	<pre>import pandas as pd import numpy as np import scipy import h5py import os import matplotlib.pyplot as plt</pre>
	<pre>import scipy from PIL import Image from scipy import ndimage %matplotlib inline import imageio from skimage.transform import resize import sklearn</pre>
In [39]:	os.getcwd() os.chdir('C:\\Users\\manjm\\OneDrive\\Desktop\\IASRI_Project') Reading Train and Test Data
In [40]:	<pre>train_file = "train_catvnoncat.h5" train_data = h5py.File(train_file, 'r') train_data.keys() train_x=train_data.get("train_set_x") train_x = np.array(train_x) print(train_x.shape)</pre>
	<pre>train_y=train_data.get("train_set_y") train_y = np.array(train_y) print(train_y.shape) test_file = "test_catvnoncat.h5" test_data = h5py.File(test_file, 'r') test_data.keys()</pre>
	<pre>test_x=test_data.get("test_set_x") test_x = np.array(test_x) print(test_x.shape) test_y=test_data.get("test_set_y") test_y = np.array(test_y) print(test_y.shape)</pre>
	(209, 64, 64, 3) (209,) (50, 64, 64, 3) (50,) Function for class prediction
In [5]:	<pre>def class_predict(n): if n==1: return "Cat" else: return "Not Cat"</pre>
In [6]: Out[6]:	<pre>plt.imshow(train_x[index]) image=train_y[index] class_predict(image)</pre>
	10 - 20 - 30 -
	40 - 50 - 60 - 0 10 20 30 40 50 60
In [7]:	<pre>### START CODE HERE ### (~ 3 lines of code) m_train = train_y.shape[0] m_test = test_y.shape[0] num_px = train_x.shape[1] ### END CODE HERE ###</pre>
	<pre>print ("Number of training examples: m_train = " + str(m_train)) print ("Number of testing examples: m_test = " + str(m_test)) print ("Height/Width of each image: num_px = " + str(num_px)) print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)") print ("train_set_x shape: " + str(train_x.shape)) print ("train_set_y shape: " + str(train_y.shape)) print ("test_set_x shape: " + str(test_x.shape)) print ("test_set_y shape: " + str(test_y.shape))</pre>
	Number of training examples: m_train = 209 Number of testing examples: m_test = 50 Height/Width of each image: num_px = 64 Each image is of size: (64, 64, 3) train_set_x shape: (209, 64, 64, 3) train_set_y shape: (209,) test_set_x shape: (50, 64, 64, 3)
In [8]:	<pre>test_set_y shape: (50,) # Reshape the training and test examples ### START CODE HERE ### (≈ 2 lines of code) train_set_x_flatten = train_x.reshape(train_x.shape[0], -1).T test_set_x_flatten = test_x.reshape(test_x.shape[0], -1).T</pre>
	<pre>### END CODE HERE ### print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape)) print ("train_set_y shape: " + str(train_y.shape)) print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape)) print ("test_set_y shape: " + str(test_y.shape)) print ("test_set_y shape: " + str(train_set_x_flatten[0:5,0]))</pre> train set x flatten shape: (12388 200)
In [9]:	train_set_x_flatten shape: (12288, 209) train_set_y shape: (209,) test_set_x_flatten shape: (12288, 50) test_set_y shape: (50,) sanity check after reshaping: [17 31 56 22 33] train_set_x = train_set_x_flatten / 255 test_set_x = test_set_x_flatten / 255
In [10]:	# SIGMOID FUNCTION def sigmoid(z): """ Compute the sigmoid of z
	Arguments: x A scalar or numpy array of any size. Return: s sigmoid(z) """ ### START CODE HERE ### (≈ 1 line of code)
In [11]:	<pre>s = 1 / (1 + np.exp(-z)) ### END CODE HERE ### return s print ("sigmoid(0) = " + str(sigmoid(0))) print ("sigmoid(100) = " + str(sigmoid(9.2)))</pre>
In [12]:	<pre>def initialize_with_zeros(dim):</pre>
	This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0. Argument: dim size of the w vector we want (or number of parameters in this case) Returns: w initialized vector of shape (dim, 1) b initialized scalar (corresponds to the bias)
	### START CODE HERE ### (≈ 1 line of code) w = np.zeros(shape=(dim, 1)) b = 0 ### END CODE HERE ###
In [13]:	<pre>assert(w.shape == (dim, 1)) assert(isinstance(b, float) or isinstance(b, int)) return w, b dim = 3 w, b = initialize_with_zeros(dim)</pre>
Tn [20].	<pre>print ("w = " + str(w)) print ("b = " + str(b)) w = [[0.] [0.] [0.]] b = 0</pre>
in [30]:	<pre>def propagate(w, b, X, Y): """ Implement the cost function and its gradient for the propagation explained above Arguments: w weights, a numpy array of size (num_px * num_px * 3, 1)</pre>
	b bias, a scalar X data of size (num_px * num_px * 3, number of examples) Y true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples) Return: cost negative log-likelihood cost for logistic regression dw gradient of the loss with respect to w, thus same shape as w
	<pre>db gradient of the loss with respect to b, thus same shape as b Tips: - Write your code step by step for the propagation """ m = X.shape[1]</pre>
	# FORWARD PROPAGATION (FROM X TO COST) ### START CODE HERE ### (≈ 2 lines of code) A = sigmoid(np.dot(w.T, X) + b) # compute activation cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) # compute cost ### END CODE HERE ### ### BACKWARD PROPAGATION (TO FIND GRAD)
	### START CODE HERE ### (≈ 2 lines of code) dw = (1 / m) * np.dot(X, (A - Y).T) db = (1 / m) * np.sum(A - Y) ### END CODE HERE ### assert(dw.shape == w.shape) assert(db.dtype == float) cost = np.squeeze(cost)
	<pre>cost = np.squeeze(cost) assert(cost.shape == ()) grads = {"dw": dw,</pre>
In [31]:	<pre>w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]]) grads, cost = propagate(w, b, X, Y) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) print ("cost = " + str(cost)) dw = [[0.99993216] [1.99980262]]</pre>
In [16]:	<pre>[1.99980262]] db = 0.49993523062470574 cost = 6.000064773192205 # FUNCTION: optimize def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False): """ This function optimizes w and b by running a gradient descent algorithm</pre>
	This function optimizes w and b by running a gradient descent algorithm Arguments: w weights, a numpy array of size (num_px * num_px * 3, 1) b bias, a scalar X data of shape (num_px * num_px * 3, number of examples) Y true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples) num_iterations number of iterations of the optimization loop
	learning_rate learning rate of the gradient descent update rule print_cost True to print the loss every 100 steps Returns: params dictionary containing the weights w and bias b grads dictionary containing the gradients of the weights and bias with respect to the cost function costs list of all the costs computed during the optimization, this will be used to plot the learning curve.
	Tips: Basically we need to write down two steps and iterate through them: 1) Calculate the cost and the gradient for the current parameters. Use propagate(). 2) Update the parameters using gradient descent rule for w and b. """ costs = []
	<pre>for i in range(num_iterations): # Cost and gradient calculation (≈ 1-4 lines of code) ### START CODE HERE ### grads, cost = propagate(w, b, X, Y)</pre>
	### END CODE HERE ### # Retrieve derivatives from grads dw = grads["dw"] db = grads["db"] # update rule (* 2 lines of code) ### START CODE HERE ###
	<pre>w = w - learning_rate * dw # need to broadcast b = b - learning_rate * db ### END CODE HERE ### # Record the costs if i % 100 == 0: costs.append(cost)</pre>
	<pre># Print the cost every 100 training examples if print_cost and i % 100 == 0: print ("Cost after iteration %i: %f" % (i, cost)) params = {"w": w, "b": b}</pre>
In [17]:	<pre>grads = {"dw": dw, "db": db} return params, grads, costs params, grads, costs = optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False)</pre>
	<pre>print ("w = " + str(params["w"])) print ("b = " + str(params["b"])) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) w = [[0.1124579] [0.23106775]] b = 1.5593049248448891</pre>
In [18]:	<pre>dw = [[0.90158428] [1.76250842]] db = 0.4304620716786828 # FUNCTION: predict def predict(w, b, X):</pre>
	Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments: w weights, a numpy array of size (num_px * num_px * 3, 1) b bias, a scalar X data of size (num_px * num_px * 3, number of examples)
	Returns: Y_prediction a numpy array (vector) containing all predictions (0/1) for the examples in X """ m = X.shape[1] Y_prediction = np.zeros((1, m)) w = w.reshape(X.shape[0], 1)
	# Compute vector "A" predicting the probabilities of a cat being present in the picture ### START CODE HERE ### (≈ 1 line of code) A = sigmoid(np.dot(w.T, X) + b) ### END CODE HERE ### for i in range(A.shape[1]): # Convert probabilities a[0,i] to actual predictions p[0,i]
	### START CODE HERE ### (≈ 4 lines of code) Y_prediction[0, i] = 1 if A[0, i] > 0.5 else 0 ### END CODE HERE ### assert(Y_prediction.shape == (1, m)) return Y_prediction
	<pre>print("predictions = " + str(predict(w, b, X))) predictions = [[1. 1.]] # FUNCTION: model def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):</pre>
	Builds the logistic regression model by calling the function you've implemented previously Arguments: X_train training set represented by a numpy array of shape (num_px * num_px * 3, m_train) Y_train training labels represented by a numpy array (vector) of shape (1, m_train) X_test test set represented by a numpy array of shape (num_px * numpy * 3, m_test)
	Y_test test labels represented by a numpy array (vector) of shape (1, m_test) num_iterations hyperparameter representing the number of iterations to optimize the parameters learning_rate hyperparameter representing the learning rate used in the update rule of optimize() print_cost Set to true to print the cost every 100 iterations Returns: d dictionary containing information about the model.
	<pre>### START CODE HERE ### # initialize parameters with zeros (≈ 1 line of code) w, b = initialize_with_zeros(X_train.shape[0]) # Gradient descent (≈ 1 line of code) parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)</pre>
	# Retrieve parameters w and b from dictionary "parameters" w = parameters["w"] b = parameters["b"] # Predict test/train set examples (* 2 lines of code) Y_prediction_test = predict(w, b, X_test) Y_prediction_train = predict(w, b, X_train)
	<pre>### END CODE HERE ### # Print train/test Errors print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100)) print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))</pre>
	<pre>d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train" : Y_prediction_train, "w" : w, "b" : b, "learning_rate" : learning_rate, "num_iterations": num_iterations}</pre>
In [21]:	<pre>return d d = model(train_set_x, train_y, test_set_x, test_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True) Cost after iteration 0: 0.693147 Cost after iteration 100: 0.584508</pre>
	Cost after iteration 200: 0.466949 Cost after iteration 300: 0.376007 Cost after iteration 400: 0.331463 Cost after iteration 500: 0.303273 Cost after iteration 600: 0.279880 Cost after iteration 700: 0.260042 Cost after iteration 800: 0.242941 Cost after iteration 900: 0.228004
	Cost after iteration 200: 0.466949 Cost after iteration 300: 0.376007 Cost after iteration 500: 0.3031463 Cost after iteration 500: 0.303273 Cost after iteration 600: 0.279880 Cost after iteration 700: 0.260042 Cost after iteration 800: 0.242941 Cost after iteration 900: 0.228004 Cost after iteration 1000: 0.23078 Cost after iteration 1100: 0.20378 Cost after iteration 1100: 0.192544 Cost after iteration 1200: 0.192544 Cost after iteration 1400: 0.174399 Cost after iteration 1500: 0.166521 Cost after iteration 1500: 0.159305
	Cost after iteration 200: 0.466949 Cost after iteration 400: 0.331463 Cost after iteration 500: 0.393273 Cost after iteration 600: 0.279880 Cost after iteration 700: 0.260042 Cost after iteration 700: 0.260042 Cost after iteration 700: 0.260042 Cost after iteration 900: 0.228004 Cost after iteration 900: 0.228004 Cost after iteration 1000: 0.283078 Cost after iteration 1000: 0.23078 Cost after iteration 1000: 0.230378 Cost after iteration 1000: 0.183033 Cost after iteration 1000: 0.183033 Cost after iteration 1300: 0.183033 Cost after iteration 1500: 0.165521 Cost after iteration 1500: 0.165521 Cost after iteration 1500: 0.165621 Cost after iteration 1600: 0.159055 Cost after iteration 1600: 0.165067 Cost after iteration 1600: 0.160000 Cost after iteration 16000 Cost after iteration 160000 Cost after iteration 16000 Cost after iteration 16000 Cost after iteration 16000 Cost after iteration 160000 Cost after iteration 16000 Cost after iteration 16000 Cost after iteration 16000 Cost after iteration 16000 Cost after iteration
	Cost after iteration 200: 0.460940 Cost after iteration 400: 0.374687 Cost after iteration 400: 0.331463 Cost after iteration 600: 0.303273 Cost after iteration 600: 0.79880 Cost after iteration 600: 0.279880 Cost after iteration 600: 0.279880 Cost after iteration 800: 0.260042 Cost after iteration 800: 0.22004 Cost after iteration 1000: 0.21820 Cost after iteration 1000: 0.21820 Cost after iteration 1000: 0.21820 Cost after iteration 1200: 0.20378 Cost after iteration 1200: 0.102544 Cost after iteration 1200: 0.102544 Cost after iteration 1200: 0.102540 Cost after iteration 1500: 0.102540 Cost after iteration 1500: 0.102540 Cost after iteration 1500: 0.102607 Cost after iteration 1900: 0.1007 C
	Cost after iteration 200: 0.460949 Cost after iteration 400: 0.33463 Cost after iteration 400: 0.33463 Cost after iteration 600: 0.30273 Cost after iteration 600: 0.750800 Cost after iteration 600: 0.750800 Cost after iteration 600: 0.750800 Cost after iteration 600: 0.250842 Cost after iteration 600: 0.450941 Cost after iteration 600: 0.450941 Cost after iteration 700: 0.240940 Cost after iteration 100: 0.240940 Cost after iteration 1100: 0.203070 Cost after iteration 1100: 0.203070 Cost after iteration 1200: 0.103033 Cost after iteration 1200: 0.103033 Cost after iteration 1200: 0.150900 Cost after iteration 1200: 0.1509000 Cost after iteration 1200: 0.150900 Cost after iteration 1200: 0.150900 Cost after iteration 1200: 0.1509000 Cost after iteration 1200: 0.15090000 Cost after iteration 1200: 0.15090000000000000000000000000000000000
Out[51]:	Cost after iteration 2000 0.4090400 Cost after iteration 2000 0.709007 Cost after iteration 2000 0.709000 Cost after iteration 2000 0.7090000 Cost after iteration 2000 0.7090000000000 Cost after iteration 2000000000000000000000000000000000000
Out[51]:	Cost affect interation 2000 0.3-05004 Cost affect interation 2000 0.3-
Out[51]:	Tools after iteration 2008 8.2-0009 See after iteration 2009 8.2-000 8.2-009 See after iteration 2009 8.2-000 8.2-009 See after iteration 2009 8.2-00 8.2-00 8.2-009 See after iteration 2009 8.2-00 8.2-00 8.2-009 See after iteration 2009 8.2-00 8.2-00 8.2-00 See after iteration 2009 8.2-00
Out[51]: In [56]:	Dost of the Terestico 2001 2 1 4 5 4 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Out[51]: In [56]:	Case of the Table 12
Out[51]: In [56]:	Second S
Out[51]: In [56]: In [22]: Out[23]:	Similar in Annaham 200 (1980) The state of the Processing of the Addition of
Out[51]: In [56]: In [22]: Out[23]:	State
Out[51]: In [56]: In [22]: Out[23]:	Social of containing the state of the state
Out[51]: In [56]: In [22]: Out[23]:	Control Cont
Out[51]: In [56]: In [22]: In [24]:	The contraction of the schools of the school of the s
Out[51]: In [56]: In [22]: In [24]:	### Comparison of the Comparis
Out[51]: In [56]: In [22]: In [24]:	### PART PART
Out[51]: In [56]: In [22]: In [24]:	### Comparison of the Comparis
Out[51]: In [56]: In [22]: In [24]:	### Company of the Co
<pre>In [23]: In [24]: In [25]:</pre>	### Company of the Co
<pre>In [23]: In [24]: In [25]:</pre>	### Company of the Co
In [26]: In [26]: In [25]:	Metrics Continue of the con
In [26]: In [26]: In [25]:	Moderness For examination and the second se
In [26]: In [26]: In [25]:	Motions Mot
In [26]: In [24]: In [25]:	
In [26]: In [24]: In [25]:	
In [23]: In [24]: In [25]: In [26]: In [27]:	
In [23]: In [24]: In [25]: In [26]: In [27]:	
In [23]: In [24]: In [25]: In [26]: In [27]:	
In [26]: In [26]: In [27]: In [62]:	
In [23]: In [24]: In [25]: In [27]:	
In [26]: In [27]: In [27]: In [64]: In [64]:	
In [26]: In [27]: In [64]: In [64]:	