Kapitel 1

Categorial Language and the van-Kampen theorem

- 1.1 Kategorien
- 1.2 Funktoren
- 1.3 Natürliche Transformationen
- 1.3.1 Definition: Natürliche Transformationen

Sind $\mathcal{F}, \mathcal{G}: \mathcal{C} \to \mathcal{D}$ Funktoren, so ist eine **natürliche Transformation** $\alpha: \mathcal{F} \to \mathcal{G}$ definiert durch Pfeile $\alpha_A: \mathcal{F}(A) \to \mathcal{G}(A)$ für alle $A \in \mathcal{C}$, sodass

für alle $A, B \in \mathcal{C}, f \in \mathsf{Hom}_{\mathcal{C}}(A, B)$ kommutiert.

1.3.2 Definition: Natürliche Isomorphien

Eine natürliche Isomorphie ist eine natürliche Transformation $\alpha : \mathcal{F} \to \mathcal{G}$, bei der alle Pfeile $\alpha_A : \mathcal{F}(A) \to \mathcal{G}(A)$ isomorph sind.

1.3.3 Definition: Äquivalenzen von Kategorien

Kategorien \mathcal{C}, \mathcal{D} heißen **natürlich äquivalent**, falls Funktoren $\mathcal{F}: \mathcal{C} \to \mathcal{D}, \mathcal{G}: \mathcal{D} \to \mathcal{C}$ existieren, sodass $\mathcal{G} \circ \mathcal{F}$ natürlich isomorph zu id $_{\mathcal{C}}$ und $\mathcal{F} \circ \mathcal{G}$ natürlich isomorph zu id $_{\mathcal{D}}$ sind.

1.4 Adjungierte Funktoren

1.4.1 Definition: Adjungierte

Seien $\mathcal{F}: \mathcal{C} \to \mathcal{D}, \mathcal{G}: \mathcal{D} \to \mathcal{C}$ Funktoren. \mathcal{F} heißt **linksadjungiert** zu \mathcal{G} und \mathcal{G} rechtsadjungiert zu \mathcal{F} , falls für alle $A \in \mathcal{C}, B \in \mathcal{D}$ gilt:

$$\operatorname{\mathsf{Hom}}_{\mathcal{C}}(A,\mathcal{G}(B)) \cong \operatorname{\mathsf{Hom}}_{D}(\mathcal{F}(A),B)$$

1.4.2 Definition: Präsentation von Gruppen

Sei S eine Menge und R eine Teilmenge von S^* . Wir definieren $\langle S \mid R \rangle$ als die **Präsentation** \mathcal{G} , falls

$$\langle S \mid R \rangle := \mathcal{F}(S)/N(R) \cong G$$

G ist **endlich präsentiert**, falls S und R endlich sind.

1.5 Limes Konstruktionen

1.5.1 Definition: Produkt

Sind $X, Y \in \mathcal{C}$ Objekte einer Kategorie, so definieren wir das **Produkt** von X und Y als das größte Objekt $X \times Y$ zusammen mit Abbildungen $\pi_X : X \times Y \to X, \pi_Y : X \times Y \to Y$, sodass folgende UAE erfüllt wird:

1.5.2 Definition: Pullback

Seien $X,Y,Z\in\mathcal{C}$ Objekte einer Kategorie mit den Abbildungen $X\to Y\leftarrow Z$. Dann ist ein **Pullback** bzw. **Faserprodukt** P das größte Objekt, das folgendes **Pullback-Diagramm** zum kommutieren bringt.

3

d.h. es erfüllt folgende UAE:

1.5.3 Beispiel: Pullback

In **Set** ist der Pullback gerade $X \times_S Y = \{(x,y) \in X \times Y \mid f(x) = g(y)\}$ für $X \xrightarrow{f} S \xleftarrow{g} Y$. In **Top**ist der Pullback dieselbe Menge mit der entsprechenden Spurtopologie.

1.5.4 Beispiel: Überlagerung

Sei \mathbf{Cov}_B die Kategorie der Überlagerung von $B \in \mathbf{Top}$. Sei ferner $\phi : B' \to B$ eine stetige Abbildung. Dann definieren wir einen Funktor $\Phi : \mathbf{Cov}_B \to \mathbf{Cov}_{B'}$ auf Objekten $X \in \mathbf{Cov}_B$ durch den Pullback:

Und auf Pfeilen $X \xrightarrow{f} Y$ durch die UAE des folgenden Pullbacks:

1.5.5 Definition: Diagramme

Ein **Diagramm** der Gestalt \mathcal{I} ist ein Funktor von einer kleinen Kategorie \mathcal{I} in eine Kategorie.

1.5.6 Definition: Kegel

Der **Kegel** eines Diagrammes $\mathcal{D}: \mathcal{I} \to \mathcal{C}$ ist ein Objekt $A \in \mathcal{C}$ mit einer Familie von Pfeilen $(A \to \mathcal{D}(i))_{i \in \mathcal{I}}$, sodass folgendes Dreieck

für alle Pfeile $i \stackrel{g}{\rightarrow} j$ in \mathcal{I} kommutiert.

1.5.7 Definition: Limes

Der **Limes** eines Diagrammes $\mathcal{D}: \mathcal{I} \to \mathcal{C}$ ist der größte Kegel $L \in \mathcal{C}$, d.h. es erfüllt folgende UAE für alle Kegel A von D

für alle $i \in \mathcal{I}$.

1.5.8 Beispiel: Limites

• Das Produkt einer Kategorie ist der Limes eines Diagramms der Gestalt

$$ullet_1$$

• Der Pullback einer Kategorie ist der Limes eines Diagramms der Gestalt

$$ullet_1
ightarrow ullet_2 \leftarrow ullet_3$$

1.5.9 Definition: Koprodukt

Sind $X,Y \in \mathcal{C}$ Objekte einer Kategorie, so definieren wir das **Koprodukt** von X und Y als das kleinste Objekt $X \oplus Y$ zusammen mit Abbildungen $\iota_X : X \times Y \to X, \iota_Y : X \times Y \to Y$, sodass folgende UAE erfüllt wird:

5

1.5.10 Definition: Freies Gruppenprodukt

Das freie Produkt $G \star H$ ist definiert als das Koprodukt zweier Gruppen G und H.

1.5.11 Lemma: Freies Gruppenprodukt

In **Grp**existieren Koprodukte und es gilt

$$\langle S_1 \mid R_1 \rangle \star \langle S_2 \mid R_2 \rangle \cong \langle S_1 \sqcup S_2 \mid R_1 \sqcup R_2 \rangle$$

1.5.12 Definition: Pushout

Seien $X,Y,Z\in\mathcal{C}$ Objekte einer Kategorie mit den Abbildungen $Y\leftarrow X\to Z$. Dann ist ein **Pushout** bzw. **Kofaserprodukt** P das kleinste Objekt, das folgendes **Pushout-Diagramm** zum kommutieren bringt.

d.h. es erfüllt folgende UAE:

1.5.13 Lemma: Pushouts in Top

In **Top** existieren Pushouts und sind von der Gestalt

$$\begin{array}{ccc}
A & \xrightarrow{s} & X \\
t & \downarrow & \downarrow \\
Y & \longrightarrow X \sqcup Y/\sim
\end{array}$$

wobe
i $\sim \subset X \times Y$ erzeugt wird durch

$$t(a) \sim s(a) \quad \forall a \in A$$

1.5.14 Definition: Amalgiertes freies Produkt in Grp

Ist $G \leftrightarrow A \hookrightarrow H$ ein Diagramm von injektiven Gruppenhomomorphismen, so wird sein Pushout als **amalgiertes freies Produkt** $G \star_A H$ von G, H über A bezeichnet.

1.5.15 Lemma: Pushouts in Grp

Ist $G \stackrel{s}{\hookleftarrow} A \stackrel{t}{\hookrightarrow} H$, so existiert sein Pushout und ist von der Gestalt:

$$G \star_A H = G \star H / \left\{ s(a)t(a)^{-1} \mid a \in A \right\}$$

1.5.16 Definition: Kolimes

Ist $\mathcal{D}: \mathcal{I} \to \mathcal{C}$ ein Diagramm, so ist ein **Kolimes** ein Limes von $\mathcal{D}^{\mathsf{op}}$.

1.6 Der Fundamentalgruppoid

1.6.1 Definition: Fundamentalgruppoid

Ist X ein topologischer Raum, dann definieren wir den **Fundamentalgruppoiden** $\Pi(X)$ wie folgt:

- Objekte sind alle Punkte $x \in X$
- \bullet Pfeile von x nach y sind die Homotopieklassen von Wegen von x nach y. Also

$$\mathsf{Hom}_{\Pi(X)}\left(x,y\right) = \left\{\gamma : x \to y \mid \right\} / \sim$$

• Die Komposition ist die Konkatenation von Wegen.

1.6.2 Definition: Gruppoid

Eine Kategorie heißt **Gruppoid**, falls alle Pfeile isomorph sind.

1.6.3 Definition: Zusammenhängende Kategorien

Eine Kategorie heißt **zusammenhängend**, falls jedes Paar von Objekten durch eine (nicht zwangsläufig gerichtete) Sequenz von Pfeilen verbunden werden kann.

1.6.4 Lemma: Einbettungsfunktor

Ist G ein zusammenhängender Gruppoid, dann ist der Einbettungsfunktor

$$\mathcal{I}_x : \mathsf{Aut}_G(x) = \mathsf{Hom}_G(x, x) \longrightarrow \mathcal{G}$$

eine Äquivalenz von Kategorien für alle $x \in X$.

1.6.5 Korollar:

Ist X ein wegzusammenhängender Raum, so ist die Inklusion

$$\pi_{(X,x)} \hookrightarrow \Pi(X)$$

eine Äquivalenz von Kategorien für alle $x \in X$.

1.7 Der Satz von Seifert-van Kampen

1.7.1 Bemerkung:

Wir definieren als **Gruppoid** die Kategorie der kleinen Gruppoide. Es existiert ein Einbettungsfunktor

$$\mathbf{Grp} \hookrightarrow \mathbf{Gruppoid}$$

1.7.2 Satz: Der Satz von Seifert-van Kampen (kategorientheoretische Version)

Sei X ein topologischer Raum, \mathcal{O} eine Überdeckung von X durch offene Mengen, die abgeschlossen ist unter endlichen Schnitten.

Wir fassen \mathcal{O} als eine Kategorie auf, deren Objekte die offenen Mengen und deren Pfeile Teilmengen-Inklusionen sind.

In diesem Fall erhalten wir einen Funktor

$$\begin{split} \Pi: \mathcal{O} &\longrightarrow \mathbf{Gruppoid} \\ U &\longmapsto \Pi(U) \\ \left(U \overset{\iota}{\hookrightarrow} V \right) &\longmapsto \left(\Pi(U) \overset{\Pi(\iota)}{\rightarrow} \Pi(V) \right) \end{split}$$

Dann gilt:

$$\Pi(X) = \underset{U \in \mathcal{O}}{\mathsf{colim}} \Pi(U)$$

1.7.3 Satz: Der Satz von Seifert-van Kampen

Sei X ein topologischer Raum, $x \in X$, \mathcal{O} eine Überdeckung von X durch offene, wegzusammenhängenden Mengen, die x enthalten, die abgeschlossen ist unter endlichen Schnitten. Dann ist $\pi_1(X,x)$ der Kolimes von

$$\pi_1(\underline{\ },x):\mathcal{O}\longrightarrow \mathbf{Grp}$$

$$U\longmapsto \pi_1(U,x)$$

$$\left(U\stackrel{\iota}{\hookrightarrow} V\right)\longmapsto \left(\pi_1(U,x)\stackrel{\pi_1(\iota,x)}{\longrightarrow} \pi_1(V,x)\right)$$

$$\pi_1(X,x)=\underset{U\in\mathcal{O}}{\mathsf{colim}}\pi_1(U,x)$$

Beweis: "kategorischer $SvK \Rightarrow normaler SvK"$

Wir beweisen die Aussage nur im Fall, dass \mathcal{O} endlich ist.

Wir müssen zeigen, dass $\pi_1(X,x)$ die UAE des Kolimes von $\pi_1(\underline{\hspace{0.1cm}},x)$ erfüllt.

Für jedes $U \in \mathcal{O}$ ist die Einbettung

$$\mathcal{I}_U: \pi_1(U,x) \longrightarrow \Pi(U)$$

eine Äquivalenz von Kategorien. Ein inverser Funktor $\mathcal{F}_U:\Pi(U)\to\pi_1(U,x)$ wird definiert durch eine Zuordnung

$$y \longmapsto [c_U^y]$$

Wir definieren c_U^y induktiv für alle $U \in \mathcal{O}, y \in X$.

- Definiere $U_0 = \bigcap_{U \in \mathcal{O}}$. Ist $y \in U_0$, so bezeichne $c_{U_0}^y$ einen beliebigen Weg $x \mapsto y$ in U_0 . $c_{U_0}^x$ bezeichne den konstanten Weg.
- Existiert ein $V \in \mathcal{O}$, sodass c_V^y bereits definiert und $V \subseteq U$ ist, so definiere $c_U^y := c_V^y$. Anderenfalls definiere c_U^y als beliebigen Pfad in U von x nach y.

Durch diese Wahl werden die Funktoren \mathcal{F}_U verträglich im Sinne, dass folgende Diagramme für $U \subset V$ kommutieren

$$\Pi(U) \xrightarrow{\mathcal{F}_U} \pi_1(U, x)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Pi(V) \xrightarrow{\mathcal{F}_V} \pi_1(V, x)$$

Ergo kommutieren auch

Die UAE von $\Pi(X)$ garantiert nun die Existenz eines eindeutig bestimmten Pfeils f, sodass folgende Diagramme kommutieren

$$\Pi(X) \xrightarrow{f} G$$

$$\uparrow f_U \circ \mathcal{F}_U$$

$$\Pi(U)$$

Ergo kommutieren auch folgende Diagramme

$$\pi_1(X,x) \xrightarrow{\mathcal{I}_X} \Pi(X) \xrightarrow{f} G$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\pi_1(U,x) \xrightarrow{\mathcal{I}_U} \Pi(U)$$

Da $\mathcal{F}_U \circ \mathcal{I}_U = \mathsf{id}_{\pi_1(U,x)}$, erfüllt $\pi_1(X,x)$ die als Kolimes geforderte UAE.

1.7.4 Lemma: Lebesgue Lemma

Sei X ein kompakter, metrischer Raum mit einer offenen Überdeckung durch $(U_i)_{i \in I}$. Dann existiert eine **Lebesgue Konstante** $\delta > 0$, sodass jede Teilmenge $A \subset X$ mit Durchmesser $< \delta$ komplett in einem U_i enthalten ist.

Beweis: "kategorischer SvK"

Wir müssen zeigen, dass $\Pi(X)$ die UAE erfüllt, d.h. für jeden Kokegel G existiert genau ein $\Pi(X) \xrightarrow{f} G$, sodass folgende Diagramme kommutieren:

Für $x \in U$, definieren wir

$$f(x) := f_U(x)$$

Ist c ein Weg in X, so definieren wir

$$f([c]) := f_U([c])$$

falls c in einem U enthalten ist. Ist c beliebig, so ist $c^{-1}(\mathcal{O})$ eine offene Überdeckung von [0,1]. Ergo existiert eine Lebesgue Konstante $\delta > 0$; wir unterteilen [0,1] in n viele Intervalle mit Länge $< \delta$ und erhalten eine Unterteilung von $c = c_1 \cdots c_n$, wobei jedes c_i in einem U_j liegt. Folglich definieren wir nun

$$f([c]) = f([c_1]) \circ \ldots \circ f([c_n])$$

Es bleibt zu zeigen, dass die Definition von f([c]) unabhängig von der Wahl

- (i) der Unterteilung von [0,1] und
- (ii) des Repräsentanten c von [c] ist.

1.8 Anwendungen des Satzes von Seifert-van Kampen

1.8.1 Bemerkung: Meistgenutzte Anwendung

Ist $X = U \cup V$ mit $U, V \subset X$, so erhalten wir folgendes Pushout Diagramm:

Mit Seifert-van Kampen folgt nun für alle $x \in U \cap V$, dass $\pi_1(\underline{\ }, x)$ Pushouts erhält:

$$\pi_1(U \cap V, x) \to \pi_1(U, x)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi_1(Y, x) \longrightarrow \pi_1(X, x)$$

Ergo

$$\pi_1(X,x) = \pi_1(U,x) \underset{\pi_1(V \cap U,x)}{\star} \pi_1(V,x)$$

1.8.2 Satz: Anhängen von Zellen

Sei $(S^{n-1},*) \xrightarrow{f} (X,x)$ ein Pfeil, dann existiert folgender Pushout

$$S^{n-1} \xrightarrow{f} X$$

$$\downarrow \downarrow \qquad \qquad \downarrow j$$

$$D^n \longrightarrow Y$$

- Ist $n \geq 3$, dann ist $\pi_1(X, x) \xrightarrow{j_*} \pi_1(Y, j(x))$ ein Isomorphismus.
- Ist n=2, dann ist j_* surjektiv und $\mathsf{Kern} j_*$ ist die normale Untegruppe, die von [f] in $\pi_1(X,x)$ erzeugt wird.

Beweis: ""

Definiere
$$y = j(x), U = \overset{\circ}{D^n}, V = X \underset{f}{\cup} (D^n - 0)$$
. Dann ist $U \cap V \simeq S^{n-1}$

• Sei $y' \in U - 0$ und u ein Pfad in Y von y zu y'. Für $n \geq 3$ ist $\pi_1(U \cap V, y') = 1$. Mit Seifert-van Kampen folgt:

$$\pi_1(Y, y') = \pi_1(U, y') \underset{\pi_1(U \cap V, y')}{\star} \pi_1(V, y') = \pi_1(V, y')$$

Da y und y' durch einen Weg verbunden werden, gilt:

$$\pi_1(V, y) \cong \pi_1(V, y')$$

Da $(V,y) \to (X,x)$ ein NDR ist, gilt schließlich

$$\pi_1(V, y) \cong \pi_1(X, x)$$

• Ist n=2, so ist $U\cap V\simeq S^1$. Mit Seifert-van Kampen folgt abermals

$$\pi_1(Y, y') = \pi_1(U, y') \underset{\pi_1(U \cap V, y')}{\star} \pi_1(V, y') = \pi_1(V, y') / N([f])$$

Da $f_*(\mathbb{Z}) = N([f]).$

1.8.3 Beispiel: Flächenwort

Die orientierbare, geschlossene, zusammenhängende Fläche von Geschlecht g ist definiert durch den Pushout

wobei wir die 2g Kreise in $\bigvee_{i=1}^{2g} S^1$ mit $a_1, b_1, \dots, a_g, b_g$ bezeichnet werden. f wird bestimmt durch das **Flächenwort** $\prod_{i=1}^g [a_i, b_i]$. Es folgt mit obigen Satz

$$\pi_1(F_g) = \left\langle a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] \right\rangle$$

1.8.4 Satz:

Sei $G = \langle S \mid R \rangle$ eine endlich präsentierte Gruppe. Dann existiert ein 2-dimensionaler Zellen-Komplex (X,x) mit

$$\pi_1(X,x) \cong G$$

1.9 Eigenschaften von Pushouts in Top

1.9.1 Definition: Identifizierungsabbildung

 $f: X \to Y$ heißt **Identifizierungsabbildung**

 $\Leftrightarrow f$ ist surjektiv und

$$U \overset{o}{\subset} Y \iff f^{-1}(U) \overset{o}{\subset} X$$

 $\Leftrightarrow f$ induziert einen Homö
omorphismus

$$X/\sim \stackrel{\sim}{\to} Y$$

wobei $x \sim y \Leftrightarrow f(x) = f(y)$.

 \Leftrightarrow Für alle mengentheoretischen Abbildungen $g: Y \to W$ gilt:

$$g \circ f$$
 ist stetig $\iff g$ ist stetig

1.9.2 Satz:

Seien A, X, Y, Z Räume und K ein lokal kompakter Hausdorffraum.

- 1. Ist X kompakt, so ist die Projektion $\pi_Y: X \times Y \to Y$ abgeschlossen.
- 2. Ist $X \xrightarrow{f} Y$ eine Identifizierungsabbildung, so ist auch $f \times \mathsf{id}_K : X \times K \to Y \times K$ eine Identifizierungsabbildung.
- 3. Ist

$$A \xrightarrow{f_2} Y$$

$$\downarrow f_1 \qquad \qquad \downarrow g_2$$

$$X \xrightarrow{g_1} Z$$

ein Pushout-Diagramm, so ist es auch

$$\begin{array}{c|c} A \times K \xrightarrow{f_2 \times \operatorname{id}_K} Y \times K \\ f_1 \times \operatorname{id}_K & & g_2 \times \operatorname{id}_K \\ X \times K \xrightarrow{g_1 \times \operatorname{id}_K} Z \times K \end{array}$$

Beweis: ""

- 1. Sei $C \subset X \times Y$ abgeschlossen, $y \in Y \pi_Y(C)$. Dann gilt für alle $x \in X : (x,y) \notin C$. Dann existiert für jedes $x \in X$ eine Umgebung $U_x \overset{o}{\subset} X$ zusammen mit einer Umgebung $V_x \overset{o}{\subset} Y$ von y, s.d. $U_x \times V_x \cap C = \emptyset$. X ist kompakt, ergo erhält man x_1, \ldots, x_k , s.d. $\bigcup_{i=1}^k U_{x_i} = X$. Setzt man $V := \bigcap_{i=1}^k V_{x_i}$, so gilt $(X \times V) \cap C = \emptyset$. Ergo findet man zu jedem $y \in Y \pi_Y(C)$ eine offene Umgebung V.
- 2. Seien folgende Pfeile gegeben

$$\begin{split} g: Y \times K &\longrightarrow W \\ h: X \times K &\stackrel{f \times \mathsf{id}_K}{\longrightarrow} Y \times K \stackrel{g}{\longrightarrow} W \end{split}$$

Angenommen h sei stetig. Sei $U \stackrel{\circ}{\subset} W, g(y_0, k_0) \in U, f(x_0) = y_0$. Dann ist ein $h(x_0, k_0) \in U$, also existiert eine kompakte Nachbarschaft N von k_0 , s.d. $h(x_0, N) \subset U$. Definiere

$$A = \{ y \in Y \mid g(y \times N) \subset U \}$$

Dann ist sicherlich $y_0 \in A$. $f^{-1}(A)$ ist offen in X, da

$$X - f^{-1}(A) = \pi_X(h^{-1}(W - U) \cap (X \times N))$$

laut (1) abgeschlossen ist. Ergo ist $A \times N$ eine offene Umgebung von (y_0, k_0) , ergo ist $g^{-1}(U)$ offen. Also ist g stetig.

3. Die Kolimes-Eigenschaft garantiert die Existenz eines eindeutig bestimmten $h: (X \times K \sqcup Y \times K)/\sim Z \times K$. Es gilt gerade

$$(x_1, k_1) \sim (x_2, k_2) \iff g(x_1) = g(x_2) \land x_1 = x_2$$

Ergo ist $X \times K \sqcup Y \times K \to Z \times K$ eine Identifikationsabbildung, da $X \sqcup Y \to Z$ eine Identifikationsabbildung ist.

1.9.3 Definition: Nachbarschaftsdeformationsretrakt

Ein abgeschlossener Teilraum $A \stackrel{\iota}{\hookrightarrow} X$ heißt **Nachbarschaftsdeformationsretrakt**, falls eine offene Nachbarschaft $A \stackrel{c}{\subset} U \stackrel{o}{\subset} X$, eine stetige Abbildung $r: U \to A$ und eine Homotopie $h: U \times [0,1] \to U$ existiert, sodass

- $h : id \simeq \iota \circ r$ relativ zu A, d.h.
- $h_t(\underline{\ }) = \mathsf{id}_A$ für alle $t \in [0,1]$

1.9.4 Satz:

Sei folgendes Pushout Diagramm gegeben

wobei i_1 die Einbettung eines abgeschlossenen Teilraumes ist, sodass $A \hookrightarrow X$ ein Nachbarschaftsdeformationsretrakt ist. Dann gilt dasselbe für j_1 .

Beweis: ""

Zuerst zeigen wir, dass $j_1(Y)$ abgeschlossen und j_1 ein Homöomorphismus auf sein Bild ist.

•
$$A \cup Y = (j_2 \sqcup j_1)^{-1}(j_1(Y)) \stackrel{c}{\subset} X \sqcup Y$$
, da $A \stackrel{c}{\subset} X$

$$\stackrel{j_1 \sqcup j_2 \text{ Id.}}{\Longrightarrow} j_1(Y) \stackrel{c}{\subset} Z$$

- j_1 ist injektiv, da es auch i_1 ist. Insofern ist $Y \stackrel{j_1}{\to} j_1(Y)$ bijektiv.
- Sei $W \subset j_1(Y)$. Dann ist $j_1^{-1}(W) = Y \cap (j_2 \sqcup j_1)^{-1}(W)$. Ist $j_1^{-1}(W)$ abgeschlossen, so ist es auch $(j_2 \sqcup j_1)^{-1}(W)$ und damit auch $W \subset Z$. Da $j_1(Y) \subset Z$, ist $W \subset j_1(Y)$.

Definiere

$$V := j_2(U) \cup j_1(Y) \subset Z$$

 $V \stackrel{o}{\subset} \mathbb{Z}$, da

$$(j_2 \sqcup j_1)^{-1}(V) = U \cup Y \stackrel{o}{\subset} X \sqcup Y$$

Betrachte folgenden Pushout

Definiere $r': V \to j_1(Y)$ durch $r' = h'(_, 1)$ Dann ist $h': id \simeq j_1 \circ r$ relativ zu $j_1(Y)$.

1.10 Noch mehr Anwendungen des Satzes von Seifert-van Kampen

1.10.1 Satz:

Sei folgender Pushout gegeben, wobei A, X, Y wegzusammenhängend sind:

$$A \xrightarrow{i_2} Y$$

$$i_1 \downarrow \qquad \qquad \downarrow j_1$$

$$X \xrightarrow{j_2} Z$$

wobei i_1, i_2 Einbettungen und $A \subset X, \subset Y$ ein Nachbarschaftsdeformationsretrakt sind. Dann erhalten wir folgenden Pushout in **Grp** für alle $x \in A$:

$$\pi_1(A,x) \xrightarrow{\pi_1(i_2)} \pi_1(Y,i_2(x))$$

$$\pi_1(i_1) \downarrow \qquad \qquad \downarrow \pi_1(j_1)$$

$$\pi_1(X,i_1(x)) \xrightarrow{\pi_1(j_2)} \pi_1(Z,(j_2 \circ i_1)(x_0))$$

Beweis: ""

Betrachte folgende Deformationsretrakte

$$X \overset{o}{\supset} U_x \xrightarrow{r_x} A$$
 $h_x: \mathsf{id} \simeq i_1 \circ r_x$ relativ zu A
$$Y \overset{o}{\supset} U_y \xrightarrow{r_y} A \qquad \qquad h_y: \mathsf{id} \simeq i_2 \circ r_y \text{ relativ zu A}$$

Definiere folgende Verdickungen von A, X, Y in Z:

$$V_A := U_X \cup U_Y$$
 $V_X := X \cup U_Y$ $V_Y := Y \cup U_X$

Dann sind $X \subset V_X, Y \subset V_Y, A \subset V_A$ Deformationsretrakte. Es ergibt sich folgende Situation

woraus sich ein Pushout für die entsprechenden Fundamentalgruppen ergibt. Aufgrund der Deformationsretrakte gilt aber

$$\pi_1(V_A) = \pi_1(A)$$
 $\pi_1(V_X) = \pi_1(X)$ $\pi_1(V_Y) = \pi_1(y)$

1.10.2 Beispiel:

 $X = S^1 \times [0,1]/\sim, \sim \text{generated by}$

$$(z,0) \sim (e^{2\pi/n}z,0); (z,1) \sim (e^{2\pi/m}z,1)$$

identifying points that are an angle $2\pi/n, \, 2\pi/m$ apart It follows:

$$top \cong S^1; bottom \cong S^1$$

Pushout: (1)

The inclusions

$$top \hookrightarrow X_T, bottom \hookrightarrow X_B$$

are deformation retracts, in particular homotopy equivalences.

In the first case,

$$r: X_T \longrightarrow Top, [(z,t)] \longmapsto [(z,1)]$$

 $h: X_T \times [0,1] \longrightarrow X_T, ([(z,s)], t) \longmapsto [(z,s \cdot t)]$

provides the data of a deformation retract. Similiar for bottom.

van Kampen yields a pushout of groups, when applying π_1 to (1). (2)

How do the induced morphisms look like?

In the case of top:

$$r_*: \pi_1(X_T) \longrightarrow \pi_1(Top), \gamma \longmapsto \gamma^n$$

m One gains

$$\pi_1(S^1 \times \{\frac{1}{2}\}) \longrightarrow \pi_1(X_T) \xrightarrow{\sim} \pi_1(Top) \xrightarrow{\sim} \pi_1(S^1) \cong \mathbb{Z}$$

Be γ a generator of $\pi_1(Top)$, r applied to the generator of $\pi_1(S^1 \times \frac{1}{2})$ wraps around m times the top circle.

Because of (2) we obtain a group presentation

$$\pi_1(X) \cong \langle a, b \mid a^m = b^n \rangle$$

We have an epimorphism

$$\pi_1(X) \longrightarrow \mathbb{Z}/m \star \mathbb{Z}/n$$

$$a \longmapsto 1_{\mathbb{Z}/m}$$

$$b \longmapsto 1_{\mathbb{Z}/n}$$

Kapitel 2

Homology - the axiomatic approach 2

2.1 2.1 The Eilenberg-Steenrod axioms

Let R be a commutative Ring.

A sequence of moprhisms of R-modules

$$M_{i+1} \xrightarrow{f_{i+1}} M_i \xrightarrow{f_i} M_{i-1} \xrightarrow{f_{i-1}}$$

is called **exact** if

$$Kern f_i = im f_{i+1} \forall i$$

Definition

A homology theory (H_*, ∂_*) with values in R-modules consists of a family $(H_n)_{n \in \mathbb{Z}}$ of functors

$$H_n: \mathbf{Top}^2 \longrightarrow R - \mathbf{Mod}$$

from the category of pairs of spaces to the category of R-modules and a family of natural transformations $(\partial_n)_{n\in\mathbb{Z}}$

$$\partial_n: H_n \longrightarrow H_{n-1} \circ J$$

where J is the functor

$$J: \mathbf{Top}^2 \longrightarrow \mathbf{Top}^2$$
$$(X, A) \longmapsto (A, \emptyset)$$

such that the following axioms are true

• Homotopy invariance

If $f, g: (X, A) \to (Y, B)$ are maps of pairs of spaces and $h_t: f \subseteq g$ is a homotopy with $h_t(A) \subset B \forall t \in [0, 1]$ then

$$H_n(f) = H_n(g)$$

• Long exact sequence

For every pair (X, A) the following sequence of R-modules is exact:

$$\dots \longrightarrow H_{n+1}(X,A) \xrightarrow{\partial_{n+1}(X,A)} H_n(A,\emptyset) \xrightarrow{H_n(\iota)} H_n(X,\emptyset) \xrightarrow{H_n(j)} H_n(X,A) \longrightarrow H_{n-1}(A,\emptyset) \longrightarrow \dots$$

is exact where

$$\iota:(A,\emptyset)\longrightarrow (X,\emptyset)$$

$$j:(X,\emptyset)\longrightarrow(X,A)$$

This maps $\partial_i(X, A)$ are called **boundary homomorphisms**.

• Excision axiom

Let X be a space and $A, B \subset X$ be a subspace such that $\overline{A} \subset B^o$. Then the R-homomorphisms

$$H_n(X \setminus A, B \setminus A) \longrightarrow H_n(X, B)$$

induced by

$$(X \setminus A, B \setminus A) \hookrightarrow (X, A)$$

is an isomorphism for all n.

If (H_*, ∂_*) in addition satisfies the following, we say (H_*, ∂_*) satisfies the **dimension axiom**:

$$H_n(\{*\},\emptyset) \cong R, ifn = 0; 0ifn \neq 0$$

Notation: In the sequel we write $H_n(X)$ instead of $H_n(X,\emptyset)$.

Remark

In a nutshell, (H_*, ∂_*) is the following:

- $(X, A) \leadsto R \text{Modules}H_n(X, A), n \in \mathbb{Z}$
- $(X,A) \xrightarrow{f} (Y,B) \leadsto H_n(X,A) \xrightarrow{H_n(f)} H_n(Y,B)$
- boundary homom. (3)

Remark

Long exact sequence for (X, X)

$$H_{n+1}(X,X) \xrightarrow{\partial_{n+1}} H_n(X) \xrightarrow{\sim} H_n(X) \xrightarrow{H_n j} H_n(X,X) \xrightarrow{\partial_n} H_{n-1}(X) \xrightarrow{\sim} H_{n-1}(X)$$

$$Kernid = im(\partial_n) = 0 \Longrightarrow \partial_n = 0$$

$$imH_n(j) = Kern\partial_n = Hn(X, X)$$

$$Ker H_n(j) = imid = H_n(X)$$

Therefore $H_n(X,X)=0$

2.2 First conclusions from the axioms

2.2.1 Satz: Fünferlemma

Consider the following commuting diagram of R-modules (4) such that both rows are exact and f_1 is surjective, f_5 is injective and f_2 and f_4 are isomorphisms. Then f_3 is an isomorphism.

Proof by Diagrammjagd Im folgenden ist (H_n, ∂_n) eine Homologietheorie, die nicht zwangsläufig das Dimensionsaxiom erfüllt.

2.2.2 Korollar:

Sei $(X,A) \xrightarrow{f} (Y,B)$ ein Pfeil. Sind $H_n(X) \xrightarrow{H_n(f)} H_n(Y)$ und $H_n(A) \xrightarrow{H_n(f)} H_n(B)$ isomorph für alle n, so ist es auch $H_n(X,A) \xrightarrow{H_n(f)} H_n(Y,B)$ für alle n.

2.2.3 Lemma:

Seien $A \subset B \subset X$ topologische Räume; dann existiert eine natürliche lange Sequenz (die sogenannte **Dreier-Sequenz**)

$$\longrightarrow H_{n+1}(X,A) \longrightarrow H_{n+1}(X,B) \xrightarrow{\partial_{n+1}(X;B,A)} H_n(B,A) \longrightarrow H_n(X,A) \longrightarrow$$

induziert durch die Inklusionen

$$(B,A) \stackrel{i}{\hookrightarrow} (X,A) \stackrel{j}{\hookrightarrow} (X,B)$$

Beweis: ""

Definiere

$$\partial_n(X; B, A) = H_{n-1}(l) \circ \partial_n(X, B)$$

wobei $(B, \emptyset) \stackrel{l}{\hookrightarrow} (B, A)$

2.2.4 Definition: Excisive Triad

Seien $X_1, X_2 \subset X$ Räume. (X, X_1, X_2) heißt ein **Schneidungs-Trias**, falls die Inklusion

$$(X_1, X_1 \cap X_2) \hookrightarrow (X, X_2)$$

einen Isomorphismus

$$H_n(X_1, X_1 \cap X_2) \longrightarrow H_n(X, X_2)$$

für alle n induziert.

2.2.5 Bemerkung:

Sind $X_1, X_2 \stackrel{o}{\subset} X$ und $X = X_1 \cup X_2$, dann ist (X, X_1, X_2) aufgrund des Excision-Axioms excisiv.

2.2.6 Satz: Mayer-Vietoris

Sei (X, X_1, X_2) ein excisives Trias. Sei $A \subset X_0 = X_1 \cap X_2$. Dann existiert eine natürliche exakte Sequenz (sogenannte Mayer-Vietoris Sequenz)

$$\to H_{n+1}(X_1,A) \oplus H_{n+1}(X_2,A) \overset{H_{n+1}(j_1)-H_{n+1}(j_2)}{\to} H_{n+1}(X,A) \overset{\partial_{n+1}}{\to} H_n(X_0,A) \overset{H_n(i_1)+H_n(i_2)}{\to} H_n(X_1,A) \oplus H_n(X_2,A) \overset{H_n(i_1)-H_n(i_2)}{\to} H_n(X_1,A) \oplus H_n(X_1,A) \overset{H_n(i_1)-H_n(i_2)}{\to} H_n(X_1,A) \overset{H_n(i_1)-H_n(i_2)}{\to} H_n(X_1,A) \overset{\partial_{n+1}}{\to} H_n(X_1,A)$$

induziert durch die Inklusionen

$$(X_0, A) \stackrel{i_1}{\hookrightarrow} (X_1, A) \stackrel{j_1}{\hookrightarrow} (X, A)$$
 $(X_0, A) \stackrel{i_2}{\hookrightarrow} (X_2, A) \stackrel{j_2}{\hookrightarrow} (X, A)$

2.2.7 Satz: Mayer-Vietoris für Pushouts

Sei

ein Pushout, wobei $A \stackrel{i}{\hookrightarrow} X$ die Einbettung eines abgeschlossenen Teilraumes und $A \subset X$ ein NDR ist.

Dann induziert $(f,g):(X,A)\to (Z,Y)$ Isomorphien

$$H_n(X,A) \stackrel{\cong}{\to} H_n(Z,Y)$$

Ferner existiert folgende natürliche exakte Sequenz (Mayer-Vietoris Sequenz)

$$\to H_{n+1}(Z) \stackrel{\partial_{n+1}}{\to} H_n(A) \stackrel{H_n(i)+H_n(f)}{\to} H_n(X) \oplus H_n(Y) \stackrel{H_n(g)-H_n(j)}{\to} H_n(Z)$$

Ab sofort fordern wir, dass unsere Homologietheorie das Dimensionsaxiom erfüllt.

2.2.8 Bemerkung:

Für alle $n \geq 1$

$$H_i(S^n) = \begin{cases} R & i = n \text{ oder } i = 0\\ 0 & \text{sonst} \end{cases}$$

und

$$H_i(S^0) = \begin{cases} R \oplus R & i = 0\\ 0 & \text{sonst} \end{cases}$$

2.3 Grade der Selbstabbildungen der Sphäre

In diesem Kapitel erfüllt unsere Theorie das Dimensionsaxiom.

2.3.1 Definition: Reduzierte Homologie

Definiere die reduzierte Homologie durch

$$\widetilde{H}_n(X) := \mathsf{Kern}(H_n(X) \to H_n(\bullet))$$

Dann gelten

- \widetilde{H} ist funktoriell.
- $\widetilde{H}_n(X) = H_n(X) \iff n \neq 0$
- $H_n(X) = R \oplus \widetilde{H}_n(X) \iff n = 0$

2.3.2 Definition: Grad

Sei $R = \mathbb{Z}$, $n \ge 0$. Dann ist der **Grad** einer Abbildung $S^n \xrightarrow{f} S^n$ definiert als die eindeutig bestimmte Zahl deg $f \in \mathbb{Z}$, die folgendes Diagramm zum kommutieren bringt:

$$\widetilde{H}_n(S_n) \xrightarrow{\widetilde{H}_n(f)} \widetilde{H}_n(S_n)$$

$$\cong \bigcup_{\mathbb{Z}} \xrightarrow{\cdot \deg f} \mathbb{Z}$$

2.3.3 Bemerkung:

- Ist das Bild von f null-homotop, so ist deg f = 0.
- $\deg(f \circ g) = \deg f \cdot \deg g$
- $\deg \operatorname{id}_{S^n} = 1$
- Der Grad ist unabhängig von der Wahl der Homologietheorie.

2.3.4 Lemma:

Sei

$$f: S^n \longrightarrow S^n$$
$$(x_0, \dots, x_i, \dots, x_n) \longmapsto (x_0, \dots, -x_i, \dots, x_n)$$

Dann ist

$$\deg f = -1$$

2.3.5 Satz:

Sei $n \geq 2$ gerade, $S^n \xrightarrow{f} S^n$. Dann existiert ein x mit

$$f(x) \in \{x, -x \mid \}$$

2.3.6 Satz:

Sei $n \geq 2$ gerade. Dann existiert für jedes stetige Vektorfeld auf S^n mindestens ein Verschwindungspunkt.

2.3.7 Satz:

Sei $A \in \mathbb{R}^{n+1 \times n+1}$ regulär.

$$\deg(x \mapsto \frac{Ax}{||Ax||}) = sign(\det A)$$

2.3.8 Satz:

Die Abbildung $S^1 \overset{z \mapsto z^k}{\to} S^1$ hat Grad k

2.3.9 Satz:

Sei $f: S^n \to S^n$ differenzierbar. $q \in S^n$ regulärer Punkt, $f^{-1}(q) = \{p_1, \dots, p_k \mid \}$. $d_i = sign(\det f'(p_i))$, wobei die Jacobimatrix durch Karten von p_i und q berechnet wird, die sich um ein Element aus SO(n+1) unterscheiden.

$$\deg f = \sum_{i} d_i$$

2.3.10 Korollar:

Der Grad ist unabhängig von der Wahl der Homologietheorie.

2.3.11 Lemma:

Sei $g: S^n \to S^n$ glatt, q ein regulärer Punkt, sodass $g^{-1} = p$.

Dann ist der Grad von g das Vorzeichen der Determinante der Jacobimatrix von g bei p, berechnet durch Karten, die sich ausschließlich um eine Rotation unterscheiden.

Kapitel 3

The construction of singular homology

3.1 Algebraische Vorbereitungen

Sei R ein kommutativer Ring mit 1.

3.1.1 Definition: Kettenkomplex

Ein R-Kettenkomplex ist eine Familie von R-Moduln $(C_n)_{n\in\mathbb{Z}}$ mit Pfeilen $c_n:C_n\to C_{n-1}$, sodass $c_{n-1}\circ c_n=0$.

Ein Pfeil $f: C_n \to D_n$ von R-Kettenkomplexen ist eine Familie von Modulmorphismen $f_n: C_n \to D_n$, sodass die sich ergebenden Diagramme kommutierten.

3.1.2 Definition: Homologie

Die n-te Homologie eines Kettenkomplexes ist definiert durch

$$H_n(C_*, c_*) := \mathsf{Kern}(c_n)/\mathsf{Bild}c_{n+1}$$

Elemente $c \in \text{Kern}c_n$ heißen \mathbf{Zykel} , $b \in \text{Bild}c_{n+1}$ heißen $\mathbf{R\ddot{a}nder}$. Zwei \mathbf{Zykel} , die sich nur um einen Rand unterscheiden, heißen $\mathbf{homolog}$.

3.1.3 Bemerkung:

Eine Kettenabbildung $f: C_n \to D_n$ induziert einen wohldefinierten Pfeil von R-Moduln $H_n(f): H_n(C_n) \to H_n(D_n)$ durch $H_n(f)([c]) = [f(c)]$. Insofern ist H_n ein Funktor $R - \mathbf{Chain} \to R - \mathbf{Mod}$.

3.1.4 Definition: Homotopie

Eine **Kettenhomotopie** zwischen Kettenpfeilen $f_n, g_n : C_n \to D_n$ ist eine Familie von Modulmorphismen $h_n : C_n \to D_{n+1}$, sodass

$$f_n - g_n = d_{n+1}h_n + h_{n+1}c_n$$

Man schreibt in diesem Fall $f \simeq g$

3.1.5 Lemma:

Zwei homotope Pfeile von Kettenkomplexen induzieren in der Homologie dieselbe Abbildung.

3.1.6 Bemerkung:

- Ketten-Homotopie ist eine Äquivalenzrelation
- Ketten-Homotopie ist verträglich mit der Verkettung von Pfeilen.

3.1.7 Definition:

Eine Sequenz von Kettenkomplexen

$$A \to B \to C$$

heißt exakt, falls sie gradweise exakt ist

$$A_n \to B_n \to C_n$$

3.1.8 Satz:

Sei folgende kurze exakte Sequenz von Kettenkomplexen gegeben

$$0 \longrightarrow C_* \stackrel{i_*}{\longrightarrow} D_* \stackrel{p_*}{\longrightarrow} E_* \longrightarrow 0$$

Dann existiert folgende natürliche lange exakte Sequenz in der Homologie

$$\longrightarrow H_{n+1}(E_*) \xrightarrow{\partial_{n+1}} H_n(C_*) \xrightarrow{H_n(i_*)} H_n(D_*) \xrightarrow{H_n(p_*)} H_n(E_*) \xrightarrow{\partial_n} H_{n-1}(C_*) \longrightarrow$$

3.2 Definition der singulären Homologie

3.2.1 Definition:

Der **Standard** *n***-Simplex** ist definiert als

$$\Delta_n := \left\{ x \in \mathbb{R}^{n+1} \mid ||x||_1 = 1, x_i \ge 0 \right\}$$

3.2.2 Definition:

Sei X ein top. Raum. Ein singulärer n-Simplex ist ein Abbildung

$$\delta: \Delta_n \longrightarrow X$$

Die Menge aller singulärer n-Simplizes wird durch $s_n(X)$ bezeichnet.

3.2.3 Definition:

Sei X ein Raum, definiere die n-te singuläre Kettengruppe als den freien R-Modul mit Basis $s_n(X)$:

$$C_n^{sing}(X;R) := \begin{cases} R[s_n(X)] & n \ge 0\\ 0 & n < 0 \end{cases}$$

3.2.4 Definition:

Definiere die k-te Facette eines Simplex durch

$$i_k^n : \Delta_{n-1} \longrightarrow \Delta_n$$

 $(x_1, \dots, x_n) \longmapsto (x_1, \dots, x_{k-1}, 0, x_k, \dots, x_n)$

3.2.5 Definition:

Wir machen aus $C_*^{sing}(X;R)$ einen Kettenkomplex, indem wir folgende Differentiale einführen

$$\begin{split} c_n^{sing}(X;R): C_n^{sing}(X;R) &\longrightarrow C_{n-1}^{sing}(X;R) \\ \delta &\longmapsto \sum_{k=1}^{n+1} (-1)^k \delta \circ i_k^n(\delta) \end{split}$$

3.2.6 Lemma:

 $c_n^{sing} \circ c_{n+1}^{sing} = 0,$ d.h. (C_n^{sing}, c_n^{sing}) ist ein Kettenkomplex.

3.2.7 Bemerkung:

 C_*^{sing} ist ein Funktor von **Top**zu $R\text{-}\mathbf{Ketten},$ wobei für $f:X\to Y$

$$C_n^{sing}(f)(\delta) = f \circ \delta$$

Sei $A \stackrel{i}{\hookrightarrow} X$ die Inklusion eines Teilraumes, definiere

$$C_n^{sing}(X, A; R) := \mathsf{Kokern}(C_n^{sing}(i)) = C_n^{sing}(X; R)/\mathsf{Bild}C_n^{sing}(i)$$

Die Differentiale $c_*^{sing}(X;R)$ machen aus $C_*^{sing}(X,A;R)$ einen Kettenkomplex.

3.2.8 Definition:

Für ein Paar (X, A) definieren wir die n-te singuläre Homologie durch

$$H_n^{sing}(X, A; R) := H_n(C_*^{sing}(X, A; R))$$

3.2.9 Satz:

 $(H^{sing}_*(\underline{\ },R),\partial_*)$ ist eine Homologietheorie mit Koeffizienten in R, die das Dimensionsaxiom erfüllt.

3.3 Verifikation der Eilenberg-Steenrod Axiome

3.3.1 Homotopie Invarianz

Sei $i_t: x \mapsto (x,t)$. Wir konstruieren eine natürliche Homotopie

$$h_*(X): C_*^{sing}(i_0) \simeq C_*^{sing}(i_1)$$

sodass

1.
$$h_n(X): C_n^{sing}(X;R) \longrightarrow C_{n+1}^{sing}(X \times I;R)$$

2.
$$c_{n+1}^{sing}(X \times I) \circ h_n(X) + h_{n-1}(X) \circ c_n^{sing}(X) = C_n^{sing}(i_0) - C_n^{sing}(i_1)$$

3. Für alle $g: X \to Y$ kommutiert

$$C_n^{sing}(X;R) \xrightarrow{h_n(X)} C_{n+1}^{sing}(X \times I;R)$$

$$C_n^{sing}(g) \downarrow \qquad \qquad \downarrow C_{n+1}^{sing}(g \times \mathrm{id}_I)$$

$$C_n^{sing}(Y;R) \xrightarrow{h_n(Y)} C_{n+1}^{sing}(Y \times I;R)$$

 $h_*(X)$ ist eindeutig bestimmt durch

$$C_n^{sing}(\Delta_n;R) \xrightarrow{h_n(\Delta_n)} C_{n+1}^{sing}(\Delta_n \times I;R)$$

$$C_n^{sing}(\delta) \downarrow \qquad \qquad \downarrow C_{n+1}^{sing}(\delta \times \mathrm{id}_I)$$

$$C_n^{sing}(X;R) \xrightarrow{h_n(X)} C_{n+1}^{sing}(X \times I;R)$$

3.3.2 Ausschneidung

3.3.3 Definition:

Sei $(U_i)_{i\in I}$ eine Überdeckung von X. $\delta \in s_n(X)$ heißt U-klein, falls $\mathsf{Bild}\delta \subset U_i$. Sei $C^U_*(X;R) \subset C^{sing}_*(X;R)$ der Unterkettenkomplex, der durch die U-kleinen Simplizes generiert wird.

3.3.4 Lemma: Kleine Simplizes Lemma

 $C^U_*(X;R) \hookrightarrow C^{sing}_*(X;R) \text{ induziert Isomorphien auf allen Homologiemoduln.}$ Zeige durch die Überdeckung $U = \{B, X - A \mid \}$, dass $H^{sing}_*(X,B;R) \cong H^{sing}_*(X-A,B-A;R)$

3.3.5 Additivität

Für jede Homologie gilt

$$H_*(\bigsqcup_{i=1}^n X_i) = \bigoplus_{i=1}^n H_*(X_i)$$

3.3.6 Definition:

Eine Homologie erfüllt das **Additivitätsaxiom**, falls für jede Menge I gilt

$$H_*(\bigsqcup_{i\in I}X_i)=\bigoplus_{i\in I}H_*(X_i)$$

Die singuläre Homologie erfüllt das Additivitätsaxiom.

3.4 Singuläre Homologie in den Graden 0 und 1

3.4.1 Definition:

Definiere die Vergrößerungsabbildung

$$\varepsilon: C_0^{sing}(X;R) \longrightarrow R$$
$$\sum n_x x \longmapsto \sum n_x$$

Dann ist $\varepsilon=0$ auf $\mathsf{Bild}c_1^{sing}$ und induziert einen Homomorphimus

$$\varepsilon: C_0^{sing}(X;R)/\mathsf{Bild} c_1^{sing} = H_0^{sing}(X;R) \longrightarrow R$$

3.4.2 Satz:

Ist $X \neq \emptyset$ wegzusammenhängend, so ist

$$\varepsilon: H_0^{sing}(X; R) \longrightarrow R$$

ein Isomorphismus.

3.4.3 Korollar:

 $H_0^{sing}(X;R)$ ist ein freier R-Modul mit $\pi_0(X)$ als Basis.

3.4.4 Satz: Hurewicz' Satz in Grad 1

Die Abbildung

$$h: \pi_1(X, x_0) \longrightarrow H_1^{sing}(X; \mathbb{Z})$$

$$[f]_{\sim} \longmapsto [f]$$

ist ein wohldefinierter Gruppenhomomorphismus.

Ist X wegzusammenhängend, so ist h surjektiv und $Kernh = [\pi_1(X, x_0), \pi_1(X, x_0)]$

Kapitel 4

Applications of singular homology

Im folgenden betrachten wir ausschließlich die singuläre Homologie.

4.1 Fundamentalsatz der Algebra

4.1.1 Satz: Fundamentalsatz der Algebra

Jedes nichtkonstante Polynom über $\mathbb C$ hat eine Nullstelle in $\mathbb C$.

4.2 Das Theorem von Borsuk-Ulam

4.2.1 Satz: Borsuk-Ulam

Für jede stetige Abbildung $f: S^n \to \mathbb{R}^n$ existiert ein $x \in S^n$, sodass

$$f(x) = f(-x)$$

4.2.2 Satz: Ham Sandwich theorem

Seien $A_1, \ldots, A_n \subset \mathbb{R}^n$ Borelmengen mit endlichem Lebesguemaß $\lambda(A_i) < \infty$. Dann existiert eine Hyperebene, die jedes A_i maßtechnisch halbiert.

4.2.3 Satz: Äquivarianz Theorem

Sei $g:S^n\to S^m$ dergestalt, dass

$$g(-x) = -g(x) \forall x \in S^n$$

Dann ist $n \leq m$

4.3 Invarianz der Dimension

4.3.1 Satz:

$$\mathbb{R}^n \cong \mathbb{R}^m \Longleftrightarrow n = m$$

4.4 Browers Fixpunktsatz

4.4.1 Satz:

Sei $n \geq 0$. Jede stetige Abbildung $f: D^n \to D^n$ hat einen Fixpunkt.

Kapitel 5

CW-complexes and cellular homology

5.1 CW-Komplexe

5.1.1 Definition:

Eine k-dimensionale Zelle $e \subset X$, die bzgl. ihrer Spurtopologie homöomorph zu $E^k = \overset{\circ}{D}{}^k$ ist. Jeder Punkt in X ist eine 0-Zelle.

5.1.2 Definition:

Ein Whitehead Komplex ist ein Raum X zusammen mit einer Zellzerlegung $(e_i)_{i \in I}$, sodass

- $\bullet \ \dot{\bigcup}_{i \in I} e_i = X$
- \bullet X ist Hausdorff
- Für jede n-Zelle e_i existiert eine Abbildung $\Phi: D^n \to X$, sodass $\Phi_{|E^n}: E^n \stackrel{\cong}{\to} e_i$ ist und $\Phi(S^n)$ in der Vereinigung der $\leq n-1$ -Zellen liegt.

Closure finiteness Der Abschluss einer Zelle schneidet sich nur mit endlichen vielen Zellen.

Weak topology

$$A \overset{c}{\subset} X \Longleftrightarrow A \cap \overline{e_i} \overset{c}{\subset} \overline{e_i} \ \forall i \in I$$

5.1.3 Definition:

Eine Teilmenge $A \subset X$ eines Whitehead Komplexes heißt ein **Subkomplex**, falls es eine Vereinigung von Zellen ist und der Abschluss jeder Zelle von ihr in A liegt.

5.1.4 Bemerkung:

$$\Phi(D^n) = \overline{e_i}$$

5.1.5 Satz:

Sei X ein Whitehead Komplex.

- ullet Eine kompakte Teilmenge $K\subset X$ schneidet nur endlich viele Zellen.
- Ein endlicher Subkomplex (besteht nur aus endlich vielen Zellen) ist kompakt in X.
- Ist $L \subset X$, so bezeichnet X(L) den kleinsten Subkomplexen, der L enthält. Dann ist $X(e) = X(\overline{e})$ ein endlicher Subkomplex für jede Zelle e.
- ullet Jede kompakte Teilmenge von X ist in einem endlichen Subkomplexen enthalten.

 $A \overset{c}{\subset} X \Longleftrightarrow A \cap L \overset{c}{\subset} L \ \forall L : \text{ endlicher Subkomplex}$

• Jeder Subkomplex ist abgeschlossen.

5.1.6 Satz:

Ein Subkomplex eines Whitehead-Komplexes ist ein Whitehead-Komplex.

5.1.7 Lemma: Hilfslemma

Sei folgendes Diagramm mit abgeschlossenen Einbettungen j, J gegeben.

$$A \xrightarrow{f} Y$$

$$\downarrow J$$

$$X \xrightarrow{F} Z$$

F soll eine Bijektion $X-A\longrightarrow Z-Y$ induzieren. Ferner soll $F(X)\stackrel{c}{\subset} Z$ und $F:X\to F(X)$ eine Identifikation sein.

Dann ist das obige Diagramm ein Pushout.

5.1.8 Definition:

Definiere das n-Skelett eines Whitehead-Komplexes

$$X^n = \bigcup_{i=0}^n \bigcup_{e: i-Zelle} e$$

5.1. CW-KOMPLEXE 33

5.1.9 Satz:

Sei X ein Whitehead-Komplex

• X trägt die Kolimes-Topologie, d.h.

$$A \stackrel{c}{\subset} X \iff A \cap X^i \stackrel{c}{\subset} X^i \ \forall i$$

• Sei $(e_i)_{i \in I(n)}$ eine Familie von n-Zellen in X mit charakteristischen Abbildungen $\Phi_i : D_i^n \to e_i$ und Einschränkungen $\varphi_i = \Phi_{i|S_i^{n-1}}$. Dann ist folgendes Diagramm ein Pushout

$$\underbrace{ \coprod_{i \in I(n)} S_i^{n-1} }_{i \in I(n)} \xrightarrow{i \in I(n)} X^{n-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\coprod_{i \in I(n)} D_i^{n-1} \xrightarrow{ \qquad \coprod_{i \in I(n)} \Phi_i } X^n$$

5.1.10 Definition:

Sei $A \subset X$, eine **CW-Zerlegung** von (X, A) besteht aus einer Filtration von Teilräumen

$$A \subset X^{-1} \subset X^0 \subset X^1 \subset \ldots \subset X = \bigcup_i X_i$$

sodass

- \bullet X trägt die Kolimes-Topologie
- Für jedes $n \ge 0$ existiert folgender Pushout

Ein Paar (X,A) zusammen mit einer CW-Zerlegung heißt ein **relativer CW-Komplex**. Ist $A=\emptyset$, so nennt man X einfach **CW-Komplex**. Ein Raum mit einer CW-Zerlegung heißt auch **CW-Raum**. Die **zelluläre Dimension** von (X,A) ist definiert als das kleinste $n \in \mathbb{N} \cup \{0,\infty\}$, sodass $X^n = X^{n+1}$.

5.1.11 Satz:

Jeder Whitehead Komplex ist ein CW-Komplex und umgekehrt.

5.1.12 Satz:

Sind X und Y CW-Komplexe, von denen mindestens einer lokal kompakt ist, so ist $X \times Y$ ebenfalls ein CW-Komplex, wobei

$$(X \times Y)^n = \bigcup X^i \times Y^{n-i}$$

5.1.13 Definition:

Eine **zelluläre Abbildung** $f:(X,A)\to (Y,B)$ ist eine stetige Abbildung, sodass

$$f(X^n) \subset Y^n$$

5.2 Zelluläre Homologie

5.2.1 Definition:

Sei (X, A) ein relativer CW-Komplex. Definiere den **zellulären Kettenkomplex** $C_*^{CW}(X, A; R)$ durch

$$C_n^{CW}(X, A; R) := H^n(X^n, X^{n-1}; R)$$

$$c_n^{CW}:C_n^{CW}(X,A;R)\longrightarrow C_{n-1}^{CW}(X,A;R)$$

wobei die Randmorphismen durch die Dreiersequenz des Tripels $X^{n-2} \subset X^{n-1} \subset X^n$ bestimmt werden.

Die Homologie

$$H_n^{CW}(X, A; R) := H_n(C_*^{CW}(X, A; R))$$

wird zelluläre Homologie genannt.

5.2.2 Satz:

Es gibt Isomorhien (natürlich, unter Berücksichtigung der zellulären Struktur)

$$H_n^{CW}(X, A; R) \xrightarrow{\cong} H_n(X, A; R) \quad \forall n \ge 0$$

5.2.3 Definition:

Sei (X, A) ein relativer CW-Komplex mit Pushouts

$$\underbrace{\coprod_{i \in I(n)} S_i^{n-1}}_{i \in I(n)} \xrightarrow{\varphi^n = \coprod_{i \in I(n)} \varphi_i} X^{n-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\coprod_{i \in I(n)} D_i^{n-1} \xrightarrow{\Phi^n = \coprod_{i \in I(n)} \Phi_i} X^n$$

betrachte außerdem den Pushout

Definiere für $n \geq 2, i \in I(n), j \in I(n-1)$ die **Inzidenznummer** $\operatorname{inc}_{i,j}^n \in \mathbb{Z}$ als den Grad der Komposition

$$S^{n-1} \xrightarrow{\varphi_i} X^{n-1} \longrightarrow X^{n-1}/(X^{n-1}-e_j) \xrightarrow{\Phi_j^{-1}} D^{n-1}/S^{n-2} \xrightarrow{u_{n-1}} S^{n-1}$$

Für n=1 definiere

$$\operatorname{inc}_{i,j}^{1} = \begin{cases} 1 & \varphi_{i}(1) = e_{j} \text{ und } \varphi_{i}(-1) \neq e_{j} \\ -1 & \varphi_{i}(-1) = e_{j} \text{ und } \varphi_{i}(1) \neq e_{j} \\ 0 & \text{sonst} \end{cases}$$

Definiere induktiv Erzeuger

$$s^n \in \widetilde{H}_n(S^n; R)$$
 $b^n \in H_n(D^n, S^{n-1}; R)$

sodass

$$\begin{split} [\delta^+] - [\delta^-] &= s^0 \in \widetilde{H}_0(S^0; R) \\ \partial b^n &= s^{n-1} \text{ wobei } \partial: H_n(D^n, S^{n-1}; R) \xrightarrow{\cong} \widetilde{H}_{n-1}(S^{n-1}; R) \\ s^n &= H_n(u_n)(b^n) \text{ wobei } H_n(u_n)(b^n): H_n(D^n, S^{n-1}; R) \xrightarrow{\cong} \widetilde{H}_n(S^n; R) \end{split}$$

5.2.4 Satz:

Folgendes Diagramm kommutiert

