Elevator Pitch

Let's see, you can run containers in these Azure services: App Service, Functions, ACI, ACA, and AKS. So which one should you use? In this session, we try to find what workload type best runs in each service, and see how to move to a different service if you outgrow the current one.

Description

Let's see, you can run containers in these Azure services: App Service, Functions, Container Instances (ACI), Container Apps (ACA), and Azure Kubernetes Service (AKS). So which one should you use? Like tools in a toolbox, each service can run different workload types. In this session, we try to find what workload type best runs in each service, and see how to move to a different service if you outgrow the current one.

Containers on Azure Why so many choices?

Gold Sponsors

Community Supporters

Part of **Accenture**

Agenda

- Why containers?
- Look at the Azure services that can run containers
- Look at the use cases / workloads
- Conclusion

Who am I?

- Guy Barrette
- Dev/Coach/Trainer
- Based in Montreal, Canada
- @GuyBarrette
- linkedin.com/in/guybarrette
- guybarrette.com
- @guybarrette@techhub.social

Why Containers?

What is a container?

A unit of software/deployment

Code

Runtime

System tools

System libraries

Containers = Kubernetes

Containers on Azure

Explore V Products A Solutions V Pricing V Partners V Resources V

View all products (200+)

0 Search

Learn Support Contact Sales

Free account

Sign in

Containers

Develop and manage your containerized applications faster with integrated tools

Azure Kubernetes Service (AKS)

Deploy and scale containers on managed Kubernetes

Azure Red Hat OpenShift

Deploy and scale containers on managed Red Hat OpenShift

Azure Container Apps

Build and deploy modern apps and microservices using serverless containers

Azure Functions

Execute event-driven serverless code functions with an end-to-end development experience

Web App for Containers

Run containerized web apps on Windows and Linux

Azure Container Instances

Launch containers with hypervisor isolation

Azure Service Fabric

Deploy and operate always-on, scalable, distributed apps

Azure Container Registry

Build, store, secure, and replicate container images and artifacts

Chat with Sales

Containers

Develop and manage your containerized applications faster with integrated tools

Azure Kubernetes Service (AKS)

Deploy and scale containers on managed Kubernetes

Azure Red Hat OpenShift

Deploy and scale containers on managed Red Hat OpenShift

Azure Container Apps

Build and deploy modern apps and microservices using serverless containers

Azure Functions

Execute event-driven serverless code functions with an end-to-end development experience

Web App for Containers

Run containerized web apps on Windows and Linux

Azure Container Instances

Launch containers with hypervisor isolation

Why so many choices?

Azura enta er Registry

But and replicate

co es and esta

The right tool for the right job

Azure Container Registry

What are Container Registries?

- Central repositories for container images
- Private or/or public
- Docker Hub
 - hub.docker.com
- Microsoft
 - Azure Container Registry
 - Microsoft Container Registry (public images)
 - mcr.microsoft.com
- Elsewhere
 - Amazon Elastic Container Registry
 - Google Container Registry

Azure Container Registry

- Private or public (Premium) registries
- Your images are stored near the services that will run them
 - No hop over the Internet
- You can secure access using Azure AD, RBAC roles, policies
- You can also store Helm charts
- Task base compute for building containers
 - Linux, Windows, and ARM
 - Triggers: public or private Git repository in GitHub or Azure DevOps

What use cases?

Container Registry - Use Cases

Private Compute ressources

Security Build

Azure App Service

App Service

Web Apps For Containers

App Service Benefits

- Windows or Linux
- Automatic OS patching
- High availability
- Automated scale out/in
- Built-in load balancing
- Compliances: ISO, SOC, PCI, etc

Web App for Containers

- All App Service benefits plus...
- Integration with
 - Docker Hub, Azure Container Registry
 - Azure Storage, Key Vault
- Single Docker image
- Multi containers
 - Docker compose
- Windows containers
 - Install drivers, tools, COM objects

What workload?

App Service - Workloads

Small Web App

API

Azure Functions

Azure Functions

- Event driven apps
- Consumption (serverless)
 - Code
- App Service Elastic Premium plans
 - Code & containers
 - Avoid cold starts with warm instances
 - Virtual network connectivity
 - Unlimited execution duration, with 60 minutes guaranteed

Azure Functions

- Instead of deploying your compiled code, you package it in a container
- The base image must include the Functions runtime
- Can run in Kubernetes
 - KEDA must be installed in the cluster
 - Supported triggers in KEDA
 - Azure Storage Queues
 - Azure Service Bus Queues
 - Azure Event / IoT Hubs
 - Apache Kafka
 - RabbitMQ Queue

What workload?

Azure Functions - Workloads

Blocked by something with Code Functions

Run Functions in Kubernetes

Service Fabric

Service Fabric

- Orchestrate microservices and containers
- Windows and Linux
- Stateless and stateful services
- Application platform
- Powers many Microsoft services

What workload?

Service Fabric - Workloads

Legacy

Azure Container Instances

Azure Container Instances

- Per-second billing
- Linux and Windows
- Created and destroyed on demand
- Fast startup time
- Public IP and DNS name
- Supports virtual networks & persistent storage

Azure Container Instances

- Save costs in hosting & maintenance for temporary workloads
- Can act as Kubernetes pods to provide elastic bursting
- Can be created using
 - Azure Portal
 - Docker CLI
 - C# code
 - Logic Apps

Logic Apps

C#

```
using Microsoft.Azure.Management.ContainerInstance.Fluent;
using Microsoft.Azure.Management.ContainerInstance.Fluent.Models;
using Microsoft.Azure.Management.Fluent;
IContainerGroup containerGroup = azure.ContainerGroups.Define(aciName)
  .WithRegion (region)
  .WithNewResourceGroup (rqName)
  .WithLinux()
  .WithPublicImageRegistryOnly()
  .WithoutVolume()
  .DefineContainerInstance(aciName + "-1")
     .WithImage(containerImageName1)
     .WithExternalTcpPort(80)
     .WithCpuCoreCount(.5)
     .WithMemorySizeInGB(1)
     .Attach()
.WithRestartPolicy(ContainerGroupRestartPolicy.Never)
  .WithDnsPrefix(aciName)
  .Create();
SdkContext.DelayProvider.Delay(20000);
containerGroup = azure.ContainerGroups.GetByResourceGroup(rgName, aciName);
string logContent = containerGroup.GetLogContent(aciName + "-1");
Utilities.Log($"Logs for container instance: {aciName}-1\n{logContent}");
azure.ContainerGroups.DeleteById(containerGroup.Id);
```


Kubernetes Virtual Nodes


```
apiVersion: apps/v1
kind: Deployment
metadata:
 name: aci-helloworld
spec:
 replicas: 1
 selector:
    matchLabels:
      app: aci-helloworld
 template:
   metadata:
      labels:
        app: aci-helloworld
   spec:
      containers:
      - name: aci-helloworld
        image: aci-helloworld
        ports:
        - containerPort: 80
      nodeSelector:
        kubernetes.io/role: agent
       beta.kubernetes.io/os: linux
        type: virtual-kubelet
      tolerations:
      - key: virtual-kubelet.io/provider
        operator: Exists
```


What workload?

Container Instances - Workloads

Task automation

Agents

Small-scale batch processing

Bursting out

Azure Container Apps

Container Apps

- Serverless container platform powered by Kubernetes
 - General availability in June 2022
- Optimized for running general purpose containers
- Supports Kubernetes-style apps and microservices
- Enables event-driven application architectures
- Scale based on traffic incl
- Support of long running

So it's a serverless Kubernetes service?

Container Apps - Features

- HTTP, HTTPS, WebSocket, gRPC
- Visibility
 - External or internal only
- Auto scaling
 - Scaling to zero incur no charges
 - Supports Keda event-driven autoscaling
- Multi containers
 - While the multi container pod pattern is supported, the preferred method is to deploy containers individually
- Health Probes

Container Apps - Features

- Linux-based x86-64 (linux/amd64) container image only
- Revisions
 - Traffic split
- Secrets
- Darp integration
- Support for Managed Identities
- Easy Auth
- Publish revision using GitHub Actions

What workload?

Container Apps - Workloads

Web Apps

- HTTP/S
- Scaling by concurrent HTTP requests

API Apps

- WebSocket, gRPC
- Scaling by CPU or memory load

Background Processes

- Continuously running
- Scaling by CPU or memory load

Event-Driven Processes

- Continuously running
- Event-driven scaling
- Scaling by Keda scalers

Azure Batch

Azure Batch

- Runs large-scale parallel and high-performance computing (HPC) batch jobs
 - Creates and manages a pool of compute nodes
 - Installs applications
 - Schedule jobs
- Tasks can be Docker-compatible containers

What workload?

Azure Batch - Workloads

Large-scale batch jobs

Azure Kubernetes Service

Azure Kubernetes Service

- Kubernetes as a service
- CNCF certified as Kubernetes conformant
- Not a hacked version
- Spin a cluster in a few minutes
- Azure takes care of the control-plane (master node)
- You pay for the nodes
 - Linux or Windows

Use what you want

	Development	DevOps	Monitoring	Networking	Storage	Security
Take advantage	HELM	Jenkins Terraform	Prometheus	C N I Networking	portworx	Twistlock aqua
of services and tools in the Kubernetes ecosystem		BRIGADE Frog	Grafana OPENTRACING DATADOG JAEGER	TIGERA		Heptio RBAC
OR, Leverage growing Azure support	VS Code	VSTS ARM	Azure Monitor	Azure VNET	Azure Storage	Azure Container Registry AAD Key Vault

What workload?

AKS - Workloads

Manage many containers

Leverage K8s skillset

Use K8s native tools

Active Directory integration

Integration with other Azure services

Corporate features & integration

RedHat OpenShift

RedHat OpenShift

- OpenShift is an Enterprise-ready Kubernetes container platform
- OpenShift extends Kubernetes
 - Provides added-value features to complement Kubernetes
- Managed OpenShift clusters
- Jointly engineered, operated, and supported by Red Hat and Microsoft

What workload?

OpenShift - Workloads

Complete Solution

Support

Demo

Conclusion

The right tool for the right job

Upgrade Path

App Container AKS Apps AKS

END OF LINE

Thank You!

