

Lecture #2(a): Magnetically Coupled Networks Theory

> ECE 20200: Linear Circuit Analysis II Steve Naumov (Instructor)

Lecture Overview

- This set of slides presented the following
 - Mutual Inductance
 - Defining Mutual Conductance
 - Dotted Sign Convention
 - Energy Considerations
 - Analysis of Magnetically Coupled Networks
 - ▶ The Linear Transformer
 - SSS Analysis
 - Reflected Impedances
 - ▶ The Ideal Transformer
 - ▶ Element Constraints
 - Dot Convention
 - SSS Analysis
 - Reflecting Elements

Lecture #2(a): Magnetically Coupled Networks Theory

Mutual Inductance

Inductance Review

- When a current $i_L(t)$ passes through a coiled wire having N turns, a magnetic flux $\phi(t)$ is produced in a direction determined by the RHL
- The current $i_L(t)$ is related to the magnetic flux $\phi(t)$ as follows

$$\phi(t) = \mathcal{P}Ni_L(t)$$

- $i_L(t)$: Current through coil measured in Amperes
- $\phi(t)$: Magnetic flux measured in Webbers
- N: Number of turns of the coil
- ${\cal P}$: Permeance of space occupied by ${m \phi}$. Depends on magnetic properties of space.
- The flux $\phi(t)$ intercepts/links the N turns. This effect is represented by flux linkage $\lambda(t)$ as

$$\lambda(t) = N\phi(t)$$
 (Webber-Turns)

Substituting $\phi(t)$ in the above relation yields

$$\lambda(t) = N\phi(t) = N\mathcal{P}Ni_L(t) = \mathcal{P}N^2i_L(t)$$

Inductance Review (cont'd)

- The flux linkage $\lambda(t)$ is proportional to the current $i_L(t)$ through the coil $\lambda(t)=\mathcal{P}N^2i_L(t)$
- The proportionality constant $L = \mathcal{P}N^2$ is known as the as the self-inductance L of the coil (measured in Henry's). Therefore,

$$\lambda(t) = Li_L(t)$$

By Faraday's Law, the voltage across the N turns of the coil can be expressed as follows

$$v_L(t) = \frac{d\lambda(t)}{dt}$$

Therefore, the v-i relation of a coil having a constant inductance $L=\mathcal{P}N^2$ -is given by

$$v_L(t) = \frac{d\lambda(t)}{dt} = L \frac{di_L(t)}{dt}$$

Decoupled (Non-Neighboring) Coils

- ightharpoonup Coil with N_1 Turns
 - Current $i_1(t)$ passes through the coil having N_1 turns and produces a magnetic flux $\phi_1(t)$

$$\phi_1(t) = \mathcal{P}_1 N_1 i_1(t)$$

- Flux $\phi_1(t)$ intercepts or links the N_1 . The flux linkage $\lambda_1(t)$ is given by $\lambda_1(t)=N_1\phi_1(t)$
- **b** By Faraday's Law, voltage $v_1(t)$ and flux linkage $\lambda_1(t)$ relate as follows

$$v_1(t) = \frac{d\lambda_1(t)}{dt} = N_1 \frac{d\phi_1(t)}{dt} = [\mathcal{P}_1 N_1 N_1] \frac{di_1(t)}{dt} = [\mathcal{P}_1 N_1^2] \frac{di_1(t)}{dt} = L_1 \frac{di_1(t)}{dt}$$

- ightharpoonup Coil with N_2 Turns
 - Similar equations can be developed
- Since the two coils are not in close proximity, their fluxes do not interact

Magnetically Coupled (Neighboring) Coils

The total magnetic flux for each for each coupled coil is given below

Coil With Inductance L_1

$$\phi_1 = \phi_{1 \to 1} + \phi_{2 \to 1} = \mathcal{P}_1 N_1 i_1 \text{ (total flux)}$$

$$\phi_{1 \to 1} = \mathcal{P}_{1 \to 1} N_1 i_1 \text{ (self term)}$$

$$\phi_{2 \to 1} = \mathcal{P}_{2 \to 1} N_2 i_2 \text{ (coupling term)}$$

$$\begin{array}{ll} \text{ux)} & \phi_2 = \phi_{2 \rightarrow 2} + \phi_{1 \rightarrow 2} = \mathcal{P}_2 N_2 i_2 \text{ (total flux)} \\ \phi_{2 \rightarrow 2} = \mathcal{P}_{2 \rightarrow 2} N_2 i_2 \text{ (self term)} \\ \phi_{1 \rightarrow 2} = \mathcal{P}_{1 \rightarrow 2} N_1 i_1 \text{ (coupling term)} \end{array}$$

- $m{\phi}_{1 o 1}$: Portion of total flux $m{\phi}_1$ caused by i_1 linking only the N_1 turns of L_1
- $m{\phi}_{2 o 1}$: Portion of total flux $m{\phi}_1$ caused by i_2 linking N_2 turns of L_2 to N_1 turns of L_1
- $\phi_{2\rightarrow 2}$: Portion of total flux ϕ_2 caused by i_2 linking only the N_2 turns of L_2
- $\phi_{1\rightarrow 2}$: Portion of total flux ϕ_2 caused by i_1 linking N_1 turns of L_1 to N_2 turns of L_2

The flux linkage for each coupled coil is given below

Coil With Inductance L_1

$$\lambda_1 = \lambda_{1 \to 1} + \lambda_{2 \to 1} = N_1 \phi_1$$
 (total link)
 $\lambda_{1 \to 1} = N_1 \phi_{1 \to 1}$ (self term)
 $\lambda_{2 \to 1} = N_1 \phi_{2 \to 1}$ (coupling term)

$$\lambda_2 = \lambda_{2 \to 2} + \lambda_{1 \to 2} = N_2 \phi_2$$
 (total link)
 $\lambda_{2 \to 2} = N_2 \phi_{2 \to 2}$ (self term)
 $\lambda_{1 \to 2} = N_2 \phi_{1 \to 2}$ (coupling term)

- $\lambda_{1 o 1}$: Portion of total linkage λ_1 caused by $\phi_{1 o 1}$ linking only the N_1 turns of L_1
- $\lambda_{2 \to 1}$: Portion of total linkage λ_1 caused by $\phi_{2 \to 1}$ linking the N_1 turns of L_1
- $\lambda_{2\to 2}$: Portion of total linkage λ_2 caused by $\phi_{2\to 2}$ linking only the N_2 turns of L_2
- $\lambda_{1 o 2}$: Portion of total linkage λ_2 caused by $\phi_{1 o 2}$ linking the N_2 turns of L_2

By Faraday's Law, the voltage across each coil is as follows

Coil With Inductance L_1

$$v_1 = v_{1 \to 1} + v_{2 \to 1}$$
 (total voltage)
 $v_{1 \to 1} = N_1 \phi'_{1 \to 1} = [\mathcal{P}_{1 \to 1} N_1^2] i'_1$
 $v_{2 \to 1} = N_1 \phi'_{2 \to 1} = [N_1 \mathcal{P}_{2 \to 1} N_2] i'_2$

$$v_2 = v_{2 \to 2} + v_{1 \to 2}$$
 (total voltage)
 $v_{2 \to 2} = N_2 \phi'_{2 \to 2} = [\mathcal{P}_{2 \to 2} N_2^2] i'_2$
 $v_{1 \to 2} = N_2 \phi'_{1 \to 2} = [N_2 \mathcal{P}_{1 \to 2} N_1] i'_1$

- $v_{1
 ightarrow 1}$: Self-induced voltage across L_1 by time-varying current i_1 in L_1
- $v_{2
 ightarrow 1}$: Voltage induced across L_1 by time-varying i_2 in L_2
- $v_{2
 ightarrow 2}$: Self-induced voltage across L_2 by time-varying current i_2 in L_2
- $v_{1
 ightarrow 2}$: Voltage induced across L_2 by time-varying current i_1 in L_1

A total of four inductance parameters exist

Coil With Inductance L_1

$$v_1 = v_{1 \to 1} + v_{2 \to 1}$$
 (total voltage)
 $v_{1 \to 1} = [\mathcal{P}_{1 \to 1} N_1^2] i'_1 = L_1 i'_1$
 $v_{2 \to 1} = [\mathcal{P}_{2 \to 1} N_2 N_1] i'_2 = M_{2 \to 1} i'_2$

$$v_2 = v_{2 \to 2} + v_{1 \to 2}$$
 (total voltage)
 $v_{2 \to 2} = \left[\mathcal{P}_{2 \to 2} N_2^2 \right] i'_2 = L_2 i'_2$
 $v_{1 \to 2} = \left[\mathcal{P}_{1 \to 2} N_2 N_1 \right] i'_1 = M_{1 \to 2} i'_1$

- lacksquare L_1 : Self-inductance of the first coil measured in Henry's
- $M_{2\rightarrow 1}$: Mutual Inductance of coil #1 due to coil #2 measured in Henry's
- $ightharpoonup L_2$: Self-inductance of the second coil measured in Henry's
- $M_{1\rightarrow 2}$: Mutual Inductance of coil #2 due to coil #2 measured in Henry's

▶ To summary, the total voltage across each coil is given by

$$\begin{split} v_1(t) &= v_{1 \to 1}(t) + v_{2 \to 1}(t) = L_1 \frac{di_1(t)}{dt} + M_{2 \to 1} \frac{di_2(t)}{dt} \\ v_2(t) &= v_{2 \to 2}(t) + v_{1 \to 2}(t) = L_2 \frac{di_2(t)}{dt} + M_{1 \to 2} \frac{di_1(t)}{dt} \end{split}$$

If the magnetic properties of the space surrounding the flux are linear,

$$\mathcal{P}_{2\to 1} = \mathcal{P}_{1\to 2} = \mathcal{P}_{M} \qquad \qquad M = M_{2\to 1} = M_{1\to 2} = N_1 N_2 \mathcal{P}_{M}$$

Incorporating the above equalities simplifies the voltage equations as follows

- Although $M, L_1, L_2 \ge 0$ H, voltages $Mi_1'(t)$ and $Mi_2'(t)$ may be positive or negative depending on the rate of change of the respective current
- To account for the signs, we must adjust the voltage equations as follows

$$\begin{split} v_1(t) &= v_{1 \to 1}(t) \pm v_{2 \to 1}(t) = L_1 \frac{di_1(t)}{dt} \pm M \frac{di_2(t)}{dt} \\ v_2(t) &= v_{2 \to 2}(t) \pm v_{1 \to 2}(t) = L_2 \frac{di_2(t)}{dt} \pm M \frac{di_1(t)}{dt} \end{split}$$

How do we find the sign of the self-induced voltages $v_{1\rightarrow 1}(t)$ and $v_{2\rightarrow 2}(t)$?

Passive Sign Convention (PSC)

How do we find the sign of the mutually-induced voltages $v_{2\rightarrow 1}(t)$ and $v_{1\rightarrow 2}(t)$?

Dotted Sign Convention (DSC)

Dotted Sign Convention (DSC)

- ▶ The sign of voltages $Mi_1'(t)$ and $Mi_2'(t)$ depends on two factors:
 - Spatial orientation of the windings (i.e. how the coils are wound)
 - ▶ The voltage/current references assigned at the terminals of each coil
- Additive Coupling: Current reference directions are such that flux created by each current is oriented in the <u>same direction</u>. For this scenario, the signs of $Mi_1'(t)$ and $Mi_2'(t)$ are both <u>positive</u>.

$$v_{1}(t) = L_{1} \frac{di_{1}(t)}{dt} + M \frac{di_{2}(t)}{dt}$$
$$v_{2}(t) = L_{2} \frac{di_{2}(t)}{dt} + M \frac{di_{1}(t)}{dt}$$

Dotted Sign Convention (DSC) (cont'd)

- ▶ The sign of voltages $Mi_1'(t)$ and $Mi_2'(t)$ depends on two factors:
 - Spatial orientation of the windings (i.e. how the coils are wound)
 - ▶ The voltage/current references assigned at the terminals of each coil
- Subtractive Coupling: Current reference directions are such that the flux created by each current is oriented in the <u>opposite direction</u>. For this scenario, the signs of $Mi_1'(t)$ and $Mi_2'(t)$ are both <u>negative</u>.

$$v_{1}(t) = L_{1} \frac{di_{1}(t)}{dt} - M \frac{di_{2}(t)}{dt}$$
$$v_{2}(t) = L_{2} \frac{di_{2}(t)}{dt} - M \frac{di_{1}(t)}{dt}$$

Dotted Sign Convention (DSC) – Summary

- Current reference directions through the coils and reference polarities of voltages across the coils is chosen according to the passive sign convention.
- The dotted terminal of each coil indicates physical attributes (i.e. the spatial orientation) of the coil windings and are fixed.
- The Dot Convention Summarized

Mutual inductance is additive when the current <u>reference</u> directions both enter or both leave the dotted nodes, otherwise, the mutual inductance is subtractive.

Additive Subtractive

Phasor Representation of Voltages

The total voltage across each coil in the time domain was found to be

$$\begin{split} v_1(t) &= v_{1 \to 1}(t) \pm v_{2 \to 1}(t) = L_1 \frac{di_1(t)}{dt} \pm M \frac{di_2(t)}{dt} \\ v_2(t) &= v_{2 \to 2}(t) \pm v_{1 \to 2}(t) = L_2 \frac{di_2(t)}{dt} \pm M \frac{di_1(t)}{dt} \end{split}$$

If the mutually coupled coils operate in the sinusoidal steady state (SSS) at a radian frequency ω , the total voltage across each coil in the phasor (frequency) domain is as follows

$$V_1 = V_{1\to 1} \pm V_{2\to 1} = j\omega L_1 I_1 \pm j\omega M I_2$$
$$V_2 = V_{2\to 2} \pm V_{1\to 2} = j\omega L_2 I_2 \pm j\omega M I_1$$

Lecture #2(a): Magnetically Coupled Networks Theory

Power, Energy, and Coupling Coefficient

Power for Magnetically Coupled Coils

The instantaneous power absorbed by each coil is given as

$$p_1(t) = v_1(t)i_1(t) = L_1i_1(t)\frac{di_1(t)}{dt} \pm Mi_1(t)\frac{di_2(t)}{dt}$$
$$p_2(t) = v_2(t)i_2(t) = L_2i_2(t)\frac{di_2(t)}{dt} \pm Mi_2(t)\frac{di_1(t)}{dt}$$

lacktriangle The total instantaneous power p(t) absorbed by both coils is

$$p(t) = p_1(t) + p_2(t)$$

$$p(t) = L_1 \left[i_1(t) \frac{di_1(t)}{dt} \right] + L_2 \left[i_2(t) \frac{di_2(t)}{dt} \right] \pm M \left[i_1(t) \frac{di_2(t)}{dt} + i_2(t) \frac{di_1(t)}{dt} \right]$$

lacktriangle Each bracketed term above is a perfect derivative. So, p(t) can be written as

$$p(t) = L_1 \left[\frac{1}{2} \frac{di_1^2(t)}{dt} \right] + L_2 \left[\frac{1}{2} \frac{di_2^2(t)}{dt} \right] \pm M \left[\frac{d[i_1(t)i_2(t)]}{dt} \right]$$
$$p(t) = \frac{d}{dt} \left[\frac{1}{2} L_1 i_1^2(t) + \frac{1}{2} L_2 i_2^2(t) \pm M i_1(t) i_2(t) \right]$$

Energy for Magnetically Coupled Coils

The total instantaneous power nd energy can be related as follows

$$p(t) = \frac{d}{dt}w(t) = \frac{d}{dt}\left[\frac{1}{2}L_1i_1^2(t) + \frac{1}{2}L_2i_2^2(t) \pm Mi_1(t)i_2(t)\right] \Rightarrow$$

$$w(t) = 0.5L_1i_1^2(t) + 0.5L_2i_2^2(t) \pm Mi_1(t)i_2(t)$$

Since each coil is a passive element, $w(t) \ge 0$ for all t. The energy w(t) may become negative only when the mutual term is negative.

$$w(t) = 0.5L_1i_1^2(t) + 0.5L_2i_2^2(t) - Mi_1(t)i_2(t) \ge 0$$

Completing the square gives

$$w(t) = 0.5L_1i_1^2 - \sqrt{L_1L_2}i_1i_2 + 0.5L_2i_2^2 + \sqrt{L_1L_2}i_1i_2 - Mi_1i_2 \ge 0$$

$$w(t) = 0.5\left(\sqrt{L_1}i_1 - \sqrt{L_2}i_2\right)^2 + i_1i_2\left(\sqrt{L_1L_2} - M\right) \ge 0$$

From above, when will $w(t) \ge 0$?

Mutual Coupling Coefficient **k**

$$w(t) = \frac{1}{2} \left(\sqrt{L_1} i_1(t) - \sqrt{L_2} i_2(t) \right)^2 + i_1(t) i_2(t) \left(\sqrt{L_1 L_2} - M \right) \ge 0$$

From the above inequality, the energy is non-negative provided

$$0 H \le M \le \sqrt{L_1 L_2} H$$

- The above establishes that the mutual inductance magnitude cannot be larger than the geometric mean of the self-inductances of the two coils.
- Mutual Coupling Coefficient k: Indicates the degree in which $M \to \sqrt{L_1 L_2}$. For larger k, more flux from one coil couples with the other coil, and vice versa.

$$\left| k = M / \sqrt{L_1 L_2} \to 0 \le k \le 1 \right|$$

- ightharpoonup Coils are decoupled when $oldsymbol{k}=oldsymbol{0}$
- lacktriangle Coils are <u>tightly coupled</u> when k>0.5
- lacktriangle Coils are <u>loosely coupled</u> when $k \leq 0.5$
- lacktriangle Coils are <u>perfectly coupled</u> when $m{k}=\mathbf{1}$ (physically impossible)

Lecture #2(a): Magnetically Coupled Networks Theory

Linear Transformer

Linear Transformer

- ▶ **Transformer**: A four-terminal (i.e. 2-port) circuit element that models a magnetic device that leverages the mutual inductance phenomenon of two coils in close spatial proximity.
 - Primary Coil/Winding: Coil connected to the source side having resistance R_1 and self-inductance L_1 Henry's
 - Secondary Coil/Winding: Coil connected to the load side having resistance R_2 and self-inductance L_2 Henry's
- Linear Transformer: A transformer whose coils are wound around a magnetically linear material and whose coupling coefficient $k \neq 1$
 - e.g. air, plastic, wood, etc.
 - Usually k is a few tenths, but not always.
 - Uses include radios, TVs, and other high frequency communication applications.

Linear Transformer – SSS Analysis

- lacktriangle Often, transformers operate in the SSS at a particular frequency ω
- Mesh analysis of the "Typical Linear Transformer Network" in SSS gives
 - Mesh @ Primary Network

$$V_S = I_1(Z_S + R_1 + j\omega L_1) - j\omega M I_2$$

$$V_S = I_1 Z_{11} - j\omega M I_2$$

Z₁₁: Total <u>self-impedance</u> of the mesh network coupled to the primary coil

Mesh @ Secondary Network

$$I_2(R_2 + j\omega L_2 + Z_L) - j\omega M I_1 = 0V$$

 $-j\omega M I_1 + I_2 Z_{22} = 0V$

Z₂₂: Total <u>self-impedance</u> of the mesh network coupled to the secondary coil

 Matrix equation governing the electrical behavior of the linear transformer network is given as

$$\begin{bmatrix} \mathbf{Z}_{11} & -j\omega M \\ -j\omega M & \mathbf{Z}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{V}_s \\ 0 \end{bmatrix}$$

Linear Transformer – Equivalent Primary Network

- Equivalent network on primary side can be established for analysis purposes
 - Solve secondary mesh equation for I_2 $I_2 = (j\omega M/Z_{22})I_1$
 - Substitute I_2 into primary mesh equation $V_S = I_1 Z_{11} j\omega M(j\omega M/Z_{22})I_1$
 - Simplify primary mesh equation

$$V_{\mathcal{S}} = \left(\mathbf{Z}_{11} + \left[(\omega M)^2 / \mathbf{Z}_{22} \right] \right) I_{1}$$

Input Impedance

$$Z_{IN} = V_S/I_1 = Z_{11} + [(\omega M)^2/Z_{22}] = Z_{11} + [(\omega M/|Z_{22}|)^2]Z_{22}^* = Z_{11} + Z_{r_{2\rightarrow 1}}$$

- Reflected Impedance $Z_{r_{2\to 1}}$: Additional impedance "seen" by V_S due to non-zero magnetic coupling among coils (as $M,\omega\to 0,~Z_{r_{2\to 1}}\to 0$)
 - ightharpoonup Transformer reverses sign of ${
 m Im}(Z_{22})$ and scales Z_{22} by a factor $(\omega M/|Z_{22}|)^2$
 - ▶ Sign is independent of dot markings on the coils
- Current through Primary Voltage across Primary

$$I_1 = V_S/Z_{IN}$$

$$V_1 = (Z_{IN} - Z_S) I_1$$

Equivalent primary network

Linear Transformer – Equivalent Secondary Network

- Equivalent network on secondary side can be established for analysis purposes
 - Solve primary mesh equation for I_1 $I_1 = (V_S + j\omega M I_2)/Z_{11}$
 - Substitute I_1 into secondary mesh equation $-j\omega M[(V_S + j\omega M I_2)/Z_{11}] + I_2 Z_{22} = 0V$
 - Simplify secondary mesh equation

$$(j\omega M/\mathbf{Z}_{11})V_{S} = (\mathbf{Z}_{22} + [(\omega M)^{2}/\mathbf{Z}_{11}])I_{2}$$

Impedance Seen by Load

$$Z_{TH} = Z_{22} - Z_L + [(\omega M)^2/Z_{11}] = Z_{22} - Z_L + [(\omega M/|Z_{11}|)^2]Z_{11}^* = Z_{22} - Z_L + Z_{r_{1\rightarrow 2}}$$

- Reflected Impedance $Z_{r_{1\to 2}}$: Additional impedance "seen" by Z_L due to non-zero magnetic coupling among coils (as $M,\omega\to 0,\ Z_{r_{1\to 2}}\to 0$)
 - Transformer reverses sign of $Im(Z_{11})$ and scales Z_{11} by a factor $(\omega M/|Z_{11}|)^2$
 - ▶ Sign is independent of dot markings on the coils
- Current through Secondary

$$I_2 = V_{TH}/(Z_{TH} + Z_L)$$

Voltage across Secondary

$$V_2 = Z_L I_2$$

OC Voltage at Port c-d

Equivalent Secondary Network

$$V_{OC} = (j\omega M/\mathbf{Z}_{11})V_{S}$$

Lecture #2(a): Magnetically Coupled Networks Theory

Ideal Transformer

Ideal Transformer

- Ideal Transformer: A transformer that is designed to come as close as possible to the following ideal properties
 - Coils are wound on a linear magnetic material of high permeability (e.g. iron-based material), so coupling coefficient $\kappa=1$ (i.e. perfect coupling)
 - ▶ Coils have "large" number of turns $(N_1, N_2 \rightarrow \infty)$
 - ▶ Coils have "large" self inductance $(L_1, L_2, M \rightarrow \infty)$
 - Each coil exhibits zero (average) power losses (i.e. $R_1 = R_2 = 0$)
- Ideal transformers are
 - Typically referred to as iron-core transformers
 - Used primarily in power-based applications, including power supply design

Ideal Transformers – Perfect Coupling

- Perfect magnetic coupling (i.e. k = 1) means all flux from coil #1 links coil #2.
- Recall, the total flux in each winding is

Flux for Coil #1

$$\phi_1 = \phi_{1 \to 1} + \phi_{2 \to 1} = \mathcal{P}_1 N_1 i_1 \text{ (total flux)}$$

$$\phi_{1 \to 1} = \mathcal{P}_{1 \to 1} N_1 i_1 \text{ (self term)}$$

$$\phi_{2 \to 1} = \mathcal{P}_{2 \to 1} N_2 i_2 \text{ (coupling term)}$$

Flux for Coil #2

$$\begin{split} \phi_2 &= \phi_{2 \rightarrow 2} + \phi_{1 \rightarrow 2} = \mathcal{P}_2 N_2 i_2 \text{ (total flux)} \\ \phi_{2 \rightarrow 2} &= \mathcal{P}_{2 \rightarrow 2} N_2 i_2 \text{ (self term)} \\ \phi_{1 \rightarrow 2} &= \mathcal{P}_{1 \rightarrow 2} N_1 i_1 \text{ (coupling term)} \end{split}$$

When the windings are perfectly coupled

$$\phi_{2\to 1} = \phi_2 = \mathcal{P}_{2\to 1} N_2 i_2 = \mathcal{P}_2 N_2 i_2$$

Flux for Coil #2

$$\phi_{1\to 2} = \phi_2 = \mathcal{P}_{2\to 1} N_1 i_1 = \mathcal{P}_1 N_1 i_1$$

The above equalities imply that

$$\mathcal{P}_{2\to 1} = \mathcal{P}_2 = \mathcal{P}_{1\to 2} = \mathcal{P}_1 = \mathcal{P}_M$$

Ideal Transformers – Perfect Coupling (cont'd)

ightharpoonup Substitute a single \mathcal{P}_M into the voltage equations gives

Voltage Across Coil #1

$$v_1 = [\mathcal{P}_M N_1^2]i_1' \pm [\mathcal{P}_M N_1 N_2]i_2'$$

Voltage Across Coil #2

$$v_2 = [\mathcal{P}_M N_2^2]i_2' \pm [\mathcal{P}_M N_1 N_2]i_1'$$

Factor an N_1 out of v_1 and an $\pm N_2$ out of v_2 yields

Voltage Across Coil #1

$$v_1 = N_1([\mathcal{P}_M N_1]i_1' \pm [\mathcal{P}_M N_2]i_2')$$

lacktriangle Divide v_2 by v_1 to yield

$$\frac{v_2}{v_1} = \frac{\pm N_2 \left(\pm [\mathcal{P}_M N_2] i_2' + [\mathcal{P}_M N_1] i_1' \right)}{N_1 \left([\mathcal{P}_M N_1] i_1' \pm [\mathcal{P}_M N_2] i_2' \right)}$$

Therefore, perfect magnetic coupling (k = 1) implies

$$\left| \frac{v_2(t)}{v_1(t)} = \pm \frac{N_2}{N_1} \right| \to \left| \frac{v_1}{v_2} = \pm \frac{N_1}{N_2} \right|$$

Voltage Across Coil #2

$$v_2 = \pm N_2 (\pm [\mathcal{P}_M N_2]i_2' + [\mathcal{P}_M N_1]i_1')$$

$$i_1(t)$$
 $i_2(t)$
 $v_1(t)$
 $v_2(t)$
 \vdots
 $v_2(t)$
 \vdots
 $v_2(t)$

Ideal Transformers – Zero Power Losses

Ideal transformers consume zero instantaneous power. According to PSC, instantaneous power of both coils must be zero.

$$p(t) = p_1(t) + p_2(t) = v_1(t)i_1(t) + v_2(t)i_2(t) = 0W$$

- Above implies coils neither consume nor store energy.
- Rearranging above yields

$$-v_2(t)i_2(t) = v_1(t)i_1(t) \Rightarrow \boxed{\frac{v_2(t)}{v_1(t)} = -\frac{i_1(t)}{i_2(t)}} \rightarrow \boxed{\frac{v_1(t)}{v_2(t)} = -\frac{i_2(t)}{i_1(t)}}$$

 Combine the zero power loss assumption and the perfect coupling assumption to yield

$$\frac{v_2(t)}{v_1(t)} = \pm \frac{N_2}{N_1} = -\frac{i_1(t)}{i_2(t)}$$

$$\frac{v_1(t)}{v_2(t)} = \pm \frac{N_1}{N_2} = -\frac{i_2(t)}{i_1(t)}$$

Ideal Transformers: i-v Characteristics

▶ Ideal Transformer i-v Constraint (additive)

$$\frac{v_2(t)}{v_1(t)} = \pm \frac{N_2}{N_1} = n$$

$$\frac{i_1(t)}{i_2(t)} = -\frac{N_2}{N_1} = -n$$

- Turns Ratio $n = N_2/N_1$: The ratio of the number of turns in the secondary coil to the number of turns in the primary coil
- Step-up Transformer: Ideal transformer with n>1 such that it provides a secondary voltage $|v_2(t)|$ greater than the primary voltage $|v_1(t)|$
- > Step-down Transformer: Ideal transformer with n < 1 such that it provides a secondary voltage $|v_2(t)|$ less than the primary voltage $|v_1(t)|$
- Isolation Transformer: Ideal transformer with n=1 such that it provides a secondary voltage $|v_2(t)|$ that is the same as the primary voltage $|v_1(t)|$

Ideal Transformers – Dot Convention (Viewpoint #1)

- The preceding characteristics were found assuming additive coupling.
 Generally, the sign of the constraints are found by using the dot convention.
- Dot Convention for Ideal Transformer (Assuming Passive Sign Convention)
 - Additive Mutual Coupling

$$\frac{v_2(t)}{v_1(t)} = +\frac{N_2}{N_1} = +n$$

$$\frac{i_1(t)}{i_2(t)} = -\frac{N_2}{N_1} = -n$$

Subtractive Mutual Coupling

$$\frac{v_2(t)}{v_1(t)} = -\frac{N_2}{N_1} = -n$$

$$\frac{i_1(t)}{i_2(t)} = +\frac{N_2}{N_1} = +n$$

Ideal Transformers – Dot Convention (Viewpoint #2)

- Dotted Sign Convention for Ideal Transformer (Independent of PSC)
 - Voltage References

Use $+n = +N_2/N_1$ if the ideal transformer voltages are referenced as both positive or both negative at the dotted terminals, otherwise, use $-n = -N_2/N_1$

Current References

Use $-n = -N_2/N_1$ if the ideal transformer currents are referenced as both entering or both leaving the dotted terminals, otherwise, use $+n = N_2/N_1$

Ideal Transformer – SSS Analysis

- KCL analysis of "Typical Ideal Transformer Network" in the SSS
 - KCL @ Node (a) (Primary)

$$-I_{s1} + (V_1 - V_{s1})/Z_1 + I_1 = 0A$$
 $-I_{s2} + (V_2 - V_{s2})/Z_2 + I_2 = 0A$

KCL @ Node (c) (Secondary)

$$-I_{s2} + (V_2 - V_{s2})/Z_2 + I_2 = 0A$$

▶ Ideal Transformer Voltage Constraint Ideal Transformer Current Constraint

$$0I_1 + 0I_2 - (N_2/N_1)V_1 + V_2 = 0V$$
 $I_1 + (N_2/N_1)I_2 + 0V_1 + 0V_2 = 0A$

Matrix equation governing behavior of typical ideal transformer network

$$\begin{bmatrix} 1 & 0 & \mathbf{Z}_{1}^{-1} & 0 \\ 0 & 1 & 0 & \mathbf{Z}_{2}^{-1} \\ 0 & 0 & -N_{2}/N_{1} & 1 \\ 1 & N_{2}/N_{1} & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{1} \\ \mathbf{I}_{2} \\ \mathbf{V}_{1} \\ \mathbf{V}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{s1} + \mathbf{V}_{s1}/\mathbf{Z}_{1} \\ \mathbf{I}_{s2} + \mathbf{V}_{s2}/\mathbf{Z}_{2} \\ 0 \\ 0 \end{bmatrix}$$

$$V_2/V_1 = N_2/N_1$$
 $I_1/I_2 = -N_2/N_1$

Ideal Transformer – Equivalent Primary Network

- Equivalent network on primary side can be established for analysis purposes
 - lacksquare Sub. for I_2 and V_2 into secondary EQ.

$$-I_{s2} + [(N_2/N_1)V_1 - V_{s2}]/Z_2 - (N_1/N_2)I_1 = 0A$$

 \triangleright Solve above for I_1

$$-(N_2/N_1)I_{s2} + (N_2/N_1)[(N_2/N_1)V_1 - V_{s2}]/Z_2 = I_1$$

Equivalent Primary Network

lacksquare Substitute $oldsymbol{I_1}$ expression into primary equation

$$-I_{s1} + (V_1 - V_{s1})/Z_1 - (N_2/N_1)I_{s2} + (N_2/N_1)[(N_2/N_1)V_1 - V_{s2}]/Z_2 = 0A$$

Simplify above equation

$$\frac{-I_{s1} + (V_1 - V_{s1})/Z_1 - (N_2/N_1)I_{s2} + [V_1 - (N_1/N_2)V_{s2}]/[(N_1/N_2)^2 Z_2]}{-I_{s1} + (V_1 - V_{s1})/Z_1 - I_{r_{2\to 1}} + (V_1 - V_{r_{2\to 1}})/Z_{r_{2\to 1}} = 0A}$$

- Reflected Elements: Elements "appearing" on opposite side of transformer due to ideal transformer operation
 - Impedance $Z_{r_{2\rightarrow 1}} = (N_1/N_2)^2 Z_2$: Secondary impedance seen by primary
 - Current Source $I_{r_{2\rightarrow 1}}=(N_2/N_1)I_{s2}$: Secondary current source seen by primary
 - Voltage Source $V_{r_{2\rightarrow 1}}=(N_1/N_2)V_{s2}$: Secondary voltage source seen by primary

Ideal Transformer – Equivalent Secondary Network

- Equivalent network on secondary side can be established for analysis purposes
 - lacksquare Sub. for I_1 and V_1 into primary EQ.

$$-I_{s1} + [(N_1/N_2)V_2 - V_{s1}]/Z_1 - (N_2/N_1)I_2 = 0A$$

 \triangleright Solve above for I_2

$$-(N_1/N_2)I_{s1} + (N_1/N_2)[(N_1/N_2)V_2 - V_{s1}]/Z_1 = I_2$$

Equivalent Secondary Network

lacksquare Substitute $oldsymbol{I_2}$ expression into secondary equation

$$-I_{s2} + (V_2 - V_{s2})/Z_2 - (N_1/N_2)I_{s1} + (N_1/N_2)[(N_1/N_2)V_2 - V_{s1}]/Z_1$$

Simplify above equation

$$\frac{-I_{s2} + (V_2 - V_{s2})/Z_2 - (N_1/N_2)I_{s1} + [V_2 - (N_2/N_1)V_{s1}]/[(N_2/N_1)^2 Z_1]}{-I_{s2} + (V_2 - V_{s2})/Z_1 - I_{r_{1\to 2}} + (V_2 - V_{r_{1\to 2}})/Z_{r_{1\to 2}} = 0A}$$

- Reflected Elements: Elements "appearing" on opposite side of transformer due to ideal transformer operation
 - Impedance $Z_{r_{1\rightarrow 2}} = (N_2/N_1)^2 Z_1$: Primary impedance seen by secondary
 - Current Source $I_{r_{1\rightarrow 2}}=(N_1/N_2)I_{s1}$: Primary current source seen by secondary
 - Voltage Source $V_{r_{1}\rightarrow 2}=(N_{2}/N_{1})V_{s1}$: Primary voltage source seen by secondary

Ideal Transformer – SSS Analysis

- KCL analysis of "Typical Ideal Transformer Network" in the SSS
 - KCL @ Node (a) (Primary)

$$-I_{s1} + (V_1 - V_{s1})/Z_1 + I_1 = 0$$
A

KCL @ Node (c) (Secondary)

$$-I_{s2} + (V_2 - V_{s2})/Z_2 + I_2 = 0A$$

▶ Ideal Transformer Voltage Constraint Ideal Transformer Current Constraint

$$0I_1 + 0I_2 + (N_2/N_1)V_1 + V_2 = 0V$$
 $I_1 - (N_2/N_1)I_2 + 0V_1 + 0V_2 = 0A$

I = (N / N)I + 0V + 0V = 0A

Matrix equation governing behavior of typical ideal transformer network

$$\begin{bmatrix} 1 & 0 & \mathbf{Z}_{1}^{-1} & 0 \\ 0 & 1 & 0 & \mathbf{Z}_{2}^{-1} \\ 0 & 0 & N_{2}/N_{1} & 1 \\ 1 & -N_{2}/N_{1} & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{1} \\ \mathbf{I}_{2} \\ \mathbf{V}_{1} \\ \mathbf{V}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{s1} + \mathbf{V}_{s1}/\mathbf{Z}_{1} \\ \mathbf{I}_{s2} + \mathbf{V}_{s2}/\mathbf{Z}_{2} \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{V}_{2}/\mathbf{V}_{1} = -N_{2}/N_{1}$$

$$\mathbf{I}_{1}/\mathbf{I}_{2} = N_{2}/N_{1}$$

$$\mathbf{I}_{1}/\mathbf{I}_{2} = N_{2}/N_{1}$$

$$\mathbf{I}_{1}/\mathbf{I}_{2} = N_{2}/N_{1}$$

Ideal Transformer – Equivalent Primary Network

- Equivalent network on primary side can be established for analysis purposes
 - Sub. for I_2 and V_2 into secondary EQ.

$$-\boldsymbol{I_{s2}} + [-(N_2/N_1)\boldsymbol{V_1} - \boldsymbol{V_{s2}}]/\boldsymbol{Z_2} + (N_1/N_2)\boldsymbol{I_1} = 0$$
A

 \triangleright Solve above for I_1

$$(N_2/N_1)I_{s2} + (N_2/N_1)[(N_2/N_1)V_1 + V_{s2}]/Z_2 = I_1$$

 \triangleright Substitute I_1 expression into primary equation

$$-I_{s1} + (V_1 - V_{s1})/Z_1 + (N_2/N_1)I_{s2} + (N_2/N_1)[(N_2/N_1)V_1 + V_{s2}]/Z_2 = 0A$$

Simplify above equation

$$-I_{s1} + (V_1 - V_{s1})/Z_1 + (N_2/N_1)I_{s2} + [V_1 + (N_1/N_2)V_{s2}]/[(N_1/N_2)^2Z_2] = 0A$$

$$-I_{s1} + (V_1 - V_{s1})/Z_1 + I_{r_{2\to 1}} + (V_1 + V_{r_{2\to 1}})/Z_{r_{2\to 1}} = 0A$$

- **Reflected Elements:** Elements "appearing" on opposite side of transformer due to ideal transformer operation
 - Impedance $Z_{r_{2\rightarrow 1}} = (N_1/N_2)^2 Z_2$: Secondary impedance seen on primary
 - Current Source $I_{r_{2\rightarrow 1}}=-(N_2/N_1)I_{s2}$: Secondary current source seen on primary
 - Voltage Source $V_{r_{2\rightarrow 1}} = -(N_1/N_2)V_{s2}$: Secondary voltage source seen on primary

 $|\mathbf{V}_{S1}|$

 $\mathbf{I}_{S1} \mathbf{V}_1$

Equivalent Primary Network

 $i\widehat{Z}_{r_{\underline{2} o 1}}$

Ideal Transformer – Equivalent Secondary Network

- Equivalent network on secondary side can be established for analysis purposes
 - lacksquare Sub. for I_1 and V_1 into primary EQ.

$$-I_{s1} + [-(N_1/N_2)V_2 - V_{s1}]/Z_1 + (N_2/N_1)I_2 = 0A$$

ightharpoonup Solve above for I_2

$$(N_1/N_2)I_{s1} - (N_1/N_2)[-(N_1/N_2)V_2 - V_{s1}]/Z_1 = I_2$$

Equivalent Secondary Network

lacksquare Substitute $oldsymbol{I_2}$ expression into secondary equation

$$-I_{s2} + (V_2 - V_{s2})/Z_2 + (N_1/N_2)I_{s1} + (N_1/N_2)[(N_1/N_2)V_2 + V_{s1}]/Z_1$$

Simplify above equation

$$-I_{s2} + (V_2 - V_{s2})/Z_2 + (N_1/N_2)I_{s1} + [V_2 + (N_2/N_1)V_{s1}]/[(N_2/N_1)^2 Z_1] = 0A$$

$$-I_{s2} + (V_2 - V_{s2})/Z_1 + I_{r_{1\to 2}} + (V_2 + V_{r_{1\to 2}})/Z_{r_{1\to 2}} = 0A$$

- Reflected Elements: Elements "appearing" on opposite side of transformer due to ideal transformer operation
 - Impedance $Z_{r_{1\rightarrow 2}} = (N_2/N_1)^2 Z_1$: Primary impedance seen by secondary
 - Current Source $I_{r_{1\rightarrow 2}}=-(N_1/N_2)I_{s1}$: Primary current source by secondary
 - Voltage Source $V_{r_{1\rightarrow 2}}=-(N_2/N_1)V_{s1}$: Primary voltage source seen by secondary

Reflecting Elements – Summary (1/2)

Rules for Reflecting Elements to Primary Side

Rule for Impedances

$$Z_{r_{2\rightarrow 1}} = Z_2(N_1/N_2)^2 = Z_2/n^2$$

Rule for Voltage Sources

$$|V_{r_{2\to 1}} = V_{s2}(N_1/N_2) = V_{s2}/n|$$

Rule for Current Sources

$$I_{r_{2\to 1}} = I_{s2}(N_2/N_1) = nI_{s2}$$

Rule for Impedances

$$Z_{r_{2\to 1}} = Z_2(N_1/N_2)^2 = Z_2/n^2$$

Rule for Voltage Sources

$$|V_{r_{2\rightarrow 1}} = -V_{s2}(N_1/N_2) = -V_{s2}/n|$$

Rule for Current Sources

$$I_{r_{2\to 1}} = -I_{s2}(N_2/N_1) = -nI_{s2}$$

Notes About Reflection

- Order of elements must be preserved when reflecting
- Reflection rules also apply to dependent sources
- <u>Cannot be applied</u> if primary and secondary is <u>electrically coupled</u>!

Reflecting Elements – Summary (2/2)

Rules for Reflecting Elements to Secondary Side

Rule for Impedances

$$Z_{r_{1\to 2}} = Z_1(N_2/N_1)^2 = n^2 Z_1$$

Rule for Voltage Sources

$$V_{r_{1\to 2}} = V_{s1}(N_2/N_1) = nV_{s1}$$

Rule for Current Sources

$$I_{r_{1\to 2}} = I_{s1}(N_1/N_2) = I_{s1}/n$$

Rule for Impedances

$$Z_{r_{1\to 2}} = Z_1(N_2/N_1)^2 = n^2 Z_1$$

Rule for Voltage Sources

$$|V_{r_{1\to 2}} = -V_{s1}(N_2/N_1) = -nV_{s1}|$$

Rule for Current Sources

$$|I_{r_{1\to 2}} = -I_{s1}(N_1/N_2) = -I_{s1}/n$$

Notes About Reflection

- Order of elements must be preserved when reflecting
- Reflection rules also apply to dependent sources
- <u>Cannot be applied</u> if primary and secondary is <u>electrically coupled</u>!

Lecture Summary

- This set of slides presented the following
 - Mutual Inductance
 - Defining Mutual Conductance
 - Dotted Sign Convention
 - Energy Considerations
 - Analysis of Magnetically Coupled Networks
 - ▶ The Linear Transformer
 - SSS Analysis
 - Reflected Impedances
 - ▶ The Ideal Transformer
 - ▶ Element Constraints
 - Dot Convention
 - SSS Analysis
 - Reflecting Elements