CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 12

Posted Monday 3 February 2014. Due 1pm Friday 14 February 2014.

- 12. [25 points]
 - (a) Suppose that $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear operator. Prove there exists a matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ such that f is given by $f(\mathbf{u}) = \mathbf{A}\mathbf{u}$. Hint: Each $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2$ can be written as $\mathbf{u} = u_1\mathbf{e}_1 + u_2\mathbf{e}_2$, where

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Since f is a linear operator, we have $f(\mathbf{u}) = u_1 f(\mathbf{e}_1) + u_2 f(\mathbf{e}_2)$. Your formula for the matrix **A** may include the vectors $f(\mathbf{e}_1)$ and $f(\mathbf{e}_2)$.

- (b) Now we want to generalize the result in part (a): Show that if $f: \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator, then there exists a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ such that $f(\mathbf{u}) = \mathbf{A}\mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^n$.
- (c) Now we want to generalize further: Show that if $f: \mathbb{R}^n \to \mathbb{R}^m$ is a linear operator, then there exists a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ such that $f(\mathbf{u}) = \mathbf{A}\mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^n$.