Max-Cut Project

Rydberg Lab Meeting Update - 07/29/2020

Recap: Max-Cut Problem & Antiferromagnetic Ising Model

Max-Cut Problem

- Undirected graph: G = (V, E)
- Cut:
 - Partition: $(S \subseteq V, \overline{S} = V \backslash S)$
 - Set of edges with one vertex in S and one vertex in \overline{S} : $E(S, \overline{S})$
- Objective: Find cut that maximizes the total weight of edges in the cut: $\sum_{(ij)\in E(S,\overline{S})} w_{ij}d_{ij}$
- NP-hard

Antiferromagnetic Ising Model

- Atoms i and interaction strengths $-J_{ij}$, J_{ij} < 0
- Anti-alignment:

- spins σ_i^z : (+1, -1)
- Interactions between anti-aligned spins: $\sigma_i^z \neq \sigma_j^z$
- Ground state: configuration that minimizes $H(\sigma) = -\sum_{ij} J_{ij} \sigma_i \sigma_j = -\sum_{ij} J_{ij} + 2\sum_{ij:\sigma_i \neq \sigma_j} J_{ij}$
- Mother nature!

System Configurations

- System structure
 - Square lattice
 - Triangular lattice
 - Free particles
- System size

- Interaction shape & range (radius, R)
 - Step function $1 \cdot (d \le R)$

Power decay function $\frac{1}{1 + \left(\frac{d}{R}\right)^6}$

• Random R[0,1]

Classical Algorithms

Simulated Annealing

- Initialize a random partition (randomly assign each vertex to either set)
- Set initial temperature $T := T_0$
- Repeat t_{eq} iterations for equilibration ($t_{eq} = 1$ in continuous cooling):
 - Pick a random vertex v
 - ΔE = change of energy implied by switching the assignment of v: p(v)
 - If $R[0,1] < e^{-\Delta E/T}$ (using Metropolis-Hastings Algorithm):
 - p(v) := -p(v)
- Decrease temperature $T := r \cdot T$ (geometric cooling)
- Repeat steps 3 & 4 until convergence

Algorithm Parameters:

- Initial temperature T_0
- Cooling rate r
- Equilibration duration t_{eq}

Sample Case: Square Lattice, Power Decay Function with

$$R = 1, t_{eq} = 1000$$

- Simulated Annealing (approximate)
 - Evaluation metric: reaching the minimum energy possible in the fastest number of steps averaged over 50 runs
- Compare with: Brute Force Solution (exact)
 - Boltzmann distribution plotted using all states explored by brute force algorithm:

$$\frac{\sum_{i} E_{i} e^{-E_{i}/T}}{\sum_{i} e^{-E_{i}/T}}$$

Algorithm Parameter Optimization

Results: Scaling with Radius, System Size

Current Focus:

Random interactions, Free particles, $t_{eq} = 1$ (continuous cooling)

- Goal: observe exponential scaling with system size
- Simulated Annealing (approximate)
 - New evaluation metric: minimize $M(T) \cdot T$
- Compare with: Brute Force Solution (exact)
 - Boltzmann distribution plotted using all states explored by brute force algorithm:

$$\frac{\sum_{i} E_{i} e^{-E_{i}/T}}{\sum_{i} e^{-E_{i}/T}}$$

• In each run, P(T) of finding the ground state estimated from N runs, where T is the # of steps

•
$$P_* = 1 - \varepsilon = 1 - \frac{1}{e}$$

- Optimization parameters: M runs each for a time T
- Probability of not finding ground state: $(1 P(T))^M = \varepsilon$

$$M(T) = \begin{cases} \frac{\log \varepsilon}{\log(1 - P(T))} = \frac{\log(1 - P_*)}{\log(1 - P(T))}, & \text{if } P(T) < P_* \\ 1, & \text{if } P(T) \ge P_* \end{cases}$$

Total # of steps:

$$M(T) \cdot T \propto \begin{cases} \frac{T}{\log(1 - P(T))}, & \text{if } P(T) < P_* \\ T, & \text{if } P(T) \ge P_* \end{cases}$$

N = 15, random, radius = NA

Next Steps

- Random interactions between free particles
 - Scale out to larger systems to hopefully observe exponential growth in complexity
 - Evaluation metric for larger systems (where brute force solutions are not feasible): entropy $(E[-\log P])$ across different runs
- Distance-dependent interactions between particles organized as square/isometric lattice
 - We'll see once we have the exponential scaling in the random case!

Quantum Algorithms

Benchmarking: QuSpin vs. NumPy/SciPy/TamLib

Metric: Runtime of imaginary time evolution, which finds the ground states of a Hamiltonian by making the substitution $t \to i\tau$ in the corresponding unitary time evolution $|\psi(\tau)\rangle = e^{i\hat{H}t} |\psi(0)\rangle = e^{-\hat{H}\tau} |\psi(0)\rangle = \sum_i e^{-\hat{E}_i\tau} |\psi_i(0)\rangle$.

At $\tau \to \infty$, all terms except for the state with minimum energy decay, resulting in the ground state.

QuSpin (using pre-defined functions in the package)

Numpy/SciPy (using Tamra's libraries + my code)

Benchmarking: QuSpin vs. NumPy/SciPy/TamLib

Runtimes over 10 total runs each:

QuSpin	2 x 2	3 x 3
Time Evolution	0.0726437568664551	0.142022371292114
Hamiltonian Expectation	0.00423908233642578	0.00609707832336426
NumPy/ SciPy/TamLib		
Time Evolution	0.457217693328857	56.3067576885223
Hamiltonian Expectation	0.0144739151000977	0.332910060882568

QuSpin vs. TamLib, Imaginary Time Evolution, L x L square lattice, step_fn, radius=1, 10 runs

Optimization Method: Variational Quantum Eigensolver (VQE)

VQE
$$\left(\text{ansatz} = \left|\psi_f(\overrightarrow{\theta})\right\rangle, \text{operator} = \hat{H}\right)$$
:

- == Classical optimization ==
- Initialize random parameters: $\overrightarrow{\theta} := \overrightarrow{\theta_0}$
- Loop until convergence:
 - == Quantum sub-routine ===
 - Prepare ansatz: $\left|\psi_{f}(\overrightarrow{\theta})\right\rangle$
 - Evaluate objective (expectation value of operator): $\left\langle \psi_{\!f}(\overrightarrow{\theta}) \left| \hat{H} \right| \psi_{\!f}(\overrightarrow{\theta}) \right\rangle$
 - Update parameter $\overrightarrow{\theta} := \text{optimizationStep}(\overrightarrow{\theta})$
 - Return parameters that minimize objective: $\overrightarrow{\theta} = \min \left(\left\langle \psi_f(\overrightarrow{\theta}) \middle| \hat{H} \middle| \psi_f(\overrightarrow{\theta}) \right\rangle \right)$

Quantum Approximate Optimization Algorithm (QAOA)

Ising Interaction Hamiltonian: $\hat{H}(\sigma) = -\sum_{ij} J_{ij} \sigma_i^z \sigma_j^z$, Reference Hamiltonian: $\hat{B}(\sigma) = -\sum_i \sigma_i^x$

Random initial state, e.g. ground state of $\hat{B}(\sigma)$: $\left|\psi_{0}\right\rangle = \left|+\right\rangle_{N-1} \otimes \ldots \otimes \left|+\right\rangle_{0}$

Unitary time evolution: $\hat{U}(\overrightarrow{\beta}, \overrightarrow{\gamma}) = e^{-i\hat{B}\beta_{(\alpha-1)}}e^{-i\hat{H}\gamma_{(\alpha-1)}}\dots e^{-i\hat{B}\beta_0}e^{-i\hat{H}\gamma_0}$

Final state: $\left|\psi_{f}(\overrightarrow{\beta}, \overrightarrow{\gamma})\right\rangle = \hat{U}(\overrightarrow{\beta}, \overrightarrow{\gamma}) \left|\psi_{0}\right\rangle$

Parameters: α , $\overrightarrow{\beta}$, $\overrightarrow{\gamma}$

Objective to minimize: $\left\langle \psi_{f}(\overrightarrow{\beta}, \overrightarrow{\gamma}) \left| \hat{H} \right| \psi_{f}(\overrightarrow{\beta}, \overrightarrow{\gamma}) \right\rangle$

Optimization:
$$\overrightarrow{\beta}, \overrightarrow{\gamma} = \text{VQE}\left(\text{ansatz} = \left|\psi_f(\overrightarrow{\beta}, \overrightarrow{\gamma})\right\rangle, \text{operator} = \widehat{H}\right)$$

Adiabatic Quantum Evolution (AQE)

Ising Interaction Hamiltonian: $\hat{H}(\sigma) = -\sum_{ij} J_{ij} \sigma_i^z \sigma_j^z$, Reference Hamiltonian: $\hat{B}(\sigma) = -\sum_i \sigma_i^x$

Evolution Hamiltonian: $\hat{H}(\tau) = (1 - \tau)\hat{B} + \tau\hat{H}, \tau \in [0,1]$

Initial state = ground state of $\hat{B}(\sigma)$: $\left|\psi_{0}\right\rangle = \left|+\right\rangle_{N-1} \otimes \ldots \otimes \left|+\right\rangle_{0}$

Final state: $\left|\psi_{f}\right\rangle = \left|\psi(\tau=1)\right\rangle$

Objective to minimize: $\left\langle \psi_{f}\left|\hat{H}\right|\left|\psi_{f}\right\rangle \right|$

Next Steps

- Optimize circuit depth for QAOA (given optimal angles by VQE optimization)
 - Evaluation metric: ground state fidelity (similar to corresponding metric in classical)
 - Evaluation parameters:
 - Circuit depth (number of pulse sequences, α)
 - Integrated interaction strength x time $(\sum_{i=0}^{\alpha-1} \beta_i)$
- Optimize circuit depth for VQE optimization
 - Evaluation parameter: circuit depth (number of pulse sequences, α)
 - Bound / add regularization term penalizing integrated interaction strength x time ($\sum_{i=0}^{\infty} \beta_i$) during optimization
- Explore DTWA for simulating larger quantum systems
- Policy Gradient Based Quantum Approximate Optimization Algorithm (May 2020) ?

Bibliography

- https://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec02.pdf
- http://www.mit.edu/~ilkery/papers/
 MetropolisHastingsSampling.pdf
- https://mathworld.wolfram.com/SimulatedAnnealing.html
- https://arxiv.org/pdf/1505.03068.pdf
- https://doi.org/10.4236/am.2017.88090
- https://iopscience.iop.org/article/ 10.1088/0305-4470/31/41/011/meta
- https://grove-docs.readthedocs.io/en/latest/vqe.html
- https://grove-docs.readthedocs.io/en/latest/qaoa.html
- https://arxiv.org/pdf/1304.3061.pdf

- https://iopscience.iop.org/article/
 10.1088/1367-2630/18/2/023023/ampdf
- https://scipost.org/SciPostPhys.2.1.003/pdf
- https://scipost.org/SciPostPhys.7.2.020/pdf
- http://large.stanford.edu/courses/2008/ph372/behroozi2/
- http://weinbe58.github.io/QuSpin/index.html
- https://arxiv.org/pdf/1508.07314.pdf
- https://paramekanti.weebly.com/uploads/ 1/1/2/8/11287579/atan_paper.pdf
- http://users.ox.ac.uk/~phys1116/msm2.pdf
- https://www.math.arizona.edu/~tgk/541/chap1.pdf
- https://arxiv.org/pdf/2002.01068.pdf