Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

Graph Definitions

(a) Labeled Graph

(b) Subgraph

(c) Induced Subgraph

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Representing Transactions as Graphs

• Each transaction is a clique of items

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

G3

Representing Graphs as Transactions

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G3							

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 4

Challenges

- Node may contain duplicate labels
- Support and confidence
 - How to define them?
- Additional constraints imposed by pattern structure
 - Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - ◆What is k?

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

5

Challenges...

- Support:
 - number of graphs that contain a particular subgraph
- Apriori principle still holds
- Level-wise (Apriori-like) approach:
 - Vertex growing:
 - ◆ k is the number of vertices
 - Edge growing:
 - ♦ k is the number of edges

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Vertex Growing

$$\boldsymbol{M}_{\scriptscriptstyle{G1}} = \begin{pmatrix} 0 & p & p & q \\ p & 0 & r & 0 \\ p & r & 0 & 0 \\ q & 0 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{M}_{\scriptscriptstyle{G2}} = \begin{pmatrix} 0 & p & p & 0 \\ p & 0 & r & 0 \\ p & r & 0 & r \\ 0 & 0 & r & 0 \end{pmatrix} \qquad \boldsymbol{M}_{\scriptscriptstyle{G3}} = \begin{pmatrix} 0 & p & p & 0 & q \\ p & 0 & r & 0 & 0 \\ p & r & 0 & r & 0 \\ 0 & 0 & r & 0 & 0 \\ q & 0 & 0 & 0 & 0 \end{pmatrix}$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Edge Growing

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - ◆ Use frequent (*k*-1)-subgraphs to generate candidate *k*-subgraph
 - Candidate pruning
 - ◆ Prune candidate subgraphs that contain infrequent (k-1)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

© Tan,Steinbach, Kumar

G1

Introduction to Data Mining

4/18/2004

G4

9

Example: Dataset

G2

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G4	0	0	0	0	0	0	 0

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 10

Candidate Generation

- In Apriori:
 - Merging two frequent k-itemsets will produce a candidate (k+1)-itemset
- In frequent subgraph mining (vertex/edge growing)
 - Merging two frequent k-subgraphs may produce more than one candidate (k+1)-subgraph

Graph Isomorphism

- Test for graph isomorphism is needed:
 - During candidate generation step, to determine whether a candidate has been generated
 - During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
 - During candidate counting, to check whether a candidate is contained within another graph

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

19

Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - Lexicographically largest adjacency matrix

String: 0010001111010110

Canonical: 0111101011001000

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004