Week 8: MDP and Value Iteration

COMP90054 – Al Planning for Autonomy

Key concepts

- Markov Decision Processes (MDPs)
- Solving MDPs:
 - Value Iteration

Classical Planning vs. MDPs minimuse the cost

Classical Planning (6)	Markov Decision Processes (MDPs)	
Set of states S	Set of states S	
Initial state s_0	Initial state s_0	
Action A(s)	Action A(s)	
Transition function $s' = f(a, s)$	Transition probabilities $P_a(s' s)$ Non-determin	risk
Goals $S_G \subseteq S$	Reward function r(s, a, s') (positive or	
Action costs c(a, s)	negative)	
	Discount factor $0 \le \gamma \le 1$ (prefer shorter plans over longer plans)	

$$s_0$$
 a
 $(P=0.8)$
 s_1
 s_2
 $(P=0.2)$

Task 1: Model the Grid MDP example with a formal discounted-reward

MDP model S, s_0 , A(s), $P_a(s'|s)$, (s, a, s'), γ aim to $S = \{\langle \chi, y \rangle \mid \chi \in \{0,1,2,3\},\$ $y \in \{0,1,2\},\$ avoid $\langle 1,17 \text{ is the wall}\}$ A = { North, South, East, West }

Task 1: Model the Grid MDP example with a formal discounted-reward MDP model

S, s_0 , A(s), $P_a(s'|s)$, r(s, a, s'), γ

Task 1: Model the Grid MDP example with a formal discounted-reward MDP model

Solving MDPs?

Bellman equations

maximise the reward.

get the expected reward of an action.

For discounted-reward MDPs the Bellman equation is defined recursively as:

$$(Q(s,a)) = \sum_{s' \in S} P_a(s'|s) [r(s,a,s') + (\gamma)V(s')]$$
immediate discounted puture reward of action a

Q-value

$$V(s) = \max_{a \in A(s)} Q(s, a)$$

expected value of being in states and acting optimally

Solving MDPs? Value Iteration

- Set V_0 to arbitrary value function; e.g., $V_0(s) = 0$ for all s.
- Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Consider two football-playing robots: Messi and Suarez.

They play a simple two-player cooperate game of football, and you need to write a controller for them. Each player can pass the ball or can shoot at goal.

The football game can be modelled as a discounted-reward MDP with three states: Messi, Suarez (denoting who has the ball), and Scored (denoting that a goal has been scored); and the following action descriptions:

- If Messi shoots, he has 0.2 chance of scoring a goal and a 0.8 chance of the ball going to Suarez. Shooting towards the goal incurs a cost of 2 (or a reward of -2).
- If Suarez shoots, he has 0.6 chance of scoring a goal and a 0.4 chance of the ball going to Messi. Shooting towards the goal incurs a cost of 2 (or a reward of -2).
- If either player passes, the ball will reach its intended target with a probability of 1.0. Passing the ball incurs a cost 1 (or a reward of -1).
- If a goal is scored, the only action is to return the ball to Messi, which has a probability of 1.0 and has a reward of 2. Thus the reward for scoring is modelled by giving a reward of 2 when **leaving** the goal state.

The following diagram shows the transition probabilities and rewards:

Return P(1.0)

Return P(1.0) r = 2Shoot P(0.2)

Shoot P(0.8) r = -2Shoot P(0.8) r = -2Shoot P(0.8) r = -2Shoot P(0.4) r = -2Shoot P(0.4) r = -2Shoot P(0.4) r = -2Tind the best action for all starts?

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0			
V(Suarez)	0			
V(Scored)	0			

Iteration 0: Set $V_0(s) = 0$ for all s

The following diagram shows the transition probabilities and rewards:

$$\gamma = 1$$

Shoot P(0.6)

Suarez

Scored

Pass P(1.0)

Shoot P(0.

Workshop Problem

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1		
V(Suarez)	0)			
V(Scored)	0			

Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) \left[r(s, a, s') + \gamma \ V_i(s') \right]$$

s = Messi

s' = Suarez/Scored

Return P(1.0)

a = shoot/pass

Iteration 1: $V_1(Messi)$ Pshoot (Suares Messi) [r (Messi, shoot, Suarez) + Xx V (Suarez) + Pshoot (Swed Messi) [r (Messi, shoot, Swed) + $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ | $\frac{1}$

Ppass (Suarez Messi) [r(Messi, pass, Suarez) + 8 x V (Suarez)]
= 1 x [-1 + 1x 0] = (-1)

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1		
V(Suarez)	0	-1		
V(Scored)	0			

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Iteration 1: $V_1(Suarez)$

shoot

pass

The following diagram shows the transition probabilities and rewards:

s = Suarez

s' = Messi/Scored

a = shoot/pass

$$\gamma = 1$$

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1		
V(Suarez)	0	-1		
V(Scored)	0	2		

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Iteration 1: $V_1(Scored)$

return

The following diagram shows the transition probabilities and rewards:

s = Scored

s' = Messi

a = return

$$\gamma = 1$$

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	
V(Suarez)	0	-1		
V(Scored)	0	2		

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

Iteration 2: $V_2(Messi)$

• shoot

pass

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	
V(Suarez)	0	-1	-1.2	
V(Scored)	0	2		

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

Iteration 2: $V_2(Suarez)$

shoot

pass

The following diagram shows the transition probabilities and rewards:

	Iteration 0		Iteration 0 Iteration 1		Iteration 2	Iteration 3
V(Messi)	0	-1	-2			
V(Suarez)	0	-1	-1.2			
V(Scored)	0	2	1			

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

Iteration 2: $V_2(Scored)$

return

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	-2.2
V(Suarez)	0	-1	-1.2	
V(Scored)	0	2	1	

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

t Pshoot (Sured IM) [r(M, shoot, S) + V V (Suarez)]
+ Pshoot (Sured IM) [r(M, shoot, Swored) + V V (Swored)]
= 0.8 [-2+1x(-1.2)]+0.2[-2+1x(1)]
= 0.8 [-2+1x(-1.2)]+0.2[-2+1x(1)] Iteration 3: $V_3(Messi)$

Ppass (Suarez/M)[r(M, pass, S)+&V (Swarez) = 1x[-1+1x1-12

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	-2.2
V(Suarez)	0	-1	-1.2	-2.2?
V(Scored)	0	2	1)	

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Iteration 3: $V_3(Suarez)$

Pshost (Messi | Swarez) [r (Swarez, shoot, Messi) + YV (Messi)]

+ Pshoot (Sweet) [r (Swarez, shoot, Sword) + YV(Swed)] = 0.4 [-2+1x(-2)] + 0.6[-2+1x(1)] = -2.2)

Messi | Suarez) [r (Suarez, pass, Messi) + 8 V (Messi)]

= 1 x [-1 + 1 x (-2)] = -3

Max

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	-2.2
V(Suarez)	0	-1	-1.2	-2.2
V(Scored)	0	2	1	O

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

Return P(1.0) r = 2Scored Shoot P(0.6) Shoot P(0.2) Shoot P(0.8) $\frac{\text{Pass P(1.0)}}{\text{r = -1}}$ Messi Suarez Shoot P(0.4)

The following diagram shows the transition probabilities and rewards:

Iteration 3: $V_3(Scored)$

(Messi | Scored)
$$\left[r\left(\text{Scored, return, Messi}\right) + \text{8V(Messi)}\right]$$

$$1 \times \left[2 + 1 \times (-2)\right] = 0$$

						r = 2 Scored
	Iteration 0	Iteration 1	Iteration 2	Iteration 3	nom Pass	Shoot P(0.2) Shoot P(0.6) r = -2
V(Messi)	0	-1	-2	-2.2	0	
7V(Suarez)	0	-1	-1.2	(-2.2) E	_ from sho	Page P(1.0)
V(Scored)	0	2	1	0	Depte	r = -1
	1	1	1		Jrom Refur	Shoot P(0.4) r = -2

If we only have 3 iterations, what actions did we take to maximise the reward?

- Messi Pass
- Suarez Shoot Scored Return

Thao Le 20

Return P(1.0)

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-> -1 (-	-) -2	-2.2
V(Suarez)	0	-) -1	-1.2	-2.2
V(Scored)	0	2	1	0

When to stop the iteration?

The iteration is stopped when Δ reaches some pre-defined threshold θ

Messi (when the largest change in the values between iterations is "small enough")

$$2$$
): $\Delta = \max(|-2+1|)$

change in the values Messi Sware Sware Sware Sware
$$\left(\left| -1-0 \right| \right) = 2$$

$$= \max \left(\left| -1-0 \right| \right) \left| -1-0 \right| \right) \left| -1-2 \right| = 1$$

$$= \max \left(\left| -2+1 \right| \right) \left| -1.2+1 \right| \right| \left| 1-21 \right| = 1$$