Descriptive Statistics for Exploratory Data Analysis

Ivan Corneillet

Data Scientist

Learning Objectives

After this lesson, you should be able to:

- Identify variable types
- Use the *pandas* and *NumPy* libraries to analyze datasets using basic summary statistics: mean, median, mode, max, min, quartile, inter-quartile range, variance, standard deviation, and correlation
- Create data visualizations including boxplots, histograms, and scatter plots to discern characteristics and trends in a dataset

Announcements and Exit Tickets

Review

Review

• IDENTIFY the problem

The SMART Framework for Data Science

■ IDENTIFY the problem | The SMART Framework for Data Science:

Specific	The dataset and key variables are clearly defined
MEASURABLE	The type of analysis and major assumptions are articulated
ATTAINABLE	The question you are asking is feasible for your dataset and is not likely to be biased
Reproducible	Another person (or you in 6 months!) can read your state and understand exactly how your analysis is performed
TIME-BOUND	You clearly state the time period and population for which this analysis will pertain

Trends often change over time and vary by the population of source of your data. It is important to clearly define who/what you included in your analysis as well as the time period for the analysis

Review

3 Parse the Data Tidy Data and pandas

❸ PARSE the Data | Tidy Data: a tabular format suitable for pandas and machine learning algorithms

- The three rules of tidy data:
 - Each observation is placed in its own row
 - Each variable in the dataset is placed in its own column
 - Each value is placed in its own cell

Activity | Subsetting with pandas (10 minutes)

	DataFrame	Series
	Column subsetting	
by name		
by location		
	Row subsetting	
by index label		
by location		
	Cell subsetting/scalar lookup	
By index label/column name		
By location		

	DataFrame	Series			
Column subsetting					
by name	<pre># New DataFrame with column named X1 df[['X1']]</pre>	df['X1']			
(Columns names are stored in df.columns) (df.columns.get_loc('X1') returns X1's column index)	<pre># 2+ columns (in the order listed) df[['X1', 'X2',]]</pre>	df.X1			
by location	<pre># New DataFrame with column at location i (numbering starts at 0) df[[column_i]]</pre>				
	<pre># 2+ columns (in the order listed) df[[column_i, column_j,]]</pre>				
	Row subsetting				
by index label	<pre>df.loc[[index_label_i]] df.loc[[index_label_i, index_label_j,]] # Can use a range if the index is made of</pre>	<pre>df.loc[index_label_i]</pre>			
	<pre>numbers (rows "a" to "b" included) df.loc[index_label_a : index_label_b]</pre>				
by location	<pre>df.iloc[[row_i]] df.iloc[[row_i, row_j,]]</pre>	<pre>df.iloc[location_i]</pre>			
by location	<pre># (rows "a" to "b' excluded) df.iloc[row_a : row_b] or df[row_a : row_b]</pre>	u1.110c[10cac10H_1]			
Cell subsetting/scalar lookup					
By index label/column name	<pre>df.at[index_label, 'X1']</pre>				
By location	<pre>df.iat[row_i, column_j]</pre>				

Today

Today we'll keep our focus on PARSE the data

Today, we are covering Research Design and introducing the *pandas* library

Research Design and Data Analysis	Research Design	Data Visualization in pandas	Statistics	Exploratory Data Analysis in <i>pandas</i>
Foundations of Modeling	Linear Regression	Classification Models	Evaluating Model Fit	Presenting Insights from Data Models
Data Science in the Real World	Decision Trees and Random Forests	Time Series Data	Natural Language Processing	Databases

Here's what's happening today:

- Announcements and Exit Tickets
- Review
- **3** Parse the Data
 - Types of Data and Types of Measurement
 Scales
 - Populations and Samples; Descriptive vs.
 Inferential Statistics
 - Measures of Central Tendency and Measures of Dispersion

- Boxplots
- Outliers
- Histograms
- Correlation
- Review
- Exit Tickets

Q&A

B PARSE the Data

Parse the Data

- Parse the Data
 - Read any documentationprovided with the data (session 2)
 - Perform exploratory data analysis (session 3)
 - Verify the quality of the data (sessions 2/3)

The main theme today is to have enough statistics knowledge to perform Exploratory Data Analysis

- Types of Data and Types of Measurement Scales
- Populations and Samples; Descriptive vs. Inferential Statistics
- Measures of Central Tendency and Measures of Dispersion
- Boxplots
- Outliers
- Histograms
- Correlation

3 PARSE the Data

Types of Data and Types of Measurement Scales

Types of Data

Qualitative Data

 Uses descriptive terms to measure or classify something of interest, e.g., education level

Quantitative Data

 Uses numerical values to describe something of interest, e.g., age

Types of Measurement Scales

Types of Measurement Scales (cont.)

	Nominal	Ordinal	Interval	Ratio
e.g.	Gender	Movie ratings	Movie ratings Temperature	
Categorize?	✓ (male, female)	✓	✓	✓
Rank-order?	×	✓ (*<2*<3*<4*)	✓	✓
Add and subtract?	*	* (4★-3★≠★)	(75°C is 50°C warmer than 25°C)	✓
Multiply and divide?	*	★ (4★ not 4× better than 1★)	(75°C not 3× as warm as 25°C) (0°C doesn't mean no temperature!)	✓ (Salary of \$200K is 2× that of \$100K) (\$0 means no salary ⁽³⁾)

3 PARSE the Data

Populations and Samples

Populations and Samples

A dataset may be considered either as a population or a sample, depending on the reason for its collection and analysis

 Students of a class are a population if the analysis describes the distribution of scores in that class But they are a sample the analysis infers
from their scores the scores of other
students (e.g., all students from that school)

Descriptive Statistics

Inferential Statistics

3 PARSE the Data

Activity | Summarizing Data

Activity | How would you summarize this data?

Activity | How would you summarize this data? (cont.)

Activity | Measures of Central Tendency. What is the typical age for each of these 8 groups of people? (10 minutes)

Activity | What is the typical age for each of these 8 groups of people? (cont.)

Group	Mean	Median	Mode
A (30-30)	30 ⁽¹⁾	30 ⁽¹⁾	30 ⁽¹⁾
B (30-30-1)	20.3 ⁽²⁾ (i.e., no 20-year-olds in the group)	30 ⁽³⁾	30 ⁽³⁾
C (35-5-35)	25 ⁽²⁾	35 ⁽³⁾	35 ⁽³⁾
D (5-35)	20 ⁽²⁾	20 ⁽²⁾	None ⁽⁴⁾
E (35-1-5)	13.6 ⁽²⁾	5 ⁽²⁾	None ⁽⁴⁾
F (5-35-35-5)	20 ⁽²⁾	20 ⁽²⁾	5 and 35 ⁽⁵⁾
G (5-5)	5 ⁽¹⁾	5 ⁽¹⁾	5 ⁽¹⁾
H (35-5-5-35-1)	16.2 ⁽²⁾	5 ⁽⁶⁾	5 and 35 ⁽⁵⁾

(4) All values are different

(5) Follow the "majorities"

(3) Follow the "majority"

(1) All values are equal

(2) Value not representative

(6) Partially correct

Mean, Median, and Mode: There is no "Winner-Take-All"

	Value is in the dataset	Value is easy to compute	Value is resistant to outliers	Corresponding measure of Dispersion	Used extensively by mathematical models
Mean	(Unlikely)		8	(Variance, Standard Deviation)	
Median	(50% chance)	(need to rank the values)	©	(Interquartile Range)	8
Mode	(Always)	(Need to count and rank the count)		(Not really)	(Mode might not be defined or you might have multiple values)

3 PARSE the Data

Measures of Central Tendency and Measures of Dispersion

Measures of Central Tendency and Measures of Dispersion

Measures of Central Tendency

- (Or measures of location)
- Answer the question: "What's the typical or common value for a variable?"
- Mean, Median, Mode
- Measures of Dispersion
 - (Or measures of variability/spread)
 - Answer the question: "How far do values stray from the typical value?"
 - Variance, Standard Deviation, Range, Interquartile Range (IQR)

(Arithmetic) Mean, Variance, and Standard Deviation

Ordinal *	Nominal *	Interval ✓	Ratio ✓	
	Popu	lation	Sample	
(Arithmetic) Mean (a.k.a., the first moment) (Mean has unit of $X:[X]$)	$\overline{i=1}$	$x_i = E[X^1]$	$\bar{x} = \frac{1}{n} \sum_{\substack{i=1 \\ (\text{x-bar})}}^{n} x_i$	
Variance (a.k.a., the second moment) $[X^2]$	$= E \lfloor (X -$	$(x_i - \mu)^2$ $(x_i - \mu)^2$ $(x_i - \mu)^2$ squared)	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	
Standard Deviation $[X]$	$\sigma = $ (sig	$\sqrt{\sigma^2}$ ma)	$s = \sqrt{s^2}$	

(mean, variance, and standard deviations are based on the values of x_i)

3 PARSE the Data

```
Codealong - Part A
          .mean()
          .var(), .std()
```


3 PARSE the Data

Median, Range, and Interquartile Range

Median

Median, Range, and Interquartile Range

Median, Range, and Interquartile Range (cont.)

Nominal *	Ordinal *	Interval ✓	Ratio √
Median	$median = \begin{cases} x_{p+1} & \text{if } n = 2p + 1 \\ \frac{x_p + x_{p+1}}{2} & \text{if } n = 2p \end{cases}$		
Range	$range = x_n - x_1$		
Percentile	$q_k = \begin{cases} x_{\lceil p \rceil} \text{ if } p = \frac{nk}{100} \text{ not integer} \\ \frac{x_p + x_{p+1}}{2} \text{ otherwise} \end{cases}$		
Quartile	$Q_1 = q_{25}; Q_3 = q_{75}$		
Interquartile Range	$IQR = Q_3 - Q_1$		

(median, range, and interquartile range are based on the ranks of x_i ; x_i ranked from smallest to largest)


```
Codealong - Part B
    .mean(), .median()
.count(), .dropna(), .isnull()
    .min(), .max()
    .quantile()
    .describe()
```


Median, Range, Interquartile Range, and Boxplots

Boxplot #1 | Median, Range, Interquartile Range, and no Outliers

Boxplot #2 | Median, Range, Interquartile Range, and Outliers

Codealong – Part C Boxplots

Outliers

Think twice before discarding outliers; they might be the most important points

- Outliers are values that are "far" from the central tendency
- No formal definition among statisticians on how to define outliers (how do you define "far"?)
- However, general agreement that they be identified and dealt with appropriately (e.g., keep or discard)
 - They might be the most important points of your dataset

Histograms

Histograms. $x_1 = x_2 = x_3 < x_4 = x_5...$

Codealong – Part D Histograms

Mode

Modes and Histograms

Codealong - Part E
.mode()

Plot the Data!

Don't rely on basic statistic properties and **plot the data!** 4 datasets (Anscombe's quartet) that have nearly identical simple statistical properties, yet are very different

Property	Value	
Mean of x _i	9	
Sample variance of x _i	11	
Mean of y _i	7.50	
Sample variance of y_i	4.122 or 4.127	
Correlation between x _i and y _i	0.816	
Linear regression line in each case	y _i = 3.00 + 0.500 x _i	

(Linear) Correlation

Correlation

• A measure of strength and direction for a **linear association** between two random variables

$$\rho_{X,Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

- ρ = 0 means that the two variables don't have a linear association
 - It doesn't imply that they are independent!

Correlation (cont.)

 $\boldsymbol{\rho}$ quantifies the strength and direction of movements of two random variables **Negative Correlation Positive Correlation** Weak Weak Strong Strong -1 -.5 one variable moves in the same **No Correlation** direction by 50% the amount that the other variable moves Perfect negative Negative Positive Perfect positive No correlation correlation correlation correlation correlation $\rho = 0$ $\rho = -1$ $\rho < 0$ $\rho > 0$ $\rho = 1$

Activity | Correlations and Scatter Plots

Activity | What's the correlations for the following scatter plots (5 minutes)

Activity | What's the correlations for the following scatter plots (cont.)

Codealong – Part F
.corr()

Heatmaps Scatter plots and matrices


```
Codealong - Part G
.value_counts()
.crosstab()
```


Lab

Exploratory Data Analysis with pandas

Review

Review

You should now be able to:

- Identify variable types
- Use the *pandas* (and *NumPy*) libraries to analyze datasets using basic summary statistics: mean, median, mode, max, min, quartile, inter-quartile range, variance, standard deviation, and correlation
- Create data visualizations including boxplots, histograms, and scatter plots to discern characteristics and trends in a dataset

Q & A

Next Class

Flexible Class Session #1 | Exploratory Data Analysis

Exit Ticket

Don't forget to fill out your exit ticket here

Slides © 2016 Ivan Corneillet Where Applicable Do Not Reproduce Without Permission