Déterminer la dérivée des fonctions suivantes :

②
$$g(x) = \ln(x^2 + 1) \text{ sur } \mathbb{R}$$
.

1
$$h(x) = x \ln(x^2 + 3) \text{ sur } \mathbb{R}.$$

$$i(x) = \frac{\ln(1+x)}{x} sur]0; +\infty[.$$

•
$$f(x) = \ln(3x + 2) \text{ sur } I =] - \frac{2}{3}; +\infty[.$$

•
$$f(x) = \ln(3x + 2) \text{ sur } I =] - \frac{2}{3}; +\infty[.$$

 $\to \text{ On a } f'(x) = 3 \times \frac{1}{3x+2} = \frac{3}{3x+2}.$

- $f(x) = \ln(3x + 2) \text{ sur } I =] \frac{2}{3}; +\infty[.$ $\to \text{ On a } f'(x) = 3 \times \frac{1}{3x+2} = \frac{3}{3x+2}.$
- $g(x) = \ln(x^2 + 1)$ sur \mathbb{R} .

- $f(x) = \ln(3x + 2) \text{ sur } I = \frac{2}{3}; +\infty[$ $\rightarrow \text{ On a } f'(x) = 3 \times \frac{1}{3x+2} = \frac{3}{3x+2}.$
- $g(x) = \ln(x^2 + 1)$ sur \mathbb{R} $\to \text{On a } g'(x) = (x^2 + 1)' \times \frac{1}{x^2 + 1} = \frac{2x}{x^2 + 1}$

- $f(x) = \ln(3x + 2) \text{ sur } I = \frac{2}{3}; +\infty[$ $\rightarrow \text{ On a } f'(x) = 3 \times \frac{1}{3x+2} = \frac{3}{3x+2}.$
- $g(x) = \ln(x^2 + 1)$ sur \mathbb{R} $\to \text{On a } g'(x) = (x^2 + 1)' \times \frac{1}{x^2 + 1} = \frac{2x}{x^2 + 1}$
- $h(x) = x \ln(x^2 + 3) \operatorname{sur} \mathbb{R}$.

- $f(x) = \ln(3x + 2) \text{ sur } I = \frac{2}{3}; +\infty[$ $\rightarrow \text{ On a } f'(x) = 3 \times \frac{1}{3x+2} = \frac{3}{3x+2}.$
- $g(x) = \ln(x^2 + 1)$ sur \mathbb{R} . $\to \text{On a } g'(x) = (x^2 + 1)' \times \frac{1}{x^2 + 1} = \frac{2x}{x^2 + 1}$.
- $h(x) = x \ln(x^2 + 3) \text{ sur } \mathbb{R}$. $\to \text{ On a } h'(x) = (x)' \ln(x^2 + 3) + x \times (\ln(x^2 + 3))' = \ln(x^2 + 3) + x \times \frac{2x}{x^2 + 3}$.

•
$$f(x) = \ln(3x + 2) \text{ sur } I = \frac{2}{3}; +\infty[$$

 $\rightarrow \text{ On a } f'(x) = 3 \times \frac{1}{3x+2} = \frac{3}{3x+2}.$

•
$$g(x) = \ln(x^2 + 1)$$
 sur \mathbb{R} .
 $\to \text{On a } g'(x) = (x^2 + 1)' \times \frac{1}{x^2 + 1} = \frac{2x}{x^2 + 1}$.

•
$$h(x) = x \ln(x^2 + 3) \text{ sur } \mathbb{R}$$
.
 $\to \text{ On a } h'(x) = (x)' \ln(x^2 + 3) + x \times (\ln(x^2 + 3))' = \ln(x^2 + 3) + x \times \frac{2x}{x^2 + 3}$.

•
$$i(x) = \frac{\ln(1+x)}{x} \operatorname{sur}]0; +\infty[.$$

•
$$f(x) = \ln(3x + 2) \text{ sur } I = \frac{2}{3}; +\infty[$$

 $\rightarrow \text{ On a } f'(x) = 3 \times \frac{1}{3x+2} = \frac{3}{3x+2}.$

•
$$g(x) = \ln(x^2 + 1)$$
 sur \mathbb{R} .
 $\to \text{On a } g'(x) = (x^2 + 1)' \times \frac{1}{x^2 + 1} = \frac{2x}{x^2 + 1}$.

•
$$h(x) = x \ln(x^2 + 3) \text{ sur } \mathbb{R}$$
.
 $\to \text{ On a } h'(x) = (x)' \ln(x^2 + 3) + x \times (\ln(x^2 + 3))' = \ln(x^2 + 3) + x \times \frac{2x}{x^2 + 3}$.

•
$$i(x) = \frac{\ln(1+x)}{x} \text{ sur }]0; +\infty[$$

 $\rightarrow \text{ On a } i'(x) = \frac{\ln(1+x)' \times x - x' \times \ln(1+x)}{x^2} = \frac{\frac{1}{1+x} \times x - \ln(1+x)}{x^2} = \frac{\frac{x}{1+x} - \ln(1+x)}{x^2}$

•
$$f(x) = \ln(3x + 2) \text{ sur } I = \frac{2}{3}; +\infty[$$

 $\rightarrow \text{ On a } f'(x) = 3 \times \frac{1}{3x+2} = \frac{3}{3x+2}.$

•
$$g(x) = \ln(x^2 + 1)$$
 sur \mathbb{R} .
 $\to \text{On a } g'(x) = (x^2 + 1)' \times \frac{1}{x^2 + 1} = \frac{2x}{x^2 + 1}$.

•
$$h(x) = x \ln(x^2 + 3) \text{ sur } \mathbb{R}$$
.
 $\to \text{ On a } h'(x) = (x)' \ln(x^2 + 3) + x \times (\ln(x^2 + 3))' = \ln(x^2 + 3) + x \times \frac{2x}{x^2 + 3}$.

•
$$i(x) = \frac{\ln(1+x)}{x} \text{ sur }]0; +\infty[$$

 $\rightarrow \text{ On a } i'(x) = \frac{\ln(1+x)' \times x - x' \times \ln(1+x)}{x^2} = \frac{\frac{1}{1+x} \times x - \ln(1+x)}{x^2} = \frac{\frac{x}{1+x} - \ln(1+x)}{x^2}$

•
$$j(x) = (2x+1) \ln(2x+1) \text{ sur }]-\frac{1}{2};+\infty[.$$

•
$$f(x) = \ln(3x + 2) \text{ sur } I = \frac{2}{3}; +\infty[$$

 $\to \text{ On a } f'(x) = 3 \times \frac{1}{3x+2} = \frac{3}{3x+2}.$

- $g(x) = \ln(x^2 + 1)$ sur \mathbb{R} . $\to \text{On a } g'(x) = (x^2 + 1)' \times \frac{1}{x^2 + 1} = \frac{2x}{x^2 + 1}$.
- $h(x) = x \ln(x^2 + 3) \text{ sur } \mathbb{R}$. $\to \text{ On a } h'(x) = (x)' \ln(x^2 + 3) + x \times (\ln(x^2 + 3))' = \ln(x^2 + 3) + x \times \frac{2x}{x^2 + 3}$
- $i(x) = \frac{\ln(1+x)}{x} \text{ sur }]0; +\infty[.$ $\rightarrow \text{ On a } i'(x) = \frac{\ln(1+x)' \times x - x' \times \ln(1+x)}{x^2} = \frac{\frac{1}{1+x} \times x - \ln(1+x)}{x^2} = \frac{\frac{x}{1+x} - \ln(1+x)}{x^2}$
- $j(x) = (2x+1) \ln(2x+1) \text{ sur }] \frac{1}{2}; +\infty[.$ $\rightarrow \text{On a } j'(x) = (2x+1)' \ln(2x+1) + (2x+1) \times \ln(2x+1)' = 2 \ln(2x+1) + (2x+1) \times 2 \times \frac{1}{2x+1} = 2 \ln(2x+1) + 2.$

Déterminer une primitive de chacune des fonctions suivantes :

- **1** $f(x) = \frac{3}{2x-4} \text{ sur } I =]2; +\infty[.$
- $g(x) = \frac{x}{x^2 + 1} \text{ sur } I = \mathbb{R}.$
- **a** $h(x) = 2 + \frac{1}{2x-1} + \frac{1}{(2x-1)^2} \text{ sur } I =]\frac{1}{2}; +\infty[.$
- $i(x) = \frac{1}{x \ln(x)} sur [1; +\infty[.$

•
$$f(x) = \frac{3}{2x-4} \text{ sur } I =]2; +\infty[$$

•
$$f(x) = \frac{3}{2x-4} \text{ sur } I =]2; +\infty[.$$

 $\rightarrow \text{ On a } F(x) = 3 \times \frac{1}{2} \times \ln(2x-4) \text{ car } 2x-4 > 0 \text{ sur } I =]2; +\infty[.$

• $f(x) = \frac{3}{2x-4}$ sur $I =]2; +\infty[$. $\to \text{On a } F(x) = 3 \times \frac{1}{2} \times \ln(2x-4) \text{ car } 2x-4 > 0 \text{ sur } I =]2; +\infty[$. • $g(x) = \frac{x}{x^2+1}$ sur $I = \mathbb{R}$.

- $f(x) = \frac{3}{2x-4} \text{ sur } I =]2; +\infty[.$ $\to \text{ On a } F(x) = 3 \times \frac{1}{2} \times \ln(2x-4) \text{ car } 2x-4 > 0 \text{ sur } I =]2; +\infty[.$
- $g(x) = \frac{x}{x^2 + 1}$ sur $I = \mathbb{R}$. \rightarrow On a $x^2 + 1 > 0$ et $(x^2 + 1)' = 2x$ donc $G(x) = \frac{1}{2} \times \ln(x^2 + 1)$.

- $f(x) = \frac{3}{2x-4} \text{ sur } I =]2; +\infty[.$ $\rightarrow \text{ On a } F(x) = 3 \times \frac{1}{2} \times \ln(2x-4) \text{ car } 2x-4 > 0 \text{ sur } I =]2; +\infty[.$
- $g(x) = \frac{x}{x^2 + 1}$ sur $I = \mathbb{R}$. \rightarrow On a $x^2 + 1 > 0$ et $(x^2 + 1)' = 2x$ donc $G(x) = \frac{1}{2} \times \ln(x^2 + 1)$.
- $h(x) = 2 + \frac{1}{2x-1} + \frac{1}{(2x-1)^2} \operatorname{sur} I =]\frac{1}{2}; +\infty[.$

- $f(x) = \frac{3}{2x-4} \text{ sur } I =]2; +\infty[.$ $\rightarrow \text{ On a } F(x) = 3 \times \frac{1}{2} \times \ln(2x-4) \text{ car } 2x-4 > 0 \text{ sur } I =]2; +\infty[.$ • $g(x) = \frac{x}{x^2+1} \text{ sur } I = \mathbb{R}.$ $\rightarrow \text{ On a } x^2+1 > 0 \text{ et } (x^2+1)' = 2x \text{ donc } G(x) = \frac{1}{2} \times \ln(x^2+1).$
- $h(x) = 2 + \frac{1}{2x 1} + \frac{1}{(2x 1)^2} \text{ sur } I =]\frac{1}{2}; +\infty[$ $\rightarrow \text{On a } H(x) = 2x + \frac{1}{2} \times \ln(2x - 1) + \frac{1}{2} \times \frac{1}{1} \times \frac{-1}{2x - 1}.$

- $f(x) = \frac{3}{2x-4} \text{ sur } I =]2; +\infty[.$ $\rightarrow \text{ On a } F(x) = 3 \times \frac{1}{2} \times \ln(2x-4) \text{ car } 2x-4 > 0 \text{ sur } I =]2; +\infty[.$
- $g(x) = \frac{x}{x^2 + 1}$ sur $I = \mathbb{R}$. $\to \text{On a } x^2 + 1 > 0$ et $(x^2 + 1)' = 2x$ donc $G(x) = \frac{1}{2} \times \ln(x^2 + 1)$.
- $h(x) = 2 + \frac{1}{2x 1} + \frac{1}{(2x 1)^2} \text{ sur } I =]\frac{1}{2}; +\infty[.$ $\to \text{On a } H(x) = 2x + \frac{1}{2} \times \ln(2x - 1) + \frac{1}{2} \times \frac{1}{1} \times \frac{-1}{2x - 1}.$
- $i(x) = \frac{1}{x \ln(x)} \operatorname{sur} [1; +\infty[$

- $f(x) = \frac{3}{2x-4} \text{ sur } I =]2; +\infty[.$ $\rightarrow \text{ On a } F(x) = 3 \times \frac{1}{2} \times \ln(2x-4) \text{ car } 2x-4 > 0 \text{ sur } I =]2; +\infty[.$
- $g(x) = \frac{x}{x^2 + 1}$ sur $I = \mathbb{R}$. \rightarrow On a $x^2 + 1 > 0$ et $(x^2 + 1)' = 2x$ donc $G(x) = \frac{1}{2} \times \ln(x^2 + 1)$.
- $h(x) = 2 + \frac{1}{2x 1} + \frac{1}{(2x 1)^2} \text{ sur } I =]\frac{1}{2}; +\infty[$ $\rightarrow \text{ On a } H(x) = 2x + \frac{1}{2} \times \ln(2x - 1) + \frac{1}{2} \times \frac{1}{1} \times \frac{-1}{2x - 1}.$
- $i(x) = \frac{1}{x \ln(x)}$ sur $[1; +\infty[$. \rightarrow On a $i(x) = \frac{1}{x} \times \frac{1}{\ln(x)}$ donc on a $I(x) = \ln(\ln(x))$ car on a bien $\ln(x) > 0$ sur $[1; +\infty[$.

- $f(x) = \frac{3}{2x-4} \text{ sur } I =]2; +\infty[.$ $\rightarrow \text{ On a } F(x) = 3 \times \frac{1}{2} \times \ln(2x-4) \text{ car } 2x-4 > 0 \text{ sur } I =]2; +\infty[.$
- $g(x) = \frac{x}{x^2 + 1}$ sur $I = \mathbb{R}$. \rightarrow On a $x^2 + 1 > 0$ et $(x^2 + 1)' = 2x$ donc $G(x) = \frac{1}{2} \times \ln(x^2 + 1)$.
- $h(x) = 2 + \frac{1}{2x 1} + \frac{1}{(2x 1)^2} \text{ sur } I =]\frac{1}{2}; +\infty[$ $\rightarrow \text{ On a } H(x) = 2x + \frac{1}{2} \times \ln(2x - 1) + \frac{1}{2} \times \frac{1}{1} \times \frac{-1}{2x - 1}.$
- $i(x) = \frac{1}{x \ln(x)}$ sur $[1; +\infty[$. \rightarrow On a $i(x) = \frac{1}{x} \times \frac{1}{\ln(x)}$ donc on a $I(x) = \ln(In(x))$ car on a bien In(x) > 0 sur $[1; +\infty[$.
- $j(x) = \frac{2}{x^2 1}$ sur]1; $+\infty$ [après avoir vérifié que $j(x) = \frac{1}{x 1} \frac{1}{x + 1}$ pour x > 1.

- $f(x) = \frac{3}{2x-4} \text{ sur } I =]2; +\infty[.$ $\rightarrow \text{ On a } F(x) = 3 \times \frac{1}{2} \times \ln(2x-4) \text{ car } 2x-4 > 0 \text{ sur } I =]2; +\infty[.$
- $g(x) = \frac{x}{x^2 + 1}$ sur $I = \mathbb{R}$. $\to \text{On a } x^2 + 1 > 0$ et $(x^2 + 1)' = 2x$ donc $G(x) = \frac{1}{2} \times \ln(x^2 + 1)$.
- $h(x) = 2 + \frac{1}{2x 1} + \frac{1}{(2x 1)^2} \text{ sur } I =]\frac{1}{2}; +\infty[$ $\rightarrow \text{ On a } H(x) = 2x + \frac{1}{2} \times \ln(2x - 1) + \frac{1}{2} \times \frac{1}{1} \times \frac{-1}{2x - 1}.$
- $i(x) = \frac{1}{x \ln(x)}$ sur $[1; +\infty[$. \rightarrow On a $i(x) = \frac{1}{x} \times \frac{1}{\ln(x)}$ donc on a $I(x) = \ln(\ln(x))$ car on a bien $\ln(x) > 0$ sur $[1; +\infty[$.
- $j(x) = \frac{2}{x^2 1}$ sur]1; $+\infty$ [après avoir vérifié que $j(x) = \frac{1}{x 1} \frac{1}{x + 1}$ pour x > 1. \rightarrow On a $\frac{1}{x 1} \frac{1}{x + 1} = \frac{(x + 1)}{(x 1)(x + 1)} \frac{(x 1)}{(x 1)(x + 1)} = \frac{x + 1}{x^2 1} \frac{x 1}{x^2 1} = \frac{2}{x^2 1} = j(x)$. Comme x 1 > 0 et x + 1 > 0 sur [1; $+\infty$ [alors $J(x) = \ln(x 1) \ln(x + 1)$.

- In(10).
- ln(0.1).
- In(0.2).
- In(80).

On donne $ln(2)\approx 0.69$ et $ln(5)\approx 1.61$. Sans utiliser le logarithme de la calculatrice, en déduire des valeurs approchées des nombres suivants :

• In(10).

On donne $ln(2)\approx 0.69$ et $ln(5)\approx 1.61$. Sans utiliser le logarithme de la calculatrice, en déduire des valeurs approchées des nombres suivants :

• ln(10). \rightarrow On a $ln(10) = ln(2 \times 5) = ln(2) + ln(5) <math>\approx 0.69 + 1.61 \approx 2.3$.

- ln(10). \rightarrow On a $ln(10) = ln(2 \times 5) = ln(2) + ln(5) \approx 0.69 + 1.61 \approx 2.3$.
- In(0.1).

- ln(10). \rightarrow On a $ln(10) = ln(2 \times 5) = ln(2) + ln(5) \approx 0.69 + 1.61 \approx 2.3$.
- $\ln(0.1)$. \rightarrow On a $\ln(0.1) = \ln(\frac{1}{10}) = \ln(1) - \ln(10) \approx 0 - 2.3 \approx -2.3$.

- ln(10). \rightarrow On a $ln(10) = ln(2 \times 5) = ln(2) + ln(5) \approx 0.69 + 1.61 \approx 2.3$.
- $\ln(0.1)$. \rightarrow On a $\ln(0.1) = \ln(\frac{1}{10}) = \ln(1) - \ln(10) \approx 0 - 2.3 \approx -2.3$.
- In(0.2).

- ln(10). \rightarrow On a $ln(10) = ln(2 \times 5) = ln(2) + ln(5) \approx 0.69 + 1.61 \approx 2.3$.
- $\ln(0.1)$. \rightarrow On a $\ln(0.1) = \ln(\frac{1}{10}) = \ln(1) - \ln(10) \approx 0 - 2.3 \approx -2.3$.
- $\ln(0.2)$. \rightarrow On a $\ln(0.2) = \ln(\frac{2}{10}) = \ln(2) - \ln(10) \approx 0.69 - 2.3 \approx -1.61$.

- $\ln(10)$. \rightarrow On a $\ln(10) = \ln(2 \times 5) = \ln(2) + \ln(5) \approx 0.69 + 1.61 \approx 2.3$.
- $\ln(0.1)$. \rightarrow On a $\ln(0.1) = \ln(\frac{1}{10}) = \ln(1) - \ln(10) \approx 0 - 2.3 \approx -2.3$.
- $\ln(0.2)$. \rightarrow On a $\ln(0.2) = \ln(\frac{2}{10}) = \ln(2) - \ln(10) \approx 0.69 - 2.3 \approx -1.61$.
- ln(80). \rightarrow On a $ln(80) = ln(5 \times 16) = ln(5) + ln(16) = ln(5) + ln(2^3) = ln(5) + 3 ln(2) <math>\approx 1.61 + 3 \times 0.69 \approx 3.68$.

Résoudre dans N les inéquations suivantes :

 $2^n \le 1000$

 $0.5^n \ge 0.001$

Résoudre dans $\mathbb N$ les inéquations suivantes :

$$2^n \leq 1000$$

$$0.5^{\textit{n}} \geq 0.001$$

Résoudre dans N les inéquations suivantes :

$$2^n \le 1000$$

 $0.5^n \ge 0.001$

 \rightarrow On a :

$$2^{\textit{n}} \leq 1000 \Leftrightarrow \textit{n} \, | \, \textit{n}(2) \leq | \, \textit{n}(1000) \Leftrightarrow \textit{n} \leq \frac{| \, \textit{n}(1000)}{| \, \textit{n}(2)} \, \, \text{car} \, \, | \, \textit{n}(2) > 0 \, \, \text{car} \, \, 2 > 1.$$

Le plus grand entier qui vérifie cette inéquation est 9 : plus grand car on a une majoration de n.

On a:

$$0.5^n \leq 0.001 \Leftrightarrow n \ln(0.5) \leq \ln(0.001) \Leftrightarrow n \geq \frac{\ln(0.001)}{\ln(0.5)} \text{ car } \ln(0.5) > 0 \text{ car } 0.5 < 1$$

Le plus petit entier qui vérifie cette inéquation est 10 : plus petit car on a une minoration de n

Soit f la fonction définie sur]0 ; $+\infty$ [par :

$$f(x) = \frac{1}{x} - \ln x.$$

On appelle \mathcal{C}_f sa courbe représentative dans un repère orthonormal (O, \vec{i}, \vec{j}) .

- Sur le graphique ci-dessous, on donne \mathcal{C}_f et les courbes C et Γ . L'une de ces deux courbes représente graphiquement la dérivée f' de f, et l'autre une des primitives F de f.
 - **1** Indiquer laquelle des deux courbes C et Γ représente graphiquement f'. Justifier.
 - Par lecture graphique, donner F(1).
- ② Dans cette question, on pourra vérifier la cohérence des résultats obtenus avec les courbes représentatives données sur le dessin.
 - Déterminer la limite de la fonction f quand x tend vers 0. Interpréter graphiquement cette limite.
 - **2** Déterminer la limite de la fonction f quand x tend vers $+\infty$.
 - Calculer f'(x) et montrer que l'on peut écrire : $f'(x) = \frac{-x-1}{x^2}$.
 - Etudier le signe de f'(x) puis donner le tableau de variations de f.
- **3** Soit H la fonction définie sur]0; $+\infty[$ par :

$$H(x) = x - (x - 1) \ln x.$$

- Montrer que H est une primitive de f sur]0; $+\infty$ [.
- En déduire l'expression de la fonction F de la question 1.
- **3** Déterminer la limite de $\frac{H(x)}{x^2}$ en $+\infty$.

• Indiquer laquelle des deux courbes C et Γ représente graphiquement f'. Justifier.

- - Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.

- Indiquer laquelle des deux courbes C et Γ représente graphiquement f'. Justifier. \to La courbe \mathcal{C}_f est strictement décroissante donc cela signifie sa dérivée f' est négative.
 - Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.
 - Par lecture graphique, donner F(1)

- Indiquer laquelle des deux courbes C et Γ représente graphiquement f'. Justifier \to La courbe \mathcal{C}_f est strictement décroissante donc cela signifie sa dérivée f' est négative.
 - Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.
 - Par lecture graphique, donner F(1)
 - \rightarrow Les deux autres courbes se coupent en x=1 donc elles sont la même image en x=1, on en déduit que F(1)=1.

- Indiquer |aquelle des deux courbes C et Γ représente graphiquement f'. Justifier.
 La courbe C_f est strictement décroissante donc cela signifie sa dérivée f' est négative.
 - Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.
 - Par lecture graphique, donner F(1)
 - \rightarrow Les deux autres courbes se coupent en x=1 donc elles sont la même image en x=1, on en déduit que F(1)=1.
- Dans cette question, on pourra vérifier la cohérence des résultats obtenus avec les courbes représentatives données sur le dessin.
 - Déterminer la limite de la fonction f quand x tend vers 0. Interpréter graphiquement cette limite.

Indiquer | aquelle des deux courbes C et Γ représente graphiquement f'. Justifier.
 La courbe C_f est strictement décroissante donc cela signifie sa dérivée f' est négative.

Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.

- Par lecture graphique, donner F(1).
 - \rightarrow Les deux autres courbes se coupent en x=1 donc elles sont la même image en x=1, on en déduit que F(1)=1.
- Dans cette question, on pourra vérifier la cohérence des résultats obtenus avec les courbes représentatives données sur le dessin.
 - Déterminer la limite de la fonction f quand x tend vers 0. Interpréter graphiquement cette limite.
 - $\rightarrow On \ a \lim_{x \rightarrow 0^+} \frac{1}{x} = \frac{1}{0^+} = +\infty \ et \lim_{x \rightarrow 0^+} \ln(x) = -\infty \ donc \lim_{x \rightarrow +} \frac{1}{x} \ln(x) = +\infty.$

On en déduit que \mathcal{C}_f admet en asymptote verticale d'équation x=0.

Indiquer laquelle des deux courbes C et Γ représente graphiquement f'. Justifier.
 → La courbe C_f est strictement décroissante donc cela signifie sa dérivée f' est négative.

Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.

- Par lecture graphique, donner F(1).
 - \rightarrow Les deux autres courbes se coupent en x=1 donc elles sont la même image en x=1, on en déduit que F(1)=1.
- Dans cette question, on pourra vérifier la cohérence des résultats obtenus avec les courbes représentatives données sur le dessin.
 - Déterminer la limite de la fonction f quand x tend vers 0. Interpréter graphiquement cette limite.
 - $\rightarrow \text{ On a } \lim_{x \rightarrow 0^+} \frac{1}{x} = \frac{1}{0^+} = +\infty \text{ et } \lim_{x \rightarrow 0^+} \ln(x) = -\infty \text{ donc } \lim_{x \rightarrow +} \frac{1}{x} \ln(x) = +\infty.$

On en déduit que \mathcal{C}_f admet en asymptote verticale d'équation x=0.

② Déterminer la limite de la fonction f quand x tend vers $+\infty$.

Indiquer laquelle des deux courbes C et Γ représente graphiquement f'. Justifier.
 → La courbe C_f est strictement décroissante donc cela signifie sa dérivée f' est négative.

Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.

ullet Par lecture graphique, donner F(1)

 \rightarrow Les deux autres courbes se coupent en x=1 donc elles sont la même image en x=1, on en déduit que F(1)=1.

- Dans cette question, on pourra vérifier la cohérence des résultats obtenus avec les courbes représentatives données sur le dessin.
 - Déterminer la limite de la fonction f quand x tend vers 0. Interpréter graphiquement cette limite.
 - $\rightarrow \text{ On a } \lim_{x \rightarrow 0^+} \frac{1}{x} = \frac{1}{0^+} = +\infty \text{ et } \lim_{x \rightarrow 0^+} \ln(x) = -\infty \text{ donc } \lim_{x \rightarrow +} \frac{1}{x} \ln(x) = +\infty.$

On en déduit que \mathcal{C}_f admet en asymptote verticale d'équation x=0.

- ② Déterminer la limite de la fonction f quand x tend vers $+\infty$.
 - ightarrow On a $\lim_{x \to +\infty} \frac{1}{x} = \frac{1}{+\infty} = 0$ et $\lim_{x \to +\infty} \ln(x) = +\infty$ donc $\lim_{x \to +\infty} \frac{1}{x} \ln(x) = -\infty$.

Indiquer laquelle des deux courbes C et Γ représente graphiquement f'. Justifier.
 → La courbe C_f est strictement décroissante donc cela signifie sa dérivée f' est négative.

Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.

ullet Par lecture graphique, donner F(1)

 \rightarrow Les deux autres courbes se coupent en x=1 donc elles sont la même image en x=1, on en déduit que F(1)=1.

- Dans cette question, on pourra vérifier la cohérence des résultats obtenus avec les courbes représentatives données sur le dessin.
 - Déterminer la limite de la fonction f quand x tend vers 0. Interpréter graphiquement cette limite.

$$\rightarrow \text{ On a } \lim_{x\rightarrow 0^+} \frac{1}{x} = \frac{1}{0^+} = +\infty \text{ et } \lim_{x\rightarrow 0^+} \ln(x) = -\infty \text{ donc } \lim_{x\rightarrow +} \frac{1}{x} - \ln(x) = +\infty.$$

On en déduit que \mathcal{C}_f admet en asymptote verticale d'équation x=0.

② Déterminer la limite de la fonction f quand x tend vers $+\infty$.

 $\rightarrow \text{ On a } \lim_{x \to +\infty} \frac{1}{x} = \frac{1}{+\infty} = 0 \text{ et } \lim_{x \to +\infty} \ln(x) = +\infty \text{ donc } \lim_{x \to +\infty} \frac{1}{x} - \ln(x) = -\infty.$

② Calculer f'(x) et montrer que l'on peut écrire : $f'(x) = \frac{-x-1}{x^2}$.

Indiquer laquelle des deux courbes C et Γ représente graphiquement f'. Justifier.
 La courbe C_f est strictement décroissante donc cela signifie sa dérivée f' est négative.

Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.

- Par lecture graphique, donner F(1).
 → Les deux autres courbes se coupent en x = 1 donc elles sont la même image en x = 1, on en déduit que F(1) = 1.
- Dans cette question, on pourra vérifier la cohérence des résultats obtenus avec les courbes représentatives données sur le dessin.
 - Déterminer la limite de la fonction f quand x tend vers 0. Interpréter graphiquement cette limite.

$$\rightarrow \text{ On a } \lim_{x\rightarrow 0^+} \frac{1}{x} = \frac{1}{0^+} = +\infty \text{ et } \lim_{x\rightarrow 0^+} \ln(x) = -\infty \text{ donc } \lim_{x\rightarrow +} \frac{1}{x} - \ln(x) = +\infty.$$

On en déduit que \mathcal{C}_f admet en asymptote verticale d'équation x=0.

- ① Déterminer la limite de la fonction f quand x tend vers $+\infty$. \rightarrow On a $\lim_{x \to +\infty} \frac{1}{x} = \frac{1}{+\infty} = 0$ et $\lim_{x \to +\infty} \ln(x) = +\infty$ donc $\lim_{x \to +\infty} \frac{1}{x} - \ln(x) = -\infty$.
- ② Calculer f'(x) et montrer que l'on peut écrire : $f'(x) = \frac{-x-1}{x^2}$. \to On a $f'(x) = -\frac{1}{x^2} - \frac{1}{x} = \frac{-1}{x^2} - \frac{x}{x^2} = \frac{-x-1}{x^2}$.

Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.

- Par lecture graphique, donner F(1).
 → Les deux autres courbes se coupent en x = 1 donc elles sont la même image en x = 1, on en déduit que F(1) = 1.
- Dans cette question, on pourra vérifier la cohérence des résultats obtenus avec les courbes représentatives données sur le dessin.
 - Déterminer la limite de la fonction f quand x tend vers 0. Interpréter graphiquement cette limite.

$$\rightarrow \text{ On a } \lim_{x \rightarrow 0^+} \frac{1}{x} = \frac{1}{0^+} = +\infty \text{ et } \lim_{x \rightarrow 0^+} \ln(x) = -\infty \text{ donc } \lim_{x \rightarrow +} \frac{1}{x} - \ln(x) = +\infty.$$

On en déduit que \mathcal{C}_f admet en asymptote verticale d'équation x=0

- ① Déterminer la limite de la fonction f quand x tend vers $+\infty$. \rightarrow On a $\lim_{x \to +\infty} \frac{1}{x} = \frac{1}{+\infty} = 0$ et $\lim_{x \to +\infty} \ln(x) = +\infty$ donc $\lim_{x \to +\infty} \frac{1}{x} - \ln(x) = -\infty$.
- Calculer f'(x) et montrer que l'on peut écrire : $f'(x) = \frac{-x-1}{x^2}$.

$$\rightarrow$$
 On a $f'(x) = -\frac{1}{x^2} - \frac{1}{x} = \frac{-1}{x^2} - \frac{x}{x^2} = \frac{-x-1}{x^2}$.

• Etudier le signe de f'(x) puis donner le tableau de variations de f.

Par conséquent la courbe Γ en gros pointillés est celle qui représente f' car c'est la seule toujours en dessous de l'axe des abscisses.

- Par lecture graphique, donner F(1).
 → Les deux autres courbes se coupent en x = 1 donc elles sont la même image en x = 1, on en déduit que F(1) = 1.
- Dans cette question, on pourra vérifier la cohérence des résultats obtenus avec les courbes représentatives données sur le dessin.
 - Oéterminer la limite de la fonction f quand x tend vers 0. Interpréter graphiquement cette limite.

$$\rightarrow \text{ On a } \lim_{x \rightarrow \mathbf{0}^+} \frac{\mathbf{1}}{x} = \frac{\mathbf{1}}{\mathbf{0}^+} = +\infty \text{ et } \lim_{x \rightarrow \mathbf{0}^+} \ln(x) = -\infty \text{ donc } \lim_{x \rightarrow +} \frac{\mathbf{1}}{x} - \ln(x) = +\infty.$$

On en déduit que \mathcal{C}_f admet en asymptote verticale d'équation x=0.

- ① Déterminer la limite de la fonction f quand x tend vers $+\infty$. \to On a $\lim_{x \to +\infty} \frac{1}{x} = \frac{1}{+\infty} = 0$ et $\lim_{x \to +\infty} \ln(x) = +\infty$ donc $\lim_{x \to +\infty} \frac{1}{x} - \ln(x) = -\infty$.
- ② Calculer f'(x) et montrer que l'on peut écrire : $f'(x) = \frac{-x-1}{x^2}$.

$$\rightarrow$$
 On a $f'(x) = -\frac{1}{x^2} - \frac{1}{x} = \frac{-1}{x^2} - \frac{x}{x^2} = \frac{-x-1}{x^2}$

ullet Etudier le signe de $\hat{f}'(x)$ puis donner le tableau de variations de f. o On a :

X	0			$+\infty$
f'(x)			_	
variations de f		$+\infty$	×	
				$-\infty$

Soit H la fonction définie sur]0 ; $+\infty$ [par : $H(x) = x - (x - 1) \ln x$.

 $\bullet \ \ {\rm Montrer} \ \ {\rm que} \ H \ \ {\rm est} \ \ {\rm une} \ \ {\rm primitive} \ \ {\rm de} \ f \ \ {\rm sur} \] 0 \ ; \ \ +\infty[.$

Soit H la fonction définie sur]0 ; $+\infty[$ par : $H(x)=x-(x-1)\ln x$.

• Montrer que H est une primitive de f sur]0; $+\infty[$. \rightarrow Pour montrer que H est une primitive de f, il suffit de montrer que H'=f. On a :

$$H'(x) = x' - ((x-1)\ln(x))' = 1 - ((x-1)'\ln(x) + (x-1)\ln(x)')$$
$$= 1 - (\ln(x) + \frac{x-1}{x}) = 1 - \ln(x) - 1 + \frac{1}{x} = f(x)$$

Soit H la fonction définie sur]0 ; $+\infty$ [par : $H(x)=x-(x-1)\ln x$.

• Montrer que H est une primitive de f sur]0; $+\infty[$. \rightarrow Pour montrer que H est une primitive de f, il suffit de montrer que H'=f. On a :

$$H'(x) = x' - ((x-1)\ln(x))' = 1 - ((x-1)'\ln(x) + (x-1)\ln(x)')$$
$$= 1 - (\ln(x) + \frac{x-1}{x}) = 1 - \ln(x) - 1 + \frac{1}{x} = f(x)$$

• En déduire l'expression de la fonction F de la question 1.

Soit H la fonction définie sur]0 ; $+\infty[$ par : $H(x)=x-(x-1)\ln x$

• Montrer que H est une primitive de f sur]0; $+\infty[$. \rightarrow Pour montrer que H est une primitive de f, il suffit de montrer que H'=f. On a :

$$H'(x) = x' - ((x-1)\ln(x))' = 1 - ((x-1)'\ln(x) + (x-1)\ln(x)')$$
$$= 1 - (\ln(x) + \frac{x-1}{x}) = 1 - \ln(x) - 1 + \frac{1}{x} = f(x)$$

• En déduire l'expression de la fonction F de la question 1. \to Comme F et H sont deux primitives de f, il existe $k \in \mathbb{R}$ tel que F(x) = H(x) + k. Or on a F(1) = 1 d'après la question 1 et $H(1) = 1 - (1-1) \ln(1) = 1$ donc $F(1) = H(1) + k \Leftrightarrow 1 = 1 + k \Leftrightarrow k = 0$: on en déduit que F = G sur]0; $+\infty$ [.

Soit H la fonction définie sur]0 ; $+\infty[$ par : $H(x)=x-(x-1)\ln x$

• Montrer que H est une primitive de f sur]0; $+\infty[$. \rightarrow Pour montrer que H est une primitive de f, il suffit de montrer que H'=f. On a :

$$H'(x) = x' - ((x-1)\ln(x))' = 1 - ((x-1)'\ln(x) + (x-1)\ln(x)')$$
$$= 1 - (\ln(x) + \frac{x-1}{x}) = 1 - \ln(x) - 1 + \frac{1}{x} = f(x)$$

- En déduire l'expression de la fonction F de la question 1. \rightarrow Comme F et H sont deux primitives de f, il existe $k \in \mathbb{R}$ tel que F(x) = H(x) + k. Or on a F(1) = 1 d'après la question 1 et $H(1) = 1 (1-1) \ln(1) = 1$ donc $F(1) = H(1) + k \Leftrightarrow 1 = 1 + k \Leftrightarrow k = 0$: on en déduit que F = G sur]0; $+\infty[$.
- Déterminer la limite de $\frac{H(x)}{x^2}$ en $+\infty$.

Soit H la fonction définie sur]0 ; $+\infty[$ par : $H(x)=x-(x-1)\ln x$

• Montrer que H est une primitive de f sur]0; $+\infty[$. \rightarrow Pour montrer que H est une primitive de f, il suffit de montrer que H'=f. On a :

$$H'(x) = x' - ((x-1)\ln(x))' = 1 - ((x-1)'\ln(x) + (x-1)\ln(x)')$$
$$= 1 - (\ln(x) + \frac{x-1}{x}) = 1 - \ln(x) - 1 + \frac{1}{x} = f(x)$$

- En déduire l'expression de la fonction F de la question 1. \to Comme F et H sont deux primitives de f, il existe $k \in \mathbb{R}$ tel que F(x) = H(x) + k. Or on a F(1) = 1 d'après la question 1 et $H(1) = 1 (1-1) \ln(1) = 1$ donc $F(1) = H(1) + k \Leftrightarrow 1 = 1 + k \Leftrightarrow k = 0$: on en déduit que F = G sur]0; $+\infty[$.
- Déterminer la limite de $\frac{H(x)}{x^2}$ en $+\infty$. \rightarrow On a $\frac{H(x)}{x^2} = \frac{x - (x - 1)\ln x}{x^2} = \frac{1}{x} - \frac{\ln(x)}{x} + \frac{\ln(x)}{x^2}$. Or on a $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{x \to +\infty} \frac{\ln(x)}{x} = \lim_{x \to +\infty} \frac{\ln(x)}{x^2} = 0$. Finalement $\lim_{x \to +\infty} H(x) = 0$.

