

LOG2810

STRUCTURES DISCRÈTES

TD 11: ARBRES

A2022

Directives pour la remise :

- Répondez directement sur ce document papier.
- La remise est individuelle, mais le travail en équipe est encouragé.
- La remise se fait à la fin de la séance de TD.
- Aucun retard ne sera accepté.
- Le non-respect des consignes entraînera automatiquement la note 0 pour ce TD.

Identification

Veuillez inscrire votre section, nom, prénom et matricule ainsi que les noms
des collègues avec lesquels vous avez collaboré pour le TD

acs conegaes avec resqueis vous avez conabore pour le 10
Section:
Nom:
Prénom :
Matricule :
Collègues :

Exercice 1:

Soit l'arbre ci-dessous :

a. Donnez l'expression correspondant au parcours préfixe de l'arbre.

Réponse :

a-b-e-l-m-f-g-n-o-p-c-h-i-q-d-j-k-r-t-u-s

b. Donnez l'expression correspondant au parcours infixe de l'arbre.

Réponse :

l-e-m-b-f-o-n-p-g-a-h-c-q-i-j-d-t-r-u-k-s

c. Donnez l'expression correspondant au parcours postfixe de l'arbre.

Réponse :

I-m-e-f-o-p-n-g-b-h-q-i-c-j-t-u-r-s-k-d-a

Exercice 2:

Quelles sont les valeurs des expressions postfixées ci-dessous ? Détaillez vos calculs. L'opérateur ^ est celui de l'exponentiation.

```
a. 9 3 / 5 + 7 2 - *

Réponse:

9 3 / 5 + 7 2 - * = (9 3 /) 5 + 7 2 - *

= 3 5 + 7 2 - *

= (3 5 +) 7 2 - *

= 8 7 2 - *

= 8 (7 2 -) *

= 8 5 *

= 40
```

```
b. 3 2 * 2 ^ 5 3 - 8 4 / * -

Réponse:

3 2 * 2 ^ 5 3 - 8 4 / * - = (3 2 *) 2 ^ 5 3 - 8 4 / * -

= (6 2 ^) 5 3 - 8 4 / * -

= 36 (5 3 -) 8 4 / * -

= 36 2 (8 4 /)* -

= 36 (2 2*) -

= (36 4 -)
```

= 32

Exercice 3:

Soit le graphe ci-dessous. Construisez un arbre de poids minimum en appliquant l'algorithme de Prim. Détaillez toutes les étapes. Quel est son coût ?

Réponse :

On commence avec le segment de poids minimal : JG . Il y a 11 sommets, donc on devra ajouter 10 arêtes.

Les arcs sont ajoutés dans l'ordre suivant :

GJ-GI-ID-DE-

Ici, on a le choix entre ajouter l'arc AJ et l'arc EF.

Si on ajouter l'arc AJ en premier, cela nous donne : GJ-GI-ID-DE-JA-AB-EF-FK-KH-DC Si on ajouter l'arc EF en premier, cela nous donne : GJ-GI-ID-DE-EF-JA-AB-FK-KH-DC On s'arrête après avoir ajouté la dixième arête.

Dans les 2 cas, les mêmes arêtes sont présentes dans l'Arbre couvrant de poids minimal ainsi construit, donc le cout de l'arbre est le même :

coût de l'arbre = 1+3+2+2+4+4+3+5+2+7 = 33

Exercice 4:

Soit le graphe ci-dessous. Construisez un arbre de poids minimum en appliquant l'algorithme de Kruskal. Détaillez les 3 étapes telles que vu en cours. Quel est son coût ?

Réponse :

Étape 1: trier les arcs en ordre croissant de leur poids

- o JG 1
- o DE 2
- o DI 2
- o HK 2
- AB3
- o GI 3
- 0 01 3
- AJ 4 EF 4
- o FK 5
- o El 6
- o CD 7
- o GH 7
- o JK 10
- o BG 11

<u>Étape 2</u>: parcourir la liste triée des arcs, en commençant par le premier arc de poids minimum. Ajouter l'arc à l'arbre en construction, s'il ne forme pas de cycle. À titre d'illustration, les arcs qui forment un cycle vont être surlignés en rouge.

<u>Étape 3</u>: Arrêter l'algorithme lorsque que (n-1) arcs ont été ajoutés à l'arbre en construction, n étant le nombre de sommets dans le graphe initial.

o JG 1 DE 2 0 DI 2 0 HK 2 0 3 ABGI 3 AJ 4 0 EF 4 0 5 FΚ ΕI 6 0 CD 7 0 GH 7 JK 10 0 11 BG

Le coût de l'arbre est : 1+2+2+2+3+3+4+4+5+7 = 33

Exercice 5:

Soit le graphe ci-dessous. On désire construire un arbre de poids minimum dans lequel on impose la présence obligatoire de l'arc AB. Construisez l'arbre souhaité en détaillant les étapes suivies.

Réponse : Plusieurs solutions possibles

Pour le construire, l'arbre on apportera une modification à l'algorithme de Prim ou à l'algorithme de Kruskal. La modification consiste à initialiser les traitements avec l'arc AB. Les autres étapes des algorithmes sont maintenues. L'arc AB sera donc considéré lors de l'évitement de cycle.

Kruskal:

Étape 1 : trier les arcs en ordre croissant de leur poids, à l'exception de l'arc AB

- o EF 1
- o FG 1
- o GH 1
- o EH 1
- o AE 2
- o BF 2
- o GC 2
- o DH 2
- o BC 3
- o CD 3
- o AD 3

Étape 2 : Initialiser l'arbre avec l'arc AB

<u>Étape 3</u>: Parcourir la liste triée des arcs, en commençant par le premier arc de poids minimum. Ajouter l'arc à l'arbre en construction, s'il ne forme pas de cycle.

À titre d'illustration, les arcs qui forment un cycle vont être surlignés en rouge.

- o **EF** 1
- o FG 1
- o GH 1
- o EH 1
- o AE 2
- o BF 2
- o GC 2
- o DH 2
- o BC 3
- o CD 3
- o AD 3

> Prim:

On initialise l'arbre avec l'arc AB. On ajoute les arcs dans l'ordre ci-après.

$$AB - AE - EF - FG - HG - HD - GC$$

On s'arrête à la 7eme arête.

Exercice 6:

Dans cet exercice, on va s'intéresser aux arbres binaires (2-aire), et en particulier aux **Arbres binaires parfaits.**

Un **Arbre binaire parfait** est un arbre binaire complet dans lequel toutes les feuilles (nœuds n'ayant aucun fils) sont à la même distance de la racine (c'est-à-dire au même niveau). Il s'agit d'un arbre dont tous les niveaux sont remplis : où tous les nœuds internes ont deux fils et où toutes les feuilles ont la même hauteur.

Exemple d'arbre binaire parfait ayant 4 niveaux.

On considère que la racine de l'arbre est au niveau 0. Justifiez chacune de vos réponses.

a) Combien y a-t-il de nœuds à chaque niveau d'un arbre binaire parfait ayant 4 niveaux ? Que remarquez-vous ?

Réponse :

D'après le schéma,

Niveau 0 : 1 neud, qui s'écrit aussi 20.

Niveau 1 : 2 neud, qui s'écrit aussi 2*1, ou 2¹.

Niveau 2: 4 neud, qui s'écrit aussi 2*2, ou 22.

Niveau 3:8 neud, qui s'écrit aussi 2*4, ou 23.

Niveau 4 : 16 neud, qui s'écrit aussi 2*8, ou 2⁴.

On remarque que à chaque niveau, le nombre de sommet double, ou que le nombre de sommet est égal à 2^{niveau}.

b) Généralisez : combien y a-t-il de nœuds au niveau i d'un arbre binaire parfait ?

Réponse :

Le nombre de sommets double à chaque niveau, et il y a 1 sommet au niveau 0.

Le nombre de sommets au niveau i est donc égal à : $1 * 2 * 2 * ... *2 = 2^i$.

<u>Note</u>: on peut aussi modéliser ce problème sous forme d'une suite arithmétique de premier terme 1 et de raison 2, ce qui donne aussi $U_i = 1*2^i$

c) Soit n un entier naturel. Exprimer en fonction de n le nombre total de sommets dans un arbre binaire parfait ayant n niveaux.

Réponse :

Il suffit de sommer le nombre de sommets sur tous les niveaux allant de 0 à n :

$$\sum_{i=0}^{n} 2^{i} = \frac{2^{n+1}-1}{2-1} 2^{n+1} - 1$$

Il y a $2^{n+1} - 1$ sommet dans un arbre binaire complet de taille n .

d) Soit n un entier naturel. Utilisez les résultats précédents pour exprimer le nombre de feuilles dans un arbre binaire parfait ayant n niveaux.

Réponse :

D'après la question b, il y a 2ⁱ nœuds au niveau i d'un arbre binaire complet. Or les feuilles sont les nœuds du dernier niveau de l'arbre, Donc il y a 2ⁿ feuilles dans un arbre binaire parfait de n niveaux.

e) Utilisez les résultats précédents pour exprimer le nombre n de niveaux d'un arbre binaire parfait en fonction de son nombre f de feuilles (n, f des entiers naturels, f non nul).

Réponse :

D'après la question d), on a $f = 2^n$. D'où $log_2(f) = n$

Exercice 7:

L'opération d'addition est associative. Pour cette raison, plusieurs arbres d'opérations peuvent représenter l'expression a+b+c+d.

Supposons qu'un processeur puisse calculer une opération (addition) par cycle d'horloge. Si vous pouvez effectuer des opérations en parallèle, combien de cycle d'horloge avez-vous besoin pour obtenir le résultat :

a) En suivant la démarche indiquée par l'arbre d'opérations 1 **Réponse** :

Chaque addition a besoin des résultats de la précédentes. On est donc obligé de les calculer l'une après l'autre : Il faut 3 cycles.

b) En suivant la démarche indiquée par l'arbre d'opérations 2

Réponse :

Les 2 additions du niveau 1 de l'arbre sont indépendantes. On peut calculer paralléliser ces 2 additions durant le même cycle d'horloge. Ensuite il suffit de calculer l'opération de la racine : Il faut 2 cycles.

- c) Soit n un entier naturel. Vous voulez calculer 2ⁿ opérations d'additions, et vous avez accès à une capacité de calcul parallèle illimitée. Combien de cycles cela demande-t-il :
 - 1. Si vous suivez la démarche décrite par l'arbre 1.
 - 2. Si vous suivez la démarche décrite par l'arbre 2 (utiliser les résultats de l'exercice 6).

Réponse :

- Si on suit la démarche de l'arbre 1, il faut calculer chaque addition l'une après l'autre. Cela prend donc 2ⁿ cycles d'horloges.
- 2.

Si on considère 2ⁿ-1 additions:

Si on suit la démarche de l'arbre 2, il faut additionner chaque entier 2 à 2, puis additionner les résultats obtenus 2 à 2, etc jusqu'à avoir un seul résultat, en partant de 2ⁿ entiers. Cela revient à construire un arbre d'opérations de la forme d'un arbre binaire parfait, avec 2ⁿ feuilles, dont l'ensemble des opérations de chaque niveau est résolu en un cycle d'horloge.

```
nombre cycles d'horloge = nombre de niveaux dans l'arbre binaire parfait = log_2(nombre de feuilles de l'arbre) d'après 6e) = log_2(2^n) = n
```

En suivant la démarche décrite par l'arbre 2, il faut n cycles d'horloges.

Si on considère effectivement 2ⁿ additions :

On reprend la démarche précédente, et on additionne le résultat des 2ⁿ-1 premières additions avec le dernier entier sur un cycle d'horloge supplémentaire. Au total, il faut n+1 cycle d'horloge.