Math 140A: Homework 10

Merrick Qiu

\mathbf{A}

Choose $\epsilon>0$. From the limits we know that there exist c_1,c_2 such that $x>c_1$ implies that $|x-\ell_1|<\frac{\epsilon}{2}$ and $x< c_2$ implies that $|x-\ell_2|<\frac{\epsilon}{2}$. For all $c_2-1\le x\le c_1+1$, f is uniformly continuous since $[c_2-1,c_1+1]$ is a compact set. Assume that we choose a $\delta<1$. $[c_1,\infty]$ and $[-\infty,c_2]$ are uniformly continuous for any δ since we chose c_1 and c_2 such that all points are within ϵ of each other. Thus, the function is uniformly continuous.

\mathbf{B}

Choose
$$\epsilon>0$$
. If we choose $\delta<\left(\frac{\epsilon}{c}\right)^{\frac{1}{\alpha}},$ Then
$$d(f(x),f(y))\leq Cd(x,y)^{\alpha}<\epsilon$$

$$d(f(x), f(y)) \le Cd(x, y)^{\alpha} < \epsilon$$

so f is uniformly continuous.

\mathbf{C}

f is a homeomorphism iff the image of an open set is an open set as well. All connected sets in $\mathbb R$ are intervals, and the image of f on a connected set must also be connected, so f((a,b)) must also be an interval for all $a,b\in\mathbb R$. This interval must be open as well since continuous bijections map open intervals to open intervals. Since all open sets can be expressed as the countable union of open intervals, f maps open sets to open sets. Thus f is a homeomorphism.

Let $y \in f(\overline{E})$ and $x \in \overline{E}$ with f(x) = y. Since \overline{E} is a closure, there must exist a sequence $x_i \to x$ where $x_i \in E$ for all i. Thus all the points in the sequence $f(x_i)$ are in the image, f(E), and $\lim f(x_i) = f(\lim x_i) = y$ due to the continuity of f, so $g \in \overline{f(E)}$. Since g was arbitrary, we have that $g(E) \subset \overline{f(E)}$.

 $\frac{\text{If }f:[1,\infty)\to\mathbb{R},\ f(x)=\frac{1}{x}\ \text{and}\ E=[1,\infty),\ \text{then}\ f(\overline{E})=(0,1]\ \text{but}}{\overline{f(E)}=[0,1]}$

Since E is dense in X, every point $x \in X$ is the limit of some sequence of points, $x_i \to x$ where $x_i \in E$, for all i. Since f is continuous we have that $\lim f(x_i) = f(\lim x_i) = f(x)$, so every point f(x) can also be represented as a sequence of points from f(E). Thus f(E) is dense in f(X).

If $g(x_i) = f(x_i)$ for all $x_i \in E$, then $f(x) = \lim f(x_i) = \lim g(x_i) = g(x)$, so f(x) = g(x).

(\Longrightarrow) Take a sequence of points in the graph $(x_n, f(x_n))$. Since E is compact, there is a subsequence $x_{n_k} \to x$ for some x. Since f is continuous, we also have that $f(x_{n_k}) \to f(x)$, so any sequence of points in the graph has a convergent subsequence, so the graph is compact.

(\Leftarrow) Let $x \in E$. Take a sequence of points in the graph $(x_n, f(x_n))$ such that $x_n \to x$. By compactness, there exists a convergent subsequence $(x_{n_k}, f(x_{n_k})) \to (x, f(x))$. It is the case that $f(x_{n_k}) \to f(x)$ because if it did not, then the graph would fail to contain the limit point (x, f(x)), which would contradict the fact that the graph is compact.

Let $a=\inf E$ and $b=\sup E$ For some $\epsilon>0$, there exists δ such that all points $p,q\in E$ with $|p-q|<\delta$ implies that $|f(p)-f(q)|<\epsilon$. We can "divide up" E into $N=\lceil\frac{b-a}{\delta}\rceil$ sections. We have that $\inf f(E)\geq f(a)-N*\epsilon$ and $\sup f(E)\leq f(a)+N*\epsilon$ since the maximum amount of change that can occur within a delta neighborhood of a point is ϵ . Thus, f(E) is bounded.

If we define $g(x)=f(x)-x,\,0\leq g(0)\leq 1$ and $-1\leq g(1)\leq 0$. By the intermediate value theorem, g(x)=0 at some point, so there exists some point where f(x)=x.

At every point p, the limit is 0. For any $\epsilon>0$ we can find n such that $\frac{1}{n}<\epsilon$ by the archimedes principle. Then we can choose δ such that all rational numbers with denominator < n are not in the delta neighborhood around p. This is possible because there is a finite number of rational numbers with denominators from 1 to n.

All the points x in this δ neighborhood have $|x-0| < \epsilon$, so the function converges to 0 at all points. However only irrational points evaluate to 0 so the function is only continuous at irrational points, but it has simple discontinuity at every rational point.