Kryteria efektywności projektów inwestycyjnych

Efektywność inwestycji i systemów transportowych

Rodzaje kosztów projektu inwestycyjnego

- koszty inwestycyjne,
- koszty eksploatacji i utrzymania,
- oddziaływania ekonomiczne:
 - koszty czasu podróży użytkowników,
 - koszty eksploatacji pojazdów (transport indywidualny),
 - koszty wypadków drogowych i ofiar śmiertelnych,
 - koszty związane z emisją zanieczyszczeń,
 - koszty zmian klimatycznych,
 - koszty hałasu, oraz inne koszty

Koszty eksploatacji i utrzymania

- stałe koszty utrzymania,
- zmienne koszty utrzymania,
- koszty zarządzania ruchem,
- koszty administracyjne związane z projektem,
- inne kategorie.

Przykład. Koszty eksploatacji i utrzymania pojazdów KM

- koszty paliwa (energii),
- koszty oleju i innych płynów eksploatacyjnych,
- koszty opon,
- koszty remontu i utrzymania,
- koszty amortyzacji,
- koszty opłaty pracy kierowców,
- koszty opłaty pracy pracowników administracyjnych,
- inne ogólne koszty utrzymania

Przepływy inwestycyjne, wpływy pieniężne oraz nakłady inwestycyjne

- Przepływ inwestycyjny (net cash flow) NCF różnica pomiędzy przychodami projektu oraz wydatkami na jego realizację
- Wpływy pieniężne (cash inflow) CIF nieujemny przepływ inwestycyjny
- Nakłady inwestycyjne (cash outflow) COF ujemny przepływ inwestycyjny

Przykład kalkulacji potoków dla projektu inwestycyjnego, tys. zł.

Czas życia t	0	1	2	3	4
Pzychody	150	200	250	250	250
Wydatki	500	100	100	100	100
NCF	-350	100	150	150	150
CIF	0	100	150	150	150
COF	350	0	0	0	0

Miary dla oceny projektów inwestycyjnych

- proste miary (nie uwzględniają wartości pieniądza w czasie):
 - okres zwrotu,
- miary dochodowe (uwzględniające wartość pieniądza w czasie):
 - wartość zaktualizowana netto,
 - zdyskontowany okres zwrotu,
 - wskaźnik zyskowności inwestycji,
 - wewnętrzna stopa zwrotu

Okres zwrotu

Okres zwrotu *PP* (payback period) – okres realizacji projektu dla którego skumulowany przepływ inwestycyjny ma wartość zerową (czas, w którym uzyskane wpływy pieniężne z inwestycji zrównoważą się z pierwotnym nakładem inwestycyjnym):

$$PP = t \leftrightarrow \sum_{i=0}^{t} NCF_i = 0.$$

Skumulowany przepływ inwestycyjny

Czas życia projektu, lata

Stopa dyskonta

Stopa dyskonta *d* (*discount rate*) – stopa zrzeczenia się przyszłych środków finansowych na rzecz aktualnie dostępnych środków:

$$d = \frac{r}{1+r'}$$

r – oczekiwana stopa zwrotu (rentowność)

Zdyskontowane potoki

- Zdyskontowany przepływ inwestycyjny (present net cash flow): $PNCF_t = \frac{NCF_t}{(1+d)^t}$.
- Zdyskontowane wpływy pieniężne (present cash inflow): $PCIF_t = \frac{CIF_t}{(1+d)^t}$.
- Zdyskontowane nakłady inwestycyjne (present cash outflow): $PCOF_t = \frac{COF_t}{(1+d)^t}$.

Zaktualizowane potoki projektu inwestycyjnego dla d=0,1

Czas życia t	0	1	2	3	4
NCF	-350	100	150	150	150
CIF	0	100	150	150	150
COF	350	0	0	0	0
PNCF	-350,0	90,9	124,0	112,7	102,5
PCIF	0,0	90,9	124,0	112,7	102,5
PCOF	350,0	0,0	0,0	0,0	0,0

Wartość zaktualizowana netto

Wartość zaktualizowana netto (net present value) NPV – skumulowana różnica pomiędzy zdyskontowanymi wpływami a wydatkami związanymi z projektem, w pewnym horyzoncie czasu. Przepływy pieniężnie dyskontowane są na moment początkowy projektu:

$$NPV = \sum_{t=0}^{T} \frac{NCF_t}{(1+d)^t} = \sum_{t=0}^{T} PNCF_t,$$

T – czas realizacji (czas życia) projektu inwestycyjnego.

Obliczenie wartości zaktualizowanej netto

Czas życia	0	1	2	3	4	Suma
NCF	-350	100	150	150	150	ı
CIF	0	100	150	150	150	1
COF	350	0	0	0	0	1
PNCF	-350,0	90,9	124,0	112,7	102,5	80,0
PCIF	0,0	90,9	124,0	112,7	102,5	430,0
PCOF	350,0	0,0	0,0	0,0	0,0	350,0

Zdyskontowany okres zwrotu

Zdyskontowany okres zwrotu *PPP* (present payback period) – taki czas życia projektu dla którego wartość zaktualizowana netto wynosi zero:

$$PPP = t \leftrightarrow \sum_{i=0}^{t} PNCF_i = 0.$$

Skumulowany przepływ inwestycyjny

Czas życia projektu, lata

Wskaźnik zyskowności inwestycji

Wskaźnik zyskowności inwestycji (profitability index)

PI – iloraz skumulowanych zdyskontowanychwpływów pieniężnych i skumulowanychzdyskontowanych nakładów inwestycyjnych:

$$PI = \sum_{t=0}^{T} \frac{CIF_t}{(1+d)^t} / \sum_{t=0}^{T} \frac{COF_t}{(1+d)^t} = \sum_{t=0}^{T} PCIF_t / \sum_{t=0}^{T} PCOF_t.$$

Obliczenie wskaźnika zyskowności inwestycji

Czas życia	0	1	2	3	4	Suma
NCF	-350	100	150	150	150	-
CIF	0	100	150	150	150	-
COF	350	0	0	0	0	-
PNCF	-350,0	90,9	124,0	112,7	102,5	80,0
PCIF	0,0	90,9	124,0	112,7	102,5	430,0
PCOF	350,0	0,0	0,0	0,0	0,0	350,0

=1,23

Wewnętrzna stopa zwrotu

Wewnętrzna stopa zwrotu (internal rate of return) IRR – taka wartość stopy dyskontowej, dla której NPV = 0:

$$IRR = r \leftrightarrow \sum_{t=0}^{T} \frac{NCF_t}{(1+r)^t} = 0.$$

Obliczenie wewnętrznej stopy zwrotu

Czas życia	0	1	2	3	4
NCF	-350	100	150	150	150
CIF	0	100	150	150	150
COF	350	0	0	0	0
PNCF	-350,0	90,9	124,0	112,7	102,5
PCIF	0,0	90,9	124,0	112,7	102,5
PCOF	350,0	0,0	0,0	0,0	0,0

$$-350 + \frac{100}{1+r} + \frac{150}{(1+r)^2} + \frac{150}{(1+r)^3} + \frac{150}{(1+r)^4} = 0.$$

Empiryczna metoda obliczenia wewnętrznej stopy zwrotu

$$F(r) = -350 + \frac{100}{1+r} + \frac{150}{(1+r)^2} + \frac{150}{(1+r)^3} + \frac{150}{(1+r)^4} \to 0$$

0	200,00	0,1	80,03	0,19	3,77	0,195	0,18
0,1	80,03	0,11	70,32	0,191	3,05	0,1951	0,11
0,2	-3,36	0,12	60,96	0,192	2,33	0,1952	0,04
0,3	-63,53	0,13	51,92	0,193	1,61	0,1953	-0,04
0,4	-108,33	0,14	43,20	0,194	0,89	0,1954	-0,11
0,5	-142,59	0,15	34,77	0,195	0,18	0,1955	-0,18
0,6	-169,40	0,16	26,62	0,196	-0,53	0,1956	-0,25
0,7	-190,78	0,17	18,75	0,197	-1,24	0,1957	-0,32
0,8	-208,14	0,18	11,14	0,198	-1,95	0,1958	-0,39
0,9	-222,44	0,19	3,77	0,199	-2,65	0,1959	-0,46
1	-234,38	0,2	-3,36	0,2	-3,36	0,196	-0,53

Obliczenie wewnętrznej stopy zwrotu metodą bisekcji

$$F(r) = -350 + \frac{100}{1+r} + \frac{150}{(1+r)^2} + \frac{150}{(1+r)^3} + \frac{150}{(1+r)^4} \to 0$$

0,000	200,0	0,000	200,0	0, 000	200,0
0,500	-142,6	0,250	-35,8	0,125	56,4
1,000	-234,4	0,500	-142,6	0,250	-35,8
0,125	56,4	0,188	5,6	0,188	5,6
0,188	5,6	0,219	-16,1	0,203	-5,5
0,250	-35,8	0,250	-35,8	0,219	-16,1
0,188	5,6				
0,195	0,0				
0,203	-5,5				