MATH1060: §10.8 Handout

Derrick Wigglesworth

December 9, 2013

1 Circles

We saw in class that circles centered at the origin have polar equations of the form r=c where c is a constant. The equation of a circle which is not centered at the origin is not quite so simple in polar coordinates. The circle shown here is the graph of $r=4\sin\theta$.

2 Limaçons

The first graph shown below is the graph of $r=3+2\cos\theta$. You can convince yourself that this is reasonably accurate by plugging in $\theta=0,\pi/2,\pi,3\pi$ to the given equation. This shape is called a limaçon.

The figure on the right is a limaçon with a loop. The equation of this graph is $r = 1 - 2\cos\theta$. In general, a limaçon is the graph of an equation of the form $r = a + b\cos\theta$. The ratio $\frac{a}{b}$ determines the exact type. Try plugging in different values of θ to see where the loop comes from.

When the ratio $\frac{a}{b}$ is equal to 1, we don't quite get a loop. The limaçon will be in between the first one (with no loop) and the second one (with a loop). This shape (pictured below) is called a cardioid. The figure below is the graph of $r = 1 - \sin \theta$.

3 Spiral of Archimedes

In rectangular coordinates, the graph of y = x is simply a line. In polar coordinates, the graph of $r = \theta$ is not just a line. When $\theta = 0$, r = 0, so we have a point at the origin. As θ starts increasing,

r increases proportionally. This curve is called the Spiral of Archimedes. It's graph is shown below for various ranges of θ . The first is $\theta \in [0, 2\pi]$. The second is the graph for $\theta \in [0, 6\pi]$.

Now if we allow negative values of θ , we see another copy of the graph but reflect across the y-axis. The graph below is the spiral of Archimedes for $\theta \in [-2\pi, 2\pi]$.

4 A Wiggly Shape

This is just a cool picture. It is the graph of $r = 1 + \frac{1}{10}\sin(10\theta)$. For reference, I also graphed the circle r = 1.

5 Roses (or Daisies)

5.1 Closed Roses

Shown below are the graphs of $r=2\cos(3\theta)$ and $r=2\cos(2\theta)$. As θ varies from 0 to 2π , the argument of $\cos(3\theta)$ varies from 0 to 6π , so we see 3 periods of the cosine function. This gives us a "rose" with 3 pedals (we would see 6 pedals, but the graph repeats itself from π to 2π). For an even number, n, the graph of $r=\cos(n\theta)$ has 2n pedals (because this graph doesn't repeat in $[0,2\pi]$. This explains why $r=2\cos(2\theta)$ has more pedals than $r=2\cos(3\theta)$.

Shown below is the graph of $r = 2\cos(8\theta)$, which, by the preceding discussion, should have 16 pedals.

5.2 Non-closed Roses

If we alter the period to be an irrational number ($\sqrt{2}$ for example), then graph will never close up on itself. Shown here is the graph of $r = 2\cos(\sqrt{2}\theta)$ for $\theta \in [0, 2\pi]$ and then for $\theta \in [0, 10\pi]$.

If you look closely at the positive x-axis, you can see that the graph has not closed up on itself. Pictured below are graphs of the same function with $\theta \in [0, 30, \pi]$ and $\theta \in [0, 100\pi]$ respectively.

