

Centro de Enseñanza Técnica Industrial

Desarrollo de Software

Actividad 2 - Clase 8

Jesús Alberto Aréchiga Carrillo 22310439 6N

Profesor

Clara Margarita Fernández Riveron

Abril de 2025

Guadalajara, Jalisco

Introducción

En probabilidad discreta, el estudio de las distribuciones conjuntas de dos (o más) variables aleatorias permite describir cómo se comportan en conjunto. Para variables aleatorias discretas XXX e YYY, la función de probabilidad conjunta

$$P_{X,Y}(x,y) = P(X = x, Y = y)$$

se suele presentar en forma de tabla o matriz. A partir de ella podemos obtener las distribuciones marginales (sumando sobre una de las variables) y, de ahí, las distribuciones condicionales

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} \ o \ P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(X = x)}$$

Ejercicio:

Caso de estudio: Analizar el coeficiente de correlación entre ingresos y gastos en datos económicos (usar datos simulados).

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
def generar datos(n, media ing=50000, std ing=10000, pendiente=0.6,
intercepto=10000, ruido_std=5000, semilla=42):
    Genera datos simulados de ingresos y gastos.
    Parámetros:
    - n: número de observaciones
    - media ing, std ing: media y desviación estándar de la distribución
de ingresos
    - pendiente, intercepto: parámetros de la relación lineal gastos =
pendiente*ingresos + intercepto
    - ruido_std: desviación estándar del ruido aleatorio en gastos
    - semilla: semilla para reproducibilidad
    Retorna:
    - ingresos: array de forma (n,)
    - gastos: array de forma (n,)
    np.random.seed(semilla)
    ingresos = np.random.normal(loc=media_ing, scale=std ing, size=n)
    # Generamos gastos como función lineal de los ingresos más ruido
    gastos = pendiente * ingresos + intercepto +
np.random.normal(scale=ruido std, size=n)
    return ingresos, gastos
def analizar correlacion(ingresos, gastos):
```

```
.....
    Calcula y devuelve el coeficiente de correlación de Pearson
    y su p-valor asociado.
    corr_coef, p_valor = stats.pearsonr(ingresos, gastos)
    return corr coef, p valor
def graficar(ingresos, gastos):
    Dibuja un scatter plot de ingresos vs. gastos
    y traza la línea de regresión lineal.
    # Ajuste de regresión lineal
    pendiente, intercepto, r_val, p_val, std_err =
stats.linregress(ingresos, gastos)
    linea = pendiente * ingresos + intercepto
    plt.figure()
    plt.scatter(ingresos, gastos, label='Datos simulados')
    plt.plot(ingresos, linea, label=f'Ajuste
lineal\ny={pendiente:.2f} · x+{intercepto:.0f}')
    plt.xlabel('Ingresos')
    plt.ylabel('Gastos')
    plt.title('Dispersión Ingresos vs. Gastos con línea de regresión')
    plt.legend()
    plt.grid(True)
    plt.show()
def main():
    # 1. Generar datos
    ingresos, gastos = generar_datos(n=100)
    # 2. Calcular coeficiente de correlación
    corr, p = analizar_correlacion(ingresos, gastos)
    print(f"Coeficiente de correlación de Pearson: {corr:.3f}")
    print(f"P-valor asociado: {p:.3e}")
    # 3. Graficar resultados
    graficar(ingresos, gastos)
if __name__ == "__main__":
   main()
```


Conclusiones:

El análisis de distribuciones conjuntas y condicionales es una herramienta fundamental en estadística y probabilidad, ya que nos permite cuantificar la dependencia entre variables y actualizar nuestras creencias ante nueva información (principio de Bayes). Estas técnicas se aplican en campos tan diversos como la ingeniería, la economía, el aprendizaje automático y la bioestadística. Dominar el paso de la distribución conjunta a las marginales y condicionales abre la puerta a modelos más sofisticados (por ejemplo, cadenas de Markov o redes bayesianas) y a la toma de decisiones basadas en evidencia probabilística.