Solving recurrences

Recap

```
\begin{aligned} \textit{MergeSort}(A[p..r]) \\ \textit{If } p < r \\ q = \lfloor (p+r)/2 \rfloor \\ \textit{MergeSort}(A[p..q]) & \qquad T(n/2) \\ \textit{MergeSort}(A[q+1..r]) & \qquad T(n/2) \\ \textit{Merge}(A,p,q,r) & \qquad \Theta(n) \end{aligned}
```

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

How about apply iteration?

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

$$= 2^2T(2^{k-2}) + c2^k + c2^k$$

$$\cdots \qquad \text{assume } n = 2^k$$

$$= 2^kT(1) + c(k2^k)$$

$$= O(nlgn)$$

It can be difficult to compute sometime.

Solving recurrences

- 1. Substitution method
- 2. Recursion tree
- 3. Master theorem

Substitution method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

Substitution method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

EXAMPLE: T(n) = 4T(n/2) + n

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$.
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \le cn^3$ by induction.

Example of substitution

$$T(n) = 4T(n/2) + n$$

 $\leq 4c(n/2)^3 + n$
 $= (c/2)n^3 + n$
 $= cn^3 - ((c/2)n^3 - n) \leftarrow desired - residual$
 $\leq cn^3 \leftarrow desired$
whenever $(c/2)n^3 - n \geq 0$, for example,
if $c \geq 2$ and $n \geq 1$.

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

This bound is not tight!

We shall prove that $T(n) = O(n^2)$.

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= cn^{2} + n$$

$$= O(n^{2})$$

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

 $\leq 4c(n/2)^2 + n$
 $= cn^2 + n$
 $= O(n/2)$ Wrong! We must prove the I.H.

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

 $\leq 4c(n/2)^2 + n$
 $= cn^2 + n$
 $= cn^2$) Wrong! We must prove the I.H.
 $= cn^2 - (-n)$ [desired – residual]
 $\leq cn^2$ for **no** choice of $c > 0$. Lose!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$\leq c_1n^2 - c_2n \quad \text{if } c_2 \geq 1.$$

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$\leq c_1n^2 - c_2n \text{ if } c_2 \geq 1.$$

Pick c_1 big enough to handle the initial conditions.

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:
$$T(n)$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$(n/4)^{2} \qquad (n/2)^{2} \qquad \frac{5}{16}n^{2}$$

$$(n/16)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2} \qquad \frac{25}{256}n^{2}$$

$$\vdots$$

$$\Theta(1) \qquad \text{Total} = n^{2}\left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^{2} + \left(\frac{5}{16}\right)^{3} + \cdots\right)$$

$$= \Theta(n^{2})$$

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

The master method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

The recursion tree of T(n)

Three common cases

The running time T(n)

- Dominated by cost at leaves (for solving the minimum subproblems)
- Evenly distributed throughout the tree
- Dominated by cost at the root (for dividing the problem and combining the results)

Solving recurrences amounts to characterizing the dominant term in each case.

Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ε} factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ε} factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log ba}$ grow at similar rates (within a logarithmic factor to some power).

Solution:
$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$
.

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1 and big enough n.

Solution: $T(n) = \Theta(f(n))$.

```
Ex. T(n) = 4T(n/2) + n

a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n.

Case 1: f(n) = O(n^{2-\varepsilon}) for \varepsilon = 1.

T(n) = \Theta(n^2).
```

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
Case 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1$.
 $T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $T(n) = \Theta(n^2 \lg n)$.

```
Ex. T(n) = 4T(n/2) + n^3

a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.

CASE 3: f(n) = \Omega(n^{2+\varepsilon}) for \varepsilon = 1

and \ 4(n/2)^3 \le cn^3 (reg. cond.) for c = 1/2.

T(n) = \Theta(n^3).
```

Ex. $T(n) = 4T(n/2) + n^3$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$ Case 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$ $and \ 4(n/2)^3 \le cn^3$ (reg. cond.) for c = 1/2. $T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^2/\lg n.$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.

Idea of master theorem

Recursion tree: $f(n/b^2)$ $f(n/b^2)$ ··· $f(n/b^2)$

Recursion tree: f(n) = f(n) $f(n/b) f(n/b) \cdots f(n/b) = af(n/b)$ $f(n/b^2) f(n/b^2) \cdots f(n/b^2) \cdots a^2 f(n/b^2)$

Recursion tree: f(n) $\cdots f(n/b) ------af(n/b)$ $f(n/b^2)$ $f(n/b^2)$ \cdots $f(n/b^2)$

Some advanced sorting algorithms

Recap sorting

Sorting algorithms	Average case	Worst case	Space	Stability	Complexity
Insertion Sort	O(n ²)	O(n ²)	O(1)	Stable	Simple
Bubble Sort	$O(n^2)$	$O(n^2)$	O(1)	Stable	Simple
Selection Sort	$O(n^2)$	$O(n^2)$	O(1)	Unstable	Simple
Quicksort	O(nlog n)	$O(n^2)$	O(log n)	Unstable	Complex
Heapsort	O(nlog n)	O(nlog n)	O(1)	Unstable	Complex
Mergesort	O(nlog n)	O(nlog n)	O(n)	Stable	Complex

Heapsort

Use data structure *heap* to manage information

Combine the better attributes of insertion sort and merge sort

- $O(n \lg n)$ like merge sort, unlike insertion sort
- Sorts in place like insertion, unlike merge sort

Data Structure: Heaps

A binary heap data structure A

- Simple array
- Viewed as a nearly complete binary tree
- Max-heap property

$$A[parent(x)] \ge A[x]$$

It means that the value of a node is at most the value of its parent.

There are also min-heaps and *k*-ary heaps.

Example of heaps

- Notice the implicit tree links: Children of node i are 2i and 2i+1
- Quickly computed by shifting the binary representation of *i* left by one bit position and adding 1 as the low-order bit
- Height is $\Theta(\lg n)$ for a heap of size n

Heaps: Extract-Max

Heap-Extract-Max(A)

- 1. //Removes and returns largest element of A
- 2. $max \leftarrow A[1]$
- $3. A[1] \leftarrow A[n]$
- $4. \quad n \leftarrow n-1$
- 5. Max-Heapify(A,1)//Remakes heap
- 6. return max

Running time? $\Theta(1)$ + Heapify time.

Heaps: Heapify

Max-Heapify (A, i)

- *i* is index into array *A*.
- Both binary trees rooted at Left(*i*) and Right(*i*) are max-heaps.
- But, *A*[*i*] may be smaller than its children, thus violating the heap property.
- Heapify makes *A* a heap once more by "floating down" *A*[*i*] in max-heap so that the subtree rooted at *i* obeys the max-heap property.

Heaps: Heapify Example

1. Call Heapify(A,2)

Heaps: Heapify Example (cont.)

2. Exchange A[2] with A[4] and recursively call Heapify(A,4)

Heaps: Heapify Example (cont.)

3. Exchange A[4] with A[9] and recursively call Heapify(A,9)

Heaps: Heapify Example (cont.)

4. Node 9 has no children, so we are done.

Heaps: Heapify

```
Max-Heapify(A, i)
 1 \quad l = \text{Left}(i)
 2 r = RIGHT(i)
 3 if l \leq A.heap-size and A[l] > A[i]
 4 largest = l
 5 else largest = i
 6 if r \leq A.heap-size and A[r] > A[largest]
        largest = r
 8 if largest \neq i
         exchange A[i] with A[largest]
         MAX-HEAPIFY (A, largest)
10
```

- Correctness: induction on the height of i
- The worst-case running time is proportional to the height of $i = O(\lg n)$

Heapsort

Total Running time:

 $O(n \lg n) + \text{Build-Heap}(A) \text{ time}$

Heapsort: Building a heap

Convert an array A[1..n] where n = length[A], into a heap.

Notice that the elements in the subarray $A[(\lfloor n/2 \rfloor +1)..n]$ are leaves and already 1-element heaps to begin with.

Build-Max-Heap(A)

- 1. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 2. **do** Max-Heapify(A,i)

Build-Max-Heap: Example

Build-Max-Heap: Example (cont.)

Build-Max-Heap: Example (cont.)

Build-Max-Heap: a simple upper bound

- Correctness: induction on i, all trees rooted at m > i are heaps.
- Running time: makes O(n) calls to Max-Heapify = $O(n \lg n)$
- This is good enough for an O(nlgn) bound on Heapsort, but sometimes we build heaps for other reasons

Build-max-Heap: a tighter analysis

Time of Heapify = O(height of subtree rooted at i)

An n-element heap has height $\lfloor \lg n \rfloor$ and at most $\lfloor n/2^{h+1} \rfloor$ nodes of any height h

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$

$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2 \qquad = O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$
$$= O(n).$$

Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).
- Remarkably efficient on the average: its expected running time is $\Theta(n \lg n)$

Divide and conquer

Quicksort an *n*-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\le x \le$ elements in upper subarray.

```
\leq x x > x
```

- 2. Conquer: Recursively sort the two subarrays.
- 3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

```
Partition(A, p, q) \triangleright A[p \dots q]
    x \leftarrow A[p] \triangleright pivot = A[p]
                                                    Running time
    i \leftarrow p
                                                    = O(n) for n
    for j \leftarrow p + 1 to q
                                                    elements.
         do if A[j] \leq x
                  then i \leftarrow i + 1
                          exchange A[i] \leftrightarrow A[j]
    exchange A[p] \leftrightarrow A[i]
    return i
```

Invariant:

6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
$\longrightarrow i$			j				

6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
	i			•	$\rightarrow j$		

6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
2	5	3	6	8	13	10	11

Pseudocode for quicksort

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, p, q+1, r)
```

Initial call: QUICKSORT(A, 1, n)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let T(n) = worst-case running time on an array of n elements.

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2) \qquad (arithmetic series)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$
$$T(n)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0)$$
 $T(n-1)$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0) \quad c(n-1)$$

$$T(0) \quad T(n-2)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0) \quad c(n-1) \qquad \Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^2)$$

$$T(0) \quad c(n-2) \qquad \Theta(1)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$\Theta(1) \quad c(n-1) \qquad \Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^2)$$

$$\Theta(1) \quad c(n-2) \qquad T(n) = \Theta(n) + \Theta(n^2)$$

$$= \Theta(n^2)$$

Best-case analysis

(For intuition only!)

If we're lucky, Partition splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \lg n)$ (same as merge sort)

What if the split is always $\frac{1}{10}$: $\frac{9}{10}$?

$$T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$$

What is the solution to this recurrence?

T(n)

$$T(\frac{1}{10}n) \qquad T(\frac{9}{10}n)$$

Introduction to Algorithms

More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

$$L(n) = 2U(n/2) + \Theta(n)$$
 lucky
 $U(n) = L(n-1) + \Theta(n)$ unlucky

Solving:

$$L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)$$

= $2L(n/2 - 1) + \Theta(n)$
= $\Theta(n \lg n)$

How can we make sure we are usually lucky?

Randomized quicksort

IDEA: Partition around a *random* element.

- Running time is independent of the input order.
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the output of a random-number generator.

Randomized Quicksort

New "randomized" partitioning: swap before actually partitioning.

Randomized-Partition(A, p, r)

- 1. $i \leftarrow \text{Random}(p, r)$
- 2. exchange $A[p] \leftrightarrow A[i]$
- 3. return Partition(A, p, r)

Randomized-Quicksort(A, p, r)

- 1. if p < r
- 2. then $q \leftarrow \text{Randomized-Partition}(A, p, r)$
- 3. Randomized-Quicksort(A, p, q-1)
- 4. Randomized-Quicksort(A, q+1, r)

Randomized quicksort analysis

Let T(n) = the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For k = 0, 1, ..., n-1, define the *indicator* random variable

$$X_k = \begin{cases} 1 & \text{if Partition generates a } k: n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$$

 $E[X_k] = \Pr\{X_k = 1\} = 1/n$, since all splits are equally likely, assuming elements are distinct.

Analysis (continued)

$$T(n) = \begin{cases} T(0) + T(n-1) + \Theta(n) & \text{if } 0 : n-1 \text{ split,} \\ T(1) + T(n-2) + \Theta(n) & \text{if } 1 : n-2 \text{ split,} \\ \vdots & & \\ T(n-1) + T(0) + \Theta(n) & \text{if } n-1 : 0 \text{ split,} \end{cases}$$

$$= \sum_{k=0}^{n-1} X_k \left(T(k) + T(n-k-1) + \Theta(n) \right).$$

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

Take expectations of both sides.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$
$$= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

Linearity of expectation.

$$\begin{split} E[T(n)] &= E\bigg[\sum_{k=0}^{n-1} X_k \big(T(k) + T(n-k-1) + \Theta(n) \big) \bigg] \\ &= \sum_{k=0}^{n-1} E\big[X_k \big(T(k) + T(n-k-1) + \Theta(n) \big) \big] \\ &= \sum_{k=0}^{n-1} E\big[X_k \big] \cdot E\big[T(k) + T(n-k-1) + \Theta(n) \big] \end{split}$$

Independence of X_k from other random choices.

$$\begin{split} E[T(n)] &= E\bigg[\sum_{k=0}^{n-1} X_k \big(T(k) + T(n-k-1) + \Theta(n) \big) \bigg] \\ &= \sum_{k=0}^{n-1} E\big[X_k \big(T(k) + T(n-k-1) + \Theta(n) \big) \big] \\ &= \sum_{k=0}^{n-1} E\big[X_k \big] \cdot E\big[T(k) + T(n-k-1) + \Theta(n) \big] \\ &= \frac{1}{n} \sum_{k=0}^{n-1} E\big[T(k) \big] + \frac{1}{n} \sum_{k=0}^{n-1} E\big[T(n-k-1) \big] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \end{split}$$

Linearity of expectation; $E[X_k] = 1/n$.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

$$= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

$$= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)$$

$$= \frac{2}{n} \sum_{k=1}^{n-1} E[T(k)] + \Theta(n)$$
Summations have identical terms.

Hairy recurrence

$$E[T(n)] = \frac{2}{n} \sum_{k=2}^{n-1} E[T(k)] + \Theta(n)$$

(The k = 0, 1 terms can be absorbed in the $\Theta(n)$.)

Prove: $E[T(n)] \le an \lg n$ for constant a > 0.

• Choose *a* large enough so that $an \lg n$ dominates E[T(n)] for sufficiently small $n \ge 2$.

Use fact:
$$\sum_{k=2}^{n-1} k \lg k \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$$
 (exercise).

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

Substitute inductive hypothesis.

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

$$\le \frac{2a}{n} \left(\frac{1}{2}n^2 \lg n - \frac{1}{8}n^2\right) + \Theta(n)$$

Use fact.

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

$$\le \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n)$$

$$= an \lg n - \left(\frac{an}{4} - \Theta(n) \right)$$

Express as *desired – residual*.

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

$$= \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n)$$

$$= an \lg n - \left(\frac{an}{4} - \Theta(n) \right)$$

$$\le an \lg n,$$

if a is chosen large enough so that an/4 dominates the $\Theta(n)$.

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from *code tuning*.
- Quicksort behaves well even with caching and virtual memory.

How fast can we sort?

All the sorting algorithms we have seen so far are *comparison sorts*: only use comparisons to determine the relative order of elements.

• *E.g.*, insertion sort, merge sort, quicksort, heapsort.

The best worst-case running time that we've seen for comparison sorting is $O(n \lg n)$.

Is $O(n \lg n)$ the best we can do?

Decision trees can help us answer this question.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

Each leaf contains a permutation $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \le a_{\pi(2)} \le ... \le a_{\pi(n)}$ has been established.

Decision-tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size *n*.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.

Lower bound for decision-tree sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof. The tree must contain $\geq n!$ leaves, since there are n! possible permutations. A height-h binary tree has $\leq 2^h$ leaves. Thus, $n! \leq 2^h$.

```
∴ h \ge \lg(n!) (lg is mono. increasing)

\ge \lg ((n/e)^n) (Stirling's formula)

= n \lg n - n \lg e

= \Omega(n \lg n).
```

Lower bound for comparison sorting

Corollary. Heapsort and merge sort are asymptotically optimal comparison sorting algorithms.

Sorting in linear time

Counting sort: No comparisons between elements.

- *Input*: A[1...n], where $A[j] \in \{1, 2, ..., k\}$.
- Output: B[1 ... n], sorted.
- Auxiliary storage: C[1 ... k].

Counting sort

```
for i \leftarrow 1 to k
    do C[i] \leftarrow 0
for j \leftarrow 1 to n
    do C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|
for i \leftarrow 2 to k
                                                   \triangleright C[i] = |\{\text{key} \le i\}|
    do C[i] \leftarrow C[i] + C[i-1]
for j \leftarrow n downto 1
    \operatorname{do} B[C[A[j]]] \leftarrow A[j]
          C[A[j]] \leftarrow C[A[j]] - 1
```

Counting-sort example

B:

for
$$i \leftarrow 1$$
 to k

$$\mathbf{do} \ C[i] \leftarrow 0$$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

C: 1 0	0	1

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Analysis

$$\Theta(k) \begin{cases} \text{for } i \leftarrow 1 \text{ to } k \\ \text{do } C[i] \leftarrow 0 \end{cases}$$

$$\Theta(n) \begin{cases} \text{for } j \leftarrow 1 \text{ to } n \\ \text{do } C[A[j]] \leftarrow C[A[j]] + 1 \end{cases}$$

$$\Theta(k) \begin{cases} \text{for } i \leftarrow 2 \text{ to } k \\ \text{do } C[i] \leftarrow C[i] + C[i-1] \end{cases}$$

$$\begin{cases} \text{for } j \leftarrow n \text{ downto } 1 \\ \text{do } B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases}$$

Running time

If k = O(n), then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(n \lg n)$ time!
- Where's the fallacy?

Answer:

- Comparison sorting takes $\Omega(n \lg n)$ time.
- Counting sort is not a *comparison sort*.
- In fact, not a single comparison between elements occurs!

Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

Radix sort

- *Origin*: Herman Hollerith's card-sorting machine for the 1890 U.S. Census. (See Appendix.)
- Digit-by-digit sort.
- Hollerith's original (bad) idea: sort on most-significant digit first.
- Good idea: Sort on *least-significant digit first* with auxiliary *stable* sort.

Operation of radix sort

457 355 329 35	5 5
657 436 436 43	3 6
839 457 839 45	5 7
436 657 355	5 7
720 329 457 72	20
3 5 <mark>5</mark> 8 3 9 6 5 7 8 3	3 9

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit *t* are correctly sorted.

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* 1 digits.
- Sort on digit t
 - Two numbers that differ in digit *t* are correctly sorted.
 - Two numbers equal in digit t are put in the same order as the input \Rightarrow correct order.

Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort *n* computer words of *b* bits each.
- Each word can be viewed as having b/r base- 2^r digits.

Example: 32-bit word

 $r = 8 \Rightarrow b/r = 4$ passes of counting sort on base-28 digits; or $r = 16 \Rightarrow b/r = 2$ passes of counting sort on base-216 digits.

How many passes should we make?

Analysis (continued)

Recall: Counting sort takes $\Theta(n + k)$ time to sort n numbers in the range from 0 to k - 1.

If each *b*-bit word is broken into *r*-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time. Since there are b/r passes, we have

$$T(n,b) = \Theta\left(\frac{b}{r}(n+2^r)\right).$$

Choose r to minimize T(n, b):

• Increasing r means fewer passes, but as $r \gg \lg n$, the time grows exponentially.

Conclusions

In practice, radix sort is fast for large inputs, as well as simple to code and maintain.

Downside: Unlike quicksort, radix sort displays little locality of reference, and thus a well-tuned quicksort fares better on modern processors, which feature steep memory hierarchies.