PP13: TIR AVEC FROTTEMENTS QUADRATIQUES

Énoncé: Le but est le même quand dans les exercices concernant le tir parabolique et le tir avec frottements linéaires: trouver les deux angles permettant d'atteindre un objectif donné connaissant la vitesse initiale v_0 et l'altitude h initiale. La différence est que vous êtes à présent libres de la méthode à adopter pour intégrer la trajectoire (vous pouvez vous inspirer, en les adaptant, des fichiers précédents). L'équation différentielle vectorielle vérifiée par le projectile est dans notre cas

$$\vec{a} = \vec{g} - \gamma \|\vec{v}\| \vec{v}$$

où γ est une constante ¹ fournie dans les données. Projetée sur $\vec{e_x}$ et $\vec{e_z}$, l'équation précédente peut se réécrire

$$\begin{cases} \ddot{x} = -\gamma \sqrt{\dot{x}^2 + \dot{z}^2} \, \dot{x} \\ \ddot{z} = -g - \gamma \sqrt{\dot{x}^2 + \dot{z}^2} \, \dot{z} \end{cases}$$

On certifie 2 qu'avec les données fournies, il y aura deux valeurs possibles pour l'angle α , l'une (α_1) située entre 0 et $\pi/8$ (tir plongeant) et l'autre (α_2) située entre $\pi/8$ et $\pi/2$ (tir vertical). On affichera dans l'ordre les valeurs de α_1 et α_2 exprimées en radians. ATTENTION, il s'agit bien de $\pi/8$ et non $\pi/4$ comme les exercices précédents.

^{1.} Attention, elle n'a pas la même dimension que dans l'exercice précédent.

^{2.} Une dichotomie peut sembler adéquate.