Machine Learning and Ising Model

Xiangdong Zeng (supervised by Ling-Yan Hung) June 8, 2018

Department of Physics, Fudan University

Table of contents

Ising model

- · Statistical physics, critical behaviors, etc
- Monte Carlo simulation

Machine learning

- · Basic ideas
- · Linear model
- Neural network

Machine learning and renormalization group (RG)

- Boltzmann machine and restricted Boltzmann machine (RBM)
- Contrastive divergence (CD-k) algorithm
- RBM for MNIST and Ising model
- Convolution, wavelet transform, etc

Part 1. Ising model

Ising model

- "Binary" spins (+1 or -1) arranged in a lattice
- · Simplest model for (anti)-ferromagnetism and phase transition
- · Hamiltonian:

$$H(\{\sigma_i\}) = -\sum_{\langle ij\rangle} J_{ij}\sigma_i\sigma_j - \mu \sum_i B_i\sigma_i = -J\sum_{\langle ij\rangle} \sigma_i\sigma_j - \mu B \sum_i \sigma_i$$

• Probability of configuration $\{\sigma_i\}$:

$$P(\{\sigma_i\}) = \frac{\mathrm{e}^{-\beta H(\{\sigma_i\})}}{Z_N}, \quad Z_N = \sum_{\{\sigma_i\}} \mathrm{e}^{-\beta H(\{\sigma_i\})}$$

3

Critical behaviors and RG

- Universality: $\xi \to \infty$ at critical point
- · Partition function is scale-invariant
 - · Partition function:

$$Z_N = \sum_{\{\sigma_i\}} e^{-\beta H(\{\sigma_i\}, K)}$$

· Hamiltonian:

$$H(\{\sigma_i\}, \mathbf{K}) = -\sum_i K_i^{(1)} \sigma_i - \sum_{\langle ij \rangle} K_{ij}^{(2)} \sigma_i \sigma_j - \sum_{\langle ijk \rangle} K_{ijk}^{(3)} \sigma_i \sigma_j \sigma_k - \cdots$$

· Scale transformation:

$$N' = L^{-d}N, \quad \xi' = L^{-1}\xi$$

• Summation over Kadanoff's block $\{\sigma'_i\}$:

$$Z_{N'} = \sum_{\{\sigma'_i\}} e^{-\beta H^{RG}(\{\sigma'_i\}, \mathbf{K}')} = \sum_{\{\sigma'_i\}} \sum_{\{\sigma_i\}} e^{-\beta \left[H(\{\sigma_i\}, \mathbf{K}) - \mathbf{T}_{\lambda}(\{\sigma_i\}, \{\sigma'_i\})\right]}, \quad \mathbf{K}' = \mathbf{R}_L(\mathbf{K})$$

4

Part 2. Machine learning

Basic ideas

- Extract features from data, build models, make predictions or decisions with the help of computers
- · Give machine the ability to "learn"
- · Categories:
 - · Supervised learning: regression, classification, etc
 - Unsupervised learning: clustering, dimensionality reduction, etc
- · Main steps:
 - 1. Build a reasonable model based on data's feature;
 - 2. Give the loss function;
 - 3. Train on the dataset (training set), find the parameters to minimize the loss function;
 - 4. Validate the model and parameters, fine tuning (validation set);
 - 5. Test the trained model on new dataset (test set).

Linear classifier (logistic regression)

Hypothesis:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma(\boldsymbol{\theta}^\mathsf{T} \boldsymbol{x})$$

· Activation function:

$$\sigma(z) = \frac{1}{1 + \mathrm{e}^{-z}}$$

· Loss function:

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{m} \log \left\{ 1 + \exp\left[-y^{(i)} h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})\right] \right\}$$

Figure 1: Network structure of the linear classifier

7

Neural network

Figure 2: A multipolar neuron 1

Figure 3: A two-layer neural network (perceptron)

¹Source: https://en.wikipedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png

Training results (linear model)

Figure 4: Predict results on Ising lattice. (a) Original; (b) after scale transformation.

9

Training results (neural network)

Figure 5: Predict results on Ising lattice. (a) Original; (b) after scale transformation.

Part 3. Machine learning and RG

Energy-based model

- · Boltzmann machine
 - Energy function:

$$\begin{split} E(\mathbf{s}) &= E(\{s_i\}) \\ &= -\sum_{i < j} W_{ij} s_i s_j - \sum_i \theta_i s_i \end{split}$$

• Structure:

- Restricted Boltzmann machine (RBM)
 - Energy function:

$$E(\mathbf{v}, \mathbf{h}) = -\mathbf{v}^{\mathsf{T}} \mathbf{W} \mathbf{h} - \mathbf{b}^{\mathsf{T}} \mathbf{v} - \mathbf{c}^{\mathsf{T}} \mathbf{h}$$
$$= -\sum_{i,j} W_{ij} v_i h_j - \sum_i b_i v_i - \sum_j c_j h_j$$

Structure:

RBM trained on MNIST

Figure 6: Weight matrix (reshaped)

Figure 7: Reconstructed images

RBM trained on Ising lattice

Figure 8: Weight matrix (reshaped)

Figure 9: Reconstructed images

Exact mapping between RBM and RG

Partition function under coarse graining:

$$Z_{N'} = \sum_{\{\sigma_i'\}} \mathrm{e}^{-\beta H^{\mathsf{RG}}(\{\sigma_i'\}, \boldsymbol{K}')} = \sum_{\{\sigma_i'\}} \sum_{\{\sigma_i\}} \mathrm{e}^{-\beta \left[H(\{\sigma_i\}, \boldsymbol{K}) - \boldsymbol{\mathsf{T}}_{\lambda}(\{\sigma_i\}, \{\sigma_i'\})\right]}$$

· Express in RBM:

$$e^{-H^{RG}(\boldsymbol{h})} = \sum_{\boldsymbol{v}} e^{\mathbf{T}(\boldsymbol{v}, \boldsymbol{h}) - H(\boldsymbol{v})}$$

• Let T(v, h) = H(v) - E(v, h), then

$$\frac{1}{Z}e^{-H^{RG}(\boldsymbol{h})} = \frac{1}{Z}\sum_{\boldsymbol{v}}e^{-E(\boldsymbol{v},\boldsymbol{h})} = P(\boldsymbol{h}) = \frac{1}{Z}e^{-H^{RBM}(\boldsymbol{h})} \implies H^{RG}(\boldsymbol{h}) = H^{RBM}(\boldsymbol{h})$$

Convolution and wavelet transform

• Convolution:

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau) g(t - \tau) d\tau$$

- · A kind of "weighted average"
- Expand function with daughter wavelet:

$$\psi_{\boldsymbol{a},\,\mathrm{S}}(\boldsymbol{x}) = \frac{1}{\mathrm{S}^{d/2}} \psi \left(\frac{\boldsymbol{x} - \boldsymbol{a}}{\mathrm{S}} \right)$$

· Wavelet transform:

$$W_f(\boldsymbol{a}, s) = \int d^d x f(\boldsymbol{x}) \psi_{\boldsymbol{a}, s}^{\dagger}(\boldsymbol{x})$$

AdS/CFT and wavelet transform

Reconstruct fields in the bulk from boundary operators:

$$\begin{split} \phi^i(\boldsymbol{x},z) &= \int \,\mathrm{d}^d y \, K_i(\boldsymbol{x},z|\boldsymbol{y}) O^i(\boldsymbol{y}) \\ &+ \sum_{i,b} \frac{\lambda^i_{jk}}{N} \int \,\mathrm{d}^d x' \,\mathrm{d}z' \, G_i(\boldsymbol{x},z|\boldsymbol{x}',z') \int \,\mathrm{d}^d y_1 \, K_j(\boldsymbol{x}',z'|\boldsymbol{y}_1) O^j(\boldsymbol{y}_1) \int \,\mathrm{d}^d y_2 \, K_k(\boldsymbol{x}',z'|\boldsymbol{y}_2) O^k(\boldsymbol{y}_2) + \cdots \end{split}$$

· Boundary-bulk kernel:

$$K_i(\mathbf{x}, \mathbf{z} | \mathbf{y}) = \left[\frac{\mathbf{z}}{\mathbf{z}^2 - \|\mathbf{x} - \mathbf{y}\|^2} \right]^{d - \Delta_i} \Theta(\mathbf{z}^2 - \|\mathbf{x} - \mathbf{y}\|^2)$$

· Mother and daughter wavelets:

$$\psi_{\Delta}(\mathbf{x}) = \left(\frac{1}{1 - \|\mathbf{x}\|^2}\right)^{d - \Delta} \Theta\left(1 - \|\mathbf{x}\|^2\right), \quad \psi_{\mathbf{a}, s}(\mathbf{x}) = \frac{1}{z^{d/2}} \psi\left(\frac{\mathbf{y} - \mathbf{x}}{z}\right)$$

Then

$$K(\mathbf{x}, z|\mathbf{y}) = z^{\Delta - d/2} \psi_{\mathbf{x}, z}(\mathbf{y})$$

Convolutional RBM (CRBM)

Linear to convolutional:

$$h_j + c_j \sim \sum_i W_{ij}(v_i + b_i) \rightarrow h_{\boldsymbol{j}} + c_{\boldsymbol{j}} \sim \sum_{\boldsymbol{i}} W_{\boldsymbol{i}}(v_{\boldsymbol{i+j}} + b_{\boldsymbol{i+j}})$$

• Energy function:

$$E(\boldsymbol{v},\,\boldsymbol{h}) = -\sum_{\boldsymbol{i},\boldsymbol{j}} W_{\boldsymbol{i}} v_{\boldsymbol{i}+\boldsymbol{j}} h_{\boldsymbol{j}} - \sum_{\boldsymbol{i}} b_{\boldsymbol{i}} v_{\boldsymbol{i}} - \sum_{\boldsymbol{j}} c_{\boldsymbol{j}} h_{\boldsymbol{j}}$$

 Our conjecture: filter W in CRBM is the Green's function K in AdS/CFT

Conclusion

Conclusion

- Supervised learning can be used to classify phases of Ising model
- RBM can be considered as an implementation of renormalization
- Convolution and wavelet transform that root in AdS/CFT can be mapped to machine learning (e.g. CRBM)

Thank you!

Exact solutions

- · One dimension: no phase transition
- Two dimension
 - · Critical temperature:

$$\frac{T_c}{J} = \frac{2}{\ln(1+\sqrt{2})} \approx 2.2692$$

· Heat capacity (logarithmic divergence):

$$\frac{C}{N} \simeq -0.4945 \ln \left| 1 - \frac{T}{T_c} \right| + \text{const}$$

Spontaneous magnetization:

$$\frac{\bar{M}}{N\mu} = \begin{cases} \left(1 - \sinh^{-4} 2\beta J\right)^{1/8}, & T < T_c \\ 0, & T > T_c \end{cases}$$

Monte Carlo simulation

- Basic idea: average over samples instead of all configurations
- · Distribution evolution:

$$P(\lbrace \sigma_{i}\rbrace, t+1) = P(\lbrace \sigma_{i}\rbrace, t) + \sum_{\lbrace \sigma_{i}'\rbrace} P(\lbrace \sigma_{i}'\rbrace, t)W(\lbrace \sigma_{i}'\rbrace \rightarrow \lbrace \sigma_{i}\rbrace)$$
$$-\sum_{\lbrace \sigma_{i}'\rbrace} P(\lbrace \sigma_{i}\rbrace, t)W(\lbrace \sigma_{i}\rbrace \rightarrow \lbrace \sigma_{i}'\rbrace)$$

· Detailed balance condition:

$$P_{\rm eq}(\{\sigma_i\})W\big(\{\sigma_i\}\to\{\sigma_i'\}\big)=P_{\rm eq}(\{\sigma_i'\})W\big(\{\sigma_i'\}\to\{\sigma_i\}\big)$$

· Metropolis transition rates:

$$W(\{\sigma_i\} \to \{\sigma_i'\}) = \begin{cases} 1, & \Delta E \le 0 \\ e^{-\beta \Delta E}, & \Delta E > 0 \end{cases}$$

Algorithm

- 1. Initialize all the spins: set spins to be 0 or 1 randomly.
- 2. Generate a trial state $\{\sigma_i'\}$ that is near the current state $\{\sigma_i\}$
 - · Usually we can flip a single spin.
- 3. Calculate ΔE and accept probability P. If random number $\xi < P$, then flip the corresponding spin.
- 4. Perform step 2 and 3 for all the lattice (one Monte Carlo step, MCS).
 - To maintain detailed balance, we should choose the spin randomly.
 - Flipping one-by-one is also acceptable for efficiency.
- 5. Repeat step 2–4 for some time, then we can measure the thermodynamic observables and calculate their mean values and standard errors.

Simulation results (1)

Figure 10: 64×64 Ising lattice at (a) $T_c/J = 1.0$; (b) $T_c/J = 2.3$; (c) $T_c/J = 3.6$.

Simulation results (2)

Figure 11: (a) Energy; (b) spontaneous magnetization; (c) heat capacity. Sampling density is increased near T_c . Error bar means one σ .

Linear regression

Hypothesis:

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \sum_{j=0}^{n} \theta_{j} x_{j} = \boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}$$

Loss function:

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left[y^{(i)} - h_{\theta}(\mathbf{x}^{(i)}) \right]^{2}$$

· Exact solution:

$$\hat{\boldsymbol{\theta}} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

Not realistic with large dataset — gradient descent

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \nabla \boldsymbol{\theta}$$

Neural network — details

· Loss function (mean squared error):

$$L = \frac{1}{2} \sum_{i=1}^{m} \left[y^{(i)} - \hat{y}^{(i)} \right]^{2}$$

Loss function (cross-entropy):

$$L = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \ln \hat{y}^{(i)} - (1 - y^{(i)}) \ln (1 - \hat{y}^{(i)}) \right]^2$$

• Training algorithm: backpropagation

- Regularization
 - Prevent overfitting
 - A kind of "penalty": force the parameters to be sparse
 - Weight decay (L² regularization):

$$\frac{\lambda}{2m} \sum_{k} \left\| \boldsymbol{\theta}_{k} \right\|^{2}$$

CD-k algorithm (1)

Loss function:

$$L(\boldsymbol{\theta}) = -\frac{1}{|D|} \sum_{\mathbf{x}^{(i)} \in D} \ln P(\mathbf{x}^{(i)})$$

Gradient:

$$-\frac{\partial}{\partial \boldsymbol{\theta}} \ln P(\mathbf{x}^{(i)}) = -\frac{\partial}{\partial \boldsymbol{\theta}} \ln P(\mathbf{v}^{(i)}) = \frac{\partial F(\mathbf{v}^{(i)})}{\partial \boldsymbol{\theta}} - \sum_{\mathbf{v}} P(\mathbf{v}) \frac{\partial F(\mathbf{v})}{\partial \boldsymbol{\theta}}$$

where F is the free energy

$$F(\mathbf{v}) = -\ln \sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}$$

Positive phase and negative phase (difficult)

CD-k algorithm (2)

• Monte Carlo again:

$$\sum_{\mathbf{v}} P(\mathbf{v}) \frac{\partial F(\mathbf{v})}{\partial \boldsymbol{\theta}} \approx \frac{1}{|N_{s}|} \sum_{\mathbf{v} \in N_{s}} \frac{\partial F(\mathbf{v})}{\partial \boldsymbol{\theta}}$$

· Gibbs sampling:

• Gradient:

$$-\frac{\partial}{\partial \boldsymbol{\theta}} \ln P(\mathbf{v}^{(i)}) \approx \frac{\partial F(\mathbf{v}^{(i)})}{\partial \boldsymbol{\theta}} - \frac{\partial F(\mathbf{v}^{(i)})}{\partial \boldsymbol{\theta}}$$

Update parameters:

$$\begin{cases} \mathbf{W} \leftarrow \mathbf{W} - \alpha \left(\mathbf{v} \mathbf{h}^{\mathsf{T}} - \mathbf{v}' \mathbf{h}'^{\mathsf{T}} \right) \\ \mathbf{b} \leftarrow \mathbf{b} - \alpha \left(\mathbf{v} - \mathbf{v}' \right) \\ \mathbf{c} \leftarrow \mathbf{c} - \alpha \left(\mathbf{h} - \mathbf{h}' \right) \end{cases}$$

Basic of AdS/CFT

• Anti-de Sitter space:

$$ds^2 = \sum_i dx_i^2 - \sum_j dt_j^2$$

- Conformal field theory: QFT with conformal symmetry
- Ising model: one of a minimal model in 2D CFT
- Holographic duality:

quantum gravity in $M \simeq a$ QFT in ∂M

Figure 12: Hyperbolic plane ²

²Source: https://en.wikipedia.org/wiki/File:Uniform_tiling_433-t0.png