Математический анализ 2

Contents

1	Hec	Неопределенный интеграл			
1.1 Понятие первообразной и неопределен			гие первообразной и неопределеного интеграла	5	
	1.2				
	1.3				
	1.4	Основ	вные примеры интегрирования	9	
		1.4.1	Непосредственное интегрирование	9	
		1.4.2	Замена переменной	10	
		1.4.3	Интегрирование по частям	11	
	1.5	Интег	рирование рациональных функций	12	
		1.5.1	Основные сведения о рациональных функциях	12	
		1.5.2	Интегрирование простейших дробей	17	
		1.5.3	Общая схема интегрирования рациональных дробей	17	
	1.6	Интег	рирование тригонометрических функций	19	
		1.6.1	Универсальная тригонометрическая замена	19	
		1.6.2	Другие виды подстановок	19	
		1.6.3	Использования формул тригонометрии	20	
	1.7 Интегрирование некоторых иррациональных и транцедент				
		функций			
		1.7.1	Дробно-линейная подстановка для интегралов	21	
		1.7.2	Квадратичные иррациональности	22	
		1.7.3	Инегрирование дифферециального бинома	24	
		1.7.4	Интегралы вида $\int R(e^x) \mathbf{d}x, \int R(\sqrt{e^x + e}) \mathbf{d}x$	25	
	1.8	Интег	ралы, не выражающиеся в элементарных функциях	25	
2	Опр	ределе	енный интеграл	27	
	2.1	1 Определение определенного интеграла(Римана)		27	
	2.2	Суммы Дарбу и их свойства			
	2.3	2.3 Необходимое и достаточное условие интегрируемости ф			
		$f(x)$ на $[a,\ b]$			
	2.4	Некот	орые классы интегрируемых функций	31	
		2.4.1	Интегрируемость непрерывных функций	31	
		2.4.2	Интегрирование монотонных ограниченных функций	32	

4 Contents

	2.4.3	Критерий Лебега интегрируемости функции $f(x)$ на отрезке	:		
		$[a, b] \ldots \ldots$	33		
	2.4.4	Общие свойства интегрируемых функций	34		
2.5	Свойства определенного интеграла				
2.6 Интеграл с переменным верхним пределом. Формула Нью					
	Лейбница				
	2.6.1	Обобщенная первообразная. Формула Ньютона-Лейбница	42		

Неопределенный интеграл

1.1 Понятие первообразной и неопределеного интеграла

Функция F(x) называется **первообразной** функции f(x) на множестве $X \subset \mathbb{R}$, или $\forall x \in X \ F'(x) = f(x)$.

Theorem 1.1.1. Если F(x) - некоторая первообразная для f(x) на множестве X, то любая другая первообразная имеет вид: F(x) + c, где c = const - произвольная.

Proof. Пусть F(x) - первообразная функции f(x), т.е. F'(x) = f(x); Тогда: $(F(x)+c)' = F'(x)+0 = f(x) \Rightarrow F(x)+c$ - первообразная для f(x)(c=const). Пусть $F_1(x)$ - тоже первообразная для f(x), т.е. $F'_1(x) = f(x)$. Рассмотрим разность: $F_1(x) - F(x)$;

$$(F_1(x) - F(x))' = F_1'(x) - F'(x) = f(x) - f(x) = 0 \Rightarrow F_1(x) - F(x) = c = const,$$
 r.e. $:F_1(x) = F(x) + c$

Таким образом множество всех первообразных функции f(x) имеет вид F(x) + c.

Множество всех первообразных функции f(x) называется **неопределенным интегралом** этой функции и обозначается $\int f(x)dx$.

f(x) - подинтегральная функция, f(x)dx - подинтегральное выражение, x - переменная инегрирования, \int - неопределенный интеграл.

Example:

$$f(x) = sign(x) = \begin{bmatrix} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{bmatrix}, x \in (-1; 1).$$

Предположим, что существует такая первообразная $\exists F(x) : \forall x \in (-1; 1) :$

$$F'(x) = sign(x)$$
, T.e.

$$F'(x) = sign(x), \text{ т.е.}$$

$$F'(x) = \begin{bmatrix} 1, & x \in (0; \ 1) \\ 0, & x = 0 \\ -1, & x < \in (-1; \ 0) \end{bmatrix} \Rightarrow \begin{cases} F'(x) = 0 \\ F'_{-}(x) = -1 \\ F'_{+}(x) = 1 \end{cases}$$

$$F'(0) \text{ - не существует} \Rightarrow \text{противоречие} \Rightarrow F(x) \text{ не существует.}$$

Remark. Достаточным условием существования первообразной у функции на данном множестве является ее непрерывность на этом множестве.

1.2 Свойства неопределенного интеграла

Пусть $\int f(x) \, dx = F(x) + c \, (F'(x) = f(x)).$

1. Производная от неопределенного интеграла равна подинтегральной функции, дифференциал неопределенного интеграла равен подинтегральному выражению.

$$(\int f(x) \, \mathbf{d}x)'_x = f(x); \quad \mathbf{d}(\int f(x) \, \mathbf{d}x) = f(x) \, \mathbf{d}x.$$

Proof.
$$(\int f(x) \, dx)'_x = (F(x) + c)'_x = F'(x) + c' = f(x);$$

 $\mathbf{d}(\int f(x) \, dx) = (\int f(x) \, dx)'_x \, dx = f(x) \, dx.$

2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной.

$$\int \mathbf{d}(F(x)) = F(x) + c.$$

Proof.
$$\int \mathbf{d}(F(x)) = \int F'(x) \, \mathbf{d}x = \int f(x) \, \mathbf{d}x = F(x) + c$$

3. Постоянный множитель можно выносить за знак интеграла.

$$\int af(x) \, dx = a \int f(x) \, dx, \ a = const.$$

Proof.
$$\int af(x) \, dx = \int aF'(x) \, dx = \int (aFx)' \, dx = \int \, d(aF(x)) = (aF(x) + c_1) = a(F(x) + \frac{c_1}{a}) = \left| c = \frac{c_1}{a} \right| = a(f(x) + c) = a \int f(x) \, dx$$

4. Интеграл суммы двух функций равен сумме интегралов этих функций.

$$\int (f(x) + g(x))dx = \int f(X)dx + \int g(x)dx.$$

Proof. Пусть
$$\int g(x) \, dx = G(x) + c$$
; тогда $\int (f(x) + g(x)) \, dx = \int (F'(x) + G'(x)) \, dx = \int (F(x) + G(x))' \, dx = \int \, d(F(x) + G(x)) = F(x) + G(x) + G(x) + C = \left| c = c_1 + c_2 \right| = (F(x) + c_1) + (G(x)c_2) = \int f(x) \, dx + \int g(x) \, dx$

Remark.

- свойство 4 справедливо для любого конечного числа слогаемых
- свойство 3-4 называются свойством линейности неопределенного интеграла
- свойство 1-2 отражают связь операций дифференцирования и интегрирования

1.3 Таблица основных неопределенных интегралов

1.
$$\int x^{\alpha} \, \mathbf{d}x = \frac{x^{\alpha+1}}{\alpha+1} + c; \ \alpha \in \mathbb{R} \setminus \{-1\}$$

$$\int \frac{\mathrm{d}x}{x} = \ln|x| + c$$

$$\int a^x \, \mathbf{d}x = \frac{a^x}{\ln a} + c, \ a > 0$$

$$\int e^x \, \mathbf{d}x = e^x + c$$

$$\int \sin x \, \mathbf{d}x = -\cos x + c$$

$$\int \cos x \, \mathbf{d}x = \sin x + c$$

$$\int \frac{\mathbf{d}x}{\cos^2 x} = \tan x + c$$

$$\int \frac{\mathbf{d}x}{\sin^2 x} = -\cot x + c$$

9.
$$\int \operatorname{sh} x \, \, \mathbf{d}x = \operatorname{ch} x + c$$

10.
$$\int \operatorname{ch} x \ \mathbf{d}x = \operatorname{sh} x + c$$

$$\int \frac{\mathrm{d}x}{\mathrm{ch}^2 x} = \mathrm{th} \, x + c$$

$$\int \frac{\mathbf{d}x}{\sinh^2 x} = -\coth x + c$$

13.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + c$$

$$\int \frac{dx}{\sqrt{a-x^2}} = \arcsin \frac{x}{a} + c$$
14.
$$\int \frac{dx}{1+x^2} = \arctan x + c$$

$$\int \frac{dx}{a^2+x^2} = \frac{1}{a} \arctan \frac{x}{a} + c$$

Дополнительные формулы:

15.
$$\int \frac{\mathbf{d}x}{x^2 - a^2} = \frac{1}{2a} \ln |\frac{x - a}{x + a}| + c - \text{высокий логарифм}$$
16.
$$\int \frac{\mathbf{d}x}{\sqrt{x^2 + A}} = \ln |x + \sqrt{x^2 + A}| + c - \text{длинный логарифм}$$
17.
$$\int \sqrt{x^2 + A} \ \mathbf{d}x = \frac{x}{2} \sqrt{x^2 + A} + \frac{A}{2} \ln |x + \sqrt{x^2 + A}| + c$$
18.
$$\int \sqrt{a^2 - x^2} \ \mathbf{d}x = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + c$$

В этих формулах вместо x может быть записана произвольная дифференцируемая функция от x.

1.4 Основные примеры интегрирования

1.4.1 Непосредственное интегрирование

Непосредственное интегрирование заключается в использовании тождественных преобразований подинтегральнной функции, свойства линейности интеграла и таблицы интегралов.

Example:

1.
$$\int (\frac{\sqrt{x+1}}{\sqrt[3]{x}})^2 dx = \int \frac{x+2x^{\frac{1}{2}}+1}{\sqrt[3]{x^2}} dx = \int (x^{\frac{1}{3}} + 2x^{\frac{-1}{6}} + x^{\frac{-2}{3}}) dx =$$

$$= \frac{3}{4}x^{\frac{4}{3}} + 2 \cdot \frac{x^{\frac{5}{6}}}{5} \cdot 6 + x^{\frac{1}{3}} \cdot 3 + c$$

$$= \frac{3}{4}x^{\frac{4}{3}} + 2 \cdot \frac{x^{\frac{5}{6}}}{5} \cdot 6 + x^{\frac{1}{3}} \cdot 3 + c$$

$$2. \int \frac{\mathbf{d}x}{\sin^2 x \cos^2 x} = |\cos^2 x + \sin^2 x| = 1| = \int \frac{\cos^2 x + \sin^2 x}{\sin^2 x \cos^2 x} \, \mathbf{d}x = \int \frac{1}{\sin^2 x} \, \mathbf{d}x + \int \frac{1}{\cos^2 x} \, \mathbf{d}x = \tan x - \cot x + c$$

1.4.2Замена переменной

Theorem 1.4.1. Пусть на $\forall x \in (a; b) \int f(x) dx = F(x) + c$, (на всем интервале (a; b) известна первообразная функции): F'(x) = f(x) $x = \varphi(t)$ - функция дифференцируемая; причем $\varphi(t): t \in (\alpha; \beta) \ u \ \varphi: (\alpha; \beta) \to (a; b)$. Тогда справедлива формула:

$$\int f(\varphi(t)) \cdot \varphi_t'(t)dt = F(\varphi(t)) + c$$

$$\begin{array}{l} \textit{Proof.} \ (f(\varphi(t)))_t' = F_\varphi'(\varphi(t)) \cdot \varphi_t'(t) = |\varphi(t) = x| = F_x'(x)\varphi_t'(t) = |F_x'(x) = f(x)| = f(x) \cdot \varphi(t) = |x = \varphi(t)| = f(\varphi(t)) \cdot \varphi_t'(t) \Rightarrow F(\varphi(t)) \text{ первообразная для} \\ f(\varphi(t)) \cdot \varphi_t'(t) \Rightarrow \int f(\varphi(t)) \cdot \varphi_t'(t) dt = F(\varphi(t)) + c \end{array} \ \Box$$

Remark.

$$\varphi'_t(t) \ \mathbf{d}t = \ \mathbf{d}(\varphi(t)) \Rightarrow \int f(\varphi(t)) \cdot \ \mathbf{d}\varphi = F(\varphi) + c$$

1. Внесения выражения под знак дифференциала

$$\int f(x) \, dx = \int g(\varphi(x)) \cdot \varphi_x'(x) \, dx = \int g(\varphi) \, d\varphi = |G(x) - \text{известно} G'(x) = g(x)| =$$
$$= G(\varphi) + c = G(\varphi(x)) + c.$$

Часто используются преобразование дифференциала $\mathbf{d}x = \mathbf{d}(x++a) =$ $\begin{array}{l} \frac{1}{k} \mathbf{d}(kx) = \frac{1}{k} \mathbf{d}(kx+b) \\ x^{n-1} \mathbf{d}x = \frac{1}{n} \mathbf{d}(x^n) \end{array}$

Преобразования дифференциалов

$$\sin x \, dx = -d(\cos x)$$

$$\cos x \, dx = d(\sin x)$$

$$\frac{dx}{\cos^2 x} = d(\tan x)$$

$$\frac{dx}{x} = d(\ln x)$$

$$\frac{dx}{1+x^2} = d(\arctan x)$$

$$\frac{dx}{\sqrt{1-x^2}} = d(\arcsin x)$$

Example:

$$\int \sin^3 x \, dx = \int \sin x \sin^2 x \, dx \int (1 - \cos^2 x) \cdot (-d(\cos x)) = \int (\cos^2 - 1) \, d(\cos x) =$$

$$= \frac{\cos^3 x}{3} - \cos x + c.$$

2. Вынесения выражения из-под знак дифференциала

$$\int f(x) \, dx = |x = \varphi(t) \Rightarrow \, dx = \varphi'(t) \, dt| = \int f(\varphi(t)) \cdot \varphi'(t) \, dt = |g(t)| = G'(t)| = G(t) + c = |x = \varphi(t)| t = \varphi^{-1}(x)| = G(\varphi^{-1}(x)) + c$$

Example:

$$\int \sqrt{a^2 - x^2} \, dx = |x = a \sin t \, dx = a \cos t \, dt| = \int \sqrt{a^2 - a^2 \sin^2 t} a \cos t \, dt =$$

$$= a^2 \int \sqrt{1 - \sin^2 t} \cdot \cos t \, dt = a^2 \int \cos^2 t \, dt = \frac{a^2}{2} \int (1 + \cos^2 t) \, dt =$$

$$\frac{a^2}{2} (t + \frac{\sin 2t}{2}) + c = \frac{a^2}{2} (t + \sin t \cos t) + c = |\cos t = \sqrt{1 - \sin t} \, \frac{x}{a}$$

$$t = \arcsin \frac{x}{a}| = \frac{a^2}{2} (\arcsin \frac{x}{a} + \sqrt{1 - \frac{x^2}{a^2}} \cdot \frac{x}{a}) = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + c$$

1.4.3 Интегрирование по частям

Пусть u = u(x), v = v(x) - две диффренцируемые функции. по свойству дифференциала:

 $\mathbf{d}(uv) = u \ \mathbf{d}v + v \ \mathbf{d}u \Rightarrow \int \ \mathbf{d}(uv) = \int u \ \mathbf{d}v + \int v \ \mathbf{d}u$ - формула интегрирования по частям.

В исходном интеграле $\int f(x) \, \mathbf{d}x$ подинтегральное выражение представляется в виде двух сомножителей. Как правило, это можно сделать неоднозначно.

После того как u и dv выбраны, находим du, v, ...

$$\int f(x) \, \mathbf{d}x = |f(x) = u, \, \mathbf{d}x = \, \mathbf{d}v| \Rightarrow \, \mathbf{d}u = u' \, \mathbf{d}x = ... \Rightarrow v = \int \, \mathbf{d}v$$
 в результате применения формулы полученный интеграл оказывается более простым, чем исходный.

При необходимости формула интегрирования по частям применяется несколько раз.

I.
$$\int P_n(x) \left\{ \begin{array}{l} \sin(kx+b) \\ \cos(kx+b) \\ a^{kx} \\ e^{kx} \\ \sinh x, \cosh(kx) \end{array} \right\} dx \qquad U = Pn(x); \quad dv = \{\dots\}$$

II.
$$\int P_n(x) \left\{ \begin{array}{l} \arcsin x \\ \arccos x \\ \arctan x \\ \ln x \end{array} \right\} dx$$
 $U = \{ \dots \}; dv = Pn(x) dx$

III. $\int e^{kx} \left\{ \begin{array}{l} \sin(ax+b) \\ \cos(ax+b) \end{array} \right\} dx$ $U = e^{kx}; dv = \{ \dots \} dx$

III.
$$\int e^{kx} \left\{ \begin{array}{l} \sin(ax+b) \\ \cos(ax+b) \end{array} \right\} dx \qquad U = e^{kx}; dv = \left\{ \dots \right\} dx$$

$$\int_{I} e^{x} \sin 2x \, dx = \left| u = e^{x} \Rightarrow du = e^{x} \, dx; \sin 2x \, dx = dv; v = \int \sin 2x \, dx = \right|$$

$$= -\frac{\cos 2x}{2} \left| = -\frac{e^{x} \cos 2x}{2} + \int \frac{\cos 2x}{2} \cdot e^{x} dx = \left| u = e^{x}; \, du = e^{x}; \, dv = \cos 2x \, dx; v = \right|$$

$$= \frac{\sin 2x}{2} \left| = -\frac{e^{x} \cos 2x}{2} + \frac{1}{2} \left(\frac{e^{x} \sin 2x}{2} - \int \frac{\sin 2x}{2} \cdot e^{x} \, dx \right) = -\frac{e^{x} \cos 2x}{2} + \frac{1}{4} e^{x} \sin 2x - \frac{1}{4} \int e^{x} \sin 2x \, dx$$

$$I = -\frac{e^{x} \cos 2x}{2} + \frac{1}{4} e^{x} \sin 2x - \frac{1}{4} I; \quad I = -\frac{e^{x} \cos 2x}{2} + \frac{1}{4} e^{x} \sin 2x.$$

$$I = \frac{4}{5} \left(\frac{1}{4} e^{x} \sin 2x - \frac{1}{2} e^{x} \cos 2x \right) + c$$

1.5 Интегрирование рациональных функций

1.5.1Основные сведения о рациональных функциях

1. Многочлен(целая рациональная функция)

Многочленом
$$P_n(x)$$
 называется функция вида $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x^1 + a_0$; где $n \in \mathbb{N}, \ a_i \in \mathbb{R}, \ i = \overline{0, n}$

Корнем многочлена называется значение x_0 (вообще говоря, комплексное) аргумента x, при котором многочлен обращается в ноль. x_0 - корень $P_n(x)$ или $P_n(x_0) = 0$

Theorem 1.5.1.

Если x_0 -корень многочлена $P_n(x)$, то многочлен делится нацело на $(x-x_0)$,

$$m.e.\ P_n(x)\ npedcmasnemcs$$
 в виде: $P_n(x)=(x-x_0)\cdot Q_{n-1}(x),$ где Q — многочлен степенип — 1

Theorem 1.5.2.

Всякий многочлен степени n > 0 имеет по крайней мере один корень,

действительный или комплексный

Consequence.

- (1) Многочлен n-ой степени можно представить в виде: $P_n(x) = a_n(x-x_1)(x-x_2)\dots(x-x_n)$, где x_1,\dots,x_n корни $P_n(x),\ a_n$ старший коэффициент
- (2) Если среди корней многочлена имеются одинаковые, то объединим соответствующие или множители. Получим: $P_n(x) = a_n(x-x_1)^{k_1}(x-x_2)^{k_2}\dots(x-x_n)^{k_m}, \text{ где } k_1+k_2+\dots+k_m=n.$ для $x_i: (x-x_i)_i^k; k_i$ кратность корня x_i . Такое представление называется разложением многочлена на линейные множители.

Theorem 1.5.3.

Известно, что если многочлен имеет комплексный корень $x_0=a_i+ib(a,\,b\in\mathbb{R};\,x_0\in\mathbb{C}),$ то комплексное спряженое число $\bar{x}=a-ib$ - тоже корень $P_n(x)$. Таким образом, в разложении многочлена комплексно спряженные числа входят парами, перемножим: $(x-(a+ib))(x-(a-ib))=x^2-x(a+ib)-x(a-ib)+(a+ib)(a-ib)=x^2-ax-ibx-ax+ibx+a^2+b^2=x^2-2ax+a^2+b^2.$

Полученый трехчлен имеет действительный коэффициент, причем дискретный $D=B^2-4A\cdot C=4a^2-4(a^2+b^2)=-4b^2<0$

Получаем, что пару множителей, соответсвующую двум комплексных сопряженным корням можно заменить квадратный трехчлен c действительным коэффициентом u D < 0.

Окончательно получим разложение на множители в виде: $P_n(x) = (x - x_1)^{k_1} (x - x_2)^{k_2} (x - x_5)^{k_5} (x^2 + p_1 x + q_1)^{l_1} \dots (x^2 p_m x + q_m)^{l_m},$ где $x_1, \dots, x_5 \in \mathbb{R}$ - корни многочлена $Pn(x); p_i, q_i \in \mathbb{R}, i = \overline{1, m};$ $D_i = p_i^2 - 4q_i < 0. \qquad k_1 + \dots + k_5 + 2(l_1 + \dots + l_m) = n$

Многочлен называется тождественно равным нулю

$$Pn(x) \equiv 0$$
, если $\forall x \in \mathbb{R} \ Pn(x) = 0$

Theorem 1.5.4.

Многочлен тожественно равен нулю тогда и только тогда, когда

все его коэффициенты равны нулю
$$a_i=0,\ i=\overline{0,n}$$

Consequence.

Два многочлена тождественно равны, если их степени одинаковы и имеют одинаковые коэффициенты при одинаковых степенях x

Proof.
$$P_n(x) \equiv Q_n(X)$$

 $P_n(x) - Q_n(x) \equiv 0$
 $(a_n + b_n)x^n + (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_0 + b_0) = 0$

Example:

$$P_3(x) = 3x^2 - 2x + 4$$

$$Q_4(x) = a_4 x^4 + a_3 x^3 - a_2 x^2 + a_1 x + a_0$$

$$P_3(x) \equiv Q_4(x) \Rightarrow \begin{cases} a_4 = 0 \\ a_3 = 3 \\ a_2 = 0 \\ a_1 = -2 \\ a_1 = 4 \end{cases}$$

2. Дробная рациональная функция

Дробной рациональной функцией называется отношение двух многочленов. $\frac{P_n(x)}{Q_m(x)} >$ многочлены $\{$ дробная рациональная функция, рациональная дробь. Если $n \geq m$, то рациональная дробь **неправильная**, если n < m - **правильная**.

Theorem 1.5.5.

Неправильная рациональная дробь может быть представлена в виде

суммы многочлена и правильной рациональной дроби.

$$rac{P_n(x)}{Q_m(x)}=rac{U_{n-m}(x)}{U_{n-m}(x)}+rac{R_k(x)}{Q_m(x)},\; k< m,\; R_n(x)$$
 - многочлен.

Элементарные (простейшие) рациональные дроби:

I.
$$\frac{A}{x-a} \qquad A, \ a \in \mathbb{R}$$

II.
$$\frac{A}{(x-a)^k} \qquad k \in \mathbb{N}, \ k > 1, \ A, \ a \in \mathbb{R}$$

III.
$$\frac{Mx + N}{x^2 + px + q} \qquad M, \ n, \ p, \ q \in \mathbb{R}, \ D = p^2 - 4q < 0$$

IV.

$$\frac{Mx+N}{(x^2+px+q)^k} \qquad M, \, n, \, p, \, q \in \mathbb{R}, \, D=p^2-4q < 0, \, k \in \mathbb{N}, \, k > 1$$

Theorem 1.5.6.

Пусть $\frac{P_n(x)}{Q_m(x)}$ - правильная рациональная дробь(n < m), и знаменатель дроби $Q_m(x)$ разложен на множители:

$$Q_m(x) = \underbrace{(x - x_1)^{k_1} \dots (x - x_5)^{k_5}}_{\text{действительные корни}} \underbrace{(x^2 + p_1 x + q_1)^{l_1} \dots (x^2 + p_m x + q_m)^{l_m}}_{D < 0}$$

Тогда заданная дробь раскладывается в сумму простых дробей следующего вида:

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_1}{x - x_1} + \frac{A_2}{(x - x_1)^2} + \dots + \frac{A_{k_1}}{(x - x_1)^{k_1}} + \dots + \frac{F_1}{x - x_5} + \frac{F_2}{(x - x_5)^2} + \dots + \frac{F_{k_5}}{(x - x_5)^{k_5}} + \frac{M_1 x + N_1}{(x^2 + p_1 x + q_1)} + \dots + \frac{M_{l_1} + N_l}{(x^2 + p_l x + q_l)^l} + \dots$$

При этом:

$$(x - x_i)^{k_i} \leftrightarrow \frac{A_1}{x - x_i} + \frac{A_2}{(x - x_i)^2} + \dots + \frac{A_{k_i}}{(x - x_i)^K};$$

$$(x^2 + p_j x + q_j)^{l_j} \leftrightarrow \frac{M_1 x + N_1}{(x^2 + p_j x + q_j)} + \frac{M_2 x + N_2}{(x^2 + p_j x + q_j)} + \dots + \frac{M_{l_j} x + N_{l_j}}{(x^2 + p_j x + q_j)}$$

В разложении появляются так называемые неопределенные коэффициенты, которые подлежат дальнейшиму определению.

$$\frac{3x-2}{(x-1)^3(x+2)(x^2+1)(x^2+2x+3)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3} + \frac{B}{x+2} + \frac{Cx+D}{x^2+1} + \frac{Ex+F}{x^2+2x+3} + \frac{Mx+N}{(x^2+2x+3)^2}$$

Для того, чтобы найти неопределенные коэффициенты в полученном выражении, умножают обе части тождества на знаменатель левой части. Таким образом, получают 2 тождественно равных многочлена. Раскрывая скобки справа, после сего приравнивают коэффициенты при одинаковых степенях. Получают систему линейных уравнений для определения неизвестных коэффициентов.

$$\frac{x^4 + 2x^3 + 5x^2 - 1}{x(x^2 + 1)^2} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2} \left| x(x^2 + 1)^2 \right|$$

$$x^4 + 2x^3 + 5x^2 - 1 = a(x^2 + 1)^2 + (Bx + C)x(x^2 + 1) + (Dx + E)x =$$

$$= A(x^4 + 2x^2 + 1) + (Bx + C)(x^3 + x) + Dx^2 + Ex =$$

$$= Ax^4 + 2Ax^2 + A + Bx^4 + Cx^3 + Bx^2 + Cx + Dx^2 + Ex =$$

$$= (A + B)x^4 + Cx^3) + (2A + B + D)x^2 + (E + C)x + A.$$

$$\begin{cases} x^4 : & A + B = 1 & A = 1 \\ x^3 : & C = 2 & B = 2 \\ x^2 : & 2A + B + D = 5 & C = 2 \\ x^1 : & C + E = 0 & D = 5 \\ x^0 : & A = -1 & E = -2 \end{cases}$$

$$\frac{x^4 + 2x^3 + 5x^2 - 1}{x(x^2 + 1)^2} = -\frac{1}{x} + \frac{2x + 2}{x^2 + 1} + \frac{5x - 2}{(x^2 + 1)^2}$$

В некоторых случаях для нахождения неопределенных коэффициентов можно воспользоваться так называемым методом частных значений аргумента. Он состоит в том, что аргументу x придаются конкретные числовые значения столько раз, сколько содержится неизвестных коэффициентов в разложении. При этом удобно выбирать x равным значению действительного корня знаменателя.

$$\frac{3x-4}{x(x-2)(x+1)} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{x+1}$$

$$A = \frac{3x-4}{(x-2)(x+1)} \Big|_{x=0} = \frac{-4}{-2 \cdot 1} = 2$$

$$B = \frac{3x-4}{x(x+1)} \Big|_{x=2} = \frac{6-4}{2 \cdot 3} = \frac{1}{3}$$

$$C = \frac{3x-4}{x(x-2)} \Big|_{x=-1} = \frac{-3-4}{-1 \cdot (-3)} = -\frac{7}{3}$$

Example:

$$\frac{x^{2}+1}{x(x-1)^{2}} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^{2}}$$

$$A = \frac{x^{2}+1}{(x-1)^{2}}\Big|_{x=0} = 1$$

$$C = \frac{x^{2}+1}{x}\Big|_{x=1} = 2$$

при
$$x = 2$$
:
$$B = \frac{5}{2} - \frac{1}{2} - 2 = 0$$

1.5.2 Интегрирование простейших дробей

I.
$$\int \frac{A}{x-a} dx = A \int \frac{d(x-a)}{x-a} = A \ln|x-a| + c$$

II.
$$\int \frac{A}{(x-a)^k} dx = A \int (x-a)^{-k} d(x-a) = A \frac{(x-a)^{-k+1}}{-k+1} + c$$

$$\begin{split} &\text{III. } \int \frac{Mx+N}{x^2+px+q} \ \mathbf{d}x = \int \frac{Mx+N}{x^2+2x\cdot\frac{p}{2}+\frac{p^2}{4}-\frac{p^2}{4}+q} \ \mathbf{d}x = M \int \frac{x+\frac{p}{2}-\frac{p}{2}}{(x+\frac{p}{2})^2+q-\frac{p^2}{4}} \ \mathbf{d}\left(x+\frac{p}{2}\right) + \\ &+ N \int \frac{\mathbf{d}(x+\frac{p}{2})}{(x+\frac{p}{2})^2+q-\frac{p^2}{4}} = M \int \frac{(x+\frac{p}{2}-\frac{p}{2}) \ \mathbf{d}(x+\frac{p}{2})}{(x+\frac{p}{2})^2+q-\frac{p^2}{4}} + \left(N-\frac{Mp}{2}\right) \int \frac{\mathbf{d}(x+\frac{p}{2})}{(x+\frac{p}{2})^2+q-\frac{p^2}{4}} = \left| \begin{array}{c} \left(x+\frac{p}{2}\right) = t \\ q-\frac{p^2}{4} = a^2 \end{array} \right| = \\ &M \int \frac{t \ \mathbf{d}t}{t^2+a^2} + \left(N-\frac{Mp}{2}\right) \int \frac{\mathbf{d}t}{t^2+a^2} = \frac{M}{2} \left(\int \frac{\mathbf{d}(t^2+a^2)}{(t^2+a^2)^k}\right) + \left(N-\frac{Mp}{2}\right) \cdot I_k = \frac{M}{2} \frac{(t^2+a^2)^{-k+1}}{-k+1} + \\ &+ \left(N-\frac{Mp}{2}\right) \cdot I_k \end{split}$$

Найдем
$$I_k = \int \frac{\mathrm{d}t}{(t^2 + a^2)^k} = \begin{vmatrix} U = \frac{1}{(t^2 + a^2)^k} \Rightarrow \mathbf{d}U = -k(t^2 + a^2)^{-k-1} \\ \mathbf{d}V = \mathbf{d}t; \ V = t; \ 2t \ \mathbf{d}t = -2k\frac{t \ \mathbf{d}t}{(t^2 + a^2)^{k+1}} \end{vmatrix} = \frac{t}{(t^2 + a^2)^k} + \int t \cdot 2k\frac{t \ \mathbf{d}t}{(t^2 + a^2)^k} = \frac{t}{(t^2 + a^2)^k} + 2k\int \frac{(t^2 + a^2 - a^2) \ \mathbf{d}t}{(t^2 + a^2)^{k+1}} = \frac{t}{(t^2 + a^2)^k} + 2k\int \left(\frac{1}{(t^2 + a^2)^k} - \frac{a^2}{(t^2 + a^2)^{k+1}}\right) \ \mathbf{d}t = \frac{t}{t^2 + a^2} + 2k\left(I_k - a^2I_{k+1}\right) = \frac{t}{t^2 + a^2} + 2kI_k - 2ka^2I_{k+1} \Rightarrow 2ka^2I_{k+1} = \frac{t}{(t^2 + a^2)^k} + I_k(2k - 1);$$

Пусть
$$k+1=n\Rightarrow k=n-1$$
 Получим: $I_n=\frac{1}{a^2(2n-2)}\cdot\frac{t}{(t^2+a^2)^{n-1}}+\frac{2n-3}{2n-2}\cdot\frac{1}{a^2}\cdot I_{n-1};\ n>2$

1.5.3 Общая схема интегрирования рациональных дробей

- 1. Если дробь неправильная, то разделить числитель на знаменатель и выделить целую часть (т. е. представить дробь в форме многочлена и правильной рациональной дроби).
- 2. Знаменатель правильной рациональной дроби раскладываем на множители и записываем разложение правильной дроби в сумму простейших дробей.
- 3. Находим неопределенные коэффициенты этого разложения.
- 4. Интегрируем полученный многочлен и сумму полученных дробей.

Remark. Интеграл от рациональной функции всегда выражается через элементарные функции.

Example:

$$\int \frac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} \, \mathrm{d}x = \\ \left(\frac{x^5}{-x^5 - 2x^4 - 2x^3} + 4x + 4 \right) : \left(x^4 + 2x^3 + 2x^2 \right) = x - 2 + \frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2} \right) = \\ \frac{-2x^4}{-2x^4} + \frac{2x^4 + 4x^3 + 4x^2}{4x^3 + 4x^2 + 4x + 4} = \\ \int \left((x - 2) + \frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2} \right) \, \mathrm{d}x = \\ \frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2} = \frac{4x^3 + 4x^2 + 4x + 4}{x^2(x^2 + 2x + 2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 2x + 2} \quad (1.1)$$

$$B = \frac{4x^3 + 4x^2 + 4x + 4}{x^2 + 2x^3 + 2x^2} \Big|_{x=0} = 2$$

$$\text{при } x = 1 : (1.1)$$

$$\frac{16}{5} = A + 2 + \frac{C1 + D}{2} \Big| \cdot 5; \qquad 16 = 5A + 10 + C + D; \qquad 5a + C + D = 6$$

$$\text{при } x = -1 : \\ 0 = -A + 2 + D - C; \qquad A + C - D = 2; \qquad A + C - D = 2$$

$$\text{при } x = -2 : \\ \frac{-32 + 16 - 8 + 4}{16 - 16 + 8} = -\frac{A}{2} + \frac{2}{4} + \frac{D - 2C}{2} \Big| \cdot 2; \qquad -5 = -A + 1 + D - 2C; \Rightarrow$$

$$\Rightarrow A = 0; B = 2; C = 4; D = 2$$

$$\int \left(x - 2 + \frac{2}{x^2} + \frac{4x + 2}{x^2 + 2x + 2} \right) \, \mathrm{d}x = \frac{2}{x^2} - 2x + 2 \int \frac{2x + 2 - 1}{(x^2 + 2x + 2)} \, \mathrm{d}x =$$

$$= \frac{2}{x^2} - 2x - \frac{2}{x} + 2 \ln(x^2 + 2x + 2) - \int \frac{\mathrm{d}(x + 1)}{(x + 2)^2 + 1} \, \mathrm{d}x =$$

$$\frac{2}{x^2} - 2x - \frac{2}{x} + 2 \ln(x^2 + 2x + 2) - 2 \arctan(x + 1)$$

1.6 Интегрирование тригонометрических функций

1.6.1 Универсальная тригонометрическая замена

Пусть $R(\sin x; \cos x)$ - рациональная функция от $\sin x, \cos x$.

Замена: $t = \tan \frac{x}{2}$

Тогда:

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = 2\tan\frac{x}{2}\cos\frac{x^2}{2} = \frac{2\tan\frac{x}{2}}{1 + \tan^2\frac{x}{2}} = \frac{2t}{1 + t^2}$$

$$\cos x = 2\cos^2\frac{x}{2} - 1 = \frac{2}{1 + \tan^2\frac{x}{2}} - 1 = \frac{2}{1 + t^2} - 1 = \frac{1 - t^2}{1 + t^2}$$

 $x = 2 \arctan t;$

$$\mathbf{d}x = \frac{2}{1+t^2} \; \mathbf{d}t$$

Получаем:

$$\int R(\sin x, \cos x) \, dx = \int R\left(\frac{2}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \cdot \frac{2}{1+t^2} \, dt = \int R_1(t) \, dt$$

Remark. Этот способ позволяет найти первообразную, но полученная функция f(t) может оказаться слишком громаздкой.

1.6.2 Другие виды подстановок

- 1. Если подинтегральная функция является нечетной относительно $\sin x$, т. е. $R(-\sin x,\cos x) = -R(\sin x,\cos x)$, то используется замена $t=\cos x$. Фактически это означает внесения $\cos x$ под знак дифференциала.
- 2. Если подинтегральная функция является нечетной относительно $\cos x$, т. е. $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, то используется замена $t = \sin x$. Фактически это означает внесения $\sin x$ под знак дифференциала.
- 3. Если подинтегральная функция является одновременно четной относительно $\sin x, \cos x$ то выполняется замена $t = \tan x$ (внесение $\frac{1}{\cos^2 x}$ под знак дифференциала).

Remark.

Для
$$\int R(\tan x) \, dx$$
 замена $\tan x = t \Rightarrow x = \arctan t; \, dx = \frac{dt}{1+t^2};$ и $\int R(\tan x) \, dx = \int R(t) \cdot \frac{dt}{1+t^2} = \int R_1(t) \, dt$

Использования формул тригонометрии 1.6.3

1.

$$\int \cos^2 x \, dx, \int \sin^2 x \, dx \Rightarrow \cos^2 x = \frac{1 + \cos 2x}{2}, \sin^2 x = \frac{1 - \cos 2x}{2}$$

2.

$$\int \cos \alpha x \cos \beta x \, dx \Rightarrow \cos \alpha x \sin \beta x = \frac{1}{2} (\cos(\alpha - \beta)x + \cos(\alpha + \beta)x)$$

$$\int \sin \alpha x \sin \beta x \, dx \Rightarrow \sin \alpha x \sin \beta x = \frac{1}{2} (\cos(\alpha - \beta)x - \cos(\alpha + \beta)x)$$

$$\int \sin \alpha x \cos \beta x \, dx \Rightarrow \sin \alpha x \cos \beta x = \frac{1}{2} (\sin(\alpha - \beta)x + \sin(\alpha + \beta)x)$$

$$\int \frac{dx}{3+\sin x + \cos x} = \begin{vmatrix} t = \tan \frac{x}{2} \\ \sin x = \frac{2t}{1+t^2} \\ \cos x = \frac{1-t^2}{1+t^2} \end{vmatrix} = \int \frac{2 dt}{(1+t^2)(3+\frac{2t}{1+t^2}+\frac{1-t^2}{1+t^2})} = 2 \int \frac{dt}{3+3t^2+2t+1-t^2} = 2 \int \frac{dt}{3+3t^2+2$$

Example:

$$\int \frac{dx}{1+\sin^2 x} = \frac{1}{\frac{1}{\cos^2 x} + \tan^2 x} \cdot \frac{dx}{\cos^2 x} = \left| \cos^2 x = \frac{1}{1+\tan^2 x} \right| = \int \frac{1}{1+2\tan^2 x} \, \mathbf{d}(\tan x) = \left| \tan x = t \right| = \int \frac{dt}{1+2t^2} = \frac{1}{\sqrt{2}} \int \frac{\mathbf{d}(\sqrt{2}t)}{1+(\sqrt{2}t)^2} = \frac{1}{\sqrt{2}} \arctan(\sqrt{2}t) + c = \frac{1}{\sqrt{2}} \arctan(\sqrt{2}\tan x) + c$$

Example:
$$\int \cos^2 x \sin^4 x \, dx = \int \frac{1+\cos 2x}{2} \left(\frac{1-\cos 2x}{2}\right)^2 \, dx = \frac{1}{8} \int (1-\cos^2 2x)(1-\cos 2x) \, dx = \frac{1}{8} \int (1-\cos 2x - \cos^2 x + \cos^3 2x) \, dx = \frac{1}{8} \left(x - \frac{\sin 2x}{2} - \int \cos^2 2x \, dx + \int \cos^3 2x \, dx\right) = \frac{1}{8} x - \frac{\sin 2x}{16} - \frac{x}{16} - \frac{\sin 4x}{64} - \frac{1}{16} \int (1-\sin^2 x) \, d(\sin 2x) = \frac{x}{16} - \frac{\sin 2x}{16} - \frac{\sin 4x}{16} + \frac{\sin 2x}{16} - \frac{1}{16} \frac{\sin^3 2x}{3} + c = \frac{x}{16} - \frac{\sin 4x}{16} - \frac{1}{16} \frac{\sin^3 2x}{3} + c$$

Example:

$$\int \sin^4 x \cos^5 x \, dx = |\sin x = t| = \int \sin^4 x \cos^4 x \underbrace{\cos x}_{\mathbf{d}(\sin x)} = \int \sin^4 x (\cos^2 x)^2 \, \mathbf{d}(\sin x) =$$

$$= \int \sin^4 x (1 - \sin^2 x)^2 \, \mathbf{d}(\sin x) = \int t^4 (1 - 2t^2 - t^4) \, dt = \int (t^4 - 2t^6 + t^8) \, dt =$$

$$= \underbrace{t^5}_{5} - \underbrace{2t^7}_{7} + \underbrace{t^9}_{9} + c = \underbrace{\sin^5 x}_{5} - \underbrace{2\sin^7 x}_{7} + \underbrace{\sin^9 x}_{9} + c$$

1.7 Интегрирование некоторых иррациональных и транцедентных функций

1.7.1 Дробно-линейная подстановка для интегралов

Remark.

1.
$$\left(\frac{ax+b}{cx+d}\right)^{\frac{m}{n}} = \sqrt[n]{\left(\frac{ax+b}{cx+d}\right)^m}$$

2. Частичными случаи таких дробей являются

$$ax + b(c = 0, d = 1),$$
 $x = (c = 0, d = 1, b = 0, a = 1)$

Замена:

Замена:
$$\frac{ax+b}{cx+d} = t^l, \text{ где } l = \text{lcm}(n_2, n_2, \dots, n_k) \Rightarrow \left(\frac{ax+b}{cx+d}\right)^{\frac{m_i}{n_i}} = t^{\frac{m_i}{n_i}l} = t^{p_i}, \ p_i \in \mathbb{Z}$$

$$ax+b=t^lcx+dt^l; \ x=(t^lc-a)=b-d\cdot t^l \Rightarrow x=\frac{b-dt^l}{ct^l-a}$$

$$\mathbf{d}x=\left(\frac{b-dt^l}{ct^l-a}\right)_t' \ \mathbf{d}t=\frac{-dl\cdot t^{l-1}(ct^l-a)-(b-dt^l)\cdot c\cdot l\cdot t^{l-1}}{(ct^l-a)^2}=\frac{-lt^{l-1}(cdt^l-ad+bc-cdt^l}{(ct^l-a)^2}=\frac{-lt^{l-1}(bc-ad)}{(ct^l-a)^2}$$

Таким образом, подинтегральная функция будет являтся рациональной функцией от t.

Example:

$$\int \frac{\mathrm{d}x}{\sqrt[3]{(2x+1)^2} - \sqrt{2x+1}} = \begin{vmatrix} n_1 = 3; & \text{Замена:} & 2x+1=t^6 \\ n_2 = 2 & x = \frac{t^6-1}{2} \\ \mathrm{lcm} = 6 & \mathbf{d}x = 3t^5 \mathbf{d}t \end{vmatrix} = \int \frac{3t^5 \mathbf{d}t}{(t^6)^{\frac{2}{3}} + (t^6)^{\frac{1}{2}}} = 3\int \frac{t^5 \mathbf{d}t}{t^4 - t^3} = 3\int \frac{t^2}{t-1} \mathbf{d}t \underset{\text{выделяем целую часть}}{\Longrightarrow} \left(t^2 \right) : \left(-1 + 1t \right) = \frac{1}{-1+1t} t^2 = \frac{-t^2}{0}$$

$$= 3\int (t+1+\frac{1}{t-1}) \mathbf{d}t = 3\left(\frac{t^2}{2} + t + \ln|t-1| \right) + c = |t = \sqrt[6]{2x+1}| =$$

$$= \frac{3}{2}\sqrt[3]{2x+1} + 3\sqrt[6]{2x+1} + 3\ln|\sqrt[6]{2x+1} - 1| + c$$

Example:

$$\int \frac{1}{(x-1)^2 \sqrt[3]{\frac{x+1}{x-1}}} \, \mathbf{d}x = \begin{vmatrix} \frac{x+1}{x-1} = t^3 \Rightarrow & \mathbf{d}x = \left(\frac{t^3+1}{t^3-1}\right) \, \mathbf{d}t \\ x+1 = xt^3 - t^3 \\ x = \frac{t^3+1}{t^3-1} & = \frac{-6t^2 \, \mathbf{d}t}{(t^3-1)^2} \end{vmatrix} =$$

$$= \int \frac{1}{\left(\frac{t^3+1}{t^3-1}-1\right)^2} \cdot t \cdot \frac{-6t^2 \, \mathbf{d}t}{(t^3-1)^2} = -6 \int \frac{1 \cdot t^3 \, \mathbf{d}t}{\frac{2^2}{(t^3-1)}} \cdot (t^3-1)^2 = -\frac{6}{4} \cdot \frac{t^4}{4} = -\frac{3}{8} \cdot \left(\frac{x+1}{x-1}\right)^{\frac{4}{3}} + c$$

1.7.2 Квадратичные иррациональности

- 1. Частные случаи
 - (а) Интегралы вида $\int R(x, \sqrt{x^2 \pm a^2}) \, \mathbf{d}x$, $\int R(x, \sqrt{a^2 x^2}) \, \mathbf{d}x$ R() знак рациональной функции. Для преобразования таких интегралов к интегралам рациональной функции испльзуется замена.
 - для $R(x, \sqrt{a^2-x^2})$: $x=a\sin t$ для $R(x, \sqrt{x^2+a^2})$: $x=at\tan t$; $(1+\tan^2 t=\frac{1}{\cos^2 t})$ для $R(x, \sqrt{x^2-a^2})$: $x=\frac{a}{\sin t}$
 - (b) Интегралы вида $\int \frac{dx}{\sqrt{ax^2+bx+c}}$; $\int \sqrt{ax^2+bx+c} \ dx$; $\int \frac{(mx+n) \ dx}{\sqrt{ax^2+bx+c}}$ можно свести к табличному или к пункту (a) выделением полного квадрата. $ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2+2\cdot x\cdot \frac{b}{2a}+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+\frac{c}{a}\right)==a\left(x^2+\frac{b}{a}\right)^2+c-\frac{b^2}{4a}$; замена: $\left(x+\frac{b}{2a}\right)=t$
 - (c) Интегралы вида $\int \frac{P_n(x) \, dx}{\sqrt{ax^2+bx+c}}$, $P_n(x)$ многочлен n-ой степени, можно вычислить поп формуле: $\int \frac{P_n(x) \, dx}{\sqrt{ax^2+bx+c}} = Q_{n-1}(x) \cdot \sqrt{ax^2+bx+c} + \lambda \int \frac{dx}{\sqrt{ax^2+bx+c}}$, где $Q_{n-1}(x)$ многочлен с непоределенными коэффициентами. λ неопределенный коэффициент. Неопределенный коэффициенты находим, дифференцируя обе части этой формулы и умножая полученный результат на знаменатель. $\frac{P_n(x)}{\sqrt{ax^2+bx+c}} = Q'_{n-1}(x) \cdot \sqrt{ax^2+bx+c} + Q_{n-1}(x) frac 2ax + b\sqrt{ax^2+bx+c} + c + \lambda \cdot \frac{1}{\sqrt{ax^2+bx+c}} =$ умножаем на $\sqrt{ax^2+bx+c}$, из полученного находим неопределенные коэффициенты.

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \begin{vmatrix} x = \frac{a}{\sin t} \\ dx = -\frac{a \cos t}{\sin t} dt \end{vmatrix} = \int \frac{-a \cos t}{\sqrt{\frac{a^2}{\sin^2 t} - a^2 \cdot \sin t}} = -\int \frac{\cos t}{\sqrt{\frac{1 - \sin^2 t}{\sin^2 t} \cdot \sin^2 t}} =$$

$$= -\int \frac{dt}{\sin t} \cdot \frac{\sin t}{\sin t} = \int \frac{d(\cos t)}{1 - \sin^2 t} = \frac{1}{2} \ln \left| \frac{1 - \cos t}{1 + \cos t} \right| + c =$$

$$= \begin{vmatrix} \sin t = \frac{a}{x}; \\ t = \arcsin \frac{a}{x} \end{vmatrix} \cdot \frac{\cos t = \sqrt{1 - \sin^2 t}}{\sqrt{1 - \frac{a^2}{x^2}}} = \sqrt{\frac{x^2 - a^2}{x^2}} \end{vmatrix} = \frac{1}{2} \ln \left| \frac{1 - \frac{\sqrt{x^2 - a^2}}{x}}{1 + \sqrt{x^2 - a^2}} \right| + c =$$

$$= \frac{1}{2} \ln \left| \frac{x - \sqrt{x^2 - a^2}}{x + \sqrt{x^2 - a^2}} \right| + c$$

Example

$$\int \frac{x+4}{\sqrt{6-2x-x^2}} \, \mathbf{d}x = \begin{vmatrix} 6-2x-x^2 = -((x^2+2x+1)-7) = -(x+1)^2 + 7 = \\ = 7-(x+1)^2 = (\sqrt{7})^2 - (x+1)^2 \end{vmatrix} = \\ = |x+1 = t| = \int \frac{t+3}{\sqrt{(\sqrt{7})^2 + (t^2)}} \, \mathbf{d}t = \int \frac{t \, \mathbf{d}t}{\sqrt{7-t^2}} + 3 \int \frac{\mathbf{d}t}{\sqrt{7-t^2}} = -\frac{1}{2} \int \frac{\mathbf{d}(7-t^2)}{\sqrt{7-t^2}} + \\ + 3\arcsin\frac{t}{\sqrt{7}} = -\sqrt{7-t^2} + 3\arcsin\frac{t}{\sqrt{7}} + c = -\sqrt{6-2x-x^2} + \\ + 3\arcsin\frac{x+1}{\sqrt{7}} + c \end{vmatrix}$$

Example:

$$\int \frac{x^2 \, dx}{\sqrt{1 - 2x - x^2}} = (Ax + B)\sqrt{1 - 2x - x^2} + \lambda \int \frac{dx}{\sqrt{1 - 2x - x^2}} \Big|' = \frac{x^2}{\sqrt{1 - 2x - x^2}} =$$

$$= A\sqrt{1 - 2x - x^2} + (Ax + B) \cdot \frac{-2 - 2}{2\sqrt{1 - 2x - x^2}} + \frac{\lambda}{\sqrt{1 - 2x - x^2}} \Big| \cdot \sqrt{1 - 2x - x^2}$$

$$x^2 = A - 2Ax - Ax^2 - Ax^2 - Ax - Bx - B + \lambda$$

$$\begin{cases} -2A = 1 \\ -3A + B = 0 \\ A - B + \lambda = 0 \end{cases}$$

$$\begin{cases} A = -\frac{1}{2} \\ B = \frac{3}{2}\lambda = 2 \end{cases}$$

$$\left(-\frac{1}{2}x + \frac{3}{2} \right) \sqrt{1 - 2x - x^2} + 2 \int \frac{dx}{\sqrt{2 - (x + 1)^2}} = F(x) + 2 \arcsin \frac{x + 1}{\sqrt{2}} + c \right)$$

- 2. Интегралы общего вида $\int R(x, \sqrt{ax^2 + bx + c}) \, dx$
- Способ 1 Выделим под знаком радикала полный квадрат и выполняем замену: $x+\frac{b}{2a}=t;$ интеграл сводится к к одному из интегралов $\int R(t,\sqrt{t^2\pm a^2}) \; \mathbf{d}t, \int R(t,\sqrt{a^2-t^2}) \; \mathbf{d}t,$ которые находятся при помощи тригонометрической подстановки.

Способ 2 Использование подстановки Эйлера

- если
$$a>0$$
, то $\sqrt{ax^2+bx+c}=\pm\sqrt{a}x+t$: $(t\pm\sqrt{a}x)$

- если
$$c>0$$
, то $\sqrt{ax^2+bx+c}=tx\pm\sqrt{c}$

- если
$$D > 0$$
, то $\sqrt{ax^2 + bx + c} = (x - \alpha) \cdot t$, где α - корень $ax^2 + bx + c|_{x=\alpha} = 0$.

Remark. По крайней мере одно из условий будет выполнено всегда; т.к.

ситуация
$$\begin{cases} a<0\\ c<0 \qquad \Rightarrow ax^2+bx+c<0 \text{ запрещена по ОДЗ.} \\ D<0 \end{cases}$$

1.7.3 Инегрирование дифферециального бинома

Интеграл $\int x^m (a+bx^n)^p \, \mathbf{d}x$, $m, n, p \in \mathbb{Q}$; $a, b \in \mathbb{R}$ этот интеграл сводится к к интегралу от рациональной функции и первообразная выражается в элементарных функциях только в следующих случаях:

1.
$$p \in \mathbb{Z}$$

$$2. \ \frac{m+1}{n} \in \mathbb{Z}$$

3.
$$\left(\frac{m+1}{n} + p\right) \in \mathbb{Z}$$

При этом для сведения заданого интеграла к интегралу от рациональной функции используются подстановки:

- 1. $p \in \mathbb{Z}$ Замена: $x = t^k$, где k = lcm(m, n)
- 2. $\frac{m+1}{n} \in \mathbb{Z}$ Замена: $a+bx^n=t^s$, где s знам. p
- 3. $\left(\frac{m+1}{n}+p\right)\in\mathbb{Z}$ Замена: $a+bx^n=t^sx^n$, где s знам. p

В остальных случиях первообразная в элементарных функциях не выражается. Этот результат носит название теоремы Чебышева.

Example:

$$\int \frac{\sqrt[3]{\sqrt[4]{x+1}}}{\sqrt{x}} \, \mathbf{d}x = \int x^{-\frac{1}{2}} (1+x^{\frac{1}{4}})^{\frac{1}{4}} \, \mathbf{d}x = \begin{vmatrix} m = -\frac{1}{2} \\ n = \frac{1}{4} \\ p = \frac{1}{3} \end{vmatrix} \rightleftharpoons$$

- 1. $p \notin \mathbb{Z}$
- 2. $\frac{m+1}{n}=\frac{1\cdot 4}{2\cdot 1}=2\in\mathbb{Z}$ второй случай. Замена: $1+x^{\frac{1}{4}}=t^3,\;x=(t^3-1)^4;\;\;\mathbf{d}x=4(t^3-1)^3\cdot 3t^2\;\mathbf{d}t$

1.7.4 Интегралы вида $\int R(e^x) dx$, $\int R(\sqrt{e^x + e}) dx$

- 1. Замена: $e^x = t \Rightarrow x = \ln t$, $\mathbf{d}x = \frac{\mathbf{d}t}{t}$ $\int R(e^x) \, \mathbf{d}x = \int R(t) \frac{\mathbf{d}t}{t} = \int R_1(t) \, \mathbf{d}t$
- 2. Замена: $\sqrt{e^x + e} = t \Rightarrow e^x = t^2 a$, $x = \ln(t^2 a)$, $\mathbf{d}x = \frac{2t \ \mathbf{d}t}{t^2 a}$ $\int R(\sqrt{e^x + e}) \ \mathbf{d}x = \int R(t) \cdot \frac{2t \ \mathbf{d}t}{t^2 a} = \int R_1(t) \ \mathbf{d}t$

1.8 Интегралы, не выражающиеся в элементарных функциях

В интегральном исчислении строго доказывается, что первообразные от некоторых элементарных функций хотя и существуют, но не могут быть выражены элементарной функцией (т.е. как конечное число арифметических операций и композиций над основными элементарными функциями(даже если известно, что первообразная существует)).

К таким интегралам относятся:

$$\int e^{-x^2} \, \mathbf{d}x$$
 интеграл Пуассона(теория вероятностей)

$$\int \frac{\mathrm{d}x}{\ln x} \ \mathrm{d}x, \int \frac{\cos x}{x} \ \mathrm{d}x, \int \frac{e^x}{x} \ \mathrm{d}x \ \mathrm{интегральный \ cuнуc}, \ \mathrm{косинуc}, \ \mathrm{показательная} \ \mathrm{функция}$$

$$\int \sqrt{1-k^2\sin^2 x} \ \mathrm{d}x, \int \frac{\mathrm{d}x}{\sqrt{1-k^2\sin^2 x}}, |k| < 1 \ \mathrm{элиптическиe} \ \mathrm{интегралы}$$

$$\int \cos(x^2) \ \mathrm{d}x, \int \sin(x^2) \ \mathrm{d}x \ \mathrm{интегралы} \ \Phi \mathrm{ринеля}(\mathrm{физика}, \ \mathrm{оптикa})$$

$$\int x^\alpha \sin x \ \mathrm{d}x, \int x^\alpha \cos x \ \mathrm{d}x, \ \alpha \neq 0,1,2\dots \ \mathrm{u} \ \mathrm{другиe}$$

Такие функции называются специальными. Для них существуют специальные таблицы для определения значений функции.

Определенный интеграл

2.1 Определение определенного интеграла (Римана)

Пусть функция: f(x); f(x) : $[a, b] \to \mathbb{R}$ (a < b)

произвольными точками разобьем отрезок [a, b] на n частичных отрезков: $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$

Разбиение будем обозначать T, T - разбиение [a, b]; x_0, x_1, \ldots, x_n - точки разбиения T.

Величина $\Delta x_n = x_k - x_{k-1}, \ k = \overline{1,n}$ называется **длинной** k-го частичного отрезка $[x_{k-1}, x_k]$.

Диаметр разбиение $T: d(T) = \max_{1 \leq k \leq n} \Delta x_k$ - длина наибольшего частичного отрезка T.

Remark.
$$d(T) \to 0 \Rightarrow n \to \infty$$

Разбиение T' называется **дроблением** разбиения $T(T' \succ T)$, если его точками разбиения являются все точки разбиения T и, по крайней мере, одна дополнительная.

Пусть есть некоторое разбиение T отрезка [a, b]. На каждом частичном отрезке выберем произвольную точку $\xi_k : \forall k \xi_k \in [x_{k-1}, x_k], k = \overline{1, n}$. Эти точки назовем **отмеченными**. Пара (T, ξ) означает разбиение T с отмеченными точками.

Интегральной суммой для функции f(x) на отрезке [a, b] для выбранного разбиения T с отмеченными точка (T, ξ) называется

$$\sum_{k=1}^{n} f(\xi_k) \cdot \Delta x_k = \sigma(f \mid T, \xi)$$

Число I(f) называется **пределом** интегральных сумм $\sigma(f|T,\xi)$ при $\alpha(T)\to 0$ если для любого $\varepsilon>0$ можно указать такое положительное δ , зависящее от ε что для любых разбиений, для которых $\alpha(T)<\delta(\varepsilon)$ значение интегральных

сумм независимо от выбранных точек удовлетворяют неравенству : $|\sigma(f|T,\xi) - I(f)| < \varepsilon$

$$\lim_{\alpha(T)\to 0} \sigma(f|t,\xi) = I(f) \Leftrightarrow \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 \forall (T,\xi)\alpha(T) < \delta(\varepsilon) \Rightarrow \sigma(f|T,\xi) - I(f) < \varepsilon$$

Если такое число I(F) существует (т.е существует и является конечным указанный предел интегральных сумм), то это число и называют определенным интегралом функции f(x) на отрезке [a, b].

$$\int_{a}^{b} f(x) \, \mathbf{d}x \equiv I(f) = \lim_{\alpha(T) \to 0} \sigma(f \mid t, \, \xi) = \lim_{\alpha(T) \to 0} \sum_{k=1}^{n} f(\xi_k); \Delta x_k(n \to \infty)$$

При этом функция f(x) интегрируема по Риману на отрезке [a, b]:

Theorem 2.1.1 (необходимое условие интегрируемости функции на отрезке).

Eсли функция f(x) интегрируема на отрезке [a,b], то f(x) - ограничена на [a,b].

$$Ecnuf(x) \in R([a, b]), mo f(x)$$
 - ограничена на отрезке $[a, b]$

Proof. Пусть $f(x) \in R([a, b]) \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ > \forall (T, \xi) \ \alpha(T) < \delta(\varepsilon) \Rightarrow |\sigma(f \mid T, \xi) - I(f)| < \varepsilon \Rightarrow I(f) - \varepsilon < \sigma(f \mid T, \xi) < I(f) + \varepsilon$ т.е. $\sigma(f \mid T, \xi)$ - ограничена. далее от противного: Предположим, что функция f(x) не ограничена на [a, b], т.е. $\exists x_0 \in [a, b] \ \forall M > 0 \ \exists \Theta(x_0) \ \forall x \in \Theta(x_0) \ |f(x)| > M$. при любом разбиение T отрезка

 $\forall M>0$ $\exists \Theta(x_0) \ \forall x \in \Theta(x_0) \ |f(x)|>M$. при любом разбиение T отрезка [a,b] точка x_0 попадает в некоторый частичный отрезок $[x_{k-1},x_k]$. В этот же отрезок попадает либо вся окрестность точки $x_0 \ \Theta(x_0)$, в которой функция не ограничена, либо часть этой окрестности. Тогда выбирая на этом отрезке точку $\xi_k \in \Theta(x_0)$ из такой окрестности получим: $f(\xi_k)$ может быть как угодно велико(по модулю) следовательно, $f(\xi_k)$ - неограничено $\Rightarrow f(\xi_k) \cdot \Delta x_k$ - неограничено, т.е. $\sigma(f|T,\xi)$ - неограничена - противоречие, следовательно, f(x) - ограничена на [a,b].

Это условие необходимое, но не является достаточным.

Remark. Если предел I(f) не существует или являются бесконечным, то $f(x) \not\in R([a,b])$

Example:

$$D(x) = \begin{cases} 1, & \text{если } x \in \mathbb{Q} \\ 0, & \text{если } x \notin \mathbb{Q} \end{cases}$$

 $\forall [a, b] \ \forall T$

1. если
$$\xi_k = q_k \in \mathbb{Q}, k = \overline{1,n}$$
, то $\sigma(D \mid T, q) = \sum_{k=1}^n \Delta x_k = b-a$

2. если
$$\xi_k=r_k\not\in\mathbb{Q},\ r_k\in{}^{\backprime},\ k=\overline{1,\ n},\ {\rm To}\ \sigma(D\mid T,\ r)=0$$

I(D) - не существует. $D(x) \notin R([a, b]) \ \forall [a, b]$

2.2 Суммы Дарбу и их свойства

Пусть функция f(x) - ограничена на [a, b], T - выбранное разбиения отрезка [a, b].. На каждом частичном отрезке разбиения функция имеет точную верхнюю и нижнюю грань. Обозначим m_k и M_k :

$$m_k = \inf_{x \in [x_{k-1}, x_k]} f(x)$$
 $m_k = \sup_{x \in [x_{k-1}, x_k]} f(x)$

Нижней и **верхней** сумами Дарбу Функции f(x) на отрезке [a, b] при данном разбиении T называются:

$$\sigma_*(f \mid T) = \sum_{k=1}^n m_k \Delta x_k \qquad \sigma^*(f \mid T) = \sum_{k=1}^n M_k \cdot \Delta x_k$$
$$\forall (T, \xi) \ \sigma_*(f \mid T) \le \sigma^*(f \mid T)$$

Theorem 2.2.1 (Свойство суммы Дарбу).

- 1. Если $T' \succ T(T'$ дробление разбиения T), то $\sigma_*(f \mid T') \geq \sigma_*(f \mid T)$.
- 2. Если $T' \succ T$, то $\sigma^*(f \mid T') \leq \sigma^*(f \mid T)$
- 3. $\forall T_1, T_2 \qquad \sigma_*(f \mid T_1) < \sigma^*(f \mid T_2)$

Proof.

1. Посколько разбиение T' можно получить из разбиения T, последовательно добавляя к нему по одной новой точке, то утверждение достаточно доказать для случая, когда T' содержит только одну дополнительную точку по сравнению с T. Тогда:

$$\sigma_*(f \mid T) = \sum_{k=1}^n m_k \cdot \Delta x_k$$

Пусть дополнит точка разбиение $x': x' \in [x_{k-1}, x_k]$.

Тогда
$$\sigma_*(f \mid T) = \sum_{\substack{k=1 \ k \neq r}}^n m_k \cdot \Delta x_k + m_r \cdot \Delta x_r, \ \sigma_*(f \mid T') = \sum_{k=1}^n m_k \cdot \Delta x_k + m_r \cdot \Delta x_r$$

$$+ \inf_{x \in [x_{k-1}, x_k]} f(x) \cdot (x' - x_{k-1}) + \inf_{x \in [x_{k-1}, x_k]} f(x)(x_r - x')) =$$

$$\inf_{x \in [x_{r-1}, x']} f(x) \ge \inf_{x \in [x_{r-1}, x_r]} f(x) = m_r$$

$$\inf_{x \in [x', x_r]} f(x) \ge \inf_{x \in [x_{r-1}, x_r]} f(x) = m_r$$

$$\ge \sum_{k=1 \atop k \neq 2}^n m_k \Delta x_k + m_r (x' - x_{r-1} + x_r - x_r)$$

$$x') =$$

$$= \sum_{k=1 \atop k \neq 2}^n m_k \cdot \Delta x_k + m_r \cdot \Delta x_r = \sigma_*(f \mid T)$$

- 2. аналогично 1
- 3. Возьмем $T = T_1 \cup T_2;$ Тогда $T \succ T_1, \ T \succ T_2.\sigma_*(f \mid T) \le \sigma_*(f \mid T) \le \sigma^* \le \sigma(f \mid T_2)$

Consequence. Таким образом, множество всех нижних сумм Дарбу для различных разбиений заданого отрезка является ограниченными сверху(любой верхней суммой Дарбу). Поэтому это множество имеет точную верхнюю грань:

$$\exists \sup_{T} \sigma_*$$

Это значение называется **нижним интегралом** $I_*(f)$. Аналогично, множество всех верхних сумм Дарбу для различных разбиений отрезка является ограниченным снизу любой нижней суммой Дарби. ПОэтому множество имеет точную нижнюю грань:

$$\exists \inf_{T} \sigma^*$$

Это значение называется **верхним интегралом** $I^*(f)$. Обозначим:

$$\sup_{T} \sigma_*(f \mid T) \equiv I_*(f) \equiv \int_a^b f(x) \, \mathbf{d}x (\text{нижний интеграл})$$

$$\inf_{T} \sigma^{*}(f \mid T) \equiv I^{*}(f) \equiv \int_{a}^{b} f(x) \, \mathbf{d}x (\text{верхний интеграл})$$

Тогда:

$$\forall T: \ \sigma_*(f \mid T) \leq I_*(f) \leq I^*(f) \leq \sigma^*(f \mid T)$$

Колибанием сумм Дарбу для данного разбиения называется величина:

$$\Omega(f \mid T) = \sigma^*(f \mid T) - \sigma_*(f \mid T)$$

Тогда:

$$\Omega(f \mid T) \ge 0;$$
 $0 \le I^*(f) - I_*(f) \le \Omega(f \mid T)$

$\overline{2.3}$ Необходимое и достаточное условие интегрируемости функции f(x) на [a, b]

Theorem 2.3.1 (Критерий интегрируемости функции на отрезке). Для того, чтобы функция f(x), заданая на отрезке [a,b], была интегрируема по Риману, необходимо и достаточно, чтобы предел колебания суммы Дарбу равнялся нулю, когда диаметр разбиения стремился к нулю:

$$f(x): [a, b] \to R, f(x) \in R([a, b]) \Leftrightarrow \lim_{\alpha(T) \to o} \Omega(f \mid T) = 0$$

Remark. $\lim \Omega(f \mid T) = 0 \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 \; \forall T \; \alpha(T) < \delta(\varepsilon) \Rightarrow \Omega(f \mid T) < \varepsilon$

Proof.

Необходимое:

Пусть $f(X) \in R([a, b]) \Rightarrow \exists I(f) = const:$

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ \forall (T, \xi) \ \alpha(T) < \delta(\varepsilon) \Rightarrow |\sigma(f \mid T, \xi) - I(f)| < \frac{\varepsilon}{4}$$

Из модуля: $I(f) - \frac{\varepsilon}{4} < \sigma(f \mid T, \xi) < I(f)$ Так как: $\sigma_*(f \mid T) \le \sigma(f \mid T, \xi)) \le \sigma^*(f \mid T) \ \forall T$

Достаточное

Пусть
$$\lim_{\alpha(t)\to 0} \Omega(f\mid t) = 0 \Rightarrow \lim_{\alpha(t)\to 0} \sigma_*(f\mid T) = \lim_{\alpha(t)\to 0} \sigma^*(f\mid t) = const$$
Так как: $\sigma_*(f\mid T) \leq \sigma(f\mid T,\,\xi) \leq \sigma^*(f\mid T) \,\,\forall T\Rightarrow \exists \lim_{\alpha(T)\to 0} \sigma(f\mid T,\,\xi) = const = I(f)$, т.е. $f(x)\in R([a,\,b])$

Некоторые классы интегрируемых функций 2.4

2.4.1Интегрируемость непрерывных функций

Theorem 2.4.1. *Ecnu функция* f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.

$$f(x) \in C([a, b]) \Rightarrow f(x) \in R([a, b])$$

 ${\it Proof.}\ f(x)\in C([a,\ b])\underset{{}_{\rm T.}\ {\it Kahtopa}}{\Longrightarrow} f(x)$ - равномерно непрерывна на $[a,\ b].$ т.е. $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \ \forall x_1, \ x_2 \in [a, b] \ |x_1 - x_2| < \delta(\varepsilon) \ |f(x_1) - f(x_2)| < \varepsilon \cdot \frac{1}{b-a}$ Зафиксируем некоторое ε и найдем по нему $\delta(\varepsilon)$.

Выберем разбиение T отрезка [a, b], так чтобы $\alpha(T) < \delta(\varepsilon)$.

2.4.2 Интегрирование монотонных ограниченных функций

Пусть функция f(x) такая, что:

$$f(x): [a, b] \rightarrow R, f(x)$$
 - монотонна

Remark. Т. к. функция f(x) монотонна на отрезке [a, b], то все ее значения заключены между f(a) и f(b), таким образом, функция ограничена на отрезке.

Theorem 2.4.2. Если функция f(x) монотонна на отрезке [a, b], то f(x) интегрируема на отрезке [a, b]

$$f(x)$$
 - монотонна $\Rightarrow f(x) \in R([a, b])$

Ргооб. для
$$f \uparrow : f \uparrow \Rightarrow f(b) - f(a) > 0$$

Зафиксируем $\varepsilon > 0$ и возьмем $T : \alpha(T) < \frac{\varepsilon}{f(b) - f(a)} = \delta(\varepsilon)$
Тогда: $\Omega(f \mid T) = \sum_{k=1}^{n} (M_k - m_k) \cdot \Delta x_k < \sum_{k=1}^{n} (M_k - m_k) \cdot \frac{\varepsilon}{f(b) - f(a)} =$

$$= \frac{\varepsilon}{f(b) - f(a)} \sum_{k=1}^{n} (M_k - m_k) = \begin{vmatrix} f \uparrow \\ m_k = f(x_k) \end{vmatrix} = \frac{\varepsilon}{f(b) - f(a)} (M_1 - m_1 + M_2 - m_2 + \dots + M_N - m_n) = \frac{\varepsilon}{f(b) - f(a)} (f(x_1) - f(a) + f(x_2) - f(x_1) + \dots + f(b) - f(x_{n-1}) = \frac{\varepsilon}{f(b) - f(a)} (f(b) - f(a)) = \varepsilon$$
 т.е. $\forall \varepsilon \exists \delta(\varepsilon) = \frac{\varepsilon}{f(b) - f(a)} : \forall T \alpha(T) < \delta(\varepsilon) \Rightarrow \Omega(f \mid T) < \varepsilon \Rightarrow$

$$\Rightarrow \lim_{\alpha(T) \to 0} \Omega(f \mid T) = 0 \Rightarrow f(x) \in R([a, b])$$

2.4.3 Критерий Лебега интегрируемости функции f(x) на отрезке $[a,\ b]$

Числовое множество множество A; $A \subset \mathbb{R}$ называется **несущетвенным по Лебегу**(или L - несущественным, или множеством меры Лебега ноль), если существует не более чем счетное покрытие этого множества системой интегралов, сумма длин которых может быть как угодно мала.

Remark.

- 1. Множество называется счетным, если оно эквивалентно множеству натуральных чисел $\mathbb N$
- 2. $\forall \varepsilon > 0$ $S_{\varepsilon} = \{(a_k, b_k), k \in \mathbb{N}\}$ счестная система интервалов. Сумма длин $= \sum_{k=1}^{\infty} (b_k a_k) = \lim_{n \to \infty} \sum_{k=1}^{n} (b_k a_k) < \varepsilon \ \forall \varepsilon > 0, \ A = \subset \bigcup_{k=1}^{\infty} (a_k, b_k)$

Example:

$$A = \{x_1, x_2, \dots, x_n\}, x_i \in \mathbb{R}$$
 $S_{\varepsilon} = \{\left(x_1 - \frac{\varepsilon}{4N}; x_1 + \frac{\varepsilon}{4N}\right), \dots, \left(x_n - \frac{\varepsilon}{4N}; x_n + \frac{\varepsilon}{4N}\right)\}$ - покрытие A интервалами, конечное. Сумма длин $= \sum_{k=1}^{N} \frac{\varepsilon}{2N} = N \cdot \frac{\varepsilon}{2N} = \frac{\varepsilon}{2} < \varepsilon \ \forall \varepsilon > 0$

Example:

$$A = \mathbb{Q}$$
 Известно, что \mathbb{Q} - счетное $\Rightarrow \mathbb{Q} = \{r_1, r_2, r_3, \dots, r_n, \dots\}$. Ввозьмем $k \in \mathbb{N}$, $\forall >$, построим $S_{\varepsilon} = \{\left(r_1 - \frac{\varepsilon}{2^{k+1}}; \ r_1 + \frac{\varepsilon}{2^{k+1}}\right), \dots, \left(r_n - \frac{\varepsilon}{2^{k+1}}; \ r_n + \frac{\varepsilon}{2^{k+1}}\right)\}$ Сумма длин $= \lim_{n \to \infty} \sum_{i=1}^n 2 \cdot \frac{\varepsilon}{2^{k+1}} = \lim_{n \to \infty} \sum_{i=1}^n \frac{\varepsilon}{2^{k-1}2^i} = \frac{\varepsilon}{2^{k-1}} \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{2^i} = \frac{\varepsilon}{2^{k-1}} \lim_{n \to \infty} \left(\frac{\frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^2\right)}{\frac{1}{2}}\right) = \frac{\varepsilon}{2^{k-1}} < \varepsilon, \ \mathbb{Q} - L$ - несущественное.

Свойства L-несущественных множеств:

- 1. Если A, B L-несущественные, то $A \cup B L$ -несущественное.
- 2. Если $\{A_n, n \in \mathbb{N}\}$, где $A_n L$ -несущественное, то $\bigcup_{n=1}^{\infty} A_n L$ -несущественное.
- 3. Если A L-несущественное и $B \subset A$, то B L-несущественное.

Theorem 2.4.3 (Критерий Лебега интегрируемости функции на отрезке). Пусть f(x) задана на отрезке [a, b], обозначим $\Delta f[a, b]$ - множество точек разрыва функции f(x) на [a, b]. для того что бы функция f(x) была интегрируема на отрезке [a, b], необходимо и достаточно, чтобы f(x) была ограничена на [a, b] и множество точек разрыва было L-несущественное.

Пусть $f(x): [a, b] \to R$, обозначим $\Delta f[a, b]$ - множество точек разрыва функции f(x) на [a, b].

 $f(X) \in R([a, b]) \Leftrightarrow (f$ - ограничена на $[a, b]) \wedge (\Delta f[a, b] - L$ -несущественное.

Example:

Если $f(x) \in C([a, b]) \Rightarrow f$ ограничена на [a, b] и $\Delta f[a, b] = \emptyset$ - L-несущественное $\Rightarrow f(x) \in R([a, b])$

Example:

Пусть f(x) ограничена на [a, b] и имеет на [a, b] конечное количество точек разрыва $\Rightarrow \Delta f[a, b]$ - L-несущественное $= \begin{vmatrix} & \text{пример 1} \\ & A = \{x_1, \dots, x_n\} \end{vmatrix} \Rightarrow f(x) \in R([a, b])$

Example:

Пусть f(x) - монотонна и ограничена на $[a,b]\Rightarrow \Delta f[a,b]$ - L-несущественное $\Rightarrow f(x)\in R([a,b])$

Example:

Пусть $D(x) = \begin{cases} 0, & \text{если } x \notin \mathbb{R} \\ 1, & \text{если } x \in \mathbb{R} \end{cases}$ разрывна $\forall x \in \mathbb{R} \Rightarrow \Delta f[a, b] = [a, b]$ не L-несущественная $\Rightarrow D(x)$ - не интегрируема на $[a, b] \, \forall a, b \in \mathbb{R}$

2.4.4 Общие свойства интегрируемых функций

Theorem 2.4.4 (Свойства интегрируемых функций).

- 1. Если функция f(x) интегрируема на отрезке [a,b], то и модуль функции интегрируем на этом отрезке $f(x) \in R([a,b])$
- 2. Если функции f(x) и g(x) интегрируемы на отрезке [a,b], то их линейная комбинация интегрируема на отрезке [a,b].

$$f(x) \in R([a, b])$$

$$1) (\alpha f(x) + \beta g(x)) \in R([a, b]), \ \alpha, \ \beta = const$$

$$\Rightarrow 2) f(x) \cdot g(x) \in R([a, b])$$

$$g(x) \in R([a, b])$$

$$3) \frac{f(x)}{g(x)} \in R([a, b]), \ \forall x \in [a, b] \ g(x) \neq 0$$

3. Пусть f(x) интегрируема на отрезке [a, b]; f(x) - тоображение [a, b] в некоторое множество Y, и функция g(y) - непрерывна на Y, то сложная функция $(g \circ f)(x) = g(f(x))$ интегрируема на отрезке [a, b].

Proof.

- 1. $f \in R([a, b]) \Rightarrow \Delta_f[a, b]$ L-несущественное. $\Delta_{|f|}[a, b] \subset \Delta_f[a, b] \Rightarrow \Delta_{|f|}[a, b]$ L-несущественное, $\Rightarrow |f(x)| \in R([a, b])$
- 2. $f \in R([a, b]) \Rightarrow \Delta_f[a, b]$ L-несущественное, $g \in R([a, b]) \Rightarrow \Delta_g[a, b]$ L-несущественное $\Rightarrow \Delta_f[a, b] \cup \Delta_g[a, b]$ L-несущественное
 - 1. $\Delta_{\alpha f + \beta g}[a, b] \subset (\Delta_f[a, b] \cup \Delta_g[a, b]) \Rightarrow \Delta_{\alpha f + \beta g}[a, b]$ L-несущественное $\Rightarrow \alpha f(x) + \beta g(x) \in R([a, b])$
 - 2. $\Delta_{fg}[a,\ b]\subset (\Delta_f[a,\ b]\cup\Delta_g[a,\ b])\Rightarrow \Delta_{fg}[a,\ b]$ L-несущественное $\Rightarrow f(x)\cdot g(x)\in R([a,\ b])$
 - 3. $\Delta_{\frac{f}{g}}[a, b] \subset (\Delta_f[a, b] \cup \Delta_g[a, b] \Rightarrow \Delta_{\frac{f}{g}}[a, b]$ L-несущественное $\Rightarrow \frac{f(x)}{g(x)} \in r([a, b])$
- 3. $f(x) \in R([a, b]) \Rightarrow \Delta_f[a, b]$ L-несущественное, $g(x) \in C(Y)$ $\Rightarrow \Delta_g[Y] = \emptyset \Rightarrow \Delta_{g(f)}[a, b] \subset \Delta_f[a, b] \Rightarrow \Delta_g(f)[a, b]$ L-несущественное $\Rightarrow g(f(x)) \in R([a, b])$

2.5 Свойства определенного интеграла

1. Значение определенного интеграла не зависит от того, какой буквой обозначена переменная интегрирования

$$\int_{a}^{b} f(x) \, \mathbf{d}x = \int_{a}^{b} f(t) \, \mathbf{d}t = \int_{a}^{b} f(y) \, \mathbf{d}y \qquad \text{и т.д.}$$

Proof. Вытекает из того, что значения интегральных суммы, а следовательно и предел интегральных сумм не зависит от того, какой буквой обозначен аргумент функции f

2.
$$(def)$$

$$\int_{-b}^{b} f(x) \ \mathbf{d}x = 0 \qquad \text{(для сулчая } a = b)$$

3. (def) (для случая a > b)

$$\int_{a}^{b} f(x) \, dx = -\int_{a}^{b} f(x) \, dx$$

$$\frac{\chi'_{\bullet}}{\chi_{\bullet}} \qquad \qquad \Delta x'_{k} = x_{k-1} - x_{k} = -\Delta x_{k}$$

4. **Линейность**: если α , $\beta \in R$,

$$f(x) \in R([a, b]); \ g(x) \in R([a, b]), \ \text{to:}$$

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) \ \mathbf{d}x = \alpha \int_{a}^{b} f(x) \ \mathbf{d}x + \beta \int_{a}^{b} g(x) \ \mathbf{d}x$$

$$Proof. \ \forall (T, \xi) : \sum_{k=1}^{n} (\alpha f(\xi_{k}) + \beta g(\xi_{k})) \cdot \Delta x_{k} = \alpha \sum_{k=1}^{n} f(\xi_{k}) \Delta x_{k} + \beta \sum_{k=1}^{n} g(\xi_{k}) \Delta x_{k},$$

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) \ \mathbf{d}x = \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} (\alpha f(\xi_{k}) + \beta g(\xi_{k})) \cdot \Delta x_{k} = \alpha \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} f(\xi_{k}) \Delta x_{k} + \beta \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} g(\xi_{k}) \Delta x_{k} = \alpha \int_{a}^{b} f(x) \ \mathbf{d}x + \beta \int_{a}^{b} g(x) \ \mathbf{d}x$$

5. Аддетивность: $\forall a, b, c \in R$

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$$

При условии, что функция интегрируема на наибольшем из полученных отрезков.

Proof.

а) пусть a < c < b

 $\int_{a}^{b} f(x) \, \mathbf{d}x$ - существует(по условию), причем независимо от способа разбиения этого отрезка. Выберем разбиение так, чтобы точка c принадлежала к числу точек разбиения $T: c \in T; \ c = x_m;$ Тогда:

$$\int_{a}^{b} f(x) \, \mathbf{d}x = \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} f(\xi_k) \cdot \Delta x_k = \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \left(\sum_{k=1}^{m} f(\xi_k) \cdot \Delta x_k + \sum_{k=m+1}^{n} f(\xi_k) \cdot \Delta x_k \right) =$$

$$= \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{m} f(\xi_k) \cdot \Delta x_k + \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=m+1}^{n} f(\xi_k) \cdot \Delta x_k \iff$$

Пределы справа - интегральнные суммы для функции f по отрезкам $[a,\ c]$ и $[c,\ b]$ соответственно. Т. к. предел слева существует по условию, то и пределы справа существуют для любого разбиения с отмеченными точка $(T,\ \xi)$

b) пусть, например, a < b < c

Тогда:

$$\int_{a}^{c} f(x) \, \mathbf{d}x = \int_{a}^{b} f(x) \, \mathbf{d}x + \int_{b}^{c} f(x) \, \mathbf{d}x;$$

$$\int_{a}^{b} f(x) \, \mathbf{d}x = \int_{a}^{c} f(x) \, \mathbf{d}x - \int_{b}^{c} f(x) \, \mathbf{d}x = \int_{a}^{c} f(x) \, \mathbf{d}x + \int_{c}^{b} f(x) \, \mathbf{d}x$$

6. Сохранение знака подинтегральной функции:

Если $\forall x \in [a, b]$ функция f(x) сохраняет знак, то и знак интеграла совпадает со знаком f(x) (a < b).

$$\operatorname{sign}\left(\int_{a}^{b} f(x) \, \mathbf{d}x\right) = \operatorname{sign}\left(f(x)\right)$$

т.е.:

$$f(x) \ge 0 \ \forall x \in [a, b] \ \& \ a < b \Rightarrow \int_a^b f(x) \ \mathbf{d}x \ge 0$$

Proof.

$$\int_{a}^{b} f(x) \, \mathbf{d}x = \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} f(\xi_k) \cdot \Delta x_k \ge \begin{vmatrix} \forall k : \Delta x_k = x_k - x_{k-1} > 0 \\ \forall x \in [a, b] \, f(x) > 0 \Rightarrow \\ \Rightarrow \forall k \, f(\xi_k) \ge 0 \end{vmatrix}$$

7. Монотонность интеграла:

$$\forall x \in [a, b], f(x) \le g(x) \Rightarrow \int_a^b f(x) \, \mathbf{d}x \le \int_a^b g(x) \, \mathbf{d}x \, (a < b)$$

Proof.
$$\forall x \in [a, b] f(x) \leq g(x) \Rightarrow g(x) - f(x) \geq 0 \Rightarrow$$

$$\Rightarrow \int_{a}^{b} (g(x) + f(x)) \, \mathbf{d}x \geq 0 \Rightarrow \int_{a}^{b} g(x) \, \mathbf{d}x - \int_{a}^{b} f(x) \, \mathbf{d}x \geq 0; \int_{a}^{b} g(x) \, \mathbf{d}x \geq$$

$$\int_{a}^{b} f(x) \, \mathbf{d}x$$

8.

$$\left| \int_{a}^{b} f(x) \, \mathbf{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathbf{d}x \qquad (a < b), \ f(x) \in R([a, b])$$

Proof.
$$\left| \int_{a}^{b} f(x) \, dx \right| = \left| \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} f(\xi_{k}) \cdot \Delta x_{k} \right| =$$

$$= \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \left| \sum_{k=1}^{n} f(\xi_{k}) \cdot \Delta x_{k} \right| \leq \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} |f(\xi_{k})| \cdot |\Delta x_{k}| =$$

$$= \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} |f(\xi_{k})| \cdot \Delta x_{k} = \left| f \in R([a, b]) \Rightarrow |f| \in R([a, b]) \right| = \int_{a}^{b} |f(x)| \, dx$$

Remark. Если a > b;

$$\left| \int_{a}^{b} f(x) \, \mathbf{d}x \right| \leq \left| \int_{a}^{b} |f(x)| \, \mathbf{d}x \right|$$

9. Если f(x) - ограничена на [a, b], т.е.:

$$\exists M > 0: |f(x)| < M \, \forall x \in [a, b] \Rightarrow \left| \int_a^b f(x) \, \mathbf{d}x \right| < M \, (b - a)$$

Proof.
$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx < \int_{a}^{b} M \, dx = M \int_{a}^{b} dx = M \lim_{\substack{\alpha(T) \to 0 \\ n \to \infty}} \sum_{k=1}^{n} 1 \cdot \Delta x_{k} = M(b-a)$$

10. Пусть $m = \inf_{x \in [a, b]} f(x), \ M = \sup_{x \in [a, b]} f(x).$ Тогда:

$$m(b-a) \le \int_{a}^{b} f(x) \, \mathbf{d}x \le M(b-a)$$

Proof.
$$\forall x \in [a, b] \ m \le f(x) \le M \Rightarrow \int_a^b m \ \mathbf{d}x \le \int_a^b f(x) \ \mathbf{d}x \le \int_a^b M \ \mathbf{d}x$$

$$m \int_a^b \mathbf{d}x \le \int_a^b f(x) \ \mathbf{d}x \le M \int_a^b \mathbf{d}x, \ m(b-a) \le \int_a^b f(x) \ \mathbf{d}x \le M(b-a) \qquad \square$$

Если f(x) непрерывна на [a, b], то:

$$m = \inf_{x \in [a, b]} f(x) = \min_{x \in [a, b]} f(x)$$
 $M = \sup_{x \in [a, b]} f(x) = \max_{x \in [a, b]} f(x)$

11. Пусть $m = \inf_{x \in [a, b]} f(x), \ M = \sup_{x \in [a, b]} f(x).$ Тогда:

$$\exists \mu \in [m, M] \ (m \le \mu \le M) : \int_{a}^{b} f(x) \ \mathbf{d}x = \mu(b-a)$$

Proof. (10)
$$\Rightarrow m \leq \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leq M; \ \mu = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \Rightarrow$$

$$\Rightarrow \int_{a}^{b} f(x) \, dx = \mu(b-a)$$

Если a > b, то те же рассуждения повторяются для интеграла $\int_a^b f(x) \, \mathbf{d}x = \mu(b-a)$. Меняя пределы интегрирования и умножая обе части на -1, получаем ту же формулу.

12. Теорема о среднем

Theorem 2.5.1. Пусть $f(x) \in R([a,b])$ и $f(x) \in C([a,b])$. Тогда существует такая точка ξ на отрезке [a,b] что $\int\limits_a^b f(x) \ dx = f(\xi)(b-a)$.

$$\exists \xi \in [a, b] : \int_{a}^{b} f(x) \ \mathbf{d}x = f(\xi)(b - a)$$

$$\begin{array}{l} \textit{Proof. } f(x) \in C([a,\,b]) \Rightarrow m = \inf_{x \in [a,\,b]} f(x) = \min_{x \in [a,\,b]} f(x), \text{ причем} \\ \exists x', \; x'' \in [a,\,b]: \; f(x') = m, \; f(x'') = M. \\ (10) \Rightarrow m(b-a) \leq \int\limits_a^b f(x) \; \mathbf{d}x \leq M(b-a) \qquad | \; : (b-a) \\ m \leq \frac{1}{b-a} \int\limits_{b-a}^b f(x) \; \mathbf{d}x \leq M. \end{array}$$

Непрерывная функция принимает все промежуточные на отрезке $[a,b] \Rightarrow$

$$\Rightarrow \exists \xi \in [a, b]: f(\xi) - \frac{1}{b-a} \int_a^b f(x) dx.$$

$$\left(\frac{1}{b-a}\int_{a}^{b} f(x) \, \mathbf{d}x \in [m, M]\right) \Rightarrow \int_{a}^{b} f(x) \, \mathbf{d}x = f(\xi)(b-a)$$

Remark.

Если a < b, то замечание аналогично предыдущему. Величина $\frac{1}{b-a} \int_a^b f(x) \, dx$ - среднее значение f(x) на [a, b].

13. Если изменить значение интегрируемой функции в конечном количестве точек, то ее интегрируемость не нарушится, а ее значение не изменятся.

Remark. Новые значения функции должны быть конечными

Remark. Если менять значения функции в счетном числе точек, надо следить, чтобы не появились точки разрыва второго рода

Proof. Пусть $f(x) \in R([a, b])$; $f_1(x)$ - новая функция, изменены значения в точках $A = \{x_1, x_2, \dots, x_n, \dots\}$:

Пусть $\int_a^b f(x) \, dx = I$; при этом $\Delta[a, b] - L$ -несущественное, Тогда $\Delta_{f_1}[a, b] \subset (\Delta_f[a, b] \cup A) - L$ -несущественное $\Rightarrow f_1(x) \in R([a, b])$. Пусть $\int_a^b f_1(x) \, dx = I_1$. Установим, что этот интеграл существует независимо от выбранного разбиения, поэтому возьмем точки $\xi_k \not\in A \Rightarrow I_1 = I$

2.6 Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница

Пусть $f(x) \in R([a, b])$. Тогда $\forall x \in [a, b]: f(x) \in R[a, x](x$ - фиксированая точка). Рассмотрим функцию $\Phi(x) = \int\limits_a^x f(t) \ \mathbf{d}t$

Theorem 2.6.1 (непрерывность интеграла как функции верхнего предела). Пусть функция f(x) интегрируема на отрезке [a, b]. Тогда функция $\Phi(x) = \int_{a}^{x} f(t) dt$ непрерывна на отрезке [a, b]

$$f(x) \in R([a, b]) \Rightarrow \Phi(x) = \int_{a}^{x} f(t) dt \in C([a, b])$$

Ргооf. Пусть $x_0 \in [a,b]$ и Δx такое, чтобы $(x_0 + \Delta x) \in [a,b]$. Тогда: $\lim_{\Delta x \to 0} \Phi(x_0, \Delta x) = \lim_{\Delta x \to 0} \left(\Phi(x_0 + \Delta x) - \Phi(x_0) \right) = \lim_{\Delta x \to 0} \left(\int_a^{x_0 + \Delta x} f(t) \ \mathbf{d}t - \int_a^{x_0} f(t) \ \mathbf{d}t \right) = \lim_{\Delta x \to 0} \left(\int_{x_0 + \Delta x}^{x_0 + \Delta x} f(t) \ \mathbf{d}t + \int_{x_0}^{x_0 + \Delta x} f(t) \ \mathbf{d}t - \int_a^{x_0} f(t) \ \mathbf{d}t \right) = \lim_{\Delta x \to 0} \int_{x_0}^{x_0 + \Delta x} f(t) \ \mathbf{d}t = \lim_{\Delta x \to 0} \left(\int_{x_0 + \Delta x}^{x_0 + \Delta x} f(t) \ \mathbf{d}t + \int_{x_0}^{x_0 + \Delta x} f(t) \ \mathbf{d}t \right) = \lim_{\Delta x \to 0} \int_{x_0}^{x_0 + \Delta x} f(t) \ \mathbf{d}t = \lim_{\Delta x \to 0} \mu(x_0, \Delta x) \cdot \Delta x = \begin{vmatrix} m = \inf f(t) & m \le \mu(x_0, \Delta x) \le M \\ t \in [x_0, x_0 + \Delta x] & \mu(x_0, \Delta x) - \text{ограничена} \\ M = \sup f(t) & \Delta \to 0 \end{vmatrix} = 0$ $\Rightarrow \Phi(x) \text{ непрерывна в точке } x_0 \ \forall x_0 \in [a, b] \Rightarrow \Phi(x) \in C([a, b])$

Theorem 2.6.2 (дифференцируемость интеграла как функции верхнего предела). Пусть $f(x) \in r([a, b])$ и f(x) - непрерывна в некоторой точке x_0 этого отрезка. Тогда: $\Phi(x) = \int\limits_a^x f(t) \ dt$ - дифференцируема в точке x_0 , причем

$$\Phi'(x)=\left.\left(rac{d}{dx}\int\limits_a^x f(t)\ dt
ight)
ight|_{x=x_0}$$
 - интегральная функция точки $x_0=f(x_0).$

$$\Phi'(x_0) = \left(\frac{d}{dx} \int_a^x f(t) dt \right) \bigg|_{x=x_0} = f(x_0)$$

$$\begin{array}{l} \textit{Proof.} \ \Delta\Phi(x_0,\Delta x) = \Phi(x_0 + \Delta x) - \Phi(x_0) = \int\limits_a^{x_0 + \Delta x} f(t) \ \mathbf{d}t - \int\limits_a^{x_0} f(t) \ \mathbf{d}t = \int\limits_a^{x_0 + \Delta x} f(t) \ \mathbf{d}t = \int\limits_a^{x_0 + \Delta x} f(t) \ \mathbf{d}t = \int\limits_a^{x_0 + \Delta x} f(t) \ \mathbf{d}t = \mu(x_0,\Delta x) \cdot \Delta x. \\ \lim\limits_{\Delta x \to 0} \frac{\Delta\Phi(x_0,\Delta x)}{\Delta x} = \lim\limits_{\delta x \to 0} \mu(x_0,\Delta x), \ f(x) - \text{ непрерывна в точке } x_0 \Rightarrow \lim\limits_{x \to x_0} f(x) = \\ = f(x_0) \left| \begin{array}{c} x = x_0 + \Delta x \\ x \to x_0 \Rightarrow \Delta \to 0 \end{array} \right| \text{ т.е. } \lim\limits_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0) \text{ (по условию)} \Rightarrow \\ \Rightarrow \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall \Delta x \ |\Delta x| < \delta(\varepsilon) \Rightarrow |f(x_0 + \Delta x) - f(x_0)| < \frac{\varepsilon}{2}. \\ f(x_0) - \frac{\varepsilon}{2} < f(x_0 + \Delta x) < f(x_0) + \frac{\varepsilon}{2}. \text{ т.e. } |\mu(x_0,\Delta x) - f(x_0)| < \varepsilon. \\ \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall \Delta x \ |\Delta x| < \delta(\varepsilon) \Rightarrow |\mu(x_0,\Delta x) - f(x_0)| < \varepsilon. \\ \text{ т.e. } \lim\limits_{\Delta x \to 0} \mu(x_0,\Delta x) = f(x_0). \text{ Таким образом } \lim\limits_{\Delta x \to 0} \frac{\Delta\Phi(x_0,\Delta x)}{\Delta x} = f(x_0) \Rightarrow \exists \Phi'(x_0) \\ \text{ м } \Phi'(x_0) = f(x_0) \end{array}$$

Consequence.

- 1. Если $f(x) \in R([a, b])$ и $f(x) \in C([a, b])$; то $\exists \Phi'(x) = \frac{d}{dx} \left(\int\limits_a^x f(t) \ \mathrm{d}t\right)$ и $\Phi'(x) = f(x)$
- 2. Если $f(x) \in C([a, b]), \frac{d}{dx} \int_{x}^{b} f(t) dt = -f(x)$ Если $\alpha(x), \beta(x)$ - непрерывна на [a, b], то $\frac{d}{dx} \int_{a}^{\beta(x)} f(t) dt = f(\beta(x)) \cdot \beta'(x).$ $\frac{d}{dx} \int_{\alpha(x)}^{\beta(x)} f(t) dt = f(\beta(x)) \cdot \beta'(x) - f(\alpha(x)) \cdot \alpha'(x)$

2.6.1 Обобщенная первообразная. Формула Ньютона-Лейбница

Известно, что если $f(x) \in c([a, b])$, то f(x) имеет первообразную.

При этом одна из первообразных - $\Phi(x) = \int_{-x}^{x} f(t) dt$

Пусть f(x) - кусочно-непрерывная на $[a, b]^a$

Известно, что $f(x) \in R([a, b])$, причем $\Phi(x) = \int_a^x f(t) \, dt$ непрерывна на [a, b] и

 $\Phi'(x) = f(x) \forall x \in [a, b]$, кроме, возможно, числа точек (там, где подинтегральная функция разрывна).

Функция F(x) называется обобщенной первообразной для f(x) на [a,b], кроме, возможно, конечного числа точек, если F'(x) = f(x)

Remark. Для непрерывной функций понятие обобщенное первообразной совпадает с понятием обычной первообразной.

Example:
$$f(x) = sign \ x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}, \text{ для } x \in [-1, \, 2].$$

$$(|x|)' = \left| |x| = \begin{cases} x, & x \geq 0 \\ -x, & x < 0 \end{cases} \right| = \begin{bmatrix} 1, & x > 0 \\ -1, & x < 0 \\ \text{не } \exists \text{ при } x = 0 \end{cases}$$

$$(|x|)' = sign \ x \forall x \in [-1, \, 2] \backslash \{0\} \Rightarrow |x| - \text{обобщеная первообразная для } sign \ x$$

Theorem 2.6.3 (формула Ньютона-Лейбница). Пусть F(x) - обобщенная первообразная для f(x) на отреже [a, b]. Тогда справедлива формула:

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

Ртооf. Пусть F(x) - первообразная для f(x). Знаем: $\Phi(x) = \int\limits_a^b f(t) \; \mathbf{d}t$ - тоже первообразная для $f(x) \Rightarrow \forall x \in [a,\,b]: \; \Phi(x) = F(x) + c, \; c = const(*)$ При $x = a: \; (*) \Rightarrow \Phi(a) = F(a) + c, \; \text{но} \; \Phi(a) = \int\limits_a^a f(t) \; \mathbf{d}t = 0 \Rightarrow c = -F(a).$ При $x = b: \; (*) \Rightarrow \Phi(b) = F(b) + c, \; \text{но} \; \Phi(b) = \int\limits_a^b f(t) \; \mathbf{d}t = \int\limits_a^b f(x) \; \mathbf{d}x, \; c = -F(a) \Rightarrow \int\limits_a^b f(x) \; \mathbf{d}x = F(b) - F(a)$

Формула Ньютона-Лейбница устанавливает связь между понятиями определенного и неопределенного интеграла, и позволяет находить значения определенного интеграла как разность первообразных, избегая громоздких операций суммирования бесконечно малых величин и предельного перехода. Интеграли от кусочнонепрерывной функции можно находить либо используя обобщенную первообразною, либо пользуясь свойством аддитивности, либо свойством 13 определенного интеграла.

Example:

1.
$$\int_{-1}^{2} sign \ x \ \mathbf{d}x = |(|x|)' = sign \ x \ \forall x \neq 0| = |x||_{-1}^{2} = 2 - 1 = 1$$

2.
$$f(x) = \begin{cases} e^x, & 0 < x < 1 \\ 2, & 1 < x < 2 \end{cases}$$

$$\int_0^2 f(x) \, \mathbf{d}x = | \text{ аддитивность } | = \int_0^1 f(x) \, \mathbf{d}x + \int_1^2 f(x) \, \mathbf{d}x = \int_0^1 e^x \, \mathbf{d}x + \int_1^2 2 \, \mathbf{d}x = e^x \Big|_0^1 + 2x \Big|_1^2 = e + 1$$