

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁷:
C07B 39/00, C07C 201/12, 205/12, C07B 37/04

(11) Numéro de publication internationale:

WO 00/58240

(43) Date de publication internationale:

5 octobre 2000 (05.10.00)

(21) Numéro de la demande internationale:

PCT/FR00/00828

A1

(22) Date de dépôt international:

31 mars 2000 (31.03.00)

(30) Données relatives à la priorité:

99/04036

31 mars 1999 (31.03.99)

FR

- (71) Déposant (pour tous les Etats désignés sauf US): RHO-DIA CHIMIE [FR/FR]; 25, quai Paul Doumer, F-92408 Courbevoie Cedex (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (US seulement): SAINT-JALMES, Laurent [FR/FR]; 16, rue Latouche Tréville, F-69330 Meyzieu (FR). LECOMTE-NORRANT, Edith [FR/FR]; 55, rue du Chêne, F-69500 Bron (FR). LAURAIN, Nathalie [FR/FR]; 31, rue de la Visina, F-69540 Irigny (FR).
- (74) Mandataire: JACOBSON, Claude; Cabinet Lavoix, 2, place d'Estienne d'Orves, F-75441 Paris Cedex 09 (FR).
- (81) Etats désignés: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet européen (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

- (54) Title: METHOD FOR ACTIVATING AROMATIC SUBSTRATES BY MICROWAVES
- (54) Titre: PROCEDE D'ACTIVATION DE SUBSTRATS AROMATIQUES PAR MICRO-ONDES

$$(R)_{n}$$
 (I)

(57) Abstract

The invention relates to a method for carrying out an SNAr-type nucleophilic substitution on an aromatic substrate, characterized in that an aromatic substrate of general formula (I), wherein A represents an aromatic residue motif, X represents a substituent that can be exchanged by an SNAr reaction, R represents one or several substituents that can at least partially deactivate said aromatic substrate, is subjected to the action of microwaves in an organic medium and in the presence of at least one nucleophilic agent that can be exchanged with said substituent X and at least one cationic phase transfer catalyst.

(57) Abrégé

La présente invention a pour objet un procédé utile pour réaliser une substitution nucléophile de type SNAr sur un substrat aromatique caractérisé en ce que l'on soumet un substrat aromatique de formule générale (I) dans laquelle: A symbolise un reste d'un motif aromatique; X représente un substituant susceptible d'être échangé par une réaction SNAr; R représente un ou plusieurs substituants, capable(s) de désactiver au moins partiellement ledit substrat aromatique à l'action de micro-ondes en milieu organique et en présence d'au moins un agent nucléophile susceptible de s'échanger avec ledit substituant X et d'au moins un catalyseur de transfert de phase cationique.

${\it UNIQUEMENT~A~TITRE~D'INFORMATION}$

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL Albanie ES Espagne LS Lesotho SI Slovénie AM Arménie FI Finlande LT Lituanie SK Slovaquie AT Autriche FR France LU Luxembourg SN Sénégal AU Australie GA Gabon LV Lettonie SZ Swazilane AZ Azerbaïdjan GB Royaume-Uni MC Monaco TD Tchad BA Bosnie-Herzégovine GE Géorgie MD République de Moldova TG Togo BB Barbade GH Ghana MG Madagascar TJ Tadjikista BE Belgique GN Guinée MK Ex-République yougoslave TM Turkméni BF Burkina Faso GR Grèce de Macédoine TR Turquie BG Bulgarie HU Hongrie ML Mali TT Trinité-et BJ Benin IE Irlande MN Mongolie UA Ukraine BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbekis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CM Cameroun ER République de Corée PT Portugal CC Congo KE KR République de Corée PT Portugal CC Cuba KZ Kazakstan RO Roumanie CC République tchèque LC Sainte-Lucie RO Sounan	
AM Arménic FI Finlande LT Lituanie SK Slovaquie AT Autriche FR France LU Luxembourg SN Sénégal AU Australie GA Gabon LV Lettonie SZ Swazilanc AZ Azerbaïdjan GB Royaume-Uni MC Monaco TD Tchad BA Bosnic-Herzégovine GE Géorgie MD République de Moldova TG Togo BB Barbade GH Ghana MG Madagascar TJ Tadjikista BE Belgique GN Guinée MK Ex-République yougoslave TM Turkméni BF Burkina Faso GR Grèce de Macédoine TR Turkméni BG Bulgarie HU Hongrie ML Mali TT Trinité-et BJ Bénin IE Irlande MN Mongolie UA Ukraine BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbekis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CCI Côte d'Ivoire KP République populaire CM Cameroun démocratique de Corée PL Pologne CCI Cuba KZ Kazakstan RO Roumanie CCZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
ATT Autriche FR France LU Luxembourg SN Senegal AU Australie GA Gabon LV Lettonie SZ Swaziland AZ Azerbaidjan GB Royaume-Uni MC Monaco TD Tchad BA Bosnie-Herzégovine GE Géorgie MD République de Moldova TG Togo BB Barbade GH Ghana MG Madagascar TJ Tadjikista BE Belgique GN Guinée MK Ex-République yougoslave TM Turkméni de Macédoine TR Turquie BF Burkina Faso GR Grèce de Macédoine TR Turquie BG Bulgarie HU Hongrie ML Mali TT Trinité-et BJ Bénin IE Irlande MN Mongolie UA Ukraine BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CG Congo KE Kenya NL Pays-Bas YU Yougosla CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CC CM Cameroun démocratique de Corée PL Pologne CC CN Chine KR République populaire NZ Nouvelle-Zélande CC République tchèque LC Sainte-Lucie RU Fédération de Russie	
AU Australie GA Gabon LV Lettonie SZ Swaziland AZ Azerbaidjan GB Royaume-Uni MC Monaco TD Tchad BA Bosnie-Herzégovine GE Géorgie MD République de Moldova TG Togo BB Barbade GH Ghana MG Madagascar TJ Tadjikista BE Belgique GN Guinée MK Ex-République yougoslave TM Turkméni BF Burkina Faso GR Grèce de Macédoine TR Turquie BG Bulgarie HU Hongrie ML Mali TT Trinité-et BJ Bénin IE Irlande MN Mongolie UA Ukraine BR Brésil II Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CCI Côte d'Ivoire KP République populaire CM Cameroun démocratique de Corée PL Pologne CCN Caneda KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
AZ Azerbaldjan GB Royaume-Uni MC Monaco TD Tchad BA Bosnie-Herzégovine GE Géorgie MD République de Moldova TG Togo BB Barbade GH Ghana MG Madagascar TJ Tadjikista BE Belgique GN Guinée MK Ex-République yougoslave TM Turkméni BF Burkina Faso GR Grèce de Macédoine TR Turquie BG Bulgarie HU Hongrie ML Mali TT Trinité-et BJ Bénin IE Irlande MN Mongolie UA Ukraine BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Câte d'Ivoire KP République populaire CM Cameroun démocratique de Corée PL Pologne CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
BA Bosnic-Herzégovine GE Géorgie MD République de Moldova TG Togo BB Barbade GH Ghana MG Madagascar TJ Tadjikista BE Belgique GN Guinée MK Ex-République yougoslave TM Turkméni BF Burkina Faso GR Grèce de Macédoine TR Turquie BG Bulgarie HU Hongrie ML Mali TT Trinité-et BJ Bénin IE Irlande MN Mongolie UA Ukraine BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Côte d'Ivoire KP République populaire CM Cameroun démocratique de Corée PL Pologne CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
BB Barbade GH Ghana MG Madagascar TJ Tadjikista BE Belgique GN Guinée MK Ex-République yougoslave TM Turkméni BF Burkina Faso GR Grèce de Macédoine TR Turquie BG Bulgarie HU Hongrie ML Mali TT Trinité-et- BJ Bénin IE Irlande MN Mongolie UA Ukraine BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Côte d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
BE Belgique GN Guinée MK Ex-République yougoslave TM Turkméni de Macédoine TR Turquie TR Turquie BF Burkina Faso GR Grèce de Macédoine TR Turquie TR Turquie BG Bulgarie HU Hongrie ML Mali TT Trinité-et BJ Bénin IE Irlande MN Mongolie UA Ukraine BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CT CAmeroun démocratique de Corée PL Pologne CM Cameroun démocratique de Corée PL Pologne CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	1
BF Burkina Faso GR Grèce de Macédoine TR Turquie BG Bulgarie HU Hongrie ML Mali TT Trinité-et BJ Bénin IE Irlande MN Mongolie UA Ukraine BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Côte d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
BG Bulgarie HU Hongrie ML Mali TT Trinité-et BJ Bénin IE Irlande MN Mongolie UA Ukraine BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Côte d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
BJ Bénin IE Irlande MN Mongolie UA Ukraine BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Côte d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	Cohago
BR Brésil IL Israël MR Mauritanie UG Ouganda BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Che d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	COLGO
BY Bélarus IS Islande MW Malawi US Etats-Uni CA Canada IT Italie MX Mexique UZ Ouzbékis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosta CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Côte d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
CA Canada IT Italie MX Mexique UZ Ouzbekis CF République centrafricaine JP Japon NE Niger VN Viet Nam CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Côte d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Porrugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	d'Amérique
CF République centrafricaine CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Côte d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
CG Congo KE Kenya NL Pays-Bas YU Yougosla CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Côte d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
CH Suisse KG Kirghizistan NO Norvège ZW Zimbabw CI Che d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	i.
CI Côte d'Ivoire KP République populaire NZ Nouvelle-Zélande CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Porrugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
CM Cameroun démocratique de Corée PL Pologne CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
CN Chine KR République de Corée PT Portugal CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
CU Cuba KZ Kazakstan RO Roumanie CZ République tchèque LC Sainte-Lucie RU Fédération de Russie	
Danie Buck Ro Federation de Russie	
DE Allemagne LI Liechtenstein SD Soudan	
DK Danemark LK Sri Lanka SE Suède	
EE Estonie LR Libéria SG Singapour	

5

20

25

1

PCT/FR00/00828

PROCEDE D'ACTIVATION DE SUBSTRATS AROMATIQUES PAR MICRO-ONDES.

La présente invention concerne une nouvelle méthode pour réaliser des substitutions nucléophiles de type SNAr et notamment utiles pour effectuer des échanges entre fluor et halogène(s) de rang plus élevé sur un substrat aromatique.

L'invention s'intéresse plus particulièrement aux réactions de substitution nucléophile aromatique impliquant le schéma réactionnel suivant :

- attaque d'un agent nucléophile au niveau d'un substrat aromatique
 avec création d'une liaison entre ledit agent nucléophile et ledit substrat, au niveau d'un carbone portant un groupe partant, de manière à former un composé intermédiaire dit intermédiaire de Meisenheimer puis
 - départ dudit groupe partant.

15 Ce type de réactions est particulièrement avantageux pour obtenir des dérivés aromatiques halogénés.

Le groupe partant généralement retenu est un groupement nitro de préférence un pseudohalogène ou plus préférentiellement un atome d'halogène.

On entend désigner par pseudohalogène, un groupement dont le départ conduit à un anion oxygéné, la charge anionique étant portée par l'atome de chalcogène et dont l'acidité, exprimée par la constante de Hammett, est au moins égale à celle de l'acide acétique, avantageusement à la seconde acidité de l'acide sulfurique et de préférence à celle de l'acide trifluoroacétique.

A titre illustratif de ce type de pseudohalogènes, on peut en particulier citer les acides sulfinique et sulfonique, perhalogénés sur le carbone porteur du soufre ainsi que les acides carboxyliques perfluorés en α de la fonction carboxylique.

5

10

15

20

25

30

2

PCT/FR00/00828

Lorsque le groupe partant est un groupement nitro, ce dernier est généralement remplacé par un atome de chlore en utilisant NH₄Cl, PCl₅, SOCl₂, HCl, Cl₂ ou CCl₄. Toutefois, la plupart de ces réactifs nécessite d'opérer à des températures élevées et le mécanisme ne s'avère pas toujours être une substitution nucléophile. Par ailleurs, le départ du groupe nitro conduit à la formation de dérivés oxygénés d'azote particulièrement agressifs à l'égard du substrat.

La demande W0 97/41083 propose un procédé pour substituer par un atome de fluor, un groupement aminé primaire présent soit sur un aromatique ou un acide aminé, la réaction étant activée par ultrasons ou micro-ondes. En fait, les seuls tests menés sous micro-ondes concernent les acides aminés. Par ailleurs, la réaction d'un sel de diazonium avec un fluor n'est pas nécessairement assimilable à une substitution nucléophile de type SNAr. Ce type de réaction ne relève pas du domaine de l'invention.

En ce qui concerne la variante impliquant la substitution d'un atome d'halogène présent sur un noyau aromatique par un autre atome d'halogène, elle nécessite généralement au moins une désactivation partielle dudit noyau. A cet effet, le radical aryle à transformer est de préférence appauvri en électrons et possède une densité électronique au plus égale à celle du benzène, de préférence au plus voisine de celle d'un halobenzène.

Cet appauvrissement peut être dû à la présence dans le cycle aromatique d'un hétéroatome comme par exemple dans la pyridine, la quinoléïne. Dans ce cas particulier, l'appauvrissement est suffisamment important pour que la réaction de substitution soit très facile et ne nécessite pas d'activation annexe particulière. L'appauvrissement en électrons peut être également induit par des substituants électro-attracteurs présents sur ce cycle aromatique. Ces substituants sont de préférence choisis parmi les groupes attracteurs par effet inductif ou par effet mésomère tel que défini dans l'ouvrage de référence en chimie organique "Advanced organic chemistry" par M.J. MARCH, 3ème édition,

10

15

20

25

30

éditeur Willey, 1985 (cf notamment pages 17 et 238). A titre illustratif de ces groupes électro-attracteurs, on peut notamment citer les groupes NO₂, ammoniums quaternaires, Rf et notamment CF₃, CHO, CN, COY avec Y pouvant être un atome de chlore, brome, fluor ou un groupement alcoyloxyle.

Les réactions d'échanges halogène-halogène évoquées ci-dessus constituent en fait la voie de synthèse principale pour accéder aux dérivés fluorés aromatiques.

C'est ainsi que l'une des techniques les plus employées pour fabriquer un dérivé fluoré consiste à faire réagir un dérivé aromatique halogéné, en général chloré, pour échanger le ou les halogène(s) avec un ou plusieurs(s) fluor(s) d'origine minérale. On utilise, en général, un fluorure de métal alcalin, le plus souvent d'un poids atomique élevé tel que par exemple les fluorures de potassium, de césium ou de rubidium.

En général, le fluorure utilisé est le fluorure de potassium qui constitue un compromis économique satisfaisant.

Dans ces conditions, de nombreux procédés tels que par exemple ceux décrits dans le certificat d'addition français N°2 353 516 et dans l'article Chem. Ind.(1978)-56 ont été proposés et mis en œuvre industriellement pour obtenir des fluorures d'aryle, aryles sur lesquels sont greffés des groupements électro-attracteurs ou bien aryles naturellement pauvres en électrons, comme par exemple les noyaux pyridiniques.

Toutefois, sauf dans le cas où le substrat est particulièrement adapté à ce type de synthèse, cette technique présente des inconvénients dont les principaux sont ceux que l'on va analyser ci-après.

La réaction est lente et nécessite, en raison d'un temps de séjour élevé, des investissements importants. Cette technique, ainsi qu'on l'a déjà mentionné, est en général utilisée à des températures élevées pouvant atteindre les alentours de 250°C, c'est-à-dire dans la zone où les solvants organiques les plus stables commencent à se décomposer.

5

10

15

20

4

PCT/FR00/00828

Les rendements restent relativement médiocres à moins que l'on utilise des réactifs particulièrement chers comme les fluorures de métal alcalin dont la masse atomique est supérieure à celle du potassium.

Enfin, compte tenu du prix de ces métaux alcalins, leur utilisation industrielle n'est justifiable que pour des produits à haute valeur ajoutée et lorsque l'amélioration de rendement et de cinétique le justifie ce qui est rarement le cas.

De manière inattendue, les inventeurs ont mis en évidence qu'il était possible d'activer significativement ces substitutions nucléophiles aromatiques en soumettant le substrat aromatique à transformer des micro-ondes.

L'invention vise ainsi plus particulièrement l'activation de substrats aromatiques anioniques ou neutres, et de préférence neutres. En effet, le procédé ne se révèle pas particulièrement avantageux pour l'activation d'un substrat aromatique chargé cationique et dont au moins une formule de résonance amène ladite charge cationique au niveau du noyau aromatique.

Plus précisément, la présente invention a pour objet un procédé utile pour réaliser une substitution nucléophile de type SNAr sur un substrat aromatique caractérisé en ce que l'on soumet un substrat aromatique de formule générale I

$$(R)_n$$

dans laquelle

 A symbolise un reste d'un motif aromatique, mono ou polycyclique et comprenant le cas échéant un ou plusieurs hétéroatome(s), ou d'un groupe divalent constitué par un enchaînement de deux ou plusieurs motifs aromatiques monocycliques,

10

15

20

- X représente un substituant susceptible d'être échangé par une réaction SNAr et différent d'un groupement nitro ou ammonium quaternaire,
- R représente un ou plusieurs substituants, identiques ou différents, dont l'un au moins est capable d'appauvrir au moins partiellement ledit substrat aromatique,
 - n représente 0 ou un entier variant de 1 à 4, et
- p représente un nombre entier variant de 1 à 3 et de préférence 1 ou
 2, avec n+p représentant un nombre entier ne pouvant être supérieur au nombre d'atomes de carbone du cycle symbolisé par A et qui sont susceptibles d'être substitués,

à l'action de micro-ondes en milieu organique, en présence d'au moins un agent nucléophile susceptible de s'échanger avec le ou au moins l'un des substituants X et d'au moins un catalyseur de transfert de phase cationique choisi de préférence parmi les composés de type onium, les cations césium ou rubidium et leurs mélanges.

Avantageusement, lorsque A symbolise un hétérocycle aromatique, n peut être égal à zéro.

Selon une variante privilégiée de l'invention, le composé de formule générale I répond à la formule générale Ia.

$$(R)_{n} (X)_{p}$$

$$(R)_{n} (la)$$

25

dans laquelle m représente un nombre entier égal à 0 ou 1 et les symboles X, R, n et p sont tels que définis ci-dessus.

Plus préférentiellement, ledit substrat aromatique répond à la 30 formule générale lb.

. WO 00/58240

5

10

15

20

25

6

PCT/FR00/00828

avec X, R, m et n tels que définis ci-dessus.

En ce qui concerne le substituant X présent sur le cycle aromatique, il représente au moins un groupement pseudohalogène ou de préférence un atome d'halogène choisi parmi le chlore, le brome et l'iode.

On entend désigner par pseudohalogène, un groupement dont le départ conduit à un anion oxygéné, la charge anionique étant portée par l'atome de chalcogène et dont l'acidité, exprimée par la constante de Hammett, est au moins égale à celle de l'acide acétique, avantageusement à la seconde acidité de l'acide sulfurique et de préférence à celle de l'acide trifluoroacétique.

A titre illustratif de ce type de pseudohalogènes, on peut en particulier citer les acides sulfinique et sulfonique, perhalogénés sur le carbone porteur du soufre ainsi que les acides carboxyliques perfluorés en α de la fonction carboxylique.

La réaction de substitution nucléophile étant relativement facilitée lorsque X représente un atome d'iode ou un atome de fluor, le procédé revendiqué est plus particulièrement intéressant lorsque X symbolise un atome de chlore, brome ou un pseudohalogène.

En ce qui concerne le ou les groupements R présent(s) au niveau du noyau aromatique, ils sont sélectionnés de manière à ce qu'ils induisent globalement un appauvrissement en électron au niveau du noyau qui soit suffisant pour permettre l'activation du substrat et la stabilisation du complexe Meisenheimer.

Le substrat aromatique ainsi substitué possède une densité électronique au plus égale à celle du benzène et de préférence au plus voisine de celle d'un halobenzène.

Cet appauvrissement peut être également dû à la présence dans le cycle aromatique d'un hétéroatome comme par exemple dans la pyridine,

5

10

7

PCT/FR00/00828

la quinoléïne. Il est important de souligner que ce type d'appauvrissement n'est observé que lorsque A symbolise un cycle à 6 carbones et l'hétéroatome appartient à la colonne V tel que défini dans le tableau de la classification périodique des éléments publiés au supplément au Bulletin de la Société Chimique de France en janvier 1966.

De préférence, au moins un groupement R est un substituant électroattracteur et non partant et plus préférentiellement est différent d'un substituant carboné.

La présence de substituant de nature hydrocarbonée comme notamment une fonction aldéhyde peut ainsi être contre indiquée dans la mesure où ce type de substituant peut être à l'origine de réaction parasitaire telle dans le cas de l'aldéhyde, une réaction de Cannizzaro.

En conséquence, R sera de préférence différent d'une fonction aldéhyde.

Le ou les substituants R lorsqu'ils sont attracteurs peuvent être choisis parmi les atomes d'halogènes et les groupements suivants :

- NO₂
- SO₂Alk et SO₃Alk
- Rf et de préférence CF3
- 20 CN
 - COAlk, de préférence sans atome d'hydrogène en alpha de la fonction cétonique
 - COOH
 - COOAlk
- 25 phosphone et phosphonate

avec le symbole Alk représentant un groupe alkyle, linéaire ou ramifié, avantageusement en C₄ à C₄.

Comme exemples de groupements R préférés, on peut plus particulièrement citer les atomes d'halogène et le groupement nitro.

Le ou les substituants R électroattracteurs sont plus préférentiellement localisés en position ortho et/ou para par rapport au(x) groupement(s) partant(s) X.

25

30

En ce qui concerne l'agent nucléophile destiné à se substituer au(x) groupement(s) partant(s) X au niveau du substrat aromatique il peut être généré in situ lors de la réaction d'irradiation.

8

Comme agent nucléophile susceptible d'être utilisé selon l'invention, on peut notamment citer :

- la phosphine, l'arsine, l'ammoniac,
- les phosphines portant au moins un atome d'hydrogène, arsines, amines,
 - l'eau
- les alcools et alcoolates,
 - les hydrazines portant au moins un atome d'hydrogène, semicarbazides,
 - les sels d'acides faibles tels les carboxylates, thiolates, thiols, carbonates,
- le cyanure,
 - les dérivés maloniques et
 - les imines.

Ces agents nucléophiles présentent avantageusement au moins soit une charge négative, soit un atome d'hydrogène.

Les dérivés nucléophiles azotés présentent un intérêt tout particulier dans le cadre du procédé revendiqué.

Un autre but de la présente invention est de fournir un procédé d'activation notamment utile pour réaliser des réactions d'échanges entre le fluor et les halogènes du nombre atomique plus élevé présents sur le substrat aromatique, et notamment les réactions d'échanges entre le fluor et le chlore.

Les réactions d'échanges inverses, c'est-à-dire le remplacement d'un halogène par un halogène de rang plus élevé, sont également possibles. Toutefois, ce type de réaction présente un intérêt moindre et est en outre plus difficile à réaliser. Néanmoins, il est à la portée de l'homme de l'art de mettre à profit l'enseignement du présent procédé

· WO 00/58240

5

10

15

20

25

30

9

PCT/FR00/00828

pour réaliser d'autres réactions d'échanges, et notamment ces réactions d'échanges inverses.

Dans le cas des réactions d'échanges entre le fluor et les halogènes d'un nombre atomique plus élevé, on privilégie l'emploi d'un fluorure à titre d'agent nucléophile.

Avantageusement, le fluorure est un fluorure d'un métal alcalin de nombre atomique au moins égal à celui du sodium et de préférence est un fluorure de potassium ou de césium.

Le fluorure, alcalin ou alcalino-terreux est au moins partiellement présent sous la forme d'une phase solide.

Parmi les fluorures utilisables, figurent également les fluorures complexes de type KHF₂. Toutefois, on privilégiera l'emploi de fluorures non porteurs d'atome d'hydrogène.

En général, la réaction est menée à une température inférieure à celle retenue pour une réaction conventionnelle c'est-à-dire sans l'activation actinique selon la présente invention.

La réaction est en général menée dans un solvant et, dans ce cas, il est préférable de mener la réaction sous activation actinique à une température d'au moins 10°C, avantageusement 20°C, de préférence 40°C inférieure à celle de la limite de température usuellement admise pour ledit solvant utilisé.

Selon un des modes possibles, voire préféré de la présente invention, les micro-ondes sont émises par périodes courtes (de 10 secondes à 15 min) alternant avec des phases de refroidissement. Les durées respectives des périodes d'émission de micro-ondes et des périodes de refroidissement sont choisies de manière à ce que la température à la fin de chaque période d'émission de micro-ondes demeure inférieure à une température initiale fixée et qui est en général inférieure à celle de la résistance des ingrédients du mélange réactionnel.

Il est également possible de réaliser l'invention selon un mode opératoire dans lequel le mélange réactionnel est soumis simultanément aux micro-ondes et à un refroidissement. Selon cette variante, la · WO 00/58240

5

10

15

20

25

30

10

PCT/FR00/00828

puissance dégagée par les micro-ondes est alors choisie de manière à ce que, pour une température initiale fixée, généralement celle de fonctionnement, elle soit équivalente à l'énergie évacuée par le système de refroidissement et ceci à la chaleur dégagée ou absorbée par la réaction près.

Le procédé d'activation revendiqué a par ailleurs pour avantage d'être compatible avec un mode de fonctionnement en continu. Ce mode d'utilisation permet avantageusement de s'affranchir des problèmes d'échanges thermiques susceptibles d'être générés lors des opérations d'ouvertures et fermetures du réacteur où sont émises les micro-ondes.

Selon ce mode de fonctionnement, les matériaux à activer sont introduits en continu via un orifice d'entrée au sein du réacteur où ils subissent une activation par micro-ondes et on évacue, en continu, dudit réacteur via un orifice de sortie, les produits activés.

On peut également procéder à une récupération en continu des composés les plus volatils au fur et à mesure de leur formation. Cette récupération peut être par exemple réalisée par distillation.

Selon un mode privilégié de l'invention, il est préconisé d'utiliser une puissance dégagée par les micro-ondes comprise entre 1 et 50 watts par milliéquivalent de substrat aromatique. De même, les micro-ondes sont de préférence utilisées à une fréquence de 300 MHz à 3 GHz. La fréquence utilisée est généralement de 2,45 GHz et la longueur d'onde associée est voisine de 12 cm dans l'air, la pénétration du champ électromagnétique peut varier entre 2 et 10 cm suivant l'importance des pertes.

Il est également souhaitable de se plier à la contrainte selon laquelle la puissance dégagée par les micro-ondes est comprise entre 2 et 100 watts par gramme de mélange réactionnel.

Cette activation est surtout efficace lorsque les micro-ondes sont utilisées concomitamment avec un catalyseur réputé être un catalyseur de transfert de phases, surtout quand ce catalyseur est un catalyseur de nature cationique.

10

15

20

25

30

WO 00/58240

11

PCT/FR00/00828

Les meilleurs catalyseurs de transfert de phases utilisables sont en général des oniums, c'est-à-dire ce sont des cations organiques dont la charge est supportée par un métalloïde. Parmi les oniums, il convient de citer les ammoniums, les phosphoniums, les sulfoniums. Il s'agit de préférence d'ammoniums.

Ces catalyseurs de transfert de phases peuvent être également soit représentés par, soit utilisés en présence ou en absence, de préférence en présence, d'un cation alcalin particulièrement lourd et donc de rang atomique élevé tel que le césium et le rubidium.

Selon une variante, lorsque le nucléophile est un anion, ce catalyseur de transfert cationique peut alors jouer également le rôle de contre-ion de cet anion.

Le fluorure de césium est un composé illustrant tout particulièrement cette variante de l'invention. Il conduit à des résultats tout à fait satisfaisants.

D'autres catalyseurs de transfert de phases que ceux évoqués précédemment peuvent être utilisés dès lors que ces catalyseurs de transfert de phases sont chargés positivement. Il peut ainsi s'agir de cations cryptés par exemple des éthers couronnes cryptant des alcalins. Toutefois, ces derniers ne sont pas préférés en raison de leur coût et de leur instabilité chimique.

Au cours de l'étude qui a mené à la présente invention, il a été montré que l'action des micro-ondes sur les oniums en présence d'une forte quantité de fluorures était extrêmement néfaste à la survie de ce catalyseur de transfert de phases.

Selon la présente invention, il a été montré que la présence d'anions moins agressifs vis-à-vis des oniums tels que, par exemple, le chlorure, permettait la stabilisation dudit onium.

Ainsi, l'on s'aperçoit, par exemple, qu'au cours d'une réaction d'échange chlore/fluor, la stabilité de l'onium croît avec l'avancement de la réaction puisque cette réaction dégage des anions chlorures.

5

10

15

20

25

30

12

PCT/FR00/00828

D'une manière plus générale, il est préférable de s'arranger pour que, au cours de la réaction, la présence d'un anion distinct des fluorures soit assurée en quantités supérieures à une fois, avantageusement à deux fois, de préférence à trois fois la quantité en équivalents dudit onium instable.

Ainsi qu'on l'a mentionné auparavant, l'ion chlorure est un bon candidat pour réduire la dégradation des oniums au cours de la réaction.

Selon un mode privilégié de l'invention, lorsque le catalyseur de transfert de phase est un onium instable en présence de fluorures, la réaction est menée en présence de chlorures en quantité supérieure à une fois la quantité en équivalent dudit onium instable.

Lorsqu'on utilise la présente invention pour la mise en œuvre d'une réaction d'échange chlore/fluor, on utilise en général un solvant aprotique dipolaire, une phase solide constituée au moins partiellement de fluorures alcalins et un cation promoteur de la réaction, ledit cation étant un alcalin lourd ou un agent de transfert de phases organiques cationiques.

La teneur en cation alcalin lorsqu'il est utilisé comme promoteur est en général supérieure à 0,5% avantageusement comprise entre 1 et 5 % et de préférence entre 2 et 3 % en moles de l'agent nucléophile utilisé. Ces domaines sont des domaines fermés, c'est-à-dire qu'ils comportent leurs limites.

Le réactif peut comporter à titre de promoteur des agents de transfert de phases et qui sont des oniums (cations organiques dont le nom se termine par onium). Les oniums représentent en général 1 à 10 %, de préférence de 2 à 5 % en moles du substrat aromatique, le contre ion est indifférent mais le plus souvent halogéné.

Parmi les oniums, les réactifs préférés sont les tétraalcoylammoniums de 4 à 28 atomes de carbone, de préférence de 4 à 16 atomes de carbone. Le tétraalcoylammonium est en général du tétraméthylammonium.

Il convient aussi de mentionner les phosphoniums et notamment les phénylphosphoniums qui présentent l'intérêt d'être stables et

5

10

15

20

25

30

13

PCT/FR00/00828

relativement peu hygroscopiques, toutefois ces derniers sont relativement coûteux.

Le solvant aprotique type halex présente avantageusement un moment dipolaire significatif. Ainsi, sa constante diélectrique relative epsilon est avantageusement au moins égale à environ 10, de préférence l'epsilon est inférieur ou égale à 100 et supérieur ou égale à 25.

Il a pu être montré que les meilleurs résultats étaient obtenus lorsqu'on utilisait des solvants aprotiques dipolaires qui présentaient un indice donneur compris entre 10 et 50, ledit indice donneur étant le ΔH (variation d'enthalpie) exprimé en kilocalorie de l'association dudit solvant aprotique dipolaire avec le pentachlorure d'antimoine.

Les oniums sont choisis dans le groupe des cations formés par les colonnes VB et VIB tels que définis dans le tableau de la classification périodique des éléments publiés au supplément au Bulletin de la Société Chimique de France en janvier 1966, avec respectivement quatre ou trois chaînes hydrocarbonées.

D'une manière générale, il est connu qu'une granulométrie fine a une influence sur la cinétique. Ainsi, il est souhaitable que ledit solide en suspension présente une granulométrie telle que son d_{90} (défini en tant que la maille laissant passer 90 % en masse du solide) est au plus égal à 100 μ m, avantageusement au plus égal à 50 μ m, de préférence au plus égal à 200 μ m. La limite inférieure est avantageusement caractérisée par le fait que le d_{10} dudit solide en suspension est au moins égal à 0,1 μ m, de préférence au moins égal à 1 μ m.

En général, le rapport entre ledit agent nucléophile de préférence le fluorure alcalin et ledit substrat est compris entre 1 et 1,5, de préférence aux alentours de 5/4 par rapport à la stœchiométrie de l'échange.

Le taux en masse en matières solides présentes dans le milieu réactionnel est avantageusement au moins égal à 1/5, avantageusement 1/4, de préférence 1/3.

5

10

15

14

PCT/FR00/00828

L'agitation est avantageusement menée de manière qu'au moins 80 %, de préférence au moins 90 % des solides, soit maintenu en suspension par l'agitation.

Les exemples suivants sont présentés à titre illustratif et non limitatif de l'invention.

Exemple 1.

Les essais ont été réalisés sur l'orthonitrochlorobenzène, ONCB. Le KF et l'ONCB sont préalablement pesés dans des flacons en verre. Dans le réacteur balayé par un courant d'argon, on introduit KF (et le catalyseur si nécessaire), puis l'ONCB. Les parois du réacteur sont ensuite rincées avec le sulfolane additionné à l'aide d'une seringue. Après fermeture du réacteur, le milieu réactionnel est irradié par les micro-ondes et, si possible, ouvert dès la fin d'irradiation. Le refroidissement est accéléré par un bain de glace. Après retour à température ambiante, le mélange réactionnel est entraîné au dichlorométhane, filtré sur fritté afin de séparer le solide qui est lavé au dichlorométhane. Le dichlorométhane est distillé de la phase organique au rotavapeur. La phase résiduelle est ensuite analysée en HPLC.

20

25

Dans un premier temps, un milieu réactionnel est irradié (3 min.300 W) sans catalyseur avec les stœchiométries : 1 éq. ONCB, 1,13 éq. KF, 1,05 éq. TMSO₂.

Dans une seconde série d'essais, l'irradiation est réalisée en présence de catalyseurs Me₄NCl 4 % molaires en milieu dilué ou non.

Sans indication contraire, le temps d'irradiation par les micro-ondes est augmenté par cumul de séquences de 3 min à 300 W avec retour à température ambiante entre chaque séquence.

Le tableau 1 figurant ci-après rend compte des résultats obtenus.

Les résultats observés sont les suivants :

En absence de catalyseurs, la sélectivité est médiocre (RT = 10 %) (essai 1).

5

10

15

PCT/FR00/00828

En présence de Me₄NCI en milieu non dilué, d'une part, la sélectivité est meilleure (RT = 75-80 %), pour un taux de transformation équivalent (essais 2a et 2b).

Pour les essais effectués en milieu plus dilué (avec entre 3 et 4 éq. de sulfolane) (essai 4), les RR et TT sont multipliés par un facteur 1,5 à 2 par rapport au milieu avec 1 éq. de sulfolane. Il est possible que cet effet bénéfique de la dilution soit lié à l'absence d'agitation du milieu réactionnel. De même on note que RR et TT augmentent en fonction du temps total d'irradiation (essais 5 et 6).

Le meilleur résultat est obtenu après 15 min d'irradiation avec 4,2 % molaire de Me₄NCI et 3 éq. de sulfolane :

RR = 45 % TT = 56 % RT = 79 % RR(2-2'-(PhNO₂)₂O) < 1 %

· WO 00/58240

PCT/FR00/00828

	4% catalyseur en milieu dilué	E			(PhNO ₂) ₂ O				0,2	0,4	9'0	6'0
	r en mil	RT			ONFB				89	92	75	79
	atalyseu	RR			ONFB				14	22	33	45
	4% C	TT			ONCB				16	29	44	56
	<u>.</u>	F			ONCE ONFB ONFB (PhNO2),O ONCB ONFB ONFB (PhNO2),O ONCB ONFB ONFB (PhNO2),O		0,1	0,1				
	4% catalyseur	RT			ONFB		79	84				
	4% C	RR			ONFB		6	10				
п 1		LL			ONCB		11	12				
Tableau 1	'n	H			(PhNO ₂) ₂ 0	0,04						
	Sans catalyseur	RT			ONFB	11						
	Sans c	RR			ONFB	m						
		LI			ONCB	23					•	
	n éq	$TMSO_2$					1	1	2,9	3,2	4	3
	%mol	Me,NC1					4,3	4,3	4,2	4,3	4,2	4,2
	Durée	activa-	tion	micro-	ondes	3 min.	3 min.	3		9	6	15 min.
	Essai					Н	2a	2b	က	4	5	9

PCT/FR00/00828

Exemple 2.

Les réactifs mis en œuvre sont identiques à ceux retenus en exemple 1.

Un milieu réactionnel est irradié (3 min.300W) sans catalyseur avec les stœechiométries : 1 éq. ONCB, 1,13 éq. KF, 1,05 éq. TMSO₂ La valeur de température relevée à l'ouverture du réacteur pour ce type d'essai (essai A) varie de 150 à 160°C.

A des fins comparatives, il a été réalisé une activation thermique d'un même mélange à deux températures différentes 170°C et 230°C.

Les résultats obtenus figurent dans le tableau 2 ci-après.

Ce tableau rend également compte des résultats obtenus avec une irradiation à l'aide de micro-ondes réalisée en présence de catalyseur (essai B).

On note que l'on obtient en présence de ce catalyseur un rendement en transformation de l'ordre de 79% en 15 minutes contre 88% en 5 heures avec un chauffage classique à 170°C.

Essai activation T°C Durée %mol n éq TTRRRTmicro-onde Me4NC1 TMSO2 **ONCB ONFB ONFB** W Α 300 3 min 1,05 23 3 11 230 9h00 0 1 60 55 89 В 300 15 min 4 3 56 45 79 170 5h00 5 4 90 80 88

Tableau 2

Exemple N°3.

20 Essais sur le 2-4. dichloronitrobenzène.

Les conditions utilisées avec l'ONCB (ortho) ont été appliquées sur le DNCB (dichloronitrobenzène).

Les résultats obtenus figurent dans le tableau 3 présenté ci-après.

PCT/FR00/00828

RT global % 9/ 73 % **65** % CFNB 35 % 20 % 17 % RR DFNB 52 % 27 % 47 % RR DCNB 81 % % 86 % 86 3*(3 min.300 W) 5*(3 min.300 W) 3 min.300 W Irradiation 0,04 éq. 0,04 éq. 0,04 éq. Me₄NCI 2 éq. 2 éq. 2 éq. 쥬 TMSO₂ 3,6 éq. 5 éq. 5 éq. N° Essai ω თ

Tableau 3

PCT/FR00/00828

Page 21 of 32

19

Exemple N°4.

Essais sur le 2,4 dinitrochlorobenzène.

Les essais sont réalisés dans des conditions opératoires proches de celles décrites en exemple 1 mais en utilisant le CsF à la place du KF.

Les conditions opératoires ainsi que les résultats sont détaillés dans le tableau 4 ci-après.

Tableau 4

Essai	Temps activation	Sulfolane éq.	CSF éq.	Activat	ion micro	o-onde		Activat	ion therr	nique 15	0°C
	uonvanon		oq.	TT DCNB	RR CFNB	RR DFNB	ΣRΤ	TT DCNB	RR CFNB	RR DFNB	ΣRΤ
1	1 h	3	2	98	22	47	72	80	40	20	71
2	15'	3	2	96	19	58	81	-	-	-	-

On note que sous activation micro-ondes, la cinétique est deux fois plus rapide que sous activation thermique. 10

5

10

25

20

PCT/FR00/00828

REVENDICATIONS

1. Procédé utile pour réaliser une substitution nucléophile de type SNAr sur un substrat aromatique caractérisé en ce que l'on soumet un substrat aromatique de formule générale l

$$(R)_p$$

dans laquelle

- A symbolise un reste d'un motif aromatique, mono ou polycyclique et comprenant le cas échéant un ou plusieurs hétéroatome(s), ou d'un groupe divalent constitué par un enchaînement de deux ou plusieurs motifs aromatiques monocycliques,
- X représente un substituant susceptible d'être échangé par une réaction SNAr et différent d'un groupement nitro ou ammonium quaternaire,
- R représente un ou plusieurs substituants, identiques ou différents, avec au moins l'un d'entre eux étant capable d'appauvrir au moins partiellement ledit substrat aromatique,
 - n représente 0 ou un entier variant de 1 à 4, et
- p représente un nombre entier variant de 1 à 3 et de préférence 1 ou
 20 2, avec n+p représentant un nombre entier ne pouvant être supérieur au nombre d'atomes de carbone du cycle symbolisé par A et qui sont susceptibles d'être substitués,
 - à l'action de micro-ondes en milieu organique et en présence d'au moins un agent nucléophile susceptible de s'échanger avec le ou au moins l'un des substituants X et d'au moins un catalyseur de transfert de phase cationique.
 - 2. Procédé selon la revendication 1 caractérisé en ce que le substrat aromatique répond à la formule générale (la)

21

PCT/FR00/00828

dans laquelle m représente un nombre entier égal à 0 ou 1 et les symboles X, R, p et n sont tels que définis en revendication 1.

3. Procédé selon la revendication 1 ou 2, caractérisé en ce que ledit substrat répond à la formule générale lb

$$(R)_n$$
 (lb)

10

15

avec X, R, p et n tels que définis en revendication 1.

- 4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que X représente au moins un atome d'halogène choisi parmi le chlore, le brome et l'iode ou un groupement pseudohalogène.
- 5. Procédé selon l'une des revendications précédentes, caractérisé en ce que X représente au moins un atome d'halogène et de préférence un atome de chlore.

- 6. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins un groupement R est un substituant électroattracteur et non partant et plus préférentiellement est différent d'un substituant carboné.
- 7. Procédé selon la revendication 6, caractérisé en ce que R représentant un groupement électroattracteur est choisi parmi les atomes d'halogènes ou les radicaux :
 - NO₂
 - SO₂Alk et SO₃Alk

- Rf
- CN
- COAlk
- COOH
- 5 COOAlk
 - phosphone et phosphonate avec le symbole Alk représentant un groupe alkyle, linéaire ou ramifié et avantageusement en C_1 à C_4 .
- 8. Procédé selon la revendication 6 ou 7 caractérisé en ce que R représente un atome de chlore et/ou un groupement nitro.
 - 9. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'agent nucléophile est choisi parmi :
- la phosphine, l'arsine, l'ammoniac,
 - les phosphines portant au moins un atome d'hydrogène, arsines, amines,
 - l'eau,
 - les alcools et alcoolates.
- les hydrazines portant au moins un atome d'hydrogène, semicarbazides,
 - les sels d'acides faibles tels les carboxylates, thiolates, thiols, carbonates,
 - le cyanure,
 - les dérivés maloniques et
 - les imines.
 - 10. Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit agent nucléophile est un fluorure.

- 11. Procédé selon la revendication 10, caractérisé en ce que ledit fluorure est un fluorure d'un métal alcalin de nombre atomique au moins égal à celui du sodium.
- 12. Procédé selon l'une des revendications 1 à 11, caractérisé par le fait que l'on soumet ledit substrat aromatique à l'action de micro-ondes en présence d'un catalyseur de transfert de phases choisi parmi les composés de type onium cations, de césium ou rubidium et leurs mélanges.
- 13. Procédé selon la revendication 12, caractérisé en ce que le catalyseur de transfert de phase est un onium.
- 14. Procédé selon la revendication 12 ou 13, caractérisé en ce que lorsque le catalyseur de transfert de phase est un onium instable en présence de fluorures, la réaction est menée en présence d'un anion distinct des fluorures en quantité supérieure à une fois, avantageusement à 2 fois, de préférence à 3 fois la quantité en équivalent dudit onium instable.
 - 15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que ledit substrat aromatique est soumis à une réaction d'échange entre le fluor et les halogènes de nombre plus élevé et de préférence le chlore.
- 16. Procédé selon l'une des revendications 1 à 15, caractérisé par le fait que la réaction est menée dans un solvant et à une température d'au moins 10°C, avantageusement 20°C, de préférence 40°C inférieure à celle de la limite usuellement admise pour le solvant utilisé.
- 17. Procédé selon l'une des revendications 1 à 16, caractérisé par le fait que les micro-ondes sont émises par périodes courtes alternant avec des phases de refroidissement, et en ce que les durées respectives des

24

PCT/FR00/00828

périodes d'émission de micro-ondes et de périodes de refroidissement sont choisies de manière à ce que la température à la fin de chaque période de micro-ondes soit inférieure à une température initialement fixée.

5

10

15

- 18. Procédé selon l'une des revendications 1 à 16, caractérisé par le fait que le mélange réactionnel est soumis simultanément à un refroidissement et aux micro-ondes, et en ce que la puissance dégagée par les micro-ondes est choisie de manière à ce que, pour une température initiale fixée, elle soit équivalente à l'énergie évacuée par le système de refroidissement, à la chaleur dégagée ou absorbée par la réaction près.
- 19. Procédé selon l'une des revendications 1 à 18, caractérisé par le fait que la puissance dégagée par les micro-ondes est comprise entre 1 et 50 watts par milliéquivalent de substrat aromatique.
- 20. Procédé selon l'une des revendications 1 à 19, caractérisé par le fait que la puissance dégagée par les micro-ondes est comprise entre 2 et 100 watts par gramme de mélange réactionnel.

INTERNATIONAL SEARCH REPORT

Inte 'onal Application No

			PCT/FR 00	0/00828
A CLASS	FICATION OF SUBJECT MATTER C07B39/00 C07C201/12 C07	C205/12	C07B37/04	
According to	o International Patent Classification (IPC) or to both nationa	l classification an	d IPC	
B. FIELDS	SEARCHED			
Minimum do IPC 7	ocumentation searched (classification system followed by c C07B C07C	lassification symb	ools)	
Documenta	tion searched other than minimum documentation to the ext	ent that such doo	uments are included in the fields s	earched
Electronic d	ata base consulted during the international search (name o	of data base and	Where practical search terms upo	
	BS Data, EPO-Internal, WPI Data			
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate,	of the relevant pa	ssages	Relevant to claim No.
Υ	EP 0 467 742 A (RHONE POULEN 22 January 1992 (1992-01-22) the whole document	C CHIMIE)		1-8, 10-16
		-/		
	·			
X Furth	er documents are listed in the continuation of box C.	X	Patent family members are listed	in annex.
° Special cat	egories of cited documents :	T° late	document multiple of the day to	
"A" docume conside	nt defining the general state of the art which is not ered to be of particular relevance	OF :	r document published after the inte priority date and not in conflict with edition	the application but
"E" earlier de filing da	ocument but published on or after the international	"X" doc	ention ament of particular relevance: the c	laimed Invention
"L" documer which is	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another	inv	inot be considered novel or cannot dive an inventive step when the do	be considered to cument is taken alone
cttation	or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	"Y" doce	iment of particular relèvance; the canot be considered to involve an in-	laimed invention
otner m	neans transfer to the international filing date but	me	cument is combined with one or mo nts, such combination being obviou he art.	re other such docu-
later us	at the priority date claimed		ment member of the same patent	family
⊔ate of the a	ctual completion of the international search	Dai	e of mailing of the international sea	arch report
	June 2000		06/07/2000	
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Aut	norized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Bonnevalle, E	

1

Bonnevalle, E

INTERNATIONAL SEARCH REPORT

inte c	al Application No	
PCT/F	R 00/00828	

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	CHEMICAL ABSTRACTS, vol. 119, no. 15, 11 October 1993 (1993-10-11) Columbus, Ohio, US; abstract no. 159820, STONE-ELANDER S ET AL: "Fast chemistry in microwave fields: nucleophilic 18F-radiofluorinations of aromatic molecules" XP002123964 abstract & APPL. RADIAT. ISOT. (ARISEF,08832889);1993; VOL.44 (5); PP.889-93, Karolinska Pharm.; Stockholm; 10401; Swed. (SE)	1-8, 10-16
'	US 4 030 994 A (KOLLONITSCH JANOS) 21 June 1977 (1977-06-21) column 2, line 61 - line 62; claims; examples 1-11	1-3,6-8
Y	GEDYE R ET AL: "The use of microwave ovens for rapid organic synthesis" TETRAHEDRON LETT. (TELEAY,00404039);1986; VOL.27 (3); PP.279-82, XP002123963 Laurentian Univ.;Chem. Dep.; Sudbury; P3E 2C6; ON; Can. (CA) page 281; table 1	1-3,6-8
Y	US 5 387 397 A (STRAUSS CHRISTOPHER R ET AL) 7 February 1995 (1995-02-07) page 1, column 10, line 61 -column 11, line 35	1-3,6-8
Y	FR 2 760 744 A (RHODIA CHIMIE) 18 September 1998 (1998-09-18) claim 1	1-3,6-8
A	WO 97 41083 A (RHONE POULENC CHEMICALS LIMITED) 6 November 1997 (1997-11-06) cited in the application claims	1-3,6-8, 10
A	SALMORIA G V ET AL: "Aromatic nucleophilic substitution under microwave irradiation" TETRAHEDRON LETT. (TELEAY,00404039);1998; VOL.39 (17); PP.2471-2474, XP002123962 Universidade Federal Santa Catarina;Dep. Quimica; Santa Catarina; 88040-900; Brazil (BR) the whole document	1-9,16

Information on patent family members

inte onal Application No PCT/FR 00/00828

	tent document in search repo	rt	Publication date		Patent family member(s)	Publication date
ΕP	0467742	A	22-01-1992	FR	2664588 A	17-01-1992
				FR	2664589 A	17-01-1992
				JP	4244049 A	01-09-1992
				US	5354439 A	11-10-1994
IIS	4030994	Α	21-06-1977			
03	4030334	A	21-06-19//	AT AT	333717 B	10-12-1976
				AT	511572 A 333246 B	15-04-1976
				AT		10-11-1976
				AU	882774 A	15-03-1976
				AU	465026 B	18-09-1975
				CA	3146371 A 967982 A	25-01-1973
				CA	994800 A	20-05-1975
				CA	968368 A	10-08-1976
				CA	994360 A	27-05-1975
				CH	584186 A	03-08-1976 31-01-1977
				CH	575354 A	14-05-1976
				CS	189580 B	30-04-1979
				DD	106364 A	12-06-1974
				DD	108976 A	12-10-1974
				DE	2229245 A	21-12-1972
				DE	2136008 A	10-02-1972
				ES	403932 A	16-11-1975
				ES	431083 A	16-01-1977
				FI	57745 B	30-06-1980
				FR	2103901 A	14-04-1972
				FR	2142474 A	26-01-1973
				GB	1389859 A	09-04-1975
				GB	1389858 A	09-04-1975
				GB	1353519 A	22-05-1974
				HŪ	163751 B	27-10-1973
				IT	988052 B	10-04-1975
				JP	55044048 B	10-11-1980
				NL.	7109946 A,B,	07-02-1972
				NL 	7207606 A´´	20-12-1972
US	5387397	Α	07-02-1995	AT	112978 T	15-11-1994
				AU	635903 B	08-04-1993
				AU	4404089 A	01-05-1990
				WO	9003840 A	19-04-1990
				CA	2000351 A	10-04-1990
				DE	68918950 D	24-11-1994
				DE Ep	68918950 T	16-03-1995
				KR	0437480 A	24-07-1991
				NZ	9710331 B 230952 A	25-06-1997
				·		25-10-1991
FR :	2760744	Α	18-09-1998	AU	6922298 A	29-09-1998
				CN	1249737 T	05-04-2000
				MO	9840339 A	17-09-1998
				ZA 	9802096 A	22-09-1998
WO 9	9741083	Α	06-11-1997	AU	2646897 A	19-11-1997
				EP	0900180 A	10-03-1999

Form PCT/ISA/210 (patent family annex) (July 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Der le Internationale No

·			PCT/FR 00	0/00828
A. CLASSE CIB 7	MENT DE L'OBJET DE LA DEMANDE C07B39/00 C07C201/12 C07C205/	12 C07	/B37/04	
			20., 0.	
Selon la clas	ssification internationale des brevets (CIB) ou à la fois selon la classif	ication national	le et la CIR	
B. DOMAIN	NES SUR LESQUELS LA RECHERCHE A PORTE			
Documentat	tion minimale consultée (système de classification suivi des symboles C07B C07C	de classement	t)	
	3072 3073			
Documentat	tion consultée autre que la documentation minimale dans la mesure o	ù ces documen	nts relèvent des domaines :	sur lesquels a porté la recherche
				residence a porte la reorigione
Base de dor	nnées électronique consultée au cours de la recherche internationale	(nom de la bas	e de données, et si réalisal	ble, termes de recherche utilisés)
CHEM A	BS Data, EPO-Internal, WPI Data, PAJ	, BEILST	EIN Data	
		,		
C. DOCUME	ENTS CONSIDERES COMME PERTINENTS			
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication	des passages	pertinents	no. des revendications visées
Υ	EP 0 467 742 A (RHONE POULENC CHI	MIF)		1.0
	22 janvier 1992 (1992-01-22)	,		1-8, 10-16
	le document en entier			
	- ,	/		
l				
İ				
V Voir ta	a suite du cadre C pour la fin de la liste des documents	<u> </u>		
	spéciales de documents cités;	X Les do	xuments de familles de br	evets sont indiqués en annexe
"A" documen	nt définissant l'état général de la technique, non	uate de bii	onte et n'appartenenant na	e de dépôt international ou la
conside	re comme particulierement pertinent nt antérieur, mais publié à la date de dépôt international	ou la théor	perunent, mais cite pour co le constituant la base de l'i	omprendre le principe nvention
ou apre	s cette date ") t pourvant jeter un doute sur une revendication de	ette cunsia	reree comme nouvelle ou d	inven tion revendiquée ne peut comme impliquant une activité
autre cit	ou cité pour déterminer la date de publication d'une tation ou pour une raison spéciale (telle qu'indiquée)	riventive p Y° document p	rar rapport au document co articulièrement nertinent: l'i	nsidéré isolément invention revendiquée
"O" documer une exp	nt se référant à une divulgation orale, à un usage, à position ou tous autres moyens	lorsque le d	re considerée comme implié document est associé à un	quant une activité inventive ou plusieurs autres
P documen postérie	nt publié avant la date de dépôt international, mais eurement à la date de priorité revendiquée	pour une p	s de même nature, cette co ersonne du métier ui fait partie de la même fa	
Date à laquel	le la recherche internationale a été effectivement achevée			de recherche internationale
26	juin 2000	06/0	07/2000	
Nom et adress	se postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2	Fonctionnai	ire autorisé	
	NL – 2280 HV Rijswijk Tel. (+3170) 340–2040. Tx. 31 651 epo nl.			
	Fax: (+31–70) 340–3016	Bonr	nevalle, E	

C (sulte) Di	OCUMENTS CONSIDERES COMME PERTINENTS	PCT/FR 00/00828
Catégorie °		rtinents no. des revendications visées
Y	CHEMICAL ABSTRACTS, vol. 119, no. 15, 11 octobre 1993 (1993-10-11) Columbus, Ohio, US; abstract no. 159820, STONE-ELANDER S ET AL: "Fast chemistry in microwave fields: nucleophilic 18F-radiofluorinations of aromatic molecules" XP002123964 abrégé & APPL. RADIAT. ISOT. (ARISEF,08832889);1993; VOL.44 (5); PP.889-93, Karolinska Pharm.;Stockholm; 10401; Swed.	1-8, 10-16
Y	(SE) US 4 030 994 A (KOLLONITSCH JANOS) 21 juin 1977 (1977-06-21) colonne 2, ligne 61 - ligne 62; revendications; exemples 1-11	1-3,6-8
Y	GEDYE R ET AL: "The use of microwave ovens for rapid organic synthesis" TETRAHEDRON LETT. (TELEAY,00404039);1986; VOL.27 (3); PP.279-82, XP002123963 Laurentian Univ.;Chem. Dep.; Sudbury; P3E 2C6; ON; Can. (CA) page 281; tableau 1	1-3,6-8
Y	US 5 387 397 A (STRAUSS CHRISTOPHER R ET AL) 7 février 1995 (1995-02-07) page 1, colonne 10, ligne 61 -colonne 11, ligne 35	1-3,6-8
Y	FR 2 760 744 A (RHODIA CHIMIE) 18 septembre 1998 (1998-09-18) revendication 1	1-3,6-8
A	WO 97 41083 A (RHONE POULENC CHEMICALS LIMITED) 6 novembre 1997 (1997-11-06) cité dans la demande revendications	1-3,6-8, 10
A	SALMORIA G V ET AL: "Aromatic nucleophilic substitution under microwave irradiation" TETRAHEDRON LETT. (TELEAY,00404039);1998; VOL.39 (17); PP.2471-2474, XP002123962 Universidade Federal Santa Catarina;Dep. Quimica; Santa Catarina; 88040-900; Brazil (BR) le document en entier	1-9,16

Renseignements relatifs aux membres de familles de brevets

Oen e Internationale No PCT/FR 00/00828

u rapport de recherc	é he	Date de publication	М fan	embre(s) de la nille de brevet(s)	Date de publication
EP 0467742	A	22-01-1992	FR	2664588 A	17-01-1992
			FR	2664589 A	17-01-1992
			JP	4244049 A	01-09-1992
			US	5354439 A	11-10-1994
US 4030994	Α	21-06-1977	AT	333717 B	10-12-1976
			AT	511572 A	15-04-1976
			AT	333246 B	10-11-1976
			AT	882774 A	15-03-1976
			AU	465026 B	18-09-1975
			AU Ca	3146371 A	25-01-1973
			CA	967982 A 994800 A	20-05-1975
			CA	968368 A	10-08-1976 27-05-1975
			CA	994360 A	03-08-1976
			CH	584186 A	31-01-1977
			CH	575354 A	14-05-1976
			CS	189580 B	30-04-1979
			DD	106364 A	12-06-1974
			DD	108976 A	12-10-1974
			DE	2229245 A	21-12-1972
			DE Es	2136008 A	10-02-1972
			ES ES	403932 A 431083 A	16-11-1975
			FI	57745 B	16-01-1977 30-06-1980
			FR	2103901 A	14-04-1972
			FR	2142474 A	26-01-1973
			GB	1389859 A	09-04-1975
			GB	1389858 A	09-04-1975
			GB	1353519 A	22-05-1974
			HU	163751 B	27-10-1973
			IT Jp	988052 B	10-04-1975
			NL	55044048 B 7109946 A,B,	10-11-1980 07-02-1972
			NL	7207606 A	20-12-1972
US 5387397	 А	07-02-1995	AT	112978 T	 15-11-1994
			AU	635903 B	08-04-1993
			AU	4404089 A	01-05-1990
			WO	9003840 A	19-04-1990
			CA	2000351 A	10-04-1990
			DE	68918950 D	24-11-1994
			DE Ep	68918950 T	16-03-1995
			KR	0437480 A 9710331 B	24-07-1991 25-06-1997
			NZ	230952 A	25-10-1997 25-10-1991
FR 2760744	 А	18-09-1998	 AU	6922298 A	29-09-1998
			CN	1249737 T	05-04-2000
			WO	9840339 A	17-09-1998
			ZA	9802096 A	22-09-1998
WO 9741083	Α	06-11-1997	AU	2646897 A	19-11-1997
			EP	0900180 A	10-03-1999

Formulaire PCT/ISA/210 (annexe families de brevets) (juillet 1992)