Příklad

Consider the problem $-\Delta u + \ln u = f$ in Ω , $u = u_d$ on $\partial \Omega$, where $f \in L^2(\Omega)$ is non-negative, and $u_d \in W^{1,2}(\Omega)$ fulfills $u_d \ge \varepsilon > 0$ almost everywhere in Ω .

GOAL 1: Show that there exists unique positive $u \in W^{1,2}(\Omega)$ solving the problem.

Řešení (Definice slabého řešení)

Slabé řešení bude taková funkce $u \in W^{1,2}(\Omega)$, že $u-u_d \in W^{1,2}_0(\Omega)$, u>0 skoro všude, $\int_{\Omega} \ln u > -\infty$ a pro všechna $\varphi \in W^{1,2}_0(\Omega) \cap L^{\infty}(\Omega)$ platí

$$\int \nabla u \nabla \varphi + \int_{\Omega} \varphi \ln u = \int_{\Omega} f \varphi.$$

Důkaz (Jednoznačnost)

Mějme dvě slabá řešení u, v a definujme $w := u - v = (u - u_d) - (v - u_d) \in W_0^{1,2}$. Z definice slabého řešení dosazením $\varphi = w \cdot \min(K/|w|, 1)$ (tj. například z předmětu Derivace a integrál pro pokročilé 1 máme $\nabla \varphi = \chi_{|u-v| \leq K} \nabla (u-v)$) dostaneme

$$\int_{|u-v|\leqslant K}\nabla(u-v)\cdot\nabla(u-v)+\int_{\Omega}(u-v)\cdot(\ln u-\ln v)\cdot\min(K/|w|,1)=\int_{\Omega}f\cdot\ldots-f\cdot\ldots=0.$$

Protože ln je rostoucí funkce, tak $u-v<0 \Leftrightarrow \ln u - \ln v<0$. Tedy druhý člen je kladný a tak $\|\nabla w\|_{L^2(|u-v|\leqslant K)}^2 \leqslant 0$. Limitním přechodem $\|\nabla w\|_2^2 \leqslant 0$. Z Poincarého nerovnosti (jelikož w=0 na $\partial\Omega$) dostáváme, že $c\cdot \|w\|_{1,2}^2 \leqslant \|\nabla w\|_2^2 \leqslant 1$, tj. w=0 a u=v.

Důkaz (Existence řešení aproximace)

Problém budeme pro $n \in \mathbb{N}$ (možná $\frac{1}{n} < \varepsilon$) aproximovat problémem

$$-\Delta u + \ln\left(\max\left(\frac{1}{n}, u\right)\right) = f \vee \Omega, \qquad u = u_d \text{ na } \partial\Omega.$$

Definujeme operátor $M: L^2(\Omega) \to L^2(\Omega)$, který v přiřadí (z minulého semestru víme, že existuje právě jedno) slabé řešení u problému (upravíme předchozí rovnici a místo u dosadíme $u' = u - u_d$)

$$-\Delta u = f - \ln\left(\max\left(\frac{1}{n}, v + u_d\right)\right) + \Delta u_d \vee \Omega, \qquad u = 0 \text{ na } \partial\Omega.$$

M je kompaktní, neboť zobrazuje do $W_0^{1,2} \hookrightarrow W_0^{1,2} \hookrightarrow L^2$. Z předchozího semestru a spojitosti Nemytskiieho operátoru (*) je M spojitý.

*:
$$\ln \frac{1}{n} \le \ln \left(\max \left(\frac{1}{n}, v + u_d \right) \right) \stackrel{\text{konvexita}}{\le} \frac{\ln(2|v|) + \ln(2u_d)}{2} \le \alpha \cdot v^{\beta} + c(\alpha, \beta) + \frac{\ln(2u_d)}{2},$$

$$\|\ln(\max(\ldots))\|_2^2 \leqslant \|\ln\frac{1}{n}\|_2^2 + \|\alpha \cdot v + c(\alpha) + \frac{\ln 2u_d}{2}\|_2^2 \leqslant \alpha' \cdot \|v\|_2^2 + \operatorname{konst}(\alpha').$$

Nyní potřebujeme, že M zobrazuje nějakou konvexní omezenou (uzavřenou) množinu do ní samotné, nejjednodušeji kouli, tudíž budeme chtít odhadnout normu u. Jelikož $u \in W_0^{1,2}(\Omega)$, tak ho můžeme použít jako φ ve slabé formulaci lineárního problému:

$$\|\nabla u\|_2^2 = \int_{\Omega} |\nabla u|^2 \leqslant \int_{\Omega} |f| \cdot |u| + \int_{\Omega} |\ln \ldots| \cdot |u| + \langle \Delta u_d, u \rangle_{(W_0^{1,2}(\Omega))^*} \stackrel{\text{Young}}{\leqslant}$$

$$\leq \varepsilon \cdot ||u||_2^2 + c(\varepsilon) \cdot (||f||_2^2 + ||\ln \dots ||_2^2 + ||\Delta u_d||_{(W_0^{1,2}(\Omega))^*}) \implies$$

$$||u||_{1,2}^2 \leqslant c \cdot (||f||_2^2 + ||\ln \dots ||_2^2 + ||\Delta u_d||_{(W_0^{1,2}(\Omega))^*}) \leqslant c_2(\delta) (||f||_2^2 + ||\Delta u_d||_{(W_0^{1,2}(\Omega))^*} + 1) + \delta \cdot ||w||_2^2.$$

Pro $\delta = \frac{1}{2}$ a $\|w\|_2 \leqslant R^2 := 2c_2(\frac{1}{2})(\|f\|_2^2 + \|\Delta u_d\|_{(W_0^{1,2}(\Omega))^*} + 1)$ je $\|u\|_2^2 \leqslant \|u\|_{1,2}^2 \leqslant R^2$. Tedy $M(B_R) \subseteq B_R$, a tudíž podle Schauderovy věty o pevném bodu existuje u'_n takové, že $M(u'_n) = u'_n$, tedy že $u_n := u'_n + u_d$ řeší naši aproximaci problému.

Důkaz (Existence)

Z předchozího důkazu (existence řešení aproximace) tedy máme existenci u_n . Potřebujeme uniformní odhad a pro něj nás zajímá, kdy je $(\ln \ldots) \cdot u'_n$ záporné. Pokud jsou oba členy nezáporné nebo oba nekladné, pak je vše v pořádku, označme tuto množinu U. Pokud u'_n je záporné, pak $0 < \ln \ldots \le u_d$. Pokud $\ln \ldots$ je záporné, pak $|\ln \ldots| \le |\ln(\varepsilon)|$ (protože $u'_n + u_d > \varepsilon$). Nyní už (dosadíme u'_n do n-té lineární aproximace):

$$\|\nabla u'_n\|_2^2 + \int_U \ln \ldots \cdot u'_n \leqslant \int_{\Omega} |f| \cdot |u'_n| + \langle \Delta u_d, u'_n \rangle_{(W_0^{1,2}(\Omega))^*} +$$

$$+ \int_{\{u'_n \leqslant 0\} \setminus U} |u_d| \cdot |u'_n| + \int_{\{u'_n > \} \setminus U} |\ln \varepsilon| \cdot |u'_n| \leqslant$$

$$\leqslant \|f\|_2^2 + \|u_d\|_2^2 + \|\Delta u_d\|_{(W_0^{1,2}(\Omega))^*} + \|\ln \varepsilon\|_2^2 + (1+1+1) \cdot \|u'_n\|_2^2 \Longrightarrow$$

$$\Longrightarrow \|u'_n\|_{1,2}^2 \leqslant c \cdot (1+\|f\|_2^2).$$

To znamená, že z kompaktnosti existuje konvergující podposloupnost $u_k' \rightharpoonup u'$ v $W_0^{1,2}(\Omega)$, a tedy i $u_k' \rightarrow u'$ v $L^2(\Omega)$ a $u_k' \rightarrow u'$. Označme $u := u' + u_d$.

Nyní si můžeme uvědomit, že pokud ln... je kladné, pak ho lze odhadnout u'_n a na to už máme uniformní odhad. Pokud je záporné, ale u'_n je větší než $-\varepsilon/2$, pak ln... je stále větší než $\ln \varepsilon/2$ (protože u_d je alespoň ε). Na zbylé množině V už umíme odhadnout

$$\left| \int_{V} \ln \ldots u'_n \right| \leq \|\nabla u'_n\|_2^2 + \int_{\Omega} |f| \cdot |u'_n| + \langle \Delta u_d, u'_n \rangle_{(W_0^{1,2}(\Omega))^*} + \int_{\Omega \setminus V} \ln \ldots u'_n.$$

A vše na pravé straně už máme uniformně odhadnuté. Tedy

$$\int_{\Omega} \ln u \stackrel{\text{Fatou}}{=} \liminf_{k \to \infty} \int_{\Omega} \ln(\min(\frac{1}{k}, u_k)) = \liminf_{k \to \infty} \int_{\Omega} \ln(\min(\frac{1}{k}, u_k' + u_d)) \geqslant$$

$$\geqslant \dots + \int_{V} \ln \dots \cdot u_n' \cdot \frac{2}{\varepsilon} > -\infty.$$

Tím máme splněnou první podmínku, aby u bylo řešení $(u-u_d=u'\in W_0^{1,2}(\Omega)$ a $u\in W^{1,2}(\Omega)$ z definice). Druhá podmínka je, že musí pro všechna $\varphi\in W_0^{1,2}(\Omega)\cap L^\infty(\Omega)$ splňovat

$$\int \nabla u \nabla \varphi + \int_{\Omega} \varphi \ln u = \int_{\Omega} f \varphi.$$

První člen je zřejmě limitou $\int \nabla u_n \nabla \varphi$. Pravá strana je pořád stejná. Jediné, co zbývá, je $\int_{\Omega} \varphi \ln u \leftarrow \int_{\Omega} \varphi \ln \max(\frac{1}{n}, u_n)$. K tomu použijeme Vitaliovu větu o konvergenci, která říká přesně tohle. Potřebujeme tedy ověřit, zda je $\ln \ldots$ uniformě stejnoměrně integrovatelná:

$$\int_{C} |\ln(\max(\frac{1}{n}, u_n))| \cdot |\varphi| \leq ||\varphi||_{\infty} \cdot \int_{C} |\ln(\max(\frac{1}{n}, u_n))| \leq C \cdot \int_{C} |\ln(\max(\frac{1}{n}, u_n))| \leq \dots$$