Response to Office Action Dated 01/27/2005

In the Claims

2

6

8

9

10

H

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1. (original) A method for calculating look-up tables for a cluster of printers, comprising:

determining a least dynamic printer in the cluster; and calculating corrected input values required to normalize an output of at least one non-least dynamic printer in the cluster.

- 2. (original) The method of claim 1, wherein transfer functions are calculated for each primary color.
 - 3. (cancelled)
- 4. (original) The method of claim 1, wherein a least dynamic printer is determined for each primary color.
- 5. (original) The method of claim 1, additionally comprising calculating transfer functions for each printer in the cluster.
- 6. (original) The method of claim 1, additionally comprising organizing the corrected input values into look-up tables.

Response to Office Action Dated 01/27/2005

,	7. (original) A method for calibrating a cluster of printers,		
2	comprising:		
3	printing a calibration target with each printer in the cluster;		
4	measuring each calibration target to produce measurement data;		
5	calculating transfer functions for each printer in the cluster;		
6	determining a least dynamic printer in the cluster;		
7	calculating corrected input values required to normalize output of non-least		
8	dynamic printers in the cluster;		
9	organizing the corrected input values into look-up tables; and		
10	sending the look-up tables to each printer within the cluster.		
11			
12			
13	8. (original) The method of claim 7, wherein the measuring is		
14	performed by sensors in a paper pain of each printer.		
15			
16	9. (original) The method of claim 7, wherein the measurement data		
18	is expressed in a CIELab context.		
19			
20	10. (original) The method of claim 7, wherein the calculating steps		
21			
22			
23	11. (original) The method of claim 7, wherein the calculating steps		
24			
25	are performed on a print server.		

12. (original) The method of claim 7, additionally comprising incorporating the look-up tables into a color data flow of each printer in the cluster.

13. (original) A method of calibrating a cluster of printers, comprising:

printing a calibration target with each printer in the cluster;

measuring each calibration target to produce measurement data;

calculating transfer functions for each primary color and for each printer in the cluster;

determining a least dynamic printer in the cluster with respect to each primary color;

calculating corrected input values required to normalize output of non-least dynamic printers in the cluster to the least dynamic printer in each cluster with respect to each primary color;

organizing the corrected input values into look-up tables; and sending the look-up tables to each printer within the cluster for inclusion in a color data flow.

14. (original) The method of claim 13, wherein the measuring is performed by sensors in a paper path of each printer.

Response to Office Action Dated 01/27/2005

S/N 09/824,903

P.06/21

1	1
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

15

16

17

18

19

20

21

22

23

24

25

A cluster of printers, comprising: 15. (original) at least two printers;

a transfer function calculator to derive a transfer function for each printer with respect to at least one color;

a least dynamic response selector to determine a least dynamic printer from within the cluster of printers for at least one color;

a normalizer for calculation of corrected input values required to normalize more dynamic printers' output with respect to the least dynamic printer; and

a look-up table assembler to organize the corrected input values into lookup tables.

- 16. (original) The method of claim 15, additionally comprising a file transfer routine to send the look-up tables to each printer within the
- 17. (original) A computer-readable medium having computer executable instructions thereon which, when executed by a printing system, cause the printing system to:

print a calibration target with each printer in a cluster; measure each calibration target; calculate transfer functions for each printer in the cluster; determine a least dynamic printer in the cluster; and

Response to Office Action Dated 01/27/2005

calculate corrected input values required to normalize output of non-least dynamic printers in the cluster.

- 18. (original) The computer-readable medium of claim 17, additionally causing the printing system to organize the corrected input values into look-up tables.
- 19. (original) The computer-readable medium of claim 18, additionally causing the printing system to send the look-up tables to each printer within the cluster for inclusion in a color data flow.
 - 20. (original) A system, comprising:
- a transfer function calculator to derive a transfer function for each printer with respect to at least one color;
- a least dynamic response selector to determine a least dynamic printer from at least two transfer functions for at least one color; and
- a normalizer for calculation of corrected input values required to normalize at least one transfer function with respect to the least dynamic printer.
 - 21. (original) The calculator of claim 20, additionally comprising:
- a look-up table assembler to organize the corrected input values into lookup tables.

25

Response to Office Action Dated 01/27/2005

22. (original) A printer containing the system of claim 20.