# PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS - LOURDES

# DIEGO HENRIQUE XAVIER DOS SANTOS, MARCOS VINÍCIUS NUNES REIS, RAFAEL GEORGETTI GROSSI E VITOR DANIEL SILVA MELO

# **TRABALHO PRÁTICO - FASE II**ALGORITMOS E ESTRUTURAS DE DADOS III

# DIEGO HENRIQUE XAVIER DOS SANTOS, MARCOS VINÍCIUS NUNES REIS, RAFAEL GEORGETTI GROSSI E VITOR DANIEL SILVA MELO

# TRABALHO PRÁTICO - FASE II

## ALGORITMOS E ESTRUTURAS DE DADOS III

Trabalho apresentado ao curso superior de Ciência da Computação da PUC-MG Lourdes para o cumprimento das exigências da disciplina Algoritmos e Estruturas de Dados III

Orientador: Walisson Ferreira de Carvalho

# SUMÁRIO

| PROBLEMA                                                                                                                  | 4   |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| TEMA                                                                                                                      |     |
| DIAGRAMAS DE CASO DE USO                                                                                                  |     |
| DER CONCEITUAL                                                                                                            | .5  |
| FORMULÁRIO                                                                                                                |     |
| a) Qual a estrutura usada para representar os registros?                                                                  | . 5 |
| b) Como atributos multivalorados do tipo string foram tratados?                                                           | . 5 |
| c) Como foi implementada a exclusão lógica?                                                                               | . 5 |
| d) Além das PKs, quais outras chaves foram utilizadas nesta etapa?                                                        | . 5 |
| e) Quais tipos de estruturas (hash, B+ Tree, extensível, etc.) foram utilizadas para cada chave de pesquisa?              | . 5 |
| f) Como foi implementado o relacionamento 1:N (explique a lógica da navegação entre registros e integridade referencial)? | .6  |
| g) Como os índices são persistidos em disco? (formato, atualização, sincronização com o dados)                            |     |
| h) Como está estruturado o projeto no GitHub (pastas, módulos, arquitetura)?                                              | 6   |
| REPOSITÓRIO GITHUB                                                                                                        | . 6 |

### **PROBLEMA**

Durante o dia a dia, muitas pessoas, sejam estudantes ou trabalhadores, enfrentam dificuldades em gerenciar seu tempo para atividades pessoais. A dificuldade em visualizar ou categorizar suas prioridades e tarefas, acaba por gerar uma desorganização e até mesmo falta de motivação para conseguir equilibrar suas necessidades e tarefas.

### **TEMA**

Nossa aplicação se propõe a ser um gerenciador de tarefas pessoais, oferecendo ao usuário uma forma prática de cadastrar e organizar suas tarefas de forma prática e eficiente. Com o objetivo de facilitar a organização de sua rotina e garantir uma rotina mais produtiva e equilibrada.

### **DIAGRAMAS DE CASO DE USO**



### **DER CONCEITUAL**



# FORMULÁRIO

# a) Qual a estrutura usada para representar os registros?

A estrutura usada para representar o banco de dados foi através de arquivo binário/heap. O índice foi feito através de uma B+ Tree.

## b) Como atributos multivalorados do tipo string foram tratados?

Atributos multivalorados do tipo string foram tratados através de uma lista, com uma marcação de tamanho antes de seu início. A leitura do tamanho é feita por sentinela.

## c) Como foi implementada a exclusão lógica?

Implementação através de uma *flag* "ativo". Todos os registros possuem uma, caso esteja marcada, o arquivo está inativo.

### d) Além das PKs, quais outras chaves foram utilizadas nesta etapa?

Além das Primary Keys, foram utilizadas as chaves ID\_Usuário (Foreign Key de Tarefa).

# e) Quais tipos de estruturas (hash, B+ Tree, extensível, etc.) foram utilizadas para cada chave de pesquisa?

Estrutura B+ Tree utilizada para todos os índices primários e 1:N das tarefas.

# f) Como foi implementado o relacionamento 1:N (explique a lógica da navegação entre registros e integridade referencial)?

Em uma pesquisa de um relacionamento 1:N, a pesquisa inicia com a chave secundária. Após a chave secundária for encontrada, compara-se com uma outra lista que possui as chaves primárias.

# g) Como os índices são persistidos em disco? (formato, atualização, sincronização com os dados).

Os índices primário e secundário são armazenados em arquivos binários (tarefas.idx e tarefas\_usuario.idx, respectivamente). Eles utilizam uma estrutura de B+ Tree para facilitar buscas rápidas e manter a ordem dos dados. Cada operação de inserção, atualização ou exclusão de tarefas no banco de dados envolve uma atualização nos índices para garantir que as referências entre os dados e os índices estejam sempre sincronizadas.

### h) Como está estruturado o projeto no GitHub (pastas, módulos, arquitetura)?

Projeto estruturado com arquitetura MVC e DAO.

```
# Arquivos de documentação
- docs
— src
                        # Código-fonte do projeto
                        # Função principal a ser executada
 — Main.java
   controllers
                        # Controlador das operações do CRUD
  — dao
                        # Data Access Objects
 — data
                        # Registros e arquivos de índices
  models
                        # Entidades do projeto
  ____ structures
                        # Entidades de estruturas para chaves de pesquisa
 — views
                        # Interface do menu
```

## REPOSITÓRIO GITHUB

• <a href="https://github.com/vmelooo/tp-aeds3">https://github.com/vmelooo/tp-aeds3</a>