Caleb Logemann MATH 520 Methods of Applied Math II Homework 2

Section 10.9

#10 Let S_+ and S_- be the left and right shift operators on ℓ^2 . Show that $S_- = S_+^*$ and $S_+ = S_-^*$.

Proof.

- #11 Let T be the Volterra integral operator $Tu = \int_0^x u(y) dy$ considered as an operator on $L^2(0,1)$. Find T^* and $N(T^*)$.
- #12 Suppose $T \in \mathcal{B}(\mathbf{H})$ is self-adjoint and there exists a constant c > 0 such that $||Tu|| \ge c||u||$ for all $u \in \mathbf{H}$. Show that there exists a solution of Tu = f for all $f \in \mathbf{H}$. Show by example that the conclusion may be false if the assumption of self-adjointedness is removed.

Proof. This conclusion may be false if that operator is not self-adjoint. Consider the operator S_+ on ℓ^2 .

#13

#15

#19