

Practica 1: Lógica Proposicional

- 1) a) Definir proposiciones y clasificarlas.
- b) Clasificar estas proposiciones en simples y compuestas y a las compuestas simbolizarlas y realizar la tabla de verdad.

a. tres es menor que 5	b. si tres es menos que 5 y 5 menor que 8
	entonces 3 es menor que 8
c. Pi es irracional porque no se puede	d. el producto es mayor a cero si y sólo si
escribir como a/b con a y b enteros.	algunos de los números es cero
e. la resta no es cerrada en naturales	f. los reales son completos
ya que 4 - 6 no es natural.	
g. La Tierra gira alrededor del Sol y e	h. Si hace calor toca el tambor y si hace frío
Sol gira alrededor del centro galáctico por lo	ponete la capa de tu tío.
tanto la Tierra gira alrededor del centro	
galáctico	
i. Si entreno durante la semana	Gano la lotería si y solo si saco todos los
entonces juegos de titular, en cambio si me	números pero el premio también es
hago el chanta, no voy ni al banco.	importante si me falta uno.

4) a) Definir "condición necesaria" y "condición suf	iciente" en un condicional de la forma P→C
b) Completar con "necesaria" y "suficiente": Se dic	ce que P es
para Q y que Q es	_ para P.

- c) dados los siguientes condicionales pasarlos a la forma "necesaria" y "suficiente"
 - I. Si leo durante muchas horas, entonces me dolerá la cabeza.
 - II. Si hay amores que matan y sentimientos que hieren, entonces estaría muerto.
- III. Tendré que ir a buscarlo, si no regresa pronto.
- IV. Si 2x + 1 = 7 entonces x = 3.
- V. Si 6x 1 < 2 entonces $x < \frac{1}{2}$.

Cuantificadores Lógicos

- **5) a)** Simbolizar los siguientes enunciados, que tienen cuantificadores:
 - Hay cisnes negros.

- dos números son iguales si y sólo si su división es igual a uno
- Hay números mayores que otros.
- Todos los irracionales son números con infinitos decimales
- Hay animales que son peces.
- Todos aprobamos el curso y disfrutamos las vacaciones.
- si puedo escribir a un número como división de enteros entonces es racional.
- Toda casa que es de madera se puede quemar.
- Existe al menos una montaña en Argentina.
- No todos los números son racionales.
- Hay números racionales y todos los números son negativos.
- Todos los números no son enteros o no todos los números son enteros.
- Todos los hombres son mortales.
- No hay múltiplos de 10 que no sean múltiplos de 2.
- Todas las flores son rojas y existen flores que no son azules.
- b) Negar los enunciados del ejercicio
- 5) a) ¿Cómo lo expresarías en lenguaje escrito?
- **6)** Simbolizar los enunciados y contestar las preguntas:

a) "Todos los españoles son mú	sicos" b) "Los coches Ford son azules"
"Todos los españoles son euro	peos" "Algún Ford es polarizado"
es verdad que ¿algunos europeos son mús	sicos? es verdad que ¿algunos coches
¿Todos los músicos son Europeos?	polarizados son azules?
c) Todos los suizos son rubios	d) ningún pingüino vive en África
Juan es rubio	Todos los que viven en África tienen
¿Es verdad que Juan es suizo?	calor
	Entonces ¿ningún pingüino tiene
	calor?

- **e)** Todos los poetas son pobres y si sos profesor entonces estás graduado en una universidad. Además ninguna persona con título universitario es pobre. Entonces es verdad que:
 - Los profesores no son pobres.
 - Los poetas no son profesores.
 - Si Marcos tiene título universitario, entonces no es poeta.

Leyes de la lógica (de predicados y digital)

- 7) a) Realizar la tabla de verdad de, al menos, un tercio (1/3) de las siguientes leyes lógicas que tengan un bicondicional
 - (a) Doble Negación:
 - p ←⇒ ~ (~ p)
 - (b) Leyes Conmutativas:

 - p ó q ←⇒ q ó p
 - (c) Leyes Distributivas:
 - $(p \circ q) y r \iff (p y r) \circ (q y r)$
 - $(p y q) \circ r \iff (p \circ r) y (q \circ r)$
 - (d) Leyes Asociativas:
 - $| \bullet p y (q y r) \iff (p y q) y r$
 - $p \circ (q \circ r) \Leftarrow \Rightarrow (p \circ q) \circ r$
 - (e) Leyes de De Morgan:

ii. ~
$$(p \circ q) \iff ~ p y ~ q$$

$$(f) p \rightarrow q \Longleftrightarrow (\sim q \rightarrow \sim p)$$

$$|(g) p \rightarrow q \iff \sim p \circ q$$

- $(h) \sim (p \rightarrow q) \iff p y \sim q$
- (i) $p \leftrightarrow q \iff (p \rightarrow q) \ y \ (q \rightarrow p)$
- (j) p y (p \rightarrow q) \Rightarrow q (Modus Ponens)
- (k) \sim q y (p \rightarrow q) \Rightarrow p (Modus Tolens)
- (I) (p \acute{o} q) y \sim p \Rightarrow q (Modus Tollendo Ponens)
- (m) p y q ⇒ q (Simplificación)
- (n) p ó p ⇒ p (Simplificación Disyuntiva)
- (o) $p \Rightarrow (p \circ q)$ (Adición)
- (p) $(p \rightarrow q)$ y $(q \rightarrow r) \Rightarrow p \rightarrow r$ (Silogismo

Hipotético)

(q) (p
$$\acute{o}$$
 q) y (p \rightarrow r) y (q \rightarrow s) \Rightarrow r \acute{o} s

(Silogismo Disyuntivo)

$$(r) (p y q) \rightarrow r \Rightarrow p \rightarrow (q \rightarrow r)$$

$$(s) p \rightarrow (q \rightarrow r) \Rightarrow (p y q) \rightarrow r$$