TD 7 bis Sous-variétés

Exercice 1

Soient deux surfaces S_1 et S_2 de l'espace \mathbb{R}^3 données par les équations implicites F(x,y,z)=0 et G(x,y,z)=0 où F et G sont deux applications $\mathbb{R}^3\to\mathbb{R}$ de classe C^1 . On suppose que ces deux surfaces s'intersectent en un point $a\in\mathbb{R}^3$ tel qu'on ait également \overrightarrow{grad} $F(a)\wedge\overrightarrow{grad}$ $G(a)\neq 0$. Montrer qu'au voisinage de a, l'intersection des deux surfaces est une sous-variété de dimension 1. Interpréter géométriquement l'espace affine tangent de l'intersection. Examiner le cas où \overrightarrow{grad} $F(a)\wedge\overrightarrow{grad}$ G(a)=0 (avec toujours \overrightarrow{grad} $F(a)\neq 0$ et \overrightarrow{grad} $G(a)\neq 0$).

Exercice 2

On pose M l'ensemble des points de \mathbb{R}^3 tel qu'il existe $t \in [-1,1]$ et $w \in [0,2\pi]$ tel que

$$\begin{cases} x = \left(1 + \frac{t}{2}\cos\frac{w}{2}\right)\cos w \\ y = \left(1 + \frac{t}{2}\cos\frac{w}{2}\right)\sin w \\ z = \frac{t}{2}\sin\frac{w}{2} \end{cases}$$

Quel est cet ensemble ? Montrer que c'est une sous-variété.

Exercice 3

Montrer que $P = \{M \in M_2(\mathbb{R}) \mid M \neq 0, M \neq I_n, M^2 = M\}$ est une sous-variété.

Exercice 4

Soit $n \ge 1$ un entier. On identifie $\mathbb{R}_n[X]$ à \mathbb{R}^{n+1} .

- a) Montrer que l'ensemble E des polynômes ayant une unique racine, avec multiplicité n, est une sous-variété C^1 , et indiquer sa dimension.
- **b)** Montrer que, si $n \ge 2$, l'adhérence de E n'est pas une sous-variété.

Exercice 5 Soit G un sous-ensemble de \mathbb{R}^k . On suppose que G est muni d'une structure de groupe dont on note e l'élément neutre et \times la loi. On dira que G est un **groupe de Lie** lorsque G est en plus une sous-variété de \mathbb{R}^k et que les applications :

$$G \times G \rightarrow G$$
 $G \rightarrow G$ $G \rightarrow G$ $(g,h) \mapsto g \times h$ $g \mapsto g^{-1}$

sont de classe C^1 au sens où ce sont les restrictions à $G \times G$ (resp G) d'applications de classe C^1 définies sur $\mathbb{R}^k \times \mathbb{R}^k$ (resp \mathbb{R}^k). On appelle alors algèbre de Lie l'espace T_eG . Montrer que les ensembles suivants sont des sous-variétés de $M_n(\mathbb{R})$ puis des groupes de Lie en prenant pour loi la multiplication matricielle. Préciser les algèbres de Lie.

- a) $GL_n(\mathbb{R})$.
- **b)** $SL_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) / det(M) = 1 \}.$

c) $O_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) / M^T M = I_n \}.$

Exercice 6

On note S^2 la sphère de \mathbb{R}^3 et $F: \mathbb{R}^3 \to \mathbb{R}$ définie par $F(x_1, x_2, x_3) = (x_1 - \frac{1}{2})^2 + x_2^2$.

- a) Montrer que pour tout $c \in \mathbb{R}$, $N_c = F^{-1}(c)$ est soit une sous-variété soit vide.
- **b)** En utilisant les coordonnées cylindriques : $(r,u)\mapsto (\frac{1}{2}+\frac{1}{2}\cos u,\frac{1}{2}\sin u,r)$, trouver un arc paramétré C^{∞} régulier (I,γ) tel que $\gamma(I)=S^2\cap N_{\frac{1}{4}}$.
- c) Est-ce que $S^2 \cap N_{\frac{1}{4}}$ est une sous-variété ?
- d) Quel sous-ensemble maximal de $S^2 \cap N_{\frac{1}{4}}$ est une sous-variété ?

Exercice 7

Le but de cet exercice est de montrer que la sphère S^n possède des champs de vecteurs C^{∞} ne s'annulant jamais ssi n est impair.

- a) Quel est l'espace tangent à S^n en un point $x \in S^n$?
- **b)** Construire un champ de vecteur C^{∞} sur S^n s'annulant en un seul point de S^n .
- c) Si n=2p+1 construire un champ de vecteurs C^{∞} sur S^n ne s'annulant jamais.
- d) Soient K une partie compacte de \mathbb{R}^{n+1} , U un ouvert de $\mathbb{R}^n n+1$ contenant K et v une application C^{∞} de U dans \mathbb{R}^{n+1} . Pour $t \in \mathbb{R}$ on pose $F_t : U \mapsto \mathbb{R}^{n+1}$ définie par $F_t(x) = x + tv(x)$. Montrer qu'il existe un ouvert V de U contenant K et $\epsilon > 0$ tels que pour tout $|t| \leq \epsilon$, F_t est un C^1 difféomorphisme de V sur son image. En déduire que la mesure de Lebesgue de $F_t(K)$ est alors un polynôme en t.
- e) On suppose qu'il existe un champ v de vecteurs unitaires sur S^n . On pose à nouveau pour $t \in \mathbb{R}$ et $x \in S^n \subset \mathbb{R}^{n+1}$, $F_t(x) = x + tv(x)$. Montrer que pour t suffisamment petit, F_t est un difféomorphisme entre S^n et la sphère de rayon $\sqrt{1+t^2}$. Conclure que n est impaire.