## UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 310 DIGITAL SIGNAL PROCESSING - FALL 2023

## Homework 8

Profs. Do, Moustakides, Snyder

Due: Friday, Oct 20, 2023 on Gradescope

1. The continuous-time signal  $x_c(t)$  has the continuous-time Fourier transform (CTFT) shown in the figure below. The signal  $x_c(t)$  is sampled with sampling interval T, or sampling frequency  $f_s = 1/T$ , to get the discrete-time signal  $x[n] = x_c(nT)$ . Sketch  $X_d(\omega)$  (the DTFT of  $\{x[n]\}$ ) for each of the following sampling frequencies:  $f_s = 200$  Hz and  $f_s = 300$  Hz. Clearly label all of the axes in your sketches.



2. Consider the following signal processing chain with an ideal continuous-to-discrete (C/D) or analog-to-digital converter (ADC), followed by an ideal discrete-to-continuous (D/C) or digital-to-analog converter (DAC), both for sampling interval T, or sampling frequency  $f_s = 1/T$ .



Most of human speech can be considered to be bandlimited to 10 kHz. To be definite, consider a speech signal  $x_c(t)$  that has the following continuous-time Fourier transform (CTFT):



Sketch the DTFT  $X_d(\omega)$  of the output signal x[n] after the C/D or ADC, and the CTFT  $Y_c(\Omega)$  of the output signal  $y_c(t)$  after the D/C or DAC, for each of the following sampling frequencies  $f_s = 10$  kHz,  $f_s = 20$  kHz, and  $f_s = 30$  kHz. Clearly label all of the axes in your sketches.

3. A continuous-time signal  $x_c(t)$  is assumed to be bandlimited to 3 MHz. We would like to filter  $x_c(t)$  with a lowpass filter that will pass only the frequencies up to 1 MHz in  $x_c(t)$  by using a digital filter  $H_d(\omega)$  sandwiched between an ideal ADC and an ideal DAC as follows.



- (a) Determine the Nyquist sampling rate for the input signal  $x_c(t)$ .
- (b) Sketch the frequency response  $H_d(\omega)$  for the necessary discrete-time filter, when sampling at the Nyquist rate.
- (c) Find the largest sampling period T for which the ADC, digital filter response  $H_d(\omega)$ , and DAC can perform the desired filtering function. (Hint: some amount of aliasing may be permissible during ADC for this part.)
- (d) For the system using T from part (c), sketch the necessary  $H_d(\omega)$ .
- 4. Let  $\{X[k]\}_{k=0}^{20}$  and  $X_d(\omega)$  respectively be the 21-point DFT and DTFT of a real-valued sequence  $\{x[n]\}_{n=0}^{7}$  that is zero-padded to length 21. Determine all the correct relationships in the following and justify your answers.
  - (a)  $X[19] = X_d(-\frac{4\pi}{21}).$
  - (b)  $X[2] = X_d^*(-\frac{4\pi}{21})$
  - (c)  $X[12] = X_d(-\frac{4\pi}{21})$
  - (d)  $X[4] = X_d^*(-\frac{4\pi}{21})$
- 5. Assume  $\{x[n]\}_{n=0}^{39}$  is a finite-duration sequence of length 40, and  $\{y[n]\}_{n=0}^{63}$  is obtained by zero-padding  $\{x[n]\}_{n=0}^{39}$  to length 64. That is, y[n] = x[n], for  $n = 0, 1, \ldots, 39$ , and y[n] = 0, for  $n = 40, 41, \ldots, 63$ .

Let  $\{X[k]\}_{k=0}^{39}$  and  $\{Y[k]\}_{k=0}^{63}$  be the DFT of  $\{x[n]\}_{n=0}^{39}$  and  $\{y[n]\}_{n=0}^{63}$ , respectively. Determine all the correct relationships in the following and justify your answers.

- (a) X[0] = Y[0]
- (b) X[5] = Y[8]
- (c) X[10] = Y[16]
- (d) X[12] = Y[18]
- (e) X[39] = Y[63]