

ACM SenSys 2022

KITE: Exploring the Practical Threat from Acoustic Transduction Attacks on Inertial Sensors

¹Ming Gao, ¹Lingfeng Zhang, ²Leming Shen, ^{1,3}Xiang Zou,

¹Jinsong Han, ¹Feng Lin, ¹Kui Ren

¹Zhejiang University, Hangzhou, China

²The Hong Kong Polytechnic University, Hong Kong, China

³Xi'an Jiaotong University, Xi'an, China

Inertial Sensor

Inertial Sensor

5m/s

accelerator (reflect changes in speed)

3m/s

1m/s

turn right

Acoustic Interference

Inertial Sensors # Reliable ?

Acoustic Transduction Attack

Our Vision

• Manipulate a multiple-degree-of-freedom system to follow the maliciously assigned trajectory even the target is moving

➤ Existing Approach

$$F(t) = \frac{\Gamma(t)}{\cos(\omega_d t + \varphi_r)} \sin(\omega_r t).$$

Solution: Offset Compensation and Phase Estimation

$$F(t) = \frac{\Gamma(t)}{\cos(\omega_d t + \varphi_r)} \sin(\omega_r t)$$
Offset com

Offset compensation:

$$\omega_{r_2} = \omega_{r_1} - n_p \Delta F s$$

Phase estimation:

$$\varphi_{r_2} = \varphi_{r_1} + \frac{1}{\xi} (\omega_{d_2} - \omega_{d_1})$$

2. How to control the direction of injection

- ➤ SDOF system
 - one direction motion
 - easy to be controlled

- ➤ MDOF system
 - move free in space
 - multi-axis simultaneous resonance

Solution: multiple acoustic sources

> Our observation

Accelerator

> Orientation control

Gyroscope

➤ Phase fluctuation

3. How to eliminate the motion influence

≻Coupling effect

Evaluation

 $\Delta \vartheta /^{\circ}$

End-to-end Attack Cases: on smartphones

¥ ♥ 🖘 all 15% 🖺

➤ Step count (pedometer)

➤ Navigation service

End-to-end Attack Cases: on drone

➤ Target device

➤ Attack effect

Countermeasure

- ➤ Existing Approaches
 - □Dampening and Isolation
 - **□**Filtering
 - □Common-mode difference
 - **□**Redundancy
- **≻**Our suggestion
 - ■We design a method that alters sampling rate and reduces its side effect of the accuracy loss.

$$SNR = -20log_{10}(\omega \times rms(t_a))$$

 $t_a[i] = \alpha_m, (m = i \mod C, i \in N)$

Conclusion

- ➤ We propose a new acoustic modulation-based attacking method to exploit the practical potential threat of a realistic attacker covering most of possible attack scenarios.
- ➤ We expand the attack surface into MDOF systems and suppress the motion influence.
- >We accomplish control over COTS in an automatic manner using the designed PCB proto-type.

Thanks for your listening! Q&A