Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-2210. Вариант 28

1. Пусть
$$z = \frac{1}{2} + \frac{\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[5]{z^3}$, для которого число $\frac{\sqrt[5]{z^3}}{\frac{1}{2} - \frac{\sqrt{3}i}{2}}$ имеет аргумент $\frac{14\pi}{15}$.

2. Решить систему уравнений:

$$\begin{cases} x(1-8i) + y(14+6i) = -128 + 33i \\ x(3-13i) + y(-3+13i) = 31-75i \end{cases}$$

- 3. Найти корни многочлена $2x^6 + 18x^5 + 70x^4 + 210x^3 + 688x^2 + 1572x + 1040$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -3 2i$, $x_2 = 1 + 3i$, $x_3 = -4$.
- 4. Даны 3 комплексных числа: 22+i, 6+8i, 5+9i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 2i$, $z_2 = -2$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+5+2i| < 1\\ |arg(z-3+5i)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, -1, 10), b = (3, 3, -8), c = (0, 1, -9). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-13,-1,7) и плоскость P:-52x-16y+44z+1448=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-5,9,-1), $M_1(-3,-16,-12)$, $M_2(-93,-1,-12)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -4x - 7z + 12 = 0 \\ 15x - 11y + z - 212 = 0 \end{cases} \qquad L_2: \begin{cases} -19x + 11y - 8z - 1414 = 0 \\ 3x - y + z + 196 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .