Tertiary Analysis

► Working with BAM/SAM files

SAM Specification

Latest vesion SAMv1 (http://samtools.github.io/hts-specs/)

SAM File Format

Output format: Sequence/Binary Alignment Map (SAM/BAM)

HEADER containing metadata (sequence dictionary, read group definitions etc) **RECORDS** containing structured read information (1 line per read record)

- Added mapping info summarizes position, quality, and structure for each read
- A BAM file can contain data from a single or from several samples

http://samtools.github.io/hts-specs/SAMv1.pdf

Header Tags

- QHD Version Info
- @SQ Genome Information (chrom, size, location, species)
- @PG Program tags. Information on programs that create this BAM
- ▶ @RG Read Groups. Information on origin of sequence data
 - Allows multiple samples to be merged into one BAM
- QCD Commenents

Read lines

Read Entries in SAM

No.	Name	Description
1	QNAME	Query NAME of the read or the read pair
2	FLAG	Bitwise FLAG (pairing, strand, mate strand, etc.)
3	RNAME	Reference sequence NAME
4	POS	1-Based leftmost POSition of clipped alignment
5	MAPQ	MAPping Quality (Phred-scaled)
6	CIGAR	Extended CIGAR string (operations: MIDNSHP)
7	MRNM	Mate Reference NaMe ('=' if same as RNAME)
8	MPOS	1-Based leftmost Mate POSition
9	ISIZE	Inferred Insert SIZE
10	SEQ	Query SEQuence on the same strand as the reference
11	QUAL	Query QUALity (ASCII-33=Phred base quality)

CIGAR format

CIGAR summarizes alignment structure

CIGAR = Concise Idiosyncratic Gapped Alignment Report

Flags

 $D^{\circ\circ}$

L

Elago

major headache for humans but the right thing to do.

 $D_{\alpha\alpha}$

- ▶ But why on earth is strand bit 4 and not bit 1; the thing you want most should be in the first bit: even == positive, odd == negative
- ▶ old samtools had -X option but really not that much better

L

Elago

 $D_{\alpha\alpha}$

L

Elago

Dec	пех	riags	Dec	пех	riags	Dec	пех	riags
65	0×41	p1	69	0×45	pu1	73	0×49	pU1
81	0×51	pr1	97	0×61	pR1	113	0×71	prR1
117	0×75	purR1	121	0×79	pUrR1	129	0×81	p2
133	0×85	pu2	137	0×89	pU2	145	0×91	pr2
161	0xa1	pR2	177	0xb1	prR2	181	0×b5	purR2
185	0xb9	pUrR2	321	0×141	p1s	329	0×149	pU1s
337	0×151	pr1s	353	0×161	pR1s	369	0×171	prR1s
277	0.470	"11"D1"	30E	A.101	-0-	401	0.401	~ " O o

Flags; better solution

 PICARD page is a life saver; bookmarkit or download it https://broadinstitute.github.io/picard/explain-flags.html

SAM file example (from STAR)

```
@HD
       VN:1.4
@SQ
       SN:4
              IN: 191154276
@S0
       SN:7
              LN:159138663
@S0
       SN · 12 IN · 133851895
       SN - 17 IN - 81195210
@S0
@PG
       ID:STAR PN:STAR VN:STAR 2.5.1b CL:STAR --genomeDir /share/data/compgen2016/
day45 Intro2Seq VarCalling/genomes/H.Sapiens/b37 hl/index/star/NoGTF --readFilesIn /share/data/compgen2016/
day45 Intro2Seq VarCalling/Labs/2 Mapping/data/gencodeTest2 Q30 1 R1.fastq.gz /share/data/compgen2016/
day45 Intro2Seq VarCalling/Labs/2 Mapping/data/gencodeTest2 030 1 R2.fastq.gz
                                                                              --readFilesCommand gzcat
       user command line: STAR --genomeDir /share/data/compgen2016/day45 Intro2Seq VarCalling/genomes/
മററ
H.Sapiens/b37 hl/index/star/NoGTF --readFilesIn /share/data/compgen2016/day45 Intro2Seq VarCalling/Labs/
2_Mapping/data/gencodeTest2_Q30_1_R1.fastq.gz /share/data/compgen2016/day45_Intro2Seq_VarCalling/Labs/2_Mapping/
data/gencodeTest2_Q30_1_R2.fastq.gz --readFilesCommand gzcat
ENST00000000233.5_540_1027_0:0:0_0:0:0_0
                                                            127231072
                                                                           255
                                                                                   71M4S
127231609
                                                                           *************************
ACATGCCCAACGCCATGCCCGTGAGCGAGCTGACTGACAGCTGGGGCTACAGCACTTACGCAGCCGCACGTGGT
                                             NH:i:1 HI:i:1 AS:i:144
                                                                           nM:i:0
ENST00000000233.5 540 1027 0:0:0 0:0:0 0
                                             83
                                                            127231609
                                                                           255
                                                                                   75M
                                                    7
127231072
AGAGGAGGAGCAGGGATCTGGGTTTCCTTTTTTTTTTCTGTTTTGGGTGTACTCTAGGGGCCAGGTTGGGAGGGG
************************************
                                             NH·i·1 HT·i·1 AS·i·144
                                                                           nM·i·0
ENST00000000233.5 536 1088 0:0:0 1:0:0 1
                                             99
                                                     7
                                                            127231068
                                                                           255
                                                                                   75M
127231670
               677
                                                                           *************************
NH:i:1 HI:i:1 AS:i:146
                                                                           nM:i:1
ENST00000000233.5 536 1088 0:0:0 1:0:0 1
                                             147
                                                    7
                                                            127231670
                                                                           255
                                                                                   75M
127231068
                      CAGGTTGGGAGGGGAAGGTGAGGGCTTCGGGTGGTGCTTTAATGTGGCACTGGATCTTGAGTAATAAATTTGCT
```

Manipulating SAM/BAM files

Samtools vs Picard

- When there is overlap, my honest advice, use Picard
- Unless you are doing pipes/streams
 - But probably should not be doing those anyway
- However samtools view is prehaps the most used samfile command ever (really)
 - go over options

Samtools

```
$ samtools
```

Version: 1.3.1 (using htslib 1.3.1)

** faidx index/extract FASTA index index alignment

reheader replace BAM header

!! rmdup remove PCR duplicates # Careful Do not Use

** mpileup multi-way pileup

sort sort alignment file # Sort to pipes

quickcheck quickly check if SAM/BAM/CRAM file appears intact

flagstat simple stats idxstats BAM index stats

flags explain BAM flags tview text alignment viewer

**** view SAM<->BAM<->CRAM conversion # cat for BAMs

PICARD

- manipulating SAM/BAMs
 - AddRG, Sort, Index & MarkDup in almost every pipeline
 - Mark Duplicates a key step in many cases
- BAM stats
 - Alignment Stats
 - ► Insert Size
 - Duplicates Stats
 - and a bunch of misc other stuff
- Wins award for friendliest bioinformatics tool
 - Again honest advice if Picards does what you need use it over other tools.

Core modules for Variant Pipeline

- AddOrReplaceReadGroups (AddCommentsToBam)
 - This one module can do three key step to convert raw SAM output from mappers to BAM
 - Add ReadGroups
 - Sort (in same step)
 - Index
- MergeSamFiles
 - Often the Mapping phase is chunked into blocks need to merge before next step
- MarkDuplicates (MarkDuplicatesWithMateCigar)
 - Gets it own slides
- Metrics

Metrics

CalculateHsMetrics
CollectAlignmentSummaryMetrics
CollectBaseDistributionByCycle
CollectGcBiasMetrics
CollectHiSeqXPfFailMetrics
CollectHsMetrics
CollectInsertSizeMetrics
CollectJumpingLibraryMetrics
CollectMultipleMetrics
CollectOxoGMetrics
CollectQualityYieldMetrics
CollectRawWgsMetrics
CollectRawWgsMetrics
CollectRawSeqMetrics

CollectRrbsMetrics
CollectSequencingArtifactMetrics
CollectTargetedPcrMetrics
CollectVariantCallingMetrics
CollectWgsMetrics
CollectWgsMetricsFromQuerySorted
CollectWgsMetricsFromSampledSites
CompareMetrics
ConvertSequencingArtifactToOxoG
EstimateLibraryComplexity
MeanQualityByCycle
QualityScoreDistribution

Metrics

CalculateHsMetrics CollectAlignmentSummaryMetrics

CollectHsMetrics CollectInsertSizeMetrics

ConvertSequencingArtifactToOxoG

CollectOxoGMetrics

CollectRnaSeqMetrics

Mark Duplicates

Why mark duplicates?

- Duplicates are sets of reads pairs that have the same unclipped alignment start and unclipped alignment end
- They're suspected to be non-independent measurements of a sequence
 - · Sampled from the exact same template of DNA
 - · Violates assumptions of variant calling
- What's more, errors in sample/library prep will get propagated to all the duplicates
 - Just pick the "best" copy mitigates the effects of errors

= sequencing error propagated in duplicates

How to indentify duplicates

- Duplicates might come from the same input DNA template, so we will assume that reads will have same start position on reference
 - "Where was the first base that was sequenced?"
 - For paired-end (PE) reads, same start for both ends
- Identify duplicate sets, then choose representaive read based on base quality scores and other criteria
- Lots of complications:
 - clipping (MarkDuplicatesWithMateCigar)

Picard tool MarkDuplicates

- Duplicate status is indicated in SAM flag
- Duplicates are not removed, just tagged (unless you request removal)
- Downstream tools can read the tag and choose to ignore those reads
- Most GATK tools ignore duplicates by default

Sometimes do not want to do this.

- Amplicon sequencing (PCR based assay)
 - ▶ all reads start at same position by design

In somecase if the depth is too large MarkDup's will crash

Different kinds of Noise

- Random/uncorrelated (White) vs correlated/structured/biases (colored)
- ▶ Both present challenges for algorithms but non-white noise in many contexts can be especially difficult (if not impossible).
 - PCR Duplicates (MarkDups)
 - Adapter sequences (Clip)

Multi-mapper issue

- Many pipeline simple filter these reads out.
- BWA MEM problem
 - No longer sets simple flag
 - if using filter on MAPQ
- ▶ If using multi-mappers in uniq-mode need to really make sure:
 - how the algorithm deals with high multiplicity
 - random choice?
- Bowtie/SHRiMP for exhaustive multi-mappers
- CSEM (http://deweylab.biostat.wisc.edu/csem/)
 - impute likely position of multi-mappers by looking at surronding unique mappers.

Other bioinformatics file formats: BED files

- ▶ BED (0-offset)
 - standard 3 column format:
 - chromsome
 - ▶ start (first base is 0)
 - end
 - various extended version

Picard interval lists

- ▶ Used by Picard:
- Genome Header so you know what the reference is
- Standard 5 column format
 - Chromsome
 - Start (first base is 1)
 - ► Fnd
 - Strand (REQUIRED)
 - Feature Name (REQUIRED)

Other range formats: GTF,GFF

- ▶ GFF/GTF: General Feature Format (1-offset)
 - 9 Columns (see http://www.ensembl.org/info/website/upload/gff.html)
 - but 9th column is a COMMENT field that can pretty much hold anything arbtrary key/value pairs
- ► GTF: General Transfer Format == GFF v2
 - ▶ GFF with "rules" (kind of) about what goes in column 9

Other range formats; UCSC

General Formats:

Swiss Army knife of range formats

BEDTOOLS

- Genome Arithmetic
- Handles:
 - BFD
 - BAM
 - ▶ GFF/GTF
 - VCF
- ▶ Another package that is also very useful: GenomicRanges in R

Lab 3