Power System Management

Name: Ikhwan bin Amir Hamzah (1812423)

Cell an Battery

- The Cell. This basic electrochemical unit handles the actual storage of energy in a battery
- A cell contains 3 main components: 2 electrodes and an electrolyte
- 2 electrodes: Anode(-) and cathode(+)
- Electrolyte: Acts as the medium for transferring charge in the form of ions between two electrodes.
- It isn't electrically conductive but is an ionic conductive. It is often referred to as Ionic Conductor.

Types of Batteries

- Electrochemical cells and batteries are categorised into two basic types:
 - Primary (non-rechargeable)
 - Secondary (rechargeable)

Types of Batteries – Primary batteries

- Convenient sources of power for portable electronics and devices
- Examples: radios, watches, toys, lights, camera, and more
- Can't be recharged once they run out of power
- Inexpensive, lightweight, and convenient to use with no maintenance
- Cylindrical form:
 - Alkaline batteries which uses potassium hydroxide electrolyte—a pure alkaline substance
 - a chemical composed of zinc (Zn) and manganese dioxide (MnO2) & has a power density of 100 Wh/kg
- Coin-shaped:
 - Chemical composition is alkaline but contains lithium & silver oxide chemicals
 - More efficient, providing steady & stable voltage
 - Has a power density of 270 Wh/kg.

Types of Batteries – Primary batteries

Battery Type	Characteristics	Applications
Alkaline (Zn/Alkaline/MnO2)	Very popular, moderate cost, high performance	Most popular primary batteries
Magnesium (Mg/MnO2)	High capacity, long shelf life	Military and aircraft Radios
Mercury (Zn/HgO)	Very high capacity, long shelf life	Medical (hearing aids, pacemakers), photography
Lithium/Solid Cathode	High energy density, low temp performance, long shelf life	Replacement for button and cylindrical cells
Lithium/Soluble Cathode	High energy density, good performance, wide temp range	Wide range of applications with a capacity between 1 – 10,000 Ah
Lithium/Solid Electrolyte	Low power, extremely long shelf life	Memory circuits, medical electronics
Silver/Zinc (Zn/Ag2O)	Highest capacity, costly, flat discharge	Hearing aids, photography, pagers
Zinc – Carbon	Common, low cost, variety of sizes	Radios, toys, instruments

Types of Batteries – Secondary batteries

- Main advantage: Can be recharged and reused meaning rechargeable batteries
- Cost more than primary battery but have can have a longer lifespan
- Application:
- Storage devices
 - Uninterrupted Power Supplies (UPS) & Hybrid Electric Vehicles (HEV)
 - Energy storage devices that are electrically connected to main energy source & simultaneously charged by it, supplying the needed energy
- Applications where the battery is used and discharged as a primary battery
 - Can be recharged with a charging mechanism once they're completely or almost discharged
 - Smartphone batteries(lithium-ion battery) & Cars/vehicles (lead-acid batteries)

Types of Batteries – Secondary batteries

- Other types of rechargeable batteries:
- Nickel Cadmium Batteries
 - One of the oldest battery types available today.
 - Have a very long life and are also very reliable and sturdy.
- Nickel Metal Hydride Batteries
 - A new type of battery, an extended version of Nickel Hydrogen Electrode Batteries.
 - Ideal use in aerospace applications (satellites).

Types of Batteries

Alkaline battery

Rechargeable battery

Lithium battery

Sealed Lead-acid battery

Calculating Battery Runtime

- Gives a realistic approximation of the battery runtime basing on its capacity and the energy consumption of your device
- Formula:

battery life =
$$\frac{capacity}{consumption} \times (1 - discharge safety)$$

- Capacity: Battery capacity in ampere hours
- Consumption: Average current draw of the electronic device in amperes
- Discharge safety: Percentage of battery capacity that is never used.

How long will a battery last: sleep mode

- Some device that spends most of the time in sleep mode
- Formula:

```
Average\ consumption = \frac{consumption1 \times time1 + consumption2 \times time2}{time1 + time2}
```

- Index 1: awake mode
- Index 2: sleep mode

Wireless Charging AGV

- Inductive wireless charging system AGVs and AMRs can perform contactless battery opportunity charging
- Counts on a stationary active fixed coil on the floor on a wall and on a mobile passive coil on the mobile robot
- active coil generates a magnetic field that induces an alternated current in the mobile coil. This current is used to charge the mobile robot battery
- Main AGV and AMR Wireless Charging Systems manufacturers:
 - B&PLUS, Daihen, Delta energy Systems, In2Power, WiBotic, Wiferion

Wireless Charging AGV

- Mainly have two different AGV charging systems to manage battery charging:
 - "opportunity charging" a.k.a. "online charging"
 - "battery replacement" a.k.a. "battery swap"

Wireless Charging AGV-Opportunity Charging

- Permits batteries to be charged several times during its working hours
- The AGV goes to defined charging stations and performs charging while waiting for a new mission to be delivered
- If the battery balance is properly calculated, the vehicle could never need a change of battery.

Wireless Charging AGV-Battery Swap

- Mobile robot works with a single battery until it is fully drained that need to be swapped with a fully charged one
- Battery swapping can be done manually or automatically as needed or on a schedule