S-DES Problem

Using the 10 bit key 101000110

Encrypt the following 8 bit plaintext using the Simplified DES (S-DES) cipher 10001110

$$\label{eq:ciphertext} \begin{split} \text{ciphertext} &= \text{IP}^{\text{-1}}\Big(\text{f}_{K_2}\Big(\text{SW}\big(\text{f}_{K_1}\big(\text{IP}(\text{plaintext})\big)\big)\Big)\Big) \\ \text{where} \\ \\ K_1 &= \text{P8}\big(\text{Shift}\big(\text{P10}(\text{key})\big)\big) \\ \\ K_2 &= \text{P8}\big(\text{Shift}\big(\text{Shift}\big(\text{P10}(\text{key})\big)\big)\Big) \end{split}$$

Figure G.1 Simplified DES Scheme

Key Generation

Figure G.2 Key Generation for Simplified DES

The P10 permutation is defined as

P10									
3	5	2	7	4	10	1	9	8	6

P8 is given by

K1 =

K2 =

Figure G.3 Simplified DES Encryption Detail

The initial permutation IP is defined as (from which IP⁻¹ can easily be deduced)

IP							
2	6	3	1	4	8	5	7

E/P is defined as

E/P							
4	1	2	3	2	3	4	1

The S boxes are given as

And P4 is defined as

P4						
2	4	3	1			

Ciphertext =