Semiparametric Additive Isotonic Regression

Guang Cheng SAMSI & Duke University

• Introduction

- Background in non/semi-parametric isotonic regression;

• Main Results

- Motivation: Curse of dimensionality;
- Semiparametric additive isotonic regression;

• Simulations

- Iterative algorithm;
- Simulation results;

• Discussions

Introduction

Model Setting:

$$Y = H(W) + \epsilon, \tag{1}$$

where $H(\cdot)$ is monotonic in each of the coordinates of $W \in \mathbb{R}^J$.

Applications:

In Spatial Epidemiology, $Y \sim$ the risk of disease; $W \sim$ distance from different classes of radiation to workers.

In *Biostatistics*, $Y \sim$ the proportion of some organism killed by a drug; $W_1 \sim$ the dosage of that drug, $W_2 \sim$ exposure time to that drug.

Isotonic Estimator:

$$\widehat{H}_n \equiv \arg\min \frac{1}{n} \sum_i (Y_i - H(W_i))^2$$
 w.r.t. monotonicity constrain.

When J = 1, we call it *oracle estimator*, denoted as \widehat{H}_n^{OR} .

Max-min formula:

$$\widehat{H}_{n}^{OR}(W_{(i)}) = \max_{s \le i} \min_{t \ge i} \frac{\sum_{j=s}^{t} Y_{[j]}}{t - s + 1},\tag{2}$$

$$n^{1/3} \left[\frac{2p_W(w)}{\sigma^2 \dot{H}_0(w)} \right]^{1/3} (\hat{H}_n^{OR}(w) - H_0(w)) \xrightarrow{d} SGCM(B(t) + t^2), \quad (3)$$

where B is a two-sided Brownian motion.

SGCM: slope of the greatest convex minorant.

Remark

- Comparing to other nonparametric estimation methods, the isotonic regression approach is entirely data-driven due to the built-in monotonicity constraint;
- The isotonic estimator $\widehat{H}_n^{OR}(w)$ can be any monotone function passing through $\widehat{H}_n^{OR}(w_{(i)})$ s;
- In practice, pool-adjacent-violators algorithm is often used for fitting isotonic regression;
- More details can be referred to Brunk (1970).

Semiparametric Isotonic Regression:

$$Y = X'\beta + H(W) + \epsilon. \tag{4}$$

- $X'\beta \sim \text{adjustments for covarites};$
- $H(\cdot) \sim \text{model nuisance covarites}$.

Similarly,

$$(\hat{\beta}_n, \hat{H}_n^s) \equiv \arg\min\left(\frac{1}{n} \sum_{i=1}^n (Y_i - X_i'\beta - H(W_i))^2\right). \tag{5}$$

In terms of the asymptotic behaviors of $(\hat{\beta}_n, \hat{H}_n^s)$,

is model (4) good when J is arbitrarily large?

Main Results

Lemma 1: Given that ϵ has the sub-exponential tail, i.e.

 $E(\exp(\gamma|\epsilon|)) < C$ for some $\gamma, C > 0$, and $E(X - E(X|W))^{\otimes 2}$ is strictly positive definite, we have

for J=2

$$\|\hat{H}_n^s(W) - H_0(W)\|_2 = O_P(n^{-1/4}(\log n)^2),$$

and for $J \geq 3$

$$\|\hat{H}_n^s(W) - H_0(W)\|_2 = O_P\left(n^{-\frac{1}{4(J-1)}}\log n\right),$$

where $\|\cdot\|_2$ is L_2 norm.

Remark:

- Empirical Processes technique is employed to derive Lemma 1;
- Curse of dimensionality under shape constrains; (Stone 1985, spline estimates, under smoothness conditions);
- Convergence Rates in lemma 1 depend on the condition of ϵ , e.g. $E|\epsilon|^r < \infty \Rightarrow o_P\left(n^{-1/(4J-4)+1/r}\right)$ for any fixed r;
- $\hat{\beta}_n$ is not asymptotically normal since H does not belong to the P-Donsker class when J > 1.

Semiparametric Additive Isotonic Regression:

$$Y = X'\beta + \sum_{j=1}^{J} h_j(W_j) + \epsilon$$

is proposed such that

- Circumvent the curse of dimensionality;
- $\hat{\beta}_n$ is asymptotically normal;
- \hat{h}_j has the same asymptotic distribution of \hat{H}_n^{OR} (oracle property).

Note that
$$(\hat{\beta}_n, \hat{h}_1, \dots, \hat{h}_J) \equiv \arg\min\left(\frac{1}{n} \sum_{i=1}^n (Y_i - X_i'\beta - \sum_{j=1}^J h_j(W_{ij}))^2\right)$$

Reference: Morton-Jones, Diggle, Parker, Dickinson, and Binks (2000)

Assumptions:

A1. Smoothness conditions on h_j and the density for W_j :

$$\inf_{|w_j - w'_j| \ge \delta} |h_j(w_j) - h_j(w'_j)| \quad \gtrsim \quad \delta^{\gamma},$$

$$\sup_{0 \le w_j, w'_j \le 1} |p_{W_j}(w_j) - p_{W_j}(w'_j)| \quad \lesssim \quad |w_j - w'_j|^{\rho},$$

for any $\delta > 0$ and some constants $\rho, \gamma > 0$;

A2. Lipschitz continuous condition on $E(X|W_i)$:

$$||E(X|W_j = w_j) - E(X|W_j = w'_j)|| \lesssim |w_j - w'_j|;$$

A3. $E(X - \sum_{j=1}^{J} E(X|W_j))^{\otimes 2}$ is strictly positive definite.

Note that the parameter identifiability condition in the additive model is weaker since

$$E(X - \sum_{j=1}^{J} E(X|W_j))^{\otimes 2} \ge E(X - E(X|W))^{\otimes 2}.$$

Such relaxation allows the interaction term to enter the model:

$$Y = (W_1 W_2)\beta + h_1(W_1) + h_2(W_2) + \epsilon.$$

If
$$E(W_1) = E(W_2) = 0$$
 and $W_1 \perp W_2$, we have

$$E(X - E(X|W))^{\otimes 2} = 0$$

$$E(X - \sum_{j=1}^{J} E(X|W_j))^{\otimes 2} = Var(W_1)Var(W_2)$$

Theorem 1: Assuming the conditions (A1)-(A3) and the subexponential tail of ϵ , we have

$$\sqrt{n}(\hat{\beta}_n - \beta_0) \xrightarrow{d} N(0, \sigma^2 [E(X - \sum_{j=1}^J E(X|W_j))^{\otimes 2}]^{-1}),$$

$$\hat{h}_j(w) - \hat{H}_n^{OR}(w) = o_P(n^{-1/3}) \text{ for } w \in (0, 1)$$

if W is pairwise independent.

References: Mammen and Yu (2006) and Huang (2002)

In the semiparametric additive models with $h_j \in L_2(P(W_j))$, the local semiparametric efficiency bound is proved to be:

$$\sigma^{-2}E(X - E(X|\mathcal{F}))^{\otimes 2} = \sigma^{-2} \inf_{\sum f_j \in \mathcal{F}} E(X - \sum_{j=1}^J f_j(W_j))^{\otimes 2},$$

where \mathcal{F} is the sum of closed L_2 subspaces.

Therefore,

- The asymptotic variance of $\hat{\beta}_n$ is even smaller than that of local asymptotic efficient estimator since we estimate the projection of Y onto the sum of closed subspace S_1 , and closed convex cones S_{21}, \ldots, S_{2J} formed by $h_j(W_j)$ s;
- If the monotonicity of h_j is ignored, $\hat{\beta}_n$ will become asymptotically less efficient.

Simulations

Iterative Algorithm:

Set
$$S_n(\beta, h_1, \dots, h_J) = \left(\frac{1}{n} \sum_{i=1}^n (Y_i - X_i'\beta - \sum_{j=1}^J h_j(W_{ij}))^2\right)$$

Let $\beta^{(0)} = 0$ (or $\beta^{(0)} : Y \sim X$) and k = 0.

 Λ -step: Minimize $S_n(\beta^{(k)}, \Lambda)$ with respect to Λ to obtain $\Lambda^{(k)} \equiv (h_1^{(k)}, \dots, h_J^{(k)})$ using the backfitting algorithm;

 β -step: Minimize $S_n(\beta, \Lambda^{(k)})$ with respect to β (OLS:

 $(Y - \Lambda^{(k)}(W)) \sim X$). Set k = k + 1, and let $\beta^{(k)}$ be the minimizer.

Go back to Λ -step.

Remark

- Convergence of the backfitting algorithm in the case that S_{21}, \ldots, S_{2J} are closed convex cones is proved in Dykstra (1983);
- Backfitting estimate $\hat{h} \equiv (\hat{h}_1, \dots, \hat{h}_J)$ is not unique if there exists a tuple of vectors (f_1, \dots, f_J) such that $\sum_{j=1}^J f_j(w_{ij}) = 0$ for any $i = 1, \dots, n$ and $f_j + h_j$ is monotone.

Simulation Results:

- $W_1 \sim Unif[-1,1];$
- $W_2 \sim \text{truncated normal within } [-1, 1];$
- $\epsilon \sim 0.5N(1, 0.5^2) + 0.5N(-1, 1^2);$
- $h_1(w_1) = w_1 \exp(-w_1^2/2)$ and $h_2(w_2) = \sin(\pi w_1/2)$;
- $\beta_0 = 1$.

Sample size: 100, 300, 600;

For each sample size, 100 datasets

For each dataset, 500 iterations.

Simulation results for β :

M1. Semiparametric additive isotonic model:

$$Y = (W_1 W_2)\beta + h_1(W_1) + h_2(W_2) + \epsilon;$$

 $\mathbf{M1}(h_1)$. h_1 is assumed to be known:

$$Y^{(1)} = (W_1 W_2)\beta + h_2(W_2) + \epsilon;$$

 $\mathbf{M1}(h_2)$. h_2 is assumed to be known:

$$Y^{(2)} = (W_1 W_2)\beta + h_1(W_1) + \epsilon;$$

 $\mathbf{M1}(h_1, h_2)$. h_1 and h_2 are assumed to be known:

$$Y^{(12)} = (W_1 W_2)\beta + \epsilon;$$

Table 1. Comparison between $M1-M_1(h_1,h_2)(\beta_0=1)$

n	M1	$M1(h_1)$	$M1(h_2)$	$M1(h_1, h_2)$	
100	$0.985 \ (0.358)$	0.987 (0.242)	1.009 (0.237)	0.992 (0.169)	
300	$0.989 \ (0.245)$	$1.005 \ (0.145)$	$0.996 \ (0.137)$	$0.998 \ (0.089)$	
600	0.991 (0.189)	1.006 (0.141)	0.999 (0.103)	$0.999 \ (0.067)$	

Simulation results for h_1 :

M1. Semiparametric additive isotonic model:

$$Y = (W_1 W_2)\beta + h_1(W_1) + h_2(W_2) + \epsilon;$$

M2. Nonparametric additive isotonic model:

$$Y = h_1(W_1) + h_2(W_2) + \epsilon;$$

M3. Oracle Model:

$$Y = h_1(W_1) + \epsilon;$$

Table 2. Comparison between M1, M2 and M3 (MISE)

n	M1	M2	M3	M1/M2	M1/M3
100	0.138	0.113	0.111	1.220	1.240
300	0.081	0.072	0.073	1.122	1.105
600	0.056	0.045	0.046	1.075	1.044

Discussions

- Generalize to $H(Y) = X'\beta + \sum_{j=1}^{J} h_j(W_j) + \epsilon$ with unknown $H(\cdot)$;
- Model selection problem;
- How to relax the pairwise independence assumption of W?

Reference

Brunk, H.D. (1970). <u>Estimation of Isotonic Regression (with discussion)</u> In: Puri, M.L. (Ed.), Nonparametric Techniques in Statistical Inference. Cambridge University Press, Cambridge.

Dykstra, R. (1983). <u>An Algorithm for Restricted Least Squares</u> Regression *Journal of the American Statistical Association* **78** 837–842.

Huang, J. (2002). A note on estimating a partly linear model under monotonicity constraints. Journal of Statistical Planning and Inference 107 345–351.

Mammen, E. and Yu, Kyusang (2007). <u>Additive Isotone Regression</u> *IMS Lecture Notes*

Morton-Jones, T., Diggle, P., Parker, L., Dickinson, H.O. and Binks, K. (2000). <u>Additive isotonic regression models in</u> epidemiology. *Statistics in medicine* **19** 849–859.

Stone, C.J. (1985). Additive Regression and other nonparametric models *Annals of Statistics* **13** 689–705.