Analysis of Environmental Data

Deck 7 Regression Modeling

Michael France Nelson

Eco 602 – University of Massachusetts, Amherst – Fall 2021 Michael France Nelson

Announcements: Oct 26th

- ➤In-Class Likelihood group self-select *should be fixed.
 - I had it associated with the wrong grouping in Moodle
- ➤ For this week
 - Tuesday
 - Finish in-class likelihood
 - Start Deck 7
 - Thursday
 - Continue Deck 7
 - In-class confidence intervals

Announcements: Oct 28th

- ➤ Today: In-class confidence intervals
 - Critical values
 - Cl calculations
- ➤ Today: Special lab 7 office hours: noon 3PM
 - In-person (in my office) or virtual (via course Zoom channel)
- ➤ Next week:
 - Review of in-class likelihood
 - Finish Deck 7, start Deck 8
 - Ginkgo data collection

Announcements: Nov 2

➤ Week 10 reading questions

- I want to push these back by 1 week, they'll be converted to "week 11 questions" and due date will be adjusted.
- Final reading list will be updated.
- Subsequent weeks' questions may also need to be adjusted stay tuned for more info on Thursday.
- ➤ Ginkgoes aren't quite ready stay tuned.

Announcements: Nov 2

➤ Today:

- Finish Deck 7
- Review in-class likelihood (if there's time)
- In-class t-tests

≻Thursday

- Start Deck 8
- In-class regression

Announcements: Nov 4

- ➤ Today:
 - Finish Deck 7
 - Review in-class likelihood
 - Review in-class t-tests
- ➤ Using Models 1 is due Sunday
- ➤ Using Models 2 will be available later today Due

Model Coefficients and the ANOVA Table

What's in This Section?

Take-Home Concepts

- Interpreting model coefficient tables for categorical variables
- Interpreting model coefficient tables for continuous variables
- Interpreting the ANOVA table
- Intro to dummy variables

Group 1 model interpretation

Group 1 models are linear in the parameters

This makes the interpretation of model terms *relatively* easy.

• But note, there is still lots of complexity especially when we mix continuous and categorical terms and interaction terms.

Recall the basic equation:

$$y_i = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \epsilon$$

- When all of the predictor variables have a value of zero, we expect y to have a value of α , on average.
- For every 1-unit change in x_1 we expect a β_1 -unit change in y, on average.

Group 1 model summary presentations

Table of model coefficients model summary.

 This table tells us the strength of effects of predictors, overall model significance test

ANOVA table.

 This table shows the model variability attributed to each factor, factor-specific significance tests

Group 1 model interpretation

Model Coefficients

Intercept: What is the value of the response when the predictor has value zero?

Slope: What is the change in the response with each unit change in the predictor?

Standard Errors: shape of sampling distribution

F-test: overall model significance test

ANoVA Table

Degrees of freedom: Reflects the number of samples, number of factor levels, number of individuals per factor level etc.

Sum of squares: Reflects the total squared deviation from the mean explained by a source.

Mean squares: Mean SS due to a source (per DF)

F tests: Test for ratio of variability explained by a particular predictor variable

ANOVA table vs. model coefficient table

Model coefficient table tells you	ANOVA table tells you
1.Intercept and slope coefficients 2.Overall model significance test, correlation test	1.Variability explained by each factor in the model2.Significance tests for each factor separately

1-way ANOVA

When we have a continuous response and a single categorical predictor with 2 levels we can use a t-test.

What if there are 3 or more levels?

- The t-test is not enough.
- Analysis of Variance is a generalization of the t-test for 3 or more groups.

Model Coefficient Tables: Dummy Variables

When you fit a model using a categorical predictor with n levels, the algorithm first detects all of the factor levels present in the data, then creates a set of n - 1 *dummy variables*.

 The dummy variables allow the model-building process to treat each factor level as if it were a separate, numerical predictor that can take on only values of zero or one.

species	species Gentoo	speciesChinstrap
Adelie	0	0
Gentoo	1	0
Chinstrap	0	1

Model Coefficient Tables: Interpretation for Categorical Predictors

Since each factor level is treated as a predictor variable, there will be slope parameters for each.

When R builds a model, it selects one of the factor levels to serve as the base case.

• When the model contains only categorical variables, the base case is analogous to the *intercept* term in a model, i.e. the α .

It'll be easier to understand with an example.

1-way ANOVA: Palmer Penguins

The procedure for conducting an ANOVA in R is:

- Create a linear model fit with lm().
- Use anova() to perform the Analysis of Variance and print the ANOVA table.

Recall that ANOVA is really a just a different way of looking at a linear model.

 To better understand the relationship, we'll focus on the model coefficient table first:

```
lm (
  formula = body mass g ~ species,
  data = penguins)
Call:
lm(formula = body mass g ~ species,
 data = penguins)
Coefficients:
      (Intercept)
          3700.66
speciesChinstrap
            32.43
    speciesGentoo
          1375.35
```

Factor Base Cases

There are slopes for Chinstrap and Gentoo, but where is the Adelie coefficient?

• Recall: the base case is the intercept in a 1-way ANOVA.

R assigned "Adelie" to be the base case.

- Notice how R formats the factor-level coefficient names:
 - the variable name prepended to the factor level.

Interpreting the Coefficient Table

1375.35

- Mean Adelie penguin mass is 3700 grams
- Mean Chinstrap penguin mass is 3700 + 32 grams
- Mean Gentoo penguin mass is 3700 + 1375 grams

Everything is relative to the base case!

Interpreting the Coefficient Table

- The intercept is 3700 grams: Adelie penguins weigh 3700g, on average
- The regression slope for Chinstrap is 32 grams per unit.
 - Adding one 'penguin unit' increases the penguin mass by 32 grams, on average.
- The regression slope for Gentoo slope 1375 grams
 - Adding one 'penguin unit' increases the penguin mass by 1375 grams, on average.

Everything is relative to the base case!

Interpreting the Coefficient Table

We can obtain the mean masses of each species from the model coefficient table.

- Mean Chinstrap penguin mass
 - $3733 = 3701 + 1 \times 32 + 0 \times 1375$
- Mean Gentoo penguin mass:
 - $5076 = 3701 + 0 \times 32 + 1 \times 1375$

Dummy Variables

If we consider x_{chin} a dummy variable which is equal to 1 if the observation is a Chinstrap penguin and 0 otherwise, and likewise for x_{gentoo} we could write the regression equation symbolically as:

$$y_i = \alpha_{adelie} + \beta_{chin} \times x_{chin} + \beta_{gentoo} \times x_{gentoo}$$

What would the coefficient table and equation look like if Chinstrap penguins were lighter than Adelie penguins?

1-way ANOVA: ANOVA Table

We have examined the model coefficients and calculated the group means.

- The masses seem pretty different, but how could we assess the ANOVA *alternative* hypothesis?
 - "The body masses of penguins for at least one species are different from the masses of the other species"

1-way ANOVA: Model Coefficient Table

What can we learn from the model coefficient table?

The *intercept* and *speciesGentoo* coefficients have low p-values, but that's not exactly what we wanted to know!

• We wanted to know about the penguin species in general.

1-way ANOVA: ANOVA Table

The ANOVA table gives us a clue

The ANoVA Table

- Note how the *species* predictor is now a single line.
 - There were model coefficients for each factor level.

Model Coefficients and ANOVA Provide Complementary Information

We'll cover model coefficient interpretation, and the ANOVA table details in greater depth, but for now you should notice:

- Model slope/intercept coefficients: there is one coefficient for each factor level of a categorical predictor.
- The intercept coefficient corresponds to the base case.
- Model coefficient table characterizes the strength and significance of individual intercept and slope coefficients.
 - It does not tell us about the overall significance of the categorical predictor.
- The ANOVA table evaluates the ANOVA null hypothesis.
 - It does not tell us which factor levels are different
 - The two tables each provide part of the picture.

Neither the model coefficient table nor the ANOVA table tell us if a particular pair of factor levels are *significantly* different form one another!

Model Coefficients and ANOVA Provide Complementary Information

Neither the model coefficient table nor the ANOVA table tell us whether a particular pair of factor levels are *significantly* different form one another!

- This is the realm of post-hoc testing.
 - Post-hoc testing is an analysis you perform after (post) you perform the initial analysis (hoc).
- The Tukey Honest Significant Difference is a common post-hoc method.

Key Concepts

- Interpreting model coefficient tables for categorical variables
- Interpreting model coefficient tables for continuous variables

ECo 602

- Interpreting the ANOVA table
- Intro to dummy variables

Chalkboard Model Art

Dummy Variable Interpretation

- Predictor variable adds one unit of Gentoo
- The coefficient is 1375
- One-unit increase in Gentoo corresponds to a 1375-unit increase in body mass

