MOTIVATION

Artificial Intelligence

Data Analysis

Representation

Processing

Programming

Artificial Intelligence

Data Analysis

Representation

Processing

Programming

Digital Fundamentals

Digital Applications

Artificial Intelligence

Data Analysis

Representation

Processing

Programming

Digital Fundamentals

Digital Applications R **Artificial** Data Analysis Intelligence Processing Programming Representation

Digital Fundamentals

Digitally illiterate society with a few experts

Collective Understanding

You?

Society with a distributed and high degree of digital education

PROBLEM SOLVING

A Model for Solving Problems

A Model for Solving Problems

COUNTING

1 2 3

1 2 3 10² 10¹ 10⁰ 1 2 3

10² 10¹ 10⁰

$$= 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 1 \times 100 + 2 \times 10 + 3 \times 1$$

$$= 4 \times 10^{3} + 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 4 \times 10^{3} + 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 4 \times 1000 + 1 \times 100 + 2 \times 10 + 3 \times 1$$

$$= 4 \times 10^{3} + 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

$$= 4 \times 1000 + 1 \times 100 + 2 \times 10 + 3 \times 1$$

$$= 4123$$

Human Hand

Human Hand

Cartoon Character's Hand

2 3 (octal)

2 3 (octal)

8² 8¹ 8⁰

1 2 3 (octal)

8² 8¹ 8⁰

$$= 1 \times 8^{2} + 2 \times 8^{1} + 3 \times 8^{0}$$

1 2 3 (octal)

8² 8¹ 8⁰

$$= 1 \times 8^{2} + 2 \times 8^{1} + 3 \times 8^{0}$$

$$= 1 \times 64 + 2 \times 8 + 3 \times 1$$

3

(octal)

8²

8¹

80

$$= 1 \times 8^{2} + 2 \times 8^{1} + 3 \times 8^{0}$$

$$= 1 \times 64 + 2 \times 8 + 3 \times 1$$

= 83 (decimal)

decimal octal 8

decimal octal

? ----

decimal octal 16 ?

decimal octal

What now?

0, 1, ...

0, 1, 10, ...

0, 1, 10, 11, ...

0, 1, 10, 11, 100, ...

0, 1, 10, 11, 100, 101, ...

0, 1, 10, 11, 100, 101, 110

(binary)

1 0 (binary)
2² 2¹ 2⁰

$$= 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

1 0 (binary)
2² 2¹ 2⁰

$$= 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= 1 \times 4 + 1 \times 2 + 0 \times 1$$

1 0 (binary)

$$= 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= 1 \times 4 + 1 \times 2 + 0 \times 1$$

$$= 6 \text{ (decimal)}$$

2 3 4 5 6 0, 1, 10, 11, 100, 101, 110

Place Value Systems

$$N = d_n * R^{n-1} + ... + d_1 * R^1 + d_0 *$$

$$d \in \{0, 1, ... R-1\}$$

n = Number of digits

Place Value Systems

R≥2

BITS

Why do computers think binary?

A Bit (binary digit)

A byte (8 bits)

2⁷ 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰
128 64 32 16 8 4 2 1

What can we store in one byte?

Are we stuck with binary?

What about ternary?

CODES

A B C D ... a b c d
65 66 67 68 97 98 99 100

#AC8909

possible colors?

R

G

compression