KONTEKSTNO-NEODVISNE GRAMATIKE ZA KODIRANJE IN STISKANJE PODATKOV

JANEZ PODLOGAR

Kazalo

1. Kodiranje podatkov

1

1. Kodiranje podatkov

Zapis informacije v neki obliki ni primeren za vsakršno rabo. Besedilo, zapisano z pismenkami, je neberljivo za slepe osebe, saj je komunikacijski kanal v tem primeru vid. Prav tako pisanega besedila v prvotni obliki ni mogoče poslati s telegrafom. V tem primeru je komunikacijski kanal žica in pismenke se po njej ne morejo sprehoditi. V obeh primerih je informacija, ki bi jo radi prenesli, zapisana v neprimerni obliki. V prvem primeru je potrebno besedilo zapisati z Braillovo pisavo. V drugem primeru pa je besedilo potrebno pretvoriti v električni signal. Spreminjanje zapisa sporočila imenujemo kodiranje, sistemu pravil, po katerem se kodiranje opravi, pa kod.

Primer 1.1. *Morsejeva abeceda* je kodiranje črk, števil in ločil s pomočjo zaporedja kratkih in dolgih signalov:

- Dolžina kratkega signala je ena enota.
- Dolgi signal je trikrat daljši od kratkega signala.
- Razmik med signali znotraj črke je tišina dolžine kratkega signala.
- Razmik med črkami je tišina dolga tri kratke signale oziroma en dolgi signal.
- Presledek med besedami je tišina dolga sedem kratkih signalov.

SLIKA 1. Mednarodna Morsejeva abeceda.

Date: 17. september 2023.

1

Prvotni namen Morsejeve abecede je komunikacija preko telegrama, saj komunikacijski kanal dovoljuje le električne signale in tišino med njimi. Kodiranje črk je takšno, da imajo črke z višjo frekvenco (v angleškem jeziku) krajši zapis. Tako se koda sporočila skrajša in posledično tudi čas njegovega prenosa.

 \Diamond

Definicija 1.2. Abeceda je končna neprazna množica. Elementom abecede pravimo $\check{c}rke$. Za abecedo Σ definiramo

$$\Sigma^0 = \{\varepsilon\}$$

in ε imenujemo prazen niz. Za vsak $\ell>0$ rekurzivno definiramo množico vseh nizov abecede Σ dolžine $\ell+1$

$$\Sigma^{\ell+1} = \{ wa \mid w \in \Sigma^{\ell} \text{ in } a \in \Sigma \}.$$

Nadalnje, definiramo množica vseh končnih nizov abecede Σ

$$\Sigma^* = \bigcup_{\ell \ge 0} \Sigma^\ell$$

in množica vseh končnih nizov abecede Σ brez praznega niza

$$\Sigma^+ = \bigcup_{\ell > 0} \Sigma^\ell.$$

Jezik na abecedi Σ je poljubna podmnožica množice Σ^* .

Definicija 1.3. Naj bo Σ abeceda. Naj bo * binarna operacija na množici vseh končnih nizov Σ^* tako, da je prazen niz ε nevtralni element in za niza $w, u \in \Sigma^*$ velja

$$w * u = w_1 w_2 \cdots w_n u_1 u_2 \cdots u_m,$$

kjer sta $w_1w_2\cdots w_n$ in $u_1u_2\cdots u_m$ predstavitvi nizov w in u s črkami abecede Σ . Operacijo * imneujemo stikanje oziorma konkatenacija. Znak * spustimo in krajše pišemo wu.

Opomba 1.4. Stikanje je asociativna operacija. $(\Sigma^*, *)$ je monoid in $(\Sigma^+, *)$ je grupoid.

Opomba 1.5. Kleenejeva zvezdica oziroma Kleenejevo zaprtje je enočlena operacija, ki abecedi Σ priredi najmanjšo nadmnožico Σ^* , ki vsebuje prazen niz ε in je zaprta za operacijo stikanje. Z drugimi besedami, Σ^* je množica vseh končnih nizov, ki jih lahko generiramo z stikanjem črk abecede Σ .

Definicija 1.6. Dolžino niza w označimo z |w| in je enaka številu črk v nizu $w \in \Sigma^*$. Natančneje, $|w| = \ell$ natanko tedaj, ko je $w \in \Sigma^{\ell}$.

Primer 1.7. Naj bo $\Sigma = \{a, b, c\}$ abeceda, potem so $ab \in \Sigma^2, ccc \in \Sigma^3$ in $cababcccababcccab \in \Sigma^{17}$ končni nizi abecede Σ in potemtakem elementi Σ^* .

 \Diamond

Definicija 1.8. Kodiranje nizov abecede Σ je injektivna funkcija $\kappa \colon \Sigma^* \to \Sigma_c^*$, kjer je Σ_c^* neka abeceda, ki jo imenujemo Σ_c kodna abeceda, in $\kappa(w)$ imenujemo koda niza w. Dekodiranje kodiranja κ je funkcija $\delta \colon C \subseteq \Sigma_c^* \to \Sigma^*$, da velja

$$\forall w \in \Sigma^* : \delta(\kappa(w)) = w.$$

Opomba 1.9. Funkcijo κ imenujemo kodna funkcija, funkcijo δ pa dekodna funckija.

Opomba 1.10. Zožitev kodomene kodne funkcije κ na $C \subseteq \Sigma_c^*$ je bijektivna funkcija.

Primer 1.11. Formalizirajmo Morsejevo abecedo iz Primera 1.1. Abecedi sta

$$\Sigma = \{A, B, \dots, Z\} \cup \{0, 1, \dots, 9\} \cup \{\bot\}, \quad \Sigma_c = \{\cdot, -, \Box\},$$

kjer je $_$ presledek in \square ena kratka enota tišine. Definirajmo kodno funkcijo črk abecede $\kappa_s \colon \Sigma \to \Sigma_c^*$, ki vsaki črki iz abecede Σ_s priredi niz črk kodne abecede Σ_c . Predpis funkcije κ_s je določen s tabelo iz Slike 1, dodatno presledek $_$ kodiramo v tri kratkih enot tišine

$$\kappa_s(\Box) = \Box\Box\Box\Box.$$

Za niz $w = a_1 a_2 \dots a_n \in \Sigma^*$ definiramo kodno funkcijo K po črkah

$$\kappa(w) = \kappa_s(a_1) \square \square \square \kappa_s(a_2) \square \square \square \cdots \kappa_s(a_n).$$

Poglejmo si dva primera kodiranja v Morsejevi abecedi

Recimo, da smo prejeli sporočilo, a se je pošiljatelj zmotil in je namesto kode, ki bi se dekodirala v

$$\delta(-\Box-\Box\cdot\Box-\Box\Box\Box\cdot\Box\Box\Box-\Box\cdot\Box\cdot) = QED,$$

poslali kodo

Sporočila ne znamo dekodirati, saj se ne nahaja v domeni C dekodne funkcije δ .

 \Diamond