School of Computing and Information Systems The University of Melbourne

COMP90049 Knowledge Technologies (Semester 2, 2017)

Workshop exercises: Week 3

1.	Finish any remaining questions from last week, if necessary.	

- 2. What is a **vector space model**, and why is it useful?
- 3. Consider the following collection of "documents" \mathcal{C} :
 - (i) It is what it is.
 - (ii) Jean's hat is finer than Karl's hat.
 - (iii) We are obsessing about gene issues.

Build a vector space model for this collection.

- 4. Use a model to decide which of the sentences in \mathcal{C} is most similar to the following sentence:
 - (iv) Karl is obsessed with genes.

Based on the following metrics:

- (a) Jaccard similarity
- (b) the Dice coefficient
- (c) Euclidean distance
- (d) Manhattan distance
- (e) Cosine similarity

____ & ____

Consider the following dataset, representing a collection of documents:

apple	ibm	lemon	sun	$_{ m LABEL}$
4	0	1	1	FRUIT
5	0	5	2	FRUIT
2	5	0	0	COMP
1	2	1	7	COMP
	4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- 5. If we wished to estimate the value of P(apple, FRUIT) based on the data above, we might arrive at the value $\frac{9}{4}$, or the value $\frac{9}{36}$.
 - (a) What do each of these probabilities correspond to? Explain the model that underlies each of these interpretations.
 - (b) Which of these do you think would be more useful, if we wished to use these probabilities to help predict the labels of unknown documents?
- 6. Calculate the entropy of the distribution of the label attribute, based on the data above.