EcosAR – Simulador de Ecossistemas Utilizando Realidade Aumentada

Aluno: Rodrigo Wernke Pereira

Orientadores: Dalton Solano dos Reis

Roberta Andressa Pereira

Roteiro

- Introdução
- Objetivos
- Fundamentação Teórica
- Trabalhos Correlatos
- Requisitos e Especificação
- Implementação / Operacionalidade
- Resultados
- Conclusões / Extenções
- Apresentação Prática

Introdução

- Várias formas de ensinar sobre o meio ambiente.
 - Como utilizar a tecnologia para o ensino.

- Tecnologia na educação.
 - Proporciona um estudo mais divertido.
 - Engaja o aluno com o estudo.

Objetivos

- Desenvolver um simulador de ecossistemas.
- Manipular elementos da natureza.

Objetivos específicos:

- Disponibilizar um aplicativo que seja capaz de simular um ecossistema.
- Permitir o controle da simulação com algum meio de interface tangível.

Fundamentação Teórica

Ecossistemas

Conjunto de comunidades que vivem em um determinado local e interagem entre si e com o meio ambiente.

Componentes Básicos:

- Biótico
- Abiótico

Realidade Aumentada

Realidade Aumentada é uma tecnologia que permite que o mundo virtual seja misturado ao real.

Componentes Básicos:

- Câmera ou dispositivo capaz de transmitir o objeto virtual.
- Software capaz de interpretar os dados transmitidos pela câmera ou dispositivo.

Animação comportamental permite que personagens virtuais possam realizar movimentações complexas independentemente, possibilitando que os personagens respondam a ações do

usuário.

Componentes Básicos:

Ambiente virtual.

 Personagem inserido no ambiente.

- tecedu.inf.furb.b

Interface de Usuário Tangível

Utilizar objetos físicos como uma interface de controle para mundo virtual.

Componentes Básicos:

- Objeto Físico.
- Software capaz de interpretar os movimentos realizados no objeto.

Simulação

Simulação é a importação da realidade para um ambiente controlado no qual se pode estudar o comportamento do mesmo, sob diversas condições, sem riscos físicos ou grandes custos

envolvidos.

Trabalhos Correlatos

Animar: Desenvolvimento de uma Ferramenta para Criação de Animações com Realidade Aumentada e Interface Tangível

Características

Utiliza Realidade

Aumentada.

Utiliza um meio de Interface de Usuário Tangível.

Permite a manipulação de cenários e objetos virtuais.

Permite a criação de animações.

Desenvolvida com o motor gráfico Unity e a biblioteca Vuforia.

Autor: Ricardo Filipe Reiter

VISEDU – AQUÁRIO VIRTUAL: SIMULADOR DE ECOSSISTEMA UTILIZANDO ANIMAÇÃO **COMPORTAMENTAL**

Características

Utiliza o elemento canvas do HTML5.

Utiliza o interpretador Jason para o desenvolvimento de agentes sob o modelo BDI, utilizando a linguagem AgentSpeak.

Implementou os comportamentos explorar, fugir, perseguir e comer.

Câmera secundária mostrando a visão do peixe.

Desenvolvida com biblioteca gráfica ThreeJS.

Autor: Kevin Eduard Piske

Weather

Características

Explorar os elementos do clima.

Aprender como o sol, vento e a precipitação interagem.

Desenhar nuvens e ver como elas mudam em diferentes altitudes.

Alterar a temperatura e visualizar como o calor e o frio afetam a precipitação, as plantas e os animais.

Aplicativo intuitivo, seguro e para crianças.

Autor: Tinybop

Requisitos

Requisitos Funcionais

- Disponibilizar um menu principal com a opção de iniciar o aplicativo.
- Permitir a interação com o software através do uso de marcadores.
- Permitir ao usuário a manipulação de elementos da simulação.
- Possuir ao menos um ciclo.

Requisitos Não-Funcionais

- Ser implementado na linguagem C# no ambiente de desenvolvimento Visual Studio com o motor gráfico Unity.
- Utilizar a plataforma Vuforia para implementação da Realidade Aumentada.
- Utilizar o Adobe Photoshop CC 2019 como editor de imagem para os marcadores.
- Utilizar a câmera do dispositivo para a captura dos marcadores.

Especificação

Grupo de Tecnologias de Desenvolvimento de Sistemas Aplicados à Educação do Departamento de Sistemas e Computação


```
void Update()
{
    UpdateSceneState();

    _dayNightCycleController.Update();
    _windController.Update();
    _temperatureController.Update();
    _snowController.Update(_temperatureController.Temperature);
    _cloudController.Update(_windController.WindForce, _temperatureController.Temperature);
    _rainController.Update(_windController.IsOnRainingPosition);
    _waterController.Update(_temperatureController.Temperature, _rainController.Raining, _cloudController.IsOnRainingPosition);
    _terrainController.Update(_currentSceneState, _temperatureController.Temperature);
    _treeGrowthStateController.Update(_currentSceneState);
}
```



```
public void Update()
   var degreeInSeconds = DegreeInSeconds(DayLengthInSeconds) * Time.deltaTime;
    sunAndMoonRotator.transform.Rotate(0, 0, degreeInSeconds);
    rotationAngle += degreeInSeconds;
    rotationPercentage = (( rotationAngle / 360) * -1);
    if (rotationAngle < -360)
       rotationAngle = 0;
        day++;
    TimeOfDay();
   UpdateTextDisplays();
```



```
public IEnumerator UpdateTreeGrowthState()
   while (true)
       yield return _waitForSeconds;
        if ( sceneState == SceneState.Favorable)
            foreach (var tree in activeTrees)
               var treeInstance = tree.GetComponent<Tree>();
               treeInstance.UpdateGrowthState();
                updateTreeWindForce.Invoke(tree);
           if ( disabledTrees.Count > 0)
               int randomIndex = random.Next(0, disabledTrees.Count);
               disabledTrees[randomIndex].SetActive(true);
                activeTrees.Add( disabledTrees[randomIndex]);
                _disabledTrees.RemoveAt(randomIndex);
       else if (_sceneState == SceneState.Unfavorable)
            if (_activeTrees.Count > 0)
               int randomIndex = _random.Next(0, _activeTrees.Count);
               activeTrees[randomIndex].SetActive(false);
                _disabledTrees.Add(_activeTrees[randomIndex]);
                activeTrees.RemoveAt(randomIndex);
```


Marcadores

Grupo de Tecnologias de Desenvolvimento de Sistemas Aplicados à Educação do Departamento de Sistemas e Computação

TecEdu - tecedu.inf.furb.br

Operacionalidade da Implementação

Testes de Utilização com **Especialista**

Resultados

- Testes realizados com uma turma de bolsistas do curso de Cicrosa.

 • Avaliação do aplicativo com um questionário.

- Etapas do questionário:
 - Perfil dos entrevistados.
 - Passo a passo com todas as funcionalidades.
 - Modo livre.
 - Avaliação geral.

Perfil dos Entrevistados

Sexo	Feminino	77,8%
Sexu		•
	Masculino	22,2%
Idade	18	11,1%
	19	11,1%
	20	44,4%
	21	11,1%
	22	11,1%
	55	11,1%
Grau de escolaridade	Ensino superior	88,9%
	incompleto	11,1%
	Ensino superior	
	completo	
Utiliza dispositivos	Frequentemente	100%
móveis com	-	
frequência		
Já utilizou aplicações	Sim	55,6%
com Realidade	Não	44,4%
Aumentada		

Opinião dos entrevistados sobre o aplicativo

Usabilidade de manipular a	3	11,1%
cena	4	33,3%
	5	55,6%
Usabilidade do aplicativo	3	11,1%
em	5	88,9%
geral		
Cumpriu seu objetivo de	2	11,1%
desenvolver um simulador	4	11,1%
de ecossistemas para	5	77,8%
dispositivos móveis		

Conclusões

- Ferramentas utilizadas foram adequadas (Unity e Vuforia).
- O objetivo de desenvolver um simulador de ecossistemas para dispositivos móveis foi atingido.
- Usuários mostraram grande interesse na manipulação da cena.
- Uma ferramenta para auxiliar o ensino.

Extensões

- Adicionar animais na simulação.
- Incrementar a quantidade de terrenos possíveis.
- Simular outras características do clima.
- Aumentar a variedade de plantas na simulação.
- Incluir novos meios de controle com IUT.
- Implementar controles para a velocidade da simulação.

Apresentação Prática

EcosAR – Simulador de Ecossistemas Utilizando Realidade Aumentada

Aluno: Rodrigo Wernke Pereira

Orientadores: Dalton Solano dos Reis

Roberta Andressa Pereira

