数字逻辑与部件设计

3. 卡诺图

卡诺图

Maurice Karnaugh (1924 -)

① 真值表: 优点: 唯一。缺点: 规模过大。

② 函数式: 不唯一。

各等价表达式之间有繁简之分,而无正错之分。

定理: $F = \overline{A}B + AB = (\overline{A} + A)B = B$

贝尔实验室 电信工程师 1953年 发明卡诺图

_			
_	F	В	Α
	0	0	0
$\bar{A}B = 1$	1	1	0
	0	0	1
AB = 1	1	1	1

A B 0 1 $0 \hline 1 \hline AB = 1$ $1 \hline 0 \hline 1 AB = 1$ 3/4

相邻的最小项消去取值不同的因子后可以合并

2变量卡诺图

排列方案 不是唯一的

x y	0	1
0	$\bar{x}\bar{y}$	$\bar{x}y$
1	$x\bar{y}$	xy

x y	0	1
0	m_0	m_1
1	m_2	m_3

示例

$$F = x\bar{y} + xy = x$$
$$= m_2 + m_3$$

$$F = x + y$$

3变量卡诺图-1

$$F = \bar{x}\bar{y}\bar{z} + x\bar{y}\bar{z} + \bar{x}\bar{y}z + \bar{x}yz$$
$$= \bar{y}\bar{z}(\bar{x} + x) + \bar{x}z(\bar{y} + y)$$
$$= \bar{y}\bar{z} + \bar{x}z$$

x^{yz}	00	01	10	11 -
0		1	0	1
1	1	0	0	0

相邻:最小项相差一个变量。

x yz	00	01	11	10 -	格雷码
0		[1	1)	0	
1	1	0	0	0	

	x	y	\boldsymbol{Z}	F	
	0	0	0	1	$\bar{x}\bar{y}\bar{z}=1$
	0	0	1	1	$\bar{x}\bar{y}z = 1$
	0	1	0	0	
K	A 115	1	1	1	$\bar{x}yz = 1$
	TE	704	0	1	$x\bar{y}\bar{z}=1$
	1	0	长女们	0	
	1	1	0	1964/	22
	1	1	1	0	5. / 4 5

3变量卡诺图-2

相邻:上下、左右也相邻

$$F = \bar{x}\bar{y}\bar{z} + x\bar{y}\bar{z} + \bar{x}\bar{y}z + \bar{x}yz$$
$$= \bar{y}\bar{z}(\bar{x} + x) + \bar{x}z(\bar{y} + y)$$
$$= \bar{y}\bar{z} + \bar{x}z$$

	U	U
	0	1
	0	1
1 1	1	0
	1	0
1 0	1	1
	1	1

	F	Z	y	$\boldsymbol{\mathcal{X}}$
$\bar{x}\bar{y}\bar{z}=1$	1	0	0	0
$\bar{x}\bar{y}z=1$	1	1	0	0
	0	0	1	0
$\bar{x}yz = 1$	1	1	1	0
$x\bar{y}\bar{z}=1$	1	0	0	1
	0	1	0	1
	0	0	1	1
6 / 45	0	1	1	1

3变量卡诺图-3

$$F = \bar{x}\bar{y} + \bar{y}\bar{z} + y\bar{z}$$
$$= \bar{x}\bar{y} + (\bar{y} + y)\bar{z}$$
$$= \bar{x}\bar{y} + \bar{z}$$

单元格可以重复使用! (A + A = A)

合并相邻单元格, 需要找最大的合并!

【练习1】已知函数F的卡诺图,试化简

$$F = x\bar{y}\bar{z} + \bar{x}\bar{y}z + xyz + \bar{x}y\bar{z}$$

	x yz	00	01	11	10
2	0		1	1	0
	1	[] 1 	0	1	
	-			<u> </u>	·

 $F = \bar{x}\bar{y} + yz + x\bar{z}$

	x^{yz}	00	01	11	10
3	0	1	1	(1	1
	1	0	0	1	1
		F =	\bar{x} +	γ	

【练习2】用卡诺图化简

②
$$F(x, y, z) = \Sigma m(1, 2, 3, 7)$$

③
$$F(x, y, z) = \Sigma m(0, 1, 2, 5, 6, 7)$$

9 / 45

4变量卡诺图

上下两边相邻

4个角是相邻的

用卡诺图化简

本题有4个化简结果:

$$F = BD + \overline{B}\overline{D} + AD + CD$$

$$F = BD + \overline{B}\overline{D} + A\overline{B} + CD$$

$$F = BD + \overline{B}\overline{D} + AD + \overline{B}C$$

$$F = BD + \overline{B}\overline{D} + A\overline{B} + \overline{B}C$$

①② - 寻找: 必要质蕴含

③处理其余蕴含(白色底的1)

质蕴含 Prime Implicant

- **蕴含**:函数"**与或**"表达式中的每个"**与**"项。
- 质蕴含:卡诺图中最多数目的相邻"与"项。

即,该蕴含项不是其他蕴含项的子集。

• 必要质蕴含: 如果一个最小项对应的方格只被一个质蕴含所包含,

那么包含这个最小项的质蕴含, 称为必要质蕴含。

卡诺图化简方法

- ① 画出所有的质蕴含
- ②找出必要质蕴含:通过查找一个特殊的乘积项
 - 处理必要质蕴含: 这是必需要的项
- ③ 处理剩余的非必要质蕴含

【练习3】用卡诺图化简

$$Y = \bar{A}\bar{B}\bar{C}D + \bar{A}B\bar{D} + ACD + A\bar{B}$$

$$= \bar{A}\bar{B}\bar{C}D + \bar{A}B(C + \bar{C})\bar{D} + A(B + \bar{B})CD + A\bar{B}(C + \bar{C})(D + \bar{D})$$

$$= m_1 + m_4 + m_6 + m_8 + m_9 + m_{10} + m_{11} + m_{15}$$

方法1: "与-或"表达式转化为标准"与-或"表达式

ABCD 00 01 11 10 00 1 1 1 01 1 1 1 11 1 1 1 10 1 1 1

方法2: 直接写出所有的1

【练习4】用卡诺图化简

①
$$Y = A\bar{B}C + BC + \bar{A}B\bar{C}D$$
 化简后:

$$Y = BC + AC + \bar{A}BD$$

②
$$Y = \Sigma m(0,1,2,5,8,9,10,12,14)$$

化简后:

$$Y = \overline{B}\overline{C} + \overline{B}\overline{D} + A\overline{D} + \overline{A}\overline{C}D$$

[证明] $AB + \bar{A}C + (\bar{B} + \bar{C})D = AB + \bar{A}C + D$

证:
$$AB + \bar{A}C + (\bar{B} + \bar{C})D$$

$$= AB + \bar{A}C + \bar{B}D + \bar{C}D$$

$$= AB + ABCD + \bar{A}C + \bar{B}D + \bar{A}BCD + \bar{C}D$$

$$= AB + \bar{A}C + \bar{A}CD + \bar{B}D + \bar{C}D + \bar{A}CD$$

$$= AB + \bar{A}C + \bar{B}D + \bar{C}D + \bar{C}D$$

$$= AB + \bar{A}C + \bar{B}D + \bar{D}$$

$$= AB + \bar{A}C + \bar{B}D + \bar{D}$$

$$= AB + \bar{A}C + \bar{D}D + \bar{D}D$$

【证明】 $\overline{AB + \overline{AC}} = A\overline{B} + \overline{AC}$

$$\overline{AB} + \overline{AC} = \overline{AB} \cdot \overline{\overline{AC}}$$

$$= (\bar{A} + \bar{B}) \cdot (A + \bar{C})$$

$$= \bar{A}A + \bar{A}\bar{C} + A\bar{B} + \bar{B}\bar{C}$$

$$= \bar{A}\bar{C} + A\bar{B} + \bar{B}\bar{C}(A + \bar{A})$$

$$= \bar{A}\bar{C} + A\bar{B} + A\bar{B}\bar{C} + A\bar{B}\bar{C}$$

$$= \bar{A}\bar{C}(1+\bar{B}) + A\bar{B}(1+\bar{C})$$

$$= \bar{A}\bar{C} + A\bar{B}$$

5输入变量卡诺图

6输入变量卡诺图

 $F(A, B, C, D, E, F) = \sum m (2, 8, 10, 18, 24, 26, 34, 37, 42, 45, 50, 53, 58, 61)$

ABC DEF	000	001	011	010	100	101	111	110
000				2				
001	8			10				
011	24			26				
010				18				
100				34		37		
101				42		45		
111				58		61		
110				50		53		

6输入变量卡诺图

完全描述、非完全描述

- 完全描述逻辑函数:对于输入变量的每一组取值,逻辑函数都有确定的值。
- 非完全描述逻辑函数: 对于输入变量的某些取值组合,逻辑函数值不确定(d),即函数值可以为0,也可以为1,而不影响函数的功能。如,红绿交通灯。

假设:	1-灯亮、	0-灯灭

1-通行、0-停止

红灯 R	黄灯 Y	绿灯G	通行 F
0	0	0	d
0	0	1	1
0	1	0	0
0	1	1	d
1	0	0	0
1	0	1	d
1	1	0	d
1	1	1	d

$$F = \sum m(1) + \sum d(0,3,5,6,7)$$

$$F = G$$

无关项 (don't-care)

- 实际应用中, 函数不是由确定的0或1变量组合规定的。
- 大多数情况下, 我们不关心这些不确定项给函数值带来的影响。
- 这些不确定项 (**d**) 或 (**X**)称为: **无关项**。
- 无关项可以用于卡诺图的进一步化简。

化简 $Y(A,B,C,D) = \sum m(1,7,8) + d(3,5,9,10,12,14,15)$

也可以写作:
$$Y = \bar{A}\bar{B}\bar{C}D + \bar{A}BCD + A\bar{B}\bar{C}\bar{D}$$

 $\bar{A}\bar{B}CD + \bar{A}B\bar{C}D + AB\bar{C}\bar{D} + A\bar{B}\bar{C}D + ABCD + ABC\bar{D} + A\bar{B}C\bar{D} = 0$

【解】这个逻辑函数已无可化简,但适当加入约束后还可以化简

$$Y = (\bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}CD) + (\bar{A}BCD + \bar{A}B\bar{C}D) + (A\bar{B}\bar{C}\bar{D} + AB\bar{C}\bar{D}) + (ABC\bar{D} + A\bar{B}C\bar{D})$$

$$= (\bar{A}\bar{B}D + \bar{A}BD) + (A\bar{C}\bar{D} + AC\bar{D})$$

$$= \overline{A}D + A\overline{D}$$

$F(w, x, y, z) = \Sigma m(1,3,7,11,15)$, $d(w, x, y, z) = \Sigma m(0,2,5)$

【练习7】化简

$$Y(A, B, C, D) = \sum m(2, 4, 6, 8) + d(10, 11, 12, 13, 14, 15)$$

美艺形式式

2种形式的二级门电路

标准式1: 积之和

① 在真值表上找 F = 1的项

$$② F = \overline{B}\overline{D} + \overline{B}\overline{C} + \overline{A}\overline{C}D$$

标准式2: 和之积

① 在真值表上找 $F = \mathbf{0}$ 的项,即 \bar{F}

$$\bar{F} = AB + CD + B\bar{D}$$

③ $F = \overline{F} = \overline{AB + CD + B\overline{D}}$ (与或非式)

$$= (\bar{A} + \bar{B})(\bar{C} + \bar{D})(\bar{B} + D)$$

最大项法 $F(w,x,y,z) = \Sigma m(1,3,7,11,15), d = \Sigma m(0,2,5)$

用两次取反法 求 最简"或-与" 表达式

$$F = A\bar{C} + AD + \bar{B}\bar{C} + \bar{B}D$$

卡诺图合并所有0最小项,再公式取反

$$\overline{F} = \overline{A}B + C\overline{D}$$

$$F = \overline{\overline{F}} = (A + \overline{B})(\overline{C} + D)$$

F的卡诺图

• F的化简 合并**0**项

$$F = (\overline{A} + D)(B + \overline{D})(A + B)$$

公式取反,卡诺图化简,公式再取反

$$\overline{F} = A\overline{D} + \overline{B}D + \overline{A}\overline{B}$$

• **F**的表达式

$$\overline{F} = \overline{B} + A\overline{D}$$

$$F = \overline{\overline{F}} = B (\overline{A} + D)$$

• F的卡诺图

F的化简 合并**1**项

• **F**取反

【练习5】化简 $F(x,y,z) = \sum (1,3,4,6)$

① 积之和的形式

$$F(x, y, z) = \sum m(1, 3, 4, 6)$$

$$F = \overline{x}z + x\overline{z}$$

② 和之积的形式

$$F(x,y,z) = \prod M(0,2,5,7)$$

$$\overline{F} = xz + \overline{x}\overline{z}$$

$$F = (\overline{x} + \overline{z})(x + z)$$

【练习6】化简 $(p+r)(\overline{p}+\overline{q})(\overline{q}+r)(\overline{p}+\overline{r})$

$$(p+r)(\bar{q}+r)(\bar{p}+\bar{r})$$

$$(p+r)(\bar{p}+\bar{q})(\bar{p}+\bar{r})$$

奇函数

只有奇数个输入变量=1时,输出值才=1

$$X \oplus Y = X\overline{Y} + \overline{X}Y$$

相异为1

$$X \oplus Y \oplus Z = (X\overline{Y} + \overline{X}Y)\overline{Z} + (XY + \overline{X}\overline{Y})Z$$
$$= X\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z + XYZ$$

三变量或三变量以上的 () 运算都是奇函数。

教材P56, 2.1e)

$$Y = \overrightarrow{ABCD} + \overrightarrow{ABCD} +$$

(е)
•		•

A	В	С	D	Y
0	0	0	0	1
0 0	0	0	0 1 0	0
0	0	1	0	0
0 0 0	0	1	1	1
0	1	1 0	1 0 1 0 1 0 1 0	0
0	1 1 1 1 0	0	1	1
0 0 1 1	1		0	1
0	1	1 1 0	1	0
1	0	0	0	0
1	0	0	1	1
1		1	0	1
1	0	1	1	0
1		0	0	1
1	1	0	1	0
1 1 1	1 1 1	1 1	1 0 1	1 0 0 1 0 1 0 1 0 0 1
1	1	1	1	1

AB CD	00	01	11	10
00	1		1	
01		1		1
11	1		1	
10		1		1

$$Y = \overline{(A \oplus B)}\overline{(C \oplus D)} + (A \oplus B)(C \oplus D)$$

反函数、对偶式

用卡诺图做运算

用卡诺图做运算(含无关项)

_x yz	00	01	11	10
0			1	1
1	1			1

F2

$$0 + d = d$$
 $1 + d = 1$ $0 \cdot d = 0$ $1 \cdot d = d$ $d + d = d$ $d \cdot d = d$ $\bar{d} = d$

	Γ 1 \top Γ 2					
_x yz	00	01	11	10		
0		1	1	1		
1	1	1	d	1		

 $F1 \perp F2$

【练习8】多输出函数设计最优化

$x_1x_2x_3$	y_1y_2	$x_2 x_3 \\ x_1 00 01 11 10$	
0 0 0	1 0		
0 0 1	1 1	y_1 $\frac{1}{1-\frac{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1-\frac{1}}}}{1-\frac{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}}}}{1-\frac{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}}}}}{1-\frac{1-\frac{1}}}}{1-\frac{1-\frac{1}}}{1-\frac{1-\frac{1}}}}{1-\frac{1-\frac{1}}}}{1-\frac{1-\frac{1}}}}}}}}}}$	$y_1 = \bar{x}_1 \bar{x}_2 + x_1 x_2 x_3$
0 1 0	0 0	1 d 1	
0 1 1	0 1	$\vee \gamma_{\alpha} \gamma_{\alpha}$	
1 0 0	d d	$x_2 x_3 \\ x_1 $ 00 01 11 10	
1 0 1	0 1	[
1 1 0	0 1	$\boldsymbol{y_2}$ 0 1 1 1	$y_2 = \bar{x}_1 x_3 + \bar{x}_2 x_3 + x_1 x_2 \bar{x}_3$
1 1 1	1 0	1 d 1	

- 单输出函数化简只须符合要求的逻辑形式达到最小覆盖即可。但
- 多输出函数由于存在各个函数之间的相关性,需要考虑公共项!

【例】化简 $F_1(a,b,c) = \Sigma m(2,3,7);$ $F_2(a,b,c) = \Sigma m(1,5,7)$

公共最小项是 m_7

$$F_1 = \overline{a}b + bc$$

$$F_1 = \overline{a}b + abc$$

$$F_2 = \overline{b}c + ac$$

$$F_2 = \overline{b}c + abc$$

质组	直涵	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
F_1	$\bar{a}b$			V	V				
1 1	bc				V				V
F.	$\overline{b}c$		V				V		
\boldsymbol{F}_2	ac						V		V

【例】设计最优化

$x_1x_2x_3$	$f^1f^2f^3$
0 0 0	1 1 0
0 0 1	0 1 d
0 1 0	1 1 1
0 1 1	1 0 1
1 0 0	1 0 1
1 0 1	0 1 1
1 1 0	0 0 1
1 1 1	0 0 0

七段数码管BCD设计

	$x_4x_3x_2x_1$	abcdefg
0	0000	1 1 1 1 1 1 0
1	0001	0 1 1 0 0 0 0
2	0010	1 1 0 1 1 0 1
3	0011	1 1 1 1 0 0 1
4	0100	0 1 1 0 0 1 1
5	0101	1 0 1 1 0 1 1
6	0110	1 0 1 1 1 1 1
7	0111	1 1 1 0 0 0 0
8	1000	1 1 1 1 1 1 1
9	1001	1 1 1 1 0 1 1
	1010	d d d d d d
	1111	d d d d d d

$$a = \mathbf{x_2} + \mathbf{x_3}\mathbf{x_1} + \mathbf{x_4} + \overline{\mathbf{x}_3}\overline{\mathbf{x}_1}$$

7段数码管:

七段数码管BCD设计-2

如何同时兼顾7张卡诺图?

七段数码管BCD设计-3

$$a = x_4 + x_3 x_1 + x_2 + \bar{x}_3 \bar{x}_1$$
$$b = x_4 + \bar{x}_3 + x_2 x_1 + \bar{x}_2 \bar{x}_1$$

$$a = x_4 + x_2x_1 + \overline{x}_3\overline{x}_1 + x_3\overline{x}_2x_1 + x_3x_2\overline{x}_1$$
 $b = \overline{x}_3x_1 + \overline{x}_3\overline{x}_1 + x_2x_1 + \overline{x}_2\overline{x}_1$
 $c = \overline{x}_3x_1 + x_3\overline{x}_2x_1 + \overline{x}_2\overline{x}_1 + x_2x_1 + x_3x_2\overline{x}_1$
 $d = \overline{x}_3x_2 + x_3\overline{x}_2x_1 + \overline{x}_3\overline{x}_1 + x_3x_2\overline{x}_1$
 $e = \overline{x}_3\overline{x}_1 + x_3x_2\overline{x}_1$
 $f = x_3\overline{x}_2x_1 + \overline{x}_2\overline{x}_1 + x_3x_2\overline{x}_1 + x_4$
 $g = x_3x_2\overline{x}_1 + x_3\overline{x}_2 + x_4 + \overline{x}_3x_2$
多输出优化

兼顾结果:独立乘积项由15个减少到9个!

卡诺图小 结

- 卡诺图: 格雷码编码、相邻可合并、首尾相邻、单元可重复使用、横竖皆可
- 卡诺图中, 相邻的最小项可以合并, 并消去取值不同的因子
- 相邻: 最小项相差一个变量
- 被合并的相邻小方块数目越大,得到的乘积项中包含的字母变量越少
- 蕴含、质蕴含、必要质蕴含
- 卡诺图化简结果不唯一
- 不要超过5个自变量
- 充分利用无关项
- 多输出函数要充分利用公共项