

Estructura I

Autor: Cristian Jeldes

Estructuras básicas

Arreglo

Insertar: Constante

Buscar: N

índice →

Actualizar: Constante

Sacar: Constante

Agrandar: N

Listas

Lista enlazada

Insertar: Constante

Buscar: N

Actualizar: N

Sacar: N

Agrandar: Constante

Pila

Insertar: Constante

Buscar: N

Actualizar: N

Sacar: Constante

Agrandar: Constante

Cola

Buscar: N

Actualizar: N

Sacar: Constante

Agrandar: N

Árbol Binario Balanceado

Insertar: Log(N)

Buscar : Log(N)

Actualizar: Log(N)

Sacar: Log(N)

Agrandar: Constante

Algoritmo de Ordenamiento

QuickSort

(https://www.youtube.com/watch?v=tIYMCYooo3c)

QuickSort

```
def quicksort(L, first, last):
   i = first
    j = last
   pivote = (L[i] + L[j]) / 2
   while i < j:
       while L[i] < pivote:
       while L[j] > pivote:
            j-=1
       if i < = j:
            swap(L[i],L[j])
   if first < j:</pre>
       L = quicksort(L, first, j)
    if last > i:
       L = quicksort(L, i, last)
   return L
```


Algoritmos de Búsqueda

Lineal

Complejidad: O(N*Q)

N = Número de elementos
Q = Querys/Consultas

Binary Search

Complejidad: O(Log(N)*Q)

N = Número de elementos
Q = Querys/Consultas

Binary Search

Binary Search

```
int busquedaBinaria(int vector[], int n, int dato)
   int centro, inf=0, sup=n-1;
  while(inf<=sup){
     centro=(sup+inf)/2;
     if(vector[centro] == dato) return centro;
     else if(dato < vector [centro] ){
        sup=centro-1;
     else {
       inf=centro+1;
   return -1;
```


Problema de búsqueda en espacios numéricos

Tengo una función lineal creciente y necesito encontrar un valor v tal que al evaluar f(x) en v, el resultado sea k. ¿Cómo lo puedo hacer?

Exponential Search

Complejidad: O(Log(N)*Q)

N = Número de elementos
Q = Querys/Consultas

Exponential Search

UdeSantiago

F(x) = x/2, k=896

х	f(x)	> k?	< k ?	Fin?
1	0.5		Si	
2	1		Si	
4	2		Si	
8	4		Si	
16	8		Si	
32	16		Si	
64	32		Si	
128	64		Si	
256	128		Si	
512	256		Si	
1024	512		Si	
2048	1024	Si		
1536	768		Si	
1792	896			Si

Problema adicional

Tengo 2 celulares muy resistentes y un edificio de 100 pisos, ¿Cuál es el piso del que si tiro un celular, este se rompe?

Aplicaciones de la búsqueda binaria

13	21	25	33	34
16	21	33	35	35
16	33	33	45	50
23	51	66	83	93

13	21	25	33	34
16	21	33	35	35
16	33	33	45	50
23	51	66	83	93

13	21	25	33	34
16	21	33	35	35
16	33	33	45	50
23	51	66	83	93

interval=[20,90]

interval=[33,35]

interval=[20,100]

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlineju dge&Itemid=8&page=show_problem&problem=2479

Aproximar un resultado

Tip: Iterar entre 20~50 veces como máximo. Sino TLE.

Similar:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4038