LAPORAN TUGAS AKHIR REGRESI TERAPAN

Analisis Regresi Tingkat Kriminal : Pengaruh Variabel Sosial dan Ekonomi Terhadap Kejadian Kriminal

Anggota Kelompok:

Wanda Desi Rahmawati 164221026 Fauziah Hamidah Al Hanief 164221055 Arkan Syafiq Attaqy 164221062 Riko Handono 164221066

PROGRAM STUDI S1 TEKNOLOGI SAINS DATA
FAKULTAS TEKNOLOGI MAJU DAN MULTIDISIPLIN
UNIVERSITAS AIRLANGGA
SURABAYA
2023

DAFTAR ISI

DAFTAR ISI	2
DAFTAR TABEL	3
DAFTAR GAMBAR	4
BAB I PENDAHULUAN	4
1.1. Latar Belakang	4
1.2. Rumusan Masalah	5
1.3. Tujuan Penelitian	5
BAB II TINJAUAN PUSTAKA	6
2.1. Tinjauan Pustaka Statistika	6
2.2. Tinjauan Pustaka Non-Statistika	7
BAB III METODOLOGI	9
3.1. Sumber Data	9
3.2. Variabel Penelitian	9
3.3. Metode Penelitian	10
BAB IV ANALISIS DAN PEMBAHASAN	12
4.1. Exploratory Data Analysis	12
4.2. Analisis Regresi	16
4.3. Pengujian Hipotesis	18
4.4. Pemilihan Model Terbaik	23
BAB V KESIMPULAN DAN SARAN	24
5.1. Kesimpulan	24
5.2. Saran	24
DAFTAR PUSTAKA	25
I AMDIDAN	26

DAFTAR TABEL

Tabel 1: Variabel Penelitian	9
Tabel 2 : Analisis Deskriptif	16
Tabel 3 : Output OLS Regression	16
Tabel 4 : Output Robust Regression	17
Tabel 5 : Output Uji Serentak	18
Tabel 6 : Output Uji Parsial	18
Tabel 7 : Daerah Kritis Uji Autokorelasi	20
Tabel 8 : Output Uji Autokorelasi	20
Tabel 9 : Output Uji Heteroskedastisitas	21
Tabel 10 : Output Uji Multikolinearitas	22
Tabel 11 : Perbandingan Model	23

DAFTAR GAMBAR

Gambar 1 : Histogram	12
Gambar 2 : Scatter Plot	13
Gambar 3 : Heatmap	13
Gambar 4 : Density Plot	14
Gambar 5 : Boxplot	15
Gambar 6 : Grafik Normalitas	19
Gambar 7 : Grafik Uii Heteroskedastisitas	21

BAB I

PENDAHULUAN

1.1. Latar Belakang

Kejahatan, dalam segala bentuknya, merugikan pihak lain dan melanggar norma serta Undang-Undang. Perspektif kejahatan tidak hanya ditinjau dari aspek kesusilaan, kesopanan, dan ketertiban masyarakat, tetapi juga melibatkan elemen-elemen sosial dan ekonomi. Kejahatan bisa dilakukan oleh siapa saja, termasuk mereka yang menghadapi kesulitan hidup atau bahkan individu dengan profesi tertentu. Kejahatan sendiri bersifat oportunistik, dan pelaku seringkali tidak mempertimbangkan konsekuensi panjang dari perbuatannya. Jenis kejahatan meliputi berbagai bidang, mulai dari kejahatan ekonomi hingga kejahatan sosial.

Manusia, sebagai makhluk sosial, dihadapkan pada tuntutan untuk berinteraksi dengan sesama, yang memiliki latar belakang beragam seperti suku, ras, agama, budaya, dan kebiasaan. Perbedaan-perbedaan ini seringkali menjadi pemicu kejahatan (Anjari, 2014). Tak hanya faktor sosial, tetapi juga faktor ekonomi seperti kemiskinan, pengangguran, pertumbuhan ekonomi, dan kepadatan penduduk dapat berperan dalam peningkatan tingkat kriminalitas (Purwanti, 2019).

Pada penelitian ini, peneliti ingin melakukan pemodelan analisis regresi guna mengidentifikasi faktor-faktor yang berkontribusi terhadap tingginya angka kejahatan kekerasan. Variabel independen yang digunakan dalam penelitian ini mencakup persentase penduduk yang tinggal di wilayah metropolitan, persentase penduduk yang berpendidikan Sekolah Menengah Atas (SMA), persentase penduduk yang hidup di bawah garis kemiskinan, dan persentase penduduk yang merupakan orang tua tunggal atau *single parent*.

Analisis regresi yang dilakukan akan memberikan wawasan mendalam tentang bagaimana variabel sosial dan ekonomi dapat menjadi prediktor kejahatan kekerasan. Hasil penelitian diharapkan dapat memberikan kontribusi pada pemahaman lebih lanjut terkait faktor-faktor yang perlu diperhatikan dalam upaya pencegahan dan pengendalian kejahatan. Selain itu, penelitian ini dapat menjadi dasar bagi kebijakan publik yang lebih efektif dalam mengatasi permasalahan keamanan masyarakat.

1.2. Rumusan Masalah

Berdasarkan latar belakang masalah, maka dapat dirumuskan masalah sebagai berikut

- 1. Bagaimana pengaruh variabel sosial dan ekonomi berdasarkan faktor-faktor metro, sma, *single*, dan kemiskinan terhadap tindak kriminalitas?
- 2. Apa pemodelan regresi terbaik untuk menentukan analisis regresi faktor-faktor metro, sma, *single*, dan kemiskinan terhadap tindak kriminalitas?

1.3. Tujuan Penelitian

Berdasarkan rumusan masalah diatas, tujuan yang ingin dicapai dalam penulisan laporan ini adalah :

- 1. Untuk mengetahui pengaruh variabel sosial dan ekonomi berdasarkan faktor-faktor metro, sma, *single*, dan kemiskinan terhadap tindak kriminalitas.
- 2. Untuk mengetahui pemodelan regresi terbaik untuk menentukan analisis regresi faktorfaktor metro, sma, *single*, dan kemiskinan terhadap tindak kriminalitas.

BAB II

TINJAUAN PUSTAKA

2.1. Tinjauan Pustaka Statistika

2.1.1. Statistika

Menurut Budiyono (2017), statistika mencakup pengetahuan yang terkait dengan proses pengumpulan, penyusunan,penyajian, dan pengambilan kesimpulan (generalisasi) terhadap populasi dengan menggunakan data sampel yang diperoleh. Dengan demikian, secara umum, statistika dapat diklasifikasikan menjadi dua kategori utama, yaitu statistika deskriptif dan statistika inferensial

2.1.2. Uji Asumsi Klasik

Menurut Ghozali (2018), uji asumsi klasik merupakan langkah awal yang diterapkan sebelum melakukan analisis regresi linier berganda. Tujuan dari uji ini adalah untuk memastikan bahwa koefisien regresi tidak terpengaruh oleh bias, konsisten, dan memiliki tingkat ketepatan yang baik dalam proses estimasi. Pengujian asumsi klasik dilakukan untuk menunjukkan bahwa data telah memenuhi syarat normalitas, tidak mengalami multikolinieritas, autokorelasi, dan heteroskedastisitas.

2.1.3. Pencilan

Montgomery dan Peck (1992) menjelaskan bahwa pencilan merujuk pada pengamatan yang menonjol dari sebagian besar data. Pencilan terjadi ketika nilai residual secara signifikan lebih besar daripada nilai residual yang lain, seringkali terletak pada tiga atau empat deviasi standar dari rata-rata. Pencilan dapat diidentifikasi sebagai titik-titik data yang tidak sejajar dengan pola mayoritas titik data lainnya. Pada dasarnya, pencilan mencirikan data yang berbeda secara signifikan dari sebagian besar pengamatan lain dalam dataset. Analisis hasil menunjukkan bahwa pencilan dan pengamatan berpengaruh secara signifikan terhadap perubahan nilai intercept, slope, R², dan s².

2.1.4. Analisis Regresi

2.1.4.1. *Ordinary Least Squares*

Metode OLS diterapkan pada dataset kejahatan untuk mengidentifikasi hubungan linier antara variabel independen (metro, SMA, miskin, *single*) dan variabel dependen (kriminal) dengan meminimalkan selisih kuadrat antara nilai yang diobservasi dan diprediksi. OLS menyediakan estimasi parameter regresi yang optimal, tetapi kehandalannya dapat dipengaruhi oleh ketidakpastian dan kompleksitas struktur dalam data kejahatan. Namun, OLS tetap relevan sebagai pendekatan awal untuk melihat hubungan linier antar variabel tersebut. Berikut adalah model regresi linier:

Model Regresi Linier
$$\mathbf{y} = X \pmb{\beta} + \pmb{\varepsilon}, \qquad \text{dengan } \pmb{\varepsilon} \sim N(\mathbf{0}, \pmb{I}\sigma^2)$$

2.1.4.2. Robust Regression

Robust Regression adalah metode yang dirancang untuk meningkatkan ketahanan terhadap outlier atau pencilan dalam data. Outlier dapat memiliki pengaruh yang signifikan pada hasil regresi, terutama jika menggunakan metode OLS. Robust Regression menggunakan fungsi kerugian (loss function) yang lebih tahan terhadap nilai-nilai ekstrim, sehingga memberikan bobot yang lebih rendah pada outlier.

2.2. Tinjauan Pustaka Non-Statistika

2.2.1. Teori Kriminologi dan Faktor-Faktor Kejahatan

Kejahatan sebagai fenomena kompleks telah menarik perhatian banyak peneliti di bidang kriminologi. Teori-teori kriminologi seperti teori kesempatan, teori kontrol sosial, dan teori ketidaksetaraan sosial telah digunakan untuk memahami penyebab dan faktor-faktor yang mempengaruhi tingkat kejahatan. Studi-studi terdahulu menunjukkan bahwa faktor ekonomi, pendidikan, wilayah, dan kondisi sosial memainkan peran penting dalam memicu kejahatan.

2.2.2. Hubungan antara Faktor Wilayah dan Kejahatan

Studi kriminologi telah mengidentifikasi hubungan antara wilayah metropolitan dan tingkat kejahatan. Wilayah metropolitan sering kali menjadi fokus penelitian karena kepadatan penduduk dan kompleksitas struktur sosialnya mempengaruhi dinamika kejahatan. Teori kriminologi perkotaan menyoroti ketidaksetaraan, peluang kejahatan, dan tantangan keamanan di wilayah metropolitan. Penelitian terbaru, menunjukkan bahwa wilayah metropolitan dengan persentase penduduk yang tinggi cenderung memiliki tingkat kejahatan yang lebih tinggi.

2.2.3. Hubungan antara Faktor Pendidikan dan Kejahatan

Tingkat pendidikan masyarakat juga memiliki korelasi dengan tingkat kejahatan. Penelitian menunjukkan bahwa masyarakat yang lebih teredukasi cenderung memiliki tingkat kejahatan yang lebih rendah. Oleh karena itu, analisis regresi yang melibatkan variabel pendidikan seperti persentase penduduk SMA dapat memberikan wawasan tentang bagaimana pendidikan dapat berperan dalam mengurangi tingkat kejahatan. Penelitian terbaru menunjukkan bahwa tingkat pendidikan yang lebih tinggi dapat membantu mengurangi tingkat kejahatan.

2.2.4. Hubungan antara Faktor Orang Tua Tunggal dan Kejahatan

Peran orang tua tunggal dalam suatu masyarakat memainkan peran kunci dalam dinamika kejahatan. Studi terbaru menunjukkan bahwa kehadiran orang tua tunggal dapat memberikan dampak signifikan pada tingkat kejahatan, terutama pada rentang usia anak-anak. Anak-anak dari keluarga dengan orang tua tunggal cenderung lebih rentan terhadap risiko kejahatan karena faktor-faktor seperti kurangnya pengawasan dan dukungan emosional yang optimal.

BAB III

METODOLOGI

3.1. Sumber Data

Project ini menggunakan data sekunder yang berasal dari dosen pembimbing Indah Fahmiyah S.Si., M.Stat. Data yang digunakan berisi 51 sampel yang memuat informasi tentang variabel kriminal, metro, SMA, miskin, dan *single*. Data dapat diakses pada link berikut: https://bit.ly/DataKejahatanKelompok3. Perlu diakui bahwa penggunaan data sekunder memiliki keterbatasan tertentu. Beberapa batasan mungkin seperti minimnya informasi data, kurangnya kontrol dalam proses pengumpulan data, dan lain-lain.

3.2. Variabel Penelitian

Variabel yang digunakan pada *project* ini terdiri dari variabel dependen atau variabel respons (Y) dan variabel independen atau variabel prediktor (X). Variabel dependen (Y) yaitu variabel yang nilainya tergantung variabel lain sedangkan variabel independen (X) yaitu variabel yang diasumsikan memiliki pengaruh terhadap nilai variabel respons. Berikut variabel yang digunakan:

Variabel	Nama Variabel	Deskripsi	Tipe
Y	Kriminal	Jumlah kejahatan kekerasan per 10000 orang	Numerik
X1	Metro	Persentase penduduk yang tinggal di wilayah metropolitan	Numerik
X2	SMA	Persentase penduduk yang berada pada jenjang pendidikan sekolah menengah atas (SMA)	Numerik
Х3	Miskin	Persentase penduduk yang hidup di bawah garis kemiskinan	Numerik
X4	Single	Persentase penduduk yang menjadi orang tua single atau single parent	Numerik

(**Tabel 1**: Variabel Penelitian)

3.3. Metode Penelitian

3.3.1. Teknik Analisis

3.3.1.1. Ordinary Least Squares Regression

Penelitian menggunakan metode OLS *Regression* untuk memperoleh model regresi berganda dari hubungan variabel dependen (kriminal) dan variabel independen (metro, SMA, miskin, dan *single*). Model regresi yang ingin diperoleh yaitu:

$$Y = \beta + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

Metode OLS *Regression* digunakan karena metode tersebut bersifat linier, tak bias, dan varians minimum atau *BLUE* (*Best Linear Unbiased Estimator*) serta mudah diinterpretasi.

3.3.1.2. Uji Hipotesis

Uji hipotesis meliputi uji signifikansi koefisien regresi dan uji asumsi. Uji signifikansi koefisien regresi yang dilakukan adalah uji serentak menggunakan uji-F dan uji parsial menggunakan uji-t. Uji signifikansi koefisien regresi dilakukan untuk evaluasi pengaruh variabel independen dan validasi pengaruh secara statistik.

Uji asumsi meliputi uji normalitas, autokorelasi, heteroskedastisitas, dan multikolinearitas. Uji normalitas dilakukan dengan *Kolmogorov-Smirno*v dan *QQ-plot* untuk memastikan bahwa residual berdistribusi normal. Uji autokorelasi dilakukan dengan *Durbin Watson Test* dan *plot residual vs time order* untuk menguji apakah dalam model ada korelasi antara error pada periode t dengan error pada periode t-1. Model yang baik harus bebas autokorelasi. Uji heteroskedastisitas dilakukan dengan *Glejser Test* dan plot residual dengan nilai prediksi untuk memastikan model homoskedastisitas. Uji multikolinearitas dilakukan dengan perhitungan nilai VIF (Variance Inflation Factor) untuk memastikan bahwa tiap variabel independen tidak memiliki ketergantungan.

3.3.1.3. Robust Regression

Penelitian menggunakan metode Robust Regression untuk mengatasi nilai *outlier* pada data dan mendapat model terbaik karena OLS sangat sensitif terhadap *outlier*.

3.3.2. Prosedur Analisis

Analisis menggunakan bantuan tools SPSS dan python. Langkah analisis meliputi:

- a. Melakukan exploratory data untuk mengetahui karakteristik data
- b. Mencari model regresi menggunakan OLS Regression
- c. Menguji asumsi model
- d. Mencari model regresi menggunakan Robust Regression
- e. Menguji signifikansi koefisien regresi
- f. Membandingkan model dan mencari model terbaik

BAB IV

ANALISIS DAN PEMBAHASAN

4.1. Exploratory Data Analysis

4.1.1. Visualisasi Data

4.1.1.1. Histogram

(Gambar 1 : Histogram)

Interpretasi:

Histogram di atas menjelaskan frekuensi dan distribusi data. Variabel kriminal memiliki rentang nilai kurang dari 3000 dan terdapat *outlier*. Variabel metro memiliki rentang nilai 0-100. Variabel SMA memiliki rentang nilai kurang dari 90. Variabel miskin memiliki rentang nilai kurang dari 30. Variabel *single* memiliki rentang nilai kurang dari 23 dan terdapat outlier. Variabel metro dan SMA cenderung miring ke kiri yang menandakan mean < median < modus. Variabel kriminal, single, dan miskin cenderung miring ke kanan yang menandakan modus < median < mean.

4.1.1.2. Scatter Plot

(Gambar 2 : Scatter Plot)

Interpretasi:

Scatter plot di atas menjelaskan hubungan antara variabel Y (kriminal) dan variabel X (metro, SMA, miskin, dan *single*). Variabel metro dan *single* membentuk titik ke atas sehingga dapat diidentifikasi memiliki hubungan positif. Variabel miskin dan SMA membentuk titik yang menyebar sehingga hubungan yang terbentuk dengan variabel kriminal tidak dapat diketahui dengan jelas secara visual.

4.1.1.3. Heatmap

(Gambar 3 : Heatmap)

Interpretasi:

Heatmap di atas menunjukkan korelasi antara setiap variabel dengan variabel lainnya yang ditandai dengan warna gelap terang, dimana warna gelap menunjukkan korelasi positif yang sangat kuat antar variabel dan warna terang menunjukkan korelasi negatif. Dalam hal ini, korelasi positif terkuat dimiliki oleh variabel kriminal dan *single*, sedangkan korelasi negatif terkuat dimiliki oleh variabel SMA dan miskin.

4.1.1.4. Density Plot

(Gambar 4 : Density Plot)

Interpretasi:

Distribusi frekuensi kriminal menunjukkan mayoritas data berkumpul di sekitar nilai 500, dengan penurunan saat nilai kriminal meningkat. Grafik metro menunjukkan bahwa area metro memiliki frekuensi tertinggi di sekitar nilai 60. Distribusi sma memiliki dua puncak di sekitar 65 dan 80, menandakan adanya dua kelompok utama dalam data ini. Grafik miskin memiliki puncak tajam di sekitar nilai 5, menunjukkan konsentrasi tinggi pada tingkat kemiskinan tersebut. Distribusi *single* memiliki puncak di antara 15-17.5, menunjukkan kebanyakan data berkumpul pada rentang nilai tersebut.

4.1.1.5. Boxplot

(Gambar 5 : Boxplot)

Interpretasi:

Dari analisis visual menggunakan boxplot, tampak bahwa variabel kriminal dan *single* menunjukkan keberadaan masing-masing satu pencilan (outlier), sementara ketiga variabel lainnya tidak menunjukkan adanya pencilan. Pencilan dalam variabel kriminal dan *single* dapat menjadi titik data yang signifikan atau ekstrem jika dibandingkan dengan sebagian besar data lainnya. Hal ini menyoroti kemungkinan adanya kejadian luar biasa atau tidak biasa yang perlu mendapatkan perhatian khusus dalam interpretasi data.

4.1.2. Analisis Deskriptif

Analisis statistika deskriptif bertujuan untuk memberikan pemahaman dan gambaran awal tentang karakteristik data yang diteliti. Beberapa metode yang diterapkan dalam analisis ini diantaranya adalah perhitungan rata-rata (mean), median, Varians, standar deviasi, rentang (range), nilai minimal, dan nilai maksimal dari setiap dataset. Berikut adalah hasil dari analisis statistika deskriptif dari dataset yang diteliti :

Variabel	Mean	Median	Variance	SD	Range	Sum	Min	Max
Kriminal	612.84	515	190754.4	436.75	2840	31255	82.0	2922
Metro	67.39	69.8	472.66	21.74	76.0	3436.9	24.0	100.0
SMA	76.22	76.7	30.65	5.53	22.3	3887.4	64.3	86.6
Miskin	14.25	13.1	20.60	4.53	18.4	727.2	8.0	26.4
Single	11.32	10.9	4.41	2.10	13.7	577.6	8.4	22.1

(Tabel 2 : Analisis Deskriptif)

4.2. Analisis Regresi

4.2.1. Ordinary Least Squares Regression

Dep. Varia	ble:	krimina	al R-squ	ared:		0.841
Model:				R-squared:		0.827
Method:		Least Square	es F-sta	tistic:		60.90
Date:	2	at, 23 Dec 202	23 Prob	(F-statist	ic):	8.53e-18
Time:		09:58:4	46 Log-L:	ikelihood:		-335.50
No. Observ	ations:		51 AIC:			681.0
Df Residua	ls:	4	46 BIC:			690.7
Df Model:			4			
Covariance	Type:	nonrobus	st.			
	coef	std err	t	P> t	[0.025	0.975]
const	-2060.9260	659.487	-3.125	0.003	-3388.404	-733.447
metro	8.0019	1.294	6.183	0.000	5.397	10.607
sma	4.6349	7.548	0.614	0.542	-10.559	19.829
miskin	22.9626	11.083	2.072	0.044	0.654	45.272
ingle	128.3664	16.938	7.578		94.271	
mnibus:		1.24	 16 Durbi			1.652
Prob(Omnib	us):	0.53	36 Jarqu	e-Bera (JB)):	0.524
Skew:		-0.10	99 Prob(JB):		0.769
Kurtosis:		3.44	46 Cond.	No.		2.68e+03

(**Tabel 3** : Output OLS Regression)

Dari hasil *output python*, didapatkan persamaan *OLS Regression* dari output tersebut adalah :

a. Kriminal = -2060.9260 + 8.0019 (Metro) + 4.6349 (SMA) + 22.9626 (Miskin) + 128.3664 (*Single*).

- b. Model *OLS Regression* memiliki *R-square* sebesar 0,841 yang menunjukkan bahwa model mampu menjelaskan sekitar 84,1% dari variansi dalam variabel target (kriminal).
- c. Model *OLS Regression* memiliki *Adjusted R-Square* sebesar 0,827 yang menunjukkan bahwa model mampu menjelaskan sekitar 82,7% dari variansi dalam variabel setelah mempertimbangkan jumlah variabel independen yang digunakan dalam model.
- d. Model *OLS Regression* memiliki RMSE sekitar 174 menunjukkan bahwa rata-rata kesalahan prediksi model ini sekitar 174 unit dari nilai aktual.

4.2.2. Robust Regression

Berdasarkan exploratory data yang telah dilakukan, data terindikasi terdapat outlier, untuk mengatasi outlier tersebut dilakukan robust regression sebagai berikut

```
Coefficients: [ 0. 5.98413587 -9.59551515 16.59584867 153.50134155]
Intercept: -984.5609151591948
R^2 Score: 0.7908497997373205
Adjusted R^2 Score: 0.7993986704354338
Root Mean Squared Error (RMSE): 199.74063776865464
```

(**Tabel 4**: Output Robust Regression)

Dari hasil *output python*, didapatkan persamaan *Robust Regression* dari output tersebut adalah:

- a. Kriminal = -984.5609 + 5.9841 (Metro) 9.5955 (SMA) + 16.5958 (Miskin) + 153.5013 (*Single*).
- b. Model *Robust Regression* memiliki *R-square* sebesar 0,791 yang menunjukkan bahwa model mampu menjelaskan sekitar 79,1% dari variansi dalam variabel target (kriminal).
- c. Model *Robust Regression* memiliki *Adjusted R-Square* sebesar 0,799 yang menunjukkan bahwa model mampu menjelaskan sekitar 79,9% dari variansi dalam variabel setelah mempertimbangkan jumlah variabel independen yang digunakan dalam model.
- d. Model *Robust Regression* memiliki RMSE sekitar 200 menunjukkan bahwa rata-rata kesalahan prediksi model ini sekitar 200 unit dari nilai aktual.

4.3. Pengujian Hipotesis

4.3.1. Uji Serentak (Uji F)

Hipotesis:

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$$

 H_I : setidaknya ada satu $\beta_i \neq 0$, i = 1, 2, 3, 4

 $\alpha : 0.05$

Daerah kritis : p- $value < \alpha$

Uji Statistik:

	F-hitung	p-value	alpha	Kesimpulan
0	60.897183	8.529875e-18	0.05	Tolak H0

(Tabel 5 : Output Uji Serentak)

Kesimpulan:

Berdasarkan perhitungan diatas, dapat kita lihat bahwa nilai p-value (8.529875e-18) lebih kecil dari nilai α (0.05) yang artinya kita dapat simpulkan **Tolak H**₀. Berarti terdapat hubungan antara variabel independen dengan variabel dependen.

4.3.2. Uji Parsial (Uji t)

Hipotesis:

$$H_0: \beta_i = 0, i = 1, 2, 3, 4$$

$$H_1: \beta_i \neq 0, i = 1, 2, 3, 4$$

 $\alpha : 0.05$

Daerah kritis : p- $value < \alpha$

Uji Statistik:

	Variabel	t-hitung	p-value	alpha	Kesimpulan
0	const	-3.125044	3.076077e-03	0.05	Tolak H0
1	metro	6.183279	1.537333e-07	0.05	Tolak H0
2	sma	0.614020	5.422272e-01	0.05	Gagal Tolak H0
3	miskin	2.071864	4.391182e-02	0.05	Tolak H0
4	single	7.578474	1.245130e-09	0.05	Tolak H0

(**Tabel 6** : *Output* Uji Parsial)

Kesimpulan:

- $Gagal\ Tolak\ H_0$: Untuk variabel SMA yang artinya variabel tersebut tidak berpengaruh terhadap tindak kriminal yang ada.
- Tolak H₀: Untuk variabel metro, miskin, dan single yang artinya variabel tersebut berpengaruh terhadap tindak kriminal yang ada.

4.3.3. Uji Normalitas

a. Pengujian dengan grafik:

(Gambar 6 : Grafik Normalitas)

Sebaran data berada di sekitar garis diagonal dan mengikuti arah diagonal, maka dapat disimpulkan bahwa model regresi berdistribusi normal dan memenuhi asumsi normalitas.

b. Pengujian dengan statistik (Kolmogorov-Smirnov):

Hipotesis:

 H_0 : Error berdistribusi normal

 H_1 : Error tidak berdistribusi normal

 $\alpha : 0.05$

Daerah kritis : p- $value < \alpha$

Statistic KS: 0.07322782884154155 P-value: 0.928697393742446 Data Berdistribusi Normal (Gagal Tolak H0)

(Tabel 7 : Output Uji Normalitas)

Dari *output python*, didapatkan p-value (0.928) > batas kritis penelitian (0.05), maka keputusan hipotesis **Gagal Tolak H**₀, sehingga dapat dinyatakan bahwa error berdistribusi normal.

4.3.4. Uji Autokorelasi

Hipotesis:

Hipotesis Nol	Keputusan	Jika
Tidak ada autokorelasi positif	Tolak	0 < d < dL
Tidak ada autokorelasi positif	Tidak ada keputusan	$dL \le d \le dU$
Tidak ada autokorelasi negatif	Tolak	4 - dL< d < 4
Tidak ada autokorelasi negatif	Tidak ada keputusan	4 - d∪ ≤ d ≤ 4 - dL
Tidak ada autokorelasi positif atau negatif	Tidak ditolak	dU< d < 4 -dU

(Tabel 7 : Daerah Kritis Uji Autokorelasi)

Statistik:

Berdasarkan tabel durbin watson(n = 51, k = 4):

dL = 1.3855

dU = 1.7218

Didapatkan output nilai dW pada python:

```
Durbin-Watson statistic: 1.6516280405697554
Nilai dU dengan N = 51 dan K = 4 adalah 1.7218
Nilai dL dengan N = 51 dan K = 4 adalah 1.3855

Tidak ada keputusan. dL <= DW <= dU
(1.3855 <= 1.6516280405697554 <= 1.7218)
```

(Tabel 8 : Output Uji Autokorelasi)

Dari hasil statistik didapatkan $dL \leq dW \leq dU$ sehingga **tidak didapatkan keputusan** apakah terjadi korelasi positif atau tidak, tetapi dipastikan tidak terdapat autokorelasi negatif.

4.3.5. Uji Heteroskedastisitas

	p-value	Keputusan
const	0.389627	Gagal Tolak H0
metro	0.584250	Gagal Tolak H0
sma	0.547906	Gagal Tolak H0
miskin	0.150533	Gagal Tolak H0
single	0.317166	Gagal Tolak H0

(Tabel 9 : Output Uji Heteroskedastisitas)

Hipotesis:

 H_0 : Variansi Error Konstan (homoskedastisitas)

 H_1 : Variansi Error Tidak Konstan (heteroskedastisitas)

 $\alpha : 0.05$

Daerah kritis : p- $value < \alpha$

Berdasarkan output diatas, diketahui 4 variabel independen memiliki nilai p-value lebih besar dari nilai confidence level (0.05), maka dapat disimpulkan **Gagal Tolak H**₀. Artinya, tidak terdapat masalah heteroskedastisitas.

(Gambar 7 : Grafik Uji Heteroskedastisitas)

Dengan melihat grafik scatterplot di atas, titik-titik yang terbentuk menyebar secara acak, baik di atas maupun di bawah angka 0 pada sumbu-Y. Maka dapat disimpulkan bahwa tidak terjadi heteroskedastisitas pada model regresi.

4.3.6. Uji Multikolinearitas

	feature	VIF	keputusan
0	const	660.266956	Tolak H0
1	metro	1.201715	Gagal Tolak H0
2	sma	2.652013	Gagal Tolak H0
3	miskin	3.842047	Gagal Tolak H0
4	single	1.921894	Gagal Tolak H0

(Tabel 10 : Output Uji Multikolinearitas)

Hipotesis:

 H_0 : VIF < 10 (tidak terjadi multikolinearitas)

 H_1 : VIF > 10 (terjadi multikolinearitas)

Sesuai dengan syarat Uji Multikolinearitas, jika nilai VIF kurang dari 10 maka dapat disimpulkan bahwa tidak terdapat masalah multikolinearitas. Nilai VIF yang rendah menunjukkan bahwa variabel-variabel independen dalam model regresi tidak memiliki korelasi yang tinggi satu sama lain, mengindikasikan ketidakberlebihan dalam pengaruh variabel-variabel tersebut terhadap variabel dependen (kriminal).

4.4. Pemilihan Model Terbaik

Berdasarkan pembentukan model melalui metode *OLS regression* dan *robust regression* yang telah dilakukan, berikut tabel perbandingan antara kedua model :

Pembanding	OLS Regression	Robust Regression
Nilai RMSE	174	200
R-Squared	0.841	0.791
Adjusted R-Squared	0.827	0.791

(**Tabel 11**: Perbandingan Model)

Kriteria model terbaik yaitu:

- 1. Model memiliki nilai RMSE terkecil. Karena semakin kecil RMSE atau kesalahan prediksi maka semakin baik model.
- 2. Model memiliki *R-Squared* yang paling mendekati 1. Karena semakin *R-Squared* mendekati 1 maka semakin besar model dapat menjelaskan variansi dalam variabel dependen.
- 3. Model memiliki *Adjusted R-Squared* yang paling mendekati 1. Karena semakin *Adjusted R-Squared* mendekati 1 maka semakin besar model dapat menjelaskan variansi dalam variabel setelah mempertimbangkan jumlah variabel independen yang digunakan dalam model.

Berdasarkan ketiga kriteria tersebut, maka model terbaik untuk regresi tingkat kriminal dengan variabel independen metro, SMA, miskin, dan single adalah *OLS Regression* model dengan persamaan Kriminal = -2060.9260 + 8.0019 (Metro) + 4.6349 (SMA) + 22.9626 (Miskin) + 128.3664 (*Single*).

BAB V

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Pada uji asumsi klasik, dilakukan beberapa uji dan didapatkan hasil:

- 1. Uji Serentak, membuktikan bahwa terdapat hubungan antara variabel independen dengan variabel independen.
- 2. Uji Parsial, membuktikan bahwa hanya variabel sma yang tidak berpengaruh pada tindak kriminal, sedangkan variabel metro, miskin, dan *single* berpengaruh pada tindak kriminal.
- 3. Uji normalitas, membuktikan bahwa error berdistribusi normal.
- 4. Uji Autokorelasi, membuktikan bahwa dapat dipastikan tidak terdapat autokorelasi negatif tetapi tidak dapat diambil keputusan apakah terjadi autokorelasi positif.
- 5. Uji heteroskedastisitas, membuktikan bahwa tidak terdapat masalah heteroskedastisitas.
- 6. Uji multikolinearitas, membuktikan bahwa VIF kurang dari 10, sehingga tidak terdapat masalah multikolinearitas.

Selain *Ordinary Least Square Regression*, peneliti memilih untuk menganalisis data menggunakan *Robust Regression* karena berdasarkan exploratory data yang telah dilakukan, terindikasi bahwa data memiliki outlier.

Dari perbandingan RMSE, *R-Squared*, dan *Adjusted R-Squared* antara *OLS* dan *Robust Regression*, dapat disimpulkan bahwa model terbaik untuk regresi tingkat kriminal dengan variabel independen metro, SMA, miskin, dan single adalah *OLS Regression* model dengan persamaan Kriminal = -2060.9260 + 8.0019 (Metro) + 4.6349 (SMA) + 22.9626 (Miskin) + 128.3664 (*Single*) dengan *R-Squared* sebesar 0.841

5.2. Saran

Berdasarkan hasil penelitian, peneliti menyarankan:

- 1. Menambah data untuk validasi model
- 2. Evaluasi lebih lanjut terhadap outlier yang diidentifikasi dalam Robust Regression untuk memahami dampaknya

DAFTAR PUSTAKA

- Anjari, Warih. (2014). Fenomena Kekerasan sebagai Bentuk Kekerasan (Violence). Jakarta. E-Journal WIDYA Yustisia. Vol I (1).
- Budiyono. (2017). Statistika untuk penelitian. UNS Press.
- Ghozali, Imam. 2018. Aplikasi Analisis Multivariat dengan Program SPSS. Semarang: Badan Penerbitan Universitas Diponegoro.
- Montgomery, D. C., Peck, E. A. 1992. Introduction to Linear Regression Analysis, 2nd edition. New York: John Wiley & Sons, Inc.
- Muthiah, Hanifa. (2016). Analisis Faktor yang Mempengaruhi Jumlah Kejahatan di Indonesia dengan Pendekatan Regresi Spasial. Yogyakarta.
- Purwanti, E. Y., & Widyaningsih, E. (2019). Analisis Faktor Ekonomi yang Mempengaruhi Kriminalitas di Jawa Timur. Jurnal Ekonomi-Qu, 9(2), 157. Semarang.
- Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). *Applied Regression Analysis: A Research Tool* (2nd ed.). Springer New York.

Lampiran

Lampiran 1. Perhitungan menggunakan python: https://bit.ly/PythonFinalProjectRegter