Tenth-order lepton g-2:

Contribution from diagrams containing a sixth-order light-by-light-scattering subdiagram internally

Tatsumi Aoyama,¹ Katsuyuki Asano,² Masashi Hayakawa,²
Toichiro Kinoshita,³ Makiko Nio,⁴ and Noriaki Watanabe²

¹Faculty of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan

²Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan

³Laboratory for Elementary-Particle Physics,

Cornell University, Ithaca, New York 14853, USA

⁴Theoretical Physics Laboratory, Nishina Center, RIKEN, Wako, 351-0198, Japan

(Dated: October 8, 2018)

Abstract

This paper reports the result of our evaluation of the tenth-order QED correction to the lepton g-2 from Feynman diagrams which have sixth-order light-by-light-scattering subdiagrams, none of whose vertices couple to the external magnetic field. The gauge-invariant set of these diagrams, called Set II(e), consists of 180 vertex diagrams. In the case of the electron g-2 (a_e), where the light-by-light subdiagram consists of the electron loop, the contribution to a_e is found to be -1.344 9 (10) $(\alpha/\pi)^5$. The contribution of the muon loop to a_e is -0.000 465 (4) $(\alpha/\pi)^5$. The contribution of the tau-lepton loop is about two orders of magnitudes smaller than that of the muon loop and hence negligible. The sum of all of these contributions to a_e is -1.345 (1) $(\alpha/\pi)^5$. We have also evaluated the contribution of Set II(e) to the muon g-2 (a_μ). The contribution to a_μ from the electron loop is 3.265 (12) $(\alpha/\pi)^5$, while the contribution of the tau-lepton loop is -0.038 06 (13) $(\alpha/\pi)^5$. The total contribution to a_μ , which is the sum of these two contributions and the mass-independent part of a_e , is 1.882 (13) $(\alpha/\pi)^5$.

PACS numbers: 13.40.Em,14.60.Cd,14.60Ef,12.20.Ds