4.

(1) Histogram of the Salman and Seabass lightness

Figure 1: Salmon lightness histogram

Figure 2: Seabass lightness histogram

- (2) P(salmon) = 0.34783 and P(seabass) = 0.65217.
- (3) Plots of P(lightness|salmon) and P(lightness|seabass)

Figure 3: P(lightness|salmon) and P(lightness|Seabass)

(4) Compute probabilities:

$$\begin{split} &P(lightness \leq 5|salmon) = 0.8625 \text{ and } P(lightness \leq 8|salmon) = 1 \\ &P(lightness \geq 5|seabass) = 0.91333 \text{ and } P(lightness \geq 2|seabass) = 1 \end{split}$$

(5) Plot of the evidence pmf P(lightness)

Figure 4: P(lightness)

(5) Plot the posterior probabilities P(salmon|lightness) and P(seabass|lightness)

Figure 5: Posterior probabilities

Appendix:

assignment 1.m % $\%\ CS7720\ Spring\ 2015$ % Introduction to Machine Learning and Pattern Recognition $\% \ \ University \ \ of \ \ Missouri-Columbia$ $\% \ Author: \ Chanmann \ Lim$ $\% \ email: \ cl9p8@mail.missouri.edu$ % Homework Assignment 1 % Problem 4 % clc; clear; close all; salmon = load('SalmonLightness.dat');
seabass = load('SeabassLightness.dat');
xvalues = load('formathist.dat'); % 1 - Plot Salmon and Seabass histogram with the intervals of % [(k-1)*0.5, k*0.5], with k = 1,...,20 $\% \ k_min = 1; \ k_max = 20;$ $\% \ \overline{xvalues} = (k \ min-1)*0.5:0.5:k \ max*0.5;$ figure; hist(salmon, xvalues); figure; hist (seabass, xvalues); % 2 - Compute P(salmon) and P(seabass)sample = length(salmon) + length(seabass); P salmon = length(salmon)/sample; P_seabass = length(seabass)/sample; disp(['P(salmon) = 'num2str(P salmon), ... '_and_P(seabass)_=_' num2str(P_seabass)]); % 3 - Plot conditional probability P(lightness/salmon) and % P(lightness/seabase) pmf P_lightness_given_salmon = hist(salmon, xvalues)'/length(salmon); P_lightness_given_seabass = hist(seabass, xvalues)'/length(seabass); disp('P(lightness|salmon) _=_'); disp(P_lightness_given_salmon); disp('P(lightness|seabass)==,'); disp(P_lightness_given_seabass); figure: stem(xvalues, P_lightness_given_salmon, 'filled', 'r'); hold on; stem(xvalues, P_lightness_given_seabass, 'k'); hold off; legend('Salmon', 'Seabass'); % % 4 - Compute: % $P(lightness \le 5/salmon)$ and $P(lightness \le 8/salmon)$ $P(lightness >= 5/sea \ bass)$ and $P(lightness >= 2/sea \ bass)$ $P_lightness_less_equal_5_given_salmon = sum(P_lightness_given_salmon(xvalues <= 5));$ $P_lightness_less_equal_8_given_salmon = \textbf{sum}(P_lightness_given_salmon(xvalues <= 8));$ $\begin{array}{l} \mathbf{disp} \left(\left[\text{'P(lightness} <= 5 | \text{salmon} \right) \downarrow = \downarrow \text{'} \right. \\ \mathbf{num2str} \left(\text{P_lightness_less_equal_5_given_salmon} \right), \\ \mathbf{num2str} \left(\text{P_lightness_less_equal_8_given_salmon} \right) \right); \\ \end{array}$ $P_lightness_grater_equal_5_given_seabass = \textbf{sum}(P_lightness_given_seabass(xvalues>=5));$ $P_lightness_grater_equal_2_given_seabass = \textbf{sum}(P_lightness_given_seabass(xvalues>=2));$ $\mathbf{disp}\left(\left[\ 'P(\ lightness > = 5 | seabass \right) \cup = \cup ' \ \mathbf{num2str}\left(\ P_lightness _ \ grater _ \ equal_5 _ \ given_seabass \right), \ \ldots \right)$ $(-and_P(lightness) = 2|seabass) = (-num2str(P_lightness_grater_equal_2_given_seabass)]);$