Section 1.1: Definition and Properties of Real Numbers

We will give an axiomatic definition of the real numbers. We will define the *set of real numbers*:

- Denoted by \mathbb{R} ,
- As a set with two operations + (addition) and · (multiplication),
- As well as an ordering <,
- Which satisfy
 - o The laws of addition (A),
 - The laws of multiplication (M),
 - o The distributive law (D),
 - o The order laws (O) and
 - o The Dedekind Completeness Axiom (C).

These laws and axioms will be given and discussed below.

Remember: An *axiom* is a true mathematical statement whose truth is accepted without a proof.

Addition and multiplication are maps which assign to every two elements in $a, b \in \mathbb{R}$ an element in \mathbb{R} which is denoted by a + b and $a \cdot b$ (in general, written ab), respectively. We require that these operations satisfy the following axioms.

Preliminary properties:

• The *transitive property* of equality:

If
$$a = b$$
 and $b = c$, then $a = c$.

• The *closure properties* of addition and multiplication:

For all real numbers a and b, there are unique real numbers a + b and ab.

A. Axioms of addition

- (A1) Associative Law: a + (b + c) = (a + b) + c for all $a, b, c \in \mathbb{R}$.
- (A2) Commutative Law: a + b = b + a for all $a, b \in \mathbb{R}$.
- (A3) Zero: There is a real number 0 such that a + 0 = a for all $a \in \mathbb{R}$.
- (A4) Additive inverse: For each $a \in \mathbb{R}$ there is $-a \in \mathbb{R}$ such that a + (-a) = 0.

Notation

For $a, b \in \mathbb{R}$ one writes a - b := a + (-b). (Definition of *subtraction*)

Additional Notes

- 1. Any set with the operation + satisfying (A1), (A3) and (A4) is called a *group*. If also (A2) is satisfied, the group is called an *Abelian* (or commutative) *group*.
- 2. You will encounter detailed discussions of (Abelian) groups in algebra courses.
- 3. The additive inverse of a number is also called the *negation* of a number.

Theorem 1.1 (Basic group properties)

- (a) The number 0 is unique.
- (b) For all $a \in \mathbb{R}$, the number -a is unique.
- (c) For all $a, b \in \mathbb{R}$, the equation a + x = b has a unique solution. This solution is x = b a.
- (d) $\forall a \in \mathbb{R}; -(-a) = a$.
- (e) $\forall a, b \in \mathbb{R}; -(a+b) = -a b.$
- (f) -0 = 0.

Proof (We can only use the axioms of addition at this stage!)

(a) The number 0 is unique.

Let $0,0' \in \mathbb{R}$ such that a + 0 = a and a + 0' = a for all $a \in \mathbb{R}$. We must show that 0 = 0':

$$0 = 0 + 0' \qquad \text{assumption with } a = 0.$$

$$= 0' + 0 \qquad \text{(A2)}$$

$$= 0' \qquad \text{assumption with } a = 0'.$$

(b) For all $a \in \mathbb{R}$, the number -a is unique.

Let $a \in \mathbb{R}$ and $a', a'' \in \mathbb{R}$ such that a + a' = 0 and a + a'' = 0. We must show that a' = a'':

$$a' = a' + 0$$
 (A3)
 $= a' + (a + a'')$ assumption
 $= (a' + a) + a''$ (A1)
 $= (a + a') + a''$ (A2)
 $= 0 + a''$ assumption
 $= a'' + 0$ (A2)
 $= a''$ (A3)

^{*}Note that (b) allows us to say that if a + b = 0, then b = -a.

(c) For all $a, b \in \mathbb{R}$, the equation a + x = b has a unique solution. This solution is x = b - a.

First we show that x = b - a is a solution. So let x = b - a. Then

$$a + x = a + (b - a)$$
 substitution
 $= a + (b + (-a))$ definition of subtraction
 $= a + ((-a) + b)$ (A2)
 $= (a + (-a)) + b$ (A1)
 $= 0 + b$ (A4)
 $= b + 0$ (A2)
 $= b$ (A3)

To show that the solution is unique let $x \in \mathbb{R}$ such that a + x = b. Then

$$x = x + 0 (A3)$$

$$= x + (a + (-a)) (A4)$$

$$= (x + a) + (-a) (A1)$$

$$= (a + x) + (-a) (A2)$$

$$= b - a \therefore a + x = b$$

This shows that the solution is unique.

(d)
$$\forall a \in \mathbb{R}; -(-a) = a$$
.

Note that

$$(-a) + (-(-a)) = 0.$$
 (A4)

On the other hand,

$$(-a) + a = a + (-a)$$
 (A2)
= 0. (A4)

By part (b), it follows that -(-a) = a.

Alternatively:

$$-(-a) = -(-a) + 0 (A3)$$

$$= -(-a) + (a + (-a)) (A4)$$

$$= (a + (-a)) + (-(-a)) (A2)$$

$$= a + ((-a) + (-(-a))) (A1)$$

$$= a + 0 (A4)$$

$$= a (A3)$$

(e) $\forall a, b \in \mathbb{R}; -(a+b) = -a - b.$

$$(a + b) + (-a - b) = (a + b) + ((-a) + (-b))$$
 definition of subtraction

$$= (b + a) + ((-a) + (-b))$$
 (A2)

$$= ((b + a) + (-a)) + (-b)$$
 (A1)

$$= (b + (a + (-a))) + (-b)$$
 (A1)

$$= (b + 0) + (-b)$$
 (A4)

$$= b + (-b)$$
 (A3)

$$= 0$$
 (A4)

By part (b), -(a + b) = -a - b.

(f)
$$-0 = 0$$
.

Since

$$0 + 0 = 0$$
 (A3)

and

$$0 + (-0) = 0$$
 (A4)

we have

$$-0 = 0$$
 Part (b).

M. Axioms of multiplication

(M1) Associative Law:
$$a(bc) = (ab)c$$
 for all $a, b, c \in \mathbb{R}$.

(M2) Commutative Law:
$$ab = ba$$
 for all $a, b \in \mathbb{R}$.

(M3) One: There is a real number 1 such that
$$1 \neq 0$$
 and $a \cdot 1 = a$

for all
$$a \in \mathbb{R}$$
.

(M4) Multiplicative inverse: For each
$$a \in \mathbb{R}$$
 with $a \neq 0$ there is $a^{-1} \in \mathbb{R}$ such that $aa^{-1} = 1$.

For
$$a, b \in \mathbb{R}$$
 one writes $\frac{a}{b} = a \div b := b^{-1}a$ where $b^{-1} = \frac{1}{b}$. (Definition of *division*)

D. The distributive law axiom

(D) Distributive Law:
$$a(b+c) = ab + ac$$
 for all $a, b, c \in \mathbb{R}$.

Additional Notes

- 1. Any set with the operations +, · satisfying the axioms (A1)–(A4), (M1)–(M4) and (D) is called a *field*.
- 2. You will encounter detailed discussions of fields in algebra courses.
- 3. The multiplicative inverse of a number is also briefly called the *inverse* of a number.
- 4. The set of nonzero real numbers, $\mathbb{R}\setminus\{0\}$, is an Abelian group with respect to multiplication.

Theorem 1.2 (Basic field properties: Distributive laws)

(a)
$$\forall a, b, c \in \mathbb{R}$$
, $(a + b)c = ac + bc$.

(b)
$$\forall a \in \mathbb{R}, a \cdot 0 = 0$$
.

(c)
$$\forall a, b \in \mathbb{R}$$
, $ab = 0 \Leftrightarrow a = 0 \text{ or } b = 0$.

(d)
$$\forall a, b \in \mathbb{R}, (-a)b = -(ab).$$

(e)
$$\forall a \in \mathbb{R}, (-1)a = -a$$
.

(f)
$$\forall a, b \in \mathbb{R}, (-a)(-b) = ab.$$

Proof

(a)
$$\forall a, b, c \in \mathbb{R}$$
, $(a + b)c = ac + bc$.

$$(a+b)c = c(a+b)$$
 (M2)
$$= ca + cb$$
 (D)
$$= ac + bc.$$
 (M2)

(b) $\forall a \in \mathbb{R}, a \cdot 0 = 0$.

Since

$$a \cdot 0 = a(0+0) \tag{A3}$$

$$= a \cdot 0 + a \cdot 0 \tag{D}$$

and

$$a \cdot 0 = a \cdot 0 + 0 \quad (A3)$$

$$= 0 + a \cdot 0 \quad \text{(A2)}$$

by Theorem 1.1(c) we have $a \cdot 0 = 0$.

(c)
$$\forall a, b \in \mathbb{R}$$
, $ab = 0 \Leftrightarrow a = 0 \text{ or } b = 0$.

$$(\Leftarrow)$$
 $a = 0$ or $b = 0$:

• If b = 0, then

$$ab = a \cdot 0$$
 substitution
= 0 Part (b).

• If a = 0, then

$$ab = ba$$
 (M2)
= $b \cdot 0$ substitution
= 0 Part (b).

- (\Rightarrow) Now assume that ab = 0.
 - If b = 0, the property "a = 0 or b = 0" follows.
 - So now assume $b \neq 0$. Then

$$a = a \cdot 1 \qquad (M3)$$

$$= a(bb^{-1}) \qquad (M4)$$

$$= (ab)b^{-1} \qquad (M1)$$

$$= 0 \cdot b^{-1} \qquad \text{assumption}$$

$$= b^{-1} \cdot 0 \qquad (M2)$$

$$= 0 \qquad \text{Part (b)}.$$

(d)
$$\forall a, b \in \mathbb{R}, (-a)b = -(ab).$$

Using field laws, we get

$$ab + (-a)b = (a + (-a))b$$
 Part (a)
 $= 0 \cdot b$ A4
 $= b \cdot 0$ M2
 $= 0$ Part (b)

and from Theorem 1.1(b),

$$(-a)b = -ab.$$

(e)
$$\forall a \in \mathbb{R}, (-1)a = -a$$
.

Is a special case of Part (d). Let b = 1. Then

$$-a = -(a \cdot 1) \quad M3$$
$$= -(1 \cdot a) \quad M2$$
$$= (-1)a \quad Part (d).$$

(f)
$$\forall a, b \in \mathbb{R}, (-a)(-b) = ab$$
.

From (d) and other laws and rules we find

$$(-a)(-b) = -[a(-b)]$$
Part (d)

$$= -[(-b)a]$$
M2

$$= -[-ba]$$
Part (d)

$$= ba$$
Theorem 1.1 (d)

$$= ab$$
M2.

Theorem 1.3 (Basic field properties: multiplication)

- (a) The number 1 is unique.
- (b) For all $a \in \mathbb{R}$ with $a \neq 0$, the number a^{-1} is unique.
- (c) For all $a, b \in \mathbb{R}$ with $a \neq 0$, the equation ax = b has a unique solution. This solution is $x = a^{-1}b$.
- (d) $\forall a \in \mathbb{R} \setminus \{0\}, (a^{-1})^{-1} = a.$
- (e) $\forall a, b \in \mathbb{R} \setminus \{0\}, (ab)^{-1} = a^{-1}b^{-1}$.
- (f) $\forall a \in \mathbb{R} \setminus \{0\}, (-a)^{-1} = -a^{-1}.$
- (g) $1^{-1} = 1$.

Proof

See tutorials. The proofs are similar to those of Theorem 1.1.

Next we give the axioms for the set of positive real numbers. It is convenient to use the notation a > 0 for *positive numbers* a.

O. The order axioms

(O1) Trichotomy: For each $a \in \mathbb{R}$, exactly one of the following statements is true:

$$a > 0$$
 or $a = 0$ or $-a > 0$.

- (**O2**) If a > 0 and b > 0, then a + b > 0.
- (O3) If a > 0 and b > 0, then ab > 0.

The definition of positivity of real numbers gives rise to an order relation for real numbers:

Definition Let $a, b \in \mathbb{R}$. Then a is called *larger than* b, written a > b, if a - b > 0.

Notes

- 1. Since a 0 = a, the notation a > 0 is consistent.
- 2. It is convenient to introduce the following notations:
 - $a \ge b \Leftrightarrow a > b \text{ or } a = b$
 - $a < b \Leftrightarrow b > a$
 - $a \le b \Leftrightarrow a < b \text{ or } a = b$
- 3. We will define general powers later. Below we use the notation $a^2 = a \cdot a$.

Theorem 1.4 (Basic order properties)

Let $a, b, c, d \in \mathbb{R}$. Then

- (a) $a < 0 \Leftrightarrow -a > 0$.
- (b) a < b and $b < c \Rightarrow a < c$.
- (c) $a < b \Rightarrow a + c < b + c$.
- (d) a < b and $c < d \Rightarrow a + c < b + d$.
- (e) a < b and $c > 0 \Rightarrow ca < cb$.
- (f) $0 \le a < b$ and $0 \le c < d \Rightarrow ac < bd$.
- (g) a < b and $c < 0 \Rightarrow ca > cb$.
- (h) $a \neq 0 \Rightarrow a^2 > 0$.
- (i) $a > 0 \Rightarrow a^{-1} > 0$ and $a < 0 \Rightarrow a^{-1} < 0$.
- (j) $0 < a < b \Rightarrow b^{-1} < a^{-1}$.
- (k) 1 > 0.

Proof

(a), (b), (h), (i), (j), (k) in class. For (c) - (g) see tutorials.

(a)
$$a < 0 \Leftrightarrow -a > 0$$
.

$$a < 0 \Leftrightarrow 0 > a$$
 by definition of $<$
 $\Leftrightarrow 0 - a > 0$ by definition of $>$
 $\Leftrightarrow -a > 0$ since $0 - a = -a + 0 = -a$ (add reasons)

(b) a < b and $b < c \Rightarrow a < c$.

$$a < b \text{ and } b < c$$
 $\Rightarrow b - a > 0 \text{ and } c - b > 0$ by definition
$$\Rightarrow (b - a) + (c - b) > 0 \quad \text{by (O2)}$$

$$\Rightarrow c - a > 0 \quad \text{by (A1)-(A4)}$$

$$\Rightarrow a < c \quad \text{by definition}$$

(h)
$$a \neq 0 \Rightarrow a^2 > 0$$
.

Since $a \neq 0$, either a > 0 or a < 0.

- If a > 0, then $a^2 = aa > 0$ by (O3).
- If a < 0, then -a > 0 by part (a) and $a^2 = (-a)(-a)$ by Theorem 1.2, (f). Hence $a^2 = (-a)(-a) > 0$ by (O3).

(i)
$$a > 0 \Rightarrow a^{-1} > 0$$
 and $a < 0 \Rightarrow a^{-1} < 0$.

Since $a \neq 0$, a^{-1} exists with $aa^{-1} = 1$ by (M4). Then $a^{-1} \neq 0$ by Theorem 1.2, (c). Hence $(a^{-1})^2 > 0$ by (h). Thus, if a > 0, $a^{-1} = a(a^{-1})^2 > 0$ by (O3).

Similarly, use (g) if a < 0. (Add these steps.)

(j)
$$0 < a < b \Rightarrow b^{-1} < a^{-1}$$
.

By (i), $a^{-1} > 0$ and $b^{-1} > 0$. Hence $a^{-1}b^{-1} > 0$ by (O3). Then

$$b^{-1} = a(a^{-1}b^{-1})$$
 by (M1) - (M4)
 $< b(a^{-1}b^{-1})$ by Part (e)
 $= (bb^{-1})a^{-1}$ by (M1) and (M2)
 $= a^{-1}$ by (M3) and (M4)

(k) 1 > 0.

$$1 = 1 \cdot 1 \qquad \text{by (M3)}$$

$$= 1^2 \qquad \text{by definition}$$

$$> 0 \qquad \text{by Part (h)}.$$

There is still one axiom missing, the axiom of Dedekind Completeness. However, we will postpone the formulation of this axiom to the next section since we need some further definitions.

* * * * * * *