EDO

Teresa Alonso Oma Alonso

23 de febrero de 2023

${\rm \acute{I}ndice}$

1.	Ten	na 1: Introducción. Existencia y unicidad de soluciones.	2
	1.1.	Introducción y definiciones	2
	1.2.	EDO's escalares y EDO's vectoriales	4
	1.3.	Problema de Cauchy (o de valores inciales):	-
	1.4.	Equivalencia entre ecuaciones diferenciales y ecuaciones integrales.	E

1. Tema 1: Introducción. Existencia y unicidad de soluciones.

1.1. Introducción y definiciones

Las ecuaciones diferenciales son muy importantes por su aplicación en las ciencias experimentales y en las técnicas, y también, por supuesto, son muy importantes en Matemáticas. Son muchas las leyes de la naturaleza que se explican mediante las ecuaciones diferenciales, ya que estas expresan una relación entre una función y sus derivadas. No debemos olvidar que la derivada de una función expresa la variación de esta respecto de la variable de la que depende. En primer lugar veremos un ejemplo:

<u>Caída retarada de un objeto:</u> Supongamos que tenemos un objeto de masa \mathbf{m} que cae libremente por la acción de la gravedad y que el aire ejerce una fuerza de resistencia proporcional a la velocidad . La 2^a Ley de Newton dice "La fuerza resultante que actúa sobre un cuerpo es directamente proporcional a la masa y a la aceleración con que se mueve" es decir, $\sum \mathbf{F} = \mathbf{m} \cdot \mathbf{a}$

$$\overbrace{m \cdot a}^{F_1} = \overbrace{mg - k \cdot v}^{F_2}$$

Supongamos que el cuerpo se encuentra a una cierta altura " \mathbf{h} ". Si denotamos por y(t) a la función que nos da la posición del objeto en el instante " \mathbf{t} . obtenemos la ecuación:

$$m \cdot y''(t) = mq - k \cdot y'(t)$$
 Ecuación diferencial de segundo orden.

Si nos preguntamos cuál es la posición del objeto después de por ejemplo, 2 segundos, tendriamos que resolver" la ecuación diferencial.

Movimiento pendular: Supongamos que tenemos una varita de masa despreciable de longitud "lz con un objeto de masa " \mathbf{m} . en el extremo. Si impulsamos el péndulo hasta un ángulo " θ_0 " se tendrá que en la posición extrema $\theta = \theta_0$ sólo tiene energía potencial:

$$E = mg(l - l\cos\theta_0)$$

En la posición $\theta(t)$ la energía del péndulo es parte cinética y parte potencial:

$$E = \frac{1}{2}mv^2 + mg(l - l\cos\theta(t))$$

El "Principio de conservación de la energía" dice que la energía se conserva y por lo tanto:

$$\frac{1}{2}mv^2 = mg(l\cos\theta(t) - l\cos\theta_0)$$

Si denotamos por s(t) a la longitud del arco correspondiente al ángulo $\theta(t)$ entonces $s(t) = l \cdot \theta(t)$ y $v(t) = l \cdot \theta'(t)$.

Sustituyendo en la ecuación anterior tenemos :

$$\frac{1}{2}ml^2(\theta'(t))^2 = mgl(\cos\theta(t) - \cos\theta_0) \Rightarrow (\theta'(t))^2 = \frac{2g}{l}(\cos\theta(t) - \cos\theta_0)$$

es decir,

$$\theta'(t) = -\sqrt{\frac{2g}{l}(\cos\theta(t) - \cos\theta_0)}$$
 Ecuación diferencial de primer orden.

Nota: Se toma el valor negativo pues $\theta(t)$ disminuye en función del tiempo.

Definición 1.1. Ecuación diferencial: Una ecuación diferenciales una ecuación en la que la incógnita es una función/funciones y en la que aparacen las derivadas ó derivadas parciales de la función/funciones con respecto a su variable /variables independientes.

- Ecuación diferencial ordinaria \longrightarrow e.d. con una sola variable independiente.
- Ecuaciones en Derivadas Parciales → e.d. con dos o más variables independientes.

En este curso estudiaremos las ecuaciones diferenciales ordinarias.

Definición 1.2. EDO escalar

Una ecuación diferencial ordinaria 'escalar' de orden n es una expresión de la forma:

$$F(t, y(t), y'(t), \dots, y^{(n)}(t)) = 0$$

donde

- $F: \Omega \subseteq \mathbb{R} \times \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$,
- t es la variable independiente,
- $y(t), y'(t), \dots, y^{(n)}$ es la variable dependiente o función desconocida $y: I \to \mathbb{R}$ y sus derivadas sucesivas respectode t.

La forma anterior se llama **forma explícita** de la EDO de orden n.

La forma **normal o explícita** de una EDO de orden n es cuando se encuentra resuelta con respecto de la derivada de orden n de la función, es decir,

$$y^{(n)}(t)0f(t,y(t),y'(t),\ldots,y^{(n-1)}(t))$$

 $donde\ f:D\subset \mathbb{R}\times \mathbb{R}^n \longrightarrow \mathbb{R}.$

Nota: El orden de una ED es el de su derivada de mayor orden.

Ahora se plantean las cuestiones: ¿cómo se resuelve una ED. Ordinaria? ¿Qué se considera una solución?

Definición 1.3. Sea $\bigotimes F(t, y, y', \dots, y^n) = 0$ una EDO de orden n.

$$F:\Omega\subseteq\mathbb{R}\times\mathbb{R}^{n+1}\longrightarrow\mathbb{R}$$

Se dice que $\phi: I \to \mathbb{R}$ es solución de \bigotimes en I (I intervalo de \mathbb{R}) si cumple:

- \bullet ϕ es derivable n veces en I.
- $(t, \phi(t), \phi'(t), \dots, \phi^{(n)}(t)) \in \Omega, \quad \forall t \in I.$
- $F(t,\phi(t),\phi'(t),\ldots,\phi^{(n)})=0, \quad \forall t \in I.$

Hay EDOs que no tienen solución, las hay que tienen infinitas soluciones y las hay que sólo tienen una.

Lo más usual es que la EDO tenga ∞ soluciones que dependen de parámetros.

1.2. EDO's escalares y EDO's vectoriales

Definición 1.4. *EDO escalar* $(y : I \subseteq \mathbb{R} \to \mathbb{R})$:

$$F(t,y(t),y'(t),\ldots,y^{(n)}(t))=0 \qquad \qquad y^{(n)}(t)=f(t,y(t),y'(t),\ldots,y^{(n-1)}(t)) \\ F:\Omega\subseteq\mathbb{R}\times\mathbb{R}^n\to\mathbb{R} \qquad \qquad f:D\subseteq\mathbb{R}^n\to\mathbb{R}$$

Definición 1.5. EDO vectorial $(y : I \subseteq \mathbb{R} \to \mathbb{R}^m)$:

$$F(t, y(t), y'(t), \dots, y^{(n)}(t)) = 0 y^{(n)}(t) = f(t, y(t), y'(t), \dots, y^{(n-1)}(t))$$

$$F: \Omega \subseteq \mathbb{R} \times \overbrace{\mathbb{R}^m \times \dots \times \mathbb{R}^m}^m \to \mathbb{R} f: D \subseteq \mathbb{R} \times \overbrace{\mathbb{R}^m \times \dots \times \mathbb{R}^m}^m \to \mathbb{R}$$

Definición 1.6. Sistemas de ecuaciones diferenciales ($Y: I \subseteq \mathbb{R} \to \mathbb{R}^m$) Considerando las funciones componentes, toda función vectorial se transforma en un sistema de ecuaciones diferenciles y al revés.

Importante: Toda EDO escalar de orden 'n' se puede transformar mediante un 'cambio de variable' en una ecuación vectorial de orden 1.

"To do: terminar de hacer esta parte y escribir el ejemplo."

Por lo tanto, de ahora en adelante (si no se dice lo contrario) estudiaremos las **EDO's vectoriales de primer orden**:

$$y' = f(t, y(t))$$
 con $y: I \subseteq \mathbb{R} \to \mathbb{R}^n, f: D \subseteq \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$

Generalmente a esta ecuación se le añade una condición inicial $y(t_0) = y_o$ para un $(t_0, y_o) \in I \times \mathbb{R}^n$ fijo.

1.3. Problema de Cauchy (o de valores inciales):

$$(P) = \begin{cases} y' = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

$$f: D \subseteq \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \ t_0 \in \mathbb{R}, \ y_0 \in \mathbb{R}$$

.^{El} motivo de las condiciones iniciales" viene de las aplicaciones físicas en que $t_0=y_0=0$, es decir, y(0)=0.

Objetivo: Estudiar existencia, unicidad y prolongación de soluciones de un problema de Cauchy (P).

Definición 1.7. Sea un problema de Cauchy

$$(P) = \begin{cases} y' = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

con $f: D \subseteq \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $t_0 \in \mathbb{R}$, $y_0 \in \mathbb{R}$. Se dice que $\phi: I \to \mathbb{R}^n$ es solución de (P) en I (I intervalo de \mathbb{R}) si cumple:

- 1. ϕ ews derivable en I.
- 2. $(t, \phi(t)) \in D \quad \forall t \in I$.
- 3. $\phi'(t) = f(t, \phi(t)) \quad \forall t \in I$.
- 4. $\phi(t_0) = y_0$.

Ejemplo 1.1.

$$(P) = \begin{cases} y' = 3y \\ y(0) = 2 \end{cases}$$

Vimos que $\phi(t) = \mathcal{C} \cdot e^{3t}$, $\mathcal{C} \in \mathbb{R}$, es la solución general de y' = 3y. Ahora tenemos una condición inicial y(0) = 2, luego la solución ϕ debe cumplir que $\phi(0) = 2 \Rightarrow \mathcal{C} \cdot e^0 = 2 \ \forall t \in \mathbb{R} \Rightarrow \mathcal{C} = 2$. Por lo tanto, $\phi(t) = 2e^{3t}$ es la solución de (P) y además es única.

1.4. Equivalencia entre ecuaciones diferenciales y ecuaciones integrales.

Muchas veces para estudiar la existencia y unicidad de la solución de un problema de Cauchy $y' = f(t, y), y(t_0) = y_o$ es conveniente transformar el problema en una **ecuación integral**. Eso lo podemos hacer gracias al siguiente resultado:

Teorema 1.1. Sea $D \subseteq \mathbb{R} \times \mathbb{R}^n$ un abierto y sea $I \subseteq \mathbb{R}$ un intervalo. Sea $f: D \longrightarrow \mathbb{R}^n$ continua. Equivalen:

- 1. φ es solución del problema de Cauchy (P) en I.
- 2. $i) \phi \in \mathcal{C}(I, \mathbb{R}^n)$.

- ii) $(t, \phi(t)) \in D \quad \forall t \in I.$
- iii) $\phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) ds, \quad \forall t \in I.$

Demostración. (\Longrightarrow) Si ϕ es solución del problema de Cauchy en I entonces se cumple i), ii) y además:

$$(P) = \begin{cases} \phi' = f(t, \phi(t)) \\ \phi(t_0) = y_0 \end{cases} \qquad \phi \in \mathcal{C}(I), f \in \mathcal{C} \Rightarrow \phi \in \mathcal{C}(I)$$

Observar que $\phi \in \mathcal{C}(I, \mathbb{R}^n), (t, \phi(t)) \in D, f \in \mathcal{C}(D), \phi'(t) = f(t, \phi(t)) \Rightarrow \frac{\phi'(t) \in \mathcal{C}(I)}{\text{Aplicando la regla de Barrow se obtiene que}}$

$$\phi(t) - \phi(t_0) = \int_{t_0}^t f(s, \phi(s)) \cdot ds \implies \phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) \cdot ds \quad \forall t \in I$$

(\Leftarrow) Por hipótesis, $\phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) \cdot ds$ es evidente que $\phi(t_0) = y_0$. Además, como $\phi \in \mathcal{C}(I, \mathbb{R}^n)$, $(s, \phi(s)) \in D \ \forall s \in I \ y \ f \in \mathcal{C}(D)$, entonces la función $s \rightsquigarrow f(s, \phi(s))$ es continua en I. Por lo tanto, aplicando el **Teorema Fundamental del Cálculo**, se tine:

$$\phi'(t) = 0 + \left(\int_{t_0}^t f(s, \phi(s)) \cdot ds\right)' = f(t, \phi(t)) \quad \forall t \in I.$$

Acabamos de demostrar que ϕ es solución de (P) en I.