

DLM12024

Basics of deep learning part 1

By

Pierre-Marc Jodoin

What is machine learning?

Answer: Design your own rules?

- > A series of aligned pixels => '1'
- > A circle of pixels => '0'
- > Etc.

Answer: Design your own rules? Wrong

> Bad generalization / 1 / 7 1

Answer: Design your own rules? Wrong

- ➤ Bad generalization
- ➤ Often difficult

Dogs

Birds

Answer: Let the computer « **learn** » the rules

➤ Main goal of machine learning

Three large families

Supervised learning

Reinforcement Learning Machine Learning

Unsupervised Learning

Summer school

Supervised learning Machine Learning

Unsupervised Learning

Supervised learning

Provide the algorithm with annotated training data

...and the algorithm returns a function capable of **generalizing** on new data

Supervised learning

Provide the algorithm with annotated training data

The training dataset

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

where $\vec{x}_i \in \mathbb{R}^d$ is an **input** and t_i is a **target**

Goal of a supervised machine learning method

From a **training dataset:**
$$D = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), ..., (\vec{x}_N, t_N)\}$$

$$\vec{x}_i \in \Re^d$$
input data t_i target associated to \vec{x}_i

the goal is to learn a function that may predict t_i given \vec{x}_i

$$y_W(\vec{x}_i) \rightarrow t_i$$

where W are the **parameters** of the model.

Supervised learning

Once the model $y_W(\vec{x})$ is trained, we use a **test set** D_{test} to gauge the **generalization** capabilities of the model.

Two large families

Supervised learning

Unsupervised learning

When no target is explicitly provided > E.g. data *clustering*

When no target is explicitly provided

E.g. data *clustering*

No limit to dimensionality. Could be 3D, 4D,...100kD

Probability density function estimation

Example: find two groups of patients following a memory test

Supervised vs non-supervised

Supervised learning: there is a target

Main topic of the school

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

Unsupervised learning: unknown target

$$D = \left\{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_N \right\}$$

Supervised vs non-supervised

Supervised learning: there is a tar

$$D = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2)\}$$

Logistic regression
Perceptron
Multilayer perceptron
Convolutional neural networks
Recurrent neural networks
Semi-supervised learning
Graph Neural Nets
Transformers
Etc.

Unsupervised learning: unknown target

$$D = \left\{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_N \right\}$$

Supervised vs non-supervised

Supervised learning: there is a target

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

Unsupervised learning: unknown

Autoencoders Variational autoencoders GANs

$$D = \left\{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_N \right\}$$

Back to supervised learning

Classification vs regression

Supervised learning

Two main applications

- \triangleright Classification: the target is a class label $t \in \{1, ..., K\}$
 - Exemple : disease recognition
 - \checkmark \vec{x} : vector of medical measures, age, sex, etc.
 - ✓ *t*: {myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, normal}
- **Regression :** the target is a real number $t \in \mathbb{R}$
 - Exemple : prediction of life expectancy
 - \checkmark \vec{x} : vector of medical measures, age, sex, etc.
 - \checkmark t: number of months before death.

Supervised learning

Two main applications

- \triangleright Classification: the target is a class label $t \in \{1, ..., K\}$
 - Exemple : disease recognition
 - \checkmark \vec{x} : vector of medical measures, age, sex, etc.
 - ✓ *t* : myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, normal
- \triangleright **Régression :** the target is a real number $t \in \mathbb{R}$
 - Exemple: prediction of life expectancy
 - ✓ : vector of medical measures, age, sex, etc.
 - \checkmark t: number of months before death.

Simple example of binary classification

From Wikimedia Commons the free media repository

Simple example of binary classification

1	7
•	1
L	_

Patient 1

Patient 2

Patient 3

Patient N

(temp, freq)	Diagnostic
(37.5, 72)	hearthy
(39.1, 103)	sick
(38.3, 100)	sick
()	
(36.7, 88)	hearthy

Simple example of binary classification

A new patient shows up at the hospital **How can we predict its state?**

From Wikimedia Commons the free media repository

Solution

From Wikimedia Commons the free media repository

Divide the feature space in two regions : healthy and sick

Solution

From Wikimedia Commons the free media repository

Divide the feature space in two regions : healthy and sick

More formally

$$y_{W}(\vec{x}) = \begin{cases} H \text{ealthy if } \vec{x} \text{ is in the blue region} \\ Sick \text{ otherwise} \end{cases}$$

From Wikimedia Commons the free media repository

Classification

3-class case

3 classes •, •, o in a 2D feature space

Once training is over

$$y_w(\bullet) = \text{class } 1$$

 $y_w(\bullet) = \text{class } 2$
 $y_w(\bullet) = \text{class } 3$

Classification

Once training is over, we have a function $y_w(\vec{x})$ that convert a point x into a class label

Example of a classification dataset

/ 1 | 1 / 1 / / / / 1 / / / / / ファチ17ァファファファファ

Example of a classification dataset

- 10 classes
- 70,000 images => 60,000 training => 10,000 test
- Images are in grayscale => 28x28

We can **vectorize these images** and represent it by a vector of size 28x28 = 784 dimensions.

Example of a medical classification dataset

Chess X-Ray Pneumonia

Healthy

Pneumonia

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia

Example of a medical classification dataset

Chess X-Ray Pneumonia

- 2 classes
- 5,840 images,
 - => 5,216 training
 - => 624 test
- Each image is in grayscale

$$=> 336 \times 264*$$

We can **vectorize these images** and represent it by a vector of size 336x264 = 88,704 dimensions.

Supervised learning

Chess X-Ray Pneumonia

Very large feature spaces (like 88,704 dim) are problematic.

Moments

Etc.

40

Spoiler alert

In 2024...

Two main applications

- \triangleright Classification: the target is a class label $t \in \{1, ..., K\}$
 - Exemple : disease recognition
 - $\sqrt{\vec{x}}$: vector of medical measures, age, sex, etc.
 - ✓ *t* : myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, normal
- **Regression :** the target is a real number $t \in \mathbb{R}$
 - Exemple : prediction of life expectancy
 - \checkmark \vec{x} : vector of medical measures, age, sex, etc.
 - \checkmark t: number of months before death.

Example (Linear)

Medical Cost Personal Datasets

46

Example (Nonlinear)

Before deep neural nets were ... linear models

Vs ?

Linear models are to deep neural nets what atoms are to matter

Linear models are still relevant

1,694 children surveyed in Tanzania.

Nordin P, Poggensee G, Mtweve S, Krantz I. From a weighing scale to a pole: a comparison of two different dosage strategies in mass treatment of Schistosomiasis haematobium. Glob Health Action. 2014

Linear models are still relevant

https://commons.wikimedia.org/

Definition ... a line!

Definition ... a line!

$$y = mx + b$$

$$y = \frac{\Delta y}{\Delta x} x + b$$

$$y\Delta x = \Delta yx + b\Delta x$$

$$0 = \Delta yx - \Delta xy + b\Delta x$$

Rename variables

$$0 = \Delta yx - \Delta xy + b\Delta x$$

$$w_1 \quad w_2 \quad w_0$$

Rename variables

$$0 = w_1 x_1 + w_2 x_2 + w_0$$

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$$

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$$

$$w_1 = 1.0$$

 $w_2 = -2.0$
 $w_0 = 4.0$

$$y_{\vec{w}}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_0$$

$$= (w_0, w_1, w_2) \cdot (1, x_1, x_2)$$

$$= \vec{w}^T \vec{x}'$$

$$\vec{N} = (w_1, w_2)$$

Equation of a line = dot product with bias included

$$y_{\vec{w}}(\vec{x}) = \vec{w}^T \vec{x}$$

Linear regression

• Linear regression model:

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

where $\vec{x} = (x_1, x_2, \dots, x_d)^T$

- The model is...
 - \triangleright A line for d=1
 - \triangleright A plane for d=2
 - \triangleright A hyperplan for d>2

Linear regression

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d$$

$$weights$$

A line: 1D regression

Example

$$y_{\vec{w}}(x) = w_0 + w_1 x$$

A plane : 2D regression

Example

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2$$

Given a training example

$$D = \{(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)\}$$

Ideally, we wish $y_{\bar{w}}(x_i) = t_i$

Unfortunately, real data are noisy

Here the goal is to make small mistakes.

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} (y_{\vec{w}}(x_n) - t_n)^2$$

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} (\vec{w}^{T} \vec{x}_{n} - t_{n})^{2}$$

If the **data is linear** + the **noise is Gaussian**, the best possible weights are those **minimizing the function**

$$\overrightarrow{w} = \arg\min_{\overrightarrow{w}} \sum_{n=1}^{N} (\overrightarrow{w}^{T} \overrightarrow{x}_{n} - t_{n})^{2}$$

$$\mathcal{L}_{D}(\overrightarrow{w})$$

the « best » \vec{w} is the one for which the gradient is zero

$$\nabla_{\overrightarrow{w}} \mathcal{L}_D(\overrightarrow{w}) = \sum_{n=1}^N 2(\overrightarrow{w}^T \overrightarrow{x}_n - t_n) \overrightarrow{x}_n^T = 0$$

$$\overrightarrow{w}^T \sum_{n=1}^N \overrightarrow{x}_n \overrightarrow{x}_n^T - \sum_{n=1}^N t_n \overrightarrow{x}_n^T = 0$$

$$\vec{w}^{T} \sum_{n=1}^{N} \vec{x}_{n} \vec{x}_{n}^{T} - \sum_{n=1}^{N} t_{n} \vec{x}_{n}^{T} = 0$$

By **isolating** \vec{w} , we get

$$\overrightarrow{w} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}T$$

where

$$X = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,d} \\ 1 & x_{2,1} & \cdots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N,1} & \cdots & x_{N,d} \end{pmatrix} \qquad T = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix}$$

For a 1D regression

$$y_{\vec{w}}(x) = w_0 + w_1 x$$

$$|\overrightarrow{w} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}T$$

where

$$X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix} T = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix}$$

For a 2D regression

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2$$

$$|\overrightarrow{w} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}T$$

where

$$X = \begin{pmatrix} 1 & x_{1,1} & x_{1,2} \\ 1 & x_{2,1} & x_{2,2} \\ \vdots & \vdots & \vdots \\ 1 & x_{N,1} & x_{N,2} \end{pmatrix} T = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix}$$

What about non-linear data?

Polynomial Ridge Regression

What about non-linear data?

$$y_{\overrightarrow{w}}(\overrightarrow{x}) = w_0 + w_1 x$$

Linear function Degree 1

What about non-linear data?

$$y_{\overrightarrow{w}}(\overrightarrow{x}) = w_0 + w_1 x$$

 $y_{\vec{w}}(\vec{x}) = w_0 + w_1 x + w_1 x^2$

Linear function Degree 1

Quadratic function Degree 2

What about non-linear data?

$$y_{\overrightarrow{w}}(\overrightarrow{x}) = w_0 + w_1 x$$

 $y_{\vec{w}}(\vec{x}) = w_0 + w_1 x + w_1 x^2$

Linear function Degree 1

Quadratic function Degree 2

Cubic function Degree 3

http://www.math.glencoe.com/

What about non-linear data?

$$y_{\overrightarrow{w}}(\overrightarrow{x}) = w_0 + w_1 x$$

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x + w_1 x^2$$

Linear function Degree 1

Quadratic function Degree 2

Cubic function Degree 3

Quartic function Degree 4

 $y_{\vec{w}}(\vec{x}) = w_0 + w_1 x + w_1 x^2 + w_1 x^3 + w_1 x^4$

 $y_{\overrightarrow{w}}(\vec{x}) = w_0 + w_1 x + w_1 x^2 + w_1 x^3$

http://www.math.glencoe.com/

Basis function

Example: Instead of a 1D regression, lets do a 4D regression

$$\varphi(x) \rightarrow (x, x^2, x^3, x^4)$$

$$y_{\overrightarrow{w}}(x) = w_0 + w_1 x$$

$$y_{\vec{w}}(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$
$$= w_0 + \sum_{i=1}^4 w_i \varphi_i(x)$$

Basis function

hyperparameter

where $\varphi_0(\vec{x}) = 1$

Similar approach for classification

Unknowns

$$y_{\vec{w}}(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_d x^d$$
$$= \sum_{i=0}^{M} w_i x^i$$

Two unknowns

$$\overrightarrow{w} \in R^d$$

$$d\in N^{\geq 0}$$

Hyperparameter d

Underfitting

$$d = 0 = > y_{\overrightarrow{w}}(x) = w_0$$

 $d = 1 = > y_{\overrightarrow{w}}(x) = w_0 + w_1 x$

A small d gives a simplistic model that **underfits** the data.

Overfitting

A large d gives a model that « **learn by heart** » and thus **overfits** training data

$$\mathcal{L}_D(\overrightarrow{w}) \Rightarrow \text{VERY low}$$

 $\mathcal{L}_{D_{test}}(\overrightarrow{w}) \Rightarrow \text{large}$

Over- and underfitting

Need for an intermediate value for which the training and the testing errors are low

Hyperparameters often control the capacity of a model

Capacity: ability of a model to fit the training data

Large capacity

Generalization

The more data you have, the better a high capacity model will generalize.

How do we prevent our model from under- and overfitting?

Regularization

Parameter values \vec{w} for different M without regularization

	M=0	M = 1	M = 3	M = 9
$\overline{w_0}$	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Regularization

To prevent over-fitting

- 1. Choose a small « d »
- 2. Reduce capacity by regularization

Exemple : penalyse the **L2 norm**

Constant that controls regularization

Ridge model

$$E_D(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} (t_n - y_{\vec{w}}(\vec{x}))^2 + \lambda ||\vec{w}||^2$$
$$||\vec{w}||^2 = \vec{w}^T \vec{w} = w_0^2 + w_1^2 + \dots + w_d^2$$

Regularization

Strong regularization = less capacity

Over- and under-fitting also influence classification

Overfitting (Classification)

Training accuracy = 99.6%

Testing accuracy = 78%

Underfitting (Classification)

Training accuracy =52.2%

Testing accuracy = 51.2%

Could be better...

Training accuracy =82%

Testing accuracy = 80%

Wonderful!!!

Training accuracy =97.8%

Testing accuracy = 96.2%

$$E_D(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} (y_{\vec{w}}(x_n) - t_n)^2 + \lambda ||\vec{w}||^2$$
$$||\vec{w}||^2 = \vec{w}^T \vec{w} = w_0^2 + w_1^2 + \dots + w_d^2$$

Model selection

How to find the right hyper-parameters?

d and λ

How to find the right d and the right λ ?

- Very bad idea : choose randomly
- Bad idea: take many (d, λ) and keep the one with the lowest training error
 - > overfitting
- Bad idea: take many (d, λ) and keep the one with the lowest testing error
 - $\triangleright D_{test}$ should NEVER be used to train a model
- Good solution: take many (d, λ) and keep the one with the lowest validation error

Cross-validation

1- Randomly devide data in 2 groups

2- FOR M from M_{\min} to M_{\max} FPR λ from λ_{\min} to λ_{\max}

Train the model on $D_{\it train}$ Compute error on $D_{\it valid}$

3- Keep (M, λ) with the lowest **validation error**

K-fold cross-validation with K = 10

Mean validation error

STD

```
2.832 (+/-0.116) for {'regression': 'poly', 'd': 3, 'lambda': 0.01}
1.854 (+/-0.072) for {'regression': 'poly', 'd': 3, 'lambda': 0.1}
1.910 (+/-0.065) for {'regression': 'poly', 'd': 3, 'lambda': 1}
1.902 (+/-0.077) for {'regression': 'poly', 'd': 3, 'lambda': 10}
2.844 \ (+/-0.101)  for {'regression': 'poly', 'd': 4, 'lambda': 0.01}
2.864 \ (+/-0.089)  for {'regression': 'poly', 'd': 4, 'lambda': 0.1}
1.910 (+/-0.065) for {'regression': 'poly', 'd': 4, 'lambda': 1}
1.894 (+/-0.086) for {'regression': 'poly', 'd': 4, 'lambda': 10}
2.848 \ (+/-0.080)  for {'regression': 'poly', 'd': 5, 'lambda': 0.01}
                                                                      BEST!
1.904 (+/-0.064) for { 'regression': 'poly', 'd': 5, 'lambda': 0.1}
0.916 \ (+/-0.069)  for {'regression': 'poly', 'd': 5, 'lambda': 1}
                                                                       d=5,
1.870 (+/-0.072) for { 'regression': 'poly', 'd': 5, 'lambda': 10}
                                                                       \lambda = 1
2.846 \ (+/-0.090)  for {'regression': 'poly', 'd': 6, 'lambda': 0.01}
2.906 (+/-0.062) for {'regression': 'poly', 'd': 6, 'lambda': 0.1}
1.904 (+/-0.075) for {'regression': 'poly', 'd': 6, 'lambda': 1}
2.858 \ (+/-0.112)  for {'regression': 'poly', 'd': 6, 'lambda': 10}
```

In short

- ✓ The goal is to train a model on a training dataset with good generalization capabilites
- ✓ Training = minimization of a **loss function**
- ✓ Has **hyper-parameters** that control the **capacity** of the model, choisis à l'aide d'une procédure de **sélection de modèle**
- ✓ mesure sa performance de généralisation sur un ensemble de test
- ✓ Aura une meilleure performance de généralisation si la quantité de données d'entraînement augmente
- ✓ Peut souffrir de sous-apprentissage (pas assez de capacité) ou de sur-apprentissage (trop de capacité)

Evaluation metrics

How to evaluate a model?

Hypertension

True positive (11)

Hypertension

True negative (10)

Hypertension

False positive (5)

Hypertension

False negative (3)

Hypertension

Confusion matrix

Ground truth

Model prediction Negative Positive

	Positive	Negative
LOSITIVE	TP = 11	FP=5
26	FN = 3	TN=10

$$TP + FN = 14 = TOTAL \# positive$$

 $TN + FP = 15 = TOTAL \# negative$

$$TP + FP = 16 = TOTAL \# of patients classified +1$$

 $FN + TN = 13 = TOTAL \# of patients classified -1$

False positive rate

TP = 11	FP=5
FN = 3	TN=10

Hypertension

Healthy

$$FPR = FP/(FP + TN) = 5/15$$

Specificity

(true negative rate)

TP = 11	FP=5
FN = 3	TN=10

Hypertension

$$Sp = TN/(FP+TN)=11/15$$

False negative rate

TP = 11	FP=5
FN = 3	TN=10

Hypertension

$$FNR = FN/(FN+TP) = 3/14$$

Recall

(True positive rate)

TP = 11	FP=5
FN = 3	TN=10

Hypertension

$$Re = TP/(FN+TP)=1-FNR=11/14$$

Precision

TP = 11	FP=5
FN = 3	TN=10

Hypertension

$$Pr = TP/(TP+FP) = 11/16$$

False Discovery Rate

TP = 11	FP=5
FN = 3	TN=10

Hypertension

$$FDR = FP/(TP+FP) = 5/16$$

Accuracy

TP = 11	FP=5
FN = 3	TN=10

Hypertension

Healthy

Rate of good classification = (TP+TN)/(FP+FN+TP+TN) = 21/29

In short

Ground truth

	Positive	Negative
Model prediction egative Positive	TP = 11	FP=5
Model pr	FN=3	TN=10

$$TP + FP = 16 = TOTAL \# of patients classified +1$$

 $FN + TN = 13 = TOTAL \# of patients classified -1$

False positive rate =
$$FP/(FP+TN) = 5/15$$

False negative rate = $FN/(FN+TP) = 3/14$

Specificity (
$$\mathbf{Sp}$$
) = TN/(FP+TN)=1-FPR=10/15
Recall (\mathbf{Re}) = TP/(TP+TN)=11/14
Precision (\mathbf{Pr}) = TP/(TP+FP) = 11/16

Different thresholds, different results

ROC curves

Compute Recall and FPR for different thresholds

ROC curves

Good way for comparing methods

ROC curves

Example: 10 motion detection methods

Precision recall curve

Sampe spirit that the ROC curve

Segmentation metrics

Sørensen-Dice coefficient

Ground truth

	Positive	Negative
Model prediction legative Positive	TP = 11	FP=5
Model p	FN=3	TN=10

Segmentation metrics

Sørensen-Dice coefficient

Useful when TN is very large

Sørensen-Dice coefficient

Sørensen-Dice coefficient

Sørensen-Dice coefficient

Limit of the Dice coefficient

Dice=0.95

Dice=0.95

Hausdorff distance

Hd=7mm

Hd=1.6mm

In short we have seen

- Supervised vs unsupervised learning
- Regression vs Classification
- Linear vs non-linear models
- Parameters vs hyper-parameters
- Over vs Underfitting
- Cross-validation
- Metrics

Thank you!

Model ensembling

Why use only one model?

Does combining several model works well?

Combining several models is often called ensembling

Why use only one model?

Combining what?

- Several different models
- The same model trained with different hyperparameters
- The same model trained on different data.

Typically 2 ways of combining models

- > Bagging: good for models with a large capacity
- > Boosting: good for models with a low capacity

Typically 2 ways of combining models

- > Bagging: good for models with a large capacity
- > Boosting: good for models with a low capacity

Bagging

- A simple way of combining several models
 - FOR i = 1 to mTrain model $y_{W,i}(\vec{x})$
- **Ensemble** the *m* models
 - > For **regression**

$$\circ \quad y_{COM}\left(\vec{x}\right) = \frac{1}{m} \sum_{i=1}^{m} y_{W,i}\left(\vec{x}\right)$$

- > For a classification
 - o majority vote

Ex: polynomial regression M=25

100 models trained on 100 different training sets

Ensemble of 100 models
Vs
True model

Ex: polynomial regression M=25

100 models trained on 100 different training sets

Ensemble of 100 models

Vs

True model

Bootsrap

What if you do not have enough data for building 100 trainingsets? What can you do???

Solution 1 : **Data augmentation**

Solution 2: **Bootsraping**.

FOR j from 1 to 100 DO

$$D_{bootstrap} = \{ \ \}$$

FOR N iterations

- Choose randonly a natural number between 1 and N

-
$$D_{bootstrap} = D_{bootstrap} \cup \{(\vec{x}_n, t_n)\}$$

$$D_{train, j} = D_{bootstrap}$$

Train j-th model

In short we have seen

- Supervised vs unsupervised learning
- Regression vs Classification
- Linear vs non-linear models
- Parameters vs hyper-parameters
- Over vs Underfitting
- Cross-validation
- Metrics
- Ensembling Bootsrapping

Thank you!