SOFTENG 351: Fundamentals of Database Systems - Guide to Test 1

Michael Kemp

April 10, 2017

Contents

1		ics of the relational model of data
	1.1	The relational model of data
	1.2	SQL as a data definition and query language
2		ery Languages
	2.1	Relational algebra
		Relational calculus
	2.3	SQL
3	Data	abase design
	3.1	Entity-Relationship modelling

1 Basics of the relational model of data

1.1 The relational model of data

- relations are sets of tuples often represented as a table
- attributes are the column titles of a relation
- for each attribute we assign a *domain* which is a universal set containing all possible values(like a string; dom(A) = string
- tuples are the rows of a relation and all have the same structure in a relation
- if there is no value for an attribute then the value is *null*
- relation schema are a finite set R where attributes are A and each attribute $A \in R$ has a domain dom(A)
- relation schema can be written $R = \{A_1, A_2...A_n\}$ or $R(A_1, A_2...A_n)$ or $R(A_1 : dom(A_1)...A_n : dom(A_n)$
- All *R-tuples* (a tuple in a relation schema) are an element t of the Cartesian product of the domains of all the attributes $t \in A_1 \times A_2 \times ... A_n$ because each attribute's value is bound to it's respective domain.
- R-relations are a finite set r of R-tuples thus $r \subseteq dom(A_1) \times ...dom(A_n)$
- $\bullet\,$ R-tuples can be written with their values $t=(A_1:v_1...A_n:v_n)$
- A database-schema is a finite set S of relation schemata
- An S-database I consists of one R-relation for I(R) for each relation R in S ($I = \{I(R) | R \in S\}$)
- Having duplicates in a database is normally useless so we have keys to ensure a uniqueness over an attribute
 or a combination of
- superkey over a relation schema R
 - finite, non-empty subset $K \subseteq R$
 - is satisfied if an R-relation r only has tuples with a unique combination of values for each attribute in the superkey.
 - A Key is a superkey if there is no subset which is also a satisfied superkey
 - A foreign key is when all of the combination of values of attributes (in the foreign key) is in the set of the table which defines the foreign $\text{key}([A_1..A_n] \subseteq S[A_1..A_n])$. Also the same S can not be referenced twice.

1.2 SQL as a data definition and query language

2 Query Languages

2.1 Relational algebra

tell the author to stop procrastinating...

2.2 Relational calculus

tell the author to stop procrastinating...

2.3 SQL

tell the author to stop procrastinating...

3 Database design

3.1 Entity-Relationship modelling

tell the author to stop procrastinating...