Specyfikacja spi_exe_unit_1

Imię: Konrad

Nazwisko: Krupski

Numer albumu: 310729

Opis sygnałów

wejścia

i_rst

Sygnał resetu modułu spi_exe_unit

i sclk

Sygnał zegara modułu spi_exe_unit, który zapewnia odpowiednie sterowania slave

i_mosi

MASTER OUT SLAVE IN. Jednobitowy, sygnał z danymi pochodzącymi od mastera

i_cs

CHIP SELECT.

wyjścia

o miso

Jednobitowy sygnał, którym przesyłane są dane wyjściowe z slave

Parametry

NUM

Parametr pomocniczy, który służy do określenia liczby bitów, na których pracuje moduł watchdog

Ν

Parametr lokalny, służący do określenia liczby bitów danych, na których ma pracować exe unit

RITS

Parametr, służący do określenia liczby bitów danych, na których ma pracować slave

STATES NUM

Parametr lokalny, służący do określenia liczby stanów automatu zastosowanego w spi_exe_unit

STATE READY

Stan oznaczający gotowość slave do otrzymania danych od mastera. Dodatkowo w tym stanie do modułu watchdog wpisywana jest odpowiednia ilość cykli pobudzenia

STATE LOAD

Stan, w którym dane z zmiennej s_wyniki są przypisywane do odpowiednich zmiennych pomocniczych, które następnie przypisywane są do rejestrów. Dodatkowo w tym stanie blokowany jest zapis nowej ilości cykli do układu watchdog, co pozwala na jego odpowiednią pracę.

STATE FLAGS

Stan, w którym przypisywane są wartości wyjść modułu exe_unit do odpowiednich zmiennych pomocniczych w celu późniejszego zapisania ich do rejestrów.

STATE SEND

Stan, w którym wartości zapisane w rejestrach są podawane na równoległe wyjście slave'a.

Opis sygnałów pomocniczych

S transfer – sygnał pozwalający na pracę shifter

S_bit - sygnał przechowujący pojedynczy bit, który jest podawany na wyjście slave

S bit next - sygnał przechowujący kolejną wartość s bit

Reg_argA – rejestr sygnału i_argA modułu exe_unit , przechowujący wartość zmiennej, na której moduł exe_unit będzie wykonywał operacje.

Reg_argB - rejestr sygnału i_argB modułu exe_unit, przechowujący wartość zmiennej, na której moduł exe_unit będzie wykonywał operacje.

Reg_oper - rejestr sygnału i_oper modułu exe_unit, przechowujący numer operacji, którą ten moduł ma wykonać

Reg_results - rejestr sygnału o_results modułu exe_unit, przechowujący wynik operacji wykonanej przez ten moduł

Reg_flags - rejestr flag modułu exe_unit, w którym przechowywane są wartości poszczególnych flag zwracanych przez ten moduł

s argA next – sygnał przechowujący kolejną wartość sygnału reg argA

s_argB_next - sygnał przechowujący kolejną wartość sygnału reg_argB

s oper next - sygnał przechowujący kolejną wartość sygnału reg oper

s results next - sygnał przechowujący kolejną wartość sygnału s results

s_flags_next - sygnał przechowujący kolejną wartość sygnału s_flags

- s_results sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg results
- s_flags sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg_flags
- s_wyniki sygnał przechowujący ciąg 20 bitów otrzymanych z mastera, które są przypisywane do odpowiednich sygnałów pomocniczych. Wyjście równoległe z shifter'a.
- s watchdog we zezwolenie na wpis do modułu watchdog
- s_wrt sygnał pozwalający do wpis równoległy/szeregowy do shifter'a
- s_data sygnał służący do zapisywania wyników rejestrów i argumentów
- s state sygnał przechowujący wartość mówiącą o aktualnym stanie slave
- s state next sygnał przechowujący wartość kolejnego stanu slave.

Instancjonowane moduły

shifter

Moduł jest odpowiedzialny za przesuwanie bitów otrzymanych z master'a. Slave otzymuje kolejno pojedyncze bity od master'a i dzięki temu modułowi są one pojedynczo wsuwane i przypisywane do sygnału pomocniczego s wyniki.

watchdog

Moduł, które zadaniem jest pobudzenie slave'a do pracy na 20-bitowym ciągu. Watchdog ma 20 cykli, dzięki którym możliwe jest zapisanie danych do odpowiednich rejestrów i wykonanie na nich odpowiednich operacji.

exe unit

Moduł, którego zdaniem jest wykonanie operacji na danych otrzymanych z master'a. Przyjmuje on odpowiednio argument i_argA, i_argB, i_oper oraz zwraca wyniki w postaci o_result, o_flags. Jego szczegółowa specyfikacja jest opisana w dokumentacji projektu 1.

Algorytm pracy spi exe unit 1

W pierwszym stanie pracy spi_exe_unit_1 zapisywana jest odpowiednia ilość cykli do modułu watchdog sterującym tą jednostką. Dodatkowo ustawiane są odpowiednie wartości sygnałów zezwalające do transfer danych oraz zmianę stanu do stanu numer 2.

W kolejnym stanie pracy slave'a blokowany jest zapis nowej ilości cykli do modułu watchdog. Dodatkowo do zmiennych pomocniczych s_argA_next, s_argB_next, s_oper_next, s_results_next, s_flags_next, przypisywane są dane otrzymane z master'a. Stan ten jest powtarzany do momenty, gdy watchdog zgłosi koniec pracy poprzez sygnał s_inter.

W kolejnym stanie pracy slave'a, przypisywane są do odpowiednich zmiennych pomocniczych s_flags_next, s_results, wyniki obliczeń zwrócone przez moduł exe_unit.

Ostatnim stanem pracy slave'a jest stan, w którym otrzymane wartości wyników oraz danych wejściowych są przypisywane do wyjścia równoległego i cała informacja jest zwracana do jednostki master.

Dane podane do testowania

Lp	I_argA	I_argB	l_oper	I_result	I_flags
1	0100	0001	0000	0101	0000
2	1010	0101	0010	1111	0001
3	1100	0011	0001	0000	0000
4	1000	0000	0111	0011	0000
5	0010	0010	0011	1000	0110
6	0010	1000	0100	0000	0000
7	1010	0000	0101	1111	0001
8	0001	0101	0110	0101	0000
9	1101	0010	1011	1011	0100
1	1101	0010	1000	1010	0000
0					

Dane uzyskane przy pracy spi_exe_unit zostały przetworzone poprawnie.