Fundamentals of Biology II (551-0104-01)

Plant Physiology Part

Dr. Barbara Pfister

bpfister@ethz.ch

Group of Plant Biochemistry

Prof. Sam Zeeman

Department of Biology, ETH Zurich

Organization for Day II

Molecular biology of gene silencing (Analysis of transgenic and silenced *Nicotiana benthamiana* plants)

- DNA extraction from leaf tissue
- Reverse transcription (cDNA synthesis)
- PCR

Chromatographic separation of photosynthetic pigments

- Pigments extraction
- Pigments separation
- Identification of the pigments

Organization for Day II

Molecular biology of gene silencing (Analysis of transgenic and silenced *Nicotiana benthamiana* plants)

- DNA extraction from leaf tissue
- Reverse transcription (cDNA synthesis)
- PCR

Chromatographic separation of photosynthetic pigments

- Pigments extraction
- Pigments separation
- Identification of the pigments

Detecting a transgene by PCR (Polymerase Chain Reaction):

Detecting a transgene by PCR (Polymerase Chain Reaction):

Plant cell

transgenic Nicotiana benthamiana

Plant cell

wild-type Nicotiana benthamiana

Detecting a transgene by PCR (Polymerase Chain Reaction):

Nucleus

Detecting a transgene by PCR (Polymerase Chain Reaction):

Detecting a transgene by PCR (Polymerase Chain Reaction):

Nicotiana benthamiana

Nicotiana benthamiana

Detecting a transgene by PCR (Polymerase Chain Reaction):

Detecting a transgene by PCR (Polymerase Chain Reaction):

Gel electrophoresis

Other reasons why band could be present or not?

- → Controls needed
- 1) Water instead of DNA
- 2) Actin primers

Detecting a transgene by PCR (Polymerase Chain Reaction):

Gel electrophoresis

Other reasons why band could be present or not?

- → Controls needed
- Water instead of DNA (contaminations?)
- 2) Actin primers (DNA quality?)

Detecting a transgene by PCR (Polymerase Chain Reaction):

- → Allows us to distinguish between WT and GFP-expressing tobacco
- → But how can we assess the gene silencing?

Measuring gene expression by RT-PCR:

Agro-TRV-PDS treated plant

plant

Measuring gene expression by RT-PCR:

plant

plant

Measuring gene expression by RT-PCR:

Measuring gene expression by RT-PCR:

Measuring gene expression by RT-PCR:

Controls?

- Water instead of cDNA
- Actin primers 2)

cDNA cDNA

Gel electrophoresis

1 % Agarose (EtBr)

Actin is "house-keeping gene" → mRNA levels should be stable under diverse conditions

Measuring gene expression by RT-PCR:

Controls?

- Water instead of cDNA
- Actin primers
 (cDNA quality,
 equal amounts of
 template)

Actin is "house-keeping gene" → mRNA levels should be stable under diverse conditions

1 % Agarose (EtBr)

DNA extraction experiment

1) DNA extraction

DNA extraction experiment

1) DNA extraction

Alcohols: precipitation of DNA

DNA extraction experiment

1) DNA extraction

cDNA synthesis experiment

2) cDNA synthesis

N. benthamiana treated with Agro-TRV-PDS

cDNA synthesis experiment

2) cDNA synthesis

3) PCR

DNA

PCR program with 35 cycles

PCR1 – Detection of GFP transgene								
Tube 1	Tube 2	Tube 3	Tube 4	Tube 5	Tube 6	Tube 7	Tube 8	
5 μl WT DNA	5 μl GFP DNA	5 μl H₂O	empty	5 μl WT DNA	5 μl GFP DNA	5 μl H₂O	empty	
Add the PCR reaction mix to each tube (ask an assistant to pipette the mix in your prepared tubes).								
GFP	GFP	GFP		Actin	Actin	Actin		

PCR mix

cDNA

PCR mix

PCR mix

Estimation of DDC mDNA lovels

PCR mix

PCR program with 25 cycles

PCR mix

PCR mix

Tube 1	Tube 2	Tube 3	Tube 4	Tube 5	Tube 6	Tube 7	Tube 8
5 μl mock cDNA (control)	5 μl PDS- silenced cDNA	5 μl H₂O	empty	5 μl mock cDNA control	5 μl PDS- silenced cDNA	5 µl H₂O	empty

• Add the PCR reaction mix to each tube (ask an assistant to pipette the mix in your prepared tubes).

PDS	PDS	PDS	Actin	Actin	Actin	
PCR mix						

PCR experiment

3) PCR

DNA

PCR program with 35 cycles

```
PCR1 (program: GFP35)
```

Step 1. 95°C for 3 min (initial denaturation)

Step 2. 95°C for 30 sec (denaturation)

Step 3. 55°C for 30 sec (annealing)

Step 4. 72°C for 30 sec (elongation)

Step 5. Go back to step #2 34 times (exponential amplification)

Step 6. 72°C for 1 min (final elongation)

Step 7. 14 °C for ever (storage)

cDNA

PCR program with 25 cycles

PCR2 (program: PDS25)

Step 1. 95°C for 3 min (initial denaturation)

Step 2. 95°C for 30 sec (denaturation)

Step 3. 55°C for 30 sec (annealing)

Step 4. 72°C for 30 sec (elongation)

Step 5. Go back to step #2 24 times (exponential amplification)

Step 6. 72°C for 1 min (final elongation)

Step 7. 14 °C for ever (storage)

Organization for Day II

Molecular biology of gene silencing (Analysis of transgenic and silenced *Nicotiana benthamiana* plants):

- DNA extraction from leaf tissue
- Reverse transcription (cDNA synthesis)
- PCR

Chromatographic separation of photosynthetic pigments

- Pigments extraction
- Pigments separation
- Identification of the pigments

About photosynthetic pigments

About photosynthetic pigments

Photosynthetic pigments are associated to integral membrane proteins.

How can we extract them?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Swiss Federal Institute of Technology Zurich

Chloroplast pigments experiment

Chromatographic separation of the photosynthetic pigments.

Swiss Federal Institute of Technology Zurich

Chloroplast pigments experiment

Chromatographic separation of the photosynthetic pigments (continuation).

Chloroplast pigments experiment

Chromatographic separation of the photosynthetic pigments (continuation).

Determination of Rf value:

Chloroplast pigments experiment

Chromatographic separation of the photosynthetic pigments (continuation).

About photosynthetic pigments

Absorption spectrum of photosynthetic pigments:

