

Random Number Generators

- ssq1 and sis1 require input data from an outside source
- The usefulness of these programs is limited by amount of available data: Se a servono più dati?
 - What if more data needed?
- What if the model changed?
- se modello cambia? Se No pochi dati?
- What if the input data set is small or unavailable?

Random number generator

- It produces real values between 0.0 and 1.0 (Uniforme)
- The output can be converted to random variate via mathematical transformations (converts in distr. di probabilitas)

Prof. Vittoria de Nitto Personè

3

3

Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Random Number Generators

Università degli studi di Roma Tor Vergata Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021

Random Number Generators

Historically there are three types of generators

- table look-up generators (1950)
- hardware generators
- algorithmic (software) generators

Algorithmic generators are widely accepted because they meet all of the following criteria:

- randomness output passes all reasonable statistical tests of randomness
- controllability able to reproduce output, if desired
- *portability* able to produce the same output on a wide variety of computer systems
- efficiency fast, minimal computer resource requirements
- documentation theoretically analyzed and extensively tested

Prof. Vittoria de Nitto Personè

5

5

Random Number Generators

Algorithmic Generators

- An ideal random number generator produces output such that each value in the interval 0.0 < u < 1.0 is equally likely to occur (numeri Re[0]) some ∞)
- A good random number generator produces output that is (almost) statistically indistinguishable from an ideal generator

Prof. Vittoria de Nitto Personè

6

Random Number Generators

Conceptual Model

m numeri inteni in un'urna

- Choose a *large* positive integer m>0. This defines the set $\chi_m = \{1,2,...m-1\}$
- Fill a (conceptual) urn with the elements of χ_m
- Each time a random number u is needed, draw an integer x "at random" from the urn and let u =x/m e [ดูเ]
- Each draw *simulates* a sample of an independent identically distributed sequence of *Uniform*(0, 1)
- The possible values are 1/m, 2/m, ... (m-1)/m
- It is important that m be large so that the possible values are densely distributed between 0.0 and 1.0

insieme denso se 'm' grande

Prof. Vittoria de Nitto Personè

7

7

Random Number Generators

Conceptual Model

- 0.0 and 1.0 are impossible
 This is important for some random variates
- the same probability for each draw→ replacement of the drawn element
- for practical reasons, we will draw without replacement

 If *m* is large and the number of draws is small relative to *m*, then the distinction is largely irrelevant

Se estraggo '5', rella muova estrazione la rimetta. A livella software mon passo "rimettado destra"

Prof. Vittoria de Nitto Personè

8

Random Number Generators Lehmer Generators

Lehmer Generator

- is defined in terms of two fixed parameters:
 - modulus m, a fixed large prime integer
 - multiplier a, a fixed integer in χ_m
- the possible values are 1/m, 2/m, ... (m-1)/m

The integer sequence $x_0,\,x_1,\,\dots$ is defined by the iterative equation

 $x_{i+1} = g(x_i)$ genera numero a partire dal Brecedente!

with

 $g(x) = ax \mod m$ while place $f(x) = ax \mod m$ while place $f(x) = ax \mod m$ $f(x) = ax \mod m$

Prof. Vittoria de Nitto Personè

9

9

Random Number Generators

Lehmer Generators

- Because of the mod operator, $0 \le g(x) < m$
- 0 must not occur
 - since m is prime, $g(x) \neq 0$ if $x \in \chi_m$
 - if $x_0 \in \chi_m$, then $x_i \in \chi_m$ for all $i \ge 0$
- IF the multiplier and prime modulus are chosen properly, a Lehmer generator is statistically indistinguishable from drawing from χ_m with replacement
- NOTE, there is nothing random about a Lehmer generator.

pseudo-random generator

Prof. Vittoria de Nitto Personè

10

5

esemple: m=7, when $X_7=\{1,2,3,4,5,6\}$. Selge $\alpha=3$, $x_0=1$ Seme. Genero, partendo do $g(x)=\alpha x$ mod m, i sequenti voleni: $g(x_0)=1.3$ mod g(x)=3. Selge $g(x_0)=3.2$ mod g(x)=3.3 mod g(x)=3

Random Number Generators Lehmer Generators

Parameter Considerations

- the choice of *m* is dictated, in part, by system considerations
 - on a system with 32-bit 2's complement integer arithmetic, 231-1 is a natural choice (it is prime!)
 - with 16-bit or 64-bit integer representation, the choice is not obvious (the maxes are not prime)
 - in general, we want to choose *m* to be the largest representable prime integer
- Given m, the choice of a must be made with great care influisce sul periods piene

Prof. Vittoria de Nitto Personè

11

11

Random Number Generators Lehmer Generators

- For a chosen (a, m) pair, does the function g(·) generate a full-period sequence?
- If a full period sequence is generated, how random does the sequence appear to be?
- Can ax mod m be evaluated efficiently and correctly?
 - Integer overflow can occur when computing ax

Prof. Vittoria de Nitto Personè

12

Random Number Generators Lehmer Generators

Full Period Multipliers

da dove

- If we pick any initial seed $x_0 \in \chi_m$ and generate the sequence x_0 , x_1, x_2, \ldots then x_0 will occur again (x_0 ricompare dopo on por di generation)

We are interested in choosing full-period (FP) multipliers where p = m-1

Prof. Vittoria de Nitto Personè

13

13

Full-period multipliers generate a virtual circular list with *m*-1 distinct elements.

Prof. Vittoria de Nitto Personè

15

16

il grafico si legge cosi: se m = 13 ho set $\{1,2,3\}$

se m = 13 ho set $\{1,2,3,...,12\}$, a = 6, Xo = 1

computo: g(Xi-1) = a * Xi-1 = Xi

 $g(X0) = 6 *1 \mod 13 = 6 = X1$ (infatti X1 creato a partire da X0, che è seed = 1)

 $g(X1) = 6*6 \mod 13 = 10 = X2 (X2 \text{ creato a partire da } X1 = 6)$

 $g(X2) = 6*10 \mod 13 = 8 = X3$

