3.1 Algebra Boole'a

W rozdziale 1 poznaliśmy kody czyli sposoby reprezentacji różnych obiektów (fizycznych, realnych i abstrakcyjnych) w komputerze za pomocą słów (na ogół binarnych). Teraz zajmiemy się układami logicznymi, specjalnymi urządzeniami (z reguły elektronicznymi) do przetwarzania tych słów.

Układy logiczne dzielimy na dwie kategorie:

- *układy kombinacyjne* (inaczej układy logiczne bez pamięci) oraz
- *układy sekwencyjne* (inaczej układy logiczne z pamięcią)

W tym rozdziale zajmiemy się układami kombinacyjnymi. W rozdziale następnym zajmiemy się układami sekwencyjnymi. Podstawę matematyczną dla układów kombinacyjnych stanowi algebra Boole'a.

1. Algebra Boole'a, definicja

Algebra Boole'a (ang. Boolean algebra) to szczególnego typu algebra ogólna. Dokładniej jest to 6-tka uporządkowana. $(A, \cup, \cap, -, 0, 1)$, gdzie A jest niepustym zbiorem, a działania $\cup, \cap, -$ i wyróżnione elementy $0,1 \in A$ (działania zero argumentowe) spełniają cały szereg warunków tzw. aksjomatów algebry Boole'a. Działanie dwuargumentowe " \cup " nazywamy sumą działanie dwuargumentowe " \cap " nazywamy iloczynem a działanie jednoargumentowe " \cup " uzupełnieniem. Wyróżnione elementy $0,1 \in A$ są takie, że 0 jest zerem (dla działania sumy) jest to tzw. zero algebry Boole'a a 1 jedynką dla działania mnożenia jest to tzw. jedynka algebry Boole'a.

Zanim precyzyjnie zdefiniujemy algebrę Boole'a omówimy nieco prostszą od algebry Boole'a algebrę tzw. *kratę* (ang. lattice).

Krata to algebra (A, \cup, \cap) . Działanie dwuargumentowe " \cup " nazywamy sumą, działanie dwuargumentowe " \cap " nazywamy iloczynem. Algebra (A, \cup, \cap) jest kratą wtedy i tylko wtedy, z definicji, gdy spełnione są następujące aksjomaty (w sumie mamy 8 aksjomatów):

(1)
$$x \cup y = y \cup x$$
, $x \cap y = y \cap x$ (przemienność sumy i iloczynu)

(2)
$$x \cup (y \cup z) = (x \cup y) \cup z$$
, $x \cap (y \cap z) = (x \cap y) \cap z$ (łączność sumy i iloczynu)

(3)
$$x \cup x = x$$
, $x \cap x = x$ (idempotentność)

(4)
$$x \cup (x \cap y) = x$$
, $x \cap (x \cup y) = x$ (prawa pochłaniania)

Zauważmy, że jeśli konsekwentnie zamienimy w powyższych aksjomatach sumę "∪" na iloczyn "∩" oraz iloczyn "∩" na sumę "∪" to otrzymamy dokładnie taki sam zestaw aksjomatów.

Krata dystrybutywna (ang. distributive lattice) to krata, w której spełnione są jeszcze dodatkowo dwa aksjomaty: rozdzielczość mnożenia względem dodawania i rozdzielczość dodawania względem mnożenia.

(5)
$$x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$$
 (rozdzielczość mnożenia względem dodawania) $x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$ (rozdzielczość dodawania względem mnożenia)

Algebrę $(A, \cup, \cap, -, 0, 1)$ nazywamy algebrą Boole'a. jeśli (A, \cup, \cap) jest kratą dystrybutywną, element 0 jest zerem dla działania dodawania a element 1 jedynką dla działania mnożenia czyli spełnione są równości (6) a ponadto działanie uzupełnienia spełnia równości (7).

(6)
$$x \cup 0 = x$$
 (istnienie zera), $x \cap 1 = x$ (istnienie jedności)

$$(7) x \cup -x = 1, \quad x \cap -x = 0$$

Zapisując wyrażenia algebry Boole'a będziemy zakładać, że działanie uzupełnienia ma największy priorytet a potem w kolejności mnożenie i dodawanie. Tak więc mamy np.

$$-x \cup -y = (-x) \cup (-y)$$

Przykład: Niech A będzie dowolnym niepustym podzbiorem zbioru liczb rzeczywistych. Zdefiniujmy działania " \cup " i " \cap " wzorami

$$x \cup y = \max(x, y), \quad x \cup y = \min(x, y)$$

Algebra (A, \cup, \cap) jest kratą

Przykład: Niech X będzie dowolnym ustalonym niepustym zbiorem a suma " \cup " i iloczyn " \cap " odpowiednio sumą i iloczynem zbiorów a uzupełnienie dopełnieniem zbioru. Algebra $(2^x, \cup, \cap, -, \emptyset, X)$ wszystkich podzbiorów zbioru X jest algebrą Boole'a.

Przykład: Każde ciało podzbiorów pewnego ustalonego niepustego zbioru X jest algebrą Boole'a (działania \cup , \cap ,-, oraz wyróżnione elementy jak w przykładzie 1).

Przykład: Każde σ -ciało (np.: σ -ciało zdarzeń – pojęcie znane z teorii prawdopodobieństwa) jest algebrą Boole'a.

Z definicji algebry Boole'a nie wynika, że musi być $1 \neq 0$. Jeśli 1 = 0 to algebra Boole'a ma tylko jeden element. Nazywamy taką algebrę Boole'a zdegenerowaną algebrą Boole'a. Algebra Boole'a, która ma tylko 2 elementy nazywamy algebą Boole'a dwuelementową.

2. Podstawowe własności algebr Boole'a

Fakt: Każda skończona algebra Boole'a $(A, \cup, \cap, -, 0, 1)$ ma 2^n elementów, tzn. istnieje takie $n \in N$, że $card(A) = 2^n$.

W każdej algebrze Boole'a oprócz wymienionych wyżej 14 aksjomatów prawdziwe są równości

$$-1 = 0, -0 = 1$$

$$-(-x) = x$$

$$-(x \cup y) = -x \cap -y$$

$$-(x \cap y) = -x \cup -y$$

Ostatnie dwie równości noszą nazwę praw de Morgana

Homomorfizm i izomorfizm algebr Boole'a nie różnią się od tych pojęć dla przypadku dowolnej algebry abstrakcyjnej. Homomorfizm dwóch algebr Boole'a $(A_1, \cup, \cap, -, 0, 1)$ i $(A_2, \cup, \cap, -, 0, 1)$ to odwzorowanie $h: A_1 \to A_2$ zachowujące działania algebry Boole'a tzn. takie, że dla każdego $a,b \in A_1$ mamy

$$h(a \cup b) = h(a) \cup h(b)$$
, $h(a \cap b) = h(a) \cap h(b)$
 $h(-a) = -h(a)$, $h(0) = 0$, $h(1) = 1$

Izomorfizm to homomorfizm różnowartościowy i "na".

Uwaga: Przykład 1 ma charakter w pewnym sensie uniwersalny, zachodzi bowiem następujące twierdzenie Stone'a:

Twierdzenie (Stone'a): Każda algebra Boole'a jest izomorficzna z pewnym ciałem zbiorów (traktowanym jako algebra Boole'a).

3. Dwuelementowa algebra Boole'a

Jeśli algebra Boole'a $(A, \cup, \cap, -, 0, 1)$ ma dokładnie 2 elementy (a ściślej zbiór A ma dokładnie 2 elementy), to nazywamy ją dwuelementową algebrą Boole'a.

Przykład: Niech X będzie dowolnym, ustalonym, niepustym zbiorem, $A = \{\emptyset, X\}$, a działania $\cup, \cap, -$ zwykłymi działaniami teoriomnogościowymi sumy iloczynu i uzupełnienia zbioru a ponadto niech $0 = \emptyset$, 1 = X. Tak zdefiniowana algebra jest, jak łatwo sprawdzić, dwuelementową algebra Boole'a.

Przykład: Niech $A = \{0,1\}$.Rozważmy algebrę $(\{0,1\},+,\cdot,\bar{},0,1)$. Wprowadzamy w zbiorze $\{0,1\}$ następujące działania: "+", " · ", " $\bar{}$ ".

"+"- nazywamy sumą logiczną (lub dysjunkcją)

" · " - nazywamy mnożeniem logicznym (lub koniunkcja)

Suma logiczna (dysjunkcja) +, iloczyn logiczny ({0,1},+,·,¯,0,1) (koniunkcja) i negacja są zdefiniowane tabelkami:

Łatwo można sprawdzić, że tak zdefiniowana algebra ({0,1},+,·, ¯,0,1) jest algebrą Boole'a, tzn. spełnione są w niej wszystkie aksjomaty algebry Boole'a. Oczywiście jest to 2-elementowa algebra Boole'a. Mówiąc 2-elementowa algebra Boole'a, mamy z reguły na myśli ten konkretny przykład. Oczywiście wszystkie podane dotychczas ogólne własności algebry Boole'a pozostają prawdziwe jeśli pamiętamy o odpowiedniości

[&]quot; - nazywamy negacja

Fakt: Istnieje jedna tylko z dokładnością do izomorfizmu 2ⁿ elementowa algebra Boole'a. W szczególności istnieje tylko jedna (z dokładnością do izomorfizmu) 2-elementowa algebra Boole'a.

4. Lista podstawowych własności dla 2 elementowej algebry Boole'a

(1)
$$x + y = y + x$$
, $x \cdot y = y \cdot x$ (przemienność sumy i iloczynu)

(2)
$$x + (y + z) = (x + y) + z$$
, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (łączność sumy i iloczynu)

(3)
$$x + x = x$$
, $x \cdot x = x$ (idempotentność)

(4)
$$x + (x \cdot y) = x$$
, $x \cdot (x + y) = x$ (prawa pochłaniania)

(5)
$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$
 (rozdzielczość mnożenia względem dodawania)

$$x + (y \cdot z) = (x + y) \cdot (x + z)$$
 (rozdzielczość dodawania względem mnożenia)

(6)
$$x + 0 = x$$
, $x \cdot 1 = x$

(7)
$$x + \bar{x} = 1$$
, $x \cdot \bar{x} = 0$

(8)
$$\bar{1} = 0$$
, $\bar{0} = 1$

(9)
$$x = x$$
 (prawo podwójnego przeczenia)

(10)
$$\overline{(x+y)} = \overline{x} \cdot \overline{y}$$

$$(11) \ \overline{(x \cdot y)} = \overline{x} + \overline{y}$$

Równości (1)-(7) to aksjomaty algebry Boole'a. Wzory (10) i (11) są prawami de Morgana dla 2-elementowej algebry Boole'a.