Теория и реализация языков программирования. Задание 10: LL-анализ

Сергей Володин, 272 гр. задано 2013.11.13

Упражнение 1

Пусть G = (N, T, P, S). Занумеруем правила из $P: P = \{P_1, ..., P_n\}$. Определим синтаксический перевод $T_l = (N, T, T', R, S)$:

- 1. $T' = \{1, ..., n\}$
- 2. R определяется через P: каждому правилу $P\ni P_i=(X,Y_1...Y_n)$ сопоставим правила в R: пусть $Y_{j_1}...Y_{j_l}$ максимальная подпоследовательность из нетерминалов из слова $Y_1...Y_n$. Тогда $X\longrightarrow Y_1...Y_n, iY_{j_1}...Y_{j_l})\in P'$. По построению нетерминалы, входящие в $\alpha\equiv Y_1...Y_n$ входят также в $\beta\equiv Y_{j_1}...Y_{j_l}$, причем с той же кратностью.

Упражнение 2

w = a * (a + a). Построим правый вывод по дереву вывода (из задания):

Чтобы получить правый вывод, обойдем дерево разбора в G' следующим образом:

- 1. Выпишем самого левого потомка (по структуре правил, это всегда будет номер правила из G)
- 2. Выполним разбор оставшихся потомков справа налево.

Получаем последовательность правил правого вывода w в G: $P_r=23514624646$.

Правый вывод (выделен раскрываемый нетерминал): $\underline{E} \stackrel{?}{\Rightarrow} \underline{T} \stackrel{5}{\Rightarrow} T * (\underline{E}) \stackrel{1}{\Rightarrow} T * (E + \underline{T}) \stackrel{4}{\Rightarrow} T * (E + \underline{F}) \stackrel{6}{\Rightarrow} T * (\underline{E} + a) \stackrel{2}{\Rightarrow} T * (\underline{T} + a) \stackrel{4}{\Rightarrow} T * (\underline{F} + a) \stackrel{6}{\Rightarrow} \underline{T} * (a + a) \stackrel{4}{\Rightarrow} \underline{F} * (a + a) \stackrel{6}{\Rightarrow} a * (a + a) = w.$

По определению, правый разбор — примененные при правом выводе правила в обратном порядке: $(P_r)^R = 64642641532$.

Упражнение 3

Упражнение 4

Упражнение 5

Упражнение 6

Задача 1

 $w = ((a)) \in L(G): \underline{E} \stackrel{2}{\Rightarrow} \underline{T} \stackrel{4}{\Rightarrow} \underline{F} \stackrel{5}{\Rightarrow} (\underline{E}) \stackrel{2}{\Rightarrow} (\underline{T}) \stackrel{4}{\Rightarrow} (\underline{F}) \stackrel{5}{\Rightarrow} ((E)) \stackrel{2}{\Rightarrow} ((\underline{T})) \stackrel{4}{\Rightarrow} ((\underline{F})) \stackrel{6}{\Rightarrow} ((a)).$

1. Построим дерево вывода w в G и соответствующее дерево в G':

- 2. Левый разбор: обойдем второе дерево в глубину, всегда выбирая самого левого непосещенного потомка: $P_l=245245246$.
- 3. Правый разбор: обойдем второе дерево в глубину, как указано в решении упражнения 2: $(P_r)^R=245245246\Rightarrow P_r=642542542$.

Задача 2

1.
$$\Sigma' = \{0, 1, \$\}, \ N' = \{S', S\}.$$
 Пополненная грамматика $G' = (N', \Sigma', P', S'), \ P = \{\overbrace{S' \to S\$}^{(0)}, \overbrace{S \to 0S}^{(1)}, \overbrace{S \to 1S}^{(2)}, \overbrace{S \to 0S}^{(3)}, \overbrace{S \to 1S}^{(3)}, \overbrace{S \to 1S}^{(3)$

- 2. G LL(1)-грамматика. Докажем это по Теореме 1. Рассмотрим пары правил:
 - (a) $S \to 0S$ и $S \to 1S$. Правые части β и γ начинаются с 0 и 1 соответственно, поэтому для всех α имеем $\mathrm{FIRST}(\beta\alpha) \cap \mathrm{FIRST}(\gamma\alpha) = \varnothing$
 - (b) $S \to 0S$ и $S \to \varepsilon$. Правила (1), (2), (3) оставляют S на последнем месте, поэтому $\alpha = \$$. Имеем $\beta = 0S$, $\gamma = \varepsilon$. Тогда FIRST($\beta\alpha$) = {0}, FIRST($\gamma\alpha$) = {\$}, они не пересекаются.
 - (c) $S \to 1S$ и $S \to \varepsilon$ аналогично.
- 3. Вычислим FIRST:

		$F_i(0)$	$F_i(1)$	$F_i(\$)$	$F_i(S)$	$F_i(S')$
0.	Определим F_0 :	Ø	Ø	Ø	Ø	Ø
0.1.	Терминалы: $F_0(0) \stackrel{\text{def}}{=} \{0\}, F_0(1) \stackrel{\text{def}}{=} \{1\}, F_0(\$) \stackrel{\text{def}}{=} \{\$\}.$	{0}	{1}	{\$}	Ø	Ø
0.2.	Есть правило $S \stackrel{(3)}{\to} \varepsilon \Rightarrow F_0(S) \stackrel{\text{\tiny def}}{=} \{ \varepsilon \}$	{0}	{1}	{\$}	$\{\varepsilon\}$	Ø
0.3.	Нет правила $S' oarepsilon\Rightarrow F_0(S')\stackrel{\scriptscriptstyle m def}{=}arnothing$	{0}	{1}	{\$}	$\{arepsilon\}$	Ø
1.	Определим $F_1 = F_0$	{0}	{1}	{\$}	$\{\varepsilon\}$	Ø
1.1.	Рассмотрим символы правой части правила $S' \stackrel{(0)}{\to} S\$$. 1. $\underline{S}\$$ $F_0(\underline{S}) = \{\varepsilon\} \ni \varepsilon$. $F_0(\underline{S}) \setminus \{\varepsilon\} = \varnothing \to F_1(S')$. 2. $\underline{S}\$$ $F_0(\underline{\$}) = \{\$\} \not\ni \varepsilon$. $F_0(\underline{\$}) \setminus \{\varepsilon\} = \{\$\} \to F_1(S')$.	{0}	{1}	{\$}	$\{arepsilon\}$	{\$}
1.2.	Рассмотрим правило $S \stackrel{(1)}{\to} \underline{0}S$. $F_0(\underline{0}) = \{0\} \not\ni \varepsilon \Rightarrow F_1(S) \leftarrow \{0\}$	{0}	{1}	{\$}	$\{\varepsilon,0\}$	{\$}
1.3.	Рассмотрим правило $S \stackrel{(2)}{\to} \underline{1}S$. $F_0(\underline{1}) = \{1\} \not\ni \varepsilon \Rightarrow F_1(S) \leftarrow \{1\}$	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$}
1.4.	Рассмотрим правило $S\stackrel{(3)}{ o}\underline{arepsilon}.\; \underline{arepsilon} =0\Rightarrow$ не изменяем F_1	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$}
2.	Определим $F_2 = F_1$:	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$}
2.1.	Рассмотрим символы правой части правила $S' \stackrel{(0)}{\to} S\$$. 1. $\underline{S}\$$ $F_1(\underline{S}) = \{\varepsilon, 0, 1\} \ni \varepsilon$. $F_1(\underline{S}) \setminus \{\varepsilon\} = \{0, 1\} \to F_2(S')$.	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
	2. $S\S F_1(\S) = \{\$\} \not\ni \varepsilon. F_0(\S) \setminus \{\varepsilon\} = \{\$\} \rightarrow F_2(S').$					
2.2.	Рассмотрим правило $S \xrightarrow{(1)} \underline{0}S$. $F_1(\underline{0}) = \{0\} \not\ni \varepsilon \Rightarrow F_2(S) \leftarrow \{0\}$	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
2.3.	Рассмотрим правило $S \stackrel{(2)}{\to} \underline{1}S$. $F_1(\underline{1}) = \{1\} \not\ni \varepsilon \Rightarrow F_2(S) \leftarrow \{1\}$	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
2.4.	Рассмотрим правило $S\stackrel{(3)}{ o}\underline{arepsilon}.\; \underline{arepsilon} =0\Rightarrow$ не изменяем F_2	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
3.	Определим $F_3 = F_2$:	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	$\{\$, 0, 1\}$
3.1.	Рассмотрим символы правой части правила $S' \stackrel{(0)}{\to} S\$$. 1. $\underline{S}\$$ $F_2(\underline{S}) = \{\varepsilon, 0, 1\} \ni \varepsilon$. $F_2(\underline{S}) \setminus \{\varepsilon\} = \{0, 1\} \to F_3(S')$.	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
	2. $S\S F_2(\S) = \{\$\} \not\ni \varepsilon. F_2(\S) \setminus \{\varepsilon\} = \{\$\} \rightarrow F_3(S').$					
3.2.	Рассмотрим правило $S \stackrel{(1)}{\to} \underline{0}S$. $F_2(\underline{0}) = \{0\} \not\ni \varepsilon \Rightarrow F_3(S) \leftarrow \{0\}$	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
3.3.	Рассмотрим правило $S \stackrel{(2)}{\to} \underline{1}S$. $F_2(\underline{1}) = \{1\} \not\ni \varepsilon \Rightarrow F_3(S) \leftarrow \{1\}$	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
3.4.	Рассмотрим правило $S\stackrel{(3)}{ o}\underline{arepsilon}.\; \underline{arepsilon} =0\Rightarrow$ не изменяем F_3	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}
3.5.	Имеем $F_3 = F_2 \Rightarrow$ выход	{0}	{1}	{\$}	$\{\varepsilon,0,1\}$	{\$,0,1}

4. Вычислим FOLLOW:

Вычисл	им FOLLOW:	$F_i(S)$	$F_i(S')$
0.	Определим F_0 :	Ø	Ø
1.	Определим $F_1 = F_0$:	Ø	Ø
1.1.	Рассмотрим правило $S' \xrightarrow{(0)} \varepsilon S \xrightarrow{\alpha} X \xrightarrow{\beta}$ (a) FIRST(β) = {\$} \Rightarrow FIRST(β) \ { ε } = {\$} \Rightarrow FIRST(β) \ (b) $\varepsilon \notin FIRST(\beta)$.	{\$}	Ø
1.2.	Рассмотрим правило $S \xrightarrow{(1)} 0 S \varepsilon$ (a) FIRST $(\beta) = \{\varepsilon\} \Rightarrow \text{FIRST}(\beta) \setminus \{\varepsilon\} = \emptyset \rightarrow F_1(S)$. (b) $\varepsilon \in \text{FIRST}(\beta)$, поэтому $F_1(S) \leftarrow F_0(S) = \emptyset$	{\$}	Ø
1.3.	Рассмотрим правило $S \xrightarrow{(2)} 1 \xrightarrow{\alpha} X \xrightarrow{\beta}$ (a) FIRST(β) = $\{\varepsilon\} \Rightarrow$ FIRST(β) \ $\{\varepsilon\} = \emptyset \rightarrow F_1(S)$.	{\$}	Ø
1.4.	Рассмотрим правило $S \xrightarrow{(3)} \varepsilon$. Оно не имеет вид $A \to \alpha X \beta$, не изменяем F_1	{\$}	Ø
2.	Определим $F_2 = F_1$:	{\$}	Ø
2.1.	Рассмотрим правило $S' \xrightarrow{(0)} \varepsilon \xrightarrow{X} \beta$ (a) FIRST(β) = {\$} \Rightarrow FIRST(β) \ { ε } = {\$} \Rightarrow FIRST(β) \ (b) $\varepsilon \notin FIRST(\beta)$.	{\$}	Ø
2.2.	Рассмотрим правило $S \xrightarrow{(1)} 0$ $S \xrightarrow{\varepsilon} S$ (a) FIRST $(\beta) = \{\varepsilon\} \Rightarrow FIRST(\beta) \setminus \{\varepsilon\} = \emptyset \rightarrow F_2(S)$. (b) $\varepsilon \in FIRST(\beta)$, поэтому $F_3(S) \leftarrow F_1(S) = \{\$\}$	{\$}	Ø
2.3.	Рассмотрим правило $S \xrightarrow{(2)} 1$ $X \xrightarrow{\beta} S \xrightarrow{(2)} S \xrightarrow{(2)} 1$ (a) FIRST(β) = $\{\varepsilon\} \Rightarrow$ FIRST(β) \ $\{\varepsilon\} = \emptyset \rightarrow F_2(S)$. (b) $\varepsilon \in \text{FIRST}(\beta)$, поэтому $F_3(S) \leftarrow F_2(S) = \{\$\}$	{\$}	Ø
2.4.	Рассмотрим правило $S \xrightarrow{(3)} \varepsilon$. Оно не имеет вид $A \to \alpha X\beta$, не изменяем F_1	{\$}	Ø
2.5.	Имеем $F_2 = F_1 \Rightarrow$ выход	{\$}	Ø

5. Таблица переходов для LL(1)-анализатора:

	0	1	\$
S'	$S' \stackrel{(0)}{\rightarrow} S\$$	$S' \stackrel{(0)}{\rightarrow} S\$$	$S' \stackrel{(0)}{\rightarrow} S\$$
S	$S \stackrel{(1)}{\rightarrow} 0S$	$S \stackrel{(2)}{\rightarrow} 1S$	$S \stackrel{(3)}{\rightarrow} \varepsilon$
0	ε	Err.	Err.
1	Err.	ε	Err.
\$	Err.	Err.	Acc.

- (a) (S',0): правило $S' \stackrel{(0)}{\to} S\$$: FIRST $(S\$) = \text{FIRST}(S) \oplus \text{FIRST}(\$) = \{0,1,\$\} \ni 0$
- (b) (S',1): правило $S' \stackrel{(0)}{\to} S\$$: FIRST $(S\$) = FIRST(S) \oplus FIRST(\$) = \{0,1,\$\} \ni 1$
- (c) (S',\$): правило $S' \stackrel{(0)}{\to} S\$$: FIRST $(S\$) = \text{FIRST}(S) \oplus \text{FIRST}(\$) = \{0,1,\$\} \ni \$$
- (d) (S,0): правило $S \stackrel{(1)}{\rightarrow} 0S$: FIRST $(0S) = \{0\} \ni 0$
- (e) (S,1): правило $S \stackrel{(2)}{\rightarrow} 1S$: FIRST $(1S) = \{1\} \ni 1$
- (f) (S,\$): правило $S \xrightarrow{(3)} \varepsilon$: FOLLOW $(S) = \{\$\} \ni \$$

Задача 3

 $N\stackrel{\text{def}}{=}\{E,T,F\},\ T\stackrel{\text{def}}{=}\{a,(,),+,*\},\ G\stackrel{\text{def}}{=}(N,T,P,E),\ P\stackrel{\text{def}}{=}\{E\to E+T|T|\varepsilon,T\to T*F|F,F\to (E)|a\}$ Построим FIRST1:

	F 1.							
i					$F_i($	•)		
"	a	()	+	*	E	T	F
0	<i>{a}</i>	{(}	{)}	{+}	{*}	$\{\varepsilon\}$	Ø	Ø
1	<i>{a}</i>	{(}	{)}	{+}	{*}	$\{\varepsilon, +\}$	Ø	$\{(,a\}$
2	<i>{a}</i>	{(}	{)}	{+}	{*}	$\{\varepsilon, +\}$	$\{(,a\}$	$\{(,a\}$
3	<i>{a}</i>	{(}	{)}	{+}	{*}	$\{\varepsilon, +, (,a\}$	$\{(,a\}$	$\{(,a\}$
4	<i>{a}</i>	{(}	{)}	{+}	{*}	$\{\varepsilon, +, (,a\}$	$\{(,a\}$	$\{(,a\}$

Otbet: $FIRST(E) = \{\varepsilon, +, (, a)\}$

Задача 4

- 1. $\Sigma' \stackrel{\text{def}}{=} \{0, 1, \$\}, \ N' \stackrel{\text{def}}{=} (S', S, A), \ \text{пополненная грамматика} \ G' = (N', \Sigma', P', S).$ $P' \stackrel{\text{def}}{=} \{S' \stackrel{(0)}{\to} S\$, S \stackrel{(1)}{\to} aAaa, S \stackrel{(2)}{\to} bAba, A \stackrel{(3)}{\to} b, A \stackrel{(4)}{\to} \varepsilon\}$
- 2. Haйдем FIRST₁:

i	$F_i(a)$	$F_i(b)$	$F_i(\$)$	$F_i(S)$	$F_i(S')$	$F_i(A)$
0	<i>{a}</i>	{ <i>b</i> }	{\$}	Ø	Ø	$\{\varepsilon\}$
1	<i>{a}</i>	{ <i>b</i> }	{\$}	$\{a,b\}$	Ø	$\{b, \varepsilon\}$
2	<i>{a}</i>	{ <i>b</i> }	{\$}	$\{a,b\}$	$\{a,b\}$	$\{b, \varepsilon\}$
3	<i>{a}</i>	{ <i>b</i> }	{\$}	$\{a,b\}$	$\{a,b\}$	$\{b, \varepsilon\}$

3. Возьмем $\alpha = ba, \ w = b, \ \beta = b, \ \gamma = \varepsilon$, нетерминал A. Тогда $A \overset{(3)}{\to} b \equiv \beta, \ A \overset{(4)}{\to} \varepsilon \equiv \gamma, \ S' \overset{(0)}{\Rightarrow} \underline{S} \overset{(2)}{\Rightarrow} \underbrace{b}_{w} A \underbrace{ba \$}_{\alpha}$.

Имеем $F \stackrel{\text{def}}{=} \text{FIRST}(\beta\alpha) \equiv \text{FIRST}(ba\$) = \{b\}$ и $G \stackrel{\text{def}}{=} \text{FIRST}(\gamma\alpha) = \text{FIRST}(bba\$) = \{b\}$ и $F \cap G = \{b\} \neq \emptyset$. Получаем $\exists A \exists \alpha, \beta \colon A \to \alpha, A \to \beta \in P', \exists w \exists \alpha \colon S' \Rightarrow_t^* wA\alpha, \text{FIRST}(\beta\alpha) \cap \text{FIRST}(\gamma\alpha) \neq \emptyset$ — формальное отрицание утверждения Теоремы 1 из задания. Получаем, что G' — не LL(1)-грамматика.

4. Найдем FIRST₂:

110112011 1110012.						
i	$F_i(a)$	$F_i(b)$	$F_i(\$)$	$F_i(S)$	$F_i(S')$	$F_i(A)$
0	$\{a\}$	{b}	{\$}	Ø	Ø	Ø
1	$\{a\}$	{ <i>b</i> }	{\$}	$\{ab,aa,bb\}$	Ø	$\{b, \varepsilon\}$
2	$\{a\}$	{ <i>b</i> }	{\$}	$\{ab,aa,bb\}$	$\{ab, aa, bb\}$	$\{b, \varepsilon\}$
3	{ <i>a</i> }	{ <i>b</i> }	{\$}	$\{ab, aa, bb\}$	$\{ab, aa, bb\}$	$\{b,\varepsilon\}$

- 5. Докажем, что $G'-\mathrm{LL}(2)$ -грамматика, пользуясь Теоремой 1. Рассмотрим пары правил $X \to \beta, \, X \to \gamma$:
 - (a) $S \stackrel{(1)}{\to} \underbrace{aAaa}, S \stackrel{(2)}{\to} \underbrace{bAba}$. Тогда $\forall \alpha \hookrightarrow$ слова из $F \stackrel{\text{def}}{=} \operatorname{FIRST}_2(\beta \alpha)$ начинаются с a, слова из $G \stackrel{\text{def}}{=} \operatorname{FIRST}_2(\gamma \alpha)$ начинаются с b, поэтому $F \cap G = \varnothing$
 - (b) $A \overset{(3)}{\to} \underbrace{b}_{\beta}$, $A \overset{(4)}{\to} \underbrace{\varepsilon}_{\gamma}$. Пусть $S \Rightarrow_l^* wA\alpha$. Тогда $\alpha[1,2] \in \{aa,ba\}$ действительно, нетерминал A может появиться только после применения (1) или (2). Рассмотрим эти два случая:
 - і. $\alpha[1,2]=aa$. Тогда $F\stackrel{\text{def}}{=}\operatorname{FIRST}_2(\beta\alpha)=\operatorname{FIRST}_2(baa)=\{ba\},\ G\stackrel{\text{def}}{=}\operatorname{FIRST}_2(\gamma\alpha)=\operatorname{FIRST}_2(aa)=\{aa\}$. Поэтому $F\cap G=\varnothing$
 - іі. $\alpha[1,2]=ba$. Тогда $F\stackrel{\text{def}}{=} \mathrm{FIRST}_2(\beta\alpha)=\mathrm{FIRST}_2(bba)=\{bb\},\ G\stackrel{\text{def}}{=} \mathrm{FIRST}_2(\gamma\alpha)=\mathrm{FIRST}_2(ba)=\{ba\}$. Поэтому $F\cap G=\varnothing$

6. Найдем FOLLOW₂:

		2	
i	$F_i(S)$	$F_i(S')$	$F_i(A)$
0	Ø	Ø	Ø
1	{\$}	Ø	$\{aa, ba\}$
2	{\$}	Ø	$\{aa,ba\}$

Задача 5

- 1. $N \stackrel{\text{def}}{=} \{S, A\}, T \stackrel{\text{def}}{=} \{a, b\}, G \stackrel{\text{def}}{=} \{N, T, P, S\}. P = \{S \rightarrow ba | A, A \rightarrow a | Aab | Ab\}.$
- 2. Удалим непосредственную левую рекурсию: $N' \stackrel{\text{def}}{=} \{S, A, A'\}, \ P' \stackrel{\text{def}}{=} \{S \to bA|A, \ A \to aA', \ A' \to abA'|bA'|\varepsilon\}.$ $G' \stackrel{\text{def}}{=} \{N', T, P', S\}.$
- 3. L(G') = L(G) так как применен алгоритм
- 4. G'' пополненная грамматика: $T'' \stackrel{\text{def}}{=} \{a, b, \$\}$, $N'' \stackrel{\text{def}}{=} \{S, S', A, A'\}$, $P'' \stackrel{\text{def}}{=} \{S' \stackrel{(0)}{\longrightarrow} S\$, S \stackrel{(1)}{\longrightarrow} ba, S \stackrel{(2)}{\longrightarrow} A, A \stackrel{(3)}{\longrightarrow} aA', A' \stackrel{(4)}{\longrightarrow} abA', A' \stackrel{(5)}{\longrightarrow} bA', A' \stackrel{(6)}{\longrightarrow} \varepsilon\}$

5. Найдем FIRST:

i	$F_i(a)$	$F_i(b)$	$F_i(\$)$	$F_i(S)$	$F_i(S')$	$F_i(A)$	$F_i(A')$
0	<i>{a}</i>	{ <i>b</i> }	{\$}	Ø	Ø	Ø	$\{\varepsilon\}$
1	<i>{a}</i>	{ <i>b</i> }	{\$}	$\{b\}$	Ø	$\{a\}$	$\{a,b,\varepsilon\}$
2	<i>{a}</i>	{ <i>b</i> }	{\$}	$\{b,a\}$	<i>{b}</i>	$\{a\}$	$\{a,b,\varepsilon\}$
3	<i>{a}</i>	$\{b\}$	{\$}	$\{b,a\}$	$\{b,a\}$	$\{a\}$	$\{a,b,\varepsilon\}$
4	{a}	{ <i>b</i> }	{\$}	$\{b,a\}$	$\{b,a\}$	<i>{a}</i>	$\{a,b,\varepsilon\}$

- 6. Докажем, что G' LL(1)-грамматика. Рассмотрим пары правил $X \to \beta, X \to \gamma$:
 - $\text{(a)} \ \ S \overset{\text{(1)}}{\to} \underbrace{ba}_{\beta}, \ S \overset{\text{(2)}}{\to} \underbrace{A}_{\gamma}. \ \text{Тогда} \ \forall \alpha \hookrightarrow F \stackrel{\text{\tiny def}}{=} \operatorname{FIRST}(\beta \alpha) = \operatorname{FIRST}(b) = \{b\}, \ G \stackrel{\text{\tiny def}}{=} \operatorname{FIRST}(\gamma \alpha) = \{a\} \Rightarrow F \cap G = \varnothing$
 - (b) $A' \stackrel{(4)}{\rightarrow} \underline{a}bA', A' \stackrel{(5)}{\rightarrow} \underline{b}A'$. Аналогично $F \cap G = \emptyset$.
 - (c) $A' \overset{(4)}{\to} \underbrace{abA'}_{\beta}, \ A' \overset{(6)}{\to} \underbrace{\varepsilon}_{\gamma}$. Пусть $S' \Rightarrow_l^* wA\alpha$. Тогда $\alpha = \$$, так правила (4), (5), (6) оставляют A' последним символом слова. Тогда $F \overset{\text{def}}{=} \operatorname{FIRST}(\beta\alpha) = \{a\}, \ G \overset{\text{def}}{=} \operatorname{FIRST}(\gamma\alpha) = \{\$\}, \ \text{поэтому} \ F \cap G = \varnothing.$
 - (d) $A' \stackrel{(5)}{\to} \underbrace{bA'}_{\beta}, \ A' \stackrel{(6)}{\to} \underbrace{\varepsilon}_{\gamma}$. Пусть $S' \Rightarrow_l^* wA\alpha$. Аналогично $\alpha = \$$. Тогда $F \stackrel{\text{def}}{=} \operatorname{FIRST}(\beta\alpha) = \{b\}, \ G \stackrel{\text{def}}{=} \operatorname{FIRST}(\gamma\alpha) = \{\$\},$ поэтому $F \cap G = \varnothing$.

7. Найдем FOLLOW:

Trangem I OLEO III.							
i	$F_i(S')$	$F_i(S)$	$F_i(A)$	$F_i(A')$			
0	Ø	Ø	Ø	Ø			
1	Ø	{\$}	Ø	Ø			
2	Ø	{\$}	{\$}	Ø			
3	Ø	{\$}	{\$}	{\$}			
4	Ø	{\$}	{\$}	{\$}			

8. Построим LL-анализатор:

	1		
	a	b	\$
S'	$S' \stackrel{(0)}{\rightarrow} S\$$	$S' \stackrel{(0)}{\rightarrow} S\$$	Err.
S	$S \stackrel{(2)}{\rightarrow} A$	$S \stackrel{(1)}{\rightarrow} ba$	Err.
A	$A \stackrel{(3)}{\rightarrow} aA'$	Err.	Err.
A'	$A' \stackrel{(4)}{\rightarrow} abA'$	$A' \stackrel{(5)}{\rightarrow} bA'$	$A' \stackrel{(6)}{\rightarrow} \varepsilon$
a	ε	Err.	Err.
b	Err.	ε	Err.
\$	Err.	Err.	Acc.

Задача 6

- 1. Предположим, что $L\stackrel{\text{def}}{=} a^* \cup a^n b^n$ LL-язык. Тогда $\exists k \exists G \colon L(G) = L$ и G LL(k)-грамматика.
- 2. Рассмотрим слова $x_i \stackrel{\text{def}}{=} a^{2k+i}b^{2k+i}$ и $y_i \stackrel{\text{def}}{=} a^{2k+i}$. Фиксируем i. Рассмотрим левые выводы x_i и y_i (они единственные по предположению 1). Пусть их наибольшая совпадающая часть $S \Rightarrow_l^* w_i A_i \alpha_i$. Имеем $w_i A_i \alpha_i \Rightarrow^* x_i$ и $w_i A_i \alpha_i \Rightarrow^* y_i$, причем нетерминал A_i раскрывается в этих выводах на первом шаге различными способами (применяются разные правила). Определим $n_i \stackrel{\text{def}}{=} |w_i|$, $m_i \stackrel{\text{def}}{=} 2k+i-n_i$
- 3. Поскольку $w_i \in T^*$ и $w_i A_i \alpha_i \Rightarrow^* a^{2k+i}$, получаем $w_i \in a^*$.
- 4. Рассмотрим утверждение

$$P \stackrel{\text{def}}{=} [\forall i \hookrightarrow |w_i| > k+i].$$

(а) Предположим, что P верно. Рассмотрим $m_i \equiv 2k+i-n_i < 2k+i-k-i=k$. Эта последовательность принимает конечное количество значений. Рассмотрим нетерминалы A_i . Их также конечное число. Поэтому пара (m_i, A_i) принимает конечное количество значений. По принципу Дирихле получаем $\exists i_1 < i_2 \colon A_{i_1} = A_{i_2}, m_{i_1} = m_{i_2}$. Определим $A \stackrel{\text{def}}{=} A_{i_1} \equiv A_{i_2}, t \stackrel{\text{def}}{=} m_{i_1} \equiv m_{i_2}, w_1 \stackrel{\text{def}}{=} w_{i_1}, w_2 \stackrel{\text{def}}{=} w_{i_2}, \alpha_1 \stackrel{\text{def}}{=} \alpha_{i_1}, \alpha_2 \stackrel{\text{def}}{=} \alpha_{i_2}$. Перепишем свойство: $w_1 A \alpha_1 \Rightarrow^* a^{2k+i_1}, a^{2k+i_1}b^{2k+i_1}$, аналогично для i_2 . $|w_1| = n_{i_1}, w_1 \stackrel{\text{def}}{=} a^*$, поэтому $w_1 = a^{n_{i_1}}$. Значит, $A\alpha_1 \Rightarrow^* a^t, a^tb^{2k+i_1}, A\alpha_2 \Rightarrow^* a^t, a^tb^{2k+i_2}$, так как $t = m_{i_1} = m_{i_2} = 2k+i_1-n_1 = 2k+i_2-n_2$. Рассмотрим вывод $A\alpha_2 \Rightarrow^* a^tb^{2k+i_2}$. Далее называем его «этим» выводом.

Определим утверждения:

- і. $R \stackrel{\text{\tiny def}}{=} «в "этом" выводе <math>A$ порождает хотя бы один b»
- іі. $Q\stackrel{\scriptscriptstyle
 m def}{=}$ «в "этом" выводе $lpha_2$ порождает хотя бы один b»

Рассмотрим случаи:

- і. Пусть $\ ^{7}R$. Тогда A в «этом» выводе порождает a^{p} . Пусть в выводе $A\alpha_{2} \Rightarrow^{*} a^{t}$ нетерминал A порождает a^{q} .
 - А. Пусть p = q. Поскольку первые правила в выводах различны (по построению), получаем неоднозначность грамматики, так как $A \Rightarrow^* a^p$ можно вывести двумя способами. Поэтому G не LL(k)-грамматика.
 - В. Пусть $p \neq q$. Изменим «этот» вывод: выведем из A слово a^q вместо a^p . Количество символов a в выведенной из S цепочке изменится, а количество b нет. Изначально они были равны. Получаем, что $L(G) \neq L$ противоречие.
- іі. Пусть $\ Q$. Тогда α_2 в «этом» выводе порождает ε , так как после b не может следовать a. Значит, $A \Rightarrow^* a^t b^{2k+i_2}$. Рассмотрим вывод (*) $A\alpha_1 \Rightarrow^* a^t b^{2k+i_1}$. Пусть из α_1 здесь выводится x. Изменим вывод (*): выведем из A слово $a^t b^{2k+i_2}$, а из $\alpha_1 x$. Получим, что выведенное таким образом из S слово w не из L: $|w|_b \geqslant 2k+i_2$. После b не может следовать a, поэтому $|w|_a = 2k+i_1$. Это противоречие, а именно, $L(G) \neq L$.
- ііі. Последний случай: пусть верно $R \wedge Q$. Тогда в «этом» выводе $A\alpha_2 \Rightarrow^* yu$, где $y=a^tb^{t_1}$ порождаается α , а $u=b^{2k+i_2-t_1}$ порождается α_2 . $R\Rightarrow t_1>0$. Рассмотрим другой вывод $A\alpha_2\Rightarrow^* a^t$. Из его существования следует, что $\alpha_2\Rightarrow^* a^d$. Изменим «этот» вывод, выводя из α_2 цепочку a^d . Получим слово $w=a^{2k+i_2}b^{t_1}a^d\in L$. Поскольку после b не может следовать a,d=0. В w меньше символов b, чем в слове, полученном при «этом» выводе (так как $Q\Rightarrow u\neq\varnothing$), а символов a— столько же . Из утверждения R получаем, что символы b там есть— $t_1>0$). Значит, $L(G)\ni w\notin L$ противоречие.
- (b) $\neg P \Rightarrow \exists i \colon |w_i| \leqslant k+i$. Определим $A \stackrel{\text{def}}{=} A_i$, $n \stackrel{\text{def}}{=} n_i$, $m \stackrel{\text{def}}{=} m_i$, $x \stackrel{\text{def}}{=} x_i$, $y \stackrel{\text{def}}{=} y_i$. $w \stackrel{3}{=} a^n$, Тогда $A\alpha \Rightarrow^* a^m b^{2k+i}$, a^m . $m \equiv 2k+i-n \geqslant 2k+i-k-i=k$. Рассмотрим вывод $S \Rightarrow_l^* w A\alpha \Rightarrow^* x, y$. При выводе x и y нетерминал A был раскрыт различными способами соответсвенно (по построению): $A \to \beta$, $A \to \gamma$. Имеем эти два правила и $X = \text{FIRST}_k(\beta\alpha) \supset \text{FIRST}_k(a^m) \stackrel{m \geqslant k}{=} \{a^k\}$, $Y = \text{FIRST}_k(\gamma\alpha) \supset \text{FIRST}_k(a^m b^{2k+i}) \stackrel{m \geqslant k}{=} \{a^k\}$, но $a^k \in X \cap Y \neq \emptyset$, поэтому $G \to \text{He } LL(k)$ -грамматика по Теореме 1.
- 5. В непротиворечивых рассмотренных случаях получено, что G не LL(k)-грамматика, что противоречит изначальному предположению 1, отрицание предположения: L не LL-язык \blacksquare