## <u>Trabajo práctico N°7: Función lineal – Rectas paralelas y rectas perpendiculares</u>

## **Rectas paralelas**

Dos rectas son paralelas cuando tienen la misma pendiente.

y = 2x + 1 es paralela a y = 2x + 3



## **Rectas perpendiculares**

Dos rectas son perpendiculares cuando sus pendientes son números inversos y opuestos.

y = -2x + 3 es perpendicular a  $y = \frac{1}{2}x$ 



- 1. Respondan y expliquen las respuestas
  - a. Geométricamente, ¿Cuándo dos rectas son paralelas? ¿Y perpendiculares?
  - b. Teniendo en cuenta las ecuaciones, ¿Cuándo dos rectas son paralelas? ¿Y perpendiculares?
  - **c.** ¿Es cierto que y = 2x 1 e y = -2x + 3 son perpendiculares?
  - **d.** Las rectas y = x e y = -x, ¿Son paralelas?
- 2. A partir de los gráficos escribí las fórmulas de las funciones representadas. Indica si las rectas son paralelas, perpendiculares o ninguna de las dos cosas.









d)



3. Marquen con una X las rectas paralelas a  $y = \frac{2}{7}x - 1$ 

**a.** 
$$y = 9 + \frac{2}{7}x$$

**a.** 
$$y = 9 + \frac{2}{7}x$$
 **c.**  $y = \frac{2}{7}x - 3$  **e.**  $y = -\frac{7}{2}x - 8$  **b.**  $y = \frac{7}{2}x - 5$  **d.**  $y = -\frac{2}{7}x + 1$  **f.**  $y = \frac{2}{7}x$ 

**e.** 
$$y = -\frac{7}{2}x - 8$$

**b.** 
$$y = \frac{7}{2}x - 5$$

**d.** 
$$y = -\frac{2}{7}x + 1$$

**f.** 
$$y = \frac{2}{7}x$$

**4.** Marquen con una **X** las rectas perpendiculares a  $y = \frac{3}{8}x - 9$ 

**a.** 
$$y = -\frac{8}{3}x + 1$$
 **c.**  $y = -\frac{3}{8}x$  **e.**  $y = \frac{8}{3}x + 2$  **b.**  $y = \frac{3}{8}x - 10$  **d.**  $y = -\frac{3}{8}x + 1$  **f.**  $y = -\frac{8}{3}x$ 

**c.** 
$$y = -\frac{3}{8}x$$

**e.** 
$$y = \frac{8}{3}x + 2$$

**b.** 
$$y = \frac{3}{8}x - 10$$

**d.** 
$$y = -\frac{3}{8}x + 1$$

**f.** 
$$y = -\frac{8}{3}x$$

5. Completen con // o ⊥ según corresponda.

$$R_1$$
:  $y = \frac{1}{3}x + 1$ 

$$R_3$$
:  $y = \frac{2}{3}x - 8$ 

$$R_5$$
:  $y = \frac{2}{3}x + 9$ 

$$R_2$$
:  $y = -\frac{3}{2}x + 2$ 

$$R_a$$
: y =  $-3x + 2$ 

$$R_6$$
:  $y = \frac{1}{3}x - 7$ 

**a.** 
$$R_1 \cap R_4$$

e. 
$$R_1 \cap R_6$$

**b.** 
$$R_2 \cap R_5$$

**d.** 
$$R_2 \cap R_3$$

f. 
$$R_6 \cap R_4$$

- 6. Escriban la ecuación de la recta que cumple con lo pedido en cada caso.
  - **a.** Una recta A, paralela a y = 2x 5, cuya ordenada sea  $\frac{1}{2}$ .
- **c.** Una recta C, paralela a  $y = \frac{1}{4}x \frac{1}{2}$ , que pase por c = (-2; 1).
- **b.** Una recta B, perpendicular a  $y = -\frac{2}{7}x + 1$ , **d.** Una recta D, perpendicular a y = 3x 5, cuya ordenada sea  $\frac{1}{3}$ .
- que pase por d = (-3; 4).

- 7. Resuelvan
  - **a.** Escriban la ecuación de la recta R que pasa por los puntos a = (-4; 1) y b = (-2; 2).
  - **b.** Escriban la ecuación de la recta S, perpendicular a R, que pase por b y la ecuación de la recta T, perpendicular a R, que pase por a
  - c. Representen en sus carpetas las rectas R y S en un sistema de ejes cartesianos. Marquen los puntos c y d para que se forme el rectángulo abcd.
  - d. Escriban la ecuación de la recta M que incluye al lado que falta.