

Cardiovascular Diseases

Laura Ruffoni Gabriele Oliveto Riccardo De Sury Leonardo Nossa

Dataset Outlining And Index

Blood Composition: Cholesterol and Glucose

Age Influence

Habits: Sport, Smoking and Drinking

Predictive Model

Best vs Worst Habits

Cholesterol

B	Perc_ill	Weight	BMI
Normal cholesterol level	43.475	72.981	27.023
Above normal cholesterol level	59.515	76.533	28.535
Well above normal cholesterol level	76.142	78.595	29.503

Figure A is a boxplot showing the relationship between cholesterol (three levels) and body weight

Figure B is a table showing the percentage of ill patients for each cholesterol level and the average weight and average BMI values

Glucose

D	Perc_ill	Weight	ВМІ
Normal glucose level	47.478	73.387	27.225
Above normal glucose level	58.623	78.904	29.377
Well above normal glucose level	61.622	77.466	28.905

Figure C is a boxplot showing the relationship between glucose (for the three levels) and body weight

Figure D is a table showing the percentage of ill patients for each glucose level and the average weight and BMI values

Cholesterol

Figure E is a lineplot showing the relationship between cholesterol (for the three levels) and percentage of people affected by cardiovascular disease

Figure F and **Figure G** are lineplots (as above) where male and female are divided in different age ranges

04

Cholesterol

Hypothesis test on level 3 of cholesterol:

$$X_{female.1}, \dots, X_{female.N} \quad iid \qquad X_{female} \quad \sim Be(p)$$

$$X_{male.1}, \dots, X_{male.N} \quad iid \qquad X_{male} \quad \sim Be(p) \qquad E[X] = p$$

$$Var(X) = p * (1 - p)$$

$$H_0: D = 0 \quad H_1: D \neq 0$$

$$D = p_{female} - p_{male}$$

$$\widehat{D} = \widehat{p}_{female} - \widehat{p}_{male} \sim N(p_{female} - p_{male}, \frac{Var(X_{female})}{N_{female}} + \frac{Var(X_{male})}{N_{male}})$$

$$Under H_0: \widehat{D} \sim N(0, sd_D^2) \qquad N >> 1 \qquad Z = \frac{D-0}{\sqrt{sd_D^2}}$$

$$p - value = 0.114104$$

Glucose

Figure H is a lineplot showing the relationship between cholesterol (for the three levels) and percentage of people affected by cardiovascular disease

Figure L and Figure M are lineplots (as above) where male and female are divided in different age ranges

06

Glucose

Hypothesis Test on level 3 and 2 of glucose:

- \rightarrow Level 3 $H_0: D = 0 \quad H_1: D > 0$ p value = 0.00070965459
- → Level 2 $H_0: D = 0 \quad H_1: D < 0$ p value = 0.02383739

Age

Figure N is a lineplot showing the relationship between age and percentage of people affected by cardiovascular disease

Figure 0 is a lineplot showing the relationship between smoke and percentage of people affected by cardiovascular disease

Figure P is a lineplot showing the relationship between alcohol and percentage of people affected by cardiovascular disease

Sport

Hypothesis Test between sporty or non-sporty patients:

$$X_{sport.1}' \dots, X_{sport.N} \quad iid \qquad X_{sport}i \sim Be(p)$$

$$X_{no \, sport.1}' \dots, X_{no \, sport.N} \quad iid \qquad X_{no \, sport}i \sim Be(p)$$

$$H_0: D = 0 \quad H_1: D \neq 0$$

$$D = p_{no \, sport} - p_{sport}$$

$$\widehat{D} = \widehat{p}_{no \, sport} - \widehat{p}_{sport} \sim N(p_{no \, sport} - p_{sport}, \frac{Var(X_{no \, sport})}{N_{no \, sport}} + \frac{Var(X_{sport})}{N_{sport}})$$

$$Under H_0: \widehat{D} \sim N(0, sd_{D}^2) \quad N >> 1: \quad Z = \frac{D-0}{\sqrt{sd_{D}^2}}$$

$$p - value_{29-44 \, yo} = 0.07199555 \qquad p - value_{45-64 \, yo} = 0$$

Predictive Model

Model's Equation:

 $\log[p(cardio)/(1-p(cardio))] = \beta 0 + \beta 1*active + \beta 2*weight + \beta 3*age + \beta 4*ap_hi + \beta 5*ap_lo + \beta 6*cholesterol$

VIF

Active	Weight	Age	Ap_hi	Ap_lo	Cholesterol	McFa
1.001071	1.045474	1.011153	1.803825	1.791676	1.016573	0.19

McFadden 0.1913449

Predictive Model

The optimized treshold chosen to maximize accuracy is **0.486**

Best vs Worst Habits

Figure Q shows percentage of sick and healthy patients having favorable or negative habits

	Patient A	Patient B						
Active	1	0						
Weight	65	71						
Age	49	41						
Ap_hi	110	160						
Ap_lo	70	120						
Cholesterol	1	3						
Probability	0.1737812	0.9325049						
Output	NOT SICK	SICK						

Thanks For Listening!

Additional Information A

This is the header of the dataset used to for our project:

id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio	age_years	bmi	bp_category
0	18393	2	168	62	110	80	1	1	0	0	1	0	50	21.96712	Hypertension Stage 1
1	20228	1	156	85	140	90	3	1	0	0	1	1	55	34.92768	Hypertension Stage 2

It's downloadable from kaggle at the following link: https://www.kaggle.com/datasets/colewelkins/cardiovascular-disease

Bibliography:

- Life Science Journal 2013; Dukjae Lee; A Comparison of Choice-based Landscape Preference Models between British and Korean Visitors to National Parks
- Maturitas 168 (2023) 49–52; Hira Shakoor et al; The benefits of physical activity in middle-aged individuals for cardiovascular disease outcomes
- Preventive Medicine 27, 1–9 (1998); Hussain R. Yusuf et al; Impact of Multiple Risk Factor Profiles on Determining Cardiovascular Disease Risk

Additional Information B

Additional information C

$$X_{sport.1}, \dots, X_{sport.N}$$
 iid $X_{sport}i \sim Be(p)$ $f(x) = p$ if $x = 1$ cardiovascular disease $E[x] = p$ $X_{no \ sport.1}, \dots, X_{no \ sport.N}$ iid $X_{no \ sport}i \sim Be(p)$ $1 - p$ if $x = 0$ $Var(x) = 0$

$$E[x] = p$$

$$Var(x) = p * (1 - p)$$

 $Xi_{sport} \perp Xi_{no \, sport}$ and unknown and uncommon variances

 \rightarrow Point Estimation: \hat{p} and sd^2 both unbiased

 $sd_{D}^{2} = \frac{sd_{no \, sport}^{2}}{N} + \frac{sd_{sport}^{2}}{N}$

$$p = \hat{p} = \frac{\# patients \ with \ disease}{N} \qquad N >> 1 \ for \ CLT \rightarrow \hat{p} \sim N(p, \frac{p^*(1-p)}{N})$$

$$sd^2 = p * (1-p) = \hat{p} * (1-\hat{p})$$

$$\hat{p}_{no \ sport} = 0.315856 \qquad \hat{p}_{sport} = 0.3015353$$

$$sd^2_{no \ sport} = 0.216091 \qquad sd^2_{sport} = 0.2106117$$

$$D = p_{no \ sport} - p_{sport} \qquad \hat{D} = \hat{p}_{no \ sport} - \hat{p}_{sport} \sim N(p_{no \ sport} - p_{sport}, \frac{Var(X_{no \ sport})}{N_{no \ sport}} + \frac{Var(X_{sport})}{N_{sport}})$$

$$H_0: D = 0 \quad H_1: D \neq 0$$

Under
$$H_0$$
: $\widehat{D} \sim N(0, sd_D^2)$

$$N >> 1: Z = \frac{D-0}{\sqrt{sd_D^2}}$$

$$p - value = 2 * (1 - \phi_{(|z|)})$$

Additional information D

```
sample <- sample(c(TRUE, FALSE), nrow(data), replace=TRUE, prob=c(0.7,0.3))
train <- data[sample, ]
test <- data[!sample, ]

model <- glm(cardio ~ active+weight+age+ap_hi+ap_lo+cholesterol, family="binomial", data=train)

summary(model)
pscl::pR2(model)["McFadden"]
caret::varImp(model)
car::vif(model)</pre>
```

```
validazione_best = data.frame(active = 1, weight = 67, age = 17885, ap_hi = 110, ap_lo = 70, cholesterol = 1)
validazione_worst = data.frame(active = 0, weight = 71, age = 14965, ap_hi = 160, ap_lo = 120, cholesterol = 3)
ext1 = predict(model, validazione_best, type="response")
ext2 = predict(model, validazione_worst, type="response")
ext1 = ext1 > 0.486
ext2 = ext2 > 0.486
predicted <- predict(model, test, type="response")</pre>
predicted = as.array(predicted)
res = as.data.frame(predicted >= 0.486)
colnames(res)[colnames(res) == 'predicted >= 0.486'] <- "Malato/NonMalato"</pre>
res$`Malato/NonMalato` <- ifelse(res$`Malato/NonMalato`, 1, 0)
res$`Malato/NonMalato` = factor(res$`Malato/NonMalato`, levels = c(0,1))
test$cardio = factor(test$cardio, levels = c(0,1))
confusion_matrix = confusionMatrix(
                   res$`Malato/NonMalato`,
                   test$cardio,
                   positive = NULL,
                   dnn = c("Prediction", "Reference"),
                   prevalence = NULL,
                   mode = "sens_spec")
```