THE FACULTY OF ARTS AND SCIENCE University of Toronto

FINAL EXAMINATIONS, APRIL/MAY 2006

MAT402H1S Classical Geometries

Examiner: Professor A. Khovanskii

Duration: 3 hours

NO AIDS ALLOWED.

1. [20 marks]

Take a convex polyhedron in \mathbb{R}^3 . Denote by f_0 , f_1 and f_2 the number of its vertices, edges and faces, respectively. Prove:

Total Marks: 100

- 1) $3f_0 \leq 2f_1$. Hint: at least 3 edges meet at each vertex of the polyhedron.
- 2) $2f_1/f_2 < 6$ the average number of edges on faces of the polyhedron is strictly less that 6. Hint: use 1) and Euler formula $f_0 f_1 + f_2 = 2$.

2. [20 marks]

Take an angle between 2 rays l_1 and l_2 with vertex O and a point A inside the angle. Consider all triangles with vertex O such that two sides of each of them belong to l_1 and l_2 and the third side l passes through A. Find the line l for which the area of the triangle is minimal. Hint: consider the parallelogram with two sides in l_1 and l_2 and with center A and look at how the line l cuts this parallelogram.

3. [20 marks]

Consider a square ABCD inscribed in a circle. Let P be an arbitrary point on the circle. Explain why the cross-ratio of the lines AP, BP, CP, and DP is independent of the choice of point P. Find this cross-ratio.

4. [20 marks]

Consider two circles S_1 , S_2 with centers O_1 , O_2 and radiuses R_1 , R_2 . Make inversion with respect to the circle S_1 and then make inversion with respect to the circle S_2 . Describe all lines and circles which become straight lines after these two inversions.

5. [20 marks]

Consider a sphere S of radius R. Is it possible to locate 50 equal triangles with angles equal to $\pi/2, \pi/3, \pi/4$ on it in such a way that any two triangles do not overlap each other?