Exercice 1.

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{-x} + x^2 - 4$.

1. La fonction f est deux fois dérivables sur \mathbb{R} et pour tout réel x on a $f'(x) = -e^{-x} + 2x$ et $f''(x) = e^{-x} + 2$.

Pour tout réel x on a $e^{-x} > 0$ donc f''(x) > 0 ce qui prouve que f est convexe sur \mathbb{R} .

- 2. On a (T_0) : y = f'(0)(x-0) + f(0) avec f'(0) = -1 et f(0) = -3 donc (T_0) : y = -x 3.
- 3. f étant convexe sur \mathbb{R} , sa courbe représentative est située au dessus de chacune de ses tangentes comme par exemple (T_0) .

On en déduit donc que pour tout réel $x, f(x) \ge -x - 3$ soit $e^{-x} + x^2 - 4 \ge -x - 3$

Exercice 2.

1. (a) f est dérivable sur $[0; +\infty[$ en tant que produit de deux fonctions dérivables sur $[0; +\infty[$. Pour tout réel t positif,

$$f'(t) = \theta'(t)e^{0.2t} + 0.2\theta(t)e^{0.2t}$$

= $(\theta'(t) + 0.2\theta(t))e^{0.2t}$

Or $\theta'(t) = -0.2\theta(t)$ donc f'(t) = 0.

- (b) $f(0) = \theta(0)e^{0.2 \times 0}$ donc $f(0) = \theta(0) = 80$.
- (c) $\forall t \in [0; +\infty[, f'(t) = 0 \text{ donc } f \text{ est constante sur } [0; +\infty[: \text{pour tout réel } t \text{ positif on a} f(t) = f(0) = 80. \text{ Or } f(t) = \theta(t)e^{0.2t} \text{ donc } \theta(t) = \frac{f(t)}{e^{0.2t}} \text{ soit } \theta(t) = \frac{80}{e^{0.2t}} = 80e^{-0.2t}.$
- 2. (a) Calculons la limite de θ en $+\infty$.

$$\lim_{\substack{t \to +\infty \\ l \mapsto \infty}} -0, 2t = -\infty$$

$$\lim_{\substack{t \to +\infty \\ T \to -\infty}} e^T = 0$$

$$\Rightarrow \lim_{\substack{t \to +\infty \\ t \to +\infty}} e^{-0,2t} = 0 \text{ d'où } \lim_{\substack{t \to +\infty \\ t \to +\infty}} \theta(t) = 0.$$

(b) θ est dérivable sur $[0; +\infty[$ et pour tout réel t positif :

$$\theta'(t) = 80 \times (-0, 2)e^{-0.2t} = -16e^{-0.2t}$$
.

On a -1, 6 < 0 et pour tout réel t positif, $e^{-0,2t} > 0$ donc par produit $\theta'(t) < 0$ ce qui démontre que la fonction θ est strictement décroissante sur $[0; +\infty[$.

t	0	t_0	$+\infty$
Variation de θ	80	40	0

- (c) La fonction θ est continue sur $[0 ; +\infty[$ car dérivable sur $[0 ; +\infty[$. Elle est strictement décroissante sur $[0 ; +\infty[$ à valeurs dans]0 ; 80]. Or $40 \in]0 ; 80]$ donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation $\theta(t) = 40$ admet une solution unique t_0 dans l'intervalle $[0 ; +\infty[$.
 - On localise t_0 à l'unité : $3 < t_0 < 4$.
 - On localise $t_0 \ à \ 10^{-1} : 3, 4 < t_0 < 3, 5$.
 - On localise $t_0 \ à \ 10^{-1} : 3,46 < t_0 < 3,47$.

On prend $t_0 \simeq 3,46$ par exemple (3,47 fonctionne aussi). Or 0,46 minute est égal à environ $0,46\times60\simeq28$ secondes donc il faut attendre environ 3 minutes et 28 secondes pour savourer un café à une température d'environ 40 °C.

Exercice 3.

1. (a) Voici le tableau complété :

	m	Condition $f(m) > 0$	a	b	Condition $b-a > 10^{-1}$
Initialisation			2	3	Vraie
Étape 1	2.5	Vraie	2	2.5	Vraie
Étape 2	2.25	Faux	2.25	2.5	Vraie
Étape 3	2.375	Faux	2.375	2.5	Vraie
Étape 4	2.4375	Faux	2.4375	2.5	Faux

(b) Grâce à cet algorithme, on obtient un encadrement de $\alpha:2,4375<\alpha<2,5.$

2.
$$e^{\frac{t}{39}} + e^{-\frac{t}{39}} - 4\frac{t}{39} - 2 = 0 \iff e^x + e^{-x} - 4x - 2 = 0 \text{ avec } x = \frac{t}{39}$$

Cette équation a une unique solution α et $\alpha=\frac{t}{39}\iff t=39\alpha$ donc la hauteur de l'arche est $2t=78\alpha$

 $2,4375<\alpha<2,5\iff 190,125<78\alpha<195$ donc la hauteur de l'arche est comprise entre 190 et 195 mètres.