明 細 書

工具用表面被覆高硬度材料

技術分野

- [0001] 本発明は立方晶窒化硼素(CBN)を主成分とするCBN焼結体を基材とし、その上に 薄膜を被覆した工具用材料の改良に関するものである。 背景技術
- [0002] CBNはダイヤモンドに次ぐ高い硬度を有する材料であって金属との反応性が低いので、その焼結体は耐熱合金や焼入れ鋼の切削に使用されている。このように硬度の高いCBN焼結体においても、被覆をすることにより刃先の摩耗を防止できるなどの効果を有している。被覆膜は、切刃エッジの部分で丸みを持ち膜厚が厚くなると丸みも大きくなる。特許文献1は、CBN焼結体の上に耐摩耗層と中間層と最表面層を有する被覆CBN焼結体を開示している。耐摩耗層としてTiAl(CNO)など、中間層や最表面層としてTiNなどを被覆した工具用表面被覆高硬度材料が提供されている。
- [0003] 特許文献2は、CBN焼結体にチタンとアルミニウムを含む複合窒化物、複合炭窒化物などの被覆膜を有するものである。特に、被覆膜の結晶面(200)のX線の回折強度と結晶面(111)のX線回折強度の比が特定の範囲にあり、被覆膜の厚さが1~15 μmの複合硬質膜被覆部材である。

[0004] 特許文献1:特開平8-119774号公報 第2頁、第6~10頁、表1、3、5 特許文献2:特開2001-234328号公報 第2頁

発明の開示

発明が解決しようとする課題

[0005] 従来の被覆工具は、被覆膜の厚さが1μm以上の厚さを有していた。最近は、焼入れ鋼等の断続切削加工での長寿命化や精密仕上げ加工の高精度化が望まれるようになってきたため、従来の被覆工具では被膜の安定性が不足し、十分な工具寿命が得られていない。断続切削加工において、CBN焼結体より強度の劣るセラミックス被覆膜は膜厚が大きいと断続の衝撃により膜剥離・膜破壊が切れ刃部に生じ、被覆工具の欠損や被削材の面粗度悪化の原因となる。また、送り量が被覆膜厚に近づくに

つれて、被覆膜の下に基材のない部分で切削する比率が高くなり、被覆膜の剥離が 生じ易くなる。

- [0006] 一般に、被覆超硬合金工具では高精度加工ではなく切り込み、送り量の大きい高能率加工を対象としているので、高い切削負荷による膜剥離の発生が問題となる。一方、CBN工具による切削では高精度な仕上げ面が得られるため、送り量が小さい仕上げ加工を対象とする場合が多い。発明者らが得た知見では、低送り加工においても比切削抵抗(切削抵抗を切削断面積で割った値)が高くなることにより膜剥離が発生し易くなる。比切削抵抗が高くなる理由は、送り量が小さい場合、切削断面積が小さくなることで被削材内部の欠陥の存在確率が小さくなるため、材質強度が相対的に高まることが考えられる(比切削抵抗の寸法効果)。特にプランジカットである溝入れ加工では、切れ刃の接触面積が大きくその高い切削負荷のためトラバースカットより送り量が小さく、かつその加工終了時には送りがゼロの状態となり、被覆膜に大きな切削応力がかかり、膜の剥離につながる。以上から被覆膜の剥離防止が第一の課題である。
- [0007] また、高精度加工において従来の被覆膜の切れ刃エッジ部に生じる「丸み」は加工 精度を低下させ、且つ比切削抵抗も高くなるため、この「丸み」を小さくすることが第 二の課題である。

課題を解決するための手段

- [0008] 本発明は、CBN焼結体を基材として、基材の表面にC、NおよびOの中から選択された少なくとも1種の元素とTiとAlの中から選択された少なくとも一種の元素とを主成分とした化合物からなる少なくとも1層の被覆膜を厚さ0.1 μ m以上1 μ m未満で有する工具用表面被覆高硬度材料である。本発明の工具用表面被覆高硬度材料は、被覆膜としてTiAl(CNO)からなる耐摩耗層を有している。そのほかにTiNなどからなる中間層や最表面層を設けてもよい。
- [0009] 本発明の被覆膜は、TiとAlの窒化物もしくは炭窒化物からなり、被覆膜のX線回折における(111)面からの回折強度をI(111)、(200)面からの回折強度をI(200)としたとき、0≦I(200)/I(111)≦3であることが望ましい。回折強度は成膜条件に依存するのだが、I(200)/I(111)が3を超えると、圧縮応力の低下および結晶粒の粗大化による

耐摩耗性と耐欠損性の低下を招くため、3以下とした。

- [0010] 種々の実験から、従来膜より膜厚の薄い本発明の被覆膜は、(Ti_Al)N、0.3≦X ≦0.6で表される組成を有することが望ましい。TiAIN系の被覆膜がCBN基材より熱膨張係数が大きいため、成膜完了後の冷却時にそれぞれの収縮率の差により被覆膜内部に引張応力が発生し、成膜時に発生した残留圧縮応力が緩和される。ここで被覆膜中のAIの比率が高くなるに従い、被覆膜の熱膨張係数が低くなると推定されXが0.6を超えると、CBN基材との熱膨張係数の差による圧縮応力の緩和効果が薄れ、膜内部の高い圧縮応力が残留してしまい切削時に膜剥離が発生し易くなる。また、Xが0.3未満であると硬度が低くなり摩耗抑制効果が得られないため、0.3≦X≦0.6とした。この範囲は、耐摩耗性と耐剥離性のバランスに優れ、断続切削や溝入れ加工に適した組成である。さらに好ましくは0.3≦X≦0.45であることがわかった。
- [0011] 本発明の被覆膜を構成する結晶の平均粒径は、50nm以上150nm以下であることが望ましい。一般に結晶粒径が微細になるに従い、膜の硬度が高くなる一方、靭性は低下すると考えられ、上記の範囲が耐摩耗性と耐欠損性のバランスに優れ、断続切削や溝入れ加工に適した結晶粒径である。
- [0012] 前記被覆膜に含まれるTiの一部を、Si、BならびにTiを除く周期律表4a、5aおよび6a 族遷移金属元素の中から選択される少なくとも1種の元素に置換し、置換された元素 の被覆膜中の含有量が原子%で10%未満であることが望ましい。Ti、Alに加えて前 記のような第3元素を添加することで、被覆膜を構成する結晶粒子の粒径がさらに微 細化され、かつ均一な結晶構造となり、膜の強度が向上するからである。
- [0013] 本発明の工具用表面被覆高硬度材料を溝入れ工具として利用すると顕著な効果が得られる。溝入れ加工では、もともと低送り条件である上、溝底部で送りがゼロの状態となり、被覆膜に大きな応力がかかり、被覆膜が厚い場合は膜の剥離につながる。本発明の被覆膜は膜厚が薄いため、前記のような溝入れ加工特有の高い応力に耐えることができる。
- [0014] 本発明で用いる基材は、CBN粉末30〜90体積%と残部結合材からなる焼結体であって、残部結合材が周期律表第4a、5aおよび6a族元素の窒化物、炭化物、硼化物、酸化物ならびにこれらの固溶体からなる群の中から選択された少なくとも一種と、ア

ルミニウム化合物と不可避不純物からなる。ここでAI化合物としては、アルミの酸化物、硼化物、窒化物などである。CBN焼結体として種々なものが知られているが、上記の基材は焼入れ鋼の切削に適している。

- [0015] さらに望ましくは、被覆膜の膜厚が $0.1\,\mu$ m以上であって $0.5\,\mu$ m未満である。膜厚を薄くすることで、切削時の送り量を小さくすることができ、高精度加工を可能とする。本発明における高精度加工とは、送り量が $0.08\,\mu$ mm/rev以下の加工のことである。本発明で被覆膜の膜厚と言うときは、中間層、耐摩耗層および最表面層などの各種層の合計膜厚を指す。
- [0016] 本発明の工具用表面被覆高硬度材料からなる切削工具は、乾式工具としてはもちろん湿式工具としても使用可能である。断続切削加工では熱サイクルが著しく、工具寿命の観点からは乾式加工が望ましいのだが、寸法精度の観点からは湿式加工が望ましい場合がある。その際、CBN基材と硬質被覆膜の熱膨張係数が異なるため、従来の膜では断続の衝撃に加えて熱サイクルによる膜剥離、膜破壊が生じ十分な摩耗抑制効果が得られていなかった。しかしながら、本発明では圧縮応力を負荷する事で膜自体の耐欠損性を高めている上に、膜厚を薄くすることで熱サイクルにより発生する熱応力に依存する全応力を抑制し、耐剥離性を大幅に向上させている。このため、湿式条件下での断続切削においても膜破壊、膜剥離が生じにくく、十分な摩耗抑制効果が得られる。

発明の効果

[0017] 本発明の工具用表面被覆高硬度材料は優れた強度、硬度および靭性を有する CBN焼結体に、優れた硬度と耐熱性を有する硬質被覆膜を従来膜より薄く被覆し、 膜の耐剥離性、耐欠損性を大幅に改善したものである。

発明の実施の形態

[0018] 本発明では、被覆膜を薄くすることにより断続切削加工や高精度加工において長寿命化を実現する工具用表面被覆高硬度材料およびその材料を用いた溝入れ工具を提供しようとするものである。断続切削では、断続の衝撃に耐え得るだけの高い耐剥離性が要求されるのは当然であるが、連続切削においても送り量の小さい条件下では被覆膜に高い応力がかかり、膜剥離を引き起こす。この理由を次に示す図1

- 一図3を用いて説明する。
- [0019] 外径切削において、図1に示す基材1からなる工具を被削材3の軸方向に送るトラバースカットと図2に示す径方向に送るプランジカットがある。いずれの加工においても、被削材3が矢印の方向に回転し、基材1からなる工具が矢印の方向に移動して、送り量Fに比例する厚みを有する切屑が除去されることで加工が進行する。なお、実線で示す基材1の位置とその一回転前の基材の位置7などに囲まれた斜線部は切削断面積を示す。図1、2から分かるように、特にプランジカットはトラバースカットに比較し切れ刃の接触面積が大きく切削抵抗が高い。従ってプランジカットである溝入れ加工ではもともとトラバースカットより送り量が小さく、かつ、溝入れの最後のところで工具の進行が止まり工具先端と溝の底が擦れるという段階がある。
- [0020] 図3は、図2における被削材加工部位のA-A断面図であり、本発明の材料からなる 溝入れ工具を用いて、被削材の溝を切削している状態を表す。基材1の表面に被覆 膜2があり、被削材3を矢印の方向に回転させ切削している。高精度加工や溝入れ加 工では、切削加工時の送りを小さくする必要がある。切削加工において送りFに相当 する幅の部分が切粉5として取り除かれ、溝壁6を形成する。送りFを小さくすると、や がて切粉として取り除かれる部分の厚さが、被覆膜2の厚さに近づいてくる。こうなると 、切削時に工具にかかる負荷のうち、被覆膜2で受ける割合が高くなり被覆膜2の剥 離の原因になる。被覆膜2を薄くすると、同じ送りFであっても基材1にかかる負荷の割 合を増やすことができ、被覆膜の剥離を抑制できる。
- [0021] つまり溝入れ加工では、通常のトラバースカットより送り量が小さく、刃先先端部に切削応力が集中する。従来の厚い被覆膜であれば、被覆膜内で受ける切削応力の割合が高くなるので、基材からの膜剥離や膜欠損が起こり易い。これに対して本発明の溝入れ工具は、被覆膜の厚さが薄いので膜剥離や膜欠損のような問題はない。
- [0022] 基材に膜を被覆すると、図3に示すように基材の切刃エッジに丸み4が発生する。本発明の被覆膜は例えばPVD法で被覆されるが、そのとき切刃エッジに電荷が集まり易くどうしても切刃エッジの丸みを防ぐことができない。丸み4の部分にかかる負荷は大きく、膜が損傷を受け易い構造となっている。本発明では、被覆膜の厚さを薄くしているので、丸みを小さく抑制することができる。

- [0023] 本発明の被覆膜は、イオンプレーティングなどのPVD法で形成することができる。本発明の被覆膜を形成する方法は、原料元素のイオン化率が高く、反応性に富み、基材にバイアス電圧を印加することにより密着性に優れた被覆膜を得ることができるアーク式イオンプレーティング法が最も適している。ここで、バイアス電圧とは基材と金属ターゲット間の電位差を指す。
- [0024] 一般にアーク式イオンプレーティング法では、被覆膜の構成物質をバイアス電圧で加速する。つまり基材に負のバイアスを付加することで、イオン化された金属陽イオンが加速され、基材表面に到達し膜が成長していく。バイアス電圧と残留応力の関係は文献Surface and Coatings Technology vol.163-164 p135-143(2003)のFig.7に開示されているが、この文献ではバイアス電圧が高くなるに従って残留圧縮応力が高くなり、100Vで極大値となり、それ以上では逆に残留圧縮応力が低下することを示している。
- [0025] ここでバイアス電圧が「高い」とは、基材にかける負のバイアス電圧の絶対値が大きいことを意味し、後述する表8や図4などでは絶対値で表示している。バイアス電圧が高くなると、加速された陽イオンの基材への打ち込み(ボンバード)効果が高まり圧縮応力が増加するが、同時に基材と被覆膜の温度も上昇するため応力緩和が働き、あるバイアス電圧から圧縮応力が低下する傾向を示す。前記の文献に対し本発明の被覆膜(被覆膜の組成: (Ti Al)N、膜厚:0.45 μm)は、図4に示すようにバイアス電圧が200Vで残留圧縮応力が極大となり、かつ残留圧縮応力の絶対値も上記の文献よりも大きくなる。
- [0026] この理由は次のように推定される。CBN基材の熱伝導率は被覆膜の熱伝導率よりはるかに大きく、成膜時に被覆膜に発生した熱を逃がす働きがあるが、その放熱効果は膜厚に依存する。つまり、膜厚が薄いと放熱効果に優れるため被覆膜の温度上昇による応力緩和効果が小さくなり、圧縮応力が高くなると推定される。このことは被覆膜を薄くすることでより高い圧縮応力を付加できることを意味する。
- [0027] 被覆膜内部の圧縮応力は高い方が膜の硬度、強度が高くなるが、膜厚が厚いと全応力(内部応力×膜厚)が大きくなり切削負荷によって基材からの剥離が発生しやすくなるため、適切なところで制御する必要がある。特に基材がCBN焼結体の場合、

CBN粒子がセラミックス結合相より化学的に安定であるため被覆膜との界面での拡散 反応が起こりにくい。さらにCBN粒子が機械的強度にも優れるため、陽イオンの打ち 込みによる基材の表面粗さが得られないためアンカー効果も小さい。このため、従来 の1μm以上の膜厚で、基材がCBN焼結体の場合は、超硬合金やサーメットに比べ 密着力が出にくく、バイアス電圧を高くすると膜内部の全応力が高くなり切削時に被 覆膜が剥離するので、通常100V以下で成膜されていた。

- [0028] しかし、本発明のように薄い被覆膜の場合には、高い内部圧縮応力を維持しながら 被覆膜の全応力を制御することが可能であるため、バイアス電圧を上記より高くする ことが望ましい。従って、本発明で用いるバイアス電圧は100V〜300Vの範囲が望ましい。
- [0029] 本発明の被覆膜は、単層でも複層でもよい。ただし最表面層を設ける場合は、TiN、TiCN、CrN、TiC、HfCなどが望ましい。これはCBN焼結体が黒色であるのに対し、前記の膜は鮮やかな明色を呈するからである。最表面層を設けた本発明の被覆CBN焼結体工具をマスプロダクションで使用する際に、寿命に達した工具またはコーナーと未使用の工具またはコーナーの区別が容易になり、工具管理が徹底できるからである。
- [0030] 以下、本発明の実施の形態を説明する。 (実施例1)

超硬合金製ポットおよびボールを用いてTiNとアルミニウムを80:20の重量比で混合した結合材粉末を得た。次に、この結合材とCBN粉末とを体積比で40:60となるように配合し、Mo製容器に充填し、圧力50kb(5GPa)、温度1450℃で20分間焼結した。焼結体の中には、窒化アルミニウム、酸化アルミニウムと硼化アルミニウムと思われるアルミニウム化合物が含まれていた。この焼結体を切削工具用のチップの形状(型番SNGN120408)および溝入れ工具用のチップの形状(型番BNGNT0250R)に加工した後、チップに真空アーク放電によるイオンプレーティング法で表1に示す被覆膜を被覆した。

[0031] 成膜装置内は、複数個のターゲットを配置し、これらのターゲットの中心に設けた回転式基材保持具に上記チップを装着して成膜した。ターゲットとしては、被覆膜の金

WO 2005/000508 PCT/JP2004/008873

属分の成分と同じ組成とし $Ti_{0.5}^{Al}$ $Al_{0.5}^{Al}$ $Ti_{0.7}^{Al}$ $Al_{0.7}^{Al}$ $Ti_{0.6}^{Al}$ $al_{0.4}^{Al}$ およびTiなどを用いた。まず、成膜装置を 1.33×10^{-3} Pa $(10^{-5}$ torr)の真空度まで減圧し、Arガスを導入して1.33 Pa $(10^{-2}$ torr)の雰囲気中でチップに-1000 Vの電圧を加えて洗浄した。次に、500 °Cまで加熱し、Arガスを排気した後反応ガスとして n_{2}^{Al} ガスを導入し、チップに-120 Vの電圧を加えて、真空アーク放電によりアーク電流100 Aで前記のターゲットを蒸発イオン化させて被覆した。圧力は、1.33 Pa $(10^{-2}$ torr)とし、また、膜厚は被覆時間によって制御した。

[0032] 被覆膜がNに加えC、Oを含む膜の場合には、反応ガスとしてN2に加えCH4、O2を用い、各々の流量の割合を調整してC、N、Oの割合を調整した。また、中間層、最表面層としてTiNを被覆するが、そのときTiをターゲットとして配置し、上記と同じ要領で順次成膜した。このようにして得られた試料を表1に示す。被覆膜の結晶系は、立方晶型の結晶構造であった。

[0033] [表1]

試料	中	間層	耐摩耗層		最表	面層
No.	組成	膜厚 (μm)	組成	膜厚 (μm)	組成	膜厚 (μ m)
1	t	にし	(Ti _{0.5} Al _{0.5})N	0.1	t	こし
2	た	こし	(Ti _{0.5} Al _{0.5})N	0.2	TiN	0.1
3	た	r L	(Ti _{0.5} Al _{0.5})N	0.3	TiN	0.1
4	た	こし	(Ti _{0.5} Al _{0.5})N	0.7	TiN	0.1
5	7.	à L	(Ti _{0.5} Al _{0.5})N	1.2	TiN	0.1
6	7.	ì	(Ti _{0.5} Al _{0.5})N	2	TiN	0.1
7	7,	a l	(Ti _{0.5} Al _{0.5})N	. 5	TiN	0.1
8	7,	よし	(Ti _{0.5} Al _{0.5})N	10	TiN	0.1
9	TiN	0.05	(Ti _{0.5} Al _{0.5})N	0.3	TiN	0.1
10	TiN	0.05	(Ti _{0.5} Al _{0.5})N	0.3	7,	⊋L
_11	なし		(Ti _{0.6} Al _{0.4})N	0.3	TiN	0.1
12	なし		(Ti _{0.6} Al _{0.4})N	2.5	TiN	0.1
13	なし		(Ti _{0.8} Al _{0.7})N	0.3	TiN	0.1
14	7	なし	(Ti _{0.3} Al _{0.7})N	2.2	TiN	0.1
15	7	なし	$(Ti_{0.5}Al_{0.5})$ $(C_{0.2}N_{0.8})$	0.3	TiN	0.1
16	7	なし	$(Ti_{0.5}Al_{0.5})$ $(C_{0.2}N_{0.8})$	2.3	TiN	0.1
17	7	なし	$(Ti_{0.5}Al_{0.5})$ $(N_{0.8}O_{0.2})$	0.3	TiN	0.1
18	,	なし	$(Ti_{0.5}Al_{0.5})$ $(N_{0.8}O_{0.2})$	2.3	TiN	0.1
19	,	なし	TiCN	0.3	TiN	0.1
20	,	なし	TiCN	2.7	TiN	0.1
21	TiN	0.05	(Ti _{0.6} Al _{0.4})N	0.7	7	なし
22	TiN	0.05	(Ti _{0.6} Al _{0.4})N	0.7	TiN	0.1
23	なし		(Ti _{0.7} Al _{0.3})N	0.8	TiN	0.1
24	なし		(Ti _{0.3} Al _{0.7})N	0.8	TiN	0.1
25	なし		TiCN	0.7	TiN	0.1
26	なし		なし	な		なし
27	なし		(Ti _{0.6} Al _{0.3} Si _{0.1})N	0.7	なし	
28		なし	(Ti _{0.5} Al _{0.4} B _{0.1})N	0.7		なし

[0034] 表1において試料No.9、10、21および22は、基材と耐摩耗層の間に膜厚0.05 μ mの TiNからなる中間層を設けたもので、中間層は被覆膜の接合強度を高める働きがある。また、試料No.1、10、21、27および28は、最表面層のない被覆膜構造となっている

。TiNからなる最表面層は、金色であり工具の使用済みのコーナーを識別しやすいので被覆されている。試料No.15~18において、被覆膜は炭窒化物や酸窒化物を用いている。また試料No.19、20および25は、Tiのみを金属元素とする被覆膜である。また、試料27、28はTi、Alに加えてSiやBを添加したものである。なお試料26は、市販の被覆膜なしの工具である。

[0035] (切削試験1)

表1に記載されているチップを用いて、油穴が加工されている被削材を10分間切削して断続切削試験(断続度50%)を実施した。被削材は、焼入れ鋼であるSCr420H(JIS規格)を硬度HRc60に調整したものを用いた。なお、断続度とは被削材の送り方向において、切削する部分の長さに対する空転部分の長さの割合を意味する。本切削試験の断続度50%では、被削材の切削される長さに対して半分の長さが断続切削であったという意味である。本発明の材料は、断続切削と連続切削が混在する被削材の切削に好適である。被削材全体にスプライン溝などがある場合は、断続度100%となる。

[0036] 切削試験の条件は以下の通りである。

切削速度:200m/min

送り :0.15mm/rev

切り込み:0.2mm

切削方式:乾式

このようにして得られた結果を表2に示す。逃げ面摩耗と切削された面の面粗度を合わせて考慮し評価した結果が評価の欄に記載されている。このうち \odot が最もよく、以下 \odot 、 Δ 、 \times と順次評価は悪くなる。この表示は、以下の切削試験においても同様である。この結果から、中間層と耐摩耗層と最表面層とを合わせた被覆膜の厚さが1 μ mを越えるものおよび被覆膜のないものは、 \times または Δ の評価であった。ここで表中に示した面粗さRzは、被削材の表面を表面粗さ計で測定した粗さ曲線から基準長さを切り取り、その部分の山頂線と谷底線との間隔を粗さ曲線の縦方向に測定し、これをミクロン単位(1 μ m=0.001mm)で表したものを言い、JIS(日本工業規格)B0601に定められている。(以下の実施例においても同じ)。

[0037] [表2]

試料	逃げ面摩耗	面粗度Rz	Patrice Cha	
No.	(mm)	$(\mu \mathbf{m})$	膜損傷	評価
1	0.115	5.05	良好	0
2	0.095	5.21	良好	0
3	0.08	5.10	良好	0
4	0.07	5.63	良好	0
5	0.12	8.85	チッピング	Δ
6	0.15	11.30	剥離	×
7	0.38	17.32	剥離	×
8	欠損	25.55	欠損	×
9	0.085	4.82	良好	0
10	0.076	5.32	良好	0
11	0.082	4.31	良好	0
12	0.25	13.88	剥離	×
13	0.078	6.93	良好	0
14	0.21	14.35	剥離	×
15	0.11	7.12	良好	0
16	0.27	15.42	剥離	×
17	0.121	6.80	良好	0
18	0.23	17.32	剥離	×
19	0.091	7.15	良好	0
20	0.35	21.65	剥離	×
21	0.075	5.31	良好	0
22	0.083	5.15	良好	0
23	0.085	5.03	良好	0
24	0.11	7.03	微小チッピング	0
25	0.12	7.34	微小チッピング	0
26	欠損	21.83	_	×
27	0.062	6.02	良好	0
28	0.075	4.95	良好	0

[0038] (切削試験2)

表1に記載されているチップを用いて、油穴が加工されている被削材を10分間切削 して断続切削試験(断続度50%)した。被削材は、焼入れ鋼であるSCr420H(JIS規格) 12

を硬度HRc60に調整したもので、切削試験1と同じ形状をしたものを用いた。切削試験の条件は以下の通りである。

切削速度:200m/min

送り :0.04mm/rev

切り込み:0.1mm

切削方式:乾式

[0039] 切削試験の条件は、切削試験1と比較すると、送りが小さく且つ切り込みも小さい高精度加工に属する条件である。このようにして得られた結果を表3に示す。表3によれば、膜厚が1.3 μ mの試料No.5のものは剥離して使用できないことを示している。また、膜厚0.8 μ mの試料No.4は、かろうじて使用できる程度であった。この理由はおそらく、切削試験1と比較すると送り量が小さくなったため、比切削抵抗が増加し、かつ被覆膜内で受ける切削応力の割合が高くなったためと考えられる。

[0040] [表3]

試料	逃げ面摩耗	面粗度 Rz	P#10 /6	=
No.	(mm)	(μm)	膜損傷	評価
1	0.073	1.21	良好	0
3	0.045	1.37	良好	0
4	0.087	3.43	微小チッピング	Δ
5	0.178	7.32	剥離	×
11	0.057	1.10	良好	0
23	0.075	1.27	良好	0

[0041] (切削試験3)

表1に記載されているチップを用いて、被削材を20分間切削して連続切削試験した。被削材は、焼入れ鋼であるSCr420H(JIS規格)を硬度HRc60に調整したものを用いた。切削試験の条件は以下の通りである。

切削速度:200m/min

送り:0.04mm/rev

切り込み:0.05mm

切削方式:乾式

[0042] 切削試験2よりも、さらに切り込みを半分にした条件で切削試験した。この切削試験は、連続切削なので工具の性能差を把握するために切削時間を20分間に延長した。このようにして得られた結果を表4に示す。この結果からいえることは、中間層と耐摩耗層と最表面層とを合わせた被覆膜の厚さが1μmを越えるものおよび被覆膜のないものは、×または△の評価であった。本発明の工具を使用することで、従来では研削でしか達成できないとされていた1.6S加工(Rz=1.6μm以下)を切削により実現することができた。

[0043] [表4]

試料	逃げ面摩耗	面粗度 R z	-41.4 14.	
No.	(mm)	(μm)	膜損傷	評価
1	0.090	1.05	良好	0
2	0.072	1.13	良好	0
3	0.062	1.09	良好	©
4	0.07	1.85	良好	0
5	0.087	3.93	チッピング	Δ
6	0.12	7.42	剥離	×
7	0.22	8.35	剥離	×
8	0.35	10.50	剥離	×
9	0.082	1.01	良好	0
10	0.067	1.23	良好	0
11	0.072	0.95	良好	0
12	0.14	8.23	剥離	×
13	0.061	1.42	良好	0
14	0.21	9.29	剥離	×
15	0.052	1.32	良好	0
16	0.27	7.35	剥離	×
17	0.058	1.40	良好	0
18	0.23	8.72	剥離	×
. 19	0.075	1.97	良好	0
20	0.19	7.53	剥離	×
21	0.075	1.71	良好	. 0
22	0.08	1.68	良好	0
23	0.093	1.43	良好	0
24	0.105	3.72	微小チッピング	Δ
25	0.112	4.21	微小チッピング	Δ
26	摩耗大	7.42	_	×
27	0.063	1.99	良好	0
28	0.083	1.70	良好	0

[0044] (切削試験4)

表1に記載されているチップを用いて、切削試験1と同様に切削試験した。ここでは、同じ試料No.のチップで0.02mm/revと0.15mm/revの2種類の送り量を採用して、被

削材を20分間連続切削して比較した。被削材は、焼入れ鋼であるSCr420H(JIS規格)を硬度HRc60に調整したものを用いた。切削試験の条件は以下の通りである。

切削速度:200m/min

送り :表5に記載の通り。

切り込み:0.2mm

切削方式:乾式

[0045] このようにして得られた結果を表5に示す。表の上から順に試料No.3、4、5、6および8の被覆膜は、被覆膜の厚さの薄いものの順になっていて順に $0.4\,\mu$ m、 $0.8\,\mu$ m、 $1.3\,\mu$ m、 $2.1\,\mu$ m、 $10.1\,\mu$ mとなっている。被覆膜の薄い試料No.3のものは、0.02mm/revの小さな送りでも0.15mm/revの送りでも高い評価を得ていて、厚くなるに従い評価が悪くなっていることを示す。

[0046] [表5]

試料	送り量	逃げ面摩耗	C井1日 (左	Sat Are	
No.	(mm/rev)	(mm)	膜損傷	評価	
3	0.02	0.09	良好	0	
3	0.15	0.13	良好	0	
4	0.02	0.105	微小チッピング	0	
4	0.15	0.121	良好	0	
5	0.02	0.12	微小チッピング	Δ	
5	0.15	0.115	良好	0	
6	0.02	0.25	剥離	×	
6	0.15	0.16	微小チッピング	0	
8	0.02	0.56	剥離	×	
8	0.15	0.73	剥離	×	

[0047] (切削試験5)

この切削試験では、溝入れ加工による切削試験を行った。表1に記載されているチップを用いて、被削材に120個の溝を加工して性能評価した。被削材は、焼入れ鋼であるSCr420H(JIS規格)を硬度HRc63に調整したものを用いた。切削試験の条件は以下の通りである。

WO 2005/000508 PCT/JP2004/008873

切削速度:200m/min

送り :0.02mm/rev

溝の深さ:0.8mm

切削方式: 乾式

[0048] このようにして得られた結果を表6に示す。CBN工具による焼入れ鋼の溝入れ加工は、通常の切削加工より送りが小さく、特に溝の底部を切削するときはいわゆる「ゼロ切削」の状態となり、膜にかかる負荷が通常の旋削より大きい。溝入れ加工においても、被覆膜は薄い方が逃げ面摩耗、膜損傷共に優れている。1 μ m未満の膜厚を持つチップの性能は特に優れている。

[0049] [表6]

試料	逃げ面摩耗	n++ 1.52 / Ez	
No.	(mm)	膜損傷	評価
1	0.07	良好	0
2	0.055	良好	0
3	0.048	良好	0
4	0.04	良好	0
5	0.05	チッピング	Δ
6	0.088	剥離	×
7	0.15	剥離	×
8	0.23	剥離	×
9	0.047	良好	0
10	0.044	良好	0
11	0.053	良好	0
12	0.105	剥離	×
13	0.048	良好	0
14	0.098	剥離	×
15	0.044	良好	0
16	0.11	剥離	×
17	0.045	良好	0
18	0.12	剥離	×
19	0.05	良好	0
20	0.15	剥離	×
21	0.045	良好	0
22	0.05	良好	0
23	0.053	良好	0
24	0.047	良好	0
25	0.049	良好	0
26	摩耗大	-	×
27	0.052	良好	0
28	0.068	良好	0

[0050] (切削試験6)

この切削試験では、切削試験5と同様に溝入れ加工により評価した。表1に記載されているチップを用いて、被削材に120個の溝を加工して性能評価した。被削材は、

WO 2005/000508 PCT/JP2004/008873

送り方向にスプライン溝を有す断続度100%の形状で、焼入れ鋼であるSCr420H(JIS 規格)を硬度HRc63に調整したものを用いた。

切削速度:150m/min

送り :0.02mm/rev

溝の深さ:0.8mm

切削方式:乾式

[0051] このようにして得られた結果を表7に示す。溝入れ加工の断続切削でもやはり、被覆 膜が薄い方が逃げ面摩耗、膜損傷共に優れている。

[0052] [表7]

試料	逃げ面摩耗	DII 10 16	
No.	(mm)	膜損傷	評価
1	0.053	良好	0
2	0.035	良好	0
3	0.03	良好	0
4	0.052	微小チッピング	0
5	0.06	微小剥離	Δ
6	0.25	剥離	×
7	0.4	剥離	×
8	欠損	欠損	×
9	0.04	良好	0
10	0.034	良好	0
11	0.032	良好	0
12	0.31	剥離	×
13	0.038	良好	0
14	0.27	剥離	×
15	0.06	良好	0
16	0.52	剥離	×
17	0.055	良好	0
18	0.39	剥離	×
19	0.053	良好	0
20	0.62	剥離	×
21	0.051	微小チッピング	0
22	0.055	微小チッピング	0
23	0.06	微小チッピング	0
24	0.083	チッピング	Δ
25	0.105	チッピング	Δ
26	欠損	_	×
27.	0.049	微小チッピング	0
28	0.057	微小チッピング	0

[0053] (実施例2)

結晶の配向性と平均粒径を変化させてその効果を調べた。実施例1と同様にして、 工具用表面被覆高硬度材料からチップ形状(型番SNGN120408)に加工した。ただし 、膜厚、X線の回折強度I(200)/I(111)、平均結晶粒径を種々変化させた。この実施 例では、主として(Ti_{0.6} Al_{0.4})Nを耐摩耗層とし、最表面層と中間層を設けない工具用表面被覆高硬度材料を作製した。バイアス電圧を高くすると、I(200)/I(111)の値が小さくなる傾向がある。また平均結晶粒径は、バイアス電圧が高くなると小さくなり、また膜厚が薄くなると小さくなる傾向にある。このようにして得られた、チップの性質を表8に示す。

[0054] [表8]

試料	バイアス	耐摩耗層					
No.	電圧 (V)	組成	膜厚 (μm)	結晶 構造	配向性	平均粒径 (nm)	
41	150	(Ti _{0.6} Al _{0.4})N	0.4	立方晶	1.53	73	
42	200	(Ti _{0.6} Al _{0.4})	0.4	立方晶	2.32	65	
		$(C_{0.2}N_{0.8})$					
43	120	(Ti _{0.6} Al _{0.4})N	0.4	立方晶	3.23	135	
44	80	(Ti _{0.6} Al _{0.4})N	0.7	立方晶	8.3	260	
45	50	(Ti _{0.6} Al _{0.4})N	1.2	立方晶	10.5	375	
46	100	(Ti _{0.6} Al _{0.4})N	0.4	立方晶	2.7	210	

[0055] (切削試験7)

ここでは、表8に記載されているチップを用いて、10分間の切削試験をした。被削材は、切削試験1で使用したものと同一の断続切削テスト用のものである。切削試験の条件は以下の通りである。

切削速度:200m/min

送り :0.1mm/rev

切り込み:0.2mm

切削方式:乾式

このようにして得られた結果を表9に示す。膜厚が $0.5\,\mu$ m未満、回折強度 I(200)/I(111)が3以下、平均粒径が150nm以下の試料No.41、42のものが特に優れていた。

[0056] [表9]

試料 No.	逃げ面摩耗 (mm)	面粗度:Rz (μm)	膜損傷	評価
41	0.073	1.8	良好	0
42	0.83	1.9	良好	0
43	0.17	2.9	良好	0
44	0.25	3.6	微小チッピング	Δ
45	0.31	5.1	チッピ・ング	×
46	0.11	2.2	良好	0

産業上の利用可能性

[0057] 従来の表面被覆高硬度材料では十分な寿命が得られていなかった被覆膜への負荷が大きい用途、例えば、乾式はもとより湿式条件下での高硬度焼入れ鋼の断続切削や高精度加工分野において広く利用できる。さらに、本発明の材料を溝入れ工具に適用した場合、特に寿命延長効果が顕著に現れる。

図面の簡単な説明

[0058] [図1]トラバースカットにおける、切削断面積を説明する概念図である。

[図2]プランジカットにおける、切削断面積を説明する概念図である。

[図3]図2のA-A断面図であって、本発明の切削工具を用いて、被削材をプランジカットしている状態を模式的に示した図である。

[図4]バイアス電圧と残留応力の関係を示すグラフである。

符号の説明

- [0059] 1 基材
 - 2 被覆膜
 - 3 被削材
 - 4 丸み
 - 5 切粉
 - 6 溝壁
 - 7 1回転前の基材位置
 - F 送り

請求の範囲

- [1] 立方晶窒化硼素焼結体(以下CBN焼結体)を基材として、
 - 前記基材の表面にC、NおよびOの中から選択された少なくとも1種の元素とTiとAlの中から選択された少なくとも一種の元素とを主成分とした化合物からなる少なくとも1層の被覆膜を厚さ $0.1~\mu$ m以上 $1~\mu$ m未満で有することを特徴とする工具用表面被覆高硬度材料。
- [2] 前記被覆膜が、TiとAIの窒化物もしくは炭窒化物からなり、被覆膜のX線回折における(111)面の回折強度をI(111)、(200)面の回折強度をI(200)としたとき、0≦I(200)/I(111)≤3であることを特徴とする請求項1に記載の工具用表面被覆高硬度材料。
- [3] 前記被覆膜が $(Ti_{1-X}Al_X)N$ 、 $0.3 \le X \le 0.6$ で表される組成を有することを特徴とする請求項1または2に記載の工具用表面被覆高硬度材料。
- [4] 前記被覆膜が $(Ti_{l-X}Al_{x})N$ 、 $0.3 \le X \le 0.45$ で表される組成を有することを特徴とする請求項1~3のいずれかに記載の工具用表面被覆高硬度材料。
- [5] 前記被覆膜を構成する結晶の平均粒径が50nm以上150nm未満であることを特徴と する請求項1〜4のいずれかに記載の工具用表面被覆高硬度材料。
- [6] 前記被覆膜に含まれるTiの一部を、Si、BならびにTiを除く周期律表4a、5aおよび6a 族遷移金属元素の中から選択される少なくとも1種の元素に置換し、置換された元素 の被覆膜中の含有量が原子%で10%未満であることを特徴とする請求項1~5のいずれかに記載の工具用表面被覆高硬度材料。
- [7] 前記工具用表面被覆高硬度材料の用途が溝入れ工具であることを特徴とする請求 項1~6のいずれかに記載の工具用表面被覆高硬度材料。
- [8] 基材が立方晶窒化硼素(CBN)粉末30~90体積%と残部結合材からなる焼結体であって、残部結合材が周期律表第4a、5aおよび6a族元素の窒化物、炭化物、硼化物、酸化物ならびにこれらの固溶体からなる群の中から選択された少なくとも一種と、アルミニウム化合物と不可避不純物からなることを特徴とする請求項1~7のいずれかに記載の工具用表面被覆高硬度材料。
- [9] 前記被覆膜の合計の膜厚が0.1 μ m以上0.5 μ m未満であることを特徴とする請求項1 ~8のいずれかに記載の工具用表面被覆高硬度材料。

WO 2005/000508 PCT/JP2004/008873

[10] 前記工具用表面被覆高硬度材料の用途が、焼入れ鋼の高精度加工用工具であることを特徴とする請求項1〜9のいずれかに記載の工具用表面被覆高硬度材料。ここで高精度加工とは送り量0.08mm/rev以下の加工のことである。

[図1]

[図2]

[図3]

[図4]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/008873 CLASSIFICATION OF SUBJECT MATTER Int.Cl7 B23B27/14, B23B27/20, B23B27/04, C04B41/87, C23C14/06 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl⁷ B23B27/14, B23B27/20, B23B27/04, C04B41/87, C23C14/06 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2004 Kokai Jitsuyo Shinan Koho 1971-2004 Toroku Jitsuyo Shinan Koho 1994-2004 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X JP 2000-308906 A (Director General, Agency of 1,3,4,6,7;9, Industrial Science and Technology, OSG Corp.), 10 07 November, 2000 (07.11.00), Claims; Par. No. [0001] Y 2 (Family: none) X JP 2001-293602 A (Sumitomo Electric Industries, 1,5-8,10Y Ltd.), 2. 23 October, 2001 (23.10.01), Claims (Family: none) Y JP 11-131217 A (Hitachi Tool Engineering Ltd.), 2 18 May, 1999 (18.05.99), Claims · (Family: none) Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority "A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand to be of particular relevance the principle or theory underlying the invention "E". earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is step when the document is taken alone cited to establish the publication date of another citation or other document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is "O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination "P" document published prior to the international filing date but later than being obvious to a person skilled in the art the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 22 September, 2004 (22.09.04) 12 October, 2004 (12.10.04) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Facsimile No. Telephone No.

Form PCT/ISA/210 (second sheet) (January 2004)

A. 発明の属する分野の分類 (国際特許分類 (IPC Int. Cl ⁷ B23B27/14, B23B27/4/06)) 20, B23B27/04, C04B41/8	7, C23C1
B. 調査を行った分野	· · · · · · · · · · · · · · · · · · ·	
調査を行った最小限資料(国際特許分類(IPC))		
Int. C1 ⁷ B23B27/14, B23B27 14/06	/20, B23B27/04, C04B41/	'87, C23C
最小限資料以外の資料で調査を行った分野に含まれるも	0	
日本国宝田新安公部 1000 1000		
日本国公開実用新案公報 1971-2004 日本国実用新案登録公報 1996-2004		
日本国登録実用新案公報 1994-2004		
国際調査で使用した電子データベース(データベースの	名称、調査に使用した用語)	
		·
C. 関連すると認められる文献 引用文献の		
	するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	A (工業技術院長、オーエスジ	
一株式会社) 2000.11.	07,特許請求の範囲、段落【0	1, 3, 4, 6, 7, 9, 10
Y 001】 (ファミリーなし)	, , , , , , , , , , , , , , , , , , ,	2
X JP 2001-293602	A (住友電気工業株式会社)	1,5-8,10
Y 2001.10.23, 特許請	求の範囲 (ファミリーなし)	2
Y JP 11-131217 A	(日立ツール株式会社) 199	2
9.05.18, 特許請求の範	囲 (ファミリーなし)	
·		<u> </u>
C 欄の続きにも文献が列挙されている。	[
	□ パテントファミリーに関する別	概を 容 照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を	の日の後に公表された文献	de la la malantita com la como
もの	出願レ子氏ナスナのではなく	された又献であって 発明の原理又は理論
「E」国際出願日前の出願または特許であるが、国際出 以後に公表されたもの	が願日 の理解のために引用するもの	
「L」優先権主張に疑義を提起する文献又は他の文献の	「X」特に関連のある文献であって、 発行 の新規性又は進歩性がないと考	当該文献のみで発明
日若しくは他の特別な理由を確立するために引用 文献(理由を付す)	する 「Y」特に関連のある文献であって、	当該文献と他の1以
「〇」口頭による開示、使用、展示等に言及する文献	上の文献との、当業者にとって よって進歩性がないと考えられ	自明である組合せに
「P」国際出願日前で、かつ優先権の主張の基礎となる	5出願 「&」同一パテントファミリー文献	5 60
国際調査を完了した日	国際調査報告の発送日	
22.09.2004	12.10.20	004
国際調査機関の名称及びあて先	特許庁審査官(権限のある職員)	3C 3215
日本国特許庁 (ISA/JP) 郵便番号100-8915	所村 美和	. ————
東京都千代田区設が関三丁目4番3号	電話番号 03-3581-1101	内組 3204