An Investigation in Cartesian Planes

Tushar Maharana

 $March\ 29,\ 2022$

We can make equations that represent a line on the Cartesian plane.

$$x + y = 0 (1)$$

These are also called linear equations.

Let's say we do it the other way around and make a equation, who's solution is what we choose. We want a equation, whose solution is

$$x = 1, y = 0 \tag{3}$$

Let's try adding the equations, so,

$$x + y = 1 + 0 \tag{4}$$

$$x + y = 1 \tag{5}$$

Let's verify it graphically,

Yay! We did it!

Now what about 2 solutions equations?

Umm, I think these equation are also called Quadratic Equations. Anyway, Let's say the required points are

$$x_1 = 1 \tag{7}$$

(6)

$$y_1 = 0 (8)$$

$$x_2 = 2 (9)$$

$$y_2 = 0 (10)$$

Now to create the equation. Let's first make a equation for each point first.

$$x + y = 1 + 0 (11)$$

$$x + y = 1 \tag{12}$$

$$x + y = 2 + 0 (13)$$

$$x + y = 2 \tag{14}$$

Upon further rearrangement,

$$x + y - 1 = 0 (15)$$

$$x + y - 2 = 0 (16)$$

Let's use the factor theorem to make a equation

$$(x+y-1)(x+y-2) = 0 (17)$$

$$x^{2} + xy - 2x + xy + y^{2} - 2y - x - y + 2 = 0$$

$$x^{2} + y^{2} + 2xy - 3(x + y) + 2 = 0$$
(18)

$$x^{2} + y^{2} + 2xy - 3(x+y) + 2 = 0 (19)$$

We have a equation now! Let's verfiy using a graph.

Damn, that's satisfying! Do you know what's even more satisfying? There are infinite solutions to our question.

Let's try finding the other solutions.

This is the factored form of the equation we had obtained.

$$(x+y-1)(x+y-2) = 0 (21)$$

If we manipulate them and take y as the function we get,

$$f(x) = (1-x)(2-x) (22)$$

$$f(x) = 2 - x - 2x + x^2 (23)$$

$$f(x) = x^2 - 3x + 2 (24)$$

Let's graph this one and try again.

We found another equation, I am sure that there are many more! But I haven't found another one yet. But if you find one email me at tusharmaharana44676@gmail.com.