PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-341689

(43)Date of publication of application: 08.12.2000

(51)Int.CI.

HO4N 7/30

H03M 7/30

HO4N 1/41

(21)Application number : 11-148452

(71)Applicant: SONY CORP

TAKAYA HITOSHI

(22)Date of filing:

27.05.1999

(72)Inventor: FUKUHARA TAKAHIRO

KIMURA SEISHI TAKAYA HITOSHI

(54) WAVELET INVERSE CONVERTING DEVICE AND ITS METHOD AND WAVELET DECODING DEVICE AND ITS **METHOD**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a wavelet inverse converting device and method and a wavelet decoding device and method for decoding only arbitrary partial pictures without decoding all pictures by inputting an encoded bit stream generated by wavelet converting all normal pictures.

SOLUTION: A decoding object region determining part 11 determines the decoding object region and transmits the position coordinates of a vertex in the case of a rectangular region, A .v. decoding object coefficient extracting part 12 extracts a coefficient necessary for decoding the region decided by the region to be decoded deciding part 11, and transmits it to a wavelet inverse converting part 13. Especially, the coefficient extracting part 12 extract the converted coefficient of the outer periphery of the region in addition to the coefficient of the specific region. The wavelet inverse converting part 13 inverse converts the coefficients extracted by the coefficient extracting part 12.

LEGAL STATUS

[Date of request for examination]

07.03.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-341689 (P2000-341689A)

(43)公開日 平成12年12月8日(2000.12.8)

(51) Int.Cl. ⁷		識別記号	FΙ		· 5	·-マコード(参考)
H04N	7/30		H04N	7/133	Z	5 C 0 5 9
H 0 3 M	7/30		H03M	7/30	A	5 C O 7 8
H 0 4 N	1/41		H 0 4 N	1/41	В	5 J O 6 4
						9 A 0 0 1

審査請求 未請求 請求項の数18 OL (全 10 頁)

	特願平 11-148452	(71)出願人	000002185		
	•		ソニー株式会社		
(22) 出顧日	平成11年5月27日(1999.5.27)	東京都品川区北品川6丁自7番35号			
		(71)出願人	(71)出願人 598000806		
			貴家 仁志		
			東京都八王子市南大沢 5 - 9 - 3 - 307		
		(72)発明者	福原隆浩		
			東京都品川区北品川6丁目7番35号 ソニ		
			一株式会社内		
		(74)代理人	100067736		
			弁理士 小池 晃 (外2名)		

最終頁に続く

(54) 【発明の名称】 ウェープレット逆変換装置及び方法、並びにウェーブレット復号装置及び方法

(57)【要約】

【課題】 従来技術のウェーブレット符号化では通常画像全体にウェーブレット変換を掛け、発生したウェーブレット変換係数を一時的にメモリ内に記憶・保持する必要がある。ウェーブレット復号化ではこの正対の処理を行うため、やはり全画面分の係数を記憶・保持するためのメモリ容量を必要とする。

【解決手段】 復号対象領域決定部11は、復号対象領域を決定して、例えば矩形領域の場合は頂点の位置座標を送出する。復号対象係数抽出部12は、復号対象領域決定部11で決定された領域を復号するのに必要な係数を抽出し、ウェーブレット逆変換部13に送る。特に、この復号対象係数抽出部12は、特定領域の他、同領域の外周にある変換係数も抽出する。ウェーブレット逆変換部13は、復号対象係数抽出部12で抽出された係数を逆変換する。

【特許請求の範囲】

【請求項1】 ウェーブレット変換係数の中から特定領域を復号するのに必要な係数を抽出する復号対象係数抽出手段と、

1

上記復号対象係数抽出手段で抽出された係数を逆変換す るウェーブレット逆変換手段とを備え、

上記復号対象係数抽出手段は、特定領域の他、同領域の 外周にある変換係数も抽出することを特徴とするウェー ブレット逆変換装置。

【請求項2】 復号対象領域を決定するための復号対象 領域決定手段を備え、上記復号対象係数抽出手段は上記 復号対象領域決定手段で決定された領域を復号するのに 必要な係数を抽出することを特徴とする請求項1記載の ウエーブレット逆変換装置。

【請求項3】 上記ウェーブレット変換係数は、複数の分割レベルの変換係数から構成されていて各分割レベル 毎の特定領域とその外周にある変換係数とを含んでいる ことを特徴とする請求項1記載のウェーブレット逆変換 装置。

【請求項4】 上記復号対象係数抽出手段が抽出する特定領域の外周の変換係数は、ウェーブレット逆変換手段に用いるフィルタのインパルス応答の数に対応していることを特徴とする請求項1記載のウェーブレット逆変換装置。

【請求項5】 上記ウェーブレット変換係数は、複数の分割レベルの低域成分を階層的に分割して得られることを特徴とする請求項3記載のウェーブレット逆変換装置。

【請求項6】 上記ウェーブレット逆変換手段によって 生成された変換係数の内、重複保持処理に基づいた有効 な範囲の係数を抽出することを特徴とする請求項1記載 のウェーブレット逆変換装置。

【請求項7】 上記重複保持処理に基づいた有効な範囲の係数の抽出は、ウェーブレット分割の各レベルで行われることを特徴とする請求項6記載のウェーブレット逆変換装置。

【請求項8】 ウェーブレット変換係数の中から特定領 域を復号するのに必要な係数を抽出する復号対象係数抽 出工程と、

上記復号対象係数抽出工程で抽出された係数を逆変換す るウェーブレット逆変換工程とを備え、

上記復号対象係数抽出工程は、特定領域の他、同領域の 外周にある変換係数も抽出することを特徴とするウェー ブレット逆変換方法。

【請求項9】 画像をウェーブレット変換符号化して生成された符号化ビットストリームを、エントロピー復号するエントロピー復号手段と、

上記エントロピー復号手段で得られたウェーブレット変 換係数の中から、特定領域を復号するのに必要な係数を 抽出する復号対象係数抽出手段と、 上記復号対象係数抽出手段で抽出された係数を逆変換す るウェーブレット逆変換手段とを備え、

上記復号対象係数抽出手段は、特定領域の他、同領域の 外周にある変換係数も抽出することを特徴とするウェー ブレット復号装置。

【請求項10】 上記エントロピー復号手段で得られた 量子化係数を逆量子化してウェーブレット変換係数に戻 す逆量子化手段を備え、上記復号対象係数抽出手段は上 記逆量子化手段で得られたウェーブレット変換係数の中 から、特定領域を復号するのに必要な係数を抽出するこ とを特徴とする請求項9記載のウェーブレット復号装 置。

【請求項11】 復号対象領域を決定するための復号対象領域決定手段を備え、上記復号対象係数抽出手段は上記復号対象領域決定手段で決定された領域を復号するのに必要な係数を抽出することを特徴とする請求項9記載のウエーブレット復号装置。

【請求項12】 上記ウェーブレット変換係数は、複数の分割レベルの変換係数から構成されていて、各分割レンのででででは減とその外周にある変換係数とを含んでいることを特徴とする請求項9記載のウェーブレット復号装置。

【請求項13】 上記復号対象係数抽出手段が抽出する 特定領域の外周の変換係数は、ウェーブレット逆変換手 段に用いるフィルタのインパルス応答の数に対応してい ることを特徴とする請求項9記載のウェーブレット復号 装置。

【請求項14】 上記ウェーブレット変換係数は、複数の分割レベルの低域成分を階層的に分割して得られるこ 30 とを特徴とする請求項12記載のウェーブレット復号装置。

【請求項15】 上記ウェーブレット逆変換手段によって生成された変換係数の内、重複保持処理に基づいた有効な範囲の係数を抽出することを特徴とする請求項9記載のウェーブレット復号装置。

【請求項16】 上記重複保持処理に基づいた有効な範囲の係数の抽出は、ウェーブレット分割の各レベルで行われることを特徴とする請求項15記載のウェーブレット復号装置。

40 【請求項17】 画像をウェーブレット変換符号化して 生成された符号化ピットストリームを、エントロピー復 号するエントロピー復号工程と、

上記エントロピー復号工程で得られたウェーブレット変 換係数の中から、特定領域を復号するのに必要な係数を 抽出する復号対象係数抽出工程と、

上記復号対象係数抽出工程で抽出された係数を逆変換するウェーブレット逆変換工程とを備え、

上記復号対象係数抽出工程は、特定領域の他、同領域の 外周にある変換係数も抽出することを特徴とするウェー 50 ブレット復号方法。 3

【請求項18】 上記エントロピー復号工程で得られた 量子化係数を逆量子化してウェーブレット変換係数に戻 す逆量子化工程を備え、上記復号対象係数抽出工程は上 記逆量子化工程で得られたウェーブレット変換係数の中 から、特定領域を復号するのに必要な係数を抽出するこ とを特徴とする請求項17記載のウェーブレット復号方 法。.

【発明の詳細な説明】

[0001]

換(Wavelet Transform)により符号化されて得られた ウェーブレット変換係数の中から、特定部分領域の変換 係数だけを抽出して復号するのに必要なウェーブレット 逆変換装置及び方法、並びにウェーブレット復号装置及 び方法に関する。

[0002]

【従来の技術】従来の代表的な画像圧縮方式として、国 際標準化機構 (International Organization for Stand ardization, ISO) によって標準化されたJPEG (Joint Ph otographic Experts Group) 方式がある。これは直交変 換(Discrete Cosin Transform, DCT)を用い、比較的高 いビットが割り当てられる場合には、良好な符号化・復 号化画像を供することが知られている。ところが、ある 程度符号化ビット数を少なくすると、DCT特有のブロッ ク歪みが顕著になり、主観的に劣化が目立つようにな る。これとは別に最近、画像をフィルタバンクと呼ばれ るハイパス・フィルタとローパス・フィルタを組み合わ せたフィルタによって、複数の帯域に分割して、それら の帯域毎に符号化を行う方式の研究が盛んになってい る。その中でも、ウェーブレット (Wavelet) 符号化 は、DCTで問題になる高圧縮でブロック歪みが顕著に なるという欠点が無いことから、DCTに代わる新たな 技術として有力視されている。

【0003】現在、電子スチルカメラやビデオムービで は、JPEGやMPEGを用い、変換方式にDCTを用いている。 今後ウェーブレット変換をベースにした上記製品が市場 に出現するものと推測されるが、符号化方式の効率向上 のための検討は、各研究機関で盛んに行われている。事 実、JPEGの後継とも言える次世代の静止画国際標準方式 として期待されているJPEG2000 (JPEGと同じ組織である ISO/IEC/JTC1SC29/WG1によって作業中)は、2000年12月 に標準化勧告が出される予定のフォーマットである。こ のJPEG2000では、画像圧縮の基本である変換方式とし て、既存のJPEGのDCTに代わり、ウェーブレット変換を 採用することがほぼ決まっている。

[0004]

【発明が解決しようとする課題】本発明では、ウェーブ レット逆変換で部分領域だけの伸長を行う際の問題点を 解決することを対象としている。つまり、従来技術の様

復号化することをしない。これはメモリ容量の大きさの 削減の点でも大きなメリットがある。後で詳しく述べる が、ウェーブレット符号化では通常画像全体にウェーブ レット変換を掛け、発生したウェーブレット変換係数を 一時的にメモリ内に記憶・保持する必要がある。ウェー ブレット復号化ではこの正対の処理を行うため、やはり 全画面分の係数を記憶・保持するためのメモリ容量を必 要とする。従って、画像サイズが大きいと非常に多くの メモリ容量を必要とし、電子スチルカメラ、カムコー 【発明の属する技術分野】本発明は、ウェーブレット変 10 ダ、PDA等の、メモリ搭載容量が限定された装置には不 適である。

4

【0005】また、最近の技術では、例えばJPEG-2000 の国際標準化活動でも、符号化器側で符号化対象の全画 面を複数個のブロックに分け、各ブロック単位に符号化 する技術が検討されている。符号化器側で予めブロック 単位に符号化されていれば、所定のブロックに対応した 符号化ビットストリームを読み出すことで、部分復号化 は実現出来る。しかし、符号化器に制約が無い条件での 部分復号はこれまで検討されていなかった。

【0006】そこで、本発明は、通常の全画面をウェー プレット変換して生成された符号化ビットストリームを 入力して、全画像を復号することなく、任意の部分画像 だけを復号するためのウェーブレット逆変換装置及び方 法、並びにウェーブレット復号装置及び方法の提供を目 的とする。

[0007]

【課題を解決するための手段】本発明に係るウェーブレ ット逆変換装置は、上記課題を解決するために、ウェー ブレット変換係数の中から特定領域を復号するのに必要 30 な係数を抽出する復号対象係数抽出手段と、上記復号対 象係数抽出手段で抽出された係数を逆変換するウェーブ レット逆変換手段とを備え、上記復号対象係数抽出手段 は、特定領域の他、同領域の外周にある変換係数も抽出 することを特徴とする。

【0008】本発明に係るウェーブレット逆変換方法 は、上記課題を解決するためにウェーブレット変換係数 の中から特定領域を復号するのに必要な係数を抽出する 復号対象係数抽出工程と、上記復号対象係数抽出工程で 抽出された係数を逆変換するウェーブレット逆変換手段 40 工程を備え、上記復号対象係数抽出工程は、特定領域の 他、同領域の外周にある変換係数も抽出することを特徴 とする。

【0009】本発明に係るウェーブレット復号装置は、 上記課題を解決するために、画像をウェーブレット変換 符号化して生成された符号化ビットストリームを、エン トロピー復号するエントロピー復号手段と、上記エント ロピー復号手段で得られたウェーブレット変換係数の中 から、特定領域を復号するのに必要な係数を抽出する復 号対象係数抽出手段と、上記復号対象抽出手段で抽出さ に、全部のウェーブレット変換係数を読み出してこれを 50 れた係数を逆変換するウェーブレット逆変換手段とを備

え、上記復号対象係数抽出手段は、特定領域の他、同領 域の外周にある変換係数も抽出することを特徴とする。

【0010】本発明に係るウェーブレット復号方法は、上記課題を解決するために、画像をウェーブレット変換符号化して生成された符号化ビットストリームを、エントロピー復号工程で得られたウェーブレット変換係数の中から、特定領域を復号するのに必要な係数を抽出する復号対象抽出工程と、上記復号対象抽出工程で抽出された係数を逆変換するウェーブレット逆変換工程とを備え、上記復号対象係数抽出工程は、特定領域の他、同領域の外周にある変換係数も抽出することを特徴とする。

【0011】以上の各発明における、上記復号対象係数 抽出手段及び工程では、復号対象の領域を決定する復号 対象領域決定手段及び工程で決定された領域の情報を元 に、復号に必要となるウェーブレット変換係数を抽出す る。ここで抽出された変換係数をウェーブレット逆変換 手段及び工程で逆変換する。そして、ウェーブレット逆 変換手段及び工程で生成された変換係数の内、重複保持 処理に基づいて有効な範囲の係数を抽出する。

【0012】復号対象領域決定手段及び工程は、外部入力または同部の決定手段によって、復号対象領域を決定して、例えば矩形領域の場合は頂点の位置座標を、円領域の場合は中心位置と半径情報を送出する。復号対象係数抽出手段は、同領域を復号するのに必要な係数を抽出して、これをウェーブレット逆変換手段に送出する作用がある。最後にウェーブレット逆変換手段は、所定のタップ長を持ったフィルタ係数とウェーブレット変換係数による畳み込み演算を行い、特定領域部の復号画像を生成する。

[0013]

【発明の実施の形態】先ず、本発明のウェーブレット逆変換装置の具体例であり、本発明のウェーブレット逆変換方法に基づいた処理を行うウェーブレット逆変換装置10について図1~図10を用いて説明する。なお、このウェーブレット逆変換装置10は図11を参照して後述するウェーブレット復号装置60の要部を成す。

【0014】具体的な応用例としては、電子カメラ、携帯・移動体画像送受信端末(PDA)、プリンタ、衛星画像、医用用画像等の伸張器またはそのソフトウェアモジュール、ゲーム、3次元CGで用いるテキスチャの伸長器またはそのソフトウェアモジュール等がある。

【0015】このウェーブレット逆変換装置10は、図 1に構成を示すように、復号対象領域決定部11と、復 号対象係数抽出部12と、ウェーブレット逆変換部13 からなる。

【0016】復号対象領域決定部11は、外部入力または同部の決定手段によって、復号対象領域を決定して、例えば矩形領域の場合は頂点の位置座標を、円領域の場合は中心位置と半径情報を送出する。

【0017】復号対象係数抽出部12は、復号対象領域 決定部11で決定された領域を復号するのに必要な係数 を係数入力端子14から入力されるウェーブレット変換 係数100の中から抽出し、ウェーブレット逆変換部1 3に送る。特に、この復号対象係数抽出部12は、特定 領域の他、同領域の外周にある変換係数も抽出する。

6

【0018】ウェーブレット逆変換部13は、復号対象 係数抽出部12で抽出された係数を逆変換する。

【0019】以下、上記構成からなるウェーブレット逆変換装置10の動作について説明する。まず復号対象領域決定部1では、これから復号する画面の中の領域を決定する。例えば図2で示す様に、縦横3分割で出来た9個の領域の中から中央部の(1,1)に相当する部分領域画像を復号することを想定する。この場合、復号対象領域を表現するには、例えば縦横の分割数と何番目のブロック領域であるかを示す番号を示しても良いし、斜線領域の左上の頂点座標と右下の頂点座標を示しても良い。

【0020】復号対象領域決定部11により上記のいずれかの方法を使って表された復号対象領域情報101 20 は、復号対象係数抽出部12に入力し、同部において復号に必要なウェーブレット変換係数102が抽出される。このウェーブレット変換係数の抽出についての詳細は後述する。

【0021】ここでは、本発明の基本的な技術である、ウェーブレット変換・逆変換の概要について説明する。 【0022】まず通常のウェーブレット変換部の構成図として図3がある。これは、幾つかある手法の中で最もポピュラーなウェーブレット変換であるオクターブ分割を複数レベルに渡って行った例である。尚、同図の場合はレベル数が3であり、画像信号を低域と高域に分割し、且つ低域成分のみを階層的に分割する構成を取っている。また図は便宜上1次元の信号(例えば画像の水平成分)についてのウェーブレット変換であるが、これを2次元に拡張することで2次元画像信号に対応することができる。

【0023】先ず、図示しないカメラで撮影した映像が デジタル化され、入力端子20から入力画像信号115 が取り込まれる。この入力画像信号115はローパスフィルタ21とハイパスフィルタ22とによって帯域分割 され、得られた低域成分と高域成分は、ダウンサンプラ23、23によって、解像度をそれぞれ2分の1倍に間引かれる。ここまでがレベル1である。この時の出力が L (LはLowで低域成分を示す) 116とH (HはHighで高域を示す) 成分117の2つである。そして間引かれた内の低域成分のみが再びローパスフィルタ24とハイパスフィルタ25とによって帯域分割され、ダウンサンプラ26、26によって、解像度をそれぞれ2分の1倍に間引かれる。ここまでがレベル2である。この時の出力がLL成分118とLH成分119の2つである。そして低50 域成分(LL成分118)のみが再びローパスフィルタ2

7とハイパスフィルタ28とによって帯域分割され、ダウンサンプラ29、29によって、解像度をそれぞれ2分の1倍に間引かれる。ここまでがレベル3である。このように上記処理を所定のレベルまで行うことで、低域成分を階層的に帯域分割した帯域成分が順次生成されていくことになる。レベル3で生成された帯域成分は、LLL成分120とLL成分121である。LLL成分120は出力端子30から、LLH成分121は出力端子31から、LH成分119は出力端子32から、H成分117は出力端子33から外部に導出される。

【0024】次に、図4にはレベル2まで2次元画像を 帯域分割した結果得られる帯域成分を図示する。同図で のL及びHの表記法は1次元信号を扱った図3とは異な る。即ち、図4ではまずレベル1の帯域分割(水平・垂 直方向)により4つの成分LL、LH、HL、HHに分かれる。 ここでLLは水平・垂直成分が共にLであること。LHは水 平成分がHで垂直成分がLであることを意味している。次 に、LL成分は再度帯域分割されて、さらにLLLL、LLHL、 LLLH、LLHHが生成される。

【0025】次に、通常のウェーブレット逆変換の構成 及び動作について、図5を用いて説明する。図3で説明 したウェーブレット変換の出力である各帯域成分、LLL 成分120、LLH成分121、LH成分119、H成分11 7を、入力端子40、入力端子41、入力端子42、入 力端子43から入力すると、まずLLL成分120及びLLH 成分121が、それぞれアップサンプラ44、44によ って2倍の解像度にアップサンプルされる。引き続いて 低域成分はローパスフィルタ45、高域成分はハイパス フィルタ46によってフィルタリングされて加算器47 において、両者の帯域成分が合成される。ここまででレ ベル3の逆変換が完了して、帯域成分LL118が得られ る。次に、上記帯域成分以118と入力端子42からの LH成分119がそれぞれアップサンプラ48、48によ って2倍の解像度にアップサンプルされ、引き続いて低 域成分はローパスフィルタ49、高域成分はハイパスフ ィルタ50によってフィルタリングされて加算器51に おいて両者の帯域成分が合成される。ここまででレベル 2の逆変換が完了して、帯域成分L116が得られる。 次に、上記帯域成分L116と入力端子43からのH成分 117がそれぞれアップサンプラ52、52によって2 倍の解像度にアップサンプルされ、引き続いて低域成分 はローパスフィルタ53、高域成分はハイパスフィルタ 54によってフィルタリングされて加算器55において 両者の帯域成分が合成される。ここまででレベル1の逆 変換が完了して、出力端子56から最終的な逆変換後の 復号信号115が出力されることになる。以上が、通常 のウェーブレット逆変換の基本構成、及び動作である。 【0026】図6は、信号の長さに着目してウェーブレ ット変換を表現したものである。全信号入力x(n)に対す

るレベル1の変換の結果、x(n)の半分の長さの2種類の

係数LとHとが生成される。さらにレベル2の変換では、 低域Lがさらに半分の長さの係数LLとLHに分割されるこ とがわかる。

8

【0027】尚、本実施の形態では、直線位相のFIRフィルタを仮定しており、ウェーブレット変換及び逆変換に用いるフィルタのタップ長をL、負の時間におけるインパルス応答数をHead、0を除いた正の時間におけるインパルス応答数をTailとしている。図7は、L=7, Head=3, Tail=3のケースである。すなわち、本発明では、特定10 領域の外周の変換係数を、ウェーブレット逆変換に用いるフィルタのインパルス応答の数に対応させている。

【0028】次にウェーブレット逆変換の際のフィルタリング操作について、図8を用いて説明する。図8は、図7で示したL=7の奇数タップ長のフィルタを用いた場合で、水平・垂直方向のフィルタリングの際、現在の位置(dとk)を中心として、左右3個の係数ずつフィルタの範囲が及ぶことがわかる。従って、d及びkの様に中心位置が逆変換の対象領域の境界に来た場合には、隣接する領域からも係数を抽出しなければならない。この余分に抽出する係数領域を、次に説明する図9では、Lhead, L_tail(低域)、H_head, H_tail(高域)として表現している。

【0029】図9は、1次元信号x(n)に対して、ウェーブレット変換をレベル2まで掛けた時の帯域成分の分布を示した図であり、x(n)の斜線部の部分2はLL,LH,Hの各帯域中の2と表示された部分に反映されている。従って、ウェーブレット逆変換手段では、まずレベル2からレベル1のウェーブレット変換係数を算出するためには、分割レベル2の帯域成分の内、領域2に相当するP2個の部分係数と、LL内の部分係数に加えて前後のL_head 2, L_tai12個、更にLH内の部分係数に加えて前後のH_he ad2, H_tai12個の係数が必要になる。

【0030】次に、上記より逆変換されて出来た分割レベル1の係数の内、後述する重複保持処理により有効な係数である(L_head1+2P2+L_tail1)個の変換係数だけを抽出する。続いて、Hの帯域帯の部分2に位置するP1個の部分係数と、前後のL_head1、L_tail1の係数を抽出する。更に、前記レベル2のLLとLHとから逆変換して得られた係数を抽出したものと、Hからの部分係数とを、 20逆変換して出来た復号信号の中から、目的とする領域2に相当する部分信号x(2)を、重複保持処理を用いて取り

【0031】なお、前記の重複保持処理は、例えば本発明の共同発明者である貴家仁志都立大助教授の著書「高速フーリエ変換とその応用」(昭晃堂)の109ページから112ページまでに紹介されている。この技術は、無限入力数列に対して直線畳み込み演算をする方法であり、入力データを各ブロック毎に区分する際に重複したデータを用いること、また各ブロック毎の畳み込みが循環畳 み込みであることに特徴がある。ただし、この循環畳み

出せば良い。以上が1次元の場合の動作説明である。

込みでは、最後に、循環畳み込みの最初の重複する部分 を捨てる。循環畳込みの各結果を加算する必要がない。 【0032】続いて、2次元ウェーブレット逆変換につ いて、図10を用いて説明する。上記図2の斜線部を復 号対象とした際、各分割レベル毎に必要となるウェーブ レット変換係数の領域を斜線で図示したものが、図10 である。

9

【0033】目的の部分画像を完全に復号するために は、前述の通り、図10の点線で示した周囲の係数も同 時に抽出して逆変換を行う必要がある。図10は分割レ ベル3までの例であるから、レベル3での復号の際に は、抽出した4つの帯域の部分係数を用いて逆変換を行 う。次からのレベルでは、そのレベルの3つの部分係数 と、前レベルで完全に復号された結果とにより復号を行 う。これを繰り返すことで部分復号は実現される。

【0034】図10中のPheadiは、レベルiにおいて左 側と上側に付加する必要のある係数の個数であって、同 じくPtailiは、レベルiにおいて右側と下側に付加する 必要のある係数の個数である。これらは、いずれも対象 領域の外周部から抽出されることは、前述の通りであ る。更に、2次元の場合も同様に、各逆変換レベルでの 係数の抽出は、重複保持処理によって有効なものだけを 選び出す。以上が2次元画像の部分復号の動作説明であ る。

【0035】次に、本発明のウェーブレット復号装置の 具体例であり、本発明のウェーブレット復号方法に基づ いて動作するウェーブレット復号装置60について図1 1を参照しながら説明する。このウェーブレット復号装 置60は、上記図1~図10を用いて説明したウェーブ レット逆変換装置10を、実際に復号装置に組み込んだ 30 ロピー符号化部75から出力端子76を介して送出され 具体例でもある。

【0036】このウェーブレット復号装置60は、図1 1に構成を示すように、エントロピー復号化部62と逆 量子化部63と変換係数逆スキャニング部64と上記ウ ェーブレット逆変換装置10とを備えている。

【0037】エントロピー復号化部62は、画像をウェ ープレット変換符号化して生成された符号化ビットスト リームをエントロピー復号する。

【0038】逆量子化部63は、ウェーブレット変換符 号化においてウェーブレット変換係数が量子化されてい 40 るときに、上記エントロピー復号部62で得られた量子 化係数を逆量子化してウェーブレット変換係数に戻す。

【0039】変換係数逆スキャニング部64は、ウェー ブレット変換符号化において符号化効率を上げるため変 換係数がスキャニングされているときに、元に戻すよう に逆スキャニングする。この変換係数逆スキャニング部 64からのウェーブレット変換係数107がウェーブレ ット逆変換装置10の復号対象係数抽出部12に供給さ

説明する前に、図12を参照して、対応するウェーブレ ット変換符号化装置70について説明する。

【0041】ウェーブレット変換符号化装置70は、ウ ェーブレット変換部72と、変換係数スキャニング部7 3と、量子化部74と、エントロピー符号化部75とか ら構成されている。

【0042】先ず、図示しないカメラで撮影した映像が デジタル化され、入力端子71から入力画像信号110 が取り込まれる。ウェーブレット変換部72は入力画像 10 信号110から変換係数111を生成し、変換係数スキ ャニング部73に送る。変換係数スキャニング部73は 上記変換係数を走査(スキャニング)して、係数を符号 化効率が向上する様に並び換える。例えば、ここでは左 から右(水平方向)、上から下(垂直方向)にウェーブ レット変換係数をスキャニングするものとする。この変 換係数スキャニング部73で並び換えられたスキャニン グ後の係数112は、量子化部74で量子化されて量子 化係数113がエントロピー符号化部75に出力され

【0043】ここで量子化部74は、通常用いるスカラ 20 一量子化(下記:式1)を用いれば良い。

[0044] Q=x/Δ ······· (式1)

(ここで、xはウェーブレット変換係数値、Δは量子化 インデックス値である)。

【0045】エントロピー符号化部75では、量子化係 数113に情報源符号化を施し、情報圧縮を行う。この エントロピー符号化部75での情報源符号化としてはハ フマン符号化或いは算術符号化を用いれば良い。そし て、最終的な符号化ビットストリーム114が、エント る。

【0046】次に、ウェーブレット復号装置60の動作 について説明する。入力端子61を介して符号化ビット ストリーム104がエントロピー復号化部62に供給さ れる。エントロピー復号部62は符号化ビットストリー ム104をエントロピー復号し、得られた量子化係数1 05を逆量子化部63に送る。

【0047】逆量子化部63は量子化係数105を逆量 子化して、変換係数106を出力する。尚、ここでエン トロピー復号部62は、エントロピー符号化部75に対 応したものである必要がある。

【0048】また、逆量子化部63は、通常用いるスカ ラー逆量子化(下記:式2)を用いれば良い。

[0049] x=Q x Δ ·······(式2)

(ここで、Qは量子化係数値、Δは量子化インデックス 値である)

上記変換係数106は、変換係数逆スキャニング部64 に供給される。変換係数逆スキャニング部64は、変換 係数106に上記変換係数スキャニング部73とは逆の 【0040】このウェーブレット復号装置60の動作を 50 逆スキャニング変換を施し、元の変換係数を生成する。

その結果得られた変換係数107は、ウェーブレット逆変換装置10の復号対象係数抽出部12に入力される。 以後の動作については前述したので省略する。

【0050】以上、図11に示したウェーブレット復号 装置60によれば、通常の全画面をウェーブレット変換 して生成された符号化ビットストリームを入力して、全 画像を復号することなく、任意の部分だけを復号するこ とができる。もちろん、符号化装置70側では、予め複 数個の領域に分割して符号化しておく制約が無い。

【0051】任意の部分だけを復号できるということは、フィルタリングにおける畳み込み演算等を低計算量にでき、低メモリ幅でよく、メモリへのアクセス頻度の減少という3つの効果を得ることができる。

【0052】また、重複保持処理を用いることで、符号 化器と復号器側で可逆が維持出来るので、ロスレス符号 化に応用することが出来るという効果もある。

【0053】さらに、復号化対象の変換係数を読み出せれば良いので、復号化対象の部分領域を矩形に限定する必要もなく、円形や複雑な図形でも対応出来るという効果もある。

[0054]

【発明の効果】本発明によれば、通常の全画面をウェーブレット変換して生成された符号化ビットストリームを 入力して、全画像を復号することなく、任意の部分画像 だけを復号できる。

【図面の簡単な説明】

【図1】本発明のウェーブレット逆変換装置の具体例であり、本発明のウェーブレット逆変換方法に基づいた処理を行うウェーブレット逆変換装置の構成を示すブロッ

ク図である。

【図2】復号対象領域を示す図である。

【図3】通常のウェーブレット変換部の構成を示すブロック図である。

12

【図4】2次元画像の帯域分割を示す図である。

【図5】通常のウェーブレット逆変換部の構成を示すブロック図である。

【図6】 2分割までウェーブレット分割した際のウェーブレット係数の概念を示す図である。

10 【図7】ウェーブレット変換を行うフィルタのインパルス応答を示した図である。

【図8】復号化対象領域とフィルタ範囲を示した図である。

【図9】重複保持法を用いた1次元の特定領域の部分復 号を示した図である。

【図10】重複保持法を用いた2次元の特定領域の部分 復号を示した図である。

【図11】本発明のウェーブレット復号装置の具体例であり、本発明のウェーブレット復号方法に基づいて動作 20 するウェーブレット復号装置のブロック図である。

【図12】ウェーブレット変換符号化装置の構成を示す ブロック図である。

【符号の説明】

10 ウェーブレット逆変換装置、11 復号対象領域 決定部、12 復号対象係数抽出部、13 ウェーブレ ット逆変換部、60 ウェーブレット復号装置、62 エントロピー復号化部、63 逆量子化部、64 変換 係数逆スキャニング部

【図1】

10 ウェーブレット逆変換装置

【図12】

70 ウェーブレット変換符号化装置

【図5】

【図6】

【図8】

. . . .

【図9】

【図11】

フロントページの続き

(72)発明者 木村 青司 東京都品川区北品川 6 丁目 7 番35号 ソニ 一株式会社内

(72) 発明者 貴家 仁志 東京都八王子市南大沢 5 - 9 - 3 - 307 F ターム(参考) 5C059 KK08 LB05 MA24 MC01 MC11 ME02 ME11 SS10 SS15 SS23 SS28 UA05 UA12 UA14 SC078 BA53 CA14 DA00 DA02 SJ064 AA04 BA09 BA16 BC01 BC02 BC12 BD01 9A001 BB04 EE02 EE04 EE05 GG03 HH27 JJ12 KK31