THE DEEP LEARNING DUMP

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

From the beginning of 2016, I decided to cease all explicit crowdfunding for any of my materials on physics, math. I failed to raise any funds from previous crowdfunding efforts. I decided that if I was going to live in abundance, I must lose a scarcity attitude. I am committed to keeping all of my material **open-sourced**. I give all my stuff for free.

In the beginning of 2017, I received a very generous donation from a reader from Norway who found these notes useful, through PayPal. If you find these notes useful, feel free to donate directly and easily through PayPal. PayPal does charge a fee, so I also have a Venmo, ernestyalumni, and CashApp (via email mailto:ernestyalumni@gmail.com).

Otherwise, under the open-source MIT license, feel free to copy, edit, paste, make your own versions, share, use as you wish.

gmail : ernestyalumni linkedin : ernestyalumni twitter : ernestyalumni

Contents

Part 1. Deep Neural Networks

1. Gaussian Processes

Part 2. Transformer Networks

2. Transformers

References

Abstract. Everything Deep Learning, Deep Neural Networks

Part 1. Deep Neural Networks

1. Gaussian Processes

Yang (2021) for Tensor Programs I[1]

Part 2. Transformer Networks

Including Attention

2. Transformers

2.1. **Input.** See Turner (2023) [2].

Let input data s.t. sequence of N $\mathbf{x}_n^{(0)}$ of dim. D, n = 0, 1, ..., N - 1, $\mathbf{x}_n^{(0)} \in F^D$, where F is some field (i.e. some data type such as float, double, etc.).

Let matrix $X^{(0)} \in F^{D \times N}$ or $Mat_F(D, N)$, a sequence of N arrays of dim. D collected into a matrix.

Let $M \in \{0, 1, \dots \text{ i.e. } M \in \mathbb{Z}^+.$

Date: 19 July 2023.

Key words and phrases. Deep Learning, Deep Neural Networks.

The goal is to map $X^{(0)}$ to $X^{(M)} \in \operatorname{Mat}_F(D, N)$ i.e. $X^{(M)}$ of size $D \times M$ s.t. since $x_n = X_{;n}^{(M)}$ is a vector of features representing the sequence at location of n in the sequence.

2.2. **Attention** $A^{(m)}$. Consider output vector at location $n, \mathbf{y}_n^{(m)}$, where

(1)
$$\mathbf{y}_{n}^{(m)} = \mathbf{x}_{n'}^{(m-1)} A_{n'n}^{(m)}, \quad n' = 0, 1, \dots N - 1$$

[Eq. (1) of Turner (2023) [2]), where $A_{n'n}^{(m)} = A^{(m)}$ is called the attention matrix, $A^{(m)} \in \operatorname{Mat}_F(N, N)$ and normalizes over its columns:

(2)
$$\sum_{n'=1}^{N} A_{n'n}^{(m)} = 1$$

2.3. Projection of Q, K, V, queries, keys, and values. Recall an input $\mathbf{x}_n = X_{;n}^{(M)} \in F^D$. Recall the linear transform resulting so-called queries or query vectors:

$$\mathbf{q}_{h;n}^{(m)} = U_{q;h}^{(m)} \mathbf{x}_n^{(m-1)} \in F^K, \quad U_{q;h}^{(m)} \in \text{Mat}_F(K, D)$$

where h = 0, 1, ..., H - 1 with H heads in Turner's notation (Turner (2023)[2]). Compare this with NVIDIA's notation, [3], i = 0, 1, ..., nHeads -1, so that $H \equiv n$ Heads.

Generalize K in dimensiosn $k \times D$ of $U_{q;h}^{(m)}$ to $qSize \equiv D_q$, i.e.

$$\mathbf{q} \equiv \mathbf{q}_{h,n}^{(m)} = U_{q;h}^{(m)} \mathbf{x}_n^{(m-1)} \in F^{D_q}, \quad U_{q;h}^{(m)} \in \text{Mat}_F(D_q, D)$$

See 7.2.45. cudnnSetAttnDescriptor

1

References

- [1] Greg Yang. "Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes." arXiv:1910.12478v3 8 May 2021 [2] Richard E. Turner. "An Introduction to Transformers". arXiv:2304.10557v3 cs.LG 4 Jul 2023 [3] NVIDIA. "7.2.45 cudnnSetAttnDescriptor". cuDNN API Documentation. 7.2.45. cudnnSetAttnDescriptor