教養物理化学

第6回 気体

先週のおさらい

- 元素の周期的性質
 - 周期表は電子配置を表現している。
 - 原子のさまざまな性質が、電子配置 と軌道の大きさに支配される。

今日の目標

- 元素の周期的性質
 - 周期表の構造
 - 原子の大きさ、イオン化エネル ギー、電気陰性度、etc.

周期表

		2	3	4	5	6	7	8	9	10		12	13	14	15	16	17	18
	Ι																	He
2	Li	Ве											В	U	Z	0	H	Ne
3	Na	Mg											ΑI	Si	Р	S	C	Ar
4	K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ż	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Сд	ln	Sn	Sb	Те	-	Xe
6	Cs	Ba		Hf	Ta	8	Re	Os	Ir	Pt	Au	Hg	F	Pb	Bi	Ро	At	Rn
7	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							

Lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Actinoids	Ac	Th	Pa	J	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	Zo	Lr

H Is ¹	He Is ²						
Li	Be	B	C	N	O	F	Ne
2s ¹	2s ²	2p ¹	2p ²	2p ³	2p ⁴	2p ⁵	2p ⁶
Na	Mg	Al	Si	P	S	CI	Ar
3s ¹	3s ²	3p ^l	3p ²	3p ³	3p ⁴	3p ⁵	3p ⁶

分類(I)

分類(2)

	I	2	3	4	5	6	7	8	9	10		12	13	14	15	16	17	18
I	H Is ⁱ																	He Is ²
2	Li 2s ¹	Be 2s ²											B 2p ¹	C 2p ²	N 2p ³	O 2p⁴	F 2p⁵	Ne 2p ⁶
3	Na 3s ¹	Mg 3s ²											Al 3p ^l	Si 3p ²	P 3p ³	S 3p⁴	Cl 3p ⁵	Ar 3p ⁶
4	19K 4s ¹	₂₀ Ca 4s ²	21Sc 3d ¹	₂₂ Ti 3d ²	₂₃ V 3d ³	₂₄ Cr 3d ⁴	₂₅ Mn 3d ⁵	₂₆ Fe 3d ⁶	²⁷ Co 3d ⁷	₂₈ Ni 3d ⁸	₂₉ Cu 3d ⁹	₃₀ Zn 3d ¹⁰	31Ga 4p ¹	₃₂ Ge 4p ²	33As 4p ³	34Se 4p ⁴	35Br 4p ⁵	₃₆ Kr 4p ⁶
5	37Rb 5s ¹	₃₈ Sr 5s ²	₃₉ Y 4d ¹	₄₀ Zr 4d ²	41Nb 4d ³	42 M o 4d ⁴	43Tc 4d ⁵	44Ru 4d ⁶	45Rh 4d ⁷	46Pd 4d ⁸	47Ag 4d ⁹	48Cd 4d ¹⁰	₄₉ In 5p ¹	₅₀ Sn 5p ²	51Sb 5 p ³	₅₂ Te 5p ⁴	₅₃ l 5 p ⁵	₅₄ Xe 5p ⁶
6	55Cs 6s ¹	₅₆ Ba 6s ²	金属												Γ	非	金属	

電子の手放しやすさ、電子のうけとりやすさでの分類

分類(3)

	I	2	3	4	5	6	7	8	9	10		12	13	14	15	16	17	18
Ī	H Is ¹																	He Is ²
2	Li 2s ¹	Be 2s ²											B 2p ¹	C 2p ²	N 2p ³	O 2p⁴	F 2p ⁵	Ne 2p ⁶
3	Na 3s ¹	Mg 3s ²											Al 3p ^l	Si 3p ²	P 3p ³	S 3p⁴	Cl 3p ⁵	Ar 3p ⁶
4	19K 4s ¹	₂₀ Ca 4s ²	21Sc 3d ¹	₂₂ Ti 3 d ²	₂₃ V 3 d ³	₂₄ Cr 3d ⁴	₂₅ Mn 3d ⁵	₂₆ Fe 3d ⁶	₂₇ Co 3d ⁷	₂₈ Ni 3d ⁸	₂₉ Cu 3d ⁹	₃₀ Zn 3d ¹⁰	31Ga 4p ¹	32Ge 4p ²	33As 4p ³	34Se 4p ⁴	35Br 4p ⁵	₃₆ Kr 4p ⁶
5	37Rb 5s ¹	38Sr 5s ²	₃₉ Y 4d ¹	₄₀ Zr 4d ²	41Nb 4d³	₄₂ Mo 4d ⁴	43Tc 4d ⁵	44Ru 4d ⁶	45Rh 4d ⁷	46Pd 4d ⁸	47Ag 4d ⁹	48Cd 4d ¹⁰	49ln 5p ¹	₅₀ Sn 5p ²	51Sb 5 p ³	₅₂ Te 5p⁴	53l 5 p ⁵	₅₄ Xe 5p ⁶
6	55Cs	56 B a																

遷移金属元素

d軌道(最外殻ではない)に空きがある元素

典型元素

原子・イオンサイズに関する法則性

- I. 軌道は、原子番号が大きくなるにつれどんどん収縮する (核電荷が大きくなるため)
- 2. 外殻軌道ほど半径が大きい。
- 3. 電子がs軌道に新たに入る時に、最も半径が大きくなる。

イオン化エネルギー

図5.1 原子の第1イオン化エネルギー. どの周期でもアルカリ金属で最小, 希ガスで最大になっている

安定な電子配置

- 最安定: 閉殻構造(希ガス型)
 - 最外殻がIsまたはp軌道で、全占有
- 準安定: 亜閉殻構造
 - 最外殻がpまたはd軌道で、半分占有
 - 最外殻がsまたはd軌道で、全占有

今日の目標

- 理想気体
- 実在気体

気体

- アボガドロの法則
- ボイルの法則
- シャルルの法則

Avogadroの法則

• 同温度、同圧力において、同じ体積に 含まれる**分子の個数**は等しい。

● 分子数と体積の関係。

V = C・n (Cは定数)

気体とは?

密度が低く、分子同士が十分はなれていて、ほとんど相互作用しない状態。

Boyleの法則

● 気体は圧力に反比例して収縮する。

● 圧力と体積の関係。

p·V=A (Aは定数)

圧力とは?

単位面積あたりに加わる力。力を面積で割ったもの。

気体の圧力

Charlesの法則

● 一定体積の気体の圧力は、温度に比例する。

● 温度と圧力の関係

$$p = BT$$

● 図6.2

3つの法則の統合

 \bullet pV = A

• p = BT

pV=nRT

理想気体の状態方程式

Rは<u>気体の種類によらない</u>定数

浮力

ヘリウム He 100%

空気 N₂ 80% O₂ 20%

|気圧 |常温 |体積同じ

練習問題I

• 水素分子 H_2 はヘリウムHeよりもさらに分子量が小さい。Heを H_2 におきかえることで、風船の浮力は何%増すか。

練習問題2

● I0000mの高空(低温(-55℃)、低圧(0.3気圧))まで上がるヘリウム気球を作りたい。どのようなことに注意する必要があるか。

分圧の法則

$$p_2V=n_2RT$$

$$(p_1+p_2)V=(n_1+n_2)RT$$

練習問題3

純ブタン気体を袋に密封する。袋には、 酸素や窒素分子は通るが、ブタン分子は 通らない程度の大きさの穴がたくさんあ いている。大気中に袋を放置すると、袋 はどうなるか。(I)徐々に膨張する (2)変 化しない (3)徐々に収縮する。自分の予 想と、理由を述べよ。

蒸気圧

- 固体や液体が一緒に存在する場合、 気体の分圧は一定値になる。この圧力 を、蒸気圧と呼ぶ。
 - 気圧が低ければ、液体から蒸発する
 - 気圧が高ければ、凝集する。

http://www.800mainstreet.com/08/0008-0013-vapor_pres.html

実在気体

● 理想気体の限界: **低温、高圧、高密度**

高密度の 理想気体

現実の 高密度気体

斥力のみ

引力あり

状態方程式の改良

● 2つの「現実性」を加える。

● 分子の体積

→体積の補正

● 分子間に働く引力 →圧力の補正

ファンデルワールスの状態方程式

$$\left(p + \frac{n^2a}{V^2}\right)\left(V - nb\right) = nRT$$

_ _ 体積に関する補正

引力に関する補正

まとめの問題

次回の予定

- I2月3日
- 中間試験と解説
 - ノート・教科書・電卓持ち込み可