Classes of Sets

A collection \mathcal{F} of subsets of $\Omega \neq \emptyset$ is an algebra if

- 1. $\Omega \in \mathcal{F}$,
- 2. $A \in \mathcal{F} \implies A^c \in \mathcal{F}$,
- 3. $A, B \in \mathcal{F} \implies A \cup B \in \mathcal{F}$ (equivalently, $A \cap B \in \mathcal{F}$).

A collection \mathcal{F} of subsets of Ω is a σ -algebra if

- F is an algebra.
- 2. $A_1, A_2, \dots \in \mathcal{F} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

If \mathcal{F}_{θ} , $\theta \in \Theta$ is a collection of σ -algebras on Ω , then $\mathcal{G} = \bigcap_{\theta \in \Theta} \mathcal{F}_{\theta}$ is a σ -algebra but $\bigcup_{\theta \in \Theta} \mathcal{F}_{\theta}$ may not be.

If A is a collection of subsets of Ω , then the σ -algebra generated by A is

$$\sigma \langle \mathcal{A} \rangle = \bigcap_{\substack{\mathcal{F} \text{ is } \sigma\text{-algebra} \\ \mathcal{A} \subset \mathcal{F}}} \mathcal{F}.$$

A class C of subsets of Ω is a π -class if

1. $A, B \in \mathcal{C} \implies A \cap B \in \mathcal{C}$.

A class \mathcal{L} of subsets of Ω is a λ -class if

- 1. $\Omega \in \mathcal{L}$,
- $A \in \mathcal{C} \implies A^c \in \mathcal{C}$
- 3. $A_1, A_2, \dots \in \mathcal{L}$ disjoint $\Longrightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{L}$.

 λ -class $\implies \sigma$ -algebra.

 π -class and λ -class $\Longrightarrow \sigma$ -algebra (but not converse).

Dynkin's $\pi - \lambda$ **Theorem**: On a set Ω , if \mathcal{C} is a π -class and \mathcal{L} is a λ -class such that $\mathcal{C} \subset \mathcal{L}$, then $\sigma(\mathcal{C}) \subset \mathcal{L}$.

Product Spaces

If \mathcal{F} is a σ -algebra on a nonempty set Ω , then (Ω, \mathcal{F}) is a **measurable** space. If $(\Omega_i, \mathcal{F}_i)$, $i = 1, 2, \dots, n$ are measurable spaces, the n-dimensional product space is

$$\prod_{i=1}^n \Omega_i = \{(\omega_1, \omega_2, \dots, \omega_n) : \omega_i \in \Omega_i, \ 1 \le i \le n\}.$$

If $A_i \subset \Omega_i$, the *n*-dimensional **rectangle** is

$$\prod_{i=1}^{n} A_{i} = \{(\omega_{1}, \omega_{2}, \dots, \omega_{n}) : \omega_{i} \in A_{i}, \ 1 \leq i \leq n\}.$$

The n-dimensional product σ -algebra is

$$\prod_{i=1}^{n} \mathcal{F}_{i} = \sigma \left\langle \left\{ \prod_{i=1}^{n} A_{i} : A_{i} \in \mathcal{F}_{i}, \ 1 \leq i \leq n \right\} \right\rangle.$$

Measures

An extended real-valued function on a class of subsets of a nonempty set Ω is a set function. A set function μ on an algebra \mathcal{F} on Ω is a measure if

- 1. $\mu(A) \in [0, \infty], \forall A \in \mathcal{F},$
- 2. $\mu(\emptyset) = 0$,
- 3. $A_1, A_2, \dots \in \mathcal{L}$ disjoint with $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$, then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

If $\mu(\Omega) = 1$, then μ is a **probability measure**. If $\exists B_1, B_2 \in \mathcal{F}$ such that $\Omega = \bigcup_{n=1}^{\infty} B_n$ and $\mu(B_i) < \infty, \ \forall i \geq 1$, then μ is σ -finite.

Extensions of Measures: If μ is a σ -finite measure on an algebra \mathcal{F} , then there is a unique extension of μ to $\sigma(\mathcal{F})$.

Monotonicity: If $A, B \in \mathcal{F}$ such that $A \subset B$, then $P(A) \leq P(B)$.

Inclusion-exclusion formula: If $A_1, A_2, \ldots, A_n \in \mathcal{F}$, then

$$P\left(\bigcup_{i=1}^{n}A_{i}\right) = \sum_{i=1}^{n}P(A_{i}) - \sum_{1\leq i< j\leq n}P(A_{i}\cap A_{j}) + \dots + (-1)^{n-1}P(A_{1}\cap \dots \cap A_{n}) \cdot \int_{\Omega}fd\mu \equiv \int_{\Omega}f^{+}d\mu - \int_{\Omega}f^{-}d\mu \text{ and we say } \int_{\Omega}fd\mu \text{ exists.}$$

Countable subadditivity: If $A_1, A_2, \dots \in \mathcal{F}$ such that $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$,

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} P(A_n).$$

Monotone continuity from below (mcfb): If $A, A_1, A_2, \dots \in \mathcal{F}$ such that $A_n \uparrow A$ (i.e., $A_n \subset A_{n+1}$ and $A = \bigcup A_n$), then $P(A_n) \uparrow P(A)$.

Monotone continuity from above (mcfa): If $A, A_1, A_2, \dots \in \mathcal{F}$ such that $A_n \downarrow A$ (i.e., $A_n \supset A_{n+1}$ and $A = \bigcap A_n$), then $P(A_n) \downarrow P(A)$.

Measurable Transformations

If $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$ are measurable spaces, then $T: \Omega_1 \to \Omega_2$ is $\langle \mathcal{F}_1, \mathcal{F}_2 \rangle$ -measurable if

$$T^{-1}(A) \equiv \{\omega \in \Omega_1 : T(\omega) \in A\} \in \mathcal{F}_1(\text{equivalently}, T^{-1}(\mathcal{F}_2) \subset \mathcal{F}_1).$$

Let (Ω, \mathcal{F}, P) be a psp. Then, $X : \Omega \to \mathbb{R}$ is a **r.v.** if it is $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -measurable.

Checking for measurability: $T: \mathbb{R} \to \mathbb{R}$ is $\langle \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}) \rangle$ -measurable iff $T^{-1}(-\infty, r) = \{ \omega \in \mathbb{R} : T(\omega) < r \} \in \mathcal{B}(\mathbb{R}) \ \forall r \in \mathbb{R}.$

If T_i is $\langle \mathcal{F}_i, \mathcal{F}_{i+1} \rangle$ -measurable for i=1,2, then the composition $T=T_1 \circ T_2 = T_1(T_2(\cdot))$ is $\langle \mathcal{F}_1, \mathcal{F}_3 \rangle$ -measurable.

If $f: \mathbb{R}^k \to \mathbb{R}^p$ is continuous, then f is $\langle \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}) \rangle$ -measurable.

If f_1, f_2, \ldots, f_n are each $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -measurable transformations from Ω to \mathbb{R} , then $f = (f_1, f_2, \ldots, f_n)'$ is $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -measurable. Also, $\sum_{i=1}^n f_i$, $\prod_{i=1}^n f_i$, $\sup_n f_n$, $\inf_n f_n$, $\lim\sup_n f_n$, $\lim\inf_n f_n$, and $\mathbb{I}_{\left\{\omega\in\Omega: \lim_{n\to\infty}f_n(\omega)\text{ finitely exists}\right\}}\lim_{n\to\infty}f_n\text{ are all }$ $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -measurable.

Induced Measures & Distribution Functions

If $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$ are measurable spaces and $T: \Omega_1 \to \Omega_2$ is $\langle \mathcal{F}_1, \mathcal{F}_2 \rangle$ -measurable, then for any measure μ on $(\Omega_1, \mathcal{F}_1)$, the set function μT^{-1} defined by

$$\mu T^{-1}(A) = \mu \circ T^{-1}(A) = \mu(T^{-1}(A)), \quad \forall A \in \mathcal{F}_2$$

is a measure on \mathcal{F}_2 and is called the **measure induced** by T under μ on \mathcal{F}_2 .

For a r.v. X on a psp (Ω, \mathcal{F}, P) , the probability **distribution** of X (or the law of X), denoted P_X , is the induced measure of X under P on $\mathcal{B}(\mathbb{R})$.

$$P_X(A) = P(X^{-1}(A)) = P(\{\omega \in \Omega : X(\omega) \in A\}) = P(X \in A), \quad A \in \mathcal{B}(\mathbb{R}).$$

The cumulative distribution function (cdf) of a r.v. X is

$$F(x) = P_X((-\infty, x]) = P(X \le x), \quad x \in \mathbb{R}.$$

If F is the cdf of a r.v. X, then

- 1. F is right continuous: if $x_n \downarrow x_0$ and $x_n \geq x$ then $F(x_n) = P_X((-\infty, x_n]) \downarrow P_X((-\infty, x_0]) = F(x_0)$ by mcfa,
- 2. F is monotone nondecreasing: if $x \leq y \Longrightarrow (-\infty,x] \subset (-\infty,y]$ then $F(x) = P_X((-\infty,x]) \leq P_X((-\infty,y]) = F(y)$ by monotonicity,
- 3. $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$: show using argument

If $F: \mathbb{R} \to [0,1]$ satisfies (1)-(3) above, then there exists a r.v. X on a psp (Ω, \mathcal{F}, P) such that F is the cdf of X.

Integrals

Any extended real-valued function f defined on Ω can be decomposed into positive $f^+ = \mathbb{I}_{f > 0} f$ and and negative $f^- = -\mathbb{I}_{f < 0} f$ parts. Then, $f = f^+ - f^- \text{ and } |f| = f^+ + f^-$

A measurable function $f:\Omega\to\overline{\mathbb{R}}$ on (Ω,\mathcal{F},μ) is μ -integrable if $\int_{\Omega}|f|\,d\mu<\infty$. If $\mu(|f|=\infty)>0$, then $\int_{\Omega}|f|\,d\mu\equiv\infty$. Note |f| is μ -integrable iff both f^+ and f^- are μ -integrable.

If at least one of $\int_{\Omega} f^{+} d\mu$, $\int_{\Omega} f^{-} d\mu$ is $< \infty$, then

If $f:\Omega\to\overline{\mathbb{R}}$ is nonnegative and μ -integrable, then $f<\infty$ a.e. (μ) . If $f:\Omega\to\overline{\mathbb{R}}$ is nonnegative, then $\int_\Omega f d\mu=0$ iff f=0 a.e. (μ) .

If $(\Omega, \mathcal{F}, \mu)$ is a msp and $f: \Omega \to \mathbb{R}$ is measurable and either μ -integrable or nonnegative. Then, for any $A \in \mathcal{F}$,

$$\int_A f d\mu = \int_\Omega \mathbb{I}_A f d\mu.$$

Using the DCT (see next section), it can be shown that for disjoint $A_1, A_2, \dots \in \mathcal{F}$ and measurable $f: \Omega \to \mathbb{R}$ either μ -integrable or nonnegative, then

$$\int_{\Omega} f \mathbb{I}_{\bigcup_{n=1}^{\infty} A_n} d\mu = \sum_{n=1}^{\infty} \int_{A_i} f d\mu.$$

Convergence Theorems

Monotone Convergence Theorem (MCT): If $f_n : \Omega \to \overline{\mathbb{R}}$ is an increasing sequence of nonnegative measurable functions, i.e.,

 $f_n(\omega) \leq f_{n+1}(\omega) \ \forall \omega \in \Omega \ \text{and} \ f_n(\omega) \uparrow f(\omega) \ \text{a.e.}(\mu), \ \text{then} \ \int_\Omega f_n d\mu \uparrow \int_\Omega f d\mu.$ That is,

$$\int_{\Omega} f d\mu = \int_{\Omega} \lim_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu.$$

Fatou's Lemma: If $f_n:\Omega\to\overline{\mathbb{R}}$ is a sequence of nonnegative functions, then

$$\int_{\Omega} \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_{\Omega} f_n d\mu.$$

Dominated Convergence Theorem (DCT): Suppose (1) $g:\Omega\to\overline{\mathbb{R}}$ is a nonnegative, μ -integrable function; (2) $|f_n|\leq g$ a.e. (μ) $\forall n\geq 1$; and (3) $f_n \to f$ a.e.(μ). Then, f is μ -integrable and

$$\lim_{n\to\infty} \int_{\Omega} |f_n - f| \, d\mu = 0 \text{ and } \lim_{n\to\infty} \int_{\Omega} f_n \, d\mu = \int_{\Omega} f \, d\mu.$$

Result under weaker conditions, UI and $\mu(\Omega) < \infty$: If $(\Omega, \mathcal{F}, \mu)$ is a msp with $\mu(\Omega) < \infty$ and $f, f_n : \Omega \to \overline{R}$ are measurable such that $f_n \to f$ a.e. (μ) and $\{f_n: n \geq 1\}$ is UI (see next section), then f is μ -integrable and

$$\lim_{n \to \infty} \int_{\Omega} f_n d\mu = \int_{\Omega} f d\mu.$$

Note: for a nonnegative measurable real-valued function f on a msp $(\Omega, \mathcal{F}, \mu), \ \nu(A) = \int_A f d\mu \ \forall A \in \mathcal{F}$ is a measure on (Ω, \mathcal{F}) and f is a density of the measure ν .

Scheffe's Theorem: Let $(\Omega, \mathcal{F}, \mu)$ be a msp and for $n \geq 0$, let $\nu_n(A) = \int_A f_n d\mu \ \forall A \in \mathcal{F}$ be finite measures on \mathcal{F} with densities $f_n \geq 0$. If $\nu_n(\Omega) = \nu_0(\Omega) < \infty$ for all n > 1 and $f_n \to f$ a.e.(μ), then

$$\lim_{n \to \infty} \int_{\Omega} |f_n - f_0| \, d\mu = 0.$$

Also, the "total variation norm" tends to zero:

$$\sup_{A \subset \mathcal{F}} |\nu_n(A) - \nu_0(A)| = \frac{1}{2} \int_{\Omega} |f_n - f_0| \, d\mu \to 0 \text{ as } n \to \infty.$$

Uniform Integrability

Recall if $f: \Omega \to \mathbb{R}$ is μ -integrable, then by the DCT

$$\lim_{n \to \infty} \int_{|f| > n} |f| \, d\mu = \lim_{n \to \infty} \int_{\Omega} \mathbb{I}_{|f| > n} |f| \, d\mu = 0.$$

A family of μ -integrable functions $\{f_{\lambda} : \lambda \in \Lambda\}$ on a msp $(\Omega, \mathcal{F}, \mu)$ is uniformly integrable (UI) w.r.t. μ if

$$\sup_{\lambda \in \Lambda} \int_{|f_{\lambda}| > t} |f_{\lambda}| d\mu \to 0 \text{ as } t \to \infty.$$

Suppose $\mathcal{A} \equiv \{f_{\lambda} : \lambda \in \Lambda\}$ is a collection of μ -integrable functions on a msp $(\Omega, \mathcal{F}, \mu)$. Then,

- if Λ is a finite set, then A is UI,
- if $\exists \varepsilon > 0$ such that $\sup \left\{ \int |f_{\lambda}|^{1+\varepsilon} d\mu : \lambda \in \Lambda \right\} < \infty$, then \mathcal{A} is UI,
- if $|f_{\lambda}| \leq f$ a.e.(μ) and $\int f d\mu < \infty$, then \mathcal{A} is UI,
- if \mathcal{A} is UI and $\mu(\Omega) < \infty$, then $\exists M > 0$ such that $\sup \{ \int |f_{\lambda}| d\mu : \lambda \in \Lambda \} < M$,
- if $\{f_{\lambda}: \lambda \in \Lambda\}$ and $\{g_{\lambda}: \lambda \in \Lambda\}$ are both UI, then $\{f_{\lambda} + g_{\lambda}: \lambda \in \Lambda\}$ is also UI.

Independence

Let (Ω, \mathcal{F}, P) be a psp and I be a set of indices.

• A collection A_i , $i \in I$ of sets in \mathcal{F} are **ind** if $\forall i_1, i_2, \dots, i_n \in I$ distinct indices and fixed $1 < n < \infty$,

$$P\left(\bigcap_{j=1}^{n} A_{i_{j}}\right) = \prod_{j=1}^{n} P\left(A_{i_{j}}\right).$$

Note the above has $2^n - n - 1$ independence conditions!

• Suppose $\mathcal{G}_i \subset \mathcal{F}$ is a collection of measurable sets for each $i \in I$. Then the family of sets $\{\mathcal{G}_i: i \in I\}$ is called ind if any possible collection $\{A_i: i \in I\}$ of sets are ind, where $\{A_i: i \in I\}$ is formed by choosing an arbitrary set A_i from \mathcal{G}_i for each $i \in I$. That is, $\forall i_1, i_2, \ldots, i_n \in I$ distinct indices, fixed $1 \leq n < \infty$ and $\forall A_{i_1}, A_{i_2}, \ldots, A_{i_n} \in \mathcal{G}_{i_n}$,

$$P\left(\bigcap_{j=1}^{n} A_{i_{j}}\right) = \prod_{j=1}^{n} P\left(A_{i_{j}}\right).$$

Note the family of sets $\{\mathcal{G}_i:i\in I\}$ are ind iff for each finite $T\subset I$, $\{\mathcal{G}_i:i\in T\}$ are ind.

• A collection of r.v.'s X_i , $i \in I$ on (Ω, \mathcal{F}, P) are **ind** if the family $\{\sigma\langle X_i\rangle: i \in I\}$ is ind, where

$$sigma\langle X_i\rangle = \left\{X_i^{-1}(B): B \in \mathcal{B}(\mathbb{R})\right\} = X_i^{-1}(\mathcal{B}(\mathbb{R}))$$

is the σ -algebra generated by X_i . That is, $\forall i_1, i_2, \ldots, i_n \in I$ distinct indices, fixed $1 \leq n < \infty$ and $\forall B_{i_1}, B_{i_2}, \ldots, B_{i_n} \in \mathcal{B}(\mathbb{R})$,

$$P\left(X_{i_1} \in B_{i_1}, X_{i_2} \in B_{i_2}, \ldots, X_{i_n} \in B_{i_n}\right) = \prod_{j=1}^n P\left(X_{i_j} \in B_{i_j}\right).$$

In terms of distribution functions, X_i , $i \in I$ are ind iff $\forall x_1, x_2, \ldots, x_n \in \mathbb{R}$ and $\forall i_1, i_2, \ldots, i_n \in I$ distinct indices,

$$P\left(X_{i_1} \leq x_1, X_{i_2} \leq x_2, \ldots, X_{i_n} \leq x_n\right) = \prod_{j=1}^n P\left(X_{i_j} \leq x_j\right).$$

Independence of generated σ -algebras: If (Ω, \mathcal{F}, P) is a psp, $\mathcal{G}_i \subset \mathcal{F}$ is a π -class for each index $i \in I$, and the family $\{\mathcal{G}_i : i \in I\}$ is ind. Then, the family $\{\sigma \langle \mathcal{G}_i \rangle : i \in I\}$ is ind.

Borel-Cantelli Lemmas

If (Ω, \mathcal{F}) be a measurable space and $A_1, A_2, \dots \in \mathcal{F}$, then

$$\limsup_{n\to\infty}A_n=\overline{\lim}A_n=\bigcap_{k=1}^\infty\bigcup_{n=k}^\infty A_n\in\mathcal{F},$$

$$\liminf_{n \to \infty} A_n = \underline{\lim} A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n \in \mathcal{F}.$$

Also,

$$\liminf_{n\to\infty} A_n \subset \limsup_{n\to\infty} A_n,$$

$$("A_n \text{ i.o"})^c = \left(\overline{\lim}A_n\right)^c = \underline{\lim}A_n^c = "A_n^c \text{ eventually,"}$$

$$("A_n \text{ eventually"})^c = (\underline{\lim} A_n)^c = \overline{\lim} A_n^c = "A_n^c \text{ i.o."}$$

Borel-Cantelli Lemma: Let (Ω, \mathcal{F}, P) be a psp and $A_1, A_2, \dots \in \mathcal{F}$.

- 1. If $\sum_{n} P(A_n) < \infty$, then $P(\overline{\lim} A_n) = 0$.
- 2. If $\{A_n\}$ are ind and $\sum_n P(A_n) = \infty$, then $P(\overline{\lim}A_n) = 1$.

Borel 0-1 Law: If A_1, A_2, \ldots are ind events, then

$$P(\overline{\lim}A_n) = P(A_n \text{ i.o.}) = \begin{cases} 0 & \text{iff } \sum_n P(A_n) < \infty, \\ 1 & \text{iff } \sum_n P(A_n) = \infty. \end{cases}$$

Tail Events & K's 0-1 Law

The **tail** σ -algebra of a sequence of r.v.'s X_1, X_2, \ldots on a psp (Ω, \mathcal{F}, P) is

$$\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma \left\langle \left\{ X_j : j \ge n \right\} \right\rangle,\,$$

where $\sigma\left\langle\left\{X_{j}:j\geq n\right\}\right\rangle=\sigma\left\langle\left\{X_{j}^{-1}:B\in\mathcal{B}(\mathbb{R}),j\geq n\right\}\right\rangle$ is the σ -algebra generated by $X_{j},j\geq n$.

Any set (event) $A \in \mathcal{T}$ is a **tail event**

An extended real-valued r.v. $T: \Omega \to \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ is a **tail r.v.** if T is $\langle \mathcal{F}, \mathcal{B}(\overline{\mathbb{R}}) \rangle$ -measurable. That is,

$$\forall r \in \mathbb{R}, \ T^{-1}([-\infty, r)) = \{\omega \in \Omega : T(\omega) < r\} \in \mathcal{T}.$$

For fixed, arbitrary $m \ge 1$, a tail event or r.v. is only determined by X_n , n > m (so changing finitely man r.v.'s does not effect \mathcal{T}).

Examples

- $\overline{\lim} X_n$, $\underline{\lim} X_n$ are extended real-valued tail r.v.'s,
- $\{\lim X_n \text{ finitely exists}\}, \{\overline{\lim} X_n \geq r\}, \{\underline{\lim} X_n < r\} \text{ are tail events.}$

Kolmogorov's 0-1 Law: Tail events of a sequence X_1, X_2, \ldots of ind r.v.'s have probabilities 0 or 1. That is, if $\{X_n\}_{n\geq 1}$ are ind and $A\in\mathcal{T}=\bigcap_n\sigma\langle\{X_j:j\geq n\}\rangle$, then $P(A)\in\overline{\{0,1\}}$.

Corollary: For a psp (Ω, \mathcal{F}, P) and tail σ -algebra \mathcal{T} defined by a sequence X_1, X_2, \ldots of ind r.v.'s, if $T: \Omega \to \overline{\mathbb{R}}$ is a tail r.v. (that is, T is $(\mathcal{T}, \mathcal{B}(\overline{\mathbb{R}}))$ -measurable), then T is degenerate. That is, $\exists c \in \overline{\mathbb{R}}$ such that P(T=c)=1.

Convergence of r.v.'s

A sequence of r.v.'s X_1, X_2, \ldots on a psp (Ω, \mathcal{F}, P) converge almost surely to a r.v. X_0 on (Ω, \mathcal{F}, P) if

$$P\left(\left\{\lim_{n\to\infty}X_n(\omega)=X_0(\omega)\right\}\right)=1.$$

TFAE:

- $X_n \xrightarrow{\text{a.s.}} 0$,
- $P(|X_n| > \varepsilon \text{ i.o}) = 0 \text{ for all } \varepsilon > 0$
- $\sup_{j>n} |X_j X_0| \stackrel{p}{\longrightarrow} 0 \text{ as } n \to \infty,$
- $\lim_{n\to\infty} P\left(\bigcap_{i=n}^{\infty} [|X_i X_0| \le \varepsilon]\right) = 1 \text{ for all } \varepsilon > 0.$

A sequence of r.v.'s X_1, X_2, \ldots on a psp (Ω, \mathcal{F}, P) converge in probability to a r.v. X_0 on (Ω, \mathcal{F}, P) if

$$\lim_{n \to \infty} P(|X_n - X_0| > \varepsilon) = 0, \quad \forall \varepsilon > 0.$$

TFAE:

- $X_n \stackrel{\mathrm{P}}{\longrightarrow} 0$,
- $\bullet \ \sup\nolimits_{m \, \geq \, n} \, \left(|X_m \, X_n| \, > \, \varepsilon \right) \, \rightarrow \, 0 \text{ as } n \, \rightarrow \, \infty \text{ for all } \varepsilon > 0,$
- $\forall \{n_j\}$ of $\{X_n\}$, $\exists \{n_{j_k}\}$ such that $X_{n_{j_k}} \xrightarrow{\text{a.s.}} X_0$.

For a sequence of r.v.'s X_1, X_2, \ldots on a psp (Ω, \mathcal{F}, P) ,

- 1. if $X_n \xrightarrow{\text{a.s.}} X_0$ and $g: \mathbb{R} \to \mathbb{R}$ is continuous, then $g(X_n) \xrightarrow{\text{a.s.}} g(X_0)$,
- 2. if $X_n \stackrel{\mathcal{P}}{\longrightarrow} X_0$ and $g: \mathbb{R} \to \mathbb{R}$ is continuous, then $g(X_n) \stackrel{\mathcal{P}}{\longrightarrow} g(X_0)$.

A sequence X_1, X_2, \ldots of

$$\mathcal{L}_{r}(\Omega, \mathcal{F}, P) \equiv \left\{ \text{measurable } X \in \mathbb{R} : \int_{\Omega} \left| X \right|^{r} dP < \infty \right\}$$

functions converges in \mathcal{L}_r to a measurable function X if

$$\lim_{n \to \infty} \int_{\Omega} |X_n - X|^r dP = 0.$$

If $X \in \mathcal{L}_r$, then $t^r P(|X| > t) \to 0$ as $t \to \infty$, that is, $\uparrow r \Longrightarrow$ faster convergence. If $\exists p \in (0, \infty)$ such that $t^p P(|X| > t) \to 0$, then $X \in \mathcal{L}_r \ \forall r \in (0, p)$.

If the r.v.'s $X_1, X_2, \dots \in \mathcal{L}_r$, then $\exists X \in \mathcal{L}_r$ such that $X_n \xrightarrow{\mathcal{L}_r} X$ iff $\sup_{m \geq n} \operatorname{E} \left| X_m - X_n \right|^r \to 0$ as $n \to \infty$.

For a r.v. X, the fixed, real-valued m(X) is a **median** if $P(X \geq m(X)) \geq 1/2$ and $P(X \leq m(X)) \geq 1/2$. Can be defined as inf $\{x \in \mathbb{R} : P(X \leq x) \geq 1/2\}$. If $P(|X| \geq c) < \varepsilon \leq 1/2$ then $|m(X)| \leq c$.

Levy's Inequality: If X_1, X_2, \ldots, X_n are ind r.v.'s on a psp (Ω, \mathcal{F}, P) and $S_j = \sum_{i=1}^j X_i, 1 \leq j \leq n$, then $\forall \varepsilon > 0$,

- 1. $P\left(\max_{1 \le j \le n} \left[S_j m(S_j S_n) \right] \ge \varepsilon \right) \le 2P(S_n \ge \varepsilon),$
- 2. $P\left(\max_{1 < j < n} \left[S_j m(S_j S_n) \right] \ge \varepsilon \right) \le 2P(|S_n| \ge \varepsilon)$

Levy's Theorem: If X_1, X_2, \ldots are ind r.v.'s on a psp (Ω, \mathcal{F}, P) and $S_n = \sum_{i=j}^n X_j, n \geq 1$, then S_n converges a.s.(P) iff S_n converges in probability.

Khintchine-Kolmogorov Convergence Theorem: If X_1, X_2, \ldots are ind r.v.'s on a psp (Ω, \mathcal{F}, P) with $\mathrm{E}(X_n) = 0$ and $\mathrm{E}(X_n^2) < \infty$ for all $n \geq 1$ and $\sum_n \mathrm{E}(X_n^2) < \infty$, then $S_n = \sum_{i=j}^n X_j, n \geq 1$ converges a.s.(P) and in \mathcal{L}_2 to some random variable $S = \sum_n X_n$. Also, $\mathrm{E}(S) = 0$, $\mathrm{E}(S^2) = \sum_n E(X_n^2)$.

Corollary: If X_1, X_2, \ldots are ind r.v.'s on a psp (Ω, \mathcal{F}, P) with $\sum_n \mathrm{E}(X_n) < \infty$ and $\sum_n \sigma^2_{X_n} < \infty$, then $S_n = \sum_{j=1}^n X_j, n \geq 1$ converges a.s.(P) to $S = \sum_n X_n$.

Two sequences of r.v.'s $\{X_n\}$ and $\{Y_n\}$ are **tail equivalent** if $\sum_n P(X_n \neq Y_n) < \infty$. If $\{X_n\}$ and $\{Y_n\}$ are tail equivalent, then

- By Borel-Cantelli, $P(\overline{\lim}(X_n \neq Y_n)) = 0 \implies P(X_n = Y_n \text{ for large } n) = 1,$
- $S_n = \sum_{i=1}^n X_i \xrightarrow{\text{a.s.}} S \iff S'_n = \sum_{i=1}^n Y_i \xrightarrow{\text{a.s.}} S',$
- If $b_n \to \infty$, then

$$\frac{\sum_{j=1}^{n} X_j}{h_n} \xrightarrow{\text{a.s.}} 0 \iff \frac{\sum_{j=1}^{n} Y_j}{h_n} \xrightarrow{\text{a.s.}} 0.$$

Berry-Esseen Lemma: If X_1,X_2,\ldots,X_n are ind r.v.'s with $\mathrm{E}(X_i)=0$ and $\mathrm{E}\,|X_i|^3<\infty,1\leq i\leq n,$ then $\forall n\geq 4,$

$$\sup_{x \in \mathbb{R}} \left| P\left(\frac{S_n}{\sigma_n} \le x \right) - \Phi(x) \right| \le \frac{2.75}{\sigma_n^3} \sum_{i=1}^n \mathbf{E} \left| X_i \right|^3,$$

where $S_n = \sum_{j=1}^n X_j$, $\sigma_n^2 = \text{Var}(S_n) = \sum_{i=1}^n \mathbb{E}(X_i^2)$, and $\Phi(\cdot)$ is the cdf of a $\mathcal{N}(0,1)$ ry

Kolmogorov's 3-Series Theorem: If X_1, X_2, \ldots are ind r.v.'s on a psp (Ω, \mathcal{F}, P) , for fixed c > 0, define

$$\sum_n P(|X_n| > c), \quad \sum_n \mathrm{E}(X_n^{(c)}), \quad \sum_n \mathrm{Var}(X_n^{(c)}),$$

where $X_n^{(c)} = X_n \mathbb{I}_{|X_n| \le c}$. Then,

- 1. if the 3 series converge for some c > 0, then $S_n = \sum_{j=1}^n S_j$, $n \ge 1$ converges a.s.(P),
- 2. if $S_n = \sum_{j=1}^n S_j$, $n \ge 1$ converges a.s.(P), then the 3 series converge for all c > 0

Corollary: If X_1, X_2, \ldots are ind r.v.'s on a psp (Ω, \mathcal{F}, P) with $\mathrm{E}(X_n) = 0, n > 1$, then

- 1. if $\sum_n \left[\mathbb{E}(X_n^{(c)})^2 + \mathbb{E}|X_n| \mathbb{I}_{|X_n|>c} \right] < \infty$ for some c>0, then $S_n = \sum_{j=1}^n X_j$ a.s.(P),
- 2. if $\sum_n \mathbf{E} |X_n|^{\alpha_n} < \infty$ for some $\{\alpha_n\} \subset [1,2]$, then $S_n = \sum_{j=1}^n X_j$ converges a.s.(P).

Useful Inequalities

For positive $a, b, p, (a+b)^p \leq 2^p (a^p + b^p)$.

Markov's: if X is a nonnegative r.v. and a > 0, then $P(X \ge a) \le E(X)/a$. **Holder's**: If 1/p + 1/q = 1, then for measurable $f, g, ||fg||_1 \le ||f||_n ||g||_a$.

Jensen's: $\forall r \in (0, q), \ \phi(x) = x^{q/r}$ is convex $\implies [\mathbf{E} |X|^q]^{1/q} > [\mathbf{E} |X|^r]^{1/r}$.