МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Методы оптимизации»

Тема: Методы безусловной минимизации функций

Студент гр. 0303	Калмак Д.А.
Преподаватель	 Мальцева Н.В.

Санкт-Петербург

Цели работы.

- 1. Решение задачи безусловной минимизации функций с помощью стандартной программы.
- 2. Исследование и объяснение полученных результатов.

Задание.

Вариант 11. Минимизировать функцию $F(x_1,x_2,a) = (x_2 - x_1^2)^2 + a(x_1 - 1)^2$ с точностью до 10^{-5} (abs ($F(x_{1k},x_{2k},a) - F(x_1^*,x_2^*,a)$) < 10^{-5}) методом наискорейшего спуска, методом Давидона-Флетчера-Пауэлла и методом Бройдена-Флетчера-Шанно. Оценить скорость и порядок сходимости методов. Провести сравнительный анализ эффективности методов в зависимости от параметров: начальной точки, параметра a>0.

Основные теоретические положения.

1. Метод наискорейшего спуска

На луче х $\{x \in R^n : x = x_k - \alpha \varphi'(x_k), \alpha \geq 0\}$, направленном по антиградиенту, введем функцию одной переменной $\psi(\alpha) = \varphi(x_k - \alpha \varphi'(x_k)), \alpha \geq 0$ и определим α_k как $\alpha_k = \underset{\alpha \geq 0}{argmin} \varphi(x_k - \alpha \varphi'(x_k))$. Такой выбор α_k обеспечивает достижение наименьшего значения функции вдоль заданного направления. Такой выбор требует решения на любом шаге одномерной задачи минимизации $\psi(\alpha)$.

2. Метод Давидона-Флетчера-Пауэлла

$$q_k = \varphi'(x_{k+1}) - \varphi'(x_k) \\ r_k = x_{k+1} - x_k$$
 $\} (*) \Rightarrow H_{k+1} \cdot q_k = r_k$

Метод заключается в построении релаксационной последовательности по следующему правилу: $x_{k+1} = x_k - \alpha_k H_k \varphi'(x_k)$

$$H_{k+1} = H_k + \underbrace{\left[\frac{r_k \cdot r_k^T}{(r_k, q_k)} - \frac{(H_k q_k)(H_k q_k)^T}{(H_k q_k, q_k)}\right]}_{\Delta H_k}$$

Длина шага α_k выбирается так же, как в методе наискорейшего спуска:

$$\alpha_k = \underset{\alpha \ge 0}{\operatorname{argmin}} \varphi(x_k - \alpha H_k \varphi'(x_k))$$

Как правило, начальное значение $H_0 = I$.

3. Метод Бройдена-Флетчера-Шанно

$$(H_{k+1})^{-1}r_k = q_k.$$

Если уточнять обратную матрицу, т.е. $G_k = (H_k)^{-1}, G_{k+1} = G_k + \Delta G_k$ то

$$H_{k+1} = H_k + \left[1 + \frac{(q_k, H_k q_k)}{(r_k, q_k)}\right] \cdot \frac{r_k r_k^T}{(r_k, q_k)} - \frac{r_k q_k^T H_k + H_k q_k r_k^T}{(r_k q_k)}$$

Оценки методов будут происходить по следующим параметрам:

• Порядок сходимости: $\lim_{k\to\infty}\frac{\ln\Delta_{k+1}}{\ln\Delta_k}$, где $\Delta_k=||x_k-x^*||$.

Методу наискорейшего спуска соответствует первый порядок.

• Скорость сходимости: $q = \frac{\varphi(x_{k+1}) - \varphi(x^*)}{\varphi(x_k) - \varphi(x^*)}$

Линейная сходимость: $\| \varphi (x^{k+1}) - \varphi (x^*) \| \le q \| \varphi (x^k) - \varphi (x^*) \|$, $q \in (0,1)$ соответствует методу наискорейшего спуска для квадратичных функций.

Сверхлинейная сходимость: $\| \varphi (x^{k+1}) - \varphi (x^*) \| \le q_k \| \varphi (x^k) - \varphi (x^*) \|, q_k \to 0$ к $\to \infty$ соответствует методам Давидона-Флетчера-Пауэлла и Бройдена-Флетчера-Шанно.

Выполнение работы.

Построим график исследуемой функции. (см. рис. 1-2)

Рисунок 1 – График исследуемой функции

Рисунок 2 – График исследуемой функции

По графику видно, что точка минимума находится в координатах (1, 1) и значение исследуемой функции в этой точке 0. Аналитически получаются те же результаты. Параметр а при этом на точку минимума не влияет.

Поскольку необходимо исследовать эффективность методов в зависимости от начальной точки и параметра a, были выбраны следующие начальные точки по мере отдаления от точки минимума: (3,3), (7,10). Параметр a > 0, поэтому возьмем по мере увеличения следующие значения: 0.1, 1, 10.

Результаты работы программы:

1. Метод наискорейшего спуска

Начальная точка (3, 3):

- а = 0.1 сходится за 319 шагов
- а = 1 сходится за 27 шагов
- а = 10 сходится за 5 шагов

Начальная точка (7, 10):

- а = 0.1 сходится за 459 шагов
- а = 1 сходится за 71 шагов
- а = 10 сходится за 6 шагов
- 2. Метод Давидона-Флетчера-Пауэлла

Начальная точка (3, 3):

- a = 0.1 сходится за 14 шагов
- а = 1 сходится за 10 шагов
- а = 10 сходится за 4 шага

Начальная точка (7, 10):

- а = 0.1 сходится за 18 шагов
- а = 1 сходится за 12 шагов
- а = 10 сходится за 6 шагов
- 3. Метод Бройдена-Флетчера-Шанно

Начальная точка (3, 3):

- а = 0.1 сходится за 14 шагов
- а = 1 сходится за 10 шагов
- а = 10 сходится за 4 шага

Начальная точка (7, 10):

а = 0.1 сходится за 18 шагов

а = 1 сходится за 12 шагов

а = 10 сходится за 6 шагов

Протоколы работы программы представлены в таблицах 1-18, в которые включены оценки скорости сходимости и порядка сходимости. Метод наискорейшего спуска представлен в табл. 1-6, метод Давидона-Флетчера-Пауэлла в табл. 7-12, метод Бройдена-Флетчера-Шанно в табл. 13-18.

Таблица 1 – Метод наискорейшего спуска при начальной точке (3, 3) и a = 0.1

Номер	x_1	<i>x</i> ₂	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*, x_2^*)$	
				f на каждом	, ,		
				шаге			
310	0,988774	0,977716	0,0000126040	17	1,0013	0,0000126040	0,9721
311	0,989065	0,977706	0,0000122528	12	1,0063	0,0000122528	0,9721
312	0,989087	0,978335	0,0000119109	16	1,0013	0,0000119109	0,9721
313	0,989370	0,978325	0,0000115787	13	1,0063	0,0000115787	0,9721
314	0,989391	0,978936	0,0000112558	17	1,0013	0,0000112558	0,9721
315	0,989666	0,978926	0,0000109421	13	1,0062	0,0000109421	0,9722
316	0,989687	0,979519	0,0000106374	18	1,0013	0,0000106374	0,9722
317	0,989954	0,979510	0,0000103413	12	1,0062	0,0000103413	0,9722
318	0,989974	0,980086	0,0000100535	18	1,0013	0,0000100535	0,9722
319	0,990233	0,980077	0,0000097737	12		0,0000097737	

Таблица 2 – Метод наискорейшего спуска при начальной точке (3,3) и a=1

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*,x_2^*)$	
				f на каждом	, ,		
				шаге			
18	1,028150	1,049874	0,0008445552	19	1,0132	0,0008445552	0,6097
19	1,020672	1,051130	0,0005149135	13	1,1590	0,0005149135	0,6097
20	1,017169	1,030257	0,0003139279	20	1,0114	0,0003139279	0,6079
21	1,012570	1,031029	0,0001908507	13	1,1361	0,0001908507	0,6074
22	1,010434	1,018322	0,0001159262	19	1,0101	0,0001159262	0,6063
23	1,007623	1,018794	0,0000702914	12	1,1188	0,0000702914	0,6061
24	1,006326	1,011084	0,0000426036	20	1,0090	0,0000426036	0,6054
25	1,004615	1,011372	0,0000257943	13	1,1053	0,0000257943	0,6055
26	1,003830	1,006703	0,0000156172	22	1,0081	0,0000156172	0,6050
27	1,002793	1,006878	0,0000094491	13		0,0000094491	

Таблица 3 – Метод наискорейшего спуска при начальной точке (3,3) и a=10

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*, x_2^*)$	
				f на каждом	κ		
				шаге			
1	1,370048	3,174638	3,0531370477	10	- 2,2954	3,0531370477	0,0752
2	1,136995	1,087726	0,2297143196	17	1,2546	0,2297143196	0,0318
3	1,015208	1,101325	0,0073082057	11	2,5084	0,0073082057	0,0161
4	1,003062	1,001221	0,0001178657	18	1,1284	0,0001178657	0,0148
5	1,000233	1,001565	0,0000017497	12		0,0000017497	

Таблица 4 — Метод наискорейшего спуска при начальной точке (7, 10) и а = 0.1

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*, x_2^*)$	
				f на каждом			
				шаге			
450	0,989095	0,977745	0,0000122095	13	1,0046	0,0000122095	0,9780
451	0,989074	0,978221	0,0000119404	17	1,0014	0,0000119404	0,9780
452	0,989336	0,978233	0,0000116773	14	1,0046	0,0000116773	0,9780
453	0,989314	0,978698	0,0000114204	16	1,0014	0,0000114204	0,9780
454	0,989570	0,978710	0,0000111690	13	1,0045	0,0000111690	0,9780
455	0,989549	0,979165	0,0000109232	16	1,0014	0,0000109232	0,9780
456	0,989800	0,979176	0,0000106829	13	1,0045	0,0000106829	0,9780
457	0,989779	0,979620	0,0000104480	15	1,0014	0,0000104480	0,9780
458	0,990024	0,979632	0,0000102183	13	1,0045	0,0000102183	0,9780
459	0,990004	0,980066	0,0000099939	17		0,0000099939	

Таблица 5 — Метод наискорейшего спуска при начальной точке (7, 10) и а = 1

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*,x_2^*)$	
				f на каждом			
				шаге			
62	0,994742	0,988590	0,0000284971	15	1,0110	0,0000284971	0,8806
63	0,995668	0,988839	0,0000250954	15	1,0178	0,0000250954	0,8808
64	0,995369	0,989948	0,0000221035	15	1,0107	0,0000221035	0,8808
65	0,996184	0,990167	0,0000194692	14	1,0172	0,0000194692	0,8809
66	0,995921	0,991143	0,0000171506	15	1,0104	0,0000171506	0,8809
67	0,996638	0,991336	0,0000151088	14	1,0168	0,0000151088	0,8810
68	0,996406	0,992196	0,0000133113	15	1,0101	0,0000133113	0,8811
69	0,997037	0,992366	0,0000117281	14	1,0163	0,0000117281	0,8811
70	0,996834	0,993123	0,0000103340	15	1,0098	0,0000103340	0,8812
71	0,997389	0,993272	0,0000091059	14		0,0000091059	

Таблица 6 – Метод наискорейшего спуска при начальной точке (7, 10) и a = 10

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*, x_2^*)$	
				f на каждом			
				шаге			
1	2,692363	10,277224	37,8121659050	9	-0,6161	37,8121659050	0,0127
2	0,843775	1,196391	0,4787380736	21	1,3190	0,4787380736	0,0378
3	1,024618	1,159578	0,0181024810	11	2,6500	0,0181024810	0,0297
4	0,994818	1,006054	0,0005371987	17	1,0982	0,0005371987	0,0320
5	1,000745	1,004903	0,0000171954	11	1,6386	0,0000171954	0,0170
6	0,999873	1,000109	0,0000002924	18		0,0000002924	

Таблица 7 — Метод Давидона-Флетчера-Пауэлла при начальной точке (3,3) и $a{=}0.1$

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$\overline{ln\Delta_k}$	$-f(x_1^*, x_2^*)$	
				f на каждом	,		
				шаге			
5	-1,282946	1,726817	0,5277236518	11	0,7403	0,5277236518	0,7142
6	-0,856907	0,555120	0,3769122588	24	0,8735	0,3769122588	0,8045
7	-0,714915	0,606750	0,3032415867	14	0,9217	0,3032415867	0,6511
8	-0,338536	-0,020624	0,1974552092	22	-1,9851	0,1974552092	0,0147
9	0,836336	0,684205	0,0029112350	21	1,0102	0,0029112350	0,9607
10	0,833398	0,689956	0,0027967435	17	1,0195	0,0027967435	0,9685
11	0,841104	0,693892	0,0027087731	16	2,3451	0,0027087731	0,1539
12	0,970214	0,923197	0,0004170149	26	1,0036	0,0004170149	0,3238
13	0,963542	0,926953	0,0001350497	12	2,6698	0,0001350497	0,0057
14	0,999823	0,998768	0,0000007735	27		0,0000007735	

Таблица 8 — Метод Давидона-Флетчера-Пауэлла при начальной точке (3, 3) и a=1

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1,x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*,x_2^*)$	
				f на каждом			
				шаге			
1	-1,705416	3,742960	8,0156938341	12	0,9645	8,0156938341	0,9649
2	-1,764265	3,418212	7,7345398171	15	0,9674	7,7345398171	0,9626
3	-1,588086	3,386281	7,4451405743	11	0,5545	7,4451405743	0,3260
4	-0,439871	- 0,401693	2,4274684962	22	0,2101	2,4274684962	0,1480
5	0,599796	0,086543	0,3593455229	16	-1,3489	0,3593455229	0,5109
6	0,572423	0,299647	0,1836074206	16	1,4867	0,1836074206	0,6633
7	0,718421	0,309991	0,1217796036	16	13,3121	0,1217796036	0,0131
8	1,010819	0,983231	0,0016011580	20	1,1505	0,0016011580	0,0132
9	0,995754	0,989773	0,0000211002	14	2,2392	0,0000211002	0,0005

10	0,999960	1,000012	0,0000000103	21	0,0000000103	

Таблица 9 — Метод Давидона-Флетчера-Пауэлла при начальной точке (3, 3) и а=10

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*, x_2^*)$	
				f на каждом	n.		
				шаге			
1	1,370048	3,174638	3,0531370477	10	-3,0186	3,0531370477	0,0345
2	1,088816	1,023216	0,1052264738	17	1,4093	0,1052264738	0,0079
3	1,005106	1,034159	0,0008329358	10	3,1837	0,0008329358	0,0000
4	0,999978	1,000003	0,0000000071	19		0,0000000071	

Таблица 10 — Метод Давидона-Флетчера-Пауэлла при начальной точке (7, 10) и а = 0.1

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*, x_2^*)$	
				f на каждом			
				шаге			
9	-1,427863	2,117248	0,5956070998	11	0,7058	0,5956070998	0,7255
10	-0,990419	0,791383	0,4321051667	25	0,9017	0,4321051667	0,8214
11	-0,862030	0,833743	0,3549324581	13	0,8836	0,3549324581	0,6714
12	-0,471853	0,075432	0,2383068113	22	0,7270	0,2383068113	0,7234
13	-0,254432	0,187302	0,1723824328	17	0,8825	0,1723824328	0,5440
14	0,078167	-0,087658	0,0937700571	19	-7,5354	0,0937700571	0,0010
15	1,029157	1,062600	0,0000968206	23	1,0012	0,0000968206	0,9413
16	1,029999	1,061965	0,0000911332	12	1,0330	0,0000911332	0,9134
17	1,026433	1,057221	0,0000832442	20	2,3574	0,0000832442	0,0033
18	1,000835	1,001221	0,0000002710	27		0,0000002710	

Таблица 11 — Метод Давидона-Флетчера-Пауэлла при начальной точке (7, 10) и а = 1

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*,x_2^*)$	
				f на каждом	, and		
				шаге			
3	-3,122014	10,414180	17,4361661850	10	0,4919	17,4361661850	0,5317
4	-1,847694	2,336655	9,2699727849	24	0,8580	9,2699727849	0,6274
5	-1,258893	2,429545	5,8161722028	12	0,7014	5,8161722028	0,4216
6	-0,459102	-0,357711	2,4521553612	21	0,1669	2,4521553612	0,1350
7	0,608312	-0,051410	0,3310423256	16	-1,8947	0,3310423256	0,5279
8	0,582821	0,312656	0,1747684450	17	1,4319	0,1747684450	0,6685
9	0,723451	0,322510	0,1168285822	14	12,5216	0,1168285822	0,0136
10	1,010692	0,983063	0,0015914819	21	1,1471	0,0015914819	0,0137
11	0,995675	0,989593	0,0000218571	14	2,2887	0,0000218571	0,0003
12	0,999967	1,000011	0,0000000072	22		0,0000000072	

Таблица 12 — Метод Давидона-Флетчера-Пауэлла при начальной точке (7, 10) и а = 10

Номер	x_1	<i>x</i> ₂	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1,x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*, x_2^*)$	
				f на каждом			
				шаге			
1	2,692363	10,277224	37,8121659050	9	0,4905	37,8121659050	0,4453
2	2,235332	3,740287	16,8390385300	20	0,9466	16,8390385300	0,2894
3	1,482769	3,792903	4,8724485656	10	-3,1448	4,8724485656	0,0041
4	1,035738	0,987783	0,0199914094	17	1,5398	0,0199914094	0,0015
5	0,999035	0,993630	0,0000290337	11	2,7386	0,0000290337	0,0000
6	0,999999	1,000000	0,0000000000	19		0,0000000000	

Таблица 13 — Метод Бройдена-Флетчера-Шанно при начальной точке (3,3) и $a{=}0.1$

Номер	x_1	<i>x</i> ₂	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$\overline{ln\Delta_k}$	$-f(x_1^*,x_2^*)$	
				f на каждом	,		
				шаге			
5	-1,282960	1,726859	0,5277309812	11	0,7403	0,5277309812	0,7142
6	-0,856953	0,555199	0,3769293357	24	0,8735	0,3769293357	0,8046
7	-0,714955	0,606828	0,3032593417	14	0,9217	0,3032593417	0,6512
8	-0,338623	-0,020566	0,1974785273	22	-1,9851	0,1974785273	0,0147
9	0,836337	0,684217	0,0029108956	20	1,0102	0,0029108956	0,9607
10	0,833405	0,689974	0,0027964671	15	1,0194	0,0027964671	0,9686
11	0,841094	0,693890	0,0027086771	17	2,3446	0,0027086771	0,1540
12	0,970192	0,923153	0,0004171755	22	1,0036	0,0004171755	0,3241
13	0,963521	0,926910	0,0001352124	12	2,6786	0,0001352124	0,0055
14	0,999828	0,998793	0,0000007500	26		0,0000007500	

Таблица 14 — Метод Бройдена-Флетчера-Шанно при начальной точке (3,3) и a=1

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*,x_2^*)$	
				f на каждом			
				шаге			
1	-1,705416	3,742960	8,0156938341	12	0,9645	8,0156938341	0,9649
2	-1,764272	3,418171	7,7345394527	16	0,9674	7,7345394527	0,9626
3	-1,588068	3,386246	7,4450861514	11	0,5545	7,4450861514	0,3260
4	-0,439877	-0,401675	2,4274671396	21	0,2101	2,4274671396	0,1480
5	0,599790	-0,086532	0,3593341899	16	-1,3490	0,3593341899	0,5110
6	0,572421	0,299642	0,1836093338	16	1,4868	0,1836093338	0,6633
7	0,718419	0,309987	0,1217811963	16	13,3121	0,1217811963	0,0131
8	1,010819	0,983229	0,0016013857	20	1,1505	0,0016013857	0,0132

9	0,995754	0,989772	0,0000211051	14	2,2392	0,0000211051	0,0005
10	0,999960	1,000012	0,0000000103	23		0,0000000103	

Таблица 15 — Метод Бройдена-Флетчера-Шанно при начальной точке (3,3) и a=10

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*, x_2^*)$	
				f на каждом			
				шаге			
1	1,370048	3,174638	3,0531370477	10	-3,0186	3,0531370477	0,0345
2	1,088817	1,023221	0,1052266640	18	1,4093	0,1052266640	0,0079
3	1,005106	1,034163	0,0008331254	10	3,1838	0,0008331254	0,0000
4	0,999978	1,000003	0,0000000071	19		0,0000000071	

Таблица 16 — Метод Бройдена-Флетчера-Шанно при начальной точке (7, 10) и a=0.1

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*,x_2^*)$	
				f на каждом	,,		
				шаге			
9	-1,424502	2,107666	0,5939770049	11	0,7063	0,5939770049	0,7251
10	-0,987062	0,784974	0,4306825298	25	0,9011	0,4306825298	0,8210
11	-0,858359	0,827539	0,3535869076	13	0,8848	0,3535869076	0,6710
12	-0,468530	0,072598	0,2372442972	23	0,7247	0,2372442972	0,7223
13	-0,249946	0,185469	0,1713644771	17	0,8805	0,1713644771	0,5423
14	0,082265	-0,086558	0,0929334714	19	-6,9286	0,0929334714	0,0016
15	1,036678	1,079008	0,0001530697	23	1,0011	0,0001530697	0,9421
16	1,037735	1,078239	0,0001442019	13	1,0401	0,0001442019	0,9053
17	1,032877	1,071574	0,0001305488	22	2,3754	0,0001305488	0,0046
18	1,001321	1,001991	0,0000005998	18		0,0000005998	

Таблица 17 — Метод Бройдена-Флетчера-Шанно при начальной точке (7, 10) и а=1

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*,x_2^*)$	
				f на каждом			
				шаге			
3	-3,122014	10,414179	17,4361657130	10	0,4919	17,4361657130	0,5317
4	-1,847722	2,336747	9,2701534364	25	0,8580	9,2701534364	0,6274
5	-1,258909	2,429638	5,8163335542	12	0,7014	5,8163335542	0,4216
6	-0,459128	-0,357675	2,4522155877	20	0,1669	2,4522155877	0,1350
7	0,608310	-0,051381	0,3310171942	16	-1,8955	0,3310171942	0,5280
8	0,582822	0,312700	0,1747657891	16	1,4317	0,1747657891	0,6684
9	0,723437	0,322536	0,1168178367	14	12,5123	0,1168178367	0,0137

10	1,010698	0,983005	0,0015971551	21	1,1467	0,0015971551	0,0138
11	0,995656	0,989548	0,0000220499	14	2,2849	0,0000220499	0,0003
12	0,999966	1,000011	0,0000000073	22		0,0000000073	

Таблица 18 — Метод Бройдена-Флетчера-Шанно при начальной точке (7, 10) и a=10

Номер	x_1	x_2	$f(x_1, x_2)$	Число	$ln\Delta_{k+1}$	$f(x_1, x_2)$	q
шага				вычислений	$ln\Delta_k$	$-f(x_1^*,x_2^*)$	
				f на каждом	, r		
				шаге			
1	2,692363	10,277224	37,8121659050	9	0,4905	37,8121659050	0,4453
2	2,235337	3,740367	16,8390414660	19	0,9466	16,8390414660	0,2894
3	1,482782	3,792981	4,8727006745	10	-3,1445	4,8727006745	0,0041
4	1,035723	0,987714	0,0199881071	19	1,5368	0,0199881071	0,0015
5	0,999025	0,993564	0,0000296419	11	2,7442	0,0000296419	0,0000
6	0,999999	1,000000	0,0000000000	19		0,0000000000	

Исходя из полученных данных, можно сказать, что у метода наискорейшего спуска порядок стремится к единице, то есть это метод первого порядка, а скорость сходимости является линейной и q лежит в промежутке от 0 до 1 с максимальным значением 0.9780. У метода Давидона-Флетчера-Пауэлла порядок принимает конечные значения больше двух, при этом скорость сходимости стремится к 0, что говорит о сверхлинейной скорости. У метода Бройдена-Флетчера-Шанно работа идентичная методу Давидона-Флетчера-Пауэлла, также ведет себя порядок и скорость сходимости стремится к нулю, что говорит о сверхлинейной скорости. Сводная таблица результатов работы программы представлена в табл. 19.

Таблица 19 - Сводная таблица результатов работы программы

Параметр для сравнения	Метод наискорейшего спуска	Метод Давидона- Флетчера- Пауэлла	Метод Бройдена- Флетчера- Шанно
Порядок сходимости	≈ 1	В конце >2	В конце >2
Скорость сходимости	Линейная	Сверхлинейная	Сверхлинейная
Начальная точка $(3, 3)$ a = 0.1	319	14	14
число шагов			
Начальная точка $(3, 3)$ a = 1	27	10	10
число шагов			

Начальная точка (3, 3) a = 10	5	4	4
число шагов			
Начальная точка $(7, 10)$ a = 0.1	459	18	18
число шагов			
Начальная точка (7, 10) a = 1	71	12	12
Число шагов			
Начальная точка $(7, 10)$ а = 10	6	6	6
число шагов			

Метод наискорейшего спуска имеет первый порядок сходимости, квазиньютоновые методы - Метод Давидона-Флетчера-Пауэлла и Метод Бройдена-Флетчера-Шанно - имеют одинаковый порядок сходимости. У метода наискорейшего спуска скорость сходимости линейная, а у квазиньютоновых методов сверхлинейная. Такие характеристики соответствуют теории. У всех трех методов прослеживается зависимость от выбора начальной точки: чем дальше от точки минимума, тем больше шагов необходимо пройти. Также прослеживается зависимость от выбора параметра а: чем больше параметр а, тем меньшее число шагов необходимо сделать. Если выбирать из этих трех методов наиболее оптимальный, то стоит выбирать или метод Давидона-Флетчера-Пауэлла, или метод Бройдена-Флетчера-Шанно. Они показывают меньшее число шагов для выполнения, причем одинаковое, или в редком случае то же число шагов, что и метод наискорейшего спуска.

Вывод.

Таким образом, была минимизирована функция тремя методами: методом наискорейшего спуска, методом Давидона-Флетчера-Пауэлла и методом Бройдена-Флетчера-Шанно. Был проведен анализ эффективности методов в зависимости от начальной точки и параметра а, а также произведена оценка скорости и порядка сходимости методов. Оптимальным решением является использование методов Давидона-Флетчера-Пауэлла и Бройдена-Флетчера-Шанно.