

Representações Avançadas em Binário

Universidade Federal de Uberlândia Faculdade de Computação Prof. João Henrique de Souza Pereira

Créditos dos slides para o Prof. Dr. Daniel D. Abdala

Na Aula Anterior...

- Fundamentação dos sistemas Numéricos Posicionais
- Sistema Numéricos
 - Decimal
 - Binário
 - Octal
 - Hexadecimal
- Conversão de bases

Nesta Aula

- Representação de números negativos em binário
- Representação de números reais em base binária
- Conversão de bases de números reais
- Complementos de 1 e 2
- Extensão do sinal em complemento de 2
- Notação de ponto flutuante
- Motivação para Códigos Binários
- Código BCD
- Código Johnson
- Código Excesso de 3
- Código Gray
- Código ASCII

Números Inteiros Sinalizados

- Utiliza-se um tamanho fixo de palavra;
- Geralmente o bit mais significativo é reservado para o sinal do número.

Exemplos

- $1 0000001 \Rightarrow -1_{10}$
- $0 0101010 \Rightarrow +42_{10}$

Representações Alternativas para Números Inteiros Sinalizados

 Os números de magnitude com sinal são fáceis de entender, mas eles requerem demasiado hardware para adição e subtração. Isso tem levado ao uso amplo de complementos para aritmética binária.

- Existem dois tipos de complemento:
 - Complemento de 1
 - Complemento de 2

Complemento de 1

- O complemento de 1 é calculado pela inversão de cada um dos bits do número;
- Existe duas possíveis representações para o número 0.

$$0010 \Rightarrow +2_{10}$$
 $1101 \Rightarrow -2_{10}$

Decimal	Comp. 1
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000
-0	1111

Complemento de 2

 O complemento de 2 é calculado pela inversão de cada um dos bits do número. Subsequentemente somase 1 ao valor dos bits invertidos.

Decimal	Comp. 2
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

Extensão de Sinal Positivo

Considere por exemplo a representação do número
 11

0 1011
$$\Rightarrow$$
 11₁₀

- No computador, por conveniência de arquitetura, o tamanho da palavra binária (número de bits) é sempre múltiplo de 2 (4, 8, 16, 32, 64, ...)
- Para acomodar um número de 5 bits em uma palavra de 8 bits, basta estender o sinal para os demais bits

$$0 0001011 \Rightarrow 11_{10}$$

Extensão de Sinal Negativo

Considere por exemplo a representação do número
 -11 em complemento de 2

- Se completarmos os bits restantes para uma palavra de 8 bits com zeros, o número deixará de ser o mesmo
- Em complemento de 2, basta que completemos os demais bits com o bit "1"

Números Reais em Binário

- Extensão simples do sistema posicional;
- A parte inteira fica inalterada, a parte fracionária utiliza potências negativas.

				<i>,</i> ——		-
2 ³	2 ²	2¹	2 °	2 -1	2 ⁻²	

Pot.	valor
2-1	0,5
2-2	0,25
2-3	0,125
2-4	0,0625
2 ⁻⁵	0,03125
2-6	0,015625
2-7	0,0078125
2-8	0,00390625

Conversão (Reais) Binário - Decimal

$$42,42_{10} \Rightarrow 42_{10} + 0,42_{10} \qquad 0,42$$

$$\begin{array}{c} x & 2 \\ \hline 0,84 \\ x & 2 \\ \hline 1,68 \\ x & 2 \\ \hline 1,36 \\ x & 2 \\ \hline 0,72 \\ \hline \end{array}$$

Um Exemplo Mais Simples

Conversão binário -> decimal

Notação em Ponto Flutuante

- Fundamentada na notação numérica científica; $42,42 = 42,42 \times 10^0 = 4,242 \times 10^1 = 0,4242 \times 10^2$
- Utilização otimizada do espaço de representação;
- Note que o sinal fracionário "flutua" dependendo do expoente associado a base;

$$+/_0$$
, mantissa \times base $+/_{-}$ expoente

- A mantissa está contida no intervalo [0,1[
- É importante notar que a notação em ponto flutuante pode induzir à erros de arredondamento.

Padrões de Representação

IEEE Standard for Floating-Point Arithmetic, IEEE 754'2008

Precisão Simples

Precisão Dupla

Conversão (Precisão simples)

Expoente possui um bias de 127 (01111111₂);

 Ao contrário da notação científica tradicional, que coloca todos os dígitos significativos a direita da vírgula, em ponto flutuante deixamos um '1' a esquerda da vírgula.

Exemplo

- $10,25_{10} \Rightarrow 1010,01_2 \Rightarrow 1,01001x2^3$
- sinal \rightarrow +
- expoente \rightarrow 127+3 = 130 \rightarrow (011111111+11) = 10000010

01001000000000000000000

Casos Especiais

Números (não normalizados)

Números Representáveis

- Em matemática, o conjunto dos números reais é infinito;
- Entre dois números reais quaisquer, há infinitos números reais;
- Para tal, infinitos dígitos devem ser potencialmente utilizados;
- A representação de números reais utilizando a notação de ponto flutuante, utiliza um número finito de bits;
- Por definição, apenas números racionais podem ser representados em ponto flutuante.

Números Representáveis

• $0.1_{10} \rightarrow 0.0001100110011 \dots$

$$Fra = \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{1}{2^{12}} + \frac{1}{2^{13}} + \cdots \to 0.1$$

• $s = 0 \mid m = 1.1001100110011 \dots e = -4$

- Convertendo de volta para decimal ...
 0,0999999940395355224609375₁₀
- erro = $-0.00000000059604644775390625_{10}$

Exercícios

- Converta para representação em ponto flutuante (precisão simples)
- 42,42₁₀
 3,6₁₀

Códigos Binários

- O computador trabalha apenas com números;
- Estes números são sempre em binário, devido a aspectos de construção;
- Códigos binários fornecem uma forma de representar outros conceitos que não números, de maneira a serem mapeados diretamente para suas representações em binário, e desta forma, passíveis de serem processados pelo computador.

BCD 8421

- BCD significa "Binary Coded Decimal", ou seja,
- Representa números de 0-9 em binário;
- Utiliza quatro bits para cada dígito decimal;
- Para representar o número 10 por exemplo, são necessários oito bits em BCD 8421;
- 8421 referem-se as potências de cada uma das quatro casas do sistema de codificação.

BCD 8421

Decimal	Binário Puro	BCD 8421
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111

Decimal	Binário Puro	BCD 8421
8	1000	1000
9	1001	1001
10	1010	0001 0000
11	1011	0001 0001
12	1100	0001 0010
13	1101	0001 0011
14	1110	0001 0100
15	1111	0001 0101

Código de Johnson

 Muito utilizado na construção de circuitos contadores.

Dec	Johnson	Binário
0	00000	0000
1	00001	0001
2	00011	0010
3	00111	0011
4	01111	0100
5	11111	0101
6	11110	0110
7	11100	0111
8	11000	1000
9	10000	1001

Código Excesso de 3

• Código simples, soma-se 11₂ ao número binário puro.

 $0111_2 \Rightarrow 1010_{e3}$

Dec	Exc 3	Binário
0	0011	0000
1	0100	0001
2	0101	0010
3	0110	0011
4	0111	0100
5	1000	0101
6	1001	0110
7	1010	0111
8	1011	1000
9	1100	1001

Código Gray

- Sistema de numeração binário no qual dois valores sucessivos diferem em apenas 1 bit;
- Aplicado em correção de erros, controle de dispositivos eletromecânicos, etc.

Dec	Gray	Binário
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

Prof. Dr. rer. nat. Daniel Duarte Abdala

Tabela ASCII

```
000
                                032 sp
                                          048 0
                                                   064 @
                                                            080 P
                                                                     096 `
                                                                              112 p
       (nul)
                016 ► (dle)
                                033 !
                                                   065 A
                                                            081 0
                                                                              113 q
001
                017 ◄ (dc1)
                                          049 1
                                                                     097 a
    0
       (soh)
                                034 "
                                                            082 R
                                                                     098 b
002
    •
                018
                      (dc2)
                                          050 2
                                                   066 B
                                                                               114 r
       (stx)
                                          051 3
                    11
                                035 #
                                                   067 C
                                                            083 S
                                                                     099 c
                                                                              115 ន
003 🔻
       (etx)
                019
                       (dc3)
004
                020
                    \mathbb{R}
                                036 $
                                          052 4
                                                   068 D
                                                            084 T
                                                                     100 d
                                                                              116 t
       (eot)
                       (dc4)
                021
                                037 %
                                          053 5
                                                   069 E
                                                            085 U
                                                                     101 e
                                                                              117 u
005
       (eng)
                    S
                       (nak)
006 🛊
                022 - (syn)
                                038 &
                                          054 6
                                                   070 F
                                                            086 V
                                                                     102 f
                                                                              118 v
       (ack)
                                039 '
                                          055 7
                                                                     103 q
007
       (bel)
                023
                       (etb)
                                                   071 G
                                                            087 W
                                                                              119 w
800
                024
                                040
                                          056 8
                                                   072 H
                                                            088 X
                                                                     104 h
                                                                              120 x
       (bs)
                       (can)
                                          057 9
009
                025 』
                                041 )
                                                   073 I
                                                            089 Y
                                                                     105 i
                                                                              121 y
       (tab)
                       (em)
010
                026
                                042 *
                                          058:
                                                   074 J
                                                            090 Z
                                                                     106 ј
                                                                              122 z
       (lf)
                       (eof)
                                043 +
                                                                     107 k
                                                                              123 {
011
    ď
       (vt)
                027 ← (esc)
                                          059 ;
                                                   075 K
                                                            091 [
012
                                044
                                          060 <
                                                   076 L
                                                            092 \
                                                                     108 1
                                                                               124
       (np)
                028 L (fs)
013
                029 ↔ (gs)
                                045 -
                                          061 =
                                                   077 M
                                                            093 ]
                                                                     109 m
                                                                              125 }
       (cr)
014
                                                                     110
       (so)
                030 ▲ (rs)
                                046 .
                                          062 >
                                                   078 N
                                                            094 ^
                                                                              126 ~
    П
015 ☆
      (si)
                031 ▼ (us)
                                047 /
                                          063 ?
                                                   079 0
                                                            095
                                                                     111 o
                                                                               127 🗅
```

Tabela ASCII

141 1 130 L 171 2 103 133 213 F 227 11 241 L 233	128 Ç 129 ü 130 é 131 â 132 ä 133 à 134 å 135 ç 136 ê 137 ë 138 è 139 ï 140 î	143 Å 144 É 145 æ 146 Æ 147 ô 148 ò 149 ò 150 û 151 ù 152 ÿ 153 Ö 154 Ü 155 ¢	158 R 159 f 160 á 161 í 162 ó 163 ú 165 Ñ 166 a 167 ° 168 ; 170 ¬ 171 *	172 ¼ 173 ; 174 « 175 » 176 177 178 179 180 181 182 183 184 185	186 187 188 189 190 191 192 193 194 195 196 197 198	200 L 201 T 202 T 203 T 204 L 205 = 1 206 1 207 L 209 T 210 L 212 L 213 E	214 215 216 217 218 219 220 221 222 223 224 225 3 226 7 227 7	228 Σ 229 σ 230 μ 231 τ 232 Φ 233 Θ 234 Ω 235 δ 236 ∞ 237 φ 238 ε 239 Ω 240 ≡ 241 +	242 ≥ 243 ≤ 244
142 Ä 157 ¥	141 ì	156 £	170 ¬	184 ₹ 185 ╣	198 ⊧ 199 ⊩	212 E 213 F	226 Г	240 ≡ 241 ±	254 ■ 255

Pro Lar

- Leitura: (Tocci) 6.2 (pgs. 254-259)
- Leitura: (Capuano) 1.2.3 até 1.2.3.4 (pgs. 22-27)
- Exercícios: (Capuano): E={1.2.3.1, 1.2.3,5}
- Leitura: (Tocci) 2.4-2.8 (pgs. 31-38)
- Leitura: (Capuano) 5.13 até 5.1.6 (pgs. 142-144)
- Exercícios: (Tocci): E={2.19 2.26}

Bibliografia Comentada

TOCCI, R. J., WIDMER, N. S., MOSS, G. L.
Sistemas Digitais – Princípios e Aplicações.
11ª Ed. Pearson Prentice Hall, São Paulo,
S.P., 2011, Brasil.

- CAPUANO, F. G., IDOETA, I. V. **Elementos de Eletrônica Digital**. 40ª Ed. Editora Érica.
- São Paulo. S.P. 2008. Brasil.