Einschub: Beweisen

Was ist ein Beweis?

Ein Beweis ist eine Abfolge von Schritten, die jeweils durch logische Schlussfolgerungen gebildet werden. Unter den gegebenen Voraussetzungen soll dabei eine Aussage A gezeigt werden.

Dabei muss jeder einzelne Schritt nachvollziehbar oder mit einer bekannten Aussage begründet sein.

Schema:

Nach Voraussetzung gilt . . .

- 1. Schritt: Dann gilt
- 2. Schritt: Dann gilt

Also gilt die Aussage A.

usw.

Beispielschema Implikation

Wenn die Implikation $A \Rightarrow B$ gezeigt werden soll, beginnt man so: Wenn A gilt, dann gilt ...; daraus folgt ...; usw. also gilt auch B.

Als Beispiel für die Anwendung betrachten wir folgende Definition:

Def.: Eine Zahl n ist gerade, wenn eine natürliche Zahl k existiert, so dass $n = 2 \cdot k$ gilt. Eine Zahl n heißt durch 4 teilbar, falls es eine natürliche Zahl k gibt, so dass $n = 4 \cdot k$ gilt.

Behauptung: Jede durch 4 teilbare natürliche Zahl ist gerade.

Beweis: Sei *n* eine durch 4 teilbare natürliche Zahl.

Dann existiert eine natürliche Zahl ℓ mit $n = 4 \cdot \ell$.

Setze $k = 2 \cdot \ell$.

Dann ist k eine natürliche Zahl und es gilt $n=4\ell=2\cdot 2\ell=2\cdot k$.

Also ist nach unserer Definition n eine gerade Zahl.

Alternatives Beweisschema für $A \Longrightarrow B$

Statt mit der Aussage A zu beginnen und daraus schrittweise die Aussage B herzuleiten, kann man auch die Implikation $\neg B \Longrightarrow \neg A$ zeigen.

(Was bedeutet hier $\neg B$ bzw. $\neg A$?)

Wie können wir begründen, dass $A \Longrightarrow B$ und $\neg B \Longrightarrow \neg A$ die selbe Bedeutung haben?

Die Aussage $A \Longrightarrow B$ ist immer richtig, außer wenn A wahr und B falsch ist. Vergewissern Sie sich, dass das stimmt...

Die Aussage $\neg B \Longrightarrow \neg A$ ist immer richtig, außer wenn $\neg B$ wahr und $\neg A$ falsch ist. Vergewissern Sie sich, dass auch das stimmt...

Aber $\neg B$ ist wahr genau dann, wenn B falsch ist und $\neg A$ ist falsch genau dann, wenn A wahr ist. Also sind die beiden roten Zeilen tatsächlich gleichwertig!

Beweisschema für $A \iff B$

Wir sollen die Aussage $A \iff B$ zeigen. Das können wir so machen:

Beweis:

```
A gilt genau dann, wenn C = \dots gilt, weil \dots C gilt genau dann, wenn D = \dots gilt, weil \dots usw.
```

. . .

Y gilt genau dann, wenn $Z = \dots$ gilt, weil \dots

Z gilt genau dann, wenn B gilt, weil ...

Insgesamt hat man dann also die Äquivalenz von A und B gezeigt, wie gewünscht.

Alternatives Beweisschema für Äquivalenz

Die Äquivalenz $A \iff B$ kann man auch auf andere Weise nachweisen. Es gilt nämlich $A \iff B$ genau dann, wenn sowohl $A \implies B$, als auch $B \implies A$ gilt. Ist das klar?

Das Schema nutzt diese Tatsache aus:

Zu zeigen ist $A \iff B$.

Teil 1. Zeige $A \Longrightarrow B: \dots$

Teil 2. Zeige $B \Longrightarrow A$: . . .

Die beiden Aussagen zusammen ergeben das gewünschte Resultat.

Beispiel Mengengleichheit

Wie zeigt man zum Beispiel, dass Mengen X und Y gleich sind?

Beachte, dass X = Y genau dann, wenn für alle möglichen Elemente x gilt:

$$x \in X \iff x \in Y$$

Wie im zweiten Schema für die Äquivalenz können wir also nun so weitermachen:

1. Zeige
$$x \in X \implies x \in Y$$
 (Das heißt $X \subseteq Y$)

2. Zeige
$$x \in Y \implies x \in X$$
 (Das heißt $Y \subseteq X$)

Abgekürzt heißt das:

Um X = Y zu zeigen, kann man erst $X \subseteq Y$ und dann $Y \subseteq X$ beweisen.