Text Mining Homework - Week 3

Aimee Barciauskas, Felix Gutmann, Guglielmo Pelino, Thomas Vicente ${\rm May}\ 10,\ 2016$

Exercise 2

(a)

Figure 1: DAG Representation

(b)

The Markov Blanket of node V_i in the DAG consists of its parents, its children and the parents of its children. Applying this definition table (1) shows the Markov Blanket for the model.

\mathbf{Node}	Nodes in Markov Blanket
$\overline{w_{d,n}}$	$oldsymbol{eta}_k,z_d$
z_d	$w_{d,n},oldsymbol{eta}_k$
$oldsymbol{eta}_k$	$w_{d,n},z_d,oldsymbol{eta}_{-k}$

Table 1: Markov Blanket

(c)

1. Choose values for α and η

2. For each $s \in \{1, ..., S\}$:

- sample from
$$\mathbf{P}\left[\boldsymbol{\rho}^{s} \middle| z_{d}^{(s-1)}\right] \propto \mathbf{P}\left[z_{d}^{(s-1)} \middle| \boldsymbol{\rho}^{s}\right] \mathbf{P}\left[\boldsymbol{\rho}^{s}\right]$$

$$= \prod_{k} \left(\rho_{k}^{s}\right)^{\alpha-1} \rho_{k}^{s}$$

$$\sim \mathbf{Dir}(\alpha + s)$$

- sample from
$$\mathbf{P}\left[\boldsymbol{\beta}_{k}^{s}\middle|\mathbf{w}, \boldsymbol{z}^{(s-1)}, \boldsymbol{\beta}_{-k}^{(s-1)}\right] \propto \mathbf{P}\left[\mathbf{w}\middle|\boldsymbol{z}^{(s-1)}, \mathbf{B}\right] \mathbf{P}\left[\boldsymbol{\beta}_{k}^{s}\right]$$

$$\prod_{v} \prod_{k} \beta_{k,v}^{m_{k,v}^{(s-1)}} \prod_{v} \beta_{k,v}^{\eta-1} \propto \prod_{v} \beta_{k,v}^{m_{k,v}^{(s-1)}} \prod_{v} \beta_{k,v}^{\eta-1}$$

$$\sim \mathbf{Dir}(\eta + m_{k,1}^{s-1}, \dots, \eta + m_{k,V}^{s-1})$$

- sample from
$$\mathbf{P}\Big[z_d^s=k\Big|\mathbf{w}_d,\mathbf{B}^s,oldsymbol{
ho}^s\Big]=
ho_k^s,$$

where $m_{k,v}^{s-1}$ is the number of times topic k allocation variable generates term v in the (s-1)-th step.