IEOR 241: Homework 5

Arnaud Minondo

October 5, 2022

Exercise 1

(a)

$$\begin{split} \mathbb{P}(X=1) &= \lim_{t \to 1, t \leq 1} (F(1) - F(t)) = \frac{1}{4}. \\ \mathbb{P}(X=2) &= \lim_{t \to 2, t \leq 2} (F(2) - F(t)) = \frac{1}{6} \\ \mathbb{P}(X=3) &= \lim_{t \to 3, t \leq 3} (F(3) - F(t)) = \frac{1}{12} \end{split}$$

(b)

$$\mathbb{P}(\frac{1}{2} < X < \frac{3}{2}) = F(\frac{3}{2}) - F(\frac{1}{2}) = \frac{5}{8} - \frac{1}{8} = \frac{1}{2}$$

Exercise 2

Case i=2:

Let $j \in \mathbb{N}$, A_j : "The j-th match is won by Team A", B_j : "The j-th match is won by Team B". Let S be the number of match played.

The probability that the game ends on the second match is:

$$\mathbb{P}(S=2) = \mathbb{P}\left((A_1 \cap A_2) \cup (B_1 \cap B_2) \right) = p^2 + (1-p)^2 = 1 - 2p(1-p).$$

The probability that the game ends on the third match is :

$$\mathbb{P}(S=3) = \mathbb{P}\left((A_1B_2A_3 \cup A_1B_2B_3 \cup B_1A_2B_3 \cup B_1A_2A_3)\right) = 2p^2(1-p) + 2p(1-p)^2 = 2p(1-p)$$
So:

$$\mathbb{E}(S) = 2\mathbb{P}(S=2) + 3\mathbb{P}(S=3) = 2(1 - 2p(1-p)) + 3(2p(1-p)) = 2 - 4p(1-p) + 6p(1-p) = 2 + 2p(1-p)$$

Now let $f: x \to 2 + 2x(1-x)$, $f \in \mathcal{C}^1([0;1],\mathbb{R})$ as f is a polynomial function. $\forall x \in [0;1], f'(x) = 2[(1-p)-p] = 2-4p$ as $\forall x \in [0;\frac{1}{2}], f'(x) \geq 0$ it is a maximum that is reached in $\frac{1}{2}$. That's why E(X) = f(p) is maximum when $p = \frac{1}{2}$ and in this case : $\mathbb{E}(X) = \frac{5}{2}$.

Case i = 3:

$$\begin{split} \mathbb{P}(S=3) &= p^3 + (1-p)^3 \\ \mathbb{P}(S=4) &= 3p^3(1-p) + 3p(1-p)^3 \\ \mathbb{P}(S=5) &= 5p^3(1-p)^2 + 5p^2(1-p)^3 \end{split}$$

$$\mathbb{E}(X) = 3\mathbb{P}(S=3) + 4\mathbb{P}(S=4) + 5\mathbb{P}(S=5) = 3 + 3p + 3p^2 - 12p^3 + 6p^4$$

Let $f: x \to 3 + 3p + 3p^2 - 12p^3 + 6p^4 \in \mathcal{C}^2([0;1],\mathbb{R})$ because it is polynomial.

 $\forall x \in [0, 1] f'(x) = 3 + 6p - 36p^2 + 24p^3 \text{ and } f''(x) = 6 - 72p + 72p^2 = 6(1 - 12p + 12p^2).$

As A and B are playing symmetric roles in the problem you have :

 $\forall x \in [0; \frac{1}{2}], f(x) = f(1-x)$ which implies : f'(x) = -f'(1-x) and f''(x) = f''(1-x). Finding the root of $f''(x^*) = 0$ in $[0; \frac{1}{2}]$ yields $x^* = \frac{12-4\sqrt{6}}{24}$.

As $\forall x \in [0; x^*], f''(x) \ge 0$ and $\forall x \in [x^*, \frac{1}{2}], f''(x) \le 0$ it means $\forall x \in [0; \frac{1}{2}], f'(x) \ge 0$ and $f'(1-x) \le 0$ and finally f is maximized on $x = \frac{1}{2}$.

As $\mathbb{E}(X) = f(p)$ then $\mathbb{E}(X)$ is maximized for $p = \frac{1}{2}$.

Exercise 3

Let $i \in \mathbb{N}, X_i = 1$ if the *i*-th person sits at an unoccupied table and 0 instead. Let also Y the number of table.

You can notice that : $\mathbb{P}(X_i = 1) = (1 - p)^{i-1}$ and $Y = \sum_{i=1}^{N} X_i$

$$\mathbb{E}(Y) = \sum_{i=1}^{N} \mathbb{E}(X_i) = \sum_{i=1}^{N} p^{i-1} = \frac{1 - (1-p)^N}{p}$$

Exercise 4

In this case suppose $\forall i \in \mathbb{N}, i$ -th person is aged i. Let X_i be 1 if the i-th person finds his hat and 0 otherwise. $\forall i \in [1; 1000], \mathbb{P}(X_i = 1) = \frac{1}{1000}$ and $\mathbb{E}(X_i) = \frac{1}{1000}$.

Let $S = \sum_{i=1}^{1000} X_i$ be the number of people finding their hat.

$$\mathbb{E}(S) = \sum_{i=1}^{1000} \mathbb{E}(X_i) = 1000 \frac{1}{1000} = 1$$

Exercise 5

Let M be the number of matched pairs and let $\forall (i,j) \in [1;N], I_{ij}$ be the indicator of the i-th person finds hat j and j-th person finds hat i. $\mathbb{P}(I_{ij}=1)\frac{1}{N(N-1)}$ and there are $\binom{N}{2}$ possible pairs so

$$\boxed{\mathbb{E}(M) = \frac{\binom{N}{2}}{N(N-1)} = \frac{1}{2}}$$

Exercise 6

(a)

 $\mathbb{E}((2+X)^2) = 8 + \mathbb{E}(X^2)$. With $\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \mathbb{E}(X^2) - 1$ and $\mathbb{V}(X) = 5$ you have $\mathbb{E}(X^2) = 6$ and

$$\mathbb{E}((2+X)^2) = 14$$

(b)

$$\mathbb{V}(4+3X) = \mathbb{V}(3X) = 9\mathbb{V}(X) = 45 \text{ so}$$

$$\boxed{\mathbb{V}(4+3X) = 45}$$

Exercise 7

$$\mathbb{E}((X-Y)^2) = \mathbb{E}(X^2 - 2XY + Y^2) = 2(\sigma^2 + \mu^2) - 2\mu^2$$

2

Exercise 8

Let
$$i \in \mathbb{N}, X_i = \{ \begin{array}{cc} 1 & \text{if } i\text{-th roll is a 1} \\ 0 & \text{otherwise} \end{array} \text{ and } Y_i = \{ \begin{array}{cc} 1 & \text{if } i\text{-th roll is a 2} \\ 0 & \text{otherwise} \end{array} \}$$

Let
$$i \in \mathbb{N}, X_i = \{ \begin{array}{ll} 1 & \text{if i-th roll is a 1} \\ 0 & \text{otherwise} \end{array} \text{ and } Y_i = \{ \begin{array}{ll} 1 & \text{if i-th roll is a 2} \\ 0 & \text{otherwise} \end{array} \}$$

Notice that $X = \sum_{i=1}^n X_i$ and $Y = \sum_{i=1}^n Y_i$ then $\text{Cov}(X,Y) = \text{Cov}(\sum_{i=1}^n X_i, \sum_{i=1}^n Y_i) = \sum_{(i,j) \in [\![1;n]\!]^2} \text{Cov}(X_i, Y_j).$

Now notice that $\forall i, j \in \mathbb{N}^2, i \neq j \implies X_i$ indep with Y_i . Thus $\forall i, j \in \mathbb{N}^2, i \neq j, \operatorname{Cov}(X_i, Y_j) = 0$

Thus
$$Cov(X,Y) = \sum_{i=1}^{n} Cov(X_i,Y_i)$$
. Moreover $Cov(X_i,Y_i) = \mathbb{E}(X_iY_i) - \mathbb{E}(X_i)\mathbb{E}(Y_i) = -(\frac{1}{6})^2$

Finally:

$$Cov(X,Y) = -\frac{n}{36}$$