Notes on Methods of Mathematical Physics 数学物理方法学习笔记

东华大学物理学院 熊玉郎

2025年9月16日

 $Version\ X$

Typeset with $\slash\hspace{-0.6em} \text{T-X}$

目录

第一章	复变函数		7
1.1	复变微积分		 7
	1.1.1 复数	的基本概念与性质	 7
	1.1.2 解析	函数	 8
	1.1.3 复初	等函数与多值函数的性质	 9
	1.1.4 保角	变换	 10
	1.1.5 复变	积分的基本概念与性质	 11
	1.1.6 Cau	hy 定理	 12
	1.1.7 Cau	hy 积分公式	 13
	1.1.8 Cau	hy 型积分	 14
	1.1.9 Pois	on 公式	 15
1.2	复级数		 16
	1.2.1 复变	函数级数	 16
	1.2.2 幂级	数	 17
	1.2.3 Tarl	or 展开	 17
	1.2.4 解析	函数的零点	 19
	1.2.5 Lau	ent 展开	 19
1.3	留数及其应	用	 21
	1.3.1 留数	定理	 21
	1.3.2 留数	的计算	 22
	1.3.3 留数	在实变积分的应用	 23
1.4	Gamma 函	t	 26
第二章	积分变换		27
2.1			28
4.1			28
			29
			29
		/	

	2.1.4	重要求和与积分公式	29
2.2	Fourie	r 变换	29
	2.2.1	Fourier 变换公式	29
	2.2.2	Fourier 变换的性质	30
	2.2.3	卷积	30
	2.2.4	Parseval 公式	30
	2.2.5	重要积分公式	30
2.3	Laplac	ee 变换	31
	2.3.1	Laplace 变换公式	31
	2.3.2	由 Fourier 变换引入 Laplace 变换	31
	2.3.3	Laplace 变换的性质	31
	2.3.4	卷积	31
	2.3.5	普遍反演公式	32
	2.3.6	用于反演的简单函数 Laplace 变换汇总	32
第三章	数学物	物理方程	35
3.1	基本数	文学物理方程的建立	35
	3.1.1	二阶线性偏微分方程的分类	35
	3.1.2	初始条件	35
	3.1.3	边界条件	36
	3.1.4	典型数学物理方程汇总	36
3.2	分离变	5量法	36
	3.2.1	解题步骤	37
3.3	本征函	5数法	37
3.4	行波法		38
	3.4.1	一维齐次波动方程的通解	38
	3.4.2	一维齐次波动方程初值问题的特解 (d'Alembert 公式)	38
	3.4.3	非齐次波动方程的解 (Duhamel 积分)	39
	3.4.4	三维波动方程	40
3.5	积分变	を換法	43
	3.5.1	Fourier 变换法	43
	3.5.2	Laplace 变换法	43
	3.5.3	联合变换法	43
	3.5.4	Gauss 核	43
3.6	Green	函数法	45
	3.6.1	用 Green 函数表达解的积分公式	45

目录 5

	3.6.2	Green 公式	46
	3.6.3	稳态方程	46
	3.6.4	半无界域、球域、圆域的稳态方程边值问题	48
	3.6.5	三维波动方程问题	50
	3.6.6	扩散方程	50
第四章	特殊函	5数	51
4.1	二阶线	性常微分方程的幂级数解法	51
	4.1.1	级数解法	51
	4.1.2	几个特殊微分方程的引入	51
4.2	Sturm	-Liouville 理论	52
	4.2.1	Sturm-Liouville 型方程	52
	4.2.2	Sturm-Liouville 本征值问题	53
	4.2.3	Hermite 算符的本征值问题	53
4.3	Gamm	na 函数	53
4.4	柱函数		54
	4.4.1	Bessel 方程与三类柱函数	54
	4.4.2	柱函数的递推公式	55
	4.4.3	整数阶 Bessel 函数的性质	56
	4.4.4	Bessel 函数的正交完备性与 Bessel 级数	57
	4.4.5	球 Bessel 函数	58
4.5	球函数	·	59
	4.5.1	Legendre 方程的解	59
	4.5.2	Legendre 多项式的基本性质	60
	4.5.3	Legendre 多项式的正交完备性	62
	4.5.4	连带 Legendre 函数	63
	4.5.5	球谐函数	64
4.6	Schröd	linger 方程在类氢原子问题中的解	67
	4.6.1	广义 Laguerre 多项式	67
	4.6.2	Schrödinger 方程的解	67
4.7	量子谐	指振子	68
	171	Harmita 名而式	68

6 目录

第一章 复变函数

1.1 复变微积分

1.1.1 复数的基本概念与性质

Euler 公式

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{1.1.1.1}$$

复数的多种表示 (代数、三角、复指数)

$$z = x + iy = r(\cos\theta + i\sin\theta) = re^{i\theta}$$
 (1.1.1.2)

模: $r=|z|=\sqrt{x^2+y^2}$; 辐角: $\theta=\arg z$; 辐角主值: $\operatorname{Arg}(z)\in(-\pi,\pi]$

辐角多值性

$$\arg z = \operatorname{Arg}(z) + 2k\pi \quad (k \in \mathbb{Z})$$
(1.1.1.3)

辐角主值的反正切表示

$$\operatorname{Arg}(z) = \begin{cases} \operatorname{arctan}\left(\frac{y}{x}\right) & \text{第一象限} \\ \operatorname{arctan}\left(\frac{y}{x}\right) + \pi & \text{第二象限} \\ \operatorname{arctan}\left(\frac{y}{x}\right) - \pi & \text{第三象限} \\ \operatorname{arctan}\left(\frac{y}{x}\right) & \text{第四象限} \end{cases}$$
 (1.1.1.4)

De Moivre 公式

$$e^{in\theta} = \cos n\theta + i\sin n\theta \tag{1.1.1.5}$$

1.1.2 解析函数

复变函数定义

$$\forall z \in D \subseteq \mathbb{C}, \ \exists w \in \mathbb{C}, \ \text{s.t.} \ z \stackrel{f}{\longmapsto} w = f(z) = u(x, y) + iv(x, y)$$
 (1.1.2.1)

Cauchy-Riemann 方程

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{1.1.2.2}$$

极坐标 (r, θ) 的 C-R 方程

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$
 (1.1.2.3)

C-R 方程等价表述

$$f(z) = u(x, y) + iv(x, y) = f(z, z^*)$$

1.

$$i\frac{\partial f(x,y)}{\partial x} = \frac{\partial f(x,y)}{\partial y}$$
 (1.1.2.4)

2.

$$\frac{\partial f(z, z^*)}{\partial z^*} = 0 \tag{1.1.2.5}$$

解析函数的定义

区域 D 内处处可导的函数, 称为 D 内的解析函数 \Longrightarrow 在 D 内处处满足 C-R 方程.

∞ 点的解析性

$$f(z)$$
 在 ∞ 点解析 \iff 令 $z = \frac{1}{t}$, 使得 $f\left(\frac{1}{t}\right)$ 在 $t = 0$ 点解析.

1.1 复变微积分 9

1.1.3 复初等函数与多值函数的性质

典型初等函数

初等函数	奇点	导数	周期性
幂函数 <i>zⁿ</i>	$z = \infty, z \in \mathbb{N}^*$ 无奇点, $n = 0$ $z = 0, n \in \mathbb{Z}^-$	$(z^n)' = nz^{n-1}$	无周期性
指数函数 e ^z	$z = \infty$	$(e^z)' = e^z$	$2\pi i,$ $e^z = e^{z+2k\pi i}, \ k \in \mathbb{Z}$
三角函数 $\cos z, \sin z, \cdots$	$z = \infty$	$(\sin z)' = \cos z,$ $(\cos z)' = -\sin z$	2π
双曲函数 $\sinh z = \frac{e^z - e^{-z}}{2}$ $\cosh z = \frac{e^z + e^{-z}}{2}$	$z = \infty$	$(\sinh z)' = \cosh z,$ $(\cosh z)' = \sinh z,$ $(\tanh z)' = \operatorname{sech}^{2} z$	$2\pi i \ (\sinh z, \cosh z, \operatorname{sech} z, \operatorname{csch} z);$ $\pi i \ (\tanh z, \coth z)$

复三角函数的模 $|\sin z|, |\cos z| \in [0, +\infty)$

三角函数与双曲函数的互化 $\sinh z = -\mathrm{i} \sin \mathrm{i} z, \; \cosh z = \cos \mathrm{i} z, \; \tanh z = -\mathrm{i} \tan \mathrm{i} z, \cdots$

典型多值函数

多值函数	多值性	宗量	分支点
根值函数 $\sqrt{z-a}$	$\sqrt{z-a} = \sqrt{r}e^{i\theta} = \sqrt{r}\exp\left(i\frac{\theta+2k\pi}{2}\right) = \pm\sqrt{r}e^{i\theta}$	z-a	$z=0,\infty$
对数函数 ln z	$\ln z = \ln \left(r e^{i\theta} \right) = \ln r + i(\theta + 2k\pi)$	z	$z=0,\infty$
反正弦函数 arcsin z	$\arcsin z = \frac{1}{\mathrm{i}} \ln \left(\mathrm{i}z + \sqrt{1 - z^2} \right)$	$1 - z^2,$ $iz + \sqrt{1 - z^2}$	$z = \pm 1$
反余弦函数 arccos z	$\arccos z = \frac{1}{\mathrm{i}} \ln(z + \sqrt{z^2 - 1})$	$z^2 - 1,$ $z + \sqrt{z^2 - 1}$	$z = \pm 1$
反正切函数 arctan z	$\arctan z = \frac{1}{2i} \ln \frac{1+iz}{1-iz}$	$\frac{1+\mathrm{i}z}{1-\mathrm{i}z}$	$z = \pm i$
复指数幂函数 z^{α}	$z^{\alpha} = e^{\alpha \ln z}$	z	$z=0,\infty$

多值函数的单值化

- 1. 将宗量的辐角限制在某一个 2π 周期内.
- 2. 连接分支点作割线, 并规定割线一相关宗量的辐角, 或分支点以外的某点处函数值.

1.1.4 保角变换

$$z = x + iy \xrightarrow{f} \zeta = f(z) = \xi + i\eta \tag{1.1.4.1}$$

导数的几何意义

解析函数 $\zeta = f(z)$ 在 z_0 处的导数为 $f'(z_0) \neq 0$, 导数的模为 $dz \rightarrow d\zeta$ 的伸缩率, 辐角为 $dz \rightarrow d\zeta$ 的偏转角.

$$z = re^{i\theta} \xrightarrow{f} \zeta = \rho e^{i\varphi}, dz = (dr + ir d\theta)e^{i\theta}, d\zeta = (d\rho + i\rho d\varphi)e^{i\varphi}$$

$$\implies f'(z) = \frac{d\zeta}{dz} = \frac{d\rho + i\rho d\varphi}{dr + ir d\theta}e^{i(\varphi - \theta)} \implies |d\zeta| = |f'(z)||dz|, \arg f'(z) = \varphi - \theta$$

解析函数的保角性

在解析函数代表的变换下,过同一点的两条曲线的伸缩率相同,且夹角保持不变,故称解析函数代表的变换为**保角变换**.

Laplace 算符的保角变换

$$\nabla^2 = \partial_x^2 + \partial_y^2 = |f'(z)|^2 (\partial_\xi^2 + \partial_\eta^2)$$
 (1.1.4.2)

保角变换下的面积元变化公式

$$dx dy = \frac{1}{|f'(z)|^2} d\xi d\eta \qquad (1.1.4.3)$$

1.1 复变微积分 11

$$\frac{\mathrm{d}\xi\,\mathrm{d}\eta}{\mathrm{d}x\,\mathrm{d}y} = \begin{vmatrix} \frac{\partial\xi}{\partial x} & \frac{\partial\xi}{\partial y} \\ \frac{\partial\eta}{\partial x} & \frac{\partial\eta}{\partial y} \end{vmatrix} = \frac{\partial\xi}{\partial x}\frac{\partial\eta}{\partial y} - \frac{\partial\xi}{\partial y}\frac{\partial\eta}{\partial x} \xrightarrow{\text{C-R eqs.}} \left(\frac{\partial\xi}{\partial x}\right) + \left(\frac{\partial\xi}{\partial y}\right) \xrightarrow{\text{Lemma}} |f'(z)|^2$$

$$|f'(z)|^{2} = \left(\frac{\partial \xi}{\partial x}\right)^{2} + \left(\frac{\partial \eta}{\partial x}\right)^{2} = \left(\frac{\partial \xi}{\partial y}\right)^{2} + \left(\frac{\partial \eta}{\partial y}\right)^{2}$$

$$= \left(\frac{\partial \xi}{\partial x}\right)^{2} + \left(\frac{\partial \xi}{\partial y}\right)^{2} = \left(\frac{\partial \eta}{\partial x}\right)^{2} + \left(\frac{\partial \eta}{\partial y}\right)^{2}$$
(1.1.4.4)

二维 Laplace 方程、 Poisson 方程、Helmholtz 方程的保角变换 (简化求解区域)

Laplace eq.
$$\left(\frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2}\right) u(x(\xi, \eta), y(\xi, \eta)) = 0$$
 (1.1.4.5)

Poisson eq.
$$\left(\frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2}\right) u(x(\xi, \eta), y(\xi, \eta)) = \frac{1}{|f'(z)|^2} \rho(x(\xi, \eta), y(\xi, \eta))$$
 (1.1.4.6)

$$\text{Helmholtz eq. } \left(\frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2}\right) u(x(\xi, \eta), y(\xi, \eta)) + \frac{k^2}{\left|f'(z)\right|^2} u(x(\xi, \eta), y(\xi, \eta)) = 0 \ \ (1.1.4.7)$$

1.1.5 复变积分的基本概念与性质

复变积分是复平面上的线积分,是两个实变线积分的有序组合

$$\int_{C} f(z) dz = \int_{C} (u + iv)(dx + i dy) = \int_{C} (u dx - v dy) + i \int_{C} (u dy + v dx)$$
 (1.1.5.1)

1. 线性性
$$\int_C [c_1 f_1(z) + c_2 f_2(z)] dz = c_1 \int_C f_1(z) dz + c_2 \int_C f_2(z) dz$$
, $\forall c_1, c_2 \in \mathbb{C}$

2. 路径可加性 若
$$C = C_1 + C_2$$
, 则 $\int_C f(z) dz = \int_{C_1} f(z) dz + \int_{C_2} f(z) dz$

3. 有向性
$$\int_{C^{-}} f(z) dz = - \int_{C} f(z) dz$$

4. 模不等式
$$\left| \int_C f(z) \, \mathrm{d}z \right| \leq \int_C |f(z)| |\mathrm{d}z|$$

5. 估值不等式
$$\left|\int_C f(z) \, \mathrm{d}z\right| \leq Ml, \, M = \max\{|f(z)|\}, \, l$$
 为 C 的长度

1.1.6 Cauchy 定理

若 f(z) 在以分段光滑曲线 C 为边界的有界闭区域 D 内解析, 则

$$\oint_C f(z) \, \mathrm{d}z = 0 \tag{1.1.6.1}$$

Pf. 利用 Green 公式与 C-R 方程.

多连通区域的 Cauchy 定理

若 D 内有奇点, 则需要将奇点挖去以保证函数的解析性

$$\oint_{C_0} f(z) dz = \sum_{i=1}^n \oint_{C_i^-} f(z) dz$$
(1.1.6.2)

 C_0 与 C_i^- 同向

复积分的变形定理

f(z) 在 D 内解析, D 内简单闭合曲线 C 若能连续变形为曲线 C', 则

$$\oint_C f(z) dz = \oint_{C'} f(z) dz \qquad (1.1.6.3)$$

推论 若 f(z) 在有界单连通区域 D 中解析, 则 $\int_C f(z) \, \mathrm{d}z$ 与 C 无关, $\forall C \subseteq D$.

不定积分定理

若 f(z) 在有界单连通区域 D 内解析, 则 f(z) 的不定积分

$$F(z) = \int_{z_0}^{z} f(\zeta) d\zeta \quad (z \in D)$$
(1.1.6.4)

也在 D 内解析, 且有

$$F'(z) = f(z)$$
 (1.1.6.5)

小圆弧引理

若 f(z) 在 $\dot{U}(a,\delta)$ 内连续,且在 $\theta_1 \leq \arg(z-a) \leq \theta_2$ 中,当 $|z-a| \to 0$ 时, $(z-a)f(z) \rightrightarrows k$,则

$$\lim_{\delta \to 0} \int_{C_{\delta}} f(z) \, \mathrm{d}z = \mathrm{i}k(\theta_2 - \theta_1) \tag{1.1.6.6}$$

1.1 复变微积分 13

大圆弧引理

若 f(z) 在 ∞ 的邻域连续, 在 $\theta_1 \leq \arg(z) \leq \theta_2$ 中, 当 $|z| \to \infty$ 时, $zf(z) \rightrightarrows K$, 则

$$\lim_{R \to \infty} \int_{C_R} f(z) dz = iK(\theta_2 - \theta_1)$$
(1.1.6.7)

1.1.7 Cauchy 积分公式

有界区域的 Cauchy 积分公式

若 f(z) 是以 C 为边界的闭区域 D 内的解析函数, 则

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz \quad (a \in D)$$

$$(1.1.7.1)$$

设 $z - a = \varepsilon e^{i\theta} \Longrightarrow dz = i\varepsilon e^{i\theta} d\theta$,

$$\implies \oint_C \frac{f(z)}{z-a} dz = \int_0^{2\pi} \frac{f(a+\varepsilon e^{i\theta})}{\varepsilon e^{i\theta}} i\varepsilon e^{i\theta} d\theta = i \int_0^{2\pi} f(a+\varepsilon e^{i\theta}) d\theta \xrightarrow{\varepsilon \to 0} i \int_0^{2\pi} f(a) d\theta = 2\pi i f(a)$$

均值定理

若 f(z) 在以 a 为圆心, 半径为 R 的圆内解析, 则

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + Re^{i\theta}) d\theta$$
 (1.1.7.2)

无界区域的 Cauchy 积分公式

若 f(z) 在简单闭合围道 C 上以及 C 外解析, 且 $\lim_{z\to\infty}=0$, 则

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz \tag{1.1.7.3}$$

a 为 C 顺时针方向所围区域内的一点

1.1.8 Cauchy 型积分

$$f(z) = \frac{1}{2\pi i} \int_C \frac{\phi(\zeta)}{\zeta - z} d\zeta \quad (z \notin C)$$
 (1.1.8.1)

Cauchy 型积分的导数

$$f^{(p)}(z) = \frac{p!}{2\pi i} \int_C \frac{\phi(\zeta)}{(\zeta - z)^{p+1}} d\zeta \quad (z \notin C)$$
 (1.1.8.2)

Pf. 利用数学归纳法: 证明对 f'(z) 命题为真; 假设对 $f^{(k)}(z)$ 命题为真, 证明对 $f^{(k+1)}(z)$ 命题为真.

解析函数的高阶导数公式

若 f(z) 在 D 中解析, 则在 D 内 f(z) 的任意阶导数 $f^{(n)}(z)$ 均存在, 且为

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$
 (1.1.8.3)

Morera 定理 (Cauchy 定理的逆定理)

设 f(z) 在 \overline{D} 中连续, 若 \overline{D} 中任一闭合围道 C 都有

$$\oint_C f(z)\mathrm{d}z = 0 \tag{1.1.8.4}$$

则 f(z) 在 D 内解析.

Cauchy 不等式

$$\left| f^{(n)}(z) \right| \le \frac{n!M}{R^n}$$
 (1.1.8.5)

最大模定理

若 f(z) 在 \overline{D} 中解析, 则 |f(z)| 的最大值在 \overline{D} 的边界上.

Liouville 定理

若 f(z) 在整个复平面上解析且有界, 则 f(z) 必为常值函数.

1.1 复变微积分 15

代数基本定理

任何一个次数大于 0 的复系数多项式, 在复平面内至少存在一个根.

复系数多项式唯一因式分解定理

任何一个次数大于 0 的复系数多项式, 在复数域上都可以唯一地分解为一次因式的乘积.

含参量积分的解析性

 $\forall t \in [a,b], f(t,z)$ 在 \overline{D} 内解析, 则 $F(z) = \int_a^b f(t,z) dt$ 也在 D 内解析, 且导数为

$$F'(z) = \int_a^b \frac{\partial f(t, z)}{\partial z} dt$$
 (1.1.8.6)

1.1.9 Poisson 公式

若 f(z) 在上半平面解析,且 $\lim_{|z|\to 0} f(z) = 0$, $\lim\{z\} > 0$,则根据其在实轴上的数值,可以唯一地决定其在上半平面内任意点的数值.

$$u(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(\xi - x) v(\xi, 0)}{(\xi - x)^2 + y^2} d\xi = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{u(\xi, 0)}{(\xi - x)^2 + y^2} d\xi$$
 (1.1.9.1)

$$v(x,y) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(\xi - x) u(\xi, 0)}{(\xi - x)^2 + y^2} d\xi = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{v(\xi, 0)}{(\xi - x)^2 + y^2} d\xi$$
 (1.1.9.2)

$$f(z) = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{u(\xi, 0)}{\xi - (x + iy)} d\xi = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{v(\xi, 0)}{\xi - (x + iy)} d\xi$$
 (1.1.9.3)

$$f(z) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{(\xi - x)^2 + y^2} d\xi = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{(\xi - x) f(\xi)}{(\xi - x)^2 + y^2} d\xi$$
 (1.1.9.4)

1.2 复级数

1.2.1 复变函数级数

复数级数的收敛判别法

1. 比较判别法

2. d'Alembert 判别法

$$\rho = \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| \begin{cases} \rho < 1 & \text{绝对收敛} \\ \rho > 1 & \text{发散} \end{cases}$$
(1.2.1.2)

3. Cauchy 判别法

$$\rho = \lim_{n \to \infty} \sqrt[n]{|u_n|} \begin{cases} \rho < 1 \text{ 绝对收敛} \\ \rho > 1 \text{ 发散} \end{cases}$$
(1.2.1.3)

4. Gauss 判别法

一致收敛的函数级数的性质

$$\sum_{k=1}^{\infty} u_k(z)$$
 在 D 内一致收敛,

1. **连续性** 若 $u_k(z)$ 在 D 内连续, 则

$$\lim_{z \to z_0} \left\{ \sum_{k=1}^{\infty} u_k(z) \right\} = \sum_{k=1}^{\infty} \left\{ \lim_{z \to z_0} u_k(z) \right\}$$

2. **逐项积分** 若 $C \in D$ 内一条分段光滑曲线, $u_k(z)$ 在 C 上连续, 则

$$\int_C \left[\sum_{k=1}^{\infty} u_k(z) \right] dz = \sum_{k=1}^{\infty} \left[\int_C u_k(z) dz \right]$$

1.2 复级数 17

3. Weierstrass 定理 (逐项求导) 若 $u_k(z)$ 在 \overline{D} 内解析, 则 $f(z) = \sum_{k=1}^{\infty} u_k(z)$ 解析, 且

$$f^{(p)}(z) = \sum_{k=1}^{\infty} u_k^{(p)}(z)$$

含参量的反常积分

若 f(t,z) 在 D 内解析, $\int_a^{+\infty} f(t,z) \mathrm{d}z$ 一致收敛, 则 $F(z) = \int_a^{\infty} f(t,z) \mathrm{d}z$ 在 D 内解析, 且

$$F'(z) = \int_{a}^{\infty} \frac{\partial f(t, z)}{\partial z} dz$$
 (1.2.1.4)

反常积分一致收敛判别法

1.2.2 幂级数

$$\sum_{n=0}^{\infty} c_n (z-a)^n \tag{1.2.2.1}$$

Abel 第一定理

收敛半径计算法

$$\sum_{n=0}^{\infty} c_n (z-a)^n$$
 绝对收敛, 收敛半径为 R ,

1. Cauchy-Hadamard 公式

$$R = \frac{1}{\rho} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|c_n|}}$$
 (1.2.2.2)

2. d'Alembert 公式

$$R = \frac{1}{\rho} = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| \tag{1.2.2.3}$$

Abel 第二定理

1.2.3 Tarlor 展开

Taylor 展开定理

若 f(z) 在圆 C 内解析, 则能展开为幂级数形式:

$$f(z) = \sum_{n=0}^{\infty} C_n (z - a)^n$$
 (1.2.3.1)

$$C_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz$$
 (1.2.3.2)

且展开方式唯一.

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - a) - (z - a)} = \frac{1}{\zeta - a} \frac{1}{1 - \left(\frac{z - a}{\zeta - a}\right)} = \frac{1}{\zeta - a} \sum_{n=0}^{\infty} \left(\frac{z - a}{\zeta - a}\right)^n$$

$$\implies f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - a} \sum_{n=0}^{\infty} \left(\frac{z - a}{\zeta - a}\right)^n d\zeta$$

$$= \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta\right] (z - a)^n$$

收敛范围

f(z) 的奇点完全决定了其 Taylor 级数的收敛半径. 若 b 是 f(z) 离 a 最近的奇点,则其收敛半径 R=|b-a|.

级数求解方法

1. 直接求导

$$C_n = \frac{f^{(n)}(a)}{n!} \tag{1.2.3.3}$$

- 2. 凑导数与凑积分 利用逐项求导与逐项积分的性质, 交换求和与微积分的次序.
- 3. 基本初等函数展开系数公式 (z=0 处展开)

(a)
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
 ($|z| < 1$)
(b) $\frac{1}{(1-z)^2} = \frac{d}{dz} \frac{1}{1-z} = \frac{d}{dz} \sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} (n+1)z^n$ ($|z| < 1$)

(c)
$$e^z = 1 + z + \frac{z^2}{z!} + \dots + \frac{z^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 (|z| < \infty)

(d)
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} \quad (|z| < \infty)$$

(e)
$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} \quad (|z| < \infty)$$

4. **级数乘法** 若函数可以表示为 *n* 个函数的乘积, 因子函数的 Taylor 级数易求, 则可用级数乘法求得, 且在收敛域的公共区域绝对收敛.

1.2 复级数 19

5. **待定系数法** 通过比较展开系数的奇偶次幂确定系数, 如利用 $\sin z = \cos z \cdot \tan z$ 求得 $\tan z$ 的展开系数, 但该方法很难求得通项公式.

多值函数的 Taylor 展开

若多值函数规定了单值分支,则可在解析点邻域内 Taylor 展开,收敛半径为该点到割线的最短距离.

典型多值函数在 z=0 的 Taylor 展开

1. 若 $\ln(1+z)|_{z=0}=0$, 则

$$\ln(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n$$
 (1.2.3.4)

2. 若 $(1+z)^{\alpha}|_{z=0}=0$, 则

$$(1+z)^{\alpha} = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} z^n$$
 (1.2.3.5)

无穷远点的 Taylor 展开

若 f(z) 在 $z = \infty$ 点解析, 则可以在该点 Taylor 展开, 即令 $z = \frac{1}{t}$, 将 $f\left(\frac{1}{t}\right)$ 在 t = 0 处 Taylor 展开, 有

$$f\left(\frac{1}{t}\right) = \sum_{n=0}^{\infty} a_n t^n \quad (|t| < r) \tag{1.2.3.6}$$

$$f(z) = \sum_{n=0}^{\infty} \frac{a_n}{z^n} \quad (|z| > r)$$
 (1.2.3.7)

1.2.4 解析函数的零点

零点的阶数

零点孤立性定理

1.2.5 Laurent 展开

Laurent 展开定理

若 f(z) 在以 b 为圆心的环形区域 (多连通区域) $R_1 \le |z-b| \le R_2$ 中解析, 则能展开为幂级数形式:

$$f(z) = \sum_{n = -\infty}^{\infty} C_n (z - b)^n \quad (R_1 \le |z - b| \le R_2)$$
 (1.2.5.1)

$$C_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - b)^{n+1}} d\zeta \neq \frac{f^{(n)}(b)}{n!}$$
 (1.2.5.2)

且展开方式唯一, C 为环内绕内圆一周的任意闭合曲线.

设内外圆分别为 C_1, C_2 , 均取逆时针方向, 则

$$f(z) = \frac{1}{2\pi i} \left[\oint_{C_2} \frac{f(\zeta)}{\zeta - z} \, d\zeta - \oint_{C_1} \frac{f(\zeta)}{\zeta - z} \, d\zeta \right]$$

$$C_2 : \frac{1}{\zeta - z} = \sum_{n=0}^{+\infty} \frac{(z - b)^n}{(\zeta - b)^{n+1}}$$

$$C_1 : -\frac{1}{\zeta - z} = \frac{1}{(z - b) - (\zeta - b)} = \sum_{k=0}^{+\infty} \frac{(\zeta - b)^k}{(z - b)^{k+1}} = \sum_{n=-1}^{-\infty} \frac{(z - n)^n}{(\zeta - b)^{n+1}}$$
据变形定理, C_1, C_2 与 C 上的积分值相等 $\Longrightarrow f(z) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - b)^{n+1}} \, d\zeta \right] (z - n)^n$

孤立奇点的分类

若 z = b 是 f(z) 的孤立奇点, 则 f(z) 一定能展为 Laurent 级数:

$$f(z) = \sum_{n=-\infty}^{+\infty} C_n (z-b)^n \quad (0 < |z-b| < R)$$

孤立奇点	Laurent 级数中 负幂项的数目	奇点邻域内行为	其他特性
可去奇点	0	有界	可构造解析函数: $F(z) = \begin{cases} f(z) & z \neq b \\ \lim_{z \to b} f(z) & z = b \end{cases}$
极点	有限多个	无界 $\lim_{z \to b} f(z) = \infty$	若 $f(z) = \sum_{n=-m}^{+\infty} C_n (z-b)^n$ $(0 < z-b < R, C_{-m} \neq 0, m \in \mathbb{N}^*),$ 则称 $z = b$ 为 $f(z)$ 的 m 阶奇点
本性奇点	无穷多个	极限不存在 若 $z \rightarrow b$ 方式不同, 则 $f(z)$ 逼近不同数值	参考 Picard 小定理

1.3 留数及其应用 21

基于零点的极点判定

$$z = b \not = \frac{1}{f(z)}$$
 的 m 阶零点 $\iff z = b \not = f(z)$ 的 m 阶极点.

L'Hopital 法则

无穷远点的奇点类型判定

奇点	t=0 邻域内 Laurent 展开	$z=\infty$ 邻域内 Laurent 展开
可去奇点	无负幂项	无正幂项
极点	有限多个负幂项	有限多个正幂项
本性奇点	无穷多个负幂项	无穷多个正幂项

1.3 留数及其应用

1.3.1 留数定理

设有界区域 D 的边界 C 为分段光滑的简单闭合曲线, 若除有限个孤立奇点 b_k 外, f(z) 在 D 内解析, 在 \overline{D} 连续, 则

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \text{res } f(b_k) \quad (k = 1, \dots, n)$$
(1.3.1.1)

其中, f(z) 在 b_k 处的**留数**为

$$\operatorname{res} f(b_k) = a_{-1}^{(k)} \tag{1.3.1.2}$$

由 f(z) 在 b_k 去心邻域内 Laurent 展开系数确定:

$$\sum_{l=-\infty}^{\infty} a_l^{(k)} (z - b_k)^l \quad (0 < |z - b_k| < r)$$
(1.3.1.3)

围绕每个孤立奇点 b_k 作半径 ε 足够小的圆形围道 C_k , $z-b_k=\varepsilon \mathrm{e}^{\mathrm{i}\theta}$, $\mathrm{d}z=\mathrm{i}\varepsilon \mathrm{e}^{\mathrm{i}\theta}$

$$\Longrightarrow \oint_{C_k^-} (z - b_k)^l dz = \int_0^{2\pi} i\varepsilon^{l+1} e^{i\theta(l+1)} d\theta = \begin{cases} 2\pi i & l = -1\\ 0 & l \neq -1 \end{cases}$$

据 Cauchy 定理, $\oint_C f(z) dz = \sum_{k=1}^n \oint_{C_k^-} f(z) dz$, 令 f(z) 在 b_k 邻域内作 Laurent 展开:

$$f(z) = \sum_{l=-\infty}^{+\infty} a_l^{(k)} (z - b_k)^l \Longrightarrow \oint_{C_k^-} f(z) dz = 2\pi i a_{-1}^{(k)} = 2\pi i \operatorname{res} f(b_k)$$

1.3.2 留数的计算

m 阶极点处的留数

$$\operatorname{res} f(b) = \frac{1}{(m-1)!} \frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} \left[(z-b)^m f(z) \right]_{z=b}$$
 (1.3.2.1)

一阶极点

res
$$f(b) = \lim_{z \to b} (z - b) f(z)$$
 (1.3.2.2)

分式形 若 f(z) 可表示为 $\frac{P(x)}{Q(x)}$, 其中 P(x), Q(x) 均解析, 且 $P(b) \neq 0$, z = b 是 Q(x) 的一阶零点, 则

res
$$f(b) = \frac{P(b)}{Q'(b)}$$
 (1.3.2.3)

$$f(z) = \sum_{n=-m}^{+\infty} a_n (z-b)^n, a_{-m} \neq 0 \Longrightarrow g(z) = (z-b)^m f(z) = \sum_{k=0}^{+\infty} a_{k-m} (z-b)^k$$
$$\Longrightarrow k = m-1, \ a_{-1} = \frac{g^{(m-1)}(z)}{(m-1)!} \Big|_{z=b}$$

偶函数的留数

若 f(z) 是偶函数, 且 z=0 为其孤立奇点, 则 res f(0)=0.

无穷远点处的留数

若 ∞ 点是 f(z) 的解析点或孤立奇点, 则定义其留数为

$$\operatorname{res} f(\infty) = \frac{1}{2\pi i} \oint_{C'} f(z) dz$$
 (1.3.2.4)

1.3 留数及其应用 23

C' 为绕 ∞ 点正向一周的围道, 所围区域除 ∞ 点外均解析, 留数等于 f(z) 在 ∞ 点邻域内幂级数展开中 z^{-1} 项系数的负值, 即

$$\operatorname{res} f(\infty) = -a_1 \tag{1.3.2.5}$$

可能存在:
$$\begin{cases} f(z) \ \text{在} \ \infty \ \text{点解析}, \ \operatorname{res} f(\infty) \neq 0 \\ \infty \ \text{点是} \ f(z) \ \text{的孤立奇点}, \ \operatorname{res} f(\infty) = 0 \end{cases}$$

1.3.3 留数在实变积分的应用

有理三角函数的积分

$$R(\sin \theta, \cos \theta) = R\left(\frac{z^2 - 1}{2iz}, \frac{z^2 + 1}{2z}\right) = f(z)$$
 (1.3.3.1)

若 R 在 $[0,2\pi]$ 上是连续的,则

$$I = \int_0^{2\pi} R(\sin\theta, \cos\theta) d\theta = \oint_{|z|=1} f(z) \frac{dz}{iz} = 2\pi \sum_{|z|=1} \operatorname{res} \left\{ \frac{f(z)}{z} \right\}$$
 (1.3.3.2)

若 R 在 $[0,2\pi]$ 上有瑕点, 则 f(z) 在 |z|=1 上有奇点. 若这些奇点 β_k 均为一阶极点, 则

$$I = 2\pi \sum_{|z|=1} \operatorname{res} \left\{ \frac{f(z)}{z} \right\} + \pi \sum_{k} \operatorname{res} \left\{ \frac{f(z)}{z} \right\}_{z=\beta_{k}}$$
 (1.3.3.3)

无穷积分

若 f(z) 在上半平面除了有限多个孤立奇点 b_k 外解析, 在实轴上无奇点, 且在 $0 \le \arg z \le \pi$ 范围内, 当 $|z| \to \infty$, $zf(z) \Rightarrow 0$, 则

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{k} \operatorname{res} f(b_{k})$$
(1.3.3.4)

Jordan 引理

若在 $0 \le \arg z \le \pi$ 范围内, 当 $|z| \to \infty$, $Q(z) \Rightarrow 0$, 则

$$\lim_{R \to \infty} \int_{C_R} Q(z) e^{ipz} dz = 0 \quad (p > 0)$$
 (1.3.3.5)

其中 C_R 是以原点为圆心, 半径为 R 的上半圆弧

含三角函数的无穷积分

若 f(z) 在上半平面除了有限多个孤立奇点 b_k 外解析, 在实轴上无奇点, 且在 $0 \le \arg z \le \pi$ 范围内, 当 $|z| \to \infty$, $f(z) \Rightarrow 0$, 则

$$\int_{-\infty}^{\infty} f(x) \cos px \, dx = \operatorname{Re} \left\{ 2\pi i \sum_{k} \operatorname{res} \left\{ f(z) e^{ipz} \right\}_{z=b_k} \right\}$$
 (1.3.3.6)

$$\int_{-\infty}^{\infty} f(x) \sin px \, \mathrm{d}x = \operatorname{Im} \left\{ 2\pi i \sum_{k} \operatorname{res} \left\{ f(z) e^{ipz} \right\}_{z=b_k} \right\}$$
 (1.3.3.7)

积分路径上存在奇点

若积分围道上有奇点 c, 所围区域内有有限多个孤立奇点 b_k , 则

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{k} \operatorname{res} f(b_{k}) - \lim_{\delta \to 0} \int_{C_{\delta}} f(z) dz - \lim_{R \to \infty} \int_{C_{R}} f(z) dz$$
 (1.3.3.8)

圆弧 C_{δ} 上积分值的极限可用小圆弧引理 (in 1.1.6) 计算, C_R 上积分值的极限可用大圆弧引理或 Jordan 引理计算 (in 1.1.6 & 1.3.3).

涉及多值函数

一般思路为: 绕支点作圆弧, 沿割线上下岸作直线围成积分路径.

1. 典型积分围道

围道形状	函数类型	
玦形	无穷区间上的多值函数 适用于以无穷远点为分支点的函数	
哑铃形	有限区间上的多值函数 适用于分支点均在有限远处的函数	
矩形 含复指数的无穷积分		

1.3 留数及其应用 25

2. **对数函数** $\ln z$ 的多值性表现在虚部上, 沿割线上下岸积分时, 实部的 $\ln z$ 相互抵消, 有如下规律:

$$\int_0^\infty f(x) \, \mathrm{d}x \longrightarrow \oint_C f(z) \ln z \, \mathrm{d}z \tag{1.3.3.9}$$

$$\int_0^\infty f(x) \ln x \, dx \longrightarrow \oint_C f(z) \ln^2 z \, dz \qquad (1.3.3.10)$$

26 第一章 复变函数

1.4 Gamma 函数

第二章 积分变换

2.1 Fourier 级数

2.1.1 Fourier 级数展开式

展开函数定义域	展开式 (三角函数 & 复指数)	展开系数
基本周期函数 (-π,π)	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$	$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$ $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{inx} dx$
一般周期函数 (-L,L)	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x \right)$ $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i\frac{n\pi}{L}x}$	$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$ $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi}{L} x dx$ $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi}{L} x dx$ $c_n = \frac{1}{2\pi} \int_{-L}^{L} f(x) e^{-i\frac{n\pi}{L} x} dx$
半幅 Fourier 级数 $(0, L)$	$f(x) = \sum_{n=1}^{\infty} C_n \sin \frac{n\pi x}{L}$ $f(x) = \frac{D_0}{2} + \sum_{n=1}^{\infty} D_n \cos \frac{n\pi x}{L}$	$C_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi}{L} x dx$ $D_0 = \frac{2}{L} \int_0^L f(x) dx$ $D_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi}{L} x dx$
Fourier 积分 $(-\infty, +\infty)$	$f(x) = \int_0^\infty [A(\omega)\cos\omega x + B(\omega)\sin\omega x] d\omega$ $f(x) = \frac{1}{2\pi} \int_{-\infty}^\infty F(\omega) e^{i\omega x} dx$	$A(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos \omega t dt$ $B(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \sin \omega t dt$ $F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$

2.1.2 基底函数

Fourier 级数的基底函数

$$1, \cos x, \cos 2x, \cdots, \sin x, \sin 2x, \cdots$$
$$1, \cos \frac{n\pi}{L} x, \sin \frac{n\pi}{L} x, \ n \in \mathbb{N}^*$$
$$\exp\left(i\frac{n\pi}{L} x\right), \ n \in \mathbb{Z}$$

基底函数的正交性

$$\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \int_{-\pi}^{\pi} \sin mx \sin nx \, dx = \delta_{mn}\pi$$

$$\int_{-L}^{L} \cos \frac{m\pi}{L} x \cos \frac{n\pi}{L} x dx = \int_{-L}^{L} \sin \frac{m\pi}{L} x \sin \frac{n\pi}{L} x \, dx = \delta_{mn}L$$

$$\int_{-L}^{L} e^{i\frac{m\pi}{L}x} e^{i\frac{n\pi}{L}x} dx = 2L\delta_{mn}$$

2.1.3 Dirichlet 定理

2.1.4 重要求和与积分公式

1.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n} = \frac{1}{2}(\pi - x), \ 0 < x < 2\pi$$

$$2. \int_0^\infty \frac{\sin \omega}{\omega} d\omega = \frac{\pi}{2}$$

3.
$$\int_0^\infty \frac{\cos\left(\frac{\pi}{2}\omega\right)}{1-\omega^2} d\omega = \frac{\pi}{2}$$

2.2 Fourier 变换

2.2.1 Fourier 变换公式

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx, -\infty < \omega < \infty$$
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} dx, -\infty < x < \infty$$

2.2.2 Fourier 变换的性质

- 1. 线性性 $\mathscr{F}\{C_1f_1+C_2f_2\}=C_1F_1+C_2F_2$
- 2. 微分定理 (原像函数) $\mathscr{F}\{rac{\mathrm{d}f(x)}{\mathrm{d}x}\}=\mathrm{i}\omega F(\omega) \xrightarrow{\operatorname{推广}} rac{\mathrm{d}^n f(x)}{\mathrm{d}x^n}=(\mathrm{i}\omega)^n F(\omega)$
- 3. 微分定理 (像函数) $\mathscr{F}\{xf(x)\}=\mathrm{i}rac{\mathrm{d}F(\omega)}{\mathrm{d}\omega} \xrightarrow{\mathrm{ff}}\mathscr{F}\{x^nf(x)\}=\mathrm{i}^nrac{\mathrm{d}^nF(\omega)}{\mathrm{d}\omega^n}$
- 4. 积分定理 $\mathscr{F}\left\{\int_{x_0}^x f(\xi) d\xi\right\} = \frac{F(\omega)}{i\omega}$
- 5. 位移定理 (原像函数) $\mathscr{F}\{f(x+\xi)\}=\mathrm{e}^{i\omega\xi}F(\omega)$
- 6. 位移定理 (像函数) $\mathscr{F}\{e^{i\eta x}f(x)\}=F(\omega-\eta)$
- 7. 尺度变换 $\mathscr{F}{f(ax)} = \frac{1}{a}F(\frac{\omega}{a}), \ a > 0$
- 8. 奇偶函数变换

2.2.3 卷积

Fourier 变换的卷积定义

$$f_1(x) * f_2(x) = \int_{-\infty}^{\infty} f_1(\xi) f_2(x - \xi) d\xi, \ x \in (-\infty, \infty)$$

Fourier 变换的卷积定理

$$\mathscr{F}^{-1}\{F_1(\omega)F_2(\omega)\} = f_1(x) * f_2(x)$$

卷积的交换律

$$f_1(x) * f_2(x) = f_2(x) * f_1(x)$$

2.2.4 Parseval 公式

2.2.5 重要积分公式

1.
$$\int_0^\infty \frac{\sin a\omega}{\omega} d\omega = \frac{\pi}{2}, \ a > 0$$

$$2. \int_0^\infty \frac{\sin a\omega}{\omega} d\omega = -\frac{\pi}{2}, \ a < 0$$

2.3 Laplace 变换

2.3.1 Laplace 变换公式

$$F(p) = \int_0^\infty f(t) e^{-pt} dt$$

2.3.2 由 Fourier 变换引入 Laplace 变换

$$\mathcal{L}\{f(t)\} = \mathcal{F}\{g(t)\mathbf{u}(t)\mathbf{e}^{-\beta t}\} = \int_{-\infty}^{\infty} g(t)\mathbf{u}(t)\mathbf{e}^{-\beta t}\mathbf{e}^{-\mathrm{i}\omega t}\mathrm{d}t \equiv \int_{-\infty}^{\infty} f(t)\mathbf{e}^{-pt}\mathrm{d}t$$
$$p = \beta + \mathrm{i}\omega, \ f(t) = g(t)\mathbf{u}(t)$$

2.3.3 Laplace 变换的性质

- 1. 线性性 $\mathcal{L}\{C_1f_1 + C_2f_2\} = C_1F_1 + C_2F_2$
- 2. 微分定理 (原像函数)

$$\mathscr{L}\left\{\frac{\mathrm{d}f(t)}{\mathrm{d}t}\right\} = pF(p) - f(0) \xrightarrow{\text{\sharp}} \mathscr{L}\left\{\frac{\mathrm{d}^2f(t)}{\mathrm{d}t^2}\right\} = p^2F(p) - pf(0) - f'(0)$$

3. 微分定理 (像函数)
$$\mathscr{L}\{tf(t)\} = -\frac{\mathrm{d}F(p)}{\mathrm{d}p} \longrightarrow \mathscr{L}\{t^nf(t)\} = (-1)^n\frac{\mathrm{d}^nF(p)}{\mathrm{d}p^n}$$

4. 积分定理 (原像函数)
$$\mathscr{L}\{\int_0^t f(\tau) d\tau\} = \frac{F(p)}{p}$$

5. 积分定理 (像函数)
$$\mathcal{L}^{-1}\{\int_p^\infty F(q)\mathrm{d}q\}=rac{f(t)}{t}$$

- 6. 位移定理 (像函数) $\mathscr{L}\{\mathrm{e}^{\alpha t}f(t)\}=F(p-\alpha)$
- 7. **位移定理 (原像函数)** $\mathcal{L}\{\mathbf{u}(t-a)f(t-a)\} = e^{-ap}F(p)$

2.3.4 卷积

Laplace 变换的卷积定义

$$f_1(t) * f_2(t) = \int_0^t f_1(\tau) f_2(t - \tau) d\tau$$

Laplace 变换的卷积定理

$$\mathcal{L}^{-1}\{F_1(p)F_2(p)\} = f_1(t) * f_2(t) = \int_0^t f_1(\tau)f_2(t-\tau) d\tau$$

2.3.5 普遍反演公式

$$f(t) = \frac{1}{2\pi i} \int_{\beta - i\infty}^{\beta + i\infty} F(p) e^{pt} dp$$

2.3.6 用于反演的简单函数 Laplace 变换汇总

基本初等函数

1.
$$\mathcal{L}{1} = \frac{1}{p}$$
, Re $p > 0$

$$2. \ \mathscr{L}\{t\} = \frac{1}{p^2}$$

$$3. \mathcal{L}\lbrace t^n\rbrace = \frac{n!}{n^{n+1}}$$

4.
$$\mathscr{L}\{e^{\alpha t}\} = \frac{1}{p-\alpha}, \operatorname{Re} p > \operatorname{Re} \alpha$$

$$5. \mathcal{L}\{\sin kt\} = \frac{k}{p^2 + k^2}$$

6.
$$\mathscr{L}\{\cos kt\} = \frac{p}{p^2 + k^2}$$

7.
$$\mathscr{L}\{\sinh kt\} = \frac{k}{p^2 - k^2}$$

8.
$$\mathscr{L}\{\cosh kt\} = \frac{p}{p^2 - k^2}$$

tf(t) 类函数

$$\mathscr{L}{tf(t)} = -\frac{\mathrm{d}}{\mathrm{d}p}F(p)$$

1.
$$\mathscr{L}\{t^2\} = \frac{2}{p^3}$$

2.
$$\mathcal{L}\lbrace te^{-\alpha t}\rbrace = \frac{1}{(p+\alpha)^2}$$

2.3 LAPLACE 变换

3.
$$\mathscr{L}\{t\sin kt\} = \frac{2pk}{(p^2 + k^2)^2}$$

4.
$$\mathscr{L}\{t\cos kt\} = \frac{p^2 - k^2}{(p^2 + k^2)^2}$$

5.
$$\mathcal{L}\lbrace t \sinh kt \rbrace = \frac{2pk}{(p^2 - k^2)^2}$$

6.
$$\mathscr{L}\{t\cosh kt\} = \frac{p^2 + k^2}{(p^2 - k^2)^2}$$

$e^{\alpha t}f(t)$ 类函数

$$\mathscr{L}\{e^{\alpha t}f(t)\} = F(p-\alpha)$$

1.
$$\mathscr{L}\left\{e^{\alpha t}\sin kt\right\} = \frac{k}{(p-\alpha)^2 + k^2}$$

2.
$$\mathscr{L}\left\{e^{\alpha t}\cos kt\right\} = \frac{p-\alpha}{(p-\alpha)^2 + k^2}$$

3.
$$\mathscr{L}\left\{e^{\alpha t}\sinh kt\right\} = \frac{k}{(p-\alpha)^2 - k^2}$$

4.
$$\mathscr{L}\left\{e^{\alpha t}\cosh kt\right\} = \frac{p-\alpha}{(p-\alpha)^2 - k^2}$$

含单位跃迁函数

$$\mathscr{L}\{\mathbf{u}(t-a)f(t-a)\} = e^{-ap}F(p)$$

$$\mathcal{L}^{-1}\left\{e^{-k\sqrt{p}}\right\} = \frac{k}{2\sqrt{\pi}t^{\frac{3}{2}}}e^{-\frac{k^2}{4t}}$$

第三章 数学物理方程

3.1 基本数学物理方程的建立

3.1.1 二阶线性偏微分方程的分类

按照偏微分方程的特征线,将其分为三大类

方程类型	描述问题	基本形式	物理参量
双曲型	波动	$\frac{\partial^2 u}{\partial t^2} - a^2 \nabla^2 u = 0 \text{ (£\%)}$ $\frac{\partial^2 u}{\partial t^2} - a^2 \nabla^2 u = f(\mathbf{r}) \text{ (}\%\%)$	a:波速 f:外波源
抛物型	扩散	$\frac{\partial u}{\partial t} - a^2 \nabla^2 u = 0 \ (无源)$ $\frac{\partial u}{\partial t} - a^2 \nabla^2 u = f(\mathbf{r}) \ (有源)$	a:扩散系数 f:源
椭圆型	稳定场	$ abla^2 u = 0 \ (无源)$ $ abla^2 u = f(\mathbf{r}) \ (有源)$	f:源

3.1.2 初始条件

方程所需初始条件数,等于其所含时间导数的最高阶数

初始位移:
$$u|_{t=0} = \phi(x)$$
 — 初始速度: $\frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x)$

3.1.3 边界条件

一般边界条件

边界条件	第一类	第二类	第三类
齐次	$u _S = 0$	$\frac{\partial u}{\partial x}\big _S = 0$	$\left[u + \beta \frac{\partial u}{\partial x} \right]_S = 0$
非齐次	$u _{S} = f_1(t)$	$\left \frac{\partial u}{\partial x} \right _S = f_2(t)$	$\left[u + \beta \frac{\partial u}{\partial x} \right]_S = f_3(t)$

极坐标系边界条件

- 1. 周期性边界条件: $u(r, \theta) = u(r, \theta + 2\pi)$
- 2. 自然边界条件: $u(0,\theta)$ = 有限值

3.1.4 典型数学物理方程汇总

1. $\frac{\partial u}{\partial t}$

数学物理方程求解方法汇总

方法	适用问题	基本思想
分离变量法	有界域 齐次方程 齐次边界条件	分离变量求本征解叠加确定系数
本征函数法	有限域 非齐次方程 非齐次边界条件	
行波法	无界域 波动方程	
积分变换法	无界域	
格林函数法		

3.2 分离变量法

分离变量法使用条件

泛定方程线性、齐次, 边界条件齐次

3.3 本征函数法 37

3.2.1 解题步骤

- 1. 设泛定方程有分离变量的形式解
- 2. 将形式解代入泛定方程, 再将时间函数与空间函数整理至等号两侧
- 3. 设分离常数,得到空间函数与时间函数的常微分方程
- 4. 求解空间函数方程结合边界条件构成的本征值问题, 得到本征值与本征函数
- 5. 将本征值代入时间函数方程,解出时间函数,结合本征函数得到泛定方程的本征解
- 6. 利用线性方程的叠加原理得到一般解, 再利用初始条件确定系数

3.3 本征函数法

3.4 行波法

适用范围: 无界域波动方程的定解问题

方程	一维齐次	一维非齐次	三维齐次	三维非齐次
方法	变量代换; d'Alembert 公式	Duhamel 积分; 叠加原理	Poisson公式	Duhamel 积分; 叠加原理

3.4.1 一维齐次波动方程的通解

波动方程
$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$$
 的通解为:

$$u(x,t) = f_1(x+at) + f_2(x-at)$$

推论 混合偏微分形式的方程
$$\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$$
 有通解: $u(\xi, \eta) = f_1(\xi) + f_2(\eta)$

推导 令
$$\xi = x + at$$
, $\eta = x - at$, $\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} \Longrightarrow \frac{\partial^2 u}{\partial \xi \partial \eta} = 0 \xrightarrow{\text{对 } \eta \text{ 积分}} \frac{\partial u}{\partial \xi} = C_1(\xi) \equiv f(\xi)$

$$\xrightarrow{\text{对 } \xi \text{ 积分}} u(\xi, \eta) = \underbrace{\int_{f_1(\xi)} f(\xi) d\xi}_{f_2(\eta)} + \underbrace{C_2(\eta)}_{f_2(\eta)} \Longrightarrow u(x, t) = f_1(x + at) + f_2(x - at)$$

3.4.2 一维齐次波动方程初值问题的特解 (d'Alembert 公式)

无界弦自由振动定解问题

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0 \ (-\infty < x < +\infty, t > 0) \\ u|_{t=0} = \phi(x), \ \frac{\partial u}{\partial t}|_{t=0} = \psi(x) \ (-\infty < x < +\infty) \end{cases}$$

有 d'Alembert 公式:

$$u(x,t) = \frac{1}{2} \left[\phi(x+at) + \phi(x-at) \right] + \frac{1}{2a} \int_{x-at}^{x+at} \phi(\xi) \,d\xi$$
 (3.4.2.1)

 $\Leftrightarrow \xi = x + at, \eta = x - at,$

$$u(\xi, \eta) = f_1(\xi) + f_2(\eta) \Longrightarrow u|_{t=0} = f_1(x) + f_2(x) = \phi(x)$$

$$\frac{\partial u}{\partial t} = af_1'(\xi) - af_2'(\eta) \Longrightarrow f_1'(x) - f_2'(x) = \frac{1}{a}\psi(x) \longrightarrow f_1(x) - f_2(x) = \frac{1}{a}\int_0^x \psi(\xi)d\xi + C$$
$$f_1(x) = \frac{1}{2}\phi(x) + \frac{1}{2a}\int_0^x \psi(\xi)d\xi + \frac{C}{2}, \ f_2(x) = \frac{1}{2}\phi(x) - \frac{1}{2a}\int_0^x \psi(\xi)d\xi - \frac{C}{2}$$

3.4 行波法 39

$$u(x,t) = \frac{1}{2}\phi(x+at) + \frac{1}{2a} \int_0^{x+at} \psi(\xi) d\xi + \frac{1}{2}\phi(x-at) - \frac{1}{2a} \int_0^{x-at} \psi(\xi) d\xi$$
$$= \frac{1}{2}\phi(x+at) + \frac{1}{2}\phi(x-at) + \frac{1}{2a} \int_{x-at}^{x+at} \phi(\xi) d\xi$$

3.4.3 非齐次波动方程的解 (Duhamel 积分)

处理非齐次问题的基本思想

 $\begin{cases} (非齐次方程 + 非齐次初始条件) 的解 <math>w(x,t) \\ (齐次方程 + 非齐次初始条件) 的解 v(x,t) \longrightarrow \text{d'Alembert 公式} \\ (非齐次方程 + 齐次初始条件) 的解 <math>u(x,t) \longrightarrow \text{Duhamel 积分 (齐次化原理)} \\ 叠加原理 \Longrightarrow w(x,t) = u(x,t) + v(x,t) \end{cases}$

齐次化原理求解非齐次问题

对于由非齐次方程和齐次初始条件构成的定解问题

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t) & (-\infty < x < +\infty, t > 0) \\ u|_{t=0} = 0, & \frac{\partial u}{\partial t}|_{t=0} = 0 & (-\infty < x < +\infty) \end{cases}$$

利用 Duhamel 积分与 d'Alembert 公式可得

$$u(x,t) = \frac{1}{2a} \int_0^t \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau) \,d\xi \,d\tau$$
 (3.4.3.1)

对于由非齐次方程和非齐次初始条件构成的定解问题

$$\begin{cases} \frac{\partial^2 w}{\partial t^2} - a^2 \frac{\partial^2 w}{\partial x^2} = f(x, t) & (-\infty < x < +\infty, t > 0) \\ w|_{t=0} = \phi(x), & \frac{\partial w}{\partial t}|_{t=0} = \psi(x) & (-\infty < x < +\infty) \end{cases}$$

利用叠加原理,将齐次通解与非齐次特解叠加可得

$$w(x,t) = \frac{1}{2} [\phi(x+at) + \phi(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi + \frac{1}{2a} \int_{0}^{t} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau) d\xi d\tau$$
(3.4.3.2)

据 Duhamel 原理 (冲量原理), 将 f(x,t) 的连续作用拆分为无数个瞬时冲量 $f(x,\tau)d\tau$,

 $\tau \in [0,t]$, 每个冲量都产生一个微小波动 $\Omega(x,t,\tau)$ 满足

$$\begin{cases} \frac{\partial^2 \Omega}{\partial t^2} - a^2 \frac{\partial^2 \Omega}{\partial x^2} = 0\\ \Omega|_{t=\tau} = 0, \ \frac{\partial \Omega}{\partial t}|_{t=\tau} = f(x,\tau) \end{cases} u(x,t) = \int_0^t \Omega(x,t,\tau) d\tau$$

即, 在物理上非齐次问题的解为全部微小波动的叠加. 此外, 在数学上可通过含参积分求导得证. 令 $T = t - \tau$, 则

$$\Longrightarrow \begin{cases} \frac{\partial^2 \Omega}{\partial T^2} - a^2 \frac{\partial^2 \Omega}{\partial x^2} = 0, \ T > 0 \\ \Omega|_{T=0} = 0, \ \frac{\partial \Omega}{\partial T}|_{T=0} = f(x,\tau) \end{cases} \xrightarrow{\text{d'Alembert } \triangle \vec{\pi} \setminus \Omega(x,t,\tau) = \frac{1}{2a} \int_{x-aT}^{x+aT} f(\xi,\tau) d\xi$$

含参变量积分求导定理

$$U(x) = \int_{x_0}^x f(x,\tau) d\tau$$
 的导函数为

$$\frac{\mathrm{d}U(x)}{\mathrm{d}x} = f(x,x) + \int_{x_0}^x \frac{\partial f(x,\tau)}{\partial x} \,\mathrm{d}\tau \tag{3.4.3.3}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{y_0}^{y(x)} f(x,\tau) \mathrm{d}\tau = f[x,y(x)] \frac{\mathrm{d}y}{\mathrm{d}x} + \int_{y_0}^{y(x)} \frac{\partial f(x,\tau)}{\partial x} \mathrm{d}\tau, \ \diamondsuit \ y(x) = x \ 可得证$$

3.4.4 三维波动方程

三维无界波动问题

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} - a^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) u = 0 \\ u|_{t=0} = \phi(x, y, z), \ \frac{\partial u}{\partial t}|_{t=0} = \psi(x, y, z) \end{cases}$$
 $(-\infty < x, y, z < +\infty)$

球对称解 (r, θ, φ)

若 u 与角向变量 θ, φ 无关, 则

$$\Longrightarrow \frac{\partial^2(ru)}{\partial t^2} - a^2 \frac{\partial^2(ru)}{\partial r^2} = 0 \xrightarrow{\text{\sharp \#} \#} u(r,t) = \frac{f_1(r+at)}{r} + \frac{f_2(r-at)}{r}$$

3.4 行波法 41

推导 球坐标中:
$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\underbrace{\frac{\partial u}{\partial \theta}}_{=0}\right) + \frac{1}{r^2\sin^2\theta}\underbrace{\frac{\partial^2 u}{\partial \varphi^2}}_{=0} = \frac{1}{a^2}\frac{\partial^2 u}{\partial t^2}$$

Poisson 公式

设 S_r 为以 (x,y,z) 为球心, 半径为 r 的球面, 球面上点的坐标为 (ξ,η,ζ)

$$u(x, y, z, t) = \frac{1}{4\pi a} \frac{\partial}{\partial t} \iint_{S_{at}} \frac{\phi(\xi, \eta, \zeta)}{at} dS + \frac{1}{4\pi a} \iint_{S_{at}} \frac{\psi(\xi, \eta, \zeta)}{at} dS$$

 $\xi = x + r\sin\theta\cos\varphi, \, \eta = y + r\sin\theta\sin\varphi, \, \zeta = z + r\cos\theta$

推导 球面平均法: $\lim_{r\to 0} \langle u(r,t) \rangle = u(x,y,z,t)$, 对 d'Alembert 公式取平均可得

$$u(x,t) = \frac{\partial}{\partial t} \left[t \cdot \frac{1}{2at} \int_{x-at}^{x+at} \phi(s) ds \right] + t \cdot \frac{1}{2at} \int_{x-at}^{x+at} \psi(s) ds = \frac{\partial}{\partial t} \left[t \langle \phi(x,t) \rangle \right] + t \langle \psi(x,t) \rangle$$

$$\begin{cases} \langle \phi(x,y,z,t) \rangle = \frac{1}{4\pi(at)^2} \iint_S \phi(\xi,\eta,\zeta) \\ \langle \psi(x,y,z,t) \rangle = \frac{1}{4\pi(at)^2} \iint_S \psi(\xi,\eta,\zeta) \end{cases} \implies u(x,y,z,t) = \frac{\partial}{\partial t} \left[t \langle \phi(x,y,z,t) \rangle \right] + t \langle \psi(x,y,z,t) \rangle$$

$$\implies u(x,y,z,t) = \frac{1}{4\pi a} \frac{\partial}{\partial t} \iint_S \frac{\phi(\xi,\eta,\zeta)}{at} dS + \frac{1}{4\pi a} \frac{\partial}{\partial t} \iint_S \frac{\psi(\xi,\eta,\zeta)}{at} dS$$

三维非齐次波动方程

对于由非齐次方程与齐次初始条件构成的定解问题:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - a^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) u = f(x, y, z, t), \ (-\infty < x, y, z < +\infty, t > 0) \\ u|_{t=0} = 0, \ \frac{\partial u}{\partial t}|_{t=0} = 0, \ (-\infty < x, y, z < +\infty) \end{cases}$$

利用 Duhamel 积分和 Poisson 公式可得:

$$u(x, y, z, t) = \frac{1}{4\pi a} \int_0^t \frac{1}{a(t-\tau)} \iint_{S_{a(t-\tau)}} f(\xi, \eta, \zeta, \tau) dS d\tau$$

对于一般的由非齐次与非齐次初始条件构成的定解问题:

$$\begin{cases} \frac{\partial^2 w}{\partial t^2} - a^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) w = f(x, y, z, t) \\ w|_{t=0} = \phi(x, y, z, t), \ \frac{\partial w}{\partial t}|_{t=0} = \psi(x, y, z, t) \end{cases}$$
 $(-\infty < x, y, z < +\infty)$

可由齐次通解 v 与非齐次特解 u 叠加得解: w(x,y,z,t) = u(x,y,z,t) + v(x,y,z,t)

3.5 积分变换法 43

3.5 积分变换法

适用范围:

3.5.1 Fourier 变换法

Fourier 变换一般对空间变量进行

$$\mathscr{F}\{u(x,t)\} = U(\omega,t) = \int_{-\infty}^{\infty} u(x,t) \mathrm{e}^{\mathrm{i}\omega x} \, \mathrm{d}x$$

$$\mathscr{F}\{\frac{\partial u}{\partial x}\} = \mathrm{i}\omega U(\omega,t) \longrightarrow \mathscr{F}\{\frac{\partial^2 u}{\partial x^2}\} = -\omega^2 U(\omega,t)$$

$$\mathscr{F}\{\frac{\partial u}{\partial t}\} = \frac{\mathrm{d}U(\omega,t)}{\mathrm{d}t} \longrightarrow \mathscr{F}\{\frac{\partial^2 u}{\partial t^2}\} = \frac{\mathrm{d}^2 U(\omega,t)}{\mathrm{d}t^2}$$

3.5.2 Laplace 变换法

$$\mathcal{L}\{u(x,t)\} = U(x,p) = \int_0^\infty u(x,t) \mathrm{e}^{-pt} \, \mathrm{d}t$$

$$\mathcal{L}\{\frac{\partial u}{\partial x}\} = \frac{\mathrm{d}U(x,p)}{\mathrm{d}x} \longrightarrow \mathcal{L}\{\frac{\partial^2 u}{\partial x^2}\} = \frac{\mathrm{d}^2 U(x,p)}{\mathrm{d}x^2}$$

$$\mathcal{L}\{\frac{\partial u}{\partial t}\} = pU(x,p) - u(x,0) \longrightarrow \mathcal{L}\{\frac{\partial^2 u}{\partial t^2}\} = p^2 U(x,p) - pu(x,0) - \frac{\partial u}{\partial t}|_{t=0}$$

3.5.3 联合变换法

3.5.4 Gauss 核

热传导问题

$$\begin{cases} \frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = 0 \\ u|_{t=0} = \phi(x) \end{cases} (-\infty < x < +\infty)$$
$$\Longrightarrow u(x,t) = \phi(x) * K(x,t)$$
$$K(x,t) = \frac{1}{2a\sqrt{\pi t}} \exp\left[-\frac{x^2}{4a^2t}\right]$$

对流热传导问题

$$\begin{cases} \frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} + k \frac{\partial u}{\partial x} = 0 \\ u|_{t=0} = \phi(x) \end{cases}$$

$$\implies u(x,t) = \phi(x) * K(x,t,k)$$

$$K(x,t,k) = \frac{1}{2a\sqrt{\pi t}} \exp\left[-\frac{(x-kt)^2}{4a^2t}\right]$$

有源热传导问题

$$\begin{cases} \frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t) \\ u|_{t=0} = \phi(x) \end{cases} (-\infty < x < +\infty)$$

$$\implies u(x, t) = \phi(x) * K(x, t) + \int_0^t f(x, t) * K(x, t - \tau) d\tau$$

$$K(x, t - \tau) = \frac{1}{2a\sqrt{\pi(t - \tau)}} \exp\left[-\frac{x^2}{4a^2(t - \tau)}\right]$$

Poisson 核

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0\\ u|_{y=0} = f(x) \end{cases} (-\infty < x < +\infty, y > 0)$$

$$\implies u(x, y) = f(x) * P(x, y)$$

3.6 GREEN 函数法

3.6 Green 函数法

45

符号说明 下标 "0" 表示源点, 无下标表示场点

Green 函数的物理意义

Green 函数 $G(\mathbf{r}, \mathbf{r}_0)$ 表示 \mathbf{r}_0 处的单位源量的点源在 \mathbf{r} 处产生的场, 又称点源影响函数, $f(\mathbf{r}_0)$ 为 \mathbf{r}_0 处的源强度, 于是 \mathbf{r} 处的总场可以表达为 $u(\mathbf{r}) = \int_{\Omega} G(\mathbf{r}, \mathbf{r}_0) f(\mathbf{r}_0) \, \mathrm{d}\mathbf{r}_0$

基本步骤

- 1. 建立 Green 函数 G 的定解问题
- 2. 求解该定解问题得到 G
- 3. 利用解的积分公式得到解

3.6.1 用 Green 函数表达解的积分公式

 \mathbf{m} 的一般表达式 解 = [内部源贡献项] + [初始条件贡献项] + [边界条件贡献项]

泛定方程类

设泛定方程均有源. 边界条件与初始条件均齐次

1. 不含时
$$\hat{L}u(\mathbf{r}) = f(\mathbf{r}) \Longrightarrow u(\mathbf{r},t) = \int_{\infty} G(\mathbf{r},\mathbf{r}_0) f(\mathbf{r}_0) d\mathbf{r}_0$$

2. 含时
$$\hat{L}u(\boldsymbol{r},t) = f(\boldsymbol{r},t) \Longrightarrow u(\boldsymbol{r},t) = \int_0^t \int_{\Omega} f(\boldsymbol{r}_0,\tau) G(\boldsymbol{r},\boldsymbol{r}_0,t-\tau) \,\mathrm{d}\boldsymbol{r}_0 \,\mathrm{d}\tau$$

Green 函数的唯一性定理 在给定的线性齐次边界条件与初始条件下,满足对应的非齐次泛定方程的 Green 函数是唯一的

初始条件类

设泛定方程均齐次含时,且1为一阶时间导数方程,2&3为二阶时间导数方程

1.
$$u|_{t=0} = \phi(\mathbf{r}) \Longrightarrow u(\mathbf{r}, t) = \int_{\Omega} \phi(\mathbf{r}_0) G(\mathbf{r}, \mathbf{r}_0, t) d\mathbf{r}_0$$

2.
$$u|_{t=0} = \phi(\mathbf{r}), \ \frac{\partial u}{\partial t}|_{t=0} = 0 \Longrightarrow u(\mathbf{r}, t) = \frac{\partial}{\partial t} \int_{\Omega} \phi(\mathbf{r}_0) G(\mathbf{r}, \mathbf{r}_0, t) \, \mathrm{d}\mathbf{r}_0$$

3.
$$u|_{t=0} = 0$$
, $\frac{\partial u}{\partial t}|_{t=0} = \psi(\mathbf{r}) \Longrightarrow u(\mathbf{r}, t) = \int_{\Omega} \psi(\mathbf{r}_0) G(\mathbf{r}, \mathbf{r}_0, t) \, d\mathbf{r}_0$

边界条件类

设泛定方程齐次, 若含时, 则初始条件也齐次

1. 不含时
$$B[u] = f(\mathbf{r}) \Longrightarrow u(\mathbf{r}) = \int_S G(\mathbf{r}, \mathbf{r}_0) f(\mathbf{r}_0) \, \mathrm{d}S_0$$

2. 含时
$$B[u] = f(\boldsymbol{r}, t) \Longrightarrow u(\boldsymbol{r}, t) = \int_0^t \int_S G(\boldsymbol{r}, \boldsymbol{r}_0, t - \tau) f(\boldsymbol{r}_0, \tau) \, \mathrm{d}S_0 \, \mathrm{d}\tau$$

3.6.2 Green 公式

第一 Green 公式

$$\int_{\Omega} (u\nabla^2 v + \nabla u \cdot \nabla v) \, dV = \oint_{\partial\Omega} u \frac{\partial v}{\partial n} \, dS$$
 (3.6.2.1)

第二 Green 公式

$$\int_{\Omega} (u\nabla^2 v - v\nabla^2 u) \, dV = \oint_{\partial\Omega} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) \, dS$$
 (3.6.2.2)

Pf.
$$\mathbf{A} = u \nabla v \Longrightarrow \nabla \cdot \mathbf{A} = \nabla \cdot (u \nabla v) = \nabla u \cdot \nabla v + u \nabla^2 v, \ \mathbf{A} \cdot d\mathbf{S} = u \nabla v \cdot \mathbf{n} = u \frac{\partial v}{\partial n},$$

$$\int_{\Omega} \nabla \cdot \mathbf{A} \, dV = \oint_{\partial \Omega} \mathbf{A} \cdot d\mathbf{S} \Longrightarrow$$
第一 Green 公式 $\xrightarrow{u \leftrightarrow v}$ 第二 Green 公式

Green 函数的对易性

Green 函数对源点与场点具有对称性, 即 $G(\mathbf{r}, \mathbf{r}_0) = G(\mathbf{r}_0, \mathbf{r})$

3.6.3 稳态方程

Laplace 方程的基本解

三维 Laplace 方程 规定满足自然边界条件, 即 $r \to \infty$ 时 $u(r) \to 0$

$$u(r) = \frac{1}{4\pi r}$$

二维 Laplace 方程 规定当 r=1 时 u(r)=0

$$u(r) = \frac{1}{2\pi} \ln \frac{1}{r}$$

在无界域中, 且满足对应无穷远条件时, Laplace 方程的基本解即其 Green 函数

Poisson 方程的基本积分公式

$$-\nabla^{2}u(\mathbf{r}) = f(\mathbf{r}) \Longrightarrow \nabla^{2}G = -\delta(\mathbf{r} - \mathbf{r}_{0})$$

$$\Longrightarrow u(\mathbf{r}) = \int_{\Omega} G(\mathbf{r}, \mathbf{r}_{0}) f(\mathbf{r}_{0}) \, dV_{0} + \oint_{\partial\Omega} \left[G(\mathbf{r}, \mathbf{r}_{0}) \frac{\partial u(\mathbf{r}_{0})}{\partial n_{0}} - u(\mathbf{r}_{0}) \frac{\partial G(\mathbf{r}, \mathbf{r}_{0})}{\partial n_{0}} \right] \, dS_{0}$$
(求解域 $\Omega \to S$, 边界 $D \to C$ 即可得二维公式)

Poisson 方程的边值问题

边值问题类型	$u(\boldsymbol{r})$ 表达式	$G(\boldsymbol{r},\boldsymbol{r}_0)$ 表达式	静电问题中的物理意义
第一类	$u(m{r}) _S = g(m{r})$	$G _S = 0$	电势 u 已知
第二类	$\frac{\partial u}{\partial n} _S = h(\boldsymbol{r})$	$\frac{\partial G}{\partial n} _{S} = 0$	法向电场强度 E_n 已知
第三类	$\left[u + \alpha \frac{\partial u}{\partial n} \right]_S = z(\mathbf{r})$	$\left[G + \alpha \frac{\partial G}{\partial n}\right]_S = 0$	u 与 E_n 的线性约束关系已知

边值问题类型	解的积分公式 (求解域 $\Omega \to S$, 边界 $D \to C$ 即可得二维公式)
第一类	$u(\mathbf{r}) = \int_{\Omega} G(\mathbf{r}, \mathbf{r}_0) f(\mathbf{r}_0) dV_0 - \oint_{S} g(\mathbf{r}_0) \frac{\partial G(\mathbf{r}, \mathbf{r}_0)}{\partial n_0} dS_0$
第二类	$u(\boldsymbol{r}) = \int_{\Omega} G(\boldsymbol{r}, \boldsymbol{r}_0) f(\boldsymbol{r}_0) dV_0 + \oint_{S} G(\boldsymbol{r}, \boldsymbol{r}_0) h(\boldsymbol{r}_0) dS_0$
第三类	$u(\mathbf{r}) = \int_{\Omega} G(\mathbf{r}, \mathbf{r}_0) f(\mathbf{r}_0) dV_0 + \frac{1}{\alpha} \oint_{S} G(\mathbf{r}, \mathbf{r}_0) z(\mathbf{r}_0) dS_0$

Laplace 方程边值问题的解的积分公式

$$f(\mathbf{r}) \equiv 0 \Longrightarrow \begin{cases} u(\mathbf{r}) = -\oint_{S} g(\mathbf{r}_{0}) \frac{\partial G(\mathbf{r}, \mathbf{r}_{0})}{\partial n_{0}} dS_{0} \\ u(\mathbf{r}) = \oint_{S} G(\mathbf{r}, \mathbf{r}_{0}) h(\mathbf{r}_{0}) dS_{0} \\ u(\mathbf{r}) = \frac{1}{\alpha} \oint_{S} G(\mathbf{r}, \mathbf{r}_{0}) z(\mathbf{r}_{0}) dS_{0} \end{cases}$$

三维无界域 Poisson 方程的解

规定
$$r \to \infty$$
 时 $u(r) \to 0$

$$\begin{cases} u(\mathbf{r}) = \int_{\infty} G(\mathbf{r}, \mathbf{r}_0) f(\mathbf{r}_0) \, dV_0 \\ G(\mathbf{r}, \mathbf{r}_0) = \frac{1}{4\pi |\mathbf{r} - \mathbf{r}_0|} \end{cases} \implies u(\mathbf{r}) = \frac{1}{4\pi} \int_{\infty} \frac{f(\mathbf{r}_0)}{|\mathbf{r} - \mathbf{r}_0|} \, dV_0$$

二维无界域 Poisson 方程的解

规定
$$r=1$$
 时 $u(\mathbf{r})=0$

$$\begin{cases} u(\mathbf{r}) = \int_{\infty} G(\mathbf{r}, \mathbf{r}_0) f(\mathbf{r}_0) d\sigma_0 \\ G(\mathbf{r}, \mathbf{r}_0) = \frac{1}{2\pi} \ln \frac{1}{r} \end{cases} \implies u(\mathbf{r}) = \frac{1}{2\pi} \int_{\infty} f(\mathbf{r}_0) \ln \frac{1}{|\mathbf{r} - \mathbf{r}_0|} d\sigma_0$$

3.6.4 半无界域、球域、圆域的稳态方程边值问题

上半空间

Poisson
$$\vec{\mathcal{P}}$$
程:
$$\begin{cases} -\nabla^2 u(\boldsymbol{r}) = f(x, y, z), \ z > 0 \\ u(x, y, z)|_{z=0} = g(x, y) \end{cases} \qquad (-\infty < x, y < +\infty)$$
$$u(\boldsymbol{r}) = \frac{z}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{g(x_0, y_0)}{[(x - x_0)^2 + (y - y_0)^2 + x^2]^{\frac{3}{2}}} \, \mathrm{d}x_0 \, \mathrm{d}y_0$$
$$+ \frac{1}{4\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{z_0=0}^{\infty} \frac{f(x_0, y_0, z_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}} \, \mathrm{d}x_0 \, \mathrm{d}y_0 \, \mathrm{d}z_0$$
$$- \frac{f(x_0, y_0, z_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z + z_0)^2}} \, \mathrm{d}x_0 \, \mathrm{d}y_0 \, \mathrm{d}z_0$$

令 $f \equiv 0$ 则可得对应的 Laplace 方程及其解:

$$u(\mathbf{r}) = \frac{z}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{g(x_0, y_0)}{\left[(x - x_0)^2 + (y - y_0)^2 + x^2 \right]^{\frac{3}{2}}} dx_0 dy_0$$

上半平面

Poisson 方程:
$$\begin{cases} -\nabla^2 u(\boldsymbol{r}) = f(x,y), \ y > 0 \\ u(x,y)|_{y=0} = g(x) \end{cases} \quad (-\infty < x < +\infty)$$

$$u(\mathbf{r}) = \frac{1}{\pi} \int_{-\infty}^{\infty} g(x_0) \frac{y}{(x - x_0)^2 + y^2} dx_0$$
$$+ \frac{1}{4\pi} \int_{y_0=0}^{\infty} \int_{-\infty}^{\infty} f(x_0, y_0) \ln \frac{(x - x_0)^2 + (y + y_0)^2}{(x - x_0)^2 + (y - y_0)^2} dx_0 dy_0$$

令 $f \equiv 0$ 则可得对应的 Laplace 方程及其解:

$$u(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} g(x_0) \frac{y}{(x-x_0)^2 + y^2} dx_0$$

球域

Poisson 方程:
$$\begin{cases} -\nabla^{2}u(\mathbf{r}) = f(x, y, z), \ r < R \\ u(x, y, z)|_{r=R} = g(x, y, z) \end{cases}$$
$$u(r, \theta, \varphi) = \int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2\pi} G(M, M_{0}) f(r_{0}, \theta_{0}, \varphi_{0}) r_{0}^{2} \sin \theta_{0} \, dr_{0} \, d\theta_{0} \, d\varphi_{0}$$
$$+ \frac{R(R^{2} - r^{2})}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \frac{g(R, \theta_{0}, \varphi_{0})}{(R^{2} + r^{2} - 2rR\cos\gamma)^{\frac{3}{2}}} \sin \theta_{0} \, d\theta_{0} \, d\varphi_{0}$$
$$G(M, M_{0}) = \frac{1}{4\pi} \left(\frac{1}{\sqrt{r_{0}^{2} + r^{2} - 2rr_{0}\cos\gamma}} - \frac{R}{\sqrt{r^{2}r_{0}^{2} + R^{4} - 2R^{2}rr_{0}\cos\gamma}} \right)$$
$$\cos \gamma = \sin \theta \sin \theta_{0} \cos(\varphi - \varphi_{0}) + \cos \theta \cos \theta_{0}$$

令 $f \equiv 0$ 则可得对应的 Laplace 方程及其解:

$$u(r, \theta, \varphi) = \frac{R(R^2 - r^2)}{4\pi} \int_0^{2\pi} \int_0^{\pi} \frac{g(R, \theta_0, \varphi_0)}{(R^2 + r^2 - 2rR\cos\gamma)^{\frac{3}{2}}} \sin\theta_0 \,d\theta_0 \,d\varphi_0$$

圆域

$$u(r,\theta) = \frac{1}{4\pi} \int_0^R \int_0^{2\pi} f(r_0, \theta_0) \ln \left\{ \frac{r^2 r_0^2 + R^4 - 2r r_0 R^2 \cos(\theta - \theta_0)}{R^2 [r^2 + r_0^2 - 2r r_0 \cos(\theta - \theta_0)]} \right\} r_0 \, dr_0 \, d\theta_0$$
$$+ \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{g(\theta_0)}{R^2 + r^2 - 2r R \cos(\theta - \theta_0)} \, d\theta_0$$

令 $f \equiv 0$ 则可得对应的 Laplace 方程及其解:

$$u(r,\theta) = \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{g(\theta_0)}{R^2 + r^2 - 2rR\cos(\theta - \theta_0)} d\theta_0$$

Poisson 核

1. 上半平面
$$P(x,y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$$
 $(-\infty < x < +\infty, y > 0)$

2. 圆域
$$P(r,\theta) = \frac{1}{2\pi} \frac{R^2 - r^2}{R^2 + r^2 - 2rR\cos(\theta - \theta_0)}$$
 $(0 \le r < R, 0 \le \theta \le 2\pi)$

$$u(x,y) = f(x) * P(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(\xi) \frac{y}{(x-\xi)^2 + y^2} d\xi$$
$$u(r,\theta) = f(\theta) * P(r,\theta) = \frac{R^2 - r^2}{2\pi} \int_{0}^{2\pi} \frac{f(\theta_0)}{R^2 + r^2 - 2rR\cos(\theta - \theta_0)} d\theta_0$$

3.6.5 三维波动方程问题

$$G(\mathbf{r}, \mathbf{r}_0, t) = \frac{1}{4\pi a} \frac{\delta(|\mathbf{r} - \mathbf{r}_0| - at)}{|\mathbf{r} - \mathbf{r}_0|}$$

$$w(\mathbf{r}, t) = v(\mathbf{r}, t) + u(\mathbf{r}, t) = \frac{\partial u(\mathbf{r}, t)}{\partial t} + u(\mathbf{r}, t)$$

$$= \frac{\partial}{\partial t} \iiint_{\infty} \phi(\mathbf{r}_0) G(\mathbf{r}, \mathbf{r}_0, t) \, d\mathbf{r}_0 + \iiint_{\infty} \psi(\mathbf{r}_0) G(\mathbf{r}, \mathbf{r}_0, t) \, d\mathbf{r}_0$$

$$= \frac{1}{4\pi a} \left[\frac{\partial}{\partial t} \iint_{S_{at}^r} \frac{\phi(\mathbf{r}_0)}{at} \, dS + \iint_{S_{at}^r} \frac{\psi(\mathbf{r}_0)}{at} \, dS \right]$$

3.6.6 扩散方程

第四章 特殊函数

4.1 二阶线性常微分方程的幂级数解法

4.1.1 级数解法

若 x_0 为常点,则 p(x),q(x),y(x) 均在内解析,可展开为 Taylor 级数 若 x_0 为的正则奇点则两个解为

$$y_1(x) = \sum_{k=-\infty}^{+\infty} a_k(x - x_0)^{k+s_1}, \quad y_2(x) = \sum_{k=-\infty}^{+\infty} b_k(x - x_0)^{k+s_2} + \beta y_1(x) \ln(x - x_0)$$

4.1.2 几个特殊微分方程的引入

Helmholtz 方程	$\nabla^2 u(\boldsymbol{r}) + k^2 u(\boldsymbol{r}) = 0$
球 Bessel 方程	$\frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) + (k^2 r^2 - \omega^2) R = 0$
Euler 方程	$\frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) - \omega^2 R = 0$
连带 Legendre 方程	$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + \left[l(l+1) - \frac{m^2}{1-x^2}\right]y = 0$
Legendre 方程	$\frac{\mathrm{d}}{\mathrm{d}x} \left[(1 - x^2) \frac{\mathrm{d}y}{\mathrm{d}x} \right] + \omega^2 y = 0$
Bessel 方程	$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - \nu^{2})y = 0$
角向方程	
径向方程	

球坐标系
$$(r, \theta, \varphi)$$
 Laplace 方程: $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2} = 0$

$$u(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi) \Longrightarrow \frac{1}{R}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \frac{1}{\Theta\sin\theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right) + \frac{1}{\Phi\sin^2\theta}\frac{\mathrm{d}^2\Phi}{\mathrm{d}\varphi^2} = 0$$

$$\frac{1}{R}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) = l(l+1) \Longrightarrow \frac{\sin\theta}{\Theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right) + \frac{1}{\Phi}\frac{\mathrm{d}^2\Phi}{\mathrm{d}\varphi^2} + l(l+1)\sin^2\theta = 0$$

$$\frac{1}{\Phi}\frac{\mathrm{d}^2\Phi}{\mathrm{d}\varphi^2} = -m^2 \Longrightarrow \frac{\sin\theta}{\Theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right) + l(l+1)\sin^2\theta = m^2$$

$$x = \cos\theta, y(x) = \Theta(\theta) \Longrightarrow \frac{(1-x^2)y'' - 2xy' + \left[l(l+1) - \frac{m^2}{1-x^2}\right]y = 0}{\frac{\mathrm{i}\pi^2}{\mathrm{t}} \operatorname{Legendre} \pi^2}$$

$$m = 0 \Longrightarrow \frac{(1-x^2)y'' - 2xy' + l(l+1)y = 0}{\mathrm{Legendre} \pi^2}$$

$$-\frac{\hbar^2}{2\mu}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\frac{\partial\psi}{\partial \theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial \varphi^2}\right] + V(r)\psi = E\psi$$

$$\psi(r) = R(r)Y(\theta,\varphi) \Longrightarrow \begin{cases} -\frac{1}{Y}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial Y}{\partial \theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2Y}{\partial \varphi^2}\right] = l(l+1) & \text{fin}\pi^2\theta$$

4.2 Sturm-Liouville 理论

4.2.1 Sturm-Liouville 型方程

任一二阶线性齐次常微分方程均可化为含待定常数 λ 的 Sturm-Liouville 型方程:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[k(x) \frac{\mathrm{d}y(x)}{\mathrm{d}x} \right] - q(x)y(x) + \lambda \underbrace{\rho(x)}_{\mbox{\tiny $\not$$$$$$$$\ensuremath{\not$$$$$}\ensuremath{\not$$}\ensuremath{\not$$}\ensuremath{\not$$}\ensuremath{\not$}\ensuremath{\ensuremath}\ensuremath{\not$}\ensuremath{\not$}\ensuremath{\not$}\ensuremath{\not$\ensuremath}\ensuremath{\not$\ensuremath}\ensuremath{\not$\ensuremath}\ensuremath{\not$\ensuremath}\ensuremath}\ensuremath{\not$\ensuremath}\ensuremath{\not$\ensuremath}\ensuremath}\ensuremath{\ensuremath}\ensuremath}\ensuremath{\ensuremath}\ensuremath}\ensuremath{\ensuremath}\ensuremath}\ensuremath}\ensuremath{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}$$

Pf.

$$y'' + Py' + Qy = 0 \xrightarrow{\mathcal{H} \boxtimes \lambda} y'' + Py' - \tilde{Q}y + \lambda \tilde{\rho}y = 0$$
$$\xrightarrow{k = \exp\left[\int P(x) dx\right]} ky'' + kPy' - k\tilde{Q}y + \lambda \tilde{\rho}y = 0 \xrightarrow{k' = kP} \frac{\mathrm{d}}{\mathrm{d}x} \left[ky'\right] - qy + \lambda \rho y = 0$$

4.3 GAMMA 函数

53

4.2.2 Sturm-Liouville 本征值问题

本征函数的正交性

$$\int_0^L \rho(x) y_m(x) y_n(x) dx = \frac{Q}{\lambda_m - \lambda_n} \quad (m \neq n)$$
$$Q = [k(x) y_n'(x) y_m(x) - k(x) y_m'(x) y_n(x)]_0^L$$

本征函数的完备性

$$f(x) = \sum_{n} C_n y_n(x) \Longrightarrow C_n = \frac{\int_0^L \rho(x) y_n(x) f(x) dx}{\int_0^L \rho(x) y_n^2(x) dx}$$

4.2.3 Hermite 算符的本征值问题

Hermite 算符的定义

1.
$$\hat{A} = \hat{A}^{\dagger}$$

2.
$$\int \psi^* \hat{A} \phi \, \mathrm{d}x = \int (\hat{A} \psi)^* \phi \, \mathrm{d}x$$

本征值

Hermite 算符的本征值均为实数, 即 $\lambda = \lambda^*$

归一化本征函数的正交性

$$\int \psi_m^* \psi_n \, \mathrm{d}x = \delta_{mn}$$

本征函数的完备性

$$f(x) = \sum_{n} C_n \psi_n, \quad C_n = \int \psi_n^*(x) f(x) dx$$

4.3 Gamma 函数

1.
$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt \quad (x > 0)$$

2.
$$\Gamma(x+1) = x\Gamma(x)$$

3.
$$\Gamma(n+1) = n! \quad (n \in \mathbb{N})$$

4.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

5.
$$\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi} \longrightarrow \Gamma\left(n+\frac{1}{2}+1\right) = \frac{(2n+1)!}{2^{2n+1}n!}\sqrt{\pi}$$

$$\sharp \ \Gamma(n+\frac{1}{2}) = \frac{2n-1}{2}\frac{2n-3}{2}\cdots\frac{3}{2}\frac{1}{2}\Gamma(\frac{1}{2})$$

6. Stirling 公式 $n! = \sqrt{2\pi n} \, n^n e^{-n}$

4.4 柱函数

4.4.1 Bessel 方程与三类柱函数

Bessel 函数 (第一类柱函数)

$$J_{\nu}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$$

$$J_{-\nu}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m-\nu+1)} \left(\frac{x}{2}\right)^{2m-\nu}$$

是 Bessel 方程的两个特解, $\nu \notin \mathbb{Z}$ 时, $J_{\nu}(x)$, $J_{-\nu}(x)$ 线性独立, $\nu = n \in \mathbb{Z}$ 时

$$J_{-n}(x) = (-1)^n J_n(x)$$

 $J_n(x), J_{-n}(x)$ 线性相关

Neumann 函数 (第二类柱函数)

$$Y_{\nu}(x) = \frac{J_{\nu}(x)\cos\nu\pi - J_{-\nu}(x)}{\sin\nu\pi}$$

是 Bessel 方程另一个与 $J_{\nu}(x)$ 线性无关的特解 ν 阶 Bessel 函数的通解为

$$y(x) = \begin{cases} AJ_{\nu}(x) + BY_{\nu}(x), \forall \nu \in \mathbb{C} \\ AJ_{\nu}(x) + BJ_{-\nu}(x), \text{ only if } \nu \notin \mathbb{Z} \end{cases}$$

Hankel 函数 (第三类柱函数)

$$H_{\nu}^{(1)}(x) = J_{\nu}(x) + iY_{\nu}(x)$$

4.4 柱函数 55

$$H_{\nu}^{(2)}(x) = J_{\nu}(x) - iY_{\nu}(x)$$

Bessel 方程的独立解可取 $\left\{J_{\nu}(x), Y_{\nu}(x), H_{\nu}^{(1)}(x), H_{nu}^{(2)}(x)\right\}$ 中任意两个

推导
$$\exp\left(\frac{xr}{2}\right) \exp\left(-\frac{x}{2r}\right) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{xr}{2}\right)^k \sum_{l=0}^{\infty} \frac{1}{l!} \left(-\frac{x}{2r}\right)^l = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^l}{k!l!} \left(\frac{x}{2}\right)^{k+l} r^{k-l}$$

$$\xrightarrow{\frac{1}{2} n = k - l} \sum_{n=-\infty}^{+\infty} \left[\sum_{l=0}^{\infty} \frac{(-1)^l}{l!(n+l)!} \left(\frac{x}{2}\right)^{2l+n}\right] r^n = \sum_{n=-\infty}^{+\infty} J_n(x) r^n$$

4.4.2 柱函数的递推公式

基本递推公式

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[x^{\nu} J_{\nu}(x) \right] = x^{\nu} J_{\nu-1}(x) \xrightarrow{\nu=1} \frac{\mathrm{d}}{\mathrm{d}x} \left[x J_{1}(x) \right] = x J_{0}(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[x^{-\nu} J_{\nu}(x) \right] = -x^{-\nu} J_{\nu+1}(x) \xrightarrow{\nu=0} \frac{\mathrm{d}}{\mathrm{d}x} \left[J_{0}(x) \right] = -J_{1}(x)$$

其他递推公式

$$J'_{\nu}(x) = \frac{1}{2} [J_{\nu-1}(x) - J_{\nu+1}(x)]$$

$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x)$$

$$xJ_{\nu-1}(x) = \nu J_{\nu}(x) + xJ'_{\nu}(x) \quad xJ_{\nu+1}(x) = \nu J_{\nu}(x) - xJ'_{\nu}(x)$$

$$\int x^{\nu+1} J_{\nu}(x) dx = x^{\nu+1} J_{\nu+1}(x)$$

$$\int x^{-\nu+1} J_{\nu}(x) dx = -x^{-\nu+1} J_{\nu-1}(x)$$

凡满足上述递推关系的函数, 即为柱函数

半奇数阶 Bessel 函数

半奇数阶的 Bessel 函数都是初等函数

$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x \quad J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

$$J_{n+\frac{1}{2}}(x) = (-1)^n \sqrt{\frac{2}{\pi}} x^{n+\frac{1}{2}} \left(\frac{1}{x} \frac{d}{dx}\right)^n \frac{\sin x}{x}$$

$$J_{-(n+\frac{1}{2})}(x) = \sqrt{\frac{2}{\pi}} x^{n+\frac{1}{2}} \left(\frac{1}{x} \frac{d}{dx}\right)^n \frac{\cos x}{x}$$

4.4.3 整数阶 Bessel 函数的性质

$$J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!(m+n)!} \left(\frac{x}{2}\right)^{2m+n} \quad (n \in \mathbb{N})$$

对称性 (线性相关)

$$J_{-n}(x) = (-1)^n J_n(x)$$

易证, 所有柱函数均有奇偶对称性

生成函数 (母函数)

$$f(x,r) = \sum_{n} J_{n}(x)r^{n}$$

$$\exp\left[\frac{x}{2}\left(r - \frac{1}{r}\right)\right] = \sum_{n = -\infty}^{+\infty} J_{n}(x)r^{n} \quad (0 < |r| < \infty)$$

加法公式

$$J_n(x+y) = \sum_{m=-\infty}^{+\infty} J_m(x)J_{n-m}(y)$$

积分表示

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta - n\theta) d\theta$$

推导 $e^{\frac{x}{2}(z-\frac{1}{z})} = \sum_{n=-\infty}^{+\infty} J_n(x)z^n$, $(0<|z|<\infty)$, by Laurent expansion thm. in 1.2.5,

$$J_n(x) = \frac{1}{2\pi i} \oint_C \frac{\exp\left[\frac{x}{2}\left(\zeta - \frac{1}{\zeta}\right)\right]}{\zeta^{n+1}} d\zeta \xrightarrow{\zeta = e^{i\theta}} \frac{1}{2\pi} \int_0^{2\pi} \exp[i(x\sin\theta - n\theta)] d\theta$$

$$\implies J_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(x \sin \theta - n\theta) + i \sin(x \sin \theta - n\theta) d\theta = \frac{1}{\pi} \int_{0}^{\pi} \cos(x \sin \theta - n\theta) d\theta$$

渐近公式

$$J_n(x) \sim \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\pi}{4} - \frac{n\pi}{2}\right) \quad n \in \mathbb{N}$$

4.4.4 Bessel 函数的正交完备性与 Bessel 级数

正交性

设 $\mu_{\nu m}$ 是 ν 阶 Bessel 函数的第 m 个零点, 令 $\lambda_{\nu m} = \frac{\mu_{\nu m}}{a}$, 则

$$\int_0^a x J_{\nu}(\lambda_{\nu m} x) J_{\nu}(\lambda_{\nu k} x) dx = 0$$

即 $\{J_{\nu}(\lambda_{\nu m})\}$ 在 [0,a] 上构成一个正交函数集

模值

$$\int_0^a x J_{\nu}^2(\lambda_{\nu m} x) \, dx = \frac{a^2}{2} J_{\nu+1}^2(\mu_{\nu m})$$

正交性关系式

$$\int_0^a x J_{\nu}(\lambda_{\nu m} x) J_{\nu}(\lambda_{\nu k} x) dx = \frac{a^2}{x} J_{\nu+1}^2(\mu_{\nu m}) \delta_{mk}$$

完备性

定义在 [0,a] 上的函数 f(x) 可以展开为 Bessel 级数

$$f(x) = \sum_{m=1}^{\infty} A_m J_{\nu}(\lambda_{\nu m} x)$$

$$A_m = \frac{2}{a^2 J_{\nu+1}^2(\mu_{\nu m})} \int_0^a x J_{\nu}(\lambda_{\nu m} x) f(x) dx$$

Bessel 级数收敛性

1.
$$\sum_{m=1}^{\infty} A_m J_{\nu}(\lambda_{\nu m} x) = f(x) \quad (连续点)$$

2.
$$\sum_{m=1}^{\infty} A_m J_{\nu}(\lambda_{\nu m} x) = \frac{f(x^+) + f(x^-)}{2}$$
 (间断点)

3.
$$x = 0, a$$
 处值未知

4.4.5 球 Bessel 函数

4.5 球函数 59

4.5 球函数

4.5.1 Legendre 方程的解

由 Legendre 方程的求解引入 Legendre 多项式

Legendre 多项式 (第一类 Legendre 函数)

$$P_l(x) = \sum_{m=0}^{[l/2]} \frac{(-1)^m (2l - 2m)!}{2^l m! (l - m)! (l - 2m)!} x^{l - 2m} \quad (l \in \mathbb{N})$$

为 Legendre 方程 (in 4.1.2) 在自然边界条件下, 属于本征值 l(l+1) 的本征函数

推导 在常点 x=0 处 Taylor 展开, 代入方程得到递推公式, 递推得偶数幂 $C_0y_0(x)$ 与奇数幂 $C_1y_1(x)$, l 取整数将其中之一截断为多项式, 即为 Legendre 多项式

第二类 Legendre 函数

$$Q_l(x) = P_l(x) \int_{x_0}^x \frac{dx}{(1 - x^2) [P_l(x)]^2}$$

为 Legendre 方程的另一个与 $P_l(x)$ 线性无关的解, 当 $x\to 1^-$ 时, $|Q_l(x)|\to +\infty$ Legendre 方程的一般解为

$$y(x) = A_l P_l(x) + B_l Q_l(x)$$

轴对称问题的一般解

$$u(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + B_l \frac{1}{r^{l+1}} \right) P_l(\cos \theta)$$

推导

$$u(r,\theta) = R(r)\Theta(\theta) \begin{cases} \frac{1}{R} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) = l(l+1) \Longrightarrow R(r) = A_l r^l + B_l \frac{1}{r^{l+1}} \\ \frac{1}{\Theta \sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) = -l(l+1) \Longrightarrow \Theta(\theta) = P_l(\cos \theta) \quad (l \in \mathbb{N}) \end{cases}$$
Legendre eq.

4.5.2 Legendre 多项式的基本性质

微分表示 (Rodrigues 公式)

$$P_l(x) = \frac{1}{2^l l!} \frac{\mathrm{d}^l}{\mathrm{d}x^l} \left[(x^2 - 1)^l \right]$$

推导

$$\underbrace{\int_{0}^{x} \cdots \int_{0}^{x}}_{l \, k} P_{l}(x) \, dx = \sum_{m=0}^{\lfloor l/2 \rfloor} \frac{(-1)^{m} (2l - 2m)!}{2^{l} m! (l - m)! (l - 2m)!} \underbrace{\int_{0}^{x} \cdots \int_{0}^{x} x^{l - 2m} \, dx}_{l \, k}$$

$$= \sum_{m=0}^{\lfloor l/2 \rfloor} \frac{(-1)^{m} (2l - 2m)!}{2^{l} m! (l - m)! (l - 2m)!} \underbrace{\frac{x^{2l - 2m}}{(2l - 2m) \cdots (l - 2m + 1)}}_{2^{l} l - 2m}$$

$$= \sum_{m=0}^{\lfloor l/2 \rfloor} \frac{(-1)^{m} x^{2l - 2m}}{2^{l} m! (l - m)!} = \frac{1}{2^{l} l!} \left[x^{2l} - \frac{l!}{(l - 1)!} x^{2l - 2} + \frac{l!}{2! (l - 2)!} x^{2l - 4} - \cdots \right]$$

$$= \frac{1}{2^{l} l!} (x^{2} - 1)^{l} \quad (\Box \overline{y} \overrightarrow{\exists} \overline{z} \underline{z})$$

积分表示

$$P_l(x) = \frac{1}{\pi} \int_0^\pi (\sqrt{x^2 - 1} \cos \theta + x)^l d\theta$$
 推导
$$P_l(x) = \frac{1}{2^l l!} \frac{\mathrm{d}^l}{\mathrm{d}x^l} \left[(x^2 - 1)^l \right] = \frac{1}{2^l} \frac{1}{2\pi \mathrm{i}} \oint_C \frac{(\zeta^2 - 1)^l}{(\zeta - x)^{l+1}} \,\mathrm{d}\zeta \text{ (by formula in 1.1.8)}$$

Let
$$\zeta - x = \sqrt{x^2 - 1} e^{i\theta}$$
, $d\zeta = i\sqrt{x^2 - 1} e^{i\theta} d\theta$,

$$\zeta^{2} - 1 = (\sqrt{x^{2} - 1}e^{i\theta} + x)^{2} - 1 = (x^{2} - 1)e^{2i\theta} + 2x\sqrt{x^{2} - 1}e^{i\theta} + x^{2} - 1$$

$$= (x^{2} - 1)(e^{2i\theta} + 1) + 2x\sqrt{x^{2} - 1}e^{i\theta} = 2\sqrt{x^{2} - 1}e^{i\theta}(\sqrt{x^{2} - 1}\cos\theta + x)$$

$$= 2(\zeta - x)(\sqrt{x^{2} - 1}\cos\theta + x)$$

$$P_{l}(x) = \frac{1}{2^{l}} \frac{1}{2\pi i} \oint_{C} \frac{2^{l} (\zeta - x)^{l} (\sqrt{x^{2} - 1} \cos \theta + x)^{l}}{(\zeta - x)^{l+1}} d\zeta = \frac{1}{2\pi i} \oint_{C} \frac{(\sqrt{x^{2} - 1} \cos \theta + x)^{l}}{\zeta - x} d\zeta$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} (\sqrt{x^{2} - 1} \cos \theta + x)^{l} d\theta = \frac{1}{\pi} \int_{0}^{\pi} (\sqrt{x^{2} - 1} \cos \theta + x)^{l} d\theta$$

4.5 球函数 61

生成函数

推导由广义二项式定理
$$(1+v) = \sum_{k=0}^{\infty} \frac{(p-k+1)!}{k!} v^k$$
 $(\forall p \in \mathbb{C}, |v| < 1),$ 取 $p = -\frac{1}{2}$

$$\frac{1}{\sqrt{1+v}} = 1 - \frac{1}{2}v + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}v^2 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}v^3 + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{(2k)!}{2^{2k}(k!)^2} v^k$$

$$\frac{1}{\sqrt{1-2rx+r^2}} = \sum_{k=0}^{\infty} (-1)^k \frac{(2k)!}{2^{2k}(k!)^2} (r^2 - 2rx)^k = \sum_{k=0}^{\infty} \sum_{m=0}^{k} (-1)^k \frac{(2k)!}{2^{2k}(k!)^2} \frac{k!r^{2m}(-2rx)^{k-m}}{m!(k-m)!}$$

$$= \sum_{k=0}^{\infty} \sum_{m=0}^{k} (-1)^m \frac{(2k)!r^{k+m}x^{k-m}}{2^k + m} (\diamondsuit l = k+m \Rightarrow k = l-m)$$

$$= \sum_{k=0}^{\infty} \sum_{m=0}^{M} (-1)^m \frac{(2l-2m)!}{2^k + m} x^{l-2m} r^l \quad ($$
 例证 $M = \begin{bmatrix} l \\ 2 \end{bmatrix})$

其他简单性质

1. 奇偶性
$$P_l(-x) = (-1)^l P_l(x)$$

2. 原点值
$$P_{2k+1}(0) = 0$$
, $P_{2k}(0) = (-1)^k \frac{(2n-1)!!}{(2n)!!}$ $(k \in \mathbb{N})$

3. 端点值
$$P_l(1) = 1$$
, $P_l(-1) = (-1)^l$, $P_l'(1) = \frac{l(l+1)}{2}$, $P_l'(-1) = (-1)^{l+1} \frac{l(l+1)}{2}$

4. 积分值
$$I_l = \int_0^1 P_l(x) dx \begin{cases} I_0 = 1 \\ I_{2n} = 0 & n \in \mathbb{N}^* \\ I_{2n+1} = (-1)^n \frac{(2n)!}{2^{2n+1} n! (n+1)!} & n \in \mathbb{N} \end{cases}$$

推导 $P_l(x) = -\frac{1}{l(l+1)} \frac{d}{dx} \left[(1-x^2) \frac{dP_l(x)}{dx} \right] \Longrightarrow I_l = -\frac{\left[(1-x^2) P_l^{'}(x) \right]_0^1}{l(l+1)} = \frac{P_l^{'}(0)}{l(l+1)}$

引理: Legendre 多项式与其他多项式的正交性

f(x) 为 k 次多项式, 若 0 < k < l, 则与 $P_l(x)$ 在 [-1,1] 上正交, 即

$$\int_{-1}^{1} f(x) \mathcal{P}_l(x) \, \mathrm{d}x = 0$$

推导 by Rodrigues' formula (in 4.5.2),

$$I = \int_{-1}^{1} f(x) \cdot \frac{1}{2^{l} l!} \frac{d^{l}}{dx^{l}} \left(x^{2} - 1\right)^{l} dx = \frac{1}{2^{l} l!} \int_{-1}^{1} f(x) d \left[\frac{d^{l-1}}{dx^{l-1}} \left(x^{2} - 1\right)^{l}\right]$$

$$= \underbrace{\frac{1}{2^{l} l!} \left[f(x) \frac{d^{l-1}}{dx^{l-1}} \left(x^{2} - 1\right)^{l}\right]_{-1}^{1}}_{=0} - \frac{1}{2^{l} l!} \int_{-1}^{1} f'(x) \frac{d^{l-1}}{dx^{l-1}} \left(x^{2} - 1\right)^{l} dx = \cdots$$

$$= \underbrace{\frac{(-1)^{k}}{2^{l} l!}}_{=0} f^{(k)}(x) \int_{-1}^{1} \frac{d^{l-k}}{dx^{l-k}} \left(x^{2} - 1\right)^{l} dx = 0$$

变限积分

$$\int_{x}^{1} P_{l}(x) P_{m}(x) dx = (1 - x^{2}) \frac{P_{l}(x) P'_{m}(x) - P_{m}(x) P'_{l}(x)}{m(m+1) - l(l+1)} \quad (l \neq m)$$

$$\int_{-1}^{x} P_{l}(x) P_{m}(x) dx = -(1 - x^{2}) \frac{P_{l}(x) P'_{m}(x) - P_{m}(x) P'_{l}(x)}{m(m+1) - l(l+1)} \quad (l \neq m)$$

递推公式

1.
$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

2.
$$P_n(x) = P'_{n+1}(x) - 2xP'_n(x) + P'_{n-1}(x)$$

3.
$$xP'_n(x) - P'_{n-1} = nP_n(x)$$

4.
$$P'_{n+1}(x) - P'_{n-1}(x) = (2n+1)P_n(x)$$

5.
$$nP'_{n+1}(x) + (n+1)P'_{n-1}(x) = (2n+1)xP'_n(x)$$

6.
$$P'_{n+1}(x) = (n+1)P_n(x) + xP'_n(x)$$

4.5.3 Legendre 多项式的正交完备性

正交性

$$\int_{-1}^{1} P_l(x) P_m(x) dx = 0 \quad (l \neq m)$$
推导
$$\frac{d}{dx} \left[(1 - x^2) \frac{dP_l(x)}{dx} \right] = -l(l+1) P_l(x) \Longrightarrow k(x) = 1 - x^2 \Longrightarrow Q = 0,$$

or use the lemma in 4.5.2, or use the integral formula in 4.5.2

4.5 球函数 63

模值

$$\sqrt{\int_{-1}^{1} \left[P_l(x) \right]^2 dx} = \sqrt{\frac{2}{2l+1}}$$

推导
$$\int_{-1}^{1} \frac{1}{1 - 2rx + r^2} dx = \frac{1}{r} \ln \frac{1+r}{1-r} = \sum_{l=0}^{\infty} \frac{2}{2l+1} r^{2l} = \sum_{l=0}^{\infty} r^{2l} \int_{-1}^{1} \left[P_l(x) \right]^2 dx$$

正交性关系式

$$\int_{-1}^{1} \mathbf{P}_{l}(x) \mathbf{P}_{m}(x) \, \mathrm{d}x = \frac{2}{2l+1} \delta_{lm}$$

完备性与 Legendre 多项式级数

$$f(x) = \sum_{l=0}^{\infty} C_l P_l(x), \quad C_l = \frac{2l+1}{2} \int_{-1}^{1} f(x) P_l(x) dx$$

4.5.4 连带 Legendre 函数

连带 Legendre 方程的解

m 阶连带 Legendre 函数

$$P_l^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} P_l^{(m)}(x) \quad (m = 0, \pm 1, \pm 2, \cdots, \pm l)$$

有 2l+1 个值, 均为连带 Legendre 方程 (in 4.1.2) 的解

推导 对
$$(1-x^2)\frac{\mathrm{d}^2 P_l(x)}{\mathrm{d}x^2} - 2x\frac{\mathrm{d}P_l(x)}{\mathrm{d}x} + l(l+1)P_l(x) = 0$$
 求 m 次导后,作变换 $P_l^m(x) = (-1)^m (1-x^2)^{\frac{m}{x}} P_l^{(m)}(x)$,再拓展 m 的取值,即得证

奇偶性

$$P_l^m(x) = (-1)^m \frac{(l+m)!}{(l-m)!} P_l^{-m}(x)$$
推导 Const =
$$\frac{P_l^m(x)}{P_l^{-m}(x)} = \frac{(1-x^2)d_x^{l+m}(x^2-1)^l}{d_x^{l-m}(x^2-1)^l} = \frac{(-1)^m \frac{(2l)!}{(l-m)!}}{\frac{(2l)!}{(l+m)!}} = (-1)^m \frac{(l+m)!}{(l-m)!}$$

正交性

$$\int_{-1}^{1} P_{l}^{m}(x) P_{k}^{m}(x) dx = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{lk}$$

完备性与连带 Legendre 级数

$$f(x) = \sum_{l=m}^{\infty} C_l P_l^m(x), \quad C_l = \frac{2l+1}{2} \frac{(l-m)!}{(l+m)!} \int_{-1}^1 f(x) P_l^m(x) dx$$

4.5.5 球谐函数

角向方程的解

球谐函数

$$Y_{lm}(\theta, \varphi) = A_{lm} P_l^m(\cos \theta) e^{im\varphi} \begin{cases} l = 0, 1, 2, \dots \\ m = 0, \pm 1, \pm 2, \dots, \pm l \end{cases}$$

为角向方程 (in 4.1.2) 的解

正交性

$$\int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} Y_{lm}^*(\theta,\varphi) Y_{l'm'}(\theta,\varphi) \sin\theta \,d\theta \,d\varphi \propto \delta_{ll'} \delta_{mm'}$$

推导
$$\int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} \mathbf{Y}_{lm}^* \mathbf{Y}_{l'm'} \sin \theta \, \mathrm{d}\theta \, \mathrm{d}\varphi = A_{lm}^* A_{l'm'} \underbrace{\int_{0}^{\pi} \int_{0}^{2\pi} \mathbf{P}_{l}^m \mathbf{P}_{l'}^{m'} \mathrm{e}^{\mathrm{i}(m'-m)\varphi} \sin \theta \, \mathrm{d}\theta \, \mathrm{d}\varphi}_{\mathrm{i}l},$$

by formulas (in 2.1.2 & 4.5.4)

$$\begin{split} I &= \int_0^\pi \mathrm{P}_l^m(\cos\theta) \mathrm{P}_{l'}^{m'}(\cos\theta) \sin\theta \,\mathrm{d}\theta \cdot \int_0^{2\pi} \mathrm{e}^{\mathrm{i}(m'-m)\varphi} \,\mathrm{d}\varphi \\ &= 2\pi \delta_{mm'} \int_0^\pi \mathrm{P}_l^m(\cos\theta) \mathrm{P}_{l'}^{m'}(\cos\theta) \sin\theta \,\mathrm{d}\theta = 2\pi \int_0^\pi \mathrm{P}_l^m(\cos\theta) \mathrm{P}_{l'}^m(\cos\theta) \sin\theta \,\mathrm{d}\theta \propto \delta_{ll'} \end{split}$$

4.5 球函数 65

归一化球谐函数

$$Y_{lm}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\varphi} \begin{cases} l = 0, 1, 2, \cdots \\ m = 0, \pm 1, \pm 2, \cdots, \pm l \end{cases}$$

推导 $x = \cos \theta \Longrightarrow dx = -\sin \theta d\theta \Longrightarrow \theta : 0 \to \pi, x : 1 \to -1$

$$1 = \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} |Y_{lm}(\theta, \varphi)|^2 \sin \theta \, d\theta \, d\varphi = 2\pi |A_{lm}|^2 \int_0^{\pi} [P_l^m(\cos \theta)]^2 \sin \theta \, d\theta$$
$$= 2\pi |A_{lm}|^2 \int_{-1}^1 [P_l^m(x)]^2 \, dx = \frac{4\pi}{2l+1} \frac{(l+m)!}{(l-m)!} |A_{lm}|^2 \Longrightarrow A_{lm} = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}}$$

归一化球谐函数的正交性关系式

$$\int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} Y_{lm}^{*}(\theta,\varphi) Y_{l'm'}(\theta,\varphi) \sin \theta \, d\theta \, d\varphi = \delta_{ll'} \delta_{mm'}$$

球谐函数的完备性与球谐级数

若 f(x) 定义在 $\varphi \in (0, 2\pi), \theta \in (0, \pi), 则 <math>f(x)$ 能展开为球谐级数

$$f(\theta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{lm} Y_{lm}(\theta,\varphi), \quad C_{lm} = \int_{\theta=0}^{\pi} \int_{\varphi_0}^{2\pi} Y_{lm}^*(\theta,\varphi) f(\theta,\varphi) \sin\theta \,d\theta \,d\varphi$$

物理意义

球谐函数是角动量平方算符

$$\hat{L}^2 - \hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right]$$

与角动量的 z 分量算符

$$\hat{L}_z = -\mathrm{i}\hbar \frac{\partial}{\partial \varphi}$$

共同的本征函数, 本征值分别为 $l(l+1)\hbar^2$ 与 $m\hbar$. l,m 取值分别为

第四章 特殊函数

 \hat{L}^2 本征值的简并度为 2l+1

球谐函数加法公式

4.6 Schrödinger 方程在类氢原子问题中的解

4.6.1 广义 Laguerre 多项式

一般广义 Lagurerre 多项式

$$L_n^{\alpha}(x) = \Gamma(n+\alpha+1) \sum_{k=0}^n \frac{(-1)^k}{k!(n-k)!\Gamma(k+\alpha+1)} x^k \quad (n \in \mathbb{N}, \alpha \in \mathbb{R})$$

微分表示

$$L_n^{\alpha}(x) = \frac{x^{-\alpha} e^x}{n!} \frac{d^n}{dx^n} \left(x^{n+\alpha} e^{-x} \right)$$

正交性关系式

$$\int_{0}^{\infty} \mathcal{L}_{m}^{\alpha}(x) \, \mathcal{L}_{n}^{\alpha}(x) \, \mathrm{e}^{-\alpha} x^{\alpha} \, \mathrm{d}x = \frac{\Gamma(n+\alpha+1)}{n!} \delta_{mn}$$

整数阶广义 Laguerre 多项式

$$L_N^M(x) = (-1)^k \frac{(M+N)!}{k!(N-k)!(M+k)!} x^k$$

积分公式

$$\int_0^\infty e^{-x} x^{\alpha+1} \left[L_N^{\alpha}(x) \right]^2 dx = \frac{\Gamma(N+\alpha+1)}{N!} (2N+\alpha+1)$$

4.6.2 Schrödinger 方程的解

含时波函数

$$\Psi_{nlm}(r,\theta,\varphi;t) = \psi_{nlm}(r,\theta,\varphi) \exp\left(-\frac{\mathrm{i}}{\hbar}E_n t\right) \begin{cases} n = 1,2,3,\cdots \\ l = 0,1,2,\cdots,n-1 \\ m = 0,\pm 1,\pm 2,\cdots,\pm l \end{cases}$$

为方程在库伦势情况下的本征解. 其中, 能量本征值

$$E_n = -\frac{\mu Z^2 e^4}{2n^2 \hbar^2}$$

空间函数

$$\psi_{nlm} = \sqrt{\left(\frac{2Z}{an}\right)^3 \frac{(n-l-1)!}{2n(n+l)!}} \exp\left(-\frac{Z}{an}r\right) \left(\frac{2Z}{an}\right)^l \mathcal{L}_{n-l-1}^{2l+1} \left(\frac{2Z}{an}r\right) \mathcal{Y}_{lm}(\theta,\varphi)$$

其中, 角向解为球谐函数 (in 4.5.5)

$$Y_{lm}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\varphi}$$

若有初始条件 $\Psi(\mathbf{r};0) = f(\mathbf{r};0)$, 则初值问题的解为

$$\Psi(r, \theta, \varphi; t) = \sum_{n,l,m} c_{nlm} \psi_{nlm}(r, \theta, \varphi) \exp\left(-\frac{i}{\hbar} E_n t\right)$$

其中, 系数为

$$c_{nlm} = \int_{r=0}^{\infty} \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} \psi_{nlm}^{*}(r,\theta,\varphi) f(r,\theta,\varphi) r^{2} \sin\theta \, dr \, d\theta \, d\varphi$$

4.7 量子谐振子

4.7.1 Hermite 多项式

n 阶 Hermite 多项式

$$H_n(\xi) = \sum_{m=0}^{\lfloor n/2 \rfloor} (-1)^m \frac{n!}{m!(n-2m)!} (2\xi)^{n-2m}$$