Ecuaciones Diferenciales de Primer Orden – Parte 3

Prof. J. Rivera Noriega

ITAM

Otoño de 2020

Más métodos cuantitativos

Recordemos que queremos obtener métodos para resolver EDO de primer orden de la siguiente lista:

- Ecuaciones separables
- Ecuaciones lineales, homogéneas y algunas no homogéneas
- Ecuación de tipo Bernoulli

En esta ocasión abordamos los tipos que nos faltaban.

Método de Coeficientes Indeterminados

Supongamos que tenemos ahora una ecuación de la forma y' + ay = h(t), donde $a \in \mathbb{R}$, y h(t) es función sólo de la variable t, y es de cierto tipo que describiremos en un momento.

Como no es separable, podríamos intentar un factor integrante μ , pero podría llevarnos a integraciones complicadas, como para la ecuación $y'+2y=\cos t$.

Revisaremos entonces un método que funciona al menos cuando la función de la parte no homogénea de la ecuación h(t) tiene la forma

$$Be^{\alpha t}$$
, $B_1 \cos(\beta t) + B_2 \sin(\beta t)$, $e^{\alpha t} [B_1 \cos(\beta t) + B_2 \sin(\beta t)]$

o bien h(t) es un polinomio.

En este caso nos apoyamos de los principios fundamentales de ecuaciones lineales, y proponemos escribir la solución general en la forma $y = y_H + y_P$.

Método de Coeficientes Indeterminados

Ahora bien, sabemos por la fórmula memorizable que $y_H = Ke^{-at}$, por lo que faltaría es proponer y_P .

Aquí es donde es importante haber tomado coeficiente constante a y las formas especiales de la parte no homogénea h(t).

La idea es proponer y_P "del mismo tipo" que h(t).

Para $h(t) = Be^{\alpha t}$ se propone $y_P = Ae^{\alpha t}$

Para $h(t) = B_1 \cos(\beta t) + B_2 \sin(\beta t)$ se propone $y_P = A_1 \cos(\beta t) + A_2 \sin(\beta t)$

Para $h(t) = e^{\alpha t} [B_1 \cos(\beta t) + B_2 \sin(\beta t)]$ se propone

$$y_P = e^{\alpha t} [A_1 \cos(\beta t) + A_2 \sin(\beta t)]$$

Para
$$h(t) = B_n t^n + \dots + B_1 t + B_0$$
 se propone $y_P = A_n t^n + \dots + A_1 t + A_0$

Ahora los A_j son los *coeficientes indeterminados* que determinamos sustituyendo en la ecuación original.

• Hallar la solución general de $y' + 2y = \cos t$

En este caso $y_H = Ke^{-2t}$, y como se tiene $h(t) = \cos t$ se propone $y_P = A_1 \cos t + A_2 \sin t$.

Nótese que hemos propuesto la forma completa de y_P y no sólo con la parte de cos t. Así debe ser porque al tomar derivadas de cos t aparecerán expresiones con sen t.

Sustituyendo y_P en la ecuación original obtendremos

$$y_p' + 2y_P = \cos t$$
 \Rightarrow $-A_1 \sin t + A_2 \cos t + 2A_1 \cos t + 2A_2 \sin t = \cos t$

De aquí que $-A_1+2A_2=0$ y $A_2+2A_1=1$. Resolviendo el sistema: $A_1=2/5$, $A_2=1/5$ y proponemos como solución general a

$$y = Ke^{-2t} + \frac{2}{5}\cos t + \frac{1}{5}\sin t$$

• Hallar la solución general de $y' + y = 5 \operatorname{sen}(2t)$

Aplicamos la idea anterior. Proponemos $y_H = Ke^{-t}$ y $y_P = A_1 \cos(2t) + A_2 \sin(2t)$.

Sustituimos en la ecuación $y_P' + y_P = sen(2t)t$ obtenemos

$$-2A_1 \sin(2t) + 2A_2 \cos(2t) + A_1 \cos(2t) + A_2 \sin(2t) = 5 \sin(2t),$$

lo que nos lleva a $-2A_1+A_2=5$, $2A_2+A_1=0$, cuya solución es $A_1=-2$ y $A_2=1$. La solución general de la ecuación queda

$$y = Ke^{-t} - 2\cos(2t) + \sin(2t)$$

• El método tiene sus limitantes. Por ejemplo al tratar de obtener la solución general de $y' - 2y = 3e^{2t}$ se tiene $y_H = Ke^{2t}$

Pero al proponer $y_P = Ae^{2t}$ como solución de la ecuación no homogénea, notaremos que se fracasará, pues y_P ya está incluída en y_H .

Se propone ahora $y_P = Ate^{2t}$, es decir añadimos t multiplicativa. Ahora al sustituir esta y_P en la ecuación obtenemos

$$2Ate^{2t} + Ae^{2t} - 2Ate^{2t} = 3e^{2t} \Rightarrow A = 3$$

La solución general de la ecuación queda

$$y = Ke^{2t} + 3te^{2t}$$

• Hallar la solución al problema de valores iniciales dado por y' = -3y + 2 + 2t, y(0) = 7/3

En este caso podemos también aplicar el método de coeficientes indeterminados, iniciando con $y_H = Ke^{-3t}$

Luego proponemos $y_P = At + B$, que al ser sustuída en la ecuación lleva a

$$y'_P + 3y_P = 2t + 2 \implies A + 3At + 3B = 2t + 2 \implies 3A = 2, A + 3B = 2$$

De aquí que A=2/3 y B=4/9. La sol. gral. queda como $y=Ke^{-3t}+2t/3+4/9$.

Usando la condición inicial en t = 0:

$$\frac{7}{3} = K + \frac{4}{9} \quad \Rightarrow \quad K = \frac{17}{9}$$

La solución particular explícita es $y = 17e^{-3t}/9 + 2t/3 + 4/3$.

Cuando hay más de un elemento reconocible en el lado derecho de la ecuación explotamos el hecho de que la ecuación es lineal y trabajamos con cada elemento independientemente para proponer la Sol. Gral.

• Hallar la solución general de $y' + \frac{y}{2} = 3t + 2e^{7t}$

En este caso se consideran y_1 y y_2 soluciones de las ecuaciones $y_1' + \frac{y_1}{2} = 3t \& y_2' + \frac{y_2}{2} = 2e^{7t}$.

Nótese que la correspondiente ecuación homogénea de ambas ecuaciones es la misma: $y'+\frac{y}{2}=0$

Entonces se puede proponer $y_H = Ke^{-t/2}$ para ambas ecuaciones. Resta entonces exhibir una solución particular para cada ecuación azul, digamos $y_{P,1}$ y $y_{P,2}$, respectivamente.

Al final la solución general de la ecuación original es $y = y_H + y_{P,1} + y_{P,2}$.

Se propone $y_{P,1} = At + B$, que al sustituirse en la primera ecuación azul lleva a $A + \frac{1}{2}(At + B) = 3t$. Por tanto A = 6, B = -12 y entonces $y_{P,1} = 6t - 12$.

Por otro lado se propone $y_{P,2}=Ce^{7t}$, y al ser sustituido en la segunda ecuación azul lleva a $7Ce^{7t} + \frac{C}{2}e^{7t} = 2e^{7t}$, de donde $\frac{15C}{2} = 2$ es decir C = 4/15, y entonces $y_{P,2} = \frac{4e^{7t}}{1E}$.

En conclusión, la solución general de $y' + \frac{y}{2} = 3t + 2e^{7t}$ está dada por

$$y = y_H + y_{P,1} + y_{P,2} = Ke^{-t/2} + 6t - 12 + \frac{4e^{7t}}{15}.$$

Ecuaciones Bernoulli

Tienen la forma $y' + a(t)y = b(t)y^m$, con $m \in \mathbb{N}$

Si m=0 o m=1 ya revisamos su solución (*Factor integrante* y *Separable*, respectivamente)

Para las otras m se propone un cambio de variable $z = y^{1-m}$, de modo que $z' = (1 - m)y^{-m}y'$.

Entonces

$$z' = (1-m)\frac{y'}{y^m} = \frac{(1-m)}{y^m}[by^m - ay] = (1-m)b - (1-m)az$$

que reescribimos como

$$z' + (1 - m)az = (1 - m)b$$

que es de las ecuaciones que ya hemos estudiado.

La ecuación loística es de Bernoulli

Usaremos la ecuación $P'=kP\left(1-\frac{P}{N}\right)$ para revisar el método de solución.

Escribimos la ecuación en la forma $P'-kP=-\frac{k}{N}P^2$. Dividimos entre P^2 :

Escribimos la ecuación en la forma
$$P' - kP = -\frac{1}{N}P^2$$
. Dividimos entre P^2 :
$$\frac{P'}{P^2} - k\frac{1}{P} = -\frac{k}{N}$$
. Proponemos el cambio de variable $w = \frac{1}{P}$ de manera que
$$w' = -\frac{P'}{P^2}$$

Sustituimos en la ecuación azul y obtenemos $-w'-kw=-rac{k}{n_l}$, o sea $w' + kw = \frac{k}{N}$ cuya solución general es $w = Ke^{-kt} + \frac{1}{N}$

De vuelta a la variable original obtenemos $P=rac{1}{K e^{-kt}+rac{1}{kt}}=rac{N}{1+KNe^{-at}}$

A esta solución general se le puede adjuntar un dato inicial $P(0) = P_0$

Ecuación de Bernoulli - Más ejemplos

• Hallar la solución a $y' - y = ty^5$, y(0) = 1Siguiendo la rutina:

$$\frac{y'}{y^5} - \frac{1}{y^4} = t$$
, se propone $w = \frac{1}{y^4}$, $w' = -\frac{4y'}{y^5}$

Para sustituir directamente en la ecuación multiplicaremos por -4:

$$-\frac{4y'}{y^5} + \frac{4}{y^4} = -4t \quad \Rightarrow \quad w' + 4w = -4t$$

Resolvemos esta ecuación en w. Usamos coeficientes indeterminados: $w_H = Ke^{-4t}$ y proponemos $w_P = At + B$.

$$w'_P + 4w_P = -4t \implies A + 4At + 4B = -4t \implies A = -1, B = \frac{1}{4}$$

Ecuación de Bernoulli - Más ejemplos

Tenemos pues la solución general para w dada por

$$w = w_H + w_P = Ke^{-4t} - t + rac{1}{4} \quad \Rightarrow \quad y = rac{1}{\left(Ke^{-4t} - t + rac{1}{4}
ight)^{1/4}}$$

Ahora podemos usar la condición inicial y(0) = 1 en t = 0:

$$1 = \frac{1}{(K + \frac{1}{4})^{1/4}} \quad \Rightarrow \quad K = \frac{3}{4}$$

La solución al problema de valores iniciales queda

$$y = \left(\frac{3}{4}e^{-4t} - t + \frac{1}{4}\right)^{-1/4}$$

Ecuación de Bernoulli – Algunas observaciones

- El cambio de variable está diseñado para que la ecuación de Bernoulli se convierta en una ecuación lineal "completa", es decir de la forma y' + a(t)y = b(t).
- El cómo resolver esta ecuación lineal, depende de la forma concreta que tenga: puede ser memorizable, por factor integrante, coeficientes indeterminados e incluso separable. Y basta obtener la solución general.

Así por ejemplo, la ecuación w' + 4w = -4t a la que llegamos en el último ejemplo puede resolverse también por factor integrante:

$$\mu(t) = e^{4t}, \qquad (e^{4t}w)' = -4te^{4t}$$

Integrando llegaríamos a $e^{4t}w=-4\int te^{4t}dt$, que al integrar por partes lleva a

$$w = -4e^{-4t} \left(\frac{t}{4}e^{4t} - \frac{1}{16}e^{4t} + C \right) = -t + \frac{1}{4} - 4Ce^{-4t}$$

Ecuación de Bernoulli - Algunas observaciones

• El método descrito anteriormente funciona incluso si las potencias de la variable de estado no son enteras positivas, mientras sea diferente de 0 y de 1.

Así por ejemplo en algunos modelos de crecimiento económico (Solow-Swan) el capital *per capita* puede obedecer ecuaciones de la forma $k'+ak=bk^{\alpha}$ para $0<\alpha<1$.

En este caso tendríamos $\frac{k'}{k^{\alpha}}+ak^{1-\alpha}=b$ y se propondría el cambio de variable $z=k^{1-\alpha}$, $z'=(1-\alpha)\frac{k'}{k^{\alpha}}$. Multiplicamos por $(1-\alpha)$ y sustituimos para obtener $z'+a(1-\alpha)z=(1-\alpha)b$.

Nótese que este razonamiento es el mismo que se dió al iniciar la descripción de la Ecuación de Bernoulli.