FINAL PROJECT: CHAOS

Liver Segmentation

Group 2 - Deep Learning Methods for Medical Image Analysis
Mariona Carrasco and Gerard Castells

Steps followed to solve the challenge

- 1. Analyzing the data to work with
- 2. Data loading
- 3. Data generator function
- 4. Training the model
- 5. Obtaining the predicted masks
- 6. Calculating the dice scores
- 7. Conclusions

Data structure

```
Data
     Train_sets
           CT
                      DICOM_anon: .dcm files
                       containing the CT images for all
                      the slices
                      Ground: .jpg files containing the
                      masks for each slice
                      DICOM_anon
                       Ground
           MR
     Test sets
```

- 20 patients in Train_sets
 - o 15 train, 4 validation, 1 test
- Around 90 slices per patient.

Figure 1: Dicom_anon file

Figure 2: Ground file

Data loading

Images: .dcm files

- 1. dcmread
- 2. pixel_array
- 3. apply_modality_LUT

np.unique(dicom_array)
array([-1024., -1023., -1022., ..., 1183., 1187., 1211.])

Masks: .png files

- 1. Image.open
- 2. Array

np.unique(ground_array)
array([False, True])

patient_data = {'patient id' : [image,mask] for all the slices, 'patient id' : [image,mask], ...}

To maintain order in the slices: **sorted()** when loading the images

- 15 patients to train_data
- 4 patients to val_data
- 1 patient to test _data

Dictionary to list

- train pairs
- · val_pairs
- test_pairs

Data generator function

- Data augmentation
 Parameters:
 ImageDataGenerator(rotation_range=5, fill_mode='nearest')
- Image normalization
 - Dividing each image array by 1400
 - To have all values in the range [-1,+1]
- Mask normalization
 - Make sure masks are all boolean (True/False)

Training the model

- Implement U-Net Model
- Compile Model
 - Adam optimizer
 - x3 Loss average dice score for all patients:
 - Binary cross-entropy loss → 0.908
 - Dice loss → 0.928
 - IoU loss \rightarrow 0.933
 - Evaluation metrics: binary accuracy, precision, recall and dice coefficient

Training

- Data obtained with data generator function (training / validation)
- $num_epochs = 400$
- batch_size = 8

Parameters used:

```
base = 8

img_h = 512

img_w = 512

img_ch = 1

learning_rate = 1e-5

dropout = True

dr = 0.2

batch_norm = True

img_size = 512
```

Loss curve

Figure 3: Graph of loss curve

Accuracy curve

Figure 3: Graph of accuracy curve

Plot curves

Evaluation metrics

Figure 3: Graph with metrics

Obtaining the predicted masks

test_pairs = {'patient id' : [image,mask]...}

Dictionary to list

- test_images
- test_masks

test_images → model.predict → Binary → Predicted mask threshold=100

Dice coefficient = 0.957

Calculating the dice scores

Function calculate_dice_coefficient(true_mask, predicted_mask_binary)

Total average = 0,936

Train data

Patient id	30	28	24	27	8	22	23	21	10	6	2	14	19	18	1	Average
Average dice score	0,963	0,959	0,950	0,964	0,952	0,980	0,965	0,945	0,977	0,960	0,969	0,951	0,965	0,972	0,973	0,965

Validation data

Patient id	16	25	5	26	Average
Average dice score	0,867	0,845	0,939	0,943	0,899

Test data

Patient id	29
Average dice score	0,944

Conclusions

- Knowledge application
- Model Performance
- Intersection over Union (IoU) loss
 - Accurate object localization
 - Delineate boundaries accurately
- Final Result

Thanks!

Do you have any questions?

