Estadística Inferencial

Capítulo X - Ejercicio 61

Aaric Llerena Medina

La compañía de transporte interprovincial "CARGA" debe decidir si compra la marca A o la marca B de neumáticos para su flota de camiones. Para estimar la diferencia entre las dos marcas asignó un neumático de cada marca a las ruedas delanteras de 12 ómnibus y se registraron en miles de kilómetros las siguientes distancias:

Camión	1	2	3	4	5	6	7	8	9	10	11	12
Marca A	50	47	38	44	35	36	44	48	46	48	49	51
Marca B	45	43	30	39	35	31	42	44	37	46	48	52

Utilizando un nivel de significación del 5%, ¿se puede concluir que los promedios de rendimiento son iguales en ambas marcas con una prueba bilateral? Suponga que las diferencias de las distancias se distribuyen en forma normal.

Solución:

Camión	Marca A	Marca B	d_i	$\left(d_i - \bar{d}\right)^2$
1	50	45	5	1.78
2	47	43	4	0.11
3	38	30	8	18.78
4	44	39	5	1.78
5	35	35	0	13.44
6	36	31	5	1.78
7	44	42	2	2.78
8	48	44	4	0.11
9	46	37	9	28.44
10	48	46	2	2.78
11	49	48	1	7.11
12	51	52	-1	21.78
	Suma	44	100.67	
	Promedio	3.667		

En la tabla mostrada se analizan 12 camiones con la marca A y marca B.

Asimismo, se plantean las hipótesis:

$$H_0: \mu_A = \mu_B$$
 contra $H_1: \mu_A \neq \mu_B$

donde μ_A y μ_B son los promedios de rendimiento de las marcas A y B, respectivamente. Para ello, se calcula la media y desviación estándar de las diferencias:

$$\bar{d} = \frac{\sum d_i}{n} = \frac{44}{12} = 3.67$$

$$s_d = \sqrt{\frac{\sum (d_i - \bar{d})^2}{n - 1}} = \sqrt{\frac{100.67}{11}} \approx 3.025$$

Usando el estadístico t de Student:

$$t = \frac{\bar{d}}{s_d/\sqrt{n}} = \frac{3.67}{3.025/\sqrt{12}} = \frac{3.67}{0.8732} \approx 4.2029$$

Valor crítico para $\alpha = 0.05$ (bilateral, $\nu = 11$):

$$t_{1-0.05/2,11} = 2.201$$
 o $t_{1-0.05/2,11} = -2.201$

La regla de decisión es:

- Si $|t_{\text{calc}}| > t_{\alpha/2, n-1}$, se rechaza H_0 .
- Si $|t_{\text{calc}}| \leq t_{\alpha/2,n-1}$, no se rechaza H_0 .

Comparando el valor obtenido de 4.2029 es menor que 2.201, por lo que se rechaza H_0 .