Radial Light Rays, Conformal Time and Redshift

1. Radial Light Rays

2. Conformal Time

3. Redshift

Radial Light Rays in FRW Space-time

• Metric in χ form:

$$ds^{2} = dt^{2} - a^{2}(t) \left[d\chi^{2} + S_{K}^{2}(\chi) d\Omega^{2} \right]$$

• Studying light propagation. For a radial photon, $d\Omega^2=0$ and $ds^2=0$, so

$$0 = dt^2 - a^2(t) d\chi^2 \implies \frac{d\chi}{dt} = \pm \frac{1}{a(t)}$$

• Comoving radial distance. The comoving interval χ that a photon covers is obtained by integrating $d\chi=\pm\frac{dt}{a(t)}$ over time.

Still Light Rays

- Interpretation of coordinates: χ is a pure comoving radial coordinate, adapted to the spatial curvature. Angular and radial labels describe the shape of each spatial slice; they are fixed for comoving objects and do not depend on cosmic time.
- Scale factor a(t) governs how the Universe expands. Any comoving interval $d\chi$ converts to proper length via $d\ell=a(t)\,d\chi$.
- Curvature determines how much transverse distance corresponds to a given χ , encoded in $S_K(\chi)$.

Still still Light Rays

- The coordinate χ marks *your* comoving position; it follows the Hubble flow and is the natural radial label that matches the spatial curvature.
- Homogeneity and isotropy ensure that the labels (θ, ϕ, χ) stay fixed for any comoving observer even as the Universe expands.

Scale Factor a(t)

ullet The scale factor a(t) converts a comoving coordinate x^i into a physical coordinate:

$$x_{\mathsf{phys}}^i = a(t) \, x^i.$$

• Spatial line element in χ coordinates:

$$dl^2 = a^2(t) [d\chi^2 + S_K^2(\chi) d\Omega^2].$$

Scale Factor a(t) and Proper Lengths

• Along the radial direction, a small comoving step $d\chi$ becomes a tangential physical distance

$$d_{\parallel} = a(t) \, d\chi$$

ullet A transverse arc at fixed χ (like normal distance of d heta) has length

$$dl_{\perp} = a(t) S_K(\chi) d\theta,$$

where $S_K(\chi)$ encodes curvature while a(t) rescales the entire spatial grid uniformly.

• In short, $S_K(\chi)$ fixes shape; a(t) controls overall size.

Conformal Time

• Definition of conformal time τ :

$$d\tau = \frac{dt}{a(t)},$$

i.e. cosmic time rescaled by the scale factor.

• Intuitive picture: dt is the actual, "stretched" physical time. $d\tau$ behaves like the time measured by the comoving grid; it removes the stretching due to a(t).

Conformal Time

By integrating

$$\tau(t) = \int^t \frac{dt'}{a(t')},$$

one can invert to get $t(\tau)$ whenever needed.

• In conformal coordinates, the factor a(t) is pulled outside the metric; light rays then follow 45-degree lines just as they do in flat space, simplifying many calculations.

FRW Metric in Conformal Form

Put the scale factor back into the metric:

$$ds^{2} = a^{2}(\tau) \left[d\tau^{2} - \left(d\chi^{2} + S_{K}^{2}(\chi) d\Omega^{2} \right) \right].$$

- Interpretation: a static Minkowski metric multiplied by the time-dependent factor $a^2(\tau)$.
- For light (null geodesics) we set $ds^2 = 0$. Therefore

$$d\tau = \pm d\chi$$
,

which is the same condition as in flat Minkowski space.

Redshift

Red-shift of Photons in an Expanding Universe

• For a photon, wavelength λ is proportional to the scale factor a(t):

$$\lambda \propto a(t)$$
.

ullet Comparing emission at time $t_{
m e}$ to observation at time $t_{
m o}$,

$$\lambda_{\mathrm{o}} = \frac{a(t_{\mathrm{o}})}{a(t_{\mathrm{e}})} \, \lambda_{\mathrm{e}}.$$

• Because the Universe has expanded

$$a(t_{\rm o}) > a(t_{\rm e})$$

the observed wavelength is longer, which stretches with the cosmic expansion, producing the cosmological red-shift.:

$$\lambda_{\rm o} > \lambda_{\rm e}$$
.

Classical Waves' Redshift

- Classical waves experience the same cosmological red-shift as light.
- ullet Setup: a galaxy sits at a fixed comoving distance d and emits a signal at cosmic time $t_{
 m e}.$

For a radial null path in FRW,

$$d\tau = d\chi,$$
 $\chi = d \implies \Delta \tau = \Delta \chi = \Delta d.$
$$\tau_e = \tau_0 + \Delta d$$

As τ is stretched with the "grid", it is measured with an "incorrect" scale.

Conformal Time and Physical Time

• The emission and observation point both have the conformal time interval $\Delta \tau$.But to obtain the physical time t, we should multiply different scale factor a(t) with t at t_e and t_o .

$$\Delta t_e = a(t_e) \Delta \tau$$

is the lasting physical time at the emission point.

$$\Delta t_o = a(t_o) \Delta \tau$$

is the lasting physical time at the observed point.

Cosmological Redshift

• Setting c=1, period T equals wavelength λ , so

$$\lambda_{\rm e} = \Delta t_{\rm e}$$

$$\lambda_{\rm o} = \Delta t_{\rm o}$$
.

Therefore

$$\frac{\lambda_{\rm o}}{\lambda_{\rm e}} = \frac{a(t_{\rm o}) \,\Delta \tau}{a(t_{\rm e}) \,\Delta \tau} = \frac{a(t_{\rm o})}{a(t_{\rm e})} = 1 + z,$$

which is the cosmological red-shift relation.