Embora não seja possível contar diretamente o número de átomos ou de moléculas presentes em um material, podemos determinar de forma indireta essas quantidades, se conhecermos as suas massas.

Massa atômica

A massa atômica é expressa em unidades de massa atômica (u).

A massa atômica de um elemento é a média ponderada das massas atômicas dos seus isótopos, conforme mostrado no exemplo abaixo.

Isótopo	Massa atômica	Abundância
²⁰ Ne	20 u	90,92%
²¹ Ne	21 u	0,26%
²² Ne	22 u	8,82%

$$Massa\ at\^{o}mica = \frac{[(20\ x\ 90, 92) + (21\ x\ 0, 26) + (22\ x\ 8, 82)]}{100} = 20,179\ u$$

Massa molecular

É a soma das massas atômicas dos átomos que constituem as moléculas.

Exemplos:

$$H_2O - H: 2 \times 1 = 2$$

 $O: 1 \times 16 = 16$
 18 u

$$C_5H_{10} - C: 5 \times 12 = 60$$

H: $10 \times 1 = 10$
70 u

Com base no que foi mostrado acima, qual é a massa molecular do ácido sulfúrico (H₂SO₄)?

H:
$$2 \times 1 = 2$$

S: $1 \times 32 = 32$
O: $4 \times 16 = 64$
98

Mol, n° do avogadro e massa molar

em gramas

Mol é a quantidade de substância que contém 6,02 x 10²³ partículas (átomos, moléculas ou íons).

Constante ou número do Avogadro

em gramas

Exemplo 1:

Com base nas informações mencionadas anteriormente, qual é o número de moléculas de amônia (NH₃) em 2,5 mols dessa substância?

1 mol de NH₃ _____possui_____ 6,02 x 10²³ moléculas

2,5 mol de NH₃ _____possui____ X

Qual é o número de moléculas existentes em um recipiente contendo 1,6 mols de água (H₂O)?

1.
$$X = 1.6 \cdot 6.02 \times 10^{23}$$

$$X = 1.6 \times 10^{0} \cdot 6.02 \times 10^{23}$$

 $X = 9.6 \times 10^{23} \text{ moléculas}$

Qual a massa de amônia (NH₃) presente em 1,6 mols dessa substância?

$$1.X = 1.6.17$$

$$X = 27,2 g de NH_3$$

N:
$$1 \times 14 = 14$$

H: $3 \times 1 = 3$

Qual o número de mols de Cu presente em uma barra contendo 10 g deste elemento?

Massa molar (
$$Cu$$
) = 63,5 g

$$1.10 = X.63,5$$

$$X = 10/63,5$$

$$X = 0.16$$
 mol de Cu

Com base nas informações mencionadas anteriormente, qual é o número de átomos de cálcio (Ca) em uma amostra contendo 10 g deste elemento?

Tabela periódica

1 mol de Ca ______ 6,02 x
$$10^{23}$$
 átomos ______ 40 g

X ______ 10 g

10 x 10^{0} . 6,02 x 10^{23} = 60,2 x 10^{0+23} = 60,2 x 10^{23}

$$x = \frac{\left(10 \times 6,02 \times 10^{23}\right)}{40} = 1,5 \times 10^{23} \text{ moléculas}$$
60,2 x $10^{23}/40 = 60,2 \times 10^{23}/40 \times 10^{0} = 1,5 \times 10^{23-0} = 1,5 \times 10^{23}$

Qual é o número de moléculas de água (H₂O) em um copo contendo 300 g de água?

Tabela periódica

1 mol de H₂O _____ 6,02 x 10²³ moléculas ____ 18 g X 300 g

Massa molecular

H:
$$2 \times 1 = 2$$

O: $1 \times 16 = 16$
 18 u

Massa molar = 18 g

$$300 \times 10^{0}$$
. $6{,}02 \times 10^{23} = 1806 \times 10^{0+23} = 1806 \times 10^{23}$

$$x = \frac{(300 \times 6,02 \times 10^{23})}{18} = 100 \times 10^{23} = 1,0 \times 10^{25} \text{ moléculas}$$

 $1806 \times 10^{23}/18 = 1806 \times 10^{23}/18 \times 10^{0} = 100 \times 10^{23-0} = 100 \times 10^{23}$

Qual a massa de cálcio (Ca) existente em um copo de leite contendo 1,2 x 10²³ átomos deste elemento?

Tabela periódica

1,2 x 10²³. 40 x 10⁰ = 48 x 10^{0 + 23} = 48 x 10²³
$$x = \frac{(1,2 \times 10^{23} \times 40)}{6.02 \times 10^{23}} = 8,0 \ g \ de \ Ca$$

$$48 \times 10^{23}/6,02 \times 10^{23} = 8,0 \times 10^{23-23} = 8,0 \times 10^{0} = 8,0 \text{ g}$$

