Restricted Isometry Property for κ -sparse Vectors in SLR

1. Recap from Manuscript

A random Φ must often satisfy a small *Restricted Isometry Constant* (RIC) (Candes & Tao, 2005), which ensures that Φ behaves nearly like an orthonormal system on every κ -sparse subset of coefficients (see below for definition). Concretely, no set of κ columns in Φ is nearly linearly dependent, so no sparse vector \mathbf{z} is "collapsed" or "inflated" by Φ .

Definition 1.1 (Restricted Isometry Constant). Let $\Phi \in \mathbb{R}^{d \times n}$ be a real matrix. For an integer $\kappa \leq k$, the κ -Restricted Isometry Constant δ of Φ is the smallest nonnegative number such that

$$(1 - \delta) \|\mathbf{z}\|_{2}^{2} \le \|\mathbf{\Phi} \mathbf{z}\|_{2}^{2} \le (1 + \delta) \|\mathbf{z}\|_{2}^{2}$$
 (1)

for every vector $\mathbf{z} \in \mathbb{R}^k$ that has at most κ nonzero entries. We abbreviate this condition as Restricted Isometry Property (RIP) for future use.

In order to prove Theorem 4.2 from the manuscript we minimize the simplified VAE loss (for a fixed γ) that depends only on w and is given by:

$$\mathcal{L}(\mathbf{w}) = \mathbf{x}^{\top} \mathbf{\Sigma}^{-1}(\mathbf{w}) \mathbf{x} + \log |\mathbf{\Sigma}(\mathbf{w})|.$$
 (2)

where $\Sigma(\mathbf{w}) = \Phi \operatorname{diag}[\mathbf{w}] \Phi^{\top} + \gamma \mathbf{I}$. Computing the stationary points by finding $\frac{\partial \mathcal{L}}{\partial w_j}$ for each $w_j \in \mathbf{w}$, we obtain:

$$\frac{\partial \mathcal{L}(\mathbf{w})}{\partial w_j} = -\left(\boldsymbol{\phi}_j^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{w}) \mathbf{x}\right)^2 + \boldsymbol{\phi}_j^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{w}) \boldsymbol{\phi}_j = 0$$
(3)

$$\implies (\phi_i^{\top} \mathbf{\Sigma}^{-1}(\mathbf{w}) \mathbf{x})^2 = \phi_i^{\top} \mathbf{\Sigma}^{-1}(\mathbf{w}) \phi_i. \quad (4)$$

This stationarity condition balances the "weighted prediction" for the jth coordinate against its corresponding diagonal element in $\Sigma(\mathbf{w})^{-1}$. It is to be noted that (4) corresponds to (37), and (2) corresponds to (27) in the manuscript. Thereafter we use Lemma 1 in Appendix (A.2) to show by contradiction, that when Φ satisfies the RIP condition, these coupled equations admit no spurious local minima: every minimum of the loss corresponds to a global minimum.

Lemma 1 in Appendix (A.2) stated as follows:

Lemma 1.2. Suppose there exist two distinct vectors $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$, both satisfying the stationarity conditions over \mathbf{x} :

$$\left(\boldsymbol{\phi}_{j}^{\top}\boldsymbol{\Sigma}(\mathbf{w}^{(1)})^{-1}\mathbf{x}\right)^{2} = \boldsymbol{\phi}_{j}^{\top}\boldsymbol{\Sigma}(\mathbf{w}^{(1)})^{-1}\boldsymbol{\phi}_{j}, \tag{5}$$

$$\left(\boldsymbol{\phi}_{j}^{\top}\boldsymbol{\Sigma}(\mathbf{w}^{(2)})^{-1}\mathbf{x}\right)^{2} = \boldsymbol{\phi}_{j}^{\top}\boldsymbol{\Sigma}(\mathbf{w}^{(2)})^{-1}\boldsymbol{\phi}_{j}, \quad \forall j. \quad (6)$$

Then $\mathbf{w}^{(1)} = \mathbf{w}^{(2)}$ if $\mathbf{\Phi}$ satisfies the RIP condition with small δ . In other words, there are no "bad" local minima under these stationarity conditions.

Note that (5) and (6) correspond to (38) in the manuscript.

2. Relating RIP δ to No Bad Local Minima

The main requirement for Lemma 1 is the absence of distinct $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$ that satisfy (4). With a perfect optimizer, the full rank assumption ensures the presence of a unique inverse $\Sigma^{-1}(\mathbf{w})$ for unique \mathbf{w} , leading to no bad local minimas. However, practical optimizers such as SGD might identify distinct $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$ as minima for the loss function in (2) that satisfy $\Sigma^{-1}(\mathbf{w}^{(1)}) \approx \Sigma^{-1}(\mathbf{w}^{(2)})$. We use the RIP bound δ to ensure that the difference in inverse terms large enough to be detectable by SGD.

Step 1: RIP expression for a κ -sparse vector

Let $\mathbf{z} = \sum_{i \in S} \alpha_i e_i$, where $S \subseteq \{1, \dots, n\}$ with $|S| = \kappa$, be a κ -sparse vector and let $\mathbf{\Phi} \in \mathbb{R}^{d \times n}$ with columns ϕ_1, \dots, ϕ_n . Then:

$$\mathbf{\Phi}\mathbf{z} = \sum_{i \in S} \alpha_i \boldsymbol{\phi}_i \tag{7}$$

The squared norm of Φz becomes:

$$\|\mathbf{\Phi}\mathbf{z}\|_{2}^{2} = \left\|\sum_{i \in S} \alpha_{i} \boldsymbol{\phi}_{i}\right\|_{2}^{2}$$

$$= \sum_{i \in S} \alpha_{i}^{2} \|\boldsymbol{\phi}_{i}\|_{2}^{2} + \sum_{\substack{i,j \in S \\ i \neq j}} \alpha_{i} \alpha_{j} \langle \boldsymbol{\phi}_{i}, \boldsymbol{\phi}_{j} \rangle \qquad (8)$$

The squared norm of z is:

$$\|\mathbf{z}\|_2^2 = \sum_{i \in S} \alpha_i^2 \tag{9}$$

Step 2: Deviation from isometry and RIP constant

The RIP condition for κ -sparse vectors requires:

$$(1 - \delta) \|\mathbf{z}\|_{2}^{2} \le \|\mathbf{\Phi}\mathbf{z}\|_{2}^{2} \le (1 + \delta) \|\mathbf{z}\|_{2}^{2}$$
 (10)

Subtracting $\|\mathbf{z}\|_2^2$, we obtain the deviation:

$$\|\mathbf{\Phi}\mathbf{z}\|_{2}^{2} - \|\mathbf{z}\|_{2}^{2} = \sum_{i \in S} \alpha_{i}^{2}(\|\boldsymbol{\phi}_{i}\|_{2}^{2} - 1) + \sum_{\substack{i,j \in S \\ i \neq j}} \alpha_{i}\alpha_{j}\langle\boldsymbol{\phi}_{i},\boldsymbol{\phi}_{j}\rangle$$
(11)

Thus, the RIP constant δ is defined as the worst-case deviation over all κ -sparse unit-norm vectors \mathbf{z} :

$$\delta = \max_{\substack{S \subseteq \{1, \dots, n\} \\ |S| = \kappa \\ \sum_{i \in S} \alpha_i^2 = 1}} \left| \sum_{i \in S} \alpha_i^2 (\|\boldsymbol{\phi}_i\|_2^2 - 1) + \sum_{\substack{i, j \in S \\ i \neq j}} \alpha_i \alpha_j \langle \boldsymbol{\phi}_i, \boldsymbol{\phi}_j \rangle \right|$$
(12)

Step 3: Relationship between δ and SGD

For a κ -sparse z, the RIP bound δ can be expressed as a weighted sum of activated column norms of Φ and cross correlations between them. However, the presence of aligned columns leads to large correlations increasing δ value.

Assume a case with $\mathbf{w}^{(1)} \neq \mathbf{w}^{(2)}$ where both vectors satisfy (5) and (6) respectively. Define the *active set* $\mathcal{S}_m = \{j \mid w_j^{(m)} > 0\}$ for m = 1, 2. Note that each $\mathbf{w}^{(m)}$ is strictly positive in its active coordinates, and hence corresponds to selecting a certain subset of columns from Φ . Our goal is to show this situation cannot arise if Φ is well-conditioned.

Without loss of generality, pick an index $j \in \mathcal{S}_1$ but $j \notin \mathcal{S}_2$. Thus, $\mathbf{w}^{(1)}$ "turns on" column ϕ_j while $\mathbf{w}^{(2)}$ has $w_j^{(2)} = 0$. If ϕ_j is co-linear with other columns it will lead to a large δ . Furthermore, it also means a small difference in $\Sigma^{-1}(\mathbf{w}^{(1)})$ and $\Sigma^{-1}(\mathbf{w}^{(2)})$ as $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$ differ along the indices of the aligned columns having large correlations. It is due to the common large correlation term with ϕ_j both in $\Sigma^{-1}(\mathbf{w}^{(1)})$ and $\Sigma^{-1}(\mathbf{w}^{(2)})$, they will have a small difference.

Therefore small δ suggests small correlation and therefore a larger separation between $\Sigma^{-1}(\mathbf{w}^{(1)})$ and $\Sigma^{-1}(\mathbf{w}^{(2)})$. This indicates that a small δ is essential to find the true local/global optimum.

References

Candes, E. J. and Tao, T. Decoding by linear programming. *IEEE transactions on information theory*, 51(12):4203–4215, 2005.