$$i=\sqrt{-1}$$
 Imaginary unit $z=a+bi$ Complex number z $\bar{z}=a-bi$ Complex congugate $a=Re(a+bi)$ Real part $b=Im(a+bi)$ Imaginary part $(a+bi)+(c+di)=(a+c)+(b+d)i$ Addition $(a+bi)\cdot(c+di)=(ac-bd)+(ad+bc)i$ Multiplication $\frac{a+bi}{c+di}=\frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$ Division $|z|=\sqrt{a^2+b^2}$ Absolute value, Modulus $arg(z)=tan^{-1}(b/a)=\theta$ Argument $z\bar{z}=|z|^2$ Modulus squared $e^{i\theta}=cos(\theta)+isin(\theta)$ Euler's Formula $z=|z|[cos(\theta)+isin(\theta)]$ Polar form I $z=|z|e^{i\theta}$ Polar form II