1

Funkcje

W tym rozdziale przedstawione zostaną funkcje oraz pewne ich własności.

1.1 Odwzorowania i ich własności

Definicja 1. Niech A, B będą danymi zbiorami. Przyporządkowanie każdemu elementowi x ze zbioru A dokładnie jednego elementu y ze zbioru B nazywamy odwzorowaniem, bądź funkcją, ze zbioru A w zbiór B. Zależność tą oznaczamy w następujący sposób:

$$f(x) = y$$

Definicja 2. Elementy ze zbioru A, z definicji 1 nazywamy argumentami funkcji f.

Definicja 3. Zbiór argumentów funkcji f nazywamy dziedziną funkcji f.

Definicja 4. Zbiór B, z definicji 1 nazywamy przeciwdziedziną funkcji f.

Przydatne będzie następujące oznaczenie:

Definicja 5. Niech f będzie funkcją określoną jak w definicji 1. Ponadto, niech $C \subset A$, wtedy:

$$f(C) = \{ f(c) \in B : c \in C \}$$

Zbiór ten nazywamy, obrazem zbioru C.

Definicja 6. Niech f będzie funkcją określoną jak w definicji 1. Wtedy zbiór

$$Y = f(A)$$

nazywamy zbiorem wartości funkcji.

Uwaga 1. Na ogół terminy: zbiór wartości funkcji oraz przeciwdziedzina uznaje się za równoważne.

2 1. FUNKCJE

Definicja 7. Niech f będzie funkcją określoną jak w definicji 1. Ponadto, niech $D \subset B$, wtedy:

$$f^{-1}(D) = \{ a \in A : f(a) \in D \}$$

Zbiór ten nazywamy, przeciwobrazem zbioru D.

Definicja 8. Wykresem odwzorowania $f:X\to Y$ nazywamy zbiór $\Gamma_f=\{(x,y):x\in X\land y=f(x)\}$

Teraz zobaczmy kilka przykładów zastosowania powyższych definicji w praktyce. Będziemy używali oznaczeń takich jak w definicji 1.

Przykład 1. Niech

$$y = f(x) = x^2$$

$$A = <-1;1>$$

$$B = <0; 1 >$$

Rysunek 1.1: Wykres funkcji $y=x^2$

 $Jak \ wygląda \ przeciwobraz \ zbioru < \frac{1}{4}, 1 > ?$

Rysunek 1.2: Odczytywanie przeciwobrazu zbioru < $\frac{1}{4}, 1 >$ względem odwzorowania $y = x^2$

Stąd widać, że $f^{-1}(<\frac{1}{4},1>)=<-1,-\frac{1}{2}>\cup<\frac{1}{2},1>.$ Podobnie, łatwo odczytujemy, że $f^{-1}(<0,1>)=<-1,1>.$

Teraz sprwdźmy jak to wygląda dla funkcji liniowych.

Przykład 2. y = 2x + 1,

Tutaj z kolei mamy $A = \mathbb{R}$, oraz $B = \mathbb{R}$.

Rysunek 1.3: Wykres funkcji y = 2x + 1

Przykład 3. $y = \sin(x)$,

Tutaj z kolei mamy $A = \mathbb{R}$, oraz B = <-1, 1>.

1. FUNKCJE

Rysunek 1.4: Wykres funkcji $y = \sin(x)$

Przykład 4. y = [x] - funkcja ta każdej liczbie x przyporządkowuje największą liczbę całkowitą, nie większą od x.

Tutaj z kolei mamy $A = \mathbb{R}$, oraz $B = \mathbb{Z}$.

Rysunek 1.5: Wykres funkcji y = [x]

Definicja 9. Złożeniem odwzorowań $f: X \to Y$ i $g: Y \to Z$ nazywamy odwzorowanie $h = g \circ f: X \to Z$ takie, że dla każdego $x \in X$, zachodzi $(g \circ f)(x) = g(f(x))$.

Definicja 10. Niech $f: X \to Y \land A \subset X$. Odwzorowanie $g: A \to Y$ nazywamy zawężeniem (restrykcją) funkcji f do zbioru A, jeśli dla każdego $x \in A$ zachodzi równość g(x) = f(x).

Definicja 11. Niech $f: X \to Y$. Odwzorowanie f nazywamy injekcją, jeżeli

$$\forall x_1, x_2 \in X : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2).$$

Oznaczenie 1. Zamiast pojęcia injekcja, często można spotkać się z nazwami takim jak: odwzorowanie jednokrotne lub różnowartościowe. Wszystkie te pojęcia są równoważne.

Definicja 12. Niech $f: X \to Y$. Odwzorowanie f nazywamy surjekcją (lub ódwzorowaniem na"), jeżeli f(X) = Y.

5

Definicja 13. Jeśli odwzorwanie f jest surjekcją oraz injekcją, to f nazywamy bijekcją albo odwzorowaniem wzajemnie jednoznacznym.

Przykład 5. Niech $A = A_1 \times A_2 \times \cdots \times A_n$. Zdefiniujmy następujące odwzorowania:

$$P_j: A \to A_j: P_j(a_1, a_2, \dots, a_n) = a_j, dla \ j = 1, \dots, n.$$

Funkcję taką nazywamy projekcją zbioru A na zbiór A_j . P_j jest surjekcją na A_j , jeśli $A_j \neq \emptyset$.

Przykład 6. Weźmy $f(x) = 2^x$, $x \in \mathbb{R}$.

Rysunek 1.6: Wykres funkcji $y = 2^x$

To odwzorowanie jest injekcją.

Przykład 7. Weźmy $f(x) = \tan(x), x \in (-\frac{\pi}{2}, \frac{\pi}{2}).$

Rysunek 1.7: Wykres funkcji $y = \tan(x)$

Mamy tutaj $f((-\frac{\pi}{2}, \frac{\pi}{2})) = \mathbb{R}$, zatem odwzorowanie to jest surjekcją. Latwo zauważyć, że przy tak dobranej dziedzinie, odwzorowanie to jest również injekcją. Stąd f jest surjekcją.

6 1. FUNKCJE

Oznaczenie 2. Niech $f: X \to Y$. Przez I_X oznaczamy odwzorowanie identycznościowe w zbiorze X, tzn., że $I_X: X \to X$ oraz dla każdego $x \in X$ zachodzi: $I_X(x) = x$. Analogicznie definiujemy identyczność w Y

Definicja 14. Jeśli odwzorowania $f: X \to Y, g: Y \to X$, spełniają warunki:

- $g \circ f = I_X$, tzn. g(f(x)) = x, $dla \ każdego \ x \in X$,
- $f \circ g = I_Y$, tzn. f(g(y)) = y, $dla \ każdego \ y \in Y$,

to odwzorowanie g nazywamy odwrotnym do f i na odwrót.

Można to zobrazować za pomocą następującego rysunku:

Rysunek 1.8: Zależność pomiędzy funkcją, a jej odwrotnością.

Oznaczenie 3. Odwzorowanie odwrotne do f oznacza się jako f^{-1} .

Oznaczenie to mocno kojarzy się z przeciwobrazem zbioru poprzez funkcję. Te pojęcia są ze sobą związane. Żeby zapoznać się z pojęciem odwzorowanie odwrotnego oraz dostrzec pewne różnice między nimi, przeanalizujmy przykłady.

Przykład 8. $f: X \to X$, gdzie $f = I_X$, $Tutaj \ f^{-1} = I_X$.

Przykład 9. $f: [-1;1] \rightarrow [0;1]$, $gdzie f = x^2$, $Tutaj z kolei <math>f^{-1}$ nie istnieje!. Wynika to z faktu, że f nie jest odwzorowaniem różnowartościowym.

Rysunek 1.9: Wykres funkcji $y = \sin(x)$

 $Rzeczywiście, jedynym kandydatem na funkcję odwrotną wydaje się funkcja <math>g(y)=\sqrt{y},$ bo mamy:

$$f \circ g(y) = y,$$

 $jednak\ z\ drugiej\ strony,\ mamy:$

$$g \circ f(x) \neq x \ dla \ x < 0,$$

zatem pierwszy warunek z definicji 14, nie jest spełniony.

1.2 Section heading

rodział 0 X-podrozdział 0 2

1.3 Section heading

rodzial0X-podrozdzial03