Signals and Systems HW2

Deadline: 2019/3/15 before 18:30

(You should submit hand-writing paper to BL B1 EE student office.)

1. Let $\delta_{\Delta}(t)$ denotes the rectangular pulse of height $\frac{1}{\Delta}$ for $0 < t \le \Delta$. Show that

$$\frac{d}{dt}\delta_{\Delta}(t) = \frac{1}{\Lambda} [\delta(t) - \delta(t - \Delta)]. (20\%)$$

- 2. Consider a discrete-time, linear and time-invariant system that has impulse response $h[n] = (\frac{1}{5})^n u[n]$ and input x[n]. Answer the following questions and justify your answer.
 - (a) (20%) Evaluate and sketch the response $y_1[n]$ of the system if $x[n] = x_1[n] = \delta[n-d]$, for integer d = 3.
 - (b) (20%) Evaluate and sketch the response $y_2[n]$ of the system if $x[n] = x_2[n] = u[n-e]$, for integer e = 5.
 - (c) (20%) Identify the relationship between $y_1[n]$ and $y_2[n]$.
- 3. The following are the impulse responses of discrete-time LTI systems. Determine whether each system is causal and/or stable. Justify your answers.
 - (a) (5%) $h[n] = (0.99)^n u[n]$
 - (b) (5%) $h[n] = (0.7)^n u[n+3]$
 - (c) (5%) $h[n] = (\frac{1}{3})^n u[-n]$
 - (d) (5%) $h[n] = (4)^n u[4-n]$