Function Design and Modularization

Function 1: Factorial of a Number

The factorial of a number is the product of all positive integers less than or equal to that number. It's denoted by n!.

Pseudocode

```
FUNCTION factorial(n)

IF n EQUALS 0 THEN

RETURN 1

ELSE

RETURN n MULTIPLIED BY factorial(n MINUS 1)

ENDIF

ENDFUNCTION
```

Function 2: Nth Fibonacci Number

The Fibonacci sequence is a series of numbers where a number is the sum of the two preceding ones, usually starting with 0 and 1.

Pseudocode

ENDFUNCTION

```
FUNCTION fibonacci(n)

IF n EQUALS 0 THEN

RETURN 0

ELSE IF n EQUALS 1 THEN

RETURN 1

ELSE

RETURN fibonacci(n -1) PLUS fibonacci(n -2)

ENDIF
```

Benefits of Modularity in Programming

Modularity in programming refers to the process of breaking a large into separate sub-modules, where each has a specific job. The benefits of modularity include:

Code Reuse: Modules can be reused across multiple parts of an application, reducing redundancy and the amount of code you need to write.

Organization: Modules help keep related code grouped together, which makes the code easier to understand and maintain.

Ease of Maintenance: Changes to one module are less likely to impact other parts of the program, making it easier to update or add new features.

Faster Development: Multiple developers can work on separate modules at the same time, speeding up the development process.