Chapter 12 Secure Multi-Party Computation Protocols

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

Plan

- 1. Definitions and motivation
- 2. Security against the threshold adversaries
 - 1. overview of the results
 - 2. overview of the constructions
- 3. Applications

Multi-party computations (MPC)

a group of parties:

they want to compute some value

 $f(a_1, a_2, a_3, a_4, a_5)$ for a publicly-known f.

Before we considered this problem for n = 2 parties.

Now, we are interested in arbitrary groups of *n* parties.

Examples

A group of millionaires wants to compute how much money they own **together.**

$$f(a_1, a_2, a_3, a_4, a_5)$$

= $a_1 + a_2 + a_3 + a_4 + a_5$

Another example: voting

The general settings

Each pair of parties is connected by a **secure channel**.

(assume also that the **network is synchronous**)

Some parties may be **corrupted**.

The corrupted parties may act in coalition.

How to model the coalitions of the corrupted parties?

We assume that there exists one adversary that can **corrupt** several parties.

Once a parity is corrupted the adversary "takes control over it".

what it means depends on the settings

Threshold adversaries

In the **two-party case** we considered an adversary that could corrupt one of the players.

Now, we assume that the adversary can corrupt some subset of the players.

The simplest case:

set some threshold t < n and allow the adversary to corrupt up to t players.

Example

Types of adversaries

As before, the adversary can be:

- computationally bounded, or
- infinitely powerful,

and

- passive
- active

These choices are orthogonal!

	computationally bounded	infinitely powerful
passive		
active		

all those choices make sense!

Adaptivness

In addition to it the adversary may be

- adaptive he may decide whom to corrupt during the execution of the protocol, or
- non-adaptive he has to decide whom to corrupt, before the execution starts.

The security definition

The security definition is complicated and we do not present it here.

Main intuition: the adversary should not be able to do more damage in the "real" scenario than he can in the "ideal" scenario.

Remember the **two-party case**?

The "real scenario"

The "ideal" scenario

Plan

- 1. Definitions and motivation
- 2. Security against the threshold adversaries
 - 1. overview of the results
 - 2. overview of the constructions
- 3. Applications

Classical results

Question:

For which values of the parameter t multi-party computations are possible (for every poly-time computable function f)?

n – the number of players

setting	adversary type	condition
computational	passive	t < n
computational	active	t < n/2
information-theoretic	passive	t < n/2
information-theoretic	active	t < n/3
mormation theoretic	active	c < ic/s

this can be improved to t < n

if we give up "fairness"

(these are tight bounds)

(Turns out that the adaptivness doesn't matter)

this can be improved to

t < n/2

if we add a "broadcast channel"

Example of a lower bound

information-theoretic, passive: t < n/2

Suppose n = 6 and t = 3

Suppose we have a protocol for computing

$$f(a_1, a_2, a_3, a_4, a_5, a_6) = a_1 \wedge a_2 \wedge a_3 \wedge a_4 \wedge a_5 \wedge a_6$$

We show an information-theoretically secure 2-party protocol for computing

$$F(A,B)=A\wedge B$$

After showing this we will be done, since we know it's impossible!

the "internal" messages are not sent outside

the "external" messages are exchanged between Alice and Bob

Correctness?

At the end of the execution of the simulated protocol **Alice** and **Bob** know

$$f(A, 1, 1, B, 1, 1) = A \wedge B$$

So they have computed **F**.

Why is this protocol secure?

If the adversary corrupted Alice or Bob then he "corrupted" exactly t = 3 parties.

From the security of the MPC protocol the "new" 2-party protocol is also secure!

A broadcast channel

Every player receives the same message (even if the sender is malicious).

Byzantine Agreement

A classical problem in distributed computing [Lamport, Shostak, Pease, 1982]:

- *n* generals (connected with private channels) want to reach a consensus
- there may be t traitors among them

Formally

We have the following requirements

- Non-triviality: If all loyal generals have the same input bit b then, the only possible decision value of the loyal generals is b.
- Agreement: The loyal generals should agree on the decision.
- Limited bureaucracy: The protocol must terminate

A classical result

Byzantine agreement is possible if and only if

Broadcast channel vs. byzantine agreement

If the **broadcast channel** is available then the **byzantine agreement** can be achieved as follows:

- 1. every party P_i broadcasts her input s_i
- 2. the majority of the broadcasted values is the agreed value.

Fact

In the information-theoretic settings:

a broadcast channel can be "emulated" by a multiparty protocol.

Emulation

Idea

Allow the parties to use a broadcast channel. We get:

setting	adversary type	condition
information- theoretic	passive	t < n/2
information- theoretic	active	t < n/3
information- theoretic (with broadcast)	active	t < n/2

Plan

- 1. Definitions and motivation
- 2. Security against the threshold adversaries
 - 1. overview of the results

- 2. overview of the constructions
- 3. Applications

How to construct such protocols?

The general scheme is like in the two-party case:

1. Represent the function as a circuit.

usually: arithmetic circuit over some field

- 2. Let **every party "share" her input** with the other parties.
- 3. Evaluate the circuit gate-by-gate (maintaining the invariant that the values of the intermediary gates are shared between the parties)
- 4. Reconstruct the output.

Arithmetic circuits (over a field F)

How to share a secret?

Informally:

We want to share a secret *S* between a group of parties, in such a way that:

- 1. any set of up to *t* corrupted parties has no information on *S*, and
- 2. if t + 1 parties cooperate then they can reconstruct the secret S.

m-out-of-*n* secret sharing

- 1. Every set of at least *m* players can **reconstruct** *S*.
- 2. Any set of less than *m* players has **no information about** *S***.**

<u>note</u>: this primitive assumes that the adversary is **passive**

m-out-of-*n* secret sharing – more formally

Every secret sharing protocol consists of

- a sharing procedure: $(S_1, ..., S_n) := \text{share}(S)$
- a **reconstruction** procedure: for any distinct $i_1, ..., i_m$ we have $S := \text{reconstruct}(S_{i_1}, ..., S_{i_m})$

• a security condition:

for every S, S and every i_1 , ..., i_{m-1} :

$$(S_{i_1}, ..., S_{i_{m-1}})$$
 and $(S'_{i_1}, ..., S'_{i_{m-1}})$ are distributed identically,

where:

$$(S_1, ..., S_n) := \text{share}(S) \text{ and } (S'_1, ..., S'_n) := \text{share}(S')$$

Shamir's secret sharing [1/2]

Suppose that S is an element of some finite field F, such that |F| > n f – a random polynomial of degree m-1 over F such that f(0) = S

sharing:

 $P_1 \qquad P_2 \qquad P_3 \qquad \dots \qquad P_n$

Shamir's secret sharing [2/2]

reconstruction:

Given $f(i_1), ..., f(i_m)$ one can interpolate the polynomial f in point 0.

security:

One can show that $f(i_1), ..., f(i_{m-1})$ are independent from f(0).

How to construct a MPC protocol on top of Shamir's secret sharing?

Observation

Addition is easy...

Why?

Because polynomials are homomorphic with respect to addition.

Polynomials are homomorphic with respect to addition

Addition

How can we use it?

We can construct a protocol for computing

$$f(a_1,\ldots,a_n):=a_1+\cdots+a_n$$

This protocol will be secure against an adversary that

- corrupts up to t parties and is
- passive, and
- information-theoretic.

A protocol for computing

$$f(a_1,\ldots,a_n)\coloneqq a_1+\cdots+a_n$$

1. Each party P_i shares her input using a (t + 1)-out-of-n Shamir's secret sharing.

Let $a_i^1, ..., a_i^n$ be the shares. Therefore at the end we have quadratic number of shares

	30			(00)	
Page	a_1		a_i		a_n
30	a_1^1	•••	a_i^1	•••	a_n^1
	:				:
	a_1^j	•••	a_i^j	•••	a_n^j
					:
	a_1^n	•••	a_i^n	•••	a_n^n

2. Each P_j computes a sum of the shares that he received

this is what P_j received in **Step 1**

a_1^1		a_i^1	•••	a_n^1
:		•		•
a_1^j		a_i^j	•••	a_n^j
:		•		:
a_1^n	•••	a_i^n	•••	a_n^n

$$b^j \coloneqq \sum_i a_i^j$$

$$b^n \coloneqq \sum_i a_i^n$$

The final steps:

- 3. Each party *P^j* broadcasts *b^j*
- 4. Every party can now reconstruct $f(a_1, ..., a_n) := a_1 + \cdots + a_n$

by interpolating the shares $b^1, ..., b^n$

It can be shown that no coalition of up to *t* parties can break the security of the protocol.

(Even if they are infinitely-powerful)

How to construct a protocol for any function

Polynomials are homomorphic also with respect to multiplication.

Problem

The degree gets doubled...

Hence, the construction of such protocols is nottrivial.

But it is possible! [exercise]

Plan

- 1. Definitions and motivation
- 2. Security against the threshold adversaries
 - 1. overview of the results
 - 2. overview of the constructions

3. Applications

Sharing cryptographic secretss

Distributed cryptography is also used in the following way.

Suppose we have a secret key **sk** (for a signature scheme) and we do not wan to store it on on machine.

Solution:

- 1. share sk between n machines $P_1, ..., P_n$
- 2. "sign" in a distributed way (without reconstructing sk)

see e.g.:

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, Tal Rabin: **Robust Threshold DSS Signatures.** EUROCRYPT 1996

Auctions

Peter Bogetoft et al. **Multiparty Computation Goes Live.**2009

The Danish farmers can now bet in a secure way for the contracts to deliver sugar beets.

Voting

Voting protocols are a **special case of MPCs**.

Additional desired property: receipt-freeness.

Warning: voting over the internet is **tricky** (most of security researchers are against using it for general elections).

Blockchain

Can be viewed as a special case of the MPCs/consensus.

Main difference: many blockchains work in **permissionless** settings.

everybody can join the system

This is why "honest majority" has to be defined in a different way.

