안 톨 속에 담긴 열역약 〈팝콘과 뻥튀기에 관안 열역약적 고찰〉

대기열역약 Team Project

2007-10908 박종진 2007-10909 박운영

1. 쌀알 속의 열역약

■ 1.1 뻥튀기에 대안 간략안 고찰

1.2 가정

1.3 계산과정 및 결과

1.4 결론

1.1. 뻥튀기에 대안 간략안 고찰

- 쌀을 볶아보면~?
- -등압상태로 쌀을 가열하는 경우에는 높은 온도까지 올려도 건쪼해질뿐, 쌀 쪼끽의 부피 변화는 없음.

- But, 뻥튀기 기계에서는~?
- -뻥튀기 기계는 기계 내부의 공간을 등적가열하는 경 우로, 쪼직이 크게 팽창암.

1.1. 뻥튀기에 대안 간략안 고찰

- 두 연상의 차이점 : 압력변화
- 가열하는 과정
 - -등압가열: 내부의 수분이 기와, 수증기로 빠져나옴.
 - -등꺽가열: 가열 우 급격안 압력자이를 가암.
- 수론해 본 뻥튀기의 과정/원리
- 등꺽가열을 통해 고온고압상태에 도달.
- 고압에 의안 끓는점오름으로 인해,
 내부 수분이 높은 온도에도 불구하고 액체상태로 존재.
- 기계가 열리면서 고온상압상태로 급격이 전환,끓는점오름의 효과가 사라짐.
- 내부 수분이 급격이 증발,이 과정에서 쪼직이 큰 압력을 받아 팽창

1.2. 가정

- 등압 가열 시, 쌀알에서 수증기가 부피변화를 일으키지 못하고 빠져 나오는 것을 생각해보면 쌀알은 투과 성을 가지는 Inner Open-System Container.
- 쌀알의 투과성으로 인해, 외부의 압력이 직접 쌀알 내부의 수분에 작용한다고 가정.
- 외부의 뻥튀기 기계는 임의로 열기 전까지는 물질순 완을 차단하는 Outer Closed-System Container.
- 쌀알의 수분은 약 16%, 질량은 0.02g
- 고온고압으로 인한 화학적 변화는 무시.

- 1. 300K, 1기압에서 쌀을 넝고 밀폐.
- 2. 500K까지 Outer Container를 등꺽가열.
- ~건쪼공기에 의한 내부압력 크게 증가,
- ~쌀에서 유출된 수증기의 압력도 추가적으로 작용.
- ~쌀 내부 수분의 증기압

< 수증기압+내부압력+쌀쪼직에 의안 압력

- 3. Outer Container개방.
- ~ 순간적으로 1기압까지 압력감소.
- ~ 과정이 빠르게 일어나, 쌀알의 온도는 유지됨.(팽창 전)
- ~ 쌀 내부 수분의 증기압 > 대기압

<Phase Diagram>

400	2.457532
405	2.855526
410	3.304227
415	3.808245
420	4.372422
425	5.001826
430	5.701753
435	6.477723
440	7.335478
445	8.280982
450	9.320411
455	10.46016
460	11.70682
465	13.06722
470	14.54836
475	16.15747
480	17.90195
485	19.78943
490	21.82772
495	24.02484
500	26.38898

- 1. 300K, 1013mb에서 쌀을 넝고 밀폐
- 쌀알의 질량 0.002g, 수분 16%
- 총 200g투입
- $-V0=10000mI = (10^4) cm^3 = (10^-2) m^3$
- 호기 과정의 기본 스테이터스 -> "1과정" _{DD = 1.293}

PO = 1013.25

Rd = 287

Rv = 461.51

T0 = 300

V0 = 10^-2

- 2. 425K까지 등적가열
- 내부의 상대습도가 크게 감소, 쌀의 수분 중 15%가 기계 내부로 유출되어 외부 증기압을 더한다고 가정.

```
"2-1과정"
T2 = 450
P2 = (P0/T0) T2
mv = 0.2 * (16/100) * (15/100)
Pv = mv Rv T2/V0 (10^-2)
Pt = P2 + Pv
```

Pd = 1435.44 mb Pv = 941.48 mb Pt = Pd + Pv = 2376.92 mb e for 425K= 5001.82mb

3. 등꺽가열 우의 상태

개방하기 전의 압력차이 2624.9mb는
 쌀알이 자체적으로 견디는 것으로 생각된다.

- 4. Outer-Closed Container Open
- 개방과정에서 순간적으로 내부 압력이 1013mb까지 하강

e for 425K= 5001.82mb 압력자이: 3988.82mb

 급격한 압력차이로 인하여, 쌀알 내부의 수분이 기와되며 기와과정의 급격한 부피 팽창으로 인 아여 내부쪼직도 팽창되는 것으로 생각된다.

1.4. 결론

- 1. 뻥튀기는 급격한 압력 차이에 의해 기와된 수증기로 인하여 쌀의 내부쪼직이 팽창하는 과정에서 만들어지는 것으로 생각된다.
- 2. 따라서, 큼직안 뻥튀기를 만들고 싶다면 기계를 밀 폐안 후에 외부의 압력을 낮추어 꾸면 된다.
- 3. 옥은 쌀의 수분을 쪼껄하여, 뻥튀기의 상태를 쪼껄 알 수 있다.

단, 수분함유량에 따라 쌀의 강도가 달라지므로 무 쪼건 수분량이 많다고 뻥튀기를 크게 만들 수 있는 것은 아니다.

2. 옥수수알 속의 열역약

■ 2.1 팝콘에 대한 간략한 고찰

2.2 가정

2.3 계산과정 및 결과

2.4 결론

2.1. 팝콘에 대안 간략안 고찰

- 보통 옥수수를 상압상태에서 가열하면?
- 상압 상태에서 일반적인 옥수수를 가열하는 경우, 수분이 유출되어 높은 온도까지 가열해도 팝콘이나 뻥튀기같은 부피의 변화는 나타나지 않는다.

- But, 팝콘용 옥수수에서는?
- 팝콘용으로 이용되는 폭립종 옥수수는 녹말의 밀도 가 높아, 수분의 유출이 적어 가열하면 껍질이 터지 면서 팝콘이 된다.

2.1. 팝콘에 대안 간략안 고찰

- 가열하는 과정
- 외부로 수분이 유출되지 않는 팝콘용 옥수수의 경우, 압력차이를 주지 않아도 가열과정만 거치면 팝콘이 된다.
- 임계 온도 이상으로 가열하면, 외피가 깨지면서 부피가 크게 팽창한다.
- 수론해 본 팝콘의 과정/원리
- 상압에서 옥수수알을 가열하여 온도를 상승시키면, 옥수수 내부에 존재하는 수분의 증기압이 크게 상승.
- 녹말 암량이 높아, 가열과정에서 외부로 수분 유출이 일어나지 않음.
- 옥수수의 외피는 단단하여, 임계압력에 도달하기 전까지 증가된 내부 수증기압을 버팀.
- 일정온도 이상으로 온도가 상승, 수증기압이 임계압력에 도달하면 외 피가 부서짐.
- 의피가 부서지면서, 수분이 기화되며 급격하게 팽창. 팽창과정에서 옥 수수 쪼직도 함께 팽창되는 것으로 생각된다.

2.2. 가정

- 팝콘용 옥수수를 상압 가열하는 경우, 수분이 외부로 유출되지 않음. 옥수수알은 비투과성을 가지는 Inner Closed-System Container.
- 옥수수의 외피는 내부수증기압을 8000mb까지 견딜 수 있다고 가정.
- 옥수수 알의 수분은 약 13%, 질량은 0.2g
- 고온으로 인한 화학적 변화는 무시.

- 1. 300K, 1000mb에서 옥수수알을 가열.
- 2. 외피가 버틸 수 있는 안계압력차이 7000mb
- ~ 압력차이가 7000mb가 되기 전까지 옥수수 의 외피가 외부와 내부의 압력차이를 견딤.
- ~ 수증기압 외부압력 < 외피의 임계압력
- 3. 임계온도 이상으로 온도가 상승하면 외피의 안계압력차이 이상의 압력차가 발생, 외피가 깨지면서 내부쪼직 팽창.

<Phase Diagram>

- 1. 300K, 1000mb에서 옥수수알을 가열.
- 2. 압력자이가 7000mb가 될 때까지 가열
 - 수분 유출 없음.
 - 옥수수알의 부피 일정.

3. 가열 후의 상태

P = 1000 mbe for 443K = 8000 mb

~ 따라서, 온도가 443K에 도달하면 압력하이 가 7000mb에 도달하게 된다. 이로 인해 외 피가 깨지고, 7000mb의 압력하이로 인하여 옥수수 내부의 수분이 급격하게 기와, 수분 과 암께 옥수수 쪼직이 팽창하게 된다.

1.4. 결론

- 1. 팝콘은 온도 상승과 함께 내부의 수증기압이 크게 증가, 안계압력에 도달하여 딱딱안 외피가 부서지는 순간 내부 수분이 기와되면서 내부쪼직이 팽창하는 과정을 통해 만들어 진다.
- 2. 따라서, 보다 큰 팝콘을 만들고 싶다면 임계 온도 443K에 도달아기 전에 가열을 멈추고, 외부압력을 크게 낮추어 압력차이를 7000mb 이상으로 만들어꾸어야 한다.