

DATA ANALYSIS

Week 14: Dependent Data

logistics

- cumulative final on May 3rd (next Friday)
- ALL practice materials are up on Canvas
- same format (total worth 20% of final grade)
 - conceptual (40 points)
 - computational (60 points)
 - 25% if you opt-out of PS7
- all videos up on course website

▼ Cumulative Final PRACTICE					
**	Weeks 1-5 Practice				
×	Weeks 6-12 Practice				
×	Weeks 13-15 Practice				
**	Practice Final (Conceptual) 40 pts				
GD.	Practice Final (Computational) 🖶				

W: April 24, 2024	W14: Miscellaneous Data
F: April 26, 2024	W14 continued
T: April 30, 2024	Problem Set 7 due / Opt-out Deadline
W: May 1, 2024	W15: Odds and Ends
T: May 2, 2024	Data Around Us / Practice Questions due
F: May 3, 2024	Conceptual Final (In Class)
T: May 7, 2024	Computational Final Computational due
T: May 7, 2024	Last Class Survey due
W: May 8, 2024	Wrapping Up! (Last Class)
T: May 14, 2024	PS7 Revisions due
M: May 14, 2024	ALL late work due
	F: April 26, 2024 T: April 30, 2024 W: May 1, 2024 T: May 2, 2024 F: May 3, 2024 T: May 7, 2024 T: May 7, 2024 W: May 8, 2024 T: May 14, 2024

sleep dataset

- data about "the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients"
- this dataset contains repeated observations from the same patient and therefore, the data are not independent
 - also called a within-subject or withinparticipant design
- we have not covered any statistical tests that we can use to analyze such data!

final hypothesis chart

assuming independence

- how would we have proceeded if the data were independent?
- we have 2 groups of scores, so we could have conducted an independent groups t-test

$$t_{df} = \frac{sample \ statistic \ (b) \ - population \ parameter \ (\beta)}{standard \ error} = \frac{(M_2 - M_1) \ - 0}{s_{M_2 - M_1}}$$

$$S_{M_2 - M_1} = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$$

- we could also conduct the F-test where we substitute the group means and compare to the grand mean model

paired / dependent groups t-test

- similar idea but now we compute difference scores for each participant
 - $D = X_A X_B$
 - if the drug had no effect on a participant, what should the value of D be?
- compute the mean of these differences
 - $M_D = \frac{\sum D}{n}$
 - if the drug had no effect overall, what should M_D be?

hypothesis testing (paired t-test)

- step 1: state the hypotheses
 - H_0 : $\mu_D = 0$
 - $H_1: \mu_D \neq 0$
- step 2: set criteria for decision

$$t_{df} = t_{critical}$$

- step 3: collect data

$$t_{observed} = \frac{sample\ statistic\ (M_D)\ - population\ parameter\ (\mu_D)}{standard\ error}$$

$$t_{observed} = \frac{M_D - \mu_D}{SE} = \frac{M_D - \mu_D}{S_{M_D}}$$

step 4: make a decision!

NHST for two dependent groups (paired t-test)

step 1: state the hypotheses step 2: set criteria for decision

step 3: collect data step 4: make a decision!

$$H_0: \mu_D = 0$$

$$H_1: \mu_D \neq 0$$

$$lpha = .05$$
 find $t_{critical}$ based on one vs. two tailed test and degrees of freedom $df = n - 1$

(1) compute
$$s_{M_D} = \frac{s_D}{\sqrt{n}}$$

(2) compute $t_{observed} = \frac{M_D - \mu_D}{s_{M_D}}$

check whether $t_{observed}$ is beyond $t_{critical}$ and p-value < .05. if so, reject null hypothesis!

activity: conduct the t-test

- sleep data
- find $t_{critical} (n-1) = \pm 2.2621$
- compute the differences for each participant
- compute $M_D = -1.58$
- compute $s_{M_D} = \frac{s_D}{\sqrt{n}} = 0.388$
- compute $t_{observed} = \frac{M_D \mu_D}{s_{M_D}} = -4.062$
- compute p-value = 0.0028
- decide!

effect size for paired t-test

 effect sizes represent how extreme is the mean difference relative to the "standard" difference that is to be expected under the null hypothesis

$$- d = \frac{\mu_D}{\sigma_D}$$

- when the original population standard deviation is unknown, we estimate it using the sample standard deviation of mean differences

- estimated
$$d = \frac{M_D}{s_D}$$

more than two groups

- when more than two levels of the independent variable have to be compared, we cannot use a paired/dependent groups t-test
- what have we done before in this situation?
- we conduct the F-test!
- we have $SS_{total} = SS_{model} + SS_{error}$
- we will account for additional variance explained due to the same participant being measured to ultimately reduce <u>SSerror</u> further

self esteem data

- the self-esteem dataset in R contains results from an experiment comparing self-esteem scores from a group of participants who were all exposed to three different treatment conditions
- research question: are there differences in self-esteem scores across treatments?
- how do we start building a model?

repeated-measures F-test

- step 1: grand mean model
 - compute grand mean = M_y = 5.2368
 - obtain $SS_{total} = \sum (Y M_{y})^{2} = 123.65$
- step 2: treatment mean model
 - get \hat{Y} by substituting treatment means

-
$$M_{t1} = 3.14, M_{t2} = 4.93, M_{t3} = 7.64$$

- obtain $SS_{treatment\ error} = \sum (Y \hat{Y})^2 = 21.19$
- obtain
- $SS_{treatment_model} = SS_{total} SS_{treatment_error} = 102.46$

building a subject-level model

- our goal is to further reduce *SS*_{treatment_error} by utilizing information about the subject
- we start by calculating a mean for each subject M_{subjecti}
- next, we look at how much we gain by using a subject-level mean relative to the grand mean
 - $SS_{subject} = \sum n (M_{subject_i} M_y)^2$

factoring out SS_{subject}

- step 1: from grand mean model
 - $SS_{total} = \sum (Y M_{y})^{2} = 123.65$
- step 2: from drug mean model
 - $SS_{treatment\ error} = \sum (Y \hat{Y})^2 = 21.19$
 - $SS_{treatment\ model} = SS_{total} SS_{treatment\ error} = 102.46$
- step 3: subject-level model
 - $SS_{subject} = \sum n (M_{subject_i} M_y)^2 = 4.57$
- step 4: remove this estimate from remaining error
 - final $SS_{error} = SS_{treatment\ error} SS_{subject} = 16.62373649$

F table

- n: number of observations (data points)
- $n_{subjects}$: number of subjects or participants

	SS	df	MS	F	p-value
between-subjects (treatment)	102.46	k-1=3-1=2	51.23	55.47	<.001
within-subjects					
 subject error 	4.57	$n_{subjects} - 1 = 10 - 1 = 9$			
residual error	16.62	$(k-1)(n_{subjects}-1) =$ (2)(9) = 18	0.92		
total	123.65				

NHST for repeated measures ANOVA

step 1: build grand mean model step 2: build group means model step 3: build subject means model step 4: conduct F test

(1) "summarizing" data using a single grand mean (ignoring all group labels)

$$SS_{total} = \sum_{i} (Y - M_y)^2$$

(1) find group means
$$M_{group}$$

$$SS_{model_error} = \sum (Y - M_{group})^2$$

(3) compute
$$SS_{model} = SS_{total} - SS_{model_error}$$

(2) compute
$$SS_{subject} = \sum n (M_{subject_i} - M_y)^2$$

(3) compute final

$$SS_{error} = SS_{model_error} - SS_{subject}$$

(1) create F table
(2) find
$$F_{critical}$$

(3) compute $F_{observed} = \frac{MS_{model}}{MS_{error}}$

(4) find p-value for F-score

(4) decide!

RM-ANOVA assumptions

- interval/ratio dependent variable
- normality
- sphericity: the variances of the differences between all possible pairs of within-subject conditions are equal
 - Mauchly's test is typically performed to test for sphericity

id	t1	t2	t3	t1-t2	t1-t3	t2-t3
1	4.005027	5.182286	7.107831	-1.177259	-3.102804	-1.925545
2	2.558124	6.912915	6.308434	-4.354791	-3.75031	0.604481
3	3.244241	4.443434	9.77841	-1.199193	-6.534169	-5.334976
4	3.419538	4.711696	8.347124	-1.292158	-4.927586	-3.635428
5	2.871243	3.908429	6.457287	-1.037186	-3.586044	-2.548858
6	2.045868	5.340549	6.653224	-3.294681	-4.607356	-1.312675
7	3.525992	5.580695	6.840157	-2.054703	-3.314165	-1.259462
8	3.179425	4.370234	7.818623	-1.190809	-4.639198	-3.448389
9	3.507964	4.399808	8.471229	-0.891844	-4.963265	-4.071421
10	3.043798	4.489376	8.5811	-1.445578	-5.537302	-4.091724
				var	var	var
				1.303951124	1.155305965	3.081987038

ANOVA limitations

- require simple designs, complete data, and normal residuals
- not equipped to handle missing data
- difficult to accommodate differing number of repeats/trials
- cannot capture nested/clustered designs

mixed models

- linear/generalized mixed effects models consider the variability due to:
 - missing data
 - categorical/continuous IVs and DVs
 - unbalanced designs
 - clustered designs (no collapsing into means)
- think of them as the parent models from which special cases such as t-tests and ANOVAs are derived
- different 'lines/curves' are fit for each individual and for each item, with their own slope and intercept, instead of "averaging" across everyone

mixed effects models

- are appropriate when data are nested when several units or levels of analysis are possible and their separate and joint influences need to be considered
- common alternative terms are multilevel models, random coefficient models, and hierarchical linear models
- data structures suitable for mixed models arise in a wide variety of common research problems
 - classes within schools within states
 - trials within subjects within age groups

bonus content

- the following slides describe how the F-test would be conducted for the sleep data with two within-subject conditions
- NOTE: as we saw, you can do a paired t-test for these data but the same ideas of F-test will also apply here and the F-test is doable here too

F-test for sleep data

- let's start building our model(s)
- step 1: grand mean model
 - compute grand mean = $M_v = 1.54$
 - obtain $SS_{total} = \sum (Y M_y)^2 = 77.368$
- step 2: drug mean model
 - get \hat{Y} by substituting drug means

-
$$M_{drugA} = 0.75, M_{drugB} = 2.33$$

- obtain $SS_{drug\ error} = \sum (Y \hat{Y})^2 = 64.886$
- obtain $SS_{drug_model} = SS_{total} SS_{error} = 12.482$

F-test for sleep data

- let's start building our model(s)
- step 1: grand mean model
 - compute grand mean = $M_v = 1.54$
 - obtain $SS_{total} = \sum (Y M_y)^2 = 77.368$
- step 2: drug mean model
 - get \hat{Y} by substituting drug means

-
$$M_{drugA} = 0.75, M_{drugB} = 2.33$$

- obtain $SS_{drug_error} = \sum (Y \hat{Y})^2 = 64.886$
- obtain $SS_{drug_model} = SS_{total} SS_{error} = 12.482$

building a subject-level model

- our goal is to further reduce SS_{error} by utilizing information about the subject that is implicit in our drug model
- we start by calculating a mean for each subject M_{subject};
- next, we build a model that substitutes each value (Y_i) with the subject-level mean $(M_{subject_i})$
 - essentially, we are looking at how much we gain by using building a model at the level of the subject
- we do this for ALL subjects across ALL groups in our data and then look at how much "error" is explained by this subject-level model relative to the grand mean

-
$$SS_{subject} = \sum n (M_{subject_i} - M_y)^2$$

factoring out SS_{subject}

- step 1: from grand mean model

-
$$SS_{total} = \sum (Y - M_{\gamma})^2 = 77.368$$

- step 2: from drug mean model

-
$$SS_{drug_error} = \sum (Y - \hat{Y})^2 = 64.886$$

-
$$SS_{drug_model} = SS_{total} - SS_{error} = 12.482$$

- step 3: subject-level model

-
$$SS_{subject_error} = \sum n (M_{subject_i} - M_y)^2 = 58.078$$

- step 4: remove this estimate from remaining SS_{error}

- final
$$SS_{error} = SS_{drug_error} - SS_{subject_error} = 6.808$$

F table

- n: number of observations (data points)
- $n_{subjects}$: number of subjects or participants

	SS	df	MS	F	p-value
between-subjects (drug)	12.482	k-1=2-1=1	12.482	16.50	.0028
within-subjects					
 subject error 	58.08	$n_{subjects} - 1 = 10 - 1 = 9$			
 residual error 	6.808	$(k-1)\big(n_{subjects}-1\big)=9$	0.756		
total	77.38				

next time

- **before** class
 - watch: Dependent Groups t-test [6 min]
 - watch: Repeated Measures ANOVA [16 min]
 - work on: Problem Set 7!
 - post: Data Around Us OR practice questions (class participation)
- during class
 - chi-square tests