## Project 2 - Whitepaper Draft

Jerica Tripp – DSC680 July 15, 2022

#### **Business Problem**

The goal of my project is to try and predict closing stock prices of select banks. It would be beneficial for stock traders to be able to utilize historical data to make decisions on which bank stock to buy or sell. The data is very large and is not an easy task for an individual to pour through and so having an automated way to making buying decisions would be beneficial for brokers and other investors.

For my analysis, I will be focusing on the following bank's stock data: J.P. Morgan, Discover Financial Services, American Express, Citi Bank, Bank of America, US Bank, and Wells Fargo. The idea is that users may only have the option to buy one stock, and this model would help them to make that decision.

### **Background/History**

Historically, predicting stock closing prices has been a difficult task. Mitchell (2021) of Investopedia, states: "Predicting the market is challenging because the future is inherently unpredictable". Issues that arise, such as the 2008 housing market crash or COVID cannot be predicted, so all predictions around stock should be taken with a grain of salt. Investors can and should leverage trend information to make good buying decisions as best they can.

Common techniques to predict stock prices include moving average, exponential moving average, long and short-term memory models (Li, 2022). Aspects that these methodologies don't account for well are seasonality and holidays. Facebook's forecasting tool, Prophet, offers a solution to bake in seasonality and other date trends that are difficult to add to other models. For my analysis, I will be using Prophet to make my predictions.

# **Data Explanation**

### Data Gathering

AlphaVantage is an open-source API that allows users to utilize stock data. They offer intra-day data down to 5-minute intervals. For my analysis, I will be using the version of this data that provides the last two years of daily closing data. The data is accessed using one stock at a time. The ticker is passed to the API and the following fields in the below data dictionary section are returned.

### Data Dictionary

### Main Data

- Timestamp date value of record
- 2. Open opening stock price
- 3. High highest stock price for the day
- 4. Low- lowest stock price for the day
- 5. Close- closing stock price for the day
- 6. Volume- volume of stock for the day
- 7. Ticker- this stock identifier (will be a code like DFS, JPM, etc.)

### Data Prep

The data required a few manipulations to make it work for Prophet. Prophet only accepts a dataframe with two columns: y: a numeric value and ds: a date. My first step was to convert the date field provided into a timestamp because it was of 'object' type originally. I then created a dataframe that only contained the ticker value, the closing price, and the date.

I was able to do most of my statistical analysis of the data using the above dataframe. For the model, I had to feed one ticker's data at a time. To accomplish this, I created a list of dataframes and looped over each item in the list when running the model.

Prophet accepts a 'holiday' argument. This allows the model to consider holidays in its algorithm. To do this, I had to create a dictionary for each holiday that the US stock market observes.

### **Analysis**

My first step in my exploratory data analysis was to ensure that every stock had similar date ranges and record counts. I found that all stocks had the same date range (November 1, 1999 to July 26, 2022) ,except for Discover, which had a date range of June 14, 2007 to July 26, 2022. This is accurate, as Discover did not start trading on the stock market until June of 2007 (Discover, n.d.). Discover has 3,806 records and all others have 5,720 records.

Using the describe function, I was able to assess the descriptive statistics of all the stocks combined closing price, as well as each stock individual closing price. Figure 1, below, shows these stats. We can see that JPM has the highest mean, Wells Fargo has the lowest, and the average closing price of all are around \$49.14. The standard deviation is interesting, with USB & WFC having similar deviations while the rest range from low twenties to high thirties. The minimums show that there have been extreme lows, although this could be initial offering prices. A plot of the closing prices should tell us more.

| C. | Losing | Stock | Price | Summary | Statistics |
|----|--------|-------|-------|---------|------------|
|----|--------|-------|-------|---------|------------|

|       | all         | DFS        | JPM        | AXP        | С          | BAC        | USB        | WFC        |
|-------|-------------|------------|------------|------------|------------|------------|------------|------------|
| count | 38126.00000 | 3806.00000 | 5720.00000 | 5720.00000 | 5720.00000 | 5720.00000 | 5720.00000 | 5720.00000 |
| mean  | 49.14313    | 51.81464   | 62.96439   | 71.42865   | 45.09183   | 34.45394   | 35.16919   | 43.97322   |
| std   | 28.54789    | 30.36424   | 35.01464   | 37.00227   | 18.97208   | 20.86484   | 11.86619   | 11.89401   |
| min   | 1.02000     | 4.89000    | 15.45000   | 10.26000   | 1.02000    | 3.14000    | 8.82000    | 8.12000    |
| 25%   | 30.97250    | 23.41000   | 38.49000   | 45.80000   | 37.98750   | 15.75000   | 25.03750   | 33.76000   |
| 50%   | 45.81000    | 54.27000   | 47.36000   | 57.71500   | 48.27000   | 29.92000   | 32.44000   | 46.25500   |
| 75%   | 57.74000    | 70.57500   | 83.91750   | 89.76250   | 54.88000   | 48.27250   | 43.67000   | 53.17500   |
| max   | 198.38000   | 135.38000  | 171.78000  | 198.38000  | 81.91000   | 89.01000   | 63.25000   | 73.00000   |

Figure 1

Looking at the distribution of closing prices of all the bank stocks we've selected, we can see in Figure 2 that the distribution is left-skewed. Closing prices tend to have more outliers in the higher range, with the distribution heavier in the lower price range. Around 50, the distribution peaks.



Figure 2

The below histograms in Figure 3, show the closing price distributions of each bank stock we're reviewing. We can see that the distribution of Discover, JP Morgan, American Express, Bank of America, and US Bank are all left-skewed, like the overall distribution in figure 2. However, Wells Fargo and Citi take on more of a normal distribution.



Figure 3

When plotting the closing price for each day, we see similar trends for the combined and the individual stocks. The 2008 recession and the impact of COVID on the stock market can clearly be seen in both charts in Figure 4.



Figure 4

#### **Methods**

For my model, I will be using a training and validation population. I'd like to be able to advise the users as to the confidence they should have in the recommendation. I will be using MAPE and RMSE to gauge the accuracy of the predictions.

I did not limit the data supplied to the model, as Prophet is meant to be able to incorporate daily weekly, quarterly, yearly, etc. seasonality trends. I am using a linear growth type. I also am passing my list of holidays to the model to allow the model to consider these in its predictions. For each stock, I will be plotting the results of the predictions to the actual and will be updating a dataframe to output the results of each run.

# **Conclusion & Implementation**

To implement the model on my data, I wrote a function that accepted a data, number of days to predict in the future, and what day to start with. This way, using a loop, I am able to run the function for each stock.

In the appendix, I've included the visual plot of each run for each stock. Figure 6 is the result for Discover. The first plot shows the prediction (blue line), confidence interval (blue area), and actual values (black dots). The chart below that shows the values for the future predictions.

The final output of this model is a table which is shown in figure 5 below. Each row is a given stock. The columns include the RMSE, MAPE, the actual value and the date where the last actual value was obtained, the first forecast (forecast\_1), the first forecast date(forecast\_1\_date), the same for forecast 2 & 3, the difference between the first forecast and the last actual day. This value will indicate if the price is expected to be higher or lower. FC\_2\_diff and FC\_3\_diff do the same thing. The last two columns are meant to provide an aggregate of the 3 day forecasts expected performance. 3\_day\_gain\_avg shows the

average of the price differences between the actual and the three predicted future values. Users can use this combined with the RMSE and MAPE to make an informed decision. For example, Citi Bank is predicted to have an average closing price increase of \$25.5, but the RMSE is quite high at ~24%. Wells Fargo and DFS have the lowest RMSE and MAPE scores and they both are predicted to have an increase of over \$1. They may be a safer investment.

|   | stock | RMSE     | MAPE    | actual_dt  | actual    | forecast_1_dt | forecast_1 | forecast_2_dt | forecast_2 | forecast_3_dt | forecast_3 | FC_1_diff | FC_2_diff | FC_3_diff | 3_day_gain | 3_day_gain_avg |
|---|-------|----------|---------|------------|-----------|---------------|------------|---------------|------------|---------------|------------|-----------|-----------|-----------|------------|----------------|
| 0 | DFS   | 4.45558  | 0.03345 | 2022-07-26 | 98.36000  | 2022-07-27    | 99.97981   | 2022-07-28    | 99.68464   | 2022-07-29    | 99.55641   | 1.61981   | 1.32464   | 1.19641   | 4.14087    | 1.38029        |
| 0 | JPM   | 40.69932 | 0.26367 | 2022-07-26 | 113.42000 | 2022-07-27    | 146.53384  | 2022-07-28    | 146.85188  | 2022-07-29    | 146.54431  | 33.11384  | 33.43188  | 33.12431  | 99.67003   | 33.22334       |
| 0 | AXP   | 10.92461 | 0.05475 | 2022-07-26 | 149.83000 | 2022-07-27    | 148.03265  | 2022-07-28    | 148.25940  | 2022-07-29    | 148.37087  | -1.79735  | -1.57060  | -1.45913  | -4.82707   | -1.60902       |
| 0 | С     | 23.58177 | 0.31773 | 2022-07-26 | 51.40000  | 2022-07-27    | 74.92827   | 2022-07-28    | 74.96955   | 2022-07-29    | 74.83525   | 23.52827  | 23.56955  | 23.43525  | 70.53306   | 23.51102       |
| 0 | BAC   | 6.27102  | 0.15691 | 2022-07-26 | 33.05000  | 2022-07-27    | 39.35414   | 2022-07-28    | 39.49575   | 2022-07-29    | 39.66155   | 6.30414   | 6.44575   | 6.61155   | 19.36144   | 6.45381        |
| 0 | USB   | 10.81914 | 0.18643 | 2022-07-26 | 47.42000  | 2022-07-27    | 55.56950   | 2022-07-28    | 55.75201   | 2022-07-29    | 55.83640   | 8.14950   | 8.33201   | 8.41640   | 24.89791   | 8.29930        |
| 0 | WFC   | 2.22804  | 0.03514 | 2022-07-26 | 42.90000  | 2022-07-27    | 44.39417   | 2022-07-28    | 44.51920   | 2022-07-29    | 44.61750   | 1.49417   | 1.61920   | 1.71750   | 4.83087    | 1.61029        |

Figure 5 - Final Output

#### **Ethical Assessment**

There is an ethical consideration to not necessarily tell a user to buy a certain stock. Instead, I plan to only offer the information available and let the user make the decision. There are many factors that effect the stock market and users should take as much data into account as possible.

Also, because I am using a free API, I can only offer updates on this data 5 times a day. I would need to make this clear if this were to become an application. This would be to ensure no one is making decisions using outdated information.

### **Sources**

- Li, K. (Y. (2022, May 13). *Predicting stock prices using machine learning*. neptune.ai. Retrieved July 15, 2022, from https://neptune.ai/blog/predicting-stock-prices-using-machine-learning#:~:text=Predicting%20stock%20price%20with%20Moving%20Average%20(MA)%20technique&text=Commonly%20used%20periods%20are%2020,Simple%20MA%20and%20Exponential%20MA.
- Mitchell, C. (2021, September 8). *Profit without predicting the market*. Investopedia. Retrieved July 15, 2022, from https://www.investopedia.com/articles/trading/10/profit-without-predicting.asp#:~:text=Predicting%20the%20market%20is%20challenging,will%20happen %20in%20the%20future.
- Welcome to discover. Discover. (n.d.). Retrieved July 26, 2022, from https://www.discover.com/company/our-company/#:~:text=Discover%20Financial%20Services%20becomes%20an,first%20time%20on%20July%202.

# **Appendix**



# Figure 6 - DFS



Figure 7 – JPM



Figure 8 - American Express



Figure 9 - Citi Bank



Figure 10 - Bank of America



Figure 11 - US Bank



Figure 12 - Wells Fargo