## Medical Image Processing – Homework 2 Rotem Amsalem 207596297

In this exercise I used the following libraries:

- nibabel to save and load NIFTI images
- numpy for the computing parts
- matplotlib.pyplot to plot graphs and show them
- skimage for algorithms for image processing
- scipy.signal for finding local minima and maxima

#### Part 1:

Function:

SegmentationByTH - This function performs segmentation using Imin, Imax thresholds

Input:

Nifty\_file - a grayscale NIFTI file

Imin – the minimal intensity

Imax – the maximal intensity

Return:

1 in case of success

0 otherwise.

#### Function:

downTo1ConnectivityComponent – This function performs post-processing (morphological operations – clean out single pixels, close holes, etc.) on the image until we are left with a single connectivity component.

In this function I used some morphological operations such as remove\_small\_objects and removes all the objects smaller than min\_size which is choosed by looping over the number of connectivity components till I got to 1 (if along the way I reached to 0 connectivity components then I did it all again but now without erosion)

I used erosion too in order to erase thin limits.

I also used dilation in order to close holes.

This function saves the Skeleton Segmentation

#### Input:

nifty\_file\_name - a grayscale NIFTI file

segmentation – the nifty file after segmentation with the chosen Imin (by the SkeletonTHFinder function) aorta – 1 or 0 represents whether this is aorta segmentation or skeleton

has\_been\_erosion – boolean. True means erosion has been made and we reached to 0 connectivity components and False mean otherwise.

#### Return

This function doesn't return a thing. It saves the Skeleton Segmentation. I present the final segmentation in the SkeletonTHFinder function.

#### Function:

SkeletonTHFinder – This function finds the best suited thresholds for each image after activating the segmentation.

#### Input:

Nifty\_file - a grayscale NIFTI file

#### Return:

This function returns the Imin which is the threshold for the segmentation with the smallest number of connectivity components

In this function I call the helper function downTo1ConnectivityComponent in order to be left with 1 connectivity component and this function saves the final segmentation which is now presented: (The segmentations are presented below)





### Segmentation for Case1\_CT:



### Segmentation for Case2\_CT:



### Segmentation for Case3\_CT:



### Segmentation for Case4\_CT:



#### Segmentation for Case5\_CT:



#### Part 2:

#### Function:

AortaSegmentation – This function performs segmentation of the aorta by using L1 segmentation to tell on which axial slices we need to segment the aorta.

#### Input:

nifty\_file - a grayscale NIFTI file

L1\_seg\_nifti\_file - L1 segmentation NIFTI file

#### Return:

#### Doesn't return a thing.

In this function I used the following algorithm in order to performs the aorta segmentation:

- 1. Finding ROI of L1 and calculating the coordinates of a box around L1
- 2. Building the ROI of the aorta using the above.
- 3. Finding the histogram of the above ROI
- 4. Finding the peak of the histogram (the one that matches the aorta because there is also a peak that matches to the background for example)
- 5. Thresholding to the ROI
- 6. Performing some morphological operations using the downTo1ConnectivityComponent function from part 1.

#### Outputs:

### Histogram for Case1\_CT:



### Segmentation for Case1\_CT:



### Histogram for Case2\_CT:



### Segmentation for Case2\_CT:



### Histogram for Case3\_CT:



## Segmentation for Case3\_CT:



### Histogram for Case4\_CT:



### Segmentation for Case4\_CT:



#### Function:

evaluateSegmentation - This function is given two segmentations, a GT one and an estimated one, and returns a tuple of (VOD\_result, DICE\_result).

#### Input:

GT\_seg – Ground Truth segmentation

est\_seg - estimated segmentation

Return:

# tuple of (VOD\_result, DICE\_result).

## Outputs:

| CT_case | VOD_result          | DICE_result          |
|---------|---------------------|----------------------|
| 1       | 0.18648588575238945 | 1.627028228495221    |
| 2       | 0.9585424800148726  | 0.08291503997025469  |
| 3       | 0.5482048062104001  | 0.9035903875791997   |
| 4       | 0.999047783933518   | 0.001904432132963989 |