COMP6237 Data Mining

Searching and Ranking

Jonathon Hare jsh2@ecs.soton.ac.uk

Introduction

- Information retrieval (IR) is the activity of obtaining information resources relevant to an information need from a collection of information resources.
 - Searches can be based on metadata or on contentbased indexing.
 - Content need not be textual!
- Automated information retrieval systems are used to reduce what has been called "information overload".

Problem statement: It's all about the user

- User has an information need
 - A query
 - Could be specific: What is the population of Southampton?
 - Or vague: I am going to a conference in Arizona in July.
 What do I need to know?
- IR system must find documents that are relevant to the users' query
 - Clearly a classic data mining problem!

Historical Context

- ~4000 years ago
 - Table of contents and the index data-structure developed
- 1876
 - Dewey decimal system
 - Classification Scheme
 - Commonly used in libraries

Historical Context

- 1960's
 - basic advances in automatic indexing using computers
- 1970's
 - Probabilistic and vector-space models
 - Clustering, relevance feedback
 - Large, on-line Boolean IR systems
- · 1980's
 - Natural language processing and IR
 - Expert Systems
 - Commercial-Off-the-Shelf IR systems

Historical Context

- 1990's onwards
 - Dominance of ranking
 - The Internet!
 - Web-based IR
 - Distributed IR
 - Multimedia IR
 - Statistical language modelling
 - User feedback
- Last ~10 years
 - Really "Big data"
 - Better language modelling
 - Even better ranking

Text Retrieval

What is text retrieval

- Collection of text documents exists
- User gives a query to express the information need
- Search engine system returns relevant documents to users
- Known as "search technology" in industry

Text retrieval versus database retrieval

- Information
 - Unstructured/free text vs. structured data Ambiguous vs. well-defined semantics
- Query
 - Ambiguous vs. well-defined semantics Incomplete vs. complete specification
- Answers
 - Relevant documents vs. matched records
- TR is an empirically defined problem
 - Can't mathematically prove one method is better than another
 - Must rely on empirical evaluation involving users!

Classical Models of Retrieval

Boolean Model

- Does the document satisfy the Boolean expression?
 - "winter" AND "Olympics" AND ("ski" OR "snowboard")

Vector Space Model

- How similar is the document to the query?
 - [(Olympics 2) (winter 2) (ski 1) (snowboard 1)]

Probabilistic Model

What is the probability that the document is generated by the query?

Classical Models of Retrieval

Boolean Model

Result Selection

- Does the document satisfy the Boolean expression?
 - "winter" AND "Olympics" AND ("ski" OR "snowboard")

Vector Space Model

Result Ranking

- How similar is the document to the query?
 - [(Olympics 2) (winter 2) (ski 1) (snowboard 1)]
- · Probabilistic Model
 - What is the probability that the document is generated by the query?

Problems of Result Selection

- The classifier is unlikely accurate
 - "Over-constrained" query -> no relevant documents to return
 - "Under-constrained" query -> over delivery
 - Hard to find the right position between these two extremes
- Even if it is accurate, all relevant documents are not equally relevant (relevance isn't a binary attribute!)
- Prioritisation is needed
 - Thus, ranking is generally preferred

Ranking versus selecting results

- Probability Ranking Principle [Robertson 77]:
 - Returning a ranked list of documents in descending order of probability that a document is relevant to the query is the optimal strategy under the following two assumptions:
 - The utility of a document (to a user) is independent of the utility of any other document
 - A user would browse the results sequentially

Do these two assumptions hold?

The Vector-Space Model of Retrieval

The Vector-Space Model (VSM)

- Conceptually simple:
 - Model each document by a vector
 - Model each query by a vector
 - Assumption: documents that are "close together" in space are similar in meaning.
 - Develop similarity measures to rank each document to a query in terms of decreasing similarity

VSM Is a Framework

- Represent a doc/query by a term vector
 - Term: basic concept, e.g., word or phrase
 - Each term defines one dimension
 - N terms define an N-dimensional space
 - Query vector: $\mathbf{q}=(x_1,\ldots,x_N), x_i \in \mathbb{R}$ is query term weight
 - Doc vector: $\mathbf{d}=(y_1,\ldots,y_N),\ y_j\in\Re$ is doc term weight
- relevance(d|q) \propto similarity(q,d) = f(q,d)

What VSM Doesn't Say

- · How to define/select the "basic concept"
 - Concepts are assumed to be orthogonal
- How to place docs and query in the space (= how to assign term weights)
 - Term weight in query indicates importance of term
 - Term weight in doc indicates how well the term characterises the doc
- How to define the similarity measure, f(q,d)

Text processing (feature extraction)

Bag of Words Vectors

- The lexicon or vocabulary is the **set** of all (processed) words across all documents known to the system.
- We can create vectors for each document with as many dimensions as there are words in the lexicon.
 - Each word in the document's bag of words contributes a count to the corresponding element of the vector for that word.
 - In essence, each vector is a histogram of the word occurrences in the respective document.
 - Vectors will have very high number of dimensions, but will be very sparse.

Aside: language statistics and Zipf's Law

Searching the VSM

Recap: Cosine Similarity

If p and q are both high dimensional and sparse, then you're going spend a lot of time multiplying 0 by 0 and adding 0 to the accumulator

Inverted Indexes

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
• • •	
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

...A map of words to lists of postings...

Inverted Indexes

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
• • •	
Movie	[doc2:10]
Star	[doc1:13, doc2:4]
Telescope	[doc1:15]

A **posting** is a pair formed by a **document ID** and the **number of times** the specific word appeared in that document

Computing the Cosine Similarity

- For each word in the query, lookup the relevant postings list and accumulate similarities for only the documents seen in those postings lists
 - much more efficient than fully comparing vectors...

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
• • •	
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Accumulation table:

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
• • •	
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Accumulation table:

doc2	$10\times1+4\times1$
doc1	13×1

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
• • •	
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Accumulation table:

doc2	$(10 \times 1 + 4 \times 1) / 14.04 = 0.997$
doc1	13×1 / 19.95 = 0.652
doc3	0

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
• • •	
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Weighting the vectors

• The number of times a term occurs in a document reflects the importance of that term in the document.

Intuitions:

- A term that appears in many documents is not important: e.g., the, going, come, ...
- If a term is frequent in a document and rare across other documents, it is probably important in that document.

Possible weighting schemes

- Binary weights
 - Only presence (1) or absence (0) of a term recorded in vector.
- Raw frequency
 - Frequency of occurrence of term in document included in vector.
- TF-IDF
 - Term frequency is the frequency count of a term in a document.
 - Inverse document frequency (idf) provides high values for rare words and low values for common words.
 - (Note there are many forms of TF-IDF and that it isn't one specific scheme)

Actual scoring functions: baseline

- Key bit of the cosine similarity is the dot-product between the query and document
 - Use this as a basis for building a scoring function that incorporates TF and IDF
 Total #docs in

Number of times w appears in d

$$f(\mathbf{q}, \mathbf{d}) = \sum_{i=1}^{N} q_i y_i = \sum_{w \in q \cap d} c(w, q) c(w, d) log \frac{M+1}{df(w)}$$

Number of times w appears in q

document frequency (number of docs containing w)

collection

Better scoring functions

- The baseline TF-IDF scoring function has a few problems
 - skewed scores if a document contains a word many occurrences
 - what if the document is long?
- Lots of other scoring functions out there...
 - BM25 is one of the most popular families of functions
 - Developed as part of the Okapi retrieval system at City University in the 80s

$$f(q,d) = \sum_{w \in q \cap d} \frac{c(w,q) \cdot c(w,d) \cdot (k_1 + 1)}{c(w,d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{\text{avgdl}}\right)} \cdot \log \frac{M - df(w) + 0.5}{df(w) + 0.5}$$

 k_1 , b are constants |d| is the length of doc d avgdl is the average doc length in the collection

Inside a retrieval system

Index **Document Index Inverted Index TermID** DocID Length Postings **Meta Index** Lexicon TermID Term total tf DocID | metadata... df

Building an inverted index

- Difficult to build a huge index with limited memory
- Memory-based methods: not usable for large collections
- Sort-based methods:
 - Step 1: Collect local <termID, docID, freq> tuples in a run
 - Step 2: Sort tuples within the run and write to disk
 - Step 3: Pair-wise merge runs on disk
 - Step 4: Output inverted file

Sort-based Inversion

Parse and count

sort in run

merge sort

build index

Inverted Index Compression

- Leverage skewed distribution of values and use variable-length integer encoding
- TF compression
 - Small numbers tend to occur far more frequently than large numbers (c.f. Zipf)
 - Fewer bits for small (high frequency) integers at the cost of more bits for large integers
- DocID compression
 - · "delta-gap" or ("d-gap") (store difference): d1, d2-d1, d3-d2,...
 - Feasible due to sequential access
- Methods:
 - Oblivious: Binary code, unary code, γ -code, δ -code, varint...
 - · List-adaptive: Golomb, Rice, Frame of Reference (FOR), Patched FOR (PFOR), ...

Improving search engine ranking

Location-weighting; Phrase and Proximity search

- Can we use the position of the query terms in the document to improve ranking?
 - Document more likely to be relevant if the query terms occur nearer beginning?
 - Allow for exact "phrase matching" or proximity search (query terms appearing close to each other)
 - For any of these to be tractable, the term position of every term in every document needs to be indexed...

Index Payloads

Positional inverted index augments the postings with a list of term offsets from the beginning of the document

term1	[doc3:4:〈21,28,100,311〉,]
• • •	•••

Obviously increases size of index dramatically, so compression is very important - typically use d-gap+ γ or d-gap+FOR encoding

Retrieving hypertext: Using inbound links

- Assume we are indexing text documents with hyperlinks (i.e. webpages)
 - Can we use the hyperlinks to improve search?
 - perhaps increase the score of documents that have many other documents linking to them
 - unfortunately prone to manipulation easy to set up new pages with lots of links...
 - Solution: PageRank
 - Compute the importance of a page from the importance of all the other pages that link to it and the number of links each other page has.

Making use of feedback: Click Ranking

- Can we make use of user feedback?
 - When a user performs a search, which results do they look at?
 - Could improve ranking by:
 - *increasing* the weighting of documents that are clicked (irrespective of the query)
 - learning associations between queries and documents and using this to re-rank documents in response to a specific query

Current challenges in IR: Diverse ranking

Implicit Search Result Diversification

- Most current search systems always assume that a ranked list of results will be generated
 - Is this optimal?
- Diversity in search result rankings is needed when users' queries are poorly specified or ambiguous.
 - e.g. what if I perform a web search for "jaguar"
 - By presenting a diverse range of results covering all possible representations of a query the probability of finding relevant documents is increased
 - very much a data-mining problem!

Search for images related to "euro" (using textual metadata):

Diversified Ranking

Summary

- Search engines are a key tool for data mining
 - They can help a user understand what is in a data set by effectively providing target access
- The techniques required to build a search engine are important:
 - Content analysis/feature extraction is of key importance
 - Low-level techniques for scalability and efficiency used by search engines have applications in other areas
 - Search engines can provide a base for performing other types of data mining efficiently and effectively