Fundamentos Matemáticos

https://github.com/AdriCri22/Fundamentos-Matematicos-FM-FIB

1. Lógica y demostraciones

Lógica preposicional

Las fórmulas de lógica preposicional se constituyen con los siguientes símbolos:

- Letras preposicionales: p, q, r, s ... (átomos o fórmulas atómicas)
- Conectivas lógicas:
 - Binarias:

Unarias:

¬ (no)

Significado de las conectivas (Tablas de la verdad):

	φ	$ eg \varphi$
	0	1
Asignación	1	0
,		

φ	ψ	φΛψ	φ∨ψ	$\varphi o \psi$	$\varphi \leftrightarrow \psi$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Tipos de fórmulas importantes:

- Tautología: fórmula siempre cierta (La tabla de la verdad siempre da 1)
- Insatifactible / Contradicción: fórmula siempre falsa (La tabla de la verdad siempre da 0)
- Satisfacible: fórmula que es cierta para alguna asignación (La tabla de la verdad contiene algún 1)

Equivalencia de fórmulas

La siguiente tabla muestra propiedades básicas a partir de las que podemos ir de una fórmula a otra para poder demostrar que dos fórmulas son equivalentes.

Distributiva	$\varphi \wedge (\psi \vee \theta) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \theta)$	$\varphi \lor (\psi \land \theta) \equiv (\varphi \lor \psi) \land (\varphi \lor \theta)$
De Morgan	$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi$	$\neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$
Absorción	$\varphi \wedge (\varphi \vee \psi) \equiv \varphi$	$\varphi \lor (\varphi \land \psi) \equiv \varphi$
Idempotencia	$\phi \wedge \phi \equiv \phi$	$\varphi \lor \varphi \equiv \varphi$
Conmutativa	$\phi \wedge \psi \equiv \psi \wedge \phi$	$\varphi \lor \psi \equiv \psi \lor \varphi$

Asociativa	$\varphi \wedge (\psi \wedge \theta) \equiv (\varphi \wedge \psi) \wedge \theta$	$\varphi \lor (\psi \lor \theta) \equiv (\varphi \lor \psi) \lor \theta$
Neutra	$\varphi \wedge 1 \equiv \varphi$	$\varphi \lor 0 \equiv \varphi$
	φ V 1 ≡ 1	$\phi \wedge 0 \equiv 0$
Complementaria	$\varphi \lor \neg \varphi \equiv 1$	$\phi \wedge \neg \phi \equiv 0$
Doble negación	$\neg\neg\phi\equiv\phi$	
	¬1 ≡ 0	¬0 ≡ 1
Traducción de la →	$\phi \to \psi \equiv \neg \phi \lor \psi$	$\neg(\phi \to \psi) \equiv \phi \land \neg \psi$
Traducucción de la ↔	$\varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$ $\varphi \leftrightarrow \psi \equiv (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$	$\neg(\phi \leftrightarrow \psi) \equiv (\phi \land \neg \psi) \lor (\neg \phi \land \psi)$

Lógica de predicados

Para tener una relación hay que disponer de un "dominio de individuos" y una propiedad de estos individuos, cada individuo del dominio tiene o no una propiedad. El número de individuos se representa mediante el término aridad, es decir, una relación de aridad 1, significa que esta relación es una propiedad que depende de 1 individuo.

Una relación de aridad 2 tiene dos argumentos:

- Es una propiedad que depende de dos individuos.
- La propiedad es del conjunto o relaciona a los individuos entre ellos.
- Cada pareja de individuos tiene o no tiene la propiedad.

Ejemplos (Dominio \mathbb{Z}):

- Las relaciones: "ser par", "ser un cuadrado", "ser múltiple de 4" son relaciones de aridad 1.
- Las relaciones: "ser menor que (x < y)", "ser igual que (x = y)", "ser congruente módulo 5 $(x \equiv y \pmod{5})$ " son relaciones de aridad 2.
- Las relaciones: "x está entre y y z", "x es congruente con y módulo z" son relaciones de aridad 3.

Para representar una relación de aridad n se usa la siguiente fórmula atómica: $R(x_1, x_2, ..., x_n)$, en casos de relaciones binarias (aridad 2) se puede escribir xRy en vez de R(x,y)

Cuantificadores:

- $\forall x \varphi \equiv \text{Todos los individuos } x \text{ del dominio cumplen } \varphi$.
- $\exists x \varphi \equiv \text{Existe algún (al menos un) individuo } x \text{ del dominio que cumpla } \varphi$.

Equivalencia

$\neg \forall x \varphi \equiv \exists x \neg \varphi$	$\neg \exists x \varphi \equiv \forall x \neg \varphi$	
$\forall x \forall y \varphi \equiv \forall y \forall x \varphi$	$\exists x \exists y \varphi \equiv \exists y \exists x \varphi$	
$\forall x(\varphi \wedge \psi) \equiv \forall x \varphi \wedge \forall x \psi$	$\exists x (\varphi \lor \psi) \equiv \exists x \varphi \lor \exists x \psi$	

La equivalencia $\forall x \exists y \varphi$ y $\exists y \forall x \varphi$ no es cierta. Por ejemplo, si el dominio son los nombres naturales $\forall x \exists y (x < y)$ es cierta, en cambio $\exists y \forall x (x < y)$ es falsa.

Tampoco son ciertas las equivalencias $\forall x (\varphi \lor \psi) \equiv \forall x \varphi \lor \forall x \psi$ ni $\exists x (\varphi \land \psi) \equiv \exists x \varphi \land \exists x \psi$. Por ejemplo: $x \in \mathbb{N}$, P(x) es "x es par", I(x) es "x es impar", $\forall x (P(x) \lor I(x))$ es cierta, en cambio $\forall x P(x) \lor \forall x I(x)$ es falsa.

Formalización

Consiste en expresar en un lenguaje "formal" un enunciado. Consistirá en encontrar una fórmula de la lógica de predicados. Al formalizar con cuantificadores se presuponen:

- Un dominio (o universo) de individuos.
- Unas relaciones entre individuos.

Hay dos patrones que aparecen de manera habitual:

- 1. $\forall x (A(x) \rightarrow B(x))$ Todos los individuos de tipo A (que tienen la propiedad A) tienen la propiedad B.
- 2. $\exists x (A(x) \land B(x))$ Hay individuos de tipo A que tienen la propiedad B.

Nota: para expresar que x cumple las propiedades A y B no se puede expresar de esta manera A(B(x)), la forma correcta es $A(x) \wedge B(x)$.

Veracidad y cuantificadores

Para justificar que un enunciado es cierto dependerá de su "forma".

- Demostración de un existencial $\exists x P(x)$

Basta con dar un elemento a del dominio que cumple la propiedad P, es decir, basta con dar un ejemplo que sea cierto

- Demostración de un universal $\forall x P(x)$

Se hace a partir de una "demostración".

Cuantificadores mezclados

Queremos demostrar	Que hay que hacer
$\exists x \in A \ P(x)$ Cierto	Dar un ejemplo: Dar $a \in A$ tal que $P(a)$
$\forall x \in A \ P(x)$ Falso	Dar un contraejemplo: Dar $a \in A$ tal que $\neg P(a)$
$\exists y \in A \ \forall x \in A \ P(x,y) \text{Cierto}$	Dar $a \in A$ tal que $\forall x \in A \ P(x, a)^{-1}$
$\forall x \in A \ \exists y \in A \ P(x,y) \text{Cierto}$	Por cada $x \in A$ dar $y = E(x)$ tal que $\forall x \in A \ P(x, E(x))^2$

- 1. La y no puede depender de la x: es constante
- 2. La y acostumbra a depender de x, aunque en alguna ocasión puede ser constante

Demostraciones

En el lenguaje semiformal (fura de las fórmulas) se usan: $i, o, no, \Rightarrow, \Leftrightarrow$, en vez de: $\land, \lor, \neg, \rightarrow, \leftrightarrow$.

$$A \Rightarrow B \equiv A \text{ implica } B \equiv si \text{ A entonces } B \equiv A \text{ es la hipótesis y } B \text{ la Tesis}$$

Ejemplo: Queremos demostrar que: "por todo entero n, si n es impar entonces $n^2 + 4n - 1$ es par".

1. Escribimos el enunciado de esta forma (que n es un entero se sobreentiende):

$$n impar \Rightarrow n^2 + 4n - 1 par$$

2. Lo formalizamos:

$$\forall x (I(x) \rightarrow P(x^2 + 4x - 1))$$

Dónde I(x) formaliza "x es impar", P(x) formaliza "x es par" i el dominio son los enteros

Pasos lógicos (sirven para que en cualquier momento de una demostración puedan ser usados):

Pasos lógicos			Tautologías
A, B	\Rightarrow	A	$(p \land q) \rightarrow p$
A	\Rightarrow	A o B	$p \to (p \lor q)$
A o B, no A	\Rightarrow	В	$((p \lor q) \land \neg p) \to q$
$A, A \Rightarrow B$	\Rightarrow	В	$(p \land (p \to q)) \to q$
$no\ B,\ A\Rightarrow B$	\Rightarrow	no A	$\left(\neg q \land (p \to q)\right) \to \neg p$
ABSURDO	\Rightarrow	A	$0 \rightarrow p$
$A \Rightarrow B, B \Rightarrow C$	⇒	$A \Rightarrow C$	$((p \to q) \land (q \to r)) \to (p \to r)$

Nota: la coma se usa como si fuera ∧ (una conjunción)

Pasos básicos de la igualdad (a, b, c, ... son números reales)

1. a = a(reflexiva) 2. a = b $\Rightarrow b = a$ (simétrica) 3. a = b, b = c(transitiva) \Rightarrow a = c4. a = b(E(x)) es una expresión dónde aparece x) $\Rightarrow E(a) = E(b)$ 5. a = b \Rightarrow a+c=b+c $\Rightarrow ac = bc$ 6. a = b \Rightarrow 7. a = b $a^2 = b^2$ 8. a = b, a' = b' \Rightarrow a + a' = b + b'

Propiedades básicas de la suma y el producto (a, b, c, ... son números reales)

aa' = bb'

1. a + (b + c) = (a + b) + c(Asociativa de la suma) 2. a + b = b + a(Conmutativa de la suma) 3. a + 0 = a(0 es el neutro de la suma) 4. a + (-a) = 0(-a es el inverso de a de la suma)5. a(bc) = (ab)c(Asociativa del producto) 6. ab = ba(Conmutativa del producto) 7. $a \times 1 = a$ (1 es el neutro del producto) 8. $a \neq 0 \Rightarrow a \times (1/a) = 1$ (1/a es el inverso de a del producto) $9. \quad a(b+c) = ab + ac$ (distributiva)

Pasos básicos del orden (a, b, c, ... son números reales)

9. a = b, $a' = b' \Rightarrow$

1. $a \leq a$ 2. $a \le b, b \le a$ $\Rightarrow a = b$ 3. $a \le b, b \le c \Rightarrow$ $a \leq c$ $4. \quad a \leq b \quad o \quad b \leq a$ 5. $a \leq b$ \Rightarrow $a+c \leq b+c$ 6. $a \le b$, $c \ge 0 \Rightarrow ac \le bc$ 7. $a \leq b, c \leq d$ \Rightarrow $a+c \le b+d$ 8. $a \leq b$ \Rightarrow $-b \le -a$ 9. $a^2 \ge 0$ $\Rightarrow a^2 \le b^2$ 10. $0 \le a \le b$ 11. $a \le b$ \Rightarrow $a^2 \leq b^2$ 12. $a \le b$ $\Rightarrow a^3 \le b^3$ $a^n \leq b^n$ 13. (*n* natural par) $0 \le a \le b$

Fundamentos Matemáticos

Otros

1. a natural, b natural $\Rightarrow a + b$ natural, ab natural

2. a entero, b entero \Rightarrow -a entero, a+b entero, ab entero

3. *a* racional, *b* racional \Rightarrow -a racional, a + b racional, ab racional

4. *b* racional, $b \neq 0$ \Rightarrow 1/*b* racional 5. *a* racional, *b* racional, $b \neq 0$ \Rightarrow a/b racional

Nota: Podemos definir natural de la siguiente manera: 0 es natural i si a es natural, a+1 es natural. No hay más naturales que los que se constituyen aplicando un nombre finito de veces estas reglas.

Prueba directa

Salimos de la hipótesis A i llegamos a la tesis B. Esto se hace mediante pequeñas implicaciones que han de ser muy claras, estas implicaciones pueden ser, por ejemplo, los pasos anteriores.

Queremos demostrar $A \Rightarrow B$

$$A\Rightarrow A'\Rightarrow A''\Rightarrow \cdots\Rightarrow B$$

Prueba del contrarrecíproco

Se basa en: $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Queremos demostrar $A \Rightarrow B$

$$\neg B \Rightarrow \cdots \Rightarrow \neg A$$

Reducción al absurdo

Se basa en: $p \equiv \neg p \rightarrow 0$

Queremos demostrar A

$$\neg A \Rightarrow \cdots \Rightarrow Contradicción$$

Reducción al absurdo II

Se basa en: $p \rightarrow q \equiv (p \land \neg q) \rightarrow 0$

Queremos demostrar $A \Rightarrow B$

$$A, \neg B \Rightarrow \cdots \Rightarrow Contradicción$$

Prueba de una disyunción

Se basa en: $(q \lor r) \equiv (\neg q \to r)$

Queremos demostrar B V C

$$\neg B \Rightarrow \cdots \Rightarrow C$$

En caso de más disyuntandos: $p_1 \vee ... \vee p_n \equiv (\neg p_1 \vee ... \vee \neg p_{n-1}) \rightarrow p_n$

Queremos demostrar $B_1 \vee ... \vee B_n$

$$\neg B_1, \neg B_2, \dots, \neg B_{n-1} \Rightarrow \dots \Rightarrow B_n$$

Disyunción al consecuente

Se basa en: $p \to (q \lor r) \equiv (p \land \neg q \to r)$

Queremos demostrar $A \Rightarrow (B \lor C)$

$$A, \neg B \Rightarrow \cdots \Rightarrow C$$

Con más disyuntandos:

$$p \rightarrow (q_1 \lor ... \lor q_n) \equiv (p \land \neg q_1 \land ... \land \neg q_{n-1}) \rightarrow q_n$$

Queremos demostrar $A \Rightarrow (B_1 \vee ... \vee B_n)$

$$A, \neg B_1, \neg B_2, \dots, \neg B_{n-1} \Rightarrow \dots \Rightarrow B_n$$

Prueba por casos

Se basa en la tautología:

$$(p_1 \lor ... \lor p_n) \to (p \leftrightarrow (p_1 \to p) \land ... \land (p_n \to p))$$

Queremos demostrar B, distinguimos los casos $A_1, ..., A_n$

Caso 1: A₁

$$A_1 \Rightarrow \cdots \Rightarrow B$$

...

Caso n: A_n

$$A_n \Rightarrow \cdots \Rightarrow B$$

Nota: hay que hacerlo con todos los casos

Disyunción al antecedente

Se basa en:

$$(q \lor r) \to p \equiv (q \to p) \land (r \to p)$$

Es equivalente a hacer una prueba por casos (distinguimos según B o C).

Queremos demostrar $(B \lor C) \Rightarrow A$

$$B\Rightarrow \cdots \Rightarrow A$$

$$C\Rightarrow \cdots \Rightarrow A$$

Cuando hay más casos:

Queremos demostrar $(B_1 \vee ... \vee B_n) \Rightarrow A$

$$B_1 \Rightarrow \cdots \Rightarrow A$$

..

$$B_n\Rightarrow\cdots\Rightarrow A$$

Demostración de una equivalencia

Se basa en: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Queremos demostrar $A \Leftrightarrow B$

$$A \Rightarrow B$$

$$B \Rightarrow A$$

Fundamentos Matemáticos

Cuando hay más casos:

Queremos demostrar que
$$A_1,\ A_2,\dots,A_n$$
 son equivalentes (dos a dos)
$$A_1\Rightarrow A_2\\A_2\Rightarrow A_3\\\dots\\A_{n-1}\Rightarrow A_n\\A_n\Rightarrow A_1$$

Nota: Se puede cambiar el orden de los enunciados A_1, A_2, \dots, A_n

Demostración por unicidad

Cuando decimos que "hay como mucho una x que satisface P(x)" o bien "si hay una x que satisface P(x) este es único", estamos expresando: $\forall x, y (P(x) \land P(y) \rightarrow x = y)$

Queremos ver que hay como mucho una x tal que P(x).

$$P(x), P(y) \Rightarrow \cdots \Rightarrow x = y$$

Nota: No afirmamos que el elemento x exista, sólo que no hay dos diferentes o, mejor dicho, que hay como mucho uno (puede ser que no haya ninguno).

Nota: Cuando queramos ver que "hay una única x tal que P(x)" habrá que ver dos cosas: que existe el elemento x y que es único.

2. Inducción

Inducción simple

Se usa cuando la variable n depende de una infinidad de enteros (una sucesión de números).

Se basa en: $\forall n \geq n_0 \ P(n) \equiv P(n_0) \land \forall n > n_0 \big(P(n-1) \rightarrow P(n) \big)$

Queremos demostrar $\forall n \geq n_0 P(n)$

$$P(n_0)$$

$$\forall n > n_0 (P(n-1) \to P(n))$$

Se presenta así:

- Paso base $P(n_0)$ | Si es necesario más de un caso inicial: $P(n_0), ..., P(n_i)$

- Paso inductivo Sea $n > n_0$:

• Hipótesis de inducción: P(n-1)

Queremos ver (tesis): P(n) Procedemos:

Ejemplo:
$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1} \text{ para } n \ge 1$$

Queremos demostrar:
$$\forall n \ge 1 \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

- Paso base: n=1

$$\sum_{i=1}^{1} \frac{1}{i(i+1)} = \frac{1}{1*(1+1)} = \frac{1}{2} = \frac{n}{n+1} = \frac{1}{1+1} = \frac{1}{2}$$

- Paso inductivo n > 1:

• H.I. sustituimos n por n-1 $\frac{n-1}{(n-1)+1} = \frac{n-1}{n}$

Queremos ver: $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$

Procedemos: Identidad notable: $(a + b)(a - b) = a^2 - b^2$

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \sum_{i=1}^{n-1} \frac{1}{i(i+1)} + \frac{1}{n(n+1)} = \frac{n-1}{n} + \frac{1}{n(n+1)} = \frac{(n-1)(n+1)+1}{n(n+1)} = \frac{n^2-1^2+1}{n(n+1)} = \frac{n^2-1}{n(n+1)} = \frac{n^2$$

Inducción completa

Se usa cuando queremos demostrar un rango de valores

Se basa en:
$$\forall n \geq n_0 \ P(n) \equiv P(n_0) \land \forall n > n_0 \ (P(n_0) \land \dots \land P(n-1) \rightarrow P(n))$$

Queremos demostrar $\forall n \geq n_0 P(n)$

$$\begin{split} &P(n_0) \\ \forall n > n_0 \left(P(n_0) \wedge \ldots \wedge P(n-1) \rightarrow P(n) \right) \end{split}$$

Fundamentos Matemáticos

Se presenta así:

- Paso base: $P(n_0)$ | Si es necesario más de un caso inicial: $P(n_0)$, $P(n_0 + 1)$, ..., $P(n_i)$

- Paso inductivo: para $n > n_0$:

• H.I. $P(n_0), P(n_0 + 1), ..., P(n - 1)$

• Queremos ver: P(n)

Ejemplo: El problema de las pilas. Tenemos una pila de n cajas y queremos convertir en n pilas de 1 caja. Esto lo haremos subdividiendo cada pila de k cajas en dos pilas r y s caja, dónde r+s=k, r,s>0. Le pediremos al operario que efectúe esta tarea y cada vez que divida una pila de r+s cajas en dos pilas de r y s cajas le pagamos rs euros. Demuestra que al final, independientemente de la estrategia del operario, si al principio hay n cajas, le pagaremos n(n-1)/2 euros.

- Paso base: n = 2 (Ha de haber mínimo 2 cajas para separarlas en 2 pilas)

Si hay 2 cajas, las separamos en 2 pilas de 1 caja (r = s = 1), por lo tanto, el operario cobra rs = 1 * 1 = 1 euros, es equivalente a 2 * (2 - 1) / 2 = 1.

- Paso inductivo n > 2:

Con n cajas tenemos una 1ª división de k(n-k) cajas que se paga a $k(n-k) \in y$ después para k < n y (n-k) < n aplicaremos H.I.

$$\begin{array}{ll} \textit{Por lo tanto, basta ver que: } k(n-k) + \frac{k(k-1)}{2} + \frac{(n-k)(n-k-1)}{2} = \frac{n(n-1)}{2} \Leftrightarrow \frac{2k(n-k)+k(k-1)+(n-k)(n-k-1)}{2} = \frac{n^2-n}{2} \Leftrightarrow 2nk-2k^2+k^2-k+n^2-nk-n-nk+k^2+k=n^2-n \Leftrightarrow n^2-n=n^2-n. \end{array}$$

Ejemplo: El juego de las cerillas. Hay dos montones con el mismo número de cerillas y dos jugadores. Cada jugador escoge una pila de cerillas y retira de esta pila mínimo una cerilla. Juegan alternativamente. El juego acaba cuando no quedan cerillas i gana el último que saca alguna cerilla del montón. Demuestra que, si el segundo jugador quita cada vez el mismo número de cerillas del montón que el primer jugador, gana.

- Paso base: n=2

Indiferentemente de si el primer jugador coge 1 o 2 cerillas del montón, el segundo jugador al imitarlo ganará.

- Paso inductivo n > 2:

El primer jugador quita k cerillas k>0 El segundo jugador quita k cerillas k>0 Quedan n-k< n cerillas

Formalizar diferentes definiciones:

- n es par n = 2k- n es impar n = 2k + 1

- a divide b a|b o b=ac

Fundamentos Matemáticos

Definiciones y recordatorios:

- Es primo si los únicos divisores positivos son 1 y p
- $\log_b a = c \Leftrightarrow b^c = a$
- Residuo (r) = dividendo (x) divisor (y) × cuociente (q) $\equiv x \mod y$
- Que un número acabe en cierto dígito, por ejemplo 9, se representa: $10k + 9 \quad \forall k \geq 0$
- Que por ejemplo el residuo de dividir x entre 6 sea 4 se representa: n = 6k + 4 $k \in \mathbb{Z}$
- Números naturales $\mathbb{N} = \{1, 2, 3, ...\}$
- Números enteros $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3\}$
- Números racionales $\mathbb{Q} = \left\{ \frac{p}{q} \mid p,q \in \mathbb{Z} \land q \neq 0 \right\}$
- Números irracionales (I) son números decimales infinitos no periódicos
- Nombres reales $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$

3. Conjuntos y relaciones

Los conjuntos son como un tipo de "bolsa" que contienen ciertos objetos en el interior, de manera desordenada. Sólo importa que objetos están dentro y cuáles no. También podemos pensar en una especie de lista dónde no importa el orden y no pueden haber repeticiones. No podemos "llamar" al primer elemento, sólo podemos pedir si un determinado objeto está o no (esto es un booleano, que se llama "función característica").

Cuando un objeto x está en el conjunto A diremos que x pertenece a A o que x es un elemento de A. Lo denotamos como $x \in A$.

Cuando un objeto x no está en el conjunto A diremos que x no pertenece a A o que x no es un elemento de A. Lo denotamos como $x \notin A$.

Los elementos pueden ser de cualquier tipo (números, conjuntos, fórmulas, listas, ...).

Existen dos formas de representar un conjunto:

- Por **extensión**: damos la "lista" (no importa el orden y no hay repeticiones) de sus elementos $A = \{1, 3, 5, 7, 9\}$
- Por **compresión**: Damos una propiedad P(x) que caracteriza sus elementos (P(x) es una propiedad que todos los elementos del conjunto cumplen y ninguno más)

$$A = \{x \mid P(x)\}$$

Igualdad de conjuntos

Dos conjuntos A, B son iguales si y sólo si tienen los mismos elementos: $A = B \iff \forall x (x \in A \leftrightarrow x \in B)$

Conjunto vacío

Conjunto que no tiene elementos, se denota como: $\emptyset = \{x \mid x \neq x\}$

Inclusión entre conjuntos (⊆)

A contiene "algunos elementos" (pueden ser todos) de B:

$$A \subseteq B \iff \forall x (x \in A \rightarrow x \in B)$$

Propiedades:

- 1- $\emptyset \subseteq A$.
- 2- $A \subseteq A$.
- 3- $A \subseteq B \mid B \subseteq C$ implies $A \subseteq C$.

Operaciones entre conjuntos

Unión

Se puede expresar de dos formas:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$x \in A \cup B \iff x \in A \vee x \in B$$

Propiedades:

- 1. $A \cup A = A$
- 2. $A \cup \emptyset = A$
- 3. $A \cup B = B \cup A$
- 4. $A \cup (B \cup C) = (A \cup B) \cup C$
- 5. $A \subseteq A \cup B$, $B \subseteq A \cup B$

- 6. $A \subseteq B \iff A \cup B = B$
- 7. $A \cup B \subseteq C \iff A \subseteq C, B \subseteq C$

Intersección

Se puede expresar de dos formas:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$x \in A \cap B \iff x \in A \land x \in B$$

Propiedades:

- 1. $A \cap A = A$
- 2. $A \cap \emptyset = \emptyset$
- 3. $A \cap B = B \cap A$
- 4. $A \cap (B \cap C) = (A \cap B) \cap C$
- 5. $A \cap B \subseteq A$, $A \cap B \subseteq B$
- 6. $A \subseteq B \iff A \cap B = A$
- 7. $C \subseteq A \cap B \iff C \subseteq A \wedge C \subseteq B$

Cuando dos conjuntos A, B no tienen elementos comunes se dice que son disjuntos:

$$A i B son disjuntos \Leftrightarrow A \cap B = \emptyset$$

Diferencia

Se puede expresar de dos formas:

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$x \in A - B \iff x \in A \land x \notin B$$

Propiedades:

- 1. $A A = \emptyset$
- $2. \quad A \emptyset = A$
- 3. $\emptyset A = \emptyset$
- 4. $A B \subseteq A$
- 5. $(A-B) \cap B = \emptyset$
- 6. $A \subseteq B \Leftrightarrow A B = \emptyset$ 7. $C \subseteq A - B \Leftrightarrow C \subseteq A \land C \cap B = \emptyset$

Otras propiedades:

- 1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributiva)
- 2. $A \cap (A \cup B) = A$, $A \cup (A \cap B) = A$
- 3. $A (B \cup C) = (A B) \cap (A C)$
- 4. $A \cup B = (A B) \cup (B A) \cup (A \cap B)$ y la unión es disjunta (los conjuntos (A B), (B A), $(A \cap B)$ son disjuntos 2 a 2).

Complementario

Suponemos que hay un conjunto grande o universo Ω que engloba a todos los elementos.

Se puede expresar de dos formas:

$$A^{C} = \Omega - A = \{x \in \Omega \mid x \notin A\}$$
$$x \in A^{C} \iff x \in \Omega \land x \notin A$$

Propiedades:

- 1. $(A^{c})^{c} = A$
- 2. $\emptyset^{\mathcal{C}} = \Omega$, $\Omega^{\mathcal{C}} = \emptyset$
- 3. $A \cap A^C = \emptyset$, $A \cup A^C = \Omega$
- 4. $(A \cup B)^C = A^C \cap B^C$, $(A \cap B)^C = A^C \cup B^C$ (De Morgan)
- 5. $A B = A \cap B^C$
- 6. $B = A^C \Leftrightarrow A \cap B = \emptyset, A \cup B = \Omega$
- 7. $A \subseteq B \iff B^C \subseteq A^C \iff A \cap B^C = \emptyset \iff A^C \cup B = \Omega$
- 8. $A \subseteq B^C \iff B \subseteq A^C \iff A \cap B = \emptyset \iff A^C \cup B^C = \Omega$
- 9. $A^C \subseteq B \iff B^C \subseteq A \iff A^C \cap B^C = \emptyset \iff A \cup B = \Omega$

Diferencia simétrica

Se puede expresar de dos formas:

$$A \triangle B = \{x \mid (x \in A \land x \notin B) \lor (x \in B \land x \notin A)\}$$

 $x \in A \triangle B \iff (x \in A \land x \notin B) \lor (x \in B \land x \notin A)$

Propiedades:

1.
$$A \triangle B = (A - B) \cup (B - A)$$

2.
$$A \triangle B = (A \cup B) - (A \cap B)$$

Partes de un conjunto

Dado un conjunto A definimos el conjunto de las partes (o conjunto potencia) de A así:

$$P(A) = \{x \mid x \subseteq A\}$$
 $x \in P(A) \Leftrightarrow x \subseteq A$

Ejemplos:

- $P(\emptyset) = {\emptyset}$
- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $P(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Nota: el número de elementos de un conjunto A recibe el nombre de cardinal de A y se denota cómo |A|. Tenemos: $|P(A)| = 2^{|A|}$

Propiedades:

- 1. $\emptyset \in P(A)$
- 2. $A \in P(A)$

Producto cartesiano

Pareja ordenada

Idea: la pareja ordenada es como una lista (o vector) de longitud 2 puesta entre paréntesis (a, b)

$$(a,b) = (c,d) \Leftrightarrow a = c, \qquad b = d$$

Producto cartesiano

Dados dos conjuntos A, B definimos el conjunto producto cartesiano de A por B así:

$$A \times B := \{x \mid x = (a,b) \text{ por unos ciertos } a \in A \text{ i } b \in B\}$$

$$A \times B := \{(a,b) \mid a \in A, b \in B\}$$

Ejemplo:

$$\{1,2,3,4\} \times \{a,b\} = \{(1,a),(2,a),(3,a),(4,a),(1,b),(2,b),(3,b),(4,b)\}$$

Demostraciones con conjuntos

Demostraciones de igualdad entre conjuntos (1ª manera)

Queremos demostrar A = B

Sea x cualquiera: $x \in A \Leftrightarrow \cdots \Leftrightarrow \cdots \Leftrightarrow x \in B$

Demostraciones de una inclusión entre conjuntos

Queremos demostrar $A \subseteq B$

Sea x cualquiera: $x \in A \Rightarrow \cdots \Rightarrow \cdots \Rightarrow x \in B$

Demostración de igualdad entre conjuntos (2ª manera)

Queremos demostrar A = B

Demostraremos dos cosas: $A \subseteq B$, $B \subseteq A$

Demostración que un conjunto es vacío

Queremos demostrar $A = \emptyset$

Por reducción al absurdo: $\exists x \in A \Rightarrow \cdots \Rightarrow \cdots \Rightarrow Absurdo$

Demostración dónde interviene que un conjunto es vacío

En este tipo de demostraciones una buena estrategia es usar contrarrecíproco o reducción al absurdo por tal de que la condición "ser vacío" aparezca negada.

Notamos que:

- $A \neq \emptyset \Leftrightarrow \exists x \ x \in A$
- $A \nsubseteq B \iff \exists x \ (x \in A \land x \notin B)$
- $A \neq B \iff \exists x (x \in A \land x \notin B) \lor \exists x (x \notin A \land x \in B)$

Relaciones de equivalencia

Idea: una relación binaria en un conjunto A "relaciona" parejas de elementos de A. Cada pareja de elementos de A pueden estar o no estar relacionados. Determinar la relación consiste en indicar que parejas están relacionadas y cuáles no.

Sea $x, y \in A$. Si están relacionados por una relación R lo escribiremos así:

xRy

Cuando no están relacionados lo denotaremos por:

xRy

Ejemplo:
$$A = \{2, 4, 5, 6, 8, 10\}$$

$$R = \{(2,2), (2,4), (2,6), (2,10), (4,4), (4,8), (5,5), (5,10), (6,6), (8,8), (10,10)\}$$

Esto quiere decir, por ejemplo, que 2R4 (2 está relacionado con 4, ya que la pareja $(2,4) \in R$) en cambio 2 no está relacionado con 3 porque la pareja $(2,3) \notin R$. También se pueden representar las relaciones mediante diagramas de Venn con flechas: cada flecha representa una pareja relacionada

En todo conjunto *A* siempre hay las relaciones siguientes:

- La identidad en A (o igualdad), definida por: $xI_Ay \Leftrightarrow x=y:I_A=\{(x,y)\in A\times A\mid x=y\}=\{(x,x)\mid x\in A\}$
- La relación vacía (ninguno está relacionado con ninguno): $R = \emptyset$
- La relación total (todos están relacionados con todos): $R = A \times A$

Propiedades importantes que pueden tener las relaciones

Reflexiva	$\forall x \in A \ xRx$
Simétrica	$\forall x, y \in A \ (xRy \to yRx)$
Transitiva	$\forall x, y, z \in A \ (xRy \land yRz \to xRz)$
Antisimétrica	$\forall x, y \in A \ (xRy \land yRx \to x = y)$

Una relación de equivalencia es una relación binaria que es reflexiva, simétrica y transitiva.

Ejemplo: Tenemos un conjunto *A* de pelotas de colores

- Reflexiva: una pelota $x \in A$ tiene el mismo color que sí misma.
- Simétrica: siendo $x, y \in A$ y x tiene el mismo color que y entonces, y tiene el mismo color que x.
- Transitiva: siendo $x, y, z \in A$, si x tiene el mismo color que y e y tiene el mismo color que z entonces, x tiene el mismo color que z.

Ejemplo: Consideramos $\mathbb{R} \times \mathbb{R}$ la relación siguiente: $(x,y)R(z,t) \Leftrightarrow |x|+|y|=|z|+|t|$

- Reflexiva: (x, y)R(x, y) |x| + |y| = |x| + |y|
- Simétrica: $(x,y)R(z,t) \Rightarrow (z,t)R(x,y)$

$$(x,y)R(z,t) \Longrightarrow |x| + |y| = |z| + |t| \Leftrightarrow |z| + |t| = |x| + |y| \Longrightarrow (z,t)R(x,y)$$

- Transitiva: $\frac{(x,y)R(z,t)}{(z,t)R(u,v)} \Longrightarrow |x| + |y| = |z| + |t| = |u| + |v| \Leftrightarrow (x,y)R(u,v)$

Clases de equivalencia y conjunto cociente

Si R es una relación de equivalencia en A i $a \in A$ la clase de a se define así:

$$\bar{a} = \{x \in A \mid xRa\}$$

Por lo tanto, dados $a, b \in A$ tenemos:

$$b \in \bar{a} \Longleftrightarrow bRa$$

El **conjunto cociente**, que denotamos por A/R, es el conjunto de todas las clases:

$$A/R = \{x \mid x = \bar{a} \text{ por un cierto } a \in A\} = \{\bar{a} \mid a \in A\}$$

Notamos que:

- 1. Cada clase de equivalencia es un subconjunto del dominio A.
- 2. El conjunto cociente A/R es un subconjunto de P(A).

Propiedades:

- 1. $x \in \bar{x}$
- 2. Si $x \in \bar{y}$ entonces $\bar{x} = \bar{y}$
- 3. Si $x \notin \bar{y}$ entonces $\bar{x} \cap \bar{y} = \emptyset$
- 4. Las clases forman una "partición" de A, es decir:
 - a. Cada clase es no vacía (ya que $x \in \bar{x}$).
 - b. Dos clases diferentes son disjuntas: $\forall x, y \in A \ (\bar{x} \neq \bar{y} \rightarrow \bar{x} \cap \bar{y} = \emptyset)$
 - c. La reunión de todas las clases es A.

Particiones

Idea: tenemos un conjunto A y lo rompemos (o repartimos) en trozos.

Definición: una partición P de A es un conjunto de subconjuntos no vacíos de A, disjuntos 2 a 2 y tal que su reunión es total. Más precisamente: P es una partición de A si:

- $\forall B \in P \ B \subseteq A$ (de manera equivalente: $P \subseteq P(A)$)
- $\forall B \in P \ B \neq \emptyset$
- $\forall B \in P \ \forall C \in P \ (B \neq C \rightarrow B \cap C = \emptyset)$
- Si $P = \{A_1, A_2, ..., A_n\}$ entonces $A = A_1 \cup A_2 \cup ... \cup A_n$ ($\forall x \in A \exists B \in P \ x \in B$ si la partición no es finita)

Ejemplos:

En el dibujo hemos roto el conjunto $A = \{a, b, c, d, e, f, g, h, i, j\}$ en 4 trozos: $\{b, c\}, \{d\}, \{e, f, g, j\}, \{a, h, i\}$. El conjunto formado por estas 4 partes es una partición de A: $\{\{b, c\}, \{d\}, \{e, f, g, j\}, \{a, h, i\}\}$

- {{1}, {2, 3}, {4}, {5, 6, 7}} es una partición de {1, 2, 3, 4, 5, 6, 7}
- {{1,3,5},{2,3},{4},{5,6,7}} **no** es una partición de {1,2,3,4,5,6,7}
- {{1}, {2, 3}, {4}, {6, 7}} **no** es una partición de {1, 2, 3, 4, 5, 6, 7}

Hemos visto que si R es una relación de equivalencia a A, entonces A/R es una partición de A.

Si P es una partición de A, cada elemento x de A pertenece a una única "parte" (elemento de P). Es decir, por cada $x \in A$ hay un único $B \in P$ tal que $x \in B$. Entonces definimos la relación R así:

$$xRy \Leftrightarrow x \ y \ y$$
 pertenecen al mismo $B \in P$

Es fácil ver que es una relación de equivalencia. Entonces, si $x \in B \in P$ resulta qie $\bar{x} = B$. Por lo tanto, el conjunto cociente A/R = P.

4. Funciones

Una función (o aplicación) f consta de un conjunto "origen" A, un conjunto de "destino" B y una "regla" que asocia a cada elemento $x \in A$ a un **único** elemento $y \in B$. Formalmente la "regla" es una relación $R \subseteq A \times B$ que satisface:

- $\forall x \in A \ \exists y \in B \ (x, y) \in R$
- $\forall x \in A \ \forall y, y' \in B ((x, y) \in R \land (x, y') \in R \rightarrow y = y')$

A la única $y \in B$ tal que $(x, y) \in R$ la llamamos **imagen** del elemento x y lo denotamos (a la imagen) cómo f(x). De esta manera podemos expresar las dos propiedades anteriores como:

 $\forall x \in A \ f(x) \in B$

Para toda entrada A hay una salida B

 $\forall x, x' \in A \ (x = x' \to f(x) = f(x'))$ Para la misma entrada siempre se ha de dar la misma salida

Cuando estas dos condiciones se cumplen decimos que *f* está bien definida.

ldea: la "regla" es como una especie de programa, A es un conjunto de Entrada x entradas posibles y B es un conjunto que contiene todas las salidas posibles (el conjunto de entradas puede ser más grande que el conjunto de todas las salidas). A corresponde a una especificación de la entrada del programa: A es el conjunto de objetos que satisfacen la precondición del programa. B correspondería a una "especificación" de la salida: B es el conjunto de objetos que satisfacen la postcondición del programa.

Notación:

$$f: A \to B, \qquad x \to f(x)$$

Terminología:

- El conjunto A recibe el nombre de **dominio** o más formalmente conjunto de origen, mientras que B recibe el nombre de codominio (informalmente hablamos de conjunto de destino o llegada). Intentaremos evitar la palabra "salida" porque se puede referir tanto al dominio como al codominio.
- f(x) es la imagen de x.
- Si f(x) = y, x es una antiimagen de y, y es la imagen de x.
- Cuando decimos que $f: A \rightarrow B$ está bien definida queremos decir que se cumplen las dos condiciones de la definición: Cada $x \in A$ tiene una única imagen f(x) y esta pertenece a B.

Ejemplos:

- $f: \mathbb{Z} \to \mathbb{N}$ definida por f(x) = |x|
- $f: \mathbb{Q} \to \mathbb{Q}$ definida por $f(x) = \frac{3x-5}{4}$
- $f: \{1,2,3\} \to \{a,b,c,d\}$ definida por f(1) = d, f(2) = d, f(3) = c.

Igualdad entre aplicaciones

Dos aplicaciones son iguales cuando:

- Tienen el mismo dominio y el mismo codominio
- La misma "regla", es decir, con las mismas entradas corresponden las mismas salidas.

Ejemplos:

- Las funciones $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2 + 1$, $g: \mathbb{Z} \to \mathbb{Z}$ definida por $g(x) = x^2 + 1$ y $h: \mathbb{Z} \to \mathbb{R}$ definida por $h(x) = x^2 + 1$ son las tres differentes.
- Las funciones f, $g:\{1,2\} \to \mathbb{Z}$ definidas por $f(x)=x^2$ y g(x)=3x-2 son iguales (son la misma función).

Propiedades importantes que pueden tener las aplicaciones $f: A \rightarrow B$

- Inyectiva $\forall x, x' \in A \ (f(x) = f(x') \to x = x')$ Cada vez que cogen dos elementos del dominio que tienen la misma imagen los dos elementos son equivalentes
- Exhaustiva $\forall y \in B \ \exists x \in A \ f(x) = y$ Por cada elemento del codominio hay como mínimo un elemento del dominio
- Biyectiva inyectiva y exhaustiva

Notamos que:

- f es inyectiva \Leftrightarrow todo $y \in B$ tienen como mucho una antiimagen.
- f es exhaustiva \Leftrightarrow todo $y \in B$ tiene como mínimo una antiimagen.
- f es biyectiva \Leftrightarrow todo $y \in B$ tiene una única antiimagen.

Función inversa

Para que una función sea "inversa" de una aplicación, esta ha de ser biyectiva.

Si $f: A \to B$ es biyectiva, sabemos que todo elemento $y \in B$ tiene una única antiimagen. Entonces **la función inversa** de f, que denotamos por f^{-1} , es la aplicación que va de B a A y que todo $y \in B$ le hacen corresponder su única antiimagen.

$$f: A \to B$$
 biyectiva $f^{-1}: B \to A$

$$f^{-1}(y) :=$$
la única antiimagen de $y =$ la única $x \in A$ tal que $f(x) = y$

Notamos que:

- f ha de ser biyectiva, si no la inversa no existe
- $f^{-1}(y) = x \Leftrightarrow f(x) = y$

Propiedad:

Si f es biyectiva entonces f^{-1} también es biyectiva y $(f^{-1})^{-1} = f$.

Imagen y antiimagen de un conjunto

Dados $f: A \rightarrow B$, $X \subseteq A$ $Y \subseteq B$ definimos:

- El conjunto imagen de X:

$$f(X) = \{ y \in B \mid \exists x \in X \ f(x) = y \} = \{ f(x) \mid x \in X \}$$
$$y \in f(X) \Leftrightarrow \exists x \in X \ f(x) = y$$

El conjunto antiimagen de Y:

$$f^{-1}(Y) = \{x \in A \mid f(x) = Y\}$$

Si $x \in A$: $x \in f^{-1}(Y) \Leftrightarrow f(x) = Y$

Notamos que:

- f(X) es un subconjunto de B (el conjunto de todas las imágenes de los elementos de X).
- $f^{-1}(Y)$ es un subconjunto de A (el conjunto de todas las antiimágenes de los elementos de Y).

Composición de aplicaciones

Dadas $f:A\to B$ y $g:B\to C$ definimos la composición de f con g, que llamaremos f compuesta con g y denotemos por $g\circ f$, así:

$$g \circ f : A \to C$$
, $(g \circ f)(x) = g(f(x))$

Notaremos que:

- No siempre se puede componer, sólo cuando el codominio de la primera aplicación es la misma que (o este contenido en) el dominio de la segunda.
- Decimos f compuesta con g, pero lo denotamos $g \circ f$.

Propiedades:

- $f: A \to B$, $g: B \to C$, $h: C \to D$ entonces $h \circ (g \circ f) = (h \circ g) \circ f$ (Asociatova)
- Si $f: A \to B$, entonces $I_B \circ f = f \circ I_A = f$

Propiedades de la composición, inyectividad y exhaustividad:

- La composición de aplicaciones inyectivas es inyectiva.
- Si $g \circ f$ es inyectiva entonces f es inyectiva.
- La composición de aplicaciones exhaustivas es exhaustiva.
- Si $g \circ f$ es exhaustiva entonces g es exhaustiva.
- La composición de aplicaciones biyectivas es biyectiva.
- Si $g \circ f$ es biyectiva entonces f es inyectiva y g es exhaustiva.

Propiedades de la composición y la inversa:

- Si $f: A \to B$ es biyectiva, entonces $f^{-1} \circ f = I_A$ y $f \circ f^{-1} = I_B$
- Si $f:A\to B$ $g:B\to A$ satisfacen $g\circ f=I_A$ y $f\circ g=I_B$, entonces las dos son biyectivas y cada una es la inversa de la otra: $g=f^{-1}$ y $f=g^{-1}$

Demostraciones con funciones

Demostración que $f: A \rightarrow B$ es inyectiva

Sean $x, x' \in A$ cualquiera: $f(x) = f(x') \Rightarrow \cdots \Rightarrow x = x'$

Demostración que $f: A \rightarrow B$ NO es inyectiva

Dado $x, x' \in A$ satisfaciendo: $x \neq x'$, f(x) = f(x') (un contraejemplo)

Demostración que $f: A \rightarrow B$ es exhaustiva

Sea $y \in B$ cualquiera. Tenemos que dar alguna $x \in A$ tal que f(x) = y

Demostración que $f: A \rightarrow B$ NO es exhaustiva

Tenemos que dar $y \in B$ que no tenga ninguna antiimagen (por la que la "ecuación" f(x) = y no tiene ninguna solución $x \in A$).

Demostración que $f: A \rightarrow B$ es biyectiva

 1^a manera: f es inyectiva y exhaustiva

2ª manera: Sea $y \in B$ cualquiera. Tenemos que ver que hay un único $x \in A$ tal que f(x) = y.

Demostración que las aplicaciones $f, g : A \rightarrow B$ son iguales (f = g)

Dada $x \in A$, tenemos que ver f(x) = g(x)

5. Divisibilidad

Dados dos enteros a, b definimos: $a \mid b \Leftrightarrow$ existe un entero q tal que b = aq

 $a \mid b$ se lee a divide b. También decimos que a es un divisor de b o que b es un múltiplo de a.

Ejemplos: $2 \mid 6, 6 \mid 6, 6 \mid -12, -4 \mid 12.$

Notamos que:

- No es exactamente lo mismo $a \mid b$ que $b/a \in \mathbb{Z}$.
- Si $a \neq 0$ si que es equivalente: $a \mid b \Leftrightarrow b/a \in \mathbb{Z}$.
- $a \mid b \Leftrightarrow (a = b = 0) \lor (a \neq 0 \land b/a \in \mathbb{Z}).$

Propiedades: Para todo a, b, c, u, v enteros:

- 1. 1 | a
- 2. $a \mid 0$
- 3. $a \mid a$ (Reflexiva)
- 4. $a \mid b$, $b \mid c \Rightarrow a \mid c$ (Transitiva)
- 5. $a \mid b \Rightarrow ac \mid bc$
- 6. Si $c \neq 0$, $ac \mid bc \Rightarrow a \mid b$ (Simplificación)
- 7. $a \mid b \Rightarrow a \mid bc$
- 8. $a \mid b \Leftrightarrow a \mid -b \Leftrightarrow -a \mid b \Leftrightarrow -a \mid -b \Leftrightarrow |a| \mid |b|$ (No depende del signo)
- 9. Si $b \neq 0$, $a \mid b \Rightarrow |a| \leq |b|$
- 10. $a \mid b, b \mid a \Rightarrow |a| = |b|$
- 11. $a \mid b, a \mid c \Rightarrow a \mid ub + vc$ (Linealidad)

Ejemplo: Queremos encontrar a todos los enteros divisores de 6 y 15 a la vez. Si $a \mid 6$ y $a \mid 15$, por linealidad, $a \mid 15 - 2 * 6 = 3$. Recíprocamente, $a \mid 3$ por la propiedad 7, $a \mid 3 * 5 = 15$ y $a \mid 3 * 2 = 6$. Así, los divisores comunes de 6 y 15 son los enteros a tales que $a \mid 3$, es decir, ± 1 , ± 3 .

Números primos

Dado un número entero p: p es primo $\Leftrightarrow p \ge 2$ y los únicos divisores positivos de p son 1 y p

Notamos que:

- Los números primos son positivos y el 1 no es primo.
- Si $n \ge 2$, y no es primo (recibe el nombre de compuesto) entonces n = rs para ciertos enteros r, s con $2 \le r < n, 2 \le s < n$.
- Los números 1, -1 no tienen divisores primos.

Resultados:

- Todo número entero $n \ge 2$ es primo o es producto de números primos.
- Todo número entero $n \ge 2$ tiene algún divisor primo p. Si además n no es primo, podemos escoger algún divisor primo $p \le \sqrt{n}$.
- Hay infinitos números primos

Test de primalidad: Para verificar que un número n es primo, basta con verificar que no tiene ningún divisor primo $\leq \sqrt{n}$.

Máximo común divisor (mcd)

El máximo común divisor de los enteros $a_1, a_2, ..., a_n$ es el más grande de todos los divisores comunes de $a_1, a_2, ..., a_n$ si alguno de estos valores no es 0. Los divisores comunes de 0, 0, ..., 0 son todos los enteros y por lo tanto no hay un máximo. En este caso se toma el 0 como mcd por definición. El máximo común divisor de $a_1, a_2, ..., a_n$ lo denotamos como $mcd(a_1, a_2, ..., a_n)$. Esto lo podemos expresar así:

$$mcd(0,0,...,0) = 0$$

- Si algún $a_i \neq 0$, $mcd(a_1, a_2, ..., a_n)$ es el único entero d que verifica las dos propiedades siguientes:
 - $d \mid a_i$ por cada i
 - Si $d' | a_i$ por cada i entonces $d' \le d$.

Propiedades: Por cualquier entero *a*, *b*, *u* tenemos que:

- Si $a \mid b$ entonces mcd(a, b) = |a|
- mcd(a,0) = |a|
- Si p es primo y no divide b, entonces mcd(p, b) = 1
- El mcd no depende del signo: mcd(a,b) = mcd(a,-b) = mcd(-a,b) = mcd(-a,-b)
- mcd(a,b) = mcd(a + ub, b) (Teorema de Euclides)

a i b son primos entre si \Leftrightarrow mcd(a, b) = 1 El máximo común divisor es 1 o -1

Primos entre sí o relativamente primos

Observación: a i b son primos entre si \Leftrightarrow no tienen ningún divisor primo común

División euclidiana

Dados a, b enteros siendo $b \neq 0$, existen unos únicos enteros q, r tales que:

 $a = bq + r \qquad 0 \le r < |b| \qquad \qquad r \qquad q$

q es el cociente y r el residuo de la división de a por b

Algoritmo de Euclides

Queremos calcular mcd(a, b). Como que el mcd no depende del signo podemos empezar suponiendo que $a \ge b > 0$. Para calcular el mcd usamos esta tabla de referencia:

q		q_1	q_2
r	$r_0 = a$	$r_1 = b$	r_2

Ejemplo: mcd(14001, 279) = mcd(279, 51) = mcd(51, 24) = mcd(24, 3) = 3

q		50	5	2		
r	14001	279	51	24	3	0

Identidad de Bézout

Dados a, b enteros cualesquiera, existen x, y enterps tales que mcd(a, b) = ax + by. Es básicamente otra de plasmar el apartado anterior.

Una forma sistemática de calcular esta identidad:

х	1	0	x_2	<i>x</i> ₃	 x_{n-1}	x_n	
у	0	1	y_2	y_3	 y_{n-1}	y_n	
q		q_1	q_2	q_3	 q_{n-1}		
r	$r_0 = a$	$r_1 = b$	r_2	r_3	 r_{n-1}	r_n	0

Aplicando el ejemplo anterior:

х	1	0	1	-5	11	
у	0	1	-50	251	-552	
q		50	5	2		
r	14001	279	51	24	3	0

$$3 = 14001(11) + 279(-552)$$

Notamos que: Las identidades de Bézout no son nunca únicas. Siempre podemos y restar múltiples de $\frac{ab}{mcd(a,b)}$: $ax + by = a\left(x + t\frac{b}{mcd(a,b)}\right) + b\left(y - t\frac{a}{mcd(a,b)}\right)$

Consecuencias de Bézout

Lema de Gauss Si $a \mid bc \mid mcd(a,b) = 1$ entonces $a \mid c$

Lema de Euclides Si p es primo y $p \mid bc$ entonces $p \mid b$ o $p \mid c$

Descomposición en factores primos

Unicidad de la descomposición en factores primos

Todo entero $n \ge 2$ tiene una descomposición única de la siguiente forma: $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$, dónde cada p_i es primo y cada $e_i > 0$.

Esto quiere decir que el k, los p_1, \dots, p_k y los e_1, \dots, e_k son los únicos (sin considerar la permutación).

Eiemplo: $84 = 2^2 \times 3^1 \times 7^1$ $90 = 2^1 \times 3^2 \times 5^1$

Descomposición en factores primos con signo y exponentes posiblemente nulos

Todo entero $n \neq 0$ tiene una descomposición de la siguiente forma: $n = \varepsilon p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$, dónde $\varepsilon = \pm 1$, cada p_i es primo y cada $e_i \geq 0$.

Notamos que: en esta última factorización tanto ε como los exponentes son únicos. Pero ni la k ni los p_1, \dots, p_k son únicos, ya que siempre podemos añadir un nuevo primo con exponente 0.

Por ejemplo:
$$-28 = (-1) \times 2^2 \times 7^1 = (-1) \times 2^2 \times 3^0 \times 5^0 \times 7^1 \times 11^0$$

Gracias a eso siempre podemos suponer que aparecen los mismos números primos en la misma factorización de distintos números.

Por ejemplo: $84 = 2^2 \times 3^1 \times 5^0 \times 7^1 \times 11^0, \qquad -90 = (-1) \times 2^1 \times 3^2 \times 5^1 \times 7^0 \times 11^0, \\ -264 = (-1) \times 2^3 \times 3^1 \times 5^0 \times 7^0 \times 11^1$

Cálculo del mcd a partir de la factorización y consecuencias

Divisibilidad y cálculo del mcd a partir de la factorización

Si expresamos $a = \varepsilon_1 p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ y $b = \varepsilon_2 p_1^{f_1} p_2^{f_2} \dots p_k^{f_k}$ con e_i , $f_i \ge 0$, $\varepsilon_i = \pm 1$ y cada p_i primo entonces tenemos:

- 1. $a \mid b \Leftrightarrow e_i \leq f_i$ por cada i
- 2. $mcd(a,b) = p_1^{\min(e_1,f_1)} p_2^{\min(e_2,f_2)} \dots p_k^{\min(e_k,f_k)}$
- 3. La fórmula del mcd también vale con 2 o más números cogiendo el mínimo de los distintos exponentes.
- 4. Los divisores positivos de a son todos los números de la forma $p_1^{g_1}p_2^{g_2}...p_k^{g_k}$ con $0 \le g_i \le e_i$
- 5. El número de divisores positivos de a es $(e_1 + 1)(e_2 + 1) \dots (e_k + 1)$

Ejemplo: $mcd(84, -90, -264) = 2^{1} \times 3^{1} \times 5^{0} \times 7^{0} \times 11^{0}$

Consecuencias de la factorización

- 1. Todo divisor común de a, b divide mcd(a, b). De hecho: $d \mid a \mid d \mid b \Leftrightarrow d \mid mcd(a, b)$
- 2. mcd(mcd(a, b), c) = mcd(a, mcd(b, c)) = mcd(a, b, c) (Asociatividad mcd)
- 3. mcd(ca, cb) = |c|mcd(a, b)
- 4. mcd(a/mcd(a, b), b/mcd(a, b)) = 1 (Si mcd(a b) no es nulo)
- 5. Todas las propiedades anteriores valen también con 3 o más enteros.

Nota: El cálculo eficiente de $mcd(a_1, a_2, ..., a_n)$ se puede hacer aplicando la asociatividad del mcd y en cada paso, calcular el mcd de dos números mediante el algoritmo de Euclides.

Ecuaciones diofánticas

Las ecuaciones diofánticas son ecuaciones a coeficientes enteros de los cuales buscamos soluciones enteras.

Ejemplo:
$$6x - 10y = 4$$

$$mcd(6x, -10) = 2$$
 $\frac{c}{mcd(a,b)} = \frac{4}{mcd(6,-10)} = 2$

x	1	0	1	-1	2	
y	0	1	0	1	-1	
q		0	1	1	2	
r	6	-10	-6	4	2	0

Resolución de ecuaciones diofánticas

- La ecuación diofántica ax + by = c tiene solución $\Leftrightarrow mcd(a, b) \mid c$
- Las soluciones particulares se obtienen multiplicando una identidad de Bézout de (a, b) por $\frac{c}{mcd(a, b)}$ en ambos lados.
- Si x_0 , y_0 es una solución particular de la ecuación anterior, todas las soluciones son de la forma: $x = x_0 + \frac{b}{mcd(a, b)}t$, $y = y_0 \frac{a}{mcd(a, b)}t$ para un cierto entero t.

Mínimo común múltiple

El mínimo común múltiple de los enteros a_1, a_2, \ldots, a_n es el más pequeño de todos los múltiples comunes positivos (> 0) de a_1, a_2, \ldots, a_n , si hay. Esto pasa cuando todos los a_i son $\neq 0$. Si alguno de los $a_i = 0$ el único múltiple común es 0. El mínimo común múltiple de los números enteros a_1, a_2, \ldots, a_n lo denotamos como $mcm(a_1, a_2, \ldots, a_n)$.

Definición:

- Si algún $a_i = 0$, $mcm(a_1, a_2, ..., a_n) = 0$
- Si todo $a_i \neq 0$, el $mcm(a_1, a_2, ..., a_n)$ es el único entero m que verifica las dos propiedades siguientes:
 - m > 0 y $a_i \mid m$ por cada i
 - Si m' > 0 y $a_i \mid m'$ por cada i entonces $m \le m'$

Propiedades:

- 1. Si $a \mid b$ entonces mcm(a, b) = |b|
- 2. El mcm no depende del signo: mcm(a, b) = mcm(a, -b) = mcm(-a, b) = mcm(-a, -b)

Cálculo del mcm a partir de la factorización y consecuencias

Cálculo del mcm a partir de la factorización

Si expresamos $a=\varepsilon_1p_1^{e_1}p_2^{e_2}\dots p_k^{e_k}$ y $b=\varepsilon_2p_1^{f_1}p_2^{f_2}\dots p_k^{f_k}$ con $e_i,\ f_i\geq 0,\ \varepsilon_i=\pm 1$ y cada p_i primo entonces tenemos:

$$mcm(a, b) = p_1^{\max(e_1, f_1)} p_2^{\max(e_2, f_2)} \dots p_k^{\max(e_k, f_k)}$$

Esta fórmula también vale con 3 o más números cogiendo el máximo de los distintos exponentes.

Ejemplo:
$$84 = 2^2 \times 3^1 \times 5^0 \times 7^1 \times 11^0, \qquad -90 = (-1) \times 2^1 \times 3^2 \times 5^1 \times 7^0 \times 11^0, \\ -264 = (-1) \times 2^3 \times 3^1 \times 5^0 \times 7^0 \times 11^1$$

$$mcm(84, -90, -264) = 2^3 \times 3^2 \times 5^1 \times 7^1 \times 11^1$$

Consecuencias:

- 1. Calculo eficiente del mcm: $mcd(a, b) \times mcm(a, b) = |ab| \Rightarrow mcm(a, b) = \frac{|ab|}{mcd(a,b)}$ (sólo con 2 números)
- 2. Todo múltiple común de a, b es múltiple de mcm(a, b). De hecho: $a \mid m$ i $b \mid m \Leftrightarrow mcm(a, b) \mid m$
- 3. mcm(mcm(a, b), c) = mcm(a, mcm(b, c)) = mcm(a, b, c) (Asociatividad mcm)
- 4. Todas las propiedades anteriores valen también con 3 o más enteros excepto la propiedad 1.

6. Congruencias

La relación binaria siguiente a $\mathbb Z$ recibe el nombre de congruencia. Hay una por cada $m \geq 1$. El nombre m recibe el nombre de módulo de la congruencia.

Definición:

```
Dada m \ge 1 a \equiv b \pmod{m} \qquad \Leftrightarrow \qquad m \mid b - a \Leftrightarrow \qquad b = a + km \text{ para una cierta } k \Leftrightarrow \qquad a \text{ i } b \text{ tienen el mismo residuo al dividir por } m
```

Cuando $a \equiv b \pmod{m}$ se dice que a es congruente con b módulo m

Ejemplos:

```
1. 7 \equiv 15 \pmod{4} 15 - 7 es múltiple de 4

2. 7 \not\equiv 12 \pmod{4} 12 - 7 no es múltiple de 4

3. a \equiv b \pmod{1} a = b \pmod{2} \Leftrightarrow a \text{ es } par

5. a \equiv 1 \pmod{2} \Leftrightarrow a \text{ es } impar

6. a \equiv b \pmod{2} \Leftrightarrow a \text{ i } b \text{ tiene la misma paridad}
```

Propiedad 1 La congruencia módulo m es una relación de equivalencia

Clases modulares

La clase de a por la relación de congruencia módulo m se denota por \bar{a} y el conjunto cociente se denota como \mathbb{Z}_m .

Ejemplo: m = 5. Como que hay 5 residuos posibles al dividir por 5, habrá cinco clases de módulo 5:

```
\begin{array}{ll} - & \overline{0} = \{x \in \mathbb{Z} : x \equiv 0 (mod \ 5)\} = \{5k : k \in \mathbb{Z}\} \\ - & \overline{1} = \{x \in \mathbb{Z} : x \equiv 1 (mod \ 5)\} = \{1 + 5k : k \in \mathbb{Z}\} \\ - & \overline{2} = \{x \in \mathbb{Z} : x \equiv 2 (mod \ 5)\} = \{2 + 5k : k \in \mathbb{Z}\} \\ - & \overline{3} = \{x \in \mathbb{Z} : x \equiv 3 (mod \ 5)\} = \{3 + 5k : k \in \mathbb{Z}\} \\ - & \overline{4} = \{x \in \mathbb{Z} : x \equiv 4 (mod \ 5)\} = \{4 + 5k : k \in \mathbb{Z}\} \end{array} El conjunto cociente es entonces: \mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}
```

Hechos:

```
- A \mathbb{Z}_m: \bar{a} = \{x \in \mathbb{Z} : x \equiv a \pmod{m}\} = \{a + mk : k \in \mathbb{Z}\}
- \bar{a} = \bar{b} a \mathbb{Z}_m \Leftrightarrow a \equiv b \pmod{m} Tienen la misma clase si y sólo si son congruentes
- \mathbb{Z}_m = \{\bar{0}, \bar{1}, \bar{2}, ..., \overline{m-1}\}
```

```
Propiedad 2 \begin{vmatrix} a \equiv a' \pmod{m} \\ b \equiv b' \pmod{m} \end{vmatrix} \Rightarrow \begin{vmatrix} a+b \equiv a'+b' \pmod{m} \\ ab \equiv a'b' \pmod{m} \end{vmatrix}
```

Ejemplo 1: Calcular el residuo de dividir 58×79 módulo 11

```
\begin{vmatrix} \mathbf{5}8 \equiv 3 \pmod{11} \\ \mathbf{7}9 \equiv 2 \pmod{11} \end{vmatrix} \Rightarrow 58 \times 79 \equiv 3 \times 2 \pmod{11} \Rightarrow 58 \times 79 \equiv 3 \times 2 = 6
```

Ejemplo 2: Calcular las últimas cifras de 21 000 000 a mano

Trabajaremos con módulo 100. Empezamos calculando los residuos de las primeras potencias de 2:

$$2^{2} = 4, \qquad 2^{3} = 8, \qquad 2^{4} = 16, \qquad 2^{5} = 32, \qquad 2^{6} = 64,$$

$$2^{7} = 128 \equiv 28 (mod\ 100), \qquad \qquad 2^{8} = 2 \times 2^{7} \equiv 2 \times 28 \equiv 56 (mod\ 100),$$

$$2^{9} = 2 \times 2^{8} \equiv 2 \times 56 \equiv 112 \equiv 12 (mod\ 100),$$

$$2^{10} = 2 \times 2^{9} \equiv 2 \times 12 \equiv 24 (mod\ 100),$$

$$2^{12} = 2 \times 2^{10} \equiv 2 \times 24 \equiv 48 \equiv 48 (mod\ 100),$$

$$2^{12} = 2 \times 2^{11} \equiv 2 \times 48 \equiv 96 \equiv -4 (mod\ 100),$$

$$2^{13} = 2 \times 2^{12} \equiv 2 \times (-4) \equiv -8 (mod\ 100),$$

$$2^{21} \equiv -48 (mod\ 100),$$

$$2^{21} \equiv -48 (mod\ 100),$$

$$2^{21} \equiv 4 (mod\ 100),$$

$$2^{21} \equiv 4 (mod\ 100),$$

$$2^{21} \equiv 4 (mod\ 100),$$

$$2^{21} \equiv 2 \times 2^{20} = 2^{20}$$

Otras propiedades de las congruencias

Por lo tanto, las últimas dos cifras de 2^{1 000 000} son 76.

- 1. Si $a \equiv b \pmod{m}$ y $d \mid m$ entonces $a \equiv b \pmod{d}$ (Se puede reducir el módulo)
- 2. Si k > 0 entonces $ka \equiv kb \pmod{km} \Leftrightarrow a \equiv b \pmod{m}$ (Simplificación)
- 3. Si mcd(k, m) = 1 entonces: $a \equiv b \pmod{m}$ \Leftrightarrow $ka \equiv kb \pmod{m}$

Aritmética modular

Podemos definir una aritmética (operaciones de suma y producto) al conjunto \mathbb{Z}_m de la siguiente manera:

- $\quad \bar{a} + \bar{b} = \overline{a+b}$
- $\bar{a} \times \bar{b} = \overline{a \times b}$

Esto está bien definido gracias a la propiedad 2 de las congruencias. Esta propiedad nos dice que: "el resultado no depende del representante". Expresada en términos de clase:

$$\begin{vmatrix} \overline{a} = \overline{a'} \\ \overline{b} = \overline{b'} \end{vmatrix} \Rightarrow \begin{vmatrix} \overline{a+b} \equiv \overline{a'+b'} \\ \overline{ab} \equiv \overline{a'b'} \end{vmatrix}$$

Con estas operaciones es fácil ver que \mathbb{Z}_m es un anillo. El neutro de la suma es $\bar{0}$, el neutro del producto es $\bar{1}$ y el inverso por la suma de \bar{a} es $\overline{-a}$.

La propiedad 2 que acabamos de mencionar dice que el resultado nos permite "escoger el representante" que más nos convenga. Siempre es mejor "reducir" antes de operar

Por ejemplo: \mathbb{Z}_{3000} : $\overline{2990} \ \overline{2995} = \overline{(-10)} \ \overline{(-5)} = \overline{50}$

Ejemplo: Tabla de la suma de \mathbb{Z}_5 :

+	ō	1	2	3	4
ō	$\overline{0}$	1	2	3	<u>4</u>
Ī	Ī	2	3	4	ō
<u>2</u>	2	3	<u>4</u>	ō	Ī
3	3	4	ō	Ī	2
$\bar{4}$	4	ō	1	2	3

Ejemplo: Tabla del producto de \mathbb{Z}_5 :

×	$\overline{0}$	ī	2	3	4
$\bar{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	ō
Ī	$\overline{0}$	Ī	2	3	4
2	ō	2	4	Ī	3
3	ō	3	Ī	4	2
$\bar{4}$	ō	4	3	2	Ī

Observamos que tanto $\bar{1}$, $\bar{2}$, $\bar{3}$ como $\bar{4}$ tienen el inverso respecto al producto. Es decir, todo elemento no nulo tiene inverso. Cuando esto pasa decimos que el anillo es un **cuerpo**. Así que \mathbb{Z}_5 es cuerpo.

Ejemplo: Tabla del producto de \mathbb{Z}_6 :

×	Ō	Ī	2	3	<u>4</u>	5
ō	$\overline{0}$	ō	ō	ō	ō	$\overline{0}$
Ī	ō	Ī	2	3	4	5
2	ō	2	4	ō	2	4
3	ō	3	ō	3	ō	3
4	ō	4	2	ō	4	2
5	ō	5	4	3	2	Ī

Ahora observamos que las únicas clases que tienen inversa son $\bar{1}$ y $\bar{5}$.

Inversa modular

Buscar una inversa de \bar{a} a \mathbb{Z}_m es buscar un entero x tal que $\bar{a} \times \bar{x} = \bar{1}$. O de manera equivalente, un entero x tal que $ax \equiv 1 \pmod{m}$. Esto último quiere decir que 1 = ax + my para un cierto y entero. Todo junto nos dice que \bar{a} tiene inverso a $\mathbb{Z}_m \Leftrightarrow$ la ecuación diofántica ax + my = 1 tiene solución. Pero esto pasa si y sólo si mcd(a, m) = 1. Observamos que el inverso se encuentra a partir de una identidad de Bézout por m, a

Acabamos de demostrar que:

Existencia de inversos modulares \bar{a} tiene inverso a $\mathbb{Z}_m \iff mcd(a, m) = 1$

Ejemplo: Encontrar el inverso modular de $\overline{227}$ a \mathbb{Z}_{2292}

у	0	1	-10	101	-313
q		10	10	3	
r	2292	227	22	7	1

Nota: (Observamos que el valor de x no importa)

Por lo tanto, el inverso de $\overline{227}$ a \mathbb{Z}_{2292} es $\overline{-313} = \overline{1979}$, esto se puede escribir así: $\overline{227}^{-1} = \overline{1979}$

Un cuerpo es anillo cuando, a excepción del 0 (el neutro de la suma), todo elemento es invertible respecto la multiplicación.

Cuando \mathbb{Z}_m **es cuerpo** \mathbb{Z}_m es un cuerpo \Leftrightarrow m es primo

Sistemas de congruencias

Si tenemos un sistema de dos congruencias: $x \equiv a_1 \pmod{m_1}$, $x \equiv a_2 \pmod{m_2}$, y x es una solución entonces $x = a_1 + m_1 y = a_2 + m_2 z$ para unos ciertos y, z enteros. Por lo tanto, $m_1 y - m_2 z = a_2 - a_1$ tiene solución mediante un sistema chino de dos congruencias si y sólo si $mcd(m_1, m_2) \mid a_2 - a_1$.

En caso de tener todas las soluciones son de la forma: $x = a_1 + m_1 y = a_1 + m_1 \left(y_0 + \frac{m_2}{mcd(m_1, m_2)} t \right) = a_1 + m_1 y_0 + \frac{m_1 m_2}{mcd(m_1, m_2)} t = x_0 + mcm(m_1, m_2)t$ dónde x_0 es una solución particular del sistema. Es decir, si el sistema tiene solución, todas las soluciones son de la forma:

$$x \equiv x_0 \big(mod \ mcm(m_1, m_2) \big)$$

Última propiedad de las congurencias

$$a \equiv b \pmod{m_1}, \dots, a \equiv b \pmod{m_n} \Leftrightarrow a \equiv b \pmod{m_1, \dots, m_n}$$

Ejemplo: Consideramos el sistema: $x \equiv 0 \pmod{3}$, $x \equiv 1 \pmod{4}$, $x \equiv 2 \pmod{5}$

Como que:
$$-3 \equiv 0 \pmod{3}$$
, $-3 \equiv 1 \pmod{4}$, $-3 \equiv 2 \pmod{5}$

Por transitividad el sistema se puede reescribir: $x \equiv -3 \pmod{3}$, $x \equiv -3 \pmod{4}$, $x \equiv -3 \pmod{5}$

Aplicando la propiedad anterior resulta que esto es equivalente a: $x \equiv -3 \pmod{mcm(3, 4, 5)}$

Por lo tanto, todas las soluciones al sistema son: x = -3 + 60t, t entero

El teorema pequeño de Fermat

Si p es primo y no divide a entonces $a^{p-1} \equiv 1 \pmod{p}$

Esto se puede expresar en clases a \mathbb{Z}_n de la siguiente manera:

Si p es primo y a es invertible entonces $\overline{a^{p-1}} = \overline{1}$

Ejemplo: Calculamos el residuo de 43³²²¹ módulo 13.

Primero reducimos la base: $43^{3221} \equiv 4^{3221} \pmod{13}$

Como que 4 es primo con 13, por Fermat tenemos que $4^{12} \equiv 1 \pmod{13}$. Como que cada 12 factores "desaparecen", agruparemos los factores en paquetes de 12: haremos la división Euclidiana de 3221 por 12 y obtenemos que $3221 = 268 \times 12 + 5$. Por lo tanto:

$$4^{3221} \equiv 4^{268 \times 12 + 5} \equiv (4^{12})^{268} 4^5 \equiv 1^{268} 4^5 \equiv 4^5 \equiv 10 \pmod{13}$$

Observación Si
$$n, m \ge 1$$
 i $n \equiv m (mod(p-1))$ \Rightarrow $a^n \equiv a^m (mod p)$

Ejemplo: Calculamos el residuo de 4³¹⁴¹ módulo 137 reduciendo a Fermat

Como que $3141 \equiv 13 \pmod{136}$ tenemos que: $4^{3141} \equiv 4^{13} \equiv 67108864 \equiv 99 \pmod{137}$