Investigating 3SAT

(Guide presentation for 380CT Coursework 2)

Kamal Bentahar

19th December 2016

Investigating 3SAT

Kamal Bentahar

Exact methods

×haustive

Discussion

Approximation

GRASP

Discussio

Special cases

Conclusion

Conclusion

Let x_1, x_2, \dots, x_n be Boolean variables, and let ϕ be a Boolean formula written in 3-cnf (Conjunctive Normal Form)

$$\phi = c_1 \wedge c_2 \wedge \cdots \wedge c_\ell,$$

where each **clause** $c_m = x_i \vee x_i \vee x_k$, for some i, j, k = 1, 2, ..., n and $m=1,\ldots,\ell$.

A **literal** can be x_i or $\neg x_i$ for some i = 1, 2, ..., n.

The ratio ℓ/n is important for experiments, and will be denoted by ρ .

Decide if ϕ is satisfiable.

NP-complete.

Computational/Search 3SAT

If ϕ is satisfiable then find a satisfying assignment.

Optimization 3SAT (Max 3SAT)

Find an assignment that minimizes the number of non-satisfying clauses.

NP-hard.

Exact methods

Approximation

Special cases

Conclusion

Investigating 3SAT

Special cases

Conclusion

- **1) Exhaustive search:** average time for instances with increasing *n*.
- **Dynamic programming:** average time for instances with increasing ℓ .
- **3** Greedy and meta-heuristics: quality of approximation with increasing ρ . Quality of approximation is calculated as the ratio of satisfied clauses to ℓ .

General 3SAT instances will be generated by selecting exactly 3 different literals from

$$\{x_1, \neg x_1, x_2, \neg x_2, \dots, x_n \neg x_n\}$$

uniformly at random. Do not allow clauses including both x_i and $\neg x_i$ (tautological clauses). [1].

For 'yes' instances, a random variable assignment is fixed first, then clauses are randomly constructed making sure each is satisfiable.

1: **for** all possible variable assignments of x_1, x_2, \dots, x_n **do**

2: **if** $\phi(x_1, x_2, \dots, x_n)$ evaluates to True **then**

3: **return** True

4: return False

There are 2^n possible assignments, and each evaluation of ϕ costs $O(\ell)$. So this algorithm costs

 $O(\ell 2^n)$.

Exhaustive search – empirical results

Average time in $100\times$ seconds [TODO: REDO EXPERIMENT] for randomly generated instances with $n=\ell$ for $n=10,\ldots$ Dotted line: fitted exponential curve.

Investigating 3SAT

Kamal Bentahar

Exact methods
Exhaustive
Dynamic

Approximation

ACO
Discussion
Special cases

Conclusion

Dynamic Programming

1: $A \leftarrow \emptyset$

▶ Set of possible assignments

- 2: **for** $k = 1, 2, ..., \ell$ **do**
- $S \leftarrow$ all the satisfying assignments of c_k
- $update \leftarrow \emptyset$ 4: 5:
- for $p \in \mathcal{A}$ do for $\sigma \in S$ do 6:
- if σ and p do not clash then 8: ioin p and σ and append to update
- 9: $\mathcal{A} \leftarrow update$
- 10: **return** best candidate in A

Cost: $O(\ell \times \max |\mathcal{A}|)$ time and $O(\max |\mathcal{A}|)$ space, but $|\mathcal{A}|$ can grow like 7^k in the worst case, we deduce that this algorithm can cost

$$O(\ell 7^{\ell})$$
 time, and $O(7^{\ell})$ space

Investigating 3SAT

Kamal Bentahar

Exact methods

Approximation

Special cases

Conclusion Reflection

Dynamic

> 7 at most

Dynamic Programming - empirical results

[TODO]

Investigating 3SAT

Kamal Bentahar

Exact methods
Exhaustive

Dynamic Discussion

Approximation Greedy

GRASP ACO Discussion

Special cases
Conclusion

Exact methods – discussion of results

[TODO]

Investigating 3SAT

Kamal Bentahar

Exact methods
Exhaustive

Discussion

Approximation

reedy RASP CO

Discussion

Special cases
Conclusion

Reflection

9 / 20

Find the variable that appears most often and assign it accordingly to maximize

 $1 \cdot I \leftarrow \emptyset$

2: **for** $w \in \{x_1, \neg x_1, \dots, x_n, \neg x_n\}$ **do**

Count occurrences of w in ϕ

Append pair $(w, count of occurrences of w in \phi)$ to L 4:

Sort *L* with respect to the second component

6: for $(w, c) \in L$ do

Set w to True \triangleright If $w = \neg x_i$ then set x_i to False

8: return count of satisfied clauses

Cost: $O(n \log n)$ assuming the use of an $O(n \log n)$ sorting algorithm.

Greedy method – empirical results

Average ratio of clauses unsatisfied by Greedy for $\rho=0.5,\ldots,7.$

Investigating 3SAT

Kamal Bentahar

Exact methods
Exhaustive

Approximation
Greedy

ACO
Discussion
Special cases

Conclusion

Special cases Conclusion

- 1: best candidate $\leftarrow \emptyset$
- 2: while (termination condition is not met) do
- $greedy_candidate \leftarrow ConstructGreedyRandomizedSolution()$ 3:
- $grasp_candidate \leftarrow LocalSearch(greedv_candidate)$ 4:
- **if** $f(grasp_candidate) < f(best_candidate)$ **then** 5:
- best_candidate ← grasp_candidate 6.
- 7. return best candidate
 - "termination condition" is simply to repeat a fixed number of times, e.g. 100 times.
 - f gives the ratio of unsatisfied clauses to ℓ . Objective is to minimize it.
 - ConstructGreedyRandomizedSolution() works like Greedy but shuffles L in blocks of a given size. [TODO: EXPLAIN MORE]
 - LocalSearch() works by flipping the variables' assignment.

GRASP – empirical results

Results for $\rho = 0.5, \dots, 7$ and n = 20.

Investigating 3SAT

Kamal Bentahar

Exact methods

Dynamic Discussion

Approximation

GRASP ACO Discussion

Special cases

Conclusion

Approximation Greedy

ACO

Special cases

Conclusion

Reflection

1: initialize weights

2: while termination criterion is not satisfied do

3: generate population *sp* of candidate solutions using subsidiary randomized constructive search

4: perform subsidiary local search on *sp*

5: adapt weights based on *sp*

6: **return** *s*

The subsidiary constructive search uses weights (pheromone trails) and heuristic information.

Ant Colony Optimization – empirical results

Investigating 3SAT

Kamal Bentahar

Exact methods

xhaustive ynamic iscussion

Approximation Greedy

ACO Discussion

Special cases

Conclusion
Reflection

Approximation methods – discussion of results

[TODO]

Kamal Bentahar

Exact methods

Investigating 3SAT

Exhaustive
Dynamic
Discussion

Approximation
Greedy

GRASP ACO Discussion

Special cases

Conclusion
Reflection

Special cases

Conclusion

- 1 n=1. If x and $\neg x$ appear in the same clause then it becomes a tautology, and the clause can be ignored. Otherwise $x \lor x \lor x = x$ and $\neg x \lor \neg x \lor \neg x = \neg x$. So ϕ simplifies to a conjunction of terminals, whose satisfiability is easy to establish. [TODO: details?]
- 2 n = 2. We get 2-SAT which is in **P**. [TODO: details?]
- **3** $\ell = 1$. Always satisfiable. [TODO: true for $\ell \le n$?]

Approximation

Special cases

Conclusion

- If instance is a special case then can be solved in polynomial time.
- Exhaustive search useful when n is small.
- Dynamic programming useful when ℓ is small.
- Otherwise, use GRASP, ACO, or other metaheuristics for approximate solutions.

Reflection

Investigating 3SAT

Kamal Bentahar

Exact methods

xhaustive Dynamic

Approximation

GRASP ACO

Special cases

Conclusion

ACO Discussion

Special cases

Conclusion

Reflection

Hoos, H. and Stutzler, T. (2005) Stochastic Local Search: Foundations and Applications. Morgan Kaufmann

Garey, S. and Johnson, D. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman