Dinamica relativistica

Quantità di moto newtoniana

$$\vec{p} = m\vec{v}$$

Principio di conservazione della quantità di moto

Se la forza esterna risultante è nulla, la quantità di moto (totale) di un sistema si conserva

Legge di Newton (2^a legge della dinamica)

(*)
$$\boxed{\frac{d\vec{p}}{dt} = \vec{F}}$$
 infatti: $\frac{d(m\vec{v})}{dt} = m\frac{d\vec{v}}{dt} = \boxed{m\vec{a} = \vec{F}}$

Si verifica sperimentalmente che $\frac{d(m\vec{v})}{dt} = \vec{F}$ non è più valido in relatività

Per "salvare" (*) è necessario cambiare la definizione di \vec{p}

Quantità di moto relativistica

2^a legge della dinamica relativistica

$$\boxed{\frac{d\vec{p}}{dt} = \vec{F}} \quad \Rightarrow \quad \frac{d(m\gamma\vec{v})}{dt} = \vec{F}$$

 $m={\rm massa}$ inerziale newtoniana, INVARIANTE RELATIVISTICO (uguale in ogni S.R.I.)

Attenzione! $\vec{F} = m\vec{a}$ non è generalizzabile a $\vec{F} = m\gamma\vec{a}$. Infatti:

$$\vec{F} = m\gamma \vec{a}$$
 vale se $\vec{F} \perp \vec{v}$ (mentre se $\vec{F} \parallel \vec{v}$, allora $\vec{F} = m\gamma^3 \vec{a}$)

Per formare dell'acqua, vengono usati $m_1 = 2.0$ kg di idrogeno e m_2 = 16,0 kg di ossigeno. Il processo di formazione libera circa 2.0×10^8 J di energia. Calcola la quantità di massa perduta nella produzione dell'acqua. $[2,2 \times 10^{-9} \text{ kg}]$ $\Delta m = \Delta E = > \Delta m = \frac{2,0 \times 10^8 \text{ J}}{(3,0 \times 10^8 \text{ m})^2} = 0,2222... \times 10^{-8}$ ~ 2,2 × 10 -9 kg Considera una particella di massa $m = 1.0 \times 10^{-26}$ kg, in quiete nel sistema di riferimento del laboratorio, che decade e si divide in due parti uguali, ognuna di massa 0,45m. ▶ Calcola l'energia emessa nel decadimento. $[9,0 \times 10^{-11}]$ $\Delta E = \Delta m \cdot c^2 = (m - 2 \cdot 0.45 \, m) \cdot c^2 = (1 - 0.30) \, m \cdot c^2 =$ = 0,10 m c² = 0,10 (1,0×10⁻²⁶ kg) (3,0×10⁸ m)² = = 9,0 × 10 -11 5