Posterior credibility intervals

Constructing a 90% credibility interval

■ A 90% interval for the posterior $p(\theta|y)$

$$p(\theta \in [\theta_1, \theta_2] | y) = \int_{\theta_1}^{\theta_2} p(\theta | y) \, \mathrm{d}\theta = 0.90$$

- Constructing *central* intervals
 - 5% in left tail
 - 90% in central interval
 - 5% in right tail
- Recall the definition of the CDF

$$F(x) \equiv p(\theta < x|y) = \int_0^x p(\theta|y) d\theta$$

 \blacksquare We can identify $heta_1$ as

$$p(\theta < \theta_1 | y) = F(\theta_1) = 0.05 \iff \theta_1 = F^{-1}(0.05)$$

 \blacksquare and θ_2 as

$$p(\theta < \theta_2 | y) = F(\theta_2) = 0.95 \iff \theta_2 = F^{-1}(0.95)$$

