THE USE OF NLP AND DEEP LEARNING ON NEWS HEADLINES TO PREDICT STOCK MOVEMENTS

Tayfun Ayazma, Ph.D.

May 20, 2020

Outline

- I. Problem Statement
- II. Dow Jones Industrial Average (DJIA)
- III. Data
- IV. Data Preparation and Text Preprocessing
- V. Model Building
- VI. Most Important Features
- VII. Results
- **VIII. Business Recommendations**

Problem Statement

□ Vast amount of resources dedicated to quantify and analyze qualitative data
□ Complexities of modeling stock market dynamics
□ A variety of resources:
□ SEC reports (8-K and 10-K)
□ Financial news articles (Financial Times and Wall Street Journal)
□ Media Outlets (Twitter, Facebook, and Reddit)
□ NLP and Deep Learning to predict Dow Jones stock movements

Dow Jones Industrial Average (DJIA)

- ☐Stock market index
- ☐Tracks the stock performance of 30 large companies
- □Components of DJIA

Data

□ Reddit historical news headlines
 □ Only the top 25 news headlines for a single date
 □ DJIA stock data downloaded from the Yahoo Finance
 □ Target feature - the "Label" column:
 □ 1 if DJIA adjusted close value stayed the same or went up
 □ 0 if it dropped

Data Preparation and Text Preprocessing

☐ Inspect for quality (outliers, missing value, data types) ☐ Preprocessing the textual data (NLTK library): □ Lowercasing ☐ Removing stopwords, punctuation and numbers ☐ Lemmatizing words □ Combine text columns ■ Splitting the data into train and test sets: \square Train set \rightarrow 08-08-2008 to 12-31-2014 (80%) \square Test set \rightarrow 01-01-2008 to 07-01-2016 (20%)

Model Building

☐Six supervised machine learning models:
☐Logistic Regression
☐Multinomial Naïve Bayes
☐ Random Forest Classifier
☐Support Vector Machine Classifier
■XGBoost Classifier
☐Bernoulli Naïve Bayes
☐ Deep learning neural network architectures:
☐A fully connected multilayer perceptron (MLP)
☐Recurrent neural network (RNN) – LSTM
□Convolutional neural network (CNN)

Most Important Features

	Word	Coefficient		
6042	nigeria	0.838646		
4705	jew	0.713932		
7247	record	0.664518		
8131	since	0.656317		
8474	state	0.654680		
7556	right	0.653375		
5825	mubarak	0.640013		
7963	set	0.621422		
8857	tear	0.617964		
7852	scrap	0.600945		

- For logistic regression model, the most important features both positive and negative
- ☐ "Military", "Hacking", "Criminal", "Low" and "Sanction"

Results

- □RNN LSTM network with a 58% accuracy
- ☐ Model tuning for hyperparameters for LSTM and SVM Classifier
- ☐ The complexity of modeling stock market dynamics
- ☐Limited data

	Accuracy	ROC_AUC	Precision	Recall	F1
Model					
LSTM	0.582011	0.581989	0.589474	0.583333	0.586387
SVM Classifier	0.537037	0.533350	0.530686	0.765625	0.626866
MLP	0.515873	0.514701	0.520737	0.588542	0.552567
Logistic Regression	0.515873	0.509241	0.512968	0.927083	0.660482
XGBoost	0.510582	0.508233	0.514286	0.656250	0.576659
Multinomial Naive Bayes	0.507937	0.500000	0.507937	1.000000	0.673684
BernoulliNB	0.502646	0.495800	0.505682	0.927083	0.654412
CNN	0.497354	0.494792	0.504000	0.656250	0.570136
Random Forest Classifier	0.484127	0.479503	0.494983	0.770833	0.602851

Business Recommendations

- ☐ Textual data to provide informed decisions
- ☐ The potential of deep learning to revolutionize the stock market trading
- □ Changes in stock movements in days following the release of news headlines

Questions?