

BITS Pilani

Machine Learning (IS ZC464) Session 9:

Artificial Neural Networks

Artificial Neural Networks

- Mathematical Models representing the massively parallel machines.
- Model inspired by the working of human nervous system.
- Has a number of neurons performing the task similar to human neuron.
- Each neuron triggers the received input according to the weight.
- A neural network captures the environment it has to learn in terms of the weights.

Brain Computer: What is it?

Human brain contains a massively interconnected net of 10^{10} - 10^{11} (10 billion) neurons (cortical cells)

Biological Neuron

- The simple "arithmetic computing" element

Human nervous system

Images: google search

Human Neuron

Biological Neurons

- Soma or body cell is a large, round central body in which almost all the logical functions of the neuron are realized.
- **2.** The axon (output), is a nerve fibre attached to the soma which can serve as a final output channel of the neuron. An axon is usually highly branched.
- 3. The dendrites (inputs)- represent a highly branching tree of fibres. These long irregularly shaped nerve fibres (processes) are attached to the soma.
- **4. Synapses** are specialized contacts on a neuron which are the termination points for the axons from other neurons.

A human neuron

- A neuron is a nerve cell that is the basic building block of the human nervous system.
- Neurons transmit information throughout the body.
- These neurons transmit the information in their chemical and electrical form.
- Each neuron contains a nucleus that has genetic structure.
- The connection between cells are known as synapses.

Communication between synapses

- Electrical signals communicate between the neurons.
- Also there are neurotransmitters, which are the chemical messengers to transmit information from one to another neuron.
- Some major neurotransmitters are as follows
- Acetylcholine:
 - Associated with memory, muscle contractions, and learning. A lack of acetylcholine in the brain is associated with Alzheimer's disease.
- Endorphins:
 - Associated with emotions and pain perception. The body releases endorphins in response to fear or trauma..
- Dopamine:
 - Associated with thought and pleasurable feelings. Parkinson's disease is one illness associated with deficits in dopamine, while schizophrenia is strongly linked to excessive amounts of this chemical messenger.

Summation process in human neuron

- Each neuron is connected with numerous other neurons, receiving numerous impulses from them.
- **Summation** is the adding together of these impulses at the axon hillock.
- If the neuron only gets excitatory impulses, it will also generate an action potential;
- but if the neuron gets as many inhibitory as excitatory impulses, the inhibition cancels out the excitation and the nerve impulse will stop there.
- Summation takes place at the axon hillock.
- Spatial summation means several firings on different places of the neuron, that in themselves are not strong enough to cause a neuron to fire. However, if they fire simultaneously, their combined effects will cause an action potential.

How do humans recognize a face?

- 1. Eye captures the information and passes it to the brain via synapses.
- 2. There are about 1000 billion neurons in the human body.
- 3. The information is passed through these neurons to the brain.
- 4. The brain trains itself with the prominent and discriminatory features of an individual
- 5. Whenever the person sees the same face again, a query is automatically generated in the brain.
- 6. The brain answers the query "Who that person is?" on the basis of training already done.

Neural Networks

- These are mathematical models to solve problems whose algorithmic solutions are difficult to be designed or algorithmic solutions do not exist.
- The technology of neural networks is more useful when the learning has to take place on the basis of observations.
- These models are based on the human neural system.
- It collects input through various interconnection links called synapses and passes the weighted information to the neurons.

An Artificial Neuron

- A mathematical neuron is a processing unit capable of receiving inputs from single or multiple neurons and triggers a desired response.
- Each neuron has an associated activation function which takes as input the weighted sum of the inputs coming to the neuron and triggers a response depending on the associated threshold

Artificial Neuron

Artificial Neuron

- Weighted sum (n) = $\sum w_i x_i$
- Activation function $f(n) = f(\sum w_i x_i)$
- Threshold T such that a response is triggered if f(n) > T

Example: Simulating a neuron to perform a logical AND

Truth table for AND

Let the activation function f(n) be defined as

$$f(n) = 1$$
 if $n>1$
0 otherwise

Estimate the weights

- $n = w_1 x_1 + w_2 x_2$
- Case $x_1 = 0$ and $x_2 = 0$ n = 0 for any pair of weight parameters
- Case $x_1 = 0$ and $x_2 = 1$ $n = w_2$
- Case $x_1 = 1$ and $x_2 = 0$ $n = w_1$
- Case $x_1 = 1$ and $x_2 = 1$ $n = w_1 + w_2$

Other Neuron parameters

- Threshold = 1
- Activation function f(n) = 1 if n>T= 0 if n<=T

x1	x2	w1	w2	n	f(n)
0	0				0
0	1				0
1	0				0
1	1				1

View f(n) as the desired output

October 1, 2016 IS ZC464 19

Other Neuron parameters

- Threshold = 1
- Activation function f(n) = 1 if n>T= 0 if n<=T

x1	x2	w1	w2	n	f(n)
0	0				0
0	1				0
1	0				0
1	1	1	1	2	1

Other Neuron parameters

- Threshold = 1
- Activation function f(n) = 1 if n>T= 0 if n<=T

x1	x2	w1	w2	n	f(n)
0	0	1	1	0	0
0	1	1	1	1	0
1	0	1	1	1	0
1	1	1	1	2	1

Supervised learning

- Knowing the expected output and adjusting the weight to get that output is known as supervised learning.
- Learning is in terms of obtaining weights.
- The neuron is trained with the input patterns <0,0>
 <1,0> and <1,1> so as to learn that the patterns should ne named as 0,0,0 and 1 respectively. (relate to face recognition)
- Once a neuron is trained, it is expected to use its learning to answer any input pattern.
- Example: what is <1,0>? Answer is 0. [No logical operation performed anywhere]

Testing

- Input a pattern <0.001, 0.987> [weak signal]
- $n = 0.001 \times 1 + 0.987 \times 1 = 0.988$
- f(n) = 0
- Notice that even a unseen pattern is also recognised correctly.

- Another input: <0.876, 0.991> [weak signal]
- n = 1.867 > T
- Hence f(n) = 1

Testing

- Input <1.009, 1.100> [strong signal/spikes]
- n = 1.009 + 1.100 = 2.109 > 1
- f(n) = 1 (expected)

Class Assignment

Simulate a neuron to generate OR function

McCulloch-Pitts Neuron Model

- The first formal definition of an artificial neuron was formulated by Warren McCulloch and Walter Pitts in 1943.
- The McCulloch-Pitts Neuron allows binary 0 or 1 states only.
- The connection path can be excitatory or inhibitory.
- Excitatory connections have positive weights and inhibitory connections have negative weights.

Exclusive OR simulation using McCulloch-Pitts neuron

- Draw the truth table of XOR.
- Try to plot the 2 dimensional pattern on a 2D Cartesian plane and plot a symbol appropriately for both 0 and 1 outputs.
- Observe that a single line cannot demarcate the boundary (which was possible in the AND and OR examples)
- This indicates that the neural simulation is not possible with one neuron. Use two neurons.

Neural Network for XOR

