Codage de l'information

Devoir surveillé

11 janvier 2000 Durée 1h

Documents et calculatrices autorisés

Toute réponse doit être justifiée.

Exercice 1: Codes optimaux (30 mn)

Soit ${\mathcal S}$ la source munie de la distribution de fréquences f suivante :

x_1	x_2	x_3	x_4	x_5	x_6	x_7
1/8	1/32	1/4	1/8	1/16	5/32	1/4

- $\mathbf{Q}\ \mathbf{1}$. Peut–on trouver un codage optimal de $\mathcal S$ comprenant
 - 1. trois mots de longueur 2, deux mots de longueur 3 et deux mots de longueur 4?
 - 2. un mot de longueur 2, cinq mots de longueur 3 et un mot de longueur 4?
- \mathbf{Q} 2. Construisez un codage optimal pour \mathcal{S} .

Soient c_1 et c_2 les codages de S définis par

ĺ		x_1	x_2	x_3	x_4	x_5	x_6	x_7
ĺ	$c_1(x)$	0011	0000	10	01	0010	0001	11
ĺ	$c_2(x)$	001	000000	1	0001	00001	000001	01

- Q 3. Combien de bits faut-il en moyenne pour coder une séquence de 16000 symboles à l'aide de ces deux codages.
- **Q4.** Ces codages sont–ils optimaux?

Exercice 2: Codes correcteurs (10 mn)

On considère le code $C = \{11111, 11000, 00010, 00100\}.$

- ${\bf Q}$ 1 . Vérifiez que C n'est pas 1-correcteur.
- ${\bf Q}$ 2. Changez un des mots de C pour obtenir un code 1-correcteur.

Exercice 3: Codes linéaires (20 mn)

- ${\bf Q}$ 1. Construisez un code binaire C, linéaire et 1-correcteur, comportant huit mots de longueur n=6.
- \mathbf{Q} 2. Déterminez une matrice G génératrice de C.
- ${\bf Q}$ 3. Quelle est la longueur k des blocs que permet de coder la matrice G? Déterminez alors le codage de chacun de ces blocs.