#importing necessary packages
import numpy as np

import pandas as pd

#reading a tabular data as data frame
cars=pd.read_csv('E:\sweetlin-official\Sweetlin_2020\Folder D\Personal\Learning\dataset\Toyota.csv')

#to display the features in the data set
cars.columns

```
8
```

#print the value in the data set
cars

	Unnamed: 0	Price	Age	KM	FuelType	НР	MetColor	Automatic	СС	Doors	Weight
0	0	13500	23.0	46986	Diesel	90	1.0	0	2000	three	1165
1	1	13750	23.0	72937	Diesel	90	1.0	0	2000	3	1165
2	2	13950	24.0	41711	Diesel	90	NaN	0	2000	3	1165
3	3	14950	26.0	48000	Diesel	90	0.0	0	2000	3	1165
4	4	13750	30.0	38500	Diesel	90	0.0	0	2000	3	1170
1431	1431	7500	NaN	20544	Petrol	86	1.0	0	1300	3	1025
1432	1432	10845	72.0	??	Petrol	86	0.0	0	1300	3	1015
1433	1433	8500	NaN	17016	Petrol	86	0.0	0	1300	3	1015
1434	1434	7250	70.0	??	NaN	86	1.0	0	1300	3	1015
1435	1435	6950	76.0	1	Petrol	110	0.0	0	1600	5	1114

1436 rows × 11 columns

#to get the dimension of the data set
cars.shape

(1436, 11)

#to get the information of the data set
cars.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1436 entries, 0 to 1435
Data columns (total 11 columns):

- 0. 00.	00-00000		
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1436 non-null	int64
1	Price	1436 non-null	int64

```
float64
      2
                      1336 non-null
          Age
                                      object
      3
          ΚM
                      1436 non-null
      4
          FuelType
                      1336 non-null
                                      object
      5
          HP
                      1436 non-null
                                      object
                      1286 non-null
                                      float64
      6
          MetColor
      7
          Automatic 1436 non-null
                                      int64
      8
         CC
                      1436 non-null
                                      int64
     9
          Doors
                      1436 non-null
                                      object
     10 Weight
                      1436 non-null
                                      int64
     dtypes: float64(2), int64(5), object(4)
     memory usage: 123.5+ KB
#to get the frequency count of unique values of a column in the data frame
cars['KM'].value_counts()
     ??
              15
               8
     36000
               7
     59000
               7
     43000
               7
     27301
              1
     63135
               1
     98500
               1
     78785
               1
     32000
     Name: KM, Length: 1256, dtype: int64
#to display top 2 records of a column in the data frame
cars['KM'].head(2)
          46986
     0
          72937
     Name: KM, dtype: object
#to display the unique values of a column in the data frame
cars['HP'].unique()
     array(['90', '????', '192', '110', '97', '71', '116', '98', '69', '86',
            '72', '107', '73'], dtype=object)
#reading the file with a few more parameters besides the file name to get a clean data
cars=pd.read_csv('E:\sweetlin-official\Sweetlin_2020\Folder D\Personal\Learning\dataset\Toyota.csv',
#to take a copy of a data frame
car2=cars.copy()
car2.columns
     Index(['Price', 'Age', 'KM', 'FuelType', 'HP', 'MetColor', 'Automatic', 'CC',
            'Doors', 'Weight'],
           dtype='object')
car2.shape
car2.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 1436 entries, 0 to 1435 Data columns (total 10 columns):

Data	COTAIIII3 (CC	cai io coiumns)	•
#	Column	Non-Null Count	Dtype
0	Price	1436 non-null	int64
1	Age	1336 non-null	float64
2	KM	1421 non-null	float64
3	FuelType	1336 non-null	object
4	HP	1430 non-null	float64
5	MetColor	1286 non-null	float64
6	Automatic	1436 non-null	int64
7	CC	1436 non-null	int64
8	Doors	1436 non-null	object
9	Weight	1436 non-null	int64
dtype	es: float64	(4), int64(4), c	bject(2)

memory usage: 123.4+ KB

#checking for the presence of missingness car2.isnull().sum()

Price	0
Age	100
KM	15
FuelType	100
HP	6
MetColor	150
Automatic	0
CC	0
Doors	0
Weight	0
dtype: int64	

dtype: int64

#summary statistics car2.describe()

	Price	Age	KM	HP	MetColor	Automatic	1
count	1436.000000	1336.000000	1421.000000	1430.000000	1286.000000	1436.000000	1436.0000
mean	10730.824513	55.672156	68647.239972	101.478322	0.674961	0.055710	1566.8279
std	3626.964585	18.589804	37333.023589	14.768255	0.468572	0.229441	187.1824
min	4350.000000	1.000000	1.000000	69.000000	0.000000	0.000000	1300.0000
25%	8450.000000	43.000000	43210.000000	90.000000	0.000000	0.000000	1400.0000
50%	9900.000000	60.000000	63634.000000	110.000000	1.000000	0.000000	1600.0000
75%	11950.000000	70.000000	87000.000000	110.000000	1.000000	0.000000	1600.0000
max	32500.000000	80.000000	243000.000000	192.000000	1.000000	1.000000	2000.0000

▼ Central Tendency Measures

#to compute mean of a column in the data frame cars['Age'].mean()

55.67215568862275

```
#to compute median of a column in the data frame
cars['Age'].median()

#to compute mode of a column in the data frame
cars['Age'].mode()

0 65.0
dtype: float64

#to compute the quantile of a column in the data frame. check for quantile (0), quantile(1), quantil
cars['Age'].quantile()

60.0
```

Measures of dispersion

```
#to compute variance of a column in the data frame
cars['Weight'].var()
     2771.0875661196496
#to compute standard deviation of a column in the data frame
cars['Weight'].std()
     52.6411204869316
#correlation -to check whether linear relationship exists between 2 variables
cars['Price'].corr(cars['Age'])
     -0.8784074093622005
cars['Age'].value_counts()
     65.0
             62
     68.0
             60
     80.0
             52
     62.0
             41
     78.0
             41
     12.0
     10.0
     6.0
     18.0
              1
     2.0
     Name: Age, Length: 77, dtype: int64
pd.value_counts(cars['FuelType'])
     Petrol
               1177
     Diesel
                144
     CNG
                 15
     Name: FuelType, dtype: int64
```

#To create frequency table
pd.crosstab(index=cars['FuelType'],columns='count',dropna=True)

col_0	count
FuelType	
CNG	15
Diesel	144
Petrol	1177

#To create two-way table
pd.crosstab(index=cars['Automatic'],columns=cars['FuelType'],dropna=True)

FuelType	CNG	Diesel	Petrol	
Automatic				
0	15	144	1104	
1	0	0	73	

#Two-way table -Joint probability
pd.crosstab(index=cars['Automatic'],columns=cars['FuelType'],normalize=True,dropna=True)

FuelType	CNG	Diesel	Petrol	
Automatic				
0	0.011228	0.107784	0.826347	
1	0.000000	0.000000	0.054641	

#Two-way table -Margin probability
pd.crosstab(index=cars['Automatic'],columns=cars['FuelType'],normalize=True,margins=True,dropna=True

FuelType	CNG	Diesel	Petrol	All
Automatic				
0	0.011228	0.107784	0.826347	0.945359
1	0.000000	0.000000	0.054641	0.054641
All	0.011228	0.107784	0.880988	1.000000

#Two-way table -conditional probability
pd.crosstab(index=cars['Automatic'],columns=cars['FuelType'],normalize='index',margins=True,dropna=T

FuelType	CNG	Diesel	Petrol	
Automatic				
0	0.011876	0.114014	0.874109	
1	0.000000	0.000000	1.000000	
All	0.011228	0.107784	0.880988	

#Two-way table -conditional probability
pd.crosstab(index=cars['Automatic'],columns=cars['FuelType'],normalize='columns',margins=True,dropna

FuelType	CNG	Diesel	Petrol	All	
Automatic					
0	1.0	1.0	0.937978	0.945359	
1	0.0	0.0	0.062022	0.054641	

#correlation - to consider the columns having only numerical values
num_data=cars.select_dtypes(exclude=[object])

num_data.columns

Index(['Price', 'Age', 'KM', 'HP', 'MetColor', 'Automatic', 'CC', 'Weight'], dtype='object')

#correlation matrix
corr_val=num_data.corr()
corr_val

	Price	Age	KM	НР	MetColor	Automatic	сс	Weight
Price	1.000000	-0.878407	-0.574720	0.309902	0.112041	0.033081	0.165067	0.581198
Age	-0.878407	1.000000	0.512735	-0.157904	-0.099659	0.032573	-0.120706	-0.464299
KM	-0.574720	0.512735	1.000000	-0.335285	-0.093825	-0.081248	0.299993	-0.026271
HP	0.309902	-0.157904	-0.335285	1.000000	0.064749	0.013755	0.053758	0.086737
MetColor	0.112041	-0.099659	-0.093825	0.064749	1.000000	-0.013973	0.029189	0.057142
Automatic	0.033081	0.032573	-0.081248	0.013755	-0.013973	1.000000	-0.069321	0.057249
CC	0.165067	-0.120706	0.299993	0.053758	0.029189	-0.069321	1.000000	0.651450
Weight	0.581198	-0.464299	-0.026271	0.086737	0.057142	0.057249	0.651450	1.000000

×