H

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2017/2018 - UC 47166 (1º Ano/2º Sem)

Folha 2 Aulas - Relações e Funções

- 1. Seja $A = \{1, 2, 3\}$. Para cada uma das relações binárias \mathcal{R} indicadas a seguir, determine os elementos de \mathcal{R} , o domínio e o contradomínio de \mathcal{R} e, finalmente, as propriedades (de reflexividade, simetria, anti-simetria e transitividade) que possui \mathcal{R} :
 - (a) \mathcal{R} é a relação < em A.
 - (b) \mathcal{R} é a relação \geq em A.
 - (c) \mathcal{R} é a relação \subset em $\mathcal{P}(A)$.
- 2. Considere a relação $\mathcal{R} = \{(a,b) \in \mathbb{N}_0^2 : a+b=4\}$
 - (a) Determine \mathcal{R} e \mathcal{R}^{-1} .
 - (b) Determine as imagens de 1 e 3 por \mathcal{R} .
 - (c) Determine as imagens recíprocas por \mathcal{R} de 0, 2 e 4.
- 3. Seja \mathcal{R} uma relação de equivalência definida num conjunto A e denote por $[x]_{\mathcal{R}}$ a classe de equivalência de $x \in A$.
 - (a) Mostre que

$$\forall \ a, b \in A \quad a \in [b]_{\mathcal{R}} \iff [a]_{\mathcal{R}} = [b]_{\mathcal{R}}.$$

- (b) Sendo $A = \{1, 2, 3, 4\}$, determine a relação de equivalência \mathcal{R}_1 induzida pela partição $\mathcal{P}_1 = \{\{1\}, \{2, 3, 4\}\}$ em A.
- 4. Em cada uma das seguintes alíneas diga se a relação binária \mathcal{R} definida no conjunto A é reflexiva, simétrica, anti-simétrica e transitiva.
 - (a) $\mathcal{R} = \{(a, a), (a, b), (b, b)\}; A = \{a, b\};$
 - (b) $\mathcal{R} = \emptyset$; $A \neq \emptyset$;
 - (c) $x\mathcal{R}y$ se e só se x-y=1; $A=\mathbb{R}$;
 - (d) $\mathcal{R} = \{(x, y) \in A \times A : |x| \le |y|\}, \text{ onde } A = \mathbb{R};$
 - (e) $x\mathcal{R}y$ se e só se $x \cdot y \geqslant 0$; $A = \mathbb{Q}$;
 - (f) $x\mathcal{R}y$ se e só se $\frac{x}{y} \in \mathbb{Q}$; $A = \mathbb{R}\setminus\{0\}$;
 - (g) $(a,b)\mathcal{R}(c,d)$ se e só se $a^2+b^2=c^2+d^2$; $A=\mathbb{R}\times\mathbb{R}$.
- 5. Das relações binárias definidas no exercício anterior diga quais são:
 - (a) funções de A em A;
 - (b) relações de equivalência e para essas determine o conjunto quociente A/\mathcal{R} ;
 - (c) relações de ordem parcial;
 - (d) relações de ordem total.
- 6. Seja A um conjunto não vazio e $B \subseteq A$. Considere-se a relação \mathcal{R} definida em $\mathcal{P}(A)$ (conjunto das partes de A) da seguinte forma: $X\mathcal{R}Y$ se $B \cap X = B \cap Y$, com $X, Y \subseteq A$.
 - (a) Verifique que \mathcal{R} é uma relação de equivalência em $\mathcal{P}(A)$.
 - (b) Se $A = \{a, b, c\}$ e $B = \{a, b\}$, qual a partição induzida em $\mathcal{P}(A)$ por \mathcal{R} ?
 - (c) Se $A = \{a, b, c, d\}$ e $B = \{a, b, c\}$, determine a classe de equivalência $[\{a, c\}]$.
 - (d) Se $A = \{a, b, c, d, e\}$ e $B = \{a, b, c\}$, quantas classes de equivalência constituem a partição definida por \mathcal{R} ?

MD 2017-2018 Folha 2

- 7. (a) Exiba todas as relações binárias distintas que se podem definir no conjunto {0,1}, explicitando cada uma delas numa tabela adequada, e, em cada caso, diga se se trata de uma relação reflexiva, simétrica, anti-simétrica, transitiva.
 - (b) Uma relação binária, \mathcal{R} definida num conjunto A diz-se anti-reflexiva se para todo $x \in A$ se tem $(x, x) \notin \mathcal{R}$.

A relação complementar de uma relação \mathcal{R} , denota-se por $\overline{\mathcal{R}}$, e $\overline{\mathcal{R}} = \{(x,y) \in A \times A : (x,y) \notin \mathcal{R}\}.$

Mostre que uma relação \mathcal{R} num conjunto A é reflexiva se e só se a relação complementar $\overline{\mathcal{R}}$ é anti-reflexiva.

- 8. Considere o conjunto $A = \{1, 2, 3, 4, 5\}$. A relação de equivalência R definida em A com menor número de elementos e que contém os pares (1, 2), (1, 3) e (4, 5) é
 - (A) $R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (1,3), (3,1), (4,5), (5,4)\}$;
 - (B) $R = \{(1,2), (1,3), (4,5)\}$;
 - (C) $R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (4,5), (5,4)\}$;
 - (D) $R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (1,4), (4,1), (4,5), (5,4)\}.$
- 9. Sejam X e Y conjuntos finitos não vazios e f uma função de X em Y. Considere a relação binária definida em X por

$$x\mathcal{R}y$$
 se $f(x) = f(y)$, para todos $x, y \in X$.

- (a) Mostre que \mathcal{R} é uma relação de equivalência.
- (b) Determine o cardinal do conjunto quociente definido por R, X/R, se f é injetiva.
- 10. Considere a relação binária definida em \mathbb{Z} por: x R y se x y é divisível por 3.
 - (a) Prove que R é uma relação de equivalência.
 - (b) Determine o conjunto quociente de \mathbb{Z} por R.
- 11. Considere o conjunto \mathbb{Z} dos inteiros e defina aRb por $b=a^r$ para algum inteiro positivo r.
 - (a) Mostre que R é uma relação de ordem parcial em \mathbb{Z} .
 - (b) Verifique se R é uma relação de ordem total em \mathbb{Z} .
- 12. Considere uma estrutura de dados contendo pares ordenados $(x,y) \in \mathbb{R}^2$, onde estão definida uma relação \mathcal{R} , tal que,

$$(x_1, y_1)\mathcal{R}(x_2, y_2) \Leftrightarrow (x_1 \leq x_2) \land (y_1 \leq y_2), \text{ onde } (x_i, y_i) \in \mathbb{R}^2, i = 1, 2.$$

Diga, justificando, se \mathcal{R} é uma relação de ordem e, em caso afirmativo, indique se se trata de uma relação de ordem parcial ou total.

13. Seja A um conjunto de pessoas e definam-se em A as relações binárias:

$$a\mathcal{R}b$$
 se e só se b é pai de a ; $a\mathcal{S}b$ se e só se b é $irmão$ de a ;

Diga qual é o grau de parentesco entre a e b e defina a relação, em cada um dos seguintes casos:

- (a) $a \mathcal{R}_1 b$ onde $\mathcal{R}_1 = \mathcal{S} \circ \mathcal{R}$;
- (b) $a \mathcal{R}_2 b$ onde $\mathcal{R}_2 = \mathcal{R} \circ \mathcal{R}$;
- (c) $a \mathcal{R}_3 b$ onde $\mathcal{R}_3 = \mathcal{R}^{-1} \circ \mathcal{S} \circ \mathcal{R}$.

MD 2017-2018 Folha 2 2/4

14. Seja $A = \{1, 2, 3, 4, 5, 6\}$ e $f: A \rightarrow A$ a função definida por

$$f(x) = \begin{cases} x+1 & \text{se } x \neq 6\\ 1 & \text{se } x = 6 \end{cases}$$

- (a) Determine $f(3), f(6), (f \circ f)(3)$ e f(f(2)).
- (b) Mostre que f é injectiva.
- 15. Mostre que a função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3$ é injectiva e sobrejectiva enquanto que a função $g: \mathbb{R} \to \mathbb{R}$ dada por $g(x) = x^2 1$ não é injectiva nem sobrejectiva.
- 16. Qual é a cardinalidade de cada um dos seguintes conjuntos

$$\{1,2,\emptyset\}, \quad \{1,\{1,\emptyset\}\}, \quad \{\emptyset\}, \quad \{1\}, \quad \{\{1\}\}, \quad \emptyset.$$

- 17. Demonstre que os pares de conjuntos a seguir indicados são equipotentes:
 - (a) $\{1,\{1,2\}\}\$ e $\{1,2\}$;
 - (b) N e 2N, onde 2N denota o conjunto de números naturais pares;
 - (c) $\mathbb{N} \in \mathbb{Q}$.
- 18. Sejam A e B conjuntos infinitos numeráveis, i.e. existem funções bijectivas $f: \mathbb{N} \to A$ e $g: \mathbb{N} \to B$. Encontre uma função bijectiva entre A e B, se tal existir. Neste caso, defina explicitamente a sua inversa. Poder-se-á concluir que |A| = |B|?
- 19. Seja A um conjunto finito e $\mathcal{P}(A)$ o conjunto das partes de A, mostre que $|\mathcal{P}(A)| = 2^{|A|}$.
- 20. Mostre que]0,1[não é numerável. Conclua que $\mathbb R$ não é numerável.

Soluções:

- 1. (a) Não reflexiva, não simétrica, anti-simétrica, transitiva; (b) Reflexiva, não simétrica, anti-simétrica, transitiva; (c) Não reflexiva, não simétrica, anti-simétrica, transitiva
- 2. (a) $\mathcal{R} = \{(0,4), (1,3), (2,2), (3,1), (4,0)\}; \mathcal{R}^{-1} = \mathcal{R};$ (b) $\mathcal{R}(1) = 3; \mathcal{R}(3) = 1; \mathcal{R}^{-1}(0) = 4; \mathcal{R}^{-1}(2) = 2; \mathcal{R}^{-1}(4) = 0.$
- 3. (b) $\mathcal{R}_1 = \{(1,1), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), (4,4)\}$
- 4. (a) Reflexiva, não simétrica, anti-simétrica, transitiva; (b) Não reflexiva, simétrica, anti-simétrica, transitiva; (c) Não é reflexiva, não simétrica, anti-simétrica, não transitiva; (d) \mathcal{R} é reflexiva e transitiva mas não é simétrica, nem anti-simétrica; (e) Reflexiva, simétrica, não transitiva; (f) Reflexiva, simétrica, transitiva; (g) Reflexiva, simétrica, transitiva.
- 5. (a) A relação em (c) é função de A em A.
 - (b) As relações em (f) e (g) são relações de equivalência;

Em (f):
$$A/\mathcal{R} = \{ \mathbb{Q} \setminus \{0\}, \{ y \in A : y = x \, q, x \in A, q \in \mathbb{Q} \setminus \{0\} \} \};$$

Em (g): $A/\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}, \ r \in \mathbb{R}_0^+$, o conjunto das circunferências de raio $r \geq 0$.

- (c) A relação em (a).
- (d) A relação em (a).
- 6. (b) $\{\{\emptyset, \{c\}\}, \{\{a\}, \{a,c\}\}, \{\{b\}, \{b,c\}\}, \{\{a,b\}, \{a,b,c\}\}\}\};$ (c) $\{\{a,c\}, \{a,c,d\}\}\};$ (d) 8
- 8. (C)
- 9. (b) $|X/\mathcal{R}| = |X|$.
- 10. (b) $\mathbb{Z}/\mathcal{R} = \{ \{x \in \mathbb{Z} : x \mod 3 = 0\}, \{x \in \mathbb{Z} : x \mod 3 = 1\}, \{x \in \mathbb{Z} : x \mod 3 = 2\} \}$, onde $a \mod b = c$ significa que o resto da divisão de a por $b \in c$.
- 11. (b) Não é.
- 12. É relação de ordem parcial.
- 13. (a) $a\mathcal{R}_1b$ se e só se b é tio de a; $\mathcal{R}_1 = \mathcal{S} \circ \mathcal{R} = \{(a,b) \in A^2 : \text{ existe } s \in A \text{ tal que } (a,s) \in \mathcal{R} \land (s,b) \in \mathcal{S}\}.$
 - (b) $a\mathcal{R}_2b$ se e só se b é $av\hat{o}$ de a; $\mathcal{R}_2 = \mathcal{R} \circ \mathcal{R} = \{(a,b) \in A^2 : \text{ existe } r \in A \text{ tal que } (a,r) \in \mathcal{R} \land (r,b) \in \mathcal{R}\}.$
 - $(c)a\mathcal{R}_3b$ se e só se b é primo de a;
 - $\mathcal{R}_3 = \mathcal{R}^{-1} \circ \mathcal{S} \circ \mathcal{R} = \{(a, b) \in A^2 : \text{ existem } u, v \in A \text{ tal que } (a, u) \in \mathcal{R} \land (u, v) \in \mathcal{S} \land (v, b) \in \mathcal{R}^{-1}\}.$
- 16. 3; 2; 1; 1; 1, 0.
- 17. Ver Exemplo 1.24 do Livro MD, Bibliografia principal.

MD 2017-2018 Folha 2 4/4