

SECOND SEMESTER 2023-24

Course Handout

09-01-2024

Course No. : EEE F435

Course Title : Digital Image Processing
Instructor-in-Charge : Dr. Rajesh Kumar Tripathy

1. Scope and Objective of the Course:

The course introduces the students to the fundamentals of digital images and various processing techniques that are applied to digital images. It begins with an introduction to the fundamentals of digital images and discusses the various discrete transforms, which are extensively used in image processing. It then discusses the different image processing techniques, such as image enhancement, image segmentation, automatic image classification, and recognition. This course is very helpful for students interested in pursuing research on computer vision, image processing, pattern recognition, and applied artificial intelligence. The OpenCV-based Python software framework will be used in this course to demonstrate different image-processing algorithms. The students need to solve the programming assignments and gain hands-on experience in the industrial applications of digital image processing.

2. Textbooks:

T1. Gonzalez, R. C. & R. E. Woods, Digital Image Processing, Pearson Education, 4th ed., 2017

3. Reference books/Materials

R1: OpenCV tutorial, https://opencv24-python-tutorials.readthedocs.io/_/downloads/en/stable/pdf/

4. Course Plan:

Lectur	Learning Objectives	Topics to be covered	Reference to Text	
e No.			Book	
1-2	To introduce fundamental concepts and terms associated with digital images.	Introduction and digital image fundamentals.	Chapter 2	
3-5	To study image enhancement by gray-level transformations	Some basic gray-level transformations	Sec. 3.1, 3.2	
6-7	To study the Histogram processing of an image	Histogram processing	Sec 3.3	
8-9	To learn image enhancement by filtering in the spatial domain	Spatial filtering	Sec. 3.4-3.7	
10-11	Review of Fourier domain techniques	2D Fourier Transform, 2D DFT, Convolution	Sec. 4.1-4.6	

12-14	Filtering in the Fourier domain	Image smoothing and sharpening using Frequency domain filters	Sec. 4.7-4.10		
15-17	Image Restoration and Reconstruction	Noise Models, Inverse filtering	Sec. 5.1-5.7		
18-21	Image Compression	Information Theory, Huffman coding, Basic Compression Methods, JPEG compression			
22-24	Morphological Image Processing	Erosion, dilation, Opening closing, Hit-or-miss transformation, some basic morphological algorithms	Sec. 9.1-9.4, 9.5.1- 9.5.7		
25-30	Image Segmentation	Point, line, and edge detection, thresholding	Sec. 10.1-10.3		
31-35	Image representation and feature extraction	Principal components analysis (PCA), transfer learning-based feature extraction, VGG16, VGG19, ResNet50, InceptionV3 XCeptionNet etc.	Sec 11.1 and Class notes		
36 –38	Applications of Artificial intelligence in digital image processing	U-net-based image segmentation, applications such as optic disc segmentation in the fundus or retinal image, blood vessel segmentation in the fundus image, lung segmentation in chest X-ray images, etc.	Class notes		
39 –44	Image classification	Convolutional neural network, recurrent neural network, self-attention, and vision transformer for image classification	Class notes		

5. Evaluation Scheme:

Component	Durati on	Weightage (%)	Marks	Date & Time	Nature of Component
Mid-Sem Exam	90 min	30%	90	11/03 - 4.00 - 5.30PM	Closed Book
Programming Assignments using Python (Assignment 1 and Assignment 2)		30%	90	To be announced	Open Book
Comprehensive Exam	180 min	40%	120	07/05 AN	Closed Book

- **6. Chamber Consultation Hour:** To be announced
- 7. Notices: Notices concerning this course will be on CMS.
- **8. Make–up Examination:** Make-up will be given on genuine grounds only. Prior application should be made for seeking the make-up examination.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester, and no type of academic dishonesty is acceptable.

Rajesh Kumar Tripathy
INSTRUCTOR-IN-CHARGE