Enhancing SNV Detection in Clinical FFPE Data

Leveraging Mutational Signatures for Artifact Correction Tara Friedrich

GitHub: staracode/ffpe code

Motivation

Why FFPE Data?

- Huge repositories of archived FFPE samples
- Easy preservation preferred by clinics
- Often intertwined well with histology and clinical metadata
- Opportunity to unlock insights from legacy data

FFPE Artifacts: The Core Challenge

What goes wrong with FFPE samples?

- DNA fragmentation
- Chemical modifications (e.g., cytosine deamination)
- Result: High false-positive SNV calls
- Especially problematic for C>T/G>A transitions

Can We Fix FFPE Artifacts?

Hypothesis: Mutational signatures (SBS Signature) can identify and correct FFPE noise

- Use statistical models to distinguish true mutations from artifacts
- Particularly useful in large-scale datasets

SBS₁

Proposed Aetiology

Spontaneous deamination of 5-methylcytosine (clock-like signature)

SBS4

Proposed Aetiology Tobacco smoking

SBS7a **Proposed Aetiology**

Ultraviolet light exposure

SBS2

Proposed Aetiology

Activity of APOBEC family of cytidine deaminases

SBS5

Proposed Aetiology

Unknown (clock-like signature)

SBS7b

Proposed Aetiology

Ultraviolet light exposure

Proposed Aetiology

Defective homologous recombination DNA damage repair

Proposed Aetiology Defective DNA mismatch repair

SBS7c

Proposed Aetiology Ultraviolet light exposure

Foundational Work – Paper 1

Wong et al., Nature Communications (2022)

- Used signature deconvolution to separate artifact vs biological signal
- Distinguished between repaired (UDG treatment) and unrepaired FFPE
- Enabled better variant calling accuracy

FFPE signature matches cosmic signatures

Follow-up Work – Paper 2

Genome Biology (2022)

- Used a well-characterized diploid male lymphoblast cell line, processed into FFPE cell blocks
- Tested four different formalin fixation times (1 hr, 2 hrs, 6 hrs, 24 hrs)and compared to flash frozen.
- Generated 96 FFPE sections, distributed across four labs for targeted sequencing using four commercial oncopanels (AZ650, BRP, ILM, TFS)
- Inner FFPE sections (excludes top and bottom 200 μm) retain sequencing integrity—surface sections do not

My Contribution

- Built a reproducible pipeline: <u>GitHub Repo</u>
- Parsed and visualized FFPE mutation counts
- Compared repaired vs unrepaired signatures
- Applied model from first paper to data from second paper

Sample QC

C >T transitions by sample

Top 20 Mutation Context Frequencies

Effect of FFPE signature correction

Effect of FFPE signature correction

Limitations & Future Work

- FFPEsig less effective on low-SNR samples
 - FFPEsig was shown to be less effective in cancers with less signal-to-noise
- Missing information about samples (eg. block position) and UDG treatment status
- Missing Flash Frozen truth set
- Potential: build a classifier to flag likely FFPE-induced artifact or flag samples with excess damage

Thank You

Questions?

Tara Friedrich

GitHub: staracode/ffpe_code