Finding eigenvalues

Suppose
$$\lambda$$
 is an eigenvalue of A . (with X an eigenvector) $AX = \lambda X = (\lambda I) X$.

$$\begin{array}{c} AX - (\lambda I)X = 0 \\ (A - \lambda I)X = 0 \end{array}$$

i.e.
$$det(A - \lambda I) = 0$$
.

$$P_A(\lambda) = det(A - \lambda I)$$

$$P_A(\lambda) = \det(A - \lambda I)$$
.
If A is nxn, this is a degree n polynomial.

$$P_{A}(\lambda) = \begin{bmatrix} y_3 & 4/3 \\ 8/3 & 5/3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 1/3 - \lambda & 4/3 \\ 8/3 & 5/3 - \lambda \end{bmatrix}$$

$$= (\frac{1}{3} - \lambda)(\frac{5}{3} - \lambda) - (\frac{4}{3}) \cdot (\frac{8}{3})$$

$$= \lambda^{2} - 2\lambda - 3. = (\lambda - 3)(\lambda + 1)$$

Zeros are
$$\lambda = 3$$
, $\lambda = -1$ These are the eigenvalues of A .

ex.
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 $D - \lambda I = \begin{bmatrix} 2 - \lambda & 0 \\ 0 & 2 - \lambda \end{bmatrix}$

$$P_{D}(\lambda) = |2-\lambda|_{D} = (2-\lambda)^{2} = (\lambda-2)^{2}$$

$$P_{D}(x) = |2-x|^{2} = (x-2)^{2}$$

 $O_{A}(x) = |2-x|^{2} = (x-2)^{2}$
 $O_{A}(x) = |2-x|^{2}$
 O_{A

	More generally, we say that the multiplicity of an
	Pier avalve & is V if the characteristic solumni
	eigenvalue to is v if the characteristic polynomics divisible by $(1-1)^{r_{2}}$ (and not $(1-1)^{r_{2}}$)
	(1) (1) (1) (1)
	What we know about factorizing polynomials
	Fundamental Thm of Algebra.
	Fundamental Thm of Algebra. A degree in polynomial P(1) has exactly in roots.
	if you count with multiplicity
	and you include complex roots.
	In other words,
	In other words, $P(\lambda) = C(\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} - \cdots (\lambda - \lambda_k)^{n_k}$
	where ,, \k may be complex, and
	$n, + n_2 + \cdots + n_k = n$
	_
	Cor. An nxn matrix has exactly n eigenvalues
	if you count with multiplicity
_	if you count with multiplicity and you include complex eigenvalues.
	A few more useful reminders:
_	A guadratic polynomial ran always be factorized, using the guadratic formula if necessary. Higher-degree polynomials can be factorized numerically by computer but by hand it's pretty hand/impossible if the polynomial has real coefficients, then
	using the gradiatic formula if necessary
_	-> Higher-degree polynomials can be factorized numerically
	by computer, but by hand it's pretty hand/impossible
_	if the polynomial has real coefficients, then
	any non-real roots occur in conjugate pairs. (if on+bi is a root w/ multiplicity k then a-b; is also a root w/ multiplicity k.)
	(it atbi is a root w/ multiplicity k
	then a-b; is also a root w/ multiplicity k.)

ex.
$$U = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$$
. $\begin{vmatrix} 2-\lambda & 1 & -1 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{vmatrix}$. $\begin{vmatrix} 2-\lambda & 1 & -1 \\ 0 & 2 & 5 \\ 0 & 0 & 3 - \lambda \end{vmatrix}$

$$= (2-\lambda)(2-\lambda)(3-\lambda).$$
So the eigenvalues of U are 2 (double) $+3$.

Conclusion: eigenvalues of an upper triangular matrix are the entries on the diagonal.

(Same for lower triangular matrices.)

ex. $R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. \Rightarrow

$$R(\lambda) = \begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} = \begin{bmatrix} \lambda^2 + 1 \\ 1 & -\lambda \end{bmatrix}$$
So $R_{e}(\lambda) = 0$ \Rightarrow

$$\lambda^2 = -1$$

$$\lambda = \pm i.$$
 $R(1) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
So, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of R with eigenvalue $-i$.

Only eigenvalue of $R_{e}(\lambda) = 0$ \Rightarrow

$$R(\lambda) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
Only eigenvectors are $\begin{bmatrix} \lambda \\ 1 \\ 0 \end{bmatrix}$.