

Optimalizační metody pro hry

Jiří Bittner

Obsah přednášky

Optimalice pro hry

GEA 14.1-14.4, RTR 18-20

- Optimalizace scény
- LOD
- Předpočítání osvětlení
- Redukování podle viditelnosti

[RTR] Akenine-Moeller, Haines, Hoffman, Real-Time rendering 4th ed., 2018.

Optimalizace pro hry

- Zachování konstantní snímkové frekvence!
- 60FPS ~ 16.7ms / frame
- 90FPS ~ 11.1 ms / frame (VR)
- Nelze ladit pouze na nejnovější GPU
 - Herní konzole o generaci starší GPU
- Většinu času zabírá rendering!
 - Optimalizovat, optimalizovat, ...
- I jiné části je třeba implementovat efektivně
 - Fyzika / kolize, herní dotazy: prostorové datové struktury
 - Animace: komprimované animační klipy

- ...

Profiling - Detekce úzkého hrdla

- Integrovaný profiler
- C/C++ kompilátor
- Nástroje
 - VTune
 - gprof
 - ..

Přehled základních (grafických) optimalizací

- Optimalizace scény / grafického modelu
- Předpočítání osvětlení
- Redukování podle viditelnosti (visibility culling)

Optimalizace scény

- Cíl: zobrazovat co nejméně dat se zachováním kvality!
- Textury
 - Detaily pomocí textur, bump mapy, normálové mapy, použití MIP-map
 - Atlas textur, vytvoření zobrazovacích dávek (batches)
- Geometrie
 - Efektivní indexace geometrie (indexed triangle list)
- Dělení modelu na bloky / části herního světa
 - Dobré i pro vytváření modelu, spolupráci více modelářů
- Dělení na statickou a dynamickou část modelu
- LOD

LOD (Level-of-Detail)

- Různé úrovně detailu modelu
- Přepínané typicky podle vzdálenosti od kamery

LOD

Diskrétní

- Několik předpočítaných LOD, které se přepínají
- Přepínání LOD: skokové, alpha blending, bitová maska průhlednosti

Spojité

- Generují se za běhu
- Plynulá úprava složitosti modelu
- Výpočetně náročnější
- Dynamicky generované subdivision surfaces

Vytváření LOD

- Eliminace hran, eliminace vrcholů
- Externí nástroje (MeshLab http://www.meshlab.net/)

Předpočítání osvětlení

- Výpočet globálního osvětlení / statických stínů
- Uložení do map osvětlení (light maps)

Předpočítání osvětlení

- Do light map není možné uložit osvětlení na lesklých površích!
 - Je pohledově závislé, mění se s pozicí kamery
- Použití předpočítaných (baked) reflection probes

Obsah přednášky

Optimalice pro hry

GEA 14.1-14.4, RTR 18-20

- Optimalizace scény
- LOD
- Předpočítání osvětlení
- Redukování podle viditelnosti

[GPP] R. Nystrom. Game Programming Patterns, 2014.

[RTR] Akenine-Moeller, Haines, Hoffman, Real-Time rendering 4th ed., 2018.

Optimalizace zobrazování – Redukování (Culling)

Zobrazovat jen to co je vidět!

Optimalizace zobrazování – Redukování (Culling)

Zobrazovat jen to co je vidět!

View Frustum Culling

Optimalizace zobrazování – Redukování (Culling)

Zobrazovat jen to co je vidět!

Occlusion Culling

View Frustum Culling – Redukování pohl. jehlanem

- Výsledek nemusí být přesný
 - Stačí nadmnožina objektů v pohl. jehlanu!
 - Konzervativní algoritmus

Occlusion Culling – Redukování zastíněním

- Offline (předpočítaná viditelnost pro statickou část scény)
- Online (počítáno v reálném čase pro každou pozici kamery)

Offline Occlusion Culling

- Předzpracování
 - Rozděl pohledový prostor na pohledové buňky (Unity: occlusion area)
 - Pro každou buňku vypočti potenciálně viditelnou množinu objektů (PVS)
 - Vyřeší viditelnost "offline" pro všechny možné pozice kamery

Použití

- Najdi pohledovou buňku (lokace bodu)
- Zobraz asociovanou PVS

Příklad

Interiéry – Speciální algoritmy pro výpočet PVS

- Rozděl na buňky a portály
- Vytvoř graf sousednosti
- Omezené prohledávání grafu
 - Viditelnost skrz sekvenci portálů
 - Vzorkování i analytické algoritmy

Obecné scény

- Výpočet PVS je velmi náročný
 - Efektivní vzorkování
 - Analytické řešení

Adaptivní vzorkování pro výpočet PVS

stationary distribution

many samples no new PVS entries

adaptive sampling

a few samples new PVS entries!

Adaptivní vzorkování pro výpočet PVS

Směs adaptivních vzorkovacích distribucí

100x urychlení ve srovnání s rovnoměrným vzorkováním

Online occlusion culling

- Výpočet PVS pro každý snímek
- Jednodušší
 - Známe pozici kamery
 - Ale musí být velmi rychlé!
- Rychlá SW rasterizace
 - Malé rozlišení, použití předpřipravených objektů (occluders)
- Interiérové scény
 - Cells portals
- GPU metody
 - HW dotazy zastínění
 - Hierarchický z-buffer
 - Warping hloubkového bufferu z minulého snímku

Interierové scény: Buňky a portály

- Graf sousednosti
 - Buňky ~ místnosti
 - Portály ~ dveře & okna

- Omezené prohledávání
 - Test viditelnosti portálů [Luebke 96]

Test viditelnosti portálů

Průnik obalových obdélníků portálů

Viewpoint in cell E

Adjacent cells DFG

Cell A visible through portals E/D+D/A

Cell H not visible through portals E/D+D/H

C not visible through portals E/D+D/A+A/C

H not visible through portals E/G+G/H

HW dotazy zastínění

- ARB_occlusion_query, NV_occlusion_query
- Vrací počet fragmentů, které prošly hloubkovým testem
- + libovolný typ scény, žádné předzpracování
- Zpoždění, dotaz stojí čas

Naivní metoda: Hierarchický Stop & Wait

Pro každý uzel: Aktivuj dotaz

Hierarchický Stop & Wait

Coherent Hierarchical Culling (CHC)

- Při čekání na výsledky → traverzuj a zobrazuj
- Využij koherenci, předpokládej, že uzly nemění viditelnost
- Pro viditelné uzly z minulého snímky
 - Nečekej na výsledky dotazů

Coherent Hierarchical Culling

- Prokládání dotazů a zobrazování
- Plánuj pořadí dotazů na základě časové koherence

Prev. invisible nodes: queries depend on parents

Coherent Hierarchical Culling (CHC)

[Coherent Hierarchical Culling: Hardware Occlusion Queries Made Usefull (2004)]

CHC++

- Minimalizace stavových změn a počtu dotazů
- Batching, multi-queries, těsné obálky

Obsah přednášky

Optimalice pro hry

GEA 14.1-14.4, RTR 18-20

- Optimalizace scény
- LOD
- Předpočítání osvětlení
- Redukování podle viditelnosti

[RTR] Akenine-Moeller, Haines, Hoffman, Real-Time rendering 4th ed., 2018.

Ohlédnutí za přednáškami

- Úvod do herního vývoje základy herního designu
- Komponenty herního enginu
- Geometrie, transformace (→ PGR)
- Reprezentace scény (→ VGO, KMA, MVR)
- Animace (→ VGO, MVR)
- Fyzika / Kolize
- Hudba a Audio
- AI (→ ZUI)
- Shadery, textury (→ PGR)
- GUI (IUR)

Otázky?