Lecture 5 Tue 1 Aug 2023
* Direction (recession direction)
$X \rightarrow convex$ set in \mathbb{R}^n .
$mo \in X$ $d \in \mathbb{R}^{n}$, $d \neq 0$
$mo + \lambda d \in X + \lambda \geq 0$
$D_{X}(n_{0}) = \{d \in \mathbb{R}^{n} : n_{0} + \lambda d \in X \forall \lambda \geq 0\}$
$X: bounded \Leftrightarrow D_{X}(n_{0}) = \phi$
* Extreme Dir
A vector $d \neq 0$, $d \in D_{\times}(n_0)$ is called an extreme dir if ,
$\#$ d^1 , d^2 E $b_X(n_0)$, $d^1 \neq \mu d^2$, $\mu \geq 0$ s.t.
$d = \lambda_1 d^1 + \lambda_2 d^2$ for some $\lambda_1, \lambda_2 \stackrel{>}{=} 0$.
$S = \{n \in \mathbb{R}^n : An \leq b, n \geq 0\}$ $n \in S$
$d \in D_{X}(n_{0})$, $d \neq 0$, $n_{0} + \lambda d \in S$, $\forall \lambda \geq 0$.
Anot $\lambda Ad \leq b$, not $\lambda d \geq 0$, $\forall \lambda \geq 0$.
$\frac{\lambda Ad \leq b + \lambda n_0}{\lambda^{20}} \qquad \frac{\forall \lambda \geq 0 \omega}{\geq 0.}$
of Ad ≤0 then € is always true. ∀ λ≥0.
Also, if any component of Ad is >0, then does not hold $\forall \lambda > 0$.

if any component of d is ve, then we can make that component of no + Ad < 0 :. d 20 Note: notad 20 HAZO iff d 20. $S = \{(n,y): n+y \ge 2, y \le 4, n, y \ge 0\}.$ $A = \begin{bmatrix} -1 & -1 \\ 0 & 1 \end{bmatrix} \qquad A \begin{pmatrix} n \\ y \end{pmatrix} =$ f d ∈ R2 d ≠ 0: d+ d2 ≥0) = { d \in R2, d \neq 0, d \ge 0, d \ge 0}

not ad 20,

* Representation theorem of polyhedron

$$\frac{5}{n} = \sum_{i=1}^{5} \lambda_{i}^{i} n_{i}, \sum_{i=1}^{5} \lambda_{i}^{i} = 1, \lambda_{i}^{i} \geq 0 \quad \forall i$$

let X be a polyhedron in IR^{n} . Then, any point $\bar{n} \in X$ can be represented by, $\bar{n} = \sum_{i=1}^{n} \lambda_{i} n^{i} + \sum_{j=1}^{n} \mu_{j} d^{n}$

$$\lambda_i \geq 0$$
, $\forall i$
 $\lambda_i \geq 0$, $\forall j$
 $\lambda_i \geq 0$, $\forall j$
 $\lambda_i \geq 0$, $\forall j$
 $\lambda_i = 1$

Where, $\{n', n^2, -, n^2\}$ or extremes pts of X. and, {d', d2, __, d3} are extreme dish of X. (LP) wax z = cn. s.t. $nes = \{neightarrow : An \leq b, n \geq 0\}$ max. $\sqrt{n} = \sum_{i=1}^{2} \lambda_i (\sqrt{n^i}) + \sum_{j=1}^{2} \mu_j \sqrt{n^j}$ subject to E \ i = 1 Suppose c^Td⁷>0 for atleast one j We can choose corresponding μ_j 's $\rightarrow \infty$ and all there μ_k 's $\rightarrow \infty$. Suppose ctd7 40 + j=1, -, &. Take all py's =0. max ct n= max \(\int \); $\lambda_i^{\circ} \geq 0$, $\leq \lambda_i = 1$ max ctn = max fctni}

tunees if answer exist, it is an
extreme pt
Take $\lambda_k = 1$ for which $C^T n^k$ was largest and all other λ_i 's $= 0$, $i \neq k$,
targest and all other ML's - , It's