METHOD AND APPARATUS FOR CONTINUOUSLY REFINING ALUMINUM SCRAP

Publication number: JP7070666

Publication date:

1995-03-14

Inventor:

DOBASHI TOMOO; MAKINO SABURO; FUJIIKE

MIZUYOSHI

Applicant:

NIPPON LIGHT METAL CO; NIKKEI TECHNO RES CO

LTD

Classification:

- international:

C22B21/06; C22C1/02; C22B21/00; C22C1/02; (IPC1-

7): C22C1/02; C22B21/06; C22C1/02

- European:

Application number: JP19930218433 19930902 Priority number(s): JP19930218433 19930902

Report a data error here

Abstract of JP7070666

PURPOSE: To continuously produce a hypoeutectic Al-Si alloy and a hypereutectic Al-Si alloy from aluminum scrap at the high yield. CONSTITUTION: The aluminum scrap is melted and iron removal is executed with an iron removing furnace 10 to if necessary, the molten raw material adjusting the components. The hypoeutectic Al-Si alloy is obtd. from the iron removed molten metal with a refining furnace 20 (A-C) and the remaining molten metal is sent to the following refining furnace 20 (B, C) or pre-treating furnace 30. In the pretreating furnace 30, the hypereutectic Al-Si alloy is obtd. while separating Fe content as an intermetallic compound. In the refining furnace 20 (A-C), the hypoeutectic Al-Si alloy having Si concn. corresponding to each grade is obtd. In the pre-treating furnace 30, the hypereutectic Al-Si alloy having high Si concn. is obtd. In the whole system, the Al content brought out to the system accompanied with the intermetallic compound is little.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-70666

(43)公開日 平成7年(1995)3月14日

(51) Int.Cl.6

識別記号 庁内整理番号

FΙ

技術表示箇所

C 2 2 C 1/02

5 0 1 A 9269-4K

503 J 9269-4K

C 2 2 B 21/06

審査請求 未請求 請求項の数7 〇L (全 7 頁)

(21)出願番号 特願平5-218433

(22)出願日 平成5年(1993)9月2日

(71)出願人 000004743

日本軽金属株式会社

東京都港区三田3丁目13番12号

(71)出願人 000152402

株式会社日軽技研

東京都港区三田3丁目13番12号

(72)発明者 土橋 倫男

静岡県庵原郡蒲原町蒲原161番地 日本軽

金属株式会社蒲原工場内

(72)発明者 牧野 三朗

静岡県庵原郡蒲原町蒲原161番地 口本軽

金属株式会社蒲原工場内

(74)代理人 弁理士 小倉 亘

最終頁に続く

(54) 【発明の名称】 アルミニウムスクラップの連続精製方法及び装置

(57)【要約】

【目的】 アルミニウムスクラップから、高い歩留りで 亜共晶AI-Si合金及び過共晶AI-Si合金を連続 的に製造する。

【構成】 アルミニウムスクラップを溶解し、必要に応じて成分調整した原料溶湯を脱Fe炉10で脱Feする。精製炉10(A~C)で脱Fe溶湯から亜共晶A1-Si合金が得られ、残湯が後続する精製炉10(B,C)又は後処理炉30に送られる。後処理炉30では、Fe分を金属間化合物として分離しながら、過共晶A1-Si合金を得る。

【効果】 精製炉10($A\sim C$)では、それぞれのグレードに応じたSi 濃度の亜共晶A1Si 合金が得られる。後処理炉30では、Si 濃度が高い過共晶A1-Si 合金が得られる。全システムにおいて、金属間化合物に随伴して系外に持ち去られるA1分は僅かである。

1

【特許請求の範囲】

【請求項1】 金属間化合物が初晶として晶出する組成を持つアルミニウム溶湯からAl-Si-Fe-Mn系金属間化合物を晶出分離させる脱Fe工程、

脱Feされたアルミニウム溶湯を方向性凝固し、Fe含有量が少ない亜共晶Al-Si合金を製造する精製工程、及び前記亜共晶Al-Si合金を得た残湯からAl-Si-Fe-Mn系金属間化合物を晶出分離し、Fe含有量が少ない過共晶Al-Si合金を製造する後処理工程を経るアルミニウムスクラップの連続精製方法。

【請求項2】 脱Fe工程で晶出したA1-Si-Fe-Mn系金属間化合物は、アルミニウム溶湯から吸引除去される請求項1記載の連続精製方法。

【請求項3】 精製工程で製造された亜共晶A1-Si 合金は、凝固体として水平横方向に引き抜かれる請求項 1記載の連続精製方法。

【請求項4】 Mn/Fe比が0.2~2に調整されたアルミニウム溶湯を精製原料とする請求項1~3の何れかに記載の連続精製方法。

【請求項5】 アルミニウムスクラップを溶解する溶解 20 炉と、該溶解炉から送り出されたアルミニウム溶湯が流入する脱Fe炉と、該脱Fe炉で脱Feされたアルミニウム溶湯が送り込まれ、偏析凝固によってアルミニウム溶湯を精製する精製炉と、該精製炉からのアルミニウム溶湯を更に脱Fcする後処理炉とを備え、前記精製炉からFe含有量が低い亜共晶A1-Si合金が得られるアルミニウムスクラップの連続精製装置。

【請求項6】 請求項5の精製炉は、凝固した亜共晶A 1-Si合金を水平横方向に引き出す開口部をもち、金 30 属間化合物が沈積した炉底部に臨む吸引管を備えている 連続精製装置。

【請求項7】 複数の精製炉を多段に配置し、前段の精製炉で亜共晶A1-Si合金を得た後の残湯を後段の精製炉に送り込む溶湯配管で各段の精製炉を接続した請求項5~7の何れかに記載の連続精製装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、不純物濃度が高いアルミニウムを連続的に精製し、用途に応じた各種アルミニ 40ウム合金を連続的に製造する方法及び装置に関する。

[0002]

【従来の技術】不純物や合金元素を含むアルミニウム溶湯を冷却するとき、組成の如何に応じα-A1又は金属間化合物としての不純物が初晶として晶出する。α-A1が初晶として晶出する系では、母液に比較して純化されたアルミニウムが得られる。金属間化合物が初晶として晶出する系では、残湯中の不純物濃度が低下する。その結果、凝固体或いは溶湯として精製アルミニウム又はアルミニウム合金が得られる。偏析法でアルミニウムを50

精製するとき、精製品の純度は、原料アルミニウムに含まれる不純物の濃度に依存する。 α - A 1 が初晶として晶出する系において、アルミニウムが凝固するとき、不純物元素が固相から排出され、凝固界面の溶湯に濃縮される。 濃縮した不純物は母液に拡散し、一定時間経過後に凝固界面近傍の不純物濃度が母液と等しくなり、精製が進行する。しかし、凝固界面近傍にある溶湯の不純物濃度が母液の不純物濃度と等しくなるまでに長い時間が必要とされる。その結果、凝固速度を大幅に遅くする必要があり、生産性の低下を招く。

【0003】晶出反応を円滑に行わせ且つ非金属介在物の凝固体への混入を避けるため、凝固界面に沈積した非金属化合物や不純物濃縮液を母液に拡散させることが重要である。不純物を非金属介在物として晶出させる系でも、凝固界面の濃度勾配を緩和させることにより晶出反応が促進される。非金属化合物や不純物濃縮液の拡散等には、原料溶湯の機械的な撹拌が採用されている。たとえば、特開昭57-92148号公報では、ルツボに収容したアルミニウム溶湯を撹拌子で撹拌しながら、溶融アルミニウムをルツボ底部から冷却する方法が紹介されている。精製アルミニウムはルツボ底面から成長し、凝固界面にある高濃度不純物溶液は撹拌子によって生じた撹拌流に乗って凝固界面から母液中に拡散する。そのため、純度の高いアルミニウム材料がルツボの底部に凝固体として生成する。

[0004]

【発明が解決しようとする課題】純化された精製品がア ルミニウム溶湯から凝固体として得られるのは、比較的 少量の不純物が含まれる溶解原料を使用する場合であ る。実際のアルミニウムスクラップには各種の不純物が 多量に含まれており、溶湯から初晶として晶出するもの はFeを含むA1-Si-Fe系等の金属間化合物であ る。特に、鋳物合金スクラップのようにFe含有量が 0. 8%以上の低グレード材料では、多量のA1-Fe -Si系金属間化合物が晶出する。金属間化合物が初晶 として晶出する系では、精製品は、溶湯として、或いは 晶出した金属間化合物を除去することにより純化された 溶湯から晶出する凝固体として得られる。このとき、す でに晶出している金属間化合物が精製品に混入すること があり、得られた精製品の純度が低下する。しかし、金 属間化合物の混入を防止する方法は、生産性に見合った 形で実用化されていない。

【0005】また、精製容器としてルツボを使用する場合、基本的にバッチ式であるため、生産性に劣る。精製工程を連続化させる試みも一部で行われているものの、工業的に完成した段階には至っていない。そのため、アルミ缶やアルミ廃材等の回収が盛んになるに応じて、回収されたアルミ原料の処理能力が追い付かない状況にある。本発明は、このような問題を解消すべく案出されたものであり、脱Fe炉、精製炉及び後処理炉を連続的に

.3

配列し、各炉から排出された物質を種類に応じて供給先を分けることにより、不純物濃度が高いアルミニウムスクラップの処理を連続化させ、低Fe濃度の亜共晶A1-Si合金を生産性良く得ることを目的とする。

[0006]

【課題を解決するための手段】本発明の連続精製方法 は、その目的を達成するため、次の工程を経てアルミニ ウムスクラップを精製する。

[脱Fe工程] 金属間化合物が初晶として晶出する組成を持つアルミニウム溶湯からAl-Si-Fe-Mn系金属間化合物を晶出分離させる。晶出したAl-Si-Fe-Mn系金属間化合物は、吸引によってアルミニウム溶湯から除去できる。或いは、脱Fe炉を傾動して脱Fe溶湯を排出することによっても、アルミニウム溶湯から分離される。脱Feされる原料溶湯としては、Mn/Fe比を0.2~2に調整したアルミニウム溶湯が好ましい。

[精製工程] 脱Feされたアルミニウム溶湯を方向性凝固し、Fe含有量が少ない亜共晶A1-Si合金を製造 20 する。精製工程で得られた亜共晶A1-Si合金は、凝固体として水平横方向に引き抜かれることが好ましい。この場合にも、晶出したA1-Si-Fe-Mn系金属間化合物は、吸引によってアルミニウム溶湯から除去できる。この精製工程を多段にすることにより、生産性の向上が図られる。直列多段の配置では、Feが残液に濃縮する。なお、Si濃度が低く純度の良好なA1合金の精製に対しては、このプロセスのみを利用することも可能である。

【0007】 [後処理工程] 亜共晶A1-Si合金を得 30 た残湯からA1-Si-Fe-Mn系金属間化合物を晶出分離し、Fe含有量が少ない過共晶A1-Si合金を溶融状態で得る。何れの工程においても、偏析分離した金属間化合物は、系外に排出される。また、連続精製装置は、アルミニウムスクラップを溶解する溶解炉と、溶解炉から送り出されたアルミニウム溶湯が流入する脱Fe炉と、脱Fe炉で脱Feされたアルミニウム溶湯が送り込まれ、偏析凝固によってアルミニウム溶湯を精製する精製炉と、精製炉からのアルミニウム溶湯を乗製する精製炉と、精製炉からのアルミニウム溶湯を更に脱Feする後処理炉とを備えている。精製炉からFe含有量 40 が低い亜共晶A1-Si合金が得られ、後処理炉からFe含有量が低い過共晶A1-Si合金が得られる。

【0008】精製炉としては、凝固した亜共晶A1-Si合金を水平横方向に引き出す開口部をもち、金属間化合物が沈積した炉底部に臨む吸引管を備えたものが好ましい。精製炉の前段に設けた溶解炉で、脱Feされる原料溶湯のMn/Fe比を0.2~2に調整することも有効である。複数の精製炉を多段に配置することもできる。この場合、前段の精製炉で亜共晶A1-Si合金を得た後の濃縮液を後段の精製炉に送り込むように、各段

の精製炉を溶湯配管で接続する。

【0009】以下、図面を参照しながら、本発明を具体的に説明する。アルミニウムスクラップは、溶解された後で脱Fe炉に装入される(図1)。脱Fe炉10は、図2に示すように、炉殼11を形成する耐火物の内側にヒータ12を配置し、給湯樋13を経て装入された原料溶湯 M_1 を前定温度に保持する。原料溶湯 M_1 には、撹拌子14が浸漬される。撹拌子14で原料溶湯 M_2 を撹拌しながら、原料溶湯 M_1 を α -A1の凝固点より最高でも10℃高い温度まで冷却する。降温に従って、金属間化合物 C_1 が原料溶湯 M_1 から晶出する。金属間化合物 C_1 は、原料溶湯 M_1 から晶出する。金属間化合物 C_1 は、原料溶湯 M_1 がら晶出する。金属間化合物 C_1 は、原料溶湯 M_1 がら晶出する。

【0010】炉底の近傍には、吸引管15の下端が開口 している。沈降した金属間化合物Ciは、一部の原料溶 湯M1 と混じりあったスラリー状態で吸引管15によっ て吸い上げられ、原料溶湯M1 から分離され、系外に排 出される。原料溶湯M1は、金属間化合物C1の分離に 従って純化される。純化された原料溶湯M1 は、脱Fe 溶湯M2 として脱Fe炉10から取り出される。脱Fe 溶湯M2が排出された後、炉底に溜っている金属間化合 物C: を掻き出し、次の原料溶湯M: を脱Fe炉10に 装入する。図2の場合には、吸引管16で脱Fc溶湯M 2 を汲み出し、後続する工程に送っている。送給に際 し、吸引管16の内部における脱Fe溶湯M2の凝固や 降温を防止するため、吸引管16を取り巻くヒータ17 で脱Fe溶湯M2を加熱保温することが好ましい。吸引 30 管16に代え、精製炉20よりも高い位置に脱Fe炉1 0を配置し、脱Fe炉10を傾動させて精製炉20に注 **湯する方式を採用することも可能である。また、金属間** 化合物 C: を除去した後、脱Fe炉10を昇温して脱F e溶湯M2を温度補償しても良い。

【0011】金属間化合物 C_1 は、脱Feされる原料溶 湯 M_1 の種類にもよるが、通常のアルミニウムスクラップを溶解原料とするとき、A1-Si-Fe系、A1-Si-Fe の一の一の一の一の一の一の一の一の一の一の一の一の一点である。 冷却による凝固の進行に応じて、原料溶湯 M_1 中の Si 濃度が上昇する。 共晶組成に相当する 12 重量%前後まで Si 濃度が上昇すると、 凝固速度が低下すると共に、操業条件が不安定になり易い。 したがって、原料溶 湯 M_1 中の Si 濃度は、生産面からの不利を生じないように 10 重量%以下に維持することが好ましい。他方、 A1-Si-Fe-Mn 系等の金属間化合物 C_1 の晶出により凝固体中の Fe の Mn 、 Si 濃度を制御する上で、溶湯中の Si 濃度を 2 重量%以上に維持することが好ましい。

る。この場合、前段の精製炉で亜共晶A1-Si合金を 【0012】また、A1-Si-Fe-Mn系金属間化 得た後の濃縮液を後段の精製炉に送り込むように、各段 50 合物の晶出により、原料溶湯 M_1 中のFe,Mn濃度よ

りも脱Fe溶湯M₂中のFe,Mn濃度が低く維持される。初期の原料溶湯M₁中のFe濃度が少なければ金属間化合物C₁の晶出量が減少し、処理速度が低下する。また、脱Feは、AI-Si-Fe系よりもAI-Si-Fe-Mn系の金属間化合物として除去する方が効果的である。この点、原料溶湯M₁に含まれる不純物のうち、MnとFeとのMn/Fe比を0.2~2の範囲に維持することが好ましい。Mn/Fe比やSi濃度を所定範囲に保つため、最低限の範囲で溶湯組成の調整が必要な場合が生じる。この場合、アルミニウムスクラップの溶解原料を収容した溶解炉18に、金属単体や母合金の状態でSi,Mn等を成分調整材として添加する。成分調整された原料溶湯M₁は、溶解炉18から脱Fe炉10に送り込まれる。

【0013】脱Fe溶湯M2は、脱Fe炉10から精製 炉20に装入される。精製炉20は、図3に示すよう に、耐火物で構築した炉殻21の一側壁に脱Fe溶湯M 2 が送り込まれる給湯口22を設けている。給湯口22 から装入された脱Fe溶湯M2は、撹拌子23で撹拌さ れながら、降温するに従って凝固体Sとなる。凝固体S は、炉殻21の他側壁に設けた開口24から鋳型31を 経て連続的に引き抜かれ、冷却水Wの噴霧等により冷却 される。得られた凝固体Sは、Si及びFeの濃度が低 く、亜共晶A1-S1系鋳物用合金として利用できる。 鋳型31は、黒鉛製乂はA1製の何れでもよく、電磁鋳 型も使用できる。電磁鋳型を使用すると、表面が滑らか な凝固体Sが得られる。得られた凝固体Sは、工程稼動 中に適宜の長さに切断される。そのため、連続操業が可 能となる。凝固体Sの成長に伴い、脱Fe溶湯M2に不 純物が濃縮される。その結果、脱Fe溶湯M2 から金属 30 間化合物C2が晶出する。また、成長している樹枝状晶 の間に取り込まれた金属間化合物 C2 は、撹拌子23 に よって形成された溶湯撹拌流により洗い出され、凝固体 Sから分離する。凝固体Sの成長及び金属間化合物C2 の晶出を円滑に行うため、ヒータ25によって脱Fe溶 湯M2 を温度制御することが好ましい。

【0014】晶出した金属間化合物 C_2 は、撹拌子 23 による回転作用を受けて、炉底に集合する。そこで、炉底近傍に下端が開口した吸引管 26によって、金属間化合物 C_2 を精製炉 20から汲み出す。このとき、炉底に 40 集められた金属間化合物 C_2 は、トラップフィルター 27によって母液中への分散が防止される。トラップフィルター 27としては、たとえばガラスフィルターを張ったステンレス鋼製枠体が使用される。金属間化合物 C_2 は、脱F e 溶湯 M_2 に宙吊り状態で浸漬される捕捉部材(図示せず)によっても除去することができる。図3では、撹拌子 23によって脱F e 溶湯 M_2 を撹拌しているが、撹拌子 23に代え或いは撹拌子 23と併用して、炉殻 21を取り巻く電磁コイル 29による電磁撹拌を採用することもできる。脱F e 溶湯 M_2 から凝固体 S 及び金 50

属間化合物 C_2 を分離した残りの残湯 M_3 は、炉底に設けた出湯ノズル 28 を経て次段の精製炉 B, C(図 1 参照)に送られ、或いは後処理炉 30 に直接送り込まれる。

6

【0015】複数の精製炉A~Cを多段に配置したレイアウトでは、残湯M。を次段の精製炉B,Cに順次送り、同様に精製する。残湯M。には不純物が濃縮されるので、前段の精製炉A,Bで得られた精製品A,Bに比較して不純物濃度、特にSi濃度が高い精製品B,Cが次段の精製炉B,Cで得られる。しかし、成分調整及び脱Feを行っていることから、何れの段で得られた精製品A~Cも、それぞれの用途に適した合金用材料として使用できる。複数の精製炉A~Cは、多段配置に代え、直列配置することも可能である。この場合には、各精製炉A~Cから排出された残湯M。が後処理炉30に直接送り込まれる。また、複数段からなる精製炉A~Cの組を、脱Fe炉10と後処理炉30との間に並列配置しても良い。精製炉A~Cをどのように配置するかは、各炉の処理能力を考慮して定められる。

【0016】精製炉20又は最終段の精製炉Cから排出 された残湯M。は、後処理炉30に送り込まれる。後処 理炉30としては、脱Fe炉10と同様な構成を持った ものが使用され、Fe分が金属間化合物として除去され る。しかし、残湯Ms のSi濃度が上昇しているので、 金属間化合物を除去した後の濃縮液は、低Fc濃度の鋳 物用過共晶A1-Si合金として使用される。なお、濃 縮液に含まれるFeの含有量が高過ぎる場合、濃縮液を 原料溶解炉に戻し、脱Fe処理を再度施すことが好まし い。このように前段に脱Fe炉10を配置することによ り、各工程で得られる亜共晶A1-Si合金(精製品A ~C) 及び後処理炉30から得られた過共晶A1-Si 合金は、何れもFe濃度が低く、各種用途に適したグレ ードの合金用材料として使用される。また、凝固体Sを 精製炉20の側壁から水平横方向に引き抜く方式を採用 しているので、晶出した金属間化合物 C2 との分離が確 実になり、精製効果が向上する。

[0017]

【実施例】

原料溶湯の用意:アルミ製自動車部品,サッシ廃材等を溶解原料として、バーナーを備えた溶解炉18で溶解した。得られた温度750℃の原料溶湯 M_1 は、Si:8 重量%, Fe:0.8 重量%及び M_1 0.4 重量%の不純物濃度であった。 M_1 7 Fe比が0.5であることから、溶解炉18で成分調整をする必要なく、脱Fe炉10に直接装入した。

脱Fe工程:脱Fe炉10としては、容量200 kgの 炉2基を使用し、2基の炉で脱Feされた溶湯 M_2 が絶 え間なく精製炉20に送り込まれるスケジュールを組ん だ。溶解炉18で溶解された原料溶湯 M_1 150 kgを 脱Fe炉10に装入した。脱Fe炉10内で原料溶湯M

」の温度を徐々に下げ、600℃に保持した。このと き、撹拌子14を外周速2m/秒で回転させ、原料溶湯 M₁ を撹拌した。その結果、AI-Si-Fe-Mn系 の金属間化合物 C1 が炉底に沈降した。

【0018】金属間化合物C1の沈降を30分継続した 後、脱Fe炉10を傾動し、金属間化合物Ci が除去さ れた脱Fe溶湯M2 を排出した。脱Fe溶湯M2 は、除 滓フィルターを経て精製炉20に送り込まれた。脱Fe 炉10から精製炉20に脱Fe溶湯M2を送る過程で、 固化しないように脱Fe溶湯M2を十分加熱した。精製 炉20に送り込まれた脱Fe溶湯M2は、不純物濃度が Si:8重量%, Fe:0.6重量%及びMn:0.2 5 重量%であり、輸送中の溶湯温度は640℃であっ た。脱Fe溶湯M2を排出した後で、脱Fe炉10の炉 底に溜っている金属間化合物Ciを掻き出し、脱Fe炉 10を次のチャージに備えさせた。

【0019】精製工程:精製炉20としては、図1に示 すように3基の炉A~Cを直列に配置した。各炉A~C としては、同じ構造(図3参照)をもち、メタル保持量 150kgのものを使用した。また、開口24に、直径 20 200mmの鋳型口径をもつ通常の横引き鋳型を取り付 けた。精製炉20に装入された脱Fe溶湯M2に黒鉛製 の撹拌子23を浸漬し、撹拌羽根の外周速1m/秒で撹 拌子23を回転させた。また、脱Fe溶湯M2から晶出 した金属間化合物C2 を集めるため、トラップフィルタ -27を炉底に配置した。30分ごとに撹拌子23と-体的にトラップフィルター27を脱Fe溶湯M2から引 き上げ、炉底に沈降している金属間化合物C2を除去し

【0020】ヒータ25により脱Fe溶湯M2 を温度6 50℃に保持し、鋳型を介した冷却により凝固体Sを成 長させた。このとき、凝固条件としては、50mm/時 (約4kg-A1/時) 及び150mm/時(約12k g-A1/時)の2種の凝固速度(=鋳造速度)を採用 した。各炉A~Cで得られた精製品A~Cの組成を、表*

*1に示す。表1から明らかなように、精製品A~Cの何 れも、Si, Fe及びMn濃度が低下しており、亜共晶 Al-Si系鋳造用合金として使用可能であった。特 に、Si及びFe濃度が大幅に低くなっていることに、 本発明の有意性がみられる。精製品A~Cの間でみる と、Si 濃度は、 $A \rightarrow B \rightarrow C$ の順に増加している。これ は、後段側の精製炉B、Cになるほど、残湯MaにSi が濃縮されていることを示す。したがって、格段の精製 炉A~Cから、グレードに応じた製品が得られる。精製 10 品のSi濃度は、凝固速度によっても異なっている。特 に、Siが濃縮した残湯B.Cから得られた精製品B. Cでは、凝固速度が大きいほど高いSi濃度が示されて いる。このことから、製品に要求されるグレードに応じ て凝固速度(鋳造速度)を選定すれば良いことが判る。

[0021]【表1】

表1: 各段で得られた精製品の不純物濃度

#医供U.A云	凝固速度	不純物及び含有量(重量%)			
精製炉	mm/時	Si	Fе	Mn	
A	50	3.5	0.24	0.23	
L A	150	3.5	0.26	0.23	
В	50	3.8	0.23	0.21	
	150	3.9	0.25	0.22	
С	50	4.1	0.21	0.20	
	150	4.5	0.23	0.20	

【0022】各精製炉A~Cで分離された金属間化合物 C2 は、何れの炉においてもA1-Si-Fe-Mn系 *30* であった。また、各精製炉A~Cから次の精製炉B, C 又は後処理炉30に移動する残湯M:は、凝固速度を5 0mm/時に設定したものでは、表2に示す組成をもっ ていた。

[0023]

【表2】

表2: 移動する残湯の組成

(重量%)

移動区間	Si	Fe	Мп	Mn/Fe
精製炉A→精製炉B	8.9	0.67	0.26	0.39
精製炉B→精製炉C	10.1	0.77	0.27	0.35
精製炉C→後処理炉	12.0	0.94	0.29	0.31

【0024】後処理工程:後処理炉30としては、脱F e 炉10と同じ構造を持つ2基の炉を使用し、精製炉C から送り込まれる残湯M。が常に何れかの炉に装入され るように配置した。後処理炉30では、脱Feと同じ条 件で残湯Ma を撹拌しながら冷却し、Feを含むA1-Si-Fe-Mn系金属間化合物を晶出物として除去し た。これにより、不純物濃度が低下された濃縮液が後処 理炉30から排出された。得られた濃縮液は、Si:1 2. 0 重量%, Fe: 0. 5 重量%及びMn: 0. 3 重 50 Fe 濃度が高いアルミニウムスクラップを溶解原料とす

量%の不純物濃度を持っており、過共晶A1-Si系鋳 物用合金として十分に再利用することができた。以上の 設備構成で、凝固速度が50mm/時の条件下で単位時 間当りの平均処理量を測定した。各工程の処理量を表3 に示す。表3は、スクラップを溶解した原料溶湯M1の うち4. 7重量%の金属間化合物を除去するだけの極め て高い歩留りで、亜共晶A1-Si合金及び過共晶A1 - S i 合金が得られたことを示している。したがって、

9

る場合においても、脱Fe前処理,精製及び脱Fe後処 理を連続的に組み合わせることにより、工業生産ベース

*合金が製造される。

[0025]

に見合って亜共晶A1-Si合金及び過共晶A1-Si* 【表3】

表3: 精製装置の各工程における処理能力(凝固速度:50mm/時)

工 程	工程後の配分先	配分量
溶解工程		30kg/時
# 17 - 17 3H	精製炉	29kg/時
脱Fe工程	残渣	1kg/時
精製工程	製品・亜共晶A1-Si合金	13kg/時
(A~Cの合計)	残渣	0.3kg/時
经加 理工程	製品・過共晶A1-Si合金	15.6kg/時
後処理工程	残渣	0.1kg/時

[0026]

【発明の効果】以上に説明したように、本発明においては、アルミニウムスクラップを溶解して用意した原料溶湯を脱Fc処理した後、偏析凝固によって亜共晶A1-Si合金を得た後、不純物濃度が上昇した残液からFe分を除去しながら過共晶A1-Si合金を得ている。こ 20 れにより、金属間化合物に随伴して系外に持ち去られるA1分を低く抑え、高い歩留りでアルミニウム合金の製造が可能になる。また、水平横引き方式で亜共晶A1-Si合金を凝固体として製造するとき、金属間化合物として晶出した不純物の混入がなく、純度の高い製品が得られる。各工程で得られたアルミニウム合金は、用途に対応したそれぞれのグレードの合金材料として使用される。

【図面の簡単な説明】

【図1】 本発明にしたがって配置した脱Fe炉、精製 30

炉及び後処理炉

【図2】 脱Fe炉の内部構造

【図3】 精製炉の内部構造

【符号の説明】

 M1
 : 原料溶湯
 M2
 : 脱Fe溶湯
 M3
 : 残湯

 0
 C1
 , C2
 : 金属間化合物
 S:凝固体(亜共晶A

 1-Si合金)

10

10:脱Fe炉 11:炉殻 12,17:ヒータ 13:給湯樋 14:撹拌子 15,16:吸 引管 18:調整炉

20:精製炉 21:炉殼 22:給湯口 2

3:撹拌子 24:開口

25:ヒータ 26:吸引管 27:トラップフィルター 28:出湯ノズル 29:電磁コイル

31:鋳型

【図1】

【図2】

【図3】

フロントページの続き

(72)発明者 藤池 瑞芳

静岡県庵原郡蒲原町蒲原1丁目34番1号 株式会社日軽技研内

CC = JP 19950314 Kokai 07070666

METHOD AND APPARATUS FOR CONTINUOUS REFINING OF ALUMINUM SCRAPS [Aruminiumusukurappuno renzoku seiseihoho oyobisochi]

Tomoo Dobashi et al.

UNITED STATES PATENT AND TRADEMARK OFFICE WASHINGTON, D.C. MAY 2007
TRANSLATED BY: THE MCELROY TRANSLATION COMPANY

PUBLICATION COUNTRY	(10):	JP
DOCUMENT NUMBER	(11):	07070666
DOCUMENT KIND	(12):	KOKAI
PUBLICATION DATE	(43):	19950314
APPLICATION NUMBER	(21):	05218433
APPLICATION DATE	(22):	19930902
INTERNATIONAL CLASSIFICATION ⁶	(51):	C 22 C 1/02
		C 22 B 21/06
PRIORITY COUNTRY	(33):	[NONE]
PRIORITY NUMBER	(31):	[NONE]
PRIORITY DATE	(32):	[NONE]
INVENTORS	(72):	Tomoo Dobashi et al.
APPLICANTS	(71):	000004743
		Nippon Light Metal Co., Ltd.
		000152402
		Nikkei Giken K.K.
TITLE	(54):	METHOD AND APPARATUS FOR
		CONTINUOUS REFINING OF ALUMINUM
	•	SCRAPS
FOREIGN TITLE	[54A]:	Aruminiumusukurappuno renzoku seiseihoho
		oyobisochi

<u>Claims</u> /2*

1. A method for continuous refining of aluminum scraps that comprises an Fe-removing process of crystallization-separating Al-Si-Fe-Mn type intermetallic compounds from aluminum melt having a composition, from which intermetallic compounds are crystallized as primary crystal, a refining process of directionally solidifying the iron-removed aluminum melt to produce hypocutectic Al-Si alloy having low Fe content, and a post-treatment process of crystallization-separating Al-Si-Fe-Mn type intermetallic compounds from the remaining melt, from which the aforementioned hypocutectic Al-Si alloy to produce hypereutectic Al-Si alloy having low Fe content.

- 2. A method for continuous refining of aluminum scraps described in claim 1, wherein the Al-Si-Fe-Mn type intermetallic compounds crystallized in the Fe-removing process are removed from the aluminum melt by suction.
- 3. A method for continuous refining of aluminum scraps described in claim 1, wherein the hypocutectic Al-Si alloy produced in the refining process is pulled out as a solidified body along the horizontal direction.
- 4. A method for continuous refining of aluminum scraps described in any of claims 1-3, wherein aluminum melt with an adjusted Mn/Fe of 0.2-2 is used as the raw material for refining.
- 5. Apparatus for continuous refining of aluminum scraps has a melting furnace for melting aluminum scraps, an Fe-removing furnace for removing Fe from aluminum melt sent from the melting furnace, refining furnace(s) for refining the Fe-removed aluminum melt sent from the Fe-removing furnace by segregation-solidification, and a post-treatment furnace for further removing Fe from the aluminum melt sent from the refining furnace, and hypoeutectic Al-Si alloy with low Fe content is obtained from the refining furnace while hypereutectic Al-Si alloy with low Fe content is obtained from the post-treatment furnace.

^{* [}Numbers in right margin indicate pagination of the original text.]

6. Apparatus for continuous refining of aluminum scraps described in claim 5, wherein the refining furnace has an opening for pulling out horizontally the solidified hypocutectic Al-Si alloy and a suction pipe confronted to the furnace bottom where the intermetallic compounds are settled.

7. Apparatus for continuous refining of aluminum scraps described in any of claims 5-7, wherein plural refining furnaces are arranged in a multistage mode, and the refining furnaces are connected by pipes for feeding the remaining melt after obtaining hypocutectic Al-Si alloy in the preceding-stage refining furnace to the following-stage refining furnace.

Detailed explanation of the invention

[0001]

Industrial application example

The present invention relates to a method and apparatus for refining aluminum with high impurity concentration to produce continuously aluminum alloys meeting various uses.

[0002]

Prior art

When aluminum melt containing impurities or alloying elements are cooled, α -Al or intermetallic compounds as impurities are crystallized as the primary crystal according to the concentration. In the system where α -Al is crystallized as the primary crystal, purified aluminum as compared with the mother liquor is obtained. In the system where intermetallic compounds are crystallized as the primary crystal, the impurity concentration in the remaining melt is lowered. As a result, a solidified body or, as the melt, refined aluminum or aluminum alloy is obtained. When aluminum is refined by the segregation method, the purity of refined aluminum is dependent on the concentration of impurities in raw material

aluminum. When aluminum is solidified in the system where α -Al is crystallized as the primary crystal, impurity elements are discharged from the solid phase and concentrated in the melt at the solidification interface of the melt. The concentrated impurities disperse in the mother liquor, and after elapsing of a fixed time the concentration of the impurities in the vicinity of the solidification interface becomes equal to that of the mother liquor and the refining progresses. However, it needs a long time for the concentration of the impurities in the vicinity of the solidification interface to equal that of the mother liquor. As a result, it is necessary to slow down notably the solidification rate, which causes the reduction of productivity.

[0003]

It is necessary for carrying out smoothly the crystallization reaction and avoiding blending of nonmetallic inclusions in the solidified body to diffuse nonmetallic compounds deposited in the solidification interface or the impurity concentrated solution into the mother liquor. Even in the system where impurities are crystallized as nonmetallic inclusions, the crystallization reaction is accelerated by relaxing the concentration gradient of the solidification interface. Mechanical stirring of raw melt is employed for diffusion, etc., of nonmetallic compounds or impurity concentrated solution. For instance, a method of stirring aluminum melt in a crucible using a stirrer while cooling the aluminum melt from the bottom of the crucible is introduced in Kokai Patent Application No. Sho 57[1982]-92148. Refined aluminum grows from the bottom of the crucible and high-concentration impurity solution existing in the solidification interface diffuses into the mother liquor from the solidification interface by joining agitation flow formed by the stirrer. Therefore, aluminum material having high purity is formed as a solidified body at the bottom of the crucible.

[0004]

Problem to be solved by the invention

Purified product is obtained as solidified body from aluminum melt when a raw melting material with a relatively low content of impurities is used. Actual aluminum scraps contain a large amount of various impurities, and intermetallic compounds containing Fe such as Al-Si-Fe, etc., are crystallized from the melt as the primary crystal. Particularly, in low-grade materials with Fe content of 0.8% or more, such as cast alloy scraps, a large amount of Al-Fe-Si type intermetallic compounds is crystallized. In the system where intermetallic compounds are crystallized as the primary crystal, the refined product is obtained as solidified body which is crystallized from the melt purified by removing crystallized intermetallic compounds. At this time, pre-crystallized intermetallic compounds may be blended into the refined product to lower the purity of the refined product. However, the method for preventing the blending of intermetallic compounds has not been used practically in a form fitting to the productivity.

[0005]

Further, when a crucible is used as the refining container, the productivity is inferior since it is basically a batch process. Even the continuation of the refining process is tried at one part but it does not reach the industrially completed stage. Therefore, it is at such a state that the processing capacity of recovered aluminum raw materials can not keep up with material recovery as the recovery of aluminum cans, waste aluminum materials, etc., becomes active. The present invention is devised to solve these problems, and it aims to obtain hypocutectic Al-Si alloy with low Fe concentration and hypereutectic Al-Si alloy with low Fe concentration at good productivity by arranging continuous Fe-removing

furnace, refining furnaces, and post-treatment furnace and dividing the materials discharged from each furnace into the feeder according to the type of materials to carry out the continuous treatment of aluminum scraps having high impurity concentration.

[0006]

Means to solve the problems

The continuous refining method of the present invention refines aluminum scraps via the following processes for accomplishing its objective.

Fe-removing process

Al-Si-Fe-Mn type intermetallic compounds are crystallized and separated from aluminum melt having a composition from which intermetallic compounds are crystallized as primary crystal. The crystallized Al-Si-Fe-Mn type intermetallic compounds can be removed from aluminum melt by suction. Or the crystallized intermetallic compounds can be separated from aluminum melt even by tilting the Fe-removing furnace to discharge Fe-removed melt. As raw material melt for iron removal, aluminum melt having Mn/Fe ratio of 0.2-2 is preferred.

Refining process

Fe-removed aluminum melt is directionally solidified to produce hypocutectic Al-Si alloy with low Fe content. It is preferred to pull out the hypocutectic Al-Si alloy obtained in the refining process along the horizontal direction. Even in this case, the crystallized Al-Si-Fe-Mn type intermetallic compounds can be removed from the aluminum melt by suction. The productivity is improved by carrying out the refining process in a multistage mode. In the serial multistage arrangement, Fe is concentrated in the

residual liquid. Furthermore, only this process can be utilized for refining of Al alloy having low Si concentration and good purity.

[0007]

Post-treatment process

Al-Si-Fe-Mn type intermetallic compounds are crystallized and separated from the residual melt, from which hypocutectic Al-Si alloy has been obtained, to obtain hypercutectic Al-Si alloy with low Fe content. In any process, segregation-separated intermetallic compounds are discharged to the outside of the system. Further, the continuous refining apparatus is equipped with a melting furnace for melting aluminum scraps, an Fe-removing furnace for removing Fe from aluminum melt sent from the melting furnace, refining furnace(s) for refining the Fe-removed aluminum melt sent from the Fe-removing furnace by segregation-solidification, and a post-treatment furnace for further removing Fe from the aluminum melt sent from the refining furnace. Hypocutectic Al-Si alloy with low Fe content is obtained from the refining furnace, and hypercutectic Al-Si alloy with low Fe content is obtained from the post-treatment furnace.

[8000]

A refining furnace is used that has an opening for pulling out horizontally the solidified hypocutectic Al-Si alloy and a suction pipe confronted to the furnace bottom where the intermetallic compounds are settled. It is also effective to control the Mn/Fe ratio of raw material melt for Fe removal at 0.2-2 in the melting furnace installed at the front stage of the refining furnace. Plural refining furnaces can be arranged in multistage. In this case, plural refining furnaces are connected by pipes for feeding the

remaining melt after obtaining hypoeutectic Al-Si alloy in the preceding refining furnace to the subsequent refining furnace.

[0009]

Hereinafter, the present invention will be explained concretely by referring to drawings. Aluminum scraps are charged into the Fe-removing furnace after melting (Fig. 1). In the Fe-removing furnace 10, as shown in Fig. 2, heater 12 is arranged at the inner side of the refractory which forms furnace shell 11, and the raw material melt M_1 fed via the melt feed tub 13 is kept at a specified temperature. Stirrer 14 is immersed in the raw material melt M_1 . The raw material melt M_1 is cooled to a temperature of maximum 10° C higher than the solidification temperature of α -Al under stirring by the stirrer 14. Intermetallic compounds C_1 are crystallized from the raw material melt M_1 by temperature lowering. The intermetallic compounds C_1 precipitate on the furnace bottom since the intermetallic compounds have higher specific gravity than the raw material melt M_1 . Instead of the stirrer 14, electromagnetic coils may be arranged at the circumference of the Fe-removing furnace 10 to stir electromagnetically the raw material melt M_1 .

[0010]

The bottom end of suction pipe 15 is opened in the vicinity of the furnace bottom. The precipitated intermetallic compounds C_1 are mixed with a part of the raw material melt M_1 and sucked up at slurry state by the suction pipe 15 to separate from the raw material melt M_1 and are discharged out of the system. The raw material melt M_1 is purified by separation of the intermetallic compounds C_1 . The purified raw material melt M_1 is taken out as Fe-removed melt M_2 from the Fe-removing furnace 10. After discharging the Fe-removed melt M_2 , the intermetallic compounds C_1 remaining at the furnace

bottom are scraped out, and next raw material melt M₁ is charged into the Fe-removing furnace 10. In the case of Fig. 2, the Fe-removed melt M₂ is sucked up by the suction pipe 16 and sent to the next process. It is preferred for preventing solidification or temperature lowering of the Fe-removed melt M₂ in the inner part of the suction pipe 16 during conveying to heat and keep warm by heater 17 encircling the suction pipe 16. Instead of the suction pipe 16, a process of arranging the Fe-removing furnace 10 at a position higher than the refining furnace 20 and feeding the melt into the refining furnace 20 by tilting the Fe-removing furnace 10 can be employed. Further, the temperature compensation of the Fe-removed melt M₂ can be carried out by heating the Fe-removing furnace 10 after removing the intermetallic compounds C₁.

[0011]

The type of intermetallic compounds C₁ may be varied with type of raw material melt M₁ for iron removal, but those are based on Al-Si-Fe type, Al-Si-Fe-Mn type, etc., when ordinary aluminum scraps are used as melting raw materials. The Si concentration in the raw material melt M₁ rises according to advance of solidification by cooling. When the Si concentration rises to around 12% by weight corresponding to the eutectic composition, the solidification rate is lowered and at the same time the operation condition becomes easily unstable. Therefore, it is preferred for preventing the disadvantage, from the production aspect, to maintain the Si concentration in the raw material melt M₁ at 10% by weight or less. On the other hand, it is preferred for controlling Fe, Mn and Si concentrations in the solidified body by crystallization of intermetallic compounds C₁ such as Al-Si-Fe-Mn type, etc., to maintain the Si concentration in the melt at 2% by weight or higher.

[0012]

Further, the Fe and Mn concentrations in the Fe-removed melt M₂ are maintained lower than the Fe and Mn concentrations in the raw material melt M₁ by crystallization of Al-Si-Fe-Mn type intermetallic compounds. If the Fe concentration in the initial raw material melt M₁ is low, the crystallization amount of the intermetallic compounds C₁ decreases and the processing rate lowers. Further, it is effective to remove Fe as Al-Si-Fe-Mn type intermetallic compounds rather than Al-Si-Fe type. At this point, it is preferred to maintain the Mn/Fe of Mn and Fe among impurities in the raw material melt M₁ at a range of 0.2-2. To keep the Mn/Fe ratio or Si concentration at a specified range, there arises such a case of needing control of the melt composition in the range of the lowest limit. In this case, Si, Mn, etc., at state of simple metal substance or mother alloy are added as component controlling materials to the melting furnace 18 containing melting raw material of aluminum scraps. The component-controlled raw material melt M₁ is sent from the melting furnace 18 to the Fe-removing furnace 10.

/4

[0013]

The Fe-removed melt M₂ is charged into the refining furnace 20 from the Fe-removing furnace 10. In the refining furnace 20, as shown in Fig. 3, a melt feeding port 22 for delivering Fe-removed melt M₂ is installed on side wall of the furnace shell 21 constructed by refractory. The Fe-removed melt M₂ fed from the melt feeding port 22 becomes solidified body S by cooling down under stirring with the stirrer 23. The solidified body S is continuously pulled out from the opening 24 formed at the side wall of the furnace shell 21via a die 31 and cooled by spraying of cooling water W, etc. The obtained solidified body S has low concentration of Si and Fe and can be utilized as hypocutectic Al-Si type casting alloy. The die 31 may be a graphite die or Al die, or an electromagnetic die also can be used. If an electromagnetic die is used, a solidified body S having a smooth surface is obtained. The solidified body

S is cut at a suitable length during process operation. Therefore, continuous operation becomes possible. Impurities are concentrated in the Fe-removed melt M₂ accompanied with growth of the solidified body S. As a result, intermetallic compounds C₂ are crystallized from the Fe-removed melt M₂. Further, the intermetallic compounds C₂ taken in between resinoid crystals are washed by melt stirring flow formed by the stirrer 23 and separated from the solidified body S. It is preferred for smoothly carrying out the growth of the solidified body S and the crystallization of the intermetallic compounds C₂ to control the temperature of the Fe-removed melt M₂ by the heater 25.

[0014]

The crystallized intermetallic compounds C₂ are gathered at the furnace bottom by the rotation action of the stirrer 23. The intermetallic compounds C₂ are sucked out from the refining furnace 20 by the suction pipe 26, the bottom end of which is open in the vicinity of the furnace bottom. At this time, dispersion of the intermetallic compounds C₂ gathered at the furnace bottom in the mother liquid is prevented by trap filter 27. As the trap filter 27, for instance, glass filter-clad stainless steel frame is used. The intermetallic compounds C₂ can be removed even by a capturing material (not shown in the drawing) which is immersed in the Fe-removed melt M₂ in a suspended state. The Fe-removed melt M₂ is stirred by the stirrer 23 in Fig. 3, but electromagnetic stirring by electromagnetic coil 29 encircling the furnace shell 21, instead of the stirrer 23, or using together with the stirrer 23 can be employed. The remaining melt M₂ after separating the solidified body S and the intermetallic compounds C₂ is sent to next stage refining furnaces B, C (refer to Fig. 1) through tapping nozzle 28 installed at the furnace bottom or is sent directly to the post-treatment furnace 30.

[0015]

In the layout of multistage arrangement of plural refining furnaces A-C, the remaining melt M₃ is sent successively to next stage refining furnaces B, C and refined in the same manner. Since the impurities are concentrated in the remaining melt M₃, refined products B, C having higher impurity concentration, especially higher Si concentration, than the refined products A, B obtained in previous-stage refining furnaces A, B are obtained in next-stage refining furnaces B, C. Since the component control and Fe removal are carried out, however, the refined products A-C obtained in any stage can be used as alloy materials fit to respective use. Plural refining furnaces A-C can be arranged serially instead of in multistage arrangement. In this case, the remaining melt M₃ discharged from each refining furnace A-C is sent directly to the post-treatment furnace 30. Further, a set of refining furnaces comprising plural stages may be arranged in parallel between the Fe-removing furnace 10 and the post-treatment furnace 30. The arrangement mode of the refining furnaces A-C is decided in consideration of processing capacity of each furnace.

[0016]

The remaining melt M₃ discharged from the refining furnace 20 or the final-stage refining furnace C is sent to the post-treatment furnace 30. As the post-treatment furnace 30, a furnace having the same constitution as the Fe-removing furnace 10 is used, and Fe component is removed as intermetallic compounds. Since the Si concentration in the remaining melt M₃ has been increased, however, the concentrated liquid after removing the intermetallic compounds can be used as hypereutectic Al-Si alloy with low Fe concentration for casting. Furthermore, when the Fe content in the concentrated liquid is too high, it is preferred to return the concentrated liquid to the raw material melting furnace and repeat the Fe removal treatment. Since the Fe-removing furnace is arranged at the front stage, all of hypocutectic

Al-Si alloy (refined products A-C) obtained in each process and hypereutectic Al-Si alloy obtained from the post-treatment furnace 30 have low Fe concentration and are used as alloy materials for various applications according to their grade. Furthermore, since the mode of pulling out the solidified body S from the side wall of the refining furnace 20 along the horizontal direction is employed, its separation from the crystallized intermetallic compounds C₂ is surely carried out and the refining effect is high.

[0017]

Application example

Preparation of raw material melt: A raw material containing aluminum automobile parts, waste sash material, etc., was melted in a melting furnace 18 provided with burner, and the resulting raw material melt M₁ at 750°C had impurity concentration of 8% by weight of Si, 0.8% by weight of Fe, and 0.4% by weight of Mn. Since the Mn/Fe ratio was 0.5, the component adjustment in the melting furnace 18 was not needed, and it was added directly into the Fe-removing furnace 10.

Fe-removing process: A schedule was set up of continuously feeding melt M₂ to the refining furnace 20, Fe of which was removed in 2 units of furnaces with capacity of 200 kg as the Fe-removing furnace. Raw material melt M₁ 150 kg, which was melted in the melting furnace 18, was charged into the Fe-removing furnace 10. In the Fe-removing furnace 10, the temperature of the raw material melt M₁ was slowly lowered and it was kept at 600°C. At this time, the raw material melt was stirred by rotating the stirrer 14 at a circumferential speed of 2 m/sec. As a result, Al-Si-Fe-Mn type intermetallic compounds C₁ were precipitated at the furnace bottom.

[0018]

After the precipitation of intermetallic compounds C₁ was continued for 30 minutes, the Fe-removing furnace 10 was tilted to discharge intermetallic compound C₁-removed and Fe-removed melt M₂. The Fe-removed melt M₂ was fed into the refining furnace 20 via slag-removing filter. The Fe-removed melt M₂ was sufficiently heated to prevent solidification of the Fe-removed M₂ in the course of feeding to the refining furnace 20. The Fe-removed melt M₂ fed into the refining furnace 20 had impurity concentration of 8% by weight Si, 0.6% by weight Fe and 0.25% by weight Mn, and the melt temperature during transportation was 640°C. After discharging the Fe-removed melt M₂, the intermetallic compounds C₁ remaining at the bottom of the Fe-removing furnace 10 were scraped out to prepare the Fe-removing furnace 10 for the next batch.

[0019]

Refining process: As the refining furnace 20, 3 units of furnaces A-C as shown in Fig. 1 were arranged serially. As each furnace A-C, a furnace having the same structure (refer to Fig. 3) and metal holding amount of 150 kg was used. Further, an ordinary cross cut die having a die bore of diameter 200 mm was attached to the opening 24. A graphite stirrer 23 was immersed in the Fe-removed melt M₂ charged into the refining furnace 20 and rotated at a circumferential speed of 1 m/sec of the stirring blade. Further, trap filter 27 was arranged at the furnace bottom to collect the intermetallic compounds C₂ crystallized from the Fe-removed melt M₂. Every 30 minutes, the stirrer 23 together with the trap filter 27 was pulled up from the Fe-removed melt M₂ and the intermetallic compounds C₂ precipitated at the furnace bottom were removed.

[0020]

The temperature of the Fe-removed melt M₂ was maintained at 650°C by heater 25, and the solidified body S was grown by cooling via the die. As the solidification condition at this time, two types of solidification rate (casting rate) of 50 mm/h (about 4 kg-Al/h) and 150 mm/h (about 12 kg-Al/h) were employed. The compositions of refined products A-C obtained in the furnaces A-C are shown in Table 1. As is clear from Table 1, Si, Fe and Mn concentrations were reduced in all of the refined products A-C, and those could be used as hypoeutectic Al-Si type casting alloys. The significance of the present invention is seen especially in the notable lowering of Si and Fe concentrations. Among the refined products A-C, the Si concentration was increased in order of A→B→C. This shows that Si is concentrated as it moves to the refining furnaces B, C at the later-stage side. Therefore, products responding to grade are obtained from particular refining furnaces A, B, C. The Si concentration of refined products is also varied with the solidification rate. Particularly, in the refined products B, C obtained from Si-concentrated residual melt B, C, high Si concentration is shown as the solidification rate increases. Thus, it is understood that it is better to select the solidification rate (casting rate) according to the grade required for the product.

[0021]

Table 1

TABLE 1. Impurity concentrations of refined products obtained at each stage

Refining	Solidification	Impurities and content (wt%)		
furnace	rate, mm/h	Si	Fe	Mn
A	50	3.5	0.24	0.23
	150	3.5	0.26	0.23
	50	3.8	0.23	0.21
В	150	3.9	0.25	0.22
	50	4.1	0.21	0.20
C	150	4.5	0.23	0.20

[0022]

The intermetallic compounds C_2 separated in the refining furnaces A-C were Al-Si-Fe-Mn type in all cases. Further, the remaining melt M_3 shifting from each refining furnace A-C to next refining furnaces B, C or the post-treatment furnace 30 had the compositions shown in Table 2 when the solidification rate was set at 50 mm/h.

[0023]

Table 2

TABLE 2. Composition of shifting remaining melt (wt%)

Movement interval	Si	Fe	Mn	Mn/Fe
Refining furnace A → Refining furnace B	8.9	0.67	0.26	0.39
Refining furnace B → Refining furnace C	10.1	0.77	0.27	0.35
Refining furnace C → Post-treatment furnace	12.0	0.94	0.29	0.31

[0024]

Post-treatment process: As the post-treatment furnace 30, 2 units of furnaces having same structure as the Fe-removing furnace 10 were used, and these furnaces were arranged such that the remaining melt M₃ delivered from the refining furnace C was always charged into one of these furnaces. In the post-treatment furnace 30, the remaining melt M₃ was cooled by stirring under the same conditions as Fe removal, and Al-Si-Fe-Mn type intermetallic compounds were removed as crystallized material. Thus, the concentrated liquid with lowered impurity concentration was discharged from the post-treatment furnace 30. The concentrated liquid thus obtained had impurity concentration of 12.0% by weight Si, 0.5% by weight Fe, and 0.3% by weight Mn, and it could be sufficiently used as hypereutectic Al-Si type casting alloy. In the above facility constitution, the average processing amount per unit time under condition of solidification rate of 50 mm/h was measured. The processing amount at each process is shown in Table 3. Table 3 shows that hypocutectic Al-Si alloy and hypereutectic Al-Si alloy are

obtained at an extremely high yield by removing only 4.7% by weight of intermetallic compounds in raw material melt M₁ obtained by melting scraps. Therefore, even when aluminum scraps with high Fe concentration are used as melting raw material, hypocutectic Al-Si alloy and hypereutectic Al-Si alloy are produced corresponding to industrial production base by continuously combining Fe-removing pretreatment, refining and Fe-removing post-treatment.

16

[0025]

Table 3

TABLE 3. Processing capacity at each process of refining apparatus (solidification rate: 50 mm/h)

Process	Distribution after processing	Distribution amount
Melting process		30 kg/h
Fe-removing process	Refining furnace	29 kg/h
	Residue	1 kg/h
Refining process	Product, hypoeutectic Al-Si	13 kg/h
(sum total of A-C)	alloy	
	Residue	0.3 kg/h
Post-treatment process	Product, hypereutectic Al-Si	15.6 kg/h
	alloy	
	Residue	0.1 kg/h

[0026]

Effect of the invention

As explained above, in the present invention, after Fe is removed from raw material melt obtained by melting aluminum scraps, it is segregation-solidified to obtain hypocutectic Al-Si alloy, and hypercutectic Al-Si alloy is obtained from the residual liquid with raised impurity concentration by removing Fe. By this treatment, the Al amount being carried away by accompanying with intermetallic compounds is restrained to low level so that production of aluminum alloy at high yield is possible. Further, when hypocutectic Al-Si alloy is produced as a solidified body by crosscutting process,

high-purity product without blending of the impurity crystallized as intermetallic compounds is obtained.

Aluminum alloy at each process is used as alloy material of respective grade corresponding to the application.

Brief description of the drawings

Figure 1 is an Fe-removing furnace, refining furnace, and post-treatment furnace, which are arranged according to the present invention.

Figure 2 is the inner structure of an Fe-removing furnace

Figure 3 is the inner structure of a refining furnace

Explanation of symbols

M₁: raw material melt, M₂: Fe-removed melt, M₃: remaining melt,

C1, C2: intermetallic compounds, S: solidified body (hypocutectic Al-Si alloy), 10: Fe-removing furnace,

11: furnace shell, 12, 17: heater,

13: melt feeding tub, 14: stirrer, 15, 16: suction pipe, 18: control furnace, 20: refining furnace, 21:

furnace shell, 22: melt feeding port,

23: stirrer, 24: opening, 25: heater, 26: suction pipe, 27: trap filter,

28: melt tapping nozzle, 29: electromagnetic coil, 31: die

Figure 1

Key:	1	remaining melt (concentrated	liquid)
		0	1 /

- 2 refining furnace A
- 3 refining furnace B
- 4 refining furnace C
- 5 refined product A
- 6 residue
- 7 refined product B
- 8 refined product C
- 9 Fe-removing furnace
- 10 raw material melt
- 11 post-treatment furnace
- 12 concentrated liquid
- 13 hypereutectic Al-Si alloy
- 14 intermetallic compounds
- 15 hypoeutectic Al-Si alloy

Figure 2

Figure 3