06_alphalens_signals_quality

September 29, 2021

1 Testing the signal quality with Alphalens

1.1 Imports & Settings

```
[1]: import warnings
     warnings.filterwarnings('ignore')
[2]: %matplotlib inline
     from pathlib import Path
     import pandas as pd
     import seaborn as sns
     from alphalens.tears import (create_summary_tear_sheet,
                                  create_full_tear_sheet)
     from alphalens.utils import get_clean_factor_and_forward_returns
[3]: sns.set_style('whitegrid')
[4]: | idx = pd.IndexSlice
[5]: results_path = Path('results', 'return_predictions')
     if not results_path.exists():
         results_path.mkdir(parents=True)
    1.2 Evaluating the Cross-Validation Results
[6]: lookahead = 1
[7]: cv_store = Path(results_path / 'parameter_tuning.h5')
    1.2.1 Get AlphaLens Input
[8]: DATA_DIR = Path('..', 'data')
```

Using next available prices.

```
[9]: def get_trade_prices(tickers):
          store = DATA_DIR / 'assets.h5'
         prices = pd.read_hdf(store, 'stooq/jp/tse/stocks/prices')
         return (prices.loc[idx[tickers, '2014': '2019'], 'open']
                  .unstack('ticker')
                  .sort_index()
                  .shift(-1)
                  .dropna()
                  .tz_localize('UTC'))
     Reloading predictions.
[10]: best_predictions = pd.read_hdf(results_path / 'predictions.h5', f'test/
      \rightarrow {lookahead:02}')
     best predictions.info()
     <class 'pandas.core.frame.DataFrame'>
     MultiIndex: 474264 entries, ('1332.JP', Timestamp('2019-11-29 00:00:00')) to
     ('9990.JP', Timestamp('2018-01-05 00:00:00'))
     Data columns (total 11 columns):
          Column Non-Null Count
                                   Dtype
         -----
      0
          y_test 474264 non-null float64
      1
          0
                 474264 non-null float64
         1
      2
                  474264 non-null float64
                 474264 non-null float64
      3
          2
         3
      4
                 474264 non-null float64
      5
         4
                 474264 non-null float64
      6
         5
                 474264 non-null float64
      7
          6
                 474264 non-null float64
      8
         7
                 474264 non-null float64
      9
          8
                  474264 non-null float64
                  474264 non-null float64
      10 9
     dtypes: float64(11)
     memory usage: 41.7+ MB
[11]: test_tickers = best_predictions.index.get_level_values('ticker').unique()
[12]: trade_prices = get_trade_prices(test_tickers)
     trade_prices.info()
     <class 'pandas.core.frame.DataFrame'>
     DatetimeIndex: 1464 entries, 2014-01-06 00:00:00+00:00 to 2019-12-27
     00:00:00+00:00
     Columns: 941 entries, 1332.JP to 9990.JP
     dtypes: float64(941)
```

memory usage: 10.5 MB

```
[13]: factor = (best_predictions
                .iloc[:, :3]
                .mean(1)
                .tz_localize('UTC', level='date')
                .swaplevel()
                .dropna()
                .reset_index()
                .drop_duplicates()
                .set_index(['date', 'ticker']))
[14]: | factor_data = get_clean_factor_and_forward_returns(factor=factor,
                                                         prices=trade_prices,
                                                         quantiles=5,
                                                         periods=(1, 5, 10, 21))
      factor_data.sort_index().info()
     Dropped 4.2% entries from factor data: 4.2% in forward returns computation and
     0.0% in binning phase (set max_loss=0 to see potentially suppressed Exceptions).
     max_loss is 35.0%, not exceeded: OK!
     <class 'pandas.core.frame.DataFrame'>
     MultiIndex: 454503 entries, (Timestamp('2017-12-05 00:00:00+0000', tz='UTC',
     freq='C'), '1332.JP') to (Timestamp('2019-11-28 00:00:00+0000', tz='UTC',
     freq='C'), '9990.JP')
     Data columns (total 6 columns):
          Column
                           Non-Null Count
                                            Dtype
          ----
                           -----
      0
          1D
                           454503 non-null float64
                           454503 non-null float64
      1
          5D
      2
          10D
                           454503 non-null float64
      3
          21D
                           454503 non-null float64
      4
          factor
                           454503 non-null float64
          factor_quantile 454503 non-null int64
     dtypes: float64(5), int64(1)
     memory usage: 22.6+ MB
     1.2.2 Summary Tearsheet
[15]: create_summary_tear_sheet(factor_data)
     Quantiles Statistics
                                                         std count
                                                                       count %
                           \mathtt{min}
                                     max
                                              mean
     factor_quantile
                     -0.091176 0.008467 -0.008580 0.007442 91287
                                                                     20.085016
     1
     2
                     -0.028925
                                0.010390 -0.003716
                                                    0.005394
                                                              90804
                                                                     19.978746
     3
                     -0.025012 0.014643 -0.001439
                                                    0.005304 90804
                                                                     19.978746
     4
                     -0.022314 0.017857 0.000872
                                                    0.005353 90804
                                                                     19.978746
```

-0.019701 0.116272 0.006104 0.007594 90804 19.978746

5

Returns Analysis

	1D	5D	10D	21D
Ann. alpha	49.124	1.103	0.438	0.187
beta	-0.025	-0.034	-0.021	-0.010
Mean Period Wise Return Top Quantile (bps)	149.785	28.276	13.683	6.365
Mean Period Wise Return Bottom Quantile (bps)	-145.333	-28.108	-13.826	-6.570
Mean Period Wise Spread (bps)	295.118	56.390	27.515	12.940

Information Analysis

1D	5D	10D	21D
0.662	0.276	0.192	0.130
0.092	0.117	0.120	0.118
7.160	2.350	1.606	1.102
157.363	51.640	35.296	24.225
0.000	0.000	0.000	0.000
-1.413	-0.210	-0.175	-0.250
5.265	0.610	0.517	0.684
	0.662 0.092 7.160 157.363 0.000 -1.413	0.662 0.276 0.092 0.117 7.160 2.350 157.363 51.640 0.000 0.000 -1.413 -0.210	0.662 0.276 0.192 0.092 0.117 0.120 7.160 2.350 1.606 157.363 51.640 35.296 0.000 0.000 0.000 -1.413 -0.210 -0.175

Turnover Analysis

				1D	5D	10D	21D
Quantile	1	Mean	Turnover	0.767	0.788	0.792	0.785
Quantile	2	Mean	Turnover	0.788	0.796	0.798	0.793
Quantile	3	Mean	Turnover	0.780	0.788	0.793	0.791
Quantile	4	Mean	Turnover	0.790	0.793	0.798	0.797
Quantile	5	Mean	Turnover	0.772	0.788	0.790	0.785

 $1D \qquad 5D \qquad 10D \qquad 21D$ Mean Factor Rank Autocorrelation 0.005 -0.01 -0.013 0.005

<Figure size 432x288 with 0 Axes>

1.3 Evaluating the Out-of-sample predictions

1.3.1 Prepare Factor Data

```
[16]: t = 1
     predictions = pd.read_hdf(results_path / 'predictions.h5',
                               f'test/{t:02}').drop('y_test', axis=1)
[17]: predictions.info()
     <class 'pandas.core.frame.DataFrame'>
     MultiIndex: 474264 entries, ('1332.JP', Timestamp('2019-11-29 00:00:00')) to
     ('9990.JP', Timestamp('2018-01-05 00:00:00'))
     Data columns (total 10 columns):
          Column Non-Null Count
                                   Dtype
          _____
      0
                  474264 non-null float64
                  474264 non-null float64
          1
      1
      2
                  474264 non-null float64
          2
      3
          3
                  474264 non-null float64
      4
          4
                  474264 non-null float64
      5
          5
                  474264 non-null float64
      6
          6
                  474264 non-null float64
      7
          7
                  474264 non-null float64
      8
                  474264 non-null float64
          8
      9
          9
                  474264 non-null float64
     dtypes: float64(10)
     memory usage: 38.1+ MB
[18]: factor = (predictions.iloc[:, :10]
                         .mean(1)
                         .sort_index().tz_localize('UTC', level='date').swaplevel().
      →dropna())
     factor.head()
[18]: date
                                ticker
     2017-12-05 00:00:00+00:00
                                1332.JP
                                           0.000374
     2017-12-06 00:00:00+00:00 1332.JP
                                           0.003322
     2017-12-07 00:00:00+00:00
                                1332.JP
                                           0.000753
     2017-12-08 00:00:00+00:00 1332.JP
                                           0.000771
     2017-12-11 00:00:00+00:00 1332.JP
                                           0.003113
     dtype: float64
```

1.3.2 Select next available trade prices

Using next available prices.

```
[19]: | tickers = factor.index.get_level_values('ticker').unique()
      trade_prices = get_trade_prices(tickers)
      trade_prices.info()
     <class 'pandas.core.frame.DataFrame'>
     DatetimeIndex: 1464 entries, 2014-01-06 00:00:00+00:00 to 2019-12-27
     00:00:00+00:00
     Columns: 941 entries, 1332.JP to 9990.JP
     dtypes: float64(941)
     memory usage: 10.5 MB
     1.3.3 Get AlphaLens Inputs
[20]: factor_data = get_clean_factor_and_forward_returns(factor=factor,
                                                         prices=trade_prices,
                                                         quantiles=5,
                                                         periods=(1, 5, 10, 21))
      factor_data.sort_index().info()
     Dropped 4.2% entries from factor data: 4.2% in forward returns computation and
     0.0% in binning phase (set max_loss=0 to see potentially suppressed Exceptions).
     max_loss is 35.0%, not exceeded: OK!
     <class 'pandas.core.frame.DataFrame'>
     MultiIndex: 454503 entries, (Timestamp('2017-12-05 00:00:00+0000', tz='UTC',
     freq='C'), '1332.JP') to (Timestamp('2019-11-28 00:00:00+0000', tz='UTC',
     freq='C'), '9990.JP')
     Data columns (total 6 columns):
      #
          Column
                           Non-Null Count
                                            Dtype
         _____
                           454503 non-null float64
      0
          1D
                           454503 non-null float64
      1
          5D
                           454503 non-null float64
      2
          10D
      3
          21D
                           454503 non-null float64
      4
                           454503 non-null float64
          factor
          factor_quantile 454503 non-null int64
     dtypes: float64(5), int64(1)
     memory usage: 22.6+ MB
     1.3.4 Summary Tearsheet
[21]: create_summary_tear_sheet(factor_data)
     Quantiles Statistics
                           min
                                                         std count
                                                                        count %
                                     max
                                              mean
     factor_quantile
```

-0.029771 0.011669 -0.003807 0.005517 91290

-0.026874 0.011995 -0.002648 0.005337 90826

1

20.085676

19.983586

3	-0.026736	0.019500 -0.001916	0.005400	90781	19.973686
4	-0.026604	0.020725 -0.001161	0.005487	90803	19.978526
5	-0.026292	0.024385 0.000151	0.005752	90803	19.978526

Returns Analysis

	1D	5D	10D	21D
Ann. alpha	0.050	0.006	0.003	0.017
beta	0.022	0.021	0.016	0.017
Mean Period Wise Return Top Quantile (bps)	2.873	0.712	0.323	0.962
Mean Period Wise Return Bottom Quantile (bps)	-1.820	-0.054	-0.516	-1.006
Mean Period Wise Spread (bps)	4.694	0.765	0.842	1.969

Information Analysis

	1D	5D	10D	21D
IC Mean	0.010	0.003	0.004	0.017
IC Std.	0.109	0.112	0.109	0.106
Risk-Adjusted IC	0.088	0.027	0.041	0.159
t-stat(IC)	1.925	0.588	0.903	3.495
p-value(IC)	0.055	0.557	0.367	0.001
IC Skew	-0.007	0.162	0.183	0.342
IC Kurtosis	0.975	0.841	0.810	0.647

Turnover Analysis

				1	D	5D	10D	21D
${\tt Quantile}$	1	Mean	Turnover	0.71	2	0.743	0.779	0.797
${\tt Quantile}$	2	Mean	Turnover	0.77	7	0.784	0.792	0.800
${\tt Quantile}$	3	Mean	Turnover	0.77	8	0.787	0.792	0.799
${\tt Quantile}$	4	Mean	Turnover	0.77	4	0.785	0.795	0.800
${\tt Quantile}$	5	Mean	Turnover	0.70	6	0.735	0.777	0.799

 $1D \qquad 5D \qquad 10D \qquad 21D \\ \text{Mean Factor Rank Autocorrelation} \qquad 0.155 \qquad 0.111 \quad 0.033 \ -0.006 \\$

<Figure size 432x288 with 0 Axes>

