

Sentinel

Network Intrusion Detection System (NIDS)

DEFENDING OUR DIGITAL WAY OF LIFE

Lesson objectives

→ Gain a deeper understanding of network attacks in practice

→ Learn about network intrusion detection systems

→ Prepare for building one yourself!

.0

What are the stages of a network attack?

Defining goals

What are the goals of the attack?

- Great information
- Possibly infect multiple computers to create a botnet.

Defining goals

Reconnaissance

- Sathering information
 - To plan the attack strategy
 - Identify vulnerabilities, identify security measures
 - IP addresses, server versions...

Defining goals

Reconnaissance

Reconnaissance techniques

- Active
 - Ping scan
 - Open ports
 - ARP (Address Resolution Protocol) scanning can be used once inside the network.

Defining goals

Reconnaissance

ARP
Address Resolution Protocol

Attack vectors

"How do we get in?"

- Analogy robbing a real building:
 - o "Inside man"
 - Steal a key
 - Breaking and entering

Defining goals

Reconnaissance

Attack vectors

Attack vectors - gaining access

- ◆ ✓ "Inside man"
 - Phishing getting an insider to run a malware, or disclose secret information
- » Steal a key
 - Credential attacks
- Breaking and entering
 - Using vulnerabilities and exploits

Defining goals

Reconnaissance

Attack vectors

Example - Phishing

- Impersonating as a trusted entity
- Platform email, Whatsapp, SMS, social media
- Tricking the user to download & execute a malware

Defining goals

Reconnaissance

Attack vectors

OK, we're inside! What's next?

Spreading

- Discovery of internal network scans (ping, arp, open ports),
 network captures
- using stolen credentials, more phishing, or more exploits

Defining goals

Reconnaissance

Attack vectors

What's next?

OK, we're inside! What's next?

Command and Control (C2)

- — How attackers maintain communication with malwares
- Attackers use known protocols (DNS, HTTP) to avoid detection or rely on proprietary encrypted channels.
- Or using proprietary encrypted channels

Defining goals

Reconnaissance

Attack vectors

What's next?

OK, we're inside! What's next?

Exfiltration

- Transfer of stolen data from the network to the attacker
- Usually compressed and encrypted

Defining goals

Reconnaissance

Attack vectors

What's next?

==

How do we defend?

DEFENDING OUR DIGITAL WAY OF LIFE

Threat intelligence

- How is crime prevented in the real world?
- Knowing tactics
 - If we know how robbers pick locks, we can build better locks
- Knowing the criminals
 - If we know what they look like, we can identify and catch them

Threat intelligence

- Similarly in cyber attacks
- Knowing tactics
 - Learn attack techniques to make adequate protections
- Knowing the criminals
 - Be able to identify known malware
 - Be able to identify known IPs, domains

Defensive products

- Automation of what we mentioned
- A program that understands
 - Attack techniques
 - Recognizes malicious programs and addresses
- And more importantly can detect them in real time

Firewall

Private network

What to detect?

- Malicious actions
- Whether it's phishing, exploitation, brute-forcing, network scans...
- The more opportunities to catch attackers
 - o The better!

User interface

- Input
 - Definitions
 - Exceptions
- Output
 - Alerts

Basics of detection

- Detection requires visibility
- Different products rely on different visibilities
 - Antivirus access to filesystem
 - Endpoint Protection access to operating system internals
 - Network Intrusion Detection System access to network traffic

Network visibility

- Setting up an NIDS requires giving it network visibility
- The process is simple
 - Connect the NIDS to the router
 - Configure the router to mirror all traffic to the NIDS
 - Done!

What kinds of malicious traffic could we detect?

01101100

DEFENDING OUR DIGITAL WAY OF LIFE

NIDS010

- Designed to detect threats in network traffic
- Not necessarily to block or prevent but to detect and notify
- Requires knowledge of known attack techniques / signatures
 - Specifically, how they look like in network traffic

Workshop environment

- NIDS
 - Your workstation
 - Windows machine
- Attacker, client, server
 - The network to monitor
 - Attacks happen inside the network
- All traffic is mirrored to the NIDS

Attacks simulation

- Web interface for controlling simulations of malicious traffic
- Your NIDS should detect the malicious traffic

ID	Description	Malicious Trigger	Non-Malicious Trigger	Threat intelligence
1.1	Detect communication with a C2 server	Start	Start	Known C2 IP: 4.2.2.2

Non-malicious triggers

- To make sure your solution doesn't have false positives
- These should not generate alerts!

ID	Description	Malicious Trigger	Non-Malicious Trigger	Threat intelligence
1.1	Detect communication with a C2 server	Start	Start	Known C2 IP: 4.2.2.2

Simulation interfaces

- Attacker
 - http://192.168.x.x:5000
- Client
 - http://192.168.x.x:5001
- Remember to filter out ports 5000 and 5001!

How would you develop this?

- Python script
- Sniffing with scapy
- Inspecting each packet (using 'prn' argument)
- Adding specific detection code per level

Q&A

Sentinel