练习六习题 1-2 解

6-1 某一X射线管发出的连续X光谱的最短波长为 0.0124nm, 试问

 $\lambda = \frac{1.24nm}{V(kV)}$

它的工作电压是多少?解:依据公式

$$V(kV) = \frac{1.24nm}{\lambda} = \frac{1.24}{0.0124} = 100(kV)$$

答: 它的工作电压是 100kV.

6-2 莫塞莱的实验是历史上首次精确测量原子序数的方法. 如测得某元素的K_αX射线的波长为 0.068 5 nm, 试求出该元素的原子序数.

$$V_{K\alpha} = \frac{c}{\lambda} = 0.246 \times 10^{16} (Z - 1)^2$$
 Hz; 将值代入上式,

$$(Z-1)^{2} = \frac{c}{0.0685 \times 0.246 \times 10^{16}} = \frac{3 \times 10^{8} \times 10^{9}}{0.0685 \times 0.246 \times 10^{16}}$$

=1780

Z = 43

即该元素为 43 号元素锝(Te).

第六章习题 3,4

6-3 钕原子(Z=60)的 L 吸收限为 0. 19nm,试问从钕原子中电离一个 K 电子需作多少功?

6-4 证明:对大多数元素 K_{a1} 射线的强度为 K_{a2} 射线的两倍.

第六章习题 5,6 参考答案

- 6-5 已知铅的K吸收限为 0.014 1nm,K线系各谱线的波长分别为:
- $0.016 \ 7 \text{nm}(K_{\alpha}); \ 0.0146 \text{nm}(K_{\beta}); \ 0.0142 \text{nm}(K_{\gamma}),现请:$
- (1) 根据这些数据绘出有关铅的 X 射线能级简图;
- (2) 计算激发L线系所需的最小能量与 L_{α} 线的波长.

分析要点:弄清 K 吸收限的含义. K 吸收限指在 K 层产生一个空穴需

1

要能量.即 K 层电子的结合能或电离能.

解: (1)由已知的条件可画出 X 射线能级简图.

$$K K_{\alpha} L_{\alpha} K_{\beta} K_{\gamma}$$

(2) 激发 L 线系所需的能量:

K层电子的电离能为:

$$\varphi_{K} = \frac{hc}{\lambda_{K}} = \frac{1.24 \text{nm.keV}}{0.0141 \text{nm}} = 87.94 \text{keV}$$

在L 壳层产生一个空穴相对于K 壳层所需的能量

$$E_{LK} = \varphi_{K} - \varphi_{L} = \frac{hc}{\lambda_{K\alpha}} = \frac{1.24 \text{nm.keV}}{0.0146 \text{nm}} = 84.93 \text{keV}$$

在L壳层产生一个空穴所需的能量

 $E_{LK} = \varphi_K - \varphi_L$ $\varphi_L = \varphi_K - E_{LK} = 87.94 \text{ keV} - 84.93 \text{keV} = 3.01 \text{ keV}$ φ 为结合能.

设 L_{α} 线的波长为 λ_{ML} ,则依题意有:

$$\Delta E_{ML} = \frac{hc}{\lambda_{ML}} = \frac{hc}{\lambda_{MK}} - \frac{hc}{\lambda_{LK}}$$

或

$$\frac{1}{\lambda_{ML}} = \frac{1}{\lambda_{MK}} - \frac{1}{\lambda_{LK}}$$

即有
$$\lambda_{ML} = \frac{\lambda_{MK} \cdot \lambda_{LK}}{\lambda_{LK} - \lambda_{MK}} = \frac{0.0146 \times 0.0167}{0.0167 - 0.0146} \text{ nm} = 0.116 \text{ nm}$$

即L。线的波长为 0.116nm.

6-6 一束波长为 0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为 120°的方向上产生一级衍射极大,试问该晶面的间距为多大?

解:由于入射束在偏离 120°的方向上产生一级衍射极大 $\sin\theta$ = $\sin 120$ °= $\frac{\sqrt{3}}{2}$

依据公式 $n\lambda = 2d \sin \theta$ n=1

$$0.54nm = 2 \times \frac{\sqrt{3}}{2}$$

解得 *d*=0.312 nm

第六章习题 8 参考答案

- 6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求 散射光子的最小能量及电子的最大动量.
- 6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为 10 keV,试求入射光子的能量.

解: 一个光子和一静止的电子作用后其能量为

$$h v' = \frac{h v}{1 + \gamma (1 - \cos \theta)}$$
 (1) $\sharp \Phi$
$$\gamma = \frac{h v}{m_0 c^2}$$

光子去的能量为电子获得的能量 $hv - hv' = E_k$

依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式有最小值的条件是 $\theta=\pi$ 由此可推得

$$h v - h v' = h v - \frac{h v}{1 + 2\gamma} = \frac{2\gamma h v}{1 + 2\gamma} = E_{\text{max}}$$

由此可算出: $E_{\text{max}} + 2\gamma E_{\text{max}} = 2\gamma h \nu$

$$E_{\text{max}} + 2\frac{hv}{m_0 c^2} E_{\text{max}} = 2\frac{hv}{m_0 c^2} hv$$
$$2(hv)^2 - 2hv E_{\text{max}} = E_{\text{max}} m_o c^2$$
$$2E_{\text{H}}^2 - 2 \times 10 \times E_{\text{H}} = 10 \times 0.511$$

代入数据

解之: E_{*} =55.9 keV

第六章习题 9 参考答案

6-9 若入射光子与质子发生康普顿散射, 试求质子的康普顿波长, 如 反冲质子获得的能量为 5. 7MeV,则入射光子的最小能量为多大?

解:由康普顿波长定义
$$\lambda = \frac{hc}{m_0c^2} = \frac{1.24}{511} = 0.002426nm$$
 则 质子的康普顿波长为
$$\lambda = \frac{hc}{m_pc^2} = \frac{1.24}{938 \times 10^3} = 0.00132 fm$$

依 6-8 题公式

$$2(hv)^2 - 2hvE_{\text{max}} = E_{\text{max}}m_pc^2$$

 $h\nu = 54.6 \,\text{MeV}$ 可得出:

6-10 康普顿散射产生的散射光子,再与原子发生相互作用,当散射 角 $\theta > 60^\circ$ 时,无论入射光子能量多么大,散射光子总不能再产生正 负电子偶. 试证明之.

第六章习题 11, 12

6-11 证明:光子与自由电子相碰,不可能发生光电效应.

6-12 证明:在真空中不可能发生"光子一电子对"过程.

第六章习题 13、14 参考答案

- 6-13 已知铑(Z=45)的电子组态为 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d⁸5s^I, 现 请:
 - (1)确定它的基态谱项符号;
 - (2)用它的 K_{α} X射线作康普顿散射实验,当光子的散射角为 60° 时, 求反冲电子的能量(已知 K_a 的屏蔽系数b=0.9):

(3)在实验装置中用厚为 0.30cm的铅屏蔽该射线. 如果改用铝代替铅,为达到同样的屏蔽效果,需要用多少厚的铝?(μ_{pb} =52.5 cm⁻¹; μ_{Al} =0.765 cm⁻¹)

解: (1) 电子组态中 $4d^85s^1$ 未填满,所以为基态的电子组态 $4d^25s$ $l_1=l_2=2,l_3=0$

其原子态计算先 2d电子耦合,得出最低态 $^3F_{4,3,2}$.找出基态 3F_4 ,再与s耦合,得 $^4F_{9/2}$.为基态.

(2)因为 $K_{\alpha}X$ 射线的能量为: $h\nu_{K\alpha} = 0.248 \times 10^{16} h(z-b)^2$

$b \approx 0.9$

反冲电子的能量为: $E_K = h \nu_{K\alpha} \frac{\gamma(1-\cos\theta)}{1+\gamma(1-\cos\theta)}$

$$\gamma = \frac{h \, v_{k\alpha}}{m_0 c^2}$$

 $\theta = 60^{\circ}$ 代入上式得 $E_K = 384eV$

(3) 由郎伯-比耳定律可得:

用 Pb 屏蔽时 $I = I_0 e^{-\mu P b x_1}$ (1)

用 AI 屏蔽时 $I = I_0 e^{-\mu A l x_2}$ (2)

比较 (1) (2) 式可得: $\mu_{Pb}x_1 = \mu_{Al}x_2$

其 中 $\mu_{Pb} = 52.5 cm^{-1}$

 $\mu_{Al} = 0.765 cm^{-1}$

 $x_1 = 0.3$ cm

得: x₂=20.59cm

6-14 已知铜和锌的 K_{α} X射线的波长分别为 0. 015 39 nm, 和 0. 014 34 nm, 镍的K吸收限为 0.148 9 nm, 它对铜和锌的 K_{α} X射线的质量吸收系数分别为 48 cm² / g和 325 cm²/g. 试问: 为了使铜的 K_{α} 射线与锌的

 K_{α} 射线的相对强度之比提高 10 倍,需要多厚的镍吸收片?

解: 按朗伯-比耳定律

$$I = I_0 e^{-\mu x} = I_0 e^{-\frac{\mu}{\rho}x\rho}$$

经镍吸收片吸收后,铜的强度

$$I = I_0 e^{-48x\rho_1}$$

锌的强度

$$I' = I_0' e^{-325x\rho_2}$$

由于 $I_0=I_0$

所以

$$\frac{I}{I'} = \frac{I_0 e^{-48x\rho}}{I'_0 e^{-325x\rho}} == e^{-277x\rho} = 10$$

 $\rho x = 8.31 \text{mg/cm}^2$

镍的密度为 $\rho=8.9 \text{g/cm}^3$

所以 x=9.3 μm