COMP9414: Artificial Intelligence Lecture 2a: Problem Solving

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

UNSW © W. Wobcke et al. 2019

COMP9414 Problem Solving

This Lecture

- Search as a "weak method" of problem solving with wide applicability
- Uninformed search methods (use no problem-specific information)
- Informed search methods (use heuristics to improve efficiency)

COMP9414 Problem Solving

Motivating Example

- You are in Romania on holiday, in Arad, and need to get to Bucharest
- What more information do you need to solve this problem?
- Once you have this information, how do you solve the problem?
- How do you know your solution is any good? What extra information would you need in order to evaluate the quality of your solution?

UNSW ©W. Wobcke et al. 2019

COMP9414 Problem Solving 3

State Space Search Problems

- State space set of all states reachable from initial state(s) by any action sequence
- Initial state(s) element(s) of the state space
- Transitions
 - Operators set of possible actions at agent's disposal; describe state reached after performing action in current state, or
 - Successor function s(x)= set of states reachable from state x by performing a single action
- Goal state(s) element(s) of the state space
- Path cost cost of a sequence of transitions used to evaluate solutions (apply to optimization problems)

COMP9414 COMP9414 Problem Solving Problem Solving

Example Problem — 8-Puzzle

States: location of eight tiles plus location of blank Operators: move blank left, right, up, down Goal state: state with tiles arranged in sequence

Path cost: each step is of cost 1

UNSW © W. Wobcke et al. 2019

COMP9414 Problem Solving 5 COMP9414 Problem Solving

Example Problem — N-Queens

States: 0 to N queens arranged on chess board Operators: place queen on empty square

Goal state: N queens on chess board, none attacked

Path cost: zero

Real World Problems

- Route finding robot navigation, airline travel planning, computer/phone networks
- Travelling salesman problem planning movement of automatic circuit board drills
- VLSI layout design silicon chips
- Assembly sequencing scheduling assembly of complex objects, manufacturing process control
- Mixed/constrained problems courier delivery, product distribution, fault service and repair

These are optimization problems but mathematical (operations research) techniques are not always effective.

©W. Wobcke et al. 2019 UNSW

Problem Representation — Tic-Tac-Toe

States: arrangement of Os and Xs on 3x3 grid Operators: place X (O) in empty square

Goal state: three Xs (Os) in a row

Path cost: zero

UNSW

Tic-Tac-Toe — First Attempt

1	2	3
4	5	6
7	8	9

Problem Solving

Board: 0=blank: 1=X: 2=O

Idea: Use move table with $3^9 = 19683$ elements

Algorithm: Consider board to be a ternary number; convert to decimal;

access move table; update board

• Fast; lots of memory; laborious; not extensible

UNSW

© W. Wobcke et al. 2019

© W. Wobcke et al. 2019

COMP9414

Problem Solving

0

COMP9414

UNSW

Problem Solving

11

© W. Wobcke et al. 2019

Tic-Tac-Toe — Second Attempt

1	2	3
4	5	6
7	8	9

Board: 2=blank; 3=X; 5=O

Algorithm: Separate strategy for each move.

Goal test (if row gives win on next move): calculate product of values

X: test product = $18 (3 \times 3 \times 2)$; O: test product = $50 (5 \times 5 \times 2)$

• Not as fast as 1; much less memory; easier to understand and comprehend; strategy determined in advance; not extensible

Tic-Tac-Toe — Third Attempt

8	3	4
1	5	9
6	7	2

Problem Solving

Board is a magic square!

Algorithm: As in attempt 2 but to check for win — keep track of player's "squares". If difference of 15 and sum of two squares is ≤ 0 or > 9 two squares are not collinear. Otherwise, if square equal to difference is blank, move there.

• What does this tell you about the way humans solve problems vs computers?

Tic-Tac-Toe — Fourth Attempt

Board: list of board positions arising from next move; estimate of likelihood of position leading to a win

Algorithm: look at position arising from each move; choose "best" one

• Slower; can handle large variety of problems

COMP9414 Problem Solving

Back to Motivating Example

- Notice assumptions built in to problem formulation (level of abstraction)
- Note that while people can "look" at the map to see a solution, the computer must construct the map by exploration
 - ▶ Where can I go from Arad?
 - ► Sibiu, Timisoara, Zerind
 - ▶ Where can I go from Sibiu?
- The order of questioning defines the search strategy
- Problem formulation assumptions critically affect the quality of the solution to the original problem

UNSW

© W. Wobcke et al. 2019

12

COMP9414 Problem Solving 13

Explicit State Spaces

- View state space search in terms of finding a path through a graph
- Graph G = (V, E) V: vertices; E: edges
- Edges may have associated cost; path cost = sum edge costs in path
- Path from vertex s to g sequence of vertices $s = n_0, n_1, \dots, n_k = g$ such that there is an edge from n_i to n_{i+1}
- State space graph node represents state; edge represents change from one state to another due to action; costs may be associated with vertices and edges (hence paths)
- Forward (backward) branching factor max #out-(in-)going arcs from (to) node

COMP9414

UNSW

COMP9414

UNSW

Problem Solving

14

Problem Solving

Complications

- Single-state agent starts in known world state and knows which unique state it will be in after a given action
- Multiple-state limited access to world state means agent is unsure of world state but may be able to narrow it down to a set of states
- Contingency problem if agent does not know full effects of actions (or there are other things going on) it may have to sense during execution (changing the search space dynamically)
- Exploration problem no knowledge of effects of actions (or state), so agent must experiment

Search methods are capable of tackling single-state problems and multiple-state problems at the cost of additional complexity

UNSW © W. Wobcke et al. 2019

©W. Wobcke et al. 2019

© W. Wobcke et al. 2019

15

COMP9414 Problem Solving

Uninformed (Blind) Search Algorithms

- Breadth-First Search
- Uniform Cost Search
- Depth-First Search
- Depth-Limited Search
- Iterative Deepening Search
- Bidirectional Search

UNSW ©W. Wobcke et al. 2019

COMP9414 Problem Solving 17

General Search Space (not State Space)

Search strategy — way in which frontier expands

General Search Procedure

function GeneralSearch(problem, strategy) **returns** a solution or failure initialize search graph using the initial state of problem

loop

16

if there are no candidates for expansion **then return** failure choose a frontier node for expansion according to strategy

if the node contains a goal state then return solution

else expand the node and add the resulting nodes to the search graph

end

UNSW

Note: Only test whether at goal state when expanding node, not when adding nodes to the search graph (except for breadth-first search!)

UNSW © W. Wobcke et al. 2019

COMP9414 Problem Solving 19

State Space vs Search Space

- A state is part of the formulation of the search problem
- A node is a data structure used in a search graph/tree, and includes:
 - \triangleright parent, operator, depth, path cost g(x)
- States do not have parents, children, depth, or path cost!

Two different nodes can have the same state

18

COMP9414 Problem Solving 20 COMP9414 Problem Solving

Evaluating Search Algorithms

- Completeness: strategy guaranteed to find a solution when one exists?
- Time complexity: how long to find a solution?
- Space complexity: memory required during search?
- Optimality: when several solutions exist, does it find the "best"?

Note: States are constructed during search, not computed in advance, so efficiently computing successor states is critical!

UNSW ©W. Wobcke et al. 2019

COMP9414 Problem Solving 21

Analysis of Algorithms – Big-O

- T(n) is O(f(n)) means that there is some n_0 and k such that $T(n) \le kf(n)$ for every problem of size $n \ge n_0$
- Independent of implementation, compiler, fixed overheads, ...
- \bigcirc O() abstracts over constant factors
- Examples
 - \triangleright O(n) algorithm is better than an $O(n^2)$ algorithm (in the long run)
 - $T(100 \cdot n + 1000)$ is better than $T(n^2 + 1)$ for n > 110
 - Polynomial $O(n^k)$ much better than exponential $O(2^n)$
- \bigcirc O() notation is a compromise between precision and ease of analysis

Breadth-First Search

- **Idea:** Expand root node, then expand all children of root, then expand their children, ...
- \blacksquare All nodes at depth d are expanded before nodes at d+1
- Can be implemented by using a queue to store frontier nodes
- Breadth-first search finds shallowest goal state
- Stop when node with goal state is generated
- Include check that generated state has not already been explored
 - ▶ Needs a new data structure for set of explored states

UNSW ©W. Wobcke et al. 2019

COMP9414 Problem Solving 23

Breadth-First Search

Breadth-First Search — **Analysis**

- Complete
- Optimal provided path cost is nondecreasing function of the depth of the node
- Maximum number of nodes generated: $b + b^2 + b^3 + ... + b^d$ (where b = forward branching factor; d = path length to solution)
- Time and space requirements are the same $O(b^d)$

UNSW

© W. Wobcke et al. 2019

COMP9414

Problem Solving

25

COMP9414

UNSW

Problem Solving

27

© W. Wobcke et al. 2019

Uniform Cost Search

- Also known as Lowest-Cost-First search
- Shallowest goal state may not be the least-cost solution
- **Idea:** Expand lowest cost (measured by path cost g(n)) node
- Order nodes in the frontier in increasing order of path cost
- Breadth-first search \approx uniform cost search where g(n) = depth(n) (except breadth-first search stops when goal state generated)
- Include check that generated state has not already been explored
- Include test to ensure frontier contains only one node for any state for path with lowest cost

Uniform Cost Search

Uniform cost search is optimal only if it stops when goal node is expanded – not when goal node is generated

Uniform Cost Search — Analysis

- Complete
- Optimal provided path cost does not decrease along path (i.e. $g(successor(n)) \ge g(n)$ for all n)
- Reasonable assumption when path cost is cost of applying operators along the path
- Performs like breadth-first search when g(n) = depth(n)
- If there are paths with negative cost, need exhaustive search

COMP9414 Problem Solving 28 COMP9414 Problem Solving

Depth-First Search

- **Idea:** Always expand node at deepest level of tree and when search hits a dead-end return back to expand nodes at a shallower level
- Can be implemented using a stack of explored + frontier nodes
- At any point depth-first search stores single path from root to leaf together with any remaining unexpanded siblings of nodes along path
- Stop when node with goal state is expanded
- Include check that generated state has not already been explored along a path cycle checking

UNSW ©W. Wobcke et al. 2019

COMP9414 Problem Solving

Depth-First Search

Depth-First Search

```
def search(self):
    """Returns (next) path from the start node to a goal node.
    Returns None if no path exists.
    """
    while not self.empty_frontier():
        path = self.frontier.pop()
        self.num_expanded += 1
        if self.problem.is_goal(path.end()):  # solution found
            self.solution = path  # store solution
            return path
        else:
            neighs = self.problem.neighbors(path.end())
            for arc in reversed(neighs):
                  self.add_to_frontier(Path(path,arc))
# No more solutions
```

Problem Solving

© W. Wobcke et al. 2019

©W. Wobcke et al. 2019

31

Depth-First Search — Analysis

- Storage: O(bm) nodes (where m = maximum depth of search tree)
- $\blacksquare \text{ Time: } \mathcal{O}(b^m)$

UNSW

COMP9414

- In cases where problem has many solutions, depth-first search may outperform breadth-first search because there is a good chance it will find a solution after exploring only a small part of the space
- However, depth-first search may get stuck following a deep or infinite path even when a solution exists at a relatively shallow level
- Therefore, depth-first search is not complete and not optimal
- Avoid depth-first search for problems with deep or infinite paths

UNSW © W. Wobcke et al. 2019 UNSW

29

UNSW

Depth-Limited Search

- **Idea:** Impose bound on depth of a path
- In some problems you may know that a solution should be found within a certain cost (e.g. a certain number of moves) and therefore there is no need to search paths beyond this point for a solution
- Analysis
 - ► Complete but not optimal (may not find shortest solution)
 - ► However, if the depth limit chosen is too small a solution may not be found and depth-limited search is incomplete in this case
 - ► Time and space complexity similar to depth-first search (but relative to depth limit rather than maximum depth)

UNSW

© W. Wobcke et al. 2019

33

COMP9414 Problem Solving

Iterative Deepening Search

- It can be very difficult to decide upon a depth limit for search
- The maximum path cost between any two nodes is known as the diameter of the state space
- This would be a good candidate for a depth limit but it may be difficult to determine in advance
- **Idea:** Try all possible depth limits in turn
- Combines benefits of depth-first and breadth-first search

Iterative Deepening Search

• 🔨

©W. Wobcke et al. 2019

35

COMP9414 Problem Solving

Iterative Deepening Search — Analysis

- Optimal; Complete; Space O(bd)
- Some states are expanded multiple times: Isn't this wasteful?
 - Number of expansions to depth $d = 1 + b + b^2 + b^3 + ... + b^d$
 - Therefore, for iterative deepening, total expansions = $(d+1)1 + (d)b + (d-1)b^2 + ... + 3b^{d-2} + 2b^{d-1} + b^d$
 - The higher the branching factor, the lower the overhead (even for b = 2, search takes about twice as long)
 - ightharpoonup Hence time complexity still $O(b^d)$
- Can double depth limit at each iteration overhead $O(d \log d)$
- In general, iterative deepening is the preferred search strategy for a large search space where depth of solution is not known

Bidirectional Search

- **Idea:** Search forward from initial state and backward from goal state at the same time until the two meet
- To search backwards we need to generate predecessors of states (this is not always possible or easy)
- If operators reversible, successor sets and predecessor sets are the same
- If there are many goal states, maybe multi-state search would work (but not in chess)
- Need to check whether a node occurs in both searches can be inefficient
- Which is the best search strategy for each half?

UNSW

© W. Wobcke et al. 2019

COMP9414 Problem Solving 37

Bidirectional Search

Bidirectional Search — Analysis

- If solution exists at depth d then bidirectional search requires time $O(2b^{\frac{d}{2}}) = O(b^{\frac{d}{2}})$ (assuming constant time checking of intersection)
- To check for intersection must have all states from one of the searches in memory, therefore space complexity is $O(b^{\frac{d}{2}})$

© W. Wobcke et al. 2019

39

Problem Solving

Criterion Breadth Uniform Bidirectional Depth-Depth-Iterative First Cost First Limited Deepening b^d b^l b^d Time b^d b^m $b^{\frac{d}{2}}$ $b^{\frac{d}{2}}$ Space bmblbdOptimal Yes Yes No No Yes Yes Complete Yes Yes No Yes, if $l \ge d$ Yes Yes

b — branching factor

d — depth of shallowest solution

Summary — Blind Search

m — maximum depth of tree

l — depth limit

UNSW

COMP9414

UNSW ©W. Wobcke et al. 2019 UNSW ©W. Wobcke et al. 2019