Contrôle continu 3

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. (Question de cours)

1. Soit $q: \mathbb{R}^n \to \mathbb{R}$ une forme quadratique. Donner la définition et les propriétés élémentaires de la forme polaire B de q.

Voir cours.

2. Démontrer la proposition suivante : Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de \mathbb{R}^n et $h = h_1 e_1 + \dots + h_n e_n \in \mathbb{R}^n$. Soit $f : \mathbb{R}^n \to \mathbb{R}^p$ une application différentiable en $a \in \mathbb{R}^n$, alors $d_a f(h) = h_1 \frac{\partial f}{\partial x_1}(a) + \dots + h_n \frac{\partial f}{\partial x_n}(a)$.

Voir cours.

Exercice 2. Soit ϕ la forme bilinéaire symétrique sur \mathbb{R}^3 définie par

$$\phi(x,y) = (x_1 - 2x_2)(y_1 - 2y_2) + x_2y_2 + (x_2 + x_3)(y_2 + y_3)$$

pour tout $x = (x_1, x_2, x_3)$ et $y = (y_1, y_2, y_3)$.

1. Vérifier que ϕ est un produit scalaire sur \mathbb{R}^3 .

L'application $\phi: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ est d'après l'énoncé bilinéaire et symétrique. Reste à voir qu'elle est bien définie et positive. Sa matrice est

$$\phi(x,y) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \underbrace{\begin{pmatrix} 1 & -2 & 0 \\ -2 & 6 & 1 \\ 0 & 1 & 1 \end{pmatrix}}_{=M} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

Les déterminants mineurs principaux de M sont $\Delta_1 = 1$, $\Delta_2 = 4$ et $\Delta_3 = 1$. D'après le critère de Sylvester, ϕ est définie positive. C'est un donc bien un produit scalaire.

2. On note $\|\cdot\|_{\phi}$ la norme associée à ϕ . Soit $i=(1,0,0),\ j=(0,1,0)$ et k=(0,0,1). Calculer les coordonnées de

$$e_1 = \frac{i}{\|i\|_{\phi}}, \quad e_2 = \frac{j - \phi(e_1, j)e_1}{\|j - \phi(e_1, j)e_1\|_{\phi}}, \quad e_3 = \frac{k - \phi(e_1, k)e_1 - \phi(e_2, k)e_2}{\|k - \phi(e_1, k)e_1 - \phi(e_2, k)e_2\|_{\phi}}$$

On a
$$-\|i\|_{\phi}^{2} = \phi(i, i) = 1 \text{ et}$$

$$e_{1} = i = (1, 0, 0)$$

$$-\phi(j, e_{1}) = -2 \text{ et } u_{2} = j - \phi(e_{1}, j)e_{1} = (2, 1, 0). \text{ De plus } \|u_{2}\|_{\phi}^{2} = \phi(u_{2}, u_{2}) = 2. \text{ Ainsi}$$

$$e_{2} = (2, 1, 0)/\sqrt{2} = (\sqrt{2}, \sqrt{2}/2, 0)$$

- $\phi(k, e_1) = 0$, $\phi(k, e_2) = 1/\sqrt{2}$ et $u_3 = k - \phi(e_1, k)e_1 - \phi(e_2, k)e_2 = (-1, -1/2, 1)$. De plus $||u_3||_{\phi}^2 = \phi(u_3, u_3) = 1/2$. Ainsi

$$e_3 = (-\sqrt{2}, -\sqrt{2}/2, \sqrt{2}).$$

3. Vérifier que (e_1, e_2, e_3) est une base orthonormale pour ϕ .

Le procédé de la question précédente s'appelle orthonormalisation. Vérifions directement que $\phi(e_i,e_j)=1$ si i=j et 0 sinon. Cela revient à vérifier que le produit matriciel suivant est correct

$$E^t M E = Id_3.$$

avec $E = \begin{pmatrix} 1 & \sqrt{2} & -\sqrt{2} \\ 0 & \sqrt{2}/2 & -\sqrt{2}/2 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$ est triangulaire (les colonnes de E sont les vecteurs e_1 , e_2 et e_3).

4. Déterminer (sans calcul) la matrice de ϕ dans la base (e_1, e_2, e_3) .

Par définition la matrice A de ϕ dans la base (e_1, e_2, e_3) est la matrice $A = [\phi(e_i, e_j)]_{i,j=1}^3$. Or d'après les deux questions précédente $A = Id_3$.

Exercice 3. Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \frac{xy^2}{x^2+y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0.

1. Étudier la continuité de f.

La fonction f est continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$ comme somme et produit de fonctions continues (le dénominateur ne s'annulant pas en dehors de l'origine). Reste à étudier en (0,0):

$$|f(x,y) - f(0,0)| = \frac{|x|y^2}{x^2 + y^2} \le (x^2 + y^2)^{3/2 - 1} = (x^2 + y^2)^{1/2} \xrightarrow{(x,y) \to (0,0)} 0$$

La fonction f est continue sur tout le plan.

2. Soit $v = (v_1, v_2) \in \mathbb{R}^2$. Montrer que la dérivée directionnelle $D_v f(x, y)$ existe en tout point $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. Calculer ensuite $D_v f(x, y)$.

La fonction f est différentiable sur $\mathbb{R}^2 \setminus \{(0,0)\}$ comme somme et produit de fonctions différentiables. Elle admet donc des dérivées directionnelles en tout point différent de l'origine. De plus,

$$D_v f(x,y) = d_{(x,y)} f(v) = \frac{y^4 - x^2 y^2}{(x^2 + y^2)^2} v_1 + \frac{2x^3 y}{(x^2 + y^2)^2} v_2.$$

3. Soit $v = (v_1, v_2) \in \mathbb{R}^2$. Montrer que la dérivée directionnelle $D_v f(0, 0)$ existe. La fonction f est elle différentiable en l'origine?

Par définition on a

$$D_v f(0,0) = \lim_{h \to 0} \frac{f(hv_1, hv_2) - f(0,0)}{h} = \lim_{h \to 0} \frac{1}{h} \frac{hv_1 h^2 v_2}{(h^2 v_1^2 + h^2 v_2^2)} = \frac{v_1 v_2}{v_1^2 + v_2^2} \in \mathbb{R}.$$

De plus, $\frac{\partial f}{\partial x}(0,0) = D_{(1,0)}f(0,0) = 0$ et $\frac{\partial f}{\partial y}(0,0) = D_{(0,1)}f(0,0) = 0$. Or il existe une dérivée directionnelle non nulle et f ne peut être différentiable en 0. En effet, il existe $(v_1,v_2) \in \mathbb{R}^2$ tel que $D_v f(0,0) \neq v_1 \frac{\partial f}{\partial x}(0,0) + v_2 \frac{\partial f}{\partial y}(0,0)$.

Exercice 4.

1. Trouver l'équation du plan tangent au graphe de la fonction $(x, y) \mapsto 4x^2 + y^2$, au point $(x_0, y_0) = (1, -1)$.

On trouve z = 5 + 8(x - 1) - 2(y + 1).

2. Trouver les points sur le paraboloïde $z=4x^2+y^2$ où le plan tangent est parallèle au plan x+2y+z=6.

Le plan x+2y+z=6 est normal au vecteur (1,2,1). Le plan tangent au paraboloïde est normal au vecteur $(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},1)$. Trouver un plan tangent parallèle revient à résoudre le système :

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 1\\ \frac{\partial f}{\partial y}(x,y) = 2 \end{cases}$$

On trouve une unique solution (x, y) = (-1/8, -1).