July 11, 2023 for exercise on July 13th, 2023

Exercise No. 9

Peer-To-Peer Networks

Summer 2023

Exercise 1 Invertibility of a Random Matrix: Consider an $m \times n$ matrix M over a given Galois field GF[b] of size b. The rank of a matrix is the maximum number of linearly independent row vectors. It is defined to be 0 if all entries are 0. All entries of a random matrix are chosen independently at random from the finite field of size b.

- 1. What is the maximum rank of an $m \times n$ matrix M?
- 2. What is the probability that a random $1 \times n$ matrix has rank 0?
- 3. Given m linearly independent vectors $v_1, \ldots, v_m \in GF[b]^n$, what is the probability that a random vector $r \in GF[b]^n$ is linearly dependent on v_1, \ldots, v_m ? (Hint: Consider the number of possible points in F^n that can be described by a linear combination $\sum_{i=1}^m \alpha_i v_i$.)
- 4. For m < n, compute the probability that an $(m+1) \times n$ matrix has maximal rank under the condition that the $m \times n$ matrix for the first m rows already has maximal rank.
- 5. Combine all these observations to compute the probability that an $n \times n$ matrix has rank n and is thus invertible.
- 6. Consider a $(n + x) \times n$ random matrix M. How do you have to choose x such that M has rank n with high probability?