Software Engineering

User Guide

Project – 24 Microstructure-Segmentation

1.	Install the necessary packages using pip OR create a conda environment							
	• torch 1.2.0							
	• torchvision 0.2.2							
	• scikit-image 0.15.0							
	• pytorch 1.1.0							
	• pillow 6.0.0							
	• python 3.6.8							
	• numpy 1.16.3							
	• matplotlib 3.1.0							
	• opency							
	• matplotlib							
2.	2. Navigate to the Final_Code folder							
3.	Launch the command prompt OR the conda environment (if you have created any)							
4.	Run the script Microstructure_segmentation.py using the command:							
	python Microstructure_segmentation.py .							

- **2.** How to use the Microstructure -Segmentation tool
 - 1. Image Processing Technique (Histogram approach):

- To run this, one must first execute step 3 to generate subimages of size 256x256.
- We have provided 5 sample images in the **HistogramInput** folder.
- Select one ground truth image from **HistogramInput/GroundTruthImages** folder.
- Select one corresponding id original image from **HistogramInput/OrignalImages** folder.
- Select the folder where you want to save the output image.
- Click on proceed Button
- After completion, the application provides a notification that the task is done

2. Deep Learning Technique (UNET approach):

• Click on Select Input Image Folder to select the folder containing all the image files for segmentation.

(Note: This technique is designed to perform segmentation on multiple images at once. Hence, the folder containing the image file/files must be provided as input. This technique reads all images present in the input folder. The images must be of size 256x256) We have provided 5 sample images in the **UnetInput** folder.

- Click on Select Folder to Save to browse through your computer and specify the folder where the segmented images can be stored.
- Next, hit Proceed to start the segmentation process.
- You may refer to the log showing the number of input images processed. This is displayed on command prompt for the application

```
Unet Implementation for user input
Segmenting image 1/11
Segmenting image 2/11
Segmenting image 3/11
Segmenting image 4/11
Segmenting image 5/11
Segmenting image 6/11
Segmenting image 7/11
Segmenting image 8/11
Segmenting image 9/11
Segmenting image 9/11
Segmenting image 10/11
Segmenting image 11/11
```

• After completion, the application provides a notification that the task is done

3. Make samples from image:

Owing to data confidentiality, we cannot provide the main image that was used to create sub-images. However, you can check the working of this module by selecting .tif image.

				-		×
Micro	Structure	Segmenta	tion	То	ol	
	Making Sam	ple of Imag	es			
	Select Gro	und truth Image				
	Select (Orignal Image				
	Select F	Folder to Save				
	P	roceed				
	Return	To Main Page				
		Quit				

4. Click "Quit" to close the application