4주차 2차시 관계 대수

[학습목표]

- 1. 관계 데이터 연산의 개념과 특징을 설명할 수 있다.
- 2. 관계 대수의 개념과 연산자의 종류를 설명할 수 있다.
- 3. 일반 집합 연산자의 종류와 기능을 알아보고 질의를 표현하는 방법을 설명할 수 있다.

학습내용1: 관계데이터연산의 개념

. 데이터 모델 = 데이터 구조 + 연산 + 제약조건

- 데이터 구조 : 3주차 - 관계 데이터 모델

- 제약 조건 : 4주차 1차시 - 관계 데이터 모델의 제약 조건

1. 관계 데이터 연산 (Relational Data Operation)

- . 원하는 데이터를 얻기 위해 릴레이션에 필요한 처리를 요구하는 것
 - 질의 (Query) 데이터에 대한 처리 요구
- . 데이터베이스 구성 요소중 데이터 언어의 역할을 함
- . 관계 데이터 모델의 연산의 약칭
- . 연산 종류
 - 관계 대수 : 데이터의 처리 과정을 순서대로 기술
 - 관계 해석 : 처리하고자하는 데이터가 무엇인지만 기술

2. 관계대수와 관계해석의 특징

- . 차이점
 - 데이터를 얻기 위한 처리 절차를 자세히 기술하는 정도
- . 데이터를 처리하는 기능과 처리를 요구하는 표현
 - 관계대수와 관계해석은 능력이 동등

그림, 관계대수 질의와 관계해석 질의 변경

- . 상용화된 관계 데이터베이스에서는 실제로 사용되지 않는 개념적인 언어
- . 학습하는 이유
 - 새로운 데이터 언어에 대하여 유용성을 검증하는 기준
 - 상용화된 데이터 언어를 학습하기 전에 연산의 기본이 되는 관계 데이터 언어를 이해하는 것이 중요함.

학습내용2 : 관계 대수

1. 관계 대수의 개념

- . 원하는 결과를 얻기 위해 릴레이션의 처리 과정을 순서대로 기술하는 언어
- · 절차 언어 (Procedural Language)
- . 피연산자 : 릴레이션
 - 관계대수는 릴레이션을 연산한다.
- . 관계대수식 (Relational Algebra Expression) : 연산을 수행하기 위한 식
 - 단항 연산자

연산자 (조건) 릴레이션

- 이항 연산자

릴레이션1 연산자 (조건) 릴레이션2

- . 결과 : 릴레이션
- . 릴레이션을 처리하는 연산자들의 모임
 - 대표 연산자 8개
 - 일반 집합 연산자(Set Operation)와 순수 관계 연산자(Relational Operation)로 분류됨

2. 관계 대수 연산자의 종류

표. 관계대수 연산자의 종류

종류	연산자	기호
	합집합	U
이비 기하 어지기	교집합	\cap
일반 집합 연산자	차집합	-
	카티션 프로덕트	X
순수 관계 연산자	셀렉트	σ
	프로젝트	π
	조인	M
	디비전	÷

학습내용3 : 일반 집합 연산자

1. 일반집합 연산자 (Set Operation) 개요

. 릴레이션이 투플의 집합이라는 개념을 이용하는 연산자

(A) 일반 집합 연산자의 종류와 의미

표. 일반 집합 연산자의 종류와 의미

연산자	기호	표현	의미
합집합	U	$R \cup S$	릴레이션 R과 S의 합집합을 반환
교집합	Λ	$R \cap S$	릴레이션 R과 S의 교집합을 반환
차집합	_	R-S	릴레이션 R과 S의 차집합을 반환
카티션 프로덕트	×	R×S	릴레이션 R의 각 투플과 릴레이션 S의 각 투플을 모두 연결하여 만들어진 새로운 투플을 반환

(B) 일반 집합 연산자의 기능

- (C) 일반 집합 연산자의 특성
 - 2개의 피연산자가 필요함
 - * 2 개의 릴레이션을 대상으로 연산을 수행
 - 두 릴레이션의 합병이 가능하여야 함 (합집합, 교집합, 차집합)
 - * 합병 가능 (Union-Compatible) 조건
 - (a) 두 릴레이션의 차수가 같아야 함
 - (b) 두 릴레이션에서 서로 대응되는 속성의 도메인이 같아야 함

고객릴레이션

- 12-11-12		
고객번호 (char(6))	이름 (char(12))	나이 (int)
201122	홍길동	25
201234	이남이	34
201511	박기세	30

사원릴레이션

122 " 12		
사번 (char(6))	이름 (char(12))	직위 (char(10))
200233	홍독도	이사
200544	이거제	부장
201022	김홍도	대리

그림. 합병이 불가능한 경우

고객릴레이션

고객번호 (char(6))	이름 (char(12))	나이 (int)
201122	홍길동	25
201234	이남이	34
201511	박기세	30

사원릴레이션

사번 (char(6))	이름 (char(12))	나이 (int)
200233	홍독도	53
200544	이거제	44
201022	김홍도	32

그림, 합병이 가능한 경우

2. 일반 집합 연산자의 종류 및 기능

- (A) 합집합 (Union) 연산자
- 합병 가능한 두 릴레이션 R과 S의 합집합
 - * 릴레이션 R에 속하거나 릴레이션 S에 속하는 모든 투플로 결과 릴레이션 구성

릴레이션R ∪ 릴레이션S

- 결과 릴레이션의 특성

결과 릴레이션의 차수

릴레이션 R의 차수

결과 릴레이션의 카디널리티

≦

릴레이션 R의 카디널리티

릴레이션 S의 카디널리티

- 교환적 특징

릴레이션R ∪ 릴레이션S = 릴레이션S ∪ 릴레이션R

- 결합적 특징

(릴레이션R ∪ 릴레이션S) ∪ 릴레이션T

=

릴레이션R ∪ (릴레이션S ∪ 릴레이션T)

- 예 : 고객릴레이션과 사원릴레이션의 합집합

고객릴레이션

사원릴레이션

고객번호 (char(6))	이름 (char(12))	나이 (int)
201122	홍길동	25
201234	이남이	34
201511	박기세	30

사번 (char(6))	이름 (char(12))	나이 (int)
200233	홍독도	53
201234	이남이	34
201022	김홍도	32

고객릴레이션 U 사원릴레이션

고객번호 (char(6))	이름 (char(12))	나이 (int)
201122	홍길동	25
201234	이남이	34
201511	박기세	30
200233	홍독도	53
201022	김홍도	32

그림. 합집합 연산

- (B) 교집합 (Intersection) 연산자
- 합병 가능한 두 릴레이션 R과 S의 교집합
 - * 릴레이션 R과 릴레이션 S에 공통으로 속하는 모든 투플로 결과 릴레이션 구성

릴레이션R ∩ 릴레이션S

- 결과 릴레이션의 특성

- 교환적 특징

릴레이션R ∩ 릴레이션S = 릴레이션S ∩ 릴레이션R

- 결합적 특징

(릴레이션R ∩ 릴레이션S) ∩ 릴레이션T

=

릴레이션R ∩ (릴레이션S ∩ 릴레이션T)

- 예 : 고객릴레이션과 사원릴레이션의 교집합

┡고객릴레이션

고객번호 이름 나이 (char(12)) (int) 201122 홍길동 25 201234 이남이 34 201511 박기세 30

사원릴레이션

사번 (char(6))	이름 (char(12))	나이 (int)
200233	홍독도	53
201234	이남이	34
201022	김홍도	32

고객릴레이션 ○ 사원릴레이션

고객번호	이름	나이
(char(6))	(char(12))	(int)
201234	이남이	34

그림. 교집합 연산

- (C) 차집합 (Difference) 연산자
- 합병 가능한 두 릴레이션 R과 S의 차집합
 - * 릴레이션 R에는 존재하고 릴레이션 S에는 존재하지 않는 투플로 구성된 릴레이션 반환

릴레이션R - 릴레이션S

- 결과 릴레이션의 특성

- 교환적, 결합적 특징이 없음

- 예 : (고객릴레이션 - 사원릴레이션) 과 (사원릴레이션 - 고객릴레이션)

고객릴레이션

고객번호 이름 나이 (char(12)) (int) 201122 홍길동 25 201234 이남이 34 201511 박기세 30

사원릴레이션

사번 (char(6))	이름 (char(12))	나이 (int)
200233	홍독도	53
201234	이남이	34

고객릴레이션 - 사원릴레이션

고객번호 (char(6))	이름 (char(12))	나이 (int)			
201122	홍길동	25			
201511	박기세	30			

사원릴레이션 - 고객릴레이션

고객번호	이름	나이	
(char(6))	(char(12))	(int)	
200233	홍독도	53	

그림, 차집합 연산

- (D) 카티션 프로덕트 (Cartesian Product) 연산자
 - 두 릴레이션 R과 S의 카티션 프로덕트
 - * 릴레이션 R에 속한 각 투플과 릴레이션 S에 속한 각 투플을 모두 연결하여 만들어진 새로운 투플 생성

릴레이션R × 릴레이션S

- 결과 릴레이션의 특성

- 교환적 특징이 있음

릴레이션R × 릴레이션S = 릴레이션S × 릴레이션R

- 결합적 특징이 있음

(릴레이션R × 릴레이션S) × 릴레이션T

=

릴레이션R × (릴레이션S × 릴레이션T)

- 예 : 고객릴레이션 x 사원릴레이션

고객릴레이션

사원릴레이션

고객번호 (char(6))	이름 (char(12))	나이 (int)
201122	홍길동	25
201234	이남이	34
201511	박기세	30

사번 (char(6))	이름 (char(12))	나이 (int)
200233	홍독도	53
201234	이남이	34

고객릴레이션 × 사원릴레이션

고객.고객번호 (char(6))	고객.이름 (char(12))	고객.나이 (int)	사원.사번 (char(6))	사원.이름 (char(12))	사원.나이 (int)
201122	홍길동	25	200233	홍독도	53
201122	홍길동	25	201234	이남이	34
201234	이남이	34	200233	홍독도	53
201234	이남이	34	201234	이남이	34
201511	박기세	30	200233	홍독도	53
201511	박기세	30	201234	이남이	34

그림. 카디션 프로덕트 연산

- 일반 집합 연산자의 종류와 의미

표. 일반 집합 연산자의 종류와 의미

연산자	기호	표현	의미
합집합	U	$R \cup S$	릴레이션 R과 S의 합집합을 반환
교집합	Λ	$R \cap S$	릴레이션 R과 S의 교집합을 반환
차집합	_	R-S	릴레이션 R과 S의 차집합을 반환
카티션 프로덕트	×	R×S	릴레이션 R의 각 투플과 릴레이션 S의 각 투플을 모두 연결하여 만들어진 새로운 투플을 반환

[학습정리]

- 1. 관계 데이터 연산은 원하는 데이터를 얻기 위해 릴레이션에 필요한 처리를 요구하는 것이다.
- 2. 일반집합 연산자는 릴레이션이 투플의 집합이라는 개념을 이용하는 연산자이며, 합집합, 교집합, 차집합, 카디션 프로덕트 연산자가 있다.

