ПРАКТИЧЕСКАЯ РАБОТА № 1. Основы программирования на языке R

Цель работы – научиться использовать базовые структуры данных языка R для реализации алгоритмов обработки данных.

Задачи:

- 1. Научится устанавливать R и RStudio.
- 2. Изучить линейные алгоритмы, операции со строками и списками.
- 3. Изучить алгоритмы ветвления и оператор выбора.
- 4. Изучить циклические алгоритмы.
- 5. Изучить методы обработки матриц.
- 6. Самостоятельно выполнить индивидуальное задание по каждому разделу.

Теоретические сведения

R — язык программирования для статистической обработки данных и работы с графикой, а также свободно распространяемая программная среда вычислений с открытым исходным кодом, реализованная в рамках проекта GNU. R широко используется для статистического программного обеспечения и анализа данных и фактически стал стандартом для статистических программ. R доступен под лицензией GNU GPL на сайте https://www.r-project.org.

Распространяется программа в виде исходных кодов, а также откомпилированных приложений для операционных систем: большого числа Unix-подобных систем (включая Linux и FreeBSD), MacOS, Microsoft Windows.

Началом появления R считается 1993 год, когда двое новозеландские учёные, сотрудники Оклендского университета, Роберт Джентельмен (Robert Gentleman) и Росс Ихака (Ross Ihaka) анонсировали свою разработку под названием R, которая позиционировалась как свободно распространяемый аналог коммерческой среды разработки S-PLUS и языка программирования S. Последние были разработаны в Bell Laboratories (ранее AT&T, теперь Lucent Technologies) Риком Беккером (Rick Becker), Джоном Чемберсом (John

Chambers) и Алланом Уилксом (Allan Wilks) и широко распространены среди специалистов в области статистики, но в виду высокой цены (\$6500) недоступны для широкой публики.

Буква «R» была выбрана потому, что она соответствует начальным буквам имён авторов языка (Robert и Ross), а также потому, что «R» стоит рядом с буквой «S», по аналогии с языком С, которому предшествовал язык В.

Синтаксис языка R имеет поверхностное сходство с C, но семантика языка относится к разновидности FPL (языка функционального программирования) и в большей степени соответствует Lisp и APL. Это позволяет лаконично выразить довольно сложные операции, в частности, создавать функции с аргументами в виде выражений и функций, что бывает весьма полезно для статистического моделирования и позволяет повысить графические возможности языка.

Поначалу проект развивался довольно медленно, но с появлением возможности написания и подключения собственных библиотек (пакетов) всё большее количество людей стало переходить с S-PLUS на R. После устранения проблем, связанных с памятью, среди пользователей R стали появляться и «поклонники» таких пакетов, как SAS, Stata, SYSTAT, SPSS, Statistica и других.

Количество книг по R на русском, английском и других языках значительно выросло, а число дополнительных пакетов превысило двадцать тысяч (на конец июля 2024 года число пакетов составило 21 096).

Дополнительную популярность R принесло создание централизованной системы хранения и распространения пакетов --- CRAN (Comprehensive R Archive Network – http://cran.r-project.org, реализованной в виде системы «зеркал» на сайтах более чем 45 стран мира.

Также весьма значительный вклад в развитие R оказало наличие собственной среды программирования Rgui. В своё время появились дополнительные среды для написания и отладки программ на языке R, такие как RStudio, R Commander, RKWard, Revolution-R, JGR,

Rattle, rpanel, ESS и другие. Язык программирования R поддерживается некоторыми профессиональными средами разработки, например, Visual Studio

Code, Jupyter Lab и другими. Отметим также, что R интегрирован в ряд статистических пакетов таких как, например, SPSS, SAS, RapidMiner, что позволяет значительно расширить их функциональные возможности.

Сегодня R используется для обучения статистике во многих учебных заведениях мира. Его применяют учёные в самых разных областях науки. Надёжность этого инструмента подтверждает и то, что специалисты в крупных IT компаниях успешно применяют его в своей работе.

Установка среды программирования R

Загрузить установочный пакет R можно на одном из зеркальных сайтов CRAN, представленных на https://cran.r-project.org/mirrors.html. Все сайты синхронно обновляются после появления новых релизов R, поэтому загружать можно с любого из них, например, https://cloud.r-project.org/, который является сайтом для автоматической загрузки.

Обычно файлы быстрее загружаются с региональных сайтов. Так, на момент написания книги, в России было зарегистрировано единственное «зеркало» https://mirror.truenetwork.ru/CRAN/.

Рассмотрим процесс установки R в операционной среде Windows 11. Обратите внимание на то, что со временем установка R на устаревшие версии операционных систем перестаёт поддерживаться. На сайте https://cloud.r-project.org/bin/windows/base/ загрузим последнюю версию R (на момент написания — 4.4.1).

Название установочного файла имеет вид

R-x.y.z-win.exe,

где «x.y.z» – это номер версии программы.

Запустите установочный файл. Появится запрос на выбор языка установки (рис. 1.1). Обратите внимание, если устанавливаете программу в первый раз, то все параметры лучше оставить по умолчанию нажимая кнопки «ОК», «Далее» и «Завершить».

Рисунок 1.1 – Установка программы R в Windows. Выбор языка установки

После нажатия на кнопку «ОК» можно ознакомится с лицензионным соглашением GNU GPL Version 2 (рис. 1.2).

Рисунок 1.2 – Установка программы R в Windows. Лицензионное соглашение

Нажимаем кнопку «Далее» и в диалоговом окне (рис. 1.3) указываем путь для установки R.

Рисунок 1.3 – Установка программы R в Windows. Выбор пути установки

Аналогичным образом, нажимая кнопку «Далее» в следующих окнах:

- выбираем компоненты для установки R;
- задаём настройки запуска R;
- настраиваем папку в меню «Пуск»;
- настраиваем дополнительные задачи, которые необходимо выполнить;
- ожидаем окончания процесса установки R (рис. 1.4)).

Рисунок 1.4 – Установка программы R в Windows. Процесс установки

После установки R отображается диалоговое окно (рис. 1.5).

Рисунок 1.5 – Установка программы R в Windows. Завершение установки

Для завершения установки нажимаем кнопку «Завершить». Теперь R готова к запуску. Запуск R осуществляется из папки в меню «Пуск», из ярлыка, созданного на «Рабочем столе» (рис. 1.6) или непосредственно запустив программу «Rgui.exe» из папки, указанной в процессе установки, в данном примере «C:\Program Files\R\R-4.4.1\bin\x64».

Рисунок 1.6 – Ярлык R на «Рабочем столе»

Главное окно программы представлено на рис. 1.67.

Рисунок 1.7 – Главное окно программы R

Установка R в Linux (Debian, Fedora/Redhat, Ubuntu) и MacOS производится из командной строки. Более подробное описание процесса установки приводится в соответствующих разделах на сайте https://cloud.r-project.org.

Так как R — свободно распространяемая среда разработки с открытым исходным кодом наиболее продвинутые пользователи могут самостоятельно скачать исходные коды, скомпилировать и установить программу.

Наиболее полная информация о языке программирования R содержится на сайте https://cran.r-project.org/manuals.html, в следующих руководствах:

- «An Introduction to R» (Введение в R) описываются основы программирования на языке R, реализованные методы статистического анализа и графические возможности среды программирования;
- «R Data Import/Export» (Импорт/Экспорт данных в R) описываются возможности R и некоторых дополнительных библиотек по импорту и экспорту данных различных форматов (текст, Excel, базы данных и другие статистические пакеты);

- «R Installation and Administration» (Установка и администрирование R) описывается процесс загрузки, установки, компиляции среды программирования R и перечисляемых здесь руководств в различных операционных системах;
- «Writing R Extensions» (Написание расширений R) описывается процесс создания собственных библиотек, подготовки справочной информации и программные интерфейсы к языкам программирования (C, C++, Fortran и другим);
- «The R language definition» (Описание языка программирования R) описывается язык программирования R, работа с объектами, особенности выполнения процессов, которые будут полезны при написании функций R.
- «R Internals» (Внутреннее устройство R) описываются внутренние структуры R и стандарты написания кода, которыми пользуется команда разработчиков R;
- «The R Reference Index» (Справочный указатель R) содержит описание всех справочных файлов стандартных и рекомендуемых библиотек R (размер файла примерно 9 МВ и приблизительно 3500 страниц).

Все приведённые выше руководства представлены в форматах HTML, PDF, EPUB на английском языке.

Установка RStudio

Альтернативой работы в «Rgui.exe» является более популярная среда разработки – RStudio https://posit.co, в которой реализован интуитивно понятный графический интерфейс.

RStudio распространяется под свободной лицензией GNU AGPL v3 и также как и R, позволяет работать в операционных системах Linux, Microsoft Windows и MacOS. Перед установкой RStudio желательно установить R версии не ниже 3.6.0.

Загрузить последнюю версию установочного файла RStudio для Windows можно на сайте https://posit.co/download/rstudio-desktop. На момент написания книги, стабильная версия была «RStudio-2024.04.2-764.exe».

После запуска установочного файла появится мастер установки RStudio (рис. 1.8).

Рисунок 1.8 – Установка программы RStudio в Windows. Процесс установки

Нажимаем кнопку «Далее» и в диалоговом окне (рис. 1.9) указываем путь для установки RStudio.

Рисунок 1.9 – Установка программы RStudio в Windows. Выбор пути установки

Нажимая кнопку «Далее» в диалоговом окне настраиваем папку в меню «Пуск» (рис. 1.10).

Рисунок 1.10 – Установка программы RStudio в Windows. Настройка папки меню «Пуск»

Нажимаем кнопку «Установить» и ожидаем установки RStudio (рис. 1.11).

Рисунок 1.11 – Установка программы RStudio в Windows. Процесс установки программы

По окончании установки нажимаем на кнопку «Готово» (рис. 1.12).

Рисунок 1.12 – Установка программы RStudio в Windows. Завершение установки

Теперь RStudio готова к работе. Запуск RStudio осуществляется из папки в меню «Пуск» или непосредственно запустив программу «rstudio.exe» из папки, указанной в процессе установки, в данном примере «C:\Program Files\RStudio». Главное окно программы представлено на рис 1.13.

Рисунок 1.13 – Главное окно программы RStudio

В целом, использования среды разработки RStudio предпочтительнее, чем стандартная «Rgui» по ряду причин:

- RStudio это полноценная среда разработки приложений с удобным пользовательским интерфейсом и интегрированными инструментами для написания программ;
- возможность управления проектами в RStudio и оптимизация рабочих процессов;
- интеграция RStudio с программами контроля версий и функция управления пакетами.

В дальнейшем будем использовать RStudio как основную среду разработки на языке программирования R.

Порядок выполнения работы

После установки на рабочем столе имеется ярлык R, щјлкая по которому, запускаем программу. Появится основное окно программы, содержащее подокно R Console. Каждая сессия в R начинается со следующих строк:

```
R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64
```

R -- это свободное ПО, и оно поставляется безо всяких гарантий. Вы вольны распространять его при соблюдении некоторых условий. Введите 'license()' для получения более подробной информации.

R -- это проект, в котором сотрудничает множество разработчиков. Введите 'contributors()' для получения дополнительной информации и 'citation()' для ознакомления с правилами упоминания R и его пакетов в публикациях.

Введите 'demo()' для запуска демонстрационных программ, 'help()' -- для получения справки, 'help.start()' -- для доступа к справке через браузер. Введите 'q()', чтобы выйти из R.

[workspace loaded from ~/RProject/.RData]

Это комонтное окно (консоль), в котором польз

Это командное окно (консоль), в котором пользователь вводит команды, а программа печатает результаты. Команды вводятся пользователем в консоли (командном окне) после приглашения, имеющего вид

(коминдном окне) после приглашения, имеющего вид

После нажатия кнопки Enter, введённая команда поступает на обработку. В одной строке можно ввести несколько команд, разделяя их «;». Одну команду

можно расположить и на двух (и более) строках. Для этого достаточно нажать Enter, тогда на новой строке вместо

появится приглашение:

+

Символ «#» означает начало комментария. Всё, что находится после этого знака в рамках одной строки, игнорируется программой.

Кнопки «↑» и «↓» на клавиатуре позволяют осуществлять навигацию среди ранее введённых команд (можно выбрать одну из предыдущих команд).

С помощью кнопок «←» и «→» можно перемещаться в уже введённой команде, в частности, редактируя её.

В R можно создавать имена для различных объектов (переменных) как на латинице, так и на кириллице, но следует учесть, что «а» (кириллица) и «а» (латиница) это два разных объекта. Кроме того, R чувствителен и к регистру, т.е. строчные и заглавные буквы в нём различаются.

Имена переменных (идентификаторов) в R состоят из букв, цифр и знаков точки «.» и подчёркивания «_»). Имя объекта не может начинаться с цифры, и если первый символ это точка, то цифра не может быть вторым символом.

При помощи «?имя» можно проверить, есть ли такая переменная или функция с тем же именем.

Операторами присваивания в R выступают либо «=», либо «<-« (состоящий из двух символов: «<» и «-») присваивание справа, либо «->» присваивание слева, как поодиночке, так и в последовательности.

Предпочтительнее в латинице Возможны имена переменных, состоящие только из точек, причём любого их количества, кроме трёх.

Пример 1. Рассмотрим несколько вариантов.

> aa<-5;aa

[1]5

> 6->bb;bb

[1] 6

> c = 7;c

```
[1] 7
> cc<-dd<-8;cc
[1] 8
> dd
[1] 8
>
```

Сначала переменной «аа» справа присваивается значение 5, повторное обращение к этой переменной вызывает вывод на экран результата операции. Затем переменной «bb» слева присваивается значение 6 и результат выводится на экран. Переменной с при помощи знака «=» присваивается значение 7. И, наконец, переменной «сс» присваивается значение переменной «dd», которой в свою очередь было присвоено значение 8.

Заметим, что выводимые результаты начинаются с «[1]». Это объясняется тем, что R рассматривает любые вводимые данные (если не указано иное) как массив. Выводимое число – это вектор длины 1, первый и единственный элемент которого и обозначается [1].

$$>$$
 bb- $>$ cc<-7

В данном случае получим сообщение об ошибке, так как переменной сс слева присваивается значение переменной bb, а справа 7.

Присваивание нового значения переменной уничтожает присвоенное ранее. Чтобы для вывода результатов повторно не обращаться к переменной, достаточно взять операцию в круглые скобки.

$$> (z=6)$$

[1] 6

Если нужно, чтобы выводились результаты только последнего выражения, нужно весь блок команд взять в фигурные скобки.

```
> {z=5;
+ c=4;z
+ c}
[1] 4
```

Выражения в {} воспринимаются как единое целое. В R много функций, чьё имя состоит только из одной буквы (например, с() или t()), поэтому создание переменной со схожим названием может привести к ряду проблем.

Чтобы проверить, есть ли в R функция, примеру, t(), нужно сделать следующее:

> t

function (x)

UseMethod("t")

В результате выведено сообщение о том. что в пакете «base» есть функция с таким именем. Однако, работать в режиме командной строки не очень удобно, особенно если пишется большая программа. После того, как нажата кнопка Enter, исправить набранную команду уже невозможно. И, если была ошибка, то придётся начать заново с того места в вводимой программе, где и была сделана ошибка.

Список заданий для самостоятельного выполнения

Перед выполнение самостоятельной работы необходимо изучить учебное пособие *Шишкин В.А.* Математические пакеты: R [1], разделы:

- 2.1 Основные команды
 - 2.1.1 Арифметика
 - 2.1.2 Векторы
 - 2.1.3 Строки
 - 2.1.4 Логические выражения
 - 2.1.5 Встроенные константы
 - 2.1.6 Встроенные функции
- 2.2 Структуры данных

- 2.2.1 Матрицы
- 2.2.2 Массивы
- 2.2.3 Списки
- 3.1 Управляющие конструкции
 - 3.1.1 Условные выражения
 - 3.1.2 Циклы
 - 3.2 Функции

В таблице 1.1 представлены номера заданий для самостоятельной работы на языке программирования R.

Таблица 1.1. Варианты заданий для самостоятельной работы

Номер	Задания
варианта	
1	1.1.2, 1.2.12, 1.2.14, 1.2.16, 1.2.21, 1.3.12, 1.3.17, 1.3.21, 1.3.23, 1.3.31, 1.3.35
2	1.1.2, 1.2.2, 1.2.7, 1.2.13, 1.2.21, 1.3.4, 1.3.5, 1.3.10, 1.3.14, 1.3.25, 1.3.34
3	1.1.4, 1.2.2, 1.2.5, 1.2.22, 1.2.24, 1.3.2, 1.3.9, 1.3.17, 1.3.28, 1.3.30, 1.3.32
4	1.1.1, 1.2.2, 1.2.14, 1.2.18, 1.2.20, 1.3.12, 1.3.14, 1.3.22, 1.3.28, 1.3.30, 1.3.32
5	1.1.3, 1.2.2, 1.2.11, 1.2.16, 1.2.21, 1.3.8, 1.3.13, 1.3.17, 1.3.25, 1.3.28, 1.3.29
6	1.1.3, 1.2.7, 1.2.8, 1.2.10, 1.2.16, 1.3.8, 1.3.9, 1.3.11, 1.3.14, 1.3.27, 1.3.28
7	1.1.3, 1.2.1, 1.2.14, 1.2.18, 1.2.21, 1.3.4, 1.3.7, 1.3.11, 1.3.20, 1.3.22, 1.3.32
8	1.1.3, 1.2.13, 1.2.16, 1.2.17, 1.2.19, 1.3.1, 1.3.10, 1.3.14, 1.3.31, 1.3.34, 1.3.35
9	1.1.1, 1.2.11, 1.2.12, 1.2.15, 1.2.19, 1.3.3, 1.3.11, 1.3.20, 1.3.22, 1.3.29, 1.3.31
10	1.1.4, 1.2.14, 1.2.20, 1.2.21, 1.2.24, 1.3.7, 1.3.16, 1.3.18, 1.3.26, 1.3.29, 1.3.32
11	1.1.4, 1.2.2, 1.2.7, 1.2.11, 1.2.21, 1.3.4, 1.3.9, 1.3.11, 1.3.13, 1.3.24, 1.3.25
12	1.1.1, 1.2.13, 1.2.16, 1.2.23, 1.2.24, 1.3.4, 1.3.6, 1.3.12, 1.3.20, 1.3.23, 1.3.32
13	1.1.4, 1.2.8, 1.2.9, 1.2.14, 1.2.16, 1.3.12, 1.3.18, 1.3.19, 1.3.30, 1.3.33, 1.3.34
14	1.1.1, 1.2.3, 1.2.5, 1.2.11, 1.2.19, 1.3.14, 1.3.18, 1.3.20, 1.3.25, 1.3.33, 1.3.36
15	1.1.4, 1.2.2, 1.2.15, 1.2.16, 1.2.23, 1.3.1, 1.3.15, 1.3.17, 1.3.19, 1.3.29, 1.3.33
16	1.1.2, 1.2.5, 1.2.17, 1.2.18, 1.2.21, 1.3.2, 1.3.20, 1.3.28, 1.3.30, 1.3.33, 1.3.35
17	1.1.1, 1.2.3, 1.2.7, 1.2.14, 1.2.23, 1.3.5, 1.3.7, 1.3.8, 1.3.19, 1.3.23, 1.3.26
18	1.1.3, 1.2.11, 1.2.19, 1.2.23, 1.2.24, 1.3.5, 1.3.8, 1.3.15, 1.3.19, 1.3.26, 1.3.28
19	1.1.2, 1.2.3, 1.2.6, 1.2.10, 1.2.17, 1.3.8, 1.3.24, 1.3.25, 1.3.26, 1.3.27, 1.3.31
20	1.1.3, 1.2.10, 1.2.19, 1.2.20, 1.2.21, 1.3.12, 1.3.13, 1.3.28, 1.3.29, 1.3.31, 1.3.35
21	1.1.4, 1.2.5, 1.2.11, 1.2.16, 1.2.18, 1.3.5, 1.3.6, 1.3.9, 1.3.15, 1.3.23, 1.3.33
22	1.1.5, 1.2.2, 1.2.6, 1.2.14, 1.2.17, 1.3.4, 1.3.17, 1.3.18, 1.3.26, 1.3.29, 1.3.33
23	1.1.2, 1.2.8, 1.2.10, 1.2.15, 1.2.24, 1.3.2, 1.3.28, 1.3.30, 1.3.31, 1.3.32, 1.3.35
24	1.1.2, 1.2.3, 1.2.5, 1.2.12, 1.2.18, 1.3.9, 1.3.11, 1.3.13, 1.3.19, 1.3.33, 1.3.35
25	1.1.1, 1.2.3, 1.2.21, 1.2.22, 1.2.23, 1.3.2, 1.3.4, 1.3.21, 1.3.24, 1.3.30, 1.3.31

Задания для самостоятельной работы по разделу «Линейные алгоритмы.

Операции с числами и строками»

- 1.1.1. Даны действительные числа А, В, С. Найти максимальное и минимальное из этих чисел.
- 1.1.2. Известны длины трёх сторон треугольника. Вычислить периметр треугольника и площадь по формуле Герона (указание: использовать функцию sqrt()).
- 1.1.3. Задан вес в граммах. Определить вес в тоннах и килограммах.
- 1.1.4. Известен объем информации в байтах. Перевести в килобайты, мегабайты.
- 1.1.5. Определить значение функции Z=1/(XY) при X и Y не равных 0.

Задания для самостоятельной работы по разделу «Ветвления и оператор выбора»

- 1.2.1. Дано натуральное число. Определить, будет ли это число: чётным, кратным 4.
- 1.2.2. Дано натуральное число. Определить, будет ли это число: нечётным, кратным 5.
- 1.2.3. Дано натуральное число. Определить, будет ли это число: нечётным, кратным 7.
- 1.2.4. Дано натуральное число. Определить, будет ли это число: чётным, кратным 10.
- 1.2.5. Имеется коробка со сторонами: $A \times B \times C$. Определить, пройдёт ли она в дверь с размерами $M \times K$.
- 1.2.6. Дано вещественное число. Определить, какое это число: положительное, отрицательное, ноль.
- 1.2.7. Можно ли из бревна, имеющего диаметр поперечного сечения D, выпилить квадратный брус шириной A?
- 1.2.8. Можно ли в квадратном зале площадью S поместить круглую сцену радиусом R так, чтобы от стены до сцены был проход не менее K?
- 1.2.9. Дан номер места в плацкартном вагоне. Определить, какое это место: верхнее или нижнее, в купе или боковое.
- 1.2.10. Известна денежная сумма. Разменять её купюрами 500, 100, 10 и монетой 2 руб., если это возможно.
- 1.2.11. Имеются две ёмкости: кубическая с ребром A, цилиндрическая с высотой H и радиусом основания R. Определить, поместится ли жидкость объёма M в первую ёмкость, во вторую, в обе.
- 1.2.12. Имеются две ёмкости: кубическая с ребром A, цилиндрическая с высотой H и радиусом основания R. Определить, можно ли заполнить жидкостью объёма M первую ёмкость, вторую, обе.
- 1.2.13. Даны вещественные числа: X, Y, Z. Определить, существует ли треугольник с такими длинами сторон и, если существует, будет ли он прямоугольным.
- 1.2.14. Дано число Х. Определить, принадлежит ли это число заданному промежутку [a, b].
- 1.2.15. Определить значение функции Z = 1/(XY) при произвольных X и Y.
- 1.2.16. Даны вещественные числа: A, B, C. Определить, выполняются ли неравенства A < B < C или $A \ge B \ge C$ и какое именно неравенство выполняется.
- 1.2.17. Даны вещественные числа X и Y . Вычислить Z. $Z = \operatorname{sqrt}(X * Y)$ при X > Y , $Z = \ln(X + Y)$ в противном случае.

- 1.2.18. Даны вещественные положительные числа a, b, c, d. Выясните, может ли прямоугольник со сторонами a, b уместиться внутри прямоугольника со сторонами c, d так, чтобы каждая сторона внутреннего прямоугольника была параллельна или перпендикулярна стороне внешнего прямоугольника.
- 1.2.19. Дано вещественное число A. Вычислить f(A), если $f(x) = x^2 + 4*x + 5$, при $x \le 2$; в противном случае $f(x) = 1/(x^2 + 4*x + 5)$.
- 1.2.20. Дано вещественное число A. Вычислить f(A), если f(x) = 0, при $x \le 0$; f(x) = x при $0 < x \le 1$, в противном случае $f(x) = x^4$.
- 1.2.21. Дано вещественное число A. Вычислить f(A), если f(x) = 0 при $x \le 0$;
- 1.2.22. $f(x) = x^2 x$ при $0 < x \le 1$, в противном случае $f(x) = x^2 \sin(1/4 x^2)$.
- 1.2.23. Составить алгоритм и программу для реализации логических операций «И» и «ИЛИ» для двух переменных.
- 1.2.24. Известен ГОД. Определить, будет ли этот год високосным, и к какому веку этот год относится.

Задания для самостоятельной работы по разделу «Циклические алгоритмы. Обработка последовательностей и одномерных массивов»

- 1.3.1. Дан одномерный массив числовых значений, насчитывающий N элементов. Поменять местами элементы, стоящие на чётных и нечётных местах: $A[1] \leftrightarrow A[2]$; $A[3] \leftrightarrow A[4]$...
- 1.3.2. Дан одномерный массив числовых значений, насчитывающий N элементов. Выполнить перемещение элементов массива по кругу вправо, т. е. $A[1] \rightarrow A[2]$; $A[2] \rightarrow A[3]$; ...; $A[n] \rightarrow A[1]$.
- 1.3.3. Дан одномерный массив числовых значений, насчитывающий N элементов. Поменять местами первую и вторую половины массива.
- 1.3.4. Дан одномерный массив числовых значений, насчитывающий N элементов. Поменять местами группу из M элементов, начинающихся с позиции K с группой из M элементов, начинающихся с позиции P.
- 1.3.5. Дан одномерный массив числовых значений, насчитывающий N элементов. Вставить группу из M новых элементов, начиная с позиции K.
- 1.3.6. Дан одномерный массив числовых значений, насчитывающий N элементов. Сумму элементов массива и количество положительных элементов поставить на первое и второе место.
- 1.3.7. Дан одномерный массив числовых значений, насчитывающий N элементов. Исключить из него M элементов, начиная с позиции K.
- 1.3.8. Дан одномерный массив числовых значений, насчитывающий N элементов. Исключить все нулевые элементы.
- 1.3.9. Дан одномерный массив числовых значений, насчитывающий N элементов. После каждого отрицательного элемента вставить новый элемент, равный квадрату этого отрицательного элемента.
- 1.3.10. Дан одномерный массив числовых значений, насчитывающий N элементов. Определить, образуют ли элементы массива, расположенные перед первым отрицательным элементом, возрастающую последовательность.

- 1.3.11. Дан одномерный массив числовых значений, насчитывающий N элементов. Определить, образуют ли элементы массива, расположенные перед первым отрицательным элементом, убывающую последовательность.
- 1.3.12. Дан одномерный массив числовых значений, насчитывающий N элементов. Из элементов исходного массива построить два новых. В первый должны входить только элементы с положительными значениями, а во второй только элементы с отрицательными значениями.
- 1.3.13. Дан одномерный массив числовых значений, насчитывающий N элементов. Добавить столько элементов, чтобы элементов с положительными и отрицательными значениями стало бы поровну.
- 1.3.14. Дан одномерный массив числовых значений, насчитывающий N элементов. Добавить к элементам массива такой новый элемент, чтобы сумма элементов с положительными значениями стала бы равна модулю суммы элементов с отрицательными значениями.
- 1.3.15. Дан одномерный массив числовых значений, насчитывающий N элементов. Дано положительное число T. Разделить это число между положительными элементами массива пропорционально значениям этих элементов и добавить полученные доли к соответствующим элементам.
- 1.3.16. Дан одномерный массив числовых значений, насчитывающий N элементов. Исключить из массива элементы, принадлежащие промежутку [B;C].
- 1.3.17. Дан одномерный массив числовых значений, насчитывающий N элементов. Вместо каждого элемента с нулевым значением поставить сумму двух предыдущих элементов массива.
- 1.3.18. Дан одномерный массив числовых значений, насчитывающий N элементов. Определить, имеются ли в массиве два подряд идущих нуля.
- 1.3.19. Дан одномерный массив числовых значений, насчитывающий N элементов. Подсчитать количество чисел, делящихся на 3 нацело, и среднее арифметическое чисел с чётными значениями. Поставить полученные величины на первое и последнее места в массиве (увеличив массив на 2 элемента).
- 1.3.20. Заданы М строк символов, которые вводятся с клавиатуры. Найти количество символов в самой длинной строке. Выровнять строки по самой длинной строке, поставив перед каждой строкой соответствующее количество звёздочек.
- 1.3.21. Заданы М строк символов, которые вводятся с клавиатуры. Из заданных строк, каждая из которых представляет одно слово, составить одну длинную строку, разделяя слова пробелами.
- 1.3.22. Заданы М строк слов, которые вводятся с клавиатуры. Подсчитать количество гласных букв в каждой из заданных строк.
- 1.3.23. Заданы М строк слов, которые вводятся с клавиатуры (в каждой строке одно слово). Вводится слог (последовательность букв). Подсчитать количество таких слогов в каждой строке.
- 1.3.24. Заданы М строк слов, которые вводятся с клавиатуры (в каждой строке одно слово). Вводится слог (последовательность букв). Удалить данный слог из каждой строки.
- 1.3.25. Заданы М строк символов, которые вводятся с клавиатуры. Напечатать все центральные буквы строк нечетной длины.
- 1.3.26. Заданы М строк символов, которые вводятся с клавиатуры. Каждая строка содержит слово. Записать каждое слово в разрядку (вставить по пробелу между буквами).
- 1.3.27. Задана строка символов, в которой встречается символ «.». Поставить после каждого такого символа системное время ПК.

- 1.3.28. Заданы М строк, которые вводятся с клавиатуры. Подсчитать количество пробелов в каждой из строк.
- 1.3.29. Заданы М строк символов, которые вводятся с клавиатуры. Каждая строка представляет собой последовательность символов, включающих в себя вопросительные знаки. Заменить в каждой строке все имеющиеся вопросительные знаки звёздочками.
- 1.3.30. Последовательно вводятся числа. Определить сумму чисел с нечётными номерами и произведение чисел с чётными номерами (по порядку ввода). Подсчитать количество слагаемых и количество сомножителей. При вводе числа 55555 закончить работу.
- 1.3.31. Определить сумму вводимых положительных чисел. Причём числа с нечётными номерами (по порядку ввода) суммировать с обратным знаком, а числа с чётными номерами перед суммированием возводить в квадрат. Подсчитать количество слагаемых. При вводе первого отрицательного числа закончить работу.
- 1.3.32. Даны число Р и число Н. Определить сумму чисел меньше Р, произведение чисел больше Н и количество чисел в диапазоне значений Р и Н. При вводе числа равного Р или Н, закончить работу.
- 1.3.33. Суммировать вводимые числа, среди которых нет нулевых. При вводе нуля обеспечить вывод текущего значения суммы. При вводе числа 99999 закончить работу.
- 1.3.34. Вводятся положительные числа. Определить сумму чисел, делящихся на положительное число В нацело. При вводе отрицательного числа закончить работу.
- 1.3.35. Для вводимых чисел определить процент положительных и отрицательных чисел. При вводе числа 65432 закончить работу.

Список литературы

- 1. Шишкин В.А. Математические пакеты: R [Электронный ресурс]: учебное пособие / В. А. Шишкин; Пермский государственный национальный исследовательский университет. Электронные данные. Пермь, 2023. 15,0 Мб; 225с. Режим доступа: http://www.psu.ru/files/ docs/science/books/uchebnie-posobiya/SHishkin-Matematicheskie-pakety-R.pdf
- 2. Зарядов И.С. Введение в статистический пакет R: типы переменных, структуры данных, чтение и запись информации, графика: Учебно-методическое пособие М.: Издательство Российского университета дружбы народов, 2010. 207 с.
- 3. *Шипунов А.Б.* Наглядная статистика. Используем R! / А.Б. Шипунов, Е.М. Балдин, П.А. Волкова, А.И. Коробейников, С.А. Назарова, С.В. Петров, В.Г. Суфиянов М.: ДМК-Пресс, 2012. 298 с. Режим доступа: https://cran.r-project.org/doc/contrib/Shipunov-rbook.pdf
- 4. *Мастицкий С.Э., Шитиков В.К.* Статистический анализ и визуализация данных с помощью R. 2014.— Хайдельберг Лондон Тольятти: 2014. 401 с. Режим доступа: http://r-analytics.blogspot.com