

Veterinary Bioscience: Cells to Systems

Hypothalamus

Faculty of Veterinary and Agricultural Sciences

Lecture 14 Hormones and their regulation

Cortex

Kidney

Pituitary

Pancreas

© Oklahoma State University

Adrenal

Ovary

Placenta

Prof. Simon Bailey bais@unimelb.edu.au

VETS30015 / VETS90121

Intended learning objectives

1. For each of the following structural hormone groups

- 1. Peptides (eg insulin),
- 2. Catecholamine (eg adrenalin)
- 3. Thyroid hormones (eg thyroxine)
- 4. Eicosanoids (eg prostaglandin) and
- 5. Steroids eg cortisol

Describe:

- How and where the hormone is produced
- The hormone's main biological function(s)
- How the hormone's secretion is regulated
- 2. Describe using specific hormone examples, how negative and positive feedback process work.
- 3. Explain using examples, how certain diseases can interfere with the production or effect of a hormone

Chemical classes of hormones

- 1) Peptides: chains of specific amino acids
 - Hypothalamus, pituitary, pancreas, parathyroid gland, kidneys, liver, heart, & GI tract.
 - · Insulin, vasopressin, TSH, calcitonin etc
- 2) Amines: Tyrosine derivatives
 - a) Catecholamines (Adrenal Medulla)
 - Adrenalin & noradrenalin
 - b) Thyroid hormones
 - Thyroxine & triiodothyronine
- 3) Steroids: Cholesterol derivatives
 - Adrenal cortex, gonads & placental hormones
 - Cortisol, aldosterone, oestrogen, testosterone etc
- 4) Eicosanoids: Arachidonic acid derivatives. Usually act as autocrine or paracrine signalling molecules, but can act distally
 - There are four families of eicosanoids—the <u>prostaglandins</u>, <u>prostacyclins</u>, the <u>thromboxanes</u> and the leukotrienes

Hormone

Receptor

Signal transduction

Cascade

Response

Protein or peptide hormones

Hormone formation

- Preprohormones (rough endoplasmic reticulum) –
 prohormones ——> active hormones
- Golgi complex concentrates the finished hormones and they are stored in secretory vesicles.
- Appropriate stimulus usually Ca2+ results in exocytosis.
- 1. Peptides (hydrophilic) are transported as free hormone dissolved in the plasma.
- Bind to specific cell surface receptor on target cell
 - Activates second messenger ---> cascade effect

Prohormone cleavage – insulin

Proinsulin is cleaved to form the connecting peptide (C peptide) and insulin (α and β chains)

Packaged in secretory granules

Peptide Hormones

Solubility:	Hydrophilic (polar)
Synthesis:	Rough ER,
	Packaged in Golgi complex
Storage:	Secretory granules
Secretion:	Exocytosis
Transport:	Free hormone: soluble
Receptor site:	Surface of target cell
Action:	Ion channel changes or
	Second messenger system

Insulin

- Anabolic hormone produced in the pancreatic β cells in times of excess nutrient availability
 - Allows the body to use carbohydrates as energy sources and store nutrients

Targets

Liver, muscle, adipose tissue

Functions

- Lowers blood glucose levels
- Increases facilitated diffusion of glucose into cells
- Increases conversion of glucose into glycogen (glycogenesis)
- Increases uptake of amino acids and protein synthesis
- Increases synthesis of fatty acids (lipogenesis)
- Slows glycogenolysis
- Slows gluconeogenesis

Insulin receptor

- Example of enzyme-linked receptor (tyrosine kinase)
- Tyrosine phosphorylation triggers multiple pathways

Insulin receptor

Guyton & Hall, 2011 Slide 6

Regulation of insulin secretion

- Glucose is most important regulator of insulin secretion
- Factors controlling insulin secretion
 - -β cells monitor levels of circulating metabolites
 - Glucose
 - Leucine & alanine
 - Amino acids have little effect in absence of glucose increase, but they double insulin release in combination with glucose
 - Neuronal & hormonal
 - Parasympathetic stimulation
 - CCK (cholecystokinin)
 - Gastric hormones stimulate an 'Anticipatory' release of insulin
 - Other hormones, eg glucagon, growth hormone, cortisol

Source: Marieb, 2012

Regulation of catecholamines

- Stress is the major stimulation of adrenalin or epinephrine release
 - Threat, noise, excitement, high temperature
- The catecholamines are synthesised in sequence from tyrosine
- No negative feedback loop. Action is stopped mainly by degradation as hormones have a short ½ life

Amine Hormones: Catecholamines (dopamine, adrenaline and noradrenaline)

- Derived from tyrosine
- Catecholamines synthesized in adrenal gland and stored in preformed vesicles
- [Thyroid hormones special case and covered separately]

Tyrosine

Structure:	Tyrosine Derivative
Solubility:	Hydrophilic
Synthesis:	Cytosol
Storage:	Secretory (Chromaffin) Granules
Secretion:	Exocytosis
Transport:	As a Free Hormone and Bound to Plasma Proteins
Receptor site:	Surface of Target Cell
Action:	Second Messenger System

Amine Hormones: Catecholamines (dopamine, adrenaline and noradrenaline)

- Adrenaline (Epinephrine)
- Produced in adrenal medulla following sympathetic stimulation
- Response depends on the receptor in the target tissue

Amine hormones: Thyroid hormones

- Lipophilic amines, but polarity of the iodine means active transport is required across cell membranes
- Produced in thyroid
- Regulate basal metabolic rate
- Stored as thyroglobulin in colloid follicles
- Cleaved to form pro-hormone Thyroxine (T4) & active Triiodothyronine (T3)

Thyroid hormones – tyrosine-derived

Tyrosine

- Thyroxine (T4) & Triiodothyronine (T3)
 - lodinated forms of tyrosine derivatives.

Pronunciation

Thyroxine: thi-rok-sin

Triiodothyronine: tri-i-o-do-thi-ro-nen

Stored as thyroglobulin

Amine Hormones: thyroid hormones

Structure:	Tyrosine and Iodine Derivative
Solubility:	Lypophilic, but now known to be actively transported into cells by transporters (ATP-dependent carriers)
Synthesis:	Within large glycoprotein (thyroglobulin)
Storage:	Stored as thyroglobulin in colloid follicles
Secretion:	Exocytosis
Transport:	Mostly bound to Plasma Proteins (thyroxin-binding globulin)
Receptor site:	Inside Target Cell
Action:	Direct effect on genes

Metabolic actions of thyroid hormones

- Thyroid hormone effects
 - Increased metabolic rate
 - Increased oxygen consumption by mitochondria
 - 3. Nutrients
 - 4. Thermogenesis

Regulation of T3 & T4 secretion

Thyrotropin releasing hormone (TRH)

- formed in hypothalamus
 - Response to blood levels T4/T3
- TRH is released into portal veins of hypothalamic-hypophyseal tract
- Stimulates thyrotropes to release TSH into blood
- TSH stimulates follicular thyroid cells to produce and secrete T3 & T4

As levels of T3/T4 rise, negative feed back loops reduce synthesis of TRH in hypothalamus (long arm) and release of TSH in the anterior pituitary (short arm)

Eicosanoids

- 20 carbon containing compounds
- Many different prostaglandins and other bioactive products derived from arachidonic acid.
- Prostaglandins
- Thromboxanes | [Prostanoids]
- Leukotrienes
- Prostaglandins produced by most cells
- Eicosanoids not stored by cells- produced on demand

Functions of Eicosanoids

•vasodilators regulate blood flow

- induces platelet aggregation
- promotes vasoconstriction

- allergy involvement
- neutrophil chemo-attractant
- vascular permeability

Drug affects on Eicosanoids

Steroid hormones

- 1) adrenal cortex (cortisol, androgens & aldosterone)
- 2) ovaries (estrogen and progesterone)
- 3) testes (testosterone
- 4) placenta (estrogen and progesterone)

Cholesterol derivative obtained from low density lipoproteins

Stored (or its derivatives) in lipid droplets within each steroidogenic organ.

- Produced through a series of enzymatic reactions
- Cholesterol to pregnenolone
 - o (rate limiting step).
- Each steroidogenic organ can produce only those steroid hormones for which it has a complete set of enzymes.

Pregnenolone Cyclo pentano perhydro phenanthrene

Steroid hormone structure

- Mineralcorticoid
 - Regulates Na/K balance

- · Glucocorticoid
 - Glucose homeostasis

Steroids

Solubility:	Lipophilic
Synthesis:	Stepwise Modification of Cholesterol Molecule in Various Intracellular Compartments (in the Endocrine Gland and Also in Target Tissues)
Storage:	Hormones Not Stored, Only Precursor (Cholesterol) Stored
Secretion:	Diffusion
Transport:	Mostly Bound to Plasma Proteins
Receptor site:	Inside of Target Cell
Action:	Direct Effects on Genes \rightarrow Production of New Proteins

Cortisol

Metabolic Actions Corticosteroids

Maintains blood glucose levels during fasting & increases blood glucose during stress

- Early fasting defence against hypoglycaemia.
 - Increase plasma glucose
 - Liver Increased glucose output
 - Promotes gluconeogenesis, glycogenolysis & lipolysis
- Late fasting stage
 - build up of glycogen stores

Anti-inflammatory actions

Inhibits arachidonic acid production and prostaglandins

Regulation

- Negative feedback regulation
 - pituitary and hypothalamus by cortisol
 - Long feedback loop
 - on hypothalamus by ACTH
 - Short feedback loop

Oxytocin

- Peptide hormone (9 aa)
 - Produced in supraoptic and paraventricular nuclei
 - Also acts as a neurotransmitter in brain
- Released by posterior pituitary
 - Oxytocin receptors are on smooth muscle cells
 - · mammary gland and uterus
- 1. Promotes milk ejection (milk let down) during lactation
- Milk initially secreted into alveoli (sacs) within mammary gland
- OCT stimulates contraction of myoepithelial cells (smooth muscle cells) which surround alveoli

- 2. Uterine contraction during parturition
- Important in cervical dilation & uterine contractions
- After birth maintains haemostasis & evacuation of placenta

Positive Regulation of Oxytocin Secretion

- 1. Suckling
 - Neurogenic reflex to hypothalamus
- Pregnancy and Parturition
 - Oxytocin receptors in uterus increase late trimester & during labour
 - Estrogen induced
 - Uterus stretching --> more oxytocin
 released

Basis of endocrine disorders leading to disease

- Increased or reduced hormone activity:
 - Tumours
 - Hyperthyroidism due to thyroid tumour increased T3 & T4
 - Increased cortisol due to benign pituitary tumour Cushing's disease
 - Immunological causes
 - Grave's disease autoimmune hyperthyroidism
 - Type I diabetes autoimmune destruction of pancreatic islet cells
 - Genetic disorder (absence of enzyme)
 - Dietary deficiency
 - Hypothyroidism due to insufficient iodine
- Increased removal from the blood or transport deficiencies
 - Liver disease reduced plasma protein binding
- Transduction failure adequate hormone, but target cells don't respond
 - Receptor deficiency or disorders of signalling pathway transduction

Diabetes Mellitus: clinical correlations

from Cunningham Veterinary Physiology

History

- You are presented with a 10year-old, intact, female poodle whose owner is upset because the dog urinates in the house.
- In addition, the owner has noticed that the animal drinks larger amounts of water than it has in the past.
- Although the owner indicates the dog has a good appetite, it appears to have lost weight over the past few months.

Clinical examination

- You are able to run a blood glucose determination in your hospital and tell the owner that the glucose concentration is 14.9 mmol/L
- During the examination you check the dog's breath and detect a sweet odour.
- Among the organ systems you check are the eyes, and you find developing cataract formation.
- Because you have seen this dog many times before, you check its weight and find that it has lost 1 kg since its last admittance a year ago.

Questions:

- 1. What does insulin normally do in dogs?
- 2. Why is the poodle drinking more and urinating in the house?
- 3. Why has the dog lost weight?
- 4. What is the sweet odour on the dog's breath and why does it occur?
- 5. Why has the dog developed a cataract?
- 6. What is the normal range of glucose in blood?
- 7. How do you confirm if the dog has diabetes mellitus?