# Predicting Cardiovascular Disease

Regressional Professionals

Hesham Almansuri - Craig Clemens - Christopher Law - Fadl Nabbouh

## The Problem and our Goal



Cardiovascular disease is one of the leading causes of death worldwide.

As with any disease, early detection is key to reducing the number of deaths. However, this remains challenging due to asymptomatic nature of most cardiovascular diseases

We are attempting to create a model that will accurately predict, to a high accuracy, the prevalence of cardiovascular disease in the general population

## **Our Primary Dataset**

#### **Elements:**

- Age
- Height
- Weight
- Gender
- Ap\_hi (Systolic Blood Pressure)
- Ap\_lo (Diastolic Blood Pressure)
- Cholesterol
- Smoking
- Alcoholism
- Active Lifestyle

#### **Conversions:**

- Age / 365 = Age in Years
- BMI (kg/m2) = weight(lbs)/height(in)2

#### Link:

https://www.kaggle.com/sulian ova/cardiovascular-disease-dat aset



# What is *not* a strong predictor?

Where is the noise in our dataset?





## Geography

Cardiovascular disease affects people regardless of where they live



### Gender

Although there
are more
males in our
dataset,
gender is not a
predictor of
cardiovascular
health



## **Smoking**

Even if it is a predictor of other issues such as cancer, surprisingly it is not a strong predictor



## Causes of Death by State



## Cases of Cardiovascular Disease by State



## Cases by Gender & by Smoking



## More "Lifestyle Data" Veracity

#### **Alcoholism**

Although damaging to the liver, not an accurate predictor

#### **Cholesterol & Glucose levels**

A objective number, but not a direct correlation

## **Active Lifestyle**

Even those who said they smoked and drank, still said they were "active"



## Cases by Gender and Cholesterol





## **Alcoholism and Active Lifestyle**







## What *is* a strong predictor?

What statistics should we focus on?

## **Strong Predictors of Cardiovascular Disease**

#### **AP\_HI (Systolic Blood Pressure)**

The force your heart exerts on the walls of your arteries each time it beats

#### AP\_LO (Diastolic Blood Pressure)—

The pressure on your arteries when the heart rests between beats



Body Mass Index which is a calculation of weight and height

#### Age

As a person ages they become more susceptible to cardiovascular disease

## Systolic Blood Pressure vs. Cardio Diagnosis



## Diastolic Blood Pressure vs. Cardio



## Age and BMI as Predictor



## **Our Machine Learning Model**



## **Neural Net Development**

#### Creation

Using our merged, cleaned data we created a fairly standard neural network

### **Epochs**

Although we could theoretically run the model forever, the accuracy peaked at ~77 epochs



#### **Layers and Activations**

After some experimentation we found the ideal activations and layer counts

#### All about the data

More than anything: having a strong dataset resulted in a satisfactory accuracy

## **Confusion Matrix**



## Neural Network vs. Logistic Regression

### **Neural Network**

Has a loss of 54% and an Accuracy of 74%

Overall, good results

## **Logistic Regression**

Had an accuracy as low as 65%

Unsatisfactory for the purposes of dianogsis

#### Results

Even with an incredibly robust dataset

Our Logistic Regression model lags behind our Neural Net model significantly



## 73.15%

Using our neural network model we can accurately predict if a patient is at risk of cardiovascular disease more than 7 out of 10 times.









#### **AWS**

Amazon offered us a one-stop shop for most of the backend services we needed to host our project

#### **Database Development**

Utilizing Postgres we created our database and connected our data to our model using Python









#### Quicksight

AWS also offered us a dashboard builder where we could host our data in a visually appealing way

#### **Our application**

Our client facing software was developed using Javascript, hosted on electric beanstalk, and connected to our database via our API

## Our application



http://cvd-env-v3.eba-ibeaiqtf.ca-c entral-1.elasticbeanstalk.com/





## Thanks

Hopefully people and healthcare professionals who have symptoms of early onset cardiovascular disease can use our tool and seek medical attention and treatment



CREDITS: This presentation template was created by Slidesgo, including icon by Flaticon, and infographics & images from Freepik

Please keep this slide for attribution