H2 Further Mathematics

Proofs in Linear Algebra

1. Let $U_1, U_2,...,U_n$ be subspaces of \mathbb{R}^n . Prove that $\bigcap_{i=1}^n U_i$ is a subspace of \mathbb{R}^n .

SOLUTION

 $U_1, U_2,...,U_n$ are non-empty.

Thus,
$$\mathbf{0} \in U_1$$
, $\mathbf{0} \in U_2$,..., $\mathbf{0} \in U_n \Rightarrow \mathbf{0} \in \bigcap_{i=1}^n U_i$.

Let
$$\mathbf{u}_1$$
, \mathbf{u}_2 ,..., $\mathbf{u}_n \in \bigcap_{i=1}^n U_i$.

 $U_1, U_2, ..., U_n$ are closed under usual addition, $\sum_{i=1}^n \mathbf{u}_i \in U_1$.

Similarly,
$$\sum_{i=1}^{n} \mathbf{u}_i \in U_2, ..., \sum_{i=1}^{n} \mathbf{u}_i \in U_n \Rightarrow \sum_{i=1}^{n} \mathbf{u}_i \in \bigcap_{i=1}^{n} U_i$$
.

Let $\alpha \in \mathbb{R}$.

 $U_1, U_2, ..., U_n$ are closed under scalar multiplication, $\alpha \mathbf{u} \in U_1$.

Similarly,
$$\alpha \mathbf{u} \in U_2,...,\alpha \mathbf{u} \in U_n \Rightarrow \alpha \mathbf{u} \in \bigcap_{i=1}^n U_i$$
.

$$\therefore \bigcap_{i=1}^{n} U_i \text{ is a subspace of } \mathbb{R}^n.$$

A Markov matrix is used to represent steps in a Markov chain. If all the entries of a $n \times n$ matrix are non-negative and the sum of each column vector equals 1, then the matrix is called a Markov matrix. Show that one of the eigenvalues of a 2×2 Markov matrix is 1. If the entries of the Markov matrix are positive, show that the other eigenvalue must be less than 1.

SOLUTION

Let the Markov matrix be A and its eigenvalues be denoted by λ .

$$A = \begin{pmatrix} a & b \\ 1-a & 1-b \end{pmatrix}$$

$$A - \lambda I = \begin{pmatrix} a - \lambda & b \\ 1-a & 1-b-\lambda \end{pmatrix}$$

$$\det(A - \lambda I) = 0 \Rightarrow (a - \lambda)(1-b-\lambda) - b(1-a) = 0$$

$$\lambda^2 + \lambda(b-a-1) + (a-b) = 0$$

Solving the above quadratic equation gives us $\lambda = 1$ (shown) or a - b.

The other eigenvalue is a-b. Since the new condition is $0 < a \le b \le 1$, then a-b < 1.

4. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, $\ker(T) = 0$ and $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}$ is a linearly independent subset of \mathbb{R}^n , show that $\{T(\mathbf{x}_1), T(\mathbf{x}_2), ..., T(\mathbf{x}_k)\}$ is a linearly independent subset of \mathbb{R}^n .

SOLUTION

Suppose
$$\sum_{i=1}^{k} \alpha_i T(\mathbf{x}_i) = \mathbf{0}$$
.

T is a linear transformation $\Rightarrow \sum_{i=1}^{k} T(\alpha_i \mathbf{x}_i) = \mathbf{0}$.

$$\Rightarrow \sum_{i=1}^{k} \alpha_i \, \mathbf{x}_i \in \ker(T) \Rightarrow \sum_{i=1}^{k} \alpha_i \, \mathbf{x}_i = \mathbf{0}$$

 $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}$ are linearly independent $\Rightarrow a_i$'s = 0 $\forall i = 1, 2, ..., k$

5. Consider a $n \times n$ matrix \mathbf{A} with distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. It is given that $\det(\mathbf{A}) = a$. With the aid of eigenvalues, prove that $\det(k\mathbf{A}) = ak^n$ for all $k \in \mathbb{R}$. Next, prove the same statement using mathematical induction for all $k \in \mathbb{Z}^+$.

SOLUTION

$$\det(\mathbf{A}) = a \Rightarrow \prod_{i=1}^{n} \lambda_i = a$$

$$\det(k\mathbf{A}) = \underbrace{(k \times k \times ... \times k)}_{n \text{ times}} \det(\mathbf{A})$$

$$= k^n \det(\mathbf{A})$$

$$= ak^n$$

Let P_k denote the proposition that $\det(k \mathbf{A}) = ak^n \ \forall k \in \mathbb{Z}^+$.

For
$$k = 1$$
, $LHS = det(\mathbf{A}) = a$.

$$RHS = ak^0 = a.$$

 $\Rightarrow P_1$ is true.

Assume P_m is true for some $k \in \mathbb{Z}^+$, i.e. $\det(m \mathbf{A}) = am^n$.

To show P_{m+1} is true, we have to prove that $\det \left[(m+1)\mathbf{A} \right] = a(m+1)^n$.

$$LHS = \det\left[\left(m+1\right)\mathbf{A}\right]$$

$$= \underbrace{\left[\left(m+1\right) \times \left(m+1\right) \times ... \times \left(m+1\right)\right]}_{n \text{ times}} \det\left(\mathbf{A}\right)$$

$$= (m+1)^n \det(\mathbf{A})$$

$$=(m+1)^n \times a$$

$$= RHS$$

Since P_1 is true and P_m is true $\Rightarrow P_{m+1}$ is true, by mathematical induction, P_k is true $\forall k \in \mathbb{Z}^+$.

6. Consider a $n \times n$ matrix **A** with distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ and corresponding eigenvectors $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$. Prove that the eigenvectors of **A** are linearly independent.

SOLUTION

Suppose
$$\sum_{i=1}^{n} \alpha_i \mathbf{e}_i = \mathbf{0}$$
.

Then,
$$\mathbf{A} \sum_{i=1}^{n} \alpha_i \mathbf{e}_i = \mathbf{0}$$
.

$$\Rightarrow \sum_{i=1}^{n} \alpha_i (\mathbf{A} \mathbf{e}_i) = \mathbf{0}$$

By definition of eigenvalues and eigenvectors, we have $\mathbf{A}\mathbf{e}_i = \lambda_i \mathbf{e}_i \ \forall i \in [1,n]$.

$$\Rightarrow \sum_{i=1}^{n} \alpha_i \lambda_i \, \mathbf{e}_i = \mathbf{0}$$

Consider multiplying both sides of $\sum_{i=1}^{n} \alpha_i \mathbf{e}_i = \mathbf{0}$ by λ_1 .

Then,
$$\sum_{i=1}^{n} \alpha_i \lambda_1 \mathbf{e}_i = \mathbf{0}$$
.

Hence,
$$\sum_{i=1}^{n} \alpha_i \lambda_1 \mathbf{e}_i - \sum_{i=1}^{n} \alpha_i \lambda_i \mathbf{e}_i = \mathbf{0}$$
.

$$\sum_{i=1}^{n} \alpha_i (\lambda_1 - \lambda_i) \mathbf{e}_i = \mathbf{0}.$$

Since all the eigenvalues are distinct, $\lambda_1 - \lambda_i \neq 0 \ \forall i \in [1,n]$.

Since all the \mathbf{e}_i 's are nonzero vectors, we must have $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$.

- 7. Suppose $n \in \mathbb{Z}^+$. Let $T : \mathbb{R}^n \to \mathbb{R}$ be a non-zero linear transformation. Prove the following statements.
 - (i). $\ker(T) = n 1$
 - (ii). Let $B = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{n-1}\}$ be a basis for $\ker(T)$ and \mathbf{w} be the *n*-dimensional vector that is not in $\ker(T)$. Then, $B' = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{n-1}, \mathbf{w}\}$ is a basis for \mathbb{R}^n .
 - (iii). Each vector \mathbf{u} in \mathbb{R}^n can be expressed as $\mathbf{u} = \mathbf{v} + \frac{\mathbf{w}T(\mathbf{u})}{T(\mathbf{w})}$ for some vector \mathbf{v} in $\ker(T)$.

SOLUTION

(i). Let **A** be the matrix representation of T. Then **A** is a $1 \times n$ matrix.

$$\Rightarrow$$
 rank $(T) = 1$

Using the Rank-Nullity Theorem, we have ker(T) = n-1.

(ii). Suppose $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_{n-1} \mathbf{v}_{n-1} + \alpha_n \mathbf{w} = \mathbf{0}$ for some a_i 's $\in \mathbb{R}$.

If
$$a_n \neq 0$$
, then $\mathbf{w} = -\frac{1}{\alpha_n} (\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_{n-1} \mathbf{v}_{n-1}).$

 \Rightarrow w can be written as a linear combination of the other vectors in B, which is a contradiction.

Hence, $\alpha_n = 0$.

Since *B* is a basis, we must have $\alpha_1 = \alpha_2 = ... = \alpha_{n-1} = 0$.

We conclude the proof by stating that the α_i 's = 0 $\forall i \in [1,n]$.

Hence, B' is a basis for \mathbb{R}^n .

(iii). Note that $\mathbf{u} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_{n-1} \mathbf{v}_{n-1} + \alpha_n \mathbf{w}$.

Since **v** is in ker(T), **u** = **v**+ α_n **w**.

$$T(\mathbf{u}) = T(\mathbf{v} + \alpha_n \mathbf{w})$$

$$= T(\mathbf{v}) + \alpha_n T(\mathbf{w})$$

$$= \mathbf{0} + \alpha_n T(\mathbf{w})$$

$$=\alpha_n T(\mathbf{w})$$

Then,
$$\frac{T(\mathbf{u})}{T(\mathbf{w})} = \alpha_n$$
.

$$\therefore \mathbf{u} = \mathbf{v} + \frac{\mathbf{w} T(\mathbf{u})}{T(\mathbf{w})}$$