QuantumComputation

Andrew Tulloch

Contents

Chap	eter 1. Significance of Quantum Computation	4
1.	Computability vs non-computability	4
2.	Computational Tasks	4
3.	Simon's Algorithm	5
4.	Hidden Subgroup Problems	5
Biblic	ography	6

CHAPTER 1

Significance of Quantum Computation

- (i) Fundamentally:
 - (i) Can view physics as information processing physical evolution is equivalent to updating parameters describing states thus computation.
 - (ii) Can view computation as physics classical bit 0/1 are two distinguishable states of a physical system.
- (ii) Technological
 - (i) Moore's law
 - (ii) Nano-technology coherent controlled manipulation of quantum systems
 - (iii) Further issues information security (quantum cryptography)
- (iii) Theoretical
 - (i) New modes of computation, allowed by quantum vs classical effects implications for computational complexity.

1. Computability vs non-computability

- (i) Given N (integer), is it prime? **computable**.
- (ii) Given a polynomial with integer coefficients e.g. $2x^2y 17zw^{19} + x^3$, does it have a root in the integers? **non-computable**.

Quantum computing - all laws of quantum mechanical evolution are computable on a classical computer, so QC cannot compute any classically non-computable problem. But computability is not equivalent to computational complexity.

2. Computational Tasks

Given an input bit string $x = i_1 \dots i_n \in B_n$, $B = \bigcup_{n=1}^{\infty} B_n$ (all finite length bit strings). A language $L \subseteq B$.

DEFINITION 1.1 (Decision problem). Given $x \in B$ is $x \in L$? Output is 1 bit 0/1, yes/no, accept/reject.

QUESTION 1.2. How hard is it to solve the problem as a function of n, the size of the input in bits?

A computational model is a classic circuit model - for each n, we have a circuit C_n of AND/OR/NOT gates. The computational steps are this gate. Note this is a universal set - can make any Boolean function $f: B_n \to B_n$ as a function of AND/OR/NOT gates. Full computation is a circuit family (C_1, C_2, \ldots) .

In a random model of classical computation, we allow further random bits of input into the gate.

Complexity/hardness of the computation is measured by the consumption of resources - time (number of computational steps as a function of n), and space (number of bits needed/work space needed).

Polynomial time complexity classes. Let T(n) be the maximum number of steps for any input of size n - (in a circuit model, equivalent to the number of gates, and so circuit size). The main question is - does T(n) grow polynomially

.....

Following along from the notes

.....

3. Simon's Algorithm

...

4. Hidden Subgroup Problems

Known:

- (i) HSP can be solved for any abelian group.
- (ii) Not known for general non-Abelian group, but
 - (i) $O(\log |G|)$ random $|gH\rangle$'s suffice to determine H. Not known how to extract into H
 - (ii) Normal subgroup H < |G|, then can solve HSP.

Other problems reduce to HSP.

- (i) Discrete logarithm is abelian HSP.
- (ii) Graph isomorphism is Hiddn Subgroup problem for non-Abelain G and non-normal H, so don't know how to solve.

Bibliography