TD: Conditions de Karush-Kuhn-Tucker

1 Application du théorème KKT

Théorème 1. Soit $J \in C^1(\mathbb{R}^d)$ convexe, $c_i(x) = \langle a_i | x \rangle - b_i$ pour $1 \leq i \leq k$ et soit

$$K = \{x \in \mathbb{R}^d \mid \forall i \in \{1, \dots, k\}, \ c_i(x) \le 0.\}$$

Alors.

$$x^* \in \arg\min_{K} J \iff \exists \lambda \in \mathbb{R}^k, \begin{cases} -\nabla J(x^*) = \sum_{1 \leq i \leq k} \lambda_i \nabla c_i(x^*) & (\textit{\'equilibre}) \\ \forall 1 \leq i \leq k, c_i(x^*) \leq 0 & (\textit{admissibilit\'e de } x) \\ \forall 1 \leq i \leq k, \lambda_i \geq 0 & (\textit{admissibilit\'e de } \lambda) \\ \forall 1 \leq i \leq k, \lambda_i c_i(x^*) = 0 & (\textit{compl\'ementarit\'e}) \end{cases}$$
(1)

Q1. On considère le problème suivant en dimension d=2, avec k=2 contraintes:

$$\begin{cases} J(x) = (x_1 - 2)^2 + 2(x_2 - 1)^2 \\ c_1(x) = x_1 + 4x_2 - 3 \\ c_2(x) = -x_1 + x_2 \end{cases}$$

- 1. En utilisant le théorème 1, écrire le système d'équation et d'inéquations devant être vérifié par $x^* \in \mathbb{R}^2$, $\lambda \in \mathbb{R}^2$ pour garantir l'optimalité de $x^* \in \arg\min_K J$.
- 2. Trouver toutes les solutions de ce système. Pour cela, on distinguera les cas:

$$(\lambda_1 = 0, \lambda_2 = 0), (\lambda_1 > 0, \lambda_2 = 0), (\lambda_1 = 0, \lambda_2 > 0), (\lambda_1 > 0, \lambda_2 > 0).$$

En déduire la valeur de x^* .

- **Q2**. Dans la suite, pour tout vecteur $x \in \mathbb{R}^d$ on notera $x \geq 0$ ssi $\forall i, x_i \geq 0$, et $x \geq y$ si $x y \geq 0$. On se place dans les conditions du théorème 1 et on note A la matrice dont les lignes sont a_1, \ldots, a_k et b le vecteur colonne (b_1, \ldots, b_k) .
 - 1. Montrer que $K = \{x \in \mathbb{R}^d \mid Ax \leq b\}$.
 - 2. Montrer que le théorème KKT peut se reformuler par

$$x^* \in \arg\min_{K} J \iff \exists \lambda \in \mathbb{R}^k, \quad \begin{cases} -\nabla J(x^*) = A^T \lambda \\ Ax \le b \\ \lambda \ge 0 \\ \forall 1 \le i \le k, \lambda_i (\langle a_i | x^* \rangle - b_i) = 0 \end{cases}$$
 (2)

Q3. On considère $K = \{x \in \mathbb{R}^d \mid Ax \leq b \text{ et } Ex = f\}$ où $A \in \mathcal{M}_{k,d}(\mathbb{R}), E \in \mathcal{M}_{\ell,d}(\mathbb{R})$. Montrer que le théorème KKT peut se reformuler par

$$x^* \in \arg\min_{K} J \iff \exists (\lambda, \mu) \in \mathbb{R}^k \times \mathbb{R}^\ell, \quad \begin{cases} -\nabla J(x^*) = A^T \lambda + E^T \mu \\ Ax \le b \text{ et } Ex = f \\ \lambda \ge 0 \\ \forall 1 \le i \le k, \lambda_i (\langle a_i | x^* \rangle - b_i) = 0 \end{cases}$$
(3)

2 Démonstration du théorème KKT pour une unique contrainte

Soit $c: \mathbb{R}^d \to \mathbb{R}$ une fonction convexe de classe C^1 et $K = \{x \in \mathbb{R}^d \mid c(x) \leq 0\}$. L'objectif de ce problème est de montrer que

$$x^* \in \arg\min_{K} J \iff \exists \lambda \in \mathbb{R}, \quad \begin{cases} c(x^*) \le 0 \\ \lambda \ge 0 \\ \lambda c(x^*) = 0 \\ -\nabla J(x^*) = \lambda \nabla c(x^*) \end{cases}$$
(4)

- **Q1**. Montrons l'implication \Leftarrow de (4).
 - 1. Montrer que l'implication est vraie si $\lambda = 0$.
 - 2. On suppose $\lambda > 0$, i.e. $c(x^*) = 0$. Montrer que pour tout $x \in K$,

$$J(x) \ge J(x^*) + \langle \nabla J(x^*) | x - x^* \rangle$$
$$0 \ge c(x) - c(x^*) \ge \langle \nabla c(x^*) | x - x^* \rangle.$$

3. Conclure que $\forall x \in K, J(x) \geq J(x^*)$, soit $x^* \in \arg\min_K J$.

On suppose maintenant que c vérifie l'hypothèse suivante, appelée condition de qualification:

$$\forall x \in \mathbb{R}^d, c(x) = 0 \Longrightarrow \nabla c(x) \neq 0, \tag{5}$$

et on considère les deux problèmes d'optimisation, où J est une fonction strictement convexe de classe \mathcal{C}^1 vérifiant $\lim_{\|x\|\to+\infty} J(x)=+\infty$:

$$P: \min_{x \in K} J(x) \qquad P_{\varepsilon}: \min_{x \in \mathbb{R}^d} J_{\varepsilon}(x) \text{ où } J_{\varepsilon}(x) = J(x) + \frac{1}{\varepsilon} \max(c(x), 0)^2, \tag{6}$$

- **Q2**. Montrer que la condition (5) est vérifiée pour $c(x) = ||x||^2 1$. Quel est l'ensemble K?
- Q3. Justifier l'existence et l'unicité du minimiseur x^* (resp. x^*_{ε}) pour le problème P (resp. P_{ε}).
- ${f Q4}.$ Montrer que $x_{arepsilon}^*$ vérifie la condition d'optimalité

$$\nabla J(x_{\varepsilon}^*) + \lambda_{\varepsilon} \nabla c(x_{\varepsilon}^*) = 0, \text{ où } \lambda_{\varepsilon} = \frac{2}{\varepsilon} \max(c(x_{\varepsilon}), 0).$$
 (7)

On admettra dans la suite qu'il existe une suite $\varepsilon_i \to 0$ telle que $\lim_{\varepsilon \to 0} x_{\varepsilon_i}^* = x^*$.

Q5. Dans cette question, on démontre l'implication \Longrightarrow de (4):

- 1. On suppose $c(x^*) < 0$. Montrer que $\lambda_{\varepsilon_i} = 0$ pour i suffisamment grand, puis en utilisant (7) que $-\nabla J(x^*) = 0 = \lambda \nabla c(x^*)$ où $\lambda = 0$.
- 2. On suppose maintenant que $c(x^*) = 0$, soit par (5), $-\nabla c(x^*) \neq 0$. Déduire de (7) que si $\varepsilon_i \to 0$, alors $(\lambda_{\varepsilon_i})_i$ est bornée. En déduire l'existence de λ vérifiant (4).