Lecture Contents

ROS overview.

- Why ROS?
- Other middlewares.
- ROS distributions.

Getting started.

- Installing ROS & Turtlebot simulation.
- Tutorials.

Concepts:

- Directories & variables.
- Running programs.
- ROS build system.
- ROS nodes.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

ROS Overview

- ROS = "Robot Operating System"
 - Not an operating system!
- Contains:
 - Middleware & tools.
 - Build/packaging system.
 - Core packages.
 - E.g. geometry tools.
 - Peripheral packages.
 - E.g. mapping.

Why ROS?

- Open source.
- Big ecosystem.
 - Many robots.
 - Many users.
 - Many tools.
- Common environment.
- Separation of concerns.
- Willow garage / OSRF.

ROS Distributions

- Built on Ubuntu.
- Distributions rolled out approx yearly:
 - Kinetic May 23rd, 2016.
 - \rightarrow (L/K/X)**Ubuntu** 15.10 or **16.04**
 - Jade May 23rd, 2015.
 - Indigo July 22nd, 2014.

Lecture Contents

ROS overview.

- Why ROS?
- Other middlewares.
- ROS distributions.

Getting started.

- Installing ROS & Turtlebot simulation.
- Tutorials.

Concepts:

- Directories & variables.
- Running programs.
- ROS build system.
- ROS nodes.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Installing ROS & Turtlebot

- Step 1: Install Ubuntu.
 - Option 1: Hard disk install.
 - Option 2: Virtual machine install (slow).
 - Option 3: External hard disk install.
- Step 2: Install ROS & Turtlebot.
 - Run shell script install_456_students.sh from https://bitbucket.org/damienjadeduff/456_kinetic_ turtlebot/src

How to use ROS

- Follow the tutorials to learn the basics.
 - Choose
 <u>Kinetic/Catkin</u>
 tutorials.

Suggested tutorials:

- Installing & Configuring your ROS Environment.
- Navigating the ROS Filesystem.
- Creating a ROS Package.
- Building a ROS Package.
- Understanding ROS Nodes.
- Understanding ROS Topics.
- Writing a Simple Publisher & Subscriber (C++).
- Examining the Simple Publisher
 & Subscriber.
- Using rqt_console & roslaunch.

Lecture Contents

ROS overview.

- Why ROS?
- Other middlewares.
- ROS distributions.

Getting started.

- Installing ROS & Turtlebot simulation.
- Tutorials.

Concepts:

- Directories & variables.
- Running programs.
- ROS build system.
- ROS nodes.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Directories & variables

- ROS Kinetic installed in /opt/ros/kinetic
- To make use of it:
 source /opt/ros/kinetic/setup.bash
 - Sets up environment variables.

Directories & variables

```
Your code will be in 
~/catkin_ws/
```

• To intialise it:

```
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
source /opt/ros/kinetic/setup.bash
catkin_init_workspace
cd ~/catkin_ws
catkin make
```

• To make use of it:

```
source ~/catkin_ws/devel/setup.bash
```

ROS concepts: ROS build-system

- Functionality comes in "packages".
- Your programs will be built as packages.
- Toolchains for building:
 - rosbuild older, deprecated.
 - catkin newer, cmake-based

Running programs

• Run (launch) a bundle of programs:

```
roslaunch turtlebot_gazebo turtlebot_world.launch
```

Run a single executable:

```
roscore # coordinate node communication
# and in a different terminal window:
rosrun rviz rviz
```

Lecture Contents

ROS overview.

- Why ROS?
- Other middlewares.
- ROS distributions.

Getting started.

- Installing ROS & Turtlebot simulation.
- Tutorials.

Concepts:

- Directories & variables.
- Running programs.
- ROS build system.
- ROS nodes.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

ROS concepts:

A ROS program consists of communicating nodes.

- ROS uses a <u>publish-subscribe model</u>.
- Programs construct nodes.
- Publishing nodes send messages to a topic.
- Subscribing nodes take messages from a topic.

ROS Node graph

Conceptual node graph

Graph of message routes

More ROS Tools

depthimage_to_laserscan /depthimage_to_laserscan rqt graph: laserscap_nodelet_manager View topic graph. /laserscan_nodelet_manager/bond /laserscan_nodelet_manager amble cmd_vel_mux camera /scan /cmd_vel_mux/input/navi /camera/depth/camera_info /amble gazebo /cmd_vel_mux /camera/depth/image_raw robot_state_publisher mobile base /gazebo mobile_base_nodelet_manager /robot_state_publisher /mobile_base/commands/velocity /joint_states /mobile_base_nodelet_manager/bond /mobile_base_nodelet_manager bumper2pointcloud /bumper2pointcloud

ROS concepts:

A ROS program is a set of communicating nodes.

When nodes connect:

- ROS master program TCP/IP address is an environment variable.
- Publishing & subscribing nodes contact ROS master over TCP/IP.
- Master coordinates communication over topics.