阪大解答物理

出題の意図

- I. 太陽を中心とする惑星の運動を例にとり、大学教養課程で学ぶ力学に関して問う.
- II. 電磁場のポインティング・ベクトルを題材にとり、大学教養課程で学ぶ電磁気学に関して問う.
 - Ⅲ. 理想気体の状態変化を例にとり、大学教養課程で学ぶ熱学に関して問う.

解答例

I. 問 1. (ア) $\dot{\theta}$ (イ) $-\dot{\theta}$ (ウ) $r\dot{\theta}^2$ (エ) $2\dot{r}\dot{\theta}$ (オ) $r^2\dot{\theta}$

問 2.
$$\overrightarrow{e_r}$$
 平行成分 $m(\ddot{r}-r\dot{\theta}^2)=F$, $\overrightarrow{e_{\theta}}$ 平行成分 $m\frac{1}{r}\frac{d}{dt}(r^2\dot{\theta})=0$

問 3 .
$$\dot{S} = \frac{1}{2}r^2\dot{\theta}$$
 式 $L = 2m\dot{S}$

問4. 運動方程式の $\vec{e_{\theta}}$ に平行な成分は $m\frac{1}{r}\frac{d}{dt}(r^2\dot{\theta})=0$ なので, $r^2\dot{\theta}$ は時間に依らず一定. $\dot{S}=\frac{1}{2}r^2\dot{\theta}$ なので \dot{S} も時間に依らず一定.

問 5.
$$m\left(\ddot{r}-\frac{4\dot{S}^2}{r^3}\right)=F$$

問
$$6. r = \frac{l}{1+\epsilon\cos\theta}$$
 を時間微分して、 $\dot{r} = \frac{\epsilon l \sin\theta}{(1+\epsilon\cos\theta)^2}\dot{\theta}$ となる. r を代入して

$$\dot{r} = \frac{\varepsilon}{l} r^2 \dot{\theta} sin\theta$$
. さらに $\dot{S} = \frac{1}{2} r^2 \dot{\theta}$ を代入し, $\dot{r} = \frac{2\varepsilon \dot{S}}{l} sin\theta$.

問7.
$$F = -\frac{4m\dot{S}^2}{l} \frac{1}{r^2}$$

問8. 楕円の面積は a,b を代入して, $\pi ab = \frac{\pi l^2}{(1-\varepsilon^2)^{\frac{3}{2}}}$, 惑星の公転周期 T はこれを \dot{S}

で割ったものなので, $T=\frac{\pi l^2}{\dot{S}(1-\varepsilon^2)^{\frac{3}{2}}}$ となる. ケプラーの第3法則より α を惑星によら

ない定数として、
$$\left(\frac{\pi l^2}{\dot{s}(1-\varepsilon^2)^{\frac{3}{2}}}\right)^2 = \alpha a^3 = \alpha \left(\frac{l}{1-\varepsilon^2}\right)^3$$
、整理して、 $\frac{\pi^2 l^4}{\dot{s}^2(1-\varepsilon^2)^3}$ となり、 $\dot{S}^2 = \frac{\pi^2 l}{\alpha}$

とわかる. これを問 7 の F に代入して, $F = -\frac{4m}{l} \left(\frac{\pi^2 l}{\alpha}\right) \frac{1}{r^2} = -\frac{4\pi^2 m}{\alpha} \frac{1}{r^2}$ となり, F はm 以外には惑星によらない物理量でかけることがわかる.

II. 問 1.(ア) $-\vec{H} \cdot \frac{\partial \vec{B}}{\partial t}$ (イ) $\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ (ウ) $\frac{1}{2} \varepsilon_0 |\vec{E}|^2 + \frac{1}{2} \mu_0 |\vec{H}|^2$ (エ) $\vec{E} \cdot \vec{J}$ (オ) $\vec{E} \times \vec{H}$

間2. (1項) 体積 V の中に蓄えられた電磁エネルギーの時間変化率

(2項) 体積 V の中の電流に対して電場が単位時間にする仕事

(3項) 閉曲面 C を通して単位時間に出ていく電磁エネルギー

(式全体) 電磁エネルギーに関するエネルギー保存の法則

問3.
$$\frac{l}{\pi a^2 \sigma}$$
 問4. $r < a$ では $\frac{lr}{2\pi a^2}$, $r > a$ では $\frac{l}{2\pi r}$

問 5 .
$$\frac{I^2r}{2\pi^2a^4\sigma}$$
 問 6 . $-\frac{I^2L}{\pi a^2\sigma}$

問7. 問6の結果は閉曲面 C を通して電磁エネルギーが流入しているという結果であ

る. 単位時間に流入するエネルギーの量は $\frac{I^2L}{\pi a^2\sigma}$ であるが,長さ L の抵抗線の抵抗は $R = \frac{L}{\pi a^2\sigma}$ であるので,エネルギー量は RI^2 となりジュール熱と一致する.この設間では,E とH は時間変化しないので,体積 V に流れ込むエネルギーは全て電場が電流にする仕事として消費される.この設問ではこの仕事が最終的にジュール熱となることを示している.

III. 問 1.
$$Q = RT_1 \log \frac{{v_1}'}{v_1}$$
, $\Delta S = R \log \frac{{v_1}'}{v_1}$

問 2. 第一法則より d'Q=dU+d'W=dU+pdV (W は気体がする仕事), 理想気体の内部エネルギー U は温度 T にのみ依存し, $dU=C_VdT$, よって $d'Q=C_VdT+pdV=C_VdT+d(pV)-Vdp$. 理想気体の状態方程式 pV=RT より, $d'Q=C_VdT+d(RT)-Vdp=(C_V+R)dT-Vdp$. 定圧比熱の表式より, $C_p=\left(\frac{d'Q}{dt}\right)_n=C_V+R$.

問3. 第一法則と、理想気体の内部エネルギーが温度 T にのみ依存することより、 $d'Q=dU+pdV=C_VdT+pdV$. 断熱過程ではd'Q=0 より、 $C_VdT+pdV=0$.

問 4. 問 3 の式に理想気体の状態方程式を代入して $C_VdT+pdV=C_VdT+\frac{RT}{v}dV=0$.

問2の式を用いて整理して、 $C_V \frac{dT}{T} + R \frac{dV}{V} = C_V \frac{dT}{T} + (C_p - C_V) \frac{dV}{V} = 0$. 両辺を微分して

 $C_V \log T + (C_p - C_V) \log V = A$ (定数). 整理して $T^{C_V}V^{C_p - C_v} = A'$, $TV^{\gamma - 1} = A''$ ($\gamma = \frac{C_p}{C_V}$)

また, pV=RT より, $PVV^{\gamma-1}=PV^{\gamma}=A^{\prime\prime\prime}$. よって $PV^{\gamma}=$ 一定.

問 5. $V_2 = V_1 \left(\frac{P_1}{P_2}\right)^{\frac{1}{p}}$ 問 6. (1) 0 (2) $C_p \log \frac{V_1}{V_2}$ (3) $C_V \log \frac{P_1}{P_2}$

問7. エントロピーは状態量なのでPV平面上の閉経路 $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ での変化は0.

$$\text{\sharp} > \text{τ} C_p \log \frac{V_1}{V_2} + C_V \log \frac{P_1}{P_2} = 0, \quad \text{\sharp} > \text{τ}, \quad \left(\frac{V_1}{V_2}\right)^{C_p} \left(\frac{P_1}{P_2}\right)^{C_V} = 1 \quad \text{ξ} \not > 0, \quad V_2 = V_1 \left(\frac{P_1}{P_2}\right)^{\frac{1}{\gamma}}$$