# Numerical calculation of high-order QED contributions to the electron anomalous magnetic moment

Sergey Volkov

SINP MSU, Dubna branch DLNP JINR, Dubna

Theoretical Physics Department Seminar, INR, Moscow, 2018

#### AMM of the electron (theory and experiment)

The measured value [2011]:

a<sub>e</sub>=0.00115965218073(28)

#### The most accurate prediction (T. Kinoshita et al. [2018]):

$$a_{e} = a_{e}(QED) + a_{e}(hadronic) + a_{e}(electroweak),$$

$$a_e(QED) = \sum_{n\geq 1} \left(\frac{\alpha}{\pi}\right)^n a_e^{2n},$$

$$a_e^{2n} = A_1^{(2n)} + A_2^{(2n)} (m_e / m_\mu) + A_2^{(2n)} (m_e / m_\tau) + A_3^{(2n)} (m_e / m_\mu, m_e / m_\tau)$$

a<sub>e</sub>=0.001159652182032(13)(12)(720)

 $(\alpha^{-1}=137.035998995(85) - independent from a<sub>e</sub>)$ 

**Uncertainties** come from:

$$A_1^{(10)}$$
,  $a_e(hadronic) + a_e(electroweak)$ ,  $\alpha$ 

T. Aoyama, T. Kinoshita, M.Nio, Revised and improved value of the QED tenth-order electron anomalous magnetic moment, Physical Review D, 2018, V. 97, 036001.

#### Motivation

- Independent calculation of  $A_1^{(2n)}$ , n = 5,...
- Check the validity of some hypotheses and our belief in Quantum Field Theory:
  - The contributions of gauge invariant classes are relatively small, but the contributions of individual Feynman diagrams are relatively large (in absolute value)?
  - o finiteness of  $A_1^{(2n)}$ , behavior of the whole series etc...
  - 0 ...
- Methods of high-order calculations

#### **Universal QED contributions**

 $a_e = a_e(QED) + a_e(hadronic) + a_e(electroweak),$ 

$$\begin{split} a_{e}(QED) &= \sum_{n \ge 1} \left(\frac{\alpha}{\pi}\right)^{n} a_{e}^{2n}, \\ a_{e}^{2n} &= A_{1}^{(2n)} + A_{2}^{(2n)}(m_{e} / m_{\mu}) + A_{2}^{(2n)}(m_{e} / m_{\tau}) + A_{3}^{(2n)}(m_{e} / m_{\mu}, m_{e} / m_{\tau}) \end{split}$$

- ■J. Schwinger [1948], analytically:  $A_{\rm l}^{(2)} = 0.5$
- ■R. Karplus, N. Kroll [1949] with a mistake
  - A. Petermann [1957], C. Sommerfield [1958], analytically:

$$A_1^{(4)} = -0.328478966 \dots$$

- ~1970...~1975, 3 loops, numerically:
  - 1. M. Levine, J. Wright.
  - 2. R. Carroll, Y. Yao.
  - 3. T. Kinoshita, P. Cvitanović.
    - T. Kinoshita, P. Cvitanović [1974]:  $A_1^{(6)} = 1.195 \pm 0.026$
- ■E. Remiddi, S. Laporta et al., ~1965...1996, analytically:  $A_1^{(6)} = 1.181241456$  ...
- ■T. Kinoshita et al., numerically, 2015:  $A_1^{(8)} = -1.91298 (84)$
- ■S. Laporta, semi-analytically, 2017:  $A_1^{(8)} = -1.9122457649$  ...
- ■T. Kinoshita et al., numerically, 2015 (with a mistake):  $A_1^{(10)} = 7.795(336)$
- ■T. Kinoshita et al., numerically, 2018:  $A_1^{(10)} = 6.675(192)$

#### The method

- Subtraction procedure for removing both IR and UV divergences in Feynman-parametric space for each individual Feynman diagram
- Diagram-specific importance sampling Monte Carlo integration algorithm for diagrams without lepton loops

## The subtraction procedure

- •FULLY AUTOMATED AT ANY ORDER OF THE PERTURBATION SERIES.
- ■UV and IR divergences are eliminated point-by-point in Feynman-parametric space for each individual Feynman diagram. No regularization is required.
- ■Subtraction by a forest formula with linear operators. Each operator transforms Feynman amplitude of some UV-divergent subdiagram G' (in momentum space) to the polynom with the degree that is less or equal to  $\omega(G')$ .
- ■The subtraction is equivalent to the on-shell renormalization => no residual renormalizations, no calculations of renormalization constants, no other manipulations.

#### Zimmermann's forest formula

• Scherbina V. [1964], Zavyalov O., Stepanov B. [1965], Zimmermann W. [1969]  $f^{UV-free} = (1-K_1)(1-K_2)...(1-K_n)f$ 

 $K_i$  transforms Feynman amplitude of i-th divergent subgraph ( $G_i$ ) into it's Taylor expansion up to  $\omega(G_i)$  order at 0.

All terms with overlapping elements must be removed.

$$\omega(G)$$
 = degree of UV divergence =  $4-N_{\mu}-(3/2)N_{e}$ 

#### Disadvantages:

- IR divergences remain
- residual (physical) renormalization is required
- if we take the physical renormalization operators instead of K<sub>j</sub>, additional IR divergences will be generated

## Infrared divergences



all IR divergences are in b and c!!! all UV divergences are in a

 $= a\gamma_{\mu} + bp_{\mu} + c\hat{p}p_{\mu} + d(\hat{p}\gamma_{\mu} - \gamma_{\mu}\hat{p})$ 

## **Operators**

$$\Gamma_{\mu}(p,q) = \xrightarrow{p-q/2} \qquad \Sigma(p) = \xrightarrow{p}$$

#### ■A – projector of AMM

$$\begin{split} & \overline{u}_{2}\Gamma_{\mu}(p,q)u_{1} = \overline{u}_{2}(f(q^{2})\gamma_{\mu} - g(q^{2})\sigma_{\mu\nu}q^{\nu}/(2m) + h(q^{2})q_{\mu})u_{1} \\ & \sigma_{\mu\nu} = (\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})/2, \qquad (p - q/2)^{2} = (p + q/2)^{2} = m^{2} \\ & (\hat{p} - \hat{q}/2 - m)u_{1} = (\hat{p} + \hat{q}/2 - m)u_{2} = 0 \\ & A\Gamma_{\mu} = \gamma_{\mu} \lim_{q^{2} \to 0} g(q^{2}) \end{split}$$

#### ■U – intermediate operator

$$\Gamma_{\mu}(p,0) = a(p^{2})\gamma_{\mu} + b(p^{2})p_{\mu} + c(p^{2})\hat{p}p_{\mu} + d(p^{2})(\hat{p}\gamma_{\mu} - \gamma_{\mu}\hat{p}) \qquad \Sigma(p) = r(p^{2}) + s(p^{2})\hat{p}$$

$$U\Gamma_{\mu} = \gamma_{\mu}a(m^{2}) \qquad U\Sigma = r(m^{2}) + s(m^{2})\hat{p}$$

$$IR\text{-safe!} \qquad U \text{ preserves the Ward identity!}$$

For the other types of divergent subgraphs, U= Taylor expansion at 0 up to  $\omega$  order.

## ■L – on-shell renormalization for vertex-like subdiagrams

$$L\Gamma_{\mu} = \gamma_{\mu}(a(m^2) + b(m^2)m + c(m^2)m^2)$$
  
can produce additional IR divergences

#### **Forest formula for AMM**

A set of subgraphs of a diagram is called a **forest** if any two elements of this set don't overlap.

F[G] – the set of all forests of UV-divergent subgraphs in G that contain G. I[G] – the set of all vertex-like UV-divergent subgraphs in G that contains the vertex that is incident to the external photon line of G.

$$\widetilde{f}_{G} = \sum_{\substack{F = \{G_{1}, \dots, G_{n}\} \in \mathsf{F}[G] \\ G' \in \mathsf{I}[G] \cap F}} (-1)^{n-1} K_{G_{1}}^{G'} \dots K_{G_{n}}^{G'} f_{G}$$

$$K_{G''}^{G'} = \begin{cases} A_{G'} \text{ for } G' = G'' \\ U_{G''} \text{ for } G'' \notin I[G], \text{ or } G'' \subseteq G' \text{ and } G'' \neq G' \\ L_{G''} \text{ for } G'' \in I[G], G' \subseteq G'', G'' \neq G, G'' \neq G' \\ (L_{G''} - U_{G''}) \text{ for } G'' = G, G' \neq G \end{cases}$$

$$\bar{f}_G = \text{coefficient before} \gamma_\mu \text{ in } \widetilde{f}_G$$

$$a_e = \sum_G \bar{f}_G$$

Details: S. Volkov, J. Exp. Theor. Phys. (2016), V. 122, N. 6, pp. 1008-1031

## **Example**



Other UV-divergent subgraphs:

electron self-energy –  $a_1a_2$ , vertex-like –  $c_1c_2c_3$ ,  $c_1c_3c_4$ , photon self-energy –  $c_1c_2c_3c_4$ , photon-photon scattering –  $G_d$ =aa $_1a_2b_1b_2c_1c_2c_3c_4d_1d_2d_3$ 

$$\widetilde{f}_{G} = \left[ A_{G} (1 - U_{G_{e}})(1 - U_{G_{c}}) - (L_{G} - U_{G}) A_{G_{e}} (1 - U_{G_{c}}) - (L_{G} - U_{G})(1 - L_{G_{e}}) A_{G_{c}} \right] \cdot (1 - U_{G_{d}})(1 - U_{c_{1}c_{2}c_{3}c_{4}})(1 - U_{c_{1}c_{2}c_{3}} - U_{c_{1}c_{3}c_{4}})(1 - U_{a_{1}a_{2}}) f_{G}$$

## Residual renormalization is not needed



$$B\Sigma(p) = a(m^{2}) + mb(m^{2}) + + (\hat{p} - m)(b(m^{2}) + 2a'(m^{2}) + 2mb'(m^{2})),$$
  
$$\Sigma(p) = a(p^{2}) + b(p^{2})\hat{p}$$

| # | Expression                                              | On-shell renorm.               | Difference                                         |
|---|---------------------------------------------------------|--------------------------------|----------------------------------------------------|
| 1 | $A_G$ - $A_G$ U <sub>abc</sub> - $(L_G$ - $U_G)A_{abc}$ | $A_G$ - $A_G$ L <sub>abc</sub> | $(L_G-U_G)A_{abc}-A_G(L_{abc}-U_{abc})$            |
| 2 | $A_{G}$                                                 | $A_{G}$                        | 0                                                  |
| 3 | $A_G$ - $A_G$ U <sub>bcd</sub>                          | $A_{G}$ - $A_{G}L_{bcd}$       | $A_{G}(U_{abc}-L_{abc})$                           |
| 4 | $A_G$ - $A_G$ U <sub>bcd</sub>                          | $A_{G}$ - $A_{G}L_{bcd}$       | $A_{G}(U_{abc}-L_{abc})$                           |
| 5 | $A_{G}$ - $A_{G}$ U <sub>bc</sub>                       | $A_{G}-A_{G}B_{bc}$            | $A_{G}(U_{bc}-B_{bc})$                             |
| 6 | $A_G$ - $A_G$ U <sub>bc</sub>                           | $A_G - A_G B_{bc}$             | A <sub>G</sub> (U <sub>bc</sub> -B <sub>bc</sub> ) |
| 7 | $A_{G}$ - $A_{G}$ U <sub>de</sub>                       | $A_{G}-A_{G}U_{de}$            | 0                                                  |

## Importance sampling Monte Carlo

- Integral:  $\int_{\Omega} f(x) dx$
- Probability density function: g(x)
- Approximation:  $(1/N)\Sigma_{1 \le j \le N}(f(x_j)/g(x_j))$
- Variance:  $V(f,g) = \int_{O} (f(x)^2/g(x)) dx (\int_{O} f(x) dx)^2$
- Error estimation: σ<sup>2</sup>≈V(f,g)/N
- The goal is to minimize V(f,g) by choosing g(x).

NON-ADAPTIVE MONTE CARLO WORKS FINE FOR HIGH-ORDER CALCULATIONS IN QFT!!!

## Importance sampling: example

• Integral: 
$$\int_{0 \le x_1, \dots, x_n} f(x_1, \dots, x_n) dx_1 \dots dx_n$$
$$f(x_1, \dots, x_n) = a_1 \dots a_n x_1^{a_1 - 1} \dots x_n^{a_n - 1}$$

- Density:  $g(x_1,...,x_n) = b_1...b_n x_1^{b_1-1}...x_n^{b_n-1}$
- Variance:  $V(f,g) = \frac{a_1^2 ... a_n^2}{b_1 ... b_n (2a_1 b_1) ... (2a_n b_n)} 1$
- All  $b_i$  are small => V(f,g) is too big
- $b_j > 2a_j$  for some j = V(f,g) is infinite

## Diagram-specific probability density functions

- Integral:  $\int_{z_1,...,z_M>0} f(z_1,...,z_M) \delta(z_1+...+z_M-1) dz$
- Hepp sectors:  $z_{j_1} \ge z_{j_2} \ge ... \ge z_{j_M}$
- Density:  $C \cdot \frac{\prod\limits_{l=2}^{M} (z_{j_{l}} / z_{j_{l-1}})^{Deg(\{j_{l}, j_{l+1}, ..., j_{M}\})}}{z_{1} \cdot z_{2} \cdot ... \cdot z_{M}},$

#### Deg is defined on subsets of {1,...,M}

(the idea of E.Speer, J. Math. Phys. 9, 1404 (1968))

- My ideas are:
  - 1) how to calculate *Deg*(s) for each set s (taking into account the infrared behavior etc.)
  - 2) how to generate samples fastly

## Obtaining *Deg*(s)

- Sector:  $z_{j_1} \ge z_{j_2} \ge ... \ge z_{j_M}$
- Density:  $C \cdot \frac{\prod\limits_{l=2}^{M} (z_{j_{l}} / z_{j_{l-1}})^{Deg(\{j_{l}, j_{l+1}, \dots, j_{M}\})}}{z_{1} \cdot z_{2} \cdot \dots \cdot z_{M}},$
- •The rules are constructed using ultraviolet degrees of divergence (with the sign '-') of I-closures of sets

(the full description taking into account divergent subdiagrams is in arXiv:1705.05800)

•IClos(s)=sUs', where s' is the set of all photon lines for which the electron path connecting their ends is contained in s

Example:  $IClos(\{1,3,4,5,6,7\})=\{1,3,4,5,6,7,9\}$ 



#### Realization and numerical results

- Monte Carlo integration on Intel-compatible CPUs, NVidia GPUs (Tesla K80, Tesla V100)
- 2 loops: all Feynman diagrams (with electron loops: old, 2015)
- 3 loops: all Feynman diagrams (with electron loops: old, 2015)
- 4 loops: diagrams without electron loops (GPU NVidia Tesla K80, Google Cloud)
- 5 loops: diagrams without electron loops (GPU NVidia Tesla V100, Govorun, JINR, Dubna)
- 6 loops: ladder diagram (NVidia Tesla K80, Google Cloud)

## 2 loops: all Feynman diagrams

NVidia Tesla K80, Google Cloud



| #   | My value       | Analytical value<br>(Petermann, 1957)               |
|-----|----------------|-----------------------------------------------------|
| 1   | 0.77747774(18) | 0.77747802                                          |
| 2   | -0.4676475(17) | -0.46764544                                         |
| 3,4 | -0.0640193(19) | -0.564021–(1/2)log(λ <sup>2</sup> /m <sup>2</sup> ) |
| 5,6 | -0.5899758(14) | -0.089978+(1/2)log(λ <sup>2</sup> /m <sup>2</sup> ) |
| 7   | 0.0156895(25)  | 0.0156874                                           |

**2015**:  $A_1^{(4)} = -0.328513$  (87)

**2018**:  $A_1^{(4)}$ [no lepton loops] = -0.3441651 (34)

#### Analytical, 1957:

$$A_1^{(4)} = -0.328478966 \dots$$
  
 $A_1^{(4)}$ [no lepton loops] = -0.3441663 \dots

old: 2015, personal computer

#### Analytical (1996): 3 loops: all Feynman diagrams $A_1^{(6)}$ [no lepton loops] = 0.90485 (10)

| <b>*</b>                               |                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>\\</b>           | *                                      | Comparison with known analytical values        |             |                |              |             |
|----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|------------------------------------------------|-------------|----------------|--------------|-------------|
|                                        |                                        | A CONTRACTOR OF THE PARTY OF TH | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 75 July 155 |                     | (7)                                    | (8) (8) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | #           | My value       | Analyt. val. | Reference   |
| *                                      | <u>{</u>                               | (3)<br><b>}</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>}</b>                                 | (3)<br><b>}</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>§</b>            | <b>}</b>                               | ş                                              | 1-6         | 0.3708(14)     | 0.3710       | [10]        |
|                                        |                                        | Q7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quinty.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | <i>2</i>                               | 75                                             | 7-10        | 0.04989(20)    | 0.05015      | [4,5]       |
| /************************************* | /~~~~<br>3                             | / <sub>(II)</sub> \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / <sub>(12)</sub> \                      | (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | / <sub>(14)</sub> \ | (15)                                   | (16)                                           | 11-12,15-16 | -0.08782(15)   | -0.08798     | [2,4]       |
|                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | and the same                           | <u> </u>                                       | 13-14,17-18 | -0.11230(17)   | -0.11234     | [3,4]       |
| (17)                                   | (18)                                   | (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\   | (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (22)                | (23)                                   | (24)                                           | 19-21       | 0.05288(13)    | 0.05287      | [1]         |
|                                        |                                        | The state of the s |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                        |                                                | 22          | 0.002548(20)   | 0.002559     | [1]         |
| (25)                                   | (26)                                   | (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (28)                                     | (29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (30)                | (31)                                   | (32)                                           | 23-24       | 1.861914(17)   | 1.861908     | [11]        |
|                                        | *                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                        | <b>}</b>                                       | 25          | -0.0267956(78) | -0.026799    | [12]        |
| (33)                                   | (34)                                   | (35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (36)                                     | (37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (38)                | (39)                                   | (40)                                           | 26-27       | -3.176700(22)  | -3.176685    | [8]         |
| *                                      | *                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>\{</b>           | 3                                      | *                                              | 28          | 1.790285(19)   | 1.790278     | [8]         |
| {                                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                        |                                                | 29-30       | -1.757945(15)  | -1.757936    | [12]        |
| (41)                                   | / <sub>(42)</sub> \                    | / <sub>(43)</sub> \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (44)                                     | (45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | / <sub>(46)</sub> \ | / <sub>(47)</sub> \                    | (48) \<br>\{                                   | 33-34,37-38 | 0.455517(26)   | 0.455452     | [8,11]      |
| £ 7                                    |                                        | {£7~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\   | {\\ \tag{\tag{\tag{\tag{\tag{\tag{\tag{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | {/************************************ | (50)                                           | 31-32,35-36 | 1.541644(37)   | 1.541649     | [7,9]       |
| 7 <sub>(49)</sub> \                    | / <sub>(50)</sub> \                    | / <sub>(51)</sub> \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / <sub>(52)</sub> \                      | / <sub>(53)</sub> \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / <sub>(54)</sub> \ | که <sub>(55)</sub> \                   | / <sub>(56)</sub> ધ્યે<br>ક                    | 39-40       | -0.334691(14)  | -0.334695    | [11]        |
|                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                        |                                                | 41-48       | -0.402749(46)  | -0.402717    | [6,7]       |
| (57)                                   | (58)                                   | (59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (60)                                     | (61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (62)                | (63)                                   | (64)                                           | 49-68       | 0.533289(54)   | 0.533355     | [6-9,11,12] |
|                                        |                                        | £7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | £7                                     |                                                | 69-72       | 0.421080(43)   | 0.421171     | [6,7,9]     |

(72)

- [1] J. Mignaco, E. Remiddi, IL Nuovo Cimento, V. LX A, N. 4, 519 (1969). [2] R. Barbieri, M. Caffo, E. Remiddi, Lettere al Nuovo Cimento, V. 5, N. 11, 769
- (1972).

3-loop Feynman diagrams for electron's AMM. Plot courtesy of F.Jegerlehner

- [3] D. Billi, M. Caffo, E. Remiddi, Lettere al Nuovo Cimento, V. 4, N. 14, 657 (1972).
- [4] R. Barbieri, E. Remiddi, Physics Letters, V. 49B, N. 5, 468 (1974).
- [5] R. Barbieri, M. Caffo, E. Remiddi, Ref.TH.1802-CERN (1974).
- [6] M. Levine, R. Roskies, Phys. Rev. D, V. 9, N. 2, 421 (1974).

- [7] M. Levine, R. Perisho, R. Roskies, Phys. Rev. D, V. 13, N. 4, 997 (1976).
- [8] R. Barbieri, M. Caffo, E. Remiddi et al., Nuclear Physics B 144, 329 (1978).

0.904979

- [9] M. Levine, E. Remiddi, R. Roskies, Phys. Rev. D, V. 20, N. 8, 2068 (1979).
- [10] S. Laporta, E. Remiddi, Physics Letters B 265, 182 (1991).
- [11] S. Laporta, Physics Letters B 343, 421 (1995).
- [12] S. Laporta, E. Remiddi, Physics Letters B 379, 283 (1996).

## 4 loops: diagrams without electron loops

My result: -2.181(10) 1 week on 1 GPU (from NVidia Tesla K80, Google Cloud)

Laporta, 2017: -2.1768660277...

- •269 Feynman diagrams
- •78 classes of diagrams for comparison with the direct subtraction on the mass shell
- •6 gauge-invariant classes (k,m,n)

#### (k,m,n):

m and n photon lines to the right and to the left from the external photon (or vice versa), k photon lines with ends on different sides

#### Example of a diagram from (1,2,1):



| Class   | Value       | Laporta, 2017 |
|---------|-------------|---------------|
| (1,3,0) | -1.9710(44) | -1.97107      |
| (2,2,0) | -0.1415(56) | -0.14248      |
| (1,2,1) | -0.6220(46) | -0.62192      |
| (3,1,0) | -1.0424(44) | -1.04054      |
| (2,1,1) | 1.0842(37)  | 1.08669       |
| (4,0,0) | 0.5120(17)  | 0.51246       |

#### 5 loops: diagrams without electron loops

T. Aoyama, T. Kinoshita, M. Nio, 2017 (90% confidence): 7.606(192)

My result (1σ): 6.641(227) 8656 GPU-hours, NVidia Tesla V100, supercomputer "Govorun" (JINR, Dubna)

- •3213 Feynman diagrams
- •807 classes of diagrams for comparison with the direct subtraction on the mass shell
- •9 gauge-invariant classes (k,m,n)
- •500 GB of the integrands code (compiled)
- •6.5·10<sup>13</sup> Monte Carlo samples

(k,m,n):

m and n photon lines to the right and to the left from the external photon (or vice versa),

k photon lines with ends on different sides

Example of a diagram from (1,2,1):



| Terrorit the external prioton (or vice versa), |                       |                   |                |                    |  |  |  |
|------------------------------------------------|-----------------------|-------------------|----------------|--------------------|--|--|--|
| Class                                          | Value=Σx <sub>j</sub> | N <sub>diag</sub> | $\Sigma  x_j $ | max x <sub>j</sub> |  |  |  |
| (1,4,0)                                        | 6.180(84)             | 706               | 1219.7         | 11.8               |  |  |  |
| (2,3,0)                                        | -0.81(11)             | 706               | 3076.8         | 46.2               |  |  |  |
| (1,3,1)                                        | 0.747(87)             | 148               | 3170.3         | 67.5               |  |  |  |
| (3,2,0)                                        | -0.414(87)            | 558               | 2593.5         | 54.9               |  |  |  |
| (2,2,1)                                        | -2.100(92)            | 370               | 3318.0         | 85.0               |  |  |  |
| (4,1,0)                                        | -1.056(52)            | 336               | 1199.3         | 56.7               |  |  |  |
| (1,2,2)                                        | 0.361(50)             | 55                | 1338.4         | 68.7               |  |  |  |
| (3,1,1)                                        | 2.642(61)             | 261               | 1437.2         | 63.5               |  |  |  |
| (5,0,0)                                        | 1.091(15)             | 73                | 137.0          | 19.3               |  |  |  |

## Ladder diagrams: 5 and 6 loops

(NVidia Tesla K80 (1 GPU), Google Cloud)

| loops | My value    | Analytical value | N <sub>samples</sub> | time    |
|-------|-------------|------------------|----------------------|---------|
| 5     | 11.6530(58) | 11.6592          | 29·10 <sup>9</sup>   | 5 hours |
| 6     | 34.31(20)   | 34.367           | 10 <sup>10</sup>     | 8 hours |

All analytical values are from M. Caffo, S. Turrini, E.Remiddi, Nuclear Physics B141 (1978) 302-310.



## Thank you for your attention!

volkoff\_sergey@mail.ru sergey.volkov.1811@gmail.com

ЖЭТФ, т. 149, вып. 6, стр. 1164-1191 (2016)

J. Exp. Theor. Phys. 122, 1008 (2016)

arXiv:1507.06435 (short version)

subtraction procedure

Phys. Rev. D 96, 096018 (2017)

arXiv:1705.05800

Monte Carlo integration method

Phys. Rev. D 98, 076018 (2018)

arXiv:1807:05281

realization on GPU, 4-loop results for gauge-invariant classes, ...