Macroeconomics

w. Josep Lluís Carrion-i-Silvestre Universitat de Barcelona

Complementary notes for the slides by Thor Donsby Noe *

November 28, 2018

^{*}Department of Economics, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark, (e-mail: jwz766@alumni.ku.dk)

Contents

1	Theoretical issues	3
2	ARIMA modelling 2.1 AR(p) process 2.2 MA(q) model	3 4 4
3	Order of Integration Analysis 3.1 Unit root tests	4 5
4	Cointegration Analysis 4.1 Estimation of cointegration relationships	6
5	VAR modelling	7

""

1 Theoretical issues

Convergence in distribution

$$\hat{\beta}_{OLS} \xrightarrow{d} N(\beta, V(\beta))$$
$$(\hat{\beta}_{OLS} - \beta) \xrightarrow{d} N(0, V(\beta))$$

$$\hat{\beta}_{OLS} = (x'x)^{-1}x'y$$
$$= \beta + (x'x)^{-1}x'u$$

Asymptotic independence

If independent, the joint probability equals the product of probabilities, i.e.

$$P(A \cap B) = P(A) * P(B)$$

2 ARIMA MODELLING

Univariate TS strategy

Not based on Economic Theory (reduced form modelling \rightarrow the past is informative about the present)

$$y_t = f(y_{t-1}, y_{t-2}, y_{t-3})$$

The performance in terms of **forecasting** is key!

If you want to learn about main drivers, you need to use other models.

1. Stationary time series:

Sometimes 1st difference is required to ensure stationarity.

2. Identification:

Specify the model that explains the behaviour the best

AR: Autoregressive model

MA: Moving Average model

ARMA: AutoRegressive Moving Average model

To initially decide between them, plot the

• **ACF**: The Simple Autocorrelation Function.

Check if there is persistence/memory:

$$\frac{Cov(x_t, x_{t+k})}{\sqrt{V(x_t)}\sqrt{V(x_{t+k})}}, \text{ for } k = 0, \pm 1, \pm 2, \cdots$$

Related to the asymptotic confidence interval

$$\left(\frac{-1.96}{\sqrt{(T)}}, \frac{1.96}{\sqrt{(T)}}\right)$$

or degrees of freedom corrected

$$\left(\frac{-1.96}{\sqrt{(T-k)}}, \frac{1.96}{\sqrt{(T-k)}}\right)$$

• **PACF**: The Partial Autocorrelation Function

e.g. The The 3rd partial autocorrelation coeffcient of the PACF, ϕ_{33} :

$$\tilde{x}_t = \phi 31 \tilde{x}_{t-1} + \phi 32 \tilde{x}_{t-2} + \phi 33 \tilde{x}_{t-3} + \varepsilon_t$$

- → Using both functions helps us to make an initial specification.
 - Helps us to decide on the number of lags.
 - Too many lags can cause multicolliniarity.

Better to choose an $f(t) \neq 0$ to test it.

3. Estimation

4. Validation

How well is the model specified?

•

Residuals

Re-specify if not correctly validated (repeat step 2-4)

5. Forecasting

When model is valid, use it to forecast.

2.1 AR(p) process

Stationarity conditions for the AR model:

- The deterministic component f does not depend on t (rules out MA)
- 2. All roots of the autoregressive polynomial must, in module, be greater than one, e.g.

$$x_{t} = \phi_{1}x_{t-1} + \varepsilon_{t}$$

$$\underbrace{(1 - \phi_{1}(L))}_{\text{AR polynomial}} x_{t-1} = \varepsilon_{t}, \quad L > 1 \text{ required!}$$

$$egin{aligned} V(x_t) &= V(\phi_1 x_{t-1}) + V(arepsilon_t) \ & \sigma_x^2 &= \phi_1^2 \sigma_x^2 + \ & \sigma_x^2 &= rac{1}{1-\sigma_1^2} \sigma_arepsilon^2$$
, requires $\sigma_1^2 < 1$

2.2 MA(q) model

If MA is invertible

$$\Rightarrow MA(q) \equiv AR(\infty)$$

$$\simeq AR(p), \quad p \text{ is large}$$

Use the $\hat{\varepsilon}_t^0$ estimation algorithm.

3 Order of Integration Analysis

#1. Iterative Strategy: DIY.

#2. Model Selection Strategy:

Automated procedure using AIC or BIC.

•
$$p_m a x = 3$$

•
$$q_m ax = 3$$

"Autometrics".

Models that rely on x_t being stationary

and invertible (for consistent $\hat{\beta}$):

$$ACF \mid PACF$$
 $AR(p) \qquad \qquad x_{(p)}$
 $MA(q) \qquad x_q$
 $ARMA(p,q) \quad ?_{\hat{p},\hat{q}} \quad ?_{\hat{p},\hat{q}}$

Usually x_t is non-stationary.

$$\rightarrow \Delta^d x_t, d = 0, 1, 2, 3, \cdots$$
 is stationary? $\rightarrow \hat{\beta}$ is consistent!

- Integrated of order "d".
 - prices_t
 - − $\Delta prices_t \simeq Inflation$.

− $\Delta^2 prices_t \simeq$ Acceleration prices.

A non-stationary proces \simeq Random walk process features (uniroot).

$$x_t = \phi x_{t-1} + \varepsilon_t, \quad \phi = 1$$
$$= x_0 + \sum_{j=0}^{t-1} \varepsilon_{t-j}$$

With the variance

$$V(x_t) = V(x_0) + V\left(\sum_{j=0}^{t-1} \varepsilon_{t-j}\right)$$

$$\vdots$$

$$= \sigma_{\varepsilon}^2 t$$

3.1 Unit root tests

t-Student distrubution

- Zero mean.
- Broad tails with a low degree of freedoms *k*.
- \rightarrow Tends towards the normal distribution when $k \rightarrow \infty$.

Dickey-Fuller (DF) test

- Only valid for an AR(1) process!
- Statistical inference: Objective:
 - Test statistics:

$$H_0: x_t \sim I(1)$$

$$H_1: x_t \sim I(0)$$

- "Confirmatory analysis":

 $H_0: x_t \sim I(0)$

 $H_1: x_t \sim I(1)$

DF:

$$\Delta x_t = f(t) + \alpha x_{t-1} + u_t$$

• DF assumes $u_t \sim iid$

Corrections to DF:

- Philips-Perron (PP) test
 - Non-parametric correction.
 - More general but difficult to estimate the s^2 .
 - * Allowing a high number of covariates: test statistics looses power
 - * Allowing a low number of covariates?
- ADF test:
 - Parametric correction.
 - More efficient for finite samples.
- Ng-Perron M test statistics (2001) 3 legs:
 - 1. Parametric longrun estimate of S_{AR}^2 .
 - 2. $\bar{\alpha}$ estimated numerically (Elliot, Rothenburg & Stock, 1996) and Power Envelope Function (PEF) using GLS.
 - 3. Number of lags *k* to include: decided using the Midified Information Criteria (MIC) strategy:
 - * MAIC
 - * MSIC

ADF-test

Capturing any information that might be hidden in the u_t that creates and effect in the λ -term, $\lambda = \sigma^2 - \sigma_{\varepsilon}^2/2$

$$\Delta x_t = f(t) + \alpha x_{t-1} + \sum_{j=1}^{p-1} \gamma_j \Delta x_{t-j} + u_t$$

$$\Rightarrow \epsilon_t \sim iid$$

Philips-Perron (PP) test

- Nice correction to the DF test.
- In practice, it's difficult to calculate the short-run variance s_u^2 and the long-run variance s^2 .

Complex hypothesis (less feasible):

$$\begin{cases} H_0: & \alpha = 1 = x_t \sim I(1) \\ H_1: & |\alpha = 1| = x_t \sim I(0) \end{cases}$$

Simple alternatives:

$$\begin{cases} H_0: & \alpha = 1 \\ H_1: & \alpha = \bar{\alpha}, \quad \bar{\alpha} = 1 + \frac{\bar{c}}{T} \end{cases}$$

i.e. 'local alternatives' in the neighborhood of H_0 .

Ng-Perron principle:

$$H_1: L(\bar{\alpha}) - L(1)$$
 (3.1)

Using the likelihood (LM test).

Def. 'Power Envelope Function' (PEF):

Chooses \bar{c} such that the PEF = 0.5 \Rightarrow use **GLS**.

4 Cointegration Analysis

Spurious regression

 $\hat{\mu}$, $\hat{\gamma}$ inconsistent (random variables)

 $t_{\hat{u}}, F^*$ inconsistent (diverge towards $\pm \infty$)

 \bar{R}^2 inconsistent (random variable)

Best (incomplete) cure

Model the relationship using differences

 $\hat{\beta}_{OLS}$ consistent.

$$t_{\hat{u}} \sim N(0,1)$$

 $F^* \sim \text{F-snedecor}$

 \bar{R}^2 ok.

4.1 Estimation of cointegration relationships

 $r = 0 \Rightarrow$ Spurious regression $0 < r < m \Rightarrow$ Cointegration relationships $r = m \Rightarrow y_t \sim I(0)$

Engle & Granger estimates a single equation $\Rightarrow r = 0, r = 1, (0 < r < m)$?

1st Estimate the LR relationship and obtain the residuals.

 2^{nd} Cointegration test. ADF \rightarrow critical values for the standard DF test (79; 81).

- $H_0: z_t \sum I(1) \equiv \text{No cointegration}$

- $H_0: z_t \sum I(0) \equiv \text{Cointegration}.$

• We only estimate one equation

→ We loose information (regressors might not be exogenous)

→ Inefficient estimation, can't do inference.

Johansen's procedure allows you to consider all possible equations together.

→ All variables in system are assumed to be *endogenous*.

Consistent + efficient estimation of $\hat{\alpha}$ in single equation framework

 Dynamic Ordinary Least Squares (DOLS) of Saikkonen (1991) and Stock and Watson (1993).

- Works best in a finite sample (in the limit they're the same).
- Including k_2 lacks and k_1 leads.
- → A very simply way to include endogeneity in the sample!
- Using AIC and BIC to choose the model (might be available in R→URCA)
- Fully Modified (FM) OLS of Philips and Hansen (1990).
- Canonical Cointegration Regression (CCR) of Park (1992).
- \Rightarrow allows to do inference.

5 VAR MODELLING

Introduced by Sims (1980) as an alternative to structural models.

- Estimates all possible relations in the system (complete endogeneity).
- Allows to model multivariate time series with a minimum of economic theory.

Uses

- → Delivered very good forecasts without being bound by specification of structure.
- ightarrow Allows to do 'causality' analysis.

→ Impulse response analysis. How would the variables react to a chock to the system?

VAR(p) model is a VAR version of the AR(p) model

 y_t is a vector of variables that depends upon the lag of the vector.

There are no ACF or PACF for the VAR(p) model.

- \rightarrow Use an IC.
- Use hypothesis testing

$$\begin{cases} H_0: & p = p_0 \\ H_1: & p = p_1 \end{cases}$$