More properties of sup/inf, bounded functions, triangle inequality

Cliff Sun

April 15, 2024

Suppose that $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$, recall:

- $1. \, \sup(x+A) = x + \sup(A)$
- $2. \inf(x+A) = x + \inf(A)$
- 3. $\sup(xA) = x \sup(A)$ if x > 0
- 4. $\inf(xA) = x \inf(A)$ if x > 0
- 5. $\sup(xA) = x \inf(A)$ if x < 0
- 6. $\inf(xA) = x \sup(A)$ if x < 0

We first prove (1):

Proof. For any $b \in \mathbb{R}$, b is an upper-bound of A

$$b \ge a \quad \forall a \in A \tag{1}$$

$$b + x \ge a + x \quad \forall a \in A \tag{2}$$

$$b + x$$
 is an upperbound of A (3)

Choosing $b = \sup(A)$, this says that b + x is an upperbound of x + A. Let c be an upperbound of A + x, we claim that b + x is the least upperbound of c. Since c is an upperbound of x + A, we have that

$$c - x \ge a \quad \forall a \in A \tag{4}$$

Since b is the least upperbound of A, it follows that

$$c - x \ge b \tag{5}$$

This implies that

$$c \ge b + x \tag{6}$$

Thus, the least upperbound of A is $\sup(A) + x$.

Conjecture 0.1. Suppose that A, B are non-empty subsets of \mathbb{R} , such that $\forall a \in A$ and $\forall b \in B$, we have that

$$a \le b \tag{7}$$

We claim that

- 1. A is bounded above
- 2. B is bounded below
- $3. \sup(A) \leq \inf(B)$

Proof. To prove (1), we choose any element in B.

Proof. Similarly, to prove (2), we choose any element in A.

These proofs imply that A and B have a supremum and an infimum, respectively.

Proof. To prove (3), we proceed with contradiction. Suppose that $\inf(B) < \sup(A)$, then we get a contradiction because we have that a value in B is less than a value in A. Thus it follows that $\sup(A) \leq \inf(B)$.

Theorem 0.2. If $S \subseteq \mathbb{R}$ is an non-empty set which is bounded above, then for all $\epsilon > 0$, there exists an element $x \in S$ such that

$$\sup(S) - \epsilon < x \le \sup(S) \tag{8}$$

Definition 0.3. For $x \in \mathbb{R}$, we define |x| to be the usual definition.

Conjecture 0.4. Triangle Inequality: For all real numbers x, y we have the following:

$$|x+y| \le |x| + |y| \tag{9}$$

Proof. Let x, y be arbitrary real numbers, we have that

$$-|x| \le x \le |x| \tag{10}$$

$$-|y| \le y \le |y| \tag{11}$$

Adding these yields

$$-|x| - |y| \le x + y \le |x| + |y| \tag{12}$$

But this is equivalent to saying

$$|x+y| \le |x| + |y| \tag{13}$$

This concludes the proof.

Corollary 0.5. The following are true for all $x, y, x_1, \ldots, x_n \in \mathbb{R}$,

- 1. $|x y| \le |x| + |y|$
- 2. $|(|x| |y|)| \le |x y|$
- 3. $|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|$

Definition 0.6. Let $f: D \to \mathbb{R}$ be a function where D is any set. We define 3 things

- 1. f is a <u>bounded</u> function is $\exists M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in D$.
- 2. $\sup(f)$ is the supremum of the image of f
- 3. $\inf(f)$ is the infimum of the image of f