Mini-Examen 3

David Wiedemann

6 juin 2021

On notera d'abord que pour $\lambda\in\mathbb{C},\lim_{n\to+\infty}\lambda^n=0$ si et seulement si $|\lambda|<1$.

En effet, écrivons $\lambda = |\lambda|e^{i\theta}$, avec $\theta \in [0, 2\pi[$, alors on a

$$\lim_{n\to +\infty} \lambda^n = \lim_{n\to +\infty} |\lambda|^n e^{in\theta}$$

Car la norme de $e^{in\theta}$ est égale à 1 pour tout valeur de n et de θ , il est immédiat que si $|\lambda| < 1$, alors

$$\lim_{n \to +\infty} \lambda^n = 0$$

De même, si $\lim_{n\to+\infty}\lambda^n=0$, alors il faut que $\lim_{n\to+\infty}|\lambda|^n=0$ et un résultat d'analyse I implique alors que $|\lambda|<1$.

On dénotera par $\underline{0}$ la matrice nulle.

On montre maintenant la double implication de l'assertion.

 \Rightarrow

Montrons que si $\lim_{j\to+\infty} A^j = \underline{0}$, alors $|\lambda_i| < 1, \forall i \in \{1,\ldots,n\}$.

A étant diagonalisable, on va considérer une base de vecteurs propres v_1, \ldots, v_n . Notons que, car $\lim_{j\to+\infty} A^j = \underline{0}$, en particulier, on a que $\lim_{j\to+\infty} A^j v = 0$.

Ainsi, on a que

$$\lim_{j \to +\infty} A^j v_i = \lim_{j \to +\infty} \lambda_i^j v_i = 0$$

Car v_i est non nul, on en déduit que $|\lambda_i| < 1$.

Ainsi, pour tout $i \in \{1, ..., n\}$, on a $|\lambda_i| < 1$.

 \leftarrow

Supposons que $\forall i \in \{1, \dots, n\}$ on a $|\lambda_i| < 1$, on va montrer que $\lim_{j \to +\infty} A^j = 0$.

Soit V une matrice inversible telle que

$$A = VDV^{-1}, \quad D = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

Soit à nouveau v_1, \ldots, v_n une base de vecteurs propres de A, on a que

$$\lim_{j \to +\infty} A^j v_i = \lim_{j \to +\infty} \lambda_i^j v_i = 0$$

Ainsi, soit $w \in \mathbb{C}^n$, on sait qu'on peut exprimer w comme combinaison linéaire des v_i :

$$w = \sum_{i=1}^{n} \alpha_i v_i$$

Ainsi, on a

$$\lim_{j \to +\infty} A^j w = \lim_{j \to +\infty} A^j \left(\sum_{i=1}^n \alpha_i v_i \right)$$
$$= \lim_{j \to +\infty} \sum_{i=1}^n \alpha_i \lambda_i^j v_i$$

car chaque terme de la somme converge, on a

$$= \sum_{i=1}^{n} \alpha_i \lim_{j \to +\infty} \lambda_i^j v_i$$
$$= \sum_{i=1}^{n} 0 = 0$$

Car pour tout $w \in \mathbb{C}^n, \lim_{j \to +\infty} A^j w = 0$, ceci implique que

$$\lim_{j \to +\infty} A^j = 0.$$