Module: Analyse1

TD N°3

<u>fxetcice 1:</u> Etudier la monotonie des suites définie par le terme générale suivant :

1)
$$u_n = (n+1)(n+2)...(2n)$$

2)
$$v_n = n^2 - 2n$$
 (*L. E*)

3)
$$w_n = n^n - n!$$
 (*L. E*)

4)
$$s_n = \lambda n + (-1)^n$$
 , (étudier selon $\lambda \in \mathbb{R}_+$)

Fretcice 2: Montrer que les suites suivantes, sont bornées :

$$1) \ a_n = \frac{n \cos n}{2n + 2 + \cos n}$$

2)
$$b_n = \sum_{k=0}^n \cos k$$

Fxercice 3:

a) En appliquant la définition de la limite, démontrer la convergence vers la limite ℓ :

1)
$$u_n = \sqrt[n]{a}$$
 , $a > 1$, $\ell = 1$; 2) $u_n = \ln \ln n$, $\ell = +\infty$

$$\ell = 1$$

$$2) \quad u_n = \ln \ln n$$

$$\ell = +\infty$$

3)
$$u_n = \frac{4n-1}{2n+1}$$
 , $\ell = 2$

3)
$$u_n = \frac{4n-1}{2n+1}$$
 , $\ell = 2$ (*L.E*) ; **4)** $u_n = \frac{(-1)^n}{n}$, $\ell = 0$ (*L.E*)

b) Montrer qu'une suite dans \mathbb{Z} est convergente si et seulement si elle est stationnaire.

fxetcice 4: Calculer la limite des suites définies par le terme général:

$$a_n = \frac{\ln(n + \ln n)}{\ln(2n + \ln n)}$$
 , $b_n = \frac{1}{\sqrt{n^2 + 1} - n}$ (L.E) , $c_n = \frac{1 + 3 + 9 + \dots + 3^n}{3^{n+1}}$

$$b_n = \frac{1}{\sqrt{n^2 + 1} - n}$$

$$c_n = \frac{1+3+9+\dots+3^n}{3^{n+1}}$$

$$d_n = \frac{1+2+\cdots+n}{n^2} \quad (L.E)$$

$$d_n = \frac{1+2+\dots+n}{n^2}$$
 (L. E) , $e_n = \frac{3\sqrt{n}+2\sqrt{n+\sqrt{n}}+\sqrt[3]{n}}{\sqrt[4]{n^2+3}+2\sqrt{n+1}}$ (L. E)

Fxetcice 5: Pour α , $\beta \in \mathbb{R}_+^*$, soit la suite $(u_n)_{n \in \mathbb{N}}$ définie par :

$$u_n = \frac{\alpha^n - \beta^n}{\alpha^n + \beta^n}$$

- 1) Cas particulier: Pour $\alpha = 2$, $\beta = 2$ montrer le convergence de la suite et calculer sa limite.
- **2)** Cas général : Discuter suivant les valeurs de α et β la convergence de $(u_n)_{n\in\mathbb{N}}$.

Fxercice 6: (L.E) La suite $(u_n)_{n\in\mathbb{N}}$ de Fibonacci est définie comme suit :

$$F_1 = F_2 = 1$$
 , $F_{n+2} = F_{n+1} + F_n$, $n \ge 1$

- 1) Trouver les solutions de l'équation : $x^2 x 1 = 0$.
- 2) Montrer par récurrence que la $F_n = \frac{\alpha^n \beta^n}{\alpha \beta}$, où α et β sont les solutions dans la question1.
- **3)** Calculer $\lim_{n\to+\infty} \sqrt[n]{F_n}$.

<u>fxetcice 7:</u> (Examen 2022/2023)

Pour a > 0 et $n \in \mathbb{N}^*$, Soient les suites de termes généraux :

$$u_n = \sqrt[2^n]{a}$$
 , $v_n = 2^n(u_n - 1)$, $w_n = 2^n(\frac{u_n - 1}{u_n})$

- 1) Montrer que la suite $(u_n)_n$ est bornée.
- 2) Montrer que $(u_n)_n$ est strictement croissante pour a < 1 et strictement décroissante pour a > 1.
- **3)** Trouver la limite de $(u_n)_n$ pour les deux cas de a .
- **4)** Etudier la monotonie et la convergence de $(u_n)_n$ pour a=1.
- **5)** Vérifier que $u_{n+1}^2=u_n$, puis montrer que $v_n=\left(\frac{1+u_{n+1}}{2}\right)v_{n+1}$.

- **6)** Déduire que $(v_n)_n$ est décroissante.
- 7) Trouver une relation entre les trois suites, puis déduire que $(v_n)_n$ et $(w_n)_n$ ont la même limite. Calculer cette limite pour a=1.

Fxetcice 8: (Rattrapage 2022/2023)

Soient la fonction $f: \mathbb{R} \to \mathbb{R}$ et la suite récurrente $(u_n)_{n \in \mathbb{N}}$ telles que :

f est strictement croissante sur \mathbb{R} et f(-1)=-1 , f(0)=-0.7 , f(1)=0 .

$$u_0 = 1$$
 ; $u_{n+1} = f(u_n)$, pour $n \ge 1$

- 1) Montrer par récurrence que : $\forall n \geq 0$, $u_n \geq -1$
- 2) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.
- 3) La suite est-elle convergente?

Fxercice 9: (L.E)

Soit la suite récurrente définie par :

$$u_1 = \frac{1}{2}$$
 ; $u_{n+1} = u_n^2 + \frac{3}{16}$, pour $n \ge 1$

- 1) Montrer que : $\forall n \geq 1$, $\frac{1}{4} < u_n < \frac{3}{4}$.
- 2) Démontrer par récurrence que la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante.
- 3) Déduire la convergence de la suite, et calculer sa limite.
- **4)** Soit l'ensemble $E = \{u_n, n \in \mathbb{N}^*\}$. Trouver $\sup E$ et $\inf E$.

Fxetcice 10: (Complexité d'un algorithme) (L.E)

On considère l'algorithme suivant :

- 1) Calculer, en fonction de l'entier n saisi par l'utilisateur, le nombre d'additions effectuées pendant l'exécution de l'algorithme.
- 2) Quelle valeur de S sera affichée, après exécution ?
- 3) En déduire la valeur affichée lorsque l'utilisateur saisit 20.

Indication:
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

A suivre...