Árboles de Decisión

75.06 Organización de Datos

Temario

- Árboles de Decisión
- Ventajas
- Limitaciones
- ID3
- C4.5
- Ensambles
 - Bagging
 - Boosting
- Random Forests
- XGBoost

Arboles de Decisión

- Árbol con ramas para cada valor en la comparación.
- En cada nodo dividimos el set de datos de acuerdo a un cierto criterio.
- Objetivo: llegar a nodos hoja en los cuales podamos clasificar correctamente nuestros datos.

Algoritmos

- ID3 [Quinlan, 1979]
- C4.5 [Quinlan, 1993]
- C5.0 (Última versión de Quinlan, propietaria. Mejora sobre C4.5)
- CART (similar a C4.5, soporta regresión, ver scikit-learn).

Arboles de Decisión: Ventajas

- Simples de entender e interpretar: modelo de caja blanca.
- Funcionan con datos numéricos o categóricos.
- Requieren poca preparación de los datos: no requieren normalización.
- Buena performance para datasets grandes.
- Ayudan en la selección de features.

Arboles de Decisión: Limitaciones

- Encontrar el óptimo es NP-complete.
 - Algoritmos greedy para encontrar óptimos locales.
- Arboles demasiado complejos generan overfitting.
 - Poda

ID3

- Algoritmo de tipo greedy:
 - En cada paso realiza el mejor split posible en dos.
 - O Selecciona el atributo que nos da mayor Ganancia de Información (relación con la entropía).
- Esto se repite recursivamente hasta construir el árbol final.
- Features deben ser categóricos.

Candidato	Presencia	Estudios	Experiencia	Contratado
1	Buena	Universitarios	Alta	SI
2	Mala	Universitarios	Media	NO
3	Buena	Secundarios	Alta	SI
4	Mala	Universitarios	Baja	NO
5	Buena	Secundarios	Media	SI
6	Buena	Universitarios	Media	SI
7	Regular	Primarios	Baja	NO
8	Regular	Universitarios	Media	SI

Entropia del set de datos:

Contratado

SI

NO

SI

NO

SI

SI

NO

SI

 $H[\%; 3/8] = 0.9544 - \sum P_i * log_2 P_i$

Atributo Presencia:

$$H(Presencia=Buena) = H[4/4; 0/4] = 0$$

$$H(Presencia=Mala) = H[0/2; 0/0] = 0$$

$$H(Presencia=Regular) = H[\frac{1}{2}; \frac{1}{2}] = 1$$

$$H(Presencia) = 4/8 * 0 + 2/8 * 0 + 2/8 * 1 = 0.25$$

$$GI(Presencia) = 0.9544 - 0.25 = 0.7044$$

Presencia	SI	NC
Buena	4	0
Mala	0	2
Regular	1	1

• Atributo *Estudios*:

$$H(Estudios=Univ) = H[\frac{3}{5}; \frac{2}{5}] = 0.971$$

$$H(Estudios=Sec) = H[2/2; 0/2] = 0$$

$$H(Estudios=Prim) = H[0/1; 1/1] = 0$$

$$H(Estudios) = 5/8 * 0.971 + 2/8 * 0 + 1/8 * 0 = 0.6069$$

$$GI(Estudios) = 0.9544 - 0.6069 = 0.3475$$

Estudios	SI	NO

Jniv	3	2

Atributo *Experiencia*:

$$H(Experiencia=Alta) = H[2/2; 0/2] = 0$$

 $H(Experiencia=Media) = H[\frac{3}{4}; \frac{1}{4}] = 0.8113$

H(Experiencia=Baja) = H[0/2; 2/2] = 0

H(Experiencia) = 2/8 * 0 + 4/8 * 0.8113 + 2/8 * 0 = 0.40565

GI(Experiencia) = 0.9544 - 0.40565 = 0.54875

SI	NC
2	0
3	1
	_

2

Baja

Candidato	Presencia	Estudios	Experiencia	Contratado
7	Regular	Primarios	Baja	NO
8	Regular	Universitarios	Media	SI

ID3

- Gran peligro de Overfitting.
 - Realizar preguntas hasta que todas las hojas tengan nodos de una sola clase.
- Uso del hiper-parámetro minbucket.
 - Indica la cantidad mínima de registros que puede tener un nodo no hoja.
- Hojas del árbol indican la probabilidad de cada clase en base a cuantos registros de cada clase hay en el nodo hoja.

C4.5

- Sucesor de ID3.
- Acepta atributos numéricos.
- Acepta datos con atributos faltantes.
- Los atributos pueden tener un peso.
- Poda del árbol.

C4.5: Ejemplo

Candidato	Presencia	Estudios	Experiencia	Edad	Contratado
1	Buena	Universitarios	Alta	33	SI
2	Mala	Universitarios	Media	27	NO
3	Buena	Secundarios	Alta	41	SI
4	Mala	Universitarios	Ваја	35	SI
5	Buena	Secundarios	Media	37	SI
6	Buena	Universitarios	Media	28	SI
7	Regular	Primarios	Ваја	25	NO
8	Regular	Universitarios	Media	40	SI

C4.5: Ejemplo

Edad	Contratado	
25	NO	Split por <= 25 → Calculo GI
27	NO	$H(Edad \le 25) = H(0/1,1/1) = 0$
28	SI	H(Edad > 25) = H(6/7,1/7) = 0.5917
33	SI	
35	SI	Split por <= 27 → Calculo GI
37	SI	$H(Edad \le 27) = H(0/2, 2/2) = 0$
40	SI	H(Edad > 27) = H(6/6,0/6) = 0
41	SI	

Ensambles

 Los mejores algoritmos de ML son combinaciones de varios algoritmos.

 Aunque no siempre sea lo mejor para usar en la práctica.

- Aplicar el mismo clasificador n veces usando Bootstrapping:
 - Tomamos muestras del set de entrenamiento (con reemplazo) de igual tamaño que este.
- Promediar sus resultados.

- Disminuye la posibilidad de overfitting
 - Cada clasificador no ve la totalidad de los registros del set de entrenamiento.

- Registros OOB (Out of Bag)
 - Se usan para ver la precisión del algoritmo (como si fuera un set de test).

- Entrenar algoritmo simple.
- Analizar sus resultados.
- Entrenar otro algoritmo simple en donde se le da mayor peso a los resultados para los cuales el anterior tuvo peor performance.
- Resultado final en base a un promedio ponderado.

Years [‡]	Salary [‡]
5	82
7	80
12	103
23	118
25	172
28	127
29	204
34	189
35	99
40	166

x	y	F0 [‡]	y - F0 🗦
5	82	134	-52
7	80	134	-54
12	103	134	-31
23	118	134	-16
25	172	134	38
28	127	134	-7
29	204	134	70
34	189	134	55
35	99	134	-35
40	166	134	32

x	y	F0 [‡]	y-F0 [‡]	h1 ‡	F1 [‡]
5	82	134	-52	-38.25	95.75
7	80	134	-54	-38.25	95.75
12	103	134	-31	-38.25	95.75
23	118	134	-16	-38.25	95.75
25	172	134	38	25.50	159.50
28	127	134	-7	25.50	159.50
29	204	134	70	25.50	159.50
34	189	134	55	25.50	159.50
35	99	134	-35	25.50	159.50
40	166	134	32	25.50	159.50

- Se genera nuevo arbol para predecir lo que se predijo mal en el arbol anterior.
- La profundidad de los árboles generados con Boosting es menor a la generada con Bagging.

Ensambles: Majority Voting

- Cada clasificador da un voto a cada clase.
- Mejor si se usan resultados con poca correlación.
- Se le puede dar un peso distinto a cada modelo.

```
11111111100 = 80\%
11111111100 = 80\%
11111111100 = 80\%
10111111100 = 70\%
1000101111 = 60\%
11111111100 = 80\%
```

Ensambles: Averaging

- Promediar el resultado de varios clasificadores.
- Sirve para regresión y clasificación (con clases o probabilidades).
- Ajuste de escala de probabilidades de cada modelo usando rango entre 1 y n (n: total de registros). Prob = 1 - (x-min)/(max-min)

	C1	R1	C2	R2	Prom	Prob
1	0.57	3	0.3605	1	2	0.75
2	0.04	4	0.3502	3	3.5	0
3	0.96	2	0.35	4	3	0.25
4	0.99	1	0.36	2	1.5	1

Ensambles: Blending (o Stacked)

- Separar parte pequeña del set de entrenamiento (10%).
- Con los clasificadores entrenados con el resto del set, lo usamos para predecir sobre el set anterior.
- Con esto se entrena un nuevo modelo para que aprenda cómo combinar los resultados de los clasifcadores de forma tal que estos nos den la predicción final.

Random Forests

- Uno de los algoritmos más populares en clasificación.
 - Buenos resultados para la mayoría de los sets de datos.
- Bagging sobre árboles de decisión.
- Cada árbol:
 - Usa un subconjunto de los atributos.
 - Usa un bootstrap del set de entrenamiento.

Random Forests

Conjunto de árboles de decisión donde cada uno usa un **bootstrap** del set de entrenamiento y un cierto conjunto de atributos **tomados al azar.**

Random Forests

- Hiper-parámetros:
 - Cantidad de árboles a crear.
 - Más árboles mejores resultados, pero trade-off de performance.
 - Cantidad de atributos por árbol.
 - Mas critico.
 - Buscarse mediante grid-search usando OOB (out of bounds) precisión.

Random Forests (Bonus)

- Distancia Random Forest:
 - Clasificamos dos puntos con cada árbol.
 - La distancia es el número de árboles en los cuales la predicción de clase son diferentes.
 - Normalizar entre 0 y 1 dividiendo por el total de árboles.

XGBoost

Boosting de árboles de decisión.

$$Obj(\Theta) = L(\Theta) + \Omega(\Theta)$$

Θ: parámetros a aprender

L: error del modelo

Ω: factor de regularización

$$L(\Theta) = \sum_{i=1}^{n} l(y_i, \hat{y}_i)$$

l es el error en la predicción de Y

Para regresión puede ser $\rightarrow l = (y_i - \hat{y_i})^2$

Para clasificación binaria $\rightarrow l = y_i \ln(1 + e^{-\hat{y}_i}) + (1 - y_i) \ln(1 + e^{\hat{y}_i})$

La predicción es la sumatoria de la predicción de varios árboles:

$$\hat{y}_i = \sum_{j=1}^k f_j(x_i)$$

Cada nuevo arbol intenta corregir los errores del anterior:

$$\begin{split} \hat{y}_i^{(0)} &= 0 \\ \hat{y}_i^{(1)} &= f_1(x_i) = \hat{y}_i^{(0)} + f_1(x_i) \\ \hat{y}_i^{(2)} &= f_1(x_i) + f_2(x_i) = \hat{y}_i^{(1)} + f_2(x_i) \\ & \dots \\ \hat{y}_i^{(t)} &= \sum_{k=1}^t f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i) \end{split}$$

Obj^(t) =
$$\sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t) + \text{constant}$$

Reemplazando $\rightarrow l(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$

Obj^(t) =
$$\sum_{i=1}^{n} [2(\hat{y}_i^{(t-1)} - y_i)f_t(x_i) + f_t(x_i)^2] + \Omega(f_t) + \text{constant}$$

Aplicamos la serie de Taylor:

Obj^(t) =
$$\sum_{i=1}^{n} [g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)] + \Omega(f_t)$$

Con:

$$g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)})$$

$$h_i = \partial_{\hat{y}^{(t-1)}}^2 l(yi, \hat{y}^{(t-1)})$$

Complejidad:

$$\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_j^2$$

T: cantidad de hojas del árbol

Wj: valor de la j-ésima hoja

Gamma y Lambda son hiper-parámetros

Conjunto de instancias de la hoja j:

$$I_i = i|q(x_i) = j$$

q(xi): función que mapea instancia xi a su nro de hoja

Obj^(t) =
$$\sum_{j=1}^{T} [(\sum_{i \in I_j} g_i) w_j + \frac{1}{2} (\sum_{i \in I_j} h_i + \lambda) w_j^2] + \gamma T$$

Suma de T cuadráticas independientes

$$G_j = \sum_{i \in I_j} g_i$$

$$H_j = \sum_{i \in I_j} h_i$$

Obj^(t) =
$$\sum_{j=1}^{T} [G_j w_j + \frac{1}{2} (H_j + \lambda) w_j^2] + \gamma T$$

Peso óptimo de cada hoja:

$$w_j^* = -\frac{G_j}{H_j + \lambda}$$

Obj =
$$-\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

Instance index gradient statistics

1 0

g1, h1

g2, h2

g3, h3

g4, h4

5

g5, h5

$$Obj = -\sum_{j} \frac{G_{j}^{2}}{H_{j} + \lambda} + 3\gamma$$

The smaller the score is, the better the structure is

Como hay muchas estructuras posibles para el árbol →

XGBoost crece el árbol de forma greedy

$$Gain = \frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] - \gamma$$

Primer término: puntaje hijo izquierdo.

Segundo término: puntaje hijo derecho.

Tercer término: puntaje en la hoja original.

Gamma: costo de agregar otra hoja.

XGBoost

XGBoost

$$)=-1-0.9=-1.9$$

XGBoost

Para atributos numéricos se ordenan los valores del atributo y se busca el split de mayor ganancia.

Los atributos categóricos deben ser convertidos a variables binarias usando one-hot encoding.