Harvard-MIT Division of Health Sciences and Technology HST.535: Principles and Practice of Tissue Engineering

Instructor: Myron Spector

Massachusetts Institute of Technology Harvard Medical School Brigham and Women's Hospital VA Boston Healthcare System

HST 535

PRINCIPLES AND PRACTICE OF TISSUE ENGNEERING:

Review/Discussion

M. Spector, Ph.D.

IMMEDIATE FUNCTION

- The degree to which the implant needs to support immediate function dictates the degree to which the tissue engineered construct needs to be mature before implantation.
- Properties cannot degrade with time.

Vessels

• Can the tissue engineered vessel be isolated from flow for a certain time period after implantation?

Musculoskeletal Tissues (e.g., bone and cartilage)

• Can the tissue/joint be immobilized (unloaded) post-operatively (using metal rods and plates)?

LAYERED-TISSUE ORGANS

- Cardiovascular tissues
 - -Endothelium-smooth muscle-connective tissue
- Genito-urinary tissues
 - -Endothelium-connective tissue -smooth muscle

EXAMPLE OF A HOLLOW, LAYERED STRUCTURE

Epithelial cells

Muscle cells

Connective tissue cells

Diagrams removed for copyright reasons. Coronary artery structure: from Netter, F. H. *Heart* (Ciba Collection), 1969.

Male Genito-Urinary System http://www.bartleby.com/107/255.html#i1135

Diagram removed for copyright reasons.

See Gray's Anatomy, downloadable from Bartleby.com at http://www.bartleby.com/107/.

Urinary Bladder

http://www.bartleby.com/107/255.html#i1135

Diagram removed for copyright reasons.

See Gray's Anatomy, downloadable from Bartleby.com at http://www.bartleby.com/107/.

Epithelium

Connective Tissue

Urinary Bladder

Diagram removed for copyright reasons.

See Gray's Anatomy, downloadable from Bartleby.com at http://www.bartleby.com/107/.

Smooth Muscle

http://www.bartleby.com/107/255.html#i1135

Urinary Bladder (Relaxed)

http://www.bu.edu/histology/p/16501oca.htm

Images of urinary tract histology removed for copyright reasons. See http://www.bu.edu/histology/p/16501oca.htm

Ureter (Primate)

http://www.lab.anhb.uwa.edu.au/mb140/CorePages/Urinary/urinary.htm

Courtesy of Lutz Slomianka. Used with permission.

TISSUE CHARACTERISTICS AND APPROACHES

Tissue	Lec.	Hollow (Tube) v. Solid	Layered Y or N	Immed. Funct. Y or N	Blood Contact Y or N	Cell Type	Scaff.
Periph Nerve	Yannas Gong	S	N	N	N	Nerve	Collag. Chitin
Blood Vessel	Schoen	H	Y	Y	Y	Ep, CT, Muscle	Collag. PGA
Heart Valve	Schoen	S	Y	Y	Y	Ep, CT, Muscle	PGA
Urin.	Atala	H	Y	Y	N	Ep, CT, Muscle	SIS Others
Bone	Liu/Xu	S	N	N	N	CT,stem	Coll/HA
Cart.	Liu/Spe	S	N	N	N	CT	Collag.

LAYERED STRUCTURES*

How to engineer a layered structure?

- Separately seed layers of a scaffold with different types of cells
- If all the cell types are mixed and added to a scaffold will they segregate eventually to form separate layers?

*Some connective tissues like bone have a lamellar architecture, but these are layers of the same bone materials (*i.e.*, same cell type in each lamella or layer)

TISSUE ENGINEERING VS. REGENERATIVE MEDICINE

TISSUE ENGINEERING

Regeneration In Vitro

Advantages

 Evaluation of tissue prior to implantation

Disadvantages

- For incorporation, must be remodeling
- Stress-induced architecture cannot yet be produced in vitro

REGENERATIVE MED.

Regeneration In Vivo

Advantages

 Incorporation and formation under the influence of endogenous regulators (including mechanical strains)

Disadvantages

• Dislodgment and degrad. by mech. stresses *in vivo*

TISSUE ENGINEERING CLINICAL APPLICATIONS

Define the clinical problem.

- What type of tissue/organ to be engineered (connective, epithelial, muscle, or nerve)?
- Location and specific features of the tissue that distinguish it from other members of the tissue category.
- Function of the tissue at the location at which is has been lost.
- The degree to which the tissue has to be regenerated to restore meaningful clinical function (including histology, biochemistry, and functional properties).

Which Tissues Can Regenerate Spontaneously?

	Yes	No
Connective Tissues		
• Bone		
 Articular Cartilage, Ligament, Intervertebral Disc, Others 		√
Epithelia (e.g., epidermis)	$\sqrt{}$	
Muscle		
• Cardiac, Skeletal		V
• Smooth	V	
Nerve		√

CELL-MATRIX INTERACTIONS REQUIRED FOR TISSUE ENGINEERING

Connective Tissues (Musculoskeletal)	Mitosis ¹	Migration ²	Synthesis ³	Contract.4
Bone	+	+	+	+
Articular Cartilage	-	-	-	+
Ligament/Tendon	+	+	?	+
Intervertebral Disc	?	?	?	+
Meniscus	?	?	?	+

¹ Inadequate mitosis requires exogenous cells.

² Inadequate migration may require a scaffold.

³ Inadequate biosynthesis require growth factors or their genes.

⁴ Contraction?

TISSUE ENGINEERING CLINICAL APPLICATIONS

How the in vivo environment differs from that in vitro

- Vascular and lymphatic systems
 - blood elements (cells and circulating molecules)
 - fibrin clot
 - endocrine factors
- pH and electrical effects
- Many cell types in the tissue producing paracrine factors
- Complex mechanical loading
- All of the above change with time

FACTORS THAT CAN PREVENT REGENERATION

- Limited vascular invasion of large defects
 - e.g., bone does not regenerate in the central portion of large defects
- Collapse of surrounding tissue into the defect
 - e.g., periodontal defects
- Excessive mechanical strains in the reparative tissue
 - -e.g., unstable fractures