Knowledge Graph

A Material Graph Database

Different structures

- Database
- Graph

ID	NAME	MELTING T	BOILING T	MASS	
1	Copper	1085 °C	2560 °C	63.546u	
2	Iron	1538 °C	2862 °C	55.845u	
3	Mercury	-38.83 °C	356.7 °C	200.59u	
4	Aluminium	660.3 °C	2519 °C	26.98u	
5	Gold	1064 °C	2970 °C	196.97u	

Searching

- Database approach
- Graph approach

ID	NAME	MELTING T	BOILING T	MASS	
1	Copper	1085 °C	2560 °C	63.546u	
2	Iron	1538 °C	2862 °C	55.845u	
3	Mercury	-38.83 °C	356.7 °C	200.59u	
4	Aluminium	660.3 °C	2519 °C	26.98u	
5	Gold	1064 °C	2970 °C	196.97u	

ID	NAME	MELTING T	BOILING T	MASS	
1	Copper	1085 °C	2560 °C	63.546u	
2	Iron	1538 °C	2862 °C	55.845u	
3	Mercury	-38.83 °C	356.7 °C	200.59u	
4	Aluminium	660.3 °C	2519 °C	26.98u	
5	Gold	1064 °C	2970 °C	196.97u	

ID	NAME	MELTING T	BOILING T	MASS	
1	Copper	1085 °C	2560 °C	63.546u	
2	Iron	1538 °C	2862 °C	55.845u	
3	Mercury	-38.83 °C	356.7 °C	200.59u	
4	Aluminium	660.3 °C	2519 °C	26.98u	
5	Gold	1064 °C	2970 °C	196.97u	
		linear			

ID	NAME △	MELTING T	BOILING T	MASS	
4	Aluminium	660.3 °C	2519 °C	26.98u	
1	Copper	1085 °C	2560 °C	63.546u	
5	Gold	1064 °C	2970 °C	196.97u	
2	Iron	1538 °C	2862 °C	55.845u	
3	Mercury	-38.83 °C	356.7 °C	200.59u	

ID	NAME △	MELTING T	BOILING T	MASS	
4	Aluminium	660.3 °C	2519 °C	26.98u	
1	Copper	1085 °C	2560 °C	63.546u	
5	Gold	1064 °C	2970 °C	196.97u	
2	Iron	1538 °C	2862 °C	55.845u	
3	Mercury	-38.83 °C	356.7 °C	200.59u	

ID	NAME △	MELTING T	BOILING T	MASS	
4	Aluminium	660.3 °C	2519 °C	26.98u	
1	Copper	1085 °C	2560 °C	63.546u	
5	Gold	1064 °C	2970 °C	196.97u	
2	Iron	1538 °C	2862 °C	55.845u	
3	Mercury	-38.83 °C	356.7 °C	200.59u	
		binary			

Searching

- Database approach
 - linear search
 - binary search only in indexed columns
- Graph approach
 - graph traversal : depends a lot on the graph structure!

Project plan

- Fetch material DB (<u>FreeBase.com</u>, Python)
- Implement graph library (C++)
- Visualize the graph
- Optimize graph search
- (if time allows) Parallelize graph traversal

Data description

• ...describe graph / node layout

Visualization

• Demo

Query

Find the N elements with melting point closer X

exact

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

exact

depth=2

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

exact

depth=2

depth=3

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

exact

depth=2

depth=3

depth=4

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Similarity links

exact

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

exact

depth=2

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

exact

depth=2

depth=3

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

exact

depth=2

depth=3

depth=4

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Element 11

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

Element 10

Parallelization

- ... load imbalance
- show scaling

Parallel random walk

- show convergence
- show scaling

TODO

Credits

- Data:
 - http://www.freebase.com
- Visualization:
 - http://visjs.org