Clarke dual method for Hamiltonian systems with non standard grow

(In alphabetical order)

Sonia Acinas *

Dpto. de Matemática, Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa (L6300CLB) Santa Rosa, La Pampa, Argentina sonia.acinas@gmail.com

Jakub Maksymiuk

Fernando D. Mazzone †

Dpto. de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales
Universidad Nacional de Río Cuarto
(5800) Río Cuarto, Córdoba, Argentina,
fmazzone@exa.unrc.edu.ar

Abstract

In this paper we consider the problem of finding periodic solutions of certain Hamiltonian systems \dots blablabla

1 Main problem

Let $H:[0,T]\times\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$. We are looking for periodic solutions of the Hamiltonian system

$$\begin{cases} \dot{q}(t) &= D_p H(t, q(t), p(t)) \\ \dot{p}(t) &= -D_q H(t, q(t), p(t)) \\ p(0) &= p(T), q(0) = q(T) \end{cases}$$
 (1)

for $t \in [0, T]$. I think that, like in [7], is better to present the Hamiltonian problem as the main problem

^{*}SECyT-UNRC, FCEyN-UNLPam and UNSL

[†]SECyT-UNRC, FCEyN-UNLPam and CONICET

²⁰¹⁰ AMS Subject Classification. Primary: 34C25. Secondary: 34B15.

 $^{{\}bf Keywords}$ and ${\bf phrases.}$ Periodic Solutions, Orlicz Spaces, Euler-Lagrange, Critical Points.

An alternative writing of (1) using the combined variable u = (q, p) and the canonical symplectic matrix

$$J = \begin{pmatrix} 0 & I_{d \times d} \\ -I_{d \times d} & 0 \end{pmatrix}$$

is the following

$$\dot{u} = J\nabla H(t, u(t)) \tag{2}$$

or equivalently

$$J\dot{u} = -\nabla H(t, u(t)) \tag{3}$$

where ∇H is the gradient of H with respect to the combined variable.

2 Preliminaries

We will use some basic concepts of convex analysis that we list below.

Let
$$\Gamma_0(\mathbb{R}^d) = \{F : \mathbb{R}^d \to (-\infty, +\infty)\}$$

convex, lower semicontinous functions with non-empty effective domain.

The Fenchel conjugate of F is given by

$$F^{\star}(p) = \sup_{q \in \mathbb{R}^d} \langle p, q \rangle - F(q)$$

The Fenchel conjugate satisfies the following properties:

- 1. $F^* \in \Gamma_0(\mathbb{R}^d)$
- 2. If $F \leq G$, then $G^* \leq F^*$.
- 3. If $G(q) = \alpha F(\beta q) + \sigma$ with $\alpha, \beta, \sigma > 0$ then $G^{\star}(p) = \alpha F^{\star}(\frac{p}{\beta \alpha}) \sigma$

Let $\Phi : \mathbb{R}^d \to [0, +\infty)$ be a differentiable, convex function such that $\Phi(0) = 0$, $\Phi(q) > 0$ if $q \neq 0$, $\Phi(-q) = \Phi(q)$, and

$$\lim_{|q| \to \infty} \frac{\Phi(q)}{|q|} = +\infty, \tag{4}$$

where $|\cdot|$ denotes the euclidean norm on \mathbb{R}^d . From now on, we say that Φ is an G-function if Φ satisfies the previous properties.

We write Φ^* for the Fenchel conjugate of Φ .

We do not assume that Φ and Φ' satisfy the Δ_2 -condition.

We denote by $\partial F(q)$ the subdifferential of F in the sense of convex analysis (see [2, 3])

The next result is a generalization of [6, Prop. 2.2, p.34]

Proposition 2.1. Let $F \in \Gamma_0(\mathbb{R}^d)$. Suppose that there exist an anisotropic function Φ and non negative constants β, γ such that

$$-\beta \leqslant F(q) \leqslant \Phi(q) + \gamma, \text{ for all } q \in \mathbb{R}^d.$$
 (5)

Now, if $p \in \partial F(q)$ then

$$\Phi^{\star}(p) \leqslant \Phi(2q) + 2(\beta + \gamma). \tag{6}$$

Proof. If $p \in \partial F(q)$, from [6, Thm. 2.2, p.33],

$$F^{\star}(p) = \langle p, q \rangle - F(q) \tag{7}$$

Conjugating (5), we have

$$F^{\star}(p) \geqslant \Phi^{\star}(p) - \gamma. \tag{8}$$

From Young's inequality, we get

$$\langle p, q \rangle = \frac{1}{2} \langle p, 2q \rangle \leqslant \frac{1}{2} \Phi^{\star}(p) + \frac{1}{2} \Phi(2q)$$
 (9)

By eqs. (5) and (7) to (9), we get

$$\Phi^{\star}(p) \leqslant \frac{1}{2}\Phi^{\star}(p) + \frac{1}{2}\Phi(2q) + \beta + \gamma$$

which implies (6)

Remark 1. Inequality (6) is a few better than the corresponding in [6, Prop. 2.2] because the the case of power function we obtain $(\beta + \gamma)^{1/p}$, meanwhile in [6] appears $(\beta + \gamma)^{1/(p-1)}$.

3 Optimal bounds for a symplectic bilinear form

We consider the Euclidean space \mathbb{R}^{2n} equipped with the standard symplectic structure given by bilinear canonical symplectic 2-form

$$\Omega(u,v) := \langle Ju,v \rangle.$$

As Jakub observed we can not consider any G-function on the symplectic manifold \mathbb{R}^{2n} . I think that the following can be the appropriate form of the G-function defined on the symplectic manifold \mathbb{R}^{2n}

Definition 3.1. Let $\Psi: \mathbb{R}^{2n} \to \mathbb{R}$ be an anisotropic function G-function. We say that Ψ is a symplectic G-function if $\Psi^*(Ju) < \Psi(u)$, i.e. there exists C, k > 0 such that

$$\Psi^*(Ju) \leqslant \Psi(ku) + C$$

Given $u = (q, p) \in \mathbb{R}^{2n}$ and $\Phi : \mathbb{R}^n \to \mathbb{R}$, Jakub define $\hat{\Phi} : \mathbb{R}^{2n} \to \mathbb{R}$ by

$$\hat{\Phi}(q, p) = \Phi(q) + \Phi^*(p)$$

with $\Phi^* < \Phi$.

Proposition 3.2. $\hat{\Phi}$ is symplectic.

Proof. We have
$$\hat{\Phi}^*(q,p) = \Phi^*(q) + \Phi^*(p)$$
, then $\hat{\Phi}^*(Ju) = \Phi^*(p) + \Phi^*(-q) < \Phi(q) + \Phi(p) = \hat{\Phi}(u)$.

Fernando suggests $\overline{\Phi}(q, p) = \Phi(q) + \Phi^*(p)$.

Proposition 3.3. $\overline{\Phi}$ is symplectic.

Proof. We have $\Phi^*(q,p) = \Phi(p) + \Phi^*(q)$, then $\overline{\Phi}^*(Ju) = \Phi(-q) + \Phi^*(p) = \overline{\Phi}(u)$.

Theorem 3.4. *J* induces an embedding of $L^{\Psi^*}([0,T],\mathbb{R}^{2n})$ into $L^{\Psi}([0,T],\mathbb{R}^{2n})$ when Ψ is symplectic.

Proof. As Ψ is symplectic, there exist k, c such that $\Psi^*(Ju) < \Psi(ku) + c$ then

$$\int \Psi^* \left(\frac{Ju}{k\lambda} \right) \leqslant cT + \int \Psi \left(\frac{u}{\lambda} \right) < \infty$$

If $||u||_{L^{\Psi}} = 1$, then $\int \Psi(u) \leq 1$ and

$$\int \Psi^* \left(\frac{Ju}{k} \right) \leqslant cT + 1$$

As Ψ^* is convex, we have

$$\int \Psi^* \left(\frac{Ju}{(cT+1)\lambda} \right) \leqslant \frac{1}{cT+1} \int \Psi^* \left(\frac{Ju}{k} \right) \leqslant 1$$

then

$$||Ju||_{T\Psi^*} \leq (cT+1)k := c_0$$

Finally, for any u,

$$||Ju||_{L^{\Psi^*}} \leqslant c_0 ||u||_{L^{\Psi}}.$$

Corollary 3.5. If $\Omega(u,v) = \int Jv \cdot u$ and Ψ is symplectic, then Ω is well defined in $L^{\psi} \times L^{\Psi}$.

Theorem 3.6. Let Φ be a symplectic G-function. There exist C_{Φ} , C_1 and $\Lambda > 0$ such that for every $u \in W_T^1L^{\Phi}([0,T],\mathbb{R}^{2n})$ we have

$$\Omega(\dot{u}, u) := \int_0^T J \dot{u} \cdot u \, dt \geqslant -C_{\Phi} \int_0^T \Phi\left(\frac{\dot{u}}{\Lambda}\right) \, dt - C_1 \tag{10}$$

Proof. Let $u \in W^1L^{\Phi}([0,T],\mathbb{R}^{2n})$. As usual we write $u = \tilde{u} + \overline{u}$ where

$$\overline{u} = \frac{1}{T} \int_{0}^{T} u(t)dt.$$

From [8, Lem. 2.4] we have that

$$\int_{0}^{T} \Phi(\tilde{u})dt \leqslant \int_{0}^{T} \Phi(T\dot{u})dt. \tag{11}$$

By Young's inequality, the fact that a Φ is a simplectic G-function and (11), we obtain

$$\int_{0}^{T} J\dot{u} \cdot u \, dt = \frac{k}{T} \int_{0}^{T} J \frac{T\dot{u}}{k} \cdot \tilde{u} \, dt \geqslant$$

$$-\frac{k}{T} \left\{ \int_{0}^{T} \Phi^{*} \left(J \frac{T\dot{u}}{k} \right) \, dt + \int_{0}^{T} \Phi(\tilde{u}) \, dt \right\} \geqslant$$

$$-\frac{k}{T} \left\{ 2 \int_{0}^{T} \Phi(T\dot{u}) \, dt + C \right\}$$

4 Differentiability of Hamiltonian dual action

Theorem 4.1. Suppose that $\Phi: \mathbb{R}^{2n} \to [0, +\infty)$ is a differentiable G-function, not necessarily symplectic. Additionally

- 1. $H:[0,T]\times\mathbb{R}^{2n}\to\mathbb{R}$ is measurable in t, continuously differentiable with respect to u.
- 2. there exist $\beta, \gamma \in L^1([0,T],\mathbb{R}), \Lambda > \lambda > 0$ such that

$$\Phi^{\star}\left(\frac{u}{\Lambda}\right) - \beta(t) \leqslant H(t, u) \leqslant \Phi^{\star}\left(\frac{u}{\Lambda}\right) + \gamma(t) \tag{12}$$

Then there exists Λ_0 such that the dual action

$$\chi(v) = \int_0^T \frac{1}{2} \langle J\dot{v}, v \rangle + H^*(t, \dot{v}) dt \tag{13}$$

is continuously differentiable in $W^1L_T^{\Phi}([0,T],\mathbb{R}^{2n}) \cap \{u|d(\dot{u},L^{\infty})<\Lambda_0\}$. If v is a critical point of χ with $d(\dot{v},L^{\infty})<\Lambda_0$, the function defined by $u(t)=\nabla H^{\star}(t,\dot{v})$ solves

$$\left\{ \begin{array}{ll} \dot{u} & = & J \nabla H(t, u) \\ u(t) & = & u(T) \end{array} \right.$$

Proof. Conjugating 2 we obtain

$$\Phi(\lambda u) - \gamma(t) \leqslant H^{\star}(t, v) \leqslant \Phi(\Lambda v) + \beta(t) \tag{14}$$

Since H^* is smooth, we have $\partial_v H^*(t,v) = \{\nabla_v H^*(t,v)\}$. Applying Proposition 2.1 with $F = H^*$, $\Phi(\Lambda v)$ instead of $\Phi(u)$ and $u = \nabla H^*(t,v) \in \partial_v H(t,v)$, inequality (12) becomes

$$\Phi^{\star}\left(\frac{\nabla H^{\star}(t,v)}{\Lambda}\right) \leqslant \Phi(2\Lambda v) + 2(\beta + \gamma). \tag{15}$$

which will be the main inequality in the proof.

We are planning to obtain the structure condition (??) of [8] which guarantees differentiability.

We consider the Lagrangian

$$\mathcal{L}(t, v, \xi) = \frac{1}{2} \langle J\xi, v \rangle + H^{\star}(t, \xi)$$
 (16)

and we have to prove that there exist $\Lambda_0 > \lambda_0 > 0$ such that

$$|\mathcal{L}| + |\nabla_v \mathcal{L}| + \Phi^* \left(\frac{\nabla_{\xi} \mathcal{L}}{\lambda_0}\right) \leqslant a(v) \left(b(t) + \Phi\left(\frac{\xi}{\Lambda_0}\right)\right)$$
 (17)

We start with $|\mathcal{L}|$. From (14),

$$|\mathcal{L}| \leqslant \frac{1}{2} |\langle J\xi, v \rangle| + H^{\star}(t, \xi) \leqslant \frac{1}{2} |\xi| |v| + \Phi(\Lambda \xi) + \beta(t).$$

Since $\frac{\Phi(x)}{|x|} \to \infty$ as $|x| \to \infty$, there exists C > 0 such that $|x| \le \Phi(x) + C$ for all $x \in \mathbb{R}^d$. Then,

$$|\mathcal{L}| \leqslant \frac{1}{2} \frac{|v|}{\Lambda} \left(\Phi(\Lambda \xi) + C \right) + \Phi(\Lambda \xi) + \beta(t) \leqslant \max \left\{ \Lambda, \frac{|v|}{2\Lambda} \right\} \left[\Phi(\Lambda \xi) + C + \beta(t) \right]$$

which is an estimate like the second member of (17).

Now, we treat $|\nabla_v \mathcal{L}|$ and we get

$$|\nabla_{\nu}\mathcal{L}| = \frac{1}{2}|J\xi| \le |\xi| \le \frac{1}{2\Lambda}(\Phi(\Lambda\xi) + C). \tag{18}$$

which is also an estimate of the desired type.

Finally, we deal with $\Phi(\nabla_{\xi}\mathcal{L}\lambda_0)$. As Φ^{\star} is a convex, even function, we have

$$\Phi^{\star}\left(\frac{\nabla_{\xi}\mathcal{L}}{\lambda_{0}}\right) = \Phi^{\star}\left(\frac{-\frac{1}{2}Jv}{\lambda_{0}} + \frac{\nabla H^{\star}(t,\xi)}{\lambda_{0}}\right) \leqslant \frac{1}{2}\Phi^{\star}\left(\frac{Jv}{\lambda_{0}}\right) + \frac{1}{2}\Phi^{\star}\left(\frac{2\nabla H^{\star}(t,\xi)}{\lambda_{0}}\right).$$

We choose $\frac{2}{\lambda_0} = \frac{1}{\Lambda}$ with Λ as in (15) and we finally have

$$\Phi^{\star}\left(\frac{\nabla_{\xi}\mathcal{L}}{\lambda_{0}}\right) \leqslant \Phi^{\star}\left(\frac{Jv}{2\Lambda}\right) + \Phi(2\Lambda\xi) + 2(\beta + \gamma) =$$

$$\max\left\{\Phi^{\star}\left(\frac{Jv}{2\Lambda}\right), 1\right\} \left[\Phi(2\Lambda\xi) + 2(\beta + \gamma)\right]$$
(19)

which is a bound like the second member of (17).

Therefore, from (17), (18), (19) and choosing the worst functions a and b, we obtain condition (??).

Next, [8, Thm. 4.5] implies differentiability of χ in a set like $W^1L_T^{\Phi}([0,T],\mathbb{R}^d) \cap \{u|d(\dot{u},L^{\infty})<\lambda_0\}.$

If $v \in W^1L_T^{\Phi}([0,T],\mathbb{R}^d)$ is a critical point of χ with $d(v,L^{\infty}) < \lambda_0$ then, from equations (21) of [8] we obtain

$$0 = \int_0^T \frac{1}{2} \langle J\dot{v}, h \rangle - \frac{1}{2} \langle \dot{h}, Jv \rangle + \langle \nabla H^*(t, \dot{v}), \dot{h} \rangle.$$

The rest of the proof follows as in [6].

5 Existence periodic solutions Hamiltonian system

The following theorem extend to a quite general function Φ the result in [6, Thm. 3.1] formulated for $\Phi_2(u) = |u|^2/2$. Even more, our result improves a little bit [6, Thm. 3.1] in the sense that we obtain existence for Φ_2 when the functions l and γ , introduced below, belong to L^2 and L^1 respectively instead of L^4 and L^2 as it is assumed in [6, Thm. 3.1]. This little improvement is due to the observation in Remark 1.

Theorem 5.1. Suppose that Φ is a symplectic G-function and

H1) There exists $\xi \in E^{\Phi}([0,T],\mathbb{R}^{2n})$ such that for every $u \in \mathbb{R}^{2n}$ and a.e. $t \in [0,T]$

$$H(t,u) \geqslant \langle \xi(t), u \rangle$$
.

H2) There exists Λ_0 (indicar dónde vive en función de C_{Φ^*} ???) and $\alpha \in L^1([0,T],\mathbb{R})$ such that, for every $(t,u) \in [0,T] \times \mathbb{R}^{2n}$ and a.e. $t \in [0,T]$, we have

$$H(t,u) \leqslant \Phi\left(\frac{u}{\Lambda_0}\right) + \alpha(t).$$

H3)

$$\int_0^T H(t,u)dt \to +\infty, \quad when \ |u| \to +\infty.$$

Then the problem xxxxx has at least one solution u such that

$$v(t) = -J\left[u(t) - \frac{1}{T} \int_0^T u(s) \, ds\right]$$

minimizes the dual action

$$\chi(v) = \int_0^T \frac{1}{2} \langle J\dot{v}, v \rangle + H^{\star}(t, \dot{v}) dt$$

Proof. Suppose that 0 < r < 1 and $\epsilon < \frac{r}{\Lambda_0}$ We define

$$H_{\epsilon}(t, u) = H(t, u) + \Phi(\epsilon u)$$

By H1), Young's inequality and the convexity of Φ , we have

$$H_{\epsilon}(t,u) \geqslant \langle \xi(t), u \rangle + \Phi(\epsilon u)$$

$$\geqslant -\Phi^{\star} \left(\frac{\Lambda_0}{r\epsilon} \xi(t)\right) - \Phi(r\epsilon u) + \Phi(\epsilon u)$$

$$\geqslant \Phi((1-r)\epsilon u) + \beta(t)$$
(20)

where $\beta(t) := \frac{\Lambda_0}{r\epsilon} \xi(t) \in L^1$.

On the other hand

$$H_{\epsilon}(t,u) \leqslant \Phi\left(\frac{u}{\Lambda_0}\right) + \alpha(t) + \Phi(\epsilon u) \leqslant (1+r)\Phi\left(\frac{u}{\Lambda_0}\right) + \alpha(t)$$
 (21)

From (20), (21) and properties of Fenchel conjugate, we get

$$(1+r)\Phi^{\star}\left(\frac{\Lambda_{0}u}{1+r}\right) - \alpha(t) \leqslant H_{\epsilon}^{\star}(t,u) \leqslant \Phi^{\star}\left(\frac{u}{(1-r)\epsilon}\right) + \beta(t). \tag{22}$$

The perturbed Hamiltonian H_{ϵ} verifies the assumptions of Theorem 4.1, then the dual action χ_{ϵ} is continuously differentiable in $W^1L_T^{\Phi}([0,T],\mathbb{R}^{2n}) \cap \{u|d(\dot{u},L^{\infty})<\lambda_0\}.$

VER QUIEN EN λ_0 ???

Now, we deal with the coercivity of χ_{ϵ} given by

$$\chi_{\epsilon}(v) = \int_{0}^{T} \frac{1}{2} \langle J\dot{v}, v \rangle + H_{\epsilon}^{\star}(t, \dot{v}) dt$$
 (23)

From (22) and (10), we have

$$\chi_{\epsilon}(v) \geqslant -\frac{C_{\Phi^{\star}}}{2} \int_{0}^{T} \Phi^{\star}(T\dot{v}) \, dt + (1+r) \int_{0}^{T} \Phi^{\star}\left(\frac{\Lambda_{0}\dot{v}}{1+r}\right) \, dt - \int_{0}^{T} \alpha(t) \, dt - \frac{C_{1}}{2} T \, dt$$

En el papel, no aparece el 2 dividiendo. No sería necesario, porque acotaríamos por -1, pero no recuerdo si esa era la idea o fue un olvido. En la cuenta final, no molesta genera problemas dejar el 2.

Let $\Lambda_0 \geqslant \max\{(1+r)T, C_{\Phi^*}T\}$, then $\Lambda_0 > \max\{T, C_{\Phi^*}T\}$, $\frac{\Lambda_0}{T} > 1$ and there exists r > 0 such that $\frac{\Lambda_0}{T} = (1+r)$.

Thus.

$$\begin{split} \chi_{\epsilon}(v) \geqslant -\frac{C_{\Phi^{\star}}}{2} \int_{0}^{T} \Phi^{\star}(T\dot{v}) \, dt + \frac{\Lambda_{0}}{T} \int_{0}^{T} \Phi^{\star}\left(T\dot{v}\right) \, dt - \int_{0}^{T} \alpha(t) \, dt - \frac{C_{1}}{2} T \\ &= \left(-\frac{C_{\Phi^{\star}}}{2} + \frac{\Lambda_{0}}{T}\right) \int_{0}^{T} \Phi^{\star}\left(T\dot{v}\right) dt - \int_{0}^{T} \alpha(t) \, dt - \frac{C_{1}}{2} T \\ &> \left(-\frac{C_{\Phi^{\star}}}{2} + C_{\Phi^{\star}}\right) \int_{0}^{T} \Phi^{\star}\left(T\dot{v}\right) dt - \int_{0}^{T} \alpha(t) \, dt - \frac{C_{1}}{2} T \\ &= \frac{C_{\Phi^{\star}}}{2} \int_{0}^{T} \Phi^{\star}\left(T\dot{v}\right) dt - \int_{0}^{T} \alpha(t) \, dt - \frac{C_{1}}{2} T \end{split}$$

No creo que sea necesario tanto detalle en la cuenta anterior, pero como no la habíamos escrito en el papel, la hice para ver cómo salía.

Observaciones de último momento!

- $\bullet\,$ Habría que definir si usamos n o d porque un poco de \mathbb{R}^d y otro poco de \mathbb{R}^n
- Un problema similar tenemos con Φ y Ψ .
- Ahora recuerdo que dijiste algo sobre NO escribir UN resultado como el Teorema 3.1, sino varios resultados individuales (difrenciabilidad, coercividad, minimizacin, etc)

6 Cota óptima y muchas otras cosas...

Quizás aquí haya cosas que deben colocarse antes, pero me generaban confusión en el medio y por eso las acumulé acá.

6.1 Caso L^p para cota óptima

Let $u \in H_T^{1,p}([0,T],\mathbb{R}^d)$. Then

$$\int_0^T |u - \overline{u}|^{p'} dt \leqslant C_p T^p \int_0^T |u'|^p dt \tag{24}$$

where the optimal constant satisfies

$$C_{p}^{-1} := \inf \left\{ T^{p} \frac{\int_{0}^{T} |u'|^{p} dt}{\int_{0}^{T} |u - \overline{u}|^{p} dt} | u \in H_{T}^{1,p} \right\} =$$

$$\inf \left\{ T^{p} \frac{\int_{0}^{T} |u'|^{p} dt}{\int_{0}^{T} |u|^{p} dt} | u \in H_{T}^{1,p}, \int_{0}^{T} u dt = 0 \right\}$$

$$(25)$$

Lemma 6.1. C_p given by (25) is independent of T.

Proof. Let $T \neq T'$. If u is a function such that

$$C_p^{-1}(T) + \epsilon > T^p \frac{\int_0^T |u'|^p dt}{\int_0^T |u|^p dt}$$
 (26)

Performing the change of variable $s = \frac{T'}{T}t$ and calling $r = \frac{T}{T}$, we have

$$T^{p} \frac{\int_{0}^{T} |u'(t)|^{p} dt}{\int_{0}^{T} |u(t)|^{p} dt} = T^{p} \frac{\int_{0}^{T} |u'(rs)|^{p} ds}{\int_{0}^{T} |u(rs)|^{p} dt} = (T')^{p} \frac{\int_{0}^{T} |v'(s)|^{p} ds}{\int_{0}^{T} |v(s)|^{p} dt} \geqslant C_{p}^{-1}(T') \qquad (27)$$

where v(s)=u(rs). Therefore, $C_p^{-1}(T')\leqslant C_p^{-1}(T)$ and consequently $C_p(T')=C_p(T)$.

Lemma 6.2.

$$C_p^{-1} = \inf \left\{ T^p \int_0^T |u'|^p \, dt | u \in H_T^{1,p}, \ \int_0^T u \, dt = 0, \int_0^T |u|^p \, dt = 1 \right\}$$
 (28)

Proof. The existence of a minimum follows as usual by means of a minimizing sequence.

More details....?

We employ the method of Lagrange multipliers to solve an optimization problem with constraints. We will look for critical points of

$$I = \int_0^T |u'|^p dt - \lambda \int_0^T |u|^p dt + \mu \cdot \int_0^T u dt, \ u \in H_T^{1,p}$$
 (29)

The Gâteaux derivative of the functional is given by

$$\langle I'(u), v \rangle = \int_0^T p|u'|^{p-2}u' \cdot v' \, dt - p\lambda \int_0^T |u|^{p-2}u \cdot v \, dt + \mu \int_0^T v \, dt =$$

$$\int_0^T \left\{ \frac{d}{dt} (p|u'|^{p-2}u') - p\lambda |u|^{p-2}u + \mu \right\} \cdot v \, dt + p|u'|^{p-2}u' \cdot v|_0^T = 0$$
(30)

Since v is an arbitrary function, we choose v such that v(0) = v(T) = 0 and we obtain

$$\frac{d}{dt}(p|u'|^{p-2}u') - p\lambda|u|^{p-2}u + \mu = 0 \quad a.e.$$
 (31)

This fact implies that $p|u'|^{p-2}u'\cdot v|_0^T=0 \ \forall v\in H_T^{1,p}$, that is

$$[p|u'(T)|^{p-2}u'(T) - p|u'(0)|^{p-2}u'(0)] \cdot v(0) = 0.$$
(32)

Then u'(T) = u'(0). Now, integrating (31), we get

$$p\lambda \int_0^T |u|^{p-2}u \, dt + \mu T = 0.$$

If p = 2 then $\mu = 0$ and

$$\begin{cases} u'' + \lambda u &= 0 \\ u(0) &= u(T) \\ \int_0^T u \, dt &= 0 \end{cases}$$

The normalized solution is $u(t) = \cos(\sqrt{\lambda}t)u_0 + \sin(\sqrt{\lambda}t)u_1$ with $u_0, u_1 \in \mathbb{R}^d$.

As u(0) = u(T) and u'(0) = u'(T), the function u(t) has minimal period $\frac{2\pi}{\sqrt{\lambda}}$ and it solves the second order ODE $u'' + \lambda u = 0$

Then u(0) = u(T), u'(0) = u'(T) imply that the function u has period T.

As $u \neq 0$, we have $k \frac{2\pi}{\sqrt{\lambda}} = T$ with $k = 1, 3, \ldots$. Then $\lambda = k^2 \frac{4\pi^2}{T^2}$.

Now, if
$$u_k(t) = \cos(\frac{2k\pi}{T}t)u_0 + \sin(\frac{2k\pi}{T}t)u_1$$
, then

$$\begin{split} 1 &= \int_0^T |u_k|^2 \, dt \\ &= \int_0^T \left[\cos \left(\frac{2k\pi}{T} t \right) \right]^2 \, dt |u_0|^2 + \int_0^T \left[\sin \left(\frac{2k\pi}{T} t \right) \right]^2 \, dt |u_1|^2 \\ &+ \int_0^T \cos \left(\frac{2k\pi}{T} t \right) \sin \left(\frac{2k\pi}{T} t \right) \, dt \, u_0 \cdot u_1 \\ &= \frac{T}{2} (|u_0|^2 + |u_1|^2) \end{split}$$

and

$$T^{2} \int_{0}^{T} |u'_{k}|^{2} dt$$

$$= T^{2} \left(\frac{2k\pi}{t}\right)^{2} \left\{ \int_{0}^{T} \left[\sin\left(\frac{2k\pi t}{T}\right) \right]^{2} |u_{0}|^{2} + \int_{0}^{T} \left[\cos\left(\frac{2k\pi t}{T}\right) \right]^{2} |u_{1}|^{2} + 0 \right\}$$

$$= \left(\frac{2k\pi}{t}\right)^{2} \frac{T}{2} (|u_{0}|^{2} + |u_{1}|^{2})$$

$$= 4k^{2}\pi^{2}$$

The minimum occurs when k=1 and we get $C_2^{-1}=4\pi^2$. Then, $\int_0^T |u|^2 dt \leq \frac{T^2}{4\pi^2} \int_0^T |u'|^2 dt$

From $u'' + \lambda u = 0$, we have $u''u + \lambda u^2 = 0$ and integrating over [0, T] we obtain $0 = \int_0^T u''u + \lambda \int_0^t u^2 = -\int_0^T (u')^2 + \lambda \int_0^T u^2 + u'u|_0^T = -\int_0^T (u')^2 + \lambda \int_0^T u^2 + u'(T)u(T) - u'(0)u(0) = -\int_0^T (u')^2 + \lambda \int_0^T u^2$, then $\frac{4\pi^2k}{T^2} = \lambda = \frac{\int_0^T (u')^2}{\int_0^T u^2} = \frac{1}{C_2}$ The minimum value is attained at k = 1 and therefore $C_2 = \frac{T^2}{4\pi^2}$.

6.2 L^{Φ} case where $\Phi: \mathbb{R}^d \to \mathbb{R}$ is an anisotropic function

Now, we are looking for the optimal constant $C(\Phi, T)$ such that

$$\int_0^T \Phi(u - \overline{u_\Phi}) dt \leqslant C(\Phi, T) \int_0^T \Phi(u') dt \ u \in W^1 L_T^{\Phi}$$
 (33)

Then,

$$\int_{0}^{T} \Phi(u - \overline{u}_{\Phi}) dt \leqslant C(\Phi, T) \int_{0}^{T} \Phi(u - a) dt \quad \forall a \in \mathbb{R}^{d}$$
 (34)

where $a = \overline{u}_{\Phi}$ is the unique vector of \mathbb{R}^d such that

$$\int_0^T \nabla \Phi(u-a) \, dt = 0. \tag{35}$$

Thus, $C^{-1}=\inf\left\{\frac{\int_0^T\Phi(u')\,dt}{\int_0^T\Phi(u-\overline{u}_\Phi)}|u\in W^1L_T^\Phi\right\}$ Let $v=u-\overline{u}_\Phi,\ v'=u'$ and $\overline{v}_\Phi=0$ then

$$\lambda := C^{-1} = \inf \left\{ \frac{\int_0^T \Phi(u') \, dt}{\int_0^T \Phi(u) \, dt} | u \in W^1 L_T^{\Phi}, \int_0^T \nabla \Phi(u) \, dt = 0 \right\}$$
 (36)

Let

$$L(u, u') = \frac{\int_0^T \Phi(u') dt}{\int_0^T \Phi(u) dt} - \mu \cdot \int_0^T \nabla \Phi(u) dt$$
 (37)

with $\mu \in \mathbb{R}^d$. By Gâteaux derivative we have

$$0 = \frac{\int_0^T \Phi(u) \, dt \int_0^T \nabla \Phi(u') \cdot v' \, dt - \int_0^T \Phi(u') \, dt \int_0^T \nabla \Phi(u) \cdot v \, dt}{(\int_0^T \Phi(u) \, dt)^2} - \mu \int_0^T D^2 \Phi(u) \cdot v \, dt$$
(38)

then

$$0 = \int_0^T \nabla \Phi(u') \cdot v' \, dt - \lambda \int_0^T \nabla \Phi(u) \cdot v \, dt - \int_0^T \Phi(u) \, dt \mu \cdot \int_0^T D^2 \Phi(u) \cdot v \, dt = \int_0^T \left\{ -\frac{d}{dt} \nabla \Phi(u') - \lambda \nabla \Phi(u) \right\} \cdot v \, dt + \nabla \Phi(u') \cdot v |_0^T - \int_0^T \Phi(u) \, dt \, \mu \cdot \int_0^T D^2 \Phi(u) \cdot v \, dt = \int_0^T \left\{ -\frac{d}{dt} \nabla \Phi(u') - \lambda \nabla \Phi(u) - \int_0^T \Phi(u) \, dt \, \mu \cdot D^2 \Phi(u) \right\} \cdot v \, dt + \nabla \Phi(u') \cdot v |_0^T$$

$$\tag{39}$$

 $\forall v \in W^1L_T^{\Phi}$.

Now, we consider any $v \in W_0^1 L^{\Phi}$ and we get

$$-\frac{d}{dt}\nabla\Phi(u') - \lambda\nabla\Phi(u) - \int_0^T \Phi(u) dt \,\mu \cdot D^2\Phi(u) = 0 \tag{40}$$

Then,

$$\nabla \Phi(u')v|_0^T = 0 \ \forall v \in W^1 L_T^{\Phi},$$

that is

$$\{\nabla\Phi(u'(T)) - \nabla\Phi(u'(0))\} \cdot v(0) = 0$$

for any $v \in W^1L_T^{\Phi}$. Thus, $\nabla \Phi(u'(T)) = \nabla \Phi(u'(0))$

As Φ is strictly convex, then $\nabla \Phi$ is injective and consequently u'(T) = u'(0). Post-multiplying (40) by μ^t and integrating over [0, T], we get

$$0 = \int_0^T -\frac{d}{dt} \nabla \Phi(u') dt \cdot \mu^t - \lambda \int_0^T \nabla \Phi(u) dt \cdot \mu^t - \int_0^T \Phi(u) dt \int_0^T \mu \cdot D^2 \Phi(u) dt \cdot \mu^t$$
(41)

with $\nabla \Phi(u'(T)) = \nabla \Phi(u'(0))$.

We know that $\mu \cdot D^2 \Phi(u) \cdot \mu^t = 0$ iff $\mu = 0$. And, as $\int_0^T \Phi(u) dt \neq 0$, then $\int_0^T \Phi(u) dt \int_0^T \mu \cdot D^2 \Phi(u) \cdot \mu^t dt = 0$ implies that $\mu = 0$.

Therefore,

$$\begin{cases} \frac{d}{dt} \nabla \Phi(u') + \lambda \nabla \Phi(u) = 0\\ u(0) = u(T), \ u'(0) = u'(T), \ \int_0^T \nabla \Phi(u) \, dt = 0 \end{cases}$$
(42)

If $\Phi(u) = \frac{|u|^p}{p}$ and $u \in \mathbb{R}$. We know that $T = \frac{4\pi(p-1)^{\frac{1}{p}}}{p\sin(\frac{\pi}{n})\lambda^{\frac{1}{p}}}k$ for $k = +1, +2, \ldots$

Cuestiones a resolver:

- 1. Qué dejar? Caso p o caso Φ ?
- 2. En el caso Φ ? Analizamos la existencia en detalle?
- 3. Consideramos el caso $\Phi(x_1,\ldots,x_d) = \Phi(x_1) + \cdots + \Phi(x_d)$?

Example 6.1. Let $\Phi: \mathbb{R}^d \to [0, +\infty)$ be a G-function. Then the G-function

$$\Phi(u) = \Phi(q, p) := \Phi(q) + \Phi^{\star}(p).$$

is a symplectic G-function.

PROBLEM 0: It is the previous the general form of any symplectic G-function? It is possible to find other example of these functions?

We note that if Φ is symplectic then

$$\nabla \Phi(Ju) = J\Phi^{\star}(u). \tag{43}$$

Here we are agreeing that $\nabla \Phi$ is a column vector.

As a consequence of (??), the matrix J induce a isometry between the spaces $L^{\Phi}([0,T],\mathbb{R}^{2d})$ and $L^{\Phi^*}([0,T],\mathbb{R}^{2d})$. Therefore we candefine a bilinear form $\overline{\Omega}$ on $L^{\Phi}([0,T],\mathbb{R}^{2d})$ of the following way

$$\overline{\Omega}(u,v) := \int_0^T \Omega(u,v)dt, \quad u,v \in L^{\Phi}([0,T],\mathbb{R}^{2d})$$

We consider the following functional

$$\Theta(u) := \overline{\Omega}(u, u).$$

We are interested in to find bounds of the quadratic functional Θ of the following type

$$\theta(u) \geqslant -C \int_0^T \Phi(\dot{u}) dt,$$
 (44)

for $u \in W^1L^{\Phi}([0,T],\mathbb{R}^{2d})$. It is important to get the best constant C in previous inequality because this constant imposes restrictions to the Hamiltonian H.

If $\Phi(q) = |q|^2/2$ was proved in [6, Prop. 3.2] (44) holds width $C = T/\pi$. Below we prove that this is the optimal constant satisfying (44). Meanwhile in [9, Lem. 3.3] was proved that $C_{\Phi} = 2T$ satisfies (44) when $\Phi(q) = |q|^{\alpha}/\alpha$, $1 < \alpha < \infty$. Since this constant is not equal to T/π when $\alpha = 2$, it is not optimal.

Proposition 6.3. Let Φ be any symplectic G-function. Then (44) holds for and $C = 2T^{-1}$ for every $u \in W^1L^{\Phi}([0,T],\mathbb{R}^{2d})$.

Proof. Let $u \in W^1L^{\Phi}([0,T],\mathbb{R}^{2d})$. As is usual we write $u = \tilde{u} + \overline{u}$ where

$$\overline{u} = \frac{1}{T} \int_0^T u(t)dt.$$

From [8, Lem. 2.4] we have that

$$\int_0^T \Phi(\tilde{u})dt \leqslant \int_0^T \Phi(T\dot{u})dt.$$

Then by Young's inequality and using (??)

$$\begin{split} \int_0^T \Omega\left(\dot{u},u\right) dt &= T \int_0^T \left\langle J\dot{u}, T^{-1}\tilde{u} \right\rangle dt \\ &\geqslant -T \left\{ \int_0^T \Phi^\star(J\dot{u}) dt + \int_0^T \Phi(T^{-1}\tilde{u}) dt \right\} \\ &\geqslant -2T \left\{ \int_0^T \Phi(\dot{u}) dt \right\} \end{split}$$

Clearly the cosntant 2/T is far to be optimal. A possible way of improve C is consider other average \overline{u} . The mean value that it was used is the standard condered in the literature. But this value is appropriate for el Hilbert setting $\Phi(q) = |q|^2/2$. In this case, the value of \overline{u} is the nearest (in the L^2 -norm) constant vector to u. For a arbitrary G function, it seem more reasonable consider the nearest constant vector to u respect to the Φ -integral, i.e.

$$\int_0^T \Phi(u - \overline{u}) dt \leqslant \int_0^T \Phi(u - u_0) dt, \quad \text{for every } u_0 \in \mathbb{R}^{2n}$$

Equivalently \overline{u} is characterizate by

$$\int_0^T \nabla \Phi(u - \overline{u}) dt = 0.$$

There is not a explicit formula as in the Hilbert setting. PROBLEM 1. We can get a better constant taking this \overline{u} ???

We call to the best constant in (44) C_{Φ} , i.e.

$$C_{\Phi} = -\inf \left\{ \frac{\int_{0}^{T} \langle J\dot{u}, u \rangle dt}{\int_{0}^{T} \Phi(\dot{u}) dt} \middle| u \in W^{1} L^{\Phi} \left([0, T], \mathbb{R}^{2d} \right) \right\}$$
(45)

Proposition 6.4. The relation $C_{\Phi} = C_{\Phi^*}$ holds for every symplectic Φ .

Proof. Since Φ is symplectic if u = Jv

$$\frac{\int_0^T \langle J\dot{u}, u \rangle dt}{\int_0^T \Phi(\dot{u}) dt} = \frac{\int_0^T \langle -\dot{v}, Jv \rangle dt}{\int_0^T \Phi(J\dot{v}) dt} = \frac{\int_0^T \langle J\dot{v}, v \rangle dt}{\int_0^T \Phi^{\star}(\dot{v}) dt}.$$

Using that $u \mapsto Ju$ is invertible from $W^1L^{\Phi^*}([0,T],\mathbb{R}^{2d})$ into $W^1L^{\Phi}([0,T],\mathbb{R}^{2d})$ the statement follows taking infimum in previous equality.

For the following result we need the theory of indices of G-functions, see [4, 5] for a complete treatment in the case of N-functions defined on \mathbb{R} . The results are easily extended to the anisotropic setting. We denote by α_{Φ} and β_{Φ} the so called Matuszewska-Orlicz indices of the function Φ , which are defined next

$$\alpha_{\Phi} := \lim_{t \to 0^{+}} \frac{\log \left(\sup_{u > 0} \frac{\Phi(tu)}{\Phi(u)} \right)}{\log(t)}, \quad \beta_{\Phi} := \lim_{t \to +\infty} \frac{\log \left(\sup_{u > 0} \frac{\Phi(tu)}{\Phi(u)} \right)}{\log(t)}. \tag{46}$$

We have that $1 \leq \alpha_{\Phi} \leq \beta_{\Phi} \leq +\infty$. The relation $\beta_{\Phi} < \infty$ holds true if and only if Φ is a Δ_2 -function. The indices satisfy the following relation

$$\frac{1}{\alpha_{\Phi}} + \frac{1}{\beta_{\Phi^{\star}}} = 1. \tag{47}$$

Therefore if Φ^* is a Δ_2 -function (I mean Δ_2 as globally Δ_2) then $\alpha_{\Phi} > 1$.

We observe that if Φ is symplectic then $\Phi \in \Delta_2$ implies $\Phi^* \in \Delta_2$. It is well known that if Φ and Φ^* are Δ_2 -function, then Φ is controlled by above and below by power functions. More concretely, for every $\epsilon > 0$ there exists a constant $K = K(\Phi, \epsilon)$ and p_0, p_1 with $1 < \alpha_{\Phi} - \epsilon < p_1 \leqslant p_2 < \beta_{\Phi} + \epsilon < \infty$ such that, for every $t, u \geqslant 0$,

$$K^{-1}\min\{t^{p_2}, t^{p_1}\}\Phi(u) \leqslant \Phi(tu) \leqslant K\max\{t^{p_2}, t^{p_1}\}\Phi(u). \tag{48}$$

We recall the following result of [1].

Lemma 6.5. Let Φ be a G-function. If $\Phi^* \in \Delta_2$ globally, then for any $0 < \mu < \alpha_{\Phi}$,

$$\lim_{\|\boldsymbol{u}\|_{L^{\Phi}} \to \infty} \frac{\int_{0}^{T} \Phi\left(\frac{\boldsymbol{u}}{\Lambda}\right) dt}{\|\boldsymbol{u}\|_{L^{\Phi}}^{\mu}} = +\infty. \tag{49}$$

Theorem 6.6. Suppose that $u \in W^1L_T^{\Phi}([0,T],\mathbb{R}^{2d})$ attains the minimum in (45), then $\lambda = 2/C_{\Phi}$ is the first eigenvalue and u the corresponding eigenfunction of the following problem.

$$\begin{cases} \frac{d}{dt} \nabla \Phi^{\star}(\dot{u}) + \lambda \nabla \Phi^{\star}(\lambda u) = 0 \\ u(0) = u(T), \int_{0}^{T} \nabla \Phi^{\star}(\lambda u) dt = 0 \end{cases}$$
 (Eig)

Acknowledgments

The authors are partially supported by UNRC and UNLPam grants.

References

- [1] S. Acinas, L. Buri, G. Giubergia, F. Mazzone, and E. Schwindt. Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting. *Nonlinear Analysis*, *TMA*., 125:681 698, 2015.
- [2] F. Clarke. *Optimization and Nonsmooth Analysis*. Classics in Applied Mathematics. SIAM, Philadelphia, 1990.
- [3] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics. 2013.
- [4] Alberto Fiorenza and Miroslav Krbec. Indices of Orlicz spaces and some applications. *Commentationes Mathematicae Universitatis Carolinae*, 38(3):433–452, 1997.
- [5] L. Maligranda. Orlicz spaces and interpolation, volume 5 of Seminários de Matemática [Seminars in Mathematics]. Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.
- [6] J. Mawhin and M. Willem. Critical point theory and Hamiltonian systems. Springer-Verlag, New York, 1989.
- [7] J. Mawhin and M. Willem. *Critical Point Theory and Hamiltonian Systems*. Applied Mathematical Sciences. Springer, 2010.
- [8] Fernando D Mazzone and Sonia Acinas. Periodic solutions of euler-lagrange equations in an anisotropic orlicz-sobolev space setting. arXiv preprint arXiv:1708.06657, 2017.
- [9] Y. Tian and W. Ge. Periodic solutions of non-autonomous second-order systems with a *p*-Laplacian. *Nonlinear Anal.*, 66(1):192–203, 2007.