Équations différentielles linéaires

Cours			2
1	Généralités		
	1.1	Équation différentielle linéaire, système différentiel linéaire	
	1.2	Principe de superposition	3
	1.3	Problème de Cauchy	3
	1.4	Représentation d'une équation différentielle scalaire linéaire d'ordre n	3
2	Ense	mble des solutions d'une équation différentielle linéaire	
	2.1	Théorème de Cauchy linéaire	4
	2.2	Structure de l'ensemble des solutions — équations homogènes	5
	2.3	Structure de l'ensemble des solutions — équations complète	6
3	Annexes		
	3.1	Annexe : théorème de Cauchy linéaire	
	3.2	Annexe : un résultat utile	
	3.3	Complément : le wronskien	9
Exercic	es	1	0
Exe	ercices	1	١0
Pet	its prol	blèmes d'entrainement	In

Sauf mention contraire, I désigne un intervalle de \mathbb{R} et E un espace vectoriel normé de dimension finie.

1 Généralités

1.1 Équation différentielle linéaire, système différentiel linéaire

Définition.

• On appelle équation différentielle linéaire une équation de la forme :

$$x' = a(t) \cdot x + b(t) \tag{E}$$

où $a: I \to \mathcal{L}(E)$ et $b: I \to E$ sont des applications continues.

• Résoudre (E), c'est déterminer les fonctions $x:I\to E$ de classe \mathcal{C}^1 telles que :

$$\forall t \in I, \ x'(t) = a(t) \cdot x(t) + b(t)$$

• On appelle équation différentielle homogène associée à (E) l'équation :

$$x' = a(t) \cdot x \tag{H}$$

Remarque. a(t) est une application linéaire, $a(t) \cdot x(t)$ désigne l'image par cette application linéaire du vecteur x(t).

On pourrait la noter a(t)(x(t)).

Exemple. Rechercher les $M: \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ de classe \mathcal{C}^1 telles que :

$$\forall t \in \mathbb{R}, \ M'(t) = t^2 M(t)$$

c'est vouloir résoudre une équation différentielle linéaire homogène, où $a: t \mapsto t^2 \mathrm{Id}_{\mathcal{M}_n(\mathbb{R})}$.

Traduction matricielle.

Fixons $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

Notons $A(t) = \text{Mat}(a(t), \mathcal{B}), B(t) = \text{Mat}(b(t), \mathcal{B}) \text{ et } X(t) = \text{Mat}(x(t), \mathcal{B}).$

• L'équation différentielle (E) s'écrit sous la forme d'un système différentiel linéaire :

$$X' = A(t)X + B(t) \tag{S}$$

où $A: I \to \mathcal{M}_n(\mathbb{K})$ et $B: I \to \mathcal{M}_{n1}(\mathbb{K})$ sont des applications continues.

• Résoudre (S), c'est déterminer les fonctions $X: I \to \mathcal{M}_{n1}(\mathbb{K})$ de classe \mathcal{C}^1 telles que :

$$\forall t \in I, \ X'(t) = A(t)X(t) + B(t)$$

• On appelle système différentiel homogène associé à (S):

$$X' = A(t)X$$

Exemple. Rechercher les fonctions $x, y : \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 telles que :

$$\forall t \in \mathbb{R}, \begin{cases} x'(t) = 2x(t) + (1+t)y(t) + t^2 \\ y'(t) = \cos(t)x(t) + \sin(t)y(t) + 1 + t \end{cases}$$

c'est vouloir résoudre le système différentiel linéaire :

$$X' = A(t)X + B(t)$$

où
$$A: t \mapsto \begin{pmatrix} 2 & 1+t \\ \cos t & \sin t \end{pmatrix}$$
 et $B: t \mapsto \begin{pmatrix} t^2 \\ 1+t \end{pmatrix}$.

Exemple. Le système de Lotka-Volterra qui modélise l'évolution d'une population de proies et de prédateur s'écrit :

$$\begin{cases} x'(t) = x(t) (\alpha - \beta y(t)) \\ y'(t) = y(t) (\delta x(t) - \gamma) \end{cases}$$

C'est un système différentiel, non linéaire. Son étude n'entre pas dans le cadre du programme.

2/10 http://mpi.lamartin.fr **2024-2025**

1.2 Principe de superposition

Proposition. Si x_1, x_2 sont solutions de deux équations différentielles linéaires ayant la même équation homogène associée : $x' = a(t) \cdot x + b_1(t)$ et $x' = a(t) \cdot x + b_2(t)$ respectivement, alors $x_1 + x_2$ est solution de l'équation :

$$x' = a(t) \cdot x + (b_1(t) + b_2(t))$$

1.3 Problème de Cauchy

<u>Définition</u>. On appelle **problème de Cauchy** l'association d'une équation différentielle linéaire et d'une condition initiale :

$$\begin{cases} x' = a(t) \cdot x + b(t) \\ x(t_0) = x_0 \end{cases}$$

où $t_0 \in I$ et $x_0 \in E$.

Théorème.

La recherche des fonctions $x: I \to E$ de classe \mathcal{C}^1 telles que

$$\begin{cases} \forall t \in I, \ x'(t) = a(t) \cdot x(t) + b(t) \\ x(t_0) = x_0 \end{cases}$$

est équivalente à la recherche des fonctions $x:I\to E$ continues telles que :

$$\forall t \in I, \ x(t) = x_0 + \int_{t_0}^t a(u) \cdot x(u) + b(u) \, \mathrm{d}u$$

Remarque. On dit qu'on a mis sous forme intégrale le problème de Cauchy.

Traduction matricielle.

Un problème de Cauchy pour un système différentiel linéaire s'écrit :

$$\begin{cases} X' = A(t)X + B(t) \\ X(t_0) = X_0 \end{cases}$$

où $t_0 \in I$ et $X_0 \in \mathcal{M}_{n1}(\mathbb{K})$.

1.4 Représentation d'une équation différentielle scalaire linéaire d'ordre n

Définition.

• On appelle équation différentielle linéaire scalaire d'ordre n une équation de la forme :

$$y^{(n)} = a_{n-1}(t)y^{(n-1)} + \dots + a_1(t)y' + a_0(t)y + b(t)$$
(E)

où $a_0, a_1, \ldots, a_{n-1}, b: I \to \mathbb{K}$ sont des applications continues.

• Résoudre (E), c'est déterminer les fonctions $f:I\to \mathbb{K}$ de classe \mathcal{C}^k telles que :

$$\forall t \in I, \ f^{(n)}(t) = a_{n-1}(t)f^{(n-1)}(t) + \dots + a_1(t)f'(t) + a_0(t)f(t) + b(t)$$

• On appelle équation différentielle homogène associée à (E) l'équation :

$$y^{(n)} = a_{n-1}(t)y^{(n-1)} + \dots + a_1(t)y' + a_0(t)y$$
(E₀)

Remarque. Il importe que l'équation différentielle soit « normalisée », c'est-à-dire que le coefficient devant $y^{(n)}$ soit 1. Théorème.

Une équation différentielle linéaire scalaire d'ordre n peut être représentée par le système différentiel linéaire :

$$X' = A(t)X + B(t)$$

en posant dans $\mathcal{M}_{n1}(\mathbb{K})$ et $\mathcal{M}_n(\mathbb{K})$:

$$X(t) = \begin{pmatrix} y(t) \\ y'(t) \\ \vdots \\ y^{(n-2)}(t) \\ y^{(n-1)}(t) \end{pmatrix} \qquad A(t) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \\ a_0(t) & a_1(t) & \dots & a_{n-2}(t) & a_{n-1}(t) \end{pmatrix} \qquad B(t) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ b(t) \end{pmatrix}$$

Remarque. On reconnaît la transposée d'une matrice compagnon.

<u>Définition</u>. On appelle problème de Cauchy pour une équation différentielle linéaire scalaire d'ordre n l'association d'une équation différentielle et d'une condition initiale :

$$\begin{cases} y^{(n)} = a_{n-1}(t)y^{(n-1)} + \dots + a_1(t)y' + a_0(t)y + b(t) \\ y(t_0) = y_0, \ y'(t_0) = y_1, \ \dots, \ y^{(n-1)}(t_0) = y_{n-1} \end{cases}$$

où $t_0 \in I$ et $y_0, y_1, \dots, y_{k-1} \in \mathbb{K}$.

Remarque. Il existe d'autres problèmes, dont l'étude n'est pas au programme, comme celui des conditions aux limites.

2 Ensemble des solutions d'une équation différentielle linéaire

2.1 Théorème de Cauchy linéaire

Théorème de Cauchy linéaire.

Si:

- I est un intervalle
- a et b sont continues sur I

alors le problème de Cauchy :

$$\begin{cases} x' = a(t) \cdot x + b(t) \\ x(t_0) = x_0 \end{cases}$$

admet une unique solution définie sur I.

Remarque. Ce théorème est un cas particulier d'un théorème plus général, le théorème de Cauchy-Lipschitz.

Traduction matricielle.

Si:

- I est un intervalle
- A et B sont continues sur I

alors le problème de Cauchy :

$$\begin{cases} X' = A(t)X + B(t) \\ X(t_0) = X_0 \end{cases}$$

admet une unique solution définie sur I.

Corollaire.

Si:

- \bullet I est un intervalle
- $a_0, a_1, \ldots, a_{n-1}, b$ sont continues sur I

alors le problème de Cauchy:

$$\begin{cases} y^{(n)} = a_{n-1}(t)y^{(n-1)} + \dots + a_1(t)y' + a_0(t)y + b(t) \\ y(t_0) = y_0, \ y'(t_0) = y_1, \ \dots, \ y^{(n-1)}(t_0) = y_{n-1} \end{cases}$$

admet une unique solution définie sur I.

Exemple. Soit $\phi: I \to \mathcal{M}_{n1}(\mathbb{K})$ une solution de l'équation homogène :

$$X' = A(t)X$$

où $A: I \to \mathcal{M}_n(\mathbb{K})$ est continue sur J. Montrer l'équivalence :

$$\exists t \in I, \ \phi(t) = 0 \iff \forall t \in I, \ \phi(t) = 0$$

2.2 Structure de l'ensemble des solutions — équations homogènes

Théorème.

Si:

- \bullet I est un intervalle
- a est continue sur I
- \mathcal{S}_H désigne l'ensemble des solutions l'équation différentielle linéaire homogène : $x'=a(t)\cdot x$

alors:

- S_H est un sous-espace vectoriel de $C^1(I, E)$
- o pour $t_0 \in I$, $S_H \to E$ est un isomorphisme d'espaces vectoriels $x \mapsto x(t_0)$
- $\circ \operatorname{dim} \mathcal{S}_H = \operatorname{dim} E$

Traduction matricielle. Si:

- I est un intervalle
- A est continue sur I
- S_H désigne l'ensemble des solutions du système différentiel linéaire homogène : X' = A(t)X

alors:

- \mathcal{S}_H est un sous-espace vectoriel de $\mathcal{C}^1(I,\mathcal{M}_{n1}(\mathbb{K}))$
- pour $t_0 \in I$, $S_H \to \mathcal{M}_{n1}(\mathbb{K})$ est un isomorphisme d'espaces vectoriels $X \mapsto X(t_0)$
- \circ dim $S_H = n$

Corollaire. Si:

- \bullet I est un intervalle
- $a_0, a_1, \ldots, a_{n-1}$ sont continues sur I
- \mathcal{S}_H désigne l'ensemble des solutions de l'équation différentielle linéaire scalaire homogène :

$$y^{(n)} = a_{n-1}(t)y^{(n-1)} + \dots + a_1(t)y' + a_0(t)y$$

alors:

- S_H est un sous-espace vectoriel de $C^n(I, \mathbb{K})$
- pour $t_0 \in I$, $S_H \to \mathbb{K}^n$ est un isomorphisme d'espaces vectoriels $y \mapsto (y(t_0), y'(t_0), \dots, y^{(n-1)}(t_0))$
- \circ dim $S_H = n$

Remarque. À part dans le cas où n = 1, ou le cas où A est constant, on ne sait en général pas déterminer l'espace vectoriel S_H des solutions de l'équation homogène.

Définition. Une base de S_H s'appelle un système fondamental de solutions de l'équation homogène.

Exemple. Déterminer une système fondamental de solutions du système :

$$\begin{cases} x'(t) = tx(t) - y(t) \\ y'(t) = x(t) + ty(t) \end{cases}$$

On pourra commencer par chercher un système dont sont solutions $u: t \mapsto e^{-t^2/2}x(t)$ et $v: t \mapsto e^{-t^2/2}y(t)$.

2.3 Structure de l'ensemble des solutions — équations complète

Théorème.

Si:

- I est un intervalle
- a et b sont continues sur I
- S_E désigne l'ensemble des solutions l'équation différentielle linéaire : $x' = a(t) \cdot x + b(t)$

alors:

 $\circ \mathcal{S}_E$ est un sous-espace affine de $\mathcal{C}^1(I,E)$ de direction \mathcal{S}_H :

$$S_E = x_{\text{part}} + S_H$$

et qui est de dimension $\dim E$.

Traduction matricielle. Si

- \bullet I est un intervalle
- A et B sont continues sur I
- S désigne l'ensemble des solutions du système différentiel linéaire : X' = A(t)X + B(t)

alors:

• \mathcal{S} est un sous-espace affine de $\mathcal{C}^1(I,\mathcal{M}_{n1}(\mathbb{K}))$ dirigé par \mathcal{S}_H :

$$S = X_{\text{part}} + S_H$$

et qui est de dimension n.

Corollaire. Si:

- \bullet I est un intervalle
- $a_0, a_1, \ldots, a_{n-1}, b$ sont continues sur I
- ${\mathcal S}$ désigne l'ensemble des solutions de l'équation différentielle linéaire scalaire :

$$y^{(n)} = a_{n-1}(t)y^{(n-1)} + \dots + a_1(t)y' + a_0(t)y + b(t)$$

alors:

 \circ \mathcal{S} est un sous-espace affine de $\mathcal{C}^n(I,\mathbb{K})$ dirigé par \mathcal{S}_H :

$$S = y_{\text{part}} + S_H$$

et qui est de dimension n.

3 Annexes

3.1 Annexe : théorème de Cauchy linéaire

Théorème.

Si:

- \bullet I est un intervalle
- A et B sont continues sur I

alors le problème de Cauchy:

$$\begin{cases} X' = A(t)X + B(t) \\ X(t_0) = X_0 \end{cases}$$

admet une unique solution définie sur I.

Preuve. On munit $\mathcal{M}_n(\mathbb{K})$ d'une norme sous-multiplicative,

par exemple une norme d'opérateur subordonnée à une norme sur $\mathcal{M}_{n1}(\mathbb{K}).$

 La mise sous forme intégrale du problème de Cauchy nous amène donc à chercher les fonctions continues X : I → M_{n1}(K) telles que :

$$\forall t \in I, \ X(t) = X_0 + \int_{t_0}^t \left(A(u)X(u) + B(u) \right) \mathrm{d}u$$

Pour $X \in \mathcal{C}^0(I, \mathcal{M}_{n1}(\mathbb{K}))$, on définit :

$$\Phi(X) : t \mapsto X_0 + \int_{t_0}^t \left(A(u)X(u) + B(u) \right) \mathrm{d}u$$

de sorte que l'on cherche X telle que $\Phi(X)=X,$ c'est-à-dire un point fixe de $\Phi.$

• Commençons par montrer l'existence d'une solution.

On définit par récurrence la suite $(X_n)_{n\in\mathbb{N}}$ en posant :

$$X_0: t \mapsto X_0$$

et,
$$\forall n \in \mathbb{N}, X_{n+1} = \Phi(X_n)$$

Travaillons pour $t \in K = [t_0, b] \subset I$, segment sur lequel les fonctions continues admettent une borne supérieure (le travail sur $[a, t_0] \subset I$ est analogue).

$$||X_{2}(t) - X_{1}(t)||$$

$$= ||\Phi(X_{1})(t) - \Phi(X_{0})(t)||$$

$$= ||\int_{t_{0}}^{t} A(u)(X_{1}(u) - X_{0}(u)) du||$$

$$\leq \int_{t_{0}}^{t} ||A(u)(X_{1}(u) - X_{0}(u))|| du$$
par inégalité triangulaire
$$\leq \int_{t_{0}}^{t} ||A(u)|||X_{1}(u) - X_{0}(u)|| du$$
par sous-multiplicativité
$$\leq \int_{t_{0}}^{t} ||A||_{\infty}^{K} ||X_{1} - X_{0}||_{\infty}^{K} du$$

 $\leqslant \int_{t_0}^t \|A\|_{\infty}^K \|X_1 - X_0\|_{\infty}^K \, \mathrm{d}u$ $= ||A||_{\infty}^{K} ||X_1 - X_0||_{\infty}^{K} (t - t_0)$

puis

$$\begin{split} \|X_3(t) - X_2(t)\| &= \|\Phi(X_2)(t) - \Phi(X_1)(t)\| \\ &= \|\int_{t_0}^t A(u) \left(X_2(u) - X_1(u)\right) \mathrm{d}u \| \\ &\leqslant \int_{t_0}^t \|A(u) \left(X_2(u) - X_1(u)\right) \| \, \mathrm{d}u \\ &\quad \text{par inégalité triangulaire} \\ &\leqslant \int_{t_0}^t \|A(u)\| \|X_2(u) - X_1(u)\| \, \mathrm{d}u \\ &\quad \text{par sous-multiplicativité} \\ &\leqslant \int_{t_0}^t \|A\|_{\infty}^K \|A\|_{\infty}^K \|X_1 - X_0\|_{\infty}^K (u - t_0) \, \mathrm{d}u \\ &\quad \text{par la majoration précédente} \\ &= \left(\|A\|_{\infty}^K\right)^2 \|X_1 - X_0\|_{\infty}^K \frac{(t - t_0)^2}{2} \end{split}$$

Alors, par récurrence, pour tout $n \ge 1$

$$||X_{n+1}(t) - X_n(t)|| \le \frac{\left(||A||_{\infty}^K (t - t_0)\right)^n}{n!} ||X_1 - X_0||_{\infty}^K$$

$$\le \frac{\left(||A||_{\infty}^K (b - t_0)\right)^n}{n!} ||X_1 - X_0||_{\infty}^K$$
indépendant de t

t.g. d'une série convergente

Donc $\sum (X_{n+1} - X_n)$ converge normalement, donc uniformément sur K. Par le lien suite-série, la suite $(X_n)_n$ converge sur K; on note X sa limite.

$$||X(t) - X_n(t)|| = ||\sum_{k=n}^{+\infty} X_{k+1}(t) - X_k(t)||$$

$$\leq \sum_{k=n}^{+\infty} ||X_{k+1} - X_k||_{\infty}^{K}$$

indépendant de tde limite nulle comme reste d'une série convergente

donc la convergence de $(X_n)_n$ vers X est uniforme sur K. Par transfert de continuité, X est continue sur KPar définition, on a:

$$\forall n, \ X_{n+1}(t) = X_0 + \int_{t_0}^t \left(A(u)X_n(u) + B(u)\right) \mathrm{d}u$$

Par convergence uniforme sur le segment $[t_0, t]$, on a à la limite:

$$X(t) = X_0 + \int_{t_0}^t \left(A(u)X(u) + B(u) \right) du$$

ce qui justifie que X est solution du problème de Cauchy

Justifions maintenant l'unicité de la solution. Soit $X,Y: I \to \mathcal{M}_{n1}(\mathbb{K})$ deux solutions du problème de Cauchy, et Z = X - Y. Pour $t \in I$, on a :

$$Z'(t) = X'(t) - Y'(t)$$

$$= (A(t)X(t) + B(t)) - (A(t)Y(t) + B(t))$$

$$= A(t)Z(t)$$
et $Z(t_0) = X(t_0) - Y(t_0)$

$$= 0$$

En mettant sous forme intégrale ce problème de Cauchy, on a donc:

$$Z(t) = 0 + \int_{t_0}^t A(u)Z(u) du$$

On travaille maintenant pour $t \ge t_0$, mais le raisonnement est analogue lorsque $t \leq t_0$.

$$\begin{split} \|Z(t)\| &= \|\int_{t_0}^t A(u)Z(u)\,\mathrm{d}u\| \\ &\leqslant \int_{t_0}^t \|A(u)Z(u)\|\,\mathrm{d}u \text{ par inég. triangulaire } \quad (*) \\ &\leqslant \int_{t_0}^t \|A(u)\| \|Z(u)\|\,\mathrm{d}u \text{ car } \|\cdot\| \text{ sous-multiplicative } \\ &\leqslant \int_{t_0}^t \|A\|_{\infty}^{[t_0,t]} \|Z\|_{\infty}^{[t_0,t]}\,\mathrm{d}u \\ &= (t-t_0)\|A\|_{\infty}^{[t_0,t]} \|Z\|_{\infty}^{[t_0,t]} \end{split}$$

donc, en reportant dans (*):

$$\begin{split} \|Z(t)\| &\leqslant \int_{t_0}^t \|A(u)\| \|Z(u)\| \, \mathrm{d}u \\ &\leqslant \int_{t_0}^t \|A(u)\| (u-t_0) \|A\|_{\infty}^{[t_0,t]} \|Z\|_{\infty}^{[t_0,t]} \, \mathrm{d}u \\ &\leqslant \big(\|A\|_{\infty}^{[t_0,t]} \big)^2 \|Z\|_{\infty}^{[t_0,t]} \int_{t_0}^t (u-t_0) \, \mathrm{d}u \\ &= \big(\|A\|_{\infty}^{[t_0,t]} \big)^2 \|Z\|_{\infty}^{[t_0,t]} \frac{(t-t_0)^2}{2} \end{split}$$

Par récurrence, on établit alors, pour tout $n \in \mathbb{N}^*$:

$$||Z(t)|| \leqslant \frac{\left((t-t_0)||A||_{\infty}^{[t_0,t]}\right)^n}{n!} ||Z||_{\infty}^{[t_0,t]}$$

On reconnaît le terme général d'une série exponentielle, convergente. En faisant $n \to +\infty$, on en déduit donc :

$$\|Z(t)\| = 0$$

et donc X(t) = Y(t).

3.2 Annexe : un résultat utile

<u>Proposition.</u> Soit $X: I \to \mathcal{M}_{n1}(\mathbb{K})$ une solution du système différentiel linéaire homogène :

$$X' = A(t)X$$

où $A: I \to \mathcal{M}_n(\mathbb{K})$ est continue sur I. On dispose de l'alternative : soit X est constante nulle, soit X ne s'annule pas.

Remarque. On peut reformuler en :

$$\exists t_0 \in I, \ X(t_0) = 0_{\mathcal{M}_{n1}(\mathbb{K})}$$

$$\implies \forall t \in I, \ X(t) = 0_{\mathcal{M}_{n1}(\mathbb{K})}$$

 $Preuve. \;$ On suppose que X s'annule en $t_0.$ Alors X est solution du problème de Cauchy :

$$\begin{cases} X' = A(t)X \\ X(t_0) = 0_{\mathcal{M}_{n_1}(\mathbb{K})} \end{cases}$$

dont $t\mapsto 0_{\mathcal{M}_{n1}(\mathbb{K})}$ est une solution évidente. Par unicité de la solution d'un problème de Cauchy, $X=\left(t\mapsto 0_{\mathcal{M}_{n1}(\mathbb{K})}\right)$.

3.3 Complément : le wronskien

<u>Définition.</u> Si $X_1, \ldots, X_n \in \mathcal{C}^1(I, \mathcal{M}_{n1}(\mathbb{K}))$ sont n solutions de l'équation différentielle linéaire homogène :

$$X' = A(t)X$$

où $A: I \to \mathcal{M}_n(\mathbb{K})$ est continue, on appelle wronskien associé à X_1, \ldots, X_n :

$$W: t \mapsto \det(X_1(t), \dots, X_n(t))$$

Remarque. Le déterminant est calculé dans la base canonique de $\mathcal{M}_{n1}(\mathbb{K})$.

Théorème.

Sont équivalentes :

- (i) (X_1,\ldots,X_n) base de \mathcal{S}_H
- (ii) W est nulle : $\forall t \in I, W(t) \neq 0$
- (iii) W s'annule : $\exists t_0 \in I, W(t_0) \neq 0$

 $\begin{array}{c} Preuve. \\ \hline (i) \implies (ii) \end{array}$

On suppose que (X_1, \ldots, X_n) est une base de S_H . Pour tout $t \in I$ fixé, on sait que :

$$\Phi: \mathcal{S}_H \to \mathcal{M}_{n1}(\mathbb{K}) \\
X \mapsto X(t)$$

est un isomorphisme d'espace vectoriel. Sa matrice relativement aux bases (X_1,\ldots,X_n) de \mathcal{S}_H et canonique de $\mathcal{M}_{n1}(\mathbb{K})$ est, par blocs colonnes :

$$A = (X_1(t)|\dots|X_n(t))$$

On a donc :

$$0 \neq \det(A) = W(t)$$

 $(ii) \implies (iii)$

Cette implication est claire.

$$(iii) \implies (i)$$

Par contraposée. On suppose que (X_1, \ldots, X_n) n'est pas une base de \mathcal{S}_H , donc n'est pas libre. Ainsi, il existe $\lambda_1, \ldots, \lambda_n$ non tous nuls tels que :

$$\forall t \in I, \ \lambda_1 X_1(t) + \dots + \lambda_n X_n(t) = 0$$

Ainsi, pour tout t, $(X_1(t), \ldots, X_n(t))$ est liée donc $W(t) = \det(X_1(t), \ldots, X_n(t)) = 0$. On a montré la négation de (iii).

68.1

L'espace $\mathcal{M}_{n1}(\mathbb{R})$ est muni de sa structure euclidienne usuelle. Pour $A \in \mathcal{M}_n(\mathbb{R})$, montrer que les assertions suivantes sont équivalentes :

- (i) A est antisymétrique;
- (ii) Si X est solution de X' = AX, alors ||X|| est constante.

68.2

Soit T > 0, $A : \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ et $B : \mathbb{R} \to \mathcal{M}_{n1}(\mathbb{R})$ deux applications continues et T-périodiques. On considère ϕ une solution sur \mathbb{R} de l'équation :

$$X' = A(t)X + B(t)$$

Montrer que ϕ est T-périodique si et seulement si elle vérifie $\phi(T) = \phi(0)$. On remarquera que ϕ est T-périodique si et seulement si $\phi = \psi$, où ψ : $t \mapsto \phi(t+T)$.

Petits problèmes d'entrainement

68.3

Soit $A \in \mathcal{M}_n(\mathbb{R})$, supposée non inversible.

- (a) Justifier qu'il existe un hyperplan vectoriel de $\mathcal{M}_{n1}(\mathbb{R})$ qui contient Im A.
- (b) En déduire que les solutions du système différentiel : X'(t) = AX(t) prennent leurs valeurs dans un hyperplan affine, c'est-à-dire le translaté d'un hyperplan vectoriel.

68.4

Soit $A, B, C \in \mathcal{M}_n(\mathbb{K})$.

(a) On suppose dans cette question que AB = BA. En dérivant :

$$t \mapsto \exp(t(A+B)) \exp(-tA)$$
 et $t \mapsto \exp(tB)$

montrer que $\exp(A + B) = \exp(A) \exp(B)$.

On ne suppose plus que A et B commutent, et on note [A, B] = AB - BA.

(b) En commençant par traiter le cas où n=1, déterminer toutes les fonctions $M: \mathbb{R} \to \mathcal{M}_n(\mathbb{K})$ de classe \mathcal{C}^1 telles que :

$$\forall t \in \mathbb{R}, \ M'(t) = tM(t)C$$

(c) On suppose que C = [A, B], AC = CA et BC = CB. Utiliser $t \mapsto \exp(tA) \exp(tB) \exp(-t(A+B))$ pour montrer que :

$$\exp(A+B) = \exp(A)\exp(B)\exp\left(-\frac{1}{2}[A,B]\right)$$

68.5

(a) Soit $M, N \in \mathcal{M}_n(\mathbb{K})$ deux matrices. On note C_1, \ldots, C_n les colonnes de N. Utiliser la définition du déterminant pour montrer que :

$$\sum_{i=1}^{n} \det(C_1, \dots, MC_i, \dots, C_n) = \operatorname{tr}(M) \det(N)$$

(b) Soit $A: I \to \mathcal{M}_n(\mathbb{K})$. On s'intéresse au système différentiel sur I:

$$X'(t) = A(t)X(t)$$

On considère n solutions X_1, \ldots, X_n , et on note :

$$w(t) = \det(X_1(t), \dots, X_n(t))$$

Déduire de la question précédente que, si $t_0 \in I$:

$$\forall t \in I, \ w(t) = w(t_0) \exp\left(\int_{t_0}^t \operatorname{tr}(A(u)) \, \mathrm{d}u\right)$$

Que penser du cas où A est constante?