IDD, CHUTION, CHUTLOIDDE, CHUTLOIDU, SN74155, SN74156, SN74LS155A, SN74LS156 **DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS**

MARCH 1974 - REVISED MARCH 1988

Applications:

Dual 2-to 4-Line Decoder Dual 1-to 4-Line Demultiplexer 3-to 8-Line Decoder 1-to 8-Line Demultiplexer

- Individual Strobes Simplify Cascading for Decoding or Demultiplexing Larger Words
- Input Clamping Diodes Simplify System Design
- Choice of Outputs: Totem Pole ('155, 'LS155A) Open-Collector ('156, 'LS156)

TYPES	TYPICAL AVERAGE PROPAGATION DELAY	TYPICAL
TYPES	3 GATE LEVELS	DISSIPATION
'155, '156	21 ns	125 mW
'LS155A	18 ns	31 mW
'LS156	32 n s	31 mW

description

These monolithic transistor-transistor-logic (TTL) circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common binary-address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input 1C is inverted at its outputs and data applied at 2C is not inverted through its outputs. The inverter following the 1C data input permits use as a 3-to-8-line decoder or 1-to-8-line demultiplexer without external gating. Input clamping diodes are provided on all of these circuits to minimize transmission-line effects and simplify system design.

SN54155, SN54156, SN54LS155A, SN54LS156 . . . J OR W PACKAGE SN74155, SN74156 . . . N PACKAGE SN74LS155A, SN74LS156 . . . D OR N PACKAGE (TOP VIEW)

SN54LS155A, SN54LS156 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols (2-line to 4-line decoder)†

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. For alternative symbols for other applications, see the following page

Pin numbers shown are for D, J, N, and W packages.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the tarms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

'156, 'LS156

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

- 2Y0

- 2Y2

- 1Y0

_ 171

- 1Y2

- 1Y3

schematics of inputs and outputs

'155, '156 **EQUIVALENT OF EACH INPUT** Vcc. $4 k\Omega$ NOM

SN54155, SN54156, SN54LS155A, SN54LS156, SN74155, SN74156, SN74LS155A, SN74LS156 DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

schematics of inputs and outputs (continued)

logic diagram (positive logic)

FUNCTION TABLES
2-LINE-TO-4-LINE DECODER
OR 1-LINE-TO-4-LINE DEMULTIPLEXER

		INPUTS		OUTPUTS							
SEL	ECT	STROBE	DATA	170	171	1Y2	1Y3				
В	A	1Ğ	1C								
Х	Х	Н	x	Н	Н	Н	н				
L	L	L	н	Ł	н	Н	н				
L	Н	L	н	н	L	н	н				
н	Ł	L	н	н	н	L	н				
н	н	L	н	н	н	Н	L				
×	х	_ x	<u>լ </u>	н	н	н_	Н				

		INPUTS		OUTPUTS							
SEL B	ECT A	STROBE 2G	DATA 2C	2Y0	2Y1	2Y2	2Y3				
х	х	Н	х	Н	н	Н	Н				
L	L	L	L	L	н	н	н				
L	Н	L	L	н	L	н	н				
н	L	L	L	н	н	L	н				
н	Н	L	L	н	н	н	L				
х	х	l x	н	Н	н	н	н				

FUNCTION TABLE
3-LINE-TO-B-LINE DECODER
OR 1-LINE-TO-B-LINE DEMULTIPLEXER

		INP	UTS				OUTP	UTS			
SE	LEC	т:	STROBE OR DATA	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
C [†]	В	Α	Ї	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	1Y2	1Y3
Х	х	х	Н	Н	Н	Н	Н	Н	Н	Н	н
L	L	L	Ł	L	Н	н	Н	Н	н	Н	Н
L	L	н	L	н	L	н	Н	н	Н	Н	Н
L	Н	L	L	н	Н	L	Н	н	н	Н	Н
L	Н	н	L	н	Н	Н	L	Н	Н	н	н
н	L	L	L	н	Н	Н	Н	L	н	н	Н
н	L	Н	L	н	н	н	Н	Н	L	н	Н
н	Н	L	L	н	н	Н	н	н	н	L	Н
н	Н	Н	L	н	Н	Н	Н	н	н	Н	L

 † C = inputs 1C and 2 $\overline{\text{C}}$ connected together

 $\mbox{$\stackrel{\updownarrow}{\Box}$} \overline{G}$ = inputs $1\overline{G}$ and $2\overline{G}$ connected together

H = high level, L = low level, X = irrelevant

SN54155, SN54156, SN54LS155A, SN54LS156, SN74155, SN74156, SN74LS155A, SN74LS156 **DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS**

STYLE UN-1

PHIC TY HIIVA

absolute maximum ratings of	over operating free-air	temperature range (u	ınless otherwise noted)
-----------------------------	-------------------------	----------------------	-------------------------

Supply voltage, VCC (see Note 1)																				7 V
Input voltage: '155, '156																				5.5 V
'LS155A, 'L S156 .																				7 V
Off-state output voltage: '156 .									-											5.5 V
'LS 156																				
Operating free-air temperature range:																				
	SN	174'	, SN	174	LS	' Ci	cui	ts									C)°C	to	70°C
Storage temperature range																-6	35°	C	to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5415	5	;	SN7415	5	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μА
Low-level output current, IOL			16			16	mA
Operating free-air temperature, T _A	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONI	DITIONS [†]	1	5 5	UNIT	
				MIN	TYP#	MAX	
VIH	High-level input voltage			2			V
v_{IL}	Low-level input voltage					0.8	٧
ViK	Input clamp voltage	V _{CC} = MIN,	I =8 mA			-1.5	٧
V _{OH}	High-level output voltage	V _{CC} = MIN, V V _{IL} = 0.8 V, I ₀		2.4	3.4		٧
VoL	Low-level output voltage	$V_{CC} = MIN$, $V_{IL} = 0.8 \text{ V}$, I_{C}			0.2	0.4	٧
Ч	Input current at maximum input voltage	V _{CC} = MAX, V	' _I = 5.5 V			1	mA
ΙΗ	High-level input current	V _{CC} = MAX, V	' = 2.4 V			40	μΑ
ΗL	Low-level input current	V _{CC} = MAX, V	' = 0.4 V			-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX	SN54155	-20	•	-55	mA
- 03		*CC	SN74155	-18		<u> </u>	"""
Icc	Supply current	V _{CC} = MAX,	SN54155		25	35	
	and distance of the second of	See Note 2	SN74155		25	40	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. §Not more than one output should be shorted at a time.

NOTE 2: I_{CC} is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM	TO		TEST CONDITIONS	S	UNIT						
	(INPUT)	(OUTPUT)	OF LOGIC		MIN	MIN TYP		MIN TYP		MIN TYP		1
^t PLH	A, B, 2 C , 1 G , or 2 G	Y	2			13	20	ns				
^t PHL	A, B, 2 C , 1 G , or 2 G	Y	2	C _L = 15 pF,		18	27	ns				
tPLH	A or B	У	3	$R_L = 400 \Omega$,		21	32	ns				
^t PHL_	A or B	Y	3	See Note 3		21	32	ns				
tPLH	1C	Y	3			16	24	ns				
tPHL	1C	Y	3			20	30	ns				

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54156, SN74156 **DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS**

recommended operating conditions

		SN54156				SN74156			
	MIN	NOM	MAX	MIN	MOM	MAX	UNIT		
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V		
High-level output voltage, VOH			5.5			5.5	V		
Low-level output current, IOI			16			16	mA		
Operating free-air temperature, TA	-55		125	0		70	°C		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	ŀ	SN 54156 SN74156				
			MIN	TYP‡	MAX			
VIH	High-level input voltage		2			٧		
VIL	Low-level input voltage				0.8	V		
VIK	Input clamp voltage	V _{CC} = MIN, I ₁ = -8 mA	\		-1.5	٧		
		V _{CC} = MIN, V _{IH} = 2 V	,		250	μА		
юн	High-level output current	$V_{IL} = 0.8 \text{ V}, V_{OH} = 5.5$	v			μ/\		
		V _{CC} = MIN, V _{IH} = 2 V	, "	0.2	0.4	l v		
VOL	Low-level output voltage	$V_{IL} = 0.8 \text{ V}, I_{OL} = 16 \text{ r}$	nA	0,2				
Ч	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1	mΑ		
ήн	High-level input current	V _{CC} = MAX, V _I = 2.4 V			40	μΑ		
TIL	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6	mΑ		
		V _{CC} = MAX, SN54	156	25	35	mA		
Icc	Supply current	See Note 2 SN74	56	25	40			

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25 °C

PARAMETER§	FROM	то	LEVELS	TEST CONDITIONS		N5415		UNIT
	(INPUT)	(OUTPUT)	OF LOGIC		MIN	TYP	MAX	
t _{PLH}	A, B, 2 C , 1 G , or 2 G	Y	2			15	23	ns
[†] PHL	A, B, 2 \overline{C} , 1 \overline{G} , or 2 \overline{G}	Y	2	$C_L = 15 pF$, $R_L = 400 \Omega$,		20	30	ns
tPLH	A or B	У	3	See Note 3		23	34	ns
tPHL	A or B	Y	3	See Note 3		23	34	ns
tPLH	1C	Y	3			18	27	ns
tPHL	1C	Y	3		<u> </u>	22	33	ns

 $[\]S_{tPLH} = propagation delay time, low-to-high-level output$

tpHL = propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{ C}$. NOTE 2: I_{CC} is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

SN54LS155A, SN74LS155A **DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS**

recommended operating conditions

	SN	154L S 1	55A	SN	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5. 2 5	٧
High-level output current, IOH			-400			-400	μA
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADA445TFD	TEST CONDITIONS	+	SN	SN54LS155A			SN74LS155A		
PARAMETER	TEST CONDITIONS	•	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
VIH High-level input voltage			2			2			٧
VIL Low-level input voltage					0.7			0.8	٧
V _{IK} Input clamp voltage	V _{CC} = MIN, I _I = -18 mA				-1.5			-1.5	٧
VOH High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = V _{IL max} , I _{OH} = -400 μΑ		2.5	3.4		2.7	3.4		٧
Vol Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	1 V
-	VIL = VIL max	10L = 8 mA				0.35 0.	0.5		
Input current at Input current at maximum input voltage	$V_{CC} = MAX$, $V_1 = 7 V$				0.1			0.1	mA
I _{IH} High-level input current	V _{CC} = MAX, V _I = 2.7 V				20			20	μА
IL Low-level input current	V _{CC} = MAX, V _I = 0.4 V				0.4			-0.4	mΑ
IOS Short-circuit output current §	V _{CC} = MAX		- 20		– 100	- 2 0		- 100	mA
ICC Supply current	V _{CC} = MAX, See Note 2			6.1	10		6.1	10	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM	TO (2)	LEVELS	TEST CONDITIONS	SNS SN7	UNIT		
	(INPUT)	(OUTPUT)	OF LOGIC		MIN	TYP MAX	MAX	
tРLН	A, B, 2 C , 1 <u>G</u> , or 2 <u>G</u>	Υ	2			10	15	ns
^t PHL	A, B, 2 C , 1 <u>G</u> , or 2 <u>G</u>	Υ	2	CL = 15 pF,		19	30	ns
[†] PLH	A or B	Y	3	R _L = 2 kΩ, See Note 3		17	2 6	ns
tpHL	A or B	Y	3	dee Note 3		19	30	ns
^t PLH	1C	Y	3			18	27	ns
tPHL	"" 1C	Y	3			18	2 7	ns

ftpLH = propagation delay time, low-to-high-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ AII typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output

SN54LS156, SN74LS156 **DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS**

recommended operating conditions

	SI	SN54LS156			SN74LS156			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V	
High-level output voltage, VOH			5.5			5.5	٧	
Low-level output current, IOL			4			8	mA	
Operating free-air temperature, TA	-55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		Tec	TEST CONDITIONS†			SN54LS156			SN74LS156		
		168	CONDITIONS	> '	MIN	TYP‡	MAX	MIN	ТҮР‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
ЮН	High-level output current	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{OH} = 5.5 V				100			100	μΑ
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{II} max	V _{IH} = 2 V,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	ł۷
ij	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
ΙΗ	High-level input current	V _{CC} = MAX,	$V_1 = 2.7 V$				20			20	μΑ
Ίμ	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.4			-0.4	mA
ICC	Supply current	V _{CC} = MAX,	See Note 2			6.1	10		6.1	10	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: I_{CC} is measured with outputs open, A, B, and 1C inputs at 4.5 V, and 2C, 1G, and 2G inputs grounded.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PARAMETER§	FROM (INPUT)	TO (OUTPUT)	LEVELS OF LOGIC	TEST CONDITIONS	SN54LS156 SN74LS156			
	(INFOT)	(001701)	OF EUGIC		MIN	TYP	MAX	
tPLH	A, B, 2C 1G, or 2G	Υ	2			25	40	ns
tPHL	A, B, 2 \overline{c} , 1 \overline{G} , or 2 \overline{G}	Υ	2	C _L = 15 pF,		34	51	ns
†PLH	A or B	Υ	3	$R_L = 2 k\Omega$, See Note 3		31	46	ns
tPHL	A or B	Y	3	See Note S		34	51	ns
tPLH	1C	Υ	3			32	48	ns
†PHL	1C	Υ	3			32	48	ns

 $^{{}^{\}S}\text{tp}_{LH} = \text{propagation delay time, low-to-high-level output}$

tpHL = propagation delay time, high-to-low-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated