

Laboratory of Electronics Antennas and Telecommunications

Antenna Radiation Measurement tutorial with Spectrum Analyser Fabien Ferrero

Antenna performance indicator

Some definitions :

- P_s: Power from the source
- P_{ref}: Power reflected by the antenna
- P_{rad} power radiated by the antenna

- Reflection coefficient
 - S₁₁ is usually plotted in dB scale
 - S₁₁ criteria from -10 dB to -6dB (90% to 75% transmitted power)

- Include matching and radiation loss
- Can be plotted in linear or dB scale
- 30-70% classically observed
- Gain
 - Include matching, radiation loss, polarization and directivity
 - Plotted in dBi
 - $U(\theta, \varphi)$ is the radiation intensity in a given direction

$$|S_{11}|^2 = P_{ref}/P_s$$

$$\eta_t = P_{rad}/P_s$$

$$G(\theta, \varphi) = \frac{U(\theta, \varphi)}{P_S/4\pi}$$

Antenna key parameters

Antenna is a resonnant structure :

- Input impedance is changing with frequency
- Limited frequency bandwidth
- Miniature antenna can have a low efficiency due to metallic or dielectric losses

Antenna is an open structure

- Compare to electronic components, antenna is strongly influenced by its surrounding environment
- For integrated antenna, the electromagnetic wave is generated by the antenna <u>and</u> by the terminal ground plane
- Small antenna has to be carefully tuned

How to perform antenna radiation measurement?

- Accurate antenna measurement is difficult
- Cables have a large influence on the measurement
- Only consider Total Radiated Power (TRP) measurement (your device will be in Continuous Wave mode)

ETSITS 103 052 V1.1.1 (2011-03)

Anechoic chamber or open site

Reference antenna: 1 & 6

Power source : 5

- Substitution or Pre-substitution method
 - First measurement Rx_{Cal} for calibration using a reference antenna
 - Second measurement Rx_{AUT} of the Antenna under Test (AUT)

$$(Gain_{AUT})_{dBi} = (Rx_{AUT})_{dBm} - (Rx_{Cal})_{dBm} + (Gain_{Ref\ Ant})_{dBi}$$

- Power source
- Reference antenna
- Anechoic chamber
- Spectrum analyser

Adding a RF connector

- Try to place a connector pad between module and antenna
- UFL are very small and easy to find
- Very important for debug!
- A UFL connector can be soldered on the bottom part of the board
- If you just solder the connector, the UFL will be in shunt with the existing « UCA » antenna
 - If you leave the UFL unconnected, your board will work as usual (the UFL effect is negligeable)
 - If you connect a load (antenna or spectrum) on the UFL, rougly half of the power will be captured by the UFL, and half part of the power will be radiated (and a part of the power will be reflected to the source)

Adding a RF connector

Adding a RF connector

- To have 100% of the power on the UFL connector
 - You need to cut the antenna feeding
 - You will be able to solder it again

- Power source
- Reference antenna
- Anechoic chamber
- Spectrum analyser

Can we reduce the price?

Printed Sleeve dipole with coaxial cable

- Low cost 0.4mm FR4 Epoxy 140x15mm
- Low cost Small coaxial cable
- Integrated Balun for environment robustness
- Omnidirectional pattern
- Gain 2.5dBi
- Measured Efficiency 83%

Half-wave dipole Antenna

Planar Sleeve dipole on 0.4mm FR4 substrate

Comparison with on-the-shelf antenna

Printed Sleeve dipole with coaxial cable

Low cost 0.4mm FR4 Epoxy 140x15mm

Printed Sleeve dipole with coaxial cable

Don't want to fabricate it? can just buy it!

https://furiousfpv.com/advanced search result.php?keywords=lora

Top » Catalog » Advanced Search » Search Results

Products meeting the search criteria

- Power source
- Reference antenna
- Anechoic chamber
- Spectrum analyser

Can we reduce the price?

ETSI TS 103 052 V1.1.1 (2011-03)

- Distance between antenna
- It shall be ensured that radiated measurements are tested in the far field.
- There is no clearly defined transition from near field to far field. The distance should be equal to or exceed:

$$\frac{2(d_1+d_2)^2}{\lambda}$$

where:

- d1 is the largest dimension of the EUT/dipole after substitution (m);
- d2 is the largest dimension of the test antenna (m);
- λ is the test frequency wavelength (m).

No anechoic chamber?

- We want Free Space : No reflection (because of interferences)
- Try to analyze the possible origin for reflection and to limits as much as you can
- You can also buy some absorber to improve your test-bed (EM sheet, Pyramidal absorber)

- Power source
- Reference antenna
- Anechoic chamber
- Spectrum analyser

Setting-up Calibration device and Antenna Under Test

- Connect your device with UFL cable to a reference antenna
- Upload the code Arduino_CW.ino to the reference device and Antenna under test
- This code will generate a 1/4dBm continuous wave at 865MHz

Calibration of the set-up

Set-up the reference device and receiver device at a distance between 30 and 50 cm.

Measure the received power $(Rx_{Cal})_{dBm}$ on the Spectrum analyzer,

30 to 50 cm

AUT measurement

- Now you can replace the reference antenna by the Antenna Under Test.
- Measure again the power received $(Rx_{AUT})_{dBm}$

30 to 50 cm

- Substitution or Pre-substitution method
 - First measurement Rx_{Cal} for calibration using a reference antenna
 - Second measurement Rx_{AUT} of the Antenna under Test (AUT)
 - Find the gain of the reference antenna at your measurement frequency (here 865MHz) -> $(Gain_{Ref\ Ant})_{dBi}$ = 2 dBi
 - You can now calculate the gain of your antenna

$$(Gain_{AUT})_{dBi} = (Rx_{AUT})_{dBm} - (Rx_{Cal})_{dBm} + (Gain_{Ref\ Ant})_{dBi}$$

Summary

- Use CW mode of AUT
- Measure for a given distance with ref antenna
 - Exemple: $(Rx_{Cal})_{dBm}$ = -9.4dBm
- Measure for the same distance AUT
 - Exemple: $(Rx_{AUT})_{dBm}$ =-11.1dBm
- At 865MHz, $(Gain_{Ref\ Ant})_{dBi}$ = 2 dBi
- Then, $(Gain_{AUT})_{dBi}$ =-11.1+9.4+2= 0.3dBi
- Measured gain of this antenna at 865MHz is1.1 dBi, so it is fair

- Harmonics can be also measured with this method
- But you need a reference antenna for the harmonics frequencies

Conclusion

- Can we do low-cost antenna radiation measurement
 - Yes and No, it depends on the accuracy you expect
 - Practice and know-how are essential
- Preliminary measurement can be realized to gain time
 - Some filtering can help
 - Repeat the same measurement for different distance
- Always consider uncertainty sources
- The more you invest, the more confident you will be in your measurement

Laboratory of Electronics Antennas and Telecommunications

fabien.ferrero@unice.fr

leat.unice.fr

