### **Data Loading**

```
In [49]: import tensorflow as tf
         from tensorflow.keras import models, layers
         import matplotlib.pyplot as plt
         import numpy as np
         import os
In [50]: IMAGE SIZE = 256
         BATCH SIZE = 32
         CHANNELS = 3
         EPOCHS =20
In [51]: dataset = tf.keras.preprocessing.image dataset from directory(
             'rice_leaf_disease_images',
             shuffle = True,
             image_size = (IMAGE_SIZE, IMAGE_SIZE),
             batch_size = BATCH_SIZE
         Found 7926 files belonging to 5 classes.
In [52]: class_names = dataset.class_names
         class_names
Out[52]: ['Bacterialblight', 'Blast', 'Brownspot', 'Healthy', 'Tungro']
In [53]: len(dataset)
Out[53]: 248
In [54]: # One random batch of images
         for image batch, label batch in dataset.take(1):
             print(image batch.shape)
             print(label batch.numpy())
         (32, 256, 256, 3)
         [2 0 4 3 1 1 4 0 2 3 4 4 4 0 4 2 0 3 0 0 0 1 3 3 0 2 1 3 0 2 2 1]
```

```
In [55]: plt.figure(figsize=(10,10))
         for image_batch, label_batch in dataset.take(1):
             print(image_batch.shape)
             print(label batch.numpy())
             for i in range(12): #showing 12 images out of 32
                 ax = plt.subplot(3,4,i+1)
                 plt.imshow(image_batch[i].numpy().astype("uint8"))
                 plt.title(class_names[label_batch[i]])
                 plt.axis("off")
         (32, 256, 256, 3)
         [1 2 2 0 0 4 4 2 3 0 1 0 2 2 0 1 0 4 0 0 3 3 2 3 3 1 3 1 1 2 4 1]
                  Blast
                                      Brownspot
                                                             Brownspot
                                                                                   Bacterialblight
             Bacterialblight
                                        Tungro
                                                               Tungro
                                                                                    Brownspot
                Healthy
                                    Bacterialblight
                                                                Blast
                                                                                   Bacterialblight
In [56]: # (32=batch_size, 256, 256=image_size, 0 to 3=typesofdiseases)
         # 0 - Bacterial Blight
         # 1 - Blast
         # 2 - Brownspot
         # 3 - Tungro
```

```
In [57]: # Spitting dataset for training, validation and testing
# 80% for training 10% for validation and 10% for testing
def get_dataset_partitions_tf(ds, train_split=0.8, val_split=0.1, test_split=0.1, shuffle:
    ds_size = len(ds)
    if shuffle:
        ds = ds.shuffle(shuffle_size, seed=12)
        train_size = int(train_split*ds_size)
    val_size = int(val_split*ds_size)

    train_ds = ds.take(train_size)
    val_ds = ds.skip(train_size).take(val_size)
    test_ds = ds.skip(train_size).skip(val_size)

    return train_ds, val_ds, test_ds
```

```
In [58]: train_ds, val_ds, test_ds =get_dataset_partitions_tf(dataset)
```

```
In [59]: # Catching and prefeching
    train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE)
    val_ds = val_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE)
    test_ds = test_ds.cache().prefetch(buffer_size=tf.data.AUTOTUNE)
```

## **Preprocessing**

#### **Convolution Neural Network**

```
In [14]: #input shape = (IMAGE SIZE, IMAGE SIZE, CHANNELS)
         input shape = (BATCH SIZE, IMAGE SIZE, IMAGE SIZE, CHANNELS)
         n classes= 5
         model = models.Sequential([
             resize and rescale,
             data_augmentation,
             layers.Conv2D(32,(3,3), activation='relu', input_shape = input_shape),
             layers.MaxPooling2D((2,2)),
             layers.Conv2D(64,kernel_size = (3,3), activation='relu'),
             layers.MaxPooling2D((2,2)),
             layers.Conv2D(64,kernel size = (3,3), activation='relu'),
             layers.MaxPooling2D((2,2)),
             layers.Conv2D(64,kernel_size = (3,3), activation='relu'),
             layers.MaxPooling2D((2,2)),
             layers.Conv2D(64,kernel size = (3,3), activation='relu'),
             layers.MaxPooling2D((2,2)),
             layers.Conv2D(64,kernel_size = (3,3), activation='relu'),
             layers.MaxPooling2D((2,2)),
             layers.Flatten(),
             layers.Dense(64, activation='relu'),
             layers.Dense(n classes, activation='softmax'),
         ])
```

## In [15]: model.build(input\_shape = input\_shape)

WARNING:tensorflow:Using a while\_loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.

#### In [16]: model.summary()

Model: "sequential\_2"

| Layer (type)                               | Output Shape         | Param # |
|--------------------------------------------|----------------------|---------|
| sequential (Sequential)                    |                      | 0       |
| sequential_1 (Sequential)                  | (None, 256, 256, 3)  | 0       |
| conv2d (Conv2D)                            | (None, 254, 254, 32) | 896     |
| <pre>max_pooling2d (MaxPooling2D )</pre>   | (None, 127, 127, 32) | 0       |
| conv2d_1 (Conv2D)                          | (None, 125, 125, 64) | 18496   |
| <pre>max_pooling2d_1 (MaxPooling 2D)</pre> | (None, 62, 62, 64)   | 0       |
| conv2d_2 (Conv2D)                          | (None, 60, 60, 64)   | 36928   |
| <pre>max_pooling2d_2 (MaxPooling 2D)</pre> | (None, 30, 30, 64)   | 0       |
| conv2d_3 (Conv2D)                          | (None, 28, 28, 64)   | 36928   |
| <pre>max_pooling2d_3 (MaxPooling 2D)</pre> | (None, 14, 14, 64)   | 0       |
| conv2d_4 (Conv2D)                          | (None, 12, 12, 64)   | 36928   |
| <pre>max_pooling2d_4 (MaxPooling 2D)</pre> | (None, 6, 6, 64)     | 0       |
| conv2d_5 (Conv2D)                          | (None, 4, 4, 64)     | 36928   |
| <pre>max_pooling2d_5 (MaxPooling 2D)</pre> | (None, 2, 2, 64)     | 0       |
| flatten (Flatten)                          | (None, 256)          | 0       |
| dense (Dense)                              | (None, 64)           | 16448   |
| dense_1 (Dense)                            | (None, 5)            | 325     |

Total params: 183,877 Trainable params: 183,877 Non-trainable params: 0

Epoch 1/20

WARNING:tensorflow:Using a while loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while loop for converting ImageProjectiveTransformV3 cause th ere is no registered converter for this op.

WARNING:tensorflow:Using a while loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while loop for converting ImageProjectiveTransformV3 cause th ere is no registered converter for this op.

WARNING:tensorflow:Using a while loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause th ere is no registered converter for this op.

WARNING:tensorflow:Using a while loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause th ere is no registered converter for this op.

8 - val loss: 0.8955 - val accuracy: 0.6484

Epoch 2/20

1 - val loss: 0.7629 - val accuracy: 0.6940

Epoch 3/20

0 - val loss: 0.6418 - val accuracy: 0.7604 Epoch 4/20

7 - val loss: 0.4311 - val accuracy: 0.8464

5 - val\_loss: 0.3430 - val\_accuracy: 0.8841

Epoch 6/20

3 - val loss: 0.3713 - val accuracy: 0.8503

Epoch 7/20

5 - val loss: 0.4407 - val accuracy: 0.8659

Epoch 8/20

```
198/198 [============= ] - 332s 2s/step - loss: 0.2823 - accuracy: 0.893
     0 - val loss: 0.2581 - val accuracy: 0.9154
     Epoch 9/20
     7 - val loss: 0.1934 - val accuracy: 0.9323
     Epoch 10/20
     0 - val loss: 0.2242 - val accuracy: 0.9154
     Epoch 11/20
     6 - val loss: 0.2207 - val accuracy: 0.9271
     Epoch 12/20
     3 - val loss: 0.3205 - val accuracy: 0.8724
     Epoch 13/20
     0 - val_loss: 0.2419 - val_accuracy: 0.9245
     Epoch 14/20
     0 - val_loss: 0.1875 - val_accuracy: 0.9401
     Epoch 15/20
     6 - val_loss: 0.1887 - val_accuracy: 0.9401
     Epoch 16/20
     198/198 [============== ] - 340s 2s/step - loss: 0.1036 - accuracy: 0.965
     2 - val loss: 0.2069 - val accuracy: 0.9232
     Epoch 17/20
     9 - val loss: 0.1087 - val accuracy: 0.9661
     Epoch 18/20
     8 - val loss: 0.1451 - val accuracy: 0.9518
     Epoch 19/20
     7 - val loss: 0.1204 - val accuracy: 0.9583
     Epoch 20/20
     198/198 [============= ] - 1102s 6s/step - loss: 0.0915 - accuracy: 0.96
     92 - val loss: 0.1756 - val accuracy: 0.9388
In [22]: | scores = model.evaluate(test ds)
     scores
     Out[22]: [0.12244930863380432, 0.9519230723381042]
In [23]: | acc = history.history['accuracy']
     val acc = history.history['val accuracy']
     loss = history.history['loss']
     val_loss = history.history['val_loss']
```

```
In [24]: plt.figure(figsize=(8,8))
    plt.subplot(1,2,1)
    plt.plot(range(EPOCHS), acc, label='Training Accuracy')
    plt.plot(range(EPOCHS), val_acc, label='Validation Accuracy')
    plt.legend(loc = 'lower right')
    plt.title('Training and Validation Accuracy')
```

Out[24]: Text(0.5, 1.0, 'Training and Validation Accuracy')



Training Accuracy Validation Accuracy

15

10



0

5

8.0

0.7

0.6

```
In [25]: def predict(model, img):
    img_array = tf.keras.preprocessing.image.img_to_array(images[i].numpy())
    img_array = tf.expand_dims(img_array, 0)

    prediction = model.predict(img_array)

    prediction_class = class_names[np.argmax(prediction[0])]
    confidence = round(100 * (np.max(prediction[0])),2)

    return prediction_class, confidence
```

```
In [26]: plt.figure(figsize=(15,15))
for images, labels in test_ds.take(1):
    for i in range(9):
        ax = plt.subplot(3,3,i+1)
        plt.imshow(images[i].numpy().astype('uint8'))

        predicted_class, confidence = predict(model, images[i].numpy())
        actual_class = class_names[labels[i]]
        plt.title(f'predicted: {predicted_class}, \n confidence: {confidence}, \n Actual:
        plt.axis("off")
```

predicted: Brownspot, confidence: 43.71, Actual: Brownspot

predicted: Tungro, confidence: 99.99, Actual: Tungro



predicted: Brownspot, confidence: 99.98, Actual: Brownspot



predicted: Bacterialblight, confidence: 99.91, Actual: Bacterialblight



predicted: Bacterialblight, confidence: 100.0, Actual: Bacterialblight



predicted: Bacterialblight, confidence: 99.37, Actual: Bacterialblight



predicted: Blast, confidence: 100.0, Actual: Blast



predicted: Bacterialblight, confidence: 99.6, Actual: Bacterialblight





# In [27]: # Saving the model model\_version = max([int(i) for i in os.listdir("new\_models") + [0]])+1 model.save(f'new\_models\{model\_version}')

WARNING:tensorflow:Using a while\_loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.

WARNING:absl:Found untraced functions such as \_jit\_compiled\_convolution\_op, \_jit\_compiled\_convolution\_op, \_jit\_compiled\_convolution\_op, \_jit\_compiled\_convolution\_op, \_jit\_compiled\_convolution\_op, \_jit\_compiled\_convolution\_op while saving (showing 5 of 7). These functions will not be directly c allable after loading.

INFO:tensorflow:Assets written to: new\_models\2\assets

INFO:tensorflow:Assets written to: new\_models\2\assets

In [60]: | new\_model = tf.keras.models.load\_model('new\_models/2')

# Check its architecture

new\_model.summary()

WARNING:tensorflow:Using a while\_loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting RngReadAndSkip cause there is no re gistered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting Bitcast cause there is no registere d converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting StatelessRandomUniformV2 cause ther e is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.

WARNING:tensorflow:Using a while\_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.

Model: "sequential\_2"

| Layer (type)                                                            | Output Shape                            | Param # |
|-------------------------------------------------------------------------|-----------------------------------------|---------|
| sequential (Sequential)                                                 |                                         | 0       |
| sequential_1 (Sequential)                                               | (None, 256, 256, 3)                     | 0       |
| conv2d (Conv2D)                                                         | (None, 254, 254, 32)                    | 896     |
| <pre>max_pooling2d (MaxPooling2D )</pre>                                | (None, 127, 127, 32)                    | 0       |
| conv2d_1 (Conv2D)                                                       | (None, 125, 125, 64)                    | 18496   |
| <pre>max_pooling2d_1 (MaxPooling 2D)</pre>                              | (None, 62, 62, 64)                      | 0       |
| conv2d_2 (Conv2D)                                                       | (None, 60, 60, 64)                      | 36928   |
| <pre>max_pooling2d_2 (MaxPooling 2D)</pre>                              | (None, 30, 30, 64)                      | 0       |
| conv2d_3 (Conv2D)                                                       | (None, 28, 28, 64)                      | 36928   |
| <pre>max_pooling2d_3 (MaxPooling 2D)</pre>                              | (None, 14, 14, 64)                      | 0       |
| conv2d_4 (Conv2D)                                                       | (None, 12, 12, 64)                      | 36928   |
| <pre>max_pooling2d_4 (MaxPooling 2D)</pre>                              | (None, 6, 6, 64)                        | 0       |
| conv2d_5 (Conv2D)                                                       | (None, 4, 4, 64)                        | 36928   |
| <pre>max_pooling2d_5 (MaxPooling 2D)</pre>                              | (None, 2, 2, 64)                        | 0       |
| flatten (Flatten)                                                       | (None, 256)                             | 0       |
| dense (Dense)                                                           | (None, 64)                              | 16448   |
| dense_1 (Dense)                                                         | (None, 5)                               | 325     |
| Total params: 183,877 Trainable params: 183,877 Non-trainable params: 0 | ======================================= | ======= |

```
In [61]: scores = new_model.evaluate(test_ds)
```

Out[61]: [0.13144931197166443, 0.9543269276618958]

```
In [62]: print("Accuracy : {:.3f}".format(scores[1]))
```

Accuracy: 0.954

```
In [ ]:
```

**New Image Prediction** 

```
In [63]: import cv2 import numpy as np
```

```
In [92]: img_path = cv2.imread(os.path.join('rice_leaf_disease_images','Tungro','TUNGRO1_020.jpg')
#img_path = cv2.imread(os.path.join('Testing images','bb1.jpg'))
img_path = cv2.cvtColor(img_path,cv2.COLOR_BGR2RGB)
plt.imshow(img_path)
```

Out[92]: <matplotlib.image.AxesImage at 0x27d8544fdf0>



```
In [93]: img = cv2.resize(img_path,(256,256))
img = np.reshape(img,[1,256,256,3])
```

In [95]: pred

Out[95]: array([[2.4744952e-07, 2.6614054e-05, 1.1063103e-07, 1.4974265e-10, 9.9997306e-01]], dtype=float32)

```
In [96]: prediction_class = class_names[np.argmax(pred)]
    prediction_class
```

Out[96]: 'Tungro'

| In [ ]:  |                                                                                 |
|----------|---------------------------------------------------------------------------------|
| In [ ]:  |                                                                                 |
| In [ ]:  | #Confusion Matrix                                                               |
| In [69]: | <pre>from sklearn.metrics import confusion_matrix , classification_report</pre> |

```
In [70]: # confusion matrix
         import seaborn as sns
         # Predict the values from the validation dataset
         Y pred = new model.predict(test ds)
         # Convert predictions classes to one hot vectors
         Y pred classes = np.argmax(Y pred,axis = 1)
         # Convert validation observations to one hot vectors
         Y_true = tf.concat([y for x, y in test_ds], axis=0)
         # compute the confusion matrix
         confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)
         # plot the confusion matrix
         f,ax = plt.subplots(figsize=(8, 8))
         sns.heatmap(confusion mtx, annot=True, linewidths=0.01,cmap="Greens",linecolor="gray", fm
         plt.xlabel("Predicted Label")
         plt.ylabel("True Label")
         plt.title("Confusion Matrix")
         plt.show()
```

26/26 [============= ] - 22s 802ms/step



| In [71]: | print(classifica | tion_report( | Y_true, Y | _pred_class | ses, target_na | ames=class_names)) |  |
|----------|------------------|--------------|-----------|-------------|----------------|--------------------|--|
|          |                  | precision    | recall    | f1-score    | support        |                    |  |
|          | Bacterialblight  | 0.99         | 0.96      | 0.98        | 165            |                    |  |
|          | Blast            | 0.91         | 0.96      | 0.93        | 178            |                    |  |
|          | Brownspot        | 0.94         | 0.92      | 0.93        | 185            |                    |  |
|          | Healthy          | 0.95         | 1.00      | 0.98        | 159            |                    |  |
|          | Tungro           | 0.99         | 0.94      | 0.96        | 145            |                    |  |
|          | accuracy         |              |           | 0.95        | 832            |                    |  |
|          | macro avg        | 0.96         | 0.96      | 0.96        | 832            |                    |  |
|          | weighted avg     | 0.96         | 0.95      | 0.95        | 832            |                    |  |
|          |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
|          |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
|          |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
|          |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
|          |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
|          |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
| - 5.3    |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
| To F 1:  |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
| т. Г. 1. |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
| -1. [ ]· |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
|          |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
|          |                  |              |           |             |                |                    |  |
| In [ ]:  |                  |              |           |             |                |                    |  |
|          |                  |              |           |             |                |                    |  |