CAWF: Coupled ApplicationsWorkF low Framework

LES JOURNÉES ARCANE 2023

COUPLAGE D'APPLICATIONS ARCANE AVEC FRAMEWORK PRECICE

- Sommaire
 - Contexte
 - Revue des outils pour le couplage de code
 - Intégration de preCICE dans ArcGeoSim
 - Quelques exemples d'applications

Sommaire

Contexte

- Cadre des travaux
 - Projet de créativité Blanche CAWF
 - Projet ArcGeoSim
 - Collboration IFPEN-CEA
 - Collaboration IFPEN-ANDRA
 - Equipes:
 - IFPEN : Stéphane DE CHAISEMARTIN, Françoise WILLEN, Daniele COLOMBO
 - ANDRA: Bernard VIALAY, Antoine PASTEAU

Contexte

- La modélisation multi-physique pour une meilleure compréhension des phénomènes complexes:
 - Géothermie, Séquestration du CO2 : Ecoulement en milieux poreux, Transport réactif, Géomécanique, Pilotage des puits
 - Réacteur chimique : Ecoulement, Conduction thermique, Chimie
 - Eolienne flottante : Hydrodynamique, Interactions fluide-structure, Aérodynamique
 - ...

Verrous

- Les différents modèles de simulation, des codes open-source ou pas :
 - sont des boites noires complexes
 - leur couplage est une affaire d'experts (impossibilité d'être expert sur tous les codes, indisponibilités de certains experts)
 - problèmes de portages (app disponibles sur un nombre OS limités, langages différents)
- Multitudes de formats non compatibles

Constats

• La complexité de la mise en place des workflows est un frein à la mise en place de ce type de modélisation

- Sommaire
 - Contexte
 - Revue des outils pour le couplage de code

○ Revue des frameworks de couplage :

- ASCoDT [1,2]: Advanced Scientific Computing Development Toolkit (Framewok open-source)
 - intégré dans l'IDE Eclipse
 - Scientific Interface Definition Language (generation of C, C++, Java and Fortran technical code)
 - RMI and Socket based communication, Master-Slave architecture
- ADVENTURE [3]: ADVanced Engineering analysis Tool for Ultra large Real world (Framewok open-source)
 - MPI based communication, [m,n] map client-server architecture
- CWIPI [4]: Coupling With Interpolation Parallel Interface(Framewok open-source)
 - MPI based communication, coupleur statique centralisé, (C, C++ Fortran API)
 - Module d'interpolation entre maillages
- EMPIRE [6,7]: Enhanced Multi Physics Interface Research Engine
- MpCCI [8,9]: Mesh-based parallel Code Coupling Interface
 - Commercial code
 - Socket based communication, Parallel coupling Manage, C, Fortran API, code adapter
 - Module d'interpolation entre maillages
- OASIS3-MCT [15,16] (Framewok open-source) orienté modélisation du climat
 - MPI based communication, Maillage non structuré 2D, module d'interpolation, bibliothèque de couplage
 - Support du format NetCDF

• Revue des frameworks de couplage :

- OpenPALM [5] (Framework open-source)
 - Coupleur dynamique parallèle (couplage de code à niveau de parallélisme et de discrétisation en temps arbitraire)
 - API C, C++ et fortran
 - Module d'interpolation basé sur CWIPI (MPI based communication)
- MUSCLE [17,18] : Multiscale Coupling Library and Environment
- ONELAB [10]: Open Numerical Engineering LABoratory
- SALOME [11] : Simulation numérique par Architecture Logicielle en Open source et à Méthodologie d'Évolution
- preCISE [12,13,14]: Precise Code Interaction Coupling Environment (Framewok open-source)
 - Coupleur dynamique parallèle
 - MPI or Socket based communication, API C, C++ et fortran
 - Module d'interpolation

CAWF: COUPLED APPLICATIONS WODE OW FRANCISCO

 \mathcal{M}_{S_1} input _

Revue des techno de couplage :

- Mapping des données
 - Type de maillages
 - 2D, 3D, Volumique, Surfaciques, formats
 - Interpolations
 - Multi-maillage, conforme, semi-conforme, non conforme, matching/non matching
 - Mapping methodes :
 - Nearest-neighbour,
 - nécessite uniquement les nœuds (uid et coordonnées) des maillages
 - Nearest-neighbour projection,
 - nécessite les nœuds (uid et coordonnées) et certaines connectivités des maillages
 - Radial basis function (RBF)
 - Gaussian,
 - Global Thin Plate Spline, Compact Thin Plate Spline
 - Consistent/Conservative
 - Consistent : reproduit exactement un champ constant (variable intensive Pression, Température,...)
 - Conservative: conserve la somme des champs (variable extensive: concentration, volume, force,...)

Revue des techno de couplage :

- Schéma de couplage, accélérateur numérique
 - Communication : Uni-directionnel, bi-directionnel
 - Schéma en temps :
 - explicite/implicite
 - Matching/non matching time stepping
 - Matching : Les données sont échangées à chaque pas de temps
 - Non matching : les données sont échnagées à la fin des fenêtre en temps
 - Mutiplicatif/Additif, séquentiel/parallèle
 - Multiplicatif : couplage séquentiel en général explicite
 - Additif : permet un couplage parallèle implicite ou explicite
 - Accélérateur du couplage implicite :
 - Méthode itérative de type Point fixe,
 - Accélération :
 - Aiken under-relaxation (dépend uniquement des itérations précédentes)
 - Schémas de type quasi-Newton
 - Accélère la méthode avec une approximation de l'inverse de la jacobienne
 - Least square methods, Filtering technics pour évaluer l'inverse de la jacobienne

Acoustic Street And Dule Street Module Street Module Modul

OPTIMIZATION MODULE

- preCICE: (Stuttgart University and Technical University of Munich)
 - Principes

- **CWIPI** : (bibliothèque ONERA)
 - Principes

OPTIMIZATION MODULE

● PORTAGE: (Los Alamos National Laboratory)

Principes

source: voronoi mesh target: cartesian grid

search for overlapping source cells

intersect cells, compute weights

interpolate

gather: shape function support centered at target point (red) it is evaluated at source points (blue).

scatter: shape functions supports centered at sources points (blue) they are evaluated at a target point (red).

- Sommaire
 - Contexte
 - Revue des outils pour le couplage de code
 - Intégration de preCICE dans ArcGeoSim

■ Intégration de preCICE dans ArcGeoSim :

- Mise à disposition d'un service Arcane CAWFMNG pour le couplage avec d'autres codes:
 - En C++ ou Python;
 - De type Arcane, OpenFOAM, Aster, ...
- Ce service met à disposition des fonctionnalités pour:
 - définir des zones de maillage de couplage
 - définir les variables arcanes de couplage à échanger
 - paramétrer les algorithmes d'interpolation et les algorithmes numériques de couplages
 - gestion des maillages évolutifs
 - accéder aux fonctionnalités avancées disponibles dans preCICE
- Ce service est basé sur les mécanismes Arcane :
 - De retour en arrière multi-pas de temps
 - De gestion des sauvegardes et restaurations des variables Arcanes;
 - ...

- Sommaire
 - Contexte
 - Revue des outils pour le couplage de code
 - Intégration de preCICE dans Arcane
 - Quelques exemples d'application

Exemples d'utilisation de preCICE avec des applications Arcane :

- Modèle de bassin :
 - couplage A2 :
 - Modèle de bassin ArcTem
 - Modèle de géomécanique Aster
- Modèle de poro-élasticité :
 - couplage de 2 modules Arcane :
 - Module d'Ecoulement VF
 - Module d'Elasticité linéaire VEM
- Modèle pour la géothermie :
 - couplage d'un modèle de réservoir avec un modèle de puits
 - Application Arcane : FraXim
 - Modèle de puits en python

- A2 un code de couplage HydroMécanique:
 - ArcTem (IFPEN) simulateur bassin
 - Volumes finis
 - Mécanique simplifiée 1D
 - Elasticité linéaire
 - Code_Aster (EDF R&D convention de co-développement avec IFPEN) code mécanique
 - Eléments finis
 - Mécanique 3D
 - Elasto-plasticité grandes transformations
 - Fracturation et changement de perméabilité

Le code prototype utilise un couplage faible itératif avec possibilité de démarrer la simulation avec un one-way

Hydrocarbures responsables

BASSIN DE NEUQUEN

Time for data exchange from ArcTem to Code_Aster 1.0 | 1.0

ArcTem simulation time

Time for data exchange from Code_Aster to ArcTem

Exemples d'utilisation : Modèle de poro-élasticité

Modèle d'élasticité linéaire de type VEM

Contrainte totale : $\sigma(u, p) = \sigma^e(u) - \alpha P Id$

Contrainte effective : $\sigma^e = C \epsilon(u)$ avec

$$\epsilon(u) = \frac{1}{2} (\nabla u + \nabla u^T)$$

Equilibre mécanique : $-div(\sigma(u,p)) = f$

Modèle d'écoulement de type FV

Conservation de la masse de fluide $c_0P + \alpha Div(u)$

$$\partial_t (c_0 P + \alpha \operatorname{div}(u)) + \operatorname{div} (-\kappa (\nabla P - \rho g)) = q$$

avec c₀ la compressibilité et les conditions initiales et aux limites

Exemples d'utilisation : Modèle de poro-élasticité

- Résolution globale
 - Système linéaire global couplé
 - Problème de point-selle
 - Difficultés numériques
- Résolution découplée
 - Méthode de splitting Fixed-Stress Algo

$$\sigma_v = \frac{1}{3}tr(\sigma) = \frac{1}{3}tr(\sigma_e - \alpha P) = K_{dr} div u - \alpha P$$

- 2 modules Arcane indépendants
- Algorithme de couplage itératif
- Echange des données:
 - Pression
 - Div(U)

Comparaison 3D-2D preCICE

- **Exemples d'utilisation : Géothermie**
 - Modèle de réservoir basé sur Arcane : FraXim
 - Calcul des champs de température
 - Calcul des flux de chaleurs

- Modèle de puits avec installations de surface
 - Champs de température le long du puits
 - Couplage avec les installations en surface

Bibliographie :

- [1] http://www5.in.tum.de/ascodt
- [2] A. Atanasov, H.-J. Bungartz, and T. Weinzierl. A Toolkit for the Code Development in Advanced Computing. Report, Technische Universität München (TUM), Munich, Germany, 2013.
- [3] http://adventure.sys.t.u-tokyo.ac.jp/
- [4] http://sites.onera.fr/cwipi/
- [5] F. Duchaine, S. Jauré, D. Poitou, E. Quémerais, G. Staffelbach, T. Morel, and L. Gicquel. "Analysis of High Performance Conjugate Heat Transfer with the OpenPALM Coupler". *Computational Science & Discovery*, 2015.
- [6] http://empire.st.bv.tum.de/
- [7] T. Wang, S. Sicklinger, R. Wüchner, and K.-U. Bletzinger. "Concept and Realization of Coupling Software EMPIRE in Multiphysics Co-Simulation". Proceedings of the *V International Conference on Computational Methods in Marine Engineering (Marine) 2013*, pp. 289–298, Hamburg, Germany, 2013.
 - http://congress.cimne.com/marine2013/frontal/ProgSesion.asp?id=44
- [8] http://www.mpcci.de/
- [9] *MpCCI 4.4.1-1 Documentation*. Documentation, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany, 2015.

Bibliographie :

- [10] C. Geuzaine, F. Henrotte, J.-F. Remacle, and R.V. Sabariego. "ONELAB: Bringing Open-Source Simulation Tools to Industry Design and Education". Proceedings of the *Conference on the Computation of Electromagnetic Fields (COMPUMAG) 2015*, pp. 1–2, Montréal, Canada, 2015. http://lirias.kuleuven.be/bitstream/123456789/479419/1/onelab_abstract_cmag2015.pdf
- [11] http://www.salome-platform.org/
- [12] https://precice.org/
- [13] Shukaev, A. K. (2015). A fully parallel process-to-process intercommunication technique for precice. Master's thesis, Institut für Informatik, Technische Universität München.
- [14] Chourdakis, G., Davis, K., Rodenberg, B., Schulte, M., Simonis, F., Uekermann, B., ... & Koseomur, O. Z. (2021). preCICE v2: A Sustainable and User-Friendly Coupling Library. arXiv preprint arXiv:2109.14470.
- [15] http://verc.enes.org/oasis/
- [16] A. Thévenin. OASIS3-MCT & Open-PALM: 2 open source codes couplers. Presentation, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France, 2012.
- [17] http://www.qoscosgrid.org/trac/muscle
- [18] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem, B. Chopard, D. Groen, P.V. Coveney, and A.G. Hoekstra. "Distributed Multiscale Computing with MUSCLE 2, the Multiscale Coupling Library and Environment". *Journal of Computational Science*, vol. 5, no. 5, pp. 719–731, Elsevier, 2014.

Innover les énergies

Retrouvez-nous sur:

- www.ifpenergiesnouvelles.fr
- **y** @IFPENinnovation

OPTIMIZATION MODULE

Solutions proposées :

- Inspirées du cloud computing
 - Virtualisation et Containerisation :
 - Solution aux problèmes de portage
 - Application disponible à travers des container autonomes
 - Orchestrateurs de containers:
 - Scalabilité verticale et horizontal
 - Gestions des ressources
 - Tolérance aux pannes,...
 - Serveurs de données
 - Prise en charge des différents formats et
 - Mise à disposition de convertisseur entre différentes représentations d'une même donnée
 - Client léger
 - Disponible à travers un navigateur web fonctionnant sur n'importe quel poste client
 - Outils de Spécification des échanges de données
 - Spécification d'interface avec un IDL
 - Génération du code technique multi-langage (C++, python, java,...)
- Outils :
 - buildah, podman, nomad
 - RedHat, alternative à docker
 - ROOTLESS et DAEMONLESS, solutions aux problèmes de sécurité que l'on reproche à Docker
 - Django: pour une mise en place simple de la partie WebService
 - gRCP : Google Remote Call Precedure
 - Spécification efficace et portable des échanges de données entre applications ou de type client-serveur

•
$$\frac{1}{\Delta t} \left(c_0(P^{l+1} - P^n) + \alpha \left(\operatorname{div} u^l - \operatorname{div} u^n \right) + \frac{\alpha^2}{\kappa_{dr}} (P^{l+1} - P^l) \right) - \operatorname{div} \left(\kappa (\nabla P^{l+1} - \rho g) \right) = S$$

Connaissant $(P^l, divu^l) \rightarrow P^{l+1}$ on calcule la nouvelle valeur de P^{l+1} ;

- $-div\left(2\,\mu\epsilon(u^{l+1}) + \lambda\,div\,u^{l+1}\,Id\right) + \alpha\nabla P^{l+1} = f$ Connaissant P^{l+1} on calcule la nouvelle valeur de $div\,u^{l+1}$, soit σ_v^{l+1}
- Les variables échangées pendant le couplage sont P^{l+1} et $\alpha \left(\operatorname{div} u^l \operatorname{div} u^n \right)$, $\left| \frac{\alpha^2}{K_{dr}} \right|$ avec le bulk modulus , $K_{dr} = \frac{2}{3}\mu + \lambda = \frac{E}{3(1-2*\nu)}$ et α le coefficient de Biot .

Test1

Serial-implicit : 1 critère d'arrêt $\delta P=1.\,e-02$

Serial implicit	+ Acc cste=0,5
2 iter	2 iter

Parallel-implicit : 2 critères d'arrêt : $\delta P=1$. e-02 et δdiv u=1. e-02

Parallel-implicit	+ Acc Cste	Acc Aitken	Acc IQN-ILS
7 si 1 crit sinon 9	9 iter	12 iter	Div

