Problem 1

Let γ be the curve obtained by intersecting the cylinder $x^2 + z^2 = 1$ with the plane x = -y.

- 1. Find a parametric representation of the curve.
- 2. Show that the curve lies on the ellipsoid $x^2 + y^2 + 2z^2 = 2$.
- 3. Find the *unit* tangent vector of γ at each point.
- 4. Write an expression for its arclength.

Problem 2

For each of the following surfaces, write a parametrization as a surface of revolution, express its grid curves and find its unit normal vector.

- 1. $x^2 y^2 + z^2 = 0$.
- 2. $x^2 + y^2 z^2 = 1$.
- 3. $z^2 y^2 x^2 = 1$.
- 4. $x = z^2 + y^2$.

Problem 3

Let S be the surface obtained by intersecting the cone S_1 given by the equation $z = 2 - \sqrt{x^2 + y^2}$ with the paraboloid S_2 of equation $z = x^2 + y^2$. Evaluate the surface area of S.

Problem 4

Let $F(x,y) = (x^2 - y)i + (x + y^2)j$.

1. Compute the line integral

$$\int_{\gamma} \boldsymbol{F} \cdot d\boldsymbol{r}$$

for γ the segment from (0,-1) to (0,1).

- 2. Compute the same integral for γ the unit semicircle for $x \geq 0$ from (0, -1) to (0, 1).
- 3. Is \boldsymbol{F} conservative? Explain.

Problem 5

Consider the integral given by

$$\int_{\gamma} \boldsymbol{F} \cdot d\boldsymbol{r}$$

where $\mathbf{F}(x,y) = \frac{x}{x^2+y^2}\mathbf{i} + y\frac{1-x^2-y^2}{x^2+y^2}\mathbf{j}$ and γ is a curve in the domain of F.

- 1. What is the domain of F? Is it simply connected?
- 2. Is F conservative? If so, what is its potential?
- 3. Evaluate the integral for γ the circle of radius 1 in \mathbb{R}^2 .
- 4. Evaluate the integral when γ is the parabola $y = 1 x^2$ starting at (-1,0) and ending at (1,0).