

FIG. 1

FIG. 6

Pw = Pw(min)+α	****	****	*****
Pw = Pw(min)	*****	****	****
	R1	R2	R3

FIG. 7

FIG. 8

FIG. 9

Inventor(s): Tatsuhiro Kabayashi et al. Express Mail No. EV529781908US

9/9

- 5 2 ·····SPINDLE MOTOR
- 5 3HEAD
- 5 4 ······CONTROLLER
- 5 5LASER DRIVING CIRCUIT
- 5 6LENS DRIVING CIRCUIT
- 5 7 ······FOCUS SERVO CIRCUIT
- 5 8TRACKING SERVO CIRCUIT
- 5 9LASER CONTROL CIRCUIT
- S 1 RECORDING TEST SIGNAL
- S 2 ······REPRODUCING TEST SIGNAL RECORDED ON SECOND TRACK
- S 3 MEASURING PREDETERMINED SIGNAL CHARACTERISTICS
- S 4 ·····SIGNAL CHARACTERISTICS SATISFIES REFERENCE CONDITIONS ?
- S 5CHANGING RECORDING POWER PWAND RECORDING TEST SIGNAL
- S 6 ······REPRODUCING TEST SIGNALS RECORDED ON SECOND TRACK AND THIRD TRACK
- S 7 ·····MEASURING AMPLITUDE OF SIGNAL
- S 8 ······CALCULATING FIRST SIGNAL AMPLITUDE REDUCTION RATIO (R1)
- S 9R1 IS EQUAL TO OR LOWER THAN RC?
- S 1 0LOWERING RECORDING POWER PWAND RECORDING TEST SIGNAL
- S 1 1DETERMINING OPTIMUM RECORDING POWER PW
- S 2 3 ······RECORDING TEST SIGNAL
- S 2 4 ······REPRODUCING TEST SIGNALS RECORDED ON SECOND TRACK AND THIRD TRACK
- S 2 5 MEASURING JITTER AND AMPLITUDE OF SIGNAL
- S 2 7 ······RECORDING TEST SIGNAL
- S 2 9 ······REPRODUCING TEST SIGNAL RECORDED ON SECOND TRACK
- S 3 0 MEASURING JITTER AND AMPLITUDE OF SIGNAL
- S 3 3PRODUCING TABLE T
- \$ 3 4 ·····PRODUCING FIRST GRAPH
- S 3 5PRODUCING SECOND GRAPH
- S 3 6DETERMINING RC
- S 4 1 ······K ≈ 0
- S 4 3 ······RECORDING TEST SIGNAL
- S 4 4 ······REPRODUCING TEST SIGNALS RECORDED ON SECOND TRACK AND THIRD TRACK
- S 4 5 MEASURING JITTER OF SIGNAL
- $S46\cdotsK=K+1$
- S 4 7 ·····RECORDING TEST SIGNAL
- S 4 8 REPRODUCING TEST SIGNAL RECORDED ON SECOND TRACK
- S 4 9 ·····MEASURING JITTER OF SIGNAL
- $S 5 1 \cdots PW = PW + B$