Übungsblatt 8 - Lösungsvorschläge

Kilian Bruns

19. Juni 2020

Aufgabe 1.1

(a) \Rightarrow (b): Zu zeigen: $\forall p \in f^{-1}(O) \exists \delta > 0 : K_{\delta}(p) \subset f^{-1}(O)$.

Seien f stetig, $O \subset Y$ offen und $p \in f^{-1}(O)$.

Es gilt $f(p) \in O$. Da O offen ist existiert ein $\varepsilon > 0$ mit $K_{\varepsilon}(f(p)) \subset O$, d.h. alle y mit $d(y, f(p)) < \varepsilon$ liegen in O. Da f stetig ist, $\exists \delta > 0$ sodass $d(f(x), f(p)) < \varepsilon$ für alle $x \in X$ mit $d(x, p) < \delta$. Aber aus $d(f(x), f(p)) < \varepsilon$ folgt $f(x) \in O$ und gleichzeitig $x \in f^{-1}(O)$.

Somit liegen alle $x \in X$ mit $d(x, p) < \delta$ in $f^{-1}(O)$, d.h. $K_{\delta}(p) \subset f^{-1}(O)$. $\implies f^{-1}(O)$ ist offen.

 $(b)\Rightarrow(a)$:

Seien $f^{-1}(O)$ offen für alle offenen $O, p \in X$ und $\varepsilon > 0$.

Da $K_{\varepsilon}(f(p))$ offen ist, ist $f^{-1}(K_{\varepsilon}(f(p)))$ offen.

Da
$$p \in f^{-1}(K_{\varepsilon}(f(p))) \implies \exists \delta > 0 : K_{\delta}(p) \subset f^{-1}(K_{\varepsilon}(f(p)))$$

D.h. alle $x \in X$ mit $d(x, p) < \delta$ erfüllen

$$x \in f^{-1}(K_{\varepsilon}(f(p))) \iff f(x) \in K_{\varepsilon}(f(p))$$

 $\iff d(f(x), f(p)) < \varepsilon$

Da ε beliebig war, folgt f ist stetig.

Aufgabe 1.2

Sei A eine abgeschlossene Menge. Es gilt: $\forall M \subset Y: f^{-1}(M^C) = f^{-1}(M)^C$. Damit ergeben sich folgende Äquivalenzen:

 $\forall A$ abgeschl. gilt $f^{-1}(A)$ ist abgeschl. $\iff \forall A$ mit A^C offen gilt $f^{-1}(A)$ ist abgeschl. $\iff \forall A$ mit A^C offen gilt $f^{-1}(A^C)^C$ ist abgeschl. $\iff \forall A$ mit A^C offen gilt $f^{-1}(A^C)$ ist offen.

Setze nun $O := A^C$ und man erhält die Behauptung: $\forall O$ offen gilt $f^{-1}(O)$ ist offen.

Aufgabe 2

Betrachte zunächst zwei konstante Lösungen:

 $y_0 = 0$ liefert die maximale Lösung $y(t) \equiv 0$, welche auf ganz \mathbb{R} definiert ist.

 $y_0 = K$ liefert die maximale Lösung $y(t) \equiv K$, welche ebenfalls auf ganz \mathbb{R} definiert ist.

Alle weiteren Lösungen y(t) dürfen also die Werte 0 und K nicht annehmen. Es muss also für alle weiteren Lösungen gelten:

$$\begin{array}{cccc} y_0 < 0 & \Longrightarrow & y(t) < 0 & \text{für alle } t, \\ 0 < y_0 < K & \Longrightarrow & 0 < y(t) < K & \text{für alle } t, \\ K < y_0 & \Longrightarrow & K < y(t) & \text{für alle } t \end{array}$$

Die gegebene Differentialgleichung kann mit Separation der Variablen gelöst werden.

$$\underbrace{\int_{y_0}^y \frac{dz}{z(K-z)}}_{=:I} = \underbrace{\int_0^t ds}_{=t} \tag{1}$$

Löse im Folgenden I:

$$I = \int_{y_0}^{y} \frac{dz}{z(K - z)} \stackrel{*}{=} \frac{1}{K} \int_{y_0}^{y} \frac{1}{z} + \frac{1}{(K - z)} dz$$

$$= \frac{1}{K} \left[\ln|z| - \ln|K - z| \right]_{y_0}^{y}$$

$$= \frac{1}{K} \left[\ln\left|\frac{z}{K - z}\right| \right]_{y_0}^{y}$$

$$= \frac{1}{K} \ln\left|\frac{y}{K - y}\right| - \frac{1}{K} \ln\left|\frac{y_0}{K - y_0}\right|$$

* z.B. mittels Partialbruchzerlegung Setze dies nun in (1) ein:

$$\frac{1}{K} \ln \left| \frac{y}{K - y} \right| - \frac{1}{K} \ln \left| \frac{y_0}{K - y_0} \right| = t$$

$$\Leftrightarrow \qquad \ln \left| \frac{y}{K - y} \right| = \ln \left| \frac{y_0}{K - y_0} \right| + Kt$$

$$\Leftrightarrow \qquad \left| \frac{y}{K - y} \right| = \left| \frac{y_0}{K - y_0} \right| e^{Kt}$$

$$\Leftrightarrow \qquad \frac{y}{K - y} = \frac{y_0}{K - y_0} e^{Kt}$$

$$\Leftrightarrow \qquad \frac{K - y}{y} = \frac{K - y_0}{y_0} e^{-Kt}$$

$$\Leftrightarrow \qquad \frac{K}{y} - 1 = \left(\frac{K}{y_0} - 1 \right) e^{-Kt}$$

$$\Leftrightarrow \qquad \frac{K}{y} = 1 - \left(1 - \frac{K}{y_0} \right) e^{-Kt}$$

$$\Leftrightarrow \qquad \frac{K}{y} = \frac{y_0 - (y_0 - K) e^{-Kt}}{y_0}$$

$$\Leftrightarrow \qquad y(t) = \frac{y_0}{y_0 - (y_0 - K) e^{-Kt}}$$

** Betrag entfällt hier, da $\frac{y}{K-y}$ und $\frac{y_0}{K-y_0}$ dasselbe Vorzeichen haben. Betrachte nun, abhängig von y_0 , wo die gefundene Lösung definiert ist:

- 1. $\frac{0 < y_0 < K:}{\Longrightarrow y_0 (y_0 K)e^{-Kt} = y_0 + (K y_0)e^{-Kt} > 0}$ $\Longrightarrow y \text{ ist "überall definiert}.$
- 2. Sonst ist y für $y_0 (y_0 K)e^{-Kt} = 0$ nicht definiert, d.h. für $t = t_0 = -\frac{1}{K} \ln \frac{y_0}{y_0 K}$. Je nachdem, ob $t_0 < 0$ oder $t_0 > 0$ ist, gibt es verschiedene Ergebnisse. Deshalb müssen folgende Fälle betrachtet werden:

$$\frac{K < y_0:}{y \text{ ist definiert auf}} \left(\underbrace{-\frac{1}{K} \ln \frac{y_0}{y_0 - K}}, +\infty \right) \text{ und } \lim_{t \to t_0} (y(t)) = +\infty$$

$$\implies \text{ Keine Fortsetzung möglich.}$$

$$\underline{y_0 < 0}$$
:
 $y \text{ ist definiert auf } \left(-\infty, \underbrace{-\frac{1}{K} \ln \frac{y_0}{y_0 - K}} \right)$

Aufgabe 3.1

Gegeben ist die Differentialgleichung:

$$y' = -\frac{y}{1 + e^{-t^2} + y^2} = F(t, y)$$

Bemerke, dass F(t, y) stetig ist. Es gilt:

$$\left| \frac{\partial F}{\partial y} \right| = \left| -\frac{1}{1 + e^{-t^2} + y^2} + \frac{2y^2}{(1 + e^{-t^2} + y^2)^2} \right|$$

$$\leq \left| \frac{1}{1 + e^{-t^2} + y^2} \right| + 2 \left| \frac{y^2}{(1 + e^{-t^2} + y^2)^2} \right|$$

$$\leq 1 + 2 = 3, \text{ also konstant}$$

Damit ist F Lipschitz-stetig bezüglich y. An dieser Stelle folgt dann die Behauptung mit dem globalen Satz von Picard-Lindelöf.

Aufgabe 3.2

Sei y konstante Lösung.

$$y(t) = z, \ \forall t$$
 $\Longrightarrow y'(t) = F(t, z) = 0, \ \forall t$ $\Longrightarrow z = 0$

Also ist die einzige konstante Lösung $y(t) \equiv 0$.

Aufgabe 3.3

(a) $y(t_0) = y_0 > 0 \implies y(t) > 0$ für alle t. (Anmerkung: y(t') = 0 ist an dieser Stelle aufgrund der Eindeutigkeit nicht möglich. Es folgt nämlich $y(t) \equiv 0$ für alle t, was ein Widerspruch zu $y_0 > 0$ ist.)

$$\Rightarrow F(t, y(t)) < 0$$
 für alle t

$$\Rightarrow y'(t) = F(t, y(t)) < 0$$
 für alle t

 \Rightarrow y ist streng monoton fallend.

Also existiert ein $A = \lim_{t \to +\infty} (y(t)) \ge 0$. Annahme: A > 0:

$$\implies \lim_{t\to +\infty} (y'(t)) = \lim_{t\to +\infty} \left(-\frac{y(t)}{1+e^{-t^2}+y(t)^2} \right) = -\frac{A}{1+A^2} < 0$$

Laut PA4 gilt in diesem Fall: $y(t) \longrightarrow -\infty$ für $t \to +\infty$, was der Annahme widerspricht.

$$\Rightarrow A = 0$$

$$\implies \lim_{t \to +\infty} (y(t)) = 0$$

(b) y ist streng monoton fallend. Also existiert ein $B \in \mathbb{R} \cup \{+\infty\}$, sodass $\lim_{t \to -\infty} (y(t)) = B$. Annahme: $B \in \mathbb{R}$.

$$\implies \lim_{t \to -\infty} (y'(t)) = \lim_{t \to -\infty} \left(-\frac{y(t)}{1 + e^{-t^2} + y(t)^2} \right) = -\frac{B}{1 + B^2} < 0$$

Auch hier gilt nun nach PA4: $y(t) \longrightarrow +\infty$ für $t \to +\infty$, was der Annahme widerspricht.

$$\Rightarrow B = +\infty$$

$$\implies \lim_{t \to -\infty} (y(t)) = +\infty$$

Aufgabe 3.4

Überprüfe, ob z(t) = -y(t) ebenfalls die Differentialgleichung löst:

$$\begin{split} z'(t) &= -y'(t) \\ &= -\left(-\frac{y(t)}{1 + e^{-t^2} + y(t)^2}\right) \\ &= -\frac{-y(t)}{1 + e^{-t^2} + y(t)^2} \\ &= -\frac{z(t)}{1 + e^{-t^2} + z(t)^2} \quad \checkmark \end{split}$$

Sei y maximale Lösung mit $y_0 < 0$. Daraus folgt: z ist Lösung auf \mathbb{R} mit $z(t_0) = z_0 = y_0 > 0$. z ist monoton fallend (\Leftrightarrow y ist monoton wachsend). Damit verhält sich y folgendermaßen:

$$\begin{array}{ccc} \underline{t \to +\infty} : & \lim_{t \to +\infty} (z(t)) = 0 \Longleftrightarrow \lim_{t \to +\infty} (-y(t)) = 0 \\ & \Longleftrightarrow \lim_{t \to +\infty} (y(t)) = 0 \\ \\ \underline{t \to -\infty} : & \lim_{t \to -\infty} (z(t)) = +\infty \Longleftrightarrow \lim_{t \to -\infty} (-y(t)) = +\infty \\ & \Longleftrightarrow \lim_{t \to -\infty} (y(t)) = -\infty \end{array}$$

Aufgabe 4.1

Betrachte die Ableitung von $f(y) = y \ln(y)$. $f'(y) = \ln(y) + 1$ ist unbeschränkt auf $(0, +\infty)$. Somit folgt direkt, dass f nicht Lipschitz-stetig sein kann.

Aufgabe 4.2

Gegeben ist die Differentialgleichung $y'(t) = y(t) \ln(y(t))$ mit Anfangswert $y(t_0) = y_0$. Es gilt

$$y(t) > 0 \implies u(t) = \ln(y(t))$$
 wohldefiniert
 $\iff y(t) = e^{u(t)}$
 $\implies y'(t) = u'(t)e^{u(t)}$.

Setze nun y und y' in die DGL ein:

$$y' = y \ln(y) \iff u'e^u = e^u u$$

 $\iff u' = u$

y ist also genau dann eine Lösung des gegebenen AWPs, wenn $u = \ln(y)$ Lösung von

$$u' = u, \ u(t_0) = \ln(y_0)$$

ist. Das ist eine lineare Differentialgleichung erster Ordnung. Die Lösung u
 ist eindeutig bestimmt und auf $\mathbb R$ definiert. Somit ist auch y eindeutig bestimmt und auf $\mathbb R$ definiert.