MA 1-22

- 1. Nalezněte lokální extrémy funkce $f(x, y, z) = x^3 + y^2 + z^2 + 6xy 4z$.
- 2. Přepište následující integrál

$$\int_{-1}^{0} \int_{1+x}^{\sqrt{1-x^2}} f \, dy \, dx$$

nejprve v opačném pořadí integrace a pak v polárních souřadnicích se středem v počátku v pořadí $d\varrho\,d\varphi$.

3. Uvažujme pole $\vec{F}=(x^3-xy,\beta x)$. Pomocí Greenovy věty zjistěte hodnotu parametru $\beta\in\mathbb{R}$, aby integrál přes pozitivně orientovanou hranici množiny

$$D = \{(x, y) \in \mathbb{R}^2 \mid 1 - x^2 \le y \le 1 + x^3, \ x \in \langle 0, 1 \rangle \}$$

byl alespoň 1.

- 4. Pro kterou hodnotu parametru $\delta \in \mathbb{R}$ je pole $\vec{F} = (y, x, z + \delta xy)$ potenciální? Pro zjištěné δ určete hodnotu intergálu pole \vec{F} podél úsečky vedoucí od bodu (0,0,0) do bodu (7,0,0).
- 5. Zjistěte pro mocninnou řadu $\sum_{n=1}^{\infty} \left(5^n + \frac{1}{n}\right) x^n$ poloměr konvergence a určete její součet. (Návod: řadu napište jako součet dvou řad.)

Řešení.

- 1. Z rovnic $3x^2+6y=0$, 2y+6x=0 a 2z-4=0 dostaneme stacionární body (0,0,2) a (6,-18,2). První je sedlový bod a druhý je bod minima.
- 2. Opačné pořadí je $\int_0^1 \int_{-\sqrt{1-y^2}}^{y-1} f \ dx \ dy$, v polárních souřadnicích

$$\int_{\frac{1}{2}\pi}^{\pi} \int_{1/(\sin\varphi-\cos\varphi)}^{1} f\varrho \, d\varrho d\varphi.$$

3. Protože $\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \beta + x$, je hledaný integrál roven

$$\int_{(\partial D)} \vec{F} \ d\vec{s} = \int_0^1 \int_{1-x^2}^{1+x^3} (\beta + x) \ dy \, dx = \frac{7\beta}{12} + \frac{9}{20},$$

a tak $\beta \geq 33/35$.

- 4. Pole je potenciální pro $\delta=0$ a potenciál $f=xy+\frac{1}{2}z^2+K$. Hodnota integrálu je rozdíl f(7,0,0)-f(0,0,0)=0.
- 5. Poloměr konvergence R=1/5. Řadu napíšeme jako součet dvou řad $\sum_{n=1}^{\infty} (5x)^n + \sum_{n=1}^{\infty} \frac{x^n}{n}.$ První je geometrická řada s kvocientem 5x, která začíná členem 5x, a tedy její součet je 5x/(1-5x). Druhou řadu derivujeme člen po členu a dostaneme $\sum_{n=1}^{\infty} x^{n-1} = 1/(1-x).$ Integrací pak

máme
$$\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x). \text{ Celkový součet je } \frac{5x}{1-5x} - \ln(1-x).$$