(Pseudo-Bayesian) Inference for Complex Survey Data

Matt Williams¹

¹Center for Official Statistics RTI International mrwilliams@rti.org

Collaborative Research Cycle Explanatory Workshop Dec 17, 2023

Thank you!

- Terrance Savitsky (BLS) for being a great collaborator and mentor.
- Christine Task (Knexus) and Gary Howarth (NIST) for keeping me in the loop over the years!
- ► To you all for your time and energy!

Bio

1. Work

- 2 years as senior research statistician at RTI: National Survey on Drug Use and Health (SAMHSA) and Model-based early estimates (NCHS)
- ▶ 10 years as mathematical statistical for federal government: USDA, HHS, NSF
- Sample design, weighting, imputation, estimation, disclosure limitation (production and methods development)

2. Consulting

- International surveys for agricultural production (USAID) and vaccination knowledge, attitudes, and behaviors (UNICEF)
- 3. Research (ORCID: 0000-0001-8894-1240)
 - Constrained Optimization for Survey Applications (weight adjustment, benchmarking model estimates)
 - Applying Bayesian inference methods to data from complex surveys.
 - Bayesian synthetic data for privacy protection.

Outline

- 1 Informative Sampling (Savitsky and Toth, 2016)
- 2 Consistency (Williams and Savitsky, 2020)
- 3 Variance Estimation
- 4 Related Works

Distributions of ${\bf y}$ in Informative Samples

Population Inference from Informative Samples

- ▶ Goal: perform inference about a finite population generated from an unknown model, $\mathbb{P}_{\theta_0}(\mathbf{y})$.
- lacktriangle Data: from under a complex sampling design distribution, $\mathbb{P}_{
 u}(\delta)$
 - Probabilities of inclusion $\pi_i = Pr(\delta_i = 1|\mathbf{y})$ are often associated with the variable of interest (purposefully)
 - Sampling designs are "informative": the balance of information in the sample ≠ balance in the population.
- ▶ Biased Estimation: estimate $\mathbb{P}_{\theta_0}(\mathbf{y})$ without accounting for $\mathbb{P}_{\nu}(\delta)$.
 - Use inverse probability weights $w_i = 1/\pi_i$ to mitigate bias.
- ► Incorrect Uncertainty Quantification:
 - Failure to account for dependence induced by $\mathbb{P}_{\nu}(\delta)$ leads to standard errors and confidence intervals that are the wrong size.

Pseudo Posterior

$$p^{\pi}\left(oldsymbol{ heta}|\mathbf{y}, ilde{\mathbf{w}}
ight) \propto \left[\prod_{i=1}^{n} p\left(y_{i}|oldsymbol{ heta}
ight)^{ ilde{w}_{i}}
ight] p\left(oldsymbol{ heta}
ight) \ rac{w_{i}}{w_{i}} := rac{1}{\pi_{i}} \ rac{ ilde{w}_{i}}{\sum_{i=1}^{n} w_{i}}, \ i = 1, \ldots, n$$

Outline

- 1 Informative Sampling (Savitsky and Toth, 2016)
- 2 Consistency (Williams and Savitsky, 2020)
- 3 Variance Estimation

4 Related Works

Frequentist Consistency of a (Pseudo) Posterior

- Estimated distribution $p^{\pi}(\boldsymbol{\theta}|\mathbf{y}, \tilde{\mathbf{w}})$ collapses around generating parameter θ_0 with increasing population N_{ν} and sample n_{ν} sizes.
 - Evaluated with respect to joint distribution of population generation $\mathbb{P}_{\theta_0}(\mathbf{y})$ and the sample inclusion indicators $\mathbb{P}_{\nu}(\delta)$.
- ightharpoonup Conditions on the model $\mathbb{P}_{\theta_0}(\mathbf{y})$ (standard)
 - Complexity of the model limited by sample size
 - Prior distribution not too restrictive (e.g. point mass)
- lacktriangle Conditions on the sampling design $\mathbb{P}_{
 u}(\delta)$ (new-ish)
 - Every unit in population has non-zero probability of inclusion finite weights
 - ▶ Dependence restricted to countable blocks of bounded size ⇒ arbitrary dependence within clusters, but approximate independence between clusters.

Simulation Example: Three-Stage Sample

Area (PPS), Household (Systematic, sorting by Size), Individual (PPS)

Figure: Factorization matrix $(\pi_{ij}/(\pi_i\pi_j)-1)$ for two PSU's. Magnitude (left) and Sign (right). Systematic Sampling $(\pi_{ij}=0)$. Clustering and PPS sampling $(\pi_{ij}>\pi_i\pi_j)$. Independent first stage sample $(\pi_{ij}=\pi_i\pi_j)$

Simulation Example: Three-Stage Sample (Cont)

Figure: The marginal estimate of $\mu = f(x_1)$. population curve, sample with equal weights, and inverse probability weights. Top to bottom: estimated curve, log of BIAS, log MSE. Left to right: sample size (50 to 800).

Outline

- 1 Informative Sampling (Savitsky and Toth, 2016)
- 2 Consistency (Williams and Savitsky, 2020)
- 3 Variance Estimation

4 Related Works

Variance Estimation

- ► The de-facto approach:
 - ▶ approximate sampling independence of the primary sampling units (Heeringa et al., 2010).
 - within-cluster dependence treated as nuisance
- ► Two common methods:
 - ► Taylor linearization and replication based methods.
 - A variety of implementations are available (Binder, 1996; Rao et al., 1992).

Taylor Linearization

Let y_{ij} and w_{ij} be the observed data for individual i in cluster j of the sample. Assume the parameter θ is a vector of dimension d with population model value θ_0 .

- 1. Approximate an estimate $\hat{\theta}$, or a 'residual' $(\hat{\theta} \theta_0)$, as a weighted sum: $\hat{\theta} \approx \sum_{i,j} w_{ij} z_{ij}(\theta)$ where z_{ij} is a function evaluated at the current values of y_{ij} , and $\hat{\theta}$ (e.g. $z_i(\hat{\theta}) = H_{\theta_0}^{-1} \dot{\ell}_{\hat{\theta}}(\mathbf{y}_i)$).
- 2. Compute the weighted components for each cluster (e.g., primary sampling units (PSUs)): $\hat{\theta}_j = \sum_i w_{ij} z_{ij}(\theta)$.
- 3. Compute the variance between clusters:

$$\widehat{Var(\hat{ heta})} = rac{1}{J-d} \sum_{j=1}^{J} (\hat{ heta} - \hat{ heta}_j) (\hat{ heta} - \hat{ heta}_j)^T$$

4. For stratified designs, compute $\hat{\theta}_s$ and $\widehat{Var}(\hat{\theta}_s)$ within strata and sum $\widehat{Var}(\hat{\theta}) = \sum_s \widehat{Var}(\hat{\theta}_s)$.

Replication

Let y_{ij} and w_{ij} be the observed data for individual i in cluster j of the sample. Assume the parameter θ is a vector of dimension d with population model value θ_0 .

- 1. Through randomization (bootstrap), leave-one-out (jackknife), or orthogonal contrasts (balanced repeated replicates), create a set of K replicate weights $(w_i)_k$ for all $i \in S$ and for every $k = 1, \ldots, K$.
- 2. Each set of weights has a modified value (usually 0) for a subset of clusters, and typically has a weight adjustment to the other clusters to compensate: $\sum_{i \in S} (w_i)_k = \sum_{i \in S} w_i$ for every k.
- 3. Estimate $\hat{\theta}_k$ for each replicate $k \in 1, ..., K$.
- 4. Compute the variance between replicates: $\widehat{Var(\hat{\theta})} = \frac{C}{K-d} \sum_{k=1}^{K} (\hat{\theta} \hat{\theta}_k) (\hat{\theta} \hat{\theta}_k)^T.$
- 5. For stratified designs, generate replicates such that each strata is represented in every replicate.

Challenges

There are two notable trade-offs associated with these methods:

- ► Taylor linearization: value $\hat{\theta}$ computed once then used in a plug in for $z_i(\theta)$.
 - ▶ Replication methods: estimate $\hat{\theta}_k$ computed K times.
 - Sizable differences in computational effort
- Replication methods: no derivatives are needed.
 - ► Taylor linearization: requires the calculation of a gradient to derive the analytical form of the first order approximation $z_i(\theta)$.
 - This poses significant analytical challenges for all but the simplest models.

Some Improvements

- Abstraction of Derivatives (less analytic work for Taylor Linearization)
 - ► Recent advances in algorithmic differentiation (Margossian, 2018), allows us to specify the model as a log density but only treat the gradient in the abstract without specifying it analytically.
 - ► Implemented in Stan and Rstan (Carpenter, 2015; Stan Development Team, 2016)
- ► Hybrid Approach or Taylor Linearization for replicate designs (less computation for Replication approaches)
 - Survey package (Lumley, 2016) to calculate replication variance of gradient $\dot{\ell}_{\theta}$
 - Use plug in for θ , only estimate once

$$(\hat{\psi} - \psi_0) = H_{\theta_0}(\hat{\theta} - \theta_0) \approx \sum_{i \in S} w_i \dot{\ell}_{\hat{\theta}}(\mathbf{y}_i) = \sum_{i \in S} w_i z_i(\hat{\theta}),$$

with
$$\operatorname{Var}_{P_{\theta_0},P_{\nu}}(\hat{\psi}-\psi_0)=J_{\theta_0}^{\pi}$$
.

Example: Design Effect for Survey-Weighted Bayes

$$p^{\pi}\left(oldsymbol{ heta}|\mathbf{y}, \mathbf{ ilde{w}}
ight) \propto \left[\prod_{i=1}^{n} p\left(y_{i}|oldsymbol{ heta}
ight)^{ ilde{w}_{i}}
ight] p\left(oldsymbol{ heta}
ight)$$

- ► Variances Differ:
 - Weighted MLE: $H_{\theta_0}^{-1}J_{\theta_0}^{\pi}H_{\theta_0}^{-1}$ (Robust)
 - Weighted Posterior: $H_{\theta_0}^{-1}$ (Model-Based)
- ► Adjust for Design Effect: $R_2^{-1}R_1$
 - $lackbox{}\hat{ heta}_m \equiv$ sample pseudo posterior for $m=1,\ldots,M$ draws with mean $ar{ heta}$
 - $\hat{\theta}_m^a = \left(\hat{\theta}_m \bar{\theta}\right) R_2^{-1} R_1 + \bar{\theta}$
 - where $R'_1 R_1 = H_{\theta_0}^{-1} J_{\theta_0}^{\pi} H_{\theta_0}^{-1}$
 - $ightharpoonup R_2'R_2 = H_{\theta_0}^{-1}$

Joint Distribution

Related Papers

- Consistency of the Pseudo-Posterior (Savitsky and Toth, 2016)
- Uncertainty Quantification (Williams and Savitsky, 2021)
- Extension to multistage surveys (Williams and Savitsky, 2020; Han and Wellner, 2021)
- Extension to pairwise weights and outcomes (Williams and Savitsky, 2018)
- Extension to Divide and Conquer computational methods (Savitsky and Srivastava, 2018)
- Correction of asymptotic coverage (Williams and Savitsky, 2021)
- Joint modeling of Outcome and Weights (León-Novelo and Savitsky, 2019; Leon-Novelo and Savitsky, 2021)

References I

- Binder, D. A. (1996), 'Linearization methods for single phase and two-phase samples: a cookbook approach', *Survey Methodology* **22**, 17–22.
- Carpenter, B. (2015), 'Stan: A probabilistic programming language', *Journal of Statistical Software* .
- Han, Q. and Wellner, J. A. (2021), 'Complex sampling designs: Uniform limit theorems and applications', *The Annals of Statistics* **49**(1), 459–485.
- Heeringa, S. G., West, B. T. and Berglund, P. A. (2010), *Applied Survey Data Analysis*, Chapman and Hall/CRC.
- Leon-Novelo, L. G. and Savitsky, T. D. (2021), 'Fully bayesian estimation under dependent and informative cluster sampling', arXiv preprint arXiv:2101.06237.
- León-Novelo, L. G. and Savitsky, T. D. (2019), 'Fully bayesian estimation under informative sampling', *Electron. J. Statist.* **13**(1), 1608–1645.
 - URL: https://doi.org/10.1214/19-EJS1538
- Lumley, T. (2016), 'survey: analysis of complex survey samples'. R package version 3.32.
- Margossian, C. C. (2018), 'A review of automatic differentiation and its efficient implementation', CoRR abs/1811.05031.
 - URL: http://arxiv.org/abs/1811.05031

References II

- McGuire, F. H., Beccia, A. L., Peoples, J., Williams, M. R., Schuler, M. S. and Duncan, A. E. (2023), 'Depression at the intersection of race/ethnicity, sex/gender, and sexual orientation in a nationally representative sample of us adults: A design-weighted maihda', medRxiv.
 - **URL:** https://www.medrxiv.org/content/early/2023/04/17/2023.04.13.23288529
- Rao, J. N. K., Wu, C. F. J. and Yue, K. (1992), 'Some recent work on resampling methods for complex surveys', Survey Methodology 18, 209–217.
- Savitsky, T. D. and Srivastava, S. (2018), 'Scalable bayes under informative sampling', Scandinavian Journal of Statistics 45(3), 534–556. 10.1111/sjos.12312. URL: http://dx.doi.org/10.1111/sjos.12312
- Savitsky, T. D. and Toth, D. (2016), 'Bayesian Estimation Under Informative Sampling', Electronic Journal of Statistics 10(1), 1677–1708.
- Savitsky, T. D. and Williams, M. R. (2022), 'Pseudo bayesian mixed models under informative sampling', *Journal of Official Statistics* **38**(3), 901–928.
- Savitsky, T. D., Williams, M. R., Gershunskaya, J., Beresovsky, V. and Johnson, N. G. (2023), 'Methods for combining probability and nonprobability samples under unknown overlaps'.
- Savitsky, T. D., Williams, M. R. and Srivastava, S. (2020), 'Pseudo bayesian estimation of one-way anova model in complex surveys', arXiv preprint arXiv:2004.06191.

References III

- Stan Development Team (2016), 'RStan: the R interface to Stan'. R package version 2.14.1. URL: http://mc-stan.org/
- Williams, M. R. and Savitsky, T. D. (2018), 'Bayesian pairwise estimation under dependent informative sampling', *Electron. J. Statist.* **12**(1), 1631–1661.
- Williams, M. R. and Savitsky, T. D. (2020), 'Bayesian estimation under informative sampling with unattenuated dependence', Bayesian Anal. 15(1), 57–77. URL: https://doi.org/10.1214/18-BA1143
- Williams, M. R. and Savitsky, T. D. (2021), 'Uncertainty estimation for pseudo-bayesian inference under complex sampling', *International Statistical Review* **89**(1), 72–107. **URL:** https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12376