

Circuit Components

Passive Components: Resistors, Capacitors, Inductors, transformer etc.

Active Components: Power sources (voltage/current),

Transistors (BJT/ MOSFET),

Generators etc

(Ideal Voltage Sources)

DC Voltage Source

Alternating Voltage Source

Sources Types (DC/AC)

A.Independent

- 1. Voltage
- 2. Current

- B. Dependent
- 1. Voltage dependent Voltage Source, $v(v_x)$
- 2. Current dependent Voltage Source, v(i_x)
- 3. Voltage dependent Current Source, $i(v_x)$
- 4. Current dependent Current Source, i(i_x)

Linear Time Invariant Passive Elements

For <u>linear time-invariant</u> capacitors and inductors, i = C(dv/dt) and v = L(di/dt) respectively.

Steady State and Transient Behaviour

Capacitor

A capacitor stores energy in the form of an electric field

Current-voltage relationship
$$i = C \frac{dv}{dt}$$
, $v = \frac{1}{C} \int i dt$

In DC the capacitor acts as an open circuit

The capacitance C represents the efficiency of storing charge.

The unit of capacitance is the Farad (F). 1 Farad=1Coulomb/1Vol

Typical capacitor values are in the mF (10⁻³ F) to pF (10⁻¹² F)

The energy stored in a capacitor is $E = \frac{1}{2}Cv^2$

Large capacitors should always be stored with shorted leads.

$$i = C \frac{dv}{dt}$$
 (1)

Integrating Eq.1

$$\int_{-\infty}^{t} i dt = \int_{-\infty}^{t} C \frac{dv}{dt} dt$$

$$v = \frac{1}{C} \int_{-\infty}^{t} i dt$$

$$= \frac{1}{C} \int_{0}^{t} i dt + v(0)$$

The constant of integration v(0) represents the voltage of the capacitor at time t=0. The presence of the constant of integration v(0) is the reason for the memory properties of the capacitor.

Inductor

A inductor stores energy in a magnetic field

Current-voltage relationship
$$v = L \frac{di}{dt}$$
, $i = \frac{1}{L} \int v dt$

The energy stored in an inductor is $E = \frac{1}{2}Li^2$

In DC the inductor behaves like a short circuit

The inductance L represents the efficiency of storing magnetic flux.

$$v = L \frac{di}{dt}$$
 (2)

On integrating Eq. 2

$$\int_{-\infty}^{t} v dt = \int_{-\infty}^{t} L \frac{di}{dt} dt$$

$$i = \frac{1}{L} \int_{-\infty}^{t} v dt$$

$$= \frac{1}{L} \int_{0}^{t} v dt + i(0)$$

The constant i(0) represents the current through the inductor at time t=0. (Note that we have also assumed that the current at $t=-\infty$ was zero.)

Q. 1.

Calculate the energy stored in the capacitor of the circuit to the right under DC conditions.

