Nondeterministic Turing machines (Section 7.7 in ILTC)

A nondeterministic Turing machine (NTM) is defined like a Turing machine, except that

- (1) δ has the form $\delta: (Q \{h_a\}) \times \Gamma \to 2^{Q \times \Gamma \times \{L, R, S\}}$ and
- (2) the reject state h_r is replaced by h_\emptyset , where $\delta(h_\emptyset,a)=\emptyset$ for all $a\in\Gamma.$

An input string w is accepted by an NTM if there exists a transition sequence from $q_0\Delta w$ to an accepting configuration.

Crash at the start of the tape: we define $qav \vdash h_{\emptyset}av$ if $\delta(q, a) = (r, b, L)$ for some $r \in Q$ and $b \in \Gamma$.

Nondeterministic Turing machines (Section 7.7 in ILTC)

Notes:

- ► For a given input string, there may be several transition sequences which an NTM can choose to execute.
- ightharpoonup A reject state $h_{\rm r}$ wouldn't make sense: there could be transition sequences leading from an initial configuration to both a rejecting and an accepting configuration.
- ► The drawing convention for TMs does not apply: there are no hidden transitions.
- ▶ Given a state q and a tape symbol a such that $\delta(q, a) = \emptyset$, an NTM halts without acceptance or rejection: the input string may or may not be in the machine's language.
- ▶ If an NTM loops on an input string, the string may or may not be in the language.

Example (Nondeterministic Turing machine)

Example (Nondeterministic Turing machine)

$$\mathrm{L}(\textit{N}) = \Sigma^* \{ \mathtt{abc}, \, \mathtt{cab} \} \Sigma^* \, \, \mathsf{where} \, \, \Sigma = \{ \mathtt{a}, \, \mathtt{b}, \, \mathtt{c} \}$$

Nondeterministic vs deterministic TMs

Theorem (Thm 7.31 in ILTC)

For every nondeterministic Turing machine N there exists a (deterministic) Turing machine D such that L(N) = L(D).

Nondeterministic vs deterministic TMs

Theorem (Thm 7.31 in ILTC)

For every nondeterministic Turing machine N there exists a (deterministic) Turing machine D such that L(N) = L(D).

Proof idea

Construct a TM D which simulates N by trying all possible branches of N's nondeterministic computation in breadth-first fashion. If D finds the accept state on one of these branches, it accepts. Otherwise, the simulation will reject or not terminate.

Multitape Turing machines (Section 7.5 in ILTC)

A multitape Turing machine (MTM) is defined like a Turing machine, except for the transition function

$$\delta \colon \big(Q - \{\mathrm{h_a},\,\mathrm{h_r}\}\big) \times \Gamma^n \to Q \times \Gamma^n \times \{\mathrm{L},\,\mathrm{R},\,\mathrm{S}\}^n,$$

where $n \ge 2$. Intuitively, the machine has n tapes on which it works simultaneously.

A configuration is an *n*-tuple $(u_1qv_1, u_2qv_2, \ldots, u_nqv_n)$, where $q \in Q$ and $u_i, v_i \in \Gamma^*$. The initial configuration for an input w is $(q_0\Delta w, q_0\Delta, \ldots, q_0\Delta)$.

Example: snapshot of an *n*-tape TM

Multitape vs ordinary Turing machines

Theorem

For every multitape Turing machine N there exists a Turing machine M such that L(N) = L(M).

Proof.

Proof of Thm 7.26 in ILTC (for the case of 2-tape machines).

Semidecidable languages (Chapter 8 in ILTC)

A language L is *semidecidable* (or *recursively enumerable* or of *type* 0) if there exists a Turing machine that accepts L.

Theorem

A language L is semidecidable if and only if L is generated by some (unrestricted) grammar.

Proof.

"If": Proof of Thm 8.13 in ILTC.

"Only if": Proof of Thm 8.14 in ILTC.

The Chomsky hierarchy

Туре	Grammars/ Languages	Grammar productions	Machines
0	Unrestricted/ semidecidable	$lpha ightarrow eta \ [lpha \in (V \cup \Sigma)^+, \ eta \in (V \cup \Sigma)^*]$	Turing machine (deterministic or nondeterministic)
1	Context-sensitive	$\alpha \to \beta$ $[\alpha, \beta \in (V \cup \Sigma)^+, \alpha \le \beta]$	Linear-bounded automaton
2	Context-free	$A \to \beta$ $[A \in V, \beta \in (V \cup \Sigma)^*]$	Pushdown automaton
3	Regular	$A o aB$, $A o \Lambda$ $[A, B \in V, a \in \Sigma]$	Finite automaton (deterministic or nondeterministic)

Enumerating languages by MTMs (Section 8.2 in ILTC)

A multitape Turing machine enumerates a language L if

- (1) the computation begins with all tapes blank,
- (2) the tape head on tape 1 never moves to the left,
- (3) at each point in the computation, the contents of tape 1 has the form $\Delta \# w_1 \# w_2 \# \dots \# w_n \# v$ where $n \geq 0$, $w_i \in L$, $\# \in (\Gamma \Sigma)$ and $v \in \Sigma^*$,
- (4) every $w \in L$ will eventually appear as one of the strings w_i on tape 1.

(The definition in ILTC is slightly different but equivalent.)

Enumerating languages by MTMs (Section 8.2 in ILTC)

Notes:

- There is no input
- Tape 1 is the output tape
- The listing may contain repeated strings
- (3) is *soundness*: every listed string belongs to *L*
- \triangleright (4) is *completeness*: every string in L will eventually be listed

Example: 2-tape TM enumerating $\{a^nb^nc^n \mid n \ge 0\}$

Example: 2-tape TM enumerating $\{a^nb^nc^n \mid n \ge 0\}$

Notes:

- ▶ The initial transitions $q_0 o q_1 o q_2 o q_3$ generate ## on Tape 1 (empty string) and a on Tape 2
- ▶ Tape 2 is used as a counter holding the current n
- The remaining transitions generate strings in rounds; in round n, Tape 2 contains aⁿ and aⁿbⁿcⁿ is produced on Tape 1 by scanning the string on Tape 2 three times: left → right → left → right; each scan is synchronised with the writing of aⁿ, bⁿ or cⁿ on Tape 1 (by the loop q₃ → q₃, q₄ → q₄ or q₅ → q₅)
- $ightharpoonup q_5
 ightarrow q_6$ adds an a to Tape 2
- ▶ The loop $q_6 \rightarrow q_6$ rewinds the head on Tape 2

Example: 2-tape TM enumerating $\{a^nb^nc^n \mid n \ge 0\}$

Generation of ##abc#:

```
(q_0\Delta, q_0\Delta) \vdash (\Delta q_1\Delta, \Delta q_1\Delta)
                           \vdash (\Delta \# q_2 \Delta, \Delta q_2 a)
                           \vdash (\Delta \# \# g_3 \Delta, \Delta g_3 a)
                           \vdash (\Delta \# \# aq_3\Delta, \Delta aq_3\Delta)
                           \vdash (\Delta \# \# a g_4 \Delta, \Delta g_4 a \Delta)
                           \vdash (\Delta \# \# ab q_4 \Delta, q_4 \Delta a \Delta)
                           \vdash (\Delta \# \# ab q_5 \Delta, \Delta q_5 a \Delta)
                           \vdash (\Delta \# \# abc q_5 \Delta, \Delta a q_5 \Delta)
                           \vdash (\Delta \# \# abc q_6 \Delta, \Delta q_6 aa)
                           \vdash (\Delta \# \# abc q_6 \Delta, q_6 \Delta aa)
                           \vdash (\Delta \# \# abc \# g_3 \Delta, \Delta g_3 aa)
```

Enumeration vs acceptance

Theorem (Thm 8.9 in ILTC)

A language L is enumerated by some multitape Turing machine if and only if L is semidecidable.