

EXAMINATION PAPER

FACULTY: COMPUTER SCIENCE AND MULTIMEDIA

COURSE : BACHELOR (Hons) OF INFORMATION TECHNOLOGY (BIT)

YEAR/ SEMESTER : FIRST YEAR / SEMESTER ONE

MODULE TITLE : DISCRETE MATHEMATICS

CODE : BIT 114

DATE: 28 APRIL, 2019, SUNDAY

TIME ALLOWED : 3 HOURS

START : 1:00 PM FINISH : 4:00 PM

Instruction to candidates

- 1. This question paper has THREE (3) Sections.
- 2. Answer ALL questions in Section A, MCQ.
- 3. Answer 5 questions in Section B, MSAQ.
- 4. Answer 2 questions in Section C, MEQ.
- 5. No scripts or answer sheets are to be taken out of the Examination Hall.
- 6. For Section A, answer in the OMR form provided.

Do not open this question paper until instructed

SECTION A

Mı	Multiple Choice Questions (30*1=30)		
1.	The determinant of any triangular matrix is: a. Sum of its main diagonal elements b. Product of main diagonal elements c. Half of sum of its main diagonal elements d. No relation with diagonal elements		
2.	If we have p variable, then the truth table has rows. a. 2+p b. 2 ^p c. 2p d. 2 ^p -1		
3.	If a determinant has any of its two rows identical, then its value is alwa. One b. Zero c. Imaginary number d. None	ays:	
4.	Every positive integer is also number. a. Natural b. Rational c. Irrational d. Whole		
5.	Cartesian product of two sets A and B is: a. $A \cap B$ b. $A \times B$ c. $A \ge B$ d. $A \le B$		
6.	If a tree has 16 vertices, it consists edge. a. 15 b. 16 c. 17 d. 18		

7. The vertex with degree one is _____ vertex.

a. Pendantb. Unitc. Nulld. Isolated

8.	The collection of is called graph.
	a. Equations
	b. Row and columns
	c. Vertex and edges
	d. None of the above
9.	Which of the following is the negation of the '4 is even and today is Friday'?
	a. 4 is even and today is not Friday.
	b. 4 is not even and today is Friday.
	c. 4 is even or today is Friday.
	d. 4 is not even or today is not Friday.
10	.A vertex with no children is called:
	a. Siblings
	b. Leaf
	c. Ancestor
	d. Root
11	. The children of same parent node are:
	a. Siblings
	b. Leaf
	c. Ancestor
	d. Root
12	. A matrix whose all elements above the main diagonal are zero, called:
	a. Upper triangular
	b. Lower triangular
	c. Both 'a' and 'b'
	d. None of the above
13	. Let A is p× q ordered matrix and B is q× r ordered matrix, then order of A×1
	is:
	a. n× n
	b. p×r
	c. m× n
	d. $\mathbf{r} \times \mathbf{n}$
14	.A number consisting only digit 0 to 7 is number.
	a. Binary
	b. Octal
	c. Decimal
	d. Hexadecimal

15. Suppose p: You have to be good; q: you have to be honest. A sentence you		
have to be good and honest can be logically written as: $a \cdot P \rightarrow a$		
a. $p \rightarrow q$ b. $q \rightarrow p$		
c. $p \wedge q$		
d. q∩ p		
16. To solve the recurrence relation of order k, we need number of initial		
condition. a. K- 1		
b. k		
c. k+1		
d. 2k		
17. An equation whose variables are of power at most 2 is equation.		
a. Bi quadratic		
b. Cubic		
c. Quadratic		
d. Linear		
18. Rank of a matrix of order 5×4 is at most:		
a. 2		
b. 3		
c. 4		
d. 5		
19. A system of equations is inconsistent if it has solution.		
a. One		
b. Many		
c. Both 'a' and 'b'		
d. None of the above		
20. If x^2 -1=0 then x =		
a. 0, 1		
b. 0, -1		
c. 1, -1		
d. 1		
21. Let A is $m \times n$ and B is $p \times q$ ordered matrix. Then BA is possible when:		
a. n=p		
b. m=p		
c. m=q		
d. m=n		

22. Let p: You do more work, q: You earn sufficient money. Then 'If you do more work, then you will earn sufficient money.' can be written as:			
a. $p \wedge q$ b. $p \vee q$ c. $p \rightarrow q$ d. $q \rightarrow p$			
23. If A is a set containing 5 elements, what is the cardinality of power set of A? a. 8			
b. 12			
c. 32			
d. 40			
24. If A= {a, b, c, d}, B= {c, d, e}. Then A∩B is:			
a. {a}			
b. {a, b}			
c. {c, d}			
d. {a, b, c}			
25. Which condition is required for a square matrix to be skewing symmetric? a. $A^2=I$			
b. $A^2 = 0$			
c. $A^{T}=-A$			
$d. A^2 = A$			
26. What is the order of the matrix $A \times B$ if A is $m \times n$ and B is $n \times r$ ordered			
matrix?			
a. m+r			
b. m-r			
c. mr			
d. m÷ r			
27. A number 0 is:			
a. Positive integer			
b. Negative integer			
c. Neutral integer			
d. Not an integer			
28. The matrix formed by the relation of vertices and edges of graph is			
Matrix.			
a. Adjacent			
b. Incident			

c. Unitd. Null

29	. If a system has more number of variables than number of equations, then it
	has Solution.
	a. Oneb. Many
	c. Both 'a' and 'b'
	d. None of the above
30	. If a characteristic equation is of degree k, then it has at most root.
	a. $k/2$
	b. k
	c. 3
	d. 2k
	SECTION B
	Short Answer Questions
	Attempt any five (5) questions out of eight (8) questions (5*6=30)
1.	Define mathematical induction. Prove the following statement using mathematical
_•	induction
	2+4+6+2n = n(n+1)
	$2+4+0+\dots2\Pi = \Pi(\Pi+1)$
2.	State and prove DeMorgan's Theorem with truth tables.
3.	Define contradiction and tautology. Show that the compound proposition
	$[p \land (p \rightarrow q)] \rightarrow q$ is tautology.(2+4) (unit 3: Introduction to modelling)
4.	Define the terms: wheels, cycle and complete graph.
5.	Define fallacy. Explain different forms of fallacy. (1+5)
6.	Write short notes on the following:
	a. Recurrence Relation
	b. Transport Network
7	Define adiagonary and incidence matrix with switchle average (2.2) (with 7.
/٠	Define adjacency and incidence matrix with suitable example. (3+3) (unit 7:
	Graphs, functions and inequalities)

8. Use Kruskal's Algorithm to find the minimum spanning tree to find the weighted graph.

a

1

b

SECTION C
Long Answer Questions
Attempt any two (2) questions out of three (3) questions (2*20=40)

- 1. Define symmetric, asymmetric, reflexive, irreflexive transitive and non-transitive properties of a relation. Let A = Z, the set of integers and Let $R = \{(a,b) \ A \ x \ B \ | a < b\}$. Verify if R is an equivalence relation or not? (10+10)
- 2.
 - **a.** Prove the following

(3*5=15)

- **I.** $[(A \rightarrow B) \land A] \rightarrow B$ is a tautology. **II.** $(A \lor B) \land [(\neg A) \land (\neg B)]$ is a contradiction. **III.** $(A \lor B) \land (\neg A)$ is a contingency.
 - **b.** Explain any five connectives of propositional logic with truth tables. (5)
- **3.** Define homogeneous recurrence relation. Solve the recurrence relation. (2+6+6+6) (unit 8: Simultaneous equations)

a.
$$a_n = 6a_{n-1} - 8a_{n-2}$$
 for $n \ge 2$, $a_0 = 4$, $a_1 = 10$

b.
$$a_n=2a_{n-1}-a_{n-2}$$
 for $n\ge 2$, $a_0=4$, $a_1=1$

c.
$$f_n=3f_{n-1}-3f_{n-2}+f_{n-3}$$
 for $n\ge 2$, $f_0=1$, $f_1=2$, $f_2=3$

*****BEST OF LUCK****