

```
In [4]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.cluster import KMeans
        df = pd.read csv("/content/customer data.csv")
In [5]:
In [6]: X = df[['Annual Income (k$)', 'Spending Score (1-100)']]
In [7]: wcss = []
        for i in range(1, 11):
            kmeans = KMeans (n clusters=i, init='k-means++', random state=42)
            kmeans.fit(X)
            wcss.append(kmeans.inertia )
In [8]: plt.plot(range(1, 11), wcss, marker='o')
        plt.title('Elbow Method')
        plt.xlabel('Number of clusters')
        plt.ylabel('WCSS')
        plt.show()
```

Elbow Method


```
In [9]: kmeans = KMeans(n_clusters=3, init='k-means++', random_state=42)
df['Cluster'] = kmeans.fit_predict(X)
```

Customer Segments (K-Means Clustering)

In [11]: print(df[['CustomerID','Annual Income (k\$)','Spending Score (1-100)','Cluster'

	CustomerID	Annual Income	(k\$)	Spending	Score	(1-100)	Cluster
0	1		15			39	1
1	2		15			81	2
2	3		16			6	1
3	4		16			77	2
4	5		17			40	1
5	6		17			76	2
6	7		18			6	1
7	8		18			94	Θ
8	9		19			3	1
9	10		19			72	2
10	11		19			14	1
11	12		19			99	Θ
12	13		20			15	1
13	14		20			77	2
14	15		20			13	1
15	16		20			79	2
16	17		21			35	1
17	18		21			66	2
18	19		23			29	1
19	20		23			98	Θ
In [11]:							