Relational Algebra:

Selection (σ):

Selects tuples that satify certain conditions.

<u>Operators:</u> -, =, ≠, ≥, <, >, ≤

Connectors: and, or, not

$$\begin{split} &\sigma_{\text{sentiment} > 0.9}(\text{Chirp}) - \text{Selects Chirps with sentiment less than 0.9.} \\ &\sigma_{\text{last name} = \text{'Trump'}}(\text{Bird}) - \text{Selects Birds whose last name is Trump.} \end{split}$$

Projection (π):

Projects a subset of a table's columns.

 $\pi_{\text{btag, first name}} \text{(Bird)}$ — Projects the tag and first name of all Birds

*Cross-Product (×):

Combines two relations with every possible combination of tuples.

	R	
	A	1
	В	2
	D	3
	F	4
I	E	5

s	
A	1
U	2
D	3
E	4

			RC
A	1	A	1
A	1	υ	2
A	1	D	3
A	1	E	4
В	2	A	1
В	2	υ	3
В	2	D	3
В	2	E	4
D	3	A C	1
D	3	С	2
-	-	Τ.	-

55			
F	4	A	1
F	4	С	2
F	4	D E	3
F	4	E	4
E	5	A	1
E	5	С	2
E	5	D	3
E	5	E	4
E E E	-	A C D E	4

*Difference (-):

Selects tuples that are present in one relation but not the other.

R	
A	1
В	2
D	3
F	4
E	5

S	
A	1
С	2
D	3
E	4

. DIFF	EREN	CE S
В	2	

F 4 E 5

S DIFFERENCE R		E R
С	2	

*Union (U):

Selects tuples that are present in both relations.

R	UNION	S

Α	1
В	2
С	2
D	3
Е	5
F	4
Е	4

Natural Join (⋈):

Combines two relations by finding a common attribute between them

Employee		
Name	Empld	DeptName
Harry	3415	Finance
Sally	2241	Sales
George	3401	Finance
Harriet	2202	Sales

Dept		
Manager		
George		
Harriet		
Charles		

Employee w Dept				
Name	Empld	DeptName	Manager	
Harry	3415	Finance	George	
Sally	2241	Sales	Harriet	
George	3401	Finance	George	
Harriet	2202	Sales	Harriet	

Conditional Join (⋈_c):

Combines two relations similar to cross product but with a condition

Car		
CarModel	CarPrice	
CarA	20,000	
CarB	30,000	
CarC	50,000	

at
BoatPrice
10,000
40,000
60,000

CarModel	CarPrice	BoatModel	BoatPrice
CarA	20,000	Boat1	10,000
CarB	30,000	Boat1	10,000
CarC	50,000	Boat1	10,000
00	E0.000	Deet0	40.000

Division (÷):

Reduces a relation by performing the opposite of a cartesian product

Completed		
Student	Task	
Fred	Database1	
Fred	Database2	
Fred	Compiler1	
Eugene	Database1	
Eugene	Compiler1	
Sarah	Database1	

Complete ÷	
DBProje	ct
Student	Ł
Fred	
Sarah	

Relational Calculus [Examples]:

Sailors(sid, sname, rating, age), Reserves(sid, bid, date), Boats(bid, bname, color)

- 1. Find sailors with a rating > 7 $\{s \mid s \in Sailors \land s.rating > 7\}$
- 2. Find names of sailors who've reserved a red boat

 $\{t(sname) \mid \exists s \in Sailors(t.sname = s.sname \land \exists r \in Reserves(r.sid = s.sid \land \exists b \in Boats(b.bid = r.bid \land b.color = 'red'))\}\}$

3. Find the names of sailors who've reserved all "Interlake" boats $\{t(sname) \mid \exists s \in Sailors(t.sname = s.sname \land \forall b \in Boats(b.bname = 'Interlake' \rightarrow (\exists r \in Reserves(r.sid = s.sid \land b.bid = r.bid))))\}$

^{*}Must be union compatible: 1) Same number of columns 2) Corresponding columns are of the same variable type