

Problem R-02N. In this problem you are asked to determine which two isomers are formed in the reduction of an olefin by analyzing the ¹H NMR spectra.

Four diastereomers could be formed. In your answers use the numbering system of structure **A** (e.g. H_{1a} or H_{1e}).

(a) Analyze key signals in the NMR spectrum of **R-02N-1**. Identify the signals below, report chemical shifts and couplings and report them in the standard format. Assign the signals. Compound **R-02N-1** is structure _____. Briefly explain.

(b) Analyze key signals in the NMR spectrum of **R-02N-2**. Identify the signals below, report chemical shifts and couplings and report them in the standard format. Assign the signals. Compound **R-02N-2** is structure _____. Briefly explain.

(c) Analyze the signals at δ 1.5 in **R-02N-1**, and identify which proton corresponds to this multiplet.

(d) Can you rationalize the different appearance of the signals near δ 3.8 in the two isomers?

Problem R-02N. In this problem you are asked to determine which two isomers are formed in the reduction of an olefin by analyzing the ¹H NMR spectra.

$$R-02N-1 + R-0N-2$$
 Bn = CH₂-Ph

Four diastereomers could be formed. In your answers use the numbering system of structure **A** (e.g. H_{1a} or H_{1e}).

(a) Analyze key signals in the NMR spectrum of **R-02N-1**. Identify the signals below, report chemical shifts and couplings and report them in the standard format. Assign the signals. Compound **R-02N-1** is structure _____. B Briefly explain.

The downfield protons (in addition to the OMe and the NH) will be CH-CO₂Me (H²), CH-NHBn (H³), and NH-CH₂P.

 $\rm H^2:~\delta~3.03$ narrow multiplet, possible tm, must be eq proton $\rm H^3:~\delta~2.66,~dt,~J=12,~4.5~Hz,~ax~proton,~with~eq~neighbors$ From the models at the right, expect ax CH-N (H³) to be <code>upfield</code> of eq CH-CO $_2$ Me (H²), by 0.45 ppm, and that is what we see here (0.63 ppm).

Can also assign H⁴(ax) and H⁴(eq): expect 3 large J for H⁴(ax) proton, see a q, J = 12 Hz at δ 1.49), and one large two small coupling for H⁴(eq), see dt, J = 12, 2 Hz at δ 1.92.

(b) Analyze key signals in the NMR spectrum of **R-02N-2**. Identify the signals below, report chemical shifts and couplings and report them in the standard format. Assign the signals. Compound **R-02N-2** is structure _____. C Briefly explain.

$$H^2$$
: δ 2.52, dt, $J = 13$, 4.5 Hz, must be ax proton

$$H^{3}$$
: δ 3.26, q, J = 3 Hz, eq proton

From the models expect ax CH-N (H³) to be well downfield of eq CH-CO₂Me (H²), by 0.56 ppm, and that is what we see here (0.74 ppm).

assignment of A and D to either R-02N-1 or R-02N-2. However, the coupling is consistent with either B and C be assigned to either R-02N-1 or R-02N-2. However, the chemical shifts allow a clear distinction to be made.

The NH-CH₂-Ph protons are diastereotopic in this isomer, δ 3.63, d, J = 13.4 Hz and δ 3.84, d J = 13.4 Hz

Can also assign $H^1(ax)$ and $H^1(eq)$: see a q, J = 13 Hz at δ 1.52 for $H^1(ax)$, and a dt, J = 13, 3 Hz at δ 1.84 for $H^1(eq)$.

(c) Analyze the signals at δ 1.5 in **R-02N-1**, and identify which proton corresponds to this multiplet.

$$\delta$$
 1.49, q, J = 12 Hz
H
CO₂Me
H
NHBn
H δ 1.92, dt, J = 9, 2 Hz

(d) Can you rationalize the different appearance of the signals near δ 3.8 in the two isomers?

It seems likely that in C the axially oriented -NH-CH₂-Ph is more conformationally constrained, leading to the much larger diastereotopic effect than in B where the -NH-CH₂-Ph group is equatorial and there is no detectable diastereotopic shift.

