专栏首页 腾讯云数据库专家服务 MySQL 5.7 特性: Online DDL

MySQL 5.7 特性: Online DDL

2020-09-14 阅读 1.4K

前言

DDL 一向是业务的痛点,尤其是对大型表的 DDL 操作,具有操作时间久,对性能影响大,可能影响业务正常使用等问题。

本文详细解释 MySQL DDL 的原理,以及尽可能减少 DDL 对业务的影响的办法。

MySQL DDL 的方法

MySQL 的 DDL 有很多种方法。

MySQL 本身自带三种方法,分别是: copy、inplace、instant。

copy 算法为最古老的算法,在 MySQL 5.5 及以下为默认算法。

从 MySQL 5.6 开始,引入了 inplace 算法并且默认使用。inplace 算法还包含两种类型: rebuild-table 和 not-rebuild-table。MySQL 使用 inplace 算法时,会自动判断,能使用 not-rebuild-table 的情况下会尽量使用,不能的时候才会使用 rebuild-table。当 DDL 涉及到主键和全文索引相关的操作时,无法使用 not-rebuild-table,必须使用 rebuild-table。其他情况下都会使用 not-rebuild-table。

从 MySQL 8.0.12 开始,引入了 instant 算法并且默认使用。目前 instant 算法只支持增加列等少量 DDL 类型的操作,其他类型仍然会默认使用 inplace。

有一些第三方工具也可以实现 DDL 操作,最常见的是 percona 的 pt-online-schemachange 工具(简称为 pt-osc),和 github 的 gh-ost 工具,均支持 MySQL 5.5 以上的版本。

各类工具的对比

方法	сору	inplace not- rebuild- table	inplace rebuild- table	instant	pt- osc	gh- ost
DDL 过程中读取数据	允许	允许	允许	允许	允 许	允许
DDL 过程中写入数据	不允许	允许	允许	允许	允 许	允许
需要 MDL	需要	需要	需要	需要	需要	需要
需要额外 空间	大	小	中	小	大	大
执行时间	非常长	短	非常长	非常短	长	长

目录

前言

MySQL DDL 的方法

作者延續的对比

各类工具的使用方法

MySQL DDL 的使用注意事项

DDL 的所需时间

负载

额外空间占置文安@DBA

主从同步疆域MySQL DBA

MDL

其他 关注

专栏

MySQL DDL 的原理简析

 copy
 算法
 阅读量
 获赞
 作者排名

 inglace
 第38.6K
 647
 1069

instant 算法

pt-online-schema-change

gh-ost 精选专题

腾讯云原生专题

云原生技术干货,业务实践落 th

活动推荐

一键订阅《云荐大咖》...

获取官方推荐精品内容, 学技术不迷路! 立即查看

腾讯云自媒体分享计划

入驻云加社区, 共享百万 资源包。 立即入驻

运营活动

团队主页

专栏

视频

精选

问答

TVP

方法 rebuildinstant сору rebuildosc ost table table 非 IO 负载 大 小 大 非常小 常 大 大 导致主从 非常 大 非常小 大 小 小 同步延时 大 支 持 临 其他 时 暂 停

沙龙

云+竞赛

实验室

一般情况下的建议:

如果使用的是 MySQL 5.5 或者 MySQL 5.6,推荐使用 gh-ost 如果使用的是 MySQL 5.7,索引等不涉及修改数据的操作,建议使用默认的 inplace 算法。如果涉及到修改数据(例如增加列),不关心主从同步延时的情况下使用默认的 inplace 算法,关心主从同步延时的情况下使用 gh-ost 如果使用的是 MySQL 8.0,推荐使用 MySQL 默认的算法设置,在语句不支持

各类工具的使用方法

сору

MySQL 5.5 及以下,直接正常 DDL 即可。

MySQL 5.6 及以上,如果希望使用 copy 算法,需要使用 ALGORITHM=COPY 指定算法类型,例如:

ALTER TABLE table1 ADD COLUMN column1 int ALGORITHM=COPY;

inplace

MySQL 5.7,直接正常 DDL 即可。

MySQL 8.0 及以上,如果希望使用 inplace 算法,需要使用

instant 算法并且在意主从同步延时的情况下使用 gh-ost

ALGORITHM=INPLACE 指定算法类型。

instant

MySQL 8.0, 直接正常 DDL 即可。

pt-online-schema-change

比 gh-ost 落后很多,不推荐使用此工具。

gh-ost

参考其他的文章

MySQL DDL 的使用注意事项

MySQL 在大型表上的 DDL 会带来耗时较久、负载较高、额外空间占用、MDL、主从同步延时等情况。需要特别引起重视。

大部分情况在上面的性能对比表格已经描述,这里不再重复,这里着重讲一些重点问题:

DDL 的所需时间

DDL 的执行时间,和很多因素相关,如果需要比较精确的时间预估,建议在测试环境提前做测试。

可以新建一个测试实例,将备份数据导出到测试实例,执行 DDL 操作,判断执行时间,作为对线上执行的一个估计。但是请注意,该估计仍然可能不准确,因为线上实例

目录

开发者手册

前言

MySQL DDL 的方法

腾讯云TI平台

各类工具的对比 各类工具的使用方法

MySQL DDL 的使用注意事项

DDL 的所需时间

负载

额外空间占用

主从同步延时

MDL

其他

MySQL DDL 的原理简析

copy 算法

inplace 算法

instant 算法

pt-online-schema-change

gh-ost

团队主页

MySQL 5.7 可以开启 DDL 监控,使用以下语句查看 DDL 执行进度:

SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED FROM performance_s

MySQL 自带的监控也是估算值,因此进可作参考。

负载

专栏

所有方式对大表做 DDL 都会增加负载,只是程度的不同,主要为 IO 的负载。如果是 IO 使用非常高的实例,建议在 IO 较小的时间段执行 DDL 操作。

额外空间占用

copy、inplace rebuild-table、gh-ost、pt-online-schema-change,都会将表完整复制一 份出来再做 DDL 变更,因此会使用和原表空间一样大(甚至更大,如果是加列的操作 的话)的额外空间,另外还会生成大量的临时日志。要特别注意剩余空间,确保空间充 裕,不然可能导致 DDL 过程中磁盘写满。

主从同步延时

所有方式做 DDL 均会引发主从同步延时。其中 copy 和 inplace 算法,只有主完成了 DDL 操作之后, binlog 才会同步给从库, 从库才能开始操作 DDL, 从库操作完 DDL 之 后才能开始操作其他语句, 因此会造成巨大的 (大概两倍 DDL 操作时间) 的延时。其 他方法产生的延时较小,但仍然可能有几秒的延时。

MDL

所有方式做 DDL 均会产生 MDL (metadata lock)。除了 copy 模式会有持续性的锁 (DDL 的整个过程期间无法向该表写入任何数据)之外,其他方式的 MDL 均为短暂的

除了 copy 模式之外的所有模式, MDL 如下:

- 1. 在 DDL 的开始阶段,申请该表的 EXCLUSIVE-MDL 锁,禁止读写
- 2. 降级 EXCLUSIVE-MDL 锁,允许读写
- 3. 在 DDL 的最终 COMMIT 阶段, 升级 EXCLUSIVE-MDL 锁, 禁止读写

其中的阶段一和阶段三,其 MDL 的持续时间都是非常短暂的,也就是申请到了 MDL 锁之后会在很快的时间(一般小于一秒)处理完成相关操作并释放锁,一般情况下是不 会影响业务的。只有阶段二是真正在处理数据,持续时间一般较长。

但是,有可能出现在阶段一和阶段三,无法申请到 MDL 的情况。这是因为 MDL 和所 有的读写语句都可能会产生冲突,如果是在申请 MDL 的时候,之前有读写的事务一直 没有执行完成(或者执行完成之后一直没有 COMMIT) , MDL 就会无法立刻申请到, 这个时候,DDL 语句,以及所有在该 DDL 语句之后的读写事务,都会阻塞并等待之前 的读写事务完成,导致整个实例处于不可用状态。这个时候

SHOW PROCESSLIST 看到的语句状态为 waiting for metadata lock

由于目前所有的 DDL 语句都会产生 MDL, 无法避免, 因此, 在执行 DDL 操作期间, 尽可能确保不要有未执行完成的长事务。如果发生了

warting for metadata lock 导致的阻塞,一般有以下三种处理方法:

- 1. 耐心等待之前的事务全部执行完成
- 2. 将之前未执行完成的事务全部 kill 掉
- 3. kill 掉 DDL 语句

其他

MySQL 的 inplace 算法虽然支持在 DDL 过程中间的读写,但是对写入的数据量有上 限,不能超过 innodb online alter log max size (默认为 128M)。如果 超过上限可能导致执行失败。

MySQL DDL 的原理简析

copy 算法

目录

开发者手册

前言

MySQL DDL 的方法

各类工具的对比

各类工具的使用方法

MySQL DDL 的使用注意事项

DDL 的所需时间

额外空间占用

主从同步延时

MDI

其他

MySQL DDL 的原理简析

copy 算法

inplace 算法

instant 算法

pt-online-schema-change

gh-ost

团队主页

实验室

专栏 视频 精选 问答 沙龙 云+竞赛

替换掉源表。这个算法主要被早期(<=5.5)版本所使用。

inplace 算法

从 5.6 开始,常用的 DDL 都默认使用这个算法。inplace 算法包含两类: inplace-no-rebuild 和 inplace-rebuild,两者的主要差异在于是否需要重建源表。

inplace 算法的操作阶段主要分为三个:

Prepare阶段:

- 创建新的临时 frm 文件(与 InnoDB 无关)。
- 持有 EXCLUSIVE-MDL 锁, 禁止读写。
- 根据 alter 类型,确定执行方式(copy,online-rebuild,online-not-rebuild)。 更新数据字典的内存对象。
 - 分配 row_log 对象记录数据变更的增量(仅 rebuild 类型需要)。
 - 生成新的临时ibd文件 new_table (仅rebuild类型需要)。

Execute 阶段:

- 降级EXCLUSIVE-MDL锁,允许读写。
- 扫描old_table聚集索引 (主键) 中的每一条记录 rec。
- 遍历new_table的聚集索引和二级索引,逐一处理。
- o 根据 rec 构造对应的索引项。
- 将构造索引项插入 sort_buffer 块排序。
- 将 sort_buffer 块更新到 new_table 的索引上。
- 记录 online-ddl 执行过程中产生的增量(仅 rebuild 类型需要)。
- 重放 row_log 中的操作到 new_table 的索引上 (not-rebuild 数据是在原表上更新)。
- 重放 row log 中的DML操作到 new table 的数据行上。

Commit阶段:

- 当前 Block 为 row_log 最后一个时,禁止读写,升级到 EXCLUSIVE-MDL 锁。
- 重做 row_log 中最后一部分增量。
- 更新 innodb 的数据字典表。
- 提交事务(刷事务的 redo 日志)。
- 。 修改统计信息。
- o rename 临时 ibd 文件, frm文件。
- 变更完成, **释放 EXCLUSIVE-MDL 锁**。

instant 算法

MySQL 8.0.12 才提出的新算法,**目前只支持添加列等少量操作**,利用 8.0 新的表结构设计,可以直接修改表的 metadata 数据,省掉了 rebuild 的过程,极大的缩短了 DDL 语句的执行时间。

pt-online-schema-change

借鉴了 copy 算法的思路,由外部工具来完成临时表的建立,数据同步,用临时表替换源表这三个步骤。其中数据同步是利用 MySQL 的触发器来实现的,会少量影响到线上业务的 QPS 及 SQL 响应时间。

gh-ost

详细信息参考其他的文章

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。 如有侵权,请联系 yunjia_community@tencent.com 删除。

MySQL

云数据库 MySQL

数据库

举报

目录

开发者手册

前言

MySQL DDL 的方法

腾讯云TI平台

TVP

各类工具的对比

各类工具的使用方法

MySQL DDL 的使用注意事项

DDL 的所需时间

额外空间占用

主从同步延时

MDI

其他

MySQL DDL 的原理简析

copy 算法

inplace 算法

instant 算法

pt-online-schema-change

gh-ost

