Bemerkungen zum Tutorium vom 27.10.

Lukas Bach

27. Oktober 2016

1 Beispielbeweis zu Mengen Gleichheit

Behauptung: Für die Mengen Operationen \cup und \cap gilt das Distributivgesetz, also $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Beweis:

• Zunächst zeigt man $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$:

Sei $x \in A \cap (B \cup C)$, also x liegt im linken Teil der Gleichung. Dann gilt: $x \in A$ und $x \in B \cup C$. (Definition von \cap erfordert, dass beides gilt.)

Weil gilt $x \in B \cup C$, also x entweder in B oder in C liegen kann, unterscheiden wir zwei Fälle:

- Fall 1: $x \in B$. Da vorhin schon gezeigt wurde, dass x in A liegt, gilt: $x \in B$ und $x \in A$, also $x \in A \cup B$, also auch $x \in (A \cap B) \cup (A \cap C)$. (Damit die letzte Gleichung gilt, muss es entweder in $(A \cap B)$ oder in $(A \cap C)$ liegen. Es liegt wie bewiesen in $(A \cap C)$.)
- Fall 2: $x \in C$. Wieder gilt wie vorhin gezeigt, dass x auch in A liegt, also $x \in C \cap A = A \cap C$, damit $x \in (A \cap B) \cup (A \cap C)$, diesmal liegt x im rechten Teil der Vereinigung.

Damit haben wir für ein beliebiges $x \in A \cap (B \cup C)$ gezeigt, dass auch gilt $x \in (A \cap B) \cup (A \cap C)$, also jedes Element der linken Menge liegt im Allgemeinen auch in $(A \cap B) \cup (A \cap C)$, damit folgt $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

• Als nächstes zeigen, dass außerdem $A \cap (B \cup C) \supseteq (A \cap B) \cup (A \cap C)$. Wir nehmen wieder ein (neues, anderes) x diesmal aus der rechten Seite der Gleichung, also $x \in (A \cap B) \cup (A \cap C)$. Durch die Vereinigung in der Mitte haben wir wieder die beiden Möglichkeiten $x \in (A \cap B)$ und $x \in (A \cap C)$ (Bemerkung: Da es eine Vereinigung ist, ist mindestens eine der beiden Möglichkeiten wahr, es können aber auch beide wahr sein.)

In beiden Fällen muss auf jeden Fall gelten $x \in A$. Außerdem muss einer der beiden Fälle gelten (je nachdem ob $x \in (A \cap B)$ oder $x \in (A \cap C)$): Entweder $x \in B$ oder $x \in C$.

Damit gilt $x \in A \cap (B \cup C)$, denn wie bewiesen ist $x \in A$ und x ist in mindestens einer der Mengen aus der Vereinigung. Damit ist x, beliebig aus $(A \cap B) \cup (A \cap C)$ gewählt, auch in $(A \cap B) \cup (A \cap C)$. Damit folgt $A \cap (B \cup C) \supseteq (A \cap B) \cup (A \cap C)$

Damit gilt $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ und $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$, folglich sind beide Seiten gleich und alles ist bewiesen.

Bemerkung: Der Beweis ist etwas ausführlicher, als in Übungsaufgaben erwartet. Er geht auch kürzer (mit weniger Text), geht aber nach demselben Verfahren vor. Der Beweis in kürzerer Form ist auf https://de.wikibooks.org/wiki/Beweisarchiv:_Mengenlehre:_Mengenoperation:_Distributivgesetz#Beweis formluliert.

2 Beispielbeweis zu Mengen Ungleichheit

Behauptung: $A \cap (B \cup C) \neq (A \cap B) \cap (A \cap C)$, also leicht abgewandelte Distributivität. Beweis: Wir nehmen konkrete Mengen als Beispiel: $A := \{a, b, c\}, B := \{b\}, C := \{c\}$. Dann gilt:

- $A \cap (B \cup C) = \{a, b, c\} \cap (\{b\} \cup \{c\}) = \{a, b, c\} \cap \{b, c\} = \{b, c\}$
- $(A \cap B) \cap (A \cap C) = (\{a, b, c\} \cap \{b\}) \cap (\{a, b, c\} \cap \{c\}) = \{b\} \cap \{c\} = \emptyset$

Die beiden Mengen wären dann gleich, wenn sie allgemeingültig für beliebige Mengen A, B, C gleich wären. Wir haben mit dem konkreten Beispiel gezeigt, dass beide Seiten für dieses Beispiel nicht gleich sind, also sind beide Seiten nicht gleich. Die Ungleichheit ist damit gezeigt.