Instrucciones: La duración del ejercicio es de 55 minutos, y este comienza a las 17h. Entrega tu solución en moodle, en un único archivo en formato pdf. Al elaborar tu solución, ten en cuenta lo siguiente:

- Durante el ejercicio puedes preguntar dudas en Teams, tanto a los profesores como al resto de tus compañeros.
 Lo que escribas tienes que hacerlo individualmente.
- Presta atención, si puedes, a los aspectos formales de lo que escribes y no solo a su contenido. Vamos a leer el
 ejercicio en detalle y a darte feedback sobre lo que escribes, pero también sobre cómo lo escribes.
- Aunque debes entregar el ejercicio antes de que termine el tiempo asignado, si después decides pensar un poco más y se te ocurren ideas nuevas puedes enviar una nueva versión después.

Objetivo del ejercicio: Entender por qué hay unicidad de soluciones en ecuaciones homogéneas cuando el lado derecho de la ecuación tiene suficiente regularidad. Lo que se va a demostrar es, de hecho, un caso representativo del teorema de unicidad para ecuaciones autónomas.

Enunciado: Sea $f \in C^1(\mathbb{R})$ una función decreciente $(f' \leq 0)$ tal que existe un único punto b donde f'(b) = 0. Consideramos el problema general

(1)
$$y' = f(y), \ y(x_0) = y_0.$$

Demostrar que, si $f \in C^1(\mathbb{R})$, existe solución única para (1) en un entorno del dato (x_0, y_0) .

Indicaciones:

- (a) Como f es continua, por lo estudiado en clase sabemos que hay existencia local de solución para todo par (x_0, y_0) , y que esta es única si $y_0 \neq b$. Por tanto, basta probar unicidad en el caso $y_0 = b$.
- (b) Este problema se puede visualizar geométricamente. Puede ser buena idea tratar de hacer un dibujo.