	$\theta = 0$ (0°)	π/6 (30°)	π/4 (45°)	π/3 (60°)	π/2 (90°)	2π/3 (120°)	3π/4 (135°)	5π/6 (150°)	π (180°)	3π/2 (270°)	2π (360°)
$\sin \theta$	0	1/2	1/√2	$\sqrt{3}/2$	1	$\sqrt{3}/2$	1/√2	1/2	0	-1	0
$\cos \theta$	1	$\sqrt{3}/2$	$1/\sqrt{2}$	1/2	0	-1/2	$-1/\sqrt{2}$	$-\sqrt{3}/2$	-1	0	1
$\tan \theta$	0	1/√3	1	$\sqrt{3}$	_	$-\sqrt{3}$	-1	$-1/\sqrt{3}$	0	_	0
$\csc \theta$	_	2	$\sqrt{2}$	2/√3	1	2/√3	$\sqrt{2}$	2	_	-1	_
$\sec \theta$	1	2/√3	$\sqrt{2}$	2	_	-2	$-\sqrt{2}$	$-2/\sqrt{3}$	-1	_	1
$\cot \theta$	_	$\sqrt{3}$	1	1/√3	0	$-1/\sqrt{3}$	-1	_√3	_	0	_

- $1) |b| = |\lambda| |a|;$
- 2) vectorii \overline{b} și \overline{a} sunt cooorientați, dacă $\lambda > 0$ și opus orientați, dacă $\lambda < 0$;
- 3) $\overline{b} = \overline{0}$, dacă $\lambda = 0$ sau $\overline{a} = \overline{0}$.

Produsul vectorului \overline{a} la numărul λ se notează cu $\lambda \overline{a}$.

Proprietățile operațiilor liniare asupra vectorilor. Operațiile de adunare și înmulțire cu un scalar definite mai sus se numesc liniare. Vom examina proprietățile de bază ale acestor operații și anume :

- 1) $\overline{a} + \overline{b} = \overline{b} + \overline{a}$,
- 2) $(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}),$
- 3) $\overline{a} + \overline{0} = \overline{a}$;

4) pentru orice vector \overline{a} există un astfel de vector, care adunat cu vectorul \overline{a} , are ca sumă vectorul nul. Acest vector este notat cu $-\overline{a}$, numit **opusul** vectorului \overline{a} : $\overline{a} + (-\overline{a}) = \overline{0}$;

- 5) $(\alpha\beta)\overline{a} = \alpha(\beta\overline{a});$
- 6) $(\alpha + \beta)\overline{a} = \alpha \overline{a} + \beta \overline{a}$
- 7) $\lambda (\overline{a} + \overline{b}) = \lambda \overline{a} + \lambda \overline{b}$,
- 8) $\overline{a} \cdot 1 = \overline{a}$, pentru orice numere reale α , β , γ și pentru orice vectori \overline{a} , \overline{b} , \overline{c} .

Produsul scalar al vectorilor \overline{a} și \overline{b} se notează prin unul $(\overline{a}, \overline{b})$ sau $\overline{a} \cdot \overline{b}$. Deci,

$$\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}| \cos(\overline{a}, \overline{b}).$$

Produsul scalar al vectorilor posedă următoarele proprietăți:

1)
$$\bar{a} \cdot \bar{b} = \bar{b} \cdot \bar{a}$$

- 2) $\overline{a} \cdot \overline{b} = |\overline{a}| \cdot pr_{\overline{a}} \overline{b} = |\overline{b}| \cdot pr_{\overline{b}} \overline{a}$.
- 3) Pentru ca doi vectori să fie ortogonali e necesar și suficient ca $\bar{a} \cdot \bar{b} = 0$
- 4) $(\lambda \overline{a}) \cdot \overline{b} = \lambda (\overline{a} \cdot \overline{b}) = \overline{a} \cdot (\lambda \overline{b}), (\lambda \in R)$
- 5) $\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$
- 6) $\overline{a} \cdot \overline{a} = \overline{a}^2 = |\overline{a}|^2$
- 7) Din proprietatea 6) rezultă că $\bar{i} \cdot \bar{i} = |\bar{i}|^2 = 1 = \bar{j} \cdot \bar{j} = \bar{k} \cdot \bar{k}$, iar din proprietatea 3) avem că $\bar{i} \cdot \bar{j} = \bar{j} \cdot \bar{k} = \bar{k} \cdot \bar{i} = 0$

1.
$$\overline{a} \cdot \overline{b} = (x_1 \overline{i} + y_1 \overline{j} + z_1 \overline{k}) \cdot (x_2 \overline{i} + y_2 \overline{j} + z_2 \overline{k}) = x_1 x_2 \cdot \overline{i}^2 + x_1 y_2 \overline{i} \cdot \overline{j} + x_1 z_2 \overline{i} \cdot \overline{k} + y_1 x_2 \overline{j} \cdot \overline{i} + y_1 y_2 \overline{j}^2 + y_1 z_2 \overline{j} \cdot \overline{k} + z_1 x_2 \overline{k} \cdot \overline{i} + z_1 y_2 \overline{k} \cdot \overline{j} + z_1 z_2 \overline{k}^2 = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

$$|\overline{a}| = \sqrt{\overline{a}^2} = \sqrt{x^2 + y^2 + z^2}$$

- 6. Proiecția vectorului $\overline{b} = x_2\overline{i} + y_2\overline{j} + z_2\overline{k}$ pe vectorul nenul $\overline{a} = x_1\overline{i} + y_1\overline{j} + z_1\overline{k}$ poate fi calculată după formula $pr_{\overline{a}}\overline{b} = \frac{\overline{a}\cdot\overline{b}}{|\overline{a}|} = \frac{x_1x_2 + y_1y_2 + z_1z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2}}$.
 - 7. Vectorii $\overline{a}=x_1\overline{i}+y_1\overline{j}+z_1\overline{k}$, și $\overline{b}=x_2\overline{i}+y_2\overline{j}+z_2\overline{k}$ sunt ortogonali dacă și numai dacă $x_1x_2+y_1y_2+z_1z_2=0$
 - 1) $\overline{a} \times \overline{b} = \overline{0}$ dacă și numai dacă acești vectori sunt coliniari.
- 2) $\overline{a} \times \overline{b} = -\overline{b} \times \overline{a}$.
- 3) $\lambda(\overline{a} \times \overline{b}) = (\lambda \overline{a}) \times \overline{b} = \overline{a} \times (\lambda \overline{b})$
- 4) $(\overline{a} + \overline{b}) \times \overline{c} = \overline{a} \times \overline{c} + \overline{b} \times \overline{c}$

5)
$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0}$$
, $\vec{i} \times \vec{j} = -\vec{j} \times \vec{i} = \vec{k}$, $\vec{j} \times \vec{k} = -\vec{k} \times \vec{j} = \vec{i}$, $\vec{k} \times \vec{i} = -\vec{i} \times \vec{k} = \vec{j}$

$$\vec{a} \times \vec{b} = \left(x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}\right) \times \left(x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}\right) = x_1 x_2 \vec{i} \times \vec{i} +$$

$$+ y_1 x_2 \vec{j} \times \vec{i} + z_1 x_2 \vec{k} \times \vec{i} + x_1 y_2 \vec{i} \times \vec{j} + y_1 y_2 \vec{j} \times \vec{j} + z_1 y_2 \vec{k} \times \vec{j} + x_1 z_2 \vec{i} \times \vec{k} +$$

$$+ y_1 z_2 \vec{j} \times \vec{k} + z_1 z_2 \vec{k} \times \vec{k} \text{ . De unde}$$

$$\vec{a} \times \vec{b} = \vec{i} \left(y_1 z_2 - y_2 z_1\right) - \vec{j} \left(x_1 z_2 - x_2 z_1\right) + \vec{k} \left(x_1 y_2 - x_2 y_1\right) \text{ sau}$$

$$\vec{a} \times \vec{b} = \vec{i} \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} - \vec{j} \begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix} + \vec{k} \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

$$\overline{abc} = (\overline{a} \times \overline{b}) \cdot \overline{c} = x_3 \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} - y_3 \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} + z_3 \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

al cu
$$\frac{1}{6} |\overline{abc}|$$
. ia: $\overline{abc} \neq 0$, sau

Propoziția 1.5.1. Dreptei l îi corespunde o ecuație de gradul întâi cu două necunoscute Ax + By + C = 0. Și invers, fiecărei ecuații de tipul indicat îi corespunde o dreaptă bine determinată din plan.

 $\vec{n} = \{A, B\}$, perpendicular dreptei l, numit vector normal completă și poate fi scrisă sub forma $\frac{x}{-C/A} + \frac{y}{-C/B} = 1$ sau $\frac{x}{a} + \frac{y}{b} = 1$ (1.5.3), numită ecuație a dreptei "în segmente". Numerele a și b sînt segmente tăiate de dreaptă pe vector director vectorul $\vec{q} = \{m, n\}$

Fie punctele distincte $M_1(x_1 y_1)$ și $M_2(x_2 y_2)$. Drept vector director al dreptei M_1M_2 poate servi vectorul $\vec{q} = \overline{M_1M_2} = \{x_2 - x_1, y_2 - y_1\}$. Folosind formula (1.5.4), obținem: $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$ (1.5.5) – ecuația dreptei ce trece prin două puncte.

Ecuația (1.5.5) mai poate fi scrisă sub forma:
$$\begin{vmatrix} x - x_1 & y - y_1 \\ x_2 - x_1 & y - y_1 \end{vmatrix} = 0$$
 sau $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$ (1.5.6)

Fie dreapta M_1M_2 cu $M_1(x_1y_1)$, $M_2(x_2y_2)$, $x_1 \neq x_2$. Evident, **panta** ei este $m = tg\alpha = \frac{y_2 - y_1}{x_2 - x_1}$ (1.5.8).

Vectorii normali respectivi $\overrightarrow{n_1} = \{A_1, B_1\}$ şi $\overrightarrow{n_2} = \{A_2, B_2\}$ formează un unghi, congruent cu o pereche dintre unghiurile formate de l_1 şi l_2 .

$$\text{Atunci } \cos\left(\sphericalangle l_1, l_2 \right) = \cos\left(\sphericalangle \overrightarrow{n_1}, \overrightarrow{n_2} \right) = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{\left| \overrightarrow{n_1} \right| \cdot \left| \overrightarrow{n_2} \right|} = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \cdot \sqrt{A_2^2 + B_2^2}} \ .$$

Avem
$$A_{M_1M_2M_3} = \frac{1}{2} \left| \overrightarrow{M_1M_2} \right| \cdot \left| \overrightarrow{M_1M_3} \right| \sin \left(\overrightarrow{A} M_2 M_1 M_3 \right).$$

$$\text{Deci, } A_{\Delta M_1 M_2 M_3} = \frac{1}{2} \cdot \sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2} \cdot \frac{\left| a_1 b_2 - b_1 a_2 \right|}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}} = \frac{1}{2} \left| a_1 b_2 - b_1 a_2 \right| = \frac{1}{2} \operatorname{mod} \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}.$$

Astfel
$$A_{\Delta M_1 M_2 M_3} = \frac{1}{2} \mod \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix}$$
 sau $A_{\Delta M_1 M_2 M_3} = \frac{1}{2} \mod \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ (1.5. 11)