#linear_algebra

THEOREM 1

Let A, B, and C be matrices of the same size, and let r and s be scalars.

a.
$$A + B = B + A$$

$$d. r(A+B) = rA + rB$$

a.
$$A + B = B + A$$

b. $(A + B) + C = A + (B + C)$
d. $r(A + B) = rA + rB$
e. $(r + s)A = rA + sA$

e.
$$(r+s)A = rA + sA$$

c.
$$A + 0 = A$$

f.
$$r(sA) = (rs)A$$

Matrix Multiplication

When a matrix B multiplies a vector \mathbf{x} , it transforms \mathbf{x} into the vector $B\mathbf{x}$. If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B\mathbf{x})$. See Fig. 2.

FIGURE 2 Multiplication by B and then A.

Thus $A(B\mathbf{x})$ is produced from \mathbf{x} by a *composition* of mappings—the linear transformations studied in Section 1.8. Our goal is to represent this composite mapping as multiplication by a single matrix, denoted by AB, so that

$$A(B\mathbf{x}) = (AB)\mathbf{x} \tag{1}$$

See Fig. 3.

If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_1, \dots, \mathbf{b}_p$, then the product AB is the $m \times p$ matrix whose columns are $A\mathbf{b}_1, \dots, A\mathbf{b}_p$. That is,

$$AB = A[\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_p] = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_p]$$

multiplication of matrices corresponds to composition of linear transformations

each column of AB is a linear combination of the columns of A using weights from the corresponding column of B.

Properties of Matrix Multiplication

The following theorem lists the standard properties of matrix multiplication. Recall that I_m represents the $m \times m$ identity matrix and $I_m \mathbf{x} = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^m .

THEOREM 2

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

a.
$$A(BC) = (AB)C$$
 (associative law of multiplication)

b.
$$A(B+C) = AB + AC$$
 (left distributive law)

c.
$$(B + C)A = BA + CA$$
 (right distributive law)

d.
$$r(AB) = (rA)B = A(rB)$$

for any scalar r

e.
$$I_m A = A = A I_n$$
 (identity for matrix multiplication)

WARNINGS:

- **1.** In general, $AB \neq BA$.
- **2.** The cancellation laws do *not* hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C. (See Exercise 10.)
- **3.** If a product AB is the zero matrix, you *cannot* conclude in general that either A = 0 or B = 0. (See Exercise 12.)

THEOREM 3

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a.
$$(A^{T})^{T} = A$$

b.
$$(A + B)^T = A^T + B^T$$

c. For any scalar
$$r$$
, $(rA)^T = rA^T$

d.
$$(AB)^T = B^T A^T$$