

Módulo Minería de Datos Diplomado

Por
Elizabeth León Guzmán, Ph.D.
Profesora
Ingeniería de Sistemas
Grupo de Investigación MIDAS

Agrupamiento

- Dividir los datos en grupos (clusters), de tal forma que los grupos capturan la estructura natural de los datos.
- Dividir datos sin etiqueta en grupos (clusters) de tal forma que datos que pertenecen al mismo grupo son similares, y datos que pertenecen a diferentes grupos son diferentes

Agrupamiento

- Las clases (grupos con significado) indican como las personas analizan y describen el mundo
- Los humanos tienen la habilidad de dividir los objetos en grupos (agrupamiento) y asignar objetos particulares a esos grupos (clasificación)
- Ej: los niños dividen objetos en fotografías: edificios, vehículos, gente, animales, plantas
- Cluster Análisis (clustering) es el estudio de técnicas para encontrar las clases automáticamente.

Aplicaciones de Agrupamiento

- **Biología**: taxonomia (especies), analisis de información genética(grupos de genes que tienen funciones similares)
- Recuperación de Información (Information retrieval):
 Agrupar resultados de búsquedas en la web (cada grupo contiene aspectos particularres dela consulta) Ej: cine (comentarios, estrellas, teatros)
- Psicología y Medicina: Agrupar diferentes tipos de depresión, detectar patrones en la distribución temporal de una enfermedad

Aplicaciones de Agrupamiento

Clima: Encontrando patrones en la atmosfera y oceano. Presión atmosférica de regiones polares y areas de el oceano que tienen un impacto significativo en el clima de la tierra.

Negocios: Segmentar los clientes en grupos para un analisis y actividades de mercadeo

Diferentes formas de agrupar el mismo conjunto de datos

Agrupamiento

- Sistema visual del humano (espacio Euclideano)
- La arbitrariedad en el número de clusters es el mayor problema en clustering.
- Grupos tienen diferentes formas, tamaños en un espacio n-dimensional
- Definición de cluster es impreciso y la mejor definición depende de la naturaleza de los datos y de los resultados deseados
- Clasificación NO supervisada (contraste con clasificación)

Medidas de similaridad/distancia

- La medida de similaridad es fundamental en la definición del cluster
- Debe ser escogida muy cuidadosamente, ya que la calidad de los resultados dependen de ella
- Se puede usar la disimilaridad (distancia)
- Dependen de los tipos de datos

Similitud y Disimilitud

Similitud

Medida numérica de semejanza entre objetos Valor alto para objetos parecidos A menudo definida en el intervalo [0,1]

Disimilitud

Medida numérica de diferencia entre objetos Valor bajo para objetos parecidos Varia entre [0, ∞) Usualmente es una distancia

• Proximidad Constituted a distrative

Se refiere a similitud o disimilitud

Similitud y Disimilitud para atributos simples

p y q son los valores de los atributos para dos objetos de datos.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p - q	$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$
		$s = 1 - \frac{d - min_d}{max_d - min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Distancia Euclideana

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

n es la dimensión (numero de atributos) pk y qk son los k- ésimos atributos de los datos p y q.

 Se realiza normalización si las escalas de los atributos difieren.

Distancia Euclideana

pun to	х	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	р4
p1	0	2.828	3.162	5.099
р2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Matriz de Distancias

Distancia Minskowski

Generalización de la distancia Euclidiana mediante el parámetro r

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

- r = 1. Distancia Manhattan
 Ejemplo típico: Distancia de Hamming: Numero de bits diferentes entre dos arreglos de bits
- r = 2. Distancia Euclidiana
- r → ∞. Distancia "supremo" (norma Lmax o L∞).
 La máxima diferencia entre los atributos

Distancia Minskowski

point	X	У	
n1		0	2
p2		2	0
р3		3	1
p4		5	1

point	X	у	
n1		0	2
p2		2	0
р3		3	1
p4		5	1

point	X	y
n1	C	2
p2	2	0
р3	3	1
p4	5	1

point	X	У
n1	0	2
p2	2	0
р3	3	1
p4	5	1

Distancia Hamming: Número de bits que son diferentes entre dos objetos.

$$D_h(x,y)=b+c$$

Distancia Mahalanobis

$$mahalanobis(p,q) = (p-q)\sum (p-q)^{T}$$

Para puntos rojos, la distancia Euclideana es 14.7, la distancia Mahalanobis es 6.

Distancia Mahalanobis

Matriz de covarianza

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Mahal(A,B) = 5

Mahal(A,C) = 4

Medidas de distancia

Propiedades de Medidas de distancia

1. Positiva

$$d(x,y) \ge 0$$

 $d(x,y) = 0$ solo si $x = y$

1. Simétrica

d(x,y) = d(y,x) para todo x y y

1. Desigualdad Triangular

 $d(x,z) \le d(x,y) + d(y,z)$ para todo punto x,y y z

	p1	p2	рЗ	p4
P1	0.0	2.8	3.2	5.1
P2	2.8	0.0	1.4	3.2
Р3	3.2	1.4	0.0	2.0
p4	5.1	3.2	2.0	0.0

euclidean

Medidas de Similaridad

Distancias/similaridades binarias

De ayuda construir tabla de contingencia

SMC (Simple Matching Coeficient)

$$S_{smc}(x,y) = \frac{(a+d)}{(a+b+c+d)}$$

X			
		1	0
у	1	a	b
	0	С	d

Coeficiente de Jaccard

$$S_{jc}(x,y) = \frac{a}{(a+b+c)}$$

Coeficiente de Rao

$$S_{rc}(x,y) = \frac{a}{a+b+c+d}$$

SMC vs Jaccard: Ejemplo

$$p = 1000000000$$
 $q = 0000001001$

$$M_{01}=2$$
 (the number of attributes where p was 0 and q was 1) $M_{10}=1$ (the number of attributes where p was 1 and q was 0) $M_{00}=7$ (the number of attributes where p was 0 and q was 0) $M_{11}=0$ (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Medidas de Similaridad

Similaridad de Coseno

Los objetos se consideran vectores su similaridad se mide por el ángulo que los separa usando el coseno

$$S_{\cos}(x,y) = \frac{\sum_{i=1}^{m} (x_i, y_i)}{\sqrt{\sum_{i=1}^{m} x_i^2 \cdot \sum_{i=1}^{m} y_i^2}}$$

Medida del ángulo entre x y y

Si la similaridad es 1 el ángulo es 0 grados, x y y son el mismo excepto por magnitud Si la similaridad es 0 el ángulo es 90 grados

La medida mas común en calcular la similaridad entre documentos

Ejemplo: d₁ y d₂ son dos vectores de documentos:

$$d_1 = 3205000200$$

$$d_2 = 100000102$$

entonces

$$S_{cos}(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$$

donde:

indica producto punto de los vectores y

|| d || es la longitud del vector d.

$$d_1 \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$S_{cos}(d_1, d_2) = 5/(6.481*2.245) = 0.3150$$

Las similitudes tienen algunas características bien conocidas:

- 1. s(p, q) = 1 (o máxima similitud) solo si p = q.
- 2. s(p, q) = s(q, p) para todo p y q. (Simétrica)

Donde *s*(*p*, *q*) es la similitud entre puntos (objetos de datos), *p y q*.

CoeficienteJaccard Extendido(Tanimoto)

Jaccard para valores continuos

$$T(p,q) = \frac{p \bullet q}{\|p\|^2 + \|q\|^2 - p \bullet q}$$

Distinciones entre los conjuntos de Clusters

Exclusivo vs. no – exclusivo

- Agrupamientos no exclusivos: los puntos pueden pertenecer a múltiples clusters
- Se puede representar múltiples clases o puntos frontera.

Difuso vs. no - difuso

- En el agrupamiento difuso, un punto pertenece a todo cluster con algún peso entre 0 y 1.
- Los pesos deben sumar 1.

Tipos de Clusters

- Clusters bien separados
- Clusters basados en el centro
- Clusters contiguos
- Clusters basados en densidad
- De propiedad o Conceptual
- Descrito por una Función Objetivo

Bien Separados

Un cluster es un conjunto de puntos en el que cualquier punto en el cluster es más cercano a cualquier otro punto en el cluster que cualquier otro punto que no esté en el cluster

Basados en el centro

Un cluster es un conjunto de objetos en el que un objeto está más cerca al centro del cluster, que al centro de otro cluster.

El centro de un cluster frecuentemente es llamado centroide, el promedio de todos los puntos en el cluster o el "medoid", el punto más representativo del cluster.

4 clusters basados en el centro

Contiguos

Un cluster es un conjunto de puntos donde un punto en el cluster está más próximo a otro punto o puntos en el cluster que a cualquier otro punto que no pertenezca al cluster

Basados en densidad

- Un cluster es una región densa de puntos, separados por regiones de baja densidad, de otras regiones de alta densidad.
- Se usan cuando los clusters son irregulares o entrelazados, y cuando se presenta ruido y datos atípicos

Conceptuales

 Son clusters que tienen alguna propiedad en comun o representan un concepto particular

Definidos por una función objetivo

- Son clusters que minimizan o maximizan una función objetivo
- Enumeran todas las posibles formas de dividir los puntos dentro de un cluster y evalúan la "bondad" de cada conjunto potencial de clusters usando una función objetivo dada (NP Hard)

Tipos de Agrupamiento

Agrupamiento Particional

Dividir los datos (puntos, objetos, registros) en grupos no superpuestos, donde cada dato (punto, objeto, registro) pertenece a un único grupo.

Agrupamiento Jerárquico

Organiza los datos (puntos, objetos, registros) en grupos sobrepuestos en forma de árbol. Usa estructura de árbol o dendograma

Agrupamiento Particional

Minimizar la distancia en cada uno de los grupos o maximizando la distancia entre los grupos

Agrupamiento Particional

Puntos originales

Agrupación particional

Agrupamiento Jerárquico

Agrupamiento jerárquico tradicional

Agrupamiento jerárquico No tradicional

Dendograma tradicional

Dendograma no tradicional

Definidos por una función objetivo

- Tipo de proximidad o medida de la densidad
 Medida derivada básica para el agrupamiento.
- Densidad (dispersión)
 tipo de similitud, eficiencia
- Tipo de atributo tipo de similitud
- Tipo de Datos tipo de similitud, Otra característica: auto-correlación
- Dimensionalidad
- Ruido y datos atípicos (Outliers)
- Tipo de Distribución

Algoritmos

K-means

- Agrupamiento particional
- Cada cluster está asociado con un centroide (valor de la media del cluster)
- Cada punto es asignado al cluster más cercano al centroide
- El número de clusters "K" debe ser especificado
- El algoritmo básico es muy simple
- 1: Seleccionar K puntos como los centroides iniciales
- 2: Repetir
- 3: Desde K clusters asignar todos los puntos al centroide más cercano
- 4: Recalcular el centroide de cada cluster
- 5: Hasta El centroide no cambia

K=2
$$C1=\{x1,x2,x4\} \text{ y } C2=\{x3,x5\}$$

$$Centros M1= (0+0+5)/3,(2+0+0)/3 = (1.66, 0.66)$$

$$Centros M2= (1.5+5)/2,(0+2/2) = (3.25, 1.00)$$

$$Calcula variaciones en error:$$

$$e1^2=[(0-1.66)^{2+}(2-0.66)^2]+[(0-1.66)^{2+}(0-0.66)^2]+[(5-1.66)^{2+}(0-0.66)^2]$$

$$= 19.36$$

$$e2^2=[(1.5-3.25)^{2+}(0-1)^2]+[(5-3.25)^{2+}(2-1)^2] = 8.12$$

$$Total error = 19.36 + 8.12 = 27.48$$

Resignar ejemplos

$$\Box$$
 d(M1,x2)= 1.79

$$\Box$$
 d(M1,x3)= 0.83

$$\Box$$
 d(M1,x4)= 3.41

$$\Box$$
 d(M1,x5)= 3.60

$$d(M2,x1)=3.40 => x1 \in C1$$

$$d(M2,x2)=3.40 => x2 \in C1$$

$$d(M2,x3)=2.01 => x3 \in C1$$

$$d(M2,x4)=2.01 => x3 \in C2$$

$$d(M2,x5)=2.01 => x3 \in C2$$

- \Box C1={x1,x2,x3} y C2={x4,x5}
- Centros M1= (0.5, 0.67)
- Centros M2= (5.0, 1.0)

- Calcula variaciones en error:
- \Box e1²= 4.17
- \Box e2²= 2.0
- Total error = 6.17 (se reduce de 27.48 a 6.17!)
- Se repite hasta que la diferencia de error sea mínima o los centros no cambien!

K-means

Número K?? (número de clusters) Sensible a inicialización Sensible a ruido y outliers (afectan la media (mean)) Problema de optimización: minimizar el error cuadrático Variación: k-mediods No usa la media, usa el objeto mas centrado (mediod) Menos sensible a ruido y outliers

K-means

- Los centroides iniciales se escogen aleatoriamente.
- Los clusters generados varían de una ejecución a otra.
- La proximidad es medida por la distancia
 Euclidiana, la similitud por coseno, correlación, etc.
- K-means convergerá a una medida de similitud común mencionada anteriormente.
- La mayoría de la convergencia ocurre en las primeras iteraciones:

Frecuentemente la condición para parar es cambiada por "Hasta que algunos puntos cambien de cluster"

Dos agrupamientos diferentes con k-means

Agrupación subóptima

Inicialización: Importante!

Inicialización: Importante!

K-means: Evaluación de clusters

La medida más común es la suma del Error Cuadrático (SSE)

- Cada punto, el error es la distancia del cluster más cercano
- Para obtener el SSE, se elevan al cuadrado los errores y se suman

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

 x es un punto en el cluster Ci y mi es el punto representativo para el cluster Ci

Se puede mostrar que mi corresponde al centro (promedio) del cluster

- Dados dos clusters, se puede elegir uso con el menor error
- Una manera fácil de reducir el SSE es incrementar K, el número de clusters

Un buen agrupamiento con K pequeño, puede tener un SSE más bajo que un agrupamiento con un K grande

Inicialización: Importante!

Inicialización: Importante!

10 clusters

Ejemplo Iteration 4

Ejemplo

Comenzando con dos centroides iniciales en un cluster para cada par de clusters

Comenzando con algunos pares de clusters teniendo tres centroides iniciales, mientras los otros tienen solo uno

Soluciones para la inicialización

- Múltiples ejecuciones
 Ayuda, pero la probabilidad no está de su lado
- Agrupamiento de prueba y agrupamiento jerárquico para determinar los centroides iniciales
- Seleccionar mas de un K inicial de centroides y luego seleccionar entre estos los centroides iniciales
 - Seleccionarlos ampliamente separados
- Postprocesamiento
- Bisectar K-means
 No se recomienda para inicialización

Limitaciones: Diferentes tamaños

Puntos originales

K-means (3 Clusters)

Limitaciones: Diferentes densidades

originales

-1 -2 -1 0 1 2 3 4 5 6 X

K-means (3 Clusters)

Limitaciones: Diferentes formas

Puntos originales

K-means (2 Clusters)

Limitaciones: Ruido

Ejercicio en Weka

- Abrir conjunto de datos Iris
- Quitar la clase
- Aplicar el algoritmo de k-means con tres clusters
- Visualizar
- Comparar con el conjunto de datos Iris original

Agrupamiento Jerárquico

NO se especifica el número de clusters La salida es una jerarquía de clusters

Proceso iterativo

p1 p2 p3 p4

Dendograma

Los algoritmos de este tipo dividen en dos clases:

- » Aglomerativos
 - » Divisibles

Agrupamiento Jerárquico Aglomerativo

Al comienzo todos los puntos (objetos) son clusters individuales (tamaño 1), en cada paso, los clusters mas cercanos se unen para formar un solo cluster, al final se tiene un solo cluster

Agrupamiento Jerárquico Divisible

Al comienzo solo existe un cluster (contiene todos los objetos), en cada paso, se van dividiendo los clusters hasta que cada objeto es un solo cluster.

Agrupamiento Jerárquico

Los clusters se visualizan como un dendograma: árbol jue registra las secuencias de las uniones y divisiones de los clusters

Fortalezas

 No se asume un número particular de clusters

El número deseado de clusters se obtiene seleccionando el nivel adecuado del dendograma

 Puede corresponder a taxonomías significativas
 Ejemplo: en biología reino animal, reconstrucción de filogenia

Agrupamiento Jerárquico Aglomerativo

El más común

Usa árbol o diagrama llamado dendograma (desplega la relación entre el cluster y sub-cluster, y el orden en el cual los clusters fueron fusionados)

Diagrama de clusters anidados

Agrupamiento Jerárquico Aglomerativo

Algoritmo básico

- Calcular matriz de proximidad
- 2. Cada punto es un cluster
- 3. Repetir
- 4. Unir los dos clusters más cercanos
- 5. Actualizar la matriz de proximidad
- 6. Hasta que solo un cluster quede

La operación clave es el cálculo de la proximidad entre dos clusters:

Las diversas formas de calcular la proximidad (distancia o similaridad) distinguen los diferentes algoritmos

Ejemplo Situación inicial

Comenzar con clusters de puntos individules y la matriz de proximidad

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
<u>p2</u>						
<u>p2</u> p3						
<u>p4</u> <u>p5</u>						
•						

Matriz de proximidad

Ejemplo Situación intermedia

Después de algunas uniones (merges), se tienen algunos clusters

	C1	C2	С3	C4	C 5
<u>C1</u>					
C2					
C3					
C4					
C 5					

Matriz de proximidad

C1

Ejemplo Situación intermedia

Se desea unir los dos clusters mas carcanos (C2 y C5) y actualizar la

matriz de proximidad

Matriz de proximidad

Ejemplo Despues de unir

La pregunta es ¿Cómo actualizar la matriz de proximidad?

Similaridad Inter-Cluster

	р1	p2	рЗ	p4	p 5	<u>.</u> .
p1						
p2						
рЗ						
p4						
р5						

- MIN
- Promedio grupo (average)
- Distancia entre centroides
- Usando función objetivo:
 - •Metodo de Ward's usa el error cuadrático

Matriz de proximidad

Similaridad Inter-Cluster MIN

La proximidad de los clusters esta definida como la proximidad entre los puntos mas cercanos que están en diferentes clusters.

Similaridad Inter-Cluster MAX

La proximidad de los clusters esta definida como la proximidad entre los puntos mas lejanos que están en diferentes clusters.

Similaridad Inter-Cluster GROUP AVERAGE promedio del grupo

La proximidad de los clusters esta definida como el promedio de todas las proximidades de cada uno de los pares de puntos

Similaridad Inter-Cluster entre prototipos como centroides

Cuando se usan prototipos, como el centro, la proximidad de los clusters es la proximidad entre los centros de los clusters.

Similaridad Inter-Cluster MIN o Enlace Simple

La similitud de dos cluster se basa en los dos puntos más similares (cercanos) en dos clusters

Es determinado por un par de puntos, es decir, un enlace en la gráfica de proximidad

		12			
11	1,00	0,90	0,10	0,65	0,20
12	0,90	1,00	0,70	0,60	0,50
13	0,10	0,70	1,00	0,40	0,30
14	0,65	0,60	0,40	1,00	0,80
15	0,20	0,90 1,00 0,70 0,60 0,50	0,30	0,80	1,00

Ejercicio 0.5 0.4 0.3 0.2 4 0.1

0.3

0.1

0.2

Coordenadas x,y

Cooluctiauas X,y					
Punto	X	У			
p1	0.40	0.53			
p2	0.22	0.38			
рЗ	0.35	0.32			
p4	0.26	0.19			
р5	0.08	0.41			
p6	0.45	0.30			

Matriz de proximidad usando distancia euclideana

0.4

0.5

	p1	p2	р3	p4	p5	р6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
р6	0.23	0.25	0.11	0.22	0.39	0.00

Clusters anidados

Dendrograma

Fortaleza de MIN o Enlace Simple

Puntos originales

Dos Clusters

Puede manejar formas no elipticas

Limitaciones de MIN o Enlace Simple

Puntos originales

Two Clusters

Sensible al ruido y valores atípicos

Similaridad Inter-Cluster MAX o Enlace Completo

La similaridad de dos clusters esta basada en los dos mas distantes (mas diferentes) puntos de los clusters

Determinado por todos los pares de puntos de los clusters

	l1		_		_
11	1,00	0,90	0,10	0,65	0,20
12	0,90	1,00	0,70	0,60	0,50
13	0,10	0,70	1,00	0,40	0,30
14	0,65	0,60	0,40	1,00	0,80
15	0,20	0,50	0,30	0,80	0,20 0,50 0,30 0,80 1,00

Similaridad Inter-Cluster MAX o Enlace Completo

Clusters anidados

Dendrograma

Fortaleza de MAX o Enlace Completo

Puntos originales

Dos Clusters

Menos suceptible a rudio y datos atípicos

Limitación de MAX o Enlace Completo

- Tiende a dividir grandes grupos
- Predispuesto para grupos globulares

Similaridad Inter-Cluster Promedio del cluster

Proximidad de dos clusters es el promedio de la proximidad de las parejas entre los puntos de los dos clusters

$$\sum_{\substack{p_i = \text{Cluster} \\ p_j = \text{Cluster} \\ |\text{Cluster}| * |\text{Cluster}|}} \sum_{\substack{p_i = \text{Cluster} \\ |\text{Cluster}| * |\text{Cluster}|}} \sum_{\substack{p_i = \text{Cluster} \\ |\text{Cluster}| * |\text{Cluster}|}} |p_i|$$

Es necesario usar el promedio para la conectividad y escalabilidad dado que la proximidad total favorece clusters

	I 1	 2	13	14	15	grandes
11	1,00	0,90	0,10	0,65	0,20	
12	0,90	1,00	0,70	0,60	0,50	
13	0,10	0,70	1,00	0,40	0,30	
14	0,65	0,60	0,40	1,00	0,80	
15	1,00 0,90 0,10 0,65 0,20	0,50	0,30	0,80	1,00	

Similaridad Inter-Cluster Promedio del cluster

Clusters anidados

Dendrograma

Similaridad Inter-Cluster Promedio del cluster

Compromete tanto el enlace simple como el completo

Fortalezas

Menos susceptible al ruido y a los datos atípicos

Limitaciones

Predispuesto para clusters globulares

Similaridad Inter-Cluster Metodo de Ward

- La similitud de dos clusters se basa en el incremento del error cuadrático cuando dos clusters se combinan
 - Similar al promedio de grupo, si la distancia entre puntos es la distancia cuadrática
- Menos susceptible al ruido y a los datos atípicos Predispuesto para clusters globulares
- Jerarquía análoga al K means
 Puede ser usada para inicializar K- means

Similaridad Inter-Cluster Comparación

Agrupamiento jerárquico Problemas y limitaciones

- Una vez se toma una decisión para combinar dos clusters, no puede deshacerse
- La función objetivo no es directamente minimizada
- Los esquemas diferentes tienen problemas con uno o más de los siguientes factores:
 - Sensibilidad al ruido y a los datos atípicos
 - Dificultad para manejar clusters de diferente
 - tamaño y formas convexas
 - Rompimiento de clusters grandes

MST: Agrupamiento Jerárquico Divisivo

Construir MST (Minimum Spanning Tree, Árbol de Mínima cobertura)

- Comenzar con un árbol que consiste en cualquier punto
- En los pasos sucesivos, buscar el par de puntos más cercanos (p, q), el punto "p" está en el árbol actual pero el otro "q" no lo esta
- Adicionar q al árbol y colocar un enlace entre p y q.

Bibliografía

"Introduction to Data Mining" by Tan, Steinbach, Kumar. Chapter 8

"Data Mining: Cluster Analysis: Basic Concepts and Algorithms"