Практическое задание N9

Волков Егор Алексеевич 20 октября 2024 г.

1 Триггер и генератор импульсов на 555 таймере

Рисунок 1. Схема устройства

1.1 Рассчет параметров схемы

1.1.1 Расчет параметров триггера

Нам необходимо чтобы, при одном нажатии на кнопку (момент времени t_0) на вход TR таймера 555 было подан сигнал с низким уровнем напряжения, а при соледующем нажатии высокий (момент времени t_1) на вход THR.

Следовательно можно установить кондесатор С8 и подключить его к выводам TR и THR.

В момент времени t_0 . Зная, что ток через кондесатор описывается как:

$$I = C\frac{dU}{dt} \tag{1}$$

При $dt \to 0$ ток через кондесатор будет $I \to \infty$, что будет представлять из себя короткое замыкание на землю. Тем самым на вход TR будет подан низкий сигнал. Триггер включится и на выходе Q появится высокий потенциал. Конденсатор C8 начнет заряжаться до напряжения питания.

В момент времени t_1 при нажатии на кнопку кондесатор С8 уже заряжен до напряжения питания. Следовательно он начнет разряд, т.е. приложит напряжение питания к входу ТНR. Далее цикл можно повторить.

Требование к номиналам компонентов. τ цепочки с конденсатором С8 должно быть много меньше времени нажатия и при этом больше чем время реакции таймера в 800 нс.

При этом резистор R_{10} не должен значительно искажать сопротивления делителя $R_{3,4}$ при переключении, чтобы не было вероятности подачи более низкого/высокого уровня на вход TR. Следует взять его за все сопротивление делителя $R_{3,4}$. Имеем:

$$R_{10} = 100 \text{ кОм}$$

$$C_8 = 0.22 \text{ мк}\Phi$$

$$\tau_{C_8,R_{10}} = R_{10}C_8 = 100 \cdot 10^3 \cdot 0.22 \cdot 10^{-6} = 0.022\text{c} = 2.2\text{мC}$$
 (2)

Думаю я не смогу так быстро нажимать на кнопку. Ну а на делитель $R_{3,4}$ возьмем любой номинал, что обеспечит приемлемый ток.

1.1.2 Расчет параметров генератора

В качестве стартовой точки выберем номинал кондесатора $C=0.22\cdot 10^{-6}$. Мы хотим красивые испульсы со скважностью $S\approx 2$. Что невозможно используя таймер 555.

Доказательство:

Заполняемость $D=\frac{1}{S}$ следовательно нам нужна $D\approx 0.5$.

Если t_1 длительность высокого уровня импульса, а T переод сигнала то:

$$D = \frac{t_1}{T} \tag{3}$$

Так же из даташита мы знаем, что:

$$T = 0.693(R_1 + 2R_2)C = t_1 + t_2 \tag{4}$$

$$t_2 = 0.693R_2C (5)$$

$$t_1 = 0.693(R_1 + R_2)C (6)$$

Тогда имеем:

$$D = \frac{t_1}{T} = \frac{0.693(R_1 + R_2)C}{0.693(R_1 + 2R_2)C} = \frac{R_1 + R_2}{R_1 + 2R_2} \to R_2 = \frac{R_1D - R_1}{1 - 2D}$$
(7)

Следовательно $D \neq 0.5$. А так как отрицательных сопротивлений не бывает, заполняемость может быть в области(0.5,1]

Рассчитаем R_2 и R_1 и заложим частоту $f\approx 7$ Γ ц. Имеем систему уравнений:

$$\begin{cases}
R_2 = \frac{R_1 D - R_1}{1 - 2D} \\
f = \frac{1}{0.693(R_1 + 2R_2)C}
\end{cases}$$
(8)

Условия: заполнение близкое к 0.5, частота близкая к 7 Γ ц. Возьем за исходные данные что резистор $R_1=100k$. Получим следующие значения сопротивлений:

$$R_1(R_8) = 100k$$

 $R_2(R_9) = 430k$
 $D = 0.554$
 $f = 7.08 \ \Gamma$ ц

2 Работа и сборка схемы

Рисунок 3. Устройство

Работа устройства представлена на видео на диске. Разберем осцилограмму:

Рисунок 4. Осицлограмма и спектр сигнала

Period 142.6 ms	Vamp	Frequency 7.012 Hz	+PulseWidt	

Рисунок 5. Параметры сигнала

Результаты:

$$t_1 = 77$$
 $T = 142$ $D = \frac{t_1}{T} = \frac{75}{136} \approx 0.54$ $f = 7.012\Gamma$ ц

На БПФ видим, что сигнал какими-то особенными отклонениями не обладает. Использовать можно. Да и, что удивительно, частота почти номинал. Только вот как. Я ведь там два резистора на 830кОм паралелил, сопротивление там меньше же. Ну да ладно. Ну и напряжение на транзисторе просело чутка.

3 Прототипирование печатной платы

Рисунок 6. РСВ

Рисунок 7. Передняя часть платы

Рисунок 8. Задняя часть платы