Лабораторная работа №6 «Помехоустойчивое кодирование. Код Хэмминга»

Перепелица А.А., ККСО-01-19

Москва, 2022 г.

Цель работы: ознакомление с принципами помехоустойчивого кодирования и приобретение практических навыков моделирования работы кодеров и декодеров.

1 Задание №1: формирование бита чётности

1.1 Формирование бита чётности

Сформировать бит чётности (бит паритета) для заданного байта передаваемых данных. Исходными данными является последовательность 10111010 (15-й вариант).

Паритетный бит k для n-битного двоичного слова $b_n \dots b_2 b_1$ вычисляется по формуле:

$$k = b_n \oplus \ldots \oplus b_2 \oplus b_1$$

Таким образом, число единиц в последовательности будет всегда чётным. Для нашего примера получим выражение:

$$k=1\oplus 0\oplus 1\oplus 1\oplus 1\oplus 0\oplus 1\oplus 0=1$$

Тогда k=1, кодовая комбинация будет равна: 101110101.

Задание №2: Исследование помехоустойчивого кода с формированием бита чётности

2.1 Исходные данные для задания

Информационные биты S_1, S_2, S_3, S_4	Помехи S_8 , S_7 , S_6 , S_5	Помехи S_8 , S_7 , S_6 , S_5	Помехи S_8 , S_7 , S_6 , S_5	Помехи S_8 , S_7 , S_6 , S_5
1110	0000	0010	1100	1011

Таблица 1 - Исходные данные для задания N2

2.2 Перечень элементов, использованных в схемах, с их краткими характеристиками

- XOR5
- XOR4
- XOR2 4 шт.
- Цифровой источник питания
- Ключ 8 шт.
- Индикатор 2 шт.

2.3 Схема для моделирования процесса передачи информации по каналу связи

Рис. 1 - Схема для исследования кода с формированием бита чётности

2.4 Результаты расчетов

Рис. 2 - Схема при первой помехе - 0000.

Рис. 3 - Схема при второй помехе - 0010.

Рис. 4 - Схема при третьей помехе - 1100.

Рис. 5 - Схема при четвертой помехе - 1011.

3 Задание №3: Исправление ошибки с помощью кода Хэмминга

Расчётным путём, точнее вручную, определим, в каком разряде кода Хэмминга произошло искажение.

3.1 Исходные данные для задания

	i_8	i_7	i_6	i_5	k_4	i_4	i_3	i_2	k_3	i_1	k_2	k_1
ſ	1	0	1	0	0	1	1	0	0	1	0	0

Таблица 2 - Исходные данные для задания №3.

3.2 Процесс вычисления искажённого бита

Найдём значения k-х битов на приеме:

$$k'_1 = i_3 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$k_2' = i_3 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$k_3' = i_5 \oplus i_6 \oplus i_7 \oplus i_{12} = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$k_4' = i_9 \oplus i_{10} \oplus i_{11} \oplus i_{12} = 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

k-е биты на передающей принимающей стороне отличаются, что свидетельствует о наличии ошибки.

Определим синдром $S = S_4 S_3 S_2 S_1$:

$$S_1 = k_1 \oplus k_1' = 0 \oplus 1 = 1$$

$$S_2 = k_2 \oplus k_2' = 0 \oplus 0 = 0$$

$$S_3 = k_3 \oplus k_3' = 0 \oplus 1 = 1$$

$$S_4 = k_4 \oplus k_4' = 0 \oplus 1 = 1$$

 $S=0101_2=5_{10}=>5$ -й бит искажен. Корректный код будет иметь вид:

i_8	i_7	i_6	i_5	k_4	i_4	i_3	i_2	k_3	i_1	k_2	k_1
1	0	1	0	0	1	1	1	0	1	0	0

4 Задание №4: Моделирование работы кода Хэмминга

4.1 Исходные данные для задания

Исходные данные приведены в таблице 2.

4.2 Перечень элементов, использованных в схемах, с их краткими характеристиками.

- XOR5 4 шт.
- XOR4 4 шт.
- XOR2 16 mt.
- Цифровой источник питания
- Генератор слов
- Ключ 8 шт.
- Индикатор 12 шт.

4.3 Схема для исследования работы кода Хэмминга

Рис 6 - Схема моделирования работы кода Хэмминга в системе передачи информации.

4.4 Результаты расчётов

Ниже представлена таблица помех и показаний схемы моделирования работы кода Хэмминга:

В каком бите искажение	Значения контрольных битов на приёмнике	Синдром	HEX
k_1	0010	0001	1
k_2	0010	0010	2
i_1	1110	0011	3
k_3	0010	0100	4
i_2	1000	0101	5
i_3	0100	0110	6
k_4	1100	0111	7
i_4	0010	1000	8
i_5	1010	1001	9
i_6	0111	1010	A
i_7	1111	1011	В
i_8	0001	1100	С

Вывод: В ходе работы были изучены теоретические аспекты помехоустойчивого кодирования, а также приобретены практические навыки моделирования работы кода Хэмминга.