Kapitel 6

Starrer Körper und Kreiseltheorie

- Die allgemeine Bewegung des starren Körpers hat 6 Freiheitsgrade: 3 Schwerpunktkoordinaten und 3 Rotationsfreiheitsgrade (beschrieben durch 3 Drehwinkel).
- Falls Körper an einem Punkt festgehalten wird, sprechen wir von einem *Kreisel*.
- Bei Rotation um eine feste Achse, handelt es sich um ein *physisches Pendel* (ein Freiheitsgrad).
- Wir behandeln zunächst die allgemeine Bewegung des starren Körpers und daran anschließend den Kreisel (das physische Pendel haben wir bereits in (4.3.2) untersucht).

6.1 Die allgemeine Bewegung des freien starren Körpers

6.1.1 Koordinatensysteme

- Wir betrachten den starren Körper
 - 1. in einem erdfesten Inertialsystem \mathcal{S} mit kartesischen Koordinaten $x^i=(x,y,z)$

- 2. in einem körperfesten Schwerpunktsystem Σ' mit kartesischen Koordinaten $x^{i'} = (x', y', z')$.
- Die Massenpunkte weisen in Σ' feste, zeitunabhängige Koordinatenwerte $x^{i'}$ auf.
- \bullet Der Ursprung von Σ' liegt im Schwerpunkt, d.h. es verschwinden die Schwerpunktkoordinaten

$$Ms^{i'} = \int_{K} \mu x^{i'} d^3 \vec{r}' = 0, \qquad M = \int_{K} \mu d^3 \vec{r}'$$
 (6.1)

K bezeichne hier wie früher das feste, zeitunabhängige Integrationsgebiet innerhalb von Σ' , das vom Körper ausgefüllt wird.

• Koordinatentransformation $\Sigma' \leftrightarrow \mathcal{S}$ (siehe Kapitel 1.6):

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} s^x(t) \\ s^y(t) \\ s^z(t) \end{pmatrix} + \hat{O}^T(t) \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

mit zeitabhängigen Schwerpunktkoordinaten $s^i(t)$ bezüglich \mathcal{S} und orthogonaler Transformationsmatrix

$$\hat{O} = \hat{O}(t), \qquad \hat{O}^T \hat{O} = \hat{O} \hat{O}^T = \hat{I}$$
 für alle Zeiten t .

• In Indexschreibweise:

$$x^{i} = s^{i}(t) + \sum_{i'=1}^{3} [\hat{O}^{T}]_{i'}^{i} x^{i'}$$

• Wir werden darüber hinaus ein weiteres körperfestes System Σ'' einführen, in dem in Matrixschreibweise die Komponenten des sogenannten $Tr\"{a}gheitstensors \stackrel{\leftrightarrow}{\Theta}$ Diagonalgestalt annehmen (Hauptachsentransformation).

6.1.2 Kinetische Energie

ullet Um die Lagrange-Funktion L aufstellen und den starren Körpern mit dem Lagrange-II-Formalismus behandeln zu können, benötigen wir

wir die kinetische Energie

$$T = \frac{1}{2} \int_K \mu \vec{v}^2 \, \mathrm{d}^3 \vec{r}'$$

• Nach den im Kapitel 1.6, "Scheinkräfte in rotierenden Bezugssystemen" hergeleiteten Formeln ist:

$$\vec{v} = \vec{v}' + \dot{\vec{s}} + \vec{\omega} \times \vec{r}'$$

Hierbei ist $\vec{\omega}$ der i.A. zeitabhängige Vektor der Winkelgeschwindigkeit von Σ' bezüglich \mathcal{S} mit

$$[\hat{O}\frac{d\hat{O}^T}{dt}]_{j'}^{i'} = [\hat{A}]_{j'}^{i'} = -\sum_{k'=1}^3 \varepsilon_{j'k'}^{i'} \omega^{k'}, \qquad \vec{\omega} = \sum_{i'=1}^3 \omega^{i'} \vec{b}_{i'}$$

- Die Geschwindigkeit $\vec{v}' = \sum_{i'=1}^{3} \dot{x}^{i'} \vec{b}_{i'}$ der Massenpunkte verschwindet im körperfesten Systems Σ' (der Körper ruht in Σ'), also $\vec{v}' = 0$.
- Dann folgt:

$$T = \frac{1}{2} \int_{K} \mu \left(\dot{\vec{s}}^{2} + 2\dot{\vec{s}} \cdot (\vec{\omega} \times \vec{r}') + (\vec{\omega} \times \vec{r}')^{2} \right) d^{3}\vec{r}'$$

- Das Integral über den mittleren Term verschwindet wegen (6.1).
- Es ist nun:

$$(\vec{\omega} \times \vec{r}')^2 = \vec{\omega}^2 \vec{r}'^2 - (\vec{\omega} \cdot \vec{r}')^2 = \sum_{i'.k'=1}^3 \omega^{i'} \omega^{k'} \left[\vec{r}'^2 \delta^{i'}_{k'} - x^{i'} x^{k'} \right]$$

• Damit folgt für die kinetische Energie:

$$T = \frac{M}{2}\dot{\vec{s}}^2 + \frac{1}{2}\sum_{i'.k'=1}^3 \omega^{i'}\omega^{k'}\Theta^{i'}_{k'} = \frac{M}{2}\dot{\vec{s}}^2 + \frac{1}{2}\vec{\omega}\cdot(\stackrel{\leftrightarrow}{\Theta}\vec{\omega})$$
 (6.2)

mit den Komponenten $\Theta_{k'}^{i'}$ des Trägheitstensors $\stackrel{\leftrightarrow}{\Theta}$,

$$\Theta_{k'}^{i'} = \int_{K} \mu \left[\vec{r}'^{2} \delta_{k'}^{i'} - x^{i'} x^{k'} \right] d^{3} \vec{r}'$$

6.1.3 Der Trägheitstensor

Die Koeffizientenmatrix

$$\Theta_{k'}^{i'} = \begin{pmatrix}
\int_{K} \mu(y'^{2} + z'^{2}) d^{3}\vec{r}' & -\int_{K} \mu x' y' d^{3}\vec{r}' & -\int_{K} \mu x' z' d^{3}\vec{r}' \\
-\int_{K} \mu x' y' d^{3}\vec{r}' & \int_{K} \mu(x'^{2} + z'^{2}) d^{3}\vec{r}' & -\int_{K} \mu y' z' d^{3}\vec{r}' \\
-\int_{K} \mu x' z' d^{3}\vec{r}' & -\int_{K} \mu y' z' d^{3}\vec{r}' & \int_{K} \mu(x'^{2} + y'^{2}) d^{3}\vec{r}'
\end{pmatrix}$$
(6.3)

stellt die Komponenten des sogenannten Trägheitstensors $\overset{\leftrightarrow}{\Theta}$ im Koordinatensystem Σ' dar.

• Tensoren zweiter Stufe:

Ein Tensor zweiter Stufe ist eine lineare Abbildung des Tangentialvektorraumes in sich, d.h. jedem Vektor \vec{v} wird ein Vektor \vec{w} zugeordnet. Wir schreiben:

$$\vec{w} = \stackrel{\leftrightarrow}{\Theta} \vec{v}$$

In Komponenten (innerhalb von Σ') ist

$$\vec{w} = \stackrel{\leftrightarrow}{\Theta} \vec{v} \quad \Leftrightarrow \quad w^{i'} = \sum_{k'=1}^{3} \Theta^{i'}_{k'} v^{k'}$$

• Transformationsgesetz für Tensoren zweiter Stufe:

Da sich bei einem Übergang in ein anderes System Σ'' mit Koordinaten $x^{i''}=x^{i''}(x^{i'})$ die Vektorkomponenten gemäß

$$w^{i''} = \sum_{i'=1}^{3} \frac{\partial x^{i''}}{\partial x^{i'}} w^{i'}, \qquad w^{k'} = \sum_{k''=1}^{3} \frac{\partial x^{k'}}{\partial x^{k''}} w^{k''}$$

transformieren, folgt:

$$w^{i''} = \sum_{i'=1}^{3} \frac{\partial x^{i''}}{\partial x^{i'}} \sum_{k'=1}^{3} \Theta^{i'}_{k'} v^{k'} = \sum_{i'=1}^{3} \frac{\partial x^{i''}}{\partial x^{i'}} \sum_{k'=1}^{3} \Theta^{i'k'} \sum_{k''=1}^{3} \frac{\partial x^{k'}}{\partial x^{k''}} v^{k''} = \sum_{k''=1}^{3} \Theta^{i''}_{k''} v^{k''}$$

Die Komponenten von $\stackrel{\leftrightarrow}{\Theta}$ in Σ'' ergeben sich also zu:

$$\Theta_{k''}^{i''} = \sum_{i',k'=1}^{3} \frac{\partial x^{i''}}{\partial x^{i'}} \frac{\partial x^{k'}}{\partial x^{k''}} \Theta_{k'}^{i'}$$

119

Anmerkung: Orthonormale Transformationsmatrizen \hat{O} sind keine Tensoren. Im Gegensatz zu \hat{O} stellt $\stackrel{\leftrightarrow}{\Theta}$ eine physikalische Größe des betrachteten Körpers dar.

• Symmetrie von $\stackrel{\leftrightarrow}{\Theta}$:

Weil die Koeffizientenmatrix (6.3) symmetrisch ist, $\Theta_{k'}^{i'} = \Theta_{i'}^{k'}$, folgt für das Skalarprodukt:

$$\vec{w} \cdot (\overset{\leftrightarrow}{\Theta} \vec{v}) = \sum_{i',k'=1}^3 w^{i'} \Theta^{i'}_{k'} v^{k'} = \sum_{i',k'=1}^3 w^{i'} \Theta^{k'}_{i'} v^{k'} = \sum_{k'=1}^3 v^{k'} (\overset{\leftrightarrow}{\Theta} \vec{w})^{k'} = \vec{v} \cdot (\overset{\leftrightarrow}{\Theta} \vec{w}),$$

also:

$$\vec{w} \cdot (\stackrel{\leftrightarrow}{\Theta} \vec{v}) = \vec{v} \cdot (\stackrel{\leftrightarrow}{\Theta} \vec{w}) \quad \text{oder} \quad (\vec{v}, \stackrel{\leftrightarrow}{\Theta} \vec{w}) = (\stackrel{\leftrightarrow}{\Theta} \vec{v}, \vec{w})$$

• Positive Definitheit:

Da für beliebiges $\vec{\omega} \neq 0$ stets T > 0 gilt (kinetische Energie ist stets positiv), folgt positive Definitheit von Θ :

für alle Vektoren
$$\vec{\omega} \neq 0$$
 gilt : $\vec{\omega} \cdot (\stackrel{\leftrightarrow}{\Theta} \vec{\omega}) > 0$, $(\vec{\omega}, \stackrel{\leftrightarrow}{\Theta} \vec{\omega}) > 0$

- Eigenschaften positiv-definiter, symmetrischer Tensoren:
 - 1. $\stackrel{\leftrightarrow}{\Theta}$ besitzt 3 reelle und positive *Eigenwerte*

$$\lambda_1 = A > 0, \qquad \lambda_2 = B > 0, \qquad \lambda_3 = C > 0,$$

für die die Eigenwertgleichung

$$\stackrel{\leftrightarrow}{\Theta} \vec{w} = \lambda \vec{w}$$

eine Lösung $\vec{w} \neq 0$ besitzt.

- 2. Man findet zugehörige Eigenvektoren $\vec{w}_1, \vec{w}_2, \vec{w}_3$, die normiert und orthogonal sind, $\vec{w}_i \cdot \vec{w}_j = \delta_{ij}$, $\stackrel{\leftrightarrow}{\Theta} \vec{w}_i = \lambda_i \vec{w}_i$.
- Hauptachsentransformation:

Ausgehend vom körperfesten System Σ' führen wir ein neues körperfestes System Σ'' gemäß

$$\begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix} = \hat{U} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}, \qquad \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \hat{U}^T \begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix}$$

ein, wobei wir die (zeitunabhängige) orthogonale Transformationsmatrix \hat{U} aus den Komponenten der Eigenvektoren bilden:

$$\hat{U} = \begin{pmatrix} (\vec{w}_1)^{1'} & (\vec{w}_1)^{2'} & (\vec{w}_1)^{3'} \\ (\vec{w}_2)^{1'} & (\vec{w}_2)^{2'} & (\vec{w}_2)^{3'} \\ (\vec{w}_3)^{1'} & (\vec{w}_3)^{2'} & (\vec{w}_3)^{3'} \end{pmatrix}, \qquad \hat{U}^T = \begin{pmatrix} (\vec{w}_1)^{1'} & (\vec{w}_2)^{1'} & (\vec{w}_3)^{1'} \\ (\vec{w}_1)^{2'} & (\vec{w}_2)^{2'} & (\vec{w}_3)^{2'} \\ (\vec{w}_1)^{3'} & (\vec{w}_2)^{3'} & (\vec{w}_3)^{3'} \end{pmatrix}$$

Dann folgt:

$$\Theta_{k''}^{i''} = \sum_{i',k'=1}^{3} \frac{\partial x^{i''}}{\partial x^{i'}} \frac{\partial x^{k'}}{\partial x^{k''}} \Theta_{k'}^{i'} = \sum_{i',k'=1}^{3} [\hat{U}]_{i'}^{i''} [\hat{U}^T]_{k''}^{k'} \Theta_{k'}^{i'}$$

$$= \sum_{i'=1}^{3} [\vec{w}_{i''}]^{i'} \left(\sum_{k'=1}^{3} \Theta_{k'}^{i'} [\vec{w}_{k''}]^{k'} \right)$$

$$= \sum_{i'=1}^{3} [\vec{w}_{i''}]^{i'} \lambda_{k''} [\vec{w}_{k''}]^{i'} = \lambda_{k''} \delta_{k''}^{i''},$$

also:

$$\Theta_{k''}^{i''} = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}$$

- Im Koordinatensystem Σ'' ist die Koeffizientenmatrix des Trägheitstensors $\stackrel{\leftrightarrow}{\Theta}$ diagonal, und die positiven Eigenwerte A,B,C sitzen auf der Hauptdiagonale.
- Man bezeichnet A, B, C als die Hauptträgheitsmomente des Körpers, die Richtungen der Eigenvektoren $\vec{w_i}$ als Trägheitsachsen und das System Σ'' als Hauptachsensystem.

• Einteilung:

1. Unsymmetrischer Kreisel: alle drei Hauptträgheitsmomente sind verschieden.

- 2. Symmetrischer Kreisel: zwei Hauptträgheitsmomente stimmen überein. Die Achse in Richtung des dritten Hauptträgheitsmomentes (das verschieden von den anderen beiden ist) wird Figurenachse genannt.
- 3. Kugelkreisel: alle drei Hauptträgheitsmomente stimmen überein.
- Trägheitsmoment und Trägheitstensor:
 - In Kapitel 4.3.2 haben wir das Trägheitsmoment $\Theta_{\vec{n}}$ eines Körpers um eine Drehachse mit Richtungseinheitsvektor \vec{n} kennengelernt (wir haben dort $\vec{n} = \vec{b}_z$ gesetzt).
 - Dabei ist das Abstandsquadrat eines Punktes mit Ortsvektor \vec{r}' zur Drehachse gegeben durch $(\vec{n} \times \vec{r}')^2$, und wir erhalten somit:

$$\Theta_{\vec{n}} = \int_{K} \mu(\vec{n} \times \vec{r}')^{2} d^{3}\vec{r}' = \vec{n} \cdot (\stackrel{\leftrightarrow}{\Theta} \vec{n}).$$

- Trägheitsellipsoid:
 - Durch den biquadratischen Ausdruck

$$1 = \vec{r}' \cdot (\stackrel{\leftrightarrow}{\Theta} \vec{r}') = \sum_{i',k'=1}^{3} x^{i'} x^{k'} \Theta^{i'}_{k'}$$

wird eine Fläche 2. Ordnung definiert, $f(\vec{r}') = \vec{r}' \cdot (\stackrel{\leftrightarrow}{\Theta} \vec{r}') - 1 = 0$.

- Wegen der positiven Definitheit von $\stackrel{\leftrightarrow}{\Theta}$ ist diese Fläche ein (i.A. verdrehtes) Ellipsoid, das sogenannte Trägheitsellipsoid.
- Die Drehachse mit Richtungseinheitsvektor \vec{n} durchstößt diese Fläche im Punkt mit den Koordinaten $x_{\vec{n}}^{i'}$, wobei:

$$1 = \vec{r}_{\vec{n}}' \cdot (\stackrel{\leftrightarrow}{\Theta} \vec{r}_{\vec{n}}') = |\vec{r}_{\vec{n}}'|^2 \vec{n} \cdot (\stackrel{\leftrightarrow}{\Theta} \vec{n}) = |\vec{r}_{\vec{n}}'|^2 \Theta_{\vec{n}}.$$

Also hat der Durchstoßpunkt vom Nullpunkt den Abstand $|\vec{r}'_{\vec{n}}| = 1/\sqrt{\Theta_{\vec{n}}}$ (siehe Abb.)

– Die Achsen des Ellipsoids weisen in Richtung der Trägheitsachsen, d.h. im Hauptachsensystem Σ'' ist das Ellipsoid nicht verdreht, die Achsen des Ellipsoids stimmen mit den Koordinatenachsen überein.

- Verallgemeinerter Steinerscher Satz:
 - Oben eingeführter Trägheitstensor $\stackrel{\leftrightarrow}{\Theta}$ ist dem Schwerpunkt zugeordnet (betrachtet werden Drehachsen durch den Schwerpunkt).
 - Man kann Trägheitstensoren mit Komponenten (6.3) einem beliebigen Punkt innerhalb und außerhalb des Körpers zuordnen.
 - Der dem Punkt mit Ortsvektor $\vec{r}' = \vec{\ell}'$ zugeordnete Trägheitstensor $\stackrel{\leftrightarrow}{\Theta}_{\vec{\ell}'}$ beschreibt dabei Trägheitsmomente $\Theta_{\vec{n},\vec{\ell}'} = \vec{n} \cdot (\stackrel{\leftrightarrow}{\Theta}_{\vec{\ell}'} \vec{n})$ für Drehachsen durch den fraglichen Punkt.
 - Es gilt:

$$\begin{split} (\stackrel{\leftrightarrow}{\Theta}_{\vec{\ell}'})^{i'}_{k'} &= \int_{K} \mu \left[(\vec{r}' - \vec{\ell}')^{2} \delta^{i'}_{k'} - (x^{i'} - \ell^{i'}) (x^{k'} - \ell^{k'}) \right] d^{3} \vec{r}' \\ &= \int_{K} \mu \left[\vec{r}'^{2} \delta^{i'}_{k'} - x^{i'} x^{k'} + \vec{\ell}'^{2} \delta^{i'}_{k'} - \ell^{i'} \ell^{k'} \right] d^{3} \vec{r}' \\ &= \Theta^{i'}_{k'} + M(\vec{\ell}'^{2} \delta^{i'}_{k'} - \ell^{i'} \ell^{k'}), \end{split}$$

also:

$$(\stackrel{\leftrightarrow}{\Theta}_{\vec{l'}})^{i'}_{k'} = \Theta^{i'}_{k'} + M \begin{pmatrix} (l^{y'})^2 + (l^{z'})^2 & -l^{x'}l^{y'} & -l^{x'}l^{z'} \\ -l^{x'}l^{y'} & (l^{x'})^2 + (l^{z'})^2 & -l^{y'}l^{z'} \\ -l^{x'}l^{z'} & -l^{y'}l^{z'} & (l^{x'})^2 + (l^{y'})^2 \end{pmatrix}$$

– Die Trägheitsachsen von $\stackrel{\leftrightarrow}{\Theta}_{\vec{p}'}$ und $\stackrel{\leftrightarrow}{\Theta}$ stimmen i.A. nicht überein.

6.1.4 Drehimpuls

• Wir benutzen wieder die Formeln aus Kapitel 1.6,

$$\vec{r} = \vec{r}' + \vec{s}, \qquad \vec{v} = \vec{v}' + \dot{\vec{s}} + \vec{\omega} \times \vec{r}' = \dot{\vec{s}} + \vec{\omega} \times \vec{r}' \quad (\vec{v}' = 0)$$

und schreiben:

$$\vec{L} = \int_{K} \mu \, \vec{r} \times \vec{v} \, d^{3} \vec{r}' = \int_{K} \mu (\vec{s} + \vec{r}') \times (\dot{\vec{s}} + \vec{\omega} \times \vec{r}') \, d^{3} \vec{r}'$$

$$= M \vec{s} \times \dot{\vec{s}} + \int_{K} \mu \, \vec{r}' \times (\vec{\omega} \times \vec{r}') \, d^{3} \vec{r}'$$

• Das doppelte Kreuzprodukt schreiben wir mittels bac-cab-Formel um:

$$\vec{r}' \times (\vec{\omega} \times \vec{r}') = \vec{r}'^2 \vec{\omega} - (\omega \cdot \vec{r}') \vec{r}'$$

In Komponenten:

$$[\vec{r}' \times (\vec{\omega} \times \vec{r}')]^{i'} = \vec{r}'^{\,2}\vec{\omega}^{i'} - \sum_{k'=1}^{3} \omega^{k'} x^{k'} x^{i'} = \sum_{k'=1}^{3} \left(\vec{r}'^{\,2} \delta^{i'}_{\,\,k'} - x^{k'} x^{i'} \right) \omega^{k'}$$

• Damit wird:

$$\vec{L} = M\vec{s} \times \dot{\vec{s}} + \sum_{i',k'=1}^{3} \left[\int_{K} \mu \left(\vec{r}'^{2} \delta^{i'}_{k'} - x^{k'} x^{i'} \right) d^{3} \vec{r}' \right] \omega^{k'} \vec{b}_{i'}$$

$$= M\vec{s} \times \dot{\vec{s}} + \sum_{i',k'=1}^{3} \Theta^{i'}_{k'} \omega^{k'} \vec{b}_{i'},$$

also:

$$\vec{L} = \vec{L}_{\text{transl}} + \vec{L}_{\text{rot}} = M \, \vec{s} \times \dot{\vec{s}} + \stackrel{\leftrightarrow}{\Theta} \vec{\omega}$$

- Der Rotationsanteil $\vec{L}_{\text{rot}} = \stackrel{\leftrightarrow}{\Theta} \vec{\omega}$ weist damit nur dann in Richtung von $\vec{\omega}$, wenn $\vec{\omega}$ ein Eigenvektor von $\stackrel{\leftrightarrow}{\Theta}$ ist, also entlang der Trägheitsachsen gerichtet ist.
- Im Hauptachsensystem Σ'' :

$$(L_{\text{rot}}^{i''}) = \begin{pmatrix} A\omega^{x''} \\ B\omega^{y''} \\ C\omega^{z''} \end{pmatrix}, \qquad \vec{L}_{\text{rot}} = A\omega^{x''}\vec{b}_{x''} + B\omega^{y''}\vec{b}_{y''} + C\omega^{z''}\vec{b}_{z''}$$

• Zusammenhang mit Trägheitsellipsoid:

Der Gradient an die das Trägheitsellipsoid beschreibende Fläche

$$f(\vec{r}') = \vec{r}' \cdot (\stackrel{\leftrightarrow}{\Theta} \vec{r}') - 1 = 0$$

lautet:

$$\operatorname{grad}_{\vec{r}'} f = 2 \stackrel{\leftrightarrow}{\Theta} \vec{r}'$$

Am Durchstoßpunkt $x_{\vec{n}}^{i'}$ der Drehachse (Richtungseinheitsvektor $\vec{n}=\vec{\omega}/|\vec{\omega}|$) durch das Trägheitsellipsoid ist der Gradient somit:

$$\operatorname{grad}_{\vec{r}'} f = 2 \stackrel{\leftrightarrow}{\Theta} \vec{r}'_{\vec{n}} = 2|\vec{r}'_{\vec{n}}| \stackrel{\leftrightarrow}{\Theta} \vec{n} = \frac{2}{|\omega|\sqrt{\Theta_{\vec{n}}}} \vec{L}_{rot}$$

Damit steht der Drehimpuls $\vec{L}_{\rm rot}$ senkrecht auf der Tangentialebene am Durchstoßpunkt der Drehachse durch das Trägheitsellipsoid.

• Es gilt:

$$\vec{L}_{\rm rot} \cdot \vec{\omega} = (\stackrel{\leftrightarrow}{\Theta} \vec{\omega}) \cdot \vec{\omega} = |\omega|^2 (\stackrel{\leftrightarrow}{\Theta} \vec{n}) \cdot \vec{n} = \Theta_{\vec{n}} |\omega|^2$$

Die Komponente von $\vec{L}_{\rm rot}$ in Richtung von ω ist damit:

$$\vec{L}_{\mathrm{rot}} \cdot \frac{\vec{\omega}}{|\vec{\omega}|} = \Theta_{\vec{n}} |\omega|$$

