Max Wisniewski, Alexander Steen

Tutor: not known

Aufgabe 1 (Teilbarkeit)

Gegeben seien natürliche Zahlen $k, m, n \in \mathbb{N} \setminus \{0\}$, so dass $n = k \cdot m$.

a) Beweisen Sie folgende Aussage:

$$\forall a, b \in \mathbb{Z} : (a^m - b^m) | (a^n - b^n).$$

Beweis:

Seien $p_1, ..., p_s$ alle Primzahlen, die kleiner gleich $\max\{a, b\}$ sind.

b) Zeigen Sie weiter:

$$k \text{ ungerade} \quad \Rightarrow \quad (\forall a, b \in \mathbb{Z} : (a^m + b^m) | (a^n + b^n))$$

Beweis:

tbd by your mother

Aufgabe 2 (Primzahlen)

a) Bestimmen Sie mit dem Sieb des Erastrothenes alle Primzahlen zwischen 2 und 200. $\{2,3,5,7,1,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199\}$

Und nu darf hier noch wer den Algorithmus runter brechen.

b) Geben Sie die Primfaktorzerlegung der Zahl -1.601.320 an.

$$-1.601.320 = -1 \cdot 43 \cdot 19 \cdot 7^2 \cdot 5 \cdot 2^3$$

Aufgabe 3 (Teiler)

Für $n \in \mathbb{N}$ mit $n \geq 1$ sei $T_n := \{l \geq 1 | \ l | n \}$ die Menge ihrer Teiler.

a) Es sei $n=p_1^{k_1}\cdot\ldots\cdot p_s^{k_s}$ die Primfaktorzerlegung von n. Geben Sie eine Formel für die Anzahl $\#T_n$ der Teiler von n an.

Für diese Formel reicht uns ein einfaches kombinatorisches Argument. Wir haben s verschiedene Elemente mit jeweils k_i vorkommen. Diese wollen wir nun in allen kombination Möglichkeiten haben. Dies führt zur Formel:

$$\#T_n = \prod_{j=0}^{s} (k_j + 1)$$

b) Charakterisieren Sie diejenigen Zahlen, für die $\#T_n$ ungerade ist.

Lemma Seien $n, t_1, t_2 \in \mathbb{N} \setminus \{0\}$ mit $n = t_1 \cdot t_2$. Dann ist (t_1, t_2) ein Teilerpaar, d.h. es existiert keine andere Zahl t_3 für die gilt: $n = t_1 \cdot t_3$ oder $n = t_2 \cdot t_3$. Die Teilerbeziehung ist jeweils eindeutig.

Beweis Gelten die Bezeichner aus dem Lemma.

Nehmen wir an, es gäbe o.B.d.A. zu t_1 nicht nur t_2 sondern auch t_3 .

$$t_1 \cdot t_2 = t_1 \cdot t_3 \Leftrightarrow t_1 \cdot (t_2 - t_3) = 0$$

Da $t_1 \neq 0$ ist, da es Teiler ist, muss $t_2 = t_3$ gelten. Damit ist es eindeutig.

Vermutung: $\#T_n$ ungerade $\Leftrightarrow \exists a \in \mathbb{N} : a^2 = n$. Beweis:

"⇒"

Da wir eine ungerade Zahl an Teilern haben, muss es eine Zahl a geben, die keinen von sich verschiedenen Partner hat, dalle anderen nach Lemma einen eindeutigen Partner haben. Da aber gilt $a \mid n$, kann nur $n = a \cdot a$ gelten, womit n eine Quadratzahl ist. " \succeq "

Da n Quadratzahl ist, gibt es den Teiler a, der sein eingenes Teilerpaar darstellt. Korrollar zum Lemma gilt, dass es keine zweite Zahl b gibt mit $b \neq a \land n = b \cdot b$. Wir haben also einen Teiler und jeder weiter Teiler kommt als Teilerpaar.

Damit haben wir 2k + 1 Teiler. $\Rightarrow \#T_n$ ist ungerade.

Aufgabe 4 (Die Amnestie)

Ein Herrscher hält 500 Personen in Einzelzellen gefangen, die von 1 bis 500 durchnummeriert sind. Anlässlich seines fünfizgsten Geburtstags gewährt er eine Amnestie nach folgenden Regeln:

- Am ersten Tag werden alle Zellen aufgeschlossen.
- Am Tag i wird der Schlüssel der Zellen i, 2i, 3i usw. einmal umgedreht, d. h. Zelle j wird versperrt, wenn sie offen war, und geöffnet, wenn sie verschlossen war, j = i, 2i, 3i usw., i = 2, ..., 500.

Wie viele Gefangene kommen frei? Ist der Insasse von Zelle 179 unter den Freigelassenen?

Eigentschaft: Der Schlüssel einer Zelle wird genau dann umgedreht, wenn der Tag Teiler der Zahl ist.

Beweis:

"⇔"

1. Tag, werden alle Zellen geöffnet. $k \neq 0 \Rightarrow 1 | k$. Da die Zellen im Bereich [1,500] liegen ist $k \neq 0$. Am Tag j gilt : $\forall k \in \mathbb{N} : k \cdot i$ wird geöffnet. $k \cdot i$.

Hat Zelle z nun den Teiler j, so gilt: $\exists k' \in \mathbb{N} : z = j \cdot k'$. Dies erfüllt die drehen Vorraussetzung.

"⇒"

Sei z Zelle und j Tag und es gilt $j \not| z. => \exists k, r \in \mathbb{N} : k \cdot j + r = z \land 0 < r < j.$

Da aber nur $t \cdot j$ für beliebige t
 gedreht wird, kann bei der Zelle das Schloss nicht nochmal gedreht werden.

Vermutung: Die Zelle z ist am Ende offen, genau dann wenn $\#T_z$ ungerade ist. **Beweis:**

"⇐"

 $\exists k \in \mathbb{N} : z = 2 \cdot k + 1$

Am ersten Tag werden alle Türen geöffnet. Bleibe $2 \cdot k$ Drehvorgänge. Da aber nach beschreibung sich 2 Vorgänge paarweise aufheben, wird die Tür am Ende geöffnet sein. " \Rightarrow " $existsk \in \mathbb{N}$: $z = 2 \cdot k + 2$ ist möglich, da 0 keine unserer Türen ist.

Am ersten Tag wird die Tür wieder geöffnet. Bleiben $2 \cdot k + 1$ Drehvorgänge, von denen sich $2 \cdot k$ gegenseitig aufheben. Bleib uns ein Drehvorgang, der die Tür abschließt.

Nach 3b) müssen wir jetzt nur noch sehen, welche der Zellen Quadratzahlen sind: 1,4,9,16,25,36,49,64,81,100,121,144 169,196,225,256,289,324,361,400,484

Da die 179 keine Quadratzahl ist, wird die Zelle am Ende der 500 Tage geschlossen sein.