

Итоговая аттестация

по программе повышения квалификации «Архитектор данных» 19.09.2023 – 01.11.2023

Слушатель: Наумова Елена Анатольевна

Контекст

Банк привлекает клиентов по различным каналам и собирает сведения о клиентах в базу данных.

Задачи банка:

- определить клиентов с высокой вероятностью конверсии,
- увеличить количество привлеченных квалифицированных клиентов, т.е. увеличить число потенциальных клиентов, попадающих в воронку конверсий.

Текущая бизнес-задача:

• определить, какая техника обработки данных приведет к большей результативности модели: undersampling, oversampling или SMOTE.

Данные

ID	Уникальный идентификатор клиента
Gender	Пол заявителя
DOB	Дата рождения заявителя
Lead_Creation_Date	Дата создания заявки
City_Code	Анонимизированный код города
City_Category	Анонимизированная характеристика города
Employer_Code	Анонимизированный код работодателя
Employer_Category1	Анонимизированная характеристика работодателя 1
Employer_Category2	Анонимизированная характеристика работодателя 2
Monthly_Income	Ежемесячный доход в долларах
Customer_Existing_Primary_Bank_Code	Анонимизированный код банка клиента
Primary_Bank_Type	Анонимизированная характеристика банка
Contacted	Проверка контакта (Y/N)
Source	Категориальная переменная, представляющая источник заявки
Source_Category	Тип источника
Existing_EMI	Ежемесячные платежи по существующим кредитам в долларах
Loan_Amount	Запрошенная сумма кредита
Loan_Period	Срок кредита (в годах)
Interest_Rate	Процентная ставка по запрошенной сумме кредита
EMI	Ежемесячный платеж по запрошенной сумме кредита в долларах
Var1	Анонимизированная категориальная переменная с несколькими уровнями
Approved	(Цель) Одобрен ли кредит или нет.(1-0) Клиент является квалифицированным клиентом или нет (1-0)

- Преобразование типов DOB и Lead_Creation_Data
- Создание нового признака age
- Подсчет пропущенных значений, дубликатов
- Исследование данных EDA
- Преобразование категориальных признаков в числовые с помощью LabelEncoder()
- Удаление признаков, где каждое значение уникально

Данные

Пропущено 11.42 % данных

Данные не сбалансированы. «Approved» percentage = 1.46%.

Модель машинного обучения

Используем логистическую регрессию из библиотеки sklearn

Обработка пропусков

Удаление

```
# Оценка модели на данных после удаления пропусков 
X_drop, y_drop = split_data(train_data_drop)
print(log_reg_model(X_drop, y_drop))
```

balanced_accu	racy: 0.4996	531791907	514		
	precision	recall	f1-score	support	
0	0.98	1.00	0.99	4325	
1	0.00	0.00	0.00	92	
accuracy			0.98	4417	
macro avg	0.49	0.50	0.49	4417	
weighted avg	0.96	0.98	0.97	4417	

Общие показатели высокие, но на классе 1 признака Approved нерезультативно.

Balanced_accuracy_score низкий.

Заполнение МІСЕ

```
# Оценка модели на данных после заполнения пропусков MICE train_data_mice = fit_encoded.data.data

X_mice, y_mice = split_data(train_data_mice)

print(log_reg_model(X_mice, y_mice))
```

balanced_accuracy: 0.5023907864169549								
	precision	recall	f1-score	support				
0	0.99	1.00	0.99	13737				
1	0.50	0.00	0.01	206				
accuracy			0.99	13943				
macro avg	0.74	0.50	0.50	13943				
weighted avg	0.98	0.99	0.98	13943				

Показатели precision и f1-score класса 1 признака Approved улучшились.

Balanced_accuracy_score увеличился.

Модель работает лучше при заполнении mice.

Работа с несбалансированными данными

Сравнение результатов модели

Undersampling reduces instances to balance classes

SMOTE synthetically generates minority class instances

	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.72	0.70	0.71	209	0	0.68	0.74	0.71	13823	0	0.69	0.72	0.70	13823
1	0.69	0.71	0.70	199	1		0.65			1	0.70	0.68	0.69	13655
			0.71	400										
accuracy	0.71	0.71	0.71	408 408	accuracy			0.69	27478	accuracy			0.70	27478
macro avg weighted avg	0.71	0.71	0.71 0.71		macro avg		0.69		27478	macro avg	0.70	0.70	0.70	27478
weighted avg	0.71	0.71	0.71	408	weighted avg	0.69	0.69	0.69	27478	weighted avg	0.70	0.70	0.70	27478
	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.71	0.70	0.71	209	0	0.66	0.74	0.70	13823	0	0.71	0.71	0.71	13823
1	0.69	0.70	0.70	199	1	0.70	0.61	0.65	13655	1	0.70	0.70	0.70	13655
			0.70	400				0.60	27470				0.71	27470
accuracy			0.70	408	accuracy	0.60		0.68	27478	accuracy	0.71	0.74	0.71	27478
macro avg	0.70	0.70	0.70	408	macro avg	0.68	0.67	0.67	27478	macro avg	0.71	0.71	0.71	27478
weighted avg	0.70	0.70	0.70	408	weighted avg	0.68	0.68	0.67	27478	weighted avg	0.71	0.71	0.71	27478
	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
											p			
0	0.72	0.71	0.72	209	0	0.69	0.74	0.71	13823	0	0.70	0.70	0.70	13823
1	0.70	0.71	0.71	199	1	0.71	0.67	0.69	13655	1	0.69	0.70	0.70	13655
accuracy			0.71	408	accuracy			0.70	27478	accuracy			0.70	27478
macro avg	0.71	0.71	0.71	408	macro avg	0.70	0.70	0.70	27478	macro avg	0.70	0.70	0.70	27478
weighted avg	0.71	0.71	0.71	408	weighted avg	0.70	0.70	0.70	27478	weighted avg	0.70	0.70	0.70	27478
										_				

Вывод

- Undersampling и SMOTE оказали более положительное влияние на результат работы модели для класса 1 по сравнению с oversampling.
- Метрики в совокупности при сравнении нескольких итераций модели указывают на более сбалансированный результат работы модели для класса 1 после применения undersampling.
- Однако, разница в метриках между этими методами не является значительной.

