Table 1. Hyper parameters for Logistic Regression.

Parameter	Description	Range
penalty	The norm used in the penalization.	["12", "11"]
С	Inverse of regularization strength.	range(0.001, 10, 0.001)
class_weight	Weights associated with classes in the form	[None, "balanced"]
	{class_label: weight}.	

^{*} The function range(start, end, step=1) is used.

Table 2. Hyper parameters for K Nearest Neighbor.

Parameter	Description	Range
n_neighbors	Number of neighbors to use.	range(1, 51)
weights	Weight function used in prediction.	["uniform"]
metric	The distance metric to use for the tree.	["minkowski", "euclidean",
		"manhattan"]

Table 3. Hyper parameters for Naivers Bayes.

Parameter	Description	Range
var_smoothing	Portion of the largest variance of all	[0.000000001, 0.000000002,
	features that is added to variances for	0.000000005, 0.000000008,
	calculation stability.	0.000000009, 0.0000001,
		0.0000002, 0.0000003,
		0.0000005, 0.0000007,
		0.0000009, 0.00001, 0.001,
		0.002, 0.003, 0.004, 0.005, 0.007,
		0.009, 0.004, 0.005, 0.006, 0.007,
		0.008, 0.009, 0.01, 0.1, 1]

Table 4. Hyper parameters for Support Vector Machine (Linear).

Parameter	Description	Range
penalty	The penalty (aka regularization term) to be	["elasticnet", "12", "11"],
	used.	
11_ratio	The Elastic Net mixing parameter.	range(0.0000000001, 1, 0.01)
alpha	Constant that multiplies the regularization	[0.0000001, 0.000001, 0.0001,
	term.	0.001, 0.01, 0.0002, 0.002, 0.02,
		0.0005, 0.005, 0.05, 0.1, 0.15,
		0.2, 0.3, 0.4, 0.5]
fit_intercept	Whether the intercept should be estimated	[True, False]
	or not.	
learning_rate	The learning rate schedule for training.	["constant", "invscaling",
		"adaptive", "optimal"]
eta0	The initial learning rate for the 'constant',	[0.001, 0.01, 0.05, 0.1, 0.2, 0.3,
	'invscaling' or 'adaptive' schedules.	0.4, 0.5]

Table 5. Hyper parameters for Support Vector Machine (rbf).

Parameter	Description	Range
С	Regularization parameter.	range(0, 50, 0.01)
class_weight	Weights associated with classes.	[None, "balanced"]

Table 6. Hyper parameters for Linear Discriminant Analysis.

	<u>~</u>	
Parameter	Description	Range
solver	Solver to use.	["lsqr", "eigen"]
shrinkage	Shrinkage parameter.	["empirical", "auto", 0.0001,
		0.001, 0.01, 0.0005, 0.005, 0.05,
		0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
		0.9, 1]

Table 7. Hyper parameters for Quadratic Discriminant Analysis.

Parameter	Description	Range
reg_param	Regularization parameter for the per-class	range(0, 1, 0.01)
	covariance estimates.	

Table 8. Hyper parameters for Ridge Classifier.

Parameter	Description	Range
normalize	Data normalization or not.	[True, False]
alpha	Regularization strength.	range(0.01, 10, 0.01)
fit_intercept	Whether to calculate the intercept.	[True, False]

Table 9. Hyper parameters for Decision Tree.

Parameter	Description	Range
max_depth	The maximum depth of the tree.	range(1, 16, 1)
max_features	The number of features to consider	[1.0, "sqrt", "log2"]
	when looking for the best split.	
min_samples_leaf	The minimum number of samples	[2, 3, 4, 5, 6]
	required to be at a leaf node.	
min_samples_split	The minimum number of samples	[2, 5, 7, 9, 10]
	required to split an internal node.	
criterion	The function to measure the quality of	["gini", "entropy"]
	a split.	
min_impurity_decrease	A node will be split if this split	[0, 0.0001, 0.001, 0.01,
	induces a decrease of the impurity	0.0002, 0.002, 0.02, 0.0005,
	greater than or equal to this value.	0.005, 0.05, 0.1, 0.2, 0.3, 0.4,
		0.5]

Table 10. Hyper parameters for Random Forest.

- 71 1		
Parameter	Description	Range
n_estimators	The number of trees in the forest.	range(10, 300, 10)
max_depth	The maximum depth of the tree.	range(1, 11, 1)

min_impurity_decrease	A node will be split if this split	[0, 0.0001, 0.001, 0.01,
	induces a decrease of the impurity	0.0002, 0.002, 0.02, 0.0005,
	greater than or equal to this value.	0.005, 0.05, 0.1, 0.2, 0.3, 0.4,
		0.5]
max_features	The number of features to consider	[1.0, "sqrt", "log2"]
	when looking for the best split.	
bootstrap	Whether bootstrap samples are used	[True, False]
	when building trees.	
criterion	The function to measure the quality of	["gini", "entropy"]
	a split.	
class_weight	Weights associated with classes.	[None, "balanced",
		"balanced_subsample"]
min_samples_split	The minimum number of samples	[2, 5, 7, 9, 10]
	required to split an internal node.	
min_samples_leaf	The minimum number of samples	[2, 3, 4, 5, 6]
	required to be at a leaf node.	

Table 11. Hyper parameters for Extra Trees.

Parameter	Description	Range
n_estimators	The number of trees in the forest.	range(10, 300, 10)
criterion	The function to measure the quality of	["gini", "entropy"]
	a split.	
max_depth	The maximum depth of the tree.	range(1, 11, 1)
min_impurity_decrease	A node will be split if this split	[0, 0.0001, 0.001, 0.01,
	induces a decrease of the impurity	0.0002, 0.002, 0.02, 0.0005,
	greater than or equal to this value.	0.005, 0.05, 0.1, 0.2, 0.3, 0.4,
		0.5]
max_features	The number of features to consider	[1.0, "sqrt", "log2"]
	when looking for the best split.	
bootstrap	Whether bootstrap samples are used	[True, False]
	when building trees.	
min_samples_split	The minimum number of samples	[2, 5, 7, 9, 10]
	required to split an internal node.	
min_samples_leaf	The minimum number of samples	[2, 3, 4, 5, 6]
	required to be at a leaf node.	
class_weight	Weights associated with classes.	[None, "balanced",
		"balanced_subsample"]

Table 12. Hyper parameters for AdaBoost.

Tuble 12. Hyper parameters for MadDoost.		
Parameter	Description	Range
n_estimators	The maximum number of estimators.	range(10, 300, 10)
learning_rate	Weight applied to each classifier at each	[0.0000001, 0.000001, 0.0001,
	boosting iteration.	0.001, 0.01, 0.0005, 0.005, 0.05,
		0.1, 0.15, 0.2, 0.3, 0.4, 0.5]

algorithm	Boosting algorithm to use.	["SAMME", "SAMME.R"]
-----------	----------------------------	----------------------

Table 13. Hyper parameters for Gradient Boosting Classifier.

Parameter	Description	Range
n_estimators	The number of boosting stages to	range(10, 300, 10)
	perform.	
learning_rate	Learning rate shrinks the contribution	[0.0000001, 0.000001,
	of each tree by learning_rate.	0.0001, 0.001, 0.01, 0.0005,
		0.005, 0.05, 0.1, 0.15, 0.2,
		0.3, 0.4, 0.5]
subsample	The fraction of samples to be used for	range(0.2, 1, 0.05)
	fitting the individual base learners.	
min_samples_split	The minimum number of samples	[2, 4, 5, 7, 9, 10]
	required to split an internal node.	
min_samples_leaf	The minimum number of samples	[1, 2, 3, 4, 5]
	required to be at a leaf node.	
max_depth	The maximum depth of the individual	range(1, 11, 1)
	regression estimators.	
min_impurity_decrease	A node will be split if this split	[0, 0.0001, 0.001, 0.01,
	induces a decrease of the impurity	0.0002, 0.002, 0.02, 0.0005,
	greater than or equal to this value.	0.005, 0.05, 0.1, 0.2, 0.3, 0.4,
		0.5]
max_features	The number of features to consider	[1.0, "sqrt", "log2"]
	when looking for the best split.	

Table 14. Hyper parameters for Extreme Gradient Boosting.

Parameter	Description	Range
n_estimators	The number of trees.	range(10, 300, 10)
learning_rate	Step size shrinkage used in update to	[0.0000001, 0.000001, 0.0001,
	prevents overfitting.	0.001, 0.01, 0.0005, 0.005, 0.05,
		0.1, 0.15, 0.2, 0.3, 0.4, 0.5]
subsample	Subsample ratio of the training instances.	[0.2, 0.3, 0.5, 0.7, 0.9, 1]
max_depth	Maximum depth of a tree.	range(1, 11, 1)
colsample_bytree	Subsample ratio of columns when	[0.5, 0.7, 0.9, 1]
	constructing each tree.	
min_child_weight	Minimum sum of instance weight	[1, 2, 3, 4]
	(hessian) needed in a child.	
reg_alpha	L1 regularization term on weights.	[0.0000001, 0.000001, 0.0001,
		0.001, 0.01, 0.0005, 0.005, 0.05,
		0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7,
		1, 2, 3, 4, 5, 10]
reg_lambda	L2 regularization term on weights.	[0.0000001, 0.000001, 0.0001,
		0.001, 0.01, 0.0005, 0.005, 0.05,
		0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7,

		1, 2, 3, 4, 5, 10]
scale_pos_weight	Control the balance of positive and	range(0, 50, 0.1)
	negative weights, useful for unbalanced	
	classes.	

Table 15. Hyper parameters for Light Gradient Boosting.

Parameter	Description	Range
num_leaves	max number of leaves in one tree.	[2, 4, 6, 8, 10, 20, 30, 40, 50, 60,
		70, 80, 90, 100, 150, 200, 256]
learning_rate	Shrinkage rate.	[0.0000001, 0.000001, 0.0001,
		0.001, 0.01, 0.0005, 0.005,
		0.05, 0.1, 0.15, 0.2, 0.3, 0.4,
		0.5]
n_estimators	The number of trees.	range(10, 300, 10)
min_split_gain	The minimal gain to perform split.	[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
		0.7, 0.8, 0.9]
reg_alpha	L1 regularization term on weights.	[0.0000001, 0.000001, 0.0001,
		0.001, 0.01, 0.0005, 0.005,
		0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5,
		0.7, 1, 2, 3, 4, 5, 10]
reg_lambda	L2 regularization term on weights.	[0.0000001, 0.000001, 0.0001,
		0.001, 0.01, 0.0005, 0.005,
		0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5,
		0.7, 1, 2, 3, 4, 5, 10]
feature_fraction	The ratio of the subset of features	range(0.4, 1, 0.1)
bagging_fraction	The ratio of the data selected randomly	range(0.4, 1, 0.1)
	without resampling.	
bagging_freq	Frequency for bagging.	[0, 1, 2, 3, 4, 5, 6, 7]
min_child_samples	Minimal number of data in one leaf.	range(1, 100, 5)

Table 16. Hyper parameters for CatBoost.

Parameter	Description	Range
eta	The learning rate.	[0.0000001, 0.000001, 0.0001,
		0.001, 0.01, 0.0005, 0.005, 0.05,
		0.1, 0.15, 0.2, 0.3, 0.4, 0.5]
depth	Depth of the tree.	range(1, 12)
n_estimators	The maximum number of trees.	range(10, 300, 10)
random_strength	The amount of randomness to use for	range(0, 0.8, 0.1)
	scoring splits when the tree structure is	
	selected.	
12_leaf_reg	Coefficient at the L2 regularization term	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30,
	of the cost function.	50, 100, 200]

Table 17. Shared hyper parameters for deep learning models.

Parameter	Description	Range
batch_size	Batch size for training.	[256, 512, 1024]
time_steps	Time steps used as inputs.	[30, 60, 90]
lr	Learning rate of the optimizer.	[0.1, 0.01, 0.001, 0.0001]
epochs	Number of epochs for training.	[10, 50, 100]
patience	Patience of early stopping.	[5, 10]
optimizer	Optimizer for training.	[Adam, SGD, RMSProp]

Table 18. Model-related hyper parameters for MLP.

Parameter	Description	Range
layers	The number of layers and neurons in the	[100, 100, 100], [200, 200, 200],
	hidden layers.	[500, 500, 500]]
fc_dropout	Dropout rate in the fully connected layers.	[0.1, 0.2, 0.5]
use_bn	Use batch normalization or not.	[True, False]

Table 19. Model-related hyper parameters for RNN, LSTM and GRU.

Parameter	Description	Range
n_layers	The number of RNN layers.	[1, 2, 3, 4, 5]
hidden_size	The number of neurons in the hidden	[50, 100, 200]
	layers.	
bidirectional	Bidirectional RNN or not.	[True, False]

Table 20. Model-related hyper parameters for FCN.

Parameter	Description	Range
layers	The number of layers and neurons in the	[[64, 128, 64], [128, 256, 128],
	hidden layers.	[256, 512, 256]]
kss	Kernel filter size for convolution.	[[11, 9, 7], [9, 7, 5], [7, 5, 3]]

Table 21. Model-related hyper parameters for TCN.

Parameter	Description	Range
layers	The number of layers and neurons in the	[[25, 25, 25, 25, 25, 25, 25, 25],
	hidden layers.	[25, 25, 25, 25, 25], [25, 25,
		25, 25]]
ks	Kernel filter size for convolution.	[7, 5, 3]
conv_dropout	Dropout rate for convolution.	[0.0, 0.1, 0.2, 0.5]

Table 22. Model-related hyper parameters for InceptionTime.

Parameter	Description	Range
nf	The number of filters.	[16, 32, 64]

Table 23. Model-related hyper parameters for XceptionTime.

Parameter	Description	Range
nf	The number of filters.	[8, 16, 32]

Table 24. Model-related hyper parameters for XCM.

Parameter	Description	Range
nf	The number of filters.	[64, 128, 256]
fc_dropout	Dropout rate in the fully connected layers.	[0.0, 0.1, 0.2, 0.5]
bn	Use batch normalization or not.	[True, False]