Category A: Equivalence Relation

29th July 2021

There are two ways to define the equivalence relation.

- Set Theory: Consider the equivalence relation on X as a **subset** of the Cartesian product $X \times X$;
- Type Theory: Consider the equivalence relation on X as a **term** of $X \to X \to \operatorname{Prop}$.

I decide to adopt the second approach, though I have done both on lean. There are two reasons for preferring the way of Type Theory:

- More like human-style. For comparison, Set Theory: $(a,b) \in S$ Type Theory: S a b
- If we define a relation in this way: def some_relation $(a:X)(b:X) := \cdots$ then "some relation" has the type $X \to X \to \text{Prop automatically}$.

1 Basic Definitions

```
Definition 1. is_ref \{X : \text{Type}\}(S : X \to X \to \text{Prop}) := \forall a : X, S \ a \ a
```

Definition 2. is_symm
$$\{X : \text{Type}\}(S : X \to X \to \text{Prop}) := \forall a \ b : X, S \ a \ b \to S \ b \ a$$

Definition 3. is_trans
$$\{X : \text{Type}\}(S : X \to X \to \text{Prop}) := \forall a \ b \ c : X, S \ a \ b \to S \ b \ c \to S \ a \ c$$

Definition 4. is_equiv
$$\{X : \text{Type}\}(S : X \to X \to \text{Prop}) := \text{is}_{\text{refl}} S \land \text{is}_{\text{symm}} S \land \text{is}_{\text{trans}} S$$

Definition 5. equiv_class
$$\{X : \text{Type}\}(S : X \to X \to \text{Prop})(a : X) := \{x : X \mid S \mid x \mid a\}$$

Definition 6. quotient
$$\{X : \text{Type}\}(S : X \to X \to \text{Prop}) := \{x : \text{set } X \mid \exists a : X, x = \text{equiv_class } S \ a\}$$

2 Properties

Here I write lemmas in the mathematical way to make them better understood. See the lean file for the codes.

In the following lemmas, \sim is an equivalence relation on X.

Lemma 7. $a \in [a]$

Lemma 8. $[a] \subseteq X$

Lemma 9. $a \sim b \leftrightarrow [a] = [b]$

Lemma 10. $a \sim b \leftrightarrow [a] \cap [b] \neq \emptyset$

Lemma 11. $[a] = [b] \leftrightarrow [a] \cap [b] \neq \emptyset$

Lemma 12. $[a] \neq [b] \leftrightarrow [a] \cap [b] = \emptyset$

Lemma 13. $\bigcup_{a \in X} [a] = X$

3 Canonical Map and Section

Lemma 14. $[a] \in X/\sim$

Thus, we can define the canonical map $X \to X/\sim$ sending a to [a].

Definition 15. can: $X \to X/\sim, a \mapsto [a]$

Lemma 16. $\forall E \in X/\sim, E \neq \emptyset$

Proof. Since $E \in X/\sim$, $\exists a \in X$ such that E=[a]. By Lemma 7, $a \in [a]=E$. Thus $E \neq \emptyset$.

Therefore, for any $E \in X/\sim$, there exists an element $a \in E \subseteq X$ by the fact that E is nonempty. This gives us a particular section.

Definition 17. particular_sec := $X/\sim X$, $E\mapsto (\text{an element of }E)$

(We construct such element by set.nonempty.some on LEAN.)

Definition 18. can $\sec sec := \cot \circ sec$

Lemma 19. If sec and sec' are two sections (i.e. $can \circ sec = can \circ sec' = id$), then for any $E \in X/\sim$, $sec(E) \sim sec'(E)$.

Lemma 20. particular $\sec(E) \in E$

Lemma 21. can \circ particular $\sec = id$

Lemma 22. particular $\sec(\operatorname{can}(a)) \sim a$

Lemma 23. $a \sim b \leftrightarrow \operatorname{can}(a) = \operatorname{can}(b)$

4 Operations

If we have an operation $op: X \times X \to X$ and a section $sec: X/\sim X$, then an operation $i: X/\sim X/\sim X/\sim X$ is induced by the following definition.

Definition 24. induced_op_by_
$$\sec(sec: X/ \sim \to X)(op: X \times X \to X)$$
 := $i: X/ \sim \times X/ \sim \to X/ \sim$, $(e_1, e_2) \mapsto \cos \circ op(sec(e_1), sec(e_2)))$

induced_op is the operation induced by a particular section.

Definition 25. induced_op(op) := induced_op(particular_sec)(op)

Definition 26. is_well_defined(
$$op$$
) := $\forall a, b, c, d : X$, $a \sim c \land b \sim d \rightarrow op(a, b) = op(c, d)$

Lemma 27. If is_well_defined(op), then for any a, b : X, we have induced_op(op)(can(a), can(b)) = op(a, b).

5 Progress

All definitions and lemmas have been implemented on Lean. Thanks for Thomas's remarkable advice on converting the type.