UNCLASSIFIED

AD 401409

Reproduced by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

TECHNICAL MEMORANDUM

(TM Series)

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from ASTIA.

This document was produced by SDC in performance of contract AF 19(628)-1648, Space Systems Division Program, for Space Systems Division, AFSC.

Indian Ocean Station Buffer

Milestone 3

ру

D. A. Biggar

7 March 1963

Approved

T. W. Polk

SYSTEM

DEVELOPMENT

CORPORATION

2500 COLORADO AVE.

SANTA MONICA

CALIFORNIA

The views, conclusions or recommendations expressed in this document do not necessarily reflect the official views or policies of agencies of the United States Government.

Permission to quote from this document or to reproduce it, wholly or in part, should be obtained in advance from the System Development Corporation.

SDC

Although this document contains no classified information it has not been cleared for open publication by the Department of Defense. Open publication, wholly or in part, is pronibited without the prior approval of the System Development Corporation.

1.0 Purpose.

This document describes program requirements for the Indian Ocean Station Buffer, a 160-A program system designed for use at the Satellite Control Facility. A general description of the programs, their interfaces, and scheduling are given. This document should be construed as a proposal subject to review before implementation proceeds.

2.0 General Discussion,

The Indian Ocean Station Buffer is designed to meet the peculiar communication problem between the STC and the Indian Ocean Station (hereafter IOS). All transmission will be over two fully-duplexed, 100 wpm teletype lines between the two facilities. The major design restrictions placed upon this program system are as follows:

- a. No special hardware will be included in the proposal. All communications will be handled by punched paper tape input to the teletype equipment.
- b. Data processing rates will be restricted to the transmission speed of the lines. While computer processing capability exceeds teletype line capacity, the amount of data punched at IOS should not result in excessive delay at the STC.
- c. Prepass data of all appropriate varieties will be sent from the STC to IOS to support all vehicles.
- d. Tracking data will be received from IOS and will be input directly to the 1604 through the use of STAPIN (Tracking Input Subroutine for Augmented 1604 Programs). All vehicles may be thusly supported.
- e. Command status information from the T&C Computer will be received from IOS by manual teletype procedures without computer processing at the STC.
- f. Telemetry data will be received from IOS and processed by the Bird Buffer Telemetry Module for display at the remote printers for Program 823 only.
- g. Scheduling and usage of this program will be constrained by design restrictions implicit in the Augmented Satellite Control Facility System.
- h. The basic message formats and data order between the Bird Buffer and Tracking Station will be used without modification,

3.0 Data Flow.

Figure 1 shows the data flow between the STC and IOS.

4.0 Program Descriptions.

This section lists modifications to existing functions and new programs.

4.1 IOSB

The Indian Ocean Station Buffer is made up of major components of the Bird Buffer System and two new programs to punch and verify paper tape. All messages referred to in this document are in the formats described in TM(L)-834/000/01A, Bird Buffer Combined Milestone 3-4, 14 February 1963.

4.1.1 Punch Paper Tape Module (SPUN).

Paper tape will be punched containing all prepass messages normally transmitted to a tracking station. This module will be capable of the following functions:

- a. Providing visual header on paper tape giving vehicle number, rev. no., date, and system time of initial pointing data, and destination computer. This header will be used to file paper tape and will be transmitted to IOS.
- b. Converting messages from 12-bit 160-A words to 5-bit paper tape codes. (See Appendix I for detailed examples of paper tape format.) Each 12-bit word will be divided into three 4-bit words. A parity bit will be added to each 4-bit word for verification.
- c. Punching 5-level paper tape with spacing between messages.
- d. Recognizing command messages and providing for punching commands twice.
- e. As an option, writing a magnetic tape for conversion to paper tape on an off-line 160-A computer.
- f. The module will be called by SPREP to punch paper tape.

4.1.2 Verify Paper Tape Module (SPIN).

Faper tape punched by SPUN may be verified by the IOSB by calling SPIN. SPIN will be under the control of the executive module, SXCON. SPIN will be capable of the following functions:

- a. Reading one or several passes worth of prepass paper tape.
- b. Logging tape contents and error conditions.
- c. Doing parity and checksum computations on all messages.
- d. Comparing bit-for-bit successive command messages on the paper tape.

4.1.3 Executive Module (SXCON).

The executive module of the Bird Buffer System will be modified to allow punching and verification of paper tape and processing of telemetry paper tape for display at the remote printers. All those functions related to real-time contact with tracking stations and recording of pass data will be deleted to make space for new and amended modules. The Bird Buffer/1604 interface will remain intact (See TM(L)-834/000/01A, pp. 4, 62-65 for detailed description of this module). The major features of the non-station-contact mode of operation will be used for all new functions.

4.1.4 Input Processing Module (SPROC).

The input processing module will be modified to delete unwanted functions and add new functions. The following functions described in TM(L)-834/000/01A pp. 66-69 will be included in the IOSB.

- a. **00 Initialize.
- b. **02 Transfer Prepass.
- c. **04 Merge Tape.
- d. **06 Send Prepass (Modified to use paper tape and specify destination computer).
- e. **07 Transfer Card Prepass.
- f. **24 Send Text (STC Printers only).
- g. **99 End.

New functions will be added as follows:

- a. **25 ·Verify Paper Tape.
- b. **26 Read Telemetry Paper Tape.

Function Card formats will be consistent with existing Bird Buffer card formats.

7 March 1963 6 TM(L)-1079

4.1.5 Prepass Module (SPREP).

The prepass module will require minor modifications to allow the calling of SPUN to punch prepass data instead of using the 1200-bit line.

4.1.6 Communications Module (SIBBTC).

The 1604/Bird Buffer functions will be used intact.

4.1.7 Telemetry Processing Module (STEPP).

The telemetry processing module, modified to support program 823 (823-specific features are neither listed nor costed in this document), will be used to provide telemetry displays at the remote 166 printers. Small modifications to printer timing will be necessary because time sequencing is not driven by "real-time" messages from IOS.

4.1.8 Utility and Control

All utility programs provided for the Bird Buffer System to assemble programs, load and correct master tapes, make up symbol tables, and bootstrap the system master tape will be used without modification. The operation of the IOSB will be exactly like the Bird Buffer in all common functions.

APPENDIX I

Sample Paper Tape Formats

				1
ນິ	ນູດ	 54 	ပ္ဝ	ы
ر2	၁	2	ರೆ	ρ,
c^{77}	c_{10}	١٥٥	ဗ	ы
ж 3	ξu	 [×]	ΣO	д
M ₇	w ₆	X S	X,	А
¥	M 10	¥ ₀	M 8	р
A 3	A 2	4	4 0	д
s_1	ဖွ ^ဝ	A 5	A 4	Д
န	ຜູ້	ا چ _ي	sg C	Ъ
н3	щ ²	 H	п	Ы
H	9	# ₅	† _H	Д
H ₁₁	H,10	6H	н8	μ
				/

 H_{11} - H_0 = New Message Header (all 1's). S_5 - S_0 = Station Number, A_5 - A_0 = Message Code (001010 = 12). M_{11} - M_0 = Telemetry Mode. M_{11} - M_0 = Arithmetic Complement Checksum of the header message. C_{11} - C_0 = Parity (odd).

Telemetry Report Header Message

```
= 10 least significant bits of associated system time if c_{11} = 1, ident otherwise.
                                                                                        Ϋ́
                                                                χ2
                          E....K10 K6
 E....K11 K7
                          12
                          9_{1} or
 1, 1,
                                                                 15
                                                                _{6}^{1}
                                                                                                                                                                                                                                                                                                                          _{
m T_0} - _{
m T_0} = 11 least significant bits of system time, in seconds.
                                                                                                                                                                                                                                                                                                       T_{16} - T_{11} = 6 most significant bits of system time, in seconds.
 a
E
                                                                                                                                                                                                                                                                                                                                                                         Ident bits of "Event" associated system times.
                                                                ď
                           22
                                                                                         ۵
                          29
                                                                 2
                                                                                          ₫
 T3 N N----C11 D7
                                                                                        N N----D8
                                                                N N----D9
                          T2 N N----B
                                                                                                                 P P---P
                                                                                                                                                                                                                                                                                                                                                                                                                       I_{11} - I_{9} = 0 (ident bits of Event Identifications).
                                                                                                                                                                                                                                                           B_{11} = 1 if message contains "Event" only.

B_{10} - B_{\zeta} = 0 if fixed format words in message.
                                                                 ᇊ
                                                                                        ٤O
                                                                                                                 д
                                                                                                                                                                                   H_{11} - H_0 = New Message Header (all 1's).
                                                                                                                                                                                                                                                                                                                                               = Fixed Format telemetry items.
                         T13 T10 T6
                                                                 1
 T7
                                                                                                                                                                                                                           A_5 - A_0 = Message Code (001011 = 13).
                                                                T16 T12 T9
                                                                                        T15 T11 T8
 T, B
                            B10 B6
 B11 B7
                                                                                                                                                                                                        S<sub>5</sub> - S<sub>0</sub> * Station Number.
                                                                                                                                                                                                                                             M_{11} - M_0 = Telemetry Mode.
                                                                                          <sub>В</sub>
                                                                 <sub>в</sub>6
                            یج
   ×س
                                                                 ΣH
  M, 1, M,
                            Mo M6
                                                                 ×
                                                                                                                                                                                                                                                                                                                                                                                   ( 0 =
                                                                  ₹0
                                                                                                                                                                                                                                                                                                                                                                                                      ο<sub>α</sub> - 6<sub>α</sub>
. A.
                                                                ^{\mathtt{A}}_{\mathtt{J}}
                                                                                                                                                                                                                                                                                                                                                                ÇT,
                                                                   A<sub>5</sub>
                                                                                          ¥
  S<sub>L</sub>
                                                                                         ဗ္ဗ
ຶ້ນ
μm
                                                                 I,
                                                                                                                  щ
  Н
                             H<sub>6</sub>
                                                                                                                  д
```

Telemetry Report Message

* Arithmetic Complement Checksum for one message.

= Parity (odd).

= Identification number of event telemetry item.

= Event value.

H11 H7 H3 S5 S1 A3 R11 R7 R3 F11 F7 F3	K10 K6 K2(15 blanks)H10 H6 H2 S4 S0 A2 R10 R6 R2 F10 F6 F2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
К3	Kg(15 bla	. K ₁	К _О	P
K ₁₁ K ₇ K ₃ -	Kto K6	K ₉ K ₅ K ₁ -	K ₈ K ₁ K ₅	P P

 K_{11} - K_0 = Last message Arithmetic Complement Checksum. H₁₁ - H₀ = New Message Header. (7777) S_5 - S_0 $\stackrel{\checkmark}{=}$ Station Number. A_5 - A_0 = Message Code (010000 = 20) R_{11} - R_0 $\stackrel{\checkmark}{=}$ Fade Message Ident (01000000011 = 2003). R_{11} - R_0 $\stackrel{\checkmark}{=}$ Fade Message Arithmetic Complement Checksum. R_{11} - R_0 $\stackrel{\checkmark}{=}$ Fatty (odd). = Last message Arithmetic Complement Checksum.

Telemetry Report Fade Message

7 March 1963 TM(L)-1079

External Distribution List

Space Systems Division (Contracting Agency) Maj. C. R. Bond (SSOCD) Maj. N. D. LaVally (SSOX)		PIR-E4 (GE-Box 3198 Chestnut) J. F. Butler C. A. Cummings H. D. Gilman
6594th Aerospace Test Wing (Contracting Agency)		PIR-E4 (GE-Bethesda) A. Pacchiali
Lt. Col. A. W. Dill (TWRD) Lt. Col. M. S. McDowell (TWRU) TWACS PIR-El (Lockheed)	(32)	PIR-E4 (GE-Box 8661) F. T. Clark J. D. Rogers W. R. Weinrich
J: A: Boysen N: N: Epstein W. E. Moorman G. F. Taylor R. L. Vader P. E. Williams		PIR-E5 (Aerospace) M. Ackerman F. M. Adair A. Bakst J. W. Bengston R. V. Bigelcw
PIR-E2 (Philco) J. A. Bean J. A. Isaacs R. Morrison S. M. Stanley	(3)	R. O. Brandsberg L. H. Garcia G. J. Hansen L. J. Kreisberg M. L. Luther R. E. Olsen
PIR-E3 (LFE) D. F. Criley K. B. Williams PIR-E4 (GE-Santa Clara) D. Alexander		T. R. Parkin E. E. Retzlaff H. M. Reynolds D. Saadeh C. H. Shorter R. G. Stephenson D. D. Stevenson V. White
PIR-E4 (GE-Sunnyvale)		•
J. Farrentine N. Kirby		PIR-E7 (STL) A. J. Carlson (3)
PIR-E4 (GE-Box 8555)		PIR-E8 (Mellonics)
J. S. Brainard R. J. Katucki J. D. Selby		F. Druding

7 March 1963 TM(L)-1079

Internal Distribution List

			_		00070
_	Allfree	22078		Keyes	20073
	Aldana	24113		Kneemeyer	24065
в.	Alexander	22083		Knight	24110
N.	Alperin	24118		W. Knight	22095
Ε.	Armstrong	24089		Kolbo	24139
C.	Becerra	24082		Laughlin	20073
D.	Biggar	24090	J.	LaVine	20079
R.	Bilek	24124		Lewis	24117
L.	Brenton	22070	J.	Little	20077
в.	Lurke	23014	F.	Long	24122
R.	Burke	23014	J.	Lytton	24077
	Bustya	22084	G.	Madrid	24049
	Champaign	24127	G.	Mahon	22076
	Chesler	22087	R.	Marshall	24117
	Chiodini	22078	J.	Marioni	24076
	Ciaccia	24082		Martin	24089
_	Clements	24132		McKeown	24121
	Cline	24097	_	Milanese	24121
	Cogley	24135	-	Munson	24048
	Conger	22079		Myers	14056
	Cooley	24083		Nelson	24075
	Crum	24093	_	Ngou	25030
-		22096		Olson	24124
	DeCuir	24082		Padgett	24085
W.		24128		Patin	•
	Dexter		_	Persico	Sunnyvale
	Disse	24139	_		20076
G.	-	24094	_	Polk	24103
	Dobrusky	22125		Reilly	24085
	Dugas	24105		Rockwell	22070
	Ellis	24081	_	Seacat	Sunnyvale
R.		24110		Seiden	22091
	Feldstein	27013		Scott	24093
-	Francis	20075		Shapiro	25036
	Franks	25030	s.		24123
	Friedman	22083		Skelton	24127
	Gardner	22053		Speer	20079
	Gergen	24109		Stone	22116
I.	Greenwald	24058		Sweeney	24057
J.	Haake	24120		— :	22053
D.	Henley	24058		<u> </u>	27024
	Hill	24057		Thompson	22077
J.	Hillhouse	24049	c.	Toche	24088
${\tt H}.$	Holzman	22096	R.	Totschek	24090
G٠	Hudson	22101	A٠	Tucker	24115
	Johnson	24105	A٠	Vorhaus	24076
	Kastama	24053	s.	Weems	24126
	Katz	24103	G.	West	Sunnyvale
	Kayser	25026	G.	P. West	24094
	Keddy	25026	M.	Weinstock	22095
	Key	24123	в.	Williams	24091
	-	_			-

7 March 1963 TM(L)-1079

G. Wilson	22101
M. Winsor	24137
J. Winter	24097
R. Wise	24051
J. Wong	Sunnyvale
A. Robinson	27013
J. Schroeder	27011

UNCLASSIFIED

System Development Corporation,
Santa Monica, California:
INDIAN OCEAN STATION BHITTER
MILESTONE 3
Scientific rept., TM(L)-1079,
by D. A. Biggar. 7 March 1963,
9p., 1 fig.
(Contract AF 19(628)-1418, Space
Systems Division Program, for Space
Systems Division, AFSC)
Unclassified report

DESCRIPTORS: Programming (Computers). Satellite Networks.

Describes program requirements for the Indian Ocean Station Builfer, a 160-A

UNCLASSIFIED

UNCLASSIFIED

program system designed for use at the Satellite Control land lity. Gives a general description of the programs, their interferms, and scheduling.

UNCLASSIFIED