§ 1 Definition, Examples (see § 2 Atryah-Macdarald)

Defin A a mig. A-module = abelian group M together

rith a mig homomorphism A — End Ab. Grp. (M).

Equivalently, together with multiplication map A×M → M

s.th. 1) a·(x+y) = a·x + a·y

2) 1·x = x

3) (a+b)·x = a·x + b·x

Examples

2) Azions are identical with vector space exists, so $\frac{1}{2}$ ke - we vector spaces $\frac{1}{2}$

 $4) \quad a \cdot (b \cdot x) = (ab) \cdot x$

Defn Submodule of an A-module M of al. subgroup NEM S.Sh. a.x EN Y a.E.A., x EN.

- The quotient M/N then becomes A-module via $a \cdot (x + N) := ax + N$.
- 3) A itself is an A-module via left-multiplication { submodule of A } = { ideals of A }.

In phi, every ideal or = A and every quotient

A/or is an A-module.

4) If $A \xrightarrow{\varphi} \mathbb{E}$ my nop, then \mathbb{E} becomes A-module via $a \cdot b := Q(a)b$.

Further définitions Let M, N le A-modules

- o) A-wodule map (or homomorphism, or A-linear map) \overline{ty} group homomorphism $f: M \to N$ s.th. $f(a \cdot x) = a \cdot f(x)$ How, $(M,N) := \{A-wodule maps <math>f: M \to N\}$ $\{A \in A\}$ becomes itself A-wodule ia $(a \cdot f)(x) := a \cdot f(x)$.
- •) If $f \in Hom_{A}(M,N)$, then ker(f), lm(f), coker(f) := N/lm(f) are all A-modules.

- ·) I any set, (Mi) ie I tryple of A-modules. Then

 P Mi, TI Mi are again A-modules.
 ie I ie I
- 5) An A-module M is called free if there exist a set I and an isomorphism (= bijective homomorphism) $M\cong A^{\oplus T}:=\bigoplus_{i\in I}A.$

In general, for any A-wodule M, $Hom_A(A^{\oplus I}, M) = TA$ $T = (f(e_i))_{i \in I}$

Here $e_i = (0, --, 0, 1, 0, --)$ is the i-th bases element of ABI.

Def typle of elements $(x_i)_{i \in I}$, $x_i \in M$ called basis \overline{A} the map $A^{\oplus I} \longrightarrow M$, $e_i \longmapsto x_i$ is an isomorphism.

Equivalent For every $x \in M$, there is a unique hyple $(a_i)_{i \in I}$ of $a_i \in A$, almost all = 0, s. If. $x = \sum_{i \in I} a_i \cdot x_i.$

For vector spaces, the following statements hold:

- 1) Every vsp has a basis.
- 2) Every maximal set of lin. rudep. elements às a bassis.
- 3) Every minual set of generations 28 a basis.

Such statements do not hold for module in general.

E.g. cousides A = Z, ie. A-wodules = abelian groups

- 1) 2/n, nz/ is not free.
- 2) 2 E Z às maximal lus. rholependent:

For every $0 \neq a \in \mathbb{Z}$, $a \cdot 2 - 2 \cdot a = 0$ A = A = A

But 2 does not generate Z.

3) (2,3) is nuhinal set of generators because neither 2 nor 3 generates 2, but 2,3 not lu. indep.

6) There is a matrix description of maps between free modules:

How
$$A = A = M_{n \times m}$$
 $A = M_{n \times m}$ $A = M_{n \times m}$

Composition of maps = multiplication of matrices as usual.

An example A = k(X, Y). The ideal $\alpha = (X, Y) \subseteq A$ is a sub-module. There is a surjection

$$A^{\oplus 2} \xrightarrow{(x \ y)} (x,y)$$

$$(x,y) = xx + yy$$

$$(x,y) = xy + yy$$

We compute its hornel:

Xf + Yg = 0 = X/g, Y/f because X, Y are prime elements with X+Y, X+X.

Write f = Yf', g = Xg!. Then need to solve

XY(g'+g')=0 = g'=-g' shee XY = on the rulegral domain A.

$$= A \xrightarrow{\left(\begin{array}{c} -Y \\ X \end{array}\right)} \text{ her}\left(\left(\begin{array}{c} X \\ Y \end{array}\right)\right), \text{ i.e. the kernel is}$$

$$f' \xrightarrow{\quad \quad \quad \quad \quad \quad } g'. \begin{pmatrix} -Y \\ X \end{pmatrix} \qquad \text{a free A-widule of roule 1.}$$

There are the modules that may be studied in finite matrices. This makes them much more accessible.

Defu A-modulo M noetherian = Following, equivalent conditions are satisfied:

- 1) Every submodule NCM so of finite syre
- 2) Every ascending chain $N_1 \subseteq N_2 \subseteq \ldots \subseteq M$ of submisdules becomes stationary.

Proof of equivalence $(1) \Rightarrow 2$ (Given $N_1 \subseteq N_2 \subseteq \cdots$, put $N_1 = 0$ $N_2 = 0$ $N_3 = 0$ $N_3 = 0$ $N_4 = 0$ $N_4 = 0$ $N_5 = 0$ $N_6 =$

2) = 1) (over N, define No = 0 and

 $\mathcal{N}_{i} = \begin{cases} \mathcal{N}_{i-1} + (x_{i}) & \text{for some } x_{i} \in \mathcal{N} \setminus \mathcal{N}_{i-1}, \text{ if acish} \\ \mathcal{N}_{i-1} & \text{ofw}. \end{cases}$

By assumption, there is a k s.th. $N_k = N_{k+1} = \cdots = N$. Choose k minimal. Then

 $N = (x_1, -, x_k).$

- Prop 1 Consider a submodule $K \subseteq M$ and the quotient $q: M \longrightarrow Q := W_K$.
- 1) If M is noetherian, then K and Q are as well.
- 2) If K and Q are noetherian, then M is as mell.
- Proof 1) For K: Submodules of noetherian modules are noetherian by definition.
- For Q: Let $N \in Q$ be a submodule. Since M is noetherian, $q^{-1}(N)$ is fin. gen, say with generators $x_1, -, x_r$. Then $q(x_1), --, q(x_r)$ generate N.
- 2) Leb $N \in M$ be a submodule. By assumption, both $N \cap K$ and q(N) are fin. gen., say $K \cap N = (X_1, -, X_r), \quad q(N) = (y_1, -, y_s).$ Let $y_1, -, y_s \in N$ be lift of the $y_1, -, y_s$.

 Claim $(x_1, -, x_r, y_1, -, y_s) = N.$

Let $z \in N$ any. There exist $b_{1}, -, b_s \in A$ s. dh. $q(z) = b_1 y_1 + - + b_s y_s$.

This means
$$2' = 2 - (b_n y_n + \cdots + b_s y_s)$$

 $\in \ker(q|_N) = K \cap N$,
so there are $a_1, \dots, a_r \in A$ s.H.
 $2' = a_1 x_1 + \dots + a_r x_r$

and we are done.

Defn A os called noetherian if noetherian as module

over itself.

Eguralent: Every ideal of A is finitely generated.

Cor 2 A weetherian rug, M a fu gen A-modelle. Then M & noetherian.

Proof.) We can mike $A^{\otimes n-1} \cong A^{\otimes n}/A^{\otimes n-1}$. By aduction

and Prop 1 (2), we find that A " is a noetherian A-module for all n20.

for gen. means there exist an n and a surjection $A^{\otimes n} \longrightarrow M$

Then, Pop 1 (1) states M is wellewan.

Cor 3 Leb A be noetherian. Every frisk type A-module M & even of finite presentation.

Proof Pick any surjection $f: A^{\otimes n} \longrightarrow M$. As $A^{\otimes n}$ is welherian (see before), $\ker(f)$ is finitely generated. \square .

Some examples of non-noetherion may:

1) kst, Tz,...]

The ideal (Tr, Tr ,--) is not finitely generated.

2) $C^{\infty}(\mathbb{R},\mathbb{R})$

The ideals $\sigma_n = \frac{1}{2} \left\{ \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] = 0 \right\}$

form an ascending, non-stabilizing chach.

3) Z[p1/2, p1/4, p1/8, p1/16, -] CR.

The ideal (p1/2, p1/4, p1/8, -) is not finitely generated.

&3 Noetherian Rurep (see &7 nu A.-M.)

Prop 4 Let A be a noetherian nig.

- 1) try quotient mg A/or is weetherian.
- 2) Any toralvation S-1 A & welherson.

Proof Ideah in Alor and S'A are of the fever blor (for or = b) resp. b. S'A (for b = A any).

See lost lecture.

By assumption on A, all b on question are fur gen,, hence all rideals on A/or and S-IA are fur gen. I

Thun 5 (Hilbert Basis Theorem) If A is wetherian, then A[T] is weetherian.

Proof Let $\sigma \in A[T]$ an ideal. Consider the ideal $b := \left(\alpha \mid \exists \ f = a \cdot T^{\gamma} + a_{n-1} T^{n-1} + \cdots + a_{\sigma} \in \sigma\right) \subseteq A.$

A woetherian $\Longrightarrow b = (a_{13}, a_{7})$ for suitable $a_{i} \in b$. Pick $f_{i} \in a_{7} \in a_{7}$ S.th. $f_{i} = a_{i} T^{n_{i}} + (lower knus), i = 1, ..., r$. Put $n := \max_{i=1}^{n} \frac{1}{2} \log f_{i} \hat{s}$.

Claim try $g \in OI$ can be nother as $g = h + \sum_{i=1}^{r} h_i f_i$ with $h, h_1, -, h_r \in A[T]$, deg(h) < n.

Proof Write $g = b_m T^m + b_{m-1} T^{m-1} + \cdots$ If n < m, then we can choose g = h, $h_1 = \cdots = h_r = 0$ and are done.

If $m \ge n$, we proceed as follows: By defin, $b_m \in b^n$, so can be withen as $b_m = x_1 q_1 + \dots + x_r a_r$ $x_i \in A$.

Put $g' = g - \sum_{i=1}^r x_i T^{m-deg(f_i)} \cdot f_i$.

Then $g' \in \mathcal{O}$ and deg(g') < deg(g), so we can conclude by induction. \square (laim.

End of poof: (ourider the A-submodule $M = \bigoplus_{i=0}^{n-1} A \cdot T^i$ of A[T]. It is finitely generated (even $\cong A^{\oplus n}$).

A wetherian \longrightarrow or nM is a fin gen A-module.

Using the claim,

 $O = (O \cap M) + (J_1, J_2, J_1)$

is hence finitely generated.

Cor 6 Å weetherian. Any my of the ferm $B = A[T_1, -, T_n]/c_1$ is noetherian. Moreover, in this situation, $c_1 = (f_1, -, f_m)$ is finitely generated.

Poof Induction with $T_m S + Poop 4$.

This in particular applies of A is a PID.