Imagerie ultrasonore par inversion de formes d'onde

Alice DINSENMEYER

encadrée par Romain BROSSIER & Ludovic MOREAU Maîtres de conférences, ISTerre

12 juillet 2016

Références

Contexte

Macrographie d'une soudure austénitique*

- méthodes par sommation cohérente de signaux
- Décomposition des matrices de covariance (DORT)

Références

Contexte

Macrographie d'une soudure austénitique*

Forte anisotropie

→ déviation et division du faisceau ultrasonore

Comparaison d'un modèle (lancer de rayons) et d'une mesure **

- méthodes par sommation cohérente de signaux
- Décomposition des matrices de covariance (DORT)

- X requièrent une connaissance a priori de la vitesse
- X sujettes aux artefacts

Contexte

Contexte

Macrographie d'une soudure austénitique*

Forte anisotropie

Comparaison d'un modèle (lancer de rayons) et d'une mesure **

- méthodes par sommation cohérente de signaux
- Décomposition des matrices de covariance (DORT)
- Résolution d'un problème d'optimisation

- X requièrent une connaissance a priori de la vitesse
- X sujettes aux artefacts
- ▶ optimisation topologique : Dominguez et al., Rodriguez et al.
- ✓ reconstruction d'un ensemble de paramètres : FWI

- ► Méthode d'optimisation locale
- ► Développée pour la géophysique
- ► Full waveform inversion : utilise la totalité du champ d'onde (toutes les arrivées et les amplitudes)

Contexte

- ► Fonction de coût : $C(m) = \frac{1}{2}||d_{obs} d_{cal}(m)||^2$
- Perturbation du modèle : $\Delta m = -(C'')^{-1}C'$

Inversions en milieu anisotrope

Contexte

- ► Fonction de coût : $C(m) = \frac{1}{2}||\boldsymbol{d}_{obs} \boldsymbol{d}_{cal}(m)||^2$

$$\frac{\partial C}{\partial m_i} = {}^t \tilde{\boldsymbol{d}}_{cal} \left(\frac{\partial \boldsymbol{A}}{\partial m_i} \right) \boldsymbol{A}^{-1} (\tilde{\boldsymbol{d}}_{obs} - \tilde{\boldsymbol{d}}_{cal}) \tag{1}$$

A : opérateur équation d'onde (élastique ou acoustique)

Contexte

- ► Fonction de coût : $C(m) = \frac{1}{2}||\boldsymbol{d}_{obs} \boldsymbol{d}_{cal}(m)||^2$
- lacksquare Perturbation du modèle : $oldsymbol{\Delta} m = -(C'')^{-1}$

$$\frac{\partial C}{\partial m_i} = {}^t \tilde{\boldsymbol{d}}_{cal} \left(\frac{\partial \boldsymbol{A}}{\partial m_i} \right) \underbrace{\boldsymbol{A}^{-1} (\tilde{\boldsymbol{d}}_{obs} - \tilde{\boldsymbol{d}}_{cal})}_{\text{résidus rétropopagés}}$$
(1)

A : opérateur équation d'onde (élastique ou acoustique)

$$\begin{split} \frac{\partial C}{\partial m_i} &= \underbrace{\overset{t}{\tilde{\boldsymbol{d}}_{cal}}}_{\text{champ incident}} \overset{t}{\left(\frac{\partial \boldsymbol{A}}{\partial m_i}\right)} \underbrace{\boldsymbol{\lambda}}_{\text{r\'esidus r\'etropopag\'es}} \\ &\sim & \Re\left(e^{jk_0\boldsymbol{s}.\boldsymbol{x}}\right) &\sim & \Re\left(e^{jk_0\boldsymbol{r}.\boldsymbol{x}}\right) \end{split}$$

$$\begin{split} \frac{\partial C}{\partial m_i} &= \underbrace{\tilde{d}_{cal}}_{\text{champ incident}} \left(\frac{\partial \boldsymbol{A}}{\partial m_i}\right)_{\text{résidus rétropopagés}} \\ &\sim \Re\left(e^{jk_0\boldsymbol{s}.\boldsymbol{x}}\right) &\sim \Re\left(e^{jk_0\boldsymbol{r}.\boldsymbol{x}}\right) \end{split}$$

► Résolution du gradient :

$$|\mathbf{k}| = |\mathbf{s} + \mathbf{r}| = \frac{\omega}{c} 2\cos\left(\frac{\theta}{2}\right)$$
 (2)

$$= \lambda_{min}/2 \quad \text{si } \theta = 0 \tag{3}$$

$$rac{\partial C}{\partial m_i} = \underbrace{\overset{t}{d}_{cal}}_{ ext{champ incident}} \overset{t}{\left(\frac{\partial m{A}}{\partial m_i} \right)}_{ ext{résidus rétropopagés}} \underbrace{m{\lambda}}_{ ext{résidus rétropopagés}}$$
 $\sim \Re \left(e^{jk_0 m{s} \cdot m{x}} \right) \sim \Re \left(e^{jk_0 m{r} \cdot m{x}} \right)$

► Résolution du gradient :

$$|\mathbf{k}| = |\mathbf{s} + \mathbf{r}| = \frac{\omega}{c} 2\cos\left(\frac{\theta}{2}\right)$$
 (2)

$$=\lambda_{min}/2$$
 si $\theta=0$ (3)

$$\begin{split} \frac{\partial C}{\partial m_i} &= \underbrace{t \tilde{\boldsymbol{d}}_{cal}}_{\text{champ incident}} \underbrace{t \left(\frac{\partial \boldsymbol{A}}{\partial m_i}\right)}_{\text{résidus rétropopagé}} & \\ &\sim & \Re\left(e^{jk_0 \boldsymbol{s}.\boldsymbol{x}}\right) & \sim & \Re\left(e^{jk_0 \boldsymbol{r}.\boldsymbol{x}}\right) \end{split}$$

► Résolution du gradient :

$$|\mathbf{k}| = |\mathbf{s} + \mathbf{r}| = \frac{\omega}{c} 2\cos\left(\frac{\theta}{2}\right)$$
 (2)

$$=\lambda_{min}/2 \quad \text{si } \theta=0 \tag{3}$$

► Rayonnement des paramètres :

Génération des données de référence

Inversions en milieu isotrope

Modèle initial de vitesse :

Modèle initial de vitesse :

Vitesse vraie :

Inversions en milieu isotrope

Modèle initial de vitesse :

Modèle initial de vitesse :

Vitesse Reconstruite :

f≈ 400 kHz

Vitesse Reconstruite :

Vitesse vraie:

Inversions en milieu isotrope

Modèle initial de vitesse :

Vitesse Reconstruite :

$f{\approx}~1~\text{MHz}$

Modèle initial de vitesse :

Vitesse Reconstruite :

Vitesse vraie:

Inversions en milieu isotrope

Modèle initial de vitesse :

Modèle initial de vitesse :

Vitesse Reconstruite :

f≈ 1,4 MHz

Vitesse vraie:

Inversions en milieu isotrope

Modèle initial de vitesse :

Vitesse Reconstruite :

f≈ 2 MHz

Modèle initial de vitesse :

Vitesse Reconstruite :

Vitesse vraie:

Inversions en milieu isotrope

Modèle initial de vitesse :

Vitesse Reconstruite :

 $f \approx 3 \text{ MHz}$

Modèle initial de vitesse :

Vitesse Reconstruite :

Vitesse vraie:

Inversion monoparamètre

Signaux issus de ρ homogène

Signaux issus de ρ vraie

Inversion multiparamètre

Vitesse initiale :

Vitesse reconstruite :

Vitesse vraie :

Masse volumique reconstruite :

Masse volumique vraie:

► Inversion monoparamètre :

► Inversion multiparamètre :

Masse volumique :

Masse volumique :

Contexte

Inversions en milieu anisotrope Paramètre d'anisotropie : $\epsilon = \frac{v_p.e_x - v_p.e_z}{v_p.e_z}$

ϵ vrai :

Perspectives

- ▶ Prise en compte de l'anisotropie :
 - ▶ en acoustique : par un modèle transverse isotrope incliné
 - ▶ en élastique : par $6 \times C_{ij}$
- ► Prise en compte de la propagation 3D
- ► Élaboration d'un modèle initial fiable

Contexte

- B. Chassignole. Influence de la structure métallurgique des soudures en acier inoxydable austénitique sur le contrôle non-destructif par ultrasons. PhD thesis, INSA Lyon, 1999.
- A. Gardahaut, H. Lourme, F. Jenson, S. Lin, and M. Nagai. Ultrasonic wave propagation in dissimilar metal welds—application of a ray-based model and comparison with experimental results. In 11th European Conference on Non-Destructive Testing, 2014.

questions : différence avec tomo diffraction

défaut : air

Contexte