技術者リテラシー I (機械工学科) ―― 第5回 小テスト

学籍番号: 名前:

問題, a > 0 を定数とする. 次の間に答えよ.

- (1) $\int_0^3 2x \ dx$ を求めよ. また, y = 2x のグラフを $0 \le x \le 3$ の範囲で描け.
- (2) 関数 $y = \sqrt{a^2 x^2}$ のグラフを定義域 $0 \le x \le a$ の範囲で描け. (**Hint**: 両辺 2 乗して整理してみましょう.)
- (3) 次の①から⑤に当てはまる数式・値を答えよ. また,⑥に当てはまる文章を選択肢から選べ.

である. (1) のグラフと比較すると, この値は ⑥

⑥ (選択肢)

であると考えられる.

選択肢 -

(i) 1 辺が a の正方形の面積

(iii) 中心が原点, 半径が a の半円の面積

(ii) 1 辺が $\frac{a}{2}$ の正方形の面積

- (iv) 中心が原点、半径が a の円の $\frac{1}{4}$ の面積
- (4) (3) の考察を踏まえて, (1) の積分の答えは何を表しているか説明せよ.

解答. (10 点満点, (1) 各 1 点, (2)1 点, (3) 各 1 点, (4)1 点)

- (1) $\left[x^2\right]_0^3 = 9$. また, グラフは左下図.
- (2) 両辺 2 乗して整理すると $x^2+y^2=a^2$. したがって, $\sqrt{a^2-x^2} \ge 0$ に注意すると求めるグラフは中心が原点, 半径 が a の円の上部.

図 1: (1) のグラフ

図 2: (2) のグラフ

- (3) ① $a \cos t$, ② 0, ③ $\frac{\pi}{2}$, ④ $a^2 \cos^2 t$, ⑤ $\frac{a^2}{4}\pi$, ⑥ (iv)
- (4) y = 2x のグラフと x-軸, 直線 y = 3 で囲まれている部分の面積.

解説・総評 今回の小テストはかなりコンセプチュアルに作りました. ある程度解けていた方は気付いた (知ってた?) と思いますが, 積分は「グラフと x-軸の上の部分に囲まれた部分の面積」を求める計算になります. 授業では積分は「微分の逆演算」として説明しましたが. 実際の定義は「面積」として定義します (cf. 区分求積法).

(2) で x-軸より下の部分を描いていた方がいましたが, $\sqrt{a^2-x^2} \ge 0$ なので解答のような x-軸より上の部分のみが答えです.また,(4) で「底辺が 3,高さが 6 の三角形の面積」と答えた方がいました.間違っていないのでバツにはしていませんが.「グラフと x-軸の上の部分に囲まれた部分の面積」ということを理解しておきましょう.