The Cognitive Structure of Everyday Events

Jeff Zacks

Collaborators

Todd Braver, Randy Buckner, David Donaldson, Gowri Iyer, Mark McAvoy, John Ollinger, Marc Raichle, Margaret Sheridan, Avi Snyder, Nicole Speer, Khena Swallow, Barbara Tversky, Jean Vettel

Support

NIH

NSF

James S. McDonnell Foundation

DRAFT SLIDES, 6/17/04

What is an event?

 A segment of time at a given location that is perceived by an observer to have a beginning and an end

Yes, but what sorts of events?

- Everyday, goal-directed activity
- Short (< 10 minutes)
- Examples:
 - Making a bed
 - Washing a car
 - Ironing a shirt

Experimental procedure

- Observers watch videos of others performing activities
- Tap a key to mark "natural and meaningful" events
- Vary event grain
 - Fine
 - Coarse

<interactive animation>

Event segmentation

- Reliable
 - Across individuals P(agree) = .28
 - Test-retest > year = .38 (Speer et al., 2003, CABN)
- Hierarchical organization of large-scale and small-scale events (Zacks, Tversky & Iyer, 2001, JEP: General)

Three questions about the neurophysiology of event perception

- Is segmentation a concomitant of normal perception?
- Does brain activity distinguish large from small events?
- What can the neuroanatomy tell us about how event parts are detected?

Functional MRI

- fMRI: Measures local changes in blood properties due to neural activity
- Good temporal resolution (2.16-2.36 s)
- Good spatial resolution (3.75 mm)

(Zacks, Braver, et al., 2001, Nat. Neuro.)

Key problem: How to observe without disturbing?

Solution:

- Use observers' event boundaries to define "trials."
- Collect segmentation data <u>after</u> functional imaging.

- Scans 1-4: passive viewing
- Training on coarse segmentation
- Scans 5-8: coarse segmentation
- Training on fine segmentation
- Scans 9-12: fine segmentation

Neural processing

- Is event segmentation a concomitant of normal perception?
 - YES
- Does brain activity distinguish large from small events?
 - YES
- What can the neuroanatomy tell us about how event parts are detected?
 - Prominent activity in MT+
 - Motion processing?

Movement and segmentation

 How do people use motion information to encode activity?

(Zacks, in press, Cognitive Science)

- Attribution manipulation
 - Intentional
 - Random
- Stimulus manipulation
 - Game
 - Equation

<interative animation>

Movement and segmentation

- Movement information can be used to identify event boundaries
- When activity is intentional, something more is happening

Functional MRI of Simple Animations

- Random animations
- Passive viewing during scanning
- MT+ localizer

MT+ Correlated With Object Speed

Occipito-parietal Cortex Correlated With Object Acceleration

z = 51

Conclusions

- Event segmentation is a reliable concomitant of normal perception
- Perceptual and neural processing distinguish large-scale and small-scale events
- The perception of event structure is related to
 - bottom-up processing of movement
 - top-down processing of goals, plans, and conventions

Dynamic Cognition Laboratory

http://www.iac.wustl.edu/~dclweb

dclweb@iac.wustl.edu