Linear Algebra Homework 1: Orthogonality

Problem 1 (Parallel and orthogonal planes; 2pt). Determine whether the given planes are:

- (a) parallel:
 - (i) 4x y + 2z = 5 and 7x 3y + 4z = 8;
 - (ii) x 4y 3z 2 = 0 and 3x 12y 9z 7 = 0.
- (b) perpendicular:
 - (i) 3x y + z = 0 and x + 2z = -1;
 - (ii) x 2y + 3z = 4 and -2x + 5y + 4z = -1.

Problem 2 (Orthogonal complement; 3pt). (a) Let W be the plane in \mathbb{R}^3 with equation x-2y-3z=0. Find parametric equations for W^{\perp} .

- (b) Let W be the line in \mathbb{R}^3 with parametric equations $x=2t,\,y=-5t,\,z=4t.$ Find an equation for W^{\perp} .
- (c) Let W be the intersection of the two planes x + y + z = 0 and x y + z = 0 in \mathbb{R}^3 . Find an equation for W^{\perp} .

Problem 3 (Distance from a point; 4pt). (a) Find the distance between the point P = (1, 1, 0) and the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z+1}{2}$.

(b) Let π be a plane given by the equation ax + by + cz + d = 0 and $P(x_0, y_0, z_0)$ be a point outside it. Prove that the distance from P to π is given by the formula

$$\frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Hint: if Q is the point on π realizing the distance, then \overrightarrow{PQ} is collinear to $\mathbf{n}=(a,b,c)$ (why?). Take now any point Q' on π and find a projection of $\overrightarrow{PQ'}$ onto direction \mathbf{n}

- (c) Find the distance between the point P = (1,0,1) and the plane 2x + y z = 2.
- **Problem 4** (Cross product; 4pt). (a) For any two vectors $\mathbf{u} = (u_1, u_2, u_3)^{\top}$ and $\mathbf{v} = (v_1, v_2, v_3)^{\top}$, their **vector product**, or **cross product** $\mathbf{u} \times \mathbf{v}$ is the vector $\mathbf{w} = (w_1, w_2, w_3)^{\top}$ with entries

$$w_1 = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, \qquad w_2 = - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \qquad w_3 = \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}$$

Prove that \mathbf{w} is orthogonal to both \mathbf{u} and \mathbf{v} in the sense that $\mathbf{w}^{\mathsf{T}}\mathbf{u} = \mathbf{w}^{\mathsf{T}}\mathbf{v} = 0$.

Hint: these products are cofactor expansions of some 3×3 matrices

(b) Assume that $\mathbf{u}_1, \dots, \mathbf{u}_{n-1}$ are linearly independent vectors in \mathbb{R}^n . Find an analogous formula for the vector that is orthogonal to the subspace spanned by $\mathbf{u}_1, \dots, \mathbf{u}_{n-1}$.

Problem 5 (Orthogonal matrices; 4pt). (a) If Q_1 and Q_2 are orthogonal matrices, show that Q_1^{-1} and Q_1Q_2 are orthogonal as well.

(b) Prove that an orthogonal matrix that is also upper-triangular must be diagonal.

Problem 6 (Least squares solution; 4pt). Is there any value of s for which $x_1 = 1$ and $x_2 = 2$ is the least squares solution of the linear system below? Explain your reasoning.

$$x_1 - x_2 = 1,$$

 $2x_1 + 3x_2 = 1,$
 $4x_1 + 5x_2 = s.$

Problem 7 (Regression; 9pt). (a) Find the least squares straight line fit to the four points (0, 1), (2, 0), (3, 1), and (3, 2).

- (b) Find the quadratic polynomial that best fits the four points (2,0), (3,-10), (5,-48), and (6,-76).
- (c) Find the cubic polynomial that best fits the five points (-1, -14), (0, -5), (1, -4), (2, 1), and (3, 22).

Hint: the numbers are chosen so that $A^{T}A$ can easily be inverted. If, however, this is not so, ask Python or anybody else for a help.

Problem 8 (Least square solution; 5pt). Assume \mathbf{u}_1 and \mathbf{u}_2 are two orthogonal vectors in \mathbb{R}^n and set $\mathbf{a}_1 = \mathbf{u}_1$, $\mathbf{a}_2 = \mathbf{u}_1 + \varepsilon \mathbf{u}_2$. Let also A be the matrix with columns \mathbf{a}_1 and \mathbf{a}_2 and \mathbf{b} a vector linearly independent of \mathbf{a}_1 and \mathbf{a}_2 . In this problem, we discuss the least square solution to the system $A\mathbf{x} = \mathbf{b}$ as $\varepsilon \to 0$.

- (a) Calculate the matrix $A^{\top}A$, its inverse, and then $\hat{\mathbf{x}} = (A^{\top}A)^{-1}A^{\top}\mathbf{b}$ explicitly. Show that $\hat{\mathbf{x}}$ explodes as $\varepsilon \to 0$.
- (b) Calculate the projection $A\hat{\mathbf{x}}$ and check that it does not depend on ε . Explain the result.

Problem 9 (Gram-Schmidt; 3pt). Use the Gram-Schmidt process to transform the basis $\mathbf{u}_1, \dots, \mathbf{u}_k$ into an orthonormal basis.

- (a) $\mathbf{u}_1 = (1,3), \mathbf{u}_2 = (2,-2);$
- (b) $\mathbf{u}_1 = (1, 0, 1), \mathbf{u}_2 = (1, 3, -2), \mathbf{u}_3 = (0, 2, 1)$

Problem 10 (QR; 5pt). Find the QR-decomposition of the matrix using the Gram–Schmidt algorithm:

(a)
$$\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
; (b) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 4 \end{pmatrix}$; (c) $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$

Problem 11 (Householder reflection and QR; 7 pts). (a) Find the unit vector $\mathbf{u} \in \mathbb{R}^2$ such that the Householder reflection $Q_{\mathbf{u}} := I - 2\mathbf{u}\mathbf{u}^{\top}$ maps the vector $(1,2)^{\top}$ onto a vector collinear to $(1,0)^{\top}$

- (b) explain how $Q_{\mathbf{u}}$ helps to derive the QR factorization of the matrix (a) of Problem 10.
- (c) Find the QR-factorization of matrices in (b) and (c) of Problem 10 using the Householder reflections approach.