29/11/2013 E

COMP 5-2 (RC)

T.E. (Computer) (Semester – V) Examination, Nov./Dec. 2013 (Revised Course) AUTOMATA LANGUAGE AND COMPUTATION

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer any five full questions, at least one from each Module.

2) Make suitable assumptions wherever necessary.

MODULE-I

1. a) Construct the DFA for the following language: 8 $L(M) = \{ w \in \{a,b\}^* \mid w \text{ contains baba or doesn't contain ab } \}.$ b) Construct the regular expression for the given DFA M = ({A, B, C}, {0, 1}) δ , A, {B, C} where δ is defined as { δ (A, 0) = B, δ (A, 1) = C, δ (B, 0) = A. $\delta(B, 1) = C, \delta(C, 0) = B, \delta(C, 1) = B$. 8 c) Prove that the language $L(M) = \{0^m 1^n \mid m \neq n\}$ is not regular language. 4 2. a) Construct the NFA for the language $L(M) = \{x \in \{a, b\}^* \mid x \text{ contains a substring}\}$ bb or bab). Draw the computation tree for the string bbab. 4 b) Construct the ε – NFA which accepts L(r) where $r = (0 + 11)^* (10^* + \varepsilon)$. Convert the constructed ε – NFA to NFA. 3 c) Minimize the following DFA using table filling method: 6 $M = (\{A, B, C, D, E, F, G, H), \{a, b\}, \delta, A, \{C\})$ where δ is $\delta = \{\delta(A, a) = A \}$ F, $\delta(A, b) = B$, $\delta(B, a) = C$, $\delta(B, b) = G$, $\delta(C, a) = C$, $\delta(C, b) = A$, $\delta(D, a) = G$, $\delta(D, b) = C, \ \delta(E, a) = F, \ \delta(E, b) = H, \ \delta(F, a) = G, \ \delta(F, b) = C, \ \delta(G, a) = E,$ $\delta(G, b) = G, \ \delta(H, a) = C, \ \delta(H, b) = G$. d) Construct the Mealy Machine to convert each occurrence of substring 100 by 101. Convert the Mealy Machine to equivalent Moore Machine. 7

MODULE - II

3.	a)	Construct the CFG for the language $L(G) = \{0^i1_j2^k \mid k \le i \text{ or } k \le j\}$. Convert the constructed CFG to CNF.	8
	b)	Prove that the CFL's are not closed under: i) Intersection ii) Complement.	4
	c)	Construct the PDA for the language $L(M) = \{0^n1^m2^{2m} \mid n, m \ge 0\}$	4
	d)	Show that the language $L(M) = \{a^ib^jc^k \mid i=j=k \text{ and } i, j, k \ge 1\}$ is not CFL.	4
4.	a)	Define Instantaneous Description in a PDA. Construct the bottom-up PDA for the given CFG $G = (\{S, A, B\}, \{a, b\}, \{S \rightarrow AB \epsilon, A \rightarrow aaA \epsilon, B \rightarrow bB \epsilon\}, S)$. Validate the string aaaab.	8
		Construct the CFG for the given PDA M = ({A, B}, {a, b}, {Z, X}, δ , A, Z, ϕ) where δ is defined as { δ (A, b, Z) = (A, XZ), δ (A, ϵ , Z) = (A, ϵ) δ (A, b, X) = (A, XX), δ (A, a, X) = (B, X), δ (B, b, X) = (B, ϵ), δ (B, a, Z) = (A, Z)}. Define Greibach Normal Form. Convert the following grammar to GNF	6
		$G = (\{E, T, F\}, \{+, {}^*, (,), a\}, \{E \to E + T \mid T, T \to T * F \mid F, F \to (E) \mid a\}, E).$	
		MODULE – III	
5.		Construct the Turing Machine which can find out the value of log ₂ ⁿ where n is stored as an unary number. Explain the following: i) Nondeterministic Turing Machine ii) Universal Turing Machine.	10
6.		Construct the Turing Machine to compute the function f(w) = ww. Explain briefly the Church-Turing thesis.	8
	С	Discuss the power of Turing machine. Construct the Turing machine to compute the addition of two given binary numbers. If the input on the tape is B10+01B, then the output on the tape should beBB11B	10

MODULE-IV

7. a) If L_1 and L_2 are recursively enumerable languages over Σ then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursively enumerable. 4 b) Construct the unrestricted grammar for the following language: 4 $L(G) = \{a^n b^n c^n d^n \mid n \ge 1\}.$ 4 c) Define the following: i) Non self accepting ii) Trio. d) Construct the Right Linear Grammar for the language $L(G) = \{a^nb \mid n \geq 0\} \cup \{b^na \mid n \geq 1\}. \ \ Convert \ the \ Right \ Linear \ Grammar \ to \ Left$ Linear Grammar. 8 8. a) Consider the Unrestricted Grammar with productions: 8 $S \rightarrow aBS \mid \epsilon, aB \rightarrow Ba, Ba \rightarrow aB, B \rightarrow b$. Simulate the TM. b) Explain the equivalence of Context Sensitive Grammar and Linear Bounded 4 Automation. c) Construct the context-sensitive grammar for the following language: 4 $L(G) = \{a^n b^n a^{2n} \mid n \ge 1\}.$ d) Explain the following: 4 i) Halting problem ii) Linear Bounded Automation.