7. Công thức tính tiêu cự của mắt

1. Định nghĩa

- Mắt là một hệ gồm nhiều môi trường trong suốt tiếp giáp nhau bằng các mặt cầu.

- Từ ngoài vào trong, mắt có các bộ phận sau:
- + Giác mạc: Màng cứng, trong suốt. Bảo vệ các phần tử bên trong và làm khúc xạ các tia sáng truyền vào mắt.
- + Thủy dịch: Chất lỏng trong suốt có chiết suất xấp xỉ bằng chiết suất của nước.
- + Lòng đen: Màn chắn, ở giữa có lỗ trống gọi là con ngươi. Con ngươi có đường kính thay đổi tự động tùy theo cường độ sáng.
- + Thể thủy tinh: Khối chất đặc trong suốt có hình dạng thấu kính hai mặt lồi.
- + Dịch thủy tinh: Chất lỏng giống chất keo loãng, lấp đầy nhãn cầu sau thể thủy tinh.
- + Màng lưới (võng mạc): tại đó tập trung đầu các sợi dây thần kinh thị giác. Ở màng lưới có điểm vàng V là nơi cảm nhận ánh sáng nhạy nhất và điểm mù không nhạy cảm với ánh sáng.
- Hệ quang học của mắt được coi tương đương một thấu kính hội tụ gọi là thấu kính mắt.

Khi nhìn các vật ở các khoảng cách khác nhau (d thay đổi) thì mắt sẽ điều tiết để thay đổi f của thấu kính mắt sao cho ảnh hiện đúng trên màng lưới.

- + Khi mắt ở trạng thái không điều tiết, tiêu cự của mắt lớn nhất ($f_{max},\,D_{min}$).
- + Khi mắt điều tiết tối đa, tiêu cự của mắt nhỏ nhất (f_{min} , D_{max}).

2. Công thức – đơn vị đo

Với mắt người bình thường, vật sáng ở trước mắt luôn cho ảnh hiện trên võng mạc, nên tiêu cự của thể thủy tinh được xác định bằng công thức:

$$\frac{1}{f} = \frac{1}{d} + \frac{1}{OV} \Rightarrow f = \frac{d.OV}{d+OV}$$

3. Mở rộng

- Với mắt có tật cận thị
- + Chùm tia sáng song song truyền đến mắt cho chùm tia ló hội tụ ở một điểm trước màng lưới.

$$+ \; f_{max} \; < \; OV.$$

- Với mặt có tật viễn thị
- + chùm tia sáng song song truyền đến mắt cho chùm tia ló hội tụ ở một điểm sau màng lưới.

$$+ f_{max} > OV.$$

4. Bài tập ví dụ

Bài 1. Một người có mắt bình thường (không có tật) nhìn thấy được các vật ở rất xa mà không phải điều tiết. Khoảng cực cận của người này là $OC_c = 25$ cm. Tính tiêu cự của mắt người này khi điều tiết tối đa và khi không điều tiết. Biết khoảng cách từ thể thủy tinh đến võng mạc là 2,5 cm.

Bài giải

Khi mắt nhìn vật ở xa vô cùng thì mắt không cần điều tiết, nên ta có

$$\frac{1}{f_{max}} = \frac{1}{\infty} + \frac{1}{OV} \Rightarrow f_{max} = OV = 2,5 \text{ (cm)}$$

Khi mắt nhìn vật ở điểm cực cận, cách mặt 25 cm, mắt cần điều tiết tối đa, ta có

$$\frac{1}{f_{min}} = \frac{1}{d} + \frac{1}{OV} \Rightarrow f_{min} = \frac{d.OV}{d+OV} = \frac{25.2,5}{25+2,5} = 2,27$$
 (cm)

Đáp án: $f_{max} = 2.5 \text{ cm}$; $f_{min} = 2.27 \text{ cm}$

Bài 2. Một người bị cận thị, có điểm cực cận cách mắt 10 cm. Tính tiêu cự của mắt người này khi điều tiết tối đa, biết OV = 2.5 cm.

Bài giải

Khi mắt nhìn vật ở điểm cực cận, cách mắt 25 cm, mắt cần điều tiết tối đa, ta có

$$\frac{1}{f_{min}} = \frac{1}{d} + \frac{1}{OV} \Rightarrow f_{min} = \frac{d.OV}{d+OV} = \frac{10.2,5}{10+2,5} = 2 \text{ (cm)}$$

Đáp án: f = 2 cm