at the LO QCD corrections can be found from Eq. (62). Since $Q_{1,2}$ mix with the QCD and EW penguin operators, i.e. Q_{3-10} , we basically need the 10×10 ADM matrix for the operators Q_{1-10} . Since the mixture of $Q_{1,2}$ and Q_{3-10} is dominated by the QCD penguin operators, we adopt the 6×6 ADM for the new physics effects, and the ADM is given as [54]:

$$\hat{\gamma}_{QCD}^{(0)} = \begin{pmatrix} \frac{6}{N_c} & 6 & 0 & 0 & 0 & 0\\ 6 & \frac{-6}{N_c} & \frac{-2}{3N_c} & \frac{2}{3} & \frac{-2}{3N_c} & \frac{2}{3}\\ 0 & 0 & \frac{-22}{3N_c} & \frac{22}{3} & \frac{-4}{3N_c} & \frac{4}{3}\\ 0 & 0 & 6 - \frac{2f}{3N_c} & \frac{-6}{N_c} + \frac{2f}{3} & \frac{-2f}{3N_c} & \frac{2f}{N_c}\\ 0 & 0 & 0 & 0 & \frac{6}{N_c} & -6\\ 0 & 0 & \frac{-2f}{3N_c} & \frac{2f}{3} & \frac{-3f}{3N_c} & \frac{-6(-1+N_c^2)}{N_c} + \frac{2f}{3} \end{pmatrix},$$

$$(63)$$

with f being the number of flavors. If we take the operators Q_{1-6} as a basis, from Eq. (24), the corresponding Wilson coefficients can form a vector and be expressed as $C_T = (1, -1, 0, 0, 0, 0)\zeta_{21}^{LL}$ and $C_T' = (1, -1, 0, 0, 0, 0)\zeta_{21}^{RR}$ at the m_{H_3} scale. Using RG evolution with ADM in Eq. (63) [54], the Wilson coefficients at the m_c scale can be obtained as:

$$C_T(m_c) \approx (2.0, -2.0, 0, 0, 0, 0)\zeta_{21}^{LL},$$
 (64)

where we have ignored the effects that are less than or around ± 0.1 , and $C_T'(m_c)$ can be obtained from $C_T(m_c)$ using ζ_{21}^{RR} instead of ζ_{21}^{LL} .

Similarly, we can apply the same approach to the $Q_{1-4}^{(\prime)SLL,u}$ operators. From the Hamiltonian in Eq. (24), the Wilson coefficients at the $\mu=m_{H_3}$ scale can be formed as $C^{SLL,u}=(4,4,1,1)\zeta_{21}^{LR}$ and $C'^{SLL,u}=(4,4,1,1)\zeta_{21}^{RL}$. Using the ADM in Eq. (62), the Wilson coefficients at $\mu=m_c$ can then be obtained as:

$$C^{SLL,u}(m_c) = (-5.44, 1.33, 2.41, 0.09)\zeta_{21}^{LR}.$$
 (65)

We can obtain $C'^{SLL,u}(m_c)$ from $C^{SLL,u}(m_c)$ using ζ_{21}^{RL} instead of ζ_{21}^{LR} .

Following Eqs. (24) and (54) and using the introduced matrix elements, the $Re(\epsilon'/\epsilon)$ from the tree-level diquark contributions can be formulated as: