## Forecasting Unemployment Rate in Lubbock County

Eco 4306 Economic and Business Forecasting Spring 2019

### Introduction

#### Goal

 present a seasonal ARMA model suitable to forecast monthly unemployment rate in Lubbock County, Texas

#### Outline

- Data
- Seasonal ARMA model
  - Estimation
  - Forecast
  - Forecast Evaluation and Comparison with Naive Forecasting Method
- Conclusion

#### Data

- monthly data for the Unemployment Rate in Lubbock County, TX
- obtained from FRED database, see code TXLUBB3URN
- ▶ sample: January 1990 to January 2019



- estimation sample: January 1990 to December 2013
- prediction sample: January 2014 to January 2019

#### Data

▶ first difference applied to obtain the change in the unemployment rate

$$y_t = \Delta U R_t = U R_t - U R_{t-1}$$

 $\triangleright$  time series  $y_t$  exhibits seasonal variation



#### Data

- lacktriangle correlogram for change in unemployment rate  $y_t = \Delta U R_t$  confirms the presence of a seasonal pattern
- ▶ large spike in PAC at lags 12 and 24, and large spikes at multiples of 12 in AC

| Autocorrelation | Partial Correlation |     | AC     | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|-----|--------|--------|--------|-------|
| (b)             | 1 (1)               | 1 1 | 0.011  | 0.011  | 0.0320 | 0.858 |
| <b>=</b>        | i <b>≡</b> i        | 2   | -0.200 | -0.200 | 11.643 | 0.003 |
| <b>-</b>        | <b>=</b>  -         | 3   | -0.246 | -0.252 | 29.378 | 0.000 |
| el-             | 🖷 -                 | 4   | -0.104 | -0.167 | 32.542 | 0.000 |
| · 🗎             |                     | 5   | 0.189  | 0.086  | 43.103 | 0.000 |
| <b>=</b> ·      | =                   | 6   | -0.167 | -0.309 | 51.339 | 0.000 |
| · 🗎             | · =                 | 7   | 0.212  | 0.233  | 64.702 | 0.000 |
| 4               | = -                 | 8   | -0.088 | -0.186 | 66.986 | 0.000 |
| <b>=</b>        | = -                 | 9   | -0.231 | -0.263 | 82.869 | 0.000 |
| <b>=</b>        | ·                   | 10  | -0.204 | -0.328 | 95.356 | 0.000 |
| (8)             | 1 (1)               | 11  | 0.031  | -0.046 | 95.637 | 0.000 |
|                 |                     | 12  | 0.816  | 0.693  | 296.39 | 0.000 |
| (1)             | 100                 | 13  | 0.021  | 0.061  | 296.52 | 0.000 |
| = -             | 10                  |     | -0.193 | -0.042 | 307.87 | 0.000 |
| -               | (1)                 |     | -0.240 | 0.010  | 325.40 | 0.000 |
| 4               | (1)                 | 16  | -0.098 | 0.009  | 328.32 | 0.000 |
| ·               | (1)                 | 17  | 0.175  | 0.039  | 337.73 | 0.000 |
| <b>=</b>        | 1 10                | 18  | -0.153 | -0.029 | 344.99 | 0.000 |
| · 🗎             | 4                   | 19  | 0.197  | -0.069 | 356.96 | 0.000 |
| 4               | 10                  | 20  | -0.077 | -0.050 | 358.81 | 0.000 |
| =               | 1 (1)               | 21  |        | -0.034 | 373.89 | 0.000 |
| <b>-</b>        | ( ·                 | 22  |        | -0.101 | 388.71 | 0.000 |
| (1)             | (Q)                 | 23  |        | -0.092 | 388.86 | 0.000 |
|                 | . =                 | 24  | 0.777  | 0.274  | 579.28 | 0.000 |
| 40              | 4.                  | 25  | -0.002 | -0.085 | 579.28 | 0.000 |
|                 | 1 11                | 26  | -0.171 | 0.014  | 588.63 | 0.000 |
| -               | 1 1                 |     | -0.221 | 0.059  | 604.18 | 0.000 |
| 4               | 1 1/1               | 28  | -0.088 | 0.018  | 606.65 | 0.000 |
| ·   P           | . 4                 | 29  |        | -0.069 | 613.14 | 0.000 |
| П.              | 1 1                 | 30  | -0.171 | -0.074 | 622.54 | 0.000 |
| ·   -           | 191                 | 31  |        | -0.064 | 634.73 | 0.000 |
| 4               | 4.                  | 32  | -0.088 |        | 637.22 | 0.000 |
| =               | 4                   | 33  |        | -0.083 | 652.48 | 0.000 |
| =               | 1 11                |     | -0.201 | -0.004 | 665.67 | 0.000 |
| (1)             | 141                 | 35  |        | -0.061 | 665.89 | 0.000 |
|                 | 1 10                | 36  | 0.725  | 0.067  | 839.75 | 0.000 |

## Estimated AR(1)-SARMA(1,1) Model

multiplicative seasonal AR(1)-SARMA(1,1) model

$$(1 - \phi_1 L)(1 - \phi_{12} L^{12})y_t = \phi_0 + (1 + \theta_{12} L^{12})\varepsilon_t$$

estimation results

Dependent Variable: D(TXLUBB3URN) Method: ARMA Maximum Likelihood (BFGS) Date: 03/29/19 Time: 23:29 Sample: 1990M02 2013M12 Included observations: 287 Convercence achieved after 19 iterations

Coefficient covariance computed using outer product of gradients

| Variable           | Coefficient | Std. Error     | t-Statistic | Prob.     |
|--------------------|-------------|----------------|-------------|-----------|
| С                  | -0.004496   | 0.172417       | -0.026075   | 0.9792    |
| AR(1)              | -0.098539   | 0.056171       | -1.754261   | 0.0805    |
| SAR(12)            | 0.994938    | 0.002843       | 350.0173    | 0.0000    |
| MA(12)             | -0.788612   | 0.042420       | -18.59037   | 0.0000    |
| SIGMASQ            | 0.046547    | 0.003136       | 14.84395    | 0.0000    |
| R-squared          | 0.807475    | Mean depend    | lent var    | -0.002439 |
| Adjusted R-squared | 0.804744    | S.D. depende   | nt var      | 0.492561  |
| S.E. of regression | 0.217652    | Akaike info cr | iterion     | -0.090124 |
| Sum squared resid  | 13.35900    | Schwarz crite  | -0.026370   |           |
| Log likelihood     | 17.93274    | Hannan-Quin    | n criter.   | -0.064572 |
| F-statistic        | 295.6857    | Durbin-Watso   | n stat      | 1.987430  |
| Prob(F-statistic)  | 0.000000    |                |             |           |

estimated model thus takes the form

$$(1+0.098L)(1-0.995L^{12})y_t = -0.004 + (1-0.789L^{12})\varepsilon_t$$

# In-Sample Evaluation (Checking Model for Adequacy)

residuals of the estimated AR(1)-SARMA(1,1) model appear to be white noise

- time series plot does not show any recognizable pattern, or any changes in volatility over the estimation sample
- no remaining significant time dependence in correlogram



| ii correlogram  |                     |     |        |        |        |       |
|-----------------|---------------------|-----|--------|--------|--------|-------|
| Autocorrelation | Partial Correlation |     | AC     | PAC    | Q-Stat | Prob  |
| (b)             | I db                | 1 1 | 0.005  | 0.005  | 0.0071 |       |
| ob.             | l ob                | 2   | 0.024  | 0.024  | 0.1816 |       |
| olb .           | l do                | 3   | -0.024 | -0.025 | 0.3555 |       |
| 40              | l do                | 4   | -0.043 | -0.043 | 0.8941 | 0.344 |
| - 40            | 1 (6)               | 5   | -0.014 | -0.013 | 0.9544 | 0.621 |
| olio (ili)      | 1 (1)               | 6   | 0.024  | 0.025  | 1.1182 | 0.773 |
| (b)             | · • •               | 7   | 0.107  | 0.106  | 4.5139 | 0.341 |
| (10)            | [ (b)               | 8   | 0.057  | 0.054  | 5.4963 | 0.358 |
| (1)             | 1 (1)               | 9   | 0.022  | 0.016  | 5.6352 | 0.465 |
| 10              | (b)                 | 10  | 0.015  | 0.019  | 5.7016 | 0.575 |
| (1)             | 1 (1)               | 11  | 0.016  | 0.027  | 5.7755 | 0.672 |
| (10)            | 1 (8)               | 12  | 0.064  | 0.073  | 7.0297 | 0.634 |
| (1)             | 0)0                 | 13  | 0.035  | 0.035  | 7.4016 | 0.687 |
| - 10            | (1)                 | 14  | 0.023  | 0.009  | 7.5590 | 0.752 |
| - 40            | (4)                 |     | -0.018 |        | 7.6613 | 0.811 |
| (4)             | 1 (1)               | 16  | -0.062 |        | 8.8513 | 0.784 |
| - 40            | (0)                 |     | -0.015 |        | 8.9175 | 0.836 |
| 100             | ( b)                | 18  | 0.093  | 0.090  | 11.596 | 0.709 |
| 40              | (0)                 | 19  | -0.025 |        | 11.794 | 0.758 |
| 10              | (B)                 | 20  | 0.096  | 0.069  | 14.630 | 0.622 |
| - 40            | (4)                 |     | -0.029 |        | 14.898 | 0.669 |
| 4               | 4                   |     | -0.095 |        | 17.735 | 0.540 |
| 40              | 1 (0)               |     | -0.028 |        | 17.976 | 0.589 |
| - 40            | (4)                 | 24  | 0.050  | 0.064  | 18.776 | 0.600 |
| 41              |                     | 25  | -0.097 |        | 21.747 | 0.475 |
| - 40            | 1 10                | 26  | 0.045  | 0.029  | 22.395 | 0.497 |
| - 40            | 1 10                | 27  | 0.047  | 0.040  | 23.105 | 0.514 |
| 40              | 1 10                | 28  | 0.003  | 0.008  | 23.108 | 0.571 |
|                 |                     | 29  | -0.135 |        | 28.935 | 0.314 |
| 91              | 90                  | 30  | -0.033 |        | 29.283 | 0.347 |
| 4.              | 4.                  |     | -0.081 |        | 31.403 | 0.299 |
| 40              | 1 10                |     | -0.020 |        | 31.527 | 0.341 |
| 49              | 90                  |     | -0.037 |        | 31.969 | 0.369 |
| 40              | (40)                |     | -0.037 |        | 32.415 | 0.397 |
| 90              | 1 11                | 35  | 0.010  | 0.008  | 32.447 | 0.445 |
| (b)             | 1 (1)               | 36  | -0.002 | 0.022  | 32.448 | 0.494 |
|                 |                     |     |        |        |        |       |

# Forecast based on AR(1)-SARMA(1,1) model

- sequence of one step ahead forecasts
- prediction sample January 2014 to January 2019
- ▶ forecast tracks actual data quite well



## Forecast Evaluation - Root Mean Square Error (RMSE)

- lacktriangle simple naive forecast for the change in unemployment rate  $f_{t,1}^{\it naive}=y_{t+1-12}$
- lacktriangle implied naive forecast for unemployment rate  $\widehat{\it UR}^{\it naive}_{t,1} = \it UR_t + \it f^{\it naive}_{t,1}$
- ightharpoonup forecast errors  $e_{t+1} = y_{t+1} f_{t,1}$



root mean squared error (RMSE)
0.180 for forecast based on the AR(1)-SARMA(1,1) model
0.221 for naive forecast

# Forecast Evaluation - Equal Predictive Ability Test

- test whether the difference in the precision of the two forecasts is statistically significant
- ▶ hypothesis  $H_0: \beta_0 = 0$  for the regression

$$\Delta L_{t,1} = \beta_0 + u_t$$

where

$$L_{t,1} = L(e_{t,1}^{SARMA}) - L(e_{t,1}^{naive})$$

is the difference between the losses associated with the two alternative forecasts

Dependent Variable: TXLUBB3URN\_DL Method: Least Squares Date: 03/29/19 Time: 23:29 Sample: 2014M01 2019M01 Included observations: 61

| Variable                                                                                                           | Coefficient                                                          | Std. Error                                                                    | t-Statistic                | Prob.                                                        |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------|
| С                                                                                                                  | -0.016630                                                            | 0.006869                                                                      | -2.421098                  | 0.0185                                                       |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | 0.000000<br>0.000000<br>0.053645<br>0.172670<br>92.39581<br>2.019540 | Mean depend<br>S.D. depende<br>Akaike info cr<br>Schwarz crite<br>Hannan-Quin | ent var<br>iterion<br>rion | -0.016630<br>0.053645<br>-2.996584<br>-2.961979<br>-2.983022 |

- lacktriangle since p-value for  $\hat{eta}_0$  is 0.0185 difference is indeed statistically significant at 5% level
- ightharpoonup AR(1)-SARMA(1,1) thus produced a more precise forecast than the naive method

#### Conclusion

- data for unemployment rate in Lubbock County is only available since 1990
- sample is thus relatively short
- seasonal ARMA model however performs quite well when applied to create the step ahead forecast for the unemployment rate
- estimated model outperforms the naive forecasting method, producing significantly more precise forecast