and premises
- 2. Key features of CNN architecture
- 3. Examples of CNNs

D. Homework

For all

- 1. Reading Ch.7-8 in [2].
- 2. Practical assignment #2.

Some cool reading:

http://sebastianruder.com/optimizing-gradient-descent/

http://distill.pub/2017/momentum/

http://blog.smola.org/post/4110255196/real-simple-covariate-shift-correction

Refs

1. Thorough review of relevant math topics:

http://info.usherbrooke.ca/hlarochelle/ift725/review.pdf

- 2*. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning.
- 3. Kevin P. Murphy, Machine Learning: A probabilistic perspective.
- 4. David Barber, Bayesian Reasoning and Machine Learning.
- 5. Sergios Theodoridis, Machine Learning: A Bayesian and optimization perspective.
- 6*. See also refs in practical assignment and online courses, especially one from Hugo Larochelle (presentation from lecture 1).