Build End-to-End ML pipeline for Warfarin Dosing Prediction

```
# Reading excel file
import pandas as pd
import numpy as np
data_frame = pd.read_excel('FinalData.xls')
data_frame.head()
```


	Gender	Race (Reported)	Age	Height (cm)	Weight (kg)	Diabetes	Simvastatin (Zocor)	Amiodarone (Cordarone)
0	male	White	60 - 69	193.040	115.7	NaN	0.0	0.0
1	female	White	50 - 59	176.530	144.2	NaN	0.0	0.0
2	female	White	40 - 49	162.560	77.1	NaN	0.0	0.0
3	male	White	60 - 69	182.245	90.7	NaN	0.0	0.0
4	male	White	50 - 59	167.640	72.6	NaN	0.0	0.0

from google.colab import drive
drive.mount('/content/drive')

→ Mounted at /content/drive

Checking columns of the dataset data_frame.columns

Check missing values in the dataset
data frame.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5700 entries, 0 to 5699
Data columns (total 13 columns):

#	Column	Non-N
0	Gender	5696
1	Race (Reported)	5194
2	Age	5658
3	Height (cm)	4554
4	Weight (kg)	5413
5	Diabetes	3283
6	Simvastatin (Zocor)	3861
7	Amiodarone (Cordarone)	4182
8	Target INR	1259
9	INR on Reported Therapeutic Dose of Warfarin	4968
10	Cyp2C9 genotypes	5567
11	VKORC1 genotype: -1639 G>A (3673); chr16:31015190; rs9923231; C/T	4046
12	Therapeutic Dose of Warfarin	5528
dtyp	es: float64(8), object(5)	
memo	ry usage: 579.0+ KB	

Describing the dataset data_frame.describe()

	Height (cm)	Weight (kg)	Diabetes	Simvastatin (Zocor)	Amiodarone (Cordarone)	Target INR
count	4554.000000	5413.000000	3283.000000	3861.000000	4182.000000	1259.000000
mean	168.047778	77.852569	0.187024	0.146335	0.066236	2.538324
std	10.845992	21.859764	0.389990	0.353488	0.248724	0.198140
min	124.968000	30.000000	0.000000	0.000000	0.000000	1.300000
25%	160.020000	62.000000	0.000000	0.000000	0.000000	2.500000
50%	167.894000	75.000000	0.000000	0.000000	0.000000	2.500000
75%	176.022000	90.000000	0.000000	0.000000	0.000000	2.500000

Checking for NA Values in the dataset data_frame.isna()

	Gender	Race (Reported)	Age	Height (cm)	Weight (kg)	Diabetes	Simvastatin (Zocor)	Amiodaro (Cordaro
0	False	False	False	False	False	True	False	Fa
1	False	False	False	False	False	True	False	Fa
2	False	False	False	False	False	True	False	Fa
3	False	False	False	False	False	True	False	Fa
4	False	False	False	False	False	True	False	Fa
5695	False	False	False	False	False	False	False	Fa
5696	False	False	False	False	False	False	False	Fa
5697	False	False	False	False	False	False	False	Fa
5698	False	False	False	False	False	False	False	Fa
5699	False	False	False	False	False	False	False	Fa
5700 rc	ows × 13 co	olumns						

```
# Finding Total Missing Values
data_frame.isna().sum()
    Gender
                                                                                4
    Race (Reported)
                                                                              506
    Age
                                                                               42
    Height (cm)
                                                                            1146
    Weight (kg)
                                                                             287
    Diabetes
                                                                            2417
    Simvastatin (Zocor)
                                                                            1839
    Amiodarone (Cordarone)
                                                                            1518
                                                                            4441
    Target INR
    INR on Reported Therapeutic Dose of Warfarin
                                                                             732
    Cyp2C9 genotypes
                                                                             133
    VKORC1 genotype: -1639 G>A (3673); chr16:31015190; rs9923231; C/T
                                                                            1654
    Therapeutic Dose of Warfarin
                                                                             172
    dtype: int64
# Total sum of missing values
```

```
data_frame.isna().sum().sum()
```

14891

```
# Replacing missing values with mode
mode fillers = {
    'Gender': data_frame['Gender'].mode()[0],
    'Race (Reported)': data_frame['Race (Reported)'].mode()[0],
    'Age': data_frame['Age'].mode()[0],
    'Cyp2C9 genotypes': data frame['Cyp2C9 genotypes'].mode()[0],
    'VKORC1 genotype: -1639 G>A (3673); chr16:31015190; rs9923231; C/T': data_fra
}
data frame.fillna(value=mode fillers, inplace=True)
```

```
# Replacing missing values with mean
mean_fillers = {
    'Height (cm)': data_frame['Height (cm)'].mean(),
    'Weight (kg)': data_frame['Weight (kg)'].mean(),
    'Diabetes': data_frame['Diabetes'].mean(),
    'Simvastatin (Zocor)': data_frame['Simvastatin (Zocor)'].mean(),
    'Amiodarone (Cordarone)': data_frame['Amiodarone (Cordarone)'].mean(),
    'Target INR': data_frame['Target INR'].mean(),
    'INR on Reported Therapeutic Dose of Warfarin': data_frame['INR on Reported T
    'Therapeutic Dose of Warfarin': data_frame['Therapeutic Dose of Warfarin'].me
}
data_frame.fillna(value=mean_fillers, inplace=True)
```

checking for missing values
data_frame.isna()

	Gender	Race (Reported)	Age	Height (cm)	Weight (kg)	Diabetes	Simvastatin (Zocor)	Amiodaro (Cordaro
0	False	False	False	False	False	False	False	Fa
1	False	False	False	False	False	False	False	Fa
2	False	False	False	False	False	False	False	Fa
3	False	False	False	False	False	False	False	Fa
4	False	False	False	False	False	False	False	Fa
5695	False	False	False	False	False	False	False	Fa
5696	False	False	False	False	False	False	False	Fa
5697	False	False	False	False	False	False	False	Fa
5698	False	False	False	False	False	False	False	Fa
5699	False	False	False	False	False	False	False	Fa
5700 rc	ows × 13 co	olumns						

```
data_frame.isna().sum()
```

```
→ Gender
                                                                             0
    Race (Reported)
                                                                             0
    Age
                                                                             0
    Height (cm)
                                                                             0
    Weight (kg)
                                                                             0
    Diabetes
                                                                             0
    Simvastatin (Zocor)
                                                                             0
    Amiodarone (Cordarone)
                                                                             0
    Target INR
                                                                             0
    INR on Reported Therapeutic Dose of Warfarin
                                                                             0
    Cyp2C9 genotypes
                                                                             0
    VKORC1 genotype: -1639 G>A (3673); chr16:31015190; rs9923231; C/T
                                                                             0
    Therapeutic Dose of Warfarin
                                                                             0
    dtype: int64
```

```
# visualization of dataset
data_frame.hist(bins=60, figsize=(20,15))
```

```
array([[<Axes: title={'center': 'Height (cm)'}>,
\rightarrow
               <Axes: title={'center': 'Weight (kg)'}>,
               <Axes: title={'center': 'Diabetes'}>],
               [<Axes: title={'center': 'Simvastatin (Zocor)'}>,
               <Axes: title={'center': 'Amiodarone (Cordarone)'}>,
               <Axes: title={'center': 'Target INR'}>],
              [<Axes: title={'center': 'INR on Reported Therapeutic Dose of
     Warfarin'}>,
               <Axes: title={'center': 'Therapeutic Dose of Warfarin'}>,
               <Axes: >]], dtype=object)
                   Height (cm)
                                                      Weight (kg)
                                                                                          Diabetes
     1400
                                         600
                                                                            2500 -
                                         500
                                                                            2000
      1000
                                                                            1500
      600
                                                                            1000
                                         200
                                                                            500
                                         100
      200
          130 140 150 160 170 180 190 200
                                                                200
                 Simvastatin (Zocor)
                                                                                         Target INR
                                                  Amiodarone (Cordarone)
                                         4000
     3000
                                         3500
                                                                            4000
     2500
                                                                            3000
                                         2500
                                         2000
     1500
                                                                            2000
                                         1500
      1000
                                         1000
```


Data visualization

```
# Creating lables for model
df_target = data_frame[['Therapeutic Dose of Warfarin']]
df_features = data_frame.drop(columns=['Therapeutic Dose of Warfarin'])
```

Features without Target column
df_features.columns

Target column
df_target.columns

Index(['Therapeutic Dose of Warfarin'], dtype='object')

Spliting the data into train and test
from sklearn.model_selection import train_test_split
split_data = train_test_split(df_features, df_target, test_size=0.2, random_state
X_train, X_test, y_train, y_test = split_data
X_train.head()

 \rightarrow Simvastatin Height Weight Amioda Race Gender **Diabetes** Age (Corda: (Reported) (cm) (Zocor) White 5437 female 160.020000 60.91 0.0 0.000000 0.000000 20 -2979 male Korean 178.000000 82.00 0.000000 0.000000 0.0 29 0.146335 4743 168.047778 72.00 0.0 female Malay 0.187024 2668 male White 175.260000 85.30 0.000000 0.000000 0.0 80 -3264 Caucasian 168.047778 59.00 0.000000 0.146335 male

y_test.head()

	Therapeutic Dose of Warfarin
1477	17.50
5514	37.52
3243	13.72
5183	21.00
5107	14.00

```
# Transformation of categorical values to binary of train set
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
X_train['Race (Reported)'] = le.fit_transform(X_train['Race (Reported)'])
X_train['Gender'] = le.fit_transform(X_train['Gender'])
X_train['Age'] = le.fit_transform(X_train['Age'])
X_train['Cyp2C9 genotypes'] = le.fit_transform(X_train['Cyp2C9 genotypes'])
X_train['VKORC1 genotype: -1639 G>A (3673); chr16:31015190; rs9923231; C/T'] = le
```

MinMax normilization of train set
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler() ## define the transformer
scaler.fit(X_train) ## call .fit() method to calculate the min and max value for
x_train_normalized = scaler.transform(X_train)
x_train_normalized=pd.DataFrame(x_train_normalized)
x_train_normalized

		0	1	2	3	4	5	6	7	8	
	0	0.0	0.95	0.750	0.455032	0.148820	0.000000	0.000000	0.000000	0.450471	0.264
	1	1.0	0.65	0.125	0.688441	0.250361	0.000000	0.000000	0.000000	0.450471	0.3150
ı	2	0.0	0.70	0.625	0.559245	0.202215	0.187024	0.146335	0.066236	0.450471	0.2490
	3	1.0	0.95	0.750	0.652872	0.266249	0.000000	0.000000	0.000000	0.450471	0.3207
ı	4	1.0	0.30	0.875	0.559245	0.139624	0.000000	0.146335	0.000000	0.450471	0.295
ı	4555	1.0	0.60	0.375	0.596817	0.235917	0.187024	0.146335	0.066236	0.450471	0.295 ⁻
	4556	0.0	0.10	0.625	0.586925	0.474723	1.000000	1.000000	0.000000	0.428571	0.3584
	4557	0.0	0.60	0.625	0.375896	0.144439	0.187024	0.146335	0.066236	0.450471	0.1075
	4558	0.0	0.95	0.375	0.455032	0.144439	0.000000	0.000000	0.000000	0.450471	0.3773
ı	4559	0.0	0.60	0.625	0.428653	0.144439	0.187024	0.146335	0.066236	0.450471	0.4132
	4560 rc	ws ×	12 col	umns							

```
# Transformation of categorical values to binary of test set
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
X_test['Race (Reported)'] = le.fit_transform(X_test['Race (Reported)'])
X_test['Gender'] = le.fit_transform(X_test['Gender'])
X_test['Age'] = le.fit_transform(X_test['Age'])
X_test['Cyp2C9 genotypes'] = le.fit_transform(X_test['Cyp2C9 genotypes'])
X_test['VKORC1 genotype: -1639 G>A (3673); chr16:31015190; rs9923231; C/T'] = le.
```

MinMax normilization of train setfrom sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler() ## define the transformer

scaler.fit(X_{test}) ## call .fit() method to calculate the min and max value for ϵ x_{test} normalized = scaler.transform(X_{test})

x_test_normalized=pd.DataFrame(x_test_normalized)

x_test_normalized

,		0	1	2	3	4	5	6	7	8
	0	0.0	0.4375	0.142857	0.332917	0.241880	0.000000	0.000000	0.000000	0.562875
	1	1.0	0.2500	0.714286	0.833333	0.339254	0.000000	0.000000	0.000000	0.562875
	2	0.0	0.3125	0.571429	0.465023	0.297167	0.000000	0.146335	1.000000	0.562875
	3	1.0	1.0000	0.285714	0.546250	0.290256	0.000000	0.000000	1.000000	0.562875
	4	0.0	1.0000	0.857143	0.300000	0.345543	0.000000	0.000000	0.000000	0.562875
	1135	1.0	0.6875	0.285714	0.366667	0.172771	0.187024	0.146335	0.066236	0.562875
	1136	1.0	0.3125	0.142857	0.465023	0.200415	0.000000	0.146335	0.000000	0.562875
	1137	1.0	1.0000	0.285714	0.637500	0.373186	0.000000	1.000000	0.000000	0.545455
	1138	1.0	0.6875	0.571429	0.445833	0.124395	0.187024	0.146335	0.066236	0.562875
	1139	1.0	0.6875	0.571429	0.662500	0.262612	0.187024	0.146335	0.066236	0.562875
	1140 rc	ws ×	12 colum	ins						

Binary classification dataset by cutting the target values into two categories
y_train[y_train<=30] = 0
y_train[y_train>30] = 1

y_train

	Therapeutic Dose of Warfarin
5437	0.0
2979	1.0
4743	0.0
2668	0.0
3264	1.0
1180	0.0
3441	1.0
1344	0.0
4623	0.0
1289	0.0
4560 r	ows × 1 columns

Display unique values of the 'Therapeutic Dose of Warfarin' column in train set print(y_train["Therapeutic Dose of Warfarin"].unique())

→ [0. 1.]

y_test[y_test<=30] = 0
y_test[y_test>30] = 1

y_test

	Therapeutic Dose of Warfarin
1477	0.0
5514	1.0
3243	0.0
5183	0.0
5107	0.0
924	0.0
3317	0.0
1846	0.0
1316	0.0
1064	0.0
1140 rd	ows × 1 columns

Display unique values of the 'Therapeutic Dose of Warfarin' column in test set
print(y_test["Therapeutic Dose of Warfarin"].unique())

→ [0. 1.]

Model training

```
# Decision Tree
from sklearn.tree import DecisionTreeClassifier

# Define the decision tree model
decision_tree_model = DecisionTreeClassifier(max_depth=3)

# Fit the model on the normalized training data
decision_tree_model.fit(x_train_normalized, y_train)

# Predict using the trained model on the normalized test data
decision_tree_model.predict(x_test_normalized)
```

```
⇒ array([1., 1., 0., ..., 1., 0., 1.])
```

```
# calculating score
decision_tree_model.score(x_train_normalized,y_train)
```

→ 0.7032894736842106

```
# Decision tree performance oon test data
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_au
# Predict using the decision tree model on the normalized test data
decision tree model pred = decision tree model.predict(x test normalized)
# Calculate accuracy
decision_tree_model_acc = accuracy_score(y_test, decision_tree_model_pred)
# Calculate precision
decision_tree_model_prec = precision_score(y_test, decision_tree_model_pred)
# Calculate recall
decision_tree_model_recall = recall_score(y_test, decision_tree_model_pred)
# Calculate ROC AUC score
decision_tree_model_roc = roc_auc_score(y_test, decision_tree_model_pred)
# Calculate F1 score
decision tree model f1 = f1 score(y test, decision tree model pred)
# Print performance metrics
print(decision tree model acc)
print(decision tree model prec)
print(decision_tree_model_recall)
print(decision_tree_model_roc)
print(decision tree model f1)
```

- → 0.637719298245614
 - 0.5602165087956699
 - 0.8247011952191236
 - 0.657648403252195
 - 0.6672038678485093

!pip install --upgrade scikit-learn

Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.10/dist Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.10/dist Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3

from sklearn.metrics import roc_curve, auc

```
import matplotlib.pyplot as plt

# Assuming decision_tree_model is your classifier and X_test, y_test are your tes
y_score = decision_tree_model.predict_proba(X_test)[:,1]
fpr, tpr, _ = roc_curve(y_test, y_score)
roc_auc = auc(fpr, tpr)

plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % r
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.ylabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```



```
# visualization of decision tree
import matplotlib.pyplot as plt
from sklearn import tree

fig = plt.figure(figsize=(20, 10))
tree.plot_tree(decision_tree_model)
```

```
[Text(0.5, 0.875, 'x[11] <= 0.75\ngini = 0.496\nsamples = 4560\nvalue =
[2486, 2074]'),
   Text(0.25, 0.625, 'x[4] <= 0.241\ngini = 0.472\nsamples = 3638\nvalue =
[2249, 1389]'),
   Text(0.125, 0.375, 'x[7] <= 0.033\ngini = 0.406\nsamples = 2368\nvalue =
[1697.0, 671.0]'),
   Text(0.0625, 0.125, 'gini = 0.465\nsamples = 1309\nvalue = [827.0, 482.0]'),
   Text(0.1875, 0.125, 'gini = 0.293\nsamples = 1059\nvalue = [870.0, 189.0]'),
   Text(0.375, 0.375, 'x[10] <= 0.45\ngini = 0.491\nsamples = 1270\nvalue =</pre>
```

```
[552.0, 718.0]'),
 Text(0.3125, 0.125, 'gini = 0.476 \setminus samples = 1095 \setminus value = [428, 667]'),
 Text(0.4375, 0.125, 'gini = 0.413\nsamples = 175\nvalue = [124.0, 51.0]'),
 Text(0.75, 0.625, x[10] \le 0.45 = 0.382 = 922 = 922 = [237, 3.625]
6851'),
 Text(0.625, 0.375, 'x[4] \le 0.205  ngini = 0.333  nsamples = 806  nvalue = 0.333 
[170, 636]'),
 Text(0.5625, 0.125, 'gini = 0.457\nsamples = 249\nvalue = [88, 161]'),
 Text(0.6875, 0.125, 'gini = 0.251\nsamples = 557\nvalue = [82.0, 475.0]'),
 Text(0.875, 0.375, 'x[4] \le 0.26 \cdot i = 0.488 \cdot i = 116 \cdot i = [67, 1.28]
 Text(0.8125, 0.125, 'gini = 0.4\nsamples = 76\nvalue = [55.0, 21.0]'),
 Text(0.9375, 0.125, 'gini = 0.42 \setminus samples = 40 \setminus value = [12, 28]')
                                                                    x[11] <= 0.75
gini = 0.496
                                                                 samples = 4560
value = [2486, 2074]
                             x[4] <= 0.241
gini = 0.472
samples = 3638
value = [2249, 1389]
                                                                                                       x[10] <= 0.45
gini = 0.382
samples = 922
value = [237, 685]
                                               x[10] <= 0.45
gini = 0.491
samples = 1270
value = [552.0, 718.0]
                                                                                    x[4] <= 0.205
gini = 0.333
samples = 806
value = [170, 636]
                                                                                                                         x[4] <= 0.26
gini = 0.488
samples = 116
value = [67, 49]
             x[7] <= 0.033
gini = 0.406
          samples = 2368
value = [1697.0, 671.0]
    gini = 0.465
samples = 130
                   gini = 0.293
samples = 1059
value = [870.0, 189.0]
                                       gini = 0.476
samples = 1095
value = [428, 667]
                                                        gini = 0.413
samples = 175
value = [124.0, 51.0]
                                                                            gini = 0.457
samples = 249
value = [88, 161]
                                                                                            gini = 0.251
samples = 557
value = [82.0, 475.0]
                                                                                                               gini = 0.4
samples = 76
value = [55.0, 21.0]
                                                                                                                                  gini = 0.42
samples = 40
value = [12, 28]
 samples = 1309
value = [827.0, 482.0]
```

```
import joblib
model_file_path = "/content/drive/My Drive/decision_tree_model.pkl"
#joblib.dump(decision_tree_model, model_file_path)
```

```
# Logistic regression
from sklearn.linear_model import LogisticRegression

# Create a logistic regression model
logistic_model = LogisticRegression(penalty='l2', C=1, random_state=0)

# Fit the model to the normalized training data
logistic_model.fit(x_train_normalized, y_train)

# Make predictions on the normalized test data
logistic_predictions = logistic_model.predict(x_test_normalized)

# Print the predictions
print(logistic_predictions)
```

[0. 1. 0. ... 1. 0. 0.]
/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat
y = column_or_1d(y, warn=True)

logistic_model.score(x_train_normalized,y_train)

→ 0.7247807017543859

```
# Logistic regression - performance on the test data
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_au
# Predicting the target values for the test data using the logistic regression mc
logistic_pred = logistic_model.predict(x_test_normalized)
# Calculating the accuracy score
logistic_acc = accuracy_score(y_test, logistic_pred)
# Calculating the precision score
logistic_prec = precision_score(y_test, logistic_pred)
# Calculating the recall score
logistic_recall = recall_score(y_test, logistic_pred)
# Calculating the ROC AUC score
logistic_roc = roc_auc_score(y_test, logistic_pred)
# Calculating the F1 score
logistic f1 = f1 score(y test, logistic pred)
# Printing the calculated performance metrics
print(logistic acc)
print(logistic prec)
print(logistic_recall)
print(logistic_roc)
print(logistic f1)
```

- → 0.7035087719298245
 - 0.6238670694864048
 - 0.8227091633466136
 - 0.7162135158425857
 - 0.7096219931271478

```
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
# Assuming logistic_model is your classifier and X_test, y_test are your test dat
v score = logistic_model.predict_proba(X_test)[:,1]
fpr, tpr, _ = roc_curve(y_test, y_score)
roc auc = auc(fpr, tpr)
plt.figure()
```

```
plt.plot(fpr, tpr, color='darkorange', lw=2, label='Logistic Regression (area = %
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```



```
import joblib
model_file_path = "/content/drive/My Drive/logistic_model.pkl"
joblib.dump(logistic_model, model_file_path)
```

False Positive Rate

['/content/drive/My Drive/logistic_model.pkl']

```
# Support Vector Machine
from sklearn.svm import SVC

# Define SVM model with C=1
svm_model = SVC(C=1)

# Fit SVM model to the normalized training data
svm_model.fit(x_train_normalized, y_train)

# Predict target values for the normalized test data
svm_model.predict(x_test_normalized)

# Compute and print the accuracy score of the SVM model on the training data
svm_model.score(x_train_normalized, y_train)
```

/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat
y = column_or_1d(y, warn=True)
0.7449561403508772

```
import joblib
model_file_path = "/content/drive/My Drive/svm_model.pkl"
joblib.dump(svm_model, model_file_path)
```

['/content/drive/My Drive/svm_model.pkl']

```
# linear kernel
svm_model_linear = SVC(kernel="linear", degree=3, C=5)

# Fit SVM model with linear kernel to the normalized training data
svm_model_linear.fit(x_train_normalized, y_train)

# Predict target values for the normalized test data
svm_model_linear.predict(x_test_normalized)

# Compute and print the accuracy score of the SVM model with linear kernel on the
svm_model_linear.score(x_train_normalized, y_train)
```

/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat
 y = column_or_1d(y, warn=True)
 0.7243421052631579

```
import joblib
model_file_path = "/content/drive/My Drive/svm_model_linear.pkl"
joblib.dump(svm_model_linear, model_file_path)
```

['/content/drive/My Drive/svm_model_linear.pkl']

```
# RBF kernel SVM model
svm_model_rbf = SVC(kernel="rbf", C=5)

# Train the SVM model with RBF kernel using the normalized training data
svm_model_rbf.fit(x_train_normalized, y_train)

# Predict target values for the normalized test data
svm_model_rbf.predict(x_test_normalized)

# Compute and print the accuracy score of the SVM model with RBF kernel on the tr
svm_model_rbf.score(x_train_normalized, y_train)
```

/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat
 y = column_or_1d(y, warn=True)
 0.756578947368421

```
import joblib
model_file_path = "/content/drive/My Drive/svm_model_rbf.pkl"
joblib.dump(svm_model_rbf, model_file_path)
```

['/content/drive/My Drive/svm_model_rbf.pkl']

```
# Sigmoid kernel SVM model with degree included svm_model_sigmoid = SVC(kernel="sigmoid", degree=3, C=5)

# Train the SVM model with Sigmoid kernel using the normalized training data svm_model_sigmoid.fit(x_train_normalized, y_train)

# Predict target values for the normalized test data svm_model_sigmoid.predict(x_test_normalized)

# Compute and print the accuracy score of the SVM model with Sigmoid kernel on th svm_model_sigmoid.score(x_train_normalized, y_train)

→ /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat y = column_or_1d(y, warn=True) 0.493859649122807
```

```
import joblib
model_file_path = "/content/drive/My Drive/svm_model_sigmoid.pkl"
joblib.dump(svm_model_sigmoid, model_file_path)
```

['/content/drive/My Drive/svm_model_sigmoid.pkl']

```
# Polynomial kernel SVM model
svm_model_polynomial = SVC(kernel="poly", degree=3, C=5)

# Train the SVM model with Polynomial kernel using the normalized training data
svm_model_polynomial.fit(x_train_normalized, y_train)

# Predict target values for the normalized test data
svm_model_polynomial.predict(x_test_normalized)

# Compute and print the accuracy score of the SVM model with Polynomial kernel on
svm_model_polynomial.score(x_train_normalized, y_train)
```

/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat
 y = column_or_1d(y, warn=True)
 0.7526315789473684

```
import joblib
model_file_path = "/content/drive/My Drive/svm_model_polynomial.pkl"
joblib.dump(svm model polynomial, model file path)
```

--- ['/content/drive/My Drive/svm model polynomial.pkl']

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_au
# SVM Model Evaluation
svm_model_pred = svm_model_polynomial.predict(x_test_normalized)
svm_acc = accuracy_score(y_test, svm_model_pred)
svm_prec = precision_score(y_test, svm_model_pred)
svm recall = recall score(y test, svm model pred)
svm_roc = roc_auc_score(y_test, svm_model_pred)
svm_f1 = f1_score(y_test, svm_model_pred)
print(svm_acc)
print(svm prec)
print(svm_recall)
print(svm_roc)
print(svm_f1)
```

- → 0.718421052631579
 - 0.661319073083779
 - 0.7390438247011952
 - 0.7206190910339833
 - 0.6980244590780809

```
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
# Assuming svm_model_polynomial is your classifier and X_test, y_test are your te
y_score = svm_model_polynomial.decision_function(X_test)
fpr, tpr, _ = roc_curve(y_test, y_score)
roc auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='SVC (area = %0.2f)' % roc auc
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
```

```
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```



```
# Importing the K Nearest-neighbors classifier from sklearn from sklearn.neighbors import KNeighborsClassifier
```

Initializing the K Nearest-neighbors model with 5 neighbors and the Minkowski d
knn_model = KNeighborsClassifier(n_neighbors=5, metric="minkowski")

Fitting the K Nearest-neighbors model on the normalized training data knn_model.fit(x_train_normalized, y_train)

Predicting the target values for the normalized test data using the trained K N knn_model.predict(x_test_normalized)

Calculating the accuracy score of the K Nearest-neighbors model on the normaliz
knn_model.score(x_train_normalized, y_train)

/usr/local/lib/python3.10/dist-packages/sklearn/neighbors/_classification.py:
 return self._fit(X, y)
 0.791666666666666

```
import joblib
model_file_path = "/content/drive/My Drive/knn_model.pkl"
joblib.dump(knn_model, model_file_path)
```

['/content/drive/My Drive/knn_model.pkl']

```
# KNN - performance on the test data
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_au
# KNN Model Evaluation
knn_model_pred = knn_model.predict(x_test_normalized)
knn_acc = accuracy_score(y_test, knn_model_pred)
knn_prec = precision_score(y_test, knn_model_pred)
knn_recall = recall_score(y_test, knn_model_pred)
knn_roc = roc_auc_score(y_test, knn_model_pred)
knn_f1 = f1_score(y_test, knn_model_pred)
print(knn_acc)
print(knn_prec)
print(knn recall)
print(knn_roc)
print(knn f1)
```

- → 0.7149122807017544
 - 0.6654205607476635
 - 0.7091633466135459
 - 0.714299541645331
 - 0.686595949855352

```
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
# Assuming knn_model is your classifier and X_test, y_test are your test data
y_score = knn_model.predict_proba(X_test)[:,1]
fpr, tpr, _ = roc_curve(y_test, y_score)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='KNeighbors Classifier(area =
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```


- # Importing the RandomForestClassifier from sklearn.ensemble module from sklearn.ensemble import RandomForestClassifier
- # Creating a RandomForestClassifier model with specified parameters
 random_forest_model = RandomForestClassifier(n_estimators=100, max_leaf_nodes=18)
- # Training the RandomForestClassifier model on the normalized training data random_forest_model.fit(x_train_normalized, y_train)
- # Predicting the target labels for the normalized test data using the trained mod random_forest_model.predict(x_test_normalized)
- # Calculating the accuracy score of the RandomForestClassifier model on the norma
 random_forest_model.score(x_train_normalized, y_train)
- /usr/local/lib/python3.10/dist-packages/sklearn/base.py:1474: DataConversionW return fit_method(estimator, *args, **kwargs) 0.7421052631578947

```
import joblib
model_file_path = "/content/drive/My Drive/random_forest_model.pkl"
joblib.dump(random_forest_model, model_file_path)
```

['/content/drive/My Drive/random_forest_model.pkl']

```
# Random Forest - performance on the test data
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_au
random_forest_pred = random_forest_model.predict(x_test_normalized)
random_forest_acc = accuracy_score(y_test, random_forest_pred )
random_forest_prec = precision_score(y_test, random_forest_pred )
random_forest_recall = recall_score(y_test, random_forest_pred )
random_forest_roc = roc_auc_score(y_test, random_forest_pred )
random_forest_f1 = f1_score(y_test, random_forest_pred )
print(random_forest_acc)
print(random_forest_prec)
print(random_forest_recall)
print(random_forest_roc)
print(random_forest_f1)
```

→ 0.7140350877192982

0.6461794019933554

0.7749003984063745

0.7205222995166669

0.7047101449275363

```
from sklearn.metrics import roc curve, auc
import matplotlib.pyplot as plt
# Assuming random_forest_model is your classifier and X_test, y_test are your tes
y_score = random_forest_model.predict_proba(X_test)[:, 1]
fpr, tpr, _ = roc_curve(y_test, y_score)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='RandomForestClassifier(area =
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```


Softmax Regression classifier
from sklearn.linear_model import LogisticRegression

softmax_regression = LogisticRegression(multi_class='multinomial', solver='lbfgs'
softmax_regression.fit(x_train_normalized, y_train)

Get the predicted labels for training instances
y_prediction_labels = softmax_regression.predict(x_train_normalized)

/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat y = column_or_1d(y, warn=True)

→ 0.7267543859649123

Build multi-layer neural network for binary classification
Practice 2.1: Load training data
import pandas as pd
from sklearn.utils import shuffle

train_data = X_train
train_data.columns = ['Label'] + [f'F{i}' for i in range(1, 12)]
train_data = shuffle(train_data) # Shuffle data
train_data

	Label	F1	F2	F3	F4	F5	F6	F7	F8	F9
106	1	19	7	172.720000	72.6	0.187024	0.000000	0.000000	2.500000	1.800000
3544	1	6	7	179.000000	80.0	0.000000	0.000000	0.000000	2.538324	3.020000
2029	1	19	5	166.878000	79.3	0.187024	0.146335	0.066236	2.538324	2.364438
142	0	19	7	157.480000	49.9	0.187024	0.000000	0.000000	2.500000	2.400000
260	1	19	6	187.960000	83.5	0.187024	0.000000	0.000000	2.500000	2.000000
4380	0	6	6	168.047778	97.0	0.187024	0.146335	0.066236	2.538324	1.950000
5222	1	19	6	180.009800	71.0	0.000000	0.000000	0.000000	2.538324	2.364438
1738	1	19	6	173.736000	84.1	1.000000	1.000000	0.000000	2.500000	2.800000
359	0	18	4	170.180000	67.1	0.187024	0.000000	0.000000	3.000000	2.200000
2935	0	13	5	168.047778	56.0	0.000000	0.000000	0.000000	2.538324	1.720000
4560 rc	ws × 12	colur	nns							

import pandas as pd

test_data = x_test_normalized
test_data.columns = ['Label'] + [f'F{i}' for i in range(1, 12)]
test_data

	Label	F1	F2	F3	F4	F5	F6	F7	F
0	0.0	0.4375	0.142857	0.332917	0.241880	0.000000	0.000000	0.000000	0.56287
1	1.0	0.2500	0.714286	0.833333	0.339254	0.000000	0.000000	0.000000	0.56287
2	0.0	0.3125	0.571429	0.465023	0.297167	0.000000	0.146335	1.000000	0.56287
3	1.0	1.0000	0.285714	0.546250	0.290256	0.000000	0.000000	1.000000	0.56287
4	0.0	1.0000	0.857143	0.300000	0.345543	0.000000	0.000000	0.000000	0.56287
1135	1.0	0.6875	0.285714	0.366667	0.172771	0.187024	0.146335	0.066236	0.56287
1136	1.0	0.3125	0.142857	0.465023	0.200415	0.000000	0.146335	0.000000	0.56287
1137	1.0	1.0000	0.285714	0.637500	0.373186	0.000000	1.000000	0.000000	0.54545
1138	1.0	0.6875	0.571429	0.445833	0.124395	0.187024	0.146335	0.066236	0.56287
1139	1.0	0.6875	0.571429	0.662500	0.262612	0.187024	0.146335	0.066236	0.56287
1140 rd	ows × 12	columns							

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
model = Sequential()
model.add(Dense(100, input_shape=(22,), activation='relu'))
model.summary()
```

→ Model: "sequential_3"

Layer (type)	Output Shape	Param #
dense_7 (Dense)	(None, 100)	2300

Total params: 2300 (8.98 KB) Trainable params: 2300 (8.98 KB) Non-trainable params: 0 (0.00 Byte)

```
from keras.models import Sequential
from keras.layers import Dense

model = Sequential([
    Dense(100, input_shape=(22,), activation='relu'),
    Dense(100, activation='relu'),
    Dense(1, activation='sigmoid')
])

model.summary()
```

→ Model: "sequential_4"

Layer (type)	Output Shape	Param #
dense_8 (Dense)	(None, 100)	2300
dense_9 (Dense)	(None, 100)	10100
dense_10 (Dense)	(None, 1)	101

Total params: 12501 (48.83 KB)
Trainable params: 12501 (48.83 KB)
Non-trainable params: 0 (0.00 Byte)

```
# Compile the model for backpropagation, and start training model on data
from keras.models import Sequential
from keras.layers import Dense

model = Sequential([
    Dense(100, input_shape=(12,), activation='relu'),
    Dense(100, activation='relu'),
    Dense(1, activation='sigmoid')
])
# Compile model, use binary crossentropy, and stochastic gradient descent for opt
model.compile(loss='binary_crossentropy', optimizer='SGD', metrics=['accuracy'])
model.summary()
```

→ Model: "sequential_5"

Layer (type)	Output Shape	Param #
dense_11 (Dense)	(None, 100)	1300
dense_12 (Dense)	(None, 100)	10100
dense_13 (Dense)	(None, 1)	101

Total params: 11501 (44.93 KB)
Trainable params: 11501 (44.93 KB)
Non-trainable params: 0 (0.00 Byte)

model.fit(X_train, y_train, epochs = 50)

Epoch 8/50	
143/143 [===========] - 1s 4ms/sto	ep - loss: 0.6337 - accur
Epoch 9/50	
143/143 [===========] - 2s 11ms/s	tep – loss: 0.6350 – accu
Epoch 10/50	
143/143 [===========] - 1s 10ms/s	tep – loss: 0.6352 – accu
Epoch 11/50	
143/143 [============] - 2s 11ms/s	tep – loss: 0.6318 – accu
Epoch 12/50	
143/143 [==========] - 1s 7ms/sto	ep - loss: 0.6303 - accur
Epoch 13/50	
143/143 [==========] - 1s 9ms/sto	ep — loss: 0.6317 — accur
Epoch 14/50	
143/143 [===========] - 1s 9ms/sto	ep - loss: 0.6301 - accur
Epoch 15/50	
143/143 [==========] - 1s 9ms/sto	ep — loss: 0.6287 — accur
Epoch 16/50	
143/143 [===========] - 1s 5ms/sto	ep - loss: 0.6270 - accur
Epoch 17/50	
143/143 [==========] - 1s 6ms/sto	ep - loss: 0.6241 - accur
Epoch 18/50	
143/143 [===========] - 1s 6ms/sto	ep - loss: 0.6228 - accur
Epoch 19/50	
143/143 [==========] - 1s 7ms/sto	ep - loss: 0.6219 - accur
Epoch 20/50	
143/143 [==========] - 1s 6ms/sto	ep - loss: 0.6259 - accur
Epoch 21/50	
143/143 [===========] - 1s 5ms/sto	ep — loss: 0.6224 — accur
Epoch 22/50	
143/143 [===========] - 1s 4ms/sto	ep – loss: 0.6215 – accur
Epoch 23/50	
143/143 [===========] - 0s 2ms/sto	ep – loss: 0.6243 – accur
Epoch 24/50	
143/143 [=============] - 0s 2ms/sto	ep – loss: 0.6241 – accur
Epoch 25/50	
143/143 [====================================	ep – loss: 0.6183 – accur
Epoch 26/50	
143/143 [============] - 0s 2ms/sto	ep – loss: 0.6215 – accur
Epoch 27/50	
143/143 [====================================	ep – loss: 0.6167 – accur
Epoch 28/50	1 0 0044
143/143 [====================================	ep – loss: 0.6211 – accur
Epoch 29/50	1 0 0100
143/143 [====================================	ep – loss: 0.6108 – accur
Epoch 30/50	on local 0 6177
1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	- 1000 B E177 - 0000

```
from tensorflow.keras.models import load_model
model.save("/content/drive/My Drive/tensor_keras.pkl")
#model_loaded = load_model("my_model.h5")
```

model.evaluate(X_train, y_train)

```
train_predictions = model.predict(X_train)
test_predictions = model.predict(X_test)
print("train_predictions: ", X_train) # Print train_predictions
```

```
143/143 [============ ] - 0s 2ms/step
36/36 [======== ] - 0s 2ms/step
train predictions:
                          Label F1 F2
                                                                   F5
                                                         F4
                  6
                     160.020000
                                  60.91
5437
          0
            19
                                         0.000000
                                                   0.000000
                                                             0.000000
2979
          1
             13
                  1
                     178.000000
                                  82.00
                                        0.000000
                                                  0.000000
                                                             0.000000
4743
                  5
          0
            14
                     168.047778
                                  72.00
                                        0.187024
                                                   0.146335
                                                             0.066236
2668
          1
             19
                  6
                     175.260000
                                  85.30 0.000000
                                                  0.000000
                                                             0.000000
                  7
3264
          1
            6
                     168.047778
                                  59.00
                                         0.000000
                                                  0.146335
                                                             0.000000
. . .
                                    . . .
                                              . . .
             . .
1180
          1
             12
                 3
                     170.942000
                                  79.00
                                        0.187024
                                                  0.146335
                                                             0.066236
                  5
3441
          0
             2
                     170.180000
                                 128.60
                                        1.000000
                                                  1.000000
                                                             0.000000
1344
          0
            12
                  5
                    153.924000
                                  60.00 0.187024 0.146335
                                                             0.066236
4623
          0
            19
                  3
                     160.020000
                                  60.00
                                        0.000000
                                                  0.000000
                                                             0.000000
1289
          0
             12
                  5
                     157.988000
                                  60.00 0.187024
                                                   0.146335
                                                             0.066236
            F8
                      F9
                          F10
                               F11
5437
      2.538324
                2.200000
                            5
                                 0
2979
      2.538324
                2.470000
                            0
                                 0
     2.538324
               2.120000
4743
                            0
                                 0
2668
     2.538324
               2.500000
                            5
                                 0
                                 2
3264 2.538324
                2.364438
                            4
. . .
                               . . .
1180
     2.538324
                2.364438
                            0
                                 0
                                 2
3441 2.500000
                2.700000
                            0
1344 2.538324
                                 0
                1.370000
                            0
                                 2
4623
      2.538324
                2.800000
                            5
     2.538324
               2.990000
                                 0
1289
```

[4560 rows x 12 columns]

```
import numpy as np

# Convert predicted probabilities to binary labels using a threshold of 0.5
train_prediction_labels = (train_predictions > 0.5).astype(int)
test_prediction_labels = (test_predictions > 0.5).astype(int)

from sklearn.metrics import accuracy_score

# Calculate and print the training accuracy
print("Training accuracy: ", accuracy_score(y_train, train_prediction_labels))
```

print("Test accuracy: ", accuracy_score(y_test, test_prediction_labels))

Training accuracy: 0.6780701754385965 Test accuracy: 0.6912280701754386

Calculate and print the test accuracy

```
from sklearn.decomposition import PCA

# Instantiate PCA with desired number of components
pca = PCA(n_components=2)

# Fit PCA to training data and transform it in one step
X_reduced = pca.fit_transform(X_train)
```

```
# Inital Shape
X_train.shape
print("Initiial shape:",X_train.shape)
# Reduced Shape
X_reduced.shape
print("Reduce shape:",X_reduced.shape)
```

Initial shape: (4560, 12)
Reduce shape: (4560, 2)

```
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
# Instantiate and train LDA model
lda = LinearDiscriminantAnalysis()
lda.fit(X_reduced, y_train)
\rightarrow
    /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat
      y = column_or_1d(y, warn=True)
        LinearDiscriminantAnalysis
    LinearDiscriminantAnalysis()
import joblib
model file path = "/content/drive/My Drive/LinearDiscriminantAnalysis model.pkl"
joblib.dump(knn_model, model_file_path)
# Score
lda.score(X_reduced, y_train)
→ 0.6515350877192982
# Evalution Metrics
TabularData = {'Methods': ['Decision Tree', 'SVM', 'KNN', 'Random Forest', 'Logis
             'Accuracy': [decision_tree_model_acc, svm_acc, knn_acc, random_fore
             'Precision': [decision tree model prec, svm prec, knn prec, random
             'Recall': [decision tree model recall, svm recall, knn recall, rand
             'F1-score': [decision_tree_model_f1, svm_f1, knn_f1, random_forest_
             'AUC score': [decision_tree_model_roc, svm_roc, knn_roc, random_for
evaluation metrics = pd.DataFrame(TabularData)
```

evaluation_metrics

	Methods	Accuracy	Precision	Recall	F1-score	AUC score
0	Decision Tree	0.637719	0.560217	0.824701	0.667204	0.657648
1	SVM	0.718421	0.661319	0.739044	0.698024	0.720619
2	KNN	0.714912	0.665421	0.709163	0.686596	0.714300
3	Random Forest	0.714035	0.646179	0.774900	0.704710	0.720522
4	Logistic regression	0.703509	0.623867	0.822709	0.709622	0.716214

Cross Validation for Decision Tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
CV_scores_decision_tree_model = cross_val_score(estimator = decision_tree_model,
print("CV_scores: ", CV_scores_decision_tree_model)

- CV_scores: [0.67763158 0.67763158 0.67105263 0.65131579 0.68421053 0.7565789 0.72368421 0.63157895 0.65131579 0.80921053 0.73684211 0.69736842 0.67763158 0.71710526 0.72368421 0.65789474 0.68421053 0.625 0.79605263 0.68421053 0.73026316 0.69078947 0.66447368 0.73026316 0.65789474 0.72368421 0.69736842 0.63815789 0.71710526 0.69736842]
- # Predicting on test data using the decision tree model
 y_test_pred_dt = decision_tree_model.predict(x_test_normalized)
- /usr/local/lib/python3.10/dist-packages/sklearn/base.py:486: UserWarning: X h
 warnings.warn(

```
from sklearn import metrics
from sklearn.metrics import accuracy score, precision score, recall score, f1 scc
# Calculating accuracy
decision_tree_acc_cv = accuracy_score(y_test_pred_dt, y_test)
# Calculating precision
decision_tree_prec_cv = precision_score(y_test_pred_dt, y_test)
# Calculating recall
decision_tree_recall_cv = recall_score(y_test_pred_dt, y_test)
# Calculating F1 score
decision_tree_f1_cv = f1_score(y_test_pred_dt, y_test)
# Calculating ROC AUC score (assuming you have imported roc_auc_score)
from sklearn.metrics import roc auc score
decision_tree_roc_cv = roc_auc_score(y_test_pred_dt, y_test)
# Printing the calculated metrics
print("Accuracy: ", decision_tree_acc_cv)
print("Precision:", decision_tree_prec_cv)
print("Recall:", decision_tree_recall_cv)
print("F1 Score:", decision tree f1 cv)
print("ROC AUC Score:", decision_tree_roc_cv)
```

Accuracy: 0.637719298245614
Precision: 0.8247011952191236
Recall: 0.5602165087956699
F1 Score: 0.6672038678485093

ROC AUC Score: 0.6703825686122988

```
# Plotting the boxplot of cross-validation scores
plt.boxplot(CV_scores_decision_tree_model)

# Adding title to the plot
plt.title("10-fold cross validation accuracy")

# Adding label to x-axis
plt.xlabel("Decision Tree")

# Adding label to y-axis
plt.ylabel("Accuracy")

# Displaying the plot
plt.show()
```


Cross validation for Logictic regression
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression

```
# Creating an instance of Logistic Regression model
logistic_model = LogisticRegression()
# Performing cross-validation
CV_scores_lr = cross_val_score(logistic_model, X_train, y_train, cv=10, scoring='
# Printing the cross-validation scores
print("CV_scores:", CV_scores_lr)
/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat
      y = column_or_1d(y, warn=True)
    /usr/local/lib/python3.10/dist-packages/sklearn/linear model/ logistic.py:469
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
      n iter i = check optimize result(
    /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat
      y = column_or_1d(y, warn=True)
    /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:469
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
      n iter i = check optimize result(
    /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat
      y = column_or_1d(y, warn=True)
    /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:469
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
      n_iter_i = _check_optimize_result(
```

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:469 STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:

/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1300: Dat

https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres

y = column or 1d(y, warn=True)

```
# Accuracy, Precision, Recall and F1-score
# Predicting on test data using the random forest model
y_test_pred3 = random_forest_model.predict(x_test_normalized)

# Calculating and printing accuracy
print("Accuracy: ", accuracy_score(y_test_pred3, y_test))

# Calculating and printing precision
print("Precision:", precision_score(y_test_pred3.astype(int), y_test.astype(int)))

# Calculating and printing recall
print("Recall:", recall_score(y_test_pred3.astype(int), y_test.astype(int)))

# Calculating and printing F1-score
print("F1 Score:", f1_score(y_test_pred3.astype(int), y_test.astype(int)))
```

Accuracy: 0.7140350877192982
Precision: 0.7749003984063745
Recall: 0.6461794019933554
F1 Score: 0.7047101449275363
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:486: UserWarning: X h warnings.warn(

```
# Predicting on the test data using the random forest model
y_test_pred_lr = random_forest_model.predict(X_test)
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:486: UserWarning: X h warnings.warn(

```
from sklearn import metrics
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score, recall_score, f1_score
# Calculating accuracy
logistic_model_acc_cv = metrics.accuracy_score(y_test_pred_lr,y_test)
# Calculating precision
logistic_model_prec_cv = precision_score(y_test_pred_lr, y_test)
# Calculating recall
logistic_model_recall_cv = recall_score(y_test_pred_lr, y_test)
# Calculating F1 score
logistic_model_f1_cv = f1_score(y_test_pred_lr, y_test)
# Calculating ROC AUC score
logistic_model_roc_cv = roc_auc_score(y_test_pred_lr, y_test)
# Printing the calculated metrics
print("Accuracy: ", logistic_model_acc_cv)
print("Precision:", logistic_model_prec_cv)
print("Recall:", logistic_model_recall_cv)
print("F1 Score:", logistic_model_f1_cv)
print("ROC AUC Score:", logistic_model_roc_cv)
```

Accuracy: 0.4850877192982456
Precision: 0.9203187250996016
Recall: 0.4578790882061447
F1 Score: 0.6115155526141628
ROC AUC Score: 0.5762677883778815

```
# Plotting the boxplot of cross-validation scores for logistic regression
plt.boxplot(CV_scores_lr)

# Adding title to the plot
plt.title("10-fold cross validation accuracy")

# Adding label to x-axis
plt.xlabel("Logistic Regression")

# Adding label to y-axis
plt.ylabel("Accuracy")

# Displaying the plot
plt.show()
```



```
# Cross validation for Random Forest
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score

model1 = random_forest_model
CV_scores_random_forest_model = cross_val_score(estimator = model1, X = X_train, print("CV_scores: ", CV_scores_random_forest_model)
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:1474: DataConversionW return fit_method(estimator, *args, **kwargs)
CV_scores: [0.71820175 0.72807018 0.72697368 0.73135965 0.7247807]

```
# Predicting on the test data using the random forest model
y_test_pred_rf = random_forest_model.predict(X_test)
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:486: UserWarning: X h warnings.warn(

```
from sklearn import metrics
from sklearn.metrics import accuracy score, precision score, recall score, f1 scc
# Calculating accuracy
random_forest_acc_cv = accuracy_score(y_test_pred_rf, y_test)
# Calculating precision
random_forest_prec_cv = precision_score(y_test_pred_rf, y_test)
# Calculating recall
random_forest_recall_cv = recall_score(y_test_pred_rf, y_test)
# Calculating F1 score
random_forest_f1_cv = f1_score(y_test_pred_rf, y_test)
# Calculating ROC AUC score (assuming you have imported roc auc score)
random_forest_roc_cv = roc_auc_score(y_test_pred_rf, y_test)
# Printing the calculated metrics
print("Accuracy: ", random forest acc cv)
print("Precision:", random_forest_prec_cv)
print("Recall:", random_forest_recall_cv)
print("F1 Score:", random forest f1 cv)
print("ROC AUC Score:", random_forest_roc_cv)
```

Accuracy: 0.4850877192982456
Precision: 0.9203187250996016
Recall: 0.4578790882061447
F1 Score: 0.6115155526141628
ROC AUC Score: 0.5762677883778815

```
plt.boxplot(CV_scores_random_forest_model)
plt.title("10-fold cross validation accuracy")
plt.xlabel("Random Forest")
plt.ylabel("Accuracy")
```


evaluation_metrics_cv

0 Decision Tree 0.637719 0.824701 0.560217 0.667204 0.670383 1 Random Forest 0.485088 0.920319 0.457879 0.611516 0.576268 2 Logistic Model 0.485088 0.920319 0.457879 0.611516 0.576268		Methods	Accuracy	Precision	Recall	F1-score	AUC score
	0	Decision Tree	0.637719	0.824701	0.560217	0.667204	0.670383
2 Logistic Model 0.485088 0.920319 0.457879 0.611516 0.576268	1	Random Forest	0.485088	0.920319	0.457879	0.611516	0.576268
	2	Logistic Model	0.485088	0.920319	0.457879	0.611516	0.576268

pip install gradio

Requirement already satisfied: gradio in /usr/local/lib/python3.10/dist-packa Requirement already satisfied: aiofiles<24.0,>=22.0 in /usr/local/lib/python3 Requirement already satisfied: altair<6.0,>=4.2.0 in /usr/local/lib/python3.1 Requirement already satisfied: fastapi in /usr/local/lib/python3.10/dist-pack Requirement already satisfied: ffmpy in /usr/local/lib/python3.10/dist-packag Requirement already satisfied: gradio-client==0.16.3 in /usr/local/lib/python Requirement already satisfied: httpx>=0.24.1 in /usr/local/lib/python3.10/dis Requirement already satisfied: huggingface-hub>=0.19.3 in /usr/local/lib/pyth Requirement already satisfied: importlib-resources<7.0,>=1.3 in /usr/local/li Requirement already satisfied: jinja2<4.0 in /usr/local/lib/python3.10/dist-p Requirement already satisfied: markupsafe~=2.0 in /usr/local/lib/python3.10/d Requirement already satisfied: matplotlib~=3.0 in /usr/local/lib/python3.10/d Requirement already satisfied: numpy~=1.0 in /usr/local/lib/python3.10/dist-p Requirement already satisfied: orjson~=3.0 in /usr/local/lib/python3.10/dist-Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-pa Requirement already satisfied: pandas<3.0,>=1.0 in /usr/local/lib/python3.10/ Requirement already satisfied: pillow<11.0,>=8.0 in /usr/local/lib/python3.10 Requirement already satisfied: pydantic>=2.0 in /usr/local/lib/python3.10/dis Requirement already satisfied: pydub in /usr/local/lib/python3.10/dist-packag Requirement already satisfied: python-multipart>=0.0.9 in /usr/local/lib/pyth Requirement already satisfied: pyyaml<7.0,>=5.0 in /usr/local/lib/python3.10/ Requirement already satisfied: ruff>=0.2.2 in /usr/local/lib/python3.10/dist-Requirement already satisfied: semantic-version~=2.0 in /usr/local/lib/python Requirement already satisfied: tomlkit==0.12.0 in /usr/local/lib/python3.10/d Requirement already satisfied: typer<1.0,>=0.12 in /usr/local/lib/python3.10/ Requirement already satisfied: typing-extensions~=4.0 in /usr/local/lib/pytho Requirement already satisfied: urllib3~=2.0 in /usr/local/lib/python3.10/dist Requirement already satisfied: uvicorn>=0.14.0 in /usr/local/lib/python3.10/d Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packa Requirement already satisfied: websockets<12.0,>=10.0 in /usr/local/lib/pytho Requirement already satisfied: entrypoints in /usr/local/lib/python3.10/dist-Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.10/d Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packag Requirement already satisfied: anyio in /usr/local/lib/python3.10/dist-packag Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-pack

Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dis Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-package Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-pack Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/d Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-pac Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/ Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10 Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10 Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/ Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3 Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/di Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/pytho Requirement already satisfied: pydantic-core==2.18.2 in /usr/local/lib/python Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.10/dist Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.1 Requirement already satisfied: rich>=10.11.0 in /usr/local/lib/python3.10/dis Requirement already satisfied: starlette<0.38.0,>=0.37.2 in /usr/local/lib/py Requirement already satisfied: fastapi-cli>=0.0.2 in /usr/local/lib/python3.1 Requirement already satisfied: ujson!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,! Requirement already satisfied: email_validator>=2.0.0 in /usr/local/lib/pytho anticfied, decouthors = 2 0 0 in /war/leas1/lib/mythan2