13. Linear Model

Spring 2021

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

• Learned about the CEF in general, iterated expectation, etc.

Where are we? Where are we going?

- · Learned about the CEF in general, iterated expectation, etc.
- Now: focusing on when the CEF is (and isn't) linear.

Where are we? Where are we going?

- · Learned about the CEF in general, iterated expectation, etc.
- Now: focusing on when the CEF is (and isn't) linear.
- Linear model is ubiquitous but poorly understood. Lots of subtlety here.

• Goal of regression: how mean of Y changes with X.

- Goal of regression: how mean of Y changes with X.
- For continuous regressors, we can use the partial derivative:

$$\frac{\partial \mu(x_1,\ldots,x_k)}{\partial x_1}$$

- Goal of regression: how mean of Y changes with X.
- For continuous regressors, we can use the partial derivative:

$$\frac{\partial \mu(x_1,\ldots,x_k)}{\partial x_1}$$

• For binary X_1 , we can use the difference in conditional expectations:

$$\mu(1,x_2,\dots,x_k) - \mu(0,x_2,\dots,x_k)$$

- Goal of regression: how mean of Y changes with X.
- For continuous regressors, we can use the partial derivative:

$$\frac{\partial \mu(x_1,\ldots,x_k)}{\partial x_1}$$

• For binary X_1 , we can use the difference in conditional expectations:

$$\mu(1,x_2,\dots,x_k) - \mu(0,x_2,\dots,x_k)$$

• "Partial effect" of X_1 holding other included variables constant

- Goal of regression: how mean of Y changes with X.
- For continuous regressors, we can use the partial derivative:

$$\frac{\partial \mu(x_1,\ldots,x_k)}{\partial x_1}$$

• For binary X_1 , we can use the difference in conditional expectations:

$$\mu(1,x_2,\dots,x_k) - \mu(0,x_2,\dots,x_k)$$

- "Partial effect" of X_1 holding other included variables constant
- Exact form will depend on the functional form of $\mu(x)$.

- Goal of regression: how mean of Y changes with X.
- For continuous regressors, we can use the partial derivative:

$$\frac{\partial \mu(x_1,\ldots,x_k)}{\partial x_1}$$

• For binary X_1 , we can use the difference in conditional expectations:

$$\mu(1,x_2,\dots,x_k) - \mu(0,x_2,\dots,x_k)$$

- "Partial effect" of X_1 holding other included variables constant
- Exact form will depend on the functional form of $\mu(x)$.
 - How do we decide what form $\mu(x)$ should take?

• To motivate function form, useful to think about estimation.

- To motivate function form, useful to think about estimation.
- How do we estimate $\mu(x) = \mathbb{E}[Y|X=x]$ for binary X?

- To motivate function form, useful to think about estimation.
- How do we estimate $\mu(x) = \mathbb{E}[Y|X=x]$ for binary X?
- **Subclassification**: calculate sample averages with levels of *X_i*:

$$\widehat{\mu}(1) = \frac{1}{n_1} \sum_{i=1}^n Y_i X_i$$

- To motivate function form, useful to think about estimation.
- How do we estimate $\mu(x) = \mathbb{E}[Y|X=x]$ for binary X?
- **Subclassification**: calculate sample averages with levels of X_i :

$$\widehat{\mu}(1) = \frac{1}{n_1} \sum_{i=1}^n Y_i X_i$$

• $n_1 = \sum_{i=1}^n X_i$ is the number of units with $X_i = 1$ in the sample.

- To motivate function form, useful to think about estimation.
- How do we estimate $\mu(x) = \mathbb{E}[Y|X=x]$ for binary X?
- **Subclassification**: calculate sample averages with levels of X_i :

$$\widehat{\mu}(1) = \frac{1}{n_1} \sum_{i=1}^n Y_i X_i$$

- $n_1 = \sum_{i=1}^n X_i$ is the number of units with $X_i = 1$ in the sample.
- More generally for any discrete X_i:

$$\hat{\mu}(x) = \frac{\sum_{i=1}^{N} Y_i \mathbb{I}(X_i = x)}{\sum_{i=1}^{N} \mathbb{I}(X_i = x)}$$

• What if X is continuous? Subclassification fall apart.

- What if X is continuous? Subclassification fall apart.
 - Each i has a unique value: $\sum_{i=1}^{N} \mathbb{I}(X_i = x) = 1$

- What if X is continuous? Subclassification fall apart.
 - Each *i* has a unique value: $\sum_{i=1}^{N} \mathbb{I}(X_i = x) = 1$
 - Very noisy estimates

- What if X is continuous? Subclassification fall apart.
 - Each *i* has a unique value: $\sum_{i=1}^{N} \mathbb{I}(X_i = x) = 1$
 - Very noisy estimates
 - What about any x not in the sample?

- What if X is continuous? Subclassification fall apart.
 - Each *i* has a unique value: $\sum_{i=1}^{N} \mathbb{I}(X_i = x) = 1$
 - Very noisy estimates
 - What about any x not in the sample?
- **Stratification**: bin X_i into categories and treat like as discrete.

- What if X is continuous? Subclassification fall apart.
 - Each *i* has a unique value: $\sum_{i=1}^{N} \mathbb{I}(X_i = x) = 1$
 - Very noisy estimates
 - What about any x not in the sample?
- **Stratification**: bin X_i into categories and treat like as discrete.
 - Every x in the same bin gets the same conditional expectation.

- What if X is continuous? Subclassification fall apart.
 - Each *i* has a unique value: $\sum_{i=1}^{N} \mathbb{I}(X_i = x) = 1$
 - · Very noisy estimates
 - What about any x not in the sample?
- **Stratification**: bin X_i into categories and treat like as discrete.
 - Every x in the same bin gets the same conditional expectation.
 - · Depends on arbitrary bin cutoffs/sizes.

- What if X is continuous? Subclassification fall apart.
 - Each *i* has a unique value: $\sum_{i=1}^{N} \mathbb{I}(X_i = x) = 1$
 - · Very noisy estimates
 - What about any x not in the sample?
- **Stratification**: bin X_i into categories and treat like as discrete.
 - Every x in the same bin gets the same conditional expectation.
 - · Depends on arbitrary bin cutoffs/sizes.
- Example:

- What if X is continuous? Subclassification fall apart.
 - Each *i* has a unique value: $\sum_{i=1}^{N} \mathbb{I}(X_i = x) = 1$
 - · Very noisy estimates
 - What about any x not in the sample?
- **Stratification**: bin X_i into categories and treat like as discrete.
 - Every x in the same bin gets the same conditional expectation.
 - · Depends on arbitrary bin cutoffs/sizes.
- Example:
 - Personal data science: I wear an activity tracker and have a smart scale.

- What if X is continuous? Subclassification fall apart.
 - Each *i* has a unique value: $\sum_{i=1}^{N} \mathbb{I}(X_i = x) = 1$
 - · Very noisy estimates
 - What about any x not in the sample?
- **Stratification**: bin X_i into categories and treat like as discrete.
 - Every x in the same bin gets the same conditional expectation.
 - · Depends on arbitrary bin cutoffs/sizes.
- Example:
 - Personal data science: I wear an activity tracker and have a smart scale.
 - Relationship between my weight and active minutes in the previous day.

Continuous covariate example

Continuous covariate CEF: interpolation

Continuous covariate CEF: stratification

Continuous covariate CEF: stratification

• Statification requires lots of choices/hidden assumptions.

- Statification requires lots of choices/hidden assumptions.
 - Number of categories, cutoffs for the categories, constant means within strata, etc.

- · Statification requires lots of choices/hidden assumptions.
 - Number of categories, cutoffs for the categories, constant means within strata, etc.
- Alternative: assuming that the CEF is linear:

$$\mu(x) = \mathbb{E}[Y_i | X_i = x] = \beta_0 + \beta_1 x$$

- · Statification requires lots of choices/hidden assumptions.
 - Number of categories, cutoffs for the categories, constant means within strata, etc.
- · Alternative: assuming that the CEF is linear:

$$\mu(x) = \mathbb{E}[Y_i | X_i = x] = \beta_0 + \beta_1 x$$

• **Intercept**, β_0 : the condition expectation of Y_i when $X_i = 0$

- · Statification requires lots of choices/hidden assumptions.
 - Number of categories, cutoffs for the categories, constant means within strata, etc.
- · Alternative: assuming that the CEF is linear:

$$\mu(x) = \mathbb{E}[Y_i | X_i = x] = \beta_0 + \beta_1 x$$

- **Intercept**, β_0 : the condition expectation of Y_i when $X_i = 0$
- **Slope**, β_1 : change in the CEF of Y_i given a one-unit change in X_i

Why is linearity an assumption?

• Example: Y_i is income, X_i is years of education.

Why is linearity an assumption?

- Example: Y_i is income, X_i is years of education.
 - β_0 : average income among people with 0 years of education.

- Example: Y_i is income, X_i is years of education.
 - β_0 : average income among people with 0 years of education.
 - β_1 : expected difference in income between two adults that differ by 1 year of education.

- Example: Y_i is income, X_i is years of education.
 - β_0 : average income among people with 0 years of education.
 - β_1 : expected difference in income between two adults that differ by 1 year of education.
- · Why is linearity an assumption?

- Example: Y_i is income, X_i is years of education.
 - β_0 : average income among people with 0 years of education.
 - β_1 : expected difference in income between two adults that differ by 1 year of education.
- Why is linearity an assumption?

$$\mathbb{E}[Y_i|X_i=12]-\mathbb{E}[Y_i|X_i=11]$$

- Example: Y_i is income, X_i is years of education.
 - β_0 : average income among people with 0 years of education.
 - β_1 : expected difference in income between two adults that differ by 1 year of education.
- · Why is linearity an assumption?

$$\mathbb{E}[Y_i|X_i = 12] - \mathbb{E}[Y_i|X_i = 11] = \mathbb{E}[Y_i|X_i = 16] - \mathbb{E}[Y_i|X_i = 15]$$

- Example: Y_i is income, X_i is years of education.
 - β_0 : average income among people with 0 years of education.
 - β_1 : expected difference in income between two adults that differ by 1 year of education.
- · Why is linearity an assumption?

$$\mathbb{E}[Y_i|X_i = 12] - \mathbb{E}[Y_i|X_i = 11] = \mathbb{E}[Y_i|X_i = 16] - \mathbb{E}[Y_i|X_i = 15]$$
$$= \beta_1$$

- Example: Y_i is income, X_i is years of education.
 - β_0 : average income among people with 0 years of education.
 - β_1 : expected difference in income between two adults that differ by 1 year of education.
- · Why is linearity an assumption?

$$\mathbb{E}[Y_i|X_i = 12] - \mathbb{E}[Y_i|X_i = 11] = \mathbb{E}[Y_i|X_i = 16] - \mathbb{E}[Y_i|X_i = 15]$$
$$= \beta_1$$

• Effect of HS degree is the same as the effect of college degree.

- Example: Y_i is income, X_i is years of education.
 - β_0 : average income among people with 0 years of education.
 - β_1 : expected difference in income between two adults that differ by 1 year of education.
- · Why is linearity an assumption?

$$\mathbb{E}[Y_i|X_i = 12] - \mathbb{E}[Y_i|X_i = 11] = \mathbb{E}[Y_i|X_i = 16] - \mathbb{E}[Y_i|X_i = 15]$$
$$= \beta_1$$

- Effect of HS degree is the same as the effect of college degree.
- Put another way: average partial effects are constant $rac{\partial \mu(x)}{\partial x}=oldsymbol{eta}_1$

· What if we think the effect is nonlinear?

- · What if we think the effect is nonlinear?
- We can include nonlinear transformations:

$$\mu(x) = \beta_0 + x\beta_1 + x^2\beta_2$$

- · What if we think the effect is nonlinear?
- · We can include nonlinear transformations:

$$\mu(x) = \beta_0 + x\beta_1 + x^2\beta_2$$

• Partial effect now varies: $\partial \mu(x)/\partial x = \beta_1 + 2x\beta_2$

- · What if we think the effect is nonlinear?
- We can include nonlinear transformations:

$$\mu(x) = \beta_0 + x\beta_1 + x^2\beta_2$$

- Partial effect now varies: $\partial \mu(x)/\partial x = \beta_1 + 2x\beta_2$
- **Linear** means linear in the parameters $\boldsymbol{\beta} = (\beta_1, \dots, \beta_k)$, not **X**.

- What if we think the effect is nonlinear?
- We can include nonlinear transformations:

$$\mu(x) = \beta_0 + x\beta_1 + x^2\beta_2$$

- Partial effect now varies: $\partial \mu(x)/\partial x = \beta_1 + 2x\beta_2$
- **Linear** means linear in the parameters $\boldsymbol{\beta} = (\beta_1, \dots, \beta_k)$, not **X**.
- We can also include interactions between covariates:

$$\mu(x_1, x_2) = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + x_1 x_2 \beta_3$$

- · What if we think the effect is nonlinear?
- We can include nonlinear transformations:

$$\mu(x) = \beta_0 + x\beta_1 + x^2\beta_2$$

- Partial effect now varies: $\partial \mu(x)/\partial x = \beta_1 + 2x\beta_2$
- **Linear** means linear in the parameters $\boldsymbol{\beta} = (\beta_1, \dots, \beta_k)$, not **X**.
- We can also include interactions between covariates:

$$\mu(x_1, x_2) = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + x_1 x_2 \beta_3$$

• Average partial effect of X_1 depends on X_2 : $\partial \mu(x_1,x_2)/\partial x_1=\beta_1+x_2\beta_3$

• Wait-times (Y_i) and race $(X_i = 1 \text{ for white, } X_i = 0 \text{ for POC})$

- Wait-times (Y_i) and race $(X_i = 1 \text{ for white, } X_i = 0 \text{ for POC})$
 - Two possible values of the CEF: μ_1 for whites and μ_0 for POC.

- Wait-times (Y_i) and race $(X_i = 1 \text{ for white, } X_i = 0 \text{ for POC})$
 - Two possible values of the CEF: μ_1 for whites and μ_0 for POC.
- · Can write the CEF as follows:

$$\mu(x) = x\mu_1 + (1-x)\mu_0 = \mu_0 + x(\mu_1 - \mu_0) = \beta_0 + x\beta_1$$

- Wait-times (Y_i) and race $(X_i = 1 \text{ for white, } X_i = 0 \text{ for POC})$
 - Two possible values of the CEF: μ_1 for whites and μ_0 for POC.
- · Can write the CEF as follows:

$$\mu(x) = x\mu_1 + (1-x)\mu_0 = \mu_0 + x(\mu_1 - \mu_0) = \beta_0 + x\beta_1$$

• No assumptions, just rewriting! Interpretations:

- Wait-times (Y_i) and race $(X_i = 1 \text{ for white, } X_i = 0 \text{ for POC})$
 - Two possible values of the CEF: μ_1 for whites and μ_0 for POC.
- · Can write the CEF as follows:

$$\mu(x) = x\mu_1 + (1-x)\mu_0 = \mu_0 + x(\mu_1 - \mu_0) = \beta_0 + x\beta_1$$

- No assumptions, just rewriting! Interpretations:
 - $oldsymbol{eta}_0=\mu_0$: expected wait-time for POC

- Wait-times (Y_i) and race $(X_i = 1 \text{ for white, } X_i = 0 \text{ for POC})$
 - Two possible values of the CEF: μ_1 for whites and μ_0 for POC.
- · Can write the CEF as follows:

$$\mu(x) = x\mu_1 + (1-x)\mu_0 = \mu_0 + x(\mu_1 - \mu_0) = \beta_0 + x\beta_1$$

- No assumptions, just rewriting! Interpretations:
 - $\beta_0 = \mu_0$: expected wait-time for POC
 - $\beta_1 = \mu_1 \mu_0$: diff. in avg. wait times between whites and POC.

- Wait-times (Y_i) and race $(X_i = 1 \text{ for white, } X_i = 0 \text{ for POC})$
 - Two possible values of the CEF: μ_1 for whites and μ_0 for POC.
- · Can write the CEF as follows:

$$\mu(x) = x\mu_1 + (1-x)\mu_0 = \mu_0 + x(\mu_1 - \mu_0) = \beta_0 + x\beta_1$$

- No assumptions, just rewriting! Interpretations:
 - $\beta_0 = \mu_0$: expected wait-time for POC
 - $\beta_1=\mu_1-\mu_0$: diff. in avg. wait times between whites and POC.
- ullet > 2 categories: dummies for all but category and everything is linear.

• What if we have two binary covariates, X_1 (race) and X_2 (1 urban/0 rural):

$$\mu(x_1,x_2) = \begin{cases} \mu_{00} & \text{if } x_1 = 0 \text{ and } x_2 = 0 \text{ (POC, rural)} \\ \mu_{10} & \text{if } x_1 = 1 \text{ and } x_2 = 0 \text{ (white, rural)} \\ \mu_{01} & \text{if } x_1 = 0 \text{ and } x_2 = 1 \text{ (POC, urban)} \\ \mu_{11} & \text{if } x_1 = 1 \text{ and } x_2 = 1 \text{ (white, urban)} \end{cases}$$

What if we have two binary covariates, X₁ (race) and X₂ (1 urban/0 rural):

$$\mu(x_1,x_2) = \begin{cases} \mu_{00} & \text{if } x_1 = 0 \text{ and } x_2 = 0 \text{ (POC, rural)} \\ \mu_{10} & \text{if } x_1 = 1 \text{ and } x_2 = 0 \text{ (white, rural)} \\ \mu_{01} & \text{if } x_1 = 0 \text{ and } x_2 = 1 \text{ (POC, urban)} \\ \mu_{11} & \text{if } x_1 = 1 \text{ and } x_2 = 1 \text{ (white, urban)} \end{cases}$$

$$\mu(x_1, x_2) = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + x_1 x_2 \beta_3$$

What if we have two binary covariates, X₁ (race) and X₂ (1 urban/0 rural):

$$\mu(x_1,x_2) = \begin{cases} \mu_{00} & \text{if } x_1 = 0 \text{ and } x_2 = 0 \text{ (POC, rural)} \\ \mu_{10} & \text{if } x_1 = 1 \text{ and } x_2 = 0 \text{ (white, rural)} \\ \mu_{01} & \text{if } x_1 = 0 \text{ and } x_2 = 1 \text{ (POC, urban)} \\ \mu_{11} & \text{if } x_1 = 1 \text{ and } x_2 = 1 \text{ (white, urban)} \end{cases}$$

• Can rewrite this without assumptions as a linear CEF with interaction:

$$\mu(x_1, x_2) = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + x_1 x_2 \beta_3$$

Interpretations:

What if we have two binary covariates, X₁ (race) and X₂ (1 urban/0 rural):

$$\mu(x_1,x_2) = \begin{cases} \mu_{00} & \text{if } x_1 = 0 \text{ and } x_2 = 0 \text{ (POC, rural)} \\ \mu_{10} & \text{if } x_1 = 1 \text{ and } x_2 = 0 \text{ (white, rural)} \\ \mu_{01} & \text{if } x_1 = 0 \text{ and } x_2 = 1 \text{ (POC, urban)} \\ \mu_{11} & \text{if } x_1 = 1 \text{ and } x_2 = 1 \text{ (white, urban)} \end{cases}$$

$$\mu(x_1, x_2) = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + x_1 x_2 \beta_3$$

- · Interpretations:
 - $\beta_0=\mu_{00}$: average wait times for rural POC.

What if we have two binary covariates, X₁ (race) and X₂ (1 urban/0 rural):

$$\mu(x_1,x_2) = \begin{cases} \mu_{00} & \text{if } x_1 = 0 \text{ and } x_2 = 0 \text{ (POC, rural)} \\ \mu_{10} & \text{if } x_1 = 1 \text{ and } x_2 = 0 \text{ (white, rural)} \\ \mu_{01} & \text{if } x_1 = 0 \text{ and } x_2 = 1 \text{ (POC, urban)} \\ \mu_{11} & \text{if } x_1 = 1 \text{ and } x_2 = 1 \text{ (white, urban)} \end{cases}$$

$$\mu(x_1, x_2) = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + x_1 x_2 \beta_3$$

- Interpretations:
 - $\beta_0 = \mu_{00}$: average wait times for rural POC.
 - $eta_1 = \mu_{10} \mu_{00}$: diff. in means for rural whites vs rural POC.

What if we have two binary covariates, X₁ (race) and X₂ (1 urban/0 rural):

$$\mu(x_1,x_2) = \begin{cases} \mu_{00} & \text{if } x_1 = 0 \text{ and } x_2 = 0 \text{ (POC, rural)} \\ \mu_{10} & \text{if } x_1 = 1 \text{ and } x_2 = 0 \text{ (white, rural)} \\ \mu_{01} & \text{if } x_1 = 0 \text{ and } x_2 = 1 \text{ (POC, urban)} \\ \mu_{11} & \text{if } x_1 = 1 \text{ and } x_2 = 1 \text{ (white, urban)} \end{cases}$$

$$\mu(x_1, x_2) = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + x_1 x_2 \beta_3$$

- Interpretations:
 - $\beta_0 = \mu_{00}$: average wait times for rural POC.
 - $\beta_1 = \mu_{10} \mu_{00}$: diff. in means for rural whites vs rural POC.
 - $\beta_2 = \mu_{01} \mu_{00}$: diff. in means for urban POC vs rural POC.

What if we have two binary covariates, X₁ (race) and X₂ (1 urban/0 rural):

$$\mu(x_1,x_2) = \begin{cases} \mu_{00} & \text{if } x_1 = 0 \text{ and } x_2 = 0 \text{ (POC, rural)} \\ \mu_{10} & \text{if } x_1 = 1 \text{ and } x_2 = 0 \text{ (white, rural)} \\ \mu_{01} & \text{if } x_1 = 0 \text{ and } x_2 = 1 \text{ (POC, urban)} \\ \mu_{11} & \text{if } x_1 = 1 \text{ and } x_2 = 1 \text{ (white, urban)} \end{cases}$$

$$\mu(x_1, x_2) = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + x_1 x_2 \beta_3$$

- Interpretations:
 - $\beta_0 = \mu_{00}$: average wait times for rural POC.
 - $\beta_1 = \mu_{10} \mu_{00}$: diff. in means for rural whites vs rural POC.
 - $eta_2 = \mu_{01} \mu_{00}$: diff. in means for urban POC vs rural POC.
 - + $eta_3=(\mu_{11}-\mu_{01})-(\mu_{10}-\mu_{00})$: diff. in urban racial diff. vs rural racial diff.

What if we have two binary covariates, X₁ (race) and X₂ (1 urban/0 rural):

$$\mu(x_1,x_2) = \begin{cases} \mu_{00} & \text{if } x_1 = 0 \text{ and } x_2 = 0 \text{ (POC, rural)} \\ \mu_{10} & \text{if } x_1 = 1 \text{ and } x_2 = 0 \text{ (white, rural)} \\ \mu_{01} & \text{if } x_1 = 0 \text{ and } x_2 = 1 \text{ (POC, urban)} \\ \mu_{11} & \text{if } x_1 = 1 \text{ and } x_2 = 1 \text{ (white, urban)} \end{cases}$$

$$\mu(x_1, x_2) = \beta_0 + x_1 \beta_1 + x_2 \beta_2 + x_1 x_2 \beta_3$$

- · Interpretations:
 - $\beta_0 = \mu_{00}$: average wait times for rural POC.
 - $\beta_1 = \mu_{10} \mu_{00}$: diff. in means for rural whites vs rural POC.
 - $\beta_2 = \mu_{01} \mu_{00}$: diff. in means for urban POC vs rural POC.
 - $\beta_3 = (\mu_{11} \mu_{01}) (\mu_{10} \mu_{00})$: diff. in urban racial diff. vs rural racial diff.
- Generalizes to p binary variables if all interactions included (saturated) $_{14/26}$

• Outside of saturated discrete settings, CEF almost never truly linear.

- Outside of saturated discrete settings, CEF almost never truly linear.
- Alternative goal: find **best linear predictor** of *Y* given *X*.

- Outside of saturated discrete settings, CEF almost never truly linear.
- Alternative goal: find **best linear predictor** of Y given X.
- Formally, linear function of X that **minimizes squared prediction errors**:

$$(\pmb{\beta}_0, \pmb{\beta}_1) = \mathop{\arg\min}_{(b_0,b_1)} \mathbb{E}[(Y-(b_0+b_1X))^2]$$

- Outside of saturated discrete settings, CEF almost never truly linear.
- Alternative goal: find best linear predictor of Y given X.
- Formally, linear function of X that **minimizes squared prediction errors**:

$$(\beta_0,\beta_1) = \operatorname*{arg\,min}_{(b_0,b_1)} \mathbb{E}[(Y-(b_0+b_1X))^2]$$

• $\mathbb{L}[Y \mid X] = \beta_0 + \beta_1 X$ is called the **linear projection** of Y onto X.

- Outside of saturated discrete settings, CEF almost never truly linear.
- Alternative goal: find **best linear predictor** of Y given X.
- Formally, linear function of X that **minimizes squared prediction errors**:

$$(\beta_0,\beta_1) = \operatorname*{arg\,min}_{(b_0,b_1)} \mathbb{E}[(Y-(b_0+b_1X))^2]$$

• $\mathbb{L}[Y \mid X] = \beta_0 + \beta_1 X$ is called the **linear projection** of Y onto X.

•
$$\beta_1 = \operatorname{Cov}(X, Y) / \mathbb{V}[X]$$

- Outside of saturated discrete settings, CEF almost never truly linear.
- Alternative goal: find best linear predictor of Y given X.
- Formally, linear function of X that minimizes squared prediction errors:

$$(\beta_0,\beta_1) = \operatorname*{arg\,min}_{(b_0,b_1)} \mathbb{E}[(Y-(b_0+b_1X))^2]$$

- $\mathbb{L}[Y \mid X] = \beta_0 + \beta_1 X$ is called the **linear projection** of Y onto X.
 - $\beta_1 = \text{Cov}(X, Y) / \mathbb{V}[X]$
 - $eta_0 = \mu_Y \mu_X eta_1$, where $\mu_Y = \mathbb{E}[Y]$ and $\mu_X = \mathbb{E}[X]$

- Outside of saturated discrete settings, CEF almost never truly linear.
- Alternative goal: find **best linear predictor** of *Y* given *X*.
- Formally, linear function of X that minimizes squared prediction errors:

$$(\beta_0,\beta_1) = \operatorname*{arg\,min}_{(b_0,b_1)} \mathbb{E}[(Y-(b_0+b_1X))^2]$$

- $\mathbb{L}[Y \mid X] = \beta_0 + \beta_1 X$ is called the **linear projection** of Y onto X.
 - $\beta_1 = \text{Cov}(X, Y) / \mathbb{V}[X]$
 - $\beta_0 = \mu_Y \mu_X \beta_1$, where $\mu_Y = \mathbb{E}[Y]$ and $\mu_X = \mathbb{E}[X]$
- In general, $\mathbb{L}[Y \mid X]$ distinct from the CEF:

- Outside of saturated discrete settings, CEF almost never truly linear.
- Alternative goal: find **best linear predictor** of *Y* given *X*.
- Formally, linear function of X that minimizes squared prediction errors:

$$(\beta_0,\beta_1) = \mathop{\arg\min}_{(b_0,b_1)} \mathbb{E}[(Y-(b_0+b_1X))^2]$$

- $\mathbb{L}[Y \mid X] = \beta_0 + \beta_1 X$ is called the **linear projection** of Y onto X.
 - $\beta_1 = \text{Cov}(X, Y) / \mathbb{V}[X]$
 - $\beta_0 = \mu_Y \mu_X \beta_1$, where $\mu_Y = \mathbb{E}[Y]$ and $\mu_X = \mathbb{E}[X]$
- In general, $\mathbb{L}[Y \mid X]$ distinct from the CEF:
 - CEF, $\mu(x)$ is the best predictor of Y_i among all functions.

- Outside of saturated discrete settings, CEF almost never truly linear.
- Alternative goal: find best linear predictor of Y given X.
- Formally, linear function of X that minimizes squared prediction errors:

$$(\beta_0,\beta_1) = \operatorname*{arg\,min}_{(b_0,b_1)} \mathbb{E}[(Y-(b_0+b_1X))^2]$$

- $\mathbb{L}[Y \mid X] = \beta_0 + \beta_1 X$ is called the **linear projection** of Y onto X.
 - $\beta_1 = Cov(X, Y)/V[X]$
 - $\beta_0 = \mu_Y \mu_X \beta_1$, where $\mu_Y = \mathbb{E}[Y]$ and $\mu_X = \mathbb{E}[X]$
- In general, $\mathbb{L}[Y \mid X]$ distinct from the CEF:
 - CEF, $\mu(x)$ is the best predictor of Y_i among all functions.
 - Linear projection is best predictor among linear functions.

$$\mathbb{L}[Y \mid \mathbf{X}] = \mathbb{L}[Y \mid X_1, \dots, X_k] = X_1 \beta_1 + \dots + X_k \beta_k = \mathbf{X}' \boldsymbol{\beta}$$

• We'll almost always condition on a vector X:

$$\mathbb{L}[Y \mid \mathbf{X}] = \mathbb{L}[Y \mid X_1, \dots, X_k] = X_1 \beta_1 + \dots + X_k \beta_k = \mathbf{X}' \boldsymbol{\beta}$$

• Random vector $(k \times 1)$ of covariates: $\mathbf{X} = (X_1, \dots, X_k)'$

$$\mathbb{L}[Y \mid \mathbf{X}] = \mathbb{L}[Y \mid X_1, \dots, X_k] = X_1 \beta_1 + \dots + X_k \beta_k = \mathbf{X}' \boldsymbol{\beta}$$

- Random vector $(k \times 1)$ of covariates: $\mathbf{X} = (X_1, \dots, X_k)'$
 - May contain nonlinear transformations/interactions of "real" variables.

$$\mathbb{L}[Y \mid \mathbf{X}] = \mathbb{L}[Y \mid X_1, \dots, X_k] = X_1 \beta_1 + \dots + X_k \beta_k = \mathbf{X}' \boldsymbol{\beta}$$

- Random vector $(k \times 1)$ of covariates: $\mathbf{X} = (X_1, \dots, X_k)'$
 - May contain nonlinear transformations/interactions of "real" variables.
 - Typically, $X_1 = 1$ and is the intercept/constant.

$$\mathbb{L}[Y \mid \mathbf{X}] = \mathbb{L}[Y \mid X_1, \dots, X_k] = X_1 \beta_1 + \dots + X_k \beta_k = \mathbf{X}' \boldsymbol{\beta}$$

- Random vector $(k \times 1)$ of covariates: $\mathbf{X} = (X_1, \dots, X_k)'$
 - May contain nonlinear transformations/interactions of "real" variables.
 - Typically, $X_1 = 1$ and is the intercept/constant.
- Assumptions ("Regularity conditions"):

$$\mathbb{L}[Y \mid \mathbf{X}] = \mathbb{L}[Y \mid X_1, \dots, X_k] = X_1 \beta_1 + \dots + X_k \beta_k = \mathbf{X}' \boldsymbol{\beta}$$

- Random vector $(k \times 1)$ of covariates: $\mathbf{X} = (X_1, \dots, X_k)'$
 - May contain nonlinear transformations/interactions of "real" variables.
 - Typically, $X_1 = 1$ and is the intercept/constant.
- Assumptions ("Regularity conditions"):
 - 1. $\mathbb{E}[Y^2] < \infty$ (outcome has finite mean/variance)

$$\mathbb{L}[Y \mid \mathbf{X}] = \mathbb{L}[Y \mid X_1, \dots, X_k] = X_1 \beta_1 + \dots + X_k \beta_k = \mathbf{X}' \boldsymbol{\beta}$$

- Random vector $(k \times 1)$ of covariates: $\mathbf{X} = (X_1, \dots, X_k)'$
 - May contain nonlinear transformations/interactions of "real" variables.
 - Typically, $X_1 = 1$ and is the intercept/constant.
- Assumptions ("Regularity conditions"):
 - 1. $\mathbb{E}[Y^2] < \infty$ (outcome has finite mean/variance)
 - 2. $\mathbb{E}\|\mathbf{X}\|^2 < \infty$ (**X** has finite means/variances/covariances)

$$\mathbb{L}[Y \mid \mathbf{X}] = \mathbb{L}[Y \mid X_1, \dots, X_k] = X_1 \beta_1 + \dots + X_k \beta_k = \mathbf{X}' \boldsymbol{\beta}$$

- Random vector $(k \times 1)$ of covariates: $\mathbf{X} = (X_1, \dots, X_k)'$
 - May contain nonlinear transformations/interactions of "real" variables.
 - Typically, $X_1 = 1$ and is the intercept/constant.
- Assumptions ("Regularity conditions"):
 - 1. $\mathbb{E}[Y^2] < \infty$ (outcome has finite mean/variance)
 - 2. $\mathbb{E}\|\mathbf{X}\|^2 < \infty$ (X has finite means/variances/covariances)
 - 3. $\mathbf{Q}_{\mathbf{XX}} = \mathbb{E}[\mathbf{XX'}]$ is positive definite (columns of \mathbf{X} are linearly independent)

• How to find β ? Minimize squared prediction error!

$$\pmb{\beta} = \mathop{\mathrm{arg\,min}}_{\mathbf{b} \in \mathbb{R}^k} \mathbb{E}\left[\left(Y - \mathbf{X}' \pmb{\beta} \right)^2 \right]$$

• How to find β ? Minimize squared prediction error!

$$\pmb{\beta} = \mathop{\mathrm{arg\,min}}_{\mathbf{b} \in \mathbb{R}^k} \mathbb{E}\left[\left(Y - \mathbf{X}' \pmb{\beta} \right)^2 \right]$$

$$\boldsymbol{\beta} = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{Q}_{\mathbf{X}Y} = \left(\mathbb{E}[\mathbf{X}\mathbf{X}']\right)^{-1}\mathbb{E}[\mathbf{X}Y]$$

• How to find β ? Minimize squared prediction error!

$${m eta} = \mathop{\mathrm{arg\,min}}_{{m b} \in \mathbb{R}^k} \mathbb{E}\left[\left(Y - {f X}' {m eta}
ight)^2
ight]$$

· After some calculus:

$$\pmb{\beta} = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{Q}_{\mathbf{X}Y} = \left(\mathbb{E}[\mathbf{X}\mathbf{X}']\right)^{-1}\mathbb{E}[\mathbf{X}Y]$$

• $\mathbb{E}[\mathbf{X}\mathbf{X}']$ is $k \times k$ and $\mathbb{E}[\mathbf{X}Y]$ is $k \times 1$

• How to find β ? Minimize squared prediction error!

$$\pmb{\beta} = \mathop{\mathrm{arg\,min}}_{\mathbf{b} \in \mathbb{R}^k} \mathbb{E}\left[\left(Y - \mathbf{X}' \pmb{\beta} \right)^2 \right]$$

$$\pmb{\beta} = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{Q}_{\mathbf{X}Y} = \left(\mathbb{E}[\mathbf{X}\mathbf{X}']\right)^{-1}\mathbb{E}[\mathbf{X}Y]$$

- $\mathbb{E}[\mathbf{X}\mathbf{X}']$ is $k \times k$ and $\mathbb{E}[\mathbf{X}Y]$ is $k \times 1$
- Notes about the $\mathbb{L}[Y \mid \mathbf{X}]$:

• How to find β ? Minimize squared prediction error!

$${m eta} = \mathop{\mathrm{arg\,min}}_{{m b} \in \mathbb{R}^k} \mathbb{E}\left[\left(Y - {f X}' {m eta}
ight)^2
ight]$$

$$\boldsymbol{\beta} = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{Q}_{\mathbf{X}Y} = \left(\mathbb{E}[\mathbf{X}\mathbf{X}']\right)^{-1}\mathbb{E}[\mathbf{X}Y]$$

- $\mathbb{E}[\mathbf{X}\mathbf{X}']$ is $k \times k$ and $\mathbb{E}[\mathbf{X}Y]$ is $k \times 1$
- Notes about the $\mathbb{L}[Y \mid X]$:
 - β is a population quantity and possible quantity of interest.

• How to find β ? Minimize squared prediction error!

$${m eta} = \mathop{\mathrm{arg\,min}}_{{m b} \in \mathbb{R}^k} \mathbb{E}\left[\left(Y - {f X}' {m eta}
ight)^2
ight]$$

$$\boldsymbol{\beta} = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{Q}_{\mathbf{X}Y} = \left(\mathbb{E}[\mathbf{X}\mathbf{X}']\right)^{-1}\mathbb{E}[\mathbf{X}Y]$$

- $\mathbb{E}[\mathbf{X}\mathbf{X}']$ is $k \times k$ and $\mathbb{E}[\mathbf{X}Y]$ is $k \times 1$
- Notes about the $\mathbb{L}[Y \mid X]$:
 - β is a population quantity and possible quantity of interest.
 - Well-defined under very mild assumptions!

• How to find β ? Minimize squared prediction error!

$${m eta} = \mathop{\mathrm{arg\,min}}_{{m b} \in \mathbb{R}^k} \mathbb{E}\left[\left(Y - {f X}' {m eta}
ight)^2
ight]$$

$$oldsymbol{eta} = \mathbf{Q}_{\mathbf{X}\mathbf{X}}^{-1}\mathbf{Q}_{\mathbf{X}Y} = \left(\mathbb{E}[\mathbf{X}\mathbf{X}']\right)^{-1}\mathbb{E}[\mathbf{X}Y]$$

- $\mathbb{E}[\mathbf{X}\mathbf{X}']$ is $k \times k$ and $\mathbb{E}[\mathbf{X}Y]$ is $k \times 1$
- Notes about the $\mathbb{L}[Y \mid X]$:
 - β is a population quantity and possible quantity of interest.
 - Well-defined under very mild assumptions!
 - Not necessarily a conditional mean nor a causal effect!

• Projection error: $e = Y - \mathbf{X}'\boldsymbol{\beta}$

- Projection error: $e = Y X'\beta$
- Decomposition of Y into the linear projection and error: $Y = \mathbf{X}'\boldsymbol{\beta} + e$

- Projection error: $e = Y X'\beta$
- Decomposition of Y into the linear projection and error: $Y = \mathbf{X}' \boldsymbol{\beta} + e$
- Properties of the projection error:

- Projection error: $e = Y X'\beta$
- Decomposition of Y into the linear projection and error: $Y = \mathbf{X}' \boldsymbol{\beta} + e$
- · Properties of the projection error:

•
$$\mathbb{E}[\mathbf{X}e] = 0$$

- Projection error: $e = Y X'\beta$
- Decomposition of Y into the linear projection and error: $Y = \mathbf{X}'\boldsymbol{\beta} + e$
- · Properties of the projection error:
 - $\mathbb{E}[\mathbf{X}e] = 0$
 - $\mathbb{E}[e] = 0$ when **X** contains a constant.

- Projection error: $e = Y X'\beta$
- Decomposition of Y into the linear projection and error: $Y = \mathbf{X}' \boldsymbol{\beta} + e$
- · Properties of the projection error:
 - $\mathbb{E}[\mathbf{X}e] = 0$
 - $\mathbb{E}[e] = 0$ when **X** contains a constant.
 - Together, implies $\operatorname{Cov}(X_j,e)=0$ for all $j=1,\ldots,k$

- Projection error: $e = Y X'\beta$
- Decomposition of Y into the linear projection and error: $Y = \mathbf{X}' \boldsymbol{\beta} + e$
- · Properties of the projection error:
 - $\mathbb{E}[\mathbf{X}e] = 0$
 - $\mathbb{E}[e] = 0$ when **X** contains a constant.
 - Together, implies $Cov(X_j,e)=0$ for all $j=1,\ldots,k$
- Distinct from CEF errors: $u=Y-\mu(\mathbf{X})$ which had the additional property: $\mathbb{E}[u\mid\mathbf{X}]=0$

- Projection error: $e = Y X'\beta$
- Decomposition of Y into the linear projection and error: $Y = \mathbf{X}' \boldsymbol{\beta} + e$
- · Properties of the projection error:
 - $\mathbb{E}[\mathbf{X}e] = 0$
 - $\mathbb{E}[e] = 0$ when **X** contains a constant.
 - Together, implies $Cov(X_j,e)=0$ for all $j=1,\ldots,k$
- Distinct from CEF errors: $u = Y \mu(\mathbf{X})$ which had the additional property: $\mathbb{E}[u \mid \mathbf{X}] = 0$
 - Zero conditional mean is stronger: CEF errors are 0 at every value of X

- Projection error: $e = Y X'\beta$
- Decomposition of Y into the linear projection and error: $Y = \mathbf{X}' \boldsymbol{\beta} + e$
- · Properties of the projection error:
 - $\mathbb{E}[\mathbf{X}e] = 0$
 - $\mathbb{E}[e] = 0$ when **X** contains a constant.
 - Together, implies $Cov(X_j,e)=0$ for all $j=1,\ldots,k$
- Distinct from CEF errors: $u=Y-\mu(\mathbf{X})$ which had the additional property: $\mathbb{E}[u\mid\mathbf{X}]=0$
 - Zero conditional mean is stronger: CEF errors are 0 at every value of X
 - $\mathbb{E}[\mathbf{X}e] = 0$ just says they are uncorrelated.

Regression coefficients

• Sometimes useful to separate the constant:

$$Y = \beta_0 + \mathbf{X}'\boldsymbol{\beta} + e$$

where X doesn't have a constant.

Regression coefficients

· Sometimes useful to separate the constant:

$$Y = \beta_0 + \mathbf{X}'\boldsymbol{\beta} + e$$

where X doesn't have a constant.

• Solution for β more interpretable here:

$$\pmb{\beta} = \mathbb{V}[\mathbf{X}]^{-1} \mathrm{Cov}(\mathbf{X}, Y), \qquad \pmb{\beta}_0 = \mu_Y - \pmb{\mu}_{\mathbf{X}}' \pmb{\beta}$$

$$\mathbb{L}(Y\mid \mathbf{X},\mathbf{Z}) = \mathbf{X}'\boldsymbol{\beta} + \mathbf{Z}'\boldsymbol{\gamma}$$

• Can we get an expression for just β ? With some tricks, yes!

$$\mathbb{L}(Y \mid \mathbf{X}, \mathbf{Z}) = \mathbf{X}'\boldsymbol{\beta} + \mathbf{Z}'\boldsymbol{\gamma}$$

- Can we get an expression for just β ? With some tricks, yes!
- Population residuals from projection of **X** on **Z**: $\mathbf{R} = \mathbf{X} \mathbb{L}(\mathbf{X} \mid \mathbf{Z})$.

$$\mathbb{L}(Y \mid \mathbf{X}, \mathbf{Z}) = \mathbf{X}' \boldsymbol{\beta} + \mathbf{Z}' \boldsymbol{\gamma}$$

- Can we get an expression for just β ? With some tricks, yes!
- Population residuals from projection of **X** on **Z**: $\mathbf{R} = \mathbf{X} \mathbb{L}(\mathbf{X} \mid \mathbf{Z})$.
 - · R is now orthogonal to Z.

$$\mathbb{L}(Y \mid \mathbf{X}, \mathbf{Z}) = \mathbf{X}'\boldsymbol{\beta} + \mathbf{Z}'\boldsymbol{\gamma}$$

- Can we get an expression for just β ? With some tricks, yes!
- Population residuals from projection of **X** on **Z**: $\mathbf{R} = \mathbf{X} \mathbb{L}(\mathbf{X} \mid \mathbf{Z})$.
 - · R is now orthogonal to Z.
- Project Y onto these residuals gives $\pmb{\beta}$ as coefficient: $\mathbb{L}(Y \mid \mathbf{R}) = \mathbf{R}' \pmb{\beta}$

$$\boldsymbol{\beta} = \left(\mathbb{E}[\mathsf{RR}']\right)^{-1}\mathbb{E}[\mathsf{R}Y]$$

$$\mathbb{L}(Y \mid \mathbf{X}, \mathbf{Z}) = \mathbf{X}'\boldsymbol{\beta} + \mathbf{Z}'\boldsymbol{\gamma}$$

- Can we get an expression for just β ? With some tricks, yes!
- Population residuals from projection of **X** on **Z**: $\mathbf{R} = \mathbf{X} \mathbb{L}(\mathbf{X} \mid \mathbf{Z})$.
 - · R is now orthogonal to Z.
- Project Y onto these residuals gives $\pmb{\beta}$ as coefficient: $\mathbb{L}(Y \mid \mathbf{R}) = \mathbf{R}' \pmb{\beta}$

$$\boldsymbol{\beta} = \left(\mathbb{E}[\mathsf{RR}']\right)^{-1}\mathbb{E}[\mathsf{R}Y]$$

• Also holds if we get residuals from projection of Y on Z: $V = Y - \mathbb{L}(Y \mid Z)$.

$$\mathbb{L}(V \mid \mathbf{R}) = \mathbf{R}' \boldsymbol{\beta}$$

Omitted variable bias

• Consider two projections/regressions with and without some Z:

$$\mathbb{L}[Y \mid \mathbf{X}, \mathbf{Z}] = \mathbf{X}'\boldsymbol{\beta} + Z\gamma, \qquad \mathbb{L}[Y_i \mid \mathbf{X}_i] = \mathbf{X}_i'\boldsymbol{\delta}$$

• Consider two projections/regressions with and without some *Z*:

$$\mathbb{L}[Y \mid \mathbf{X}, \mathbf{Z}] = \mathbf{X}'\boldsymbol{\beta} + Z\boldsymbol{\gamma}, \qquad \mathbb{L}[Y_i \mid \mathbf{X}_i] = \mathbf{X}_i'\boldsymbol{\delta}$$

• $\mathbb{L}[Y \mid \mathbf{X}, Z]$ is the long regression, $\mathbb{L}[Y \mid \mathbf{X}]$ is the short regression.

Consider two projections/regressions with and without some Z:

$$\mathbb{L}[Y \mid \mathbf{X}, \mathbf{Z}] = \mathbf{X}'\boldsymbol{\beta} + Z\boldsymbol{\gamma}, \qquad \mathbb{L}[Y_i \mid \mathbf{X}_i] = \mathbf{X}_i'\boldsymbol{\delta}$$

- $\mathbb{L}[Y \mid \mathbf{X}, Z]$ is the long regression, $\mathbb{L}[Y \mid \mathbf{X}]$ is the short regression.
- How do β and δ relate? Use law of iterated projections:

$$\mathbb{L}[Y\mid \mathbf{X}] = \mathbb{L}\left\{\mathbb{L}[Y\mid \mathbf{X},Z]\mid \mathbf{X}\right\} = \mathbb{L}[\mathbf{X}\mid \mathbf{X}]'\boldsymbol{\beta} + \mathbb{L}[Z\mid \mathbf{X}]\boldsymbol{\gamma}$$

Consider two projections/regressions with and without some Z:

$$\mathbb{L}[Y \mid \mathbf{X}, \mathbf{Z}] = \mathbf{X}'\boldsymbol{\beta} + Z\boldsymbol{\gamma}, \qquad \mathbb{L}[Y_i \mid \mathbf{X}_i] = \mathbf{X}_i'\boldsymbol{\delta}$$

- $\mathbb{L}[Y \mid \mathbf{X}, Z]$ is the long regression, $\mathbb{L}[Y \mid \mathbf{X}]$ is the short regression.
- How do β and δ relate? Use law of iterated projections:

$$\mathbb{L}[Y \mid \mathbf{X}] = \mathbb{L}\left\{\mathbb{L}[Y \mid \mathbf{X}, Z] \mid \mathbf{X}\right\} = \mathbb{L}[\mathbf{X} \mid \mathbf{X}]'\boldsymbol{\beta} + \mathbb{L}[Z \mid \mathbf{X}]\boldsymbol{\gamma}$$

• First regress/project Z on X: $\mathbb{L}[Z \mid X] = X'\pi$ and so:

$$\mathbb{L}[Y \mid X] = X'(\beta + \pi \gamma), \qquad \delta = \beta + \pi \gamma$$

Consider two projections/regressions with and without some Z:

$$\mathbb{L}[Y \mid \mathbf{X}, \mathbf{Z}] = \mathbf{X}'\boldsymbol{\beta} + Z\boldsymbol{\gamma}, \qquad \mathbb{L}[Y_i \mid \mathbf{X}_i] = \mathbf{X}_i'\boldsymbol{\delta}$$

- $\mathbb{L}[Y \mid \mathbf{X}, Z]$ is the long regression, $\mathbb{L}[Y \mid \mathbf{X}]$ is the short regression.
- How do β and δ relate? Use law of iterated projections:

$$\mathbb{L}[Y \mid \mathbf{X}] = \mathbb{L}\left\{\mathbb{L}[Y \mid \mathbf{X}, Z] \mid \mathbf{X}\right\} = \mathbb{L}[\mathbf{X} \mid \mathbf{X}]'\boldsymbol{\beta} + \mathbb{L}[Z \mid \mathbf{X}]\boldsymbol{\gamma}$$

• First regress/project Z on X: $\mathbb{L}[Z \mid X] = X'\pi$ and so:

$$\mathbb{L}[Y \mid X] = X'(\beta + \pi \gamma), \qquad \delta = \beta + \pi \gamma$$

• $\delta - \beta = \pi \gamma$ is the "bias" but this is misleading.

Consider two projections/regressions with and without some Z:

$$\mathbb{L}[Y \mid \mathbf{X}, \mathbf{Z}] = \mathbf{X}'\boldsymbol{\beta} + Z\boldsymbol{\gamma}, \qquad \mathbb{L}[Y_i \mid \mathbf{X}_i] = \mathbf{X}_i'\boldsymbol{\delta}$$

- $\mathbb{L}[Y \mid \mathbf{X}, Z]$ is the long regression, $\mathbb{L}[Y \mid \mathbf{X}]$ is the short regression.
- How do β and δ relate? Use law of iterated projections:

$$\mathbb{L}[Y\mid \mathbf{X}] = \mathbb{L}\left\{\mathbb{L}[Y\mid \mathbf{X},Z]\mid \mathbf{X}\right\} = \mathbb{L}[\mathbf{X}\mid \mathbf{X}]'\boldsymbol{\beta} + \mathbb{L}[Z\mid \mathbf{X}]\boldsymbol{\gamma}$$

• First regress/project Z on X: $\mathbb{L}[Z \mid X] = X'\pi$ and so:

$$\mathbb{L}[Y \mid X] = X'(\beta + \pi \gamma), \qquad \delta = \beta + \pi \gamma$$

- $\delta \beta = \pi \gamma$ is the "bias" but this is misleading.
 - $oldsymbol{eta}$ not necessarily "correct", we're just relating two projections

Consider two projections/regressions with and without some Z:

$$\mathbb{L}[Y \mid \mathbf{X}, \mathbf{Z}] = \mathbf{X}'\boldsymbol{\beta} + Z\boldsymbol{\gamma}, \qquad \mathbb{L}[Y_i \mid \mathbf{X}_i] = \mathbf{X}_i'\boldsymbol{\delta}$$

- $\mathbb{L}[Y \mid \mathbf{X}, Z]$ is the long regression, $\mathbb{L}[Y \mid \mathbf{X}]$ is the short regression.
- How do β and δ relate? Use law of iterated projections:

$$\mathbb{L}[Y\mid \mathbf{X}] = \mathbb{L}\left\{\mathbb{L}[Y\mid \mathbf{X},Z]\mid \mathbf{X}\right\} = \mathbb{L}[\mathbf{X}\mid \mathbf{X}]'\boldsymbol{\beta} + \mathbb{L}[Z\mid \mathbf{X}]\boldsymbol{\gamma}$$

• First regress/project Z on X: $\mathbb{L}[Z \mid X] = X'\pi$ and so:

$$\mathbb{L}[Y \mid X] = X'(\beta + \pi \gamma), \qquad \delta = \beta + \pi \gamma$$

- $\delta \beta = \pi \gamma$ is the "bias" but this is misleading.
 - $oldsymbol{eta}$ not necessarily "correct", we're just relating two projections
 - Difference is (coef of excluded) × (effect of included on excluded)

• What is the relationship between $\mathbb{L}[Y \mid \mathbf{X}]$ and $\mu(\mathbf{X}) = \mathbb{E}[Y \mid \mathbf{X}]$?

- What is the relationship between $\mathbb{L}[Y \mid \mathbf{X}]$ and $\mu(\mathbf{X}) = \mathbb{E}[Y \mid \mathbf{X}]$?
 - If $\mu(\mathbf{X})$ is linear, then $\mu(\mathbf{X}) = \mathbb{L}[Y \mid \mathbf{X}]$.

- What is the relationship between $\mathbb{L}[Y \mid \mathbf{X}]$ and $\mu(\mathbf{X}) = \mathbb{E}[Y \mid \mathbf{X}]$?
 - If $\mu(\mathbf{X})$ is linear, then $\mu(\mathbf{X}) = \mathbb{L}[Y \mid \mathbf{X}]$.
 - But $\mu(\mathbf{X})$ could be nonlinear, what then?

- What is the relationship between $\mathbb{L}[Y \mid \mathbf{X}]$ and $\mu(\mathbf{X}) = \mathbb{E}[Y \mid \mathbf{X}]$?
 - If $\mu(\mathbf{X})$ is linear, then $\mu(\mathbf{X}) = \mathbb{L}[Y \mid \mathbf{X}]$.
 - But $\mu(\mathbf{X})$ could be nonlinear, what then?
- Linear projection justification: best linear approximation to $\mu(\mathbf{X})$:

$$\pmb{\beta} = \mathop{\arg\min}_{\mathbf{b} \in \mathbb{R}^K} \mathbb{E} \left[\left(\mu(\mathbf{X}) - \mathbf{X}' \pmb{\beta} \right)^2 \right]$$

- What is the relationship between $\mathbb{L}[Y \mid \mathbf{X}]$ and $\mu(\mathbf{X}) = \mathbb{E}[Y \mid \mathbf{X}]$?
 - If $\mu(\mathbf{X})$ is linear, then $\mu(\mathbf{X}) = \mathbb{L}[Y \mid \mathbf{X}]$.
 - But $\mu(\mathbf{X})$ could be nonlinear, what then?
- Linear projection justification: best linear approximation to $\mu(\mathbf{X})$:

$$\pmb{\beta} = \mathop{\arg\min}_{\mathbf{b} \in \mathbb{R}^K} \mathbb{E} \left[\left(\mu(\mathbf{X}) - \mathbf{X}' \pmb{\beta} \right)^2 \right]$$

• Linear projection is best linear approximation to Y and $\mathbb{E}[Y \mid X]$.

- What is the relationship between $\mathbb{L}[Y \mid \mathbf{X}]$ and $\mu(\mathbf{X}) = \mathbb{E}[Y \mid \mathbf{X}]$?
 - If $\mu(\mathbf{X})$ is linear, then $\mu(\mathbf{X}) = \mathbb{L}[Y \mid \mathbf{X}]$.
 - But $\mu(\mathbf{X})$ could be nonlinear, what then?
- Linear projection justification: best linear approximation to $\mu(\mathbf{X})$:

$$\pmb{\beta} = \mathop{\arg\min}_{\mathbf{b} \in \mathbb{R}^K} \mathbb{E} \left[\left(\mu(\mathbf{X}) - \mathbf{X}' \pmb{\beta} \right)^2 \right]$$

- Linear projection is best linear approximation to Y and $\mathbb{E}[Y \mid X]$.
- · Limitations:

- What is the relationship between $\mathbb{L}[Y \mid \mathbf{X}]$ and $\mu(\mathbf{X}) = \mathbb{E}[Y \mid \mathbf{X}]$?
 - If $\mu(\mathbf{X})$ is linear, then $\mu(\mathbf{X}) = \mathbb{L}[Y \mid \mathbf{X}]$.
 - But $\mu(\mathbf{X})$ could be nonlinear, what then?
- Linear projection justification: best linear approximation to $\mu(\mathbf{X})$:

$$\pmb{\beta} = \mathop{\arg\min}_{\mathbf{b} \in \mathbb{R}^K} \mathbb{E} \left[\left(\mu(\mathbf{X}) - \mathbf{X}' \pmb{\beta} \right)^2 \right]$$

- Linear projection is best linear approximation to Y and $\mathbb{E}[Y \mid X]$.
- · Limitations:
 - If nonlinearity of $\mu(\mathbf{X})$ is severe, $\mathbb{L}[Y \mid X]$ can only be so good.

- What is the relationship between $\mathbb{L}[Y \mid \mathbf{X}]$ and $\mu(\mathbf{X}) = \mathbb{E}[Y \mid \mathbf{X}]$?
 - If $\mu(\mathbf{X})$ is linear, then $\mu(\mathbf{X}) = \mathbb{L}[Y \mid \mathbf{X}]$.
 - But $\mu(\mathbf{X})$ could be nonlinear, what then?
- Linear projection justification: best linear approximation to $\mu(\mathbf{X})$:

$$\boldsymbol{\beta} = \operatorname*{arg\,min}_{\mathbf{b} \in \mathbb{R}^K} \mathbb{E}\left[\left(\mu(\mathbf{X}) - \mathbf{X}' \boldsymbol{\beta}\right)^2\right]$$

- Linear projection is best linear approximation to Y and $\mathbb{E}[Y \mid X]$.
- · Limitations:
 - If nonlinearity of $\mu(\mathbf{X})$ is severe, $\mathbb{L}[Y \mid X]$ can only be so good.
 - $\mathbb{L}[Y \mid \mathbf{X}]$ can be sensitive to the marginal distribution of \mathbf{X} .

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$

• "The Linear Model": is this an assumption?

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$

- "The Linear Model": is this an assumption?
- ullet Depends on what we assume about the error, e

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$

- "The Linear Model": is this an assumption?
- · Depends on what we assume about the error, e
 - If $\mathbb{E}[e \mid \mathbf{X}] = 0$, then we are assuming the CEF is linear, $\mathbb{E}[Y \mid X] = \mathbf{X}' \boldsymbol{\beta}$

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$

- "The Linear Model": is this an assumption?
- Depends on what we assume about the error, e
 - If $\mathbb{E}[e \mid \mathbf{X}] = 0$, then we are assuming the CEF is linear, $\mathbb{E}[Y \mid X] = \mathbf{X}'\boldsymbol{\beta}$
 - If just $\mathbb{E}[\boldsymbol{X}\boldsymbol{e}]=0$, then this is just a linear projection.

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$

- "The Linear Model": is this an assumption?
- Depends on what we assume about the error, e
 - If $\mathbb{E}[e \mid \mathbf{X}] = 0$, then we are assuming the CEF is linear, $\mathbb{E}[Y \mid X] = \mathbf{X}'\boldsymbol{\beta}$
 - If just $\mathbb{E}[\mathbf{X}e] = 0$, then this is just a linear projection.
 - First is very strong, second is very mild.

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$

- "The Linear Model": is this an assumption?
- Depends on what we assume about the error, e
 - If $\mathbb{E}[e \mid \mathbf{X}] = 0$, then we are assuming the CEF is linear, $\mathbb{E}[Y \mid X] = \mathbf{X}' \boldsymbol{\beta}$
 - If just $\mathbb{E}[\mathbf{X}e] = 0$, then this is just a linear projection.
 - · First is very strong, second is very mild.
- Why do we care? Affects the properties of OLS.

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$

- "The Linear Model": is this an assumption?
- Depends on what we assume about the error, e
 - If $\mathbb{E}[e \mid \mathbf{X}] = 0$, then we are assuming the CEF is linear, $\mathbb{E}[Y \mid X] = \mathbf{X}'\boldsymbol{\beta}$
 - If just $\mathbb{E}[\mathbf{X}e] = 0$, then this is just a linear projection.
 - · First is very strong, second is very mild.
- Why do we care? Affects the properties of OLS.
 - · Some finite-sample properties of OLS (unbiasedness) require linear CEF

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$

- "The Linear Model": is this an assumption?
- Depends on what we assume about the error, e
 - If $\mathbb{E}[e \mid \mathbf{X}] = 0$, then we are assuming the CEF is linear, $\mathbb{E}[Y \mid X] = \mathbf{X}'\boldsymbol{\beta}$
 - If just $\mathbb{E}[\mathbf{X}e] = 0$, then this is just a linear projection.
 - · First is very strong, second is very mild.
- Why do we care? Affects the properties of OLS.
 - · Some finite-sample properties of OLS (unbiasedness) require linear CEF
 - Asymptotic results (consistency, asymptotic normality) apply to both.

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$

- "The Linear Model": is this an assumption?
- Depends on what we assume about the error, e
 - If $\mathbb{E}[e \mid \mathbf{X}] = 0$, then we are assuming the CEF is linear, $\mathbb{E}[Y \mid X] = \mathbf{X}'\boldsymbol{\beta}$
 - If just $\mathbb{E}[\mathbf{X}e] = 0$, then this is just a linear projection.
 - · First is very strong, second is very mild.
- Why do we care? Affects the properties of OLS.
 - Some finite-sample properties of OLS (unbiasedness) require linear CEF
 - Asymptotic results (consistency, asymptotic normality) apply to both.
 - OLS will consitently estimate something, but maybe not what you want.