โครงงานเลขที่ วศ.คพ. P810-2/2565

เรื่อง

การคุ้มครองความเป็นส่วนตัวของไอโอทีจากผู้สังเกตการณ์เครือข่ายแบบพาสซีฟ

โดย

นายไตรภพ ศรีมณี 620610788

นายวราดร ศิริพันธุ์ 620612163

โครงงานนี้
เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตร์บัณฑิต
ภาควิชาวิศวกรรมคอมพิวเตอร์
คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่
ปีการศึกษา 2565

PROJECT No. CPE S810-1/65

IoT Privacy Protection against Passive Network Observer

Traiphob Srimanee 620610788

Waradorn Siripunt 620612163

A Project Submitted in Partial Fulfillment of Requirements

for the Degree of Bachelor of Engineering

Department of Computer Engineering

Faculty of Engineering

Chiang Mai University

2022

หัวข้อโครงงาน	: การคุ้มครองความเป็นส่วนตัวของไอโอทีจากผู้สังเกตการณ์เครือข่ายแบบพาสซีฟ
	: IoT Privacy Protection against Passive Network Observer
โดย	: นายไตรภพ ศรีมณี รหัส 620610788
	นายวราดร ศิริพันธุ์ รหัส 620612163
ภาควิชา	: วิศวกรรมคอมพิวเตอร์
อาจารย์ที่ปรึกษา	: ผศ.ดร.กำพล วรดิษฐ์
ปริญญา	: วิศวกรรมศาสตร์บัณฑิต
สาขา	: วิศวกรรมคอมพิวเตอร์
ปีการศึกษา	: 2565
	หัวหน้าภาควิชาวิศวกรรมคอมพิวเตอร์ รันติ พิทักษ์กิจนุกูร)
คณะกรรมการสอ	บโครงงาน
	ประธานกรรมการ
	(ผศ.ดร.กำพล วรดิษฐ์)
	กรรมการ
	(อ.คร.ณัฐนันท์ พรหมสุข)
	กรรมการ

(ผศ.ดร.ยุทธพงษ์ สมจิต)

หัวข้อโครงงาน : การคุ้มครองความเป็นส่วนตัวของไอโอทีจากผู้สังเกตการณ์เครือข่ายแบบพาสซีฟ

: IoT Privacy Protection against Passive Network Observer

โดย : นายไตรภพ ศรีมณี รหัส 620610788

นายวราดร ศิริพันธุ์ รหัส 620612163

ภาควิชา : วิศวกรรมคอมพิวเตอร์

อาจารย์ที่ปรึกษา : ผศ.ดร.กำพล วรดิษฐ์

ปริญญา : วิศวกรรมศาสตร์บัณฑิต

สาขา : วิศวกรรมคอมพิวเตอร์

ปีการศึกษา : 2565

บทคัดย่อ

โครงการนี้มุ่งเน้นในการพัฒนาระบบที่ช่วยป้องกันความเป็นส่วนตัวของผู้ใช้อุปกรณ์ไอโอที โดยการใช้ Raspberry Pi ในการบันทึกข้อมูลและส่งข้อมูลไปยังเซิร์ฟเวอร์ที่มีการอำพรางข้อมูลด้วย Better Efficiency Traffic Padding (BeTP) และการคัดกรองข้อมูลทราฟฟิกจริง โดยโปรแกรมที่พัฒนาขึ้นจะมีสองส่วน คือ ส่วน ภายใน (Internal Module) และส่วนภายนอก (External Module) เพื่อเพิ่มความปลอดภัยในการใช้งาน โดย มีผลกระทบทั้งด้านสังคม สุขภาพ ความปลอดภัย กฎหมาย และวัฒนธรรม โดยผู้ใช้งานจะได้รับความ สะดวกสบายในการใช้งานอุปกรณ์ไอโอทีอย่างปลอดภัยและเป็นส่วนตัว โครงการนี้เป็นการนำเสนอแนวคิด ใหม่ๆในการป้องกันความเป็นส่วนตัวของผู้ใช้งานอุปกรณ์ไอโอที และอาจเป็นแนวทางในการพัฒนาระบบ ความปลอดภัยสำหรับอุปกรณ์ไอโอทีในอนาคต

Project Title : IoT Privacy Protection against Passive Network Observer

Name : Traiphob Srimanee 620610788

Warardorn Siripunt 620612163

Project Title : IoT Privacy Protection against Passive Network Observer

Department : Computer Engineering

Project Advisor : Asst. Prof. Kampol Woradit, Ph.D.

Degree : Bachelor of Engineering

Academic Year : 2022

ABSTRACT

This project aims to develop a system that helps protect the privacy of users of IoT devices. The system uses a Raspberry Pi to record and send data to a server that applies Better Efficiency Traffic Padding (BeTP) to obfuscate the data during transit, as well as filter out any fake traffic. The program is divided into two modules: the Internal Module and External Module, which increase security when using the IoT device.

The impact of this project is wide-ranging, affecting social, health, legal, and cultural aspects. Users will benefit from the convenience of using their IoT device with privacy and security assured. This project represents a new approach to protecting user privacy on IoT devices and may serve as a blueprint for future security systems for IoT devices.

This project represents a significant step towards the development of secure and private IoT devices, and it is hoped that it will inspire further research and development in this area.

กิตติกรรมประกาศ

โครงการพัฒนาโปรแกรมเพื่องานการพัฒนาด้านวิทยาศาสตร์และเทคโนโลยี "การคุ้มครองความเป็น ส่วนตัวของไอโอทีจากผู้สังเกตการณ์เครือข่ายแบบพาสซีฟ" โครงงานเลขที่ วศ.คพ. P810-2/2565 จะไม่ สามารถประสบความสำเร็จได้โดยที่ไม่ได้รับความกรุณาจากอาจารย์ที่ปรึกษาโครงการ ผศ.ดร.กำพล วรดิษฐ์ พร้อมทั้ง ผศ.ดร.ยุทธพงษ์ สมจิต และ อ.ดร.ณัฐนันท์ พรหมสุข ผู้ที่มีประสบกรณ์และความรู้ในการดูแลและ สนับสนุนโครงการ ขอขอบคุณสำหรับคำแนะนำ ความรู้ และความช่วยเหลือ ที่จำเป็นต่อการดำเนินโครงการ

ขอขอบคุณภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่มอบ โอกาสให้ใช้สถานที่ในการทำงานให้กับผู้พัฒนา พร้อมทั้งทุนสนับสนุน

ท้ายที่สุด ขอขอบคุณเพื่อน/เพื่อนร่วมงานทุกคน สำหรับความช่วยเหลือ ความร่วมมือ ร่วมแรงร่วมใจ ความเสียสละ ความอดทนที่มีให้กัน และกันโดยเสมอมา

> นายไตรภพ ศรีมณี คณะผู้พัฒนา นายวราดร ศิริพันธุ์ คณะผู้พัฒนา 19 มีนาคม 2566

สารบัญ

บทคัดย่อ	ข
ABSTRACT	ค
กิตติกรรมประกาศ	
สารบัญ	จ
บทที่ 1 บทนำ	1
1.1 ที่มาของโครงงาน	1
1.2 วัตถุประสงค์ของโครงงาน	1
1.3 เป้าหมาย และขอบเขตโครงการ	1
1.4 ขอบเขตโครงการ	1
1.4.1 ขอบเขตด้านฮาร์ดแวร์	2
1.4.2 ขอบเขตด้านซอฟต์แวร์	2
1.5 ประโยชน์ที่ได้รับ	
1.6 เทคโนโลยี และเครื่องมือที่ใช้	2
1.6.1 เทคโนโลยีด้านฮาร์ดแวร์	2
1.6.2 เทคโนโลยีด้านซอฟต์แวร์	3
1.7 แผนการดำเนินงาน	4
1.8 บทบาทและความรับผิดชอบ	4
1.9 ผลกระทบทางด้านสังคม สุขภาพ ความปลอดภัย กฎหมาย และวัฒนธรรม	5
บทที่ 2 ทฤษฎีที่เกี่ยวข้อง	6
2.1 การบันทึกทราฟฟิกเก่าของอุปกรณ์ไอโอที	6
2.2 การคัดกรองทราฟฟิกจริงออกจากทราฟฟิกปลอม	6
2.3 เซิร์ฟเวอร์ให้บริการไอโอที	6
2.4 ราสเบอร์รี่พาย	7
2.5 ฟังก์ชันแฮช	7

2.6 การเข้ารหัสแบบเอ็มดี 5	7
2.7 Hyper Text Transfer Protocol: HTTP และ Hypertext Transfer Protoc	col: HTTPS
	7
2.8 ดีเอ็นเอส	8
2.9 เว็บเซิร์ฟเวอร์	9
2.10 โปรโตคอลอินเทอร์เน็ต	9
2.11 Stochastic Traffic Padding (STP)	9
2.12 ความมั่นใจของผู้สังเกตการณ์	10
2.13 การใช้แบนด์วิดท์	10
2.14 การแลกเปลี่ยนความมั่นใจของผู้สังเกตการณ์ต่อแบนด์วิดท์	11
2.15 ความแตกต่างระหว่างอุปกรณ์เครือข่าย และไอโอที	11
2.16 การจำแนกอุปกรณ์แต่ละตัวในเครือข่ายด้วยชื่อโดเมน (Domain name) .	12
2.17 การแจกแจงเอกรูป (Uniform Distribution)	12
2.18 การแจกแจงแบบเอ็กซ์โพเนนเชียล (Exponential Distribution)	12
2.19 การแจกแจงแบบปัวส์ซอง (Poisson Distribution)	13
2.20 โปรแกรม Wireshark	13
บทที่ 3 วิธีการดำเนินการ	14
3.1 โครงสร้างของระบบ	14
3.2 มอดูลภายใน	14
3.3 มอดูลภายนอก	15
3.4 การอนุมานทราฟิกของผู้บุกรุก	15
3.5 BeTP	15
3.6 การสร้างคีย์สำหรับคัดกรองแพ็กเก็ตในเครือข่ายของเซิรฟเวอร์ตรวจสอบ	16
3.7 การตัดสินใจในการส่งแพ็กเก็ตปลอม และจริงในระบบเครือข่าย	16
3.8 กลุ่มผู้ใช้โปรแกรม	16

3.12 การใช้โปรแกรม Wireshark ในการอ่านผลลัพธ์	16
บทที่ 4 การทดลอง และผลลัพธ์	17
4.1 ปริมาณทราฟิกการใช้สวิตช์หลอดไฟฟ้าอัจฉริยะ	17
4.2 ปริมาณทราฟฟิกของการตรวจจับการเคลื่อนไหวของบุคคล	18
4.3 ปริมาณทราฟฟิกจากเครื่องวัดอุณหภูมิอัจฉริยะ	18
4.4 การส่งแพ็กเก็ตปลอมจากเราต์เตอร์ผู้ใช้	19
4.5 ทราฟฟิกต่าง ๆ ขอไอโอทีของผู้ใช้ที่แยกจากอุกปกรณ์ต้นทาง	20
4.6 ทราฟฟิกของไอโอทีของผู้ใช้ที่แยกจากอุกปกรณ์ต้นทางจากมุมมองจากผู้สังเก	าตการณ์ 20
.i	
บทที่ 5 บทสรุป และข้อเสนอแนะ	22
บทที่ 5 บทสรุป และข้อเสนอแนะ 5.1 สรุปผล	
·	22
ร.1 สรุปผล	22
ร.1 สรุปผล 5.2 ปัญหาที่พบและแนวทางการแก้ไขปัญหา	22
5.1 สรุปผล 5.2 ปัญหาที่พบและแนวทางการแก้ไขปัญหา 5.3 ข้อเสนอแนะและแนวทาการพัฒนาต่อ	22 22 23
5.1 สรุปผล	222324

บทที่ 1

บทน้ำ

1.1 ที่มาของโครงงาน

สืบเนื่องจากอุปกรณ์ Internet of Things หรือ IoT มีการใช้งานแพร่หลายมากในปัจจุบัน สามารถใช้ ประโยชน์และเพิ่มความสะดวกสบายในครัวเรือนและภาคอุตสาหกรรม ในขณะเดียวกันอุปกรณ์เหล่านี้ยังมี จุดอ่อนที่ทำให้สามารถเข้าถึงข้อมูลส่วนตัวรวมไปถึงพฤติกรรมของผู้ใช้ผ่านการดักจับการรับส่งข้อมูลของ อุปกรณ์ใอโอทีเช่นอุปกรณ์ตรวจจับการนอนที่สามารถอนุมานได้ว่าผู้ใช้ทำอะไรอยู่เช่น นอน ตื่น หรือ ตื่นมาทำ กิจกรรมชั่วคราวเป็นต้น โดยการอำพรางแบบวิธีเดิม เช่น Firewall, VPN หรือ Independent Traffic Padding ยังคงมีปัญหาเนื่องจาก อุปกรณ์ใอโอทีส่วนใหญ่ติดต่อกับเชิร์ฟเวอร์เดียวหรือจำนวนน้อยมากเมื่อ เทียบกับเครือข่ายอื่นๆที่มีหลายเชิร์ฟเวอร์รองรับ ทำให้ผู้สังเกตการณ์รวมถึงผู้ให้บริการอินเตอร์เน็ตสามารถ ทราบถึงชนิดอุปกรณ์และทราฟฟิกที่ผ่านไปมาในเครือข่าย นำพาไปสู่การอนุมานกิจกรรมที่แท้จริงอย่างสังเขป ของผู้ใช้เป้าหมายดังที่กล่าวมาข้างต้น ส่งผลให้ผู้ใช้ไม่ได้รับความเป็นส่วนตัวหรือเป็นช่องทางที่ก่อให้เกิด อาชญากรรมได้ โดยโครงงานนี้มุ่งเน้นที่จะปรับปรุงจุดอ่อนของวิธีการอำพรางทราฟฟิกแบบเดิม โดยจะหาทาง ลดอัตราการเดาทราฟฟิคจริงถูกให้น้อยลงมากที่สุด ด้วยวิธีการลดการใช้แบนด์วิดท์ในเครือข่ายน้อยที่สุดด้วย

1.2 วัตถุประสงค์ของโครงงาน

- 1. เพื่อเสริมสร้างความเป็นส่วนตัวและความไว้วางใจจากผู้ใช้ในอุปกรณ์ไอโอที
- 2. เพื่อทำให้บุคคลที่สามไม่สามารถอนุมานพฤติกรรมผู้ใช้ได้จากการรับส่งข้อมูลในเครือข่าย
- 3. เพื่อส่งเสริมการพัฒนาและค้นคว้าระบบการป้องกันจากการถูกตรวจจับจากผู้ดักจับสัญญาณของ แพ็กเก็ตไลโลที

1.3 เป้าหมาย และขอบเขตโครงการ

เป้าหมายของโครงการนี้คือการพัฒนาแอปพลิเคชัน POC (Proof of Concept) ที่มีวัตถุประสงค์เพื่อ สร้างโมเดลการป้องกันการดักจับข้อมูล (Data Exfiltration Prevention) ในระบบไอโอที โดยให้แน่ใจว่าผู้ โจมตีจะไม่สามารถเข้าถึงเนื้อหาของแพคเก็ต แต่สามารถสังเกตเห็นปริมาณการส่งข้อมูลเท่านั้น การสื่อสารใน ระบบนี้ถูกสมมติว่าเป็น HTTPS และสามารถปกปิดการส่งข้อมูลของผู้ใช้ไอโอที ทั้งนี้เพื่อป้องกันการละเมิด ความเป็นส่วนตัวของผู้ใช้งาน

1.4 ขอบเขตโครงการ:

- 1. พัฒนาแอปพลิเคชัน POC สำหรับป้องกันการดักจับข้อมูลในระบบไอโอที
- 2. การสื่อสารระหว่างอุปกรณ์ใอโอทีและเซิร์ฟเวอร์ IoT service server จะต้องเป็น HTTPS

- 3. สามารถปกปิดการส่งข้อมูลของผู้ใช้ไอโอที โดยมีการคัดกรองและถอดรหัสทราฟฟิกอำพรางที่ ปลายทางของเซิร์ฟเวอร์ดีเอ็นเอส
- 4. การป้องกันจะเน้นไปที่การซ่อนปริมาณการส่งข้อมูลและป้องกันการเข้าถึงเนื้อหาของแพค-เก็ต
- 5. ประเมินผลและวิเคราะห์ประสิทธิภาพของแอปพลิเคชัน POC ในการป้องกันการดักจับข้อมูล

1.4.1 ขอบเขตด้านฮาร์ดแวร์

- 1. อุปกรณ์ไอโอทีสามารถเชื่อมต่อเครือข่ายได้ทั้งเครือข่ายไร้สายหรือใช้สาย
- 2. เซิร์ฟเวอร์ตรวจสอบจะมีตัวถอดรหัสและคัดกรองทราฟฟิกอำพรางออกจากทราฟฟิกจริง
- 3. แบนด์วิดท์สำหรับสื่อสารระหว่างอุปกรณ์ไอโอทีและเซิร์ฟเวอร์

1.4.2 ขอบเขตด้านซอฟต์แวร์

- 1. การเก็บทราฟฟิกระหว่างอุปกรณ์ใอโอทีกับเซิร์ฟเวอร์จะถูกเก็บไว้บน IoT traffic database
- 2. การอำพรางทราฟฟิกของไอโอทีจะจัดการบนเราเตอร์เฉพาะของไอโอทีด้วยโปรแกรมเฉพาะ
- 3. มีโปรแกรมการถอดรหัสและคัดกรองทราฟฟิกที่อำพรางจากทราฟฟิกจริง ทำให้เซิร์ฟเวอร์ IoT service server สามารถรับและประมวลผลข้อมูลที่ถูกต้องได้

1.5 ประโยชน์ที่ได้รับ

อุปกรณ์ไอโอที่ในปัจจุบันติดต่อรับส่งข้อมูลต่างๆผ่านเซิร์ฟเวอร์ผู้ให้บริการอุปกรณ์จำนวนน้อยมาก จึงทำให้ผู้สังเกตการณ์สามารถอนุมานพฤติกรรมผู้ใช้ในเวลาต่างๆจากข้อมูลทราฟฟิกที่เข้าออกได้ ดังนั้น โครงการนี้จึงต้องการพัฒนาการรักษาความเป็นส่วนตัวของผู้ใช้อุปกรณ์ดังกล่าว โดยลดอัตราการคาดเดาจากผู้ สังเกตการณ์ให้น้อยที่สุด เพื่อให้ผู้ใช้สามารถรักษาความเป็นส่วนตัว ปกป้องข้อมูลที่สำคัญได้มากขึ้น เมื่อผู้ สังเกตการณ์ไม่สามารถอนุมานพฤติกรรมของอุปกรณ์เป้าหมายได้อย่างแม่นยำจะสามารถลดการเกิด อาชญากรรมที่อาจเกิดขึ้นในอนาคตได้

1.6 เทคโนโลยี และเครื่องมือที่ใช้

1.6.1 เทคโนโลยีด้านฮาร์ดแวร์

อุปกรณ์ Raspberry Pi 3 Model B: คอมพิวเตอร์บอร์ดขนาดเล็กใช้สำหรับการพัฒนา และทดสอบ

- 1. อุปกรณ์เซนเซอร์ไอโอที เซ็นเซอร์สวิตช์ไฟ
- 2. อุปกรณ์เซนเซอร์ไอโอที เซ็นเซอร์ตรวจจับการเคลื่อนไหว

- 3. อุปกรณ์เซนเซอร์ไอโอที ตัววัดอุณหภูมิ
- 4. เซิร์ฟเวอร์ตรวจสอบ: ใช้สำหรับตรวจสอบคีย์สำหรับการถอดรหัสและคัดกรองทราฟฟิก
- 5. เซิร์ฟเวอร์ผู้ให้บริการของอุปกรณ์ไอโอที: ใช้สำหรับจัดการข้อมูลและบริการต่าง ๆ ของ อุปกรณ์ไอโอที

1.6.2 เทคโนโลยีด้านซอฟต์แวร์

- 1. Python: ภาษาหลักที่ใช้ในโครงการ สำหรับอำพรางทราฟฟิก จัดเก็บ และคัดกรองทราฟฟิก ของไอโอที
- 2. JSON (JavaScript Object Notation): รูปแบบข้อมูลที่ใช้ในการแลกเปลี่ยนข้อมูลระหว่าง เว็บไซต์
- 3. Visual Studio Code: เป็นโปรแกรมแก้ไข และพัฒนาโค้ด
- 4. Google Colab: เครื่องมือที่ให้บริการบนเว็บบราวเซอร์ และเป็นเหมือนโปรแกรม Jupyter Notebook ที่มีความสามารถในการแบ่งปันโค้ดได้ง่าย และสะดวก
- 5. RestfulAPI: เทคโนโลยีในการสร้าง API (Application Programming Interface) สำหรับ การสื่อสารระหว่างแอปพลิเคชันหรือระบบ
- 6. Wireshark: ใช้ในการตรวจสอบแพ็กเก็ต และจับแพ็กเก็ตข้อมูลที่ถูกส่งผ่านเครือข่าย (Traffic) ของเครือข่ายไอโอที และแสดงผลลัพธ์

1.7 แผนการดำเนินงาน

a a	2565							2566		
ขั้นตอนการ ดำเนินงาน	มิถุนายน	กรกฎาคม	สิงหาคม	ก้นยายน	ตุลาคม	พฤศจิกายน	ธ์นวาคม	มกราคม	กุมภาพันธ์	มีนาคม
ศึกษางานวิจัย										
Stochastic Traffic										
Padding										
ทดลองการอำพราง										
ด้วยStochastic										
Traffic Padding										
ศึกษาการส่งแพ็ก										
เก็ตแบบมี Label										
(Key)										
ออกแบบระบบ										
พัฒนาโปรแกรมอำ										
พรางทราฟฟิก										
ทดสอบระบบ										
ประเมินและ										
ตรวจสอบปัญหาที่										
พบ										
เขียนรายงาน										
สรุปผลการทำงาน										

1.8 บทบาทและความรับผิดชอบ

การค้นคว้าวิธีการอำพราง ระบบ และทฤษฎีต่างๆ เช่น การใช้ Better Efficient Traffic Padding, Stochastic Traffic Padding, Network Security, Network Model, ศาสตร์ ที่ เกี่ยวข้องกับ Network Traffic โดยทั้งหมดผู้จัดทำจะรับผิดชอบร่วมกัน

1.9 ผลกระทบทางด้านสังคม สุขภาพ ความปลอดภัย กฎหมาย และวัฒนธรรม

วิธีการป้องกันความเป็นส่วนตัวส่งผลให้ลดอาชญากรรมอย่างมีนัยยะสำคัญเนื่องจากผู้สังเกตการณ์ไม่ สามารถอนุมานพฤติกรรมผู้ใช้ได้ถูกต้อง และการโจรกรรมข้อมูลสำคัญที่อาจเกิดขึ้น ส่วนการเข้าถึงข้อมูล หรือทราฟฟิกจริง มีเฉพาะเพียงผู้ใช้และผู้ให้บริการไอโอทีเมื่อมีการขอหรือเข้าถึงข้อมูล จะต้องได้รับการ อนุญาตจากผู้ให้บริการและผู้ใช้อุปกรณ์ เพื่อป้องกันการนำไปใช้ในทางที่ผิด และป้องกันความเป็นส่วนตัวของ ผู้ใช้

บทที่ 2 ทฤษฎีที่เกี่ยวข้อง

การจัดทำโครงการนี้เป็นการศึกษาค้นคว้าทฤษฎีที่เกี่ยวข้องของโครงการที่เคยมีผู้นำเสนอไว้แล้วซึ่ง โครงการนี้ได้นำมาพัฒนาต่อยอด ซึ่งการพัฒนาต่อยอดนี้จะแบ่งโครงสร้างการทำงาน และสมมติฐานของการ ป้องกันความเป็นส่วนตัวของผู้ใช้อุปกรณ์ไอโอทีโดยมีสองส่วนคือ ส่วนของมอดูลภายใน (Internal Module) หรือใกล้ผู้ใช้ และส่วนของมอดูลภายนอก (External Module) หรือไกลผู้ใช้

2.1 การบันทึกทราฟฟิกเก่าของอุปกรณ์ใอโอที

การบันทึกทราฟฟิกเก่าของอุปกรณ์ไอโอทีนั้นจะใช้คำสั่งสคริปต์ที่เขียนด้วยภาษา Python ให้บันทึก ข้อมูลแพ็กเก็ตทั้งหมดลงบนหน่วยความจำบนราสเบอร์รี่พายจัดเก็บข้อมูลแพ็กเก็ตในรูปแบบ JSON และ บันทึกลงไฟล์ตั้งค่าราสเบอร์รี่พายให้เรียกใช้สคริปต์ Python นี้อัตโนมัติเมื่อเริ่มต้นระบบ

การอำพรางทราฟฟิกช่วงมอดูลภายใน จะใช้การอำพราง Better Efficiency Traffic Padding (BeTP) จะใช้งานในช่วงระหว่างอุปกรณ์ไอโอทีกับเซิร์ฟเวอร์ตรวจสอบ เนื่องจากเป็นช่วงเครือข่ายที่ไม่ จำเป็นต้องลดแบนด์วิดท์ และข้อมูลทราฟฟิกมีขนาดเล็กมาก ส่วนการคัดกรองและถอดรหัสจะทำบนตัว อุปกรณ์เซิร์ฟเวอร์ตรวจสอบ

2.2 การคัดกรองทราฟฟิกจริงออกจากทราฟฟิกปลอม

เซิร์ฟเวอร์ตรวจสอบจะต้องเก็บคีย์ที่ใช้ในการเข้ารหัสและถอดรหัสข้อมูลในฐานข้อมูล เมื่อรับแพ็กเก็ต จากราสเบอร์รี่พาย, เซิร์ฟเวอร์ตรวจสอบจะตรวจสอบคีย์ที่ถูกใส่ไว้ในเพย์โหลดของแพ็กเก็ต หากคีย์ในเพย์ โหลดตรงกับคีย์ที่เก็บไว้ในฐานข้อมูล, เซิร์ฟเวอร์ตรวจสอบจะถือว่าเป็นทราฟฟิกจริง แล้วทำการถอดรหัส ข้อมูลด้วยคีย์นั้น แต่หากคีย์ในเพย์โหลดไม่ตรงกับคีย์ที่เก็บไว้ในฐานข้อมูล, เซิร์ฟเวอร์ตรวจสอบจะถือว่าเป็นทราฟฟิกจริงเสร็จสิ้น เซิร์ฟเวอร์ ตรวจสอบจะส่งข้อมูลต่อไปยังเซิร์ฟเวอร์ผู้ให้บริการของอุปกรณ์ไอโอที

โดยการดำเนินการตามขั้นตอนนี้ จะช่วยป้องกันการส่งข้อมูลที่ไม่ได้รับอนุญาต และทำให้เซิร์ฟเวอร์ ตรวจสอบสามารถคัดกรองทราฟฟิกจริงออกจากทราฟฟิกปลอม

2.3 เซิร์ฟเวอร์ให้บริการไอโอที

มีหน้าที่บริการและประมวลผลข้อมูลที่ได้รับมาจากอุปกรณ์ไอโอที เพื่อส่งข้อมูลกลับไปยังอุปกรณ์ไอ โอที เซิร์ฟเวอร์ให้บริการไอโอทีจะได้รับต้นทางโดยการส่งจากเซิร์ฟเวอร์จะมีการอำพรางด้วย Better Efficiency Traffic Padding กระบวนการจะเกิดขึ้นที่เซิร์ฟเวอร์ตรวจสอบโดยจะดึงข้อมูลเก่าในเซิร์ฟเวอร์ได้ โดยตรงและสร้างชุดบิตคัดกรองใหม่เหมือนกับเราท์เตอร์ไอโอทีส่วนการคัดกรองทราฟฟิกก็จะทำในส่วนนี้ เช่นกัน โดยเซิร์ฟเวอร์จะดูแลโดยผู้ให้บริการของอุปกรณ์ไอโอที

2.4 ราสเบอร์รี่พาย

ราสเบอร์รี่พาย หรือ Raspberry Pi เป็นคอมพิวเตอร์บอร์ดขนาดเล็กที่มีความสามารถในการทำงาน เหมือนกับคอมพิวเตอร์ทั่วไป มีการออกแบบมาเพื่อใช้งานในการเรียนรู้เกี่ยวกับการเขียนโปรแกรม การ ควบคุมอุปกรณ์และการใช้งานระบบปฏิบัติการลินุกซ์ รวมถึงการนำไปใช้งานในการสร้างโปรเจกต์ต่าง ๆ ราคา ถูกและมีขนาดเล็กทำให้เหมาะสำหรับผู้ที่ต้องการทดลองสร้างโปรเจกต์แบบขนาดเล็ก หรือต้องการ คอมพิวเตอร์บอร์ดในการใช้งานเบื้องต้น ใช้งานได้หลากหลายทั้งในส่วนของการเรียนรู้ การเล่นเกม และการ ทำงานทั่วไป [2]

2.5 ฟังก์ชันแฮช

ฟังก์ชันแฮช คือวิธีการอย่างหนึ่งซึ่งทำให้ข้อมูลส่วนหนึ่งหรือทั้งหมด ให้กลายเป็นจำนวนเล็กๆ อันหนึ่งอย่างมีปฏิสัมพันธ์ ซึ่งจำนวนดังกล่าวเปรียบได้ว่าเป็น "ลายนิ้วมือ" ของข้อมูล ขั้นตอนวิธีของฟังก์ชัน แฮชส่วนใหญ่จะเป็นการแบ่งย่อยข้อมูลและการผสมข้อมูลย่อยทั้งหมดเข้าด้วยกันเพื่อให้ได้ผลลัพธ์สุดท้าย ผลลัพธ์ดังกล่าวอาจเรียกว่า ผลบวกแฮช (hash sum) ค่าแฮช (hash value) รหัสแฮช (hash code) หรือ เรียกว่า แฮช (hash) เฉยๆ ก็ได้ บ่อยครั้งที่การเอ่ยถึงแฮชจะหมายถึงฟังก์ชันแฮชโดยปริยาย ปกติแล้วฟังก์ชัน แฮชจะทำงานผ่านดัชนีที่เก็บไว้ในตารางแฮชที่อยู่ในหน่วยความจำหรือแฟ้มข้อมูลชั่วคราว [11]

2.6 การเข้ารหัสแบบเอ็มดี 5

MD5 ย่อมาจาก Message-Digest algorithm 5 คือ รูปแบบการเข้ารหัสแบบ Hash (Cryptographic hash) ชนิดหนึ่ง คือ การแปลงรูปแบบของข้อมูลที่รับเข้ามาไม่ว่าขนาดเท่าใดก็ตาม ให้อยู่ในอีกรูปแบบหนึ่งที่มี ขนาดคงที่ เพราะฉะนั้น จะไม่สามารถเรียกดูข้อมูลต้นฉบับได้ (Decrypt) ทำได้เพียงตรวจสอบว่าข้อมูลที่ให้มา แต่ละครั้งเหมือนกันหรือไม่ ความปลอดภัยจึงค่อนข้างสูง ในที่นี้ MD5 เป็นการเข้ารหัสแบบ 128-bit ให้ค่า เป็นตัวเลขฐาน 16 (0123456789abcd) ขนาด 32 ตัวอักษร แต่ก็มีบางประเภทที่ให้ค่าเป็น binary และ base64 [10]

2.7 Hyper Text Transfer Protocol: HTTP และ Hypertext Transfer Protocol: HTTPS

โปรโตคอล หรือ รูปแบบการสื่อสารบนระบบเครือข่าย Internet เพื่อการแลกเปลี่ยนข้อมูล ถ่ายโอน ไฟล์ในรูปแบบ Multimedia เช่น ข้อความ ภาพกราฟิก เสียง วิดีโอ และไฟล์มัลติมีเดียอื่น ๆ ซึ่งทำงานอยู่ใน ระดับ Application Layer บนโปรโตคอล TCP/IP ใช้ URL เพื่อระบุ Server ปลายทางในการดึงและ แลกเปลี่ยนข้อมูลซึ่งมีโครงสร้างเป็นตัวอักษรและตัวเลข (text) ใช้สำหรับเป็น link เชื่อมระหว่าง ข้อมูล Text อื่นๆ ในรูปแบบ Plain text เป็นข้อความธรรมดาไม่มีการเข้ารหัส โดยสรุปรูปแบบดังนี้

- 1. เป็นโปรโตคอลหลักที่ใช้ในการแลกเปลี่ยนข้อมูล (HTML) กันระหว่าง Web Server และ Web Client (Browser)
- 2. ใช้ URL (Uniform Resource Locator) ในการเข้าถึงเว็บไซต์ (Web Site) ซึ่งจะขึ้นต้นด้วย http://ตามด้วยชื่อของเว็บไซต์
- 3. ส่งข้อมูลเป็นแบบ Plain text หรือ Clear text คือ เป็นข้อความที่ไม่มีการเข้ารหัสข้อมูลในระหว่าง การส่ง (None-Encryption) ทำให้สามารถถูกดักจับและอ่านข้อมูลได้ง่าย จึงไม่ปลอดภัย

HTTPS คือ โปรโตคอล หรือ รูปแบบการสื่อสารบนระบบเครือข่าย Internet ต่างกับ http คือการ เพิ่ม S หรือ Secure คือมีการใช้ SSL (secure socket layer) และ TLS (transport layer security) ในการ เข้ารหัสข้อมูลระหว่างการส่ง ช่วยรักษาความสมบูรณ์ถูกต้องของข้อมูลผู้ใช้และเก็บข้อมูลไว้เป็นความลับ ระหว่างคอมพิวเตอร์ของผู้ใช้กับเว็บไซต์ โดยมีความปลอดภัยและเป็นส่วนตัวระหว่างใช้งาน HTTPS หรือ HTTP + SSL จุดที่สำคัญคือมีส่วน Authentication เป็นการตรวจสอบเพื่อระบุตัวตน ในการเข้าสู่ Website ก่อนแลกเปลี่ยนข้อมูลโดยตรงกับทาง Web Server เป็นโปรโตคอลที่เข้ารหัสในการสื่อสาร โดยใช้ Asymmetric Algorithm เพื่อไม่ให้เกิดการโจรกรรมข้อมูลระหว่างกลางหรือ man-in-the-middle attacks มากกว่านั้นยังสามารถเข้ารหัสทั้ง 2 ทาง ระหว่าง Web Client – Web Server เพื่อป้องกันการปลอมแปลง ข้อมูล และยังมั่นใจได้ว่าระหว่างการแลกเปลี่ยนข้อมูลจะไม่ถูกแกะ หรือ ปลอมแปลง เหมาะสำหรับธุรกิจที่มี ข้อมูลเป็นความลับ เช่น ธนาคาร เป็นต้น [12]

2.8 ดีเอ็นเอส

ดีเอ็นเอส หมายถึง เครื่องบริการชื่อโดเมน มีชื่อภาษาอังกฤษว่า Domain Name System เป็นระบบ ชื่อโดเมนซึ่งเป็นระบบการแปลงชื่อโดเมนของเว็บไซต์เป็นที่อยู่โปรโตคอลอินเทอร์เน็ต ที่เครื่องคอมพิวเตอร์ สามารถเข้าถึงได้ ระบบ ดีเอ็นเอส ทำหน้าที่เป็นตัวกลางในการแปลงชื่อโดเมนเป็นที่อยู่โปรโตคอลอินเทอร์เน็ต และส่งต่อข้อมูลระหว่างเครื่องคอมพิวเตอร์ได้อย่างรวดเร็ว ซึ่งทำให้ผู้ใช้งานสามารถเข้าถึงเว็บไซต์ได้ง่ายและ สะดวกมากยิ่งขึ้นโดยไม่จำเป็นต้องจำหน้าที่อยู่โปรโตคอลอินเทอร์เน็ต ของเว็บไซต์ที่ต้องการเข้าใช้งาน ระบบดี เอ็นเอส มีความสำคัญอย่างมากในการทำงานของอินเทอร์เน็ต และใช้งานโดยแทบทุกครั้งที่มีการเชื่อมต่อ เครือข่ายอินเทอร์เน็ต โดยระบบดีเอ็นเอส จะมีโครงสร้างเป็นต้นไม้ที่แต่ละระดับจะมีโดเมนต่อไปยังระดับ ต่อไป โดยการแปลงชื่อโดเมนในดีเอ็นเอส จะใช้การค้นหาแบบฟังก์ชันที่เรียกตัวเอง (recursive) โดยระบบจะ

สืบทอดการค้นหาข้อมูลไปจนกระทั่งเจอข้อมูลที่ต้องการ และส่งคำตอบกลับมายังเครื่องคอมพิวเตอร์ผู้ใช้งาน [6]

2.9 เว็บเซิร์ฟเวอร์

เว็บเชิร์ฟเวอร์ คือซอฟต์แวร์และฮาร์ดแวร์ของคอมพิวเตอร์ที่สามารถรับคำขอผ่านทาง HTTP ซึ่งเป็น โพรโทคอลเครือข่ายที่สร้างขึ้นเพื่อเผยแพร่เนื้อหาของเว็บ หรือผ่านทาง HTTPS ซึ่งเป็นรูปแบบที่ปลอดภัยขึ้น ตัวผู้ใช้งาน (user agent) ซึ่งอาจคือเว็บเบราว์เซอร์ หรือ เว็บครอว์เลอร์ จะเริ่มต้นการสื่อสารโดยการส่งคำขอ รีซอร์สเฉพาะชุดหนึ่งผ่านทาง HTTP และเว็บเซิร์ฟเวอร์จะตอบกลับด้วยเนื้อหาของรีซอร์สนั้น หรือด้วย ข้อความแอร์เรอร์ นอกจากนี้ เว็บเซิร์ฟเวอร์ยังสามารถรับและเก็บรีซอร์สที่ถูกส่งมาโดยตัวผู้ใช้งานหากมีการ ติดตั้งให้ทำเช่นนั้น เว็บเซิร์ฟเวอร์อาจเป็นได้ตั้งแต่คอมพิวเตอร์เครื่องเดียวหรือระบบเอ็มเบ็ด เช่น เราเทอร์, พรินเทอร์, เว็บแคม ที่มีการติดตั้งระบบให้ทำงานเป็นเว็บเซิร์ฟเวอร์ ในขณะที่เว็บไซต์ที่มีการเข้าชม (traffic) สูง โดยทั่วไปจะรันเว็บเซิร์ฟเวอร์ผ่านชุดคอมพิวเตอร์จำนวนมาก (fleets of computers) ที่ออกแบบมา โดยเฉพาะ [13]

2.10 โปรโตคอลอินเทอร์เน็ต

โปรโตคอลอินเทอร์เน็ต หรือ IP ย่อมาจาก Internet Protocol เป็นระบบเครือข่ายคอมพิวเตอร์ที่ใช้ สำหรับการรับส่งข้อมูลผ่านเครือข่ายอินเทอร์เน็ต โดยโปรโตคอลอินเทอร์เน็ตจะใช้หมายเลขเพื่อระบุตัวตน ของเครื่องคอมพิวเตอร์แต่ละเครื่องในเครือข่ายอินเทอร์เน็ต [14]

2.11 Stochastic Traffic Padding (STP)

เป็นอัลกอริทึมอย่างหนึ่ง ที่ใช้เพื่อการอำพรางรูปแบบของทราฟฟิกของกิจกรรมผู้ใช้อุปกรณ์ไอโอที ซึ่ง มีอยู่สองวิธีการที่นำมาใช้ร่วมกัน คือการยิงทราฟฟิกอำพราง เพื่อปิดบังทับข้อมูลที่เกิดขึ้นหรือมีการสร้าง ข้อมูลเทียมขึ้นมาเพื่อให้ผู้ที่สังเกตการณ์ข้อมูลไม่สามารถที่จะอนุมานได้ว่าเกิดกิจกรรมขึ้นอยู่จริงๆหรือไม่ วิธีที่ สองที่นำมาผนวกคือ เมื่อไม่มีทราฟฟิกเกิดขึ้นเป็นระยะเวลาหนึ่ง ก็จะทำการยิงทราฟฟิกปลอมเพื่อไม่ให้ผู้ สังเกตุการณ์สามารถคาดเดาช่วงเวลาที่มีใช้งานอุปกรณ์ไอโอทีได้อย่างแน่ชัดโดย อัลกอริทึมนี้จะสามารถลด ความมั่นใจของผู้สังเกตการณ์ลงได้ ทั้งนี้เอสทีพี ไม่ได้ทำให้เกิดค่าเวลาแฝงที่เพิ่มขึ้นแต่อย่างใด แล้วยังสามารถ ที่จะลดทอนความมั่นใจของผู้สังเกตการณ์ลงกับค่าใช้จ่ายของแบนด์วิดท์ [1]

รูปที่ 2.1 ภาพจำลองการอำพรางทราฟฟิกในระบบ [1]

จากรูปข้างต้นแผนภูมิกราฟแท่งข้างต้นคือตัวอย่างของการใช้อัลกอริทึมเอสทีพี ที่ใช้กับอุปกรณ์เต้ารับ อัจฉริยะ หากดูจากแผนภูมิจะพบว่าช่วงวินาทีที่สองร้อยสามสิบและวินาทีที่สี่ร้อยนั้นมีทราฟฟิกเกิดขึ้นแต่ได้ ถูกอำพราง รวมถึงช่วงเวลาอื่นๆที่ไม่มีทราฟฟิกเกิดขึ้นจริงด้วย ทำให้ผู้สังเกตุการณ์ไม่สามารถแยกแยะได้ว่า ช่วงเวลาใดที่เกิดการรับส่งข้อมูลอุปกรณ์จริงกับผู้ใช้อุปกรณ์

2.12 ความมั่นใจของผู้สังเกตุการณ์

ความมั่นใจของผู้สังเกตุการณ์ หรือ Adversary Confidence เป็นวิธีการวัดความปลอดภัยของระบบ โดยวัดความสามารถในการป้องกันการละเมิดความเป็นส่วนตัวของผู้ใช้งานโดยผู้สังเกตจะพยายามสอดแนมดู และเข้าถึงข้อมูลของผู้ใช้งาน

ความมั่นใจของผู้สังเกตุการณ์ สามารถใช้วัดความปลอดภัยของระบบ โดยตัวเลขที่น้อยกว่าจะแสดง ให้เห็นถึงประสิทธิภาพที่ดีกว่าในการป้องกันการละเมิดความเป็นส่วนตัวของผู้ใช้งาน นั่นหมายความว่าเมื่อผู้ ทดสอบพยายามสอดแนมและพยายามเข้าถึงข้อมูลของผู้ใช้งานแต่ไม่สามารถอนุมานได้อย่างถูกต้องได้ [1]

2.13 การใช้แบนด์วิดท์

การใช้แบนด์วิดท์เคือสัดส่วนของการส่งข้อมูลบนเครือข่ายระหว่างการป้องกันและไม่ป้องกัน โดยปกติ แล้วการป้องกันอาจต้องเพิ่มการส่งข้อมูลเพิ่มเติมที่จะใช้ในการตรวจสอบและตรวจพบการละเมิดความ ปลอดภัยของเครือข่าย ซึ่งส่งผลให้การส่งข้อมูลบนเครือข่ายเพิ่มขึ้น การเพิ่มการส่งข้อมูลเพิ่มเติมนี้เป็นที่รู้จัก กันว่า "Bandwidth Overhead"

Bandwidth Overhead ที่ต่ำกว่าจะถือว่าดีกว่า เนื่องจากมันจะไม่เพิ่มการส่งข้อมูลบนเครือข่าย เพิ่มขึ้นมากนัก ซึ่งสามารถช่วยประหยัดทรัพยากรเครือข่ายและลดความล่าช้าในการสื่อสารได้ ดังนั้น เมื่อ ออกแบบระบบป้องกันความปลอดภัยของเครือข่าย จะต้องมีการคำนึงถึง "Bandwidth Overhead" เพื่อให้ ระบบทำงานได้มีประสิทธิภาพและไม่ส่งผลต่อการใช้ทรัพยากรของเครือข่ายในที่สุด [1]

2.14 การแลกเปลี่ยนความมั่นใจของผู้สังเกตุการณ์ต่อแบนด์วิดท์

การปรับแต่งการป้องกันความปลอดภัยของเครือข่ายจะมีผลต่อค่า "Adversary Confidence" และ "Bandwidth Overhead" ซึ่งมีความสัมพันธ์กันดังนี้

ค่า adversary confidence สูง แต่ bandwidth overhead ต่ำ

เมื่อมีการปรับแต่งการป้องกันความปลอดภัยของเครือข่ายให้มีประสิทธิภาพสูง อาจทำให้ค่า adversary confidence สูงขึ้น ซึ่งแสดงถึงความมั่นใจในการป้องกันความเป็นส่วนตัวของผู้ใช้งาน แต่อาจทำ ให้การส่งข้อมูลบนเครือข่ายเพิ่มขึ้น นั่นคือค่า bandwidth overhead จะต่ำลง

ค่า adversary confidence ต่ำ แต่ bandwidth overhead ต่ำ: การปรับแต่งการป้องกันความ ปลอดภัยของเครือข่ายให้มีความเหมาะสม อาจทำให้ค่า adversary confidence ต่ำลง นั่นคือมีโอกาสที่มีผู้ ประสงค์ร้ายสามารถดูข้อมูลของผู้ใช้งานได้ง่ายขึ้น แต่การส่งข้อมูลบนเครือข่ายจะลดลง ซึ่งหมายความว่าค่า bandwidth overhead จะต่ำลงเช่นกัน ดังนั้น ในการออกแบบระบบป้องกันความปลอดภัยของเครือข่าย จะต้องคำนึงถึงค่า adversary confidence และ bandwidth overhead ให้สมดุลกัน เพื่อให้ระบบทำงานได้ มีประสิทธิภาพและไม่ส่งผลต่อการใช้ทรัพยากรของเครือข่ายในที่สุด [1]

รูปที่ 2.2 ความสัมพันธ์ระหว่างความมั่นใจของผู้สังเกตการณ์ และค่า bandwidth overhead [1]

2.15 ความแตกต่างระหว่างอุปกรณ์เครือข่าย และไอโอที

อุปกรณ์เครือข่าย เป็นอุปกรณ์ที่สามารถเชื่อมต่อหรือเข้าถึงอินเทอร์เน็ตโดยที่สามารถเข้าถึง ทรัพยากรต่างๆได้ เช่น คอมพิวเตอร์ โทรศัพท์มือถือ เป็นต้น ส่วนไอโอทีเป็นอุปกรณ์ต่างๆที่ใช้ใน ชีวิตประจำวัน ที่มีตัวประมวลผล และรับส่งข้อมูลผ่านทางเครือข่ายอินเทอร์เน็ต เช่น หลอดไฟ กล้องวงปิด, อุปกรณ์ช่วยเหลือ เป็นต้น [6]

2.16 การจำแนกอุปกรณ์แต่ละตัวในเครือข่ายด้วยชื่อโดเมน (Domain name)

การจำแนกอุปกรณ์ต่างๆในเครือข่ายจะจำแนกด้วย ชื่อโดเมน ปลายทางที่มีการร้องขอจาก อุปกรณ์ต่างๆ สังเกตได้จากจำนวนปลายทางที่อุปกรณ์ได้ส่งคำขอ (request) ไปหาเซิร์ฟเวอร์ ส่วนมาก อุปกรณ์ไอโอทีจะส่งคำขอไปให้ผู้บริการข้อมูลของอุปกรณ์นั้น ๆ เพียง 1 – 2 จุดหมาย ส่วนอุปกรณ์เน็ตเวิร์ค ทั่วไปจะมีคำขอไปหาเซิร์ฟเวอร์เป็นจำนวนมากกว่า 2 จุดหมาย [6]

2.17 การแจกแจงเอกรูป (Uniform Distribution)

การแจกแจงเอกรูป เป็นการแจกแจงความน่าจะเป็นที่ผลลัพธ์ออกมาเท่ากัน เนื่องจาก probability density function ของการกระจายนี้มีความคงที่ระหว่างค่าต่ำสุดและค่าสูงสุดของการกระจายสามารถเขียน สูตรได้ดังนี้ [15]

$$p(x) = \frac{1}{n}$$

เมื่อ n จำนวนตัวอย่างทั้งหมดในการสุ่ม

จากการทดลองพบว่าเมื่อใช้การกระจายแบบเอกรูปนั้น เมื่อมีการใช้กับการส่งแพ็กเก็ตปลอมออกไป ผลลัพธ์ที่ได้อยู่ในรูปแบบที่ตายตัว ทำให้ผู้สังเกตการณ์สามารถอนุมานได้ว่าแพ็กเก็ตที่อยู่ในทราฟฟิกนั้นเป็น ของปลอม จึงทำให้การตัดสินการส่งแพ็กเก็ตปลอมด้วยการแจกแจงรูปแบบนี้ยังไม่สามารถป้องกันได้อย่างมี ประสิทธิภาพ

2.18 การแจกแจงแบบเอ็กซ์โพเนนเชียล (Exponential Distribution)

การแจกแจงแบบเอ็กซ์โพเนนเชียล (Exponential Distribution) เป็นการแจกแจงความน่าจะเป็น ต่อเนื่องที่ใช้อธิบายเวลาที่ใช้ในระหว่างเหตุการณ์ต่อเนื่องของระบบควบคุมคิวหรือความถี่ในการเกิดเหตุการณ์ ใหม่ [16]

$$f(x) = \lambda e^{-\lambda x}, \ x \ge 0$$

จากนั้น กำหนดให้ q เป็นความน่าจะเป็นในการส่งแพ็กเก็ตปลอมเข้าสู่เครือข่ายอินเตอร์เน็ตโดยการ กระจายแบบเอ็กซโพเนนเชียล จะได้ว่า

$$q = P_{x}(x = X)$$

เมื่อให้ μ มีค่าเท่ากับ $\frac{1}{15}$ และ เมื่อมีการส่งทั้งหมด 100 แพ็กเก็ต

$$P_{x}(x = 100) = \frac{1}{15}e^{-\frac{1}{15}x}dx = 8.4842 \times 10^{-5}$$

แสดงว่าอัตราความน่าจะเป็นในการทำนายแพ็กเก็ตปลอมในการส่งทั้งหมดจะเท่ากับร้อยละ $8.4842 imes 10^{-5}$

2.19 การแจกแจงแบบปัวส์ซอง (Poisson Distribution)

การแจกแจงแบบปัวส์ซอง เป็นการแจกแจงในรูปแบบไม่ต่อเนื่องหรือดีสครีต และใช้กับเหตุการณ์ที่ เกิดขึ้นได้ยาก (rare events) หรือเหตุการณ์ที่ไม่ได้เกิดขึ้นในเวลาอันสั้น โดยพรารมิเตอร์เวลาเฉลี่ยจะมีค่า เท่ากับ lambda สามารถเขียนสูตรได้ดังนี้ [17]

$$p_x(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 រៅ១ **x** {0, 1, 2, 3, ...}

จากนั้น กำหนดให้ q เป็นความน่าจะเป็นในการส่งแพ็กเก็ตปลอมเข้าสู่เครือข่ายอินเตอร์เน็ตโดยการ กระจายแบบปัวส์ซอง จะได้ว่า

$$q = \frac{\mu^x e^{-\mu}}{x!}$$

 μ คือ ค่าเฉลี่ยความน่าจะเป็นในการส่งแพ็กเก็ตปลอมเข้าสู่ระบบเครือข่ายอินเทอร์เน็ต

X คือ จำนวนแพ็กเก็ตทั้งหมดที่ตัดสินใจส่งไปในเครือข่าย

หากเปรียบเทียบผลลัพธ์ที่ได้จากการกระจายระหว่างเอ็กซโพเน็นเชียล และปัวส์ซองจะได้ว่าปัวส์ซอง นั้นจะให้ค่าความน่าจะเป็นในการจัดส่งแพ็กเก็ตปลอมเข้าสู่เครือข่ายได้น้อยกว่า ส่งผลให้ผู้สังเกตการณ์ไม่ สามารถทำนายการส่งแพ็กเก็ตปลอมและอนุมานการทำงานขอแพ็กเก็ตปลอมที่ส่งในเครือข่างอินเทอร์เน็ต

2.20 โปรแกรม Wireshark

โปรแกรม Wireshark มีความสามารถในการจับและวิเคราะห์ข้อมูลแพ็กเก็ตที่ส่งผ่านเครือข่าย เริ่มต้น จับข้อมูลเครือข่ายโดยเลือกอินเตอร์เฟซเครือข่ายที่ต้องการวิเคราะห์ [7]

บทที่ 3 วิธีการดำเนินการ

ในบทนี้จะกล่าวถึงหลักการ และการออกแบบระบบที่ใช้งาน การอำพรางทราฟฟิกช่วงนี้โดยจะใช้ Better Efficiency Traffic Padding ในการเรียกข้อมูลทราฟฟิกเก่ามาส่งอำพรางในช่วงที่อุปกรณ์เหล่านั้นไม่ มีการรับส่งข้อมูลที่สำคัญ และข้อมูลเก่าที่ส่งไปนั้นจะมีชุดบิตที่บ่งบอกว่าเป็นแพ็กเก็ตที่ส่งไปเป็นข้อมูลจริง หรือข้อมูลปลอมที่ไว้หลอกอำพรางผู้สังเกตการณ์และผู้ให้บริการอินเทอร์เน็ต

3.1 โครงสร้างของระบบ

รูปที่ 3.1 แผนภาพสายงานของระบบ

3.2 มอดูลภายใน

รูปที่ 3.2 ส่วนประกอบต่าง ๆ ของส่วนมอดูลภายใน

3.3 มอดูลภายนอก

compare "Key" in database

รูปที่ 3.3 ส่วนประกอบต่าง ๆ ของส่วนมอดูลภายนอก

3.4 การอนุมานทราฟิกของผู้บุกรุก

ผู้สังเกตการณ์จะอนุมานพฤติกรรมของผู้ใช้อุปกรณ์ไอโอที ได้จากการรับส่งข้อมูลต่างๆ ณ ช่วงเวลา หนึ่งและจำแนกอุปกรณ์จาก ชื่อโดเมน หรือ ที่อยู่โดเมน ปลายทางว่าเป็นอุปกรณ์อะไร เช่น อุปกรณ์ตรวจจับ การนอน หลอดไฟที่บันทึกการเปิด-ปิดเวลา เป็นต้น ตัวอย่างการอนุมานพฤติกรรมของผู้ใช้เป้าหมาย ได้แก่ การสังเกตการเปิด-ปิดหลอดไฟจะมีช่วงเวลาหนึ่งที่ไม่มีการรับส่งข้อมูลจากหลอดไฟ ทำให้ผู้สังเกตการณ์คิดว่า ณ เวลานั้นไม่มีผู้ใช้อยู่ในบ้านหรือบริเวณนั้นเป็นเวลานานๆ ทำให้เปิดโอกาสที่จะก่ออาชญากรรมต่างๆใน อนาคต

3.5 BeTP

เป็นอัลกอริทึมที่ประยุกต์มาจากอัลกอริทึม Stochastic Traffic Padding (STP) โดยการสุ่มส่งแพ็ก เก็ตปลอมเข้าเครือข่ายอินเทอร์เน็ตซึ่งขึ้นอยู่กับเวลาด้วยฟังก์ชันชี้กำลัง เพื่อให้ผู้สังเกตการณ์ไม่สามารถคาด เดากิจกรรมของอุปกรณ์ไอโอทีที่ส่งแพ็กเก็ตไปยังเซิร์ฟเวอร์ ทำให้ผู้ใช้อุปกรณ์ไอโอทีมีความเป็นส่วนตัว และ ปลอดภัยมากขึ้น เช่น ในเวลาที่ไม่มีการใช้งานของอุปกรณ์ไอโอที ทำให้สามารถอนุมานได้ว่าผู้ใช้นั้นไม่อยู่บ้าน หรือกำลังนอนหลับ ซึ่งอัลกอริทึมจะนำแพ็กเก็ตเก่าส่งสุ่มเข้าไปยังเซิร์ฟเวอร์จากนั้นให้เซิร์ฟเวอร์ตรวจสอบที่ ทำหน้าที่ตรวจสอบรหัสของแต่ละแพ็กเก็ตที่ส่งเข้ามาจาก เราต์เตอร์ต้นทางแล้วเทียบกับรหัสที่จัดเก็บบน ฐานข้อมูล ก่อนที่จะส่งไปให้เซิร์ฟเวอร์ผู้ให้บริการ

3.6 การสร้างคีย์สำหรับคัดกรองแพ็กเก็ตในเครือข่ายของเซิรฟเวอร์ตรวจสอบ

การสร้างคีย์ตรวจสอบโดยนำเลขชุดที่กำหนดไว้ไปเข้ารหัสด้วยอัลกอริทึมเข้ารหัสเอ็มดีห้า (MD5)

3.7 การตัดสินใจในการส่งแพ็กเก็ตปลอม และจริงในระบบเครือข่าย

การตัดสินใจขอระบบในการสุ่มจะใช้ การกระจายแบบเอ็กซ์โพเนนเชียล (Exponential Distribution Function) เพื่อสุ่มเวลาในการส่งแพ็กเก็ตถัดไป โดยจะสุ่มข้อมูลจากข้อมูลเก่าของอุปกรณ์ไอโอทีที่เก็บไว้ และ ใส่คีย์ไว้ในแพ็กเก็ตที่จะถูกส่ง เมื่อเซิร์ฟเวอร์ตรวจสอบได้รับแพ็กเก็ตจะทำการตรวจสอบคีย์ที่ระบบมี เพื่อ เทียบว่าเป็นแพ็กเก็ตจริงหรือปลอม ทำให้เซิร์ฟเวอร์ตรวจสอบสามาถทราบข้อมูลจริงจากผู้ใช้ และแพ็กเก็ต ปลอมจะถูกปัดตก เซิร์ฟเวอร์ตรวจสอบจะบันทึกข้อมูลของแพ็กเก็ตจริงที่ได้รับไว้ และเซิร์ฟเวอร์ตรวจสอบจะ ทำการส่งข้อมูลต่อไปยังเซิร์ฟเวอร์ไอโอที

3.8 กลุ่มผู้ใช้โปรแกรม

โปรแกรมที่พัฒนาขึ้นนี้เหมาะสำหรับผู้ที่ต้องการความเป็นส่วนตัวของข้อมูล สามารถใช้ได้กับผู้ใช้งาน ที่มีพื้นฐานด้านเทคโนโลยีและการเขียนโปรแกรมด้วยภาษา Python และมีความรู้ความเข้าใจเกี่ยวกับการ ควบคุมความเป็นส่วนตัวของข้อมูล ดังนั้นกลุ่มผู้ใช้โปรแกรมจะเป็นบุคคลที่ต้องการความเป็นส่วนตัวของข้อมูล ของอุปกรณ์ไอโอทีและมีความเข้าใจเกี่ยวกับเทคโนโลยีและการเขียนโปรแกรมด้วยภาษา Python ใน ระดับพื้นฐาน

3.12 การใช้โปรแกรม Wireshark ในการอ่านผลลัพธ์

จับข้อมูลเครือข่ายโดยเลือกอินเตอร์เฟซเครือข่ายที่ต้องการวิเคราะห์หลังจากที่ได้จับข้อมูลเครือข่าย เป็นระยะเวลาที่เพียงพอ ให้หยุดการจับข้อมูล ส่งออกการวิเคราะห์แพ็กเก็ตเป็น CSV จะได้ไฟล์ที่มีข้อมูลจาก การวิเคราะห์เครือข่ายโดยใช้ Wireshark ซึ่งสามารถนำไปวิเคราะห์และใช้อ่านผลลัพธ์ต่อไป

บทที่ 4 การทดลอง และผลลัพธ์

เนื้อหาในบทนี้จะเกี่ยวกับการในการทดสอบการทำงานของระบบการสุ่มส่งแพ็กเก็ตปลอมเข้า เครือข่ายอินเทอร์เน็ตซึ่งขึ้นอยู่กับเวลาด้วยฟังก์ชันชี้กำลัง เพื่อให้ผู้สังเกตการณ์ไม่สามารถคาดเดากิจกรรมของ อุปกรณ์ไอโอทีที่ส่งแพ็กเก็ตไปยังเซิร์ฟเวอร์ ทำให้ผู้ใช้อุปกรณ์ไอโอทีมีความเป็นส่วนตัว และปลอดภัยมากขึ้น เช่น ในเวลาที่ไม่มีการใช้งานของอุปกรณ์ไอโอที ทำให้สามารถอนุมานได้ว่าผู้ใช้นั้นไม่อยู่บ้านหรือกำลังนอน หลับ ซึ่งอัลกอริทึมจะนำแพ็กเก็ตเก่าส่งสุ่มเข้าไปยังเซิร์ฟเวอร์จากนั้นให้เซิร์ฟเวอร์ตรวจสอบที่ทำหน้าที่ ตรวจสอบรหัสของแต่ละแพ็กเก็ตที่ส่งเข้ามาจาก เราต์เตอร์ต้นทางแล้วเทียบกับรหัสที่จัดเก็บบนฐานข้อมูล ก่อนที่จะส่งไปให้เซิร์ฟเวอร์ผู้ให้บริการ

4.1 ปริมาณทราฟิกการใช้สวิตช์หลอดไฟฟ้าอัจฉริยะ

รูปที่ 4.1 แสดงปริมาณทราฟิกการใช้สวิตช์หลอดไฟฟ้าอัจฉริยะใน 1 วัน

จากกราฟแรกแสดงถึงการใช้หลอดไฟเปิดปิดของผู้ใช้ใน 1 วันผู้สังเกตการณ์สามารถเดาได้ว่าเวลา นอนกับเวลาออกบ้านว่าช่วงไหนบ้าง เช่น เกิดการส่งแพ็กเก็ตของหลอดไฟในเวลา 6 โมงเช้า และ 8 โมงครึ่ง สามารถเดาได้ว่าผู้ใช้กำลังอยู่บ้านตื่นนอนจนถึงเวลาปิดไฟถึงจะออกจากบ้านทำให้สามารถทราบได้ว่าผู้ใช้กลับ บ้าน และเข้านอนในช่วงเวลาไหนบ้าง และช่วงไหนผู้ใช้ไม่ได้รู้ตัวหรือไม่อยู่บ้านทำให้สามารถก่อโจรกรรมใน อนาคตได้

4.2 ปริมาณทราฟฟิกของการตรวจจับการเคลื่อนไหวของบุคคล

รูปที่ 4.2 แสดงปริมาณทราฟฟิกของการตรวจจับการเคลื่อนไหวของบุคคลใน 1 วัน

จากกราฟข้างต้นจะแสดงให้เห็นว่ามีการใช้งานของอุปกรณ์ตรวจจับการเคลื่อนไหวของบุคคลอยู่ ทั้งหมดเป็นจำนวน 16 ครั้งภายในหนึ่งวัน มีการใช้งานให้ช่วงเช้าจำนวน 7 ครั้ง และช่วงเวลาเย็นถึงกลางคืน เป็นจำนวน 9 ครั้ง พบว่าในช่วงเวลากลางวันนั้นไม่มีการใช้งานของอุปกรณ์ตรวจจับการเคลื่อนไหวเลย เมื่อผู้ สังเกตการณ์มาเห็นสามารถที่จะอนุมานได้ว่าผู้ใช้งานจะไม่อยู่บ้าน

4.3 ปริมาณทราฟฟิกจากเครื่องวัดอุณหภูมิอัจฉริยะ

รูปที่ 4.3 แสดงปริมาณทราฟฟิกจากเครื่องวัดอุณหภูมิอัจฉริยะใน 1 วัน

จากกราฟข้างต้นจะแสดงให้เห็นว่า มีการใช้งานของเครื่องวัดอุณหภูมิตลอดทั้งวันมีเพราะอุปกรณ์ใอ โอทีชนิดนี้จะมีการดึงข้อมูล (fetch) ตลอดช่วงระยะเวลาหนึ่ง ทำให้เมื่อผู้สังเกตการณ์เห็นสามารถที่จะมอง รูปแบบของปริมาณทราฟฟิกออกแล้วทำการกรองทราฟฟิกออก

4.4 การส่งแพ็กเก็ตปลอมจากเราต์เตอร์ผู้ใช้

รูปที่ 4.4 แสดงการส่งแพ็กเก็ตปลอมจากเราต์เตอร์ผู้ใช้ในหนึ่งวัน

จากกราฟการส่งแพ็กเก็ตปลอมเป็นการส่งแพ็กเก็ตปลอมเข้าสู่เครือข่ายอินเทอร์เน็ต ผู้สังเกตการณ์ เห็นแล้วจะอนุมานพฤติกรรมยากขึ้น เนื่องจากผู้สังเกตการณ์อาจเข้าใจว่ามีผู้ใช้กำลังทำอะไรบางอย่างอยู่ใน บ้านโดยที่จริงแล้วผู้ใช้ไม่ได้อยู่บ้านจริง ผู้สังเกตการณ์อาจจะอนุมานคลาดเคลื่อนได้ หากเป็นผู้ประสงค์ร้ายที่ จะก่ออาชญากรรมต่อผู้ใช้ลดความอยากก่อเหตุเหล่านั้นได้ การส่งแพ็กเก็ตปลอมจะไม่สามารถคาดเดารูปแบบ การส่งได้อีกด้วย เนื่องจากความน่าจะเป็นที่ใช้การกระจายแบบปัวส์ซองที่ทำให้รูปแบบการส่งไม่มีความ ต่อเนื่องกัน

4.5 ทราฟฟิกต่าง ๆ ขอไอโอทีของผู้ใช้ที่แยกจากอุกปกรณ์ต้นทาง

รูปที่ 4.5 แสดงทราฟฟิกรวมของไอโอทีของผู้ใช้ที่แยกจากอุกปกรณ์ต้นทาง

กราฟการแสดงรูปทราฟฟิกไอโอทีทั้งหมดที่มีการแยกสีตามแหล่งต้นกำเนิดของอุปกรณ์ แสดงถึง ในช่วงที่ไม่มีการใช้งานอุปกรณ์จะมีการส่งแพ็กเก็ตปลอมเข้าไปในเครือข่ายไป โดยส่วนใหญ่แพ็กเก็ตปลอมจะ ส่งในช่วงที่ไม่มีการใช้อุปกรณ์ และมีการส่งในช่วงในช่วงที่มีการใช้ด้วยเนื่องจากถ้าหากมีการส่งแพ็กเก็ตปลอม ในช่วงที่ไม่มีการใช้งานอุปกรณ์ อาจทำให้ผู้สังเกตการณ์สามารถอนุมานรูปแบบการส่งแพ็กเก็ตปลอมได้ ส่งผล ให้การป้องกันนั้นอาจถูกลดประสิทธิภาพลง และไม่สามารถป้องกันได้ในที่สุด จึงต้องส่งมีการแพ็กเก็ตปลอม ทุก ๆ ช่วงเวลาทั้งเมื่อมีการใช้ และไม่มีการใช้อุปกรณ์ไอโอที

4.6 ทราฟฟิกของไอโอทีของผู้ใช้ที่แยกจากอุกปกรณ์ต้นทางจากมุมมองจากผู้สังเกตการณ์

รูปที่ 4.6 แสดงทราฟฟิกของไอโอทีของผู้ใช้ที่แยกจากอุกปกรณ์ต้นทางจากมุมมองจากผู้สังเกตการณ์

การแสดงภาพข้างต้นเป็นการแสดงถึงความสำคัญของการรักษาความเป็นส่วนตัวของผู้ใช้งานอุปกรณ์ ไอโอที แม้ว่าผู้ใช้งานอาจไม่ได้อยู่หรือไม่ได้ใช้งานอุปกรณ์ไอโอทีอยู่เสมอไปก็ตาม การรักษาความเป็นส่วนตัว นั้นเป็นสิ่งสำคัญที่จะช่วยให้ผู้สังเกตการณ์ไม่สามารถทราบหรือคาดเดาได้แม่นยำว่าผู้ใช้งานกำลังใช้งาน อุปกรณ์ไอโอทีอยู่หรือไม่

บทที่ 5

บทสรุป และข้อเสนอแนะ

5.1 สรุปผล

โครงการนี้เป็นการพัฒนาการป้องกันจากการถูกสังเกตการณ์และอนุมานพฤติกรรมของผู้ใช้จาก อุปกรณ์ IoT ซึ่งมาจากวิทยานิพนธ์ที่มีอยู่เดิมแล้วนำมาพัฒนาเพื่อให้สามารถใช้ได้จริงมากขึ้น เนื่องจาก อุปกรณ์เหล่านั้นจะติดต่อกับเซิร์ฟเวอร์ผู้ให้บริการเพียงที่เดียวหรือน้อยที่ และดีเอ็นเอสของเซิร์ฟเวอร์สามารถ อนุมานได้ระดับหนึ่งได้ว่าเป็นอุปกรณ์ตัวใด ส่งผลให้ผู้สังเกตการณ์สามารถอนุมานต่ออีกได้ว่าผู้ใช้มีพฤติกรรม อย่างไรในบ้าน เช่น ออกไปทำงาน นอนหลับ อยู่บ้าน ฯลฯ โดยผู้สังเกตการณ์อาจเป็นได้ทั้งผู้ดักจับข้อมูล จนถึงผู้ให้บริการทางอินเทอร์เน็ต โดยคนเหล่านั้นจะสามารถทราบได้ว่าผู้ใช้มีพฤติกรรมอย่างไร เพื่อนำไปใช้ ในทางที่ผิด เช่น การซื้อขายข้อมูล การโฆษณาแฝง การโจรกรรมในบ้านของผู้ใช้ เป็นต้น โดยการทดลองการ ป้องกันความเป็นส่วนตัวด้วยการสร้างแบบจำลองระบบการป้องกันบนอุปกรณ์ราสเบอร์รี่พาย และข้อมูลของ อุปกรณ์ไอโอที จะถูกสร้างเลียนแบบจากข้อมูลจริงที่ปล่อยออกมาจากอุปกรณ์ IoT ส่วนการสังเกตทราฟฟิก จะใช้ Wireshark และเก็บข้อมูลการสังเกตที่ได้มาพล็อตกราฟทราฟฟิกเพื่อตรวจสอบการทดลองส่งแพ็กเก็ต ปลอมและทดลองอนุมานพฤติกรรมของผู้ใช้

จากการทดลอง เมื่อมีการตรวจจับทราฟฟิกของอุปกรณ์ไอโอทีจาก Wireshark นั้นลดความสามารถ ของการอนุมานพฤติกรรมของผู้ใช้ได้อย่างเห็นได้ชัด เมื่อพล็อตกราฟทราฟฟิกออกมาจะเห็นได้ว่าทราฟฟิกที่ เข้าสู่เครือข่ายดูเหมือนมีการใช้งานอุปกรณ์ตลอดเวลาในบ้านจนทำให้ผู้สังเกตการณ์อนุมานคลาดเคลื่อน

5.2 ปัญหาที่พบและแนวทางการแก้ไขปัญหา

ู่ ปัญหาที่พบในการทำโครงการมีดังนี้

การทดลองการส่งและสังเกตการณ์ทราฟฟิกของอุปกรณ์ไอโอทีจะต้องทดลองในเครือข่าย อินเทอร์เน็ตระบบปิด กล่าวคือ จะต้องไม่มีทราฟฟิกอื่นๆที่ถูกตรวจจับในการทดลอง เช่น เว็บไซต์อื่น ๆ ข้อมูล แชทสนทนา หรือ การส่งแจ้งเตือน เป็นต้น อุปกรณ์ไอโอทีต้องเชื่อมต่อกับเราต์เตอร์ราสเบอร์รี่พายเท่านั้น เนื่องจากทราฟฟิกที่ได้จากการสังเกตจะคลาดเคลื่อนและตรวจสอบการส่งแพ็กเก็ตปลอมเข้าสู่เครือข่ายได้ หรือไม่

การวัดผลของค่าความสามารถในความมั่นใจของผู้สังเกตุการณ์และ bandwidth overhead โดยใช้ สูตรที่กล่าวมานั้นใช้เวลาทำความเข้าใจเป็นเวลานาน จึงทำให้การกำหนดความน่าจะเป็นในสูตร ต้องทดลอง ใช้การกระจายต่างๆและทดลองวาดกราฟแล้วนำมาตรวจสอบผลลัพธ์ที่ได้ โดยคัดเลือกจากการกระจายที่ไม่ดู ตายตัวและต่อเนื่องกัน โดยอาจารย์ที่ปรึกษาในโครงการนี้ได้แนะนำให้ใช้การกระจายแบบปัวส์ซอง เมื่อ

นำไปใช้นั้นได้ผลลัพธ์ค่าความน่าจะเป็นได้ดีกว่าการกระจายแบบอื่นๆเพราะความน่าจะเป็นที่ได้มีค่าน้อยกว่า แสดงว่าอัตราการทำนายได้ถูกจะลดน้อยลงเช่นกัน

5.3 ข้อเสนอแนะและแนวทาการพัฒนาต่อ

- 1. การกระจายของความน่าจะเป็นแนะนำให้ใช้การกระจายแบบปัวส์ซอง
- 2. การทดลองทราฟฟิกจะต้องลองกับอุปกรณ์ IoT ของจริงเพื่องประสิทธิภาพของผลลัพธ์ที่ ดีกว่า
- 3. ค่าความน่าจะเป็นของผู้ใช้และทราฟฟิกจริงอาจมีการใช้ค่าความน่าจะเป็นที่ต่างกัน เนื่องจากการตัดสินใจและการเกิดเหตุการณ์ต่างๆนั้นมีอิสระต่อกัน

บรรณานุกรม

- [1] Apthorpe, N., Huang, D. Y., Reisman, D., Narayanan, A., & Feamster, N. (2018). Keeping the smart home private with smart (er) iot traffic shaping. arXiv preprint arXiv:1812.00955.
- [2] Liu, X., Zeng, Q., Du, X., Valluru, S. L., Fu, C., Fu, X., & Luo, B. (2021, October). Sniffmislead: Non-intrusive privacy protection against wireless packet sniffers in smart homes. In 24th international symposium on research in attacks, intrusions and defenses (pp. 33-47).
- [3] Liu, X., Qiang, Z., Du, X., Valluru, S. L., Fu, C., Fu, X., & Luo, B.(2021). SniffMislead: Non-Instructive Privacy Protectionagainst Wireless Packet Sniffers in Smart Homes.
- [4] Trimananda, R., Varmaken, J., Markopoulou & Demsky, B. (2020). Packet-Level Signature for Smart Home Devices.
- [5] Acar, A., Fereidooni, H., Abera, T., Sikder, A. K., Miettinen, M., Aksu, H., Conti, M., Sadeghi, A. R. & Uluagac, S. (2020). Peek-a-Boo: I see your smart home activities, even encrypted!.
- [6] What is a DNS query? สืบค้นเมื่อวันที่ 5 ตุลาคม จาก https://www.cloudns.net/wiki/article/254/
- [7] WiresharkforBeginners: A Visual Approach วันที่ 30 ตุลาคม จาก
 https://medium.com/@mackenziepech/wireshark-for-beginners-ba3c0771d01c
- [8] Export Specified Packets from Wireshark วันที่ 30 ตุลาคม จาก
 https://www.wireshark.org/docs/wsug-html chunked/ChIOExportSection.html
- [9] ทำความรู้จัก Raspberry Pi วันที่ 30 ตุลาคม จาก http://www2.crma.ac.th/itd/Know/RBPI/index.asp

- [10] เอ็มดี5. (2021, ตุลาคม 10). วิกิพีเดีย สารานุกรมเสรี. สืบค้นเมื่อ 02:45, ตุลาคม 10, 2021 จาก th:wikipedia.org/w/index.php?title=เอ็มดี5&oldid=9686943
- [11] ฟังก์ชันแฮช. (2018, มีนาคม 5). วิกิพีเดีย สารานุกรมเสรี. สืบค้นเมื่อ 15:15, มีนาคม 5, 2018 จาก th.wikipedia.org/w/index.php?title=ฟังก์ชันแฮช&oldid=7491912
- [12] Thailand, S. (2020, October 12). HTTP และ HTTPS คืออะไร และ แตกต่างกันอย่างไร Seo Thailand. Seo Thailand. https://www.seothailand.in.th/http-and-https/
- [13] เว็บเซิร์ฟเวอร์. (2021, พฤศจิกายน 18). วิกิพีเดีย สารานุกรมเสรี. สืบค้นเมื่อ 20:25, พฤศจิกายน 18, 2021 จาก th.wikipedia.org/w/index.php?title=เว็บเซิร์ฟเวอร์&oldid=9759750
- [14] Wikipedia contributors. (2023, March 2). IP address. In Wikipedia, The Free Encyclopedia. Retrieved 15:41, April 5, 2023, from https://en.wikipedia.org/w/index.php?title=IP_address&oldid=1142467190
- [15] Wikipedia contributors. (2023, March 13). Continuous uniform distribution. In Wikipedia, The Free Encyclopedia. Retrieved 15:51, April 5, 2023, from https://en.wikipedia.org/w/index.php?title=Continuous_uniform_distribution&oldid=11
 44473074
- [16] Wikipedia contributors. (2023, March 28). Exponential distribution. In Wikipedia, The Free Encyclopedia. Retrieved 15:52, April 5, 2023, from https://en.wikipedia.org/w/index.php?title=Exponential_distribution&oldid=114709734
- [17] Wikipedia contributors. (2023, March 28). Poisson distribution. In Wikipedia, The Free Encyclopedia. Retrieved 15:52, April 5, 2023, from https://en.wikipedia.org/w/index.php?title=Poisson_distribution&oldid=1147031355

ภาคผนวก

คู่มือการใช้งาน

สามารถอ่านจาก README หากติดปัญหา README.md

1. เข้าไปที่เว็บไซต์ github.com หรือ https://cmu.to/4lKlQ

2. ไปที่ Server Simulation alpha 1.0

3. ดาวน์โหลดไฟล์ zip ของ source code

4. คลิกขวาเพื่อแตกไฟล์

(คลิกขวาที่ไฟล์ > Extract Here หรือ Extract File... ในกรณีที่ประสงค์แตกไฟล์ในโฟลเดอร์ที่ ต้องการ)

5. รันเซิร์ฟเวอร์แต่ละตัวโดยการผ่าน Terminal เข้า directory ของแต่ละไฟล์ โดยใช้คำสั่ง python ตามด้วยชื่อไฟล์เพื่อรัน

6. แก้เลข IP ทุกครั้งที่มีการเปลี่ยนการเชื่อมต่อเน็ตเวิร์ค

ประวัติผู้จัดทำ

ชื่อ-นามสกุล : ไตรภพ ศรีมณี

ระดับการศึกษา: ปริญญาตรี สาขาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะ

วิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่

E-mail: traiphob.srimanee@gmail.com

การฝึกงาน: Like Me Co., Ltd.

กิจกรรมที่เคยแข่งขัน :

1. National Software Contest 2023 (ผ่านรอบคัดเลือก)

มีความสนใจ :

- 1. Socket network programming,
- 2. Network engineering

ประวัติผู้จัดทำ

ชื่อ-นามสกุล: นาย วราดร ศิริพันธุ์

ระดับการศึกษา: ปริญญาตรี สาขาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะ

วิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่

E-mail: waradorn.sir@gmail.com

การฝึกงาน : Toyota Tsusho Systems (Thailand) co. ltd

กิจกรรมที่เคยแข่งขัน:

1. National Software Contest 2023 (ผ่านรอบคัดเลือก)

2. THAILAND CYBER TOP TALENT 2022 SENIOR (ผ่านรอบคัดเลือก)

มีความสนใจ: ความมั่นคงปลอดภัยทางไซเบอร์ และการศึกษาต่อศึกษาต่อปริญญาโท สาขาความปลอดภัย ทางไซเบอร์