Assignment3

CS20Btech11035 -NYALAPOGULA MANASWINI

Download python code from

https://github.com/N-Manaswini23/assignment3/blob/main/assignment3.py

Download latex code from

https://github.com/N-Manaswini23/assignment3/blob/main/assignment3.tex

GATE XE-C QUESTION 17

Box-S has 2 white and 4 black balls and box-T has 5 white and 3 black balls. A ball is drawn at random from box-S and put in box-T.Subsequently, the probability of drawing a white ball from box-T is? (rounding off to 2 decimal places)

SOLUTION

Box-0 has 2 white and 4 black balls. Box-1 has 5 white and 3 black balls.

Event	definition		
W	Event of transfering white balls		
, ,	from box-0 to box-1		
В	Event of transfering black balls		
	from box-0 to box-1		
С	Event of drawing white balls		
	from box-1		
Pr(W=1)	Probability of transfering one		
	whiteball from box-0 to box-1		
Pr(B=1)	Probability of transfering one		
	blackball from box-0 to box-1		
$\Pr\left(C = 1 W = 1\right)$	Probability of drawing a whiteball		
	from box-1 after transfering		
	white ball to box-1.		
$\Pr\left(C=1 B=1\right)$	Probability of drawing a whiteball		
	from box-1 after transfering		
	black ball to box-1.		

TABLE 0: Table 1

Probability	Pr(W=1)	Pr(B=1)	$\Pr\left(C = 1 W = 1\right)$	$\Pr\left(C=1 B=1\right)$
value	$\frac{1}{3}$	$\frac{2}{3}$	6	$\frac{5}{9}$

TABLE 0: Table 2

Pr (drawn ball is white) = Pr (
$$C = 1$$
) (0.0.1)
(0.0.2)

From Baye's theorem

$$Pr(C = 1) = Pr(C = 1|W = 1) \times Pr(W = 1)$$

+ $Pr(C = 1|B = 1) \times Pr(B = 1)$ (0.0.3)

Substiting values from table (0) in (0.0.3)

$$Pr(C = 1) = \frac{6}{9} \times \frac{1}{3} + \frac{5}{9} \times \frac{2}{3}$$

$$= \frac{16}{27}$$
(0.0.4)

.. Probability of drawing white ball from box-1 = Pr $(C = 1) = \frac{16}{27} = 0.59$

