

#### **COMS 30115**

Clipping and Culling

Carl Henrik Ek - carlhenrik.ek@bristol.ac.uk March 18th, 2019

http://carlhenrik.com

# Introduction

#### Last time

- Mappings
  - Not just textures

## Today

• Clipping and Culling

#### The Book

- Scratchapixel URL
- Blinn and Newell URL
- Fabien Sanglard Webpage URL
- Keneth Joy notes on Clipping URL

# **Clipping**

### Our Rasterisation Engine

- We know how to transform geometry
- We know how to project things from 3D space to screen space
- We know how to draw 3D data by interpolation in screen space
- Now we need to figure out what to draw

### **Pipeline**

- ☐ Clip geometry to view Frustrum

- □ Perform depth culling
- ☑ Interpolate shading/textures etc.
- □ Perform pixelshading
- □ Double buffer
- repeat

## Clipping & Culling

- Drawing each polygon expensive
- Remove elements that we do not need to draw early in the pipeline to save computations
- Culling: remove whole primitive
  - back-face culling, occlusion culling, etc.
- Clipping: remove part of primitive

# Clipping & Culling



# Screen space clipping



# **Line Clipping**



## Line Clipping<sup>1</sup>



<sup>1</sup>https:

<sup>//</sup>en.wikipedia.org/wiki/Cohen%E2%80%93Sutherland\_algorithm

#### Cohen-Sutherland

- 1. Compute Outcodes
- 2. OR end-points BREAK if 0
- 3. AND end-points BREAK if Ø
- 4. AND end-point with clip-plane
  - CLIP if Ø
  - XOR end-point with plane

# 3D Clipping



## **4D Clipping**



### **Homogenous Coordinates**

We can add a single coordinate w to each point

$$[x, y, z, w]^{\mathrm{T}}$$

- the process of homogenisation is to make w=1 which corresponds to projecting  $[x,y,z,w]^{\mathrm{T}}$  to its corresponding point  $[\frac{1}{w}x,\frac{1}{w}y,\frac{1}{w}z,1]^{\mathrm{T}}$  which is a point in 3D space
- this means  $[x,y,z,1]^{\rm T}$  and  $[3x,3y,3z,3]^{\rm T}$  corresponds to the same point in 3D space

## Homogenous Coordinates

#### Screen space

$$u = \frac{f}{z} \cdot x$$
  $v = \frac{f}{z} \cdot y$ 

#### Homogenisation

$$\begin{bmatrix} u \\ v \\ f \\ 1 \end{bmatrix} = \frac{f}{z} \begin{bmatrix} x \\ y \\ z \\ \frac{z}{f} \end{bmatrix}$$

#### Projection Matrix

$$\begin{bmatrix} x \\ y \\ z \\ \frac{z}{f} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

 We can write the set of all coordinates that coresponds to a screen coordinate with a single homogenous coordinate

$$[x, y, z, \frac{z}{f}]^{\mathrm{T}}$$

• In this space clipping is easy,  $x>|w\cdot x_{\max}|$  are all points that should be clipped in x-plane

$$u_{max} = x_{max} \cdot \frac{z}{f}$$

• Map from world space to clip space

$$[x, y, z, 1]^{\mathrm{T}} \rightarrow [x, y, z, \frac{z}{f}]^{\mathrm{T}}$$

• Map from world space to clip space

$$[x, y, z, 1]^{\mathrm{T}} \rightarrow [x, y, z, \frac{z}{f}]^{\mathrm{T}}$$

• Clip x and y plane of view frustrum

$$-w \cdot x_{\text{max}} \le x \le w \cdot x_{\text{max}}$$
$$-w \cdot y_{\text{max}} \le y \le w \cdot y_{\text{max}}$$

Map from world space to clip space

$$[x,y,z,1]^{\mathrm{T}} \to [x,y,z,\frac{z}{f}]^{\mathrm{T}}$$

Clip x and y plane of view frustrum

$$-w \cdot x_{\text{max}} \le x \le w \cdot x_{\text{max}}$$
$$-w \cdot y_{\text{max}} \le y \le w \cdot y_{\text{max}}$$

Map homogenous coordinate to screen space by homgenising coordinate

$$[x_{clipped}, y_{clipped}, z, \frac{z}{f}]^{\mathrm{T}} \rightarrow [x_{clipped} \frac{f}{z}, y_{clipped} \frac{f}{z}, z \frac{f}{z}, \frac{z}{f} \frac{f}{z}]^{\mathrm{T}} = [u_{clipped}, v_{clipped}, f, 1]^{\mathrm{T}}$$



<sup>&</sup>lt;sup>2</sup>http://fabiensanglard.net/polygon\_codec/



<sup>&</sup>lt;sup>2</sup>http://fabiensanglard.net/polygon\_codec/



<sup>&</sup>lt;sup>2</sup>http://fabiensanglard.net/polygon\_codec/



<sup>&</sup>lt;sup>2</sup>http://fabiensanglard.net/polygon\_codec/

#### Its more than this

- A clipped triangle does not need to be a triangle
  - remap to new triangles
- You need to compute new vertex attributes
  - remember that everything is flat
- Triangles through infinity w = 0

## Interpolation of Attributes<sup>3</sup>



<sup>3</sup>http:

 $//fabiens anglard.net/polygon\_codec/clippingdocument/Clipping.pdf$ 

$$d_1 = (Q_1 - P) \cdot n$$
$$d_2 = (Q_2 - P) \cdot n$$

#### Four Cases

- $d_1 \ge 0$  and  $d_2 > 0$  or  $d_2 \ge 0$  and  $d_1 > 0$  Line inside
- $d_1 \leq 0$  and  $d_2 < 0$  or  $d_2 \leq 0$  and  $d_1 < 0$  Line outside
- $d_1 > 0$  and  $d_2 < 0$   $Q_1$  inside and  $Q_2$  outside
- $d_1 < 0$  and  $d_2 > 0$   $Q_2$  inside and  $Q_1$  outside

• Intersection point

$$I=Q_1+t(Q_2-Q_1)$$

• Intersection point

$$I = Q_1 + t(Q_2 - Q_1)$$

• Re-write in terms of *P* 

$$(I-P) = (Q_1-P) + t((Q_2-P) - (Q_1-P))$$

Intersection point

$$I=Q_1+t(Q_2-Q_1)$$

• Re-write in terms of *P* 

$$(I-P) = (Q_1-P) + t((Q_2-P) - (Q_1-P))$$

Multiply by normal

$$\underbrace{(I-P)\cdot n}_{0} = \underbrace{(Q_{1}-P)\cdot n}_{d1} + t \underbrace{\left(\underbrace{(Q_{2}-P)\cdot n}_{d2} - \underbrace{(Q_{1}-P)\cdot n}_{d1}\right)}_{}$$

• Intersection point

$$I=Q_1+t(Q_2-Q_1)$$

• Re-write in terms of P

$$(I-P) = (Q_1-P) + t((Q_2-P) - (Q_1-P))$$

Multiply by normal

$$\underbrace{(I-P)\cdot n}_{0} = \underbrace{(Q_{1}-P)\cdot n}_{d1} + t \underbrace{\left(\underbrace{(Q_{2}-P)\cdot n}_{d2} - \underbrace{(Q_{1}-P)\cdot n}_{d1}\right)}_{}$$

• Solve for t

$$t = \frac{d_1}{d_1 - d_2}$$

# Clipping and Culling



### Culling

#### Back-face

- simple, dot product of face normal and view direction positive means not visible
- can we speed up things by clustering normals to remove several directly?

#### Depth

z-buffer

#### Frustrum

- construct bounding boxes and compare
- axis aligned or not?

# **Extensions**

#### **Visualisations**

- 1. Depth of field
- 2. Approximate Anti-Aliasing
- 3. Screen space ambient occlusion
- 4. Meta-balls and implicit surfaces
- 5. Shadow maps
- 6. Stencil Shadows

# **Techniques**

- 1. Barycentric coordinates
- 2. Cell shading
- 3. Normal mapping
- 4. Texture mapping
- 5. Mip-mapping
- 6. Bump mapping
- 7. Novel lighting

# Clipping

- 1. Back-face culling
- 2. Frustrum Culling
- 3. Frustrum Clipping
- 4. Screen space clipping

# Optimisation

- 1. SSE & AVX extensions
- 2. OpenCL
- 3. OpenMP
- 4. Framebuffer with memory-aligned PutPixel

# Misc

- 1. Object Loading
- 2. Material library
- 3. Dynamics
  - collision detection
  - "exploding" objects

### What I haven't seen

- Fire
- Smoke
- Transparency
- Mirrors
- Pick any visual phenomenon and think of how to render it
- Voxels
- Procedural geometry
- etc. etc.

# Imagination is the only limitation



# **Summary**

#### End of Part II

- Computer Graphics
  - generate graphics in a manner suitable for commputers
- Sparse (per vertex) computations of light
- Interpolate vertex attributes across pixels (fragments)

#### End of Part II

- Computer Graphics
  - generate graphics in a manner suitable for commputers
- Sparse (per vertex) computations of light
- Interpolate vertex attributes across pixels (fragments)
- We have seen at least one example of each part of the pipeline but there are many many more versions. Choose algorithm based on the hardware that you program.

- This is how the internals of game engines work
- This is what your GPU does for you (a lot of it at least)
- Now you know how this works
  - my hope have been that this should allow you to make more efficient use of modern APIs
  - understand how and what you can tweak
  - understand how you can exploit things to your benefit
- Fixed Rendering Pipeline is no more

#### Course so far

# Raytracer how is an image generated

- images are actually quite simple
- only thing holding back realism is computation time

Raster how does a computer display an image

- in lab you have seen what the basics are
- lectures have gone a few steps further

# Part II



$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(x, \Psi \to \Theta) L(x \leftarrow \Psi) \cos(\mathbf{n}_x, \Psi) d\omega_{\Psi}$$

#### Global Illumination

- What happens when light hits a surface
  - Light comes in reflects and refracts
  - · Light emits from point
- Ammount of "light" constant in a closed environment
- Solve for this steady-state
- Approximate integral

#### **Next Time**

#### Lecture Global Illumination

- Introduce concepts
- Formulate problem

# Lab Rasterisation & Raytracing

 Try to finish 50% mark of both courseworks this week if you aim for extensions

# Homework







eof