Mediacy and Independence

Kameryn Julia Williams they/she

Bard College at Simon's Rock

120 Years of Choice 2024 Jul 12

1 / 32

What does it mean to be infinite?

2 / 32

What does it mean to be infinite?

- X is finite if $|X| < \omega$. Otherwise X is infinite.
- X is infinite iff $|X| \ge n$ for all $n < \omega$.

This isn't circular, because we can define ω by its induction properties.

- X is Dedekind-infinite if there is $f: X \to X$ a non-surjective injection.
- X is Dedekind-finite if any injection $f: X \to X$ is a surjection.
- X is Dedekind-infinite iff $\omega \leq |X|$.

What does it mean to be infinite?

- X is finite if $|X| < \omega$. Otherwise X is infinite.
- X is infinite iff $|X| \ge n$ for all $n < \omega$.

This isn't circular, because we can define ω by its induction properties.

- X is Dedekind-infinite if there is $f: X \to X$ a non-surjective injection.
- X is Dedekind-finite if any injection $f: X \to X$ is a surjection.
- X is Dedekind-infinite iff $\omega \leq |X|$.
- Dedekind-infinite ⇒ infinite is true in ZF.
- Infinite \Rightarrow Dedekind-infinite uses AC_{ω} .

Theorem (Cohen 1963)

It is consistent with ZF that there exists a Dedekind-finite, infinite set.

But you can't get a reversal: there's no hope the non-existence of a DFI set implies AC because the former is local while the latter is global.

The first question

Question

Is there a suitable generalization of a Dedekind-finite, infinite set whose nonexistence gives a characterization of AC?

A look back in history

• What we've seen is, under other language, the state of the art for the first decade of AC's life.

A look back in history

- What we've seen is, under other language, the state of the art for the first decade of AC's life.
- In the late 1910s, Bertrand Russell is a few years after the last volume of *Principia Mathematica*. His time is occupied by legal troubles over his pacifism during World War I and thinking about the foundations of mathematics.
- Working with him are multiple students, including Dorothy Wrinch.
- The next decade (1923) she will publish a paper answering our first question.

Dorothy Wrinch

- Born 1894, died 1976.
- Studied logic under Russell, did her doctorate (1921) under applied mathematician John Nicholson.
- Wrote in a range of subjects: logic, pure mathematics, philosophy of science, and mathematical biology.
- Was awarded a Rockefeller Foundation fellowship to support her work in mathematical biology.
- Early career was in the UK, later emigrated to the USA. Latter years of her career were at Smith College (Mass, USA).
- Had the misfortune of being on the losing side of a scientific dispute with Linus Pauling over the structure of proteins.

Wrinch's work in logic

- Part of a group of Russell's students who studied mathematical logic with him.
- Her 1917 essay *Transfinite Types* won Girton College's Gamble Prize.
- (1923) Gave a characterization of AC based on a generalization of Dedekind-finite, infinite sets.
- Worked on logic's applications in the philosophy of science.

Wrinch's work in logic

- Part of a group of Russell's students who studied mathematical logic with him.
- Her 1917 essay *Transfinite Types* won Girton College's Gamble Prize.
- (1923) Gave a characterization of AC based on a generalization of Dedekind-finite, infinite sets.
- Worked on logic's applications in the philosophy of science.

This one's a stretch:

 She thought her model of protein structure would be a 'theorem', but was later partially vindicated with a consistency result: there are crystals whose molecular structure fit her cyclol model.

Wrinch's question, and mine

Question

Is there a suitable generalization of a Dedekind-finite, infinite set whose nonexistence gives a characterization of AC?

Question

Can we use modern techniques to prove more precise consistency results?

Cardinals sans choice

Notation:

- κ, λ, \ldots will be used for well-orderable, infinite cardinals.
- p, q, ... will be used for cardinals in general.
- I'll sometimes use p to refer to an arbitrary set of cardinality p.

- Under AC, every cardinal is well-orderable.
 We can thus define the cardinals as the initial ordinals.
- Without AC we have to fall back on defining cardinals as equivalence classes.
- Can use Scott's trick to make these sets.

Mediate cardinals

Fix a cardinal \mathfrak{p} . Then X is \mathfrak{p} -mediate if

- $\mathfrak{q} \leq |X|$ for all $\mathfrak{q} < \mathfrak{p}$;
- $\mathfrak{p} \not \leq |X|$; and
- $|X| \leq \mathfrak{p}$.

A p-mediate cardinal is a cardinal number of a p-mediate set.

Mediate means p-mediate for some infinite p.

9 / 32

Mediate cardinals

Fix a cardinal \mathfrak{p} . Then X is \mathfrak{p} -mediate if

- $\mathfrak{q} \leq |X|$ for all $\mathfrak{q} < \mathfrak{p}$;
- $\mathfrak{p} \not \leq |X|$; and
- $|X| \leq \mathfrak{p}$.

A p-mediate cardinal is a cardinal number of a p-mediate set.

Mediate means p-mediate for some infinite p.

- Dedekind-finite infinite $\Leftrightarrow \aleph_0$ -mediate.
- ZF proves there are no finite degrees of mediacy.

A few facts

Some facts about DFI sets generalize.

Fact

Suppose q and r are p-mediate. Then:

- $\mathfrak{q} + \mathfrak{r}$ is \mathfrak{p} -mediate;
- q · r is p-mediate;

Suppose q is κ -mediate. Then:

- $2^{2^{q \cdot q}}$ is not κ -mediate; and
- If κ is an aleph-fixed point then 2^{2^q} is not κ -mediate.

Wrinch's theorem

Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- 2 There are no mediate cardinals; and
- **3** There are no κ -mediate cardinals for well-ordered κ .
- Wrinch originally formulated this result in the framework of Principia Mathematica.
- Lévy (1964) independently rediscovered this result, under different language.

Wrinch's theorem, $(1 \Rightarrow 2)$

Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- There are no mediate cardinals; and
- There are no κ-mediate cardinals for well-ordered κ.

Prove $(1 \Rightarrow 2)$ by contrapositive.

Definition

- $\mathfrak{q} \leq \mathfrak{m}$ for all $\mathfrak{q} < \mathfrak{p}$;
- $\mathfrak{p} \not\leq \mathfrak{m}$; and
- m ≮ p.

Wrinch's theorem, $(1 \Rightarrow 2)$

Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- 2 There are no mediate cardinals; and
- **1** There are no κ -mediate cardinals for well-ordered κ .

Prove $(1 \Rightarrow 2)$ by contrapositive.

 Suppose q is p mediate. Then p and q are incomparable, so Cardinal Trichotomy fails.

Definition

- $\mathfrak{q} \leq \mathfrak{m}$ for all $\mathfrak{q} < \mathfrak{p}$;
- $\mathfrak{p} \not\leq \mathfrak{m}$; and
- m ≰ p.

Wrinch's theorem, $(1 \Rightarrow 2)$

Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- 2 There are no mediate cardinals; and
- **3** There are no κ -mediate cardinals for well-ordered κ .

Prove $(1 \Rightarrow 2)$ by contrapositive.

- Suppose q is p mediate. Then p and q are incomparable, so Cardinal Trichotomy fails.
- (Hartogs 1915) AC iff Cardinal Trichotomy.

Definition

- $\mathfrak{q} \leq \mathfrak{m}$ for all $\mathfrak{q} < \mathfrak{p}$;
- $\mathfrak{p} \not\leq \mathfrak{m}$; and
- m ≰ p.

Wrinch's theorem, $(3 \Rightarrow 1)$

Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- 2 There are no mediate cardinals; and
- **3** There are no κ -mediate cardinals for well-ordered κ .

 $(2 \Rightarrow 3)$ is trivial. Prove $(3 \Rightarrow 1)$ by contrapositive.

Definition

- $\mathfrak{q} \leq \mathfrak{m}$ for all $\mathfrak{q} < \mathfrak{p}$;
- $\mathfrak{p} \not\leq \mathfrak{m}$; and
- m ≮ p.

Wrinch's theorem, $(3 \Rightarrow 1)$

Theorem (Wrinch 1923)

Over ZF, the following are equivalent.

- AC;
- 2 There are no mediate cardinals; and
- There are no κ -mediate cardinals for well-ordered κ .

$(2 \Rightarrow 3)$ is trivial. Prove $(3 \Rightarrow 1)$ by contrapositive.

- (Hartogs) For any p there is a smallest well-orderable cardinal ⋈(p) so that ⋈(p) ≤ p.
- If \mathfrak{p} is not well-orderable then \mathfrak{p} is $\aleph(\mathfrak{p})$ -mediate.

Definition

m is p-mediate if

- $\mathfrak{q} \leq \mathfrak{m}$ for all $\mathfrak{q} < \mathfrak{p}$;
- p ≤ m; and
- m ≰ p.

13 / 32

Dependent choice

Dependent choice (DC) informally says you can make ω many choices where each choice depends on the previous ones.

• Suppose R is a relation on a set X so that for each $x \in X$ there is $y \in X$ with x R y. Then there is a branch $\langle x_i : i \in \omega \rangle$ through R: for each i have $x_i R x_{i+1}$.

Dependent choice

Dependent choice (DC) informally says you can make ω many choices where each choice depends on the previous ones.

• Suppose R is a relation on a set X so that for each $x \in X$ there is $y \in X$ with x R y. Then there is a branch $\langle x_i : i \in \omega \rangle$ through R: for each i have $x_i R x_{i+1}$.

DC_{κ} says:

• Suppose R is a relation on $X^{<\kappa} \times X$ so that for each $s \in X^{<\kappa}$ there is $y \in X$ with s R y.

Then there is a branch $b = \langle x_i : i < \kappa \rangle$ through R: for each i have $(b \upharpoonright i) R b_i$.

 $\mathsf{DC}_{<\kappa}$ is DC_{λ} for all $\lambda < \kappa$.

120 Years of Choice (2024 Jul 12)

Dependent choice

Dependent choice (DC) informally says you can make ω many choices where each choice depends on the previous ones.

 Suppose R is a relation on a set X so that for each x ∈ X there is y ∈ X with x R y. Then there is a branch ⟨x_i : i ∈ ω⟩ through R: for each i have x_i R x_{i+1}.

DC_{κ} says:

• Suppose R is a relation on $X^{<\kappa} \times X$ so that for each $s \in X^{<\kappa}$ there is $y \in X$ with s R y.

Then there is a branch $b = \langle x_i : i < \kappa \rangle$ through R: for each i have $(b \upharpoonright i) R b_i$.

$\mathsf{DC}_{<\kappa}$ is DC_{λ} for all $\lambda < \kappa$.

Facts:

- AC is equivalent to $\forall \kappa \ \mathsf{DC}_{\kappa}$.
- $\lambda < \kappa$ implies $DC_{\kappa} \Rightarrow DC_{\lambda}$.
- $ZF + DC_{<\kappa} + \neg DC_{\kappa}$ is consistent.
- DC implies AC_{ω} over ZF, but not vice versa.
- DC is equivalent to "a relation is well-founded iff it has no infinite descending sequence".
- (Solovay) ZF + DC + "every set of reals is Lebesgue-measurable" is consistent.

DC and mediate cardinals

Can get a level-by-level version of Wrinch's theorem.

Lemma: DC_κ implies there are no κ -mediates.

Corollary: AC iff for all κ there are no κ -mediates.

DC and mediate cardinals

Can get a level-by-level version of Wrinch's theorem.

Lemma: DC_{κ} implies there are no κ -mediates.

Corollary: AC iff for all κ there are no κ -mediates.

- Suppose $\lambda \leq \mathfrak{p}$ for all $\lambda < \kappa$ but $\mathfrak{p} \not\leq \kappa$.
- Consider the collection of all injections $\alpha \to \mathfrak{p}$ for $\alpha < \mathfrak{p}$.
- None of the injections are onto, so you can always extend them to an injection $\alpha+1\to \mathfrak{p}$.
- By DC_{κ} there's a branch, which gives an injection $\kappa \to \mathfrak{p}$.

An alternate proof of the connection to DC_{κ}

 W_{κ} asserts that every set has cardinality comparable to κ : either κ injects into X or X injects into κ .

- DC_{κ} implies W_{κ}. (See Chapter 8 of Jech's monograph.)
- ullet W_{κ} implies there are no κ -mediates.

An alternate proof of the connection to DC_{κ}

 W_{κ} asserts that every set has cardinality comparable to κ : either κ injects into X or X injects into κ .

- DC_{κ} implies W_{κ}. (See Chapter 8 of Jech's monograph.)
- W_{κ} implies there are no κ -mediates.

Note: It's known that $ZF + W_{\kappa} + \neg DC_{\kappa}$ is consistent, so the nonexistence of κ -mediates cannot imply DC_{κ} .

Refining mediacy

Observation:

- If $\mathfrak p$ is κ -mediate and $\lambda > \kappa$ then $\mathfrak p + \lambda$ is λ^+ -mediate.
- So if there is a degree of mediacy then every larger successor cardinal is also a degree of mediacy.

Definition

- $\mathfrak{q} \leq \mathfrak{m}$ for all $\mathfrak{q} < \mathfrak{p}$;
- $\mathfrak{p} \not\leq \mathfrak{m}$; and
- m ≮ p.

Refining mediacy

Observation:

- If $\mathfrak p$ is κ -mediate and $\lambda > \kappa$ then $\mathfrak p + \lambda$ is λ^+ -mediate.
- So if there is a degree of mediacy then every larger successor cardinal is also a degree of mediacy.

Definition

m is p-mediate if

- $\mathfrak{q} \leq \mathfrak{m}$ for all $\mathfrak{q} < \mathfrak{p}$;
- p ≰ m; and
- m ≰ p.

$\mathfrak p$ is exact κ -mediate if

- ullet p is κ -mediate and
- if $Y \subseteq \mathfrak{p}$ has cardinality $< \kappa$ then $\mathfrak{p} \setminus Y$ is κ -mediate.

Refining mediacy

Observation:

- If $\mathfrak p$ is κ -mediate and $\lambda > \kappa$ then $\mathfrak p + \lambda$ is λ^+ -mediate.
- So if there is a degree of mediacy then every larger successor cardinal is also a degree of mediacy.

Definition

m is p-mediate if

- $\mathfrak{q} \leq \mathfrak{m}$ for all $\mathfrak{q} < \mathfrak{p}$;
- p ≰ m; and
- m ≰ p.

$\mathfrak p$ is exact κ -mediate if

- ullet p is $\kappa\text{-mediate}$ and
- if $Y \subseteq \mathfrak{p}$ has cardinality $< \kappa$ then $\mathfrak{p} \setminus Y$ is κ -mediate.

Lemma: If $\mathfrak p$ is κ -mediate where κ is smallest such that κ -mediates exist, then $\mathfrak p$ is exact κ -mediate.

Consistency questions

Question

- Consistently, what can be the smallest degree of mediacy?
- Consistently, what can be the class of degrees of exact mediacy?

Symmetric extensions

Motivating example (Cohen's first model):

 $\operatorname{Add}\,\omega$ many reals, then forget the order you added them.

Symmetric extensions

Motivating example (Cohen's first model):

Add ω many reals, then forget the order you added them.

- $\mathbb{P} = \mathrm{Add}(\omega, \omega)$ is the poset. Conditions are finite partial functions $\omega \times \omega \to 2$.
- Changing the order is permuting the columns in the $\omega \times \omega$ grid.
- Any permutation ϖ of ω generates an automorphism of \mathbb{P} : $\varpi p(n,i) = p(\varpi n,i)$.
- Also generates an automorphism on the \mathbb{P} -names:

$$\varpi \sigma = \{(\varpi \tau, \varpi p) : (\tau, p) \in \sigma\}$$

Symmetric extensions

Motivating example (Cohen's first model): Add ω many reals, then forget the order you added them.

- $\mathbb{P} = \mathrm{Add}(\omega, \omega)$ is the poset. Conditions are finite partial functions $\omega \times \omega \to 2$.
- Changing the order is permuting the columns in the $\omega \times \omega$ grid.
- Any permutation ϖ of ω generates an automorphism of \mathbb{P} : $\varpi p(n,i) = p(\varpi n,i)$.
- Also generates an automorphism on the \mathbb{P} -names:

$$\varpi \sigma = \{(\varpi \tau, \varpi p) : (\tau, p) \in \sigma\}$$

- "Forgetting the order" is restricting to names fixed by a 'large' group of automorphisms:
 - A group H of automorphisms is large if there is finite $e \subseteq \omega$ so that each $\varpi \in H$ fixes e pointwise: $H \supseteq \text{fix}(e)$.
- ullet This gives a normal filter ${\mathcal F}$ on the lattice of subgroups.
- A name σ is \mathcal{F} -symmetric if $\operatorname{sym}(\sigma) = \{\varpi : \varpi\sigma = \sigma\} \in \mathcal{F}$.
- The symmetric extension consists of the interpretations of all hereditarily symmetric names.

Symmetric extensions, in general

A symmetric system is $(\mathbb{P}, G, \mathcal{F})$ so that

- ullet \mathbb{P} is a forcing poset;
- $G \leq \operatorname{Aut}(\mathbb{P})$; and
- F is a normal filter on the lattice of subgroups of G.

Symmetric extensions, in general

A symmetric system is $(\mathbb{P}, G, \mathcal{F})$ so that

- ullet \mathbb{P} is a forcing poset;
- $G \leq \operatorname{Aut}(\mathbb{P})$; and
- \mathcal{F} is a normal filter on the lattice of subgroups of G.

A \mathbb{P} -name σ is symmetric if $\operatorname{sym}(\sigma) \in \mathcal{F}$.

• (Symmetry lemma) $p \Vdash \varphi(\sigma)$ iff $\varpi p \Vdash \varphi(\varpi \sigma)$.

Symmetric extensions, in general

A symmetric system is $(\mathbb{P}, G, \mathcal{F})$ so that

- ullet \mathbb{P} is a forcing poset;
- $G \leq \operatorname{Aut}(\mathbb{P})$; and
- \mathcal{F} is a normal filter on the lattice of subgroups of G.

A \mathbb{P} -name σ is symmetric if $sym(\sigma) \in \mathcal{F}$.

• (Symmetry lemma) $p \Vdash \varphi(\sigma)$ iff $\varpi p \Vdash \varphi(\varpi \sigma)$.

The symmetric extension by $(\mathbb{P}, G, \mathcal{F})$ via a generic $g \subseteq \mathbb{P}$:

- Consists of the interpretations of hereditarily symmetric names.
- $V[g/\mathcal{F}] = {\sigma^g : \sigma \text{ is } \mathcal{F}\text{-HS}}.$

 $V[g/\mathcal{F}] \models ZF$, but the point is to make AC fail in a controlled way.

Fix regular κ and assume $\kappa^{<\kappa} = \kappa$.

- $\mathbb{P}_{\kappa} = \mathrm{Add}(\kappa, \kappa)$;
- $G_{\kappa} \leq \operatorname{Aut}(\mathbb{P}_{\kappa})$ is generated by permutations of κ ;
- $H \in \mathcal{F}_{\kappa}$ if $\exists e \in [\kappa]^{<\kappa}$ so that $fix(e) \subseteq H$.

Fix regular κ and assume $\kappa^{<\kappa} = \kappa$.

- $\mathbb{P}_{\kappa} = \mathrm{Add}(\kappa, \kappa)$;
- $G_{\kappa} \leq \operatorname{Aut}(\mathbb{P}_{\kappa})$ is generated by permutations of κ ;
- $H \in \mathcal{F}_{\kappa}$ if $\exists e \in [\kappa]^{<\kappa}$ so that $fix(e) \subseteq H$.

In $V[g/\mathcal{F}_{\kappa}]$ the set $A = \{c_i : i < \kappa\}$ of Cohen subsets of κ is not well-orderable.

Fix regular κ and assume $\kappa^{<\kappa}=\kappa$.

- $\mathbb{P}_{\kappa} = \mathrm{Add}(\kappa, \kappa);$
- $G_{\kappa} \leq \operatorname{Aut}(\mathbb{P}_{\kappa})$ is generated by permutations of κ ;
- $H \in \mathcal{F}_{\kappa}$ if $\exists e \in [\kappa]^{<\kappa}$ so that $fix(e) \subseteq H$.

In $V[g/\mathcal{F}_{\kappa}]$ the set $A = \{c_i : i < \kappa\}$ of Cohen subsets of κ is not well-orderable.

Facts:

- \mathbb{P}_{κ} is κ -closed and has the κ^+ -cc.
- \mathcal{F}_{κ} is κ -complete and is generated by a basis of size κ .

Fix regular κ and assume $\kappa^{<\kappa}=\kappa$.

- $\mathbb{P}_{\kappa} = \mathrm{Add}(\kappa, \kappa)$;
- $G_{\kappa} \leq \operatorname{Aut}(\mathbb{P}_{\kappa})$ is generated by permutations of κ ;
- $H \in \mathcal{F}_{\kappa}$ if $\exists e \in [\kappa]^{<\kappa}$ so that $fix(e) \subseteq H$.

In $V[g/\mathcal{F}_{\kappa}]$ the set $A = \{c_i : i < \kappa\}$ of Cohen subsets of κ is not well-orderable.

Facts:

- \mathbb{P}_{κ} is κ -closed and has the κ^+ -cc.
- \mathcal{F}_{κ} is κ -complete and is generated by a basis of size κ .

Thus, $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$ will preserve $DC_{<\kappa}$. In particular, there will be no λ -mediates for $\lambda < \kappa$.

Fix regular κ and assume $\kappa^{<\kappa} = \kappa$.

- $\mathbb{P}_{\kappa} = \mathrm{Add}(\kappa, \kappa)$;
- $G_{\kappa} \leq \operatorname{Aut}(\mathbb{P}_{\kappa})$ is generated by permutations of κ ;
- $H \in \mathcal{F}_{\kappa}$ if $\exists e \in [\kappa]^{<\kappa}$ so that fix(e) $\subseteq H$.

In $V[g/\mathcal{F}_{\kappa}]$ the set $A = \{c_i : i < \kappa\}$ of Cohen subsets of κ is not well-orderable.

Facts:

- \mathbb{P}_{κ} is κ -closed and has the κ^+ -cc.
- \mathcal{F}_{κ} is κ -complete and is generated by a basis of size κ .

Thus, $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$ will preserve $\mathsf{DC}_{<\kappa}$.

In particular, there will be no λ -mediates for $\lambda < \kappa$.

Note: The cardinal arithmetic assumption gives the smallest possible chain condition and ensures \mathcal{F}_{κ} has the smallest possible basis. These will be used to tightly control the degrees of exact mediacy.

Symmetric extensions and dependent choice

Lemma: Let κ be regular and $\lambda < \kappa$. If $\mathbb P$ is κ -closed and $\mathcal F$ is κ -complete then $(\mathbb P, G, \mathcal F)$ preserves DC_λ .

Symmetric extensions and dependent choice

Lemma: Let κ be regular and $\lambda < \kappa$. If \mathbb{P} is κ -closed and \mathcal{F} is κ -complete then $(\mathbb{P}, \mathcal{G}, \mathcal{F})$ preserves DC_{λ} .

- Consider appropriate $R \subseteq X^{<\lambda} \times X$ in $V[g/\mathcal{F}]$. We need a branch through R in $V[g/\mathcal{F}]$.
- ullet By κ -closure λ remains a cardinal in V[g].
- In V[g], by DC_{λ} there is a branch $b = \langle x_i : i < \lambda \rangle$.
- Each x_i comes from a symmetric name \dot{x}_i .
- By κ -completeness $H = \bigwedge_{i < \lambda} \operatorname{sym}(\dot{x}_i)$ is in \mathcal{F} .
- Can get a name \dot{b} for b with sym $(\dot{b}) \supseteq H$.
- So the branch b is in $V[g/\mathcal{F}]$.

Theorem (Lévy (1964); W.)

Suppose $\kappa = \kappa^{<\kappa}$ is regular. In the symmetric extension by $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$:

- DC_{<κ};
- κ is the smallest degree of mediacy; and
- κ is the only degree of exact mediacy.
 (Lévy proved the first two in ZFA.)

Theorem (Lévy (1964); W.)

Suppose $\kappa = \kappa^{<\kappa}$ is regular. In the symmetric extension by $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$:

- DC_{<κ};
- κ is the smallest degree of mediacy;
 and
- κ is the only degree of exact mediacy.
 (Lévy proved the first two in ZFA.)

We've already seen $DC_{<\kappa}$.

Claim: Let A be the set of the Cohen subsets of κ added by \mathbb{P}_{κ} . Then $V[g/\mathcal{F}_{\kappa}] \models A$ is κ -mediate.

Like getting a DFI set in $(\mathbb{P}_{\omega}, G_{\omega}, \mathcal{F}_{\omega})$.

Theorem (Lévy (1964); W.)

Suppose $\kappa = \kappa^{<\kappa}$ is regular. In the symmetric extension by $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$:

- DC_{<κ};
- κ is the smallest degree of mediacy;
 and
- κ is the only degree of exact mediacy.
 (Lévy proved the first two in ZFA.)

We've already seen $DC_{<\kappa}$.

Claim: Let A be the set of the Cohen subsets of κ added by \mathbb{P}_{κ} . Then $V[g/\mathcal{F}_{\kappa}] \models A$ is κ -mediate.

Like getting a DFI set in $(\mathbb{P}_{\omega}, \mathcal{G}_{\omega}, \mathcal{F}_{\omega})$.

- $\lambda < \kappa$ injects by κ -closure of \mathbb{P}_{κ} and κ -completeness of \mathcal{F}_{κ}
- $|A| \leq \kappa$ because A can't be well-ordered.
- κ ≰ |A|:

Theorem (Lévy (1964); W.)

Suppose $\kappa = \kappa^{<\kappa}$ is regular. In the symmetric extension by $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$:

- DC_{<κ};
- κ is the smallest degree of mediacy;
 and
- κ is the only degree of exact mediacy.
 (Lévy proved the first two in ZFA.)

We've already seen $DC_{<\kappa}$.

Claim: Let A be the set of the Cohen subsets of κ added by \mathbb{P}_{κ} . Then $V[g/\mathcal{F}_{\kappa}] \models A$ is κ -mediate.

Like getting a DFI set in $(\mathbb{P}_{\omega}, \mathcal{G}_{\omega}, \mathcal{F}_{\omega})$.

- $\lambda < \kappa$ injects by κ -closure of \mathbb{P}_{κ} and κ -completeness of \mathcal{F}_{κ}
- $|A| \leq \kappa$ because A can't be well-ordered.
- $\kappa \not \leq |A|$:
 - Suppose \dot{f} is hereditarily symmetric, $\operatorname{sym}(f) \supseteq \operatorname{fix}(e)$, and $p \Vdash \dot{f} : \kappa \to A$ is one-to-one.
 - Extend p to q deciding $\dot{f}(\alpha) = c_i$ for some $\alpha \neq i$ both $\notin e$.
 - Find ϖ fixing $e \cup \{i\}$, moving α , and $q \parallel \varpi q$.
 - So $q \cup \varpi q \Vdash f$ is not one-to-one. Contradiction.

120 Years of Choice (2024 Jul 12)

Theorem (Lévy (1964); W.)

Suppose $\kappa = \kappa^{<\kappa}$ is regular. In the symmetric extension by $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$:

- DC_{<κ};
- κ is the smallest degree of mediacy; and
- κ is the only degree of exact mediacy.
 (Lévy proved the first two in ZFA.)

This is the only place the cardinal arithmetic assumption is used.

Theorem (Lévy (1964); W.)

Suppose $\kappa = \kappa^{<\kappa}$ is regular. In the symmetric extension by $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$:

- DC_{<κ};
- κ is the smallest degree of mediacy;
 and
- κ is the only degree of exact mediacy.
 (Lévy proved the first two in ZFA.)

This is the only place the cardinal arithmetic assumption is used.

Suppose $V[g/\mathcal{F}_{\kappa}] \models X$ is exact λ -mediate for $\lambda > \kappa$.

- First use exactness plus the chain condition to argue that V[g] has an injection λ → X.
 Compare: if A is the set of Cohen generics then A∪μ is μ⁺-mediate in the symmetric extension but has cardinality μ in V[g].
- Then use the chain condition plus \mathcal{F}_{κ} having a basis of size $<\lambda$ to get an injection $\lambda \to X$ in $V[g/\mathcal{F}_{\kappa}]$.
- Contradiction.

Doing it more than once

When a set theorist can do something once, she wants to do it more than once. With forcing, she accomplishes this using products or iterations.

Doing it more than once

When a set theorist can do something once, she wants to do it more than once. With forcing, she accomplishes this using products or iterations.

- Karagila and others have worked on iterations of symmetric extensions.
- It's complicated, with scary group theoretic objects like wreath products.

Doing it more than once

When a set theorist can do something once, she wants to do it more than once. With forcing, she accomplishes this using products or iterations.

- Karagila and others have worked on iterations of symmetric extensions.
- It's complicated, with scary group theoretic objects like wreath products.
- We are lucky and can get away with products, where the details are significantly less technical.

Products of symmetric extensions

Suppose $(\mathbb{P}, G, \mathcal{F})$ and $(\mathbb{Q}, H, \mathcal{E})$ are symmetric systems. Can define their product $(\mathbb{P}, G, \mathcal{F}) \times (\mathbb{Q}, H, \mathcal{E})$:

- $\mathbb{P} \times \mathbb{Q}$ is usual product of posets;
- $G \times H$ is generated by (ϖ, ϱ) with $\varpi \in G$, $\varrho \in H$; and
- $\mathcal{F} \times \mathcal{E}$ is generated by $G_0 \times H_0$ for $G_0 \in \mathcal{F}$ and $H_0 \in \mathcal{E}$.

Products of symmetric extensions

Suppose $(\mathbb{P}, G, \mathcal{F})$ and $(\mathbb{Q}, H, \mathcal{E})$ are symmetric systems. Can define their product $(\mathbb{P}, G, \mathcal{F}) \times (\mathbb{Q}, H, \mathcal{E})$:

- $\mathbb{P} \times \mathbb{Q}$ is usual product of posets;
- $G \times H$ is generated by (ϖ, ϱ) with $\varpi \in G$, $\varrho \in H$; and
- $\mathcal{F} \times \mathcal{E}$ is generated by $G_0 \times H_0$ for $G_0 \in \mathcal{F}$ and $H_0 \in \mathcal{E}$.

Like with forcing, we have a product lemma stating that the extension by the product is the same as the two-step extensions, in either order.

26 / 32

Products of symmetric extensions

Suppose $(\mathbb{P}, G, \mathcal{F})$ and $(\mathbb{Q}, H, \mathcal{E})$ are symmetric systems. Can define their product $(\mathbb{P}, G, \mathcal{F}) \times (\mathbb{Q}, H, \mathcal{E})$:

- $\mathbb{P} \times \mathbb{Q}$ is usual product of posets;
- $G \times H$ is generated by (ϖ, ϱ) with $\varpi \in G$, $\varrho \in H$; and
- $\mathcal{F} \times \mathcal{E}$ is generated by $G_0 \times H_0$ for $G_0 \in \mathcal{F}$ and $H_0 \in \mathcal{E}$.

Like with forcing, we have a product lemma stating that the extension by the product is the same as the two-step extensions, in either order. Can also do this for infinite products, with a notion of support.

- Suppose $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$ are symmetric systems for $\kappa \in M$.
- Then there is a product $\prod_{\kappa \in \mathcal{M}} (\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$ with that support.
- Again we get a product lemma stating we can split the full extension into two-step extensions.

Note: We do not allow permuting the multiplicands.

Refining earlier ideas

In a two-step symmetric extension, the intermediate step won't satisfy AC. So we need to look more carefully at our assumptions.

Refining earlier ideas

In a two-step symmetric extension, the intermediate step won't satisfy AC. So we need to look more carefully at our assumptions.

Suppose $\lambda < \kappa$ are regular.

- (ZF + DC_{κ}) If $\mathbb P$ is κ -closed and $\mathcal F$ is κ -complete then ($\mathbb P$, G, $\mathcal F$) preserves DC₁.
- $(ZF + DC_{\kappa})$ Suppose \mathbb{P} has the λ^+ -cc and \mathcal{F} is generated by a basis of size $\leq \lambda$. Then $V[g/\mathcal{F}] \models$ there are no exact κ -mediates.

Preserving mediacy

To make the product analysis work we need to know we don't kill mediacy in a further extension.

Preserving mediacy

To make the product analysis work we need to know we don't kill mediacy in a further extension.

I couldn't quite see how to make the argument work for mediacy

Preserving mediacy

To make the product analysis work we need to know we don't kill mediacy in a further extension.

I couldn't quite see how to make the argument work for mediacy, but with a slight strengthening it goes through.

Lemma: $(ZF + DC_{\kappa})$ If X is exact κ -mediate $+\varepsilon$ then X remains exact κ -mediate in an extension by a forcing with the κ -cc.

The basic one-step construction gives exact mediacy $+\varepsilon$.

The " $+\varepsilon$ " is strengthening a $\not\leq$ to $\not\leq$ * in the definition:

- X is κ -mediate $^{+\varepsilon}$ if
 - $\lambda \leq |X|$ for all $\lambda < \kappa$;
 - $\kappa \not \leq |X|$; and
 - $|X| \not\leq^* \kappa$: there is no surjection $\kappa \to X$.
- Define exact κ -mediate^{+ ε} analogously to exact mediacy: X remains κ -mediate^{+ ε} after removing a small set.

The pattern of the exact mediates

Theorem (W.)

Assume GCH and fix a class M of regular cardinals. Do the Easton support product of the $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$ for $\kappa \in M$. In the symmetric extension, M is exactly the class of regular degrees of exact mediacy.

Note: This symmetric extension preserves inaccessibles, and probably more large cardinals.

The pattern of the exact mediates

Theorem (W.)

Assume GCH and fix a class M of regular cardinals. Do the Easton support product of the $(\mathbb{P}_{\kappa}, G_{\kappa}, \mathcal{F}_{\kappa})$ for $\kappa \in M$. In the symmetric extension, M is exactly the class of regular degrees of exact mediacy.

Note: This symmetric extension preserves inaccessibles, and probably more large cardinals.

Sketch:

- $\mathbb{P}_{>\alpha}$ is α -closed and $\mathcal{F}_{>\alpha}$ is α -complete.
- $\mathbb{P}_{<\alpha}$ has the α^+ -cc and $\mathcal{F}_{<\alpha}$ is generated by a basis of cardinality $\leq \alpha$.
- In $V[g_{>\alpha}/\mathcal{F}_{>\alpha}]$: DC_{α} is true. So there are no α -mediates.
- In $V[g_{>\alpha}/\mathcal{F}_{>\alpha}][g_{<\alpha}/\mathcal{F}_{<\alpha}]$: there are no exact α -mediates.
- So the only way there could be an exact α -mediate is if it was added by $(\mathbb{P}_{\alpha}, G_{\alpha}, \mathcal{F}_{\alpha})$ for $\alpha \in M$.
- But we already know that adds an exact mediate, and that's preserved.

Where does Wrinch fit into 120 years of choice?

- Hartogs (1915) is the root of a tree of research about the possibilities for the ordering of cardinals.
- This includes recent work by people in this room.
- It is a subtree of the tree with root Zermelo (1904).
- Wrinch (1923) should be seen as an early precursor to post-Cohen work in this tree.

Some questions

31 / 32

Some questions

- What's up with singular cardinals?
- What if we don't make such strong cardinal arithmetic assumptions?
- What happens if AC fails badly in the ground model?

Thank you!

- Dorothy Wrinch, "On mediate cardinals", American Journal of Mathematics, Vol. 45, No. 2. (1923). pp. 87–92.
 DOI: 10.2307/2370490.
- Kameryn Julia Williams, "Mediate cardinals: old and new", In preparation.
- Azrael Lévy, "The interdependence of certain consequences of the axiom of choice", Fundamenta Mathematicae, Vol. 54, No. 2. (1964). pp. 135–157.
 DOI: 10.4064/fm-54-2-135-157
- Landon D.C. Elkind, "I like her very much—she has very good brains.": Dorothy Wrinch's Influence on Bertrand Russell, In: *Bertrand Russell, Feminism, and Women Philosophers in his Circle*, eds. Elkind & Klein. (2024). pp. 259–297. URL: link.springer.com/chapter/10.1007/978-3-031-33026-1_10