112 學年度分科測驗 數學甲考科選擇(填)題答案

題號	答案	題號		答案	題號		答案
1	4		9-1	1	12		/
2	2	9	9-2	3	13		/
3	3		9-3	3	14		/
4	1,2	10	10-1	2	15	15-1	2
5	1,3		10-2	1		15-2	5
6	1,4,5		10-3	4	16		/
7	1,4	11	11-1	1	17		/
8	2,3		11-2	5			
		11	11-3	5			
			11-4	4			

※答案「/」者,表示該題為非選擇題。

112 學年度分科測驗 數學甲考科非選擇題評分原則

數學甲考科的題型有選擇、選填與混合題(含非選擇題)、非選擇題。 112 學年度分科測驗數學甲考科的非選擇題共有 5 題,包含第 12、13、14、 16、17 題。其中第 12 題為 2 分;第 13 題為 4 分、第 14 題為 6 分、第 16 題為 4 分;第 17 題為 6 分,總計 22 分。

非選擇題主要評量考生是否能夠清楚表達推理論證過程,答題時應清楚表達如何依據題設進行推論,並詳細說明解題過程,且得到正確答案,方可得到滿分。若能清楚表達如何依據題設進行推論,並詳細說明解題過程,但最後未求出正確答案,會依據解題概念的完整性,酌給部分分數。例如最後求解答案時,因計算錯誤,未得到正確答案;或能運用推理能力解決問題,但未能完整檢驗結果的合理性與正確性。若答題時未於解題過程中清楚表達如何依據題設進行推論,則無法得到分數,例如只有答案,沒有解題過程;或解題觀念錯誤;或一開始用不符合題設的數據作答。

數學科非選擇題的解法通常不只一種,在此提供多數考生可能採用的解法以供各界參考。112 學年度分科測驗數學甲考科非選擇題各大題的參考答案說明如下:

第 12 題

一、滿分參考答案:

根據題意,將 $P(1,\frac{1}{2})$ 代入 $x^2+y^2-3y+b=0$,推得 $b=\frac{1}{4}$ 。

再利用 $x^2 + y^2 - 3y + \frac{1}{4} = 0$ 配 方 得 $x^2 + \left(y - \frac{3}{2}\right)^2 = 2$, 故 圓 心 C 點 坐 標 為 $(0, \frac{3}{2})$ 、

$$\overrightarrow{CO} = \left(0, -\frac{3}{2}\right) \cdot \overrightarrow{CP} = \left(1, -1\right)$$

所以 \vec{CO} 與 \vec{CP} 夾角的餘弦值為 $\frac{\left(0,-\frac{3}{2}\right)\cdot(1,-1)}{\frac{3}{2}\times\sqrt{1^2+(-1)^2}} = \frac{\sqrt{2}}{2}$ 。

二、評分原則:

正確計算得出題意所求為 $\frac{\sqrt{2}}{2}$ 。

第 13 題

一、滿分參考答案:

【解法一】

y = f(x)圖形在點 $P(1, \frac{1}{2})$ 的切線斜率為 $\frac{d}{dx} \left(\frac{1}{2}x^2\right)\Big|_{x=1} = 1$,直線 CP 斜率為 $\frac{\frac{1}{2} - \frac{3}{2}}{1 - 0} = -1$,直線 CP 與 Ω 過點 $P(1, \frac{1}{2})$ 的切線垂直,所以 Ω 過點 $P(1, \frac{1}{2})$ 的切線斜率為 $\frac{-1}{-1} = 1$,兩切線都過 P點且斜率相等,所以 y = f(x) 圖形與 Ω 在 P 點有共同的切線。

【解法二】

y = f(x) 圖形在點 $P(1, \frac{1}{2})$ 的切線斜率為 $\frac{d}{dx} \left(\frac{1}{2} x^2 \right) \Big|_{x=1} = 1$, y = f(x) 圖形在點 $P(1, \frac{1}{2})$ 的切

線方程式為
$$y=x-\frac{1}{2}$$
。圓心 C 到直線 $y=x-\frac{1}{2}$ 的距離為 $\frac{\left|0-\frac{3}{2}-\frac{1}{2}\right|}{\sqrt{1^2+(-1)^2}}=\sqrt{2}$,等於半

徑,所以 y=f(x)圖形與 Ω 在 P 點有共同的切線。

- 二、評分原則:
- (1) 正確計算得到 y=f(x)圖形與 Ω 在 $P(1,\frac{1}{2})$ 的切線斜率為 1,或寫出正確的切線 方程式 $y=x-\frac{1}{2}$,且有正確的解題過程。
- (2) 正確證明 y = f(x) 圖形或 Ω 其中一個在 $P(1, \frac{1}{2})$ 的切線也是另一個圖形的切線,且有正確的推論過程與理由。

第 14 題

一、滿分參考答案:

【解法一】

y=f(x)圖形對 y軸對稱,圓 Ω 的圖形也對 y軸對稱,先求在右半平面的面積: x軸、 y軸、 x=1以及線段 \overline{CP} 所圍梯形面積為 $\frac{1}{2}\times\left(\frac{1}{2}+\frac{3}{2}\right)\times 1=1$,減去正 y轴、線段 \overline{CP} 與圓 Ω (半徑為 $\sqrt{2}$)所圍扇形面積為 $\frac{1}{2}\times\sqrt{2}^2\times\frac{\pi}{4}=\frac{\pi}{4}$,再減去 Γ 與 x軸以及 x=1所圍區域面積 $\int_0^1 \frac{1}{2}x^2 dx = \frac{1}{6}$,

得右半平面的面積為 $1-\frac{\pi}{4}-\frac{1}{6}$,故題意所求面積為 $2\times\left(1-\frac{\pi}{4}-\frac{1}{6}\right)=\frac{5}{3}-\frac{\pi}{2}$ 。

【解法二】

$$\int_{-1}^{1} \left[\left(\frac{3}{2} - \sqrt{2 - x^2} \right) - \frac{1}{2} x^2 \right] dx = \int_{-1}^{1} \left(\frac{3}{2} - \frac{1}{2} x^2 \right) dx - \int_{-1}^{1} \sqrt{2 - x^2} dx$$

$$\int_{-1}^{1} \left(\frac{3}{2} - \frac{1}{2} x^2 \right) dx = \left(\frac{3}{2} x - \frac{1}{6} x^3 \right)^{1} = \frac{8}{3}$$

 $\int_{-1}^{1} \sqrt{2-x^2} dx$ 為圓 Ω 的上半圓在區間[-1,1]的面積,為 $\frac{1}{4} \times \pi \times 2 + \frac{2 \times 1 \times 1}{2} = \frac{\pi}{2} + 1$ 。

二、評分原則:

- (1) 正確計算扇形面積 COP 為 $\frac{\pi}{4}$ 或 $\int_0^1 \frac{1}{2} x^2 dx = \frac{1}{6}$,且有正確的解題過程。
- (2) 正確計算得到題意所求區域面積為 $\frac{5}{3} \frac{\pi}{2}$,且有正確的解題過程。

第 16 題

一、滿分參考答案:

因為 $\left(-\frac{5}{3},\frac{2\sqrt{5}}{3}\right)$ 為長軸的其中一個頂點,且短軸與長軸垂直,故 Γ' 的短軸位在直

線
$$2y = \sqrt{5}x$$
上,代入方程式 $40x^2 + 4\sqrt{5}xy + 41y^2 = 180$,得 $x^2 = \frac{16}{9}$,故 $\left(\frac{4}{3}, \frac{2\sqrt{5}}{3}\right)$ 為短軸

的其中一個頂點,短軸長為
$$2\sqrt{\left(\frac{4}{3}\right)^2 + \left(\frac{2\sqrt{5}}{3}\right)^2} = 4$$
。

- 二、評分原則:
- (1) 正確計算得到短軸的方程式 $2y = \sqrt{5}x$,且有正確的解題過程。
- (2) 正確計算得到短軸長為4,且有正確的解題過程。

第 17 題

一、滿分參考答案:

【解法一】

依據題意,線性變換將 (1,0)變換到 $\frac{1}{2} \times \left(\frac{4}{3}, \frac{2\sqrt{5}}{3}\right) = \left(\frac{2}{3}, \frac{\sqrt{5}}{3}\right)$ 且將 (0,1)變換到

$$\frac{1}{\sqrt{5}} \times \left(-\frac{5}{3}, \frac{2\sqrt{5}}{3}\right) = \left(-\frac{\sqrt{5}}{3}, \frac{2}{3}\right),$$
 所以線性變換的矩陣表示為
$$\begin{bmatrix} \frac{2}{3} & -\frac{\sqrt{5}}{3} \\ \frac{\sqrt{5}}{3} & \frac{2}{3} \end{bmatrix}.$$

$$P'\left(\frac{2}{3}x - \frac{\sqrt{5}}{3}y, \frac{\sqrt{5}}{3}x + \frac{2}{3}y\right)$$
在 x 軸上 ,可推得 $y = -\frac{\sqrt{5}}{2}x$

因為 Γ的方程式為 $\frac{x^2}{4} + \frac{y^2}{5} = 1$ 且 P點在 Γ上,將 $y = -\frac{\sqrt{5}}{2}x$ 代入,解得 $x^2 = 2$

因旋轉角 θ 為銳角,P點在第四象限,故 $x=\sqrt{2}$, $y=-\frac{\sqrt{10}}{2}$,

$$P$$
點坐標為 $\left(\sqrt{2}, -\frac{\sqrt{10}}{2}\right)$ 。

【解法二】

設 P' 點坐標為 (a,0), a>0, 代入 Γ' 的方程式,

則
$$40 \times a^2 = 180 \Rightarrow a^2 = \frac{180}{40} = \frac{9}{2} \Rightarrow a = \frac{3\sqrt{2}}{2}$$
 , 得到 P' 點坐標為 $\left(\frac{3\sqrt{2}}{2},0\right)$

旋轉
$$\theta$$
 角,則 $\cos \theta = \frac{2\sqrt{5}}{3} = \frac{2}{3}$, $\sin \theta = \frac{\frac{5}{3}}{\sqrt{5}} = \frac{\sqrt{5}}{3}$,

旋轉矩陣為
$$\begin{bmatrix} \frac{2}{3} & -\frac{\sqrt{5}}{3} \\ \frac{\sqrt{5}}{3} & \frac{2}{3} \end{bmatrix}$$
 且其逆矩陣為 $\begin{bmatrix} \frac{2}{3} & \frac{\sqrt{5}}{3} \\ -\frac{\sqrt{5}}{3} & \frac{2}{3} \end{bmatrix}$

所以
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{\sqrt{5}}{3} \\ -\frac{\sqrt{5}}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{3\sqrt{2}}{2} \\ 0 \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ -\frac{\sqrt{10}}{2} \end{bmatrix}$$
, P點坐標為 $\left(\sqrt{2}, -\frac{\sqrt{10}}{2}\right)$ 。

二、評分原則:

- (2) 正確計算 P' 點坐標為 $\left(\frac{3\sqrt{2}}{2},0\right)$ 與正確寫出旋轉矩陣 $\left[\begin{array}{cc} \frac{2}{3} & -\frac{\sqrt{5}}{3} \\ \frac{\sqrt{5}}{3} & \frac{2}{3} \end{array}\right]$ 的逆矩陣

$$\begin{bmatrix} \frac{2}{3} & \frac{\sqrt{5}}{3} \\ -\frac{\sqrt{5}}{3} & \frac{2}{3} \end{bmatrix}$$
,推得 P 點坐標為 $\left(\sqrt{2}, -\frac{\sqrt{10}}{2}\right)$,且有正確的解題過程。