2016国家集训队作业试题泛做表格

安徽师范大学附属中学吴作凡

2016年1月14日

Problem 1

试题名称	A New Door			
试题来源	Codechef JAN 13	Codechef JAN 13 试题编号 ANDOOR		
题目大意		算法讨论	算法讨论	
给一个矩形区域和n个圆,问这些圆的并		可以对于每个圆分开考虑,求出每个圆周没被		
在矩形内的周长。		覆盖的长度,只需要用其他所有的圆以及矩形和		
数据范围:n ≤ 1000		这个圆求交,将角度区间排序后统计答案就可以		
		了。		
		要注意精度问题。		
时间复杂度	$O(n^2 log n)$	空间复杂度	O(n)	

试题名称 Dynamic Trees and Queries				
试题来源	Codechef MAY 14	试题编号	ANUDTQ	
题目大意		算法讨论		
给一个n个点	的带点权的数,有m个操	因为只有子树	操作而没有链操作,最容易的算法	
作,操作有以	下四种:	就是用平衡权	付(我使用了splay)维护树的dfs序,	
1.加入一个给	定点权和父亲的点。	每次加入点就在相应dfs序位置加入点,删除子树		
2.删除一个子	树。	时直接删除就好了, 支持区间加以及区间求和操		
3.给一个子树	所有节点权值都加上一个	作的平衡树还是非常容易的。		
值。				
4.询问一个子树的权值和。				
数据范围: $n,m \leq 10^5$				
时间复杂度	O(nlogn)	空间复杂度	O(n)	

试题名称	The Baking Business		
试题来源	Codechef OCT 11	试题编号	BAKE
题目大意		算法讨论	
有n个操作,有增加订单或者询问两种		开一个七维数组统计一下订单数量,如果某一维	
操作。增加订单和询问的格式相当复杂,		为0则表示没有限制,增加订单就直接手工讨论,	
这里略去不谈,可以去看详细题面。		询问的时候枚举一下年龄就好了。	
数据范围: $n \leq 10^5$			
时间复杂度	O(n)	空间复杂度	O(1)

试题名称	Billboards			
试题来源	Codechef JULY 11	试题编号	BB	
题目大意	·	算法讨论		
一个长度为	n的01序列,它的任意长	先考虑m整除	n 的情况,可以把串分成 $\frac{n}{m}$ 段,显然	
度为m的连续	卖子序列中必须都要有恰	每段至少有k~	个1,可以把这k个1都放在该段最后,	
好k个1, 问满	f足该条件的序列中1的数目	那么1的个数量	最少就是 <u>**</u> 。	
最少的不同序	·列个数,答案模10 ⁹ + 7。	那么可以对于	于一个序列构造一个 $k \times \frac{n}{m}$ 的矩阵,	
数据范围:k,n	$n \le 50, m \le n \le 10^9$	第i行第j列表	示第j段第i个1在该段中的位置,如	
		果一个序列合	·法那么矩阵的每一行单调不增,每	
		一列单调增。我们只要统计这样的矩阵个数。		
		这就是一个半标准的杨氏矩阵,答案的公式如		
		下 $\prod_{1 \leq i \leq n, 1 \leq j \leq m} \frac{r+j-i}{n+m-i-j+1}$,这里n是行数,m是		
		列数,r是可选数字数量。但是矩阵太大不能直接		
		计算,但是大部分分子和分母都可以约分,最后		
		只有 $O(mk)$ 个数字需要计算。		
		当m不整除n的时候, 令 $t \equiv n \pmod{m}, 1 \leq t \leq$		
		m,我们可以用以下性质将问题转化为m整除 n 的		
		情况:		
		$1.t \le m - k$: 每一组前t个数字均为0。		
		2.t > m - k: 每一组后m-t个数字均为1。		
时间复杂度	O(mk)	空间复杂度	O(1)	

试题名称	Union on Tree			
试题来源	Codechef OCT 14	试题编号	BTREE	
题目大意		算法讨论		
给定一棵n/	个点的树, 每条边长都	先考虑一个弱	化的问题: 询问和点a距离在r以内	
为1,有Q组诣	间问,第i次询问给定Ki个数	的点数,我们	令这种询问叫做 $func(a,r)$ 。	
$ 对(a_i,r_i)$,表	示和点 a_i 距离在 r_i 以内的点	这个问题我们	J可以使用点分治,记录下点分治的	
都被守护了,	询问共有多少点被守护。	结构以及重心	u的每个子树到重心距离在k以内的	
数据范围:n,Q	$0 \le 5 * 10^4, \sum K \le 5 * 10^5$	点数。询问的	时候依次统计每层结构点数。这样	
		预处理的复杂	度是 $O(nlog^2n)$, 每次询问的复杂度	
		是 $O(logn)$ 。		
		接下来考虑原问题,我们可以对这K个点建立虚		
		树,若点x和y的距离是 d_{xy} 而 $r_x - d_{xy} > r_y$,那么		
		可以用 $r_x - d_{xy}$ 来更新 r_y ,于是可以用类似最短		
		路的算法更新每个点的守护距离。然后分每条		
		边讨论,任意一条边 (x,y) 都可以找到一个点 z 使		
		得 $r_x - d_{xz} = r_y - d_{zy}$ (为了使得z在整点一开		
		始可以在每条边上多加一个节点),那么答案就		
		是 $\sum_{x \in V} func(x, r_x) - \sum_{(x,y) \in E} func(z, r_x - d_{xz})$ 。		
时间复杂度	$O(nlog^2n + \sum Klogn)$	空间复杂度	O(nlogn)	

试题名称	Black-white Board Game			
试题来源	Codechef APRIL 15	试题编号	BWGAME	
题目大意		算法讨论		
有一个n×n的	的矩阵A,第i行 L_i 到 R_i 是1,	根据行列式的]定义可以发现偶排列数量减去奇排	
其余均为0。		列数量就是A	矩阵的行列式值,那么我们就只要	
两个人玩游戏	3、每次他们都要报出一个	求出A的行列:	式的符号。	
未出现排列P	,满足 $A_{ip_i}=1$,第一个人	求行列式的值	直的方法主要是消元,可以发现在	
的排列逆序对	 数是奇数,第二个人是偶	消元的过程中我们可以让每行的1都是连续一		
数,报不出来	送就输了,如果同时报不出	段,我们可以用n个左偏树来维护每行的连续段,		
来就平局。		如果第 i 行是从 L_i 到 R_i 就把 R_i 扔到第 L_i 个左偏树		
判断游戏结果	· o	中。从小到大遍历每一列,在当前左偏树里找		
数据范围:n≤	10^{5}	到 R 最小的位置记为 $Rmin$,将 $Rmin$ 放到第i行,		
		删去Rmin,再把这个左偏树合并到Rmin+1里		
		去,就可以完成消元的过程了。		
		要注意行编号	的变化。	
时间复杂度	O(nlogn)	空间复杂度	O(n)	

试题名称	Card Shuffle		
试题来源	Codechef JAN 12	试题编号	CARDSHUF
题目大意		算法讨论	
有n张卡片,从1到n从上到下摆放。m次		使用可以打翻	转标记的平衡树模拟即可。
操作,每次取前A张,再取前B张,把			
前A张放回去,再取前C张,把B张倒序			
放回,最后把C放回。询问最后顺序。			
数据范围: $n, m \leq 10^5$			
时间复杂度	O(mlogn)	空间复杂度	O(n)

Problem 8

试题名称	题名称 Chef and Balanced Strings			
试题来源	Codechef MAY 15	试题编号	CBAL	
题目大意		算法讨论		
一个字符串是	是平衡的当且仅当它的每	用一个26位	二进制数A _i 表示1 i中每个字符出	
一个字符都是	出现了偶数次,一个字符	现次数的奇	偶性,那么子串(L,R)平衡当且仅	
串的type权值	[是它的所有平衡子串长	$\stackrel{\text{\tiny def}}{=} A_{L-1} = A_R$,先把A数组离散化。	
度的type次方	的和。现在给定一个长度	可以发现一般的数据结构都不太容易维护,所		
为n的由小写写	字符构成的字符串。Q组询	以要用到分块。直接对于A数组分块,块大小		
问,给定L、I	R、type,询问这个字符串	为n ^{0.5} ,于是可以预处理前i块数字j的出现次数、		
的从L到R的子	产串的type权值是多少。	位置和、位置平方和,第i块到第j块的答案,那么		
数据范围:n,q	$\leq 10^5, type \in \{0,1,2\}$	每次询问可以先找到中间一段整块的答案,再暴		
		力两端不属于整块的部分就好了, 可以使用时间		
		戳。		
时间复杂度	$O(n^{1.5})$	空间复杂度	$O(n^{1.5})$	

试题名称	Chefbook			
试题来源	Codechef JUNE 15	试题编号 CHEFBOOK		
题目大意		算法讨论		
给 定m组 限	制 a_i, b_i, w_i, l_i, r_i , 你要设	容易发现这是	一个线性规划,我们将其对偶转化	
置n个非负整	数 x_i 和n个非负整数 y_i ,满	到费用流。令	$x_{i+n} = y_i$,先把限制写成 $x_i - x_j \le$	
	$y_{b_i} + w_i \le r_i$, 你要最小	K的形式,然	K的形式,然后从i到j连费用为 K 流量无穷的边,	
$\mathbb{k}\sum_{i=1}^m x_{a_i}$ –	$y_{b_i} + w_i$,给出方案。	再从原点向i连流量为1费用为0的边,从j向汇点连		
数据范围:n≤	$100, m \le n^2$	流量为1费用为0的边,这张图的最小费用最大流		
		就是答案。		
		我们还要构造一组方案。可以利用差分约束系统,		
		如果一条边流量不为0,这个限制就成立,这样就		
		可以构图求答案。		
时间复杂度	$O(costflow(n,m) + nm^2)$	空间复杂度 O(m)		

试题名称	Ciel and Earthquake			
试题来源	Codechef MARCH 12	试题编号	CIELQUAK	
题目大意	题目大意			
$-$ 个 $n \times m$ 的	四联通网格,每一条边都	n很小,显然	可以使用轮廓线dp, 记录轮廓线	
有p的概率损毁	段,问点 $(1,1)$ 和点 (n,m) 联	以及(1,1)点的连通性,利用最小表示法状态		
通的概率。		数 S 只有 3000 多,直接 d p是 $O(nmS)$ 的,可是 m 很		
数据范围:T≤	$50, n \le 8, m \le 10^{18}$	大,S也过大导致不能矩阵乘法,但是我们发现		
		当m 比较大的时候大致呈指数级增长,就可以设		
		定一个x,用 $Ans(n,x-1) \times (\frac{Ans(n,x)}{Ans(n,x-1)})^{m-x+1}$ 来		
		估计答案,当	x取40的时候就可以通过了。	
时间复杂度	O(nxs)	空间复杂度	O(nxs)	

试题名称	至名称 Attack of the Clones			
试题来源	Codechef JUNE 11	试题编号	CLONES	
题目大意		算法讨论		
我们称一个形	为f:A→B的函数叫做布尔函数,其中A是所有长度	用一个4位二分	用一个4位二进制表示一	
为n的01串,I	$B = \{0,1\}_{\circ}$	个函数从属于	ZPDA的情	
现在有四个元	素是n项布尔函数的集合:	况,那么就有	T16种函数,	
1.Z集合是所有	F满足f(0,0,,0)=0的函数的集合。	可以手算出每	事种函数的	
2.P集合是所有	f满足f(1,1,,1)=1的函数的集合。	数量,然后月	月一个16位	
3.D集合是所	有满足!f(x1,x2,,xn)=f(!x1,!x2,,!xn)的函数的集	二进制的数	来表示表	
合。		达式是否含有这16种集		
4.A集 合 是	所有满足如下条件的函数的集合: 如	合,对于集合X和Y,并		
果 $f(x1,,x_{i-1})$	$f(x_1, a, x_{i+1},, x_n) = f(x_1,, x_{i-1}, b, x_{i+1},, x_n),$	集是 X or Y ,	交集是X	
則 $f(y1,,y_{i-})$	$(x_1, a, y_{i+1},, y_n) = f(y_1,, y_{i-1}, b, y_{i+1},, y_n)$	$and Y, \Rightarrow $	į 是X xor	
现在给你一个	`由Z,P,D,A,v,^,!,(,),\组成的表达式, 其中ZPDA表	65535,差集是		
示如上所述的	集合,v表示并集,^表示交集,!表示补集,\表示	xor 65535),	然后用栈处	
差集。		理表达式就好	了。	
其中!优先级聶	最高而其余三个运算优先级相同,()的优先级高于!。			
求出满足这个	表达式的元素个数。			
数据范围:表达式长度 $S, n \leq 100$ 。				
时间复杂度	O(n+S)	空间复杂度	O(S)	

试题名称	Future of draughts			
试题来源	Codechef AUG 15	试题编号	CLOWAY	
题目大意		算法讨论		
给定T张n _i 个	点 m_i 条边的无向图。 ${ m Q}$ 组询	先预处理出每	导张图长度为k的回路个数。显然长	
问,每组询问]问只考虑编号为 $[L_i,R_i]$ 的	度为k的回路。	个数等于邻接矩阵G的k次方的对角	
图,最开始对	每一张图可以选择一个出	线上元素的和	印,直接矩阵乘法是会超时的,可	
发点,接下来	每一个回合可以选中一些	以先对这个领	邓接矩阵求出它的特征多项式,这	
图 (至少选中	一个),并对每一个选中的	个可以根据特征多项式的定义 $det(xI-G)$,带		
图通过一条存	至在的边移动一个位置,问	入n个不同的x,求行列式然后插值来得到特征多		
在 K_i 回合内每	4一张图都回到出发点的方	项式 $f(x)$,就可以得到一个关于回路个数的 n 阶线		
案数(对10 ⁹ -	+7取模)。	性递推式,这样就可以预处理出长度为k的回路个		
数据范围:n,T	$1 \le 50, K_i \le 10^4, Q \le 10^5$	数了。令 S_{ij} 表示第i张图长度为j的回路个数。		
		通过容斥可以发现恰好K回合的答案		
			是 $\sum_{i=1}^{K} (-1)^{K-i} {K \choose i} \prod_{j=L}^{R} S_{ji}$,可以枚举L到R然	
		后用FFT计算答案,因为模数很奇怪不能NTT,		
		需要取3个模数进行NTT然后CRT合并。		
时间复杂度	$O(Tn^4 + TnK + T^2KlogK)$	空间复杂度	$O(Tn^2 + K)$	

试题名称	Counting D-sets			
试题来源	Codechef JAN 14	试题编号	CNTDSETS	
题目大意		算法讨论		
在n维空间中,两个点的距离定义为每		直径恰好为D	的点集个数不好求, 可以求出直径	
一维坐标差的绝对值的最大值,一个点		小于等于D的点集个数,答案就 $Ans_D - Ans_{D-1}$ 。		
集的直径定义为距离最远的两个点的距		为了避免相同的点集可以限制每一维坐标都至		
离,两个点集是相同的当且仅当它们可		少有一个点法	少有一个点为0,通过简单的容斥发现答案就	
以通过平移得到。询问n维空间中直径等		是 $\sum_{i=0}^{n}(-1)^i$	$\binom{n}{i} 2^{(D+1)^{n-i}D^i}$,直接计算即可。	
于D的点集个数。				
数据范围: $n \le 10^3, D \le 10^9$				
时间复杂度	$O(nlog(10^9 + 7))$	空间复杂度	O(n)	

试题名称	Counting Hexagons			
试题来源	Codechef SEPT 11	试题编号	CNTHEX	
题目大意		算法讨论		
现在你有NK	根木棍,木棍长度为1到N,	N-L很小,可	以枚举最长的木棍长度, 其他木棍	
且每种长度的木棍有K根。你需要选出		长度和要超过	最长木棍长度,为了避免0的出现可	
六根木棍拼出	六根木棍拼出一个面积为正的六边形。		以先把所有木棍长度-1。	
你选取的木棍	你选取的木棍需要满足最长的木棍长度		我们可以使用二进制数位 dp ,令 $f_{a,b,c,d,e}$ 表示考	
至少为L,其'	它的木棍长度不能超过X。	虑后a位,当ī	虑后a位,当前长度和与最长木棍长度关系为b,	
求方案数		长度和进位为c,5根木棍大小关系为d,5根木棍		
数据范围: $1 \le K \le 5, 1 \le X < L \le N \le$		与X的关系,接下来枚举每一位是0还是1即可。		
$10^9, N - L \le 100$				
时间复杂度	$O(4K^2(N-L)logNBell_K)$	空间复杂度	$O(K(N-L)2^K Bell_K)$	

Problem 15

试题名称	Find a special connected block			
试题来源	Codechef APRIL 12	试题编号	CONNECT	
题目大意		算法讨论	算法讨论	
给定一个n×m的网格,每一个格子都有		如果权值在[-	-1,k]之间就可以用经典的斯坦纳	
一个 $[-1, n \times m]$ 范围内的整数权值以及		树算法解决,那么我们可以随机一个[-1,n×		
一个代价。问一个代价和最小的四联通		m]到 $[-1,k]$ 的	m]到 $[-1,k]$ 的映射求斯坦纳树,显然结果不会更	
块,满足联通块中没有权值为-1的格子		优,而且有 $\frac{k!}{k^k}$ 的概率得到最优解,随机 \mathbf{x} 次就可以		
且至少出现了k种不同的正权值。		了。		
数据范围: $n, m \le 15, k \le 7$				
时间复杂度	$O(xnm(3^k + 2^k log n))$	空间复杂度	$O(nm2^k)$	

试题名称	Cool Numbers			
试题来源	Codechef JUNE 12	试题编号	COOLNUM	
题目大意		算法讨论		
一个数A是cool number当且仅当可以选		如果一个数只	7有不超过三个非0位,显然满足条	
出至多三个不同的数位,令这些数位		件,也很容易	求得小于等于n的最大这类数以及大	
的和为S,A的数位和为K,存在一种选		于n最小的数。		
法使得 $A (K-S)^S$ 。给一个n求出小于		对于剩下的数	对于剩下的数,令A的位数为k,可以发现(9k-	
等于n的最大d	cool number以及大于n的最	$(27)^{27} > 10^{k-1}$,k最大只有77,于是可以枚举K-S,		
小cool numbe	ero	然后枚举(K-	$(-S)^2$ 7的因子判断,总共只有 30000 多	
数据范围: $T \le 10^5, n \le 10^{1000}$,保证所有		个,询问时二分就好了。		
数据中n的位数和不超过4×10 ⁶ 。				
时间复杂度	O(Tlognlog30000)	空间复杂度	O(logn + 30000)	

试题名称	Count on a Treap			
试题来源	Codechef FEB 14	试题编号	COT5	
题目大意		算法讨论		
有一个初始为空的treap,进行n次操作,		treap的中序	遍历就是关键字的顺序,两个点	
操作种类如下	:	的LCA就是他	2们对应区间中优先级最大的点,那	
1. 插入一个	给定关键字和优先级的节	么现在的问题	就是求一个点的深度。	
点。		如果x是y的祖先,也就是 $LCA(x,y) = x$,那		
2. 删除一个节	方点。	么[x,y]区间中x的优先级最大,我们可以用线段		
3.询问两个节	点之间的路径长度。	树来维护某个点左端(右端)的祖先个数,我们		
保证关键字和	优先级两两不同。	考虑一个函数 $getl(x,y)$,表示对于线段树中的区		
数据范围:n≤	2×10^5	间 x ,求 max (前驱最大值, y) =当前点权值的点		
		数,只要维护了区间最大值这个函数很容易实现,		
		复杂度为 $O(logn)$,同时使用 $getr(x,y)$ 就可以满足		
		查询和更新了	。单次复杂度 $O(log^2n)$ 。	
时间复杂度	$O(nlog^2n)$	空间复杂度	O(n)	

试题名称	Arithmetic Progressions			
试题来源	Codechef NOV 12	试题编号	COUNTARI	
题目大意		算法讨论		
给定一个长月	度为n数组A,询问有多少	可以使用分块	,设块大小为 $size$,分成 $\frac{n}{size}$ 块,对	
$\forall (i,j,k) (1 \leq$	$i < j < k \le n$) 满足 $A_i +$	于 (i,j,k) 所属	块的情况讨论。	
$A_k = 2A_j$ °		1.至少有两个	1.至少有两个在同一块:每块都枚举两个数,再	
数据范围:n≤	$10^5, A_i \leq 3 \times 10^4$	预处理一个前缀桶和后缀桶,就可以求出。这一		
		部分是 $O(size^2 \times \frac{n}{size})$ 的。		
		2.所有都不在同一块: 枚举j所在的块, 把前缀桶		
		和后缀桶用FFT乘起来,就可以查找了,这一部		
		分是 $O(\frac{n}{size}nlogn)$ 的。		
		所以复杂度是 $O(size^2 \times \frac{n}{size} + \frac{n}{size}nlogn)$,		
		令 $size = \sqrt{nlogn}$,复杂度最优,为 $O(n\sqrt{nlogn})$		
时间复杂度	$O(n\sqrt{nlogn})$	空间复杂度	O(n)	

Problem 19

试题名称	Cucumber Boy and Cucumb	er Girl		
试题来源	Codechef JAN 13	试题编号	CUCUMBER	
题目大意	题目大意			
给 定m个n >	$< n$ 的 矩 阵 A_i , 对 于 数	对于矩阵B,	令矩阵C为 $C_{i,j} = (B_{i,j} + 1) \mod 2$ 。	
$$ $ $	b)定义 $n \times n$ 的矩阵B满	考虑矩阵C的]行列式,每一个不是好的排列的	
$\mathbb{Z}B_{i,j} = \sum_{i=1}^{n}$	$A_{k=1}^n A_{a,i,k} A_{b,j,k}$,一个1-n的	贡献都是1或	-1,每一个好的排列的贡献都是0,	
排列P是好的	当且仅当至少存在一个i使		候数对 (a,b) 是好的等价于 $det(C)$ 为奇	
得 B_{i,p_i} 是奇数	(a,b)是好的当且仅	数。		
当好的排列有	百奇数个。询问有多少个好	因为 $C_{i,j} = (\sum_{i \in I} C_{i,j})$	$\sum_{k=1}^{n} A_{a,i,k} A_{b,j,k} + 1 \pmod{2}$,所以可	
数对。		以在每一个矩	巨阵A后面补上全是1的第n+1列,那	
数据范围:n≤	数据范围: $n \le 60, m \le 8000$		么 $C = A_a \times A_b^T$ (模 2 意义下)。	
			现在的问题就是求 $det(C)$,由Binet-Cauchy 定理,	
		$\Diamond A_{i-j}$ 为矩阵 A_i 删掉第j列后得到的矩阵,那么就		
		有 $det(C) = \sum_{i=1}^{n+1} det(A_{a-i}) + det(A_{b-i})$ 。 所以只		
		需要求出所有的 $det(A_{a-i})$ 即可。我们可以对 A_i 进		
		行消元,如果 A_i 不满秩,那么 $det(A_{i-j})$ 一定为 0 。		
		否则一定可以把 A_i 消成 $n \times n$ 的单位矩阵加上一		
		列的形式(令消元后的矩阵为D),假设加上的是		
			$ \int D_{j,k} j < k $	
			第k列,那么就有 $det(A_{i-j}) = \begin{cases} D_{j,k} & j < k \\ 1 & j = k \\ 0 & j > k \end{cases}$	
	就可以计算答案了,注意使用bitset优化。			
时间复杂度	$O(n^2m + m^2)$	空间复杂度	$O(n^2m)$	

试题名称	Payton numbers		
试题来源	Codechef FEB 15	试题编号	CUSTPRIM
题目大意		算法讨论	
定义三元组	(<i>a</i> , <i>b</i> , <i>c</i>)的 乘 法 运 算, 其	$ \Rightarrow \omega = \frac{1 + \sqrt{-1}}{2} $	$\overline{}$,那么对于每一个三元组 (a,b,c) ,
中c=11或者24	4。定义单位元A,对于任	都有到域 $Z[\omega]$]的映射 $\phi(a,b,c) = (33 - 2a - c) +$
何B都满足A:	$\times B = B$ 。 定义zeroA, 对	$(b-a)\omega$ 。于	是问题就转化为了判断域 $Z[\omega]$ 下的
任何B都满足	$zeroA \times B = zeroA$ 。定义	$数a + b\omega$ 是否	为素数。
一个三元组是	:素数当且仅当这个三元组	定义共轭 $(a+b\omega)c=(a+b-b\omega)$,那么就有如下	
不能表示成两	「个非零非单位元的三元组	结论:	
的乘积。		$1.$ 如果 \mathbf{x} 不是整数,那么 \mathbf{x} 是质数当且仅当 $\mathbf{x} \times \mathbf{x}'$ 是	
给定一个三元	组,判断它是不是素数。	质数。	
数据范围:T≤	$10^4, -10^7 \le a, b \le 10^7$	2.如果x是整数,那么x是质数当且仅当x是质数且	
		要么 $ x =2$,要么 $ x \neq 11$ 且-11在模x域下没有二	
		次剩余。	
		于是可以直接用欧拉判别法和miller rabin 来判	
		断。	
时间复杂度	O(Tloga)	空间复杂度	O(1)

试题名称	Graph Challenge		
试题来源	Codechef FEB 14	试题编号	DAGCH
题目大意		算法讨论	
给定一个n个,	点m条边的图,每一个点的	可以发现一个	节点的最好的节点就是dominator
标号为它的D	FS序。保证所有节点都能	tree算法中	的半必经点。所以只需要运
从第一个点到	l达。一个节点x对y来说是	行dominator	tree 算法然后统计答案。
好的当且仅当	x < y且存在一条x到y的路		
径使得中间节	方点编号都大于y。一个节		
点x对y来说是	:最好的当且仅当它是所有		
对y的好节点。	中编号最小的。		
给定Q个询问	, 问对于一个节点, 它是		
多少个节点的	多少个节点的最好的节点。		
数据范围: $1 \le n, Q \le 10^5, n-1 \le m \le$			
2×10^5			
时间复杂度	$O((n+m)\alpha(n))$	空间复杂度	O(n+m)

试题名称	Devu and Locks		
试题来源	Codechef FEB 15	试题编号	DEVLOCK
题目大意		算法讨论	
对于所有的 $0 \le m \le M$,求出满足各位		我们把10 ⁱ mo	d P相同的位数放在一起统计,假设
数字之和不超过 m 且是 P 的倍数的 n 位数		当前统计的是	w,这样的位数有 k 位。
(可以有前导0)。		令 $f_{i,j}$ 表示模P为i,数字和为j的个数,根据生成	
两类数据范围:		函数 $g(x) = (\sum_{i=0}^{9} x^i)^k$,可以知道 $f_{i \times w \mod P, i} =$	
$n \le 10^9, P \le$	$50, M \le 500$	$[x^i]g(x)$, $g(x)$ 可以利用FFT和快速幂计算。	
$n \le 10^9, P \le$	$16, M \le 15000$	假设原来的答案h _{i,j} 表示模P为i,数字和为j的	
		个数,现在要把 f 和 h 合并,可以得到 $h'_{x,y}$ =	
		$\sum_{i+j \mod P=x, a+b=y} h_{i,a} f_{j,b}$,第一维比较小可以暴	
		力,第二维用FFT合并。	
时间复杂度	$O(MP^3 + MP^2logM)$	空间复杂度	O(MP)

Problem 23

试题名称	Dynamic GCD		
试题来源	Codechef JULY 12	试题编号	DGCD
题目大意		算法讨论	
给定一棵n个点的带权树,m次操作:		首先利用树链剖分转化为序列问题, 可以发	
1.询问两点之间路径上所有点的gcd。		现 $gcd(a,b,c) = gcd(a,b-a,c-b)$, 于是可以将	
2.给两点之间路径上所有点加一个值。		序列差分,维护每个点的权值以及区间差分后	
数据范围: $n, m \le 5 \times 10^4$		的gcd,这样gcd就是单点修改了,利用线段树很	
		好维护。	
时间复杂度	$O(mlog^3n)$	空间复杂度	O(n)

试题名称	Different Trips			
试题来源	Codechef DEC 12	试题编号	DIFTRIP	
题目大意		算法讨论		
给定一棵n个节点的树,每一个节点的		直接使用后缀	自动机,和字符串不同的地方在于	
权值定义为它	权值定义为它的度数,两条路径被视为		每次加入节点的时候要判断原有节点的孩子是否	
相同的当且仅当它们长度相同且经过的		己被占用。其余都和字符串的后缀自动机算法相		
点的权值构成	点的权值构成的字符串相同。询问这棵		同,最后累加一下 $len(x) - len(pre(x))$ 就行了。要	
树有多少条不	树有多少条不同的从孩子走向祖先的路		集很大需要用map存储孩子。	
径。				
数据范围: $n \leq 10^5$				
时间复杂度	O(nlogn)	空间复杂度	O(n)	

试题名称	Simple Queries			
试题来源	Codechef AUG 15	试题编号	DISTNUM	
题目大意		算法讨论		
给定一个长度	为n的数列和m个操作:	记一个点的	坐标为 (x,y) ,其中x是该点位置,	
1.定义S为区间	可[L,R]中出现过的数字的集	y是x后第一个	`和x相同的数的位置,可以先用平	
合,求 $\sum_{1 \leq i < i}$	合,求 $\sum_{1 \leq i \leq j \leq k \leq S } S_i S_j S_k$ 。		衡树处理出每个点的坐标,这样只要统计 $x \in$	
2.插入一个数。		$[L,R],y\in(R,+\infty)$ 的数,这种在平面上的问题可		
3.删除一个数。		以使用树状数组套线段树维护。		
4.修改一个位	置的值。	至于1操作的询问,如果记满足条件的点的和为A,		
5.询问一个区	间内出现过的数字种类数	平方和为 B ,立方和为 C ,答案就是 $\frac{A^3-3AB+2C}{6}$,		
数据范围: $n, m \leq 10^5$		ABC都很好维护。		
		需要注意常数问题。		
时间复杂度	$O(mlog^2n)$	空间复杂度	$O(mlog^2n)$	

试题名称	Divide or die		
试题来源	Codechef DEC 14	试题编号	DIVIDEN
题目大意		算法讨论	
平面上给定一	个n度角,你需要通过尺规	若n是3的倍数	则无解,否则有解。
作图来把这个	角分割成n的大小为1度的	先作一个正五	L边形得到72度的角,再作正三角形
角。你的操作	有:	得到60度的角	J,于是得到了12度的角,平分两次
1.画一条连接	A,B直线。	得到3度角,用n度角不断减去3度角,最后得到的	
2.以A为圆心,	B,C之间距离为半径画一	如果是2度角就平分,于是就得到了一个1度角,	
个圆。		不断用这个角划分就好了。	
你用到的点只	【能是最开始给定的三个点		
或者你绘制的	图形之间的交点。		
数据范围: $0 < n < 360$,你的操作次数不			
能超过1000。			
时间复杂度	O(n)	空间复杂度	O(n)

试题名称	Something About Divisors			
试题来源	Codechef AUG 11	试题编号	DIVISORS	
题目大意		算法讨论		
对于给定的正	整数B和X,求满足条件的	令正整数i =	$\frac{NX}{D}$, 那么显然有 $i < X$, 考虑枚	
正整数N的个	数:对于N,至少存在一个	举每一个可能	能的i,为了避免重复的统计,我	
数D $(N < D \le$	$\leq B$)能整除 $N \times X$ 。	们可以计算	满足 $i NX$ 且不存在j满足 $i < j <$	
数据范围:T≤	$\leq 40, X \leq 60, B \leq 10^{12}$	X且 $j NX$ 的N。		
			因为 $i NX$,所以有 $A_i = \frac{i}{gcd(i,X)} N$,那么就	
		有 $N = A_i k_\circ$		
		因为 $j A_iXk$,所以有 $B_j = \frac{j}{\gcd(A_iX,j)} k$,于是		
		可以对 $i < j < X$ 进行容斥,也就是 $Ans_i =$		
		$\sum (-1)^t \frac{Bi}{A_i X \times LCM(B_i)}$, 直接计算是指数级别的,		
		但是记K为可能的LCM种数,K不大,大概104,		
		所以dp就可以了。		
时间复杂度	$O(X^2K)$	空间复杂度	O(XK)	

试题名称	Colored Domino Tilings and Cutsontest			
试题来源	Codechef NOV 11	试题编号	DOMNOCUT	
题目大意	题目大意		算法讨论	
$-$ 个 $N \times M$ 的	的矩形棋盘。一个棋盘覆盖	NM为奇数的	时候显然无解。令 $N \leq M$,当 N 小	
的染色是指:	在棋盘上填上小写字母,	于5的时候可以	以手工构造,当 $N \geq 5$ 的时候可以利	
使得每个格子	产有且仅有一个相邻格子的	用5×6和6×8的两种棋盘进行扩展,这两种棋盘		
字母和他的一	字母和他的一样。棋盘的割是指一条竖		都是三染色且无割的,可以发现不改变染色数和	
直或水平的直	I 线将棋盘分成两半,这条	割数的时候这两个棋盘都很容易扩展两行或两列。		
直线不能穿过	廿一对有相同字母的相邻格	注意6×6也需	言要手工构造。	
子。现在你需	言要构造一个在割数尽可能			
小的情况下,染色数尽可能小的染色。				
数据范围: $T \le 3000, N, M \le 500$				
时间复杂度	O(TNM)	空间复杂度	O(NM)	

试题名称	Easy exam			
试题来源	Codechef JULY 15	试题编号	EASYEX	
题目大意		算法讨论		
一个K面的骰	子, 投到每一面的概率都	设 $x_{i,j}$ 为第j次	投是否投到i,如果投到就是1否则就	
是完全相同的	的,现在投n次,设投完之	是0。那么显然	然有 $a_i = \sum_{j=1}^n x_{i,j}$, 答案要求的就	
后数字i出现	了 a_i 次,试求 $\sum_{i=1}^L a_i^F$ 的期	是 $\prod_{i=1}^{L} (\sum_{j=1}^{n}$	$(x_{i,j})^F$ 。我们把这个式子展开,我	
望。		们可以对每一	-项分开来考虑,如果一项中存在不	
数据范围:n,I	$K \le 10^9, L \le K, LF \le 5 \times$	同的a,b和c使	得 $x_{a,c}$ 和 $x_{b,c}$ 的指数都大于 0 ,那么这	
$10^5, F \le 1000$		一项的贡献就是0, 否则设这一项出现了t个不同		
		的变量,那么它的期望值就是 $\frac{1}{K^t}$		
		考虑计算有i个贡献不为0的不同变量的项的系数。		
		$\phi_{w_{i,j}}$ 为式子 $(\sum x_k)^i$ 的展开中出现了j个不同变量		
		的系数之和,那么显然有递推式 $w_{i,j} = w_{i-1,j-1} +$		
		$j \times w_{i-1,j}$ °		
		令 $f_{n,m}$ 为 $\prod_{i=1}^{n} (\sum_{j=1} x_{i,j})^{F}$ 的展开中出现了m个不		
			同变量系数之和的方案数,那么就有 $f_{n,m}$ =	
		$f_{n-1,j}w_{F,m-j}\binom{m}{j}$,这是可以FFT+快速幂优化的,		
		最后统计答案。		
时间复杂度	O(LFlogLFlogL)	空间复杂度	O(LF)	

1 Toblem 50				
试题名称	Equivalent Suffix Tries			
试题来源	Codechef JULT 12	试题编号	EST	
题目大意		算法讨论		
给定一个长度	为n的字符串,求由小写字	后缀字母树的	性质如下:	
母组成,后缀	(字母树与该字符串同构的	1.叶子个数取	决于最长的是其他后缀前缀的后缀	
串个数。		长度,设长度为L,叶子个数就有n-L。		
数据范围:n≤	数据范围: $n \leq 10^5$		2.两个后缀的LCA深度取决于LCP。	
		3.和根相连的点数为字母种数。		
		那么L、字母和	种数、前n-L-1个后缀和第n-L个后缀	
		的LCP是不变的,其中第三点可以确定一部分字		
		符的相对关系。于是枚举前n-L-1个后缀,使得		
		第n-L个后缀是该后缀的前缀,利用hash判重,最		
		后答案要乘上 ^{26!} ,t是字母种数。		
时间复杂度	O(nlogn)	空间复杂度	O(n)	

试题名称	Evil Book			
试题来源	Codechef MARCH 12	试题编号	EVILBOOK	
题目大意		算法讨论		
有n个人,你打	丁败第 i 个人需要付出 c_i 的代	利用贪心思想	!, 如果我们打败一个人时他的魔法	
价, 打败它后	价,打败它后可以获得 d_i 的魔法值,最		值大于666,那么肯定是尽量小的,而X的值至少	
开始你的魔法	开始你的魔法值是0。你可以对人使用魔		是10,那么小于666的情况只有3种以内(4次就得	
法,对第i个。	法,对第 i 个人使用后 c_i 和 d_i 都将除以 3 ,		不偿失了),所以每个人最多都有4种可能。	
每一次使用要	每一次使用要消耗X点魔法值。你要使		可以发现存在一种最优解使得使用魔法次数单调	
你的魔法值大	你的魔法值大于等于666,问你最少付出		方法搜索,加一些剪枝就可以通过	
多少的代价。		了。		
数据范围: $T \le 5, n \le 10, 10 \le X \le 666$				
时间复杂度	$O(T4^n)$	空间复杂度	O(n)	

Problem 32

试题名称	Fibonacci Numbers on Tree			
试题来源	Codechef SEPT 14	试题编号	FIBTREE	
题目大意		算法讨论		
给定一棵n个	节点的树,你要支持以下操	首先使用树链	剖分转化为序列上问题, 然后用可	
作:		持久化线段树	持久化线段树维护。	
1.给u到v路径	1.给u到v路径上的点权加上斐波那契数		如何维护区间加斐波那契数列呢,注意到我们只	
列。	列。		需要知道开头两个数,就能求出整个斐波那契型	
2.询问以x为相	艮时y的子树和。	数列的和,那么标记就是当前区间加上的开头两		
3.询问x到y路	3.询问x到y路径上所有节点的权值和。		两个数,可以利用公式 $\sum_{i=1}^n fib_i =$	
4.让整棵树回到第i次操作后的状态。		$fib_{n+2}-1$,剩下的就很好维护了。		
数据范围: $n, Q \times 10^5$				
时间复杂度	$O(Qlog^2n)$	空间复杂度	$O(Qlog^2n)$	

试题名称	Find a Subsequence			
试题来源	Codechef FEB 12	试题编号	FINDSEQ	
题目大意		算法讨论		
给定一个长	度为5的排列p和一个长	我们可以枚氧	举第二个和第四个数,然后可以贪	
度n的整数序	列A,现在要求一个A的	心地选取第一	个数和第五个数,如果它比第三个	
长度为5的子	序列B满足在序列B中恰好	数大就去合法	方案里最大的,否则取最小的,然	
q_{p_i-1} 个数	比 B_i 小。	后就得到了第三个数的范围,预处理二维前缀和		
数据范围:T	$\leq 60, n \leq 2000, A_i \in$	就可以知道是	:否存在第三个数,如果存在暴力找	
$[-10^9, 10^9]$		出。		
		需要预处理1到i中小于j的最大值,大于j的最小		
		值,小于j的个数,i到n中小于j的最大值,大于j的		
		最小值,这些都可以 $O(n^2)$ 求出。		
时间复杂度	$O(Tn^2)$	空间复杂度 $O(n^2)$		

试题名称	Flight Distance			
试题来源	Codechef FEB 12	试题编号	FLYDIST	
题目大意		算法讨论		
给定一个n个	点m条边的图,第i条边的	考虑转化为线	性规划,对每条边设两个量 x_i 和 y_i ,	
边权是 D_i ,可	「以修改每条边的边权,要	表示修改之后	是 $D_i - x_i + y_i$,考虑最短路求法,限	
求改过之后也	2是正数,代价就是改动的	制就是 $dis_{i,j} \le$	$\leq dis_{i,k} + dis_{k,j} \not = dis_{u,v} = D_i - x_i + $	
大小, 求出最	:小的代价,使得改变之后,	y_i , 变量是 $dis_{i,j}$ 和 x_i, y_i , 要求最小化 $\sum x_i + y_i$,		
每一条边都是	是两个端点的最短路。输出	于是可以用单纯形法解决。		
一个最简分数		可以发现这个线性规划不存在初始可行解,可以		
数据范围:n ≤	数据范围: $n \leq 10, m \leq \frac{n(n-1)}{2}, 1 \leq D_i \leq$		添加辅助单纯形,或者进行一些转化。自定义的	
20		分数类型较慢,中间过程可以使用double,最后		
		枚举分母就好了。		
时间复杂度	$O(simplex(n^2+m, n^3+m))$	空间复杂度	$O(n^5)$	

Problem 35

试题名称	Fibonacci Number		
试题来源	Codechef OCT 13	试题编号	FN
题目大意		算法讨论	
给定M,C, 询问满足 $fib_n \mod M = C$ 的		先写出斐波那	『契数列的通项公式,可以发现2存
最小的n,如果无解输出-1。fib表示斐		在逆元, $\sqrt{5}$ 也存在等价的整数,于是就可以转	
波那契数列。		化为 $x^n - x^{-n} = a$,可以发现 $x^n = \frac{a \pm \sqrt{a^2 + 4}}{2}$,求	
数据范围: $T \leq 100, C < M \leq 2 \times$		出模意义下的 $\sqrt{a^2+4}$,然后就可以用BSGS算法	
10 ⁹ ,M为质数且M mod 10为完全平方数。		求解。求模意义下的平方根可以使用Cipolla's	
		algorithm.	
时间复杂度	$O(\sqrt{M})$	空间复杂度	$O(\sqrt{M})$

试题名称	Chef and Churu			
试题来源	Codechef NOV 14	试题编号	FNCS	
题目大意		算法讨论		
给定一个长度	ξ 为n的数组和n个函数 $f_i =$	考虑分块,	每次询问就是一段整块的和以	
$\sum_{j=L_i}^{R_i} A_j$ °	爱下来有m个操作:	及 $O(\sqrt{n})$ 次查	·询A的前缀和,我们需要维护每个	
1.单点修改A的	的值。	块的f值的和,	以及 $O(1)$ 查询 A 的前缀和。	
2 .询问 $\sum_{i=L}^{R} f$	i°	维护每个块的f值的和可以先预处理一个数		
数据范围:n,m	$n \le 10^5$	组 $Num_{i,j}$ 表示 A_j 在第i块中的出现次数,预处理		
		是 $O(n\sqrt{n})$,修改单点之后枚举每块修改。		
		维护A的前缀和也可以对A分块,维护S1 _i 表示		
		前i块的和,以及 $S2_i$ 表示i到i所属块的开头的		
		和,这样一次修改就是 $O(\sqrt{n})$ 了,询问可以		
		用S1和S2做到O(1)。		
时间复杂度	$O(n\sqrt{n})$	空间复杂度	$O(n\sqrt{n})$	

试题名称	Chef and Graph Querie		
试题来源	Codechef MARCH 14	试题编号	GERALD07
题目大意		算法讨论	
给定一张n个点m条边的无向图,Q个询		编号从小向大依次添加边,用LCT维护编号最大	
问,询问只保留编号在区间 $[L_i, R_i]$ 中的		的生成树,那么加入第 r 条边后处理 $[l,r]$ 的询问,	
边的话图中有多少个联通块。		答案就是 $n-t$,t表示生成树中有多少编号大于等	
数据范围: $n, m, Q \leq 2 \times 10^5$		于l的边,这个使用一个树状数组维护就可以了。	
时间复杂度	O((m+Q)logn)	空间复杂度	O(n)

试题名称	Chef and Tree Game		
试题来源	Codechef APRIL 14	试题编号	GERALD08
题目大意		算法讨论	
有一棵n个节,	点的树,树上每一条边的颜	这是不平等博	奔,我们对每个节点定义一个局面
色都为红色或	(者蓝色。现在两个人轮流	函数 f 。	
进行操作,第	5一个人每次选择一条红色	叶子的函数值	为0。每一个节点的函数值为所有孩
边删除,第二	个人每次选择一条蓝色边	子的贡献之和	I,对于一个孩子i,如果连接它的是
删除,删除后	和树根不连通的部分将被	红边,那么令 a 为 $f_i + a > 1$ 的最小正整数,它的	
删除,若干轮	之后不能操作的人算输。	贡献就是 $\frac{f_i+a}{2^{a-1}}$,否则令a为 $f_i-a<-1$ 的最小正整	
如果两个人都	7使用最优策略,问第一个	数,它的贡献就是 $\frac{f_i-a}{2^{a-1}}$ 。	
人先手时、第	三个人先手时分别是谁赢	如果根节点的函数值是为0,那么谁后手谁赢;如	
得游戏。		果是整数,那么无论如何都是第一个人赢;否则	
数据范围:n≤	10^{5}	无论如何都是第二个赢。	
		发现需要维护二进制小数,而一个小数的1个数	
		不会超过子树大小,那么就可以用平衡树维护每	
		个1位,并使用启发式合并来做加法。	
时间复杂度	$O(nlog^2n)$	空间复杂度	O(nlogn)

试题名称	Game of Numbers			
试题来源	Codechef JULY 14	试题编号	GNUM	
题目大意		算法讨论		
给定两个长	度 为n数 组A,B, 每 次 要	枚举每一个	$gcd(A_i, B_j) > 1$ 的数对,可以根	
选出两个数	$($ 对 (i,j) 和 (p,q) 满 足 $A_i <$	据 A_i 和 B_j 的大	小把所有数对分成两类。对于图	
$B_j, A_p > B_q$	$gcd(A_i, B_j, A_p, B_q) > 1,$	中两个点,如	中两个点,如果满足这两个点的gcd大于1,就在	
(i,j)和 (p,q) 者	『未被选择过。问最多能选	它们之间连一条边,那么这张图的最大流就是答		
择多少次。		案。但是这样边数是 $O(n^4)$ 的,需要优化。		
数据范围:n,m	$n \le 400$	对 于 质 数p, 我 们 新 建 一 个 点, 并 对 于 所		
		有ged是p的倍数的点和这个点连一条边,这样		
		和原图是等价的。还可以合并一些相同的点来优		
		化。		
时间复杂度	$O(maxflow(n^2, n^2logn))$	空间复杂度	$O(n^2 log n)$	

试题名称	Counting on a directed graph			
试题来源	Codechef MAY 15	试题编号	GRAPHCNT	
题目大意		算法讨论		
给定一张n个	点m条边的有向图, 一个	可以发现两个	冷点合法当且仅当他们没有除了1以	
点对(X,Y)是合法的当且仅当存在一条		外的相同的必经点,也就是在dominator tree上两		
从1到X的路径,一条从1到Y的路径满足		个点属于1的不同子树,于是可以求出dominator		
它们除了1号点以外没有任何公共点。统		tree之后统计答案。		
计合法的 (X,Y) 个数。				
数据范围: $n \le 10^5, m \le 5 \times 10^5$				
时间复杂度	$O((n+m)\alpha(n))$	空间复杂度	O(n+m)	

试题名称	A Game of Thrones			
试题来源	Codechef AUG 12	试题编号	GTHRONES	
题目大意		算法讨论		
有n种数,权	值是 u_i ,出现了 c_i 次。两个	先用miller ra	bin判断质数,求出任意两个数是否	
人轮流操作。	第一个回合第一个选取一	相似。把相似	J的数连上边,那么第二个人必胜当	
个数字作为初]始值。之后的每一个回合,	且仅当存在完	E备匹配,可以证明这个图是二分图,	
当前的人需要	是选出一个和当前值相似的	那么可以使用	那么可以使用最大流求出谁必胜。	
数作为新的值	1,之前的值移出游戏,如	如果一个初始权值可以让第一个人获胜,那么一		
果无法操作则	算输。	定存在一个最大匹配不匹配这个权值,每次网络		
两个数a,b是标	目似的当且仅当 $b a$ 且 $\frac{a}{b}$ 是质	流太慢,可以使用退流。		
数。你需要判	断哪个人必胜,如果是第			
一个人必胜,	你需要输出可以使他获胜			
的最小的初始值是多少。				
数据范围: $n \le 500, u_i \le 10^18, c_i \le 10^9$				
空间复杂度	O(nlogn)	时间复杂度	$O(n^2 log n + max flow(n, nlog n))$	

试题名称	A game on a graph		
试题来源	Codechef JULY 15	试题编号	HAMILG
题目大意		算法讨论	
给定一张无向]图,两个人玩游戏。第一	一个点是对于	第一个人是必胜的当且仅当存在一
个选择一个出	发点,接着两个玩家轮流	个原图的最大	匹配使得这个点在这个匹配中是未
操作,每一次	·操作可以沿着边移动到一	被匹配。于是	我们可以先用带花树求一遍最大匹
个未被到达过	1的点,无法移动的人会输	配。可以发现	和当前的任意未被匹配的点之间存
掉这个游戏。两个人都以最优策略移动,		在一条长度为	1偶数的增广路径的所有点都可能在
问有多少个出	发点对第一个人来说是必	一次增广之后	·变成未被匹配的点。于是我们可以
胜的。		从每一个未被匹配的点出发再做一次增广,把所	
数据范围: $T \le 3, n \le 2000, m \le 3 \times 10^5$		有距离为偶数或者花中的节点都标记为必胜。最	
		后统计点数就是答案了。	
时间复杂度	O(Tnm)	空间复杂度	O(n+m)

试题名称	Knight Moving		
试题来源	Codechef SEPT 12	试题编号	KNGHTMOV
题目大意		算法讨论	
一个无限大	、的棋盘,有一个骑士	$若(A_x, A_y)$ 和((B_x,B_y) 线性无关,那么到每一个格
在(0,0)。如果	艮骑士的坐标为(x,y), 那	子需要的两种	方法的步数都是唯一的,比如需要
么下一个回合可以移动到 $(x + A_x, y +$		走 a 步 A 和 b 步 B ,如果没有障碍物,那么方案数就	
A_y) 或 $(x + B_x)$	$(y + B_y)$ 。有 K 个障碍物。	是 $\binom{a+b}{a}$,有障碍物就容斥一下。	
问有多少种プ	方案把骑士移动到 (X,Y) ,	若线性相关,那么就是一条直线上的问题,只需	
无穷大输出-1	0	要在 $[-d,d]$ 之间 dp ,走 $2d$ 步就可以了,如果再走	
数据范围: $K \leq 15$,其余数字的绝对值不		一步答案变多的话就是-1。	
超过 $d=500$ 。			
时间复杂度	$O(K^2 + d^2)$	空间复杂度	$O(d^2)$

Problem 44

试题名称	Little Elephant and Boxes		
试题来源	Codechef MAY 12	试题编号	LEBOXES
题目大意		算法讨论	
有n个盒子,	第i个盒子里有Pi的概率	先用用背包求	出用a块钻石买b个物品最少需要多
是 V_i 块钱, $1-P_i$ 的概率是一块钻石。你		少钱。然后可	以使用meet in middle,先处理出前
打开了所有盒子之后去买东西, 一共		一半物品和后一半物品的所有情况,枚举前一半	
有m件物品,第i件需要 C_i 块钱和 D_i 个钻		有多少钻石和	后一半有多少钻石以及买多少物品,
石, 你一定会买数量尽可能多的物品。		然后把前一半的状态和后一半的状态按照钱数排	
问你期望能买到多少件物品。		序,用两个指针扫描并统计答案。	
数据范围: $n, m, D_i \leq 30, V_i, C_i \leq 10^7$			
时间复杂度	$O(nm^2 + nm2^{\frac{n}{2}})$	空间复杂度	$O(2^{\frac{n}{2}} + nm)$

试题名称	Little Elephant and Colored Coins			
试题来源	Codechef MARCH 13	试题编号	LECOINS	
题目大意		算法讨论		
给定 n 种给定面值 V_i 和颜色 C_i 的硬币,每		我们令m是最	我们令m是最小的面值,那么可以在模m的意	
种硬币都有无穷多个。Q组询问,要选		义下进行背包,设 $f_{i,j}$ 表示前 i 种颜色,可以拼成		
出一些硬币使得它们的和为S,需要最大		模m为j的最小面值,要注意特判是否包括最小面		
化选出硬币中的颜色种类数。		值的硬币的颜	色。	
数据范围: $n \leq 30, V_i, Q \leq 2 \times 10^5, S \leq$				
$10^{1}8$				
时间复杂度	$O(n^2m)$	空间复杂度	O(nm)	

试题名称	Little Party			
试题来源	Codechef APRIL 15	试题编号	LPARTY	
题目大意		算法讨论		
给定m个长度为n的01串,现在你需要使		这是一个NPC	这是一个NPC问题,所以只能考虑搜索,先记录	
用一些基子集,使得所有给定的串都可		下所有可行的基子集,至多有3 ⁿ 个,直接搜索的		
以被这些基子集覆盖且没有给定的串都		复杂度 $O(2^{3^n})$,需要优化。		
没有被这些基子集覆盖。你需要最小化		如果一个基子集被另一个包含,那么这个就没有		
使用的基子集的大小的和。		意义,这样最多只会剩下32个基子集,然后加一		
数据范围: $T \le 120, m \le 1000, n \le 5$		点剪枝就可以通过了。		
时间复杂度	空间复杂度 $O(3^n + m)$		$O(3^n+m)$	

Problem 47

试题名称	Luckdays			
试题来源	Codechef NOV 11	试题编号	LUCKYDAY	
题目大意		算法讨论		
给定整数A,E	B,X,Y,Z,P,C,按照以下的	若X和Y有0,	那么循环节小于p,可以暴力处理。	
方式生成序	列 $S_1 = A, S_2 = B, S_i =$	否则可以使用	否则可以使用矩阵乘法来优化计算递推式,发	
$(XS_{i-1}+YS_{i-2}+Z) mod P$ 。 Q组询问,		现这个矩阵存在逆元,那么可以使用BSGS算法		
每组询问给出 L,R ,你需要求出满足 $i \in$		计算出循环节。矩阵乘法的结果是 $(S_i, S_{i-1}, 1)$,		
$[L,R]$ 且 $S_i=C$ 的i的个数。		$\phi S_i = C$,枚举 S_{i-1} ,利用BSGS算出循环节里的		
数据范围: $T \leq 2, Q \leq 2 \times 10^4, p \leq$		位置。最后二分统计答案就可以了。		
10007 且p是个质数, $L, R \le 10^{18}$				
时间复杂度	$O(T(p\sqrt{p} + Qlogn))$	空间复杂度	$O(p\sqrt{p})$	

试题名称	Music & Lyrics		
试题来源	Codechef AUG 13	试题编号	LYRC
题目大意		算法讨论	
给定n个字符串S和m个字符串T,询问		对S串建AC自动机,然后对于每个T串在AC自动	
每一个S串在T中一共出现了多少次。		机上运行,把运行到的每个点的权值加1,那	
数据范围: $n \leq 500, S \leq 5000, m \leq$		么S串的出现次数就是它对应的点的fail树上的	
$100, T \le 50000$		子树和。	
时间复杂度	O(n S + m T)	空间复杂度	O(n S)

试题名称	Two Magicians		
试题来源	Codechef AUG 12	试题编号	MAGIC
题目大意		算法讨论	
给定一张n个,	点m条边的无向图,最开始	考虑朴素的dp	D思路,需要记录奇数块的个数,偶
两个人分别在	1号点和2号点。从第一个	数块的个数,	两人当前块的奇偶性,剩下的传送
人开始轮流操	作,每一个回合有以下三	次数,剩下的]不影响连通性的边条数的奇偶性。
个步骤:		直接枚举操作	进行转移,复杂度是O(n ² P ²),显
1. 沿着现有的	的无向边移动任意步,如果	然不能接受。	
这一步结束时	两个人在同一个格子,则	可以发现每个人至多使用一次传送,当奇数块	
当前人胜。		足够多时dp值以4为周期循环,当偶数块足够多	
2.加入一条无	向边,如果无法加入则另	时dp值不变,这里的足够多取10就可以了,dp就	
一个人胜。		可以转化为 $O(1)$,先预处理所有的 dp 状态,每次	
3. 最开始每一	一个人有P次传送机会,如	查表就好。	
果当前人还有	传送的机会,他可以选择		
消耗一次并传送到任意一个节点。			
问谁必胜。			
数据范围: $T \le 10^2, n \le 7777, m, p \le 10^5$			
时间复杂度	$O(Tm\alpha(n))$	空间复杂度	O(n+m)

试题名称	Martial Arts		
试题来源	Codechef NOV 12	试题编号	MARTARTS
题目大意		算法讨论	
有一个两边都	是n个点的完全二分图,每	令边权为一个	·二元组 $(A-B,A)$,如果没有对手就
条边有两个权	\mathfrak{L} 值 $A_{i,j}$ 和 $B_{i,j}$,你要求一个	可以用KM求	出最大匹配。考虑枚举对手会删去
匹配,令A边	和为H,B边和为G,对手	哪条边,肯定	是最大的那一条。
可以删去你四	[配中的一条边,他想最大	于是把边从大到小排序,先加入所有的边,依次	
化G-H, 其次	最大化G,你想最大化H-	枚举对手删的边。令当前对手要删的边是e,先	
G, 其次最大	化H。	把 e 的权值赋为 $+\infty$,表示必选,更新答案,再赋	
数据范围:n≤	$100, A_{i,j}, B_{i,j} \le 10^{12}$	值为-∞,表示以后都不可选。	
		如果每次重新做KM算法复杂度过大,需要维	
		护KM的Label值,每次只需要找一条增广路,这	
		样的单次复杂度是 $O(n^2)$ 的。	
时间复杂度	$O(n^4)$	空间复杂度	$O(n^2)$

试题名称	Expected Maximum Matching		
试题来源	Codechef JUNE 12	试题编号	MATCH
题目大意		算法讨论	
给定一个n×	m 个矩阵 $p_{i,j}$,生成一个左	n很小,可以	使用状态压缩dp,左边总共有2 ⁿ 个
边n个点右边m个点的二分图,其中左边		子集,我们用一个2 ⁿ 位的二进制数表示状态,表	
第i个点和右边第j个点之间有边的概率		示左边的每个子集是否能和右边匹配,可以发现	
为 $p_{i,j}$,求这样生成的二分图的最大匹配		状态数K不多,不到4000。于是令 $f_{i,j}$ 表示考虑右	
的期望值。		边的前i个点,当前状态为j的概率,预处理转移直	
数据范围: $n \le 5, m \le 100, p_{i,j} \le 1$		接dp就好了。	
时间复杂度	O(Km)	空间复杂度	O(Km)

试题名称	Max Circumference		
试题来源	Codechef OCT 12	试题编号	MAXCIR
题目大意		算法讨论	
给定二维平	面中的三个点ABC和N个	可以发现我们]要最大化过点A以BC为焦点的的椭
操作,第i个	操 作 可 以 使 得A的x坐 标	圆,考虑过A	的切线,存在两个实数u,v使得最大
增加 x_i , y坐	标增加yi。你可以使用最		和最大化答案等价。
多K个操作,	每一个操作只能使用一	如果已经知道u,v,直接按照贡献把操作排序取	
次。		前K个正贡献操作就可以了。考虑操作顺序发生	
现在你需要最	大化 $ AB + BC + AC $,	变化的时刻,只有在 $ux_i + vy_i = 0$ 或者 $ux_i + vy_i =$	
答案的绝对误	差必须小于10-12。	$ux_j + vy_j$ 的特殊时刻,那么可以分成 $O(n^2)$ 个部	
数据范围:К≤	$\leq N \leq 500$	分,每个部分二分一下就可以了。	
		注意到答案要求的精度极高, sqrt函数精度不够,	
		我们可以令 $\sqrt{S} = I + D$,使用公式 $D = \frac{S - I^2}{I + \sqrt{S}}$ 来	
		得到答案。	
时间复杂度	$O(N^2 log N)$	空间复杂度	$O(N^2)$

试题名称	Minesweeper Reversed			
试题来源	Codechef JUNE 11	试题编号	MINESREV	
题目大意		算法讨论		
给定你一个R	$C \times C$ 的扫雷棋盘,其中的	显然每一个雷	育都要花费一次点击来关闭。我们把	
雷的位置已经	这表明。最开始所有的方块	剩下的格子分)成两类,第一类是和雷相邻的,第	
都是打开的,	你需要关闭所有的方块。	二类是不和雷	f相邻的。其中第二类格子构成了若	
你可以通过-	一次点击来关闭一个方块。	干个联通块。	那么在正常的扫雷中, 如果打开了	
在你关闭(x,y)后,在正常的扫雷游戏中	一个联通块,	所有和它相邻的第一类格子都会被	
可能和 (x,y) 同	同时被打开的格子都会被关	打开。所以在这儿如果我关闭了一个第一类格子,		
闭。现在要价	《求出至少点击多少次,可	那么所有和它相邻的联通块以及和这些联通块相		
以关闭所有的	方块。	邻的第一类格子都会被关闭。		
数据范围:T≤	$50, R, C \le 50$	可以发现第一	-类格子至多与两个联通块相邻。把	
			和两个联通块相邻的第一类格子看成边,联通块	
		看成点。那么关闭所有联通块的代价就是联通块		
		数减去这张无	向图的匹配数。使用带花树即可。	
时间复杂度	$O(TR^2C^2)$	空间复杂度	O(RC)	

试题名称	Misinterpretation 2			
试题来源	Codechef JAN 12	试题编号	MISINT2	
题目大意		算法讨论		
一个长度为n的	的只包含小写字母的字符	可以发现重排	对应着一个置换,如果这个置换的	
串S,如果把它	它的偶数位依次写到开头,	循环数为f(n)),那么长度为n的好的字符串个数	
再把奇数位依	次写下去,得到的字符串	就有 $26^{f(n)}$ 个,	所以我们可以求出所有的 $f(n)$ 再统	
和原串一样,	那么称这个字符串是好的。	计答案。当n	为奇数的时候,最后一位不变,而	
给定L,R,问书	长度为在L,R之间的好的字	前面的排列和	$\ln -1$ 的情况一样,所以此时有 $f(n)=$	
符串有多少个。		f(n-1)+1°	于是只需要考虑n为偶数的情况。	
数据范围:T≤	$5, L, R \le 10^{10}, R - L \le 10^{10}$	$\diamondsuitord(p)$ 为2模p的 阶, 可 以 发 现 所 有 $gcd(i +$		
5×10^{4}		$1,n) = p$ 的i每 $ord(\frac{n+1}{p})$ 一组构成了若干个置换,		
		而这样的数有 $\phi(\frac{n+1}{p})$ 个,所以可以得到 $f(n) =$		
		$\sum_{p (n+1),p>1} \frac{\phi(p)}{\operatorname{ord}(p)} \circ$		
		首先要对n+1质因数分解,我们要分解的连续		
		一段,所以可以预处理 \sqrt{R} 以内的质数直接分		
		解。然后要计算 $ord(p)$,发现当 $(a,b)=1$ 时,存		
		E(ab) = lcm(ord(a), ord(b)), 所以可以预处		
			理质数以及质数的幂,每个n就只要多算一次ord。	
		之后用dfs枚举约数统计答案就好。		
时间复杂度	$O(\frac{R^{\frac{3}{4}}}{\log R} + \sqrt{R} \log R + T(\frac{\sqrt{R}}{\log R} +$	空间复杂度	$O(\sqrt{R} + (R - L)logR)$	
	$(R-L)log^2R))$			

试题名称	Gangsters of Treeland			
试题来源	Codechef NOV 13	试题编号	MONOPLOY	
题目大意		算法讨论		
给定一棵n个=	节点的有根树,开始每一个	修改操作相当	自于LCT中的access操作,于是可以	
点都有一个不	同的权值, m次操作:	用LCT维护这	用LCT维护这棵树,把相同的权值节点当成偏爱	
1.把i到根路径上的所有节点标记成一种		孩子,那么access操作次数是O(nlogn)的。		
新的权值。		我们需要维护每个节点到根的不同权值个数,这		
2.询问i子树中所有节点到根路径上不同		可以在每次access切换偏爱孩子的时候维护,需要		
权值个数的平均值。		用到dfs序和树状数组。		
数据范围: $n, m \le 2 \times 10^5$				
时间复杂度	$O(nlog^2n)$	空间复杂度	O(n)	

Problem 56

试题名称	Annual Parade			
试题来源	Codechef SEPT 12	试题编号	PARADE	
题目大意		算法讨论		
给定一张n个,	点m条边的有向图,每个英	先用floyd预处	理出每两个点的最短路,就可以只	
雄可以从一个	S移动到一个 T , S 可以等	考虑英雄经过	的关键点了。	
于T, 但他必须	须向另一个点移动。	考虑使用费用	目流求解, 把每个点拆成两个建立	
游行的总费用	分成三部分:	一个二分图,	从i到j+n连费用为最短距离距离流	
1.每个英雄路	径的边权和,	量为1的边,可以发现如果流量为t,还需要花		
2.若一个英雄	的 $S \neq T$,需要花费C。	费 $(n-t)C$ 。那么可以增广n次,记录下每次的费		
3.若一个点没	被经过,需要花费C。	用,对于每个	用,对于每个询问都枚举流量进行统计。	
K个询问,每	次询问一个C,求出游行最			
小花费。				
数据范围: $n \leq 250, m \leq 30000, K \leq$				
$100000, C, V \le 10000$ °				
时间复杂度	$O(costflow(n, n^2) + Kn +$	空间复杂度	$O(n^2)$	
	n^3)			

试题名称	Sine Partition Function		
试题来源	Codechef OCT 11	试题编号	PARSIN
题目大意		算法讨论	
$\bar{x}\sum_{\sum_{i=1}^{m}k_i=n}\prod_{i=1}^{m}sin(k_iK)$, 其		考虑DP, $\diamondsuit f_{n,m} = \sum_{\sum_{i=1}^{m} k_i = n} \prod_{i=1}^{m} sin(k_i K)$	
中 n,m,K 已给定, k_i 为非负整数。		因为 $sin(k_iK) = 2cos(K)sin((k_i-1)K) - sin((k_i-1)K)$	
数据范围: $m \le 50, n \le 10^9, K \le 6.28$		(2)K)	
		因此 $f_{n,m} = sin(K)f_{n-1,m-1} + 2cos(K)f_{n-1,m}$ —	
		$f_{n-2,m}$,于是就可以用矩阵优化 dp 转移。	
时间复杂度	$O(m^3 log n)$	空间复杂度	$O(m^3)$

试题名称	Prime Distance On Tree			
试题来源	Codechef AUG 13	试题编号	PRIMEDST	
题目大意		算法讨论		
给定一棵n个节点的树,在树上随机的选		考虑求出长度	考虑求出长度为i的路径有多少条。可以点分治,	
一条路径 $(u,v)(u < v)$, 问路径长度是质		每一次合并两个部分的时候发现合并方式类似卷		
数的概率是多少。		积,于是可以	用FFT优化,为了保证复杂度可以	
数据范围:n ≤ 50000		按照子树大小从小往大依次合并,也可以把所有		
		子树的和平方再减去每棵子树的平方。		
时间复杂度	$O(nlog^2n)$	空间复杂度	O(n)	

Problem 59

试题名称	Push the Flow!			
试题来源	Codechef AUG 14	试题编号	PUSHFLOW	
题目大意		算法讨论		
给定一个n个	点m条边的简单无向连通	最大流等于最	小割,所以我们就是要求最小的几	
图,每个点户	只属于一个简单环, q个操	条边使得S和T	[不连通。	
作:	作:		如果把环缩成点,那么原图就是一颗树,割只可	
1.修改某条边	的边权。	能是S到T路径上的某个环上的两条边或者连接两		
2.询问以S为测	原点,T为汇点的最大流。	个环的树边,树边用树链剖分很好维护。树链剖		
数据范围:n≤	$10^5, m,q \leq 2\times 10^5$	分的同时可以处理出每个点重儿子经过这个环到		
		的两条边,那么只有log次不知道,再利用一个线		
		段树维护就好	了。	
时间复杂度	$O(nlog^2n)$	空间复杂度	O(n)	

试题名称	Queries With Points		
试题来源	Codechef NOV 13	试题编号	QPOINT
题目大意		算法讨论	
平面上给出n	个简单 K_i 边形。接着在线	若没有强制在	5线,可以使用经典的扫描线算法来
的给出Q次询	问,给出一个点,你需要	解决点定位问	题,按x坐标从小到大扫描,用平衡
求出这个点在	哪个多边形内。	树维护线段,在两个关键点直接线段的相对顺序	
数据范围:n,Q	$Q \le 10^5, \sum K_i \le 3 \times 10^5$	不会变。查询的时候找到该点上面的线段和下面	
		的线段就可以了。	
		因为有强制在线,需要用可持久化平衡树来记录	
		下所有的平衡树,每次按x坐标二分出这个点属于	
		哪一个平衡树	,然后查询。
时间复杂度	O((K+Q)logK)	空间复杂度	O(KlogK)

试题名称	Rectangle Query			
试题来源	Codechef SEPT 14	试题编号	QRECT	
题目大意		算法讨论		
在一个二维平面中,你需要支持以下三		先对整个操作	序列CDQ分治,问题就变成了插入	
种操作:		一些矩形,接	一些矩形,接着询问有多少个给定矩形与给定矩	
1. 插入一个矩形。		形有交点。		
2. 删除一个组	三形 。	可以把一个矩形拆成两条竖直线段,对x坐标使用		
3. 给定一个矩形, 询问当前有多少个矩		扫描线,统计和区间[l,r]相交的区间[a,b]数目可以		
形与这个矩形相交。		表达为区间总数- $b < l$ 的数目- $a > r$ 的数目,用树		
数据范围: $Q \le 10^5$		状数组就可以维护。		
时间复杂度	$O(Qlog^2Q)$	空间复杂度	O(Q)	

Problem 62

试题名称	Queries on tree again!		
试题来源	Codechef MAY 13	试题编号	QTREE
题目大意		算法讨论	
给定一棵n个节点的基环树,保证环的大		如果是普通的树,直接使用树链剖分就可以处理。	
小是奇数。m次操作:		那么我们任意断开环上的一条边,然后每次的操	
1.把两点路径上的边权取相反数。		作都判断是否经过这条边(按照长度判断),操作	
2.询问两点路径上的最大子段和。		可以变成一次树上路径操作或者两次树上路径操	
数据范围: $n,m \leq 10^5$		作+一次特殊边操作。注意信息是有序的。	
时间复杂度	$O(nlog^2n)$	空间复杂度	O(n)

试题名称	Query on a tree VI		
试题来源	Codechef DEC 13	试题编号	QTREE6
题目大意		算法讨论	
给定一棵n个点的树,点有黑色或白色,		维护每个点假	设它是黑(白)色,只考虑它子树
m个操作:		的黑(白)色联通块大小,那么只要对询问点找	
1.修改一个点的颜色。		到联通的深度最浅的祖先就可以了。我们可以	
2.询问一个点	所在同色联通块的大小。	用LCT维护,修改其中的Access操作,让LCT里	
数据范围:n,n	$i \le 10^5$	的每个splay里的点都同色。那么只要Access(x)就	
		可以找到联通的深度最浅的祖先。修改的时候发	
		现splay需要维护区间修改,打个标记就可以了。	
时间复杂度	O(nlogn)	空间复杂度	O(n)

试题名称	Observing the Tree		
试题来源	Codechef FEB 13	试题编号	QUERY
题目大意		算法讨论	
给定一棵n个节点的树,要支持以下三种		首先进行树链剖分,转化为序列上问题。然后用	
操作:		可持久化线段树来维护, 对线段树上每一个节	
1.路径加等差数列。		点记录一个k,b表示对这个区间加上首项为b公差	
2.询问路径和。		为k的等差数列,这个标记是可以合并的,也可以	
3.恢复到第i 次修改后的情况。		进行标记永久化,所以就能维护了。	
数据范围: $n, m \leq 10^5$			
时间复杂度	$O(nlog^2n)$	空间复杂度	$O(nlog^2n)$

Problem 65

试题名称	Ranka			
试题来源	Codechef JAN 15	试题编号	RANKA	
题目大意		算法讨论		
你需要在一个9≤9的围棋棋盘上,构造		考虑一种很简单的思路: 黑棋先下在除了(1,1)的		
出一个n步且无重复局面的围棋下法。		所有地方, 然后白棋走(1,1)吃掉黑棋, 再下在除		
数据范围: $n \le 10^4$		了(1,2)的所有地方,黑棋吃掉白棋,如此循环。		
		这样大概可以走2 * 81 ² 步,已经足够了。		
时间复杂度	O(n)	空间复杂度	O(1)	

试题名称	Petya and Sequence			
试题来源	Codechef DEC 13	试题编号	REALSET	
题目大意		算法讨论		
给定一个长月	度为n的整数序列A,问是	问题等价于	判断矩阵 $X(X_{i,j} = A_{i+j \mod n})$ 是否	
否存在一个艺	不全为0的整数序列B满足	满秩。因为X	是循环矩阵,令 $f(x) = \sum_{i=0}^{n-1} A_i x^i$,	
对于所有的0	$\leq j < n$ 都有 $\sum_{i=0}^{n-1} A_i \times$	若 $gcd(f(x), x^n - 1)$ 的次数为d,那么秩就是n-d。		
$B_{i+j mod n} = 0$)。	定义 $\phi_n(x) = \frac{x^n - 1}{\prod_{l n} \phi_d(x)}$,那么可以发现 $\phi_n(x)$ 两		
数据范围:T≤	$100, n \le 3 \times 10^4$	两不等且不可约。所以我们只需要判断是否存		
		在一个n的约数d使得 $\phi_d(x) f(x)$ 。这个问题等价		
		于 $x^d - 1 f(x)\prod_{p d,p\in prime}(x^{\frac{d}{p}} - 1)$ 。直接枚举d按		
		照这个式子计算就可以了,可以发现因子数s最多		
		为96。		
时间复杂度	O(ns)	空间复杂度	O(n)	

试题名称	Course Selection			
试题来源	Codechef DEC 14	试题编号	RIN	
题目大意		算法讨论		
有n门课和m个学期,每一门课都必须选		可以利用最小	割来解决问题。	
一个学期学习	一个学期学习,第i门课在第j个学期学习		把第i门课拆成 $P_{i,0}, P_{i,1},, P_{i,m}$, 总共 $m+1$ 个点。	
可以获得 $x_{i,j}$ 的分数。		在 $P_{i,j}$ 和 $P_{i,j+1}$ 直接连 $max\{x_{i,j}\}-x_{i,j}$ 的边。		
存在K个先后	f 关系,第 A_i 门课必须在	对于限制 a,b ,只要把 $P_{a,j}$ 和 $P_{b,j+1}$ 连 $+\infty$ 的边就可		
第 B_i 门课之前	第 B_i 门课之前学习。		以了。	
问学完这n门课的分数之和最大是多少。		最后用 $\sum_{i} max\{x_{i,j}\}$ 减去最小割就可以了。		
数据范围: $n, m, K \leq 100$				
空间复杂度	O(nm + Km)	时间复杂度	O(maxflow(nm, nm + Km))	

Problem 68

试题名称	Random Number Generator			
试题来源	Codechef MARCH 15	试题编号	RNG	
题目大意		算法讨论	算法讨论	
有 一 个k阶 线 性 递 推 式A _i =		线性递推式证	线性递推式可以用矩阵乘法优化,但是k过大。	
$\sum_{j=1}^{K} C_j A_{i-j} \mod 104857601$. 给		可以发现这个	可以发现这个矩阵的特征多项式为 $f(x) = x^k -$	
		$\sum_{i=1}^k C_i x^{k-i},$	$\sum_{i=1}^k C_i x^{k-i}, \ \diamondsuit g(x) = x^n \mod f(x), \ \mathbb{R} \triangle $	
数据范围: $k \le 3 \times 10^4, n \le 10^{18}$		就是 $\sum_{i=1}^k A_i[i-1]g(x)$ 。求 $g(x)$ 可以用快速幂+多		
		项式取模。		
时间复杂度	O(klognlogk)	空间复杂度	O(k)	

试题名称	Room Corner			
试题来源	Codechef FEB 13	试题编号	ROC	
题目大意		算法讨论		
给定一个n×	<i>m</i> 的网格图,现在这个房	先从一个小朋	友开始, 逆时针遍历这个环, 得到	
间所有90度的]内角中都站了一个小朋友,	每个小朋友到]起始点的距离。这一部分细节很	
小朋友移动的	时候必须沿着墙移动。	多。		
接着游戏开始	6,每时每刻两个相邻的的	两个小朋友肯	两个小朋友肯定是相向不停地交换,那么就有两	
小朋友可以交	英位置,它们都向对方的	种可能,对于每一种可能都可以二分一个中间点,		
位置移动,直	[到双方同时到达对方的位	计算出时间取最小值就可以了。		
置才终止。小	水朋友移动到相邻的空白格			
需要一个单位	的时间。			
T组询问,询	问两个小朋友相遇至少需			
要多少时间。				
数据范围: $T \le 10^4, n, m \le 2500$				
时间复杂度	O(nm + Tlogn)	空间复杂度	O(nm)	

试题名称	Sereja and Arcs				
试题来源	Codechef JUNE 14	试题编号	SEAARC		
题目大意		算法讨论			
给定一个长月	度为n的序列A,询问有多	因为数对的关	关系只可能为ABAB,AABB,ABBA三		
少对 (i,j,k,g)	$)(i < j < k < g), A_i =$	种情况,可以	从考虑用总数减去AABB和ABBA的		
$A_k, A_j = A_g,$	$A_i \neq A_j$ °	数目来得到答	案。		
数据范围:n, A	$A_i \le 10^5$	AABB很容易	,只需要预处理前缀和就可以了。		
		对于ABBA,令 $size = \sqrt{\frac{n}{log n}}$,分两种情况:			
			1. 两种颜色中有一种的数的个数大于size, 那么		
		就可以通过求出另一种颜色的每一个位置的左侧			
		(右侧) 有多少个这种颜色的数, 然后把每一对的			
		贡献拆开来累加得到答案。			
		2. 两部分的个数都不多于S,可以发现所有满足			
			这个条件的颜色产生的弧的个数是 $O(nsize)$ 的,		
		所以可以直接使用二维数点的方法来统计这一部			
		分的贡献。			
时间复杂度	$O(n\sqrt{n\log n})$	空间复杂度	O(n)		

试题名称	Sereja and Equality			
试题来源	Codechef JULY 14	试题编号	SEAEQ	
题目大意		算法讨论	算法讨论	
两个数组相似当且仅当元素相对大小相		考虑枚举相似	区间长度 x ,那么位置有 $n-x+1$ 个,	
同。		如果已经确定	如果已经确定了这x个数的顺序,那么一个排列剩	
两个数组A和B的函数F(A,B)等于满		下的情况就是 $\frac{n!}{x!}$,设 $f_{i,j}$ 表示 1 i的排列里逆序对数		
是 $A[lr]$ 和 B	足 $A[lr]$ 和 $B[lr]$ 相似且逆序对数不超		不超过j的数目,答案就是 $(\frac{n!}{x!})^2(n-x+1)f_{x,E}$ 。	
过 E 的 (l,r) 数	里。	考虑如何求 $f_{i,j}$,显然有 $f_{i,j} = f_{i,j-1} + f_{i-1,j}$ —		
多次询问n	E, 求出 $\sum F(A,B)$, 其	$f_{i-1,j-i}$,于是先用 $O(n^3)$ 的递推预处理f,每次枚		
中A和B都是一个1到n的排列。		举x统计答案即可。		
数据范围: $n \le 500, E \le 10^6, t \le 10^4$				
时间复杂度	$O(n^3 + tn)$	空间复杂度	$O(n^3)$	

试题名称	Sereja and Order		
试题来源	Codechef NOV 14	试题编号	SEAORD
题目大意		算法讨论	
有n个程序和两台电脑,第i个程序在第		答案的下界是 $max(\sum A_i, \sum B_i, A_i + B_i)$,这个下	
一台电脑上要运行 A_i 秒,第二台 B_i 秒,		界是可以取到。如果下界是取在 $A_i + B_i$,那么可	
现在要在最少的时间内完成所有程序在		以直接填。否则不好计算,如果已经知道操作顺	
两台电脑上的运行任务,求出最少时间		序求最少时间是可以贪心求解的,可以发现答案	
并输出一个方案。		方案很多,不断地随机顺序并贪心计算就可以找	
数据范围: $n \leq 10^5$		到解。	
时间复杂度	O(n*K),K是随机次数	空间复杂度	O(n)

试题名称	Sereja and Subsegment Incre	a and Subsegment Increasings			
试题来源	Codechef MAY 14	试题编号	SEINC		
题目大意	题目大意				
给定两个书	长度为n元素在[0,3]的序	先把A减去B,	然后作差分得到C, 现在问题就转		
列A,B,每一	次可以选出一个区间 $[l,r]$,	化成每次让选	$ 择l, r(l < r), \ $		
把 $A[lr]$ 在模	4的意义下加一,问最少进	要求C变成0。			
行多少次操作	后 $A = B$ 。	这可以使用贪	t心算法,把C从前向后扫描,记录		
数据范围:n≤	10^{5}	当前-1,-2,-3的数量,如果当前是正数的话就			
			讨论。		
		如果是1,直接让答案+1。			
		如果是2并且有-3,就让这个-3和2配对,答案+1,			
		并得到一个-2,否则答案+2。			
		如果是3并且有-3,就和-3,答案+1,并得到一个-			
		1, 否则有-2的话, 让答案+2并得到一个-1, 否则			
		答案+3。			
时间复杂度	O(n)	空间复杂度	O(n)		

试题名称	Short			
试题来源	Codechef SEPT 11	试题编号	SHORT	
题目大意		算法讨论		
给定n,k,求	满足 $n < a, b < k$ 的 (a, b) 的		$\Delta b = n + \frac{n(a-1)}{p(a-n)-a}$, 那么可以枚举 a ,	
数量,使得(a	(a-n)(b-n) (ab-n)°	然后枚举n(a	-1)的因子 $d = p(a-n) - a$,求	
数据范围:n≤	$\leq 10^5, n < k \leq 10^{18}$	出p和b判断是	否合法。	
		可以发现 $d+a \ge 2(a-n)$, 所以 $b \le n + \frac{n(a-1)}{a-2n}$,		
		因为 $a \leq b$,那么 $a \leq 2n + \sqrt{2n^2 - n}$,这样只		
		有O(n)个a需要枚举。但是这样枚举速度不够,		
		考虑换一种枚举方式。		
		当 a 较大的时候,因为 $a \le b$ 所以 $p \le \frac{a^2 - n}{(a - n)^2}$,直接		
		枚举p就好了。		
		是 $K = 1177$		
时间复杂度	O(nK)	空间复杂度	O(nlogn)	

14 15 2 42	Cl. 4 II				
试题名称	Short II				
试题来源	Codechef DEC 11	试题编号	SHORT2		
题目大意		算法讨论			
给定质数 p ,	问有多少对 $a,b(a > p,b >$	原问题等价于	·求满足 $ab p(a+b+p)$ 的个数,可以		
p)满足 $(a-p)$	(b-p) ab°	按ab和p的关系	系分三种情况讨论:		
数据范围:T≤	$5, p \le 10^{12}$	1.都被 p 整除,	可以发现这样的情况只有 (p,p) ,(
			p, 2p), (2p, p), (2p, 3p), (3p, 2p)五种。		
		$2.$ 都不被 p 整除,令 $a < b$,所以 $a < 1 + \sqrt{p+1}$,			
		$b = \frac{a+p}{ak-1}$,令 $d = ak-1$,那么 $d (a+p), a (d+1)$ 。			
		我们分 $b \leq d$ 和	$a_d < b$ 两种情况讨论,枚举较小的		
		数然后判断,枚举的上界是 $\sqrt{p+1+\sqrt{p+1}}$ 。			
		3.有一个被p整除,可以发现一个满足第2种情况			
		的解 (a,b) 可以推到 $(a,\frac{p(a+p)}{b})$ 和 $(b,\frac{p(b+p)}{a})$ 两组解,			
		答案就是第2种情况的两倍。			
时间复杂度	$O(T\sqrt(p))$	空间复杂度	O(1)		

试题名称	Shortest Circuit Evaluation			
试题来源	Codechef AUG 11	试题编号	SHORTCIR	
题目大意		算法讨论		
给定一个布尔	R表达式 S ,如果某次已经	先建立表达式	树,那么我们可以调整每个点的子	
得到正确的结	F 果,那么就不再继续计算	树顺序,而这	些子树都由同一种表达式连接,	
这个表达式。		我们可以进行树形 dp , w_i 和 f_i 分别表示i子树期		
现在给出每一	现在给出每一个变量为1的概率,你可以		望运算次数和值为1的概率。如果该点表示and,	
在调整表达式的顺序,使得期望的计算		就将子树按照 $\frac{w_i}{1-f_i}$ 顺序排列最优,如果该点表		
次数最少,求期望概率。		示 and ,就将子树按照 $\frac{w_i}{f_i}$ 顺序排列最优。		
数据范围: $ S \le 30000$ 。				
时间复杂度	O(S log S)	空间复杂度	O(S)	

Problem 77

试题名称	Team Sigma and Fibonacci			
试题来源	Codechef AUG 14	试题编号	SIGFIB	
题目大意		算法讨论		
$ \bar{x}\sum_{x+y+z=n} 6xyzfib_xfib_yfib_z mod m, $		可以推出答案为 $\frac{(5n^5+35n^3-36n^2-4n)fib_n-72n^2fib_{n-1}}{500}$,		
其中n, m为给定值。		推导方式很复杂,其中部分方法可以参		
数据范围:n≤	数据范围: $n \le 10^{18}, m \le 10^5$		考http://www.mathstat.dal.ca/FQ/Scanned/15-	
		2/hoggatt1.pdf 的内容。然后将 m 乘上 500 计算,		
		最后除去500就可以了。		
时间复杂度	$O(\log n)$	空间复杂度	O(1)	

试题名称	Count Special Matrices		
试题来源	Codechef JUNE 13	试题编号	SPMATRIX
题目大意	题目大意		
$-$ 个 $n \times n$ 的知	巨阵是好的当且仅当:	可以得到答案	
$1.A_{i,i} = 0.$		证明可见CC官方题解),于是可以通过O(n)预处	
$2.1 \le A_{i,j} < r$	$i-1(i\neq j)$ "	理来做到 $O(1)$ 询问。	
3. 对于每一个	3. 对于每一个整数 $0 \le k \le n-2$,矩阵		
中都存在k。			
$4.A_{i,j} \le max$	$(A_{i,k}, A_{k,j})$		
给定n,求好矩阵的个数。			
数据范围: $n \le 10^7, T \le 10^5$			
时间复杂度	O(n+T)	空间复杂度	O(n)

			1
试题名称	The Street		
试题来源	Codechef MARCH 14	试题编号	STREETTA
题目大意		算法讨论	
给定一个长度	ξ 为 n 的数组 A 和 B ,有 m 次	A数组很好维	护,用线段树维护一个区间的首项
操作		和公差就好了	•
1.对于A区间加	口一个等差数列。	维护B数组的时候,可以对一个区间记录一个等	
2.对于B区间对	付一个等差数列取max。	差数列,表示对这个等差数列取max,如果有两	
3 .询问 $A_i + B_i$	的值。	个标记需要合并,那么考虑这两条直线在这个区	
数据范围:n≤	$10^9, m \leq 3 \times 10^5$	间中必然有交点(否则直接保留大的哪一个),那	
		么肯定有一条直线的较大区间只存在于这个区间	
		的一个子树中,递归下去就好了,一次合并标记	
		的复杂度是 $O(logn)$ 。	
时间复杂度	$O(mlog^2n)$	空间复杂度	O(mlogn)

Problem 80

试题名称	String Query			
试题来源	Codechef APRIL 13	试题编号	STRQUERY	
题目大意		算法讨论		
给定字符串S,	n个操作:	如果只有在一	-端操作,就可以用后缀平衡树来解	
1.在首或尾或	正中间插入一个字符。	决这个问题。		
2.在首或尾或	正中间删除一个字符。	如果在首尾撈	操作,就用两个后缀平衡树L和R来	
3.给定一个字	符串T,问T在S中出现了	维护, L维护前一部分, 可以支持首操作, R维护		
多少次。		后一部分,支持尾操作,如果一个删完的话就暴		
数据范围:n≤	$1.5{\times}10^5, \sum T \leq 1.5{\times}10^6$	力重构整个结构。查询的时候中间的部分KMP就		
		好。我们令这个结构为T。		
		原题可以用两个T结构维护,每一次操作后都进		
		行调整, 使得大小平衡, 就可以支持中间操作。		
		询问时中间的部分仍然可以用KMP解决。		
时间复杂度	$O((n + \sum T)\log n)$	空间复杂度	O(n+ T)	

试题名称	Counting The Important Pairs			
试题来源	Codechef JAN 14	试题编号	TAPAIR	
题目大意		算法讨论		
给定一张n个点m条边的无向图,询问有		选一个生成杯	选一个生成树,每个非树边赋一个随机值,一条	
多少种删掉两条边使得这张图不连通的		树边的权值是覆盖它的所有非树边的权值的异或。		
方案。		删去一个边集之后不连通的充要条件是存在一个		
数据范围: $n \le 10^5, m \le 3 \times 10^5$		子集的权值异或和为0,那么把所有的边权值排个		
		序统计就可以了。		
时间复杂度	O(mlogm)	空间复杂度	O(m)	

试题名称	Selling Tickets			
试题来源	Codechef MAY 12	试题编号	TICKETS	
题目大意		算法讨论		
有n道菜m个人	人,每一道菜都给一个人,	把菜看成点,	把人看成连接 a_i 和 b_i 的边,那么如	
第i个人只要分	\mathcal{F} 到 a_i 或 b_i 就开心,否则他	果找到一个最	最小的生成子图 $G'(V,E)$ 满足 $ E =$	
就不开心。我	观 在 求 最 大 的 x 使 得 任 意	V +1,那么	V +1,那么答案就是 $ V -1$ 。这样的子图只有	
的x人都存在-	一个方案使所有人都开心。	两种情况,于是可以分情况讨论:		
数据范围:n≤	$200, m \leq 500$	1.两个点直接有三条路径。直接枚举这两个点		
		并bfs出三条路径就可以了。		
		2.两个环和连接这两个环一条路径。可以枚举一		
		个点 u 使得 u 在路径上,求出 b fs树,每个环用一条		
		非树边表示,环的权值是环长+LCA到u的距离,		
		取最小值和次小值更新答案。		
时间复杂度	$O(n^2m)$	空间复杂度	O(n+m)	

试题名称	Two k-Convex Polygons		
试题来源	Codechef JUNE 13	试题编号	TKCONVEX
题目大意		算法讨论	
给定n根木棍	, 问能否从中选出2k根使	一组木棍可以	拼成凸多边形的条件是最长边小于
得它们可以拼	并成两个边数为k的凸多边	其他边之和,	按边长排序,选取木棍最好的情况
形。		就是连续的k个。	
数据范围:n≤	$1000, k \le 10$	因为有长度限制,当 $n \geq 70$ 的时候一定有解,于	
		是就可以先找连续的 k 个删掉,然后再找 k 个。	
		如果第一种方法不成立,最优解一定是连续	
		的2k个,那么枚举这2k个并暴力枚举集合划分	
		就可以了。	
时间复杂度	$O(n^2 + 70k\binom{2k}{k})$	空间复杂度	O(n)

试题名称	Counting on a Tree			
试题来源	Codechef MARCH 15	试题编号	TREECNT2	
题目大意		算法讨论		
给定一颗n个.	点带边权的树, Q次修改边	离线处理,令	f(i)为权值为 i 的倍数的条数,那么	
的权值。每次	、操作后输出这棵树中所有	答案就是 $\sum_{i=1}^{Z}$	$_{1}f(i)\mu(i)$ 。	
权值为1的路往	权值为1的路径条数,路径的权值定义为		假设现在在求 $f(i)$,那么我们只需要考虑所有边	
路径上所有边	权值的最大公约数。	权为i的倍数的边,可以用并查集来求出答案。有		
数据范围:n ≤	$\leq 10^5, Q \leq 100$,边权不超	修改只需要先把和无修改的边插到并查集中,然		
过 $Z=10^6$	过 $Z=10^6$		后对于每一次修改特殊考虑需要修改的边,然后	
		再复原就好了。因为存在复原操作,所以并查集		
		要用启发式合	并。 $\mu(i) \neq 0$ 的 i 个数 K 并不多。	
时间复杂度	$O(K(n+Q^2)logn+Z)$	空间复杂度	O(n)	

Problem 85

试题名称	Children Trips		
试题来源	Codechef OCT 14	试题编号	TRIPS
题目大意		算法讨论	
给定一棵n个点的树,边权值都是1或2。		可以根据d的	为大小把询问分成两类, $d_i \geq$
Q组询问,询	问从 u_i 走到 v_i ,每天最多可	\sqrt{n} 和 $d_i < \sqrt{n}$	- Vo
以走 d_i 的长度,且每一天的终止点必须		$1.d_i \geq \sqrt{n}$ 。答案是 $O(\sqrt{n})$ 的,所以直接用倍增数	
是树上的点,	需要走几天。	组模拟每天走的结果就可以了。	
数据范围:n,Q	$0 \le 10^5$	$2.d_i < \sqrt{n}$ 。我们把 d_i 相同的询问一起处理,预处	
		理出向上走 2^{i} 天的结果,然后就可以 $O(logn)$ 处理	
		每一次询问了。	
时间复杂度	$O(n\sqrt{n}logn)$	空间复杂度	O(nlogn)

试题名称	Substrings on a Tree		
试题来源	Codechef APRIL 12	试题编号	TSUBSTR
题目大意		算法讨论	
给定一棵n个	节点的树,每个点都有一个	可以对这一棵	· 树建出后缀自动机。因为后缀自动
字母。一个字	符串被这棵树表示了当且	机是一个DAG	G,只需要对后缀自动机拓扑排序然
仅当它可以被	表示为一个点往它的后代	后DP一遍就能求出从每个节点出发有多少条不同	
路径上的经过	上所有点的字符串。 求有多	的路径,于是就得到了第一问的答案。第二位直	
少个字符串被	这颗树表示了。	接DFS就行了	0
<i>m</i> 次询问,每	一次询问给出了26个字母		
的大小顺序,	求被这棵树表示的字符串		
中第 K_i 小的字符串。			
数据范围: $n \le 2.5 \times 10^5, m \le 5 \times 10^4$			
时间复杂度	O(n+m)	空间复杂度	O(n)

试题名称	Two Companies			
试题来源	Codechef JUNE 14	试题编号	TWOCOMP	
题目大意		算法讨论		
给定一棵n个	点的树以及两个带权的树	这显然是一个	经典的最大权闭合图的模型,可以	
链的集合A和	B,你需要在两个集合中分	使用网络流解	使用网络流解决,建图十分简单,问题在于判断	
别选出一个集合使得不存在两条被选出		两条树链是否相交。		
的且属于不同]集合的树链相交,使得权	判断是否相交也比较简单,只需要查询LCA深度		
值和最大。		较大的树链的LCA是否在另一条路径上就可以		
数据范围: $n \le 10^5$, $ A $, $ B \le 700$		了。		
时间复杂度	O(maxflow(A +	空间复杂度	O(A B +n)	
	B , A B) + A B logn)			

Problem 88

试题名称	Two Roads		
试题来源	Codechef SEPT 13	试题编号	TWOROADS
题目大意		算法讨论	
给定n个点, i	选择两条直线,最小化所有	两条直线夹角	的两个角平分线把平面分成了四个
节点到这两条	·直线最近距离的平方和。	区域,每半条	:直线控制了一个区域。我们可以枚
数据范围:n ≤ 100		举第一条角平分线,这条直线一定经过两个点,	
		第二条角平分线和第一条垂直并经过一个点,那	
		么就有O(n)种,按照其他点在第一条角平分线投	
		影的位置排序,依次扫描。只需要维护每一个区	
		域的点数, $\sum x$, $\sum y$, $\sum xy$, $\sum x^2$, $\sum y^2$ 就可以求出	
		答案。	
时间复杂度	$O(n^3 log n)$	空间复杂度	O(n)

试题名称	Xor Queries			
试题来源	Codechef JAN 15	试题编号	XRQRS	
题目大意		算法讨论		
<i>n</i> 个操作:		我们可以用可	T持久化trie来维护序列,那么就很	
1.在末尾插入一个数。		容易删去元素	容易删去元素了。每个节点维护元素个数,查询	
2.删去末尾k个数。		与x异或最大的数非常容易。可以发现trie很类似		
3.询问区间 k 小值。		于值域线段标	于值域线段树,于是把它当作线段树就可以支	
4.询问区间与:	x异或值最大的数。	持45两种询问。		
5.询问区间不比x大的数的个数				
数据范围: $n \le 5 \times 10^5$				
时间复杂度	O(nlogn)	空间复杂度	O(nlogn)	

试题名称	Trial of Doom			
试题来源	Codechef JULY 11	试题编号	YALOP	
题目大意		算法讨论		
给定一个n×	<i>m</i> 的网格,格子为蓝或者	$rac{}{\Rightarrow}n \leq m_{\circ}$		
红,有k个红色	色格子,你可以在这个网格		径长度和n同奇偶,枚举第一个格子	
里走,每当伤	《离开一个格子的时候,这	的奇偶,求出	其他格子的奇偶,进行判断。	
个格子和相邻	7格子会改变颜色, 求是否	否则,对于任	E意格子集合S都存在一条路径,使	
存在一条左下	5到右上的路径,使得网格	得 S 里的格子经过奇数次,其他格子偶数次。如		
里所有格子都	变成了蓝色。	果n和m很小,直接解方程就可以了。		
数据范围:T≤	$50, n, m \le 10^9, min(n, m)$	考虑把所有的红格子都移动到第一列,红格		
$ \le 40, k \le 100 $	00	f(i,j)等价于红格子 $(i-1,j)(i-1,j+1)(i-1,j-1)$		
		1)(i-2,j),这样就可以把格子向第一列移动,可		
		以发现第 i 列对第 j 列的影响存在一个周期 C ,那		
			么暴力这个 C 就可以了。然后就可以得到 n 个方	
		程,用线性基判断就行。每一列的情况可以用一		
		个long long存储。		
时间复杂度	O(T(k+nC))	空间复杂度	O(k+nC)	

试题名称	Mushroom Cave		
试题来源	Codechef JUNE 11	试题编号	CAVE
题目大意		算法讨论	
有一个 $n \times m$	的网格,每个点是空点、	把每个火炬看	「成关键点,可以先求一个关键点,
火炬或者障碍	[}] ,从左上到右下找一条经	我们可以首先	:找到一条关于关键点的尽量长的简
过尽可能多的]不同格子的路径,使得连	单路径,再接	R照这条路径的顺序依次通过这些关
续k步以内都到	要走到有火炬的格子。一个	键点,扩展出	答案路径。
火炬只能用-	一次,捡到一个火炬就必须	以在原图到终点的最短距离为一个点的估价,	
用,并把原来	的丢掉。	先dfs出每次都选择估价大的点的一条路径,再对	
数据范围:1n,	$m \le 100, k \le 15, T \le 10$	调整。如果在路径的两个相邻点中还可以再插入	
		一个未出现的点,就插入;如果不能再插入,就	
		将一个点替换成另一个点。多次重复这个过程。	
		然后从前向后每次对相邻两个点都搜出一条当前	
		情况下的最优方案。再从前向后重新搜索。多次	
		重复这个过程。可以在搜索中加入一些随机化。	
时间复杂度	由于有大量搜索部分不好计	空间复杂度	$O(n^2m^2)$,但由于数据生成方式远远
	算。		不到。

试题名称	To challenge or not			
试题来源	Codechef JUNE 13	试题编号	CHAORNOT	
题目大意		算法讨论		
给定一个大小	为n的集合, 求尽量大的子	考虑直接贪心	心,把A排序,从小到大依次加入,	
集B使得不存	在大小为3的等差数列。	能加就加。令	令答案为k,那么做一遍的复杂度	
数据范围:n≤	10^{5}	是 $O(n+k^2)$ 的	的。而 <i>k</i> 不会很大。	
			为了更优可以加入一些随机化,如果一个数可以	
		加入答案,我们有p的概率不选,多次执行这个算		
		法。在我的程序里 $p = \frac{1}{100}$,执行了300次。		
		还有一种贪心方法, 可以发现只选择三进制不		
		含2的数肯定满足条件,于是可以先选这一部分再		
		做第一部分的贪心。由于A的所有元素加上同一		
		个值不会有影响,于是可以加上1到200多次贪心。		
时间复杂度	$O(500(n+k^2))$	空间复杂度	O(n)	

试题名称	Closest Points		
试题来源	Codechef JUNE 12	试题编号	CLOSEST
题目大意		算法讨论	
三维空间中有n个点,q组询问,从给定		这是一个经典问题,可以直接使用KD-tree,建树	
的n个点中找出距离询问点最近的点的		的时候可以按照方差最大的那一维划分。	
编号。		为了防止TLE,可以设定一个阈值Max,每次询	
数据范围: $n = q = 50000$		问只在KD-tree上运行Max个点。我的程序选择	
		了200。	
时间复杂度	$O(qn^{\frac{2}{3}})$	空间复杂度	O(n)

Challenge Problem 4

试题名称	Kali and Devtas			
试题来源	Codechef DEC 14	试题编号	KALKI	
题目大意		算法讨论		
给定平面上n个点,求一个生成树,最小		生成树中的边	生成树中的边尽量小, R 就会变小, C_i 被加的次	
化 C_i 的最大值。		数就会减小,于是可以直接求最小生成树。可		
C值的计算: 对于每个点,设其在生成		以使得每个点的度数尽量小,那么可以设定一个		
树中相邻的最远点的距离为R,那么离		值 K ,使得两个点 u,v 的距离为 $d_ud_vK+dist(u,v)$,		
该点距离为 R 以内的点的 C 值全部加 1 。		每次加完边都进行更新。		
数据范围: $n \leq 400$ 。				
时间复杂度	$O(n^2 log n)$	空间复杂度	$O(n^2)$	

试题名称	The Great Plain		
试题来源	Codechef OCT 11	试题编号	LAND
题目大意		算法讨论	
给定一个 $n \times m$ 的网格,有一些格子已经		首先可以随机一组初始解,然后考虑随机更新,	
填上了数,你需要在其他的格子中填上		每次随机一个点 (x,y) ,选择最优解来更新这个	
整数使得代价和尽量小。一对相邻的格		点,重复 t 次。我的程序选择了 500000 次。	
子 (u,v) 的到代价是 $2^{ A_u-A_v }$ 。			
数据范围: $T \le 10, n, m \le 100$			
时间复杂度	O(nm + 50t)	空间复杂度	O(nm)

试题名称	Maximum Sub-rectangle in Matrix			
试题来源	Codechef OCT 12	试题编号	MAXRECT	
题目大意		算法讨论	算法讨论	
给出一个n×	m的矩阵A,选出一个子矩	考虑爬山, 先	· 随机出行列的初始解 (每行列都	
阵,使得子矩阵元素的和尽量大。		有0.5的概率设	有0.5的概率选或不选),然后每次随机一行或一	
子矩阵不要求连续,等价于选出的若干		列,将它取反,如果答案增加就保留。执行k次。		
行和若干列在	所在处相交的元素。	我的程序选择 $k = 80000000/(n+m)$ 。		
数据范围:200	$\leq n, m \leq 300$	执行 t 次爬山算法,我的程序选择了 $t=20$ 。但这		
		样可能会超时,那么每500次进行判断,如果没有		
		一行或一列取	反会更优就可以结束爬山。	
时间复杂度	O(tk(n+m))	空间复杂度	O(nm)	

Challenge Problem 7

试题名称	Sereja and Sorting 2		
试题来源	Codechef MARCH 14	试题编号	SEASORT2
题目大意		算法讨论	
一个长度为n的数组,可以通过每次翻转		先考虑求出可行解, 只需要从头开始, 每次找到	
数组的一个区间,使其变为升序,(翻转		最小值并翻转就好了。	
次数+区间长度和/n)尽量小。		由于相同的数很多,考虑一个优化,每次找到一	
数据范围: $n \leq 10000$,不同的数的个数		定数量的最小值,从后向前依次翻转到头,这个	
不超过1050。		一定数量可以进行调参得到较优的解。	
时间复杂度	$O(n^2)$	空间复杂度	O(n)

试题名称	Similar Graphs		
试题来源	Codechef APRIL 12	试题编号	SIMGRAPH
题目大意		算法讨论	
给出两张n个点的图,要求对两张图的点		容易发现我们只需要重标号其中一张图就可以了。	
进行重标号,使得相同边数尽可能大。		可以直接使用模拟退火,先随机一组初始解,每	
数据范围: $30 \le n \le 75$ 。		次交换两个点的标号,如果比当前解优就替换,	
		不优的话就以一定概率替换。可以多次退火取最	
		优解。	
时间复杂度	O(Tn),T由调参得到。	空间复杂度	$O(n^2)$

试题名称	Simultaneous Nim			
试题来源	Codechef SEPT 12	试题编号	SIMNIM	
题目大意		算法讨论		
给定 n 个异或和为 0 的数 A_i ,把它们分成		可以使用贪心,我们每次分出一个尽量小的组。		
尽可能多组,使得每一组的异或和都		考虑如何找到这样一个组,我们可以维护一组线		
为0。		性基,那么剩下的每一个数都可以和这些线性基		
数据范围:n ≤ 1000		中的几个组成一个组,取最小的那个组。多随机		
		几次,使用不同的线性基取最小值。		
时间复杂度	$O(Tn^2)$	空间复杂度	O(n)	

试题名称	Stepping Average			
试题来源	Codechef NOV 11	试题编号	STEPAVG	
题目大意		算法讨论		
给定 n 个数 A_i 和一个数 K ,每次选择两个		每次取出最小值 L 和最大值 R ,设定一个阈值 $W \in$		
数并放入它们的平均数,要求 $n-1$ 次操		(0, 0.5)°		
作后得到的数尽量接近K。		如果 $K \leq L(1-W) + RW$,令 L 为最后一次操作		
数据范围:n = 1000		的数,其他的尽量接近 $2K-L$ 。		
		如果 $K \ge R(1-W) + LW$,令 R 为最后一次操作		
		的数,其他的尽量接近 $2K-R$ 。		
		否则直接合并 L 和 R 。		
时间复杂度	$O(Tn^2)$	空间复杂度	O(n)	