EECS 376: Foundations of Computer Science

Lecture 11 - More Undecidable Problems, Turing Reductions

Explicit Undecidable Problems

Today's Agenda

- * Recap:
 - * (un)countability
 - * "Almost all" problems are undecidable
- * An explicit undecidable language from the Barber Paradox
- * Two more natural undecidable problems:
 - * Accepting problem L_{ACC}
 - * Halting problem L_{HALT}
- * Turing reductions/reducibility

Recap

Review: Countability

- * A set S is **countable** if
 - * there is an injective from S to \mathbb{N} , or equivalently
 - * we can list elements in S so each element appear <u>at some finite</u> <u>position</u> in the list.
- * Which set is countable?
 - * rational numbers
 - * real numbers
 - * all <u>finite</u> binary strings
 - * all <u>infinite</u> binary sequences
 - * all Turing machines
 - * all decidable languages
 - * all languages

Review: Countability

- * A set S is **countable** if
 - * there is an injective from S to \mathbb{N} , or equivalently
 - * we can list elements in S so each element appear <u>at some finite</u> <u>position</u> in the list.
- * Which set is countable?
 - * rational numbers
 - * real numbers
 - * all <u>finite</u> binary strings
 - * all <u>infinite</u> binary sequences
 - all Turing machines
 - all decidable languages
 - * all languages

There is an Undecidable Language

- * Set of all <u>TMs</u> (programs) is countable:
 - Can list them by their "source code" (descriptions as strings)
 - * $\langle M_1 \rangle$, $\langle M_2 \rangle$, $\langle M_3 \rangle$, ... $\in \{0,1\}^*$
- * Set of all <u>decidable languages</u> is countable:
 - Each TM decides at most one language
- * Set of all <u>languages</u> (infinite binary strings) is <u>uncountable</u>
- * So, there is an undecidable language!
- * Actually, "almost all" languages are undecidable. (Similarly, "almost all" real numbers are irrational...)

Summary

The 'good': We showed that there is an undecidable language

The 'bad': This language is "non-constructive" and "unnatural"

Q: Can we say anything about "natural" problems that we care about, or are "useful"?

An Explicit Undecidable Problem

Barber Paradox

- * The barber paradox is a puzzle derived from Russell's paradox.
- * Bertrand Russell used it to illustrate the paradox, though he attributes it to an unnamed person who suggested it to him.
- * The puzzle shows that a plausible scenario is logically impossible.
- * Specifically, it describes a barber who is defined such that he both shaves himself and does not shave himself, which implies that no such barber exists.

Russell's Paradox

- * In mathematical logic, Russell's Paradox (also known as Russell's Antinomy) is a set-theoretic paradox published by the British philosopher and mathematician Bertrand Russell in 1901.
- * Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions.
- * According to the unrestricted comprehension principle, for any sufficiently well-defined property, there is a set of all and only objects with that property.

The Barber Paradox

* The Paradox:

* Barber B cuts the hair of exactly all those people who do not cut their own hair.

Question: Does B cut his own hair?

- * Pick a person *P*:
 - * P cut the hair of $P \Rightarrow B$ does not cut the hair of P.
 - * P does not cut the hair of $P \Rightarrow B$ cut the hair of P.
- * Substituting P = B:
 - * B cut the hair of B \Rightarrow B does not cut the hair of B
 - * B does not cut the hair of B \Rightarrow B cut the hair of B
 - * A Contradiction! But contradiction to what?
- Conclusion: this Barber cannot exist

Barber Paradox is actually Diagonalization in Disguise

* The Paradox

- * Barber B cuts the hair of exactly all those people who do not cut their own hair.
- * Consider the CUTTER-CUTTEE Matrix:

CUTTEE

		Chico	Harpo	Groucho	Gummo	Zeppo	Barber
CUTTER	Chico	Υ					
	Harpo		N				
	Groucho			N			
	Gummo				Y		
	Zeppo					N	
	Barber	N	Υ	Y	N	Y	Y or N?

Source Code as Input

- * Since a program's source code (or a TM) is just a string,
- * it can be passed as input to another program or even to the program itself!

```
* Example: bool M1(string s) {
    return 0;
}
```

```
\langle M_1 \rangle = "bool M1(string s) \{ | n return 0; | n \} | n"
```

Q: What does $M_1(\langle M_1 \rangle)$ return?

Using the Barber Paradox to Construct an Undecidable Problem

"Barber B cuts the <u>hair</u> of exactly all those people who do not cut their own <u>hair</u>."

Let's consider a computational analogy, where:

- o barber, people = TM(s)
- O hair = description of TM
- o cut = accept

"TM MBARBER accepts as input the <u>description</u> of exactly all TMs that do not accept as input their own <u>description</u>."

```
L(M_{BARBER}) = \{\langle M \rangle : M \text{ does not accept } \langle M \rangle\}
```

Is $L(M_{BARBER})$ decidable? Does TM M_{BARBER} exist?

Barber performs Diagonalization

- List of all decidable languages $L(M_1)$, $L(M_2)$, $L(M_3)$, ...
- Define a table $T(i,j) = \begin{cases} 1 & \text{if } M_i \text{ accepts } \langle M_j \rangle \\ 0 & \text{otherwise} \end{cases}$

 $L(M_{BARBER}) = \{\langle M \rangle : M \text{ does not accept } \langle M \rangle\}$

		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	
	$L(M_1)$	0	1	0	1	1	
	$L(M_2)$	1	1	0	1	0	
(25)	$L(M_3)$	0	0	0	0	0	
$t\langle M\rangle$	$L(M_4)$	1	1	1	0	1	
$L(M_{BAB})$	1	0	1	1			

- $L(M_{BARBER})$ flips the diagonal!
- $L(M_{BARBER})$ is not on the list.
- So $L(M_{BARBER})$ is undeciable

An **Explicit** Undecidable Language

- * Since no program has $L_{\rm BARBER} = \{\langle M \rangle : M \text{ does not accept } \langle M \rangle\}$ as its language, $L_{\rm BARBER}$ is **undecidable**.
- * This is our first example of an explicit undecidable language!
- * Q: Why do we care about an explicit undecidable language?
- * A: We can use it to show that other languages are also undecidable.

A Natural Undecidable Problem: The Acceptance Problem

The Acceptance Problem

Input: Turing Machine M and a string x

Output: Does M accept x?

```
bool M(string \mathcal{X}): n \leftarrow 100 while (n > 1): n \leftarrow n - 1 return T
```

Example: Does M accept x=376?

```
Language: Lacc = \{(\langle M \rangle, x) : M \text{ accepts } x\}
```

Q: Why not just run M(x)?

Attempt 1: Interpreter

- An *interpreter* is a program that <u>takes another program as input</u> and simulates its behavior.
 - e.g. the Python interpreter
- Specifically, an interpreter U takes two inputs: (1) source code (M), and (2) string x.
- U simulates the execution of M on input x:
 - M accepts $x \Rightarrow U$ accepts $(\langle M \rangle, x)$
 - \circ M rejects x \Rightarrow U rejects (⟨M⟩, x)
 - M loops on $x \Rightarrow U$ loops on $(\langle M \rangle, x)$
 - This is called the Universal Turing Machine (and it does exist)

Does Interpreter Decide L_{ACC} ?

- * $U(\langle M \rangle, x)$ simulates the execution of M on X:

 * M accepts $x \Rightarrow U$ accepts $(\langle M \rangle, x)$ * M rejects $x \Rightarrow U$ rejects $(\langle M \rangle, x)$ * M loops on $x \Rightarrow U$ loops on $(\langle M \rangle, x)$ In both cases $(\langle M \rangle, x) \notin L(U)$ * The language of U is: $L(U) \equiv L_{ACC} = \{(\langle M \rangle, x) : M \text{ accepts } x\}$ * However, U is not a decider for L_{ACC} . Why?
- * L_{ACC} is actually undecidable. We will show this using **reduction**

* U loops on some inputs.

Reduction

Plan for showing that L_{ACC} is Undecidable

Could try to come up with a diagonalization proof ... but let's not reinvent the wheel!

KEY IDEA: Once we have one undecidable language, we can use it to show that other languages are also undecidable!

HOW? Show that if L_{ACC} were decidable, this would let us **decide some** <u>undecidable</u> language!

This is called a **reduction**. (Specifically, a Turing-reduction)

The idea of a reduction is one of the most central ideas in computer science!

Turing Reduction from A to B (denoted $A \leq T$ B):

"We can use a **black-box decider** for **B** as a subroutine to decide **A**."

What it implies:

- 1. If **B** is decidable then **A** is decidable.
- 2. Contrapositive: If A is undecidable then B is undecidable.

"Problem B is at least as hard as Problem A"

Reducing L_{BARBER} to L_{ACC} :

 $L_{\text{BARBER}} \leq_T L_{\text{ACC}}$

Reduction from LBARBER to LACC (i.e. LBARBER ≤T LACC)

We need to implement:

Mbarber takes one input: (M)

M does not accept $(M) \Rightarrow M_{BARBER}$ accepts

M accepts $(M) \Rightarrow M_{BARBER}$ rejects

Task: specify the pseudocode

 $M_{BARBER}(\langle M \rangle)$:

Suppose we have:

Macc takes two inputs: (M), x

M accepts $x \Rightarrow M_{ACC}$ accepts

M does not accepts $x \Rightarrow M_{ACC}$ rejects

We are allowed to use

Macc((M), x) as a subroutine, with the inputs of our choice

Reduction from LBARBER to LACC (i.e. LBARBER ≤T LACC)

We need to implement:

Mbarber takes one input: $\langle M \rangle$ M does not accept $\langle M \rangle \Rightarrow M_{\text{barber}}$ accepts

M accepts $(M) \Rightarrow M_{BARBER}$ rejects

Suppose we have:

Macc takes two inputs: (M), x

M accepts $x \Rightarrow M_{ACC}$ accepts

M does not accepts $x \Rightarrow M_{ACC}$ rejects

Task: specify the pseudocode

 $M_{BARBER}(\langle M \rangle)$:

Run Macc on $(\langle M \rangle, \langle M \rangle)$.

If Macc accepts, then reject.

If Macc rejects, then <u>accept</u>.

Reduction from LBARBER to LACC (i.e. LBARBER ≤T LACC)

We need to implement:

```
Mbarber takes one input: \langle M \rangle
M does not accept \langle M \rangle \Rightarrow M_{\text{Barber}} accepts
M accepts \langle M \rangle \Rightarrow M_{\text{Barber}} rejects
```

Suppose we have:

Macc takes two inputs: $\langle M \rangle$, x M accepts $x \Rightarrow M_{ACC}$ accepts M does not accepts $x \Rightarrow M_{ACC}$ rejects

Task: specify the pseudocode

```
MBARBER((M)):

Run Macc on ((M), (M)).

If Macc accepts, then reject.

If Macc rejects, then accept.
```

Analysis:

- M_{BARBER} halts on any input, because M_{ACC} does.
- $\langle M \rangle \in L_{BARBER} \iff$
 - M does not accept $\langle M \rangle \Leftrightarrow$
 - M_{ACC} rejects $(\langle M \rangle, \langle M \rangle) \Leftrightarrow$
 - M_{BARBER} accepts $\langle M \rangle$.

Conclude: L_{ACC} is undecidable

- * We showed $L_{\text{BARBER}} \leq_T L_{\text{ACC}}$
- * But L_{BARBER} is undecidable
- * So L_{ACC} is undecidable

Another Natural Undecidable Problem: The Halting Problem

The Halting Problem

Input: Turing Machine M and a string x

Output: Does M halt when given input x?

Language: LHALT = $\{(\langle M \rangle, x) : M \text{ halts on input } x\}$

We will show that $L_{ACC} \leq_T L_{HALT}$. So L_{HALT} is undecidable.

Q: Again, what is wrong with just running M(x)?

Reduction from Lacc to Lhalt (i.e. Lacc ≤T Lhalt)

We need to implement:

Macc takes two inputs: (M), x

M accepts $x \Rightarrow M_{ACC}$ accepts

M loops or rejects $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

MHALT takes two inputs: (M), x

M accepts or rejects $x \Rightarrow M_{HALT}$ accepts

M loops on input $x \Rightarrow M_{HALT}$ rejects

We need to specify the pseudocode:

 $Macc(\langle M \rangle, x)$:

Reduction from Lacc to Lhalt (i.e. Lacc ≤T Lhalt)

We need to implement:

Macc takes two inputs: (M), x

M accepts $x \Rightarrow M_{ACC}$ accepts

M loops or rejects $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

MHALT takes two inputs: (M), x

M accepts or rejects $x \Rightarrow M_{HALT}$ accepts

M loops on input $x \Rightarrow M_{HALT}$ rejects

Task: specify the pseudocode

```
M_{ACC}(\langle M \rangle, x):
```

Run M_{HALT} on $(\langle M \rangle, x)$

If M_{HALT} rejects, reject

(M loops on X, so M does not accept x)

If M_{HALT} accepts, run M on X

(this simulation will terminate!)

If *M* accepts, <u>accept</u>

If M rejects, reject

Reduction from Lacc to Lhalt (i.e. Lacc ≤t Lhalt)

We need to implement:

Macc takes two inputs: $\langle M \rangle$, x M accepts $x \Rightarrow M_{ACC}$ accepts M loops or rejects $x \Rightarrow M_{ACC}$ rejects

Suppose we have:

Mhalt takes two inputs: $\langle M \rangle$, x M accepts or rejects $x \Rightarrow M_{\text{HALT}}$ accepts M loops on input $x \Rightarrow M_{\text{HALT}}$ rejects

Task: specify the pseudocode

```
M_{ACC}(\langle M \rangle, x):
```

```
Run M_{HALT} on (\langle M \rangle, x)

If M_{HALT} rejects, <u>reject</u> (M loops on x, so M does not accept x)

If M_{HALT} accepts, run M on x (this simulation will terminate!)

If M accepts, <u>accept</u>

If M rejects, <u>reject</u>
```

Analysis: M_{ACC} halts on any input (why?). Moreover:

```
M accepts x \Rightarrow M_{HALT} accepts (\langle M \rangle, x) \Rightarrow M_{ACC} accepts (\langle M \rangle, x)

M rejects x \Rightarrow M_{HALT} accepts (\langle M \rangle, x) \Rightarrow M_{ACC} rejects (\langle M \rangle, x)

M loops on x \Rightarrow M_{HALT} rejects (\langle M \rangle, x) \Rightarrow M_{ACC} rejects (\langle M \rangle, x)
```

Conclude: L_{HALT} is undecidable

- * We showed $L_{ACC} \leq_T L_{HALT}$
- * But L_{ACC} is undecidable
- * So L_{HALT} is undecidable

Wrap Up

Two ways to show undecidability

* Two Options:

- Direct proof using diagonalization arguments
- 2. Indirect proof using **reduction**s

```
(L_{\mathrm{BARBER}})
(L_{\mathrm{HALT}} \text{ and } L_{\mathrm{ACC}})
```

- * Suppose $A \leq_T B$.
 - * If *B* is decidable, then *A* is decidable.
 - * If A is undecidable, then B is undecidable
- * We have shown today: $L_{BARBER} \leq_T L_{ACC} \leq L_{HALT}$.
 - * So L_{ACC} and L_{HALT} are undecidable.

Exercises

- * Question 1: Is it true that $L_{\text{HALT}} \leq_T L_{\text{ACC}}$?
- * Question 2: Suppose $A \leq_T B$. Must $B \leq_T A$?

Optional

- * Q. What could you do with a program that solved the halting problem?
- * A. Solve just about any open mathematical problem!
- * Goldbach's Conjecture: every even number is the sum of two primes. E.g. 20=7+13, 22=3+19, 24=5+19, 26=7+19, 28=11+17, etc.

```
Goldbach()

For every even x = 2,4,6,...

bool = FALSE;

For y from 2 to x-2

If (y and x-y are both prime) bool = TRUE

If (bool==FALSE) Return().
```

* Does Goldbach loop or eventually halt?