

QUAD BUS BUFFERS (3-STATE)

PRELIMINARY DATA

- HIGH SPEED: tPD = 3.8 ns (TYP.) at VCC = 5V
- LOW POWER DISSIPATION:
 I_{CC} = 4 μA (MAX.) at T_A = 25 °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- POWER DOWN PROTECTION ON INPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 8 mA (MIN)
- BALANCED PROPAGATION DELAYS: tplh ≅ tphl
- OPERATING VOLTAGE RANGE: Vcc (OPR) = 2V to 5.5V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 125
- IMPROVED LATCH-UP IMMUNITY
- LOW NOISE: V_{OLP} = 0.8V (Max.)

DESCRIPTION

The 74VHC125 is an advanced high-speed CMOS QUAD BUS BUFFERS fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology.

This device requires the 3-STATE control input \overline{G} to be set high to place the output into the high impedance state.

Power down protection is provided on all inputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5V to 3V.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2kV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

June 1999 1/8

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION				
1, 4, 10, 13	1G to 4G	Output Enable Inputs				
2, 5, 9, 12	1A to 4A	Data Inputs				
3, 6, 8, 11	1Y to 4Y	Data Outputs				
7	GND	Ground (0V)				
14	Vcc	Positive Supply Voltage				

TRUTH TABLE

Α	G	Υ
X	Н	Z
L	L	L
Н	L	Н

X:"H" or "L"
Z: High Impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	2.0 to 5.5	V
V_{I}	Input Voltage	0 to 5.5	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-40 to +85	°C
dt/dv	Input Rise and Fall Time (see note 1) ($V_{CC} = 3.3 \pm 0.3V$) ($V_{CC} = 5.0 \pm 0.5V$)	0 to 100 0 to 20	ns/V ns/V

1) V_{IN} from 30% to 70% of V_{CC}

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions		Value					Unit
		Vcc		T,	A = 25 °	C C	-40 to	85 °C	
		(V)		Min.	Тур.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		V
	Voltage	3.0 to 5.5		0.7V _{CC}			0.7V _{CC}		V
VIL	Low Level Input	2.0				0.5		0.5	V
	Voltage	3.0 to 5.5				0.3V _{CC}		0.3V _{CC}	V
V _{OH}	High Level Output	2.0	I _O =-50 μA	1.9	2.0		1.9		
	Voltage	3.0	I _O =-50 μA	2.9	3.0		2.9		
		4.5	I _O =-50 μA	4.4	4.5		4.4		V
		3.0	I _O =-4 mA	2.58			2.48		
		4.5	I _O =-8 mA	3.94			3.8		
VoL	Low Level Output	2.0	Ιο=50 μΑ		0.0	0.1		0.1	
	Voltage	3.0	I _O =50 μA		0.0	0.1		0.1	
		4.5	I _O =50 μA		0.0	0.1		0.1	V
		3.0	I _O =4 mA			0.36		0.44	
		4.5	I _O =8 mA			0.36		0.44	
l _{OZ}	High Impedance Output Leakage Current	5.5	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.25		±2.5	μА
l _l	Input Leakage Current	0 to 5.5	$V_I = 5.5V$ or GND			±0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40	μА

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3 \text{ ns}$)

Symbol	Parameter	Test Condition		Value				Unit		
		Vcc	C∟		T,	_A = 25 °	С	-40 to	85 °C	
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay	3.3 ^(*)	15			5.6	8.0	1.0	9.5	
t _{PHL}	Time	3.3 ^(*)	50			8.1	11.5	1.0	13.0	ns
		5.0 ^(**)	15			3.8	5.5	1.0	6.5	
		5.0 ^(**)	50			5.3	7.5	1.0	8.5	
t _{PLZ}	Output Disable Time	3.3 ^(*)	15	$R_L = 1K\Omega$		5.4	8.0	1.0	9.5	
t _{PHZ}		3.3 ^(*)	50	$R_L = 1K\Omega$		7.9	11.5	1.0	13.0	ns
		5.0 ^(**)	15	$R_L = 1K\Omega$		3.6	5.1	1.0	6.0	
		5.0 ^(**)	50	$R_L = 1K\Omega$		5.1	7.1	1.0	8.0	
t _{PZL}	Output Enable Time	3.3 ^(*)	50	$R_L = 1K\Omega$		9.5	13.2	1.0	15.0	ns
t _{PZH}		5.0 ^(**)	50	$R_L = 1K\Omega$		6.1	8.8	1.0	10.0	113

^(*) Voltage range is 3.3V ± 0.3V (**) Voltage range is 5V ± 0.5V

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value				Unit	
			T _A = 25 °C		-40 to 85 °C			
			Min.	Тур.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			4	10		10	pF
C _{OUT}	Output Capacitance			6				pF
C _{PD}	Power Dissipation Capacitance (note 1)			14				pF

¹⁾ CPD is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. I_{CC}(opr) = C_{PD} • V_{CC} • f_{IN} + I_{CC}/4 (per circuit)

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value				Unit	
		Vcc		Т,	_A = 25 °	C	-40 to 85 °C		
		(V)		Min.	Тур.	Max.	Min.	Max.	
V _{OLP}	Dynamic Low Voltage	5.0			0.3	0.8			
V _{OLV}	Quiet Output (note 1, 2)			-0.8	-0.3				
V _{IHD}	Dynamic High Voltage Input (note 1, 3)	5.0	$C_L = 50 pF$	3.5					V
V _{ILD}	Dynamic Low Voltage Input (note 1, 3)	5.0				1.5			

¹⁾ Worst case package.

TEST CIRCUIT

TEST	SWITCH
телн, тень	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

C_L = 15/50 pF or equivalent (includes jig and probe capacitance)

²⁾ Max number of outputs defined as (n). Data inputs are driven 0V to 5.0V, (n -1) outputs switching and one output at GND.

³⁾ Max number of data inputs (n) switching. (n-1) switching 0V to 5.0V. Inputs under test switching: 5.0V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f=1MHz.

 $R_L = R_1 = 1K\Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAYS (f=1MHz; 50% duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)

SO-14 MECHANICAL DATA

DIM.		mm			inch				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
А			1.75			0.068			
a1	0.1		0.2	0.003		0.007			
a2			1.65			0.064			
b	0.35		0.46	0.013		0.018			
b1	0.19		0.25	0.007		0.010			
С		0.5			0.019				
c1			45	(typ.)					
D	8.55		8.75	0.336		0.344			
Е	5.8		6.2	0.228		0.244			
е		1.27			0.050				
e3		7.62			0.300				
F	3.8		4.0	0.149		0.157			
G	4.6		5.3	0.181		0.208			
L	0.5		1.27	0.019		0.050			
М			0.68			0.026			
S		8 (max.)							

TSSOP14 MECHANICAL DATA

DIM.		mm		inch			
-	MIN. TYP. MAX.		MAX.	MIN.	MAX.		
А			1.1			0.433	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.85	0.9	0.95	0.335	0.354	0.374	
b	0.19		0.30	0.0075		0.0118	
С	0.09		0.20	0.0035		0.0079	
D	4.9	5	5.1	0.193	0.197	0.201	
E	6.25	6.4	6.5	0.246	0.252	0.256	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°	4°	8°	0°	4°	8°	
L	0.50	0.60	0.70	0.020	0.024	0.028	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com