IFT780: Travail pratique 2

Réseaux de neurones convolutifs

Dans ce devoir, vous devez implanter des architectures de réseaux de neurones à convolution. Vous implémenterez la convolution, sa rétropropagation ainsi qu'un réseau de neurone afin d'obtenir des performances décentes sur CIFAR-10. De plus, vous aurez une introduction à Pytorch en implémentant deux architectures simples et des blocs convolutifs.

Commencez d'abord par exécuter:

- \$ cd datasets/
- \$./get_datasets.sh
- \$ cd ../utils/cython/
- \$./build_cython.sh

Les objectifs de ce devoir sont

- 1. Comprendre le dropout, la batch norm, le max pooling
- 2. Implanter une version naïve de la convolution et sa rétropropagation.
- 3. Utiliser les couches précédemment définies pour concevoir une architecture
- 4. Implanter et entraîner un réseau avec Pytorch

1. tp2 dropout.ipynb (0 points)

Voir le fonctionnement du dropout.

2. tp2 batch norm.ipynb (0 points)

Voir le fonctionnement de la batch norm.

3. tp2 convolution.ipynb (4 points)

Implanter une version naïve de la convolution et sa rétropropagation.

4. tp2 cnn.ipynb (1 points)

Implanter un réseau de neurone convolutif afin d'obtenir des performances décentes sur CIFAR-10.

5. tp2 cnn pytorch.ipynb (1 points)

Réimplanter votre réseaux de neurone convolutif, mais cette fois-ci avec Pytorch.

6. tp2 ift780net.ipynb (4 points)

Implanter les blocs (dense, résiduels, goulot) du IFT780Net et obtenez de bonnes performances sur CIFAR-10.