Problem Statement

Sales of products in four different regions is given in 'BuyerRatio.csv' for males and females. Find if male-female buyer rations are similar across regions.

	East	West	North	South
Males	50	142	131	70
Females	550	351	480	350
Terriales		331	1 400	330

2. Given Data

1. Understanding Business Problem

Level of Significance $\rightarrow \alpha = 0.05$ (Since α is not given, considering it as 5% level of Significance. In other words 95% level of Confidence)

→ H0 = All proportions are equeal

To find out if male-female buyer rations are similar across above 4 regions

Null hypothesis Alternate Hypothesis → Ha = Not all proportions are equeal

import numpy as np

In [2]:

In [4]:

Out[4]:

In [6]:

Out[9

East

West

3. Import Necessary Libraries import pandas as pd

from sklearn import preprocessing from scipy.stats import chi2 contingency

from matplotlib import pyplot as plt

	<pre>import warnings warnings.filterwarnings('ignore')</pre>
	4. Import Data
In [3]:	<pre>sales_data = pd.read_csv('BuyerRatio.csv') sales_data</pre>

Females 435 1523 1356

sales data.dtypes

Observed Values object

In [3]:	S	ales_data = po ales_data	d.rea	.d_csv	('Buye	rRatio
sales_data = pd. sales_data	ales_data = pd. ales_data	1.	rea.	.d_csv	('Buye	rRatio
[3]:		Observed Values	East	West	North	South
_	0	Males	50	142	131	70
			40.5	4500	4256	750

int64 North int64 South dtype: object

5. Perform Initial Analysis

to know the data type of each feature

int64 int64

In [5]:	S	renami ales_da ales_da	ita.re			
Out[5]:		Values	East	West	North	South
	0	Males	50	142	131	70
	1	Females	435	1523	1356	750

In [7]: In [8]: In [9

Males

Females

1400

In [11]:

In [12]:

Out[12]:

In [13]:

In [29]:

Out[15]:

Out[18]

In [19]

Out[24]:

In [25]:

In [26]:

1 50 142

0.6603094907091882

0.6603

print(round(p_val_sales,4))

print('Chi-Square test :',chi2)

131

p val sales

0.018035974243023764

print('P-value

type(sales data)

1200 1000 800 600 400 200 0 West Values East North South

6. Hypothesis Formulation

7. Perform Hypothesis Testing

HO = All proportions are equal. H1 = Not all proportions are equal.

Line Plot for male-Female buyers ration

٦.	<box< th=""><th>l meth</th><th>od NI</th><th>Frame</th><th>.copy of</th><th>Values</th><th>East</th><th>West</th><th>North</th><th>South</th></box<>	l meth	od NI	Frame	.copy of	Values	East	West	North	South
	0	1	50	142	131	70				
	1	0	435	1523	1356	750>				
]:	# To	avoid	the	error	above,	always use	() wit	h the	method	

In [21]:	: sales_data_copy	
Out[21]:	: Values East West North South	

In [23]:	chi2,p_val_sales,dof_sales,expected_sales	= chi2_conting
In [24]:	p val sales	

sa		ata['			r on 'label_
,	Values	East	West	North	South
0	1	50	142	131	70
1	0	435	1523	1356	750
v1					

print(round(p_val_sales,4)) 0.018 print('Chi-Square test :',chi2)

:',p_val_sales)

Values East West North South 0 50 142 0 435 1523

Since there are more than 2 variables, we will perform Chi-Square test

chi2,p_val_sales,dof_sales,expected_sales = chi2_contingency(sales_data)

1 0 435 1523 1356 750 In

Out[22]:		East	West	North	South
	0	50	142	131	70
	1	435	1523	1356	750
n [23].					

	P-value	: 0.6603094907091882
	Degrees of Freedo	om: 3
	Expected Sales	:
	[[42.76531299	146.81287862 131.11756787 72.30424052]
	[442.23468701 1	518.18712138 1355.88243213 747.69575948]]
	In above data	Values' column is also considered which is affecting our P-value
In [15]:	sales_data	

	•	0 433	1323	1550	750									
[n [22]:	sares_	_data_c _data_c		sales_	data_cop	y.drop(columns	:=['Va	alues'])				

	0	50	142	131	70
	1	435	1523	1356	750
3]:	C)	hi2 r	val	sales,	dof sa

In [16]:	# Lets create a copy of 'sales_data' and remove 'Values' column from newly created data
In [17]:	<pre>sales_data_copy = sales_data.copy</pre>
In [18]:	sales_data_copy

pandas.core.frame.DataFrame Out[6]: # Since 'Observed Values' is a categorical feature lets apply 'Label ENcoder' to convert it into numbers. label_encoder = preprocessing.LabelEncoder()

In [10 y2 = sales data.iloc[1] plt.plot(y1, label = 'Males') plt.plot(y2, label = 'Females') plt.legend(loc='upper left') plt.title('Line Plot for male-Female buyers ration') plt.show()

print('Degrees of Freedom:',dof_sales) print('Expected Sales :\n',expected_sales) Chi-Square test : 1.595945538661058

```
In [16]
```

Out[22]:	East	West	North	South
0	50	142	131	70
1	435	1523	1356	750

In [20]: sales_data_copy = sales_data.copy()

print('P-value :',p_val_sales) print('Degrees of Freedom:',dof_sales) print('Expected Sales :\n',expected_sales) Chi-Square test : 1.595945538661058 P-value : 0.6603094907091882

Degrees of Freedom: 3 Expected Sales [[42.76531299 146.81287862 131.11756787 72.30424052] [442.23468701 1518.18712138 1355.88243213 747.69575948]] 8. Conclusion

In [27]: # checking if ' α > P-value' or ' α < P-value' In [28]: if p val sales > 0.05: print('At 5% level of significance, we cannot reject the Null Hypothesis and we can say that all proportion print('At 5% level of significance, we can reject the Null Hypothesis and we can say that not all proportic

At 5% level of significance, we cannot reject the Null Hypothesis and we can say that all proportions are equea