装

订

线

东北林业大学

2016-2017 字年第一字期阶段 1 考试试题
考试科目: 大学物理B 试卷总分: 100分
考试时间: <u>90</u> 分钟 所占比例: <u>20%</u>
得分
评卷教师
说明:本试卷题型为填空题(共25小题,每题4分,共计100分)。
1 、一质点在平面上运动,已知质点的运动方程为 $ec{r}=5t^2ec{i}+3t^2ec{j}$,则该质点的轨迹方
程为。 2 、花样滑冰运动员绕过自身的竖直轴转动。开始时两臂伸开,转动惯量为 J_0 ,角速度为
ω_0 , 然后她将两臂收回, 使转动惯量减少 $\frac{1}{4}$ J_0 , 这时她转动的角速度变
为。
3、已知质点的运动方程为 $\vec{r}=(R\cos\omega t)\vec{i}+(R\sin\omega t)\vec{j}$ (SI),则该质点在 x 轴方向所做的
运动为。
4、已知质点沿 Ox 轴作直线运动,其瞬时加速度的变化规律为 $a_x = t$ (SI)。在 t=0 时,
$v_{x}=0, x=8$ (SI)。则该质点的运动方程为。
5、两个同方向、同频率的简谐振动的合振动仍为同方向、同频率的简谐振动,合振动
的振幅除了与两个振动的振幅有关外,还与此两振动的
6 、质点做半径为 6 m 的圆周运动,其角位置满足关系式 $\theta=6+5t^2$ (SI)。
当 $t =s$ 时,质点的切向加速度大小为法向加速度一半。
7、质点做半径为 5m 的圆周运动,其在自然坐标系中的运动方程为 $s=2t+t^2/2$ (SI)。
某时刻质点的切向加速度与法向加速度大小相等,则此时的合加速度大小

为_____(SI)。

8、某质点的运动方程为 $\vec{r}=-10\vec{i}+15t\vec{j}+5t^2\vec{k}$ (SI),则 t=1s 时质点的速度大小

教研室(学科)主任:

9、两个质量分布均匀的圆盘 A 和 B 总质量和厚度均相同,若两圆盘对通过盘心且垂直
于盘面的轴的转动惯量分别为 JA和 JB, 且 JA > JB ,则
10 、一力 $\vec{F} = -3\vec{i} + 5\vec{j}$ N,其作用点的矢径为 $\vec{r} = 6\vec{i} + 3\vec{j}$ m,则该力对坐标原点的力
矩大小为(SI)。
11、如图所示,质量均为 m 的物体 A 和 B 叠放在水平
面上,由跨过定滑轮的不可伸长的轻质细绳相互连接。
设定滑轮的质量为 M ,半径为 R ,且 A 与 B 之间、 A 与桌面之间、滑轮与轴之间均无摩
擦,绳与滑轮之间无相对滑动。物体 A 在力 F 的作用下运动后,若求滑轮的角加速度 α ,
请写出滑轮满足的动力学方程,设物体 A 和 B
与滑轮之间的绳中的张力分别为 $T_{_1}$ 和 $T_{_2}$,且设垂直纸面向外为正方向。
12、如图所示,物体 A 和 B 分别悬挂在定滑轮的两边,该定滑轮由两个
同轴的,且半径分别为 r_1 和 r_2 $(r_1 > r_2)$ 的圆盘组成。已知两物体的质量
分别为 m_1 和 m_2 ,定滑轮的转动惯量为 J ,轮与轴承间的摩擦、轮与绳子
间的摩擦均忽略不计。则两物体 m_1 和 m_2 的加速度的比为。 m_2
13 、一人手拿两个哑铃,两臂平伸并绕右足尖旋转,转动惯量为 J ,角速度为 ω 。若此
人突然将两臂收回,转动惯量变为 $J/2$ 。如忽略摩擦力,则此人收臂后的动能与收臂前的
动能之比为。
14 、一转动惯量为 J 的圆盘绕一固定轴转动,起初角速度为 ω_0 ,设它所受阻力矩与转动
角速度之间的关系为 $M = -k\omega$ (k 为正的常数)。 则在它的角速度从 ω_0 变为 $\frac{1}{2}\omega_0$ 过程中
阻力矩所做的功为

线

东北林业大学 2016-2017 学年第一学期阶段 1 考试试题

15、一根质量为 m、长为 L 的均匀细棒,可绕通过其一段的光滑轴 O 在竖直平面内转动。 设 t=0 时刻,细棒从水平位置开始自由下摆,设在转动过程中某时刻棒与水平方向成 θ 角,则此时的棒的角加速度为_____。

一质量为 m 的小钢珠以水平速度 v 打在杆的中部并留在其中。

则杆刚开始摆动时的角速度为_____

17、一个质点作简谐振动,振幅为 A,周期为 T,在起始时刻质点的位移为-A/2,且向 x 轴的正方向运动,则该质点的初相为

19、一简谐振动的曲线如图所示,则该振动的圆频率为____。

20、一质点作简谐振动,振动方程为 $x=6\cos(100\pi+0.7\pi)$ cm ,在 t (单位:s) 时刻它在 $x=3\sqrt{2}$ cm 处,且向 x 轴负方向

则物体振动的周期为

运动。则它重新回到该位置所需要的最短时间为_____。

21、一质量为 0.60 kg 的质点作简谐振动,其振动方程为 $x = 0.6\cos(5t - \frac{1}{2}\pi)$ (SI)

则质点的初速度为_____(SI)。

23、一质点沿 x 轴作简谐振动,其角频率 $\omega = 10 \text{ rad/s}$ 。其初始位移 $x_0 = 7.5 \text{ cm}$,初始速度 $v_0 = -75.0 \text{ cm/s}$ 。则该质点振动的初相位为

25、如图,物体 C、D 的质量分别为 m_1 和 m_2 ,定滑轮 A、B 的质量分别为 m_1 和 m_2 ,半径分别为 R_A 和 R_B 均为已知,且 m_1 〉 m_2 。设绳子不可伸长且质量不计。如果绳子与滑轮间不打滑,滑轮可视为圆盘,则两个滑轮 A 和 B 转动的角加速度之比为_______。

