# Dimensionality Reduction Techniques

#### PCA, LDA, and KPCA Compared





## Why do we need dimensionality reduction techniques?

- Data simplification: Reduces high-dimensional data to a more manageable form.
- **Sparsity reduction:** Creates a denser, more informative feature space.
- Overfitting prevention: Fewer features can lead to more generalizable models.
- Improved visualization: Allows high-dimensional data to be visualized in 2D or 3D.
- Computational efficiency: Reduces processing time and resource requirements.
- Mitigates curse of dimensionality: Addresses issues related to high-dimensional spaces.
- Feature decorrelation: Often produces less correlated features.
- Noise reduction: Can filter out less important variations in the data.
- Enables advanced techniques: Makes data more suitable for certain algorithms (e.g., kernel methods).

#### **Potential drawbacks:**

- New features may not have clear real-world meanings.
- Some methods can be intensive to compute.
- Some data characteristics may be lost in the process.



#### **Three Fundamental Techniques**

| Feature                           | PCA                  | LDA                                | KPCA                                                 |
|-----------------------------------|----------------------|------------------------------------|------------------------------------------------------|
| Supervised/Unsuper vised          | Unsupervised         | Supervised                         | Unsupervised                                         |
| Linearity                         | Linear               | Linear                             | Non-linear                                           |
| Goal                              | Maximize<br>variance | Maximize class<br>separability     | Maximize variance<br>in higher-<br>dimensional space |
| Class information                 | Not used             | Used                               | Not used                                             |
| Scalability                       | Moderate             | Poor for high-<br>dimensional data | Poor for large<br>datasets                           |
| Interpretability                  | High                 | High                               | Low                                                  |
| Handles<br>multicollinearity      | Yes                  | Yes                                | Yes                                                  |
| Optimal for classification        | No                   | Yes                                | No                                                   |
| Captures non-linear relationships | No                   | No                                 | Yes                                                  |
| Requires parameter tuning         | No                   | No                                 | Yes (kernel selection)                               |
| Sensitive to feature scaling      | Yes                  | Less sensitive                     | Depends on kernel                                    |



#### **Principal Component Analysis (PCA):**

PCA is an unsupervised dimensionality reduction technique used to transform high-dimensional data into a lower-dimensional space while preserving as much variance as possible.

#### **Steps of PCA:**

- Standardize the data
- Compute the covariance matrix
- Calculate eigenvectors and eigenvalues of the covariance matrix
- Sort eigenvectors by decreasing eigenvalues
- Choose top k eigenvectors as the new feature space
- Project the original data onto the new feature space



<u>Image Source</u>



PCA finds orthogonal directions (principal components) in the feature space that capture the maximum variance in the data. It's particularly useful for visualization, noise reduction, and feature extraction.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import make_moons
from sklearn.preprocessing import StandardScaler
# Generate complex dataset
def generate_data(n_samples=500):
    # Generate two interleaving moons
    X1, y1 = make_moons(n_samples=n_samples, noise=0.1)
    # Add some random noise dimensions
    noise_dims = np.random.randn(n_samples, 3) * 0.1
   X = np.hstack((X1, noise_dims))
    return X, y1
# Generate the data
X, y = generate_data(n_samples=500)
# Standardize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Apply PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
```



#### **Linear Discriminant Analysis (LDA)**

LDA is a supervised dimensionality reduction technique that aims to find a linear combination of features that best separates two or more classes.

#### **Steps of LDA:**

- Compute the mean vectors for each class
- Calculate the within-class and between-class scatter matrices
- Compute the eigenvectors and eigenvalues of the matrix product of the inverse within-class scatter matrix and the between-class scatter matrix
- Sort eigenvectors by decreasing eigenvalues
- Choose top k eigenvectors as the new feature space
- Project the original data onto the new feature space



<u>Image Source</u>



### LDA maximizes the ratio of between-class variance to within-class variance, making it particularly useful for classification tasks.

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.datasets import make_classification
from sklearn.preprocessing import StandardScaler
# Generate complex dataset
def generate_complex_data_lda(n_samples=1000, n_features=20, n_classes=4):
   X, y = make_classification(n_samples=n_samples, n_features=n_features, n_classes=n_classes,
                               n_informative=10, n_redundant=5, n_repeated=3,
                               n_clusters_per_class=2, class_sep=1.5, random_state=42)
    return X, y
# Generate the complex data
X, y = generate_complex_data_lda(n_samples=1000)
# Standardize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Apply LDA
lda = LinearDiscriminantAnalysis(n_components=2)
X_lda = lda.fit_transform(X_scaled, y)
```





#### **Kernel Principal Component Analysis (KPCA)**

KPCA is a non-linear extension of PCA that uses kernel methods to perform dimensionality reduction in high-dimensional feature spaces.

#### **Steps of KPCA:**

- Choose a kernel function (e.g., Gaussian, polynomial)
- Compute the kernel matrix
- Center the kernel matrix
- Compute eigenvectors and eigenvalues of the centered kernel matrix Sort eigenvectors by decreasing eigenvalues
- Choose top k eigenvectors as the new feature space
- Project the original data onto the new feature space using the kernel trick



**Image Source** 



KPCA can capture non-linear relationships in the data, making it useful for datasets with complex structures that PCA might miss.

```
import numpy as np
from sklearn.decomposition import KernelPCA
import matplotlib.pyplot as plt
from sklearn.datasets import make_swiss_roll
from mpl_toolkits.mplot3d import Axes3D

# Generate Swiss roll data
n_samples = 1500
noise = 0.05
X, color = make_swiss_roll(n_samples, noise=noise)

# Perform KPCA
kpca = KernelPCA(n_components=2, kernel='rbf', gamma=0.002)
X_kpca = kpca.fit_transform(X)
```





#### Resources

- Machine Learning with Python 3rd Edition, Chapter 5
- Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow, Chapter 8
- kernel-pca
- <u>sklearn.decomposition.PCA</u>
- GitHub Full Code

