<u>ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ</u> ВЫСШИХ ПОРЯДКОВ

Линейные уравнения – наиболее часто встречающиеся уравнения в теоретических исследованиях реальных процессов и явлений. Хотя эти процессы, как правило, описываются нелинейными уравнениями, на первом этапе исследования стараются "линеаризовать" постановку задачи, сохранив в нелинейном уравнении только линейные члены. Это связано с тем, что линейные уравнения поддаются решению аналитическому или численному с гарантией сходимости приближенного результата к точному решению. Большинство нелинейных уравнений можно решать только приближенно, используя численные методы интегрирования, или метод последовательных приближений, когда на каждом шаге интегрирования (итерации) решается линейное уравнение с учетом влияния нелинейных членов, определяемых из решения на предыдущем шаге интегрирования. При этом не всегда удается убедиться в правдоподобности полученного приближенного результата.

Уравнение вида

$$b_0(x)y^{(n)} + b_1(x)y^{(n-1)} + \dots + b_n(x)y = g(x), \tag{1}$$

где $b_0(x) \neq 0$, $b_1(x)$, ..., $b_n(x)$, g(x) — заданные функции, называется **линейным** ДУ n-го порядка.

Функции $b_0(x)$, $b_1(x)$, ..., $b_n(x)$ называются коэффициентами уравнения, а g(x) – свободным членом уравнения.

Если $g(x) \equiv 0$, то уравнение (1) называется **линейным однородным** Д**У**.

Оба уравнения линейные, так как искомая функция y и ее производные составляют линейную комбинацию.

Разделим уравнение (1) на $b_0(x) \neq 0$ и обозначим

$$\frac{b_1(x)}{b_0(x)} = a_1(x), \quad \frac{b_2(x)}{b_0(x)} = a_2(x), \dots, \quad \frac{b_n(x)}{b_0(x)} = a_n(x), \quad \frac{g(x)}{b_0(x)} = f(x),$$

Тогда ДУ (1) примет вид

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = f(x).$$
 (2)

Линейное уравнение, как и все дифференциальные уравнения, имеет частные и общее решения. Общее решение содержит n постоянные интегрирования. Особых решений линейное уравнение не имеет.

Линейно зависимая и линейно независимая системы функций

Система функций

$$f_1(x)$$
 , $f_2(x)$, $f_3(x)$,.... $f_n(x)$

называется **линейно независимой** в некоторой области (a,b), если линейная комбинация этих функций

$$A_1 f_1(x) + A_2 f_2(x) + A_3 f_3(x) + \dots + A_n f_n(x) \equiv 0$$

при $A_1 = A_2 = A_3 = \ldots = A_n = 0$ одновременно.

В противном случае система функций является линейно зависимой.

Определителем Вронского (вронскианом) системы функций $f_1(x)$, $f_2(x)$, $f_3(x)$,.... $f_n(x)$ называют определитель вида

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & f'_3(x) & \dots & f'_n(x) \\ \dots & \dots & \dots & \dots & \dots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & f_3^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}.$$
(3)

Теорема. Необходимым и достаточным условиями линейной независимости системы функций

$$f_1(x)$$
 , $f_2(x)$, $f_3(x)$,.... $f_n(x)$

в области (a,b) является условие $W(x) \neq 0$ во всех точках этой области.

Доказательство: (проведем для системы из двух функций)

<u>Необходимость.</u> Считаем систему функций $f_1(x)$, $f_2(x)$ в области (a, b) линейно независимой, то есть $A_1f_1(x)+A_2f_2(x)\equiv 0$ возможно лишь при $A_1=A_2=0$.

Продифференцируем указанное тождество и рассмотрим систему уравнений

$$\begin{cases} A_1 f_1(x) + A_2 f_2(x) = 0 \\ A_1 f_1'(x) + A_2 f_2'(x) = 0 \end{cases}$$
(4)

Поскольку функции $f_1(x)$, $f_2(x)$ линейно независимы, система уравнений (4) имеет единственное решение, то есть $A_1=A_2=0$. Но единственное решение системы уравнений возможно лишь в случае, когда основной определитель системы равен нулю, то есть

$$\begin{vmatrix} f_1(x) & f_2(x) \\ f'_1(x) & f'_2(x) \end{vmatrix} \neq 0,$$

Поскольку этот определитель является определителем Вронского для системы функций $f_1(x)$, $f_2(x)$, необходимость доказана.

<u>Достаточность.</u> Пусть определитель Вронского системы функций $f_1(x)$, $f_2(x)$ не равен нулю ни в одной точке области (a, b). Рассмотрим ту же систему (4). Поскольку ее основной определитель совпадает с не равным нулю определителем Вронского, решение этой системы единственно и оно, очевидно, $A_1 = A_2 = 0$.

Однородное линейное дифференциальное уравнение 2-го порядка

Рассматривается уравнение

$$y'' + p(x)y' + q(x)y = 0.$$
 (5)

Теорема 1. Сумма частных решений уравнения (5) также является частным его решением.

Доказательство. Пусть $y_1(x)$ и $y_2(x)$ - частные решения уравнения (5), то есть

$$y_1^{"} + p(x)y_1^{'} + q(x)y_1 \equiv 0, \ y_2^{"} + p(x)y_2^{'} + q(x)y_2 \equiv 0.$$

Проверим, является ли решением сумма частных решений $y_1 + y_2$. Для этого рассмотрим выражение

$$(y_1 + y_2)'' + p(x)(y_1 + y_2)' + q(x)(y_1 + y_2)$$

После раскрытия скобок и перегруппировки членов получаем

$$y_1^{''}+p(x)y_1^{'}+q(x)y_1+y_2^{''}+p(x)y_2^{'}+q(x)y_2\equiv 0$$
, что доказывает теорему.

Теорема 2. Если $y_1(x)$ - частное решение уравнения (5), то $Cy_1(x)$, где C -постоянная, также является решением уравнения.

Доказательство.

$$(Cy_1)'' + p(x)(Cy_1)' + q(x)(Cy_1) = C(y_1'' + p(x)y_1' + q(x)y_1) \equiv 0.$$

Следствие. Если $y_1(x)$ и $y_2(x)$ - частные решения уравнения (5), то их линейная комбинация $C_1y_1(x)+C_2y_2(x)$, где C_1 , C_2 постоянные , также является решением уравнения (5).

Следствие доказывается с помощью теорем 1 и 2.

Теорема об общем решении однородного линейного дифференциального уравнения второго порядка.

Если $y_1(x)$ и $y_2(x)$ —линейно независимые частные решения уравнения (5), то общее его решение представляет линейную комбинацию этих решений

$$y = C_1 y_1(x) + C_2 y_2(x),$$
 (*)

где C_1 и C_2 —постоянные интегрирования.

Доказательство.

Следствие первых двух теорем показывает, что выражение (*) является решением уравнения (5), и оно содержит 2 постоянные интегрирования. Следовательно, эта функция может быть общим решением уравнения (5). Однако, это утверждение справедливо только, если $y_1(x)$ и $y_2(x)$ —линейно независимые функции. Чтобы убедиться в этом, вспомним, что любая задача Коши должна содержаться в общем решении, то есть из начальных условий задачи Коши должны определяться, причем единственным образом, конкретные значения постоянных интегрирования общего решения уравнения.

Возьмем произвольную задачу Коши для уравнения (5). Пусть x_0 —некоторая точка исследуемой области. Начальные условия задачи Коши имеют вид

$$y(x_0)=y_{00}$$
 , $y'(x_0)=y_{01}$, где y_{00} , y_{01} —заданные числа.

Пусть общее решение уравнения (5) имеет вид

$$y(x) = C_1 y_1(x) + C_2 y_2(x).$$

Определим значения постоянных интегрирования с помощью заданных начальных условий

$$y(x_0) = C_1 y_1(x_0) + C_2 y_2(x_0) = y_{00}$$

 $y'(x_0) = C_1 y_1'(x_0) + C_2 y_2'(x_0) = y_{01}$.

Получим систему уравнений

$$\begin{cases} C_1 y_1(x_0) + C_2 y_2(x_0) = y_{00}, \\ C_1 y_1'(x_0) + C_2 y_2'(x_0) = y_{01}. \end{cases}$$

Единственное решение этой системы уравнений реализуется, когда основной определитель системы не равен нулю, то есть

$$\begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{vmatrix} \neq 0.$$

Этот определитель совпадает с определителем Вронского, подсчитанным в точке x_0 . Однако, вронскиан системы функций $y_1(x)$ и $y_2(x)$ не равен нулю, если эти функции линейно независимы. Следовательно, лишь линейная независимость решений $y_1(x)$ и $y_2(x)$ уравнения (5) обеспечивает единственность определения постоянных интегрирования для произвольно заданной задачи Коши.

Примечание. Теорема справедлива для уравнения любого порядка.

Onpedenehue. Система n линейно независимых частных решение однородного линейного дифференциального уравнения n – порядка называется фундаментальной системой решений уравнения.

Очевидно, система решений уравнения фундаментальная, если ее определитель Вронского в исследуемой области не равен нулю.

Пример. Определить общее решение уравнения y'' + y = 0.

Нетрудно проверить, что sin x и cos x являются частными решениями уравнения. Подсчитаем определитель Вронского

$$\begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix} = -\sin^2 x - \cos^2 x = -1 \neq 0,$$

следовательно, система решений линейно независима. Тогда общее решение этого уравнения

$$y = C_1 \cos x + C_2 \sin x.$$

Таким образом, решение однородного линейного дифференциального уравнения сводится к отысканию линейно независимых его частных решений.

К сожалению, общих приемов нахождения частных решений уравнения (5) не существует. Имеются некоторые рекомендации, не всегда приводящие к успеху.

Например, решение ищется в виде степенной или показательной функции. Покажем это на примере.

Решим уравнение $x^2y'' + 5xy' - 12y = 0$.

Пусть $y=x^k$. Определим производные $y'=kx^{k-1}$, $y''=k(k-1)x^{k-2}$ и подставим в уравнение

$$k(k-1)x^k + 5kx^k - 12x^k \equiv 0,$$

или

$$x^k \left(k^2 + 4k - 12\right) \equiv 0.$$

Чтобы равенство выполнялось тождественно (при любых x), выражение в скобке должно равняться нулю

$$k^2 + 4k - 12 = 0$$
.

Решая квадратное уравнение, определяем $k_1 = 2$, $k_2 = -6$.

Очевидно, частными решениями уравнения являются функции $y_1 = x^2$, $y_2 = x^{-6}$.

Проверим, является ли полученная система решений линейно независимой?

$$W = \begin{vmatrix} x^2 & x^{-6} \\ 2x & -6x^{-7} \end{vmatrix} = x^{-5}(-6-2) = -8x^{-5}.$$

Определитель Вронского не равен нулю при любых x. Общее решение уравнения, следовательно, имеет вид

$$y = C_1 x^2 + C_2 x^{-6}.$$

Покажем, что для уравнения второго порядка достаточно определить только одно частное решение. Для второго решения, линейно независимого первому, можно построить формулу, о которой будет сказано ниже.

Докажем предварительно теорему Остроградского-Лиувилля. Она справедлива для уравнения любого порядка, но доказательство будем проводить для уравнения второго порядка.

Теорема. Для вронскиана решений уравнения y'' + p(x)y' + q(x)y = 0 справедлива формула

$$W(x) = W(x_0)e^{-\int_{x_0}^x p(x)dx},$$

где x_0 — некоторая точка исследуемой области.

Доказательство.

Пусть $y_1(x)$ и $y_2(x)$ — частные решения уравнения, их определитель Вронского

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix}.$$

Используя свойства определителей, вычислим производную от вронскиана

$$W'(x) = \begin{vmatrix} y'_1(x) & y'_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} + \begin{vmatrix} y_1(x) & y_2(x) \\ y''_1(x) & y''_2(x) \end{vmatrix}.$$

Первый определитель в правой части равен нулю как определитель с равными строками.

То есть

$$W'(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y''_1(x) & y''_2(x) \end{vmatrix}$$

Преобразуем, умножив элементы первой его строку на q(x) и прибавив их к соответствующим элементам второй строки

$$W'(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y''_1(x) + q(x)y_1(x) & y''_2(x) + q(x)y_2(x) \end{vmatrix}.$$

Преобразуем элементы второй строки с учетом уравнения

$$W'(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ -p(x)y'_1(x) & -p(x)y'_2(x) \end{vmatrix} = -p(x) \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix}.$$

Нетрудно заметить, что

$$W'(x) = -p(x)W(x).$$

Решаем это уравнение, разделяя переменные

$$\frac{dW}{W} = -p(x)dx \implies$$

$$\Rightarrow \int \frac{dW}{W} = -\int p(x)dx \implies$$

$$\Rightarrow \ln|W(x)| = -\int p(x)dx + \ln|C|,$$

тогда $W(x) = Ce^{-\int p(x)dx}$, здесь C – постоянная интегрирования.

Обозначим
$$\varphi(x) = -\int p(x) dx$$
, тогда $W(x) = \mathcal{C} \ e^{\varphi(x)} \ ,$

Пусть задано начальное условие $W(x_0) = W_0$, найдем C:

$$W_0=C\ e^{\varphi(x_0)}\ \Rightarrow\ C=W_0e^{-\varphi(x_0)}$$
 Значит, $W(x)=W_0e^{-\varphi(x_0)}\ e^{\varphi(x)}\ \Leftrightarrow$ $W(x)=W_0e^{\varphi(x)-\varphi(x_0)}$,

но так как $\varphi(x) - \varphi(x_0) = -\int_{x_0}^x p(x) dx$,

то отсюда следует, что

$$W(x) = W(x_0)e^{-\int_{x_0}^x p(x)dx}$$

Что и требовалось доказать.

Следствие 1. Если в одной точке некоторой области, определитель Вронского системы частных решений уравнения (5) не равен нулю $(W(x_0) \neq 0)$, то он не равен нулю во всей этой области.

Следствие очевидно, поскольку второй сомножитель полученной формулы - есть показательная функция, которая не может равняться нулю.

Следствие 2. Если известно одно частное решение $y_1(x)$ уравнения (5), линейно независимое ему второе решение определяется формулой

$$y_2(x) = y_1(x) \int \frac{e^{-\int p(x)dx}}{y_1^2(x)} dx.$$

Доказательство. Используем формулу $W(x) = Ce^{-\int p(x)dx}$ или

$$\begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = Ce^{-\int p(x)dx}.$$

Отсюда имеем

$$y_1(x)y_2(x) - y_2(x)y_1(x) = Ce^{-\int p(x)dx}$$
.

Поскольку нулевые частные решения уравнения (5) нас интересовать не могут, преобразуем полученное уравнение, поделив обе его части на $y_1^2(x)$, тогда

$$\frac{y_1(x)y_2'(x) - y_2(x)y_1'(x)}{y_1^2(x)} = \frac{Ce^{-\int p(x)dx}}{y_1^2(x)} \Rightarrow$$

$$\Rightarrow \left(\frac{y_2(x)}{y_2(x)}\right)' = \frac{Ce^{-\int p(x)dx}}{y_1^2(x)}$$

Интегрируя, получаем

$$\frac{y_2(x)}{y_1(x)} = C \int \frac{e^{-\int p(x)dx}}{y_1^2(x)} dx + C_1.$$

Нас интересует любое частное решение уравнения (5) поэтому считаем

$$C=1$$
 , $C_1=0$,

Тогда

$$y_2(x) = y_1(x) \int \frac{e^{-\int p(x)dx}}{y_1^2(x)} dx.$$

Так как $C = 1 \neq 0$, вронскиан системы решений $W(x) \neq 0$, следовательно, $y_1(x)$ и $y_2(x)$ —линейно независимы.

Следствие 2 доказано.

Неоднородное линейное дифференциальное уравнение 2- го порядка

Нахождение общего решения неоднородного дифференциального уравнения обосновывается следующей теоремой.

Теорема. Общее решение неоднородного уравнения (1)
$$y'' + p(x)y' + q(x)y = f(x)$$

представляет собой сумму общего решения соответствующего однородного уравнения (2) и любого частного решения неоднородного уравнения.

Доказательство. Пусть $y=y_{o\partial}+\widetilde{y}$, где $y_{o\partial}=C_1y_1(x)+C_2y_2(x)$ - есть общее решение однородного уравнения, \widetilde{y} — некоторая функция. Докажем, что \widetilde{y} — есть частное решение неоднородного уравнения. Для этого подставим указанную сумму в уравнение (1) и потребуем, чтобы оно превратилось в тождество: $(y_{o\partial}+\widetilde{y})''+p(x)(y_{o\partial}+\widetilde{y})'+q(x)(y_{o\partial}+\widetilde{y})\equiv f(x)$. Раскрываем скобки, пользуясь тем, что производная суммы равна сумме производных, и перегруппировываем члены уравнения

$$\frac{y''_{o\partial} + p(x)y'_{o\partial} + q(x)y_{o\partial}}{y''_{o\partial} + p(x)y'_{o\partial} + q(x)y_{o\partial}} + \widetilde{y}'' + p(x)\widetilde{y}' + q(x)\widetilde{y} \equiv f(x).$$

Сумма подчеркнутых членов равна нулю, так как $y_{o\partial}$ — решение уравнения y''+p(x)y'+q(x)y=0. Тогда $\widetilde{y}''+p(x)\widetilde{y}'+q(x)\widetilde{y}\equiv f(x)$, то есть \widetilde{y} — частное решение неоднородного уравнения (1). Теорема доказана.

Метод вариации произвольных постоянных

Этот метод позволяет определить частное решение неоднородного уравнения, если известно общее решение соответствующего ему однородного уравнения. Здесь будет рассматриваться только уравнение второго порядка.

Теорема. Если общее решение однородного уравнения y'' + p(x)y' + q(x)y = 0 известно и имеет вид $y_{oo} = C_1 y_1(x) + C_2 y_2(x)$, частное решение неоднородного уравнения y'' + p(x)y' + q(x)y = f(x) определяется формулой $y_u = A(x)y_1(x) + B(x)y_2(x)$, причем производные функций A(x) и B(x) удовлетворяют системе уравнений

$$\begin{cases} A'(x)y_1(x) + B'(x)y_2(x) = 0 \\ A'(x)y_1'(x) + B'(x)y_2'(x) = f(x) \end{cases}$$

Доказательство. Считается, что общее решение однородного уравнения, соответствующего рассматриваемому неоднородному уравнению, известно и имеет вид $y_{od} = C_1 y_1(x) + C_2 y_2(x)$, где $y_1(x)$, $y_2(x)$ -линейно независимые частные решения однородного уравнения. Частное решение неоднородного уравнения задается в виде общего решения однородного уравнения, но вместо постоянных интегрирования

вводятся произвольные функции A(x), B(x), то есть $y_u = A(x)y_1(x) + B(x)y_2(x)$. Требуется с помощью подстановки в уравнение определить значения этих функций. Вычислим

$$y'_y = A'(x)y_1(x) + A(x)y'_1(x) + B'(x)y_2(x) + B(x)y'_2(x).$$

Пользуясь тем, что функции A(x), B(x) пока произвольные, требуем, чтобы

$$A'(x)y_1(x) + B'(x)y_2(x) = 0$$
,

тогда $y_u' = A(x)y_1'(x) + B(x)y_2'(x)$. Вычисляем вторую производную $y_u'' = A'(x)y_1'(x) + A(x)y_1''(x) + B'(x)y_2'(x) + B(x)y_2''(x)$ и подставляем полученные выражения в уравнение (1), требуя, чтобы уравнение выполнялось тождественно $A'(x)y_1'(x) + A(x)y_1''(x) + B'(x)y_2'(x) + B(x)y_2''(x) + p(x)[A(x)y_1'(x) + B(x)y_2'(x)] +$

$$+ q(x)[A(x)y_1(x) + B(x)y_2(x) + B(x)y_2(x) + p(x)[A(x)y_1(x) + q(x)[A(x)y_1(x) + B(x)y_2(x)] = f(x).$$

Осуществляем перегруппировку членов

$$A(x)[y_1''(x) + p(x)y_1'(x) + q(x)y_1(x)] + B(x)[y_2''(x) + p(x)y_2'(x) + q(x)y_2(x)] + A'(x)y_1'(x) + B'(x)y_2'(x) \equiv f(x).$$

Так как $y_1(x)$ и $y_2(x)$ являются частными решениями однородного уравнения, выражения в квадратных скобках равны нулю, и уравнение тождественно выполняется при условии $A'(x)y_1'(x) + B'(x)y_2'(x) = f(x)$.

Таким образом, имеются два условия, при которых $y = A(x)y_1(x) + B(x)y_2(x)$ является частным решением, они составляют систему

$$\begin{cases} A'(x)y_1(x) + B'(x)y_2(x) = 0 \\ A'(x)y_1'(x) + B'(x)y_2'(x) = f(x). \end{cases}$$

В результате решения этой системы уравнений определяются A'(x), B'(x), затем интегрированием устанавливаются A(x), B(x). Получающиеся в результате интегрирования постоянные можно считать равными нулю, поскольку достаточно знать любое частное решение неоднородного уравнения.

Примечание. Доказанная теорема может быть использована при определении частного решения неоднородного уравнения любого порядка.

Пример. Определить общее решение уравнения y''+y=tgx. Однородное уравнение y''+y=0, соответствующее этому неоднородному решалось ранее, его общее решение равно $y_{o\partial}=C_1\cos x+C_2\sin x$. Частное решение неоднородного уравнения ищется в виде $y_u=A(x)\cos x+B(x)\sin x$. В соответствии с теоремой необходимо решать систему

$$\begin{cases} A'(x)\cos x + B'(x)\sin x = 0\\ -A'(x)\sin x + B'(x)\cos x = tgx \end{cases}$$

Из первого уравнения получаем -A'(x) = B'(x)tgx. Тогда из второго имеем

$$B'(x)(tgx\sin x + \cos x) = tgx \implies \frac{1}{\cos x}B'(x) = tgx \implies B'(x) = \sin x \implies B(x) = -\cos x.$$

Из первого уравнения определяем $A'(x) = -B'(x)tgx = -tgx\sin x$. Тогда

$$A(x) = -\int \frac{\sin^2 x}{\cos x} dx = \begin{cases} t = \sin x \\ dt = \cos x dx \end{cases} = -\int \frac{(t^2 - 1 + 1)dt}{1 - t^2} = \sin x - \frac{1}{2} \ln \left| \frac{1 + \sin x}{1 - \sin x} \right|.$$

B итоге
$$y_{_{\!\mathit{u}}} = \left(\sin x + \frac{1}{2}\ln\left|\frac{1-\sin x}{1+\sin x}\right|\right)\cos x - \cos x\sin x \,. \ \text{После сокращения}$$

$$y_{_{\!\mathit{u}}} = \frac{1}{2}\ln\left|\frac{1-\sin x}{1+\sin x}\right|\cos x \,. \ \text{Ответ} \quad y = C_1\cos x + C_2\sin x + \frac{1}{2}\ln\left|\frac{1-\sin x}{1+\sin x}\right|\cos x \,.$$

Проверка.

Линейные дифференциальные уравнения с постоянными коэффициентами

Рассматривается частный случай линейных дифференциальных уравнений – уравнения с постоянными коэффициентами, неоднородное

$$y'' + ay' + by = f(x) \tag{1}$$

и однородное

$$y'' + ay' + by = 0. (2)$$

Здесь коэффициенты a и b — постоянны. Вообще говоря, a и b могут быть комплексными, но мы будем считать их действительными числами. Это связано с тем, что дифференциальные уравнения в дальнейшем предполагается применять при исследовании реально происходящих процессов и явлений, а они описываются функциями действительной переменной.

Естественно, к уравнениям (1) и (2) применима вся вышеизложенная теория линейных дифференциальных уравнений.

Однородное линейное уравнение

Ищем частные решения уравнения в виде $y = e^{kx}$. Подставляя эту функцию в уравнение (2), выясняем, что она может обратить его в тождество. В самом деле, в результате подстановки в уравнение имеем $e^{kx}(k^2 + ak + b) \equiv 0$. Это возможно при условии $k^2 + ak + b = 0$. Данное уравнение называют характеристическим уравнением дифференциального уравнения, поскольку от корней этого уравнения зависит вид общего решения уравнения (2).

Рассмотрим три возможных варианта корней.

І. Корни действительные и различные, если дискриминант квадратного уравне-

ния
$$a^2-4b>0$$
. Тогда $k_1=\frac{-a+\sqrt{a^2-4b}}{2}$, $k_2=\frac{-a-\sqrt{a^2-4b}}{2}$. В этом случае

частных решений уравнения (2) два e^{k_1x} и e^{k_2x} . Выясним, являются ли они линейно независимыми, вычислив вронскиан

$$W = \begin{vmatrix} e^{k_1 x} & e^{k_2 x} \\ k_1 e^{k_1 x} & k_2 e^{k_2 x} \end{vmatrix} = (k_2 - k_1) e^{k_1 x} e^{k_2 x} \neq 0.$$

Тогда общее решение уравнения (2) для действительных и различных корней имеет вид

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x},$$

где C_1 , C_2 – постоянные интегрирования.

II. Комплексные корни характеристического уравнения, когда $a^2-4b<0$. Тогда в случае действительных коэффициентов дифференциального уравнения a и b

$$k_{1,2} = \frac{-a \pm \sqrt{a^2 - 4b}}{2} = \frac{1}{2} \left(-a \pm \sqrt{4b - a^2} \right) i^2 = \frac{1}{2} \left(-a \pm i \sqrt{4b - a^2} \right),$$

или
$$k_{1,2}=\alpha\pm i\beta$$
 , где $\alpha=-\frac{a}{2}\geq 0$, $\beta=\frac{1}{2}\sqrt{4b-a^2}>0$, i —мнимая единица.

Частные решения уравнения (2) также имеют вид e^{k_1x} и e^{k_2x} , но k_1 , k_2 —комплексные числа. Подсчитаем вронскиан

$$W = (k_2 - k_1)e^{(k_1 + k_2)x} = -2i\beta e^{2\alpha x} \neq 0.$$

Общее решение уравнения (2) может быть записано в следующей форме

$$y = \tilde{C}_1 e^{(\alpha + i\beta)x} + \tilde{C}_2 e^{(\alpha - i\beta)x}$$
.

Решение уравнения, следовательно, представлено в комплексной форме, то есть через функции комплексного переменного. Это не всегда удобно при решении задач, связанных с реальными событиями, так как конечный результат должен быть

представлен в виде функции действительной переменной. Построим другой вариант общего решения уравнения (2).

Лемма. Если комплексная функция u(x)+iv(x) действительного переменного x является решением дифференциального уравнения (2), то ее действительная и мнимая части также являются решением этого уравнения.

Доказательство. Пусть

$$(u(x)+iv(x))''+a(u(x)+iv(x))'+b(u(x)+iv(x)) \equiv 0,$$

тогда

$$u''(x) + au'(x) + bu(x) + i[v''(x) + av'(x) + bv(x)] \equiv 0.$$

Комплексное число равно нулю только когда его действительная и мнимая части равны нулю. Отсюда следует

$$u''(x) + au'(x) + bu(x) \equiv 0$$
 $v''(x) + av'(x) + bv(x) \equiv 0$.

Лемма доказана.

Поскольку функции

$$e^{(\alpha+i\beta)x} = e^{\alpha x} (\cos \beta x + i \sin \beta x) \quad e^{(\alpha-i\beta)x} = e^{\alpha x} (\cos \beta x - i \sin \beta x)$$

являются частными решениями уравнения (2), в соответствии с леммой их действительная $e^{\alpha x}\cos\beta x$ и мнимая $e^{\alpha x}\sin\beta x$ части также являются частными решениями уравнения (2).

Проверим их линейную независимость

$$W = \begin{vmatrix} e^{\alpha x} \cos \beta x & e^{\alpha x} \sin \beta x \\ e^{\alpha x} (\alpha \cos \beta x - \beta \sin \beta x) & e^{\alpha x} (\alpha \sin \beta x + \beta \cos \beta x) \end{vmatrix} =$$

$$= e^{2\alpha x} \left[\alpha \sin \beta x \cos \beta x + \beta \cos^2 \beta x - \alpha \cos \beta x \sin \beta x + \beta \sin^2 \beta x \right] = \beta e^{2\alpha x} \neq 0.$$

Теперь для комплексно сопряженных корней характеристического уравнения можно записать другой вид общего решения уравнения (2)

$$y = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right)$$

Мнимая единица в этом решении отсутствует, и его можно напрямую использовать при решении задач, связанных с реально происходящими процессами и явлениями.

Примечание. Современные компьютерные программы позволяют использовать в качестве решения оба варианта общего решения, при решении задач "вручную" предпочтительнее второй вариант.

III. Корни характеристического уравнения действительные и одинаковые $(a^2-4b=0)$ и равны k. Естественно одно из частных решений e^{kx} . Определим второе, линейно независимое с первым, используя доказанную ранее формулу

$$y_2(x) = y_1(x) \int \frac{e^{-\int p(x)dx}}{y_1^2(x)} dx$$
.

Для рассматриваемого случая она примет вид

$$y_2(x) = e^{kx} \int \frac{e^{-\int a \, dx}}{e^{2kx}} dx = e^{kx} \int \frac{e^{-a \, x}}{e^{2kx}} dx = e^{kx} \int dx = xe^{kx}.$$

При вычислении интеграла учитывалось, что в квадратном уравнении сумма его корней (2k) равна (-a).

Итак, в случае действительных кратных (одинаковых) корней

$$y = e^{kx} (C_1 + C_2 x).$$

Примеры. Определить общие решения однородных дифференциальных уравнений.

1) y'' + 6y' - 40y = 0. Составим характеристическое уравнение $k^2 + 6k - 40 = 0$. Его корни

$$k_1 = \frac{1}{2} \left(-6 + \sqrt{36 + 160} \right) = 4, \quad k_2 = \frac{1}{2} \left(-6 - \sqrt{36 + 160} \right) = -10.$$

Корни действительные, различные. Общее решение уравнения

$$y = C_1 e^{4x} + C_2 e^{-10x}.$$

2) y'' - 4y' + 4y = 0. Характеристическое уравнение $k^2 - 4k + 4 = 0$, его корни $k_1 = k_2 = 2$. Общее решение при одинаковых корнях $y = e^{2x} (C_1 + C_2 x)$.

3) y''-6y'+13y=0. Характеристическое уравнение $k^2-6k+13=0$, его корни $k_{1,2}=\frac{1}{2}\Big(6\pm\sqrt{36-52}\Big)=3\pm2i$. Общее решение дифференциального уравнения $y=e^{3x}\Big(C_1\cos2x+C_2\sin2x\Big)$.

4) y''+16y=0. Характеристическое уравнение $k^2+16=0$, его корни $k^2=-16$, $k_{1,2}=\pm 4i$. Общее решение дифференциального уравнения

$$y = C_1 \cos 4x + C_2 \sin 4x.$$

Как уже известно,

Теорема. Общее решение неоднородного уравнения

$$y'' + a y' + b y = f(x)$$

представляет собой сумму общего решения соответствующего однородного уравнения и любого частного решения неоднородного уравнения.

Для решения такой задачи можно использовать изложенный выше метод вариации произвольных постоянных.

Пример определения общего решения уравнения с использование метода вариации произвольных постоянных. Дано

$$y'' + 4y' + 4y = \frac{e^{-2x}}{x^3}.$$

Запишем характеристическое уравнение для однородного уравнения $k^2+4k+4=0$, его корни $k_{1,\,2}=-2$. Общее решение

$$y_{o\partial} = e^{-2x} (C_1 + C_2 x) = C_1 e^{-2x} + C_2 x e^{-2x}.$$

Частное решение неоднородного уравнения ищем в виде $y_{y} = A(x)e^{-2x} + B(x)xe^{-2x}$. Система уравнений относительно производных искомых функций записывается следующим образом

$$\begin{cases} A'(x)e^{-2x} + B'(x)xe^{-2x} = 0\\ -2A'(x)e^{-2x} + B'(x)(1-2x)e^{-2x} = \frac{e^{-2x}}{x^3} \end{cases}$$

или

$$\begin{cases} A'(x) + B'(x)x = 0 \\ -2A'(x) + B'(x)(1 - 2x) = \frac{1}{x^3}. \end{cases}$$

Из первого уравнения A'(x) = -B'(x)x. Тогда из второго следует

$$2B'(x)x + B'(x)(1 - 2x) = \frac{1}{x^3} \implies B'(x) = \frac{1}{x^3} \implies B(x) = -\frac{1}{2x^2}.$$
$$A'(x) = -\frac{1}{x^2} \implies A(x) = \frac{1}{x}.$$

Итак,
$$y_u = \frac{1}{2x} (2e^{-2x} - e^{-2x}) = \frac{1}{2x} e^{-2x}$$
.

Otbet
$$y = e^{-2x} \left(C_1 + C_2 x + \frac{1}{2x} \right)$$
.

Однако для некоторых видов правой части уравнения f(x) оказывается возможным частное решение неоднородного уравнения также определить без интегрирования.

Метод неопределенных коэффициентов

Специальные виды правой части уравнения f(x), для которых можно применить метод неопределенных коэффициентов:

I.
$$f(x) = P_n(x) \cdot e^{\alpha x},$$

где $\alpha \in \mathbb{R}$, $P_n(x)$ – многочлен n – й степени, причем многочлен может быть неполным, то есть содержать не все степени x от 0 до n.

II.
$$f(x) = e^{\alpha x} (P_n(x) \cdot \cos \beta x + Q_m(x) \cdot \sin \beta x)$$

где $P_n(x)$, $Q_m(x)$ —многочлены n -й и m -й степеней.

Суть метода неопределенных коэффициентов:

По виду правой части ДУ записывают ожидаемую форму частного решения с неопределенными коэффициентами, затем подставляют ее в данное ДУ и из полученного тождества находят значения коэффициентов.

Случай 1.
$$f(x) = P_n(x) \cdot e^{\alpha x}$$
,

то есть ДУ имеет вид

$$y'' + a y' + b y = P_n(x) \cdot e^{\alpha x},$$

В этом случае частное решение ищем в виде:

$$\tilde{y} = x^r \cdot Q_n(x) \cdot e^{\alpha x},$$

где r - число кратности \propto как корня характеристического уравнения

$$k^2 + a k + b = 0$$

(т.е. r — число, показывающее, сколько раз \propto является корнем уравнения $k^2 + a \ k + b = 0$),

а $Q_n(x) = A_0 x^n + A_1 x^{n-1} + \cdots A_n$ – многочлен степени n, записанный с неопределенными коэффициентами A_i , $i=0,1,2,\ldots,n$.

Примеры. Определить частные решения неоднородных уравнений

1.
$$y'' - 2y' + y = x^3 + 8$$
.

Запишем характеристическое уравнение и решим его:

$$k^2 - 2k + 1 = 0 \implies k_1 = k_2 = 1.$$

Правая част ДУ имеет вид:

$$f(x) = x^3 + 8$$
 или $f(x) = (x^3 + 8)e^{0x}$.

Следовательно, $\propto = 0$.

Частное решение ищем в виде:

$$\tilde{y} = x^r (Ax^3 + Bx^2 + Cx + D) \cdot e^{0x}$$

Так как $\propto = 0$, а $k_1 = k_2 = 1 \neq 0$, то r = 0. Значит,

$$\tilde{y} = Ax^3 + Bx^2 + Cx + D.$$

Подставляем его в уравнение

$$\overline{6Ax} + 2B - 2\left(\underline{3Ax^2} + \overline{2Bx} + C\right) + \underline{Ax^3} + \underline{Bx^2} + \overline{Cx} + D = \underline{x^3} + 8.$$

Приравнивая коэффициенты при одинаковых степенях x в левой и правой частях тождества, приходим к системе уравнений

$$\begin{cases}
A=1 \\
-6A+B=0 \\
6A-4B+C=0 \\
2B-2C+D=8
\end{cases}$$

Из первого уравнения A=1, из второго B=6, из третьего C=-6A+4B=18, из последнего уравнения D=8-2B+2C=8-12+36=32.

Итак, частное решение неоднородного уравнения имеет вид

$$y = x^3 + 6x^2 + 18x + 32$$
.

Проверка.

$$y'' - 2y' + y = 6x + 12 - 2(3x^2 + 12x + 18) + x^3 + 6x^2 + 18x + 32 =$$

$$= x^3 + (-6 + 6)x^2 + (6 - 24 + 18)x + 12 - 36 + 32 = x^3 + 8.$$

$$2. y'' - 2y' = 12x^2 - 5.$$

Запишем характеристическое уравнение и решим его:

$$k^2 - 2k = 0 \implies k_1 = 0, k_2 = 2.$$

Правая част ДУ имеет вид:

$$f(x) = 12x^2 - 5$$
 или $f(x) = (12x^2 - 5)e^{0x}$.

Следовательно, $\propto = 0$.

Частное решение ищем в виде:

$$\tilde{y} = x^r (Ax^2 + Bx + C) \cdot e^{0x}$$

Так как $\propto = 0$, а $k_1 = 0$, $k_2 = 1 \neq 0$, то r = 1.

Значит,

$$y = x(Ax^2 + Bx + C) = Ax^3 + Bx^2 + Cx$$
.

Подставляем в уравнение

$$6Ax + 2B - 2(3Ax^2 + 2Bx + C) \equiv 12x^2 - 5$$

отсюда имеем

$$\begin{cases}
-6A = 12 \\
6A - 4B = 0 \\
2B - 2C = -5
\end{cases}$$

Итак,
$$A = -2$$
, $B = -3$, $C = B + \frac{5}{2} = -\frac{1}{2}$.

Частное решение: $y = -2x^3 - 3x^2 - \frac{1}{2}x$.

Проверка.
$$-12x-6-2\left(-6x^2-6x-\frac{1}{2}\right)=12x^2-5$$
.

$$3. y'' + 3y' + 4y = 28e^{2x}.$$

Составим характеристическое уравнение соответствующего однородного уравнения

$$k^2 + 3k + 4 = 0$$
.

Оно не имеет действительных корней.

Правая част ДУ имеет вид:

$$f(x) = 28e^{2x} ,$$

следовательно, \propto = 2.

Частное решение ищем в виде:

$$\tilde{y} = x^r \cdot A \cdot e^{2x}$$

Так как $\propto = 2$, а k_1 и k_2 – комплексные корни, то r = 0.

Тогда частное решение неоднородного уравнения ищется в виде

$$y=Ae^{2x}.$$

Подставляем в уравнение

$$Ae^{2x}(4+6+4) \equiv 28e^{2x}$$

откуда $y = 2e^{2x}$.

4.
$$y'' - 3y' + 2y = 4e^x$$
.

Составим характеристическое уравнение соответствующего однородного уравнения

$$k^2 - 3k + 2 = 0 \Rightarrow k_1 = 1, k_2 = 2.$$

Правая част ДУ имеет вид:

$$f(x) = 4e^x ,$$

следовательно, \propto = 1.

Частное решение ищем в виде:

$$\tilde{y} = x^r \cdot A \cdot e^{2x}$$

Так как $\propto = 1$, а $k_1 = 1$ и $k_2 = 2$, то r = 1.

Значит, частное решение неоднородного уравнения должно иметь вид $\tilde{y} = Axe^x$.

Вычислим производные $y' = A(1+x)e^x$, $y'' = A(2+x)e^x$.

Подставляя в уравнение, получаем

$$Ae^{x}[2+x-3(1+x)+2x] \equiv 4e^{x}$$
, и $A=-4$.

Частное решение $y = -4xe^x$.

Проверка. Поскольку $y' = -4(1+x)e^x$, $y'' = -4(2+x)e^x$, то $y'' - 3y' + 2y = -4e^x [2+x-3-3x+2x] = 4e^x.$

Случай 2.
$$f(x) = e^{\alpha x} (P_n(x) \cdot \cos \beta x + Q_m(x) \cdot \sin \beta x),$$

то есть ДУ имеет вид

$$y'' + a y' + b y = e^{\alpha x} (P_n(x) \cdot \cos \beta x + Q_m(x) \cdot \sin \beta x),$$

В этом случае частное решение ищем в виде:

$$\tilde{y} = x^r \cdot e^{\alpha x} (M_l(x) \cdot \cos \beta x + N_l(x) \cdot \sin \beta x),$$

где r - число кратности $\propto +\beta i$ как корня характеристического уравнения $k^2+a\;k+b=0$

(т.е. r — число, показывающее, сколько раз $\propto +\beta i$ является корнем уравнения $k^2 + a k + b = 0$).

а $M_l(x)$, $N_l(x)$ – многочлены степени l, записанные с неопределенными коэффициентами, l – наивысшая степень многочленов $P_n(x)$ и $Q_m(x)$, т.е. $l = \max{(n,m)}$.

Замечание. Форма частного решения сохраняется и в случаях, когда

$$P_n(x) \equiv 0$$
 или $Q_m(x) \equiv 0$.

Примеры.

1.
$$y'' - 6y' + 13y = -3\cos 2x$$
.

Составим характеристическое уравнение соответствующего однородного уравнения $k^2-6k+13=0 \Rightarrow k_{1,2}=3\pm 2i.$

Правая част ДУ имеет вид:

$$f(x) = -3\cos 2x ,$$

следовательно, $\alpha = 0$, $\beta = 2$.

Частное решение ищем в виде:

$$\tilde{y} = x^r \cdot e^{0x} (A \cdot \cos 2x + B \cdot \sin 2x),$$

Так как $\alpha = 0$, $\beta = 2$, а $k_{1,2} = 3 \pm 2i$, то r = 0.

Значит, частное решение неоднородного уравнения должно иметь вид

$$\tilde{y} = A \cos 2x + B \sin 2x$$
.

Подставляя в уравнение, имеем

$$\frac{-4A \cos 2x - 4B \sin 2x - 6(-2A \sin 2x + \underline{2B \cos 2x}) + \\ +13(\underline{A \cos 2x} + B \sin 2x) \equiv \underline{-3 \cos 2x}.$$

Приравнивая коэффициенты при $\cos 2x$ и $\sin 2x$, получаем

$$\begin{vmatrix} \cos 2x \\ \sin 2x \end{vmatrix} \begin{vmatrix} 9A - 12B = -3 \\ 12A + 9B = 0 \end{vmatrix}$$

Из системы определяем $A = -\frac{3}{25}$, $B = \frac{4}{25}$,

Тогда
$$y = \frac{1}{25} (4 \sin 2x - 3 \cos 2x).$$

Проверка.

$$y'' - 6y' + 13y =$$

$$= \frac{1}{25} \left[-16\sin 2x + 12\cos 2x - 6(8\cos 2x + 6\sin 2x) + 13(4\sin 2x - 3\cos 2x) \right] =$$

$$= \frac{1}{25} \left[(-16 - 36 + 52)\sin 2x + (12 - 48 - 39)\cos 2x \right] = -3\cos 2x.$$

2.
$$y'' + 9y = 2\cos 3x - 4\sin 3x$$

Составим характеристическое уравнение соответствующего однородного уравнения $k^2+9=0 \Rightarrow k_{1,2}=\pm 3i.$

Правая част ДУ имеет вид:

$$f(x) = 2\cos 3x - 4\sin 3x \;\; ,$$
 следовательно, $\alpha = 0$, $\beta = 3$.

Частное решение ищем в виде:

$$\tilde{y} = x^r \cdot e^{0x} (A \cdot \cos 3x + B \cdot \sin 3x),$$

Так как $\alpha = 0$, $\beta = 3$, а $k_{1,2} = \pm 3i$, то r = 1.

Значит, частное решение неоднородного уравнения должно иметь вид

$$\tilde{y} = x(A \cos 3x + B \sin 3x).$$

Вычислим

$$y' = [A \cos 3x + B \sin 3x + 3x(-A \sin 3x + B \cos 3x)],$$

$$y'' = -3A \sin 3x + 3B \cos 3x - 3A \sin 3x + 3B \cos 3x - 9x(A \cos 3x + B \sin 3x).$$

Подставляем в уравнение

$$-3A \sin 3x + 3B \cos 3x - 3A \sin 3x + 3B \cos 3x - 9x(A \cos 3x + B \sin 3x) + 9x(A \cos 3x + B \sin 3x) \equiv 2\cos 3x - 4\sin 3x$$

Подчеркнутые члены взаимно уничтожаются, после чего

$$-3A \sin 3x + 3B \cos 3x - 3A \sin 3x + 3B \cos 3x \equiv 2 \cos 3x - 4 \sin 3x$$
, или

$$-6A \sin 3x + 6B \cos 3x \equiv 2 \cos 3x - 4 \sin 3x$$

откуда следует $A = \frac{2}{3}$, $B = \frac{1}{3}$.

Тогда
$$y = \frac{1}{3}x(2\cos 3x + \sin 3x).$$

Примечание. Метод неопределенных коэффициентов применим сумм рассмотренных выше функций, т.е.

Если
$$y'' + ay' + by = e^{\varphi x}R_n(x) + e^{\alpha x}(P_n(x) \cdot cos\beta x + Q_m(x) \cdot sin\beta x),$$

то используется, так называемый принцип суперпозиции – отдельно определяются частные решения для

$$f1(x) = e^{\varphi x}R_p(x)$$
 и $f2(x) = e^{\alpha x}(P_n(x) \cdot \cos\beta x + Q_m(x) \cdot \sin\beta x)$

и в качестве частного решения уравнения берется их сумма.