

Volumes et sections de solides

I. Formules des aires de figures et volumes de solides :

1.Formules des aires de figures :

2. Formulaire des volumes de solides :

II. Sections planes de surfaces :

<u>Définition</u>:

En géométrie, on appelle **section** plane l'intersection entre un **solide** et un plan.

1. Section d'une boule par un plan :

<u>Propriété</u>:

La section d'une boule par un plan est un disque .

Lorsque le plan passe par le centre de la boule, la section est un disque de même

2.Section d'un pavé droit par un plan

Propriété:

La section d'un pavé droit par un plan parallèle à une face est un rectangle.

Propriété:

La section d'un pavé droit par un plan parallèle à une arête est un rectangle.

3. Section d'un cylindre de révolution par un plan :

Propriété:

La section d'un cylindre de révolution de rayon R par un plan parallèle aux bases est un disque de rayon R.

4. Section d'une pyramide par un plan :

Propriété:

La section d'une pyramide par un plan parallèle à la base est un polygone ayant la même forme que la base

même forme que la base.

5. Section d'un cône de révolution par un plan :

Propriété:

La section d'un cône de révolution par un plan parallèle à la base est un disque dont le centre appartient à la hauteur de ce cône.

III. Les agrandissements et les réductions de solides :

Définition:

Considérons une section plane parallèlement à une base.

Nous obtenons une **réduction (ou un agrandissement)** du solide. Lorsque deux figures ont la même forme, on peut calculer le coefficient suivant : Le coefficient de réduction, noté k, est donné par la formule : $k = \frac{longueur finale}{longueur initiale} > 0$.

Propriété:

Considérons un agrandissement (ou une réduction) de rapport k.

- Si k>1 alors c'est un agrandissement;
- Si k < 1 alors c'est une **réduction**.

Propriété:

Lors d'un agrandissement (ou d'une réduction) de rapport k :

• les longueurs sont multipliées par k ;

- les aires sont multipliées par k²;
- les volumes sont multipliés par k^3 .

Exemple:

On considère la pyramide de base ABCD et la section IJKL effectuée parallèlement à sa base.

Nous savons que SJ= 6 cm; SB = 10 cm; $A_{ABCD}=24 cm^2$.

Calculer l'aire de la section IJKL.

Le coefficient de réduction est $k = \frac{SJ}{SB} = \frac{6}{10} = 0,6 < 1$.

Nous avons:

 $A_{IJKL} = k^2 \times A_{ABCD}$ $A_{IJKL} = 0.6^2 \times 24$ $A_{IJKL} = 8.64 cm^2$