MPP03c Zakon ocuvanja u 3D

Ivan Slapničar

6. studenog 2018.

1 Zakon očuvanja u 3D

zakon očuvanja + jednadžba stanja (konstitutivna jednadžba) + rubni uvjeti

1.1 Zakon očuvanja

Izvod zakona očuvanja u trodimenzionalnom prostoru \mathbb{R}^3 vrlo je slična izvodu u jednodimenzionalnom slučaju.

Neka je $x \equiv (x, y, z)$ točka u \mathbb{R}^3 . Neka je

skalarna gustoća ili koncentracija $ne\check{c}ega/tvari/energije$ u točki x u trenutku t (količina po jedinici volumena).

Neka je $V \subset \mathbb{R}^3$ područje i neka je ∂V rub područja koji je ili glatak ili se sastoji od konačno po djelovima glatkih ploha:

Količina tvari unutar V jednaka je trostrukom integralu (gustoća \times volumen):

$$\int\limits_{V}u(x,t)\,dx,$$

pri čemu je $dx \equiv dxdydz$ element volumena.

Neka se tvar kreće. U tri dimenzije tok može biti u bilo kojem smjeru pa je zadan vektorskim poljem

$$\vec{\phi}(x,t)$$
.

Neka je $\vec{n}(x)$ jedinični vektor vanjske normale na područje V u točki x. Tada je ukupan tok prema vani kroz rub ∂V jednak plošnom integralu vektorskog polja:

$$\int_{\partial V} \vec{\phi}(x,t) \cdot \vec{n}(x) \, dS,$$

područje

gdje je dS element površine ∂V .

Ako tvar nastaje ili nestaje pomoću izvora ili uvira po stopi

$$f(x,t,u)$$
,

tada je stopa po kojoj tvar nastaje/nestaje unutar V jednaka

$$\int_{V} f(x,t,u) \, dx.$$

Zakon očuvanja u integralnom obliku glasi:

$$\frac{d}{dt} \int_{V} u(x,t) dx = -\int_{\partial V} \vec{\phi} \cdot \vec{n} dS + \int_{V} f(x,t,u) dx.$$

Pretpostavimo da su u i $\vec{\phi}$ neprekidno diferencijabilne (glatke) funkcije. Na lijevu stranu jednadžbe primijenimo postupak deriviranja pod znakom integrala (Leibnitz-ovu formulu), a na desnu stranu jednadžbe primijenimo Teorem o divergenciji, pa imamo

$$\int_{V} u_t(x,t) dx = -\int_{V} \operatorname{div} \vec{\phi}(x,t) dx + \int_{V} f(x,t,u) dx,$$

odnosno

$$\int_{V} \left[u_t(x,t) + \operatorname{div} \vec{\phi}(x,t) - f(x,t,u) \right] dx = 0.$$

Jednakost vrijedi za proizvoljno područje *V* pa je podintegralna funkcija jednaka nuli, odnosno vrijedi *zakon očuvanja u diferencijalnom obliku*:

$$u_t(x,t) + \operatorname{div} \vec{\phi}(x,t) = f(x,t,u), \quad x \in V, \quad t > 0.$$

1.2 Jednadžba stanja

Kao i u jednodimenzionalnom slučaju, jednadžba stanja ili konstitutivna jednadžba je empirijska.

Fickov zakon kaže da je tok proporcionalan promjeni koncentracije, a koncentracija najbrže pada u smjeru suprotnom od smjera gradijenta, odnosno

$$\vec{\phi}(x,t) = -D \operatorname{grad} u(x,t),$$

gdje je D konstanta difuzije. Dakle,

$$\operatorname{div} \vec{\phi}(x,t) = -D \operatorname{div} \operatorname{grad} u(x,t) \equiv -D\Delta u(x,t),$$

gdje je

$$\Delta = \nabla \cdot \nabla = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Laplaceov operator.

1.2.1 Primjeri

Reakcijsko-difuzijska jednadžba u 3D glasi:

$$u_t - D\Delta u = f(x, t, u), \quad x \in V, \quad t > 0.$$

Ako nema izvora, $f \equiv 0$, tada možemo tražiti stabilno stanje (*steady-state solution*) ili rješenje $u \equiv u(x)$ koje ovisi samo o položaju, a ne o vremenu. Takvo rješenje zadovoljava *Laplaceovu jednadžbu*:

$$\Delta u = 0$$
, $x \in V$.

Ako izvori ovise samo o položaju, $f \equiv f(x)$, stabilno stanje zadovoljava *Poissonovu jednadžbu*:

$$\Delta u = -\frac{f}{D}, \quad x \in V.$$

Primjeri za oba slučaja su statička električna polja određena nabojima koje je nalaze izvan V, odnosno unutar V.

1.3 Rubni uvjeti

Zadavanje početnih uvjeta nije prirodno jer mala promjena početnih uvjeta dovodi do velike promjene u rješenju.

Možemo zadati *Dirichletov* ili *geometrijski uvjet*, to jest gustoću na rubu:

$$u = g(x), \quad x \in \partial V,$$

Neumannov ili prirodni uvjet, to jest promjenu gustoće na rubu u smjeru vanjske normale:

$$\frac{\partial u}{\partial \vec{n}} = g(x), \quad x \in \partial V,$$

ili mješoviti uvjet:

$$\alpha(x)u + \beta(x)\frac{\partial u}{\partial \vec{n}} = g(x), \quad x \in \partial V.$$

1.4 Jedinstvenost rješenja

Ako dokažemo da problem rubnih vrijednosti ima jedinstveno rješenje, onda znamo da je rješenje koje smo dobili bilo kojom metodom upravo rješenje koje tražimo. Navodimo tri primjera.

Teorem Neka je g neprekidna na ∂V i f neprekidna na V. Rješenje problema

$$\Delta u = f$$
, $x \in V$; $u = g$, $x \in \partial V$,

je jedinstveno.

Dokaz: Pretpostavimo da postoje dva rješenje, u_1 i u_2 i definirajmo $w = u_1 - u_2$.

Tada je

$$\Delta w = 0$$
, $x \in V$; $w = 0$, $x \in \partial V$.

Uvrštavanje $\phi = \psi = w$ u prvi Greenov identitet daje

$$\int_{V} \operatorname{grad} w \cdot \operatorname{grad} w \, dx = 0.$$

Dakle, grad w=0 na području V pa je w konstantno polje na području V. Zbog w=0 na rubu ∂V , na poručju V vrijedi w=0, odnosno $u_1=u_2$.

Teorem Neka je g neprekidna na ∂V i f neprekidna na V. Rješenje problema

$$\Delta u = f$$
, $x \in V$; $\frac{\partial u}{\partial \vec{n}} = g$, $x \in \partial V$,

zadovoljava

$$\int\limits_V f\,dx = \int\limits_{\partial V} g\,dS.$$

(U stabilnom stanju je tok tvari kroz rub jednak količni tvari koja nastaje unutar područja.)

Dokaz: Tvrdnja slijedi uvrštavanjem $\phi = u$ i $\psi = 1$ u drugi Greenov identitet.

Teorem Rješenje problema rubnih vrijednosti

$$u_t - D\Delta u = f$$
, $x \in V$, $t > 0$,
 $u(x,0) = g(x)$, $x \in V$,
 $u(x,t) = h(x,t)$, $x \in \partial V$, $t > 0$,

pri čemu su funkcije f, g i h neprekidne, je jedinstveno.

Dokaz: Dokaz je kontradikcijom koristeći integral energije.