

Machine-Learning-Artificial-Intelligence Meetup Bern

Graph-based Pattern Recognition – Example Application Keyword SpottingMichael Stauffer

<i>C</i> 21	c_{22}	• • •	c_{2m}	∞	$c_{2arepsilon}$	•	•
	•	•	•	•	•	•	∞
,1	c_{n2}	• • •	c_{nm}	∞	• • •	∞	$c_{narepsilon}$
1	∞	• • •	∞	0	0	• • •	0
D	$c_{arepsilon2}$	•	•	0	0	•	•
•	•	•		•	•	•	_

Content

- What is Pattern Recognition (PR) ?
- Statistical vs. Structural PR
- Graph-based Keyword Spotting
- Conclusion
- Q+A

What is Pattern Recognition (PR)?

PR deals with the **recognition** of **patterns** and the correct **anticipation** of **actions**.

Pattern (Video, Image, DNA, etc.)

Action (Classification, Clustering, etc.)

Michael Stauffer

Statistical vs. Structural PR

Sequence of Feature Vectors

Strings, Trees, or Graphs

- + Efficiency
- Representational Power

- Efficiency
- + Representational Power

Transcription vs. Keyword Spotting in Handwritten Historical Documents

- ++ Accessibility
- Applicability

- + Accessibility
- ++ Applicability

Graph-based Keyword Spotting

Michael Stauffer 18.06.17 6

Graph-based Keyword Spotting – Keypoint Graph Representation

Input Skeletonised Word Image

Output Graph

1. Keypoints

2. Intermediate Points

3. Graph

Graph-based Keyword Spotting – Graph Edit Distance (GED)

GED = Minimum amount/cost of distortion to transform graph g_1 into graph g_2

Edit path

Number of edit paths is exponential > We need approximative approaches

Conclusion

- Graphs offer a natural way of representation
 - Molecules
 - Social Networks
 - Handwriting
 - etc.
- Graph-based Keyword Spotting
 - Makes handwritten historical documents accessible
 - Can keep up with Deep Learning (Convolutional Neural Networks)
 - No labelling needed
- Future Trends
 - Deep Learning for Graphs

Q+A

