

Diese Arbeit wurde vorgelegt am Lehrstuhl für Production Engineering of E-Mobility Components (PEM) der RWTH Aachen.

Bachelorarbeit

Name: Julian Callard

Matr.-Nr.: 377888

Thema: Innovative Batteriezellkonzepte für eine opti-

male thermische Anbindung

Betreuender Assistent: Jonas Gorsch, M.Sc.

1. Prüfer: Prof. Dr.-Ing. Peter Mustermann

2. Prüfer: Dr.-Ing. Thomas Mustermann

Aachen, den 9. Mai 2021

Inhalt und Ergebnis dieser Arbeit sind ausschließlich zum internen Gebrauch bestimmt. Alle Urheberrechte liegen bei der RWTH Aachen. Ohne ausdrückliche Genehmigung des betreuenden Lehrstuhls ist es nicht gestattet, diese Arbeit oder Teile daraus an Dritte weiterzugeben.

I. Inhaltsverzeichnis

I. Inhaltsverzeichnis

ı	Inhaltsverzeichnis	į
II	Formelzeichen und Abkürzungen	ii
Ш	Abbildungsverzeichnis	iii
IV	Tabellenverzeichnis	iv
1	Einleitung	
	1.1 Abstract	
2	Motivation	1
3	Grundlagen und Stand der Technik	
4	Methodik	4
5	Auswertung	5
6	Zusammenfassung und Ausblick	6
٧	Literatur	7
VI	Anhang	8
VII	Eidesstattliche Versicherung	9

II. Formelzeichen und Abkürzungen

Formelzeichen	Einheit	Beschreibung
a(t)	$\frac{m}{s^2}$	Beschleunigungsverlauf
b_{Fzg}	m	Fahrzeugbreite
Abkürzung		Beschreibung
KFZ		Kraftfahrzeug
PEM		Production Engineering E-Mobility Components

III.	Abbildungsverze	eic	hnis
------	-----------------	-----	------

٠	٠	١
		١
ı		ı

Abbildung 3.1:	Blah	2
,	=	_

IV. Tabellenverzeichnis iv

11/	Iahai	lenverze	NIAH	nic
IV.	Iavei	ICIIVCIZO	71 G I I	11113

Tabelle 2.1:	Vergleich der Energiedichten von Energieträgern in Fahrzeugen	1
Tabelle 3.1:	Bauformen der Batteriezellen	3

1. Einleitung v

1. Einleitung

1.1. Abstract

Durch fortlaufende Entwicklung im Bereich der elektro-chemischen Energiespeicher in Form von Lithium-Ionen-Batterien (LIB's) gewinnen diese als Energieträger in der Mobilitätbranche stetig an Relevanz. Sowohl in Elektrofahrzeugen als auch in Konzepten und Neuentwicklungen in der Light-Aircraft-Branche finden LIB's immer mehr Anwendungen. Da die Energiedichte dieser Batteriezellen aktuell noch einen Bruchteil der Energiedichte von konventionellen Treibstoffen beträgt und die Ladezeiten aufgrund geringer C-Raten ein Vielfaches der zum Tanken von Treibstoff benötigten Zeit betragen, haben Verluste und Leistung, die für die Kühlung/Aufheizung der Energiespeicher aufgewendet werden muss, zusammen mit dem benötigten Gewicht für Kühlkreisläufe bei der Reichweite und Effizienz der Luft- und Kraftfahrzeuge einen signifikant negativen Effekt. Daher ist die optimale thermische Anbindung der Batteriezellen wünschenswert. Durch optimierte Wärmeleitung und geringerem Ohm'schen Widerstand können die Systemeffizienz erhöht und die Ladedauer reduziert werden.

In dieser Arbeit soll ein Konzept für eine thermisch optimierte prismatische Zelle aus bereits existierenden Konzepten für andere Zelltypen erarbeitet und dann anhand einer thermischen Simulation validiert werden.

1.2. Aufbau der Arbeit

2. Motivation 1

2. Motivation

Der Transportsektor trägt in der EU mit einem Anteil von ca. 25% signifikant zu der gesamten Treibhausgasemission (THG) bei. Um die Ziele der EU-Kommission zu erreichen, soll bis 2030 die Anzahl der Fahrzeuge mit konventionellem Antrieb halbiert werden. Bis 2050 soll auf Fahrzeuge mit Benzin- oder Diesel-Motoren komplett verzichtet werden. Eines der Hindernisse für eine Marktdurchdringung der Fahrzeuge mit elektrochemischen Energiespeicher in Form von Lithium-Ionen-Batterien (LIB's) ist die begrenzte Reichweite dieser Fahrzeugklasse¹.

Die Energiedichte von aktuellen LIB's² liegt nach Tabelle 2.1 weit unter der von konventionellen Treibstoffen³, ist jedoch verglichen mit älteren Batterietechnologien erheblich höher⁴. Da auch die Batterie-Aufladezeiten ein Vielfaches der Dauer einer Tankfüllung mit einem Flüssigtreibstoff beträgt, haben Verluste die durch Widerstand oder Abwärme entstehen, zusammen mit Leistung die für das Kühlen bzw. Aufheizen der Batterie aufgewendet werden muss, einen signifikant negativen Effekt auf die Reichweite und Effizienz der Fahrzeuge.

Тур	Wert	Einheit
Lithium-Ionen-Batterie:	430 - 800	Wh/I
Nickel-Cadmium-Batterie:	130	Wh/I
Benzin:	9700	Wh/I
Diesel:	10700	Wh/I

Tabelle 2.1: Vergleich der Energiedichten von Energieträgern in Fahrzeugen

Besonders deutlich ist dieser Effekt in der Luftfahrtbranche.

Die früheren Konzepte des elektrischen Fliegens waren zwar erfolgreich darin, dass sie das Fliegen mit elektrischem Antrieb ermöglichten, scheiterten jedoch an der geringen Energiedichte verfügbarer Energiespeicher wie Nickel-Cadmium-Batterien und der damit verbundenen möglichen Reichweite⁵.

Durch die Entwicklung von Lithium-Ionen-Batterietechnologie haben die elektrochemischen Energiespeicher erstmals eine ausreichende Energiedichte um relevante Reichweiten von bis zu 250km zu ermöglichen.⁶.

Da die Reichweite sich antiproportional zum Gewicht verhält resultiert ein geringeres Gewicht bei gleicher Batteriekapazität in erweiterter Reichweite⁷.

Daher kann die Effizienz, Ladezeit und Reichweite von elektrischen Fahrzeugen mithilfe innovativer Kühlkonzepte gesteigert werden. In dieser Arbeit sollen diese Konzepte erarbeitet und validiert werden.

Vgl. Ajanovic und Glatt (Wirtschaftliche und ökologische Aspekte der Elektromobilität: Economic and ecological aspects of electric vehicles) 2020, S.136-146.

Vgl. Hettesheimer et al. (Entwicklungsperspektiven für Zellformate von Lithium-Ionen-Batteiren in der Elektromobilität) 2017, S. 11.

³ Vgl. Beloit EDU (Energy Density Table).

⁴ Vgl. Sollmann (Nickel-Cadmium-Batterien) 2018.

Vgl. Hepperle (Electric Flight - Potential and Limitations) 2012, S. 4.

⁶ Vgl. Lilium (Lilium Jet).

Vgl. Traub (Range and Endurance Estimates for Battery-Powered Aircraft) 2011, S. 705.

3. Grundlagen und Stand der Technik

3.1. Lithium-Ionen-Batterietechnologie

Aufbau und Funktionsweise

Der Begriff Lithium-Ionen-Batterie umfasst viele verschiedene Batterietechnologien, welche alle auf dem gleichen Wirkprinzip beruhen. Analog zu allen anderen Batterietypen besteht eine Lithium-Ionen-Batterie aus dem Elektrolyten, einem Separator und zwei Elektroden.

Nach Konvention wird nach den elektrischen Zuständen beim Entladevorgang die negativ geladene Elektrode als Anode und die positiv geladene Elektrode als Kathode bezeichnet.

Abbildung 3.1: Aufbau Lithium-Ionen-Batteriezelle in Anlehnung an Ecker u. Sauer 2013

Wie in Abbildung 3.1 dargestellt, können die Lithium-Ionen durch das Elektrolyt von der Kathode zur Anode oder umgekehrt ?wandern?.

Um die Oberfläche für das Einlagern der Ionen möglichst groß zu gestalten, sind die Materialien der beiden Elektroden hochporös. Dies ermöglicht zudem eine hohe Reaktionsrate.

Die Kathode einer **LIB** (Lithium-Ionen-Batterie) besteht meist aus einem Metalloxid, die Anode aus einer Kohlenstoffmodifikation, oftmals Graphit. Für die Bindung der Elektrodenmaterialien wird häufig Polyvinylidenfluorid (PVFD) in verschiedenen Formen verwendet.

Diese Materialien werden dann auf einer dünnen Metallfolie aufgetragen. An der Kathode kommt hierfür Aluminium zum Einsatz, an der Anode wird Kupfer verwendet. Diese Metallfolien dienen gleichzeitig als Stromableiter.

Der Separator besteht normalerweise aus einem porösen Polymer. Die Bauteile der Batterie, Elektroden und Separator sind in einem Elektrolyt getränkt. Dieses besteht aus Lithiumsalz das in einem organischem Solvat gelöst ist. Das Solvat wird so gewählt, dass es bei den im Betrieb auftretenden Spannungszuständen trotzdem weitgehend stabil ist.

Die Bauform der Batteriezellen ist meist einer von drei etablierten Typen, wie in Tabelle 3.1 dargestellt ist. Bei allen Typen bestehen die Zellen aus mehreren Lagen von Elektroden-Separator-Elektroden-Stapeln, die je nach Typ geschichtet oder gewickelt werden.

Tabelle 3.1: Bauformen der Batteriezellen

Bauform	Geschichtet	Gewickelt
Zylindrisch		Ja
Prismatisch	Ja	Ja
Pouch-Bag	Ja	

4. Methodik 4

4. Methodik

5. Auswertung 5

5. Auswertung

6. Zusammenfassung und Ausblick

V. Literatur 7

V. Literatur

Ajanovic, A.; Glatt, A. Wirtschaftliche und ökologische Aspekte der Elektromobilität: Economic and ecological aspects of electric vehicles. In: *e & i Elektrotechnik und Informationstechnik* 137, 2020, S. 136–146.

Beloit EDU. Energy Density Table.

Ecker, M.; Sauer, Prof. Dr. rer. nat. D. U. Batterietechnik - Lithium-Ionen-Batterien. In: *MTZ Wissen*, 2013, S. 66–70.

Hepperle, M. Electric Flight - Potential and Limitations. Germany, 2012.

Hettesheimer, T.; Thielmann, A.; Neef, C.; Möller, K.-C.; Wolter, M.; Lorentz, V.; Gepp, M.; Wenger, M.; Prill, T.; Zausch, J.; Kitzler, P.; Montnacher, J.; Miller, M.; Hagen, M.; Fanz, P. Entwicklungsperspektiven für Zellformate von Lithium-Ionen-Batteiren in der Elektromobilität. Fraunhofer-Allianz-Batterien, 2017.

Lilium. Lilium Jet.

Sollmann, D. Nickel-Cadmium-Batterien. 2018.

Traub, L. W. Range and Endurance Estimates for Battery-Powered Aircraft. In: *Journal of Aircraft* 48.2, 2011, S. 703–707.

VI. Anhang 8

VI. Anhang

VII. Eidesstattliche Versicherung

Callard, Julian	Matrikelnummer: 377888
Ich versichere hiermit an Eides Statt, dass ich Titel HIER DEN TITEL EINFÜGEN selbststän erbracht habe. Ich habe keine anderen als die benutzt. Für den Fall, dass die Arbeit zusätzlic erkläre ich, dass die schriftliche und die elektro Die Arbeit hat in gleicher oder ähnlicher Form vorgelegen.	dig und ohne unzulässige fremde Hilfe e angegebenen Quellen und Hilfsmittel h auf einem Datenträger eingereicht wird, onische Form vollständig übereinstimmen.
Ort, Datum	Unterschrift
Belehrung: §156 StGB: Falsche Versicherung an Eides Statt Wer vor einer zur Abnahme einer Versicherung an Eide Versicherung falsch abgibt oder unter Berufung auf ein Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe be	e solche Versicherung flasch aussagt, wird mit
§161 StGB: Fahrlässiger Falscheid; fahrlässige fals (1) Wenn eine der in den §§154 bis 156 bezeichneten Fist, so tritt Freiheitsstrafe bis zu einem Jahr oder Gelds (2) Staflosigkeit tritt ein, wenn der Täter die falsche Ang §158 Abs. 2 und 3 gelten entsprechend.	Handlungen aus Fahrlässigkeit begangen worden trafe ein.
Die vorstehende Belehrung habe ich zur Kenr	ntnis genommen:
Ort, Datum	Unterschrift