Tosk Ta my = f-ma We can rewrite the left side and get my = d (my) = d 2 (1 my2) = d 2 K Since K = 1 mg2 The right side can be f-mg = f-d (myy) = f-dp since p= mgy We get: at di - P- de Lets the define L = K-P where L is the Lagrangian We can then rewrite d 24 - 24 = f Since we then want to use generalized coordinates, we write it as dt 34; 34; = Ti

K1 = 1 my v, + - w, T, w, gives us: The same equation can be written for ka Kp=1 m2 /2 /2 + 1 w2 / 72 w2 Which gives us: K2 - m2 ((+12c2s) 97 - 12c1s2)2 + (12c2c197 - 12s7 5292)2+13c292) If we simplify this we get K2 = 1 m2 (L2 q, 2 c2 + L2 q2 +)

Tosk Te 1 = ma((Lacagasa + Lacagasa) 2+ (Lagasasa-Lacasaga) 2+ (2caga) - Lagana + migin - 9ma (2, + (2052) When finding the first part of the torque, all pants whitout q, will disappear in the partial derivativ and we get: m2 ((L2c2q15, +L2c1q152) + (L2q25,5,521-42c162q1) +m1 = +12 25 - 12 c2 m2 q 1 (c2+52) + m, r, We can then expand this, and remove the last part since it is not relevant for the derivative in regards to time -> d /2 c2 m2 q, 43 + 42 c2 m2 q, 5, 5

Task 1c dt 3 g+ 3 g+ T1 [= 92 min + male gi = + male q2 - might - maght - magsale When calculating of we can exclude the parts without qu 9 m.c2 + m/2 91 c2 397 U= m2 622 DS = 4, m, 1 + m2 12 (9, c2-29, 926252) dt di U / 7, 62 - 29, 9, 6252 v=9, c2 u=9, 4=9, V= 62 V= -2 (25292 When calculating of we can see from the Lagrangian that we don't have any ci, si or q, , have de o Ti = 9, mirt + m2 L2 q, C2 -2m2 L2 q, q, ce se

Jask 1c dt dq 3q2 = T2 L = 9 m, r, mo 15 9 2 + molo 92 - (might, + mogso 12 + moght) again we remove the parts without of, and we get d de = m2 42 42 m2 12 92 62 - m2 9 52 42 is what we use to find of DI = - m2 L2 9, c252 - m2 9 62 c2 T2 = m2 L2 92 + m2 42 9, c2 52 + m2 L2 9 C2

lask 20) D(4) + ((4,4) + + (4)=7 Dai Diz Din 19/2 + Cz, Czz · Cz 9/2 + 9/2 Dn2 Dnn 12n Cni Cn2 Cnn 12n 19n 20 K (4) 4, + 2 2 Cirk (9) 4: \$1 + 9 K (9) = JK, K=7,..., n From equation 6.62 in the poll-textbook we consee that ((9,9) can be written as Zincisk (4)9, then we're only left With a g in the middle part which we need to som. I The gk(9) is the same as g (9) Since the D-matrix always will be diagonal, then dis will be the diagonal of the O. Then the sum of dx (9), 9 will be D/4),9 Dis inertia is centrifugal 9 15 gravity

```
syms I1x I1y I1z I2x I2y I2z I3x I3y I3z th1 th2 th3 qdx qdy qdz L1 L2 L3 qddx qddy qddz g
m1 = 0.3833;
m2 = 0.2724;
m3 = 0.1406;
s1 = sin(th1);
s2 = sin(th2);
s3 = sin(th3);
c1 = cos(th1);
c2 = cos(th2);
c3 = cos(th3);
g = [0;0;-9.81];
g = transpose(g);
s23 = sin(th2*th3);
c23 = cos(th2*th3);
```

Task 2a Here I just use the formula given in the exercise

2b)

Here again, I use the formula given in the exercise and the Jv and Jw matrices from task 1b The first pictures are just declaring matrices and variables

```
%task 2b
         qdott = [qdx
                                                            %These parts of the jacobian are directly copied from task 1b
                                                           Jv3 = [-s1*(L2*c2+L3*c23) -c1*(L2*s2+L3*s23) -c1*(L3*s23)]
                qdz];
                                                                 c1*(L2*c2+L3*c23) -s1*(L2*s2+L3*s23) -s1*(L3*s23)
         I1 = [I1x 0 0
                                                                 0 (L2*c2+L3*c23) L3*c23];
             0 0 I1z];
                                                           Jv1 = [ 0 0 0
         I2 = [I2x 0 0
             0 I2y 0
                                                                  0 0 0];
         I3 = [I3x 0 0
                                                            Jv2 = [-s1*L2*c2 -c1*L2*s2 0]
             0 I3v 0
                                                                  c1*L2*c2 -s1*L2*s2 0
              0 0 I3z];
                                                                  0 L2*c2 0];
         A1 = [1 0 0
                                                           These parts of the jacobian are directly copied from task 1b <math display="inline">\mbox{\footnote{thm}}
              010
                                                           Jw1 = [0 0 0
              0 0 1];
                                                                  000
         %A2 and A3 are z-rotations
                                                                  1 0 01:
         A2 = [cos(th2) - sin(th2) 0]
              sin(th2) cos(th2) 0
                                                           Jw2 = [0 s1 0]
              0 0 1];
         A3 = [\cos(th3) - \sin(th3) 0]
                                                                  0 -c1 0
              sin(th3) cos(th3) 0
                                                                  1 0 01:
              0 0 1];
         R01 = A1;
                                                           Jw3 = [0 s1 s1
                                                                 0 -c1 -c1
         R03 = R02*A3;
                                                                 1 0 0];
%Here I calculate the kinetic energy as described in eq 14
k1 = m1*transpose(Jv1)*Jv1 + transpose(Jw1)*R01*I1*transpose(R01)*Jw1;
k2 = m2*transpose(Jv2)*Jv2 + transpose(Jw2)*R02*I2*transpose(R02)*Jw2;
k3 = m3*transpose(Jv3)*Jv3 + transpose(Jw3)*R03*I3*transpose(R03)*Jw3;
K = 1/2*transpose(qdott)*(k1+k2+k3)*qdott;
```

K=

```
qdy*((qdz*(cos(th1)*(l3x*(cos(th1)*(cos(th2)*sin(th3)) + cos(th3)*sin(th2)) - sin(th1)*(cos(th2)*cos(th3) - sin(th2))*sin(th3)))*(cos(th2)*sin(th3)) + cos(th3)*sin(th2)) + cos(th3)*sin(th2)) + cos(th3)*sin(th2)) + cos(th3)*sin(th3)) + cos(th3)*sin(th3)*sin(th3)) + cos(th3)*sin(th3)) + cos(th3)*sin(th3)) + cos(th3)*sin(th3)) + cos(th3)*sin(th
   13y*(\cos(th1)*(\cos(th2)*\cos(th3)-\sin(th3))+\sin(th3))+\sin(th3)*(\cos(th2)*\sin(th3)+\cos(th3)*\sin(th2)))*(\cos(th2)*\cos(th3)-\sin(th3))+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos(th3)+\cos
\sin(th1)*(i3x*(\cos(th1)*(\cos(th2)*\sin(th3))*\cos(th3)*\sin(th2)) - \sin(th1)*(\cos(th2)*\cos(th3) - \sin(th2)*\sin(th3)))*(\cos(th2)*\cos(th3) - \sin(th2)*\sin(th3)) - \sin(th2)*\sin(th3)) - \sin(th2)*\sin(th3)) - \sin(th3)*\sin(th3) - \sin(th3)*\cos(th3) - \sin(th3)*\sin(th3) - \sin(th3)*\cos(th3) - \sin(th3)*\cos(th
13y*(\cos(th1)*(\cos(th2)*\cos(th3) - \sin(th2)*\sin(th3)) + \sin(th1)*(\cos(th2)*\sin(th3) + \cos(th3)*\sin(th2)))*(\cos(th2)*\sin(th3) + \cos(th3)*\sin(th3)) + \cos(th3)*\sin(th3) + \cos(th3)*\cos(th3) + \cos(th3)*\sin(th3) + \cos(th3)*\cos(th3) + \cos(th
   (703*L3*cos(th2*th3)*(L3*cos(th2*th3) + L2*cos(th2)))/5000 + (703*L3*sin(th2*th3)*sin(th1)^2*(L3*sin(th2*th3) + L2*sin(th2)))/5000 + (703*L3*sin(th2*th3))/5000 +
(703*L3*sin(th2*th3)*cos(th1)^2*(L3*sin(th2*th3) + L2*sin(th2)))/5000))/2 + (qdy*((681*L2^2*cos(th2)^2)/2500 + (703*cos(th1)^2*(L3*sin(th2*th3) + L2*sin(th2)))/2500))/2 + (qdy*((681*L2^2*cos(th2)^2)/2500 + (703*cos(th1)^2*(L3*sin(th2*th3) + L2*sin(th2)))/2500))/2 + (qdy*((681*L2^2*cos(th2)^2)/2500 + (703*cos(th1)^2)*(L3*sin(th2*th3) + L2*sin(th2))/2500)/2 + (qdy*((681*L2^2*cos(th2)^2)/2500 + (703*cos(th1)^2)/2500)/2 + (qdy*((681*L2^2*cos(th2)^2)/2500 + (703*cos(th1)^2)/2500)/2 + (qdy*((681*L2^2*cos(th2)^2)/2500 + (703*cos(th1)^2)/2500)/2 + (qdy*((681*L2^2*cos(th2)^2)/2500 + (703*cos(th1)^2)/2500)/2 + (qdy*((681*L2^2*cos(th2)^2)/2500)/2 + (qdy*((681*L2^2)^2)/2500)/2 + (qdy*((681*L2^2)^2)/2 + (qdy*((681*L2^2)^2
   L2*sin(th2))^2)/5000 + cos(th1)*(i3x*(cos(th1)*(cos(th2)*sin(th3) + cos(th3)*sin(th2)) - sin(th1)*(cos(th2)*cos(th3) - sin(th2)*sin(th3))) + (cos(th2)*sin(th3) + cos(th3)*sin(th3)) + (cos(th3)*sin(th3)) + (cos(th3)*sin
\cos(\text{th}3) * \sin(\text{th}2)) + |3y*(\cos(\text{th}1)*(\cos(\text{th}2)*\cos(\text{th}3) - \sin(\text{th}2)*\sin(\text{th}3)) + \sin(\text{th}1)*(\cos(\text{th}2)*\sin(\text{th}3) + \cos(\text{th}3)*\sin(\text{th}2)))) * (\cos(\text{th}2)*\cos(\text{th}3) - \sin(\text{th}2)*\sin(\text{th}3)) + \cos(\text{th}3)*\sin(\text{th}3) + \cos(\text{th}3)*\sin(\text{th}3)) * (\cos(\text{th}2)*\cos(\text{th}3) - \sin(\text{th}3)*\sin(\text{th}3)) * (\cos(\text{th}3)*\sin(\text{th}3)) * (\cos(\text{th}3)*\cos(\text{th}3) - \sin(\text{th}3)) * (\cos(\text{th}3)*\sin(\text{th}3)) * (\cos(\text{th}3)*\sin(\text{th}3)) * (\cos(\text{th}3)*\cos(\text{th}3) - \sin(\text{th}3)) * (\cos(\text{th}3)*\cos(\text{th}3) + \cos(\text{th}3)) * (\cos(\text{th}3)*\cos(\text{th}3)) *
(703*\sin(th1)^2*(L3*\sin(th2*th3) + L2*\sin(th2))^2)/5000 - \sin(th1)*(13x*(\cos(th1)*(\cos(th2)*\sin(th3) + \cos(th3)*\sin(th2)) - \sin(th1)*(\cos(th2)*\cos(th3) + \cos(th3)) - \sin(th3)) - \sin(th3) + \cos(th3) + \cos(th
   sin(th2)*sin(th3)))*(cos(th2)*cos(th3) - sin(th2)*sin(th3)) - 13y*(cos(th1)*(cos(th2)*cos(th3) - sin(th2)*sin(th3)) + sin(th1)*(cos(th2)*sin(th3)) + sin(th2)*sin(th3)) + sin(th3)) + sin(t
\cos(th3)*\sin(th2)))*(\cos(th2)*\sin(th3) + \cos(th3)*\sin(th2))) + (L3*\cos(th2*th3) + L2*\cos(th2))*((703*L3*\cos(th2*th3))/5000 + (703*L2*\cos(th2))/5000) + (703*L2*\cos(th2))/5
\cos(th1)^*(12y^*\cos(th2)^*(\cos(th1)^*\cos(th2) + \sin(th1)^*\sin(th2)) + 12x^*\sin(th2)^*(\cos(th1)^*\sin(th2) - \cos(th2)^*\sin(th1))) - \sin(th1)^*(12x^*\cos(th2)^*(\cos(th1)^*\sin(th2) - \cos(th2)^*\sin(th2))) - \sin(th1)^*(12x^*\cos(th2)^*(\cos(th1)^*\sin(th2) - \cos(th2)^*\sin(th2))) - \sin(th1)^*(12x^*\cos(th2)^*\cos(th2)^*\cos(th2)) - \cos(th2)^*\sin(th2) - \cos(th2)^*\sin(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)) - \cos(th2)^*\sin(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^*\cos(th2)^
   \cos(th2)^*\sin(th1)) - 12y^*\sin(th2)^*(\cos(th1)^*\cos(th2) + \sin(th1)^*\sin(th2))) + (681^*L2^2 \cos(th1)^2 \sin(th2)^2)/2500 + (681^*L2^2 \sin(th1)^2 \sin(th2)^2)/2500))/2) + (681^*L2^2 \sin(th2)^2 \sin(th2
qdz^*((qdy^*(cos(th1)^*(l3x^*(cos(th1)^*(l3x^*(cos(th1)^*(sot(th2)^*sin(th3) + cos(th3)^*sin(th2)) - sin(th1)^*(cos(th2)^*sin(th3)))^*(cos(th2)^*sin(th3) + cos(th3)^*sin(th2)) + cos(th3)^*sin(th2)) - sin(th3)^*(sot(th3)^*sin(th3)) + cos(th3)^*sin(th3)) + cos(th3)^*sin(th3)
   13y*(\cos(th1)*(\cos(th2)*\cos(th3) - \sin(th2)*\sin(th3)) + \sin(th1)*(\cos(th2)*\sin(th3) + \cos(th3)*\sin(th2)))*(\cos(th2)*\cos(th3) - \sin(th2)*\sin(th3))) + \cos(th3)*\sin(th3) + \cos(th3)*\cos(th3) + \cos(t
sin(th1)*(i3x*(cos(th1)*(cos(th2)*sin(th3) + cos(th3)*sin(th2)) - sin(th1)*(cos(th2)*cos(th3) - sin(th2)*sin(th3))) * (cos(th2)*cos(th3) - sin(th2)*sin(th3)) - sin(th2)*sin(th3)) + cos(th3)*sin(th3) + cos
   13y*(\cos(th1)*(\cos(th2)*\cos(th3) - \sin(th2)*\sin(th3)) + \sin(th1)*(\cos(th2)*\sin(th3) + \cos(th3)*\sin(th3)) + \cos(th3)*\sin(th3) + \cos(th3)*\sin(th3)) + \sin(th3)*\cos(th2)*\sin(th3) + \cos(th3)*\sin(th3) + \cos(th3)*\cos(th3) + \cos(th3) 
   ((703*L3*cos(th2*th3))/5000 + (703*L2*cos(th2))/5000) + (703*L3*sin(th2*th3)*sin(th1)^2*(L3*sin(th2*th3) + L2*sin(th2)))/5000 + (703*L3*sin(th2*th3)*cos(th1)^2*(L3*sin(th2*th3)) + L2*sin(th2))/5000 + (703*L3*sin(th2*th3))/5000 + (703*L3*sin(th2*t
(L3*sin(th2*th3) + L2*sin(th2)))/5000)/2 + (qdz*((703*L3^2*cos(th2*th3)^2)/5000 + cos(th1)*(l3x*(cos(th1)*(cos(th2)*sin(th3) + cos(th3)*sin(th2)) - sin(th1)*(cos(th2)*sin(th3) + cos(th3)*sin(th3)) + cos(th3)*sin(th3) + cos(t
\cos(th3) - \sin(th2) * \sin(th3) *) (\cos(th2) * \sin(th3) + \cos(th3) * \sin(th2)) + 13 * (\cos(th1) * (\cos(th2) * \cos(th3) - \sin(th2) * \sin(th3)) + \sin(th1) * (\cos(th2) * \sin(th3) + \cos(th3) * \sin(th2))) 
   *(cos(th2)*cos(th3) - sin(th2)*sin(th3))) - sin(th1)*(l3x*(cos(th1)*(cos(th2)*sin(th3) + cos(th3)*sin(th2)) - sin(th1)*(cos(th2)*cos(th3) - sin(th2)*sin(th3))) - sin(th1)*(cos(th2)*cos(th3) - sin(th2)*cos(th3) - sin(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*cos(th2)*c
\cos(th3) - \sin(th2) * \sin(th3) - 13y * (\cos(th1) * (\cos(th2) * \cos(th3) - \sin(th2) * \sin(th3)) + \sin(th1) * (\cos(th2) * \sin(th3) + \cos(th3) * \sin(th2))) * (\cos(th2) * \sin(th3) + \cos(th3) * \cos(th3)
   + (703*L3^2*\sin(th2*th3)^2*\cos(th1)^2)/5000 + (703*L3^2*\sin(th2*th3)^2*\sin(th1)^2)/5000)/2) + (qdx^2*(l1z + l2z + l3z + (703*\cos(th1)^2)/5002)/2) + (qdx^2*(l1z + l2z + l3z + l2z + l3z + l2z + l3z + l2z + l2
   L2*\cos(th2))^2)/5000 + (703*\sin(th1))^2*(L3*\cos(th2)*th3) + L2*\cos(th2))^2)/5000 + (681*L2^2*\cos(th1))^2*(2500) + (681*L2^2*\cos(th2))^2)/5000 + (681*L2^2*\cos(th2))^2/5000 +
```

% Task 2d

```
%From equation 15 in the assignment, we can se that D must be equal to the %sum of k1,k2,k3 D = k1+k2+k3;
```

Calculating g

Calculating C

The answers here are simply too big to display, and therefore might be wrong. But when only using symbols for the calculations it's near impossible to do effective debugging.

The same goes for 2e, which is simply too big to be displayed.