1.

High level description of a TM algorithm that decides $L = \{w \mid w \text{ does not contain twice as many 0s as 1s}\}$. Let M be the TM that decides L.

M = "On input $\langle L \rangle$:

- 1. Scan for the first unmarked 1. If none found, go to step 5.
- 2. Scan for the first unmarked 0. If none found, accept.
- 3. Repeat step 2.
- 4. Repeat step 1.
- 5. Scan for any unmarked 0s. If none are found reject, otherwise accept.

2. 3.15d, p.189

Let M_1 be a Turing machine that decides a language L and construct a Turing machine M_2 that decides \overline{L} :

 M_2 = "On input w:

- 1. Simulate M_1 on w.
- 2. Accept if M_1 rejects, reject if M_1 accepts."

Since M_1 decides L we know it halts on all inputs, therefore M_2 will also halt on all inputs. Additionally, M_2 will always produce the correct result because if $w \in L$, M_1 will accept and M_2 will reject, also if $w \notin L$, M_1 will reject, in which case M_2 will accept.

3. 4.2, p.211

 $L = \{\langle A, R \rangle \mid \text{ where } A \text{ is a DFA equivalent to the regular expression } R \}$ Let M_1 be a TM that decides L:

 $M_1 =$ "On input $\langle A, R \rangle$:

- 1. Convert R into an equivalent DFA B
- 2. Run TM F, from Theorem 4.5 which decides EQ_{DFA} , on input $\langle A, B \rangle$
- Accept if F accepts, and reject if F rejects."

Since EQ_{DFA} was proven to be a decidable language, L is therefore also decidable.

4. 4.3, p.211

Let M_1 be a TM that decides ALL_{DFA} :

 $M_1 =$ "On input $\langle A \rangle$:

- 1. Construct a DFA B that recognizes $\overline{L(A)}$
- 2. Run TM T, from Theorem 4.4 which decides E_{DFA} , on input $\langle B \rangle$
- 3. Accept if *T* accepts, and reject if *T* rejects."

Since E_{DFA} was proven to be a decidable language, ALL_{DFA} is also decidable.

5. 4.7, p.211

The proof is by contradiction, that is suppose that $\mathcal B$ is countable. Each element in $\mathcal B$ is an infinite sequence $(b_1,b_2,b_3,...)$ where $b_i\in\{0,1\}$. We can define a correspondence f between $\mathcal B$ and $\mathcal N$. Let $f(n)=(b_{n1},b_{n2},b_{n3},...)$ where $n\in\mathcal N$ and b_{ni} is the ith bit in the nth sequence. For example:

n	f(n)
1	(1,0,0,1,1,)
2	(0,1,0,1,0,)
3	(1,1,1,1,1,)
4	(1,1,0,0,0,)
:	i i

Define a sequence $s \in \mathcal{B}$, in which the ith bit in s is opposite the ith bit in the ith sequence. So for the example above $s = (0,0,0,1,\dots)$. Thus, s differs from each sequence by at least one bit and is not in \mathcal{B} . However s is an infinite sequence of bits and so must be contained in \mathcal{B} by definition. From this contradiction we conclude that no such list can exist and \mathcal{B} is not countable.

6. 4.8, p.211

We will construct a correspondence, f, which will map \mathcal{T} to \mathcal{N} by using the unique factorization theorem. The theorem states that every integer greater than 1 is prime itself or is the product of prime numbers and that this product is unique. So, we can arbitrarily choose primes $a \neq b \neq c$ and define the function $f(i,j,k) = a^i b^j c^k$. From the unique factorization theorem, any choice of i,j,k uniquely determines a value of f, therefore f is one-to-one and onto and \mathcal{T} is countable.