No of Questions: 3

Maximum Marks: 75

Maximum Time: 2 Hrs.

1. (a) | 6Marks | Construct a DFA equivalent to the NFA $N = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\}),$ (using the subset construction method) where the transition function, δ is given below.

	0	1
q_0	$\{q_0\}$	$\{q_0,q_1\}$
q_1	ϕ	$\{q_2\}$
q_2	$\{q_1\}$	ϕ

- (b) 6 Marks Either prove or disprove the following. The language $\{xwx^R|x, w \in \{0,1\}^* \text{ and } |x|, |w| > 0\}$ is regular.
- 2. (a) | 5Marks | Let $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_1, Z_1, F_1)$ and $M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_2, Z_2, F_2)$ be two PDAs over the same alphabet Σ . Write a formal description of a PDA that recognizes the language $L(M_1) \cup L(M_2)$. No proof of correctness is required.
 - (b) | 5Marks | Let (N_1, Σ, P_1, S_1) be a CFG for a language $L_1 \subseteq \Sigma^*$ and let (N_2, Σ, P_2, S_2) be a CFG for $L_2 \subseteq \Sigma^*$. Assume that N_1 and N_2 are disjoint. Specify, formally, a CFG for the language $L_1^* \cup L_2$. No proof of correctness is required.
 - (c) 6 Marks Consider the CFG: $S \to Sa|A|BC$, $A \to a$, $B \to ab$, $C \to bC$. Remove useless symbols and useless productions, if any, from the above grammar and give the equivalent simplified grammar. What language does the grammar generates?
 - (d) SMarks Give a PDA to accept the language $\{w0x1|w, x \in \{0,1\}^*, |w| = |x|\}$.
 - (e) | 12Marks | For each of the following languages determine whether it is context-free or not. If it is context-free, then give a PDA for it. Otherwise, use the pumping lemma to prove that it is not context-free.

a)
$$L = \{a^i b^i c^j | i \le j \le 2i\}$$

b) $L = \{a^i b^j c^k d^l | i + j = k + l\}$

3. (a) 5 Marks What is the language generated by the following unrestricted grammar? Give a brief justification.

$$S \to BS \mid bC$$

$$Bb \to bbB$$

$$BC \to C$$

$$C \to \epsilon$$

(b) | 4Marks | Consider the Turing machine: $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b\}, \delta, q_0, B, \{q_2\}),$ where δ is given below.

$$\delta(q_0, a) = (q_1, a, R), \ \delta(q_0, b) = (q_0, b, R), \ \delta(q_1, a) = (q_0, a, R)$$

$$\delta(q_1, b) = (q_1, b, R), \ \delta(q_0, B) = (q_2, B, R)$$

What is the law was accounted by M2

What is the language accepted by M?

- (c) 9Marks Give the transition diagram of a Turing machine to accept the language $L = \{w \in \{0,1\}^* | w \text{ has equal numbers of 0's and 1's} \}.$
- (d) | 9Marks | Construct a standard Turing machine (give the transition diagram only) to compute the function f(n) = 2n + 1, $n \ge 0$. (Assume that the integer n is represented as 0^n and the initial configuration of the Turing machine is q_00^n1 , where q_0 is the intial state.)