MTH 311 Homework 1

Philip Warton

January 14, 2020

1.3.1

a.)

Write a formal definition for infimum:

A real number t is a greatest lower bound for a set $A \subseteq \mathbb{R}$ if it meets the following conditions:

- a) t is a lower bound for A
- b) If b is any lower bound for A, then $b \le t$

b.)

Given a set $A \subseteq \mathbb{R}$, and a lower bound t, $t = \inf A$ if and only if for every choice of $\epsilon > 0$, $\exists a \in A$ such that $t + \epsilon > a$.

Proof. Assume $t \in \mathbb{R}$ is a lower bound for a set $A \subseteq \mathbb{R}$. We want to show that $t = \inf A$ if and only if for every choice of $\epsilon > 0$, $\exists a \in A$ such that $t + \epsilon > a$. Let us show that the implication holds in each direction.

"\(\Rightarrow\)" Assume that $t=\inf A$. We have $t+\epsilon>t$ for all $\epsilon>0$, which by our definition from 1.3.1 a.) means that $t+\epsilon$ cannot be a lower bound for A, since any lower bound b has the property $b\leqslant t< t+\epsilon$. Therefore, by definition of lower bound, $\exists a\in A: t+\epsilon>a$.

"\(\infty\)" Assume now that $\forall \epsilon > 0, \exists a \in A$ such that $t + \epsilon > a$. This means that $t + \epsilon$ is not a lower bound for A for all $\epsilon > 0$, by defition of lower bound. Since $t + \epsilon$ is not a lower bound for A with any $\epsilon > 0$ chosen arbitrarily, it must be the case that any lower bound $b \in \mathbb{R}$ for A satisfies the following: $b = t + x \ \exists x \leqslant 0$. This implies $b \leqslant t$ for any lower bound b. And therefore $t = \inf A$.

1.3.3

a.)

Let $A \neq \emptyset$ and bounded below, and define $B = \{b \in \mathbb{R} : b \text{ is a lower bound for } A\}$. $\sup B = \inf A$.

Proof. Let s be the infimum of A. We know that $s \geqslant b$ where b is any lower bound for A. Therefore $s \geqslant b \ \forall b \in B$, so we have that s is an upper bound for B. Let t be an upper bound for B chosen arbitrarily. If there exists some t such that t < s, then we would have $b \leqslant t < s \ \forall b \in B$, therefore $s \notin B$ and s would not be an upper bound for A (contradiction). To avoid this contradiction we must say that for any upper bound t for B, $t \geqslant s$. Having shown that s is both an upper bound for B and that for any other upper bound t, $s \leqslant t$, it can be said that $s = \sup B$.

b.)

There is no need to assert that greatest lower bounds exist as part of the Axiom of Completeness because one could always choose the set B of lower bounds, and by finding the least upper bound for B, you find the greatest lower bound for a bounded below set A.

1.3.5

a.)

Let $A \subseteq \mathbb{R}$ and let $c \in \mathbb{R}$ and define the set $cA = \{ca : a \in A\}$. Want to show that $c \sup A = \sup cA$, given c > 0.

Proof. Let $s = \sup A$. We have $s \geqslant a \ \forall a \in A$. Multiplying both sides by c > 0 we get $cs \geqslant ca \ \forall a \in A$. By definition of upper bound we have cs is an upper bound for cA. Since $cs = c\sup A$, we have that $c\sup A$ is an upper bound for cA.

Let b be an upper bound for cA chosen arbitrarily. By definition we have $b \geqslant ac \ \forall a \in A$. Dividing by c we get $\frac{b}{c} \geqslant a \ \forall a \in A$. Then $\frac{b}{c}$ is an upper bound for A. Since $s = \sup A$ and $\frac{b}{c}$ is an upper bound for A, we have $\frac{b}{c} \geqslant s$ by definition of least upper bound. We can multiply both sides by c and get $b \geqslant cs$ which is equivalent to $b \geqslant c\sup A$. Thus any upper bound b for cA is greater or equal to $c\sup A$. Since $c\sup A$ is an upper bound for cA, and $c\sup A \leqslant b$ where b is an upper bound for cA, by definition of least upper bound we have $c\sup A = \sup cA$.

b.)

Let $A\subseteq\mathbb{R}$ and let $c\in\mathbb{R}$ and define the set $cA=\{ca:a\in A\}$. Postulate: $c\sup A=\inf cA\ \forall c<0$.