4. Spezielle Verteilungen

Lernziele:

- Sie unterscheiden die Binomial- und die hypergeometrische Verteilung.
- ullet Sie unterscheiden die diskrete Poisson- und die stetige Exponentialverteilung, die über den Paramter λ zusammenhängen.
- Sie kennen die graphischen Darstellungen von Dichten der Gleich-, Exponential-, Normal-, Chiquadrat- und t-Verteilung.
- Sie kennen die Dichten der Gleich-, Exponential- und Normalverteilung und die Bedeutung ihrer Parameter.
- Sie wissen, für welche Anwendungsbereiche die oben genannten diskreten und stetigen Verteilungen geeignet sind, und transferieren diese Modelle auf andere Problemstellungen.
- Sie können Wahrscheinlichkeiten, Quantile und Zufallszahlen der oben genannten Verteilungen mit R berechnen bzw. generieren.

Literatur:

- Teschl Band 2, Kap. 28 + 29
- Arens et al., Kap 39
- Zucchini, Kap. 5 + 6

4.1 Diskrete Verteilungen

4.1.1 Bernoulliverteilung

- Anwendungsmodell:
 Indikatorvariable mit den Werten 1 bei Erfolg und 0 bei Misserfolg
- Wahrscheinlichkeit:

$$P(X = 1) = p, P(X = 0) = 1 - p$$

Verteilung:

$$X \sim B_{1,p}$$

• Erwartungswert:

$$E[X] = p$$
 = $1 \cdot p + 0 \cdot (1-p)$

Varianz:

$$Var[X] = p(1-p)$$
 = $E[x^2] - (E[x])^2 = p - p^2$
 $E[x^2] = 1^2 \cdot p + 0^2 \cdot (1-p) = p$

4.1 Diskrete Verteilungen

4.1.2 Binomialverteilung

- Anwendungsmodell: Treffer wohrscheinlichkeit Anzahl der Erfolge beim *n*-maligen Ziehen **mit** Zurücklegen sich nicht
- Wahrscheinlichkeit:

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}, \quad k \in \{0, 1, \dots, n\}$$

- $P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 p)^{n-k}, \quad k \in \{0, 1, ..., n\}$ Verteilung:

 Anzahl der Pfode mit k-mal Treffer

 Parameter der Verteilung
- Erwartungswert:

$$E[X] = np$$

Varianz:

$$Var[X] = np(1-p)$$

- R-Funktionen:
 - $\frac{\mathbf{d}}{\mathbf{binom}(\mathbf{k},\mathbf{p})} = P(X = k)$

Wahrscheinlichkeits-/Dichtefunktion

p binom(k,n,p) = F(k):

q-Quantil

Verteilungsfunktion

q binom(q,n,p):

k binomialverteilte Zufallszahlen

- r binom(k,n,p):
- Prof. Dr. B. Naumer (TH Rosenheim)

Beispiel 4.1.2: n-maliges Ziehen mit Zurücklegen

Ein Kommunikationsnetz mit *n* unabhängig voneinander arbeitenden Komponenten ist funktionsfähig, wenn mind. die Hälfte der Komponenten funktioniert. Die Wahrscheinlichkeit für die Funktionsfähigkeit einer Komponente ist 10%.

- (a) Mit welcher Wahrscheinlichkeit ist ein Netz mit 3 bzw. 5 Komponenten funktionsfähig?
- (b) Für welche Werte von *p* ist die Wahrscheinlichkeit, dass ein System mit 5 Komponenten funktioniert größer als bei einem System mit 3 Komponenten?

(a)
$$n=3$$
: $P(X \ge 2) = P(X = 2) + P(X = 3) = {3 \choose 2} \cdot 0.1^2 \cdot 0.9 + {3 \choose 3} \cdot 0.1^3$
 $= 1 - P(X \le 1) = 1 - pbinom(1, 3, 0.1) \approx 2,8\%$
 $n=5$: $P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$
 $= 1 - P(X \le 2) = 1 - pbinom(2, 5, 0.1) \approx 0,9\%$

(b) The welches
$$p$$
 gilt:
 $1 - pbinom(2,5,p) > 1 - pbinom(1,3,p)$

Ansatz ist wicklig

$$\frac{\binom{5}{3}}{\binom{5}{3}} p^3 (1-p)^2 + \binom{5}{4} p^4 (1-p) + p^5 > \binom{3}{2} p^2 \cdot (1-p) + \binom{3}{3} p^3 = 1 \cdot p^2$$

P(x=4) P(x=5)

 $10 p(1-2p+p^2) + 5 p^2(1-p) + p^3 > 3(1-p) + p$

$$\vdots$$
 $2p^3 - 5p^2 + 4p - 1 > 0 \implies (2p^2 - 3p + 1)(p-1) > 0$
 $2(p-\frac{1}{2})(p-1)$

2(p-1)(p-1)

2 (p-1)· (p-1)2 > 0 => p>\frac{1}{2}

For p>\frac{1}{2} ist das Kommunikat.
netz mit 5 Komp. funktionsfähiger ?

4.1 Diskrete Verteilungen

4.1.3 Hypergeometrische Verteilung

Anwendungsmodell:

Anzahl der Erfolge beim *n*-maligen Ziehen **ohne** Zurücklegen aus einer Menge mit M Elementen, die Erfolg bedeuten, und N Elementen, die Misserfolg bedeuten 2.3. Lotto 6 aus 49

Wahrscheinlichkeit:

$$P(X = k) = \frac{\binom{M}{k} \cdot \binom{N}{n-k}}{\binom{M+N}{n}}, \quad k \in \{0, 1, \dots, \min\{n, M\}\}$$

Verteilung:

$$X \sim H_{M,N,n}$$
 Parometer der Verteilung

• Erwartungswert:

$$E[X] = n \frac{M}{M+N}$$
 Treffer wahrscheinlichkeit

Varianz:
$$\sqrt{Ar[X]} = n \frac{M}{r} \left(1 - \frac{M}{r}\right) \frac{M+N-n}{M+n}$$

 $Var[X] = n \frac{M}{M+N} \left(1 - \frac{M}{M+N}\right) \frac{M+N-n}{M+N-1}$ • R-Funktionen: $\frac{2}{M+N} \frac{M}{N} = \frac{N}{N} = \frac{N}{N}$ phyper(k,M,N,n) = F(k)

Falls 20n < M + N und M + N groß, dann ist der Unterschied zwischen Ziehen ohne bzw. mit Zurücklegen unwesentlich, so dass die Binomial verteilung mit $p = \frac{M}{M+N}$ als Approximation für die hypergeometrische Verteilung verwendet werden kann.

Beispiel 4.1.3: M + N = 100 M = 10 N = 90

Eine Charge mit 100 Glühbirnen wird angenommen, wenn sich in einer Stichprobe von 22 Glühbirnen maximal 2 defekte Glühbirnen befinden. Die Defektrate der Glühbirnen sei 10%. Wie groß ist die Wahrscheinlichkeit, dass die Charge angenommen wird?

Ges:
$$P(X \in 2) = phyper(2, 40, 90, 22) \approx 61.7\%$$

= $P(X=0) + P(X=1) + P(X=2)$

4.1 Diskrete Verteilungen

4.1.4 Poisson-Verteilung

- Anwendungsmodell: "Verteilung der seltenen Ereignisse" Häufigkeit punktförmiger Ereignisse in einem Kontinuum Die durchschnittlich zu erwartende Anzahl der Erfolge λ pro Maßeinheit (i. a. Zeiteinheit) sei bekannt.
- Wahrscheinlichkeit:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 mit $\sum_{k=0}^{\infty} P(X = k) = 1$, da $\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$

Verteilung:

$$X \sim P_{\lambda}$$

• Erwartungswert:

$$E[X] = \lambda$$
, da $\sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=1}^{\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = \lambda$

Varianz:

$$Var[X] = \lambda$$

R-Funktionen:

dpois(k,
$$\lambda$$
) = $P(X = k)$
ppois(k, λ) = $F(k)$

7 / 24

Falls $n \ge 50$, $p \le 0.1$ und $np \le 10$, dann kann die Poisson-Verteilung mit $\lambda = np$ als Approximation für die Binomialverteilung verwendet werden.

Abbildung: Poisson-Verteilungen für verschiedene Werte von λ

Beispiel 4.1.4:

2 Kontinuum

Bei einer Hotline rufen im Durchschnitt 3 Kunden pro Tag an.

- (a) Mit welcher Wahrscheinlichkeit ruft an einem bestimmten Tag genau ein Kunde an?
- (b) Mit welcher Wahrscheinlichkeit rufen an einem bestimmten Tag mehr als 10 Kunden an?

a) Ges.:
$$P(x=1) = dpois (1,3) \approx 14.9\%$$

= $\frac{3^4}{1!} e^{-3} = 3e^{-3}$

Prof. Dr. B. Naumer (TH Rosenheim) Stochastik und Numerik: 4. Spezielle Verteilu 6. Mai 2020 9/24

4.1 Diskrete Verteilungen

4.1.5 Gleichverteilung

• Anwendungsmodell:

Alle Werte $\{x_1, \ldots, x_n\}$ einer ZV X sind gleichwahrscheinlich.

Wahrscheinlichkeit:

$$P(X = x_k) = \frac{1}{n}$$

Verteilung:

$$X \sim U_{\{x_1,\ldots,x_n\}}$$

• Erwartungswert:

$$E[X] = \frac{1}{n} \sum_{k=1}^{n} x_k = \bar{x}$$

Varianz:

$$Var[X] = \frac{1}{n} \sum_{k=1}^{n} x_k^2 - \bar{x}^2$$

R-Funktion:

sample(1:N,n): n Zufallszahlen zwischen 1 und N

4.2 Stetige Verteilungen

4.2.1 Stetige Gleichverteilung

• Anwendungsmodell:

Zufallszahlen aus einem Intervall [a, b]

Dichte:

$$f(x) = \frac{1}{b-a}$$
 für $x \in [a, b]$

Verteilung:

$$X \sim U_{[a,b]}$$

• Erwartungswert:

$$E[X] = \frac{a+b}{2}$$

Varianz:

$$Var[X] = \frac{(b-a)^2}{12}$$

R-Funktionen:

$$dunif(x,a,b) = f(x)$$

$$punif(x,a,b) = F(x)$$

runif(n): n Zufallszahlen zwischen 0 und 1

$$f(x) = \begin{cases} \frac{3}{30} & 1 & \text{für } x \in [0,30] \\ 0 & 1 & \text{sonst} \end{cases}$$

Beispiel 4.2.1:

An einer Haltestelle fahren die Busse im 15 Minutentakt um 7:00, 7:15 usw. Ein Fahrgast kommt zu einem zufälligen Zeitpunkt zwischen 7:00 und 7:30 Uhr an die Haltestelle. X: Anzuhl der Minuten, die Tahgast nach 7:00 Uhr an Haltestelle ankommt.

(a) Wie groß ist die Wahrscheinlichkeit, dass er weniger als 5 Minuten

- warten muss?

(b) Wie groß ist die Wahrscheinlichkeit, dass er mindestens 12 Minuten warten muss?

$$\rho unif(15_10_30) - \rho unif(10_10_30)$$
(a) $P(\text{"Workezeit} < 5") = P(\text{X} \in \text{]}10;15[) + P(\text{X} \in \text{]}25;30[)$

$$= \int_{10}^{6} f(x) \, dx + \int_{25}^{4} dx = 2 \cdot \frac{5}{30} = \frac{1}{3}$$

(6)
$$P(x \in]0;3[) + P(x \in]15;18[) = 2 \cdot \frac{3}{30} = \frac{1}{5}$$

4.2 Stetige Verteilungen

4.2.2 Normalverteilung

Anwendungsmodell:

Beschreibt viele reale Situationen, ist insbesondere Grenzverteilung unabhängiger Summen

Dichte:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$$

Verteilung:

$$X \sim N_{\mu,\sigma^2}$$

• Erwartungswert:

$$E[X] = \mu$$

Varianz:

$$Var[X] = \sigma^2$$

R-Funktionen:

dnorm(x,
$$\mu$$
, σ) = $f(x)$
pnorm(x, μ , σ) = $F(x)$
qnorm(q, μ , σ): g -Quantil

Eigenschaften:

- Maximalstelle von f(x) bei $x = \mu$
- Wendestellen von f(x) bei $x = \mu \pm \sigma$

•
$$X \sim N_{\mu,\sigma^2} \Longrightarrow \overbrace{aX+b} \sim N_{a\mu+b,e^2\sigma^2}$$
 und $\frac{X-\mu}{\sigma} \sim N_{0,1}$

• Wendesteilen von
$$Y(x)$$
 bei $x = \mu \pm \sigma$
• $X \sim N_{\mu,\sigma^2} \Longrightarrow \underbrace{aX + b} \sim N_{a\mu+b}\underbrace{b\sigma^2}_{\sigma}$ und $\underbrace{x - \mu}_{\sigma} \sim N_{0,1}$
• $X_1 \sim N_{\mu_1,\sigma_1^2}$ und $X_2 \sim N_{\mu_2,\sigma_2^2} \Longrightarrow X_1 + X_2 \sim N_{\mu_1+\mu_2,\sigma_1^2+\sigma_2^2}$ Transferments

ZV sind wieder normal verteitt

14 / 24

Standardnormalverteilung $N_{0,1}$

- Dichte: $\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right)$
- Verteilung: $\Phi(x) = \int_{-\infty}^{x} \varphi(t) dt$
- Quantile: Wegen der Achsensymmetrie von $\varphi(x)$ gilt: $\Phi(-x) = 1 \Phi(x) \Longrightarrow -x_p = x_{1-p}$

Abbildung: Dichte- und Verteilungsfkt. der Standardnormalverteilung

Beispiel 4.2.2:

Laut Klimadatenbank kann die Niederschlagsmenge M_x , die im Jahr x in Rosenheim fallen wird, durch eine normalverteilte ZV mit $\mu =$ 64 und $\sigma^2 = 36$ modelliert werden.

Wie groß ist die Wahrscheinlichkeit, dass $P(M_{2020} > 70) = 1 - P(M_{2020} \le 70)$ (a) die Niederschlagsmenge im Jahr 2020 > 70 ist? = 1 - pnorm(70,64,6)

- (b) die Gesamtniederschlagsmenge in den beiden Jahren 2020 und 2021 > 140 ist?
- (c) für die (unabhängigen) Niederschlagsmengen M_{2018} und M_{2019} gilt: $M_{2018} > M_{2019} + 16$?
- $P(M_{2020} + M_{2021} > 140)$ $M_{2020} + M_{2021} \sim N_{128, 72}$ = 1- pnorm (140, 128, sqrt(72)) $\approx 1,9\%$ (b) P(M2020 + M2021 > 140)

16/24

(c)
$$P(M_{2018} > M_{2019} + 16) = P(M_{2018} - M_{2019} > 16)$$

= $P(M_{2018} + (-M_{2019}) > 16) = 1 - pnorm(16,0, sqrt(12))$
 $\approx 3\%$

$$E[-M_{2019}] = -E[M_{2019}] = -64$$

 $Var[-M_{2019}] = (-4)^{2} Var[M_{2019}] = 36$

 $M_{2018} + (-M_{2019}) \sim N_{0,72}$

4.2 Stetige Verteilungen

4.2.3 Exponential verteilung

- Anwendungsmodell: Modellierung von Lebensdauern, Wartezeiten Sei $Y_t \sim P_{\lambda t}$ im Intervall [0, t] von t Zeiteinheiten, dann beschreibt die Exponentialverteilung die Wartezeit X bis zum Eintreten eines Ereignisses.
- Dichte und Verteilungsfunktion:

$$f(x) = \lambda e^{-\lambda x} (x \ge 0)$$
 und $F(x) = 1 - e^{-\lambda x}$

Verteilung:

$$X \sim Exp_{\lambda}$$

- **Erwartungswert:** (Berechnung mit partieller Integration) $E[X] = \frac{1}{3}$
- Varianz: (Berechnung mit partieller Integration) $Var[X] = \frac{1}{\sqrt{2}}$
- R-Funktionen:

$$dexp(x,\lambda) = f(x)$$

 $pexp(x,\lambda) = F(x)$

Eigenschaft:

ullet Eine exponentialverteilte ZV X ist gedächtnislos, d. h.

$$P(X > s + t | X > t) = P(X > s)$$

Verteilungsfunktion

Abbildung: Dichte- und Verteilungsfkt. der Exponentialverteilung für $\lambda=0.5,\,1$

Beispiel 4.2.3:

Die Lebensdauer einer Autobatterie entspreche einer Reichweite von 10000 km. Wie groß ist dann die Wahrscheinlichkeit, dass die Batterie bei einer 5000 km langen Fahrt nicht ausfällt?

4.2 Stetige Verteilungen

4.2.4 Chiquadrat-Verteilung

 Z_1,\ldots,Z_n seien unabhängige, standardnormalverteilte ZV \Longrightarrow $X=Z_1^2+\cdots+Z_n^2$ hat Chiquadratverteilung mit n Freiheitsgraden

• Anwendungsmodell:

Summen unabhängiger, standardnormalverteilter ZV

Verteilung:

$$X \sim \chi_n^2$$

• Erwartungswert:

$$E[X] = n$$

Varianz:

$$Var[X] = 2n$$

• R-Funktionen:

$$dchisq(x,n) = f(x)$$

 $pchisq(x,n) = F(x)$

Eigenschaft:

$$ullet$$
 $X_1 \sim \chi^2_{n_1}$ und $X_2 \sim \chi^2_{n_2} \Longrightarrow X_1 + X_2 \sim \chi^2_{n_1+n_2}$

Abbildung: Dichtefunktionen der Chiquadratverteilung

Beispiel 4.2.4:

Es soll ein Zielpunkt in einem dreidimensionalen Raum getroffen werden.

Der Messfehler X_i in jeder der 3 Koordinaten sei normalverteilt mit $\mu = 0$ und $\sigma = 2$ [m].

Wie groß ist die Wahrscheinlichkeit, dass der Abstand

$$D = \sqrt{X_1^2 + X_2^2 + X_3^2}$$
 zwischen Mess- und Zielpunkt größer als 3 [m] ist?

4.2 Stetige Verteilungen

4.2.5 t-Verteilung

 $Z \sim N_{0,1} \text{ und } X \sim \chi_n^2 \Longrightarrow Y = \frac{Z}{\frac{X}{\sqrt{n}}} \text{ ist t-verteilt mit } n \text{ Freiheitsgraden}$

• Anwendungsmodell:

Schätz- und Testverfahren bei unbekannter Varianz

Verteilung:

$$Y \sim t_n$$

• Erwartungswert:

$$E[Y] = 0$$
 für $n > 1$

Varianz:

$$Var[Y] = \frac{n}{n-2}$$
 für $n > 2$

• R-Funktionen:

Eigenschaften:

- Für $n \to \infty$: $t_n \to N_{0,1}$
- Achsensymmetrie der Dichtefunktion $\implies -x_p = x_{1-p}$

Abbildung: Dichtefunktionen der t-Verteilung