Exercise Sheet 7 Predicate Logic – Syntax

Note that question 4 is marked as being assessed.

1. Consider the following example from lecture 11. Consider the database composed of the 3 following tables (we only show some of the rows here):

Student	
sid	name
0	Alice
1	Bob

Module		
mid	name	
0	Math	
1	OOP	

Enroll	
sid	\mathbf{mid}
0	0
1	1

These 3 tables can be seen as 3 relations:

- Student(sid, name): predicate Student relates student ids and names
- Module (mid, name): predicate Module relates module ids and names
- Enroll(sid, mid): predicate Enroll relates student and module ids

Write the following queries as predicate logic formulas:

- \bullet find the student names x enrolled either in the Math module or the OOP module
- find all the pairs of student names x and y that are enrolled in the same module
- 2. Provide an example of a domain and a signature that includes an equivalence relation, and state predicate logical formulas that capture the fact that it is an equivalence relation.
- 3. Define the ring laws in predicate logic. Indicate what signature you are using.
- 4. assessed: Consider the following domain and signature:
 - Domain: \mathbb{N}
 - Functions: $0, 1, 2, \ldots$ (arity 0); $+, \times$ (arity 2)
 - Predicates: prime, even, odd (arity 1); =, >, \geq (arity 2)

Express the following sentences in predicate logic:

- If a number is strictly greater than another number then it must be greater than or equal to the successor of that number
- A prime number is a number greater than 1 that cannot be expressed as the multiplication of two numbers greater than 1