This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

26. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$-5 + 2i$$
 and -3

The solution is $x^3 + 13x^2 + 59x + 87$

- A. $b \in [-2, 2], c \in [-2, 3]$, and $d \in [-7, -5]$ $x^3 + x^2 + x - 6$, which corresponds to multiplying out (x - 2)(x + 3).
- B. $b \in [10, 18], c \in [52, 65]$, and $d \in [82, 88]$ * $x^3 + 13x^2 + 59x + 87$, which is the correct option.
- C. $b \in [-18, -10], c \in [52, 65], \text{ and } d \in [-91, -86]$ $x^3 - 13x^2 + 59x - 87, \text{ which corresponds to multiplying out } (x - (-5 + 2i))(x - (-5 - 2i))(x - 3).$
- D. $b \in [-2, 2], c \in [3, 10]$, and $d \in [7, 18]$ $x^3 + x^2 + 8x + 15$, which corresponds to multiplying out (x + 5)(x + 3).
- E. None of the above.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comments: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (-5 + 2i))(x - (-5 - 2i))(x - (-3)).

27. Describe the end behavior of the polynomial below.

$$f(x) = 4(x-6)^3(x+6)^4(x-8)^3(x+8)^4$$

The solution is

General Comments: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.

28. Describe the zero behavior of the zero x = -5 of the polynomial below.

$$f(x) = -4(x-8)^{10}(x+8)^7(x-5)^{12}(x+5)^9$$

The solution is

General Comments: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

29. Which of the following equations *could* be of the graph presented below?

The solution is $2(x-1)^7(x+1)^9(x+3)^{11}$

A.
$$2(x-1)^7(x+1)^9(x+3)^{11}$$

* This is the correct option.

B.
$$4(x-1)^4(x+1)^{10}(x+3)^7$$

The factors 1 and -1 have have been odd power.

C.
$$-17(x-1)^7(x+1)^9(x+3)^9$$

This corresponds to the leading coefficient being the opposite value than it should be.

D.
$$10(x-1)^4(x+1)^{11}(x+3)^5$$

The factor 1 should have been an odd power.

E.
$$-7(x-1)^6(x+1)^7(x+3)^{11}$$

The factor (x-1) should have an odd power and the leading coefficient should be the opposite sign.

General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

30. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{4}{5}$$
, -7, and -6

The solution is $5x^3 + 61x^2 + 158x - 168$

A.
$$a \in [-6, 10], b \in [-4, 2], c \in [-216, -208], \text{ and } d \in [-178, -159]$$

 $5x^3 - 1x^2 - 214x - 168$, which corresponds to multiplying out $(5x + 5)(x + 1)(x - 1)$.

B.
$$a \in [-6, 10], b \in [66, 79], c \in [260, 268], \text{ and } d \in [167, 174]$$

 $5x^3 + 69x^2 + 262x + 168, \text{ which corresponds to multiplying out } (5x + 5)(x - 1)(x - 1).$

C.
$$a \in [-6, 10], b \in [57, 66], c \in [147, 159]$$
, and $d \in [167, 174]$
 $5x^3 + 61x^2 + 158x + 168$, which corresponds to multiplying everything correctly except the constant term.

D.
$$a \in [-6, 10], b \in [-64, -59], c \in [147, 159], \text{ and } d \in [167, 174]$$

 $5x^3 - 61x^2 + 158x + 168$, which corresponds to multiplying out $(5x + 4)(x - 7)(x - 6)$.

E.
$$a \in [-6, 10], b \in [57, 66], c \in [147, 159], \text{ and } d \in [-178, -159]$$

* $5x^3 + 61x^2 + 158x - 168$, which is the correct option.

General Comments: To construct the lowest-degree polynomial, you want to multiply out (5x-4)(x+7)(x+6)