Standard Notations

If you come across something that isn't in the list that is likely to come up, add it and post the document on slack/GitHub again so we're all aware of the update.

Put notes or things that need to be changed inside plus signs so that Ctrl+F can be used to find. E.g. +++ Insert reference to foo here +++ . Also allows you to highlight uncertain areas for other people to check.

Diffusion	X_t
Brownian Motion/Wiener Process	W_t
Potential	$U:\mathbb{R}^d o\mathbb{R}$
Random Variables	Uppercase math font e.g. X, Y, Z
Normalisation Constant	mathcal Z i.e. \mathcal{Z}
Iteration	X_k
Step Size	h
Taming Function	T
Stationary/Target/ True distribution	π
Normal random variables	Z
Minimum function	\wedge i.e. $\min\{t,s\} = t \wedge s$
Maximum function	\vee i.e. $\max\{t,s\} = t \vee s$
Dimension	d
Proposed step	Y
Lipschitz constant	L
Strong convexity constant	m
Number of iterations	N
Startpoint	$X_0 = x_0$

The first ten are Langevin Monte Carlo (LMC) algorithms. Try and drop subscript where possible, it is ugly.

${\bf Algorithm}$	Name	Stationary Distribution
Unadjusted Langevin Algorithm	ULA	$\pi_{\scriptscriptstyle \mathrm{ULA}}^{\gamma}$
Tamed Unadjusted Langevin Algorithm		$\pi^{\gamma}_{_{\mathrm{tULA}}}$
Coordinatewise Tamed Unadjusted Langevin Algorithm	tULAc	$\pi^{\gamma}_{_{\mathrm{tULAc}}}$
Metropolis Adjusted Langevin Algorithm	MALA	$\pi_{ ext{MALA}}^{\gamma}$
Tamed Metropolis Adjusted Langevin Algorithm	tMALA	$\pi_{\scriptscriptstyle ext{tMALA}}^{\gamma}$
Coordinatewise Tamed Metropolis Adjusted Langevin Algorithm	tMALAc	$\pi_{\scriptscriptstyle ext{tMALAc}}^{\gamma}$
Metropolis Adjusted Langevin Truncated Algorithm	MALTA	$\pi_{ ext{mALTA}}^{\gamma}$
Higher Order Langevin Algorithm	HOLA	$\pi_{\scriptscriptstyle ext{ t HOLA}}^{\gamma}$
Tamed Higher Order Langevin Algorithm	tHOLA	$\pi^{\gamma}_{ ext{tHOLA}}$
Coordinatewise Tamed Higher Order Langevin Algorithm	tHOLAc	$\pi_{ ext{\tiny tHOLAc}}^{\gamma}$
Leimkuhler-Matthews Algorithm	LM	$\pi^{\gamma}_{{\scriptscriptstyle \mathrm{LM}}}$
Tamed Leimkuhler-Matthews Algorithm	tLM	$\pi^{\gamma}_{\scriptscriptstyle \mathrm{tLM}}$
Coordinatewise Tamed Leimkuhler-Matthews Algorithm	tLMc	$\pi^{\gamma}_{\scriptscriptstyle \mathrm{tLMc}}$
Random Walk Metropolis Algorithm	RWM	$\pi_{ ext{ iny RWM}}^{\gamma}$

Assumptions on drift coefficient (taming)

A1 For all $h > 0, G_h$ is continuous. There exist $\alpha \ge 0, C_\alpha < +\infty$ such that for all h > 0 and $x \in \mathbb{R}^d$,

$$||G_h(x) - \nabla U(x)|| \le hC_\alpha (1 + ||x||^\alpha).$$

A2 For all
$$h > 0$$
,

$$\liminf_{\|x\| \to \infty} \left[\left\langle \frac{x}{\|x\|}, G_h(x) \right\rangle - \frac{h}{2\|x\|} \|G_h(x)\|^2 \right] > 0$$