Bewijs i.v.m. de voorwaarden van een directe som (algemener)

Vincent Van Schependom

9 januari 2025

Propositie. Gegeven is een vectorruimte $(\mathbb{R}, V, +)$. Zij $U_1, U_2, ..., U_k$ deelruimten van V. Dan is

$$W = \bigoplus_{i=1}^{k} U_i$$

als en slechts als

- (a) $W = \sum_{i=1}^k U_i$
- (b) voor alle i = 1, ..., k geldt dat

$$U_i \cap (U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k) = \{0\}$$

Bewijs. Veronderstel dat $W=\oplus_{i=1}^k U_i$. Voor een willekeurige vector $w\in W$ geldt dan dat er unieke vectoren $u_1\in U_1,u_2\in U_2,...,u_k\in U_k$ bestaan, zó dat $w=\sum_{i=1}^k u_i$. Dus is zeker $W=\sum_{i=1}^k U_i$.

We beweren dat $U_i \cap (U_1 + ... + U_{i-1} + U_{i+1} + ... + U_k) = \{0\}$. Veronderstel immers dat

$$0 \neq v \in U_i \cap (U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k).$$

Dan kunnen we die vector v schrijven als

$$v = v + 0 = 0 + v$$

waarbij de eerste keer v als vector van U_i en de tweede keer v als vector van $(U_1 + ... + U_{i-1} + U_{i+1} + ... + U_k)$ opgevat wordt. Bijgevolg zou de somruimte $U_i + (U_1 + ... + U_{i-1} + U_{i+1} + ... + U_k) = \sum_{i=1}^k U_i$ geen directe som zijn, wat een tegenspraak levert met het gegeven. De doorsnede $U_i \cap (U_1 + ... + U_{i-1} + U_{i+1} + ... + U_k)$ moet dus wel beperkt zijn tot $\{0\}$.

Veronderstel nu omgekeerd dat $W = \sum_{i=1}^{k} U_i$ en dat voor alle i = 1, ..., k geldt dat

$$U_i \cap (U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k) = \{0\}.$$

We tonen aan dat de som $W = \sum_{i=1}^k U_i = U_i + (U_1 + ... + U_{i-1} + U_{i+1} + ... + U_k)$ een directe som is. Veronderstel dat er een vector $w \in W$ is die op meerdere wijzen als som van een vector uit U_i en $(U_1 + ... + U_{i-1} + U_{i+1} + ... + U_k)$ kan geschreven worden (met $i \in \{1, ..., k\}$). Veronderstel met andere woorden dat

$$w = u_i + u_j = u_i' + u_j',$$

met $u_i, u_i' \in U_i$ en $u_j, u_j' \in (U_1 + \ldots + U_{i-1} + U_{i+1} + \ldots + U_k)$. Dan volgt dat

$$u_i - u'_i = u'_j - u_j \in U_i \cap (U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k) = \{0\}.$$

Bijgevolg moet $u_i = u'_i$ en $u_j = u'_j$.