```
In [2]: import pandas as pd
        structured_data=pd.DataFrame({
            'Id':[12,13,14],
            'Name':["raj","john","kumar"]
        })
        print(structured_data)
           Ιd
                Name
           12
                 raj
        1
           13
                 john
           14
               kumar
In [4]: import pandas as pd
        structured_data=pd.DataFrame({
            'Roll.no':[352,353,354,355,356],
            'Name':["Johnny Depp", "Tom Cruise", "Shiva", "Rajinikanth", "Vimal"],
            'Dept.':["Mech","Mech","Civil","Civil","Chem"]
        })
        print(structured_data)
           Roll.no
                            Name Dept.
        0
               352
                    Johnny Depp
                                   Mech
        1
               353
                                   Mech
                     Tom Cruise
        2
               354
                           Shiva Civil
        3
               355 Rajinikanth Civil
        4
               356
                          Vimal
                                   Chem
```



```
this is an unstructured data
   Roll.no
                           Name Dept.
0
       352 learnado de caprio
                                  Mech
1
       353
                          jeeva
                                  Mech
2
       354
                          vijay
                                 Civil
3
       355
                          kamal
                                 Civil
4
       356
                          Vimal
                                  Chem
```

```
In [2]:
        from cryptography.fernet import Fernet
        key=Fernet.generate_key()
        f=Fernet(key)
        token=f.encrypt(b"I am Suriya")
        token
        b'...'
        f.decrypt(token)
        b'I am Mohamed Hasan'
        key=Fernet.generate_key()
        plain text=b"I am Suriya"
        cipher_suite=Fernet(key)
        cipher_text=cipher_suite.encrypt(plain_text)
        decrypted_text=cipher_suite.decrypt(cipher_text)
        print("Original Data",plain_text)
        print("Encrypted Data",cipher_text)
        print("Decrypted Data",decrypted_text)
```

Original Data b'I am Suriya'
Encrypted Data b'gAAAAABmwrVOr8oDh0Z6QA040T4PmgrcRH5Lc-8bkfla__L90IsY1NFVx
vMRVNxw5kfmoWfHo7OOrQHoSH_SBy7QsdP5j_N_pA=='
Decrypted Data b'I am Suriya'

Out[3]: '{"Roll.no": [352, 353, 354, 355, 356], "Name": ["Johny", "Tom", "Shiva", "Suriya", "Mithun"], "Dept.": ["Mech", "CSE", "Civil", "Chem", "EEE"]}'


```
In [7]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
file_path=r"C:\Users\DELL\Downloads\diabetes.csv"
df=pd.read_csv(file_path)
print(df.head())
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

In []: