

UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

Materia:	Calculo Numérico		Semestre:	Cuarto
Ciclo:	Básico de Ingeniería			
Código de la materia:	019			
Horas Semanales:	Teóricas:	2		
	Prácticas:	2		
	Laboratorio:	-		
Horas Semestrales:	Teóricas:	34		
	Prácticas:	34		
	Laboratorio:	-		
Pre-Requisitos:	Análisis Matemático III, Probabilidades y Estadística			

I - OBJETIVOS GENERALES:

Dar una introducción a los métodos numéricos de mayor uso en las carreras de Ingeniería, explicando cómo, porque y cuando se espera éstas funcionen y proporcionen una base firme para un estudio más profundo. Estos métodos numéricos tienen el propósito de encontrar soluciones aproximadas a problemas complejos utilizando solamente las operaciones más simples de la aritmética.

II - OBJETIVOS ESPECIFICOS:

Aplicar los conocimientos adquiridos en la resolución de problemas y ejercicios de cálculo.

III CONTENIDOS PROGRAMÁTICOS

Unidad 1:

1. <u>Soluciones de ecuaciones de una variable:</u> Algoritmo de bisección. Iteración de punto fijo. El método de Newton – Raphson – Análisis de error para métodos iterativos y técnicas de aceleración. Convergencia acelerada – Raíces de polinomios reales y método de Müller.

Unidad 2:

2. <u>Interpolación y aproximación polinómica:</u> Polinomios de Taylor – Interpolación y el polinomio de Lagrange – Interpolación iterada – Diferencias divididas – Interpolación de Hermite – Interpolación cúbica de trazador.

Unidad 3:

3. <u>Diferenciación e Integración numérica</u>: Diferenciación numérica – Extrapolación de Richardson – Elementos de integración numérica – Integración numérica compuesta – Métodos adaptativos de cuadratura – Integración de Romberg – Cuadratura Gaussiana – Integrales múltiples.

Unidad 4:

4. <u>Problemas con valores iniciales y ecuaciones diferenciales ordinarias:</u> Teoría elemental de problemas con valores iniciales – El método de Euler – Métodos de Taylor de orden mayor – Método de Runge-Kutta – Control de error y el método de Runge-Kutta – Fehlberg – Método multipaso de paso variable – Métodos de extrapolación. Ecuaciones de orden mayor y sistemas de ecuaciones diferenciales – Estabilidad – Ecuaciones diferenciales rígidas.

Aprobado por:Fecha:	Actualización No.:	Sello y Firma	Página 1 de 2
---------------------	--------------------	---------------	------------------

UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

Unidad 5:

5. <u>Problemas con valores a la frontera de ecuaciones diferenciales ordinarias:</u> Método de disparo lineal – Método de disparo problemas no lineales – Método de diferencias finitas para problemas lineales – Método de diferencias finitas para problemas no lineales – Método de Raleigh-Ritz.

Unidad 6:

6. <u>Soluciones numéricas a sistemas no lineales de ecuaciones:</u> Puntos fijos para funciones de varias variables – Método de Newton – Método cuasi Newton – Técnicas de descenso rápido.

IV METODOLOGÍA

Aulas expositivas. Para cada asunto desarrollado, se muestran ejemplos y aplicaciones prácticas.

V EVALUACIÓN

Conforme al Reglamento Académico y Reglamento de Cátedra vigentes.

VI BIBLIOGRAFÍA

- 1. Análisis Numérico R.L. Burden y J.D. Faires Grupo Editorial Iberoamérica México.
- 2. Elementary Numerical Análisis And algoritmic Approach 3ª Edic. McGraw-Hill N.Y. (Existe traducción al castellano) Conte S. y D. de Bor.
- 3. Discrete Variable Méthodo in Ordinary Differential Equations ENRICI, Peter. Wiley N.Y. (Existe traducción al castellano)
- 4. Elements of numerical análysis P. Henrici Wiley N.Y. (Existe traducción castellana).
- 5. Afinst course in numerical análysis A. Ralston y P. Rabinowitz MC Graw Hill N.Y. (Existe traducción al castellano)
- 6. Métodos numéricos Francis Sheid McGraw-Hill Calección Schaum.
- 7. Cálculo Vol II Tom Apóstol Reverté. Barcelona.
- 8. Matemáticas Superiores para Ingeniería C.R. Wilylie McGRAW-Hill México 3ª Edición.
- 9. Cálculo Numérico Fundamental B.P. Demidovich I.A. Maron Paraninfo 4ª Ed. España.
- 10. Teoría y Problemas de Análisis Numérico F. Scheid McGRAW-Hill 1ª Ed. México.
- 11. Matemáticas Avanzadas para Ingeniería ERWIN KREIZIG LIMUSA MÉXICO.

Aprobado por:Fecha:	Actualización No.: Resolución No.: Fecha:	Sello y Firma	Página 2 de 2
			i