数字图像处理

中南大学自动化学院 谢斌 xiebin@csu.edu.cn

第2章 数字图像处理的基础

(Basics Knowledge of Digital Image Processing)

人眼与亮度视觉 视觉 基础 颜色视觉 成像模型 成像 成像几何 数字图像处 基础 理的基础 采样和量化 像素间联系 图像运算

图像坐标变换

第2章 数字图像处理的基础

(Basics Knowledge of Digital Image Processing)

2.1人类的视觉感知系统 (Visual System of Human Beings)

2.2数字图像的基础知识 (Basics of Digital Image)

2.1人类的视觉感知系统 (Visual System of Human Beings)

- 视觉是人类最高级的感知器官,所以, 毫无疑问图像在人类感知中扮演着重要 角色。
- 然而人类感知只限于电磁波谱的视觉波段,成像机器则可以覆盖几乎全部电磁波谱。
- ■研究图像处理首先要了解人类的视觉感知系统。

2.1.1视觉系统的基本构造 (Basic Structure of Visual System)

■ 基本构造

图2.1 人眼横截面简图

眼底图

■眼睛中图像的形成

图2.2图像形成示意图

图2.3人的视觉过程的流图(光学、化学、神经处理)

图2.4同时对比现象示意图

All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Some well-know optical illusions

图2.5视觉错觉图例(a)

图2.5视觉错觉图例(b)

Some well-know optical illusions

图2.5视觉错觉图例(c)

Some well-know optical illusions

图2.9视觉错觉图例(d)

图2.5视觉错觉图例(e)

图2.5视觉错觉图例(f)

图2.5视觉错觉图例(g)

图2.5视觉错觉图例(h)

图2.5视觉错觉图例(i)

2.2.1 图像的数字化及表达 (Image Digitalization and Representation)

- 图像有单色与彩色、平面与立体、静止与动态、自发光与反射(透射)等区别
- 任一幅图像,根据它的光强度(亮度、密度或灰度)的 空间分布,均可以用下面的函数形式来表达。

$$I = f(x, y, z, \lambda, t)$$

An example of the digital image acquistion process

2.10 图像数字化

Sampling and Quantization

(a) 原图像

(b)取样

- (c)量化
- (d)取样和量化

2.11图像的采样和量化

Color images have 3 values per pixel; monochrome images have 1 value per pixel.

红 , 绿 , 蓝三分量

强度分量

2.12 彩色图像和单色图像

matrix

■ 数字图像可以用矩阵的形式表示为:

$$I = I[x, y] = \begin{bmatrix} i_{0,0} & i_{0,1} & \cdots & i_{0,N-1} \\ i_{1,0} & i_{1,1} & \cdots & i_{1,N-1} \\ \vdots & \vdots & \vdots & \vdots \\ i_{M-1,0} & i_{M-1,1} & \cdots & i_{M-1,N-1} \end{bmatrix}$$

2.2.2 图像的获取 (Image Acquisition)

- 图像获取即图像的数字化过程,包括扫描、采样和量化。
- 图像获取设备由5个部分组成:采样孔, 扫描机构,光传感器,量化器和输出存储体。
- 关键技术有:采样——成像技术;量 化——模数转换技术。

1. CCD传感器

电荷耦合器件(Charged Coupled Device),感应可见光的光强

扫描仪的图像数字化过程原理图

Sampling

(a) 正方形网格 (b) 正六角形网格

采样网格

2. CMOS传感器

互补性金属氧化物半导体(Complementary Metal-Oxide Semiconductor)

1. 数学模型

模拟图像的数学模型是一个二元函数f(x,y),f(x,y)的函数值是能量的记录,是非负有界的实数,同时,

- 一幅实际图像的尺寸是有限的,一般定义(x,y)在某
- 一矩形域中

$$0 \leq f(x,y) \leq A$$

模拟图像数字化后得到数字图像。数字图像的数学模型仍用二元函数f(x,y)来表示,但此时的坐标值和函数值是离散的,是整数值

图像数字化原理

- 2. 采样和量化
- 采样:空间上的离散化
- 量化: 灰度上的离散化

※连续信号(抽样、量化)──数字信号

- 在抽样时,若横向的像素数(列数)为M,纵向的像素数(行数)为N,则图像总像素数为M*N个像素。
- 一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现马赛克效应;
- 采样间隔越小,所得图像像素数越多,空间分辨 率高,图像质量好,但数据量大。

Sampling

■图像的采样

图2.15图像的采样示例

- 图像经采样后被分割成空间上离散的像素,但其 灰度是连续的。
- 将像素灰度转换成离散的整数值的过程叫做量化。
- 一幅数字图像中不同灰度值的个数称为灰度的级数,用**G**表示。
- 若一幅图像的量化灰度级数为256级,用8bit 可表示灰度图像像素的灰度值,因此常称为8bit 量化。

■量化等级越多,所得图像层次越丰富,灰度 分辨率高,图像质量好,但数据量大;

■量化等级越少,图像层次欠丰富,灰度分辨 率低,会出现假轮廓现象,图像质量变差, 但数据量小。

Quantization

■图像的量化

图2.16图像的量化示例

量化

- 均匀量化
- 非均匀量化:
 - a)基于视觉特性:对亮度值急剧变化部分无需过细分层,进行粗量化,对亮度值平缓变化部分需过细分层,进行细量化
 - b)先计算所有可能的亮度值出现的概率分布,对概率分布大的进行细量化,对概率分布小的进行粗量化,非均匀量化可以减少量化误差,又能用较少的比特数实现量化

采样和量化的关系

- *量化和采样是两个不同的概念,量化是在每个采样 点上进行的,所以必须先采样后量化。
- *量化和采样是图像数字化的不可或缺的两个操作, 二者紧密相关,同时完成。

f(x,y)采样 空间离散的像素矩阵 f(x,y)量化 对信号的幅度进行离散分层的过程

图像数字化原理

- ☀非均匀采样和量化
- 细节部分,分配较多的采样
- 灰度突变部分,可用较少的灰度级数

2.2.3 像素间的基本关系 (Basic Relationships between Pixels)

邻域

设为位于坐标处的一个像素

$$(x+1,y)$$
 $(x,y+1)$ $(x,y-1)$

组成的**4**邻域,用 N₄(P)表示。

$$(x+1, y+1)$$
 $(x-1, y-1)$ $(x-1, y-1)$

像素集用ND(P)表示

 $N_D(P)$ 和 $N_4(P)$ 合起来称为 P 的8邻域,用 $N_8(P)$ 表示。

■连通性

为了确定两个像素是否连通,必须确定它们是否相邻及它们的灰度是否满足特定的相似性准则(或者说,它们的灰度值是否相等)。

令V是用于定义邻接性的灰度值集合。

重点考虑两种类型的邻接性:

(a) 4邻接:如果q在 $N_4(p)$ 集中,具有v中数值的两个像素p和q是4邻接的。

(b) **8**邻接:如果**q**在 $N_8(p)$ 集中,则具有中数值的两个像素**p**和**q**是**8**邻接的。

■距离

像素之间的联系常与像素在空间的接近程度有关。像素在空间的接近程度可以用像素之间的距离来度量。为测量距离需要定义距离度量函数。给定 p,q,r 三个像素,其坐标分别为(x,y),(s,t),(u,v)如果

- 1) $D(p,q) \ge 0$ (D(p,q) = 0 当且仅当 p = q)
- D(p,q) = D(q,p)
- 3) $D(p,r) \leq D(p,q) + D(q,r)$ 则 D是距离函数或度量。

W₀

p和 q之间的欧式距离定义为:

$$D_{\rm e}(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

P 和 q 之间的 D_4 距离(也叫城市街区距离)定义为:

$$D_4(p,q) = |\mathbf{x}-\mathbf{s}| + |\mathbf{y}-\mathbf{t}|$$

P和 q之间的 D_8 距离(也叫棋盘距离)定义为: $D_8(p,q)=\max(|\mathbf{x}-\mathbf{s}|,|\mathbf{y}-\mathbf{t}|)$

图像数据结构

图像的分类 图像模式 彩色空间 图像文件格式

■ 图像的分类

图像有许多种分类方法,按照图像的动态特性,可以分为静止图像和运动图像;按照图像的色彩,可以分为灰度图像和彩色图像;按照图像的维数,可分为二维图像,三维图像和多维图像。

1. 灰度图像

可由黑白照片数字化得到,或从彩色图像进行去色处理得到(256灰度级)

图像模式

2. 二值图像

灰度图像经过二值化处理后的结果,两个灰度级,只需用1bit表示。

图像模式

3. 彩色图像

- 彩色图像的数据不仅包含亮度信息,还要包含颜色信息。彩色的表示方法是多样化的。
- 三基色模型: RGB (Red / Green / Blue, 红绿蓝)

RGB三基色可以混合成任意颜色。

- 1)RGB彩色空间:面向硬件设备的彩色模型
- 三基色原理三基色指可以用来 调配出其它颜色的红、绿、蓝 三种颜色。
- 彩色图像可由红、绿、蓝 三基色图像叠加而成。

■ 在RGB彩色空间中,任意彩色光L的配色方程式为:

L = r[R] + g[G] + b[B]

其中,r[R]、g[G]、b[B]为彩色光L的三基色分量或百分比。

彩色空间

2)CMY彩色空间

按照自然界物体颜色光的形成方式可以将物体划分为两类——发光物体和不发光物体,发光物体称为有源物体,不发光物体称为无源物体。无源物体是不发出光波的物体,其颜色由该物体吸收或反射哪些光波来决定,因此采用 CMY三基色相减模型和CMY彩色空间描述。

油墨和颜料的三基色是CMY(Cyan / Magenta / Yellow,青/洋红/黄)而不是RGB,CMY三基色的特点是油墨和颜料用的越多,颜色越暗(或越黑),所以将CMY称为三减色,而RGB称为三加色。

3)HSI彩色空间

区分颜色常用的3种基本特性量:色调(Hue)、饱和度 (Saturation)、强度(Intensity)。

- 色调Hue:与混合光谱中主要光波长相联系
- 饱和度Saturation : 与一定色调的纯度有关
- 强度Intensity:与物体的反射率成正比

- BMP文件格式
- GIF文件格式
- TIFF文件格式
- JPEG文件格式
- DICOM文件格式

图像文件格式

1 BMP文件格式

不经过压缩直接按位存盘的文件格式,称为位图(bitmap)。

2 GIF文件格式

GIF (graphic Interchange Format) 是由CompuServe公司设计和开发的文件存储格式,用于存储图形,也可以用来存储256色图像。扩展名为gif。

3 TIFF文件格式

TIFF(Tagged Image File Format)是相对经典、功能很强的图像文件存储格式,扩展名为tif或tiff。

4 JPEG文件格式

由(国际)联合图像专家组(Joint Photographic Experts Group)提出的静止图像压缩标准文件格式,是面向常规彩色图像及其它静止图像的一种压缩标准。扩展名为jpg或jpeg。

图像文件格式

5 DICOM文件格式

DICOM (Digital Imaging and Communications in Medicine) 是医学图像文件存储格式,为各类医学图像数据的存档、传输和共享而起草和颁布的。DICOM格式支持几乎所有的医学数字成像设备,例如CT、MR、DR、超声、内窥镜、电子显微镜等,成为现代医学图像存储传输技术和医学影像学的主要组成部分。DICOM文件的常见扩展名为DCM。

图像质量评价

- ●图像质量的客观评价
- ●图像质量的主观评价

图像质量的客观评价

■ 归一化方均误差MMSE

$$NMSE = \frac{\sum_{j=1}^{J} \sum_{k=1}^{K} [f(j,k) - \hat{f}(j,k)]^{2}}{\sum_{j=1}^{J} \sum_{k=1}^{K} [f(j,k)]^{2}}$$

图像质量的客观评价

■ 峰值方均误差 PMSE

$$PMSE = \frac{(\frac{1}{JK})\sum_{j=1}^{J}\sum_{k=1}^{K}[f(j,k) - \hat{f}(j,k)]^{2}}{A^{2}}$$

f(j,k)——被变换的图像场, A——f(j,k)的最大值

※等效信噪比*PSNR*

$$PSNR = -10\log_{10}(PMSE)$$

※ 图像质量评价的研究是图像信息工程的基本技术之一。

*图像增强:就是为了改善图像的主观视觉显示质量

※图像复原:是用于补偿图像的降质,使复原后的图像接近

原像

- ■基本概念
 - 图像逼真度(Fidelity)——描述被评价图像与标准 图像的偏离程度

◆图像可懂度(Intelligibility)——表示图像能向 人或机器提供信息的能力

- ▶ 外行、内行
 - 主观评价:采用目视观察和主观感觉评价图像的质量
 - 绝对评价——标准图像作参考。

"全优度尺度":

非常好图像5分好图像4分中等图像3分差图像2分非常差图像1分

相对评价——图像好到坏分类,比较。"群优度尺度"最好、稍好

一批中最好的图像	7分
比该批的平均水平好的图像	6分
稍好于该批的平均水平图像	5分
该批平均水平的图像	4分
稍次于该批的平均水平图像	3分
比该批的平均水平差的图像	2分
一批中最差的图像	1分

Thank You!