

### Business Scenario

The owner of a successful restaurant chain in London is looking to expand in New York and wants to identify neighbourhoods similar to their current locations in London as they have been very successful in running their business there.

The goal is to identify similar neighbourhoods in Manhattan, New York to launch their next two restuarants. The similarity comparision of the neighbourhoods whould be in terms of the other business/social establishments that exist in the proposed neighbourhoods.

The chain has two categories of restuarants - the first one is in Covent Garden, City of London, London and , it is a fine dining restuarant and offers Indian cuisine, the second one is in Southall, in the Ealing borough , London and offers Indian fast/street food. Both cater to very different clientele and therefore it is important for the business to identify the right kind of neighbourhoods in Manhattan for each restaurant.

### Problem Statement

### NO. QUESTION

- 1. Is it possible to segment London and Manhattan into neighbourhood clusters and then identify clusters that extend across both cities thereby implying similarity in the neighbourhoods in London and Manhattan?
- 2. Do the neighbourhoods of the two restaurants in London fall in different clusters? If yes, for each cluster are we able to identify similar neighbourhoods in Manhattan to expand the restaurant business?

# Data Sources and Approach

The data that will be used for this analysis will include four square data to analyze the different neighbourhoods in New York and London and combine them into one single dataset of neighbourhoods, then segment this dataset into different clusters and identify which clusters Southall and Covent Garden fall into respectively and are there neighbourhoods in New York which fall in the same clusters. If there are, then these could potentially be good locations for the launch of the new restuarants.

We will start with identifying the names of all the boroughs of London by webscraping the following page: https://en.wikipedia.org/wiki/List\_of\_London\_boroughs and the neighbourhoods in Manhattan from a pre-existing dataset used earlier in this course. After that we use this list to gather geospatial data like latitude and longitude for each borough/neighbourhood in each city which is used for gathering social venues information from Four Square through an API request.

The main data to be used for this analysis is Four Square data which typically includes the following fields for each location in a given Neighbourhood: Name ,Neighborhood Latitude, Neighborhood Longitude, Venue name, Venue Latitude, Venue Longitude, Venue Category, for top 100 venues within a 500 metre radius.

After identifying the social venues data we will use the K Means algorithm to cluster the data into similar groups and see if we can define the characteristics if each group of neighbourhoods, and then make final recommendations on the locations of the restaurants to be launched in Manhattan..

# Data Analysis

London has 32 boroughs and the area of the City of London. Manhattan is itself a borough of New York and has 40 Neighbourhoods. To avoid confusion we will refer to both London boroughs and Manhattan Neighbourhoods as Neighbourhoods going forward.

|     | Borough   | Neighborhood Latitude Longitude          | 274 | Manhattan | Tudor City 40.746917 -73.971219            |
|-----|-----------|------------------------------------------|-----|-----------|--------------------------------------------|
| 5 I | Manhattan | Marble Hill 40.876551 -73.910660         | 275 | Manhattan | Stuyvesant Town 40.731000 -73.974052       |
| 100 | Manhattan | Chinatown 40.715618 -73.994279           | 276 | Manhattan | Flatiron 40.739673 -73.990947              |
| 101 | Manhattan | Washington Heights 40.851903 -73.936900  | 301 | Manhattan | Hudson Yards 40.756658 -74.000111          |
| 102 | Manhattan | Inwood 40.867684 -73.921210              | 0   | London    | Barking and Dagenham 51.560228 0.171961    |
| 103 | Manhattan | Hamilton Heights 40.823604 -73.949688    | 1   | London    | Barnet 51.627300 -0.253760                 |
| 104 | Manhattan | Manhattanville 40.816934 -73.957385      | 2   | London    | Bexley 51.452078 0.069931                  |
| 105 | Manhattan | Central Harlem 40.815976 -73.943211      | 3   | London    | Brent 51.609783 -0.194672                  |
| 106 | Manhattan | East Harlem 40.792249 -73.944182         | 4   | London    | Bromley 51.601511 -0.066365                |
| 107 | Manhattan | Upper East Side 40.775639 -73.960508     | 5   | London    | Camden 51.591180 -0.165040                 |
| 108 | Manhattan | Yorkville 40.775930 -73.947118           | 6   | London    | Croydon 51.593470 -0.083380                |
| 109 | Manhattan | Lenox Hill 40.768113 -73.958860          | 7   | London    | Ealing 51.508383 -0.305200                 |
| 110 | Manhattan | Roosevelt Island 40.762160 -73.949168    | 8   | London    | Enfield 51.540024 -0.077502                |
| 111 | Manhattan | Upper West Side 40.787658 -73.977059     | 9   | London    | Greenwich 51.477890 -0.013340              |
| 112 | Manhattan | Lincoln Square 40.773529 -73.985338      | 10  | London    | Hackney 51.531820 -0.061780                |
| 113 | Manhattan | Clinton 40.759101 -73.996119             | 11  | London    | Hammersmith and Fulham 51.482600 -0.212880 |
| 114 | Manhattan | Midtown 40.754691 -73.981669             | 12  | London    | Haringey 51.589270 -0.106405               |
| 115 | Manhattan | Murray Hill 40.748303 -73.978332         | 13  | London    | Harrow 51.513180 -0.106980                 |
| 116 | Manhattan | Chelsea 40.744035 -74.003116             | 14  | London    | Havering 51.544610 -0.144260               |
| 117 | Manhattan | Greenwich Village 40.726933 -73.999914   | 15  | London    | Hillingdon 51.484230 -0.096477             |
| 118 | Manhattan | East Village 40.727847 -73.982226        | 16  | London    | Hounslow 51.467701 -0.361718               |
| 119 | Manhattan | Lower East Side 40.717807 -73.980890     | 17  | London    | Islington 51.534380 -0.108940              |
| 120 | Manhattan | Tribeca 40.721522 -74.010683             | 18  | London    | Kensington and Chelsea 51.522660 -0.207930 |
| 121 | Manhattan | Little Italy 40.719324 -73.997305        | 19  | London    | Kingston upon Thames 51.409008 -0.303598   |
| 122 | Manhattan | Soho 40.722184 -74.000657                | 20  | London    | Lambeth 51.494471 -0.120066                |
| 123 | Manhattan | West Village 40.734434 -74.006180        | 21  | London    | Lewisham 51.465280 -0.013210               |
| 124 | Manhattan | Manhattan Valley 40.797307 -73.964286    | 22  | London    | Merton 51.544520 -0.166860                 |
| 125 | Manhattan | Morningside Heights 40.808000 -73.963896 | 23  | London    | Newham 51.519937 0.055882                  |
| 126 | Manhattan | Gramercy 40.737210 -73.981376            | 24  | London    | Redbridge 51.475773 -0.080698              |
| 127 | Manhattan | Battery Park City 40.711932 -74.016869   | 25  | London    | Richmond upon Thames 51.480270 -0.237540   |
| 128 | Manhattan | Financial District 40.707107 -74.010665  | 26  | London    | Southwark 51.505734 -0.100002              |
| 247 | Manhattan | Carnegie Hill 40.782683 -73.953256       | 27  | London    | Sutton 51.512243 -0.053659                 |
| 248 | Manhattan | Noho 40.723259 -73.988434                | 28  | London    | Tower Hamlets 51.499990 -0.010450          |
| 249 | Manhattan | Civic Center 40.715229 -74.005415        | 29  | London    | Waltham Forest 51.581765 -0.276968         |
| 250 | Manhattan | Midtown South 40.748510 -73.988713       | 30  | London    | Wandsworth 51.467826 -0.144992             |
| 271 | Manhattan | Sutton Place 40.760280 -73.963556        | 31  | London    | Westminster 51.628249 0.012986             |
| 273 | Manhattan | Turtle Bay 40.752042 -73.967708          | 32  | London    | City of London 51.508530 -0.125740         |

#### Waltham Cross Watford Chipping Barnet Enfield M25 Loughton isworth **Buckhurst** Edgware Walthamstow Ruislip 0 Northolt Woolwich Hotolow Bexleyheath Wandsworth Brixton Sydenham Foots Cray London Neighbourhoods Ridgefield Park Heights Teterboro Airport Ridgefield therford Cliffside Park Fairview North Bergen Guttenberg Secaucus. 16E/18E Union City Weehawken Hoboken Jersey City Manhattan Neighbourhoods

## Data Analysis

Even though the average area of Manhattan neighbourhoods is much smaller than London, the concentration of venues in Manhattan neighbourhoods is high, therefore in terms of number of social venues within a neighbourhood, London neighbourhoods and Manhattan neighbourhoods can be considered comparable.

# Data Analysis

- Certain venue categories had to be modified to accommodate differences in the way certain establishments are named in UK vs USA. Eg a bar in USA is typically referred to as a pub in UK, a coffee shop in USA is likely to be called a café in UK etc.
- Also venues like beer bar, wine bar, cocktail bar etc were all clubbed into one single category named bar
- ➤ There were other similar anomalies in the data eg Gym, Gym/Fitness Centre/Gym Pool/ Gymanstics Gym – but since the frequency of these venues was low, so these were not corrected.

# Data Summary

- In all 73 Neighbourhoods were analyzed
- The number of venues identified across these 73 neighbourhoods was 4392
- The features used for K means clustering were the venue categories. A total of 371 unique venue categories were identified
- The neighbourhoods where number of venues identified was less than 10 were excluded from the analysis

# K Means Classification: Approach

- Data was prepared for K means Classification algorithm by using the one hot coding technique for all the venue categories and then grouping by neighbourhood and calculating the mean values
- The number of clusters was defined as 5
- For each neighborhood the top 10 most frequently occurring venue categories were identified

## K Means Classification

➤ The algorithm generated these 5 Clusters:

| Cluster<br>Name | Details                                                                                                                                                                                                                                                                      | Dimensions                                   |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Cluster 0       | These neighbourhoods are dominated by Bars and Coffee Shops, with the top two most frequent venue categories being bars and coffee shops in 10 out of 13 neighbourhoods. The remaining top categories mostly included restaurants. These appear to be vibrant social venues. | 13 Neighbourhoods: 2 Manhattan and 11 London |
| Cluster 1       | These neighbourhoods are a mix of restaurants, coffee shops and bars alongwith grocery stores, gyms, parks as the other frequent categories so they appear to be areas that cater to amenities for local residents as well as socialising venues.                            | 36 Neighbourhoods: 29 Manhattan and 7 London |

## K Means Classification

➤ The algorithm generated these 5 Clusters :

| Cluster<br>Name | Details                                                                                                    | Dimensions                                  |
|-----------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Cluster 2       | Just a single neighbourhood – so we will ignore this cluster                                               | 1 Neighbourhood: 0 Manhattan and 1 London   |
| Cluster 3       | Just two neighbourhoods, with the most frequent category being a bus stop – so we will ignore this cluster | 2 Neighbourhoods: 0 Manhattan and 2 London  |
| Cluster 4       | In this cluster 10 out of 12 neighbourhoods had Coffee Shops as the most frequently occurring social venue | 12 Neighbourhoods: 9 Manhattan and 3 London |

## K Means Classification

#### LONDON CLUSTERS



#### MANHATTAN CLUSTERS



## K Means Classification: Results

#### Revisiting our original problem statement:

- 1. Is it possible to segment London and Manhattan into neighbourhood clusters and then identify clusters that extend across both cities thereby implying similarity in the neighbourhoods in London and Manhattan? Yes:

  The algorithm was able to classify the combined dataset of London and Manhattan neighbourhoods into 5 Clusters. 2 of the 5 had very few datapoints so these clusters were disregarded. 3 Clusters extend across both London and Manhattan with a good mix of neighbourhoods from both cities.
- 2. Do the neighbourhoods of the two restaurants in London fall in different clusters? If yes, for each cluster are we able to identify similar neighbourhoods in Manhattan to expand the restaurant business? Yes: Ealing and City of London were the two neighbourhoods that we were analyzing. Ealing falls in Cluster 0 and City of London falls in Cluster 1 and we are able to identify similar neighbourhoods in Manhattan.

### K Means Classification: Results

- ✓ Neighbourhoods similar to Ealing where we could consider launching the Indian street food restaurant are: Stuyvesant Town and East Village
- ✓ Neighbourhoods similar to City of London where we could consider launching the Indian fine dining restaurant are: Battery Park City, Financial District, Carnegie Hill, Noho, Civic Center, Midtown South, Sutton Place, Turtle Bay, Flatiron, Hudson Yards

### Other Considerations

- 1. One of the limitations of this approach due to time constraints and API request limits has been that we have only requested data for the top 100 venues in a 500 metre radius. Since London is less concentrated than Manhattan therefore this study needs to be redone with a larger radius for London neighbourhoods to get more accurate results
- 2. Another point to bear in mind is that we have taken the latitude and longitude coordinates of the neighbourhoods as the starting point to define the area around it. These coordinates may not always be the best points to identify the social venues around it as venues may not be distributed evenly around these coordinates.
- 3. Further analysis can be carried out by exploring the venues list differently based on the above considerations to fine tune this study.
- 4. Additionally multiple other factors like real estate cost, population density, presence of other Indian restaurants and their ratings can be used to further drill down into the identified neighbourhoods and provide a more precise list of possible options to consider.