# AI PLANNING

### IF-40-01 | Kelompok 7

M. Farras Hafis 1301164348

Rezza Nafi I. 1301160425

Nanda Tri H. 1301160443

Bayu Arifat F. 1301164176

Pengertian (Bahasa)

planning NOUN

The process of making plans for something.

Oxford Dictionaries

# Planning pada Al

- Metode penyelesaian masalah dengan cara memecah masalah ke dalam sub-sub masalah yang lebih kecil
- 2. Menyelesaikan sub-sub masalah satu demi satu
- Menggabungkan solusi-solusi dari sub-sub masalah tersebut menjadi sebuah solusi lengkap dengan tetap mengingat dan menangani interaksi yang ada antar sub masalah.

# Perbedaan Planning dan Searching

- Teknik planning berbeda dengan searching dalam hal representasi goals, state dan action
- Berbeda dalam hal representasi pembangunan urutan-urutan dalam action.
- Planning berusaha mengatasi kesulitan-kesulitan dalam waktu proses dan kebutuhan memori.

# Sifat Pemecahan Masalah Planning

- Goal Directed, yaitu pencarian solusi dilakukan dari kondisi goal state sampai ke kondisi initial - state yang dapat dicapai
- Dependency- Directed-Backtracking ketika menemukan jalan buntu.

# Kemampuan Planning

- Untuk berpindah dari suatu state ke state yang lain, sistem planning diperkenankan untuk mengaplikasikan sejumlah **operator**. Suatu sistem planning pada umumnya perlu memiliki kemampuan:
- a. Memilih operator
- b. Mengaplikasikan operator
- c. Mendeteksi ketika solusi telah tercapai
- d. Mendeteksi jalan jalan buntu
- e. Mendeteksi ketika solusi yang hampir benar telah dicapai dan melakukan teknik khusus untuk membuat solusi tersebut menjadi benar

# Predikat Operator (PAD)

### 1. Precondition

Predikat yang bernilai benar sebelum pengaplikasian operator

### 2. Add

Predikat yang bernilai benar setelah pengaplikasian operator

### 3. Delete

Predikat yang bernilai salah setelah pengaplikasian operator

# Dunia Balok (Blocks-World)



- 1. Terdapat meja (permukaan datar) untuk menaruh balok.
- 2. Terdapat beberapa balok berukuran sama.
- 3. Terdapat lengan robot untuk memanipulasi balok.

### Predikat Dunia Balok

#### ON(x, y)

Balok *x* menempel di atas balok *y* 

### ONTABLE (x)

Balok *x* berada di permukaan meja

### CLEAR(x)

Tidak ada balok di atas balok *x* 

#### **ARMEMPTY**

Lengan robot tidak memegang balok

### HOLDING(x)

Lengan robot memegang balok *x* 



ON (B, A)

ONTABLE (A)

ONTABLE (C)

ONTABLE (D)

CLEAR (B)

ARMEMPTY

# Daftar operator

### STACK (A,B)

Meletakkan balok A di atas balok B

### **UNSTACK (A,B)**

Mengangkat balok A yang menempel di atas balok B

### PICKUP (A)

Mengangkat balok A dari permukaan meja

### PUTDOWN (A)

Meletakkan balok A di permukaan meja

ilineorafit filpha v.L.L.8 -

# Daftar-PAD untuk operator (1)

# STACK (A,B)

P: HOLDING(A) \(\Lambda\) CLEAR(B)

A: ON(A,B) \(\Lambda\) ARMEMPTY

D: HOLDING(A) \(\Lambda\) CLEAR(B)

# UNSTACK (A,B)

P: ON(A,B) \(\Lambda\) CLEAR(A) \(\Lambda\)
ARMEMPTY

A:  $HOLDING(A) \land CLEAR(B)$ 

D: ON(A,B) \(\Lambda\) ARMEMPTY

ilineorafii filpha v1.1.8 -

# Daftar-PAD untuk operator (2)

# PICKUP (A)

P: ONTABLE(A) \(\Lambda\) CLEAR(A) \(\Lambda\)
ARMEMPTY

A: HOLDING(A)

D: ONTABLE(A) \(\Lambda\) ARMEMPTY

# PUTDOWN (A)

P: HOLDING(A)

A: ONTABLE(A) \(\Lambda\) ARMEMPTY

D: HOLDING(A)

• Goal-Stack
Planning (GSP)

# Goal-Stack Planning

- Menggunakan sebuah stack yang menampung:
  - 1. Goal State
  - 2. State lain yang mungkin terjadi
  - 3. Operator

# Bergantung pada basis data berupa:

- 1. current-state
- 2. daftar PAD

# Langkah ke-1



Isi **current state** dengan **initial state**:

#### current state:

ON(B,A) ∧

ONTABLE(A) \(\Lambda\)

ONTABLE(C) \(\Lambda\)

ONTABLE(D) \(\Lambda\)

<u>ARMEMPTY</u>

#### **Goal-State**



Masukkan **goal-state** ke dalam **stack**:

#### **STACK**

 $ON(C,A) \land ON(B,D) \land ONTABLE(A) \land ONTABLE(D)$ 

## Langkah ke-2

Tiap kondisi **goal-state** yang belum tercapai pada **current-state** dimasukkan ke dalam **stack** (urutan tidak ditentukan)

#### current state

ON(B,A) \(\Lambda\) ONTABLE(A) \(\Lambda\) ONTABLE(C) \(\Lambda\) ONTABLE(D) \(\Lambda\) ARMEMPTY

goal-state

 $ON(C,A) \land ON(B,D) \land ONTABLE(A) \land ONTABLE(D)$ 

| STACK                                          |
|------------------------------------------------|
| ON(C,A)                                        |
| ON(B,D)                                        |
| ON(C,A) $\Lambda$ ON(B,D) $\Lambda$ ONTABLE(D) |

# Langkah ke-3 (1)

TOP pada stack akan diperiksa. Kondisi yang mungkin terjadi:

**Kondisi 1 | TOP** berisi kondisi yang memenuhi **current state**, tetapi tidak **TOP** tidak berada di dasar **stack** dan **TOP** tidak terletak di atas operator:

- 1. **TOP di-pop** dari **stack**.
- 2. Pemeriksaan dilanjutkan pada TOP yang baru.

Kondisi 2 | TOP berisi kondisi yang belum memenuhi current state:

- 1. **TOP di-pop** dari **stack**.
- 2. Operator yang sesuai untuk memenuhi kondisi pada **TOP** akan **di-***push* ke **stack**.
- 3. Tiap predikat **precondition** dari operator tersebut **di-***push* secara terurut.

# Langkah ke-3 (2)

- **Kondisi 3 | TOP** berisi kondisi atau rangkaian kondisi dan berada di atas operator:
  - 1. **TOP di-pop** dari **stack**.
- 2. Operator di bawahnya *di-pop* dan dimasukkan ke rencana penyelesaian.
- 3. **Current state di-***update* dengan mengaplikasikan operator tersebut.

Kondisi 4 | TOP berada di dasar stack (elemen stack tinggal satu):

- 1. Uji kesamaan antara **current-state** dan **goal-state**.
- 2. Jika sama, **TOP di-***pop* dari **stack** ⇒ **[SELESAI]**
- 3. Jika beda, langkah ke-2 diulangi.

Jika setelah tindakan berdasarkan tiap kondisi dilakukan dan yang terjadi bukan **kondisi 4**, maka langkah ke-3 diulangi.

# Langkah ke-3 (Iterasi ke-1)

| STACK                                                               |
|---------------------------------------------------------------------|
| ON(C,A)                                                             |
| ON(B,D)                                                             |
| ON(C,A) $\Lambda$ ON(B,D) $\Lambda$ ONTABLE(A) $\Lambda$ ONTABLE(D) |



ON(B,A) \( \Lambda \) ONTABLE(A) \( \Lambda \)
ONTABLE(C) \( \Lambda \) ONTABLE(D) \( \Lambda \)
ARMEMPTY

| STACK                                                               |
|---------------------------------------------------------------------|
| CLEAR(A)                                                            |
| HOLDING(C)                                                          |
| CLEAR(A) ∧ HOLDING(C)                                               |
| STACK(C,A)                                                          |
| ON(B,D)                                                             |
| ON(C,A) $\Lambda$ ON(B,D) $\Lambda$ ONTABLE(A) $\Lambda$ ONTABLE(D) |

(Kondisi 2)

# Langkah ke-3 (Iterasi ke-2)

| STACK                                                               |
|---------------------------------------------------------------------|
| CLEAR(A)                                                            |
| HOLDING(C)                                                          |
| CLEAR(A) ∧ HOLDING(C)                                               |
| STACK(C,A)                                                          |
| ON(B,D)                                                             |
| ON(C,A) $\Lambda$ ON(B,D) $\Lambda$ ONTABLE(A) $\Lambda$ ONTABLE(D) |

|    | rra | nt | Ct.   | ate |
|----|-----|----|-------|-----|
| CU |     |    | - 3 L |     |

ON(B,A) ∧ ONTABLE(A) ∧
ONTABLE(C) ∧ ONTABLE(D)
∧
ARMEMPTY

| STACK                                          |
|------------------------------------------------|
| ON(B,A)                                        |
| CLEAR (B)                                      |
| ARMEMPTY                                       |
| ON(B,A) ∧ CLEAR (B) ∧ ARMEMPTY                 |
| UNSTACK(B,A)                                   |
| HOLDING(C)                                     |
| CLEAR(A) ∧ HOLDING(C)                          |
| STACK(C,A)                                     |
| ON(B,D)                                        |
| ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧<br>ONTABLE(D) |

(Kondisi 2)

# Langkah ke-3 (Iterasi ke-3-5)

| STACK                                          |
|------------------------------------------------|
| ON(B,A)                                        |
| CLEAR (B)                                      |
| ARMEMPTY                                       |
| ON(B,A) ∧ CLEAR (B) ∧ ARMEMPTY                 |
| UNSTACK(B,A)                                   |
| HOLDING(C)                                     |
| CLEAR(A) ∧ HOLDING(C)                          |
| STACK(C,A)                                     |
| ON(B,D)                                        |
| ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧<br>ONTABLE(D) |

| STACK                                          |
|------------------------------------------------|
| ON(B,A) ∧ CLEAR (B) ∧ ARMEMPTY                 |
| UNSTACK(B,A)                                   |
| HOLDING(C)                                     |
| CLEAR(A) ∧ HOLDING(C)                          |
| STACK(C,A)                                     |
| ON(B,D)                                        |
| ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧<br>ONTABLE(D) |

#### current state

ON(B,A)  $\wedge$  ONTABLE(A)  $\wedge$  ONTABLE(C)  $\wedge$  ONTABLE(D)  $\wedge$  ARMEMPTY

(Kondisi 1)

# Langkah ke-3 (Iterasi ke-6)

| STACK                                                            |
|------------------------------------------------------------------|
| ON(B,A) ∧ CLEAR (B) ∧ ARMEMPTY                                   |
| UNSTACK(B,A)                                                     |
| HOLDING(C)                                                       |
| CLEAR(A) ∧ HOLDING(C)                                            |
| STACK(C,A)                                                       |
| ON(B,D)                                                          |
| ON(C,A) $\wedge$ ON(B,D) $\wedge$ ONTABLE(A) $\wedge$ ONTABLE(D) |

#### current state

ON(B,A) \(\Lambda\) ONTABLE(A) \(\Lambda\)
ONTABLE(C) \(\Lambda\) ONTABLE(D)
\(\Lambda\)
ARMEMPTY

| STACK                                                               |
|---------------------------------------------------------------------|
| HOLDING(C)                                                          |
| CLEAR(A) ∧ HOLDING(C)                                               |
| STACK(C,A)                                                          |
| ON(B,D)                                                             |
| ON(C,A) $\Lambda$ ON(B,D) $\Lambda$ ONTABLE(A) $\Lambda$ ONTABLE(D) |

new current state setelah operasi UNSTACK(B,A):

ONTABLE(A) \(\Lambda\) ONTABLE(C) \(\Lambda\) ONTABLE(D) \(\Lambda\) HOLDING(B)

(Kondisi 3)

# OPERASI UNSTACK(B,A)



# Langkah ke-3 (Iterasi ke-7)

| STACK                                          |
|------------------------------------------------|
| HOLDING(C)                                     |
| CLEAR(A) ∧ HOLDING(C)                          |
| STACK(C,A)                                     |
| ON(B,D)                                        |
| ON(C,A) $\Lambda$ ON(B,D) $\Lambda$ ONTABLE(D) |

| curre | ent | state |
|-------|-----|-------|

ONTABLE(A) ∧ ONTABLE(C) ∧ ONTABLE(D) ∧ HOLDING(B)

| STACK                                          |  |  |  |  |
|------------------------------------------------|--|--|--|--|
| ONTABLE(C)                                     |  |  |  |  |
| CLEAR(C)                                       |  |  |  |  |
| ARMEMPTY                                       |  |  |  |  |
| ONTABLE(C) ∧ CLEAR(C) ∧<br>ARMEMPTY            |  |  |  |  |
| PICKUP(C)                                      |  |  |  |  |
| CLEAR(A) ∧ HOLDING(C)                          |  |  |  |  |
| STACK(C,A)                                     |  |  |  |  |
| ON(B,D)                                        |  |  |  |  |
| ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧<br>ONTABLE(D) |  |  |  |  |

(Kondisi 2)

# Langkah ke-3 (Iterasi ke-8-9)

| STACK                                          |  |  |  |  |
|------------------------------------------------|--|--|--|--|
| ONTABLE(C)                                     |  |  |  |  |
| CLEAR(C)                                       |  |  |  |  |
| ARMEMPTY                                       |  |  |  |  |
| ONTABLE(C) ∧ CLEAR(C) ∧<br>ARMEMPTY            |  |  |  |  |
| CLEAR(A) ∧ HOLDING(C)                          |  |  |  |  |
| STACK(C,A)                                     |  |  |  |  |
| ON(B,D)                                        |  |  |  |  |
| ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧<br>ONTABLE(D) |  |  |  |  |

| STACK                                          |  |  |  |  |
|------------------------------------------------|--|--|--|--|
| ARMEMPTY                                       |  |  |  |  |
| ONTABLE(C) ∧ CLEAR(C) ∧<br>ARMEMPTY            |  |  |  |  |
| CLEAR(A) ∧ HOLDING(C)                          |  |  |  |  |
| STACK(C,A)                                     |  |  |  |  |
| ON(B,D)                                        |  |  |  |  |
| ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧<br>ONTABLE(D) |  |  |  |  |

#### current state

ONTABLE(A) ∧ ONTABLE(C) ∧ ONTABLE(D) ∧ HOLDING(B)

(Kondisi 1)

# Langkah ke-3 (Iterasi ke-10)

| STACK                                          |  |  |  |  |  |
|------------------------------------------------|--|--|--|--|--|
| ARMEMPTY                                       |  |  |  |  |  |
| ONTABLE(C) ∧ CLEAR(C) ∧<br>ARMEMPTY            |  |  |  |  |  |
| PICKUP(C)                                      |  |  |  |  |  |
| CLEAR(A) ∧ HOLDING(C)                          |  |  |  |  |  |
| STACK(C,A)                                     |  |  |  |  |  |
| ON(B,D)                                        |  |  |  |  |  |
| ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧<br>ONTABLE(D) |  |  |  |  |  |

#### current state

ONTABLE(A) ∧ ONTABLE(C) ∧ ONTABLE(D) ∧ HOLDING(B)

| STACK                                          |
|------------------------------------------------|
| CLEAR(D)                                       |
| HOLDING(B)                                     |
| CLEAR(D) ∧ HOLDING(B)                          |
| STACK(B,D)                                     |
| ONTABLE(C) ∧ CLEAR(C) ∧<br>ARMEMPTY            |
| PICKUP(C)                                      |
| CLEAR(A) ∧ HOLDING(C)                          |
| STACK(C,A)                                     |
| ON(B,D)                                        |
| ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧<br>ONTABLE(D) |

(Kondisi 2)

# Langkah ke-3 (Iterasi ke-11-13)

| STACK                                                               |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|
| CLEAR(D)                                                            |  |  |  |  |
| HOLDING(B)                                                          |  |  |  |  |
| CLEAR(D) ∧ HOLDING(B)                                               |  |  |  |  |
| STACK(B,D)                                                          |  |  |  |  |
| ONTABLE(C) ∧ CLEAR(C) ∧<br>ARMEMPTY                                 |  |  |  |  |
| PICKUP(C)                                                           |  |  |  |  |
| CLEAR(A) ∧ HOLDING(C)                                               |  |  |  |  |
| STACK(C,A)                                                          |  |  |  |  |
| ON(B,D)                                                             |  |  |  |  |
| ON(C,A) $\Lambda$ ON(B,D) $\Lambda$ ONTABLE(A) $\Lambda$ ONTABLE(D) |  |  |  |  |
| current state                                                       |  |  |  |  |

ONTABLE(A)  $\wedge$  ONTABLE(C)  $\wedge$  ONTABLE(D)  $\wedge$  HOLDING(B)

| STACK                                          |  |  |  |  |
|------------------------------------------------|--|--|--|--|
| ONTABLE(C) / CLEAR(C) / ARMEMPTY               |  |  |  |  |
| PICKUP(C)                                      |  |  |  |  |
| CLEAR(A) ∧ HOLDING(C)                          |  |  |  |  |
| STACK(C,A)                                     |  |  |  |  |
| ON(B,D)                                        |  |  |  |  |
| ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧<br>ONTABLE(D) |  |  |  |  |

new current state setelah operasi STACK(B,D):

ON(B,D) \( \Lambda \) ONTABLE(A) \( \Lambda \)
ONTABLE(C) \( \Lambda \) ONTABLE(D) \( \Lambda \)
ARMEMPTY

(Kondisi 3)

# OPERASI STACK(B,D)



# Langkah ke-3 (Iterasi ke-14)

| <b>3</b>                                                 |   |
|----------------------------------------------------------|---|
| STACK                                                    |   |
| ONTABLE(C) ∧ CLEAR(C) ∧<br>ARMEMPTY                      |   |
| PICKUP(C)                                                |   |
| CLEAR(A) ∧ HOLDING(C)                                    | , |
| STACK(C,A)                                               |   |
| ON(B,D)                                                  |   |
| ON(C,A) $\Lambda$ ON(B,D) $\Lambda$ ONTABLE(A) $\Lambda$ |   |

| current | state |
|---------|-------|

ON(B,D) ∧ ONTABLE(A) ∧ ONTABLE(C) ∧ ONTABLE(D) ∧ ARMEMPTY

ONTABLE(D)

| STACK                                                               |
|---------------------------------------------------------------------|
| CLEAR(A) ∧ HOLDING(C)                                               |
| STACK(C,A)                                                          |
| ON(B,D)                                                             |
| ON(C,A) $\Lambda$ ON(B,D) $\Lambda$ ONTABLE(A) $\Lambda$ ONTABLE(D) |

new current state setelah operasi PICKUP(C):

ON(B,D)  $\wedge$  ONTABLE(A)  $\wedge$  ONTABLE(D)  $\wedge$  HOLDING(C)

(Kondisi 3)

# OPERASI PICKUP(C)



# Langkah ke-3 (Iterasi ke-15)

| S | T | A | C | K |
|---|---|---|---|---|
|   |   |   |   |   |

 $CLEAR(A) \land HOLDING(C)$ 

STACK(C,A)

ON(B,D)

 $ON(C,A) \land ON(B,D) \land$   $ONTABLE(A) \land ONTABLE(D)$ 

#### current state

ON(B,D)  $\Lambda$  ONTABLE(A)  $\Lambda$  ONTABLE(D)  $\Lambda$  HOLDING(C)



new current state setelah operasi STACK(C,A):

ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧ ONTABLE(D) ∧ ARMEMPTY

(Kondisi 3)

# OPERASI STACK(C,A)



# Langkah ke-3 (Iterasi ke-16)

**STACK** 

ON(B,D)

ON(C,A)  $\Lambda$  ON(B,D)  $\Lambda$  ONTABLE(A)  $\Lambda$  ONTABLE(D)

**SELESAI** 

**STACK** 

<EMPTY>

#### current state

ON(C,A) ∧ ON(B,D) ∧ ONTABLE(A) ∧ ONTABLE(D) ∧ ARMEMPTY



#### goal state

ON(C,A)  $\wedge$  ON(B,D)  $\wedge$  ONTABLE(A)  $\wedge$  ONTABLE(D)

(Kondisi 4)

#### Rencana Penyelesaian

- 1. UNSTACK(B,A)
- 2. STACK(B,D)
- 3. PICKUP(C)
- 4. STACK(C,A)

# Sussman Anomaly

- Mengilustrasikan kelemahan dari GSP
- Pada rencana penyelesaian, terdapat operasi yang "menggagalkan" operasi sebelumnya
- Terjadi karena GSP secara "naif" mengejar suatu subgoal X setelah memenuhi subgoal Y
- Langkah untuk mencapai subgoal X dapat menggagalkan subgoal Y
- Contoh: subgoal ON(A,B) dan subgoal ON(B,C)

#### Rencana Penyelesaian

- 1. UNSTACK(C,A)
- 2. PUTDOWN(C)
- 3. PICKUP(A)
- 4. STACK(A,B)
- 5. UNSTACK(A,B)
- 6. PUTDOWN(A)
- 7. PICKUP(B)
- 8. STACK(B,C)
- 9. PICKUP(A)
- 10. STACK(A,B)

