Zadanie: PRZ Przyciski

XXXI OI, etap I. Plik źródłowy prz.* Dostępna pamięć: 256 MB.

16.10-20.11.2023

Plansza rozmiaru $n \times n$ składa się z n^2 pól. Każde pole albo jest puste, albo znajduje się na nim przycisk. Początkowo żaden z przycisków nie jest aktywny. Trzeba teraz aktywować pewną liczbę przycisków (co najmniej jeden), tak by liczba aktywowanych przycisków w każdym rzędzie i w każdej kolumnie planszy była tej samej parzystości. Formalnie, jeśli R_i to liczba aktywowanych przycisków w i-tym rzędzie, a C_i to liczba aktywowanych przycisków w i-tej kolumnie (dla $1 \le i \le n$), to wszystkie liczby $R_1, R_2, \ldots, R_n, C_1, C_2, \ldots, C_n$ muszą dawać tę samą resztę z dzielenia przez 2.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite n i m ($1 \le n \le 100\,000$, $1 \le m \le \min(n^2, 500\,000)$) oznaczające rozmiar planszy i liczbę przycisków. Przyciski są ponumerowane od 1 do m. Kolejne m wierszy opisuje przyciski: i-ty z nich zawiera dwie liczby całkowite r_i i c_i ($1 \le r_i, c_i \le n$) oznaczające, że przycisk o numerze i (dla $1 \le i \le m$) znajduje się na przecięciu r_i -tego rzędu i c_i -tej kolumny planszy. Każdy przycisk znajduje się na innym polu.

Wyjście

Jeśli nie da się aktywować przycisków zgodnie z warunkami zadania, na wyjście należy wypisać jedno słowo NIE.

W przeciwnym wypadku w pierwszym wierszu wyjścia należy wypisać słowo TAK. W drugim wierszu należy wypisać jedną liczbę całkowitą k ($1 \le k \le m$) oznaczającą liczbę aktywowanych przycisków w pewnym poprawnym rozwiązaniu. W trzecim wierszu należy wypisać ciąg k parami różnych liczb całkowitych, oznaczających numery aktywowanych przycisków. Liczby te można wypisać w dowolnej kolejności.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
3 6	TAK
1 1	4
1 2	1 2 4 5
2 2	
3 1	
3 2	
3 3	

Wyjaśnienie przykładu: Mamy $R_1 = 2$, $R_2 = 0$, $R_3 = 2$, $C_1 = C_2 = 2$, $C_3 = 0$.

Testy przykładowe. Test 0 to test z przykładu powyżej. Poza tym:

```
1ocen: n = 9, m = 1, r_1 = c_1 = 1; odpowiedź NIE;
```

20cen: $n=9,\ m=81;$ odpowiedź TAK (można aktywować wszystkie przyciski); **30cen:** $n=10^5,\ m=5\cdot 10^5,$ przyciski w pierwszych 5 rzędach; odpowiedź TAK.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Ograniczenia	Punkty
1	$m \le 20$	24
2	jeśli istnieje rozwiązanie, to istnieje dla parzystych R_i , C_i	24
3	jeśli istnieje rozwiązanie, to istnieje dla nieparzystych R_i, C_i	24
4	brak dodatkowych ograniczeń	28

Jeżeli odpowiedzią w teście nie będzie NIE, a Twój program wypisze poprawnie jedynie pierwszy wiersz wyjścia, to uzyska 50% punktów za dany test. W szczególności, aby uzyskać te 50% punktów za test, nie trzeba wypisywać kolejnych wierszy.