

Decentralized Systems

- System-level instability
 - disturbances amplified across system
 - compromise system performance
- Can we achieve centralized performance with decentralized control?
 - stabilize
 - optimize

- Basics
 - Background
 - The bullwhip effect
- Deterministic chain stability
 - System formulation
 - Analytical results
- Stochastic chain stability
 - System formulation
 - Analytical results
- Toward optimality
 - Decentralized negotiations
 - Advance order commitment

- Establish a system-control framework
 - Generalize past work on deterministic and homogeneous system (Daganzo, 2001, 2003a, b; Dejonckheere et al., 2003a, b)
 - Further understand the bullwhip effect
- Develop <u>analytical methods</u> to examine the existence of the bullwhip effect

Supply Chain Representation

Definitions

 $N_i(t)$ = cumulative orders placed by supplier i by period t

 $u_i(t)$ = order placed by supplier i in period t

 $y_i(t)$ = in-stock inventory

 $x_i(t)$ = inventory position

 l_i = lead time

Assumptions

- Decentralized decision-making
- Rational ordering decisions
- Linear ordering policy
- Deterministic system operations

Inventory dynamics:

$$\begin{aligned} x_i(t+1) &= x_i(t) + u_i(t) - u_{i-1}(t), \forall i = 0, 1, ..., \\ y_i(t+1) &= y_i(t) + u_i(t-l_i) - u_{i-1}(t), \forall i = 1, 2, ... \end{aligned}$$

Ordering policy:

$$u_i(t) = \gamma_i + A_i(P)x_i(t) + B_i(P)y_i(t) + C_i(P)u_{i-1}(t-1), i = 1, 2, \dots$$

P: shift operator; i.e. $P^k x(t) = x(t-k)$, \forall integer $k \ge 0$ $A_i(\cdot)$, $B_i(\cdot)$, $C_i(\cdot)$: polynomials with real coefficients; γ_i : constant

Equilibrium state:

$$u^{\infty} = \gamma_i + A_i(1)x_i^{\infty} + B_i(1)y_i^{\infty} + C_i(1)u^{\infty},$$

The Bullwhip Effect Metric

Worst-case RMSE amplification (L₂ norm gain)

$$\max_{\forall \{\bar{u}_0\} \neq 0} \frac{\left(\sum_{t=0}^{\infty} \bar{u}_I^2(t)\right)^{\frac{1}{2}}}{\left(\sum_{t=0}^{\infty} \bar{u}_0^2(t)\right)^{\frac{1}{2}}}, \text{ where } \bar{u}_i(t) := u_i(t) - u^{\infty}, \ i = 0, I.$$

Frequency Response Analysis

Frequency preserves; the amplitude and phase angle changes according to the transfer function.

The Bullwhip Effect Metrics

Time domain

✓ Worst-case RMSE amplification(L₂ norm gain)

$$\max_{\forall \{\overline{u}_0\} \neq 0} \frac{\left(\sum_{t=0}^{\infty} \overline{u}_I^2(t)\right)^{\frac{1}{2}}}{\left(\sum_{t=0}^{\infty} \overline{u}_0^2(t)\right)^{\frac{1}{2}}}$$

Frequency domain

✓ The peak value on the Bode plot
 (H_∞ norm)

$$\max_{\forall w \in [0,2\pi)} \left| T_I(e^{jw}) \right|$$

where T_I is the transfer function from customer demand to supplier I orders.

• For each variable, take its difference from the equilibrium-state value

$$\forall i, t > 0$$

$$\overline{x}_{i}(t+1) = \overline{x}_{i}(t) + \overline{u}_{i}(t) - \overline{u}_{i-1}(t)$$

$$\overline{y}_{i}(t+1) = \overline{y}_{i}(t) + \overline{u}_{i}(t-l_{i}) - \overline{u}_{i-1}(t)$$

$$\overline{u}_{i}(t) = A_{i}(P)\overline{x}_{i}(t) + B_{i}(P)\overline{y}_{i}(t) + C_{i}(P)\overline{u}_{i-1}(t-1)$$

• In the frequency domain (*z*-transform):

$$\begin{split} &(z-1)X_{i}(z) = U_{i}(z) - U_{i-1}(z) \\ &(z-1)Y_{i}(z) = z^{-l_{i}}U_{i}(z) - U_{i-1}(z) \\ &U_{i}(z) = A_{i}(z^{-1})X_{i}(z) + B_{i}(z^{-1})Y_{i}(z) + z^{-1}C_{i}(z^{-1})U_{i-1}(z) \end{split}$$

Eliminating $X_i(z)$ and $Y_i(z)$,

$$U_{i}(z) = \frac{z^{-1}C_{i}(z^{-1}) - (z-1)^{-1}[A_{i}(z^{-1}) + B_{i}(z^{-1})]}{1 - (z-1)^{-1}[A_{i}(z^{-1}) + z^{-l_{i}}B_{i}(z^{-1})]}U_{i-1}(z), i = 1,2,...$$

The Transfer Function

• The transfer function from the customer demand to the upstream orders of supplier *I* is

$$T_I(z) := \prod_{i=1}^I T_{i-1,i}(z)$$

where

$$T_{i-1,i}(z) := \frac{z^{-1}C_i(z^{-1}) - (z-1)^{-1} \left[A_i(z^{-1}) + B_i(z^{-1})\right]}{1 - (z-1)^{-1} \left[A_i(z^{-1}) + z^{-l_i}B_i(z^{-1})\right]}$$

• To examine the bullwhip effect, check the H_{∞} norm: whether $\exists w \in [0, 2\pi)$, such that

$$|T_I(e^{jw})| = \prod_{i=1}^{I} |T_{i-1,i}(e^{jw})| > 1.$$

Deterministic Chain Results

Theorem 1 (Sufficient condition for instability)

Supplier I+1 in the deterministic (LTI) supply chain experiences the bullwhip effect if

$$\sum_{i=1}^{I} \frac{1 + B_i(1)l_i - C_i(1)}{A_i(1) + B_i(1)} > 0.$$

Corollary 1 (Homogeneous chain)

When $A_i = A$, $B_i = B$, $C_i = C$, and $l_i = l$, $\forall i$, all upstream suppliers experience the bullwhip effect if

$$\frac{1+B(1)l-C(1)}{A(1)+B(1)} > 0.$$

Example (Homogeneous Chain)

- Order-up-to policy
 - Variable "order-up-to level": two-period moving-average demand forecasting
 - Lead time l=2

$$A(P) = -1, B(P) = 0, C(P) = \frac{1}{2}(1+P)l = 1+P$$

• By Corollary 1:

$$\frac{1+B(1)l-C(1)}{A(1)+B(1)} = \frac{1+0-2}{-1+0} = 1 > 0.$$

The bullwhip effect exists for sure!

- Basics
 - Background
 - The bullwhip effect
- Deterministic chain stability
 - System formulation
 - Analytical results
- Stochastic chain stability
 - System formulation
 - Analytical results
- Toward optimality
 - Decentralized negotiations
 - Advance order commitment

- Stochastic Environment
 - Unreliable shipments, variable lead times, price fluctuations, etc.
 - Randomness may affect system stability (bullwhip effect)
- Develop <u>analytical conditions</u> to examine the existence of the bullwhip effect

Return to the time-domain formulation

$$\forall i, t > 0$$

$$\begin{split} \overline{x}_{i}(t+1) &= \overline{x}_{i}(t) + \overline{u}_{i}(t) - \overline{u}_{i-1}(t) \\ \overline{y}_{i}(t+1) &= \overline{y}_{i}(t) + \overline{u}_{i}(t-l_{i}) - \overline{u}_{i-1}(t) \\ \overline{u}_{i}(t) &= A_{i}(P)\overline{x}_{i}(t) + B_{i}(P)\overline{y}_{i}(t) + C_{i}(P)\overline{u}_{i-1}(t-1) \end{split}$$

Simple algebra gives

$$\overline{u}_i(t+1) = [1 + A_i(P) + P^{l_i}B(P)]\overline{u}_i(t) + [(1-P)C_i(P) - B_i(P) - A_i(P)]\overline{u}_{i-1}(t)$$

• Simple algebra gives

$$\overline{u}_i(t+1) = [1 + A_i(P) + P^{l_i}B(P)]\overline{u}_i(t) + [(1-P)C_i(P) - B_i(P) - A_i(P)]\overline{u}_{i-1}(t)$$

• Let $\mathbf{u}_i(t) := [\overline{u}_i(t), \overline{u}_i(t-1), \dots, \overline{u}_i(t-K)]^T$, then

$$\mathbf{u}_{i}(t+1) = R_{i} \cdot \mathbf{u}_{i}(t) + S_{i} \cdot \mathbf{u}_{i-1}(t), \forall i, t > 0$$

Markovian Jump Linear System (MJLS)

- Allow stochastic model parameters
- Consider

$$\mathbf{u}_{i}(t+1) = R_{\theta_{i}(t)} \cdot \mathbf{u}_{i}(t) + S_{\theta_{i}(t)} \cdot \mathbf{u}_{i-1}(t), \forall i, t > 0$$

where matrix pair $\{R_{\theta_i(t)}, S_{\theta_i(t)}\}$ takes value from a finite set according to an exogenous Markov chain $\{\theta_i(t)\}$.

 $\theta_i(t) \in \mathcal{M}_i = \{1, 2, ..., M_i\}$, with transition probability matrix $\mathcal{P}_i = [p^i_{mn}]_{M_i \times M_i}$.

The Bullwhip Effect Metric

(Expected L₂ norm gain)

There is no bullwhip effect if

$$\max_{\forall \{\bar{u}_0\} \neq 0} \frac{E\left(\sum_{t=0}^{\infty} \bar{u}_I^2(t)\right)^{\frac{1}{2}}}{\left(\sum_{t=0}^{\infty} \bar{u}_0^2(t)\right)^{\frac{1}{2}}} \leq 1,$$

where the expectation is taken across Markov chain realizations.

Simplifying Assumption

- Homogeneous supply chain
 - Only need to consider one supplier, i.e., i = 1

- Drop subscript i; e.g., $\theta(t) := \theta_i(t)$
- When $\theta(t) = m$, let $R_m := R_{\theta(t)}$, $S_m := S_{\theta(t)}$

Stability Results

Theorem 2 (Sufficient condition for stability)

The bullwhip effect is avoided if there exists non-zero, positive semidefinite matrices $G \ge 0$ and $H := \text{diag}(h_0, h_1, ..., h_K) \ge 0$ such that

$$\begin{bmatrix} G & 0 \\ 0 & H \end{bmatrix} - \sum_{m=1}^{M} p_{nm} \begin{bmatrix} R_m & S_m \\ E & 0 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} G & 0 \\ 0 & H \end{bmatrix} \begin{bmatrix} R_m & S_m \\ E & 0 \end{bmatrix} \ge 0, \forall n \in \mathcal{M},$$

where and E is the identity matrix.

Theorem 3 (Necessary condition for stability)

The condition in Theorem 2 is also necessary if:

- a) the system is "weakly controllable" (Ji and Chizeck, 1988)
- b) the transition probabilities satisfy $p_{nm} \equiv p_m$, $\forall n \in \mathcal{M}$.

Stability Results

Corollary 2 (Deterministic chains)

The bullwhip effect is avoided in deterministic LTI chains **if and only if** there exists non-zero matrices $G \ge 0$ and $H := \text{diag}(h_0, h_1, ..., h_K) \ge 0$ such that

$$\begin{bmatrix} G & 0 \\ 0 & H \end{bmatrix} - \begin{bmatrix} R & S \\ E & 0 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} G & 0 \\ 0 & H \end{bmatrix} \begin{bmatrix} R & S \\ E & 0 \end{bmatrix} \ge 0,$$

where and E is the identity matrix.

Example (Deterministic Chain)

A family of "order-based" policies with advance demand information

$$\overline{u}_1(t+1) = \alpha \cdot \overline{u}_1(t) + [\beta_0 + \beta_1 P + \dots + \beta_K P^K] \overline{u}_0(t)$$

where

$$|\alpha| < 1, \alpha + \beta_0 + \beta_1 + \cdots + \beta_K = 1$$
 (properness)

$$\alpha, \beta_0, \beta_1, \dots, \beta_K \ge 0$$
 (with advance demand informatio n)

Note:

$$R = \begin{bmatrix} \alpha & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, S = \begin{bmatrix} \beta_0 & \beta_1 & \cdots & \beta_K \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}.$$

When G and H are as follows:

$$G = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & \sum_{k=1}^{K} \beta_k & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \beta_{K-1} + \beta_K & 0 \\ 0 & 0 & \cdots & 0 & \beta_K \end{bmatrix}, H = \begin{bmatrix} \beta_0 & 0 & \cdots & 0 \\ 0 & \beta_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \beta_K \end{bmatrix},$$

the stability condition in Corollary 2:

$$\begin{bmatrix} G & 0 \\ 0 & H \end{bmatrix} - \begin{bmatrix} R & S \\ E & 0 \end{bmatrix}^{T} \begin{bmatrix} G & 0 \\ 0 & H \end{bmatrix} \begin{bmatrix} R & S \\ E & 0 \end{bmatrix} \ge 0$$

is satisfied. There is no bullwhip effect.

Simulation

 $\overline{u}_0(t) \sim \text{i.i.d. Gaussian } (0, 1), \ \alpha = 0.4, \ \beta_0 = \beta_1 = 0.3 \ (K=1)$

Example (Stochastic Chain)

- Shipments lost with probability p
 - Transition probability matrix ($|\mathcal{M}| = 2$)

$$\mathcal{P} = \begin{bmatrix} 1 - p & p \\ 1 - p & p \end{bmatrix}$$

- The order-up-to policy
 - Safe mode

$$\overline{u}_1(t+1) = 2\overline{u}_0(t) - \overline{u}_0(t-2)$$

Loss mode

$$\overline{u}_1(t+1) = \overline{u}_1(t-2) + 2\overline{u}_0(t) - \overline{u}_0(t-2) + u^{\infty}$$

Example (Stochastic Chain)

• Let $\mathbf{u}_1(t) := [\overline{u}_1(t), \overline{u}_1(t-1), \overline{u}_1(t-2), u^{\infty}]^{\mathrm{T}}, \mathbf{u}_0(t) := [\overline{u}_0(t), \overline{u}_0(t-1), \overline{u}_0(t-2), u^{\infty}]^{\mathrm{T}}.$

Result

- A numerical search reveals that matrices G and H satisfying Theorem 2 do not exist, $\forall p \in [0,1]$
- The bullwhip effect exists

Plot $\overline{u}_0(t)$, $\overline{u}_1(t)$ under both deterministic condition (p=0) and stochastic conditions (p=0.1, p=0.2)

Average variance amplification (MJLS)

- Basics
 - Background
 - The bullwhip effect
- Deterministic chain stability
 - System formulation
 - Analytical results
- Stochastic chain stability
 - System formulation
 - Analytical results
- Toward optimality
 - Decentralized negotiations
 - Advance order commitment

Achieving Stability / Optimality

- Sharing information among suppliers (Lee *et al.*, 2000;
 Simchi-Levi and Zhao, 2003; etc.)
- Advance demand information
 (ADI) (Hariharan and Zipkin, 1995;
 Ouyang and Daganzo, 2005; etc.)

Advance Order Commitments

- Downstream suppliers committing to advance orders ...
 - Reduces upstream order variations (introduces benefits)
 - Increases own costs
- Able to quantify benefits / costs for every supplier
- Idealized optimum
 - Coordination among suppliers
 - Total benefits exceeds total costs for sufficiently long chains

Decentralized Negotiations

- Negotiations
 - Neighboring suppliers negotiate discounts for advance order commitments and RMSE reductions
- If suppliers are not greedy
 - system reaches the same optimum as if there was a coordinating agent
- If suppliers are greedy and impatient
 - system may reach sub-optimum

- System-control framework
 - Supply chains
 - The bullwhip effect
- System-level stability
 - Deterministic inhomogeneous chain
 - Stochastic homogeneous chain
- System-level optimality
 - Advance order commitment
 - Decentralized negotiations

Questions?

Thank you!

Back-up Slides

Bullwhip Effect Metrics

Time domain

✓ Worst-case variance amplification

$$(L_2 norm)$$

$$\max_{\forall \{\overline{u}_0\} \neq 0} \frac{\left(\sum_{t=0}^{\infty} \overline{u}_I^2(t)\right)^{\frac{1}{2}}}{\left(\sum_{t=0}^{\infty} \overline{u}_0^2(t)\right)^{\frac{1}{2}}}$$

- Average-case variance amplification for white-noise input sequence
- × Variance amplification with certain demand process

Frequency domain

✓ The peak value on the Bode plot $(H_{\infty} \text{ norm})$

$$\max_{\forall w \in [0,2\pi)} \left| T_I(e^{jw}) \right|$$

× Noise-bandwidth (H₂ norm)

Bullwhip Effect Metrics

- The "general replenishment rule" proposed by Dejonckheere (2003a)
- Two sinusoidal input signals: $\sin(0.05\pi t) + 2\sin(0.88\pi t)$
- Amplification ratio: 1.464 and 0.282 through each stage; phase change: -0.1507 and -0.1515

Theorem 1 Proof (Deterministic Chains)

Boyd and Desoer (1985) showed that $\log ||T_I(e^{\sigma})||$ is subharmonic with regard to σ and satisfies the Poisson Inequality:

$$\log |T_I(e^y)| \le \frac{1}{\pi} \int_{-\infty}^{+\infty} \log |T_I(e^{jw})| \frac{ydw}{y^2 + w^2}, \forall y \in (0, \infty)$$

Divide both sides by y, and let $y \to 0^+$,

$$\lim_{y \to 0^{+}} \frac{1}{y} \log |T_{I}(e^{y})| \leq \lim_{y \to 0^{+}} \frac{1}{\pi} \int_{-\infty}^{+\infty} \log |T_{I}(e^{jw})| \frac{dw}{y^{2} + w^{2}}$$

$$= \frac{1}{\pi} \int_{-\infty}^{+\infty} \log |T_{I}(e^{jw})| \frac{dw}{w^{2}}$$

Note that $T_I(z) = \prod_{i=1}^I T_{i-1,i}(z)$, therefore

$$\lim_{y \to 0^+} \frac{1}{y} \log |T_I(e^y)| = \sum_{i=1}^I \lim_{y \to 0^+} \frac{1}{y} \log |T_{i-1,i}(e^y)|.$$

By Taylor expansion at y = 0,

$$T_{i-1,i}(e^y) = T_{i-1,i}(e^y)|_{y=0} + [T_{i-1,i}(e^y)]'_y|_{y=0} \cdot y + o(y)$$

$$= 1 + \frac{1 + B_i(1)l_i - C_i(1)}{A_i(1) + B_i(1)} \cdot y + o(y)$$

Theorem 1 Proof (Deterministic Chains)

At the neighborhood of 0^+ , $\frac{1+B_i(1)l_i-C_i(1)}{A_i(1)+B_i(1)}\cdot y+o(y)\ll 1$, therefore

$$|T_{i-1,i}(e^y)| = \left| 1 + \frac{1 + B_i(1)l_i - C_i(1)}{A_i(1) + B_i(1)} \cdot y + o(y) \right|$$

= $1 + \frac{1 + B_i(1)l_i - C_i(1)}{A_i(1) + B_i(1)} \cdot y + o(y),$

By l'Hôpital's Rule,

$$\lim_{y \to 0^{+}} \frac{1}{y} \log |T_{i-1,i}(e^{y})| = \lim_{y \to 0^{+}} \frac{|T_{i-1,i}(e^{y})|'_{y}}{|T_{i-1,i}(e^{y})|}$$

$$= \lim_{y \to 0^{+}} \frac{\frac{1+B_{i}(1)l_{i}-C_{i}(1)}{A_{i}(1)+B_{i}(1)} + O(y)}{1+\frac{1+B_{i}(1)l_{i}-C_{i}(1)}{A_{i}(1)+B_{i}(1)} \cdot y + o(y)}$$

$$= \frac{1+B_{i}(1)l_{i}-C_{i}(1)}{A_{i}(1)+B_{i}(1)}.$$

we have

$$\sum_{i=1}^{I} \frac{1 + B_i(1)l_i - C_i(1)}{A_i(1) + B_i(1)} \le \frac{1}{\pi} \int_{-\infty}^{+\infty} \log |T_I(e^{jw})| \frac{dw}{w^2}.$$

Back

System Dynamics

• Let
$$\mathbf{u}_i(t) := [\overline{u}_i(t), \overline{u}_i(t-1), \dots, \overline{u}_i(t-l_i-K)]'$$
, then

$$\mathbf{u}_{i}(t+1) = R_{i} \cdot \mathbf{u}_{i}(t) + S_{i} \cdot \mathbf{u}_{i-1}(t), \forall i, t > 0$$

where

$$R_{i} = \begin{bmatrix} \alpha_{0}^{i} & \alpha_{1}^{i} & \alpha_{2}^{i} & \dots & \alpha_{K+l_{i}-1}^{i} & \alpha_{K+l_{i}}^{i} \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \end{bmatrix} \quad S_{i} = \begin{bmatrix} \beta_{0}^{i} & \beta_{1}^{i} & \dots & \beta_{K+1}^{i} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}$$

$$S_i = \begin{bmatrix} \beta_0^i & \beta_1^i & \dots & \beta_{K+1}^i & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}$$

Almost-surely stability (Mariton 1995)

Theorem 2 (Time stability). The system described above is almost surely stable if for $w(t) \equiv 0$ and every initial state $(u(0), \theta(0))$,

$$Pr\{\lim_{t \to \infty} ||u(t)|| = 0\} = 1.$$

With an ergodic Markov chain $\theta(t)$, almost sure stability is achieved when

$$\sum_{m=1}^{M} \pi_m |\sigma(R_m)| < 1$$

where π_m is the long-run probability of mode m, and $|\sigma(R_m)|$ is the spectral radius of matrix R_m .

Variance Amplification Bounds

Theorem 4 (Bounds for bullwhip effect metric)

The bullwhip effect metric (variance amplification) is bounded by μ ($\mu > 0$), if there exists non-zero matrices $G \ge 0$ and $H := \text{diag}(h_0, h_1, ..., h_K) \ge 0$ such that

$$\begin{bmatrix} G & 0 \\ 0 & \mu \cdot H \end{bmatrix} - \sum_{m=1}^{M} p_{nm} \begin{bmatrix} R_m & S_m \\ E & 0 \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} G & 0 \\ 0 & H \end{bmatrix} \begin{bmatrix} R_m & S_m \\ E & 0 \end{bmatrix} \ge 0, \forall n \in \mathcal{M},$$

where and E is the identity matrix.

Theorem 2 Proof (Stochastic Chains)

Define a scalar function $V(u) := gu^2$. $g \ge 0$, we have

$$E_{\theta(0),...,\theta(T)} \sum_{t=0}^{T} \left[V(u(t+1)) - V(u(t)) \right] = E_{\theta(0),...,\theta(T)} V(u(T+1)) \ge 0$$

we need to prove that

$$\operatorname{E}\left[\sum_{t=0}^{\infty} u^2(t)\right] \le \sum_{t=0}^{\infty} w^2(t).$$

Define the expected L_2 norm of a truncated stochastic sequence $\{u(0), u(1), ..., u(T)\}$ as

$$\begin{split} & \quad \mathbf{E}_{\theta(0),\dots,\theta(T-1)} \left[\sum_{t=0}^{T} u^2(t) \right] \\ & \leq \quad \sum_{t=0}^{T} w^2(t) + \mathbf{E}_{\theta(0),\dots,\theta(T)} \left[\sum_{t=0}^{T} \left(u^2(t) - w^2(t) + V(u(t+1)) - V(u(t)) \right) \right] \\ & = \quad \sum_{t=0}^{T} w^2(t) + \sum_{t=0}^{T} \mathbf{E}_{\theta(0),\dots,\theta(T)} \left[u^2(t) - w^2(t) + gu^2(t+1) - gu^2(t) \right] \\ & = \quad \sum_{t=0}^{T} w^2(t) - \sum_{t=0}^{T} \mathbf{E}_{\theta(0),\dots,\theta(t)} \left\{ [\mathbf{u}(t)'\mathbf{w}(t)'] F_{\theta(t)} \left[\begin{array}{c} \mathbf{u}(t) \\ \mathbf{w}(t) \end{array} \right] \right\} \end{split}$$

Theorem 2 Proof (Stochastic Chains)

where

$$F_{\theta(t)} := \begin{bmatrix} G & 0 \\ 0 & H \end{bmatrix} - \begin{bmatrix} R_{\theta(t)} & S_{\theta(t)} \\ I & 0 \end{bmatrix}' \begin{bmatrix} G & 0 \\ 0 & H \end{bmatrix} \begin{bmatrix} R_{\theta(t)} & S_{\theta(t)} \\ I & 0 \end{bmatrix},$$

and

$$\mathbf{u}(t) = [u(t), u(t-1), ..., u(t-l-K)]', \ \mathbf{w}(t) = [w(t), w(t-1), ..., w(t-l-K)]'.$$

For $\forall t, 0 \leq t \leq T$,

$$\mathbf{E}_{\theta(0),\dots,\theta(t)} \left\{ [\mathbf{u}(t)'\mathbf{w}(t)'] F_{\theta(t)} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{w}(t) \end{bmatrix} \right\}$$

$$\overset{(a)}{=} \mathbf{E}_{\theta(0),\dots,\theta(t-1)} \left\{ \mathbf{E}_{\theta(t)} \left[[\mathbf{u}(t)'\mathbf{w}(t)'] F_{\theta(t)} \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{w}(t) \end{bmatrix} \middle| \theta(0),\dots,\theta(t-1) \right] \right\}$$

$$\overset{(b)}{=} \mathbf{E}_{\theta(0),\dots,\theta(t-1)} \left\{ [\mathbf{u}(t)'\mathbf{w}(t)'] \mathbf{E}_{\theta(t)} \left[F_{\theta(t)} \middle| \theta(0),\dots,\theta(t-1) \right] \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{w}(t) \end{bmatrix} \right\}$$

$$\overset{(c)}{=} \mathbf{E}_{\theta(0),\dots,\theta(t-1)} \left\{ [\mathbf{u}(t)'\mathbf{w}(t)'] \left(\sum_{m=1}^{M} p_{\theta(t-1)m} F_m \right) \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{w}(t) \end{bmatrix} \right\}$$

$$\overset{(d)}{\geq} 0.$$

1 - - - 2

- Basics
 - Background
 - The bullwhip effect
- Deterministic inhomogeneous chain
 - System formulation
 - Analytical results
- Stochastic homogeneous chain
 - System formulation
 - Analytical results
- A decentralized contracting scheme
 - Advance order commitment

Achieving System-level Stability

• Sharing information among suppliers (Lee *et al.* 2000; Simchi-Levi and Zhao, 2003; etc.)

• Advance demand information (Hariharan and Zipkin 1995; Ouyang and Daganzo, 2005; etc.)

Advance Order Commitments

- Downstream suppliers placing advance orders ...
 - Reduces upstream order variations (introduces benefits)
 - Increases own costs
- Able to quantify benefits / costs for every supplier
- Feasibility
 - Total benefits exceeds total costs (an "imaginary broker" can profit)

A Decentralized Option

- Contracting
 - Neighboring suppliers negotiate discounts for advance order commitments and variance reductions
 - System reaches the same equilibrium as if there was a "broker"
- No coordinating agent is necessary

- Supply network
- Nonlinear system
 - ordering policy
 - operation (e.g., load-dependent lead time)
- Endogenous MJLS

Supply Networks

- $G = (V \cup W, E), V = \{\text{supplier node}\}, W = \{\text{customer node}\}, E = \{\text{ordering arc}\};$
- Inventory $\mathbf{x}(t) = \{x_1(t), x_2(t), ..., x_n(t)\}, \text{ orders } \mathbf{u}(t) = \{u_{ij}(t): (i, j) \in E\};$
- lead time $\{l_{ij}\}$, shipment loss $\{\rho_{ij}\}$, $\forall (i,j) \in E$.

Supply Networks

System dynamics:

Inventory

dynamics:
$$x_i(t+1) = x_i(t) + \sum_{j:(i,j)\in A} (\rho_{ij} \cdot u_{ij}(t-l_{ij})) - \sum_{k:(k,i)\in E} u_{ki}(t)$$
, $i = 1, ..., n, \mathbf{x}(0) = \mathbf{0}$;

Ordering policy:
$$u_{ij}(t) = \sum_{k:(i,k)\in E} A_{ik}(P)u_{ik}(t) + \frac{1}{\rho_{ij}} \left[\alpha_{ij}^{0} x_{i}(t) + B_{ij}(P) \cdot \sum_{k:(k,i)\in E} u_{ki}(t) \right], \ \forall (i,j)\in E, \ i>0$$

Supply Networks

Motion Equations:

$$\begin{split} X_{i}(z) &= \frac{1}{z-1} \left[\sum_{j:(i,j) \in E} (\rho_{ij} \cdot U_{ij}(z) \cdot z^{-l_{ij}}) - \sum_{k:(k,i) \in E} U_{ki}(z) \right], \ i = 1, \dots, n \\ U_{ij}(z) &= \frac{\left(B_{ij}(z^{-1}) - \alpha_{ij}^{0}(z-1)^{-1} \right)}{\rho_{ij} \left(1 - A_{ij}(z^{-1}) - \alpha_{ij}^{0}z^{-l_{ij}}(z-1)^{-1} \right)} \cdot \sum_{k:(k,i) \in E} U_{ki}(z) \\ &\qquad \qquad \sum_{k:(i,k) \in E, k \neq j} \left[U_{ik}(z) \cdot \left(\alpha_{ij}^{0} \rho_{ik} z^{-l_{ik}}(z-1)^{-1} + A_{ik}(z^{-1}) \right) \right] \\ &\qquad \qquad + \frac{k:(i,k) \in E, k \neq j}{\rho_{ij} \left(1 - A_{ij}(z^{-1}) - \alpha_{ij}^{0}z^{-l_{ij}}(z-1)^{-1} \right)} \quad , \ \forall (i,j) \in E, \ i > 0 \end{split}$$

Transfer Function:

$$T_{i}(z) = \frac{\sum_{j:(i,j)\in E} U_{ij}(z)}{U_{01}(z)}$$