

(12) NACH DEM VERTRÄG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro(43) Internationales Veröffentlichungsdatum
12. Februar 2004 (12.02.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/014034 A2

(51) Internationale Patentklassifikation⁷: H04L 27/18, 25/03

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): ZSCHUNKE, Willmut [DE/DE]; Langgesser Weg 29, 64285 Darmstadt (DE). DUSHCHULUUN, Khishigbayar [MN/DE]; Kahlerstrasse 17, 64283 Darmstadt (DE).

(21) Internationales Aktenzeichen: PCT/EP2003/008335

(22) Internationales Anmeldedatum: 29. Juli 2003 (29.07.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität: 102 34 823.5 31. Juli 2002 (31.07.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): INTERESSENGEEMEINSCHAFT FÜR RUNDFUNKSCHUTZRECHTE GMBH SCHUTZRECHTSVERWERTUNG & CO. KG [DE/DE]; Bahnstrasse 62, 40210 Düsseldorf (DE).

Erklärungen gemäß Regel 4.17:

— hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten CN, JP, europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR)

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR DIVIDING THE BIT RATE OF QPSK SIGNALS INTO TWO OR SEVERAL SUBCHANNELS

(54) Bezeichnung: VERFAHREN ZUR AUFTEILUNG DER BITRATE VON QPSK-SIGNALEN IN ZWEI ODER MEHRERE TEILKANÄLE

(57) Abstract: The invention relates to a method for dividing the bit rate of QPSK signals by splitting the spectrum of said QPSK signals into at least two channels having band-limited filters in the modulator and demodulator. The prefiltered QPSK signal is split into at least one real and at least one imaginary spectrum at the transmitter end, is transmitted in frequency multiplex, and the filters in the modulator of the transmitter and the demodulator of the receiver are dimensioned according to the transmission function.

[Fortsetzung auf der nächsten Seite]

- *hinsichtlich der Berechtigung des Anmelders, die Priorität einer früheren Anmeldung zu beanspruchen (Regel 4.17 Ziffer iii) für alle Bestimmungsstaaten*
- *Erfindererklärung (Regel 4.17 Ziffer iv) nur für US*

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

- *ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts*

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Aufteilung der Bitrate von QPSK-Signalen durch Aufspaltung des Spektrums der QPSK-Signale auf mindestens zwei Kanäle mit bandbegrenzten Filtern in dem Modulator und Demodulator und gibt die senderseitige Aufspaltung des vorgefilterten QPSK-Signals in mindestens ein reelles und mindestens ein imaginäres Spektrum sowie die Übertragung in Frequenzmultiplex und die Dimensionierung der Filter im Modulator des Senders und im Demodulator des Empfängers in Abhängigkeit von der Übertragungsfunktion an.

5

10

**Verfahren zur Aufteilung der Bitrate von QPSK-Signalen
in zwei oder mehrere Teilkanäle**

15

Die Erfindung betrifft ein Verfahren zur Aufteilung der Bitrate von QPSK-Signalen durch Aufspaltung des Spektrums der QPSK-Signale auf mindestens zwei Kanäle mit bandbegrenzten Filtern in dem Modulator und dem Demodulator.

20

Aus dem Fachbuch „Nachrichtentechnik“ von E. Herter/ W. Lörcher, 5. Auflage, erschienen im Hanser-Verlag 1990, Seiten 110 ff, sind die Grundlagen der PSK-Verfahren bekannt und die Realisierung von PSK-Modulatoren und -Demodulatoren und die Frequenzvervielfachung beschrieben. So ist es möglich, aus einem 2-PSK-Signal durch Quadrieren einen Träger $2f_r$ zu erzeugen, aus dem sich danach durch Frequenzteilung der gewünschte Träger f_r ergibt. Dazu ist angegeben, dass allgemein bei einem N-PSK-Signal $ld(n)md$ quadriert werden muss. Beim Quadrieren verdoppeln sich die Phasenwinkel. Nach der ersten Quadrierstufe bei 2-PSK erhält das Signal dabei die Phasenlage 0 und 360° . Da diese Phasenlagen aber gleich sind, enthält das Spektrum des zweimal quadrierten Signals nach der Phasenwinkelverdopplung Beiträge, die in gleiche Richtung weisen. Spektral gesehen bedeutet dies, dass die erwünschte Linie bei einem Vielfachen der ursprünglichen Trägerfrequenz f_r erreicht ist, z. B. bei vier f_r . Der dabei durch Fre-

quenzteilung gewonnene Referenzträger der Frequenz f_r hat - verglichen mit der korrekten Null-Phase - eine um $n \times \frac{\pi}{2}$ ($n=0\ldots3$) verschobene Phase.

5 Aus der IEEE Transactions on Communications 37 Nr. 5 (May 1989), Seiten 437 bis 448 ist ein Vorschlag bekannt, wie sich die Bitrate von QPSK durch Hinzufügen eines zweiten orthogonalen Signals verdoppeln lässt. Fig. 4 auf Seite 447 zeigt solche Signalformen. Aufgrund der senkrechten 10 Flanken der Impulse ist die Bandbreite sehr groß bzw. geht bei Bandbegrenzung die Orthogonalität verloren und es tritt Intersymbolinterferenz (ISI) und Übersprechen (ÜS) zwischen den Kanälen auf. Zum Abschluss des Aufsatzes gehen die Autoren D. Saha und G. Birdsall auf bandbegrenzte Systeme ein, die bandbegrenzte Sendefilter P_1 15 und P_2 und entsprechende Matched Filter P_1^* und P_2^* auf der Empfangsseite verwenden (Fig. 13 auf Seite 446). Die Bitrate $\frac{1}{T} = 2f_g$ für einen Zweig eines QPSK-Systems (also insgesamt $4f_g$) wird darin in zweimal $\frac{1}{2T}$ aufgespaltet und 20 ist damit gleich wie bei QPSK. Diese Anordnung wird jeweils für den Sinus- und Cosinus-Träger verwendet. Die Autoren machen die Aussage, dass es unendlich viele Möglichkeiten für die Paare P_1 und P_2 gibt und geben drei Beispiele in Figur 14 auf Seite 447 ohne die zugehörigen 25 Impulsantworten der Einzelfilter P_1 und P_2 , der in Kette geschalteten Sende- und Empfangsfilter $P_1P_1^*$ und $P_2P_2^*$ und gehen auf das Übersprechen $P_1P_2^*$ nicht ein. Da die Filter P_1 reell und P_2 imaginär sind, gilt $P_1^* = P_1$ und $P_2^* = -P_2$. Eine genauere Betrachtung zeigt, dass die Bedingungen 30 ISI- und ÜS-frei nur mit den Beispielen (a) und (b) zu erzielen sind und das Beispiel (c) nach Figur 14 ungünstig die Bedingungen nicht erfüllt.

Die Idee des Hinzufügens eines zweiten, zum Ansteuerungs- 35 impuls der QPSK orthogonalen Impulses zur Modulation des Sinus- und Cosinus-Trägers ist auch aus der US 4,680.777 bekannt.

Ausgehend vom Stand der Technik nach der IEEE-Schrift liegt der Erfindung die Aufgabe zugrunde, ein Verfahren anzugeben, das die Bedingungen: frei von Intersymbolinterfrequenz (ISI) und Übersprechen (ÜS) zwischen den Kanälen erfüllt und die angesprochenen unendlich vielen Möglichkeiten auf eine Klasse von Filtern bei der Realisierung reduziert.

Die gestellte Aufgabe löst das im Anspruch 1 angegebene Verfahren im Zusammenwirken der einzelnen Verfahrensschritte und gibt die Aufspaltung des Spektrums der QPSK-Signale in mindestens zwei Frequenzbänder, die Übertragung derselben im Frequenzmultiplex und die Dimensionierung der Filter im Modulator und Demodulator in Abhängigkeit von der Übertragungsfunktion an.

Vorteilhafte weitere Verfahrensschritte und deren Ausgestaltungsformen sind in den Unteransprüchen ergänzend angegeben.

Die Erfindung wird nachfolgend unter Zugrundelegung der in den Zeichnungen dargestellten Figuren 1 bis 17 im einzelnen erläutert.

In Figur 1 sind die aus der eingangs genannten IEEE-Schrift bekannten orthogonalen Impulsformen wiedergegeben.

In Figur 2 ist am Beispiel eines Sende- und Empfangszweiges für einen orthogonalen Träger das Basisbandmodell eines Q^2PSK -Senders und -Empfängers dargestellt, wie er aus Figur 13 der IEEE-Schrift zu entnehmen ist. Senderseitig wird zunächst eine serielle Parallelumwandlung vorgenommen und das umgewandelte Signal den beiden Filtern P_1 und P_2 zugeführt. Das so aufgespaltene Signal wird nach der Filterung einer Additionsstufe zugeführt, mit einem Cosinusträger und in einem zweiten identischen Zweig mit einem Sinusträger moduliert und zum Empfänger

mit Cosinus- und Sinus-Demodulatoren übertragen. Die demodulierten Signale gehen auf die beiden Signalzweige mit Filtern P_1^* und P_2^* , werden mit Vielfachen von f_T abgetastet und in einem Schwellenentscheid auf die Daten-
5 signale entschieden.

In Figur 3 sind die Beispiele wiedergegeben, die aus der eingangs genannten IEEE-Schrift, Figur 14, ersichtlich sind. Speziell sind in den Figuren 3a, 3b und 3c die Impulsantworten zu den Filterpaarbeispielen a, b, c in Figur 3 und zwar unterteilt nach Sendefilter und Impulsantwort des Gesamtsystems und das Übersprechverhalten dargestellt. Figur 3c zeigt, dass die Forderungen: frei von Intersymbolinterfrequenz (ISI) und Übersprechen (ÜS)
10 nicht exakt erfüllt werden.
15

Von diesen bekannten Systemen wird bei der Betrachtung der Erfindung anhand der Figuren 4 bis 17 ausgegangen.

20 Die für die Signalaufspaltung zum Einsatz kommenden Filter können frequenzmäßig benachbarte Filter (Variante A) oder im gleichen Frequenzbereich liegende Filter (Variante B) sein. Das Verfahren nach der Erfindung löst darüber hinaus die Anwendung einer duobinären Codierung.
25 Darüber hinaus lässt das Verfahren gemäß der Erfindung sich von einer Entwurfsmethode von zwei (Q^2PSK) auf n (Q^nPSK) Teilsignale erweitern.

Mit dem Verfahren wird ferner die offene Frage der Anwendung einer duobinären Codierung gelöst. Durch Ersatz der Filter $P_2 \dots P_n$ durch eine Reihenschaltung von einem Tiefpassfilter P_1 und anschließender Modulation mit äquidistanten Sinus- und Cosinus-Trägern ergibt sich ein Multiträgersystem. Seine Realisierung kann ähnlich wie bei
30 OFDM (Orthogonal Frequency Division Multiplex) über DFT (Diskrete Fourier-Transformation) und IDFT (Inverse DFT) erfolgen. Gegenüber OFDM bietet Q^nPSK jedoch etliche
35

Vorteile, nämlich kompakteres Spektrum, geringeren Crestfaktor, geringere Empfindlichkeit bei frequenzselektiven Kanälen und bezüglich der Trägersynchronisation.

5 Im Nachfolgenden wird zunächst der Entwurf von Q²PSK-Systemen nach der Erfindung beschrieben.

Ausgegangen wird von einer QPSK mit einem idealen Tiefpasskanal H_i der Bandbreite ω_g gemäß Fig. 4, in der die

10 Signalverläufe der Filter und die einzelnen Entwurfs-
schritte angegeben sind. Der Tiefpasskanal H_i kann, wie
gestrichelt angedeutet, durch eine Nyquistflanke bei ω_g
für eine praktische Realisierung verändert werden, ohne
dass sich an den Nulldurchgängen der Impulsantwort bei
15 Vielfachen von $\frac{1}{2f_s}$ etwas ändert, wie aus dem Diagramm in
der ersten Zeile oben und der Impulsantwort nebenstehend
sich ergibt. Da im P_1 - und P_2 -Zweig (Fig. 2 oder Fig. 7
oder Fig. 8) mit der halben Bitrate $\frac{1}{f_s}$ übertragen wird,
kann für P_1^2 ein Tiefpass mit der halben Bandbreite ver-
wendet werden (zweite Zeile in Fig. 4). In Fig. 4 wurde
20 P_1^2 bei $\frac{\omega_g}{2}$ bereits durch eine Nyquistflanke ergänzt. Die
Nullstellen der zugehörigen Impulsantwort liegen entspre-
chend bei Vielfachen von $\frac{1}{f_s}$ (Darstellung Zeile 1 in Fig.
4 rechts). Bildet man

25

$$P_2 P_2^* = H_i - P_1^2,$$

so liegen die Nullstellen der zu $P_{2m} = P_2 P_2^*$ gehörenden Im-
pulsantwort ebenfalls bei $\frac{1}{f_s}$, so dass über diesen Kanal

30 ebenfalls mit der Bitrate $\frac{1}{f_s}$ übertragen werden kann. Es
ist aus dem zweiten Schritt in Fig. 4 erkennbar, dass
 $P_2 P_2^*$ bei $\frac{\omega_g}{2}$ die gleiche Nyquistflanke wie P_1^2 hat, so
dass $P_1^2 + P_2 P_2^* = 1$ in diesem Bereich ist.

35 Die Aufspaltung des PSK-Signals in das reelle P_1 und das
rein imaginäre P_2 ist durch Hinzufügen des Wurzelzei-

chens \sqrt{N} und des entsprechenden Vorzeichens bei P_2 , leicht möglich, wodurch die gewünschten Impulsformerpaare P_1 und P_2 gefunden sind. Soweit von Impulsen P_1 und P_2 die Rede ist, so sind dies die Impulse, die an den Ausgängen der Filter P_1 und P_2 abgreifbar sind, dasselbe trifft auch auf P_1^* und P_2^* zu. Wird das erfindungsgemäße Verfahren eingesetzt, dann tritt auch kein Übersprechen durch $P_1P_2^*$ oder $P_2P_1^*$ auf. Dies ist im unteren Teil von Fig. 4 abgehandelt und belegt. Durch die gleichen Nyquistflanken bei $\frac{\omega_s}{2}$ ergibt sich ein ÜS-Spektrum, das symmetrisch zu $\frac{\omega_s}{2}$ ist und punktsymmetrisch zu $\omega=0$ ist. Da P_1 und P_2 orthogonale Träger haben (in Quadratur stehen), kann man dieses ÜS auch als Quadratur-ÜS bezeichnen. Zu diesem Spektrum gehört eine Impulsantwort, die bei dem Vielfachen von $\frac{1}{f_s}$ Nullstellen hat und damit in den Abtastpunkten der Nutzsignale nicht stört. Dies ist dadurch belegbar, dass $P_1P_2^*$ durch Umsetzung eines reellen Spektrums $R(\omega)$ mit $\sin\frac{\omega_s}{2}t$ entstanden gedacht werden kann. Durch diesen Sinus-Träger entstehen dann Nullstellen im zugehörigen Zeitsignal beim Vielfachen von $\frac{1}{f_s}$. Diese benachbarte Anordnung der Filter wird als Variante A bezeichnet.

In Fig. 4 ist unten ferner ein Sonderfall dargestellt. Verläuft nämlich die Nyquistflanke senkrecht, so werden die beiden Übertragungskanäle durch Frequenzmultiplex getrennt, was aus dem letzten Diagramm ersichtlich ist. Störend ist jedoch für eine Realisierung die senkrechte Flanke von P_2 bei der Grenzfrequenz ω_g . Ausgehend von einer Nyquistflanke von H_1 kann, wie aus Fig. 5, in der die Bedingungen für die Vermeidung von Übersprechen (ÜS) angegeben sind, ersichtlich, auch bei $P_{2m}=P_2P_2^*$ eine Nyquistflanke bei ω_g aufgebracht werden. Diese reicht bis in den Bereich unterhalb ω_g hinein. Um Übersprechen (ÜS) zu vermeiden, darf in diesem Fall P_1 nicht in den Bereich dieser Nyquistflanke hineinfallen.

Hierdurch ist sichergestellt, dass die beiden Kanäle durch Frequenzmultiplex getrennt sind, sich aber bei $\frac{\omega_s}{2}$ mit ihren Nyquistflanken überlappen dürfen, ohne dass Übersprechen (ÜS) auftritt.

5

Fig. 5 gibt die Bedingungen für die Vermeidung von Übersprechen (ÜS) zwischen den PSK-Signalen an. Man kann zeigen, dass sich auch Fig. 3a als ein Spezialfall der Entwurfsmethode interpretieren lässt, wenn die additiven Nyquistflanken P_a entsprechend gewählt werden.

Es erhebt sich allerdings die Frage, ob das bekannte Beispiel in Fig. 3a besonders günstig ist, da beide Kanäle die gesamte Bandbreite ausnützen. Bei leistungsbegrenztem Übertragungskanal sind in dem Beispiel nach Fig. 3a und bei dem Entwurfsverfahren entsprechend Filterpaar-Beispiel in Fig. 3b (und natürlich auch bei allen anderen Kanälen mit Nyquistflanken bei $\frac{\omega_s}{2}$) die Störabstände $\frac{E_b}{N_0}$ gleich. Die Filterpaare P_1 und P_2 werden, wie auch im Stand der Technik in der IEEE angegeben, bei Aufteilung in den unteren und oberen Frequenzbereich mit sich überlappenden Nyquistflanken bei $\frac{\omega_s}{2}$ mit dem Faktor $\sqrt{2}$ multipliziert, um $\frac{E_b}{N_0}$ gleich wie bei QPSK zu machen. Die Spitzenamplitude ist dann gegenüber Beispiel Fig. 3a kleiner, was einen Gewinn bei amplitudenbegrenzten Kanälen bringt, wodurch belegt ist, dass das Beispiel Fig. 3a nicht günstig ist. Ein Gewinn ergibt sich jedoch bei einer Erweiterung auf Mehrträgersysteme der Variante A. Bei einem Roll-off-Faktor $r=0$ sind dies 3dB. Das Beispiel in Fig. 3a mit der größeren Spitzenamplitude entspricht bei Mehrträgersystemen einer Variante B. Für eine Realisierung müsste Beispiel Fig. 3a von den senkrechten Flanken befreit werden. Dies ist nicht möglich, ohne dass ISI und/oder ÜS auftritt.

Fig. 6 zeigt Möglichkeiten einer Verfahrens-Realisierung der Filterung der Signale P_1 und P_2 ohne Übersprechen und den Übergang zu einem Mehrträgersystem (Variante B).

5 In Beispiel d erhält P_1 eine Wurzel-Nyquistflanke bei ω_g und P_2 Wurzel-Nyquistflanken bei $\frac{1}{4}\omega_g$ und $\frac{3}{4}\omega_g$. Dadurch ist das ÜS Null, weil das Spektrum von $P_1 P_2^*$ symmetrisch zu $\frac{\omega_g}{2}$ und punktsymmetrisch zu $\omega=0$ ist (siehe auch Fig. 4 unten). P_1^2 und P_{2m} wird dabei sinnvollerweise durch De-
10 modulation ins Basisband umgesetzt. Wichtig zur Vermei-
dung des Übersprechens ist, dass P_2 im Bereich von P_1 symmetrisch um $\frac{\omega_g}{2}$ ist.

Beispiel e zeigt, dass P_1 und P_2 in diesem Bereich auch
15 betragsmäßig gleich gemacht werden können. Es können wei-
tere Kanäle mit gleichen Flanken im Frequenzmultiplex hinzugefügt werden. Man kommt auf diese Weise zu einem
Mehrträgersystem. Damit kein ÜS auftritt, müssen die ein-
20 zelnen Kanäle frequenzmäßig getrennt sein, dürfen sich also zunächst nicht überlappen, was im Beispiel f darge-
stellt ist.

Die Wurzel-Nyquistflanken können sich gemäß Beispiel g auch frequenzmäßig überlappen. Es tritt dann allerdings
25 außer dem Quadratur-ÜS auch ein Inphase-ÜS auf, das durch einen Offset benachbarter Kanäle um eine halbe Bitdauer im Abtastzeitpunkt zu Null gemacht werden kann (OQPSK).

Diese Filteranordnung im selben Frequenzbereich sei Vari-
30 ante B genannt. Gegenüber Variante A ist kein Vorteil in der Gesamtbirate gegeben, wie bei der Erläuterung von Fig. 3a ausgeführt, die der Variante B entspricht. Die Filter in jedem Kanal (reell und imaginär) bilden ein Hilbert-Paar, wie dies aus dem IEEE-Aufsatz bekannt ist.
35 Bei einer Realisierung mittels Modulation empfiehlt es sich, mit einem Träger in Bandmitte umzusetzen (Zweisei-

tenband-Übertragung). Variante B ist durch [4] und [5] als Mehrträgersystem bekannt.

Erweiterung auf duobinäre Übertragung:

5 Die Erweiterung auf Partial-Response- oder duobinäre Übertragung ist erfindungsgemäß recht einfach unter Berücksichtigung der Entstehung eines Partial-Response-Signals. Bekanntlich liefert der in Fig. 7 oben angegebene Cosinuskuppenkanal $H_c(\omega)$ eine entsprechende Impulsantwort. Über den Cosinuskuppenkanal wird mit der Bitrate $2f_g$ wie beim idealen Tiefpass übertragen. Seine Impulsantwort kann, wie in Fig. 7 gezeigt, gedeutet werden als zwei mit dem Faktor $\frac{1}{2}$ multiplizierte Impulsantworten eines idealen Tiefpasses, die gegeneinander um die Zeit $\frac{1}{2f_g}$, also den Abstand der Nullstellen der Sinus-Funktion, versetzt sind. Damit hat diese zu $H_c(\omega)$ gehörende Impulsantwort wieder Nullstellen im Abstand $\frac{1}{2f_g}$, wie aus den Diagrammen unterhalb des Blockschaltbildes ersichtlich ist. Es werden praktisch statt eines Dirac-Stoßes $\delta(t)$ für ein Bit zwei im Abstand $\frac{1}{2f_g}$ aufeinanderfolgende Dirac-Stöße übertragen. Am Empfänger wird nun wieder im Abstand $\frac{1}{2f_g}$ abgetastet, aber um $\frac{1}{4f_g}$ gegenüber dem idealen Tiefpass versetzt. Dadurch erhält man gemäß Fig. 7 bei $\pm\frac{1}{4f_g}$ der Impulsantwort V_{PR} die Werte $\frac{1}{2}$. Folgen weitere positive und negative Impulsantworten, so überlagern sich deren Abtastwerte. Es entstehen also die Werte 0, +1 und -1. Die 0 bedeutet, dass das Bit sich gegenüber dem vorhergehenden geändert hat. Durch eine bekannte Vorcodierung ist erreichbar, dass durch Doppelweg-Gleichrichtung erreicht wird, dass -1 in +1 wieder zu einer binären Entscheidung um die Schwelle 0,5 auf 0 oder 1 verwendet werden kann. Allerdings werden dabei 3dB an Störabstand eingebüßt. Dem steht als Vorteil jedoch gegenüber, dass $H_c(\omega)$ keine senkrechte Flanke wie der ideale Tiefpass hat und haben muss. Der Verlust von 3dB lässt sich durch eine Viterbi-Decodierung vermeiden.

Aus Fig. 7, die eine Partial Response (duobinären Code) wiedergibt, ist ferner entnehmbar, dass man die um $\frac{1}{2f_s}$ versetzten Impulsantworten des idealen Tiefpasses auch subtrahieren kann. Die zugehörige Impulsantwort 5 V_{PR} hat dann die Abtastwerte $-\frac{1}{2}$ und $+\frac{1}{2}$. Zu der Subtraktion der Impulsantworten gehört die Übertragungsfunktion

$$H_s(\omega) = j \sin \frac{\pi}{2} \frac{\omega}{\omega_s} \quad -\omega \leq \omega \leq \omega_s$$

10 Die Auswertung lässt sich wie beim normalen duobinären Signal durch sendeseitige Vordcodierung und empfangsseitige Doppelweg-Gleichrichtung durchführen. Bei diesem Verfahrensschritt sollte in der Vordcodierung die Bit-Inversion entfallen, damit keine negierte Bitfolge entstehen kann. Diese modifizierte duobinäre Codierung ist für 15 das Folgende wichtig. Bei Q^2PSK wird mit der halben Bitrate f_s pro Kanal übertragen. Entsprechend müssen die Partial-Response-Filter H_{PR} (Fig. 7) auf $\frac{\omega_s}{2}$ statt ω_s ausgelegt sein, bzw. es wird $T = \frac{1}{2f_s}$, wie in Fig. 8 oben 20 rechts angegeben. In Fig. 8 ist eine Q^2PSK -Übertragung mit Partial-Response dargestellt. Im Blockschaltbild oben ist angegeben, wie das Partial-Response-Filter jeweils empfangsseitig nachgeschaltet werden muss. Für eine Matched-Filter-Anordnung ist es als $\sqrt{H_{PR}}$ auf Sende- und 25 Empfangsseite aufzuteilen (Fig. 8 unten). Allerdings lässt sich dies bei H_s (Fig. 8 oben rechts) nur für den Betrag durchführen. In Fig. 8 - rechts - sind die Übertragungsfunktionen H_c und H_s im Diagramm eingezeichnet. H_c ist für Q^2PSK ungeeignet, weil dies ein Vorzeichenwechsel 30 bei $\frac{f_s}{2}$ zur Folge hätte und empfangsseitig ab $|\omega| > \frac{\omega_s}{2}$ ein invertierendes Filter eingesetzt werden müsste. Hingegen lässt sich leichter und einfacher

$$\sqrt{|H_s(\omega)|} = \sqrt{\sin \pi \frac{|\omega|}{\omega_s}}$$

35 realisieren.

Diese Funktion wird sowohl sende- und empfangsseitig eingefügt. Zusätzlich ist noch (z.B. auf der Empfangsseite) ein Hilbert-Filter mit der Übergangsfunktion

5 $H_H(\omega) = j \operatorname{sign}(\omega)$ vorgesehen, um aus einer reellen Übertragungsfunktion eine imaginäre und umgekehrt ableiten zu können. Bei einer Realisierung der Filter durch Modulation wird aus einem Cosinus-Träger ein Sinus-Träger und umgekehrt, dies ist in Fig. 9 für das Beispiel in Fig. 3a
10 gezeigt, weil dieses Beispiel sehr übersichtlich ist.

In Fig. 9, die ein Partial-Response-System wiedergibt, sind oben die einzelnen Filter in einer Zusammenfassung für ein Response-System dargestellt. In dem Falle, dass
15 P_1 und P_2 ein Hilbert-Paar bilden, werden die Plätze P_1^* und P_2^* auf der Empfangsseite einfach getauscht, wenn das Hilbert-Filter mit P_1^* und P_2^* zusammenfasst wird. Ein Störabstandsverlust ist damit nicht verbunden, da die Rauschleistung und der Betrag des Abtastwertes des Nutz-
20 signals unverändert bleibt.

Im Nachfolgenden wird die Realisierung durch Modulation und Demodulation und Übergang auf $Q''PSK$ beschrieben.

25 Während P_1 ein Tiefpass ist, ist P_2 hingegen ein Bandpass. Die zu $P_2P_2^*$ gehörenden Impulsantworten sind viel "hochfrequenter" als die zu P_1^2 gehörenden, wie aus den Beispielen Fig. 3b - 3c ersichtlich ist. In dem Bandpass $P_2P_2^*$ lässt sich eine Bitrate von f_g übertragen. Im Falle
30 der Realisierung des Bandpasses P_2 durch Modulation, darf der Träger nicht in die Bandmitte von P_2 gelegt werden, was einer Zweiseitenband-Modulation entsprechen würde, sondern man muss mit Restseitenband-Modulation arbeiten. Dies ist der entscheidende Unterschied zu Variante B, bei
35 der man Zweiseitenband-Modulation verwenden würde.

Fig. 10 zeigt die Realisierung von P_2 durch Modulation und empfangsseitiger Demodulation von P_2 und Übergang auf

Q^nPSK im oberen Teil, wobei durch Frequenzumsetzung von P_1 in P_2 ein unteres Seitenband zwischen $\frac{\omega_1}{2}$ und ω_g erzeugt wird. Damit bei ω_g eine Nyquistflanke gegeben ist, wird mit einem Wurzel-Nyquistfilter bei ω_g gefiltert und man erhält P_2 . Die Nyquistflanke bei ω_g kann im Prinzip verschieden von der bei $\frac{\omega_1}{2}$ sein.

Im mittleren Teil von Fig. 10 (Empfängereingang) wird gezeigt, wie P_2 in dem Tiefpassbereich demoduliert wird.

- 10 Das Signal wird zunächst über denselben Wurzel-Nyquisttiefpass wie bei der Modulation geschickt. Dadurch wird bei ω_g eine Nyquistflanke erzielt. Durch Demodulation und Tiefpassfilterung mit P_1 erhält man die gewünschte Übertragungsfunktion P_1^2 , über die mit der Bitrate f_g übertragen werden kann. Wesentlich ist, dass der Demodulationsträger auf der Wurzel-Nyquistflanke sitzt. Das Filter könnte auch ein Hochpass oder ein Bandpass sein. Einen Bandpass kann man bei verschiedener Frequenz durch Polyphasenfilter leicht realisieren. Nach der Demodulation ist dann lediglich ein einfaches Filter zur Unterdrückung der Anteile der doppelten Trägerfrequenz nötig. Diese Art der Demodulation mit Polyphasenfilter ist bei Mehrträgersystemen vorteilhaft.
- 25 Das Wurzel-Nyquistfilter auf der Empfangsseite dient dazu, nach der Frequenzumsetzung bei $\omega=0$ Nyquistflanken zu erzeugen, die sich in der Umgebung von $\omega=0$ zu einem konstanten Wert addieren. Dieses Filter kann aber auch mit dem Empfangsfilter kombiniert werden, wie im unteren Teil von Fig. 10 „Zusammenfassung der Filter“ gezeigt ist. Ohne die empfangsseitige Filterung würden sich die Wurzel-Nyquistflanken bei $\omega=0$ zu einem Höcker mit dem Maximalwert $\sqrt{2}$ addieren. Durch ein Empfangsfilter P_{IE} , das in dem Bereich der Wurzel-Nyquistflanken bei $\omega=0$ invers ist, lässt sich dies jedoch entzerrern.

Bei einem Mehrträgersystem wechseln sich bei der Variante A reelle und imaginäre Kanäle ab. Für die Modulation und Demodulation der reellen Kanäle wird zweckmäßigerweise mit $\cos\omega_g t$ umgesetzt. Dabei sollte über eine Zwischenfrequenz ein Umsetzen erfolgen, um das Wurzel-Nyquistfilter $\sqrt{H_R}$ für jeden Kanal gleich machen zu können. Die Umsetzung der Kanäle kann natürlich auch gleich in den Hochfrequenzbereich erfolgen, ohne die nochmalige Umsetzung mit zwei orthogonalen Trägern vornehmen zu müssen. In diesem Falle entfallen also die orthogonalen Träger völlig (Mehrträgersystem).

Das Prinzip der Aufteilung des Übertragungskanals H_i in zwei Frequenzbereiche lässt sich ferner auf mehr Frequenzbereiche erweitern. Fig. 11 zeigt dies schematisch für drei Kanäle, wobei die Nyquistflanken an den Trennstellen weggelassen sind. Das mittlere Filter P_{2m} wird in P_2 zerlegt. Dann findet weder ein ÜS zwischen den Kanälen 1 und 2 noch zwischen den Kanälen 2 und 3 statt. Es gibt ferner kein ÜS zwischen Kanal 1 und 3, da diese frequenzmäßig getrennt sind, sofern ihre Nyquistflanken nicht ineinander fallen. Diese Methode kann auf n Kanäle erweitert werden, wodurch eine Anordnung im Basisband erhalten wird, die dann auf einen Cosinus- und Sinus-Träger gegeben werden muss.

Fig. 12 veranschaulicht den Übergang auf Q"PSK und das Gesamtspektrum $H_g(\omega)$, wobei die rein imaginären Spektren gestrichelt dargestellt sind. Die Teilsignale werden dabei binär mit 0 und 1 moduliert. Die Daten im Cosinus-Zweig sind mit d_{c1}, d_{c2}, \dots , die im Sinus-Zweig mit d_{s1}, d_{s2}, \dots bezeichnet.

Da die Trägerfrequenzen äquidistant sind, bietet es sich an, die Modulation mit IDFT und die Demodulation mit DFT durchzuführen.

Gegenüber einer OFDM ergeben sich dabei folgende Vorteile:

5 • Nachbarkanäle dürfen sich überlappen, ohne dass es ein ÜS gibt, weil sich bei Variante A stets ein rein reelles Spektrum mit einem rein imaginären mit symmetrischen Flanken überlappt.

10 • Bei OFDM müssen die Träger sehr genau in den Null-durchgängen der durch die Rechteckimpuls-Tastung entstehenden si-Spektren liegen, was hier unkritisch ist.

15 • Das Spektrum ist kompakt und weist nicht die si-Ausläufer auf.

20 • Der Crest-Faktor ist geringer, weil nicht getastete Sinus- und Cosinus-Schwingungen sondern Impulse, die abklingen, übertragen werden.

25 • Das Leistungsdichtespektrum des Sendesignals ist konstant, da sich die Leistungsdichtespektren benachbarter Kanäle aufgrund der Nyquistflanken zu einem konstanten Wert ergänzen.

30 Grundsätzlich tritt bei der Variante B nach der Demodulation und Filterung auch im Basisband (wie aus Figur 13, die das In-Kanal-Quadratur-Übersprechen (IKQÜS) veranschaulicht, oben hervorgeht) außer dem ÜS durch obere und untere Nachbarkanäle auch ÜS durch den in Quadratur übertragenen Kanal im selben Frequenzband auf, also ein 5-faches Übersprechen. Bei verzerrungsfreiem Übertragungskanal kompensiert sich dieses ÜS jedoch völlig, wozu gegebenenfalls ein Entzerrer einzusetzen ist. Dieses ÜS sei In-Kanal-Quadratur-ÜS (IKQÜS) genannt.

35 Auch bei Variante A (wie aus Figur 13 unten ersichtlich) tritt von den Überlappungen an der Restseitenbandflanke

(RSB-Flanke) IKQÜS, also ein 2-faches Übersprechen auf, das sich nur bei verzerrungsfreier Übertragung kompensiert. Es ist jedoch viel kleiner als bei Variante B und damit ist bei bestimmten Anwendungen (DAB, DVB-T, Mobilfunk) Variante A bei frequenzselektiven Kanälen in dieser Hinsicht günstiger.

In Figur 10 und auch in Figur 12 sind die RSB-Flanke bei der Trägerfrequenz ω_g und die andere Flanke bei der tieferen Frequenz $\frac{\omega_g}{2}$ gleich gemacht worden. Man kann aber auch vorteilhaft, wie aus Figur 14 oben ersichtlich, die RSB-Flanke sehr viel steiler machen (roll-off r_T nach Filterung mit $\sqrt{H_R(\omega)}$, Demodulation mit ω_o , und Wurzel-Nyquistflankenfilterung). Für $r_T=0$ ergibt sich Einseitenbandmodulation. Dadurch lässt sich das IKQÜS im Prinzip beliebig klein machen. Die Wurzel-Nyquistflanke bei ω_u ergibt nach Demodulation und entsprechender Wurzel-Nyquistfilterung die Nyquistflanke im Basisband mit roll-off r . Damit sich beide Flanken bei ω_0 und ω_u nicht überlappen, muss $r+r_T \leq 1$ sein. Figur 14 zeigt, wie man bei Mehrträgerübertragung die Kanäle vorteilhaft anordnet. Sie gibt die Reduktion des IKQÜS bei Variante A an. Dargestellt ist das Sendespektrum $S(\omega)$.

In Fig. 15 ist die duobinäre Mehrträgerübertragung am Beispiel eines Sendespektrums $S(\omega)$ für die beiden Varianten A und B dargestellt. Die Variante B ist als Mehrträgersystem aus IEEE Transactions on Communications COM-15, No. 6 (December, 1967), Seiten 805-811 sowie COM-29, No. 7 (July 1981), Seiten 982-989 mit einem anderen Lösungsansatz bekannt. Gemäß der bekannten Schaltung werden über Filter auf der Sende- und Empfangsseite 2L Basisbanddaten mit äquidistanten Sinus- und Cosinus-Trägern in Zweiseitenband-Modulation mit den Frequenzen f_k ($k=1..L$) direkt in den HF-Bereich umgesetzt. Die Spektren überlappen sich mit den Nyquistflanken bzw. den Wurzel-Nyquistflanken. Empfangsseitig wird mit denselben Trägern demoduliert.

Man erhält dabei ebenfalls Übersprechimpulse, allerdings zwei verschiedene, nämlich das Quadratur-ÜS (Übersprechen), das entsprechend der Erfindung Nullstellen in den Abtastzeitpunkten aufweist, und das Inphase-ÜS (Übersprechen), das ein symmetrisches Spektrum um die Nyquistflanke herum aufweist. Das zugehörige Zeitsignal ist mit dem Cosinus multipliziert und hat seine Nullstellen um die halbe Bitdauer verschoben.

10 Die Realisierung der sendeseitigen RSB-Filter für oberes und unteres RSB (Flanke unterhalb bzw. oberhalb des Trägers) erfolgt vorteilhaft im Basisband mit anschließender Modulation. Gezeigt ist dies im folgenden für die Wurzel-Nyquistflanke mit roll-off r_p .

15 Gemäß Figur 16, die die Realisierung der sendeseitigen RSB-Filterung angibt, wird dabei das ins Basisband verschobene RSB-Filter in den geraden und ungeraden Anteil $H_g(j\omega)$ und $H_u(j\omega)$ zerlegt. Der ungerade Anteil wird mit j multipliziert (zu $jH_u(j\omega)$ gehört wieder eine reelle Zeitfunktion). Danach folgt eine Umsetzung mit einem Cosinus- und Sinus-Träger. Beide Anteile werden addiert oder subtrahiert und ergeben gemäß Figur 16 RSB-Filter mit der RSB-Flanke am unteren bzw. am oberen Bandende.

20 25 Ist die andere Flanke auch als Wurzel-Nyquistflanke ausgelegt, (roll-off r) wie in Figur 15, so kann die empfangsseitige Filterung mit P_1 nach Figur 10 entfallen und durch eine einfache Tiefpass-Unterdrückung der bei 30 der Demodulation entstehenden höheren Frequenzanteile ersetzt werden. Die beiden TP-Filter $H_g(j\omega)$ und $jH_u(j\omega)$ können entsprechend ihren Impulsantworten als FIR-Filter realisiert werden.

35 Die realisierten Übertragungsfunktionen sind reell. Für imaginäre Übertragungsfunktionen, wie sie in jedem zweiten Kanal bei der Variante A vorkommen, sind Cosinus- und

Sinus-Träger zu vertauschen. Dies ist im unteren Teil von Figur 16 gezeigt.

Empfangsseitig überlappen sich reelle und imaginäre

5 Spektren, wie bereits angegeben. Figur 10 muss mit einem Wurzel-Nyquistfilter gefiltert werden. Eine Unterdrückung durch Kompensation ist nicht möglich.

Nach Figur 15 ist für Variante A Einseitenbandmodulation

10 zur Erzeugung des Cos-Kanals gewählt worden, was ein Filter mit senkrechter Flanke erfordern würde. Die duobinäre Mehrträgerübertragung ist anhand des Sendespektrums $S(\omega)$ dargestellt. Im folgenden wird gezeigt, dass dies nicht nötig ist.

15 Gemäß Figur 17, die eine Addition von Flanken $H(\omega)$ angibt (und zwar 17a) Addition zu 1, 17b) Addition zu $H_c(\omega)$), addieren sich gespiegelte Nyquistflanken zu einem Wert 1. Dies lässt sich leicht zeigen. Die Nyquistflanke lässt 20 sich schreiben als

$$H(\omega) = 0,5 + U(\omega).$$

$U(\omega)$ ist eine ungerade Funktion mit den Eigenschaften

25 $U(0) = 0$ und $U(\omega_x) = 0,5$. Zum Beispiel ist bei Cos-Roll-Off

$$U(\omega) = 0,5 \sin \frac{\pi}{2} \frac{\omega}{\omega_x} \quad -\omega_x \leq \omega \leq \omega_x.$$

Damit ist

30

$$H(\omega) + H(\omega) = 1$$

mit $\omega_x = r_T \cdot \omega_g$.

35 Sollen sich wie die Flanken nicht zu 1 sondern wie in Figur 7 rechts zu H_c addieren, so dürfen keine Nyquistflanken bei den Trägerfrequenzen verwendet werden. Es muss sein

$$H(\omega) + H(-\omega) = H_c(\omega) = \cos \frac{\pi}{2} \frac{\omega}{\omega_g}$$

Die Flanke $H(\omega)$ lässt sich über dem Ansatz

5

$$H(\omega) = \chi_1 \cos \frac{\pi}{2} \frac{\omega}{\omega_g} + \chi_2 U(\omega)$$

bestimmen.

10 Gleichung (5) in Gleichung (4) eingesetzt liefert $\chi_1 = 0,5$.
Fordert man sinnvollerweise $H(-\omega_x) = 0$ und

$$H(\omega_x) = H_c(\omega_x) = \cos \frac{\pi}{2} \frac{\omega_x}{\omega_g}, \text{ so folgt für } \omega_2 = \cos \frac{\pi}{2} \frac{\omega_x}{\omega_g}. \text{ Für den}$$

Cos-Roll-Off ergibt sich

15

$$H(\omega) = 0,5 \left(\cos \frac{\pi}{2} \frac{\omega}{\omega_g} + \cos \left(\frac{\pi}{2} \frac{\omega_x}{\omega_g} \right) \cdot \sin \frac{\pi}{2} \frac{\omega}{\omega_x} \right) \quad -\omega_x \leq \omega \leq \omega_x.$$

Damit lässt sich die senkrechte Flanke bei Variante A vermeiden und benachbarte Kanäle überlappen sich. Je größer die Überlappung wird, um so größer wird natürlich 20 das IKQÜS. Bemerkenswerterweise geht jetzt bei $\omega_x = \omega_g$ die Variante A in Variante B über.

25 Diese Vorgehensweise ist nicht auf die Cos- Funktion beschraenkt, sondern laesst sich auch fuer andere Funktionen anwenden.

Patentansprüche

1. Verfahren zur Aufteilung der Bitrate von QPSK-Signalen durch Aufspaltung des Spektrums der QPSK-Signale auf mindestens zwei Kanäle mit bandbegrenzten Filtern in dem Modulator und Demodulator, gekennzeichnet durch folgende Merkmale:
 - 10 - Filtern des QPSK-Signals mittels eines idealen Tiefpasses (H_i) im Modulator eines Senders mit einer bestimmten Bandbreite (ω_g);
 - 15 - Verändern der Bandbreite durch eine Nyquistflanke bei der bestimmten Bandbreite (ω_g) ohne eine Änderung der Nulldurchgänge der Impulsantworten bei einem Vielfachen von $\frac{1}{2f_s}$ oder $\frac{1}{f_s}$ zu bewirken;
 - 20 - Aufspalten des vorgefilterten QPSK-Signals mittels mindestens zweier Filterzweige ($P_1 P_1^*; P_2 P_2^*$) in mindestens ein rein reelles Spektrum (P_1) bzw. einen rein reellen Kanal und in mindestens ein rein imaginäres Spektrum (P_2) bzw. einen rein imaginären Kanal mittels Impulsformerpaare bildender Filter (P_1^* und P_2^*), wobei in den Filterzweigen 25 das aufgespaltene QPSK-Signal mit der halben Bitrate $\frac{1}{f_s}$ übertragen wird;
 - 30 - Modulieren der aufgespaltenen QPSK-Signale mit jeweils einem Sinus- oder Cosinusträger;
 - 35 - Übertragen des so erhaltenen Signals am Empfänger mit Demodulator;
 - Aufspalten des empfangenen Signals mittels mindestens zweier Filterzweige mit einer rein reellen Übertragungsfunktion (P_1^*) und einer rein imaginären Übertragungsfunktion (P_2^*) mittels mindestens zweier

Filterzweige ($P_1 P_1^*$; $P_2 P_2^*$) in mindestens zwei rein reelle Spektren (P_1) und in mindestens ein rein imaginäres Spektrum (P_2) mittels Impulsformerpaare bildender Filter (P_1^* und P_2^*), wobei in den Filterzweigen das aufgespaltene

5 Signal mit der halben Bitrate $\frac{1}{f_s}$ übertragen wird;

- Demodulieren durch Modulation der QPSK-Signale mit einem Sinus- oder Cosinusträger.

10 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Nullstellen der Impulsantworten in beiden Filterzweigen (P_1, P_2 und P_1^*, P_2^*) bei einem Vielfachen von $\frac{1}{f_s}$ liegen und die übertragene Bitrate bei jeweils $\frac{1}{f_s}$ liegt.

15 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die rein imaginäre Übertragungsfunktion (P_2^*) im Demodulator mit dem Wurzelzeichen aus der Nyquistflanke des idealen Tiefpasskanals und durch 20 Vorzeichenänderung (-) generiert wird.

4. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine steile Nyquistflanke bei ω_g .

25 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Impulsantworten der Filterpaare nach der Aufteilung in den oberen und unteren Frequenzbereich mit sich überlappenden Nyquistflanken bei $\frac{\omega}{2}$ mit 30 dem Faktor $\sqrt{2}$ multipliziert werden.

35 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Erweiterung auf Mehrträgersysteme demodulatorseitig die reellen und imaginären Spektren durch ein Tiefpassfilter (P_1) und anschließende Modulation mit äquidistanten Cosinus- und Sinus-Trägern realisiert werden.

7. Verfahren nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass zur Erweiterung auf Mehrträger-

5 systeme die Filterzweige (P_1) im Modulator und/oder Demodulator eine Wurzel-Nyquistflanke bei ω_g und die zweiten Filterzweige (P_2) eine Wurzel-Nyquistflanke bei $\frac{1}{4} \omega_g$ und/oder $\frac{3}{4} \omega_g$ aufweisen, wobei die Impulsantworten des Filterzweiges (P_2) im Bereich von dem des Filterzweiges (P_1) symmetrisch um $\frac{\pi}{2}$ festgelegt sind.

10

8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine über einen Cosinuskuppen-Kanal ($H_c(\omega)$) gelieferte Impulsantwort mit einer Bitrate $2f_s$ eines idealen Tiefpasses als zwei mit

15 einem Faktor $\frac{1}{2}$ multiplizierte Impulsantworten eines idealen Tiefpasses definiert werden, die gegeneinander um die Zeit $\frac{1}{2f_s}$ versetzt sind, und dass die Impulsantwort im Demodulator im Abstand $\frac{1}{2f_s}$ abgetastet wird und um $\frac{1}{4f_s}$ gegenüber dem idealen Tiefpass eine Versetzung erfolgt, wo-
20 bei der Cosinuskuppen-Kanal ($H_c(\omega)$) keine senkrechten Flanken wie die eines idealen Tiefpasses aufweist (duobi-

näre Übertragung).

25 9. Verfahren nach Anspruch 8, dadurch gekenn-
zeichnet, dass der bei duobinärer Übertragung mit Vorcodierung und Doppelweggleichrichtung entstehende Ver-
lust von 3dB durch Viterbi-Decodierung vermieden wird.

30 10. Verfahren nach Anspruch 7, 8 oder 9, dadurch gekennzeichnet, dass sender- und/oder empfangsseitig folgende Funktionen

$$\sqrt{|H_s(\omega)|} = \sqrt{\sin \pi \frac{|\omega|}{\omega_s}}$$

35 eingefügt werden, wobei vom einem Cosinusträger ein Si-
nusträger bei der Realisierung der Filter durch Modula-

tion und umgekehrt abgeleitet wird, um eine reelle Übertragungsfunktion und eine imaginäre zu erreichen.

11. Verfahren nach einem der vorhergehenden Ansprüche,

5 dadurch gekennzeichnet, dass senderseitig die mit den Filtern (P_1 und P_2) erzeugten Abtastproben ein Hilbert-Paar bilden und empfangsseitig die Abtastproben der empfangsseitigen Filter (P_1^* und P_2^*) in den Plätzen vertauscht sind.

10

12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass das Filter (P_1) ein solches mit einem Wurzel-Sinus-Frequenzgang im Bereich $-\omega_g \dots \omega_g$ ist und dass das Filter (P_2) durch Multiplikation mit $j \operatorname{sign}(\omega)$ realisiert wird und die Empfangsfilter

15 den Sendefiltern, aber vertauscht, entsprechen.

13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass in dem ersten Filterzweig ein Tiefpass (P_1) und dem zweiten Filterzweig ein Bandpass (P_2) vorgesehen sind und dass die Impulsantworten in den Filterzweigen ($P_2 \cdot P_2^*$) höherfrequent sind als die zum Produkt P_1^2 der Tiefpasszweige gehörenden Impulsantworten.

25

14. Verfahren nach Anspruch 7, 8 oder 13, dadurch gekennzeichnet, dass der Bandpass (P_2) im zweiten Filterzweig durch Modulation realisiert ist und der Träger außerhalb der Bandmitte des Bandpasses liegt und dieser nach der Restseitenmodulation arbeitet.

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass der obere Teil des Restseitenbandes durch Frequenzumsetzung aus dem mittels des Filters (P_1) im ersten Filterzweig als Signal des Filters (P_2) im zweiten Filterzweig gewonnen und als unteres Seitenband zwischen $\frac{\omega}{2}$ und ω erzeugt wird und dass das Signal bei ω_g

eine Nyquistflanke enthält, die mit einem Wurzel-Nyquistfilter bei ω_g gefiltert wird.

16. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass bei Mehrträgersystemen die reellen und imaginären Kanäle wechseln und dass dies durch RSB-Modulation mit Cosinus- und Sinusträgern erfolgt und dass die Aufteilung des Übertragungskanals auf mehrere Frequenzbereiche erfolgt.

10

17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Nyquist-Flanken bei den Trägerfrequenzen beliebig verkleinert werden, um das In-Kanal-Quadratur-Übersprechen zu verringern.

15

18. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die senderseitigen RSB-Filter ins Basisband verschoben und die Signale in einen geraden ($H_g(j\omega)$) und einen ungeraden Anteil ($H_u(j\omega)$) zerlegt und der ungerade Anteil ($H_u(j\omega)$) zur Wiederherstellung einer reellen Zeitfunktion mit j multipliziert wird ($jH_u(j\omega)$), bevor eine Umsetzung mittels eines Cosinus- und Sinus-Trägers erfolgt und dass beide Anteile addiert oder subtrahiert werden.

25

19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die Flanke des geraden Anteils ($H_g(j\omega)$) als Wurzel-Nyquistflanke ausgelegt ist und dass empfangsseitig die bei der Demodulation entstehenden höheren Frequenzanteile durch einfache Tiefpassfilter unterdrückt werden.

35

20. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass für die Realisierung imaginärer Übertragungsfunktionen Cosinus- und Sinus-Träger vertauscht sind.

21. Sender zum Übertragen von Q^2 PSK- oder Q^n PSK-Signalen mit Schaltungsanordnungen zum Filtern und Aufspalten sowie Modulieren der QPSK-Signale nach Anspruch 1 oder nach einem der Ansprüche 2 bis 12.

5

22. Empfänger mit Demodulator zum Empfang, zur Aufbereitung und zur Rückgewinnung nach den Sendeverfahrensschritten nach Anspruch 1 oder nach einem der Ansprüche 2 bis 12 generierten QPSK-Signale.

10

Fig. 1

Fig. 2

Fig. 3

Fig. 3a.

Fig. 3b

Fig. 3c

Ausgangspunkt ist der ideale Tiefpaß

Schritt 1: Wähle P_1^2 , so daß die Nullstellen beim Vielfachen von $1/f_g$ sind und bestimme P_1

Schritt 2: Bestimme $P_{2m} = P_2 P_2^*$ als $P_{2m} = H_I - P_1^2$ und daraus P_2

Beide Filter haben Nyquistflanken

$P_1 P_2^*$ or $P_2 \cdot P_1$ sind symmetrisch zu $\omega_g/2 \rightsquigarrow$ kein Übersprechen

Sonderfall:

FDM

Fig. 4

Nullstellen bei Vielfachen von $1/f_g \rightsquigarrow$ kein Übersprechen

Vermeidung senkrechter Flanken durch Nyquistflanke

Kein Übersprechen, wenn P_1 nicht in die Nyquistflanke N bei f_g fällt

Fig. 5

Beispiel d

Beispiel e

Beispiel f
MehrträgersystemBeispiel g
Mehrträgersystem

Fig. 6

$$\frac{e^{j\omega T} + e^{-j\omega T}}{2} = \cos \omega T$$

$$\frac{e^{j\omega T} - e^{-j\omega T}}{2} = j \sin \omega T$$

Fig. 7

Fig. 8

Zusammenfassung
der Filter:

Fig. 9

Fig. 10

Fig. 12

Fig. 13**Fig. 14**

15/17

Fig. 15

Fig. 16

Fig. 17