

# Outlook Complex multiphysics/multiscale applications with 4C – Current research projects

<sup>a</sup>Sebastian Brandstaeter, <sup>b</sup>Georg Hammerl, <sup>a,c</sup>Matthias Mayr, <sup>d</sup>Gil Robalo Rei, <sup>b</sup>Ingo Scheider, <sup>d</sup>Christoph P. Schmidt, <sup>d</sup>Lea Köglmeier, <sup>d</sup>Laura Engelhardt

<sup>a</sup>Institute for Mathematics and Computer-Based Simulation, University of the Bundeswehr Munich

<sup>b</sup>Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht

<sup>c</sup>Data Science & Computing Lab, University of the Bundeswehr Munich

<sup>d</sup>Institute for Computational Mechanics, Technical University of Munich





- Multiscale example
- Battery example
- Biomechanics examples
  - Lung
  - Shoulder

# Multiscale: Models with microstructure

- Microstructures of materials may be complex
  - Fiber or particle reinforced composites, woven fabrics materials
  - Metals with differently oriented grains, grain boundaries
  - Structured materials with microstructural lattices
- Assumption: Characteristic length of microstructure << main problem</li>
  - Microstructure presumed as a repeated unit cell
  - Single unit cell can be modeled easily



















Bargmann, S. et al. (2018). *Progress in materials science*, *96*, 322-384, Fig. 2

# Multiscale: Micro-macro coupling in 4C









## What is needed?

- An input file for the macroscopic structure (e.g.: tensile-macro.4C.yaml)
  - New feature: Material definition is not given by a material model, but by a second input file representing the microstructure
- Input file for the microstructure (e.g.: tensile-micro.4C.yaml)
  - Contains conventional material models (elasticity, plasticity, etc.)
  - No Dirichlet or Neumann boundary conditions
  - Instead: Surface definition for applying the deformation gradient of the macro-structure element Gauss Point
  - Definition of an additional solver for static homogenization

# Multiscale: Micro-macro coupling in 4C



# **Necessary modifications...**

# ... on the macro-file (tensile-macro.4C.yaml)

- New material: MAT\_Struct\_Multiscale
- Boundary conditions:
   Hold at the bottom, pull at the top, some fixture

# ... on the microstructure (tensile-micro.4C.yaml)

• Surface definition for applying the deformation gradient of the macro-structure element Gauss Point

```
MATERIALS:
    - MAT: 1
        MAT_Struct_Multiscale:
            MICROFILE: "tensile-micro.4C.yaml"
            MICRODIS NUM: 1
```

#### MICROSCALE CONDITIONS:

```
E: 1
ENTITY_TYPE: node set id
- E: 2
ENTITY_TYPE: node set id
- E: 3
ENTITY_TYPE: node set id
- E: 4
ENTITY_TYPE: node set id
- E: 5
ENTITY_TYPE: node set id
- E: 5
ENTITY_TYPE: node set id
- E: 6
ENTITY_TYPE: node set id
```





## Run the simulation in an MPI environment:

mpirun -np 4 4C tensile-macro.4C.yaml results/tensile

Note: With this command,

- the macrostructure is simulated on all (here: 4) CPUs
- each microstructure runs on a single CPU (equivalent to a conventional material model)
- all material points, i.e., microstructures, are run sequentially for each block within the macrostructure

# Multiscale: Micro-macro coupling in 4C



# **Alternative:**

If one had more cores, one might use additional cores for the microstructure mpirun -np 6 4C -nptype=separateInputFiles -ngroup=2 -glayout=2,4 \

tensile-macro.4C.yaml tensile multiscale\_npsupport.4C.yaml dummy



30.09.2025

# Multiscale: Micro-macro coupling in 4C



# Results



# Microstructure: Displacement in Macro-element 47 at last step





# Brief outlook into current applications with 4C Multiphysics



- Multiscale example
- Battery example
- Biomechanics examples
  - Lung
  - Shoulder





#### Physics-based simulation

- More detailed understanding of the underlying physical and chemical processes
- Prediction of battery cell behavior under operational and extreme conditions
- Aid in design of new materials and cells

#### Challenges

- Complex microstructural geometries
- Consideration of multiple physical fields:
  - Solid mechanics field
  - Electrochemical field
  - Thermal field
- Strong interaction between the fields → coupled multiphysics problem
- Multitude of model parameters → uncertainty







# Microstructure-Resolved Scalar-Transport-Electro-Thermo Interaction



# **Lithium Plating and Stripping**



Fang et al 2019 Comput. Methods Appl. Mech. Eng. 350 803-835; DOI: 10.1016/j.cma.2019.03.017

Fang et al 2022 J. Comput. Phys. 461 111179; DOI: 10.1016/j.jcp.2022.111179

30.09.2025 https://github.com/4C-multiphysics/4C







## **Coating layers**



Sinzig et al 2023 J. Electrochem. Soc. 170 040513; DOI: 10.1149/1945-7111/acc692

Sinzig et al 2023 J. Electrochem. Soc. 170 100532; DOI: 10.1149/1945-7111/ad0264

https://github.com/4C-multiphysics/4C





#### **Grain boundary transport**



# Delamination of active material and solid electrolyte



Sinzig et al 2024 J. Electrochem. Soc. 171 040505; DOI: 10.1149/1945-7111/ad36e4

Schmidt et al 2024 J. Electrochem. Soc. 171 100502; DOI: 10.1149/1945-7111/ad76dc

https://github.com/4C-multiphysics/4C

# Input file for battery simulation (excerpt)



There is a bunch of nice methods available but there is no free lunch ;-)

- → How to setup grain boundary transport in the input file for a solid-state battery
- Geometry file including node set definitions of surfaces that shall be treated as grain boundaries



# Brief outlook into current applications with 4C Multiphysics



- Multiscale example
- Battery example
- Biomechanics examples
  - Lung
  - Shoulder

# A mixed-dimensional approach for modeling the respiratory and circulatory system of the human lungs using porous media



Objective: Physically based, predictive and patient-specific computational lung model

- → Capture complex effects in respiratory zone (like inter-alveolar connectivity)
- → Coupling respiratory system and pulmonary circulation
- → Modeling gas exchange
- → Add additional phases (like lung water)

# Pulmonary circulation Blorender.com CO<sub>2</sub> Respiratory system

#### **Modelling approach:**

- → Smaller airways and blood vessels: **porous medium**
- → Larger airways and blood vessels: **discrete 0D networks**



L. Berger et al. "A poroelastic model coupled to a fluid network with applications in lung modelling". (2016)



essentials. Tenth edition. (2016)



# A mixed-dimensional approach for modeling the respiratory and circulatory system of the human lungs using porous media



#### Workflow for patient-specific geometry generation



- (b) segment the lung lobes and visible first airway generations
- (c) algorithms to generate the peripheral larger airway branches
- (d) generate the larger pulmonary blood vessels

## **Simulation results**

Ismail M. (2014), Ismail M et al. (2013). doi: 10.1002/cnm.2577



# Brief outlook into current applications with 4C Multiphysics



- Multiscale example
- Battery example
- Biomechanics examples
  - Lung
  - Shoulder

# Shoulder physiology: Computational biomechanics to address clinical challenges



#### Mobility

Most flexible joint in the human body due to

- Anatomical structure of glenohumeral joint
- Complex muscular interactions

#### Stability

Dependent on surrounding soft tissues

- Static stabilizers: Ligaments, tendons, labrum
- Dynamic stabilizers: Active and passive muscles

Dysfunction and injury is common and can have multiple causes Challenges in clinical practice: diagnosis, treatment and monitoring

#### 3D continuum-mechanical model

#### Constitutive models

Muscle-tendon complexes: Mixture model with muscle and tendon constituents

- Muscle: Generalized active strain model with spatiotemporally varying activation
- Tendon: Transversely isotropic model
- ► Bone, Labrum: St.-Venant Kirchhoff model



#### Boundary conditions

Tied constraints

Muscles-bones (some regions)

**Contact constraints** 

- Bone-bone
- Muscle-bone
- Muscle-muscle

#### Geometry and mesh

- Patient-specific geometry
- Segmented from real imaging data
- Quadratic tets with F-bar technology

# Input file for shoulder simulation (excerpt)

```
MAT: 11
                                                                                                                      "MASSFRAC": {
                                                                                                                          "62275":
                                                 DENS: 0.1
                                                                                                                              0.8034154787554213,
                                                 MASSFRAC:
                                                                                                                              0.1965845212445787
                                                   from file: "muscle tendon massfractions.json"
                                                                                                                          "62276": [
  MATERIALS:
                                                  Constituents are mixed according to the
                                                                                                                              0.9656991964185757,
  - MAT: 1
                                                   element-wise defined mass fractions
                                                                                                                              0.03430080358142429
    MAT Mixture:
      MATIDMIXTURERULE: 11
                                                                                                                          "62277": [
      MATIDSCONST: [22, 33]
                                                                                                                              0.9874255405171426,
                                                                                                                              0.012574459482857403
  A mixture material model
                                                    MATID: 222
consisting of two constituents.
                                                  MAT: 222
                                                                                                                          "62278": [
     Muscle and tendon
                                                                                                                              0.9949756435926256,
                                                     ALPHA: 2.3795702114103094
                                                                                                                              0.00502435640737442
                                                     BETA: 0.5161005889693708
                                                     DENS: 1e-06
                                                                                                                    Definition of mass fraction in
                                                     GAMMA: 27.107421574113225
                                                                                                                         an external ison file
                                                     KAPPA: 10
                                                     LAMBDAMIN: 0.5679564851414783
                                                     LAMBDAOPT: 1.1806202453751011
                                                     OMEGA0: 0.6388151301347268
   MAT: 2
                                                     POPT: 64.68091032816055
                                                                                                           "ACTIVATION VALUES": {
   MAT Struct StVenantKirchhoff:
                                                     ACTIVATION VALUES:
                                                                                                               "62275": [[0.0, 0.0], [0.01, 0.123143], [0.02, 0.234234], [0.03, 0.345345]]
      YOUNG: 3e7
                                                                                                               "62276": [[0.0, 0.0], [0.01, 0.223143], [0.02, 0.334234], [0.03, 0.445345]]
      DENS: 0.13
                                                                                                               "62277": [[0.0, 0.0], [0.01, 0.675884], [0.02, 0.432423], [0.03, 0.532432]]
                                                  Active muscle material constituent with
     NUE: 0.3
                                                                                                               "62278": [[0.0, 0.0], [0.01, 0.794304], [0.02, 0.543543], [0.03, 0.645345]]
                                                  element-wise defined activation values
   MAT: 3
                                                                                                                 Definition of time-activation value pairs in an external ison file
                                                  - MAT: 33
       Further material model
   definitions, e.g., bone, labrum,
            ligaments, ...
                                                  Tendon material constituent definition
```

# Input file for shoulder simulation (excerpt)

```
CONTACT DYNAMIC:

LINEAR_SOLVER: 2

STRATEGY: Lagrange

SYSTEM: Condensed

MORTAR COUPLING:

ALGORITHM: Mortar

LM_SHAPEFCN: Dual

LM_QUAD: quad

LM_DUAL_CONSISTENT: none

SEARCH_ALGORITHM: BinaryTree

SEARCH_PARAM: 0.5

MESH_RELOCATION: None
```

Settings for contact and meshtying conditions

```
DESIGN SURF MORTAR COUPLING CONDITIONS 3D:
 - E: 45
   Initialization: Inactive
   InterfaceID: 1 ←
   Side: Master
                                                 Tied interface 1
 - E: 2
                                                between surface 45
   Initialization: Active
   InterfaceID: 1 ←
                                                      and 2
   Initialization: Inactive
   InterfaceID: 2 ◀
   Side: Master
                                                  Tied interface 2
 - E: 13
                                                 between surface 3
   Initialization: Active
   InterfaceID: 2 ◀
                                                      and 13
```

Tied constraints

```
DESIGN SURF MORTAR CONTACT CONDITIONS 3D:
   Initialization: Inactive
   InterfaceID: 1
   Side: Master
 - E: 14
                                                Contact pair 1
   Initialization: Inactive
   InterfaceID: 1 ←
   Side: Slave
 - E: 4
   Initialization: Inactive
   InterfaceID: 2 ◀
   Side: Master
                                                Contact pair 2
   Initialization: Inactive
   InterfaceID: 2 ←
   Side: Slave
```

```
DESIGN SURF DIRICH CONDITIONS:
- E: 18
 NUMDOF: 3
 ONOFF: [ 1, 1, 1 ]
 VAL: [ 0, 0, 0 ]
 FUNCT: [ 0, 0, 0 ]
- E: 41
 NUMDOF: 3
 ONOFF: [ 1, 1, 1 ]
 VAL: [ 0, 0, 0 ]
 FUNCT: [ 0, 0, 0 ]
- E: 52
 NUMDOF: 3
 ONOFF: [ 1, 1, 1 ]
 VAL: [ 0, 0, 0 ]
 FUNCT: [ 0, 0, 0 ]
```

Dirichlet boundary conditions

30.09.2025 Contact conditions 22

# Dynamic stabilization of the shoulder joint through rotator ( ) cuff muscle contraction



#### Concavity compression effect

Activation of the rotator cuff muscles centers the humeral head in the glenoid fossa. The joint space closes, and compressive forces stabilize the joint.



- → Assess effect of different (pathological) activation patterns
- → Quantify stabilizing forces and pressure distributions on the joint surfaces



# Summary



- 4C Multiphysics solves challenging real-world applications
- Extensible modular C++ software structure
- Freely available under LPGL-3.0-or-later
- https://github.com/4C-multiphysics/4C
- Join the community <sup>©</sup>
   (photo from our this year's workshop July 29<sup>th</sup> 31<sup>st</sup>, 2025)



