Dataflow Analysis

Matteo Lugli, Carlo Uguzzoni

Dominator Analysis

Example 1

Table 1: $Gen_b = \{b\}$, $Kill_b = \emptyset$

	Dominator Analysis
Domain	Basic Blocks
Direction	Forward
Framework	$\operatorname{out}[b] = f_b(\operatorname{in}[b])$
	$\operatorname{in}[b] = \cap \operatorname{out}[\operatorname{pred}(b)]$
Transfer function	$f_b(x) = \operatorname{Gen}_b \cup (x\text{-kill}_b)$
Meet operation	\cap
Boundary Condition	in[entry] = entry
Initial interior points	out[b] = U

Iter 1¹

	In	Out
A	<00000000>	<1000000>
\mathbf{B}	<1000000>	<1100000>
\mathbf{C}	<1000000>	<1010000>
\mathbf{D}	<1010000>	<1011000>
${f E}$	<1010000>	<1010100>
${f F}$	<1010000>	<1010010>
\mathbf{G}	<1000000>	<1000001>

 $^{^{1} \}mathrm{initialization}$ is not considered as an iteration.

Example 2

Iteration 1 2

	In	Out
\mathbf{A}	$\{\emptyset\}$	{A}
\mathbf{C}	$\{A\}$	$\{C,A\}$
\mathbf{B}	$\{C,A\}$	$\{C,A,B\}$
D	$\{C,A\}$	$\{C,A,D\}$
\mathbf{F}	$\{A\}$	$\{F,A\}$
\mathbf{G}	$\{F,A\}$	$\{F,A,G\}$
K	$\{A\}$	$\{A,K\}$

²initialization is not considered as an iteration.

Very busy expression analysis

Example 1

In this example, we assume that each BB contains just 1 expression, as showed in the graph.

	Very busy expression
Domain	Expressions
Direction	Backwards
Framework	$in[b] = f_b(out[b])$
	$out[b] = \cap in[succ[(b)]$
Direction	Backwards
Transfer function	$f_b(x) = \operatorname{Gen}_b \cup (x\text{-Kill}_b)$
Meet Operation	\cap
Boundary condition	$in[exit] = \emptyset$
Initial interior points	in[b] = U

Figure 1: $Gen_b = expressions$ evaluated in b before the definition of one of their operands, $Kill_b = every$ expression that contains a operand that is defined in b

Iteration 1 ³

Expressions:

- 1. a!=b
- 2. b-a
- 3. a-b

BB	OUT	IN
8	000	000
7	000	001
4	000	001
6	001	000^{4}
5	000	010
3	001	011
2	010	110
1	110	110

 $^{^3}$ initialization is not considered as an iteration. 4 a-b gets killed

Costant propagation analysis

Example 1

In this example, we assume that each BB contains only 1 expression, as showed in the graph.

Table 2: $Gen_b = (lhs, c)$ if operand is costant for each operand in rhs, $Kill_b = (lhs, *)$

	Constant Propagation
Domain	couples (val, costant)
Direction	Forward
Framework	$out[b] = f_b(in[b])$
	$\operatorname{in}[b] = \cap \operatorname{out}[\operatorname{pred}(b)]$
Transfer function	$f_b(x) = \mathrm{Gen}_b \cup (x\text{-kill}_b)$
Meet operation	\cap
Boundary Condition	$in[entry] = \emptyset$
Initial interior points	out[b] = U

Iteration 1 5

Point	IN	OUT
P1	Ø	Ø
P2	Ø	(k:2)
P3	(k:2)	(k:2)
P4	(k:2)	(k:2),(a:4)
P5	(k:2),(a:4)	(k:2),(a:4),(x:5)
P6	(k:2)	(k:2),(a:4)
P7	(k:2),(a:4)	(k:2),(a:4),(x:8)
P8	(k:2),(a:4)	(k:4),(a:4)
P9	(k:4),(a:4)	(k:4),(a:4)
P10	(k:4),(a:4)	(k:4),(a:4),(b:2)
P11	(k:4),(a:4),(b:2)	(k:4),(a:4),(b:2),(x:8)
P12	(k:4),(a:4),(b:2),(x:8)	(k:4),(a:4),(b:2),(x:8),(y:8)
P13	(k:4),(a:4),(b:2),(x:8),(y:8)	(k:4) $(k:5)$, $(a:4)$, $(b:2)$, $(x:8)$, $(y:8)$
P14	(k:4),(a:4)	(k:4),(a:4)
P15	(k:4),(a:4)	(k:4),(a:4)

Iteration 2

Point	IN	OUT
P1	Ø	Ø
P2	\emptyset	(k:2)
P3	(k:2)	(k:2)
P4	(k:2)	(k:2),(a:4)
P5	(k:2),(a:4)	(k:2),(a:4),(x:5)
P6	(k:2)	(k:2),(a:4)
P7	(k:2),(a:4)	(k:2),(a:4),(x:8)
P8	(k:2),(a:4)	(k:4),(a:4)
P9	(a:4)	(a:4)
P10	(a:4)	(a:4),(b:2)
P11	(a:4),(b:2)	(a:4),(b:2)
P12	(a:4),(b:2)	(a:4),(b:2),(y:8)
P13	(a:4),(b:2),(y:8)	(a:4),(b:2),(y:8)
P14	(a:4)	(a:4)
P15	(a:4)	(a:4)

 $^{^{5}{\}rm a} \rightarrow 10000,\, {\rm b} \rightarrow 01000,\, {\rm k} \rightarrow 00100,\, {\rm x} \rightarrow 00010,\, {\rm y} \rightarrow 00001,\, {\rm initialization}$ is not considered as a iteration.