MAT473 Homework 2

1. Recall that in order to prove that given a chain of ideals $J \subset I \subset R$, there is an isomorphism $(R/I)/(J/I) \cong R/J$, we wanted to study the function

$$\varphi: R/I \to R/J$$

 $\varphi: r+I \mapsto r+J.$

Prove that φ is a well-defined ring homomorphism with $\ker(\varphi) = J/I = \{j+I \mid j \in J\}$.

- 2. Describe all ideals in $\mathbb{Z}/n\mathbb{Z}$ for any positive integer n.
- 3. Suppose that R is an ring. Prove that R[x] is an integral domain if and only if R is an integral domain.
- 4. Suppose that F is a field. Prove the following:
 - (a) If $f(x), g(x) \in F[x]$, then there exists polynomials q(x) and r(x) in F[x] such that f(x) = g(x)q(x) + r(x) where $\deg(r(x)) < \deg(g(x))$.
 - (b) Suppose that $f(x), g(x) \in F[x]$. Prove that if f(x) = g(x)q(x) + r(x) where q(x), r(x) are the polynomials guaranteed from above, then gcd(f(x), g(x)) = gcd(g(x), r(x)).
- 5. Suppose that R is a commutative local ring. I.e., a commutative ring with $1 \neq 0$ which has a unique maximal ideal, which we'll call \mathfrak{m} . Prove that $R^* = R \setminus \mathfrak{m}$.
- 6. Suppose that \mathfrak{p} is an ideal in a commutative ring with identity $1 \neq 0$. Prove that \mathfrak{p} is prime if and only if R/\mathfrak{p} is an integral domain.
- 7. Suppose that $n, m \in \mathbb{Z}$, and consider the function

$$\varphi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$

 $\varphi: x \mapsto ([x]_n, [x]_m)$

where $[x]_n$ indicates the equivalence class of x modulo n.

- (a) Prove that φ is a ring homomorphism.
- (b) Compute the kernel of φ and determine the cardinality of its image.
- (c) What does this tell you in the case that gcd(n, m) = 1.

Name:

This can be iterated to prove that gcd(f(x), g(x)) can be written as a linear combination of f(x) and g(x).