lab3\lab_report\svm-notebook\svm-notebook.md

Import Required Libraries

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
```

Prepare Dataset

Feature Scaling

```
X = np.array([[1, 2], [2, 3], [2, 1], [2, 4], [5, 4], [6, 3]])
y = np.array([0, 0, 0, 0, 1, 1])

# Feature Scaling
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

Split Data

```
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42, stratify=y)
```

Initialize and Train SVM Model

```
svm_classifier = SVC(kernel='linear', C=1.0)
svm_classifier.fit(X_train, y_train)
```

1/23/25, 10:26 PM sym-notebook,md

```
▼ SVC i ?

SVC(kernel='linear')
```

Predictions and Evaluation

```
y_pred = svm_classifier.predict(X_test)
print("Classification Report:")
print(classification_report(y_test, y_pred))
```

Classification Report:

support	f1-score	recall	precision	
1	1.00	1.00	1.00	0
1	1.00	1.00	1.00	1
2	1.00			accuracy
2	1.00	1.00	1.00	macro avg
2	1.00	1.00	1.00	weighted avg

Confusion Matrix Visualization

```
plt.figure(figsize=(8, 6))

cm = confusion_matrix(y_test, y_pred, labels=[0, 1])

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')

plt.title('Confusion Matrix')

plt.ylabel('True Label')

plt.xlabel('Predicted Label')

plt.show()
```

1/23/25, 10:26 PM sym-notebook.md

Decision Boundary Visualization Function

Visualize Decision Boundary

plot_decision_boundary(X_scaled, y, svm_classifier, scaler)

