UNIT 1

OSI Security Architecture

- ITU-T X.800 standard
- Internationally recognized
- Set of protocols, standards, techniques to ensure sec in env based on OSI.
- Deploy sec measures in org
- Systematic way of defining providing sec requirements at each layer
- 3 aspects: Attacks, Mechanisms, Services

Security Attacks

- Any action that compromises sec of info owned by org
- Infosec: How to prevent attacks (or detect) on info systems
- Threat = attack
- Two generic types: Passive, Active
- Passive
 - Attacker does not directly interact with data, network, parties
 - No modification of data
 - Gaining information
 - Parties unaware
 - o Easier to perform, harder to detect
 - E.g. eavesdropping, replay, traffic analysis, MITM,
- Active
 - Attacker directly interacts with data, network, parties
 - Modification of data
 - Cause disruption
 - Harder to perform, easier to detect
 - o E.g. modification, DoS, masquerading
- Confidentiality: Snooping, Traffic Analysis
- Integrity: Modification, Masquerading, Replaying, Repudiation
- Availability: DoS

Security Services

- Processes provided by system to protect resources
- Implement sec policies by utilizing mechanisms
- CIAAN (confi, inte, auth, access, non-repu)
- Confidentiality
 - Protection from passive attacks
 - Ensuring info is accessible only to those authorized
 - Prevent disclosure of info to unauthorized
 - Protection of traffic from analysis

Integrity

- Data cannot be modified
- o Two types: connection-oriented, connectionless-oriented
- Applied with or without recovery

Authentication

- Assure authentic communication
- Peer entity auth: verify identity of peer entities (during establishment and transmission) involved, protection against masquerade
- Data origin auth: authenticity of source of data, no protection against modification of data

Access Control

- Ability to control level of access entity has, how much info can they receive
- Each entity trying to access must be auth
- Rights tailored to individuals

Non-Repudiation

- Prevents entities from denying transmitted data
- Without it, entity can deny that it did not send/receive data
- E-commerce

Availability

- Property of resource being accessible (and usable) upon demand by authorized entity
- Affected by variety of attacks

Security Mechanisms

- X.800 those implemented by specific layer, those not specific to any service
- Specific
 - Encipherment: apply math algo for converting data (confidentiality, integrity, auth)
 - Digital Signature: append crypto data to data for proving source and integrity (integrity, auth, non-repu)
 - Access Control: enforcing access perms
 - Data Integrity
 - Auth Exchange: ensure identity of entity by info exchange (auth)
 - Traffic Padding: insert bits into gaps in stream countering traffic analysis
 - Routing Control: selection of secure routes (confidentiality)
 - Notarization: use of trusted third-party (non-repu)
- Pervasive (non-specific)
 - Trusted Functionality
 - Security Level
 - Event Detection

- Security Audit Trail
- Security Recovery

Model for Network Sec

- Data transmitted over network between parties
- Parties must cooperate for exchange
- Logical info channel established by defining route
- Use of protocols by parties
- Requirements
 - Design suitable algo for transformation
 - Generate secret info (keys) for algo
 - Develop methods to share secret info
 - Specify protocol to use transformation and secret info

Cryptography

- Terminology
 - Plaintext
 - Ciphertext
 - o Cipher
 - Key
 - o Encipher
 - o Decipher
 - Cryptography
 - Cryptanalysis
 - Cryptology: cryptography + cryptanalysis
- Cryptography
 - Greek (concealed writing kryptos graphia)

- Science of transforming data to make it secure
- o Parties need unique cipher
- Encryption needs: algo + key + plaintext
- Classified in 3 ways
 - o Types of operations: substitution, transposition, product
 - Number of keys: single key, two-key
 - Way of processing plaintext: block, stream
- Cryptanalysis
 - Attempting to discover key or plaintext
 - o Depends on nature of scheme used and info available
 - Cipher-text only
 - Known plaintext: CT and its PT
 - o Chosen plaintext: Choose PT and generate CT
 - o Chosen ciphertext: Choose CT and obtain PT

Symmetric Cipher Model

- Called conventional, single-key, private-key
- Share common key
- Classical algos
- Prior to 1970s
- Used for large data
- Same key for enc and dec (used in both directions)
- Requirements
 - Strong enc algo
 - Secret key
 - Known algo
 - Secure channel to distribute key
- Adv
 - o Dec is reverse of enc
 - If enc is add + multi, then dec is div + sub
 - Efficient algos
 - Faster than asymmetric
- Disadv
 - Each pair needs unique key
 - N parties = n(n-1)/2 keys
 - Key distribution

Substitution Techniques

Letters of plaintext are replaced by other letters/numbers/symbols

• If plaintext = bits, replace bit patterns with ciphertext bit patterns

Caesar Cipher

- Earliest known use of substi, in military
- Julius Caesar
- Replace each letter with letter 3 places further down
- Shifting of letters by certain position (key = 3)
- Wrap around if overflow
- \circ CT = E(PT) = (PT + k) mod 26
- \circ PT = D(CT) = (CT k) mod 26
- Only 26 possible ciphers
- Simply broken by brute-force

Monoalphabetic Cipher

- Rather than shifting, jumble arbitrarily
- Map each letter to different letter
- o Key length = 26
- 26! possible keys (still not secure)
- Human languages are redundant (letters not equally common)
- Use frequencies of letters for cryptanalysis

Playfair Cipher

- Digram substi cipher
- Used by British in WW-1 and Germans in WW-2
- 5x5 matrix of letters based on key (25 letters)
- I and J are combined
- First fill letters of key (ignore duplicates)
- o Fill remaining letters of alphabet
- Steps (enc and dec)
 - Split plaintext (or ciphertext) into pairs of two letters (digraphs)
 - ii. If letter left out, or same letter in a pair, use filler 'X'
 - iii. Process each pair
 - iv. If both letters in same row, go to each letter's right (left for dec) (wrap)
 - v. If both letters in same column, go each letter's bottom (top for dec) (wrap)
 - vi. Else, replace each letter's row and column intersection (in same order of PT)
- Length of PT = Length of CT = even
- More secure than monoalphabetic
- 676 digrams
- Can be broken, as follows same structure as plaintext

Polyalphabetic Cipher

- Each occurrence of character can have different substi
- One to many mapping
- Overcome weakness of freq analysis in monoalphabetic

• Vigenere Cipher

- Blaise de Vigenere (16th century)
- Uses successively shifted alphabets from 26x26 matrix (diff shift for each 26 letters)
- Letters of key determine shifted alphabets used in enc and dec
- Pad key to be same length as plaintext
- o row = key, column = plaintext, intersection = ciphertext
- Breaking possible since reveals math principles

Vernam Cipher (One-Time-Pad)

- Gilbert Vernam (AT&T 1917)
- Cannot be cracked, as uses one-time PSK
- Length of PSK = Length of plaintext
- Plaintext is paired with one-time PSK, therefore one-time-pad
- o plaintext + key = ciphertext
- ciphertext key = plaintext
- Add corresponding letters of plaintext and key, subtract 26 if addition exceeds 26
- Key discarded after use
- Any message can be transformed into any cipher by a pad
- Security depends on randomness of key
- o Disadv: key-stream as long as plaintext, key distribution, key management

Transposition Techniques

- Performing some sort of permutation on plaintext letters
- Characters retain plaintext form but change positions
- Characters interchanged according to key and algo
- Easily broken as letter frequencies are same as plaintext
- Can be more secure by performing multiple transpositions

Rail Fence Cipher

- Plaintext is written as sequence of diagonals, then read as rows
- Rail depth = no. of rows/rails
- Move downward diagonally letter-by-letter, after reaching last rail, continue upward diagonally

0

Block (Single) Columnar Transposition

- Write plaintext letters in rows, read message column-wise
- Key determines order of column combination

Steganography

- Science of hiding data in data
- No one other than parties know about existence of hidden data
- · Replace bits of useless data
- Disadv
 - Lot of overhead for few bits
 - Useless after discovery of system

Block Ciphers

- Process messages in blocks
- Like substi on big characters
- Based on Feistel structure
 - Horst Feistel
 - Partition I/P block into two halves
 - Process through rounds
 - Perform substi on left
 - o Perform round func on right and sub-key
 - Permutations swapping halves
- Confusion: make relationship b/w CT and key as complex as possible
- Diffusion: dissipate stat structure of PT over bulk CT
- P-Box
 - Permutation
 - Perform transposition at bit-level
 - Key and enc algo embedded in hardware
- S-Box
 - o Substi
 - Perform substi at bit-level
 - Transpose mutated bits
 - o 3 components: encoder, decoder, p-box

PKI

- Adv: no shared key, less number of keys 10 users = 20 keys, efficient for short messages
- Disadv: complex algo, association b/w entity and public key must be verified

DES

- Most widely used block
- NIST 1977

- Enc 64-bit data using 56-bit key
- Deprecated as short key

Steps

- Permute PT block and divide
- Halves undergo rounds of ops
- XOR b/w expanded right PT and compressed 48-bit key
- Send output to S-box
- o XOR output and left PT and store in right PT
- o Forward both halves to next round
- Swap left and right at last round
- o Apply IP to get CT
- Avalanche effect
 - Desirable property of algo
 - o Change in one bit causes approx half output to change
 - Strong for DES

3DES

- 3 rounds of DES
- 3 keys generated using KDF
- PT subjected to IP
- PT enc 3 times, each time diff key
- FP applied to produce CT

AES

- Replacement for DES
- 128-bit data, key size = 128, 192, 256
- Key expansion: Round keys derived from cipher key using Rijndael key schedule
- Enc Steps (ASS-M-ASS-A)
 - Initial Round
 - Add Round Key: 128 bits of state XORed with 128 bits of round key
 - o Main Round (enc)
 - Sub Bytes: Each byte of current state substi by entry in S-box, first digit -> row, second -> column
 - Shift Rows: Transposition, 4 rows shifted cyclically to left by offsets from 0 to 3
 - Mix Columns: Linear mixing op, multiply state against fixed matrix
 - Add Round Key
 - Final Round
 - Sub Bytes
 - Shift Rows
 - Add Round Key
- Dec Steps (ASS-M-ASS-A)
 - Initial Round
 - Add Round Key
 - Main Round (dec)
 - Inv Shift Rows
 - Inv Sub Bytes
 - Inv Mix Columns
 - Add Round Key
 - o Final Round
 - Inv Shift Rows
 - Inv Sub Bytes
 - Add Round Key

RSA

- Steps
 - Two primes p and q
 - \circ N = p * q
 - \circ T(n) = (p-1) * (q-1)
 - Choose e, such that GCD(e, T(n)) = 1
 - Choose d, such that (d * e) mod T(n) = 1

d = (1 + k * T(n)) / ek = 0,1,2.. and d is whole no.

- Public key = {e, n}
- Private key = {d, n}
- M = message
- CT = (m^e) mod n
- PT = (CT^d) mod n

DH

- Large prime q
- Choose A such that A is primitive root of q
 A^1 mod q, A^2 mod q, A^q-1 mod q = 0 to q (random order)
- Assume Xa (a private key), Xa < q
- Assume Ya (a public key), Ya < q
- Ya = A^Xa mod q
- Same for B
- Shared key (A) = Yb ^ Xa mod q
- Shared key (B) = Ya ^ Xb mod q

UNIT 2

Secure Programs

- Earlier based on penetrate and patch (done by tiger team)
- Considered proof of security if system withstood
- Pressure on specific problem led to a narrow focus on fault and not its context
- Attention on immediate cause and not underlying faults
- Fixing one caused failure somewhere else

Types of Flaws

- Landwehr divides into
 - Intentional (malicious, non-malicious)
 - Inadvertent (validation, domain, serialization, inadequate auth, boundary conditions, logic)
- Design flaws (processor design: floating point in Intel Pentium)
- Program flaws (application, system, side-channel attacks)
- Human factors (phishing, social eng)

Hardware flaws (hardware trojans, distribution attacks)

Buffer Overflows

- Buffer: space in memory for holding data temporarily
- Finite capacity
- Dev must declare max size so compiler allocates (e.g. char sample[10] allocates 10 bytes)
- When more data tries to be allocated to buffer (exceeds), data leaks into other buffers
- Overwrite adjacent memory
- Extra overflown data may contain specific instructions, purposefully chosen by attacker, to execute arbitrary code
- E.g. pour 2L in 1L jug
- Heap-based: malloc and free
- Stack-based: ESP, EBP, EIP, ESI, EDI

Incomplete Mediation

- Refers to sec vuln occurring when app does not validate all I/P
- Allows attacker to bypass controls, gain access to data
- Injections, XSS
- Whitelist or blacklist
- Manipulate params
- Directory traversal

Brain Virus

- Basit and Amjad Farooq Alvi in 1986, computer store in Lahore, Pakistan
- Boot sector virus: area read by BIOS, when computer starts
- Spread when users infected systems by booting from infected disks
- Not to cause harm, rather to protect medical software from being copied
- One of the first self-replicating viruses
- Replaced boot sector with its own code
- Code checked presence of virus, if absent it would copy itself to boot sector and infect disks used on computer
- Stealth virus: hide from AV detection
- Prevent: AV, email filter, IDS, user training

Internet (Morris) Worm

- Designed to spread on UNIX
- Log on to remote host as user by cracking local password file (assuming multiple users used same password)
- Ran each account name and permutations, with 432 built-in passwords and all words in directory
- Exploited finger protocol
- Exploited trapdoor in debug option of remote process
- If successful, communicated with OS command interpreter

Web Bugs (Beacon)

- Simple 1x1 overlay added to HTML
- Track user activity (viewing time, IP address, browser info)
- Spread through email attachments
- Propagated as GIF

Trapdoors

- Secret (undocumented) entry point
- Gain access without usual auth/procedures
- Difficult to detect
- Only known to dev as inserted during coding

Salami Attack

- Merge bits of inconsequential data to yield powerful results
- Name: manner in which odd bits of meat combined to make salami or sausage
- Financial crimes
- Salami slicing: steal negligibly small amount from many accounts
- Penny shaving: round transactions to closes decimal

Development Controls

- Secure coding practices integrated into SDLC
- Mitigate vulnerabilities
- Collaborative effort
- Regular requirement: "do X", security requirement: "do X and nothing more"

- Phases: Req specification, design, implementation, testing, documenting, review, deployment, maintenance
- RBAC or ABAC
- Secure config baselines
- Modularity: self-contained, isolated, problem tracing, single-purpose, independent
- High cohesion
- Low coupling (degree of independence)
- Encapsulation: hide implementation, limited sharing
- Data Hiding: only input-output should be visible, conceal internal structure

Peer Reviews

- Devs review each other's code for vuln
- Helpful for identifing vulns missed by individual devs

Hazard Analysis

- Identifying and assessing potential hazards in system
- Identify sec hazards and develop controls to mitigate
- HAZOP (hazard and operability studies): brainstorm hazard and consequence
- FMEA (failure modes and effects analysis): identify and analyze potential failures and effects
- FTA (fault tree analysis): model logical relationships between failures

UNIT 4

PGP

- Provides confi and auth service for email and file storage
- Phil Zimmermann, selected best algos and integrated
- Independent of gov orgs
- Authentication (digital signature)
 - Sender hashes message using SHA-1 (160-bits)
 - Hash is encrypted using RSA (sender private)
 - o Encrypted hash attached to message and sent
 - Receiver receives message + encrypted hash
 - Received decrypts using RSA (sender public)
 - Receiver hashes message
 - Decrypted hash and receiver's hash compared

Confidentiality (encryption)

- Sender generates session key
- Sender encrypts message using key (AES, IDEA, CAST-128, 3DES0
- Sender encrypts session key using RSA (receiver public)
- Encrypted session key attached to encrypted message and sent
- Receiver receives encrypted session key + encrypted message
- Receiver decrypts session key using RSA (receiver private)
- Receiver decrypts message using decrypted session key
- (provides no assurance to receiver the identity of sender, no auth)

Confidentiality + Authentication (digital sign + enc)

- Sender generates session key
- Sender hashes message
- Sender encrypts hash using RSA (sender private)
- Encrypted hash + message = blob
- Sender encrypts blob using session key
- Sender encrypts session key using RSA (receiver public)
- Sender combines encrypted session key + blob (encrypted hash + message) and sends
- Receiver receives encrypted session key + blob
- Receiver decrypts session key using RSA (receiver private)
- Receiver decrypts blob (encrypted hash + message) using decrypted session key
- Receiver decrypts hash using RSA (sender public)
- Receiver hashes message
- Hashes are compared

Compression

- o PGP compresses message after signature before enc
- Sign -> compress -> enc
- Saves space for email and file storage
- Enc after compression to strengthen cryptographic sec

Email Compatibility

- Least part of transmitted block is enc (arbitrary stream of octets)
- Email only allow ASCII
- Convert raw 8-bit stream to printable ASCII
- Uses radix-64 conversion
- Each 3-octet group is mapped to 4 ASCII
- Appends CRC
- Expands message by 33%

Segmentation/Reassembly

- Email often restricted length e.g. 50k octets
- Subdivide message into segments small enough for being allowed
- Done after all other processing (at the end)

- Reassembly at receiver is required before verifying sign or dec (as key and sign are in first segment)
- Message Format
 - o Three components: message, signature, session key
 - Message: data, filename, creation timestamp
 - Signature: creation timestamp, message digest, leading 2-octets, key ID of sender public key
 - Session key: session key, key ID of receiver public key

S/MIME (Secure Multipurpose Internet Mail Extension)

- Enhancement to MIME format standard
- MIME
 - Extension to RFC822
 - Address limitations of SMTP and RFC822 (binary exec files converted to ASCII, text limited to 7-bit ASCII, server reject large mails)
 - <u>5 Header Fields</u>: MIME-Version (1.0), Content-Type, Content-Transfer-Encoding, Content-ID, Content-Description
 - Content Types: plaintext (ASCII or ISO 8859), multipart (image, video, audio, app)
 - o Transfer Encoding: 7-bit, 8-bit, binary, printable, base64, x-token
- Enveloped data (enc content + enc content-enc key)
- Signed data (enc hash using sender private, enc hash + message encoded in base64)
- Clear-signed data (enc hash using sender private, encoded in base64)
- Signed and enveloped data (hash enc data, or enc hashed data)

Overview of IPSec

- Framework of open standards for protection comms over IP through cryptographic sec services
- Supports network-level peer auth, data origin auth, integrity, conf, replay protection
- Need: CERT in 2001 reported 52k attacks IP spoofing, packet sniffing
- Applications
 - Branch office connectivity
 - o Remote access
 - Extranet and internet connectivity
 - E-commerce
- Operate in router, firewall connecting LANs to outside
- Typically, enc + compress traffic going to WAN, reverse for going to LAN

Benefits

- Firewall resistant to bypass
- Transparent to end users
- Below transport layer, transparent to apps
- Sec for individual users

IPSec Architecture

- IPSec Documents
 - o Nov 1998
 - o RFC 2401, 2, 6, 8
 - Mandatory support for IPv6, optional for 4
 - o Sec features implemented as extension headers following main IP header
 - Extension header for auth is AH, enc is ESP
 - Additional drafts published by IETF, IPsec protocol working group
 - Documents divided into: arch, ESP, AH, enc algo, auth algo, key management, DOI
- IPSec Services
 - Two protocols (AH and ESP) for sec at IP level
 - Connectionless integrity
 - Access control
 - Conf
 - Replay detection
 - o Traffic info conf
- Security Associations (SA)
 - Specify protocol to be used
 - DB record specifying params controlling sec ops
 - Referenced by sender, established by receiver
 - One direction only, two Sas for bidirectional
 - Identified by 3 params
 - SPI (sec param index): bit string assigned to SA, enable receiver to select SA for processing
 - Dest IP: Only unicast, may be user or firewall or router
 - Sec Protocol ID: AH or ESP
 - Params
 - Seq num counter: 32-bit to generate seq num in AH or ESP
 - Seq counter overflow
 - Anti replay window: determined if replay or no
 - AH info
 - ESP info
 - Lifetime
 - IPsec protocol mode: tunnel, transport or wildcard
 - MTU

- Transport mode: IPsec header inserted after IP header, containing sec info, used in E2E comms if IP header not protected
- Tunnel mode: Entire IP packet encapsulated in IPsec body, with own header, no routers can check content

Authentication Header

- Support for integ and auth of IP packets
- Integ ensured undetected modification in transit is not possible
- Auth enables system to auth user and filter traffic
- Prevent spoofing and replay attack
- Auth based on MAC, parties must share key
- Fields
 - Next header
 - Payload length
 - Reserved
 - o SPI
 - Seq Num
 - Auth data
- Anti-Replay
 - Use Seq Num field
 - Sender initializes to 0 when new SA established
 - Each packet sent on SA, inc by 1
 - Max is 2³² 1
 - Receiver should receive window of size W (default 64)
 - Right-edge highest seg num N received till now
 - Packet with seq num N-W+1 to N correctly received is marked
 - o If received packet in window and new, check MAC, if correct, mark
 - If received packet to right of window and new, check MAC, if correct, shift window to its right edge and mark
 - If received packet to left of window or auth fails, discard
- Integrity Check Value
 - Value in auth data of AH or ESP
 - o Determine modifications made to data
 - Also called MAC (MD5 and SHA-1 implemented with HMAC)
- Transport Mode AH
 - o AH inserted after original IP header before IP payload
 - Auth covers entire packet excluding mutable fields
- Tunner Mode AH
 - Entire original IP packet is auth
 - o AH inserted between original IP header and new outer IP header
 - Inner IP header contains true source and dest IP

- Outer IP header may contain different (firewall, router, etc.)
- Entire inner packet is protected by AH
- Outer IP header is protected except mutable fields

Encapsulating Security Payload

- Fields
 - o SPI
 - Seq Num
 - Payload Data
 - Padding
 - Pad length
 - Next header
 - Auth data
- Transport Mode ESP
- Tunnel Mode ESP

Combination of SAs

- IPsec arch doc lists 4 combinations
- Combinations must be supported by compliant IPsec hosts
 - o Case 1
 - Sec provided b/w all systems implementing IPsec
 - Parties must share appropriate keys
 - Transport AH, Transport ESP, ESP followed by Transport AH
 - Any one inside Tunnel AH/ESP
 - o Case 2
 - Sec provided b/w gateways and no hosts implementing IPsec
 - Simple VPN
 - Only single tunnel SA
 - Nested tunnels not req as services apply to inner packet
 - o Case 3
 - Similar but provides sec even to nodes
 - Two tunnels (gateway-to-gateway, node-to-node)
 - Auth or enc or both provided using G2G
 - Additional service provided by N2N
 - o Case 4
 - Suitable for remote users
 - One tunnel needed b/w remote user and org firewall

Key Management

- Determination and distribution of keys
- Two types: Manual and Automated
- Default automated is ISAKMP/Oakley
 - Oakley: key exchange protocol based on DH but added sec, no specific formats
 - Internet SA and Key Management Protocol: provides framework for IKM and provides protocol support
- Oakley Key Determination Protocol
 - o Refinement of DH
 - o Limitations of DH: MITM, no identity info, computationally intensive
 - Cookies to prevent attacks
 - Enables two parties to nego group (specify global DH param)
 - Nonces to prevent replay
 - Auth DH to prevent MITM
 - Cookie exchange: send pseudorandom num, cookie in initial exchange, which is ack
 - o Supports use of diff groups for DH
- ISAKMP
 - o Defines formats to nego SAs
 - Must follow UDP
 - Header followed by payloads

SSL/TLS

- Netscape to provide sec in transmission on Internet
- SSL is protocol layer may be placed b/w network and app layer
- Provides secure comms by allowing mutual auth, use of DS for integ, enc for privacy
- SSL 3 has support for cert chain loading, basis for TLS
- SSL is two layers of protocols

• Connection: transport providing suitable service. For TLS, P2P relationships. Each is associated to one session

- Session: Association b/w client-server. Created by handshake protocol. Define set of crypto sec params, shared among multi connections. To avoid expensive nego of new sec params for each connection.
- Sessions are stateful, defined by
 - Session ID: chosen by server
 - o Peer cert: X509 cert of peer
 - Compression method
 - Cipher spec: bulk enc algo + hash algo + params (hash size)
 - Master secret
 - Resumable
 - Client-server random
 - Server-write MAC secret
 - Client-write MAC secret
 - Server-write key
 - Client-write key
 - IVs: init by handshake protocol
 - Seq nums: max 2^64 -1
- SSL Record Protocol
 - Provides two services: Confi, Integ
 - Takes message, fragments into blocks, compress, apply MAC, add header, transmit in TCP segment
 - Received, decrypted, verified, decompressed, reassembled, delivered to user

- Header consists of: Content Type, Major Version, Minor version, Compressed Length
- SSL Change Cipher Spec Protocol
 - Uses SSL record protocol
 - Single message of single byte of value 1
 - Causes pending state to be copied to current state
 - Updated cipher suite for connection

SSL Alert Protocol

- Convey related alerts to peer entity
- Message consists of 2 bytes (byte 1 value warning or fatal, terminates if fatal, byte 2 – code for specific alert)
- Fatal alerts: unexpected_message, bad_record_mac, decompression_failure, handshake_failure, illegal_parameter, close_notify, bad_certificate, unsupported_certificate, certificate_revoked, certificate_expired, certificate_unknown

SSL Handshake Protocol

- Establishment of reliable session b/w client-server
- Allows client-server to auth each other, nego enc and MAC algos, nego keys
- Message Fields
 - Type
 - Length
 - Content
- Phases (CS-CSCS-CCC-CFCF)
 - Establish Sec Capabilities
 - Server Auth and Key Exchange
 - Client Auth and Key Exchange
 - Finish

TLS

- RFC2246
- Protocol for establishing sec conn b/w client-server
- · Capable of auth client-server
- Used by HTTP, IMAP, POP3, SMTP
- TLS Handshake Protocol: nego key exchange using asymmetric algo
- TLS Record Protocol: opens enc channel using symmetric algo

Intruders

- Entities attempting to break into system (potential misuse)
- May be from outside network or legitimate users (inside)
- Physical, system, or remote

Intrusion Techniques

- Buffer overflows
- Unexpected combinations
- Unhandled input
- Race conditions
- Phishing
- Pretexting
- Zero-day
- Injections
- DoS
- Physical Theft

Intrusion Detection

IDS

- Monitor system/network activities
- Passive in nature
- Detect malicious activities, alert admins
- Assist in IR
- Improve sec posture
- Helps in compliance and auditing

Anomaly-Based

- Model normal usage (set baseline) as noise characterization
- Activities deviating from baseline are flagged
- Recognizes new attacks
- Disadv: False positives

Signature-Based

- Matched description of attacked system with sensed (current) description
- Interpret certain piece of data as attack
- Match from DB
- Simple pattern matching algo
- Diadv: Cannot detect new attacks, false positives, update for every new pattern

Host-based

- Detect from sys/app logs
- Analyze logs for trails of intrusion
- Adv: verifies attack, system specific, monitor key components, real-time, no additional hardware
- Disadv: Trained model (need experience) for detection

Stack-based

- Integrated with TCP/IP stack
- Watch packets travelling through layers
- Pull packets from stack before system can process

Network-based

- Look for signatures in network traffic
- Promiscuous interface
- Filter applied before attack recognition
- Adv: Packet analysis, reduced cost, real-time, platform independent

Firewall Design Principles

Firewall

- Guard network by standing b/w inside and outside network
- Special router
- Controls transmission (decides allow/not allow)
- Single choke point for protection

- Convenient for NAT, logging (non-sec features)
- Serve as platform for IPsec (VPNs)
- Techniques to implement policies
 - Service control (type of service that can be accessed)
 - o Direction control (direction of allowed requests)
 - User control (which user is attempting access)
 - Behavior control (how services are used, email)
- Disadv: no protection against internal attack
- Screened Host FW, Single Homed Bastion

- Firewalls has packet filter router and AG
- o Filter assures incoming is destined for AG
- Examines dest IP of packets
- Ensures outgoing is coming from AG
- o Increases sec as checking at app and packet level
- More flexible for admins
- Granular sec policies
- Disadv: compromised filter exposes whole network, internal user connects to AG and filter

Screened Host FW, Dual Homed Bastion

- o Improvement over single-homed
- o Connections to internal user and filter are removed
- User only connected to AG which is only connected to filter
- Compromised filter only exposes AG

Screened Subnet Firewall

- Highest sec
- Two packet filters (one b/w outside network-AG, another b/w AG-internal network)
- Three levels

DMZ

- Popular
- Arrangement of firewalls
- o If org has servers that need to available to outside network (mail, web, ftp)

 Three interfaces: one to internal private, one to external public, one to public servers (DMZ)

Types of Firewalls

- Packet Filters
 - Set of rules applied to each packet
 - Outcome decides discard/accept
 - Screening router/filter
 - Filter packets going in either direction
 - o Rules on: headers, source IP, dest IP, port numbers
 - o If no match, take default action
 - Discard all or accept all (not single)
 - Adv: simple, user unaware
 - o Disadv: setup rules, lack of auth
 - Attacks: IP spoofing, source routing, fragmentation
 - Advancements: dynamic (stateful) filter, examines based on current state, adapts itself, custom dynamic rules
- Application Gateways
 - Proxy server
 - Decides flow of app traffic
 - User contacts app gateway (HTTP, SMTP, FTP telnet/rlogin)
 - Asks which remote user to setup connection for
 - Auth using ID-pass
 - AG accesses remote host instead of user (proxy)
 - Circuit Gateway
 - Additional functions on AG
 - Creates connection between remote host and AG
 - User unaware, thinks direct connection to remote host
 - CG changes source and dest IP (acts as middleman)
 - Adv: better than filters, auth instead of rule-matching
 - Disady: Overhead in connections
 - AG = Bastion host