Analysis II

Benjamin Dropmann

February 27, 2025

1 Metrische Räume

Skalarproduct Seien zwei vektoren $x, y \in \mathbb{R}^n$ dann ist der skalarproduktwie Folgt definiert:

$$x \cdot y = \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

Eufklidische Norm Sei $x \in \mathbb{R}^n$ dann ist die Euklidische norm des Vektors

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

Euklidischer Abstand

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Dreiecksungleichung $\forall x, y, zin\mathbb{R}^n \to ||x-z|| \le ||x-y|| + ||y-z||$ **Metrische Räume** Ein metrische (M.R) (X, d) ist eine nicht-leere menge X zusammen mit einer funktion $d: X \times X \to [0; \infty[$ Welche die folgenden Eigenschaften besitzt:

- 1. Positiv definiert $\forall x, y \in X \quad d(x, y) = 0 \Leftrightarrow x = y$
- 2. Symmetrie $\forall x, y \in X \quad d(x, y) = d(y, x)$
- 3. Dreiecksungleichung $\forall x, y, z \in X$ $d(x, z) \leq d(x, y) + d(y, z)$

Folgen Sei X eine Menge dann ist $(a_n)_{n\in\mathbb{N}_0}$ eine Folge $\mathbb{N}_0\to X$ mit dem bild $a_n=a(n)$.

Konvergenz einer Folge in X $(dim(x \ge 1) \text{ Sei } (X,d) \text{ ein M.R. und } (a_n)_{n \in \mathbb{N}_0} \text{ eine Folge. Dann konvergiert die folge}$ auf eine zahl $A \in X$ falls.

$$\forall \varepsilon > 0 \quad \exists N > 0 : \quad d(a_n, A) < \epsilon$$

Falls es kein A gibt dann divergiert die Folge.

Teilfolgen Sei ein M.R. (X,d) und $(a_n)_{n\in\mathbb{N}_0}$ eine folge, dann existier eine teilfolge $(x_{n_k})_{n\in\mathbb{N}_0}$ wobei $(n_k)_{k\in\mathbb{N}_0}$ eine Folge von reellen Zahlen ist.

Häufungspunkt Sei (X,d) ein M.R. und $(a_n)_{n\in\mathbb{N}_0}$ eine Folge. $A\in X$ ist ein Häufungspunkt der Folge falls es eine Teilfolge die auf A Konvergiert.

Satz $y \subset X$ Teilmenge eines M.R. (X,d) $x \in X$ ist Häufungspunkt von y falls eine Folge $(y_n)_{n \in \mathbb{N}_0}$ existiert welche gegen x konvergiert.

Lemma Es sei $(x_n)_{n\in\mathbb{N}_0}$ eine Folge im Metrischen Raum (X,d) mit $x\in X$ Dann konvergiert $(x_n)_{n\in\mathbb{N}_0}$ genau dann wenn jede Teilfolge $(x_{n_k})_{k\in\mathbb{N}_0}$ eine Teilfolge $(x_{n_{m_k}})_{k\in\mathbb{N}_0}$ die gegen x konvergiert. **Lemma**Eine Folfe in $(\mathbb{R}^n, d(x,y) = ||x-y||)$ Konvergiert genau dann wenn sie koordinaten weise konvergiert.

1.1 Cauchy Folge

Eine Folge $(a_n)_{n\in\mathbb{N}_0}$ in einem Metrischen Raum (X,d) heisst cauchy foglge falls:

$$\forall \varepsilon > 0 \quad \exists N > 0 \text{ So dass } \forall m, n > N : \quad d(a_n, a_m) < \varepsilon$$

Lemma Analog zur Folgen in \mathbb{R} gilt:

• Jede Cauchy-Folge ist beschränkt, $\Leftrightarrow \exists K \in \mathbb{R} \text{ so dass } d(a_n, a_0 \leq K \forall n \in \mathbb{N}_0$

- Jede Konvergente Folge ist eine Cauchy-Folge.
- Eine Cauchy Folge konvergiert genau dann wenn sie eine konvergente Teilfolge besitzt

Vollstandigkeit Eine Metrischer Raum heisst vollständig falls jede Cauchy-Folge in X Konvergiert.

Theorem Für alle $n \geq 1$ ist \mathbb{R}^n mit der Standard metrik ist Vollständig.

Beweis Analog zur tatsache, das in \mathbb{R}^n konvergenz im Metrischen Raum äquivalent ist zur Koordinaten-weise konvergenz: Eine Cauchy-Folge in \mathbb{R}^n zu sein ist äquivalent zur Tatsache dass jede Koordinate eine Cauchy-Folge liefert (in den Reelen zahlen).

In den Reellen Zahlen konvergieren alle Cauchy-Folgen, Daher muss die Behauptung stimmen. Q.E.D.

1.2 Topologie Metrischer Raume

Es sei (X, d) ein Metrischer Raum, $x \in X$ und r > 0 eine reelle Zahl. Der offene Ball um den Punkt x mit radius r ist die Menge:

$$B_r(x) = B(x, r := [y \in X | d(x, y) < r]$$

1.3 Innere/Abschulss-mengen und Ränder

Sei (X, d) ein Metrischer Raum und $A \subset X$ eine Teilmenge

 \bullet das innere der Menge A ist gegebe durch

$$A^o = int(A) := \bigcup [E \subset A] E \text{ ist offen}$$

Und ist die grösste offene Menge, welche in A enthalten ist.

• Der Abschluss von A:

$$\overline{A} := \bigcap [A \subset U | U \text{ ist abgeschlossen}]$$

und ist die kleinste abgeschlossene Menge welche A enthält.

• Dr Tipologische Rabd von A ist \overline{A}/A^o

Beispiel, in \mathbb{R} mit $A=]0,1[\rightarrow A^o=]0,1[$ und $\overline{A}=[0,1]$ dann ist der Rand: $\{0\}\cup\{1\}$.

Proposition Es sei (X, d) ein Metrischer Raum:

• Eine Teilmenge $A \subset X$ ist genau dann offen, alls für jede konvegente Folge $(x_n)_{n \in \mathbb{N}_0}$ mit grenzwert $x \in A$ gilt:

$$\exists N \in \forall n > N \quad x : n \in A$$

• Eine Teilmenge $A \subset X$ ist genau dann abgeschlossen falls fur jede konvergente Folge $(x_n)_{n \in \mathbb{N}_0} \subset A$ mit grenzwert $x \in A$ ist $x \in A$

Beweis Fall der Offene Menge:

" \Rightarrow " Es sei $(x_n)_{n\in\mathbb{N}_0}$ eine Konvergente Folge mit grenzwert $x\in A$. Gemäss vorassetzung wissen wir, dass die Teilmenge A offen ist Da A offen ist, und $x\in A$ gibt es ein Offenen Ball $B(x,\varepsilon)\subset A$. Für dieses $\varepsilon>0$ $\exists N\in\mathbb{N}_0$ (wegen der Konvergenz der betrachteten Folge) $d(x,x_n)<\varepsilon$ (Konvergente folgen sind in X Cauchy-Folgen) dies Bedeutet das FOlgeglieder mit index n>N in $B(x,\varepsilon)$

"\(\epsilon\)" Wir nehmen jetzt an das $A \subset X$ nicht offen ist. Dies bedeutet dass $\exists x \in A\varepsilon > 0$ $B(x,\varepsilon)/A \neq \emptyset$ Insbesonde konnen wir $\varepsilon = 2^{-1}$ betrachten und eine Folge $(x_n)_{n \in \mathbb{N}}$ konstruiren mit $x_n \in B(x,2^{2-n})/A$ Es gilt für diese Folge aber auch dass Folgende $x_n \to x \in A$

Der Fall der Geschlossene Menge:

" \Rightarrow " Wir nehmen an dass A abgeschlossen ist. Wir betrachten dann eine beliebige FOlge $(x_n)_{n\in\mathbb{N}}$ mit $x_n \to x \in X$ Da $V := X/A = A^c$ offen ist, kann der Grenzwert x nicht in dieser offennen Menge liegen, da sonst die Folgenglieder ab einen bestimmten Index ebenfalls in dieser Offenene Menge liegen müssen, damit muss gelten dass: $x \in A$

"\(\infty\)" Wir nehmen an dass A nicht abgeschlossen ist, dann ist A^c nicht offen Dies bedeutet dass: $\exists y \in A^c \forall \varepsilon > 0 \quad B(y,\varepsilon) \cap A \neq \emptyset$ Damit kann man eine Folge konstruiren $(x_n)_{n \in \mathbb{N}}$ mit $d(y,x_n) < \varepsilon \quad \Rightarrow \quad x \to y \in A^c$ Dann ist de beweis fertig Dann ist de beweis fertig.

Proposition Es sei (X, d) ein Metrischer Raum. Eine folge $(x_n)_{n \in \mathbb{N}_0}$ konvergiert genau dann gegen x wenn alle offene Mengen U gilt:

$$\exists N \in \mathbb{N} \forall n > N \quad x_n \in U$$

Beweis " \Rightarrow " Sei $(x_n)_{n\in\mathbb{N}}$ eine gegen x konvergierende Folge, es sei ausserdem U offen mit $x\in U$. Da U offen ist: $\exists \varepsilon>0 B(x,\varepsilon)$ Dann gilt auch

$$\forall \varepsilon \exists N \in \mathbb{N} \forall n > N \quad d(x, x_n) < \varepsilon$$

" \Leftarrow " $\forall \epsilon \ B(x,\epsilon)$ ist offen. Und es gilt $\exists N \in \mathbb{N} : x_n \in \forall n > NB(x,\epsilon)$ Dies bedeutet gemäss definition dass $\lim_{n \to \infty} x_n = x$.

Korollar Es sei X eine Menge und d_1, d_2 zwei verschieden Metriken. Dann haben $(X, d_1), (X, d_2)$ genau dann die selben konvergente Folgen wenn die Topologien von d_1 und d_2 ubereinstimmen.

1.4 Banachscher Fixpunkttheorem

Sei (X,d) Ein Vollständiger Metrischer raum mit eine Abbildung $f:X\to X$ die Lipschitz stetig ist mit L<1

$$\forall x, x' \in X \quad d(f(x), f(x')) \le Ld(x, x')$$

Dann gibt es ein wert $z \in X$ wofür f(z) = z

Beweis der Existenz des Fixpunkts Wir nehmen $x \in x_0$ beliebig, dann konstruiren wir iterativ eine Folge in X und zwar wie folgt: $x_{n+1} := f(x_n)$ Dies ergibt tatsächlich eine Folge $(x_n)n \in \mathbb{N}_0$ Als nächstes wollen wir Zeigen dass diese Folge eine Cauchy-Folge ist.

- $d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1})) = d(f^n(x_0), f^n(x_0)) \le L^n d(x_1, x_0)$
- $d(x_m,x_n) \leq \sum_{k=n}^{m-1} d(x_{k+1},x_k) \leq \sum_{k=n}^{m-1} L^k d(x_1,x_0) = d(x_1,x_0) \sum_{k=n}^{m-1} l^k$ Und diese Reihe ist für $L < 1 \ \forall n,m \in \mathbb{N}_0$ und sogar $m \to \infty$ konvergent. Und wir finden:

$$\forall m, n \in \mathbb{N}_0, d(x_n, x_m) \le d(x_1, x_0) \underbrace{\frac{L^n}{1 - L}}_{\text{für } n \to \infty, \to 0}$$

Und damit ist unsere Folge eine Cauchy-Folge

Es bleibt noch zu zeigen dass \overline{x} ein Fixpunkt ist:

$$f(\overline{x}) = \lim_{i}$$