

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

Práctica 7: Métodos de Cruza para permutaciones

MATERIA: Algoritmos Genéticos

ALUMNO:

Reyes Valente Brayan Francisco

GRUPO: 3CM5

PROFESORA:

Morales Güitrón Sandra Luz

Introducción

La representación de permutaciones se usa frecuentemente en problemas de optimización combinatoria, como el del viajero y consiste básicamente en usar cadenas de enteros para representar una permutación:

1 2 3 4 5 6 7 8 9

Al efectuar cualquiera de las cruzas antes descritas entre 2 cadenas que usan representación de permutaciones, los hijos invariablemente serán no válidos.

Este problema requiere la definición de procedimientos de "reparación" de las cadenas inválidas que se producen a consecuencia de la cruza. En esta práctica se programaron las siguientes técnicas:

- Order Crossover
- Partially Mapped Crossover
- Position-Based Crossover
- Order-Based Crossover

Contenido

```
C:\Users\Imeth\OneDrive\Documentos\- ALGORITMOS GEN

Metodos de cruza para permutaciones

1.- Order Crossover

2.- Partially Mapped Crossover

3.- Position-based Crossover

4.- Order-based Crossover

5.- Salir
Escribe el numero de individuos: 10

Escribe el numero de alelos: 10

Escribe una opcion de cruza: 1
```

Al iniciar el programa nos pide ingresar el número de individuos, el número de alelos y la opción de cruza que se muestra. Se puede ingresar n número de individuos y n número de alelos, siempre y cuando el número de individuos sea par.

```
Order Crossover
Escribe el tamanio de la subcadena: 3
No. Individuos
                        Cruza
        10482165397
                         45821679103
2
        45817269103
                          10481726539
3
        10529836714
                          46298357110
        49623587110
                          10982356714
5
        11035674289
                          29856741103
6
        52978411036
                         11037845629
        61452109783
                         13852109674
8
        13105829674
                         61458210973
9
        34179682510
                          35279641108
10
        35672941108
                          34172968510
Deseas volver al menu?(s/n):
```

Una vez ingresada una opción de cruza, en este caso la 1,se debe ingresar el tamaño de la subcadena que se tomará y una vez hecho esto, se despliega una tabla con los individuos y la cruza generada. El programa da la opción de volver al menú o simplemente salir.

```
Metodos de cruza para permutaciones

1.- Order Crossover

2.- Partially Mapped Crossover

3.- Position-based Crossover

4.- Order-based Crossover

5.- Salir
Escribe el numero de individuos: 12

Escribe el numero de alelos: 10

Escribe una opcion de cruza: 2

C:\Users\Imeth\OneDrive\Documentos\- ALGORITMOS GEN

Partially Mapped Crossover
```

Escribe el punto de cruza 1: 3 Escribe el punto de cruza 2: 6		
No.	Individuos	Cruza
1	43102817596	42106537891
2	94265387101	94628157103
3	31259761084	51238761094
3 4 5 6	21063879541	21065973841
5 j	98102647351	96105287341
5 j	39652817104	39526417108
7 j	11096538724	65910128734
8 j	96810124537	91086534127
9 j	10316924587	93261014587
10	24561018793	10456928713
11	53911067284	13109257684
12	71692581034	79211068534

Para la PMX es lo mismo, se debe ingresar el número de individuos, el número de alelos y finalmente los dos puntos de cruza.

```
Position-based Crossover
Los indices tomados son: 1,4,6,9
       Individuos
No.
                         Cruza
        31042675189
                          21084675319
        28647310195
                          38427610195
        65814271039
                          25110487369
        47219108356
                          57149281036
        65110478932
                          15964387102
6
        19863741052
                          69513104782
        51961034287
                          91231084567
                          92103541876
       92385101476
Deseas volver al menu?(s/n):
```

Para la position-based crossover, el programa toma las posiciones 1,4,6 y 9. De igual manera se despliega la tabla con los individuos y la cruza generada.

C:\Users\Imeth\OneDrive\Documentos\- ALGORITI

```
Metodos de cruza para permutaciones

1.- Order Crossover

2.- Partially Mapped Crossover

3.- Position-based Crossover

4.- Order-based Crossover

5.- Salir

Escribe el numero de individuos: 10

Escribe el numero de alelos: 10

Escribe una opcion de cruza: 4
```

■ C:\Users\Imeth\OneDrive\Documentos\- ALGORITMOS G

.05	indices tomados so	on: 1,4,6,9
No.	Individuos	Cruza
1	91053478126	71043598612
2	71083594612	91053478126
3	84132761095	94217610358
4	96517210348	64132710895
5	39548102176	79810213645
6	76210913845	69348102175
7	89164571023	62815947310
8	62815937410	89164275310
9	41031869725	73161089245
10	73161059248	43101968725

Para order-based crossover, el programa toma las posiciones 1,4,6 y 9 e imprime los individuos y la cruza que se generó.

Conclusión

Todos los algoritmos por cruza para permutaciones tienen su grado de complejidad, para mi los más complicados fueron los primeros dos, el de order crossover y partially mapped crossover. Más que nada es el manejo de arreglos en c++, porque en otros lenguajes existen funciones que devuelven el contenido dada una posición específica, caso que en c++ no existe y se tiene que hacer de forma manual todo eso. Los otros dos que siguen (position-based crossover y order-based crossover) no fueron complicados puesto que eran muy similares al order based crossover y usaban funciones similares con el manejo de subcadenas.