ARTIFICIAL INTELLIGENCE University of Rennes 1

ESIR

2020/21

Excercice1: Revision dot product Let $a = (a_1, \ldots, a_n)$, and $b = (b_1, d \ldots, b_n)$ be two *n*-dimensional vectors $(n \ge 1)$. Their dot product is defined as

$$ab = \sum_{i=1}^{n} a_i b_i$$

• Compute the dot product of the vectors a(1,3,-5) and b(4,-2,-1)

• What can we say about the dot product ab if a a and b are orthogonal? or if they are co-directional (their enclosed angle is 0)?

• What can we say about the value

$$\frac{ab}{|a||b|}$$

?

Excercice 2: Revision calculus Compute the derivatives of the following functions

• $f(x) = x^2$

• $f(x) = x^3$

• $f(x) = e^2$

• f(x) = log(x)

• Chain rule: let f(x) = 6x + 3 and g(x) = -2x + 5 and let h(x) = f(g(x)). Compute the derivative $\frac{dh(x)}{dx}$

• Let $f(x) = e^x$ and g(x) = 4x and let h(x) = f(g(x)). Compute the derivative $\frac{dh(x)}{dx}$

 $f(x) = e^{x^2}$

 $\bullet \ f(x) = log(x^2)$

• $f(x) = \frac{1}{1+x^2}$

Excercice 3: Revision calculus (multiple variables)

• $f(x,y) = x^2y^3$, Compute the following partial derivatives: $\frac{\partial f}{\partial x} = ?$, $\frac{\partial f}{\partial y} = ?$. Compute the gradient vector at (3,2), that is $\nabla f(3,2)$. Also computer $\nabla f(0,0)$ and $\nabla f(0,1)$.

• $f(x,y) = (x+y)^2$ Compute the following partial derivatives: $\frac{\partial f}{\partial x} = ?$, $\frac{\partial f}{\partial y} = ?$.

• $f(x,y) = log(2x + y^2)$ Compute the following partial derivatives: $\frac{\partial f}{\partial x} = ?$, $\frac{\partial f}{\partial y} = ?$.

Excercice 4: Linear regression Assume that we have some data points $(x_1, y_1), \ldots, (x_n, y_n)$. We would like to use linear regression to fit a line to explain our data $(h(x) = \theta_1 x + \theta_0)$. Use differential calculus to optimize the fitting of our models. Recall the cost function (mean squared errors): $J(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^{n} (h(x_i) - y_i)^2$.

- Computer the partial derivatives $\frac{\partial J}{\partial \theta_0}$, $\frac{\partial J}{\partial \theta_1}$
- Find the values of θ_0 and θ_1 for which the loss function is minimal.