

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization
International Bureau**

A standard linear barcode is positioned horizontally across the page, consisting of vertical black bars of varying widths on a white background.

**(43) International Publication Date
1 November 2001 (01.11.2001)**

PCT

**(10) International Publication Number
WO 01/81708 A1**

(51) International Patent Classification⁷: E21B 10/32, (74) Agent: KENNEDYS PATENT AGENCY LIMITED;
10/62 Floor 5, Queens House, 29 St. Vincent Place, Glasgow G1

(21) International Application Number: PCT/GB01/01814

(22) International Filing Date: 24 April 2001 (24.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0009834.3 25 April 2000 (25.04.2000) GB

(71) *Applicant (for all designated States except US):* BRITBIT LIMITED [GB/GB]; Suite 12, McNeill Business Centre, Greenbank Crescent, East Tullos, Aberdeen AB12 3BG (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): TULLOCH, Rory, McCrae [GB/GB]; 20 Ashley Park North, Aberdeen AB10 6SF (GB).

(74) Agent: KENNEDYS PATENT AGENCY LIMITED;
Floor 5, Queens House, 29 St. Vincent Place, Glasgow G1
2DT (GB).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: EXPANDABLE BIT

(57) Abstract: An expandable drill bit for use with earth drilling equipment. The bit includes arms held in a closed position, so that the bit may be inserted through casing or a small bore hole. The arms are expandable to create an expanded drill bit having a crown profile common to a solid crown bit. The arrangement of the arms provides a short gauge length so that the expanded bit is steerable downhole. Embodiments of the expandable drill bit are detailed to show mechanisms for actuating the arms between the open and closed positions.

WO 01/81708 A1

BEST AVAILABLE COPY

1 EXPANDABLE BIT

2

3 The present invention relates to a drill bit primarily for use
4 in creating well bores, but which can also be used inside
5 liner casing to remove build-ups of scale.

6

7 The drilling of wells for oil and gas production is achieved
8 using a string of drill pipe with a drill bit mounted at the
9 lowermost end, which is rotated from the surface into the
10 earth. The drill bit is generally comprised of a body which
11 can be secured to a work string at its uppermost end, ie the
12 shank, and a crown. The crown is essentially the area of the
13 bit which carries the cutting means which drill the earth to
14 create the bore, and is comprised of an uppermost chamfer, an
15 annular gauge and tapered flank upon which the cutting means
16 are mounted, and a lowermost nose which engages with the
17 bottom of the hole.

18

19 After a section of well has been bored, it is common practice
20 to insert joints of heavy steel tubing, commonly known as
21 casing, into the bore to act as a liner to structurally
22 support the walls of the well bore from collapse.

1

2 Typically, the casing has a smaller outside diameter than the
3 drill bit which created the bore into which the casing is to
4 be passed.

5

6 The standard method used to drill well bores is to drill each
7 section with consecutively smaller bits and then line the well
8 bores with proportionately smaller casing. However, a
9 standard practice also exists with regard to using a drilling
10 underreamer positioned behind a standard drill bit acting as a
11 pilot to cut the inner cross-sectional area of the well bore.
12 Conventional underreamers include a number of expandable arms
13 which can move between a withdrawn or closed configuration and
14 an expanded or open configuration. The pilot bit and
15 underreamer can be passed through the casing when the
16 underreamer is closed. After passing through the casing the
17 underreamer can be opened in order to enlargen the rat-hole
18 below the casing shoe, and hence create a wellbore equal to or
19 larger than the original drilled hole. In recent years bi-
20 centre bits; which have offset cutting members mounted at
21 irregular intervals around the crown of the bit, have been
22 developed as an alternative to underreamers. However, these
23 bits are unstable due to their irregular structure and tend to
24 be more difficult to control for directional purposes than
25 ordinary drill bits and may not drill the expected swept
26 diameter of the offset pads which ream the pilot hole created
27 by the crown.

28

29 It will be appreciated that it is not always desirable, or in
30 fact possible to drill a truly straight well bore. For
31 example it may be desirable to control the direction of the
32 drilling procedure in order to reach a particular area, or to
33 create a horizontal or expanded well once the correct depth of
34 bore has been drilled. In such instances, it is common to use

1 steerable drilling apparatus. Standard steerable drilling
2 apparatus is generally comprised of a downhole motor which can
3 drive or rotate a drill bit positioned at the lowermost end of
4 the motor. Typically, the downhole motor has a bent housing
5 with an angle of 0.5 to 2.0 degrees above the bearing section
6 of the motor about 6-10 feet behind the bit. This can be used
7 to steer the assembly when the drill-string is not being
8 rotated and allows the direction of the well-bore to be
9 controlled in response to changing downhole conditions. In
10 order to steer the drill bit in a desired direction, rotation
11 of the drill string is stopped which allows the motor to
12 incline the drill bit to tilt in the desired direction. As a
13 result, a curved section of the bore can be formed. At other
14 times the drill string is rotated as normal, which negates the
15 action of the downhole motor bent housing on the drill bit.
16

17 In general, underreamers and bi-centre bits are not designed
18 for high accuracy open hole directional drilling with
19 steerable downhole motors or rotary steerable systems.
20 Steerable drilling requires the drill bit which is utilised to
21 be able to change the direction of the drilled well bore
22 quickly when being tilted or a side force is applied.
23 Underreamers have a large spacing between the pilot bit and
24 the expandable arms and therefore do not permit this rapid
25 directional change to take place. Bi-centre bits are designed
26 such that the distance between the crown and offset pads is
27 relatively large, and as a consequence these bits are not as
28 steerable as ordinary short gauge bits.
29

30 It is recognised in the present invention that it would be an
31 advantage to provide a truly expandable drill bit which is
32 small enough such that it can be passed through a small
33 diameter bore or casing in one mode and then can be expanded
34 such that it can drill a larger diameter hole below the

1 restriction it has passed through in a second mode, but
2 wherein the drill bit is designed such that it has a
3 sufficiently short gauge length to be used in a variety of
4 drilling operations including steerable drilling applications.

5

6 It is therefore an object of the present invention to provide
7 a truly expandable drill bit which can be used with steerable
8 downhole motors or rotary steerable systems.

9

10 It is a further object of the present invention to provide an
11 expandable drill bit which, when expanded, has a short gauge
12 length and a crown profile with a shape common to solid crown
13 bit, and therefore has the same steerability as conventional
14 steerable solid crown drill bits.

15

16 According to the present invention there is provided an
17 expandable drill bit for use with earth drilling equipment,
18 wherein the drill bit is comprised of a body having two or
19 more arms, the arms being provided by the crown of the drill
20 bit having a split crown profile, wherein the arms support a
21 plurality of cutting elements and are hingeably attached to
22 the body, and wherein the arms are moveable between a first
23 and second position, wherein the arms are closed in the first
24 position and expanded in the second position.

25

26 Preferably, when the arms are in the second expanded position,
27 the drill bit has a short gauge length and the profile of the
28 expanded crown is similar to that of a steerable solid crown
29 bit.

30

31 Preferably, movement of the arms from the first closed
32 position to the second expanded position is provided by virtue
33 of the movement of an actuating shaft.

34

1 In one preferred embodiment movement of the actuating shaft in
2 a downward direction drives the arms from the first closed
3 position to the second expanded position.

4

5 In an alternative embodiment, movement of the actuating shaft
6 in an upward direction lifts the arms from the first closed
7 position to the second expanded position.

8

9 The first embodiment is preferred as the actuating shaft can
10 be used to support the arms to a greater degree. Also the bit
11 nozzles can be placed closer to the cutters for greater
12 hydraulic effect and the thrust area and hence the axial
13 thrust acting on the actuating shaft to push the arms open can
14 be made much greater, while minimising the overall length of
15 the bit for greater steerability.

16

17 Preferably movement of the actuating member is driven by a
18 hydrodynamic pressure drop.

19

20 Most preferably said hydrodynamic pressure drop is created by
21 one or more nozzles which may be attached to the lowermost end
22 of the actuating member.

23

24 Preferably the one or more nozzles communicate with a through
25 bore defined by the actuating member.

26

27 Preferably the actuating member has an external upset at its
28 lowermost end which supports the arms when closed in the first
29 position, and drives the arms to the second expanded position
30 upon the application of hydraulic pressure created by
31 directing mud flowing through the ports or nozzles in the
32 actuating member.

33

1 Preferably the arms have an internal profile which
2 communicates with the upset end of the actuating member such
3 that the upset end of the actuating member supports the arms
4 both in the first closed position and in the second expanded
5 position.

6

7 Preferably the drill bit is adapted for use with steerable
8 drilling apparatus. The steerable drilling apparatus may
9 include a downhole motor.

10

11 In one embodiment the arms are driven from the second expanded
12 position to the first closed position by the action of return
13 springs.

14

15 Optionally a first return spring is a heavy duty helical coil
16 spring.

17

18 Alternatively a stack of disc springs can be utilised as the
19 first return spring.

20

21 Preferably a second return spring comprises a single coil
22 split ring.

23

24 Preferably the second return spring is located externally to
25 the arms.

26

27 In a second embodiment the arms are pulled together from the
28 second expanded position to the first closed position with the
29 aid of both secondary return springs, wherein the springs are
30 located internally to the arms.

31

32 Preferably the cutting elements comprise one or more rows of
33 cutters on each arm.

34

1 Typically the cutters are made from a hard material such as
2 diamond or tungsten carbide.

3

4 Preferably the cutters are arranged to form a double row of
5 cutters in the centre of the bit, ie at least two of the arms
6 overlap when in the closed position and when in the second
7 expanded position the cutters will cut the full swept area out
8 to the expanded gauge diameter.

9

10 Optionally the arms may include a sensor to detect if the arms
11 are out to the gauge diameter intended. The sensor activation
12 can also confirm that the arm is still in place, ie has not
13 been torn off.

14

15 Preferably said sensor is in the form of an electrical switch
16 to complete a circuit and one would preferably be used for
17 each arm.

18

19 Optionally the drill bit may contain a sensor which registers
20 the travel of the actuating shaft or the actuating shaft
21 coupling.

22

23 Embodiments of the present invention will now be illustrated,
24 by way of example, with reference to the following Figures in
25 which:

26

27 Figure 1 illustrates an expandable drill bit in a closed
28 configuration and in cross sectional detail in accordance with
29 a first embodiment of the present invention;

30 Figure 2 illustrates the expandable drill bit of Figure 1 in
31 an expanded configuration in cross sectional detail;

32 Figure 3 illustrates the crown of the expandable drill bit in
33 cross section, perpendicular to the view in Figure 1;

1 Figure 4 illustrates the crown of the expandable drill bit in
2 cross section, perpendicular to the view in Figure 2;
3 Figure 5 illustrates an elevated view of the crown of the
4 expandable drill bit in a closed configuration;
5 Figure 6 is an elevated view of the crown of the expandable
6 drill bit in an expanded configuration;
7 Figures 7 and 8 illustrate the hinge upon which the arms of
8 the expandable drill bit are mounted;
9 Figure 9 illustrates an expandable drill bit in a closed
10 configuration and in cross-sectional detail in accordance with
11 a second embodiment of the present invention; and
12 Figure 10 illustrates the expandable drill bit of Figure 9 in
13 an expanded configuration and in cross-sectional detail.

14

15 Referring firstly to Figure 1, an expandable drill bit is
16 depicted at 1 and is comprised of a generally cylindrical body
17 2, which can be attached to a work string (not shown) by
18 either a pin or box threaded end connection, and an actuating
19 member 3 shown as a shaft. The drill bit 1 also comprises four
20 arms which are arranged as pairs and are formed as a result of
21 the lowermost end of the drill bit 1 having a split crown
22 profile 4, which can be seen from the elevated view of the bit
23 1 in Figures 5 and 6. More specifically, the split crown 4
24 comprises two pairs of segments or arms, each arm of which is
25 attached to a hinge 5 which allows the arm to swing out from
26 the body 2 of the bit 1. An individual hinge 5 with a pin
27 inserted, can be seen in more detail in Figure 7 upon which an
28 individual arm of the drill bit 1 rests upon. In the cross
29 sectional depiction of the drill bit in Figure 1, one pair of
30 arms 6 can be seen. A second pair of arms 7, as seen in
31 Figures 3 and 4 extend perpendicularly to the pair of arms 6
32 shown in Figure 1. The arms 6 and 7 are fitted with a
33 plurality of cutting elements 8 made of a hard material,
34 typically tungsten carbide or polycrystalline diamond which

1 contact and drill the earth when the arms 6 and 7 are in an
2 expanded configuration. However the arms 6 and 7 have an
3 external profile such that when they are collapsed or closed
4 into the body 2 of the bit 1, the cutting elements 8 do not
5 ream the casing bore. Each arm 6 and 7 may carry a single
6 or double row of cutters. The arms 6 and 7 may also be
7 designed such that in the closed position shown in Figure 5,
8 there is a double row of cutters mounted back to back in the
9 centre of the bit 1 to protect and supply a cutting action for
10 drilling when the arms 6 and 7 are in a closed position. The
11 arms 6 and 7 form a T shape around the hinge pin 5 area, which
12 prevents them from being left downhole if the hinge pin 5
13 breaks.

14

15 Nozzles 9 are attached to the lowermost end of the actuating
16 shaft 3 and communicate with a fluid through bore 10 which is
17 defined by the body of the actuating shaft 3. The nozzles 9
18 may be permanently or detachably fixed to the actuating shaft
19 3 to allow the jetting of drilling fluid. In the depicted
20 embodiment a total of four nozzles 9 are fitted to the
21 actuating shaft 3 although it is recognised that the number of
22 nozzles 9 which can be fitted is not limited, and is
23 restricted only by the space constraints of the size of the
24 actuating shaft 3. The nozzles 9 are used for standard
25 jetting of the bit face when drilling, to remove any cutting
26 build up which may gather immediately in front of the
27 actuating member 3 and arms 6 and 7, and also to supply a
28 hydraulic pressure drop which moves the actuating shaft 3.

29

30 The arms 6 and 7 of the drill bit 1 can move between a first
31 position shown in Figure 1 wherein they are closed against the
32 body 2 of the drill bit 1, and a second position shown in
33 Figure 2 wherein they are expanded away from the body 2.
34 Movement of the arms 6 and 7 from the first closed to the

1 second expanded position occurs when a pressure drop is
2 created across the assembly of nozzles 9, thereby moving the
3 actuating shaft 3 downwards. The actuating shaft 3 drives the
4 arms 6 and 7 outwards to their gauge stop position and acts to
5 support and reinforce the arms 6 and 7 and hinge pins 5. It
6 will be seen from Figures 1 to 4 that the lowermost end of the
7 actuating member 3, that is the end nearest to the crown of
8 the drill bit 1, has an external upset 11. The arms 6 and 7
9 have a corresponding internal profile 12 which communicates
10 with the upset end 11 of the actuating member 3 (Figures 3 and
11 4). When it is desirable for the arms 6 and 7 to be expanded
12 (Figure 4), fluid is passed into the actuating shaft 3 through
13 bore 10 and through the nozzles 9 creating a sufficient
14 hydrodynamic pressure drop to move the actuating shaft 3 in a
15 downward direction. As a result the upset end 11 of the
16 actuating member 3 will move down in the direction of the
17 arrow shown in Figure 3 to communicate with a corresponding
18 shoulder located in the internal profile 12 of the arms 4 as
19 seen in Figure 4, thereby driving the arms 6 and 7 outwards
20 into the second expanded position. The actuating member 3
21 supports the arms 6 and 7 when expanded, from the inward force
22 which is impacted on them by the walls of the bore. In order
23 to retain the arms 6 and 7 in the closed position, the flow
24 rate through the nozzles 9 is minimised in order to keep the
25 hydrodynamic pressure below that which is required to drive
26 the actuating shaft 3 in a downwards direction to expand the
27 arms 6 and 7. A shear pin may also be incorporated into the
28 bit 1 between each arms 6 and 7 and the actuating shaft 3 or
29 between the actuating shaft 3 and the body 2.

30

31 In the described embodiment the hydrodynamic pressure drop
32 causes the actuating member 3 to move in a downward direction
33 where it engages with an internal profile shoulder 12 on the
34 arms 6 and 7 to expand them outwardly from the body 2 of the

1 drill bit 1. However it is recognised that in an alternative
2 embodiment of the present invention the actuating shaft 3 may
3 be adapted to be driven in an upward direction by the pressure
4 drop, wherein upon moving upwards, the actuating member 3
5 lifts the arms 6 and 7 into an expanded open configuration.

6

7 The actuating shaft 3 is prevented from rotating with respect
8 to the body 2 by four (by way of example) pins so that the
9 nose of the actuating shaft will strengthen the four arms when
10 torque is applied to them. A spline could also be used. The
11 nose of the actuating shaft 3 has a milled profile to support
12 the arms with respect to torque applied when drilling.

13

14 The back of the arms 6 and 7 is designed such that it has a
15 low angle with respect to the hole diameter. This allows
16 maximum force to be applied in the event that the arms 6 and 7
17 stick in the second expanded position so that when the drill
18 bit 1 is pulled up against the casing shoe(not shown) the arms
19 6 and 7 will be driven back against the body 2 of the drill
20 bit 1 with maximum force. This tapered surface could also
21 have cutters fitted for back-reaming when pulling out of hole.

22

23 It will be appreciated that at some point prior to running the
24 apparatus it may be necessary to check the size of the nozzles
25 9 in order to determine whether they suit the required
26 downhole hydraulics for the run. In the preferred embodiment
27 the drill bit 1 will be nozzled such that the arms 6 and 7
28 begin to extend at a minimum hydrodynamic pressure of
29 approximately 100psi and be fully expanded by 200 psi,
30 although it will be appreciated that these pressures could be
31 varied for the particular drilling application and conditions.
32 This allows a minimum circulation to be run through the bit 1
33 for lubrication, without expanding the arms 6 and 7.

34

1 In order to change the nozzles 9 prior to use, a threaded rod
2 13 already screwed into a coupling is inserted into the fluid
3 through bore 10 of the drill bit 1, as can be seen in Figure
4 2. The coupling is screwed onto the drill bit 1, typically
5 onto the inlet pin or box thread which connects the drill bit
6 1 to a work string (not shown) in use. The actuating shaft 3
7 can then be driven downwards by rotating the threaded rod 13
8 into the coupling in order to drive the arms 6 and 7 away from
9 the body 2, permitting access to the nozzles 9 which are
10 located between the arms 6 and 7 on the expanded face of the
11 bit 1 (Figure 6). The nozzles 9 can be removed and replaced
12 using a standard bit nozzle spanner (not shown).

13

14 In order to allow the drill bit 1 to pass through
15 restrictions, such as a narrow diameter bore or in-place
16 casing, it is necessary for the arms 6 and 7 of the drill bit
17 1 to be closed. This is achieved by way of two springs which
18 drive the arms 6 and 7 back into the body 2. The first spring
19 14 is an internal heavy duty helical coil spring whilst the
20 second is a single coil split ring 15 which is mounted around
21 the outside of the four arms 6 and 7, in the area just outside
22 the hinge pins 5. The second spring 15 adds a more positive
23 return force directly to the arms 6 and 7 when the actuating
24 member 3 returns to the position shown in Figure 3.

25

26 It is recognised that although the springs are located
27 external to the arms 6 and 7 in the described embodiment, in
28 an alternative embodiment two or more springs could be used on
29 the inside of the arms 6 and 7 which pull them together.
30 Further, the first spring could alternatively be a stack of
31 disc springs.

32

1 Figure 8 illustrates a sectional view through the hinge
2 section of the drill bit 1. In Figure 8 four hinges 5, can be
3 seen in position around the actuating shaft 3.

4

5 The hinges 5 are positioned between the body 2 of the tool and
6 the arms (not shown), each arm being attached to a hinge 5
7 which allows the arm to expand away from the body 2 upon
8 movement of the actuating shaft 3.

9

10 Note also that each pair of arms could be linked via a guide
11 pin with one of the arms having a pin rigidly fitted with a
12 slot in the adjacent mating arm.

13

14 The drill bit 1 also preferably comprises low friction piston
15 seals which may be PTFE seals with O ring energisers, between
16 the body 2 and the shaft 3, which minimise the force available
17 from the coil spring 15 to return the actuating shaft 3. In a
18 preferred embodiment the bore 10 of the body 2 has a corrosion
19 resistant coating or treatment so that the seals run on a
20 smooth surface.

21

22 Figures 9 and 10 illustrate an expandable drill bit according
23 to a second embodiment of the present invention. Like parts
24 to those of the first embodiment shown in Figures 1 through 8
25 are given the same reference numerals, but are suffixed "A".

26

27 Expandable bit 1A is now such that the drilling load applied
28 to the bit is taken entirely through the inner
29 mandrel/actuating shaft 3A. This means that the application
30 of drilling weight to the bit now keeps the arms 6A, 7A in the
31 expanded position in addition to the hydraulic force acting on
32 an internal piston 18.

33

1 The tool 1A is hydraulically actuated due to the pressure drop
2 created by throttling the flow of drilling fluid by the
3 nozzles 9A in the head 16 of the bit. Simply applying
4 drilling weight to the tool 1A in the closed position would
5 also tend to expand the arms 6A, 7A, but is not a principal
6 operating feature.

7

8 Internal hydraulic pressure is applied to the chamber 17 above
9 the piston 18 mounted on the inner mandrel 3A by means of
10 radial drilled holes 19 in the mandrel 3A. The force created
11 moves the outer cylinder 2A axially upwards, compressing the
12 spring 14A and drawing the arms 6A, 7A upwards over the
13 profile of the head 16 into the expanded position.

14

15 The arms 6A, 7A are now constrained within slots 20 in the
16 head for greater rigidity. Guide pins 21 act on slots 20
17 machined in the arms 6A, 7A to ensure that the arms 6A, 7A
18 return to the closed position on removal of the pressure
19 differential, as described hereinbefore. Note that a
20 secondary spring is no longer used to close the arms 6A, 7A.

21

22 An additional feature of the second embodiment of bit 1A is
23 that pulling upwards on the tool 1A will tend to drag the
24 external sleeve 2A downwards, thus moving the arms 6A, 7A to
25 the closed position.

26

27 A further feature of the second embodiment of bit 1A includes
28 two sensors 22, 23.

29

30 Arms 6A and 7A are fitted with sensors 22A-D. Sensors 22A-D
31 are electronic sensors, which signal when the arms 6A and 7A
32 are out at gauge size. This signal is sent back into an MWD
33 tool behind the bit 1A or may be an instrumented downhole
34 motor, and then transmitted directly to the surface, so that

1 the operator is aware of the configuration of the bit 1A as it
2 is run downhole. The sensors 22A-D being activated would also
3 confirm the arms 6A and 7A are still in position ie have not
4 been torn off. Sensor 23 is also fitted to bit 1A. Sensor 23
5 registers the movement of the actuating shaft 3A.

6

7 The advantage of the present invention over the prior art is
8 that there is provided a truly expandable drill bit, in
9 contrast to an offset bi-centre bit or an underreamer for use
10 in conjunction with a standard drill bit. The expandable
11 drill bit is therefore characterised in that it has all the
12 proven characteristics of a standard steerable drill bit, most
13 notably a short gauge length with a standard crown profile
14 shape and can be used with steerable drilling apparatus, but
15 also has a variable diameter which facilitates the passage of
16 the drill bit through an area of a well bore or casing with a
17 restricted diameter in order to drill a section of bore with a
18 greater diameter, below the restricted area.

19

20 Further modifications and improvements may be incorporated
21 without departing from the scope of the invention herein
22 intended.

1 CLAIMS

2.

3 1. An expandable drill bit for use with earth drilling
4 equipment, wherein the drill bit is comprised of a body
5 having two or more arms, the arms being provided by the
6 crown of the drill bit having a split crown profile,
7 wherein the arms support a plurality of cutting elements
8 and are hingeably attached to the body, and wherein the
9 arms are moveable between a first and second position,
10 wherein the arms are closed in the first position and
11 expanded in the second position.

12

13 2. An expandable drill bit as claimed in Claim 1, wherein
14 when the arms are in the second expanded position, the
15 drill bit has a short gauge length and the profile of the
16 expanded crown is similar to that of a steerable solid
17 crown bit.

18

19 3. An expandable drill bit as claimed in Claim 1 or Claim 2,
20 wherein movement of the arms from the first closed
21 position to the second expanded position is provided by
22 virtue of the movement of an actuating shaft.

23

24 4. An expandable drill bit as claimed in Claim 3, wherein
25 movement of the actuating shaft in a downward direction
26 drives the arms from the first closed position to the
27 second expanded position.

28

29 5. An expandable drill bit as claimed in Claim 3, wherein
30 movement of the actuating shaft in an upward direction
31 lifts the arms from the first closed position to the
32 second expanded position.

33

1 6. An expandable drill bit as claimed in any one of Claims 3
2 to 5, wherein movement of the actuating shaft is driven
3 by a hydrodynamic pressure drop.

4

5 7. An expandable drill bit as claimed in Claim 6, wherein
6 said hydrodynamic pressure drop is created by one or more
7 nozzles which are attached to a lowermost end of the
8 actuating shaft.

9

10 8. An expandable drill bit as claimed in Claim 7, wherein
11 the one or more nozzles communicate with a through bore
12 defined by the actuating shaft.

13

14 9. An expandable drill bit as claimed in Claim 7 or Claim 8,
15 wherein the actuating member has an external upset at the
16 lowermost end which supports the arms when closed in the
17 first position, and drives the arms to the second
18 expanded position upon the application of hydraulic
19 pressure created by directing mud flowing through the
20 ports or nozzles in the actuating shaft.

21

22 10. An expandable drill bit as claimed in Claim 9, wherein
23 the arms have an internal profile which communicates with
24 the upset end of the actuating shaft such that the upset
25 end of the actuating shaft supports the arms both in the
26 first closed position and in the second expanded
27 position.

28

29 11. An expandable drill bit as claimed in any preceding
30 Claim, wherein the drill bit is adapted for use with
31 steerable drilling apparatus.

32

33 12. An expandable drill bit as claimed in any preceding
34 Claim, wherein the arms are driven from the second

1 expanded position to the first closed position by the
2 action of return springs.

3

4 13. An expandable drill bit as claimed in Claim 12, wherein a
5 first return spring is a heavy duty helical coil spring.

6

7 14. An expandable drill bit as claimed in Claim 12 or Claim
8 13, wherein a second return spring comprises a single
9 coil split ring.

10

11 15. An expandable drill bit as claimed in Claim 14, wherein
12 the second return spring is located externally to the
13 arms.

14

15 16. An expandable drill bit as claimed in any preceding
16 Claim, wherein the cutting elements comprise one or more
17 rows of cutters on each arm.

18

19 17. An expandable drill bit as claimed in Claim 16, wherein
20 the cutters are arranged to form a double row of cutters
21 in the centre of the bit.

22

23 18. An expandable drill bit as claimed in any preceding
24 Claim, wherein the arms include a sensor to detect if the
25 arms are out to the gauge diameter intended.

26

27 19. An expandable drill bit as claimed in Claim 18, wherein
28 said sensor is in the form of at least one electrical
29 switch to complete a circuit in each arm.

30

31 20. An expandable drill bit as claimed in Claim 20, wherein
32 the drill bit contains a sensor which registers the
33 travel of the actuating shaft.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

FIG. 5***FIG. 6******FIG. 7******FIG. 8***

INTERNATIONAL SEARCH REPORT

national Application No

PCT/GB 01/01814

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 E21B10/32 E21B10/62

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 E21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, TULSA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 141 063 A (QUESENBURY JIMMY B) 25 August 1992 (1992-08-25) column 2, line 22 -column 3, line 25; figures 3-5	1,3,4,6, 16
Y	—	5,7-10, 12,13
X	GB 2 275 067 A (BAKER HUGHES INC) 17 August 1994 (1994-08-17) page 3, line 3 - line 18; figures 1,3,17 page 5, line 12 - line 20 page 20, line 6 - line 24	1,2,11, 16
Y	US 4 081 042 A (JOHNSON GARY R ET AL) 28 March 1978 (1978-03-28) column 4, line 59 -column 5, line 54; figures 1,2 column 6, line 41 - line 61	5,9,10
	—	-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
6 August 2001	13/08/2001

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Dantinne, P

INTERNATIONAL SEARCH REPORT

ational Application No

PCT/GB 01/01814

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 6 009 961 A (PIETROBELLi ALEJANDRO ET AL) 4 January 2000 (2000-01-04) column 3, line 49 -column 4, line 12; figure 2 ---	7-10
Y	US 4 565 252 A (CAMPBELL THOMAS R ET AL) 21 January 1986 (1986-01-21) column 6, line 33 -column 7, line 34; figure 1 ---	12,13
A	GB 2 320 270 A (PSL TOOLS LIMITED) 17 June 1998 (1998-06-17) claim 1; figure 4 ---	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

National Application No
PCT/GB 01/01814

Patent document cited in search report		Publication date	Patent family member(s)			Publication date
US 5141063	A	25-08-1992	NONE			
GB 2275067	A	17-08-1994	US	5361859 A	08-11-1994	
			BE	1010105 A	02-12-1997	
			GB	2301386 A, B	04-12-1996	
			US	5560440 A	01-10-1996	
US 4081042	A	28-03-1978	NONE			
US 6009961	A	04-01-2000	US	5896940 A	27-04-1999	
			AU	2343200 A	04-09-2000	
			WO	0049265 A	24-08-2000	
US 4565252	A	21-01-1986	NONE			
GB 2320270	A	17-06-1998	NONE			

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.