

Bond Fission

Homolytic free radicals are fomed.

Heterolytic Carbocation and carbanion is formed.

Organic Reaction Types

Addition reaction

Substitution reaction

Elimination reaction

Organic molecule -

→ Intermedite -

Attacking Reagent /

→ Products(s)

Carbocation

- + Carbon atom having a positive charge with only six electron in its valence shell.
- → Carbocation carbon is sp² hvbridised.

Order of Stability: $\overset{\oplus}{\text{-}}\overset{\dot{}}{\text{-}}\overset{\dot{}}{\text{-}}\overset{\ominus}{\text{-}}\overset{-}\overset{-}{\text{-}}\overset{-}\overset{-}{\text{-}}\overset{-}}{\text{-}}\overset{-}\overset{-}\overset{-}{\text{-}}\overset{-}\overset{-}{\text{-}}\overset{-}\overset{-}}{\text{-}}\overset{-}\overset{-}\overset{-}\overset{-}{\text{-}}\overset{-}\overset{-}}{\text{-}}\overset{-}\overset{-}\overset{-}\overset{-}}{\text{-}}\overset{-}\overset{-}\overset{-}\overset{-}\overset{-}\overset{-}}{\text{-}}\overset{-}\overset{-}\overset{-}\overset{-}}{\text{-}}\overset{-}\overset{-}\overset{-}\overset{-}\overset{-}\overset$

Carbanion

- → Carbon atom having a negative charge on it.
- **→** Carbanion carbon is sp³ hybridised.

 Θ Θ Θ Θ CH.>-CH.>-CH>-C

Free Radical

- → Carbon atom having odd electron in the valence shell is called carbon free radical.
- → Carbon of free radical is sp² hybridised.

Electrophile

Electron deficient species. Lewis acid. Example- Cl^{\oplus} , Br^{\oplus} , NO_{2}^{\oplus} , $C^{\oplus}H_{3}$, AlCl₃, etc.

ELECTRONIC

DISPLACEMENT

EFFECT

Nucleophile

Electron rich species. Lewis base. Example- $H_2 \overset{\bullet}{\text{O}}, \overset{\bullet}{\text{N}} H_3, OH^-, Cl^-, F^-, CH_3^{\Theta}$

Inductive Effect

- → Partial displacement of sigma electrons towards more electronegative atom /Group.
- **→** It is a permanent effect +I Effect -I Effect -CN,-COOH, etc. CH_3 , C_2H_5 , etc.

Resonance Effect

When a molecule can be represented by two or more structures which have same arrangement of atoms but differ in distribution of electrons is called resonance.

+R Effect halogen, -OH, OR

-R effect -COOH, -CHO, -CN

Hyperconfugation Effect

Delocalisation of s electrons of C-H bond of an alkyl group directly attached to an atom with unshared p-orbital.

QUALITATIVE ANALYSIS

Halogens

Sodium Extract is acidified with conc. HNO₃and treated with silver nitrate.

Sulphur

Sodium Extract is acidified with acetic acid and lead acetate is added.

Nitrogen

Sodium extract is boiled with iron (II) sulphate, then acidified with conc. H₂SO₄

Phosphorous

Compound is treated with oxidising agent, then boiled with HNO3 and ammonium molybdate.

Carbon & Hydrogen

by heating with copper (II) oxide

QUANTITATIVE ANALYSIS

Hologens (Carius method)

%halogen= $\frac{\text{at.mass of (x)} \times \text{m}_1 \times 100}{\text{molar mass of Ag} \times \text{m}}$

m-Mass of org. Compound m₁-mass of AgX formed

Sulphur Carius method

$$\%S = \frac{32 \times m_1 \times 100}{233 \times m}$$

m-Mass of org. Compound m₁-mass of BaSO₄ formed

Nitrogen

Dumas method Kjeldahl's method %N= $\frac{28 \times V \times 100}{22400 \times m}$

 $\%N = \frac{1.4 \times N \times V}{m}$

m-Mass of org. Compound N-Normality of acid V-Volume of acid

Phosphorus

$$%P = \frac{62 \times m_{_1} \times 100}{222 \times m}$$

m-Mass of org. Compound m₁-mass of Mg₂P₂O₇ formed

Carbon and Hydrogen

$$\%C = \frac{12 \times m_2 \times 100}{44 \times m}$$
 $\%H = \frac{2 \times m_1 \times 100}{18 \times m}$

m-Mass of org. Compound m₂-mass of CO₂ produced m₁-mass of H₂O produced