Bayesian decision first encounter with Bayesian theory

YT YANG

Axiom of probability

- 1. $0 \le P(E) \le 1$. If E_1 is an event that cannot possibly occur then $P(E_1) = 0$. If E_2 is sure to occur, $P(E_2) = 1$.
- 2. *S* is the sample space containing all possible outcomes, P(S) = 1.
- 3. If E_i , i = 1, ..., n are mutually exclusive (i.e., if they cannot occur at the same time, as in $E_i \cap E_j = \emptyset$, $j \neq i$, where \emptyset is the *null event* that does not contain any possible outcomes) we have

(A.1)
$$P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)$$

For example, letting E^c denote the *complement* of E, consisting of all possible outcomes in S that are not in E, we have $E \cap E^C = \emptyset$ and

$$P(E \cup E^c) = P(E) + P(E^c) = 1$$
$$P(E^c) = 1 - P(E)$$

If the intersection of E and F is not empty, we have

(A.2)
$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

A.1.2 Conditional Probability

P(E|F) is the probability of the occurrence of event E given that F occurred and is given as

(A.3)
$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Knowing that F occurred reduces the sample space to F, and the part of it where E also occurred is $E \cap F$. Note that equation A.3 is well-defined only if P(F) > 0. Because \cap is commutative, we have

$$P(E \cap F) = P(E|F)P(F) = P(F|E)P(E)$$

which gives us Bayes' formula:

(A.4)
$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

Bayes' Rule

When two random variables are jointly distributed with the value of one known, the probability that the other takes a given value can be computed using *Bayes' rule:*

$$P(y|x) = \frac{P(x|y)P_Y(y)}{P_X(x)} = \frac{P(x|y)P_Y(y)}{\sum_{y} P(x|y)P_Y(y)}$$

Or, in words

$$posterior = \frac{likelihood \times prior}{evidence}$$

Note that the denominator is obtained by summing (or integrating if y is continuous) the numerator over all possible y values. The "shape" of p(y|x) depends on the numerator with denominator as a normalizing factor to guarantee that p(y|x) sum to 1. Bayes' rule allows us to modify a prior probability into a posterior probability by taking information provided by x into account.

Bayes' rule inverts dependencies, allowing us to compute p(y|x) if p(x|y) is known. Suppose that y is the "cause" of x, like y going on summer vacation and x having a suntan. Then p(x|y) is the probability that someone who is known to have gone on summer vacation has a suntan. This is the *causal* (or predictive) way. Bayes' rule allows us a *diagnostic* approach by allowing us to compute p(y|x): namely, the probability that someone who is known to have a suntan, has gone on summer vacation. Then p(y) is the general probability of anyone's going on summer vacation and p(x) is the probability that anyone has a suntan, including both those who have gone on summer vacation and those who have not.

Bayesian is "elephant in the room"

Bayes' Rule

$$P(C = 0) + P(C = 1) = 1$$

 $p(\mathbf{x}) = p(\mathbf{x} \mid C = 1)P(C = 1) + p(\mathbf{x} \mid C = 0)P(C = 0)$
 $p(C = 0 \mid \mathbf{x}) + P(C = 1 \mid \mathbf{x}) = 1$

The prior

 $P(h = f \mid \mathcal{D})$ requires an additional probability distribution:

$$P(h = f \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid h = f) \ P(h = f)}{P(\mathcal{D})} \propto P(\mathcal{D} \mid h = f) \ P(h = f)$$

P(h = f) is the **prior**

 $P(h = f \mid \mathcal{D})$ is the **posterior**

Given the prior, we have the full distribution

A randomized experiment
Can be deterministic
If we know more information
Of the process

Suppose z is unobservable, X is the outcome (head, tail)

X = f(z)

Z: initial condition of flipping a coin

Probability and Inference

- □ Result of tossing a coin is ∈ {Heads, Tails}
- □ Random var $X \in \{1,0\}$

Bernoulli:
$$P \{X=1\} = p_o P \{X=0\} = 1 - p_o$$

 $P \{X\} = p_o^X (1 - p_o)^{(1 - X)}$

□ Sample: $\mathbf{X} = \{x^t\}_{t=1}^{N}$

Estimation: $p_o = \# \{ \text{Heads} \} / \# \{ \text{Tosses} \} = \sum_t x^t / N$

□ Prediction of next toss:

Heads if $p_o > 1/2$, Tails otherwise

Classification

- Credit scoring: Inputs are income and savings.
 Output is low-risk vs high-risk
- □ Input: $\mathbf{x} = [x_1, x_2]^T$, Output: $C \in \{0, 1\}$
- Prediction:

choose
$$\begin{cases} C = 1 & \text{if } P(C = 1 | x_1, x_2) > 0.5 \\ C = 0 & \text{otherwise} \end{cases}$$

or

choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 | x_1, x_2) > P(C = 0 | x_1, x_2) \\ C = 0 \text{ otherwise} \end{cases}$$

Bayes' Rule: K>2 Classes

$$P(C_{i} | \mathbf{x}) = \frac{p(\mathbf{x} | C_{i})P(C_{i})}{p(\mathbf{x})}$$

$$= \frac{p(\mathbf{x} | C_{i})P(C_{i})}{\sum_{k=1}^{K} p(\mathbf{x} | C_{k})P(C_{k})}$$

$$P(C_i) \ge 0$$
 and $\sum_{i=1}^{K} P(C_i) = 1$
choose C_i if $P(C_i | \mathbf{x}) = \max_k P(C_k | \mathbf{x})$

Discriminant Functions

choose C_i if $g_i(\mathbf{x}) = \max_k g_k(\mathbf{x})$

$$g_{i}(\mathbf{x}) = \begin{cases} -R(\alpha_{i} \mid \mathbf{x}) \\ P(C_{i} \mid \mathbf{x}) \\ p(\mathbf{x} \mid C_{i})P(C_{i}) \end{cases}$$

K decision regions $\mathcal{R}_1,...,\mathcal{R}_K$

$$\mathcal{R}_i = \{ \mathbf{x} \mid g_i(\mathbf{x}) = \max_k g_k(\mathbf{x}) \}$$

K=2 Classes

Dichotomizer (K=2) vs Polychotomizer (K>2)

$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$

$$\text{choose } \begin{cases} C_1 \text{ if } g(\mathbf{x}) > 0 \\ C_2 \text{ otherwise} \end{cases}$$

 $\log \frac{P(C_1 \mid \mathbf{x})}{P(C_2 \mid \mathbf{x})}$

Losses and Risks

- \square Actions: α_i
- \square Loss of α_i when the state is $C_k : \lambda_{ik}$
- Expected risk (Duda and Hart, 1973)

$$R(\alpha_i \mid \mathbf{x}) = \sum_{k=1}^K \lambda_{ik} P(C_k \mid \mathbf{x})$$

choose α_i if $R(\alpha_i | \mathbf{x}) = \min_k R(\alpha_k | \mathbf{x})$

Risk CIA case: non-symmetric situation

Action 1 you

Action 2 intruder

Risk is defined as

λ

	k=1	k=2
α1	0	1000
α2	1	0

Association Rules

- \square Association rule: $X \rightarrow Y$
- People who buy/click/visit/enjoy X are also likely to buy/click/visit/enjoy Y.
- A rule implies association, not necessarily causation.

Association measures

□ Support $(X \rightarrow Y)$:

$$P(X,Y) = \frac{\#\{\text{customers who bought } X \text{ and } Y\}}{\#\{\text{customers}\}}$$

□ Confidence $(X \rightarrow Y)$:

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$

□ Lift
$$(X \to Y)$$
:

$$= \frac{P(X,Y)}{P(X)P(Y)} = \frac{P(Y \mid X)}{P(Y)}$$

$$= \frac{P(X,Y)}{P(X)P(Y)} = \frac{P(Y \mid X)}{P(Y)}$$

$$= \frac{\#\{\text{customers who bought } X \text{ and } Y\}}{\#\{\text{customers who bought } X\}}$$

Example

Transaction	Items in basket	
1	milk, bananas, chocolate	
2	milk, chocolate	
3	milk, bananas	
4	chocolate	
5	chocolate	
6	milk, chocolate	

Bayesian update as an algorithm

A simple case to make a point

When is Bayesian learning justified?

1. The prior is **valid**

trumps all other methods

2. The prior is **irrelevant**

just a computational catalyst

Bin example

まなびのずかん統計学の図鑑, 漁井良幸, 漁井貞美

Suppose we have two possible bins from A and B. If the bin is A, the probability is given P(red | H=A) = 0.6

P(green | H=A) = 0.4

If the bin is B, the probability is given by

P(red | H=B) = 0.3

P(green | H=B) = 0.7

How can we distinguish the bin is A or B?

Bayesian update approach

First, we model with prior probability and assume some initial prior,
 e.g.

$$P(H=A) = 1/2$$

 $P(H=B) = 1/2$

- Second we draw the ball from the bin
- Third step is calculation of the posterior probability
- Four step, set the new prior and go to the first step with this new prior

If the ball is red

$$P(H = A|red) = \frac{P(red|H=A)P(H = A)}{P(red)}$$

$$P(H = B|red) = \frac{P(red|H=B)P(H = B)}{P(red)}$$

$$P(red) = P(red \mid H=A)P(H=A) + P(red \mid H=B)P(H=B)$$

We then set new prior to be

If the ball is green

$$P(H = A|green) = \frac{P(green|H=A)P(H = A)}{P(green)}$$

$$P(H = B|green) = \frac{P(green|H=B)P(H = B)}{P(green)}$$

$$P(green | H=A)P(H=A) + P(green | H=B)P(H=B)$$

We then set new prior to be

$$P(H=A)=P(H=A \mid green)$$

Simulation example

Posterior probablity calculated from the simulation.

Black box

Initial prior

A more radical case

WHAT IF THE PRIOR IS FAR FROM TRUE?

TO SUMMERIZE

- Bayesian probability formalism automatically make a learning algorithm.
- We first model the system by making assumption on the prior and use Bayesian formula to update our current belief.
- The process is iterated as new evidence is generated from our experiment.
- We establish this algorithm indeed works regardless which initial prior we start with.
- Therefore we can consider prior is "computational catalyst" to get the computation going.

```
import random
#initial prior probabity
               #prior probability
priorA = 0.01
priorB = 0.99
                # prior proability
Pgreen A= 4/10 # Probability of green given Bin A
Pred A=6/10
                # Probability of red given Bin A
Pgreen B= 7/10 # Probability of green given Bin B
                # Probability of red given Bin B
Pred B= 3/10
#define these probabity and set to zero for convenience
P A red=0
P A green=0
P B red=0
P B green=0
num seg=100
for seg in range(num seg):
    x=random.uniform(0,1)
    if x>=0 and x<=Pgreen_A:
        P A green= Pgreen A*priorA/(Pgreen A*priorA+Pgreen B*priorB)
        P B green=1-P A green
        priorA=P_A_green
        priorB=P B green
        print( 'green', seg+1, round(P A green,4))
    else:
        P_A_red= Pred_A*priorA/(Pred_A*priorA+Pred_B*priorB)
        P B red=1-P A red
        priorA=P_A_red
        priorB=P B red
        print( 'red', seq+1, round(P A red,4))
```