

History

Year	Inventor	Technique	Individual
1958	Friedberg	learning machine	virtual assembler
1959	Samuel	mathematics	polynomial
1965	Fogel, Owens and Walsh	evolutionary programming	automaton
1965	Rechenberg, Schwefel	evolutionary strategies	real-numbered vector
1975	Holland	genetic algorithms	fixed-size bit string
1978	Holland and Reitmann	genetic classifier systems	rules
1980	Smith	early genetic programming	var-size bit string
1985	Cramer	early genetic programming	tree
1986	Hicklin	early genetic programming	LISP
1987	Fujiki and Dickinson	early genetic programming	LISP
1987	Dickmanns, Schmidhuber	early genetic programming	assembler
	and Winklhofer		
1992	Koza	genetic programming	tree

Evolution Strategies (ESs)

Evolution Strategies

- Developed: Germany in the 1970's
- Inventors: I. Rechenberg, H.-P. Schwefel
- Typically applied to:
 - numerical optimisation
- Attributed features:
 - fast
 - good optimizer for real-valued optimisation
 - relatively much theory
- Special:
 - self-adaptation of (mutation) parameters standard

ES technical summary

Representation	Real-valued vectors	
Recombination	Discrete or intermediary	
Mutation	Gaussian perturbation	
Parent selection	Uniform random	
Survivor selection	(μ,λ) or $(\mu+\lambda)$	
Specialty	Self-adaptation of mutation step sizes	

Evolution Strategies (ESs)

- Two-membered ES (earliest) ((1+1)-ES)
 - <u>Population size</u>: one
 - Number of offspring: one
 - Representation: floating point $v = (x, \sigma)$
 - Alter operator: only mutation

$$(x^{t+1}, \sigma) = \begin{cases} (x^t + N(0, \sigma), \sigma) & \text{iff } f(x^{t+1}) > f(x^t) \\ (x^t, \sigma) & \text{otherwise} \end{cases}$$

• 1/5 success rule: σ

$$\sigma^{t+1} = \begin{cases} c_d \cdot \sigma^t, & \text{if } \varphi(k) < 1/5 \\ c_i \cdot \sigma^t, & \text{if } \varphi(k) > 1/5 \\ \sigma^t, & \text{if } \varphi(k) = 1/5 \end{cases}$$

$$where \quad c_i > 1 \text{ and } c_d < 1$$

Normal Distribution

Example

Maximize

$$f(x_1, x_2) = 21.5 + x_1 \cdot \sin(4\pi x_1) + x_2 \cdot \sin(20\pi x_2)$$

where

$$4.1 \le x_2 \le 5.8 \\ -3.0 \le x_1 \le 12.1$$

At some time t,

$$(X^{t}, \sigma) = ((5.3,4.9), (1.0,1.0))$$

The result of the mutation,

$$x_1^{t+1} = x_1^t + N(0,1.0) = 5.3 + 0.4 = 5.7$$

$$x_2^{t+1} = x_2^t + N(0.1.0) = 4.9 - 0.3 = 4.6$$

Since,

$$f(X^{t+1}) = f(5.7,4.6) = 24.849532 > f(X^t) = f(5.3,4.9) = 18.383705$$

So,

$$(X^{t+1}, \sigma) = ((5.7, 4.6), (1.0, 1.0))$$

- *Multi-membered ES* $((\mu+1)-ES)$
 - Population size: $\mu > 1$
 - Number of offspring: one
 - Representation: floating point $v = (x, \sigma)$
 - Alter operators: crossover & mutation
 - uniform crossover:

$$v_1 = (x^1, \sigma^1) = ((x_1^1, ..., x_n^1), (\sigma_1^1, ..., \sigma_n^1))$$

$$v_2 = (x^2, \sigma^2) = ((x_1^2, ..., x_n^2), (\sigma_1^2, ..., \sigma_n^2))$$

then

$$v' = (x, \sigma) = ((x_1^{q_1}, \dots, x_n^{q_n}), (\sigma_1^{q_1}, \dots, \sigma_1^{q_n}))$$

where $q_i = 1$ or 2

• mutation:

Competition: The weakest individual is eliminated.

$$(\mu+1 \rightarrow \mu)$$

- *Multi-membered ES* $((\mu + \lambda) ES)$ and $(\mu, \lambda) ES)$
 - Population size: $\mu > 1$
 - Number of offspring
 - Representation: floating point $v = (x, \sigma)$
 - Alter operators: crossover & mutation
 - Uniform crossover:

$$v_1 = (x^1, \sigma^1) = ((x_1^1, \dots, x_n^1), (\sigma_1^1, \dots, \sigma_n^1))$$

$$v_2 = (x^2, \sigma^2) = ((x_1^2, \dots, x_n^2), (\sigma_1^2, \dots, \sigma_n^2))$$

discrete:

$$v' = (x, \sigma) = ((x_1^{q_1}, \dots, x_n^{q_n}), (\sigma_1^{q_1}, \dots, \sigma_1^{q_n}))$$

intermediate:

$$v' = (x, \sigma) = ((x_1^1 + x_1^2)/2, ..., (x_n^1 + x_n^2)/2),$$
$$((\sigma_1^1 + \sigma_1^2)/2, ..., (\sigma_n^1 + \sigma_n^2)/2))$$

• Mutation:

$$\sigma' = \sigma \cdot e^{N(0, \Delta \sigma)}$$
$$x' = x + N(0, \sigma')$$

• Competition:

$$(\mu + \lambda) - ES \quad \Rightarrow \quad \mu + \lambda \to \mu$$
$$(\mu, \lambda) - ES \quad \Rightarrow \quad \lambda \to \mu \quad (\lambda > \mu)$$

ESs and GAs

- represent the individuals
- selection
- relative order of the procedures selection and recombination
- reproduction parameters
- simultaneously

Genetic Programing (GP)

Genetic Programing

- Developed: USA in the 1990's
- Inventors: J. Koza
- Typically applied to:
 - machine learning tasks (prediction, classification...)
- Attributed features:
 - competes with neural nets and alike
 - needs huge populations (thousands)
 - slow
- Special:
 - non-linear chromosomes: trees, graphs
 - mutation possible but not necessary (disputed!)

GP technical summary

Representation	Tree structures	
Recombination	Exchange of subtrees	
Mutation	Random change in trees	
Parent selection	Fitness proportional	
Survivor selection	Generational replacement	

Representation

- Trees are a universal form
 - Terminal set (T)
 - Function set (F)
- Examples
 - Arithmetic formula
 - Logical formula
 - Program
 - ...

Arithmetic formula

$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

Logical formula

$$(x \land true) \rightarrow ((x \lor y) \lor (z \leftrightarrow (x \land y)))$$

Program

```
i =1;
while (i < 20)
        i = i + 1
                                      while
                                       20 i
```

Crossover

Mutation

Selection

- Parent selection typically fitness proportionate
- Over-selection in very large populations
 - rank population by fitness and divide it into two groups:
 group 1: best x% of population, group 2: other (100-x)%
 - 80% of selection operations chooses from group 1, 20% from group 2
 - motivation: to increase efficiency, %'s come from rule of thumb
- Survivor selection:
 - Typical: generational scheme (thus none)
 - Recently steady-state is becoming popular for its elitism

GP Flowchart

Multimodal Optimization

Multimodal Optimization Problems

Most interesting problems have more than one locally optimal solution.

Methods

1. Repeat several runs

$$p\sum_{i=1}^{p} \frac{1}{i} \approx p(\gamma + \log p)$$

- 2. Parallel implementation of the iterative method
- 3. Investigate many peaks in parallel (Niching method)

Niching Method

Investigate many peaks in parallel

Sharing function: the degradation of an individual's fitness

•
$$sh(dist(x, y)) = \begin{cases} 1 - \left(\frac{dist(x, y)}{\sigma_{sh}}\right)^{\alpha} & \text{if } dist < \sigma_{sh} \\ 0 & \text{otherwise} \end{cases}$$

where σ_{sh} and α are constants

- $0 \le sh(dist) \le 1$
- sh(0) = 1
- $sh(\lim_{dist\to\infty}) = 0$
- Niche count $m(x) = \sum_{y} sh(dist(x, y))$
- New shared fitness of an individual xeval'(x) = eval(x) / m(x)

Multi-objective Optimization

Multi-Objective Problems (MOPs)

Multi-Objective Problems (MOPs)

$$\min(f_1(x), f_2(x), f_3(x), \dots, f_k(x))$$
 s.t. $x \in X$ where $k \ge 2$

- Wide range of problems can be categorised by the presence of a number of n possibly conflicting objectives:
 - buying a car: speed vs. reliability...
 - Engineering design: lightness vs strength
- Two part problem:
 - choice of best for particular application
 - finding set of good solutions

Methods

• Objective Weighting

$$F(x) = \sum_{i=1}^{k} w_i f_i(x)$$

 $F(x) = \sum_{i=1}^{k} w_i f_i(x)$ where $w_i \in [0..1], \sum_{i=1}^{k} w_i = 1$

$$\sum_{i=1}^{k} w_i = 1$$

- Pareto Ranking
 - > Goldberg
 - Fonseca and Fleming

Pareto Ranking

- Goldberg
- Fonseca and Fleming

Non-dominated/Pareto-optimal Solutions

Pareto frontier

$$\bullet \min(f_1(x), f_2(x))$$

$$rank(x) = 1 + p$$

(p chromosomes dominate x.) 45

Example

$$\min(f_1(x), f_2(x))$$

$$f_1(x^{(1)}) = 1$$
 $f_2(x^{(1)}) = 3$
 $f_1(x^{(2)}) = 1$ $f_2(x^{(2)}) = 4$
 $f_1(x^{(3)}) = 2$ $f_2(x^{(3)}) = 2$
 $f_1(x^{(4)}) = 2$ $f_2(x^{(4)}) = 3$
 $f_1(x^{(5)}) = 3$ $f_2(x^{(5)}) = 1$
 $f_1(x^{(6)}) = 3$ $f_2(x^{(6)}) = 3$

