Rekomendacje artykułów opisujących produkty w serwisach e-commerce

Łukasz Dragan

Informatyka spec. Metody sztucznej inteligencji, MiNI PW

31.10.2017

Plan prezentacji

- Opis problemu
- 2 Systemy rekomendacji
- 3 Techniki przetwarzania języka naturalnego
- Metody ewaluacji
- Testy
- 6 Podsumowanie
- Wybrane źródła

Cel pracy

Czy metody semantycznej analizy tekstu mogą być alternatywą dla dotychczas używanej przez *Allegro* metody generowania rekomendacji artykułów tekstowych?

pracuj.pl

filmweb.pl

allegro.pl

allegro.pl cd

Śnieżko

EKO ŚNIEŻKA BIAŁA FARBA

EMULSJA 10L

Śnieżko

EKO ŚNIEŻKA BIAŁA FARBA

EMULSJA 10L

Emulsia Hipo

Śnieżka EKO

Ombre stało się hitem w wizażu i modzie już kilka sezonów temul Chętnie rozjaśniamy końcówki włosów, cieniujemy kolory na paznokciach, a także nosimy ubrania w przenikających się tonach. Czy tę technikę mo...

Moje Allegro V

Jak przemalować ciemną ścianę?

Planujesz remont mieszkania, a jednym z jego etapów będzie przemalowanie ciemnej ściany? A może po prostu znudził ci się niemodny już kolor? Jeśli zastanawiasz się, jak prawidłowo przemalować ścianę, spraw...

*) d (.

ŚNIEŻKA EKO Farba Emulsia

Hipoalergiczna 10l

Elasticsearch

"Elasticsearch is a distributed, JSON-based search and analytics engine designed for horizontal scalability, maximum reliability, and easy management."

Systemy rekomenadacji

W ujęciu ogólnym systemy wyszukiwania mają na celu sugerowanie tego, co użytkownik chciałby otrzymać. Natomiast systemy rekomendacji mają sugerować przedmioty potrzebne użytkownikowi nawet, jeżeli potrzeby te nie zostały bezpośrednio wyrażone.

Systemy rekomenadacji

Zarys podejścia

1.168785 0.060346 0.502299 0.291747 -0.365562 0.257444 -0.329024 0.758068 0.139132 -0.066573 1 171894 0 076840 -0 002970 -0 360585 -0 144586 0.105688 -0.528267 0.377016 0.220084 -0.132361 -0.232592.0.338373.0.106514.0.096009.-0.068181 -0.698880 0.040483 -0.820396 0.110031 -0.493751 -0.339397 0.278281 -0.000135 -0.121884 0.107060 -0.001215 -0.348834 0.399166 0.391983 0.197091 -0.837996 -0.081890 -0.534775 0.589362 0.278594 -0.724953 0.143085 -0.308889 -0.051467 0.133181 0.110936 -0.159592 -0.338680 0.324832 -0.227569 -0.257161 -0.403050 -0.355761 0.111366 0.127810 -0.045948 0.256404 -0.413172 -0.565309 0.252026 -0.178040 0.353451 -0.043467 0.437229 -0.364093 0.620433 0.491961 -0.044899 0.075592 -0.035806 0.552777 0.539595 -0.307839 -0.488252 0.494307 -0.506171 0.517397 0.010668 -0.247984 0.322363

Zarys podejścia

1.168785 0.060346 0.502299 0.291747 -0.365562 0.257444 -0.329024 0.758068 0.139132 -0.066573 1 171894 0 076840 -0 002970 -0 360585 -0 144586 0.105688 -0.528267 0.377016 0.220084 -0.132361 -0.232592.0.338373.0.106514.0.096009.-0.068181 -0.698880 0.040483 -0.820396 0.110031 -0.493751 -0.339397 0.278281 -0.000135 -0.121884 0.107060 -0.001215 -0.348834 0.399166 0.391983 0.197091 -0.837996 -0.081890 -0.534775 0.589362 0.278594 -0.724953 0.143085 -0.308889 -0.051467 0.133181 0.110936 -0.159592 -0.338680 0.324832 -0.227569 -0.257161 -0.403050 -0.355761 0.111366 0.127810 -0.045948 0.256404 -0.413172 -0.565309 0.252026 -0.178040 0.353451 -0.043467 0.437229 -0.364093 0.620433 0.491961 -0.044899 0.075592 -0.035806 0.552777 0.539595 -0.307839 -0.488252 0.494307 -0.506171 0.517397 0.010668 -0.247984 0.322363

Dystans między wektorami

Dystans między wektorami

$$sim = \cos(\theta) = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$$
 (1)

gdzie A_i i B_i są składowymi wektorów A i B_i

Bag-of-words

- (1) John likes to watch movies. Mary likes movies too.
- (2) John also likes to watch football games.

Bag-of-words

- (1) John likes to watch movies. Mary likes movies too.
- (2) John also likes to watch football games.

```
"John",
  "likes",
  "to",
  "watch",
  "movies",
  "Mary",
  "too",
  "also",
  "football",
  "games"
]
```

Bag-of-words

- (1) John likes to watch movies. Mary likes movies too.
- (2) John also likes to watch football games.

```
[

"John",

"likes",

"to",

"movies",

"Mary",

"too",

"also",

"football",

"games"
]
```

```
(1) [1, 2, 1, 1, 2, 1, 1, 0, 0, 0]
(2) [1, 1, 1, 1, 0, 0, 0, 1, 1, 1]
```

TF – term frequency, IDF – inverse document frequency

Wartość TF-IDF słowa w_i w dokumencie d_j :

$$tfidf_{ij} = tf_{ij} * idf_i, \ tf_{ij} = \frac{n_{ij}}{\sum_{k} n_{kj}}, \ idf_i = log \frac{|D|}{|d: w_i \in d|}$$
 (2)

- tf_{ij}: liczba wystąpień słowa w_i w dokumencie d_j podzielona przez liczbę słów dokumentu d_j,
- idf_i: liczba dokumentów w korpusie podzielona przez liczbę dokumentów zawierających przynajmniej jedno wystąpienie słowa w_i.

TF-IDF

Zalety:

prostota

TF-IDF

Zalety:

prostota

Wady:

• duża wymiarowość wektorów

TF-IDF

Zalety:

prostota

Wady:

- duża wymiarowość wektorów
- wektory niemalże ortogonalne

Semantyka dystrybucyjna

Distributional hypothesis — "słowa występujące w tym samym kontekście niosą ze sobą podobne znaczenie."

Latent semantic indexing (1988)

Redukcja wymiarowości macierzy wystąpień słów w dokumentach

	d_1	d_2	d_3	d_4	d_5	d_6
statek	1	0	1	0	0	0
łódź	0	1	0	0	0	0
ocean	1	1	0	0	0	0
podróż	1	0	0	1	1	0
wycieczka	0	0	0	1	0	1

Hiperparametr: docelowa wymiarowość

Latent semantic indexing (1988)

Rozkład według wartości osobliwych:

$$A = U\Sigma V^T, \tag{3}$$

U i V to macierze ortogonalne Σ to macierz diagonalna, taka, że $\Sigma = diag(\sigma_i)$, gdzie σ_i , to nieujemne wartości szczególne macierzy A.

Latent semantic indexing (1988)

Rozkład według wartości osobliwych:

$$A = U\Sigma V^T, \tag{3}$$

U i V to macierze ortogonalne Σ to macierz diagonalna, taka, że $\Sigma = diag(\sigma_i)$, gdzie σ_i , to nieujemne wartości szczególne macierzy A.

• {(statek), (łódź), (ocean)} \rightarrow {(1.3452 * statek + 0.2828 * łódź), (ocean)}

Latent Dirichlet allocation (2003)

- Automatyczne wykrywanie tematów zawartych w dokumentach
- Dokumenty jako mieszanki tematów
- Tematy jako rozkłady prawdopodobieństwa na zbiorze słów
- Hiperparametr: docelowa liczba tematów

Latent Dirichlet allocation (2003)

Algorytm — próbkowanie Gibbsa:

- Przejdź przez każdy dokument i losowo (zgodnie z rozkładem Dirichleta) przypisz każde słowo dokumentu do jednego z T tematów.
- ② Dla każdego dokumentu d, dla każdego słowa w należącego do d, dla każdego tematu t oblicz: p(t|d) oraz oblicz p(w|t) Przypisz słowu w nowy temat poprzez losowanie z prawdopodobieństwem $p(t_i|d)*p(w|t)$ dla każdego tematu t_i .

Word embeddings

- Osadzanie słów w przestrzeni wektorowej
- Uczenie nienadzorowane
- Niska wymiarowość wektorów
- Reprezentacja słów wraz z zależnościami pomiędzy nimi

Word embeddings

- Osadzanie słów w przestrzeni wektorowej
- Uczenie nienadzorowane
- Niska wymiarowość wektorów
- Reprezentacja słów wraz z zależnościami pomiędzy nimi

Word2vec (2013)

płytkiej sieci neuronowej typu feed-forward

FastText (2017)

GloVe (2014)

- Globalna macierz współwystąpień słów. Ile razy słowo w_i występuje w kontekście słowa w_j
- Zgromadź współwystąpienia słów w formie macierzy X. Każdy element X_{ij} takiej macierzy reprezentuje jak często słowo i występuje w pobliżu słowa j. Zazwyczaj macierz buduje się poprzez skanowanie bazowego korpusu oknem o ustalonej szerokości, w obrębie którego centralne słowo leży w kontekście słów je otaczających. Dodatkowo można tu wprowadzić wagi dla słów malejące wraz ze wzrostem dystansu od słowa centralnego.
- ② Zdefiniuj ograniczenie dla każdej pary słów: $w_i^T w_j + b_i + b_j = log(X_{ij})$, gdzie w_i oznacza wektor głównego słowa, w_j słowa leżącego w pobliżu i, b_i i b_j to skalary.
- Zdefiniuj funkcję kosztu 4:

$$J = \sum_{i=1}^{V} \sum_{j=1}^{V} f(X_{ij}) (w_i^T w_j + b_i + b_j - \log X_{ij})^2, \tag{4}$$

Centroid

Word Mover's Distance

Dystans pomiędzy dokumentami A i B to minimalny skumulowany dystans jaki słowa dokumentu A muszą "przebyć", aby osiągnąć słowa dokumnetu B

Analiza danych

- 20000 artykułów tekstowych w formacie JSON
- język polski
- słowa specyficzne dla różnych branż
- struktura artykułu:
 - treść: tytuł, nagłówek, tekst
 - metadane: id, kategoria, słowa kluczowe

Wstępne przetwarzanie danych

Oczyszczanie tekstu ze znaczników

Wstępne przetwarzanie danych

- Oczyszczanie tekstu ze znaczników
- Usunięcie słów stopu

Słowa stopu

a, aby, ach, acz, aczkolwiek, aj, albo, ale, ależ, ani, aż, bardziej, bardzo, bo, bowiem, by, byli, bynajmniej, być, był, była, było, były, będzie, będą, cali, cała, cały, ci, cię, ciebie, co, cokolwiek, coś, czasami, czasem, czemu, czy, czyli, daleko, dla, dlaczego, dlatego, do, dobrze, dokąd, dość, dużo, dwa, dwaj, dwie, dwoje, dziś, dzisiaj, gdy, gdyby, gdyż, gdzie, gdziekolwiek, gdzieś, go, i...

- Oczyszczanie tekstu ze znaczników
- Usunięcie słów stopu

- Oczyszczanie tekstu ze znaczników
- Usunięcie słów stopu
- 3 Zamiana na małe litery

- Oczyszczanie tekstu ze znaczników
- Usunięcie słów stopu
- 3 Zamiana na małe litery
- Tokenizacja i lematyzacja

Preprocessing - przykład

Każda mama cieszy się, gdy jej maluszek z apetytem zjada przygotowany przez nią posiłek.

```
"mama",
"cieszyć",
"maluszek",
"apetyt",
"zjadać",
"przygotować",
"posiłek"
```

Liczba wspólnych kategorii

Miara jakości wyszukiwania: Normalized Discounted Cumulative Gain

Discounted Cumulative Gain:

$$DCG_{p} = \sum_{i=1}^{p} \frac{rel_{i}}{\log_{2}(i+1)},$$
(6)

gdzie p to liczba elementów rankingu, i to miejsce przedmiotu w rankingu, a rel to poziom relewantności elementu.

Miara jakości wyszukiwania: Normalized Discounted Cumulative Gain

Discounted Cumulative Gain:

$$DCG_{p} = \sum_{i=1}^{p} \frac{rel_{i}}{\log_{2}(i+1)},$$
(6)

gdzie *p* to liczba elementów rankingu, *i* to miejsce przedmiotu w rankingu, a *rel* to poziom relewantności elementu.

Normalized Discounted Cumulative Gain:

$$nDCG_{p} = \frac{DCG_{p}}{IDCG_{p}}.$$
 (7)

Liczba wspólnych słów kluczowych

Kliknięcia użytkowników serwisu

clicks — ocena na podstawie historycznej aktywności użytkowników mierzona na podstawie liczby kliknięć w odnośniki.

Ocena użytkowników offline

- mut_kw[_ndcg] relewantność wyszukanych artykułów liczona na podstawie liczby wspólnych słów kluczowych z artykułem bazowym. Również stosuję dwa warianty: średnia relewantność wyszukanych artykułów oraz miara nDCG.
- users ocena na podstawie eksperckiej oceny użytkowników. W badaniu wykorzystałem 5 użytkowników operujących każdy na tym samym zbiorze par testowych. Pary zostały wygenerowane (zgodnie z wcześniejszym opisem metody) na podstawie 50 artykułów bazowych wylosowanych spośród wszystkich artykułów udostępnionych mi przez Allegro.

LSI w zależności od liczby tematów

LDA w zależności od liczby tematów

Word2vec w zależności od korpusu

Word2vec w zależności od długości wektorów

GloVe w zależności od długości wektorów

FastText w zależności od długości wektorów

Wyniki ewaluacji eksperckiej dla wybranych metod

Porównanie odchyleń standardowych ocen eksperckich dla wybranych metod

Brak istotnych statystycznie różnic między wynikami wszystkich metod

- Brak istotnych statystycznie różnic między wynikami wszystkich metod
- Im dłuższe wektory word embeddings tym lepsze rezultaty

- Brak istotnych statystycznie różnic między wynikami wszystkich metod
- Im dłuższe wektory word embeddings tym lepsze rezultaty
- Większa liczba tematów nie implikuje lepszych rezultatów

- Brak istotnych statystycznie różnic między wynikami wszystkich metod
- Im dłuższe wektory word embeddings tym lepsze rezultaty
- Większa liczba tematów nie implikuje lepszych rezultatów
- ..

Kiernki dalszych badań

Wnioski

testowane metody nie odbiegają jakością od dotychczasowej. python elasticsearch nlp trudno jest zmierzyc efekty

Wybrane źródła

- D. M. Blei, A. Y. Ng, M. I. Jordan, *Latent Dirichlet Allocation*, Journal of Machine Learning Research, tom 3 num. 4–5, 2003
- S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman, *Indexing by latent semantic analysis*, Journal of the American Society for Information Science, tom 41, num. 6, 1990
- A. Joulin, E. Grave, P. Bojanowski T. Mikolov, *Bag of Tricks for Efficient Text Classification*, Facebook Al Research, 2016
- T. Mikolov, K. Chen, G. Corrado, J. Dean, *Efficient Estimation of Word Representations in Vector Space*, International Conference on Machine Learning (ICML), 2013
- J. Pennington, R. Socher, C. D. Manning, *GloVe: Global Vectors for Word Representation*, Computer Science Department, Stanford University, Stanford, CA 94305, 2014