Directed Graphs (Digraphs)

- Digraphs
- Connectivity, strongly connected components
- Transitive closure
- Acyclic digraphs
- Topological sorting
- Other facts about digraphs

Directed graphs

Formal definition: A digraph is a pair G = (V, E), where V is a finite set of elements called vertices (or nodes) and $E \subseteq V \times V$ is a set of edges.

ordered pairs of vertices

- If $e = (u, v) \in E$ then we say that
 - *u* is the tail of *e* and in-neighbor of *v*
 - *v* is the head of *e* and out-neighbor of *u*
 - if u = v then e is called self-loop
- ▶ Each vertex *v* has two degrees
 - in-degree of v is its number of in-neighbors
 - out-degree of v is its number of out-neighbors

▶ Subgraphs, paths, cycles, etc. are defined analogously to undirected graphs (paths and cycles need to follow the edge directions).

Question: Should we consider this digraph to be connected?

Not really: for example, there is no path from i to any other vertex.

▶ Analog of connectivity for digraphs: *strong connectivity.*

A digraph G = (V, E) is called *strongly connected* if there is a (directed) path in G from any vertex to any other vertex.

Example:

strongly connected

not strongly connected

- ullet Let G=(V,E) be a digraph. A graph H is called a strongly connected component of G if
 - H is a strongly connected subgraph of G, and
 - There is no other strongly connected subgraph of G that contains H.

Example:

strongly connected components of G

Zoom poll: How many strongly connected components this digraph has?

Zoom poll: How many strongly connected components this digraph has?

Answer: 4.

Directed graphs: transitive closure

▶ A transitive closure of a digraph G = (V, E) is a digraph $G^* = (V, E^*)$ such that $(u, v) \in E^*$ if and only if there is a path from u to v in G.

Example:

Observation: G is strongly connnected if and only if G^* is a complete directed graph (that is, $E^* = V \times V$).

Traversing directed graphs

▶ Euler tours: Is there a simple characterization of Euler tours in digraphs?

Theorem: Let G = (V, E) be a strongly connected digraph. Then G has an Euler tour if and only if indeg(v) = outdeg(v) for each vertex $v \in V$.

Proof: Same as for undirected graphs.

▶ Hamiltonian cycles: Is there an analog of Dirac's theorem about hamiltonian cycles?

Theorem (Ghouila-Houri): Let G = (V, E) be a digraph. If each vertex $v \in V$ satisfies indeg $(v) \ge n/2$ and outdeg $(v) \ge n/2$ then G has a hamiltonian cycle.

Proof: Harder... omitted.

ullet A digraph G=(V,E) is called a $\it DAG$ (acyclic directed graph) if $\it G$ does not contain any cycles.

Example: Which of these digraphs is a DAG?

G is not a DAG, because (a,b,c,a) is a cycle

H is a DAG how to determine if a graph sia DAG?

▶ A topological ordering (or sort) of a digraph G = (V, E) is a total order \prec on its vertex set V such that $u \prec v$ for each edge $(u, v) \in E$.

Example:

In ordering h, d, b, g, c, f, e, a all edges are forward

Another drawing of H showing that in ordering h, d, b, g, c, f, e, a all edges are forward

Theorem: A digraph G = (V, E) is a DAG if and only if it has a topological ordering.

Proof: (←) Trivial: if there is an ordering with all edges going forward, we cannot have cycles.

 (\Rightarrow) Let G be a DAG. We show how to construct a topological ordering of G.

Sequence v_1, v_2, \ldots, v_n is a topological sort, because, for each i, vertices $v_{i+1}, v_{i+2}, \ldots, v_n$ do not have edges to v_i .

Example: Computing topological ordering.

Ordering:

Example: Computing topological ordering.

Ordering: *h*

Example: Computing topological ordering.

Ordering: h, d

Example: Computing topological ordering.

Ordering: h, d, b

Example: Computing topological ordering.

Ordering: h, d, b, g

Example: Computing topological ordering.

Ordering: h, d, b, g, c

Example: Computing topological ordering.

Ordering: h, d, b, g, c, f

Example: Computing topological ordering.

Ordering: h, d, b, g, c, f, e

Example: Computing topological ordering.

Ordering: h, d, b, g, c, f, e, a

Zoom poll: For a digraph G, are the following two conditions equivalent:

- G is a DAG
- ullet Each strongly connected component of G consists of one vertex

Answer: Yes.

Because

- each non-singleton strongly connected component contains a cycle, and
- each cycle is included in a non-singleton strongly connected component.