$\rm MA_{571}$ Problem Set 2

Carlos Salinas

September 7, 2015

Problem 2.1 (Munkres $\S17$, p. 100, 2)

Show that if A is closed in Y and Y is closed in X, then A is closed in X.

Proof. Let C denote the closure of A in X then, by Theorem 17.4, $A = \overline{A} = C \cap Y$ is the closure of A in Y. Thus, A is closed in X since it is the intersection of two closed subsets of X.

Problem 2.2 (Munkres §17, p. 100, 3)

Show that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.

Proof. Before proceeding we will prove the following set theoretic result (which was adapted from Exercises 2(n) and 2(o) from §1, p.14 of Munkres):

Lemma 5. For sets A, B, C and D we the following equalities hold:

- (a) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
- (b) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.
- (c) $(A \setminus C) \times B = (A \times B) \setminus (C \times B)$.

that is, the Cartesian product distributes over taking complements.

Proof of Lemma 4. (a) The equality follows (rather straightforwardly) from the definition of the Cartesian product and the complement of a set for $x \times y \in (A \times B) \cap (C \times D)$ if and only if $x \times y \in A \times B$ and $x \times y \in C \times D$ if and only if $x \in A$ and $x \in C$ and $y \in B$ and $y \in D$ if and only if $x \in A \cap C$ and $y \in B \cap D$ if and only if $x \times y \in (A \cap C) \times (B \cap D)$.

- (b) The point $x \times y \in A \times (B \setminus C)$ if and only if $x \in A$ and $y \in B \setminus C$ if and only if $x \in A$ and $y \in B$ and $y \notin C$ if and only if $x \times y \in A \times B$ and $x \times y \notin A \times C$ if and only if $x \times y \in (A \times B) \setminus (A \times C)$.
- (c) The very same argument as part (b) can be used, taking B to be a subset of A and replacing (where appropriate) A by $A \setminus B$ and $B \setminus C$ by C, to prove that

$$(A \setminus B) \times C = (A \times C) \setminus (B \times C).$$

Now, since A is closed in X and B is closed in Y, their complements, $X \setminus A$ and $Y \setminus B$ are, by definition, open in X and Y, respectively. Then, the sets

$$(X \setminus A) \times Y$$
 and $X \times (Y \setminus B)$

are open since they are basic open sets in the product topology on $X \times Y$. So, applying Lemma 4(b) and (c), their complements

$$(X \times Y) \setminus (X \setminus A) \times Y = A \times Y$$
 and $(X \times Y) \setminus X \times (Y \setminus B) = X \times B$

are closed in $X \times Y$. At last, we have that

$$(A \times Y) \cap (X \times B)$$

is the intersection of closed sets, hence, by Theorem 17.1(b), is closed. By Lemma 4(a),

$$(A\times Y)\cap (X\times B)=(A\cap X)\times (Y\cap B)=A\times B$$

so $A \times B$ is closed in $X \times Y$.

Problem 2.3 (Munkres §17, p.101, 6(b))

Let $A,\,B$ and A_{α} denote subsets of a space X. Prove the following:

(b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

<u>Proof.</u> By definition, the closure of a set is the intersection of all closed sets which contain it therefore, $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$ since $\overline{A} \cup \overline{B}$ is a closed set, by Theorem 17.1(a), which contains $A \cup B$. To see the reverse containment note that $\overline{A} \subset \overline{A \cup B}$ since $\overline{A \cup B}$ is a closed set which contains A. Similarly $\overline{B} \subset \overline{A \cup B}$ so $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$. Therefore, $\overline{A \cup B} = \overline{A} \cup \overline{B}$ holds.

Naturally this results extends, by induction, to the case of finite unions of sets.

Problem 2.4 (Munkres §17, p. 101, 6(c))

Let $A,\,B$ and A_{α} denote subsets of a space X. Prove the following:

(b)
$$\overline{\bigcup A_{\alpha}} \supset \bigcup \overline{A_{\alpha}}$$
.

Proof. Let C denote the set $\overline{\bigcup A_{\alpha}}$. It is clear, by the definition of the closure of a set, that $\bar{A}_{\alpha} \subset C$ for every α since C is a closed set which contains A_{α} , so $\bigcup_{\alpha} \bar{A}_{\alpha} \subset C$.

The reverse is not true in general; in fact, as Theorem 17.1(3) suggests, an arbitrary union of closed sets is not even necessarily closed. For a concrete example consider the family $A_r = \{r\}$ for $r \in \mathbf{Q}$. The closure of a point r in \mathbf{R} is itself since its complement, $\mathbf{R} \setminus \{r\}$, is the union of the open intervals $(-\infty, r)$ and (r, ∞) ; in particular, $\{r\}$ is the "smallest" closed set containing $\{r\}$. Hence, we see that the union

$$\bigcup_{r\in \mathbf{Q}} \bar{A}_r = \mathbf{Q},$$

but, by Example 6, $\bar{\mathbf{Q}} = \mathbf{R}$.

Problem 2.5 (Munkres §17, p. 101, 7)

Criticize the following "proof" that $\overline{\bigcup A_{\alpha}} \subset \bigcup \overline{A}_{\alpha}$: if $\{A_{\alpha}\}$ is a collection of sets in X and if $x \in \overline{\bigcup A_{\alpha}}$, then every neighborhood U of x intersects $\bigcup A_{\alpha}$. Thus U must intersect some A_{α} , so x must belong to the closure of some A_{α} . Therefore, $x \in \bigcup A_{\alpha}$.

Critique. The main argument, that "x must belong to the closure of some A_{α} ", is what is wrong here. The point x may belong to the closure of multiple A_{α} 's, in fact uncountably many of them, so that one would have to prove that if x belongs the closure of some family A_{β} of set, then x must belong to the union of their closures. This takes us right back to what we are trying to prove.

Problem 2.6 (Munkres $\S17$, p. 101, 9)

Let $A \subset X$ and $B \subset Y$. Show that in the space $X \times Y$,

$$\overline{A \times B} = \bar{A} \times \bar{B}.$$

Problem 2.7 (Munkres §17, p. 101, 10)

Show that every order topology is Hausdorff.

Proof.

Problem 2.8 (Munkres $\S17$, p. 101, 13)

Show that X is Hausdorff if and only if the $\operatorname{diagonal}\ \Delta=\{\,x\times x\mid x\in X\,\}$ is closed in $X\times X.$

Problem 2.9 (Munkres §18, p. 111, 4)

Given $x_0 \in X$ and $y_0 \in Y$, show that the maps $f \colon X \to X \times Y$ and $g \colon Y \to X \times Y$ defined by

$$f(x) = x \times y_0 \quad \text{and} \quad g(y) = x_0 \times y$$

 $\hbox{ are imbeddings.}$

Problem 2.10 (Munkres §18, p.111-112, 8(a,b))

Let Y be an ordered set in the order topology. Let $f,g\colon X\to Y$ be continuous.

- (a) Show that the set $\{x \mid f(x) \leq g(x)\}\$ is closed in X.
- (b) Let $h: X \to Y$ be the function

$$h(x) = \min\{f(x), g(x)\}.$$

Show that h is continuous. [Hint: Use the pasting lemma.]

Proof.

CARLOS SALINAS PROBLEM 2.11

Problem 2.11

Given: X is a topological space with open sets $U_1,...,U_n$ such that $\bar{U}_i=X$ for all i. Prove that the closure of $U_1\cap\cdots\cap U_n$ is X.