Assignment 4

Dor Lebel 205872807 **Nitzan Hochman** 316264845

<u>1:</u>

((lambda (x1 y1) (if (> x1 y1) #t #f)) 8 3)

Rename bound variables:

((lambda (\mathbf{x} \mathbf{y}) (if (> \mathbf{x} \mathbf{y}) #t #f)) 8 3)

Assign type variables to all sub-exps:

Expression	Var
((lambda (x y) (if (> x y) #t #f)) 8 3)	T_0
(lambda (x y) (if (> x y) #t #f))	T ₁
(if (> x y) #t #f)	T_{if}
(> x y)	T_2
>	T _{>}
X	T_x
У	T_{y}
#f	$T_{\#f}$
#t	T _{#t}
8	T _{num8}
3	T_{num3}

Construct type equations:

Expression	Equation
((lambda (x y) (if (> x y) #t #f)) 8 3)	$T_1 = [T_{num8} * T_{num3} \rightarrow T_0]$
(lambda (x y) (if (> x y) #t #f))	$T_1 = [T_x * T_y \to T_{if}]$
(if (> x y) #t #f)	$T_{if} = T_{\#t}, T_{\#t} = T_{\#f}$
(> x y)	$T_{>} = \left[T_{x} * T_{y} \to T_{2} \right]$
>	$T_{>} \to [N * N -> B]$
#f	$T_{\#f} = B$
#t	$T_{\#t} = B$
8	$T_{num8} = N$
3	$T_{num3} = N$

Solving the equations:

Expression	Substitution
$T_1 = [T_{num8} * T_{num3} \to T_0]$	
$T_1 = [T_x * T_y \to T_{if}]$	
$T_{if} = T_{\#t}, T_{\#t} = T_{\#f}$	
$T_{>} = \left[T_{x} * T_{y} \to T_{2} \right]$	
$T_{>} \rightarrow [N * N -> B]$	
$T_{\#f} = B$	
$T_{\#t} = B$	
$T_{num8} = N$	
$T_{num3} = N$	

$$\begin{split} T_1 &= [T_{num8} * T_{num3} \rightarrow T_0] \circ Substitution = T_1 = [T_{num8} * T_{num3} \rightarrow T_0]. \\ Substitution &= Substitution \circ T_1 = [T_{num8} * T_{num3} \rightarrow T_0] \end{split}$$

Expression	Substitution
$T_4 = [T_{num8} * T_{num3} \rightarrow T_0]$	$T_1 = [T_{num8} * T_{num3} \rightarrow T_0]$
$T_1 = [T_x * T_y \to T_{if}]$	
$T_{\#t} = T_{\#f}$	
$T_{if} = T_{\#t}$	
$T_{>} = \left[T_{x} * T_{y} \to T_{2} \right]$	
$T_{>} \to [N * N -> B]$	
$T_{\#f} = B$	
$T_{\#t} = B$	
$T_{num8} = N$	
$T_{num3} = N$	

 $T_1 = [T_x * T_y \rightarrow T_{if}] \circ \overline{Substitution} = (T_1 = [T_x * T_y \rightarrow T_{if}] = [T_{num8} * T_{num3} \rightarrow T_0]) = \nearrow T_X = T_{num8}, T_Y = T_{num3}, T_0 = T_{if}$

Expression	Substitution
$T_4 = [T_x * T_y \to T_{if}]$	$T_1 = [T_{num8} * T_{num3} \to T_0]$
$T_{\#t} = T_{\#f}$	
$T_{if} = T_{\#t}$	
$T_{>} = \left[T_x * T_y \to T_2 \right]$	
$T_{>} \to [N * N -> B]$	
$T_{\#f} = B$	
$T_{\#t} = B$	
$T_{num8} = N$	
$T_{num3} = N$	
$T_x = T_{num8}$	
$T_y = T_{num3}$	
$T_0 = T_{if}$	

 $T_{if} = T_{\#t} \circ Substitution = (T_{if} = T_{\#t}).T_{\#t} = T_{\#f} \circ Substitution = (T_{\#t} = T_{\#f}).$ Substitution = Substitution \circ ($T_{if} = T_{\#t}$) \circ ($T_{\#t} = T_{\#f}$).

Expression	Substitution
$T_{if} = T_{\#i}, T_{\#i} = T_{\#f}$	$T_1 = [T_{num8} * T_{num3} \rightarrow T_0]$
$T_{>} = \left[T_{x} * T_{y} \to T_{2} \right]$	$T_{\#t} = T_{\#f}$
$T_{>} \to [N * N -> B]$	$T_{if} = T_{\#t}$
$T_{\#f} = B$	
$T_{\#t} = B$	
$T_{num8} = N$	
$T_{num3} = N$	
$T_x = T_{num8}$	
$T_y = T_{num3}$,	
$T_0 = T_{if}$	

$$\begin{split} T_{>} &= \left[T_x * T_y \to T_2 \right] \, \circ \, Substitution \, = (T_{>} = \left[T_x * T_y \to T_2 \right]). \\ Substitution &= \, Substitution \, \circ (T_{>} = \left[T_x * T_y \to T_2 \right]). \end{split}$$

Expression	Substitution
$T_{>} = \left[T_{\times} * T_{y} \to T_{2} \right]$	$T_1 = [T_{num8} * T_{num3} \to T_0]$
$T_{>} \to [N * N -> B]$	$T_{\#t} = T_{\#f}$
$T_{\#f} = B$	$T_{if} = T_{\#t}$
$T_{\#t} = B$	$T_{>} = \left[T_{x} * T_{y} \to T_{2}\right]$
$T_{num8} = N$	
$T_{num3} = N$	
$T_x = T_{num8}$	
$T_y = T_{num3}$,	
$T_0 = T_{if}$	

 $T_{>} = \begin{bmatrix} T_x * T_y \to T_2 \end{bmatrix} \circ Substitution = (T_{>} = \begin{bmatrix} T_x * T_y \to T_2 \end{bmatrix} = T_{>} \to [N * N -> B]) => T_x = N, T_y = N, T_2 = B.$

Expression	Substitution
$T_{>} \to [N * N -> B]$	$T_1 = [T_{num8} * T_{num3} \to T_0]$
$T_{\#f} = B$	$T_{\#t} = T_{\#f}$
$T_{\#t} = B$	$T_{if} = T_{\#t}$
$T_{num8} = N$	$T_{>} = \left[T_x * T_y \to T_2 \right]$
$T_{num3} = N$	
$T_x = T_{num8}$	
$T_y = T_{num3}$,	
$T_0 = T_{if}$	
$T_x = N$	
$T_y = N$	
$T_2 = B$	

 $T_{\#f} = B \circ Substitution = (T_{\#f} = B). \ T_{\#t} = B \circ Substitution = (T_{\#t} = B).$ Substitution = Substitution $\circ (T_{\#t} = B) \circ (T_{\#f} = B).$

Expression	Substitution
$T_{>} \to [N * N -> B]$	$T_1 = [T_{num8} * T_{num3} \to T_0]$
$T_{\#f} = B$	$T_{\#t} = \mathbf{B}$
$T_{\#E} = B$	$T_{if} = \mathbf{B}$
$T_{num8} = N$	$T_{>} = \left[T_{x} * T_{y} \to T_{2}\right]$
$T_{num3} = N$	$T_{\#f} = B$
$T_x = T_{num8}$	$T_{\#t} = B$
$T_{y} = T_{num3},$	
$T_0 = T_{if}$	
$T_x = N$	
$T_y = N$	
$T_2 = B$	

$$T_{num8} = N \circ Substitution = (T_{num8} = N). \ T_{num3} = N \circ Substitution = (T_{num3} = N). \\ Substitution = Substitution \circ (T_{num3} = N) \circ (T_{num8} = N).$$

Expression	Substitution
_	

$T_{num8} = N$	$T_1 = [\mathbf{N} * \mathbf{N} \to T_0]$
$T_{num3} = N$	$T_{\#t} = B$
$T_x = T_{num8}$	$T_{if} = B$
$T_y = T_{num3}$	$T_{>} = \left[T_x * T_y \to T_2 \right]$
$T_0 = T_{if}$	$T_{\#f} = B$
$T_x = N$	$T_{\#t} = B$
$T_y = N$	$T_{num8} = N$
$T_2 = B$	$T_{num3} = N$

$$\begin{split} T_x = T_{num} & \circ Substitution = (T_x = N). \ T_y = T_{num3} \circ Substitution = (T_y = N). \\ Substitution & = Substitution \circ (T_x = N) \circ (T_y = N). \end{split}$$

Expression	Substitution
$T_x = T_{nums} \to T_x = N$	$T_1 = [N * N \to T_0]$
$T_{y} = T_{num3}, \rightarrow T_{y} = N$	$T_{\#t} = B$
$T_0 = T_{if}$	$T_{if} = B$
$T_x = N$	$T_{>} = [N * N \to T_2]$
$T_{\overline{y}} = N$	$T_{\#f} = B$
$T_2 = B$	$T_{\#t} = B$
	$T_{num8} = N$
	$T_{num3} = N$
	$T_x = N$
	$T_{y} = N$

 $T_0 = T_{if} \circ Substitution = (T_0 = T_{if} = B).$ Substitution = Substitution $\circ (T_0 = B).$

Expression	Substitution
$T_{\Theta} = T_{if}$	$T_1 = [N * N \to \mathbf{B}]$
$T_2 = B$	$T_{\#t} = B$
	$T_{if} = B$
	$T_{>} = [N * N \to T_2]$
	$T_{\#f} = B$
	$T_{\#t} = B$
	$T_{num8} = N$
	$T_{num3} = N$
	$T_x = N$
	$T_y = N$
	$T_0 = B$

$$T_2 = B \circ Substitution = (T_2 = B).$$

Substitution = Substitution $\circ (T_2 = B).$

Expression Substitution

$T_2 = B$	$T_1 = [N * N \to T_0]$
	$T_{\#t} = B$
	$T_{if} = B$
	$T_{>} = [N * N \to \mathbf{B}]$
	$T_{\#f} = B$
	$T_{\#t} = B$
	$T_{num8} = N$
	$T_{num3} = N$
	$T_x = N$
	$T_y = N$
	$T_2 = B$

Conclusion: ((lambda (x y) (if (> x y) #t #f)) 8 3) = T0 = Boolean

<u>2:</u>

a. $\{f:[T1->T2], x: T1\} \vdash (fx): T2-True.$

The function f gets a parameter of type T1, and its return value is of type T2. x type is T1, therefore x is a valid parameter for f, f returns T2 so (f x): T2 is a true statement.

b.

The function f gets only one parameter of type T1, but in the statement (f g x): T3 f receives two parameters.

In the function f gets only one parameter of type T1, but in the statement (f g x): T3 f receives two parameters.

In the function f gets only one parameter of type T1, but in the statement (f g x): T3 f receives two parameters.

In the function f gets only one parameter of type T1, but in the statement (f g x): T3 f receives two parameters.

c.

The function g gets a parameter of type T1, and its return value is of type T2. x type is T1, therefore x is a valid parameter for g, so (g x) is a true statement which returns a value of type T2. This value is received as a parameter to the function f, which gets a parameter of type T2 (so the returns value from g function is a valid parameter for f) and returns a value of type T1. So (f(g x)): T1 is a true statement.

 $\{f:[T2-Number], x: Number\} | f(x x): Number - False$ The function f gets only one parameter of type T2, but in the statement (f x x): Number f receives two parameters.

<u>3:</u>

```
a.
     cons – type:
                            [T1*T2 -> pair(T1, T2)]
b.
     car – type:
                            [pair(T1,T2) -> T1]
c.
     cdr – type:
                            [pair(T1,T2) -> T2]
```

<u>4:</u>

(Define f (lambda (x) (values x x x))) – type: [T1->(T1*T1*T1)]

<u>5:</u>

```
a.
     \{T1,T2\} - MGU :
      \{T1=T2\}
```

{Number, Number} - MGU: b.

{} (no change is needed)

- $\{ [T1*[T1*>T2]*>Number], [[T3*>Number]*[T4*>Number]*>N] \} * MGU: \{T1=[T3->Number], T4=[T3->Number], T2=Number \}$ c.
- $\{ \texttt{[T1->T1]}, \texttt{[T1->[Number->Number]} \texttt{MGU:} \\ \{ \texttt{T1} = \texttt{[Number-> Number]} \}$ d.

Part 2 question 2.3:

```
a. (define (f: [number -> number * number]) (lambda (x: number): (number * number) (values x (+ x 1))))
```

b. (define (g : [T1 -> String * T1]) (lambda (x: T1) : (String * T1) (values "x" x)))

Part 4 question 4.b:

Using promises, we can achieve 3 main benefits:

- The type of functions returning Promises is more informative and similar to the simple types of synchronous versions.
- \bullet We can chain sequences of asynchronous calls in a chain of .then() calls.
- We can aggregate error handling in a single handler for a chain of calls, in a way similar to exception handling.