MATH 243 Worksheet 6: Triple Integrals, Basic Line Integrals

Note: Problems 1-4 are leftover problems from slides. Problems 5-x are brand new, check back on July 2nd to see more problems.

- 1: Evaluate $\iiint_E f(x,y,z) \, dV$ for these functions and regions: **a.** f(x,y,z) = x, E is region under 2x + 3y + z = 6 in the first octant. **b.** $f(x,y,z) = \sqrt{3x^2 + 3z^2}$, E is region bound by $y = 2x^2 + 2z^2$ and y = 8 **c.** f(x,y,z) = yz, E is region bound by $x = 2y^2 + 2z^2 5$, x = 1 **d.** f(x,y,z) = z, E is region inside $y^2 + z^2 = 1$ and between x + y + z = 2, x = 0 **e.** $f = x^2 + y^2$, E is portion of $x^2 + y^2 + z^2 = 4$ with $y \ge 0$ **f.** $f = x^2$, E is region inside $x^2 + y^2 + z^2 = 36$ and $z = -(3x^2 + 3y^2)^{1/2}$

- 2: Find the volume of the solid bound by $z=8-x^2-y^2, z=-2\sqrt{x^2+y^2}$, and $x^2+y^2=4$
- 3: Evaluate $\int_C f ds$ for $f(x,y)=16y^5$ where C is $x=y^4$ from y=0 to y=1, followed by a segment from (1,1) to (1,-2), followed by a segment from (1,-2) to (2,0)
- **4:** Evaluate $\int_C (x^2 dy yz dz)$ where C is the segment from (4, -1, 2) to (1, 7, -1)