Suricata Extreme Performance Tuning

With Incredible Courage

By

- Michal Purzynski (@MichalPurzynski)
 - Threat Management, Mozilla
- Peter Manev (@pevma)
 - Suricata Core Team
 - Lead QA and training instructor
 - Stamus Networks
 - Mobster evangelist

For...

The brother and sister mobsters

Life of a packet...

...is full of dark alleys where it can get lost...

All your packets belong to Suricata..... if they make it

The Grand Plan

Use a local CPU cache L3 as a data bus :-)

CPU socket NIC location and NUMA relation

CPU socket NIC location and NUMA relation (HT)

Suricata with AF_Packet on NUMA

CPU socket NIC location and NUMA relation (HT)

Suricata with AF_Packet on NUMA

Server

- One card per NUMA slot.
 - Or latency will kill you (™)
- Haswell, for best results
 - Independent P-states and other goodness
- C-states enabled. Turbo mode rocks IDS.
 - Linux will overwrite anyway
- L2 prefetchers disabled
 - Your card will send packets to L3 for you (DCA)
 - L2 prefetching impacts L3 and trashes it
- Snoop early, snoop frequently and never at home

NIC Keep # of RSS queues == 1

Order in stream engine

NIC indicators

- rx_missed_errors
 - packets overwritten in card's FIFO
- rx_no_dma_resources / rx_no_buffer_count
 - means we are dropping packets because we don't have any free descriptors and cannot alloc new.
 - when using RSS=1 "rx_no_dma_resources" does not increase counter

Use ethtool -S <interface> to discover magic
Use ethtool -g <interface> make ring smaller (yes)

The Cache consideration

- CPU load cache misses and latency
 - Execution WAITS till the data is fetched from RAM or other cache
 - MESIF (cache and memory coherence protocol) plays for Suri
- Happens when
 - Other software trashes caches (Redis/ES/DB...)
 - Threads are "jumping" between CPU sockets
 - NIC's ring descriptors are too big
 - HW prefetchers are enabled "wild wild west style"

The NUMA consideration

- MESIF plays for Intel
- Remote data access has a huge delay
- Remote node cache L3 access latency +- cache L3 miss latency
- Latency, not a cache misses are a problem for NUMA

Local L3 -+ 20ns - Remote L3 - >80ns Local RAM - 96ns, remote 140ns

Cache thrashing effect in (bad)action

"A cache miss is a failed attempt to read or write a piece of data in the cache, which results in a main memory access with much longer latency."

Cache thrashing effect in (bad)action

CPU can not access RAM directly

If system is under pressure and packets are not in CPU L3 local cache = load misses

Which usually results in... (watch out for)

- capture.kernel_drops
- tcp.reassembly_gap
- Flow timeouts reached
- A small number of CPUs being pegged to 100%
- Drops in place no one looks for except us :-)
 - >and you now :)

So we looked at our set up (20Gbps)

- Suricata 3.2dev (using AF-PACKETv2/3)
- Kernel 4.4.0-38-generic #57~14.04.1-Ubuntu
- 21332 rules from ET Pro
- 128GB RAM, 8 DIMMS, 4 per socket.
- 2x Intel(R) Xeon(R) CPU E5-2697 v3 @
 2.60GHz 28 cores total, HT enabled and used for 56 hardware threads.
- 2x dual port X520 AKA 82599 And X710 one port on each card used. Cards installed into separate NUMA nodes.

Dug in research...

- Kernel code, ixgbe, i40e (and long nights)
- Suricata CPU affinity
- Intel e1000-devel mailing lists
- af-packet v2 and af-packet v3 for Suricata
- X520 and x710 NIC testing
- Suricata's new bypass feature
- 1 RSS queues considerations

After some time digging in...

We introduced the CPU affinity move....

- Step one isolate cores and pin IRQs
- Step two configure Suricata cpu affinity
- Step three local bypass

Step one - isolate cores

- Cores are for you, not for a scheduler
- Steal them, leave one per node for housekeeping
- Single work type per dedicated core = no ticking
- Less userspace->kernel transitions, less TLB and cache trashing

```
nsm16 → ~ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-4.4.0-45-generic.efi.signed root=UUID=dedcba7d-1909-4797-bd57-663a423a6a2f ro
processor.max_cstate=3 intel_idle.max_cstate=3 selinux=0 apparmor=0 mce=ignore_ce nohz_full=1-13,1
5-55 isolcpus=1-13,15-55 rcu_nocbs=1-13,15-55
```


Step one - set all IRQs away from Suricata thread workers

- Have an IRQ--->core per node
- If not enough, use RPS but never split processing

```
Last login: Fri Oct 28 12:56:49 on ttys009
Identity added: /Users/mpurzynski/.ssh/id_rsa_moco (/Users/mpurzynski/.ssh/id_rsa_moco)
Michals-Mac-mini → ~ ssh nsm16.private.scl3.mozilla.com
Last login: Fri Oct 28 10:56:54 2016 from 10-22-248-146.vpn.scl3.mozilla.com
nsm16 \rightarrow \sim/i40e-1.5.23/scripts sudo -s
                               ./set_ira_affinity 1 p1p1
nsm16 → ~/i40e-1.5.23/scripts
IFACE CORE MASK -> FILE
p1p1 1 2 -> /proc/irq/132/smp_affinity
nsm16 → ~/i40e-1.5.23/scripts ./set_irg_affinity 15 p3p1
IFACE CORE MASK -> FILE
p3p1 15 8000 -> /proc/irq/284/smp_affinity
nsm16 → ~/i40e-1.5.23/scripts cat /proc/interrupts | egrep 'p1p1|p3p1'
132:
          122248
                  348871981
                             PCI-MSI 4194305-edge
                                                        i40e-p1p1-TxRx-0
 284:
           16143
                             PCI-MSI 68157441-edae
                                                        i40e-p3p1-TxRx-0
nsm16 -> ~/i40e-1.5.23/scripts
```

Step two – Suricata cpu affinity

```
set-cpu-affinity: yes
# Tune cpu affinity of suricata threads. Each family of threads can be bound
#_on specific CPUs.
cpu-affinity:
  - management-cpu-set:
      cpu: [ 0,28,14,42 ] # include only these cpus in affinity settings
      mode: "balanced"
      prio:
        default: "low"
  - detect-cpu-set:
      # NUMA and Hyper-threading example on kenel 4.x
      # NUMA order -> 0/1/0/1
      # (2x14 cpus -56 total with HT)
      # 2 x NICs. 1 - plpl and 1 - p3pl
      # plpl -> 3-13 on NUMA-0 / p3pl ->17-27 on NUMA-1 /
      # plpl -> 31-41 on NUMA-0 / p3pl -> 45-55 on NUMA-1
      cpu: ["3-13","17-27","31-41","45-55"]
      mode: "exclusive" # run detect threads in these cpus
      # Use explicitely 3 threads and don't compute number by using
      # detect-thread-ratio variable:
      # threads: 3
      prio:
        default: "high"
```


Step two – Suricata cpu affinity

```
<u>interface: p1p1</u> p1p1 -> core 0-13 on NUMA - 0 <u>interface: p1p1</u>
                                                           threads: 11
 threads: 11
                  p3p1 -> core 14-27 on NUMA - 1
                                                           cluster-id: 99
 cluster-id: 99
                  p1p1 -> core 28-41 on NUMA - 0
                                                           use-mmap: yes
 use-mmap: yes
                                                           tpacket-v3: yes
                  p3p1 -> core 42-55 on NUMA - 1
 tpacket-v3: yes
                                                           ring-size: 400000
 ring-size: 400000
                                                           block-size: 393216
 block-size: 393216
                                                           #buffer-size: 1048576
 #buffer-size: 1048576
                                                           ##buffer-size: 262144
 ##buffer-size: 262144
                                                           cluster-type: cluster_flow
 cluster-type: cluster_flow
                                                         - interface: p3p1
- interface: p3p1
                                                           threads: 11
 threads: 11
                                                           cluster-id: 98
 cluster-id: 98
                                                           use-mmap: yes
 use-mmap: yes
                                                           tpacket-v3: yes
 tpacket-v3: yes
                                                           ring-size: 400000
 ring-size: 400000
                                                           block-size: 393216
 block-size: 393216
                                                           #buffer-size: 1048576
 #buffer-size: 1048576
                                                           ##buffer-size: 262144
 ##buffer-size: 262144
```


Step three — local bypass

- Local bypass
 - If the corresponding flow is local bypassed then it simply skips all streaming, detection and output and the packet goes directly out in IDS mode and to verdict in IPS mode.
 - In suricata.yaml
 - Set by "stream.bypass: yes"
 - Adjusted by "stream.reassembly.depth"

Performance Before

Performance after

```
. . .
  1 [||
                                 15
                                                                  29
                                                                                                 43
                                 16
  2
                                                                  30
                                                                                                 44
                                                                                                 45 F
                                                                  31
                                                                  32
                                                                                                 46
                                 18
                                 19 [||||
                                                                  33
                                                                  34
                                                                                                 48
                                 20
                                 21 [|||||
                                                                                                 49
                                 22 [
                                                                                                 50
                                                                                                 51
                                 23 [1111
                                                                                                 52
                                 24 [||||
                                                                                                 53
  11 [|||
                                 25 [||||||
                                                                                                 54
                                                                  40
                                 26
                                                                                                 55
                                 27
  13
                                                                  41
                                 28 [11]
                                                                                                 56
  14
                                                                  42
  Mem | | | | | | | | | | | | | | | | |
                                                                  Tasks: 44. 52 thr: 8 running
  Swp
                                                                  Load average:
                                                                                     2.19 2.03
                                                                  Uptime: 1 day, 14:05:00
  PID USER
                PRI
                     NI
                         VIRT
                                            CPU% MEM%
                                                        TTME+
                                                               Command
21574 root
                                                 23.2 54h34:01 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondia
21659
                                                       2h26:33 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21643
                 23
                                                       2h24:35 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21646
                 23
                                                       3h19:11 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21645
                 23
                                                       2h22:11 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21658
                 23
                                                       2h18:05 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21649
                 23
                                                       2h23:10 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21654
                 23
                                                       2h16:50 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21662
                 23
                                                       2h24:21 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21657
                 23
                                                       2h18:27 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21652
                 23
                                                       2h25:52 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21641
                 23
                                                       2h23:41 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21655
                 23
                                                       2h23:14 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21651
                                       3G S 17.0 23.2
                                                      2h22:44 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
21642
                                       .36 R 17.0 23.2 2h20:15 /opt/suricata/bin/suricata -c /etc/nsm/suricata-noHT-clusterondie
                                       F6SortByF7Nice -F8Nice +F9Kill F10Quit
       F2Setup F3SearchF4FilterF5Tree
```


Cache misses Before and After

perf stat -e LLC-loads, LLC-load-misses, LLC-stores, LLC-prefetches -C 1

Performance counter stats for 'CPU(s) 0':

```
1939117135 LLC-loads (66.67%)
289305806 LLC-load-misses # 14.92% of all LL-cache hits (66.67%)
356341541 LLC-stores (66.67%)
<not supported> LLC-prefetches
```

114.342786481 seconds time elapsed

Core handling kernel. Ring descriptor size 512 buffers. Each buffer is 2048 bytes in size. perf stat -e LLC-loads, LLC-load-misses, LLC-stores, LLC-prefetches -C 1 sleep 60

Performance counter stats for 'CPU(s) 1':

```
659135009 LLC-loads (66.67%)

1372230 LLC-load-misses # 0.21% of all LL-cache hits (66.67%)

124004599 LLC-stores (66.67%)

<not supported> LLC-prefetches
```

60.001419120 seconds time elapsed

Suricata packet drops after 0.00137%

capture.kernel_packets	Total	18887981562
capture.kernel_drops	Total	260649
decoder.pkts	Total	18888406881

On 20Gbps

Mobster myths

"AFP is slow, you must use <a new kernel bypass>" - is it? :-)

"Linux cannot deal with interrupts (use BSD)" - we have NAPI from > 16 years

"Use RSS/RPS to load balance" - and get packets reordering and missing events

"Disable HT it hurts performance" - actually, the opposite

"Make <buffer> huge" - and it won't fit into L3

Lessons Learned

- Make no assumptions verify everything
- Understand the packet travel critical path
- Understand what your counters _really_ mean
- NUMA is awesome know how to use it
- We run out of traffic....
- Everything can be undone with a bunch of badly written rules

Things to watch out for

- rx_missed_errors (NIC/ethtool)
- rx_dma_failed /rx_no_buffer_count (NIC/ethtool)
- Switchport
- Cache misses
- Correct traffic mirroring (esp vlan tags)
- > Suricata
- Memcaps
- Reassembly gaps
- Flow emergency
- Decoder invalid
- Make sure MTU is same across

Detailed info to come up

- Research paper
 - Containing all the details of this research
 - Commands and scripts
 - Trouble shooting advice and guidance
 - Perf Indicators
- Potential inclusion in Suricata's docs/repo (PR)
- Some other interesting experiments....

Thanks to

- Mozilla (time, traffic, hardware)
- Intel Alexander Duyck
- Eric Leblond (@Regit Suri cpu affinity)
- Daniel Borkmann (netsniff-ng, AFP)
- And Dave Miller for AFP :-)
- SuriCon 2016 !!

