Debiasing Word Embeddings

Andrew Maurer

July 26, 2018

Debiasing Word Embeddings

Andrew Maurer

July 26, 2018

Cohomology Rings and Geometry

Andrew Maurer

July 26, 2018

Plan

- Groups and Modules for Groups
- Cohomology
- Realizability and Consequences

Recall that a finite group is a finite set G with a multiplication rule satisfying some axioms that make it behave like symmetry.

Recall that a finite group is a finite set G with a multiplication rule satisfying some axioms that make it behave like symmetry.

• $\operatorname{GL}(V)=\operatorname{all}$ linear isomorphisms of a vector space V/\mathbb{F}_q .

Recall that a finite group is a finite set G with a multiplication rule satisfying some axioms that make it behave like symmetry.

- ullet GL(V) = all linear isomorphisms of a vector space V/\mathbb{F}_q .
- $S_n = \text{all bijections } \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}.$

Recall that a finite group is a finite set G with a multiplication rule satisfying some axioms that make it behave like symmetry.

- $\operatorname{GL}(V)=\operatorname{all}$ linear isomorphisms of a vector space V/\mathbb{F}_q .
- $S_n = \text{all bijections } \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}.$
- $(\mathbb{Z}/p)^r$ = elementary Abelian group of rank r.

Recall that a finite group is a finite set G with a multiplication rule satisfying some axioms that make it behave like symmetry.

- $\operatorname{GL}(V)=\operatorname{all}$ linear isomorphisms of a vector space V/\mathbb{F}_q .
- $S_n = \text{all bijections } \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}.$
- $(\mathbb{Z}/p)^r$ = elementary Abelian group of rank r.
- Others

Groups are modeled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Groups are modeled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to \mathsf{GL}(V), g \mapsto \varphi_g$$

Groups are modeled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to \mathsf{GL}(V), g \mapsto \varphi_g$$

Examples:

Groups are modeled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to \mathsf{GL}(V), g \mapsto \varphi_g$$

Examples:

• Trivial Representation: k is a G -module via the action $\varphi_g(v) = v$.

Groups are modeled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to GL(V), g \mapsto \varphi_g$$

Examples:

- Trivial Representation: k is a G -module via the action $\varphi_g(v) = v$.
- Natural Representation: V is a GL(V) module.

Groups are modeled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to GL(V), g \mapsto \varphi_g$$

Examples:

- Trivial Representation: k is a G -module via the action $\varphi_g(v) = v$.
- Natural Representation: V is a GL(V) module.
- Permutation Representation: The vector space with basis $\{e_1, \ldots, e_n\}$ is a S_n -module by $\varphi_{\sigma}(e_i) = e_{\sigma(i)}$, and extend by linearity.

Groups are modeled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to GL(V), g \mapsto \varphi_g$$

Examples:

- Trivial Representation: k is a G -module via the action $\varphi_g(v) = v$.
- Natural Representation: V is a GL(V) module.
- Permutation Representation: The vector space with basis $\{e_1, \ldots, e_n\}$ is a S_n -module by $\varphi_{\sigma}(e_i) = e_{\sigma(i)}$, and extend by linearity.

G-modules as defined above are really just modules for a certain ring denoted kG.

The cohomology group $H^n(G; k)$ can be defined in many ways.

The cohomology group $H^n(G; k)$ can be defined in many ways.

Most concrete is as $H^n(G; k) \cong \operatorname{Ext}_{kG}^n(k, M)$.

$$\operatorname{Ext}_{\mathit{kG}}^{\mathit{n}}(\mathit{k},\mathit{M}) = \big\{0 \to \mathit{M} \to \mathit{E}_1 \to \ldots \to \mathit{E}_n \to \mathit{k} \to 0\big\}/\sim$$

i.e., as all n-fold extensions of k by M, modulo a certain equivalence relation.

The cohomology group $H^n(G; k)$ can be defined in many ways.

Most concrete is as $H^n(G; k) \cong \operatorname{Ext}_{kG}^n(k, M)$.

$$\operatorname{Ext}_{\mathit{kG}}^{\mathit{n}}(\mathit{k},\mathit{M}) = \big\{0 \to \mathit{M} \to \mathit{E}_1 \to \ldots \to \mathit{E}_n \to \mathit{k} \to 0\big\}/\sim$$

i.e., as all n-fold extensions of k by M, modulo a certain equivalence relation.

Addition in the cohomology group corresponds to Baer sum of extensions.

The cohomology group $H^n(G; k)$ can be defined in many ways.

Most concrete is as $H^n(G; k) \cong \operatorname{Ext}_{kG}^n(k, M)$.

$$\operatorname{Ext}_{\mathit{kG}}^{\mathit{n}}(\mathit{k},\mathit{M}) = \big\{0 \to \mathit{M} \to \mathit{E}_1 \to \ldots \to \mathit{E}_n \to \mathit{k} \to 0\big\}/\sim$$

i.e., as all n-fold extensions of k by M, modulo a certain equivalence relation.

Addition in the cohomology group corresponds to Baer sum of extensions. This is complicated.

Realizing cohomology groups $H^n(G; k)$ in this way means we can multiply two sequences together.

$$\operatorname{Ext}_{kG}^n(k,k) \times \operatorname{Ext}_{kG}^m(k,k) \to \operatorname{Ext}_{kG}^{m+n}(k,k)$$

Realizing cohomology groups $H^n(G; k)$ in this way means we can multiply two sequences together.

$$\operatorname{Ext}_{kG}^n(k,k) \times \operatorname{Ext}_{kG}^m(k,k) \to \operatorname{Ext}_{kG}^{m+n}(k,k)$$

Realizing cohomology groups $H^n(G; k)$ in this way means we can multiply two sequences together.

$$\operatorname{Ext}_{kG}^n(k,k) \times \operatorname{Ext}_{kG}^m(k,k) \to \operatorname{Ext}_{kG}^{m+n}(k,k)$$

And the new sequence has the form

$$0 \to k \to \underbrace{E_1 \to \ldots \to E_n \to F_1 \to \ldots \to F_m}_{m+n} \to k \to 0$$

Under this $\operatorname{Ext}_{kG}^n(k,k) \times \operatorname{Ext}_{kG}^m(k,k) \to \operatorname{Ext}_{kG}^{n+m}(k,k)$ association,

$$\operatorname{Ext}_{kG}^{\bullet}(k,k) = \bigoplus \operatorname{Ext}_{kG}^{n}(k,k)$$

becomes a graded ring.

Under this $\operatorname{Ext}_{kG}^n(k,k) \times \operatorname{Ext}_{kG}^m(k,k) \to \operatorname{Ext}_{kG}^{n+m}(k,k)$ association,

$$\operatorname{Ext}_{kG}^{\bullet}(k,k) = \bigoplus \operatorname{Ext}_{kG}^{n}(k,k)$$

becomes a graded ring. What can we say about it?

Under this $\operatorname{Ext}_{kG}^n(k,k) \times \operatorname{Ext}_{kG}^m(k,k) \to \operatorname{Ext}_{kG}^{n+m}(k,k)$ association,

$$\operatorname{Ext}_{kG}^{\bullet}(k,k) = \bigoplus \operatorname{Ext}_{kG}^{n}(k,k)$$

becomes a graded ring. What can we say about it?

• It is graded-commutative, i.e., $\alpha \cdot \beta = (-1)^{\bar{\alpha} \cdot \bar{\beta}} \beta \cdot \alpha$.

Under this $\operatorname{Ext}_{kG}^n(k,k) \times \operatorname{Ext}_{kG}^m(k,k) o \operatorname{Ext}_{kG}^{n+m}(k,k)$ association,

$$\operatorname{Ext}_{kG}^{\bullet}(k,k) = \bigoplus \operatorname{Ext}_{kG}^{n}(k,k)$$

becomes a graded ring. What can we say about it?

- It is graded-commutative, i.e., $\alpha \cdot \beta = (-1)^{\bar{\alpha} \cdot \bar{\beta}} \beta \cdot \alpha$.
- (Evens 1961) It is finitely-generated over $\operatorname{Ext}_{kG}^0(k,k) \cong k$.

Under this $\operatorname{Ext}_{kG}^n(k,k) \times \operatorname{Ext}_{kG}^m(k,k) \to \operatorname{Ext}_{kG}^{n+m}(k,k)$ association,

$$\operatorname{Ext}_{kG}^{ullet}(k,k) = \bigoplus \operatorname{Ext}_{kG}^{n}(k,k)$$

becomes a graded ring. What can we say about it?

- It is graded-commutative, i.e., $\alpha \cdot \beta = (-1)^{\bar{\alpha} \cdot \bar{\beta}} \beta \cdot \alpha$.
- (Evens 1961) It is finitely-generated over $\operatorname{Ext}_{kG}^0(k,k) \cong k$.

Define a commutative, finitely generated ring:

$$H^{c}(G; k) = \begin{cases} H^{\bullet}(G; k) & \text{if } p = 2\\ \bigoplus H^{2n}(G; k) & \text{if } p > 2 \end{cases}$$

One more thing about rings

One more thing about rings

 $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ is a ring in the exact same way. It is far less nice, and usually not finitely generated.

One more thing about rings

 $\operatorname{Ext}_{kG}^{ullet}(M,M)$ is a ring in the exact same way. It is far less nice, and usually not finitely generated.

 $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ is a graded module for $H^{\bullet}(G;k)$ (or $H^{c}(G;k)$) using the tensor product.

One more thing about rings

 $\operatorname{Ext}_{kG}^{ullet}(M,M)$ is a ring in the exact same way. It is far less nice, and usually not finitely generated.

 $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ is a graded module for $H^{\bullet}(G;k)$ (or $H^{c}(G;k)$) using the tensor product.

So $\operatorname{Ext}^{\bullet}_{kG}(M,M)$ has an annihilator $I_M \subseteq H^{\bullet}(G;k)$ which is a homogeneous ideal.

One more thing about rings

 $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ is a ring in the exact same way. It is far less nice, and usually not finitely generated.

 $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ is a graded module for $H^{\bullet}(G;k)$ (or $H^{c}(G;k)$) using the tensor product.

So $\operatorname{Ext}^{\bullet}_{kG}(M,M)$ has an annihilator $I_M \subseteq H^{\bullet}(G;k)$ which is a homogeneous ideal.

$$I_M = \{x \in H^{\bullet}(G; k) \mid x. \operatorname{Ext}_{kG}^{\bullet}(M, M) = 0\}.$$

To every finitely generated ring R, there is a geometric space Spec R whose functions are R.

To every finitely generated ring R, there is a geometric space Spec R whose functions are R.

The main example is if $R = k[x_1, ..., x_n]$, then Spec $R \cong k^n$, with some "special" points added.

To every finitely generated ring R, there is a geometric space Spec R whose functions are R.

The main example is if $R = k[x_1, ..., x_n]$, then Spec $R \cong k^n$, with some "special" points added.

Define $V_G(k) = \operatorname{Spec}(H^c(G; k))$. This is the *cohomology variety* of G/k.

To every finitely generated ring R, there is a geometric space Spec R whose functions are R.

The main example is if $R = k[x_1, \dots, x_n]$, then Spec $R \cong k^n$, with some "special" points added.

Define $V_G(k) = \operatorname{Spec}(H^c(G; k))$. This is the *cohomology variety* of G/k.

For a G-module M,

$$\mathcal{V}_G(M) = \mathcal{Z}(I_M) \subseteq \mathcal{V}_G(k)$$

is the support variety of M.

Goal

Describe the representation theory of G in terms of the geometry of $\mathcal{V}_G(k)$

Goal

Describe the representation theory of G in terms of the geometry of $\mathcal{V}_G(k)$

Theorem

Let M_1 and M_2 be G-modules.

Goal

Describe the representation theory of G in terms of the geometry of $\mathcal{V}_G(k)$

Theorem

Let M_1 and M_2 be G-modules.

• $V_G(M_1) = \{0\}$ if M_1 is projective.

Goal

Describe the representation theory of G in terms of the geometry of $\mathcal{V}_G(k)$

Theorem

Let M_1 and M_2 be G-modules.

- $V_G(M_1) = \{0\}$ if M_1 is projective.
- $\mathcal{V}_G(M_1 \oplus M_2) = \mathcal{V}_G(M_1) \cup \mathcal{V}_G(M_2)$.

Goal

Describe the representation theory of G in terms of the geometry of $\mathcal{V}_G(k)$

Theorem

Let M_1 and M_2 be G-modules.

- $V_G(M_1) = \{0\}$ if M_1 is projective.
- $\mathcal{V}_G(M_1 \oplus M_2) = \mathcal{V}_G(M_1) \cup \mathcal{V}_G(M_2)$.
- $\mathcal{V}_G(M_1 \otimes M_2) = \mathcal{V}_G(M_1) \cap \mathcal{V}_G(M_2)$.

Goal

Describe the representation theory of G in terms of the geometry of $\mathcal{V}_G(k)$

Theorem

Let M_1 and M_2 be G-modules.

- $V_G(M_1) = \{0\}$ if M_1 is projective.
- $\mathcal{V}_G(M_1 \oplus M_2) = \mathcal{V}_G(M_1) \cup \mathcal{V}_G(M_2)$.
- $\mathcal{V}_G(M_1 \otimes M_2) = \mathcal{V}_G(M_1) \cap \mathcal{V}_G(M_2)$.

But these are statements about the geometry of $V_G(k)$. Can we figure out the representation theory of G by studying varieties $V_G(M)$?

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・釣なべ

Each nonzero element $\zeta \in H^{\bullet}(G; k)$ of the cohomology ring determines a surjective homomorphism $\Omega^{n}(k) \to k$

Each nonzero element $\zeta \in H^{\bullet}(G; k)$ of the cohomology ring determines a surjective homomorphism $\Omega^n(k) \to k$, which can be fit into a short exact sequence

$$0 \to L_{\zeta} \to \Omega^{n}(k) \to k \to 0.$$

Each nonzero element $\zeta \in H^{\bullet}(G; k)$ of the cohomology ring determines a surjective homomorphism $\Omega^n(k) \to k$, which can be fit into a short exact sequence

$$0 \to L_{\zeta} \to \Omega^{n}(k) \to k \to 0.$$

Theorem

$$\mathcal{V}_G(L_\zeta) = \mathcal{Z}(\zeta)$$

On the one hand:

On the one hand:

Each element $\zeta \in H^{\bullet}(G; k)$ determines a subvariety of Spec $H^{\bullet}(G; k) = \mathcal{V}_G(k)$.

On the one hand:

Each element $\zeta \in H^{\bullet}(G; k)$ determines a subvariety of Spec $H^{\bullet}(G; k) = \mathcal{V}_G(k)$.

On the other hand:

On the one hand:

Each element $\zeta \in H^{\bullet}(G; k)$ determines a subvariety of Spec $H^{\bullet}(G; k) = \mathcal{V}_G(k)$.

On the other hand:

Each element $\zeta \in H^{\bullet}(G; k)$ defines a morphism $\Omega^{n}(k) \to k$, which has a kernel L_{ζ} , which determines a subvariety $\mathcal{V}_{G}(L_{\zeta}) \subseteq \mathcal{V}_{G}(k)$.

On the one hand:

Each element $\zeta \in H^{\bullet}(G; k)$ determines a subvariety of Spec $H^{\bullet}(G; k) = \mathcal{V}_G(k)$.

On the other hand:

Each element $\zeta \in H^{\bullet}(G; k)$ defines a morphism $\Omega^{n}(k) \to k$, which has a kernel L_{ζ} , which determines a subvariety $\mathcal{V}_{G}(L_{\zeta}) \subseteq \mathcal{V}_{G}(k)$.

And these two processes yield the same subvariety.

Theorem

Every variety that could arise as the support variety of a module, does arise as the support variety of a module.

Theorem

Every variety that could arise as the support variety of a module, does arise as the support variety of a module.

Closed

Theorem

Every variety that could arise as the support variety of a module, does arise as the support variety of a module.

- Closed
- Conical

Theorem

Every variety that could arise as the support variety of a module, does arise as the support variety of a module.

- Closed
- Conical

Theorem

Every variety that could arise as the support variety of a module, does arise as the support variety of a module.

- Closed
- Conical

Theorem

Every variety that could arise as the support variety of a module, does arise as the support variety of a module.

- Closed
- Conical

$$X = \bigcap_{i=1}^n \mathcal{Z}(\zeta_i)$$

Theorem

Every variety that could arise as the support variety of a module, does arise as the support variety of a module.

- Closed
- Conical

$$X = \bigcap_{i=1}^{n} \mathcal{Z}(\zeta_i) = \bigcap_{i=1}^{n} \mathcal{V}_G(L_{\zeta})$$

$\mathsf{Theorem}$

Every variety that could arise as the support variety of a module, does arise as the support variety of a module.

- Closed
- Conical

$$X = \bigcap_{i=1}^n \mathcal{Z}(\zeta_i) = \bigcap_{i=1}^n \mathcal{V}_G(L_\zeta) = \mathcal{V}_G\left(\bigotimes_{i=1}^n L_\zeta\right).$$

Partial converse to direct sum theorem

Theorem

If M is a G-module, and $\mathcal{V}_G(M) = V_1 \cup V_2$, with $V_1 \cap V_2 = \{0\}$, then there are modules with $V_1 = \mathcal{V}_G(M_1)$ and $V_2 = \mathcal{V}_G(M_2)$ such that $M=M_1\oplus M_2$ and .

Thank You