* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

(57) [Claim(s)]

[Claim 1] The stator manufacturing installation which is characterized by providing the following and which twists two or more electric conductors (3, 31, 32) which begin to be prolonged in accordance with shaft orientations from the end face of an annular stator core (1) The edge (31d, 31e, 32d, 32e) of the aforementioned electric conductor (3, 31, 32) is held, and it is the plastic surgery section (54) which can move relatively [shaft orientations / a hoop direction and] about an aforementioned stator-core (1) and same axle top. The hoop-direction mechanical component which drives the aforementioned plastic surgery section (54) to a hoop direction (541a-544a) The shaft-orientations mechanical component which drives the aforementioned plastic surgery section (54) to shaft orientations (54a, 54b) [Claim 2] The aforementioned electric conductor (3, 31, 32) is a stator manufacturing installation according to claim 1 characterized by forming two or more layers in the direction of a path in the aforementioned slot (2), arranging the aforementioned plastic surgery section (54) on the same axle, and having relatively two or more twists fixture (541-544) which can rotate.

[Claim 3] The aforementioned twist fixture (541-544) is a stator manufacturing installation according to claim 2 characterized by the ability to rotate in any direction of a hoop direction.

[Claim 4] The stator manufacturing installation according to claim 2 or 3 characterized by providing the following In two or more aforementioned twist fixtures (541-544) the edge (31d and 31e -- 32d) of the aforementioned electric conductor (3, 31, 32) The aforementioned attaching part which the attaching part (541b, 542b, 543b, 544b) which 32e is inserted and holds the aforementioned electric conductor (3, 31, 32) is drilled, and was drilled by the twist fixture (541-544) of the above 1 (541b, 542b, 543b, 544b) The septum which prevents a free passage with the aforementioned attaching part (541b, 542b, 543b, 544b) formed in other twist fixtures (541-544) which adjoin in the twist fixture (541-544) and the direction of a path of the above 1 (541c-544c, 542d, 543d)

[Claim 5] Two or more aforementioned twist fixtures (541-544) adjoin in the direction of a path, and contain the aforementioned twist fixture (541-544) of a ****** couple. The aforementioned septum (541c-544c) located between the aforementioned attaching parts (541b, 542b, 543b, 544b) of the aforementioned twist fixture (541-544) of these couples The stator manufacturing installation according to claim 4 characterized by having thickness smaller than the aforementioned septum (542d, 543d) located between the aforementioned attaching parts (541b, 542b, 543b, 544b) of the two aforementioned twist fixtures (541-544) which do not make a pair although it adjoins in the direction of a path.

[Claim 6] Two or more aforementioned twist fixtures (541-544) are stator manufacturing installations according to claim 5 characterized by having two or more pairs of aforementioned twist fixtures (541-544) which adjoin in the direction of a path.

[Claim 7] The stator manufacturing installation of any one publication of a claim 1 to the claim 6 characterized by having further the controller (55) which controls operation with the aforementioned hoop-direction mechanical component (541a-544a) and the aforementioned shaft-orientations mechanical component (54a, 54b).

[Claim 8] It is the stator manufacturing installation of any one publication of a claim 2 to the claim 6 which is further equipped with the controller (55) which controls operation with the aforementioned hoop-direction mechanical component (541a-544a) and the aforementioned shaft-orientations mechanical component (54a, 54b), and is characterized by the aforementioned controller (55) rotating relatively the aforementioned twist fixture (541-544) which adjoins in the direction of a path.

[Claim 9] To the annular stator core (1) in which many slots (2) were prepared together with the hoop direction The segmented electric conductor (3, 31, 32) is arranged so that two or more layers may be formed in the direction of a path in the aforementioned slot (2). To the bay of the aforementioned electric conductor (3, 31, 32) which has come out of the aforementioned slot (2) by the side of one edge of the aforementioned stator core (1) The edge of the

aforementioned electric conductor (3, 31, 32) is held preparing the aforementioned electric conductor (3, 31, 32) and crevice which adjoin in the direction of a path. The stator manufacture method characterized by moving relatively [shaft orientations / a hoop direction and], twisting to the aforementioned stator core (1), and joining and flowing through the edges (31d, 31e, 32d, 32e) of the aforementioned electric conductor (3, 31, 32).

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] Especially this invention is applied to the twist equipment of the stator coil of the AC generator for vehicles carried in a passenger car, a truck, etc. about a stator manufacturing installation. [0002]

[Description of the Prior Art] In order to respond to the request of the high increase in power of the AC generator for vehicles conventionally, the electric conductor with which the shape of U character was segmented by two or more slots prepared in the stator core is inserted from the same, and what forms a stator winding is proposed by joining them. With this composition, since the electric conductor with which the shape of U character was segmented can be put in order regularly, the electric conductor within a slot can be formed into a high space factor, and a high increase in power becomes possible.

[0003] In order to form a stator coil from the electric conductor with which plurality was segmented, it is necessary to join the edge of an electric conductor to the edge of other electric conductors. In the international public presentation/ [92nd] No. 06527 pamphlet (1992), two or more electric conductors inserted in the stator core are joined, and the process which forms a stator coil is shown. With the above-mentioned conventional technology, every two electric conductors are inserted in the inner circumference [within one slot 2], and periphery side like drawing 9, respectively. And as shown in drawing 10, each bay of the electric conductor 131 by the side of the periphery which came out of the end of the slot 2 of a stator core 1, and the electric conductor 132 by the side of inner circumference is mutually bent by the hoop direction by the half-pole pitch with the twist fixtures 154a and 154b at a retrose. And the stator coil is formed by joining the edges of the electric conductor which adjoins in the direction of a path in the state where it was bent by the half-pole pitch.

[0004]

[Problem(s) to be Solved by the Invention] however, with the above-mentioned conventional technology, since the twist fixtures 154a and 154b are performing only movement of a hoop direction, electric conductors 131 and 132 escape from them with rotation from electric conductor hold section 154c of the twist fixtures 154a and 154b In order that electric conductors 131 and 132 may fall out with the twist, bending R of the entrance portion of electric conductor hold section 154c of electric conductors 131 and 132 becomes large. If bending R becomes large, the overall length of a stator coil will become long and coil resistance will become large. Moreover, in case electric conductors 131 and 132 twist and it escapes from electric conductor hold section 154c of Fixtures 154a and 154b, in order to attach a blemish to electric conductors 131 and 132, a blemish arises also into portions other than the electric conductor edge used as a joint.

[0005] Moreover, the twist equipment of an armature coil is shown by JP,60-241748,A. With the twist equipment of this armature coil, since it is possible to move not only to a hoop direction but to shaft orientations, the twist fixture which twists an electric conductor can prevent that an electric conductor falls out and bending R of an electric conductor becomes large with rotation of a twist fixture.

[0006] In case a coil is fabricated, in order to prevent that the electric conductors by the side of inner circumference and a periphery contact and short-circuit except a joint, it is necessary to prepare a crevice between electric conductors. In above-mentioned JP,60-241748,A, in order to form the crevice between electric conductors, a salient is inserted between electric conductors, between internal and external electric conductors is extended, and the crevice is formed. And after forming a crevice, an electric conductor edge is twisted, it inserts in a fixture, and the twist is added to the electric conductor. Therefore, although the short circuit between internal and external electric conductors can be prevented, a blemish occurs in the latus range of the contact section with a salient at an electric conductor. [0007] Moreover, in above-mentioned JP,60-241748,A, the twist orbit of a hoop direction and shaft orientations is

determined by the cam fixed to the twist fixture. Therefore, in order to change a twist orbit, the whole twist fixture needed to be exchanged. this invention is made in view of the above-mentioned problem, and it aims at offering the stator manufacturing installation and the manufacture method of an overall length that a short stator coil can be manufactured.

[0008] Moreover, this invention aims at offering the stator manufacturing installation which twists an electric conductor, without giving a blemish other than the joint of an electric conductor. Moreover, this invention aims at offering the stator manufacturing installation which can operate the nose of cam of an electric conductor orthopedically in the configuration of having been suitable for joining them. Moreover, this invention aims at change of the orbit of the twist of the electric conductor by the twist fixture offering an easy stator manufacturing installation.

[Means for Solving the Problem] In order to attain the above-mentioned purpose, in invention according to claim 1 In the stator manufacturing installation which twists two or more electric conductors (3, 31, 32) which begin to be prolonged in accordance with shaft orientations from the end face of an annular stator core (1) The edge (31d, 31e, 32d, 32e) of an electric conductor (3, 31, 32) is held. a stator-core (1) and same axle top relatively [shaft orientations / a hoop direction and] The plastic surgery section which can move (54), It is characterized by having the hoop-direction mechanical component (541a-544a) which drives the plastic surgery section (54) to a hoop direction, and the shaft-orientations mechanical component (54a, 54b) which drives the plastic surgery section (54) to shaft orientations. [0010] According to this, the plastic surgery section (54) is relatively [shaft orientations / not only a hoop direction but] movable to a stator core (1). That is, an electric conductor (3, 31, 32) can be twisted, preventing that an electric conductor (3, 31, 32) falls out from the portion into which the plastic surgery section (54) holds the edge (31d, 31e, 32d, 32e) of an electric conductor (3, 31, 32) to a stator core (1) since [three dimensions] it can move-like. Therefore, since bending R of an electric conductor (3, 31, 32) can be made small and the overall length of a stator coil can be shortened, coil resistance can be made small.

[0011] Moreover, since an electric conductor (3, 31, 32) does not escape from the plastic surgery section (54), it can prevent that a blemish sticks in addition to the edge (31d, 31e, 32d, 32e) of an electric conductor (3, 31, 32). In addition, since it is joined to the edge (31d, 31e, 32d, 32e) of other electric conductors (3, 31, 32) after a twist, the influence on the stator coil by the blemish does not have the edge (31d, 31e, 32d, 32e) of an electric conductor (3, 31, 32).

[0012] Furthermore, the plastic surgery section (54) is driven by the hoop-direction mechanical component (541a-544a) to a hoop direction, and is driven by the shaft-orientations mechanical component (54a, 54b) to shaft orientations. That is, since the drive to a hoop direction and shaft orientations is performed by the independent drive, respectively, in order to change the orbit of the twist of the electric conductor (3, 31, 32) by the plastic surgery section (54), it becomes possible by change of either a hoop-direction mechanical component (541a-544a) or a shaft-orientations mechanical component (54a, 54b).

[0013] In invention according to claim 2, two or more layers are formed in the direction of a path in a slot (2), the plastic surgery section (54) is arranged on the same axle, and the electric conductor (3, 31, 32) is characterized by having relatively two or more twists fixture (541-544) which can rotate. Thereby, the optimal twist can be added to two or more each class from which a coil diameter is different.

[0014] In invention according to claim 3, it is characterized by the ability to rotate a twist fixture (541-544) in any direction of a hoop direction. Since a twist fixture (541-544) can rotate in any direction of a hoop direction, after adding the twist more than a predetermined angle to an electric conductor (3, 31, 32), operation of returning to a predetermined angle can be used as a twist fixture (541-544). Deformation by the springback of a coil can be prevented by carrying out such an operation.

[0015] In invention according to claim 4, to two or more twist fixtures (541-544) the attaching part (541b --) which the edge (31d, 31e, 32d, 32e) of an electric conductor (3, 31, 32) is inserted, and holds an electric conductor (3, 31, 32) The attaching part which 542b, 543b, and 544b are drilled, and was drilled by the twist fixture (541-544) of 1 (541b, 542b, 543b, 544b), It is characterized by having the septum (541c-544c, 542d, 543d) which prevents a free passage with the attaching part (541b, 542b, 543b, 544b) formed in other twist fixtures (541-544) which adjoin in the twist fixture (541-544) and the direction of a path of 1.

[0016] In invention according to claim 5, moreover, two or more twist fixtures (541-544) Adjoin in the direction of a path and the twist fixture (541-544) of a ****** couple is included. The septum (541c-544c) located between the attaching parts (541b, 542b, 543b, 544b) of the twist fixture (541-544) of these couples the attaching part (541b --) of two twist fixtures (541-544) which does not make a pair although it adjoins in the direction of a path It is characterized by having thickness smaller than the septum (542d, 543d) located between 542b, 543b, and 544b. in invention according to claim 6 Two or more twist fixtures (541-544) are characterized by having two or more pairs of twist

fixtures (541-544) which adjoin in the direction of a path.

[0017] The edge (31d, 31e, 32d, 32e) of the electric conductor (3, 31, 32) which came out of the slot (2) is held by the attaching part (541b, 542b, 543b, 544b) drilled by each twist fixture (541-544). And the septum which prevents the free passage between adjoining attaching parts (541b, 542b, 543b, 544b) is prepared in each twist fixture (541-544). The thickness of this septum adjoins in the direction of a path of two or more twist fixtures (541-544), and although it adjoins between ***** twist fixtures (541-544), it is made to become smaller than between the twist fixtures (541-544) which do not make a pair. For example, when [to require] the plastic surgery section (54) is formed from the twist fixture (541-544) of four layers and the 1st layer, a two-layer eye and the 3rd layer, and the 4th layer form the pair the attaching part (541b --) drilled by the twist fixture (541 542) of a two-layer eye with the 1st layer from the inner layer side Thickness is small set up rather than the septum between the attaching parts (542b, 543b) in which the septum between the attaching parts (543b, 544b) drilled by the septum between 542b and the twist fixture (543 544) of the 3rd layer and the 4th layer was drilled by the two-layer eye and the twist fixture (542 543) of the 3rd layer. [0018] Since the septum which prevents the free passage of each attaching part (541b, 542b, 543b, 544b) is prepared, a crevice can be made between each electric conductor (3, 31, 32). For this reason, it can prevent that between each electric conductor (3, 31, 32) contacts and connects too hastily. The twist fixture (541 542) of the 1st layer and a twolayer eye, and the twist fixture (543 544) of the 3rd layer and the 4th layer by moreover, the thing made for a hoopdirection retrose to carry out predetermined angle rotation, respectively The crevice between the 1st layer, a two-layer eye, and the electric conductor (3, 31, 32) of the 3rd layer and the 4th layer can be made to approach from the crevice between a two-layer eye and the electric conductor (3, 31, 32) of the 3rd layer. Thereby, it can be made to be able to approach between the electric conductors to join (i.e., between the 1st layer, a two-layer eye, and the electric conductor of the 3rd layer and the 4th layer), and they can make a junction process easy.

[0019] By invention according to claim 7, it is characterized by having further the controller (55) which controls operation with a hoop-direction mechanical component (541a-544a) and a shaft-orientations mechanical component (54a, 54b), and the controller (55) is characterized by rotating relatively the aforementioned twist fixture (541-544) which adjoins in the direction of a path by invention according to claim 8.

[0020] According to this, since the rotation and the amount of rise and fall of a hoop-direction mechanical component (541a-544a) and a shaft-orientations mechanical component (54a, 54b) are controlled by the controller (55), the change of the amount of twists of them is easily attained by changing the control program in a controller (55). Since the rotation of each twist fixtures 541, 542, 543, and 544 can be mutually controlled independently and the amount of rise and fall can be controlled independently with those rotations, suitable twist processing can be added also in various

[0021] In invention according to claim 9, to the annular stator core (1) in which many slots (2) were prepared together with the hoop direction The segmented electric conductor (3, 31, 32) is arranged so that two or more layers may be formed in the direction of a path in the aforementioned slot (2). To the bay of the electric conductor (3, 31, 32) which has come out of the aforementioned slot (2) by the side of one edge of a stator core (1) The edge of an electric conductor (3, 31, 32) is held preparing the electric conductor (3, 31, 32) and crevice which adjoin in the direction of a path. To a stator core (1), it moves relatively [shaft orientations / a hoop direction and], twists, and is characterized by joining and flowing through the edges (31d, 31e, 32d, 32e) of an electric conductor (3, 31, 32).

[0022] Since it is twisting by this, moving an electric conductor (3, 31, 32) not only to a hoop direction but to shaft orientations, and bending R of an electric conductor (3, 31, 32) can be made small and the overall length of a stator coil can be shortened, coil resistance can be made small. Moreover, since a crevice is formed between the electric conductors (3, 31, 32) which adjoin in the direction of a path, it can prevent that adjoining electric conductors (3, 31, 32) contact and short-circuit.

[0023] In addition, the sign in the above-mentioned parenthesis shows a correspondence relation with a concrete means given in an operation form to mention later.

[0024]

[Embodiments of the Invention] Hereafter, the operation form which shows this invention in drawing is explained. The stator manufacturing installation of the AC generator for vehicles concerning the operation form of this invention is explained based on drawing 7 from drawing 1. The perspective diagram in which drawing 1 shows the insertion process of the segment to a stator core, the perspective diagram of a segment by which a stator core is equipped with drawing 2, and drawing 3 are the cross sections showing the hold state of the segment within a slot. The stator of the AC generator for vehicles of this operation form consists of insulating films 4 which carry out electric insulation of between the annular stator core 1, the stator coil formed with the electric conductor 3 arranged in the slot 2 formed in the stator core 1, and stator cores 1 and electric conductors 3.

[0025] Two or more slots 2 are formed in the stator core 1 together with the hoop direction so that the stator coil of a

polyphase can be held. With this operation form, 36 slots 2 are arranged at equal intervals so that the stator coil of a three phase circuit may be held. The electric conductor 3 arranged at the slot 2 of a stator core 1 can be grasped as 1 one segment formed in the shape of U character. The segment of the shape of this U character has the large segment 31 as shown in drawing 2, and two kinds of small segments 32, and the edges 31d and 31e of the large segment 31 and the edges 32d and 32e of the small segment 32 have become taper-like. moreover, turn section 32c of the small segment 32 is surrounded by turn section 31c of the large segment 31, is made, and is arranged -- having -- an outer layer side -- a conductor -- Sections 31b and 32b -- the back side of a slot 2 -- a inner layer side -- a conductor -- the two sections 31a and 32a are simultaneously inserted in a slot 2 so that it may be located in a slot 2 opening side if it sees about one segment -- an outer layer side -- a conductor -- a section side and a inner layer side -- a conductor -- the section is inserted in the slot 2 which predetermined pole-pitch T (this operation form three slots) separated That is, outer layer side hold section 31b of the large segment 31 and inner layer side hold section 31a are inserted in the slot 2 which predetermined pole-pitch T Separated, and outer layer side hold section 32a are similarly inserted in the slot 2 which predetermined pole-pitch T Separated. Thus, by inserting an electric conductor 3 in each slot 2, as shown in drawing 3, an electric conductor 3 makes four layers in the direction of a path within one slot 2, and is arranged at one train.

[0026] After arranging an electric conductor 3 into each slot 2, each class is twisted for the bay of the segment which came out from the end of a slot 2 by the circumference direction retrose a half-pole pitch (T/2) by turns with the stator-coil twist equipment 5 which mentions a detail later. That is, at this operation form, the electric conductor 3 of the 1st layer from a inner layer side and the 3rd layer is seen from a nose of cam, and 1.5 slot ******, a two-layer eye, and the electric conductor 3 of the 4th layer are 1.5 slot ******* to the direction of a clockwise rotation in the direction of a counterclockwise rotation. The sense of the twist of this each class is the same over stator-core 1 perimeter, therefore the electric conductor 3 inclines in the same direction over a perimeter within each class.

[0027] After twisting each electric conductor 3 to a hoop direction, it is joined so that the edges which the 1st layer, the two-layer eye, and the electric conductor 3 of the 3rd layer and the 4th layer adjoined may obtain an electric flow from a inner layer side using TIG arc welding, low attachment, resistance welding, electron beam welding, laser welding, etc., and the stator coil of a three phase circuit is formed. Next, the stator-coil twist equipment 5 which twists the bay of the electric conductor 3 which came out from the slot 2 to a hoop direction is explained.

[0029] The twist fixtures 541-544 of the four shape of a cylinder arranged in the shape of the said heart arrange those apical surfaces, and the twist plastic surgery section 54 is arranged, and is constituted. With the rotation drives 541a-544a, each twist fixtures 541-544 can be rotated independently of a hoop direction. Moreover, four twist fixtures 541-544 can be simultaneously gone up and down by going up and down shaft 54a for rise and fall by rise-and-fall drive 54b.

[0030] The electric conductor insertion sections 541b-544b by which the edges 31d, 31e, 32d, and 32e of an electric conductor 3 are inserted and held are drilled in the apical surface of each twist fixtures 541-544 as shown in the cross section of drawing 5. These electric conductor insertion sections 541b-544b arrange in the hoop direction of each twist fixtures 541-544 only a number equal to the slot 2 formed in the stator core 1, and are formed. The septa 541c-544c for these electric conductor insertion sections 541b-544b preventing the free passage of the electric conductor insertion sections 541b-544b which adjoin in the direction of a path, and 542d and 543d are prepared. In addition, these septa 541c-544c and thickness (542d and 543d) Rather than the interval d3 formed by the interval d1 formed by the septa 541c and 542c between the 1st layer and a two-layer eye, and the septa 543c and 544c between the 3rd layer and the 4th layer, it is set up so that the interval d2 formed by the septa 541d and 542d between a two-layer eye and the 3rd layer may become large.

[0031] Next, the operation of stator-coil twist equipment 5 is explained. The stator core 1 by which the electric conductor 3 has been arranged in a slot 2 is set to the work receptacle 51. And the periphery section of a stator core 1 is fixed by the clamper 52. Then, the movement of a stator core 1 and the vertical direction of an electric conductor 3 is regulated by pressing down turn section 31c of the upper part of a stator core 1, and the large segment 31 by the work

presser foot 53.

[0032] After the stator core 1 by which the electric conductor 3 has been arranged is fixed by a clamper 52 and the work presser foot 53, it twists by shaft 54a for rise and fall, the plastic surgery section 54 goes up, and the edges 31d, 31e, 32d, and 32e of an electric conductor 3 are inserted in the electric conductor insertion sections 541b-544b formed in each twist fixtures 541-544. In addition, only the length which is the edges 31d, 31e, 32d, and 32e of electric conductor 3 **, and serves as a joint behind can be inserted in the electric conductor insertion sections 541b-544b. Moreover, since the edges 31d, 31e, 32d, and 32e of an electric conductor 3 are formed in the shape of a taper, they are smoothly inserted in the electric conductor insertion sections 541b-544b.

[0033] After the edges 31d, 31e, 32d, and 32e of an electric conductor 3 twist and being inserted in the electric conductor insertion sections 541b-544b of the plastic surgery section 54, the twist plastic surgery section 54 rotates and goes up and down by the rotation drives 541a-544a and rise-and-fall drive 54b. In addition, as for rise and fall of the twist plastic surgery section 54, all the twist plastic surgery sections 541-544 are performed simultaneously. Moreover, about rotation of the twist plastic surgery section 54, it twists with the twist fixture 541, and a fixture 543 rotates only a corresponding phase in the direction of a clockwise rotation, it twists with the twist fixture 542, and a fixture 544 rotates only a corresponding phase in the direction of a counterclockwise rotation.

[0034] <u>Drawing 6</u> is drawing showing the timing of rise and fall and rotation of the twist fixtures 541-544. First, a controller 55 controls the rotation drives 541a-544a for the predetermined angle theta 1 to perform only rotation of the twist plastic surgery section 54. It bends to the electric conductor 3 of the outlet portion of a slot 2, and the entrance portion of the electric conductor insertion sections 541b-544b, and R is attached by rotation of this predetermined angle.

[0035] Then, it is made to go up, controlling rise-and-fall drive 54b and the rotation drives 541a-544a by the controller 55, twisting them, and rotating the plastic surgery section 54 about an electric conductor 3, so that the length of the outlet portion of a slot 2 and the entrance portion of the electric conductor insertion sections 541b-544b may be kept constant. Under the present circumstances, it goes up, rotating so that the edges 31d, 31e, 32d, and 32e of an electric conductor 3 may draw a circular locus. The twist describing this circular locus is performed to an angle theta 2 exceeding the angle theta 3 which is a half-pole pitch (T/2), in order to prevent deformation of the electric conductor 3 by the springback. In addition, in this process, although driven to H1 exceeding the amount H2 of processings of the convention not only to a hoop direction but shaft orientations, since the outlet portion of the slot 2 of an electric conductor 3 is already bent, an electric conductor 3 goes up, the twist plastic surgery sections 541-544 escape from a slot 2, and it does not come out of them.

[0036] Then, the locus top same to the position of an angle theta and the amount H2 of rise and fall is returned by considering descent as a last process and rotation of a retrose. Thus, the twist of an electric conductor 3 is ended, it descends, the twist plastic surgery section 54 is twisted, and the edges 31d, 31e, 32d, and 32e of an electric conductor 3 are removed from the electric conductor insertion sections 541b-544b of fixtures 541-544. The twist plastic surgery section 54 by which the electric conductor 3 was removed rotates with the rotation drives 541a-544a, and is returned to a original position.

[0037] Finally, a clamper 52 and the work presser foot 53 are removed, and the stator in the state where the twist was added to the electric conductor 3 as shown in <u>drawing 7</u> is taken out. Then, the stator coil of a three phase circuit which joined the adjacent edges 31d, 31e, 32d, and 32e, and had the necessary number of turns is formed. In addition, the manufacture method of the stator by the stator manufacturing installation stated above is shown in the flow chart of drawing 8.

[0038] That is, the process which inserts two or more segments 31 and 32 in a stator core 1 from shaft orientations is performed after the process which manufactures two or more segments 31 and 32, and the process which manufactures a stator core 1 by the laminating of a plate, an above-mentioned twist process is performed, and the junction process which joins the points 31d, 31e, 32d, and 32e of a segment is performed. In a segment manufacturing process, a wire rod is processed and two or more segments 31 and 32 are manufactured. Two or more segments 31 and 32 are regularly put with an insertion process in the slot 2 of a stator core 1. In addition, at this insertion process, the method of inserting in a stator core 1, after arranging segments 31 and 32 beforehand, and the method of inserting segments 31 and 32 in a stator core 1 in order can be chosen.

[0039] A twist process equips the equipment of <u>drawing 4</u> with a stator with a segment, inserts the edge of an electric conductor in a fixture, and includes the wearing process which makes the preparations before twist processing, the plastic surgery process the operation is indicated to be to drawing 6, and the extraction process which takes out the stator operated orthopedically. Make only a hoop direction carry out the rotation variation rate of the edge of an electric conductor to a plastic surgery process first (from (0 of <u>drawing 6</u>, and 0) to (theta1 and 0)), and an electric conductor is pushed down on a hoop direction here. Then, the bending process which shaft orientations are made to

carry out the variation rate of the edge of an electric conductor to a hoop-direction row (from (theta1 of drawing 6), and 0) to (theta3, H2)), and leans an electric conductor deeply, The excess bending process of making shaft orientations carrying out the variation rate of the edge of an electric conductor to a hoop-direction row exceeding the further predetermined amount of processings (from (theta3, H2) to (theta2, H1) of drawing 6), and leaning an electric conductor deeply superfluously, The return process which returns the edge of an electric conductor to the predetermined amount of processings (from (theta2, H1) to (theta3, H2) of drawing 6) is included. [0040] With this operation form, the twist plastic surgery section 54 can be displaced relatively not only to a hoop direction but to shaft orientations to a stator core 1. That is, the twist plastic surgery section 54 can move in three dimensions to a stator core 1. Therefore, it can prevent that an electric conductor 3 escapes from and comes out of the electric conductor insertion sections 541b-544b about an electric conductor 3 since it can twist so that the length of the outlet portion of a slot 2 and the entrance portion of the electric conductor insertion sections 541b-544b may be kept constant, and the edges 31d, 31e, 32d, and 32e of an electric conductor 3 may draw a circular locus. Therefore, bending R of an electric conductor 3 can be made small, and the overall length of a stator coil can be shortened, it can accumulate, and resistance of a stator coil can be made small.

[0041] Moreover, with this operation form, as mentioned above, only the edges 31d, 31e, 32d, and 32e of an electric conductor 3 are inserted in the electric conductor insertion sections 541b-544b, and it does not come [an electric conductor 3 escapes from them and] out of the electric conductor insertion sections 541b-544b. Therefore, it can prevent that a blemish sticks in addition to the edges 31d, 31e, and 32d of an electric conductor 3, and 32e. In addition, since it is joined to the edges 31d, 31e, 32d, and 32e of other electric conductors 3 after a twist, the influence on the stator coil by the blemish does not have the edges 31d, 31e, 32d, and 32e of an electric conductor 3.

[0042] Moreover, with this operation gestalt, each twist fixtures 541-544 can be rotated independently of a hoop direction. Therefore, it becomes possible to add the optimal twist to two or more layers from which the coil diameter formed in a slot 2 differs. Moreover, each twist fixtures 541-544 can be returned to the position of a half-pole pitch, after making it rotate more than a half-pole pitch, since it can rotate in any direction of a hoop direction. This becomes

possible to prevent deformation by the springback of a coil.

[0043] Moreover, with this operation form, rather than the septa 541c and 542c between the 1st layer and a two-layer eye, and the septa 543c and 544c between the 3rd layer and the 4th layer, 541d of septa between the 3rd layer and the 4th layer, Septa 541c-544c and thickness (542d and 543d) are set up so that 542d may become large. if half-pole pitch rotation of the 1st layer, a two-layer eye and the 3rd layer, and the 4th layer is carried out at an opposite direction, respectively -- the 1st layer, a two-layer eye, and the potential of the 3rd layer and the 4th layer -- a conductor 3 approaches mutually On the other hand, since, as for a two-layer eye and the electric conductor insertion sections 542b and 543b of the 3rd layer, Septa [542d and 543d] thickness is set up greatly, the crevice between a two-layer eye and the electric conductor 3 of the 3rd layer becomes large. A crevice can be enlarged between the electric conductors of the 3rd layer and the 4th layer which it can be made by this to approach between the electric conductors to join (i.e., between the 1st layer, a two-layer eye, and the electric conductor of the 3rd layer and the 4th layer), and are not joined, and it can make a junction process easy.

[0044] In addition, with this operation gestalt, the twist fixtures 541 and 543 rotated the direction of a clockwise rotation, and the twist fixtures 542 and 544 counterclockwise. However, even if it makes the above-mentioned operation gestalt and opposite direction rotate each twist fixtures 541-544 and twists an electric conductor 3, it is possible to form a stator coil similarly. Moreover, it can respond to various stators by exchanging the twist fixtures 541, 542, 543, and 544. For example, it can respond by exchange of the twist fixtures 541, 542, 543, and 544 also to a stator not only with the stator of 36 slots but more numbers of slots, such as 48, 84, and 96. And since the rotation of each twist fixtures 541, 542, 543, and 544 can be mutually controlled independently and the amount of rise and fall can be controlled independently with those rotations, suitable twist processing can be added also in various stators.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 3]

[Drawing 6]

[Drawing 10]

[Translation done.]

3196738

Abstract

PROBLEM TO BE SOLVED: To provide a stator manufacturing apparatus which can manufacture a stator coil whose total length is short.

SOLUTION: A stator is featured in such a way that end parts 31d, 31e, 32d, 32e of electric conductors 3, 31, 32 which prot rude from the end part of a stator core 1 on one side are held, and that a twist restoring part 54 which can be moved relatively to the circumferential direction and the axial direction of the stator core 1 is provided. Since the twist restoring part 54 can be moved three-dimensionally with reference to the stator core 1, it is possible to prevent the electric conductors 3, 31, 32 from being pulled out from parts in which the end parts 31d, 31e, 32d, 32e of the electric conductors 3, 31, 32 can be twisted. As a result, the bending R of the electric conductors 3, 31, 32 can be reduced, the total length of a stator coil can be made short, and a coil resistance can be reduced.

-				
-				•
				·

(19) 日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許番号

特許第3196738号 (P3196738)

(45)発行日 平成13年8月6日(2001.8.6)

(24)登録日 平成13年6月8日(2001.6.8)

(51) Int.Cl.7

H02K 15/06

識別記号

FΙ

H02K 15/06

3/12

3/12

請求項の数9(全 9 頁)

(21)出願番号	特顏平10-258783	(73) 特許権者	
(22)出顧日	平成10年9月11日(1998.9.11)	/70\ \$208.44	株式会社デンソー 愛知県刈谷市昭和町1丁目1番地
(65)公開番号 (43)公開日	特開2000-92797(P2000-92797A) 平成12年3月31日(2000.3.31)	(72)発明者	前田 和上 愛知県刈谷市昭和町1丁目1番地 株式 会社デンソー内
客查請求日	平成12年3月31日(2000.3.31)	(72)発明者	老はリンノード 杉山 優 愛知県刈谷市昭和町1丁目1番地 株式
早期審査対象出願	•		会社デンソー内
	•	(72)発明者	高橋 誠 愛知県刈谷市昭和町1丁目1番地 株式 会社デンソー内
		(74)代理人	100100022 弁理士 伊藤 祥二 (外1名)
		審査官	栗林 敏彦
1 5			

(54) 【発明の名称】 ステータ製造装置及びステータ製造方法

(57) 【特許請求の範囲】

【請求項1】 環状のステータコア(1)の端面から軸方向に沿って延び出す複数の電気導体(3、31、32)を捻るステータ製造装置において、

前記電気導体 (3、31、32) の端部 (31d、31 e、32d、32e) を保持し、前記ステータコア

(1) と同軸上を周方向及び軸方向に相対的に移動可能 な整形部(54)と、

前記整形部(54)を周方向に駆動する周方向駆動部(541a~544a)と、前記整形部(54)を軸方向に駆動する軸方向駆動部(54a、54b)とを備えることを特徴とするステータ製造装置。

【請求項2】 前記電気導体(3、31、32)は、前記スロット(2)内において径方向に複数の層を形成しており、

前記整形部 (54) は、同軸上に配置され、相対的に回転可能な複数捻り治具 (541~544) を備えることを特徴とする請求項1に記載のステータ製造装置。

【請求項3】 前記捻り治具(541~544)は周方向のいずれの方向にも回転可能であることを特徴とする請求項2に記載のステータ製造装置。

【請求項4】 前記複数の捻り治具(541~544)には、前記電気導体(3、31、32)の端部(31 d、31e、32d、32e)が挿入されて前記電気導体(3、31、32)を保持する保持部(541b、542b、543b、544b)が穿設されており、前記一の捻り治具(541~544)に穿設された前記保持部(541b、542b、543b、544b)と、前記一の捻り治具(541~544)と径方向に隣接する他の捻り治具(541~544)に形成された前

記保持部 (541b、542b、543b、544b) との連通を防止する隔壁 (541c~544c、542 d、543d) を有することを特徴とする請求項2また は請求項3に記載のステータ製造装置。

【請求項5】 前記複数の捻り治具($541\sim544$)は、径方向に隣接して対なす一対の前記捻り治具($541\sim544$)を含んでおり、これら一対の前記捻り治具($541\sim544$)の前記保持部(541 b、542 b、543 b、544 b)の間に位置する前記隔壁(541 c ~ 544 c) は、径方向に隣接するが対をなさない2つの前記捻り治具($541\sim544$)の前記保持部(541 b、542 b、543 b、544 b)の間に位置する前記隔壁(540 c 543 b、544 b)の間に位置する前記隔壁(540 c 543 d)より小さい厚さを持っていることを特徴とする請求項4に記載のステーク製造装置。

【請求項6】 前記複数の捻り治具(541~544)は、径方向に隣接する複数対の前記捻り治具(541~544)を備えることを特徴とする請求項5に記載のステータ製造装置。

【請求項7】 前記周方向駆動部($541a\sim544$ a)と前記軸方向駆動部(54a、54b)との動作を制御するコントローラ(55)をさらに備えることを特徴とする請求項1から請求項6のいずれか1つに記載のステータ製造装置。

【請求項8】 前記周方向駆動部($541a\sim544$ a)と前記軸方向駆動部(54a、54b)との動作を制御するコントローラ(55)をさらに備え、前記コントローラ(55)は、径方向に隣接する前記捻り治具($541\sim544$)を、相対的に回転させることを特徴とする請求項2から請求項6のいずれか1つに記載のステータ製造装置。

【請求項9】 多数のスロット(2)が周方向に並んで設けられた環状のステータコア(1)に、セグメント化された電気導体(3、31、32)を前記スロット

された電気導体 (3、31、32) を削記スロット (2) 内において径方向に複数の層を形成するように配置し、前記ステータコア (1) の一方の端部側の前記スロット (2) から出ている前記電気導体 (3、31、32) の直線部に、径方向に隣接する前記電気導体 (3、31、32) と隙間を設けつつ前記電気導体 (3、31、32) の端部を保持し、前記ステータコア (1) に対して周方向及び軸方向に相対的に移動して捻り、前記電気導体 (3、31、32) の端部 (31d、31e、32d、32e) どうしを接合し導通することを特徴とするステータ製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ステータ製造装置 に関し、特に乗用車、トラック等に搭載される車両用交 流発電機のステータコイルの捻り装置に適用されるもの である。

[0002]

【従来の技術】従来、車両用交流発電機の高出力化の要請に応えるため、ステータコアに設けられた複数のスロットにU字状のセグメント化された電気導体を同一方向から差し込み、それらを接合することにより固定子巻線を形成するものが提案されている。この構成では、U字状のセグメント化された電気導体を規則的に並べることができるため、スロット内の電気導体を高占積率化することができ、高出力化が可能となる。

【0003】複数のセグメント化された電気導体からス テータコイルを形成するためには、電気導体の端部を他 の電気導体の端部と接合する必要がある。国際公開第9 2/06527号パンフレット(1992)において は、ステータコアに挿入された複数の電気導体を接合し て、ステータコイルを形成する製法が示されている。上 記従来技術では、図9のように、一つのスロット2内の 内周側と外周側とにそれぞれ2本ずつの電気導体が挿入 されている。そして、図10に示すように、ステータコ ア1のスロット2の一端から出た外周側の電気導体13 1と内周側の電気導体132のそれぞれの直線部は、捻 り治具154a、154bによって互いに周方向に逆向 きに半磁極ピッチ分曲げられる。そして、半磁極ピッチ 分曲げられた状態で、径方向に隣接する電気導体の端部 どうしを接合することにより、ステータコイルが形成さ れている。

[0004]

【発明が解決しようとする課題】しかしながら、上記従来技術では、捻り治具154a、154bは周方向の動きのみを行っているため、回転とともに捻り治具154a、154bの電気導体収容部154cから電気導体131、132が抜けていく。捻りとともに電気導体131、132が抜けていくため、電気導体131、132の電気導体収容部154cの入口部分の曲げRが大きくなる。曲げRが大きくなると、ステータコイルの全長が長くなり、コイル抵抗が大きくなる。また、電気導体131、132が捻り治具154a、154bの電気導体収容部154cから抜ける際に、電気導体131、132に傷がつくため、接合部となる電気導体端部以外の部分にも傷が生じる。

【0005】また、特開昭60-241748号公報では、アーマチャコイルの捻り装置が示されている。このアーマチャコイルの捻り装置では、電気導体を捻る捻り治具は、周方向だけではなく、軸方向にも動くことが可能になっているので、捻り治具の回転とともに、電気導体が抜け、電気導体の曲げRが大きくなるのを防止できる。

【0006】コイルを成形する際には、内周側と外周側との電気導体どうしが接合部以外で接触して短絡するのを防止するために、電気導体間に隙間を設ける必要がある。上記の特開昭60-241748号公報では、電気

導体間の隙間を形成するために、電気導体間に突起を挿入して内外の電気導体間を拡げて隙間を形成している。 そして、隙間を形成した後に、電気導体端部を捻り治具 に挿入して、電気導体に捻りを加えている。そのため、 内外の電気導体間の短絡は防止できるが、電気導体には 突起との接触部の広い範囲に傷が発生する。

【0007】また、上記特開昭60-241748号公報では、周方向及び軸方向の捻り軌道は、捻り治具に固定されたカムによって決定される。そのため、捻り軌道を変更するためには、捻り治具全体を交換する必要があった。本発明は上記問題に鑑みなされたものであり、全長の短いステータコイルを製造可能なステータ製造装置及び製造方法を提供することを目的とする。

【0008】また、本発明は電気導体の接合部以外に傷をつけずに電気導体を捻るステータ製造装置を提供することを目的とする。また、本発明は電気導体の先端を、それらを接合するのに適した形状に整形することが可能なステータ製造装置を提供することを目的とする。また、本発明は捻り治具による電気導体の捻りの軌道の変更が容易なステータ製造装置を提供することを目的とする。

[0009]

【課題を解決するための手段】上記目的を達成するため、請求項1に記載の発明では、環状のステータコア(1)の端面から軸方向に沿って延び出す複数の電気導体(3、31、32)を捻るステータ製造装置において、電気導体(3、31、32)の端部(31d、31e、32d、32e)を保持し、ステータコア(1)と同軸上を周方向及び軸方向に相対的に移動可能な整形部(54)と、整形部(54)を問方向に駆動する周方向駆動部(541a~544a)と、整形部(54)を軸方向に駆動する軸方向駆動部(54a、54b)とを備えることを特徴としている。

【0010】これによると、整形部(54)はステータコア(1)に対して、周方向のみならず、軸方向にも相対的に移動可能となっている。即ち、整形部(54)がステータコア(1)に対して3次元的に移動可能であるため、電気導体(3、31、32)の端部(31d、31e、32d、32e)を保持している部分から、電気導体(3、31、32)が抜けていくのを防止しつつ、電気導体(3、31、32)を捻ることができる。そのため、電気導体(3、31、32)の曲げRを小さくでき、ステータコイルの全長を短くすることができるため、コイル抵抗を小さくできる。

【0011】また、整形部(54)から電気導体(3、31、32)が抜けていくことがないため、電気導体(3、31、32)の端部(31d、31e、32d、32e)以外に傷がつくことを防止できる。なお、電気導体(3、31、32)の端部(31d、31e、32d、32e)は、捻り後に他の電気導体(3、31、3

2)の端部 (31d、31e、32d、32e)と接合されるため、傷によるステータコイルへの影響はない。 [0012] さらに、整形部 (54)は、周方向へは周方向駆動部 (541a~544a)によって駆動され、軸方向へは軸方向駆動部 (54a、54b)によって駆動される。即ち、周方向と軸方向への駆動はそれぞれ独立の駆動機構によって行われるため、整形部 (54)による電気導体 (3、31、32)の捻りの軌道を変更するためには、周方向駆動部 (541a~544a)または軸方向駆動部 (54a、54b)のいずれか一方のみの変更で可能となる。

【0013】請求項2に記載の発明では、電気導体 (3,31,32) は、スロット (2) 内において径方向に複数の層を形成しており、整形部 (54) は、同軸上に配置され、相対的に回転可能な複数捻り治具 (541~544) を備えることを特徴としている。これにより、コイル径の違う複数の各層に対して最適な捻りを加えることができる。

【0014】請求項3に記載の発明では、捻り治具(541~544)は周方向のいずれの方向にも回転可能であることを特徴としている。捻り治具(541~544)が周方向のいずれの方向にも回転可能であるため、電気導体(3、31、32)に所定角度以上の捻りを加えてから、所定角度まで戻すという作動を、捻り治具(541~544)にさせることができる。このような作動をすることにより、コイルのスプリングバックによる変形を防止することができる。

【0015】請求項4に記載の発明では、複数の捻り治具(541~544)には、電気導体(3、31、32)の端部(31d、31e、32d、32e)が挿入されて電気導体(3、31、32)を保持する保持部(541b、542b、543b、544b)が穿設されており、一の捻り治具(541~544)に穿設された保持部(541b、542b、543b、544b)と、一の捻り治具(541~544)に形成された保持部(541b、542b、543b、544b)との連通を防止する隔壁(541c~544c、542d、543d)を有することを特徴としている。

【0016】また、請求項5に記載の発明では、複数の捻り治具(541~544)は、径方向に隣接して対なす一対の捻り治具(541~544)を含んでおり、これら一対の捻り治具(541~544)の保持部(541 b、542 b、543 b、544 b)の間に位置する隔壁(541 c~544 c)は、径方向に隣接するが対をなさない2つの捻り治具(541~544)の保持部(541 b、542 b、543 b、544 b)の間に位置する隔壁(542 d、543 d)より小さい厚さを持っていることを特徴とし、請求項6に記載の発明では、複数の捻り治具(541~544)は、径方向に隣接す

る複数対の捻り治具($541\sim544$)を備えることを特徴としている。

【0017】スロット(2)から出た電気導体(3、3 1、32) の端部 (31d、31e、32d、32e) は、各捻り治具(541~544)に穿設された保持部 (541b、542b、543b、544b) によって 保持されている。そして、各捻り治具(541~54 4) には、隣接する保持部(541b、542b、54 3 b、5 4 4 b) 間の連通を防止する隔壁が設けられて いる。この隔壁の厚みは、複数の捻り治具(541~5 44) の径方向に隣接して対なす捻り治具(541~5 44) 間は、隣接するが対をなさない捻り治具(541 ~544) 間よりも小さくなるようにされている。例え ば、整形部 (54) が4層の捻り治具 (541~54 4)から形成されて1層目と2層目並びに3層目と4層 目とが対を形成しているいる場合は、内層側から1層目 と2層目の捻り治具(541、542)に穿設された保 持部 (541b、542b) 間の隔壁並びに3層目と4 層目の捻り治具(543、544)に穿設された保持部 (543b、544b) 間の隔壁は、2層目と3層目の 捻り治具(542、543)に穿設された保持部(54 2 b、543b) 間の隔壁よりも厚みが小さく設定され

【0018】各保持部(541b、542b、543b、544b)の連通を防止する隔壁を設けているため、各電気導体(3、31、32)間に隙間を作ることができる。このため、各電気導体(3、31、32)間が接触して短絡するのを防止することができる。また、1層目と2層目の捻り治具(541、542)及び3層目と4層目の捻り治具(543、544)をそれぞれ周方向逆向きに所定角度回転させることで、1層目と2層目及び3層目と4層目の電気導体(3、31、32)間の隙間を、2層目と3層目の電気導体(3、31、32)間の隙間を、2層目と3層目の電気導体(3、31、32)間の隙間を、2層目と3層目の電気導体(3、31、32)間の隙間より近接させることができる。これにより、接合する電気導体間、即ち1層目と2層目並びに3層目と4層目の電気導体間は接近させることができ、接合工程を容易にすることができる。

【0019】請求項7に記載の発明では、周方向駆動部 (541 $a\sim$ 544a)と軸方向駆動部 (54a、54b)との動作を制御するコントローラ (55)をさらに備えることを特徴とし、請求項8に記載の発明では、コントローラ (55)は、径方向に隣接する前記捻り治具 (541 \sim 544)を、相対的に回転させることを特徴としている。

【0020】これによると、周方向駆動部(541a~544a)と軸方向駆動部(54a、54b)との回転 量及び昇降量はコントローラ(55)によって制御され ているので、コントローラ(55)内の制御プログラム を変更することにより、容易に捻り量の変更が可能とな る。各捻り治具541、542、543、544の回転 量を相互に独立して制御でき、それらの回転量と独立し て昇降量を制御できるため、種々のステータにおいて も、適切な捻り加工を加えることができる。

【0021】請求項9に記載の発明では、多数のスロット(2)が周方向に並んで設けられた環状のステータコア(1)に、セグメント化された電気導体(3、31、32)を前記スロット(2)内において径方向に複数の層を形成するように配置し、ステータコア(1)の一方の端部側の前記スロット(2)から出ている電気導体(3、31、32)の直線部に、径方向に隣接する電気導体(3、31、32)と隙間を設けつつ電気導体(3、31、32)の端部を保持し、ステータコア

(1) に対して周方向及び軸方向に相対的に移動して捻り、電気導体 (3,31,32) の端部 (31d,31e,32e) どうしを接合し導通することを特徴としている。

【0022】これにより、電気導体(3、31、32)を周方向だけでなく軸方向にも移動させながら捻っているので、電気導体(3、31、32)の曲げRを小さくでき、ステータコイルの全長を短くすることができるため、コイル抵抗を小さくできる。また、径方向に隣接する電気導体(3、31、32)間には隙間が形成されるので、隣接する電気導体(3、31、32)どうしが接触して短絡するのを防止することができる。

【0023】なお、上記した括弧内の符号は、後述する 実施形態記載の具体的手段との対応関係を示すものであ る。

[0024]

【発明の実施の形態】以下、本発明を図に示す実施形態について説明する。本発明の実施形態にかかる車両用交流発電機のステータ製造装置を図1から図7に基づいて説明する。図1はステータコアへのセグメントの挿入工程を示す斜視図、図2はステータコアに装備されるセグメントの斜視図、図3はスロット内におけるセグメントの収容状態を示す断面図である。本実施形態の車両用交流発電機のステータは、環状のステータコア1と、ステータコア1に形成されたスロット2内に配置された電気導体3により形成されるステータコイルと、ステータコア1と電気導体3との間を電気絶縁する絶縁フィルム4とで構成される。

【0025】ステータコア1には、多相のステータコイルを収容できるように、複数のスロット2が周方向に並んで設けられている。本実施形態では、3相のステータコイルを収容するように、36本のスロット2が等間隔に配置されている。ステータコア1のスロット2に配置される電気導体3は、U字状に形成された1本1本のセグメントとして把握することができる。このU字状のセグメントは、図2に示されるような大セグメント31の端部31d、31e及び小セグメント32の端部32d、

32eはテーパ状となっている。また、小セグメント3 2のターン部32cは大セグメント31のターン部31 cに囲まれるようにして揃えられて、外層側導体部31 b、32bはスロット2の奥側に、内層側導体部31 a、32aはスロット2開口側に位置するようにスロッ ト2に2本同時に挿入される。1本のセグメントについ て見ると、外層側導体部と内層側導体部とは、所定磁極 ピッチT(本実施形態では3スロット)離れたスロット 2に挿入される。即ち、大セグメント31の外層側収容 部31 bと内層側収容部31 aとは、所定磁極ピッチT 離れたスロット2に挿入され、同様に小セグメント32 の外層側収容部32bと内層周側収容部32aとは、所 定磁極ピッチT離れたスロット2に挿入される。このよ うにして、各スロット2に電気導体3を挿入することに より、電気導体3は、図3に示されるように、1つのス ロット2内の径方向に4層をなして1列に配置される。 【0026】各スロット2に電気導体3を配置した後、

【0026】各スロット2に電気導体3を配置した後、詳細を後述するステータコイル捻り装置5によって、スロット2の一端より出たセグメントの直線部が各層が交互に周回方向逆向きに半磁極ピッチ(T/2)捻られる。即ち、本実施形態では、内層側から1層目、3層目の電気導体3は先端から見て反時計回り方向に1.5スロット捻られ、2層目、4層目の電気導体3は時計回り方向に1.5スロット捻られる。この各層の捻りの向きは、ステータコア1全周に渡って同一であり、したがって、各層内では全周にわたり同一方向に電気導体3が傾斜している。

【0027】各電気導体3を周方向に捻った後、内層側から1層目と2層目並びに3層目と4層目の電気導体3の隣接した端部どうしが、TIG溶接、ロー付け、抵抗溶接、電子ビーム溶接、レーザー溶接等を用いて、電気的導通を得るように接合され、3相のステータコイルが形成される。次に、スロット2より出た電気導体3の直線部を周方向に捻るステータコイル捻り装置5について説明する。

【0028】図4は本発明のステータコイル捻り装置5の模式的な縦断面図、図5は図4におけるA-A断面矢 視図である。ステータコイル捻り装置5は、ステータコ ア1の外周部を受けるワーク受け51、ステータコ ア1の外周部を受けるワーク受け51、ステータコア1 の径方向の動きを規制して保持するクランパ52、ステータコア1の浮き上がりを防止するワーク押さえ53、ステータコア1の一端から出た電気導体3の直線部を捻るための捻り整形部54、捻り整形部54を軸方向に回転駆動する回転駆動機構541a~544 a、昇降用シャフト54aを軸方向に移動するための昇降駆動機構54b、及び回転駆動機構541a~544 aと降駆動機構54bとを制御するコントローラ55を備えて構成されている。

【0029】捻り整形部54は、同心状に配置された4

つの円筒状の捻り治具541~544がそれらの先端面を揃えて配置されて構成されている。各捻り治具541~544は回転駆動機構541a~544aにより、周方向に独立に回転可能である。また、4つの捻り治具541~544は、昇降駆動機構54bにより昇降用シャフト54aを昇降することにより、同時に昇降可能となっている。

【0030】図5の断面図に示されているように、各捻 り治具541~544の先端面には、電気導体3の端部 31d、31e、32d、32eが挿入されて保持され る電気導体挿入部541b~544bが穿設されてい る。この電気導体挿入部541b~544bはステータ コア1に形成されたスロット2と等しい数だけ、各捻り 治具541~544の周方向に並べて形成されている。 この電気導体挿入部541b~544bは、径方向に隣 接する電気導体挿入部541b~544bの連通を防止 するための隔壁541c~544c、542d、543 dが設けられている。なお、この隔壁 $541c\sim544$ c、542d、543dの厚みは、1層目と2層目との 間の隔壁541c、542cで形成される間隔d1及び 3層目と4層目との間の隔壁543c、544cで形成 される間隔d3よりも、2層目と3層目との間の隔壁5 41d、542dで形成される間隔d2が大きくなるよ うに設定されている。

【0031】次にステータコイル捻り装置5の作動について説明する。スロット2内に電気導体3が配置されたステータコア1は、ワーク受け51にセットされる。そして、ステータコア1の外周部がクランパ52によって固定される。その後、ワーク押さえ53でステータコア1の上部及び大セグメント31のターン部31cを押さえることにより、ステータコア1及び電気導体3の上下方向の動きを規制する。

【0'032】クランパ52及びワーク押さえ53により、電気導体3が配置されたステータコア1が固定された後、昇降用シャフト54aによって捻り整形部54が上昇され、各捻り治具541~544に形成された電気導体挿入部541b~544bに電気導体3の端部31d、31e、32d、32eが挿入される。なお、電気等体挿入部541b~544bには電気導体3の端部31d、31e、32d、32eで、後に接合部となる長さのみが挿入可能である。また、電気導体3の端部31d、31e、32d、32eはテーパ状に形成されているため、電気導体挿入部541b~544bにスムーズに挿入される。

【0033】電気導体3の端部31d、31e、32d、32eが捻り整形部54の電気導体挿入部541b~544bに挿入された後、捻り整形部54は回転駆動機構541a~544aと昇降駆動機構54bとにより、回転並びに昇降される。なお、捻り整形部54の昇降は、捻り整形部541~544の全てが同時に行われ

る。また、捻り整形部54の回転に関しては、捻り治具541と捻り治具543とが時計回り方向に同位相だけ回転し、捻り治具542と捻り治具544とが反時計回り方向に同位相だけ回転する。

【0035】その後、電気導体3について、スロット2の出口部分と電気導体挿入部541b~544bの入口部分との長さを一定に保つように、昇降駆動機構54bと回転駆動機構541a~544aとをコントローラ55により制御して捻り整形部54を回転しながら上昇せる。この際、電気導体3の端部31d、31e、32d、32eが円弧状の軌跡を描くように回転しながら上昇する。この円弧状の軌跡を描くように回転しながら上昇する。この円弧状の軌跡を描くおりは、スプリングバックによる電気導体3の変形を防止するため、半磁極ピッチ(T/2)である角度 θ 3を越えて角度 θ 2まで行われる。なお、この工程においては、捻り整形部541~544は、周方向だけでなく軸方向にも規定の加工量H2を越えてH1まで駆動されるが、既に電気導体3のスロット2の出口部分が曲げられているため、電気導体3が上昇してスロット2から抜け出ることはない。

【0036】その後、前工程と逆向きの回転と下降をすることにより、角度 θ 、昇降量H2の位置まで、同じ軌跡上を戻す。このようにして、電気導体3の捻りを終了し、捻り整形部54を下降して捻り治具 $541\sim544$ の電気導体挿入部 $541b\sim544$ bから電気導体3の端部31d、31e、32d、32eを外す。電気導体3が外された捻り整形部54は回転駆動機構 $541a\sim544$ aによって回転され、原位置に戻される。

【0037】最後に、クランパ52及びワーク押さえ53が外され、図7に示されるような、電気導体3に捻りが加えられた状態のステータが取り出される。この後、隣りあう端部31d、31e、32d、32eを接合して所要のターン数をもった3相のステータコイルが形成される。なお、以上に述べたステータ製造装置によるステータの製造方法は、図8の流れ図に示されている。

【0038】すなわち、複数のセグメント31、32を製造する工程と、ステータコア1を板材の積層により製造する工程との後、ステータコア1に複数のセグメント31、32を軸方向から挿入する工程が行われ、上述の捻り工程が行われ、セグメントの先端部31d、31e、32d、32eを接合する接合工程が行われる。セグメント製造工程では、線材を加工して複数のセグメント31、32が製造される。挿入工程では、ステータコア1のスロット2内に複数のセグメント31、32が規

則的に挿し込まれる。なお、この挿入工程では、予めセグメント31、32を配列してからステータコア1に挿入する方法と、セグメント31、32を順にステータコア1に挿入する方法とを選択することができる。

【0039】捻り工程は、セグメント付きのステータを 図4の装置へ装着し、電気導体の端部を治具に挿入し て、捻り加工前の準備を行う装着工程と、図6にその動 作が示される整形工程と、整形されたステータを取り出 す取出工程とを含んでいる。ここで、整形工程には、ま ず電気導体の端部を周方向にのみ(図6の(0,0)か ら(θ1,0)まで)回転変位させて電気導体を周方向 に倒し、続いて電気導体の端部を周方向ならびに軸方向 に (図6の (θ 1, 0) から (θ 3, H2) まで) 変位 させて電気導体を深く傾ける曲げ工程と、さらに所定の 加工量を越えて電気導体の端部を周方向ならびに軸方向 に (図6の (θ 3, H2) から (θ 2, H1) まで) 変 位させて電気導体を過剰に深く傾ける過剰曲げ工程と、 電気導体の端部を所定の加工量まで(図6の(θ 2, H 1) から (θ 3, H2) まで) 戻す戻し工程とを含んで いる。

【0040】本実施形態では、捻り整形部54はステータコア1に対して、周方向だけでなく軸方向にも相対移動可能となっている。即ち、捻り整形部54がステータコア1に対して3次元的に移動可能である。そのため、電気導体3について、スロット2の出口部分と電気導体挿入部541b~544bの入口部分との長さを一定に保つように、電気導体3の端部31d、31e、32d、32eが円弧状の軌跡を描くように捻ることができるので、電気導体3が電気導体挿入部541b~544bから抜け出るのを防止することができる。そのため、電気導体3の曲げRを小さくでき、ステータコイルの抵抗を小さくすることができる。

【0041】また、本実施形態では、電気導体3の端部31d、31e、32d、32eのみが、電気導体挿入部541b~544bに挿入されており、また、前述のように電気導体3が電気導体挿入部541b~544bから抜け出ることはない。従って、電気導体3の端部31d、31e、32d、32e以外に傷がつくのを防止できる。なお、電気導体3の端部31d、31e、32d、32eは、捻り後に他の電気導体3の端部31d、31e、32d、32eと接合されるため、傷によるステータコイルへの影響はない。

【0042】また、本実施形態では、各捻り治具541~544は周方向に独立に回転可能である。従って、スロット2内において形成されるコイル径の異なる複数の層に対して、最適な捻りを加えることが可能となる。また、各捻り治具541~544は周方向のいずれの方向にも回転可能であるので、半磁極ビッチ以上回転させてから半磁極ビッチの位置まで戻すことが可能である。こ

れにより、コイルのスプリングバックによる変形を防止することが可能となる。

【0043】また、本実施形態では、隔壁541c~5 44c、542d、543dの厚みは、1層目と2層目 との間の隔壁541c、542c及び3層目と4層目と の間の隔壁543c、544cよりも、3層目と4層目 との間の隔壁541d、542dが大きくなるように設 定されている。1層目と2層目および3層目と4層目と をそれぞれ逆方向に半磁極ピッチ回転すると、1層目と 2層目および3層目と4層目の電位導体3が互いに接近 する。一方、2層目と3層目の電気導体挿入部542 b、543bは隔壁542d、543dの厚みが大きく 設定されているため、2層目と3層目の電気導体3の間 の隙間は大きくなる。これにより、接合する電気導体 間、即ち1層目と2層目並びに3層目と4層目の電気導 体間は接近させることができ、また、接合しない3層目 と4層目の電気導体間は隙間を大きくして、接合工程を 容易にすることができる。

【0044】なお、本実施形態では、捻り治具541、543は時計回り方向に、そして捻り治具542、544は反時計回りに回転させた。しかし、各捻り治具541から544を上記実施形態と反対方向に回転させて、電気導体3を捻っても同様にステータコイルを形成することが可能である。また、捻り治具541、542、543、544を交換することで、各種ステータに対応することができる。例えば、36スロットのステータに限らず、48、84、96といった、より多いスロット数をもったステータに対しても、捻り治具541、54

2、543、544の交換により対応することができる。しかも、各捻り治具541、542、543、544の回転量を相互に独立して制御でき、それらの回転量と独立して昇降量を制御できるため、種々のステータにおいても、適切な捻り加工を加えることができる。

【図面の簡単な説明】

【図1】本発明の実施形態のセグメントの挿入工程を示す斜視図である。

【図2】実施形態のステータの部分的な断面図である。

【図3】実施形態のセグメントの斜視図である。

【図4】実施形態のステータコイル捻り装置の縦断面図である。

【図5】実施形態の捻り治具の正面図である。

【図6】実施形態の捻り整形部の作動図である。

【図7】実施形態のセグメント捻り後のステータのコイルエンドの部分的な斜視図である。

【図8】実施形態の製造手順を示す流れ図ある。

【図9】従来技術のスロット内の電気導体の配置を示す ステータの断面図である。

【図10】従来技術の捻り治具による電気導体の捻りの 様子を示す模式図である。

【符号の説明】

1…ステータコア、3…電気導体、51…ワーク受け、52…クランパ、53…ワーク押さえ、54…捻り整形部、541~544…捻り治具、541a~544a…回転駆動機構、54a…昇降用シャフト、54b…昇降駆動機構、55…コントローラ。

【図1】

[図2]

[図4]

1:ステータコア 541~544: 捻り治具 5:ステータコイル捻り装置 541 a~544a: 回転駆動機構 51:ワーク受け 54a: 昇降用シャフ | 52:クランパ 54b: 昇降駆動機構 53:ワーク押さえ 55:コントローラ

[図8]

【図9】

【図10】

フロントページの続き

(72) 発明者 鎌倉 洋一

愛知県刈谷市昭和町1丁目1番地 株式

会社デンソー内

(56) 参考文献 特開 昭60-241748 (JP, A)

特許2905365 (JP, B2)

特許3118837 (JP, B2)

(58) 調査した分野 (Int. Cl. 7, DB名)

H02K 15/06

H02K 3/12

H02K 3/04

•				•
				•
				٦
	·			
				•
			·	