MA262: Introduction to Stochastic Processes

Naman Mishra

January 2024

Contents

The Course
Discrete time Markov Chains
Lecture
01: Thu
04 Jan
'24

Texts:

- Markov Chains, J. R. Norris
- Introduction to Stochastic Processes, Hoel, Port, Stone
- Karlin and Taylor

Grading:

- (20%) 2 quizzes
- (30%) 1 midterm
- (50%) Final

1 Discrete time Markov Chains

Definition 1.1. Let S be a state set (countable). A matrix $P = (p_{xy}; x, y \in S)$ is called a *stochastic matrix* if $p_{xy} \ge 0$ for all $x, y \in S$ and $\sum_{y \in S} p_{xy} = 1$ for all $x \in S$.

Definition 1.2. Let S be a state set, $P = (p_{xy})$ a stochastic matrix, and μ_0 a probability distribution on S, i.e., $\mu_0(x) \ge 0$ for all $x \in S$ and $\sum_{x \in S} \mu_0(x) = 1$.

Suppose X_0, X_1, \ldots are random variables defined on the same probability space taking values in S. Then $(X_n; n \geq 0)$ is called a Markov chain with initial distribution μ_0 and transition matrix P, notated $MC(\mu_0, P)$, if X_0 has distribution μ_0 and for all $n \geq 0$,

$$P(X_{n+1} = x_{n+1} \mid X_n = x_n, \dots, X_0 = x_0) = p_{x_n x_{n+1}}$$

whenever $P(X_n = x_n, ..., X_0 = x_0) > 0$.

Notation. Whenever writing $P(X_n \in A \mid (X_0, \dots, X_{n-1}) \in B)$, it is understood that $P((X_0, \dots, X_{n-1}) \in B) > 0$.

Theorem 1.3.
$$(X_n; 0 \le n \le N)$$
 is $MC(\mu_0, P)$ iff

$$P(X_0 = x_0, \dots, X_N = x_N) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{N-1} x_N}$$

for all $x_0, \ldots, x_N \in S$.

Proof. Both directions are proven by induction.

Suppose $(X_n; 0 \le n \le N)$ is $MC(\mu_0, P)$. $P(X_0 = x_0) = \mu_0(x_0)$. If $P(X_0 = x_0) > 0$, then $P(X_0 = x_0, X_1 = x_1) = \mu_0(x_0)p_{x_0x_1}$. If $P(X_0 = x_0) = 0$, then $P(X_0 = x_0, X_1 = x_1) \le P(X_0 = x_0) = 0$, and so $P(X_0 = x_0, X_1 = x_1) = 0 = \mu_0(x_0)p_{x_0x_1}$.

Suppose

$$P(X_0 = x_0, \dots, X_n = x_n) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{n-1} x_n}$$

for all $x_0, \ldots, x_n \in S$. Then

$$P(X_0 = x_0, \dots, X_{n-1} = x_{n-1}) = \sum_{x_n \in S} P(X_0 = x_0, \dots, X_n = x_n)$$

$$= \sum_{x_n \in S} \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{n-1} x_n}$$

$$= \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{n-1} x_n}$$

Use induction to show that for all $1 \le i \le N$,

$$P(X_0 = x_0, \dots, X_i = x_i) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{i-1} x_i}$$

and $P(X_0 = x_0)$. This allows us to deduce that

$$P(X_{i+1} = x_{i+1} \mid X_0 = x_0, \dots, X_i = x_i) = p_{x_i x_{i+1}}.$$

Theorem 1.4 (Strong Law of Large Numbers). Suppose Z_1, Z_2, \ldots are iid \mathbb{R} -valued random variables and $E[Z_1]$ exists. Then

$$\frac{Z_1 + \dots + Z_n}{n} \to E[Z_1]$$

as $n \to \infty$, that is,

$$P\left\{\omega \in \Omega : \lim_{n \to \infty} \frac{Z_1(\omega) + \dots + Z_n(\omega)}{n} = E[Z_1]\right\} = 1.$$

Theorem 1.5 (Weak Law of Large Numbers).

Theorem 1.6 (Central Limit Theorem). Suppose Z_1, Z_2, \ldots are iid \mathbb{R} -valued random variables and $E[Z_1^2]$ exists. Then

$$\frac{\sqrt{n}}{\sqrt{V(Z_1)}} \left(\frac{Z_1 + \dots + Z_n}{n} - E[Z_1] \right) \to N(0, 1).$$

Examples.

• A two-state Markov chain.

This corresponds to the matrix

$$P = \begin{pmatrix} p & 1-p \\ 1-q & q \end{pmatrix}.$$

• A three-state Markov chain.

• Simple random walk on \mathbb{Z} . Staring from 0, at each step, move right with probability p and left with probability q = 1 - p. $P(X_{n+1} = x + 1 \mid X_n = x) = p$ and $P(X_{n+1} = x - 1 \mid X_n = x) = q$. All other probabilities are 0.

Such a simple random walk is called symmetric if $p = q = \frac{1}{2}$. A special case is where $\mu_0 = \delta_x$ for some $x \in \mathbb{Z}$, where δ_x is the Krönecker delta.

Aside: Suppose Z_1, \ldots, Z_k are random variables taking values in a state set S defined on a probability space (Ω, \mathcal{F}, P) . and $\tilde{Z}_1, \ldots, \tilde{Z}_k$ are rvs taking values in a state set S defined on a probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$. Then (Z_1, \ldots, Z_k) and $(\tilde{Z}_1, \ldots, \tilde{Z}_k)$ are said to be identically distributed if

$$P(Z_1 = x_1, \dots, Z_k = x_k) = P(\tilde{Z}_1 = x_1, \dots, \tilde{Z}_k = x_k).$$

This is notated as

$$(Z_1,\ldots,Z_k)\stackrel{d}{=} (\tilde{Z}_1,\ldots,\tilde{Z}_k).$$

Suppose that Y_1, Y_2, \ldots are iid $\begin{pmatrix} -1 & 1 \\ 1-p & p \end{pmatrix}$. We have that $(X_n; n \ge 1)$

0) $\stackrel{d}{=} (\sum_{j=1}^{n} Y_j; n \geq 0)$. Then from the weak law of large numbers,

$$\frac{X_n}{n} \to E[Y_1] = 2p - 1.$$

From the central limit theorem,

$$\frac{X_n - n(p - q)}{\sqrt{n}\sqrt{1 - (p - q)^2}} \to N(0, 1).$$

On a graph, a simple symmetric random walk is a random walk on a

graph where each

$$p_{xy} = \begin{cases} \frac{1}{deg(x)} & \text{if } y \sim x, \\ 0 & \text{otherwise.} \end{cases}$$

On \mathbb{Z}^2 , a simple random walk is given by p_N , p_E , p_S , p_W , where $p_N + p_E + p_S + p_W = 1$. At each step, move up with probability p_N , right with probability p_E , down with probability p_S , and left with probability p_W .

• Consider a shooting game with 4 modes: N (normal), D (distance), W (windy) and DW (distance and windy). The game changes mode randomly to a mode different from the current mode with directed graph K_4 with some edge weights.

Theorem 1.7. If $(X_n; n \ge 0)$ is a DTMC with transition matrix P, $_{
m then}$

$$P_{\mu_0}(X_n=y)=(\mu_0P^n)(y).$$
 In particular, $P_x(X_n=y)=(P^n)_{x,y}=p_{xy}^{(n)}.$

Here, μ_0 is viewed as a row vector, and P_{μ_0} is the distribution under the assumption that $X_0 \sim \mu_0$.

Proof.

$$P_{\mu_0}(X_n = y) = \sum_{x_0, \dots, x_{n-1} \in S} P(X_0 = x_0, \dots, X_{n-1} = x_{n-1}, X_n = y)$$

$$= \sum_{x_0, \dots, x_{n-1} \in S} P(X_0 = x_0, \dots, X_{n-1} = x_{n-1}) p_{x_{n-1}y}$$

$$= (\mu_0 P^{n-1})_y$$

Theorem 1.8. Let $(X_n; n \ge 0)$ be $MC(\mu_0, P)$. Then for any $n \ge 0$, $l \ge 1, x_n, \dots, x_{n+l} \in S$ and $A \subseteq S^n$, $P_{\mu_0}(X_i = x_i, n < i \le n + l \mid X_n = x_n, (X_0, \dots, X_{n-1}) \in A)$

$$P_{\mu_0}(X_i = x_i, n < i \le n + l \mid X_n = x_n, (X_0, \dots, X_{n-1}) \in A)$$

= $P_{x_n}(X_1 = x_{n+1}, \dots, X_l = x_{n+l})$

In other words, conditioning on $X_n = x_n$ and $(X_0, \ldots, X_{n-1}) \in A$, the process (X_n, X_{n+1}, \dots) is $MC(\delta_{x_n}, P)$.

Proof.

$$P(X_{n+l} = x_{n+l}, \dots, X_n = x_n, (X_0, \dots, X_{n-1}) \in A)$$

$$= p_{x_n x_{n+1}} \dots p_{x_{n+l-1} x_{n+l}} \sum_{(x_0, \dots, x_{n-1}) \in A} \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{n-1} x_n}$$

$$= P_{\mu_0}(X_n = x_n, (X_0, \dots, X_{n-1}) \in A) p_{x_n x_{n+1}} \dots p_{x_{n+l-1} x_{n+l}}$$