

Rappel sur le mouvement Keplerien

Cours Polytech Sophia Satellite T.Dargent

Mouvement Keplerien autour d'un corps céleste

Hypothèse:

- le mobile (satellite, planète,...) est assimilé à un point matériel de masse m négligeable devant la masse M du corps céleste
- La seul force prise en compte est l'attraction newtonienne en 1/r²
- Le corps céleste est sphérique de masse homogène M

Loi de Kepler

Avec ces conditions la trajectoire du mobile dans un repère inertiel centré sur le corps céleste obéit au 3 lois de Kepler:

- 1. La trajectoire est une ellipse (ou une conique) dont un des foyers est le centre du corps céleste (ex le soleil,...)
- 2. L'aire balayée par le rayon « corps céleste mobile » par unité de temps est constante
- 3. Dans le cas d'une orbite elliptique le carrée de la période varie proportionnellement au cube du demi grand axe

Équation du mouvement

Dynamique newtonienne

- \vec{r} rayon vecteur du satellite par rapport au corps central
- μ Constante gravitationnelle (3,986005 E⁺¹⁴ m³/s² pour la Terre)

Vitesse:	$\vec{V} = \frac{d\vec{r}}{dt}$
Acelérations :	$\vec{\gamma} = \frac{d^2 \vec{r}}{dt^2} = grad(V)$
potentiel :	$V = \frac{\mu}{r}$
dynamique :	$\frac{d^2\vec{r}}{dt^2} = -\mu \frac{\vec{r}}{r^3}$

Corporate Communications

Démonstration loi des aires

Soit le moment cinétique: $\vec{C} = \vec{r} \wedge \vec{V}$

Celui ci est constant car sa dérivé est nul par rapport au temps:

$$\frac{d\vec{C}}{dt} = \frac{d\vec{r}}{dt} \wedge \vec{V} + \vec{r} \wedge \frac{d\vec{V}}{dt} = \vec{V} \wedge \vec{V} + \vec{r} \wedge \frac{d^2\vec{r}}{dt^2} = \vec{0}$$

Conclusion:

 \blacksquare La trajectoire est plane car \overrightarrow{r} est perpendiculaire à un vecteur constant \overrightarrow{C}

Passage en polaire dans le plan de la trajectoire

$$\vec{\gamma} = \frac{d^2 \vec{r}}{dt^2} = \left(\frac{d^2 r}{dt^2} - r \times \left(\frac{d\theta}{dt}\right)^2\right) \times \vec{u} + \frac{1}{r} \frac{d}{dt} \left(r^2 \times \frac{d\theta}{dt}\right) \vec{v}$$

Identification des termes

$$\frac{d^2r}{dt^2} - r \times \left(\frac{d\theta}{dt}\right)^2 = -\frac{\mu}{r^2}$$

$$\frac{d}{dt}\left(r^2 \times \frac{d\theta}{dt}\right) = 0 \Rightarrow r^2 \times \frac{d\theta}{dt} = C$$

Cette dernière équation démontre la loi des aires:

$$\frac{dA}{dt} = \frac{1}{2}r^2 \times \frac{d\theta}{dt} = \frac{C}{2}$$

THALES

Démonstration 1ère loi de Kepler

Soit le changement de variable

$$u = \frac{1}{r}$$

De la loi des aire on obtient

$$\frac{d\theta}{dt} = Cu^{2} \Leftrightarrow \frac{du}{dt} = Cu^{2} \frac{du}{d\theta} \Leftrightarrow -u^{2} \frac{dr}{dt} = Cu^{2} \frac{du}{d\theta} \Leftrightarrow \frac{dr}{dt} = C \frac{du}{d\theta}$$

$$\frac{d^{2}r}{dt^{2}} = -C \frac{d^{2}u}{d\theta^{2}} \frac{d\theta}{dt} = -C^{2}u^{2} \frac{d^{2}u}{d\theta^{2}}$$

par substitution dans l'équation $\frac{d^2r}{dt^2} - r \times \left(\frac{d\theta}{dt}\right)^2 = -\frac{\mu}{r^2}$ on obtient l'équation différentielle:

$$\frac{d^2u}{d\theta^2} + u = \frac{\mu}{C^2}$$

C'est une équations du second ordre qui a pour solution générale: $u = A\cos(\theta - \theta_0) + \frac{\mu}{C^2}$

La solution en r est de la forme:

$$r = \frac{p}{1 + e\cos(\theta - \theta_0)}$$

avec
$$p = \frac{C^2}{\mu}$$

$$e = An$$

$$e = Ap$$

C'est une conique

Géométrie d'une ellipse

Démonstration 3^{ème} loi de Kepler

Dans le cas d'une orbite elliptique:

- la période est le temps mis à faire de tour de l'ellipse.
- La surface balayée au cour de la période est donc la surface de l'ellipse:

$$\pi \times a \times b = \int_{0}^{T} \frac{dA}{dt} dt = \int_{0}^{T} \frac{C}{2} dt = \frac{C \times T}{2}$$

$$T = 2\pi \frac{ab}{C}$$

$$C = \sqrt{\mu p} = \sqrt{\mu a (1 - e^{2})}$$

$$b = a\sqrt{1 - e^{2}}$$

$$T = 2\pi \frac{a^{2}\sqrt{1 - e^{2}}}{\sqrt{\mu a (1 - e^{2})}} = \sqrt{\frac{a^{3}}{\mu}}$$

D'ou la 3ème loi de Kepler:

$$T = 2\pi \sqrt{\frac{a^3}{\mu}}$$

Éléments orbitaux Keplerien

Définition:

- a demi grand axe
- e excentricité
- I inclinaison
- ω argument du périgée
- lacksquare Ω longitude du nœud ascendant
- v anomalie vrai : position sur orbite

■ E anomalie excentrique

M anomalie moyenne

n moyen mouvement

 $\blacksquare M=n^*(t-t_p)$

Vers dynamique satellite

Corporate Communications

Formules fondamentales pour les ellipses

Equation de Kepler	$E - e\sin(E) = M = n \times (t - t_p)$
Période	$T = 2\pi \sqrt{\frac{a^3}{\mu}}$
$Vitesse\left(V = \left\ \vec{V} \right\ \right)$	$V = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a}\right)}$
Angle ψ de $ec{V}$	$\cos(\psi) = \frac{C}{rV} = \frac{1 + e\cos(v)}{\sqrt{1 + 2e\cos(v) + e^2}}$ $\sin(\psi) = e\sqrt{\frac{\mu}{p}} \frac{\sin(v)}{V} = \frac{e\sin(v)}{\sqrt{1 + 2e\cos(v) + e^2}}$
Anomalies vraies	$\cos(v) = \frac{\cos(E) - e}{1 - e\cos(E)}$ $\sin(v) = \frac{\sqrt{1 - e^2}\sin(E)}{1 - e\cos(E)}$
Anomalies exentrique	$\cos(E) = \frac{\cos(v) + e}{1 + e\cos(v)}$ $\sin(E) = \frac{\sqrt{1 - e^2}\sin(v)}{1 + e\cos(v)}$

Formulaire

Known parameters	Semi major axis [a]	Semi minor axis [b]	Apogee radius [Ra]	Perigee radius [Rp]	Excentricity [e]	Apogee Speed [Va]	Perigee Speed [Vp]	Angular Momentum [H]	Total energy [W]	Periode [T]
a,e	а	$a\sqrt{1-e^2}$	a(1+e)	a(1-e)	е	$\sqrt{\frac{\mu}{a}\frac{1-e}{1+e}}$	$\sqrt{\frac{\mu}{a}\frac{1+e}{1-e}}$	$\sqrt{\mu a(1-e^2)}$	$\frac{-\mu}{2a}$	$2\pi\sqrt{\frac{a^3}{\mu}}$
Ra,Rp	$\frac{R_a + R_p}{2}$	$\sqrt{R_a R_p}$	Ra	Rp	$\frac{R_a - R_p}{R_a + R_p}$	$\sqrt{\frac{2\mu}{R_a + R_p} \frac{R_p}{R_a}}$	$\sqrt{\frac{2\mu}{R_a + R_p} \frac{R_a}{R_p}}$	$\sqrt{\frac{2\mu R_a R_p}{R_a + R_p}}$	$\frac{-\mu}{R_a + R_p}$	$\pi\sqrt{\frac{\left(R_a+R_p\right)^3}{2\mu}}$
a, Ra	а	$\sqrt{R_a(2a-R_a)}$	Ra	2a-Ra	$\frac{R_a - a}{a}$	$\sqrt{\frac{\mu}{a} \frac{(2a - R_a)}{R_a}}$		$\sqrt{\frac{\mu}{a}}R_a(2a-R_a)$	$\frac{-\mu}{2a}$	$2\pi\sqrt{\frac{a^3}{\mu}}$
a, Rp	а	$\sqrt{R_p(2a-R_p)}$	2a-Rp	Rp	$\frac{a-R_p}{a}$	$\sqrt{\frac{\mu}{a}} \frac{R_p}{(2a - R_p)}$	$\sqrt{\frac{\mu}{a} \frac{(2a - R_p)}{R_p}}$	$\sqrt{\frac{\mu}{a}R_p(2a-R_p)}$	$\frac{-\mu}{2a}$	$2\pi\sqrt{\frac{a^3}{\mu}}$
e, Ra	$\frac{R_a}{1+e}$	$R_a \sqrt{\frac{(1-e)}{(1+e)}}$	Ra	$R_a \frac{1-e}{1+e}$	е	$\sqrt{\frac{\mu}{R_a}(1-e)}$	$\sqrt{\frac{\mu}{R_a}} \frac{(1+e)^2}{1-e}$	$\sqrt{\mu R_a (1-e)}$	$\frac{-\mu}{2R_a}(1+e)$	$2\pi\sqrt{\frac{R_a^3}{\mu(1+e)^3}}$
e, Rp	$\frac{R_p}{1-e}$	$R_p \sqrt{\frac{(1+e)}{(1-e)}}$	$R_{p} \frac{1+e}{1-e}$	Rp	е	$\sqrt{\frac{\mu}{R_p} \frac{(1-e)^2}{1+e}}$	$\sqrt{\frac{\mu}{R_p}(1+e)}$	$\sqrt{\mu R_p (1+e)}$	$\frac{-\mu}{2R_p}(1-e)$	$2\pi\sqrt{\frac{R_p^3}{\mu(1-e)^3}}$
Va,Vp	$rac{\mu}{V_a V_p}$	$\frac{2\mu}{\sqrt{V_a V_p} (V_a + V_p)}$	$\frac{2\mu}{V_a (V_a + V_p)}$	$\frac{2\mu}{V_p\left(V_a+V_p\right)}$	$\frac{V_a - V_p}{V_a + V_p}$	Va	Vp	$\frac{2\mu}{V_a + V_p}$	$\frac{V_a V_p}{2}$	$\frac{2\pi\mu}{\sqrt{V_a^3V_p^3}}$
Va,Ra	$\frac{\mu R_a}{2\mu - R_a V_a^2}$	$R_a V_a \sqrt{\frac{R_a}{2\mu - R_a V_a^2}}$	Ra	$\frac{R_a^2 V_a^2}{2\mu - R_a V_a^2}$	$1 - \frac{R_a V_a^2}{\mu}$	Va	$\frac{2\mu - R_a V_a^2}{R_a V_a}$	RaVa	$\frac{\mu}{R_a} - \frac{V_a^2}{2}$	$\frac{2\pi\mu R_a}{2\mu - R_a V_a^2} \sqrt{\frac{R_a}{2\mu - R_a V_a^2}}$
Vp,Rp	$\frac{\mu R_p}{2\mu - R_p V_p^2}$	$R_p V_p \sqrt{\frac{R_p}{2\mu - R_p V_p^2}}$	$\frac{R_p^2 V_p^2}{2\mu - R_p V_p^2}$	Rp	$\frac{R_p V_p^2}{\mu} - 1$	$\frac{2\mu - R_p V_p^2}{R_p V_p}$	Vp	RpVp	$\frac{\mu}{R_p} - \frac{V_p^2}{2}$	$\frac{2\pi\mu R_p}{2\mu - R_p V_p^2} \sqrt{\frac{R_p}{2\mu - R_p V_p^2}}$

	Constante	periode de
	gravitationnel en	rotation en
Corps central	m^3/s^2	S
'Soleil'	1,32712440018000E+20	2192832
'Mercure'	2,20320804864201E+13	5067000
'Vénus'	3,24858598826492E+14	-20995200
'Terre'	3,9860047000000E+14	86164,1004
'Terre+Lune'	4,03503235196681E+14	86164,1004
'Lune'	4,9027989000000E+12	2360592
'Mars'	4,28283142580714E+13	88632
'Jupiter'	1,26712767857808E+17	35730
'Saturne'	3,79406043677635E+16	38361,6
'Uranus'	5,79455912725615E+15	-62064
'Neptune'	6,83689189398876E+14	57996