최대 파고 예측에서의 Permutation Importance 분석: 제주도 지귀도 데이터 사례 연구

홍건우, 최길한, 유광운, 이나경, 김용강* 국립공주대학교

redgil77@smail.kongju.ac.kr, choikilhan12@smail.kongju.ac.kr, yugwangun@smail.kongju.ac.kr, dlskrud468@smail.kongju.ac.kr, *ygkim@smail.kongju.ac.kr

Permutation Importance Analysis in Maximum Wave Height Prediction: A Case Study of Jiguido, Jeju Island

Geonwoo Hong, Gilhan Choi, Gwangun Yu, Nakyeong Lee, Yonggang Kim* Kongju National University

요 약

본 연구는 지귀도 등표기상관측 데이터를 활용하여 Long Short-Term Memory(LSTM) 모델로 최대 파고를 예측하고, Permutation Importance 를 통해 특성 중요도를 분석하였다. 결과적으로, 최대 파고와 유의 파고가 예측에 중요한 요소임을 확인하였으며, 이는 해양 예측모델의 정확도 향상에 기여할 것으로 기대된다.

I. 서론

기후 변화와 자연 재해의 빈도 증가로 인해 정확한 해양 예측이 점점 더 중요해지고 있다. 정확한 예측을 위해서는 예측에 영향이 많아가는 feature 를 선정하는 것이 중요한데 등표기상관측으로 측정된 데이터를 활용해서 어떤 feature 가 예측에 도움이 되고 어떤 feature 는 도움이 되지 않는지를 연구하려고 한다. 더 나아가서는 최대 파고 예측은 해양 및 항해 활동의 안전을 보장하는 데 중요한 역할을 한다. 본 연구는 지귀도에서 등표기상관측으로 측정된 데이터를 활용하여 파고를 예측하고, Long Short-Term Memory(LSTM) 모델을 이용해 각 특성의 중요도를 평가함으로써 파고 예측에 가장 영향력 있는 변수를 식별하는 것을 목표로 한다.

Ⅱ. 모델 구축

본 연구에서 사용된 데이터는 제주도 지귀도에 위치한 등표기상관측소에서 2004년 1월 1일부터 2015년 12월 31 일까지 수집된 대략 11 만 개의 데이터로, 13 개의 기상 및 해양 관련 특성으로 구성된다. 자세한 13 개의 feature 들은 Table 1 를 보면 알 수 있다. 이렇게 수집된 데이터는 결측치 제거 후 표준화 과정을 거쳐 모델 학습에 적합한 형태로 변환되었다. LSTM 신경망 모델을 구축하여 시계열 데이터의 패턴을 학습하고, 이를 바탕으로 최대 파고를 예측하였다. Adam 최적화 알고리즘을 사용하였으며[1], Adam 최적화 알고리즘은 각 파라미터의 기울기의 대한 첫번째 모멘트와 두번째 모멘트를 추정하여 업데이트 하는 방식이다. α 는 학습률, β_1 은 모멘텀 지수 β_2 는 RMSProp 지수, ϵ 은 수치적 안정성을 위한 변수, m_t 는 모멘텀 모멘트, v_t 는 RMSProp 모멘트를, t 시간을 나타낸다. Adam 최적화가 이루어지는 과정은 다음과 같다.

Index	Input Feature
0	Wind Speed
1	Wind Direction
2	Maximum Gust Direction
3	Maximum Gust Speed
4	Sea Level Pressure
5	Temperature
6	Minimum Daily Temperature
7	Maximum Daily Temperature
8	Water Temperature
9	Maximum Wave Height
10	Significant Wave Height
11	Wave Period
12	Water Level

Table 1. Feature Index

$$\begin{split} & m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t & (1) \\ & v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 & (2) \\ & \check{m}_t = \frac{m_t}{1 - \beta_1^t}, \ \check{v}_t = \frac{v_t}{1 - \beta_2^t} & (3) \\ & \theta_{t+1} = \theta_t - \frac{\alpha \check{m}_t}{\sqrt{\check{v}_t + \epsilon}} & (4) \end{split}$$

Algorithm of Adam

(1) 에서는 기울기의 지수의 이동평균을 구하고 (2) 에서는 기울기의 제곱에 대한 지수 이동 평균을 구한다. 그후 (3)에서 바이어스 보정을 한 뒤 (4) 최종적으로 파라미터를 업데이트을 한다. 그리고 과적합을 방지하기 위한 Early Stopping 기법이 적용되었다[2]. Early Stopping 기법은 매 epoch 마다 검증 데이터에 대한 loss 를 측정하고 훈련 데이터에 대한 loss 는 감소하나 검증 데이터의 대한 loss 가 증가하는 시점에서 학습을 멈추도록 조정하는 방식이다.

Ⅲ. 특성 중요도 분석

훈련된 모델을 바탕으로 Permutation Importance 방법을 사용하여 각 특성의 중요도를 계산하였다.[3] 이 방법은 모델의 예측 성능에 각 특성이 얼마나 기여하는지를 정량적으로 평가하여, 중요도가 높은 특성을 식별할 수 있게 한다. Permutation Importance 방법을 적용시키기 위해서는 훈련된 모델 f, feature matrix x, 타겟 변수 y 그리고 error 측정 기준 L(y,f(x)) 가 필요하다. 여기서 측정기준은 MSE 방식을 이용했다. 알고리즘은 아래의 순서로 진행된다.

$$e_{orig} = L(y, f(x)) \tag{1}$$

$$e_{perm} = L\left(y, f\left(x_{perm}\right)\right) \tag{2}$$

$$FI_j = \frac{e_{perm}}{e_{orig}} \tag{3_1}$$

$$FI_{j} = e_{perm} - e_{orig} \tag{3.2}$$

Algorithm of Permutation Importance

 e_{orig} 는 원래 모델의 예측 오차를, e_{perm} 은 변형된 데이터의 예측 오차를, FI_j 는 특성의 importance 를 나타낸다 이때 j 는 평가하고자 하는 특성의 인덱스를 나타낸다. (3_1) 는 비율로서 나타내는 방식이고 (3_2) 는 차이로 나타내는 방식이다.

그림 1 특성 인덱스별 중요도

그림 1 을 보면 중요도가 가장 높은 특성은 최대 파고(feature index 9)로, 전체 중요도의 약 64.13%를 차지하며, 이는 최대 파고 예측에 가장 큰 영향을 미치는 요소이다. 뒤를 이어 유의 파고(feature index 10)는 약 30.77%의 중요도로 두 번째로 큰 영향을 미치는 것으로 나타났다. 이외의 특성들은 상대적으로 낮은 중요도를 보이며, 특히 수온은 중요도가 0 으로 나타나 최대 파고 예측에 있어 영향력이 없음을 보여준다.

Ⅳ. 결론

이 연구는 제주도 지귀도에서 수집된 데이터를 사용하여 LSTM 모델로 최대 파고를 예측하고, 각 특성의 중요도를 분석하였다. 특성 중요도 결과에 따르면, 최대 파고와 유의 파고가 예측에 크게 기여하는 주요 요소로 확인되었다. 이러한 발견은 해양 예측 모델의 정확성을 과 불필요한 학습을 줄일 수 있어서 예측 모델을 보다 빠르고 정확하게 학습시킬 수 있다. 이 연구는 기후 변화에 따른 해양 환경 예측의 효율성을 높이는 데 기여할 수 있을 것이다. 지금까지의 전체 흐름을 의사코드와 그림으로 나타내면 다음과 같다

그림 2 전체 흐름도

```
| Algorithm 1 LSTM 모델을 이용한 테이터 분석 및 Permutation Importance 계산 | 일찍: 테이터 파일 (2005-2018.csv) | 2. 출핵: 모델 평가 및 특징 중요도 | 3. 1 테이터 불리오기 및 전치리 | 4. - 테이터 불리오기 및 전치리 | 4. - 테이터 파일을 불러와 테이터프레임으로 변환 후 비어있는 값 제거 5. - 훈련 및 테스트 테이터 분할 및 테이트 테이터 문항 및 테이트 테이터 문항 및 테이트 HOTOSET (data, seq.len, pred.days, target.index) | 6. 2. 테이터를 생성 | 7. function CREATE DATASET (data, seq.len, pred.days, target.index) | 8. - 한 X. Y. 리스트 생성 | 9. | for 각 사원스에 대해 do | 10. - X에 사원스 추가 및 Y에 타깃 값 추가 | 11: end for | 12: return X, Y | 13: end function | 14: - 훈련 및 테스트 데이터셋 생성 | 15: 3. LSTM 모델 구성 및 훈련 | 16: 모델 구성 (LSTM 테이어) + Dense 레이어) | 17: - Adam 용티마이저: | 18: mo ← 0 | 19: to ← 0 | 1
```

ACKNOWLEDGMENT

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. RS-2022-00166739).

참 고 문 헌

- [1] NEWEY, Whitney K. Adaptive estimation of regression models via moment restrictions. Journal of Econometrics, 1988, 38.3: 301-339.
- [2] YING, Xue. An overview of overfitting and its solutions. In: Journal of physics: Conference series. IOP Publishing, 2019. p. 022022.
- [3] BREIMAN, Leo. Random forests. Machine learning, 2001, 45: 5-32.