#### (19) 世界知的所有権機関 国際事務局



# 

# (43) 国際公開日 2001 年3 月29 日 (29.03.2001)

**PCT** 

# (10) 国際公開番号 WO 01/21615 A1

(51) 国際特許分類?: C07D 401/04, 409/04, 417/04, 403/04, 405/04, 401/14, 409/14, 405/14, 413/04, 451/00, 451/02, 451/14, 453/02, 417/14, 487/04, A61K 31/4439, 31/454, 31/4184, 31/427, 31/4709, 31/497, 31/498, 31/506, 31/501, 31/4375, 31/4545, 31/4725, 31/428, 31/423, 31/517, 31/502, A61P 43/00, 29/00

(21) 国際出願番号:

PCT/JP00/06319

(22) 国際出願日:

2000年9月14日 (14.09.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/264431 1999 年9 月17 日 (17.09.1999) JP 特願2000/170715 2000 年6 月7 日 (07.06.2000) JP

(71) 出願人 (米国を除く全ての指定国について): 山之内 製薬株式会社 (YAMANOUCHI PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8411 東京都中央区日本橋本 町二丁目3番11号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 高山和久 (TAKAYAMA, Kazuhisa) [JP/JP]. 古賀祐司(KOGA, Yuji) [JP/JP]. 増田直之 (MASUDA, Naoyuki) [JP/JP]. 宮嵜洋二 (MIYAZAKI, Yoji) [JP/JP]. 木村武徳 (KIMURA, Takenori) [JP/JP]. 永嶋信也 (NA-GASHIMA, Shinya) [JP/JP]. 岡本芳典 (OKAMOTO,

Yoshinori) [JP/JP]. 岡田要平 (OKADA, Yohei) [JP/JP]. 竹内 誠 (TAKEUCHI, Makoto) [JP/JP]; 〒305-8585 茨城県つくば市御幸が丘21 山之内製薬株式会社内 Ibaraki (JP).

- (74) 代理人: 長井省三、外(NAGAI, Shozo et al.); 〒174-8612 東京都板橋区蓮根三丁目17番1号 山之内製薬株 式会社 特許部内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### 添付公開書類:

#### -- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: BENZIMIDAZOLE DERIVATIVES

(54) 発明の名称: ペンゾイミダゾール誘導体

21615 A1

(I)

(57) Abstract: Compounds useful in the treatment of various PARP-related diseases, which are benzimidazole derivatives having heterocyclic groups at the 2-position and carbamoyl at the 4-position as represented by general formula (I) or (II) or salts thereof, wherein R<sup>1</sup> is H, lower alkyl, or the like; R<sup>2</sup> is H, lower alkyl, or the like; and A is an optionally substituted heterocyclic group or the like.

# (57) 要約:

PARPが関与する種々の疾患の処置に用いることができる化合物の提供。下記式(I)又は(II)で表される、2位にヘテロ環基、4位にカルバモイル基を有するベンズイミダゾール誘導体又はその塩。

(式中の記号は以下の意味を有する。

R¹: H、低級アルキル等

R1: H、低級アルキル等

A:置換基を有していてもよいヘテロ環基等。)

# 明 細 書

# ベンゾイミダゾール誘導体

#### 技術分野

本発明は、医薬、特に PARP 阻害剤として有用なベンゾイミダゾール誘導体に関する。

# 背景技術

リウマチ様関節炎(慢性関節リウマチ、rheumatoid arthritis: RA)は再燃と寛解を繰り返す多発性関節炎で、関節破壊をきたし、関節外症状を伴い、ときに生命を脅かす疾患である。RA の特徴としては(1)単核球の浸潤、(2)滑膜細胞の増殖、(3)その結果としての組織破壊が挙げられる。そのため薬物治療の目的は、関節機能の保持及び X 線により観測される骨破壊の防止である。

ポリ(ADP-リボース)ポリメラーゼ(Poly (ADP-ribose) polymerase: PARP)は 113 kDa の核内酵素である。PARP の N 末端に存在する 2 箇所の Zn フィンガー・モチーフが DNA 鎖の損傷を認識し、その近傍のヒストンや DNA トポイソメラーゼ I、II を含む様々な核タンパクにニコチンアミドアデニンジヌクレオチド (nicotinamide adenine dinucleotide: NAD)の ADP-リボース部を重合していく反応を司ることが 知られている。そのため過剰な PARP の活性化は細胞内 NAD 及び ATP 含量を枯渇 させ細胞死へと導くと考えられている(J. Clin. Invest., 77, 1312-1330 (1986))。

様々な炎症性疾患において NO や活性酸素、あるいはこれらの反応生成物であるペルオキシニトリトは組織障害を引き起こす強力なメディエーターであることは広く知られている。この組織障害は、NO、活性酸素、ペルオキシニトリトによって生じた DNA 鎖の損傷を PARP が認識・活性化し、エネルギー枯渇を招いた結果であると考えられている(Proc. Natl. Acad. Sci. USA 93 1753-1758 (1996))。またPARP の活性化を阻害することにより炎症時の細胞浸潤が強く抑制されることも明らかとなっている(J. Exp. Med., 186, 1041-1049 (1997)、Immunology, 93, 96-101 (1998))。

RA 患者において、関節液細胞では活性酸素産生能が亢進していること(Z. Rheumatol., 46, 227-232 (1987))、関節液および血清中の  $NO_2$  イオン量が著明に増加していること(Ann. Rheum. Dis., 51, 1219-1222 (1992))、末梢単核球において DNA 鎖の損傷が増加していること(Ann. Rheum. Dis., 51, 8-12 (1992))、NAD 含量が減少していること(Int. J. Clin. Pharm. Res., 14, 57-63 (1994))等の事実から、PARP の活性化が示唆されており、その結果として細胞浸潤や組織破壊が引き起こされていると考えられている。

従って、PARP 阻害剤は RA をはじめとする炎症性疾患の治療薬として有用であると考えられる。

PARP 阻害活性を示すベンゾイミダゾール誘導体としては、WO97/04771 号公報に下記化合物、

(式中、R及びR'は、H、アルキル、ヒドロキシアルキル、アシル、置換されていても良いアリール又は置換されていても良いアラルキル基をそれぞれ示す。)及び、WO00/26192号公報に下記化合物、

(式中の記号は当該公報参照。)

が報告されている。これらベンゾイミダゾール誘導体はベンゾイミダゾールの2位の環基はフェニル基に限定されている。そして、これらの PARP 阻害活性はなお不充分であった。

従って、PARP 阻害剤は RA をはじめとする炎症性疾患の治療薬として優れた効果を期待できるものの、現状では阻害活性の点で十分満足できる PARP 阻害剤は見出されておらず、優れた阻害活性を有する新規な PARP 阻害剤の開発が切望されて

いる。

なお、4位にカルバモイル基及び2位にヘテロ環を含む環基を有する下記ベンゾイミダゾール誘導体が報告されている(J. Med. Chem., 33, 814-819 (1990))が、当該化合物の用途については抗腫瘍活性のみが報告され、PARPへの作用については開示も示唆もされていない。

(式中、R は、フェニル、2-フリル、2-チエニル、3-チエニル、又は 2-ピロリル基 等を示す。)

## 発明の開示

本発明者等は、PARP を阻害する化合物につき鋭意検討した結果、4位に無置換のカルバモイル基及び2位にヘテロ環基を有するベンゾイミダゾール誘導体が良好な PARP 阻害活性を有し、PARP の関与する疾患の予防、治療若しくは診断薬として有用であることを見出し、本発明を完成した。

即ち、本発明によれば、下記一般式(I)又は(II)で示されるベンゾイミダゾール誘導体(以下、「本発明化合物」と称する。)又はその製薬学的に許容され得る塩、並びにこれらの1種又は2種以上を有効成分として含有する医薬、特に PARP 阻害剤が提供される。

(式中の記号は以下の意味を有する。

 $R^1: H$ 、低級アルキル、ハロゲン又はハロゲンで置換された低級アルキル基、

R<sup>2</sup>: H、低級アルキル又は CO-低級アルキル基、

A: 置換基を有していてもよいヘテロ環基、但し、該ヘテロ環が含窒素非芳香属へ

テロ環の場合、該ヘテロ環は  $G^1$  群から選択される基を  $1\sim4$  個有する、

 $G^1$  群:式(i)ー $X^0$ ー $Y^2$ ー $Z^1$ 、(ii)ー $X^0$ ー $Y^3$ ー $R^5$ 、(iii)ー $X^0$ ー $Y^5$ ー $Z^2$ 、(iv)ー $X^1$ ー $Y^1$ ー $Z^1$ 、(v)ー $X^1$ ー $Y^4$ ー $Z^3$ 、(vi)ー $X^1$ ー $Y^5$ ー $Z^2$ 、(vii)ー $X^2$ ー $Y^5$ ー $Z^2$ で表される基、

X<sup>0</sup>:結合、

 $X^1: C_{1.8}$ アルキレン又は  $CO-C_{1.7}$ アルキレン、

 $X^2: C_{9-12}$  アルキレン、 $CO-C_{8-12}$  アルキレン、 $C_{2-12}$  アルケニレン、 $C_{2-12}$  アルケニレン、 $C_{2-12}$  アルケニレン又は  $CO-C_{2-12}$  アルキニレン、

 $Y^1: CO、N(R^3)、CON(R^3)$ 又は結合、  $R^3: H$ 、低級アルキル又は CO-低級アルキル基、

Y<sup>2</sup>: CO<sub>2</sub>又は Y<sup>1</sup> に記載の基、

 $Y^3: O. S. N(R^3)CO. O-CONH. NHCO<sub>2</sub>. NHCONH. NHCSNH. CONHNH. NHNHCO. O-COCO<sub>2</sub>. O-COCONH. NHCOCO<sub>2</sub>. NHCOCONH. C(NH)NH. C(N-CN)NH. NHC(NH)NH. NHC(N-CN)NH. SO<sub>2</sub>-O. SO<sub>2</sub>NH. SO<sub>2</sub>NHNH <math>\mathbb{Z}$  if P(O)(OR<sup>3</sup>)O.

 $Y^4: CO_2$ 又は $Y^3$ に記載の基、

 $Y^5$ : SO、SO<sub>2</sub>、O-CO、N(R<sup>3</sup>)CO<sub>2</sub>、NHSO<sub>2</sub>又はNHNHSO<sub>2</sub>、

Y<sup>6</sup>: Y<sup>1</sup> 又は Y<sup>4</sup> に記載の基、

Z¹:環原子である炭素原子で結合する置換基を有していてもよいヘテロ環基、

Z<sup>2</sup>:置換基を有していてもよい低級アルキル、置換基を有していてもよいシ クロアルキル、置換基を有していてもよいアリール又は置換基を有してい てもよいヘテロ環基、

 $Z^3: H 又は Z^2 に記載の基。$ 

# 以下同様。)

以下、本発明について詳細に説明する。

本明細書中、「アルキル」、「アルキレン」、「アルケニレン」及び「アルキニレン」とは、直鎖状又は分枝状の炭化水素鎖を意味する。「低級」とは、炭素数 1~6 個を意味し、「低級アルキル」として、好ましくは炭素数 1~4 の低級アルキル基であり、より好ましくは、メチル、エチル及びイソプロピル基である。「アル

ケニレン」は、アルキル鎖の任意の位置に1個以上の二重結合を有することを意味 し、「アルキニレン」は、アルキル鎖の任意の位置に1個以上の三重結合を有する ことを意味する。

「ハロゲン」は、F、CI、Br 及び I を示し、好ましくは、F、CI 及び Br である。

「ハロゲンで置換された低級アルキル基」としては、好ましくはフルオロメチル、トリフルオロメチル及びトリフルオロエチル基である。

「シクロアルキル基」は、好ましくは炭素数3万至8個のシクロアルキル基であり、更に好ましくはシクロペンチル、シクロヘキシル及びシクロヘプチル基である。

「アリール基」は、好ましくは炭素数6万至14個の単環乃至3環式アリール基である。更に好ましくは、フェニル及びナフチル基である。また、フェニル基に5万至8員のシクロアルキル環が縮環し、例えば、インダニル又はテトラヒドロナフチル基を形成していても良い。

「ヘテロ環基」とは、環原子として O、S 及び N から選択されるヘテロ原子を1 乃 至4個含有する5乃至8員の単環乃至三環式ヘテロ環基を示す。環原子である任意の 炭素原子がオキソ基で置換されていてもよく(オキソ基より誘導される 1.3-ジオキ ソラン環等のアセタール体を含む)、S 又は N が酸化されオキシドを形成しても良い。 該ヘテロ環基は、架橋されていてもよく、また、スピロ環を形成しても良い。好まし くは、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、フリル、チエニル、 ピロリル、オキサゾリル、チアゾリル、イミダゾリル、テトラゾリル、ベンゾフラ ニル、ベンゾチエニル、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾ リル、キノリニル、キナゾリニル、キノキサリニル、シンノリニル、ピロリジニル、 ピペリジル、モルホリニル、ピペラジニル、ピラゾリジニル、イミダゾリジニル、 ホモピペラジニル、テトラヒドロフラニル、テトラヒドロピラニル、クロマニル、 ジオキソラニル、8-アザビシクロ[3.2.1]オクタン-3-イル、9-アザビシクロ[3.3.1]ノナ ン-3-イル、3-アザビシクロ[3.2.1]オクタン-6-イル、7-アザビシクロ[2.2.1]ヘプタン-2-イル、2-アザトリシクロ[3.3.1.1<sup>3,7</sup>]デカン-4-イル、1-アザビシクロ[2.2.2]オクタン -2-イル、1-アザビシクロ[2.2.2]オクタン-3-イル、1-アザビシクロ[2.2.2]オクタン-4-イル、3-アザスピロ[5.5]ウンデカン-9-イル、2-アザスピロ[4.5]デカン-8-イル、2-ア ザスピロ[4.4]ノナン-7-イル及び8-アザスピロ[4.5]デカン-2-イル基等が挙げられる。

更に好ましくは、ピリジル、ピラジニル、フリル、チエニル、チアゾリル、ピロリジニル、ピペリジル及び 8-アザビシクロ[3.2.1]オクタン-3-イル基等である。

「含窒素非芳香属へテロ環基」とは、環原子として少なくとも1つのNを有し、更にO又はS原子を1個有してもよいヘテロ環基であって、芳香属性を示さないヘテロ環基を示す。環原子である任意の炭素原子がオキソ基で置換されていてもよい。好ましくは、ピロリジニル、ピペリジル、モルホリニル、ピペラジニル、ピラゾリジニル、イミダゾリジニル及びホモピペラジニル基であり、更に好ましくはピロリジニル及びピペリジル基である。

「環原子である炭素原子で結合するヘテロ環基」とは、隣接するリンカーである  $Y^1$  又は  $Y^2$  で示される基と結合する環原子が炭素原子であるヘテロ環基を示す。例 えば、1-ピペリジルは含まないが、2-、3-又は 4-ピペリジルは包含する。

Aにおける「置換基を有していてもよいヘテロ環」の置換基としては、これらの環の置換基として用いることができる基であれば特に制限はなく、これらの置換基を $1\sim4$ 個有していてもよい。置換基として好ましくは、下記  $G^0$  群に示される基であり、該  $G^0$ 群は前記  $G^1$ 群を包含する。

 $G^0$ 群:式-X-Y-Zで表される基。

式中、X は、結合、 $C_{1-12}$  アルキレン、 $C_{2-12}$  アルケニレン、 $C_{2-12}$  アルキニレン、 $CO-C_{1-12}$  アルキレン、 $CO-C_{2-12}$  アルキニレンを、Y は、結合、CO、 $N(R^3)$ 、 $CON(R^3)$ 、 $CO_2$ 、O、S、 $N(R^3)CO$ 、O-CONH、 $NHCO_2$ 、NHCONH、NHCSNH、CONHNH 、NHNHCO、O-COCO $_2$  、O-COCONH、O-COCO $_2$  、O-COCONH、O-COCO $_3$  、O-COCONH、O-COCO $_4$  、O-COCONH、O-COCO $_5$  、O-COCONH、O-COCONH、O-COCOONH、O-COCONH、O-COCONH、O-COCONH、O-COCONH、O-COCONH、O-COCONH O-CONHNH O-CONHNH O-CONHNH O-CONHNH O-COCONHNH O-COCONH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHNH O-COCONHN O-COCONHN

ルキル、置換基を有していてもよいシクロアルキル、置換基を有していてもよ いアリール又は置換基を有していてもよいヘテロ環基であり、Xが Co-Ci2アル キレン、C2-C12 アルケニレン又は C2-C12 アルキニレンの場合、Y は結合、O、S 又は N(R³)、かつ、Z は H、置換基を有していてもよい低級アルキル、置換基を 有していてもよいシクロアルキル、置換基を有していてもよいアリール又は置 換基を有していてもよいヘテロ環基である。G<sup>0</sup> 群の置換基として更に好ましく は、式-X-Y-Zにおいて、XがC<sub>1</sub>-C<sub>8</sub>アルキレンかつYが結合の場合、Zは 置換基を有していてもよいヘテロ環基であり、Xが C1-C2 アルキレンかつ Yが O 又は S の場合、Z は置換基を有していてもよい低級アルキル、置換基を有し ていてもよいシクロアルキル、置換基を有していてもよいアリール又は置換基 を有していてもよいヘテロ環基であり、X が  $C_9$ - $C_{12}$  アルキレン、 $C_2$ - $C_{12}$  アルケ ニレン又は  $C_2$ - $C_{12}$  アルキニレンの場合、Y は結合、O、S 又は  $N(R^3)$ 、かつ、Z は H、置換基を有していてもよい低級アルキル、置換基を有していてもよいシ クロアルキル、置換基を有していてもよいアリール又は置換基を有していても よいヘテロ環基が好ましい。G<sup>0</sup> 群の置換基として特に好ましくは、式-X-Y -Zにおいて、Xが C<sub>1</sub>-C<sub>8</sub>アルキレンかつ Y が結合の場合、Z は置換基を有して いてもよいヘテロ環基であり、XがC<sub>I</sub>-C<sub>8</sub>アルキレンかつYがO又はSの場合、 Zは置換基を有していてもよいアリール基であり、XがC9-C12アルキレン、C2-C12 アルケニレン又は C2-C12 アルキニレンの場合、Y は結合、かつ、Z は置換基を 有していてもよい低級アルキル、置換基を有していてもよいアリール基が好ま しい。上記 G<sup>0</sup> 群の好ましい範囲は G<sup>1</sup> 群にも適用される。

「置換基を有していてもよい低級アルキル基」の置換基としては、置換基として用いることができる基であれば特に制限はないが、好ましくは、ハロゲン、OH、O $-C_{1-20}$  炭化水素基、SH、 $S-C_{1-20}$  炭化水素基、CO $-C_{1-20}$  炭化水素基、CO $_2$ H、COO $-C_{1-20}$  炭化水素基、CONH $_2$ 、CONH- 低級アルキル、CON(低級アルキル) $_2$ 、NHCO- 低級アルキル、NHCO $_2$  一低級アルキル、NHCO $_2$  一低級アルキル、NHCONH- 低級アルキル、N(低級アルキル) $_2$ 、CN 及び NO $_2$  基からなる群より選択される基である。これらの置換基を  $1\sim4$  個有していてもよい。尚、「 $C_{1-20}$  炭化水素基」とはアルキル、アルケニル、アルキニル、シクロアルキル、アリール、アルキレン-シ

クロアルキル、アルケニレン-シクロアルキル、アルキニレン-シクロアルキル、アルキレン-アリール、アルケニレン-アリール、アルキニレン-アリール等を包含し、それらは更に置換基を有していてもよく、該置換基として好ましくは、ハロゲン、OH、O-低級アルキル、SH、S-低級アルキル、CO-低級アルキル、CO2H、COO-低級アルキル、CONH2、CONH-低級アルキル、CON(低級アルキル)2、NHCO-低級アルキル、NHCO2-低級アルキル、NHCONH-低級アルキル、NHCO1+低級アルキル、NHCO2-低級アルキル、NHCONH-低級アルキル、NHCO1+低級アルキル、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO1+0、NHCO

「置換基を有していてもよいシクロアルキル基」の置換基としては、これらの環の置換基として用いることができる基であれば特に制限はないが、好ましくは、 $C_{1-20}$  炭化水素基、 $O-C_{1-20}$  炭化水素基、Nロゲン、Nロゲンで置換された低級アルキル及びオキソ基(オキソ基より誘導される 1,3-ジオキソラン環等のアセタール体を含む)からなる群より選択される基であり、更に好ましくは低級アルキル基である。これらの置換基を $1\sim4$  個有していてもよい。

「置換基を有していてもよいアリール基」及び「置換基を有していてもよいへテロ環基」の置換基としては、これらの環の置換基として用いることができる基であれば特に制限はないが、好ましくは、 $C_{1-20}$  炭化水素基、Nロゲン、Nロゲン、Nロゲンで置換された低級アルキル、N0H、N0 ー N0 ー N1 ー N1 ー N2 ー N1 ー N2 ー N3 ー N4 ー N4 ー N5 ー N6 ー N6 ー N7 ー N8 ー N9 ー N1 ー N1 ー N1 ー N1 ー N1 ー N1 ー N2 ー N3 ー N4 ー N3 ー N4 ー N4 ー N4 ー N4 ー N5 ー N5 ー N6 ー N8 ー N9 ー N1 ー N1 ー N1 ー N1 ー N1 ー N2 ー N3 ー N4 ー

本発明における好ましい化合物は、R<sup>1</sup>としてはH、低級アルキル又はハロゲン、R<sup>2</sup>としてはH又は低級アルキル、Aとしてはピリジル、ピリダジニル、ピリミジニル、ピラジニル、フリル、チエニル、ピロリル、オキサゾリル、チアゾリル、イミダゾリル、テトラゾリル、ベンゾフラニル、ベンゾチエニル、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、キノリニル、キナゾリニル、キノキサリ

ニル、シンノリニル、ピロリジニル、ピペリジル、モルホリニル、ピペラジニル、 ピラゾリジニル、イミダゾリジニル、ホモピペラジニル、テトラヒドロフラニル、 テトラヒドロピラニル、クロマニル及びジオキソラニル基から選択されるヘテロ環 基であり、該ヘテロ環基は置換基を有していてもよい。該ヘテロ環基の置換基とし て好ましくは、ノニル基、ウンデシル基、フェニルエチル基、フェニルブチル基、 ヘプテニル基、フェニルエテニル基、フェニルプロペニル基、4-メトキシフェニル プロペニル基、フェノキシエチル基、2-クロロフェノキシエチル基、フェノキシプ ロピル基、2-クロロフェノキシプロピル基、2-シアノフェノキシプロピル基、2-ブ ロモフェノキシプロピル基、2-トリフルオロメチルフェノキシプロピル基、2-メチ ルフェノキシプロピル基、2-ニトロフェノキシプロピル基、2-メトキシカルボニル フェノキシプロピル基、2,6-ジクロロフェノキシプロピル基、3-クロロフェノキシ プロピル基、3-(2,3-ジヒドロベンゾ[1,4]ジオキシン-6-イル)オキシプロピル基、4-トリフルオロメチルフェノキシプロピル基、4-ブロモフェノキシプロピル基、4-二 トロフェノキシプロピル基、4-メトキシフェノキシプロピル基、4-メチルフェノキ シプロピル基、フェノキシブチル基、フェノキシペンチル基、フェニルチオプロピ ル基、テニルプロピル基、ピリジルプロピル基、メチルチアゾリルエチル基、ヘキ シルアミノ基、シクロヘキシルメチルアミノ基、フェネチルアミノ基、フェニルプ ロピルアミノ基、フェノキシエチルアミノ基、ベンジルオキシ基、フェニルプロピ ルオキシ基、ベンジルチオ基、フェネチルチオ基、フェニルプロピルチオ基である。

本発明化合物の内、最も好ましい化合物としては以下の化合物が挙げられる: 2-(チオフェン-2-イル)-1H-ベンゾイミダゾール-4-カルボキサミド、2-(2-メトキシピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド、2-(2-エチルアミノピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド、2-(ピリジン-4-イル)-1H-ベンゾイミダゾール-4-カルボキサミド、2-(1-ノニルピペリジン-4-イル]-1H-ベンゾイミダゾール-4-カルボキサミド、2-{1-[3-(チオフェン-2-イル)プロピル]ピペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、2-[1-(2-フェノキシエチル)ピペリジン-4-イル]-1H-ベンゾイミダゾール-4-カルボキサミド、2-[1-(3-フェノキシプロピル)ピペリジン-4-イル]-1H-ベンゾイミダゾール-4-カルボキサミド、2-{1-{3-(2-クロロフェノキシ)プロピル]ピペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキ

サミド、2-{1-[3-(2-ブロモフェノキシ)プロピル]ピペリジン-4-イル}-1H-ベンゾイミ ダゾール-4-カルボキサミド、2-{1-[3-(2-シアノフェノキシ)プロピル]ピペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、2-{1-[3-(2-トリフルオロメチルフ ェノキシ)プロピル]ピペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、 2-{1-[3-(2-メチルフェノキシ)プロピル]ピペリジン-4-イル}-1H-ベンゾイミダゾール -4-カルボキサミド、2-{1-[3-(2-ニトロフェノキシ)プロピル]ピペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、2-{1-[3-(3-クロロフェノキシ)プロピル]ピ ペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、2-{1-[3-(4-クロロフェ ノキシ)プロピル]ピペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、 2-{1-[3-(4-トリフルオロメチルフェノキシ)プロピル]ピペリジン-4-イル}-1H-ベンゾ イミダゾール-4-カルボキサミド、2-{1-[3-(4-ブロモフェノキシ)プロピル]ピペリジ ン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、2-{1-{3-(4-ニトロフェノキ シ)プロピル]ピペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、2-{1-[3-(4-メトキシフェノキシ)プロピル]ピペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、2-{1-[3-(4-メチルフェノキシ)プロピル]ピペリジン-4-イル}-1H-ベ ンゾイミダゾール-4-カルボキサミド、2-[1-(4-フェノキシブチル)ピペリジン-4-イ ル]-1H-ベンゾイミダゾール-4-カルボキサミド、2-[1-(3-フェニルチオプロピル)ピペ リジン-4-イル]-1H-ベンゾイミダゾール-4-カルボキサミド、2-[1-(3-フェニル-2-プロ ペン-1-イル)ピペリジン-4-イル]-1H-ベンゾイミダゾール-4-カルボキサミド。

本発明化合物は、R<sup>2</sup>がHである場合、一般式(I)及び(II)で示される化合物は平衡にある。本発明はそれら平衡の関係にある化合物を包含する。

本発明化合物は、置換基の種類によっては幾何異性体や互変異性体が存在する場合があるが、本発明にはこれらの異性体の分離したもの、あるいは混合物をも包含する。また、本発明化合物は不斉炭素原子を有する場合があり、不斉炭素原子に基づく異性体が存在しうる。本発明にはこれら光学異性体の混合物や単離されたものを包含する。また、本発明には、本発明化合物を放射性同位元素でラベル化した化合物も包含する。

また、本発明化合物には、薬理学的に許容されるプロドラッグも含まれる。薬理学的に許容されるプロドラッグとは、加溶媒分解により又は生理学的条件下で本発

明の $NH_2$ 、OH、 $CO_2H$  等に変換できる基を有する化合物である。プロドラッグを形成する基としては、 $Prog.\ Med.$ , 5, 2157-2161 (1985)や「医薬品の開発」(廣川書店、1990年)第7巻 分子設計 163-198 に記載の基が挙げられる。

更に、本発明化合物は、酸付加塩又は置換基の種類によっては塩基との塩を形成する場合もあり、かかる塩が製薬学的に許容され得る塩である限りにおいて本発明に包含される。具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の無機酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マイレン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、アスパラギン酸、グルタミン酸等の有機酸との酸付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等の無機塩基、メチルアミン、エチルアミン、エタノールアミン、リジン、オルニチン等の有機塩基との塩やアンモニウム塩等が挙げられる。さらに、本発明は、本発明化合物及びその製薬学的に許容され得る塩の各種の水和物や溶媒和物及び結晶多形の物質をも包含する。

## (製造法)

本発明化合物及びその製薬学的に許容される塩は、その基本骨格あるいは置換基の種類に基づく特徴を利用し、種々の公知の合成法を適用して製造することができる。その際、官能基の種類によっては、当該官能基を原料乃至中間体の段階で適当な保護基(容易に当該官能基に転化可能な基)に置き換えておくことが製造技術上効果的な場合がある。このような官能基としては例えばアミノ基、水酸基、カルボキシル基等であり、それらの保護基としては例えばグリーン(Greene)及びウッツ(Wuts)著、「Protective Groups in Organic Synthesis(第2版)」に記載の保護基を挙げることができ、これらを反応条件に応じて適宜選択して用いればよい。このような方法では、当該保護基を導入して反応を行った後、必要に応じて保護基を除去することにより、所望の化合物を得ることができる。

以下、本発明化合物の代表的な製造法を一般式(I)について説明するが、一般式(II)で示される化合物も、対応する原料を使用することで同様に製造することができる。

#### 第1製法

$$\begin{array}{c|cccc}
O & OR & O & NH_2 \\
R^1 & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & \\
N & & & & & & & & \\
N & & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & \\
N & & & & & \\
N & & & & \\
N & & & & \\
N & & & & & \\
N & & & \\
N & & & & \\
N & &$$

(式中、RはH又は低級アルキル基を示す。他の記号は前記の意味を有する。) 第1製法(R=低級アルキル基の場合)

本製法は、エステル化合物である(III)をアンモニアと反応させアミド化し、本発明化合物(I)を製造する方法である。反応は水、メタノール、エタノール等のアルコール類、N,N-ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)等の反応に不活性な溶媒中または無溶媒中、室温乃至加熱下で行われる。場合により加圧下にて行うのが反応に有利な場合がある。

#### 第2製法 (R=Hの場合)

本製法は、カルボン酸化合物である(IIIa)を縮合剤(例えば、ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIPC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(WSC)、1,1'-カルボニルビス-1H-イミダゾール(CDI)等)、場合によっては、更に添加剤(例えば、N-ヒドロキシスクシンイミド(HONSu)、1-ヒドロキシベンゾトリアゾール(HOBt)等)の存在下、アンモニアで処理することにより本発明化合物(I)を製造する方法である。カルボン酸化合物(IIIa)がヒドロキシ基、アミノ基等の反応に活性な官能基を有する場合には、これらの官能基を予め保護基で保護しておき、本反応を実施し、所望により、保護基を除去して、本発明化合物(I)を得ることができる。

溶媒としては、ジクロロメタン、1,2-ジクロロエタン、クロロホルム等のハロゲン 化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、THF、1,4-ジオキサン等のエーテル類、DMF、ジメチルスルホキシド(DMSO)、ピリジン等の反応に不活性な溶媒が使用できる。これらの溶媒は単独で、又は2種以上混合して用いることができる。

第3製法(環基A上の置換基又はその側鎖の変換)

本発明化合物を原料として、更に反応に付すことにより、種々の本発明化合物を製造することができる。

## (1) 求核置換反応によるアルキル化

OH 基を有する化合物を、塩化チオニル等との反応で得られるアルキルクロリド等のアルキルハライド又は塩化メタンスルホニル又は塩化 p-トルエンスルホニル等との反応で得られる有機スルホン酸エステルとし、求核試薬と反応して使用できる。あるいは、光延反応に付すことによっても製造できる。反応はハロゲン化炭化水素類、芳香族炭化水素類、エーテル類、DMF等の反応に不活性な有機溶媒中または無溶媒下、冷却下~加熱下に行われる。水素化ナトリウム、水素化カリウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラジド、ナトリウムメトキシド、カリウム tert-ブトキシド、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等の塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。

#### (2) 還元的アルキル化

一級若しくは二級アミンを有する化合物と、ケトンやアルデヒド等のカルボニル 化合物とを反応させることにより、アルキル化を行うことができる。反応は還元的 アルキル化(カルボニル化合物から見れば還元的アミノ化)の常法を用いることがで き、例えば日本化学会編「実験化学講座(第4版)」20巻(1992年)(丸善)等に記載 の方法が挙げられる。

#### (3) アミド化、スルホンアミド化及びエステル化

カルボン酸若しくはスルホン酸化合物を、縮合剤の存在下あるいはそれらの反応性誘導体を使用することにより製造できる。カルボン酸又はスルホン酸化合物の反応性誘導体は、酸ハライド、酸無水物、活性エステルを示す。反応は、例えば日本化学会編「実験化学講座(第4版)」22巻(1992年)(丸善)等に記載の方法により行うことができる。

#### (4) カルバマート化及びウレア化

カルボン酸の反応性誘導体とアジ化ナトリウム等のアジ化物塩との反応若しくはアジ化ジフェニルホスホリル(DPPA)との反応によって得られる酸アジドをCurtius 転位することにより、あるいは、一級アミドの Hofmann 転位等により得ら

れるイソシアネート体を、OH 基を有する化合物又はアミン化合物と反応することにより製造できる。

反応は、ハロゲン化炭化水素類、芳香族炭化水素類、エーテル類、DMF等の反応に不活性な有機溶媒中又は無溶媒下、冷却下~加熱下に行われる。反応に際しては、 当量若しくは一方を過剰に用いることができる。

# 原料化合物の製法

本発明化合物の原料化合物(III)及び(IIIa)は、例えば下記合成経路図に示される公知の反応を用いて常法により製造できる。

(式中、 $L^2$ -CO-A はカルボン酸( $L^2$ =OH)又はその反応性誘導体を示す。他の記号は前記の意味を有する。)

#### アシル化

本製法はジアミノ安息香酸エステル化合物(V)に化合物(VIc)を反応させてアミド誘導体(VII)を得る方法である。反応は、前記第3製法(3)アミド化、スルホンアミド化及びエステル化の条件を適用して同様に行うことができる。

# 環化

(環化A) 本製法は一般式 (VII) で示されるアミド誘導体を分子内で閉環することによりエステル化合物 (III) を得る方法である。反応はハロゲン化炭化水素類、

芳香族炭化水素類、エーテル類等の反応に不活性な有機溶媒中または無溶媒下、触媒量乃至溶媒量の酸を用い、-78℃~0℃の冷却下、冷却下乃至室温下、室温下又は場合によっては室温下乃至加熱下に行われる。用いられる酸としては酢酸、硫酸、塩酸、リン酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸などが挙げられる。

(環化B) 本製法はジアミノ安息香酸化合物(IV)をアルデヒド化合物(VIa)とを酸化的に閉環させカルボン酸化合物(IIIa)を得る方法である。反応は水、アルコール類、アセトニトリル、芳香族炭化水素類、エーテル類などの反応に不活性な溶媒中、ジアミノ安息香酸化合物(IV)とアルデヒド化合物(VIa)とを等モルまたは一方を過剰量として用い、酸化剤の存在下、室温または加熱下で行うことができる。酸化剤としては銅化合物(酢酸銅、塩化銅など)、鉄化合物(酢酸鉄など)、マンガン化合物(二酸化マンガン、過マンガン酸カリウムなど)、クロム化合物(酸化クロムなど)、ルテニウム化合物(テトラプロピルアンモニウムパールテネートなど)、銀化合物(酸化銀など)、セリウム化合物(硝酸セリウムなど)、ジメチルスルホキシド、ベンゾフロキサン、ニトロベンゼン、キノン化合物(クロラニルなど)などが挙げられる。

(環化 C) 本製法はジアミノ安息香酸エステル化合物(V)を一般式(VIb)で示されるカルボン酸化合物と縮合させ、エステル化合物(III)を得る方法である。反応はジアミノ安息香酸エステル化合物(V)とカルボン酸化合物(VIb)とを等モルまたは一方を過剰に用い、硫酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、無水トリフルオロ酢酸、無水トリフルオロメタンスルホン酸、ポリリン酸等の酸性条件下に行う。好ましくはポリリン酸中、氷冷下~加熱下で行う。

また、ジアミノ安息香酸エステル化合物(V)を、前記(環化B)に記載の条件に付すことによっても、対応するエステル化合物(III)を製造することができる。エステル化及び加水分解

一般的な、カルボン酸のエステル化・加水分解反応が適用できる。具体的には、 前記「Protective Groups in Organic Synthesis(第2版)」に記載されたカルボキシル 基の保護・脱保護の反応を適用することができる。

その他、前記第3製法に記載のアミド化、スルホンアミド化及びエステル化等の

各反応は原料化合物の製造にも適用可能である。同様の条件を上記原料化合物 (III) に適用することにより、種々の原料化合物を製造することができる。

上記各製法により得られた反応生成物は、遊離化合物、その塩あるいは水和物な ど各種の溶媒和物として単離、精製することができる。塩は通常の造塩処理に付す ことにより製造できる。

単離、精製は、抽出、濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー等通常の化学操作を適用して行うことができる。

各種異性体は異性体間の物理化学的な差を利用して常法により単離できる。例えば、光学異性体は一般的な光学分割法、例えば分別結晶化又はクロマトグラフィー等により分離できる。また、光学異性体は、適当な光学活性な原料化合物より製造することもできる。

## 産業上の利用可能性

本発明化合物は医薬製剤の活性成分として有用である。特にPARP阻害作用を有するため、PARPの関与する、炎症性疾患(例えば、慢性関節リウマチ、潰瘍性大腸炎、クローン病、腹膜炎、胸膜炎、腎炎等)、自己免疫疾患(例えば、I型糖尿病等)、虚血再還流障害に伴う疾患(例えば、脳卒中、心筋梗塞、臓器移植等)の予防・治療薬として有用である。

本発明化合物の作用は以下の薬理試験によって確認された。

# 1. 無細胞系 PARP 阻害活性測定試験 (in vitro)

- 1) 試験化合物は所望の濃度を、82.5 mM トリス-HCl (pH 8.0)、50 mM 塩化カリウム、10 mM 塩化マグネシウム、5 mM ジチオスレイトール、100  $\mu$  g/ml ヒストン、26 nM <sup>3</sup>H-NAD および 0.06 unit ヒト組み替え型 PARP を含有している反応液中で25℃、3 時間反応させた。
- 2) 反応液に 100 mM ニコチンアミドを添加することにより反応を停止させた。
- 3) 反応液を 0.5 mg 抗マウス IgG 抗体結合型 SPA ビーズと反応させ Top count (Packard 社) により酵素活性を測定した。
- 4) IC<sub>so</sub> は PARP の ADP-ribose 重合化活性を 50%阻害する試験化合物濃度として 各化合物について算出した。

実施例2、10、13、16、22、39、41、50、53、56、61、63、66、67、72、92に記載の化合物は、 $7\sim50$  nMのIC<sub>50</sub>を示した。一方、比較化合物N'-[2-(N,N-ジメチルアミノ)エチル]-2-(4'-メトキシフェニル)-1H-ベンゾイミダゾール-4-カルボキサミド(J. Med. Chem., 33, 814-819 (1990), no.21の化合物)は1000 nMで阻害活性を示さなかった。

# 2. 生細胞系 PARP 阻害活性測定試験 (in vitro)

- 1) J774.1 細胞 (マウス単球/マクロファージ細胞株) を 25 mM HEPES および 10% 牛胎児血清含有 DMEM 培地にて 5 x 10<sup>5</sup> 個/ml に調整し、37℃、5%CO<sub>2</sub> の条件下で 24 時間培養した。
- 2) 試験化合物は 28 mM 塩化カリウム、28 mM 塩化ナトリウム、2 mM 塩化マグネシウム、0.01%ジギトニン及び 26 nM <sup>3</sup>H-NAD を含む 56 mM HEPES (pH 7.5)溶液にて所望の濃度に調整し、反応溶液とした。
- 3) DMEM 培地を上記反応溶液と置換し、37℃、5%CO2条件下で 15 分培養した。
- 4)細胞を冷 5%トリクロロ酢酸にて洗浄後、2%SDS、0.1M NaOH により溶解し放射活性を測定した。
- 5) IC<sub>50</sub> は PARP の ADP-ribose 重合化活性を 50%阻害する試験化合物濃度として 各化合物について算出した。

本発明化合物は、上記in vitro試験においても良好な阻害活性を示した。

# 3. ザイモザン誘発腹膜炎 (in vivo)

- 1)6~8 週令雄性 Balb/c マウス (日本チャールスリバー)を実験に供した。
- 2) マウスは試験前日夕方より絶食、自由飲水とした。
- 3)各試験化合物は0.5%メチルセルロースにて懸濁あるいは溶解した。
- 4)各試験化合物懸濁液あるいは溶液を上記 Balb/c マウスに所望の用量となるように 5 ml/kg にて経口投与した。陰性および陽性対照群には溶媒である 0.5%メチルセルロースを 5 ml/kg にて投与した。
- 5) ザイモザン (Sigma) は生理食塩水により 0.5 mg/ml となるように懸濁し、化合物の経口投与と同時に 1 ml/mouse にて腹腔内投与した。陰性対照群には生理食塩水を 1 ml/mouse にて腹腔内投与した。
- 6) ザイモザン投与4時間後に各マウスの腹腔を5 mlの0.1%へパリン含有生理食

塩水にて洗浄し腹腔内の細胞を回収した。

- 7) 回収した細胞数は celltak (日本光電) にて測定した。
- 8) ED30 はザイモザンによって腹腔に浸潤した細胞数を 30%抑制する試験化合物 用量として各化合物について算出した。

実施例2、10、41、50、61、72に記載の化合物は、3~15 mg/kgのED 30を示した。一方、比較化合物2-(4'-ニトロフェニル)-1H-ベンゾイミダゾール-4-カルボキサミド(WO97/04771, 実施例11の化合物)は、30 mg/kgで作用を示さなかった。

# 4. コラーゲン誘発関節炎 (in vivo)

- 1) 3 mg/ml ウシ II 型コラーゲン (コラーゲン研修会) 8 ml と同量の FCA (Freund complete adjuvant H37 Ra、DIFCO Laboratories) を十分に混合し、雄性 DBA/1J マウス (日本チャールスリバー) 尾根部皮内に 100 μ l ずつ免疫した。
- 2) 21 日後、上記と同様に追加免疫した。
- 3) 追加免疫日を0日目とし、1週間に2回の割合で体重および各肢の関節炎スコアを測定した。関節炎スコアは以下のように設定した。すなわち、0は正常、1は発赤および軽度の腫脹、2は中程度の腫脹、3は重度の腫脹または関節部の強直である。
- 4) 試験化合物は 0.5% メチルセルロースを溶媒として、1、3、10 および 30 mg/5 ml の濃度で懸濁し、5 ml/kg の用量にて 1 日 1 回経口投与を 21 日目まで行った。なお 陰性および陽性対照群には溶媒である 0.5% メチルセルロースを 5 ml/kg にて投与した。
- 5) 測定結果は経日的な変化として表すと共に時間一反応曲線下面積(AUC: area under the curve)として表した。関節炎スコアに関しては steel 検定を、体重変動に関しては Dunnett 検定を行い p 値が 0.05 以下の場合を有意とした。

本発明化合物は、上記in vivo試験において良好な活性を示した。

上記1~4の実験結果より、本発明化合物はPARP阻害作用を有する事が確認され、PARPの関与する疾患の予防・治療薬として有用である事が明らかである。

本発明化合物(I)又はその製薬学的に許容され得る塩の1種又は2種以上を有効成分として含有する医薬組成物は、当分野において通常用いられている薬剤用担

体、賦形剤等を用いて通常使用されている方法によって調製することができる。

投与は錠剤、丸剤、カプセル剤、顆粒剤、散剤、液剤等による経口投与、又は、 関節内、静脈内、筋肉内等の注射剤、坐剤、点眼剤、眼軟膏、経皮用液剤、軟膏剤、 経皮用貼付剤、経粘膜液剤、経粘膜貼付剤、吸入剤等による非経口投与のいずれの 形態であってもよい。

本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、1種又は2種以上の有効成分を、少なくとも1種の不活性な賦形剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウム等と混合される。組成物は、常法に従って、不活性な添加剤、例えばステアリン酸マグネシウム等の潤滑剤やカルボキシメチルスターチナトリウム等の崩壊剤、溶解補助剤を含有していてもよい。錠剤又は丸剤は必要により糖衣又は胃溶性若しくは腸溶性コーティング剤で被膜してもよい。

経口投与のための液体組成物は、薬剤的に許容される乳剤、液剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な溶剤、例えば精製水、エタノールを含む。この組成物は不活性な溶剤以外に可溶化剤、湿潤剤、懸濁化剤のような補助剤、甘味剤、矯味剤、芳香剤、防腐剤を含有していてもよい。

非経口投与のための注射剤は、無菌の水性又は非水性の液剤、懸濁剤、乳剤を含む。水性の溶剤としては、例えば注射用蒸留水及び生理食塩液が含まれる。非水性の溶剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソルベート80(商品名)等がある。このような組成物は、さらに等張化剤、防腐剤、湿潤剤、乳化剤、分散剤、安定化剤、溶解補助剤を含んでもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解、懸濁して使用することもできる。

経鼻剤等の経粘膜剤は固体、液体、半固体状のものが用いられ、従来公知の方法 に従って製造することができる。例えば公知のpH調整剤、防腐剤、増粘剤や賦形剤 が適宜添加され、固体、液体若しくは半固体状に成形される。経鼻剤は通常のスプ

レー器具、点鼻容器、チューブ、鼻腔内挿入具等を用いて投与される。

通常経口投与の場合、1日の投与量は、体重当たり約0.001~100 mg/kg、好ましくは0.1~10 mg/kg が適当であり、これを1回であるいは2~4回に分けて投与する。静脈投与される場合は、1日の投与量は、体重当たり約0.0001 から10 mg/kg が適当で、1日1回~複数回に分けて投与する。関節内投与の場合は、1日の投与量は、体重当たり約0.0001~10 mg/kg が適当で、1日1回~複数回に分けて投与する。また、経粘膜剤としては、体重当たり約0.001~100 mg/kg を1日1回~複数回に分けて投与する。なた、経粘膜剤としては、体重当たり約0.001~100 mg/kg を1日1回~複数回に分けて投与する。投与量は症状、年令、性別等を考慮して個々の場合に応じて適宜決定される。

# 発明を実施するための最良の形態

以下、実施例に基づき本発明を更に詳細に説明する。本発明化合物は下記実施例に記載の化合物に限定されるものではない。また原料化合物の製法を参考例に示す。なお、2,3-ジアミノ安息香酸メチルエステルは US5380719 に記載の方法により製造した。

#### 参考例1

6-メチルニコチン酸メチルエステル、ケイ皮アルデヒド、無水酢酸及び氷酢酸の混合物を外温 120℃で 12 時間攪拌した。以下、常法により後処理、精製して、6-(4-フェニル-1,3-ブタジエニル)ニコチン酸メチルエステルを無色固体として得た。 FAB-MS(M+H)<sup>+</sup>: 266。

#### 参考例2

(E)-6-スチリルニコチン酸メチルエステルの酢酸エチル溶液に 10%パラジウム-炭素を加え、常圧水素雰囲気下、室温で 5 時間攪拌した。反応液をろ過し、溶媒を留去して、粗製の 6-(2-フェネチル)ニコチン酸メチルエステルを無色固体として得た。 FAB-MS(M+H) $^+$ : 242。

#### 参考例3

6-(4-フェニル-1,3-ブタジエニル)ニコチン酸メチルエステルを用いて参考例 2 と同様にして、粗製の 6-(4-フェニルブチル)ニコチン酸メチルエステルを淡黄色油状物として得た。 $FAB-MS(M+H)^{\dagger}: 270$ 。

# 参考例4

6-(2-フェネチル)ニコチン酸メチルエステルのエタノール溶液に 1M 水酸化ナトリウム水溶液を加え、室温で 2 時間攪拌した。反応溶液を減圧下留去し、6M 塩酸で pH を 3~4 とした後、分液処理して、粗製の 6-(2-フェネチル)ニコチン酸を無色固体として得た。FAB-MS(M+H)\*: 228。

# 参考例5

(E)-6-スチリルニコチン酸メチルエステルを用いて参考例4と同様にして、粗製の(E)-6-スチリルニコチン酸を無色固体として得た。FAB-MS(M+H)<sup>†</sup>:226。

## 参考例6

6-(4-フェニルブチル)ニコチン酸メチルエステルを用いて参考例4と同様にして、 粗製の 6-(4-フェニルブチル)ニコチン酸を無色固体として得た。FAB-MS(M+H)\*: 256。

# 参考例7

5-クロロ-3-ニトロアントラニル酸のメタノール溶液に濃硫酸を加え、16 時間加熱 還流後、常法により精製して、5-クロロ-3-ニトロアントラニル酸メチルエステルを 黄色固体として得た。FAB-MS(M+H)<sup>†</sup>: 231。

#### 参考例8

5-クロロ-3-ニトロアントラニル酸メチルエステルをエタノール及び酢酸エチル混合溶媒中、10%パラジウムー炭素存在下、水素雰囲気下に接触還元して、2,3-ジアミノ-5-クロロ安息香酸メチルエステルを茶褐色固体として得た。EI-MS(M<sup>+</sup>):200。参考例9

2,3-ジアミノ安息香酸メチルエステルを THF 中、トリエチルアミン及び 4-ジメチルアミノピリジン存在下、チオフェン-2-カルボニルクロリドと反応後、常法により精製して、2-アミノ-3-[(チオフェン-2-イルカルボニル)アミノ]安息香酸メチルエステルを淡灰色粉末として得た。

#### 参考例10

ニコチン酸を、トリエチルアミン及び THF の混合溶媒中、クロロギ酸イソブチルと反応後、2,3-ジアミノ安息香酸メチルエステルと反応させ、以下、常法により精製して、2-アミノ-3-[(ピリジン-3-イルカルボニル)アミノ]安息香酸メチルエステ

ルを淡褐色粉末として得た。

#### 参考例11

2,3-ジアミノ安息香酸メチルエステルの DMF 溶液に、6-クロロニコチン酸、WSC・HCI 及び HOBT を加え反応後、常法により精製して 2-アミノ-3-[(2-クロロピリジン-5-イルカルボニル)アミノ]安息香酸メチルエステルを淡緑色粉末として得た。

#### 参考例12

2-アミノ-3-[(2-クロロピリジン-5-イルカルボニル)アミノ]安息香酸メチルエステル及び酢酸を加熱下反応後、常法により精製して、メチル 2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキシラートを淡褐色粉末として得た。

# 参考例13

2,3-ジアミノ安息香酸メチルエステル及び 3-チオフェンカルボン酸を、五酸化二リン及びリン酸より調製したポリリン酸中、加熱下反応し、以下、常法により精製して、メチル 2-(チオフェン-3-イル)-1H-ベンゾイミダゾール-4-カルボキシラートを褐色粉末として得た。

#### 参考例14

チアゾール-2-カルボキシアルデヒド及び 2,3-ジアミノ安息香酸メチルエステルをメタノール中反応後、ベンゾフロキサンのアセトニトリル溶液で処理し、常法により精製して、メチル 2-チアゾール-2-イル-1H-ベンゾイミダゾール-4-カルボキシラートを淡黄色固体として得た。

#### 参考例15

2,3-ジアミノ安息香酸メチルエステルおよび 1H-ピロール-2-カルバルデヒドのメタノール溶液に酢酸、酢酸銅(II)水和物及び水を加え、加熱した。沸騰するとすぐに銅塩を濾取し、減圧下乾燥させた。得られた銅塩のエタノールおよび濃塩酸懸濁液に二硫化ナトリウム九水和物の水溶液を加え、加熱し沸騰させ、すぐに濾過した。濾液に 1M 水酸化ナトリウム水溶液を加え、pH を6にした。水を加えた後、液量が半分程度になるまで溶媒を減圧濃縮した。生じた沈殿物を濾取後、常法により精製して、メチル 2-(1H-ピロール-2-イル)-1H-ベンゾイミダゾール-4-カルボキシラートを茶褐色固体として得た。

#### 参考例16a及びb

メチル 2-ベンゾ[b]チオフェン-2-イル-1H-ベンゾイミダゾール-4-カルボキシラート及びジメチルホルムアミドジメチルアセタールを、トルエン中3時間加熱環流して反応後、常法により精製して、メチル 2-ベンゾ[b]チオフェン-2-イル-1-メチル-1H-ベンゾイミダゾール-4-カルボキシラート(16a)及びメチル 2-ベンゾ[b]チオフェン-2-イル-3-メチル-1H-ベンゾイミダゾール-4-カルボキシラート(16b)を無色固体として得た。FAB-MS(M+H)\*: (16a及びb共に)323。

# 参考例17

メチル 2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキシラートをエタノール及び 1M 水酸化ナトリウム水溶液中 50℃で加水分解して、2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボン酸を淡褐色粉末として得た。参考例 1 8

メチル 6-クロロ-2-チオフェン-2-イル-1H-ベンゾイミダゾール-4-カルボキシラートをメタノール及び 1M 水酸化ナトリウム水溶液中加水分解して、6-クロロ-2-チオフェン-2-イル-1H-ベンゾイミダゾール-4-カルボン酸を無色固体として得た。

# 参考例19

6-メチルアントラニル酸を DMF 中、N-ブロモコハク酸イミドと反応させて、5-ブロモ-6-メチルアントラニル酸を無色固体として得た。EI-MS(M<sup>+</sup>): 229。 参考例 2 0

5-ブロモ-6-メチルアントラニル酸より文献(J, Med. Chem., 33, 814-819 (1990))に記載の方法により、5-ブロモ-6-メチル-3-ニトロアントラニル酸を得た。EI-MS( $\mathbf{M}^{\dagger}$ ): 274。

# 参考例21

5-プロモ-4-メチル-3-ニトロアントラニル酸(文献(J. Med. Chem., 30, 843-851 (1987))に記載の方法と同様にして、4-プロモ-3-メチルアニリンより製造)を水酸化ナトリウム水溶液中、10%パラジウムー炭素存在下、水素雰囲気下に接触還元した。反応液を濾過後酢酸で酸性とし、メタノール中、酢酸銅(II)水和物存在下、2-チオフェンカルバルデヒドと加熱下反応させた。銅塩を濾取し、エタノール、濃塩酸及び二硫化ナトリウム九水和物の水溶液を加え、加熱沸騰させた後すぐに濾過

した。濾液に 1M 水酸化ナトリウム水溶液を加え、常法により精製して、7-メチル-2-チオフェン-2-イル-1H-ベンゾイミダゾール-4-カルボン酸を無色固体として得た。 参考例 2 2

2,3-ジアミノ安息香酸メチルエステルの DMF 溶液に 1-tert-ブトキシカルボニルピペリジン-4-カルボン酸、WSC・HCI 及び HOBt を加え、室温下一夜攪拌した。反応液を濃縮後、水を加え、酢酸エチルで抽出した。抽出液を乾燥(無水硫酸マグネシウム)後、留去して得た粗生成物と酢酸の混合物を、120℃で 1 時間加熱攪拌した。反応液を濃縮後、クロロホルムを加え、1 M 水酸化ナトリウム水溶液で洗浄、乾燥(無水硫酸マグネシウム)、濃縮後、シリカゲルカラムクロマトグラフィーで精製し、メチル 2-(1-tert-ブトキシカルボニルピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボキシラートを淡桃色粉末として得た。

#### 参考例23

2-(1-tert-ブトキシカルボニルピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボン酸及び THF の混合物に CDI を加え、室温下 3 時間攪拌した。反応液にアンモニア飽和の THF を加え、室温下終夜攪拌した。反応液を減圧濃縮し、残渣に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、乾燥(無水硫酸マグネシウム)後、溶媒をに留去して、2-(1-tert-ブトキシカルボニルピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボキサミドを白色粉末として得た。FAB-MS(M+H)\*: 360。

#### 参考例24

2-(1-tert-ブトキシカルボニルピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボキサミド及びトリフルオロ酢酸の混合物を、室温下終夜攪拌した。反応液を濃縮後、残渣に酢酸エチル及びイソプロピルエーテルを加えて得られる固体を濾取しイソプロピルエーテルで洗浄して、2-(ピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボキサミド・2 トリフルオロ酢酸塩粗生成物(26.6 g)を白色粉末として得た。FAB-MS(M+H)<sup>+</sup>: 245。

以下、市販の化合物あるいは文献等で公知の化合物を用い、上記の参考例9の方法と同様にして表1に示す参考例25及び26の化合物を、参考例10の方法と同様にして表1に示す参考例27~31の化合物を、参考例11の方法と同様にして

表1に示す参考例32~43の化合物を、参考例12の方法と同様にして表3に示す参考例44~65の化合物を、参考例13の方法と同様にして表3に示す参考例66の化合物を、参考例15の方法と同様にして表3に示す参考例67の化合物を、参考例21の方法と同様にして表4に示す参考例74の化合物を、参考例22の方法と同様にして表3に示す参考例68の化合物を、参考例17の方法と同様にして表4に示す参考例69~73、75~87の化合物及び表2に示す参考例88~89の化合物を、それぞれ対応する原料を使用して製造した。参考例化合物の構造及び物理化学的データを、参考例9~11及び25~43の化合物は表1に、参考例16a、16b、88及び89の化合物は表2に、参考例12~15、22、44~68の化合物は表3に、参考例17、18、21、69~87の化合物は表4にそれぞれ示す。

#### 実施例1

2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボン酸(549 mg)の THF(20 ml)懸濁液に CDI(350 mg)を加え、室温下 1 時間攪拌した。反応液にアンモニア飽和の THF(15 ml)を加え、室温下一夜攪拌した。反応液を減圧濃縮し、残渣を水洗して 2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド(420 mg)を白色粉末として得た。

# 実施例2

金属封管中、-50℃以下に冷却した液体アンモニア(35 ml)にメチル 2-(ピリジン-4-イル)-1H-ベンゾイミダゾール-4-カルボキシラート(3.58 g)を加え、140℃で3日間加熱した。反応容器を-50℃以下に冷却して開封後、反応液を濃縮し、DMF-酢酸エチルから再結晶して 2-(ピリジン-4-イル)-1H-ベンゾイミダゾール-4-カルボキサミド(2.58 mg)を淡褐色粉末として得た。

#### 実施例3

金属封管中、-50℃以下に冷却した液体アンモニア(15 ml)にメチル 2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキシラート(640 mg)を加え、140℃で3日間加熱した。反応容器を-50℃以下に冷却して開封後、反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルムーメタノール)で精製し、次いでエタノールから再結晶して、2-(2-アミノピリジン-5-イル)-1H-ベンゾイミ

ダゾール-4-カルボキサミド(312 mg)を淡褐色粉末として得た。

# 実施例4

2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド(250 mg) 及びフェニルプロピルアミン(2 ml)を 100℃で一夜攪拌した。反応混合物をクロロホルムで希釈した後、シリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル)で精製し、次いでイソプロパノールから再結晶して、2-(2-フェニルプロピルアミノピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド(215 mg)を無色粉末として得た。

#### 実施例5

2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボン酸(200 mg)及び40%メチルアミン水溶液(2 ml)を、封管中 100℃で 8 時間加熱した。反応混合物を水で希釈後、1M 水酸化ナトリウム水溶液を加えた。水層をクロロホルムで洗浄後、1M 塩酸水を加えて pH5 とし、析出した固体を濾取、乾燥して、粗生成物(189 mg)を得た。得られた粗生成物(157 mg)に THF(10 ml)及び CDI(148 mg)を加え、室温で 5 時間攪拌した。反応液にアンモニアを飽和した THF(20 ml)を加え、室温で一夜攪拌した。反応液に水を加え、析出した固体を濾取、水洗して、2-(2-メチルアミノピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド(78 mg)を淡褐色粉末として得た。

# 実施例6

2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド(600 mg)、フェネチルメルカプタン(609 mg)の DMF(6 ml)溶液に、ナトリウムメトキシド(357 mg)を加え、65℃で 1.5 時間攪拌した。反応混合物を水で希釈した後、1M 塩酸水を加え、pH4 とした。析出した固体を濾取後、THF-メタノールより再結晶し、2-(2-フェネチルスルファニルピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド(466 mg)を無色針状晶として得た。

#### 実施例7

2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド(600 mg)、ベンジルアルコール(595 mg)、18-crown-6(71 mg)の DMF(6 ml)溶液に、カリウム tert-ブトキシド(tBuOK, 740 mg)を加え、95℃で 8 時間攪拌した。反応混合物に、18-

M

crown-6(291 mg)及び tBuOK(246 mg)を加え、95℃で 14 時間攪拌し、更に、18-crown-6(291 mg)及びtBuOK(246 mg)を加え、95℃で 5 時間攪拌した。反応混合物を水で希釈した後、1M 塩酸水を加え、pH4 とした。析出した固体を濾取後、THFーメタノールより再結晶し、2-(2-ベンジルオキシピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド(324 mg)を無色針状晶として得た。

# 実施例8

メチル 2-(2-クロロピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキシラート(767 mg)及び 28%ナトリウムメトキシドーメタノール溶液(10 ml)を、封管中 140℃で一夜加熱した。反応混合物を濃縮後、水で希釈し、1M 塩酸水を加えて pH6 とした。析出した固体を濾取、乾燥して、粗生成物(287 mg)を得た。得られた粗生成物に THF(10 ml)及び CDI(280 mg)を加え、室温で 2 時間攪拌した。反応液にアンモニアを飽和した THF(20 ml)を加え、室温で 2 日間攪拌した。反応液を濃縮し、水を加えて得られた固体を濾取後、シリカゲルカラムクロマトグラフィー(クロロホルムーメタノール)で精製し、次いで DMF-酢酸エチルから再結晶して、2-(2-メトキシピリジン-5-イル)-1H-ベンゾイミダゾール-4-カルボキサミド(128 mg)を淡褐色粉末として得た。

# 実施例9

2-(ピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボキサミド・2 トリフルオロ酢酸塩粗生成物(767 mg)、ドデカナール(0.54 ml)、酢酸(5 滴)及び 1,2-ジクロロエタン (10 ml)の混合物にトリアセトキシ水素化ホウ素ナトリウム(1.20 g)を加え、室温下 1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出後、有機層を乾燥(無水硫酸マグネシウム)し、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルムーメタノール)で精製し、2-(1-ドデシルピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボキサミド(554 mg)を得た。得られた化合物をメタノールに溶解し、フマル酸 117 mg を加えた。生じた結晶を再結晶(メタノールー酢酸エチル)し、2-(1-ドデシルピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボキサミド 1/2 フマル酸塩(510 mg)を白色粉末として得た。

#### 実施例10

2-(ピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボキサミド・2 トリフルオロ

酢酸塩粗生成物(700 mg)、3-フェノキシプロピルブロミド(215 mg)、炭酸カリウム(1.4 g)、ヨウ化カリウム(150 mg)及び DMF(13 ml)の混合物を室温下終夜攪拌した。反応液に水を加え、酢酸エチルで抽出後、有機層を飽和食塩水で洗浄した。抽出液を乾燥(無水硫酸マグネシウム)、濃縮後、シリカゲルカラムクロマトグラフィー(クロロホルムーメタノール)で精製し、2-[1-(3-フェノキシプロピル)ピペリジン-4-イル]-1H-ベンゾイミダゾール 4-カルボキサミド(289 mg)を白色粉末として得た。

## 実施例11

2-(ピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボキサミド・2 トリフルオロ酢酸塩粗生成物(483mg)のジクロロメタン(10 ml)懸濁液に N,N-ジイソプロピルエチルアミン (1 ml) および p-トルエンスルホニルクロリド(264mg)を加え、室温下 30分間攪拌した。反応液に炭酸水酸ナトリウム水溶液を加え、クロロホルムで抽出後、有機層を乾燥した。減圧下で溶媒を留去し、残渣をシリカゲルシリカゲルカラムクロマトグラフィー(クロロホルム-メタノール)で精製後、再結晶(クロロホルム-メタノール・酢酸エチル)することにより 2-(1-トルエン-4-スルホニルピペリジン-4-イル)-1H-ベンゾイミダゾール 4-カルボキサミド(152 mg)を得た。を白色粉末として得た。

以下、上記実施例  $1\sim1$  1 に記載の方法と同様にして表  $5\sim8$  に示す実施例 1 2  $\sim9$  3 の化合物を、それぞれ対応する原料を使用して製造した。実施例化合物の構造を表  $5\sim8$  に、物理化学的データを表 9 にそれぞれ示す。

また、表10~13に本発明の別の化合物の構造を示す。これらは、上記の製造 法や実施例に記載の方法及び当業者にとって自明である方法、又はこれらの変法を 用いることにより、容易に合成することができる。

表中、次に示す略号を用いる。Rex:参考例番号、Ex:実施例番号、Cmpd:化合物番号、Str:構造式、Me:メチル、Et:エチル、tBu:tert-ブチル、Boc:tBuO-CO-、Ph:フェニル、Bn:ベンジル、cHex:シクロヘキシル、Ac:アセチル。Sal:塩(HCl:塩酸塩;Ox:シュウ酸塩;Fu:フマル酸塩;無記載:フリー体)、Syn:製造法(数字は同様に製造した実施例番号を示す)、Dat:物理化学的データ(F:FAB-MS(M+H)<sup>+</sup>;FN:FAB-MS(M-H)<sup>-</sup>;NMR:DMSO-d<sub>6</sub>中の  $^1$ HNMR におけるピークの $^{\delta}$  (ppm))。

Ţ

表1

| Rex | Α          | Dat   | Rex | Α                    | Dat   | Rex | A                 | Dat    |
|-----|------------|-------|-----|----------------------|-------|-----|-------------------|--------|
| 9   | s)         | F:277 | 30  | — <mark>N</mark> ⊸Me | F:287 | 38  | N—N               | F:323  |
| 10  | <b>─</b> N | F:272 | 31  | <b>N</b> -N          | F:273 | 39  | S                 | FN:325 |
| 11  | -√=N<br>CI | F:306 | 32  | HZ O                 | F:278 | 40  | -Ph               | F:376  |
| 25  | —(N        | F:272 | 33  |                      | F:311 | 41  | -√-Ph             | F:374  |
| 26  |            | F:261 | 34  | N<br>N<br>N          | F:273 |     | ⟨ <sup>−</sup> Ph |        |
| 27  | ~N=>       | F:272 | 35  | ——N                  | F:322 | 42  | -⟨_N              | F:404  |
| 28  | ——N—Me     | F:286 | 36  |                      | F:322 | 43  | -√N−NEt₂          | F:344  |
| 29  | Me<br>——N  | F:286 | 37  | _N                   | F:322 |     |                   |        |

| Rex | Str      | R  | Dat   |
|-----|----------|----|-------|
| 16a | CO₂R     | Me | F:323 |
| 88  | N S N Me | Н  | F:309 |
| 16b | CO₂R Me  | Me | F:323 |
| 89  |          | Н  | F:309 |

| Rex | R <sup>1</sup> | <u>′ н</u><br>А  | Dat    | Rex | $\mathbb{R}^1$ | A                                                              | Dat   |
|-----|----------------|------------------|--------|-----|----------------|----------------------------------------------------------------|-------|
| 12  | Н              | -{=N}-CI         | F:288  | 54  | Н              | <b></b> 0                                                      | F:243 |
| 13  | Н              | _(S              | F:259  | 55  | Н              | -0]                                                            | F:243 |
| 14  | Н              | ⊸ <sub>N</sub> ) | F:260  | 56  | Н              |                                                                | F:255 |
| 15  | Н              | Z                | F:242  | 57  | Н              | ~S                                                             | F:309 |
| 22  | Н              | — N⋅Boc          | F:360  | 58  | Н              | — <b>(</b> _N                                                  | F:254 |
| 44  | Н              | -\N_>0           | F:260  | 59  | Н              |                                                                | F:304 |
| 45  | Н              |                  | F:254  | 60  | Н              | <b>−</b> (=N)                                                  | F:254 |
| 46  | Н              | N                | F:304  | 61  | Н              |                                                                | F:305 |
| 47  | Н              |                  | F:255  | 62  | Н              | $ \stackrel{N}{\underset{N}{\longleftarrow}}$ NEt <sub>2</sub> | F:326 |
| 48  | Н              | -Ph              | F:358  | 63  | Н              | -√-Ph                                                          | F:356 |
| 49  | Н              | —N—Me            | F:269  | 64  | Н              | -\(\bigcap\)Ph                                                 | F:386 |
| 50  | Н              | Me<br>-N         | F:268  | 65  | Н              | —⟨¯N<br>Me                                                     | F:268 |
| 51  | Н              | ¬(S)             | F:259  | 66  | 6-Cl           | ⊸S <sub>y</sub>                                                | F:293 |
| 52  | Н              | -01              | F:293  | 67  | Н              | H<br>N<br>N<br>N                                               | F:243 |
| 53  | Н              |                  | EI:303 | 68  | Н              | O<br>N-Bn                                                      | F:350 |

| Rex | $\mathbb{R}^1$ | Α                                      | Dat    | Rex | R¹ | Α                                        | Dat    |
|-----|----------------|----------------------------------------|--------|-----|----|------------------------------------------|--------|
| 17  | Н              | -\bigci_N-CI                           | F: 274 | 77  | Н  |                                          | FN:288 |
| 18  | 6-Cl           | S                                      | FN:277 | 78  | Н  | S                                        | FN:293 |
| 21  | 7-Me           | S                                      | F: 259 | 79  | Н  |                                          | FN:288 |
| 69  | Н              | -()                                    | F: 229 | 80  | Н  | $\sim$                                   | FN:288 |
| 70  | Н              |                                        | FN:227 | 81  | Н  | ⊸(N-Bn                                   | F:336  |
| 71  | Н              | -01                                    | F: 279 | 82  | Н  | -√Ph                                     | FN:342 |
| 72  | Н              | → S J                                  | FN:244 | 83  | Н  | -√-Ph                                    | F:342  |
| 73  | Н              | -\\\_\\\\_\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | F: 246 | 84  | Н  | -N-Ph                                    | F:372  |
| 74  | 5-Me           | ~S                                     | F: 259 | 85  | Н  | $ \stackrel{N}{\longrightarrow}$ $NEt_2$ | F:312  |
| 75  | Н              | Z                                      | F:228  | 86  | Н  | —√N-Boc                                  | F:346  |
| 76  | Н              | → N<br>HN<br>HN<br>HN                  | F:229  | 87  | Н  | — <b>(</b> `N                            | F:240  |

| Ex | Syn | X-Y-Z                                | Ex | Syn | X-Y-Z                                  | Ex | Syn | X-Y-Z      |
|----|-----|--------------------------------------|----|-----|----------------------------------------|----|-----|------------|
| 1  | 1   | -CI                                  | 12 | 1   | -(CH <sub>2</sub> ) <sub>2</sub> Ph    | 19 | 4   | -NHCH₂cHex |
| 3  | 3   | -NH <sub>2</sub>                     | 13 | 1   | -CH=CH-Ph                              |    |     |            |
| 4  | 4   | -NH(CH₂)₃Ph                          | 14 | 1   | -(CH₂)₄Ph                              | 20 | 5   | -NH N-     |
| 5  | 5   | -NHMe                                | 15 | 2   | -Me                                    | 21 | 5   | -NHEt      |
| 6  | 6   | -S(CH <sub>2</sub> ) <sub>2</sub> Ph | 16 | 4   | -NH(CH <sub>2</sub> ) <sub>2</sub> OPh | 22 | 6   | -SCH₂Ph    |
| 7  | 7   | -OCH₂Ph                              | 17 | 4   | -NH(CH <sub>2</sub> ) <sub>5</sub> Me  | 23 | 6   | -S(CH₂)₃Ph |
| _8 | 8   | -OMe                                 | 18 | 4   | -NH(CH <sub>2</sub> ) <sub>2</sub> Ph  | 24 | 7   | -O(CH₂)₃Ph |

| Ex | Syn | Str                                                       | Dat    | Ex | Syn | Str                                                                                                                                                                                                      | Dat    |
|----|-----|-----------------------------------------------------------|--------|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 92 | 1   | H <sub>2</sub> N <sub>2</sub> O<br>N <sub>N</sub> S<br>Me | F: 308 | 93 | 1   | H <sub>2</sub> N <sub>2</sub> O <sub>Me</sub><br>N <sub>1</sub> S | F: 308 |

$$\begin{array}{c|c}
O & NH_2 \\
\hline
 & N \\
\hline
 & H
\end{array}$$

| Ex | Syn | R <sup>1</sup> | Α                | Sal | Ex | Syn | $\mathbb{R}^1$ | Α                                                                 | Sal     |
|----|-----|----------------|------------------|-----|----|-----|----------------|-------------------------------------------------------------------|---------|
| 2  | 2   | Н              | <b>√_N</b>       |     | 37 | 1   | Н              |                                                                   |         |
| 25 | 1   | Н              |                  |     | 38 | 1   | Н              | $\left\langle \begin{array}{c} z \\ \\ \end{array} \right\rangle$ |         |
| 26 | 1   | 7- <b>M</b> e  | ¬S̄              |     | 39 | 1   | Н              | ⊸(N-Bn                                                            | 9/10HCl |
| 27 | 1   | 5-Me           | S                |     | 40 | 1   | Н              | $ \stackrel{N}{\underset{=}{\sim}}$ $N$ $NEt_2$                   |         |
| 28 | 1   | 6-Cl           | S                |     | 41 | 2   | Н              | S                                                                 |         |
| 29 | 1   | Н              | 0                |     | 42 | 2   | Н              | _(S                                                               | HCl     |
| 30 | 1   | Н              | H O              |     | 43 | 2   | Н              | —N=                                                               |         |
| 31 | 1   | Н              | -00              |     | 44 | 2   | Н              | —(=N                                                              |         |
| 32 | 1   | Н              | ⊸ <sub>N</sub> ] |     | 45 | 2   | Н              | Me<br>——N                                                         |         |
| 33 | 1   | Н              | ZI               |     | 46 | 2   | H              | — <mark>N</mark> →Me                                              |         |
| 34 | 1   | Н              | N<br>N<br>N      | ·   | 47 | 2   | Н              | N=N                                                               |         |
| 35 | 1   | Н              | N                |     | 48 | 2   | Н              | ⊸N-<br>N-<br>N-<br>N-                                             |         |
| 36 | 1   | Н              | -S               |     | 49 | 2   | Н              |                                                                   |         |

表8

$$0 \underset{N}{\bigvee} N_2$$

$$N-X-Y-Z$$

| Ex | Syn | X-Y-Z                                               | Sal   | Ex | Syn | X-Y-Z                                                                   | Sal     |
|----|-----|-----------------------------------------------------|-------|----|-----|-------------------------------------------------------------------------|---------|
| 9  | 9   | -(CH <sub>2</sub> ) <sub>11</sub> Me                | 1/2Fu | 62 | 10  | -(CH₂)₄OPh                                                              | 9/5HCl  |
| 10 | 10  | -(CH₂)₃OPh                                          |       | 63 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> SO <sub>2</sub> Ph                     | 9/5HCl  |
| 11 | 11  | -SO <sub>2</sub> ——Me                               |       | 64 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> O-(CF <sub>3</sub>                     |         |
| 50 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> S                  | 2HCl  | 65 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> O-()-CI                                |         |
| 51 | 9   | -(CH₂) <sub>8</sub> Me                              | 4/50x | 66 | 10  | -(CH₂)₃SPh                                                              | 2HCl    |
| 52 | 9   | ————Me                                              | 1/2Fu | 67 | 10  | -(CH₂)₂OPh                                                              | 2HCl    |
| 53 | 9   | -CH₂C≡CPh                                           | 2HCl  | 68 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> N(Ac)Ph                                | 5/2Ox   |
| 54 | 9   | OMe                                                 | 5/2Ox | 69 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> O-()-Br                                |         |
| 55 | 9   | -(CH <sub>2</sub> ) <sub>3</sub> —(N=)              | 3НС1  | 70 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> O-\_OO                                 |         |
| 56 | 9   | -CH <sub>2</sub> S                                  | 1/2Fu | 71 | 10  | -(CH₂)₃SOPh                                                             | 2HCl    |
| 57 | 9   | -CH <sub>2</sub>                                    |       | 72 | 10  | Ph<br>Ph                                                                | 2HCl    |
| 58 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> O-(                |       | 73 | 10  | -CH₂C≡C-Et                                                              | 2Ox     |
| 59 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> O-()-OMe           |       | 74 | 10  | -(CH <sub>2</sub> ) <sub>2</sub> O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2HCl    |
| 60 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> O-(NO <sub>2</sub> |       | 75 | 10  | -(CH <sub>2</sub> ) <sub>4</sub> O-CI                                   | 1.85HCl |
| 61 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> O-                 |       | 76 | 10  | -(CH <sub>2</sub> ) <sub>3</sub> O-⟨¯⟩<br>CI                            | 2HCl    |

| 77 | 10 | -(CH <sub>2</sub> ) <sub>3</sub> O-                                     | 2HCl   | 85 | 10 | -(CH <sub>2</sub> ) <sub>3</sub> —(N                             |      |
|----|----|-------------------------------------------------------------------------|--------|----|----|------------------------------------------------------------------|------|
| 78 | 10 | -(CH <sub>2</sub> ) <sub>3</sub> O-\sqrt{\text{CN}}                     | 1.9HCl | 86 | 10 | -(CH <sub>2</sub> ) <sub>3</sub> O-\square Br                    | 2HCl |
| 79 | 10 | -(CH <sub>2</sub> ) <sub>2</sub> CO <sub>2</sub> Et                     |        | 87 | 11 | -SO₂Me                                                           |      |
| 80 | 10 | -(CH <sub>2</sub> ) <sub>3</sub> O-()<br>F <sub>3</sub> C               | 2HCl   | 88 | 10 | -(CH <sub>2</sub> ) <sub>3</sub>                                 | 2HCl |
| 81 | 10 | -(CH <sub>2</sub> ) <sub>3</sub> O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2HCl   | 89 | 10 | -(CH <sub>2</sub> ) <sub>2</sub> N <sub>2</sub><br>S<br>Me       | 3НС1 |
| 82 | 10 | -(CH <sub>2</sub> ) <sub>3</sub> O-                                     | 2HCl   | 90 | 10 | -(CH <sub>2</sub> ) <sub>3</sub> O-\(\sigma\) CO <sub>2</sub> Me | 2HCl |
| 83 | 10 | -(CH <sub>2</sub> ) <sub>3</sub>                                        | 3НС1   | 91 | 10 | -(CH <sub>2</sub> ) <sub>3</sub>                                 |      |
| 84 | 10 | -(CH <sub>2</sub> ) <sub>2</sub> OMe                                    |        |    |    |                                                                  |      |

## 表9

| Ex | Dat                                                                             |
|----|---------------------------------------------------------------------------------|
| 1  | F: 273                                                                          |
|    | F: 239; NMR: 7.44 (1H, t, J=7.8 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.8      |
| 2  | Hz), 8.19 (2H, d, J=5.9 Hz), 8.82 (2H, d, J=4.8 Hz), 9.25 (1H, s), 13.75 (1H,   |
| ļ  | brs)                                                                            |
| 3  | F: 254                                                                          |
| 4  | F: 372                                                                          |
| 5  | F: 268                                                                          |
|    | F: 375; NMR: 3.00 (2H, t, J=7.3 Hz), 3.48 (2H, t, J=7.3 Hz), 7.21-7.39 (6H,     |
| 6  | m), 7.54 (1H, d, J=8.3 Hz), 7.74-7.77 (2H, m), 7.90 (1H, dd, J=7.4, 1.0 Hz), 8. |
| "  | 42 (1H, dd, J=8.8, 2.0 Hz), 9.28 (1H, brd, J=2.5 Hz), 9.30 (1H, d, J=2.0 Hz),   |
|    | 13.48 (1H, s)                                                                   |
|    | F: 345; NMR: 5.45 (2H, s), 7.11 (1H, d, J=8.3 Hz), 7.33-7.43 (4H, m), 7.50-     |
| 7  | 7.52 (2H, m), 7.74-7.76 (2H, m), 7.89 (1H, dd, J=7.9, 1.0 Hz), 8.54 (1H, dd, J  |
| L  | =8.8, 2.4 Hz), 9.04 (1H, d, J=2.4 Hz), 9.30 (1H, brd, J=2.4 Hz), 13.39 (1H, s)  |
| 8  | F: 269                                                                          |
| 9  | F: 413                                                                          |
|    | F: 379; NMR: 1.81-2.14 (6H, m), 2.48 (2H, t, J=6.8 Hz), 2.88-3.02 (3H, m),      |
| 10 | 3.32 (2H, s), 4.02 (2H, t, J=6.4 Hz), 6.89-6.96 (3H, m), 7.21-7.25 (3H, m), 7.5 |
|    | 9-7.68 (2H, m), 7.80 (1H, d, J=7.3 Hz), 9.33 (1H, s), 12.7 (1H, s)              |

| 12 F: 343  13 F: 341; NMR: 7.34-7.47 (5H, m), 7.71-7.92 (7H, m), 8.59 (1H, dd, J=2.2, 8.1 Hz), 9.29 (1H, d, J=2.9 Hz), 9.41 (1H, d, J=2.0 Hz), 13.57 (1H, s)  F: 371; NMR: 1.59-1.68 (2H, m), 1.70-1.79 (2H, m), 2.63 (2H, t, d=7.6 Hz), 2.86 (2H, t, d=7.4 Hz), 7.14-7.30 (5H, m), 7.37 (1H, t, J=7.9 Hz), 7.47 (1H, d, J=7.8 Hz), 7.77 (2H, d, J=7.8 Hz), 7.89 (1H, d, J=6.9 Hz), 8.48 (1H, d, J=6.4 Hz), 9.25-9.31 (2H, m), 13.49 (1H, s)  F: 374; NMR: 3.72-3.77 (2H, m), 4.15 (2H, d, J=5.9 Hz), 6.72 (1H, d, J=8.8 Hz), 6.94 (1H, t, J=7.4 Hz), 6.98 (2H, d, J=7.8 Hz), 7.25-7.33 (3H, m), 7.45 (1H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 8.18 (1H, dd, J=8.8, 2.5 Hz), 8.86 (1H, d, J=1.9 Hz), 9.36 (1H, br J=7.9 Hz), 13.1 (1H, s)  F: 338  F: 358  F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 3.2, 0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br J=7.3 Hz), 8.50 (1H, d, J=7.3 Hz), 8.50 (1H, d, J=7.8 Hz), 7.75 (2H, m), 7.86 (1H, d, J=7.3 Hz), 8.50 (1H, d, J=7.8 Hz), 7.75 (2H, m), 7.88 (1H, d, J=7.3 Hz), 8.50 (1H, d, J=7.8 Hz), 7.75 (2H, m), 7.88 (1H, d, J=7.3 Hz), 8.50 (1H, d, J=8.3, 2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  F: 228                                                                                                                                                                                                                                      | 11       | F: 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F: 341; NMR: 7.34-7.47 (5H, m), 7.71-7.92 (7H, m), 8.59 (1H, dd, J=2.2, 8.1 Hz), 9.29 (1H, d, J=2.9 Hz), 9.41 (1H, d, J=2.0 Hz), 13.57 (1H, s)  F: 371; NMR: 1.59-1.68 (2H, m), 1.70-1.79 (2H, m), 2.63 (2H, t, d=7.6 Hz), 2.86 (2H, t, d=7.4 Hz), 7.14-7.30 (5H, m), 7.37 (1H, t, J=7.9 Hz), 7.47 (1H, d, J=7.8 Hz), 7.77 (2H, d, J=7.8 Hz), 7.89 (1H, d, J=6.9 Hz), 8.48 (1H, d, J=6.4 Hz), 9.25-9.31 (2H, m), 13.49 (1H, s)  F: 253  F: 374; NMR: 3.72-3.77 (2H, m), 4.15 (2H, d, J=5.9 Hz), 6.72 (1H, d, J=8.8 Hz), 6.94 (1H, t, J=7.4 Hz), 6.98 (2H, d, J=7.8 Hz), 7.25-7.33 (3H, m), 7.45 (1H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 8.18 (1H, dd, J=8.8, 2.5 Hz), 8.86 (1H, d, J=1.9 Hz), 9.36 (1H, br d, J=2.9 Hz), 13.1 (1H, s)  F: 338  F: 358  F: 358  F: 358  F: 359  F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, dd, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, m), 7.39 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, d, J=7.3 Hz), 8.50 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m), 7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  F: 228  F: 228 | _        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hz), 9.29 (1H, d, J=2.9 Hz), 9.41 (1H, d, J=2.0 Hz), 13.57 (1H, s)  F: 371; NMR: 1.59-1.68 (2H, m), 1.70-1.79 (2H, m), 2.63 (2H, t, d=7.6 Hz), 2.86 (2H, t, d=7.4 Hz), 7.14-7.30 (5H, m), 7.37 (1H, t, J=7.9 Hz), 7.47 (1H, d, J=7.8 Hz), 7.77 (2H, d, J=7.8 Hz), 7.89 (1H, d, J=6.9 Hz), 8.48 (1H, d, J=6.4 Hz), 9.25-9.31 (2H, m), 13.49 (1H, s)  F: 374; NMR: 3.72-3.77 (2H, m), 4.15 (2H, d, J=5.9 Hz), 6.72 (1H, d, J=8.8 Hz), 6.94 (1H, t, J=7.4 Hz), 6.98 (2H, d, J=7.8 Hz), 7.25-7.33 (3H, m), 7.45 (1H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 7.70 (1H, brd, J=2.9 Hz), 7.82 (1H, d, J=7.3 Hz), 8.18 (1H, dd, J=8.8, 2.5 Hz), 8.86 (1H, d, J=1.9 Hz), 9.36 (1H, brd, J=2.9 Hz), 13.1 (1H, s)  F: 338  F: 358  F: 351  F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, brd, J=7.3 Hz), 8.50 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=8.1 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m), 7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  F: 228                                                                                                                                                                                                                       | 12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F: 371; NMR: 1.59-1.68 (2H, m), 1.70-1.79 (2H, m), 2.63 (2H, t, d=7.6 Hz), 2.86 (2H, t, d=7.4 Hz), 7.14-7.30 (5H, m), 7.37 (1H, t, J=7.9 Hz), 7.47 (1H, d, J=7.8 Hz), 7.77 (2H, d, J=7.8 Hz), 7.89 (1H, d, J=6.9 Hz), 8.48 (1H, d, J=6.4 Hz), 9.25-9.31 (2H, m), 13.49 (1H, s)  15 F: 253  F: 374; NMR: 3.72-3.77 (2H, m), 4.15 (2H, d, J=5.9 Hz), 6.72 (1H, d, J=8.8 Hz), 6.94 (1H, t, J=7.4 Hz), 6.98 (2H, d, J=7.8 Hz), 7.25-7.33 (3H, m), 7.45 (1H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 7.70 (1H, brd, J=2.9 Hz), 7.82 (1H, d, J=7.3 Hz), 8.18 (1H, dd, J=8.8, 2.5 Hz), 8.86 (1H, d, J=1.9 Hz), 9.36 (1H, brd, J=2.9 Hz), 13.1 (1H, s)  17 F: 338  18 F: 358  19 F: 350  20 F: 354  21 F: 282  F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m), 7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228  F: 228  F: 278  F: 228  F: 278  F: 228         | 13       | F: 341, NMR: 7.34-7.47 (5H, m), 7.71-7.92 (7H, m), 8.59 (1H, dd, J=2.2, 8.1Hz) 0.20 (1H, dd, J=2.0, Hz) 0.41 (1H, J, J, D, D, M), 10.77 (1H, dd, J=2.0, Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\vdash$ | F: 371: NMP: 1.50 1.68 (2H ==) 1.70 1.70 (2H ==) 2.62 (2H ==) 2.63 (2H |
| J=7.8 Hz), 7.77 (2H, d, J=7.8 Hz), 7.89 (1H, d, J=6.9 Hz), 8.48 (1H, d, J=6.4 Hz), 9.25-9.31 (2H, m), 13.49 (1H, s)  F: 253  F: 374; NMR: 3.72-3.77 (2H, m), 4.15 (2H, d, J=5.9 Hz), 6.72 (1H, d, J=8.8 Hz), 6.94 (1H, t, J=7.4 Hz), 6.98 (2H, d, J=7.8 Hz), 7.25-7.33 (3H, m), 7.45 (1H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 7.70 (1H, brd, J=2.9 Hz), 7.82 (1H, d, J=7.3 Hz), 8.18 (1H, dd, J=8.8, 2.5 Hz), 8.86 (1H, d, J=1.9 Hz), 9.36 (1H, brd, J=2.9 Hz), 13.1 (1H, s)  F: 338  F: 358  F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, dd, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m), 7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  F: 228                                                                                                                                                                                                                                                                                                                |          | 2 86 (2H t d=74 Hz) 7.14 7.20 (5H m) 7.27 (1H t d=7.6 Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| H2J, 9,25-9,31 (2H, m), 13.49 (1H, s)  F: 253  F: 374; NMR: 3.72-3.77 (2H, m), 4.15 (2H, d, J=5.9 Hz), 6.72 (1H, d, J=8.8 Hz), 6.94 (1H, t, J=7.4 Hz), 6.98 (2H, d, J=7.8 Hz), 7.25-7.33 (3H, m), 7.45 (1H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 7.70 (1H, brd, J=2.9 Hz), 7.82 (1H, d, J=7.3 Hz), 8.18 (1H, dd, J=8.8, 2.5 Hz), 8.86 (1H, d, J=1.9 Hz), 9.36 (1H, brd, J=2.9 Hz), 13.1 (1H, s)  F: 338  F: 358  F: 358  F: 354  F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, dd, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m), 7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  F: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14       | J=7.8 Hz), 7.77 (2H, d I=7.8 Hz), 7.89 (1H, t, J=7.9 Hz), 7.47 (1H, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15 F: 253 F: 374: NMR: 3.72-3.77 (2H, m), 4.15 (2H, d, J=5.9 Hz), 6.72 (1H, d, J=8.8 Hz), 6.94 (1H, t, J=7.4 Hz), 6.98 (2H, d, J=7.8 Hz), 7.25-7.33 (3H, m), 7.45 (1H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 7.70 (1H, brd, J=2.9 Hz), 7.82 (1H, d, J=2.9 Hz), 13.1 (1H, s)  17 F: 338 18 F: 358 19 F: 350 20 F: 354 21 F: 282 F: 361: NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s) F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br) F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.70 (1H, d, J=7.8 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.75 (2H, m), 7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  5 F: 228 F: 227 F: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Hz), 9.25-9.31 (2H, m), 13.49 (1H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hz), 6.94 (1H, t, J=7.4 Hz), 6.98 (2H, d, J=7.8 Hz), 7.25-7.33 (3H, m), 7.45 (1H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 7.70 (1H, brd, J=2.9 Hz), 7.82 (1H, d, J=7.3 Hz), 8.18 (1H, dd, J=8.8, 2.5 Hz), 8.86 (1H, d, J=1.9 Hz), 9.36 (1H, br d, J=2.9 Hz), 13.1 (1H, s)  17 F: 338 18 F: 358 19 F: 350 20 F: 354 21 F: 282 22 F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228 26 F: 258 27 F: 258 28 F: 278 29 F: 228 30 F: 225 31 EI: 277 32 FN: 243 33 F: 227 34 F: 228 35 F: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hz), 6.94 (1H, t, J=7.4 Hz), 6.98 (2H, d, J=7.8 Hz), 7.25-7.33 (3H, m), 7.45 (1H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 7.70 (1H, brd, J=2.9 Hz), 7.82 (1H, d, J=7.3 Hz), 8.18 (1H, dd, J=8.8, 2.5 Hz), 8.86 (1H, d, J=1.9 Hz), 9.36 (1H, br d, J=2.9 Hz), 13.1 (1H, s)  17 F: 338 18 F: 358 19 F: 350 20 F: 354 21 F: 282 22 F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228 26 F: 258 27 F: 258 28 F: 278 29 F: 228 30 F: 225 31 EI: 277 32 FN: 243 33 F: 227 34 F: 228 35 F: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | F: 374; NMR: 3.72-3.77 (2H, m), 4.15 (2H, d, J=5.9 Hz), 6.72 (1H, d, J=8.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 7.70 (1H, brd, J=2.9 Hz), 7.82 (1H, d, J=7.3 Hz), 8.18 (1H, dd, J=8.8, 2.5 Hz), 8.86 (1H, d, J=1.9 Hz), 9.36 (1H, brd, J=2.9 Hz), 13.1 (1H, s)  17 F: 338  18 F: 358  19 F: 350  20 F: 354  21 F: 282  F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, dd, J=8.3, 12.), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  5 F: 228  6 F: 258  27 F: 258  28 F: 278  29 F: 228  30 F: 245  31 EI: 277  32 FN: 243  33 F: 227  34 F: 228  35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Hz), 6.94 (1H, t, J=7.4 Hz), 6.98 (2H, d, J=7.8 Hz), 7.25-7.33 (3H, m), 7.45 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J=7.3 Hz), 8.18 (1H, dd, J=8.8, 2.5 Hz), 8.86 (1H, d, J=1.9 Hz), 9.36 (1H, br d, J=2.9 Hz), 13.1 (1H, s)  17 F: 338  18 F: 358  19 F: 350  20 F: 354  21 F: 282  F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228  26 F: 258  27 F: 258  28 F: 278  29 F: 228  30 F: 245  31 EI: 277  32 FN: 243  33 F: 227  34 F: 228  35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16       | H, t, J=5.4 Hz), 7.66 (1H, d, J=7.3 Hz), 7.70 (1H, brd, J=2.9 Hz), 7.82 (1H, d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| d, J=2.9 Hz), 13.1 (1H, s)  17  F: 338  18  F: 358  19  F: 350  20  F: 354  21  F: 282  22  d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.  78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25  F: 228  26  F: 258  27  F: 258  28  F: 278  29  F: 228  30  F: 245  31  EI: 277  32  FN: 243  33  F: 227  34  F: 228  35  F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | J=7.3 Hz), 8.18 (1H, dd, $J=8.8$ , 2.5 Hz), 8.86 (1H, d, $J=1.9$ Hz), 9.36 (1H, br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7      | d, J=2.9 Hz), 13.1 (1H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19 F: 350 20 F: 354 21 F: 282 22 F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s) 31 F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br) 4 F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m), 7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s) 4 F: 228 4 F: 278 4 F: 228 5 F: 228 5 F: 227 5 F: 228 5 F: 228 5 F: 228 5 F: 227 5 F: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 F: 354 21 F: 282  F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7. 78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  F: 258  F: 258  F: 278  F: 228  F: 245  TEL: 277  F: 228  F: 227  F: 228  F: 228  F: 228  F: 228  F: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21 F: 282 F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s) F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.6-7. 78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br) F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m), 7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228 F: 258 F: 278 F: 228 F: 278 F: 228 F: 278 F: 228 F: 227 F: 228 F: 227 F: 228 F: 228 F: 227 F: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H, d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7. 78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228  26 F: 258  27 F: 258  28 F: 278  29 F: 228  30 F: 245  31 EI: 277  32 FN: 243  33 F: 227  34 F: 228  35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22   d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7.  78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228  26 F: 258  27 F: 258  28 F: 278  29 F: 228  30 F: 245  31 EI: 277  32 FN: 243  33 F: 227  34 F: 228  35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.3, 2.0 Hz), 9.28 (1H, brd, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)  F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7. 78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228  26 F: 258  27 F: 258  28 F: 278  29 F: 228  30 F: 245  31 EI: 277  32 FN: 243  33 F: 227  34 F: 228  35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | F: 361; NMR: 4.52 (2H, s), 7.24-7.40 (4H, m), 7.46-7.48 (2H, m), 7.55 (1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| F: 389; NMR: 1.96-2.04, (2H, m), 2.76 (2H, t, J=7.8 Hz), 3.22 (2H, t, J=7.3 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7. 78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  E: 228  F: 228  F: 228  F: 228  F: 245  IEI: 277  FN: 243  F: 227  FN: 243  F: 228  F: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22       | d, J=8.3 Hz), 7.75-7.78 (2H, m), 7.85 (1H, dd, J=7.8, 1.0 Hz), 8.42 (1H, dd, J=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23 Hz), 7.18-7.32 (5H, m), 7.38 (1H, t, J=7.8 Hz), 7.50 (1H, d, J=8.3 Hz), 7.76-7. 78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  E: 228  E: 258  F: 258  F: 228  F: 228  F: 228  F: 245  S: F: 245  F: 227  FN: 243  FY: 228  FY: 228  FY: 228  FY: 228  FY: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 6.5, 2.0 Hz), 9.28 (1H, ord, J=3.0 Hz), 9.29 (1H, d, J=2.0 Hz), 13.49 (1H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 78 (2H, m), 7.90 (1H, d, J=7.3 Hz), 8.42 (1H, dd, J=8.3, 2.0 Hz), 9.19 (1H, br), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  E: 228  F: 228  F: 228  F: 228  F: 228  F: 228  F: 245  IEI: 277  FN: 243  FN: 243  F: 228  F: 228  F: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | Hz) 7 18-7 32 (5H m) 7 38 (1H + 1-78 Hz) 7 50 (1H + 1 0.2 Hz) 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)  F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  E: 228  F: 228  F: 228  F: 228  F: 228  F: 245  IEI: 277  FN: 243  FY: 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23       | 78 (2H, m), 7.90 (1H, d, I=7.3 Hz), 8.42 (1H, dd, I=8.3 2.0 Hz), 0.10 (1H, d, I=8.3 Hz), 7.76-7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228  26 F: 258  27 F: 258  28 F: 278  29 F: 228  30 F: 245  31 EI: 277  32 FN: 243  33 F: 227  34 F: 228  35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | ), 9.26 (1H, d, J=2.0 Hz), 13.45 (1H, br)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 24 Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d, J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228  26 F: 258  27 F: 258  29 F: 228  30 F: 245  31 EI: 277  32 FN: 243  33 F: 227  34 F: 228  35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | F: 373; NMR: 2.04-2.11, (2H, m), 2.76 (2H, t, J=7.8 Hz), 4.36 (2H, t, J=6.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s), 13.37 (1H, s)  25 F: 228  26 F: 258  27 F: 258  29 F: 278  29 F: 228  30 F: 245  31 EI: 277  32 FN: 243  33 F: 227  34 F: 228  35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24       | Hz), 7.04 (1H, d, J=7.8 Hz), 7.18-7.37 (6H, m), 7.73-7.75 (2H, m),7.88 (1H, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13.37 (1H, s)  25 F: 228  26 F: 258  27 F: 258  28 F: 278  29 F: 228  30 F: 245  31 EI: 277  32 FN: 243  33 F: 227  34 F: 228  35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _,       | J=7.3 Hz), 8.50 (1H, dd, J=8.3, 2.0 Hz), 9.00 (1H, d, J=2.0 Hz), 9.31 (1H, s),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26 F: 258 27 F: 258 28 F: 278 29 F: 228 30 F: 245 31 EI: 277 32 FN: 243 33 F: 227 34 F: 228 35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25       | 13.37 (1H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 27 F: 258 28 F: 278 29 F: 228 30 F: 245 31 EI: 277 32 FN: 243 33 F: 227 34 F: 228 35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28 F: 278 29 F: 228 30 F: 245 31 EI: 277 32 FN: 243 33 F: 227 34 F: 228 35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29 F: 228 30 F: 245 31 EI: 277 32 FN: 243 33 F: 227 34 F: 228 35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 F: 245 31 EI: 277 32 FN: 243 33 F: 227 34 F: 228 35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31 EI: 277 32 FN: 243 33 F: 227 34 F: 228 35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32 FN: 243 33 F: 227 34 F: 228 35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33 F: 227 34 F: 228 35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34 F: 228<br>35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35 F: 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36 F: 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 12 22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36       | F: 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 27 1     |                                                                                  |
|----------|----------------------------------------------------------------------------------|
| -        | F: 289                                                                           |
|          | F: 289                                                                           |
|          | F: 335; NMR: 2.90 (1H, dd, J=16.6, 9.8 Hz), 3.02 (1H, dd, J=16.6, 8.3 Hz),       |
|          | 3.63-3.69 (1H, m), 3.71-3.81 (1H, m), 4.22-4.32 (1H, m), 4.41 (1H, d, J=15.1     |
|          | Hz), 4.55 (1H, d, J=15.1 Hz), 7.26-7.31 (3H, m), 7.33-7.38 (2H, m), 7.53 (1H,    |
| . [1     | t, J=8.1 Hz), 7.82 (1H, s), 7.90 (1H, d, J=8.1 Hz), 8.01 (1H, d, J=8.1 Hz), 8.60 |
|          | (1H, s)                                                                          |
| 40       | F: 311                                                                           |
| 41       | F: 244; NMR: 7.29 (1H, t, J=4.4 Hz), 7.34 (1H, t, J=7.8 Hz), 7.68-7.79 (2H,      |
| 71       | m), 7.81-7.88 (2H, m), 7.94 (1H, d, J=2.9 Hz), 9.14 (1H, brs), 13.43 (1H, brs)   |
| 42       | F: 244                                                                           |
| 43       | F: 239                                                                           |
| 44       | F: 239                                                                           |
| 45       | F: 253                                                                           |
| 46       | F: 254                                                                           |
| 47       | EI: 239                                                                          |
| 48       | F: 240                                                                           |
| 49       | F: 290                                                                           |
| $\vdash$ | F: 369; NMR: 2.05-2.15 (2H, m),2.23 (2H, t, 5.2 Hz), 2.32-2.40 (2H, m), 2.9      |
| 1 1      | 0 (2H, t, J=7.4 Hz), 3.02-3.16 (3H, m), 3.21 (1H, br), 3.43 (1H, br), 6.90-6.95  |
| 50       | (1H, m), 6.98 (1H, dd, J=3.4, 5.3 Hz), 7.35 (1H, dd, J=1.0, 4.9 Hz), 7.44 (1H,   |
|          | br), 7.70-7.89 (2H, m), 7.92 (1H, d, J=7.3 Hz), 8.77 (1H, br), 10.45 (1H, brs)   |
|          | F: 371                                                                           |
| 52       | F: 341                                                                           |
| -        | F: 359; NMR: 2.25-2.46 (4H, m), 3.26 (2H, t, J=11.7 Hz), 3.57 (1H, brs), 3.7     |
|          | 7 (2H, d, J=11.7 Hz), 4.40 (2H, brs), 7.35-7.61 (6H, m), 7.81 (1H, brs), 7.88 (  |
|          | 1H, d, J=7.3 Hz), 7.99 (1H, d, J=7.3 Hz), 8.69 (1H, brs), 11.57 (1H, brs)        |
|          | F: 391; NMR: 1.90-2.40 (4H, m), 3.25 (3H, m), 3.00-3.65 (5H, m), 3.78 (3H,       |
| 54       | s), 3.78 (2H, d, J=7.8 Hz), 6.25 (1H, m), 6.78 (1H, d, J=15.6 Hz), 6.98 (2H,     |
| "        | d, J=8.8 Hz), 7.27 (1H, t, J=7.8 Hz), 7.46 (2H, d, J=8.8 Hz), 7.67 (1H, brs), 7. |
|          | 69 (1H, d, J=7.8 Hz), 7.80 (1H, d, J=7.4 Hz), 9.04 (1H, brs), 10.00 (1H, brs)    |
|          | F: 364; NMR: 2.15-2.40 (5H, m), 3.11 (2H, t, J=7.3 Hz), 3.13-3.25 (3H, br),      |
|          | 7.44 (1H, br), 7.80-7.89 (3H, m), 7.92 (1H, d, J=7.3 Hz), 8.35 (1H, Br), 8.76 (  |
|          | 1H, d, J=5.4 Hz), 10.75 (1H, brs)                                                |
| 56       | F: 341                                                                           |
| 57       | F: 336                                                                           |
| 58       | F: 393                                                                           |
| 59       | F: 409                                                                           |
| 60       | F: 424                                                                           |
|          | <u> </u>                                                                         |

| 61  | F: 413; NMR: 1.81-2.12 (8H, m), 2.50 (2H, t, J=7.3 Hz), 2.90-3.01 (3H, m), 4.11 (2H, t, J=6.3 Hz), 6.95 (1H, dt, J=1.5, 7.9 Hz), 7.15 (1H, d, J=7.9 Hz), 7.25-7.32 (2H, m), 7.42 (1H, dd, J=1.5, 7.9 Hz), 7.64 (1H, d, J=7.3 Hz), 7.70 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | H, brs), 7.84 (1H, d, J=7.3 Hz), 9.38 (1H, brs), 12.69 (1H, brs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| İ   | F: 393; NMR: 1.74-2.00 (4H, m), 2.22-2.40 (4H, m), 3.02-3.21 (4H, m), 3.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 62  | (1H, m), 3.66 (2H, d, J=11.7 Hz), 3.98-4.04 (2H, m), 6.90-6.98 (3H, m), 7.26-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 1.33 (2H, m), 7.48 (1H, t, J=7.3 Hz), 7.74-7.92 (2H, m), 7.98 (1H, d, J=7.3 Hz), 8.73 (1H, brs), 10.79 (1H, brs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 63  | F: 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | F: 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -   | F: 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | F: 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -00 | F: 365; NMR: 2.26-2.42 (4H, m), 3.20-3.32 (2H, m), 3.44 (1H, m), 3.75 (2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | d, J=11.7 Hz), 4.45-4.52 (2H, m), 6.95-7.05 (3H, m), 7.30-7.37 (2H, m), 7.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 67  | (1H, t, J=7.3 Hz), 7.84 (1H, brs), 7.93 (1H, d, J=7.3 Hz), 8.04 (1H, d, J=7.3 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | z), 8.65 (1H, brs), 11.33 (1H, brs).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 68  | F: 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 69  | F: 457,459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 70  | F: 437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 71  | F: 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | F: 361; NMR: 2.23-2.42 (4H, m), 3.08-3.19 (2H, m), 3.55 (1H, brs), 3.63 (2H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 72  | , d, J=10.8 Hz), 3.93 (2H, t, J=4.9 Hz), 6.46 (1H, dt, J=6.8, 16.1 Hz), 6.86 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | H, d, J=16.1 Hz), 7.30-7.54 (6H, m), 7.81 (1H, brs), 7.89 (1H, d, J=7.3 Hz), 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 00 (1H, d, J=7.3 Hz), 8.69 (1H, brs), 11.19 (1H, brs)<br>F: 311; NMR: 1.08 (3H, t, J=7.3 Hz), 2.04-2.18 (2H, m), 2.24-2.34 (4H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 3.06 (2H, t, J=10.2 Hz), 3.26 (1H, brs), 3.47 (2H, d, J=11.7 Hz), 3.95 (2H, brs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 73  | ), 7.27 (1H, t, J=7.3 Hz), 7.67 (1H, brs), 7.69 (1H, d, J=7.3 Hz), 7.80 (1H, d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | J=7.3 Hz), 9.03 (1H, brs), 11.19 (1H, brs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | F: 399; NMR: 2.26-2.43 (4H, m), 3.33 (2H, m), 3.46-3.64 (3H, m), 3.80 (2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | d, J=11.7 Hz), 4.60 (2H, t, J=4.4 Hz), 7.04 (1H, t, J=6.8 Hz), 7.25 (1H, d, J=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 74  | 7.3 Hz), 7.37 (1H, dt, J=1.5, 7.8 Hz), 7.49 (1H, dd, J=1.5, 8.3 Hz), 7.54 (1H, t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | J=7.3 Hz), 7.83 (1H, brs), 7.90 (1H, d, J=7.9 Hz), 8.00 (1H, d, J=7.3 Hz), 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 67 (1H, brs), 11.42 (1H, brs)<br>F: 427; NMR: 1.79-2.01 (4H, m), 2.24-2.40 (4H, m), 3.02-3.42 (5H, m), 3.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | (2H, d, J=11.7 Hz), 4.11 (2H, t, J=6.3 Hz), 6.97 (1H, dt, J=1.5, 7.8 Hz), 7.17 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 75  | 1H, d, J=8.3 Hz), 7.32 (1H, m), 7.44 (1H, dd, J=1.5, 7.8 Hz), 7.51 (1H, t, J=7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 8 Hz), 7.82 (1H, brs), 7.88 (1H, d, J=7.8 Hz), 8.00 (1H, d, J=7.8 Hz), 8.69 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | H, brs), 10.80 (1H, brs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | F: 413; NMR: 2.20-2.40 (6H, m), 3.04-3.60 (5H, m), 3.70 (2H, d, J=11.7 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 76  | , 4.12 (2H, t, J=5.9 Hz), 6.95 (1H, dd, J=1.9, 7.8 Hz), 6.98-7.06 (2H, m), 7.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | (1H, t, J=8.3 Hz), 7.51 (1H, t, J=7.9 Hz), 7.81 (1H, brs), 7.88 (1H, d, J=8.3 Hz), 7.98 (1H, d, J=8.3 Hz), 2.68 (1H, brs), 10.05 (1H, brs), 7.88 (1H, d, J=8.3 Hz), 2.68 (1H, brs), 10.05 (1H, brs), 7.88 (1H, d, J=8.3 Hz), 2.68 (1H, brs), 10.05 (1H, brs), 7.88 (1H, d, J=8.3 Hz), 2.68 (1H, brs), 10.05 (1H, brs), 7.88 (1H, d, J=8.3 Hz), 2.68 (1H, brs), |
| L   | z), 7.98 (1H, d, J=7.9 Hz), 8.68 (1H, brs), 10.95 (1H, brs).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|    | F: 447; NMR: 2.30-2.43 (6H, m), 3.10-3.64 (5H, m), 3.72 (2H, d, J=11.6 Hz), 4.08 (2H, t, J=5.9 Hz), 7.22 (1H, t, J=7.8 Hz), 7.52 (2H, d, J=7.8 Hz), 7.53 (1H, m), 7.84 (1H, brs), 7.92 (1H, d, J=7.8 Hz), 8.02 (1H, d, J=7.8 Hz), 8.67 (1H, brs), 11.16 (1H,brs)                                                            |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 78 | F: 404; NMR: 2.25-2.43 (6H, m), 3.10-3.32 (4H, m), 3.59 (1H, m), 3.61 (2H, d, J=11.7 Hz), 4.14 (2H, t, J=5.8 Hz), 7.13 (1H, t, J=7.3 Hz), 7.30 (1H, d, J=7.9 Hz), 7.53 (1H, t, J=7.3 Hz), 7.65-7.78 (2H, m), 7.83 (1H, brs), 7.91 (1H, d, J=7.3 Hz), 8.02 (1H, d, J=7.9 Hz), 8.66 (1H, brs), 11.23 (1H, brs)                |
| 79 | F: 331                                                                                                                                                                                                                                                                                                                      |
| 80 | F: 447; NMR: 2.20-2.42 (6H, m), 3.10-3.28 (4H, m), 3.40 (1H, m), 3.68 (2H, d, J=11.7 Hz), 4.25 (2H, t, J=5.9 Hz), 7.13 (1H, t, J=7.3 Hz), 7.30 (1H, d, J=7.9 Hz), 7.52 (1H, t, J=7.3 Hz), 7.61-7.68 (2H, m), 7.83 (1H, brs), 7.90 (1H, d, J=7.3 Hz), 8.01 (1H, d, J=7.3 Hz), 8.68 (1H, brs), 11.07 (1H, brs).               |
| 81 | F: 393; NMR: 2.20 (3H, s), 2.25-2.42 (6H, m), 3.10-3.33 (4H, m), 3.60 (1H, m), 3.71 (2H, d, J=12.2 Hz), 4.09 (2H, t, J=5.8 Hz), 6.85 (1H, t, J=7.3 Hz), 6. 94 (1H, t, J=8.3 Hz), 7.12-7.18 (2H, m), 7.54 (1H, t, J=7.8 Hz), 7.84 (1H, brs), 7.92 (1H, d, J=8.3 Hz), 8.03 (1H, d, J=7.9 Hz), 8.66 (1H, brs), 11.15 (1H, brs) |
| 82 | F: 424; NMR: 2.25-2.42 (6H, m), 3.10-3.30 (4H, m), 3.40 (1H, m), 3.70 (2H, d, J=12.7 Hz), 4.41 (2H, t, J=5.9 Hz), 7.15 (1H, t, J=7.3 Hz), 7.41 (1H, d, J=7.8 Hz), 7.54 (1H, t, J=7.8 Hz), 7.69 (1H, dt, J=1.4, 7.4 Hz), 7.82 (1H, brs), 7.87-7.95 (2H, m), 8.02 (1H, d, J=7.9 Hz), 8.66 (1H, brs), 11.16 (1H, brs)          |
| 83 | F: 353; NMR: 2.21 (2H, t, J=3.4 Hz), 2.25-2.35 (3H, m), 2.65 (2H, t, J=7.3 Hz), 3.00-3.55 (5H, br), 3.65 (2H, d, J=11.7 Hz), 6.19 (1H, d, J=2.4 Hz), 6.39 (1H, dd, J=1.9, 3.4 Hz), 7.40-7.50 (1H, m), 7.55 (1H, d, J=1.0 Hz), 7.70-7.90 (2H, m), 7.94 (1H, d, J=6.8 Hz), 8.74 (1H, br), 10.65 (1H, br)                      |
| 84 | F: 303                                                                                                                                                                                                                                                                                                                      |
| 85 | F: 364; NMR: 1.74 (2H, t, J=7.3 Hz), 1.85-1.92 (2H, m), 1.95-2.09 (3H, m), 2.28-2.35 (2H, m), 2.60-2.68 (3H, m), 2.85-2.98 (3H, m), 7.23-7.29 (3H, m), 7.61 (1H, d, J=7.8 Hz), 7.63 (1H, br), 7.78 (1H, d, J=7.3 Hz), 8.45 (2H, dd, J=1. 5, 4.4 Hz), 9.33 (1H, s), 12.66 (1H, brs)                                          |
| 86 | F: 457,459; NMR: 2.23-2.43 (6H, m), 3.10-3.25 (4H, m), 3.61 (1H, m), 3.71 (2H, d, J=11.7 Hz), 4.19 (2H, t, J=5.9 Hz), 6.93 (1H, m), 7.16 (1H, dd, J=1.0, 8.3 Hz), 7.37 (1H, m), 7.51-7.62 (2H, m), 7.84 (1H, brs), 7.93 (1H, d, J=8.3 Hz), 8.05 (1H, d, J=7.8 Hz), 8.67 (1H, brs), 11.23 (1H, brs)                          |
| 87 | F: 323                                                                                                                                                                                                                                                                                                                      |
| 88 | F: 369                                                                                                                                                                                                                                                                                                                      |
| 89 | F: 370; NMR: 2.37-2.40 (3H, m), 2.41 (3H, s), 3.10-3.20 (2H, m), 3.42-3.27 (5H, m), 3.61 (1H, br), 3.77 (2H, d, J=11.7 Hz), 7.57 (1H, t, J=7.8 Hz), 7.85 (1H, s), 7.93 (1H, d, J=7.8 Hz), 8.04 (1H, d, J=7.8 Hz), 8.60 (1H, br), 8.99 (1H, s), 11.41 (1H, brs)                                                              |

| 90 | F: 437; NMR: 2.21-2.42 (6H, m), 3.10-3.33 (4H, m), 3.46 (1H, m), 3.70 (2H, d, J=11.8 Hz), 3.85 (3H, s), 4.18 (2H, t, J=5.9 Hz), 7.06 (1H, t, J=7.8 Hz), 7.19 (1H, d, J=8.3 Hz), 7.47-7.57 (2H, m), 7.70 (1H, dd, J=1.9, 7.8 Hz), 7.83 (1H, brs), 7.91 (1H, d, J=7.8 Hz), 8.02 (1H, d, J=7.8 Hz), 8.69 (1H, brs), 11.04 (1H, brs) |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 91 | F: 364                                                                                                                                                                                                                                                                                                                           |

表10

| Cmpd | X-Y-Z                                                        | Cmpd | X-Y-Z                                                       |
|------|--------------------------------------------------------------|------|-------------------------------------------------------------|
| 1    | -(CH <sub>2</sub> ) <sub>3</sub> NH-Boc                      | 14   | -(CH <sub>2</sub> ) <sub>3</sub> O-CO-CO-OBn                |
| 2    | -(CH <sub>2</sub> ) <sub>3</sub> O-CONH-Bn                   | 15   | -(CH <sub>2</sub> ) <sub>3</sub> O-CO-CO-NHBn               |
| 3    | -(CH <sub>2</sub> ) <sub>3</sub> NHCONH-Ph                   | 16   | -(CH <sub>2</sub> ) <sub>3</sub> NH-CO-CO-OBn               |
| 4    | -(CH₂)₃NHCSNH-Ph                                             | 17   | -(CH <sub>2</sub> ) <sub>3</sub> NH-CO-CO-NHBn              |
| 5    | -(CH₂)₃CO-NH-NHPh                                            | 18   | -(CH <sub>2</sub> ) <sub>3</sub> NH-C(NH)-NH <sub>2</sub>   |
| 6    | -(CH <sub>2</sub> ) <sub>3</sub> -NH-NHCOPh                  | 19   | -(CH <sub>2</sub> ) <sub>3</sub> NH-C(N-CN)-NH <sub>2</sub> |
| 7    | -(CH₂)₃NH-SO₂-Me                                             | 20   | -(CH <sub>2</sub> ) <sub>4</sub> C(NH)-NH <sub>2</sub>      |
| 8    | -(CH₂)₃SO₂-NHBn                                              | 21   | -(CH <sub>2</sub> ) <sub>4</sub> C(N-CN)-NH <sub>2</sub>    |
| 9    | -(CH <sub>2</sub> ) <sub>3</sub> SO <sub>2</sub> -OBn        | 22   | -(CH <sub>2</sub> ) <sub>2</sub> P(O)(OEt) <sub>2</sub>     |
| 10   | -(CH <sub>2</sub> ) <sub>3</sub> SO <sub>2</sub> -NH-NHEt    | 23   | -(CH <sub>2</sub> ) <sub>3</sub> NH-NHSO <sub>2</sub> -Me   |
| 11   | -(CH <sub>2</sub> ) <sub>3</sub> O-\(\bigcirc\)              | 24   | -(CH <sub>2</sub> ) <sub>3</sub> O-                         |
| 12   | -(CH <sub>2</sub> ) <sub>3</sub> S-\(\bigcirc_{\mathbf{N}}\) | 25   | -(CH <sub>2</sub> ) <sub>3</sub> —O                         |
| 13   | O-N<br>-(CH₂)₃ <sup>-(</sup> N≻Ph                            | 26   | -(CH <sub>2</sub> ) <sub>3</sub> —(O                        |

表11

| Cmpd | Α                                                | Cmpd | Α                                                                | Cmpd | A                                      |
|------|--------------------------------------------------|------|------------------------------------------------------------------|------|----------------------------------------|
| 27   | H<br>N<br>→ (CH₂)₂Ph<br>O H                      | 38   | N-(CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub>                | 49   | Ph-(CH <sub>2</sub> ) <sub>4</sub>     |
| 28   | $O$ $N$ -( $CH_2$ ) $_3$ OPh $O$                 | 39   | N-(CH <sub>2</sub> ) <sub>3</sub> OPh                            | 50   | N.N.                                   |
| 29   | —(CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub> | 40   | CI<br>N-(CH <sub>2</sub> ) <sub>4</sub> O-                       | 51   | N N                                    |
| 30   | (CH <sub>2</sub> )₂OPh                           | 41   | N-(CH <sub>2</sub> ) <sub>4</sub> OPh                            | 52   | -(CH₂)₄Ph<br>-√N                       |
| 31   | $-\sqrt{(CH_2)_3}OPh$                            | 42   | N-(CH <sub>2</sub> ) <sub>4</sub> OPh                            | 53   | O '(CH <sub>2</sub> ) <sub>2</sub> OPh |
| 32   | CI<br>N-(CH <sub>2</sub> ) <sub>4</sub> O-       | 43   | N-(CH <sub>2</sub> ) <sub>3</sub> OPh                            | 54   | ~NO                                    |
| 33   | -{CH₂)₄OPh                                       | 44   | CI<br>N-(CH <sub>2</sub> ) <sub>4</sub> O-                       | 55   | ~NS                                    |
| 34   | {CH₂)₃SPh                                        | 45   | N-(CH <sub>2</sub> )₄OPh                                         | 56   | H<br>N-N<br>N-N                        |
| 35   | —<br>√N-(CH <sub>2</sub> ) <sub>3</sub> NHPh     | 46   | $-\sqrt{\sum}$ N-(CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub> | 57   | → <sub>O</sub> ]                       |
| 36   | N-(CH <sub>2</sub> ) <sub>3</sub> N(Me)Ph        | 47   | —⟨∑N-(CH₂)₃OPh                                                   | 58   | →<br>N<br>OMe                          |
| 37   | (CH <sub>2</sub> ) <sub>3</sub> (S)              | 48   | CI<br>N-(CH <sub>2</sub> ) <sub>4</sub> O-                       | 59   |                                        |

| 60 | -(CH <sub>2</sub> ) <sub>3</sub> -(S | 66 | —⟨∑N-(CH₂)₄OPh                                         | 72 | LN    |
|----|--------------------------------------|----|--------------------------------------------------------|----|-------|
| 61 | -(CH <sub>2</sub> ) <sub>3</sub> -0  | 67 | −<br>N-(CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub> | 73 | —(~)v |
| 62 | -(CH <sub>2</sub> ) <sub>3</sub> -(O | 68 | -<br>N-(CH₂)₃OPh                                       |    |       |
| 63 | -<br>N-(CH₂)₄OPh                     | 69 | CI<br>N-(CH <sub>2</sub> ) <sub>4</sub> O-             |    |       |
| 64 | ───N-(CH₂)₃OPh                       | 70 | N-(CH <sub>2</sub> ) <sub>3</sub> OPh                  |    |       |
| 65 | ───N-(CH <sub>2</sub> )₃OPh          | 71 | N-(CH <sub>2</sub> ) <sub>3</sub> OPh                  |    |       |

## 表12

| Cmpd | X-Y-Z                                  | Cmpd | X-Y-Z                                  |
|------|----------------------------------------|------|----------------------------------------|
| 74   | -(CH₂)₄Me                              | 78   | -S-(CH <sub>2</sub> ) <sub>2</sub> OPh |
| 75 - | · -(CH <sub>2</sub> ) <sub>3</sub> OPh | 79   | -O-(CH <sub>2</sub> ) <sub>2</sub> SPh |
| 76   | -(CH <sub>2</sub> ) <sub>3</sub> SPh   | 80   | -S-(CH <sub>2</sub> ) <sub>2</sub> SPh |
| 77   | -O-(CH <sub>2</sub> ) <sub>2</sub> OPh |      |                                        |

表13

| Cmpd | X-Y-Z                                 | Cmpd | X-Y-Z      |
|------|---------------------------------------|------|------------|
| 81   | -CO(CH <sub>2</sub> ) <sub>2</sub> Ph | 84   | -Me        |
| 82   | -CO-CH=CHPh                           | 85   | -(CH₂)₃Ph  |
| 83   | -CO-C ≡ C-Ph                          | 86   | -(CH₂)₃OPh |

#### 請求の範囲

1. 一般式(I)又は(II)で示されるベンゾイミダゾール誘導体又はその塩。

(式中の記号は以下の意味を有する。

R<sup>1</sup>: H、低級アルキル、ハロゲン又はハロゲンで置換された低級アルキル基、

 $R^2: H$ 、低級アルキル又は CO-低級アルキル基、

A: 置換基を有していてもよいヘテロ環基、但し、該ヘテロ環が含窒素非芳香属ヘテロ環の場合、該ヘテロ環は  $G^1$  群から選択される基を  $1\sim4$  個有する、

 $G^1$  群:式(i) $-X^0-Y^2-Z^1$ 、(ii) $-X^0-Y^3-Z^3$ 、(iii) $-X^0-Y^5-Z^2$ 、(iv) $-X^1-Y^1-Z^1$ 、(v) $-X^1-Y^4-Z^3$ 、(vi) $-X^1-Y^5-Z^2$ 、(vii) $-X^2-Y^6-Z^3$ 又は(viii) $-X^2-Y^5-Z^2$ で表される基、

X0:結合、

 $X^{l}: C_{l,s}$ アルキレン又は  $CO-C_{l,r}$ アルキレン、

 $X^2: C_{9-12}$  アルキレン、 $CO-C_{8-12}$  アルキレン、 $C_{2-12}$  アルケニレン、 $C_{2-12}$  アルケニレン、 $C_{2-12}$  アルケニレン又は  $CO-C_{2-12}$  アルキニレン、

Y¹: CO、N(R³)、CON(R³)又は結合、

 $R^3$ : H、低級アルキル又は CO-低級アルキル基、

Y<sup>2</sup>: CO<sub>2</sub> 又は Y<sup>1</sup> に記載の基、

 $Y^3: O. S. N(R^3)CO. O-CONH. NHCO<sub>2</sub>、NHCONH. NHCSNH. CONHNH. NHNHCO. O-COCO<sub>2</sub>、O-COCONH. NHCOCO<sub>2</sub>、NHCOCONH. C(NH)NH. C(N-CN)NH. NHC(N-CN)NH. SO<sub>2</sub>-O. SO<sub>2</sub>NH. SO<sub>2</sub>NHNH 又は <math>P(O)(OR^3)O$ 、

Y<sup>4</sup>: CO<sub>2</sub>又は Y<sup>3</sup> に記載の基、

 $Y^5$ : SO、SO<sub>2</sub>、O-CO、N(R<sup>3</sup>)CO<sub>2</sub>、NHSO<sub>2</sub>又はNHNHSO<sub>2</sub>、

Y<sup>6</sup>: Y<sup>1</sup> 又は Y<sup>4</sup> に記載の基、

Z¹: 環原子である炭素原子で結合する置換基を有していてもよいヘテロ環基、

Z<sup>2</sup>:置換基を有していてもよい低級アルキル、置換基を有していてもよいシクロアルキル、置換基を有していてもよいアリール又は置換基を有していてもよいヘテロ環基、

 $Z^3: H 又は Z^2 に記載の基。)$ 

- 2. 2-(チオフェン-2-イル)-1H-ベンゾイミダゾール-4-カルボキサミド、2-[1-(3-フェノキシプロピル)ピペリジン-4-イル]-1H-ベンゾイミダゾール-4-カルボキサミド、2-(ピリジン-4-イル)-1H-ベンゾイミダゾール-4-カルボキサミド、2-{1-[3-(チオフェン-2-イル)プロピル]ピペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、2-{1-[3-(2-クロロフェノキシ]プロピル)ピペリジン-4-イル}-1H-ベンゾイミダゾール-4-カルボキサミド、2-[1-(3-フェニル-2-プロペン-1-イル)ピペリジン-4-イル]-1H-ベンゾイミダゾール-4-カルボキサミドからなる群から選択される請求の範囲1記載のベンゾイミダゾール誘導体又はその塩。
- 3. 請求の範囲1記載のベンゾイミダゾール誘導体又はその塩と、製薬学的に許容される担体とからなる医薬組成物。
- 4. PARP 阻害剤である請求の範囲3記載の医薬組成物。
- 5. 炎症性疾患の予防又は治療剤である請求の範囲4記載の医薬組成物。
- 6. 慢性関節リウマチの予防又は治療剤である請求の範囲5記載の医薬組成物。

#### INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/06319

| A CT A CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IFIG A TIOM OF OUR PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| Int.0<br>451/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IFICATION OF SUBJECT MATTER C1 C07D401/04, 409/04, 417/04, 40 00, 451/02, 451/14, 453/02, C07D417/14, 506, 501, 4375, 4545, 4725, 428, 423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 487/04, A61K31/4439, 454, 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84, 427, 4709, 497,   |  |  |  |
| According to International Patent Classification (IPC) or to both national classification and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |  |
| B. FIELDS SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |  |
| Minimum documentation searched (classification system followed by classification symbols) Int.Cl <sup>7</sup> C07D401/04, 409/04, 417/04, 403/04, 405/04, 401/14, 409/14, 405/14, 413/04, 451/00, 451/02, 451/14, 453/02, C07D417/14, 487/04, A61K31/4439, 454, 4184, 427, 4709, 497, 498, 506, 501, 4375, 4545, 4725, 428, 423, 517, 502, A61P43/00, 29/00                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |  |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |  |
| Electronic data base consulted during the international scarch (name of data base and, where practicable, search terms used)  CAPLUS, REGISTRY (STN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |  |
| C. DOCUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |  |
| Category*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Citation of document, with indication, where ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | propriate, of the relevant passages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Relevant to claim No. |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WO, 97/04771, A1 (NEWCASTLE UNIVE<br>13 February, 1997 (13.02.97),<br>& CA, 2225465, A & AU, 9666;<br>& EP, 841924, A1 & CN, 1195;<br>& JP, 11-510154, A & BR, 9610;<br>& NO, 9800414, A & US, 6100;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 240, A<br>985, A<br>051, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-6                   |  |  |  |
| PX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WO, 00/32579, A1 (BASF AKTIENGE<br>08 June, 2000 (08.06.00),<br>& DE, 19916460, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ESELLSCHAFT),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-6                   |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DENNY W.A. et al., "Potential Sructure-activity related and the second second and the second | ationships for<br>amides, a new class of<br>as which may not act via                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-6                   |  |  |  |
| Furthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or documents are listed in the continuation of Box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | See patent family annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |  |  |
| Special categories of cited documents:  "A" document defining the general state of the art which is not considered to be of particular relevance  "E" earlier document but published on or after the international filing date  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means  "P" document published prior to the international filing date but later than the priority date claimed  Date of the actual completion of the international search |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "1" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family  Date of mailing of the international search report |                       |  |  |  |
| 22 November, 2000 (22.11.00) 05 December, 2000 (05.12.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |  |
| Name and mailing address of the ISA/ Japanese Patent Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Authorized officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |  |  |  |
| Facsimile No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Telephone No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |  |  |  |

| Int. C1 7 C07I                                                                                                                                                                                     | はする分野の分類(国際特許分類(IPC))<br>0401/04, 409/04, 417/04, 403/04, 405/04, 401/14,<br>0417/14, 487/04,A61K31/4439, 454, 4184, 427, 47<br>043/00, 29/00 |                                                                                                                                                                                                                |                  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| B. 調査を行った分野                                                                                                                                                                                        |                                                                                                                                               |                                                                                                                                                                                                                |                  |  |  |  |
| 調査を行った最<br>Int. Cl <sup>7</sup> CO7I<br>CO7I                                                                                                                                                       | 5小限資料(国際特許分類(IPC))<br>0401/04, 409/04, 417/04, 403/04, 405/04, 401/14,<br>0417/14, 487/04,A61K31/4439, 454, 4184, 427, 47<br>P43/00, 29/00    |                                                                                                                                                                                                                |                  |  |  |  |
| 最小限資料以外                                                                                                                                                                                            | トの資料で調査を行った分野に含まれるもの                                                                                                                          |                                                                                                                                                                                                                | 7                |  |  |  |
| 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)<br>CAPLUS, REGISTRY (STN)                                                                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                |                  |  |  |  |
|                                                                                                                                                                                                    | らと認められる文献                                                                                                                                     |                                                                                                                                                                                                                |                  |  |  |  |
| 引用文献の<br>カテゴリー*                                                                                                                                                                                    | 引用文献名 及び一部の箇所が関連すると                                                                                                                           | きは、その関連する箇所の表示                                                                                                                                                                                                 | 関連する<br>請求の範囲の番号 |  |  |  |
| A                                                                                                                                                                                                  | WO, 97/04771, A1 (NEW LIMITED), 13. 2月. 1997 (CA, 2225465, A&AU, 9 EP, 841924, A1&CN, 1 JP, 11-510154, A&BF NO, 9800414, A&US, 6              | 13.02.97) & 9666240, A& 195985, A& R, 9610051, A&                                                                                                                                                              | 1 — 6            |  |  |  |
| x C欄の続き                                                                                                                                                                                            | きにも文献が列挙されている。                                                                                                                                | □ パテントファミリーに関する別                                                                                                                                                                                               | 紙を参照。            |  |  |  |
| * 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 |                                                                                                                                               | の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献 |                  |  |  |  |
| 国際調査を完了した日<br>22.11.00                                                                                                                                                                             |                                                                                                                                               | 国際調査報告の発送日 05.1                                                                                                                                                                                                | 2.00             |  |  |  |
| 国際調査機関の名称及びあて先<br>日本国特許庁(ISA/JP)<br>郵便番号100-8915<br>東京都千代田区霞が関三丁目4番3号                                                                                                                              |                                                                                                                                               | 特許庁審査官(権限のある職員)<br>冨永 保<br>電話番号 03-3581-1101                                                                                                                                                                   |                  |  |  |  |

|                   |                                                                                                                                                                                                                                                               | <del></del> |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| C (続き) .<br>引用文献の | 関連すると認められる文献                                                                                                                                                                                                                                                  | 関連する        |
| カテゴリー*            | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                                                                                                                                                                             | 請求の範囲の番号    |
| PΧ                | WO, 00/32579, A1 (BASF AKTIENGESELLSCHAFT),<br>8. 6月. 2000 (08. 06. 00) &<br>DE, 19916460, A                                                                                                                                                                  | 1 – 6       |
| A                 | DENNY W.A. et al., "Potential antitumor agents. 59. Sructure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II", J. Med. Chem., (1990), 33(2), p. 814-9 | 1-6         |
|                   |                                                                                                                                                                                                                                                               |             |
|                   |                                                                                                                                                                                                                                                               |             |
|                   |                                                                                                                                                                                                                                                               |             |
|                   |                                                                                                                                                                                                                                                               |             |
|                   |                                                                                                                                                                                                                                                               |             |
|                   |                                                                                                                                                                                                                                                               |             |
|                   |                                                                                                                                                                                                                                                               |             |
|                   | · ·                                                                                                                                                                                                                                                           |             |
|                   |                                                                                                                                                                                                                                                               |             |
|                   |                                                                                                                                                                                                                                                               |             |
|                   |                                                                                                                                                                                                                                                               |             |

様式PCT/ISA/210 (第2ページの続き) (1998年7月)

THIS PAGE BLANK (USPTO)

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| ☐ BLACK BORDERS                                       |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES               |  |  |  |  |
| I FADED TEXT OR DRAWING                               |  |  |  |  |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                  |  |  |  |  |
| □ SKEWED/SLANTED IMAGES                               |  |  |  |  |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                |  |  |  |  |
| ☐ GRAY SCALE DOCUMENTS                                |  |  |  |  |
| LINES OR MARKS ON ORIGINAL DOCUMENT                   |  |  |  |  |
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |  |  |  |  |
| Потигр.                                               |  |  |  |  |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)