

Outline

- · Pipeline technique
- Examples
 - Adding numbers
 - Sorting numbers
 - Prime number generation
 - Solving a System of Linear Equations

Example

Add all the elements of array **a** to an accumulating sum:

for (i = 0; i < n; i++)
 sum = sum + a[i];</pre>

The loop could be "unfolded" to yield

```
sum = sum + a[0];
sum = sum + a[1];
sum = sum + a[2];
sum = sum + a[3];
sum = sum + a[4];
.
.
.
```

Pipelined Computations

Problem divided into a series of tasks that have to be completed one after the other (the basis of sequential programming). Each task executed by a separate process or processor.

Pipeline for an unfolded loop

Another Example

Frequency filter - Objective to remove specific frequencies $(f_0, f_1, f_2, f_3,$ etc.) from a digitized signal, f(t).

Signal enters pipeline from left:

Where can pipelining be used

Assuming problem can be divided into a series of sequential tasks, pipelined approach can provide increased execution speed under the following three types of computations:

- If more than one instance of the complete problem is to be executed
- If a series of data items must be processed, each requiring multiple operations
- 3. If information to start next process can be passed forward before process has completed all its internal operations

If the number of stages is larger than the

Computing Platform for Pipelined Applications

Multiprocessor system with a line configuration

Outline

- · Pipeline technique
- · Examples
 - Adding numbers
 - Sorting numbers
 - Prime number generation
 - Solving a System of Linear Equations

L4 /

Pipeline Program Examples

Adding Numbers

Type 1 pipeline computation

15

```
Basic code for process P_i:

recv(&accumulation, P_{i-1});

accumulation = accumulation + number;

send(&accumulation, P_{i+1});

except for the first process, P_0, which is

send(&number, P_1);

and the last process, P_{n-1}, which is

recv(&number, P_{n-2});

accumulation = accumulation + number;
```

SPMD program

```
if (process > 0) {
    recv(&accumulation, P<sub>i-1</sub>);
    accumulation = accumulation + number;
}
if (process < n-1)
    send(&accumulation, P<sub>i+1</sub>);
```

The final result is in the last process.

Instead of addition, other arithmetic operations could be done.

Pipelined addition numbers

Master process and ring configuration

18

Outline

- · Pipeline technique
- Examples
 - Adding numbers
 - Sorting numbers
 - Prime number generation
 - Solving a System of Linear Equations

Prime Number Generation Sieve of Eratosthenes

- Series of all integers generated from 2.
- First number, 2, is prime and kept.
- All multiples of this number deleted as they cannot be prime.
- · Process repeated with each remaining number.
- The algorithm removes non-primes, leaving only primes.

Type 2 pipeline computation

Illustration

Algorithm steps for primes below 120

Prime number

Figure from wikipedia.org

In javascript: http://www.hbmeyer.de/eratosiv.htm

The code for a process, P_{i} , could be based upon

```
recv(&x, P<sub>i-1</sub>);
/* repeat following for each number */
recv(&number, P<sub>i-1</sub>);
if ((number % x) != 0) send(&number, P<sub>i-1</sub>);
```

Each process will not receive the same number of numbers and is not known beforehand. Use a "terminator" message, which is sent at the end of the sequence:

```
recv(&x, P<sub>i-1</sub>);
for (i = 0; i < n; i++) {
    recv(&number, P<sub>i-1</sub>);
    if (number == terminator) break;
    if ((number % x) != 0) send(&number, P<sub>i+1</sub>);
}
```

Outline

- Pipeline technique
- Examples
 - Adding numbers
 - Sorting numbers
 - Prime number generation
 - Solving a System of Linear Equations

Solving a System of Linear Equations Upper-triangular form

where a's and b's are constants and x's are unknowns to be found.

33

Back Substitution

First, unknown x_0 is found from last equation; i.e.,

$$x_0 = \frac{b_0}{a_{0,0}}$$

Value obtained for x_0 substituted into next equation to

obtain
$$x_1$$
; i.e., $x_1 = \frac{b_1 - a_{1,0} x_0}{a_{1,1}}$

Values obtained for x_1 and x_0 substituted into next equation to obtain x_2 :

equation to obtain
$$x_2$$
:

$$x_2 = \frac{b_2 - a_{2,0}x_0 - a_{2,1}x_1}{a_{2,2}}$$

and so on until all the unknowns are found.

Pipeline Solution

First pipeline stage computes x_0 and passes x_0 onto the second stage, which computes x_1 from x_0 and passes both x_0 and x_1 onto the next stage, which computes x_2 from x_0 and x_1 , and so on.

Type 3 pipeline computation

The *i*th process (0 < i < n) receives the values $x_0, x_1, x_2, ..., x_{i,1}$ and computes x_i from the equation:

$$x_{j} = \frac{b_{j} - \sum_{j=0}^{i-1} a_{i,j} x_{j}}{a_{i,j}}$$

Sequential Code

Given constants $a_{i,j}$ and b_k stored in arrays $\mathbf{a}[\][\]$ and $\mathbf{b}[\]$, respectively, and values for unknowns to be stored in array, $\mathbf{x}[\]$, sequential code could be

Parallel Code

Pseudocode of process P_i (1 < i < n) could be

```
for (j = 0; j < i; j++) {
    recv(&x[j], P<sub>i-1</sub>);
    send(&x[j], P<sub>i+1</sub>);
}
sum = 0;
for (j = 0; j < i; j++)
    sum = sum + a[i][j]*x[j];
x[i] = (b[i] - sum)/a[i][i];
send(&x[i], P<sub>i+1</sub>);
```

Now have additional computations to do after receiving and resending values.

References

- Barry Wilkinson & Michael Allen. Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers.
 Blaise Barney, "Introduction to Parallel Computing", Livermore Computing
 Algorithms in C, 3rd Edition, Parts 1-4 by Robert Sedgewick, Addison-Wesley, 1998. ISBN 0-201-31452-5