Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Prima prova di accertamento – 27/06/2024 – Canale 1 – Prof. Meneghesso

COGNOME: NOME: MATRICOLA:

Problema 1

Dato il circuito amplificatore in figura di cui sono noti:

- I parametri dei MOSFET:
 - \circ M₁: $k_1 = k_4 = 2mA/V^2$,
 - \circ M₂: $k_2 = k_5 = k_6 = 8mA/V^2$,
 - \circ M₃: k₃ = 0.08mA/V²,
 - V_{TN} = 1.5V per tutti i MOS)
 - O M₅ ha $λ_5 = 0.01V^{-1}$ (trascurare λ per tutti gli altri MOSFET)
- I valori delle resistenze: $R_i = 5k\Omega$, $R_L = 1k\Omega$
- La tensione di alimentazione: V_{DD} = 5V

Dato il circuito in figura, sapendo che la corrente attraverso la resistenza R₆ è 1mA, calcolare:

- 1) La tensione V_{GS} e V_{DS} del MOSEFT M₆ e il valore della resistenza R₆
- 2) Il punto di polarizzazione di tutti gli altri MOSFET del circuito.
- 3) I potenziali dei nodi A, B, C, D, e E in condizioni DC. (Riportare i valori nello spazio sotto la figura)
- 4) Disegnare il modello ai piccoli segnali e calcolare le transconduttanze di M₁ e M₂.
- 5) Calcolare le resistenze di ingresso (R_{IN} e di uscita R_{OUT}) come evidenziate nel circuito.
- 6) Calcolare il guadagno di tensione A_v=v_o/v_i

Problema 2

Dato il circuito in figura, realizzato con un amplificatore operazionale e un diodo zener ($V_{ON}=0V$ e $V_Z=8V$). Assumendo l'operazionale ideale e $R=10k\Omega$:

- 1. Tracciare la transcaratteristica di v_0 in funzione di v_s e riportarla nel grafico sulla pagina seguente.
- 2. Calcolare la tensione v_0 , la corrente i_D attraverso il diodo e la tensione v_D ai capi del diodo con $v_S = -8V$.

Assumiamo ora l'operazionale reale con tensione di offset $V_{OS} = 20$ mV, correnti di bias $I_{BN} = I_{BP} = 1$ µA e CMRR = 100:

3. Calcolare la tensione di uscita con $v_S = 1V$

A fianco di ciascun punto di spezzamento indicare i valori di tensione v_s e v_0 corrispondenti.

A fianco di ciascun segmento indicare il valore della pendenza (dv_O/dv_s) e la regione di funzionamento dei diodi.

Problema 3

DATI: R_1 = $2k\Omega$, C_1 = $5\mu F$, R_2 = $200k\Omega$, C_2 = 5nF Dato il filtro in figure.

- 4. Calcolare il guadagno per ω = 0.
- 5. Trovare la funzione di trasferimento (riportare l'espressione della funzione di trasferimento nella scheda della quarta pagina)
- 6. Tracciare i diagrammi di bode asintotici di modulo e fase (usando i grafici in quarta pagina).

W(s) =

In entrambi i grafici indicare:

- a fianco di ogni punto della spezzata il corrispondente valore (in dB o gradi)
- a fianco di ogni segmento con pendenza non nulla il corrispondente valore di pendenza (in dB/dec o gradi/decade)

