

Heurísticas: admisibilidad, consistencia, dominancia

Albert Sanchis
Alfons Juan

Departamento de Sistemas Informáticos y Computación

Objetivos formativos

- Describir el concepto de heurística.
- Obtener heurísticas admisibles (cotas inferiores) por relajación.
- Probar que consistencia es condición suficiente de admisibilidad.
- Comparar heurísticas por dominancia.

Índice

1	Concepto de heurística	3
2	Admisibilidad	4
3	Consistencia o monotonía	5
4	Admisibilidad y consistencia en heurísticas	6
5	Dominancia	7
6	Conclusiones	8

1 Concepto de heurística

Dado un problema de búsqueda representado con un grafo de estados G, una *heurística* es cualquier función h que estima, *eficientemente*, el coste mínimo h^* de llegar a una solución a partir de cualquier nodo:

Ejemplo: suma de distancias Manhattan en 8-puzle

2 Admisibilidad

h es *admisible* (*cota inferior*) si $h(n) \le h^*(n) \ \forall$ nodo n. Suele obtenerse por *relajación* de restricciones del problema; es decir, eliminando o suavizando restricciones, con el fin de construir un *problema relajado* más fácil por adición de soluciones imposibles a la búsqueda.

Ejemplo: suma de distancias Manhattan en 8-puzle

A se puede mover a B si: B es adyacente a A y B es espacio vacío

3 Consistencia o monotonía

h es *consistente* si, para todo n [1, pp82–83]:

$$h(n) \le k(n, n') + h(n')$$
 para todo n' (1)

donde k(n, n') es el coste mínimo de ir de n a n'.

Equivalentemente, h es *monótona* si, para todo n [1, pp82-83]:

 $h(n) \le w(n, n') + h(n')$ para todo n' adyacente a n.

Consistencia \Rightarrow Admisibilidad ($h(n) \le h^*(n)$ para todo n):

Para toda meta γ , tomando $n' = \gamma$ en (1):

$$h(n) \le k(n,\gamma) + h(\gamma) = k(n,\gamma)$$

La admisibilidad de h se deriva del hecho que, para alguna meta γ^* :

$$k(n, \gamma^*) = h^*(n)$$

4 Admisibilidad y consistencia en heurísticas

Una heurística h es *admisible* si, para todo n: $h(n) \le h^*(n)$

h es *monótona* o *consistente* si, para todo n [1, pp82–83]:

$$h(n) \le w(n, n') + h(n')$$
 para todo n' adyacente a n .

Toda heurística consistente es admisible, pero no al contrario:

Admisible y consistente

$$\begin{split} h(A) &\leq w(A,B) + h(B) \\ h(A) &\leq w(A,C) + h(C) \\ h(B) &\leq w(B,A) + h(A) \\ h(B) &\leq w(B,D) + h(D) \\ h(C) &\leq w(C,A) + h(A) \\ h(C) &\leq w(C,E) + h(E) \\ h(D) &\leq w(D,B) + h(B) \\ h(D) &\leq w(E,C) + h(C) \\ h(E) &\leq w(E,C) + h(C) \\ h(E) &\leq w(E,D) + h(D) \end{split}$$

Admisible y no consistente

$$h(B) \not\leq w(B,D) + h(D)$$

5 Dominancia

Decimos que h domina (está más informada que) \tilde{h} si, \forall n:

$$h(n) \ge \tilde{h}(n)$$

Ejemplo: Manhattan domina fichas descolocadas en 8-puzle

Una ficha se puede mover de una casilla A a otra B si:

	Fichas descolocadas	Manhattan
Restricción 1:	B es adyacente a A	B es adyacente a A
Restricción 2:	B es el espacio vacío	B es el espacio vacío

28 3	Fichas descolocadas: Manhattan:	1 + 1 + 1 = 3
765	Manhattan:	1 + 1 + 2 = 4

Hipótesis: Si h domina \tilde{h} , A* genera menos nodos con h? "Sí" [3].

6 Conclusiones

Hemos visto:

- ► El concepto de heurística.
- Heurísticas admisibles obtenidas por relajación.
- Que consistencia es condición suficiente de admisibilidad.
- Comparación de heurísticas por dominancia.

Referencias

- [1] J. Pearl. *Heuristics: Intelligent Search Strategies for Computer Problem Solving*. Addison-Wesley, 1984.
- [2] N. J. Nilsson. *Artificial Intelligence: A New Synthesis*. Elsevier, 1998.
- [3] R. C. Holte. Common Misconceptions Concerning Heuristic Search. In *Proc. of SOCS-10*, 2010.
- [4] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.
- [5] S. Edelkamp and S. Schrödl. Heuristic Search Theory and Applications. Academic Press, 2012.