Introduction to Information Retrieval http://informationretrieval.org

IIR 12: Language Models for IR

Hinrich Schütze

Institute for Natural Language Processing, Universität Stuttgart

2011-08-29

Models and Methods

- Boolean model and its limitations (30)
- Vector space model (30)
- Probabilistic models (30)
- Language model-based retrieval (30)
- Latent semantic indexing (30)
- **1** Learning to rank (30)

Statistical language models: Introduction

- Statistical language models: Introduction
- Statistical language models in IR

- Statistical language models: Introduction
- Statistical language models in IR
- Discussion: Properties of different probabilistic models in use in IR

Outline

Statistical language models

- Statistical language models in IR
- 3 Discussion

We can view a finite state automaton as a deterministic language model.

We can view a finite state automaton as a deterministic language model.

We can view a finite state automaton as a deterministic language model.

We can view a finite state automaton as a deterministic language model.

I wish

We can view a finite state automaton as a deterministic language model.

I wish I

We can view a finite state automaton as a deterministic language model.

I wish I wish

We can view a finite state automaton as a deterministic language model.

I wish I wish I

We can view a finite state automaton as a deterministic language model.

I wish I wish I wish

We can view a finite state automaton as a deterministic language model.

I wish I wish I wish I

We can view a finite state automaton as a deterministic language model.

I wish I wish I wish

We can view a finite state automaton as a deterministic language model.

I wish I wish I wish . . .

We can view a finite state automaton as a deterministic language model.

I wish I wish I wish . . .

Cannot generate: "wish I wish" or "I wish I"

We can view a finite state automaton as a deterministic language model.

I wish I wish I wish . . .

Cannot generate: "wish I wish" or "I wish I"

Our basic model: each document was generated by a different automaton like this

We can view a finite state automaton as a deterministic language model.

I wish I wish I wish . . .

Cannot generate: "wish I wish" or "I wish I"

Our basic model: each document was generated by a different automaton like this except that these automata are probabilistic.

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03
а	0.1	likes	0.03 0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

Statistical language models

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03
а	0.1	likes	0.03 0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog

$$P(\text{string}) = 0.01$$

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said

$$P(\text{string}) = 0.01$$

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said

$$P(\text{string}) = 0.01 \cdot 0.03$$

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that

$$P(\text{string}) = 0.01 \cdot 0.03$$

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that

$$P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04$$

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad

$$P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04$$

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad

$$P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01$$

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad likes

$$P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01$$

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad likes

$$P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02$$

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad likes frog

$$P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02$$

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03
а	0.1	likes	0.02
frog	0.01	that	0.03 0.02 0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad likes frog

$$P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01$$

A probabilistic language model

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad likes frog STOP

 $P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01$

A probabilistic language model

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad likes frog STOP

 $P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2$

A probabilistic language model

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2		0.01
the	0.2	said	0.03 0.02
а	0.1	likes	0.02
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 .

STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad likes frog STOP

 $P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2$ = 0.0000000000048

A different language model for each document

language model of d_1			language model of d_2				
W	P(w .)	W	P(w .)	W	P(w .)	W	P(w .)
STOP	.2	toad	.01	STOP	.2	toad	.02
the	.2	said	.03	the	.15	said	.03
a	.1	likes	.02	а	.08	likes	.02
frog	.01	that	.04	frog	.01	that	.05

query: frog said that toad likes frog STOP

A different language model for each document

language model of d_1				language model of d_2			
w P(w	.) w	P(w .)	1	W	P(w .)	W	P(w .)
STOP .2	toad	.01	9	STOP	.2	toad	.02
the .2	said	.03	1	the	.15	said	.03
a .1	likes	.02	ä	а	.08	likes	.02
frog .01	that	.04	f	frog	.01	that	.05

query: frog said that toad likes frog STOP

$$P(\text{query}|M_{d1}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2$$

= 0.0000000000048 = 4.8 \cdot 10^{-12}

A different language model for each document

language model of d_1			language model of d_2			
w P(w)	.) w	P(w .)	W	P(w .)	W	P(w .)
STOP .2	toad	.01	STOP	.2	toad	.02
the .2	said	.03	the	.15	said	.03
a .1	likes	.02	а	.08	likes	.02
frog .01	that	.04	frog	.01	that	.05

query: frog said that toad likes frog STOP

$$P(\text{query}|M_{d1}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2$$

= 0.0000000000048 = 4.8 \cdot 10^{-12}

$$P(\text{query}|M_{d2}) = 0.01 \cdot 0.03 \cdot 0.05 \cdot 0.02 \cdot 0.02 \cdot 0.01 \cdot 0.2$$

= $0.000000000120 = 12 \cdot 10^{-12}$

language model of d_1				language model of d_2			
W	P(w .)	W	P(w .)	W	P(w .)	W	P(w .)
STOP .	.2	toad	.01	STOP	.2	toad	.02
the .	.2	said	.03	the	.15	said	.03
a .	.1	likes	.02	a	.08	likes	.02
frog .	.01	that	.04	frog	.01	that	.05

query: frog said that toad likes frog STOP

$$P(\text{query}|M_{d1}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2$$

= 0.0000000000048 = 4.8 \cdot 10^{-12}

$$P(\text{query}|M_{d2}) = 0.01 \cdot 0.03 \cdot 0.05 \cdot 0.02 \cdot 0.02 \cdot 0.01 \cdot 0.2$$

= 0.000000000120 = 12 \cdot 10^{-12}

 $P(\text{query}|M_{d1}) < P(\text{query}|M_{d2})$ Thus, document d_2 is "more relevant" to the query "frog said that toad likes frog STOP" than d_1 is.

Outline

- Statistical language models in IR

• Each document is treated as (the basis for) a language model.

- Each document is treated as (the basis for) a language model.
- Given a query q

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on P(d|q)

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on P(d|q)

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on P(d|q)

0

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

• P(q) is the same for all documents, so ignore

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on P(d|q)

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

- P(q) is the same for all documents, so ignore
- P(d) is the prior often treated as the same for all d

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on P(d|q)

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

- P(q) is the same for all documents, so ignore
- P(d) is the prior often treated as the same for all d
 - But we can give a higher prior to "high-quality" documents, e.g., those with high PageRank.

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on P(d|q)

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

- P(q) is the same for all documents, so ignore
- P(d) is the prior often treated as the same for all d
 - But we can give a higher prior to "high-quality" documents, e.g., those with high PageRank.
- P(q|d) is the probability of q given d.

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on P(d|q)

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

- P(q) is the same for all documents, so ignore
- \bullet P(d) is the prior often treated as the same for all d
 - But we can give a higher prior to "high-quality" documents, e.g., those with high PageRank.
- P(q|d) is the probability of q given d.
- Under the assumptions we made, ranking documents according to P(q|d)P(d) and P(d|q) is equivalent.

• We will make the same conditional independence assumption as in BIM.

 We will make the same conditional independence assumption as in BIM.

$$P(q|M_d) = P(\langle t_1, \dots, t_{|q|} \rangle | M_d) = \prod_{1 \leq k \leq |q|} P(t_k | M_d)$$

 $(|q|: length of q; t_k: the token occurring at position k in q)$

 We will make the same conditional independence assumption as in BIM.

$$P(q|M_d) = P(\langle t_1, \ldots, t_{|q|} \rangle | M_d) = \prod_{1 \leq k \leq |q|} P(t_k | M_d)$$

(|q|: length of q; t_k : the token occurring at position k in q)

This is equivalent to:

$$P(q|M_d) = \prod_{\text{distinct term } t \text{ in } q} P(t|M_d)^{\text{tf}_{t,q}}$$

 We will make the same conditional independence assumption as in BIM.

$$P(q|M_d) = P(\langle t_1, \ldots, t_{|q|} \rangle | M_d) = \prod_{1 \leq k \leq |q|} P(t_k | M_d)$$

(|q|: length of q; t_k : the token occurring at position k in q)

This is equivalent to:

$$P(q|M_d) = \prod_{\substack{\text{distinct term } t \text{ in } q}} P(t|M_d)^{\text{tf}_{t,q}}$$

• $tf_{t,q}$: term frequency (# occurrences) of t in q

 We will make the same conditional independence assumption as in BIM.

$$P(q|M_d) = P(\langle t_1, \ldots, t_{|q|} \rangle | M_d) = \prod_{1 \leq k \leq |q|} P(t_k | M_d)$$

 $(|q|: length of q; t_k: the token occurring at position k in q)$

This is equivalent to:

$$P(q|M_d) = \prod_{\text{distinct term } t \text{ in } q} P(t|M_d)^{\text{tf}_{t,q}}$$

- $\operatorname{tf}_{t,q}$: term frequency (# occurrences) of t in q
- Multinomial model (omitting constant factor)

• Missing piece: Where do the parameters $P(t|M_d)$ come from?

- Missing piece: Where do the parameters $P(t|M_d)$ come from?
- Start with maximum likelihood estimates

- Missing piece: Where do the parameters $P(t|M_d)$ come from?
- Start with maximum likelihood estimates

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

- Missing piece: Where do the parameters $P(t|M_d)$ come from?
- Start with maximum likelihood estimates

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

(|d|: length of d; $tf_{t,d}$: # occurrences of t in d)

• We have a problem with zeros.

- Missing piece: Where do the parameters $P(t|M_d)$ come from?
- Start with maximum likelihood estimates

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

- We have a problem with zeros.
- A single t in the query with $P(t|M_d) = 0$ will make $P(q|M_d) = \prod P(t|M_d)$ zero.

- Missing piece: Where do the parameters $P(t|M_d)$ come from?
- Start with maximum likelihood estimates

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

- We have a problem with zeros.
- A single t in the query with $P(t|M_d) = 0$ will make $P(q|M_d) = \prod P(t|M_d)$ zero.
- We would give a single term in the query "veto power".

- Missing piece: Where do the parameters $P(t|M_d)$ come from?
- Start with maximum likelihood estimates

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

- We have a problem with zeros.
- A single t in the query with $P(t|M_d) = 0$ will make $P(q|M_d) = \prod P(t|M_d)$ zero.
- We would give a single term in the query "veto power".
- For example, for guery [Michael Jackson top hits] a document about "Michael Jackson top songs" (but not using the word "hits") would have $P(q|M_d) = 0$. – That's bad.

- Missing piece: Where do the parameters $P(t|M_d)$ come from?
- Start with maximum likelihood estimates

•

$$\hat{P}(t|M_d) = \frac{\mathrm{tf}_{t,d}}{|d|}$$

(|d|: length of d; $\operatorname{tf}_{t,d}$: # occurrences of t in d)

- We have a problem with zeros.
- A single t in the query with $P(t|M_d) = 0$ will make $P(q|M_d) = \prod P(t|M_d)$ zero.
- We would give a single term in the query "veto power".
- For example, for query [Michael Jackson top hits] a document about "Michael Jackson top songs" (but not using the word "hits") would have $P(q|M_d) = 0$. That's bad.
- We need to smooth the estimates to avoid zeros.

• Key intuition: A nonoccurring term is possible (even though it didn't occur), ...

- Key intuition: A nonoccurring term is possible (even though it didn't occur), ...
- ... but no more likely than would be expected by chance in the collection.

- Key intuition: A nonoccurring term is possible (even though it didn't occur), ...
- ... but no more likely than would be expected by chance in the collection.
- Notation: M_c : the collection model; cf_t : the number of occurrences of t in the collection; $T = \sum_{t} cf_{t}$: the total number of tokens in the collection.

- Key intuition: A nonoccurring term is possible (even though it didn't occur), ...
- ... but no more likely than would be expected by chance in the collection.
- Notation: M_c : the collection model; cf_t : the number of occurrences of t in the collection; $T = \sum_{t} cf_{t}$: the total number of tokens in the collection.

$$\hat{P}(t|M_c) = \frac{\mathrm{cf}_t}{T}$$

- Key intuition: A nonoccurring term is possible (even though it didn't occur), ...
- ... but no more likely than would be expected by chance in the collection.
- Notation: M_c : the collection model; cf_t : the number of occurrences of t in the collection; $T = \sum_{t} cf_{t}$: the total number of tokens in the collection.

$$\hat{P}(t|M_c) = \frac{\mathrm{cf}_t}{T}$$

• We will use $\hat{P}(t|M_c)$ to "smooth" P(t|d) away from zero.

•
$$P(t|d) = \lambda P(t|M_d) + (1-\lambda)P(t|M_c)$$

- $P(t|d) = \lambda P(t|M_d) + (1-\lambda)P(t|M_c)$
- Mixes the probability from the document with the general collection frequency of the word.

- $P(t|d) = \lambda P(t|M_d) + (1-\lambda)P(t|M_c)$
- Mixes the probability from the document with the general collection frequency of the word.
- High value of λ : "conjunctive-like" search tends to retrieve documents containing all query words.

- $P(t|d) = \lambda P(t|M_d) + (1-\lambda)P(t|M_c)$
- Mixes the probability from the document with the general collection frequency of the word.
- High value of λ : "conjunctive-like" search tends to retrieve documents containing all query words.
- Low value of λ : more disjunctive, suitable for long queries

- $P(t|d) = \lambda P(t|M_d) + (1-\lambda)P(t|M_c)$
- Mixes the probability from the document with the general collection frequency of the word.
- High value of λ : "conjunctive-like" search tends to retrieve documents containing all query words.
- Low value of λ : more disjunctive, suitable for long queries
- Tuning λ is important for good performance.

Jelinek-Mercer smoothing: Summary

$$P(q|d) \propto \prod_{1 \leq k \leq |q|} (\lambda P(t_k|M_d) + (1-\lambda)P(t_k|M_c))$$

Jelinek-Mercer smoothing: Summary

$$P(q|d) \propto \prod_{1 \leq k \leq |q|} (\lambda P(t_k|M_d) + (1-\lambda)P(t_k|M_c))$$

What we model: The user has a document in mind and generates the query from this document.

Jelinek-Mercer smoothing: Summary

$$P(q|d) \propto \prod_{1 \leq k \leq |q|} (\lambda P(t_k|M_d) + (1-\lambda)P(t_k|M_c))$$

- What we model: The user has a document in mind and generates the query from this document.
- P(q|d) is the probability that the document that the user had in mind was in fact this one.

• Collection: d_1 and d_2

- Collection: d_1 and d_2
- d_1 : Jackson was one of the most talented entertainers of all time

- Collection: d_1 and d_2
- d₁: Jackson was one of the most talented entertainers of all time
- d₂: Michael Jackson anointed himself King of Pop

- Collection: d_1 and d_2
- d₁: Jackson was one of the most talented entertainers of all time
- d₂: Michael Jackson anointed himself King of Pop
- Query q: Michael Jackson

- Collection: d_1 and d_2
- d₁: Jackson was one of the most talented entertainers of all time
- d₂: Michael Jackson anointed himself King of Pop
- Query q: Michael Jackson
- Use mixture model with $\lambda = 1/2$

- Collection: d_1 and d_2
- d₁: Jackson was one of the most talented entertainers of all time
- d₂: Michael Jackson anointed himself King of Pop
- Query q: Michael Jackson
- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = [(0/11 + 1/18)/2] \cdot [(1/11 + 2/18)/2] \approx 0.003$

- Collection: d_1 and d_2
- d_1 : Jackson was one of the most talented entertainers of all time
- d₂: Michael Jackson anointed himself King of Pop
- Query q: Michael Jackson
- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = [(0/11 + 1/18)/2] \cdot [(1/11 + 2/18)/2] \approx 0.003$
- $P(q|d_2) = [(1/7 + 1/18)/2] \cdot [(1/7 + 2/18)/2] \approx 0.013$

- Collection: d_1 and d_2
- d_1 : Jackson was one of the most talented entertainers of all time
- d₂: Michael Jackson anointed himself King of Pop
- Query q: Michael Jackson
- Use mixture model with $\lambda = 1/2$
- $P(a|d_1) = [(0/11 + 1/18)/2] \cdot [(1/11 + 2/18)/2] \approx 0.003$
- $P(q|d_2) = [(1/7 + 1/18)/2] \cdot [(1/7 + 2/18)/2] \approx 0.013$
- Ranking: $d_2 > d_1$

•

$$P(t|d) = \frac{\operatorname{tf}_{t,d} + \alpha P(t|M_c)}{L_d + \alpha}$$

•

$$P(t|d) = \frac{\mathrm{tf}_{t,d} + \alpha P(t|M_c)}{L_d + \alpha}$$

• The background distribution $P(t|M_c)$ is the prior for P(t|d).

$$P(t|d) = \frac{\mathrm{tf}_{t,d} + \alpha P(t|M_c)}{L_d + \alpha}$$

- The background distribution $P(t|M_c)$ is the prior for P(t|d).
- Intuition: Before having seen any part of the document we start with the background distribution as our estimate.

 $P(t|d) = \frac{\operatorname{tf}_{t,d} + \alpha P(t|M_c)}{I_d + \alpha}$

- The background distribution $P(t|M_c)$ is the prior for P(t|d).
- Intuition: Before having seen any part of the document we start with the background distribution as our estimate.
- As we read the document and count terms we update the background distribution.

 $P(t|d) = \frac{\operatorname{tf}_{t,d} + \alpha P(t|M_c)}{L_d + \alpha}$

- The background distribution $P(t|M_c)$ is the prior for P(t|d).
- Intuition: Before having seen any part of the document we start with the background distribution as our estimate.
- As we read the document and count terms we update the background distribution.
- ullet The weighting factor lpha determines how strong an effect the prior has.

Jelinek-Mercer or Dirichlet?

- Dirichlet performs better for keyword queries, Jelinek-Mercer performs better for verbose queries.
- Both models are sensitive to the smoothing parameters you shouldn't use these models without parameter tuning.

Sensitivity of Dirichlet to smoothing parameter

 μ is the Dirichlet smoothing parameter (called α on the previous slides)

Vector space (tf-idf) vs. LM

	precision			significant
Rec.	tf-idf	LM	%chg	
0.0	0.7439	0.7590	+2.0	
0.1	0.4521	0.4910	+8.6	
0.2	0.3514	0.4045	+15.1	*
0.4	0.2093	0.2572	+22.9	*
0.6	0.1024	0.1405	+37.1	*
0.8	0.0160	0.0432	+169.6	*
1.0	0.0028	0.0050	+76.9	
11-point average	0.1868	0.2233	+19.6	*

Vector space (tf-idf) vs. LM

	precision			significant
Rec.	tf-idf	LM	%chg	
0.0	0.7439	0.7590	+2.0	
0.1	0.4521	0.4910	+8.6	
0.2	0.3514	0.4045	+15.1	*
0.4	0.2093	0.2572	+22.9	*
0.6	0.1024	0.1405	+37.1	*
0.8	0.0160	0.0432	+169.6	*
1.0	0.0028	0.0050	+76.9	
11-point average	0.1868	0.2233	+19.6	*

The language modeling approach always does better in these experiments . . .

Vector space (tf-idf) vs. LM

	precision			significant
Rec.	tf-idf	LM	%chg	
0.0	0.7439	0.7590	+2.0	
0.1	0.4521	0.4910	+8.6	
0.2	0.3514	0.4045	+15.1	*
0.4	0.2093	0.2572	+22.9	*
0.6	0.1024	0.1405	+37.1	*
0.8	0.0160	0.0432	+169.6	*
1.0	0.0028	0.0050	+76.9	
11-point average	0.1868	0.2233	+19.6	*

The language modeling approach always does better in these experiments . . .

... but note that where the approach shows significant gains is at higher levels of recall.

View the document as a generative model that generates the query

- View the document as a generative model that generates the query
- 2 Define the precise generative model we want to use

- View the document as a generative model that generates the query
- Define the precise generative model we want to use
- Stimate parameters (different parameters for each) document's model)

- View the document as a generative model that generates the query
- Define the precise generative model we want to use
- Stimate parameters (different parameters for each) document's model)
- Smooth to avoid zeros

- View the document as a generative model that generates the query
- Define the precise generative model we want to use
- Stimate parameters (different parameters for each) document's model)
- Smooth to avoid zeros
- Apply to query and find document most likely to have generated the query

- View the document as a generative model that generates the query
- Define the precise generative model we want to use
- Stimate parameters (different parameters for each) document's model)
- Smooth to avoid zeros
- Apply to query and find document most likely to have generated the query
- Present most likely document(s) to user

Outline

- 3 Discussion

Naive Bayes

generative model

• We want to classify document d.

Naive Bayes

- We want to classify document d.
 - Human-defined classes: e.g., politics, economics, sports.

Naive Bayes

- We want to classify document d.
 - Human-defined classes: e.g., politics, economics, sports.
- Assume that d was generated by the generative model.

- We want to classify document d.
 - Human-defined classes: e.g., politics, economics, sports.
- Assume that d was generated by the generative model.
- Key question: Which of the classes (= class models) is most likely to have generated the document?

Naive Bayes

- We want to classify document d.
 - Human-defined classes: e.g., politics, economics, sports.
- Assume that d was generated by the generative model.
- Key question: Which of the classes (= class models) is most likely to have generated the document?
 - Or: for which class do we have the most evidence?

- We want to classify document d.
 - Human-defined classes: e.g., politics, economics, sports.
- Assume that *d* was generated by the generative model.
- Key question: Which of the classes (= class models) is most likely to have generated the document?
 - Or: for which class do we have the most evidence?

- We want to classify document d.
 We want to classify a query q.
 - Human-defined classes: e.g., politics, economics, sports.
- Assume that *d* was generated by the generative model.
- Key question: Which of the classes (= class models) is most likely to have generated the document?
 - Or: for which class do we have the most evidence?

- We want to classify document d.
 We want to classify a query q.
 - Human-defined classes: e.g., politics, economics, sports.
 Each document in the collection is a different class.
- Assume that d was generated by the generative model.
- Key question: Which of the classes (= class models) is most likely to have generated the document?
 - Or: for which class do we have the most evidence?

- We want to classify document d.
 We want to classify a query q.
 - Human-defined classes: e.g., politics, economics, sports.
 Each document in the collection is a different class.
- Assume that d was generated by the generative model.
 Assume that q was generated by a generative model
- Key question: Which of the classes (= class models) is most likely to have generated the document?
 - Or: for which class do we have the most evidence?

- We want to classify document d.
 We want to classify a query q.
 - Human-defined classes: e.g., politics, economics, sports.
 Each document in the collection is a different class.
- Assume that d was generated by the generative model.
 Assume that q was generated by a generative model
- Key question: Which of the classes (= class models) is most likely to have generated the document? Which document (=class) is most likely to have generated the query q?
 - Or: for which class do we have the most evidence?

- We want to classify document d.
 We want to classify a query q.
 - Human-defined classes: e.g., politics, economics, sports.
 Each document in the collection is a different class.
- Assume that d was generated by the generative model.
 Assume that q was generated by a generative model
- Key question: Which of the classes (= class models) is most likely to have generated the document? Which document (=class) is most likely to have generated the query q?
 - Or: for which class do we have the most evidence? For which document (as the source of the query) do we have the most evidence?

Naive Bayes Multinomial model / IR language models

Naive Bayes Bernoulli model / Binary independence model

Comparison of the two models

	multinomial model / IR LM	Bernoulli model / BIM
event model	generation of (multi)set of tokens	generation of subset of vocabula
random variable(s)	X = t iff t occurs at given pos	$U_t = 1$ iff t occurs in doc
doc. representation	$d = \langle t_1, \ldots, t_k, \ldots, t_{n_d} \rangle, t_k \in V$	$d = \langle e_1, \ldots, e_i, \ldots, e_M \rangle,$
		$e_i \in \{0,1\}$
parameter estimation	$\hat{P}(X=t c)$	$\hat{P}(U_i = e c)$
dec. rule: maximize	$\hat{P}(c)\prod_{1\leq k\leq n_d}\hat{P}(X=t_k c)$	$\hat{P}(c)\prod_{t_i\in V}\hat{P}(U_i=e_i c)$
multiple occurrences	taken into account	ignored
length of docs	can handle longer docs	works best for short docs
# features	can handle more	works best with fewer
estimate for THE	$\hat{P}(X - \text{the} c) \approx 0.05$	$\hat{P}(II_{\perp \perp} = 1 c) \approx 1.0$

• BM25/LM: based on probability theory

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.
 - LMs: raw term frequency, BM25/Vector space: more complex

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.
 - LMs: raw term frequency, BM25/Vector space: more complex
- Length normalization

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.
 - LMs: raw term frequency, BM25/Vector space: more complex
- Length normalization
 - Vector space: Cosine or pivot normalization

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.
 - LMs: raw term frequency, BM25/Vector space: more complex
- Length normalization
 - Vector space: Cosine or pivot normalization
 - LMs: probabilities are inherently length normalized

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.
 - LMs: raw term frequency, BM25/Vector space: more complex
- Length normalization
 - Vector space: Cosine or pivot normalization
 - LMs: probabilities are inherently length normalized
 - BM25: tuning parameters for optimizing length normalization

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.
 - LMs: raw term frequency, BM25/Vector space: more complex
- Length normalization
 - Vector space: Cosine or pivot normalization
 - LMs: probabilities are inherently length normalized
 - BM25: tuning parameters for optimizing length normalization
- idf: BM25/vector space use it directly.

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.
 - LMs: raw term frequency, BM25/Vector space: more complex
- Length normalization
 - Vector space: Cosine or pivot normalization
 - LMs: probabilities are inherently length normalized
 - BM25: tuning parameters for optimizing length normalization
- idf: BM25/vector space use it directly.
- LMs: Mixing term and collection frequencies has an effect similar to idf.

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.
 - LMs: raw term frequency, BM25/Vector space: more complex
- Length normalization
 - Vector space: Cosine or pivot normalization
 - LMs: probabilities are inherently length normalized
 - BM25: tuning parameters for optimizing length normalization
- idf: BM25/vector space use it directly.
- LMs: Mixing term and collection frequencies has an effect similar to idf.
 - Terms rare in the general collection, but common in some documents will have a greater influence on the ranking.

- BM25/LM: based on probability theory
- Vector space: based on similarity, a geometric/linear algebra notion
- Term frequency is directly used in all three models.
 - LMs: raw term frequency, BM25/Vector space: more complex
- Length normalization
 - Vector space: Cosine or pivot normalization
 - LMs: probabilities are inherently length normalized
 - BM25: tuning parameters for optimizing length normalization
- idf: BM25/vector space use it directly.
- LMs: Mixing term and collection frequencies has an effect similar to idf.
 - Terms rare in the general collection, but common in some documents will have a greater influence on the ranking.
- Collection frequency (LMs) vs. document frequency (BM25, vector space)

Take-away

- Statistical language models: Introduction
- Statistical language models in IR
- Discussion: Properties of different probabilistic models in use in IR

Resources

- Chapter 12 of Introduction to Information Retrieval
- Resources at http://informationretrieval.org/essir2011
 - Ponte and Croft's 1998 SIGIR paper (one of the first on LMs in IR)
 - Zhai and Lafferty: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst. (2004).
 - Lemur toolkit (good support for LMs in IR)
 - Bernoulli vs multinomial models

- Collection: d_1 and d_2
- d_1 : Xerox reports a profit but revenue is down
- d_2 : Lucene narrows quarter loss but revenue decreases further
- Query q: revenue down
- Use mixture model with $\lambda = 1/2$

- Collection: d_1 and d_2
- d_1 : Xerox reports a profit but revenue is down
- d_2 : Lucene narrows quarter loss but revenue decreases further
- Query q: revenue down
- Use mixture model with $\lambda = 1/2$

- Collection: d_1 and d_2
- d_1 : Xerox reports a profit but revenue is down
- d_2 : Lucene narrows quarter loss but revenue decreases further
- Query q: revenue down
- Use mixture model with $\lambda = 1/2$

- Collection: d_1 and d_2
- d_1 : Xerox reports a profit but revenue is down
- d_2 : Lucene narrows quarter loss but revenue decreases further
- Query q: revenue down
- Use mixture model with $\lambda = 1/2$

- Collection: d_1 and d_2
- d₁: Xerox reports a profit but revenue is down
- d_2 : Lucene narrows quarter loss but revenue decreases further
- Query q: revenue down
- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = [(1/8 + 2/16)/2] \cdot [(1/8 + 1/16)/2] = 1/8 \cdot 3/32 = 3/256$
- $P(q|d_2) = [(1/8 + 2/16)/2] \cdot [(0/8 + 1/16)/2] = 1/8 \cdot 1/32 = 1/256$
- Ranking: $d_1 > d_2$