Team Meeting 1/20/20

Project: CH4-LOx Liquid Biprop with Non-Pyro Ignition + Restart

Meeting Objectives

- Decide Measurables/Goals
- Assign subsystem responsible engineers (leads)
- Assign subteam members
- Discuss propellant sourcing/availability
- Decide top-level parameters
 - Thrust
 - Chamber pressure

Measurables/Goals

Ideas:

- HS camera view into chamber to observe initial ignition process?
 - High-speed cameras are probably available through Ames
 - Maybe Cantwell's lab, but those are likely still in use
 - 1200fps camera probably available, 10kfps also but harder to access
 - Need to get clever with optics layout to prevent camera damage
 - Rishav: sapphire sight-glass in chamber wall?
- Accelerometer pressure transducer/load cell measurements for start smoothness?
 - Test stand & plumbing rigidity/resonances becomes a problem
- C* efficiency?
- L* measurement/approximation?
- Chamber pressure measurement?
 - o Pressure transducers in injector face, feed system, nozzle exit if possible

We will do:

- HS camera view into chamber
 - If we want to watch ignition propagation, we need at least 3 lines of sight into chamber along axis
 - Sight glass in chamber wall near injector
 - Sealing will be an issue ablator all the way to glass
 - Sapphire glass is \$\$\$, as is porting side of chamber
 - Germanium glass? IR transparency
 - If we want ignition sensor, we just need a 300nm light filter with optical sensor
 - o Mirror downstream of exhaust, looking up chamber
 - Long sight line focus?

- Do we want this at all? Let's just focus on making a good rocket engine rather than studying combustion
 - We'll make the best rocket engine we can, and measure what we can without making it a frankenstein research engine
- Thrust
 - Sparkfun has 200kg Load cells for \$60
- Pressure
 - Pressure transducers implemented in the injector, do not weld anything to the chamber wall.
 - Measure pressure at the nozzle throat and/or exit such that we can deduce the thrust from the pressure difference.
 - Strain gauge on chamber? Temperature of wall important
- Temperature
 - Temperature transducers are inexpensive, easy to mount.
- C* efficiency

Top-Level System Definition

- Thrust
 - 0
- Chamber Pressure
 - o Greg:
 - Typ. ~1000 psi (70bar) for Ox-CH4, to minimize ionization (improve lsp)
 - 500 psi (35 bar) would be good range for our engine, might be doable with autogenous press
- 24 bar chamber pressure (~350 psia)
 - Quick CEA study with LNG/Ox at 24 bar gives approx. worst-case chamber temperatures around 2800-3000K, similar range to RP-1/Ox combo from last liquid biprop engine
 - Hardware design (sealing, wall thicknesses, materials) become increasingly difficult as Pc increases, so 24 bar is good medium
 - Still gets us ~2800-3000 m/s Ue if nozzle is ideally expanded
 - Used by last year's team, can reference their plumbing
- Sourcing
 - Rishav will contact Praxair person he worked with for combustion research to ask about LNG dewar availability

Subsystem Organization

- Responsible Engineer Job Description
 - Take responsibility for subsystem
 - Report overall progress at meetings
 - Arrange regular subteam meetings
 - Delegate subsystem tasks

- Lit. review
- Design
- Analysis
- Manufacturing/Sourcing
- Build/Integration

To-Do

- Rough design for CoDR
 - Hand calcs. and sketches only at this stage, don't spend too much time on CAD or simulations until our basic concept is refined