Przedziały ufności dla wartości oczekiwanej

MODEL I - rozkład normalny $N(\mu, \sigma^2)$, σ znane

MODEL II - rozkład normalny $N(\mu, \sigma^2)$, σ nieznane

MODEL III - rozkład dowolny, σ nieznane, $n \ge 50$.

MODEL IV - rozkład Bernoulliego $B(1, p), p \in (0, 1), n \ge 50$

$$\begin{bmatrix} \bar{X}_n - u_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + u_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \\ \bar{X}_n - t_{1-\frac{\alpha}{2},n-1} \frac{s}{\sqrt{n}}, \bar{X}_n + t_{1-\frac{\alpha}{2},n-1} \frac{s}{\sqrt{n}} \\ \bar{X}_n - u_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{X}_n + u_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \end{bmatrix}$$

$$\begin{bmatrix} \hat{p}_n - u_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}, \hat{p}_n + u_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}} \end{bmatrix}$$

Przedział ufności dla wariancji

MODEL - rozkład normalny $N(\mu, \sigma^2)$, μ nieznane, $n \leq 41$

$$\left[\frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}},\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}}\right]$$

Testy parametryczne dla wartości oczekiwanej $H_0: \mu = \mu_0$

(a)
$$H_1: \mu \neq \mu_0$$
 (b) $H_1: \mu > \mu_0$ (c) $H_1: \mu < \mu_0$.

MODEL I - rozkład normalny $N(\mu, \sigma^2)$, σ znane

Statystyka testowa:

$$U = \sqrt{n} \frac{\bar{X}_n - \mu_0}{\sigma} \sim_{|H_0} N(0, 1).$$

Odrzucamy H_0 **jeżeli:** (a) $|U| \geqslant u_{1-\frac{\alpha}{2}}$ (b) $U \geqslant u_{1-\alpha}$ (c) $U \leqslant u_{\alpha}$.

MODEL II - rozkład normalny $N(\mu, \sigma^2)$, σ nieznane

Statystyka testowa:

$$t = \sqrt{n} \frac{\bar{X}_n - \mu_0}{s} \sim_{|H_0} t[n-1].$$

Odrzucamy H_0 jeżeli: (a) $|t| \geqslant t_{1-\frac{\alpha}{2},n-1}$ (b) $t \geqslant t_{1-\alpha,n-1}$ (c) $t \leqslant -t_{1-\alpha,n-1}$.

MODEL III - rozkład dowolny, σ nieznane, $n \geqslant 50$.

 $Statystyka\ testowa:$

$$Z = \sqrt{n} \frac{\bar{X}_n - \mu_0}{s} \approx_{|H_0} N(0, 1).$$

Odrzucamy H_0 jeżeli: (a) $|Z| \geqslant u_{1-\frac{\alpha}{2}}$ (b) $Z \geqslant u_{1-\alpha}$ (c) $Z \leqslant u_{\alpha}$.

Test dla wskaźnika struktury $H_0: p = p_0$

(a)
$$H_1: p \neq p_0$$
 (b) $H_1: p > p_0$ (c) $H_1: p < p_0$.

MODEL IV - rozkład Bernoulli'ego $B(1, p), p \in (0, 1), n \ge 50.$

 $Statystyka\ testowa:$

$$Z = \sqrt{n} \frac{\hat{p}_n - p_0}{\sqrt{p_0(1 - p_0)}} \approx_{|H_0} N(0, 1).$$

Odrzucamy H_0 **jeżeli:** (a) $|Z| \geqslant u_{1-\frac{\alpha}{2}}$ (b) $Z \geqslant u_{1-\alpha}$ (c) $Z \leqslant u_{\alpha}$.

Test parametryczny dla wariancji $H_0: \sigma^2 = \sigma_0^2$ (a) $H_1: \sigma^2 \neq \sigma_0^2$ (b) $H_1: \sigma^2 > \sigma_0^2$ (c) $H_1: \sigma^2 < \sigma_0^2$.

(a)
$$H_1: \sigma^2 \neq \sigma_0^2$$
 (b) $H_1: \sigma^2 > \sigma_0^2$ (c) $H_1: \sigma^2 < \sigma_0^2$

MODEL - rozkład normalny $N(\mu, \sigma^2)$, μ nieznane Statystyka testowa:

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \sim_{|H_0} \chi^2[n-1]$$

 $\textit{Odrzucamy H_0 jeżeli:} \quad \text{(a) $\chi^2_0 \geqslant \chi^2_{1-\frac{\alpha}{2},n-1} \lor \chi^2_0 \leqslant \chi^2_{\frac{\alpha}{2},n-1}$ (b) $\chi^2_0 \geqslant \chi^2_{1-\alpha,n-1}$ (c) $\chi^2_0 \leqslant \chi^2_{\alpha,n-1}$.}$

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
, $\hat{p}_n = \bar{X}_n$, gdzie $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

 u_{α} , $t_{\alpha,n}$ oraz $\chi^2_{\alpha,n}$ oznaczają kwantyle rzędu α rozkładów, odpowiednio, N(0,1), t[n] oraz $\chi^2[n]$.