Fonaments dels Sistemes Operatius (FSO)

Departament d'Informàtica de Sistemes i Computadores (DISCA) *Universitat Politècnica de València*

Bloc Temàtic 4: Gestió de Memòria

Unitat Temàtica 12 Memòria Virtual (II)

Objectius

- Estudiar l'algorisme de reemplaçament de pàgines de 2º oportunitat com a aproximació al LRU
- Conèixer la problemàtica de la hiperpaginació i les solucions a la mateixa
- Analitzar les tècniques de gestió de marcs de memòria

Bibliografia

A. Silberschatz, P. B. Galvin. "Sistemas Operativos". 7º
 ed. Capítulo 9

- Algorisme de reemplaçament de 2a oportunitat
- Assignació de marcs
- Hiperpaginació
- Reserva de marcs

- Suportar un algorisme de reemplaçament LRU és car i ineficient
- Solució: Aproximació a LRU mitjançant l'ús del bit de referència
 ¿ següent víctima?

Algorisme de Segona Oportunitat

- Revisa el bit de referència de les pàgines ordenades amb criteri FIFO
- Si el bit de referència de pàgina val 1
 - Ficar el bit de referència a 0
 - Deixar la pàgina en memòria
- Si el bit de referència és 0
 - Es tria la pàgina com víctima.

Aproximació a LRU mitjançant l'ús del bit de referència

Exemple: Memòria Principal de 4 marcs

Pág. 7

ETSINF-UPV IISCH Sistemas Operativos els Fundamentos de

Exemple: Memòria Principal de 4 marcs

Algorisme de 2a oportunitat

Exemple: Memòria principal de 4 marcs

Exemple: Memòria principal de 4 marcs

Т		0	1	2	3	4	5	6	7	8	9	10
	èrie de eferències	1	2	3	4	1	2	5	2	3	1	2
marc	0	1	1	1	1	1	1	5	5	5	5	5
marc	1		2	2	2	2	2	2	2	2	2	2
marc	2			3	3	3	3	3	3	3	3	3
marc	3				4	4	4	4	4	4	1	1

Total 6 fallades de pàgina (2 amb reemplaçament)

- Algorisme de reemplaçament de 2a. oportunitat
- Assignació de marcs
- Hiperpaginació
- Reserva de marcs

Assignació de marcs

- Problema d'assignació de marcs
 - Llista de marcs lliures:
 - La gestió de marcs requereix una estructura de dades on es mantinguen els marcs lliures
 - Política de repartiment de marcs entre els processos i el SO
 - Es dota al SO del nombre de marcs necessari per a executar-se
 - Es dota als processos d'un nombre mínim inicial de marcs i la resta sota demanda
 - El nombre mínim de marcs que ha d'assignar-se depèn de l'arquitectura del processador (nivell d'indirecció en el joc d'instruccions)

- Polítiques de repartiment de marcs
 - Assignació equitativa: Donats m marcs i n processos, a tots els processos se li assignen A_i marcs per igual

$$A_i = m/n$$

— **Assignació proporcional**: En un sistema amb **n processos** $P_1...P_i...P_n$, cadascún de grandària $S_1...S_i...S_n$, a un procés P_i de grandària S_i se li assignen A_i marcs calculats com

$$A_{i} = \frac{S_{i} * m}{\sum S_{i}}$$

 Assignació prioritària: s'assignen més marcs als processos més prioritaris

Àmbit de les polítiques de reemplaçament

- Reemplaçament local: el sistema només tria víctimes entre aquelles que ocupen marcs pertanyents al mateix procés que genera la fallada de página
 - No es pot triar com víctima marcs d'altre procés
 - El nombre total de marcs assignats a un procés no varia
 - La seua execución no es veu influenciada per la de la resta de processos
 - Avantatges: Temps de resposta raonable
 - Inconvenient: Pitjor gestió global de memòria
- Reemplaçament global: El sistema tria pàgines víctima d'entre totes les que tenen assignats marcs en memòria
 - Es poden triar com victima marcs d'altres processos
 - El nombre total de marcs assignats a un procés pot variar
 - Avantatges: Gestió global de memòria optimitzada
 - Inconvenient: Temps de resposta elevat

- Algorisme de reemplaçament de 2a. oportunitat
- Assignació de marcs
- Hiperpaginació
- Reserva de marcs

Hiperpaginació (thrashing)

- El problema de la hiperpaginació:
 - La memòria comença a escassejar i els processos generen moltes
 fallades de pàgina

 passen més temps fent E/S que càlcul
 - El SO, front el baix ús de la CPU, accepta mes processos per a execució
 - Això agreuja el problema en repartir la mateixa memòria entre més processos > augmenta la taxa de fallades de pàgina

Principi de localitat de referència

- Comportament dels programes segons el qual, basant-nos en el passat recent d'accessos, podem predir amb una precisió raonable quines instruccions i dades es referenciarà en un futur pròxim, ja que aquests no varien de forma abrupta sinó gradualment
- Localitat:
 - Conjunt de pàgines que un procés utilitza conjuntament.
 - Determinar-la es costós (requereix molts recursos)
- Es produeix hiperpaginació quan
 - Σ (grandària de localitat) > Σ (grandària memòria total)

- Model de l'àrea activa: tècnica preventiva
 - Assumeix el principi de localitat de referència
 - Determinar el nombre de pàgines que un procés ha de tindre en memòria simultàniamente per a obtindre un bon rendiment i evitar la hiperpaginació
 - Àrea activa (AA) o "working set (WS)":
 - Conjunt de pàgines accedides en les últimes referències
 - Finestra d'àrea activa
 - Nombre fix Δ de referències utilitzades per a calcular el AA
 - AA format per les pàgines accedides en les Δ últimes referències
 - Grandària d'àrea activa: Nombre de pàgines diferents que conformen el AA_i del procés P_i → TAA_i
 - En un sistema amb m marcs i n processos P_1 ... P_i ... P_n es produeix hiperpaginació quan $\sum TAA_i > m$

Hiperpaginació (thrashing)

Model de l'àrea activa

- Exemple
 - Finestra d'àrea activa $\Delta = 9$
 - Càlcul de AA per a un procés en els instants t1 i t2
 - Càlcul de TAA

Sèrie de referències

Control de la taxa de fallades de pàgina

 Tècnica preventiva que analitza directament la taxa de fallades per a determinar si s'està entrant en hiperpaginació

- Algorisme de reemplaçament de 2a. oportunitat
- Assignació de marcs
- Hiperpaginació
- Reserva de marcs

Concepte

 Molts SO moderns guarden sempre un percentatge de la memòria principal com magatzem de marcs lliures. Aquest conjunt de marcs es coneix com RESERVA DE MARCS

Objectius

- Reduir el temps invertit per a servir una fallada de p\u00e0gina
 - S'intenta tindre marcs lliures disponibles
 - S'hi aplica l'algorisme de reemplaçament
 - Només quan el nivell de marcs lliures baixa massa
 - Per a cercar diverses víctimes amortitzant el seu us
 - Realitzar el "page out"
 - S'escriuen diverses pàgines cada vegada en el disc
- Utilitzar la reserva per a resoldre el problema d'hiperpaginació

Gestió de la reserva de marcs

- El S.O. garantteix que sempre hi haurà un cert nombre de marcs lliures
- Es fixen certs llindars:
 - Nombre mínim de marcs disponibles (MIN)
 - Nombre recomanable de marcs disponibles (REC)

REC >> MIN

- No cal utilitzar algorismes de reemplaçament molt eficients
 - Els primers sistems VMS utilitzaven l'algorisme FIFO, ja que la seua MMU no tenia bit de referència.
 - És normal utilitzar un algorisme de segona oportunitat (Windows, UNIX SVR4, UNIX 4.4BSD, Linux, HP OpenVMS, ...).

Gestió de reserva de marcs: Procés monitor

- Hi ha un procés intern del sistema que periòdicament monitoritza el nº de marcs lliures (frame_free)
 - Si (frame_free)> REC, aleshores no cal fer res
 - Si (frame_free) < MIN aleshores:
 - S'escriuen en disc alguns processos complets (swap out) fins aplegar a REC marcs lliures
 - Es trien com víctimes aquells processos que duen més temps sense fer res (suspesos). Per ex., servidors que no hagen rebut cap petició.
 - Si MIN <= frame_free <= REC aleshores:
 - Es cerquen processos amb un elevat nombre de marcs assignats i amb una baixa taxa de fallades de pàgina. S'aplica l'algorisme de reemplaçament per a "furtar-los" alguns marcs.
 - Se seleccionan diverses víctimes en cada procés. El nombre concret depén de cada sistema operatiu.

Gestió de la reserva en la hiperpaginació

- Si hiperpaginació, el nombre de marcs lliures baixa ràpidament
- El procés monitor del nivell de la reserva ho detecta quan
 - Entre dues activacions successives d'aquest procés el nivell de frame_free baixa mes del que seria convenient.
- Solucions:
 - Expulsar (swap out) processos complets fins aplegar a un nivell recomanable (REC).
 - Gestió utilitzada en OpenVMS i Windows.
 - Altres monitors alliberen un nombre constant de marcs en cada activació (si el nivell està per sota de REC).
 - Aleshores el monitor passa a activar-se amb major freqüència.
 - Gestió utilitzada en UNIX SVR4.

Contingut dels marcs de la reserva

- Si el S.O. Tria una víctima el seu marc no s'utiliza d'immediat per a una altra pàgina el marc PASSA A LA RESERVA
 - Si les pàgines victimes tornen a ser referenciades pel procés ràpidament
 - Hi ha una provabilitat alta de que encara es trobe disponibles en la reserva i es puguen reassignar sense necessitat de tornar-les a llegir del disc
 - El S.O. Recorda quin es el contingut de cada marc de la seua reserva
 - Si els marcs inclosos en la reserva corresponen a pàgines modificades
 - No son considerats per a atendre fallades de pàgina de forma immediata. Ja que han d'escrure el seu contingut en un fitxer o partició d'intercanvi
 - » Quan es supera cert mínim, totes eixes pàgines són escrites en el fitxer o partició d'intercanvi, d'una sola vegada
 - » Evitem fer "page out" per cada pàgina, minimitzan el nombre global d'escriptures necessàries.
 - Una vegada escrites les pàgines els seus marcs són lliures i poden utilitzar-se per a servir fallades de pàgina