

## CSE 331 Computer Or ganization Project 3 = MNPS Load-Store

## Due date: Dec 11, Wed. 17:00 (Moodle)

In this project you will design a processor that can only support below instructions.

|                        | MNE- | FOR- |                                              | - 1 | OPCODE/ |
|------------------------|------|------|----------------------------------------------|-----|---------|
|                        | MON- | MAT  |                                              |     | FUNCT   |
| NAME                   | IC   |      | OPERATION (in Verilog)                       |     | (Hex)   |
| Load Byte              | 1b   | I    | $R[rt]=\{24'b0, M[R[rs]+ZeroExtImm](7:0)\}$  | (3) | 20      |
| Load Byte Unsigned     | lbu  | I    | $R[rt]=\{24'b0, M[R[rs]+SignExtImm](7:0)\}$  | (2) | 24      |
| Load Halfword          | 1h   | I    | $R[rt]=\{16'b0, M[R[rs]+ZeroExtImm](15:0)\}$ | (3) | 21      |
| Load Halfword Unsigned | lhu  | I    | $R[rt]=\{16'b0, M[R[rs]+SignExtImm](15:0)\}$ | (2) | 25      |
| Load Upper Imm.        | lui  | I    | $R[rt]=\{imm,16'b0\}$                        |     | f       |
| Load Word              | lw   | I    | R[rt]=M[R[rs]+SignExtImm]                    | (2) | 23      |
| Store Byte             | sb   | I    | M[R[rs]+SignExtImm] (7:0)=R[rt](7:0)         | (2) | 28      |
| Store Halfword         | sh   | I    | M[R[rs]+SignExtImm] (15:0)=R[rt](15:0)       | (2) | 29      |
| Store Word             | sw   | I    | M[R[rs]+SignExtImm]=R[rt]                    | (2) | 2b      |

You have to implement instruction and data memory and register modules. Use your 1-bit ALU in your previous design as a module.

You have to write your own testbench on Verilog and show that the project is working right. Learn how to initialize and read a memory in PS.

Write a report that explains your Verilog modules and the testbench results. You should test all operations that ALU allows. Also report how many logic gates you used for the ALU.

## RULES!!!

- 1. Other than register and memory, you cannot use any other logic gates than AND, OR and NOT. (For instance XOR is not allowed.)
- 2. You can only use structural Verilog. No dataflow, no assign statement no behavioral Verilog.
- 3. ONLY THE INSTRUCTIONS IN THE TABLE WILL BE SUPPORTED. OTHERWISE Opts.
- 4. Any not simulating Verilog project gets at most 20pts.
- 5. Any cheating means -100pts whether giving or taking the design.
- 6. You have to use hierarchy and different modules as described here.
- 7. The project will be explained in PS. So attend the PS.
- 8. If you can show your design working on actual FPGA board than you get 20pts.









WWW.PHDCOMICS.COM