

ABES Engineering College, Ghaziabad Department of Applied Sciences & Humanities

Session: 2023-24 Semester: I Section: All

Course Code: BAS-103 Course Name: Engineering Mathematics-I

Assignment 3

Date of Assignment:

Date of submission:

S.No.	KL	CO	PI	Question	Marks
1	K3	CO3	1.2.1, 1.3.1,	Expand x^y in powers of $(x - 1)$ and $(y - 1)$ up to third	
			2.1.3, 2.4.1,	degree terms and hence evaluate $(1.1)^{1.02}$	
			2.4.2		5
2	К3	CO3	1.2.1, 1.3.1,	Find the values of a and b such that the expansion of	
			2.1.3, 2.4.1,	log(1+x) - [x(1+ax) / (1+bx)] in ascending powers of	
			2.4.2	x begins with the term x^4 and hence find this term.	5
3	K3	CO3	1.3.1, 2.2.3,	If $u = x + y + z$, $v = x^2 + y^2 + z^2$, $w = x^3 + y^3 + z^3$	
			2.4.2	3xyz, prove that u, v, w are functionally related and	5
				find the relation between them.	
4	K3	CO3	2.2.4, 2.2.5,	Discuss the maximum or minimum values of the	
			2.3.2, 2.4.1,	function: $f(x, y) = xy(a - x - y)$	5
			2.4.2, 2.4.3,		
			3.1.1,		
5	K3	CO3	2.2.5, 2.3.2,	In estimating the cost of a pile of bricks measured as	
			2.4.2, 2.4.3,	$6m \times 50m \times 4m$, the tape is stretched 1% beyond the	5
			3.3.2,	standard length. If the count is 12 bricks in 1m ³ and	
				bricks cost 100 per 1,000, find the approximate error	
				in the cost.	

6.	K3	CO3	5.1.1,	Show that the rectangular solid of maximum volume	5
			10.1.2,	that can be inscribed in a given sphere is a cube.	
			10.3.1		
7.	K3	CO3	12.1.1,	Find the dimension of a rectangular box of maximum	5
			12.1.2,	capacity whose surface area is given when (i) box is	
			12.2.2,	open at the top. (ii) box is closed.	
			12.3.2		
8.	K3	CO3	1.3.1, 2.2.3,	If $u^3 + v^3 + w^3 = x + y + z$, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$ and	5
			2.4.1	$u + v + w = x^2 + y^2 + z^2$, then show that	
				$\partial(u,v,w) = (x-y)(y-z)(z-x)$	
				$\frac{\partial(u,v,w)}{\partial(x,y,z)} = \frac{(x-y)(y-z)(z-x)}{(u-v)(v-w)(w-u)}.$	
9.	К3	CO3	5.1.1,	Divide 24 into three parts such that the continued	5
			10.1.2,	product of the first, square of the second and the cube	
			10.3.1,	of the third may be maximum.	
10.	К3	CO3	1.2.1, 1.3.1,	Expand $\sin xy$ in powers of (x-1) and $(y - \pi/2)$ upto	5
			2.1.3, 2.4.1,	second degree term.	
			2.4.2		

Answers:

1.
$$1 + (x-1) + (x-1)(y-1) + \frac{1}{2}(x-1)^2(y-1) + \cdots + \dots ; 1.1021$$

2.
$$a=1/6$$
, $b=2/3$, required term = -(1/36) x^4

3.
$$2w = u (3v - u^2)$$

4. Max value at
$$(\frac{a}{3}, \frac{a}{3})$$
 is $\frac{a^3}{27}$

5. Rs 43.20/-

7. (i)
$$x = y = \sqrt{\frac{s}{3}}$$
, $z = \frac{1}{2}\sqrt{\frac{s}{3}}$ (ii) $x = y = z = \sqrt{\frac{s}{6}}$

9. 4.8, 12

10.
$$1 - \frac{\pi^2}{8}(x-1)^2 - \frac{\pi}{2}(x-1)(y-\frac{\pi}{2}) - \frac{1}{2}(y-\frac{\pi}{2})^2$$