Homework 3 – Propositions

Combinatorial Circuits

Consider the following logic gates:

What expression is calculated in each diagram?

Connectives

- 1. Read the identities in Thm 1.1.22 parts (d), (h), (k). For every identity, explain why it is correct, using the regions in the standard Venn diagrams for 2 (or 3) sets.
- 2. For each of the identities in Thm 1.1.22 (a) (k), write the identity in proposition notation:
 - Replace the set variables A, B, C with propositional variables p, q, r
 - ∧ for ∩
 - ∨ for ∪
 - ¬ for -
 - T for U,
 - F for 0.
- 3. We use the De Morgan law (twice) to show that De Morgan "works" for 3 variables:

$$\neg (p_1 \lor p_2 \lor p_3) = \neg ((p_1 \lor p_2) \lor p_3) \qquad \forall \text{ is associative}$$

$$= \neg ((p_1 \lor p_2) \lor p_3) \qquad \text{De Morgan over second } \lor$$

$$= \neg (p_1 \lor p_2) \land \neg p_3 \qquad \text{De Morgan over first } \lor$$

$$= (\neg p_1 \land \neg p_2) \land \neg p_3 \qquad \land \text{ is associative}$$

$$= \neg p_1 \land \neg p_2 \land \neg p_3$$

Similarly, apply De Morgan law twice to show the following for all sets A, B, C:

(a)
$$\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$$

(b)
$$\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$$

4. Use the De Morgan laws to write a logically equivalent expression to the following, only using the symbols $\{\neg, \land\}$ Use the involution law (1.1.22 (i)) to simplify.

(a)
$$\neg (p \lor q)$$

(b)
$$\neg(\neg p \lor \neg q)$$

(c)
$$\neg (p \lor \neg q)$$

(d)
$$p \lor q$$

(e)
$$p \vee \neg q$$

(f)
$$\neg p \lor \neg q$$

5. Write a logically equivalent expression to the following, only using the symbols $\{\neg, \land, \lor\}$. You can use the identites from the previous questions

(a)
$$p \rightarrow r$$

(b)
$$\neg(p \rightarrow r)$$

(c)
$$p \oplus r$$

(d)
$$p \oplus (r \land s)$$

(e)
$$p \leftrightarrow r$$

Functional commpletness

6. We saw that $\{\uparrow\}$ is functionally complete. Use the following table and equetions to show that $\{\downarrow\}$ is functionally complete.

Definition (NOR). Let p, q be propositions. $p \downarrow q = \neg (p \lor q)$

p	q	$p \downarrow q$	$p \downarrow p$	$q \downarrow q$	$(p\downarrow q)\downarrow (p\downarrow q)$	$(p \downarrow p) \downarrow (q \downarrow q)$
T	T					
T	F					
F	T					
F	F					

Show that we can express \neg , \lor , \land using ONLY \downarrow

- $\neg p \equiv$
- $p \lor q \equiv$
- $p \land q \equiv$
- 7. Show that $\{\neg, \lor\}$ is functionally complete. Show that we can express \neg, \lor, \land using ONLY $\{\neg, \lor\}$:
 - $\neg p \equiv$
 - $p \lor q \equiv$
 - $p \wedge q \equiv$

(Hint: De Morgan)

- 8. Show that $\{\neg, \rightarrow\}$ is functionally complete. Show that we can express \neg, \lor, \land using ONLY $\{\neg, \rightarrow\}$:
 - ¬p ≡
 - $p \vee q \equiv$
 - $p \wedge q \equiv$
- 9. Define $p \diamond q \equiv \neg(p \to q)$. Show that $\{\neg, \diamond\}$ is functionally complete.

Normal Forms

10. This quesrtion refers to a standard truth table of 3 variables.

Write the following expressions only using $\{\neg, \lor, \land\}$. Negations (\neg) should only be in front of a single variable, and not in front of the parenthesis.

- (a) R3 is True in the 3rd line, False in all other lines
- (b) R4 is True in the 4th line, False in all other lines
- (c) R4 is True in the 8th line, False in all other lines
- (d) Q3 is False in the 3rd line, True in all other lines

- (e) Q4 is False in the 4th line, True in all other lines
- (f) Q8 is False in the 8th line, True in all other lines
- 11. Find the DNF of $p \oplus q, \, p \leftrightarrow q \; , \, \neg (p \rightarrow q)$
- 12. The proposition R_1 is given in the following truth table:

p	q	r	R_1	R_2	R_3
T	T	T	T		
T	T	F	F		
T	F	T	Т		
T	F	F	F		
F	T	T	T		
F	T	F	F		
F	F	T	F		
F	F	F	F		

- 13. Write the DNF and CNF of R_1
- 14. It is known that

$$R_2 \equiv (p \land q \land r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land \neg r)$$

Fill in the truth values of R_2 in the above table and find the CNF of R_2 .

15. It is known that

$$R_3 \equiv (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

Fill in the truth values of R_3 in the above table and find the DNF of R_3 .