1 Metric Spaces

Definition 1.1. (Metric; Metric space.) Let X be a set. A metric on X is a function

$$d: X \times X \longrightarrow \mathbb{R}$$

satisfying the following conditions.

- (M1) (Positivity). $d(x,y) \ge 0$ for all $x,y \in X$, and d(x,y) = 0 if and only if x = y.
- (M2) (Symmetry). d(x,y) = d(y,x) for all $x,y \in X$.
- (M3) (Triangle inequality). $d(x,y) + d(y,z) \ge d(x,z)$ for all $x,y,z \in X$.

The value d(x, y) is sometimes called the distance from x to y.

- 1. Determine whether the following functions define metrics on the corresponding sets. Rigorously justify your answers!
 - (a) Let $X = \mathbb{R}$. Define

$$d: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$d(x, y) = (x - y)^{2}.$$

(b) Let $X = \mathbb{R}^2$. Define the texi-cab metric

$$d: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$d(\overline{x}, \overline{y}) = |x_1 - y_1| + |x_2 - y_2|.$$

(c) Let X be any set. Define

$$d: X \times X \longrightarrow \mathbb{R}$$

$$d(x,y) = \left\{ \begin{array}{ll} 0 & x = y \\ 1 & x \neq y. \end{array} \right.$$

- 2. Let (X, d) be a metric space, and let $Y \subseteq X$ be a subset. Show that the restriction $d|_{Y \times Y}$ of d to $Y \times Y \subseteq X \times X$ defines a metric on Y. Conclude that any subset of a metric space inherits a metric space structure.
- 3. Let $a < b \in \mathbb{R}$. Let C(a, b) denote the set of continuous functions from the closed interval [a, b] to \mathbb{R} . Verify whether each of the following functions defines a metric on the set C(a, b). Be sure to clearly state which properties of continuous functions and integration you are using!

(a)
$$d_1: \mathcal{C}(a,b) \times \mathcal{C}(a,b) \longrightarrow \mathbb{R}$$

$$d(f,g) = \int_a^b |f(x) - g(x)| dx$$
 (b)
$$d_{\infty}: \mathcal{C}(a,b) \times \mathcal{C}(a,b) \longrightarrow \mathbb{R}$$

$$d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|$$

4. Consider \mathbb{R} with the Euclidean metric. Find an example of a subset of \mathbb{R} that is ...

(a) open and not closed,

(c) both open and closed,

(b) closed and not open,

- (d) neither open nor closed.
- 5. Let $X = \mathbb{R}^2$. Sketch the balls $B_1(0,0)$ and $B_2(0,0)$ for each of the following metrics on \mathbb{R}^2 . Denote $\overline{x} = (x_1, x_2)$ and $\overline{y} = (y_1, y_2)$.
 - (a) $d(\overline{x}, \overline{y}) = ||\overline{x} \overline{y}|| = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$
 - (b) $d(\overline{x}, \overline{y}) = |x_1 y_1| + |x_2 y_2|$
 - (c) $d(\overline{x}, \overline{y}) = \max\{|x_1 y_1|, |x_2 y_2|\}$
 - (d) $d(\overline{x}, \overline{y}) = \begin{cases} 0, & \overline{x} = \overline{y} \\ 1, & \overline{x} \neq \overline{y} \end{cases}$
- 6. Let $\{U_i\}_{i\in I}$ denote a collection of open sets in a metric space (X,d).
 - (a) Prove that the union $\bigcup_{i \in I} U_i$ is an open set. Do not assume that I is necessarily finite, or countable!
 - (b) Show by example that the intersection $\bigcap_{i\in I} U_i$ may not be open. (This means, give an example of a metric space (X,d) and a collection of open sets $U_i\subseteq X$, and prove that $\bigcap_{i\in I} U_i$ is not open).
 - (c) Now assume we have a **finite** collection $\{U_i\}_{i=1}^n$ of open sets in a metric space. Prove that the intersection $\bigcap_{i=1}^n U_i$ is open.
- 7. (a) Rigorously verify that the sets $\{1\}$, $[1, \infty)$, and $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\} \cup \{0\}$ are all closed subsets of \mathbb{R} (with the Euclidean metric).
 - (b) Consider \mathbb{R} with the Euclidean metric. Is the subset $\mathbb{Q} \subseteq \mathbb{R}$ open? Is it closed?
 - (c) Recall that C(0,2) is the set of continuous functions from the closed interval [0,2] to \mathbb{R} , and that

$$d_{\infty}: \mathcal{C}(0,2) \times \mathcal{C}(0,2) \longrightarrow \mathbb{R}$$
$$d(f,g) = \sup_{x \in [0,2]} |f(x) - g(x)|$$

defines a metric on C(0,2). Determine whether the subset $\{f(x) \in C(0,2) \mid f(1) = 0\}$ is closed, open, neither, or both.

- 8. Let X be a **finite** set, and let d be any metric on X. What can you say about which subsets of X are open? Which subsets of X are closed?
- 9. Let (X,d) be a metric space, and let $x \in X$. Prove that the singleton set $\{x\}$ is closed.

2 Topology on metric spaces

Definition 1. An open set is a subset $U \subseteq X$ that satisfies one of the following equivalent statements:

- 1. every point of U is an interior point.
- 2. U is equal to its interior.
- 3. U can be realized as a union of open balls.

Definition 2. A closed set is a subset $F \subseteq X$ that satisfies one of the following equivalent statements:

- 1. F contains all of his limit points.
- 2. U is equal to its closure.

Definition 3. A function between metric spaces

$$f:(X,d_X)\to (Y,d_Y)$$

is **continuous** if for any $x_0 \in X$, for any ϵ , there is a radius r (depending on both x_0 and ϵ) such that;

$$f(B_r(x_0)) \subseteq B_{\epsilon}(f(x_0)).$$

- 1. Show the equivalence of the above three statements in Definition 1.
- 2. Show that the complement of an open set is closed and vice versa.
- 3. What are limit points for subsets in a space with the discrete metric?
- 4. Prove that a set is open/closed in the euclidean metric iff it is open/closed in the taxi-cab metric.
- 5. What are open and closed sets in a space with the discrete metric?
- 6. Assume X is a metric space. Prove the following:
 - ϕ, X are open/closed.
 - the arbitrary union of open sets is open.
 - the finite intersection of open sets is open.
 - the arbitrary intersection of closed sets is closed.
 - the finite union of closed sets is closed.
- 7. Prove the following theorem:

f is continuous if and only if, for any open set $U \subseteq Y$ the preimage $f^{-1}(U)$ is an open set in X.

Prove that the same statement holds if you replace open by closed.