Lista 1

30 de março de 2025

1. Mostre que \mathbb{R}/\mathbb{Z} é homeomorfo ao círculo \mathbb{S}^1 , considerando \mathbb{R}/\mathbb{Z} com a topologia quociente, e $\mathbb{S}^1 \subset \mathbb{C}$ com a topologia usual. Denotamos por \mathbb{R}/\mathbb{Z} o conjunto \mathbb{R}/\sim com a relação de equivalência dada por:

$$x \sim y \Leftrightarrow x - y \in \mathbb{Z}$$
.

2. Considere a relação de equivalência \sim em $[0,2\pi] \times [0,2\pi]$ dada por $(x,y) \sim (x_0,y_0)$ se e só se $(x-x_0$ é múltiplo inteiro de 2π e $y=y_0)$ ou $(y-y_0$ é múltiplo inteiro de 2π e $x=x_0$). Seja

$$\mathbb{T} = [0, 2\pi] \times [0, 2\pi] / \sim$$
 (com a topologia quociente).

- (a) Descreva a aplicação quociente e mostre que \mathbb{T} é homeomorfo a $\mathbb{S}^1 \times \mathbb{S}^1$.
- (b) Seja $F:[0,2\pi]\times[0,2\pi]\to\mathbb{R}^3$ definida por

$$F(s,t) = \left((R + r\cos(t))\cos(s), (R + r\cos(t))\sin(s), r\sin(t) \right).$$

Mostre que F induz uma aplicação $f:\mathbb{T}\to\mathbb{R}^3$ e que esta aplicação é um homeomorfismo entre T e sua imagem.

- 3. Verdadeiro ou Falso? (Prove ou dê contra-exemplo.)
 - () Se X é um conjunto finito e τ é uma topologia em X com cardinalidade $|\tau| \geq 2^n-1$, então τ é a topologia discreto.
 - () Se $f:(X,\tau_1)\to (Y,\tau_2)$ é contínua se, e somente se, para todo $A\subset X$ temos $f(\overline{A})=\overline{f(A)}.$
- 4. Seja $M_2(\mathbb{R})$ o conjunto das matrizes 2×2 com entradas em \mathbb{R} . Tome em $M_2(\mathbb{R})$ a topologia induzida pela bijeção $\psi: M_2(\mathbb{R}) \to \mathbb{R}^4$,

$$\psi: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^4$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \longmapsto (a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2})$$

Ou seja, $U \subset M_2(\mathbb{R})$ é aberto se, e so se, $\psi(U) \subset \mathbb{R}^4$ é aberto.

- (a) Mostre que $GL(2) = \{A \in M_2(\mathbb{R}) : A \text{ \'e invert\'evel}\}$ \'e um aberto de $M_2(\mathbb{R})$.
- (b) Mostre que

$$SL(2) = \{ A \in M_2(\mathbb{R}) : \det(A) = 1 \}$$

 $O(2) = \{ A \in M_2(\mathbb{R}) : A^t A = A A^t = I \}$

são fechados de $M_2(\mathbb{R})$.

- 5. Generalize o exercício anterior para $M_n(\mathbb{R})$. Construa a topologia de $M_n(\mathbb{R})$ de maneira análoga ao exercício anterior.
- 6. Seja (G, \cdot) um grupo. Dizemos que G é um grupo topológico se G está munido de uma topologia τ que é T_1 (para esse exercício não é necessário usar essa hipótese) e de modo que as aplicações

$$p: G \times G \longrightarrow G$$

$$(a,b) \longmapsto a \cdot b$$

$$i: G \longrightarrow G$$

$$a \longmapsto a^{-1}$$

são contínuas. Mostre que, para quaisquer $a, b \in G$, existe um homeomorfismo $f: G \to G$ tal que f(a) = b.

- 7. Estude a convergência da sequência $x_n = 1/n$ em \mathbb{R} , considerando \mathbb{R} com a topologia co-finita. Repita com a topologia co-enumerável.
- 8. Mostre que, se X é um espaço topológico e $f,g:X\to\mathbb{R}$ são contínuas, então

$$\Delta = \{x \in X; f(x) = q(x)\}\$$

é um conjunto fechado.

- 9. Sejam $\{(M_i, T_i), i \in \Lambda\}$ uma família de espaços topológicos. Seja $A_i \subset M_i$ um subconjunto para cada i. Considere a topologia produto em $\prod_{i \in \Lambda} M_i$.
 - (a) Mostre que se A_i é fechado em M_i , então $\prod_{i \in \Lambda} A_i$ é fechado em $\prod_{i \in \Lambda} M_i$.

(b)
$$\prod_{i \in \Lambda} \overline{A_i} = \overline{\prod_{i \in \Lambda} A_i}$$

Qual das propriedades anteriores continua válida se, no lugar da topologia produto, consideramos a topologia das caixas?

10. Seja A o subconjunto de $\Pi_{i\in\mathbb{N}}X_i$, onde $X_i=\mathbb{R}$ consistindo dos elementos (x_1,x_2,\ldots) em que $x_i\neq 0$ apenas para uma quantidade finita de índices. Determine \bar{A} na topologia produto e na topologia das caixas.

11. Demonstre que D^n/\sim é homeomorfo a \mathbb{S}^n , onde consideramos D^n/\sim com a topologia quociente identificando os pontos do disco D^n de norma 1 e \mathbb{S}^n com a topologia usual.

Dica: Considere a inversa da projeção estereográfica:

$$\varphi: \mathbb{R}^n \longrightarrow \mathbb{S}^n \setminus \{(0, \dots, 0, -1)\}$$
$$x \longmapsto \left(\frac{2x}{1 + ||x||^2}, \frac{1 - ||x||^2}{1 + ||x||^2}\right)$$

e considere o homeomorfismo:

$$\psi: D^n \setminus \partial D^n \longrightarrow \mathbb{R}^n$$
$$x \longmapsto \frac{x}{1 - ||x||^2}.$$

Tome o homeomorfismo $f := \varphi \circ \psi : D^n \setminus \partial D^n \to \mathbb{S}^n \setminus \{(0, \dots, 0, -1)\}.$

12. Definimos a **União Disjunta** de dois conjuntos A, B como:

$$A \sqcup B := (A \times \{0\}) \cup (B \times \{1\}) \subset (A \cup B) \times \{0, 1\}$$

Se (A, τ_1) e (B, τ_2) são dois espaços topológicos, podemos definir uma topologia em $A \sqcup B$. Sejam $i_0: A \hookrightarrow A \sqcup B$ e $i_1: B \hookrightarrow A \sqcup B$ as inclusões canônicas, ou seja, $i_0(x) = (x, 0)$, para todo $x \in A$, e $i_1(y) = (y, 1)$, para todo $y \in B$. Definimos uma topologia em $A \sqcup B$ como:

$$\tau := \{ U \subset A \sqcup B : i_0^{-1}(U) \in \tau_1 \in i_1^{-1}(U) \in \tau_2 \}.$$

- (a) Prove que $(A \sqcup B, \tau)$ é um espaço topológico.
- (b) Podemos generalizar a construção acima para uma união disjunta arbitrária, tomando $\{(A_{\alpha}, \tau_{\alpha})\}_{\alpha \in I}$ família de espaços topológicos, assim:

$$\bigsqcup_{\alpha \in I} A_{\alpha} := \bigcup_{\alpha \in I} (A_{\alpha} \times \{\alpha\}) = \{(x, \alpha) : x \in A_{\alpha}, \alpha \in I\}$$

tomando $i_{\alpha}:A_{\alpha}\hookrightarrow\bigsqcup_{\alpha\in I}A_{\alpha}$ a inclusão canônica, para todo $\alpha\in I$. Defina uma topologia

$$\boldsymbol{\tau} := \left\{ U \subset \bigsqcup_{\alpha \in I} A_{\alpha} \, : \, i_{\alpha}^{-1}(U) \in \tau_{\alpha} \text{ , para todo } \alpha \in I \right\}.$$

Mostre que τ é topologia em $\bigsqcup_{\alpha \in I} A_{\alpha}$.

13. Seja (X, τ_1) e (Y, τ_2) dois espaços topológicos, e $A \subset X$ com a topologia induzida. Se $f: A \to Y$ é uma função contínua, definimos o **Espaço** de **Adjunção**

$$X \cup_f Y := (X \sqcup Y) / \sim$$

com a relação de equivalência $(a,0) \sim (f(a),1)$ para todo $a \in A$.

Podemos pensar o espaço de adjunção como uma colagem de X em Y ao longo do mapa f; graficamente:

Figura 1: Representação da adjunção de $X \cup_f Y$.

Denotamos por $X \vee Y$ a colagem de X e Y por um único ponto, ou seja, $A = \{a\} \subset X$ e $f(a) = b \in Y$. (Quando os espaços X e Y são conexos por caminhos, veremos que podemos omitir o ponto em que realizamos a colagem.)

(a) Tome $[0,1] \sqcup [0,1]$, com a relação de equivalência

$$(0,0) \sim (0,1) \sim (1,0) \sim (1,1)$$

Prove que $[0,1] \sqcup [0,1]/\sim$ é homeomorfo a $S^1 \vee S^1.$

- (b) Descreva graficamente essa adjunção.
- 14. Considere \mathbb{R}^{n+1} com a topologia canônica e considere sobre $\mathbb{R}^{n+1} \setminus \{0\}$ a relação de equivalência dada por

$$x \sim y$$
 se, e somente se, $x = \lambda y$, para algum $\lambda \in \mathbb{R} \setminus \{0\}$.

Comumente denotamos $(a,0) \in X \sqcup Y$ somente por $a \in X \sqcup Y$, e escrevermos $a \sim f(a)$ para todo $a \in A$

O espaço quociente $\mathbb{R}^{n+1} \setminus \{0\}/\sim$ é chamado de **Espaço Projetivo Real** de dimensão n, e denotamos por $\mathbb{R}P^n := \mathbb{R}^{n+1} \setminus \{0\}/\sim$.

Seja $\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}P^n$ o mapa quociente, isto é, $\pi(x)$ é a classe de equivalência [x] de x em $\mathbb{R}P^n$.

(a) Mostre que os conjuntos

$$U_i = \{ [(x_1, \dots, x_{n+1})] \in \mathbb{R}P^n \mid x_i \neq 0 \}$$

são abertos na topologia quociente, para todo $i \in \{0,1,\dots,n+1\},$ e que

$$\mathbb{R}P^n = \bigcup_{i=1}^{n+1} U_i.$$

(b) Prove que $\mathbb{R}P^1$, com a topologia quociente, é homeomorfo a \mathbb{S}^1 , com a topologia canônica.