Universidad de Buenos Aires Facultad de Ingeniería

75.41 – Algoritmos y Programación II

Cátedra Ing. Patricia Calvo

Grafos

Facultad de Ingeniería
Departamento de Computación

75.41 Algoritmos y Programación II

Cátedra: Ing. Patricia Calvo Grafos

Índice

1 Definiciones	3
1.Grafo	3
2.Adyacencia e Incidencia	4
3.Transición	5
2 Tipos de Grafos	7
1.Definiciones	7
2.Ejemplos	8
3 Recorridos	9
1.Recorrido en anchura	9
2 Recorrido en profundidad	q

Departamento de Computación

Facultad de Ingeniería

75.41 Algoritmos y Programación II

Cátedra: Ing. Patricia Calvo

Grafos

1 Definiciones

1. Grafo

Dupla compuesta por un conjunto no vacío de vértices y; un conjunto de aristas que vinculan pares de esos vértices.

Las aristas pueden ser Dirigidas o No Dirigidas. Las primeras versan sobre relaciones antisimétricas y las segundas sobre relaciones simétricas.

Matemáticamente sería

$$G = (V; A)$$
 donde $A \in V \times V$ ó (Arista Dirigida)
$$A \subset V \wedge \#A=2 \text{ (Arista No Dirigida)}$$

Permiten representar mapas de interrelación de datos, como pueden ser carreteras, cañerías, circuitos eléctricos, diagrama de dependencia, etc.

Los vértices se representan gráficamente con puntos y las aristas pueden ser flechas (aristas dirigidas) o líneas (aristas no dirigidas) conectando dos vértices.

Veamos un ejemplo

$$G = (V; A)$$
 $V = \{a; b; c; d\}$ $A = \{\{a; b\}; (b; c); (a; a); (d; d)\}$

Podemos observar la representación de las aristas dirigidas (2^{da}, 3^{ra} y 4^{ta}) y la no dirigida (1^{ra}). Así mismo, observemos dos nuevas definiciones:

- Vértice aislado (d): sin relación (mediante aristas) con otro vértice.
- Lazo (3^{ra} y 4^{ta}): arista cuyo vértice origen y destino coincide.
- Arista ponderada (1^{ra}): a las aristas se les puede asociar un valor representativo de la relación que representan, en este caso podría representar la cantidad de Km. entre la ciudad a y b.

Facultad de Ingeniería
Departamento de Computación

75.41 Algoritmos y Programación II

Cátedra: Ing. Patricia Calvo

Grafos

• Peso de una arista: es el valor asociado a una arista ponderada.

2. Adyacencia e Incidencia

- Vértices adyacentes (v,w): v y w son adyacentes si están relacionados
- Incidencia (v): conjunto de aristas finalizadas / comenzadas en v.
- Incidencia de entrada (v): conjunto de aristas dirigidas finalizadas en v.
- Incidencia de salida (v): conjunto de aristas dirigidas comenzadas en v.
- Adyacencia (v): conjunto de vértices relacionados con v.
- Adyacencia de entrada (v): vértices iniciales de la Incidencia de entrada (v).
- Adyacencia de salida (v): vértices finales de la Incidencia de salida (v).
- **Grado** (v): cantidad de ocurrencias de v en el conjunto de aristas.
- Grado de Entrada (v): cantidad de aristas dirigidas finalizadas en v.
- Grado de Salida (v): cantidad de aristas dirigidas comenzadas en v.
- Fuente: vértice cuyo grado de salida es 0 y no es aislado.
- Sumidero: vértice cuyo grado de entrada es 0 y no es aislado.

Facultad de Ingeniería

Departamento de Computación

75.41 Algoritmos y Programación II

Cátedra: Ing. Patricia Calvo Grafos

	а	b	С	d
Adyacencia	{a,b}	{a,c}	{b}	{d}
Adyacencia de Entrada	{a}	₿	{b}	{d}
Adyacencia de Salida	{a}	{c}	{}	{d}
Incidencia	{a3,a4}	{a3,a2}	{a2}	{a1}
Incidencia de Entrada	{a4}	{}	{a2}	{a1}
Incidencia de Salida	{a4}	{a2}	€	{a1}
Grado	3	2	1	2
Grado de Entrada	1	0	1	1
Grado de Salida	1	1	0	1

3. Transición

- Camino: serie alternada de vértices y aristas que inicia y finaliza con vértices y donde cada arista conecta el vértice que le precede con el que le sucede.
 - Longitud de camino: cantidad de aristas del camino.
 - Camino abierto: camino donde el vértice inicial y final difieren.
 - Camino cerrado: camino donde el vértice inicial y final coinciden.
 - Recorrido: camino que no repite aristas.
 - Recorrido Euleriano: recorrido que contiene todas las aristas del grafo.

Facultad de Ingeniería Departamento de Computación

75.41 Algoritmos y Programación II

Cátedra: Ing. Patricia Calvo

Grafos

- · Circuito: recorrido cerrado.
- Circuito Euleriano: recorrido Euleriano cerrado.
- Camino simple: camino que no repite vértices (salvo inicial y final).
- Camino de Hamilton: camino simple que contiene todos los vértices del grafo.
- Ciclo: camino simple cerrado.
- Ciclo de Hamilton: camino Hamiltoniano cerrado.

Facultad de Ingeniería
Departamento de Computación

75.41 Algoritmos y Programación II

Cátedra: Ing. Patricia Calvo Grafos

2 Tipos de Grafos

1. Definiciones

- **Sub Grafo G'**: G' = (V', A') donde V' ⊂ V y A' ⊂ A
- Árbol recubridor: es un árbol Sub Grafo de G.
- Grafo regular: todos sus vértices tienen el mismo grado.
- **Grafo completo**: aquel donde 2 vértices cualesquiera se hayan relacionados.
- Grafo plano: aquel en cuya representación en el plano no se superponen aristas.
- Grafo dirigido: todas sus aristas son dirigidas.
- Grafo no dirigido: todas sus aristas son no dirigidas.
- Grafo ponderado: compuesto por aristas ponderadas.
- Multigrafo: aquel que contiene dos o mas aristas semejantes.
- Digrafo: aquel con aristas dirigidas.
- Grafo conexo: existe un camino para todo par de vértices del grafo.
- Grafo disconexo: existen cuando menos un par de vértices no comunicados.
- Componente conexa: conjunto maximal de vértices en el cual existe un camino entre cualesquiera 2 vértices del mismo.
 - Árbol: grafo conexo sin ciclos.

Facultad de Ingeniería

Departamento de Computación

75.41 Algoritmos y Programación II

Cátedra: Ing. Patricia Calvo

Grafos

2. Ejemplos

Departamento de Computación

Facultad de Ingeniería

75.41 Algoritmos y Programación II

Cátedra: Ing. Patricia Calvo

Grafos

3 Recorridos

1. Recorrido en anchura

Desmarcar Vértices

Acolar Vértice Origen

Mientras queden Vértices en Cola

Desacolar Vértice

Si debe marcarse

Marcar Vértice

Acolar Hijos(Vértice)

Fin Si

Fin Mientras

2. Recorrido en profundidad

Desmarcar Vértices

Apilar Vértice Origen

Mientras queden Vértices en Cola

Desapilar Vértice

Si debe marcarse

Marcar Vértice

Apilar Hijos(Vértice)

Fin Si

Fin Mientras