Chapter 1

 $\mathcal{D}_X\text{-modules}$ and the Riemann-Hilbert Correspondence

Chapter 2

The Behaviour of \mathscr{A}_X^R -Modules

Mention BVWZ

The classical approximation of the roots of the *b*-polynomial due to Kashiwara (1976) relies on a quotient module $\int \mathcal{M}/\mathcal{D}_X u$ being holonomic. This is no longer true in the multivariate case but a refined assumption, called relative holonomicity, due to Maisonobe (2016) still holds. This refinement works with $\mathcal{D}_X \times \mathbb{C}[s]$ -modules whence one gets characteristic varieties inside $T^*X \times \mathbb{C}^p$.

2.1 Modules over \mathscr{A}_X^R

Let X be a smooth complex irreducible algebraic variety of dimension n and denote \mathscr{D}_X for it's sheaf of rings of algebraic differential operators. For a regular commutative \mathbb{C} -algebra integral domain R we define a sheaf of rings on $X \times \operatorname{Spec} R$ by

$$\mathscr{A}_X^R = \mathscr{D}_X \otimes_{\mathbb{C}} \mathcal{O}_R; \qquad \mathscr{A}_X = \mathscr{A}_X^{\mathbb{C}[s]}$$

where we abbreviated $\mathcal{O}_R = \mathcal{O}_{\operatorname{Spec} R}$. The order filtration $F_p \mathscr{D}_X$ extends to a filtration $F_p \mathscr{D}_X^R = F_p \mathscr{D}_X \otimes_{\mathbb{C}} \mathcal{O}_R$ on \mathscr{D}_X^R which is called the relative filtration.

The proof of the following results proceeds precisely like the case of \mathcal{D}_X -modules which may be found in (Hotta and Tanisaki, 2007, Chapter 2).

Proposition 2.1.1. A quasi-coherent \mathscr{A}_X^R -module \mathscr{M} is coherent if and only if it admits a filtration such that $\operatorname{gr}^{rel}\mathscr{M}$ is coherent over $\operatorname{gr}^{rel}\mathscr{A}_X^R$.

Proposition 2.1.2. Let \mathscr{M} be a coherent \mathscr{A}_X^R -module, then the support of $\operatorname{gr}^{rel}\mathscr{M}$ in $T^*X \times \operatorname{Spec} R$ is independent of the chosen filtration. It is called the characteristic variety of \mathscr{M} and denoted $\operatorname{Ch}^{rel}\mathscr{M}$.

A coherent \mathscr{A}_X^R -module \mathscr{M} is said to be relative holonomic over R if $\operatorname{Ch}^{rel}\mathscr{M} = \bigcup_w \Lambda_w \times S_w$ for irreducible conic Lagrangian subvarieties $\Lambda_w \subseteq T^*X$ and irreducible closed subvarieties $S_w \subseteq \operatorname{Spec} R$.

2.2 Direct Image Functor for \mathscr{A}_X^R -modules

In this section we state the natural generalisation of the direct image functor for \mathscr{D}_X -modules to the relative case of \mathscr{A}_X^R -modules. As with \mathscr{D} -modules this is the most natural for right-modules.

p?

Maybe also mention the example Robin put on the white-board? Possibly in the main body?

out the priate exs in the nce some-

Transfer Modules and \mathscr{A}_{V}^{R} -module Direct Image

Let $\mu: Y \to X$ be some morphism of smooth algebraic varieties. A-priori it is not even clear what \mathscr{A}_X^R -module should correspond to \mathscr{A}_Y^R since there is no natural push forward of vector fields. This issue may be resolved by use of the transfer $(\mathscr{A}_Y^R, \mu^{-1}\mathscr{A}_X^R)$ -bimodule $\mathscr{A}_{Y \to X}^R := (\mathcal{O}_Y \times \mathcal{O}_R) \otimes_{\mu^{-1}(\mathcal{O}_X \times \mathcal{O}_R)} \mu^{-1}\mathscr{A}_X^R$.

Definition 2.2.1. The direct image functor \int_{μ} from $\mathbf{D}^{b,r}(\mathscr{A}_{Y}^{R})$ to $\mathbf{D}^{b,r}(\mathscr{A}_{X}^{R})$ is defined to be $\mathbf{R}\mu_{*}(-\otimes_{\mathscr{A}_{Y}^{R}}^{L}\mathscr{A}_{Y\to X}^{R})$. For any \mathscr{A}_{Y}^{R} module \mathscr{M} the j-th direct image is the \mathscr{A}_{X}^{R} -modules $\int_{\mu}^{j} \mathscr{M} = \mathscr{H}^{j} \int_{\mu} \mathscr{M}$. The subscript μ will be surpressed whenever there is no ambiguity.

To compute $\int_{-\infty}^{\infty} \mathcal{M}$ a resolution for $\mathcal{A}_{Y \to X}$ is required.

Definition 2.2.2. Let \mathscr{M} be a right \mathscr{A}_{Y}^{R} -module, the relative Spencer complex $\operatorname{Sp}_{Y}^{\bullet}(\mathscr{M})$ is a complex of right \mathscr{A}_{Y}^{R} -modules, concentrated in negative degrees, with $\operatorname{Sp}_{Y}^{-k}(\mathscr{M}) = \mathscr{M} \otimes_{\mathcal{O}_{Y}} \wedge^{k} \Theta_{Y}$ and as differential the right- \mathscr{A}_{Y}^{R} -linear map δ given by

$$m \otimes \xi_1 \wedge \dots \wedge \xi_k \mapsto \sum_{i < j} (-1)^{i+j} m \otimes [\xi_i, \xi_j] \wedge \xi_1 \wedge \dots \wedge \widehat{\xi_i} \wedge \dots \wedge \widehat{\xi_j} \wedge \dots \wedge \xi_k$$
$$- \sum_{i=1}^k (-1)^i m \xi_i \otimes \xi_1 \wedge \dots \wedge \widehat{\xi_i} \wedge \dots \wedge \xi_k$$

Lemma 2.2.1. The complex of $(\mathscr{A}_X, f^{-1}\mathscr{A}_Y)$ -bimodules $\operatorname{Sp}_{Y \to X}^{\bullet}(\mathscr{A}_Y^R) := \operatorname{Sp}_Y^{\bullet}(\mathscr{A}_Y^R) \otimes_{\mathcal{O}_Y} \mathscr{A}_{Y \to X}^R$ is a resolution of $\mathscr{A}_{Y \to X}^R$ as a bimodule by locally free left \mathscr{A}_Y^R -modules.

Proof. This will be analogous to the case of \mathcal{D}_Y -modules in (Sabbah, 2011, p33). Also see http://www.math.stonybrook.edu/~cschnell/mat615/lectures/lecture17.pdf

Since tensoring with locally free modules yields a exact functor this simplifies the computation of the direct image as follows.

Corollary 2.2.2. It holds that $\int = \mathbf{R}\mu_*(-\otimes_{\mathscr{A}_{\mathbf{v}}^R} \operatorname{Sp}_{Y\to X}^{\bullet}(\mathscr{A}_Y^R)).$

Lemma 2.2.3. Construction of global section in $\int_{-\infty}^{\infty} M$.

Theorem 2.2.4. Long exact sequence

Functorial Properties of the Direct Image

Theorem 2.2.5. Let $\mu: Z \to Y$ and $\nu: Y \to X$ be morphisms of smooth algebraic varieties. If μ is proper then $\int_{\nu \circ \mu} = \int_{\nu} \int_{\mu}$.

Proof. See http://www.math.stonybrook.edu/~cschnell/mat615/lectures/lecture17.pdf \Box

This theorem reduces the computation of direct images to closed embeddings and projections by writing $\mu = \pi \circ \iota$ for $\iota : Y \to Y \times X$ and $\pi : Y \times X \to X$.

Denote by $\mathbf{D}_{qc}^{b,r}(\mathscr{A}_{Y}^{R})$ the full subcategory of $\mathbf{D}^{b,r}(\mathscr{A}_{Y}^{R})$ consisting of those complexes of right \mathscr{A}_{Y}^{R} -modules whose cohomology sheaves are quasi-coherent over $\mathcal{O}_{Y} \times \mathcal{O}_{\operatorname{Spec} R}$. Similarly for $\mathbf{D}_{coh}^{b,r}(\mathscr{A}_{Y}^{R})$ with the cohomology being coherent \mathscr{A}_{Y}^{R} -modules.

Theorem 2.2.6. Let $\mu: X \to Y$ be a morphism of nonsingular algebraic varieties. Then the direct image \int takes $\mathbf{D}_{qc}^{b,r}(\mathscr{A}_{Y}^{R})$ into $\mathbf{D}_{qc}^{b,r}(\mathscr{A}_{X}^{R})$. Moreover, when μ is proper the direct image takes $\mathbf{D}_{coh}^{b,r}(\mathscr{A}_{Y}^{R})$ into $\mathbf{D}_{coh}^{b,r}(\mathscr{A}_{X}^{R})$.

Proof. See http://www.math.stonybrook.edu/~cschnell/mat615/lectures/lecture18.pdf \Box

Kashiwara's Estimate for the Characteristic Variety

Let $\mu: Y \to X$ be a proper morphism of smooth algebraic varieties. Given a coherent \mathscr{A}_X^R module \mathscr{M} with relative characteristic variety $\operatorname{Ch}^{rel}\mathscr{M}$. We desire to estimate $\operatorname{Ch}^{rel}\int^j \mathscr{M}$ in terms of \mathscr{M} . Such a estimate in the non-relative case is known due to Kashiwara
Kashiwara (1976).

The original proof by Kashiwara (1976) uses the theory of microlocal differential operators. The proof we consider here is adapted from a proof by Malgrange (1985) and we follow the exposition by Sabbah (2011).

Consider the following cotangent diagram

where the maps $T^*\mu$ and $\widetilde{\mu}$ act on the first component.

Theorem 2.2.7. Let \mathscr{M} be a coherent \mathscr{A}_{V}^{R} -module. Then, for any $j \geq 0$, we have

$$\operatorname{Ch}^{rel}\left(\int^{j}\mathcal{M}\right)\subseteq\widetilde{\mu}\left((T^{*}\mu)^{-1}(\operatorname{Ch}^{rel}\mathcal{M})\right).$$

The first step is to note that a similar inclusion is easy for the $\operatorname{gr}^{rel}\mathscr{A}_Y^R$ -modules. For any $\operatorname{gr}^{rel}\mathscr{A}_Y^R$ -module \mathcal{M} define $\int^j \mathcal{M} := \mathscr{H}^j\left(\mathbf{R}\mu_*(\mathbf{L}(T^*\mu)^*\mathcal{M})\right)$. Note that $(T^*\mu)^*$ produces a sheaf on $\mu^*T^*X \times \operatorname{Spec} R$ by the tensor product $-\otimes_{f^{-1}\mathcal{O}_X\times\mathcal{O}_R} \operatorname{gr}^{rel}\mathscr{A}_X^R$. Hence, looking at the supports, the following result is immediate.

Lemma 2.2.8. For any $\operatorname{gr}^{rel} \mathscr{A}_Y^R$ -module \mathcal{M} it holds that

Supp
$$\int_{-\infty}^{\infty} \mathcal{M} \subseteq \widetilde{\mu} \left((T^* \mu)^{-1} \operatorname{Supp} \mathcal{M} \right)$$
.

Applying this to $\operatorname{gr}^{rel}\mathcal{M}$ it remains to understand the difference between $\operatorname{gr}^{rel}\int^{j}\mathcal{M}$ and $\int^{j}\operatorname{gr}^{rel}\mathcal{M}$. This may be done using relative Rees modules.

Definition 2.2.3. Let z be a new variable. The relative Rees sheaf of rings $\mathcal{R}\mathscr{A}_Y^R$ is defined as the subsheaf $\bigoplus_p F_p \mathscr{A}_Y^R z^p$ of $\mathscr{A}_Y^R \otimes_{\mathbb{C}} \mathbb{C}[z]$. Similarly, any filtered \mathscr{A}_Y^R -module \mathscr{M} gives rise to a $\mathscr{R}\mathscr{A}_Y$ -module $\mathscr{R}^{rel}\mathscr{M} := \bigoplus_p F_p \mathscr{M} z^p$.

Coherent should suffice in algebraic case I think, Sabbah needs assumptions to guarantee the existence of a global filtration in analytic case. The following obvious isomorphisms of filtered modules allow us to view the relative Rees module as a way to interpolate between \mathscr{M} and $\operatorname{gr}^{rel}\mathscr{M}$

$$\frac{\mathcal{R}^{rel}\mathcal{M}}{(z-1)\mathcal{R}^{rel}\mathcal{M}} \cong \mathcal{M}; \qquad \frac{\mathcal{R}^{rel}\mathcal{M}}{z\mathcal{R}^{rel}\mathcal{M}} = \operatorname{gr}^{rel}\mathcal{M}.$$

Conversely, the second formula may be used to produce a filtered \mathscr{A}_Y^R -module from any graded $\mathscr{R}\mathscr{A}_Y^R$ -module without $\mathbb{C}[z]$ -torsion.

One can define a direct image of graded $\mathcal{R}\mathscr{A}_{Y}^{R}$ -modules similarly to the \mathscr{A}_{Y}^{R} -module direct image and these are coherent graded $\mathcal{R}\mathscr{A}_{X}^{R}$ -modules similarly to theorem 2.2.6.

Lemma 2.2.9. For sufficiently large $\ell \gg 1$ the kernel of z^{ℓ} in $\int_{-\infty}^{\infty} \mathcal{R}^{rel} \mathcal{M}$ is locally stationary. The quotient of $\int_{-\infty}^{\infty} \mathcal{R}^{rel} \mathcal{M}$ by it's z-torsion is the $\mathcal{R} \mathscr{A}_X^R$ -coherent module associated to a good filtration on $\int_{-\infty}^{\infty} \mathcal{M}$.

Proof. The statement that the kernel locally satbilises and that the quotient is coherent follow from $\int \mathcal{R}^{rel} \mathscr{M}$ being coherent over the sheaf of Noetherian rings $\mathcal{R}\mathscr{A}_X^R$.

For it's association to $\int^{j} \mathcal{M}$ consider the short exact sequence $0 \to \mathcal{R}^{rel} \mathcal{M} \xrightarrow{z-1} \mathcal{R}^{rel} \mathcal{M} \to \mathcal{M} \to 0$. This induces a long exact sequence

$$0 \to \int^0 \mathcal{R}^{rel} \mathscr{M} \xrightarrow{z-1} \int^0 \mathcal{R}^{rel} \mathscr{M} \to \int^0 \mathscr{M} \to \int^1 \mathcal{R}^{rel} \mathscr{M} \xrightarrow{z-1} \cdots$$

Since $\int_{-\infty}^{j+1} \mathcal{R}^{rel} \mathcal{M}$ is a graded $\mathcal{R} \mathcal{A}_X^R$ -module one has that z-1 is injective whence it follows that $\int_{-\infty}^{j} \mathcal{R}^{rel} \mathcal{M}/(z-1) \int_{-\infty}^{j} \mathcal{R}^{rel} \mathcal{M} \cong \int_{-\infty}^{j} \mathcal{M}$ as desired.

Corollary 2.2.10. For all $\ell \geq 1$ it holds that $\int_{-\infty}^{\infty} \mathcal{R}^{rel} \mathcal{M}/z^{\ell} \int_{-\infty}^{\infty} \mathcal{R}^{rel} \mathcal{M}$ is a submodule of $\int_{-\infty}^{\infty} (\mathcal{R}^{rel} \mathcal{M}/z^{\ell} \mathcal{R}^{rel} \mathcal{M})$. Further, if ℓ is sufficiently large then $\mathcal{R}^{rel} \int_{-\infty}^{\infty} \mathcal{M}/z^{\ell} \mathcal{R}^{rel} \int_{-\infty}^{\infty} \mathcal{M}$ is a quotient of $\int_{-\infty}^{\infty} \mathcal{R}^{rel} \mathcal{M}/z^{\ell} \int_{-\infty}^{\infty} \mathcal{R}^{rel} \mathcal{M}$.

Bibliography

- Hotta, R. and Tanisaki, T. (2007). *D-modules, perverse sheaves, and representation theory*, volume 236. Springer Science & Business Media.
- Kashiwara, M. (1976). B-functions and holonomic systems. *Inventiones mathematicae*, 38(1):33–53.
- Maisonobe, P. (2016). Filtration relative, l'idéal de bernstein et ses pentes. arXiv preprint arXiv:1610.03354.
- Malgrange, B. (1985). Sur les images directes ded-modules. manuscripta mathematica, 50(1):49–71.
- Sabbah, C. (2011). Introduction to the theory of d-modules. *Lecture Notes, Nankai*. Accessed in October 2020 at http://www.cmls.polytechnique.fr/perso/sabbah/livres/sabbah_nankai110705.pdf.

BIBLIOGRAPHY 9

