

Softversko inženjerstvo Elektronski fakultet Niš

Metode inženjeringa zahteva

- Procesi inženjeringa zahteva su obično "vođeni" odgovarajućom metodom.
- Metode inženjeringa zahteva definišu sistematske načine za dobijanje modela sistema.

Elektronski fakultet u Nišu

Osnovne karakteristike RE metode

- Pogodnost za usaglašavanje sa krajnjim korisnikom.
- Preciznost definicije i odgovarajuće notacije.
- Pomoć kod formulisanja zahteva.
- Fleksibilnost.
- Podržanost odgovarajućim SW alatima.

Elektronski fakultet u Nišu

Najpoznatije RE metode

- DFD (Data-Flow-Diagram) dijagrami
- Metode koje koriste relacioni model podataka
- Objektno-orijentisane metode
- Formalne metode
- Metode zasnovane na ponašanju sistema
 - Use-case specifikacija
 - Viewpoint orijentisane metode

DFD dijagram

DFD dijagram – primer biblioteke

Elektronski fakultet u Nišu

Metode koje koriste relacioni model

• Za opis zahteva se koristi prošireni ER model:

Elektronski fakultet u Nišu

Formalne metode

- Polu-formalne i neformalne metode
 - Koriste prirodni jezik, dijagrame, tabele i prostu notaciju.
 - Uključuju strukturnu analizu i OO analizu.
- Formalne metode
 - Bazirane su na matematički formalnoj sintaksi i semantici.
 - Poznate metode: Z, B, VDM, LOTOS

Formalne metode

- Obezbeđuju načine za postizanje visoke sigurnosti da će sistem odgovarati specifikaciji zahteva.
- Ne garantuju apsolutnu korektnost sistema.

- Sintaksa definiše specifičnu notaciju za zapis zahteva
- Semantika definiše objekte i njihovo značenje za opis sistema.
- Relacije definišu pravila koja određuju koji objekat zadovoljava specifikaciju na pravi način.

Elektronski fakultet u Nišu

Formalne metode - upotreba

- Nisu mnogo zaživele među ljudima koji razvijaju SW.
- Razlozi:
 - Teško razumevanje i učenje notacije.
 - Problemi formalizovanja pojedinih aspekata zahteva.
 - Učinak nije očigledan.

Elektronski fakultet u Nišu

Primer Z metode za bibliotečki sistem

New —	
ΔLibra	ary
book?	: Book
stock'	=stock∪{book?}
onLoar	n' = onLoan

1	Return	
	ΔLibrary book?: Book	
	DOOK?. BOOK	
	book? ∈ domonLoan	
	$dom onLoan' = dom onLoan \oplus book?$	
	stock' = stock	

Objektno-orijentisane metode

- Nasledile su ER model
- Bazirane su na sledećim metodama:
 - Shlaer and Mellor (1988)
 - Colbert (1989)
 - Coad and Yourdon (1989)
 - Wirf-Brock (1990)
 - Rumbaugh (1991)
 - Jacobson (1992)
 - Martin-Odell (1992)
- Notacije su različite za različite metode, ali je semantika slična.

- U procesu prikupljanja zahteva, osnovni elementi koji se posmatraju su objekti.
- Objekti se dobijaju analizom domena problema.
- Objekti uključuju:
 - Uređaje sa kojima sistem intereaguje
 - Sisteme koji sarađuju sa sistemom koji se razvija
 - Organizacione jedinice
 - Stvari o kojima se moraju čuvati podaci
 - Fizičke lokacije
 - Specifične uloge ljudi

Elektronski fakultet u Nišu

Osnovni koncepti

- Enkapsulacija
- Klase
- Nasleđivanje
- Atributi i servisi
- Poruke

Elektronski fakultet u Nišu

Koraci kod OO metoda

- Većina OO metoda ima sledeće zajedničke korake u modeliranju sistema i prikupljanju zahteva:
 - Identifikacija osnovnih objekata (klasa)
 - Definisanje objektne strukture i veza između klasa
 - Definisanje atributa i servisa objekata
 - Definisanje poruka koje objekti razmenjuju

Korak 1 – Identifikacija osnovnih klasa

Član biblioteke Knjiga Bibliotekar Kartica

Korak 2 – Veze između klasa

- Mogu se identifikovati veze između sledećih zahteva:
 - (i) Član biblioteke **iznajmljuje** knjigu
 - (ii) Knjiga je publikovana od strane izdavača
 - (iii) Administrator sistema registruje člana
 - (iv) Članovi **su** studenti, osoblje i spoljni korisnici
 - (v) Administrator sistema **vrši katalogizaciju** knjiga
 - (vi) Bibliotekar izdaje knjige

Elektronski fakultet u Nišu

Elektronski fakultet u Nišu

Korak 2 - Klase i veze

Korak 3 – Atributi objekata

- Atributi se dobijaju analizom zahteva
- Na primer, ako je zahtev da svi članovi moraju biti registrovani pre iznajmljivanja knjige:
 - to znači da se mora čuvati datum registracije člana
 - svaki član mora imati karticu kako bi se beležila sva izdavanja i vraćanja knjige
- Knjiga mora da ima atribute: Naslov, žanr i ISSN
- Član biblioteke mora da ima atribute: Ime i prezime, adresu i ID

Korak 4 – Servisi objekata

- U ovom koraku se vrši identifikacija servisa
- Svakako mora da postoje servisi za pristup i izmenu atributa:
 - Get-Set servisi
- Jedan način identifikovanja servisa je praćenje poruka koje se razmenjuju između objekata.

Korak 4 – Razmena poruka

Elektronski fakultet u Nišu

Korak 4 - Servisi

Elektronski fakultet u Nišu

Metode zasnovane na ponašanju sistema

- Use-case specifikacija i scenariji ponašanja
- Viewpoint orijentisane metode

- Sistem se posmatra sa stanovišta korisnika sistema
- Opisuju se slučajevi korišćenja sistema i scenariji ponašanja.
- Koristi se UML notacija.
- Koristi se kod RUP modela razvoja SW-a.

- Servisi objekata mogu biti otkriveni i modeliranjem scenarija događaja za različite funkcije sistema.
- Događaji se prate do objekata koji reaguju na njih.
- Tipičan model scenarija događaja je interakcija između korisnika i sistema.

Elektronski fakultet u Nišu

Scenarija

- Scenariji su primeri kako će sistem biti korišćen u realnom životu.
- Oni bi trebalo da uključe:
 - Opis početne situacije;
 - Opis normalnog toka događaja;
 - Opis izuzetaka (ako se izađe iz normalnog toka);
 - Informacije o konkurentnim aktivnostima;
 - Opis stanja gde se scenario završava.

Elektronski fakultet u Nišu

Slučajevi korišćenja (Use cases)

- Slučajevi korišćenja predstavljaju tehniku baziranu na scenarijima i zapisanu pomoću UML dijagrama koja identifikuje aktere u sistemu i slučajeve korišćenja sistema.
- Potpuni skup slučajeva korišćenja opisuje sve moguće interakcije korisnika sa sistemom.
- UML dijagrami sekvenci mogu biti korišćeni za detaljni opis slučajeva korišćenja. Oni daju sliku o obradi događaja u sistemu za izabrani slučaj korišćenja.

Tipičan use-case dijagram za primer bibliotečkog sistema

Scenario događaja za iznajmljivanje knjige

Elektronski fakultet u Nišu

RUP - Use-case specifikacija

- Use-case specifikacija je izlaz iz faze razrade (elaboracije) i sadrži:
 - Opis slučajeva korišćenja
 - Definisanje aktera u sistemu
 - Određivanje arhitekturno najznačajnijih slučajeva korišćenja

RUP - "4+1" Model sistema

Slučajevi korišćenja – primer informacionog sistema odbrane od grada

Elektronski fakultet u Nišu

RUP - Realizacija slučajeva korišćenja

• Dijagrami sekvenci

Opis slučajeva korišćenja pomoću tabela

Naziv	Proračun elevacija za dejstvo
Akteri	Operater PRS1
Svrha algoritma	Proračun elevacija za lansiranje raketa
Opis	Nakon unosa novog sinoptičkog biltena u sistem potrebno je startovati izračunavanje novih elevacija za lansiranje raketa. Izračunavanje se vrši samo jednom nakon svake promene sinoptičkog biltena.

R. br. događaja	Akcija aktera	Reakcija sistema
1.	Ovaj slučaj korišćenja inicira operater PRS1 tako što izda komandu za izračunavanje elevacija.	
2.		Sistem daje informaciju o dužini trajanja proračuna a zatim vrši izračunavanje i na kraju izdaje poruku o završetku izračunavanja.

Elektronski fakultet u Nišu

Primer - IS fakulteta

• Na primer, treba napisati detaljnu use-case specifikaciju koja se odnosi na segment prijave ispita informacionog sistema fakulteta.

Primer – IS fakulteta

Elektronski fakultet u Nišu

Primer – IS fakulteta

- Opis:
 - Student popunjava prijavu (ime, prezime, predmet, ...).
 - Službenik prima prijavu [izuzetak: pogrešni podaci u prijavi].
 - 3. Službenik unosi podatke o prijavljenom ispitu u dosije studenta na računaru.
- Izuzeci:
 - [Pogrešni podaci u prijavi] Prijava se vraća studentu da unese tačne podatke.
- Posledice: Student je evidentiran za polaganje ispita iz odgovarajućeg predmeta.

Primer – IS fakulteta

- Use-case: Prijava ispita.
- Kratak opis: Prijava ispita na osnovnim studijama.
- Akteri: Student, Službenik studentske službe.
- Preduslovi: Student je odslušao predavanja, odradio laboratorijske vežbe i predao projekat iz predmeta za koji se prijavljuje da polaže ispit.

Elektronski fakultet u Nišu

Primer – IS fakulteta

- Use-case: Formiranje zapisnika o polaganju ispita.
- Kratak opis: Službenik prosleđuje zahtev za formiranje zapisnika o polaganju ispita na osnovu prijava studenata.
- Akteri: Službenik.
- Preduslovi: Završen rok za prijavu ispita.

Primer – IS fakulteta

Opis:

- Službenik inicira izvršavanje funkcije formiranja zapisnika o polaganju ispita.
- Sistem prikazuje formu za unos predmeta za koji se formira zapisnik.
- 3. Službenik unosi predmet.
- Sistem formira zapisnik i inicira štampanje.
- 5. Izvršava se niz akcija definisanih use-case-om Štampanje.
- Izuzeci: -
- Posledice: Zapisnik je formiran pre datuma polaganja ispita.

Primer – IS fakulteta

- Use-case: Štampanje
- Kratak opis: Štampanje različitih dokumenata (uverenja, zapisnika o polaganju ispita, ...)
- Akteri: -
- Preduslovi: Štampač je uključen i povezan sa računarom.

Elektronski fakultet u Nišu

Primer – IS fakulteta

Opis:

- Sistem prosleđuje zahtev za štampanje dokumenta.
- a) Ukoliko je štampač slobodan, zahtev se prosleđuje štampaču.
- b) Ukoliko nije, zahtev se stavlja na red čekanja, a kada dođe na red on se prosleđuje štampaču.
- Kada zahtev stigne do štampača, dokument se štampa. [Izuzetak: Nema papira u štampaču] [Izuzetak: Nema tonera]

Elektronski fakultet u Nišu

Primer – IS fakulteta.

Izuzeci:

- [Nema papira u štampaču] Neophodno je staviti papir.
- [Nema tonera] Neophodno je isključiti štampač i promeniti toner, a zatim ponovo proslediti zahtev za štampanje dokumenta.
- Posledice: Kompletan dokument je odštampan.

Primer – IS fakulteta

 Dijagramom sekvenci se vrši opis scenarija za formiranje zapisnika o polaganju ispita koji se formira na zahtev službenika administracije.

Elektronski fakultet u Nišu

SW alati za Use-case metode

- IBM Rational Rose
- Microsoft Visio
- ...

Elektronski fakultet u Nišu

Viewpoint orijentisane metode za inženjering zahteva

 Osnovna ideja: Sistem se posmatra sa različitih tačaka (aspekata) posmatranja (iz ugla različitih korisnika sistema) i na taj način se pokušava da se sistem sagleda sa svih strana i da se identifikuju svi validni zahtevi, kao i da se razreše kontradiktorni zahtevi.

Elektronski fakultet u Nišu

Primer sistema za vozove

- Neka je u pitanju sistem koji se instalira u vozu i koji automatski zaustavlja voz ukoliko on pogrešno prođe na crveno svetlo.
- Neki primeri viewpoint-a za ovaj sistem i odgovarajućih zahteva bili bi:
 - Vozač Zahtevi sa aspekta posmatranja vozača.
 - Oprema na pruzi Zahtevi sa strane opreme na pruzi sa kojom novi sistem mora da sarađuje.
 - Inženjer sigurnosti Zahtevi vezani za sigurnost sistema.
 - Postojeći on-board sistem u vozu Zahtevi vezani za kompatibilnost sa ovim sistemom.
 - Kočnice Zahtevi koji su vezani za karakteristike kočnica u vozu.

- Eksplictno otkrivaju sve izvore zahteva za sistem.
- Obezbeđuju mehanizam organizovanja i struktuiranja svih zahteva.
- Pružaju osećaj potpunosti (kompletnosti).

Elektronski fakultet u Nišu

Tipovi viewpoint-a

- Direktni aspekti posmatranja (interactor viewpoints)
 - Ljudi ili drugi sistemi koji imaju direktnu interakciju sa sistemom. Na primer, kod sistema ATM bankomata, korisnici bankomata i baza bankovnih računa korisnika su direktni VP-i.
- Indirektni aspekti posmatranja (Indirect viewpoints)
 - Korisnici koji ne koriste sistem direktno, ali imaju uticaja na zahteve sistema. Na primer, kod sistema ATM bankomata, menadžment i radnici obezbeđenja su indirektni VP-i.
- Domenski aspekti posmatranja (Domain viewpoints)
 - Ograničenja i karakteristike domena koje imaju uticaja na zahteve. Na primer, kod sistema ATM bankomata, standardi za komunikaciju između banaka bi bili domenski VP-i.

Elektronski fakultet u Nišu

Identifikacija viewpointa

- Viewpointe treba tražiti među:
 - Pružaocima i korisnicima servisa sistema:
 - Sistemima sa kojima novi sistem treba da intereaguje;
 - Propisima i standardima;
 - Izvorima poslovnih i nefunkcionalnih zahteva.
 - Inženjerima koji će razviti i održavati sistem;
 - Marketinškim i ostalim poslovnim VP-ima.

Hijerarhija VP-a za bibliotečki sistem

Elektronski fakultet u Nišu

SW alati za viewpoint metode

SW alati za viewpoint metode

• VORD (I. Sommerwille)

