PHYS4301: TUTORIAL PROBLEMS FOR WEEK 10

(1) The following three matrices are a 4-dimensional representation of $\mathfrak{su}(2)$.

Show that this representation is reducible.

- Examine the eigenvalues and eigenvectors of these matrices (use Mathematica, or similar tool).
- Find a common invariant subspace.
- Find a similarity transform that brings these matrices to block-diagonal form.

Solution: To see that the representation is reducible we must first find the eigenvalues and eigenvectors of the three matrices. All three matrices have the eigenvalues $\{i, -i, 0, 0\}$ with their corresponding eigenvectors (not normalised) given as the columns of the following matrices:

$$E[\rho(J_1)] = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ i & -i & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \quad E[\rho(J_2)] = \begin{pmatrix} -i & i & 0 & -1 \\ -i & i & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \sqrt{2} & \sqrt{2} & 0 & 0 \end{pmatrix} \quad E[\rho(J_3)] = \begin{pmatrix} i & -i & 0 & -1 \\ i & -i & 0 & 1 \\ \sqrt{2} & \sqrt{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

It is clear that the matrices $\rho(J_2)$, $\rho(J_3)$ share the eigenvector $v = (-1, 1, 0, 0)^T$. Closer inspection of the eigensystem for $\rho(J_1)$ reveals that this vector is also in its 0-eigenspace, as a linear combination of the two eigenvectors with eigenvalue 0. Since all three matrices share an eigenvector they form a reducible set. The eigenvalue and eigenvectors for the invariant subspace are all real, so these matrices are reducible over the reals.

We find a similarity transform (i.e. change of basis) to bring the matrices to block-diagonal form by making a new orthonormal basis for \mathbb{R}^4 containing $v/\|v\|$. One possible basis is $v_1 = v/\|v\| = (\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0)^T, v_2 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0)^T, v_3 = e_3, v_4 = e_4$, so the similarity matrix is

$$S = \begin{pmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{with } S^{-1} = S^T = S.$$

Finally, the block diagonal form has a 1×1 block in the top left corner and a 3×3 block for the remainder, and we see that these 3×3 blocks are (-i times) the standard representation for $\mathfrak{so}(3)$, which we know is irreducible.

$$S^{T}\rho(J_{1})S = \begin{pmatrix} 0 & . & . & . \\ . & 0 & 0 & 0 \\ . & 0 & 0 & -1 \\ . & 0 & 1 & 0 \end{pmatrix} \quad S^{T}\rho(J_{2})S = \begin{pmatrix} 0 & . & . & . \\ . & 0 & 0 & 1 \\ . & 0 & 0 & 0 \\ . & -1 & 0 & 0 \end{pmatrix} \quad S^{T}\rho(J_{3})S = \begin{pmatrix} 0 & . & . & . \\ . & 0 & -1 & 0 \\ . & 1 & 0 & 0 \\ . & 0 & 0 & 0 \end{pmatrix}$$

(2) Consider the Lie algebra $\mathfrak{su}(2)$, with its Hermitian generators J_1, J_2, J_3 such that

$$[J_1,J_2]=iJ_3,\quad [J_2,J_3]=iJ_1,\quad [J_3,J_1]=iJ_2.$$

Define the Casimir element, $J^2 = J_1^2 + J_2^2 + J_3^2$. Show that J^2 commutes with J_3 , i.e., that

$$[J^2, J_3] = J^2 J_3 - J_3 J^2 = 0.$$

Solution:

$$[J^2, J_3] = [J_1^2 + J_2^2 + J_3^2, J_3]$$

= $[J_1^2, J_3] + [J_2^2, J_3] + [J_3^2, J_3]$

Clearly the third term is zero. We now expand the first term and use the commutator relation $[J_3, J_1] = J_3 J_1 - J_1 J_3 = i J_2$.

$$\begin{split} [J_1^2,J_3] &= J_1J_1J_3 - J_3J_1J_1 \\ &= J_1(J_3J_1 - iJ_2) - (iJ_2 + J_1J_3)J_1 \\ &= J_1J_3J_1 - iJ_1J_2 - iJ_2J_1 - J_1J_3J_1 \\ &= -i(J_1J_2 + J_2J_1). \end{split}$$

Similarly for the second term of the J^2 commutator we have

$$\begin{split} [J_2^2, J_3] &= J_2 J_2 J_3 - J_3 J_2 J_2 \\ &= J_2 (i J_1 + J_3 J_2) - (J_2 J_3 - i J_1) J_2 \\ &= i J_2 J_1 + J_2 J_3 J_2 - J_2 J_3 J_2 + i J_1 J_2 \\ &= i (J_2 J_1 + J_1 J_2). \end{split}$$

The expressions for these two terms therefore cancel and we have shown that $[J^2, J_3] = 0$.

(3) The Heisenberg algebra has commutation relations $[X, Y] = Z \neq 0$, [X, Z] = 0, [Y, Z] = 0. Construct its adjoint representation. Is this a faithful representation?

Solution:

$$\operatorname{ad}(X) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \ \operatorname{ad}(Y) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \ \operatorname{ad}(Z) = 0.$$

This representation is not faithful because $Z \neq 0$, but ad(Z) = 0.

(4) Construct the irreducible 4-dimensional representations of $\mathfrak{su}(2)$. That is, find the matrices for J_3 , then J_1 and J_2 .

Solution: The four-dimensional irrep for $\mathfrak{su}(2)$ has Casimir value b=j(j+1)=15/4, and eigenvalues m=3/2,1/2,-1/2,-3/2. So we have immediately that

$$J_3 = \begin{pmatrix} \frac{3}{2} & 0 & 0 & 0\\ 0 & \frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{-1}{2} & 0\\ 0 & 0 & 0 & \frac{-3}{2} \end{pmatrix}$$

Next we must find the matrices for the raising and lowering elements J_+ , J_- w.r.t. the standard basis. Recall that the constant for J_+ is $C^+ = \sqrt{b - m^2 - m}$, m = 1/2, -1/2, -3/2 and those for J_- are $C^- = \sqrt{b - m^2 + m}$ for m = 3/2, 1/2, -1/2. So

$$J_{+} = \begin{pmatrix} 0 & \sqrt{3} & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & \sqrt{3} \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad J_{-} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \sqrt{3} & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}$$

Now since $J_1 = \frac{1}{2}(J_- + J_+)$ and $J_2 = \frac{i}{2}(J_- - J_+)$ we have that

$$J_1 = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 2 & 0 \\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix} \quad J_2 = \frac{i}{2} \begin{pmatrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -2 & 0 \\ 0 & 2 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}$$

(5) Show that an irreducible matrix representation of an Abelian group must be one-dimensional.

Solution: An abelian group is one for which $g_1g_2=g_2g_1$. So in a matrix representation, we must have the corresponding matrices commute: $\rho(g_1)\rho(g_2)=\rho(g_2)\rho(g_1)$, for all $g_1,g_2\in G$. Fix g_1 , say, and write $\rho(g_1)=M$, a square matrix. Then we have that $M\rho(g_2)=\rho(g_2)M$ for all group elements g_2 . Since we assume ρ is irreducible, Schur's lemma implies $M=\lambda I$ for some λ . But this says that $\rho(g_1)=\lambda I$, for each g_1 , and we deduce that ρ must be one-dimensional.