Cohort state-transition Modeling in R

Using R for Decision Modeling in Health Technology Assessment CE16

NIHES Erasmus Medical Center Rotterdam February, 2020

© Copyright 2017, THE HOSPITAL FOR SICK CHILDREN AND THE COLLABORATING INSTITUTIONS.

All rights reserved in Canada, the United States and worldwide. Copyright, trademarks, trade names and any and all associated intellectual property are exclusively owned by THE HOSPITAL FOR Sick CHILDREN and the collaborating institutions. These materials may be used, reproduced, modified, distributed and adapted with proper attribution.

Cohort State-Transition Models

- Models where proportions of a cohort occupy states at each point in time (e.g., healthy, sick, stable, progressed, dead).
- Transitions allowed between states with some probability.
- Transitions occur in cycles (months, years etc).
- Each state associated with a value associated with a model outcome (\$, utility).
- Markov assumption: no "memory" within states.

Building a cohort State-Transition Model

- Determine health states
- Determine transitions
- Choose cycle length
- Estimate transition probabilities
- Estimate state utilities and costs per cycle
- Calculate
- Sensitivity analyses

Markov Model of HIV Progression

Transition matrix

Monotherapy

		Transi	ition to	
Transition from	State A	State B	State C	State D
State A	0.721	0.202	0.067	0.01
State B	0	0.581	0.407	0.012
State C	0	0	0.75	0.25
State D	0	0	0	1

State-transition diagram

Cycle	State A	State B	State C	State D	Total
0	1000	0	0	0	1000
	1000×0.721	1000×0.202	1000×0.067	1000 × 0.01	
1	721	202	67	10	1000
2	520	263	181	36	1000
3	375	258	277	90	1000
4	270	226	338	166	1000
5	195	186	363	256	1000
6	140	147	361	351	1000
7	101	114	340	445	1000
8	73	87	308	532	1000
9	53	65	271	611	1000
10	38	48	234	680	1000
11	27	36	197	739	1000
12	20	26	164	789	1000
13	14	19	135	831	1000
14	10	14	110	865	1000
15	7	10	89	893	1000
16	5	7	72	916	1000
17	4	5	57	934	1000
18	3	、4	45	948	1000
19	2	3	36	959	1000
20	1	2	28	968	1000

Markov Trace

Number or distribution of individuals at each cycle

Three-State Model

Trace the Cohort Through Time

 Reflects the distribution of a cohort of patients over a set of health states over time

Trace the Cohort Through Time

 Reflects the distribution of a cohort of patients over a set of health states over time

Model as a Transition Matrix

Summarize transition probabilities as a matrix

 Cohort distribution at next time step calculated through matrix multiplication

$$\left[---- x_{t+1} ---- \right] = \left[---- x_t ---- \right] A$$

"Running" the Model

To:

Summarize transition probabilities as a matrix

 Cohort distribution at next time step calculated through matrix multiplication

$$\begin{bmatrix} ---- x_{t+1} - --- \end{bmatrix} = \begin{bmatrix} ----- x_t - --- \end{bmatrix} \begin{bmatrix} 0.75 & 0.20 & 0.05 \\ 0 & 0.85 & 0.15 \\ 0 & 0 & 1.0 \end{bmatrix}$$

"Running" the Model

To:

Summarize transition probabilities as a matrix

		Healthy	Sick	Dead	_	
:: E	Healthy	0.75	0.20	0.05		
-ron	Sick	0	0.85	0.15	=	Α
ш	Dead	0	0	1.0		

 Cohort distribution at next time step calculated through matrix multiplication

$$\begin{bmatrix} x_1 & x_0 \\ 0.75 & 0.20 & 0.05 \end{bmatrix} = \begin{bmatrix} 1.0 & 0.0 & 0.0 \end{bmatrix} \begin{bmatrix} 0.75 & 0.20 & 0.05 \\ 0 & 0.85 & 0.15 \\ 0 & 0 & 1.0 \end{bmatrix}$$

Markov Trace (Life-Years)

- Calculate expected remaining LE, QALE, costs
 - Multiply cohort distribution by state-specific values to calculate expected value at each time
 - Sum expected values over time (discount if desired)

Life-Years:

1.0

1.0

0.0

Time	Healthy	Sick	Dead	E[LYs]
0	1.0	0.0	0.0	1
1	0.75	0.20	0.05	
2	0.56	0.32	0.12	
3	0.42	0.38	0.19	

Sum

$$* 1/(1+r)^3$$

Total life years: 6.77 years (Remaining life expectancy)

Markov Trace (Costs)

- Calculate expected remaining LE, QALE, costs
 - Multiply cohort distribution by state-specific values to calculate expected value at each time
 - Sum expected values over time (discount if desired)

Costs:	\$500	\$2,500	\$0	
Time	Healthy	Sick	Dead	E[Costs]
0	1.0	0.0	0.0	
1	0.75	0.20	0.05	
2	0.56	0.32	0.12	. ,
3	0.42	0.38	0.19	
		•••	•••	

Sum

Total costs: \$11,557

(Total remaining lifetime costs)

Transition Probabilities

 Pr(Healthy → Dead) may not be conceptualized as one number

p_HD = p_Die + p_Sick * p_DieAcute

Conceptualizing the Markov model in R

Simple state transition model in R

Simple state transition model

Model input:

 p_{HS} : transition probability from *Healthy* to *Sick*

 p_{HD} : transition probability *Healthy* to *Dead*

 p_{SD} : transition probability Sick to Dead

 c_H : cost of being in state *Healthy*

 c_S : cost of being in state Sick

 e_H : outcomes associated with state *Healthy*

 e_S : outcomes associated with state Sick

No cost or disutility associated with death

Matrix Implementation of the Markov Model

Transition probability matrix

Н

S

D

$$P = \begin{bmatrix} 1 - p_{HS} - p_{HD} & p_{HS} & p_{HD} \\ 0 & 1 - p_{SD} & p_{SD} \\ 0 & 0 & 1 \end{bmatrix} \begin{array}{l} \mathbf{H} \\ \mathbf{S} \\ \mathbf{D} \end{array}$$

Vector of cycle's cost/outcomes

$$C = \begin{bmatrix} c_H \\ c_S \\ 0 \end{bmatrix} \mathbf{S}$$
 $E = \begin{bmatrix} e_H \\ e_S \\ 0 \end{bmatrix} \mathbf{S}$

Matrix Implementation of the Markov Model

Create the $t \times 3$ matrix M that will store the proportion of the cohort at each state and cycle:

At
$$t = 0$$
: $M_0 = [1, 0, 0]$

For *t* < *T* :

$$M_{t+1} = M_t P$$

$$[H_t \quad S_t \quad D_t] \begin{bmatrix} 1 - p_{HS} - p_{HD} & p_{HS} & p_{HD} \\ 0 & 1 - p_{SD} & p_{SD} \\ 0 & 0 & 1 \end{bmatrix}$$

Calculating total costs & effects

$$E = M e$$
$$TE = \mathbf{1}_T E$$

$$C = M c$$
$$TC = \mathbf{1}_T C$$

$$I_T: 1 \times T$$
 vector of ones

Calculating total costs & effects (discounted)

Total effects (TE):
$$E = M e$$

 $TE = dw_T E$

Total costs (TC):

$$C = M c$$
$$TC = dw_T C$$

$$dw_T = \frac{1}{(1+d)^{0:T}}$$

R Session

DARTH Workgroup

Fernando Alarid-Escudero, PhD¹ Eva A. Enns, MS, PhD² M.G. Myriam Hunink, MD, PhD³,⁴ Hawre J. Jalal, MD, PhD⁵ Eline M. Krijkamp, MSc³ Petros Pechlivanoglou, PhD6

In collaboration of:

- 1 Drug Policy Program, Center for Research and Teaching in Economics (CIDE) CONACyT, Aguascalientes, Mexico
- 2 University of Minnesota School of Public Health, Minneapolis, MN, USA
- 3 Erasmus MC, Rotterdam, The Netherlands
- 4 Harvard T.H. Chan School of Public Health, Boston, USA
- 5 University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- 6 The Hospital for Sick Children, Toronto and University of Toronto, Toronto ON, Canada

www.darthworkgroup.com

Erasmus MC
Netherlands Institute
for Health Sciences

 \odot Copyright 2017, THE HOSPITAL FOR SICK CHILDREN AND THE COLLABORATING INSTITUTIONS.

All rights reserved in Canada, the United States and worldwide. Copyright, trademarks, trade names and any and all associated intellectual property are exclusively owned by THE HOSPITAL FOR Sick CHILDREN and the collaborating institutions. These materials may be used, reproduced, modified, distributed and adapted with proper attribution.

http://darthworkgroup.com/

https://github.com/organizations/DARTH-git

https://www.linkedin.com/groups/8635339

@DARTHworkgroup

© Copyright 2017, THE HOSPITAL FOR SICK CHILDREN AND THE COLLABORATING INSTITUTIONS.

All rights reserved in Canada, the United States and worldwide. Copyright, trademarks, trade names and any and all associated intellectual property are exclusively owned by THE HOSPITAL FOR Sick CHILDREN and the collaborating institutions. These materials may be used, reproduced, modified, distributed and adapted with proper attribution.