2.	(a) Explain the difference between combinatorial logic and sequential logic.	[3]
	(b) A 1-bit full-adder performs addition on two significant bits and a previous carry	bit.
	i. Draw the truth table for a 1-bit full-adder.	[4]
	ii. Design a logic circuit that implements the truth table of a 1-bit full-adder.	[5]
	(c) D-type flip-flops are used in the design of many common sequential logic circuit	ts.
	i. Draw and explain the truth table for a D-type flip-flop.	[3]
	ii. Design an N-bit register using D-type flip-flops. Your design should be cap of storing N bits in response to a single clock cycle. State any assumptions.	-
	iii. Design an N-bit binary counter using D-type flip-flops. Your design should	give
	an explanation of how the circuit operates. State any assumptions.	[5]