Skriptum zu den Vorlesungen

Mathematik 1 und 2

- Analysis -

Teil I

Jürgen Garloff Hochschule Konstanz für Technik, Wirtschaft und Gestaltung Fakultät für Informatik

Januar 2013

Vorbemerkung

Das Skriptum zum Analysis-Teil (und auch zur komplexen Rechnung im Teil zur Diskreten Mathematik) ist aus den Aufzeichnungen eines Studenten hervorgegangen und trägt damit einen anderen Charakter als der Teil zur Diskreten Mathematik, der als Lückenskript konzipiert ist.

Nach Beendigung der Behandlung der Diskreten Mathematik wird in der Vorlesung die Kenntnis der Abschnitte \S 1.1 - \S 4.5 (ohne den Fundamentalsatz der Algebra und den Wurzelsatz von Vietà in \S 4.1.2) vorausgesetzt. Die dort eingeführten Bezeichnungen werden auch in den sich anschließenden Kapiteln verwendet. In Kapitel 2 werden einige der in \S 1.3 des Teiles zur Diskreten Mathematik eingeführten Begriffe für Funktionen einer reellen Veränderlichen spezifiziert.

Inhaltsverzeichnis

1	Gru	ndlagen	7						
	1.1	Die reellen Zahlen	7						
	1.2	Anordnung der reellen Zahlen, Intervalle, Betrag	7						
	1.3	Gleichungen	9						
		1.3.1 Quadratische Gleichungen	9						
		1.3.2 Wurzelgleichungen	10						
		1.3.3 Betragsgleichungen	10						
	1.4	Ungleichungen	11						
	1.5	Binomialkoeffizienten und binomischer Satz	12						
		1.5.1 Summenzeichen	12						
		1.5.2 Fakultät	13						
		1.5.3 Binomialkoeffizienten	13						
		1.5.4 Binomischer Satz	14						
2	Fun	ktionen einer reellen Veränderlichen	15						
	2.1	Funktionsbegriff	15						
	2.2	Grundlegende Eigenschaften	18						
	2.3	Verknüpfung von Funktionen	21						
	2.4	Umkehrfunktion	23						
3	Grei	renzwert einer Zahlenfolge 24							
_	3.1	Definition und Eigenschaften von Zahlenfolgen	24						
	3.2	<u> </u>	25						
	3.3	Rechnen mit Grenzwerten von Folgen	27						
4	Gru	ndlegende Eigenschaften von wichtigen Funktionsklassen	29						
•	4.1	Ganzrationale Funktionen (Polynome)	29						
	7.1	4.1.1 Definition und Eigenschaften	29						
		4.1.2 Nullstellen und Faktorzerlegung	30						
		4.1.2 Nunstehen und Paktorzenegung	32						
	4.2	Gebrochenrationale Funktionen	$\frac{32}{35}$						
	4.4	4.2.1 Definitionen	35						
		4.2.1 Definitionen	35						
		$\pm .2.0$ vermanum m $ \omega $ / ∞	U						

In halts verzeichn is

	4.3	Potenzfunktionen								
		4.3.1 Potenzfunktionen mit ganzzahligen Exponenten								
		4.3.2 Wurzelfunktionen								
		4.3.3 Potenzfunktionen mit rationalen Exponenten 40								
	4.4	Exponential- und Logarithmusfunktionen								
		4.4.1 Allgemeine Exponential- und Logarithmusfunktionen 40								
		4.4.2 Exponential- und Logarithmusfunktion zur Basis e 42								
	4.5	Trigonometrische Funktionen								
		4.5.1 Grundlegende Eigenschaften								
		4.5.2 Allgemeine Sinus- und Cosinusfunktionen								
	4.6	Die Arcusfunktionen								
		4.6.1 Auflösung der Gleichung $y = \sin x$ nach $x \dots 44$								
		4.6.2 Auflösung der Gleichung $y = \cos x$ nach x								
		4.6.3 Auflösung der Gleichung $y = \tan x$ nach x								
		4.6.4 Trigonometrische Gleichungen								
	4.7	Hyperbelfunktionen (*)								
		4.7.1 Definition								
		4.7.2 Eigenschaften								
	4.8	Areafunktionen (*)								
		4.8.1 Definition und Darstellung mit Hilfe der Logarithmusfunktion 49								
		4.8.2 Eigenschaften								
_	_									
5		Grenzwert von Funktionen 50								
	5.1	Definitionen und Beispiele								
	5.2	Rechnen mit Grenzwerten von Funktionen								
	5.3	Asymptotisches Verhalten von Funktionen								
6	Stet	igkeit 57								
Ū	6.1	Definitionen und Beispiele								
	6.2	Unstetigkeitsstellen								
	6.3	Eigenschaften stetiger Funktionen								
	0.0	Engenbenation steager I unitationen								
7	Diff	erenzierbarkeit und Ableitung 61								
	7.1	Ableitung einer Funktion								
	7.2	Grundformeln und Beispiele								
	7.3	Höhere Ableitungen								
	7.4	Ableitungsregeln								
		7.4.1 Faktor-, Summen-, Produkt- und Quotientenregel 66								
		7.4.2 Kettenregel								
		7.4.3 Anwendungen der Kettenregel								
	7.5	Anwendungen								
		7.5.1 Ganzrationale Funktionen								

In halts verzeichn is

	7.5.2 Gebrochenrationale Funktionen	69
8	Charakteristische Kurvenpunkte8.1 Monotonie- und Krümmungsverhalten8.2 Lokale (relative) Extrema8.3 Wendepunkte8.4 Vorgehensweise zum Auffinden relativer Extrema8.5 Allgemeines Kriterium für relative Extremwerte8.6 Extremwerte bei nicht differenzierbaren Funktionen	70 70 71 72 73 73 74
9	Kurvendiskussion9.1 Kurvendiskussion ganzrationaler Funktionen9.2 Kurvendiskussion gebrochenrationaler Funktionen9.3 Kurvendiskussion weiterer Funktionenklassen	75 75 76 77
10	Extremwertaufgaben	80
11	Unbestimmte Ausdrücke – die Regeln von Bernoulli und de L'Hospital	82
12	Tangente und Differential12.1 Differential12.2 Fehlerfortpflanzung	86 86 87
13	Das Newton-Verfahren (*)	89
14	Bestimmtes Integral 14.1 Vorüberlegungen zum Flächeninhalt	
15	Das unbestimmte Integral15.1 Stammfunktion und unbestimmtes Integral15.2 Hauptsatz der Differential- und Integralrechnung15.3 Grundlegende Integrationsregeln	99
16	Integrationsmethoden 16.1 Integration durch Substitution	103 103 105 106
	16.3.1 Einführende Beispiele	109

In halts verzeichn is

	16.3.3 Ermittlung der Koeffizienten	
17	Uneigentliche Integrale	115
	17.1 Unbeschränkte Integranden	. 115
	17.2 Unbeschränkte Integrationsintervalle	
18	Anwendungen der Integralrechnung	119
	18.1 Flächenberechnung	. 119
	18.1.1 Fläche zwischen einer Kurve und der x-Achse	. 119
	18.1.2 Fläche zwischen zwei Kurven	. 120
	18.2 Bogenlänge ebener Kurven (*)	. 121
	18.3 Krümmung ebener Kurven (*)	. 121

1 Grundlagen

1.1 Die reellen Zahlen

uneingeschränkt durchführbare Rechenoperationen

$$\begin{split} \mathbb{N} &= \{1,2,3,\dots\} & \text{Menge der natürlichen Zahlen} &+, \cdot \\ \mathbb{N}_0 &= \mathbb{N} \cup \{0\} \\ \mathbb{Z} &= \{0,\pm 1,\pm 2,\dots\} & \text{Menge der ganzen Zahlen} &+, \cdot, \cdot \\ \mathbb{Q} &= \{\frac{p}{q} | p \in \mathbb{Z}, q \in \mathbb{N}\} & \text{Menge der rationalen Zahlen} &+, \cdot, \cdot, / \end{aligned}$$

Jeder periodischen Dezimalzahl entspricht ein Bruch und umgekehrt jedem Bruch eine periodische Dezimalzahl, z.B.

$$10.15 = \frac{1015}{100}, \ 0.\overline{3} = \frac{1}{3}, \ 0.0\overline{31} = \frac{31}{990}.$$

Durch Hinzunahme der **nicht**periodischen Dezimalzahlen erhält 1 man die Menge $\mathbb R$ der reellen Zahlen.

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

1.2 Anordnung der reellen Zahlen, Intervalle, Betrag

Je zwei reelle Zahlen $a,b\in\mathbb{R}$ stehen stets genau in einer der folgenden drei Beziehungen zueinander: $a< b, \quad a=b, \quad a>b$. Es gilt

$$a \le b \Leftrightarrow a < b \lor a = b$$
 $a \ge b \Leftrightarrow a > b \lor a = b$.

 $^{^1{\}rm Hierbei}$ werden allerdings noch alle Dezimalzahlen mit 9er-Periode geeignet identifiziert, z.B. $0.4\overline{9}$ mit 0.5.

Die folgenden Teilmengen von \mathbb{R} werden Intervalle genannt und wie folgt geschrieben (dabei sei $a, b \in \mathbb{R}$ und $a \leq b$)²:

Damit läßt sich \mathbb{R} auch als $(-\infty, \infty)$ schreiben.

Der Betrag einer reellen Zahl ist definiert durch:

$$|a| = \begin{cases} a & a > 0 \\ 0 & a = 0 \\ -a & a < 0 \end{cases}.$$

Eigenschaften des Betrags: Für alle $a, b \in \mathbb{R}$ gilt

1.

$$\begin{aligned} |a| & \leq b & \Leftrightarrow & -b \leq a \leq b \\ |a| & < b & \Leftrightarrow & -b < a < b \end{aligned}$$

2.

$$|ab| = |a| |b|$$
Folgerung: $|a^n| = |a|^n, n \in \mathbb{N}$

$$\left|\frac{a}{b}\right| = \frac{|a|}{|b|} \quad (b \neq 0)$$

3.

$$|a \pm b| \le |a| + |b|$$
 "Dreiecksungleichung".

²Anstelle der runden Klammern werden oft nach außen geöffnete eckige Klammern geschrieben, z.B.]a,b[=(a,b).

1.3 Gleichungen

1.3.1 Quadratische Gleichungen

Die quadratische Gleichung $ax^2 + bx + c = 0, a, b, c \in \mathbb{R}$ mit $a \neq 0$ besitzt die Lösungen

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \ .$$

Die Anzahl der Lösungen hängt vom Vorzeichen der Diskriminante $D=b^2-4ac$ ab.

- 1. D>0: zwei verschiedene reelle Lösungen
- 2. D=0: eine reelle Lösung
- 3. D < 0: keine reelle Lösung

In den Fällen 1. und 2. kann man die linke Seite der quadratischen Gleichung in \mathbb{R} in sogenannte Linearfaktoren zerlegen:

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) = a(x^{2} - (x_{1} + x_{2})x + x_{1}x_{2}).$$

Hieraus folgt

$$b = -a(x_1 + x_2), \quad c = ax_1x_2.$$

Kubische Gleichungen vom Typ $ax^3 + bx^2 + cx = 0$:

$$x(ax^{2} + bx + c) = 0$$

$$\begin{cases} x_{1} = 0 \\ ax^{2} + bx + c = 0 \end{cases}$$

Kubische Gleichungen $ax^3 + bx^2 + cx + d = 0 \rightarrow$ Formel von CARDANO (s. Literatur)

Biquadratische Gleichungen: $ax^4 + bx^2 + c = 0 \quad (a \neq 0)$ Substitution $z = x^2 \quad \Rightarrow \quad az^2 + bz + c = 0$

Beispiel:

$$x^4 - 6x^2 + 8 = 0 \implies z^2 - 6z + 8 = 0 \implies z_1 = 4, z_2 = 2$$

 $\Rightarrow x_{1/2} = \pm 2, x_{3/4} = \pm \sqrt{2}$

1.3.2 Wurzelgleichungen

Durch (wiederholtes) Auflösen der Gleichung nach einer Wurzel und anschließendes Potenzieren können die Wurzeln eventuell beseitigt werden.

Aber Achtung:

Eventuell werden zusätzliche 'Lösungen' eingeschleppt; daher, falls erforderlich, Kontroll-rechnung mit den erhaltenen Werten durchführen.

Bei einer **äquivalenten** Umformung bleibt die Lösungsmenge einer Gleichung unverändert (Symbol "\(). Umformungen, die zu einer Veränderung der Lösungsmenge führen können, heißen **nichtäquivalent**.

Beispiele:

1.
$$\sqrt{9+x^2}-1=x$$

$$\sqrt{9+x^2} - 1 = x$$

$$\Leftrightarrow \sqrt{9+x^2} = 1+x \qquad \text{(Wurzel isolieren)}$$

$$\Rightarrow 9+x^2 = (1+x)^2 = 1+2x+x^2 \quad \text{(Quadrieren)}$$

$$\Leftrightarrow 2x = 8 \qquad \text{(Lösen der wurzelfreien Gleichung)}$$

$$\Leftrightarrow x = 4$$

Kontrolle:
$$\sqrt{25} - 1 = 4 \checkmark \Rightarrow \mathbf{L} = \{4\}$$

2.
$$x + 2\sqrt{x - 2} = 1$$

$$x + 2\sqrt{x - 2} = 1$$

$$\Leftrightarrow 2\sqrt{x - 2} = 1 - x$$

$$\Rightarrow 4x - 8 = 1 - 2x + x^{2}$$

$$\Leftrightarrow x^{2} - 6x + 9 = 0$$

$$\Leftrightarrow x_{1/2} = 3$$

Kontrolle:
$$3 + 2 \neq 1 \implies \mathbf{L} = \emptyset$$

Beim Quadrieren ging die Information über das Vorzeichen der Wurzel verloren (x=3) ist Lösung der Gleichung $x-2\sqrt{x-2}=1$).

1.3.3 Betragsgleichungen

Beispiel :
$$|x+1| = 3x - 1$$

1. Möglichkeit (Anwendung der Betragsdefinition)

1. Fall:
$$x \ge -1$$
: $x + 1 = 3x - 1 \Leftrightarrow 2x = 2 \Leftrightarrow x = 1 \ (\ge -1)$

2. Fall:
$$x < -1$$
: $|x+1| = -x - 1 = 3x - 1 \Leftrightarrow 4x = 0 \Leftrightarrow x = 0 \quad (\not < -1)$ $\Rightarrow \mathbf{L} = \{1\}$

2. Möglichkeit (Quadrieren)

$$|x+1|^2 = (3x-1)^2 \Leftrightarrow x^2 + 2x + 1 = 9x^2 - 6x + 1 \Leftrightarrow 8x = 8x^2 \Leftrightarrow x = 0 \lor x = 1$$

Kontrolle zeigt, daß nur $x = 1$ Lösung ist.

1.4 Ungleichungen

Äquivalente Umformungen bei Ungleichungen:

- 1. Addition eines Termes auf beiden Seiten
- 2. Beide Seiten dürfen mit einem Faktor $c \neq 0$ multipliziert werden.
 - c > 0: Anordnung bleibt erhalten
 - c < 0: Anordnung ist zu ändern:

$$" \leq " \geq$$

Lineare Ungleichungen

Beispiel:

$$3x-2 < 5x+1 \mid -3x-1$$

$$\Leftrightarrow \qquad -3 < 2x \qquad |: 2$$

$$\Leftrightarrow$$
 $-3/2 < x$

$$\Rightarrow \mathbf{L} = (-3/2, \infty)$$

Quadratische Ungleichungen

Beispiele:

1.
$$x^2 + 2x - 3 < 0$$

1. Möglichkeit (quadratische Ergänzung):
$$x^2+2x-3<0 \Leftrightarrow (x+1)^2-4<0 \Leftrightarrow (x+1)^2<4 \Leftrightarrow |x+1|<2 \Leftrightarrow -3< x<1 \Leftrightarrow \mathbf{L}=(-3,1)$$

- 2. Möglichkeit: Gesucht ist die Menge aller $x \in \mathbb{R}$, für die das Schaubild von $f(x) = x^2 + 2x 3$ unterhalb der x-Achse verläuft. $x^2 + 2x 3 = 0 \Rightarrow x_1 = -3, \ x_2 = 1 \Rightarrow \mathbf{L} = (-3, 1)$
- 2. $(x-1)^2 \le |x|$
 - a) Fall x < 0: $x^2 - 2x + 1 \le -x \Leftrightarrow x^2 - x + 1 \le 0 \Leftrightarrow (x - 1/2)^2 + 3/4 \le 0$ $\Leftrightarrow (x - 1/2)^2 \le -3/4$ Widerspruch!
 - b) Fall $x \ge 0$: $x^2 - 2x + 1 \le x \Leftrightarrow x^2 - 3x + 1 \le 0 \Leftrightarrow (x - 3/2)^2 \le 5/4 \Leftrightarrow |x - 3/2| \le 1/2\sqrt{5}$ $\Rightarrow -1/2\sqrt{5} \le x - 3/2 \le 1/2\sqrt{5} \Leftrightarrow 3/2 - 1/2\sqrt{5} \le x \le 3/2 + 1/2\sqrt{5}$

1.5 Binomialkoeffizienten und binomischer Satz

1.5.1 Summenzeichen

Definition:

$$\sum_{k=m}^{n} a_k := \begin{cases} a_m + a_{m+1} + \dots + a_n & falls & n > m \\ a_m & " & n = m \\ 0 & " & n < m \end{cases}$$

Rechenregeln:

1.

$$\sum_{k=m}^{n} a_k = \sum_{k=m}^{n_1} a_k + \sum_{k=n_1+1}^{n} a_k$$

2.

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$$

3.

$$\sum_{k=m}^{n} (c \cdot a_k) = c \cdot \sum_{k=m}^{n} a_k$$

1.5.2 Fakultät

Definition: $0! := 1, \quad n! := 1 \cdot 2 \cdots n, \ n \in \mathbb{N}$

Folgerung: $n! = (n-1)! \cdot n$

Beispiel: 3! = 6, 5! = 120, 10! = 3628800, $20! \approx 2.4 \cdot 10^{18}$

1.5.3 Binomialkoeffizienten

Definition: In Hinblick auf die Behandlung der binomischen Reihe in Teil II definieren wir

$$\left(\begin{array}{c} n \\ 0 \end{array}\right) := 1, \quad \left(\begin{array}{c} n \\ k \end{array}\right) := \frac{n(n-1)\cdots(n-k+1)}{k!}, \quad n \in \mathbb{R}, k \in \mathbb{N}.$$

Für Teil I genügt die unter 1. gegebene Darstellung mit Hilfe der Fakultäten.

Folgerungen:

Für $n \in \mathbb{N}$ gilt

1.

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} \frac{(n-k)!}{(n-k)!} = \frac{n!}{k!(n-k)!}$$

2. Ersetzen von k durch n - k in 1.) liefert

$$\binom{n}{n-k} = \frac{n!}{(n-k)!(n-(n-k))!} = \frac{n!}{(n-k)!k!} = \binom{n}{k}$$

3.

$$\begin{pmatrix} n \\ n-1 \end{pmatrix} = \begin{pmatrix} n \\ 1 \end{pmatrix} = \frac{n!}{1!(n-1)!} = n$$

Beispiele:

1.

$$\left(\begin{array}{c}6\\4\end{array}\right) = \left(\begin{array}{c}6\\2\end{array}\right) = \frac{6!}{2!4!} = 15$$

2.

$$\begin{pmatrix} 1.5 \\ 3 \end{pmatrix} = \frac{1.5 \cdot 0.5 \cdot (-0.5)}{6} = -0.0625$$

Rekursionsformel:

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n(n-1)\cdots[n-(k-2)]}{(k-1)!} \cdot \frac{n-(k-1)}{k} = \begin{pmatrix} n \\ k-1 \end{pmatrix} \cdot \frac{n-k+1}{k}$$

1.5.4 Binomischer Satz

$$(a+b)^{0} = 1$$

$$(a+b)^{1} = a + b$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

 $(a+b)^4 = \left(\begin{array}{c} 4 \\ 0 \end{array}\right) a^4 b^0 + \left(\begin{array}{c} 4 \\ 1 \end{array}\right) a^3 b^1 + \left(\begin{array}{c} 4 \\ 2 \end{array}\right) a^2 b^2 + \left(\begin{array}{c} 4 \\ 3 \end{array}\right) a^1 b^3 + \left(\begin{array}{c} 4 \\ 4 \end{array}\right) a^0 b^4$

Binomischer Satz:

Für jedes $n \in \mathbb{N}$ und $a, b \in \mathbb{R}$ gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Beispiele:

1.
$$(102)^4 = (100 + 2)^4 = 100^4 + 4 \cdot 100^3 \cdot 2 + 6 \cdot 100^2 \cdot 2^2 + 4 \cdot 100 \cdot 2^3 + 2^4$$

= $100^4 + 8 \cdot 100^3 + 24 \cdot 100^2 + 32 \cdot 100 + 16 = 108243216$

2.
$$(3u-2)^3 = (3u)^3 + 3(3u)^2(-2) + 3(3u)(-2)^2 + (-2)^3 = 27u^3 - 54u^2 + 36u - 8u^2 + 36u^2 + 36u$$

2 Funktionen einer reellen Veränderlichen

2.1 Funktionsbegriff

Die grundlegenden Definitionen entnehme man \S 1.3 des Teils zur Diskreten Mathematik.

$$D \subseteq \mathbb{R}, \quad f: \left\{ \begin{array}{l} D \to \mathbb{R} \\ x \mapsto y = f(x) \end{array} \right.$$

Wertebereich: $W = \{y \in \mathbb{R} \mid \exists x \in D : f(x) = y\} = \{f(x) \mid x \in D\}$

Beispiele:

1.
$$y = x^2$$
 $D = \mathbb{R}$, $W = [0, \infty)$

2. $y = x^2 - 4$, $D = \mathbb{R}$, $W = [-4, \infty)$

3. $y = |x^2 - 4|, \quad D = \mathbb{R}, \quad W = [0, \infty)$

4.
$$y = \begin{cases} x^2 - 4 & 2 \le |x| \le 3 \\ |x| - 2 & |x| < 2 \end{cases}$$
 $D = [-3, 3]$ $W = [-2, 5]$

5. Durch die Gleichung $x^2+y^2=r^2$ werden zwei Funktionen beschrieben: $y=f_1(x)=\sqrt{r^2-x^2}$ oberer Halbkreis $y=f_2(x)=-\sqrt{r^2-x^2}$ unterer Halbkreis $D_{f_1}=D_{f_2}=[-r,r]$ $W_{f_1}=[0,r], \quad W_{f_2}=[-r,0]$

(maximaler) Definitionsbereich

6.
$$f(x) = \sqrt{-x^2 + 4x - 3}$$
: $-x^2 + 4x - 3 \ge 0 \Leftrightarrow x^2 - 4x + 3 \le 0$
 $\Leftrightarrow (x - 2)^2 \le 1 \Leftrightarrow |x - 2| \le 1 \Leftrightarrow -1 \le x - 2 \le 1 \Leftrightarrow 1 \le x \le 3$
 $\Rightarrow D = [1, 3]$

7.
$$f(x) = \sqrt{\frac{x-2}{4-x}}$$

 $0 \le x - 2 \land 0 < 4 - x \Rightarrow x \in [2,4)$
 $x - 2 \le 0 \land 4 - x < 0$ Widerspruch! $\Rightarrow D_f = [2,4)$

Es sei $f: D \to \mathbb{R}, \ D \subseteq \mathbb{R}$, und es gelte $D_1 \subseteq D$. Dann bezeichnet $f|_{D_1}: D_1 \to \mathbb{R}$ mit $f|_{D_1}(x) = f(x)$ $\forall x \in D_1$ die **Einschränkung von** f **auf** D_1 .

Beispiel:

 $f(x)=\sqrt{r^2-x^2}$ oberer Ursprungshalbkeis vom Radius r $f:[-r,r]\to\mathbb{R}$ $f|_{[0,r]}:[0,r]\to\mathbb{R}$ rechter oberer Viertelkreis

2.2 Grundlegende Eigenschaften

Es sei $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$, $M \subseteq D$

Monotonie:

f heißt monoton wachsend (i.Z. \nearrow) bzw. fallend (i.Z. \searrow) in M, falls gilt:

$$\forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow \begin{cases} f(x_1) \leq f(x_2) \\ f(x_1) \geq f(x_2) \end{cases}$$
.

f heißt streng monoton wachsend bzw. fallend in M, falls gilt:

$$\forall x_1, x_2 \in M: \quad x_1 < x_2 \Rightarrow \left\{ \begin{array}{ll} f(x_1) < f(x_2) & str. \nearrow \\ f(x_1) > f(x_2) & str. \searrow \end{array} \right.$$

Bemerkung: Falls M = D gilt, läßt man häufig den Zusatz "in M" fort.

Symmetrie:

f heißt gerade bzw. ungerade, falls gilt:

$$-x \in D \land f(-x) = \begin{cases} f(x) \\ -f(x) \end{cases} \quad \forall x \in D$$

Beschränktheit:

f heißt beschränkt nach oben bzw. nach unten, falls gilt: $\exists k \in \mathbb{R} \quad \forall x \in D: \quad k \geq f(x)$ bzw. $k \leq f(x)$ (k heißt obere bzw. untere Schranke für f);

f heißt beschränkt, falls gilt: $\exists k \in \mathbb{R} \quad \forall x \in D: \quad |f(x)| \leq k$.

Periode:

 $P \in \mathbb{R}$ heißt Periode von f und f periodisch (mit der Periode P), falls gilt:

$$\forall x \in D: (x+p) \in D \land f(x+p) = f(x)$$

Beispiele:

- 1. $y=x^2$ ist streng monoton wachsend in $[0,\infty)$, streng monoton fallend in $(-\infty,0]$.
- 2. $y = x^6 + 3x^4 + 5$ ist eine gerade Funktion.
- 3. $y=\sin x$ ist streng monoton wachsend in $[-\pi/2,\pi/2]$, ungerade, beschränkt (k=1), Periode: 2π Nullstellen: $k\pi,\ k\in\mathbb{Z}$.

Gaußklammer

Definition:

Unter [x] mit $x \in \mathbb{R}$ versteht man die größte ganze Zahl, die kleiner oder gleich x ist.

Beispiel:
$$[\pi] = 3$$
, $[-15/4] = -4$

Es sei $k \in \mathbb{Z}$. Dann gilt [x] = k für $x \in [k, k+1)$

2.3 Verknüpfung von Funktionen

Gegeben: $D_f, D_g \subseteq \mathbb{R}, \quad f: D_f \to \mathbb{R}, \quad g: D_g \to \mathbb{R}$

Definitionen:

1.
$$D_{g \circ f} = \{x \in D_f | f(x) \in D_g\}, \quad g(f) = g \circ f : D_{g \circ f} \to \mathbb{R}$$

$$x \mapsto g(f(x))$$

heißt Hintereinanderausführung oder Verkettung von f und g. (Reihenfolge ist wesentlich!)

f heißt innere Funktion, g heißt äußere Funktion.

2.
$$D_{f \dot{g}} = D_f \cap D_g$$
, $f \dot{g} : D_{f \dot{g}} \to \mathbb{R}$

$$x \mapsto f(x) \dot{g}(x)$$

heißt Summe, Differenz bzw. Produkt von f und g.

3.
$$D_{\frac{f}{g}} = \{x \in D_f \cap D_g | g(x) \neq 0\}, \qquad \frac{f}{g} : D_{\frac{f}{g}} \to \mathbb{R}$$

$$x \mapsto \frac{f(x)}{g(x)}$$

heißt **Quotient** von f und q

Beispiel:

$$D_{f} = [0, \infty), \quad f(x) = \sqrt{x}, \quad D_{g} = \mathbb{R} \setminus \{\pm 1\}, \quad g(x) = \frac{1}{x^{2} - 1}$$

$$D_{f} \cap D_{g} = [0, 1) \cup (1, \infty) = D_{f^{\pm} g} = D_{\frac{f}{g}}$$

$$(f \pm g)(x) = \sqrt{x} \pm \frac{1}{x^{2} - 1}, \quad (f \cdot g)(x) = \frac{\sqrt{x}}{x^{2} - 1}, \quad \frac{f}{g}(x) = \sqrt{x} \cdot (x^{2} - 1)$$

$$D_{\frac{g}{f}} = D_{f} \cap D_{g} \cap \{x \in D_{f} | f(x) \neq 0\} = (0, 1) \cup (1, \infty), \quad \frac{g}{f}(x) = \frac{1}{\sqrt{x} \cdot (x^{2} - 1)}$$

$$D_{g \circ f} = \{x \in [0, \infty) | f(x) \neq 1\} = [0, 1) \cup (1, \infty)$$

$$g(f(x)) = g \circ f(x) = \frac{1}{(\sqrt{x})^{2} - 1} = \frac{1}{x - 1}$$

$$D_{f \circ g} = \{ x \in \mathbb{R} | (x \neq \pm 1) \land (g(x) \geq 0) \} = \{ x \in \mathbb{R} | (x \neq \pm 1) \land (x^2 \geq 1) \}$$

= $(-\infty, -1) \cup (1, \infty), \quad f(g(x)) = (f \circ g)(x) = \frac{1}{\sqrt{x^2 - 1}}$
Es gilt also $g \circ f \neq f \circ g$.

2.4 Umkehrfunktion

Definition:

Eine Funktion $f: D \to \mathbb{R}$ heißt umkehrbar eindeutig (auch: eineindeutig, injektiv), falls gilt

$$\forall x_1, x_2 \in D: x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2).$$

Beispiele:

1.
$$y = f(x) = x^2|_{[0,2]}, \quad D_f = [0,2], \ W_f = [0,4]$$

- 1. Schritt: Auflösen nach x: $x=f^{-1}(y)=\sqrt{y}, \quad D_{f^{-1}}=[0,4], \ W_{f^{-1}}=[0,2]$ 2. Schritt: Vertauschen von x mit y: $y=f^{-1}(x)=\sqrt{x}$

2.
$$y = f(x) = \frac{2x-1}{x+3}$$
, $D_f = [-1, 2]$

2.
$$y = f(x) = \frac{2x-1}{x+3}$$
, $D_f = [-1, 2]$
1. Schritt: $y = \frac{2x-1}{x+3} \Leftrightarrow x(y-2) = -1 - 3y \Leftrightarrow x = \frac{1+3y}{2-y}$
2. Schritt: $y = f^{-1}(x) = \frac{1+3x}{2-x}$

2. Schritt:
$$y = f^{-1}(x) = \frac{1+3x}{2-x}$$

Bemerkung:

1. Jede **streng** monotone Funktion ist umkehrbar.

2.
$$f^{-1} \circ f(x) = x \quad \forall x \in D_f$$

 $f \circ f^{-1}(x) = x \quad \forall x \in W_f$

3 Grenzwert einer Zahlenfolge

3.1 Definition und Eigenschaften von Zahlenfolgen

Eine **Folge** ist eine auf \mathbb{N} definierte Abbildung. Eine Folge ordnet also jeder natürlichen Zahl n einen Wert f(n) zu.

Hier: Reell- (oder komplex-) wertige Folgen.

$$f: \left\{ \begin{array}{l} \mathbb{N} \to \mathbb{R} & (\mathbb{C}) \\ n \mapsto f(n) \end{array} \right.$$

Schreibweise: a, b statt f, a_n statt a(n)

Definition:

Eine Folge $\{a_n\}$ heißt **alternierend**, falls gilt:

$$\forall n \in \mathbb{N} \ a_n \cdot a_{n+1} < 0$$

Beispiele:

- 1. $a_n = n$: 1, 2, 3, ... str. \nearrow
- 2. $a_n = 1/n$: $1, 1/2, 1/3, \dots$ str.
- 3. $a_n = (-1)^n : -1, 1, -1, 1, \dots$ alternierend
- 4. $a_1 = c, a_{n+1} = a_n + d, n \in \mathbb{N}$, arithmetische Folge $[c, c+d, c+2d, \dots, \underbrace{c+(n-1)\cdot d}_{=a_n}, \dots]$ d > 0 str. \nearrow , d < 0 str. \searrow

5.
$$a_1 = c, \ a_{n+1} = q \cdot a_n, \ n \in \mathbb{N}$$
, geometrische Folge $[c, c \cdot q, c \cdot q^2, \dots, \underbrace{c \cdot q^{n-1}}_{=a_n}, \dots]$

- 1.-3. sind **explizite** Vorschriften, d.h. $a_n = f(n)$;
- 4. und 5. sind Beispiele für **rekursive** Vorschriften, d.h. das *n*-te Folgeglied wird aus gewissen Vorgängern bestimmt.

3.2 Konvergenz von Folgen

Definition: Konvergenz einer Zahlenfolge gegen einen Grenzwert

Die Folge $\{a_n\}$ konvergiert gegen $A \in \mathbb{R}$, wenn es für jedes beliebige $\varepsilon > 0$ eine Zahl $N = N(\varepsilon)$ gibt mit $|a_n - A| < \varepsilon \quad \forall n > N$.

Schreibweise:

$$\lim_{n \to \infty} a_n = A \quad \text{oder} \quad a_n \stackrel{n \to \infty}{\longrightarrow} A$$

Beispiel: (Forts.)

Die Folgen unter 2. und 4. für $c=1,\ q=-1/2:\ 1,-1/2,1/4,-1/8,\ldots$ konvergieren gegen 0, sie bilden Nullfolgen. Die Folgen unter 1. und 3. sind divergent (s.u.).

Satz:

Ist die Folge $\{a_n\}$ monoton wachsend (bzw. fallend) und nach oben (bzw. unten) beschränkt, so ist sie konvergent.

Konvergenzkriterium von Cauchy:

Eine Folge $\{a_n\}$ konvergiert genau dann, wenn es zu jeder positiven reellen Zahl ε ein N gibt, so daß gilt:

$$|a_n - a_m| < \varepsilon$$
 für $n, m > N$.

Definition: Divergente Folgen, uneigentlicher Grenzwert

- 1. Die Folge $\{a_n\}$ heißt **bestimmt divergent** mit dem **uneigentlichen Grenzwert** $+\infty$, wenn zu jedem $K \in \mathbb{R}$ eine Zahl N(K) existiert mit $a_n > K \quad \forall n > N$. Schreibweise: $a_n \to +\infty$ für $n \to \infty$ oder $\lim_{n \to \infty} a_n = +\infty$ Entsprechend definiert man $\lim_{n \to \infty} a_n = -\infty$
- 2. Eine Folge, die weder konvergiert noch bestimmt divergent ist, heißt **unbestimmt** divergent.

Beispiel:

Die Folge unter 1. ist bestimmt divergent mit dem uneigentlichen Grenzwert $+\infty$, die Folge unter 3. ist unbestimmt divergent.

3.3 Rechnen mit Grenzwerten von Folgen

Grenzwertsätze:

Es seien $A, B \in \mathbb{R}$

1.
$$a_n \to A$$
, $b_n \to B \Rightarrow$

a)
$$(a_n + b_n) \to A + B$$

b)
$$\lambda a_n \to \lambda A$$
, $\lambda \in \mathbb{R}$

c)
$$a_n \cdot b_n \to A \cdot B$$

d)
$$a_n/b_n \to A/B \quad (b_n \neq 0, B \neq 0)$$

2.
$$a_n \to 0$$
, $a_n > 0$ $(a_n < 0)$ $\forall n \in \mathbb{N}$ $\Rightarrow \frac{1}{a_n} \to +\infty$ $(\frac{1}{a_n} \to -\infty)$

3.
$$a_n \to G$$
, $c_n \to G$, $a_n \le b_n \le c_n \quad \forall n \in \mathbb{N} \implies b_n \to G$

Achtung! Umkehrung gilt nicht:

Wähle $a_n = b_n = (-1)^n$, $\{a_n\}$ ist divergent, aber $a_n \cdot b_n \to 1$!

"Gebrochenrationale" Folgenglieder

1. Zählergrad
 Nennergrad $\Longrightarrow a_n \stackrel{n \to \infty}{\longrightarrow} 0$

$$a_n = \frac{n^2 + 5n - 7}{4n^3 - n^2 + 8} = \frac{1 + \frac{5}{n} - \frac{7}{n^2}}{4n - 1 + \frac{8}{n^2}} \xrightarrow{n \to \infty} 0$$

2. Zählergrad = Nennergrad $\Longrightarrow a_n \stackrel{n \to \infty}{\longrightarrow} A$

$$a_n = \frac{n^2 + 5n - 7}{-3n^2 + 2n + 1} = \frac{1 + \frac{5}{n} - \frac{7}{n^2}}{-3 + \frac{2}{n} + \frac{1}{n^2}} \xrightarrow{n \to \infty} -\frac{1}{3}$$

3. Zählergrad $\Rightarrow a_n \stackrel{n \to \infty}{\longrightarrow} \pm \infty$

$$a_n = \frac{n^3 + 5n^2 - 7}{-3n^2 + 2n + 3} = \frac{n + 5 - \frac{7}{n^2}}{-3 + \frac{2}{n} + \frac{3}{n^2}} \xrightarrow{n \to \infty} -\infty$$

Wurzelausdrücke

1.
$$a_n = \frac{\sqrt{n^2 + n}}{n+1} = \frac{\sqrt{n^2(1+\frac{1}{n})}}{n+1} = \frac{n\sqrt{1+\frac{1}{n}}}{n+1} = \frac{\sqrt{1+\frac{1}{n}}}{1+\frac{1}{n}} \xrightarrow{n\to\infty} 1$$

2. $a_n = \frac{\sqrt{n^5 + n^3}}{n^2 + 2n} = \frac{\sqrt{n^5(1+\frac{1}{n^2})}}{n^2 + 2n} = \frac{n^{5/2}\sqrt{1+\frac{1}{n^2}}}{n^2 + 2n} = \frac{\sqrt{n}\sqrt{1+\frac{1}{n^2}}}{1+\frac{2}{n}} \xrightarrow{n\to\infty} \infty$

4 Grundlegende Eigenschaften von wichtigen Funktionsklassen

4.1 Ganzrationale Funktionen (Polynome)

4.1.1 Definition und Eigenschaften

Definition:

Die Funktionen $f_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, mit $a_i \in \mathbb{R}$ (\mathbb{C}), $i = 0, 1, \dots, n$, heißen **ganzrationale Funktionen** oder **Polynome**. Falls $a_n \neq 0$, so heißt f_n Polynom vom **Grad** $n, n \in \mathbb{N}_0$.

Satz von der "Eindeutigkeit" der Polynomdarstellung

Es seien $n, m \in \mathbb{N}_0$ mit $n \leq m, a_0, \dots, a_n, b_0, \dots, b_m \in \mathbb{R}$.

Für alle $x \in \mathbb{R}$ gelte:

$$\sum_{i=0}^{n} a_i x^i = \sum_{j=0}^{m} b_j x^j.$$

Dann folgt

$$a_i = b_i, \quad i = 0, \ldots, n,$$

$$b_i = 0; \ j = n + 1, \dots, m.$$

Anwendung: Koeffizientenvergleich

Es gilt: $f_n \approx a_n x^n$ für $|x| \to \infty$ $(a_n \neq 0)$

- 1. n gerade: f_n ist nach unten oder nach oben beschränkt.
- 2. n ungerade: f_n ist weder nach unten noch nach oben beschränkt.

4.1.2 Nullstellen und Faktorzerlegung

$$f_1(x) = a_0 + a_1 x \ (a_1 \neq 0)$$
 besitzt die Nullstelle x_1 , d.h. $a_0 + a_1 x_1 = 0 \Rightarrow a_0 = -a_1 x_1$
 $f_1(x) = a_1(x - x_1)$.

Gesucht ist die Menge aller quadratischen Funktionen mit den Nullstellen $x_1=-1,\ x_2=2$ Lösung: $f_2(x)=a(x+1)(x-2)=ax^2-ax-2a$.

Definition:

Die Darstellung $f_n(x) = a(x - x_1)(x - x_2) \cdots (x - x_n)$ $(a \neq 0)$ heißt **Zerlegung** von f_n in **Linearfaktoren**.

Abspalten von Polynomnullstellen mit Hilfe der Polynomdivision

Gegeben ist eine Nullstelle x_1 von f_n . Gesucht ist $f_{n-1}(x)$ in $f_n(x) = (x - x_1)f_{n-1}(x)$.

Beispiele:

1.
$$f_3(x) = x^3 - 67x - 126$$
, $x_1 = -2$
 $(x^3 - 67x - 126) : (x + 2) = x^2 - 2x - 63$
 $-(x^3 + 2x^2)$
 $(-2x^2 - 67x)$
 $-(-2x^2 - 4x)$
 $(-63x - 126)$
 $-(-63x - 126)$
 0
 $\Rightarrow f_3(x) = (x + 2)(x + 7)(x - 9)$

2.
$$f_4(x) = x^4 - 2x^3 + 2x^2 - 2x + 1$$
, $x_1 = 1$
 $(x^4 - 2x^3 + 2x^2 - 2x + 1) : (x - 1) = x^3 - x^2 + x - 1 = f_3(x)$
 $-(x^4 - x^3)$
 $(-x^3 + 2x^2)$
 $-(-x^3 + x^2)$
 $(x^2 - 2x)$
 $-(x^2 - x)$
 $(-x + 1)$
 $-(-x + 1)$
 0
 $\Rightarrow f_4(x) = (x - 1)(x^3 - x^2 + x - 1)$

$$(x^3 - x^2 + x - 1) : (x - 1) = x^2 + 1 = f_2(x) = (x + j)(x - j)$$

 $-(x^3 - x^2)$
 $-(x - 1)$
 0
 $\Rightarrow f_4(x) = (x - 1)^2(x + j)(x - j)$
 x_1 ist doppelte Nullstelle!

Definition:

 x_1 heißt p-fache Nullstelle von f_n , falls $f_n(x) = (x - x_1)^p \cdot f_{n-p}(x)$ und $f_{n-p}(x_1) \neq 0$.

Fundamentalsatz der Algebra

Ein Polynom n-ten Grades $f_n(x) = a_n x^n + \cdots + a_1 x + a_0$ besitzt (in der Menge der komplexen Zahlen genau n und damit) in der Menge der reellen Zahlen höchstens n Nullstellen.

Bemerkungen:

- 1. Nullstellen werden entsprechend ihrer Vielfachheit gezählt (so z.B. eine doppelte als zwei Nullstellen).
- 2. Der Satz gilt sogar für $a_i \in \mathbb{C}$.

- 3. Sind alle $a_i \in \mathbb{R}$, so treten komplexe Nullstellen stets als Paare konjugiert komplexer Zahlen auf, d.h. mit x_i ist auch x_i^* Nullstelle.
- 4. (Folgerung aus 3.) Jedes Polynom von ungeradem Grad besitzt mindestens eine reelle Nullstelle.

Wurzelsatz von Vietà

Gegeben sei
$$f_n(x) = a_n x^n + \dots + a_1 x + a_0 \ (a_n \neq 0)$$

= $a_n(x - x_1)(x - x_2) \dots (x - x_n)$

Dann gilt (Ausmultiplizieren und Koeffizientenvergleich)

$$a_n(-1)^n x_1 x_2 \cdots x_n = a_0$$

$$x_1 x_2 \cdots x_n = (-1)^n \frac{a_0}{a_n}$$

Falls $\frac{a_0}{a_n} \in \mathbb{Z}$, teste man die Teiler von $\pm \frac{a_0}{a_n}$, ob sie Nullstellen von f_n sind.

Beispiel: $f_4(x) = x^4 - x^3 - 7x^2 + x + 6$ $(n = 4, a_n = 1)$ $x_1x_2x_3x_4 = 6$ Zu betrachten sind die Kandidaten $\pm 1, \pm 2, \pm 3, \pm 6$. Durch Einsetzen findet man $x_1 = 1, x_2 = -1, x_3 = -2, x_4 = 3$.

4.1.3 Das Horner-Schema

Polynomauswertung

naiv
$$f_2(x) = a_0 + a_1 x + a_2 x x$$
 geschachtelt
$$f_3(x) = a_0 + a_1 x + a_2 x x + a_3 x (x x)$$

$$= a_0 + x (a_1 + a_2 x)$$

$$= a_0 + x (a_1 + x (a_2 + a_3 x))$$

$$= a_0 + x (a_1 + x (a_2 + a_3 x))$$

$$= a_0 + x (a_1 + x (a_2 + x (a_3 + \underbrace{a_4}_{b_3} x)))$$

Anzahl der benötigten Multiplikationen

\overline{n}	naiv	geschachtelt
2	3	2
3	5	3
4	7	4
÷	÷	:
n	2n - 1	n

Hornerschema für
$$f_4(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$
 $f_4(\bar{x}) = ?$

	a_4	a_3	a_2	a_1	a_0	
		$b_3\bar{x}$	$b_2\bar{x}$		$b_0 \bar{x}$	
\bar{x}	a_4	$a_3 + b_3 \bar{x}$ $=: b_2$	$a_2 + b_2 \bar{x}$	$a_1 + b_1 \bar{x}$	$a_0 + b_0 \bar{x}$	

Beispiel:

$$f_4(x) = 2x^4 - x^3 + 3x^2 - 2x - 4$$

 $f_4(2) = ?$

	2	-1	3	-2	-4
		4	6	18	32
2	2	3	9	16	$28 = f_4(2)$

Hornerschema für $f_n(x) = a_n x^n + \cdots + a_1 x + a_0, \ f_n(\overline{x}) = ?$

- Die erste Zeile enthält die Koeffizienten a_n, a_{n-1}, \dots, a_0 (bei fehlendem x^m ist $a_m = 0$ einzutragen).
- Multiplikation von $a_n (= b_{n-1})$ mit \bar{x} , Addition des Produktes zu $a_{n-1} \to b_{n-2}$
- Multiplikation von b_{n-2} mit \overline{x} , Addition des Produktes zu $a_{n-2} \to b_{n-3}$:
- nach *n* derartigen Schritten erhält man $f_n(\bar{x}) = b_0 \bar{x} + a_0$.

Abspalten von Polynomnullstellen mittels Horner-Schema

Wählt man als \bar{x} eine Nullstelle von f_n , so erscheint in der letzten Zeile rechts eine Null (Rechenkontrolle) und die restlichen Werte in der letzten Zeile sind der Reihe nach die Koeffizienten $b_{n-1}, b_{n-2}, \dots, b_0$ des **reduzierten Polynoms**

$$f_{n-1}(x) = \frac{f_n(x)}{x - \bar{x}}.$$

Beispiele:

1.
$$f_3(x) = x^3 - 67x - 126$$
, $x_1 = -2$

$$f_3(x) = (x+2)(x^2 - 2x - 63)$$

2.
$$f_5(x) = 4x^5 - 6x^4 - 13x^3 + 3x^2 - x - 159$$
 $f_5(3) = 0$

$$f_5(x) = (x-3)(4x^4 + 6x^3 + 5x^2 + 18x + 53)$$

4.2 Gebrochenrationale Funktionen

4.2.1 Definitionen

Eine gebrochenrationale Funktion ist der Quotient zweier ganzrationaler Funktionen,

$$R(x) = \frac{Z_n(x)}{N_m(x)} = \frac{a_n x^n + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0}, \quad a_n \neq 0, b_m \neq 0.$$

Sie ist definiert für alle $x \in \mathbb{R}$ mit Ausnahme der Nennernullstellen (Nullstellen des Nennerpolynoms).

Sonderfälle und Bezeichnungen:

m = 0: R ist ganzrational

 $n \ge m$: R heißt unecht gebrochenrational n < m: R heißt echt gebrochenrational

Ist R unecht gebrochenrational, so läßt sich R (etwa mittels Polynomdivision) darstellen als Summe aus einer ganzrationalen Funktion vom Grade n-m und einer echt gebrochenrationalen Funktion.

Beispiel:

$$R(x) = \frac{2x^2 + 3x - 1}{x + 2} \Rightarrow R(x) = 2x - 1 + \frac{1}{x + 2}$$

Die Nullstellen einer gebrochenrationalen Funktion sind gerade die Zählernullstellen.

4.2.2 Verhalten bei Definitionslücken

1. Fall:
$$N(x_0) = 0 \land Z(x_0) \neq 0$$
:

1. Beispiel:

$$R(x) = \frac{2x - 5}{x - 3}, \quad x_0 = 3$$

 $x \to 3+$ (Annäherung von rechts her):

$$N(x), Z(x) > 0 \ \forall x > 3 \Rightarrow R(x) \to +\infty$$

$$x \to 3-$$
 (Annäherung von links her): $\forall x \in (2.5,3): Z(x) > 0, N(x) < 0 \ R(x) \to -\infty$

Definition:

Eine Stelle, bei der in unmittelbarer Umgebung die Funktionswerte unter/über alle Schranken fallen oder wachsen, heißt **Pol**.

2. Beispiel:

$$R(x) = \frac{1}{(x+1)^2}$$
, $x_0 = -1$ ist doppelte Nennernullstelle.
 $x \to -1 \pm : R(x) \to +\infty$, Pol ohne Vorzeichenwechsel, Gerade $x = -1$ ist senkrechte Asymptote

Satz:

Ist x_0 eine p-fache Nenner-, aber keine Zählernullstelle von R, so besitzt R an der Stelle x_0 einen Pol, und zwar, falls p gerade ist, einen Pol ohne Vorzeichenwechsel, und falls p ungerade ist, einen Pol mit Vorzeichenwechsel.

Die Gerade $x = x_0$ ist senkrechte Asymptote.

Beweis:

$$R(x) = \frac{Z_n(x)}{N_m(x)} = \frac{1}{(x - x_0)^p} \cdot \frac{Z_n(x)}{N_{m-n}(x)}$$

 $Z_n(x) \neq 0$, $N_{m-p}(x) \neq 0$ in einer hinreichend klein gewählten Umgebung von x_0 , d.h.

$$\frac{Z_n(x)}{N_{m-p}(x)}$$

weist in einer hinreichend kleinen Umgebung von x_0 keinen Vorzeichenwechsel auf. p gerade: $(x - x_0)^p$ ist in jeder Umgebung um x_0 stets nichtnegativ. p ungerade: $(x - x_0)^p$ besitzt in jeder Umgebung um x_0 einen Vorzeichenwechsel.

2.Fall:
$$N(x_0) = 0 \land Z(x_0) = 0$$
:

$$R(x) = \frac{x^2 - 1}{x - 1}, \qquad x_0 = 1$$

$$= \frac{(x-1)(x+1)}{(x-1)} = x+1, \quad x \neq 1$$

Schaubild von R ist die Gerade y = x + 1 ohne dem Punkt (1, 2).

Durch Hinzunahme dieses Punktes erhält man die **stetige Ergänzung** \widetilde{R} von R

$$\widetilde{R} = \left\{ \begin{array}{c} R(x) \text{ für } x \neq 1 \\ 2 \text{ für } x = 1 \end{array} \right.$$

Man nennt $x_0 = 1$ eine (stetig) (be)hebbare Definitionslücke der Funktion R.

4. Beispiel:

$$R(x) = \frac{x^2 - 1}{x^2 - 2x + 1}, \quad x^2 - 2x + 1 = (x - 1)^2, \ x_0 = 1 \text{ ist doppelte Nennernullstelle}$$

$$R(x) = \frac{x + 1}{x - 1}$$

 $x_0 = 1$ ist Pol mit Vorzeichenwechsel. Die Definitionslücke $x_0 = 1$ läßt sich durch Kürzen nicht beheben.

Satz:

Ist x_0 sowohl Zähler- als auch Nennernullstelle von R, so sind zwei Fälle möglich:

- 1. R kann (durch Kürzen) stetig ergänzt werden.
- 2. R besitzt an der Stelle x_0 einen Pol.

4.2.3 Verhalten für $|x| \to \infty$

Das Verhalten von

$$R(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} \quad (a_n, b_m \neq 0)$$

für große Werte von |x| hängt ab von $\frac{a_n x^n}{b_m x^m} = \frac{a_n}{b_m} x^{n-m}$.

Beispiele:

- 1. $R(x) = \frac{1}{(x+1)^2}$, $R(x) \stackrel{x \to \pm \infty}{\longrightarrow} 0$ Die x-Achse ist waagerechte Asymptote.
- 2. $R(x) = \frac{2x-5}{x-3} \approx \frac{2x}{x} = 2$, $R(x) \stackrel{x \to \pm \infty}{\longrightarrow} 2$ Die Gerade y = 2 ist waagerechte Asymptote.
- 3. $R(x) = \frac{2x^2 + 3x 1}{x + 2} \approx \frac{2x^2}{x} = 2x$, $R(x) \xrightarrow{x \to \infty} \infty$, $R(x) \xrightarrow{x \to -\infty} -\infty$ genauer: $R(x) = 2x 1 + \underbrace{\frac{1}{x + 2}}_{x \to \pm \infty_0}$ Die Gerade y = 2x 1 ist schiefe Asymptote.
- 4. $R(x) = \frac{x^3}{6x+12} = \frac{1}{6} \cdot \frac{x^3}{x+2} = \frac{1}{6} \cdot (x^2 2x + 4) \frac{4}{3(x+2)}$

Satz:

Für $|x| \to \infty$ gilt:

- $n < m: R(x) \to 0$, d.h. die x-Achse ist waagerechte Asymptote,
- n = m: $R(x) \to \frac{a_n}{b_m}$ und $y = \frac{a_n}{b_m}$ ist waagerechte Asymptote,
- n > m: $R(x) \to \pm \infty$ und die asymptotische Näherungskurve ist das Schaubild einer ganzrationalen Funktion vom Grad n-m Sonderfall: n=m+1: Schiefe Asymptote.

4.3 Potenzfunktionen

Unter einer Potenzfunktion versteht man eine Funktion f mit $f(x) = x^r$ $(r \in \mathbb{R})$. Die Potenzfunktion x^r wird für $r \in \mathbb{Q}$ in 4.3.3 und für $r \in \mathbb{R}$ in 4.4.2 erklärt.

4.3.1 Potenzfunktionen mit ganzzahligen Exponenten

Sonderfall $y = x^0 = 1 \quad (x \neq 0)$

$n \in \mathbb{N}$	$y = x^n$		$y = x^{-n} = 1/x^n$	
	n gerade	n ungerade	n gerade	n ungerade
DefBereich	$\mathbb R$	\mathbb{R}	$\mathbb{R}\setminus\{0\}$	$\mathbb{R}\setminus\{0\}$
Wertebereich	$[0,\infty)$	\mathbb{R}	$(0,\infty)$	$\mathbb{R}\setminus\{0\}$
Symmetrie	gerade	ungerade	gerade	ungerade
Monotonie	\searrow in $(-\infty,0]$	/ in R	$\nearrow (-\infty,0)$	$\searrow (-\infty,0)$
(jeweils str.)	\nearrow in $[0,\infty)$		$\searrow (0, \infty)$	$\searrow (0, \infty)$
gemeinsame	(0,0),(1,1),(-1,1)	(0,0),(1,1),(-1,-1)	(1,1),(-1,1)	(1,1),(-1,-1)
Kurvenpunkte				
Asymptoten	-	-	x- u. y -Achse	x- u. y-Achse

4.3.2 Wurzelfunktionen

Für $n=2,3,4,\ldots$ sind die Funktionen $x^n|_{[0,\infty)}$ str. \nearrow , also umkehrbar.

Definition:

Für $n=2,3,4,\ldots$ heißt $(x^n|_{[0,\infty)})^{-1}$ **n-te Wurzelfunktion**. Sie wird mit $\sqrt[n]{x}$ bezeichnet.

Achtung: Die Wurzelfunktionen sind nur für $x \in [0, \infty)$ definiert, wohingegen für ungerades n x^n str. \nearrow in \mathbb{R} , also auf \mathbb{R} umkehrbar ist.

Beispiel:

Die Umkehrfunktion f^{-1} zur Funktion $f(x) = x^3$ lautet $f^{-1}(x) = \begin{cases} \sqrt[3]{x} & \text{für } x \geq 0 \\ -\sqrt[3]{|x|} & \text{für } x < 0 \end{cases}.$

4.3.3 Potenzfunktionen mit rationalen Exponenten

Es seien $m \in \mathbb{Z}$, $n \in \mathbb{N}$, $n \geq 2$, dann wird definiert $x^{m/n} := \sqrt[n]{x^m}$, $x \in (0, \infty)$. Es gilt:

- 1. Für $f(x) = x^{m/n}$ gilt $f^{-1}(x) = x^{n/m}$.
- 2. Für $m \in \mathbb{N}$ kann der Definitionsbereich zu $[0, \infty)$ erweitert werden.

Potenzregeln:

Für $a, b \in \mathbb{R}$, a, b > 0 und $r, s \in \mathbb{R}$ gilt:

- $1. \ a^r \cdot a^s = a^{r+s}$
- $2. \ a^r \cdot b^r = (a \cdot b)^r$
- 3. $(a^r)^s = (a^s)^r = a^{s \cdot r}$

Wo steckt der Fehler?

$$1 = \sqrt{1} = \sqrt{(-1)^2} = ((-1)^2)^{1/2} = (-1)^{2 \cdot 1/2} = (-1)^1 = -1$$
$$1 = \sqrt[4]{1} = \sqrt[4]{(-1)^2} = ((-1)^2)^{1/4} = (-1)^{2 \cdot 1/4} = (-1)^{1/2} = \sqrt{-1}$$

4.4 Exponential- und Logarithmusfunktionen

4.4.1 Allgemeine Exponential- und Logarithmusfunktionen

Definition:

Die Funktion $y = a^x$ mit $a > 0, a \neq 1$, heißt allgemeine **Exponentialfunktion** zur Basis a.

Eigenschaften:

- 1. $D = \mathbb{R}, W = (0, \infty)$
- 2. Streng monoton

$$a > 1$$
: \nearrow $a < 1$:

3. Linkskurve

- 4. Kurvenpunkt (0,1)
- 5. x-Achse ist Asymptote

Definition:

Die Umkehrfunktion der Exponentialfunktion zur Basis $a, a \neq 1$, heißt **Logarithmusfunktion zur Basis** a und wird mit $\log_a x$ bezeichnet.

Eigenschaften (a > 1):

1.
$$D=(0,\infty), W=\mathbb{R}$$

- 2. Streng monoton wachsend
- 3. Rechtskurve
- 4. Kurvenpunkt (1,0)

5.
$$x \to \infty$$
: $\log_a x \to \infty$
 $x \to 0+$: $\log_a x \to -\infty$

6. y-Achse ist senkrechte Asymptote

Besondere Logarithmen:

$$\log_{10} x = \lg x$$
$$\log_2 x = \lg x$$

Zehnerlogarithmus, dekadischer Logarithmus Zweierlogarithmus, Binärlogarithmus

Wechsel der Basis: $\log_b x = \frac{1}{\log_a b} \cdot \log_a x$

Logarithmusgesetze (beliebige Basis):

$$\begin{array}{lll} \log(u \cdot v) & = & \log u + \log v \\ \log(u/v) & = & \log u - \log v \\ \log(u^{\alpha}) & = & \alpha \cdot \log u \end{array} \right\} \forall u, v > 0, \; \forall \alpha \in \mathbb{R}$$

4.4.2 Exponential- und Logarithmusfunktion zur Basis e

Definition:

$$e=\lim_{n\to\infty}\left(1+rac{1}{n}
ight)^n=2.7182818\ldots$$
 Eulersche Zahl
$$y=\log_e x=\ln x \qquad \text{natürlicher Logarithmus}$$
 $y=e^x=\exp(x) \qquad die$ Exponential-/ e-Funktion

$$\ln(u^{\alpha}) = \alpha \cdot \ln u$$

$$u^{\alpha} = \exp(\ln(u^{\alpha})) = \exp(\alpha \cdot \ln u)$$

Definition: Allgemeine Potenzfunktion

$$x^r = \exp(r \ln x), x \in (0, \infty), r \in \mathbb{R}$$

Exponential- / Logarithmusgleichungen Beispiele:

1.
$$e^x - e^{-x} = 2$$
 Subst.: $z = e^x$ $z - \frac{1}{z} = 2 \mid \cdot z$ $z^2 - 2z - 1 = 0 \Rightarrow z_{1/2} = 1 \pm \sqrt{2}$ Lösung: $x_1 = \ln(1 + \sqrt{2}) \quad \ln(1 - \sqrt{2})$ entfällt!

2.
$$\frac{1}{5-\ln x} + \frac{2}{1+\ln x} = 1$$
 Subst.: $z = \ln x$
$$\frac{1}{5-z} + \frac{2}{1+z} = 1$$
$$1 + z + 10 - 2z = 5 + 5z - z - z^{2}$$
$$z^{2} - 5z + 6 = 0 \implies z_{1} = 3, \ z_{2} = 2$$
$$\implies x_{1} = e^{3}, \ x_{2} = e^{2}$$

4.5 Trigonometrische Funktionen

4.5.1 Grundlegende Eigenschaften

Der Definitionsbereich von $\sin x$ und $\cos x$ ist \mathbb{R} , der Wertebereich ist [-1, 1]. Beide Funktionen sind periodisch mit der Periode 2π ; $\sin x$ ist ungerade und besitzt die Nullstellen $k\pi$, $k \in \mathbb{Z}$; $\cos x$ ist gerade und besitzt die Nullstellen $\frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

Die Funktionen $\tan x = \frac{\sin x}{\cos x}$ und $\cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$ sind definiert auf \mathbb{R} mit Ausnahme

der Nennernullstellen $\frac{\pi}{2} + k\pi$ bzw. $k\pi$, $k \in \mathbb{Z}$; an diesen Stellen liegen Pole mit Vorzeichenwechsel vor. Der Wertebereich beider Funktionen ist \mathbb{R} , sie sind periodisch mit der Periode π , ihre Nullstellen sind die Zählernullstellen $k\pi$ bzw. $\frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$; als Quotient einer geraden und einer ungeraden Funktion sind sie gerade.

Ferner gelten die Beziehungen:

Pythagoras: $\cos^2 x + \sin^2 x = 1$,

Additions theorem: $\sin(x+y) = \sin x \cos y + \cos x \sin y$,

 $\cos(x+y) = \cos x \cos y - \sin x \sin y .$

Hieraus läßt sich folgern:

$$\sin 2x = 2\sin x \cos x \;, \quad \cos 2x = \cos^2 x - \sin^2 x \\ = 1 - 2\sin^2 x = 2\cos^2 x - 1 \;, \\ \sin^2 x = \frac{1}{2}(1 - \cos 2x) \;, \quad \cos^2 x = \frac{1}{2}(1 + \cos 2x) \;, \\ \sin \frac{x}{2} = \pm \sqrt{\frac{1}{2}(1 - \cos x)} \;, \quad \cos \frac{x}{2} = \pm \sqrt{\frac{1}{2}(1 + \cos x)} \;, \\ \sin x \cdot \sin y = \frac{1}{2}[\cos(x - y) - \cos(x + y)] \;, \quad \cos x \cdot \cos y = \frac{1}{2}[\cos(x - y) + \cos(x + y)] \;, \\ \sin x \cdot \cos y = \frac{1}{2}[\sin(x - y) + \sin(x + y)] \;.$$

4.5.2 Allgemeine Sinus- und Cosinusfunktionen

Betrachtet wird die Funktion $y=a\cdot\sin(bx+c)$ mit $a,b,c\in\mathbb{R},\ a\neq 0,\ b>0$. Die Eigenschaften der allgemeinen Cosinusfunktion ergeben sich entsprechend.

Funktion	Amplitude	Periode	Nullstellen $(k \in \mathbb{Z})$
$y = \sin x$	1	2π	$k\pi$
$y = a \cdot \sin x$	a	2π	$k\pi$
$y = a \cdot \sin(bx)$	a	$\frac{2\pi}{b}$	$\frac{k\pi}{b}$
$y = a \cdot \sin(bx + c)$ = $a \cdot \sin(b(x + \frac{c}{b}))$	a	$\frac{2\pi}{b}$	$\frac{k\pi - c}{b}$

Geometrische Bedeutung der Parameter a, b, c:

a: Streckung der Kurve in y-Richtung um den Faktor a

b: Streckung der Kurve in x-Richtung um den Faktor 1/b

c: Verschiebung der Kurve in x-Richtung um -c/b

Beispiel:

$$y = \frac{5}{2}\sin\left(\frac{2}{3}x + \frac{\pi}{6}\right) = \frac{5}{2}\sin\left(\frac{2}{3}\left(x + \frac{\pi}{4}\right)\right)$$

Amplitude: 5/2Periode: 3π

Verschiebung: $-c/b = -\pi/6 \cdot 3/2 = -\pi/4$ Nullstellen: $k \cdot 3/2\pi - \pi/4, \quad k \in \mathbb{Z}$

Maximumstelle: $2/3x + \pi/6 = \pi/2 \Rightarrow x = \pi/2$ Minimumstelle: $2/3x + \pi/6 = -\pi/2 \Rightarrow x = -\pi$

4.6 Die Arcusfunktionen

4.6.1 Auflösung der Gleichung $y = \sin x$ nach x

Gegeben: $y_0 \in [-1, 1]$

Gesucht: Sämtliche $x \in \mathbb{R}$ mit $\sin x = y_0$

Einschränkung auf $[-\pi/2,\pi/2]$, dort ist $\sin x$ streng monoton wachsend (also umkehr-

bar).

Definition:

$$\arcsin x := \sin x \Big|_{[-\pi/2,\pi/2]}^{-1}$$

1. Grundlösung

$$x_1 := \arcsin y_0 \quad (\in [-\pi/2, \pi/2])$$

2. Grundlösung

Falls x das Intervall $[-\pi/2, \pi/2]$ durchläuft, so durchläuft $\pi - x$ das Intervall $[\pi/2, 3/2\pi]$. Wegen $\sin(\pi - x) = \sin x$ erhält man die 2. Grundlösung im Intervall $[\pi/2, 3/2\pi]$ in der Gestalt $x_2 = \pi - x_1$.

Ergebnis:

Die beiden Grundlösungen der Gleichung sin $x = y_0$ sind:

$$x_1 = \arcsin y_0, \ x_2 = \pi - x_1.$$

Sämtliche Lösungen erhält man in der Gestalt $x_i + 2k\pi, \ k \in \mathbb{Z}, \ i = 1, 2.$

Spezialfälle:

$$y_0 = 1$$
: $x_1 = \pi/2$, $x_2 = \pi - \pi/2 = \pi/2 = x_1$
 $y_0 = -1$: $x_1 = -\pi/2$, $x_2 = \pi - (-\pi/2) = 3/2\pi$
 $\arcsin 1 = \pi/2$

4.6.2 Auflösung der Gleichung $y = \cos x$ nach x

Gegeben: $y_0 \in [-1, 1]$

Gesucht: Sämtliche $x \in \mathbb{R}$ mit $\cos x = y_0$

Einschränkung auf $[0, \pi]$, dort ist $\cos x$ streng monoton fallend (also umkehrbar).

Definition:

$$\arccos x := \cos x|_{[0,\pi]}^{-1}$$

1. Grundlösung

$$x_1 = \arccos y_0 \quad (\in [0, \pi])$$

2. Grundlösung

Falls x das Intervall $[0, \pi]$ durchläuft, so durchläuft $2\pi - x$ das Intervall $[\pi, 2\pi]$. Wegen $\cos(2\pi - x) = \cos x$ erhält man die 2. Grundlösung im Intervall $[\pi, 2\pi]$ in der Gestalt $x_2 = 2\pi - x_1$.

Ergebnis:

Die beiden Grundlösungen der Gleichung $\cos x = y_0$ sind:

$$x_1 = \arccos y_0, \ x_2 = 2\pi - x_1.$$

Sämtliche Lösungen erhält man in der Gestalt $x_i + 2k\pi, k \in \mathbb{Z}, i = 1, 2.$

Spezialfälle:

$$y_0 = 1$$
: $x_1 = 0$, $x_2 = 2\pi - x_1 = 2\pi$
 $y_0 = -1$: $x_1 = \pi$, $x_2 = 2\pi - \pi = \pi = x_1$

4.6.3 Auflösung der Gleichung $y = \tan x$ nach x

Gegeben: $y_0 \in \mathbb{R}$

Gesucht: Sämtliche $x \in \mathbb{R}$ mit $\tan x = y_0$

Einschränkung auf $(-\pi/2, \pi/2)$, dort ist tan x streng monoton wachsend.

Definition:

$$\arctan x := \tan \left| \frac{-1}{(-\pi/2, \pi/2)} \right|$$

Ergebnis:

Die Gleichung tan $x = y_0$ mit $y_0 \in \mathbb{R}$ hat in $(-\pi/2, \pi/2)$ genau eine Lösung: $x_1 = \arctan y_0$. Sämtliche Lösungen erhält man in der Gestalt $x_1 + k\pi$, $k \in \mathbb{Z}$.

Es gilt:
$$\arctan 1 = \pi/4$$
, $\lim_{x \to \pm \infty} \arctan x = \pm \pi/2$

Bemerkungen:

- 1. Die Gleichung cot $x = y_0$ löst man mittels der Gleichung tan $x = 1/y_0$.
- 2. Bei der Umkehrung der trigonometrischen Funktionen liefern Taschenrechner i. d. R. die mit x_1 bezeichneten Werte.

4.6.4 Trigonometrische Gleichungen

Lösungsweg:

- (A) Vereinfachung der Argumente
- (B) Zurückführung auf eine Gleichung für eine einzige trigonometrische Funktion
- (C) Auflösung nach dieser Funktion
- (D) Auflösung nach den betreffenden Argumentwerten
- (E) Falls erforderlich, Kontrolle durch Einsetzen der erhaltenen Werte in die Ausgangsgleichung

Beispiele:

```
1. \cos x + \cos 2x = 0 (*)

Lösung:

(A), (B) \cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1

Eingesetzt in (*): 2\cos^2 x + \cos x - 1 = 0

(C) Subst. z = \cos x: 2z^2 + z - 1 = 0 \Rightarrow z_1 = 1/2, z_2 = -1

(D) z_1 = \cos x = 1/2: x_{1,k} = \pi/3 + 2k\pi, \ x_{2,k} = 5/3\pi + 2k\pi, \ k \in \mathbb{Z}

z_2 = \cos x = -1: x_{3,k} = (2k+1)\pi, \ k \in \mathbb{Z}

Kontrolle zeigt: x_{i,k}, \ k \in \mathbb{Z}, \ i = 1, 2, 3, sind Lösungen von (*).
```

Da sowohl $\cos x$ als auch $\cos 2x$ 2π -periodisch ist und nach $\cos x$ aufgelöst wird, hätte man die Diskussion auch auf das Intervall $[0, 2\pi)$ beschränken können.

```
2. \sin x + \cos x = 1 (**)

\cos x = \pm \sqrt{1 - \sin^2 x} \Rightarrow \sin x \pm \sqrt{1 - \sin^2 x} = 1

Subst. z = \sin x: \pm \sqrt{1 - z^2} = 1 - z \Rightarrow 1 - z^2 = 1 - 2z + z^2

\Leftrightarrow 2z(z-1) = 0 \Rightarrow z_1 = 0, z_2 = 1

z_1 = \sin x = 0 \Rightarrow x_{1,k} = k\pi, k \in \mathbb{Z}

z_2 = \sin x = 1 \Rightarrow x_{2,k} = \pi/2 + 2k\pi, k \in \mathbb{Z}

In (**) eingesetzt:

x_{1,k}: \sin k\pi + \cos k\pi = (-1)^k

x_{2,k}: \sin((1/2 + 2k)\pi) + \cos((1/2 + 2k)\pi) = 1

\Rightarrow x_{1,2k} = 2k\pi \text{ und } x_{2,k} = \pi/2 + 2k\pi, k \in \mathbb{Z}, \text{ sind Lösungen von (**)}.
```

4.7 Hyperbelfunktionen (*)

4.7.1 Definition

Sinus hyperbolicus: $y = \sinh x = \frac{1}{2} \cdot (e^x - e^{-x})$

Cosinus hyperbolicus: $y = \cosh x = \frac{1}{2} \cdot (e^x + e^{-x})$

Tangens hyperbolicus: $y = \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Cotangens hyperbolicus: $y = \coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$

4.7.2 Eigenschaften

	$\sinh x$	$\cosh x$	$\tanh x$	$\coth x$
Definitionsbereich	\mathbb{R}	\mathbb{R}	\mathbb{R}	$\mathbb{R}\setminus\{0\}$
Wertebereich	\mathbb{R}	\mathbb{R} $[1,\infty)$		$\mathbb{R}\setminus[-1,1]$
Nullstellen	0	keine	0	keine
Asymptotik $x \to \infty$	$\approx 1/2 \cdot e^x$	$\approx 1/2 \cdot e^x$ $\approx 1/2 \cdot e^x$		$\rightarrow 1$
Asymptotik $x \to -\infty$	$\approx -1/2 \cdot e^{-x}$	$\approx 1/2 \cdot e^{-x}$	$\rightarrow -1$	$\rightarrow -1$
Monotonie (str.)	wachsend	$(-\infty,0]$ fallend	wachsend	$(-\infty,0),(0,\infty)$
Monotonie (str.)		$[0,\infty)$ wachsend		fallend
Extremwerte	keine	Minimum in $(0,1)$	keine	keine
Wendepunkte	(0,0)	keine	(0,0)	keine
Symmetrie	unger.	gerade	unger.	unger.
Ableitung	$\cosh x$	$\sinh x$	$\frac{1}{\cosh^2 x}$	$\frac{-1}{\sinh^2 x}$

4.8 Areafunktionen (*)

4.8.1 Definition und Darstellung mit Hilfe der Logarithmusfunktion

Die Area-Funktionen sind die Umkehrfunktionen der Hyperbelfunktionen (im Fall des cosh x beschränkt man sich auf die Menge der nichtnegativen reellen Zahlen).

Darstellung mit Hilfe der Logarithmusfunktion

Area sinus hyperbolicus: $\operatorname{arsinh} x = \ln(x + \sqrt{x^2 + 1})$ für $x \in \mathbb{R}$

Area cosinus hyperbolicus: $\operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1})$ für $x \ge 1$

Area tangens hyperbolicus: $\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \text{ für } |x| < 1$

Area cotangens hyperbolicus: $\operatorname{arcoth} x = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right) \text{ für } |x| > 1$

4.8.2 Eigenschaften

	arsinh x	$\operatorname{arcosh} x$	$\operatorname{artanh} x$	$\operatorname{arcoth} x$
Definitionsbereich	\mathbb{R}	$[1,\infty)$	(-1,1)	$\mathbb{R}\setminus[-1,1]$
Wertebereich	\mathbb{R}	$[0,\infty)$	\mathbb{R}	$\mathbb{R}\setminus\{0\}$
Nullstellen	0	1	0	keine
$\lim_{x\to\infty}$	∞	∞	_	0
$\lim_{x \to -\infty}$	$-\infty$	_	_	0
Monotonie (str.)	wachsend	wachsend	wachsend	fallend in $(-\infty, -1)$ in $(1, \infty)$
Wendepunkte	(0,0)	keine	(0,0)	keine
Symmetrie	unger.	_	unger.	unger.
Ableitung	$\frac{1}{\sqrt{x^2+1}}$	$\frac{1}{\sqrt{x^2 - 1}}$	$\frac{1}{1-x^2}$	$\frac{1}{1-x^2}$

5 Grenzwert von Funktionen

5.1 Definitionen und Beispiele

Für stetige Funktionen gilt bekanntlich (s. § 6.1) $\lim_{n\to\infty} f(x_n) = f(x_0)$, wenn $\{x_n\}$ eine beliebige Folge aus D_f mit $\lim_{n\to\infty} x_n = x_0$ ist und $x_0 \in D_f$. Wir interessieren uns daher hier für das Verhalten von f in der Nähe von Definitionslücken.

Beispiel:

1.
$$f(x) = \frac{\sin x}{x}$$
, $D_f = \mathbb{R} \setminus \{0\}$, $x_0 = 0$, $x_n = 2^{-n+1}$

Definition: Funktionsgrenzwert

Die Funktion f hat an der Stelle x_0 den Grenzwert $G \in \mathbb{R}$, wenn für jede gegen x_0 konvergierende Folge $\{x_n\}$ aus dem Definitionsbereich von f die Folge der zugehörigen Funktionswerte $\{f(x_n)\}$ den Grenzwert G besitzt.

Man schreibt dann

$$\lim_{x \to x_0} f(x) = G \quad \text{oder} \quad f(x) \to G \quad \text{für} \quad x \to x_0 \quad .$$

Beispiele:

2.
$$f(x) = \sin(\pi/x)$$
, $D_f = \mathbb{R} \setminus \{0\}$, $x_0 = 0$

Nullstellen von
$$f: 1, 1/2, 1/3, \ldots, x_n = 1/n \quad x_n \to 0 \quad (n \to \infty)$$

 $f(x_n) = 0 \ \forall n \in \mathbb{N} \Rightarrow f(x_n) \to 0 \quad (n \to \infty)$

Maximumstellen von
$$\sin x$$
: $1/2\pi$, $5/2\pi$, $9/2\pi$, ..., $\{v_n\} = \{2, 2/5, 2/9, ...\} \Rightarrow v_n \to 0 \quad (n \to \infty)$
 $f(v_n) = 1 \ \forall n \in \mathbb{N} \Rightarrow f(v_n) \to 1 \quad (n \to \infty)$

Minimumstellen von $\sin x$: $3/2\pi, 7/2\pi, 11/2\pi, \dots, \{w_n\} = \{2/3, 2/7, 2/11, \dots\} \Rightarrow w_n \to 0 \quad (n \to \infty)$ $f(w_n) = -1 \ \forall n \in \mathbb{N} \Rightarrow f(w_n) \to -1 \quad (n \to \infty)$

Ergebnis: f besitzt an der Stelle $x_0 = 0$ keinen Grenzwert!

3.
$$f(x) = x \cdot \sin(\pi/x), \quad D_f = \mathbb{R} \setminus \{0\}, \ x_0 = 0$$
$$|f(x)| = |x \cdot \sin(\pi/x)| = |x| |\sin(\pi/x)| \le |x|$$
$$-|x| \le x \cdot \sin(\pi/x) \le |x|$$
$$\Rightarrow \lim_{x \to 0} x \sin(\pi/x) = 0$$

4.
$$f(x) = \operatorname{sgn}(x) := \begin{cases} 1 & \text{für } x > 0 \\ 0 & \text{für } x = 0 \end{cases}$$
 Vorzeichen- oder Signum-Funktion
Es gilt $f(x) = \frac{x}{|x|}$ für $x \neq 0$.

Die Funktion f besitzt für $x_0 = 0$ keinen Grenzwert, es existieren jedoch die einseitigen Grenzwerte $G_L = -1$ und $G_R = 1$.

Definition: Linksseitiger und rechtsseitiger Grenzwert

Die Funktion f hat an der Stelle x_0 den linksseitigen Grenzwert G_L (rechtsseitigen Grenzwert G_R), wenn bei beliebiger Annäherung an die Stelle x_0 von links her (von rechts her) die Folge der Funktionswerte konvergiert:

$$\lim_{x \to x_0 -} f(x) = G_L \qquad (\lim_{x \to x_0 +} f(x) = G_R)$$

Dabei bedeutet " $x \to x_0$ " ausführlicher " $x \to x_0$ und $x < x_0$ " eine Annäherung von links an die Stelle x_0 . Entsprechend bedeutet " $x \to x_0$ +" eine Annäherung von rechts.

Aus den Definitionen folgt unmittelbar, daß die Funktion f an der Stelle x_0 den Grenzwert G genau dann besitzt, wenn linksseitiger Grenzwert G_L und rechtsseitiger Grenzwert G_R existieren und gleich sind: $G = G_L = G_R$.

Beweis zu $\lim_{x\to 0} \frac{\sin x}{x} = 1$:

 $f(x) = \frac{\sin x}{x}$ ist gerade, es genügt also, das Verhalten für $x \to 0+$ zu untersuchen.

Flächenbetrachtung am Einheitskreis:

$$\begin{array}{lll} \overline{OB} = \overline{OC} = 1, & \sin x = \overline{AB}, & \cos x = \overline{OA}, & \tan x = \overline{CD} \\ A_{\Delta OAB} & < & A_{Sektor} & < & A_{\Delta OCD} \\ 1/2\sin x\cos x & < & 1/2x & < & 1/2\frac{\sin x}{\cos x} \\ & \frac{1}{\cos x} & > & \frac{x}{\sin x} & > & \cos x & (\ddot{\text{U}}\text{bergang zu den Kehrwerten}) \\ \cos x & < & \frac{\sin x}{x} & < & \frac{1}{\cos x} & (\text{Grenz\"{u}}\text{bergang } x \to 0+) \\ & 1 & \leq & \lim_{x \to 0+} \frac{\sin x}{x} & \leq & 1 \end{array}$$

Definition: Uneigentlicher Grenzwert einer Funktion

Die Funktion f hat an der Stelle x_0 den linksseitigen (rechtsseitigen) uneigentlichen Grenzwert $+\infty$ bzw. $-\infty$, wenn für jede von links (von rechts) gegen x_0 konvergierende Folge $\{x_n\}$ die Folge der Funktionswerte $\{f(x_n)\}$ den uneigentlichen Grenzwert $+\infty$ bzw. $-\infty$ besitzt.

Beispiel:

5.
$$R(x) = \frac{2x - 5}{x - 3}$$
, $x_0 = 3$
 $x \to 3+: \{x_n\}$ beliebig gewählt mit $x_n > 3$ und $x_n \to 3$ für $n \to \infty$
 $Z(x_n) \to 1$, $N(x_n) \to 0+ \Rightarrow R(x_n) \to \infty$ (nach GWS)
 $x \to 3-: \{x_n\}$ beliebig gewählt mit $2.5 < x_n < 3$ und $x_n \to 3$ für $n \to \infty$
 $Z(x_n) \to 1$, $N(x_n) \to 0-$ für $n \to \infty \Rightarrow R(x_n) \to -\infty$ (nach GWS)

R Besitzt an der Stelle $x_0 = 3$ den uneigentlichen rechtsseitigen Grenzwert ∞ und den uneigentlichen linksseitigen Grenzwert $-\infty$.

Verhalten für $|x| \to \infty$

Definition: Grenzwert für $x \to \pm \infty$

Die Funktion f hat für $x \to \infty$ den Grenzwert G, wenn zu jeder Zahl $\epsilon > 0$ eine Zahl $M(\epsilon)$ existiert, so daß $|f(x) - G| < \epsilon$ für alle x > M. Schreibweise: $\lim_{x \to \infty} f(x) = G$ oder $f(x) \to G$ für $x \to \infty$ (für $x \to -\infty$ entsprechend)

Es gilt
$$|f(x) - G| < \varepsilon \iff G - \varepsilon < f(x) < G + \varepsilon$$

Beispiele:

6.
$$\frac{\sin x}{x}$$
, $x \to \infty$
wegen $\left| \frac{\sin x}{x} \right| = \frac{|\sin x|}{|x|} \le \frac{1}{|x|}$
gilt $\lim_{x \to \infty} \frac{\sin x}{x} = 0$

7.
$$\lim_{x \to \infty} e^{-x} \sin x = 0$$

wegen $\left| e^{-x} \sin x \right| \le e^{-x}$ und $e^{-x} \to 0 \ (x \to \infty)$.

5.2 Rechnen mit Grenzwerten von Funktionen

Grenzwertsätze:

Es sei $x_0 \in \mathbb{R} \cup \{-\infty, \infty\}$; u und v seien Funktionen mit $\lim_{x \to x_0} u(x) = U$ und $\lim_{x \to x_0} v(x) = V$, $U, V \in \mathbb{R}$. Dann gilt:

1.
$$\lim_{x \to x_0} [u(x) \pm v(x)] = \lim_{x \to x_0} u(x) \pm \lim_{x \to x_0} v(x) = U \pm V$$

2.
$$\lim_{x \to x_0} [u(x) \cdot v(x)] = \lim_{x \to x_0} u(x) \cdot \lim_{x \to x_0} v(x) = U \cdot V$$

3.
$$\lim_{x \to x_0} \frac{u(x)}{v(x)} = \lim_{x \to x_0} u(x) / \lim_{x \to x_0} v(x) = \frac{U}{V}$$
 (falls $v(x), V \neq 0$)

Beispiele:

1.
$$\lim_{x \to 0} \frac{3x - 1}{2x + 2} = \frac{\lim_{x \to 0} 3x - 1}{\lim_{x \to 0} 2x + 2} = -1/2$$

2.
$$\lim_{x \to \infty} \frac{3x - 1}{2x + 2} = \lim_{x \to \infty} \frac{3 - 1/x}{2 + 2/x} = 3/2$$

Ergänzungen zu den Grenzwertsätzen

Regel:

Falls
$$u(x) \to a$$
 und $v(x) \to \infty$ für $x \to x_0$, dann gilt: $u(x) + v(x) \to \infty$ für $-\infty < a \le \infty$ $u(x) \cdot v(x) \to \infty$ für $0 < a \le \infty$

Diese und weitere Regeln lassen sich in suggestiver Kurzform notieren als:

$$\begin{split} a &\pm \infty = \pm \infty + a = \pm \infty \text{ , falls } a \in \mathbb{R} \text{ , } \\ \infty &+ \infty = \infty \text{ , } \\ a &\cdot (\pm \infty) = \pm \infty \text{, falls } a > 0 \text{ , } \\ a &\cdot (\pm \infty) = \mp \infty \text{, falls } a < 0 \text{ , } \end{split}$$

$$\begin{array}{l} \infty\cdot\infty=(-\infty)\cdot(-\infty)=\infty\;,\\ \infty\cdot(-\infty)=(-\infty)\cdot\infty=-\infty\;, \end{array}$$

$$\frac{1}{\pm \infty} = 0 \text{ und } \frac{1}{0\pm} = \pm \infty.$$

Unbestimmte Ausdrücke wie $\frac{"_0"}{0}$, $\frac{"_\infty"}{\infty}$, " $\infty - \infty$ ", " $0 \cdot \infty$ " siehe Kapitel 11 (Regeln von Bernoulli und de L'Hospital)

hier: Abhilfe durch geeignete Umformungen.

Beispiele:

1.
$$\lim_{x \to -1} \frac{x^3 + x^2 - 4x - 4}{x^2 - 1}$$

Abhilfe: Linearfaktor x + 1 in Zähler und Nenner abspalten und kürzen.

$$\lim_{x \to -1} \frac{x^3 + x^2 - 4x - 4}{x^2 - 1} = \lim_{x \to -1} \frac{(x+1)(x^2 - 4)}{(x+1)(x-1)} = \lim_{x \to -1} \frac{x^2 - 4}{x - 1} = 3/2$$

2.
$$\lim_{x \to \infty} (\sqrt{x^2 + 2} - \sqrt{x^2 + 3x})$$

Abhilfe: Erweitern mit $\sqrt{} + \sqrt{}$ gibt:

$$\frac{(\sqrt{x^2+2}-\sqrt{x^2+3x})(\sqrt{x^2+2}+\sqrt{x^2+3x})}{\sqrt{x^2+2}+\sqrt{x^2+3x}} = \frac{x^2+2-x^2-3x}{\sqrt{x^2+2}+\sqrt{x^2+3x}} = \frac{2-3x}{x\sqrt{1+2/x^2}+x\sqrt{1+3/x}} = \frac{2/x-3}{\sqrt{1+2/x^2}+\sqrt{1+3/x}} \to -3/2 \quad \text{für } x \to \infty$$

5.3 Asymptotisches Verhalten von Funktionen

Senkrechte Asymptoten

Existiert für eine Funktion f an der Stelle x_0 ein rechts- oder linksseitiger uneigentlicher Grenzwert

$$\lim_{x \to x_0 +} f(x) \in \{+\infty, -\infty\} \quad \text{bzw.} \quad \lim_{x \to x_0 -} f(x) \in \{+\infty, -\infty\} \quad ,$$

so ist x_0 eine Unendlichkeitsstelle von f; die Funktionskurve hat die Gerade $x = x_0$ als senkrechte Asymptote.

Polstellen

Eine Unendlichkeitsstelle, an der sowohl der rechts- als auch der linksseitige Grenzwert uneigentlich ist, heißt Polstelle oder Pol. Man unterscheidet Pole ohne und mit Vorzeichenwechsel, je nachdem ob die uneigentlichen Grenzwerte gleiches oder verschiedenes Vorzeichen haben.

Asymptotische Näherungskurven für $x \to \pm \infty$

Existiert für eine Funktion f die Darstellung

$$f(x) = g(x) + r(x)$$
 mit $r(x) \to 0$ für $x \to +\infty$ $(x \to -\infty)$,

so ist y = g(x) Gleichung einer asymptotischen Näherungskurve der Funktion f für $x \to +\infty$ $(x \to -\infty)$. Man schreibt $f \approx g$.

Waagrechte Asymptoten

$$\lim_{x\to\pm\infty}f(x)=c, c\in\mathbb{R}\quad\Leftrightarrow\quad y=c \text{ ist waagrechte Asymptote für } x\to\pm\infty$$

Beispiele:

1.
$$f(x) = \frac{2x-5}{x-3} = \frac{2x-6+1}{x-3} = 2 + \frac{1}{x-3} \to 2$$
 für $x \to \pm \infty$

2.
$$f(x) = \frac{x^3 - 3x + 5}{x - 2} = x^2 + 2x + 1 + \frac{7}{x - 2}$$

$$\frac{x^3 - 3x + 5}{x - 2} \approx x^2 + 2x + 1 \text{ für } x \to \pm \infty$$

6 Stetigkeit

6.1 Definitionen und Beispiele

Definition:

Es sei $D \subseteq \mathbb{R}$ mit $x_0 \in D$. Dann heißt die Funktion $f: D \to \mathbb{R}$ **stetig** in x_0 , wenn $\lim_{x \to x_0} f(x) = f(x_0)$ gilt. Die Funktion f heißt stetig in $M, M \subseteq D$, wenn sie in jedem $x \in M$ stetig ist. Gilt M = D, so heißt f (global) stetig.

Beispiele:

1. f(x) = |x| ist stetig

2. $f(x) = \begin{cases} 1 \text{ falls } x \neq 0 \\ 0 \text{ falls } x = 0 \end{cases}$ ist stetig auf $\mathbb{R} \setminus \{0\}$

3. f(x) = x, x^2 , x^3 , ..., \sqrt{x} , $\sqrt[3]{x}$, ... sind stetig

Sätze über stetige Funktionen

Es seien D_f , $D_g \subseteq \mathbb{R}$, $x_0 \in D_f \cap D_g$; die Funktionen $f: D_f \to \mathbb{R}$, $g: D_g \to \mathbb{R}$ seien stetig in x_0 .

Dann sind die Funktionen $f \pm g$, $f \cdot g$ und $\frac{f}{g}(g(x_0) \neq 0 \text{ vorrausgesetzt})$ stetig in x_0 . Folgerung: Die ganz- und gebrochenrationalen Funktionen sind stetig.

Die Funktionen sin und cos sind stetig.

Folgerung: Die Funktionen $\tan = \frac{\sin}{\cos}$ und $\cot = \frac{\cos}{\sin}$ sind stetig.

Die Funktionen a^x und $\log_a x \ (a > 0, \ a \neq 1)$ sind stetig.

Stetigkeit verketteter Funktionen

Es seien D_f , $D_g \subseteq \mathbb{R}$, $x_0 \in D_f$, $f: D_f \to \mathbb{R}$ sei stetig in x_0 und $f(x_0) \in D_g$, $g: D_g \to \mathbb{R}$ sei stetig in $f(x_0)$.

Dann ist $g \circ f$ stetig in x_0 .

Beispiel:

 $f(x) = \sin(x^3 + 6x)$ ist stetig, $f(x) = \ln(1 - x^2)$ ist stetig auf (-1,1).

6.2 Unstetigkeitsstellen

Die Funktion f sei an der Stelle x_0 definiert, aber dort nicht stetig; man sagt dann, f sei unstetig (in x_0).

Dies kann u.a. folgende Gründe haben:

- 1. $\lim_{x \to x_0} f(x)$ existiert in \mathbb{R} , ist aber verschieden von $f(x_0)$. Durch Abändern des Funktionswertes bei x_0 zu $\lim_{x \to x_0} f(x)$ wird f stetig in x_0 (hebbare Unstetigkeitsstelle).
- 2. Die einseitigen Grenzwerte $\lim_{x \to x_0-} f(x)$ und $\lim_{x \to x_0+} f(x)$
 - a) existieren in \mathbb{R} , sind aber verschieden (**Sprungstelle**)
 - b) sind beide uneigentlich (Pol).

Beispiele:

- 1. Siehe 6.1 Beispiel 2: f läßt sich an der Stelle $x_0 = 0$ stetig ergänzen. $\widetilde{f}(x) = 1 \ \forall x \in \mathbb{R}$ ist die **stetige Ergänzung** zu f.
- 2. Oft werden auch Definitionslücken fälschlicherweise als Unstetigkeitsstellen bezeichnet. Dort ist aber die betrachtete Funktion gar nicht definiert, die Frage nach der Stetigkeit stellt sich also an einer solchen Stelle gar nicht! Natürlich kann man auch hier nach der stetigen Ergänzung fragen:

$$f(x) = \frac{\sin x}{x}$$
, $D_f = \mathbb{R} \setminus \{0\}$

$$\widetilde{f}(x) = \left\{ \begin{array}{l} \frac{\sin x}{x} \text{ für } x \in \mathbb{R} \setminus \{0\} \\ 1 \text{ für } x = 0 \end{array} \right. \text{ ist die stetige Ergänzung zu } f$$

3.
$$f(x) = \begin{cases} \frac{x^2 + |x|}{x} & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases} = \begin{cases} \frac{x^2 + x}{x} = x + 1 & \text{für } x > 0 & \xrightarrow{x \to 0+} 1 \\ 0 & \text{für } x = 0 \\ \frac{x^2 - x}{x} = x - 1 & \text{für } x < 0 & \xrightarrow{x \to 0-} -1 \end{cases}$$

 $x_0 = 0$ ist Sprungstelle

6.3 Eigenschaften stetiger Funktionen

Satz:

Die Funktion $f: D \to \mathbb{R}$ sei stetig in [a, b]. Dann gilt:

- 1. f ist beschränkt;
- 2. f nimmt jeden Wert zwischen f(a) und f(b) an;
- 3. gilt $f(a) \cdot f(b) < 0$, dann hat f mindestens eine Nullstelle in [a, b];

4. f besitzt in [a,b] einen größten (absolutes Maximum) und einen kleinsten Wert (absolutes Minimum).

Voraussetzung [a, b] abgeschlossen ist wesentlich! f(x) = 1/x stetig in (0, 1], aber nicht beschränkt.

7 Differenzierbarkeit und Ableitung

7.1 Ableitung einer Funktion

Beispiel:

Gegeben sei $y = f(x) = x^2$.

Gesucht: Steigung der Kurventangente im Kurvenpunkt $P(0.5\,,\,0.25)$

1. Schritt:

Wähle $Q \neq P$ in der Umgebung von P auf der Kurve.

 Δx : Abszissendifferenz, Δy : Ordinatendifferenz

Die Sekante durch die Punkte P und Q besitzt die Steigung

$$m_s = \frac{\Delta y}{\Delta x} = \frac{(0.5 + \Delta x)^2 - 0.5^2}{\Delta x} = \frac{\Delta x + (\Delta x)^2}{\Delta x} = 1 + \Delta x$$

2. Schritt:

$$Q \to P$$
 auf der Parabel, d.h. $\Delta x \to 0$
 $m_t = \tan \tau = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} (1 + \Delta x) = 1$

Allgemein:

y = f(x). Gesucht: Steigung der Tangente an der Kurve der Funktion f an der Stelle x_0 .

1.

$$m_s = \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 "Differenzenquotient"

2.

$$m_t = \tan \tau = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Definition:

Existiert der Grenzwert $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = A$ in \mathbb{R} , so heißt A Ableitung der Funktion f an der Stelle x_0 ; die Funktion f heißt dann differenzierbar an der Stelle x_0 . A ist die Steigung der Kurventangente im Punkt $P_0(x_0, f(x_0))$; es gilt: $A = m_t = \tan \tau$.

Bezeichnungen und Schreibweisen

$$A = f'(x_0) = y'(x_0) = \frac{df}{dx} \Big|_{x_0} = \frac{dy}{dx} \Big|_{x_0} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \Big|_{x_0}$$
$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Die Sekantensteigung $\frac{\Delta y}{\Delta x}$ heißt **Differenzenquotient**, der Grenzwert (Tangentensteigung) $\frac{dy}{dx}$ heißt **Differentialquotient**.

Ableitungsfunktion

Ist y = f(x) für alle x im Intervall I = (a, b) differenzierbar, so heißt f differenzierbar im Intervall I. Die Ableitungsfunktion oder kurz Ableitung y' = f'(x) ordnet den Argumenten $x \in I$ die Werte der Tangentensteigung der Kurve y = f(x) im Kurvenpunkt P(x, f(x)) zu.

Differenzierbarkeit einer Funktion f an der Stelle x_0 bedeutet, daß die Bildkurve an dieser Stelle eine **eindeutig bestimmte** Tangente mit **endlicher** Steigung besitzt.

7.2 Grundformeln und Beispiele

Beispiele:

1.
$$y = f(x) = a$$
 (a const.), $\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{a - a}{\Delta x} = 0 \implies y' = 0$

2.
$$y = f(x) = x$$
, $\frac{\Delta y}{\Delta x} = \frac{x + \Delta x - x}{\Delta x} = 1 \implies y' = 1$

3.
$$y = f(x) = x^2$$
, $\frac{\Delta y}{\Delta x} = \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \frac{2x\Delta x + (\Delta x)^2}{\Delta x} = 2x + \Delta x \implies y' = 2x$

4.
$$y = f(x) = x^n$$
, $\frac{\Delta y}{\Delta x} = \frac{(x + \Delta x)^n - x^n}{\Delta x} = \frac{nx^{n-1}\Delta x + (\Delta x)^2(\binom{n}{2}x^{n-2} + \cdots)}{\Delta x}$
= $nx^{n-1} + \underbrace{\Delta x(\cdots)}_{\to 0} \Rightarrow y' = nx^{n-1}$

Potenzregel: Die allgemeine Potenzfunktion $y = x^a$, $a \in \mathbb{R}$, ist differenzierbar auf ihrem Definitionsbereich und es gilt:

$$(x^a)' = ax^{a-1}$$

5.
$$y = f(x) = x^{3/2}$$
, $D_f = [0, \infty)$

$$\lim_{\Delta x \to 0+} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0+} \frac{(\Delta x)^{3/2}}{\Delta x} = \lim_{\Delta x \to 0+} \sqrt{\Delta x} = 0$$

6.
$$y = f(x) = \sqrt{x}$$

$$\lim_{\Delta x \to 0+} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0+} \frac{\sqrt{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0+} \frac{1}{\sqrt{\Delta x}} = +\infty$$

d.h. die Quadratwurzelfunktion besitzt im Ursprung eine senkrechte Tangente.

7.
$$y = f(x) = |x|$$
 ist stetig auf \mathbb{R} , $x_0 = 0$

$$\lim_{\Delta x \to 0^-} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^-} -\frac{\Delta x}{\Delta x} = -1$$

$$\lim_{\Delta x \to 0^+} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{\Delta x}{\Delta x} = 1$$

$$\Rightarrow \text{ Die einseitigen Grenzwerte sind verschieden, also ist die Funktion } y = |x| \text{ nicht}$$

differenzierbar an der Stelle $x_0 = 0$.

Folgerung: Nicht jede stetige Funktion ist auch differenzierbar.

Die Umkehrung gilt jedoch: Ist f an der Stelle x_0 differenzierbar, so ist f an der Stelle x_0 stetig.

Beweis:

$$f(x) - f(x_0) = \underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\to f'(x_0)} \underbrace{(x - x_0)}_{\to 0} \xrightarrow{x \to x_0} 0$$

d.h. f ist stetig in x_0

7.3 Höhere Ableitungen

Bezeichnung und Schreibweisen:

$$y = f(x) = f^{(0)}(x)$$

$$y' = f'(x) = \frac{df}{dx} = \frac{dy}{dx}$$

$$(y')' = y'' = f''(x) = \frac{d^2f}{dx^2} = \frac{d^2y}{dx^2}$$

1. Ableitung, die Ableitung

$$(y')' = y'' = f''(x) = \frac{d^3f}{dx^2} = \frac{d^3g}{dx^2}$$

2. Ableitung

 $y''' = f'''(x) = \frac{d^3 f}{dx^3} = \frac{d^3 y}{dx^3}$ 3. Ableitung \vdots $y^{(n)} = f^{(n)} = \frac{d^n f}{dx^n} = \frac{d^n y}{dx^n}$ n-te Ableitung

Beispiele:

1.
$$y = x^{n}, n \in \mathbb{N}$$

 $y' = nx^{n-1}$
 $y'' = n \cdot (n-1)x^{n-2}$
 $y''' = n \cdot (n-1)(n-2)x^{n-3}$
 \vdots
 $y^{(n-1)} = n(n-1) \cdot \dots \cdot 2x$
 $y^{(n)} = n!$

2.
$$y = \cos x$$
, $y' = -\sin x$, $y'' = -\cos x$, $y''' = \sin x$, $y^{(4)} = \cos x$, $y^{(5)} = -\sin x$, ...

Definition: Eine Funktion $f: D \to \mathbb{R}$, heißt stetig differenzierbar auf $(a,b) \subseteq D$, falls f auf (a, b) differenzierbar und f' auf (a, b) stetig ist.

In der Physik

$$x(t) (t \text{ Zeit})$$

$$\dot{x}(t) = \frac{dx}{dt}$$

$$\ddot{x}(t) = \frac{d^2x}{dt^2}$$

Beispiel:

Ein Massepunkt bewege sich längs einer Geraden:

mittlere Geschwindigkeit:
$$\bar{v} = \frac{\Delta s}{\Delta t} = \frac{s(t + \Delta t) - s(t)}{\Delta t}$$

mittlere Geschwindigkeit:
$$\bar{v} = \frac{\Delta s}{\Delta t} = \frac{s(t + \Delta t) - s(t)}{\Delta t}$$
(Momentan-) Geschwindigkeit: $v(t) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t}$

d.h.
$$v = \dot{s}(t) = \frac{ds}{dt}$$

mittlere Beschleunigung:
$$\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v(t + \Delta t) - v(t)}{\Delta t}$$
(Momentan) Boschleunigung:

(Momentan-) Beschleunigung

$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} = \dot{v}(t) = \ddot{s}(t)$$

Anwendung freier Fall:

Weg-Zeit-Gesetz:
$$s(t) = 1/2gt^2$$
, g Erdbeschleunigung

$$v(t) = \dot{s}(t) = g \cdot t, \ a(t) = \dot{v}(t) = \ddot{s}(t) = g$$

7.4 Ableitungsregeln

7.4.1 Faktor-, Summen-, Produkt- und Quotientenregel

- a) [cf]' = cf' Faktorregel
- b) [u+v]' = u' + v' Summenregel
- c) $[u \cdot v]' = u' \cdot v + u \cdot v'$ Produktregel
- d) $\left[\frac{u}{v}\right]' = \frac{u' \cdot v u \cdot v'}{v^2}$ Quotientenregel

Beispiele:

- 1. $(-6e^x)' = -6 \cdot (e^x)' = -6e^x$
- 2. $(ax^2 + bx + c)' = (ax^2)' + (bx)' + (c)' = a(x^2)' + b(x)' = 2ax + b$
- 3. $(\sin x \cos x)' = (\sin x)' \cos x + \sin x (\cos x)' = \cos^2 x \sin^2 x$
- 4. $(\tan x)' = (\frac{\sin x}{\cos x})' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$

Speziell: $\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$

7.4.2 Kettenregel

Die Ableitung von y=f[u(x)] nach x erhält man in Differentialschreibweise in der Form

$$y'(x) = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$$

(Produnkt aus äußerer $f'(u) = \frac{df}{du}$ und innerer Ableitung $u'(x) = \frac{du}{dx}$).

Beispiele:

1.
$$y = f(u(x)) = \tan(3x)$$

Subst.: $u = u(x) = 3x$, innere Funktion $u = u(x) = 3x$, $u'(x) = 3$
 $y = f(u) = \tan u$, äußere Funktion $y = f(u) = \tan u$, $f'(u) = \frac{1}{\cos^2 u}$
 $\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dx} = \frac{1}{\cos^2 u} \cdot 3 = \frac{3}{\cos^2(3x)}$

2.
$$y = (5x^2 - 7)^9$$
, Subst. $u(x) = 5x^2 - 7$
innere Funktion: $u = u(x) = 5x^2 - 7$, $u'(x) = \frac{du}{dx} = 10x$
äußere Funktion: $y(u) = u^9$, $y' = 9u^8$
 $f'(x) = 10x \cdot 9u^8 = 10x \cdot 9(5x^2 - 7)^8 = 90x(5x^2 - 7)^8$

Mehrfach verkettete Funktionen

$$\frac{df(u(v(x)))}{dx} = \frac{df}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$$

denn: setze
$$f(u(v)) = g(v)$$
, $\frac{dg}{dv} = \frac{df}{du} \cdot \frac{du}{dv}$
 $\frac{df(u(v(x)))}{dx} = \frac{dg(v(x))}{dx} = \frac{dg}{dv} \cdot \frac{dv}{dx} = \frac{df}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$

Beispiel:

$$y = \ln(\sin(2x - 3))$$
1. Subst.: $v = v(x) = 2x - 3$, $y = \ln(\sin v)$
2. Subst.: $u(v) = \sin v$, $y = \ln u$

$$\frac{dy}{du} = \frac{1}{u}, \quad \frac{du}{dv} = \cos v, \quad \frac{dv}{dx} = 2$$

$$\frac{dy}{dx} = \frac{2\cos v}{u} = 2\frac{\cos v}{\sin v} = 2\cot(2x - 3)$$

7.4.3 Anwendungen der Kettenregel

Allgemeine Potenzregel

$$(x^a)' = (e^{a \ln x})' = e^{a \ln x} \cdot a \cdot \frac{1}{x} = ax^{a-1}$$

Ableitung der allgemeinen Exponential- und Logarithmusfunktion

$$(a^x)' = (e^{x \ln a})' = e^{x \ln a} \cdot \ln a = \ln a \cdot a^x$$
$$(\log_a x)' = \left(\frac{\ln x}{\ln a}\right)' = \frac{1}{\ln a} \cdot \frac{1}{x}$$

Ableitung der Umkehrfunktion

Gegeben: Die Funktion f sei differenzierbar und umkehrbar.

Gesucht: Ableitung der Umkehrfunktion $f^{-1}(x) = g(x)$

$$y = f(x)$$
, Auflösen nach x : $x = f^{-1}(y) = g(y)$

wegen $f \circ f^{-1}(y) = y$ gilt

$$f(g(y)) = y \Rightarrow f'(g(y))g'(y) = 1$$

$$f(g(y)) = y \Rightarrow f'(g(y))g'(y) = 1$$

\Rightarrow g'(y) = \frac{1}{f'(g(y))}, \text{ falls } f'(x) \neq 0

Vertauschen der Variablen liefert:

$$(f^{-1})'(x) = \frac{1}{f'(g(x))} = \frac{1}{f'(f^{-1}(x))}$$

Beispiele:

1. Herleitung der Ableitung des ln aus der Ableitung der e-Funktion.

$$y = f(x) = e^x$$
, $f'(x) = e^x$
 $x = g(y) = \ln y$

$$x = g(y) = \ln y$$

$$x = g(y) = \ln y g'(y) = \frac{1}{f'(x)} = \frac{1}{e^x} = \frac{1}{y}$$

$$\frac{a\ln x}{dx} = \frac{1}{x}$$

2. Ableitung des arctan

$$y = f(x) = \tan x, \quad f'(x) = \left(\frac{\sin x}{\cos x}\right)' = \frac{\sin^2 x + \cos^2 x}{\cos^2 x} = 1 + \tan^2 x$$

$$x = g(y) = \arctan y$$

$$x = g(y) = \arctan y$$

$$g'(y) = \frac{1}{f'(x)} = \frac{1}{1 + \tan^2 x} = \frac{1}{1 + y^2}$$

$$\frac{d \arctan x}{dx} = \frac{1}{1+x^2}$$

7.5 Anwendungen

7.5.1 Ganzrationale Funktionen

$$y = f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_n \neq 0$$

$$f'(x) = \underbrace{na_n x^{n-1}}_{\neq 0} + (n-1)a_{n-1} x^{n-2} + \dots + a_1$$

$$f''(x) = n(n-1)a_n x^{n-2} + \dots + 2a_2$$

$$f^{(n)}(x) = n(n-1)(n-2)\cdots 2 \cdot 1 \cdot a_n = n!a_n$$

$$f^{(n+1)}(x) = 0$$

7.5.2 Gebrochenrationale Funktionen

Jede gebrochen
rationale Funktion $R(x)=\frac{Z(x)}{N(x)}$ ist für alle $x\in\mathbb{R}$ mit Ausnahme der Nennernullstellen differenzierbar, R' ist wieder eine gebrochen
rationale Funktion, denn:

$$R' = \left(\frac{Z(x)}{N(x)}\right)' = \frac{Z'(x)N(x) - Z(x)N'(x)}{N^2(x)}$$
.

8 Charakteristische Kurvenpunkte

8.1 Monotonie- und Krümmungsverhalten

Monotonieverhalten differenzierbarer Funktionen

- 1. $f'(x_0) > 0 \implies f$ nimmt zu und Kurve von f steigt in einer Umgebung von x_0
- 2. $f'(x_0) < 0 \implies f$ nimmt ab und Kurve von f fällt in einer Umgebung von x_0
- 3. $f'(x_0) = 0 \Leftrightarrow \text{Kurve von } f \text{ besitzt waagrechte Tangente}$

Gilt 1. bzw. 2. für alle x in einem Intervall I, so ist f streng monoton wachsend bzw. streng monoton fallend im Intervall I.

Beispiele:

$$1. \ \ y = \frac{x^2}{1+x^2} = \frac{1+x^2-1}{1+x^2} = 1 - \frac{1}{1+x^2}$$

$$y' = \left(1 - \frac{1}{1+x^2}\right)' = \frac{2x}{(1+x^2)^2} \begin{cases} > 0 & \text{falls } x > 0 & \text{streng mon. wachsend} \\ = 0 & \text{falls } x = 0 & \text{waagerechte Tangente} \\ < 0 & \text{falls } x < 0 & \text{streng mon. fallend} \end{cases}$$

2.
$$y = e^{-x^2/2}$$

 $y' = -xe^{-x^2/2} \begin{cases} < 0 & \text{falls } x > 0 & \text{streng mon. fallend} \\ = 0 & \text{falls } x = 0 & \text{waagerechte Tangente} \\ > 0 & \text{falls } x < 0 & \text{streng mon. wachsend} \end{cases}$

Krümmungsverhalten differenzierbarer Funktionen

- 1. $f''(x_0) > 0 \implies f'$ nimmt zu, Kurve von f hat eine Linkskrümmung in einer Umgebung von x_0
- 2. $f''(x_0) < 0 \implies f'$ nimmt ab, Kurve von f hat eine Rechtskrümmung in einer Umgebung von x_0

Gilt 1. bzw. 2. für alle x in einem Intervall I, so verläuft die Funktionskurve in I als Linkskurve bzw. als Rechtskurve.

Beispiele (Forts.):

1.
$$y'' = \frac{2 - 6x^2}{(1 + x^2)^3}$$

 $y'' = 0 \Leftrightarrow 2 - 6x^2 = 0 \Leftrightarrow x = \pm \sqrt{1/3} \approx \pm 0.577$
 $y'' \begin{cases} > 0, & \text{falls } |x| < \sqrt{1/3} & \text{Linkskurve} \\ < 0, & \text{falls } |x| > \sqrt{1/3} & \text{Rechtskurve} \end{cases}$

2.
$$y'' = (x^2 - 1)e^{-x^2/2}$$
 $\begin{cases} > 0, & \text{falls } |x| > 1 \\ < 0, & \text{falls } |x| < 1 \end{cases}$ Rechtskurve

8.2 Lokale (relative) Extrema

Definition:

- 1. Die Funktion f besitzt an der Stelle x_H ein **lokales Maximum**, wenn gilt: $f(x) < f(x_H)$ für alle x aus einer Umgebung von x_H mit $x \neq x_H$. Der zugehörige Kurvenpunkt $H(x_H, f(x_H))$ ist ein **Hochpunkt**.
- 2. Die Funktion f besitzt an der Stelle x_T ein **lokales Minimum**, wenn gilt: $f(x) > f(x_T)$ für alle x aus einer Umgebung von x_T mit $x \neq x_T$. Der zugehörige Kurvenpunkt $T(x_T, f(x_T))$ ist ein **Tiefpunkt**.

Beispiele (Forts.):

1.
$$x_T = 0$$
, $f(x_T) = 0 < \frac{x^2}{1 + x^2} = f(x) \quad \forall x \in \mathbb{R}, \ x \neq 0$
d.h. f besitzt an der Stelle $x_T = 0$ ein relatives Minimum.

2.
$$-x^2/2 < 0 \quad \forall x \in \mathbb{R}, \ x \neq 0 \Rightarrow f(x) = e^{-x^2/2} < f(0) = 1$$

d.h. f besitzt an der Stelle $x_H = 0$ ein relatives Maximum.

Extrema bei differenzierbaren Funktionen

 $f'(x_E)=0$ und Vorzeichenwechsel von f'bei $x_E \Leftrightarrow$ lokales Extremum bei x_E 2 Fälle:

- 1. Vorzeichenwechsel von f' von + nach -, Übergang von Steigen zu Fallen \Rightarrow Hochpunkt
- 2. Vorzeichenwechsel von f' von nach +, Übergang von Fallen zu Steigen \Rightarrow Tiefpunkt

f' wechselt an der Stelle x_0 mit $f'(x_0) = 0$ das Vorzeichen, falls die Kurve von f an der Stelle x_0 Links- bzw. Rechtskrümmung besitzt. Dieser Sachverhalt liefert das folgende hinreichende Kriterium:

Hinreichende Bedingung für Extrema

 $f'(x_E) = 0$ und $f''(x_E) \neq 0 \Rightarrow$ lokales Extremum bei x_E

2 Fälle:

- 1. $f'(x_E) = 0$ und $f''(x_E) < 0$, waagr. Tangente, Rechtskurve \Rightarrow Hochpunkt bei x_E
- 2. $f'(x_E) = 0$ und $f''(x_E) > 0$, waagr. Tangente, Linkskurve \Rightarrow Tiefpunkt bei x_E

Beispiele (Forts.):

- 1. f'(0) = 0 und $f''(0) > 0 \implies f$ besitzt an der Stelle $x_E = 0$ ein relatives Minimum
- 2. f'(0) = 0 und $f''(0) = -1 < 0 \implies f$ besitzt an der Stelle $x_E = 0$ ein relatives Maximum

Ein Extrem**punkt** (Hoch-/ Tiefpunkt) ist ein Kurven**punkt** $P(x_0, y_0)$.

Ein Extremstelle (Minimum-/Maximumstelle) ist seine Abszisse x_0 .

Ein Extremwert (Minimum/Maximum) ist seine Ordinate y_0 .

8.3 Wendepunkte

Definition:

Die Funktion f besitzt an der Stelle x_W einen Wendepunkt, wenn die zugehörige Kurve auf beiden Seiten von x_W unterschiedliches Krümmungsverhalten zeigt.

Notwendige und hinreichende Bedingung für Wendepunkte

 $f''(x_W) = 0$ und Vorzeichenwechsel von f'' bei $x_W \Leftrightarrow \text{Wendepunkt bei } x_W$

Hinreichende Bedingung für Wendepunkte

 $f''(x_W) = 0$ und $f'''(x_W) \neq 0$ \Rightarrow Wendepunkt bei x_W

Definition: Ein Wendepunkt mit waagerechter Tangente heißt **Sattelpunkt**.

8.4 Vorgehensweise zum Auffinden relativer Extrema

- 1. Bestimmung aller Kurvenpunkte mit waagerechter Tangente aus der notwendigen Bedingung $f'(x_0) = 0$,
- 2. Prüfen anhand
 - a) des Vorzeichenwechsels von f' bei x_0 (notwendig und hinreichend) oder
 - b) des Vorzeichens von $f''(x_0)$ (hinreichend),

ob und welche Art von Extremwert bei x_0 vorliegt.

Falls $f''(x_0) = 0$ und $f'''(x_0) \neq 0$, so liegt bei x_0 ein Sattelpunkt vor.

8.5 Allgemeines Kriterium für relative Extremwerte

Gegeben:

Funktion f mit $f^{(k)}(x_0) = 0$, k = 1, 2, ..., n - 1, und $f^{(n)}(x_0) \neq 0$

ngerade: bei x_0 liegt ein Extremwert vor, und zwar ein relatives

Minimum, falls $f^{(n)}(x_0) > 0$ Maximum, falls $f^{(n)}(x_0) < 0$,

n ungerade: bei x_0 liegt ein Sattelpunkt vor.

Beispiele:

 $f(x) = x^4$ $f^{(4)}(x) = 4! > 0 \Rightarrow \text{im Ursprung liegt ein relatives Minimum vor.}$

 $f(x) = x^5$ $f^{(5)}(x) = 5! > 0 \Rightarrow \text{im Ursprung liegt ein Sattelpunkt vor.}$

8.6 Extremwerte bei nicht differenzierbaren Funktionen

Satz:

Es sei f an der Stelle x_0 stetig und in einer Umgebung von x_0 (eventuell mit Ausnahme der Stelle x_0) differenzierbar.

- 1. Besitzt f' bei x_0 einen Vorzeichenwechsel von nach + (bzw. + nach -), so hat f an der Stelle x_0 ein relatives Minimum (bzw. ein relatives Maximum).
- 2. Besitzt f' keinen Vorzeichenwechsel bei x_0 , so liegt bei x_0 kein relativer Extremwert vor.

Beispiel:

$$f(x) = \sqrt[3]{x^2}$$
 ist stetig
 f ist bei $x_0 = 0$ nicht differenzierbar
 $f'(x) = \pm 2/3 \frac{1}{\sqrt[3]{|x|}}$ (+ für $x > 0$, – für $x < 0$)
 f besitzt an der Stelle $x_0 = 0$ ein relatives Minimum.

Definition:

Eine Funktion $f: D \subseteq \mathbb{R} \to \mathbb{R}$ besitzt an der Stelle $x_0 \in M$ mit $M \subseteq D$ ihr **absolutes Maximum** (bzw. **Minimum**) auf M, falls gilt:

$$f(x) \le f(x_0) \ \forall x \in M \quad \text{(bzw. } f(x) \ge f(x_0) \ \forall x \in M \text{)}$$

Bemerkung: Falls M = D läßt man häufig den Zusatz "auf M" fort.

Bezeichnung: $\max_{x \in M} f(x)$, $\min_{x \in M} f(x)$

9 Kurvendiskussion

Inhalt der Kurvendiskussion:

- 1. Definitionsbereich, Wertebereich
- 2. Symmetrie der Kurve
- 3. Schnittpunkte mit den Achsen
- 4. Asymptotisches Verhalten (Verhalten für $|x| \to \infty$; Unendlichkeitsstellen)
- 5. Extrempunkte
- 6. Wendepunkte
- 7. Schaubild (eventuell Berechnung zusätzlicher Kurvenpunkte)

9.1 Kurvendiskussion ganzrationaler Funktionen

Beispiel:

```
y = f(x) = 1/4x^3 + 1/4x^2 - 2x - 3, D_f = \mathbb{R}, W_f = \mathbb{R}
Schnitt mit der y-Achse: f(0) = -3
Nullstellen: x_{1/2} = -2, x_3 = 3
Asymptotisches Verhalten: x \to \pm \infty: f(x) \to \pm \infty
Extremstellen: f'(x) = 3/4x^2 + 1/2x - 2
f'(x) = 0: x_4 = -2, x_5 = 4/3
f''(x) = 3/2x + 1/2
f''(-2) < 0 \Rightarrow HP(-2, 0)
f''(4/3) > 0 \Rightarrow TP(4/3, -125/27)
Wendepunkte: f''(x) = 0 x_6 = -1/3 \Rightarrow WP(-1/3, -125/54)
```

Allgemein gilt: Jede kubische Funktion $y = ax^3 + bx^2 + cx + d$ ist punktsymmetrisch in bezug auf ihren Wendepunkt als Symmetriezentrum.

9.2 Kurvendiskussion gebrochenrationaler Funktionen

Beispiele:

1.
$$f(x) = \frac{2x^3 - 2x^2 + 2x}{x^3 + x} = 2 \cdot \frac{x^3 - x^2 + x}{x(x^2 + 1)}$$
 $x(x^2 + 1)$ hat einzige Nullstelle bei $0 \Rightarrow D_f = \mathbb{R} \setminus \{0\}$
Schnittpunkte mit der x -Achse: $x(x^2 - x + 1) = 0 \Rightarrow x_1 = 0$, $x^2 - x + 1 = (x - 1/2)^2 + 3/4 > 0$
 $x_1 = 0$ ist (einfache) Zähler- und Nennernullstelle und damit stetig behebbare Definitionslücke.
$$f^*(x) = 2 \cdot \frac{x^2 - x + 1}{x^2 + 1} \text{ ist die stetige Ergänzung zu } f. \text{ Im folgenden wird mit der Funktion } f^* \text{ weitergerechnet. } f^*(0) = 2$$

$$\lim_{x \to \pm \infty} f^*(x) = 2 \cdot \lim_{x \to \pm \infty} \frac{1 - 1/x + 1/x^2}{1 + 1/x^2} = 2 \Rightarrow \text{ waagerechte Asymptote } y = 2$$

$$y' = 2 \cdot \frac{x^2 - 1}{(x^2 + 1)^2}, \quad y' = 0 \Rightarrow x_2 = -1, \ x_3 = 1$$

$$y'' = 4x \cdot \frac{3 - x^2}{(x^2 + 1)^3}, \quad f^{*''}(-1) < 0 \Rightarrow HP(-1, 3)$$

$$f^{*''}(1) > 0 \Rightarrow TP(1, 1)$$

	$x + \sqrt{3}$	x	$x-\sqrt{3}$	VZ
$x < -\sqrt{3}$	-	-	-	-
$-\sqrt{3} < x < 0$	+	-	-	+
$0 < x < \sqrt{3}$	+	+	-	-
$\sqrt{3} < x$	+	+	+	+

$$\Rightarrow WP_1(\sqrt{3}, 1.13...) WP_2(-\sqrt{3}, 2.86...)$$

2.
$$y = f(x) = \frac{x^3}{x^2 - x - 2} = \frac{x^3}{(x+1)(x-2)}$$

y'' = 0 $x_4 = -\sqrt{3}$, $x_5 = \sqrt{3}$

Nullstelle: $x_0 = 0$

Pole: $x_1 = -1$, $x_2 = 2$ Pole (mit Vorzeichenwechsel)

$$x \to -1-: f(x) \to -\infty, \quad x \to 2-: f(x) \to -\infty$$

$$x \to -1+: f(x) \to +\infty, \quad x \to 2+: f(x) \to +\infty$$

$$\frac{x^3}{x^2 - x - 2} = x + 1 + \frac{3x + 2}{(x+1)(x-2)} \implies \text{schiefe Asymptote } y = x + 1$$

für $x \to \infty$ erfolgt die Annäherung an die Asymptote von oben.

für $x \to -\infty$ erfolgt die Annäherung an die Asymptote von unten.

Extrema:
$$f'(x) = \frac{x^2(x^2 - 2x - 6)}{(x^2 - x - 2)^2}$$
, $f'(x) = 0 \Rightarrow x_{3/4} = 0$, $x_{5/6} = 1 \pm \sqrt{7}$

An der Stelle x_3 liegt kein relatives Extremum vor, da $f(x) \to \infty$ für $x \to -1+$ und $f(x) \to -\infty$ für $x \to 2-$; an der Stelle $x_5 \approx -1.65$ (bzw. $x_6 \approx 3.65$) liegt ein relatives Maximum (bzw. Minimum) vor, da $f(x) \to -\infty$ für $x \to -\infty$ und $x \to -1-$ (bzw. $f(x) \to \infty$ für $x \to 2+$ und $x \to \infty$); denn andernfalls müßte es in den Intervallen $(-\infty, -1), (-1, 2)$ und $(2, \infty)$ noch eine weitere Stelle x^* mit $f'(x^*) = 0$ geben.

9.3 Kurvendiskussion weiterer Funktionenklassen

Beispiele:

1.
$$y = f(x) = \frac{x}{\ln x}$$
, $D_f = (0,1) \cup (1,\infty)$

$$\lim_{x \to 1^-} f(x) = -\infty, \quad \lim_{x \to 1^+} f(x) = \infty \Rightarrow \text{Pol mit VZW bei 1}$$

$$f'(x) = \frac{\ln x - 1}{\ln^2 x} = \frac{1}{\ln x} \cdot \left(1 - \frac{1}{\ln x}\right), \quad f''(x) = \frac{1}{x} \cdot \frac{2 - \ln x}{\ln^3 x}$$

$$f'(x) = 0 \Rightarrow \ln x = 1 \Rightarrow x = e$$

$$f''(e) = 1/e > 0 \Rightarrow TP(e/e)$$

$$f''(x) = 0 \Rightarrow \ln x = 2 \Rightarrow x = e^2 \Rightarrow WP(e^2, e^2/2) \qquad (VZW \text{ von } f'' \text{ bei } e^2)$$

$$\lim_{x \to 0^+} f(x) = \frac{0}{-\infty} = 0, \quad \lim_{x \to 0^+} f'(x) = 0$$
d.h. die Funktionskurve nähert sich tangential der x-Achse für $x \to 0+$.

2.
$$y = f(x) = \cos 2x - \cos x$$
, $D_f = \mathbb{R}$

Periode 2π , daher können wir auf uns auf ein Intervall der Länge 2π , also etwa auf $[0, 2\pi)$, beschränken.

Symmetrie:
$$f(-x) = \cos(-2x) - \cos(-x) = \cos 2x - \cos x = f(x)$$
, d.h f ist gerade Nullstellen: $\cos 2x - \cos x = 0 \Rightarrow x_1 = 0, x_2 = 2/3\pi, x_3 = 4/3\pi$ (s. frühere ÜA) $y' = -2\sin 2x + \sin x = -4\sin x\cos x + \sin x = \sin x \cdot (1 - 4\cos x)$ $y'' = \cos x \cdot (1 - 4\cos x) + 4\sin^2 x = -8\cos^2 x + \cos x + 4$

Extrempunkte:
$$y' = 0$$
: $\sin x = 0$ $x_4 = 0$, $x_5 = \pi$ $\cos x = 1/4$, $x_6 = 1.318...$, $x_7 = 2\pi - x_6 = 4.965...$ $f''(x_4) = f''(0) = -3 \Rightarrow HP(0,0)$, $f''(x_5) = f''(\pi) = -5 \Rightarrow HP(\pi,2)$ $f''(x_{6/7}) = -8/16 + 1/4 + 4 > 0 \Rightarrow TP(1.318..., -1.125)$, $TP(4.965..., -1.125)$

Wendepunkte:
$$y'' = 0$$
, $8\cos^2 x - \cos x - 4 = 0 \Rightarrow \cos x = \frac{1 \pm \sqrt{129}}{16}$
 $\cos x = 0.772... \Rightarrow x_8 = 0.688..., x_9 = 5.594...$
 $\cos x = -0.647... \Rightarrow x_{10} = 2.274..., x_{11} = 4.008...$
 $f'''(x_8), f'''(x_9), f'''(x_{10}), f'''(x_{11}) \neq 0 \Rightarrow \text{Wendepunkte:}$
 $W_1(0.688..., -0.579...), W_2(5.594..., -0.579...),$
 $W_3(2.274..., 0.485...), W_4(4.008..., 0.485...)$

3. Gedämpfte harmonische Schwingung

$$x(t) = e^{-\delta t}\cos\omega t, \ t \ge 0 \quad \delta, \omega > 0 \text{ sind Konstanten}$$

 $x(0) = 1$, Nullstellen: $x(t) = 0 : \cos\omega t = 0 \Rightarrow \omega t = \pi/2 + k\pi, \ k \in \mathbf{N_0}$
 $|x(t)| = |e^{-\delta t}\cos\omega t| = e^{-\delta t}|\cos\omega t| \le e^{-\delta t}$
 $\lim_{t\to\infty} e^{-\delta t}\cos\omega t = 0$

Die Kurve verläuft zwischen den beiden Hüllkurven $\pm e^{\delta t}$.

Für $\cos \omega t = \pm 1$ berührt die Kurve die obere bzw. untere Hüllkurve;

oben:
$$\omega t = 2k\pi$$
, unten: $\omega t = (2k+1)\pi$, $k \in \mathbf{N_0}$

In diesen Punkten hat die Kurve eine gemeinsame Tangente mit der jeweiligen Hüllkurve, die Tangente ist nicht waagerecht, d.h. die Berührpunkte sind keine Extrempunkte.

Extremstellen:
$$\dot{x}(t) = e^{-\delta t}(-\delta\cos\omega t - \omega\sin\omega t)$$

 $\dot{x}(t) = 0 \Leftrightarrow \omega\sin\omega t + \delta\cos\omega t = 0 \Leftrightarrow \tan\omega t = -\delta/\omega$
 $\Rightarrow \omega t = \arctan(-\delta/\omega) + k\pi, \ k \in \mathbb{N}$
 $\omega t = k\pi - \arctan\delta/\omega$

d.h. die Extremstellen liegen um $\arctan \delta/\omega$ links von den Berührstellen.

Aufgabe

Es ist die Funktion

$$y = f(x) = \cos^3 x + \sin^3 x$$

zu untersuchen.

a) Die Funktion f ist

- symmetrisch bzgl. $x = \frac{\pi}{4}$, d.h. es gilt

$$f(\frac{\pi}{4} - x) = f(\frac{\pi}{4} + x)$$
 für alle $x \in \mathbb{R}$,

- punktsymmetrisch bzgl. $x = \frac{3}{4}\pi$, d.h. es gilt

$$f(\frac{3}{4}\pi - x) = -f(\frac{3}{4}\pi + x)$$
 für alle $x \in \mathbb{R}$.

Weisen Sie **eine** der beiden angegebenen Symmetrien nach. Auf welches Intervall [a, b] können Sie sich daher bei der Untersuchung der Funktion f beschränken?

- b) Bestimmen Sie die Nullstellen, die Hoch- und Tiefpunkte sowie die Wendepunkte von f im Intervall [a, b] (aus Teil a)).
- c) Skizzieren Sie das Schaubild von füber dem Interval
l $[-\pi,\pi$] .

10 Extremwertaufgaben

Sei f differenzierbar im Intervall (a, b) und stetig in [a, b], dann gilt:

- f nimmt ein absolutes Maximum bzw. Minimum im [a, b] an;
- die lokalen Extrema in (a, b) erhält man mit Hilfe von f' (und f'').

Der Vergleich dieser lokalen Extrema mit den beiden Randwerten f(a) und f(b) liefert das absolute Maximum bzw. Minimum.

Aufgaben:

1. Von einem quadratischen Stück Pappe der Seitenlänge a werden an den Ecken Quadrate der Seitenlänge x abgeschnitten. Aus der restlichen Pappe soll ein quaderförmiger, oben offener Behälter zusammengebogen werden. Wie ist x zu wählen, damit der Behälter möglichst großes Fassungsvermögen besitzt?

2. Aus einem zylindrischen Stamm vom Durchmesser d ist ein Balken mit dem größten Trägheitsmoment S zu schneiden. Wie muß man die Seitenlängen des Rechteckquerschnitts wählen, wenn S proportional zum Produkt aus der Breite und der 3. Potenz der Höhe des Rechteckquerschnitts ist?

3. Von einer rechteckigen Glasplatte mit den Seitenlängen a=40cm und b=30cm ist an einer Ecke ein Dreieck mit den Katheten p=12cm und q=4cm abgesprungen. Aus dem Rest soll eine rechteckige Platte größten Flächeninhalts geschnitten werden. (Dabei soll der rechte Winkel zwischen den beiden unversehrten Kanten erhalten bleiben.)

4. Einem geraden Kreiskegel soll ein Zylinder mit möglichst großem Volumen einbeschrieben werden. Wie groß sind der Radius seiner Grundfläche und seine Höhe zu wählen?

11 Unbestimmte Ausdrücke – die Regeln von Bernoulli und de L'Hospital

Mittels der Beziehung $v(x)^{u(x)} = \exp(u(x) \ln v(x))$ läßt sich aus den Regeln aus § 5.2 folgern, wobei wir wieder die suggestiven Kurzformen verwenden:

$$0^{a} = \left\{ \begin{array}{l} 0 \ , \ 0 < a \leq \infty \\ \infty \ , \ -\infty \leq a < 0 \end{array} \right., \quad \infty^{a} = \left\{ \begin{array}{l} \infty \ , \ 0 < a \leq \infty \\ 0 \ , \ -\infty \leq a < 0 \end{array} \right., \quad a^{\infty} = \left\{ \begin{array}{l} \infty \ , \ 1 < a \\ 0 \ , \ 0 < a < 1 \end{array} \right.$$

Folgender Grenzwert ist zu bestimmen: $f(x) = \frac{x^3 + x^2 - 4x - 4}{x^2 - 1} \rightarrow ?$ für $x \rightarrow -1$ Wegen $Z(x) \rightarrow 0$, $N(x) \rightarrow 0$ ist der Grenzwert vom Typ " $\frac{0}{0}$ ".

Abhilfe: Linearfaktor x+1 in Zähler und Nenner abspalten und kürzen:

$$f(x) = \frac{x^2 - 4}{x - 1} \to 3/2 \text{ für } x \to -1$$

$$u(x) = e^x$$
, $v(x) = x^n$, $u(x)$, $v(x) \to \infty$ für $x \to \infty$, $\frac{u(x)}{v(x)} \to ?$ für $x \to \infty$

Regel von Bernoulli - de L'Hospital

Besitzen zwei Funktionen u und v an der Stelle x_0 eine gemeinsame Nullstelle oder eine gemeinsame Unendlichkeitsstelle, so ist $f(x) = \frac{u(x)}{v(x)}$ bei x_0 nicht definiert. Formales Einsetzen von x_0 liefert **unbestimmte Ausdrücke**:

1.
$$u(x_0) = v(x_0) = 0 \implies \frac{u(x)}{v(x)}$$
 ist bei x_0 vom Typ " $\frac{0}{0}$ "

2.
$$\lim_{\substack{x \to x_0 \\ x \to x_0}} u(x) = \pm \infty$$
 $\Rightarrow \frac{u(x)}{v(x)}$ ist bei x_0 vom Typ " $\frac{\infty}{\infty}$ "

Unter gewissen Umständen kann in solchen Fällen der Grenzwert $\lim_{x\to x_0} \frac{u(x)}{v(x)}$ existieren und nach folgender Regel bestimmt werden:

Satz:

 $\frac{u(x)}{v(x)}$ sei an der Stelle x_0 vom Typ " $\frac{0}{0}$ " bzw. " $\frac{\infty}{\infty}$ "; u und v seien differenzierbar. Dann gilt: Ist $\lim_{x\to x_0} \frac{u'(x)}{v'(x)} = g$, so ist auch $\lim_{x\to x_0} \frac{u(x)}{v(x)} = g$.

Bemerkungen:

- 1. Für x_0 ist auch $\pm \infty$ zugelassen. Die Aussage des Satzes gilt sinngemäß auch für die einseitigen Grenzwerte $\lim_{x \to x_0 -} \frac{u(x)}{v(x)} \text{ und } \lim_{x \to x_0 +} \frac{u(x)}{v(x)}.$
- 2. Eventuell muß die Regel mehrfach angewendet werden.

Weitere Regeln:

- 1. $\frac{1}{u(x)} \frac{1}{v(x)}$ mit $u \to 0$, $v \to 0$ ist vom Typ " $\infty \infty$ "

 Umformen nach $\frac{1}{u(x)} \frac{1}{v(x)} = \frac{v(x) u(x)}{u(x) \cdot v(x)}$ liefert einen Grenzwert vom Typ " $\frac{0}{0}$ ".
- 2. $u(x) \cdot v(x)$ mit $u \to 0$, $v \to \infty$ ist vom Typ " $0 \cdot \infty$ " Umformen nach $u(x) \cdot v(x) = \begin{cases} u/(1/v) \Rightarrow \frac{0}{0} \\ v/(1/u) \Rightarrow \frac{\infty}{\infty} \end{cases}$ "
- 3. $u(x)^{v(x)}$ mit
 - a) $u \to 0$, $v \to 0 \Rightarrow$ " 0^0 "
 - b) $u \to 1, v \to \infty \Rightarrow "1^{\infty}$ "
 - c) $u \to \infty$, $v \to 0 \Rightarrow \infty^0$

Zunächst logarithmiere man: $\ln(u^v) = v \cdot \ln u$ und verwende dann die Beziehung $\lim(u^v) = \lim(e^{v \ln u}) = e^{\lim(v \ln u)}$.

1. Fortsetzung des obigen Beispiels:
$$\frac{(x^3+x^2-4x-4)'}{(x^2-1)'}=\frac{3x^2+2x-4}{2x}\to 3/2 \quad \text{für}$$
 $x\to -1$

2.
$$\lim_{x \to 0} \frac{\sin x}{x}$$
 ist vom Typ " $\frac{0}{0}$ ", $\frac{(\sin x)'}{(x)'} = \frac{\cos x}{1} \to 1$ für $x \to 0$ (vgl. § 5.1).

3.
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{x}$$
 ist vom Typ " $\frac{0}{0}$ ", $\lim_{x \to 0} \frac{e^x + e^{-x}}{1} = 2$

4.
$$\lim_{x \to \infty} \frac{x^3}{e^x}$$
 ist vom Typ " $\frac{\infty}{\infty}$ ", $\lim_{x \to \infty} \frac{3x^2}{e^x} = \lim_{x \to \infty} \frac{6x}{e^x} = \lim_{x \to \infty} \frac{6}{e^x} = 0$

Verallgemeinerung:

$$\lim_{x \to \infty} \frac{x^{\alpha}}{e^x} = 0 \quad \forall \alpha \in \mathbb{R}$$

5.
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$$
 Typ " $\infty - \infty$ " für $x \to 0$

$$\frac{1}{x} - \frac{1}{\sin x} = \frac{\sin x - x}{x \sin x} \text{ ist vom Typ "} \frac{0}{0}$$

$$\lim_{x \to 0} \frac{(\sin x - x)'}{(x \sin x)'} = \lim_{x \to 0} \frac{(\cos x - 1)'}{(\sin x + x \cos x)'} = \lim_{x \to 0} \frac{-\sin x}{2 \cos x - x \sin x} = 0$$

6.
$$\lim_{x \to 1} ((x-1) \cdot \tan \pi/2x)$$
 ist vom Typ " $0 \cdot \infty$ " für $x \to 1$

$$(x-1) \cdot \tan \pi/2x = \frac{x-1}{\frac{1}{\tan \pi/2x}} = \frac{x-1}{\cot \pi/2x}$$
 ist vom Typ " $\frac{0}{0}$ "
$$\lim_{x \to 1} \frac{(x-1)'}{(\cot \pi/2x)'} = \lim_{x \to 1} \frac{1}{\frac{-1}{\sin^2 \pi/2x} \cdot \pi/2} = -2/\pi$$

7.
$$\left(1 + \frac{1}{x}\right)^x \text{ ist für } x \to \infty \text{ vom Typ "} 1^{\infty}$$

$$\left(1 + \frac{1}{x}\right)^x = \exp\left(x \ln\left(1 + \frac{1}{x}\right)\right)$$

$$x \ln\left(1 + \frac{1}{x}\right) \text{ ist vom Typ "} 0 \cdot \infty$$

$$x \ln\left(1 + \frac{1}{x}\right) = \frac{\ln\left(1 + 1/x\right)}{1/x} \quad \text{Typ "} \frac{0}{0}$$

$$\frac{\left(\ln\left(1 + 1/x\right)\right)'}{\left(1/x\right)'} = \frac{-1/x^2 \cdot \frac{1}{1+1/x}}{-1/x^2} = \frac{1}{1+1/x} \to 1 \qquad \text{für } x \to \infty$$

$$\lim_{x \to \infty} \exp\left(x \ln\left(1 + \frac{1}{x}\right)\right) = \exp\left(\lim_{x \to \infty} x \ln\left(1 + \frac{1}{x}\right)\right) = e^1 = e$$

Ergebnis:
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Erklärung für das "Hereinziehen" der Grenzwertbildung: g sei stetig an der Stelle x_0 , f sei stetig an der Stelle $g(x_0)$, dann ist f(g(x)) stetig an der Stelle x_0 . Damit gilt:

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} g(x) = g(x_0)$$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} f(g(x)) = f(g(x_0)) = f(\lim_{\substack{x \to x_0 \\ x \to x_0}} g(x))$$

12 Tangente und Differential

12.1 Differential

Es sei f differenzierbar an der Stelle $x_0, y_0 = f(x_0)$.

Änderung auf der Kurve $(\Delta x, \Delta y)$:

 $x_0 \to x_0 + \Delta x$ hat zur Folge $y_0 \to y_0 + \Delta y$

$$P_0(x_0, y_0) \to P_1(x_0 + \Delta x, f(x_0 + \Delta x)) = P_1(x_0 + \Delta x, y_0 + \Delta y) \text{ mit } \Delta y = f(x_0 + \Delta x) - f(x_0)$$

Änderung auf der in P_0 angelegten Tangente (dx, dy), $dx = \Delta x$

 $x_0 \to x_0 + dx$ hat zur Folge $y_0 \to y_0 + dy$

 $P_0(x_0, y_0) \to Q(x_0 + dx, y_0 + dy)$

 α sei der Winkel zwischen der Tangente und der x-Achse. Dann gilt:

$$\tan \alpha = f'(x_0) = \frac{dy}{dx} .$$

Definition:

Unter dem Differential dy der Funktion y = f(x) zum Zuwachs Δx versteht man den Zuwachs längs der Tangente

$$dy = f'(x_0) \cdot \Delta x$$
, Δx beliebiger Argumentzuwachs.

Das Differential dy wird vor allem verwendet für kleine Zuwächse Δx ; statt Δx schreibt man dx und erhält

$$dy = f'(x_0) \cdot dx$$

Bemerkung: f' kann als Quotient zweier Differentiale aufgefaßt werden. Daher nennt man $\frac{dy}{dx}$ auch **Differentialquotient**.

Falls $\Delta x = dx$ klein ist, gilt:

$$\Delta y \approx dy = f'(x_0) \cdot dx = f'(x_0) \cdot \Delta x$$

$$f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \cdot \Delta x$$
 bzw. mit $x = x_0 + \Delta x$

$$f(x) \approx \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{\text{Kurventangente im Punkt } P_0} =: l(x)$$

Das bedeutet: Die Funktion y = f(x) darf in guter Näherung in der unmittelbaren Umgebung der Stelle x_0 durch die dortige Kurventangente ersetzt werden (**Linearisierung**).

Beispiele:

- 1. $A(x) = x^2$, x > 0, stellt den Flächeninhalt eines Quadrats mit Seitenlänge x dar. Flächenzuwachs: $\Delta A = A(x + \Delta x) A(x) = (x + \Delta x)^2 x^2 = 2x\Delta x + (\Delta x)^2$ Linearisierung: $dA = A'(x)\Delta x = 2x\Delta x$ hat den Fehler $\Delta A dA = (\Delta x)^2$. Dieser geht, wenn Δx klein wird, schnell gegen 0.
- 2. Linearisierung von sin und cos bei x = 0: $\sin x : l(x) = \sin 0 + (\cos 0)(x 0) = x$ d.h. für kleine |x| gilt $\sin x \approx x$ $\cos x : l(x) = \cos 0 + (-\sin 0)(x 0) = 1$ d.h. für kleine |x| gilt: $\cos x \approx 1$
- 3. Linearisierung der e-Funktion bei $x_0 = 0$ $f(x) = e^x \quad f'(0) = 1$ l(x) = 1 + 1(x 0) = x + 1Für kleine Werte von |x| gilt: $e^x \approx x + 1$.
 Einige Beispiele für die Qualität der Annäherung:

x	0.01	0.05	0.1	0.2
x+1	1.01	1.05	1.1	1.2
e^x	1.01005	1.0512	1.1051	1.221

12.2 Fehlerfortpflanzung

Abschätzung des Fehlers Δy bei einem Fehler Δx in x:

absoluter Fehler:
$$a = |\Delta y| \approx |dy| = |f'(x)||\Delta x|$$

relativer Fehler:
$$r = \left| \frac{\Delta y}{y} \right| \approx \left| \frac{f'(x)}{f(x)} \right| |\Delta x| \quad (y \neq 0)$$

prozentualer Fehler: $p = r \cdot 100\%$

Beispiele für Fehlerwerte:

y	Näherung y^* für y	abs. Fehler $y^* - y$	rel. Fehler $\frac{y^*-y}{y}$
$0.3 \cdot 10^{1}$	$0.31 \cdot 10^{1}$	0.1	$0.\overline{3} \cdot 10^{-1}$
$0.3 \cdot 10^{-3}$	$0.31 \cdot 10^{-3}$	$0.1 \cdot 10^{-4}$	$0.\overline{3} \cdot 10^{-1}$
$0.3 \cdot 10^4$	$0.31 \cdot 10^4$	$0.1 \cdot 10^{3}$	$0.\overline{3} \cdot 10^{-1}$

Beispiel:

Durch Erwärmung vergrößert sich der Radius einer Kugel von $r_0 = 2.0LE$ auf $r_1 = 2.034LE$. Wie groß ist näherungsweise die Zunahme des Kugelvolumens?

Lösung: $V_{\text{Kugel}} = 4/3\pi r^3$

Abschätzung der abs. Zunahme mit Hilfe des Differentials

 $dV = 4\pi r_0^2 \cdot \Delta r = 4\pi (2.0)^2 \cdot 0.034 \approx 1.7090$

Korrekter Wert: $4/3\pi (r_1^3 - r_0^3) \approx 1.738$

Relative Zunahme: $\frac{dV}{V} = \frac{4\pi \cdot r_0^2}{4/3\pi \cdot r_0^3} \cdot \Delta r = 3 \cdot \frac{\Delta r}{r_0} = 3 \cdot \frac{0.034}{2} = 0.051$

Prozentualer Fehler: p = 5.1%

Mit welcher prozentualen Genauigkeit muß man den Radius der Kugel messen, damit der prozentuale Fehler bei der Berechnung des Kugelvolumens 1% nicht übersteigt? Lösung:

 $3 \cdot \frac{\Delta r}{r} \le 0.01 \implies \frac{\Delta r}{r} \le \frac{0.01}{3}$, d.h. der prozentuale Fehler bei der Messung des Radius darf maximal 1/3% betragen.

13 Das Newton-Verfahren (*)

Beispiele für nichtlineare Gleichungen

- 1. Algebraische Gleichungen n-ten Grades $p_n(x) = \sum_{k=0}^n a_k x^k = 0$ Für $n \geq 5$ existieren keine analytischen Lösungsformeln mehr.
- 2. Transzendente Gleichungen, z.B. $\cos x = x$. Diese Gleichung entspricht dem Schnitt der Cosinuskurve mit der Ursprungsgeraden y = x.

Im allgemeinen existieren für nichtlineare Gleichungen keine analytischen Lösungsformeln. Die Lösung kann nur näherungsweise bestimmt werden.

Das Newton-Verfahren ist ein Iterationsverfahren zur Berechnung von Nullstellen einer Funktion f. Eine nichtlineare Gleichung der Form $f_1(x) = f_2(x)$ ist vor Anwendung des Verfahrens in die Form $f(x) = f_1(x) - f_2(x) = 0$ umzuformen. Es beruht auf folgendem Prinzip ("Tangenten - Näherungsverfahren"):

- 1. Man wählt einen Startwert x_0 und approximiert die Kurve durch die Tangente t in $P_0(x_0, y_0)$. Dann berechnet man den Schnittpunkt $(x_1, 0)$ der Tangente t mit der x-Achse. Bei geschickter Wahl von x_0 ergibt sich ein verbesserter Wert x_1 .
- 2. x_1 wird neuer Startwert. Tangente in $P_1(x_1, f(x_1)) \rightarrow$ verbesserter Wert x_2
- 3. x_2 wird neuer Startwert. Tangente in $P_2(x_2, f(x_2)) \rightarrow$ verbesserter Wert x_3

usw.

Die so konstruierte Folge $\{x_n\}$ konvergiert unter bestimmten Voraussetzungen gegen die gesuchte Lösung x^* . Das Verfahren wird abgebrochen, wenn eine geforderte Genauigkeit erreicht ist.

Herleitung der Iterationsvorschrift:

Gleichung der Tangente in $P_n(x_n, y_n)$: $y - f(x_n) = f'(x_n) \cdot (x - x_n)$ Schnitt mit der x-Achse: $(y = 0 \Rightarrow x = x_{n+1})$ $-f(x_n) = f'(x_n) \cdot (x_{n+1} - x_n) \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad (n = 0, 1, 2, ...).$

Die rekursive Bauart des Newton-Verfahrens eignet sich hervorragend zur Programmierung.

Iterationsvorschrift des Newton-Verfahrens:

Eine Näherung für eine Lösung x^* der Gleichung f(x) = 0 läßt sich mit dem Newton-Verfahren in folgenden Schritten bestimmen:

- 1. Festlegung eines Intervalls I = [a, b] mit $x^* \in I$ (z.B. durch die Forderung $f(a) \cdot f(b) < 0$ bei stetigem f)
- 2. Wahl eines Startwertes $x_0 \in I$, etwa $x_0 = \frac{a+b}{2}$. Berechnung der Folge $\{x_n\}$ von Näherungswerten mit der Rekursionsformel

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad (n = 0, 1, 2, ...)$$

3. Abbruch der Rechnung, wenn eine geforderte Genauigkeit zu erwarten ist, etwa wenn $\frac{|x_n-x_{n-1}|}{|x_n|} < \varepsilon$ oder $|f(x_n)| < \varepsilon$; $\varepsilon > 0$ ist dabei eine vom Problem abhängige Fehlerschranke.

Bemerkungen:

Das Newton-Verfahren konvergiert nicht immer problemlos gegen die gesuchte Nullstelle x^* . Beispiele dafür sind:

- 1. Es darf kein Punkt $(x_n, f(x_n))$ mit waagrechter Tangente auftreten $(f'(x_n)) \neq 0$).
- 2. Hat f mehrere Nullstellen, so kann bei ungünstig gewähltem Startwert Konvergenz zu einer Nachbarnullstelle eintreten.
- 3. Es ist sehr langsame Konvergenz oder Divergenz möglich.

Vorzug des Newton-Verfahrens: Es "vergißt" frühere Fehler, jeder Schritt kann nämlich als erster Schritt angesehen werden.

1. Nullstelle von
$$f(x) = x - \cos x$$

 $f(0) = -1$, $f(1) > 0 \Rightarrow x^* \in (0, 1)$
 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n - \cos x_n}{1 + \sin x_n}$ $(n = 0, 1, 2, ...)$
 $\frac{n}{0} \frac{x_n}{0.7} \frac{x_n - x_{n-1}}{0.064842187} \frac{f(x_n)}{1 \cdot 0.739436498} \frac{0.039436498}{0.039436498} \frac{-0.000588094}{-0.0000588094} \frac{2}{0.739085161} \frac{0.000351337}{0.0000000027} \frac{0}{0} \frac{0.739085133}{0.739085133} \frac{0.0000000027}{0.0000000027} \frac{0}{0} \frac{0}{0}$

Das Verfahren liefert auf 9 Dezimalstellen genau $x^* = 0.739085133$.

Divergenz möglich:

2.
$$f(x) = \frac{(x-1)^2}{x^2+1}$$
, $x^* = 1$
 $x_0 = -2$, $x_1 = -9.5...$, $x_2 = -65.9...$, \dots , $x_6 = -6.2... \cdot 10^{24}$

3.
$$f(x) = x^3 - 2x + 2 = 0$$
, $f'(x) = 3x^2 - 2$
 $x_{n+1} = x_n - \frac{x_n^3 - 2x_n + 2}{3x_n^2 - 2}$
 $x_0 = 0$, $x_1 = 1$, $x_2 = 0$, ...

14 Bestimmtes Integral

14.1 Vorüberlegungen zum Flächeninhalt

Beispiel:

Gegeben: $y = f(x) = x^2$ Gesucht: Flächeninhalt A

Vorgehensweise (vgl. Folienvorlagen):

- 1. Das Flächenstück wird in eine große Anzahl Streifen (n) gleicher Breite (Δx) zerlegt.
- 2. Jeder Streifen wird durch ein geeignetes Rechteck ersetzt.

$$n = 5: \Delta x = 0.2$$

Untersumme:

$$U_5 = 0.2 \cdot (1 + 1.2^2 + 1.4^2 + 1.6^2 + 1.8^2) = 2.04$$

Obersumme:

$$O_5 = 0.2 \cdot (1.2^2 + 1.4^2 + 1.6^2 + 1.8^2 + 2^2) = 2.64$$

$$\begin{array}{cccc} U_5 & \leq & A & \leq & O_5 \\ 2.04 & \leq & A & \leq & 2.64 \end{array}$$

$$n = 10: \Delta x = 0.1$$

$$U_{10} = 0.1 \cdot (1 + 1.1^2 + \dots + 1.9^2) = 2.185$$

 $O_{10} = 0.1 \cdot (1.1^2 + 1.2^2 + \dots + 2^2) = 2.485$
 $2.185 \le A \le 2.485$

$$n = 20$$
: $\Delta x = 0.05$

$$U_{20} = 0.05 \cdot (1 + 1.05^2 + \dots + 1.95^2) = 2.25875$$

 $O_{20} = 0.05 \cdot (1.05^2 + 1.1^2 + \dots + 2^2) = 2.40875$
 $2.25875 \le A \le 2.40875$

$$\begin{array}{c|cccc} n & 50 & 100 & 1000 \\ \hline O_n - U_n & 0.06 & 0.03 & 0.003 \\ \end{array}$$

$$U_{1000} = 2.3318...$$

$$O_{1000} = 2.3348\dots$$

Damit gilt A = 2.33...

Verallgemeinerung (s. Folienvorlage):

Vorraussetzung: f stetig, $f(x) \ge 0 \ \forall x \in [a, b]$, monoton wachsend

Gesucht ist der Flächeninhalt A zwischen der Kurve y = f(x) und der x-Achse in [a, b]. Mittels einer Vorgehensweise wie im obigen Beispiel erhält man eine Folge von Untersummen $\{U_n\}$ und Obersummen $\{O_n\}$ mit

$$U_n \le A \le O_n \text{ und } U_n \nearrow A \nearrow O_n \ (\Delta x \to 0),$$

$$A = \lim_{n \to \infty} U_n = \lim_{n \to \infty} O_n \quad .$$

Da f in [a,b] nichtnegativ ist, stimmt der Flächeninhalt mit dem im nächsten Abschnitt definierten Integral $\int_a^b f(x)dx$ überein.

Beispiel (Forts.):

Fläche A zwischen der Kurve $y=x^2$, der x-Achse und den Geraden $x=1,\ x=2$ als Grenzwert der Obersummenfolge

$$x_k = 1 + k\Delta x, \ k = 0, 1, \dots, n, \ \Delta x = 1/n, \quad (x_0 = 1, x_1 = 1 + 1/n, \dots, x_n = 1 + n \cdot 1/n = 2)$$

Rechteckflächen:

$$f(x_k) \cdot \Delta x = (1 + k\Delta x)^2 \cdot \Delta x = (1 + \frac{k}{n})^2 \cdot \frac{1}{n} = (\frac{1}{n} + 2\frac{k}{n^2} + \frac{k^2}{n^3})$$

$$O_n = \sum_{k=1}^n f(x_k) \cdot \Delta x = \sum_{k=1}^n (\frac{1}{n} + 2\frac{k}{n^2} + \frac{k^2}{n^3}) = \frac{1}{n} \sum_{k=1}^n 1 + \frac{2}{n^2} \sum_{k=1}^n k + \frac{1}{n^3} \sum_{k=1}^n k^2$$

$$= 1 + \frac{2}{n^2} \cdot \frac{n(n+1)}{2} + \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = 1 + (1 + \frac{1}{n}) + \frac{1}{6} \cdot (1 + \frac{1}{n})(2 + \frac{1}{n})$$

$$\xrightarrow{n \to \infty} 1 + 1 + \frac{1}{6} \cdot 2 = \frac{7}{3}$$

Ergebnis:

$$A = \lim_{n \to \infty} O_n = \frac{7}{3}$$

14.2 Definition des bestimmten Integrals

Die Definition des Integrals $I = \int_a^b f(x) dx$ als Grenzwert von Summenfolgen erfolgt ähnlich wie im vorangegangenen Abschnitt in drei Schritten. Wir setzen voraus, daß f auf [a,b] beschränkt ist.

1. Schritt: Äquidistante Zerlegung des Intervalls [a, b]Wir wählen $x_k = a + k\Delta x, \ k = 0, 1, ..., n$, mit $\Delta x := \frac{b-a}{n}$.

2. Schritt: Approximation von I durch Summen von Rechtecksflächen Auf dem k-ten Teilintervall gelte

$$f_k \leq f(x) \leq \overline{f}_k$$
 für alle $x \in [x_{k-1}, x_k], k = 1, ..., n$.

Wir können dann Unter- und Obersummen bilden

$$U_n = \sum_{k=1}^n \underline{f}_k \Delta x$$
 , $O_n = \sum_{k=1}^n \overline{f}_k \Delta x$.

3. Schritt Verfeinerung der Zerlegung

Für $n \to \infty$, d.h. $\Delta x \to 0$, erhält man Folgen von Untersummen $\{U_n\}$ und Obersummen $\{O_n\}$.

Lassen sich im 2. Schritt die Schranken \underline{f}_k und \overline{f}_k so finden, daß die Folgen $\{U_n\}$ und $\{O_n\}$ konvergieren, und zwar gegen einen gemeinsamen Grenzwert, so heißt f in [a,b] integrierbar und man definiert

$$\int_{a}^{b} f(x)dx := \lim_{n \to \infty} U_n = \lim_{n \to \infty} O_n .$$

 $\int_a^b f(x)dx$ heißt **bestimmtes Integral** von f in den Grenzen a und b, x heißt **Integrationsvariable**,

f heißt Integrand,

a, b heißen Integrationsgrenzen.

Bemerkungen:

- 1. Der Einfachheit halber wurde im 1. Schritt eine äquidistante Zerlegung des Integrationsintervalls gewählt. Die Überlegungen gelten auch für beliebige Zerlegungen; bei der Verfeinerung muß nur die maximale Schrittweite gegen Null gehen.
- 2. Man kann zeigen, daß jede auf dem abgeschlossenem Intervall [a, b] stückweise stetige Funktion integrierbar ist.
- 3. Ist f stetig, so kann anstelle von \underline{f}_k und \overline{f}_k auch der Funktionswert f_k an einer beliebigen Stelle ξ_k im k-ten Teilintervall gewählt werden. Der Grenzübergang $\Delta x \to 0$ mit

$$\lim_{n \to \infty} \sum_{k=1}^{n} f_k \cdot \Delta x = \int_{a}^{b} f(x) \ dx$$

bedeutet formal:

$$\sum \longrightarrow \int f_k \longrightarrow f(x)$$

$$\xi_k \longrightarrow x$$

$$\Delta x \longrightarrow dx$$

- 4. Der Wert eines Integrals ändert sich nicht, wenn man den Integranden an endlich vielen Stellen abändert.
- $5.\ \, {\rm Die\ Integrations variable\ darf\ beliebig\ bezeichnet\ werden}.$

15 Das unbestimmte Integral

15.1 Stammfunktion und unbestimmtes Integral

In den vorangegangenen Kapiteln haben wir uns mit dem Problem beschäftigt:

gegeben
$$f \xrightarrow{\text{Differentiation}} f'$$
 gesucht.

Nun ist von einer (noch unbekannten) Funktion deren Ableitung gegeben und die Funktion selbst gesucht.

Beispiele:

- 1. Gegeben y'=f'(x)=1Gesucht sind sämtliche Funktionen y=f(x) mit y'=1. Lösung: Sämtliche Funktionen $f(x)=x+c,\ c\in\mathbb{R}$
- 2. y'=2xGesucht sind sämtliche Funktionen y=f(x) mit y'=2x. Lösung: Sämtliche Funktionen $f(x)=x^2+c,\ c\in\mathbb{R}$

Umbenennung:

f: vorgegebene 1. Ableitung einer (noch unbekannten) Funktion

F: Funktion mit F' = f, F heißt **Stammfunktion** zu f

3.
$$f(x) = x^k \ (k \neq -1), \quad F(x) = \frac{x^{k+1}}{k+1} + c$$

4.
$$f(x) = \frac{1}{x}$$
, $F(x) = \ln|x| + c$
denn: $\ln|x| = \begin{cases} \ln x & x > 0 \\ \ln(-x) & x < 0 \end{cases}$, $\ln'|x| = \begin{cases} \frac{1}{x} & x > 0 \\ -\frac{1}{x}(-1) = \frac{1}{x} & x < 0 \end{cases}$

5.
$$f(x) = \sin x$$
, $F(x) = -\cos x + c$, $c \in \mathbb{R}$

6.
$$f(x) = \frac{1}{1 + x^2}$$
, $F(x) = \arctan x + c$, $c \in \mathbb{R}$

Eigenschaften der Stammfunktion

- 1. Es gibt zu jeder stetigen Funktion f unendlich viele Stammfunktionen.
- 2. Zwei beliebige Stammfunktionen zu f unterscheiden sich durch eine additive Konstante: $F_1(x) F_2(x) = c$ (c const.).
- 3. Ist F_1 eine beliebige Stammfunktion zu f, so ist auch $F_1 + c$ eine Stammfunktion zu f. Daher läßt sich die Gesamtheit aller Stammfunktionen in der Form $F = F_1 + c$ darstellen (c ist eine beliebige reelle Konstante).

Beweis zu 2.:

Es seien F_1 , F_2 Stammfunktionen zu f, dann gilt $(F_1 - F_2)' = F_1' - F_2' = f - f = 0$

Den Umkehrprozeß der Differentiation bezeichnet man als Integration:

gegeben
$$f: f \xrightarrow{\text{Integration}} F \text{ mit } F' = f \text{ gesucht.}$$

Definition: Die Funktion

$$F_a(x) := \int_a^x f(t) \, dt$$

bezeichnet man als **unbestimmtes Integral** (Flächenfunktion); hierin ist a fest gewählt und x variabel.

Falls $f(t) \ge 0, \forall a \le t \le x$, gilt, repräsentiert $F_a(x)$ den Flächeninhalt zwischen der Kurve der Funktion y = f(t) und der t-Achse im Intervall $a \le t \le x$ in Abhängigkeit von der oberen Grenze x (s. Folienvorlage).

Wir lassen nun auch a variieren (s. Folienvorlage):

$$F_{a^*}(x) = \int_{a^*}^x f(t) dt \quad .$$

Dann gilt: $F_a(x) - F_{a^*}(x) = \int_a^x f(t) dt - \int_{a^*}^x f(t) dt = \int_a^{a^*} f(t) dt$ (unabhängig von x), d.h. die beiden unbestimmten Integrale unterscheiden sich nur durch eine additive Konstante.

Eigenschaften des unbestimmten Integrals

- 1. Zu jeder stetigen Funktion f gibt es unendlich viele unbestimmte Integrale, die sich in ihrer unteren Grenze voneinander unterscheiden.
- 2. Die Differenz zweier unbestimmter Integrale ist eine Konstante.

15.2 Hauptsatz der Differential- und Integralrechnung

Es sei f stetig und monoton wachsend; wir betrachten den Flächenzuwachs $F_a(x + \Delta x) - F_a(x)$ und schätzen diesen ab (vgl. Folienvorlage):

$$f(x) \cdot \Delta x \le F_a(x + \Delta x) - F_a(x) \le f(x + \Delta x) \cdot \Delta x \quad | : \Delta x$$

$$f(x) \le \frac{F_a(x + \Delta x) - F_a(x)}{\Delta x} \le f(x + \Delta x) \quad \text{Grenzübergang } \Delta x \to 0$$

$$f(x) \le \frac{dF_a(x)}{dx} = F'_a(x) \le f(x)$$

d.h. $F'_a(x) = f(x)$, d.h. F_a ist Stammfunktion zu f .

Satz:

Jedes unbestimmte Integral $F_a(x) = \int_a^x f(t) dt$ ist eine Stammfunktion zu f, d.h. $F_a'(x) = f(x)$.

Folgerungen:

- 1. Jedes unbestimmte Integral $F_a(x) = \int_a^x f(t) dt$ läßt sich darstellen als $F_a(x) = F(x) + c$, wobei F irgendeine Stammfunktion und c eine geeignete Integrationskonstante ist.
- 2. Zu einer stetigen Funktion gibt es unendlich viele unbestimmte Integrale, die sich nur in der unteren Integrationsgrenze voneinander unterscheiden. Daher bezeichnet man diese Funktionenschar durch Fortlassen beider Integrationsgrenzen: $\int f(x) \, dx$

Beispiele:

$$1. \int \frac{1}{1+x^2} dx = \arctan x + c$$

$$2. \int \frac{1}{\cos^2 x} \, dx = \tan x + c$$

3.
$$\int \frac{1}{x^3} dx = \int x^{-3} dx = -\frac{1}{2x^2} + c$$

4.
$$\int x\sqrt{x^3} \, dx = \int x^{5/2} \, dx = 2/7x^{7/2} + c$$

$$5. \int \ln x \, dx = x \ln x - x + c$$

Nach der obigen Folgerung 1 läßt sich F_a darstellen in der folgenden Gestalt

$$F_a(x) = \int_a^x f(t) dt = F(x) + c \text{ mit } F' = f$$

Setze

$$x = a$$
: $F_a(a) = \int_a^a f(t) dt = 0 = F(a) + c \implies c = -F(a)$,

also gilt

$$F_a(x) = F(x) - F(a) \quad .$$

Setze nun

$$x = b$$
: $F_a(b) = \int_a^b f(t) dt = F(b) - F(a)$.

Damit erhalten wir folgenden Satz.

Hauptsatz der Differential- und Integralrechnung

Ist F eine beliebige Stammfunktion zu f, so gilt:

$$\int_{a}^{b} f(x) dx = F(x)|_{a}^{b} = F(b) - F(a)$$

Beispiele:

1.
$$\int_{1}^{2} x^{2} dx = x^{3}/3 \Big|_{1}^{2} = 7/3$$
 (siehe §14.1)

2.
$$\int_0^{\pi/2} \cos x \, dx = \sin x \Big|_0^{\pi/2} = 1$$

$$\int_{\pi/2}^{\pi} \cos x \, dx = \sin x \Big|_{\pi/2}^{\pi} = -1$$

$$\int_0^{\pi} \cos x \, dx = \sin x |_0^{\pi} = 0$$

15.3 Grundlegende Integrationsregeln

1. Faktorregel:

$$\int_{a}^{b} k f(x) dx = k \cdot \int_{a}^{b} f(x) dx, \quad k \in \mathbb{R}$$

Beweis: Es sei F Stammfunktion zu f, dann ist kF Stammfunktion zu kf, denn (kF)' = kF' = kf.

$$\int_{a}^{b} kf(x) \, dx = kF(b) - kF(a) = k(F(b) - F(a)) = k \int_{a}^{b} f(x) \, dx$$

2. Summenregel:

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Beweis: Es sei F Stammfunktion zu f und G Stammfunktion zu g, dann ist F+G Stammfunktion zu f+g, denn (F+G)'=F'+G'=f+g.

$$\int_{a}^{b} (f(x) + g(x)) dx = (F + G)(b) - (F + G)(a) = F(b) + G(b) - (F(a) + G(a)) = F(b) - F(a) + G(b) - G(a) = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Beispiel:
$$I = \int_{1}^{2} (10x^4 - 3x^2 + 3) dx = 10 \int_{1}^{2} x^4 dx - 3 \int_{1}^{2} x^2 dx + 3 \int_{1}^{2} 1 dx$$

= $2 x^5 \Big|_{1}^{2} - x^3 \Big|_{1}^{2} + 3 x \Big|_{1}^{2} = 58$

3. Vertauschen der Integrationsgrenzen:

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
Folgerung:
$$\int_{a}^{a} f(x) dx = 0$$

4. Aufspalten des Integrationsintervalles:

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

5. Ableitung eines unbestimmten Integrals nach der oberen Integrationsgrenze:

$$\frac{d}{dx}\left(\int_{a}^{x} f(t) dt\right) = f(x)$$

6. Gilt
$$f(x) \leq g(x)$$
 $\forall x \in [a, b]$, so gilt $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.

Für stetige f und g ergibt sich der Beweis aus der Herleitung des Integrals als Grenzwert der Unter- bzw. Obersummenfolge (vgl. §14.2):

Auf dem k-ten Teilintervall gilt mit
$$\overline{f}_k := \max_{x \in [x_{k-1}, x_k]} f(x)$$
 und $\overline{g}_k := \max_{x \in [x_{k-1}, x_k]} g(x)$

die Beziehung
$$\overline{f}_k \leq \overline{g}_k$$
 und damit $O_n(f) \leq O_n(g) \ \forall n \in \mathbb{N}$
 $\Rightarrow \lim_{n \to \infty} O_n(f) \leq \lim_{n \to \infty} O_n(g) \ \Leftrightarrow \ \int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$

7. Betragsungleichung für Integrale:

Anwendung von 6. auf die beiden Ungleichungen $-f \leq |f|$ und $f \leq |f|$ liefert

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx \quad .$$

16 Integrationsmethoden

16.1 Integration durch Substitution

16.1.1 Einführendes Beispiel

Zu lösen sei $I = \int \cos(x^2) 2x \, dx$ Vorgehensweise:

- 1. Wahl einer geeigneten Substitutionsfunktion: hier $u = u(x) = x^2$
- 2. Umrechnung des Differentials, $\frac{du}{dx} = 2x$, d.h. du = 2xdx
- 3. Durchführung der Substitution: $I = \int \cos u \, du$
- 4. Berechnung des "neuen" Integrals: $I = \sin u + c$
- 5. Rücksubstitution: $I = \int \cos(x^2) 2x \, dx = \sin(x^2) + c$

16.1.2 Wichtige Integralsubstitutionen

1.
$$\int f(ax+b) dx$$
 $(a \neq 0)$
Beispiel: $\int (7x-4)^3 dx$
Substitution von $u = 7x - 4$, $\frac{du}{dx} = 7$, d.h. $dx = 1/7 du$
 $\int (7x-4)^3 dx = \frac{1}{7} \int u^3 du = \frac{1}{7} \frac{1}{4} u^4 + c = \frac{1}{28} (7x-4)^4 + c$

2.
$$\int f(g(x)) g'(x) dx$$
Substitution von $u = g(x)$, $\frac{du}{dx} = g'(x)$

a)
$$\int \frac{\cos(\ln x)}{x} dx$$
Subst.: $u = \ln x$, $\frac{du}{dx} = 1/x$

$$= \int \cos u \, du = \sin u + c = \sin(\ln x) + c$$

b)
$$\int \frac{x^2}{\sqrt{1+x^3}} dx$$
, $u = 1+x^3$, $\frac{du}{dx} = 3x^2$
 $\int \frac{1}{3} \frac{1}{\sqrt{u}} du = \frac{2}{3} \sqrt{u} + c = \frac{2}{3} \sqrt{1+x^3} + c$

c)
$$\int \sin^7 x \, dx = \int (\sin^2 x)^3 \sin x \, dx = \int (1 - \cos^2)^3 \sin x \, dx$$
Subst.: $u = \cos x$, $\frac{du}{dx} = -\sin x$

$$= -\int (1 - u^2)^3 \, du = -\int (1 - 3u^2 + 3u^4 - u^6) \, du = -u + u^3 - 3/5u^5 + 1/7u^7 + c$$

$$= -\cos x + \cos^3 x - 3/5 \cos^5 x + 1/7 \cos^7 x + c$$

3.
$$\int f(x)f'(x) dx = \int u du = \frac{1}{2}u^2 + c = \frac{1}{2}f^2(x) + c$$

Subst.: $u = f(x)$, $\frac{du}{dx} = f'(x)$

Beispiele:

a)
$$\int \frac{\ln x}{x} dx = \frac{1}{2} \ln^2 x + c$$

b)
$$\int \frac{\arctan x}{1+x^2} dx = \frac{1}{2}\arctan^2 x + c$$

4.
$$\int \frac{f'(x)}{f(x)} dx = \int \frac{du}{u} = \ln|u| + c = \ln|f(x)| + c$$

Subst.: $u = f(x)$

Beispiele:

a)
$$\int \frac{14x+3}{7x^2+3x-9} dx = \ln|7x^2+3x-9|+c$$

b)
$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \ln|\sin x| + c$$

c)
$$\int \frac{dx}{\sin x \cos x} = \int \frac{dx}{\frac{\sin x}{\cos x} \cos^2 x} = \int \frac{\frac{1}{\cos^2 x}}{\tan x} dx = \ln|\tan x| + c$$

5.
$$\int f(x, \sqrt{a^2 - x^2}) dx$$
, $a > 0$
Subst.: $x = a \sin u$, d.h. $u = \arcsin(\frac{x}{a})$, $dx = a \cos u du$
 $\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 u} = a\sqrt{1 - \sin^2 u} = a \cos u$

a)
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = \int \frac{a^2 \sin^2 u \cdot a \cos u}{a \cos u} du = a^2 \int \sin^2 u du = a^2 (\frac{u}{2} - \frac{1}{4} \sin 2u) + c = a^2 (\frac{u}{2} - \frac{1}{2} \sin u \cos u) + c = a^2 \frac{1}{2} \arcsin(\frac{x}{a}) - \frac{x}{2} \sqrt{a^2 - x^2} + c$$

b)
$$\int \frac{dx}{x^2 \sqrt{4 - x^2}} = \int \frac{2\cos u}{4\sin^2 u \cdot 2\cos u} du = \frac{1}{4} \int \frac{du}{\sin^2 u} = -\frac{1}{4} \cot u + c$$
$$= -\frac{1}{4} \frac{\cos u}{\sin u} + c = -\frac{\sqrt{4 - x^2}}{4x} + c = -\frac{1}{4x} \sqrt{4 - x^2} + c$$

6*.
$$\int f(x; \sqrt{a^2 + x^2}) dx, \quad a > 0$$

Subst.: $x = a \sinh u$

16.1.3 Berechnung bestimmter Integrale

Hier gibt es zwei Möglichkeiten:

1. Stammfunktion bezüglich der "alten" Variablen ermitteln und dann die Grenzen einsetzen

oder

2. Grenzen mittransformieren.

1.
$$I = \int_{\pi/6}^{\pi/2} \sin^5 x \cos x \, dx$$

$$\int \sin^5 x \cos x \, dx = \int u^5 \, du = 1/6u^6 + c \quad \text{mit} \quad u = \sin x \quad \frac{du}{dx} = \cos x$$
1. Möglichkeit: $I = 1/6 \sin^6 x \Big|_{\pi/6}^{\pi/2} = 21/128$

2 Mr. 1: 11 ::

2. Möglichkeit:
untere Grenze
$$x_1 = \pi/6 \rightarrow u_1 = u(\pi/6) = \sin(\pi/6) = 1/2$$

obere Grenze $x_2 = \pi/2 \rightarrow u_2 = u(\pi/2) = \sin(\pi/2) = 1$
 $I = \int_{-1.5}^{1} u^5 du = 1/6u^6 \Big|_{1/2}^{1} = 21/128$

2.
$$I = \int_0^1 \frac{\arctan x}{1 + x^2} dx$$

 $u = \arctan x, \frac{du}{dx} = \frac{1}{1 + x^2}$
Grenzen: $x_1 = 0 \to u_1 = \arctan 0 = 0, x_2 = 1 \to u_2 = \arctan 1 = \pi/4$
 $I = \int_0^{\pi/4} u \, du = \frac{1}{2} u^2 \Big|_0^{\pi/4} = \pi^2/32$

3. Man berechne den Inhalt A der von einem Kreis vom Radius r umschlossenen Fläche. O.B.d.A. wird ein Ursprungskreis betrachtet.

Aus Symmetriegründen genügt es, die sich im 1. Quadranten befindende Teilfläche zu berechnen.

$$y = \sqrt{r^2 - x^2}, \quad A = 4 \cdot \int_0^r \sqrt{r^2 - x^2} \, dx$$

$$u = \arcsin(x/r), \, dx = r \cos u \, du \quad \text{(s. § 16.1.2, Substitution Nr. 5)}$$
Grenzen: $x_1 = 0 \to \arcsin 0 = 0, \, x_2 = r \to \arcsin r/r = \pi/2$

$$\Rightarrow A = 4 \int_0^{\pi/2} r^2 \cos^2 u \, du = 4r^2 \left[\frac{1}{2} u + \frac{1}{4} \sin 2u \right]_0^{\pi/2} = 4r^2 (\frac{\pi}{4} + 0) = \pi r^2.$$

16.2 Partielle Integration

Aus der Produktregel der Differentialrechnung

$$f(x) = u(x)v(x), \quad f'(x) = u'(x)v(x) + u(x)v'(x)$$

erhält man durch Integration

$$\int f'(x) dx = \int (u'(x)v(x) + u(x)v'(x)) dx$$

die Regel für die **partielle Integration**:

$$\int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x) dx$$

Bemerkung: Nur sinnvoll, wenn sich

- 1. zu v' leicht eine Stammfunktion und
- 2. das Integral auf der rechten Seite leicht berechnen läßt.

Beispiele:

1.
$$\int xe^x dx \text{ mit } u(x) = x, v'(x) = e^x$$

 $= xe^x - \int e^x dx = xe^x - e^x + c = (x - 1)e^x + c$
2. $\int \arcsin x \, dx = \int 1 \cdot \arcsin x \, dx$
 $(u(x) = \arcsin x, \ v'(x) = 1 \Rightarrow u'(x) = \frac{1}{\sqrt{1 - x^2}}, \ v(x) = x)$
 $= x \arcsin x - \int \frac{x}{\sqrt{1 - x^2}} \, dx$
(Subst. $z = 1 - x^2, \quad \frac{dz}{dx} = -2x, \quad x \, dx = -1/2dz$)
 $= x \arcsin x + \frac{1}{2} \int \frac{1}{\sqrt{z}} \, dz = x \arcsin x + \sqrt{1 - x^2} + c$

Verwendet man die Formel der partiellen Integration bei **bestimmten Integralen**, so gelten die Grenzen auch für den integralfreien Term; man kann die Grenzen bereits bei den einzelnen Teilen oder erst bei der vollständig ermittelten Stammfunktion einsetzen.

Beispiel (Forts.):

$$\int_{0}^{1} xe^{x} dx$$

$$\int xe^{x} dx = xe^{x} - \int e^{x} dx = e^{x}(x-1)$$

$$e^{x}(x-1)|_{0}^{1} = 1$$
oder
$$\int_{0}^{1} xe^{x} dx = xe^{x}|_{0}^{1} - \int_{0}^{1} e^{x} dx = 1$$

Rekursionsformel für
$$I_n = \int \sin^n x \, dx$$

$$\begin{split} I_n &= \int \sin^{n-1} x \cdot \sin x \, dx \\ u(x) &= \sin^{n-1}, \quad v'(x) = \sin x \\ u'(x) &= (n-1)\sin^{n-2} x \cdot \cos x, \quad v(x) = -\cos x \\ I_n &= -\cos x \cdot \sin^{n-1} x + (n-1) \int \sin^{n-2} x \cdot \cos^2 x \, dx \\ &= -\cos x \cdot \sin^{n-1} x + (n-1) \underbrace{\int \sin^{n-2} x \, dx}_{I_{n-2}} - (n-1) \underbrace{\int \sin^n x \, dx}_{=I_n} \\ nI_n &= -\cos x \cdot \sin^{n-1} x + (n-1)I_{n-2} \\ I_n &= -\frac{1}{n}\cos x \cdot \sin^{n-1} x + \frac{n-1}{n}I_{n-2} \end{split}$$

$$I_{6} = \int \sin^{6} x \, dx$$

$$I_{6} = -\frac{1}{6} \cos x \cdot \sin^{5} x + \frac{5}{6} I_{4}$$

$$I_{4} = -\frac{1}{4} \cos x \cdot \sin^{3} x + \frac{3}{4} I_{2}$$

$$I_{2} = -\frac{1}{2} \cos x \cdot \sin x + \frac{1}{2} I_{0}$$

$$I_{0} = -\int \sin^{0} x \, dx = \int 1 \, dx = x + c$$

$$\Rightarrow I_{6} = -\frac{1}{6} \cos x \cdot \sin^{5} x - \frac{5}{24} \cos x \cdot \sin^{3} x - \frac{5}{16} \cos x \cdot \sin x + \frac{5}{16} x + c$$

16.3 Integration gebrochenrat. Funktionen mittels Partialbruchzerlegung

Die Integration eines Polynoms p_n läßt sich auf die Integration von Potenzfunktionen zurückführen:

$$\int p_n(x) \, dx = a_n \int x^n \, dx + a_{n-1} \int x^{n-1} \, dx + \dots + a_0 \int 1 \, dx \quad .$$

Gegeben sei die unecht gebrochen
rationale Funktion R. Aufgrund der Zerlegung von R in seinen ganz
rationalen Anteil g und die echt gebrochen
rationale Funktion r läßt sich das Integral von R schreiben als

$$\int R(x) dx = \int g(x) dx + \int r(x) dx$$

Daher können wir uns fortan auf die Integration **echt** gebrochenrationaler Funktionen beschränken.

16.3.1 Einführende Beispiele

Beispiele

1.
$$f(x) = \frac{5x+11}{x^2+3x-10} = \underbrace{\frac{3}{x-2} + \frac{2}{x+5}}_{\text{"Partialbruchzerlegung" von } f$$

$$\int f(x) \, dx = \int \frac{5x+11}{x^2+3x-10} \, dx = 3 \int \frac{1}{x-2} \, dx + 2 \int \frac{1}{x+5} \, dx = 3 \ln|x-2| + 2 \ln|x+5| + c$$

Wie findet man die Partialbruchzerlegung?

Ansatz:
$$\frac{5x+11}{x^2+3x-10} = \frac{A}{x-2} + \frac{B}{x+5}$$

 $A(x+5) + B(x-2) = 5x + 11 \Leftrightarrow (A+B)x + 5A - 2B = 5x + 11$

Koeffizientenvergleich liefert:
$$A+B=5$$
 , $5A-2B=11 \Rightarrow A=3,\ B=2$

Ergebnis:
$$\frac{5x+11}{x^2+3x-10} = \frac{3}{x-2} + \frac{2}{x+5}$$

2.
$$f(x) = \frac{x-5}{x^2-6x+9} = \frac{x-5}{(x-3)^2}$$

Ansatz:
$$\frac{x-5}{x^2-6x+9} = \frac{A}{x-3} + \frac{B}{x-3}$$
 ist sinnlos!

Modifizierter Ansatz:
$$\frac{x-5}{x^2-6x+9} = \frac{A}{x-3} + \frac{B}{(x-3)^2}$$

$$A(x-3) + B = x - 5 \Rightarrow A = 1, -3A + B = -5 \Rightarrow B = -2$$

Ergebnis:
$$\frac{x-5}{x^2-6x+9} = \frac{1}{x-3} - \frac{2}{(x-3)^2}$$

$$\int \frac{x-5}{x^2-6x+9} \, dx = \int \frac{dx}{x-3} - 2 \int \frac{dx}{(x-3)^2} = \ln|x-3| + \frac{2}{x-3} + c$$

3.
$$f(x) = \frac{1}{x^2 + 2x + 2}$$

$$\int \frac{dx}{x^2 + 2x + 2} = \int \frac{dx}{(x+1)^2 + 1} = \int \frac{du}{u^2 + 1} = \arctan u + c = \arctan(x+1) + c$$
Subst.: $u = x + 1$

16.3.2 Ansätze für die Partialbruchzerlegung

Jedes Polynom mit reellen Koeffizienten läßt sich darstellen als Produkt aus linearen und (im Reellen nicht weiter zerlegbaren) quadratischen Faktoren der Form:

- lineare Faktoren: $(x-x_0), (x-x_0)^2, \dots$
- quadratische Faktoren: $(x^2 + bx + c)$, $(x^2 + bx + c)^2$, ...

Besitzt ein Polynom die komplexen Nullstellen $\alpha \pm j\beta$, so ergibt das Produkt der beiden entsprechenden Linearfaktoren:

$$(x - \alpha - j\beta)(x - \alpha + j\beta) = (x - \alpha)^2 - (j\beta)^2 = x^2 \underbrace{-2\alpha}_{=b} x + \underbrace{\alpha^2 + \beta^2}_{=c} = x^2 + bx + c .$$

Jede echt gebrochenrationale Funktion läßt sich eindeutig darstellen als Summe von Partialbrüchen gemäß folgender Tabelle:

Nennerfaktor	zugehöriger Ansatz
$x-x_0$	$\frac{A}{x - x_0}$
$(x-x_0)^2$	$\frac{A_1}{x - x_0} + \frac{A_2}{(x - x_0)^2}$
$x^2 + bx + c$	$\frac{Bx + C}{x^2 + bx + c}$
$(x^2 + bx + c)^2$	$\frac{B_1x + C_1}{x^2 + bx + c} + \frac{B_2x + C_2}{(x^2 + bx + c)^2}$

Beispiele:

1.
$$\frac{x-7}{(x-2)^2} = \frac{A}{x-2} + \frac{B}{(x-2)^2}$$
2.
$$\frac{3x-5}{(x+3)^3} = \frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{C}{(x+3)^3}$$
3.
$$\frac{5x^2 - 7x + 1}{(x-9)(x^2 + x + 1)} = \frac{A}{x-9} + \frac{Bx + C}{x^2 + x + 1}$$
4.
$$\frac{3x^3 - 7x}{(x^2 + x + 3)^2} = \frac{B_1x + C_1}{x^2 + x + 3} + \frac{B_2x + C_2}{(x^2 + x + 3)^2}$$

16.3.3 Ermittlung der Koeffizienten

Die Gleichung des Partialbruch-Ansatzes für eine echt gebrochenrationale Funktion ist für alle Elemente ihres Definitionsbereichs erfüllt. Aus dieser Forderung ergeben sich folgende Methoden zur Koeffizientenbestimmung:

1. Methode des Koeffizientenvergleichs

- 2. Methode des Einsetzens spezieller Werte: Man setzt so viele "einfache" Werte aus dem Defintionsbereich ein, wie der Ansatz unbestimmte Koeffizienten enthält; dies liefert ein lineares Gleichungssystem für die gesuchten Koeffizienten.
- 3. **Grenzwertmethode** (Einsetzen der "verbotenen Werte"): Einsetzen der Nennernullstellen.

Beispiele:

1.
$$\frac{x+9}{x^2 - 2x - 24} = \frac{x+9}{(x+4)(x-6)} = \frac{A}{x+4} + \frac{B}{x-6}$$
$$A(x-6) + B(x+4) = x+9$$
$$(A+B)x - 6A + 4B = x+9$$

Zur Lösung bieten sich drei Möglichkeiten an:

a) Koeffizientenvergleich:

$$A + B = 1$$

 $-6A + 4B = 9 \Rightarrow -10A = 5 \Rightarrow A = -1/2, B = 3/2$

b) Einsetzen spezieller Werte:

$$x = 0$$
: $-6A + 4B = 9$
 $x = 1$: $-5A + 5B = 10$
liefert ebenfalls $A = -1/2, B = 3/2$

c) Einsetzen der "verbotenen Werte" (Grenzwertmethode):

$$x = -4: -10A = 5 \Rightarrow A = -1/2$$

 $x = 6: 10B = 15 \Rightarrow B = 3/2$

2.
$$\frac{x-5}{(x-3)^2} = \frac{A}{x-3} + \frac{B}{(x-3)^2}$$
$$A(x-3) + B = x-5$$
$$x = 3: B = -2$$
$$x = 4: A-2 = -1 \implies A = 1$$
$$\implies \frac{x-5}{(x-3)^2} = \frac{1}{x-3} - \frac{2}{(x-3)^2}$$

3.
$$\frac{3-x}{(x+1)(x^2+x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+x+1}$$
$$\Rightarrow A(x^2+x+1) + (Bx+C)(x+1) = 3-x$$
$$x = -1: A = 4$$
$$x = 0: 4+C = 3 \Rightarrow C = -1$$
$$x = 1: 12+2B-2 = 2 \Rightarrow B = -4$$

$$\Rightarrow \frac{3-x}{(x+1)(x^2+x+1)} = \frac{4}{x+1} - \frac{4x+1}{x^2+x+1}$$

16.3.4 Integration der Partialbrüche

Partialbrüche, die von reellen Nennernullstellen herrühren:

$$\int \frac{dx}{x - x_0} = \ln|x - x_0| + c$$

$$\int \frac{dx}{(x - x_0)^2} = -\frac{1}{x - x_0} + c$$

$$\int \frac{dx}{(x - x_0)^k} = -\frac{1}{k - 1} \frac{1}{(x - x_0)^{k - 1}} + c \qquad (k \ge 2)$$

Die Integration von Partialbrüchen, die von (einfachen) komplexen Nennernullstellen herrühren, wird anhand von zwei Beispielen erklärt:

1. Beispiel:

$$I_1 = \int \frac{3x - 1}{x^2 + 2x + 5} dx$$
1 Methode: Ziel:

1. Methode: Ziel:
$$I_1 = \int \frac{f'}{f} dx + \text{Rest}$$

$$\frac{3x-1}{x^2+2x+5} = \frac{3}{2} \cdot \frac{2x+2}{x^2+2x+5} - 4 \cdot \frac{1}{x^2+2x+5}$$

$$\int \frac{3x-1}{x^2+2x+5} dx = \frac{3}{2} \ln|x^2+2x+5| - 4 \underbrace{\int \frac{1}{x^2+2x+5} dx}_{\text{Ziel: } \int \frac{du}{u^2+1}} + c_1$$

Ziel:
$$\int \frac{du}{u^{2}+1}$$

$$x^{2} + 2x + 5 = (x+1)^{2} + 2^{2}$$

$$\int \frac{1}{x^{2} + 2x + 5} dx = \frac{1}{4} \int \frac{dx}{\left(\frac{x+1}{2}\right)^{2} + 1}$$
Subst.:
$$u = \frac{x+1}{2} \quad , \quad \frac{du}{dx} = \frac{1}{2}$$

$$\int \frac{1}{x^{2} + 2x + 5} dx = \frac{1}{4} \cdot 2 \int \frac{du}{u^{2} + 1} = \frac{1}{2} \arctan u = \frac{1}{2} \arctan \frac{x+1}{2} + c_{2}$$

$$\implies \int \frac{3x - 1}{x^{2} + 2x + 5} dx = \frac{3}{2} \ln|x^{2} + 2x + 5| - 2 \arctan \frac{x+1}{2} + c$$

2. Methode (Verwendung der Integrationsformeln #20, 21 mit a=1,b=2,c=5):

$$I_{1} = 3 \int \frac{x}{x^{2} + 2x + 5} dx - \int \frac{dx}{x^{2} + 2x + 5}$$

$$\int \frac{x}{x^{2} + 2x + 5} dx = \frac{1}{2} \ln|x^{2} + 2x + 5| - \int \frac{dx}{x^{2} + 2x + 5} + c_{3}$$

$$\int \frac{dx}{x^{2} + 2x + 5} = \frac{1}{2} \arctan \frac{2x + 2}{4} = \frac{1}{2} \arctan \frac{x + 1}{2} + c_{4}$$

$$\Rightarrow I_{1} = \frac{3}{2} \ln|x^{2} + 2x + 5| - 2 \arctan \frac{x + 1}{2} + c$$

2. Beispiel:

$$\begin{split} I_2 &= \int \frac{4x-1}{x^2+x+1} \, dx \\ \frac{4x-1}{x^2+x+1} &= 2 \cdot \frac{2x+1}{x^2+x+1} - 3 \cdot \frac{1}{x^2+x+1} \\ \int \frac{dx}{x^2+x+1} &= \int \frac{dx}{(x+1/2)^2+3/4} = \frac{4}{3} \int \frac{dx}{(\frac{x+1/2}{\sqrt{3}/2})^2+1} = \\ \frac{4}{3} \frac{\sqrt{3}}{2} \int \frac{du}{u^2+1} &= \frac{2}{\sqrt{3}} \arctan \frac{2x+1}{\sqrt{3}} + c_1 \; , \\ \text{wobei } u &= \frac{2x+1}{\sqrt{3}} \min \frac{du}{dx} = \frac{2}{\sqrt{3}} \text{ substituiert wurde.} \\ I_2 &= 2 \ln(x^2+x+1) - 2\sqrt{3} \arctan \frac{2x+1}{\sqrt{3}} + c \end{split}$$

Alternativ:

$$I_{2} = 4 \int \frac{x}{x^{2} + x + 1} dx - \int \frac{dx}{x^{2} + x + 1}$$

$$\int \frac{x}{x^{2} + x + 1} dx = \frac{1}{2} \ln(x^{2} + x + 1) - \frac{1}{2} \int \frac{dx}{x^{2} + x + 1} + c_{2}$$

$$\int \frac{dx}{x^{2} + x + 1} = \frac{2}{\sqrt{3}} \arctan \frac{2x + 1}{\sqrt{3}} + c_{3}$$

$$\Rightarrow I_{2} = 2 \ln(x^{2} + x + 1) - 2\sqrt{3} \arctan \frac{2x + 1}{\sqrt{3}} + c$$

17 Uneigentliche Integrale

Bislang waren Integrale der Form $\int_a^b f(x) dx$ nur definiert, wenn folgende Bedingungen erfüllt waren:

- 1. f ist in [a, b] beschränkt
- 2. das Integrationsintervall [a, b] ist endlich.

Wir wollen uns jetzt von diesen Voraussetzungen befreien.

17.1 Unbeschränkte Integranden

Ist b eine Unendlichkeitsstelle von f, so definiert man

$$\int_{a}^{b} f(x) \, dx = \lim_{u \to b^{-}} \{ \int_{a}^{u} f(x) \, dx \}$$

Existiert ein endlicher Grenzwert, so heißt das Integral **konvergent**; ist der Grenzwert uneigentlich, so heißt das Integral **divergent**. Im Fall, daß a eine Unendlichkeitsstelle ist, lautet die Definition entsprechend.

Beispiele:

1. $I_1 = \int_0^1 \frac{dx}{\sqrt{1-x^2}}$ ist uneigentlich an der oberen Grenze.

$$\int_0^u \frac{dx}{\sqrt{1-x^2}} = \arcsin u \xrightarrow{u \to 1-} \frac{\pi}{2}$$

Ergebnis: I_1 ist konvergent und es gilt $I_1 = \lim_{u \to 1^-} \arcsin u = \frac{\pi}{2}$.

2. $I_2 = \int_0^1 \frac{dx}{x}$ ist uneigentlich an der unteren Grenze.

$$\int_{u}^{1} \frac{dx}{x} = \ln x \Big|_{u}^{1} = -\ln u \xrightarrow{u \to 0+} +\infty, \text{ somit ist } I_{2} \text{ divergent.}$$

 $\int_a^b f(x) dx$ sei sowohl an der unteren als auch an der oberen Grenze uneigentlich.

Derartige Integrale stellt man dar als Summe zweier Integrale, von denen das eine uneigentlich an der unteren und das andere uneigentlich an der oberen Grenze ist.

Beispiel:

 $I_3 = \int_{-1}^{1} \frac{-2x}{\sqrt{1-x^2}} dx$ Der Integrand ist ungerade; daher wird bei 0 aufgespaltet.

$$\int_0^u \frac{-2x}{\sqrt{1-x^2}} dx = \int_1^{1-u^2} v^{-1/2} dv = 2\sqrt{v} \Big|_1^{1-u^2} = 2(\sqrt{1-u^2} - 1) \xrightarrow{u \to 1^-} -2$$

Subst.: $v = 1 - x^2$, $\frac{dv}{dx} = -2x$

Entsprechend gilt: $\int_{-1}^{0} \frac{-2x}{\sqrt{1-x^2}} dx = 2$

Damit ist I_3 konvergent und es gilt $I_3 = -2 + 2 = 0$.

Ist $x_0 \in (a, b)$ eine Unendlichkeitsstelle von f, so definiert man $\int_a^b f(x) dx := \int_a^{x_0} f(x) dx + \int_{x_0}^b f(x) dx$, falls die beiden uneigentlichen Integrale existieren.

Beispiel:

$$I_4 = \int_{-1}^{1} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{1}^{1} = -2$$
 FALSCH!

Der Integrand besitzt auf [-1,1] keine Stammfunktion. Die Unendlichkeitsstelle x_0 liegt im Inneren des Integrationsintervalles!

$$\int_{u}^{1} \frac{1}{x^{2}} dx = -\frac{1}{x} \Big|_{u}^{1} = -1 + \frac{1}{u} \xrightarrow{u \to 0} \infty \quad \Rightarrow I_{4} \text{ ist divergent.}$$

17.2 Unbeschränkte Integrationsintervalle

Ist das Integrationsintervall $[a, \infty)$ oder $(-\infty, b]$, so definiert man

$$\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \{ \int_{a}^{b} f(x) \, dx \}; \quad \int_{-\infty}^{b} f(x) \, dx = \lim_{a \to -\infty} \{ \int_{a}^{b} f(x) \, dx \} .$$

Sind die Grenzwerte endlich, so heißen die uneigentlichen Integrale konvergent, andernfalls heißen sie divergent.

Beispiele:

Die Fläche A zwischen der Kurve der Funktion $y = \frac{1}{1+x^2}$ und der nichtnegativen x-Achse ist gesucht. A ist gegeben durch

ist gesucht.
$$A$$
 ist gegeben durch
$$I_5 = \int_0^\infty \frac{dx}{1+x^2} .$$

$$\int_0^b \frac{dx}{1+x^2} = \arctan x|_0^b = \arctan b \xrightarrow{b\to\infty} \pi/2$$

Damit ist I_5 konvergent und es gilt $A = I_5 = \pi/2$.

$$I_6 = \int_1^\infty \frac{1}{x^2} dx$$

$$\int_1^b \frac{1}{x^2} dx = -\frac{1}{x} \Big|_1^b = -\frac{1}{b} + 1 \xrightarrow{b \to \infty} 1 \quad \Rightarrow I_6 = 1$$

Definition:

Ist $a \in \mathbb{R}$ und existieren die beiden Grenzwerte $I_1 = \lim_{t_1 \to -\infty} \int_{t_1}^a f(x) \, dx$ und $I_2 = \lim_{t_2 \to \infty} \int_a^{t_2} f(x) \, dx$, so nennt man $I = \int_{-\infty}^{\infty} f(x) \, dx$ konvergent und es gilt $I = I_1 + I_2$, andernfalls heißt I divergent.

Bemerkungen:

- 1. Die Definition ist unabhängig von a.
- 2. Die beiden Grenzwerte I_1 und I_2 müssen **unabhängig voneinander** existieren!

Beispiel:

$$I_7 = \int_{-\infty}^{\infty} x \, dx$$

$$\lim_{t_2 \to \infty} \int_{0}^{t_2} x \, dx = \lim_{t_2 \to \infty} \frac{1}{2} x^2 \Big|_{0}^{t_2} = \lim_{t_2 \to \infty} \frac{t_2^2}{2} = \infty \quad \text{Damit ist } I_7 \text{ divergent.}$$

Achtung!

$$\lim_{t \to \infty} \left[\int_{-t}^{0} x \, dx + \int_{0}^{t} x \, dx \right] = \lim_{t \to \infty} \left[\frac{x^{2}}{2} \Big|_{-t}^{0} + \frac{x^{2}}{2} \Big|_{0}^{t} \right] = \lim_{t \to \infty} \left[\frac{-(-t)^{2}}{2} + \frac{t^{2}}{2} \right] = \lim_{t \to \infty} 0 = 0$$
 ist falsch, denn die Grenzwerte müssen unabhängig voneinander existieren!

18 Anwendungen der Integralrechnung

18.1 Flächenberechnung

18.1.1 Fläche zwischen einer Kurve und der x-Achse

Gesucht ist die Fläche A zwischen der Kurve der Funktion y = f(x), und der x-Achse und den Geraden x = a und x = b.

Bei der Flächenberechnung gibt es zwei Fälle zu beachten:

1.
$$f(x) \ge 0 \quad \forall x \in [a, b] : I \ge 0, A = I$$

2.
$$f(x) \le 0 \quad \forall x \in [a, b] : I \le 0, A = |I| = -I.$$

Beispiel:

$$f(x) = \tan x, \ a = -1, \ b = 0$$

$$A = \left| \int_{-1}^{0} \tan x \, dx \right| = \left| -\ln|\cos x| \, \right|_{-1}^{0} = \left| \ln|\cos(-1)| \right| \approx |\ln 0.54| \approx 0.62$$

Wechselt f in [a,b] das Vorzeichen, so liefert $\int_a^b f(x) \, dx$ die Differenz der ober- und unterhalb der x-Achse liegenden Fläche. Zur Flächenberechnung müssen also die Nullstellen von f bestimmt, das Integrationsintervall an diesen Nullstellen aufgespalten und die Beträge der Teilintegrale aufsummiert werden.

Beispiel:

Gesucht ist die Fläche A zwischen der Kurve der Funktion $y = \sin x \cos x$ und der x-Achse in $[0, 2\pi]$.

Nullstellen von
$$y = \sin x \cos x$$
: $0, \pi/2, \pi, 3/2\pi, 2\pi$

$$A = \int_0^{\pi/2} \cdots - \int_{\pi/2}^{\pi} \cdots + \int_{\pi}^{3/2\pi} \cdots - \int_{3/2\pi}^{2\pi} \cdots$$

$$\int \sin x \cos x \, dx = \frac{\sin^2 x}{2} + c$$

$$A = \frac{1}{2} \left[\sin^2 x \Big|_0^{\pi/2} - \sin^2 x \Big|_{\pi/2}^{\pi} + \sin^2 x \Big|_{\pi}^{3/2\pi} - \sin^2 x \Big|_{3/2\pi}^{2\pi} \right]$$

$$= \frac{1}{2} \cdot (1 - (-1) + (-1)^2 - (-(-1)^2)) = 2$$

18.1.2 Fläche zwischen zwei Kurven

Satz:

Ist $f_2(x) \ge f_1(x) \ \forall x \in [a, b]$, so ergibt sich die Fläche zwischen den Kurven $y = f_2(x)$, $y = f_1(x)$, x = a, x = b als

$$A = \int_{a}^{b} [f_2(x) - f_1(x)] dx.$$

Begründung (vgl. Folienvorlage): $\Delta A_k = [f_2(x_k) - f_1(x_k)] \cdot \Delta x$

$$\sum_{k=1}^{n} \Delta A_k = \sum_{k=1}^{n} [f_2(x_k) - f_1(x_k)] \cdot \Delta x$$

Der Grenzübergang $n \to \infty$, d.h. $\Delta x \to 0$, liefert

$$A = \int_{a}^{b} [f_2(x) - f_1(x)] dx.$$

Beispiel:

Fläche A zwischen der Sinus- und der Cosinuskurve zwischen zwei aufeinanderfolgenden Schnittpunkten.

Kurvenschnittpunkte sind $(\pi/4 + 2k\pi, 1/2\sqrt{2}), (5/4\pi + 2k\pi, -1/2\sqrt{2}), k \in \mathbb{Z}$. Wir beschränken uns auf das Intervall $[\pi/4, 5/4\pi]$.

$$A = \int_{\pi/4}^{5/4\pi} (\sin x - \cos x) \, dx = (-\cos x - \sin x)|_{\pi/4}^{5/4\pi} = 4 \cdot 1/2 \cdot \sqrt{2} = 2\sqrt{2}$$

18.2 Bogenlänge ebener Kurven (*)

Gegeben sei eine stetig differenzierbare Funktion f. Gesucht ist die Länge s_{AB} der Kurve y = f(x) zwischen den Kurvenpunkten A = (a, f(a)) und B = (b, f(b)).

Dazu zerlegt man [a, b] in n Teilintervalle der Breite Δx und nähert auf jedem Teilintervall die Kurve an durch die Sekante durch die Kurvenpunkte an den entsprechenden Randpunkten und damit den gesamten Kurvenbogen durch einen Streckenzug (Polygonzug).

Auf dem k-ten Teilintervall gilt dann (vgl. Folienvorlage):

$$\Delta y_k = y_k - y_{k-1} = f(x_k) - f(x_{k-1})$$

$$\Delta s_k = \sqrt{(\Delta x)^2 + (\Delta y_k)^2} = \sqrt{1 + \left(\frac{\Delta y_k}{\Delta x}\right)^2} \cdot \Delta x$$

$$s_{AB} \approx \sum_{k=1}^n \Delta s_k = \sum_{k=1}^n \sqrt{1 + \left(\frac{\Delta y_k}{\Delta x}\right)^2} \cdot \Delta x$$

Der Grenzübergang $n \to \infty$ liefert wegen $\frac{\Delta y}{\Delta x} \to y'$ für $\Delta x \to 0$

$$s_{AB} = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} \, dx .$$

Beispiel:

Der Kreisumfang U_K soll berechnet werden

Wegen der Symmetrie genügt es, die Länge des oberen rechten Viertelkreises zu bestimmen.

$$y = f(x) = \sqrt{r^2 - x^2}, \quad y' = -\frac{x}{\sqrt{r^2 - x^2}}$$

$$U_K = 4 \cdot \int_0^r \sqrt{1 + \frac{x^2}{r^2 - x^2}} \, dx = 4r \int_0^r \frac{dx}{\sqrt{r^2 - x^2}} = 4r \arcsin \frac{x}{r} \Big|_0^r = 4r \frac{\pi}{2} = 2\pi r.$$

18.3 Krümmung ebener Kurven (*)

Bewegen wir uns auf einer Kurve y=f(x) (im Sinne wachsender x-Werte) um eine beliebig kleine Bogenlänge Δs , so ändert sich der Richtungswinkel der Kurventangente um $\Delta \alpha$. Je größer diese Änderung ist, umso größer ist auch die Krümmung der Kurve. Der Differenzenquotient $\frac{\Delta \alpha}{\Delta s}$ ist also ein Maß für die mittlere Krümmung der Kurve. Durch

den Grenzübergang $\Delta s \to 0$ erhält man die lokale Krümmung. Es sei f zweimal differenzierbar.

Definition:

$$k = \lim_{\Delta s \to 0} \frac{\Delta \alpha}{\Delta s} = \frac{d\alpha}{ds}$$
 heißt **Krümmung** der Kurve.

Es gilt:
$$\tan \alpha = y' \Rightarrow \alpha = \arctan y'$$

$$\frac{d\alpha}{dx} = \frac{1}{1 + (y')^2}y'', \qquad \frac{ds}{dx} = \sqrt{1 + (y')^2}$$

$$k = \frac{d\alpha}{ds} = \frac{d\alpha}{dx} \cdot \frac{dx}{ds} = \frac{y''}{1 + (y')^2} : \frac{ds}{dx} = \frac{y''}{1 + (y')^2} \cdot \frac{1}{\sqrt{1 + (y')^2}} = \frac{y''}{(1 + (y')^2)^{3/2}}$$
Damit erhalten wir für die Krümmung k

$$k = \frac{y''}{(1 + (y')^2)^{3/2}}$$

Beispiel:

Krümmung eines oberen Halbkreises vom Radius r

$$y = \sqrt{r^2 - x^2}, y' = -\frac{x}{\sqrt{r^2 - x^2}}$$

$$y'' = -\frac{\sqrt{r^2 - x^2} + \frac{x^2}{\sqrt{r^2 - x^2}}}{r^2 - x^2} = -\frac{r^2}{(r^2 - x^2)^{3/2}}$$

$$k = -\frac{\frac{r^2}{(r^2 - x^2)^{3/2}}}{\left(1 + \frac{x^2}{r^2 - x^2}\right)^{3/2}} = -\frac{r^2}{r^3} = -\frac{1}{r}$$