Neural Network Model Report

Overview of the Analysis

The purpose of this analysis was to develop a deep learning model to predict the success of funding applications submitted to Alphabet Soup, a non-profit organization. The goal was to design and optimize a neural network model to classify whether an application would be successful based on several input features. The target performance goal was to achieve an accuracy of **75%** or higher.

Results

Data Preprocessing

- Target Variable:
 - IS_SUCCESSFUL This variable indicates whether the funding application was successful (1) or not (0).
- Feature Variables:
 - All other columns in the dataset after removing non-beneficial ID columns.
 - Features include categorical and numerical data such as APPLICATION_TYPE,
 CLASSIFICATION, ASK_AMT, and USE_CASE.
- Removed Variables:
 - EIN and NAME were removed because they are identifiers and provide no predictive value.

Compiling, Training, and Evaluating the Model

Three attempts were made to improve the performance of the neural network model:

- 1. First Attempt:
 - Layers: 2 hidden layers
 - **Neurons:** 64 in the first layer, 32 in the second layer

Activation Functions: ReLU for hidden layers, sigmoid for output layer

Epochs: 25Batch Size: 32

Result: Accuracy = 72.1%

2. Second Attempt:

Layers: 3 hidden layers
 Neurons: 64 → 32 → 16

Activation Functions: ReLU for hidden layers, sigmoid for output layer

Epochs: 50Batch Size: 32

Result: Accuracy = 72.6%

 Reason for Adjustment: Adding a third hidden layer was intended to increase model complexity and pattern recognition.

3. Third Attempt:

Layers: 3 hidden layers
 Neurons: 64 → 32 → 24

o Activation Functions: ReLU for hidden layers, sigmoid for output layer

Epochs: 75Batch Size: 32Improvements:

- Added Batch Normalization after each hidden layer to stabilize learning.
- Introduced **Dropout** (0.2) to prevent overfitting.
- Increased neurons in the third hidden layer to improve complexity.
- Result: Accuracy = 72.9%

Were the Goals Met?

- The target accuracy of **75**% was **not met**, but incremental improvements were made with each adjustment.
- The highest accuracy achieved was **72.9%** after introducing batch normalization, dropout, and increasing the third hidden layer size.

Summary

The deep learning model showed consistent improvement through a series of adjustments, including increasing the number of hidden layers, tuning the number of neurons, and applying batch normalization and dropout to reduce overfitting. However, the target accuracy of **75%** was not reached, suggesting that the model may be limited by the dataset itself or the architecture used.

Recommendation:

To further improve performance, a different model could be tested:

- 1. **Random Forest or Gradient Boosting:** Tree-based models often perform well on structured data with categorical features.
- 2. **Hyperparameter Tuning:** Adjust the learning rate, batch size, and number of epochs using grid search or random search.
- 3. **Feature Engineering:** Additional feature selection and creation might help expose hidden patterns.

While the neural network showed promise, a more traditional classification algorithm or ensemble model might yield better results for this specific problem.