الحسابيات

\mathbb{Z} قابلية القسمة في -I

أنشطة

nنشاط1 ليكن n عددا صحيحا طبيعيا فرديا

n يقسم n^2-1 لكل عدد صحيح الطبيعي فردي الم

الحل

n=2k+1 حيث \mathbb{N} من k عدد صحيح طبيعي فردي أي يوجد

$$n^2 - 1 = 4k(k+1)$$
 ومنه $n^2 - 1 = (n-1)(n+1)$ لدينا

وحيث أن k(k+1) عدد زوجي (لأنه جداء عددين متتاليين)

 $n^2-1=8k$ ' فانه يوجد k من \mathbb{N} حيث k(k+1)=2k و بالتالي فانه

 n^2-1 إذن 8 يقسم

نشاط2

على 3 العدد n^3-n يقبل القسمة على 3 بين أن لكل

الحا

$$n^3 - n = n(n-1)(n+1)$$
 لدينا

3k+2 و منه يوجد $k \in \mathbb{N}$ حيث $k \in \mathbb{N}$ أو n=3k+1

کن n من IN

 $n^3 - n = (3k+1)(3k)(3k+2)$ أو $n^3 - n = 3k(3k-1)(3k+1)$

 $k' \in \mathbb{N}$ حيث $n^3 - n = 3k'$ و في جميع هذه الحالات

اذن $n^3 - n$ يقبل القسمة على 3

نشاط3

أنشر $\left(10^6-1\right)^3$ غلى 5 أنشر $\left(10^6-1\right)^3$ غلى 5

نشاط4

حدد الأرقام x و y بحيث العدد الصحيح الطبيعي x 11x1y قابل للقسمة على28

1- تعریف

 \mathbb{Z} و b من a

a=kb نقول ًا في $\mathbb Z$ حيث b/a إذا وجد b في عسم a=kb

 $(a;b) \in \mathbb{Z}^2$ $b/a \Leftrightarrow \exists k \in \mathbb{Z}$ a = kb

2- ملاحظات

b إننا نقول إنb قاسـم لـ a أوa مضاعف ل- *

 $b\cdot\mathbb{Z}=ig\{k\cdot b/k\in\mathbb{Z}\}$ مجموعة مضاعفات العدد b هي المجموعة $b\in\mathbb{Z}$ -*

 $b/a \Rightarrow |b| \le |a|$: $b \in \mathbb{Z}$ $a \in \mathbb{Z}^*$ ليكن -*

" b/a" خاصيات العلاقةa" -3

نقول إن العلاقة" b/a " نقول إن العكاسية $orall a \in \mathbb{Z}$

نقول إن العلاقة " b/a "متعدية $orall (a;b;c)\in \mathbb{Z}^3$ $\begin{cases} b/a \\ a/c \end{cases} \Rightarrow b/c$ -*

 $\forall (a;b;c) \in \mathbb{Z}^3 \quad \begin{cases} b/a \\ a/b \end{cases} \Rightarrow |a| = |b| -*$

$$\mathbb N$$
 نقول إن العلاقة" b/a " تخالفية في $orall (a;b;c)\in \mathbb N^3$ " تخالفية في $a=b$

 $orall (a;b) \in \mathbb{Z}^2$ $b/a \Leftrightarrow a \cdot \mathbb{Z} \subset b \cdot \mathbb{Z}$ بين أن -1

$$\forall (a; x_1; x_2; y_1; y_2) \in \mathbb{Z}^5$$
 $a/(x_1 - y_1)$ \land $a/(x_2 - y_2) \Leftrightarrow a/(x_1 x_2 - y_1 y_2)$ -2

 \mathbb{Z} القسمة الاقلىدية في II

 \mathbb{N} القسمة الاقليدية في 1

a
eq b مبرهنة a
eq b من \mathbb{N} حيث a
eq b

 $0 \leq r \prec b$ حيث a = bq + r حيث $\left(q; r\right)$ من من وجد زوج وحيد

اصطلاحات

العملية التي تمكننا من تحديد (q;r) بحيث a=bq+r حيث $0\leq r\prec b$ تسمى القسمة الاقليدية لـ \mathbb{N} علی b فی a

الباقي. q الخارج و r الباقي. المقسوم و العدد q الباقي.

 \mathbb{Z} - القسمة الاقليدية في \mathbb{Z}

مىرھنة

a
eq b لیکن a من $\mathbb Z$ و b في

 $0 \le r \prec b$ حيث a = bq + r عن $\mathbb{Z} \times \mathbb{N}$ من (q;r) عن من وجد زوج وحيد

اصطلاحات

العملية التي تمكننا من تحديد (q;r) من $\mathbb{Z} imes \mathbb{N}$ بحيث a = bq + r حيث $0 \le r \prec b$ تسمى \mathbb{Z} القسمة الاقليدية لـ aعلى b

العدد q العدد q العدد b العدد b العدد a الباقي

تمرين

 q^2 حدد الأعداد الصحيحة النسبية x بحيث يكون للقسمة الاقليدية لـx على 7 خارج q و باقي

بين إذا كان للقسمة الاقليدية لـ aعلى b و القسمة الاقليدية لـ 'aعلى b نفس الخارج a و كان b فان q خارج القسمة الاقليدية لـ $a \prec x \prec a$

- الأعداد الأولية

1- تعاریف

أ- القواسم الفعلية لعدد صحيح نسبي

تعريف

 $a \in \mathbb{Z}$ ليكن

 $d \notin \{-1;1;-a;a\}$ نقول إن العدد d قاسم فعلي للعدد a إذا و فقط إذا كان d يقسم d

أمثلة

*- القواسم الفعلية للعدد 6 هي 2 و 2- و 3 و 3-

العدد 7 لا يقبل قواسم فعلية $D_7 = \{1; -1; 7; -7\}$ العدد 7 ال

ں- الأعداد الأولية

تعريف

 $a \in \mathbb{Z}$ لىكن

نقول إن العدد a أولي إذا و فقط إذا كان a يخالف 1 و 1- و ليس له قواسم فعلية a

 $|a| \neq 1$ و $D_a = \{1; -1; a; -a\}$ و $a \neq 1$

نرمز لمجموعة الأعداد الأولية بـ P

2- خاصیات

 $m\succ p$ لدينا m=p!+1 لنعتبر p^+ لدينا لنفترض أن p^+ لدينا $q \leq p$ و منه $m \notin P^+$ أي m ليس أوليا و بالتالي للعدد m قاسم أولي $q \in P^+$ و (p! يستلزم q يقسم q! لأن q! أحد عوامل $q \le p$ لدينا q/m و q/p! ومن q/(m-p!) أي q/m وهذا يتناقض مع كون q أولي ومنه P^+ غير منتهية إذن P غير منتهية -3 طريقة عملية لتحديد الأعداد الأولية $n \ge 2$ و $n \in \mathbb{N}$ ليكن $p^2 \le n$ إذا كان n غير أولي فانه يوجد عدد أولي موجب p يقسم n و البرهان لَيكن $n \in \mathbb{N}$ و $n \geq 2$ و n غير أولي و ليكن p أصغر قاسم فعلي موجب لـ n إذن p أولي ومنه يوجد n = pk من \mathbb{N}^* حیث k $p \le k$ بما أن $p \prec n$ فان $n \prec k \prec k$ إذن k قاسم فعلي موجب للعدد n و بالتالي $p^2 \le pk = n$ إذن ملاحظة $n \ge 2$ و $n \in \mathbb{N}$ ليكن $p^2 \leq n$ لتأكد من أن n هل أولي أم لا. نرى هل يقبل القسمة على أحد الأعداد الأولية فإذا كان يقبل القسمة على أحدهم فان n غير أولى \spadesuit و إذا كان لا يقبل القسمة على أي واحد مهن فان n عدد أولي \star ($p^2 > n$ عملیا نتوقف عندما تکون) العدد 179 لا يقبل القسمة على أي عدد من الأعداد الأولية التالية 2 و 3 و 5 و 7 و 11 و 13 $17^2 = 289 \quad ; \quad 13^2 = 169$ 4- خاصیات *- إذا كان عدد أولي يقسم جداء أعداد صحيحة نسبية فانه يقسم أحد عوامل هذا الجداء لتكن p_1 و p_2 عددا أوليا أعداد أولية موجبة و p_2 عددا أوليا p_1 $p/p_1 \times p_2 \times \dots \times p_n \Rightarrow \exists i \in \{1, 2, \dots, n\} \quad p = p_i$ 5- التفكيك الى جداء من عوامل أولية کل عدد صحیح نسبی n غیر منعدم ومخالف لـ1 و 1- یمکن کتابته بکیفیة وحیدة علی شکل $lpha_1$ و مختلفة مثنى مثنى و p_1 عداد أولية مختلفة مثنى مثنى و $n=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes \dots imes p_k^{lpha_k}$ $arepsilon=\pm 1$ و $lpha_n$ أعداد صحيحة طبيعية غير منعدمة و ملاحظة عندما نكتب n على شـكل $p_k^{lpha_k} \times p_1^{lpha_2} \times \dots imes p_k^{lpha_k}$ فاننا نقول اننا فككنا عوامل أولية فَككُ الْعدد1752- إلى جداء عوامل أولية

أ- إذا كان p و q عددين أوليين و |q|
eq |p| فان قاسمهما المشترك الأكبر هو p (العكس غير صحيح) أ

. -1 بيكن a عددا غير أولي في \mathbb{Z}^* و يخالفa و a أصغر قاسم فعلي موجب للعدد a هو عدد أولي

نبرهن أن مجموعة الأعداد الأولية غير منتهية لتكن P^+ مجموعة الأعداد الأولية الموجبة

د- مجموعة الأعداد الأولية غير منتهية

 $2 \in P^+$ لأن $P^+ \neq \emptyset$

البرهان

2- تطبيقات

(A) نتيجة1

ليكن p_n أعداد أولية p_1 حيث p_2 و p_1 حيث $n=\varepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes \dots imes p_k^{lpha_k}$ ليكن عدد p_2 قاسما للعدد p_2 اذا وفقط اذا كان تفكيك p_2 الى عوامل جداء أولية على شـكل

$$d = \varepsilon p_1^{\beta_1} \times p_2^{\beta_2} \times \dots \times p_k^{\beta_k}$$

 $\{1;2;....;k\}$ حيث $0 \le \beta_i \le \alpha_i$ لكل

نتىحة2

لیکن p_n غداد أولیة p_n حیث p_2 و p_1 عداد أولیة p_n غداد أولیة p_n عدد p_n اذا کان تفکیك p_n الى عوامل جداء أولیة على شکل یکون عدد p_n مضاعفا للعدد p_n اذا کان تفکیك p_n الى عوامل جداء أولیة على شکل

$$d = \varepsilon p_1^{\lambda_1} \times p_2^{\lambda_2} \times \dots \times p_k^{\lambda_k}$$

 $\{1;2;....;k\}$ حيث $0 \le \alpha_i \le \lambda_i$ لكل

<u>IV- القاسم المشترك الأكبر</u>

 D_a نرمز لمجموعة قواسم العدد الصحيح النسبي a بالرمز

1- تعریف

 \mathbb{Z}^* لیکن a و a من

ليكي a ليكي من كي المسترك الأكبر للعددين a و b هو أكبر قاسم مشترك موجب قطعا لـ a و b يرمز له $a \wedge b$

$$\delta = a \wedge b \Leftrightarrow \begin{cases} \delta \in D_a \cap D_b \\ \forall x \in D_a \cap D_b \end{cases} \quad x \leq \delta$$

2- خاصىات

 \mathbb{Z}^* لیکن a و b و c

$$a \wedge b = b \wedge a$$

$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$

$$a \wedge a = |a|$$

 $48 \land 60 = 12$ مثال

3- خوارزمية اقليدس أو طريقة " القسمات المتتالية " لتحديد القاسم المشترك

أ- ملًاحظة

$$\forall a \in \mathbb{Z}^* \quad D_a = D_{-a} \quad *$$

ومنه تحديد القاسم المشترك الأكبر لعددين صحيحين نسبيين $\forall (a;b) \in \mathbb{Z}^{*2}$ $a \land b = |a| \land |b| *$ يرجع إلى تحديد القاسم المشترك الأكبر لعددين صحيحين طبيعيين.

 \mathbb{N}^* ب- لیکن a و a من

$$a \wedge b = b$$
 فان b/a - إذا كان -

 $0\prec r\prec b$ و a=bq+r حيث $\mathbb{N} imes\mathbb{N}^*$ و a=bq+r و a=bq+r عن b إذا كان b و a=bq+r فان كل قاسم مشترك لـ a=a-bq و يقسم a=a-bq

 $D_a \cap D_b \subset D_r \cap D_b$ و بالتالي قاسم مشترك لـ a و b و a هو قاسم مشترك لـ a و بالتالي قاسم مشترك لـ a و a يقسم a يقسم a يقسم a و بالتالي قاسم مشترك لـ a

 $D_r \cap D_b \subset D_a \cap D_b$ ومنه کل قاسم مشترك لـ a و قاسم مشترك لـ $a \wedge b = r \wedge b$ و بالتالي $a \wedge b = r \wedge b$ و بالتالي $D_a \cap D_b = D_r \cap D_b$

تمهيدة

b على a على القسمة الاقليدية لـ a على b على b و a باقي القسمة الاقليدية لـ b

```
b \prec a ج- لیکن a و b من \mathbb{N}^* نفترض أن
                                 0 \le r_1 \prec b حيث a = bq_1 + r_1 بإجراء القسمة الاقليدية لـ a على على الحصل على
                                                                                           a \wedge b = b و منه b/a فان r_1 = 0 و منه \diamond
               0 \le r_1 \prec r_2و b = r_1 q_2 + r_2اذا كان b = r_1 q_2 + r_2 نجري القسمة الاقليدية لـ b = r_1 q_2 + r_2 و نحصل على ج
                                                        a \wedge b = b \wedge r_1 = r_1 و منه b \wedge r_1 = r_1 فان r_2 = 0 اذا كان
0 \le r_3 \prec r_2 و r_1 = r_2 q_3 + r_3 و نحصل على r_2 \succ 0 و نجري القسمة الاقليدية لـ r_1 = r_2 q_3 + r_3 و نحصل على القسمة الاقليدية لـ أ
                                                                                       بإجراء العملية n مرة نحصل على
                                                 a \wedge b = b \wedge r_1 , 0 \prec r_1 \prec b , a = bq_1 + r_1
                                                 b \wedge r_1 = r_1 \wedge r_2, 0 \prec r_2 \prec r_1, b = r_1q_2 + r_2
                                                r_1 \wedge r_2 = r_2 \wedge r_3, 0 \prec r_3 \prec r_2, r_1 = r_2 q_3 + r_3
                              r_{n-2} \wedge r_{n-1} = r_{n-1} \wedge r_n , 0 < r_n < r_{n-1} , r_{n-2} = r_{n-1}q_n + r_n
                            a \wedge b = b \wedge r_1 = r_1 \wedge r_2 = r_2 \wedge r_3 = \dots = r_{n-2} \wedge r_{n-1} = r_{n-1} \wedge r_n و منه نستنتج
                                                                                                     0 \prec r_n \prec r_{n-1} \ldots \prec r_3 \prec r_2 \prec r_1 \prec b
                                                                                                    A = \{r_1; r_2; r_3, \dots, r_n; \dots\} نضع
                                                           جزء من \mathbb N مكبور بالعدد b و منه A مجموعة منتهية A
                                                                                     \exists p \in \mathbb{N} \, / \quad r_{p+1} = 0 \quad ; \quad r_p \neq 0 إذن
```

نتيجة

 \mathbb{N}^* لیکن a و a من

 $a \wedge b = r_n$ إذن

 $a \wedge b = r \wedge b$

a القاسم المشترك الأكبر للعددين a و b هو اخر باقي غير منعدم في طريقة القسمات المتتالية لـ b على b

مثال باستعمال طريقة القسمات المتتالية، نحدد القاسم المشترك الأكبر للعددين1640 و 156 مثال باستعمال طريقة $1640=156\times10+80$

$$80 = 76 \times 1 + 4$$

$$76 = 4 \times 19 + 0$$

1- خاصیات

أ- مبرهنة

 $\delta = a \wedge b$ و a من \mathbb{Z}^* و $a \wedge b$ و a لیکن b و a من a یوجد عددان a و a من a حیث

 $r_{p-1}\wedge r_p=r_b$ بما أن $r_{p+1}=r_p q_{p+1}$ فان $r_{p+1}=r_p q_{p+1}$ و منه

البرهان

$$\delta=a\wedge b$$
 و \mathbb{Z}^* و b و a لیکن a و a من \mathbb{Z}^* و نعتبر $A=\left\{n\in\mathbb{N}^*/n=au+bv\ ;\ (u;v)\in\mathbb{Z}^2\right\}$ نعتبر $a^2+b^2\in A$ لأن $A\neq \emptyset$ لدينا $A\neq \emptyset$ لدينا $A\neq \emptyset$ و بالتالي $A\in\mathbb{N}$ و بالتالي $A=0$ نبرهن أن $B=0$ نبرهن أن $B=0$

- $\delta \leq p$ و منه δ/p فان δ/b و منه δ
- $\exists (q,r) \in \mathbb{Z} \times \mathbb{N}$ a = pq + r ; $0 \le r \prec p$ نحصل على p نحصل على a = pq + r ; بإنجاز القسمة لـ a

$$r = a - q(au_0 + bv_0) = a(1 - qu_0) + b(-qv_0)$$
 each

 $r\prec p$ وفك وهذا يتناقض مع كون $r\in A$ وهذا يتناقض مع كون $r\neq a$ وهذا يتناقض مع كون p/b و بالتالي p/b وبنفس الطريقة نبرهن أن b و وبنفس $\delta\geq p$ ومنه b و السم مشترك لـ b و b و وبالتالي b و b و b و b و b و b و b و b و b و b و b و b و b

ب- استنتاجات

من البرهان السابق نستنتج $\delta = a \wedge b$ هو أصغر عدد موجب قطعا من المجموعة *

$$B = \left\{ n \in \mathbb{Z}^* / n = au + bv \quad ; \quad (u; v) \in \mathbb{Z}^2 \right\}$$

b بما أن δ قاسم مشترك لـ a و b فان أي قاسم لـ δ يقسم δ و δ بما أن δ قاسم مشترك لـ δ و δ فان δ و δ فان δ الحرام عكسيا اذا كان δ قاسم مشترك لـ δ و δ فانه δ δ الحرام فانه δ الحرام فانه δ الحرام فانه δ الحرام فانه δ يقسم δ ومنه δ ومنه δ أي يقسم δ أي يقسم δ

ىبرھنة

 $egin{aligned} \Delta = a \wedge b \end{aligned}$ ليكن a و b من \mathbb{Z}^* و $b \in A$ القواسم المشتركة لـ a و $b \in B$ مجموعة قواسم $b \in B$

نتيجة

إذا كان a و b و c أعداد من a فان $a \wedge b = \delta \Rightarrow ca \wedge cb = |c|\delta$

خاصىة

 $b=arepsilon\,p_1^{eta_1} imes p_2^{eta_2} imes \dots imes p_k^{eta_k}$ و $a=arepsilon\,p_1^{eta_k} imes p_2^{lpha_2} imes \dots imes p_k^{lpha_k}$ و p_1 أعداد أولية p_n أعداد أولية

 $\delta=p_1^{\lambda_1} imes p_2^{\lambda_2} imes \dots imes p_k^{\lambda_k}$ القاسم المشترك الأكبر للعددين a و a هو العدد و b و a و b و a و b و a و a و a تنتمي a و a و a تنتمي a و a تنتمي a و a تنتمي a و a تنتمي a

مثال حدد 1170 △180 –

2- القاسم المشترك الأكبر لعدة أعداد

تعرىف

 \mathbb{Z}^* و a_2 و a_3 أعداد من a_3

 a_1 ا أكبر عدد صحيح طبيعي يقسم في آن واحد a_1 و a_2 و a_3 و a_2 عند صحيح طبيعي يقسم في آن واحد a_1 و a_2 و a_3 و a_2 و a_3 و a_3 و a_4 و a_3 و a_4 و

 $12 \land -18 \land 15 = 3$ مثال

نتيجة

0و 0 و 0 فانه توجد اعداد 0 و 0 و 0 و 0 و 0 فانه توجد اعداد 0 و 0 و 0 اذا كان 0 هو القاسم المشترك الأكبر لـ 0 و 0 و 0 و 0 فانه توجد اعداد 0

 $\sum_{i=1}^{i=k}lpha_ia_i$ و $lpha_k$ من $\mathbb Z$ حیث

VI- المضاعف المشترك الأصغر

[- تعریف

 $(a;b) \in \mathbb{Z}^{*2}$ لیکن

 $a \lor b$ المضاعف المشتركُ الأصغر لـ a و b و a هو أصغر مضاعف مشترك موجب لـ a و

2- خاصیات

 \mathbb{Z}^* من $a ext{ } b ext{ } a ext{ } b = b ext{ } v a$ $a ext{ } b = b ext{ } v a$ $(a ext{ } b)|c| = ac ext{ } v bc$ $a ext{ } a = |a|$ $b/a \Leftrightarrow a ext{ } v b = |a|$ $a ext{ } v b = m$ $a ext{ } v b = m$ a ext

ج- مبرهنة

 $a \wedge b = \delta$ و $a \vee b = m$ و \mathbb{Z}^* و $a \wedge b = a$ ليكن $a \wedge b = a$ ليكن $a \wedge b = a$

نتيجة

 \mathbb{Z}^* ليكن a و a من $a \wedge b = 1 \Leftrightarrow a \vee b = |ab|$

خاصية

 p_1 ليكن $a=arepsilon p_1^{eta_1} imes p_2^{eta_2} imes \dots imes p_k^{eta_k}$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes \dots imes p_k^{lpha_k}$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes \dots imes p_k^{lpha_k}$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes n$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes n$ وحيث $a=arepsilon p_1^{lpha_1} imes p_2^{lpha_2} imes n$ وحيث $a=arepsilon p_1^{lpha_1} imes n$

 $m=p_1^{\lambda_1} imes p_2^{\lambda_2} imes \dots imes p_k^{\lambda_k}$ المضاعف المشترك الأصغر للعددين a و a و a و تنتمي a و b و a تنتمي a و b و a تنتمي a و a تنتمي a و a تنتمي a و a تنتمي a و a تنتمي a

مثال حدد 170 × 180 –

3- المضاعف المشترك لعدة أعداد

تعريف

 \mathbb{Z}^* و a_2 و a_2 و a_2 أعداد من a_1

 a_1 أصغر مضاعف مشترك موجب للأعداد a_1 و a_2 و a_3 و.... a_3 أصغر للمضاعف المشترك الأصغر لـ أ

 a_k 9..... a_3 9 a_2 9

و استنتج عدد قواسم عدد صحيح نسبي

<u>III- الموافقة بترديدn</u>

1- تعریف

 $\mathbb N$ ليكن a و b من $\mathbb Z$ و a

a-b يقسم n نقول إن $a\equiv b$ و نكتب n و نكتب $a\equiv b$ يوافق a بترديد

 $\forall (a;b) \in \mathbb{Z}^2 \quad a \equiv b \quad [n] \Leftrightarrow n/a - b \Leftrightarrow \exists k \in \mathbb{Z} \quad a - b = kn$

2- خاصيات العلاقة " الموافقة بترديد n"

انعاكسية "n نقول إن العلاقة " الموافقة بترديد $\forall a\in\mathbb{Z}\quad a\equiv a$ - أ

ب- [n] بنائية "n نقول إن العلاقة " الموافقة بترديد $orall (a;b) \in \mathbb{Z}$ بنقول إن العلاقة " الموافقة بترديد

"n نقول إن العلاقة " الموافقة بترديد $\forall (a;b) \in \mathbb{Z} \quad (a \equiv b \quad [n]) et (b \equiv c \quad [n]) \Rightarrow a \equiv c \quad [n] \Rightarrow a \equiv c$

متعدية

---نلخص الخاصيات أ و ب و ج بقولنا إن العلاقة " الموافقة بترديد n" علاقة تكافؤ

د- خاصية

 \mathbb{N} ليكن a و b من \mathbb{Z} و a

n على القسمة الاقليدية على $a\equiv b$ و a لهما نفس باقي القسمة الاقليدية على $a\equiv b$

البرهان

```
a-b=n(q_1-q_2) فان r_1=r_2 فان n إذا كان a و b لهما نفس باقي القسمة الاقليدية على a
                                                                                                                                               a \equiv b [n] أي أن
                                                                  a-b=nk عكسيا إذا كان a\equiv b فانه يوجد k من a\equiv b
                                                                           r_1 - r_2 و منه n_1 - r_2 = (k - q_1 - q_2)n أي n_2 = (k - q_1 - q_2)
                                                                              |r_1 - r_2| \prec n و لدينا 0 \le r_1 \prec n و 0 \le r_1 \prec n و لدينا
                                                                                                              r_1 = r_2 و بالتالي r_1 - r_2 = 0 أي
                                                                                                                                                        \mathbb{Z}_{n\mathbb{Z}} المجموعة -3
                                         \forall (a;n) \in \mathbb{Z} \times \mathbb{N} \quad \exists (q;r) \in \mathbb{Z} \times \mathbb{N} \quad a = nq + r \quad et \quad 0 \le r < n
                                                     \forall (a;n) \in \mathbb{Z} \times \mathbb{N} \quad \exists r \in \mathbb{N} \quad a \equiv r \quad [n] \quad et \quad r \in \{0;1;.....;n-1\} 
r المجموعة \{x\in \mathbb{Z}\,|\,x\equiv r \quad [n]\} هي مجموعة الأعداد الصحيحة النسبية التي لها نفس الباقي -
                                                                                                    \overline{r}في القسمة الاقليدية على n نرمز لها ب
                                 \mathbb Z الموافقة بترديد "n تسمى صنف تكافُؤ r بالنسبة للعلاقة الموافقة بترديد \overline r
                                                                                                                              x \in \overline{r} \iff x \equiv r \mid n \mid
         \forall a \in \mathbb{Z} \quad \exists r \in \{0;1;....;n-1\} / \quad \overline{a} \equiv \overline{r} \quad \exists r \in \{0;1;....;n-1\} / \quad a \equiv r \quad [n] - *
                                                                                r=r' و الا0 \le r' \prec n و 0 \le r \prec n و \overline{r}=\overline{r} و *
                   (nباقي القسمة الاقليدية على r ) \forall (x;n) \in \mathbb{Z} \times \mathbb{N} \exists r \in \{0;1;..;n-1\}/ x \in \overline{r} - *
                                                                                                              \mathbb{Z} = \overline{0} \cup \overline{1} \cup \overline{2} \cup .... \cup \left(\overline{n-1}\right) اذن
                                                                                          \mathbb{Z}/_{n\mathbb{Z}_{+}}المجموعة \left\{\overline{0};\overline{1};.....;\overline{n-1}
ight\} برمز لها بالرمز
                                                                                                                    عناصر \mathbb{Z}_{n\mathbb{Z}_n} منفصلة مثنى مثنى
                                    \overline{1} = \left\{ x \in \mathbb{Z} \, / \, x = 2k+1 \ \left( k \in \mathbb{Z} \right) \right\} و \overline{0} = 2 \cdot \mathbb{Z} حيث
                                                                                                                                                        \mathbb{Z}/_{2\mathbb{Z}} = \{\overline{0}; \overline{1}\} *
                           \overline{1} = \left\{ x \in \mathbb{Z} \, / \, x = 7k + 1 \quad \left( k \in \mathbb{Z} \right) \right\} \quad \underline{0} = 7 \cdot \mathbb{Z} \quad \text{ cut} \quad \frac{\mathbb{Z}}{7\mathbb{Z}} = \left\{ \overline{0}; \overline{1}; \overline{2}; \overline{3}; \overline{4}; \overline{5}; \overline{6} \right\} \quad * = \left\{ \overline{0}; \overline{1}; \overline{2}; \overline{3}; \overline{4}; \overline{5}; \overline{6} \right\} 
                                           \overline{3} = \left\{ x \in \mathbb{Z} \, / \, x = 7k + 3 \quad \left( k \in \mathbb{Z} \right) \right\} \quad \overline{2} = \left\{ x \in \mathbb{Z} \, / \, x = 7k + 2 \quad \left( k \in \mathbb{Z} \right) \right\} 
                                                                                       \overline{6} = \{x \in \mathbb{Z} \mid x = 7k + 6 \quad (k \in \mathbb{Z})\} \mathbf{6}
                                                                                                    532 \equiv 4 [7] في \mathbb{Z}/_{7\%} لدينا \overline{532} = \overline{4} لأن
                                                                                                        -36 \equiv 6 [7] لأن \overline{-36} = \overline{6}
                                                                                   4- انسجام العلاقة " الموافقة بترديد n" مع الجمع والضرب
                                                                                                                     \mathbb{N}ليكن x و y و z و x من
                                                                                   x+z \equiv y+t [nفان z \equiv t [n و x \equiv y [n إذا كان
                                                                                    x \times z \equiv y \times t [n] فان z \equiv t و x \equiv y و x \equiv y إذا كان
                                                                    نقول إن العلاقة " الموافقة بترديد n" منسجمة مع الجمع والضرب
                                                                        x \times x' \in \overline{r \times r'} و x' \in \overline{r + r'} فان x' \in \overline{r + r'} و x \in \overline{r} إذا كانت x \in \overline{r}
                         \overline{r+r'}=\overline{r}+\overline{r'}
                                                                                                                                                  \overline{r \times r'} = \overline{r} \times \overline{r'}
                                                      \forall (a;b) \in \mathbb{Z}^2 \quad \forall (p;n) \in \mathbb{N}^* \times \mathbb{N} \quad a \equiv b \quad [n] \Rightarrow a^p \equiv b^p \quad [n] -*
```

 $0 \le r_2 \prec n$ و $0 \le r_1 \prec n$ مع $b = nq_2 + r_2$ و $a = nq_1 + r_1$ و $n \ge 0 \le r_1 \prec n$ و $a \le 0 \le r_2 \prec n$

 $\overline{3} \times \overline{4} = \overline{12} = \overline{2} \quad , \quad \overline{0} + \overline{1} + \overline{2} + \overline{3} + \overline{4} = \overline{10} = \overline{0} \quad , \quad \overline{3} + \overline{4} = \overline{7} = \overline{2} \quad \frac{\mathbb{Z}_{5\mathbb{Z}}}{}$

تمرين

 $\overline{x} + \overline{5} = \overline{2}$ حدد مجموعة الأعداد الصحيحة النسبية x حيث في حدد مجموعة الأعداد الصحيحة النسبية

نمرين

 $\mathbb{Z}_{4\mathbb{Z}}^{\prime}$ أعط جدول الجمع ثم الضرب في $\mathbb{Z}_{4\mathbb{Z}}^{\prime}$

13 على على أن العدد $2^{70} + 3^{70}$ قابلة للقسمة على -2

مرين

 $\forall n \in \mathbb{N}$ $n(n^4 - 1) \equiv 0$ [n] بين أن -3

 \mathbb{N}^* من n لکل $3 imes 5^{2n-1} + 2^{3n-2}$ من -4

4- على $1^n+2^n+3^n+4^n$ على $1^n+2^n+3^n+4^n$ على -3