Clase 8 - Observadores

Facultad de Ingeniería, Universidad de Buenos Aires Laboratorio de Control Automático (86.22) Dr. Ing. Claudio D. Pose

Controlabilidad y observabilidad

Dado un sistema en variables de estado:

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$$
$$\mathbf{y} = C\mathbf{x} + D\mathbf{u}$$

Se definen las matrices de observabilidad y controlabilidad como:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^2 \\ ... \\ CA^{n-1} \end{bmatrix} \qquad \mathcal{C} = \begin{bmatrix} B & AB & A^2B & ... & A^{n-1}B \end{bmatrix}$$

Controlabilidad y observabilidad

- Si las matrices tienen rango completo, el sistema es observable y/o controlable.
- Un sistema observable implica que, dado un conjunto de mediciones de la salida, y la dinámica interna del sistema, se pueden conocer todas las variables internas del sistema en todo instante de tiempo.
- Un sistema controlable es aquel que puede alcanzar cualquier punto de su espacio de estados en un tiempo acotado, utilizando una serie determinada de valores de entrada.

Controlabilidad y observabilidad

- Existen nociones más débiles de estos dos conceptos.
- Un sistema es detectable si las variables de estado que no pueden observarse tienen dinámica estable.
- Un sistema es estabilizable si las variables de estado que no pueden controlarse tienen dinámica estable.

Necesidad de estimar las variables de estado

- Para realizar realimentación por variables de estado, es necesario el vector de estados completo.
- A veces, la variable a controlar no se puede medir directamente.
- Si bien a veces pueden obtenerse variables de estado directamente de la salida del sistema (por ejemplo derivando la salida), no son métodos ideales.

Dominio de trabajo

Se debe recordar que se trabaja con implementaciones digitales, con lo cual la planta real en variables de estado se representa de la siguiente manera:

$$\mathbf{x}_{k+1} = A_d \mathbf{x}_k + B_d \mathbf{u}_k$$

$$\mathbf{y}_k = C_d \mathbf{x}_k + D_d \mathbf{u}_k$$

$$A_d = \mathbf{I} + AT , B_d = BT , C_d = C , D_d = D (zoh)$$

Estimación sin corrección

- Si el modelo en espacio de estados es una perfecta representación del sistema muestreado, y se conocen todas las acciones de control u en cada instante de tiempo, el modelo puede predecir perfectamente el vector de estados en todo momento.
- Sin embargo, en una planta real pueden existir múltiples perturbaciones no modeladas.

Representación del modelo

Se denota el modelo con un : para indicar aquellas variables que son una estimación de la planta real:

$$\hat{\mathbf{x}}_{k+1} = A_d \hat{\mathbf{x}}_k + B_d \mathbf{u}_k$$

$$\hat{\mathbf{y}}_k = C_d \hat{\mathbf{x}}_k + D_d \mathbf{u}_k$$

$$A_d = \mathbf{I} + AT , B_d = BT , C_d = C , D_d = D (zoh)$$

Estimación con corrección

- Si la estimación y_k es idéntica a la medición \hat{y}_k , entonces mi error de estimación es nulo.
- En cambio, si existe una diferencia $y_k \hat{y}_k$ diferente a cero, implica que hay un error del modelo.
- Cuanto mayor es la diferencia y/o más rápido crece, mayor es el error en el modelo.
- Puedo utilizar ese error para corregir mi modelo en cada instante de tiempo.

Observador de Luenberger

$$\hat{\mathbf{x}}_{k+1} = A_d \hat{\mathbf{x}}_k + L(\mathbf{y}_k - \hat{\mathbf{y}}_k) + B_d \mathbf{u}_k$$
$$\hat{\mathbf{y}}_k = C_d \hat{\mathbf{x}}_k + D_d \mathbf{u}_k$$

Se corrige el estado estimado siguiente $\hat{\mathbf{x}}_{k+1}$ en base al error entre la salida medida y la estimación, multiplicado por una matriz de dimensiones adecuadas.

Observador de Luenberger

Si comparo la diferencia entre la estimación del estado $\hat{\mathbf{x}}_{k+1}$ y el estado real \mathbf{x}_{k+1} :

$$\hat{\mathbf{x}}_{k+1} - \mathbf{x}_{k+1} = A_{d}\hat{\mathbf{x}}_{k} + L(\mathbf{y}_{k} - \hat{\mathbf{y}}_{k}) + B_{d}\mathbf{u}_{k} - (A_{d}\mathbf{x}_{k} + B_{d}\mathbf{u}_{k})
\hat{\mathbf{x}}_{k+1} - \mathbf{x}_{k+1} = A_{d}\hat{\mathbf{x}}_{k} - A_{d}\mathbf{x}_{k} + L(\mathbf{y}_{k} - \hat{\mathbf{y}}_{k})
\hat{\mathbf{x}}_{k+1} - \mathbf{x}_{k+1} = A_{d}\hat{\mathbf{x}}_{k} - A_{d}\mathbf{x}_{k} + L(C_{d}\mathbf{x}_{k} + D_{d}\mathbf{u}_{k}) - (C_{d}\hat{\mathbf{x}}_{k} + D_{d}\mathbf{u}_{k})
\hat{\mathbf{x}}_{k+1} - \mathbf{x}_{k+1} = A_{d}\hat{\mathbf{x}}_{k} - A_{d}\mathbf{x}_{k} + L(C_{d}\mathbf{x}_{k} - C_{d}\hat{\mathbf{x}}_{k})
\hat{\mathbf{x}}_{k+1} - \mathbf{x}_{k+1} = A_{d}\hat{\mathbf{x}}_{k} - LC_{d}\hat{\mathbf{x}}_{k} - (A_{d}\mathbf{x}_{k} - LC_{d}\mathbf{x}_{k})
\hat{\mathbf{x}}_{k+1} - \mathbf{x}_{k+1} = (A_{d} - LC_{d})(\hat{\mathbf{x}}_{k} - \mathbf{x}_{k})
e_{k+1} = (A_{d} - LC_{d})e_{k}$$

Observador de Luenberger

- Es decir, si $(A_d LC_d)$ tiene autovalores correspondientes a polos estables, entonces el error de estimación converge a cero.
- CUIDADO! Se esta trabajando en un sistema digital, los polos estables son aquellos dentro del círculo unitario.
- Para elegir L, se debe buscar que el error de estimación converja a cero más rápido que lo que varían las variables de estado en la planta real.
- Además se debe buscar que el error de estimación converja a cero más rápido que el controlador que se desea implementar.
- De lo contrario, se estaría ejecutando el control con valores de variables de estado que no pueden seguir la variación real de la planta.

$$\ddot{\theta} = -\frac{g}{I}\theta - \frac{k}{ml^2}\dot{\theta}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$$
$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{k}{ml^2} \end{bmatrix} x$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

$$x_{k+1} = \left(I + \begin{bmatrix} 0 & 1 \\ -\frac{g}{I} & -\frac{k}{mI^2} \end{bmatrix} T \right) x_k$$

$$x_{k+1} = \begin{bmatrix} 1 & T \\ -\frac{g}{I}T & 1 - \frac{k}{mI^2}T \end{bmatrix} x_k$$

$$y_k = \begin{bmatrix} 1 & 0 \end{bmatrix} x_k$$

$$x_{k+1} = \begin{bmatrix} 1 & T \\ -\frac{g}{l}T & 1 - \frac{k}{ml^2}T \end{bmatrix} x_k$$
$$y_k = \begin{bmatrix} 1 & 0 \end{bmatrix} x_k$$

$$\hat{x}_{k+1} = \begin{bmatrix} 1 & T \\ -\frac{g}{l}T & 1 - \frac{k}{ml^2}T \end{bmatrix} \hat{x}_k + L(y_k - \hat{y}_k)$$
 $\hat{y}_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \hat{x}_k$
 $x_0 = \begin{bmatrix} \theta_0 \\ 0 \end{bmatrix}$

Bibliografía

• Goodwin, Graebe y Salgado Capítulo V Sección 18, 18.3