

نظریه زبانها و ماشینها بهار ۱۴۰۳

تمرين نخست

/ پرسش نخست

یک گزاره را همان گویی ۱ گوییم اگر همیشه درست باشد. نشان دهید گزارههای زیر همان گویی هستند.

(آ)
$$((p \to q) \land (q \to r)) \to (p \to r)$$
 آ).

(ب)
$$(p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$$
 نمره)

(ج)
$$(p \lor q) \land (p \to r) \land (q \to s)] \to (r \lor s)$$
 نمره)

/ پرسش دوم

بگمارید که K^{-1} دو زبان هستند. آنگاه زبانهای خارجقسمت چپ K^{-1} و خارجقسمت راست $L,K\subseteq \Sigma^*$ و کارجه را به گونه کنیم.

$$K^{-1}L = \{x \in \Sigma^* | xy \in L \text{ for some } y \in K\}$$

$$LK^{-1} = \{x \in \Sigma^* | yx \in L \text{ for some } y \in K\}$$

نشان دهید که

$$K^{-1}L = (L^R(K^R)^{-1})^R$$

که در آن منظور از L^R زبانی است از که از وارون $^{\mathsf{T}}$ کردن رشتههای L بدست می آید.

$$w = w_1 \dots w_n \in \Sigma^* \implies w^R = w_n \dots w_1$$

$$L \subseteq \Sigma^* \implies L^R = \{ w^R \mid w \in L \}$$

tautology\

reverse⁷

پرسش سوم

. بگمارید که $A = \{0, 30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, 330, 360\}$ به گونه یزیر تعریف شده است. $A \times A$ روی $A \times A$ به گونه یزیر تعریف شده است.

 $(a,b)R(c,d) \Leftrightarrow \sin a \cos b = \sin c \cos d$

(ب) رده همارزی
$$[(30,60)]$$
 را بنویسید.

ر زباطه قطری $R \cap R^{-1}$ زیرمجموعه R روی مجموعه A پادتقارنی است اگر و فقط اگر $R \cap R^{-1}$ زیرمجموعه ای از رابطه قطری A نشره) $\Delta = \{(a,a) \mid a \in A\}$

ر پرسش چهارم

زبان L روی الفبای $\{0,1\}$ در نگر بگیرید به گونهای که:

 $L = \{ w \in \{0,1\}^* \mid \text{ است } q \text{ هامال } q$ است و w توانی از دو است و w یک هامال

کدام یک از رشته های زیر عضو زبان هستند؟ ادعا خود را استدلال کنید.

$$(\bar{l})$$
 \cdots

پرسش پنجم

نشان دهید زبانهای زیر منظم هستند.

palindrome^r

دمره)
$$L = \{abwba : w \in \{a,b\}^*\}$$
 .۱

نمره)
$$L=\{w\in\{a,b\}^*:aba\leq_{\mathrm{sub}}w$$
 $^{\mathsf{f}} \wedge bba\not\leq_{\mathrm{sub}}w\}$. \mathcal{T}

برسش امتيازي

(۱ نمره) مجموعه شمارا نامتناهی $A\sim \mathbb{N}$ داریم که $A^n\sim A$ داریم که $A^n\sim A$ داریم که برای هر مجموعه شمارا نامتناهی ا

۲. سپس نشان دهید که

 $\bigcup_{n=1}^{\infty} A^n \sim A$

۳. اکنون بگمارید که $A \sim \mathbb{R}$ است و سپس دو گزاره بالا را نشان دهید.

y=uxv يا باشند که $x\leq_{\mathrm{sub}} y$ است اگر دو رشته u,v باشند که.