Black and White Image Colorization

Presented By

1605105 - Mashrur Ahmed Yafi 1605107 - Mehdi Hassan Akash 1605118 - Habibul Islam

Problem Definition

- Model takes grayscale (black and white) image as input
- Predicts colored image using the input image
- Our target is to get respectable color for output image

Method

The network will take L channel as input and predict a and b channel.

 Then colored images will generated using the L channel and the predicted ab channel.

'L' CHANNEL
'A' CHANNEL
'B' CHANNEL

Dataset and resources

- We have used our synthetic dataset of 50 thousands images, which was made programmatically using a subset of imagenet.
- 25k of 50k were chosen randomly to train the model.
- We have taken colored images and separated L, A, B channels and kept in our dataset.
- We were motivated by the paper 'Colorful Image Colorization' (2016) by Richard Zhang, Phillip Isola, Alexei A. Efros from University of California, Berkeley.

- No activation functions were working good for predicting values in this range.
- If we tried to output the values between 0 and 255 using ReLU with clipping, most of the values were near 255.
- If we tried to output the values between 0 and 1 using sigmoid, most of the values were either 0 or 1.

- We then put the values of a and b into 10 bins each and converted the problem into classification problem.
- Then we have used softmax as our activation function.
- If we could use more bins the colors would yield more smooth
- But for Resource and time shortage we used 10 bins only

- The data were not evenly distributed. The data were centrally biased.
- The central data points (near 127) yields grayish images.

So, we have assigned weights to the classes and used weighted categorical

cross-entropy as our loss function.

$$L_{cl}(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\sum_{h,w} v(\mathbf{Z}_{h,w}) \sum_{q} \mathbf{Z}_{h,w,q} \log(\widehat{\mathbf{Z}}_{h,w,q})$$

Weighted Categorical Cross-entropy

Distribution of a values of 10k images

- The channel **a** and **b** channels are not dependent
- So, we had to use to use two different models for predicting a and b
- Moreover, weights of a and b channels found from distribution were different and same model does not take different weights.

Architecture

- We have used U-Net architecture for our problem.
- We have used two separate models for predicting a and b channel.
- Each model takes 256x256 grayscale image as input and produces

256x256x10 probability distribution

as output.

Architecture

 Instead of taking the value with highest probability, we have taken the annealed mean of the probability distribution.

$$f_T(\mathbf{z}) = \frac{\exp(\log(\mathbf{z})/T)}{\sum_q \exp(\log(\mathbf{z}_q)/T)}$$

- Here **T** is a hyper parameter. If T=1, the distribution is unchanged. If T=0, the distribution becomes one hot encoded.
- We have used T=0.38 in our model.

Results

Results

Never seen image from internet

Further Analysis

- In order to color the images, our model does not simply learn the colors of each object.
- In fact, our model learns what the object is.

a channel

b channel

Future Prospects

- The output images were reddish. Weights assigned to color bins could be more balanced.
- The number of bins could be increased for better granularity.