

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
- КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЕ НА ТЕМУ:

«Метод систематического распознавания усталости на автоматизированном рабочем месте»

Студент группы ИУ7-73Б	(Подпись, дата)	Якуба Д.В. (И.О. Фамилия)
Руководитель ВКР	(Подпись, дата)	Строганов Ю.В. (И.О. Фамилия)
Нормоконтролер	(Подпись, дата)	Тест на наркотики (И.О. Фамилия)

РЕФЕРАТ

Расчетно-пояснительная записка 20 с., 0 рис., 1 табл., X ист., X прил.

Это всё очень хорошо и приятно, но пишется после написания основной части, я надеюсь, потому что на прошлом курсаче меня так уже знатно потроллили.

КЛЮЧЕВЫЕ СЛОВА

СОДЕРЖАНИЕ

Bl	введение			8
1	Аналитическая часть		9	
	1.1	Устро	йства взаимодействия пользователя АРМ с системой	9
		1.1.1	Клавиатура	10
		1.1.2	Координатное устройство для управления курсором	11
		1.1.3	Веб-камера	13
		1.1.4	Микрофон	13
2	Кон	структ	орская часть	15
3 Технологическая часть		16		
4	4 Исследовательская часть			17
3 <i>A</i>	КЛН	ОЧЕНІ	TE	18
Cl	пис	ОК ИС	ПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	19
П	РИЛО	ЭЖЕН	ZIE A	20

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕ-НИЯ

СРУ (система распознавания усталости) - бла-бла-бла взять из статьи. APM (автоматизированное рабочее место) - бла-бла-бла взять из головы или статьи, но не из википедии пожалуйста можно да.

введение

1 Аналитическая часть

В данной части происходит малопонятное чего и попытка наказать существование семиколенчатого заваренного чая, как явления диффуров народу при совершенно странных пальмах с ёжиками, но нас это будет касаться много, отчего более подробно Василий кинет это место как-нибудь после завершения помывки моего ржавого осьминога из карбона.

1.1 Устройства взаимодействия пользователя АРМ с системой

Внешние устройства (периферийные устройства) – устройства вводавывода, распечатки, хранения и передачи информации, связанные функционально с центральным процессором в соответствии со структура ЭВМ (или системы ЭВМ). [1]

К внешним устройствам, которые являются устройствами ввода, то есть органами управления персональным компьютером, относят:

- 1) Клавиатуру;
- 2) Мышь;
- 3) Графический планшет;
- 4) Веб-камеру;
- 5) Микрофон;
- 6) Игровой манипулятор.

Из указанных выше устройств в рассмотрение не войдут:

- 1) Графический планшет;
- 2) Игровой манипулятор.

Данное решение связанно с тем, что использование подобного рода устройств указывает на особый род работы. В требованиях к разрабатываемой системе указывается возможность её использования для операторов любых автоматизированных рабочих мест, поэтому использование в решении поставленной задачи информации, получаемой с графических планшетов и игровых манипуляторов, не является целесообразным.

Согласно проведённым исследованиям [2] признаки голоса, клавиатурного почерка и характера работы исследуемого или контролируемого субъекта с компьютерной мышью содержат информацию о психофизиологических состояниях оператора: нормальное, усталость, опьянение, возбужденное, расслабленное (сонное).

1.1.1 Клавиатура

Клавиатура – одно из наиболее часто используемых внешних устройств для взаимодействия пользователя с персональным компьютером.

Клавиатурный почерк – это подвид поведенческой подгруппы аутентификации по неотчуждаемым признакам. [3]

Клавиатурный почерк определяется по времени между нажатиями клавиш. При снятии биометрического шаблона клавиатурного почерка измеряют время нажатия двух, трех или четырех последовательных клавиш, сохраняют его и на основе полученных значений строят математические модели для сравнения шаблонов нескольких пользователей. [4] Для системы входными данными будут два биометрических шаблона — эталонного и кандидата. Результат работы системы — рейтинг доверия к биометрическому шаблону кандидата, который является критерием схожести двух переданных шаблонов.

Различают два вида распознавания клавиатурного почерка: распознавание на статическом тексте (пароль или известная кодовая фраза), распознавание при вводе псевдослучайного текста. [3]

Математическая задача распознавания на фиксированном тексте может быть формализована. Для её выполнения потребуется [3]:

- 1) Собрать информацию о времени между нажатиями соседних клавиш в тексте;
- 2) Сформировать из полученных данных вектор фиксированной размерности;
- 3) По кластерной модели или другой модели сравнения двух векторов сравнить сформированный вектор и вектор-эталон для этого же текста от этого же пользователя.

Для задачи распознавания клавиатурного почерка при вводе псевдослучайного текста не существует надежных моделей формирования пользовательского шаблона и вычисления рейтинга. Время работы подобных систем не позволяет в реальном времени оценить ситуацию и выдает результат через десятки минут, а память, занимаемая векторами, лишь продолжает расти. [3]

Выделено два основных численных показателя, которые определяют качество биометрической системы [3]:

- 1) Ошибка первого рода (FRR, количество ложноотрицательных);
- 2) Ошибка второго рода (FAR, количество ложноположительных).

Ошибка первого рода – это вероятность ложного отказа в доступе. Данная ошибка имеет место при возникновении следующих факторов [3]:

- 1) Повреждение рук пользователя;
- 2) Ненормальное психофизического состояния человека (усталость, алкогольное или наркотическое опьянение, приступ гнева).

Ошибка второго рода – это вероятность ложного допуска. Данная ошибка имеет место при возникновении следующих факторов [3]:

- 1) Заданные возможные отклонения от допустимых значений при распознавании пользователя были заданы неверно;
- 2) Нарушитель сумел скопировать метрики поведения пользователя и обойти систему контроля.

В описанных ошибках для проектируемой системы важнейшую роль играет ошибка первого рода. Это связано с тем, что данная ошибка способна позволить распознать состояние усталости оператора в случае единоличного пользования системой.

1.1.2 Координатное устройство для управления курсором

Координатное устройство или компьютерная мышь используется для взаимодействия с оконным интерфейсом операционной системы и программ.

Особенности работы с мышью можно оценить, анализируя траектории передвижения курсора мыши по экрану между элементами интерфейса и среднее время выполнения передвижения. [2]

Оценка среднего времени перемещения курсора мыши между элементами интерфейса выполняется с использованием адаптированной для данной задачи формулы 1 закона Фиттса [5]. Данный закон связывает время движения к наблюдаемой цели с точностью движения и с расстоянием до наблюдаемой цели. Чем дальше или точнее выполняется движение руки субъекта, тем больше коррекции необходимо для его выполнения, и соответственно, больше времени требуется субъекту для внесения этой коррекции. Фактическое время перемещения не должно совпадать с оценкой, вычисляемой по формуле 1, а должно отличаться на величину ΔT , которую используют как один из идентификцирующих признаков. [6]

$$T = b \cdot \log_2(\frac{D}{W} + 1) \tag{1}$$

В формуле 1 b - величина, зависящая от типичной скорости движения курсора мыши (отношение средней скорости движения мыши по экрану, осуществляемого субъектом, к установленному в операционной системе коэффициенту чувствительности мыши), D - дистанция перемещения курсора между элементами интерфейса (в пикселях), а W - ширина элемента интерфейса, к которому направляется курсор (в пикселях).

Также в качестве признаков предлагается использовать амплитуды первых десяти низкочастотных гармоник функции скорости перемещения курсора мыши по экрану $V_{xy}(t)$, вычисляемой по формуле 2 разложение функции производится с помощью быстрого преобразования Фурье, тем самым достигается нормирование чувастков пути курсора по времени. Каждый участок приводится к длительности в 0,5 секунд. Амплитуды нормируются по энергии функции $V_{xy}(t)$, вычисляемой в соответствии с формулой 3, данная операция осуществляется для того, чтобы привести все траектории перемещений курсора между элементами интерфейса к единому масштабу. Аналогичные операции осуществляются по отношению к функциям координат курсора x(t) и y(t), однако прещдварительно данные функции переводятся в другую систему координат, где началом координат является центр элемента интерфейса, на который было произведено нажатие, ось абсцисс располагается в направлении центра элемента интерфейса, по отношению к которому произхводится перемещение курсора. Это необходимо выполнять, чтобы избавиться от наклона линий, связывающих элементы интерфейса, относительно исходной координатной плоскости (то есть зависимости координат от угла наклона). [6]

$$V_{xy}(t) = \sqrt{((x(t_{i+1}) - x(t_i))^2 + (y(t_{i+1}) - y(t_i))^2)^2}$$
 (2)

В формуле 2 x и y - координаты курсора, t_i - i-ый момент времени регистрации координат курсора (регистрация координат курсора зависит от производительности компьютера).

$$E_s = \int_{-\infty}^{-\infty} A^2(\omega)dt \tag{3}$$

В формуле 3 $A(\omega)$ – амплитуды гармоники с частотой ω функции $V_{xy}(t)$.

1.1.3 Веб-камера

Основные исследования в области использования видео-изображений для определения опасных состояний усталости проводятся для реализации систем распознавания усталости водителя.

Признаки состояний ослабленного внимания и усталости у водителя характеризуется следующими наблюдаемыми параметрами [?]:

- 1) Поворот головы влево/вправо по отношению к туловищу;
- 2) Наклон головы вперед относительно туловища;
- 3) Продолжительность моргания век;
- 4) Частота моргания век;
- 5) Степень открытости рта человека (признаки зевоты).

1.1.4 Микрофон

Микрофон позволяет регистрировать аудиопоток, исходящий от пользователя и его окружения. Данное устройство может регистрировать:

- тембр голоса,
- скорость речи.

Целесообразность использования данного устройства в качестве регистрирующего сомнительна. Связано это с большим количеством посторонних звуков и шума в офисных помещениях, а также в иных местах, где система предполагается к размещению. По данной причине указанное внешнее устройство далее рассматриваться не будет.

Вывод

Цель данной работы — создание благоприятных условий на рабочих местах. Решение задачи установления зависимости работоспособности и физиологического состояния работника может позволить сохранить здоровье и работоспособность трудящихся, решить проблему повышения эффективности работы, заболеваемости на высоконагруженных трудовых местах и иных вопросов здравоохранения.

Итоговый список характеристик, которые можно получить непосредственно на рабочем месте, предоставлен в таблице 1.

Таблица 1: Характеристики для снятия

Характеристика	Средство снятия	Периодичность снятия
Уровень адреналина в	Клинический	Каждый период
крови	анализ крови	возникновения уча-
		щённого дыхания
Уровень кортизола	Анализ слюны	В периоды фиксации
	человека	стресса каждые 5-10
		минут
Уровень дегидроэпи-	Анализ слюны че-	В периоды фиксации
андростерона	ловека	стресса каждые 5-10
		минут
Пульс	Пульсометр,	Каждую 1 минуту
	смарт-часы с	
	пульсометром	
Артериальное	Тонометр,	Каждые 5 минут, при
давление	смарт-часы с	отклонениях – каждую
	тонометром	1 минуту
Скорость печати	Клавиатура	В периоды активности
		пользователя
Частота исправления	Клавиатура	В периоды активности
ошибок в напечатан-		пользователя
ных словах		
Частота нажатий кла-	Компьютерная	В периоды активности
виш координатного	МЫШЬ	пользователя
устройства		
Скорость движения	Компьютерная	В периоды активности
координатного устрой-	МЫШЬ	пользователя
ства		
Мимика	Веб-камера	Непрерывно
Жесты	Веб-камера	Непрерывно
Частота моргания	Веб-камера	Непрерывно
Ровность и размерен-	Смарт-часы,	Непрерывно
ность дыхания	веб-камера	
Тембр голоса	Микрофон	В периоды активности
		пользователя
Скорость речи	Микрофон	В периоды активности
		пользователя

2 Конструкторская часть

3 Технологическая часть

4 Исследовательская часть

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Список литературы

- 1. А.М. Прохоров. Большой Российский энциклопедический словарь. Большая рос. энциклопедия, 1998. с. 1450.
- 2. В.И. Васильев А.Е. Сулавко Р.В. Борисов. Распознавание психофизиологических состояний пользователей на основе скрытого мониторинга действий в компьютерных системах // ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И ПРИНЯТИЕ РЕШЕНИЙ. 2017. с. 17.
- 3. Е. В. Шкляр Е. Г. Воробьев М. Ф. Савельев. Распознавание клавиатурного почерка в браузере // Известия СПбГЭТУ «ЛЭТИ». 2019. с. 6.
- 4. Axelsson S. The Base-Rate Fallacy and its Implications for the Difficulty of Intrusion Detection. 1999. 12. p. 10.
- 5. Раскин Д. Интерфейс: новые направления в проектировании компьютерных систем. Символ-плюс, 2010. с. 272.
- 6. Р.В. Борисов Д.Н. Зверев А.Е. Сулавко. Оценка идентификационных возможностей особенностей работы пользователя с компьютерной мышью // Вестник СибАДИ. с. 8.

приложение а