

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001016542 A

(43) Date of publication of application: 19.01.2001

(51) Int. CI

H04N 5/91

G06F 12/14,

G11B 20/10, H04N 5/92

(21) Application number:

2000140813

(22) Date of filing:

16.05.1996

(30) Priority:

21.07.1995 JP 07185724 21.07.1995 JP 07185725

(62) Division of application: 08121988

(54) METHOD AND DEVICE FOR REPRODUCING SIGNAL, METHOD AND DEVICE FOR TRANSMITTING SIGNAL, DEVICE AND METHOD FOR REPRODUCING VIDEO SIGNAL, COMBINING DEVICE AND VIDEO SIGNAL REPRODUCING/RECORDING

(57) Abstract:

METHOD

PROBLEM TO BE SOLVED: To prevent illegal analog copy and digital copy, to prohibit stepwise generation copy and to take measure to preventillegal copy simultaneously in both of analog and digital copy.

SOLUTION: At the time of reproducing digital video data recorded on an optical disk D being a signal recording medium, copy managing information of recording control information arranged within the TOC(table of contents) of the optical disk D and each header part of a data sector is read by copy managing information read circuits 17, 18, and discriminated by a copying circuit information discriminating circuit 19. Based on this copying managing information, a signal for preventing illegal copy encoded in plural bits is generated by a protect signal generation circuit 20. A mixing circuit 24 executes processing for inserting to a prescribed horizontal period within the vertical retrace line period of the analog video signal, such as

(71) Applicant: SONY CORP (72) Inventor: SAKO YOICHIRO

YONEYAMA SHIGEYUKI

the 20- numbered H and 283-numbered H horizontal period, with respect to an analog video signal obtained by D/A converting the digital video data by a D/A converting circuit 23,

COPYRIGHT: (C)2001, JPO

OrderPatent

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-16542 (P2001-16542A)

(43)公開日 平成13年1月19日(2001.1.19)

(51) Int.Cl. ⁷		識別記号	FΙ		ァーマコート*(参考)
H04N	5/91		H04N	5/91	P
G 0 6 F	12/14	320	G 0 6 F	12/14	3 2 0 E
G11B	20/10		G 1 1 B	20/10	Н
H 0 4 N	5/92		H 0 4 N	5/92	Н

審査請求 有 請求項の数47 OL (全 25 頁)

(62)分割の表示 特願平8-121988の分割

(22) 出願日 平成8年5月16日(1996.5.16)

(31)優先権主張番号 特願平7-185724

(32)優先日 平成7年7月21日(1995.7.21)

(33)優先権主張国 日本 (JP) (31)優先権主張番号 特顯平7-185725

(32)優先日 平成7年7月21日(1995, 7, 21)

(33)優先権主張国 日本(JP)

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 佐古 曜一郎

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72)発明者 米山 重之

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 10006/736

弁理士 小池 晃 (外2名)

(54) 【発明の名称】 信号再生方法及び装置、信号伝送方法及び装置、映像信号再生装置及び方法、組み合わせ装置、 並びに映像信号再生記録方法

(57)【要約】

【課題】 不法なアナログコピー及びディジタルコピーの防止と、段階的な世代コピーの禁止、さらにアナログ及びディジタルコピーの両者に同時に不法コピー防止の対策をとる。

【解決手段】 信号記録媒体である光ディスクD上に記録されたディジタル映像データを再生する際に、光ディスクDのTOC内及びデータセクタの各へッダ部置に配されている記録制御情報のコピー管理情報をコピー管理情報読み取り回路17,18で読み出し、コピー回路情報判別回路19で判別し、このコピー管理情報に基づいて、複数のビットでコード化された不法コピー防止のための信号をプロテクト信号生成回路20で生成し、上記ディジタル映像データをD/A変換回路23でD/A変換してなるアナログ映像信号に対して、ミックス回路24で上記アナログ映像信号の垂直帰線期間の内の所定の水平期間、例えば20H目と283H目の水平期間に挿入する処理を施す。

【特許請求の範囲】

【請求項1】 信号記録媒体上に記録されたディジタル データを再生する信号再生方法において、

上記信号記録媒体上の所定位置に配されている記録制御 情報を読み出し、

当該記録制御情報に基づいて、上記ディジタルデータを D/A変換してなるアナログ信号に対して、当該アナロ グ信号の所定位置に複数のビットでコード化された不法 コピー防止のための信号を配する処理を施すことを特徴 とする信号再生方法。

【請求項2】 上記信号記録媒体上の所定位置は、上記信号記録媒体の再生状態の態様を制御するための再生態様制御信号領域部、及び/又はセクタ化されたディジタルデータの各へッダ部であることを特徴とする請求項1記載の信号再生方法。

【請求項3】 上記アナログ信号はアナログ映像信号であり、上記アナログ信号の所定位置は当該アナログ映像信号の垂直帰線期間の内の所定の水平期間であることを特徴とする請求項1記載の信号再生方法。

【請求項4】 上記アナログ映像信号の上記所定の水平期間は、20H及び/又は283H(Hは水平期間)であることを特徴とする請求項3記載の信号再生方法。

【請求項5】 上記信号記録媒体上に配された記録制御情報は、記録の禁止を指示する記録禁止信号及び/又は記録の世代制限を指示する世代制限指示信号を含むことを特徴とする請求項1記載の信号再生方法。

【請求項6】 上記信号記録媒体上に配された世代制限 指示信号は、2ビットのコピー世代管理情報であり、

(0,0)のときコピーフリーを、(1,0)のとき1世代コピー可を、(1,1)のときコピー禁止をそれぞれ示すことを特徴とする請求項5記載の信号再生方法。

【請求項7】 上記アナログ信号中に配されたコード化された信号は、記録の禁止を指示する記録禁止信号及び/又は記録の世代制限を指示する世代制限指示信号を含むことを特徴とする請求項1記載の信号再生方法。

【請求項8】 上記アナログ信号中に配された世代制限 指示信号は、2ビットのコピー世代管理情報であり、

(0,0)のときコピーフリーを、(1,0)のとき1世代コピー可を、(1,1)のときコピー禁止をそれぞれ示すことを特徴とする請求項7記載の信号再生方法。

【請求項9】 上記アナログ信号中に配されたコード化された信号は、複数ビットのコピー管理情報を含み、このコピー管理情報の所定位の情報ビットが少なくとも(1,1)のときコピー禁止を示すことを特徴とする請求項1記載の信号再生方法。

【請求項10】 信号記録媒体上に記録されたディジタルデータを再生する信号再生装置において、

上記信号記録媒体上の所定位置に配される記録制御情報 を読み出す読み出し手段と、

当該記録制御情報に基づいて、上記ディジタルデータを

D/A変換してなるアナログ信号に対して、当該アナログ信号の所定位置に複数のビットでコード化された不法コピー防止のための信号を配する処理を施す変換処理手段とを有することを特徴とする信号再生装置。

【請求項11】 上記信号記録媒体上の所定位置は、上記信号記録媒体の再生状態の態様を制御するための再生態様制御信号領域部、及び/又はセクタ化されたディジタルデータの各へッダ部であることを特徴とする請求項10記載の信号再生装置。

【請求項12】 上記アナログ信号はアナログ映像信号であり、上記アナログ信号の所定位置は当該アナログ映像信号の垂直帰線期間の内の所定の水平期間であることを特徴とする請求項10記載の信号再生装置。

【請求項13】 上記アナログ映像信号の上記所定の水平期間は、20H及び/又は283H(Hは水平期間)であることを特徴とする請求項12記載の信号再生装置。

【請求項14】 上記信号記録媒体上に配された記録制御情報は、記録の禁止を指示する記録禁止信号及び/又は記録の世代制限を指示する世代制限指示信号を含むことを特徴とする請求項10記載の信号再生装置。

【請求項15】 上記信号記録媒体上に配された世代制限指示信号は、2ビットのコピー世代管理情報であり、(0,0)のときコピーフリーを、(1,0)のとき1世代コピー可を、(1,1)のときコピー禁止をそれぞれ示すことを特徴とする請求項14記載の信号再生装置

【請求項16】 上記アナログ信号中に配されたコード 化された信号は、記録の禁止を指示する記録禁止信号及 び/又は記録の世代制限を指示する世代制限指示信号を 含むことを特徴とする請求項10記載の信号再生装置。

【請求項17】 上記アナログ信号中に配された世代制限指示信号は、2ビットのコピー世代管理情報であり、(0,0)のときコピーフリーを、(1,0)のとき1世代コピー可を、(1,1)のときコピー禁止をそれぞれ示すことを特徴とする請求項16記載の信号再生装

【請求項18】 上記アナログ信号中に配されたコード 化された信号は、複数ビットのコピー管理情報を含み、このコピー管理情報の所定位の情報ビットが少なくとも (1,1)のときコピー禁止を示すことを特徴とする請求項10記載の信号再生装置。

【請求項19】 信号記録媒体上に記録された暗号化された信号を再生する信号再生方法において、

上記信号記録媒体上の所定位置に配されている記録制御情報を読み出し、上記信号に施されている暗号化を、上記記録制御情報の少なくとも一部を鍵情報として用いて復号して再生し、

上記復号して再生した信号のアナログ信号に対して、上 記記録制御情報の少なくとも一部を用いて、当該アナロ グ信号の所定位置に複数のビットでコード化された不法 コピー防止のための信号を配する処理を施すことを特徴 とする信号再生方法。

【請求項20】 上記信号記録媒体上の所定位置は、上記信号記録媒体の再生状態の態様を制御するための再生態様制御信号領域部、及び/又はセクタ化されたディジタルデータの各へッダ部であることを特徴とする請求項19記載の信号再生方法。

【請求項21】 上記アナログ信号はアナログ映像信号であり、上記アナログ信号の所定位置は当該アナログ映像信号の垂直帰線期間の内の所定の水平期間であることを特徴とする請求項19記載の信号再生方法。

【請求項22】 上記アナログ信号中に配されたコード 化された信号は、記録の禁止を指示する記録禁止信号及 び/又は記録の世代制限を指示する世代制限指示信号を 含むことを特徴とする請求項19記載の信号再生方法。

【請求項23】 信号記録媒体上に記録された暗号化された信号を再生する信号再生装置において、

上記信号記録媒体上の所定位置に配されている記録制御 情報を読み出す読み出し手段と、

上記信号に施されている暗号化を、上記記録制御情報の 少なくとも一部を鍵情報として用いて復号して再生する 復号手段と、

上記復号して再生した信号のアナログ信号に対して、上記記録制御情報の少なくとも一部を用いて、当該アナログ信号の所定位置に複数のビットでコード化された不法コピー防止のための信号を配する処理を施す変換処理手段とを有することを特徴とする信号再生装置。

【請求項24】 上記信号記録媒体上の所定位置は、上記信号記録媒体の再生状態の態様を制御するための再生態様制御信号領域部、及び/又はセクタ化されたディジタルデータの各へッダ部であることを特徴とする請求項23記載の信号再生装置。

【請求項25】 上記アナログ信号はアナログ映像信号であり、上記アナログ信号の所定位置は当該アナログ映像信号の垂直帰線期間の内の所定の水平期間であることを特徴とする請求項23記載の信号再生装置。

【請求項26】 上記アナログ信号中に配されたコード 化された信号は、記録の禁止を指示する記録禁止信号及 び/又は記録の世代制限を指示する世代制限指示信号を 含むことを特徴とする請求項23記載の信号再生装置。

【請求項27】 送信されたディジタルデータを受信して再生する信号伝送方法において、

上記送信されたディジタルデータに付随する伝送を管理 するための伝送制御情報を取り出し、

当該伝送制御情報に基づいて、上記ディジタルデータを D/A変換してなるアナログ信号に対して所定の変換処 理を施し、

上記アナログ信号に対する上記所定の変換処理は、当該 アナログ信号の所定位置に複数のビットでコード化され た不法コピー防止のための信号を配する処理であること を特徴とする信号伝送方法。

【請求項28】 上記アナログ信号はアナログ映像信号であり、上記アナログ信号の所定位置は当該アナログ映像信号の垂直帰線期間の内の所定の水平期間であることを特徴とする請求項27記載の信号伝送方法。

【請求項29】 上記アナログ信号中に配されたコード 化された信号は、伝送の禁止を指示する伝送禁止信号及 び/又は伝送の世代制限を指示する世代制限指示信号を 含むことを特徴とする請求項27記載の信号伝送方法。

【請求項30】 上記ディジタルデータへの所定の変換 処理は、当該ディジタルデータをディジタルスクランブルする処理であり、上記世代制限指示信号が現世代のコピーを許可しているときには、上記ディジタルスクランブルを行わずそのまま出力することを特徴とする請求項27記載の信号伝送方法。

【請求項31】 伝送されたディジタルデータを受信して再生する信号伝送装置において、

上記伝送されたディジタルデータに付随する伝送を管理 するための伝送制御情報を取り出す取り出し手段と、

当該伝送制御情報に基づいて、上記ディジタルデータを D/A変換してなるアナログ信号に対して所定の変換処理を施す変換処理手段とを有し、

上記変換処理手段での上記アナログ信号に対する上記所 定の変換処理は、当該アナログ信号の所定位置に複数の ビットでコード化された不法コピー防止のための信号を 配する処理であることを特徴とする信号伝送装置。

【請求項32】 上記アナログ信号はアナログ映像信号であり、上記アナログ信号の所定位置は当該アナログ映像信号の垂直帰線期間の内の所定の水平期間であることを特徴とする請求項31記載の信号伝送装置。

【請求項33】 上記アナログ信号中に配されたコード 化された信号は、伝送の禁止を指示する伝送禁止信号及 び/又は伝送の世代制限を指示する世代制限指示信号を 含むことを特徴とする請求項31記載の信号伝送装置。

【請求項34】 送信された暗号化されている信号を受信して再生する信号伝送方法において、

上記暗号化した信号に付随する伝送を管理するための伝送制御情報を取り出し、

上記信号に施されている暗号化を、上記伝送制御情報の 少なくとも一部を鍵情報として用いて復号して再生し、 上記復号して再生した信号のアナログ信号に対して、上 記伝送制御情報の少なくとも一部を用いて、当該アナロ グ信号の所定位置に複数のビットでコード化された不法 コピー防止のための信号を配する処理を施すことを特徴 とする信号伝送方法。

【請求項35】 上記アナログ信号はアナログ映像信号であり、上記アナログ信号の所定位置は当該アナログ映像信号の垂直帰線期間の内の所定の水平期間であることを特徴とする請求項34記載の信号伝送方法。

【請求項36】 上記アナログ信号中に配されたコード 化された信号は、伝送の禁止を指示する伝送禁止信号及 び/又は伝送の世代制限を指示する世代制限指示信号を 含むことを特徴とする請求項34記載の信号伝送方法。

【請求項37】 送信された暗号化されている信号を受信して再生する信号伝送装置において、

上記暗号化した信号に付随する伝送を管理するための伝送制御情報を取り出す取り出し手段と、

上記信号に施されている暗号化を、上記伝送制御情報の 少なくとも一部を鍵情報として用いて復号して再生する 復号手段と、

上記復号して再生した信号のアナログ信号に対して、上記伝送制御情報の少なくとも一部を用いて、当該アナログ信号の所定位置に複数のビットでコード化された不法コピー防止のための信号を配する処理を施す変換処理手段とを有することを特徴とする信号伝送装置。

【請求項38】 上記アナログ信号はアナログ映像信号であり、上記アナログ信号の所定位置は当該アナログ映像信号の垂直帰線期間の内の所定の水平期間であることを特徴とする請求項37記載の信号伝送装置。

【請求項39】 上記アナログ信号中に配されたコード 化された信号は、伝送の禁止を指示する伝送禁止信号及 び/又は伝送の世代制限を指示する世代制限指示信号を 含むことを特徴とする請求項37記載の信号伝送装置。

【請求項40】 ディジタル化された映像信号と、再生 状態の態様を制御するために記録トラックの始端に設け られた再生態様制御信号領域部、及び/又はセクタ化さ れたディジタル映像信号の各へッダ部に配される録画制 御コードとが、記録されてなるディジタルディスク媒体 を再生して、少なくともアナログ映像信号を出力する映 像信号再生装置であって、

上記再生態様制御信号領域部、及び/又は上記各へッダ 部に配された上記録画制御コードの状態を検出する検出 手段と

上記検出手段の検出出力に基づいて、アナログ映像信号 の態様の録画禁止信号を発生させる発生手段と、

上記ディジタルディスク媒体より再生されたディジタル映像信号をアナログ映像信号に変換するD/A変換手段

上記D/A変換されたアナログ映像信号の垂直帰線期間の所定領域に、上記録画禁止信号を付加する付加手段と、

上記アナログ映像信号を出力する出力手段とを有してな n

上記録画禁止信号は、複数のビットでコード化された信号よりなり、このコード化信号を上記垂直帰線期間の内の所定の水平期間に配してなることを特徴とする映像信号再生装置。

【請求項41】 上記アナログ映像信号中に配されたコード化信号は、録画の世代制限を指示する世代制限指示

信号であることを特徴とする請求項40記載の映像信号 再生装置。

【請求項42】 ディジタル化された映像信号と、再生 状態の態様を制御するために記録トラックの始端に設け られた再生態様制御信号領域部、及び/又はセクタ化さ れたディジタル映像信号の各ヘッダ部に配される録画制 御コードとが、記録されてなるディジタルディスク媒体 を再生して、少なくともアナログ映像信号を出力する映 像信号再生方法であって、

上記再生態様制御信号領域部、及び/又は上記各ヘッダ 部に配された上記録画制御コードの状態を検出し、

上記検出出力に基づいて、アナログ映像信号の態様の録 画禁止信号を発生し、上記ディジタルディスク媒体より 再生されたディジタル映像信号をアナログ映像信号に変 換し、

上記変換されたアナログ映像信号の垂直帰線期間の所定 領域に、上記録画禁止信号を付加し、

上記録画禁止信号が付加されたアナログ映像信号を出力し、

上記録画禁止信号は、複数のビットでコード化された信号よりなり、このコード化信号を上記垂直帰線期間の内の所定の水平期間に配することを特徴とする映像信号再 生方法。

【請求項43】 上記コード化信号は、録画の世代制限を指示する世代制限指示信号であることを特徴とする請求項42記載の映像信号再生方法。

【請求項44】 ディジタル化された映像信号と、再生 状態の態様を制御するために記録トラックの始端に設け られた再生態様制御信号領域部、及び/又はセクタ化さ れたディジタル映像信号の各ヘッダ部に配される録画制 御コードとが、記録されてなるディジタルディスク媒体 を再生して、少なくともアナログ映像信号を出力し、ま た記録する映像信号再生装置と記録装置とよりなる組み 合わせ装置であって、

上記再生態様制御信号領域部、及び/又は上記各へッダ 部に配された上記録画制御コードの状態を検出する検出 手段と、

上記検出手段の検出出力に基づいてアナログ映像信号の 態様の録画禁止信号を発生させる発生手段と、

上記ディジタルディスク媒体より再生されたディジタル映像信号をアナログ映像信号に変換するD/A変換手段と、

上記D/A変換されたアナログ映像信号の垂直帰線期間の所定領域に、上記録画禁止信号を付加する付加手段

上記アナログ映像信号を出力する出力手段と、

上記アナログ映像信号を入力する入力手段と、

上記入力アナログ映像信号の上記録画禁止信号に反応する録画禁止手段と、

上記入力アナログ映像信号を録画媒体に記録する記録手

段とを有することを特徴とする映像信号再生装置と記録 装置とよりなる組み合わせ装置。

【請求項45】 上記入力アナログ映像信号の上記録画禁止信号に反応する録画禁止手段は、上記録画禁止信号の世代態様により録画可能状態を現出することを特徴とする請求項44記載の映像信号再生装置と記録装置とよりなる組み合わせ装置。

【請求項46】 ディジタル化された映像信号と、再生 状態の態様を制御するために記録トラックの始端に設け られた再生態様制御信号領域部、及び/又はセクタ化さ れたディジタル映像信号の各へッダ部に配される録画制 御コードとが、記録されてなるディジタルディスク媒体 を再生して、少なくともアナログ映像信号を出力し、ま た記録する映像信号再生記録方法であって、

上記再生態様制御信号領域部、及び/又は上記各ヘッダ 部に配された上記録画制御コードの状態を検出し、

この検出出力に基づいてアナログ映像信号の態様の録画 禁止信号を発生し、

上記ディジタルディスク媒体より再生されたディジタル 映像信号をアナログ映像信号に変換し、

上記変換されたアナログ映像信号の垂直帰線期間の所定 領域に、上記録画禁止信号を付加し、

上記アナログ映像信号を出力し、

上記アナログ映像信号を入力し、

上記入力アナログ映像信号を再びアナログ又はディジタル的に録画媒体に録画する際には、上記入力アナログ映像信号の上記録画禁止信号に反応する録画禁止を行うことを特徴とする映像信号再生記録方法。

【請求項47】 上記入力アナログ映像信号の上記録画禁止信号に反応する録画禁止の際には、上記録画禁止信号の世代態様により録画可能状態を現出することを特徴とする請求項46記載の映像信号再生記録方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディジタルデータのコピーの防止や不正使用を阻止するための信号再生方法及び装置、信号伝送方法及び装置、映像信号再生装置及び方法、組み合わせ装置、並びに映像信号再生記録方法に関する。

[0002]

【従来の技術】近年において、光ディスク等のディジタル記録媒体の大容量化と普及により、記録されている信号の著作権を保護するために、不法なコピーの防止が重要とされてきている。すなわち、ディジタルオーディオデータやディジタルビデオデータの場合には、コピー或いはダビングにより劣化の無い複製物を容易に生成でき、またコンピュータデータの場合には、元のデータと同一のデータが容易にコピーできるため、既に不法コピーによる著作権の侵害等の弊害が生じてきているのが実情である。

【0003】このようなことから、ディジタル記録媒体に記録されている信号を再生したディジタル信号を再びディジタル記録媒体に記録するいわゆるディジタルダビングにおける上記不法コピーの防止を目的として、オリジナルのディジタル記録媒体に不法コピー防止のための所定のIDビットを記録しているものがある。

【0004】例えば、いわゆるR-DAT (Rotary head Digital Audio Taperecoder)と称されるディジタルオーディオ信号記録再生装置における上記不法コピー防止のための方式としては、ディジタル記録媒体としてのディジタルオーディオテープ上に記録されるディジタルオーディオ信号のメインデータエリアに、ディジタルコピーの禁止や段階的な世代コピーを禁止(すなわち世代制限)するための禁止コード(いわゆるSCMS:シリアルコピー管理システムの規格の禁止コード)を記録しておき、ディジタルオーディオ信号記録装置がこの禁止コードを検出したときに、新たなディジタルオーディオテープ上への当該ディジタルオーディオ信号のコピー記録を禁止するような方式が採用されている。

[0005]

【発明が解決しようとする課題】ところで、ディジタルディスクやディジタルテープ等のディジタル記録媒体に記録された例えばディジタルビデオ信号を再生し、このディジタルビデオ信号を再びディジタル記録媒体に記録するようなビデオ信号のディジタルダビングあたっても、オリジナルのディジタルビデオ記録媒体に記録されている信号の著作権を保護するために、上記R-DATにおける記録再生装置間での不法コピー防止の方式と同様に、オリジナルのディジタル記録媒体に不法コピー防止のための所定のIDビット(CGMS:コピー世代管理システムの規格の禁止コード)を記録することが考えられる。

【0006】しかし、オリジナルのディジタル記録媒体に上記不法コピー防止のための所定のIDビットを記録する方式の場合、上述したようなディジタルダビングにおける不法コピーを防止することについてはうまく機能するが、例えばオリジナルのディジタル記録媒体に記録されたディジタルビデオ信号を再生して一度アナログビデオ信号にD/A変換し、このアナログビデオ信号をアナログ記録するような場合や、上記アナログビデオ信号を再びディジタルビデオ信号にA/D変換してディジタル記録するような場合には、上記不法コピーの防止機能が働かず、そのまま記録できることになる。

【0007】すなわち、上述したようにディジタル記録 媒体に記録されたディジタルビデオ信号を再生してD/ A変換し、そのアナログビデオ信号をそのままアナログ 記録した場合、或いはA/D変換して再びディジタルビ デオ信号に戻してディジタル記録した場合であっても、 このダビング後のビデオ信号は品質の劣化が非常に少な いものであるため、著作権保護としては不十分となり、 したがってこのような不法なコピーをも確実に阻止できる方式が必要となっている。特に、近年においては、記録媒体として大容量のディスク状のディジタル記録媒体が普及してきており、当該ディスク状のディジタル記録媒体に記録されたディジタルビデオ信号に対する不法コピー防止策が望まれている。

【0008】また、前記ディジタルダビングにおいて、不法コピーの防止を目的として、例えば前記所定のIDビットを読み飛ばすようにすれば不法コピーが容易に実現できることになる。したがって、このようなIDビットを読み飛ばすような不法コピーに対してもその防止策が望まれている。

【0009】なお、上記不法コピー防止策は、ディジタルビデオ信号に限らず、ディジタルオーディオ信号やその他のディジタルデータであっても同様に望まれている。

【0010】そこで、本発明はこの様な実情に鑑みてなされたものであり、IDビットを読み飛ばすような不法コピーを防止でき、また、ディジタルデータを一旦アナログ信号に変換してこれをアナログ又はディジタル的に不法コピーすることを禁止し、さらに段階的な世代コピーをも禁止することが可能な信号再生方法及び装置、信号伝送方法及び装置、映像信号再生装置及び方法、組み合わせ装置、並びに映像信号再生記録方法を提供することを目的とする。

[0011]

【課題を解決するための手段】本発明の信号再生方法及び装置は、ディジタルデータが記録された信号記録媒体上の所定位置、例えば再生態様制御信号領域部、及び/又はセクタ化の各ヘッダ部に配されている記録制御情報に基づいて、ディジタルデータをD/A変換してなるアナログ信号に対して、当該アナログ信号の所定位置に複数のビットでコード化された不法コピー防止のための信号を配する処理を施すことにより、上述の課題を解決する。

【0012】また、本発明の信号伝送方法及び装置は、送信されたディジタルデータに付随する伝送を管理するための伝送制御情報に基づいて、ディジタルデータ及び/又はこのディジタルデータをD/A変換してなるアナログ信号に対して、当該アナログ信号の所定位置に複数のビットでコード化された不法コピー防止のための信号を配する処理を施すことにより上述の課題を解決する。【0013】また、本発明の映像信号再生装置及び方法は、ディジタル映像信号と共に、スパイラル状の記録トラックの始端に設けられた再生態様制御信号領域部、及び/又はセクタ化されたディジタル映像信号の各へッダ部に配される不法コピー防止のための録画制御コードが、記録されてなるディジタルディスク媒体よりディジタル信号を再生して、少なくとも最終的にアナログ映像信号出力を得るものであり、上記録画制御コードの状態

を検出し、この検出出力に基づいてアナログ映像信号の 態様の録画禁止信号を発生させ、ディジタル映像信号を 変換して得たアナログ映像出力信号の垂直帰線期間の所 定領域に上記録画禁止信号を付加し、このアナログ映像 信号を出力することにより、上述の課題を解決する。

【0014】さらに、本発明の映像信号再生と記録の組み合わせ装置及び方法は、録画制御コードの状態検出出力に基づいてアナログ映像信号の態様の録画禁止信号を発生させ、ディジタル映像信号を変換して得たアナログ映像信号の垂直帰線期間の所定領域に録画禁止信号を付加して出力し、また、入力アナログ信号をアナログ又はディジタル的に記録するときには、入力アナログ信号に含まれる録画禁止信号に応じて録画禁止手段を動作させることにより、上述の課題を解決する。

【0015】ここで、本発明において、不法コピー防止 のための処理とは、アナログ信号に対して所定の変換処 理を施したり、あるいはディジタル信号に対してスクラ ンブルをかけたりする処理を含むものである。例えば、 アナログ映像信号に対する上記不法コピー防止のための 処理としては、アナログ映像信号の垂直帰線期間の所定 領域に録画スクランブル信号及び/又は録画禁止信号を 付加する処理が挙げられ、また、記録媒体から再生され たディジタルデータをディジタルスクランブルする処理 も、不法コピー防止のための処理の一例である。上記録 画スクランブル信号及び/又は録画禁止信号を付加する 処理の具体例としては、アナログ映像信号の垂直帰線期 間の内の複数の水平期間にわたって、複数の白ピーク信 号、あるいは複数の擬似同期パルスと複数の白ピーク信 号との組み合わせ信号を配する処理や、アナログカラー 映像信号のカラーバースト信号の少なくとも一部の位相 を変化させる処理や、アナログ映像信号の垂直帰線期間 の内の所定の水平期間に複数のビットでコード化された 不法コピー防止のための信号を配する処理等が挙げられ

[0016]

【発明の実施の形態】以下、本発明の好ましい実施の形態について、図面を参照しながら詳細に説明する。

【0017】本発明の実施の形態に用いられるディジタル記録媒体として、光ディスクを例に挙げ、当該光ディスクを作製するまでの流れを図1を用いて説明する。

【0018】先ず、マスタディスクMDを作製するマスタリング工程30において、端子1には、例えば映画フィルムをディジタル信号に変換したディジタルビデオデータや、ディジタルカメラから直接送られるディジタルアータや、さらには放送局用のディジタルVTRからのディジタルビデオデータが供給される。当該端子1を介して供給された例えばディジタルビデオデータは、圧縮符号化回路2に送られ、ここでいわゆるMPEG(Moving Picture Image Coding Experts Group: 蓄積用動画像符号化の検討組織)にて規格化されたいわゆるMPE

G 2 規格の圧縮符号化が施されると共に、所定データ量単位例えば 2 0 4 8 バイト単位でセクタ化される。

【0019】上記圧縮符号化回路2にて圧縮符号化されると共にセクタ化されたデータは、必要に応じてスクランブル回路9に送られる。当該スクランブル回路9には、コピー管理情報生成回路3により生成される後述する不法コピーを防止するためのコピー管理情報も供給され、ここで当該コピー管理情報を用いて上記圧縮符号化回路2の出力データに対して後述するようにスクランブルをかける。

【0020】このスクランブル回路9にてスクランブル処理が施されたデータは、コピー管理情報付加回路に送られる。当該コピー管理情報付加回路にも、上記コピー管理情報生成回路3により生成されるコピー管理情報も供給され、ここで上記スクランブル回路9の出力データに上記コピー管理情報が付加される。

【0021】なお、アナログ映像信号に、アナログ映像信号の態様の録画スクランブル信号及び/又は録画禁止信号を付加する場合に、上記スクランブル回路9を省略して、圧縮符号化回路2からのデータを直接コピー管理情報付加回路に送るようにしてもよい。

【0022】このコピー管理情報は、光ディスクの最内 周或いは最外周に相当しスパイラル状の光トラックの始 端に設けられることになるリードイン領域のいわゆるT 〇C(Table Of Contents) 内と、プログラム領域内の データセクタのヘッダ内の何れか一方又は両方に付加さ れるものである。なお、以下の説明では、TOC内とデ ータセクタのヘッダ内の両方に付加される例について述 べている。このため、上記コピー管理情報付加回路は、 上記TOC内に上記コピー管理情報を付加するための付 加回路4と上記データセクタのヘッダ内にコピー管理情 報を付加するための付加回路5とを有する。

【0023】また、上記コピー管理情報は、アナログ及びディジタルのコピーを禁止又はディジタルのみコピーを禁止する旨を指示する情報と、コピーの世代制限を指示する情報との何れか一方又は両方からなり、以下の例ではこれら両方の情報を含むものとして説明する。なお、コピー管理情報には、課金情報も含むことも可能である。この課金情報をコピー管理情報に含めることで、当該課金情報に基づいて例えば映像の再生のみは無料とし、コピーする場合には有料として料金を払った場合にのみコピー可能とする(料金を払わない場合にはコピーを禁止する)ようなことを行うことも可能となる。

【0024】このときの上記コピー管理情報としては、図2に示すように例えば $b7\sim b008$ ビットからなるものを挙げることができる。この8ビットのうち、例えば上位側のb7及びb6のビットが世代制限を指示するビット CM_{C} として割り当てられ、例えば下位側のb2、b1、b0のビットがディジタル及びアナログのコピーを禁止又はディジタルのみコピーを禁止する旨を指

示するビット CM_M として割り当てられているものとする。ここでは、例えば上記 CM_M のビット(b2, b1, b0)が、(1, 1, 1) のときディジタル及びアナログのコピー禁止を示し、(0, 1, 1) のときディジタルコピーの禁止を示すことにする。また、当該マスタディスクMDの作製段階における上記コピー管理情報内の世代制限に割り当てられているビット CM_C は、オリジナルディスクである旨を示すことになる。

【0025】また、例えばb2のビットのみを、コピーを禁止又は禁止しない旨を指示するビットCM_Mとして割り当てるようにすることも考えられる。

【0026】なお、上述のようにセクタ単位毎にコピー管理情報を入れるのは、例えばいわゆるCD-ROMのような用途、すなわち、1枚のディスク内に異なるカテゴリーのビデオ信号が何種類か入っていて、一元管理されるものでない場合にも対応できるようにするために、ディスク全面ではなくて、各々のカテゴリーに対応できるようにディスク内に分割した状態で配置するためである。また、セクタではなく、所定のブロック単位毎にコピー管理情報を付加することも可能である。

【0027】上記コピー管理情報付加回路により上記コピー管理情報が付加されたデータは、エンコーダ/変調回路6に送られる。当該エンコーダ/変調回路6は、供給されたデータに対して、誤り訂正符号化処理としてデータ遅延及びパリティ計算を行ってパリティを付加し、所定の変調方式に従って、例えば8ビットデータを16チャンネルビットの変調データに変換し、さらに上記所定の変調方式の変調規則を破るいわゆるアウトオブルールのパターンの同期信号を所定のデータ量単位で付加し、これら処理後のデータを光へッド装置7に送る。

【0028】当該光へッド装置7は、回転サーボ制御がかけられているスピンドルモータ8によって回転するマスタディスクMDに対して、エンコーダ/変調回路6から供給されたデータに基づいて駆動されるレーザ光を照射することにより、光学的な記録を行う。これにより、データ記録がなされたマスタディスクMDの作製が完了する

【0029】ここで、上記スクランブル回路9は、例えば図3に示すような構成にて実現さるものである。

【0030】この図3において、当該スクランブル回路9には、15ビットのシフトレジスタを用いたいわゆるパラレルブロック同期タイプのスクランブラを用いることができる。このスクランブラのデータ入力用の端子45には、LSB(最下位ビット)が時間的に先となる順序、いわゆるLSBファーストで、上記圧縮符号化回路2からの例えば後述する図5のデータ部や図6のTOCデータ部の2048バイトにエラーディテクションコード(EDC)の4バイトを付加したデータが入力される。スクランブル用の15ビットのシフトレジスタ41は、排他的論理和(ExOR)回路42を用いて生成多

【0031】次に、レプリケーション工程40においては、上述したようにして作製したマスタディスクMDからプレス加工により複数の光ディスクDを製造する。

【0032】当該レプリケーション工程40によりマスタディスクMDから複製されたディスクDは、図4に示すように、中央にセンタ孔102を有しており、この光ディスクDの内周から外周に向かって、プログラム管理領域である上記TOC領域となるリードイン領域103と、プログラムデータが記録されるプログラム領域104と、プログラム終了領域、いわゆるリードアウト領域105とが形成されたものとなる。この例の場合には、上記プログラム領域104に上述した圧縮符号化等の処理が施されたビデオデータが記録され、また、当該ビデオデータの時間情報等が上記リードイン領域103のTOCのセクタ内、及び/又は、プログラム領域104内のデータセクタのヘッダ内に記録される。

【0033】ここで、上記プログラム領域104内のデータセクタの構造は、図5に示すように、4バイト(以下1バイトは8ビットである)のデータシンク部D $_{\rm S}$ と、16バイトのヘッダ部D $_{\rm H}$ と、2048バイトのデータ部D $_{\rm D}$ と、4バイトのEDC(エラー・ディテクション・コード)部D $_{\rm B}$ とからなり、前記コピー管理情報(1バイト)D $_{\rm P}$ はヘッダ部D $_{\rm H}$ 内に配される。また、リードイン領域103のTOCのセクタの構造は、図6に示すように、4バイト(1バイトは8ビット)のデータシンク部T $_{\rm S}$ と、16バイトのヘッダ部T $_{\rm H}$ と、2048バイトのTOCデータ部T $_{\rm D}$ と、4バイトのEDC(エラー・ディテクション・コード)部T $_{\rm B}$ とからなり、前記コピー管理情報(1バイト) $T_{\rm P}$ はTOCデータ部T $_{\rm D}$ 内に配される。

【0034】もちろん、上記コピー管理情報Tpは、ファイルなどのアドレスと組み合わせてファイル単位のコピー管理情報を持つ(ファイルの位置、大きさとコピー

管理情報のペア)こともできるし、バイト数(ビット数)を増やして前記コピー管理情報Dpより詳細なコピー管理情報を持つこともできる。

【0035】上述したような光ディスクDはオリジナルディスクとして、その後例えば販売或いはレンタル等されてユーザの手元に配布されることになる。上記オリジナルの光ディスクDは、ユーザにより例えば家庭内で再生されることになる。

【0036】すなわち、図1に戻って、光ディスクDの家庭用等の再生装置50では、サーボ回路13により回転サーボ制御がなされるスピンドルモータ11により回転される光ディスクDから、光へッド装置10によって信号(RF信号)を読み取る。当該光へッド装置10により光ディスクDから読み取られたRF信号は、RFアンプ12に送られる。当該RFアンプ12では、上記RF信号を2値化して光ディスクDに記録されていた信号を取り出し、この2値化された信号を復調回路14に送ると共に、上記RF信号から同期信号を分離し、さらにトラッキングエラー信号やフォーカスエラー信号等を取り出してサーボ回路13に送る。サーボ回路13では、これら信号に基づいてスピンドルモータ11の回転制御及び光へッド装置10の上記トラッキングサーボ、フォーカスサーボ等を行う。

【0037】上記復調回路14では、先に施された変調を復調する処理、例えば16チャンネルビットを8ビットのデータに変換する処理が行われる。当該復調回路14からのディジタルデータは、エラー訂正回路15に送られ、先に施された誤り訂正符号化の逆処理が施される。このエラー訂正回路15から出力されたディジタルビデオデータは、セクタ分解回路16によりセクタに分解され、後述するコピー管理情報読み取り回路とそれに続くディ・スクランブル回路31とを通って、伸長復号化回路21に送られる。

【0038】この伸長復号化回路21では、前記MPEG2の規則に則って圧縮符号化されているデータに対して、伸長復号化処理を施す。当該伸長復号化されたディジタルデータは、D/A変換回路23にてアナログビデオ信号に変換され、後述するミックス回路24を介して、NTSCエンコーダ25にてテレビジョン標準放送方式のいわゆるNTSC方式のアナログ信号になされた後にNTSC出力端子28を介して出力されるか、または、アナログ出力端子29からアナログビデオ信号として出力されるようになっている。

【0039】また、当該伸長復号化回路21からのディジタルデータは、後述するディジタルスクランブル回路31を通り、ディジタルインターフェイス回路26を介してディジタルビデオデータとしてディジタル出力端子27から出力されるようになっている。

【0040】一方、コピー管理情報読み取り回路は、前述したようなデータセクタのヘッダから前記付加された

コピー管理情報を読み取る読み取り回路18と、TOCのセクタのTOCデータ領域から前記付加されたコピー管理情報を読み取る読み取り回路17とを有してなり、上記セクタ分解回路16からのデータより読み取ったコピー管理情報を、コピー管理情報判別回路19に送る。なお、コピー管理情報がTOCとデータセクタのヘッダの何れか一方のみに付加されるものである場合には、それに対応して上記読み取り回路17,18も何れか一方のみとなる。

【0041】コピー管理情報判別回路19は、コピー管理情報の前記図2のビットCMmがアナログ及びディジタルコピーを禁止又はディジタルコピーのみを禁止する旨の何れを指示しているか、また前記図2のビットCMcがコピーの世代制限が何世代目を指示しているかの状態判別を行い、これら判別結果に応じた判別信号を出力する。この判別信号は、後述するプロテクト信号生成回路20に送られる。また、コピー管理情報判別回路19は、前記コピー管理情報をディ・スクランブル回路31に送る。

【0042】上記ディ・スクランブル回路31は前記図 3のスクランブル回路9と同様な構成を有するものであ り、このディ・スクランブル回路31では、前記コピー 管理情報判別回路19からのコピー管理情報に基づいた プリセット値(あるいは初期値)が可変設定される。こ れにより、当該ディ・スクランブル回路31では、前記 スクランブル回路9でのスクランブル処理を解くディ・ スクランブル処理、すなわち暗号復号化が行われる。言 い換えれば、当該ディ・スクランブル回路31は、前記 コピー管理情報読み取り回路がデータセクタのヘッダや TOCのセクタのTOCデータ領域から読み取り、コピ ー管理情報判別回路19を介して供給されたコピー管理 情報がなければ、前記スクランブルを解くことができな い。このディ・スクランブル回路31にてスクランブル が解かれたデータが、前記伸長復号化回路21に送られ ることになる。なお、上記ディ・スクランブル回路31 のプリセット値(或いは初期値)は、上記コピー管理情 報にて指示される鍵情報に基づいて設定されるものとす ることも可能である。

【0043】また、上記伸長復号化回路21からのディジタルデータが供給されたディジタルスクランブル回路32では、前記スクランブル回路9と同様に、コピー管理情報に基づいて上記伸長復号化回路21からのディジタルビデオデータにディジタルスクランブル処理を施す。これにより、上記ディジタルスクランブル回路32からは、スクランブル処理が施されたディジタルビデオデータが出力され、当該データがディジタルインターフェイス回路26から出力されることになる。なお、このディジタルスクランブル回路32においても、上記コピー管理情報にて指示される鍵情報に基づいてディジタルスクランブル処理を行うものとすることも可能である。

【0044】ところで、光ディスク(すなわちディジタル記録媒体)に記録されていた信号を再生したディジタルデータを、別のディジタル記録媒体にディジタルデータのまま記録するいわゆるディジタルダビングするような場合において、不法コピーの防止を目的として、前述した従来の技術にて述べたように所定のIDビットをコピー管理情報として光ディスクに記録しておくような手法が存在するが、当該コピー管理情報すなわちIDビットを読み飛ばすようにすれば不法コピーが容易に実現できることになる。

【0045】これに対して、上記本発明の構成例によれば、不法コピーを目的として、上記データセクタのヘッグ内やTOCのデータ領域から上記コピー管理情報を読み飛ばしたとしても、光ディスクDに記録されているディジタルデータには当該コピー管理情報に基づくスクランブル処理が施されているので当該スクランブルを解くことができなくなり、したがって不法コピーの防止が可能となっている。さらに、本発明の構成例によれば、ディジタルスクランブル回路32において、前記コピー管理情報に基づいたディジタルスクランブル処理を施すようにもしているため、ディジタルダビングの場合には当該ディジタルスクランブル処理が施されたディジタルデータをコピーすることになり、このスクランブルを解くには前記コピー管理情報が必要となるので、このことからも不法なコピー防止が実現可能となっている。

【0046】なお、上記例では、ディジタルインターフェイス回路26の前段にディジタルスクランブル回路32を設けるようにしているが、当該スクランブル回路32の代わりにスイッチ33を設けることも可能である。この場合、上記コピー管理情報の内容がコピーの禁止を示しているときに当該スイッチ33をOFFするように切換制御すれば、ディジタルインターフェイス回路26からはディジタルビデオデータの出力がなされないことになり、このときもディジタルダビングにおける不法コピーを防止することが可能となる。なお、スイッチ33を設けるようにした場合、前記コピー管理情報判別回路19から当該スイッチ33に送られる信号は、コピー管理情報に応じたスイッチ切換制御信号となる。

【0047】また、当該ディジタルダビングにおいて上記コピー管理情報の世代制限のビット CM_C が、例えば現世代のコピーを許可しているときには、上記ディジタルスクランブル回路32においてディジタルスクランブル処理を行わず(スイッチ33を設けた場合には当該スイッチ33をONにする)、そのままディジタルデータを出力するような構成とすることも可能である。ただし、前述した図2の例ではビット CM_M がいずれにしてもディジタルコピーを禁止する値となるため、この図2の例では上記スイッチ33がONになることはない。

【0048】ここで、図7は、上記スクランブルやディ・スクランブルを行わず、スイッチ22によってコピー

を禁止する場合の例を示している。

【0049】この図7の例では、マスタリング工程30 において、圧縮符号化回路2にて圧縮されると共にセク 夕化されたデータは、そのままコピー管理情報付加回路 (TOC内にコピー管理情報を付加するための付加回路 4及びデータセクタのヘッダ内にコピー管理情報を付加 するための付加回路5)に送っている。また、再生装置 50において、セクタ分解回路16によりセクタに分解 されたディジタルビデオデータは、コピー管理情報読み 取り回路(TOCデータ領域から及びデータセクタのへ ッダからそれぞれコピー管理情報を読み取るための読み 取り回路17及び18)を通って、そのまま伸張復号化 回路21に送られており、伸張復号化回路21からのデ ィジタルデータは、スイッチ22を通り、ディジタルイ ンターフェース回路26に送られている。コピー管理情 報判別回路19からの判別信号は、プロテクト信号生成 回路20に送られると共に、切換制御信号としてスイッ チ22に送られる。他の構成及び作用は、上述した図1 の例と同様であるため、対応する部分に同じ指示符号を 付して説明を省略する。

【0050】この図7の例では、スイッチ22は、上記判別結果がコピーの禁止を示しているときには、その判別結果に応じた切換制御信号によりOFFになされる。なお、上記コピー管理情報の世代制限のビットCM。が、オリジナルディスクではなくかつコピーが禁止される世代である旨を示しているときにも、コピー管理情報判別回路19からは上記スイッチ22をOFFにする切換制御信号が出力される。

【0051】これにより、ディジタルインターフェイス 回路26からはディジタルビデオデータの出力がなされ ないことになり、したがって、光ディスクD(すなわち ディジタルディスク媒体)に記録されていた信号を再生 したディジタルデータを、別のディジタルディスク媒体 にディジタルデータのまま記録するいわゆるディジタル ダビングにおける不法コピーを防止することが可能とな る。

【0052】一方、本発明の実施の形態の構成例では、例えばオリジナルのディジタル記録媒体に記録されたディジタルビデオデータを再生して一度アナログビデオ信号にD/A変換し、このD/A変換されたアナログ信号をアナログ出力、アナログ入力端子を有するアナログインターフェイスを介して伝送し、その後このアナログビデオ信号を再度A/D変換してディジタルビデオデータに戻してディジタル記録したり、上記アナログビデオ信号をそのままアナログ記録するような、一旦アナログインターフェイスを介してディジタル的又はアナログ的にコピーを行う場合においても、上記プロテクト信号生成回路20にて後述する図8、図10、図12に示すようなプロテクト信号を生成し、これをミックス回路24にてアナログのビデオ信号に混合することによって、不法

なコピーを防ぐことができるようにしている。

【0053】先ず、図8及び図9を用いて、ディジタル記録媒体に記録されたディジタルビデオデータを再生して一度アナログビデオ信号にD/A変換し、このアナログビデオ信号をアナログインターフェイスを介した後に、再度A/D変換してディジタルビデオデータに戻し、これをディジタル記録するような場合における不法コピーの防止について説明する。

【0054】なお、以下の説明では、上記コピー管理情報の世代制限のビットCMgが、オリジナルから1世代のみのコピーを許す(すなわちオリジナルから2世代目以降はコピーされたデータを再生することができない)ものである場合を例に挙げて説明する。

【0055】すなわち、図9に示す光ディスクDの再生装置50において、コピー管理情報判別回路19では、前記コピー管理情報の前記ビットCMmがアナログ及びディジタル又はディジタルのみコピーを禁止する旨を指示しているか、また前記ビットCMcがコピーの世代制限が何世代目を指示しているかの判別を行い、これら判別結果に応じた判別信号がプロテクト信号生成回路20に送られる。

【0056】ここで、上記コピー管理情報のビットCM がアナログコピーの禁止を示しておらず、かつ上記世代制限のビットCMcがオリジナルディスクであることを示しているときに、プロテクト信号生成回路20内のプロテクトコード信号生成回路74からは、その旨を複数ビットでコード化して示すプロテクトコード信号PC Sが生成出力される。

【0057】このプロテクトコード信号PCSが上記ミックス回路24に送られる。このミックス回路24に送られる。このミックス回路24では、図8に示すようにアナログビデオ信号の垂直帰線消去期間の所定の水平期間に上記プロテクトコード信号PCSを混合する。なお、当該プロテクトコード信号PCSは、例えば奇数フィールドでは20H(Hは水平期間を示す)目、偶数フィールドでは283H目の水平期間に挿入する。また、上記アナログビデオ信号に混合されたプロテクトコード信号PCSは、例えば14ビットのデータと6ビットの誤り検出符号(CRCC)とからなり、上記14ビットのデータ内の4ビットのヘッダに続く8ビットが前記コピー管理情報と同様に割り当てられているものである。このプロテクトコード信号が付加されたアナログビデオ信号がアナログ出力端子29から出力される。

【0058】上記再生装置50のアナログ出力端子29と、映像記録再生装置の一例としての記録媒体に記録可能な光ディスクRDを用いる光ディスク記録再生装置80のアナログ入力端子81とを接続し、上記再生装置50のアナログ出力端子29から出力される上記プログラムコード信号が付加されたアナログビデオ信号を、ディスク記録再生装置80にてA/D変換してディジタルビ

デオデータとし、このディジタルビデオデータを光ディスクRDにディジタル記録するものとする。すなわち、この場合の記録は、オリジナルディスクからの1世代目のコピーとなる。

【0059】当該光ディスク記録再生装置80では、上記アナログ入力端子81を介して供給されたアナログビデオ信号をA/D変換回路82によりディジタルビデオデータに変換する。当該ディジタルビデオデータは、圧縮符号化回路83に送られ、ここでMPEG2規格の圧縮符号化が施されると共に、所定データ量単位例えば2048バイト単位でセクタ化される。当該圧縮符号化回路83にて圧縮符号化されてセクタ化されたデータは、スクランブル回路85に送られる。

【0060】一方、上記アナログ入力端子81に供給された上記プロテクトコード信号が付加されたアナログビデオ信号は、プロテクトコード信号検出回路88にも送られるようになっている。当該プロテクトコード信号検出回路88では、前記図8のようにアナログビデオ信号の垂直帰線消去期間に付加されたプロテクトコード信号の有無及び当該プロテクトコード信号の状態を検出し、当該検出したプロテクトコード信号に基づいて新たにコピー管理情報を生成する。

【0061】ここで、このときの当該プロテクトコード信号検出回路88に供給されたプロテクトコード信号は、オリジナルディスクからのものであることを示し、前述したようにオリジナルから1世代目のコピーについては許されている。

【0062】したがって当該プロテクトコード信号検出 回路88は、コピー管理情報の世代制限のビットCM_C を、オリジナルディスクから1世代目であることを示す 値に変更して出力する。

【0063】上記プロテクトコード信号検出回路88からのコピー管理情報は、スクランブル回路85とコピー管理情報付加回路に送られる。

【0064】上記スクランブル回路85では、前述の図1のスクランブル回路9と同様に上記プロテクトコード信号検出回路88からのコピー管理情報に基づいて、上記圧縮符号化回路83からの出力データに対してスクランブルを施す。当該スクランブル回路85からのスクランブル処理されたデータがコピー管理情報付加回路に送られる。なお、このスクランブル回路85の代わりに、暗号化回路を用いるようにしてもよい。

【0065】コピー管理情報付加回路は、前述同様に、上記TOC内に上記コピー管理情報を付加するための付加回路86と、上記データセクタのヘッダ内にコピー管理情報を付加するための付加回路87とを有するものである。このコピー管理情報付加回路により前述同様にコピー管理情報が付加された上記スクランブル処理されたデータは、エンコーダ/変調回路89に送られる。

【0066】当該エンコーダ/変調回路89は、供給さ

れたデータに対して、誤り訂正符号化処理としてデータ 遅延及びパリティ計算を行ってパリティを付加し、所定 の変調方式に従って、例えば8ビットデータを16チャ ンネルビットの変調データに変換し、さらに上記所定の 変調方式の変調規則を破るいわゆるアウトオブルールの パターンの同期信号を所定のデータ量単位で付加し、こ れら処理後のデータを光ヘッド装置90に送る。

【0067】当該光ヘッド装置90は、回転サーボ制御 がかけられているスピンドルモータ91によって回転す る記録可能な光ディスクRDに対して、エンコーダ/変 調回路89から供給されたデータに基づいて駆動される レーザ光を照射することにより光学的な記録を行う。な お、この光ディスクRDへの記録はいわゆる光磁気的な 記録とする場合も可能であり、当該光磁気的な記録を行 う場合には、光ディスクRDを挟んで上記光ヘッド装置 90と対向する位置に磁気ヘッドを設け、光ディスクR D上に形成された磁性膜をキュリー温度以上に上げるの に十分なパワーのレーザ光を光ヘッド装置90から照射 すると共に、磁気ヘッドを上記エンコーダ/変調回路8 9からの信号に基づいて駆動するようにする。これによ り、光ディスクRDには、オリジナルディスクからのデ ィジタルビデオデータを、一旦アナログインターフェイ スを介してから再度生成したディジタルビデオデータが コピーされたことになる。

【0068】次に、上述したようにしてオリジナルディスクからディジタルビデオデータがコピーされた光ディスクRDを再生し、一度アナログビデオ信号にD/A変換し、このアナログビデオ信号を再度A/D変換してディジタルビデオデータに戻し、これをさらに別の記録可能な光ディスクRDに記録する(すなわち2世代目のコピーを行う)ようにした場合には、以下のようにすることで、当該2世代目のコピーがなされたとしても当該光ディスクRDからはデータを再生することができないようにしている。すなわち例えば、1世代目のコピーがなされたディスクRDを再度図9の再生装置50に装填して再生を行い、この再生により得られたアナログビデオ信号を、図9の光ディスク記録再生装置80にて再度コピーする(すなわち2世代目のコピーを行う)ような場合には、以下のようになされる。

【0069】すなわち、再生装置50において、上記1世代目のコピーがなされた光ディスクRDから読み出されたデータは、前述同様にしてコピー管理情報の読み取り回路17,18に送られ、これら読み取り回路17,18により取り出されたコピー管理情報は、コピー管理情報判別回路19に送られる。

【0070】当該コピー管理情報判別回路19からの判定信号はプロテクト信号生成回路20に送られ、このプロテクト信号生成回路20からプロテクトコード信号PCSが出力されてミックス回路24に送られる。当該ミックス回路24には、前述同様に、ディ・スクランブル

回路31にてディ・スクランブル処理された後に伸長復号化回路21にて処理され、さらにD/A変換回路23でD/A変換処理されたアナログビデオ信号が供給されている。上記プロテクトコード信号PCSは、当該ミックス回路24にて上記アナログビデオ信号に混合され、当該プロテクトコード信号PCSが混合されたアナログビデオ信号が、アナログ出力端子29を介して出力される。

【0071】上記再生装置50のアナログ出力端子29は、光ディスク記録再生装置80のアナログ入力端子81と接続されており、上記再生装置50のアナログ出力端子29から出力される上記プログラムコード信号が付加されたアナログビデオ信号が、当該ディスク記録再生装置80のアナログ入力端子81を介して入力される。

【0072】当該光ディスク記録再生装置80では、前述同様に、上記アナログ入力端子81を介して供給されたアナログビデオ信号をA/D変換回路82によりディジタルビデオデータに変換し、さらに圧縮符号化回路83にて圧縮符号化とセクタ化とが行われ、このデータがスクランブル回路85に送られる。

【0073】一方、上記アナログ入力端子81に供給された上記プロテクトコード信号が付加されたアナログビデオ信号は、プロテクトコード信号検出回路88にも送られる。

【0074】ここで、このときの当該プロテクトコード信号検出回路88に供給されたプロテクトコード信号は、1世代目のコピーがなされた光ディスクからのものであることを示している。このときの上記プロテクトコード信号検出回路88は、コピー管理情報の世代制限のビットCMcを、オリジナルディスクから2世代目であることを示す値に変更して出力する。

【0075】上記プロテクトコード信号検出回路88からのコピー管理情報は、スクランブル回路85とコピー管理情報付加回路に送られる。前述同様にスクランブル回路85では上記プロテクトコード信号検出回路88からのコピー管理情報に基づいて圧縮符号化回路83からの出力データに対してスクランブルを施し、上記コピー管理情報付加回路では当該スクランブル回路85からのスクランブル処理されたデータに上記コピー管理情報を付加して出力する。

【0076】なお、上記スクランブル回路85の代わりに暗号化回路を用いる場合には、上記プロテクトコード信号検出回路88は、当該暗号化回路において暗号化を行うような制御を行わせる制御信号として出力する。このとき、この制御信号を暗号化の鍵情報とすることもできる。これにより、当該暗号化回路からは、暗号化されたディジタルビデオデータが出力されることになる。

【0077】上記コピー管理情報付加回路から出力されたデータは、エンコーダ/変調回路89にて誤り訂正符号化処理と変調データ処理等が施された後、光ヘッド装

置90或いは磁気ヘッドに送られ、光ディスクRDに対して前述同様に光学的或いは光磁気的な記録が行われる。

【0078】次に、上述のような2世代目のコピーがなされた光ディスクRDは、当該光ディスク記録再生装置80の光ヘッド装置90により読み出され、この読み出されたデータが当該光ディスク記録再生装置80の再生系に送られる。

【0079】再生系のディジタル再生回路92は、前記再生装置50と同様のRF回路12,復調回路14,エラー訂正回路15,セクタ分解回路16,伸長復号化回路21等の主要構成要素と共に、上記コピー管理情報読み取り回路、コピー管理情報判別回路19,ディ・スクランブル回路31等を有するものである。

【0080】当該ディジタル再生回路92のコピー管理情報判別回路では、当該光ディスクRDから読み出されたコピー管理情報の世代制限のビットCMcの判別を行うことで、当該光ディスクRDは2世代目のコピーがなされたものであることを知る。このとき、当該ディジタル再生回路92のコピー管理情報判別回路19は、ディ・スクランブル回路31に対して例えばコピー管理情報を出力しない(或いはディ・スクランブルできないようなコピー管理情報を出力する)ようにする。

【0081】これにより、当該ディジタル再生回路92内の伸長復号化回路21に送られたデータはディ・スクランブル処理がなされていないデータとなり、したがって、当該データを当該伸長復号化回路21にて伸長復号化処理したとしても、正常なディジタルビデオデータは得られないことになる。このため、当該ディジタル再生回路92から出力されたデータをD/A変換回路93にてアナログ信号に変換し、アナログ出力端子94を介して例えばテレビジョン受像機71に送ったとしても、正常な映像は得られないことになる。

【0082】上述したようなことから、上記構成によれば、オリジナルのディジタル記録媒体に記録されたディジタルビデオデータを再生して一度アナログビデオ信号にD/A変換し、このアナログビデオ信号を再度A/D変換してディジタルビデオデータに戻してディジタル記録するような場合において、世代制限を可能とし、不法なコピーを防ぐことが可能となる。すなわち、上述の例では2世代目も光ディスクRDにデータを記録することは可能であるが、この記録されたデータはスクランブルが解かれていないものであるため、これを再生してテレビジョン受像機71に映したとしても正常な映像が得られないため、結果として不法コピーを防止したことになる

【0083】また、このアナログインターフェイスを介したディジタルコピーの場合においても、前述同様に、再生装置50における光ディスクRDの再生の際に、不法コピーを目的として、コピー管理情報を読み飛ばすよ

うにしたとしても、光ディスクRDに記録されているデ ィジタルデータには当該コピー管理情報に基づくスクラ ンブル処理が施されているので、ディ・スクランブル回 路31においてはスクランブルを解くことができなくな り、また、プロテクトコード信号生成回路74において もコピー管理情報に基づくプロテクトコード信号を生成 することができなくなるため、不法コピーの防止が可能 となる。すなわち、光ディスク記録再生装置80側で は、プロテクトコード信号に基づいたコピー管理情報の 生成ができなくなるため、スクランブル回路85でスク ランブルを解くことができなくなり、したがって不法コ ピーを防止することが可能となる。また、不法コピーを 目的とした場合、コピー管理情報を読み飛ばすのではな く、例えばプロテクトコード信号をマスク等することも 考えられるが、この場合も光ディスク記録再生装置80 のスクランブル回路85でスクランブルを解くことがで きなくなるため、不法コピーを防止することができる。 【0084】なお、上述の例では、オリジナルディスク から1世代目のコピーについては許す例を挙げている が、前記コピー管理情報の世代制限のビットCMcを1 世代目のコピーも禁止する値とすれば、オリジナルディ スクからの1世代目のコピーをも防止できることにな

【0085】さらに、上述の例では、記録再生装置80として記録可能な光ディスクRDを使用する例を説明しているが、ビデオテープTPに対してディジタルビデオデータを記録再生可能な装置であっても同様のコピー防止ができることは言うまでもない。

【0086】次に、上述の例では、オリジナルのディジタル記録媒体に記録されたディジタルビデオデータを再生して一度アナログビデオ信号にD/A変換し、このアナログビデオ信号を再びディジタルビデオ信号にA/D変換してディジタル記録するような場合について説明したが、アナログビデオ信号をそのままアナログ記録するようなときにも、不法コピーを防止することができる。

【0087】以下、図10及び図11を用いて、例えばオリジナルのディジタル記録媒体に記録されたディジタルビデオデータを再生して一度アナログビデオ信号にD/A変換し、このアナログビデオ信号を例えば従来のアナログビデオテープレコーダ(アナログVTR)にてアナログ記録するような場合における不法コピーの防止について説明する。

【0088】すなわちこの場合、図11に示す光ディスクDの再生装置50では、コピー管理情報のビットCMがアナログコピーの禁止を示しており、上記判別回路19からの判別信号が当該アナログコピーの禁止に対応しているとき、プロテクト信号生成回路20内のプロテクトパルス生成回路72にて白ピーク信号であるアナログプロテクトパルスAPPを生成し、当該アナログプロテクトパルスAPPを、図11に示すように上記ミック

ス回路24にてアナログビデオ信号の垂直帰線消去期間の所定期間に混合するようにしている。さらにこれらと共に、プロテクトパルス生成回路72では、コピー管理情報が供給されないときにもアナログプロテクトパルスAPPを生成するものとする。なお、上記コピー管理情報にて示される世代制限のビットCM。が今現在の世代のアナログコピーを禁止する旨を指示しているときにも、コピー管理情報判別回路19からはアナログコピーの禁止に対応する判別信号が出力される。このようなアナログコピーを禁止するシステムをAPS(Analog Protection System)という。

【0089】上記ミックス回路24からの出力信号は、アナログビデオ信号の垂直帰線消去期間内に、同期パルスに続き、所定順序の擬似同期パルスと正パルスとの複数の対が上記ビデオ信号に付加されたものとなっている。例えば、図10の具体例では、1ライン(1水平期間)中の2つの等化パルス P_{10} の間に、擬似同期パルス P_{12} と正パルス(例えば白ピークパルス) P_{14} とのパルス対が複数対挿入されている。なお、このような複数の疑似同期パルスと複数の白ピーク信号との組み合わせ信号を録画スクランブル信号として使用するものは、特開昭61-288582号公報にて開示されている。この擬似同期パルス(PSP:Pseudo-Sync Pulse)を用いたAPSを、PSPシステムともいう。

【0090】このような録画スクランブル信号により、一般のビデオテープレコーダ(VTR)で正常な録画ができなくなる理由について簡単に説明する。

【0091】上記再生装置50のアナログ出力端子29とアナログVTR60のアナログ入力端子61とを接続し、上記再生装置50のアナログ出力端子29から出力される上記録画スクランブル信号を付加したアナログビデオ信号を、アナログVTR60にてビデオテープTPに記録するとする。

【0092】一般に、上記アナログVTR60は、自動振幅調整手段あるいは自動利得制御手段であるAGC

(Automatic Gain Control)回路62を有しており、このAGC回路62により、アナログ入力端子61を介して入力されたアナログビデオ信号に対して自動的な振幅調整を行うようになされている。このようなAGC回路62を備えるアナログVTR60に対して、上記図10に示したようなアナログビデオ信号を供給すると、上記AGC回路62は上記垂直帰線消去期間に付加された白ピーク信号に反応してしまい、本来のビデオ信号の振幅を狭めてしまうようになる。すなわち、一般的なビデオテープレコーダのAGC回路62は、上記等化パルスP10と擬似同期パルスP12とを識別できず、このため、AGC回路62は付加された正パルスP14のレベルをサンプルし、入力信号レベルが通常の数倍あると誤って認識して、利得を低減するような制御を行う。したがって、このAGC回路62にて自動振幅調整がなされたアナロ

グビデオ信号を、アナログ記録回路65を介してビデオテープTPに記録し、その後にこのビデオテープTPをアナログ再生回路67にて再生してアナログ出力端子68を介してテレビジョン受像機70にて映すと、再生画像の明暗に異常をきたす等の非常に見苦しい映像となる。

【0093】これにより、オリジナルのディジタル記録 媒体に記録されたディジタルビデオデータを再生して一 度アナログビデオ信号にD/A変換し、このアナログビ デオ信号を従来のアナログVTRにてアナログ記録する ような場合における不法コピーの防止が、世代制限を含 めて可能となる。

【0094】また、このアナログインターフェイスを介したアナログコピーの場合においても、前述同様に再生装置50における光ディスクRDの再生の際に、不法コピーを目的としてコピー管理情報を読み飛ばすようにしたとしても、光ディスクRDに記録されているディジタルデータには当該コピー管理情報に基づくスクランブル処理が施されているので、ディ・スクランブル回路31においてはスクランブルを解くことができなくなり、また、プロテクトコード信号生成回路74においてはコピー管理情報が供給されないときにもプロテクトパルスを生成するようにしているため、不法コピーの防止が可能となる。

【0095】なお、図11のアナログVTR60の例では、アナログプロテクトパルスAPPによるAGC回路62の反応を利用しているが、例えば当該アナログVTR60に対して、上記アナログ入力端子61を介して供給されたアナログビデオ信号からアナログプロテクトパルスAPPを検出する検出回路63を設けると共に、AGC回路62の例えば後段にスイッチ64を設けるようにし、上記アナログプロテクトパルス検出回路63でアナログプロテクトパルスAPPを検出したときに、上記スイッチ64をOFFにするような構成とすることでも、不法コピーを禁止することが可能となる。すなわち、上記スイッチ64がOFFになれば、アナログ入力端子61に供給されたアナログビデオ信号をビデオテープTPに記録することができなくなるため、不法なコピーを防止することが可能となる。

【0096】また、上述の構成例では、ビデオテープTPを使用するアナログVTRを用いて説明したが、アナログビデオディスクADを用いるアナログビデオディスク記録再生装置であっても、上述した本発明のコピー防止の手法を利用することができることは言うまでもない

【0097】さらに、本発明では、図12及び図13に 示すように、前述したようなアナログビデオ信号を再度 A/D変換し、アナログインターフェイスを介して伝送 し、その後これをディジタルビデオデータに戻してディ ジタル記録するような場合と、上記アナログビデオ信号 をアナログインターフェイスを介して伝送し、そのまま アナログ記録するような場合の両方に対しても、不法な コピーを禁止することができる。

【0098】すなわち、図13に示す光ディスクDの再生装置50において、コピー管理情報判別回路19は、前記コピー管理情報の前記ビット CM_M の状態判別を行う判別回路71と、前記コピー管理情報のビット CM_C の状態判別を行う判別回路73とからなり、これら判別回路71、73からの判別信号がプロテクト信号生成回路20に送られ、コピー管理情報がディ・スクランブル回路31及びディジタルスクランブル回路32に送られる。

【0099】上記ディ・スクランブル回路31とディジタルスクランブル回路32では前述同様な処理を行う。

【0100】また、プロテクト信号生成回路20は、上記判別回路71からの判別信号に基づいて前記アナログプロテクトパルスAPPを生成するプロテクトパルス生成回路72と、上記判別回路73からの判別信号に基づいて前記プロテクトコード信号PCSを生成するプロテクトコード信号生成回路74とからなるものである。これらプロテクトパルス生成回路72からの前記アナログプロテクトパルスAPPと、プロテクトコード信号生成回路74からの前記プロテクトコード信号PCSとが、前記ミックス回路24に送られる。

【0101】これにより、当該ミックス回路24からは、図12に示すように、アナログビデオ信号の帰線消去期間の所定期間に上記プロテクトコード信号PCSが混合されると共に、複数の疑似同期パルス(疑似等価パルス)上に複数の白ピーク信号が組み合わされた信号が出力されることになる。

【0102】上記プロテクトコード信号APPとアナログプロテクトパルスAPCとが付加されたアナログビデオ信号がアナログ出力端子29から出力される。

【0103】上記再生装置50のアナログ出力端子29 は、記録可能な光ディスクRDを用いる光ディスク記録 再生装置80のアナログ入力端子81、及びアナログV TR60のアナログ入力端子61とに接続されることに なり、上記アナログVTR60では上記アナログビデオ 信号をビデオテープTPにアナログ記録し、上記光ディ スク記録再生装置80では上記アナログビデオ信号をデ ィジタルビデオデータに変換してから光ディスクRDに 記録することになる。上記アナログVTR60及び光デ ィスク記録再生装置80での記録再生動作は前述同様で あるため、ここではそれらの説明は省略する。ただし、 光ディスク記録再生装置80では、プロテクトコード信 号検出回路88において前記プロテクトコード信号PC Sの検出の他にアナログプロテクトパルスAPPの検出 も行い、当該アナログプロテクトパルスAPPを検出し たときにはスクランブル回路85でのスクランブル処理 を行わせるようにすることにより、不法コピーを防止す

る。

【0104】次に、本発明のさらに他の実施の形態について説明する。上記図2に示したコピー管理情報の具体例や、図3に示したスクランブル回路の具体例、図5や図6に示すセクタフォーマットの具体例等は、他にも種々の具体例が考えられる。

【0105】例えば、図14は、コピー管理情報の他の具体例を示しており、b $7\sim$ b0の8ビットのうち、例えば上位側のb7及びb6のビットがコピーの世代を制限するコピー世代管理システムCGMS(Copy Generation Management System)の情報ビットCM_C として割り当てられ、次のb5及びb4のビットが例えば上述したAPS(Analog Protection System)のトリガービットCM_I として割り当てられ、次のビットb3がアナログソースか否かを示すビットCM_A として割り当てられている。残りのb $2\sim$ b0は未定義である。ここで、上記CM_C のビット(b7, b6)は、例えば(0, 0)のときコピーフリー、(1, 0)のときコピーオーデーをそれぞれ示し、

(0,1)は未使用となっている。上記APSトリガービット CM_T のビット(b5, b4)は、例えば(0, 0)のときオフを示し、(0, 1)のとき上述したPSP(擬似同期パルス:Pseudo-Sync Pulse)をオンし、後述するスプリットバースト(あるいはカラーストライプ)をオフすることを示し、(1, 0)のときPSPをオンし、2ラインのスプリットバーストをオンすることを示し、(1, 1)のときPSPをオンし、4ラインのスプリットバーストをオンすることを示している。また、上記 CM_A のビットb3は、1のときアナログパッケージメディアを、0のときそれ以外をそれぞれ示している。

【0106】上記APSトリガービットCM』の内容が 上記PSPオンとは、上記図10や図12に示したよう なアナログプロテクトパルスAPPを垂直帰線消去期間 内の所定期間、例えば12H~19Hの間に挿入するこ とを意味する。上記スプリットバーストのオンとは、水 平帰線消去期間内の水平同期パルスの後の位置に設けら れるカラーバーストを部分的に反転することを意味し、 2ラインスプリットバーストオンとは、17ライン毎に 2ライン連続してカラーバースト反転を行うことを、ま た、4ラインスプリットバーストオンとは、21ライン 毎に4ライン連続してカラーバースト反転を行うことを それぞれ意味する。なお、カラーバースト反転は、例え ばカラーバースト信号の前半部分等の一部を反転したり 位相を変化したりするような操作であり、このような反 転スプリットカラーバーストによって、コピーされたカ ラービデオ信号に対して、カラーストライプ発生のよう なカラー妨害を生じさせるものである。

【0107】ここで、図15は、上記反転スプリットカラーバーストAPSを説明するための図であり、上述し

たカラーバースト反転が施されるラインにおいては、水平同期パルスHDの後の位置に配される色副搬送波(カラーサブキャリア)の基準信号となるカラーバーストCBの一部、例えば図中斜線部の位相が反転される。すなわち、標準的なNTSC方式におけるカラーバースト区間 C_N が例えば9サイクルであり、このカラーバースト標準区間 C_N よりも前方位置にはプリ区間 C_P として例えば2サイクル分のバースト信号が接続されて、全11サイクルのカラーバーストとなっている。このプリ区間 C_P の2サイクルとカラーバースト標準区間 C_N 内の前半部のフロント区間 C_P の3.5サイクルとの5.5サイクルのバースト位相が反転され、残りのカラーバースト標準区間 C_N 内の後半部のバック区間 C_B の5.5サイクルはそのままとされている。

【0108】このような、一部位相反転されたカラーバースト信号は、例えば上記図11や図13のプロテクトパルス生成回路72で生成してミックス回路24に送り、上記2ラインスプリットバーストオンのときは、17ライン毎に2ライン連続して位相反転カラーバーストを混合し、上記4ラインスプリットバーストオンのときは、21ライン毎に4ライン連続して位相反転カラーバーストを混合するようにすればよい。

【0109】なお、上記スプリットバーストの操作としては、カラーバーストの一部の位相を反転させるような180度の変化に限定されず、位相を90度とか270度とか、あるいは任意の角度だけ変化させるようにしてもよい。また、変化させる区間は5.5サイクルに限定されず、任意に設定できる。

【0110】次に、図16は、上記図3に示したスクランブル回路の具体例の代わりとなるスクランブル回路の他の具体例を示している。この図16の具体例では、スクランブル用の15ビットのシフトレジスタ41は、排他的論理和(ExOR)回路42を用いて生成多項式x¹⁵+x⁴+1に従ったフィードバックがかけられる点が上記図3の具体例と異なっており、他の構成は同様であるため、対応する部分に同じ指示符号を付して説明を省略する。

【0111】次に、上記図5や図6に示すセクタフォーマットの具体例の代わりに、図17に示すようなセクタフォーマットを用いることができる。

【0112】この図17の例では、1セクタは、1行172バイトの12行、すなわち2064バイトから成り、この中にメインデータ2048バイトを含んでいる。12行の最初の行の先頭位置には、4バイトのID(識別データ)と、2バイトのIED(IDエラー検出符号)と、6バイトのRSV(予備)とがこの順に配置されており、最後の行の終端位置には、4バイトのEDC(エラー検出符号)が配置されている。

【0113】上記ID (識別データ) の4バイトは、図 18に示すように、MSB側の最初のバイト (ビットb 31~b24)はセクタ情報から成り、残りの3バイト (ビットb23~b0)はセクタ番号から成っている。 セクタ情報は、MSB側から順に、1ビットのセクタフ ォーマットタイプ、1ビットのトラッキング方法、1ビットの反射率、1ビットの予備、2ビットのエリアタイプ、2ビットの層番号の各情報から成っている。

【0114】上記コピー管理情報については、このようなセクタフォーマットの所定位置に設けるようにすればよく、例えばデータ領域でのセクタフォーマットでは、上記6バイトのRSV内の1バイトを用い、TOC領域でのセクタフォーマットではメインデータ部分の何バイトか何十バイトかをまとめてコピー管理情報用の領域とすればよい。

【0115】なお、上述した構成例では、光ディスクやビデオテープへの記録再生を例に挙げて説明しているが、本発明はディジタルデータの伝送の際にも適用できる。例えば、上記コピー管理情報と同様の伝送制御情報の一部を、鍵情報として伝送するディジタルデータに暗号化(スクランブル)を施すと共に、この暗号化されたディジタルデータに付随して上記伝送制御情報を送信するようにすれば、不法コピーが防止できるようになる。この本発明の信号伝送方法に対応する信号伝送装置としては、前記図1,図9,図11,図13の構成において、例えば、エンコーダ/変調回路を伝送方式に応じたエンコードや変調処理を行う手段に変更し、さらに、記録再生のための光へッド装置や外部とのインターフェイス手段等をデータ送信手段や受信手段に変更するなどすれば、そのまま適用可能である。

【0116】また、上述した例では、暗号化処理におい てスクランブル/ディ・スクランブルのみについて述べ たが、これ以外の変換処理も有り得ることはもちろんで ある。さらに、図1の記録側の変換処理は、スクランブ ル回路9においてなされているが、圧縮符号化回路2や エンコーダ/変調回路6の中で行ってもよい。この場合 は、再生側の変換処理も同様に、ディ・スクランブル回 路31の代わりに、復調回路14,エラー訂正回路1 5,セクタ分解回路16,伸長復号化回路21の何れか で行うことになる。上記復調回路14,エラー訂正回路 15,セクタ分解回路16,伸長復号化回路21の何れ かで行う場合は、コピー管理情報判別回路19にて判別 を行うための情報を、それ以前に入手している必要があ る。なお、この場合例えば、TOC情報は一番最初に入 手されているため、当該TOC情報からのものを用いる ことができる。

【 0 1 1 7 】上述したように、本発明の実施の形態の構成例によれば、アナログコピーとディジタルコピーの両者に同時に不法コピー対策を施すことが可能となる。

【0118】以上説明したように、本発明の実施の形態 における信号再生方法及び装置によれば、ディジタルデータが記録された信号記録媒体上の所定位置、例えば再 生態様制御信号領域部、及び/又はセクタ化の各ヘッダ 部に配されている記録制御情報に基づいて、ディジタル データ及び/又はこのディジタルデータをD/A変換し てなるアナログ信号に所定の変換処理を施すことによ り、不法コピーを防止することができる。

【0119】また、本発明の実施の形態における信号記録方法及び装置によれば、信号記録媒体の記録を管理するための記録制御情報の少なくとも一部を鍵情報として信号を暗号化、若しくは記録制御情報の少なくとも一部にて指示される鍵情報により信号を暗号化し、この記録制御情報を信号記録媒体の再生態様制御信号領域部、及び/又は信号記録媒体への信号の各記録単位の所定位置に配し、暗号化した信号と共に信号記録媒体に記録することにより、不法コピーを防止することができる。

【 0 1 2 0 】 さらに、本発明の実施の形態における信号 伝送方法及び装置によれば、送信されたディジタルデー 夕に付随する伝送を管理するための伝送制御情報に基づ いて、ディジタルデータ及び/又はこのディジタルデー タをD/A変換してなるアナログ信号に所定の変換処理 を施すことにより、不法コピーを防止することができ る。

【0121】さらに、本発明の実施の形態における信号 伝送方法及び装置は、信号の伝送を管理するための伝送 管理情報の少なくとも一部を鍵情報として信号を暗号 化、若しくは記録制御情報の少なくとも一部にて指示さ れる鍵情報により信号を暗号化し、この暗号化した信号 に付随して伝送制御情報も伝送することにより、不法コ ピーを防止することができる。

【0122】またさらに、本発明の実施の形態における信号記録媒体によれば、信号記録媒体への信号の記録を管理するための記録制御情報を、再生態様制御信号領域部、及び/又は信号の各記録単位の所定位置に配して記録すると共に、記録制御情報の少なくとも一部を鍵情報として信号を暗号化して記録してなることにより、不法コピーを防止することができる。

【0123】すなわち、本発明の実施の形態によれば、例えばディジタルデータとアナログ信号の両者に対して記録制御情報又は伝送制御情報に基づいて所定の変換処理を施すようにし、当該所定の変換処理として、例えばディジタルデータには暗号化を、アナログ信号に対してはスクランブル処理を施すことにより、ディジタルコピーとアナログコピーの両者に対する不法コピーの防止を図っている。また、本発明の実施の形態によれば、記録制御情報又は伝送制御情報とことができず、したがって不法コピーの防止が可能となっている。

【0124】また、本発明の実施の形態における映像信号再生装置及び方法によれば、ディジタル映像信号と共に、スパイラル状の記録トラックの始端に設けられた再

生態様制御信号領域部、及び/又はセクタ化されたディジタル映像信号の各へッダ部に配される不法コピー防止のための録画制御コードが、記録されてなるディジタルディスク媒体よりディジタル信号を再生して、少なくとも最終的にアナログ映像信号出力を得るものであり、上記録画制御コードの状態を検出し、この検出出力に基づいてアナログ映像信号の態様の録画スクランブル信号及び/又は録画禁止信号を発生させ、ディジタル映像信号を変換して得たアナログ映像出力信号の垂直帰線期間の所定領域に上記録画スクランブル信号及び/又は録画禁止信号を付加し、このアナログ映像信号を出力することにより、不法コピーを防止することができる。

【0125】また、本発明の実施の形態における映像再生と記録の組み合わせ装置及び方法によれば、上記ディジタル映像信号と録画制御コードとが記録されてなるディジタルディスク媒体を再生して、少なくともアナログ映像信号を出力し、また記録する映像信号再生と記録の組み合わせ装置及び方法であって、録画制御コードの状態検出出力に基づいてアナログ信号の態様の録画スクランブル信号を発生させ、ディジタル映像信号を変換して得たアナログ映像信号の垂直帰線期間の所定領域に上記録画スクランブル信号を付加して出力し、また、入力アナログ映像信号に含まれる録画スクランブル信号に反応する自動振幅調整手段によって振幅調整された入力アナログ映像信号を、アナログ録画媒体に記録するようにしたことにより、不法コピーを防止することができる。

【0126】さらに、本発明の実施の形態における映像信号再生と記録の組み合わせ装置及び方法によれば、録画制御コードの状態検出出力に基づいてアナログ映像信号の態様の録画禁止信号を発生させ、ディジタル映像信号を変換して得たアナログ映像信号の垂直帰線期間の所定領域に録画禁止信号を付加して出力し、また、入力アナログ信号をアナログ又はディジタル的に記録するときには、入力アナログ信号に含まれる録画禁止信号に応じて録画禁止手段を動作させることにより、不法コピーを防止することができる。

【0127】またさらに、本発明の実施の形態におけるディジタルディスク媒体は、上記本発明の実施の形態の映像信号再生方法に対応させるためのものであって、ディジタル化された映像信号と共に、録画スクランブル信号及び/又は録画禁止信号を生成させるために機能する信号である録画制御コードを、記録してなることにより、不法コピーを防止することができる。

【0128】すなわち、本発明の実施の形態によれば、ディジタルディスク媒体から読み出されたディジタル映像信号をD/A変換して得たアナログ映像信号を出力するに際し、このアナログ映像信号に、アナログ映像信号の態様の録画スクランブル信号及び/又は録画禁止信号を付加し、この録画スクランブル信号及び/又は録画禁止信号が付加されたアナログ映像信号をアナログ又はデ

ィジタル的に記録媒体に記録させるようにしている。これにより、記録後のアナログ又はディジタルディスク媒体から再生された映像信号は、スクランブルがかけられたものとなり、又は、録画そのものがなされないことになる。

【0129】なお、上述した説明では、光ディスク及び ビデオテープを信号記録媒体として説明しているが、そ の他、いわゆるICカードや各種メモリ素子等の半導体 記憶媒体や、ハードディスクやフレキシブルディスク等 の磁気ディスク媒体を使用することも可能であり、光ディスクにおいてもピットによる記録がなされるディスク や、光磁気ディスクの他に、相変化型光ディスクや有機 色素型光ディスク、紫外線レーザ光により記録がなされる る光ディスク、多層記録膜を有する光ディスク等の各種 のディスクを用いることができ、テープ状の記録媒体も ビデオテープに限らず他の各種のものに適用することが 可能である。

[0130]

【発明の効果】本発明においては、ディジタルデータが記録された信号記録媒体の所定位置、例えば再生態様制御信号領域部、及び/又はセクタ化の各ヘッダ部に配されている記録制御情報に基づいて、上記ディジタルデータをD/A変換してなるアナログ信号の所定位置に複数のビットでコード化された不法コピー防止のための信号を配する処理を施すことにより、ディジタルデータを一旦アナログ信号に変換してこれをアナログ又はディジタル的に不法コピーすることを禁止し、段階的な世代コピーをも禁止することが可能であり、さらに、アナログコピーとディジタルコピーの両者に同時に不法コピー防止の対策をとることが可能となっている。

【0131】また、本発明においては、ディジタル映像 信号と、記録トラックの始端に設けられた再生態様制御 信号領域部、及び/又はセクタ化されたディジタル映像 信号の各ヘッダ部に配される録画制御コードとが、記録 されてなるディジタルディスク媒体を再生して、少なく ともアナログ映像信号を出力するときに、上記録画制御 コードの状態の検出出力に基づいて、上記ディジタル映 像信号をD/A変換してなるアナログ映像信号の垂直帰 線期間の所定領域に、アナログ信号の態様の録画禁止信 号を付加することにより、当該ディジタルディスク媒体 のコピーを行う際には、上記録画禁止信号が付加された アナログ映像信号がアナログ又はディジタル的に記録さ れることになるため、記録後のアナログ又はディジタル ディスク媒体から再生された映像信号は、再生そのもの ができないものとなる。したがって、本発明によれば、 ディジタルディスク媒体に記録されたディジタル映像信 号を一旦アナログ映像信号に変換し、これをアナログ的 又はディジタル的に不法コピーすることを禁止でき、さ らに段階的な世代コピーをも禁止することも可能であ る。

【図面の簡単な説明】

【図1】マスタディスク作製工程および複製されたディスクの再生工程を説明するための図である。

【図2】 コピー管理情報について説明するための図である

【図3】スクランブル回路の具体的構成を示す回路図である。

【図4】光ディスクの構造を説明するための図である。

【図5】データセクタの構成を説明するための図であ z

【図6】TOCのセクタの構成を説明するための図である。

【図7】マスタディスク作製工程および複製されたディスクの再生工程の他の例を説明するための図である。

【図8】アナログ映像信号にプロテクトコード信号が付加された状態を示す波形図である。

【図9】ディジタルビデオデータをアナログビデオ信号 に変換し、さらにこれをディジタルビデオデータに変換 してコピーする際の不法コピー防止を実現するための構成を示すブロック回路図である。

【図10】アナログ映像信号にアナログプロテクトパルスが付加された状態を示す波形図である。

【図11】ディジタルビデオデータをアナログビデオ信号に変換し、これをアナログ的にコピーする際の不法コピー防止を実現するための構成を示すブロック回路図である.

【図12】アナログ映像信号にアナログプロテクトパル ス及びプロテクトコード信号が付加された状態を示す波 形図である。

【図13】ディジタルビデオデータをアナログビデオ信号に変換し、これをアナログ及びディジタル的にコピーする際の不法コピー防止を実現するための構成を示すブロック回路図である。

【図14】コピー管理情報の他の具体例について説明するための図である。

【図15】カラーバーストの反転処理を説明するための 図である。

【図16】スクランブル回路の他の具体的構成を示す回 路図である。

【図17】セクタフォーマットの他の具体例を説明する ための図である。

【図18】図17のセクタフォーマットのセクタヘッダ の構成例を説明するための図である。

【符号の説明】

9 スクランブル回路、 17 TOC内のコピー管理情報読み取り回路、18 データセクタのヘッダ内のコピー管理情報読み取り回路、 19 コピー管理情報判別回路、 20 プロテクト信号生成回路、 24 ミックス回路、 31 ディ・スクランブル回路、 3 アィジタルスクランブル回路、62 AGC回路、

72 プロテクトパルス生成回路、 74 プロテクトコード信号生成回路、 86 TOC内へのコピー管理情報の付加回路、 87データセクタのヘッダ内へのコピー管理情報の付加回路、 88 プロテクトコード信号検出回路

【図1】

【図2】

【図3】

【図14】

【図7】

【図15】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図16】

【図17】

	172M1	
	4111 5111 6111	
	ID IED RSV メインデータ160パイト(Do~D ₁₅₉)	
	メインデ タ172パイト(D160~D331)	
	メインデータ172パイト(D332~D503)	
12年		
	:	
	メインデータ1 72パイト(D ₁₇₀₄ ~D ₁₈₇₉)	
¥	メインデータ168パイト(D ₁₈₈₀ ~D ₂₀₄₇)	EDG
		4/1/1

【図18】

セクタ情報		セクタ番号					
		L					
. '			· .		 -		
	ь30	b29	b28	b27	b26	b25	b24