Modern Fizika Laboratórium Fizika Bsc.

19. Elektron fajlagos töltése

A mérést távoktatásban végezte:

Sándor Szende

A mérés ideje: 2020.04.22, 8.00-12.00

Szerdai csoport

A beadás ideje: 2020. május 22.

1. A mérés célja

Megmérni az elektron fajlagos töltését a Thomson-féle kísérletet megismételve, majd az elektron töltésének ismeretében kiszámolni az elektron tömegét.

2. Elméleti összefoglaló

Abból indulok ki, hogy egy e töltésű elektron, ha v sebességgel mozog homogén mágneses térben, akkor Lorentz-erő hat rá:

$$F = evB$$
.

A Lorentz-erő a pálya minden pontjában merőleges a pálya érintőjére, ezért körpályára kényszeríti az elektront:

$$F = m_e \frac{v^2}{r}$$

A két egyenlet jobb oldala egyenlő, ezért a fajlagos töltés így alakul:

$$\frac{e}{m_e} = \frac{v}{rB}$$

Az elektronok egy U gyorsítófeszültség hatására lépnek ki, ezért mozgási energiájuk:

$$eU = \frac{1}{2}m_e v^2$$

Ezt behelyettesítve az előző egyenletbe, a fajlagos töltés alakja így alakul:

$$\frac{e}{m_e} = \frac{2U}{r^2 B^2}$$

Emellett felhasználjuk, hogy

$$B = kI$$
.

3. Mérés menete

Az adatokat a laborvezető küldte el a távmérés keretein belül, de lemérni az alábbi elgondolás alapján kellett:

A mérés során először kalibráltuk a Helmholtz-tekercseket a Hall-szonda segítségével. Itt az I és az U mennyiségeket mérve meghatározhatjuk a mágneses teret, hiszen $B = \alpha U_{Hall}$, ahol $\alpha = 8.5 \cdot 10^{-2} \ \frac{mT}{mV}$, ez pedig segít a k állandó meghatározásában.

Ezután 3 különböző feszültségértéknél megmértük az áramerősség függvényében az átmérő-ket, ami által meghatározhatóvá vált a fajlagos töltés. Majd reprodukálhatósági mérést végeztünk, hogy tudjunk hibát számolni.

Az illesztésekhez pythont használtam.

4. Mért adatok és számolások

4.1. Helmholtz-tekercsek kalibrálása

$$B = \alpha U_{Hall}$$
,

19. Fajlagos töltés

ahol $\alpha = 8.5 \cdot 10^{-2} \ \frac{mT}{mV}$ Mivel tudjuk, hogy

$$B = kI$$
,

ezért egy egyenest illesztve ezekre az adatokra, megkaphatjuk a k értékét:

I [A]	U [mV]	B [mT]	I [A]	U [mV]	B [mT]
0.4	5	0.425	0.9	9.7	0.825
0.5	4.9	0.417	1	10.8	0.918
0.6	6	0.510	1.1	12.1	1.029
0.7	7.8	0.663	1.2	13.4	1.139
0.8	8.4	0.714	1.3	14.1	1.199

1. táblázat. Hall-feszültség adatok

Az adatpontokra az y = ax egyenest illesztve, megkaptam a k állandóra az alábbi értéket:

$$k = 0.00092 \pm 5.664 \cdot 10^{-5} \ \frac{T}{A}$$

4.2. U=130 V

Mivel:

$$\frac{1}{B^2} = \frac{e}{m_e} \frac{1}{2} \frac{r^2}{U},$$

ezért $\frac{2}{B^2}$ -et ábrázolva $\frac{r^2}{U}$ függvényében meg is határozható az $\frac{e}{m_e}$ A táblázatokban az első két oszlop a mért adat, a többi pedig számolt a különböző összefüggésekből, Excel segítségével.

I [A]	d [cm]	r [m]	B [T]	$\frac{r^2}{U} \left[\frac{m^2}{V} \right]$	$\frac{2}{B^2} \left[\frac{1}{T^2} \right]$
0.8	11.4	0.057	0.000736	2.49923E-05	3692107.75
0.85	10.7	0.0535	0.000782	2.20173E-05	3270517.592
0.9	9.8	0.049	0.000828	1.84692E-05	2917220.939
0.95	9.4	0.047	0.000874	1.69923E-05	2618225.995
1	8.5	0.0425	0.00092	1.38942E-05	2362948.96
1.05	8	0.04	0.000966	1.23077E-05	2143264.363
1.1	7.6	0.038	0.001012	1.11077E-05	1952850.38
1.15	7.1	0.0355	0.001058	9.69423E-06	1786728.892
1.2	6.8	0.034	0.001104	8.89231E-06	1640936.778
1.25	6.4	0.032	0.00115	7.87692E-06	1512287.335
1.3	6.2	0.031	0.001196	7.39231E-06	1398194.651

2. táblázat. U=130 V

Az illesztés során a következő értéket kaptam $\frac{e}{m_e}\text{-re:}$

$$\frac{e}{m_e} = (1.631 \pm -0.39) \cdot 10^{11} \frac{C}{kg},$$

ahol a szorzás 10¹¹-el azért szerepel, mert csak úgy volt hajlandó egyenest illeszteni a python az adatokra ha az x-t 1e5-el megszoroztam, az y-t pedig 1e5-el elosztottam, hogy egy nagyságrendbe kerüljenek.

4.3. U=170 V

I [A]	d [cm]	r [m]	B [T]	$\frac{r^2}{U} \left[\frac{m^2}{V} \right]$	$\frac{2}{B^2} \left[\frac{1}{T^2} \right]$
0.9	11.8	0.059	0.000828	2.04765E-05	2917220.939
0.95	11.3	0.0565	0.000874	1.87779E-05	2618225.995
1	10.7	0.0535	0.00092	1.68368E-05	2362948.96
1.05	10	0.05	0.000966	1.47059E-05	2143264.363
1.1	9.4	0.047	0.001012	1.29941E-05	1952850.38
1.15	9.1	0.0455	0.001058	1.21779E-05	1786728.892
1.2	8.6	0.043	0.001104	1.08765E-05	1640936.778
1.25	7.9	0.0395	0.00115	9.17794E-06	1512287.335
1.3	7.7	0.0385	0.001196	8.71912E-06	1398194.651

3. táblázat. U=170

Ekkor:

$$\frac{e}{m_e} = (1.461 \pm -0.07) \cdot 10^{11} \ \frac{C}{kg}$$

4.4. U=220 V

5. EREDMÉNYEK

I [A]	d [cm]	r [m]	B [T]	$\frac{r^2}{U} \left[\frac{m^2}{V} \right]$	$\frac{2}{B^2} \left[\frac{1}{T^2} \right]$
1.1	11.5	0.0575	0.001012	1.50284E-05	1952850.38
1.15	10.9	0.0545	0.001058	1.35011E-05	1786728.892
1.2	10.4	0.052	0.001104	1.22909E-05	1640936.778
1.25	9.8	0.049	0.00115	1.09136E-05	1512287.335
1.3	9.5	0.0475	0.001196	1.02557E-05	1398194.651
1.35	9.1	0.0455	0.001242	9.41023E-06	1296542.639
1.4	8.8	0.044	0.001288	0.0000088	1205586.204
1.43	8.5	0.0425	0.0013156	8.21023E-06	1155532.769

4. táblázat. U=220 V

Ekkor:

$$\frac{e}{m_e} = (1.358 \pm -0.09) \cdot 10^{11} \frac{C}{kg}$$

4.5. Átmérő reprodukálhatósága

Ha I = 1.4 A és U = 220 V, akkor így alakulnak az átmérők:

5. Eredmények

A mágneses tér és az átmérőmérés hibájából a következő realtív hiba adódik, amit fel is tűntetek a 6-ik táblázatban (ahol az adott hiba úgy jött ki, hogy a relatív hibát beszorzom a kapott értékkel):

$$\frac{\Delta \frac{e}{m}}{\frac{e}{m}} = 2 \cdot \frac{\Delta B}{B} + 2 \cdot \frac{\Delta r}{r} = 0.108619$$

 $\Delta B = 5.664 \cdot 10^{-5}$ az illesztés hibája,

 $\Delta r = 0.0024$ a statisztikus hiba.

	d [cm]	d [m]	r [m]
	8.80	0.088	0.0440
	8.90	0.089	0.0445
	8.90	0.089	0.0445
	8.90	0.089	0.0445
	8.80	0.088	0.0440
\overline{d}	8.86	0.0886	0.0443

5. táblázat. Átmérő reprodukálhatósága

	U [V]	$\frac{e}{m_3} \left[\frac{C}{kg} \right]$	$\frac{e}{m_3} \pm \Delta \frac{e}{m_3} \left[\frac{C}{kg} \right]$
	130	$1.63 \cdot 10^{11}$	$(1.63 \pm 0.18) \cdot 10^{11}$
	170	$1.46 \cdot 10^{11}$	$(1.46 \pm 0.16) \cdot 10^{11}$
	220	$1.36 \cdot 10^{11}$	$(1.36 \pm 0.15) \cdot 10^{11}$
Átlagok	-	$1.48 \cdot 10^{11}$	

6. táblázat. Fajlagos töltések átlaga és hibái

Ha átlagoljuk a 3 effektív töltés értékét, akkor a következő abszolút hibát kapjuk:

$$\Delta \frac{e}{m} = \frac{\left|\frac{\overline{e}}{m} - (\frac{e}{m})_{130}\right| + \left|\frac{\overline{e}}{m} - (\frac{e}{m})_{170}\right| + \left|\frac{\overline{e}}{m} - (\frac{e}{m})_{220}\right|}{3} = 0.099 \cdot 10^{11} \frac{C}{kg}$$

Én végső értéknek az előbbit veszem, mert az nagyobb hibát ad, így ez lesz végül a fajlagos töltés értéke:

$$\frac{e}{m_e} = (1.48 \pm 0.16) \cdot 10^{11} \frac{C}{kq}$$

Felhasználva az elektron töltését, ami

$$q_e = 1.602176487 \cdot 10^{19} C$$

Az elektron tömegére az alábbi értéket kapjuk:

$$\epsilon = \frac{e}{m_e}$$

$$m_e = \frac{e}{\epsilon} = (10.38 \pm 1.13) \cdot 10^{-31} \ kg$$

Azonban, ha $\frac{e}{m_e}$ -nek azt az értéket veszem, ami az U=130 V-nál, mértünk, akkor jóval közelebb állunk a helyes értékhez:

$$m_e = (9.82 \pm 1.07) \cdot 10^{-31} \ kg$$

Az irodalmi értéke az elektron tömegének a következő:

$$m_e = 9.109382 \cdot 10^{-31}$$

a mi eltéréünk ettől: 12.24%, ha az átlaggal számolt értéket vesszük alapul.

6. Diszkusszió

A számolásaim alapján az kapott elektrontömeg nagyságrendileg megegyezik az irodalmi értéktől, és attól csak 12.24%-al tér el, amit én elfogadható eltérésnek tartok a labor eszközeihez mérten.

Azért választottam két helyen is a statisztikus hibaterjedést, mert átlagot kellett számolni ott, és ott azt tartottam a legegyszerűbbnek és ezáltal kézenfekvőnek.

A fajlagos töltés meghatározásánál viszont nem volt ilyen kapcsolat, ezért ott a többváltozós hibaterjedést alkalmaztam, hiszen két változónak volt hibája, és azok négyzetesen szerepeltek az összefüggésben.

A kétféleképpen kiszámolt fajlagos töltés hibája között az a különbség, hogy a többváltozós hibaterjedés többmindent vesz figyelembe, ezáltal pontosabban adja vissza a hibát, ezért is használtam azt a további kiértékeléshez.

A megjegyzéseket javítottam.

7. Hivatkozások

[1]- Hegyi Ádám-Az elektron fajlagos töltése 2015.február- elérhető a modern fizika labor honlapján [2]-Havcsák Károly-Fizikai mérések 2013-klasszikus fizika labor honlapján elérhető, a hibaszámításhoz használtam.