Post-Quantum Cryptography Definitions Winter 2024 University of Waterloo

Instructor: Sam Jaques

January 9, 2024

1 General Cryptography

Negligible: We say a function $f(\lambda)$ is negligible if $f(\lambda) \in O(\frac{1}{p(\lambda)})$ for all polynomials p(x).

1.1 Public Key Encryption

A public key encryption scheme is a set of 3 algorithms, $\mathsf{KeyGen}() \to (\mathbf{PK}, \mathbf{SK})$, $\mathsf{Enc}(\mathbf{PK}, m) \to c$, and $\mathsf{Dec}(\mathbf{SK}, c) \to m$. Intuitively, \mathbf{PK} is the public key, \mathbf{SK} is the secret key, m is a plaintext message, and c is a ciphertext.

Implicitly, all algorithms are parameterized by a security parameter λ . Such a scheme should be correct: For all outputs $(\mathbf{PK}, \mathbf{SK})$, the probability that

$$\mathsf{Dec}(\mathbf{SK},\mathsf{Enc}(\mathbf{PK},m)) \neq m \tag{1}$$

is negligible in λ .

IND-CPA Security: For the IND-CPA game (indistinguishability against chosen plaintext attack), let \mathcal{A} be an algorithm whose runtime is polynomial in λ . In the IND-CPA game:

1. A challenger generates a keypair: $\mathsf{KeyGen}() \to (\mathbf{PK}, \mathbf{SK})$.

- 2. \mathcal{A} receives \mathbf{PK} , and can make a polynomial number of queries to an encryption oracle, which outputs $\mathsf{Enc}(\mathbf{PK},\cdot)$.
- 3. \mathcal{A} outputs two messages m_0 and m_1 .
- 4. The challenger selects a uniformly random bit $b \in \{0, 1\}$, and returns $c_b = \mathsf{Enc}(\mathbf{PK}, m_b)$ to \mathcal{A} .
- 5. \mathcal{A} can make another polynomial number of queries to an encryption oracle, which outputs $\mathsf{Enc}(\mathbf{PK},\cdot)$.
- 6. \mathcal{A} outputs a bit b'.

We say that \mathcal{A} "wins" the IND-CPA game if b' = b.

An encryption scheme is IND-CPA secure if, for any polynomial time algorithm \mathcal{A} , the probability of winning is at most $\frac{1}{2} + \epsilon(\lambda)$ where $\epsilon(\lambda)$ is negligible.

IND-CCA Security: For the IND-CCA game (indistinguishability against chosen ciphertext attack), let \mathcal{A} be an algorithm whose runtime is polynomial in λ . In the IND-CCA game:

- 1. A challenger generates a keypair: $KeyGen() \rightarrow (PK, SK)$.
- 2. \mathcal{A} receives PK, and can make a polynomial number of queries to:
 - an encryption oracle, which outputs Enc(PK, m) on input m
 - a decryption oracle, which outputs Dec(SK, c) on input c
- 3. \mathcal{A} outputs two messages m_0 and m_1 .
- 4. The challenger selects a uniformly random bit $b \in \{0, 1\}$, and returns $c_b = \mathsf{Enc}(\mathbf{PK}, m_b)$ to \mathcal{A} .
- 5. \mathcal{A} can make another polynomial number of queries:
 - an encryption oracle, which outputs Enc(PK, m), on input m.
 - a restricted decryption oracle, which outputs $\mathsf{Dec}(\mathbf{SK}, c)$ on input c if $c \neq c_b$, and outputs a fixed symbol (say, \perp) if $c = c_b$.
- 6. \mathcal{A} outputs a bit b'.

We say that \mathcal{A} "wins" the IND-CCA game if b' = b.

An encryption scheme is IND-CCA secure if, for any polynomial time algorithm \mathcal{A} , the probability of winning is at most $\frac{1}{2} + \epsilon(\lambda)$ where $\epsilon(\lambda)$ is negligible.

1.2 Digital Signatures

A digital signature scheme is a tuple of algorithms:

- $KeyGen() \rightarrow (PK, SK)$
- $\mathbf{Sign}(\mathbf{SK}, m) \to s$
- $Ver(PK, s, m) \to b \in \{0, 1\}$

A digital signature scheme is correct/complete if, for any keypair (\mathbf{PK}, \mathbf{SK}) generated by KeyGen, the probability is negligible in λ that

$$Ver(PK, Sign(SK, m), m) \neq 1$$
 (2)

Security: Security definitions are complicated; see here for a taxonomy: https://crypto.stackexchange.com/questions/44188/what-do-the-signature-security-a Here I will give the definition of strong existential forgery under chosen-

message attack. The game is as follows

- 1. A challenger generates $(PK, SK) \leftarrow \mathsf{KeyGen}()$ and initializes a set \mathcal{M} .
- 2. An adversary A runs for polynomial time and is allowed polynomial queries to a signing oracle, which does the following:
 - Computes $s \leftarrow \mathsf{Sign}(\mathbf{SK}, m)$
 - Adds (m, σ) to \mathcal{M} .
 - Returns σ to \mathcal{A}
- 3. The adversary \mathcal{A} outputs (m^*, s^*) .

We say that A wins the game if:

- $(m^*, s^*) \notin \mathcal{M}$, and
- $Ver(\mathbf{PK}, s^*, m^*) = 1.$

Notice that (m^*, s) could be in \mathcal{M} and the adversary could still win, i.e., they could win by producing a new signature of a message that had already been signed.

A digital signature scheme is sEF-CMA-secure if, for any polynomial time \mathcal{A} , the probability of \mathcal{A} winning this game is negligible.

2 Lattice Cryptography

2.1 General

We can define a norm on $\mathbb{Z}/q\mathbb{Z}$ by setting $|x|_q = |\overline{x}|$ where $\overline{x} \in [-q/2, q/2)$ and $\overline{x} \equiv x \mod q$. This can extend to a norm on $\mathbb{Z}/q\mathbb{Z}^n$ by setting $||x|| = \sqrt{|x_1|_q + \cdots + |x_n|_q}$.

2.2 Learning With Errors

Learning With Errors (LWE): An LWE $(n, m, q, \chi_s, \chi_e)$ instance is formed by sampling a uniformly random $m \times n$ matrix A with entries in $\mathbb{Z}/q\mathbb{Z}$, a vector $s \in (\mathbb{Z}/q\mathbb{Z})^n$ from the distribution χ_s , and a vector $e \in (\mathbb{Z}/q\mathbb{Z})^m$ from the distribution χ_e , and outputting $(A, b := As + e \mod q)$.

The number m is sometimes referred to as the number of "samples".

The LWE $(n, m, q, \chi_s, \chi_e)$ search problem is, given (A, b) as sampled above, to recover s.

The LWE $(n, m, q, \chi_s, \chi_e)$ decision problem is: a bit $b' \in \{0, 1\}$ is drawn uniformly at random, and if b' = 0, then one is given an LWE sample (A, b) as above, and if b' = 1, then one is given (A, b) where A is a uniformly random $n \times m$ matrix and b is a uniformly random m-dimensional vector (both with entries in $\mathbb{Z}/q\mathbb{Z}$. The problem is to determine whether b' = 0 or b' = 1.

Normal form LWE sets m = n and $\chi_s = \chi_e$.

A non-standard definition is that of "unique" LWE parameters, which is a set of parameters $(n, m, q, \chi_s, \chi_e)$ such that if s, s' are sampled from χ_s and e, e' are sampled from χ_e such that As + e = As' + e', then with high probability s = s' and e = e'. Generally the literature assumes this to be the case, but there are pathological parameter choices (e.g., χ_e uniformly random) where this does not hold.

Textbook LWE Encryption: This is a public key encryption scheme and thus consists of three algorithms. It is parameterized by $(n, m, q, \chi_s, \chi_e, \chi'_s, \chi'_e, \chi''_e)$ (though often $n = m, \chi'_s = \chi_s$, and $\chi'_e = \chi_e$).

- KeyGen() \to (PK, SK): Sample a uniformly random matrix A with entries in $\mathbb{Z}/q\mathbb{Z}$, a vector s from the distribution χ_s , and a vector e from the distribution χ_e . Compute $b = As + e \mod q$, and set SK $\leftarrow s$ and PK $\leftarrow (A, b)$.
- Enc(PK, m) $\to c$: Sample a vector $s' \leftarrow \chi'_s$, $e' \leftarrow \chi'_e$, and $e'' \leftarrow \chi''_e$. Set $c_1 = s'^T A + e'^T \mod q$ and $c_2 = s'^T b + e'' + m \left\lfloor \frac{q}{2} \right\rfloor \mod q$. Output $c = (c_1, c_2)$.
- Dec(SK, c) $\to m$. Compute $m' = c_2 s c_1 \mod q$, where this is taken between [-q/2, q/2). Round m' to $\left\lfloor \frac{q}{2} \right\rfloor$, i.e, if $-\frac{q}{4} \le m' \le \frac{q}{4}$, set m = 0, otherwise set m = 1. Output m.

Never deploy this scheme, it is not IND-CCA secure.

Basic LWE Kyber: This not Kyber, but a toy version useful to explore parameters.

Here we take the textbook LWE encryption above and set n = m = 512, q = 3329, and set $\chi_s = \chi'_s$ have each component be independently and identically distributed as a centered binomial distributions with parameters $(n = 6, p = \frac{1}{2})$, and χ_e , χ'_e and χ''_e to have each component independently and identically distributed as a centered binomial distribution with parameters $(n = 4, p = \frac{1}{2})$.

2.3 Distributions

Discrete Gaussian: A discrete Gaussian distribution on $\mathbb{Z}/q\mathbb{Z}$ with mean $\mu \in \mathbb{Z}/q\mathbb{Z}$ and standard deviation σ is defined by setting $\rho(x) = e^{-\frac{(x'-\mu)^2}{2\sigma^2}}$, where $x' \equiv x$ and $x' \in [\mu - \frac{q}{2}, \mu + \frac{q}{2})$. Then the probability of x in the discrete Gaussian distribution is proportional to $\rho(x)$, i.e.,

$$\Pr(x) = \frac{\rho(x)}{\sum_{y=0}^{q-1} \rho(y)}$$
 (3)

Centered Binomial Distribution: This has parameters $n \in \mathbb{N}$ and $p \in [0,1]$. Let $\mu = np$ and assume $\mu \in \mathbb{N}$. Then this is a distribution on $[-\mu, n - \mu]$ where

$$\Pr(k) = \Pr_{\text{Bin}(n,p)}(k+\mu) = \binom{n}{k+\mu} p^{k+\mu} (1-p)^{n-k-\mu}$$
 (4)

where $\Pr_{\text{Bin}(n,p)}(k)$ is the probability of x in the binomial distribution with parameters n and p.

If $[-\mu, n-\mu] \subseteq [-\frac{q}{2}, \frac{q}{2})$, then this distribution can be defined in $\mathbb{Z}/q\mathbb{Z}$ by using the equivalence class in $[-\frac{q}{2}, \frac{q}{2})$ and setting the probability to be 0 for all values outside of $[-\mu, n-\mu]$.

2.4 Lattices

A *lattice* is a discrete additive subgroup of \mathbb{R}^n . Equivalently, a lattice can be defined by a set \mathcal{B} of lienarly independent vectors in \mathbb{R}^n as

$$\mathcal{L}(\mathcal{B}) = \left\{ \sum_{i=1}^{m} a_i b_i \middle| a_i \in \mathbb{Z}, b_i \in \mathcal{B} \right\}.$$
 (5)

The kth successive minima of a lattice, denoted $\lambda_k(\mathcal{L})$, is defined as:

$$\min \left\{ \max_{i=1}^k \{ \|v_i\| \} \middle| \{v_1, \dots, v_k\} \subseteq \mathcal{L} \text{ and is linearly independent in } \mathbb{R}^n \right\}$$
 (6)

The value $\lambda_1(\mathcal{L})$ is of special importance: this is the length of the shortest non-zero vector in the lattice.

The dual of a lattice \mathcal{L} is defined as

$$\mathcal{L}^{\vee} := \{ v \in \text{real span of } \mathcal{L} | \langle v, w \rangle \subseteq \mathbb{Z}, \forall w \in \mathcal{L} \}$$
 (7)

Lattice problems: The γ -shortest vector problem (γ -SVP): given a basis \mathcal{B} for a lattice $\mathcal{L}(\mathcal{B})$, find a vector $v \in \mathcal{L}(\mathcal{B})$ such that $||v|| \leq \gamma \lambda_1(\mathcal{L}(\mathcal{B}))$.

The γ , k-shortest independent vector problem $(\gamma, k\text{-SIVP})$: given a basis \mathcal{B} for a lattice $\mathcal{L}(\mathcal{B})$, find k vectors $v_1, \ldots, v_k \in \mathcal{L}(\mathcal{B})$ which are linearly independent in \mathbb{R}^n such that $||v_i|| \leq \gamma \lambda_k(\mathcal{L}(\mathcal{B}))$ for all $1 \leq i \leq k$.

Given a vector $t \in \mathbb{R}^n$, we can define

$$||t - \mathcal{L}|| = \min\{||v - t|||v \in \mathcal{L}\}\tag{8}$$

The γ -closest vector problem (γ -CVP): given a basis \mathcal{B} for a lattice $\mathcal{L}(\mathcal{B})$ and a vector $t \in \mathbb{R}^n$, find a vector $v \in \mathcal{L}(\mathcal{B})$ such that $||t - v|| \leq \gamma ||t - \mathcal{L}||$.

The bounded distance decoding problem (BDD): Given β , a lattice \mathcal{L} , and a vector $t \in \mathbb{R}^n$, with the promise that $||t - \mathcal{L}|| \leq \beta$, find v such that $||t - v|| = ||t - \mathcal{L}||$.

The β -short integer solutions problem (β -SIS): Given a matrix B, find an integer vector v such that $Bv \equiv 0 \mod q$ such that $||v|| \leq \beta$.