Econ 241A Probability, Statistics and Econometrics

Fall 2013

Final Exam

- You have 3 hrs to complete this exam
- The exam has two parts. Part I requires to solve <u>all</u> problems. Part II allows you to choose between two problems. Please solve <u>just one</u> problem in Part II. If you answer both, only the lowest grade out of the two will be taken into account.
- The last page of the exam has a list of pmf's and pdf's that you may (or may not) need to use throughout the exam.

Part I

1. (5) Let $X_1, ..., X_n$ be a random sample from a Pareto distribution with parameter $\alpha > 2$:

$$f_{X_i}(x) = \frac{\alpha}{x^{\alpha+1}}$$
 for $x \ge 1$

with $\mathbb{E}(X_i) = \frac{\alpha}{\alpha - 1}$ and $\operatorname{Var}(X_i) = \frac{\alpha}{(\alpha - 1)^2(\alpha - 2)}$. What is the Cramér-Rao lower bound for the variance of an unbiased estimator of α ?

- 2. (5) Assume $U \sim \text{uniform}(2,5]$ and X has a Pareto distribution (given in question 1) with parameter equal to random variable U (i.e. $\alpha = U$). What is the joint pdf of (X, U)?
- 3. (5) Assume $(X_1, Y_1), ..., (X_n, Y_n)$ is a bivariate random sample. Show that $M_{11} = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$ converges in probability to σ_{XY} . Hint: Note that you can write M_{11} as a function of $M_{11}^* = \frac{1}{n} \sum_{i=1}^{n} (X_i \mu_X)(Y_i \mu_Y)$ (no need to prove this statement):

$$M_{11} = M_{11}^* - (\bar{X} - \mu_X)(\bar{Y} - \mu_Y).$$

- 4. (5) Show that $\sqrt{n} (M_{11} \sigma_{XY})$ converges in distribution to a normal, where M_{11} is defined as in question 3.
- 5. (5) Let $X_1, X_2, ..., X_n$ be a sequence of independent random variables. Each random variable is drawn from a an exponential distribution with parameter λ_i : $X_i \sim \exp(\lambda_i)$, where $\lambda_i > 0 \ \forall i$. Define the statistic $X_{(1)} = \min\{X_1, X_2, ..., X_n\}$. Derive the CDF of $X_{(1)}$. What distribution does this CDF represent?
- 6. (Extra Credit) Prove that $Cov(X,Y) = \mathbb{E}\left[(X \mathbb{E}(X))Y\right]$

Part II

7. (15) Consider a random sample, $X_1, X_2, ..., X_n$, where X_i is distributed normal with mean $\mu > 0$, and variance of one.

$$f_{X_i}(x) = \frac{1}{\sqrt{2\pi}} \exp\left[\frac{(x_i - \mu)^2}{2}\right]$$

- a) What is the pdf of $W = n(\bar{X} \mu)^2$, where \bar{X} is the sample average? Hint: What is the distribution of $\sqrt{n}(\bar{X} \mu)$?
- b) Write the formula for the pdf of $Y = \ln(\bar{X})$, which should be characterized by parameters μ and n.
- Assume you observe a random sample, $Y_1, Y_2, ..., Y_m$, i.e. a random sample from the distribution derived in part (b). What is the method of moments estimator for parameters μ and n? Hint: note that $\bar{X} = \exp(Y)$, and \bar{X} has a simpler distribution than Y.

- d) I the method of moments estimator for n you proposed in part (c) unbiased? If no, what is the direction of the bias.
- e) Show that the method of moments estimator for μ derived in part (c) is consistent.
- f) Is the method of moments estimator for n consistent? No need to provide a proof. Instead, provide a valid argument that uses results seen in class.
- 8. (15) Taken from lecture's example. A researcher is interested in learning about the distribution of opportunity costs of preserving hectares of forest in the Amazon. He proposes a model for preservation costs given by

$$c(Q;W) = a + \frac{W}{2}q^2, \tag{1}$$

where q are the number of hectares preserved and a > 0.

Note that the marginal cost of preserving q hectares of forest is proportional to the random variable W. A Payments for Ecosystem Services (PES) program pays p for each hectare of land preserved, where p is a known constant. Farmers decide how many hectares to submit by setting the marginal cost of preservation equal to the per-hectare compensation. Hence,

$$Q^* = \frac{p}{W} \tag{2}$$

The researcher observes the number of hectares submitted to the program for a random sample of farmers, $Q_1^*, ..., Q_n^*$.

- (a) Derive the method of moments estimator for the mean marginal cost determinant W, μ_W , that is consistent with the cost model in (1) and (2).
- (b) Derive an unbiased method of moments estimator for the variance of W, σ_W^2 .

- (c) Write the pdf of Q^* under the new assumption for the distribution of W.
- (d) What is the MLE estimator for λ ?
- (e) What is the MLE estimator for the variance of W?
- (f) Provided that the distributional assumption on W holds, which estimator for the variance of W is more efficient? Choose between the one you derived in part (b) and the one you derived in part (d). Explain.

Bernoulli

$$P(X = x|p) = p^{x}(1-p)^{(1-x)}; x = 0, 1; 0 \le p \le 1$$

Binomial

$$P(X = x | n, p) = \binom{n}{x} p^{x} (1 - p)^{(n-x)}; x = 0, 1, 2, ..., n; 0 \le p \le 1$$

Discrete uniform

$$P(X = x|N) = \frac{1}{N}; x = 1, 2, ..., N; N = 1, 2, ...$$

Poisson

$$P(X = x | \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}; x = 0, 1, 2, ...; 0 \le \lambda < \infty$$

Uniform

$$f(x|a,b) = \frac{1}{b-a}; \ x \in [a,b]$$

Exponential

$$f(x|\beta) = \lambda e^{-\lambda x}; \ 0 \le x < \infty, \ \lambda > 0$$

Logistic

$$f(x|\mu,\beta) = \frac{1}{\beta} \frac{\exp(-(x-\mu)/\beta)}{[1+\exp(-(x-\mu)/\beta)]^2}; -\infty < x < \infty, -\infty < \mu < \infty, \beta > 0$$

Normal

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}; -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0$$