PSAF- Feuille d'exercices 7

Exercice 1. (tribu des évènements antérieur à un temps d'arrêt)

Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités, (\mathcal{F}_n) une filtration. Soit T un (\mathcal{F}_n) -temps d'arrêt. Montrer que \mathcal{F}_T est une sous-tribu de \mathcal{F} .

Exercice 2.

Soit (S_n) la marche aléatoire symétrique sur \mathbb{Z} issue cette fois de 1 (c'est à dire que pour tout n, on a $S_n = 1 + X_1 + \ldots + X_n$ où les X_i 's sont i.i.d. le loi donnée par $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = 1/2$). On pose

$$T = \inf\{n > 1 : S_n = 0\}.$$

Montrer que $T < \infty$ p.s. En revanche T est-il borné ?

Exercice 3 (ruine du joueur via les théorèmes d'arrêt, source: examen de décembre 2015).

Un joueur joue à pile ou face avec une pièce équilibrée. Si il fait "pile" (resp. "face"), il gagne 1 euro (resp. perd 1 euro). Il s'arrête de jouer lorsque son gain vaut 0 ou $m \ge 1$. Sa fortune avant de commencer le jeu est $0 \le k \le m$. On se propose de calculer la loi du gain lorsque la partie est terminée.

- 1) Montrer qu'une martingale bornée est uniformément intégrable (U.I.).
- (On rappelle qu'une famille (X_n) de v.a. est dite U.I. si $\sup_n \mathbb{E}[|X_n|\mathbf{1}_{|X_n|>a}] \xrightarrow{a\uparrow\infty} 0$).
- 2) Montrer que le gain à l'instant $n \ge 0$ du joueur est donné par

$$S_n^I$$

où $(S_n)_{n\geq 0}$ est un processus à définir, et $T=T_0\wedge T_m$ avec $T_i=\inf\{n\geq 0: S_n=i\}$ pour i=0,m (en outre on rappelle qu'on note $S_n^T=S_{n\wedge T}$ pour tout $n\geq 0$). Que vaut le gain en fin de partie ?

- 3) Que pouvez-vous dire de (S_n) par rapport à la filtration (\mathcal{F}_n) définie par $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et $\mathcal{F}_n = \sigma(S_k, k \leq n)$ pour $n \geq 1$? Est-ce une chaîne de Markov ? Une martingale ?
 - 4) Que pouvez-vous dire de T?

Pour la suite on note Y le processus défini par $Y_n = S_n^T$ pour tout $n \ge 0$.

- 5) Montrer qu'il existe $Y_{\infty} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ tel que $Y_n = \mathbb{E}(Y_{\infty}|\mathcal{F}_n)$ pour tout $n \geq 0$, en invoquant précisément le résultat du cours utilisé.
- 6) Expliquer brièvement pour quoi $T < \infty$ p.s. (on pour ra se référer à un exercice fait en TD, sans refaire la démonstration qu'il contient...).
 - 7*) Calculer alors $\mathbb{E}(Y_0)$ de deux façons différentes pour montrer que

$$\mathbb{P}(S_T = m) = \frac{k}{m} \quad \text{et} \quad \mathbb{P}(S_T = 0) = 1 - \frac{k}{m}.$$

Exercice 4. (démonstration partielle du Théorème 4.4.3 du cours)

Soit (X_n) une (\mathcal{F}_n) -martingale définie sur $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1) Montrer que si (X_n) est uniformément intégrable elle converge p.s. vers $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Y a-t-il convergence L^1 ?
- **2)** Montrer que si (X_n) converge p.s. et dans L^1 vers $X_\infty \in L^1$ alors il existe $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ telle que $X_n = \mathbb{E}(X|\mathcal{F}_n)$ pour tout $n \in \mathbb{N}$ (et que $X = X_\infty$).

Exercice 5. (crochet des martingales discrètes)

1) Soit (X_n) une (\mathcal{F}_n) -martingale de carré intégrable (i.e. $\mathbb{E}|X_n|^2 < \infty$ pour tout $n \in \mathbb{N}$). Montrer qu'il existe un unique processus croissant, noté $(\langle X \rangle_n)$, qui est en outre (\mathcal{F}_n) -prévisible et vérifie $\langle X \rangle_0 = 0$, tel que $(X_n^2 - \langle X \rangle_n)$ est une (\mathcal{F}_n) -martingale.

Le processus $\langle X \rangle$ est appelé la "variation quadratique" ou le "crochet" de X.

2) Soit (ξ_i) suite i.i.d. le loi donnée par $\mathbb{P}(\xi_1=1)=\mathbb{P}(\xi_1=-1)=\frac{1}{2}$. On considère

$$S_n = \sum_{i=1}^n \xi_i, \quad S_0 = 0.$$

Vérifier rapidement que (S_n) est une martingale de carré intégrable (on précisera par rapport à quelle filtration). Montrer que

$$\langle S \rangle_n = n \quad \forall n \in \mathbb{N}.$$