Big O Notation - Detailed Notes

Author: Shekh Mostofa Abedin

Key Concepts

Common Big O Notations

1. O(1) - Constant Time

- The algorithm's runtime does not change with the size of the input.
- Example: Accessing a specific element in an array by index.

2. O(N) - Linear Time

- The runtime grows linearly with the size of the input.
- Example: Iterating through an array of size N.

3. O(N2) - Quadratic Time

- The runtime is proportional to the square of the input size. Often occurs with algorithms involving nested loops.
- o Example: A double loop over an array.

4. O(log N) - Logarithmic Time

- The runtime grows logarithmically as the input size increases. Common in algorithms that divide the problem in half at each step (e.g., binary search).
- Example: Binary search in a sorted array.

5. O(N log N) - Log-Linear Time

- The runtime is slightly worse than linear but better than quadratic. Common in efficient sorting algorithms.
- Example: Merge sort and quicksort.

6. O(2^N) - Exponential Time

- The runtime doubles with each additional element in the input. Extremely inefficient for large inputs.
- Example: Recursive algorithms that solve subproblems multiple times.

7. O(N!) - Factorial Time

- The runtime is proportional to the factorial of the input size. Very poor performance, typically seen in algorithms that generate all possible permutations.
- o Example: Brute-force solutions to the traveling salesman problem.

How to Calculate Big O Notation

1. Identify the Input Size (N):

• Determine what the input is and define its size as N. The input size could be the length of an array, the number of elements in a list, or the number of nodes in a tree.

2. Analyze the Loops:

- **Single Loops:** If an algorithm has a loop that iterates N times, the time complexity is typically O(N).
- **Nested Loops:** If there are nested loops, multiply the complexities of the loops. For example, a loop inside another loop that both run N times results in $O(N^2)$.
- **Logarithmic Loops:** If the loop decreases the problem size by half each time (e.g., i = i * 2), the time complexity is O(log N).

3. Analyze Conditional Statements:

 Conditional statements like if-else do not usually affect the time complexity unless the conditions contain loops or recursive calls. In such cases, analyze the code within those conditions.

4. Focus on the Most Significant Term:

• When combining terms, keep only the most significant one (i.e., the one that grows the fastest). For example, if an algorithm has steps that take O(N) and $O(N^2)$ time, the overall time complexity is $O(N^2)$.

5. **Drop Constants and Lower-Order Terms:**

• Big O notation describes the upper bound, so drop any constants or less significant terms. For instance, O(3N) simplifies to O(N), and O(N 2 + N) simplifies to O(N 2).

Examples of Big O Calculation

1. Example 1: Single Loop

```
def example_function(arr):
    for i in range(len(arr)):
        print(arr[i])
```

- **Analysis**: The loop runs N times (where N is the size of the array).
- **Big O Notation**: O(N).

2. Example 2: Nested Loop

```
def example_function(arr):
    for i in range(len(arr)):
        for j in range(len(arr)):
            print(arr[i], arr[j])
```

- **Analysis**: The outer loop runs N times, and for each iteration of the outer loop, the inner loop also runs N times.
- **Big O Notation**: $O(N) * O(N) = O(N^2)$.

3. Example 3: Logarithmic Loop

```
def example_function(n):
    while n > 1:
        n = n // 2
```

- **Analysis**: The loop decreases **n** by half each time, resulting in a logarithmic number of iterations.
- **Big O Notation**: O(log N).

4. Example 4: Multiple Terms

```
def example_function(arr):
    for i in range(len(arr)): # O(N)
        print(arr[i])

    for j in range(len(arr)): # O(N)
        for k in range(len(arr)): # O(N)
            print(arr[j], arr[k])
```

- **Analysis**: The first loop runs in O(N), and the nested loop runs in $O(N^2)$.
- **Big O Notation**: $O(N) + O(N^2)$ simplifies to $O(N^2)$ since the quadratic term dominates.

Big O Notation Comparison

• Hierarchy of Common Complexities:

```
\circ O(1) < O(log N) < O(N) < O(N log N) < O(N<sup>2</sup>) < O(2^N) < O(N!)
```

Common Algorithms and their Big O Notations

1. Bubble Sort - O(n^2)

```
def bubble_sort(arr):
    n = len(arr)
    # O(n^2) - Overall Big O
    for i in range(n):  # O(n) - Outer loop runs n times.
        for j in range(0, n-i-1):  # O(n) - Inner loop runs (n-i-1) times,
which is approximately n times.
        if arr[j] > arr[j+1]:  # O(1) - Comparison is a constant time
operation.
    arr[j], arr[j+1] = arr[j+1], arr[j] # O(1) - Swapping elements is
```

```
a constant time operation.

return arr
```

2. Merge Sort - O(n log n)

```
def merge_sort(arr):
    # O(n log n) - Overall Big O
    if len(arr) > 1:
        mid = len(arr) // 2
        L = arr[:mid]
       R = arr[mid:]
       merge_sort(L) # O(log n) - Recursive call on the left half.
       merge_sort(R) # O(log n) - Recursive call on the right half.
        i = j = k = 0
       while i < len(L) and j < len(R): # O(n) - Merging the sorted halves.
           if L[i] < R[j]:
                                        # O(1) - Comparison is a constant time
operation.
                arr[k] = L[i]
                i += 1
            else:
                arr[k] = R[j]
                j += 1
            k += 1
       while i < len(L):
                                        # O(n) - Merging remaining elements.
           arr[k] = L[i]
           i += 1
            k += 1
       while j < len(R):
                                # O(n) - Merging remaining elements.
           arr[k] = R[j]
            j += 1
            k += 1
```

Quick Sort - O(n log n) on average, O(n^2) in the worst case

```
def quick_sort(arr):
    # O(n log n) on average, O(n^2) in the worst case - Overall Big O
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]</pre>
```

```
right = [x for x in arr if x > pivot]
return quick_sort(left) + middle + quick_sort(right)
```

Linear Search - O(n)

```
def linear_search(arr, x):
    # O(n) - Overall Big O
    for i in range(len(arr)): # O(n) - Looping through n elements in the
array.
    if arr[i] == x: # O(1) - Comparison is a constant time
operation.
    return i
    return -1
```

Binary Search - O(log n)

```
def binary_search(arr, x):
   # O(log n) - Overall Big O
   left, right = 0, len(arr) - 1
   while left <= right:</pre>
                                     # O(log n) - The loop runs log(n) times,
halving the search space each time.
       mid = (left + right) // 2
                                    # O(1) - Calculating the midpoint is a
constant time operation.
       if arr[mid] == x:
                                    # O(1) - Comparison is a constant time
operation.
           return mid
       elif arr[mid] < x:
                                    # O(1) - Comparison and reassignment are
constant time operations.
          left = mid + 1
                                    # O(1) - Reassignment is a constant time
operation.
       else:
           right = mid - 1 # O(1) - Reassignment is a constant time
operation.
   return -1
```