Experiências com provador de teoremas

José Marcos da Silva Leite

11 de julho de 2016

1 Lógica Proposicional

1.1 Sintaxe

Chamemos um conjunto enumerável $P = \{p, q, r, ..., p_1, q_1, ...\}$ de símbolos proposicionais.

Chamemos o conjunto $O = \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ de **operadores proposicionais**.

Chamemos o conjunto $S = \{(,)\}$ de sinais de pontuação.

Uma **fórmula proposicional** é qualquer sequência finita de $P \cup O \cup S$.

Definimos o conjunto de **Fórmulas Bem Formadas** FBF_{LP} recursivamente:

- 1. se $\varphi \in P$, então $\varphi \in FBF_{LP}$
- 2. se $\varphi \in FBF_{LP}$, então $\neg \varphi \in FBF_{LP}$
- 3. se $\varphi \in FPF_{LP}$ e $\psi \in FPF_{LP}$ e $* \in O \setminus \{\neg\}$, então $(\varphi * \psi) \in FBF_{LP}$,

1.2 Semântica

Definimos uma função $\mathbb{V}_0: P \to \{V, F\}$. Definimos uma função $\mathbb{V}: FBF_{LP} \to \{V, F\}$:

- 1. $\mathbb{V}(\varphi) = \mathbb{V}_0(\varphi)$, se $\varphi \in P$
- 2. $\mathbb{V}(\neg \varphi) = V$, somente se, $\mathbb{V}(\varphi) = F$
- 3. $\mathbb{V}(\varphi \wedge \psi)$, somente se, $\mathbb{V}(\varphi) = V$ e $\mathbb{V}(\psi) = V$
- 4. $\mathbb{V}(\varphi \vee \psi)$, somente se, $\mathbb{V}(\varphi) = V$ ou $\mathbb{V}(\psi) = V$
- 5. $\mathbb{V}(\varphi \to \psi) = V$, somente se, $\mathbb{V}(\varphi) = F$ ou $\mathbb{V}(\psi) = V$
- 6. $\mathbb{V}(\varphi \leftrightarrow \psi) = V$, somente se, $\mathbb{V}(\varphi) = \mathbb{V}(\psi)$

Se existe uma valoração $\mathbb{V}:FBF_{LP}\to\{V,F\}$ tal que $\mathbb{V}(\varphi)=V$, então φ é satisfatível. Se não existe, φ é insatisfatível.

1.3 Resolução

Um literal é um simbolo proposicional ou sua negação.

Uma cláusula é uma disjunção de literais.

Uma fórmula está na **Forma Normal Conjuntiva**(ou **FNC**) somente se esta for uma conjunção de cláusulas.

Uma **regra de inferência** é uma forma de obtenção de formulas a partir de um conjunto de fórmulas.

2 Automação de prova de teoremas

- 2.1 POVO QUE INVENTOU
- **2.2** KSP
- 3 Resultados
- 4 Conclusão