Yahoo SAMOA Lab2 --Test Performance of Non-parallel Naive Bayes Classifier

Li Huang

Computer Engineering and Computer Science

J.B. Speed School of Engineering

University of Louisville

l0huan08@gmail.com

2014.4.3

Abstract:

A Naive Bayes Classifier was implemented under Yahoo SAMOA platform. It is a non-parallel algorithm. This lab test the performance, including speed and correct rate, of this algorithm under different cluster setting: (1)single machine (2) two machine-cluster (3) three machine-cluster. The source data are from Kdd99¹ and Movie Review². Vertical Hoeffding Decision Tree and another version of Naive Bayes classifier are also tested and compared.

¹ Kdd99 data: https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

² Movie Review data: <u>https://www.cs.cornell.edu/people/pabo/movie-review-data/</u>

Contents

1.Purpose:	3
2.Test environment:	3
3.Test settings	4
3.1 Algorithm	4
3.1.1 Introduction of Naive Bayes Classifier	4
3.1.2 Algorithms used in test	5
3.2 Test Data	9
3.3 Cluster modes	13
4. Test Result	13
4.1 Final result	14
5 Conclusion	17
Appendix	18
1. Detail of Test Result	18
1.1 Result file	18
1.2 log file	19
1.3 Raw Test Result	20
1.4 Average value of Test Result	24

1.Purpose:

To learn how to implement user-defined data mining algorithm under SAMOA platform, I tried to implement a Naive Bayes Classifier. The first version of my algorithm is tried to be as simple as possible, so it is non-parallel version. To test the characteristic and possibility of SAMOA, I test this algorithm on different cluster settings: Single-machine, Two-machine cluster, Three-machine cluster, to see if it is possible to get better performance when the cluster becomes larger(with more computing nodes). I also compared this algorithm with VHDT(Vertical Hoeffding Decision Tree) which has been integrated into SAMOA, as well as another version of my Naive Bayes classifier.

2.Test environment:

The test is running on a cluster composed by three computers. They are connected by a switch. The hardware and software configuration are shown below:

Hardware	Software
node1: Pentium4 1.8Ghz, 576 MB RAM	Ubuntu Linux Desktop ver12.04 32-bit
node2: Pentium4 1.8Ghz, 768 MB RAM	Yahoo S4 ver0.6
node3: Pentium4 2.35Ghz, 495 MB RAM	Yahoo SAMOA ver0.0.1

3.Test settings

3 different test data are applied to the implemented Naive Bayes algorithm, the performances (speed and correct rate) are collected under 4 different cluster configuration.

3.1 Algorithm

3.1.1 Introduction of Naive Bayes Classifier

Consider the test data instance, X=(x1,x2,..xi,..xM), has M attributes a1,a2,a3,a4,a5,a6,a7,....ai,...aM. It may belong to K class C1,C2,...,Ck,...CK.

To decide which class it belongs, we need to calculate the probability that X belongs to class k, P(Ck|X), and find the maximum one.

(1) Bayes formula

$$Pk = P(Ck | X) = P(X | Ck)*P(Ck)/P(X)$$
(1)

Comparing Pj and Pk:

$$Pj / Pk = [P(X|Cj)*P(Cj)] / [P(X|Ck)*P(Ck)]$$
(2)

(2) Independent assumption

Naive Bayes assumes all the attributes a1,a2,...,aM are independent, that $P(X|Ck)=P(x1,x2,x3,...,xM|Ck)=P(x1|Ck)*P(x2|Ck)*....*P(xi|Ck)*...P(xM|Ck) \qquad(3)$

$$Pj / Pk = [P(x1|Cj)*P(x2|Cj)*...P(xM|Cj)] / [P(x1|Ck)*P(x2|Ck)*...P(xM|Ck)] * P(Cj)/P(Ck)(4)$$

(3) Probability estimation

We can estimate by counting the training data:

$$P(Cj) = n(Cj) / N.$$
(5)

$$P(xi \mid Ck) = n(xi,Ck)/n(Ck)$$
.(6)

where

n(Cj): number of instances in training data that belongs to class Cj.

N: totally number of training instances.

n(xi,Ck): number of instances has value xi in attribute i, and belongs to class Ck.

Smoothing:

In practice, $P(xi \mid Ck) = n(xi,Ck)/n(Ck)$ is too harsh and maybe can be divided by 0. So "smoothing" is applied:

$$P(xi \mid Ck) = (n(xi,Ck)+I) / (n(Ck)+I*J),$$
(7)

that I and J are user-defined constants, usually I=1 and J=|ai|=number of distinct values of attribute i.

Deal with real attribute values:

However, counting n(xi,Ck) only works for nominal attribute and enumerate and small integer attribute. If attribute i are real values, we cannot count n(xi,Ck). So in this situation we must use other method to estimate P(xi|Ck). One way is assuming the values in attribute i among the instances belong to class Ck are in a specific distribution, that P(xi|Ck) can be calculate directly as same as the probability density f(xi) among the training data belongs to class Ck.

(4) Class labeling

After calculating every Pj while j=1,2,...K, we can find the max one, Pk, then we can output the class label of the test instance X is Ck.

3.1.2 Algorithms used in test

Three algorithms are applied and compared in this test.

(1) Naive Bayes Classifier - my version 4 (NB-4)

Several different versions of Naive Bayes algorithm were designed, and each version use different strategy and parallel topology. The "NB-4" is the 4th version of Naive Bayes algorithm I designed.

NB-4 is a non-parallel Naive Bayes Classifier implemented by myself. It useS a single "ModelProcessor" to train the model and apply the model to calculate classification result. The core data structure is the statistic information for each attribute of training data:

A "matrix" to record n(xi, Ck) and a vector to record n(Ck).

Advantage: Fast and simple data structure

Disadvantage: Unfortunately, this algorithm can only handle data with nominal attributes, or enumerate(small integer) attributes. When the attribute are continuous real values or large integers, this algorithm will crash and cause error. So latter I designed NB-5 algorithm.

(2) Naive Bayes Classifier - my version 5 (NB-5)

This algorithm is designed to handle real values and large integer attributes in input data, which is a problem in "NB- 4". The code is totally different from NB-4, that NB-5 is copy and modified from the source code of Naive Bayes Classifier in MOA(Massive Online Analysis)³. This algorithm consider the values in a specific numeric attribute(integer or real) within a specific class as Gauss(Normal) distribution, that it can calculate:

 $P(xi \mid Ck)$ = probability density(x) in values belongs to class $Ck = f(x \mid Ck)$

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
(8)

The parameter μ in this definition is the mean or expectation of the distribution (and also its median and mode). The parameter σ is its standard deviation;

When encounter new instance, this algorithm update the μ [i,k] and σ [i,k], which is corresponding to the distribution of attribute i's values within class k.

Advantages:

Simple; Able to process both numeric attributes and nominal attributes.

Disadvantages:

Not designed for parallel computing.

³ MOA: http://moa.cms.waikato.ac.nz/

The streaming processing topology (in SAMOA terminology) of NB-4 and NB-5 are shown below:

(3) Vertical Hoeffding Decision Tree (VHT)

This algorithm is the default classifier which has been implemented by SAMOA. It is a parallel algorithm that its speed can scale-up when the number of computing nodes increases.

VHDT is tested as a baseline to compare with my own Naive Bayes classifier. This algorithm is a parallel algorithm that would speed up with more computing nodes.

The relevant document could be access at https://github.com/yahoo/samoa/wiki/Vertical%20Hoeffding%20Tree%20Classifier

The topology diagram is shown below:

(4) Bagging

Bagging⁴ is a ``bootstrap''⁵ ensemble method that creates individuals for its ensemble by training each classifier on a random redistribution of the training set. The relevant introduction of Bagging algorithm could be found at

http://people.cs.pitt.edu/~milos/courses/cs2750-Spring04/lectures/class23.pdf and http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/opitz99a-html/node3.html .

Yahoo SAMOA has already contained a default Bagging algorithm (so called OzaBag, see http://moa.cms.waikato.ac.nz/details/classification/classifiers-2/)

The topology of Bagging algorithm in SAMOA is below:

In this lab, I tested Bagging algorithm with 3 different "Learner" as mentioned before: NB-4, NB-5, VHDT.

Prequential Evaluation Task

All the algorithms mentioned above were integrated in the "Prequential Evaluation Task" of SAMOA. This task is a basic framework of classify online data with user-defined classifiers. The task reads online data and send each instance to the learner(classifier) for training, and also classify this instance with this classifier; finally the classification results are output to a performance evaluator, and the classification performance (such as correct rate, F-measure, etc...) are showed.

⁴ Breiman, L. 1996a. Bagging predictors . Machine Learning, 24(2), 123-140.

⁵ Efron, B. Tibshirani, R. 1993. An Introduction to the Bootstrap. Chapman and Hall, New York.

The document can be found at

https://github.com/yahoo/samoa/wiki/Prequential%20Evaluation%20Task, and its topology is:

In conclusion, the algorithms selected to compare are:

- (1) Naive Bayes- my version 4 (NB-4)
- (2) Niave Bayes- my version 5 (NB-5)
- (3) Vertical Hoeffding Decision Tree (VHT)
- (4) Bagging NB-4 (BagNB4)
- (5) Bagging NB-5 (BagNB5)
- (6) Bagging VHT (BagVHT)

3.2 Test Data

(1) Movie Review data

Movie Review Data are collections of movie-review documents labeled with respect to their overall sentiment polarity (positive or negative) and sentences labeled with respect to their subjectivity status (subjective or objective) or polarity. Basically, a movie review dataset contains many instances, and each instance is a movie review and a class label, "good movie" or "bad movie", of this review.

In this lab, I only use the preprocessed data from "polarity dataset 2.0", which contains 1000 positive and 1000 negative processed reviews. The preprocessed data is created by my classmate, Wen Long Sun. Moreover, I shuffled the order of instances that the "pos" and "neg" instances occur alternately. This data contains 2000 instances; each instance has about 1000 attributes and 1 class label, like below:

	Movie Review												
Attribute	&	*	-	1	10	2		асс	adam		unit	visit	@@class@@
line 1	1	0	0	0	1	0		0	0		1	1	pos
line 2	line 2 0 0 1 0 0 0 1 0 0 1 neg												

line 3	0	1	0	0	0	1	 0	0	 0	0	pos

Each instance stands for a review document, and each attribute is the occurrence of a word in this document. For example, if the word "adam" occurs in this document, then the value of attribute "adam" should set to 1, otherwise set to 0. The last attribute "@@class@@" shows the sentiment polarity of each review document.

Size:

2000(instances) x 1172(attributes)

1000 instances are "pos", and 1000 are "neg".

(2) Kdd99 data

Kdd99 data can be found at https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

Kdd99 data is created to build a predictive model (i.e. a classifier) capable of distinguishing between ``bad'' connections, called intrusions or attacks, and ``good'' normal connections.

The data contains about 5 Million instances, each with 41 attributes and 1 class label. Each instance is a connection record, including features such as "length (number of seconds) of the connection", "type of the protocol", "normal or error status of the connection", etc. The class label is "normal" connection or 22 types of attacks, such as "buffer_overflow", "guess_passwd", etc.

The 22 types of attacks fall into four main categories:

- DOS: denial-of-service, e.g. syn flood;
- R2L: unauthorized access from a remote machine, e.g. guessing password;
- U2R: unauthorized access to local superuser (root) privileges, e.g., various ``buffer overflow'' attacks;
- probing: surveillance and other probing, e.g., port scanning.

The data is like:

Kdd99	

Attrib	durati	proto	servic	flag	src_byte	dst_b	•••	dst_ho	class
ute	on	col_ty	е		s	ytes		st_srv_	
		ре						rerror_	
								rate	
line 1	0	tcp	http	SF	215	4507 6	•••	0	normal
line 2	0	tcp	http	SF	162	4528		0	normal
line 3	0	tcp	http	SF	236	1228		0	smurf
line 4	0	tcp	http	SF	233	2032		0	neptune

It's highly unbalanced data that most of the instances are labeled "smurf".

Size:

4,898,431(instances) x 42(attributes)

class distribution: Total 23 classes. 87% are "smurf" (DOS attack), 12% are "neptune" (DOS attack), 0.48 % are "normal", as shown below:

(3) NSL Kdd99 data

NSL Kdd99 data could be found at http://nsl.cs.unb.ca/NSL-KDD/. It is an improvement of KDD99 that it is more efficient for training classifiers. It remove redundant records; it

transforms class labels into only two types: "normal" and "anomaly"; it select the records to make it more balance.

Size:

125,973(instances) x 42(attributes)

class distribution: 86% anomaly, 14% normal

Finally, the three datasets are transformed into "ARFF" file format to let SAMOA be able to read. They are:

data	file	total instance number	attribute number	class number	note
Movie Review data	m.arff	2000	1172	2	
NSL Kdd99 data	n.arff	125,973	42	2 (unbalance 86% anomaly, 14% normal)	NB-4 cannot process because it contains real value attribute.
Kdd99 data	k.arff	4,898,431	42	23 (unbalance, 87% smurf, 12% neptune, 0.48% normal)	NB-4 and VHT cannot process because it contains error values and real value attribute.

All the data could be downloaded from my Google drive:

https://drive.google.com/folderview?id=0B0k3wDoweGSZaWQ4c2lyaHhGSEk&usp=sharing

12

⁶ http://www.cs.waikato.ac.nz/ml/weka/arff.html

3.3 Cluster modes

I test the different algorithms with different data, and I also need to test them in different cluster settings to see the parallel-computing scalability of the algorithms.

(1) Local mode (Local)

Only run task on node 3, in local mode without S4.

(2) S4 mode, single node (S4-1)

Run task on only node 3, with S4 platform.

(3) S4 mode, two nodes (S4-2)

Run task on cluster with 2 computing nodes (node 3 and node 2), with S4 platform.

(4) S4 mode, three nodes (S4-3)

Run task on cluster with 3 computing nodes (node 3, node2 and node 1), with S4 platform.

In conclusion, the test configurations can format as the combination table below:

Data:										
	movieReview, NSLKDD, KDD99									
Algorithm/Cluster Local mode(single node) S4, 1 node S4, 2 node S4, 3 node										
NB-4										
NB-5										
VHT										
BagNB4										
BagNB5										
BagVHT										

4. Test Result

The test result are collected from: (1) result files (2) log file (3) log(debug) information on the screen. Please see the middle output in Appendix. Here I only show the final rearranged result.

Measurements:

I measured 2 index for each test configuration [dataset + algorithm + cluster mode]:

(1) **Speed** (seconds/X instances):

How many time the algorithm spends on train and testing every X data. X's are different for different dataset. (MovieReview,X=1000; NsIKdd,X=10,000; Kdd99,X=100,000)

(2) Correct rate.

The percentage of test data that correctly classified (output class=target class).

4.1 Final result

The table below shows the average speed of different algorithms running on different cluster modes and different datasets. Some cells in the table are blank, because the algorithm failed to run in the situation corresponding to this cell (See Appendix).

	Average Speed (seconds / x instances)											
Algorithm/Dat	MovieRevew				NslKdd			KDD99				
aset		(secon	ds/100	0	(secono	ds/10,0	00	(seconds/100,000			
		inst	ances)			inst	ances)			insta	ances)	
Cluster mode	loc	1	2	3	loc	1	2	3	loc	1	2	3
	al	nod	nod	nod	al	nod	nod	nod	al	nod	nod	nod
		е	es	es		е	es	es		е	es	es
NB-4	1	1	4	9								
NB-5	2	3	8	12	<1	2	3	8	20	28	39	118
VHT	6	6	9	15	1.5	4	2.7					
BagNB4												
BagNB5					3.5	16	18	41	15	255	285	808
									5			
BagVHT												

We can draw the "speed graphs" from the tables above:

The vertical axis show the processing speed (Training + Classification time of every unit frequency of data).

The correct rate of different algorithms are basically stable among different cluster mode, so we can draw the correct rates table of different algorithms with different datasets.

	Average Correct Rate (%)									
Algorithm/Dataset	MovieRevew	NslKdd	Kdd99							
NB-4	78.5									
NB-5	72.6	90.0	99.5							
VHT	49.4	67.1								
BagNB4	84.3									
BagNB5	86.9	90.1	99.7							
BagVHT	49.3	58.5								

5 Conclusion

Comparing the speed of the algorithms, NB-4 > NB-5 > VHT (> means faster), and BagNB4 > BagNB5 > BagVHT; Simple algorithm was much faster than Bagging-assembled algorithm.

Comparing the correct rate, we can find NB-4 > NB-5 > VHT, and BagNB5 > BagVHT; Bagging-assembled Naive Bayes algorithms were better(about 10%) than pure Naive Bayes algorithms only for MovieReview dataset(for about 1000 attributes), but Bagging did not improve VHT for all dataset, neither did it improve Naive Bayes for KDD99 and NsIKDD99 datasets.

Comparing compatibility of the algorithms, NB-4 cannot process float-type numeric attributes and VHT sometimes raise bugs such as "deserialization error" and "null point exception". Only NB-5 could run correctly with most of the data and cluster settings.

All the algorithms did not speed up with more computing nodes; instead, the performance decreased with more nodes. One reason is that NB-4 and NB-5 algorithms were not parallel structure. However, even the default VHT algorithm, which was claimed would "scale-up" by SAMOA developers, did not achieve better performance with more nodes.

In summary, NB-5 could achieve a correct rate of about 80% or more for selected datasets, which is much better than the default-VHT algorithm in SAMOA. In addition, its speed, 2s/1000 instances for 1000-attributes dataset, 20s/100,000 instances for 40-attributes dataset, is faster than VHT. Moreover, It can handle real(float) type numeric attributes with a "Normal Distribution" assumption. Some problems of SAMOA was found: (1) the default-Bagging algorithm in SAMOA did not improve correct rate but takes much more time than pure classifiers. (2) VHT did not speed up with more computing nodes.

In the future, I will try to improving NB-5 algorithm into parallel structure to make it speed up with more nodes.

Appendix

1. Detail of Test Result

1.1 Result file

The test result is output to the file "resultModeAlgorithmData", such as "resultLocalBagP4m" (Local,BagNB4,m) or "resultS42P5k" (S4-2,NB-5,k). Each result file records the correct rate and Kappa statistics of the classification result. For example, resultS42P5k file is:

evaluation instances, classified instances, classifications correct (percent), Kappa Statistic (percent), Kappa Temporal Statistic (percent)

100000.0,100000.0,99.64,97.38271583414786,85.28209321340947

200000.0,200000.0,99.73349999999999,99.16494079571832,96.39889196675895

300000.0,300000.0,99.658333333333333,98.56872445672649,93.08973235353612

We can translate it to a CSV table:

evaluation instances	classified instances	classifications correct (percent)	Kappa Statistic (percent)	Kappa Temporal Statistic (percent)
100000	100000	99.64	97.38271583	85.28209321
200000	200000	99.7335	99.1649408	96.39889197
300000	300000	99.65833333	98.56872446	93.08973235

Because "Prequential Evaluation" task is online processor that train model, test(classify) the test instances, and evaluate the performance at the same time, the correct rate is changing while new instances come. This task can set an "evaluation frequency", which means how many instances between two evaluation points. The table above shows 3 evaluation points at 100000,200000 and 30000 testing instances.

I choose proper evaluation frequencies for different datasets, they are:

Dataset	m	n	k

Evaluation	1000	10,000	100,000
frequency			

1.2 log file

Except the result file, the classification task also output log information to screen. The log information contains running status, error message, debug information, and the most important one--running time of the task. I copy the logs from screen and save them to files.

For example, the log file "logS41P5m" records the log information of running the NB-5 algorithm with MovieReview data on S4-single-node mode:

SAMOA: Scalable Advanced Massive Online Analysis Platform

Version: 0.0.1

Copyright: Copyright Yahoo! Inc 2013

Web: http://github.com/yahoo/samoa

17:03:36.880 [S4 platform loader] INFO c.y.l.s.l.classifiers.hl.NaiveBayes -

17:03:36.885 [S4 platform loader] INFO c.y.l.s.l.classifiers.hl.NaiveBayes - Begin init NaiveBayes Classifier topology.

17:03:36.901 [S4 platform loader] INFO c.y.l.s.l.classifiers.hl.NaiveBayes - Sucessfully initializing NaiveBayes classifier topology.

17:03:36.924 [S4 platform loader] INFO org.apache.s4.core.App - Init prototype [com.yahoo.labs.samoa.topology.impl.S4EntranceProcessingItem].

17:03:36.931 [S4 platform loader] INFO org.apache.s4.core.App - Init prototype [com.yahoo.labs.samoa.topology.impl.S4ProcessingItem].

17:03:36.937 [S4 platform loader] INFO org.apache.s4.core.App - Init prototype [com.yahoo.labs.samoa.topology.impl.S4ProcessingItem].

17:03:36.938 [S4 platform loader] INFO c.y.l.samoa.topology.impl.S4DoTask - Starting DoTaskApp... App Partition [0]

17:03:37.063 [STREAM-0_PROCESSING-ITEM-0] INFO c.y.l.s.l.c.hl.NBModelProcessor -

NBModelProcessor created, id = 0

17:03:37.164 [STREAM-0_PROCESSING-ITEM-0] INFO c.y.l.s.l.c.hl.NBModelProcessor - K=2,A=1172

17:03:41.099 [STREAM-1_PROCESSING-ITEM-1] INFO c.y.l.s.e.EvaluatorProcessor - <u>3</u> seconds for 1000 instances

17:03:41.109 [STREAM-1_PROCESSING-ITEM-1] INFO c.y.l.s.e.EvaluatorProcessor - evaluation instances = 1,000

classified instances = 1,000

classifications correct (percent) = 70.3

Kappa Statistic (percent) = 40.968

Kappa Temporal Statistic (percent) = 41.879

The underlined part shows the processing speed (training time + test time) of this classification algorithm, which is 3s/1000 instances.

1.3 Raw Test Result

The tables below are raw performance results I recorded.

MovieReview							
	evaluation frequency: 1000						
Algorithm/Cluster	Local	cal S4-1 S4-2 S4-3					
NB-4	speed	speed(s/1000	speed(s/1000	speed(s/1000			
	(second/1000	instances):	instances):	instances):			
	instance):	1	4	7			
	1	correct rate:	2	9			
	correct rate:	77.7%	7	10			
	77.4%	77.7%		9			
	77.7%		Correct rate:	9			
			78.1%	Correct rate			
			79.2%	77.8%			
			80.0%	80.3%			
				81.0%			
				81.7%			
				81.5%			

NB-5	speed(s/1000	speed(s/1000	speed(s/1000	speed(s/1000
	instances):	instances):	instances):	instances):
	2	3	13	20
	2	correct rate:	6	10
	correct rate:	70.3%	6	6
	70.3%		correct rate:	11
	73.8%		70.7%	13
			74.8%	correct rate:
			76.6%	71.0%
				75.8%
				77.4%
				78.7%
				78.8%
VHT	6	6	8	20
	50.2%	48.2%	9	8
			10	13
			deserializer error	18
			48.4%	14
			49.5%	49.0%
			49.4%	50.9%
				50.1%
				50.9%
				50.1%
BagNB4	2	7	11	38
	2	88.1%	6	22
	76.9%		6	24
	77.2%		86.7%	87.5%
			85.1%	85.8%
			84.5%	85.0%
BagNB5	0	16	32	Zookeeper
	0	85.7%	17	session
	0		13	expired
	0		84.8%	
	92.2%		82.8%	
	91.4%		82.5%	
	90.9%			
	90.5%			
BagVHT	26	47	OutOfMemoryError	Serialization
	48.4%	50.12%		error

ſ		
	NSL KDD99	
	evaluation frequency: 10,000	

Algorithm/Clust	Local	S4-1	S4-2	S4-3	Note
er					
NB-4	-	-	-	-	NB-4
					cannot
					process
					real
					value
					attribute
NB-5	speed	3	4	21	S
	0	2	3	8	
	0	2	2	5	
	0	1	3	5	
	0	90.1%	3	8	
	correct rate:	89.9%	3	5	
	90.1%	89.8%	90.1%	4	
	90.0%	89.8%	90.1%	90.3%	
	89.9%		89.8%	90.1%	
	89.8%		89.7%	89.8%	
			89.8%	89.8%	
			89.8%	89.8%	
				89.8%	
				89.8%	
VHT	3	9	3	deserializer	
	1	3	1	error	
	1	3	1		
	1	2	1	53.0%	
	78.0%	3	1	53.3%	
	85.1%	69.5%	9	53.1%	
	87.8%	80.5%	deserializer	53.2%	
	89.3%	84.1%	error	53.0%	
		86.1%	53.0%	53.0%	
		87.5%	53.3%	53.0%	
			53.2%		
			53.2%		
			53.0%		
			53.1%		
BagNB4	-	-	-	-	NB-4
					cannot
					process
					real

					value
					attribute
					S
BagNB5	4	18	28	56	
	4	15	19	40	
	3	15	17	41	
	3	15	15	36	
	90.1%	90.2%	15	31	
	90.0%	90.0%	15	90.1%	
	89.97%	89.9%	90.2%	89.9%	
	89.9%	89.9%	90.0%	89.9%	
			89.9%	89.8%	
			89.8%	89.8%	
			89.9%		
			89.9%		
BagVHT	NullPointerExc	NullPointerExc	deserializer	deserializer	
	eption	eption	error	error	
		59.2%	57.0%		
		60.7%			

KDD99 evaluation frequency: 100,000								
	speed(second/10,000 instance)							
correct rate		I	T					
Algorithm/Cluste Local S4-1 S4-2 S4-3								
r								
NB-4	-	-	-	-	NB-4			
					cannot			
					process			
					real			
					value			
					attribute			
					S			
NB-5	speed(secon	speed	49,29,	speed	808			
	d/10,000	28,	99.6%,	274,	99.8%			
	instance)	28,	99.7%	108,				
	19,	29		69,				
	20,	correct rate:		69,				
	21	99.7%,		70				
	correct rate:	99.7%,		correct rate:				
	99.7%,	99.7%		99.7%,				
	99.7%,			99.1%,				

	99.7%, 99.3%			99.3%,99.3%,	
				98.5%	
VHT	-	-	-	-	VHT
					cannot
					handle
					error
					values in
					dataset
BagNB4	-	-	-	-	NB-4
					cannot
					process
					real
					value
					attribute
					S
BagNB5	speed	speed	302,		
	133	249,	275,		
	147,	261	279		
	165,	correct:	99.8%,		
	175	99.7%, 99.8%	99.8%,		
	correct rate:		99.7%		
	99.7%,				
	99.7%,				
	99.7%,99.3%				
BagVHT	-	-	-	-	VHT
					cannot
					process
					error
					values in
					dataset

1.4 Average value of Test Result

MovieReview								
	evaluation frequency: 1000							
speed(second/100	0 instance)							
correct rate(low~h	igh)							
Algorithm/Cluster	Algorithm/Cluster Local S4-1 S4-2 S4-3							
NB-4 1 1 4.3 8.8								
	77.4%~77.7%	77.7%	78.1%~80.0%	77.8%~81.7%				
NB-5	2	3	8.3	12				
	70.3%~73.8% 70.3% 70.7%~76.6% 71.0%~78.8%							
VHT	6	6	9	14.6				

	50.2%	48.2%	48.4%~49.5%	49.0%~50.9%
			deserializer error	
BagNB4	2	7	23	28
	76.9%~77.2%	88.1%	86.7%~84.5%	87.5%~85.0%
BagNB5	0	16	20.7	Zookeeper
	92.2%~90.5%	85.7%	84.8%~82.5%	session
				expired
BagVHT	26	47	OutOfMemoryError	Serialization
	48.4%	50.12%		error

NSL KDD99								
evalı	uation frequenc	y: 10,000						
speed(second/10,000 instance)								
correct rate								
Local	S4-1	S4-2	S4-3	Note				
-	-	-	-	NB-4 cannot				
				process real				
				value				
				attributes				
0	2	3	8					
90.1%~89.8	90.1%~89.8	90.1%~89.8%	90.3%~89.8					
%	%		%					
1.5	4	2.7	deserializer					
78.0%~89.3	69.5%~87.5	deserializer	error					
%	%	error	53.0%~53.3					
		53.0%~53.3%	%					
-	-	-	-	NB-4 cannot				
				process real				
				value				
				attributes				
3.5	15.8	18.2	40.8					
90.1%~89.9	90.2%~89.9	90.2%~89.9%	90.1%~89.8					
%	%		%					
NullPointerE	NullPointerE	deserializer	deserializer					
xception	xception	error	error					
	59.2%~60.7	57.0%						
	%							
	0 90.1%~89.8 % 1.5 78.0%~89.3 % - 3.5 90.1%~89.9 % NullPointerE	evaluation frequence d/10,000 instance) Local S4-1	evaluation frequency: 10,000 d/10,000 instance) Local S4-1 S4-2	evaluation frequency: 10,000 d/10,000 instance) Local S4-1 S4-2 S4-3				

KDD99	
evaluation frequency: 100,000	
speed(second/100,000 instance)	
correct rate	

Algorithm/	Local	S4-1	S4-2	S4-3	Note
Cluster					
NB-4	-	-	-	-	NB-4 cannot
					process real
					value
					attributes
NB-5	20	28.3	39	118	
	99.7%~99.3	99.7%	99.6%~99.7%	99.7%	
	%			~98.5%	
VHT	-	-	-	-	VHT cannot
					handle error
					values in
					dataset
BagNB4	-	-	-	-	NB-4 cannot
					process real
					value
					attributes
BagNB5	155	255	285.3	808	
	99.7%~99.3	99.7%~99.8	99.8%~99.7%	99.8%	
	%	%			
BagVHT	-	-	-	-	VHT cannot
					process error
					values in
					dataset