PROVA SUBSTITUTIVA DE TERMODINÂMICA

Prof. Frederico W. Tavares

- 1) (30 Pontos) A reação nA(g) + (n-1) B(g) = n C(s) + (n-1) D(g) ocorre em um sistema gasoso fechado ideal, no qual a temperatura e a pressão são mantidas constantes e iguais a 400 K e 5 bar, respectivamente. A constante de equilíbrio da reação para n=1, calculada a partir da energia livre de Gibbs padrão de reação na temperatura do sistema, na pressão de 1 bar e no estado de gás ideal para os componentes A, B e D e estado de sólido puro para C é igual a 3. No instante inicial, há 1 gmol de A, 2 gmols de B e 5 gmols de inerte. Determine os números de mols dos compostos no equilíbrio para a reação com n=2.
- 2) (30 Pontos) **Determine as composições das fases em equilíbrio** dentro de um tanque industrial que contem uma mistura de **A**, **B** e **P** (polímero), na temperatura de 40 $^{\circ}$ C e com as seguintes frações molares globais: 30% de **A**, 40 % de **B** e o restante de **P**. Sabe-se que o tanque apresenta 50% (em mols) de vapor e que as pressões de saturação de **A** e **B** são: $\ln P_A^{SAT}(mmHg) = 8 370/T(K)$ e $\ln P_B^{SAT}(mmHg) = 7 350/T(K)$. Sabe-se, também, que **P** (polímero) é muito pesado e sua pressão de vapor pode ser consideradamente igual à zero. Admita que a mistura siga a lei de Raoult.
- 3) (40 pontos) O ciclo de Rankine com reaquecimento é usado para produzir 50000 Btu/min de taxa de trabalho útil. Dados: **Corrente 1 9** (saída da Cladeira): 400 °F e 20 psia; **Corrente 2** (saída da primeira turbina): 15 psia **Corrente 3** (saída do trocador de calor): 350 °F; **Corrente 4** (saída da segunda turbina): 10 psia; **Corrente 5** (saída do condensador): 132 °F. Sabendo-se que as turbinas trabalham com 80% de eficiência:
 - a) Calcular as propriedades termodinâmicas das correntes.
 - b) Fazer os diagramas nos planos T versus S e P versus H do ciclo correspondente.
 - c) Calcular a taxa de calor envolvida na caldeira.

ABS PRESS PSIA (SAT TEMP)		SAT WATER	SAT STEAM	TEMPERATURE, 200	DEG F 250	300	350	400	450	500
(101.74)	VUHS	0.0161 69.73 69.73 0.1326	333.60 1044.1 1105.8 1.9781	392.5 1077.5 1150.2 2.0609	422.4 1094.7 1172.9 2.0841	452.3 1112.0 1195.7 2.1152	482.1 1129.5 1218.7 2.1445	511.9 1147.1 1241.8 2.1722	541.7 1164.9 1265.1 2.1985	571.5 1182.8 1288.6 2.2237
(162. 24)	V U S	0.0164 130.18 130.20 0.2349	73.532 1063.1 1131.1 1.8443	78.14 1076.3 1148.6 1.8716	84.21 1093.8 1171.7 1.9054	90.24 1111.3 1194.8 1.9369	96.25 1128.9 1218.0 1.9664	102.2 1146.7 1241.3 1.9943	108.2 1164.5 1264.7 2.0208	114.2 1182.6 1288.2 2.0460
10 (193.21)	V UHS	0.0166 161.23 161.26 0.2836	38.420 1072.3 1143.3 1.7879	38.84 1074.7 1146.6 1.7928	41.93 1092.6 1170.2 1.8273	44.98 1110.4 1193.7 1.8593	48.02 1128.3 1217.1 1.8892	51.03 1146.1 1240.6 1.9173	54.04 1164.1 1264.1 1.9439	57.04 1182.2 1287.8 1.9692
14.696 (212.00)	SHO.	0.0167 180.12 180.17 0.3121	26.799 1077.6 1150.5 1.7568		28.42 1091.5 1168.8 1.7833	30.52 1109.6 1192.6 1.8158	32.60 1127.6 1216.3 1.8460	34.67 1145.7 1239.9 1.8743	36.72 1163.7 1263.6 1.9010	38.77 1181.9 1287.4 1.9265
15 (213.03)	Y H S	0.0167 181.16 181.21 0.3137	26.290 1077.9 1150.9 1.7552		27.84 1091.4 1168.7 1.7809	29.90 1109.5 1192.5 1.8134	31.94 1127.6 1216.2 1.8436	33.96 1145.6 1239.9 1.8720	35.98 1163.7 1263.6 1.8988	37.98 1181.9 1287.3 1.9242
20 (227.96)	V H S	0.0168 196.21 196.27 0.3358	20.087 1082.0 1156.3 1.7320		20.79 1090.2 1167.1 1.7475	22.36 1108.6 1191.4 1.7806	23.90 1126.9 1215.4 1.8111	25.43 1145.1 1239.2 1.8397	26.95 1163.3 1263.0 1.8666	28.46 1181.6 1286.9 1.8921

 $K = \exp\left(\frac{-\Delta G^{0}}{RT}\right) = \prod_{i} \hat{a}_{i}^{\nu_{i}}$ $R = 1,987 \frac{cal}{gmolK}$ $\left(\frac{\partial G/T}{\partial T}\right)_{P} = -\frac{H}{T^{2}}$ $144 \text{ Btu} = 778 \text{ psia ft}^{3}$ $\Delta(H + \frac{v^{2}}{2} + gz) = Q + W_{s}$ $\hat{f}_{i} = x_{i} \hat{\phi}_{i} P = x_{i} \gamma_{i} f_{i}^{0}$ $y_{i} P = x_{i} \gamma_{i} P_{i}^{SAT}$ $\hat{a}_{i} = \hat{f}_{i}/f_{i}^{0}$