上所用的),一个用于高地址结尾格式(例如在SPARC上所用的)。因此,一个16位的数字需要4个字节,一个32位的数字需要8个字节。

这样冗余编码的目的主要是为了能在标准发展的同时照顾到各个方面的利益。如果该标准仅规定低地址结尾,那么在产品中使用高地址结尾的厂家就会觉得自己受到歧视,就不会接受这个标准。所以我们可以准确地用冗余的字节/小时数来衡量一张CD-ROM的情感因素。

ISO 9660目录项的格式如图4-30所示。因为目录项是长度可变的,所以,第一个域就说明这一项的长度。这一字节被定义为高位在左,以避免混淆。



图4-30 ISO 9660的目录项

目录项可能包含有扩展属性。如果使用了这个特性,则第二个字节就说明扩展属性的长度。

接下来是文件本身的起始块。文件是以连续块的方式存储的,所以一个文件的位置完全可以由起始块的位置和大小来确定。起始块的下一个域就是文件大小。

CD-ROM的日期和时间被记录在下一个域中,其中分隔的字节分别表示年、月、日、小时、分钟、秒和时区。年份是从1900年开始计数的,这意味着CD-ROM将会遇到2156年问题,因为在2155年之后将会是1900年。如果定义初始的日期为1988年(标准通过的那一年)的话,那么这个问题就可以推迟88年产生,也就是2244年。

标志位域包含一些其他的位,包括一个用来在打开目录时隐藏目录项(来自MS-DOS的特性)的标志位,一个用以区分该项是文件还是目录的标志位,一个用以标志是否使用扩展属性的标志位,以及一个用来标志该项是否为目录中最后一项的标志位。其他一些标志位也在这个域中,但是在此我们不再讨论。下一个域说明了在ISO 9660的最简版本中是否使用文件分隔块,我们也不做讨论。

再下一个域标明了该文件放在哪一个CD-ROM上。一个CD-ROM的目录项可以引用在同一CD-ROM集中的另外一个CD-ROM上的文件。用这样的方法就可以在第一张CD-ROM上建立一个主目录,该主目录列出了在这个CD-ROM集合中的其他所有CD-ROM上的文件。

图4-30中标有L的域给出了文件名的大小(以字节为单位)。之后的域就是文件名本身。一个文件名由基本名、一个点、扩展名、分号和二进制版本号(1或2个字节)构成。基本名和扩展名可以使用大写字母、数字0~9和下划线。禁止使用其他字符以保证所有的机器都能处理这个文件名。基本名最多可以为8个字符,而扩展名最多可以为3个字符。这样做是为了保证能和MS-DOS兼容。只要文件的版本号不同,则相同的文件名可以在同一个目录中出现多次。

最后两个域不是必需的。填充域用来保证每一个目录项都是偶数个字节,以2字节为边界对齐下一项的数字域。如果需要填充的话,就用0代替。最后一个域是系统使用域,该域的功能和大小没有定义,仅仅只要求该域为偶数个字节。不同的系统对该域有不同的用途。例如,Macintosh系统就把此域用来保存Finder标志。

一个目录中的项除了前两项之外,其余的都按字母顺序排列。第一项表示当前目录本身,第二项表示当前目录的父目录。这和UNIX的.目录和..目录相似。而文件本身不需要按其目录项在目录中的顺序来排列。

对于目录中目录项的数目没有特定的限制,但是对于目录的嵌套深度有限制,最大的目录嵌套深度为8。为了使得有关的实现简化一些,这个限制是任意设置的。

ISO 9660定义了三个级别。级别1的限制最多,限制文件名使用上面提到的8+3个字符的表示法,而且所有的文件必须是连续的(这些我们在前面介绍过)。进而,目录名被限制在8个字符而且不能有扩展名。这个级别的使用,使得CD-ROM可以在所有的机器上读出。