Experiments : Upper bound of generalization loss

(kNN, Decision tree, Logistic regression)

Al Expert @ Samsung DS 20. 07. 15 / 22

Instructed by Mingyu Kim

학습 자료

https://github.com/MingyuKim87/VC_Dim

- 1. 커멘드 창에서 적절한 위치에 directory를 생성
- 2. Git clone https://github.com/MingyuKim87/VC_Dim

1. 학습목표

2. 배경지식

3. 사용할 알고리즘 별 VC Dimensions

4. 실습

5. 문제

학습목표

Curse of Dimensionality

■ Curse of Dimensionality (차원의 저주)

- 매우 단순한 classification 알고리즘을 도입한다고 가정한다.
 - 알고리즘 : 각 구간별로 나눈 후 training set에서 각 구간 내 속한 데이터 중 가장 많은 클래스로 예측
- 위 알고리즘의 경우 dimension이 증가할 수록 구간이 '**기하급수적**'으로 증가
- 해당 알고리즘이 충분한 설명력을 갖기 위해선 큰 차원에서 많은 데이터가 필요 (구간 내 Training Data 수를 고려한다면)
- 이를 "수학적" 방식으로 접근하여 Generalization loss의 upper bound 구함 → Learning theory

Background

VC dimensions and upper bound of generalization loss

VC-Dimension

- 주어진 데이터셋 $S = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}$ 에 대해서,
 - 이 예제에서는 Binary classification 상황만을 고려하며,
 - 따라서 모든 $y_i \in \{-1, +1\}$ 만을 생각합니다.
- Dichotomy: 데이터 포인트들에 대해서 임의로 라벨링을 진행할 때 $(y_1, y_2, ..., y_m)$ 를 의미합니다.
 - 가능한 $(y_1, y_2, ..., y_m)$ 중 하나의 예시를 dichotomy라고 이해하면 됩니다.
- Shattering: 만약 H가 S의 모든 dichotomy를 표현 할 수 있다고 하면, 우리는 S가 H에 의해 shattered 되었다고 표현합니다.
 - 이 때, 함수의 파라미터 셋의 가능한 모든 경우를 가진 집합을 hypothesis set H라고 합니다.

Example. 2D linear classifier

- 해당 예시에서 classifier가 생성할 수 있는 dichotomy의 가짓수는 총 8개입니다.
- 만약, 세 점이 한 직선 위에 위치한다면, 그 때 classifier가 생성할 수 있는 dichotomy의 가짓수는 3개입니다.
- 세 점으로 만들 수 있는 dichotomy의 최대 가짓수는 8개이기 때문에,
 - Set $S = \{(x_1, y_1), (x_2, y_2), (x_3, y_3)\} \rightarrow |S| = 3$
 - Dichotomies $\{(-,-,-),(+,-,-),...,(+,+,+)\} \rightarrow 8$
- 우리는 세 점이 한 직선 위에 있는 경우를 제외한다면,
- 이차원 평면에 세 점이 있는 경우, linear classifier가 이 데이터를 fully shattering 한다고 얘기할 수 있습니다.

VC-Dimension

- VC-dimension은 hypothesis set H (혹은 classifier)가 shattering할 수 있는 최대 point의 개수를 의미합니다.
- 저희가 다루는 예제가 binary classification이기 때문에 수식으로는 다음처럼 표현 할 수 있습니다.
 - $VCdim(H) = \max\{m: \prod_{H}(m) = 2^m\}$
- VCdim(H) = d라는 의미는 hypothesis set H가 최대 d개의 points set을 shattering할 수 있다는 의미이며,
- 무조건 d개의 data points를 shattering 할 수 있다는 의미는 아닙니다.
- 앞 슬라이드의 예시를 들자면,
- 세 점이 한 직선 위에 위치하는 경우, linear classifier는 해당 data points를 shattering 할 수 없습니다.
- 하지만 해당 경우를 제외하면, linear classifier는 임의의 세 점을 shattering 할 수 있습니다.
- 따라서 해당 경우의 VD-dimension의 값은 3 이상이 될 것입니다.

VC-Dimension

Example 1. *Intervals on the real line*

Our first example involves the hypothesis class of intervals on the real line.

- 간단한 예시를 들어, 1차원 직선에서 2개의 data point가 존재할 때
- 가능한 모든 dichotomy의 종류는 {(+,+),(-,-),(+,-),(-,+)} → 4가지 입니다.
- Linear classifier는 이 모든 dichotomy를 표현 할 수 있기 때문에, VCdim ≥ 2 입니다.
- 반면, 1차원 직선에서 3개의 data point가 존재할 때,
- Linear classifier는 (+, -, +) 이나 (-, +, -)를 표현할 수 없고, VCdim < 3입니다.
- 따라서 1차원 직선에서 linear classifier의 VCdim = 2입니다.

VC-Dimension

Example 2. Hyperplane

Consider the set of hyperplanes in \mathbb{R}^2 .

- 앞서 언급하였듯이 세 점이 한 직선 위에 존재하는 경우를 제외하면,
- Linear classifier는 세 개의 data point들을 shattering 할 수 있습니다.

VC-Dimension

Three colinear points in \mathbb{R}^2 cannot be shattered.

- 하지만 세 점이 한 직선 위에 존재하게 된다면,
- Linear classifier는 해당 예제를 shattering 할 수가 없습니다.
- 일반적으로 VCdim(H) = d 이더라도 d개의 data points로 표현 할 수 있는 모든 경우를
- Shattering 하기는 어렵습니다.

VC-Dimension Generalization Bounds

$$\mathcal{R}(h) \leq \hat{\mathcal{R}}_{\mathcal{S}}(h) + \sqrt{\frac{2 \log \Pi_{\mathcal{H}}(m)}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}$$

- Generalization bounds
 - $R(h): h \in H$ 의 전체 데이터에 대한 general risk (실제 데이터 분포를 알기 어렵기 때문에 계산 불가능)
 - $\hat{R}_S(h)$: 현재 가진 data points sample S에서의 h의 empirical risk (\cong Training Loss)
 - $R(h) = \mathbb{E}_{S \sim D}[\hat{R}_S(h)]$ where D is distribution of dataset
- δ: failure rate
 - "다음 수식이 최소 1δ 확률로 만족하게 된다" 라는 의미.
 - 좀 더 강건한 upper bound를 구하고 싶다면 δ 의 값을 줄이면 됩니다.
 - 즉, δ는 위 부등식이 만족하지 않은 확률이라고 생각하시면 됩니다.

VC-Dimension Generalization Bounds

- Sauer's lemma에 의해 $\prod_{H}(m) \leq \left(\frac{em}{d}\right)^d$ 가 성립하며, 이에 따라
- VC-dimension을 이용한 generalization bound를 계산할 수 있습니다.

Proof.

$$\Pi_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} \binom{m}{i} \quad \text{Sauer's lemma}$$

$$\leq \sum_{i=0}^{d} \binom{m}{i} \left(\frac{m}{d}\right)^{d-i} \leq \sum_{i=0}^{m} \binom{m}{i} \left(\frac{m}{d}\right)^{d-i} \quad m \geq d$$

$$= \left(\frac{m}{d}\right)^{d} \sum_{i=0}^{m} \binom{m}{i} \left(\frac{d}{m}\right)^{i} = \left(\frac{m}{d}\right)^{d} \left(1 + \frac{d}{m}\right)^{m} \quad \text{By the binomial formula:}$$

$$\sum_{i=0}^{m} \binom{m}{i} x^{i} = (1+x)^{m}$$

$$\leq \left(\frac{m}{d}\right)^{d} e^{\frac{d}{m} \cdot m} = \left(\frac{m}{d}\right)^{d} e^{d}$$

■ Recap : Learning Theory (PAC learning and VC dimension)

Practices

- VC Dim 의 경우 일반적으로 구하기가 매우 어려움
- 몇개의 모델의 경우 수학적으로 엄밀하게 구할 수 있음. (kNN, Decision Tree, linear plane)
- 일반적으로 학습 데이터만 주어져 있다고 가정하여 학습 데이터를 통해 평가한 loss만 구할 수 있다.
- 모조 데이터를 통한 실험에서는 True generalization loss을 구할 수 없기 때문에 Test Set을 생성하여 구한 loss와 upper bound를 비교해 본다.

$$\mathcal{R}(h) \leq \hat{\mathcal{R}}_{S}(h) + \sqrt{\frac{2d \log \frac{em}{d}}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}$$

VC dimensions

kNN, decision tree and logistic regression

k-Nearest Neighbor Classify $(\mathbf{X}, \mathbf{Y}, x)$ // \mathbf{X} : training data, \mathbf{Y} : class labels of \mathbf{X} , x: unknown sample for i=1 to m do Compute distance $d(\mathbf{X}_i, x)$ end for Compute set I containing indices for the k smallest distances $d(\mathbf{X}_i, x)$. return majority label for $\{\mathbf{Y}_i \text{ where } i \in I\}$

Pseudo Codes of kNN

- VC Dimension
 - K = 1일 때, training set의 data 개수가 VC Dim이 된다.
 - 총 m개의 영역으로 나눌 수 있기 때문

Decision Tree

Algorithm 1.1 C4.5(D) Input: an attribute-valued dataset D1: Tree = {} 2: if D is "pure" OR other stopping criteria met then 3: terminate 4: end if 5: for all attribute $a \in D$ do 6: Compute information-theoretic criteria if we split on a7: end for 8: a_{best} = Best attribute according to above computed criteria 9: Tree = Create a decision node that tests a_{best} in the root 10: D_v = Induced sub-datasets from D based on a_{best} 11: for all D_v do 12: Tree_v = C4.5(D_v)

Attach Tree, to the corresponding branch of Tree

Pseudo Codes of decision tree

- VC Dimension
 - Terminal node의 개수가 VC dim 이 된다.

14: end for 15: return Tree

■ Linear separable plane (logistic regression)

알고리즘 개요

Algorithm Logistic Regression based MA on APUF

```
1: procedure LR(N CRP (\mathbf{c}_i, r_i) or (\mathbf{\Phi}_i, r_i) (r_i \in
     \{-1,+1\}), increment \eta, threshold \epsilon)
         Randomly generate \mathbf{w} = (\mathbf{w}[0], \dots, \mathbf{w}[n-1], 1)
         while (1) do
              \nabla l = (0, \dots, 0)
       for i \leftarrow 0, N-1 do
                   \nabla l = \nabla l + (\hat{y}_i - r_i) \mathbf{\Phi}_i
              end for
              \mathbf{w} = \mathbf{w} - \eta \times \nabla l
              if ||\nabla l|| \leq \epsilon then
                   Break While Loop
10:
              end if
11:
         end while
12:
         output the model w
14: end procedure
```

$$\hat{y} = \sigma(f(\mathbf{w}, \mathbf{c})) = \frac{1}{1 + e^{-f(\mathbf{w}, \mathbf{c})}}$$

Pseudo Codes of logistic regression

- VC Dimension
 - 앞서 언급한 것처럼, VCdim = d + 1 이 된다.
 - 해당 예제는 VCdim = 2 + 1 = 3 이다.

실험설계

VC dim for kNN, decision tree and logistic regression

■ 실험의 중점 사항

- 본 실험의 관심사
 - 지금까지 실습의 경우 데이터가 주어져 있고, 이를 예측할 알고리즘을 생성하는데 관심
 - 본 실험에서는 예측 알고리즘은 주어져 있는 상태에서 학습 데이터 포인트의 개수와 차원을 조절하여 실제 generalization loss의 upper bound을 구해보고자 한다.
 - True generalization loss을 구하기가 어려우니 이를 검증하기 위한 방법으로 Test data set 을 생성하고 loss를 평가하여 bound의 유효성을 체험해보고자 한다.

$$\mathcal{R}(h) \leq \hat{\mathcal{R}}_{\mathcal{S}}(h) + \sqrt{\frac{2d \log \frac{em}{d}}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}$$

- d ↑ m ↓ 일 때의 upper bound
- d ↓ m ↑ 일 때의 upper bound

Where, R_hat: training loss

- 본 실험 데이터
 - 모조 데이터로 실습
 - 모조 데이터의 dimensions과 samples의 개수를 조절할 수 있음
 - 모조 데이터의 경우 임의의 normal distribution 두개에서 sampling 하여 선별
 - 노란색 Target 1 / 보라색 Target 0

구현 1: 제공한 파일 내 작성

Implementation : 각 알고리즘 별 학습 방법

knn.py, decision_tree.py, logistic_regression.py 내 if __name__ == '__main__': 아래 작성 indentation 중요

kNN Training (1)

```
def knn_train(dimensions, train_count, test_count, iterations=10):
    # For evaluation
    BCE_list_train = []
    BCE_list_test = []
    for i in range(iterations):
        # File import
        train_x_data, train_y_data = create_toy_data(dimensions, train_count, test_count, add_outliers=True, training=True)
        test_x_data, test_y_data = create_toy_data(dimensions, train_count, test_count, add_outliers=True, training=False)
                                                                                                                               데이터
                                                                                                                                생성
        # Feature engineering
       X_train = train_x_data
       X_test = test_x_data
        # Model
        knn = kNN()
        # Training (Learning)
                                                                                                                                학습
        knn.fit(X_train, train_y_data)
                                                                                                                                   학습
        # Predicting a training set
                                                                                                                                  데이터
        y_hat_train = knn.predict(X_train)
                                                                                                                                  예측
                                                                                                                                Test
        # Predicting a test set
                                                                                                                               데이터
        y_hat_test = knn.predict(X_test)
```

kNN Training (2)

```
# Evaluating
                                                                                                                                  해당
   BCE_value_train = binary_cross_entropy(train_y_data, y_hat_train)
                                                                                                                                 iteration
   BCE_value_test = binary_cross_entropy(test_y_data, y_hat_test)
                                                                                                                                Loss 생성
   # Appending
                                                                                                                                    Loss
   BCE_list_train.append(BCE_value_train)
                                                                                                                                     저장
   BCE_list_test.append(BCE_value_test)
   # Plotting
   if dimensions == 2 and i == 0:
       x1_{test}, x2_{test} = np.meshgrid(np.linspace(-5, 15, 100), np.linspace(-5, 15, 100))
       X_test_plot = np.array([x1_test, x2_test]).reshape(2, -1).T
                                                                                                                                 Plotting
        # logistic regression
        y_hat_plot = knn.predict(X_test_plot)
        plot(train_x_data, train_y_data, test_x_data, test_y_data, x1_test, x2_test, y_hat_plot, "./Results/knn_result")
# average MSE
(average_BCE_train, BCE_std_train) = average_metric(BCE_list_train)
                                                                                                                                   평균
(average_BCE_test, BCE_std_test) = average_metric(BCE_list_test)
                                                                                                                                   Loss
return (average_BCE_train, BCE_std_train), (average_BCE_test, BCE_std_test)
```

■ 구현 (실습)

- kNN Training 실습 예제
 - 데이터 생성 : dimensions 2의 모조 데이터 생성
 - Training Set의 데이터 개수 : 60 개 / Test Set의 데이터 개수 : 25개

```
if __name__ == "__main__":
    # For evaluation
    dimensions = 2
    train_count = 60
    test_count = 25

# training
    model_train_result, model_test_result = knn_train(dimensions, train_count, test_count, 10)
```


Decision Tree Training (1)

```
def decision_tree_train(dimensions, train_count, test_count, iterations=10):
   # Set Hyperparameters
   max_depth = 5
   min_size = 10
   # For evaluation
   BCE_list_train = []
   BCE_list_test = []
   Terminal_count_list = []
   for i in range(iterations):
       # File import
       train_x_data, train_y_data = create_toy_data(dimensions, train_count, test_count, add_outliers=True, training=True)
       test_x_data, test_y_data = create_toy_data(dimensions, train_count, test_count, add_outliers=True, training=False)
       # Feature engineering
       X_train = train_x_data
       X_test = test_x_data
       # Model
                                                                                                                                    모델
       decision_tree = Decision_tree()
                                                                                                                                    생성
       # combine the features and targets
       train_y_data_tree = train_y_data[:, None]
       Tree_input = np.hstack((X_train, train_y_data_tree))
       # Training (Learning)
                                                                                                                                 학습
       tree, terminal_count = decision_tree.build_tree(Tree_input, max_depth, min_size, np.shape(Tree_input)[1]-1)
       # Predicting a training set
       y_hat_train = decision_tree.predicts(tree, X_train)
                                                                                                                                  훈련 / 테스트
                                                                                                                                     데이터
       # Predicting a test set
       y_hat_test = decision_tree.predicts(tree, X_test)
```

Decision Tree Training (2)

```
# Evaluating
   BCE_value_train = binary_cross_entropy(train_y_data, y_hat_train)
                                                                                                                                          해당
   BCE value test = binary cross entropy(test y data, y hat test)
                                                                                                                                        iteration
                                                                                                                                        Loss 생성
    # Appending
    BCE_list_train.append(BCE_value_train)
                                                                                                                                            Loss
   BCE_list_test.append(BCE_value_test)
                                                                                                                                            저장
    Terminal_count_list.append(terminal_count)
    # Plotting
    if dimensions == 2 and i == 0:
        x1_{test}, x2_{test} = np.meshgrid(np.linspace(-5, 15, 100), np.linspace(-5, 15, 100))
        X_{\text{test_plot}} = \text{np.array}([x1_{\text{test}}, x2_{\text{test}}]).\text{reshape}(2, -1).T
                                                                                                                                        Plotting
        # logistic regression
        y_hat_plot = decision_tree.predicts(tree, X_test_plot)
        plot(train_x_data, train_y_data, test_x_data, test_y_data, x1_test, x2_test, y_hat_plot, "./Results/tree_result")
# average MSE
(average_BCE_train, BCE_std_train) = average_metric(BCE_list_train)
                                                                                                                                          평균
(average_BCE_test, BCE_std_test) = average_metric(BCE_list_test)
                                                                                                                                           Loss
average_terminal_count = np.average(Terminal_count_list)
```

■ 구현 (실습)

- Decision Tree Training 실습 예제
 - 데이터 생성 : dimensions 2의 모조 데이터 생성
 - Training Set의 데이터 개수 : 60 개 / Test Set의 데이터 개수 : 25개

```
if __name__ == "__main__":
    # For evaluation
    dimensions = 2
    train_count = 60
    test_count = 25

model_train_result, model_test_result, average_terminal_count = decision_tree_train(dimensions, train_count, test_count, 10)
```


Logistic Regression Training (1)

```
def logistic_regression_train(dimensions, train_count, test_count, iterations=10):
   # For evaluation
   BCE_list_train = []
   BCE_list_test = []
    for i in range(iterations):
       # File import
       train_x_data, train_y_data = create_toy_data(dimensions, train_count, test_count, add_outliers=True, training=True)
       test_x_data, test_y_data = create_toy_data(dimensions, train_count, test_count, add_outliers=True, training=False)
       # Feature engineering
       X_train = train_x_data
       X_test = test_x_data
       # Model
        logistic_regression = LogisticRegression()
       # Training (Learning)
                                                                                                                                   학습
        logistic_regression.fit(X_train, train_y_data)
                                                                                                                                     학습
       # Predicting a training set
                                                                                                                                     데이터
       y_hat_train = logistic_regression.classify(X_train)
                                                                                                                                   Test
       # Predicting a test set
                                                                                                                                  데이터
       y_hat_test = logistic_regression.classify(X_test)
```

• kNN Training (2)

```
# Evaluating
    BCE_value_train = binary_cross_entropy(train_y_data, y_hat_train)
                                                                                                                                             해당
    BCE_value_test = binary_cross_entropy(test_y_data, y_hat_test)
                                                                                                                                           iteration
                                                                                                                                           Loss 생성
    # Appending
    BCE_list_train.append(BCE_value_train)
                                                                                                                                               Loss
                                                                                                                                               저장
    BCE_list_test.append(BCE_value_test)
    # Plotting
    if dimensions == 2 and i == 0:
        x1_{test}, x2_{test} = np.meshgrid(np.linspace(-5, 15, 100), np.linspace(-5, 15, 100))
        X_{\text{test_plot}} = \text{np.array}([x1_{\text{test}}, x2_{\text{test}}]).\text{reshape}(2, -1).T
                                                                                                                                           Plotting
        # logistic regression
        y_hat_plot = logistic_regression.classify(X_test_plot)
        plot(train_x_data, train_y_data, test_x_data, test_y_data, x1_test, x2_test, y_hat_plot, "./Results/logits_result")
# average MSE
(average_BCE_train, BCE_std_train) = average_metric(BCE_list_train)
                                                                                                                                             Loss
(average_BCE_test, BCE_std_test) = average_metric(BCE_list_test)
return (average_BCE_train, BCE_std_train), (average_BCE_test, BCE_std_test)
```

- Logistic Regression Training 실습 예제
 - 데이터 생성 : dimensions 2의 모조 데이터 생성
 - Training Set의 데이터 개수 : 60 개 / Test Set의 데이터 개수 : 25개

```
if __name__ == "__main__":
    # For evaluation
    dimensions = 2
    train_count = 60
    test_count = 25

# Training
    model_train_result, model_test_result = logistic_regression_train(dimensions, train_count, test_count, 10)
```


구현 2 : main.py 생성

VC-Dimension Generalization Bounds

Dimension / Sample 수에 따른 Train, Test set에 따른 loss와 Bound 비교

- VC Dimension 함수 작성
 - Arguments : train_loss, vc_dim, sample_count, failure_rate

$$\mathcal{R}(h) \leq \hat{\mathcal{R}}_S(h) + \sqrt{\frac{2d\log\frac{em}{d}}{m}} + \sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$

$$\frac{\text{Generalization}}{\text{loss}} \approx \text{Test Set Loss}$$
Upper Bound

```
def vc_dimension_upper_bound(train_loss, vc_dim, sample_count, failure_rate):
    upper_bound = train_loss \
        + np.sqrt((2*vc_dim*np.log((np.exp(1) * sample_count) / vc_dim)) / sample_count) \
        + np.sqrt(np.log(1/failure_rate) /(2 *sample_count))
    return upper_bound
```

- Main 함수 작성 (1)
 - Containers 만들기

```
if __name__ == "__main__":
    # failtuer_rate
                                                                         Failure_rate
    failure_rate = .05
                                                                           설정
    # Index
    dimension_list = []
    train_count_list = []
    # Train loss list
    logistic_regression_loss_train = []
    knn_loss_train = []
    decision_tree_loss_train = []
                                                                                각 모델 별
    # loss Upper bound list
                                                                                train loss,
    logistic_regression_upper = []
                                                                               upper bound,
    knn_loss_upper = []
                                                                                 test loss
    decision_tree_loss_upper = []
                                                                            담을 containers 생성
    # Test loss list
    logistic_regression_loss_test = []
    knn_loss_test = []
    decision_tree_loss_test = []
```

- Main 함수 작성 (2)
 - Dimensions / Sample Count를 변경해가며 실험 수행

- Main 함수 작성 (2)
 - 결과값 저장

```
# Append
dimension_list.append(dimensions)
train_count_list.append(train_count)
# logistic
logistic_regression_loss_train.append(train_result_logistic[0])
logistic_regression_upper.append(upper_bound_logistic)
logistic_regression_loss_test.append(test_result_logistic[0])
# knn
knn_loss_train.append(train_result_knn[0])
knn_loss_upper.append(upper_bound_knn)
knn_loss_test.append(test_result_knn[0])
# tree
decision_tree_loss_train.append(train_result_tree[0])
decision_tree_loss_upper.append(upper_bound_tree)
decision tree loss test.append(test_result_tree[0])
```

- Main 함수 작성 (2)
 - Pandas DataFrame을 활용하여 table 형태로 살펴보기

```
# Make a dataframe
result_data = [dimension_list, train_count_list, \
    logistic_regression_loss_train, logistic_regression_upper, logistic_regression_loss_test, \
   knn_loss_train, knn_loss_upper, knn_loss_test,\
   decision tree loss train, decision tree loss upper, decision tree loss test]
result data = np.array(result data)
result_data = result_data.T
result column name = ["dimensions", "train count",\
   "logistic_train_loss", "logistic_upper_bound", "logistic_test_loss", \
   "knn_train_loss", "knn_upper_bound", "knn_test_loss",\
   "tree train loss", "tree upper bound", "tree test loss"]
result_DF = pd.DataFrame(result_data, columns=result_column_name)
```

결과

VC dim for kNN, decision tree and logistic regression

■ 구현 (실습)

• 결과 확인

Index 0	dimensions 1	train_count 10		ogistic_upper_boun 5.371	logistic_test_loss 3.627	knn_train_loss 0.000	knn_upper_bound 1.801	knn_test_loss	tree_train_loss 2.821	tree_upper_bound 1.618	tree_test_loss 4.768
1	1	30		5.371	4.074	0.000	1.638	5.306 5.731	2.821	1.400	4.768
2	1	50	4.074	4.904	4.513	0.000	1.587	5.373	3.197	1.400	5.091
3	1	70	4.125	4.782	3.962	0.000	1.560	5.497	2.821	1.202	4.519
4	1	90		4.666	4.164	0.000	1.543	5.276	2.992	1.142	4.888
5	2	10		4.626	3.492	0.000	1.801	4.835	1.477	1.632	4.164
6	2	30		3.812	3.224	0.000	1.638	4.768	1.500	1.421	4.298
7	2	50	3.371	4.221	3.250	0.000	1.587	4.150	1.558	1.323	4.285
8	2	70		4.072	3.416	0.000	1.560	4.404	2.044	1.226	4.576
9	2	90	3.612	4.282	3.865	0.000	1.543	4.112	2.045	1.169	3.947
10	3	10	1.746	3.371	3.895	0.000	1.801	4.701	1.276	1.610	3.694
11	3	30	2.328	3.448	2.507	0.000	1.638	3.336	1.500	1.390	3.649
12	3	50	2.659	3.584	2.404	0.000	1.587	3.559	1.477	1.304	3.707
13	3	70		3.516	2.696	0.000	1.560	3.607	1.468	1.228	3.531
14	3	90	3.059	3.793	2.642	0.000	1.543	3.641	1.627	1.123	3.462
15	4	10		2.897	2.552	0.000	1.801	3.425	1.209	1.646	4.634
16	4	30	2.485	3.673	2.127	0.000	1.638	3.246	1.231	1.409	3.268
17	4	50	1.921	2.907	2.257	0.000	1.587	3.439	1.128	1.265	3.304
18	4	70		3.045	2.226	0.000	1.560	3.243	1.123	1.202	3.185
19	4	90	2.485	3.271	2.313	0.000	1.543	3.395	1.224	1.145	3.156
20	5	10		2.808	2.351	0.000	1.801	2.619	0.672	1.625	4.500
21	5	30	1.589	2.835	1.858	0.000	1.638	3.022	1.231	1.373	3.962
22	5	50		2.449	1.813	0.000	1.587	2.592	1.142	1.280	3.747
23	5	70 90	1.641 1.672	2.557 2.504	2.015 2.216	0.000	1.560 1.543	3.195 2.940	1.007 1.172	1.181	3.454
25	6	10		2.302	2.418	0.000	1.801	3.224	0.470	1.112 1.665	3.149 3.694
26	6	30	1.343	2.637	1.769	0.000	1.638	2.888	0.895	1.409	3.224
27	6	50		2.508	1.854	0.000	1.587	2.565	0.833	1.292	3.197
28	6	70	1.334	2.293	1.727	0.000	1.560	2.226	0.892	1.212	3.252
29	6	90	1.485	2.357	1.716	0.000	1.543	2.433	1.007	1.135	3.067
30	7	10		1.920	2.149	0.000	1,801	2.686	0.537	1.659	4.164
31	7	30	0.918	2.254	1.477	0.000	1.638	1.948	0.784	1.406	3.671
32	7	50		2.133	1.276	0.000	1.587	2.001	0.860	1.265	3.318
33	7	70	1.190	2.187	1.650	0.000	1.560	2.351	0.739	1.177	3.022
34	7	90	1.037	1.946	1.515	0.000	1.543	2.179	0.709	1.127	3.209
35	8	10	0.201	1.999	1.880	0.000	1.801	2.216	0.269	1.625	4.231
36	8	30	0.582	1.955	1.388	0.000	1.638	1.970	0.761	1.415	3.783
37	8	50	0.712	1.874	1.545	0.000	1.587	2.109	0.833	1.247	3.318
38	8	70	0.835	1.867	1.353	0.000	1.560	2.149	0.758	1.163	3.214
39	8	90	0.992	1.934	1.463	0.000	1.543	1.963	0.739	1.108	2.985
40	9	10		1.868	1.075	0.000	1.801	1.746	0.403	1.602	4.164
41	9			1.675	1.276	0.000	1.638	2.216	0.560	1.433	3.156
42	9	50	0.497	1.692	1.249	0.000	1.587	1.625	0.712	1.263	3.331
43	9	70		1.860	1.142	0.000	1.560	1.928	0.662	1.163	3.147
44	9	90	0.806	1.778	1.134	0.000	1.543	1.686	0.649	1.098	3.045

문제

VC dim for kNN, decision tree and logistic regression

Reports

- 1. Test loss와 upper bound간의 비교를 진행해보자
 - 각 모델 별 Dimensions과 Sample Count에 따라 서술하라. (무엇에 더 민감할까?)
- 2. Logistic Regression의 경우 Upper Bound보다 Test loss가 작았다. 이유가 무엇일까?
- 3. kNN같은 경우 Overfit이 발생함을 알 수 있다. 이유가 무엇일까?
- 4. Decision Tree는 어떤 이유 때문에 Test Loss가 줄어들지 않는 것일까?

❖ Bonus

• 각 모델별 Test Loss와 Upper Bound를 비교할 수 있는 Plot을 작성해보자.

■ 끝나기 전에!

conda env list

가상 환경 목록 확인해 주신 뒤에,

conda env remove -n samsung_bias

conda env remove -n samsung_day1

samsung_bias와 samsung_day1 가상 환경 두 개 지워 주시면 됩니다!

rm -r samsung_ds_tutorial

rm -r VC_Dim

오늘 진행한 수업자료 삭제하시면 됩니다

- 1. 황성주 (2019), [AI501] Introduction of Machine Learning 교안
- 2. C. Bishop (2007), Pattern recognition and machine learning
- 3. M. Mohri, A. Rostamizadeh and A. Talwalkar (2012), Foundations of Machine learning 2nd