Support Vector Machines

Machine Learning Techniques

Outline

- Margin
- Max-margin classifier
- Duality
- Weight vector
- Support vectors
- Hard-margin Linear-SVM
- Soft-margin SVM

For linearly separable data with γ margin: (1) Infinite number of valid linear classifiers.

- (1) Infinite number of valid linear classifiers.
- (2) Perceptron returns a valid linear classifier.

- (1) Infinite number of valid linear classifiers.
- (2) Perceptron returns a valid linear classifier.
- (3) Is it the "best"?

- (1) Infinite number of valid linear classifiers.
- (2) Perceptron returns a valid linear classifier.
- (3) Is it the "best"?
- (4) What is a good notion of "best"?

Small margin Doesn't generalize well

0

Small margin Doesn't generalize well

Large margin Better generalization

For any linear classifier represented by \mathbf{w} :

(1) Find the point closest to it $\rightarrow x^*$

- (1) Find the point closest to it $\rightarrow x^*$
- (2) Scale w such that \mathbf{x}^* lies on $\mathbf{w}^T\mathbf{x} = 1$

- (1) Find the point closest to it $\rightarrow x^*$
- (2) Scale w such that \mathbf{x}^* lies on $\mathbf{w}^T\mathbf{x}=1$
- (3) Distance of \mathbf{x}^* from the line is $\frac{1}{||\mathbf{w}||}$

- (1) Find the point closest to it $\rightarrow x^*$
- (2) Scale w such that \mathbf{x}^* lies on $\mathbf{w}^T\mathbf{x}=1$
- (3) Distance of \mathbf{x}^* from the line is $\frac{1}{||\mathbf{w}||}$
- (4) This is the (geometric) margin for this linear classifier.

Beyond the "margin"

$$(\mathbf{w}^T \mathbf{x}_i) y_i \geqslant 1, \quad 1 \leqslant i \leqslant n$$

Max-Margin Classifier

$$\max_{\mathbf{w}} \quad \frac{1}{||\mathbf{w}||}$$

sub. to

$$(\mathbf{w}^T \mathbf{x}_i) y_i \geqslant 1, \quad 1 \leqslant i \leqslant n$$

Max-Margin Classifier

$$\min_{\mathbf{w}} \quad \frac{||\mathbf{w}||^2}{2}$$

sub. to

$$(\mathbf{w}^T \mathbf{x}_i) y_i \geqslant 1, \quad 1 \leqslant i \leqslant n$$

 $\min_{\mathbf{w}} \quad f(\mathbf{w})$

sub. to

 $g(\mathbf{w}) \leqslant 0$

$$\min_{\mathbf{w}} \quad f(\mathbf{w})$$

sub. to

$$g(\mathbf{w}) \leqslant 0$$

$$\max_{\alpha \geqslant 0} \quad f(\mathbf{w}) + \alpha g(\mathbf{w}) = \begin{cases} f(\mathbf{w}), & g(\mathbf{w}) \leqslant 0 \\ \infty, & g(\mathbf{w}) > 0 \end{cases}$$

$$\max_{\alpha \geqslant 0} \quad f(\mathbf{w}) + \alpha g(\mathbf{w}) = \begin{cases} f(\mathbf{w}), & g(\mathbf{w}) \leqslant 0 \\ \infty, & g(\mathbf{w}) > 0 \end{cases}$$

$$\min_{\mathbf{w}} f(\mathbf{w})$$

$$\mathrm{sub. to} \qquad \equiv \qquad \min_{\mathbf{w}} \left[\max_{\alpha \geqslant 0} f(\mathbf{w}) + \alpha g(\mathbf{w}) \right]$$

$$g(\mathbf{w}) \leqslant 0$$

$$\max_{\alpha\geqslant 0} \quad f(\mathbf{w}) + \alpha g(\mathbf{w}) = \begin{cases} f(\mathbf{w}), & g(\mathbf{w})\leqslant 0\\ \infty, & g(\mathbf{w})>0 \end{cases}$$

$$\begin{array}{ll} \min\limits_{\mathbf{w}} & f(\mathbf{w}) \\ \text{sub. to} & \equiv & \min\limits_{\mathbf{w}} \begin{bmatrix} \max\limits_{\alpha\geqslant 0} & f(\mathbf{w}) + \alpha g(\mathbf{w}) \end{bmatrix} & \equiv & \max\limits_{\alpha\geqslant 0} & \min\limits_{\mathbf{w}} f(\mathbf{w}) + \alpha g(\mathbf{w}) \\ & \downarrow & & \\ \text{Strong Duality} \end{array}$$

$$\max_{\alpha\geqslant 0} \quad f(\mathbf{w}) + \alpha g(\mathbf{w}) = \begin{cases} f(\mathbf{w}), & g(\mathbf{w})\leqslant 0\\ \infty, & g(\mathbf{w})>0 \end{cases}$$

$$\min_{\mathbf{w}} f(\mathbf{w})$$

$$\mathrm{sub. to} \qquad \equiv \qquad \min_{\mathbf{w}} \left[\max_{\alpha \geqslant 0} f(\mathbf{w}) + \alpha g(\mathbf{w}) \right] \qquad \equiv \qquad \qquad$$

$$\min_{\mathbf{w}} \quad \frac{||\mathbf{w}||^2}{2}$$

sub. to

$$(\mathbf{w}^T \mathbf{x}_i) y_i \geqslant 1, \quad 1 \leqslant i \leqslant n$$

$$\equiv \max_{\alpha \geqslant 0} \min_{\mathbf{w}} f(\mathbf{w}) + \alpha g(\mathbf{w})$$

Strong Duality

$$\max_{\alpha \geqslant 0} \quad f(\mathbf{w}) + \alpha g(\mathbf{w}) = \begin{cases} f(\mathbf{w}), & g(\mathbf{w}) \leqslant 0 \\ \infty, & g(\mathbf{w}) > 0 \end{cases}$$

$$\begin{array}{ll} \min \limits_{\mathbf{w}} f(\mathbf{w}) \\ \text{sub. to} & \equiv & \min \limits_{\mathbf{w}} \left[\max \limits_{\alpha \geqslant 0} f(\mathbf{w}) + \alpha g(\mathbf{w}) \right] & \equiv & \max \limits_{\alpha \geqslant 0} \min \limits_{\mathbf{w}} f(\mathbf{w}) + \alpha g(\mathbf{w}) \\ & \downarrow & & \downarrow \\ \text{Strong Duality} \end{array}$$

$$\min_{\mathbf{w}} \frac{||\mathbf{w}||^2}{2}$$

$$\equiv \min_{\mathbf{w}} \max_{\boldsymbol{\alpha} \geqslant 0} \frac{||\mathbf{w}||^2}{2} + \sum_{i=1}^n \alpha_i \Big[1 - \big(\mathbf{w}^T \mathbf{x}_i\big) y_i\Big]$$
 sub. to
$$\left(\mathbf{w}^T \mathbf{x}_i\right) y_i \geqslant 1, \quad 1 \leqslant i \leqslant n$$

$$\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

$$\max_{\alpha \geqslant 0} \quad f(\mathbf{w}) + \alpha g(\mathbf{w}) = \begin{cases} f(\mathbf{w}), & g(\mathbf{w}) \leqslant 0 \\ \infty, & g(\mathbf{w}) > 0 \end{cases}$$

$$\min_{\mathbf{w}} f(\mathbf{w})$$

$$\sup_{\mathbf{g}} f(\mathbf{w})$$

$$\sup_{\mathbf{g}} f(\mathbf{w}) \leq 0$$

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$

$$\sup_{\mathbf{w}} f(\mathbf{w}) = \min_{\mathbf{w}} \left[\max_{\alpha \geqslant 0} f(\mathbf{w}) + \alpha g(\mathbf{w}) \right] = \max_{\alpha \geqslant 0} \min_{\mathbf{w}} f(\mathbf{w}) + \alpha g(\mathbf{w})$$

$$\lim_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2}$$

$$\lim_{\mathbf{w}} \max_{\alpha \geqslant 0} \frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^n \alpha_i \left[1 - \left(\mathbf{w}^T \mathbf{x}_i \right) y_i \right] = \max_{\alpha \geqslant 0} \min_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^n \alpha_i \left[1 - \left(\mathbf{w}^T \mathbf{x}_i \right) y_i \right]$$

$$\left(\mathbf{w}^T \mathbf{x}_i \right) y_i \geqslant 1, \quad 1 \leqslant i \leqslant n$$

$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \end{bmatrix}$$

Formulating the Dual

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i y_i$$

Formulating the Dual

$$\mathbf{w} = \sum_{i=1}^n \alpha_i \mathbf{x}_i y_i$$

$$d \times n$$

$$n \times n$$

$$\mathbf{Y} = \left[egin{array}{ccc} y_1 & & 0 \ & \ddots & \ 0 & & y_n \end{array}
ight]$$

$$\mathbf{XY}\boldsymbol{\alpha} = \begin{bmatrix} & & & | \\ y_1\mathbf{x}_1 & \cdots & y_n\mathbf{x}_n \\ | & & | \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \sum_{i=1}^n \alpha_i(y_i\mathbf{x}_i) = \mathbf{w}$$

Formulating the Dual

$$d \times n$$

$$\mathbf{X} = \begin{bmatrix} | & & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ | & & | \end{bmatrix}$$
 $\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$

$$\mathbf{Y} = \left[egin{array}{ccc} y_1 & & 0 \ & \ddots & \ 0 & & y_n \end{array}
ight]$$

$$\left(\max_{\boldsymbol{\alpha} \geq 0} \; \boldsymbol{\alpha}^T \mathbf{1} - \; \frac{\boldsymbol{\alpha}^T (\mathbf{Y}^T \mathbf{X}^T \mathbf{X} \mathbf{Y}) \boldsymbol{\alpha}}{2} \right)$$

Advantages of the Dual

$$\max_{\boldsymbol{\alpha} \geqslant 0} \boldsymbol{\alpha}^T \mathbf{1} - \frac{\boldsymbol{\alpha}^T (\mathbf{Y}^T \mathbf{X}^T \mathbf{X} \mathbf{Y}) \boldsymbol{\alpha}}{2}$$

- (1) $\alpha \in \mathbb{R}^n$ and $\mathbf{w} \in \mathbb{R}^d$, if $n \ll d$, we are solving for fewer variables in the dual
- (2) Simpler constraints, just bounds.
- (3) The appearance of $\mathbf{X}^T\mathbf{X} \implies \text{kernels.}$

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad \qquad oldsymbol{w}^* = \sum_{i=1}^n lpha_i^* oldsymbol{x}_i y_i$$

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad \qquad oldsymbol{w}^* = \sum_{i=1}^n lpha_i^* oldsymbol{x}_i y_i$$

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad \qquad oldsymbol{w}^* = \sum_{i=1}^n lpha_i^* oldsymbol{x}_i y_i$$

$$\alpha_i^* \left[1 - \left(\mathbf{w}^*^T \mathbf{x}_i \right) y_i \right] = 0$$

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad \qquad oldsymbol{w}^* = \sum_{i=1}^n lpha_i^* oldsymbol{x}_i y_i$$

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad \qquad oldsymbol{w}^* = \sum_{i=1}^n lpha_i^* oldsymbol{x}_i y_i$$

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad \qquad oldsymbol{w}^* = \sum_{i=1}^n lpha_i^* oldsymbol{x}_i y_i$$

$$m{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad \qquad m{w}^* = \sum_{i=1}^n lpha_i^* m{x}_i y_i$$

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad \qquad oldsymbol{w}^* = \sum_{i=1}^n lpha_i^* oldsymbol{x}_i y_i$$

Definition: A support vector is a point for which $\alpha_i^*>0$

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad egin{bmatrix} \mathbf{w}^* = \sum_{i=1}^n lpha_i^* \mathbf{x}_i y_i \end{bmatrix}$$

$$\alpha_i^* g_i(\mathbf{w}^*) = 0 \Longrightarrow \alpha_i^* \left[1 - \left(\left(\mathbf{w}^* \right)^T \mathbf{x}_i \right) y_i \right] = 0$$

Complementary Slackness

Definition: A support vector is a point for which $\alpha_i^* > 0$

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad egin{bmatrix} \mathbf{w}^* = \sum_{i=1}^n lpha_i^* \mathbf{x}_i y_i \end{bmatrix}$$

$$\alpha_i^* g_i(\mathbf{w}^*) = 0 \Longrightarrow \alpha_i^* \left[1 - \left(\left(\mathbf{w}^* \right)^T \mathbf{x}_i \right) y_i \right] = 0$$

Complementary Slackness

Definition: A support vector is a point for which $\alpha_i^* > 0$

Every support vector lies on one of the two supporting hyperplanes $(\mathbf{w}^*)^T \mathbf{x} = \pm 1$

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad egin{bmatrix} \mathbf{w}^* = \sum_{i=1}^n lpha_i^* \mathbf{x}_i y_i \end{bmatrix}$$

$$\alpha_i^* g_i(\mathbf{w}^*) = 0 \Longrightarrow \alpha_i^* \left[1 - \left(\left(\mathbf{w}^* \right)^T \mathbf{x}_i \right) y_i \right] = 0$$

Complementary Slackness

Definition: A support vector is a point for which $\alpha_i^*>0$

Every support vector lies on one of the two supporting hyperplanes $(\mathbf{w}^*)^T \mathbf{x} = \pm 1$

Every point that is **not** on one of the two supporting hyperplanes has $\alpha_i^* = 0$.

$$oldsymbol{lpha}^* = egin{bmatrix} lpha_1^* \ dots \ lpha_n^* \end{bmatrix} \qquad egin{bmatrix} \mathbf{w}^* = \sum_{i=1}^n lpha_i^* \mathbf{x}_i y_i \end{bmatrix}$$

Definition: A support vector is a point for which $\alpha_i^*>0$

$$\alpha_i^* g_i(\mathbf{w}^*) = 0 \Longrightarrow \alpha_i^* \left[1 - \left(\left(\mathbf{w}^* \right)^T \mathbf{x}_i \right) y_i \right] = 0$$

Complementary Slackness

Every support vector lies on one of the two supporting hyperplanes $(\mathbf{w}^*)^T \mathbf{x} = \pm 1$

Is every point on one of the two supporting hyperplanes a support vector?

Every point that is **not** on one of the two supporting hyperplanes has $\alpha_i^* = 0$.

Hard-Margin, Linear-SVM

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1$$

$$\xi_i \geqslant 0$$

$$\xi_i = \max \Bigl(1 - \bigl(\mathbf{w}^T\mathbf{x}_i\bigr)y_i, 0\Bigr)$$

Soft-Margin, Linear-SVM

$$\min_{\mathbf{w}} \quad \frac{||\mathbf{w}||^2}{2} + C \cdot \sum_{i=1}^n \xi_i$$

sub. to

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1, \quad 1 \leqslant i \leqslant n$$

 $\xi_i \geqslant 0, \quad 1 \leqslant i \leqslant n$

Soft-Margin, Linear-SVM: Hinge-loss formulation

$$\min_{\mathbf{w}} \quad \frac{||\mathbf{w}||^2}{2} + C \cdot \sum_{i=1}^n \xi_i$$

sub. to

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1, \quad 1 \leqslant i \leqslant n$$

$$\xi_i \geqslant 0, \quad 1 \leqslant i \leqslant n$$

$$\min_{\mathbf{w}} \ \frac{||\mathbf{w}||^2}{2} + C \cdot \sum_{i=1}^n \max \left(0, \ 1 - \left(\mathbf{w}^T \mathbf{x}_i\right) y_i\right)$$

Soft-Margin, Linear-SVM: Hinge-loss formulation

 \equiv

 $\min_{\mathbf{w}} \quad \frac{||\mathbf{w}||^2}{2} + C \cdot \sum_{i=1}^{n} \xi_i$

sub. to

$$(\mathbf{w}^T \mathbf{x}_i) y_i + \xi_i \geqslant 1, \quad 1 \leqslant i \leqslant n$$

$$\xi_i \geqslant 0, \quad 1 \leqslant i \leqslant n$$

Model

Data

$$\min_{\mathbf{w}} \ \frac{||\mathbf{w}||^2}{2} + C \cdot \sum_{i=1}^n \max \Bigl(0, \ 1 - \bigl(\mathbf{w}^T \mathbf{x}_i\bigr) y_i \Bigr)$$

Regularization

Hinge Loss

Soft-Margin, SVM: Hinge-loss formulation

$$\min_{\mathbf{w}} \ \frac{||\mathbf{w}||^2}{2} + C \cdot \sum_{i=1}^n \max(0, \ 1 - (\mathbf{w}^T \mathbf{x}_i) y_i)$$

$$(1) \ \frac{||\mathbf{w}||^2}{2} \text{ controls the width of the margin}$$

$$\text{Smaller the value of } ||\mathbf{w}||, \text{ wider the margin}$$

$$(2) \ \sum_{i=1}^n \max(0, \ 1 - (\mathbf{w}^T \mathbf{x}_i) y_i) \text{ is the hinge-loss. Wider}$$

Terms in the objective:

- the margin, larger the loss.

Soft-Margin, SVM: Hinge-loss formulation

$$\min_{\mathbf{w}} \frac{||\mathbf{w}||^2}{2} + C \cdot \sum_{i=1}^n \max(0, 1 - (\mathbf{w}^T \mathbf{x}_i) y_i)$$
(1)

- (1) and (2) work in opposite directions
- If $||\mathbf{w}||$ decreases, the margin becomes wider, which increases the hinge-loss.
- C controls the tradeoff between (1) and (2):
 - If C is small, we are fine with a wide margin $_{\scriptscriptstyle 25}$
 - If ${\it C}$ is large, we prefer a narrow margin.
 - If $C \! \to \! \infty$, we do not tolerate bribery at all. –2.5

Miscellaneous

Terminology used

- (1) Hard-margin, Linear-SVM
- (2) Hard-margin, Kernel-SVM
- (3) Soft-margin, Linear-SVM
- (4) Soft-margin, Kernel-SVM

Additional points

- Discriminative model
- Weight vector is a sparse linear combination of data-points
- The dual is a quadratic programming problem