

APPARATUS FOR MONITORING INTENTIONAL OR
UNAVOIDABLE LAYER DEPOSITIONS AND METHOD

5

Cross-Reference to Related Application:

This application is a continuation of copending International Application No. PCT/DE00/02116, filed June 28, 2000, which designated the United States.

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

Background of the Invention:

Field of the Invention:

The invention relates to an apparatus for monitoring intentional or unavoidable layer depositions in a process chamber and to a method for carrying out measurements with the apparatus.

In processing operations which are carried out in process chambers and wherein material is removed, which include, for example, the methods of reactive ion etching (RIE) and chemical assisted ion beam etching (CAIBE), a deposit may unintentionally be deposited on account of the starting chemicals used and the resulting reaction products on the inner wall of the reactor wherein the processing operation is

20 carried out. Since the thickness of the deposit continually increases as the process duration increases and, once a
25

specific layer thickness has been reached, the process carried out in the chamber interacts with this deposit to such a great extent that the process can be destabilized, this unavoidable deposit is therefore removed at periodic intervals by carrying

5 out a special cleaning process.

While plasma etching processes or CVD (Chemical Vapor Deposition) processes are performed, polymer layers are deposited on the inside of the process chamber. The layers increase as the operating duration increases, so that after a certain layer thickness has been exceeded, the layer that has grown breaks up and fragments may possibly even drop during operation. As a result, contaminants are produced in the chamber or, if a fragment falls onto the wafer surface, circuits on the processed wafer are rendered unusable. In order to remove these undesirable depositions on the inside of the chamber, the process chamber must occasionally be subjected to wet-chemical cleaning. During the cleaning, the chamber is not available for further production.

20

In accordance with the prior art, the time for initiating the cleaning process is defined on the basis of empirical values obtained from the determination of the quality of the processed materials. Active monitoring of the state of the

25 chamber wall takes place only in exceptional cases; for example, in the case of a sensor or measurement system for

measuring the thickness of the deposit, a measurement principle based on the measurement of thermal capacity is used or the layer thickness is determined by means of ultrasound wave propagation times. Disadvantages of these measurement 5 principles are, for example, the need for additional electrical bushings into the process chamber in order to link the measuring apparatuses to evaluation units. Moreover, the ultrasound wave propagation time method is temperature-sensitive and is made more difficult to carry out as a result 10 of disturbing reflections from the structures within the process chamber.

The Japanese patent application documents JP 63-153269 A, JP 01-132767 A, JP 04-176866 A, JP 05-255850, A and JP 06-49641 15 disclose arranging a sensor element in the form of a monitor substrate in the region of the layer deposition and detecting the transmission and/or reflection beam emerging from a light source, that is to say the intensity change, by means of a detector and using it to set method parameters. Furthermore, 20 Japanese patent application documents JP 11-140655 A and JP 11-131211 A disclose monitoring the chamber cleaning of a process chamber by means of photosensors, with measurement of the intensity attenuation of a light beam by the layer growing on a window in the chamber wall.

Summary of the Invention:

It is accordingly an object of the invention to provide an apparatus and method for monitoring layer deposition processes in a reactor chamber, which overcomes the above-mentioned 5 disadvantages of the heretofore-known devices and methods of this general type and with which the most favorable cleaning cycle times for technological and economic process control can be determined with the lowest possible outlay.

DOCUMENT NUMBER

With the foregoing and other objects in view there is provided, in accordance with the invention, an apparatus for monitoring layer depositions in a process chamber, comprising:
10 a light source;
a sensor element subjectable to deposition and growth of a
15 deposition layer;
a light detector;
the sensor element having a region configured to absorb light to a significantly lesser extent than a remaining part of the sensor element, wherein an intensity of the light is measured
20 in dependence on the region being grown over by a thickness of the deposition layer.

In accordance with an added feature of the invention, the region is a continuous opening formed in the sensor element. The region is configured to influence the intensity of the light beam measured by the detector as the thickness of the 5 layer grows on the sensor element.

In other words, there is provided an apparatus for monitoring layer depositions in a process chamber, comprising a light source, a sensor element, at least one light detector, the sensor element being suitably configured in order to influence the intensity of the light beam measured by the detector by the thickness of the layer growing on the sensor element, and the sensor element having at least one continuous opening and/or at least one region which absorbs the light beam to a 10 significantly lesser extent than the remaining part of the sensor element, through which opening or region the intensity of the light is measured as a function of the opening grown over by the thickness of the growing layer.
15

20 In a method for carrying out measurements with such an apparatus, a cleaning cycle time of the process chamber is determined from the intensity measurement of the light by comparing the measured light intensity with a predetermined minimum intensity or a predetermined maximum intensity.

That is, the monitoring method comprises providing an apparatus as outlined above, monitoring a layer deposition in a process chamber with the apparatus, determining a cleaning cycle time of the process chamber from an intensity measurement of the light by comparing the measured light intensity with one of a predetermined minimum intensity and a predetermined maximum intensity.

In the apparatus and the method, in order to determine the thickness of the deposit, the absorption and/or refraction of light at a concomitantly coated opening is determined and evaluated. In this case, the light source may, in principle, be of any desired configuration. Either an external light source or the use of plasma luminous phenomena is preferred as the light source. In this case, external light source does not necessarily mean that it is positioned outside the process chamber, rather it may also be situated inside the process chamber. The method according to the invention is based on the concept of introducing into the process chamber an object as sensor element, on which is deposited largely the same deposit as on the process chamber. The thickness of the deposit, which defines the state of the process chamber and thus the most favorable cleaning cycle time for technological (and economic) process control, can be determined by optical means, such as, for example, by means of light absorption and/or refraction.

The method is based on the measurement of the influencing of light, for example by absorption at the sensor element. The component referred to as sensor element is introduced into the process chamber at a location at which it can be expected that

5 a deposit will be formed similar in quality and form to that on the object to be processed/treated, in order preferably to monitor intentionally produced deposits. Specifically, in order preferably to measure unavoidable depositions, it is fitted where it can be expected that there will be a deposit

10 similar in quality and form to that on the chamber wall. In this case, the sensor element is preferably composed of a material which completely absorbs the light used for measurement. The sensor element is preferably composed of silicon. On the sensor element, at least one continuous opening is provided, which may, in principle, be of any desired form, and the light used for measurement is observed through this opening and detected by a detector. The sensor element is thus used like a diaphragm. It is also possible for the opening or the openings not to be completely continuous

15 spatially. What is important, however, is that they are virtually completely transmissive for the light beam. A specific embodiment of the sensor element is, for example, a layered construction of the sensor element, one layer being composed of a material which absorbs the light used and having

20 at least one spatially continuous opening. This layer is applied to a second layer, which is composed of a material

which does not absorb the light used. The order of magnitude of the spatial dimension of the opening/s is chosen within the same range as the layer thickness defined for the chamber cleaning occasion. The measurement principle is based on the
5 observation of the light absorbed at the opening. The absorption increases as the extent to which the opening is grown over increases.

If the deposit is only weakly absorbing for the light used and the opening is grown over in the formation of a lenticular structure, then it is also possible to utilize the increasing scattering of the light at curved surfaces on account of refraction at the interfaces between deposit and surroundings, and on account of the light scattering and total reflection occurring in the deposit. The greater the thickness of the deposit, the lower the light intensity that can be measured at the detector. The cleaning cycle time or generally the coating thickness can be determined by comparing the measured light intensity with a predetermined minimum intensity. The
10 invention thereby enables the active monitoring of the state of the chamber wall during coating, without interrupting the coating processes (in situ). In an analogous procedure, it is also possible to observe the erosion of the layer thickness associated with the cleaning operation and to determine the
20 time required for cleaning the process chamber (cleaning time) by comparing the measured light intensity with a predetermined
25

maximum intensity. The cleaning cycle time, or cleaning time or generally the coating thickness can be determined by comparing the measured light intensity with a predetermined intensity in an optimum manner without interrupting the 5 coating processes. What is also advantageous about the apparatus according to the invention, in addition to the low outlay on equipment, is that additional electrical bushings into the process chamber are not necessary. The invention can be used for monitoring all processing/treatment operations 10 wherein an intended or unintended layer deposition occurs.

Other features which are considered as characteristic for the invention are set forth in the appended claims.

15 Although the invention is illustrated and described herein as embodied in an apparatus for monitoring intentional or unavoidable layer depositions and method, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein 20 without departing from the spirit of the invention and within the scope and range of equivalents of the claims.

The construction and method of operation of the invention, however, together with additional objects and advantages 25 thereof will be best understood from the following description

of specific embodiments when read in connection with the accompanying drawings.

Brief Description of the Drawings:

5 Fig. 1 is a diagrammatic perspective view of the basic configuration of an apparatus for carrying out the method according to the invention using a separate light source 1, which is preferably positioned in front of a second window 6 in a line with the sensor element and the detector;

10 Fig. 2 is a perspective view of the basic configuration utilizing the plasma luminous phenomenon 8 as a light source with the use of a second detector 7 for reference measurement;

15 Fig. 3 is a further perspective view of the basic configuration utilizing the plasma luminous phenomenon 8 as a light source with only one detector 5 and a tilting/rotating mechanism 9 for rotating the sensor element 4 out of the beam path of the light between the plasma luminous phenomenon 8 and
20 the detector 5;

Fig. 4 is a diagrammatic side view of a detail of a cross section through the basic configuration of the sensor element with a continuous opening;

Fig. 5 is a detail of the cross section of the basic configuration of the layered sensor element with a continuous opening in a first absorbing layer and a second, non-absorbing layer;

5

Fig. 6 is a similar view of an embodiment of an opening; and

Fig. 7 is a schematic diagram of an arrangement of a measuring device on a wall of a process chamber.

10
15
20
25

Description of the Preferred Embodiments:

Referring now to the figures of the drawing in detail and first, particularly, to Fig. 1 thereof, there is shown an inventive apparatus with a light source 1 that generates a light beam 10 (represented as an arrow). The light beam 10 is incident on a sensor element 4 through a window 6 in a process chamber 3. The intensity of the light, which can pass through the sensor element 4 and then leaves the process chamber via a further window 2, is measured by a detector 5. The separate light source may also be situated inside the process chamber.

A reference detector 7 may be used in order to compensate for possible coating of the observation windows and/or the separate light source and the associated decrease in the light intensity or an intensity fluctuation of the light source.

25 Otherwise, the windows must be protected against coating in the region of the light beam by the implementation of suitable

measures. This may be done for example by the window being set back into a cylindrical opening.

The apparatus illustrated in Fig. 2 does not use a separate light source, but rather utilizes luminous phenomena in the plasma itself as a light source. In this case, a second detector 7 is necessary or, as illustrated in Fig. 3, a tilting/rotating mechanism 9 for rotating the sensor element out of the beam path between the light source and the detector 5, in order that the intensity of the light which passes unimpeded from the source through the window 2 into the detector 5 can be measured for reference purposes. This tilting/rotating mechanism can also be used in conjunction with a separate light source. In principle, each design of the light source is possible for carrying out the method according to the invention.

Fig. 4 illustrates a detail from the cross section through a preferred embodiment of the sensor element 4, which is positioned in the beam path of the light used for measurement. It has a continuous opening with the diameter d of the order of magnitude of the maximum layer thickness d'_{\max} to be detected. The three-dimensional geometrical form of the opening may be designed to be, for example, round, rectangular, slot-shaped, conical and so on. The sensor

element may have one or more openings which may be arranged differently.

The method is based on the idea that, as the layer thickness
5 d' of a deposition increases, the effective opening area of
the sensor element is reduced by the opening being grown over
and therefore more light is absorbed and/or scattered for
example by light reflection, light refraction, total

reflection at curved surfaces/interfaces (deposited
10 layer/chamber filling). The detector used may be a simple
component which reacts to the intensity of the incident light,
for example a photodiode. However, it is also possible to use
a complicated magnifying optical arrangement with CCD detector
connected downstream for the direct optical imaging and, for
15 example, computer-aided evaluation of the effective area. The
detector system is designed as desired, in principle; the
design merely has to enable measurement of the intensity of
the electromagnetic radiation. Moreover, the detector system
can be arranged outside and inside the process chamber, since,
20 as a result, the contamination of the process chamber is
minimized and concomitant coating of the detector system is
precluded.

Fig. 5 illustrates a detail from the cross section through a
25 sensor element 4 which is constructed from two layers and is
positioned in the beam path of the light used for measurement.

The sensor element 4 has a continuous opening in a first absorbing layer 11 and a second, non-absorbing layer 12 without an opening. The first layer is applied to a second layer composed of a material which does not absorb the light 5 that is used in the apparatus. In this case, too, the order of magnitude of the spatial dimension of the opening is chosen to be of the same order of magnitude as the layer thickness defined for the chamber cleaning occasion. The layer deposition preferably takes place on the side of the sensor 10 element with the opening in the first layer that absorbs the light used. As a result of this and as a result of the set-back position of the surface of the non-absorbing layer within the opening, concomitant coating of the second, non-absorbing sensor element layer is avoided to the greatest possible 15 extent.

There are a multiplicity of possible variants for the design of the opening. In the case of the opening illustrated in Fig. 6, the body 40 that is opaque to light is composed of silicon. 20 The disk 40 has two opposite surfaces between which the opening 41 extends. The opening 41 has a variable diameter along the depth of the opening. Thus, the opening diameter directed toward the inside of the process chamber is smaller than the diameter which faces away from the interior of the 25 chamber, that is to say points toward the exterior of the chamber. Through suitable dimensioning of the opening 41 and

of the light-opaque part 40 of the sensor, which dimensioning
is, if appropriate, to be determined experimentally for the
respective dry-etching or deposition process to be monitored,
it is possible to achieve an optimization with regard to the
5 respective process to be monitored. In particular, the form
and thickness of the deposition 42 in the region of the
surface of the opening 41 is determined by the thickness of
the silicon disk and also by the ratio of the diameters at the
ends of the opening 41 on the internal side of the chamber and
external side of the chamber.

10 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

In a further refinement of the invention, it is advantageous
to arrange a plurality of sensor elements 4 and/or 40 next to
one another within the chamber, these sensor elements having
openings of different size. The absorption behavior of the
different openings is monitored simultaneously or
successively. With the progressive growth of the deposited
layer, e.g. 42, the smallest of the openings will first be
coated opaque, while the larger of the openings still have
20 small absorption phenomena ranging to no absorption phenomena
at all. Depending on the ratio of the absorbing openings to
the as yet non-absorbing openings, it is possible to determine
the degree of contamination within the chamber. The
transmitted light intensity of an opening is expediently
25 compared with an absolute threshold value or, in accordance
with the embodiment according to Fig. 2, a relative threshold

value. The information contribution of an opening for the measurement is thus digital. Overall, a relatively finely resolved statement about the degree of contamination inside the chamber then results for an arrangement of a plurality of 5 openings of different diameters.

The light sensors, for example, the sensor 5 in Figs. 1 to 3, can measure light of different predetermined wavelengths or from different predetermined ranges of wavelengths 10 independently of one another. As a result, it is possible to effect an optimization of the measurement with regard to the absorption behavior of different layers.

Fig. 7 shows a practical implementation as a development of 15 the principle according to Fig. 2. Both the sensor 51 and the window 52 for the reference light beam are shown on the wall 50 of the process chamber. The sensor 51 has a disk 52 which is preferably composed of silicon and into which an opening 53 is introduced. If the silicon disk 52 is coated on account of 20 the processes taking place in the process chamber, the opening 53 narrows and its absorption increases. The light generated by the plasma is thereby attenuated when passing through the narrowed opening 53. The light passing through the opening 53 is taken up by an optical waveguide 56 and fed into an 25 evaluation device 57. The optical window 58 receives the reference light generated by the plasma. The opening 59 is

chosen such that any depositions do not influence its transmissivity. An optical waveguide 60 is once again provided in order to feed the reference light into the evaluation device 57. In particular, the process chamber wall inside the 5 opening 59 is scarcely influenced by any undesirable depositions owing to the depth of the opening 59. The evaluation device 57 contains two light-sensitive detectors both for the measurement light path and for the reference light path. These sensors are, in particular, CCD elements.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
95