- Compute the value of e approximately by evaluating $\int_{0}^{1} e^{-x} dx \text{ using trapezoidal } \int_{|v_{l}|_{e}}^{e^{-x}} dx \text{ using trapezoidal } \int_{|v_{l}|_{e}}^{e^{-x}} dx \text{ using trapezoidal} dx \text{ using trapezoidal}$ 5. sub-intervals.
- Evaluate $\int_{-V}^{2} dx$ and $\int_{-X}^{4} dx$ from the following data using Simpson's one-third rule

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8
У	1	1.0414	1.0792	1.1139	1.1461	1.1761	1.2041	1.2304	1.2553 1.2788

- Evaluate $\int \log_e \sqrt{1+x} \ dx$ using Simpson's one-third rule with 8 sub-intervals.
- Evaluate $\int_{a}^{2} \frac{x^3}{e^x 1} dx$, using Simpson's one-third rule with 10 sub-intervals. 8.

Hint:
$$\left[\left(\frac{x^3}{e^x - 1} \right)_{x = 0} = \lim_{x \to 0} \left(\frac{x^3}{e^x - 1} \right) \right]$$

- Use Simpson's one-third rule with 6 sub-intervals to find the area contained between the 9. and the curve $4x^2 + 9y^2 = 36$.
- Compute $\int_{-\infty}^{6} \frac{1}{y} dx$ from the following data using Simpson's three-eight's rule. 10.

1	x	0	1	2	2	1		
	y	0.146	0.161	0.176	3	4	5	6
r	iver is 4	5 m wide		0.176	0.190	0.204	0.217	0.230
-	- 101 10 7	J III WINE	I ha damak	7 .				

A river is 45 m wide. The depth d in metres at a distance x metres from one bank is given 11. following data.

x		0	5	10	1.5	-				Log.	
dy		0	3	10	15	20	25	30	35	40	45
ind the	Cr	.088-880	otion - C	the minus	8	7	7	6	4	3	0

Find the cross-section of the river by Simpson's three-eight's rule.

A curve passes through the points below. 12.

	x	2	3	points b	elow.					
	y	0.7	1.0	13	1.5	6	7	8	9	10
Fin	d the v	olume of	f the soli	d general	1.5	1.7	1.9	2.1	2.3	2.4

Find the volume of the solid generated by revolving the area between the curve, the $x^{-3/2}$ the ordinates x = 1 and x = 10 about the x-axis using Simpson's three-eight's rule.

Evaluate
$$\int_{1}^{2} \frac{\sin x}{x} dx$$
 using Simpson's $\frac{3}{8}$ th rule with 6 sub-intervals.

Evaluate $\int_{0}^{\frac{\pi}{2}} e^{\sin x} dx$ using Simpson's $\frac{3}{8}$ th rule with 6 sub-intervals.

Evaluate $\int_{1}^{1} \frac{dx}{1+x^2}$ using trapezoidal rule and Simpson's $\frac{1}{3}$ rule with $h=\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{8}$

Evaluate $\int_{-\infty}^{1} \cos x^2 dx$ using trapezoidal rule and Simpson's $\frac{1}{3}$ rule with $h = \frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{8}$

Evaluate $\int \frac{dx}{\sqrt{x^4+1}}$ using Simpson's one-third rule with $h=\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{8}$.

Evaluate $\int_{-\infty}^{\infty} \frac{x dx}{\cos x}$ using Simpson's $\frac{1}{3}$ rule with $h = \frac{1}{4}$, $\frac{1}{8}$ and $\frac{1}{16}$.

Evaluate $\int_{0}^{\infty} \left(x + \frac{1}{x}\right) dx$ by Trapezoidal rule with 10 sub-intervals and find the error.

Evaluate $\int_{0}^{10} \left(x^2 + \frac{1}{x^2}\right) dx$ using Simpson's $\frac{1}{3}$ rule with 10 sub-intervals and find the error.

SUMMARY

After going through this chapter, you should be able to:

Different methods of numerical differentiation

Values of Derivatives of y Based on Newton's Forward Interpolation Formula

$$\frac{dy}{dx} \Big|_{x=x_0} = Dy_0 = \frac{1}{h} \left(\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \dots \right)$$

$$\begin{pmatrix} \frac{d^2 y}{dx^2} \\ \frac{d^3 y}{dx^3} \end{pmatrix}_{x=x_0} = D^2 y_0 = \frac{1}{h^2} \left(\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \dots \right)$$

 $\frac{\left(\frac{d^3y}{dx^3}\right)_{(x=x_0)}}{V_{\text{alues of Derivatives of }y}} = D^3y_0 = \frac{1}{h^3} \left(\Delta^3y_0 - \frac{3}{2}\Delta^4y_0 + \frac{7}{4}\Delta^5y_0 + \dots\right)$ $\frac{\left(\frac{d^3y}{dx^3}\right)_{(x=x_0)}}{\left(\frac{dy}{dy}\right)^{1/3}} = D^3y_0 = \frac{1}{h^3} \left(\Delta^3y_0 - \frac{3}{2}\Delta^4y_0 + \frac{7}{4}\Delta^5y_0 + \dots\right)$

Derivatives of y Based on Newton's Backward
$$\frac{dy}{dx}$$

$$= \frac{Dy_n}{h} = \frac{1}{h} \left(\nabla y_n - \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n + \dots \right)$$