Variable Order Sequence Memory through Hierarchical Temporal Memory

HONORS RESEARCH PAPER

ALEXANDER MICHELS

MATHEMATICS AND FINANCIAL ECONOMICS

COMPUTER SCIENCE

supervised by

Dr. Carolyn Cuff

Dr. C. David Shaffer

Dr. William Procasky

Contents

1	Time Series	6			
2	Hierarchical Temporal Memory	6			
	2.1 The Neocortex	6			
	2.2 Hierarchical Temporal Memory	6			
3	Literature Review	6			
4	4 Experiment Design				
5	Results	6			
6	Further Work	6			

List of Figures

1 Time Series

Motivate the problem, time series are everywhere Talk about ARIMA models

2 Hierarchical Temporal Memory

2.1 The Neocortex

Overview of the neocortex Pyramidal Neurons

2.2 Hierarchical Temporal Memory

Sequence memory - SDRs and transitions Variable order sequence memory - cells per minicolumn

3 Literature Review

Does anyone know if its able to do this? It has been used in applications, look there

4 Experiment Design

- 5 Results
- 6 Further Work

References

- [1] C. Adams and R. Franzosa, *Introduction to Topology: Pure and Applied*, Pearson Prentice Hall, Upper Saddle River, NY, 2008.
- [2] S. Ahmad and J. Hawkins, Properties of sparse distributed representations and their application to hierarchical temporal memory, arXiv preprint arXiv:1503.07469, (2015).
- [3] S. Ahmad and J. Hawkins, How do neurons operate on sparse distributed representations? A mathematical theory of sparsity, neurons and active dendrites, ArXiv e-prints, (2016).
- [4] F. Åslin, Evaluation of hierarchical temporal memory in algorithmic trading, Master's thesis, Institutionen för Datavetenskap.
- [5] G. E. P. BOX AND G. M. JENKINS, *Time Series Analysis: Forecasting and Control*, John Wiley & Sons, Inc., Hoboken, N.J., 5 ed., 2016.
- [6] F. Byrne, Random distributed scalar encoder. http://fergalbyrne.github.io/rdse.html, 7 2014.
- [7] J. CONNELL AND K. LIVINGSTON, Four paths to ai, Frontiers in artificial intelligence and applications, 171 (2008), p. 394.
- [8] Y. Cui, S. Ahmad, and J. Hawkins, Continuous online sequence learning with an unsupervised neural network model, Neural Computation, 28 (2016), pp. 2474–2504. PMID: 27626963.
- [9] —, The htm spatial pooler—a neocortical algorithm for online sparse distributed coding, Frontiers in Computational Neuroscience, 11 (2017), p. 111.
- [10] A. DILLON, Sdr classifier. http://hopding.com/sdr-classifier, 2016. Online; accessed 9-April-2018.
- [11] M. Galetzka, Intelligent predictions: an empirical study of the cortical learning algorithm, Master's thesis, University of Applied Sciences Mannheim, 2014.
- [12] D. GEORGE AND J. HAWKINS, Towards a mathematical theory of cortical micro-circuits, PLOS Computational Biology, 5 (2009), pp. 1–26.
- [13] J. Hawkins and S. Ahmad, Why neurons have thousands of synapses, a theory of sequence memory in neocortex, Frontiers in Neural Circuits, 10 (2016), p. 23.
- [14] J. HAWKINS, S. AHMAD, AND Y. Cui, A theory of how columns in the neocortex enable learning the structure of the world, Frontiers in Neural Circuits, 11 (2017), p. 81.
- [15] J. Hawkins, S. Ahmad, and D. Dubinsky, Hierarchical temporal memory including htm cortical learning algorithms, (2011).
- [16] J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin, *Biological and machine intelligence (bami)*. Initial online release 0.4, 2016.
- [17] J. Munkres, Topology, Prentice Hall, Upper Saddle River, NJ, 2 ed., 2000.
- [18] Numenta, Advanced nupic programming, (2008).

- [19] ——, Principles of hierarchical temporal memory (htm): Foundations of machine intelligence, October 2014.
- [20] S. Purdy, Encoding data for HTM systems, CoRR, abs/1602.05925 (2016).
- [21] F. D. S. Webber, Semantic folding theory and its application in semantic fingerprinting, CoRR, abs/1511.08855 (2015).