G - 20 - 2011

철강 및 금속 자재의 보관·취급에 관한 안전가이드

2011. 12

한국산업안전보건공단

안전보건기술지침의 개요

o 작성자 : 숭실대학교 기계공학과 서 상 호 교수

o 개정자: 한국산업안전보건공단 산업안전보건연구원 안전시스템연구실

- o 제·개정 경과
 - 2009년 11월 일반안전분야 제정위원회 심의(제정)
 - 2011년 12월 산업안전일반분야 제정위원회 심의(개정, 법규개정조항 반영)
- o 관련규격 및 자료
- Safety in the storage and handling of steel and other metal stock, HSE, 2004
- 산업안전보건용어사전, 한국산업안전보건공단, 2006
- o 관련법규·규칙·고시 등
 - 「산업안전보건법」 23조(안전조치), 24조(보건조치)
- 0 기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 및 문의는 한국산업안전보건공단 홈 페이지 안전보 건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2011년 12월 29일

제 정 자 : 한국산업안전보건공단 이사장

철강 및 금속 자재의 보관·취급에 관한 안전가이드

1. 목 적

이 지침은 철강 및 기타 다른 금속 자재의 보관 및 취급 시 발생하는 상해와 치명적인 사망사고를 예방하기 위한 예방책을 제시하여 재해예방에 기여하는 것을 목적으로 한다.

2. 적용범위

이 지침은 철강 및 금속 자재를 보관하거나 취급하는 모든 작업장에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다
 - (가) "위험(Danger)"이라 함은 사람에게 상해를 입히거나 건축물, 설비 등에 손상을 주는 원인이 되는 잠재적인 위험성이나 유해성을 말한다.
 - (나) "위험도(Risk)"라 함은 위험을 정량적인 방법으로 표현한 것을 말한다.
 - (다) "위험성 평가(Risk assessment)"라 함은 위험도를 사전에 평가하여 상해나 손 상을 가져오지 않도록 예방하기 위한 활동을 말한다.
- (2) 그 밖에 이 지침에 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 산업안전보건 기준에 관한 규칙 및 관련고시에서 정하는 바에 의한다.

4. 위험성 평가

4.1 철강 및 금속 자재 취급 시의 사고 유형

철강 및 금속 자재의 보관이나 취급 시 주로 발생하는 사고는 다음과 같다.

- (1) 수작업 시 근골격계 상해
- (2) 미끄러짐과 걸림
- (3) 추락
- (4) 운반 중인 자재에 의한 타격 및 충돌
- (5) 이동 중인 차량과의 충돌
- (6) 철강 및 금속 자재의 날카로운 모서리에 베이거나 잘림
- (7) 철강 및 금속 자재의 이동 혹은 수작업 시 협착으로 인한 상해
- 4.2 위험성 평가의 단계

위험성 평가는 다음과 같이 다섯 단계로 구분한다.

- (1) 위험요소들을 확인한다. 즉, 자재의 보관 및 취급과 관련된 주요 위험요소가 무엇인가를 확인한다.
- (2) 상해를 입을 가능성이 있는 작업자와 그가 어떻게 상해를 받게 되는가를 결정한다.
- (3) 위험을 평가하고 기존 예방책이 적절한지 혹은 그러한 예방책에 보완점은 없는 지를 결정한다.

- (4) 평가내용을 기록한다.
- (5) 필요할 경우 평가를 재검토하여 평가내용을 수정한다. 즉, 보관 및 취급 유형의 변화와 새로운 장비의 도입을 고려한다.

5. 철강 및 금속 자재의 보관

보관된 자재 가까이에서 일하는 사람들은 상당한 위험에 노출되어 있다. 따라서 보관 시스템 설계의 중요한 요소가 바로 안전이다. 보관 시스템은 작업자가 노출되는 안전 및 보건상의 위험을 최소화하고, 작업자가 위험지역으로부터 떨어져 있는 안전한 작업장소를 제공하도록 설계되고 또 운용되어야 한다.

- 5.1 보관시스템
- 5.1.1 보관시스템의 선택
 - (1) 자재의 유형과 안전성
 - (2) 예상되는 자재의 양
 - (3) 이동의 빈도
 - (4) 사용자의 요구사항
- 5.1.2 보관시스템의 종류

보관시스템의 종류는 <그림 1>과 같고 이들 시스템에 대한 특성은 <표 1>과 같다.

G - 20- 2011

(a) 캔틸레버형 래크

(b) 토스트 래크(판재)

(c) 토스트 래크(길이가 긴 자재)

(d) A자형 프레임

(e) 사다리 래크

(f) U자형 프레임

(g) 크래들

(h) 보관대

(i) 입형 코일 래크

(j) 입형 코일 바닥 래크

(k) 팰릿 래크

(l) 경사 코일 래크

<그림 1> 보관 래크의 종류

종류	보관 용량	보관 편이도 주요 위험요소
캔틸레버형 래크	작음	1. 적재 가능한 자재의 범위가 1. 과하중으로 래크가 휘어지 넓음
토스트 래크 (판재)	큳	1. 모든 자재에 쉽게 적용할 1. 과하중으로 래크에 적재할 수 있음 수 없음 2. 칸이 작고, 각 칸마다 한 2. 무너져 내릴 수 있음 종류의 자재만 보관 3. 추락 가능성이 있음
토스트 래크 (길이가 긴 자재)	작음	1. 유사한 유형의 자재들이 1. 수작업 필요 같은 칸에 보관 가능 2. 안전하게 자재를 끌어내리 2. 래크의 윗부분으로 넘기기 기 위해 큰 자재는 그에 맞는 면적이 필요 보다는 양쪽 방향에서 맞는 면적이 필요 적재 필요 3. 물품은 정확한 위치에 보관 3. 양 측면 모두 같은 접근 폭이 요구 되어야 함
A자형 프레임	작음	1. 한 대당 하나의 물품을 적 1. 지게차와의 충돌 등으로 재하고, 낮은 대에 무거운 자재를 보관 프레임이 붕괴되거나 기울어 질 수 있음 2. 양 측면 접근 가능 2. 선반 측면으로 올라갈 시 추락 가능성 있음
사다리 래크	중간	1. 접근이 용이하지 않음 1. 추락 2. 각 칸은 몇 개의 포켓으로 2. 수직 및 수평 부재의 휨과
U자형 프레임	아주 작음 (일시적 보관용)	1. 접근을 위해 모든 측면에 1. 충돌 공간이 필요 2. 자재를 뺄 때 움직일 수 2. 단일 자재에만 가능 있음 3. 적재 시 불안정성
크래들	중간	1. 전방위 접근이 가능 1. 보관된 자재의 불안정성 2. 한 층에 한 자재만 보관 2. 적재 시 불안정성 3. 자재 보관 시 미끄러짐, 걸림, 추락 등

종류	보관 용량	보관 편이도	주요 위험요소
보관대	중간 혹은 높음	 접근이 용이하지 않음 보관 자재를 빼내서 아래 층으로 넣기가 쉽지 않음 하단 보관대로 안전한 접근 이 쉽지 않음 	3. 미끄러짐과 걸림
입형 코일 래크	중간 혹은 높음	 작업자 혹은 지게차를 위한 충분한 공간이 확보 천정크레인 이용 가능 일시적 저장 시 사용 	 전재 더미의 불균형 묶어 놓은 부분이 끊어짐 날카로운 모서리 미끄러짐, 걸림 그리고 추락
입형 코일 바닥 래크	중간	 작업자의 접근이 용이하도 록 층마다 보관 가능 일시적 저장 시 사용 	 코일의 불균형 틈새와 코일 겹침 미끄러짐, 걸림 및 추락
팰릿 래크	중간	 지게차로 보관장소까지 손 쉽게 접근 판재와 코일 등 모든 자재 보관 가능 	2. 지게차와의 충돌 및 래크
경사 코일 래크	중간 (지게차 사용 시는 낮음)	 작업자 접근을 위해 층마다 보관 일시적 저장 시 사용 	1. 코일의 미끄러짐과 겹침 2. 미끄러짐, 걸림 및 추락

<표 1> 다양한 보관시스템의 특성

5.2 위험요소

(1) 추락

많은 치명적인 사고는 작업자가 불안전한 수단에 의지해 자재에 접근하려고 하거나 부적절한 보호구를 착용하고 높은 곳에서 일하다가 딱딱한 바닥이나 날카로운 모서리 등에 추락함으로써 발생한다.

(2) 시야 불량

G - 20- 2011

천정 크레인 운전자와 금속자재 운전자가 양호한 시야를 확보하지 못할 때 보행 인 등에 상해를 입힐 수 있다.

(3) 미끄러짐과 걸림

자재 표면은 미끄럽거나 불안정하고 편평하지 않을 수 있다. 이러한 상태로 말미 암아 미끄러짐의 위험이 상존한다.

(4) 자재의 낙하

자재의 낙하로 인한 머리 부분의 상해는 치명적인 결과를 초래할 수 있다.

5.3 방지대책

- (1) 작업장 내 통행로를 확보한다.
- (2) 작업장 내에서 시야를 확보하기 위해 작업구역을 한정하고 거울 등 보조도구를 설치한다.
- (3) 작업자가 자재 적재물에 올라가거나 위에서 걷지 못하게 한다.
- (4) 작업장 내 평면은 눈이나 물 등이 항시 제거된 상태여야 한다.
- (5) 작업자는 항상 안전모 등 안전보호구를 착용한다.
- (6) 적재된 자재의 높이를 안전한 상태로 제한한다.
- (7) 적재물의 이동을 제한한다.

6. 철강 및 금속 자재의 취급

운반은 자재 보유자가 고객이 요구하는 지점까지 가져가는 것을 말한다. 차량에 적 재하고, 운반하며, 하역하는 과정 중에 사고가 발생한다. 적합한 운반계획을 세워 실행하면 사고의 위험도를 줄일 수 있다.

6.1 안전한 운반계획

공급자와 고객간의 공급계약이 이루어지면 공급자는 고객이 물품에 대해 책임을 지는 지점까지 안전한 운송을 위한 계획을 수립한다. 배송계획은 관련 위험요소에 대한 평가에 근거하여 다음 사항들이 고려되어야 한다.

- (1) 자재의 유형
- (2) 단일 자재와 묶어 놓은 전체 자재의 무게
- (3) 차량의 적재 능력과 한계
- (4) 배송 요구사항
- (5) 장소 접근과 운송 제한
- (6) 계획된 하역 일정
- (7) 예상되는 하역체계와 필요한 장비의 유형 및 용량
- (8) 작업관련자, 특히 운전자의 역할과 책임

6.2 안전한 하역계획

(1) 안전한 하역작업을 계획할 때 고려해야 할 사항은 다음과 같다.

G - 20- 2011

- (가) 하역장소 및 위험요소
- (나) 차량 접근 제한사항 및 운전자 의무
- (다) 하역작업자 외 위험지역 접근 금지
- (라) 하역 및 운송 작업 시의 수작업 요구조건
- (마) 하역작업자의 안전한 접근 및 안전 작업장소 확보
- (바) 들어올리기 작업
- (사) 하역 작업자의 적절성
- (아) 안전 작업시스템
- (자) 감독체계
- (차) 안전한 작업 실행을 위한 기타 사항 (예: 기름칠한 자재는 미끄럼 위험이 있다.)
- (2) 공급자와 고객은 다음과 같이 사전에 준비된 안전한 운송을 위한 계획에 동의하고 그 실행을 감독해야 한다.
- (가) 하역 전 운반 차량을 위한 전용구역이 만들어져야 한다.
- (나) 하역을 위해 차량에 올라가야 할 필요가 없어야 한다.
- (다) 하역 전에 화물검사가 종료되어야 한다.
- (라) 승·하차에 필요한 안전한 수단이 제공되어야 하며 추락방지 조치가 취해져야 한다.
- (마) 적재 화물의 묶음이 풀어지지 않도록 해야 한다.

6.3 안전한 보관 원칙

(1) 보관시스템

목적에 맞게 설계되어야 하고, 안전한 접근로와 계획된 보관체계가 갖추어져야 한다.

(2) 들어올리기 작업

G - 20- 2011

들어올리기 작업은 가능하면 지게차 등으로 해야 하고, 미리 계획되고 감독되어 야 하며, 장비도 적절히 검사·유지 되어야 한다.

(3) 자재의 종류 표시

자재의 종류를 인식할 수 있도록 명확한 표시가 있어야 한다.

(4) 안전한 접근

작업자가 안전하게 작업할 수 있도록 적절한 안전 접근수단, 안전한 바닥과 통로 등이 준비되어야 한다.

(5) 안전한 작업 위치

작업자는 보관 물품에 올라가거나, 그 위에서 걷거나 하여 미끄럼 등의 위험 행위가 없도록 안전한 위치에서 작업할 수 있어야 한다.

(6) 배송 계획

물품 배송은 미리 계획되고, 그 내용이 작업자에게 정확히 전달되어야 한다. 이때 작업자는 적절히 훈련받은 능력 있는 자에 한해야 한다.

(7) 수작업

모든 수작업은 위험성 평가에 따라야 하고 위험 가능성이 있는 곳은 어디나 피해야 한다.

(8) 관리

양호한 작업장 관리는 미끄러짐과 걸림, 그리고 추락 등을 방지하는데 필수적이다.

6.4 들어올리기 작업

G - 20- 2011

안전한 들어올리기 작업을 위한 요구사항은 다음과 같다.

- (1) 작업에 적절한 들어올리기를 위한 장비와 그 부속품
- (2) 제조자로부터 제공된 사용설명서
- (3) 작업자가 위험지역에 들어가거나 자재 사이로 협착되는 것 등을 피할 수 있는 안전한 작업시스템
- (4) 작업자가 물품을 안전하게 적재 혹은 하역할 수 있는 안전한 작업지역
- (5) 작업자의 적절한 훈련과 들어올리기 작업에 대한 감독
- (6) 크레인은 반드시 들어올리기 작업에서만 사용되어야 한다. 머리 위로 물품을 이 동시키는 것은 가능한 한 피해야 한다.

7. 보관시스템의 검사와 유지·보수

7.1 보관시스템의 검사

보관시스템은 항상 양호한 상태를 유지해야 한다. 따라서 결함이 있는 장비는 즉각 검사를 하고, 사용 전에 수리 혹은 교체되어야 한다. 모든 장비는 사용 전·후 검사 를 매일 시행해야 한다. 여러 유형의 장비에 대한 검사 횟수는 <표 2>와 같다.

7.2 정보, 지침, 훈련 및 감독

작업자가 안전한 작업을 수행하기 위해서는 그가 하고 있는 작업이 그의 건강과 안전에 줄 수 있는 위험의 성격을 인지하고, 그러한 위험에 대한 적절한 조치를 이 해하도록 훈련되어야 한다. 이를 위한 훈련의 적절한 지침과 나아가 감독체제가 뒷 받침되어야 한다.

(1) 정보와 지침

사업주는 근로자가 필요로 하는 정보를 위험성 평가, 배송계획, 안전정책, 작업시스템으로 구분하여 문서화해야 한다. 근로자는 작업장 내 위험요소의 성격, 위험성 평가의 내용과 결론, 회사의 안전정책, 위험 및 안전지역, 표지, 개인 보호구등에 대해 알고 있어야 한다.

(2) 훈련

모든 작업 관련자는 위험에 노출되기 전에 계획에 따라 훈련되어 안전하게 작업을 수행할 수 있어야 한다. 이 훈련에는 장비의 작동법, 위험요소, 안전 작동시스템, 검사 및 유지방법 등이 포함된다.

(3) 감독

감독자는 훈련되고 자격을 갖춘 자로 작업자의 건강과 안전에 관한 그의 책임이 명확히 규정되어야 한다. 따라서 감독자는 작업장 내 위험요소와 요구되는 조치 에 대해 완전히 이해를 해야 한다.

<표 2> 주요 장비 및 시스템의 검사 시기

내용	검사 횟수
크레인 등 들어올리기 장비	매일 사용 전 작동자가 제조자의 설명서에 따라 검사하고 1년 단위로 검사 시행
크레인, 투석기, 로프, 포크 리프트 체인 등	매일 사용 전 작동자가 설명서에 따라 검사 하고, 6개월 단위로 검사 시행
보관 시스템	매일 사용 전 작동자가 검사하고, 주간 혹은 월간 단위로 시각 검사를 시행하며, 최소 1년 단위로 정밀 검사
바닥, 안내 레일, 방책	사용 전 매일 작동자가 검사하고, 정기적인 시각 조사
보관 시스템의 올바른 사용	매일 사용 전 작동자가 검사하고, 월간 단위 로 시각 조사