Cálculo para Ciências

——— Folha 8 ———— outubro de 2021 ————

Exercício 1. Encontre expressões globais para as soluções das seguintes equações diferenciais:

- a) $y' = y^2$;
- b) (x + xy) y' = 0;
- c) $(x+1)y' + y^2 = 0;$
- d) $yy' = e^{x+2y} \operatorname{sen} x;$
- e) $xy' + y = \frac{1}{y^2}$;
- f) $yx^{y-1} + (x^y \log x)y' = 0;$
- g) $\operatorname{tg} x \cos y = -y' \operatorname{tg} y$.

Exercício 2. Considere uma equação diferencial do tipo y' = f(y) em que $f: \mathbb{R} \to \mathbb{R}$ é de classe C^1 .

- a) Mostre que, se f se anula em algum ponto b, então nenhuma solução da equação diferencial é sobrejectiva.
- b) Mostre que toda a solução não constante da equação é injectiva.

Exercício 3. Quais são as soluções maximais da equação diferencial $y' = x(1 - y^2)$ cujo domínio é $]0, +\infty[?]$

Exercício 4. Encontre uma expressão local das soluções das equações diferencial. $y' = \frac{x^2y - y}{y + 1}$, que passa em P = (-1, 3);

Exercício 5. Para cada uma das equações, calcule a solução maximal que passa nos pontos referidos:

a)
$$y' = \frac{1+y^2}{xy(1+x^2)}$$
, $P = (1,-1)$;

- b) $(xy^2 + x) + (y x^2y)y' = 0$, $P = (\frac{1}{2}, 1)$ e Q = (2, -1);
- c) $xy' = y^2$, P = (1, 1);
- d) $xy' = -y^2$, P = (1, 1);
- e) $x^2y' y^2 = 0, P = (1, \frac{2}{2});$
- f) $y' = 3x^2(y^2 1)$, P = (1, 1), $Q = (0, \frac{1}{2})$ e R = (1, 3);
- g) $xy' = 2y^2$, P = (1, 1).

Exercício 6. Quais são as funções $f: I \to \mathbb{R}$ (com I intervalo aberto) cujas tangentes em qualquer ponto passam no ponto (1,2)?

Exercício 7. Encontre as soluções maximais da equação

$$y' = \frac{(y^2 - 4)e^{3x}}{y},$$

que passam nos pontos $(\frac{1}{3}\log(\log 3), 2)$ e $(\frac{1}{3}\log(\log 3), 1)$.

Exercício 8. Considere a equação diferencial $y' = e^x \sqrt{|y|}$.

- a) Determine todas as soluções maximais da equação.
- b) Quais das funções encontradas na alínea anterior podem ser prolongadas a \mathbb{R} , de modo a obter uma solução da equação diferencial $y' = e^x \sqrt{|y|}$ em \mathbb{R}^2 ?

Exercício 9. Resolva as equações diferenciais:

- a) $y' + 2y = 4x \text{ com } J = \mathbb{R};$
- b) $y' \frac{2}{x}y = \frac{x+1}{x}$, com $J =]0, +\infty[$;
- c) $y' + \frac{2}{x}y = \frac{\sin x}{x}$ com $J = \mathbb{R}^+$;
- d) $-x^2y' + xy = 4$, com $J = \mathbb{R}^+$.
- e) $x^2y' xy = 4$, com $J = \mathbb{R}^+$.
- f) $(\cos x)y' + (\sin x)y = 1 \text{ com } J =]-\frac{\pi}{2}, \frac{\pi}{2}[;$
- g) $(x \log x)y' + y = 0 \text{ com } J = \mathbb{R}^+.$

Exercício 10. Quais as funções y que satisfazem as condições:

- a) $y' (\operatorname{tg} x)y = e^{\sin x}, \ y(\frac{\pi}{4}) = \sqrt{2}?$
- b) $y' \frac{2}{x}y = \frac{e^x}{x^2}$, y(1) = e, com $J =]0, +\infty[?]$

Exercício 11. Sejam $a \in J$ e $p(x), q(x) \in C^0(J)$ tais que p(x) > 0 para todo $x \in J$. Considere a equação

$$y' + p(x)y = q(x).$$

Mostre que, se y é uma solução da equação diferencial, então a recta tangente a y no ponto $\left(a,y(a)\right)$ passa no ponto $\left(a+\frac{1}{p(a)},\frac{q(a)}{p(a)}\right)$.