1 IN THE CLAIMS

2	Please cancel Claim 1 and add new Claims 2-46. The following listing of claims
3	will replace all prior version, and listings, of claims in the subject application:
4	
5	1. (Canceled)
6	
7	2. (New) A system for improved video digitization and image correction, said
8	system comprising:
9	a plurality of workstations coupled to a communications medium;
10	a remote management unit coupled to said communications medium, said
11	remote management unit including a video digitizer for converting
12	analog video signals to digital video signals, said analog video signals
13	received from at least one of a plurality of remote networking devices
14	and
15	an image correcting circuit for processing said digital video signals
16	received from said digitizer.
17	
18	3. (New) The system according to claim 2, wherein each of said plurality of
19	workstations is of a type comprising at least one keyboard, video monitor and cursor
20	control device, and wherein each of said plurality of workstations is capable of accessing
21	and operating said plurality of remote networking devices through said remote
22	management unit.

- 1 4. (New) The system according to claim 2, wherein said remote management unit
- 2 controls a power supply for each of said remote networking devices.

- 4 5. (New) The system according to claim 2, wherein said communications medium is
- 5 at least one selected from the group consisting of a LAN, a WAN, a wireless connection,
- 6 a modem, a direct modem connection, and the Internet.

7

- 8 6. (New) The system according to claim 2, wherein each of said plurality of remote
- 9 networking devices is connected to said remote management unit through cabling via a
- 10 port selected from the group consisting of a serial port, parallel port, keyboard port, video
- port, cursor control device port, USB port, firewire port, bluetooth port, Ethernet port,
- and a power supply port.

13

- 14 7. (New) The system according to claim 2, wherein said remote management unit
- 15 controls access by requiring identification data to authenticate a user.

16

- 17 8. (New) The system according to claim 2, wherein said remote management unit
- and said plurality of user workstations communicate via TCP/IP.

- 20 9. (New) The system according to claim 2, wherein said remote management unit
- 21 and said plurality of user workstations communicate via the Internet.

- 1 10. (New) The system according to claim 2, wherein said video digitizer includes an
- 2 analog to digital converter.

- 4 11. (New) The system according to claim 2, wherein said image correcting circuit
- 5 includes an input interface circuit for detecting a color palette utilized by said remote
- 6 network device.

7

- 8 12. (New) The system according to claim 2, wherein said image correcting circuit
- 9 includes a synchronization selector circuit for receiving horizontal and vertical
- 10 synchronization signals.

11

- 12 13. (New) The system according to claim 12, wherein said image correcting circuit
- 13 includes a mode detection circuit for receiving said synchronization signals from said
- 14 synchronization selector circuit and for determining a frequency of said synchronization
- signals.

16

- 17 14. (New) The system according to claim 2, wherein said image correcting circuit
- 18 includes an auto-adjustment circuit for performing at least one of active area detection,
- 19 pixel brightness searching, pixel measurement and phase distortion measurement.

- 21 15. (New) The system according to claim 14, wherein said auto-adjustment circuit
- 22 updates timing of a clock during said phase distortion measurement.

- 1 16. (New) The system according to claim 2, wherein said image correcting circuit
- 2 includes a downscaler circuit for reducing high video resolution to low video resolution.

- 4 17. (New) The system according to claim 2, wherein said image correcting circuit
- 5 includes an upscaler circuit for increasing low video resolution to high video resolution.

6

- 7 18. (New) The system according to claim 2, wherein said image correcting circuit
- 8 includes an option menu circuit for enabling a user to select one of a plurality of serial
- 9 devices, remote servers, remote computers or power devices.

10

- 11 19. (New) The system according to claim 2, wherein said image correcting circuit
- modifies each pixel of said digital video signals according to a color palette.

13

- 14 20. (New) The system according to claim 2, wherein said image correcting circuit
- 15 includes a dithering circuit for approximating a color for a pixel of said digital video
- 16 signals.

17

- 18 21. (New) The system according to claim 2, wherein said image correcting circuit
- includes an output interface circuit for adjusting timing of said analog video signals.

- 21 22. (New) The system according to claim 2, wherein said remote management unit
- 22 includes a video processor circuit for compressing said digital video signals.

includes a pixel receiving circuit for receiving pixel information from said digital video 2 3 signals. 4 5 24. (New) The system according to claim 23, wherein said video processor circuit 6 includes a frame buffer circuit for storing said pixel information. 7 8 25. (New) The system according to claim 22, wherein said video processor circuit 9 includes a video compression circuit. 10 11 26. (New) The system according to claim 2, wherein said processing includes 12 converting said digital video signals for compatibility with a video display of one of said 13 plurality of workstations. 14 15 27. (New) A method for providing improved video digitization and image correction for the transmission of video signals, said method comprising the steps of: 16 17 (a) receiving analog video signals from one of a plurality of remote 18 devices connected to a remote management unit: 19 (b) converting said analog video signals to digital video signals; 20 (c) correcting said digital video signals; and 21 (d) transmitting said digital video signals to one of a plurality of user 22 interface devices.

The system according to claim 22, wherein said video processor circuit

1

23. (New)

- 1 28. (New) The method according to claim 27, wherein said user interface devices are
- 2 accessible by inputting unique authentication information.

- 4 29. (New) The method according to claim 27, wherein said method further comprises
- 5 the step of:
- 6 displaying said digital video signals on a video display of one of said user
- 7 interface devices.

8

- 9 30. (New) The method according to claim 27, wherein said method further comprises
- 10 the step of:
- 11 compressing said digital video signals prior to said transmitting.

12

- 13 31. (New) The method according to claim 30, wherein a compression algorithm is
- used to perform said compressing.

15

- 16 32. (New) The method according to claim 31, wherein said compression algorithm
- determines noise in said digital video signals, smoothes said digital video signals,
- determines changes to pixels of said digital video signals, and compresses said changed
- 19 digital video signals.

- 21 33. (New) The method according to claim 27, wherein said transmitting occurs via
- TCP/IP.

- 1 34. (New) The method according to claim 27, wherein said correcting is performed
- 2 by an image correction circuit.

- 4 35. (New) The method according to claim 34, wherein said image correction circuit
- 5 includes an interface circuit for detecting a color palette of said digital video signals.

6

- 7 36. (New) The method according to claim 27, wherein said correcting further
- 8 includes receiving horizontal and vertical synchronization signals.

9

- 10 37. (New) The method according to claim 27, wherein said correcting further
- includes determining one or more frequencies of said digital video signals.

12

- 13 38. (New) The method according to claim 27, wherein said correcting further
- 14 includes detecting an active area of a video image represented by said digital video
- 15 signals.

16

- 17 39. (New) The method according to claim 27, wherein said correcting further
- includes determining brightness of each pixel of said digital video signals.

- 20 40. (New) The method according to claim 27, wherein said correcting further
- 21 includes measuring phase distortion of said digital video signals.

- 1 41. (New) The method according to claim 27, wherein said correcting further
- 2 includes measuring one or more pixels of said digital video signals.

- 4 42. (New) The method according to claim 27, wherein said correcting further
- 5 includes reducing high video resolution to low video resolution.

6

- 7 43. (New) The method according to claim 27, wherein said correcting further
- 8 includes increasing low video resolution to high video resolution.

9

- 10 44. (New) The method according to claim 27, wherein said correcting further
- includes dithering said digital video signals.

12

- 13 45. (New) The method according to claim 27, wherein said correcting further
- includes adjusting timing of said digital video signals.

- 16 46. (New) The method according to claim 27, wherein said method further comprises
- 17 the step of:
- storing pixel information of digital video signals.