Math. – ES 2 - S2 – Géométrie

jeudi 23 mai 2019 - Durée 2 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Définitions et notations

n désigne un entier naturel supérieur ou égal à 2, fixé et $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n.

Pour tout entier k tel que $0 \le k \le n$ on note $\mathcal{B}_{k,n}$ le polynôme

$$\mathscr{B}_{k,n} = \binom{n}{k} X^k (1 - X)^{n-k}$$

On admettra que pour tout $n \in \mathbb{N}, n \geq 2$, la famille $(\mathscr{B}_{k,n})_{0 \leq k \leq n}$ est une base de $\mathbb{R}_n[X]$.

Pour p=2 ou 3, \mathbb{R}^p est muni de sa structure euclidienne usuelle et d'un repère orthonormé d'origine O. Si A_0, A_1, \cdots, A_n sont (n+1) points de \mathbb{R}^p , on appelle **courbe de Bézier** associée aux points de contrôle A_0, A_1, \cdots, A_n la courbe paramétrée définie sur [0,1] par :

$$\forall t \in [0, 1], \overrightarrow{OM(t)} = \sum_{k=0}^{n} \mathscr{B}_{k,n}(t) \overrightarrow{OA_k}$$

Partie I : Une courbe de Bézier

Dans cette partie et la suivante, on se place dans \mathbb{R}^2 muni d'un repère orthonormé (O, \vec{i}, \vec{j}) . On considère la courbe de Bézier Γ_1 associée aux points de contrôle A_0, A_1, A_2 et A_3 de coordonnées respectives (0,0), (2,2), (1,3) et (1,-1).

1. Montrer que Γ_1 est la restriction à [0,1] de la courbe Γ_0 admettant pour représentation paramétrique :

$$\begin{cases} x(t) = 6t - 9t^2 + 4t^3 \\ y(t) = 6t - 3t^2 - 4t^3 \end{cases}, t \in \mathbb{R}$$

- **2.** Construire les tableaux de variations de x et y.
- 3. Déterminer les points réguliers de Γ_0 dont la tangente à Γ_0 est horizontale ou verticale.
- 4. Déterminer une équation cartésienne de la tangente à Γ_0 au point de paramètre t=0.
- 5. Déterminer le point singulier de Γ_0 . Préciser sa nature ainsi que la tangente à Γ_0 en ce point.
- **6.** Donner la nature des branches infinies de Γ_0 .
- 7. Tracer dans le repère (O, \vec{i}, \vec{j}) la courbe Γ_1 , les points A_0, A_1, A_2 et A_3 ainsi que les tangentes obtenues aux questions précédentes.

T.S.V.P.

Partie II: Un détour par le cas général

Dans cette partie, on se place encore dans le plan, mais n désigne un entier naturel quelconque supérieur à 2. On considère (n+1) points A_0, A_1, \dots, A_n , et on note Γ la courbe de Bézier associée aux points de contrôle A_0, A_1, \dots, A_n .

- 1. Que peut-on dire des points de Γ de paramètres t=0 et t=1?
- 2. On suppose dans cette question que les points A_0 et A_1 sont distincts. Montrer que la tangente à Γ en A_0 est la droite (A_0A_1) .
- 3. Soient P et Q deux polynômes de $\mathbb{R}_n[X]$. On considère la courbe Λ dont une représentation paramétrique est $\begin{cases} x(t) = P(t) \\ y(t) = Q(t) \end{cases}, t \in [0,1].$

Est-il possible de trouver (n+1) points A_0, A_1, \dots, A_n tels que Λ soit la courbe de Bézier aux points de contrôle A_0, A_1, \dots, A_n ?

Partie III : Une surface de révolution

On se place désormais dans l'espace \mathbb{R}^3 muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, et on considère la courbe de Bézier Γ_2 associée aux points de contrôle D_0, D_1, D_2 et D_3 de coordonnées respectives (-3, 0, 0), (-1, 1, 0), (1, 1, 0) et (3, 0, 0).

- 1. Vérifier qu'un paramétrage de Γ_2 est : $\left\{\begin{array}{l} x(t)=6t-3\\ y(t)=3(t-t^2)\\ z(t)=0 \end{array}\right., t\in [0,1].$
- 2. Donner un vecteur directeur, ainsi qu'un système d'équations cartésiennes de la tangente à Γ_2 au point de paramètre $t = \frac{1}{3}$.
- 3. Déterminer une équation cartésienne de la surface de révolution obtenue en faisant tourner Γ_2 autour de l'axe (O, \vec{i}) .

Fin de l'énoncé de géométrie