Algoritmusok és adatszerkezetek II. előadásjegyzet:

Mintaillesztés, Tömörítés

Ásványi Tibor – asvanyi@inf.elte.hu 2021. november 23.

Tartalomjegyzék

1.	Min	taillesztés ([2] 32)	4
	1.1.	Egyszerű mintaillesztő (brute-force) algoritmus	4
	1.2.	Quicksearch	Ę
	1.3.	Mintaillesztés lineáris időben	
		(Knuth-Morris-Pratt, azaz KMP algoritmus)	7
ว	Info	ormációtömörítés ([4] 5)	16
4.		([-] -)	
	2.1.	Naiv módszer	16
	2.2.	Huffman-kód	16
		2.2.1. Huffman-kódolás szemléltetése	18
	2.3.	Lempel–Ziv–Welch (LZW) módszer	20

Hivatkozások

- [1] ÁSVÁNYI TIBOR, Algoritmusok és adatszerkezetek II. Útmutatások a tanuláshoz, jelölések, tematika, fák, gráfok, mintaillesztés, tömörítés http://aszt.inf.elte.hu/~asvanyi/ad/ad2jegyzet/
- [2] CORMEN, T.H., LEISERSON, C.E., RIVEST, R.L., STEIN, C., magyarul: Új Algoritmusok, Scolar Kiadó, Budapest, 2003. ISBN 963 9193 90 9 angolul: Introduction to Algorithms (Third Edition), The MIT Press, 2009.
- [3] FEKETE ISTVÁN, Algoritmusok jegyzet http://ifekete.web.elte.hu/
- [4] RÓNYAI LAJOS IVANYOS GÁBOR SZABÓ RÉKA, Algoritmusok, $TypoT_EX\ Kiadó$, 1999. ISBN 963-9132-16-0 https://www.tankonyvtar.hu/hu/tartalom/tamop425/2011-0001-526 ronyai algoritmusok/adatok.html
- [5] Weiss, Mark Allen, Data Structures and Algorithm Analysis, *Addison-Wesley*, 1995, 1997, 2007, 2012, 2013.
- [6] ÁSVÁNYI TIBOR, Algoritmusok és adatszerkezetek I. előadásjegyzet (2019) http://aszt.inf.elte.hu/~asvanyi/ad/ad1jegyzet.pdf

1. Mintaillesztés ([2] 32)

Adott a $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_d\}$ ábécé. $(1 \leq d < \infty \text{ konstans})$. A $T/1 : \Sigma[n]$ szövegben keressük a $P/1 : \Sigma[m]$ minta előfordulásait $(1 \leq m \leq n)$. A fenti szimbólumokat az egész fejezetben így fogjuk használni.

1.1. Definíció. $s \in 0..(n-m)$ pontosan akkor a P érvényes eltolása T-n, ha T[s+1..s+m] = P[1..m].

Az érvényes eltolások halmazát szeretnénk meghatározni, azaz az $S = \{ s \in 0..(n-m) \mid T[s+1..s+m] = P[1..m] \}$ halmazt.

1.1. Egyszerű mintaillesztő (brute-force) algoritmus

Vegyük bevezetésként a következő példát! A P[1..4] = BABA mintát keressük a T[1..11] = ABABBABABABAB szövegben. (<u>B</u>: B-t sikeresen illesztette a szöveg megfelelő betűjére; \cancel{B} : sikertelenül illesztette.)

i =	1	2	3	4	5	6	7	8	9	10	11
T[i]=	A	В	A	В	В	A	B	A	B	A	В
	\mathcal{B}	A	B	A							
		<u>B</u>	<u>A</u>	<u>B</u>	Å						
			\mathscr{B}	A	B	A					
				<u>B</u>	Å	B	A				
$\overline{s=4}$					<u>B</u>	<u>A</u>	<u>B</u>	<u>A</u>			
						\mathcal{B}	A	B	A		
s=6							<u>B</u>	<u>A</u>	<u>B</u>	<u>A</u>	
								\mathscr{B}	A	В	\overline{A}

$$S = \{4; 6\}$$

$$(BruteForce(T/1:\Sigma[n];P/1:\Sigma[m];S:\mathbb{N}\{\}))$$

$$S := \{\}$$

$$s := 0 \text{ to } n - m$$

$$T[s+1..s+m] = P[1..m]$$

$$S := S \cup \{s\}$$

$$SKIP$$

A T[s+1..s+m] = P[1..m] egyenlőségvizsgálatra: $MT_e(m) \in \Theta(m)$ $mT_e(m) \in \Theta(1)$

Innét a teljes algoritmus ra: $MT_{\rm BF}(n,m) \in \Theta((n-m+1)*m)$ $mT_{\rm BF}(n,m) \in \Theta(n-m+1)$

$$(T[s+1..s+m] = P[1..m]) : \mathbb{B})$$

$$j := 1$$

$$j \le m \land T[s+j] = P[j]$$

$$j + +$$

$$\mathbf{return} \ j > m$$

Ha egy feladatosztályon valamely 0 < k < 1 konstansra $m \le k * n$, akkor $1 * n \ge n - m + 1 > n - k * n = (1 - k) * n$, ahol 1 > 1 - k > 0 konstans. Innét a $\Theta(\cdot)$ függvényosztályok definíciója szerint $n - m + 1 \in \Theta(n)$ és $(n - m + 1) * m \in \Theta(n * m)$. Ebből pedig az $\cdot \in \Theta(\cdot)$ reláció tranzitivitása miatt adódik:

$$0 < k < 1 \land m \le k * n \Rightarrow mT_{BF}(n, m) \in \Theta(n) \land MT_{BF}(n, m) \in \Theta(n * m)$$

Ez viszont azt jelenti, hogy amennyiben egy feladatosztályon m az n-hez képest nem is elhanyagolható, azaz valamely $\varepsilon>0$ konstansra $m\geq \varepsilon*n$, akkor

 $\varepsilon*n*n\leq n*m\leq n*n.$ Következésképp $n*m\in\Theta(n^2).$

A fentieket összegezve, ha egy feladatosztályon az ε és a k konstansokra

$$0 < \varepsilon \le k < 1 \land \varepsilon * n \le m \le k * n \Rightarrow MT_{BF}(n, m) \in \Theta(n^2)$$

1.2. Quicksearch

A gyorsabb keresés érdekében ennél és a következő (KMP) algoritmusnál általában egynél nagyobb lépésekben növeljük a P[1..m] minta eltolását a T[1..n] szöveghez képest úgy, hogy biztosan ne ugorjunk át egyetlen érvényes eltolást sem. Mindkét algoritmus a tényleges mintaillesztés előtt egy előkészítő fázist hajt végre, ami nem függ a szövegtől, csak a mintától.

A Quicksearch-nél ebben az előkészítő fázisban az ábécé σ elemeihez $shift(\sigma) \in 1..m+1$ címkéket társítunk, ahol P[1..m] a keresett minta.

Tegyük fel most, hogy $\sigma=T[s+m+1]$. Ekkor a $shift(\sigma)$ érték megmondja, hogy a T[s+1..s+m]=P[1..m] összehasonlítás után legalább mennyivel kell (jobbra) eltolni a P mintát a szövegen ahhoz, hogy a T[s+m+1] alapján legyen esély a mintának a megfelelő szövegrészhez való illeszkedésére.

 $-\sigma \in P[1..m]$ esetén a $shift(\sigma) \in 1..m$ érték azt mondja meg, hogy legalább mennyivel kell tovább tolni a P mintát ahhoz, hogy a T[s+m+1] betűhöz kerülő karaktere maga is σ legyen. Világos, hogy a σ legjobboldali P-beli előfordulásához tartozik a legkisebb ilyen eltolás.

 $-\sigma\notin P[1..m]$ esetén $shift(\sigma)=m+1$ lesz, azaz a minta átugorja a T[s+m+1] karaktert.

Arra az esetre, amikor az ábécé $\Sigma = \{A,B,C,D\}$, a minta pedig P[1..4]=CADA, az alábbi félig absztrakt példákban xxxx mutatja a CADA mintával az eltolás előtt összehasonlított szövegrészt, maga a CADA pedig a minta eltolás utáni helyzetét. (Ezután természetesen újabb összehasonlítás kezdődik a szöveg megfelelő része és a minta között stb.)

A megfelelő shift értékek értékeket a következő táblázat mutatja.

σ	A	В	С	D
$shift(\sigma)$	1	5	4	2

$$(\text{initShift}(P/1:\Sigma[m]))$$

$$\forall \sigma \in \Sigma$$

$$shift(\sigma) := m+1$$

$$j := 1 \text{ to } m$$

$$shift(P[j]) := m+1-j$$

Az ábécé méretét konstansnak tekintve $T_{\text{initShift}}(m) \in \Theta(m)$ adódik. A P[1..4] = CADA mintával az initShift() majd a Quicksearch működése:

σ	A	В	C	D
initial $shift(\sigma)$	5	5	5	5
C			4	
A	3			
D				2
A	1			
final $shift(\sigma)$	1	5	4	2

i =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
T[i] =	A	D	A	B	A	B	C	A	D	A	B	C	A	B	A	D	A	C	A	D	A	D	\overline{A}
	\mathscr{C}	A	D	A																			
		\mathscr{C}	A	D	A																		
s = 6							C	<u>A</u>	\underline{D}	\underline{A}													
												\underline{C}	\underline{A}	$\not\!\!D$	A								
														\mathscr{C}	A	D	A						
s = 17																		\underline{C}	<u>A</u>	\underline{D}	<u>A</u>		
																				\mathscr{C}	A	D	A

$$S = \{6; 17\}$$

$$mT(n,m)\in\Theta\left(\frac{n}{m+1}+m\right)$$
 (pl. ha $T[1..n]$ és $P[1..m]$ diszjunktak) $MT(n,m)\in\Theta((n-m+2)*m)$ (pl. ha $T=AA\dots A$ és $P=A\dots A)$

A minimális műveletigény nagyságrenddel jobb, mint az egyszerű mintaillesztésnél, a tényleges (nem az aszimptotikus) maximális futási idő viszont még egy kicsit rosszabb is. Szerencsére, a tapasztalatok szerint az átlagos futási idő inkább a legjobb esethez áll közel, mintsem a legrosszabbhoz. Időkritikus alkalmazásokban viszont egy stabilabb futási idejű, minden esetben hatékony algoritmusra lenne szükségünk.

1.3. Mintaillesztés lineáris időben (Knuth-Morris-Pratt, azaz KMP algoritmus)

Tekintsük bevezetésként a következő példát! A P[1..8] = BABABBAB mintát keressük a T[1..18] = ABABABABABABABABABABABABABABBAB szövegben. (A minta elején a jelöletlen betűkről "illesztés nélkül is tudja" az algoritmus, hogy illeszkednek a szöveg megfelelő karakterére. \underline{B} : B-t sikeresen illesztette a szöveg megfelelő betűjére; $\underline{\mathcal{B}}$: sikertelenül illesztette.)

i =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
T[i]=	A	В	A	B	A	В	A	В	B	\overline{A}	В	A	В	A	В	В	\overline{A}	В
	\mathcal{B}																	
		<u>B</u>	<u>A</u>	<u>B</u>	<u>A</u>	<u>B</u>	\mathcal{B}											
s=3				B	A	B	<u>A</u>	<u>B</u>	<u>B</u>	<u>A</u>	<u>B</u>							
									B	A	В	<u>A</u>	<u>B</u>	\mathcal{B}				
s=10											В	A	B	<u>A</u>	<u>B</u>	<u>B</u>	<u>A</u>	<u>B</u>
																В	A	В

$$S = \{3; 10\}$$

- **1.2.** Jelölések. Ha x és y két sztring, akkor x + y a konkatenáltjuk.
 - Ha x és y két sztring, akkor $x \sqsubseteq y$ (x az y akár teljes prefixe) azt jelenti, hogy $\exists z$ sztring, amire x + z = y.
 - Ha x és y két sztring, akkor $x \sqsubseteq y$ (x az y prefixe) azt jelenti, hogy $x \sqsubseteq y \land x \neq y$.
 - Ha x és y két sztring, akkor $x \supseteq y$ (x az y akár teljes szuffixe) azt jelenti, hogy $\exists z$ sztring, amire z + x = y.
 - Ha x és y két sztring, akkor x \square y (x az y szuffixe) azt jelenti, hogy $x \square y \land x \neq y$.
 - P_j = P[1..j] (csak ebben az alfejezetben) P_j a P sztring j hosszúságú, akár teljes prefixe, azaz kezdőszelete. P₀ az üres prefixe. Hasonlóan T_i = T[1..i].
 [Eszerint minden nemüres sztringnek szuffixe az üres sztring. azaz

[Eszerint minden nemüres sztringnek szuffixe az üres sztring, azaz $P_0 \sqsupset P_j \quad (j \in 1..m)$.]

- $x \square y$ (x az y prefix-szuffixe) azt jelenti, hogy $x \square y \wedge x \square y$.
- $\max_i H$ a H halmaz i-edik legnagyobb eleme $(i \in 1..|H|)$. [$Ez\acute{e}rt \max_1 H = \max H$, $\acute{e}s$

ha H véges halmaz, akkor $\max_{|H|} H = \min H$.

•
$$H(j) = \{ h \in 0..j - 1 \mid P_h \supset P_j \}$$
 $(j \in 1..m)$
 $[0 \in H(j), \max_1 H(j) = \max H(j), \max_{|H(j)|} H(j) = \min H(j) = 0.]$
 $[Másképpen leírva: H(j) = \{ |x| : x \supset P_j \} (j \in 1..m)]$

- next(j) = max H(j) $(j \in 1..m)$
- 1.3. Tulajdonság. (Ugyanígy a prefixekre)

$$\begin{array}{c} x \mathrel{\sqsupset} y \land y \mathrel{\gimel} z \Rightarrow x \mathrel{\gimel} z \\ x \mathrel{\gimel} y \land y \mathrel{\gimel} z \Rightarrow x \mathrel{\gimel} z \end{array} \qquad \begin{array}{c} x \mathrel{\gimel} y \land y \mathrel{\gimel} z \Rightarrow x \mathrel{\gimel} z \\ x \mathrel{\gimel} y \land y \mathrel{\gimel} z \Rightarrow x \mathrel{\gimel} z \end{array}$$

- **1.4.** Tulajdonság. $x \supset z \land y \supset z \land |x| < |y| \Rightarrow x \supset y$
- **1.5. Tulajdonság.** $0 \le h < j \le m$ és $P_j \supseteq T_i$ esetén $P_h \supset T_i \iff P_h \supset P_j$.
- **1.6. Tulajdonság.** $P_h \supseteq T_i \wedge P[h+1] = T[i+1] \iff P_{h+1} \supseteq T_{i+1}$.
- 1.7. Tulajdonság. $next(j) \in 0..(j-1)$ $(j \in 1..m)$
- 1.8. Tulajdonság. $next(j+1) \leq next(j) + 1$ $(j \in 1..m-1)$ $(A \ next(j) \ f\"{u}ggv\'{e}ny \ legfeljebb \ egyes\'{e}vel \ n\"{o}vekszik.)$

Bizonyítás. (Az 1.8. Tulajdonságé)

- next(j+1) = 0 esetén $next(j+1) = 0 \le 1 \le next(j) + 1$.
- next(j+1) > 0 esetén pedig, $next(j+1) = \max H(j+1)$ miatt $next(j+1) \in H(j+1)$, ebből $H(j+1) = \{h \in 0..j \mid P_h \supset P_{j+1}\}$ szerint $P_{(next(j+1)-1)+1} = P_{next(j+1)} \supset P_{j+1}$, amiből az 1.6. Tulajdonság alapján $P_{next(j+1)-1} \supset P_j$, ahonnét a $next(j) = \max\{h \in 0..j-1 \mid P_h \supset P_j\}$ meghatározást felhasználva adódik $next(j+1) 1 \leq next(j)$, végül pedig $next(j+1) \leq next(j) + 1$.

1.10. Lemma. $next(max_lH(j)) \in H(j)$ $(j \in 1..m, l \in 1..|H(j)|-1)$

Bizonyítás.

 $P_{next(\max_l H(j))} \supset P_{\max_l H(j)}$, ui. $P_{next(i)} \supset P_i$ $(i \in 1..m)$ $P_{\max_l H(j)} \supset P_j$. Ezekből a \supset reláció tranzitivitása miatt (1.3) $P_{next(\max_l H(j))} \supset P_j$ adódik. Így $next(\max_l H(j)) \in H(j)$. \square

1.11. Tulajdonság.

 $\max_{l+1} H(j) = next(\max_l H(j)) \quad (j \in 1..m, l \in 1..|H(j)|-1)$

Bizonyítás.

- Először azt látjuk be, hogy $\max_{l+1} H(j) \leq next(\max_l H(j))$. Nyilván $P_{\max_{l+1} H(j)} \supset P_j \wedge P_{\max_l H(j)} \supset P_j \wedge \max_{l+1} H(j) < \max_l H(j)$. Ebből 1.4, azaz $x \supset z \wedge y \supset z \wedge |x| < |y| \Rightarrow x \supset y$ szerint $P_{\max_{l+1} H(j)} \supset P_{\max_l H(j)}$. Másrészt $P_{\max_{l+1} H(j)} \subset P_{\max_l H(j)}$, azaz $P_{\max_{l+1} H(j)} \supset P_{\max_l H(j)}$. Továbbá $P_{next(\max_l H(j))} \supset P_{\max_l H(j)}$, és a next függvény definíciója szerint az ilyen tulajdonságú sztringek között a leghosszabb, tehát $\max_{l+1} H(j) \leq next(\max_l H(j))$.
- Igazolnunk kell még, hogy $next(\max_l H(j)) \leq \max_{l+1} H(j)$. Ehhez $H(j,l) := \{i \in H(j) \mid i < \max_l H(j) \}$. Eszerint $\max_{l+1} H(j) = \max H(j,l)$. Az 1.10. Lemma szerint pedig $next(\max_l H(j)) \in H(j)$. A next függvény definíciójából viszont $next(\max_l H(j)) < \max_l H(j)$. Így $next(\max_l H(j)) \in H(j,l)$, és előbb láttuk, hogy $\max_{l+1} H(j) = \max H(j,l)$. Ezekből már közvetlenül adódik $next(\max_l H(j)) \leq \max_{l+1} H(j)$.

1.12. Definíció.

 $next^{1}(j) = next(j) (j \in 1..m)$ $next^{k+1}(j) = next(next^{k}(j)) (next^{k}(j) \in 1..m)$ $Szemléletesen: next^{k}(j) = \underbrace{next(\dots next(j) \dots)}_{k}$

1.13. Tétel. $next^k(j) = \max_k H(j)$ $(k \in 1..|H(j)|)$

Bizonyítás. (Teljes indukcióval)

- $k = 1 \Rightarrow next^k(j) = next(j) = \max_k H(j) = \max_k H(j)$.
- Tegyük fel, hogy k = l-re igaz az állítás $(l \in 1..|H(j)| 1)$. $k = l + 1 \Rightarrow next^k(j) = next(next^l(j)) = next(\max_l H(j)) = \max_{l+1} H(j) = \max_k H(j)$.

A fenti tétel és tulajdonságok segítségével $\Theta(m)$ műveletigénnyel adunk megoldást a $next/1: \mathbb{N}[n]$ tömb inicializálására, azzal az utófeltétellel, hogy $\forall j \in 1..m: next[j] = next(j)$, vagy rövidebben: next[1..m] = next(1..m). Az alábbi init(next, P) eljárás tehát a $next/1: \mathbb{N}[n]$ tömböt a $P/1: \Sigma[m]$ tömb alapján tölti fel.

A lineáris, pontosabban $\Theta(m)$ műveletigény igazolásához elég belátni, hogy az init(next,P) eljárás ciklusa legalábbm-1 és legfeljebb2m-2 iterációt hajt végre. A ciklus alábbi invariánsa szerint $0 \le i < j \le m$.

- Mivel az első iteráció előtt j = 1, mindegyik iteráció legfeljebb eggyel növeli j-t, és a ciklusfeltétel j < m, legalább m-1 iteráció szükséges ahhoz, hogy j = m legyen, és az eljárás befejeződjék.
- t(i,j) := 2j i. Világos, hogy $0 \le i < j \le m$ miatt $t(i,j) \in 2..2m$. Az első iteráció előtt t(i,j) = 2, mindegyik iterációval (mind a három programágon) szigorúan monoton nő, és végig $\le 2m$, így legfeljebb 2m-2 iteráció után megáll a ciklus.
- **1.14. Feladat.** Lássuk be, hogy helyes az alábbi init(next, P) eljárás ciklusának invariánsa.

$$\left(\operatorname{init}(next/1:\mathbb{N}[n]\ ;\, P/1:\Sigma[m])\right)$$

Invariant of the loop:
$$0 \leq i < j \leq m \land P_i \sqsupset P_j \land (\forall l \in i+2 ... j : P_l \not \sqsupset P_{j+1}) \land next[1...j] = next(1...j)$$

Az init(next, P) algoritmus szemléltetése az ABABBABA mintán: (A három programág mindegyikének az elején kezdünk új sort.)

i	j	next[j]	$\stackrel{1}{A}$	$\overset{2}{B}$	$\overset{3}{A}$	$\overset{4}{B}$	$\stackrel{5}{B}$	$\stackrel{6}{A}$	$\overset{7}{B}$	$\stackrel{8}{A}$
0	1	0		Å						
0	2	0			<u>A</u>					
1	3	1			A	<u>B</u>				
2	4	2			A	В	A			
0	4	2					A			
0	5	0						<u>A</u>		
1	6	1						A	<u>B</u>	
2	7	2						A	В	<u>A</u>
3	8	3								

A végeredmény:

	· ·							
P[j] =	A	B	A	B	B	A	B	A
j =	1	2	3	4	5	6	7	8
next[j] =	0	0	1	2	0	1	2	3

Az 1.13. tétel és a fentebbi tulajdonságok segítségével $\Theta(n)$ műveletigénnyel oldjuk meg a mintaillesztési feladatot. Először inicializáljuk a $next/1 : \mathbb{N}[n]$ tömböt, majd ennek segítségével határozzuk meg a minta megfelelő eltolásait.

A lineáris, pontosabban $\Theta(n)$ műveletigény igazolásához elég belátni, hogy az alábbi KMP(T,P,S) eljárás fő ciklusának futási ideje $\Theta(n)$, ui. $m \in 1..n$ miatt ezen az init(next,P) eljárás és egyéb inicializálások $\Theta(m)$ műveletigénye aszimptotikus nagyságrendben már nem módosít. A fő ciklus $\Theta(n)$ műveletigényének igazolásához pedig elegendő azt belátni, hogy az legalább n és legfeljebb 2n iterációt hajt végre. A ciklus alábbi invariánsa szerint $i \in 0..n \land j \in 0..(m-1) \land j \leq i$.

- Mivel az első iteráció előtt i = 0, mindegyik iteráció legfeljebb eggyel növeli i-t, és a ciklusfeltétel i < n, legalább n iteráció szükséges ahhoz, hogy i = n legyen, és az eljárás befejeződjék.
- Most t(i,j) := 2i j. Az $i \in 0..n \land j \in 0..(m-1) \land j \leq i$ invariáns tulajdonság miatt $t(i,j) \in 0..2n$. Az első iteráció előtt t(i,j) = 0, mindegyik iterációval (mind a négy programágon) szigorúan monoton nő, és végig $\leq 2n$, így legfeljebb 2n iteráció után megáll a ciklus.

Az eljárás utófeltétele: $S = \{ s \in 0..(n-m) \mid T[s+1..s+m] = P_m \}.$

1.15. Tulajdonság. A KMP algoritmus ciklusának invariánsa:

$$\begin{split} i &\in 0..n \land j \in 0..(m-1) \land j \leq i \land \\ S &= \left\{ s \in 0..(i-m) \mid T[s+1..s+m] = P_m \right\} \land \\ P_j &\supseteq T_i \land (\forall l \in (j+2)..m : P_l \not\supseteq T_{i+1}). \end{split}$$

A ciklusfetétel tagadásából $(i \geq n)$ és az $i \in 0..n$ invariáns tulajdonságból i=n adódik. Ezután az S halmazra vonatkozó invariánsban a i változó n-nel helyettesíthető. Ennek eredménye pedig éppen az utófeltétel.

Bizonyítás. Hátra van még az 1.15. ciklusinvariáns helyességének igazolása. Az első iteráció előtt $S=\{\} \land i=j=0$. Az invariáns ezekkel a helyettesítésekkel a következő:

$$\begin{array}{l} 0 \in 0..n \land 0 \in 0..(m-1) \land 0 \leq 0 \land \\ \{\} = \{ s \in 0..(0-m) \mid T[s+1..s+m] = P_m \} \land \\ P_0 \sqsupseteq T_0 \land (\forall l \in 2..m : P_l \not\supseteq T_1). \end{array}$$

Ez az állítás pedig könnyen látható, hogy igaz. Egyrészt $1 \le m \le n$ miatt $0 \in 0...n \land 0 \in 0...(m-1)$. Másrészt a halmazegyenlőség jobb oldalán is

üres halmaz áll, ui. 0..(0-m) üres intervallum. Harmadrészt a $P_0 \supseteq T_0$ nem jelent mást, mint hogy az üres sztring önmaga teljes szuffixe. Végül, a $(\forall l \in 2..m : P_l \not\supseteq T_1)$ is teljesül, hiszen m=1 esetén a 2..m intervallum üres, $m \geq 2$ esetén pedig $|P_l| \geq 2$, míg $|T_1| = 1$.

Azt kell még belátnunk, hogy amennyiben a ciklusinvariáns és a ciklusfeltétel egy adott iteráció végrehajtása előtt teljesül, az invariáns utána is igaz marad. A ciklusmag előtt tehát:

$$\begin{split} i &\in 0..(n-1) \land j \in 0..(m-1) \land j \leq i \land \\ S &= \left\{ \left. s \in 0..(i-m) \mid T[s+1..s+m] = P_m \right. \right\} \land \\ P_j &\supseteq T_i \land (\forall l \in (j+2)..m : P_l \not\supseteq T_{i+1}). \end{split}$$

— Ha most T[i+1] = P[j+1], akkor $P_j \supseteq T_i$ és az 1.6. tulajdonság miatt $P_{j+1} \supseteq T_{i+1}$. Miután pedig végrehajtódnak az i++; j++ utasítások:

$$i \in 1...n \land j \in 1...m \land j \leq i \land$$

 $S = \{ s \in 0..(i-1-m) \mid T[s+1...s+m] = P_m \} \land$
 $P_i \supseteq T_i \land (\forall l \in (j+1)..m : P_l \not\supseteq T_i).$

– Amennyiben ezután j=m igaznak bizonyul, akkor $P_m \supseteq T_i$, azaz $T[i-m+1..i-m+m] = P_m$, ami azt jelenti, hogy $T[s+1..s+m] = P_m$ az s=i-m helyettesítéssel is teljesül. Az $S:=S \cup \{i-m\}$ értékadás hatására tehát helyreáll az $S=\{s\in 0..(i-m)\mid T[s+1..s+m]=P_m\}$ invariáns tulajdonság, azaz most

$$\begin{split} i \in 1..n \land j \in 1..m \land j \leq i \land \\ S = \left\{ s \in 0..(i - m) \mid T[s + 1..s + m] = P_m \right\} \land P_m \sqsupseteq T_i. \end{split}$$

Ezután a j := next[m] értékadással $P_j \supset P_m \land j \in 0..(m-1) \land j < i$. Mivel $P_m \supseteq T_i$, ebből $P_j \supseteq T_i$ adódik. A next függvény definíciója szerint pedig P_j egyben a leghosszabb P_m prefix-szuffixei között, azaz $(\forall l \in (j+1)..(m-1): P_l \not\supseteq P_m)$. Ha viszont létezne olyan $k \in (j+2)..m$, amelyre $P_k \supseteq T_{i+1}$, akkor erre a k értékre $k-1 \in (j+1)..(m-1) \land P_{k-1} \supseteq T_i$ lenne, amit összevetve a $P_m \supseteq T_i$ tulajdonsággal $P_{k-1} \supset P_m$ adódna, ami ellentmond annak, hogy $(\forall l \in (j+1)..(m-1): P_l \not\supseteq P_m)$. Innét $(\forall k \in (j+2)..m: P_k \not\supseteq T_{i+1})$, ami éppen a ciklusinvariáns vége. Eddigi eredményeinket összegezve, ennek a programágnak a végén az alábbi, az invariánsnál kicsit erősebb állítás adódik.

$$\begin{split} i \in 1..n \land j \in 0..(m-1) \land j < i \land \\ S = \left\{ s \in 0..(i-m) \mid T[s+1..s+m] = P_m \right\} \land \\ P_j \supseteq T_i \land (\forall l \in (j+2)..m : P_l \not\supseteq T_{i+1}). \end{split}$$

- Az, hogy a KMP algoritmus ciklusmagjának másik három ága is tartja az invariánst, a fentiekhez hasonlóan igazolható. \Box
- **1.16. Feladat.** Igazolja, hogy a KMP algoritmus ciklusmagjának másik három ága is tartja az 1.15. invariánst!

Mint látjuk, a T[1..n] szövegen sohasem kell visszalépni. Ezért ez a KMP algoritmus kényelmesen, hatékonyan implementálható abban az esetben is, ha a szöveg (amiben keressük a mintát) egy szekvenciális fájlban van. Mivel a Brute-force és a Quicksearch algoritmusoknál a szövegen esetleg m-2 karakternyit is vissza kell lépni, ezeknél – feltéve, hogy a szöveg egy szekvenciális input fájlban van – annak az utoljára beolvasott m-1 karakterét folyamatosan nyilván kell tartani egy átmeneti tárolóban.

Példa:

A P[1..8] = ABABBABA mintát keressük a T[1..17] = ABABABBABABABABABABA szövegben.

A mintához tartozó $next/1: \mathbb{N}[8]$ tömböt fentebb már kiszámoltuk:

P[j] =	A	B	A	B	B	A	B	A
j = 1	1	2	3	4	5	6	7	8
next[j] =	0	0	1	2	0	1	2	3

A keresés:

V Veresi	<u> </u>																
i =	1	2	3	$\mid 4 \mid$	5	6	7	8	9	10	11	12	13	14	15	16	17
T[i]=	A	В	A	B	A	B	B	A	B	A	В	В	A	В	A	В	\overline{A}
	<u>A</u>	<u>B</u>	<u>A</u>	<u>B</u>	\mathscr{B}												
s=2			A	B	<u>A</u>	<u>B</u>	<u>B</u>	<u>A</u>	<u>B</u>	<u>A</u>							
$\overline{s=7}$								A	B	A	<u>B</u>	<u>B</u>	<u>A</u>	<u>B</u>	<u>A</u>		
													A	B	A	<u>B</u>	\mathscr{B}
															A	B	<u>A</u>

$$S = \{2, 7\}$$

2. Információtömörítés ([4] 5)

2.1. Naiv módszer

A tömörítendő szöveget karakterenként, fix hosszúságú bitsorozatokkal kódoljuk.

$$\Sigma = \langle \sigma_1, \sigma_2, \dots, \sigma_d \rangle$$
 az ábécé.

Egy-egy karakter $\lceil \lg d \rceil$ bittel kódolható, ui. $\lceil \lg d \rceil$ biten $2^{\lceil \lg d \rceil}$ különböző bináris kód ábrázolható, és $2^{\lceil \lg d \rceil} \ge d > 2^{\lceil \lg d \rceil - 1}$, azaz $\lceil \lg d \rceil$ biten ábrázolható d-féle különböző kód, de eggyel kevesebb biten már nem.

 $In : \Sigma \langle \rangle$ a tömörítendő szöveg. n = |In| jelöléssel $n * \lceil \lg d \rceil$ bittel kódolható.

Pl. az ABRAKADABRA szövegre d=5 és n=11, ahonnét a tömörített kód hossza $11*\lceil\lg 5\rceil=11*3=33$ bit. (A 3-bites kódok közül tetszőleges 5 kiosztható az 5 betűnek.) A tömörített fájl a kódtáblázatot is tartalmazza.

A fenti ABRAKADABRA szöveg kódtáblázata lehet pl. a következő:

karakter	kód
A	000
В	001
D	010
K	011
R	100

A fenti kódtáblázattal a tömörített kód a következő lesz: 000001100000011000011000001100000.

Ez a tömörített fájlba foglalt kódtáblázat alapján könnyedén 3 bites szakaszokra bontható és kitömöríthető. A kódtáblázat mérete miatt a gyakorlatban csak hosszabb szövegeket érdemes így tömöríteni.

2.2. Huffman-kód

A tömörítendő szöveget karakterenként, változó hosszúságú bitsorozatokkal kódoljuk. A gyakrabban előforduló karakterek kódja rövidebb, a ritkábban előfordulóké hosszabb.

Prefix-mentes kód: Egyetlen karakter kódja sem prefixe semelyik másik karakter kódjának sem.

A karakterenként kódoló tömörítések között a Huffman-kód hossza minimális. Ugyanahhoz a szöveghez többféle kódfa és hozzátartozó kódtáblázat építhető, de mindegyik segítségével az input szövegnek ugyanolyan hosszú tömörített kódját kapjuk. Betömörítés a kódtáblával, kitömörítés a kódfával. Ezért a tömörített fájl a kódfát is tartalmazza.

A tömörítendő fájlt, illetve szöveget kétszer olvassa végig.

- Először meghatározza a szövegben előforduló karakterek halmazát és az egyes karakterek gyakoriságát, majd ennek alapján kódfát, abból pedig kódtáblázatot épít.
- Másodszorra a kódtábla alapján kiírja az output fájlba sorban a karakterek bináris kódját.

A kódfa szigorúan bináris fa. Mindegyik karakterhez tartozik egy-egy levele, amit a karakteren kívül annak gyakorisága, azaz előfordulásainak száma is címkéz. A belső csúcsokat a csúcshoz tartozó részfa leveleit címkéző karakterek gyakoriságainak összegével címkézzük. (Így a kódfa gyökerét a tömörítendő szöveg hossza címkézi.)

A kódfát úgyépítjük fel, hogy először egycsúcsú fák egy minimum-prioritásos sorát határozzuk meg, amelyben mindegyik karakter pontosan egy csúcsot címkéz. A csúcsot a karakteren kívül annak gyakorisága is címkézi. A minimum-prioritásos sort a benne tárolt fák gyökerét címkéző gyakoriságértékek szerint építjük fel. Ezután a következőt csináljuk ciklusban, amíg a kupac még legalább kettő fából áll.

Kiveszünk a kupacból egy olyan fát, amelyeknek gyökerét a legkisebb gyakoriság címkézi. Ezután a maradék kupacra ezt még egyszer megismételjük. Összeadjuk a két gyakoriságot. Az összeggel címkézünk egy új csúcsot, amelynek bal és jobb részfája az előbb kiválasztott két fa lesz. A bal ágat a 0, a jobb ágat az 1 címkézi. Az így képzett új fát visszatesszük a minimum-prioritásos sorba.

A fenti ciklus után a minimum-prioritásos sorban maradó egyetlen bináris fa a Huffman-féle kódfa.

A kódfából ezután kódtáblázatot készítünk. Mindegyik karakterekhez tartozó kódot úgy kapjuk meg, hogy a kódfa gyökerétől elindulva és a karakterhez tartozó levélig lefelé haladva a kódfa éleit címkéző biteket összeolvassuk. (Ezt hatékonyan kivitelezhetjük pl. a kódfa preorder bejárásával, az aktuális csúcshoz vezető bitsorozat folyamatos nyilvántartásával, és levélhez érve, a kódtáblázatba írásával.)

Befejezésül újra végigolvassuk a tömörítendő szöveget, és a kódtáblázat segítségével sorban mindegyik karakter bináris kódját a (kezdetben üres) tömörített bitsorozat végéhez fűzzük. A tömörített fájl a kódfát is tartalmazza,

így a gyakorlatban Huffman-kódolással is csak hosszabb szövegeket érdemes tömöríteni.

A kitömörítést is karakterenként végezzük. Mindegyik karakter kinyeréséhez a kódfa gyökerétől indulunk, majd a tömörített kód sorban olvasott bitjeinek hatására 0 esetén balra, 1 esetén jobbra lépünk lefelé a fában, mígnem levélcsúcshoz érünk. Ekkor kiírjuk a levelet címkéző karaktert, majd a Huffman-kódban a következő bittől és újra a kódfa gyökerétől folytatjuk, amíg a tömörített kódon végig nem érünk.

2.2.1. Huffman-kódolás szemléltetése

Pl. az ABRAKADABRA szöveget egyszer végigolvasva meghatározhatjuk milyen karakterek fordulnak elő a szövegben, és milyen gyakorisággal. Úgy képzelhetjük, hogy az alábbi táblázat az új betűkkel folyamatosan bővül, ahogy haladunk előre a szövegben.

szöveg:	A	В	R	A	K	A	$\mid D \mid$	A	В	R	A
A	1			2		3		4			5
B	-	1							2		
D	-	-	-	-	-	-	1				
K	-	-	-	-	1						
R	-	-	1							2	

A fenti számolást (betű/gyakoriság) alakban összegezve:

$$\langle (D/1), (K/1), [B/2], \{R/2\}, (A/5) \rangle$$

A fenti öt kifejezést öt egycsúcsú bináris fának tekinthetjük. (A jobb olvashatóság kedvéért többféle zárójelpárt alkalmaztunk.) Mindegyik csúcs egyben levél és gyökér. A levelekhez tartozó két címkét karakter/gyakoriság alakban írtuk le. A tömörítés algoritmusa szerint ezeket egy minimum-prioritásos sorba tesszük. A könnyebb érthetőség kedvéért ezt a minimum-prioritásos sort a szokásos minimum-kupacos reprezentáció helyett most a fák gyökerében lévő gyakoriság-értékek (röviden fa-gyakoriság-értékek) szerint rendezett fa-sorozattal szemléltetjük. (Azonos gyakoriságok esetén a betűk alfabetikus sorrendje szerint rendezünk. Ez ugyan önkényes, de az algoritmus bemutatása szempontjából hasznos egyértelműsítés. A fák ágait is hasonlóképpen rendezzük sorba.)

Ezután kivesszük a két legkisebb gyakoriság-értékű fát, egy új gyökércsúcs alá tesszük őket bal- és jobboldali részfának, a új gyökércsúcsot pedig a két

fa-gyakoriság-érték összegével címkézzük. Végül visszatesszük az új fát a minimum-prioritásos sorba.

$$\langle [B/2], [(D/1)2(K/1)], \{R/2\}, (A/5) \rangle$$

A fenti eljárást addig ismételjük, amíg már csak egy fánk marad. Ezt végül kivesszük a minimum-prioritásos sorból: ez a Huffman-féle kódfa.

$$\langle \{R/2\}, \{[B/2]4[(D/1)2(K/1)]\}, (A/5) \rangle$$

 $\langle (A/5), (\{R/2\}6\{[B/2]4[(D/1)2(K/1)]\}) \rangle$
 $[(A/5)11(\{R/2\}6\{[B/2]4[(D/1)2(K/1)]\})]$

A fent kapott kódfát az 1. ábrán is láthatjuk.

1. ábra. Az ABRAKADABRA szövegnek az alfabetikus konvencióval adódó Huffman-féle kódfája

Tekintsünk az 1. ábrán látható kódfában egy tetszőleges egyszerű, azaz körmentes utat, amely a fa gyökerétől lefelé valamelyik leveléig halad! Az út éleit címkéző biteket összeolvasva adódik a levelet címkéző karakter Huffman-kódja. Így a karaktarekre a következő kódtáblázatot kapjuk.

karakter	kód
A	0
B	110
D	1110
K	1111
R	10

A fentiek alapján az ABRAKADABRA szöveg Huffman kódja 23 bit, ami lényegesen rövidebb, mint a fenti naiv tömörítés esetén. A kódtáblázat bináris kódjait az ABRAKADABRA szöveg karakterei szerint sorban egymás után fűzve kapjuk a szöveg Huffman-kódját.

011010011111011100110100

A kitömörítéshez az előbbi Huffman-kód és a kódfa alapján a kezdő nulla rögtön az "A" címkéjű levélhez visz. Ezután sorban olvasva a maradékból a biteket, a 110 a B-hez visz, majd a 10 az R-hez, a 0 az A-hoz, a 1111 a K-hoz, a 0 az A-hoz, az 1110 a D-hez, a 0 az A-hoz, a 110 a B-hez, a 10 az R-hez, és végül a 0 az A-hoz. Így visszakaptuk az eredeti, tömörítetelen szöveget.

2.1. Feladat. Próbáljuk ki, hogy ha a Huffman-kódolásban lévő indeterminizmusokat a fenti alfabetikus sorrendtől eltérően oldjuk fel, ugyanarra a tömörítendő szövegre mégis mindig ugyanolyan hosszú Huffman-kódot kapunk! (Ha például a minimum-prioritásos sorból azonos fa-gyakoriság-értekek esetén az alacsonyabb fát vesszük ki előbb – ezt az ad-hoc szabályt az alfabetikus konvenciónál erősebbnek véve –, akkor a fenti példában a kódfát felépítő ciklus második iterációjában a [B/2] és az $\{R/2\}$ fát fogjuk összevonni.)

2.3. Lempel-Ziv-Welch (LZW) módszer

Az input szöveget ismétlődő mintákra (sztringekre) bontja. Mindegyik mintát ugyanolyan hosszú bináris kóddal helyettesíti. Ezek a minták kódjai. A tömörített fájl a kódtáblázatot nem tartalmazza. Részletes magyarázat olvasható Ivanyos Gábor, Rónyai Lajos és Szabó Réka: *Algoritmusok* c. könyvében [4]. (Online elérhetősége az irodalomjegyzékünkben.)

Jelölések az absztrakt struktogramokhoz:

- Ha a kódok b bitesek, akkor $MAXCODE=2^b-1$ globális konstans a kódként használható legnagyobb számérték. Ha pl. b=12, akkor $MAXCODE=2^{12}-1=4095$.
- A $\Sigma = \langle \sigma_1, \sigma_2, \dots, \sigma_d \rangle$ sorozat tartalmazza az ábécé karaktereit.
- A tömörítésnél "In" a tömörítendő szöveg. "Out" a tömörítés eredménye: kódok sorozata. A kitömörítésnél fordítva.
- *D* a szótár, ami (*string*, *code*) rendezett párok, azaz *Item*-ek halmaza. A szótárat a tömörített kód nem tartalmazza. Ehelyett a kitömörítés rekonstruálja az ábécé és a tömörített kód alapján.

Item
$+string:\Sigma\langle angle$
$+code: \mathbb{N}$
$+Item(s:\Sigma\langle\rangle;k:\mathbb{N})\{string:=s;code:=k\}$

$\Big(\mathsf{LZWcompress}(In : \Sigma \langle \rangle \ ; \ Out : \mathbb{N} \langle \rangle) \Big)$

$D: Item\{\}\ //\ { m D}$ is the dictionary, initially empty			
$i:=1$ to $ \Sigma $			
$x: Item(\langle \Sigma_i \rangle, i) \; ; \; D:=D \cup \{x\}$			
$code := \Sigma + 1 ; Out := \langle \rangle ; s : \Sigma \langle In_1 \rangle$			
i := 2 to In			
$c: \Sigma := In_i$			
$\operatorname{dictionaryContainsString}(D,s+c)$			
s := s + c	$Out := Out + \operatorname{code}(D, s)$		
	$code \leq MAXCODE$		
	$x: Item(s+c, code++) \; ; \; D:=D \cup \{x\}$	SKIP	
	$s := \langle c \rangle$		
$Out := Out + \operatorname{code}(D, s)$			

$D:Item\{\}\ //\ { m D}$ is the dictionary, initially empty			
$i:=1$ to $ \Sigma $			
$x: Item(\langle \Sigma_i \rangle, i) ; D := D \cup \{x\}$			
$code := \Sigma + 1 \; / / \; code$ is the first unused code			
$Out := s := string(D, In_1)$			
i := 2 to In			
$k := In_i$			
$k < code \ // \ { m D \ contains} \ k$			
t := string(D, k)	$t := s + s_1$		
Out := Out + t	Out := Out + t		
$x: Item(s+t_1, code)$	$x: Item(t,k) \; // \; \mathrm{k}{=}\mathrm{code}$		
$D := D \cup \{x\}$	$D := D \cup \{x\}$		
$s := t \; ; code + +$			