Merging fishnet and points layer in ArcMap and Calculating PAI*

Yong Zhuang
Department of Computer Science
University of Massachusetts Boston

Goal

Merging fishnet and points layer in ArcMap. (Here we take the 2013 call for service data as example)

Calculate the PAI* (optimal PAI).

Choose the days in 2013 correspond to the first two weeks of March 2017.

3/1/2017 is a Wednesday

Marcl	n 2017				^	~
Su	Мо	Tu	We	Th	Fr	Sa
26	27	28	1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	
			5	6		8

2/27/2013 is a Wednesday

March	n 2013				^	~
Su	Мо	Tu	We	Th	Fr	Sa
24	25	26	27	28	1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31			3	4	5	6

Choose the days in 2013 correspond to the first two weeks of March 2017.

3/1/2017 is a Wednesday

Marcl	n 2017				^	~
Su	Мо	Tu	We	Th	Fr	Sa
26	27	28	1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	
2			5	6		8

2/27/2013 is a Wednesday

Marcl	n 2013				^	~
Su	Мо	Tu	We	Th	Fr	Sa
24	25	26	27	28	1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31			3	4	5	6

Choose the record of one month in March

Choose the days in 2013 correspond to the first two weeks of March 2017.

3/1/2017 is a Wednesday

Marcl	n 2017				^	~
Su	Мо	Tu	We	Th	Fr	Sa
26	27	28	1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	
2			5	6		8

2/27/2013 is a Wednesday

March	n 2013				^	~	
Su	Мо	Tu	We	Th	Fr	Sa	
24	25	26	27	28	1	2	
3	4	5	6	7	8	9	
10	11	12	13	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	
31			3	4	5	6	2

Choose the days in 2014 correspond to the first weekf of March 2017.

3/1/2017 is a Wednesday

2/26/2014 is a Wednesday

Marc	h 2013				^	~
Su	Мо	Tu	We	Th	Fr	Sa
24	25	26	27	28	1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31			3	4	5	6

Open the Spatial join tool

Fill in the form

Choose the coordinate system

Choose the coordinate system of output layer, in this example, we choose NAD 1983 HARN

Create your output layer

Create your output layer

Check the number of points in each cell

The number of points in each cell

Judging Criteria - Prediction Accuracy Index (PAI)

$$PAI = \frac{\frac{n}{N}}{\frac{a}{A}} = \frac{n}{a} * \frac{A}{N} \propto \frac{n}{a} = \frac{\sum_{i=1}^{k} n_{c_i}}{k * a_{cell}} \propto \frac{\sum_{i=1}^{k} n_{c_i}}{k} = Mean(n_c)$$

where n is the number of crimes in areas where crimes are predicted to occur (e.g. hotspots), N the number of crimes in study area, a the area of areas where crimes are predicted to occur (e.g. area of hotspots), and A the area of the study area (e.g. the area of Portland). k is the number of hotspots. n_c the number of crimes occur in hotspot c. a_{cell} is the area of one hotspot (e.g. $250*250ft^2$). \propto means proportional to.

Because PAI is proportional to average number of crimes in a cell, to get the a higher PAI score, we should not only choose the valuable cells, but also should choose as fewer hotspots as possible.

Evaluation example

1 week (3/1-3/7) evaluation

	2	3	6
	1	0	7
1	2	5	1
	1		

One hotspot

For PAI score, one hotspot is better than two hotspots.

Two hotspots

$$PAI^* = \frac{\frac{(9+6)}{27}}{\frac{2}{3}} = \frac{(9+6)}{2} * \frac{9}{27} \propto \frac{(9+6)}{2} = 7.5$$

Check the requirements of submission

The smallest cell size is 250*250 sq.ft

The Biggest cell size is 600*600 sq.ft

Suppose the cell size is **250*250 sq.ft**, the range of number of hotspots is: 0.25 mi² / 62500 ft² = 112 0.75 mi² / 62500 ft² =

one another.

335

Requirement	Description of Requirement
Required files	.dbf .prj .sbn .sbx .shp
Projection of files	NAD_1983_HARN_StatePlane_Oregon_North_FIPS_3601_Feet_Intl
Required variables	Unique ID for each cell A binary variable (1 – hot spot, 0 – not) Area for each cell measured in square feet to 4 decimal places
Cell shape	Any shape
individual cell area*	62,500 ft ² – 360,000 ft ²
Total forecasted area	0.25 mi ² – .75 mi ²

Check the requirements of submission

Based on our analysis of PAI score, for different size of cell, we should choose as fewer hotspots as possible.

Cell size 250*250 sq.ft : 0.25 mi² / 62500 ft² = 112

 \Leftrightarrow Cell size **450*450 sq.ft** : 0.25 mi² / 202500 ft² = 35

 \bullet Cell size **600*600 sq.ft** : 0.25 mi² / 360000 ft² = 20

Sorting "Join Count" field

Choose the first 112 rows

The number of crimes is **5**.

Choose the first 112 rows

Copy the value of the field "FID" of the rows which "Join_Count" >= 5, and export it as a csv file.

The number of crimes is **5**.

Open the properties window

Choose symbology

Click here

Choose symbology

Divide all the cells into two classes by number of crimes ("Join_Count")

- 1. 0 ~ 4
- 2. 5 ~ 28

Click here

Create hotspot map

Hotspot map

Hotspot map overlay Portland police map

The record of the first week in March 2013 (2/27/2013-3/5/2013)

The record of the first week in March 2013

Thank You!

