# Personalizing Image Generation: Fine-Tuning Diffusion Models

Thesis project

June 2023



#### **Content**

| 1 | Introduction & background              |
|---|----------------------------------------|
| 2 | Objective                              |
| 3 | Usecase & challenges                   |
| 4 | Technical details – Model architecture |
| 5 | Approach                               |
| 6 | Results                                |
| 7 | Q&A                                    |
| 8 | Appendix                               |



### Introduction & background



# What is Generative AI?

Generative AI refers to a category of artificial intelligence (AI) algorithms that generates outcomes similar to their training data, from which they can interpolate according to the user input.

It describes algorithms (such as ChatGPT) that can be used to create new content, including audio, code, images, text, simulations, and videos:



**Images**: Generative AI can create new images text descriptions



**Text**: Generative AI can be to answer user questions, write code and generate summaries and articles.



**Audio:** Generative AI can generate new music tracks, sound effects, and even voice acting.





An astronaut riding a horse in photorealistic style.







# What are Diffusion Models?

Diffusion Models are generative models inspired by the **physical Diffusion process\***.

They work by destroying training data through the successive addition of random noise, and then learning to recover the data by reversing this noising process.

After training, the generator can transform random noise in the picture you described!

\*gradual movement/dispersion of concentration, like a drop of paint dissolving in water



# 2 Objective



# Standardization of diffusion models with proper experimentation on various finetuning methods



3

## Usecase & challenges



#### Usecases



Marketing Generate effective dynamic content or Ad creatives for campaigns



**Ecommerce/Retail** Generate designs for new products, catalogue & alternate angle generation



**Inspirational Designs** Generate inspirational designs for product design team e.g., mood board creator

#### Additional applications



In/out Image painting Extend the creativity by editing visual elements in the same style, or taking a story in new directions



**Video Generation** Generate coherent and higher quality videos from text

#### Challenges



Failure to process the text input



Poor performance for specific entities (e.g., text)



Faces and people may not be generated properly

#### 'een nijlpaard'



May not work well with non-English prompts



Model can be lossy and takes relatively long time





# Technical details – Model architecture



#### Stable Diffusion

Open-source Latent Diffusion model



#### Stable Diffusion

Open-source Latent Diffusion model





The encoder compresses the image into a lower dimensional latent space to allow faster computing and better image processing



#### Noising process



For 50 steps: Gaussian noise is drawn for every pixel and added to the pixel values

#### Noising process





#### Noising process





For 50 steps: Gaussian noise is drawn for every pixel and added to the pixel values, resulting in a fully noised picture



Now the noise and the text prompt serve as input for the generator





Now the noise and the text prompt serve as input for the generator, or rather an embedding of the prompt





For 50 steps: the denoiser module tries to predict which noise was added to the picture. The embedded text guides the model in this process.







#### Encoder / Decoder (de)compression



The decoder decompresses the image into its original size



Calculate MSE loss between input and output



# 5 Approach



#### Goal:

- Add custom items
- Generate consistent output
- 1. Identify base model
- 2. Select appropriate KPI
- 3. Experiment with fine-tuning methods
- 4. Finalize pipeline

#### Base model: Stable Diffusion

-> open-source latent diffusion model







#### Prompt failures — inference methods

Catastrophic neglect

parts of the prompt gets ignored

"A blue cat and a yellow bowl"



Incorrect attribute binding

characteristics getting linked to the wrong subject "A man wearing a blue t shirt and red pants"



#### Personalization — fine-tuning

No brand characteristics captured



Pepe Jeans sweater

Malformed logos





#### Inference methods

To improve prompt comprehension

#### Composable Diffusion

- Divide the prompt into components using AND statements
- Let separate denoisers solve for the component
- Join their outputs



#### Attend and Excite

- Select keywords to "excite" in the prompt
- During the generation process, attention maps for the keywords are analyzed
- If attention for keyword is lower than the threshold, iteratively increase attention on this token





#### Fine-tuning methods

To personalize the model

Train the model to include new tokens.

Tokens can include specific items, the style of a brand, a person, a logo...



#### Dreambooth

Train optimal weights for specified concept



#### Fine-tuning methods

To personalize the model

Train the model to include new tokens.

Tokens can include specific items, the style of a brand, a person, a logo...



#### Textual Inversion

#### Train optimal *embedding* for specified concept





#### Fine-tuning methods

To personalize the model

Train the model to include new tokens.

Tokens can include specific items, the style of a brand, a person, a logo...



#### Low Rank Adaptation

#### Train low rank intermediate layers







#### **Dataset**

A clothing line of HUGO was chosen as dataset for POC

All training images contain the 'red\_hugo\_logo'







## **6** Evaluation



#### **Object Detection**

Does the logo look like the logo?

YOLOv8 150 training images

- + Image augmentation methods
- + Regularizing images







# Optical Character Recognition

Is the logo spelled correctly?

OCR models output text displayed on image



0: HUCO

1: HUGo

2: Hug Hudo



# 7 Results



#### Dreambooth best

#### LoRA okay

#### Textual Inversion not great, especially OCR

| method | parameters             | average(ocr, yolo) | mean_confidence_score | mean_ocr_score |
|--------|------------------------|--------------------|-----------------------|----------------|
| db     | lr0_00002              | 0.724898001        | 0.949796001           | 0.5            |
| lora   | UNet5e-06TE0_0001dim16 | 0.594578506        | 0.709990345           | 0.479166667    |
| ti     | lr_0_001               | 0.545065025        | 0.756796718           | 0.333333333    |





#### Dreambooth best

#### LoRA okay

#### Textual Inversion not great, especially OCR

| method | parameters             | average(ocr, yolo) | mean_confidence_score | mean_ocr_score |
|--------|------------------------|--------------------|-----------------------|----------------|
| db     | lr0_00002              | 0.724898001        | 0.949796001           | 0.5            |
| lora   | UNet5e-06TE0_0001dim16 | 0.594578506        | 0.709990345           | 0.479166667    |
| ti     | lr_0_001               | 0.545065025        | 0.756796718           | 0.33333333     |

#### Ir0\_00002 epoch 21



A red\_hugo\_logo



A male model wearing a blue red\_hugo\_logo



A female model wearing a green red\_hugo\_logo t shirt



The latest A billboard with ed\_hugo\_logo the products red hugo logo



The new red\_hugo\_logo fragrance



#### Dreambooth best

#### LoRA okay

#### Textual Inversion not great, especially OCR

| method | parameters             | average(ocr, yolo) | mean_confidence_score | mean_ocr_score |
|--------|------------------------|--------------------|-----------------------|----------------|
| db     | lr0_00002              | 0.724898001        | 0.949796001           | 0.5            |
| lora   | UNet5e-06TE0_0001dim16 | 0.594578506        | 0.709990345           | 0.479166667    |
| ti     | lr_0_001               | 0.545065025        | 0.756796718           | 0.333333333    |

#### lr0\_00001 epoch 12



A red\_hugo\_logo

A male model wearing a blue red\_hugo\_logo sweater



A female model wearing a greer red\_hugo\_logo t shirt



The latest red\_hugo\_logo





The new red\_hugo\_logo fragrance



### Dreambooth

- + Captures details
- + High quality
- + Consistent
- Overfits easily
- Huge output size



The new red\_hugo\_logo perfume



Image from training data



### **Textual Inversion**

- + Captures concept
- + Converges well over high LR
- + Small output
- Does not capture details well (e.g., spelling)
- Inconsistent





### LoRA

- + Captures concept
- + Captures details
- + Small output
- Hard to get right
- Inconsistent





## 8 Conclusion



#### Take home:

- For better prompt guidance: Attend-and-Excite
- If compute and memory does not matter, and desired output similar to dataset: Dreambooth
- If details not important, more about aesthetics: Textual Inversion
- Details important, but need scalable solution: LoRA
  - Training parameters matter
  - Training does not require a lot of data
  - Evaluation and testing can be tricky





















#### Special thanks to:

- Praneetha Yekkaluru
- Tomás Costa
- Anil Yaman (Vrije Universiteit Amsterdam)
- Akshay Singh



## 6

## Questions





## **A** Appendix



#### **Denoising U Net**



U Net Architecture

The U Net architecture was originally used for (medical) image segmentation.

In Diffusion Models, it functions as the noise predictor.

It segments the image, through dimensionality reduction and guided by the text embedding.

Per segments it tries to remove noise in a stepwise fashion.



#### **CLIP** text embedding



CLIP is OpenAl's zero-shot image classifier.

It's a multi-modal network that embeds any image or text input, allowing it to classify for unknown labels.

CLIP similarity score can be used in the same fashion to evaluate generated images.



# Prompt failures Catastrophic neglect

parts of the prompt do not get generated

"A blue cat and a yellow bowl"



Composable Diffusion

### Incorrect attribute binding

characteristics getting linked to the wrong subject

"A man wearing a blue t shirt and red pants"





## Composable Diffusion



Diffusion models capable of generating simple prompts, can we stack diffusion models using AND or NOT statements?

By combining the score-functions of multiple diffusion models, we can guide the diffusion process with multiple conjunctions

# Prompt failures Catastrophic neglect

parts of the prompt do not get generated

"A blue cat and a yellow bowl"



Composable Diffusion

## Incorrect attribute binding

characteristics getting linked to the wrong subject

"A man wearing a blue t shirt and red pants"



## Attend and Excite

Embedding method overrules attention blocks

Can we force words to be included?

- Reweigh attention over excited words
- Increase attention for most neglected subject token



#### Hypernetwork

Maybe we should not do this one? People report very bad results, and its functionality has been replaced by LoRA





## Model Architecture



## Use-cases



Generate ads for marketing campaigns

Generate catalog pictures















Input →

Output←



#### Encoder / Decoder





The encoder compresses the image into a lower dimensional latent space to allow faster computing and better image processing



#### Noising process



For 50 steps: Gaussian noise is drawn for every pixel and added to the pixel values

#### Noising process



Input →

Output←







#### Noising process





For 50 steps: Gaussian noise is drawn for every pixel and added to the pixel values, resulting in a fully noised picture





Now the noise and the text prompt serve as input for the generator





Now the noise and the text prompt serve as input for the generator, or rather an embedding of the prompt



For 50 steps: the denoiser module tries to predict which noise was added to the picture. The embedded text guides the model in this process.

#### Encoder / Decoder (de)compression



The decoder decompresses the image into its original size





switch

skip connection

concat

 $Q \\ KV$ 

crossattention

denoising step



## Shortcomings



### **Prompt failure**

a man wearing a blue t shirt and red pants



#### **Brand failure**

a man wearing a Hugo Boss polo





## Approach



## Composable Diffusion



Diffusion models capable of generating simple prompts, can we stack diffusion models using AND or NOT statements?

By combining the score-functions of multiple diffusion models, we can guide the diffusion process with multiple conjunctions

## Attend and Excite

Embedding method overrules attention blocks

Can we force words to be included?

- Reweigh attention over excited words
- Increase attention for most neglected subject token



## Personalizing Diffusion models



#### Dreambooth



Train optimal weights for specified concept

Best quality

Very expensive
Breaks the model (overfitting)



#### **Textual Inversion**



Insert new token

Train optimal embeddings for this token







#### Low Rank Adaptation





Higher chance of failure



#### Hypernetwork

Maybe we should not do this one? People report very bad results, and its functionality has been replaced by LoRA





