Discourse Structure in Dialogue

Lecture 4: Underspecification

Julian J. Schlöder

Review of the Semantics

- The Big Picture:
- SDRT logical form is built on two (very similar) languages:
 microstructure and macrostructure.
- Microstructure describes the logical form of clauses.
- Macrostructure describes how clauses form complex narratives.
- An SDRS assigns labels to both microstructure and macrostructure formulae.

Microstructure Vocabulary

Variables $(x, y, ..., e_1, e_2, ...)$; Name symbols (John, Max, ...); Predicate symbols (eat, overlap, ...); logical connectives $(=, >, \Rightarrow, \neg, \lozenge)$.

Microstructure Formulas (DRSs)

A DRS is a tuple $\langle U, Cond \rangle$ where U is a set of variables, and Cond is a set of conditions.

- For a name N and a variable x, N(x) is a condition.
- For a predicate P and variables $x_1, ..., x_n, P(x_1, ..., x_n)$ is a condition.
- For variables x and y, x = y is a condition.
- If C_1 and C_2 are DRSs, $C_1 > C_2$, $C_1 \Rightarrow C_2$, $\neg C_1$ and $\Diamond C_1$ are conditions.

(add more as needed!)

Macrostructure Vocabulary

DRSs; discourse relation symbols (Elaboration, Narration, ...); label variables $(\pi, \lambda, ...)$; logical connectives $(\neg, >, \Rightarrow, \land, \lozenge)$.

Macrostructure Formulas

- Any DRS K is a macrostructure formula.
 (DRSs are like the atoms of the macrostructure)
- For a discourse relation R and label variables α , β , $R(\alpha, \beta)$ is a macrostructure formula.
- If *P* and *Q* are macrostructure formulae, then so are *P* ∧ *Q*, $\neg P$, $\Diamond P$, P > Q, $P \Rightarrow Q$.

Segmented Discourse Representation Structure

An SDRS is a triple (Π, \mathcal{F}, L) where Π is a set of label variables, $L \in \Pi$ and \mathcal{F} is a function from Π to the macrostructure formulae such that for any $\pi \in \Pi$, either:

- $\mathcal{F}(\pi) = K$ for some DRS K (microstructure).
- $\mathcal{F}(\pi)$ is a conjunction of formulas of the form $R(\alpha, \beta)$ (where $\alpha, \beta \in \Pi$).

An SDRS is well-formed, if:

- It has an outscoping-maximal label.
- Outscoping has no circles

Microstructure Evaluation (revised and improved)

Microstructure Semantics

Let M = (W, *, I) be a qf commonsense entailment model. Define by simultaneous recursion for any $w \in W$:

- 1. $f[(U, Cons)]_{M,w}g$ iff $f[(U, Cons)]_{M,w}g$ and $M, w, g \models_{micro} C$ for all $C \in Cons$.
- 2. $M, w, f \models_{micro} R(x_1, \dots, x_n)$ iff $M, w, f \models R(f(x_1), \dots, f(x_n))$.
- 3. $M, w, f \models_{micro} \neg K$ iff there is no g with $f[[K]]_{M,w}g$.
- 4. $M, w, f \models_{micro} \lozenge K$ iff there is a $v \in W$ and a g with $f[\![K]\!]_{M,v}g$
- 5. $M, w, f \models_{micro} K_1 \Rightarrow K_2$ iff for every g with $f[K_1]_{M,w}g$ there is a h with $g[K_2]_{M,w}h$.

Microstructure Evaluation (revised and improved)

Microstructure Semantics

Let M = (W, *, I) be a qf commonsense entailment model. Define by simultaneous recursion for any $w \in W$:

- 1. $f[(U, Cons)]_{M,w}g$ iff $f[(U, Cons)]_{M,w}g$ and $M, w, g \models_{micro} C$ for all $C \in Cons$.
- 2. $M, w, f \models_{micro} R(x_1, \dots, x_n)$ iff $M, w, f \models R(f(x_1), \dots, f(x_n))$.
- 3. $M, w, f \models_{micro} \neg K$ iff there is no g with $f[K]_{M,w}g$.
- 4. $M, w, f \models_{micro} \lozenge K$ iff there is a $v \in W$ and a g with $f[K]_{M,v}g$
- 5. $M, w, f \models_{micro} K_1 \Rightarrow K_2$ iff for every g with $f[K_1]_{M,w}g$ there is a h with $g[K_2]_{M,w}h$.
- 6. For M, g let $N^{M,g}(K)$ be the set of all worlds v such that there is a h with $g[K]_{M,v}h$. Then: $M, w, f \models_{micro} K_1 > K_2$ iff: for any $v \in *(w, N^{M,f}(K_1))$ and g such that $f[K]_{M,v}g$, there is a h such that $g[K_2]_{M,v}h$

Truth and Update

- Let P be a macrostructure formula, w be world worlds, f,g be variable assignments, M be a model, and $S = (\Pi, \mathcal{F}, L)$ be an SDRS such that all labels that appear in P are members of Π .
- We wish to define what it means that $f[P]_{M,w}^Sg$.
- So, say, you start with a set of possible worlds W and an assignment f,
 - \rightarrow Typically ("null context"): W is all possible worlds, and f is empty
- and you want to *narrow* this set down to the worlds that support the information in an SDRS $S = (\Pi, \mathcal{F}, L)$
- Then you compute which world-assignment pairs are not ruled out by the content of *S*'s root label π_0 :

$$\{(w,g) \mid f[[\mathcal{F}(\pi_0)]]_{M,w}^{S}g)\}$$

Macrostructure Evaluation (revised and improved)

I'm giving you a different (but equivalent) way of going about this (this version is better suited to study examples):

- We recursively translate a macrostructure formula P into a microstructure K such that update with K represents the information in P (not as hard as it sounds!).
- A bit of notation:
- For two DRSs $K_1 = \langle U_1, C_1 \rangle$, $K_2 = \langle U_2, C_2 \rangle$, define $K_1 + K_2 = \langle U_1 \cup U_2, C_1 \cup C_2 \rangle$.

Macrostructure-to-Microstructure

Given an SDRS $S = (\Pi, \mathcal{F}, L)$, translate a macro formula P to a DRS $\llbracket P \rrbracket^S$ (say, P interpreted in the narrative structure S).

- 1. If P = K for a DRS K, then $\llbracket P \rrbracket^S = K$.
- 2a. If $P = Q_1 \wedge Q_2$, then $[\![P]\!]^S = [\![Q_1]\!]^S + [\![Q_2]\!]^S$.
- 2b. If $P = \neg Q$, then $\llbracket P \rrbracket^S = \boxed{\neg \llbracket Q \rrbracket^S}$

relation R (a meaning postulate).

- 2d. If $P = Q_1 > Q_2$, then $[\![P]\!]^S = \boxed{ [\![Q_1]\!]^S > [\![Q_2]\!]^S }$.
- 2e. If $P = Q_1 \Rightarrow Q_2$, then $\llbracket P \rrbracket^S = \boxed{ \boxed{ \llbracket Q_1 \rrbracket^S \Rightarrow \llbracket Q_2 \rrbracket^S }}$.
 - 3. If $P = R(\alpha, \beta)$ for a veridical discourse relation R, then $[\![P]\!]^S = [\![\mathcal{F}(\alpha) \land \mathcal{F}(\beta) \land \mathit{Info}_R(\mathcal{F}(\alpha), \mathcal{F}(\beta))]\!]^S$ where Info_R is the specific semantic contribution provided by the

 Narration is veridical and adds the information that events are reported in order:

$$\mathit{Info}_{\mathsf{Narration}}(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta)) = egin{array}{c} e_\pi \\ & \mathsf{part-of}(e_\alpha, e_\pi) \\ & \mathsf{part-of}(e_\beta, e_\pi) \\ & \mathsf{end}(e_\alpha) \approx \mathsf{start}(e_\beta) \end{array}$$

 Elaboration is veridical and adds that the second content defeasibly entails the first, but not vice versa, and that the evens overlap:

$$\mathit{Info}_{\mathsf{Elab}}(\mathcal{F}(\alpha),\mathcal{F}(\beta)) = \mathcal{F}(\beta) > \mathcal{F}(\alpha) \land \neg (\mathcal{F}(\alpha) > \mathcal{F}(\beta)) \land \boxed{\boxed{\phantom{\mathcal{F}(\alpha) > \mathcal{F}(\beta) > \mathcal{F}(\beta) > \mathcal{F}(\alpha) < \sigma(\mathsf{e}_{\beta},\mathsf{e}_{\alpha})}}}$$

Linguistic Forms

are interpreted to

SDRSs

describe narrative structure

are converted to

DRSs

describe event structure

are evaluated in

Models

 π_2 : He had soup.

$$\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3.$$

$$\mathcal{F}(\pi_0) = Elaboration(\pi_1, \lambda) \quad \mathcal{F}(\lambda) = Narration(\pi_2, \pi_3)$$

$$\mathcal{F}(\pi_{0}) = Elaboration(\pi_{1}, \lambda) \qquad \mathcal{F}(\lambda) = Natration(\pi_{2}, \pi_{3})$$

$$j, l, e_{\pi_{1}}$$

$$John(j)$$

$$lunch(l)$$

$$great(l)$$

$$had(e_{\pi_{1}}, j, l)$$

$$had(e_{\pi_{1}}, j, l)$$

$$j, l, e_{\pi_{1}}$$

$$s, e_{\pi_{2}}$$

$$soup(s)$$

$$had(e_{\pi_{2}}, j, s)$$

$$had(e_{\pi_{2}}, j, s)$$

 π_2 : He had soup.

$$\begin{split} \Pi &= \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3. \\ \mathcal{F}(\pi_0) &= \textit{Elaboration}(\pi_1, \lambda) \quad \mathcal{F}(\lambda) = \textit{Narration}(\pi_2, \pi_3) \\ \hline \mathcal{F}(\pi_1) &= K_1 = \underbrace{\begin{bmatrix} j, l, e_{\pi_1} \\ \text{John}(l) \\ \text{lunch}(l) \\ \text{great}(l) \\ \text{had}(e_{\pi_1}, j, l) \end{bmatrix}}, \mathcal{F}(\pi_2) = K_2 = \underbrace{\begin{bmatrix} s, e_{\pi_2} \\ \text{soup}(s) \\ \text{had}(e_{\pi_2}, j, s) \end{bmatrix}}, \mathcal{F}(\pi_3) = K_3 = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{\text{had}(e_{\pi_3}, j, p)} \end{split}$$

$$[\![\mathcal{F}(\pi_0)]\!]^S = [\![\mathit{Elaboration}(\pi_1, \lambda)]\!]^S$$

 π_2 : He had soup.

$$\begin{split} \Pi &= \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3. \\ \mathcal{F}(\pi_0) &= \textit{Elaboration}(\pi_1, \lambda) \quad \mathcal{F}(\lambda) = \textit{Narration}(\pi_2, \pi_3) \\ \hline \mathcal{F}(\pi_1) &= K_1 = \underbrace{\begin{bmatrix} j, l, e_{\pi_1} \\ \text{John}(l) \\ \text{lunch}(l) \\ \text{great}(l) \\ \text{had}(e_{\pi_1}, j, l) \end{bmatrix}}_{lohn}, \mathcal{F}(\pi_2) = K_2 = \underbrace{\begin{bmatrix} s, e_{\pi_2} \\ \text{soup}(s) \\ \text{had}(e_{\pi_2}, j, s) \end{bmatrix}}_{lohn}, \mathcal{F}(\pi_3) = K_3 = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohn} \end{split}$$

$$\begin{split} & [\![\mathcal{F}(\pi_0)]\!]^S = [\![\textit{Elaboration}(\pi_1, \lambda)]\!]^S \\ & = [\![\mathcal{F}(\pi_1) \land \mathcal{F}(\lambda) \land \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \end{split}$$

 π_2 : He had soup.

$$\begin{split} \Pi &= \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3. \\ \mathcal{F}(\pi_0) &= \textit{Elaboration}(\pi_1, \lambda) \quad \mathcal{F}(\lambda) = \textit{Narration}(\pi_2, \pi_3) \\ \mathcal{F}(\pi_1) &= \kappa_1 = \underbrace{\begin{bmatrix} j, l, e_{\pi_1} \\ \text{John}(l) \\ \text{lunch}(l) \\ \text{great}(l) \\ \text{had}(e_{\pi_1}, j, l) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_2) = \kappa_2 = \underbrace{\begin{bmatrix} s, e_{\pi_2} \\ \text{soup}(s) \\ \text{had}(e_{\pi_2}, j, s) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \kappa_3 = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \kappa_3 = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \kappa_3 = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{pasta}(p) \\ \text{pasta}(p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{pasta}(p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{pasta}(p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{pasta}(p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{pasta}(p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{pasta}(p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{pasta}(p) \end{bmatrix}}_{lohologous production}, \mathcal{F}(\pi_3) = \underbrace{\begin{bmatrix} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{pasta}(p) \end{bmatrix}}_{lohol$$

$$\begin{split} & [\![\mathcal{F}(\pi_0)]\!]^S = [\![\textit{Elaboration}(\pi_1, \lambda)]\!]^S \\ & = [\![\mathcal{F}(\pi_1) \land \mathcal{F}(\lambda) \land \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![\mathcal{F}(\pi_1)]\!]^S + [\![\mathcal{F}(\lambda)]\!]^S + [\![\textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \end{split}$$

```
(1) \pi_1: John had a great lunch.
```

 π_2 : He had soup.

$$\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3.$$

$$\mathcal{F}(\pi_0) = Elaboration(\pi_1, \lambda) \quad \mathcal{F}(\lambda) = Narration(\pi_2, \pi_3)$$

$$\downarrow j, l, e_{\pi_1} \quad \downarrow john(j) \quad$$

$$\begin{split} & [\![\mathcal{F}(\pi_0)]\!]^S = [\![\textit{Elaboration}(\pi_1, \lambda)]\!]^S \\ & = [\![\mathcal{F}(\pi_1) \land \mathcal{F}(\lambda) \land \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![\mathcal{F}(\pi_1)]\!]^S + [\![\mathcal{F}(\lambda)]\!]^S + [\![\textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![\mathcal{K}_1]\!]^S + [\![\mathcal{F}(\lambda)]\!]^S + [\![\textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \end{split}$$

```
(1) \pi_1: John had a great lunch.
```

 π_2 : He had soup.

$$\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3.$$

$$\mathcal{F}(\pi_0) = Elaboration(\pi_1, \lambda) \quad \mathcal{F}(\lambda) = Narration(\pi_2, \pi_3)$$

$$j, l, e_{\pi_1}$$

$$John(j)$$

$$1 unch(l)$$

$$great(l)$$

$$had(e_{\pi_1}, j, l)$$

$$had(e_{\pi_2}, j, s)$$

$$logical(l)$$

$$had(e_{\pi_3}, j, p)$$

$$\begin{split} & [\![\mathcal{F}(\pi_0)]\!]^S = [\![\textit{Elaboration}(\pi_1, \lambda)]\!]^S \\ & = [\![\mathcal{F}(\pi_1) \land \mathcal{F}(\lambda) \land \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![\mathcal{F}(\pi_1)]\!]^S + [\![\mathcal{F}(\lambda)]\!]^S + [\![\textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![\mathcal{K}_1]\!]^S + [\![\mathcal{F}(\lambda)]\!]^S + [\![\textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![\mathcal{K}_1]\!]^S + [\![\textit{Narration}(\pi_2, \pi_3)]\!]^S + [\![\textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \end{split}$$

(1)
$$\pi_1$$
: John had a great lunch.

 π_2 : He had soup.

$$\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3.$$

$$\mathcal{F}(\pi_0) = Elaboration(\pi_1, \lambda) \quad \mathcal{F}(\lambda) = Narration(\pi_2, \pi_3)$$

$$J_{j,l,e_{\pi_1}} \quad J_{john(j)} \quad J_$$

$$\begin{split} & \llbracket \mathcal{F}(\pi_0) \rrbracket^S = \llbracket \textit{Elaboration}(\pi_1, \lambda) \rrbracket^S \\ &= \llbracket \mathcal{F}(\pi_1) \wedge \mathcal{F}(\lambda) \wedge \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S \\ &= \llbracket \mathcal{F}(\pi_1) \rrbracket^S + \llbracket \mathcal{F}(\lambda) \rrbracket^S + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S \\ &= \llbracket \textit{K}_1 \rrbracket^S + \llbracket \mathcal{F}(\lambda) \rrbracket^S + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S \\ &= \llbracket \textit{K}_1 \rrbracket^S + \llbracket \textit{Narration}(\pi_2, \pi_3) \rrbracket^S + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S \\ &= med \ \textit{new slide} \end{split}$$

$$\llbracket \mathcal{F}(\pi_0) \rrbracket^{\varsigma} = \llbracket \textit{K}_1 \rrbracket^{\varsigma} + \llbracket \textit{Narration}(\pi_2, \pi_3) \rrbracket^{\varsigma} + \llbracket \textit{Info}_{\textit{Flab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\varsigma}$$

$$\begin{split} & [\![\mathcal{F}(\pi_0)]\!]^S = [\![K_1]\!]^S + [\![Narration(\pi_2, \pi_3)]\!]^S + [\![Info_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![K_1]\!]^S + [\![\mathcal{F}(\pi_2) \wedge \mathcal{F}(\pi_3) \wedge \textit{Info}_{\textit{Narr}}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^S + [\![Info_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \end{split}$$

$$\begin{split} & [\![\mathcal{F}(\pi_0)]\!]^S = [\![K_1]\!]^S + [\![Narration(\pi_2, \pi_3)]\!]^S + [\![Info_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![K_1]\!]^S + [\![\mathcal{F}(\pi_2) \land \mathcal{F}(\pi_3) \land Info_{Narr}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^S + [\![Info_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![K_1]\!]^S + [\![\mathcal{F}(\pi_2)]\!]^S + [\![\mathcal{F}(\pi_3)]\!]^S + [\![Info_{Narr}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^S + [\![Info_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \end{split}$$

$$\begin{split} & \llbracket \mathcal{F}(\pi_0) \rrbracket^{\mathsf{S}} = \llbracket \mathsf{K}_1 \rrbracket^{\mathsf{S}} + \llbracket \mathsf{Narration}(\pi_2, \pi_3) \rrbracket^{\mathsf{S}} + \llbracket \mathsf{Info}_{\mathsf{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\mathsf{S}} \\ & = \llbracket \mathsf{K}_1 \rrbracket^{\mathsf{S}} + \llbracket \mathcal{F}(\pi_2) \wedge \mathcal{F}(\pi_3) \wedge \mathsf{Info}_{\mathsf{Narr}}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2)) \rrbracket^{\mathsf{S}} + \llbracket \mathsf{Info}_{\mathsf{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\mathsf{S}} \\ & = \llbracket \mathsf{K}_1 \rrbracket^{\mathsf{S}} + \llbracket \mathcal{F}(\pi_2) \rrbracket^{\mathsf{S}} + \llbracket \mathcal{F}(\pi_3) \rrbracket^{\mathsf{S}} + \llbracket \mathsf{Info}_{\mathsf{Narr}}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2)) \rrbracket^{\mathsf{S}} + \llbracket \mathsf{Info}_{\mathsf{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\mathsf{S}} \\ & = \llbracket \mathsf{K}_1 \rrbracket^{\mathsf{S}} + \llbracket \mathsf{K}_2 \rrbracket^{\mathsf{S}} + \llbracket \mathsf{K}_3 \rrbracket^{\mathsf{S}} + \llbracket \mathsf{Info}_{\mathsf{Narr}}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2)) \rrbracket^{\mathsf{S}} + \llbracket \mathsf{Info}_{\mathsf{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\mathsf{S}} \end{split}$$

$$\begin{split} & [\![\mathcal{F}(\pi_0)]\!]^S = [\![K_1]\!]^S + [\![Narration(\pi_2, \pi_3)]\!]^S + [\![Info_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![K_1]\!]^S + [\![\mathcal{F}(\pi_2) \land \mathcal{F}(\pi_3) \land Info_{Narr}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^S + [\![Info_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![K_1]\!]^S + [\![\mathcal{F}(\pi_2)]\!]^S + [\![\mathcal{F}(\pi_3)]\!]^S + [\![Info_{Narr}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^S + [\![Info_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![K_1]\!]^S + [\![K_2]\!]^S + [\![K_3]\!]^S + [\![Info_{Narr}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^S + [\![Info_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \end{split}$$

$$= \llbracket K_1 \rrbracket^{S} + \llbracket K_2 \rrbracket^{S} + \llbracket K_3 \rrbracket^{S} + \llbracket HJO_{Narr}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2)) \rrbracket^{S} + \llbracket HJO_{Elab}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{S}$$

$$= \llbracket K_1 \rrbracket^{S} + \llbracket K_2 \rrbracket^{S} + \llbracket K_3 \rrbracket^{S} + \begin{bmatrix} e_{\lambda} \\ part-of(e_{\pi_2}, e_{\lambda}) \\ part-of(e_{\pi_3}, e_{\lambda}) \\ end(e_{\pi_2}) \approx start(e_{\pi_3}) \end{bmatrix} + \llbracket Info_{Elab}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{S}$$

$$\begin{split} & \llbracket \mathcal{F}(\pi_0) \rrbracket^S = \llbracket K_1 \rrbracket^S + \llbracket \textit{Narration}(\pi_2, \pi_3) \rrbracket^S + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S \\ & = \llbracket K_1 \rrbracket^S + \llbracket \mathcal{F}(\pi_2) \wedge \mathcal{F}(\pi_3) \wedge \textit{Info}_{\textit{Narr}}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2)) \rrbracket^S + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S \\ & = \llbracket K_1 \rrbracket^S + \llbracket \mathcal{F}(\pi_2) \rrbracket^S + \llbracket \mathcal{F}(\pi_3) \rrbracket^S + \llbracket \textit{Info}_{\textit{Narr}}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2)) \rrbracket^S + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S \\ & = \llbracket K_1 \rrbracket^S + \llbracket K_2 \rrbracket^S + \llbracket K_3 \rrbracket^S + \llbracket \textit{Info}_{\textit{Narr}}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2)) \rrbracket^S + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S \end{split}$$

$$= \llbracket \textit{K}_1 \rrbracket^{\textit{S}} + \llbracket \textit{K}_2 \rrbracket^{\textit{S}} + \llbracket \textit{K}_3 \rrbracket^{\textit{S}} + \begin{bmatrix} e_{\lambda} \\ \\ part-of(e_{\pi_2}, e_{\lambda}) \\ \\ part-of(e_{\pi_3}, e_{\lambda}) \\ \\ end(e_{\pi_2}) \approx start(e_{\pi_3}) \end{bmatrix} + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\textit{S}}$$

$$= \llbracket \textit{K}_1 \rrbracket^{S} + \boxed{ \begin{bmatrix} \textit{s}, \textit{e}_{\pi_2} \\ \textit{soup}(\textit{s}) \\ \textit{had}(\textit{e}_{\pi_2}, \textit{j}, \textit{s}) \end{bmatrix}} + \boxed{ \begin{bmatrix} \textit{p}, \textit{e}_{\pi_3} \\ \textit{pasta}(\textit{p}) \\ \textit{had}(\textit{e}_{\pi_3}, \textit{j}, \textit{p}) \end{bmatrix}} + \boxed{ \begin{bmatrix} \textit{e}_{\lambda} \\ \textit{part-of}(\textit{e}_{\pi_2}, \textit{e}_{\lambda}) \\ \textit{part-of}(\textit{e}_{\pi_3}, \textit{e}_{\lambda}) \\ \textit{end}(\textit{e}_{\pi_2}) \approx \textit{start}(\textit{e}_{\pi_3}) \end{bmatrix}} + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{S}$$

$$\begin{split} & [\![\mathcal{F}(\pi_0)]\!]^S = [\![K_1]\!]^S + [\![Narration(\pi_2, \pi_3)]\!]^S + [\![Info_{Elab}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![K_1]\!]^S + [\![\mathcal{F}(\pi_2) \wedge \mathcal{F}(\pi_3) \wedge Info_{Narr}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^S + [\![Info_{Elab}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![K_1]\!]^S + [\![\mathcal{F}(\pi_2)]\!]^S + [\![\mathcal{F}(\pi_3)]\!]^S + [\![Info_{Narr}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^S + [\![Info_{Elab}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \\ & = [\![K_1]\!]^S + [\![K_2]\!]^S + [\![K_3]\!]^S + [\![Info_{Narr}(\mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^S + [\![Info_{Elab}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S \end{split}$$

$$= \llbracket K_1 \rrbracket^S + \llbracket K_2 \rrbracket^S + \llbracket K_3 \rrbracket^S + \begin{bmatrix} & & \\ & \text{part-of}(e_{\pi_2}, e_{\lambda}) \\ & \text{part-of}(e_{\pi_3}, e_{\lambda}) \\ & \text{end}(e_{\pi_2}) \approx \text{start}(e_{\pi_3}) \end{bmatrix} + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S$$

 e_{λ}

$$= [\![K_1]\!]^S + \boxed{\begin{array}{c} s, e_{\pi_2} \\ \text{soup}(s) \\ \text{had}(e_{\pi_2}, j, s) \end{array}} + \boxed{\begin{array}{c} p, e_{\pi_3} \\ \text{pasta}(p) \\ \text{had}(e_{\pi_3}, j, p) \end{array}} + \boxed{\begin{array}{c} e_{\lambda} \\ \text{part-of}(e_{\pi_2}, e_{\lambda}) \\ \text{part-of}(e_{\pi_3}, e_{\lambda}) \\ \text{end}(e_{\pi_2}) \approx \text{start}(e_{\pi_3}) \end{array}} + [\![Info_{Elab}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^S$$

continued next slide

```
= \llbracket \textit{K}_1 \rrbracket^S + \begin{bmatrix} s, e_{\pi_2}, p, e_{\pi_3}, e_{\lambda} \\ \hline soup(s) \\ had(e_{\pi_2}, j, s) \\ pasta(p) \\ had(e_{\pi_3}, j, p) \\ part-of(e_{\pi_2}, e_{\lambda}) \\ part-of(e_{\pi_3}, e_{\lambda}) \\ end(e_{\pi_2}) \approx start(e_{\pi_3}) \end{bmatrix} + \llbracket \textit{Info}_{\textit{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S
```

```
= \llbracket \mathcal{K}_1 \rrbracket^5 + \begin{bmatrix} s, e_{\pi_2}, p, e_{\pi_3}, e_{\lambda} \\ soup(s) \\ had(e_{\pi_2}, j, s) \\ pasta(p) \\ had(e_{\pi_3}, j, p) \\ part-of(e_{\pi_2}, e_{\lambda}) \\ part-of(e_{\pi_3}, e_{\lambda}) \\ end(e_{\pi_2}) \approx \operatorname{start}(e_{\pi_3}) \end{bmatrix} + \llbracket \operatorname{Info}_{\operatorname{Elab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^5 \\ = \llbracket \mathcal{F}(\lambda) > \mathcal{K}_1 \wedge \neg (\mathcal{K}_1 > \mathcal{F}(\lambda)) \wedge \boxed{\text{part-of}(e_{\lambda}, e_{\pi_1})} \rrbracket^5
```

```
s, e_{\pi_2}, p, e_{\pi_3}, e_{\lambda}
                                  soup(s)
                                  \mathtt{had}(e_{\pi_2},j,s)
                                  pasta(p)
= [\![K_1]\!]^S +
                                                                                                               \llbracket \mathit{Info}_{\mathit{Flab}}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\mathsf{S}}
                                  \mathtt{had}(e_{\pi_3},j,p)
                                                                                                               = \llbracket \mathcal{F}(\lambda) > K_1 \land \neg (K_1 > \mathcal{F}(\lambda)) \land
                                  part-of(e_{\pi_2}, e_{\lambda})
                                                                                                                                                                                                                part-of(e_{\lambda}, e_{\pi_1})
                                  \mathtt{part-of}(e_{\pi_3},e_{\lambda})
                                  \operatorname{end}(e_{\pi_2}) \approx \operatorname{start}(e_{\pi_3})
                                                                                                                          \llbracket \mathcal{F}(\lambda) \rrbracket^{S} > K_{1}
                                                                                                                                                                                 K_1 > \llbracket \mathcal{F}(\lambda) \rrbracket^S
                                                                                                                                                                                                                                    \operatorname{part-of}(e_{\lambda},e_{\pi_1})
```

$$= \llbracket K_1 \rrbracket^S + \begin{bmatrix} s, e_{\pi_2}, p, e_{\pi_3}, e_{\lambda} \\ \text{soup}(s) \\ \text{had}(e_{\pi_2}, j, s) \\ \text{part-of}(e_{\pi_2}, e_{\lambda}) \\ \text{part-of}(e_{\pi_3}, e_{\lambda}) \\ \text{end}(e_{\pi_2}) \approx \text{start}(e_{\pi_3}) \end{bmatrix} + \begin{bmatrix} \llbracket Info_{Elab}(\mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^S \\ = \llbracket \mathcal{F}(\lambda) > K_1 \land \neg (K_1 > \mathcal{F}(\lambda)) \land \boxed{part-of}(e_{\lambda}, e_{\pi_1}) \end{bmatrix}^S \\ = \llbracket \mathcal{F}(\lambda) > K_1 \land \neg (K_1 > \mathcal{F}(\lambda)) \land \boxed{part-of}(e_{\lambda}, e_{\pi_1}) \end{bmatrix}^S \\ = \llbracket \mathcal{F}(\lambda) > K_1 \land \neg (K_1 > \mathcal{F}(\lambda)) \land \boxed{part-of}(e_{\lambda}, e_{\pi_1}) \end{bmatrix}^S \\ = \llbracket \mathcal{F}(\lambda) \rVert^S > K_1 \\ + \lceil \mathcal{F}(\lambda) \rVert^S > K_1 \\ + \lceil \mathcal{F}(\lambda) \rVert^S > K_1 \\ + \lceil \mathcal{F}(\lambda) \rVert^S \\ + \lceil \mathcal{F}(\lambda) \rVert^S$$


```
j, l, e_{\pi_1}, s, e_{\pi_2}, p, e_{\pi_3}, e_{\lambda}
John(i)
                                                                   pasta(p)
                                                                   had(e_{\pi_3}, j, p)
lunch(/)
                                                                   \bar{\mathsf{part}\text{-}\mathsf{of}}(e_{\pi_2},e_\lambda)
great(I) had(e_{\pi_1}, j, I)
                                                                   part-of(e_{\pi_3}, e_{\lambda})
soup(s)
had(e_{\pi_2}, j, s)
                                                                   end(e_{\pi_2}) \approx start(e_{\pi_3})
           s, e_{\pi_2}, p, e_{\pi_3}, e_{\lambda}
           soup(s)
                                                                  j, l, e_{\pi_1}
           had(e_{\pi_2}, j, s)
                                                                  John(i)
           pasta(p)
                                                        >
                                                                  lunch(/)
           had(e_{\pi_3}, j, p)
                                                                  great(/)
           part-of(e_{\pi_2}, e_{\lambda})
                                                                  had(e_{\pi_1}, j, l)
           part-of(e_{\pi_3}, e_{\lambda})
           end(e_{\pi_2}) \approx start(e_{\pi_3})
                                                    s, e_{\pi_2}, p, e_{\pi_3}, e_{\lambda}
              j, l, e_{\pi_1}
                                                    soup(s)
                                                    had(e_{\pi_2}, j, s)
               John(j)
                                                    pasta(p)
               lunch(/)
                                         >
                                                    had(e_{\pi_3}, j, p)
               great(I)
                                                    \mathtt{part-of}(e_{\pi_2},e_\lambda)
               had(e_{\pi_1}, j, l)
                                                    part-of(e_{\pi_3}, e_{\lambda})
                                                    end(e_{\pi_2}) \approx start(e_{\pi_3})
part-of(e_{\lambda}, e_{\pi_1})
```

Linguistic Forms

are interpreted to

SDRSs

describe narrative structure

are converted to

DRSs

describe event structure

are evaluated in

Models

Linguistic Forms

are interpreted to

SDRSs

are converted to

DRSs

are evaluated in

Models

describe narrative structure

describe event structure

Linguistic Forms

are interpreted to

Underspecified Logical Forms partially describe content

are specified to

SDRSs

are converted to

DRSs

are evaluated in

Models

describe narrative structure

describe event structure

18 / 32

Review of the Semantics

Constructing Logical Form

Review of the Semantics

Constructing Logical Form

Underspecified Logical Form

- The idea is this: we construct a language for incomplete descriptions of SDRSs.
- So we need a language for "underspecified logical form" (ULF).
- We need a relation that says "this SDRS is described by this ULF".

ULF Language: atoms and variables

- So what are the bits and pieces of an SDRS?
- DRSs
 - → Any DRS K is an "atom" (or, constant symbol). (you can underspecify these too, but I won't)
- Labels
 - \rightarrow Take variable symbols for labels $I_1, I_2, ...$
- Discourse relations
 - \rightarrow Take a constant symbol D_R for each discourse relation R
 - \rightarrow Plus corresponding variable symbols $D_1, D_2, ...$

ULF Language: Structure

- We underspecify:
- What the contents are.
- Which contents are connected.
- How they are connected.
- Take two predicate symbols to describe assignment:
 - \rightarrow labels(I, K)
 - \rightarrow relates (I_1, I_2, I_3, D)
- And three to describe structure:
 - \rightarrow outscopes(I_1, I_2)
 - \rightarrow accessible(I_1, I_2)
 - $\rightarrow last(I_1)$

ULF Language: Anaphor

- Anaphora are a type of underspecification.
- So take a constant symbol v_x for each DRT-variable x (do this for every type of variable).
- And add a predicate symbol:
 - \rightarrow anaphor(I, v)

ULF Language: Anaphor

- Anaphora are a type of underspecification.
- So take a constant symbol v_x for each DRT-variable x (do this for every type of variable).
- And add a predicate symbol:
 - \rightarrow anaphor(I, v)
- (If you extend the language to partially describe microstructure, you can write anaphora as x = ? to indicate something like "x is not in the universe of K".)

Examples

- ULFs are constructed from surface form.
- (2) There is a woman.

$$labels(I_1, \frac{x}{woman(x)})$$

(3) She runs.

$$labels(I_2, \frac{e,y}{run(e,y)}) \land anaphor(I_2, v_y)$$

Two Sentence Example

(4) There is a woman. She runs.

$$|abels(I_1, \frac{x}{woman(x)})| \\ \wedge |abels(I_2, \frac{e,y}{run(e,y)})| \wedge anaphor(I_2, v_y)| \\ \wedge |relates(I_0, I_1, I_2, D)| \\ \wedge |last(I_2)|$$

ULF Language: Cue Phrases

- Add an (empirically sourced) vocabulary of linguistic cues to this language.
- therefore *→ therefore(I)*
- and then → and-then(I)
- I hereby command → command(I)
- I hereby assert → inform(I)
- Including grammatical features:
- declarative(I)
- interrogative(I)
- imperative(I)
- Plus tense, aspect... anything useful from the grammar!

From ULF to SDRS

- The underspecified language has the formulas we seen so far, closed under the logical constants =, \neg , \lor and \land .
- Call a formulae in this language an ULF (underspecified logical form).

From ULF to SDRS

- The underspecified language has the formulas we seen so far, closed under the logical constants =, ¬, ∨ and ∧.
- Call a formulae in this language an ULF (underspecified logical form).
- Now, this is conceptually a bit weird, but not hard:
- We want to define a turnstile \models such that for an SDRS *S* and an ULF \mathcal{K} , $S \models \mathcal{K}$ iff all descriptions from \mathcal{K} are realised in *S*.

From ULF to SDRS

- The underspecified language has the formulas we seen so far, closed under the logical constants =, ¬, ∨ and ∧.
- Call a formulae in this language an ULF (underspecified logical form).
- Now, this is conceptually a bit weird, but not hard:
- We want to define a turnstile \models such that for an SDRS S and an ULF K, $S \models K$ iff all descriptions from K are realised in S.
- A bit of notation: for DRSs $K_1 = \langle U_1, C_1 \rangle$, $K_2 = \langle U_2, C_2 \rangle$ say $K_1 \subseteq K_2$ iff $U_1 \subseteq U_2$ and $C_1 \subseteq C_2$.

Assignment Function

- Let $S = (\Pi, \mathcal{F}, L)$ be an SDRS and A be a function s.t.:
 - → for each variable I_i , $A(I_i) \in \Pi$
 - \rightarrow for each variable D_i , $A(D_i)$ is some discourse relation.
 - $\rightarrow A(D_R) = R$ for all discourse relations R
 - $\rightarrow A(v_x) = x$ for all and DRT-variables x.
- (i.e. the variables are implicitly existentially quantified)

- $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)

- $S, A \models x = y \text{ iff } A(x) = A(y) \text{ (for any variables or constants } x, y)$
- $S,A \models last(I_1) \text{ iff } A(I_1) = L.$

- $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)
- $S, A \models last(I_1) \text{ iff } A(I_1) = L.$
- $S,A \models labels(I,K)$ iff $K \subseteq \mathcal{F}(A(I))$ and $\mathcal{F}(A(I))$ does not use relation symbols not in K.

- $S,A \models x = y$ iff A(x) = A(y) (for any variables or constants x,y)
- $S, A \models last(I_1) \text{ iff } A(I_1) = L.$
- *S*, *A* \models *labels*(*I*, *K*) iff *K* \subseteq $\mathcal{F}(A(I))$ and $\mathcal{F}(A(I))$ does not use relation symbols not in *K*.
- $-\ S,A\models \textit{relates}(I_1,I_2,I_3,D) \ \text{iff} \ A(D)(A(I_2),A(I_3)) \ \text{is a conjunct of} \ \mathcal{F}(A(I_1)).$

- $S,A \models x = y \text{ iff } A(x) = A(y) \text{ (for any variables or constants } x, y)$
- $S, A \models last(I_1) \text{ iff } A(I_1) = L.$
- *S*, *A* \models *labels*(*I*, *K*) iff *K* ⊆ $\mathcal{F}(A(I))$ and $\mathcal{F}(A(I))$ does not use relation symbols not in *K*.
- $S,A \models relates(I_1,I_2,I_3,D)$ iff $A(D)(A(I_2),A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.
- $S, A \models outscopes(I_1, I_2) \text{ iff } A(I_2) \text{ outscopes (in } S) A(I_1).$

- $S,A \models x = y$ iff A(x) = A(y) (for any variables or constants x,y)
- $S, A \models last(I_1) \text{ iff } A(I_1) = L.$
- *S*, *A* \models *labels*(*I*, *K*) iff *K* ⊆ $\mathcal{F}(A(I))$ and $\mathcal{F}(A(I))$ does not use relation symbols not in *K*.
- $S,A \models relates(I_1,I_2,I_3,D)$ iff $A(D)(A(I_2),A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.
- $S, A \models outscopes(I_1, I_2) \text{ iff } A(I_2) \text{ outscopes (in } S) A(I_1).$
- S, A |= $accessible(I_1, I_2)$ iff $A(I_1)$ is accessible (in S) from $A(I_2)$.

- $S, A \models x = y \text{ iff } A(x) = A(y) \text{ (for any variables or constants } x, y)$
- $S, A \models last(I_1) \text{ iff } A(I_1) = L.$
- $S,A \models labels(I,K)$ iff $K \subseteq \mathcal{F}(A(I))$ and $\mathcal{F}(A(I))$ does not use relation symbols not in K.
- $S, A \models relates(I_1, I_2, I_3, D)$ iff $A(D)(A(I_2), A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.
- $S, A \models outscopes(I_1, I_2) \text{ iff } A(I_2) \text{ outscopes (in } S) A(I_1).$
- S, A |= $accessible(I_1, I_2)$ iff $A(I_1)$ is accessible (in S) from $A(I_2)$.
- S, A |= anaphor(I, v) iff there is a DRT variable z introduced in some segment λ ∈ Π (of S) such that

- $S, A \models x = y \text{ iff } A(x) = A(y) \text{ (for any variables or constants } x, y)$
- $S, A \models last(I_1) \text{ iff } A(I_1) = L.$
- $S,A \models labels(I,K)$ iff $K \subseteq \mathcal{F}(A(I))$ and $\mathcal{F}(A(I))$ does not use relation symbols not in K.
- $S, A \models relates(I_1, I_2, I_3, D)$ iff $A(D)(A(I_2), A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.
- $S, A \models outscopes(I_1, I_2) \text{ iff } A(I_2) \text{ outscopes (in S) } A(I_1).$
- S, A |= $accessible(I_1, I_2)$ iff $A(I_1)$ is accessible (in S) from $A(I_2)$.
- S,A |= anaphor(I, v) iff there is a DRT variable z introduced in some segment λ ∈ Π (of S) such that
 - i. there is a relation R and labels α and β with $\mathcal{F}(\alpha) = R(\beta, A(I))$;
 - ii. λ is accessible to β ; and
 - iii. $\mathcal{F}(A(I))$ has a conjunct A(v) = z.

- $S,A \models x = y \text{ iff } A(x) = A(y) \text{ (for any variables or constants } x,y)$
- $S, A \models last(I_1) \text{ iff } A(I_1) = L.$
- $S,A \models labels(I,K)$ iff $K \subseteq \mathcal{F}(A(I))$ and $\mathcal{F}(A(I))$ does not use relation symbols not in K.
- $S,A \models relates(I_1,I_2,I_3,D)$ iff $A(D)(A(I_2),A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.
- $S, A \models outscopes(I_1, I_2) \text{ iff } A(I_2) \text{ outscopes (in } S) A(I_1).$
- $S, A \models accessible(I_1, I_2)$ iff $A(I_1)$ is accessible (in S) from $A(I_2)$.
- S, A \models anaphor(I, v) iff there is a DRT variable z introduced in some segment λ ∈ Π (of S) such that
 - i. there is a relation R and labels α and β with $\mathcal{F}(\alpha) = R(\beta, A(I))$;
 - ii. λ is accessible to β ; and
 - iii. $\mathcal{F}(A(I))$ has a conjunct A(v) = z.
- If cue(I) is a linguistic cue predicate, $S, A \models cue(I)$ always.

Two Sentence Example

(5) There is a woman. She runs.

Two Sentence Example

(5) There is a woman. She runs.

Linguistic Form to Narrative Structure

- So, given the linguistic form of a discourse, we:
 - → Compute for every *clause* the corresponding DRS *K* (by the DRT construction algo), except that we don't resolve anaphora here.
 - \rightarrow Pick an unused label variable I_1 and add labels (I_1, K) .
 - → (If there is an ambiguity, you can also add $labels(I_1, K) \lor labels(I_1, K')$).
 - \rightarrow For every anaphor x in K add $anaphor(I_1, V_x)$.
 - → Add appropriate predicates on *I* for cue phrases and linguistic features (aspect etc.).
 - \rightarrow For every clause except the very first one, pick another two unused label variables I_0 , I_2 and add $relates(I_0, I_2, I_1, D)$ (i.e. I_1 attaches somewhere)
- Call the conjunction of all these \mathcal{K} .

Linguistic Form to Narrative Structure

- So, given the linguistic form of a discourse, we:
 - → Compute for every *clause* the corresponding DRS *K* (by the DRT construction algo), except that we don't resolve anaphora here.
 - \rightarrow Pick an unused label variable I_1 and add *labels*(I_1, K).
 - → (If there is an ambiguity, you can also add $labels(I_1, K) \lor labels(I_1, K')$).
 - \rightarrow For every anaphor x in K add $anaphor(I_1, V_x)$.
 - → Add appropriate predicates on *I* for cue phrases and linguistic features (aspect etc.).
 - \rightarrow For every clause except the very first one, pick another two unused label variables I_0 , I_2 and add $relates(I_0, I_2, I_1, D)$ (i.e. I_1 attaches somewhere)
- Call the conjunction of all these \mathcal{K} .

Not good enough!