Exercise Set 3 - Reinforcement Learning

Advanced TD methods and approximation

Giulio Starace - 13010840

September 24, 2022

Homework: Coding Assignment - Temporal Difference Learning

- 1. Coding answers have been submitted on codegra under the group "stalwart cocky sawly".
- 2. Hello World

Homework: Maximization Bias

1. For the sake of clarity, we label the four outgoing actions from B as a_1 , a_2 , a_3 and a_4 , from left to right, and say they belong to the action set A. For expected SARSA, we use the expected SARSA update rule to determine the state-action values:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \mathbb{E}_{\pi} \left[Q(S_{t+1}, A_{t+1}) | S_{t+1} \right] - Q(S_t, A_t) \right]$$

$$= Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \sum_{a \in A} \pi(a | S_{t+1}) Q(S_{t+1}, a) - Q(S_t, A_t) \right]. \tag{1}$$

Because all actions from B lead to a terminal state, we have that $Q(S_{t+1}, a) = 0$ for all $a \in A$ when $S_t = B$.

For a_1 , on the first relevant sampled episode we have $R_{t+1} = 0$ giving:

$$Q(B, a_1) \leftarrow 0.7 + 0.2 \left[0 + 1 \times 4(0.25 \times 0) - 0.7 \right]$$

$$= 0.7 + 0.2 \left[-0.7 \right]$$

$$= 0.56.$$
(2)

And on the next relevant sampled episode we get the same reward, giving:

$$Q(B, a_1) \leftarrow 0.56 + 0.2 \left[0 + 1 \times 4(0.25 \times 0) - 0.56 \right]$$

$$= 0.56 + 0.2 \left[-0.56 \right]$$

$$= 0.448.$$
(3)

For a_2 , on the first relevant sampled episode we have $R_{t+1} = 1$, giving:

$$Q(B, a_2) \leftarrow 0.7 + 0.2 \left[1 + 1 \times 4(0.25 \times 0) - 0.7 \right]$$

$$= 0.7 + 0.2 [0.3]$$

$$= 0.76.$$
(4)

And on the next relevant sampled episode, we get the same reward, giving:

$$Q(B, a_2) \leftarrow 0.76 + 0.2 \left[1 + 1 \times 4(0.25 \times 0) - 0.76 \right]$$

$$= 0.76 + 0.2 [0.24]$$

$$= 0.808.$$
(5)

For a_3 , on the first relevant sampled episode we have $R_{t+1} = 1$, which we know from the first update to a_2 gives us

$$Q(B, a_3) \leftarrow 0.76. \tag{6}$$

On the next relevant sampled episode, we have $R_{t+1} = 0$, giving:

$$Q(B, a_2) \leftarrow 0.76 + 0.2 \left[0 + 1 \times 4(0.25 \times 0) - 0.76 \right]$$

$$= 0.76 + 0.2 \left[-0.76 \right]$$

$$= 0.608. \tag{7}$$

For a_4 , on the first relevant sampled episode we have $R_{t+1} = 0$, which we know from the first update to a_1 gives us

$$Q(B, a_4) \leftarrow 0.56. \tag{8}$$

On the next relevant sampled episode, we have $R_{t+1} = 1$, giving:

$$Q(B, a_1) \leftarrow 0.56 + 0.2 \left[1 + 1 \times 4(0.25 \times 0) - 0.56 \right]$$

$$= 0.56 + 0.2 [0.44]$$

$$= 0.648.$$
(9)

For Q-learning, we use the Q-learning update rule to determine the state-action values:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t) \right].$$
 (10)

Note once again that since when $S_t = B$, S_{t+1} is always a terminal state, then like before $Q(S_{t+1}, a) = 0$ for all $a \in A$. Therefore, in this case, equation (10) reduces like equation (1) to

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} - Q(S_t, A_t)].$$
 (11)

Therefore, all the state-action values in state B are the same in Q-learning as for expected SARSA. For a clearer summary, refer to Table 1.

Table 1: Expected SARSA and Q-learning state-action pair values for the four available actions at state B after sampling two episodes per action.

	$Q(B, a_1)$	$Q(B, a_2)$	$Q(B, a_3)$	$Q(B, a_4)$
expected SARSA	0.448	0.808	0.608	0.648
Q-learning	0.448	0.808	0.608	0.648

2. To determine what the new Q(A, L) value is when executing L in A after the 10 episodes, assuming that Q(A, L) is still at 0.7, we use the same update rules as stated before, i.e. equation (1) for expected SARSA and equation (10) for Q-learning. Since taking L at A leads to a terminal state, equations (1) and (10) once again reduce to equation (11). For both expected SARSA and Q-learning we therefore have:

$$Q(A, L) \leftarrow 0.7 + 0.2 [0.7 - 0.7]$$

$$= 0.7 + 0.2 [0]$$

$$= 0.7.$$
(12)

We apply the same process to determine what the new Q(A, R) value is when executing R in A after the 10 episodes, assuming that Q(A, R) is still at 0.7. However, the reduction to equation (11) is not possible in this case, since R from A does not transition to a terminal state. With expected SARSA we have

$$Q(A,R) \leftarrow 0.7 + 0.2 [0 + 0.25 (0.448 + 0.808 + 0.608 + 0.648) - 0.7]$$

= 0.6856. (13)

With Q-learning, we have

$$Q(A,R) \leftarrow 0.7 + 0.2 [0 + 0.808 - 0.7]$$

= 0.7216. (14)

For a clearer summary, please refer to Table 2.

Table 2: Expected SARSA and Q-learning state-action pair values at A when executing R and L from A after the 10 sampled episodes.

	Expected SARSA	Q-learning
$\overline{Q(A,L)}$	0.7	0.7
Q(A,R)	0.6856	0.7216

3. Assuming convergence to optimality for both Q-learning and Expected SARSA, we can obtain the true state-action values by utilising the Bellman optimality equation:

$$q_*(s, a) = \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_*(s', a') \right]. \tag{15}$$

The results of applying this equation to our MDP are summarised in Table 3.

4. Maximization bias can be observed in all estimated state-action values reported in Tables 1 and 2, except for Q(A, L) and $Q(B, a_1)$. We observe maximization bias

Table 3: True state-action values after Expected SARSA and Q-learning convergence.

$\overline{Q_*(A,L)}$	$Q_*(A,R)$	$Q_*(B,a_1)$	$Q_*(B, a_2)$	$Q_*(B,a_3)$	$Q_*(B,a_4)$
0.7	0.5	0.5	0.5	0.5	0.5

here as the estimated values are higher than the true values reported in Table 3, i.e. they are positively biased. Both Q-learning and expected SARSA are affected by this bias, as both algorithms rely on a greedy (target) policy which requires the use of a maximum operator. When coupled with stochastic transitions and rewards, such as in our MDP from state B, this generally leads to a positive bias in the estimated state-action values.

5. hello world

Homework: Gradient Descent Methods

- 1. hello world
- 2. hello world
- 3. hello world