

Classification de Scènes Naturelles

Septembre 2025

66 Projet de Deep Learning

KOTO Patricia

1. Motivation et Objectifs

2. Jeu de données

Plan

7 points

3. Méthodologie

4. Modélisation

7. Conclusion et perspectives

5. Résultats

6. Application Streamlit

Motivation et objectifs

Pourquoi classifier automatiquement des scènes?

- Organisation d'images
- Robotique,
- géographie,
- environnement

Objectif: prédire 6 classes (buildings, forest, glacier, mountain, sea, street)

Jeu de données

glacier

forest

sea

street

glacier

mountain

glacier

buildings

Résultats du chargement :

- 14 034 images trouvées dans le dossier d'entraînement
- 3 000 images trouvées dans le dossier de validation
- 6 classes détectées : ['buildings', 'forest', 'glacier', 'mountain', 'sea', 'street'] Nous avons donc un problème de classification multiclasses avec 6 catégories.

Proportions: {'buildings': '14.6%', 'forest': '15.8%',

'glacier': '18.4%', 'mountain': '17.5%',

'sea': '17.0%',

'street': '16.7%'}

Pipeline CNN

- 1. Chargement des données → train, validation, test.
- 2. Prétraitement & augmentation → redimensionnement, normalisation, zoom, rotation, flip.
- 3. Construction du modèle → convolution → pooling → dense → softmax.
- 4. **Compilation** → fonction de perte (categorical crossentropy), optimiseur (Adam), métriques.
- 5. Entraînement (fit) → apprentissage sur train, suivi sur validation.
- 6. **Évaluation** → test, matrice de confusion, accuracy, précision, rappel, F1-score.
- 7. Interprétation → Grad-CAM pour visualiser les zones activées et analyser les erreurs.
- 8. **Améliorations** → tuning hyperparamètres, régularisation, transfert learning.

Méthodologie

- Préparation : normalisation, data augmentation
- Split: train / validation / test
- Modèles testés :
 - CNN baseline
 - Transfer Learning (MobileNetV2)

Modélisation

- CNN baseline: convolution + pooling + dense
- Transfer Learning: MobileNetV2 (ImageNet)
- Fine-tuning des couches profondes
- Optimiseur : Adam | Loss : Categorical Crossentropy

Résultats

Comparaison Baseline vs Transfer Learning

Classe	Precision (Baseline)	Recall (Baseline)	F1-score (Baseline)	Precision (Transfer)	Recall (Transfer)	F1-score (Transfer)
Buildings	0.71	0.86	0.77	0.90	0.92	0.91
Forest	0.89	0.99	0.94	0.99	0.98	0.99
Glacier	0.83	0.67	0.74	0.83	0.87	0.85
Mountain	0.75	0.77	0.76	0.85	0.84	0.84
Sea	0.84	0.80	0.82	0.96	0.91	0.94
Street	0.84	0.79	0.81	0.92	0.92	0.92
Accuracy	0.81	_	_	0.91	_	_
Macro avg	0.81	0.81	0.81	0.91	0.91	0.91
Weighted avg	0.81	0.81	0.81	0.91	0.91	0.91

Résultats

Application Streamlit

- •- Application Web pour tester le modèle
- •- Upload d'images multiples
- •- Choix du Top-k
- •- Visualisation des probabilités
- •- Interface interactive

Intel Scenes — Prédiction simple (sans Grad-CAM)

Charge un modèle .keras/.h5, envoie une image, et vois la prédiction.

Chemin du modèle	Top-k					
transfer_best.keras	3 - +					
Top-k : affiche les k classes les plus probables, triées de la plus certaine à la moins certaine.						
Modèle chargé.						
Glisse une ou plusieurs images (JPG/PNG)						
Drag and drop files here Limit 200MB per file • JPG, JPEG, PNG	Browse files					

Image originale

Prédictions

- buildings: 95.23%
- street: 1.86%
- mountain: 1.26%

Conclusion et perspectives

- Transfer learning améliore fortement les performances
- Projet utile pour la classification d'images naturelles

• Perspectives:

- Nouvelles architectures (ResNet, EfficientNet)
- Déploiement sur le cloud (Streamlit Cloud, HuggingFace)

MERCI POUR VOTRE ECOUTE!

