Total No. of Questions: 5] [Total No. of Printed Pages: 4

Roll No.

301(O)

B. E. (Third Semester) EXAMINATION, June, 2010 (Old Scheme)

(Common for AU, CE, CM, CS, EC, EE, EI, EX, FT, IT, ME & BM Engg.)

ENGINEERING MATHEMATICS-III

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt all questions. Internal choice is given in question. All questions carry equal marks.

- 1. (a) If $u = x^3y xy^3 + 2x^2 2y^2$ is the real part of an analytic function f(z) = u + iv, find v. Find also f(z) in terms of z.
 - (b) Evaluate $\int_C (x^2 iy^2) dz$ where C is the path joining (1, 2) to (2, 8) on the parabola $y = 2x^2$.

Or

- (a) Using Cauchy's integral formula, evaluate $\int_C \frac{e^{-2z}}{(z+1)^6} dz \text{ where C is } |z| = 2.$
- (b) Find the residue of $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+1)}$ at each pole.

2. (a) Estimate the missing term in the following table:

X	f(x)
0	1
1	3
2	9
3	100 da 1
4.	81

(b) Find the number of men getting wages between Rs. 10 and Rs. 15 from the following data:

Wages in Rs.	Frequency
0 - 10	9
10 - 20	30
20 - 30	35
30 - 40	42

0r

(a) Use Newton's divided difference formula and evaluate f(6), given:

X	f(x)
4	48
5	100
7	284
10	900
11	1210
13	2038

- (b) Find the value of $\int_{1}^{2} \frac{dx}{x}$ by Simpson's rule. Hence obtain approximate value of $\log_{e} 2$.
- 3. (a) Find a root of the equation $x^3 3x + 1 = 0$ by Newton-Raphson method.

(b) Solve the following equations by Gauss elimination method:

$$2x + 2y + z = 12$$
$$3x + 2y + 2z = 8$$
$$5x + 10y - 8z = 10$$
$$Or$$

- (a) Solve the above equations by Jacobi's Iterative method.
- (b) Apply Euler's method to solve:

$$\frac{dy}{dx} = x + y, y(0) = 0$$

Choosing the step length h = 0.2.

- 4. (a) Show that the three vectors (1, 1, -1), (2, -3, 5) and (-2, 1, 4) of \mathbb{R}^3 are linearly independent.
 - (b) Let W be the set of vectors of the form (x, 2x, -3x, x), then prove that W is a surface of V_4 (F).

Or

- (a) Show that the vectors (1, 0, 0), (1, 1, 0), (1, 1, 1) form a basis for R³.
- (b) Show that $f: V_2(R) \rightarrow V_3(R)$ defined as:

$$f(\alpha) = (a, a+b, a-b)$$

where $\alpha = (a, b), \in V_2(R)$ is a linear transformation.

5. (a) Show that the matrix A is diagonalizable:

$$A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

(b) Write the symmetric matrix of the following quadratic form:

$$q = x_1^2 - 2x_2^2 - 3x_3^2 + 4x_1x_2 + 6x_1x_2 - 8x_2x_3$$

$$Or$$

- (a) Reduce the quadratic form $x_2x_3 + x_3x_1 + x_1x_2$ into canonical form:
- (b) Write the bilinear form corresponding to the matrix:

$$A = \begin{bmatrix} 2 & 3 & 5 \\ 1 & -2 & 0 \\ 3 & 5 & 0 \end{bmatrix}$$