인공지능

[기계학습 1]

본 자료는 해당 수업의 교육 목적으로만 활용될 수 있음. 일부 내용은 다른 교재와 논문으로부터 인용되었으며, 모든 저작권은 원 교재와 논문에 있음.

1장 미리보기

■ 사람/동물의 학습

- 예) 수학, 과학, 역사 등 사고 영역+ 수영, 자전거 타기 등 행위 영역 포함
- 예) 파블로프의 개 실험

■ 기계 학습

- 기계도 학습이 가능한가?
- 경험을 통해 점진적으로 성능이 향상되는 기계를 만들 수 있을까?
- 1장은 이 질문에 대한 답을 찾고자 함

1.1 기계학습

1.1.1 기계 학습의 정의

- 인공지능artificial intelligence이란? <두산백과>
 - 인간의 학습, 추론, 지각, 자연언어 이해 등의 지능적 능력을 기기로 실현한 기술
- 학습이란? <표준국어대사전>

"경험의 결과로 나타나는, 비교적 지속적인 행동의 변화나 그 잠재력의 변화 또는 지식을 습득하는 과정[국립국어원2017]"

- 기계 학습machine learning이란?
 - 인공지능 초창기 정의

"Programming computers to learn from experience should eventually eliminate the need for much of this detailed programming effort. 컴퓨터가 경험을 통해 학습할 수 있도록 프로그래밍할 수 있다면, 세세하게 프로그래밍해야 하는 번거로움에서 벗어날 수 있다[Samuel1959]."

1.1.1 기계 학습의 정의

■ 현대적 정의

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. 어떤 컴퓨터 프로그램이 T라는 작업을 수행한다. 이 프로그램의 성능을 P라는 착도로 평가했을 때 경험 E를 통해 성능이 개선된다면 이 프로그램은 학습을 한다고 말할 수 있다[Mitchell1997(2쪽)]."

→ 최적의 프로그램(알고리즘)을 찾는 행위

• 경험 *E* 를 통해

• 주어진 <u>작업</u> *T* 에 대한

• 성능 *P* 의 향상

"Programming computers to optimize a performance criterion using example data or past experience 사례 데이터, 즉 과거 경험을 이용하여 성능 기준을 최적화하도록 프로그래밍하는 작업[Alpaydin2010]"

"Computational methods using experience to improve performance or to make accurate predictions 성능을 개선하거나 정확하게 예측하기 위해 경험을 이용하는 계산학 방법들[Mohri2012]"

1.1.1 기계 학습의 정의

■ 기계 학습과 전통적인 프로그래밍의 비교

Traditional programming

Machine learning

- 인공지능의 탄생 == 연산 장치의 탄생
 - 컴퓨터의 뛰어난 능력
 - 복잡한 연산을 사람보다 잘함
 - 예) 80932.46789076*0.39001324
 - 예) 복잡한 함수의 미분과 적분
 - 컴퓨터에 대한 기대감 == 컴퓨터의 능력 과신
 - 사람의 지능 행위를 컴퓨터가 모방할 수 있을까 하는 호기심
 - 예) 인간은 쉽게 하는 고양이/개 구별
 - 1940년대 인공지능 개념 정의 및 분야 대두

■ 인공지능 관련 주요 연구 및 사건

국민대학교 KOOKMIN UNIVERSITY

■ 초창기 지식기반 방식 주류

- 지식기반: 경험적인 지식 혹은 사실을 인위적으로 컴퓨터에 부여하여 학습
 - 예) "구멍이 2개이고 중간 부분이 홀쭉하며. 맨 위와 아래가 둥근 모양이라면 8이다"

■ 큰 깨달음

- 지식기반의 한계
 - 학습의 대상이 심한 변화 양상을 가진 경우, 모든 지식 혹은 사실의 나열은 불가능

그림 1-2 인식 시스템이 대처해야 하는 심한 변화 양상(8과 단추라는 패턴을 어떻게 기술할 것인가?)

- 인공지능의 주도권 전환
 - 지식 기반 → 기계 학습 → 심층 학습deep learning (표현 학습representation learning)
 - 데이터 중심 접근방식으로 전환

그림 1-3 기계 학습으로 만든 최첨단 인공지능 제품들

■ 간단한 기계 학습 예제

- 가로축은 시간, 세로축은 이동체의 위치 ← 모든 데이터는 정량화된 형태로 표현 (예, 벡터)
- 4개의 점이 데이터 관측

■ 문제^{task}:예측^{prediction}

- 임의의 시간이 주어지면 이때 이동체의 위치는?
- 예측은 회귀regression 문제와 분류classification 문제로 나뉨
 - 회귀는 목표치가 실수, 분류는 부류 혹은 종류의 값 ([그림 1-4]는 회귀 문제)

■ 훈련집합training set

- 가로축은 특징, 세로축은 목표치
- 관측한 4개의 점이 훈련집합을 구성함

훈련집합:
$$\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\}, \quad \mathbb{Y} = \{y_1, y_2, \cdots, y_n\}$$
 (1.1)

[그림 1-4] 예제의 훈련집합
$$\mathbb{X} = \{\mathbf{x}_1 = (2.0), \mathbf{x}_2 = (4.0), \mathbf{x}_3 = (6.0), \mathbf{x}_4 = (8.0)\}$$
 $\mathbb{Y} = \{y_1 = 3.0, y_2 = 4.0, y_3 = 5.0, y_4 = 6.0\}$

그림 1-4 간단한 기계 학습 예제

- 관찰된 데이터들을 어떻게 설명할 것인가?
 - 가설hypothesis: 눈대중으로 데이터 양상이 직선 형태를 보임 → 모델을 직선으로 선택 가정
 - 가설인 직선 모델의 수식
 - 2개의 매개변수parameter w와 b

$$y = wx + b$$

(1.2)

- 기계 학습의 훈련train
 - 주어진 문제인 예측을 가장 정확하게 할 수 있는 최적의 매개변수를 찾는 작업
 - 처음은 임의의 매개변수 값에서 시작하지만, 개선하여 정량적인 최적 성능performance에 도달
 - [그림 1-4]의 예는 f_1 에서 시작하여 $f_1 \rightarrow f_2 \rightarrow f_3$, 최적인 f_3 은 w=0.5와 b=2.0
 - 좋은 예측의 정량적 판단은?

- 훈련을 마치면, 추론inference을 수행
 - 새로운unknown 특징에 대응되는 목표치의 예측에 사용
 - 예) 10.0 순간의 이동체 위치를 알고자 하면, $f_3(10.0)=0.5*10.0+2.0=7.0$ 이라 예측함
- 기계 학습의 궁극적인 목표
 - 훈련집합에 없는 새로운 데이터에 대한 오류를 최소화 (새로운 데이터=테스트 집합test set)
 - 테스트 집합에 대한 높은 성능을 일반화generalization 능력이라 부름
 - 모의고사만 잘 본 학생 vs 모의고사와 수능을 잘 본 학생

- 기계학습의 필수요소
 - 학습할 수 있는 데이터가 있어야 함

■ 데이터 규칙 존재

■ 수학적으로 설명 불가능

1.1.4 사람의 학습과 기계 학습

표 1-1 사람의 학습과 기계 학습의 비교

기준	사람의 학습	기계 학습
학습 과정	능동적	수동적
데이터 형식	자연에 존재하는 그대로	일정한 형식에 맞추어 사람이 준비함
동시에 학습 가능한 과업 수	자연스럽게 여러 과업을 학습	하나의 과업만 가능
학습 원리에 대한 지식	매우 제한적으로 알려져 있음	모든 과정이 밝혀져 있음
수학 의존도	매우 낮음	매우 높음
성능 평가	경우에 따라 객관적이거나 주관적	객관적(수치로 평가, 예를 들어 정확률 99.8%)
역사	수백만 년	60년 가량

1.2 특징 공간

1.2.1 1차원과 2차원 특징 공간

■ 모든 데이터 정량적으로 표현되며, 특징 공간 상에 존재

■ 1차원 특징 공간

- 특징 벡터 표기
 - **x**= $(x_1, x_2)^T$
- 예시
 - **x**=(몸무게,키)^T, *y*=장타율
 - **x**=(체온,두통)^T, *y*=감기 여부

(a) 1차원 특징 공간(왼쪽: 특징과 목푯값을 축으로 표시, 오른쪽: 특징만 축으로 표시)

b) 2차원 특징 공간(왼쪽: 특징 벡터와 목푯값을 축으로 표시, 오른쪽: 특징 벡터만 축으로 표시)

그림 1-5 특징 공간과 데이터의 표현

1.2.2 다차원 특징 공간

■ 다차원 특징 공간 예제

 $Iris: \mathbf{x} = (꽃받침 길이, 꽃받침 너비, 꽃잎 길이,꽃잎 너비)^T$

Wine: $\mathbf{x} = (\text{Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols Proanthocyanins, Color intensity, Hue, OD280 / OD315 of diluted wines, Proline)^T$

MNIST: $\mathbf{x} = (\bar{\mathbf{x}} \pm 1, \bar{\mathbf{x}} \pm 2, \dots, \bar{\mathbf{x}} \pm 784)^{\mathrm{T}}$

Farm ads: $\mathbf{x} = (단어1, 단어2, \dots, 단어54877)^{\mathrm{T}}$

그림 1-6 다치원 특징 공간

1.2.2 다차원 특징 공간

■ d-차원 데이터

- 특징 벡터 표기: $\mathbf{x} = (x_1, x_2, ..., x_d)^{\mathrm{T}}$
- d-차원 데이터를 위한 학습 모델의 예
 - 직선 모델을 사용하는 경우 매개변수 수 = d+1 $y = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b \tag{1.3}$
 - 2차 곡선 모델을 사용하면 매개변수 수가 지수적으로 증가, 매개변수 수 = d^2+d+1 $y = \underline{w_1}x_1^2 + \underline{w_2}x_2^2 + \dots + \underline{w_d}x_d^2 + \underline{w_{d+1}}x_1x_2 + \dots + \underline{w_d}^2x_{d-1}x_d + \underline{w_d}^2 + \underline{x_1}x_1$ (1.5) $+ \dots + \underline{w_d}^2 + \underline{d}x_d + \underline{b}$
 - 예) Iris 데이터: d=4이므로 21개의 매개변수
 - 예) MNIST 데이터: d=784이므로 615,441개의 매개변수
- 거리: 차원에 무관하게 수식 적용 가능함
 - 예) 두 점 $\mathbf{a} = (a_1, a_2, \dots, a_d)^{\mathrm{T}}$ 와 $\mathbf{b} = (b_1, b_2, \dots, b_d)^{\mathrm{T}}$ 사이의 (유클리드 $^{\mathrm{Euclidean}}$) 거리는 모든 d에 성립

$$dist(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{d} (a_i - b_i)^2$$
 (1.7)

1.2.3 특징 공간 변환과 표현 학습

- 차원의 저주curse of dimensionality (=number of features)
 - 차원이 높아짐에 따라 발생하는 현실적인 문제들
 - 1차, 2차, 3차원에서의 차원의 저주 예시
 - 예) d=784인 MNIST 샘플의 화소가 0과 1값을 가진다면 2⁷⁸⁴개의 칸
 이 거대한 공간에 고작 6만 개의 샘플을 흩뿌린 매우 희소한 분포

• 차원이 높아질수록 유의미한 표현을 찾기 위해 지수적으로 많은 데이터가 필요함

1.2.3 특징 공간 변환과 표현 문제

- 선형 분리 불가능linearly non-separable 한 원래 특징 공간 ([그림 1-7(a)])
 - 직선 모델을 적용하면 75% 정확도 한계

그림 1-7 특징 공간 변환

- 식 (1.6)으로 변환된 새로운 특징 공간 ([그림 1-7(b)])
 - 공간 변환을 통해 직선 모델로 100% 정확도

원래 특징 벡터
$$\mathbf{x} = (x_1, x_2)^{\mathrm{T}} \rightarrow \text{ 변환된 특징 벡터 } \mathbf{x}' = \left(\frac{x_1}{2x_1x_2 + 0.5}, \frac{x_2}{2x_1x_2 + 0.5}\right)^{\mathrm{T}}$$
 (1.6) $\mathbf{a} = (0,0)^{\mathrm{T}} \rightarrow \mathbf{a}' = (0,0)^{\mathrm{T}}$ $\mathbf{b} = (1,0)^{\mathrm{T}} \rightarrow \mathbf{b}' = (2,0)^{\mathrm{T}}$ $\mathbf{c} = (0,1)^{\mathrm{T}} \rightarrow \mathbf{c}' = (0,2)^{\mathrm{T}}$ $\mathbf{d} = (1,1)^{\mathrm{T}} \rightarrow \mathbf{d}' = (0.4,0.4)^{\mathrm{T}}$

1.2.3 특징 공간 변환과 표현 문제

■ 표현 문제representations matter의 예

feature representation

- 표현 학습representation learning
 - 좋은 특징 공간을 <mark>자동</mark>으로 찾는 작업
 - [그림 1-7]은 표현 학습을 사람이 직관으로 수행한 셈
 input hidden representation output output output output

1.2.3 특징 공간 변환과 표현 문제

■ 심층학습deep learning

• 표현학습의 하나로 다수의 은닉층을 가진 신경망을 이용하여 최적의 계층적인 특징을 학습

• 아래쪽 은닉층은 저급 특징(선, 구석점 등), 위쪽 추상화된 특징(얼굴, 바퀴 등) 추출

pixel → edge → texton → motif → part → object

 $\begin{array}{l} \mathsf{character} \to \mathsf{word} \to \mathsf{word} \ \mathsf{group} \\ \to \mathsf{clause} \to \mathsf{sentence} \to \mathsf{story} \end{array}$

sample \rightarrow spectral band \rightarrow sound \rightarrow ... \rightarrow phone \rightarrow phoneme \rightarrow word \rightarrow

1.8 기계 학습의 과거와 현재, 미래

■ Ada Lovelace 여사의 통찰력

■ "… 해석기관analytic engine은 숫자 이외의 것도 처리할 수 있을 것이다. … 예를 들어 화음과음조를 해석기관의 표기에 맞출 수 있다면, 해석기관은 꽤 복잡한 곡을 작곡할 수도 있다."

[Ada1843]

- 200여 년이 지난 지금,
 - 인간 수준의 사진 인식 능력
 - 알파고AlphaGo는 바둑으로 사람의 능력을 압도함
 - 구글사Google의 듀플렉스Duplex는 인간과 대화

1843	에이더 "… 해석엔진은 꽤 복잡한 곡을 작곡할 수도 있다."라는 논문 발표[Ada1843]
1950	인공지능 여부를 판별하는 튜링 테스트[Turing1950]
1956	최초의 인공지능 학술대회인 다트머스 콘퍼런스 개최. '인공지능'용어 탄생[McCarthy1955]
1958	로젠블렛이 퍼셉트론 제안[Rosenblatt1958]
	인공지능 언어 Lisp 탄생
1959	사무엘이 기계 학습을 이용한 체커 게임 프로그램 개발[Samuel1959]
1969	민스키가 퍼셉트론의 과대포장 지적. 신경망 내리막길 시작[Minsky1969]
	제1회 IJCA International Joint Conference on Artificial Intelligence 개최
1972	인공지능 언어 Prolog 탄생
1973	Lighthill 보고서로 인해 인공지능 내리막길, 인공지능 겨울Al winter 시작
1974	웨어보스가 오류 역전파 알고리즘을 기계 학습에 도입[Werbos1974]
1975경	의료진단 전문가 시스템 Mycin - 인공지능에 대한 관심 부활
1979	「IEEE Transactions on Pattern Analysis and Machine Intelligence」저널 발간
1980	제1회 ICMLInternational Conference on Machine Learning 개최
	후쿠시마가 NeoCognitron 제안[Fukushima1980]
1986	「Machine Learning」저널 발간
	『Parallel Distributed Processing』출간
	다층 퍼셉트론으로 신경망 부활

1987	Lisp 머신의 시장 붕괴로 제2의 인공지능 겨울
	UCI 리포지토리 서비스 시작
	NIPSNeural Information Processing Systems 콘퍼런스 시작
1989	「Neural Computation」저널 발간
1993	R 언어 탄생
1997	IBM 딥블루가 세계 체스 챔피언인 카스파로프 이김
	LSTMLong short-term memory 개발됨
1998경	SVM이 MNIST 인식 성능에서 신경망 추월
1998	르쿤이 CNN의 실용적인 학습 알고리즘 제안[LeCun1998]
	『Neural Networks: Tricks of the Trade』출간
1999	NVIDIA 사에서 GPU 공개
2000	「Journal of Machine Learning Research」저널 발간
	OpenCV 최초 공개
2004	제1회 그랜드 챌린지(자율 주행)
2006	층별학습 탄생[Hinton2006a]
2007경	딥러닝이 MNIST 인식 성능에서 SVM 추월
2007	GPU 프로그래밍 라이브러리인 CUDA 공개

	어번 챌린지(도심 자율 주행)
	Scikit-leam 라이브러리 최초 공개
2009	Theano 서비스 시작
2010	lmageNet 탄생
	제1회 ILSVRC 대회
2011	IBM 왓슨이 제퍼디 우승자 꺾음
2012	MNIST에 대해 0.23% 오류율 달성
	AlexNet 발표 (3회 ILSVRC 우승)
2013	제1회 ICLRInternational Conference on Learning Representations 개최
2014	Caffe 서비스 시작
2015	TensorFlow 서비스 시작
	OpenAl 창립
2016	알파고와 이세돌의 바둑 대회에서 알파고 승리[Silver2016]
	『Deep Learning』출간
2017	알파고 제로[Silver2017]

■ 인공신경망의 역사

■ 1940-1960: 인공두뇌학cybernetics

■ 1980-1990: 결합설connectionism (or parallel distributed processing)

■ 2006-현재: 심층학습deep learning

■ 인공신경망의 역사적인 급증historical waves

1.8.2 기술 추세

■ 인공지능 범주

1.8.2 기술 추세

- 기계학습 알고리즘과 응용의 다양화
- 표현 학습이 중요해짐
- 심층학습이 기계 학습의 주류
- 심층학습은 현대 인공지능 실현에 핵심 기술

학습 종류에 따른 주요 요소 세분화 회색박스는 데이터로부터 학습될 수 있는 요소

KMU 국민대학교 KOOKMIN UNIVERSITY

1.8.3 사회적 전망

■ 인공지능의 단계

초인공지능(Super AI)

인공지능의 발전이 가속화되어 모든 인류의 지성을 합친 것보다 더 뛰어난 인공지능

강인공지능 (Strong Al = 인공일반지능)

인간이 할 수 있는 어떠한 지적인 업무도 성 공적으로 해낼 수 있는 (가상적인) 기계의 지능

약인공지능 (Weak AI)

인간이 지시한 명령의 틀 안에서만 일하기 때문에 예측과 관리가 용이

인간을 넘어서는 특이점

인간다운 인공지능으로의 변화 - 모든 상황에 두루 적용 가능

- 인간의 오감을 인지하는 컴퓨터를 이용해 직관적인 간접체험 가능
- 거대하고 어려운 사회문제의 해결
- 획기적으로 달라지는 의료활동
- 인지능력과 통신망을 통합해 모든 시스템을 스마트하게 변화
- 인간의 의사결정시 센서 데이터 활용
- 지식 암기 기반 교육과정 소멸, 인공지능 과외교사 보편화
- 입법, 행정, 사법 기능 대체 / 정부, 국가 기본제도와 운영 변화 인간의 삶을 이해하는 기계에 의한 초자능 사대 진입

<u>최근, 약인공지능의 빠른 발전</u>

특정 분야의 일만 할 수 있도록 설계됨 🔿 종합적 판단에 한계를 보임

