Lecture 14 Review

Note by Samion Suwito on 3/6/25

Last Time: Robust Optimisation

Robust Optimisation = Optimisation where cost/constraints are uncertain. (typically for floating point precision etc.)

Robust LP:

$$egin{aligned} \min_{x} c^{ op} x \ ext{s.t.} \ a_i^{ op} x \leq b_i \ \ orall a_i \in \mathcal{U}_i, i = 1 \dots m \end{aligned}$$

 \iff

$$egin{aligned} \min_{x} c^{ op} x \ ext{s.t.} \ \phi_{\mathcal{U}_i}(x) \leq b_i \ i = 1 \dots m \end{aligned}$$

Where support function $\phi_{\mathcal{U}}(x) := \max_{a \in \mathcal{U}} a^{ op} x$

We change it as we don't know what a_i is exactly but we are able to find the support function (ex. LP balls).

Typical Examples of ${\cal U}$

 ℓ^p balls

$$egin{aligned} \mathcal{U} &= \{a: \|a-a_0\| \leq t\} \ & \phi_{\mathcal{U}}(x) = \max_{a \in \mathcal{U}} a^ op x \ & a = a_0 + tu ext{ for } \|u\| \leq 1 \ & a_0^ op x + t \max_{u: \|u\| \leq 1} u^ op x = a_0^ op x + t \|x\|^* \end{aligned}$$

Example: If
$$\|\cdot\|=\|\cdot\|_p$$
, then $\|\cdot\|^*=\|\cdot\|_q$ where $\frac{1}{p}+\frac{1}{q}=1$, $p\geq 1$

Examples

 ℓ^∞ example

$$egin{aligned} \min c^ op x \ ext{s.t.} \ a_i^ op x \leq b_i \ \ orall a_i : \|a_i - \hat{a}_i\|_\infty \leq \epsilon \end{aligned}$$

The maximum machine quantisation error is at most ϵ due to finite precision. We can reformulate as:

$$egin{aligned} \min c^ op x \ ext{s.t.} \ \hat{a}_i^ op x + \epsilon \|x\|_1 \leq b_i \ \iff \min_{x,u} c^ op x \ ext{s.t.} \ a_i^ op x + \epsilon \sum u_i \leq b_i \ x_i \leq u_i \ -x \leq u_i \end{aligned}$$

 ℓ^1 example

$$egin{aligned} & \min c^ op x \ & ext{s.t. } a_i^ op x \leq b_i \ & ext{$\iff} & \min c^ op x \ & ext{s.t. } \hat{a}_i^ op x + \epsilon \|x\|_\infty \leq b_i \end{aligned} \ & \iff & \min c^ op x \ & ext{s.t. } \hat{a}_i^ op x + \epsilon u \leq b_i \ & -x_i \leq u \ & x_i < u \end{aligned}$$

 ℓ^2 example

$$egin{aligned} \min c^ op x \ ext{s.t.} \ a_i^ op x \leq b_i \ \ orall a_i : \|a_i - \hat{a}_i\|_2 \leq \epsilon \ \iff \min c^ op x \ ext{s.t.} \ \hat{a}_i^ op x + \epsilon \|x\|_2 \leq b_i \end{aligned}$$

Now an SOCP Problem

Ellipsoid Uncertainty

$$\mathcal{U} = \{a: (a-a_0)^{\top} P^{-1} (a-a_0) \leq 1\}$$

= $\{a_0 + P^{1/2} u: \|u\|_2 \leq 1\}$

Makes an ellipsoid where the eigenvectors of ${\cal P}$ are the axis and the lengths are the eigenvalues

Elilipsoid uncertainty, $P \geq 0$ (PSD)

$$egin{aligned} \phi_{\mathcal{U}}(x) &= \max_{a \in U} a^ op x = \max_{u:\|u\|_2 \le 1} a^ op_0 x + (P^{1/2}u)^ op x \ &= a^ op_0 x + \max_{u:\|u\|_2 \le 1} u^ op (P^{1/2}x) \ &= a^ op_0 x + \|P^{1/2}x\|_2 \end{aligned}$$

Reparameterisation of ${\cal U}$

$$egin{aligned} \mathcal{U} &= \{a: (a-a_0)^ op P^{-1}(a-a_0) \leq 1\} \ &= \{a_0 + v: v^ op P^{-1}v \leq 1\} \ &= \{a_0 + P^{1/2}u: u^ op u \leq 1\} \ &= \{a_0 + P^{1/2}u: \|u\|_2 \leq 1\} \end{aligned}$$

Robust LS

$$\min_{x} \|Ax - b\|_2$$

Let's say we don't know \boldsymbol{A} exactly instead we have the robust version:

$$\min_x \max_{\Delta: \|\Delta\|_2 \leq
ho} \|(A+\Delta)x - b\|_2$$

We can consider the first line to be the ideal model while the one above is a model that better captures reality.

We want to compute maximum over Δ :

$$egin{aligned} \max_{\Delta: \|\Delta\|_2 \leq
ho} \|(A+\Delta)x - b\|_2 \ & \leq \|Ax - b\|_2 + \max_{\Delta: \|\Delta\|_2 \leq
ho} \|\Delta x\|_2 \ & \leq \|Ax - b\|_2 + \max_{\Delta: \|\Delta\|_2 \leq
ho} \|\Delta\|_2 \|x\| \ & = \|Ax - b\|_2 +
ho \|x\|_2 \end{aligned}$$

Then the Δ that gives equality throughout:

$$\Delta = rac{
ho}{\|Ax-b\|_2\|x\|_2}(Ax-b)x^ op$$

Returning to the original problem:

$$egin{aligned} \min_{x} \max_{\Delta: \|\Delta\|_2 \leq
ho} \|(A+\Delta)x - b\|_2 \ &= \min \|Ax - b\|_2 +
ho \|x\|_2 \end{aligned}$$

Which we recognise as an SOCP (not LS due to missing square)

$$egin{aligned} \min_{x,t,u} t +
ho u \ ext{s.t.} & \|Ax - b\|_2 \leq t \ & \|x\|_2 \leq u \end{aligned}$$

Review for Midterm

We've seen several structured classes of optimisation problems:

$$LP \subset QP \subset SOCP$$

Where LS is in QP.

LP

Standard Form:

$$\min_{x} c^{ op} x \ ext{s.t.} \ Ax < b$$

Where the objective function is a **linear cost** and the constraints are **affine functions**LP is the class to be most familiar with. Make sure to format solution with linear cost and affine functions and if stated to put in standard form, write in as above *Examples*:

- Resource/budget allocation
- Network flows
- ℓ_1/ℓ_∞ regressions, introduce slack variables to turn into a linear program.
- Linear cost with ℓ_1,ℓ_∞ regularisation (encouraging sparse solutions etc.)

QP

Standard Form:

$$\min_{x} rac{1}{2} x^ op H x + c^ op x \quad H \geq 0$$
 s.t. $Ax < b$

Where there is a **convex quadratic objective** and affine constraints *Examples*:

- Problems where we want to minimise energy/variance with constraints (e.g. subject to a controller).
- Risk and volatility in a portfolio
- Index tracking/portfolio allocation.
- LASSO ℓ^1 -regularised least squares (e.g. piecewise constant fitting like wavelet compression)
- LS w/ ℓ^{∞} regularisation

SOCP

Standard Form:

$$egin{aligned} \min_x c^ op x \ ext{s.t.} & \|A_i x - b_i\|_2 \leq c_i^ op x + d_i & i = 1 \dots m \end{aligned}$$

Where there is a linear objective and SOCP constraints. Remember no square on the ℓ^2 norm. c_i not related to c.

SOCP constraints are very flexible, they include:

- Any convex quadratic constraint (no need to convert the QP constraint to SOCP, too complicated)
- Hyperbolic constraints, handles $\frac{1}{x_i}$,
- Lecture 13 Robust Optimisation

Examples

- Problems naturally involving distance (in the ℓ^2 sense):
- Robust Optimisation w/ ℓ^2 uncertainty (idk about other ℓ)

- ℓ^1 squared regularisation term

SDP

Purely for your own information

$$LP \subset QP \subset SOCP \subset SDP$$

SDP = Semidefinite Programs:

$$egin{aligned} \min_x \operatorname{Tr}(C^ op X) &= \langle C, X
angle \ ext{s.t.} \ \operatorname{Tr}(A_i X) \leq b_i i = 1 \dots m \ X \geq 0() \end{aligned}$$