Bayesian Statistics - Homework 2 Gabry et al., Visualization in Bayesian workflow (2018)

Roberto Corti

May 15, 2021

Visualization in Bayesian workflow

A pipeline for bayesian modelling

Visualization is an invaluable way of justifying and criticize a statistical model.

Phases of statistical workflow:

- Set up an initial model
- Model check
- Computational checks for the inference algorithm
- Posterior predictive checks
- Model comparison

Example: Estimate PM_{2.5} concentration through satellite data

Exploratory data analysis

More than just plotting the data

Exploratory data analysis

More than just plotting the data

▶ Model 1: simple linear regression

$$\log(\mathsf{PM}_{2.5}) \sim \mathcal{N}(\alpha + \beta \log(\mathsf{satellite}), \sigma)$$

▶ Model 2: multilevel model

$$\log(\mathsf{PM}_{2.5,j}) \sim \mathcal{N}(\mu_j, \sigma), \quad \mu_j = \alpha_0 + \alpha_j + (\beta_0 + \beta_j) \log(\mathsf{satellite}_j),$$
 where observations are stratified by WHO super-regions.

► Model 3: multilevel model

$$\log(\mathsf{PM}_{2.5,j}) \sim \mathcal{N}(\mu_j, \sigma), \quad \mu_j = \alpha_0 + \alpha_j + (\beta_0 + \beta_j) \log(\mathsf{satellite}_j),$$
 where observations are stratified by clustered super-region.

Prior predictive checking

Fake data can be almost as valuable as real data

Generative model: $\theta^* \sim p(\theta) \longrightarrow y^* \sim p(y|\theta^*) \Longleftrightarrow y^* \sim p(y)$

MCMC diagnostics

Moving beyond trace plots

Posterior predictive checks

How did we do?

Posterior predictive distribution: $p(\widetilde{y}|y) = \int d\theta \ p(\widetilde{y}|\theta)p(\theta|y)$

$$\theta^* \sim p(\theta|y) \longrightarrow \widetilde{y}^* \sim p(\widetilde{y}|\theta^*) \Longleftrightarrow \widetilde{y}^* \sim p(\widetilde{y}|y)$$

Posterior predictive checks

How did we do?

Posterior predictive distribution: $p(\widetilde{y}|y) = \int d\theta \ p(\widetilde{y}|\theta)p(\theta|y)$

$$T(\widetilde{y}) = \text{skew}(\widetilde{y})$$

Pointwise plots for predictive model comparison

Looking where a model is better than another

LOO predictive distrubution: $p(y_i|y_{-i})$

