Hydrogen Wave Function

Khoruzhii K., Primak E.

21.07.2021

Title

Possible applications:

- optical reflectometry;
- chaos radar;
- random numbers generation;
- \blacksquare signal encryption.

Idea of «quantum microscope»

Geometry of the problem

For z — displacement along the electric field. And r — electron-proton distance.

$$\eta = r - z$$
$$\xi = r + z$$

$$\Psi(\xi, \eta, \varphi) = \frac{1}{\sqrt{2\pi\eta\xi}} \chi_1(\xi) \chi_2(\eta) e^{im\varphi}$$

Preparation of state

Experimental observation

Experimental observation of the transverse nodal structure of four atomic hydrogen Stark states

States (n_1, n_2, m) m — the magnetic quantum number. n_1, n_2 — related to the principal quantum number as

$$n = n_1 + n_2 + |m| + 1$$

Experimental observation

Experimental observation of the transverse nodal structure of four atomic hydrogen Stark states

States (n_1, n_2, m) m — the magnetic quantum number. n_1, n_2 — related to the principal quantum number as $n = n_1 + n_2 + |m| + 1$

Experimental observation

Experimental observation of the transverse nodal structure of four atomic hydrogen Stark states

States (n_1, n_2, m) m — the magnetic quantum number. n_1, n_2 — related to the principal quantum number as

$$n = n_1 + n_2 + |m| + 1$$