MATH 487 - Notes Continuous Dynamical Systems

October 13, 2023

Contents

1	Lin	ear Systems of ODEs	2
	1.1	n=1	2
	1.2	n = 2 (uncoupled)	2
	1.3	n = 3 (uncoupled)	3
	1.4	Classification of 2×2 linear systems based on eigenvalues of $A \dots$	4
		1.4.1 Case 1: A has real and distinct eigenvalues	4
		1.4.2 Case 2: A has real repeated eigenvalues	6
		1.4.3 Case 3: A has complex conjugate pair of eigenvalues	7
2	Cla	ssification of phase portrait for 2 x 2 linear systems	7
	2.1	Saddle	9
	2.2	Node	9
	2.3	Focus or Spiral	9
	2.4	Degenerate Cases	9
3	Sun	nmary of solutions of 2×2 linear systems	9
	3.1	real and distinct	9
	3.2	repeated root	10
	3.3	complex conjugate pair	10
4	Tra	ce-Determinant plane	10
5	Dia	agonalization of $n \times n$ matrices	11
	5.1	Jordan Canonical Decomposition	11
	5.2	Examples of Jordan blocks	12
		$5.2.1 2 \times 2 \text{ matrices} \dots \dots$	12
		$5.2.2 3 \times 3 \text{ matrices} \dots \dots$	13
6	Exp	ponentials of operators	14

7	Generalized Eigenspaces	
	7.1 Non-diagonalizable matrices	19
8 Semi simple Nilpotent Decomposition		21
	8.1 Now going back to ODEs	22

1 Linear Systems of ODEs

A linear system of ODEs can be written as:

$$\dot{x} = Ax$$

where $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$. We will look at the solution to this system as n varies over $0, 1, 2, \ldots$ and the system of equations are coupled are not coupled.

1.1 n = 1

If n = 1 we have

$$\dot{x} = ax$$
$$x(0) = c$$

and the solution to this equation is $x(t) = ce^{at}$.

1.2 n = 2 (uncoupled)

If n=2 and the two equations are not coupled then we have

$$\dot{x}_1 = -x_1$$
 $x_1(0) = c_1$
 $\dot{x}_2 = 2x_2$ $x_2(0) = c_2$

Since the two equations are not coupled we can solve them separately giving the solution

$$x_1(t) = c_1 e^{-t}$$
$$x_2(t) = c_2 e^{2t}.$$

We can rewrite these separate equations as a linear system,

$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad x(0) = c, x \in \mathbb{R}^2$$

and the solution to this linear system is

$$x(t) = \begin{bmatrix} e^{-t} & 0\\ 0 & e^{2t} \end{bmatrix} c \qquad c \in \mathbb{R}^2.$$

[to do: insert graph with phase curves]

To find the equations of the phase curves for this system we can divide both sides of the second equation by the first equation

$$\frac{dx_2}{dx_1} = \frac{2x_2}{-x_1}$$

which is a first order differential equation we can solve by separation of variables. Letting $y = x_2$ and $x = x_1$ and rearranging the equation we have

$$\frac{dy}{dx} = \frac{-2y}{-x} \implies \frac{dy}{y} = \frac{-2}{x}dx$$

and integrating both sides then solving for y we get

$$\ln y = -2\ln x + c = \ln x^{-2} + c$$
$$y = e^{c} \frac{1}{x^{2}} = \frac{\hat{c}}{x^{2}}$$

where \hat{c} will determine which phase curve we are on in the phase curve diagram.

1.3 n = 3 (uncoupled)

If n=3 and the equations are not coupled then we have

$$\dot{x}_1 = x_1$$

$$\dot{x}_2 = x_2$$

$$\dot{x}_3 = -x_3$$

which has the solution

$$x_1(t) = c_1 e^t$$

$$x_2(t) = c_2 e^t$$

$$x_3(t) = c_3 e^{-t}$$

These three equations can be rewritten as

$$\dot{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} x$$
$$x(0) = c$$

where $x \in \mathbb{R}^3$ and $c \in \mathbb{R}^3$. [add phase portrait diagram]

1.4 Classification of 2 \times 2 linear systems based on eigenvalues of A

Let $\dot{x} = Ax$ represents a system of coupled equations. Then A must have some non-zero entries for the off diagonals and therefore A is not diagonal. First we state a useful theorem from linear algebra.

Theorem 1.1. If the eigenvalues $\lambda_1, \lambda_2, \dots \lambda_n$ of the $n \times n$ matrix A are real and distinct then any set of corresponding eigenvectors form a basis for \mathbb{R}^n . In addition, the matrix P whose column vectors are the eigenvectors of A, denoted $P = [v_1, v_2, \dots, v_n] \in \mathbb{R}^n$ is invertible and

$$P^{-1}AP = \operatorname{diag}[\lambda_1, \lambda_2, \dots, \lambda_n],$$

where diag[$\lambda_1, \lambda_2, \dots, \lambda_n$] denotes a diagonal matrix whose diagonal entries starting at the upper left corner are $\lambda_1, \lambda_2, \dots, \lambda_n$.

We now consider different cases for the eigenvalues of A.

1.4.1 Case 1: A has real and distinct eigenvalues

Start with $\dot{x} = Ax$ assuming this represents a system of coupled differential equations and that A has real and distinct eigenvalues. Assume $P = [v_1, v_2, \dots, v_n]$ so P^{-1} exists (Since v_1, v_2, \dots, v_n form a basis they are linearly independent, which implies P is invertible). Define

$$y = P^{-1}x. (1)$$

Then left multiplying both sides of the above equation by P we have

$$Py = PP^{-1}x = x$$

so that we have x = Py. Now taking the derivatives on both sides of (1) we have

$$\dot{y} = P^{-1}\dot{x}
= P^{-1}Ax
= P^{-1}A(Py)
= (P^{-1}AP)y$$
(2)

We can have converted the original linear system $\dot{x} = Ax$ to a new system

$$\dot{y} = \Lambda y$$

where $\Lambda = \text{diag}[\lambda_1, \lambda_2, \dots, \lambda_n]$. This is a system of uncoupled differential equations that has the solution

$$y(t) = \begin{bmatrix} e^{\lambda_1 t} & & & \\ & e^{\lambda_2 t} & & \\ & & \ddots & \\ & & & e^{\lambda_n t} \end{bmatrix} y(0)$$

where $y(0) = P^{-1}x(0)$. Now plugging in this value for y into x = Py we get the solution to the original linear system as

$$x(t) = P \begin{bmatrix} e^{\lambda_1 t} & & & \\ & e^{\lambda_2 t} & & \\ & & \ddots & \\ & & & e^{\lambda_n t} \end{bmatrix} P^{-1} x(0).$$

Example. Consider the linear system $\dot{x} = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix} x$. Then solving the equation $\det(A - \lambda I) = 0$ we find that $\lambda_1 = 5$ and $\lambda_2 = 4$. Then $v_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1 & 2 \end{bmatrix}$. Now we need to form the matrix $P = \operatorname{diag}[v_1, v_2]$ which is

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}.$$

We also need to find P^{-1} which is

$$P^{-1} = \frac{1}{\det P} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}.$$

Now we form the matrix $P^{-1}AP$ as

$$P^{-1}AP = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 10 & -5 \\ -4 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}.$$

Then the solution to $\dot{y} = \Lambda y = \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}$ is $y(t) = \begin{bmatrix} e^{5t} & 0 \\ 0 & e^{4t} \end{bmatrix}$. Then converting back to x using x = Py we have the solution to our original linear system as

$$x(t) = Py(t) = P \begin{bmatrix} e^{5t} & 0 \\ 0 & e^{4t} \end{bmatrix} P^{-1}x(0).$$

1.4.2 Case 2: A has real repeated eigenvalues

Consider the linear system $\dot{x} = Ax$ where $x \in \mathbb{R}^2$ and $A \in \mathbb{R}^{2\times 2}$. Now consider the case where

$$A = \begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{bmatrix}.$$

To find the eigenvalues of A we solve the equation $\det(A - \lambda I) = 0$ for λ , which is $(\lambda_1 - \lambda)^2 = 0$ and so $\lambda = \lambda_1$ and $\lambda = \lambda_1$. To find the eigenvector associated with λ_1 we plug in λ_1 for λ in $A - \lambda I = 0$ and solve the resulting system of linear equations. Doing this we have

$$\begin{bmatrix} \lambda_1 - \lambda_1 & 1 - 0 \\ 0 & \lambda_1 - \lambda_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

and then we have the linear system

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

This can be rewritten as two equations,

$$0(\alpha_1) + 1(\alpha_2) = 0$$

$$0(\alpha_1) + 0(\alpha_2) = 0$$

and we see that $\alpha_2 = 0$ and α_1 is a free variable and so we set $\alpha_1 = 1$. Then the eigenvector associated with λ_1 is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Now consider the linear system

$$x' = \lambda_1 x + y$$
$$y' = \lambda_1 y$$

where $y(t) = c_2 e^{\lambda_1 t}$. Now plugging in y(t) into $x' = \lambda_1 x + y$ we have $x' = \lambda_1 x + c_2 e^{\lambda_1 t}$, which is a first order, linear, nonhomogenous equation. The general solution to this equation is $x(t) = x(t)_h + x(t)_p$ where $x(t)_h$ is the solution to the corresponding homogeneous equation $x' = \lambda_1 x$ and $x(t)_p$ is any solution to the nonhomogeneous equation. We have that $x_h(t) = c_1 e^{\lambda_1 t}$ and $x_p(t) = ct e^{\lambda_1 t}$. Therefore $\{e^{\lambda_1 t}, t e^{\lambda_1 t}\}$ is a fundamental solution set for the differential equation and the general solution is

$$x(t) = c_1 e^{\lambda_1 t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^{\lambda_1 t} \begin{bmatrix} t \\ 1 \end{bmatrix}$$

Now what happens to the solution x(t) as $t \to \infty$? We consider two cases (1) $\lambda_1 > 0$ and (2) $\lambda_1 < 0$.

If $\lambda_1 > 0$ then $x(t) \to \mp \infty$.

If $\lambda_1 < 0$ then we need to find $\lim_{t \to \infty} c_2 e^{\lambda_1 t} \begin{bmatrix} t \\ 1 \end{bmatrix} = \begin{bmatrix} \lim_{t \to \infty} c_2 t e^{\lambda_1 t} \\ \lim_{t \to \infty} c_2 e^{\lambda_1 t} \end{bmatrix}$. We know that $\lim_{t \to \infty} c_2 e^{\lambda_1 t} = 0$ since $\lambda < 0$. To find $\lim_{t \to \infty} c_2 t e^{\lambda_1 t}$ we can use L'Hopital's rule,

$$\lim_{t \to \infty} c_2 t e^{\lambda_1 t} = c_2 \lim_{t \to \infty} \frac{\frac{t}{1}}{e^{-\lambda_1 t}}$$

$$= c_2 \lim_{t \to \infty} \frac{1}{-\lambda_1 e^{-\lambda_1 t}}$$

$$= c_2 \frac{1}{\infty}$$

$$= c_2 \cdot 0$$

$$= 0$$

Therefore, if $\lambda_1 < 0$ then $x(t) \to 0$ as $t \to \infty$.

1.4.3 Case 3: A has complex conjugate pair of eigenvalues

Consider the linear system $\dot{x}=Ax$ where $x\in\mathbb{R}^2$ and $A\in\mathbb{R}^{2\times 2}$. Now assume that the eigenvalues λ_{\mp} for A are a complex conjugate pair $\alpha \mp i\beta$ where α and β are real numbers and $i=\sqrt{-1}$. The eigenvectors associated with the complex conjugate pair of eigenvalues are $v\mp=u\mp iw$. Assume the initial conditions are $c\mp=\frac{1}{2}(g\mp ih)$. The solutions $e^{\lambda t}$ will now have the form $e^{(\alpha\mp i\beta)t}$ which we can rewrite using Euler's formula as

$$e^{(\alpha \mp i\beta)t} = e^{\alpha t}e^{\mp i\beta t} = e^{\alpha t}(\cos \beta t \mp i\sin \beta t).$$

2 Classification of phase portrait for 2 x 2 linear systems

In this section we consider linear systems of the form

$$\dot{x} = Ax$$
$$x(0) = x_0$$

where $A \in \mathbb{R}^{2\times 2}$, $x_0 \in \mathbb{R}^2$, and x is a function $x : \mathbb{R} \to \mathbb{R}^2$ where $x(t) = (x_1(t), x_2(t))$. Considering a specific example this system can be written as

$$\dot{x}_1 = -x_1 \quad x_1(0) = c_1$$

 $\dot{x}_2 = 2x_2 \quad x_2(0) = c_2$

and the solution is

$$x_1(t) = c_1 e^{-t}$$

 $x_2(t) = c_2 e^{2t}$.

This is a system of decoupled equations that can also be written as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

with initial conditions

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} (0) = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} .$$

The solution can be written as

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

The eigenvalues of the matrix $\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$ are $\lambda_1 = -1$ and $\lambda_2 = 2$ with associated eigenvectors $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. So we can also write the solution of the above system as

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = c_1 e^{-t} v_1 + c_2 e^{2t} v_2$$
$$= c_1 e^{-t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$
$$= \begin{bmatrix} c_1 e^{-t} \\ c_2 e^{2t} \end{bmatrix}$$

2.1 Saddle

- 2.2 Node
- 2.3 Focus or Spiral
- 2.4 Degenerate Cases

3 Summary of solutions of 2×2 linear systems

3.1 real and distinct

Consider the linear system $\dot{x} = Ax$ where

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$

and the eigenvalues of A are real and distinct.

The solution of this system has the form

$$x(t) = c_1 v_1 e^{\lambda_1 t} + c_2 v_2 e^{\lambda_2 t}.$$

where λ_1 and λ_2 are eigenvalues of A, v_1 and v_2 are the eigenvectors associated with λ_1 and λ_2 , and c_1 and c_2 are constants.

3.2 repeated root

Consider the linear system $\dot{x} = Ax$ where

$$\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$$

and the eigenvalues of A are real and repeated.

The solution to this system has the form

$$x(t) = c_1 v_1 e^{-t} + c_2 v_2 t e^{-t}$$

where $\lambda_1 = -1$ and $\lambda_2 = -1$ are eigenvalues of A, v_1 and v_2 are the eigenvectors associated with $\lambda_1 = -1$ and $\lambda_2 = -1$, and c_1 and c_2 are constants.

3.3 complex conjugate pair

Consider the linear system $\dot{x} = Ax$ where

$$\begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}$$

and the eigenvalues of A are $\lambda = \alpha \mp i\beta$ and the eigenvectors associated with λ are $u \mp iv$. The solution to this system has the form

$$x(t) = e^{\alpha t} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \cos \beta t & \sin \beta t \\ -\sin \beta t & \cos \beta t \end{bmatrix} \begin{bmatrix} g \\ -h \end{bmatrix}$$

4 Trace-Determinant plane

Consider the generic 2×2 linear system $\dot{x} = Ax$ where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we have that $\det A = ad - bc$ and $\operatorname{tr} A = a + d$.

To find the eigenvalues of A we solve the equation $\det(A - \lambda I) = 0$. First we calculate $\det(A - \lambda I)$ as

$$\det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix}$$
$$= (a - \lambda)(d - \lambda) - bc$$
$$= ad - (a + d)\lambda - ad - bc$$
$$= \lambda^2 - \operatorname{tr} A\lambda + \det A.$$

Setting $\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$ and using the quadratic formula we can solve for λ ,

$$\lambda = \frac{\operatorname{tr} A \mp \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}.$$

The type of eigenvalues for A will depend on the value of $(\operatorname{tr} A)^2$ and $4 \det A$. We can use this information to classify the phase diagrams of any 2×2 linear system.

Poincaré Diagram: Classification of Phase Portaits in the $(\det A, \operatorname{Tr} A)$ -plane

5 Diagonalization of $n \times n$ matrices

5.1 Jordan Canonical Decomposition

Theorem 5.1. Let A be a real matrix with real eigenvalues λ_j , $j=1,\ldots,k$ and complex eigenvalues $\lambda_j=a_j+ib_j,\ j=k+1,\ldots,n$. Then there exists a basis $\{v_1,\ldots,v_k,u_{k+1}v+k+1,\ldots,u_nv_n\}$ where $v_j,\ j=1,\ldots,k$ and $w_j,\ j=1,\ldots,n$ are generalized eigenvalues of A with $u_j=Re(w_j)$ and $v_j=Im(w_j),\ j=k+1,\ldots,n$ such that $P=[v_1\ldots v_k\quad v_{k+1}u_{k+1}\ldots v_nu_n]$ is invertible and

$$P^{-1}AP = \begin{bmatrix} B_1 & 0 & \dots & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & \dots & \ddots & 0 \\ 0 & 0 & \dots & B_r \end{bmatrix}$$

where B_j are Jordan blocks of the form

$$\begin{bmatrix} \lambda & 1 & 0 & 0 & 0 & 0 \\ 0 & \ddots & \ddots & 0 & 0 & 0 \\ 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & \lambda & 1 \end{bmatrix}$$

for real λ or

$$\begin{bmatrix} D & I_2 & 0 & 0 & 0 & 0 \\ 0 & \ddots & \ddots & 0 & 0 & 0 \\ 0 & 0 & \ddots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & D & I_2 \end{bmatrix}$$

where $D = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ for complex eigenvalues. Jordan form is unique up to the order of the blocks.

Example. Consider a 5×5 matrix with 1 real and distinct eigenvalue, 1 real and repeated eigenvalue, and 1 complex conjugate pair of eigenvalues. Then the Jordan form is

$$\begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & \lambda_2 & 1 & 0 & 0 \\ 0 & 0 & \lambda_2 & 0 & 0 \\ \hline 0 & 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & -\beta & \alpha \end{bmatrix}$$

where B_1 is 1×1 , B_2 is 2×2 , and B_3 is 2×2 so that

$$P^{-1}AP = \begin{bmatrix} B_1 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & B_3 \end{bmatrix}.$$

5.2 Examples of Jordan blocks

5.2.1 2×2 matrices

1. Real and distinct eigenvalues

$$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

2. Real, repeated eigenvalues with algebraic and geometric multiplicity 2

$$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$$

3. Real, repeated eigenvalues with algebraic multiplicity 2 and geometric multiplicity 1

$$\begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{bmatrix}$$

4. pair of complex conjugate eigenvalues

$$\begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$$

$5.2.2 \quad 3 \times 3 \text{ matrices}$

1. real and distinct eigenvalues

$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

2. real and repeated eigenvalues with algebraic and geometric multiplicity of 3

$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_1 \end{bmatrix}$$

3. real and repeated eigenvalues with algebraic multiplicity 3 and geometric multiplicity 2

$$\begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_1 \end{bmatrix}$$

4. real and repeated eigenvalues with algebraic multiplicity 3 and geometric multiplicity 1

$$\begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 1 \\ 0 & 0 & \lambda_1 \end{bmatrix}$$

5. two real eigenvalues and one repeated with algebraic multiplicity 2 and geometric multiplicity 1

$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_2 \end{bmatrix}$$

13

6. two real eigenvalues and one repeated with algebraic multiplicity and geometric multiplicity 2

$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$$

7. one real eigenvalues and one complex conjugate pair of eigenvalues

$$\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & -\beta & \alpha \end{bmatrix}$$

6 Exponentials of operators

If we have the initial value problem $\dot{x} = ax$ with $x(0) = x_0$ and $a \in \mathbb{R}$ then we know the solution is $x(t) = x_0 e^{at}$. Now what if we consider the linear system $\dot{x} = Ax$ with $x(0) = x_0$ but now $x \in \mathbb{R}^2$ and $A \in \mathbb{R}^{2\times 2}$. It would be nice if we could write the solution as $x(t) = e^{At}x_0$, but what is e^{At} ?

Definition. Operator Norm. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. Then the *operator* norm of T is defined to be

$$||T|| = \max_{|x| \le 1} |T(x)|$$

where $|\cdot|$ denotes the Euclidean norm for $x \in \mathbb{R}^n$.

The operator norm has the following properties:

- (a) ||T|| > 0 and ||T|| = 0 if and only if T = 0.
- (b) ||kT|| = |k|||T|| for $k \in \mathbb{R}$.
- (c) $||S + T|| \le ||S|| + ||T||$

If $T \in \mathcal{L}(\mathbb{R}^n)$ is represented by a matrix A with respect to the standard basis in \mathbb{R}^n then $|A| \leq \ell \sqrt{n}$ where ℓ is the maximum length of the rows of A.

Definition. Convergence. A sequence of linear operators $T_k \in \mathcal{L}(\mathbb{R}^n)$ converges to a linear operator $T \in \mathcal{L}(\mathbb{R}^n)$ as $k \to \infty$ if $\lim_{k \to \infty} T_k = T$, i.e.,

$$\forall \epsilon > 0 \exists N \in \mathbb{N} \text{ such that } k \geq N \implies ||T_k - T|| < \epsilon.$$

Lemma. For $S, T \in \mathcal{L}(\mathbb{R}^n)$ and $x \in \mathbb{R}^{\times}$

- 1. $|T(x)| \le ||T|||x|$
- 2. $||TS|| \le ||T||||S||$

3.
$$||T^k|| \le (||T||)^k$$
 for $k = 0, 1, 2, \dots$

Proof. 1. True for x = 0. Assume $x \neq 0$ and define $y = \frac{x}{|x|}$. Then

$$||T|| \ge |T(y)| = \frac{1}{|x|} |T(x)|.$$

2. For |x| < 1, 1. implies

$$|T(S(x))| \le ||T|||S(x)|$$

 $\le ||T||||S|||x|.$

3. Follows from 2. (by induction)

Definition. Weierstrass M-test. Suppose that f_n is a sequence of real or complex valued functions defined on a set A and that there is a sequence of non-negative numbers M_n such that $|f_n(x)| \leq M_n$ for all $n \geq 1$ and for all $x \in A$ and $\sum_{n=1}^{\infty} M_n$ converges then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly and absolutely.

Theorem 6.1. Given $T \in \mathcal{L}(\mathbb{R}^n)$ and $t_0 > 0$, the series $\sum_{k=0}^{\infty} \frac{T^k t^k}{k!}$ is absolutely and uniformly convergent for all $|t| \leq t_0$.

Proof. Let ||T|| = a. Then

$$\left| \left| \frac{T^k t^k}{k!} \right| \right| \le \frac{||T||^k |t|^k}{k!} \le \frac{a^k t_0^k}{k!}.$$

So $\sum_{k=0}^{\infty} \frac{a^k t_0^k}{k!} = e^{at_0}$. By Weierstrass M-test $\sum_{k=0}^{\infty} \frac{T^k t^k}{k!}$ is absolutely and uniformly convergent.

So we define the exponential of the linear operator ${\cal T}$ to be the absolutely convergent series

$$e^T = \sum_{k=0}^{\infty} \frac{T^k}{k!}$$

only for square matrices. Thus e^T is a linear operator. It follows that

$$||e^T|| \le e^{||T||}.$$

Lemma. Let $A \in \mathbb{R}^n$. Then $\frac{d}{dt}e^{At} = Ae^{At}$.

Proof. Since A commutes with itself,

$$\frac{d}{dt}e^{At} = \lim_{h \to 0} \frac{e^{A(t-h)} - e^{At}}{h}
= \lim_{h \to 0} e^{At} \left(\frac{e^{Ah} - I}{h}\right)
= e^{At} \lim_{h \to 0} \frac{1}{h} \lim_{k \to \infty} \left(I + Ah + \frac{(Ah)^2}{2} + \dots + \frac{(Ah)^k}{k!} - I\right)
= e^{At} \lim_{h \to 0} \frac{1}{h} \lim_{k \to \infty} \left(Ah + \frac{(Ah)^2}{2} + \dots + \frac{(Ah)^k}{k!}\right)
= e^{At} \lim_{h \to 0} \lim_{k \to \infty} \left(A + \frac{A^2h}{2} + \frac{A^hh^{k-1}}{k!}\right)
= e^{At} \lim_{k \to \infty} \lim_{h \to 0} \left(A + \frac{A^2h}{2} + \frac{A^hh^{k-1}}{k!}\right)
= e^{At} \lim_{k \to \infty} \lim_{h \to 0} \left(A + \frac{A^2h}{2} + \frac{A^hh^{k-1}}{k!}\right)
= e^{At} \lim_{k \to \infty} A
= e^{At} A
= Ae^{At}$$

Remark. In the last line of the above proof we switched A from the right to the left side because A commutes with itself. Therefore

$$Ae^{At} = A(I + At + \frac{1}{2!}(At)^2 + \cdots$$

$$= A + A^2t + \frac{1}{2!}A^2t^2 + \cdots$$

$$= (I + At + \frac{1}{2!}(At)^2 + \cdots)A$$

$$= e^{At}A$$

Also from the third to fourth equality we switched the limits because we have uniform convergence.

Lemma. If S and T are linear transformations on \mathbb{R}^n which commute, i.e., ST = TS, then $e^{S+T} = e^S e^T$.

Proof. If ST = TS then by the binomial theorem

$$(S+T)^n = n \sum_{j+k=n} \frac{S^j T^k}{j!k!}.$$

Therefore

$$e^{S+T} = \sum_{n=0}^{\infty} \sum_{j+k=n} \frac{S^j T^k}{j!k!} = \left(\sum_{j=0}^{\infty} \frac{S^j}{j!}\right) \left(\sum_{k=0}^{\infty} \frac{T^k}{k!}\right) = e^S e^T.$$

Remark. In the second equality above we were able to split the double sum because we have absolute convergence.

Theorem 6.2. Let A be an $n \times n$ matrix, then for a given $x_0 \in \mathbb{R}^n$, the initial value problem $\dot{x} = A$ with $x(0) = x_0$ has the solution $x(t) = e^{At}x_0$.

Proof. If $x(t) = e^{At}x_0$ then $x(t) = Ae^{At}x_0 = Ax(t)$, and $x(0) = Ix_0 = x_0$. Now to show this solution is unique set $y(t) = e^{-At}x(t)$. Then

$$y' = -Ae^{-At}x(t) + e^{-At}x'(t)$$

= $-Ae^{-At}x(t) + e^{-At}Ax(t) = 0.$

Thus y'(t) = 0 and so y must be a constant, say $y(t) = x_0$. Then $e^{-At}x(t) = x_0$ and so $x(t) = e^{At}x_0$. Therefore $x(t) = e^{At}x_0$ is unique solution to $\dot{x} = Ax$.

Proposition. If P and T are linear transformations on \mathbb{R}^n and $S = PTP^{-1}$ then $e^S = Pe^Tp^{-1}$.

Proof. By definition

$$e^{S} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{(PTP^{-1})}{k!}$$

$$= \left(I + \frac{PTP^{-1}}{1} + \frac{PTP^{-1})^{2}}{2!} + \frac{(PTP^{-1})^{3}}{3!} + \cdots\right)$$

$$= P\left(I + T + \frac{T^{2}}{2} + \frac{T^{3}}{3} + \cdots\right)P^{-1}$$

$$= Pe^{T}P^{-1}.$$

Remark. In the above proof to go from the second to third equality note that I = PP^{-1} so that

$$(PTP^{-1})^2 = (PTP^{-1})(PTP^{-1})$$

= $PTP^{-1}PTP^{-1}$
= $PTTP^{-1}$
= PT^2P^{-1}

and

$$(PTP^{-1})^3 = (PTP^{-1})(PTP^{-1})(PTP^{-1})$$

= $PTP^{-1}PTP^{-1}PTP^{-1}$
= $PTTTP^{-1}$
= PT^3P^{-1}

7 Generalized Eigenspaces

If $PAP^{-1} = \operatorname{diag}[\lambda_j]$ then $e^{At} = P\operatorname{diag}(e^{\lambda_j t})P^{-1}$ where $\operatorname{diag}(e^{\lambda_j t}) = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix}$ for a 2×2 linear system.

If
$$A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
 then

$$e^{At} = I + At + \frac{1}{2!}(At)^{2} + \frac{1}{3!}(At)^{3} + \cdots$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} + \frac{1}{2!}\begin{bmatrix} \lambda_{1}^{2}t^{2} & 0 \\ 0 & \lambda_{2}^{2}t^{2} \end{bmatrix} + \cdots$$

$$= \begin{bmatrix} 1 + \lambda_{1}t + \frac{1}{2!}(\lambda_{1}^{2}t^{2}) + \cdots & 0 \\ 0 & 1 + \lambda_{2}t + \frac{1}{2!}(\lambda_{2}^{2}t^{2}) + \cdots \end{bmatrix}$$

$$= \begin{bmatrix} e^{\lambda_{1}t} & 0 \\ 0 & e^{\lambda_{2}t} \end{bmatrix}$$

Let $P = [v_1 \dots v_n]$ where $v_1 \dots v_2$ are the eigenvectors of A. Thus P is non-singular and so P^{-1} exists.

Now for a 2×2 linear system

$$A \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} Av_1 & Av_2 \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 \end{bmatrix}$$
$$= \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$

So $AP = A\Lambda$ which implies that $\Lambda = P^{-1}AP$ and then we say that A is diagonalizable or semi-simple.

We say that going from $A \to P^{-1}AP$ is a similarity transform.

Consider $\dot{x} = Ax$. Consider Py = x which implies $y = P^{-1}x$. Then

$$\frac{dy}{dt} = P^{-1}\frac{dy}{dt} = P^{-1}Ax = P^{-1}APy.$$

So $\frac{dy}{dt} = P^{-1}APy$ if A is diagonal Λ .

Then

$$\frac{dy}{dt} = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} y$$

and so

$$\frac{dy_1}{dt} = \lambda_1 y_1$$
$$\frac{dy_2}{dt} = \lambda_2 y_2$$

and our solution is $y(t) = e^{\Lambda t}c$ and then we transform back to x to find that $x(t) = Py = Pe^{\Lambda t}c$.

7.1 Non-diagonalizable matrices

Not all matrices are diagonalizable, such as ones with repeated eigenvalues. For example, if the characteristic equation of a matrix is $(\lambda-1)^2(\lambda-2)^5=0$ then $\lambda_1=1$ has an algebraic multiplicity of 2 and $\lambda=2$ has an algebraic multiplicity of 5. To find λ we solve the equation $(\det(A-\lambda I)=0$ and so we find the values of λ that make $(A-\lambda I)$ singular and hence $(A-\lambda I)$ has a nontrivial nullspace.

The eigenvector is then exactly the nullspace of $(A - \lambda I)$. When the algebraic and geometric multiplicity of an eigenevalue are we say there is a deficiency and we need a generalized eigenvector.

Definition. Invariant space. A space E is invariant under an operator T if for every $v \in E$ it follows that $T(v) \in E$.

Definition. Generalized eigenspace. Consider $T: E \to E$, with eigenvalues and eigenvector pair where $v \in \ker(T - \lambda I)$.

Suppose λ_k is an eigenvalue of a linear operator T with algebraic multiplicity n_k . The generalized eigenspace of λ_k is

$$E_k := \ker \left[(T - \lambda_k I)^{n_k} \right].$$

The generalized eigenspace is an invariant subspace.

Remark. For a 2×2 linear system that has a saddle phase portrait, the x-axis is an invariant subspace. If you start on the x-axis and apply the operator T you stay on the x-axis.

Theorem 7.1. Each of the generalized eigenspaces E_j of a linear operator T is invariant under T, that is, if E_j is a generalized eigenspace, then $T: E_j \to E_j$.

Proof. Suppose $v \in E_j$, so $(T - \lambda_j I)^{n_j} v = 0$. We want to show that $Tv \in E_j$. Compute

$$(T - \lambda_j I)^{n_j} T v = (T - \lambda_j I)^{n_j} T v - \lambda_j (T - \lambda_j I)^{n_j} v$$

$$= (T - \lambda_j I)^{n_j} [T v - \lambda_j v]$$

$$= (T - \lambda_j I)^{n_j} (T - \lambda_j I) v$$

$$= (T - \lambda_j I) (T - \lambda_j I)^{n_j} v$$

$$= 0.$$

Therefore, whenever $v \in E_j$ then $Tv \in E_j$ and so E_j is invariant under T.

Remark. In the above proof for the first equality we can subtract $\lambda_j (T - \lambda_j I)^{n_j} v$ because $v \in E_j$ which means that $(T - \lambda_j I)^{n_j} v = 0$. In the second equality we pull out $(T - \lambda_j I)^{n_j}$ to the left. Then in the last equality we can switch the order of $(T - \lambda_j I)^{n_j}$ and $(T - \lambda_j I)$ because it commutes with itself.

Theorem 7.2. Let T be a linear operator on a complex vector space E with distinct eigenvalues $\lambda_1 \dots \lambda_r$ and let E_j be the generalized eigenspaces of T with eigenvalue λ_j . Then the $\dim(E_j)$ is the algebraic multiplicity of λ_j and the generalized eigenvectors span E,

$$E = E_1 \oplus E_2 \oplus \cdots \oplus E_r.$$

Example. Consider the 3×3 system where

$$A = \begin{bmatrix} 6 & 2 & 1 \\ -7 & -3 & -1 \\ -11 & -7 & 0 \end{bmatrix}.$$

The characteristic polynomial of A is $(\lambda - 2)^2(\lambda + 1)$. Setting this polynomial equal to zero and solving for λ we find that $\lambda_2 = 2$ with algebraic multiplicity of 2 and $\lambda_1 = -1$ with algebraic multiplicity 1. To find the eigenvector associated with

$$\lambda_1 = 2$$
 we solve $(A - \lambda_2 I)v_2 = 0$ for v_2 and find that $v_2 = \begin{bmatrix} -1\\1\\3 \end{bmatrix}$. Likewise, we

solve
$$(A - \lambda_1 I)v_1 = 0$$
 for v_1 and find that $v_1 = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$. Now to find v_3 we must

find a generalized eigenvector since there is a deficiency for λ_1 (i.e., the algebraic and geometric multiplicities are different). To find the generalized eigenvector we need to

solve
$$(A - \lambda_2 I)^2 v_3 = 0$$
. Solving the previous equation for v_3 we find that $v_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$.

Remark. To find the generalized eigenvector in the previous example we could have also solved $(A - \lambda_2 I)v_3 = v_2$ for v_3 . This is because we know $(A - \lambda_2 I)v_1 = 0$ and $(A - \lambda_2 I)^2 v_3 = 0$. Therefore

$$(A - \lambda_1 I)^2 v_3 = (A - \lambda I) v_1 = 0.$$

8 Semi simple Nilpotent Decomposition

Definition. Nilpotent. Let N be an $n \times n$ matrix. Then N is nilpotent if there exists a $k \in \mathbb{N}$ such that $N^k = 0$.

Definition. Let A be on $n \times n$ matrix with generalized eigenvalues $v_1 \dots v_n$ and $P = [v_1 \dots v_n]$, where P is non-singular since the v's are linearly independent. Let $\Lambda = \operatorname{diag}(\lambda_1 \dots \lambda_n)$ and define $S = P\Lambda P^{-1}$ with $Sv_i = \lambda_i v_i$. Then S is semisimple if there is a nonsingular matrix P such that $P^{-1}SP = \Lambda$. Then A = S + N, where N is nilpotent.

Lemma. Let N = A - S where $S = P\Lambda P^{-1}$. Then N commutes with S and is nilpotent with order at most the maximum of the algebraic multiplicity of the eigenvalues of A.

Definition. Commuting matrices. We say that the matrices S and S commute if SN = NS or if their commutator [S, N] = SN - NS is equal to zero.

Proof. Consider [S, N] = [S, A - S] = [S, A] - [S, S] = [S, A]. For any $v \in E_j$ we have $Sv = \lambda_j v$ and

$$[S, A]v = SAv - ASv$$
$$= SAv - A\lambda_j v$$
$$= (S - \lambda_j I)Av.$$

Since the eigenspace E_j is invariant then $Av \in E_j$ and $[S,A]v = (S-\lambda_j I)Av = 0$. Since S has the same eigenvalues and eigenvectors as A and Av is in the null space of $A - \lambda_j I$, so $(S - \lambda_j I)Av = 0$. Note that since Av is in the null space of $A - \lambda_j I$, then $(A - \lambda_j I)Av = 0$.

Recall that $E = E_1 \oplus E_2 \oplus \cdots \oplus E_r$ so any vector $\sum_{k=1}^n \alpha_k v_k$, where $v_k \in E_k$ so [S, A]w = 0.

Since this is true for any arbitrary vectors w, then [S, A] = 0. Since [S, N] - [S, A] = 0 then [S, N] = 0. So S commutes with N.

To see that N is nilpotent, suppose the maximum algebraic multiplicity of the eigenvalues is m. Then for any $v \in E_j$, since [S, A] = 0,

$$N^{m}v = (A - S)^{m}v = (A - S)^{m-1}(A - S)v$$

$$= (A - S)^{m-1}(Av - \lambda_{j}v)$$

$$= (A - \lambda_{j}I)(A - S)^{m-1}v$$

$$\cdot$$

$$\cdot$$

$$= (A - \lambda_{j}I)^{m}v = 0.$$

Since this holds for all $v \in E$, then $N^m = 0$, so N is nilpotent of order m.

Theorem 8.1. A matrix A on a complex vector space E has a unique decomposition A = S + N where S is semisimple (or diagonalizable) and N is nilpotent with [S, N] = 0.

8.1 Now going back to ODEs...

- 1. Start with $\dot{x} = Ax$ where $A \in \mathbb{R}^{n \times n}$.
- 2. Find the (generalized) eigenvectors and eigenvalues of A.
- 3. Construct $P = [v_1 \dots v_n]$ and $\Lambda = \text{diag}\{\lambda_i\}$.
- 4. Find $S = P\Lambda P^{-1}$.
- 5. Find N = A S.
- 6. Then the general solution to $\dot{x} = Ax$ is

$$x(t) = e^{At}c$$

$$= e^{(S+N)t}c$$

$$= e^{St}e^{Nt}c$$

$$= e^{P\Lambda P^{-1}t}e^{Nt}c$$

$$= P\text{diag}\{e^{\lambda_i t}\}P^{-1}(I + Nt + \frac{1}{2!}(Nt)^2 + \cdots + \frac{1}{n!}N^m t^m)c$$

Example. Let $\dot{x} = Ax$ for $A = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$. Then the characteristic equation is

$$\det(A - \lambda I) = \begin{bmatrix} 2 - \lambda & 1 \\ -1 & 4 - \lambda \end{bmatrix} = (2 - \lambda)(4 - \lambda) - (-1) = \lambda^2 - 6\lambda + 9.$$

Setting the characteristic equation equal to zero and solving for λ we find that $\lambda = 3$. Now we solve the system $(A - \lambda I) = 0$ to find the eigenvetors for λ . This is

$$\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

which reduces to one equation

$$-\alpha_1 + \alpha_2 = 0.$$

This implies that $\alpha_2 = \alpha_1$ and so we let $\alpha_1 = 1 = \alpha_2$ and therefore $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Now we must find a generalized eigenvector because $\lambda = 3$ is a deficient eignevalue. To find a generalized eigenvector we solve $(A - \lambda I)v_2 = v_1$ for v_2 . This equation can be written as

$$\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

which reduces to the equation $-\alpha_1 + \alpha_2 = 1$. Therefore, $\alpha_2 = \alpha_1 + 1$. If we set $\alpha_1 = 0$ then $\alpha_2 = 1$ and so $v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Thus

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Now we find the matrix $S = P\Lambda P^{-1}$ where $\Lambda = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$. To find P^{-1} we have

$$P = \frac{1}{\det P} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \frac{1}{1} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}.$$

Therefore we have that the matrix S is

$$S = P\Lambda P^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}.$$

Now we find the matrix N as

$$N = A - S = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}.$$

We know that N is nilpotent of order 2 so that means that $N^2 = 0$. Now we can construct the general solution of $\dot{x} = Ax$ as

$$x(t) = e^{At}x_0 = Pe^{\Lambda t}P^{-1}e^{Nt}x_0$$

$$= e^{3t}[I + Nt]x_0$$

$$= e^{3t}\begin{bmatrix} 1 - t & t \\ -t & 1 + t \end{bmatrix}x_0.$$

Example. Let $\dot{x} = Ax$ for $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ with $x(0) = x_0$. The eigenvalues for A

are
$$\lambda_1 = 1$$
 and $\lambda_2 = 2 = \lambda_3$. Then $v_1 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Since $\lambda = 2$ is a

deficient eigenvalue we need to find a generalized eigenvector. To do this we consider the equation $(A - 2I)^2 v_3 = 0$ and solve for v_3 . Thus we have

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix} v_3 = 0$$

which implies that $v_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Now we create the matrix P where the column vectors are the eigenvectors v_1, v_2, v_3 . So

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ -2 & 1 & 0 \end{bmatrix}.$$

Now we find the matrix S as

$$S = P\Lambda P^{-1} = P \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}.$$

The matrix N is

$$N = A - S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix}.$$

Now we construct our solution of $\dot{x} = Ax$ as

$$x(t) = P \begin{bmatrix} e^t & 0 & 0 \\ 0 & e^{2t} & 0 \\ 0 & 0 & e^{2t} \end{bmatrix} P^{-1}(I + Nt)x_0$$
$$= \begin{bmatrix} e^t & 0 & 0 \\ e^t - e^{2t} & e^{2t} & 0 \\ -2e^t + (2-t)e^{2t} & te^{2t} & e^{2t} \end{bmatrix}.$$

Theorem 8.2. If $2n \times 2n$ real matrix A has 2n distinct complex eigenvalues $\lambda_j = a_j + ib_j$, $\bar{\lambda} = a_j - ib_j$ with complex eigenvectors $w_j = u_j + iv_j$ and $\bar{w} = u_j - iv_j$, then $P = \begin{bmatrix} v_1u_1 & v_2u_2 \dots v_nu_n \end{bmatrix}$ is a $2n \times 2n$ invertible matrix and $P^{-1}AP = \operatorname{diag} \begin{bmatrix} a_j & -b_j \\ b_j & a_j \end{bmatrix}$.