```
int iLength, iN;
          double dblTemp;
          bool again = true;
19
20
21
22
23
          while (again) {
              iN = -1;
              again = false;
              getline(cin, sInput);
              stringstream(sInput) >> dblTemp;
24
              iLength = sInput.length();
              if (iLength < 4) {
                                 ...noth - 3] != '.') {
                   again = true;
```

Programmierung von Systemen – 11 – Relationenalgebra-Joins

while (++iN (SInput[111]).

(isdigit(SInput[111]).

(anoth - 3)) {

string sinput,

Matthias Tichy & Stefan Götz | SoSe 2020

Ziele

- Operatoren der Relationenalgebra anwenden können, um Anfragen zu formulieren
- Joins verstehen

Abgeleiteter Operator ⋈

$R\bowtie_F S$

- steht für den Verbund (join) der Relationen R und S unter Verwendung der Verbund-Bedingung F
- Die Join-Bedingung kann auch mittels <, >, <=, >=, <> sowie unter Verwendung von ∧, ∨ und ¬ formuliert werden.
- R $\bowtie_{\mathsf{F}} \mathsf{S}$ semantisch äquivalent zu $\sigma_{\mathsf{F}} (\mathsf{R} \times \mathsf{S})$

⋈-Ausführungslogik ("nested loop"-Algorithmus)

```
foreach Tupel x in R do
    foreach Tupel y in S do
        if R.Joinattribut = S.Joinattribut then erzeuge Resultattupel x || y
    end
end
```

"Gib alle Aufträge aus, und zwar mit Auftragsnummer, Kundennummer, Kundenname, Auftragsposition, Teilenummer, Farbe und Anzahl"

Gewünschtes Resultat (strukturell):

AuftrNr	◯ KdNr	▼ KdName	Pos	TeileNr	Farbe	Anzahl
		7::	4		4	5
15	177	Zwack		AAG		0
15	177	Zwack	2	AAG	2	2
10	17.7	ZWack		AAG		
15	177	Zwack	3	CAH	-1	1
10070	17.7	ZWack	J	OAH		
40	400	Debel	- 4	CIVIV	4	2

Benötigte Relationen:

Auftrags Pos
AuftrNi Pos TeileNr Farbe Anzahl

Algebra-Ausdruck (mit Join)?

"Gib alle Aufträge aus, und zwar mit Auftragsnummer, Kundennummer, Kundenname, Auftragsposition, Teilenummer, Farbe und Anzahl"

Gewünschtes Resultat (strukturell):

AuftrNr	KdNr	KdName	Pos	TeileNr	Farbe	Anzahi
15	177	Zwack	1	AAG	1	5
15	177	Zwack	2	AAG	2	2
15	177	Zwack	3	CAH	1	1
16	.123	Bahel	1	CKK	1	2

Benötigte Relationen:

Algebra-Ausdruck (mit Join)?

(Afther, karn, kolvere, los, Talette, Fale, Asale)

(Anshrege M Anthogo Ud Nor = Kuda halom

M Anthogy. Anthor = Aftyple. happy Po

"Gib alle Mitarbeiter (PersNr, Name, Vorname, Wohnort) aus der Abteilung 'Verkauf' aus, die mehr als 2.500 verdienen"

We	lche Relationen werden benötigt?
We	elche Algebra-Operationen werden benötigt?

"Gib alle Mitarbeiter (PersNr, Name, Vorname, Wohnort) aus der Abteilung 'Verkauf' aus, die mehr als 2.500 verdienen"

Welche Relationen werden benötigt?

Welche Algebra-Operationen werden benötigt?

$$G, \pi, (M = G(X))$$

Welche der folgenden Ausdrücke liefern das gewünschte Resultat?

$\pi_{ ext{PersNr, Name, Vorname, Wohnort}}$
$(\sigma_{Gehalt > 2500 \land AbtName='Verkauf'})$ (Mitarbeiter $\bowtie_{Mitarbeiter.AbtNr = Abteilungen.AbtNr}$ Abteilungen))
Antwort:
SGehalt > 2500 ∧ AbtName='Verkauf'
$(\pi_{\{PersNr, Name, Vorname, Wohnort\}})$ (Mitarbeiter $\bowtie_{Mitarbeiter.AbtNr = Abteilungen.AbtNr}$ Abteilungen))
Antwort:
π{PersNr, Name, Vorname, Wohnort}
$((\sigma_{Gehalt > 2500} Mitarbeiter) \bowtie_{Mitarbeiter.AbtNr = Abteilungen.AbtNr} (\sigma_{AbtName='Verkauf'} Abteilungen))$
Antwort:

Welche der folgenden Ausdrücke liefern das gewünschte Resultat?

```
π{PersNr, Name, Vorname, Wohnort}
    (\sigma_{Gehalt > 2500 \land AbtName='Verkauf'}) (Mitarbeiter \bowtie_{Mitarbeiter,AbtNr = Abteilungen,AbtNr} Abteilungen))
Antwort:
Gehalt > 2500 ∧ AbtName='Verkauf'
     (\pi_{\{PersNr. Name, Vorname, Wohnort\}}) (Mitarbeiter \bowtie Mitarbeiter.AbtNr = Abteilungen, AbtNr Abteilungen))
Antwort:
\pi_{\{PersNr, Name, Vorname, Wohnort\}}
 ((\sigma_{Gehalt > 2500} \text{ Mitarbeiter}) \bowtie_{Mitarbeiter, AbtNr = Abteilungen, AbtNr} (\sigma_{AbtName='Verkauf'} \text{ Abteilungen}))
Antwort:
```

Welche der folgenden Ausdrücke liefern das gewünschte Resultat?

$\pi_{ ext{PersNr, Name}}$	e, Vorname, Wohnort}
(Mitarb	eiter ⋈ _{Mitarbeiter.AbtNr = Abteilungen.AbtNr} (O _{Gehalt > 2500 ∧ AbtName='Verkauf'} Abteilungen))
Antwort:	
$(\pi_{ ext{PersNr, Nam}})$	he, Vorname, Wohnort $\{\sigma_{Gehalt > 2500} Mitarbeiter\}$
	$\bowtie_{Mitarbeiter.AbtNr = Abteilungen.AbtNr} (\sigma_{AbtName='Verkauf'} Abteilungen)$
Antwort:	

Welche der folgenden Ausdrücke liefern das gewünschte Resultat?

 $\pi_{\{\text{PersNr, Name, Vorname, Wohnort}\}}$ (Mitarbeiter $\bowtie_{\text{Mitarbeiter.AbtNr}}$ = Abteilungen.AbtNr ($\sigma_{\text{Gehalt}} > 2500 \land \text{AbtName} = \text{Verkauf}$ Abteilungen))

Antwort:

non, 'gehalt' wat in 'Albelezen'

 $(\pi_{\{PersNr, Name, Vorname, Wohnort\}}(\sigma_{Gehalt > 2500} Mitarbeiter))$

 $\bowtie_{Mitarbeiter.AbtNr = Abteilungen.AbtNr} (\sigma_{AbtName='Verkauf'} Abteilungen)$

Antwort:

wen, 'Abt No' noch To will mel da

Spezieller Join-Operator

$R \bowtie S$

- steht für den natürlichen Verbund (natural join)
- Unterscheidet sich vom "normalen" Join nur durch das fehlende Join-Prädikat
- Wirkungsweise
 - Automatische Ableitung der Join-Bedingung aus den beteiligten Relationen
 - Alle gleichnamigen Attribute in R und S werden auf Gleichheit verglichen
 - Auf diese Weise entstehende "redundante" (da inhaltsgleiche)
 Attribute werden entfernt

"normaler" Join: R ⋈ S

• d.h. sch(R ⋈ S) = sch(R) ∪ sch(S)

Beispiele zu Natural Join

sch(R)	sch(S)	sch(R ⋈ S)	R ⋈ S ist äquivalent zu
ABC	ABF	ABCF	$\pi_{\text{A:R.A, B:R.B, C, F}} R \bowtie_{\text{R.A=S.A} \land \text{R.B=S.B}} S$
АВ	АВ		
AB	CD		

Beispiele zu Natural Join

sch(R)	sch(S)	sch(R ⋈ S)	R ⋈ S ist äquivalent zu
ABC	ABF	ABCF	$\pi_{\{A:R.A, B:R.B, C, F\}} R \bowtie_{R.A=S.A \land R.B=S.B} S$
AB	АВ	AB	HA
AB	CD	ABCD	R x S

Abgeleiteter Operator ⋈_F

$R \bowtie_F S$

- Left Outer Join, ein linksseitiger "Außen-Verbund"
- Das Resultat-Schema entspricht einem normalen Verbund
- Alle Tupel der <u>linken</u> Relation (d.h. alle R-Tupel) sind im Ergebnis enthalten
- Gibt es für ein Tupel r ∈ R kein S-Tupel, welches das Join-Prädikat F erfüllt, dann werden die S-Attribute im Ergebnis-Tupel mit Nullwerten aufgefüllt

Joins ohne Ende

$R\bowtie_{F}S$	Right (Outer) Join
-----------------	--------------------

R ⋈_F S Full (Outer) Join

R ⋈ S Natural Left (Outer) Join

R ⋈ S Natural Right (Outer) Join

R ⋈ S Natural Full (Outer) Join

Veranschaulichung

Gegeben:

R	Α	В	С
	1	а	d
	3 4 5 6	a c d d e	d c f
	4	d	
	5	d	b
	6	е	f

S	В	D
	а	100
	b	300
	С	400
	d	200
	е	150

T	В	D
	а	100
	d	200
	f	400
	g	120

σ _{D<300} S	6	
	1000	Process (see

$\pi_{\{A,C\}}R$	7

$\pi_{\{C\}}R$	
	-
	1000

Gegeben:

R	Α	В	С
	1	а	d
	3	С	d c f
	4	d	
	3 4 5 6	a c d d	þ
	6	е	f

S	В	D
	а	100
	b	300
	С	400
	d	200
	е	150

T	В	D
	а	100
	d	200
	f	400
	g	120

σ _{D<300} S	B	0
	~~	368

$\pi_{\{A,C\}} R$	A	•
	4	
	7	•
	8	
	6	f

$\pi_{\{C\}}R$	•
	•
	4

Gegeben:

R	Α	В	С
	1	а	d
	3 4 5 6	a c d d	C f
	4	d	
	5	d	b
	6	е	f

S	В	D
	а	100
	b	300
	С	400
	d	200
	е	150

T	В	D
	а	100
	d	200
	f	400
	g	120

S – T	/	7
22		1

T - S	Y	

Gegeben:

R	Α	В	С
	1	а	d
	3	С	C f
	4	d	
	3 4 5 6	a c d d e	b
	6	е	f

S	В	D
	а	100
	b	300
	С	400
	d	200
	е	150

T	В	D
	а	100
	d	200
	f	400
	g	120

SUT	В	O
	a b c d l f 9	100 300 400 200 150 400 120
		500000

S - T	B	0
	6	3 00
	C	400
	L	150

T - S	B	0
	f	400
	9	750

Gegeben:

R	Α	В	С
	1	а	d
	3 4 5 6	a c d	C f
	4	d	
	5	d	b
	6	е	f

S	B D	
	а	100
	b	300
	С	400
	d	200
	е	150

T	В	D
	а	100
	d	200
	f	400
	g	120

R⊠ _{R.B=S.B} S			
	y		
			1
	100		

Gegeben:

R	Α	В	С
	1	а	d
	3 4 5 6	a c d	d c f
	4	d	
	5		b
	6	е	f

S	В	D
	а	100
	b	300
	С	400
	d	200
	е	150

T	В	D
	а	100
	d	200
	f	400
	g	120

R⊠ _{R.B=S.B} S	A	R.B	C	S.B	٥
	1 3	۵ C .	400	«٠.	100 400
	4	d	+	d	200
	5	d	6	d	200
	6	l	f	l	150

Gegeben:

R	Α	В	С
	1	а	d
	3	С	С
	4	d	f

T	В	D
	а	100
	d	200

R×T			

Gegeben:

R	Α	В	O
	1	а	d
	3	С	С
	4	d	f

T	В	D
	а	100
	d	200

R×T	A	U'B	<u></u>	T.B	\mathcal{D}
	7	a	d	a	100
	1	a	Y	d	200
	3	_	C	a	100
	3	c	C	d	200
	4	J	f	a	OUN
	4	d	È	d	200

Gegeben:

R	Α	В	С
	1	а	d
	3	a c d d	C f
	4	d	
	3 4 5 6	d	b
	6	e	f

S	В	D
	а	100
	b	300
	С	400
	d	200
	е	150

T	В	D
	а	100
	d	200
	f	400
	g	120

$R \bowtie T$	person.		177	
		¥		To a good
				,

R ⋈ _{A*100=D} S		1		15 T
	5.00			<i>}</i>
		Marian.	10	1771

Gegeben:

R	Α	В	С
	1	а	d
	3	С	d C f
	4	d	
	3 4 5 6	a c d d e	b
	6	е	f

S	В	D
	а	100
	b	300
	С	400
	d	200
	е	150

Т	В	D
	а	100
	d	200
	f	400
	g	120

S⋈T	ß	D
	a d	200

$R \bowtie T$	A	B	J	٥
	1	a	8	106
	4	d	₽	200
	5	d	b	200

R ⋈ _{A*100=D} S	A	R.B	_	S. B	٥
	1	a	2	8	100
	3	C	C	Ь	300
	4	d	f	C	400

Gegeben:

R	Α	В
	a1	b1
	a2	b2
	а3	b4
	a4	b2
	a4	b5
	a 5	b1

S	В	С
	b1	c1
	b1	c2
	b2	сЗ
	b3	с6

R ⋈ _{R.B=S.B} S	,		\$	la de la constante de la const
		,		,,,
			\	
				, 1

Gegeben:

R	Α	В
	a1	b1
	a2	b2
	а3	b4
	a4	b2
	a4	b5
	а5	b1

S	В	С
	b1	c1
	b1	c2
	b2	сЗ
	b3	с6

R □ ⊲ _{R.B=S.B} S	A	R.B	S.B	_
	a 1	ba	61	CA
	• 1	61	PV	cl
	a 2	62	62	ι3
	alı	62	62	(3)
	45	51	51	1
	a5		61	12
	a3	59		_
		2)		
	I	I	1	1

Abgeleiteter Operator ∩

$R \cap S$

- steht für die Schnittmenge
- Wie üblich: $R \cap S \equiv R (R S)$

Abgeleiteter Operator ÷

$$R \div S$$

- steht für Division
- Ergebnisrelation enthält diejenigen Attribute aus R, die in jeder Kombination mit den Attributen aus S in R vorkommen
- Sei D = R ÷ S, dann muss gelten:
 - $\operatorname{sch}(S) \subset \operatorname{sch}(R)$
 - sch(D) = sch(R) sch(S)
 - $t \in D \iff \forall s \in val(S): \langle t, s \rangle \in val(R)$
- Berechnung von D äquivalent zu:
 - (1) Temp1 $\leftarrow \pi_{\text{sch(R)}-\text{sch(S)}} R$
 - (2) Temp2 $\leftarrow \pi_{sch(R)-sch(S)}$ ((S × Temp1) R))
 - (3) $D \leftarrow Temp1 Temp2$

	R	Α	В		
•		a1	b1		
		a2	b1		
		a3	b1		
		a4	b1		_
		a1	b2	S A R÷S B	
		a3	b2	<u>•</u> a1 <u>b1</u>	
		a2	b3	• a2 <u>b4</u>	
		а3	b3	a3	
		a4	b3		
		a1	b4		
		a2	b4		
		а3	b4		

Typische Anwendung bei Vorkommen von "alle":

- "Welche Lieferanten liefern alle Teile?"
- "Welche Mitarbeiter arbeiten an allen Projekten mit?"
- "Welche Kursleiter können alle Kurse halten?"

Zusammenfassung

Basisoperatoren

• Selektion $\sigma_{F} R$

Projektion π_L R

• Umbenennung $ho_{[neu \leftarrow alt]} \, \mathsf{R} \qquad \qquad \pi_{\{\mathsf{neu:alt}\}} \, \mathsf{R}$

■ Vereinigung R U S

■ Differenz R − S R \ S

kartesische Produkt R × S

abgeleitete Operatoren

Schnittmenge R ∩ S

Division $R \div S$

■ Joins $R \bowtie_F S R \bowtie_F S R \bowtie_F S R \bowtie_F S$ $R \bowtie S R \bowtie S R \bowtie S R \bowtie S$

Äquivalenzumformungen

• Kommutativität von <u>unären</u> Operationen: $U_1 U_2 R \equiv U_2 U_1 R$

Beispiel:
$$\sigma_{F1}\sigma_{F2} R \equiv \sigma_{F2}\sigma_{F1} R$$

• Kommutativität von binären Operationen: $R B S \equiv S B R$

Beispiele: $R \cup S \equiv S \cup R, R \times S \equiv S \times R, R \bowtie S \equiv S \bowtie R$

Assoziativität von binären Operationen: R B (S B T) ≡ (R B S) B T

Beispiele: $R \cup (S \cup T) \equiv (R \cup S) \cup T, R \cap (S \cap T) \equiv (R \cap S) \cap T,$

$$R \times (S \times T) \equiv (R \times S) \times T, R \bowtie (S \bowtie T) (R \bowtie S) \bowtie T)$$

Distributivität von unären in Bezug auf binäre Op.:

$$U(RBS) \equiv (UR)B(US)$$

Beispiele: $\sigma_F(R \cup S) = (\sigma_F R) \cup (\sigma_F S),$

$$\sigma_{F}(R \bowtie S) \equiv (\sigma_{F}R) \bowtie (\sigma_{F}S)$$

Abschließende Bemerkungen

- Relationen-Algebra nur bei den ersten relationalen DBMS-Prototypen als Anfragesprache verwendet
- formale Grundlage für DBMS-interne Anfrage-Optimierung
- Außerdem: theoretisches Maß für Ausdrucksmächtigkeit relationaler DB-Sprachen
 (→ relationale Vollständigkeit)

Ziele

- Operatoren der Relationenalgebra anwenden können um Anfragen zu formulieren
- Joins verstehen