Homework 6

Name: Yiqiao Jin UID: 305107551

1

Below is a CFG for this language

$$S \to A$$

S is the start variable.

A is the variable for generating a at the beginning and b at the end of the new string. It either generates a pair of a and b, or only b. This ensures that $i \leq j$, the number of a's generated is always less than or equal to that of b's. When A finishes its generation, it generates ε .

An equivalent unambiguous language is:

This language also ensures that $i \leq j$. This language is unambiguous because every a must be paired with a b when A is generating. For example, for abb, the prefix ab is generated by A, and suffix b is generated by B.

Example strings that can be accepted by L: $abb, ab, b, \varepsilon, aaabbb$

2

Note: I use w instead of x in the original question so that it won't be confused with the x in the Pumping Lemma.

We assume that L_2 is a **CFL** and obtain a contradiction. Let p be the pumping length given by the pumping lemma. We can use the string $w = 0^p 1^p$ and let

$$s=ww^Rw=\underbrace{0^p1^p1^p0^p0^p1^p}_{w^R}\underbrace{0^p1^p}_{w}=0^p1^{2p}0^{2p}1^p\in L$$

According to the pumping lemma for CFL, since $|s| \ge p$, s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \geq 0$, $uv^i xy^i z \in L_2$
- 2. $|vy| \ge 1$
- $3. |vxy| \leq p$

We consider the following 4 cases:

1) The substrings v and y contain some symbols from the 0^p in the first half of s

Since $|vxy| \leq p$, v and y CANNOT contain 0's from the 0^{2p} in the second half of s

Consider $s' = uxz = 0^i 1^j 0^{2p} 1^p$, where $i < p, j \le 2p$. Since $|vxy| \le p$, pumping down on s will still yield $|s'| \ge 5p$.

Since $s' = uxz \in L$, it must be of the form tt^Rt . The first t must begin with the block of i < p 0's followed by some number of 1's. Thus, t^Rt must contain a block of at most 2i < 2p 0's.

However, uxz contains 0^{2p} (a continuous block of 0's with length 2p), a contradiction.

2) The substrings v and y contain some symbols from the 1^{2p} in the first half of s

Since $|vxy| \leq p$, v and y CANNOT contain 1's from the 1^p in the second half of s

Consider $s'=uxz=0^i1^j0^k1^p$, where $i\leq p, j<2p, k\leq 2p$. Since $s'=uxz\in L$, it must be of the form tt^Rt .

Since $|vxy| \le p$, pumping down on s will still yield $|s'| \ge 5p$. The last t must end with the block of 1^p preceded by some number of 0's. $t = 0..0 \underbrace{1^p}_{s}$

So
$$tt^R=0..0\underbrace{1^p1^p}_{2p}0..0$$

Thus, tt^R must contain a continuous block of 2p 1's, whereas uxz contains a block of only j < 2p 1's, a contradiction.

3) The substrings v and y contain some symbols from 0^{2p} in the second half of s

Since $|vxy| \leq p$, v and y CANNOT contain 0's from the 0^p in the first half of s

Consider $s'=uxz=0^p1^i0^j1^k$, where $i\leq 2p, j<2p, k\leq p$. Assume $s'\in L$, s' must be of the form tt^Rt . Since $|vxy|\leq p$, pumping down on s will still yield $|s'|\geq 5p$. This means t^Rt must contain a continuous block of 0^{2p} .

However, s' = uxz contains a block of only j < 2p 0's, a contradiction.

4) The substrings v and y contain some symbols from 1^p in the second half of s

Since |vxy| < p, v and y CANNOT contain 1's from the 1^{2p} in the first half of s

Consider $s' = uxz = 0^p 1^{2p} 0^i 1^j$, where $i \le 2p, j < p$. Assume $s' \in L$, s' must be of the form $tt^R t$. Since $|vxy| \le p$, pumping down on s will yield $|s'| \ge 5p$. The second t must end with the block of $1^j, j < p$ preceded by some number of 0's:

Thus, tt^R must contain a continuous block of at most 2j < 2p 1's, whereas uxz actually contains a block of 2p 1's, a contradiction.

From 1-4, the Pumping Lemma does NOT apply under all these cases. So we prove that this language L_2 is NOT a **CFL**.

3

1) $R \cap L$

This can be (1) (2) (3) (4). R is an FSL means R is also a CFL. Since L is non-CFG, no closure can be applied.

For example, let $\Sigma = \{0,1\}$, $R = (00)^*$ and $L = \{ww | w \in \{0,1\}^*\}$. $R \cap L = R$, a regular language (1)

Let $\Sigma=\{a,b,c\}$, $R=\{b,c\}^*$ and $L=\{a^ib^jc^k|0\leq i\leq j\leq k\}$. $R\cap L=\{b^jc^k|0\leq j\leq k\}$, which is (2) CFL but not FSL . If $R=\{a,b,c\}^*$, then $R\cap L=L\}$. This is (4) non-CFL.

2) *A*

A can be (1) FSL, OR (2) CFL and NOT FSL, OR (3) Inherently Ambiguous CFL.

A can be (1) since finite state language is a subset of CFL.

For example, the language S o Sa|aS|a|arepsilon is an ambiguous CFL. But it represents a^*

A can be (2). If a language is not inherently ambiguous, we can eliminate the ambiguity in the language by substituting rules.

For example, the language $S \to 0S1|00S11|\varepsilon$ is an ambiguous CFL. It simply represents 0^n1^n , a CFL. We can eliminate the ambiguity in this case.

A can also be (3) if it is inherently ambiguous.

3) \bar{C} , the complement of C with respect to Σ

 \bar{C} can be (1) (2) (3) (4). A language that can be represented by a PDA is a CFL. But CFL is NOT closed under complement.

4) G

G can be (1) FSL, or (2) CFL.

The class of FSL is a subclass of CFG and every regular language is naturally context-free. Since G can be represented by an unambiguous CFG, it can either be a FSL (CFG can simulate any FSL), or it can be a CFG that is NOT an FSL.

5) \bar{L} , the complement of L with respect to Σ

 \bar{L} can be (1) (2) (3) (4). Since L is non-CFG, no closure can be applied to determine the class of \bar{L} .

6) X

X must be (4). FSL and CFL are closed under union. If X were CFL, then $L = X \cup S$ can fall into (1) (2) (3). But since L is non-CFL, X cannot be in (1) (2) (3).