Appendices

Appendix 1: Chapter 2

Figure 1: The distribution of ploidy levels across the British and Irish angiosperms in the four families with the highest number of species. Shown are Rosaceae, Poaceae, Asteraceae and Fabaceae. Each family has distinct distributions of ploidy levels.

Table 1: Search strings for Google Scholar searches used to generate the list of examples of cross-ploidy hybrids in Chapter 2. Note that other examples were added if they were deemed to be important and/or well known.

Journal	Search string
Molecular Ecology	Ploidy hybrid genetic introgression diploid OR tetraploid OR hexaploidy OR octoploid source:"Molecular
	Ecology"
Evolution	Ploidy hybrid genetic introgression diploid OR tetraploid OR hexaploidy OR octoploid site:onlinelibrary.wiley.com
	source: "Evolution" -source: "and
	Evolution" -source: "Organic
	Evolution" Source: Organic
Heredity	Ploidy hybrid genetic introgression
v	diploid OR tetraploid OR hexaploidy
	OR octoploid source:"Heredity"
Annals of Botany	Ploidy hybrid genetic introgression
	diploid OR tetraploid OR hexaploidy
	OR octoploid source:"Annals of
	Botany"
American Journal of Botany	Ploidy hybrid genetic introgression
	diploid OR tetraploid OR hexaploidy OR octoploid source:" American
	Journal of Botany"
New Phytologist	Ploidy hybrid genetic introgression
v G	diploid OR tetraploid OR hexaploidy
	OR octoploid source:" New
	Phytologist"
PNAS	Ploidy hybrid genetic introgression
	diploid OR tetraploid OR hexaploidy
D. 1 . 1 . 1 . (.) T.	OR octoploid source: "PNAS"
Biological Journal of the Linnean Society	Ploidy hybrid genetic introgression
Society	diploid OR tetraploid OR hexaploidy OR octoploid source:" Biological
	Journal of the Linnean Society"
Botanical Journal of the Linnean	Ploidy hybrid genetic introgression
Society	diploid OR tetraploid OR hexaploidy
·	OR octoploid source:" Botanical
	Journal of the Linnean Society"

Journal	Search string
Journal of Evolutionary Biology	Ploidy hybrid genetic introgression diploid OR tetraploid OR hexaploidy OR octoploid source:" Journal of Evolutionary Biology"
PLoS One	Ploidy hybrid genetic introgression diploid OR tetraploid OR hexaploidy OR octoploid source:" PLoS One"

Appendix 2: Chapter 3

Figure 2: Trees with root nodes containing the highest and lowest posterior mean probability of hybridisation from Model 1 (BLUP's of nodes in the phylogeny). A is the top tree (subset of Orchidaceae) whilst B is the tree with lowest probability of hybridisation (Fabaceae and Polygalaceae).

Figure 3: The joint probability of hybridisation between two parental species give both branch length between species (tree based genetic distance) and geographical overlap between parental species (measured as overlap in occupancy of 10x10km grid squares in the UK). The degree of shading in the scale bar and tiles represent the posterior probability of hybridisation from Model 1 given parameter values for each variable. Estimates are visualised at mean genus size, for annual-perennial parental combinations and accounting for phylogenetic relationships between species.

Figure 4: Predicted fit of probability of hybridisation given hectad sharing and ploidy difference of parental species from Model 2. Dashed lines indicate the 95% Credible Intervals, and the bold lines represent the posterior mode of the coefficients of congeneric pairs of species hybridising as a function of pairwise overlap in distribution, conditional on parental ploidy status. The effect is visualised at mean genetic distance for annual-perennial parent combinations and accounting for phylogenetic effects. The bold red dashed line indicates mean pairwise overlap in distribution (10x10km²).

Figure 5: Predicted fit of probability of hybridisation given branch length between parental species and ploidy difference of parental species from Model 2. Homoploid indicates parental species of the same ploidy level, and heteroploidy indicates parental species of different ploidy levels. Dashed lines indicate the 95% Credible Intervals, and the bold lines represent the posterior mode of the coefficients of congeneric pairs of species hybridising as a function of pairwise branch length, conditional on parental ploidy status. The effect is visualised at mean hectad sharing for annual-perennial parent combinations and accounting for phylogenetic effects. The red dashed line indicates mean pairwise branch length between all pairs of species.

Figure 6: Predicted fit of probability of hybridisation given branch length between parental species from Model 1. Black dashed lines are the 95% Credible Intervals, bold line is the posterior mean of the coefficient for the probability of congeneric pairs of species hybridising as a function of branch length. This effect is visualised at mean hectad sharing, for annual-perennial parent combinations and accounting for phylogenetic effects. The bold red dashed line indicates mean genus level genetic distance between pairs of species.

Table 2: Model 1: Probability of hybridisation with genetic distance, hectads shared and life history of parental species as fixed covariates. The posterior mean of the distribution of each coefficient is given, along with lower and upper 95% Credible Intervals. The p-value (pMCMC) is also reported and given in bold where significant. Annual-perennial and perennial-perennial levels are jointly tested using a Wald test in the main text.

Covariate	Posterior mean	l-95% CI	u-95% CI	Effective sample size	pMCMC
(Intercept)	-1.31	-3.76	0.60	1000	0.22
Branch length between species pairs	-59.75	-66.69	-51.98	185.41	0.0010
Hectads shared between species pairs	0.001	0.0007	0.0012	1000	0.0010
Annual-perennial parent pair	-0.12	-0.97	0.66	1000	0.76
Perennial-perennial parent pair	0.64	-0.25	1.58	1000	0.16
Genus size	-0.0014	-0.041	0.031	1107	0.92

Table 3: Phylogenetic signal of probability of hybridisation and the species variance independent of phylogenetic effects. 95% Credible Intervals of the variances are also presented. See methods for calculation.

Variance Component	Posterior Mode	Lower Credible Interval	Upper Credible Interval
Model 1 Phylogenetic Variance	0.62	0.32	0.77
Model 1 Species Variance	0.33	0.18	0.58
Model 2 Phylogenetic Variance	0.61	0.30	0.82
Model 2 Species Variance	0.34	0.084	0.44

Table 4: Model 2: Probability of hybridisation with ploidy, genetic distance, hectads shared and life history of parental species as covariates. The posterior mean of the distribution of each coefficient is given, along with lower and upper 95% Credible Intervals. The p-value (pMCMC) is also reported and given in bold where significant.

Covariate	Posterior mean	l-95% CI	u-95% CI	Effective sample size	pMCMC
(Intercept)	-0.11	-2.41	2.12	813	0.93
Branch length between species pairs	-74.93	-88.38	-63.46	319	0.0010
Crosss ploidy effect	-0.73	-1.02	-0.40	1000	0.0010
Hectads shared between species pairs	0.0013	0.0009	0.0016	883	0.0010
Annual-perennial parent pair	0.093	-1.15	1.23	836	0.89
Perennial-perennial parent pair	0.82	-0.40	1.96	836	0.16
Genus size	-0.029	-0.084	0.031	621	0.32

Appendix 3: Chapter 4

Figure 7: Distributions of parameters fitted to the models with constant gene flow (blue), secondary contact (green), and without gene flow (grey).

Table 5: Primers and PCR conditions used to amplify the rpL32- $trnL_{\rm UAG}$ plastid marker in Euphrasia species.

Primer	Orientation	Sequence (5'-3')	Reagents (1 reaction)	PCR conditions	References
$\overline{rpL32} ext{-F}$ $trnL_{ ext{UAG}}$	Forward Reverse	CAGTTCCAAAAAAACGTACTTC	$12.5\mu\mathrm{M}$ Taq $2\mathrm{X}$ Master Mix, $0.5\mu\mathrm{L}$ Bovine Serum Albumen, $0.5\mu\mathrm{L}$ forward and reverse primers at $10\mu\mathrm{M}$, $10.5\mu\mathrm{L}$ water, $1\mu\mathrm{L}$ sample DNA	5 min at 94°C, 35× (30 s at 94°C, 45 s at 50°C, 40 s at 72°C), 5 min at 72°C	(Wang et al., 2018)

Table 6: Primers and PCR conditions used to amplify the ITS1 nuclear marker in Euphrasia species.

Primer	Orientation	Sequence (5'-3')	Reagents (1 reaction)	PCR conditions	References
ITS4	Forward	TCCTCCGCTTATTGATATGC	$12.5\mu\mathrm{M}$ Taq $2\mathrm{X}$ Master Mix, $0.5\mu\mathrm{L}$ Bovine Serum Albumen, $0.5\mu\mathrm{L}$ forward and reverse primers at $10\mu\mathrm{M}$, $10.5\mu\mathrm{L}$ water, $1\mu\mathrm{L}$ sample DNA	5min at 94°C, 30 x (30s at 94°C, 30s at 54°C, 2min at 72°C), 10 min at 72°C.	(Wang et al., 2018)
ITS5	Reverse	GGAAGTAAAAGTCGTAACAAGG			

Appendix 4: Chapter 6

Table 7: Host species used in the common garden experiment. Commercial seed stocks list the original collection where known.

			Functional group	
Common name	Species name	Family	(informal)	Seed source
Thale cress	Arabidopsis thaliana	Brassicaceae	Herb	Laboratory stock
Field horsetail	$Equisetum\ arvense$	Equisetaceae	Fern	Wild collected in
				Edinburgh (GPS
				coordinates: 55.9679,
				-3.2129)
Red fescue	$Festuca\ rubra$	Poaceae	Grass	Commerical:
				Emorsgate seeds
				(Yorkshire + Dorset)
Yorkshire fog	$Holcus\ lanatus$	Poaceae	Grass	Commerical:
				Emorsgate seeds
Common liverwort	Marchantia	Marchantiaceae	Bryophyte	Wild collected in
	polymorpha			Edinburgh (GPS
				coordinates: 55.9679,
				-3.2129)
Ribwort plantain	$Plantago\ lanceolata$	Plantaginaceae	Herb	Commerical:
				Emorsgate seeds
				(Somerset +
				Wiltshire)
Scots pine	Pinus sylvestris	Pinaceae	Tree	Commerical: Scotia
				Seeds

Common name	Species name	Family	Functional group (informal)	Seed source
White clover	Trifolium repens	Fabaceae	Herb	Commerical: Emorsgate seeds (Yorkshire + Wiltshire)

Table 8: Collection details for Euphrasia species used in the common garden experiment. *Population also used in the multiple host phenotypic plasticity experiment.

Collection number	Taxon	Locality	Latitude	Longitude	Collector
E4E0138	E. arctica	Fintallick, Glen Ledock, Comrie,	56.41318	-4.03085	Dot Hall
		Perthshire			
E4E0144	E. arctica	Balachuirn, Isle	57.38996	-6.06877	S.J. Bungard
E4E0032	E. arctica	of Raasay South Links,	58.85275	-2.88701	John Crossley
		Burray, Orkney			
E4E0139	E. arctica	Dalreoch Farm,	56.74199	-3.53350	Martin Robinson
		Enochdhu			
E4E0049	E. arctica	Ouaisne, Jersey	49.17707	-2.18293	Anne Haden
E4E0247	E. arctica	Elsdon.	55.22770	-2.10234	Stephanie Miles
		Newcastle upon			
		Tyne			
NBer001*	E. arctica	North Berwick Glenn, East	56.05696	-2.70456	Alex Twyford
		Lothian			
E4E0038	E. confusa	Oldbury, near	52.55285	-1.53980	John and Monika
	·	Hartshill,			Walton
		Warwickshire			
E4E0114	E. confusa	Trethew Mill,	-4.709558	Rosemary	
		Bodmin,		Parslow	
		Cornwall			
		50.39585			

Collection number	Taxon	Locality	Latitude	Longitude	Collector
E4E0095	E. confusa	North Anston	53.34738	-1.20803	Graeme Coles
		Grassland, South			
E4E0000	TI C	Yorkshire	E0 E 4000	0.00041	District C vil
E4E0009	E. confusa	Devil's Hole	53.54062	-3.09041	Philip H. Smith
		Blowout,			
		Ravenmeols Local			
		Nature Reserve,			
E4E0188	E. micrantha	Merseyside Meall a Bathaich,	56.82082	-4.182812	Alistair Godfrey
E4E0100	Е. тистанина	Glen Garry, East	30.02002	-4.102012	Alistali Godiley
		Perthshire			
E4E0064	E. nemorosa	Castle Hill Local	50.7842	0.052719	David Harris
Liloudi	D. Hemorosa	Nature Reserve,	00.1042	0.002110	David Hairis
		East Sussex			
E4E0069	E. nemorosa	Meridian	52.60857	-1.19809	Geoffrey Hall
		Business Park,	0_10000,		5. 4 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
		Leicester			
E4E0123	E. nemorosa	Bloody Oaks	52.68950	-0.56263	Geoffrey Hall
		Triangle,			v
		Tickercote,			
		Rutland			
E4E0029	$E.\ pseudokerneri$	Levin Down,	50.91346	-0.74150	Elizabeth Sturt
		Sussex			
E4E0112	$E.\ pseudokerneri$	Beeston Common,	52.93442	1.220071	Francis Farrow
		Norfolk			

Collection number	Taxon	Locality	Latitude	Longitude	Collector
E4E0027	$E. \ anglica \times E. \ nemorosa$	West Dean Woods, Sussex	50.93212	-0.79735	Elizabeth Sturt
E4E0016	$E. \ anglica \times E. \ rostkoviana$	Straduff Rathcabbin, Co. Tipperary	53.11902	-8.02454	David Nash
E4E0033	E. $arctica \times E$. $confusa$	Nr Quoyorally, South Ronaldsay, Orkney	58.75897	-2.93473	John Crossley
E4E0145	$E. \ arctica \times E. \ nemorosa$	Kylfakin, Wof, Skye	57.26685	-5.76042	S.J. Bungard
E4E0021	$E. \ arctica \times E. \ nemorosa$	Dunamase, Co. Laois	53.03153	-7.21015	David Nash
E4E0031	$E.\ nemorosa \times E.\ confusa$	Dolebury Fort, Somerset	51.32605	-2.79432	C.W. Hurfurt
E4E0143	E. tetraquetra x E. confusa	Ballyteige Burrow, Co Wexford, Ireland	52.20268	-6.64325	Jim Hurley

Table 9: Summary of trait values for many Euphrasia species and hybrids grown on a clover host. Values are means ± 1 SE. Length measurements are in millimeters. Note: Date of first flower not recorded.

Taxon	Corolla length	Height	Internode ratio	Julian days to flower	Lower floral leaf teeth	Nodes to flower	Number of branches
E. arctica	8.0 ± 0.2	82.9 ± 4.4	1.1 ± 0.1	195.2 ± 1.5	4.4 ± 0.1	8.6 ± 0.2	$*4.56 \pm 0.2$
E. confusa	6.9 ± 0.2	134.4 ± 7.2	1.6 ± 0.1	200.2 ± 2.4	5.3 ± 0.2	11.1 ± 0.4	7.26 ± 0.5
E.	5.6 ± 0.2	70.6 ± 8.1	3.0 ± 0.4	_	2.4 ± 0.3	8.3 ± 0.2	0.57 ± 0.4
micrantha							
$E.\ nemorosa$	7.7 ± 0.1	127.4 ± 8.1	1.4 ± 0.1	206.6 ± 1.7	5.1 ± 0.2	11.9 ± 0.5	7.67 ± 0.5
E. pseudok-	8.8 ± 0.4	176.4 ± 15.6	1.4 ± 0.1	205.1 ± 2.0	5.5 ± 0.2	13.2 ± 0.4	8.67 ± 0.6
erneri							
$E. \ anglica \ \mathbf{x}$	9.1 ± 0.5	148.1 ± 11.8	1.4 ± 0.1	195.7 ± 1.9	6.0 ± 0.3	12.0 ± 0.6	10.00 ± 1.0
$E.\ nemorosa$							
$E.\ anglica \ {\bf x}$	7.9 ± 0.2	122.6 ± 8.3	1.3 ± 0.1	192.3 ± 12.3	5.9 ± 0.3	10.6 ± 0.5	7.44 ± 0.7
E.							
rostkoviana							
$E. \ arctica \ \mathbf{x}$	9.5 ± 0.2	100.3 ± 4.3	1.4 ± 0.1	193.4 ± 3.2	3.8 ± 0.1	7.8 ± 0.3	5.70 ± 0.4
E. confusa							
$E. \ arctica \ \mathbf{x}$	8.0 ± 0.2	132.2 ± 14.5	1.3 ± 0.1	205.3 ± 2.4	6.0 ± 0.3	11.3 ± 0.4	6.50 ± 0.4
$E.\ nemorosa$							
$E. \ arctica \ \mathbf{x}$	7.9 ± 0.2	92.5 ± 5.9	1.0 ± 0.1	199.3 ± 2.8	5.1 ± 0.2	9.8 ± 0.3	7.00 ± 0.5
$E.\ nemorosa$							
$E.\ confusa$ x	7.2 ± 0.2	57.4 ± 5.8	0.7 ± 0.1	194.1 ± 2.7	4.2 ± 0.2	7.6 ± 0.4	4.00 ± 0.3
E.							
tetra que tra							

Figure 8: Principal component analysis of morphological variation of *Euphrasia* in a common garden. Panels show (A) five species and six hybrids grown with a clover host, (B) five species grown with a clover host, (C) *E. arctica* with nine host treatments. Points represent individuals, and ellipses represent the standard error of the (weighted) average of scores.

Table(s) 10: The first five principal components extracted from the principal component analysis, with the contribution of variance of each trait to each principal component. The last two rows of each table show the standard deviation and the proportion of variance explained by the principal component.

Species differences (including hybrids)	PC1	PC2	PC3	PC4	PC5
Branches	0.229	0.053	0.071	0.252	0.094
Corolla length	0.089	0.262	0.369	0.032	0.136
Height	0.211	0.115	0.149	0.047	0.379
Internode ratio	0.005	0.441	0.186	0.030	0.190
Leaf teeth	0.213	0.056	0.097	0.428	0.128
Nodes to flower	0.224	0.093	0.126	0.181	0.081
Standard deviation	1.738	1.099	0.964	0.616	0.533
Proportion of variance	0.503	0.201	0.155	0.063	0.047

Species differences (excluding hybrids)	PC1	PC2	PC3	PC4	PC5
Branches	0.226	0.024	0.096	0.233	0.017
Corolla length	0.100	0.269	0.361	0.082	0.141
Height	0.214	0.128	0.151	0.063	0.367
Internode ratio	0.029	0.434	0.202	0.000	0.171
Leaf teeth	0.214	0.032	0.064	0.424	0.159
Nodes to flower	0.217	0.113	0.125	0.198	0.145
Standard deviation	1.780	1.111	0.932	0.612	0.433
Proportion of variance	0.528	0.206	0.145	0.062	0.031

Phenotypic plasticity	PC1	PC2	PC3	PC4	PC5
Branches	0.183	0.065	0.032	0.098	0.220
Corolla length	0.139	0.001	0.252	0.340	0.030
Height	0.179	0.150	0.016	0.065	0.128
Internode ratio	0.070	0.301	0.274	0.119	0.146
Julian days to flower	0.158	0.198	0.056	0.077	0.191
Leaf teeth	0.178	0.024	0.090	0.153	0.166
Nodes to flower	0.093	0.262	0.280	0.147	0.119
Standard deviation	1.904	1.137	0.924	0.725	0.586
Proportion of variance	0.518	0.185	0.122	0.075	0.049

Table 11: Summary of trait values for $Euphrasia\ arctica$ grown on many different hosts. Values are mean +/- one standard error. Length and height measurements are in millimeters.

Early season	At first flowering							End of season	
Host	Height	Corolla length	Height	Internode ratio	Julian days to flower	Lower floral leaf teeth	Nodes to flower	Number of branches	Height
A. thaliana	12.8 ± 1.1	6.1 ± 0.3	19.2 ± 1.6	2.4 ± 0.1	201.6 ± 4.3	3.2 ± 0.1	8.8 ± 0.3	2.1 ± 0.4	30.0 ± 3.2
E. arvense	6.1 ± 0.4	5.9 ± 0.3	15.1 ± 1.1	2.6 ± 0.2	215.3 ± 4.6	2.4 ± 0.1	9.3 ± 0.3	0.4 ± 0.1	35.6 ± 4.8
F. rubra	6.7 ± 0.4	6.3 ± 0.1	19.5 ± 1.4	2.6 ± 0.2	216.5 ± 4.4	2.8 ± 0.2	9.6 ± 0.3	0.8 ± 0.3	39.6 ± 4.1
H. lanatus	7.1 ± 1.3	6.3 ± 0.1	16.0 ± 1.6	2.4 ± 0.2	224.5 ± 7.0	2.5 ± 0.2	9.8 ± 0.4	0.8 ± 0.4	33.8 ± 6.8
M. polymorpha	6.3 ± 0.7	5.5 ± 0.4	9.6 ± 1.3	2.9 ± 0.4	222.6 ± 17.0	1.7 ± 0.3	9.7 ± 0.5	0	11.3 ± 2.5
No host	5.9 ± 0.3	5.3 ± 0.2	11.2 ± 1.1	2.8 ± 0.2	241.3 ± 7.9	1.9 ± 0.3	9.9 ± 0.5	0	9.7 ± 2.0
P. lanceolata	7.5 ± 0.5	6.1 ± 0.1	14.1 ± 0.8	2.8 ± 0.1	211.2 ± 3.7	2.9 ± 0.1	10.4 ± 0.3	0.4 ± 0.1	28.3 ± 3.4
P. sylvestris	6.2 ± 0.6	5.7 ± 0.3	12.2 ± 1.3	2.9 ± 0.2	233.8 ± 6.1	1.9 ± 0.2	9.2 ± 0.3	0	17.2 ± 2.6
T. repens	12.9 ± 1.4	7.4 ± 0.2	39.4 ± 2.6	2.1 ± 0.2	189.8 ± 2.0	3.9 ± 0.1	8.7 ± 0.3	4.7 ± 0.4	143.2 ± 8.6

Table 12: Comparison of *E. arctica* traits in the phenotypic plasticity common garden experiment. Tukey comparisons are presented between *E. arctica* traits with two different host treatments. *** p < 0.001, ** p < 0.01, * p < 0.05.

Host 1	Host 2	Corolla length	Height	Internode ratio	Julian days to flower	Nodes to flower	Number of leaf teeth
$\overline{Arabidopsis}$ thaliana	No host	1.065*	0.49*	0.102	-0.178***	-0.116	0.508
Equisetum arvense	No host	0.946*	0.304	0.041	-0.112***	-0.066	0.212
Festuca $rubra$	No host	1.04*	0.529**	0.073	-0.112***	-0.034	0.397
Holcus $lanatus$	No host	1.05*	0.332	0.077	-0.063	-0.009	0.258
Marchantia polymorpha	No host	0.25	-0.181	0.07	-0.031	-0.025	-0.136
Pinus sylvestris	No host	0.481	0.067	0.015	-0.03	0.051	0.01
Plantago lanceolata	No host	0.879	0.246	0.016	-0.137***	-0.071	0.419
Trifolium repens	No host	2.102***	1.241***	0.180*	-0.244***	-0.134	0.711
Equisetum arvense	$A rabidops is \ thaliana$	-0.119	-0.186	-0.061	0.066*	0.05	-0.296
Festuca rubra	Arabidopsis $thaliana$	-0.024	0.039	-0.029	0.065**	0.082	-0.111
Holcus lanatus	$Arabidopsis \ thaliana$	-0.015	-0.158	-0.025	0.114***	0.107	-0.25

		Corolla		Internode	Julian days	Nodes to	Number of
Host 1	Host 2	length	Height	ratio	to flower	flower	leaf teeth
Plantago	Festuca	-0.161	-0.283	-0.056	-0.025	-0.038	0.022
lance o lata	rubra						
Trifolium	Festuca	1.062***	0.712***	0.106	-0.132***	-0.1	0.315
repens	rubra						
Marchantia	Holcus	-0.8	-0.513*	-0.006	0.033	-0.016	-0.394
polymorpha	lanatus						
Pinus	Holcus	-0.569	-0.265	-0.061	0.034	0.06	-0.248
sylvestris	lanatus						
Plantago	Holcus	-0.171	-0.086	-0.06	-0.074**	-0.063	0.161
lance olata	lanatus						
Trifolium	Holcus	1.052**	0.909***	0.102	-0.18***	-0.125	0.454
repens	lanatus						
Pinus	Marchantia	0.231	0.248	-0.055	0.001	0.076	0.146
sylvestris	polymorpha						
Plantago	Marchantia	0.629	0.427	-0.054	-0.106***	-0.047	0.555
lance olata	polymorpha						
Trifolium	Marchantia	1.852***	1.423***	0.109	-0.213***	-0.109	0.847*
repens	polymorpha						
Plantago	Pinus	0.398	0.178	0.001	-0.107***	-0.123	0.409
lance olata	sylvestris						
Trifolium	Pinus	1.621***	1.174***	0.164*	-0.214***	-0.185	0.701*
repens	sylvestris						
Trifolium	Plantago	1.223***	0.996***	0.163*	-0.107***	-0.063	0.292
repens	lance o lata						

Table 13: Analysis of deviance for each trait in the phenotypic plasticity experiment with E. arctica grown with many different hosts, assuming a Poisson distribution. For each model, we report the change in degrees of freedom (df), deviance, residual degrees of freedom, residual deviance, and p-value generated from the χ^2 distribution. Factor host is compared to the intercept model where no factors are fitted.

Trait	Factor	df	Deviance	Resid. df	Resid. Dev	$\Pr(>\chi^2)$
Julian days to flower	Host (Intercept)	8	192.390 192	184 611.5053	419.1153	2.56E-37
Nodes to flower	Host (Intercept)	8	5.020 193	185 43.49272	38.47252	0.755416
Number of leaf teeth	Host (Intercept)	8	26.793 193	185 68.17096	41.37748	0.000767

Table 14: ANOVAs for traits measured in the phenotypic plasticity experiment with *E. arctica* grown with many different hosts, assuming Gaussian distributed residuals. For each model, we report the degrees of freedom (df), sums of squares (SS), mean squares (MS), F-statistic, and p-value.

Trait	df	SS	MS	F	p
Corolla length	Host	8	49.469	6.184	9.854565
	Residuals	173	108.555	0.6275	
Height	Host	8	27.021	3.378	23.139
	Residuals	185	27.009	0.146	
Internode ratio	Host	8	0.562	0.070	3.362213
	Residuals	184	3.845	0.0209	

Table 15: Summary of generalised linear models for the phenotypic plasticity experiment with *Euphrasia arctica* grown on many hosts in a common garden. All models compare *E. arctica* grown with a particular host to the intercept of no host. Generalised linear models assuming Poisson residuals with log link function were used in Julian days to flower, nodes to flower and number of leaf teeth, while all others assumed Gaussian residuals. The model coefficient is reported with standard error in brackets. *** p < 0.001, ** p < 0.01.

Term	Corolla length	Height (log)	Internode ratio	Julian days to flower	Nodes to flower	Number of leaf teeth
(Intercept)	5.250 (0.250)***	2.363 (0.115)***	0.353 (0.043)***	5.489 (0.02)***	2.293 (0.095)***	0.646 (0.218)**
Arabidopsis $thaliana$	1.064 (0.293)***	0.489 (0.135)***	0.102 (0.051)*	-0.177 (0.024)***	-0.115 (0.114)	0.507 (0.241)*
Equisetum $arvense$	0.945 (0.300)**	0.304 (0.138)*	$0.041 \ (0.052)$	-0.111 (0.024)***	-0.065 (0.116)	$0.212\ (0.254)$
Festuca rubra	1.040 (0.288)***	0.529 (0.134)***	$0.073 \ (0.050)$	-0.112 (0.023)***	-0.033 (0.111)	$0.396 \ (0.242)$
Holcus lanatus	1.050 (0.323)**	0.331 (0.147)*	0.077(0.055)	-0.063 (0.025)*	-0.008 (0.123)	0.257 (0.267)
Marchantia polymorpha	$0.250\ (0.433)$	-0.181 (0.171)	0.070 (0.064)	-0.03 (0.029)	-0.024 (0.143)	-0.135 (0.338)
Pinus sylvestris	$0.480 \ (0.333)$	$0.067 \ (0.153)$	$0.015 \ (0.058)$	-0.029 (0.026)	$0.051 \ (0.126)$	$0.010 \ (0.290)$
Plantago lanceolata	0.879 (0.288)**	$0.245 \ (0.134)$	$0.016 \ (0.05)$	-0.136 (0.023)***	-0.071 (0.112)	$0.419 \ (0.242)$
Trifolium $repens$	2.101 (0.293)***	1.241 (0.136)***	0.180 (0.051)***	-0.243 (0.024)***	-0.133 (0.115)	0.711 (0.239)**

Figure 10: Relationship between growth-related traits and end of season height for *E. arctica* grown with eight hosts and no host. (A) Height at first flowering, (B) height 6-weeks after germination, (C) Julian days to flower, (D) number of branches. Length measurements are reported in mm.

Figure 11: Comparison between trait values for wild-collected herbarium specimens and common garden plants of diverse *Euphrasia* species for (A) nodes to flower, (B) corolla length (mm), (C) number of leaf teeth, (D) internode ratio. Points are for *Euphrasia* population means, with bars representing the standard error of measurements.

Table 16: Model output from MCMCglmm comparing traits for the wild collected Euphrasia specimens to the baseline of the common garden data (Intercept). The posterior means are reported along with the lower and upper 95% credible intervals, as well as the p-value (pMCMC) for the effect.

Trait	Factor	Posterior mean	Lower credible interval	Upper credible interval	pMCMC
Branches	(Intercept) Wild collected	1.863 -0.457	1.682 -0.619	2.086 -0.290	0.001 0.001
Internode ratio	(Intercept)	2.533	2.118	2.920	0.001
	Wild collected	-1.008	-1.206	-0.823	0.001
Corolla	(Intercept) Wild collected	8.182 -1.363	7.477 -1.650	8.756 -1.032	0.001 0.001
Nodes	(Intercept) Wild collected	2.322 -0.016	2.189 -0.135	$2.465 \\ 0.086$	0.001 0.800
Teeth	(Intercept) Wild collected	1.616 -0.187	1.485 -0.369	1.722 -0.004	0.001 0.050

Appendix 5: Chapter 7

Figure 12: Euphrasia reproductive output over time showing differences in reproductive trajectories, data from Experiment 1. Values represent mean reproductive nodes at a particular time point \pm one standard error. Eleven species of host are shown, along with the average host where points are the mean of all hosts in the experiment.

Figure 13: Posterior distributions of the phylogenetic signal for the models from Experiment 1, where 45 different host species were grown with *Euphrasia arctica*. The distributions of phylogenetic signal are shown for three *Euphrasia* traits: survival, total reproductive output at the end of the season, and days to flower. Total reproductive output shows both the highest and least variable estimate of phylogenetic signal, however all are significant as the distributions are not overlapping zero.

Figure 14. Posterior distribution of the variance for random effects in the model fitted for Experiment 2, where four species of *Euphrasia* were grown on thirteen different species of host. The random effects are the *Euphrasia*-host interaction, the sole effect of host species, and the residual variance. Although the residual variance is the explaining most variation, both the host-parasite interaction and hosts themselves are estimated to be significantly way from zero.

Figure 15. Performance of four species of Euphrasia on thirteen different species of host plants measured as cumulative reproductive nodes. Each panel represents a unique Euphrasia population (a = A1766, b = T1761, c = V1761, d = M1767, e = M1768, f = M1769), coloured by species. Two populations, (e) and (f) cooccur. Host species are ranked by average performance conferred to a Euphrasia species, where HPU = $Hypericum\ pulchrum$, CVU = $Calluna\ vulgaris$, HLA = $Holcus\ lanatus$, OVU = $Origanum\ vulgare$, UGA = $Ulex\ gallii$, PMA = $Plantago\ maritima$, PLA = $Plantago\ lanceolata$, VCH = $Veronica\ chamaedrys$, FOV =

Table 17: Plant names, attributes and collection sources for host species used in Experiment 1.

		T		
Host species	Authority	Functional group	Life History	Seed source
No host		0F		
Agrostis	_ L.	- Grass	- Perennial	- Emorganto
capillaris	ш.	Glass	гегенна	Emorsgate
Allium	L.	Forb	Perennial	RBGE
ursinum	ш.	1010	1 Clellinai	REGE
Anthriscus	(L.) Hoffm.	Forb	Perennial	Emorsgate
sylvestris	()			
$reve{A} rabidopsis$	(L.) Heynh.	Forb	Annual	Inbred lines
thaliana	, , ,			University of
				Edinburgh
Centaurea	L.	Forb	Perennial	Emorsgate
nigra				
Centranthus	(L.) DC.	Forb	Perennial	Chiltern
ruber	_			Seeds
Chenopodium	L.	Forb	Annual	Author
album	т	T3 1	D : 1	collections
Chenopodium bonus-	L.	Forb	Perennial	Surplus seed RBGE
henricus				NDGE
Cynosurus	L.	Grass	Perennial	Emorsgate
cristatus	ш.	Grass	1 Clellinai	Linorsgate
Cystopteris	R. Sim	Fern	Perennial	RBGE
dickeniana	-0. 10			
Dactylorhiza	(T.Stephenson	Forb	Perennial	RBGE
purpurella	&			
	T.A.Stephenson	n)		
	Soó			
Equisetum	L.	Fern	Perennial	RBGE
arvense				
Erica tetralix	L.	Woody	Perennial	RBGE
Festuca rubra	L.	Grass	Perennial	Emorsgate
Fragaria	L.	Forb	Perennial	Scotia seeds
vesca	т	T3 1	D . 1	DDCE
Galanthus	L.	Forb	Perennial	RBGE
nivalis				

	A+1:+	Functional	T:f- II:-4	C1
Host species	Authority	group	Life History	Seed source
Galium	L.	Forb	Annual	Author
aparine				collection, Upper
				Halliford,
				Surrey,
				Engalnd,
				11/16
$Galium \ verum$	L.	Forb	Perennial	Emorsgate
Helianthemum nummula- rium	(L.) Mill.	Forb	Perennial	Scotia seeds
Holcus $lanatus$	L.	Grass	Perennial	Emorsgate
Hordeum	L.	Grass	Annual	Wiggly
vulgare				Wigglers
Hyac in tho ides	(L.) Chouard	Forb	Perennial	RBGE
$non ext{-}scripta$	ex Rothm.			
Lagurus $ovatus$	L.	Grass	Annual	www.wildflowershop.co.u
Lathyrus japonicus	Willd.	Legume	Perennial	RBGE
Leucanthemum $vulgare$	(Vaill.) Lam.	Forb	Perennial	Emorsgate
Lotus	L.	Legume	Perennial	Emorsgate
corniculatus		<u> </u>		<u> </u>
Meum	Jacq.	Forb		RBGE
athaman- $ticum$				
Mimulus	DC.	Forb	Perennial	Author
guttatus	DC.	1015	1 Ci Ciiiiiai	collections
Ononis	L.	Legume	Perennial	Emorsgate &
spinosa				Wild Flower
1				Shop
Papaver	L.	Forb	Annual	Emorsgate
rhoeas				
Phleum	L.	Grass	Perennial	Wild Flower
pratense				Shop
Pinus	L.	Woody	Perennial	Scotia seeds
sylvestris	_			_
Plantago	L.	Forb	Perennial	Emorsgate
lance olata				

		Functional		
Host species	Authority	group	Life History	Seed source
Pteridium aquilinum	L. (Kuhn)	Fern	Perennial	British Pteridological Society spore exchange
$Rumex\\ acetosella$	L.	Forb	Perennial	Scotia seeds
Senecio vulgaris	L.	Forb	Annual	RBGE
Silene dioica	(L.) Clairv.	Forb	Perennial	D. Charlse- worth, Univ. Edinburgh
Silene latifolia	Poir.	Forb	Perennial	D. Charlseworth, Univ. Edinburgh
Thymus polytrichus	A.Kern. ex Borbás	Woody	Perennial	Emorsgate
Sorbus aucuparia	L.	Woody	Perennial	RBGE
Tragopogon pratensis	L.	Forb	Perennial	Scotia seeds
Trifolium pratense	L.	Legume	Perennial	Chiltern Seeds & Wild Flower Shop
Ulex europaeus	L.	Legume/Woo	dy Perennial	Tree Seed Online Ltd
Vicia cracca	L.	Legume	Perennial	Emorsgate
Zea mays	L.	Grass	Annual	Chiltern Seeds

Table 18: Plant names, attributes and collection sources for host species used in Experiment 2.

Host species	Authority	Source/Location	Plant status
Agrostis curtisii	Kerguélen	Millenium Seed Bank, Kew Gardens	Seed
Calluna vulgaris	(L.) Hull	RBGE	Seed, but small plants from cuttings
Deschampsia (Avenella) flexuosa	(L.) Trin.	Chiltern Seeds	Seed
Festuca ovina	È.	Emorsgate	Seed
Holcus lanatus	L.	Emorsgate	Seed
Hypericum pulchrum	L.	Scotia Seeds	Seed
Lotus corniculatus	L.	Emorsgate	Seed
Lolium perenne	L.	Emorsgate	Seed
Origanum vulgare	L.	Emorsgate	Seed
Plantago lanceolata	L.	Emorsgate	Seed
Plantago maritima	L.	Scotia Seeds	Seed
Ulex gallii	Planch.	Millenium Seed Bank, Kew Gardens	Seed
Veronica chamaedrys	L.	Scotia Seeds	Seed

Table 19: Euphrasia species collections across both experiments.

Experiment	Euphrasia species	Location	Grid Reference
1	E.arctica	Inverkeithing, Scotland	NT 1389 82312
2	E.anglica	(A1766)	Cheddar, Somerset
2	E.vigursii	(V1761)	St Agnes Head, Cornwall
2	E.tetraquetra	(T1761)	St Agnes Head, Cornwall
2	E.micrantha	(M1767)	Borrowdale, Cumbria
2	E.micrantha	(M1768)	Alness, Scotland
2	E.micrantha	(M1769)	Orkney, Scotland

Table 20: Model output from MCMCglmm for the event history analysis (survival) model in Experiment 1. The intercept represents the latent probit estimate of mean *Euphrasia* survival on a perennial grass transplanted at the earliest date, measured at the first time point. The posterior means are reported along with the lower and upper 95% credible intervals as well as the effective sample size and p-value for the effect (pMCMC).

Posterior mean	l-95% CI	u-95% CI	Effective sample size	pMCMC
			======================================	pmomo
3.0348	1.8630	4.1519	1000	< 0.001
-1.0533	-1.1164	-0.9912	1000	< 0.001
0.1390	-0.2489	0.6076	1000	0.5300
-0.0164	-0.0213	-0.0117	1000	< 0.001
-0.2583	-1.5117	1.0171	1000	0.6520
-0.3076	-0.9687	0.3844	1000	0.3700
-0.0828	-1.0457	0.7646	1000	0.8500
-0.6675	-1.4986	0.1819	1000	0.0980
	-1.0533 0.1390 -0.0164 -0.2583 -0.3076 -0.0828	-1.0533	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 21: Model output from MCMCglmm for the days to flower model in Experiment 1. The intercept represents the log of the mean days to flower since germination of *Euphrasia* on a perennial grass transplanted at the earliest date. The posterior means are reported along with the lower and upper 95% credible intervals as well as the effective sample size and p-value for the effect (pMCMC).

Covariates	Posterior mean	l-95% CI	u-95% CI	Effective sample size	pMCMC
(Intercept)	4.6197	4.1765	5.0536	1000	< 0.001
AnnPerAnn	-0.1380	-0.2703	0.0043	1188	0.0560
Functional_groupFern	-0.1127	-0.5410	0.3556	1000	0.6000
Functional_groupForb	-0.0879	-0.3087	0.1793	1106	0.3780
Functional_groupLegume	-0.0650	-0.3307	0.3032	860.9	0.6160
Functional_groupWoody	0.0991	-0.2964	0.4466	1000	0.5520
Normalized transplant date	0.0034	0.0008	0.0060	1000	0.0160

Table 22: Model output from MCMCglmm for the number of reproductive nodes over time model in Experiment 1. The intercept represents log of the mean number of reproductive nodes of *Euphrasia* on a perennial grass transplanted at the earliest date, measured at the first time point. The posterior means are reported along with the lower and upper 95% credible intervals as well as the effective sample size and p-value for the effect (pMCMC).

Covariates	Posterior mean	l-95% CI	u-95% CI	Effective sample size	pMCMC
(Intercept)	-4.1298	-17.0773	5.4805	550	0.3420
Time3	2.3713	1.5862	3.2031	773.2	< 0.001
Time4	3.0630	2.1378	3.9166	1000	< 0.001
AnnPerAnn	0.7872	-1.2385	2.8500	1000	0.4460
Functional_groupFern	-4.3612	-16.8977	6.6709	789.8	0.3960
Functional_groupForb	-2.3178	-9.4309	3.7584	793.8	0.4420
Functional_groupLegume	-2.3657	-10.7235	5.1473	756.9	0.5760
Functional_groupWoody	-7.6673	-15.5032	-1.0839	549.4	0.0180
Normalized transplant date	-0.0760	-0.0919	-0.0625	1000	< 0.001
Time3:AnnPerAnn	-0.9448	-2.0965	0.1002	1000	0.0920
Time4:AnnPerAnn	-2.3383	-3.6057	-0.8897	1000	0.0040

Table 23: Model output from MCMCglmm for the cumulative reproductive nodes at the end of the season model in Experiment 1. The intercept represents the log of the mean cumulative reproductive nodes at the end of the season of *Euphrasia* on a perennial grass transplanted at the earliest date. The posterior means are reported along with the lower and upper 95% credible intervals as well as the effective sample size and p-value for the effect (pMCMC).

Covariates	Posterior mean	l-95% CI	u-95% CI	Effective sample size	pMCMC
(Intercept)	-0.4637	-9.8823	9.4058	1093	0.9240
AnnPerAnn	-0.3610	-2.9028	2.1730	886.5	0.7720
Functional_groupFern	-3.6600	-15.1134	6.8501	1000	0.4660
Functional_groupForb	-2.9965	-8.8016	2.1653	1097	0.2340
Functional_groupLegume	-2.0488	-9.1675	4.6899	1000	0.5500
Functional_groupWoody	-7.5786	-14.1020	-1.0165	633.3	0.0100
Normalized transplant date	-0.0762	-0.0945	-0.0570	1000	< 0.001

Table 24: Model output from MCMCglmm for the number of cumulative reproductive nodes of *Euphrasia* individuals at the end of the season from Experiment 2. The intercept represents log of the mean cumulative number of reproductive nodes of *Euphrasia anglica*, population A1766, on a host that was transplanted at the earliest date. The posterior means are reported along with the lower and upper 95% credible intervals as well as the effective sample size and p-value for the effect (pMCMC).

Covariates	Posterior mean	l-95% CI	u-95% CI	Effective sample size	pMCMC
(Intercept)	1.7842	1.2210	2.2714	787.7	0.0010
Euphrasia micrantha	-1.2795	-1.7479	-0.8284	1000	0.0010
Euphrasia tetraquetra	-0.3702	-0.8160	-0.0076	873.2	0.0620
Euphrasia vigursii	-0.2457	-0.7758	0.2138	1000	0.3340
Population: M1767	0.3269	-0.2098	0.9299	846.7	0.2760
Population: M1768	0.7931	0.4788	1.0699	1000	0.0010
Normalized transplant date	0.0059	-0.0084	0.0237	1208	0.4820