К155ИР13 (74198)

Данная техническая спецификация является ознакомительной и не может заменить собой учтенный экземпляр технических условий или этикетку на изделие.

Микросхема К155ИР13— универсальный, восьмиразрядный, синхронный регистр сдвига, построенный на RS-триггерах. Регистр характеризуется тем, что при поступлении одного тактового импульса обеспечивается сдвиг одновременно всего числа на один разряд вправо или влево. Для записи числа в параллельном коде используются входы D0-D7. Последовательная запись числа производится через входы DR (вход последовательного сдвига вправо) для записи числа начиная с младших разрядов.

DL — (вход последовательного сдвига влево) начиная со старших разрядов. В схеме регистра используются режимные входы S0 и S1, определяющие функции регистра, вход синхронизации C а также вход К (установка в 0), восемь параллельных выходов Q0-Q7.

Регистр выполняет 4 операции:

- 1. Параллельный ввод информации
- 2. Сдвиг вправо (от Q0 до Q7)
- 3. Сдвиг влево (от Q7 до Q0)
- 4. Запрет (очистка, сброс).

Зарубежный аналог - SN74198N.

Корпус К155ИР13 типа 239.24-1.

- 1 вход режимный S0;
- 2 вход последовательного ввода при сдвиге вправо DR;
- 3 вход информационный D0;
- 4 выход Q0; 5 вход D1;
- 6 выход Q1; 7 вход D2;
- 8 выход Q2; 9 вход D3;
- 10 выход Q3;
- 11 вход синхронизации С;
- 12 общий;

Условное графическое обозначение

- 13 вход инверсный "сброс" К;
- 14 выход Q4; 15 вход D4;
- 16 выход Q5; 17 вход D5;
- 18 выход Q6; 19 вход D6;
- 20 выход Q7; 21 вход D7;
- 22 вход последовательного ввода при сдвиге влево DL;
- 23 вход режимный S1;
- 24 напряжение питания;

В таблице указаны сочетания уровней на этих входах, позволяющие переводить регистр в режимы: хранения (на входах S0 и S1 напряжения низкого уровня), параллельной загрузки (на этих входах напряжения высокого уровня), сдвига влево (S1-в, S0-н) и сдвига вправо (S1-н, SO-в).

Состояние регистра в разных режимах К155ИР13 (74198)

	Входы						Выходы	Downs no form
\mathbf{R}	C	S^1	S ^o	DR	DL	Di	$\mathbf{Q}_1 \mathbf{Q}_2 \dots \mathbf{Q}_7 \mathbf{Q}_8$	Режим работы
1		1	1	1	X	D_1^n	$D_{1}{}^{n}D_{2}{}^{n}D_{7}{}^{n}D_{8}{}^{n}$	Параллельный ввод
1		0	0	X	X	X	$Q_1^nQ_2^n\ Q_7^nQ_8^n$	Хранение
1		1	0	X	0	X	${f Q}_2{}^n{f Q}_3{}^n{f Q}_8{}^n0$	Capana
1	Γ	1	0	X	1	X	$Q_{2^n} Q_{3^n}Q_{8^n} 1$	Сдвиг влево
1		0	1	0	X	X	$0~{ m Q_{1}^{n}}{ m Q_{6}^{n}}~{ m Q_{7}^{n}}$	Carran
1		0	1	1	X	X	$1 \ Q_{1}^{n}Q_{6}^{n} \ Q_{7}^{n}$	Сдвиг вправо
0	X	X	X	X	X	X	0000	Установка нулей (сброс)

Синхронный параллельный ввод 8 бит информации осуществляется при наличии на режимных входах S0 и S1 состояния «1». Информация поступает в соответствующий входы и появляется на выходах с приходом фронта синхроимпульса на вход «С». Сдвиг вправо осуществляется синхронно при подаче фронта импульса синхронизации, когда на входе S0 — «1» а на S1 — «0». Последовательная информация в этом случае поступает на вход DL. Установка нулей (очистка регистра) осуществляется импульсом U^0 на входе R. Очистка регистра происходит независимо от состояния остальных входов. Во время действия импульса $\mathrm{R}=0$ регистр бездействует. При выполнении всех остальных операций необходимо поддерживать $\mathrm{R}=1$. Режим работы задается сигналами на управляющих входах без применения дополнительных устройств и внешних связей. Микросхема имеет следующие выводы: информационные входы последовательного ввода информации — DR при сдвиге вправо (англ. rtght) и DL при сдвиге влево (англ. left); восемь входов D1—D8 для параллельного ввода, тактовый вход C, управляющие входы S1 и S0 для выбора режима, вход R для установки триггеров в нулевое состояние и восемь выходов от разрядов Q1—Q8.

Кроме однотипных параллельных входов, у микросхемы К155ИР13 (74198), DO — D7, первый и последний разряды регистра имеют дополнительные D-входы: DSR — для сдвига вправо и DSL для сдвига влево. Состоянием входов SO и S1 определяется также прием тактового перепада от входа C. На входы SO и S1 перепад от высокого уровня к низкому можно подавать, когда на входе C присутствует напряжение высокого уровня. При параллельной загрузке (S1-в, SO-в) слово, подготовленное на входах DO—D7, появится на выходах QO — Q7 после прихода последующего положительного перепада тактового импульса.

Работа регистра в режиме последовательного ввода со сдвигом вправо происходит при $S_1 = 0$ и $S_0 = 1$. Информация в последовательном коде подается на вход, начиная с младших разрядов. Ввод и сдвиг всего числа на один разряд происходит с каждым перепадом 0,1 тактовых импульсов.

Последовательный ввод со сдвигом влево осуществляется при управляющих сигналах $S_1 = 1$, $S_0 = 0$. Входная информация должна поступать на вход DL со старших разрядов.

Для параллельного ввода со входов D1–D8 на обоих управляющих входах должно быть $S_1 = S_0 = 1$. Информация со входов D1–D8 будет записана в триггеры и появится на выходах Q1–Q8 по перепаду 0,1 тактового импульса. Во избежание сбоев смена состояний управляющих входов S_1 и S_0 должна происходить при C=1. Когда на обоих управляющих входах $S_1=S_2=0$, триггеры не переключаются, т. е. имеет место режим хранения.

Электрические параметры

1	Номинальное напряжение питания	5V ±5 %
2	Выходное напряжение низкого уровня	не более 0,4V
3	Выходное напряжение высокого уровня	не менее 2,4V
4	Помехоустойчивость	не менее 0,4V
5	Входной ток низкого уровня	не более -1,6 мА
6	Входной ток высокого уровня	не более 0,04 мА
7	Ток короткого замыкания	-1857 мА
8	Потребляемая мощность	не более 609 мВт
9	Потребляемый ток	116 мА
10	Рабочая частота	25 МГц

Литература

Интегральные микросхемы и их зарубежные аналоги: Справочник. Том 2./А. В. Нефедов. - М.:ИП РадиоСофт, 1998г. - 640с.:ил.

Отечественные микросхемы и зарубежные аналоги Справочник. Перельман Б.Л., Шевелев В.И. "НТЦ Микротех", 1998г., 376 с. - ISBN-5-85823-006-7.