Matemáticas Discretas

Oscar Bedoya

oscarbed@eisc.univalle.edu.co

http://eisc.univalle.edu.co/~oscarbed/MD/

* Notación O

Edmund Landau

- Creador de la notación O para analizar o comparar el crecimiento de funciones
- Trabajó sobre la distribución de números primos

(1877-1938)

Donald Knuth

- Cuando estaba en 8° grado participó en un concurso que consistía en formas palabras con las letras de la expresión "Ziegler's giant Bar"
- Estudió Física, matemáticas y ciencias
- Escribió The Art of Computer Programming
- ·Desarrolló TeX

(1938 -)

El análisis de crecimiento de funciones se basa en comparar el comportamiento de dos o más funciones


```
Programa 1:
public void buscar(){
 for(int i=1; i<=n; i=i+1){
 if (datos[i]==b){
   System.out.println("Encontrado");
   break;
```

```
Programa 2:
public void buscar(int i, int j){
 medio=(i+j)/2;
 if (a[medio]==b)
  break:
 if (a[medio] <b)
  buscar(medio,j);
 if (a[medio]>b)
  buscar(i, medio);
```


$$x^2=x$$

$$x=1$$

Analice el crecimiento de las siguientes funciones

¿Cuándo se cruzan?

¿Cuándo se cruzan?

Analice el crecimiento de las siguientes funciones

¿Cuándo se cruzan?

¿Cuándo se cruzan?

Analice el crecimiento de las siguientes funciones

$$g(x)=x^{2}$$

$$f(x)=x+2$$

$$x^{2} = x+2$$

$$x^{2} - x - 2 = 0$$

$$+ 1 + \sqrt{1 - (-7)}$$

$$x + 1 + \sqrt{3}$$

Analice el crecimiento de las siguientes funciones

Analice el crecimiento de las siguientes funciones

Notación O

Sea f y g dos funciones, se dice que f(x) es O(g(X)) si se cumple que

$$f(x) \leq g(x)$$

para x>k

Notación O

Sea f y g dos funciones, se dice que f(x) es O(g(X)) si se cumple que

para x>k

$$C \supset \bigwedge$$

Se cumple que $f_1(x) \le g(x)$, $f_2(x) \le g(x)$ $f_3(x) \le g(x)$, para x>1

Muestre que $7x^2$ es $O(x^3)$

$$7x^{2} \le : c: x^{3}$$
 $7 \le c$
 $7 \le c$

Muestre que $7x^2$ es $O(x^3)$

• $7x^2$ es $O(x^3)$ si se cumple que

$$7x^2 \le c \cdot x^3$$
, para $x > k$

Muestre que $7x^2$ es $O(x^3)$

• $7x^2$ es $O(x^3)$ si se cumple que

$$7x^2 \le c \cdot x^3$$
, para $x > k$

$$7 \le c \cdot x$$

Muestre que $7x^2$ es $O(x^3)$

• $7x^2$ es $O(x^3)$ si se cumple que

$$7x^2 \le c \cdot x^3$$
, para $x > k$

$$7 \le c \cdot x$$

Se escogen c y k

Muestre que $7x^2$ es $O(x^3)$

• $7x^2$ es $O(x^3)$ si se cumple que

$$7x^2 \le c \cdot x^3$$
, para $x > k$

$$7 \le c \cdot x$$

- Se escogen c y k
 - Si c=1, se cumple para x>7
 - Si c=2, se cumple para x>7/2
 - Si c=3, se cumple para x>7/3

Muestre que $7x^2$ es $O(x^3)$

• $7x^2$ es $O(x^3)$ si se cumple que

$$7x^2 \le c \cdot x^3$$
, para $x > k$
 $7 \le c \cdot x$

- Se escogen c y k
 - Si c=1, se cumple para x>7
 - Si c=2, se cumple para x>7/2
 - Si c=3, se cumple para x>7/3

 $7x^2$ es $O(x^3)$ ya que c=1 y k=7 hace que se cumpla que $7x^2 \le c \cdot x^3$, para x>k

Aplicación

La notación O permite establecer una cota superior al tiempo dado por un algoritmo

Aplicación

La notación O permite establecer una cota superior al tiempo dado por un algoritmo

- Suponga que tiene dos algoritmos cuyos tiempos de ejecución están acotados de la siguiente forma:
 - $-T_1(n) = O(n^2)$
 - $T_2(n) = O(\log n)$
- · ¿Cuál algoritmo escogería?

Aplicación

La notación O permite establecer una cota superior al tiempo dado por un algoritmo

- Suponga que tiene dos algoritmos cuyos tiempos de ejecución están acotados de la siguiente forma:
 - $-T_1(n) = O(n^2)$
 - $T_2(n) = O(\log n)$
- · ¿Cuál algoritmo escogería? el algoritmo 2

Suponga que tiene un arreglo ordenado ascendentemente

Se quiere buscar el dato 23, ¿qué algoritmo seguiría para decidir si está, o no, en el arreglo?

Parcial 1 (Viernes 9 de Octubre)

- Lógica
- Conjuntos
- Funciones
- Series y sumatorias