FINITE AUTOMATA (FA)

ITEU133 AUTOMATA AND THEORY OF COMPUTATION

COURSE SYLLABUS

- Finite Automata (FA)
 - Deterministic Finite Accepters (DFA)
 - Nondeterministic Finite Accepters (NFA)
 - Equivalence of Deterministic and Nondeterministic
 Finite Accepters
 - NFA with Epsilon Transition (NFA with ε)

FINITE AUTOMATON (FA)

- Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream or sequence of input symbols
- Recognizer for "Regular Languages"

TYPES OF AUTOMATON

- Deterministic Finite Automata (DFA)
 - The machine can exist in only one state at any given time
- Non-deterministic Finite Automata (NFA)
 - The machine can exist in multiple states at the same time

THREE WAYS OF PRESENTING FINITE AUTOMATA

- State Diagram / transition graph
- State Table
- Transition Function

TRANSITION GRAPHS

- A transition graph is a directed graph in that the vertices represent the internal states of the automaton, and the edges represent the transitions.
- The labels on the vertices are the names of the internal states, while the labels on the edges are the current values of the input symbols.

Deterministic Finite Automata (DFA) - Definition

- A DFA consists of:
 - $-Q \rightarrow$ a finite set of states
 - $-\Sigma \rightarrow$ a finite set of input symbols (alphabet)
 - $-q_0 \rightarrow$ a start state
 - $-F \rightarrow$ set of final states
 - $-\delta \rightarrow$ a transition function that is a mapping between Q x $\Sigma ==> Q$

• DFA is defined by the 5-tuple: {Q, Σ , q₀, F, δ }

Design a DFA, M which accepts the language

```
L(M) = {w \epsilon (a, b)* :w does not contain three consecutive b's)}
Let M = (Q, \Sigma, \delta, q0 , F )
where
```

- $Q = \{q0, q1, q2, q3\} \Sigma = \{a, b\}$
- q0 is the initial state F = {q0, q1, q2}
- δ is defined as follows:

What does a DFA do on reading an input string?

Input: a word w in \sum^*

Question: Is w acceptable by the DFA?

Steps:

Start at the "start state" q₀

For every input symbol in the sequence w do

Compute the next state from the current state, given the current input symbol in w and the transition function

Determine the DFA schematic for

$$M = (Q, \sum, \delta, q0, F)$$

$$Q = \{q1, q2, q3\}, \Sigma = \{0, 1\},$$

q1 is the start state, $F = \{q2\}$

Initial state q	Symbol	Final state $\delta(q,\sigma)$
q_1	0	q_1
q_1	1	q_2
q_2	0	q_3
q_2	1	q_2
q_3	0	q_2
q_3	1	q_2

Deterministic Finite Automata (DFA)

Initial state	Symbol σ	Final state $\delta(q,\sigma)$
q_1	0	q_1
q_1	1	q_2
q_2	0	q_3
q_2	1	q_2
q_3	0	q_2
q_3	1	q_2

Deterministic Finite Automata (DFA)

Initial state	Symbol σ	Final state $\delta(q,\sigma)$
q_1	0	q_1
q_1	1	q_2
q_2	0	q_3
q_2	1	q_2
q_3	0	q_2
q_3	1	q_2

 $L = \{w \mid w \text{ contains at least one 1 and}$ an even number of 0s follow the last 1}

- Sketch the DFA given
- M= ($\{q1, q2\}, \{0, 1\}, \delta, q1, \{q2\}$) and δ is given by
 - $\delta(q1, 0) = q1$
 - $\delta(q1, 1) = q2$
 - $\delta(q2, 0) = q1$
 - $\delta(q2, 1) = q1$

 Design a DFA, the language recognized by the Automaton being L= {aⁿb: n≥0}

EXAMPLE #1

Build a DFA for the following language:

L = {w | w is a binary string that contains 01 as a substring}

Steps for building a DFA to recognize L:

 $\Sigma = \{0,1\}$

Decide on the states: Q

Designate start state and final state(s)

δ: Decide on the transitions:

Final states == same as "accepting states"

Other states == same as "non-accepting states"

REGULAR EXPRESSION: (0+1)*01(0+1)* DFA for strings containing 01

What makes this DFA deterministic?

 What if the language allows empty strings?

- $Q = \{q_0, q_1, q_2\}$
- $\sum = \{0,1\}$
- start state = q_0
- $F = \{q_2\}$
- Transition table

 \mathcal{S} $\mathbf{0}$ $\mathbf{1}$ \mathbf{q}_0 \mathbf{q}_1 \mathbf{q}_0 \mathbf{q}_1 \mathbf{q}_2 \mathbf{q}_2 \mathbf{q}_3 \mathbf{q}_3

DEAD STATE

Are those non final state which transits in itself for all input symbol

Extension of transitions (δ) to Paths(δ)

• δ (q, w) = destination state from stateq on input string w

•
$$\delta$$
 $(q, wa) = \delta$ $(\delta(q, w), a)$

-Work out example #3 using the input sequence w=10010, a=1:
FEU Institute of Technology

- A Non-deterministic Finite Automaton (NFA)
 - is of course "non-deterministic"
 - Implying that the machine can exist in more than one state at the same time
 - Transitions could be non-deterministic

 Each transition function therefore maps to a <u>set</u> of states

- A Non-deterministic Finite Automaton (NFA) consists of:
 - Q ==> a finite set of states
 - ∑ ==> a finite set of input symbols (alphabet)
 - $q_0 ==> a start state$
 - F ==> set of final states
 - δ ==> a transition function, which is a mapping between Q x Σ ==> subset of Q
- An NFA is also defined by the 5-tuple:
 - $\{Q, \sum, q_0, F, \delta \}$

HOW TO USE AN NFA?

Input: a word w in ∑*

Question: Is w acceptable by the NFA?

Steps:

Start at the "start state" q₀

For every input symbol in the sequence w do

Determine all possible next states from all current states, given the current input symbol in w and the transition function

If after all symbols in w are consumed and if at least one of the current states is a final state then *accept w*;

Otherwise, reject w.

Regular expression: (0+1)*01(0+1)* NFA for strings containing 01

Why is this non-deterministic?

What will happen if at state q₁ an input of 0 is received?

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{0,1\}$$

• start state =
$$q_0$$

•
$$F = \{q_2\}$$

Transition table

	C	, syr	symbols		
	0	0	1		
S	→q ₀	$\{q_0,q_1\}$	{q ₀ }		
states	\mathbf{q}_1	Ф	$\{q_2\}$		
st	*q ₂	{q ₂ }	{q ₂ }		

What is a "dead state"?

Note: Explicitly specifying dead states is just a matter of design convenience (one that is generally followed in NFAs), and this feature does not make a machine deterministic or non-deterministic.

A DFA for recognizing the key word "while"

An NFA for the same purpose:

Transitions into a dead state are implicit

NON-DETERMINISTIC FINITE AUTOMATA

- 1. L={x ε {a, b,c}* | x contains the pattern abac }
- 2. Determine an NFA accepting all strings over {0,1} which end in 1 but does not contain the substring 00.
- 3. Design an NFA with no more than five states for the set $\{abab^n : n \ge 0\}$ U $\{aba^n : n \ge 0\}$.

Language of an NFA

- An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w
- $L(N) = \{ w \mid \delta(q_0, w) \cap F \neq \Phi \}$

ADVANTAGES & CAVEATS FOR NFA

- Great for modeling regular expressions
 - String processing e.g., grep, lexical analyzer
- Could a non-deterministic state machine be implemented in practice?
 - A parallel computer could exist in multiple "states" at the same time
 - Probabilistic models could be viewed as extensions of nondeterministic state machines (e.g., toss of a coin, a roll of dice)

DIFFERENCES: DFA VS. NFA

But, DFAs and NFAs are equivalent in their power to capture languages!!

- <u>DFA</u>
- 1. All transitions are deterministic
 - Each transition leads to exactly one state
- For each state, transition on all possible symbols (alphabet) should be defined

- 3. Accepts input if the last state is in F
- 4. Sometimes harder to construct because of the number of states
- 5. Practical implementation is feasible

- NFA
- Some transitions could be nondeterministic
 - A transition could lead to a subset of states
- 2. Not all symbol transitions need to be defined explicitly (if undefined will go to a dead state this is just a design convenience, not to be confused with "non-determinism")
- 3. Accepts input if *one of* the last states is in F
- 4. Generally easier than a DFA to construct
- 5. Practical implementation has to be deterministic (convert to DFA) or in the form of parallelism

EQUIVALENCE OF DFA & NFA

Theorem:

Should be true—A language L is accepted by a DFA <u>if and only if</u> it is accepted by an NFA.

Proof:

- 1. If part:
 - Prove by showing every NFA can be converted to an equivalent DFA (in the next few slides...)
- 2. Only-if part is trivial:
 - Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, if L is accepted by a DFA, it is accepted by a corresponding NFA.

NFA to DFA by SUBSET CONSTRUCTION

- Let $N = \{Q_N, \sum, \delta_N, q_0, F_N\}$
- Goal: Build $D=\{Q_D, \sum, \delta_D, \{q_0\}, F_D\}$ s.t. L(D)=L(N)
- Construction:
 - 1. Q_D = all subsets of Q_N (i.e., power set)
 - 2. F_D =set of subsets S of Q_N s.t. $S \cap F_N \neq \Phi$
 - 3. δ_D : for each subset S of Q_N and for each input symbol a in Σ :
 - $\delta_{D}(S,a) = U \delta_{N}(p,a)$

NFA to DFA construction:

Example

• $L = \{ w \mid w \text{ ends in } 01 \}$

Idea: To avoid enumerating all of power set, do "lazy creation of states"

δ_{N}	0	1
q_0	${q_0,q_1}$	{q ₀ }
q_1	Ø	{q ₂ }
*q ₂	Ø	Ø

DFA:

δ_{D}	0	1
Ø	Ø	Ø
→ {q ₀ }	$\{q_0,q_1\}$	{q ₀ }
{q₁}	Ø	{ Y ₂ }
*{q ₂ }	Ø	Ø
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
*{q ₀ ,q ₂ }	$\{q_0,q_1\}$	$\{q_0\}$
*{q ₁ ,q ₂ }	Ø	{q ₂ }
*{q ₀ ,q ₁ ,q ₂ }	{q ₀ ,q ₁ }	{q ₀ ,q ₂ }

	δ_{D}	0	1
_	→ {q ₀ }	${q_0,q_1}$	{q ₀ }
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
	*{q ₀ ,q ₂ }	{q ₀ ,q ₁ }	{q ₀ }

- 0. Enumerate all possible subsets
- 1 Natarmina transitions
- 2. Retain only those states reachable from {q_o}

Information Technology Education Department

FEU Institute of Technology

COLLEGE OF ENGINEERING • COLLEGE OF COMPUTER STUDIE

NFA to DFA: Repeating the example using LAZY CREATION

• $L = \{w \mid w \text{ ends in } 01\}$

Introduce states as you go(on a need basis)

EQUIVALENCE OF NFA AND DFA

Determine a Deterministic Finite State Automaton from the given Nondeterministic FSA.

M= ({q0, q1}, {a, b}, δ , qo,{q1}) with the state table diagram for δ given below

δ	а	b
q0	{q0, q1}	{q1}
q1	Ф	{q0, q1}

EQUIVALENCE OF NFA AND DFA

EQUIVALENCE OF NFA AND DFA

Any state containing q_2 or q_4 will be a final state. The DFA is shown below.

APPLICATIONS

Text indexing

inverted indexing

For each unique word in the database, store all locations that contain it using an NFA or a DFA

Find pattern P in text T

Example: Google querying

Extensions of this idea:

PATRICIA tree, suffix tree

A few subtle properties of DFAs and NFAs

- The machine never really terminates.
 - It is always waiting for the next input symbol or making transitions.
- The machine decides when to <u>consume</u> the next symbol from the input and when to <u>ignore</u> it.
 - (but the machine can never <u>skip</u> a symbol)
- => A transition can happen even *without* really consuming an input symbol (think of consuming ε as a free token)
- A single transition cannot consume more than one symbol.

FA with ε-Transitions

- Allow <u>explicit</u> ε-transitions in finite automata
 - i.e., a transition from one state to another state without consuming any additional input symbol
 - Makes it easier sometimes to construct NFAs

<u>Definition:</u> ε -NFAs are those NFAs with at least one explicit ε -transition defined.

ε -NFAs have one more column in their transition table

Example of an ε-NFA

L = {w | w is empty, or if non-empty will end in 01}

ε-closure of a state q,
 ECLOSE(q), is the set of all states (including itself) that can be reached from q by repeatedly making an arbitrary number of ε-transitions.

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ϵ -closure states as well.

Example of another ε-NFA

Equivalency of DFA, NFA, ε-NFA

Theorem: A language L is accepted by
 SOMe ε-NFA if and only if L is accepted by some DFA

Implication:

- DFA \equiv NFA \equiv ϵ -NFA
- (all accept Regular Languages)

Eliminating ε-transitions

```
Let E = \{Q_E, \sum, \delta_E, q_0, F_E\} be an \epsilon-NFA 
Goal: To build DFA D = \{Q_D, \sum, \delta_D, \{q_D\}, F_D\} s.t. L(D) = L(E) 
Construction:
```

- 1. Q_D = all reachable subsets of Q_E factoring in ε -closures
- 2. $q_D = ECLOSE(q_0)$
- 3. F_D =subsets S in Q_D s.t. $S \cap F_F \neq \Phi$
- 4. $δ_D$: for each subset S of Q_E and for each input symbol a ∈ Σ:
 - Let $R = U \delta_E(p,a)$ s // go to destination states
 - $\delta_D(S,a) = U \ ECLOSE(r)$ // from there, take a union of all their ϵ -closures

Example: ε-NFA → DFA

L = {w | w is empty, or if non-empty will end in 01}

	δ_{E}	0	1	3
\longrightarrow	*q' ₀	Ø	Ø	$\{q'_0,q_0\}$
	q_0	${q_0,q_1}$	$\{q_{0}\}$	$\{q_0\}$
	q_1	Ø	$\{q_2\}$	{q ₁ }
	*q ₂	Ø	Ø	$\{q_2\}$

	δ_{D}	0	1
\rightarrow	*{q' ₀ ,q ₀ }		

Example: ε-NFA → DFA

 $L = \{w \mid w \text{ is empty, or if non-empty will end in 01}\}$

