Aula 11: Indutância

Curso de Física Geral III
F-328
1° semestre, 2014

Auto-Indutância e Indutância Mútua

Quando estudamos campo elétrico, relacionamos a quantidade de cargas em um par de condutores com a diferença de potencial entre eles. A constante de proporcionalidade, que é a capacitância, depende apenas das geometrias dos condutores:

$$egin{aligned} Q_{ ext{livre}} &= \oint oldsymbol{arepsilon}_o ec{E} \cdot \hat{n} \, dA \ \Delta V &= -\int ec{E} \cdot dec{l} \end{aligned}
ightarrow Q_{ ext{livre}} = CV$$

Iremos agora fazer algo análogo ao relacionar as leis de Ampère e Gauss (para campo magnético) e mostrar que poderemos escrever o fluxo magnético em função das correntes elétricas geradoras de campo magnético. Novamente a constante de proporcionalidade depende apenas da geometria dos condutores envolvidos. A grande diferença é que a proporcionalidade é feita através de uma relação matricial, dando origem a auto-indutância e indutâncias mútuas:

$$\left. egin{aligned} \phi_B &= \int ec{B} \cdot \hat{n} \, dA \ i_{ ext{env}} &= \oint ec{B} \cdot dec{l} \end{aligned}
ight\} \Longrightarrow \phi_n = L_{n,m} i_m$$

 $L_{\rm n,n}$ = Auto-Indutância; $L_{\rm m,n}$ = Indutância Mútua;

Solenoide: Indutância Mútua

Considere o sistema ao lado. Iremos analisar quatro situações:

i) $i_1 = \text{constante}, i_2 = 0 \rightarrow \text{fluxo produzido na bobina 2}$:

$$\vec{B}_1 = \mu_0 \frac{N_1}{l} i_1 \hat{z} \qquad \phi_{2,(1)} = N_2 \int_{A_2} \vec{B}_1 \cdot \hat{n} \, dA = N_2 B_1 A_1$$

$$\phi_{2(1)} = L_{21}i_1$$

$$\phi_{2(1)} = L_{21}i_1$$
 $L_{21} = \mu_0 \frac{N_1 N_2}{l} A_1$

i) i_2 = constante, i_1 =0 \rightarrow fluxo produzido na **bobina 1**:

$$\overset{\mathbf{r}}{B}_{2} = \mu_{0} \, \frac{N_{2}}{l} \, i_{2} \hat{z} \quad \phi_{1, (2)} = N_{1} \int_{\mathbf{A}_{1}} \vec{B}_{2} \cdot \hat{n} \, dA = N_{1} B_{2} \underbrace{\mathbf{A}_{1}}_{\mathbf{A}_{1}}$$

$$\phi_{1(2)} = L_{12}i_2$$

$$L_{12} = \mu_0 \, \frac{N_1 N_2}{l} \, A_1$$

$$L_{12} = L_{21}$$
 Note que apesar de $L_{12} = L_{21}$ não se obtém L_{21} de L_{12} trocando-se $1 \rightarrow 2$.

A unidade SI de indutância é o henry (H):

$$1 H = \frac{1 \cdot \text{T} \cdot \text{m}^2}{A} = \frac{1 W_b}{A}$$

Solenoide: Auto-Indutância

iii) i_1 = constante, i_2 =0 \rightarrow fluxo produzido na **bobina 1**:

$$\vec{B}_{1} = \mu_{0} \frac{N_{1}}{l} i_{1} \hat{z} \qquad \phi_{1,(1)} = N_{1} \int_{A_{1}} \vec{B}_{1} \cdot \hat{n} \, dA = N_{1} B_{1} A_{1}$$

$$\phi_{1(1)} = L_{11}i_1$$

$$\phi_{1(1)} = L_{11}i_1$$

$$L_{11} = \mu_0 \frac{N_1^2}{l} A_1$$

$$\vec{B}_{2} = \mu_{0} \frac{N_{2}}{l} i_{2} \hat{z} \quad \phi_{2,(2)} = N_{2} \int_{A_{2}} \vec{B}_{2} \cdot \hat{n} \, dA = N_{2} B_{2} A_{2}$$

$$\phi_{2(2)} = L_{22}i_2$$

$$L_{22} = \mu_0 \, \frac{N_2^2}{l} \, A_2$$

Solenoide ideal:

$$L = \mu_0 \left(\frac{N}{l}\right)^2 lA \to \frac{L}{l} = \mu_0 n^2 A$$

Topo

Auto-Indutância e Indutância Mútua

Quando ambas os solenoides carregam correntes, o fluxo total é então proporcional a estas correntes e às auto-indutâncias e indutâncias mútuas. Pelo princípio de superposição podemos escrever esta relação na forma matricial como:

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}$$

Observações:

- 1)As auto-indutâncias (que nomearemos apenas como *indutâncias* a partir deste ponto) são constantes reais **positivas diferente de zero**;
- 2) A indutância mútua pode assumir qualquer valor real (menor, maior ou igual a zero);
- 3)Ambas dependem apenas de fatores geométricos

Indutância de um toroide

Vimos que o campo magnético no interior de um toroide é:

$$B = \frac{N\mu_0 i}{2\pi r}$$

$$\phi_B = \int \vec{B} \cdot \hat{n} dA = \int Bh dr = \int_a^b \frac{\mu_0 iNh dr}{2\pi r} =$$

$$= \frac{\mu_0 iNh}{2\pi} \ln\left(\frac{b}{a}\right)$$

N espiras

Então:

$$L = \frac{N\phi_B}{i} = \frac{\mu_0 N^2 h}{2\pi} \ln\left(\frac{b}{a}\right)$$

fem induzida em indutores

Consideremos uma bobina de *N* voltas, chamada de *indutor*, percorrida por uma corrente i que produz um fluxo magnético ϕ_R através de todas as espiras da bobina. Se i = i(t), pela lei de Faraday aparecerá nela uma *fem* dada por:

$$\varepsilon_L = -\frac{d(N\phi_B)}{dt} \qquad (N\phi_B = \text{fluxo concatenado})$$

Na ausência de materiais magnéticos, $N\phi_R$ é proporcional à corrente:

$$N\phi_B = Li$$
 ou: $L = \frac{N\phi_B}{i}$ (L: auto-indutância)

Então:

$$\varepsilon_{L} = -\frac{d(Li)}{dt} = -L\frac{di}{dt}$$

(fem auto-induzida)

O sentido de \mathcal{E}_L é dado pela lei de Lenz: ela deve se *opor* à *variação* da corrente que a originou (figura).

Exemplo 01

Dois cilindros maciços paralelos de mesmo comprimento l e raio a transportam correntes iguais em sentidos opostos. Sabendo-se que a distância entre os eixos dos cilindros é d, mostre que a indutância por unidade de comprimento desse sistema é:

$$\frac{L}{l} = \frac{\mu_0}{\pi} \ln \left(\frac{d - a}{a} \right)$$

Despreze o fluxo no interior dos cilindros.

O fluxo produzido pelas *duas* corrente na região entre os dois fios é dado por:

$$\phi = \int_{T} \vec{B}_{T} \cdot \hat{n} dA = \int_{T} (\vec{B}_{D} + \vec{B}_{E}) \cdot \hat{n} dA = \frac{\mu_{0}i}{2\pi} \int_{a}^{d-a} \left(\frac{1}{r} + \frac{1}{d-r}\right) L dr$$

$$= \frac{\mu_{0}L}{\pi} \ln\left(\frac{d-a}{a}\right) i \qquad \qquad \frac{L}{l} = \frac{\mu_{0}}{\pi} \ln\left(\frac{d-a}{a}\right)$$

Exemplo 02

Duas bobinas circulares compactas, a menor delas (raio R_2 e N_2 voltas) sendo coaxial com a maior (raio R_1 e N_1 voltas) e no mesmo plano. Suponha $R_1 >> R_2$.

- a) deduzir uma expressão para a indutância mútua deste arranjo;
- b) Qual o valor de *M* para $N_1 = N_2 = 1200$ voltas, $R_2 = 1.1$ cm e $R_1 = 15$ cm?

a)
$$|\phi_{21} = B_1 A_2 \rightarrow N_2 \phi_{21} = N_2 B_1 A_2|$$

$$B_{1} = N_{1} \frac{\mu_{0} i_{1}}{2R_{1}} \longrightarrow N_{2} \phi_{21} = \frac{\pi \mu_{0} N_{1} N_{2} R_{2}^{2}}{2R_{1}} i_{1}$$

Então:

$$M_{21} = \frac{N_2 \phi_{21}}{i_1} = M \implies M = \frac{\pi \mu_0 N_1 N_2 R_2^2}{2R_1}$$

b)
$$M = \frac{\pi (4\pi \times 10^{-7} H/m)(1200)(1200)(0,011m)^2}{2 \times (015m)} = 2,29mH$$

Circuitos RL são aqueles que contêm resistores e indutores.

Neles, as correntes e os potenciais variam com o tempo. Apesar das fontes (fem) que alimentam estes circuitos serem independentes do tempo, a introdução de indutores provoca efeitos dependentes do tempo. Estes efeitos são úteis para controle do funcionamento de

máquinas e motores.

Circuito básico para analisar correntes em um indutor.

a) Fechando-se a chave S, no instante t = 0, estabelece-se uma corrente crescente no resistor.

$$t=0 \implies i(0)=0 \implies t \neq 0 \implies i(t)$$

Resolver (estudar) este circuito é encontrar a expressão para a corrente i(t) que satisfaça à equação:

$$\varepsilon - Ri - L\frac{di}{dt} = 0$$

A equação anterior fica:

$$\frac{di}{dt} + \frac{R}{L}i = \frac{\varepsilon}{L}$$

Resolvendo esta equação diferencial para i(t), vamos ter:

 \mathcal{E}_I : voltagem no indutor

$$i(t) = \frac{\mathcal{E}}{R} (1 - e^{-Rt/L}) \implies i(t) = I(1 - e^{-t/\tau_L}), \text{ onde}$$

$$\tau_L = \frac{L}{R} \text{ e } I = \frac{\mathcal{E}}{R}$$

$$(I: \text{constante de tempo } indutiva)$$

$$(I: \text{corrente máxima, assintótica})$$

Para *t* muito grande, a corrente atinge um valor máximo constante, como se o indutor fosse um fio de ligação comum.

Voltagens no resistor e no indutor – figura abaixo

$$V_R = Ri$$
 e $V_L = L\frac{di}{dt} = L\frac{\varepsilon}{L}e^{-\frac{R}{L}t}$ \longrightarrow $V_L = \varepsilon e^{-Rt/L}$

 $t=0, V_L=$ máximo \rightarrow equivalente a um circuito aberto

$$t \gg \tau_L$$
, $V_L = 0 \rightarrow \text{equivalente a um curto-circuito}$

Interpretação de au_L :

Para
$$t = \tau_L = \frac{L}{R}$$
:

$$\begin{cases} i = \frac{\varepsilon}{R} (1 - e^{-1}) = 0.63 \frac{\varepsilon}{R} \\ V_L = \varepsilon e^{-1} = 0.37 \varepsilon \end{cases}$$

b) Fechando-se a chave S_2 : neste caso, a equação das quedas de potencial será:

$$Ri + L\frac{di}{dt} = 0$$

A solução desta equação é:

$$i(t) = \frac{\mathcal{E}}{R} e^{-Rt/L} = I_0 e^{-t/\tau_L}$$

Variações das voltagens com o tempo:

Ao lado, temos gráficos das tensões Em V_L , V_R e $V_R+V_L=\varepsilon$ para várias situações a) e b).

Energia armazenada no campo magnético

Do circuito abaixo tem-se:

$$\varepsilon = Ri + L\frac{di}{dt} \rightarrow \varepsilon i = Ri^2 + Li\frac{di}{dt}$$

Os termos εi , Ri^2 e Lidi/dt são, respectivamente, a potência fornecida pela bateria, a potência dissipada no resistor e a taxa com que a energia U_B é armazenada no campo magnético do indutor, isto é:

$$\frac{dU_{B}}{dt} = Li\frac{di}{dt} \rightarrow dU_{B} = Lidi$$

$$\int_{0}^{U_{B}} dU_{B} = \int_{0}^{i} Lidi$$

$$U_{B} = \frac{1}{2}Li^{2}$$

Densidade de energia do campo magnético

É a energia por unidade de volume armazenada em um ponto qualquer do campo magnético. Consideremos o campo magnético de um solenoide longo de comprimento l e seção transversal A, transportando uma corrente i.

A densidade de energia será dada por:

$$u_{B} = \frac{U_{B}}{Al} = \frac{1}{2} \frac{Li^{2}}{Al}$$
Como $L = \mu_{0} n^{2} lA \rightarrow u_{B} = \frac{1}{2} \mu_{0} n^{2} i^{2}$

Lembrando que $B = \mu_0 in$ resulta que:

$$u_B = \frac{B^2}{2\mu_0}$$
 (densidade de energia magnética)

Indutância mútua

Fluxos conectados: variação de fluxo da bobina 1 produz uma fem na bobina 2 e vice-versa.

$$L_{21} \to M_{21}$$

Indução mútua
$$L_{21} \rightarrow M_{21}$$
 $M_{21} = \frac{N_2 \phi_{21}}{i_1}$

$$M_{21}i_1 = N_2\phi_{21}$$
 ou $N_2 \frac{d\phi_{21}}{dt} = M_{21} \frac{di_1}{dt}$

A fem induzida na bobina 2: $\varepsilon_2 = -M_{21} \frac{di_1}{dt}$

A fem induzida na bobina 1: $\varepsilon_1 = -M_{12} \frac{di_2}{dt}$

Pode-se provar que:

$$M_{12} = M_{21} = M$$

A indução é de fato mútua

$$\varepsilon_1 = -M \frac{di_2}{dt}$$

$$\varepsilon_2 = -M \frac{di_1}{dt}$$

Lista de exercícios do Capítulo 30

Os exercícios sobre Lei de Faraday estão na página da disciplina : (http://www.ifi.unicamp.br).

Consultar: Graduação → Disciplinas → F 328-Física Geral III

Aulas gravadas:

http://lampiao.ic.unicamp.br/weblectures (Prof. Roversi)

ou

<u>UnivespTV e Youtube</u> (Prof. Luiz Marco Brescansin)

F328 – 1S2014