Formulário e Tabelas

$$\bar{q} = \frac{1}{n} \cdot \sum_{i=1}^{n} q_{k} \qquad s(y_{i}, z_{i}) = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y}) (z_{i} - \bar{z})$$

$$s^{2}(q_{k}) = \frac{1}{n-1} \sum_{j=1}^{n} (q_{j} - \bar{q})^{2} \qquad s(\bar{y}_{i}, \bar{z}_{i}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} (y_{i} - \bar{y}) (z_{i} - \bar{z})$$

$$s^{2}(\bar{q}) = \frac{s^{2}(q_{k})}{n} \qquad r(y_{i}, z_{i}) = \frac{s(y_{i}, z_{i})}{s(y_{i})s(z_{i})} = r(\bar{y}_{i}, \bar{z}_{i}) = \frac{s(\bar{y}_{i}, \bar{z}_{i})}{s(\bar{y}_{i})s(\bar{z}_{i})}$$

$$Chauvenet = \frac{|x - \bar{x}|}{\sigma} \qquad v_{eff} = \frac{u_{c}^{4}(y)}{\sum_{i=1}^{n} \frac{u_{i}^{4}(y)}{v_{i}}}, \text{ onde } u_{i}^{2}(y) = c_{i}^{2}u^{2}(x_{i})$$

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i})u(x_{j})r(x_{i}, x_{j})$$

N	Rc	N	Rc	N	Rc
2	1.15	10	1.96	18	2.20
3	1.38	11	2.00	19	2.22
4	1.53	12	2.04	20	2.24
5	1.64	13	2.07	21	2.26
6	1.73	14	2.10	22	2.28
7	1.80	15	2.13	23	2.30
8	1.86	16	2.15	24	2.31
9	1.91	17	2.18	25	2.33

Tabela 1: Critério de Chauvenet

- Uma distribuição retangular de meia largura a tem uma variância $a^2/3$
- Uma distribuição normal para a qual a é a meia largura de um intervalo tendo um nível da confiança de 95% tem uma variância de $a^2/4$. Uma distribuição normal para a qual a é a meia largura de um intervalo tendo um nível da confiança de 99.73% tem uma variância de $a^2/9$.
- Supondo-se uma distribuição triangular, para a qual a variância é $a^2/6$.

v	$68,\!27\%$	90%	95%	95,45%	99%	99,73%
1	1,84	6,31	12,71	13,97	63,66	235,78
2	1,32	2,92	4,30	4,53	9,92	19,21
3	1,20	2,35	3,18	3,31	5,84	9,22
4	1,14	2,13	2,78	2,87	4,60	6,62
5	1,11	2,02	2,57	2,65	4,03	5,51
6	1,09	1,94	2,45	2,52	3,71	4,90
7	1,08	1,89	2,36	2,43	3,50	4,53
8	1,07	1,86	2,31	2,37	3,36	4,28
9	1,06	1,83	2,26	2,32	3,25	4,09
10	1,05	1,81	2,23	2,28	3,17	3,96
11	1,05	1,80	2,20	2,25	3,11	3,85
12	1,04	1,78	2,18	2,23	3,05	3,76
13	1,04	1,77	2,16	2,21	3,01	3,69
14	1,04	1,76	2,14	2,20	2,98	3,64
15	1,03	1,75	2,13	2,18	2,95	3,59
16	1,03	1,75	2,12	2,17	2,92	3,54
17	1,03	1,74	2,11	2,16	2,90	3,51
18	1,03	1,73	2,10	2,15	2,88	3,48
19	1,03	1,73	2,09	2,14	2,86	3,45
20	1,03	1,72	2,09	2,13	2,85	3,42
25	1,02	1,71	2,06	2,11	2,79	3,33
30	1,02	1,70	2,04	2,09	2,75	3,27
35	1,01	1,69	2,03	2,07	2,72	3,23
40	1,01	1,68	2,02	2,06	2,70	3,20
45	1,01	1,68	2,01	2,06	2,69	3,18
50	1,01	1,68	2,01	2,05	2,68	3,16
100	1,005	1,660	1,984	2,025	2,626	3,077
∞	1,000	1,645	1,960	2,000	2,576	3,000

Tabela 2: Distribuição de t-student