Ⅲ 安森美半导体 -

三端可调节输出正电压稳压器

LM317 是可调节 3 -端正电压稳压器, 在输出电压范围为 1.2 伏到 37 伏时能够提供超过 1.5 安的电流。此稳压器非常 易于使用,只需要两个外部电阻来设置输出电压。此外还使 用内部限流、热关断和安全工作区补偿使之基本能防止烧断 保险丝。

LM317 服务于多种应用场合,包括局部稳压、卡上稳压。 该器件还可以用来制做一种可编程的输出稳压器,或者,通 过在调整点和输出之间接一个固定电阻, LM317 可用作一 种精密稳流器。

- 输出电流超过 1.5 安
- 输出在 1.2 伏和 37 伏之间可调节
- 内部热过载保护
- 不随温度变化的内部短路电流限制
- 输出晶体管安全工作区补偿
- 对高压应用孚空工作
- 表面贴装 D²PAK 形式,和标准 3 引脚晶体管封装
- 避免置备多种固定电压

LM317

三端可调节正电压稳压器

半导体技术数据

T后缀

塑料封装 外壳 221A

散热器表面连接 到引脚 2

管脚: 1.调节 2.Vout 3.Vin

D2T 后缀

塑料封装 外壳 936 (D²PAK)

散热器表面(在外形图中表示为端子 4) 连接到管脚 2 上

订购信息

器件	工作 温度范围	封装
LM317BD2T	T」=-40°至	表面贴装
LM317BT	+125°C	插入安装
LM317D2T	T」=0°至	表面贴装
LM317T	+125°C	插入安装

©半导体元件工业有限公司,2000 第1次修订版

最大额定值

额定值	符号	值	单位
输入输出电压差	V _I -V _O	40	Vdc
功耗			
外壳 221A			
T _A =+25°C	P _D	内部限制	W
结至环境热阻	θ_{JA}	65	°C/W
结至外壳热阻	θ _{JC}	5.0	°C/W
外壳 936(D ² PAK)			
T _A =+25°C	PD	内部限制	W
结至环境热阻	θ_{JA}	70	°C/W
结至外壳热阻	θ_{JC}	5.0	°C/W
工作结温范围	TJ	-40 至+125	°C
保存温度范围	T _{stg}	-65 至+150	°C

电气特性(Vi-Vo=5.0V:对 D2T 和 T 封裝 lo=0.5A: Ti=Tiow至 Thioh[注 1]: Imax 和 Pmax[注 2]: 除非另有规定)

电气行性(Vi-Vo=5.0V;对 D21 和 1 到级 Io=0.5A; TJ=Tlow i	£ I high[沿	ːl]; lmax.4⊓li	「max[/土 4];	矫非力生	ML)	
特性	图	符号	最小值	典型值	最大值	单位
电源调整率(注3) T _A =+25°C, 3.0V≤V _I -V _O ≤40V	1	Regline	-	0.01	0.04	%/V
负载调整率 (注 3) T _A =+25°C, 10mA≤l _O ≤l _{max}	2	Reg _{load}				
V _o ≤5.0V			-	5.0	25	mV
V _o ≥5.0V			-	0.1	0.5	%Vo
热调整率 T _A =+25°C(注 6),20ms 脉冲		Reg _{therm}	-	0.03	0.07	%V _o /W
调节管脚电流	3	I _{Adj}	-	50	100	μΑ
调节管脚电流变化, 2.5V≤V _I -V _O ≤40V	1,2	ΔI_{Adj}	-	0.2	5.0	μΑ
$10\text{mA} \le I_L \le I_{\text{max}}, P_D \le P_{\text{max}}$						
参考电压 3.0V≤V _I -V _O ≤40V	3	V _{ref}	1.2	1.25	1.3	V
$10\text{mA} \le I_0 \le I_{\text{max}}, P_0 \le P_{\text{max}}$						
电源调整率(注 3),3.0V≤V _I -V _O ≤40V	1	Regline	-	0.02	0.07	%V
负载调整率(注 3),10mA≤l _o ≤l _{max}	2	Reg _{load}				
V _o ≤5.0V			-	20	70	mV
V _o ≥5.0V			-	0.3	1.5	%Vo
温度稳定性(T _{low} ≤T _J ≤T _{high})	3	Ts	-	0.7		%V _o
最小负载电流以保持调整率(V _I -V _O =40V)	3	I _{Lmin}	-	3.5	10	mA
最大输出电流	3	I _{max}				Α
V _I -V _O ≤15V,P _D ≤P _{max} ,T 封装			1.5	2.2	-	
V _I -V _O =40V,P _D ≤P _{max} , T _A =+25°C,T 封装			0.15	0.4	-	
均方根噪声,Vo的百分比,T _A =+25°C,10Hz≤f≤10kHz		Z	-	0.003	•	%V _o
纹波抑制, V _o =10V, f=120Hz (注 4)	4	RR				dB
无 C _{Adj}			-	65	-	
C _{Adj} =10μF			66	80	-	
长期稳定性,T _J =T _{high} (注 5),终点测量时	3	S	-	0.3	1.0	%/1.0k
T _A =+25°C						小时
结至外壳热阻,T封装		R _{⊕JC}	-	5.0		°C/W
华·						

注:

- T_{low}到 T_{high} = 0°C 到+125°C,对 LM317T,D2T T_{low}到 T_{high} = -40°C 到+125°C,对 LM317BT,BD2T
- 2. I_{max}=1.5A, P_{max}=20W
- 3. 电源和负载调整率在恒定结温时规定。热效应引起的 Vo变化必须分别考虑。使用低占空比的脉冲测试。
- 4. 使用 C_{Adj} 时应连接在调节管脚和地之间
- 5. 因为长期稳定性不能在出货前逐片测量,所以此项指标是对一批批产品平均稳定性的工程估计。
- 6. 集成电路稳压器内的功耗会在管芯上产生温度梯度,影响管芯上各个集成电路元件。该效应可由恰当的集成电路设计和布局技术来减小。热调整率是这些温度梯度在输出电压上的表现,由规定时间内每瓦功率变化引起的输出变化的百分比来衡量。

典型原理图

器件含 29 个晶体管

图 1.电源调整率和△I_{Adj}/电源测试电路

图 2.负载调整率和ΔI_{AdJ}/负载测试电路

图 3. 标准测试电路

图 4.纹波抑制测试电路

*D₁使 C_{Adj}放电,若输出短接到地。

LM317

图 7. 调节管脚电流

图 8. 压降电压

图 9. 温度稳定性

图 10. 最小工作电流

图 11. 纹波抑制与输出电压关系曲线

图 12. 纹波抑制与输出电流关系曲线

图 13. 纹波抑制与频率关系曲线

图 14. 输出阻抗

图 15.电源瞬态响应

图 16.负载瞬态响应

应用信息

基本电路工作

LM317 是三端浮动稳压器。工作时,LM317 建立 并保持输出与调节端之间 1.25V 的标称参考电压 (Vref) 这一参考电压由 R₁ (见图 17) 转换成编 程电流 (I_{PROG}),该恒定电流经 R₂到地。 稳压输出电压由下式给出:

$$V_{out} = V_{ref} \left(1 + \frac{R_2}{R_1} \right) + I_{Adj} R^2$$

因为调节端的电流(I_{Adj})在式中代表误差项,所以 LM317 设计成控制 I_{Adj}小于 100μA 并使之保持恒定。为达到这一点,所有静态工作电流都返回到输出端。这样就需要最小负载电流。如果负载电流小于最小值,输出电压会上升。

因为 LM317 是浮动稳压器,所以只有电路两端电 压差对性能是重要的,工作在对地呈高电压也就成 为可能。

图 17.基本电路设置

负载调整率

LM317 能提供极良好的负载调整率,但为实现最优性能需要注意几点。编程电阻 (R₁) 应尽可能连接在与稳压器靠近处,以使与参考电压有效串联的线路压降最小,避免调整率变差。R₂ 的接地端可以回到靠近负载接地端处,以提供远程接地取样并改进提高负载调整率。

外部电容

建议使用 0.1μF 片电容或 1.0μF 钽电容作为输入旁路电容 (C_{in}) 以减小对输入电源阻抗的敏感性。可通过把调节端旁路到地来提高纹波抑制。该电容 (C_{Adj}) 防止输出电压增大时纹波被放大。在 10V应用中,10μF 电容能在 120Hz 处改进纹波抑制约 15dB。

尽管 LM317 在无输出电容时是稳定的,但象其它反馈电路一样,某些值的外部电容会引起过份振荡。 1.0μF 钽电容或 25μF 铝电解电容作为输出电容 (Co) 会消除这一现象并保证稳定性。

保护二极管

当外部电容应用于任何集成电路稳压器时,有时必 须加保护二极管以防止电容在低电流点向稳压器放 电。

图 18 显示了在输出电压超过 25V 或高电容值 $(C_O>25\mu F, C_{Adj}>10\mu F)$ 时带所推荐的保护二极管的 LM317。二极管 D_1 防止输入短路时 C_O 经集成电路放电。二极管 D_2 防止输出短路时电容 C_{Adj} 放电对集成电路放电。二极管 D_1 和 D_2 的组合防止输入短路时 C_{Adj} 通过集成电路放电。

图 18.带保护二极管的电压稳压器

图 19.D²PAK 热阻和最大功耗与 印刷电路板铜箔长度关系曲线

L,铜箔长度(mm)

图 20.带可调限流和输出电压的"实验室"电源

图 21. 可调节电流限流器

图 23.慢接通稳压器

图 22. 5.0V 电子关断稳压器

*D1在输入短路时保护器件

图 24.电流稳压器

外形尺寸

T后缀

塑料封装 外壳 221A-06 版本 Y

注:

- 1. 尺寸和公差按 ANSI Y14.5M, 1982。
- 2. 控制尺寸: 英寸。
- 3. 尺寸 Z 定义了允许壳体和引脚不规则的区域。

B F T S S R N N N N N N N N N N N N N N N N N

ノく する たん すりじり プレド・データ アル・データル グロコ 巨小人 で					
尺寸	英	4	毫米		
/ 3	最小值	最大值	最小值	最大值	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045	-	1.15	-	
Z	-	0.080	-	2.04	

D2T 后缀

塑料封装 外壳 936-03 (D²PAK) 版本 B

注:

- 1. 尺寸和公差按 ANSI Y14.5M, 1982。
- 2. 控制尺寸: 英寸。
- 3. 翼片轮廓在尺寸 A 和 K 以内可选。
- 4. 尺寸 U 和 V 为端子 4 立了最小安装面。
 - . 尺寸 A 和 B 不包括模压毛边或浇口突起。模压毛边 和浇口容却是大不应超过 0.025 (0.635)

和浇口突起最大不应超过 0.025 (0.635)。					
尺寸	英寸		毫米		
	最小值	最大值	最小值	最大值	
Α	0.386	0.403	9.804	10.236	
В	0.356	0.368	9.042	9.347	
С	0.170	0.180	4.318	4.572	
D	0.026	0.036	0.660	0.914	
E	0.045	0.055	1.143	1.397	
F	0.051 参考值		1.295 参考值		
G	0.100BSC		2.540BSC		
Н	0.539	0.579	13.691	14.707	
J	0.125 最大		3.175 最大		
K	0.050 参考值		1.270 参考值		
L	0.000	0.010	0.000	0.254	
М	0.088	0.102	2.235	2.591	
N	0.018	0.026	0.457	0.660	
Р	0.058	0.078	1.473	1.981	
R	5°参考值		5°参考值		
s	0.116 参考值		2.946 参考值		
U	0.200 最小		5.080 最小		
V	0.250 最小		6.350 最小		

安森美半导体及 III 为半导体元件工业有限公司 (SCILLC) 的注册商标。SCILLC 有权不经通知变更其产品。SCILLC 对其产品是否适合特定用途不作任何保证、声明或承诺。SCILLC 亦不承担因应用或使用任何产品或电路而引起的任何责任,并特此声明其不承担任何责任,包括但不限于对附带损失或间接损失的赔偿责任。「典型」参数会因不同的应用而变化。所有操作参数,包括「典型」参数,须经客户的技术专家按其每一应用目的鉴定核准方可生效。SCILLC 并未在其专利权或他人权利项下转授任何许可证。SCILLC 产品的设计、应用和使用授权不含以下目的。将其产品用于植入人体的任何物体或维持生命的其他器件,或可因其产品的缺陷而引致人身伤害或死亡的其他任何应用。买方保证,如其为此等未经授权的目的购买或使用 SCILLC 的产品,直接或间接导致任何人身伤害或死亡的索偿要求,并从而引起 SCILLC 及其管理人员、雇员、子公司、关联方和分销商的责任,则买方将对该等公司和人员进行赔偿,使该等公司和人员免于由此产生的任何索偿、损失、开支、费用及合理的律师费,即使该索偿要求指称 SCILLC 的设计或制造其产品中有过失。SCILLC 是一家平等机会 / 无歧视行为的雇主。

出版物订购信息

北美资料受理处:

安森美半导体资料分发中心

P.O. Box 5163, Denver, Colorado 80217 美国

电话: 303-675-2175 或 800-344-3860 美国/加拿大免费电话 传真: 303-675-2176 或 800-344-3867 美国/加拿大免费电话

电子邮件: ONlit@hibbertco.com

传真回复热线: 303-675-2167 或 800-344-3810 美国/加拿大免费电话

北美技术支持: 800-282-9855 美国/加拿大免费电话

欧洲:安森美半导体资料分发中心 - 欧洲服务部

德国 电话: (+1)303-308-7140(星期─至星期五,下午 2:30-下午 7:00, CET 时间)
电子邮件: ONlit-german@hibbertco.com

法国 电话: (+1)303-308-7141(星期一至星期五, 下午 2:00-下午 7:00, CET 时间) 电子邮件: ONlit-french@hibbertco.com

英国 电话: (+1)303-308-7142(星期一至星期五,中午 12:00-下午 5:00, GMT 时间)

电子邮件: ONlit@hibbertco.com

欧洲免费电话*: 00-800-4422-3781

*可在德国、法国、意大利和英国使用

中/南美洲:

西班牙 电话: 303-308-7143(星期一至星期五,上午 8:00-下午 5:00, MST 时间) 电子邮件: ONlit-spanish@hibbertco.com

亚洲/太平洋地区:安森美半导体资料分发中心 – 亚洲服务部

电话: 303-675-2121(星期二至星期五,上午 9:00-下午 1:00,香港时间)

001-800-4422-3781: 香港/新加坡免费电话

电子邮件: ONlit-asia@hibbertco.com

日本:安森美半导体 日本客户服务中心

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, 日本 141-0031

电话: 81-3-5740-2745

电子邮件: r14525@onsemi.com

安森美半导体阿址: http://onsemi.com.cn

若需要其他信息,请与您当地的销售代表联系。

安森美半导体 🚽

LM317CH/D