Теория множеств

ИУ6-25Б

2024

Наивная (канторовская) теория множеств

"Множество - многое, мыслимое нами как единое целое." — Георг Кантор

- 1. Множества $A, B, \ldots, F_1, G_{10}$
- 2. $a \in A$ элемент a принадлежит множеству A
- 3. $A = B (\forall x \in A : x \in B)$
- 4. Порядок элементов в множестве несущественен
- 5. Элементы не могут повторяться

Способы задания множества:

1. Множество задаётся набором элементов:

$$A = \{1, 2, a, c\}, B = \{a, b, c, d\}, C = \{a_1, \dots, a_n\}$$

2. Множество формируется из элементов другого множества:

$$A=\{x:x\in\mathbb{R} \text{ and } \sqrt{x^2+1}<3\},$$
 где $P(x)$ - предикат (условие)
$$B=\left\{x:x=\frac{\pi}{2}+2\pi n,n\in\mathbb{N}\right\}$$

3. Множество формируется их элементов этого же множества:

$$F = \{f(i): f(0) = 1, f(1) = 1, f(i) = f(i-1) + f(i-2), i = 2, 3...\}$$

Опр. Множество, состоящее из конечного числа элементов, называется конечным, из бесконечно числа элементов - бесконечным.

Опр. Множество, не содержащее элементов, называется пустым множеством (\varnothing).

Опр. Множество, состоящее из элементов, образующих все возможные множества данной задачи или класса задач, называется универсальным: U

Опр. Множество B называется подмножеством множества A, если каждый элемент B является элементом A.

Обоз. $B \subseteq A$ - нестрогое включение ("A включает B"или "B содержится в A") По опр.:

- $\bullet \ \varnothing \subseteq A$
- $A \subseteq U$
- $(A = B) \iff (A \subseteq B \bowtie B \subseteq A)$
- $B\subseteq A, A\neq B\Rightarrow B\subset A$ строгое включение, B собственное подмножество A

Опр. Булеан - множество всех подмножеств A

Обоз. $2^A, 2^{2^A} \dots$

Свойства включения множеств:

- 1. $A \subseteq A$
- 2. $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$

|A| - мощность множества A по Кантору

|A| = |B| = n = const

 $|A| = |B| \not\Rightarrow A = B$

 $|A| < \infty$ - конечное множество

 $|A|=\infty$ - бесконечное множество

Если A - бесконечное множество, то оно равномощно некоторому подмножеству.

Множество, у которого отсутствует равномощное ему собственное подмножество, называется конечным.

Теорема. Множество, имеющее бесконечное подмножество, само бесконечно.

Следствие. Все подмножества конечного множества конечны.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cup B \cup C|$$

$$|A_1 \cup A_2 \cup \dots \cup A_n| = |A_1| + \dots + |A_n| - (|A_1 \cap A_2| + |A_1 \cap A_2| + \dots + |A_{n-1} \cap A_n|) + (|A_1 \cap A_2 \cap A_3| + \dots + |A_{n-2} \cap A_{n-1} \cap A_n|) - \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n|$$

Прямое(декартово) произведение множеств

$$a \in A, b \in B$$
 $\{a,b\} = \{b,a\}$ - неупорядоченная пара $(a,b) \neq (a,b)$ - упорядоченная пара A_1,A_2,\ldots,A_n $a_1 \in A_1,a_2 \in A_2,\ldots,a_n \in A_n$ (a_1,a_2,\ldots,a_n) - кортеж

Опр. Множество всех кортежей длины n на множествах $A_1,..,A_n$ называется прямым (декартовым) произведением этих множеств.

Обоз.
$$A_1 \times A_2 \times \cdots \times A_n = \{(x_1,..,x_n) : x_1 \in A_1,\ldots,x_n \in A_n\}$$
 Если $A_1 = A_2 = \cdots = A_n$, то $A \times A \times \cdots \times A = A^n$ - n -степень множества A

- $n = 2 : A^2$ декартов квадрат
- $n = 1 : A^1 = A$

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

$$A \times B \neq B \times A$$

 Π ример:

- $A = \{a_1, a_2\}$
- $B = \{b_1, b_2, b_3\}$
- $A \times B = \{(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_2, b_1), (a_2, b_2), (a_2, b_3)\}$
- $B \times A = \{(b_1, a_1), (b_1, a_2), (b_2, a_1), (b_2, a_2), (b_3, a_1), (b_3, a_2)\}$

$$|A \times B| = |A||B|$$

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1||A_2|\dots|A_n|$$

Геометрический смысл

$$A = [a_1, a_2], B = [b_1, b_2]$$
 - отрезки

Геометрический смысл прямого (декартова) произведения заключается в том, что $A \times B$ - множество координат всех точек заштрихованного прямоугольника таких, что абсциссы $\in A$ и ординаты $\in B$ $|A^n| = |A|^n$

Свойства декартова произведения:

1.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

2.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

3.
$$A \times \emptyset = \emptyset \times A = \emptyset$$

Доказываются методом включений

Отображения бинарноых отношений

Обычно используются буквы $f,g,h\dots$ как для функций.

Опр. Отображение $f:A\to B$ из множества A в множество B задано, если каждому элементу $x\in A$ соответствует элемент $y\in B$.

Обоз. $f:A \rightarrow B$

Опр. y называется образом элемента x при отображении f(y = f(x)).

Каждое отображение задаёт множество упорядоченных пар таких, что

$$\{(x,y):x\in A,y=f(x)\}\subseteq A\times B$$

Когда для отображения f могут существовать несколько различных элементов из A, имеющих один и тот же образ y_0 , такие элементы x называют **прообразами** элемента y_0 при отображении f.

$$\{x_1, x_2, x_2\} \subset A$$

 $f(x_1) = f(x_2) = f(x_3) = y_0$
 Π pumep:

- $y = \cos x$ $0 \le y_0 \le 1$
- $\{x : x = \arccos y \pm 2\pi n, n \in \mathbb{N}\}\$

Опр. Областью значения отображения f называется множество всех конечных элементов $y \in B$, для которых найдётся $x \in A$: y = f(x).

1. Отображение $f:A\to B$ называется инъективным (инъекция), если для каждого y из области значения отображения f существует единственный прообраз.

$$y_1 = f(x_1), y_2 = f(x_2)$$

 $(y_1 = y_2) \Rightarrow (x_1 = x_2)$

- 2. Отображение $f:A\to B$ называется сюръективным (сюръекция), если область значений отображения f полностью совпадает с множеством B.
- 3. Отображение $f:A\to B$ называется биективным (биекция), если оно одновременно инъективно и сюръективно.

$$\Pi$$
ример: $y=\operatorname{arctg}\,x$ - биекция на $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$

Примечание: Смещение каждой точки окружности при повороте на угол вокруг центра есть биекция точек окружности на саму себя - автоморфизм.

Обобщение понятия отображения:

- 1. Если образ $y \in B$ определён не для каждого $x \in A$, имеет место частичное отображение.
- 2. Если отображение неоднозначное (некоторым элементам $x \in A$ соответствует не по одному элементу $y \in B$, то есть несколько образов), то имеет место соответствие множества A множеству B.

```
ho \subseteq A \times B - задание соответствия из A в B
```

 $\rho = \varnothing$ - частный случай

 $\rho = A \times B$ - универсальное соответствие

 $a, b: a \in A, b \in B$

 $(a,b)\in \rho$ - упорядоченная пара входит в соответствие ρ

 $Def(\rho)$ - область определения соответствия ρ , множество всех первых компонентов упорядоченных пар, составляющих соответствие ρ

$$Def(\rho) = \{x : (\exists y \in B), (x, y) \in \rho\}$$

 $Res(\rho)$ - область значений соответствия ρ , множество всех вторых компонентов упорядоченных пар, составляющих соответствие ρ

$$Res(\rho) = \{ y : (\exists x \in A), (x, y) \in \rho \}$$

Опр. Сечением соответствия ρ по элементу $x_0 \in A$ называется множество $\rho(x_0)$ из вторых компонентов пар соответствия ρ таких, что первым компонентом является x_0

Обоз.
$$\rho(x_0) = \{y : (x_0, y) \in \rho\}$$

Опр. Сечением соответствия ρ по множеству $E\subseteq A$ называется множество всех вторых компонентов пар соответствия ρ таких, что первый компонент входит в множество E

Обоз.
$$\rho(E) = \{y : (x,y) \in \rho, x \in E\}$$

Опр. Обратным соответствием $\rho^{-1} \subseteq B \times A$ называется соответствие, определяемое как множество пар (y,x) таких, что $(x,y) \in \rho$

Обоз.
$$\rho^{-1} = \{(y, x) : (x, y) \in \rho\}$$
 $(\rho^{-1})^{-1} = \rho$

- ullet Если задано отображение f:A o B, то оно является соответствием
- Обратное ему отображение $f^{-1}: B \to A$ в общем случае соответствием не является

Бинарные отношения

Опр. $R\subseteq A\times A$ или $R\subseteq A^2$ - бинарное отношение на множестве A Пример:

- $x, y \in \mathbb{N}$
- $x \leq y$ инфиксная запись отображения
- $(x,y) \in " \le$ имя бинарного отношения
- В общем виде: xRy или $(x,y) \in R$

Опр. Если R - бинарное отношение, то обратное ему соответствие есть бинарное отношение R^{-1} на том же множестве A

Опр. Бинарное отношение R, в каждой паре которого компоненты совпадают, равномощное множеству A называется диагональю множества A

Обоз. id_A

Диагональ является отображением

Способы задания бинарных отношений:

- 1. Перечисление пар:
 - $A = \{a_1, a_2, a_3\}$
 - $R = \{(a_1, a_1), (a_1, a_2), (a_2, a_3), (a_1, a_3)\}$
- 2. Таблица: (число столбцов равно Def(R))

R(Def(R))	a_1	a_2	
R(Res(R))	$\{a_1, a_2, a_3\}$	$\{a_3\}$	

3. Матрица бинарного отношения: (квадратная порядка $n = |A|, r_{ij} = 1 \ (a_i, a_j) \in R$):

	a_1	a_2	a_3
a_1	1	1	1
a_2			1
a_3			

4. Задание двудольным графом

Способы задания соответствия:

$$\rho \subseteq A \times B$$

- 1. Перечисление пар:
 - $A = \{a_1, a_2, a_3\}$
 - $B = \{b_1, b_2\}$
 - $\rho = \{(a_1, b_1), (a_1, b_2), (a_2, b_2), (a_3, b_2)\}$
- 2. Таблица:

$Def(\rho)$	a_1	a_2	a_3
$\rho(Res(\rho))$	$\{b_1, b_2\}$	$\{b_2\}$	$\{b_2\}$

3. Матрица (сетка) $m \times n$, где $n = |A|, m = |B|, \rho_{ij} = 1 \ (a_i, a_j) \in \rho$:

	b_1	b_2
a_1	1	1
a_2		1
a_3		1

4. Двудольный граф

Свойства бинарных отношений

Пусть дано множество A, |A| = n, $R \subseteq A^2$

1. Рефлексивность:

• Опр. Отношение R называется рефлексивным, если $\forall x \in A : xRx$, то есть $(x,x) \in R$ или $id_A \in R$

Все элементы на главной диагонали матрицы такого отношения равны 1.

- Опр. Если id_A полностью отсутствует в R, то такое отношение называется **иррефлексивным** (антирефлексивным)
- Опр. Если часть элементов элементов id_A присутствует в R, а часть нет, то такое отношение называется **нерефлексивным**
- Пример:
 - рефлексивное отношение

"≠ иррефлексивное отношение

2. Симметричность:

- Опр. Отношение R называется симметричным, если $(x,y) \in R: (y,x) \in R \ (xRy \Rightarrow yRx, R=R^{-1})$
- Матрица такого отношения симметрична относительно главной диагонали.
- **Опр.** Если хотя бы для одной пары условие симметричности ен выполняется, то такое отношение называется **несимметричным**

3. Антисимметричность:

- Более жёсткое требование, чем несимметричность
- Опр. Отношение R называется антисимметричным, если (xRy и $yRx) \Rightarrow x = y$
- Не конфликтует с рефлексивностью

4. Транзитивность:

- Опр. Отношение R называется транзитивным, если $\forall x,y,z \in A \ (xRy \ u \ yRz) \Rightarrow xRz$
- Опр. Если хотя бы для одного набора $x,y,z\in A\ (xRy\ u\ yRz) \not\Rightarrow xRz$, такое отношение называется **нетранзитивным**

5. Плотность:

- Опр. Отношение R называется плотным, если $\forall x,y \in A: xRy \ \exists z \in A: xRz$ и zRy
- Для любых различных элементов множества R можно указать третий элемент из R, который "встраивается" между первыми двумя

Классы бинарных отношений

Отношение\Свойства	Иррефл-ть	Рефл-ть	Сим-ть	Антиссим-ть	Транз-ть
Эквивалентность		+	+		+
Толерантность		+	+		
Порядок (частичный порядок)		+		+	+
Пред(варительный)		+			+
порядок(квазипорядок)					
Строгий порядок	+			+	+
Строгий предпорядок	+				+

Отношение эквивалентности

Пусть A - некоторое множество

Опр. Семейство попарно не пересекающихся множеств $C: i = \overline{1,n}$ называется разбиением множества A, если их объединение даёт A

$$\bigcup_{i=1}^{n} C_i = A$$

Пример:

1.
$$A = \{1, 2, 7, 8, 12, 15\}, C_1 = \{1, 2, 12, 15\}, C_2 = \{7, 8\}$$

$$A = C_1 \cup C_2$$

$$C_1 \cap C_2 = \emptyset$$

2.
$$A = [1, 5]$$

3.
$$C_1 = [1, 5), C_2 = [2, 3.5), C_3 = [3.5, 5]$$

Пусть R - отношение эквивалентности на множестве A и $x \in A$

Опр. Классом эквивалентности $[x]_R$ по отношению R называется множество всех вторых компонентов пар отношения R, у которых первым компонентом является x $[x]_R = \{y \in A : xRy\}$ - сечение эквивалентности по x

Так как R - эквивалентность и она рефлексивна, то класс эквивалентности всегда не пустой: $[x]_R \neq \emptyset$ $\forall x \in A \ xRx$, то есть $id_A \in R$

Пример: множество всех прямых на плоскости, параллельных данной

Теорема. Для любого отношения эквивалентности на множестве A множество классов эквивалентности образует разбиение множества A

Следствие: Любое разбиение множества задаёт на нём отношение эквивалентности, для которого классы разбиения образуют....

То есть любая эквивалентность определяет единственное разбиение множества и наоборот

Опр. Множество всех классов эквивалентности по данному отношению R называется фактор-множеством множества A по отношению R

Обоз. A/R

 Π ример:

- $A = \{a, b, c, d, e\}$
- $[a]_R = \{a, b\} = c_1$
- $[b]_R = \{a, b\}$
- $[c]_R = \{c\} = c_2$
- $[d]_R = \{d, e\} = c_3$
- $[e]_R = \{d, e\}$
- $\bullet \ A = c_1 \cup c_2 \cup c_3$
- $A/R = \{c_1, c_2, c_3\}$

Существует связь между понятиями эквивалентности, разбиения и отображения. $\forall R \subseteq A^2$ можно задать отображение множества A в его фактор-множество A/R

Если считать $x \in A, f(x) = [x]_R$, то получим, что каждому элементу $x \in A$ отображение f сопоставляет единственный класс эквивалентности, содержащий этот элемент. Заметим, что отображение f сюръективное.

Любое отображение однозначно определяет некоторое отношение эквивалентности.

Теорема. Пусть f - произвольное отображение, отношение R на множестве A, для которого $(x,y) \in R$ возможно тогда и только тогда, когда f(x) = f(y), является отношение эквивалентности. Причём существует биекция фактор-множества A/R на множество f(A) $(A/R \leftrightarrow f(A))$

Из теоремы **не следует**, что между f и R существует взаимно однозначное соответствие, два разных отображения могут задавать одно и то же разбиение множества A

- $f_1:A\to B_1$
- $f_2: A \to B_2$

Упорядоченные множества. Отношения порядка.

Опр. Множество с заданным на нём отношением порядка называется упорядоченным **Обоз.** (A,R)

Пример: (A, \leq)

Каждому отношению порядка на множестве A можно сопоставить следующие отношения:

- 1. Отношение строго порядка: <
 - удалить id_A из классического \leq
 - $\forall x, y \in A \ x < y \Leftrightarrow x \le y, x \ne y$
- 2. Отношение, двойственное классическому порядку: ≥

$$\forall x, y \in A \ x \le y \Leftrightarrow y \le x$$

3. Отношение, двойственное к строгому порядку: <

$$\forall x, y \in A \ x > y \Leftrightarrow y \le x, x \ne y$$

- 4. Доминирование: $x \leqslant y \ (y$ доминирует над x)
 - $x \triangleleft y$ если x < y и $\exists z \in A : x < z < y$
 - $\bullet\,$ Не существует элемента, который можно встроить между x и y по отношению строго меньше
 - Доминирование иррефлексивно, антисимметрично и нетранзитивно

Опр. 2 элемента x,y называются сравнимыми по отношению порядка "не больше если $x \leq y$ или $y \leq x$, иначе - несравнимыми элементами по отношению порядка "не больше"

Опр. Упорядоченное множество (A, \leq) , все элементы которого попарно сравнимы, называется линейно упорядоченным, а соответствующее отношение называется линейным порядком

- ullet Линейный порядок на множестве A может быть перенесён на любое непустое подмножество A
- ullet Если порядок на A линейный, то порядок на $B\subset A$ тоже линейный

Опр. Любое подмножество попарно несравнимых элементов множества A называется антицепью

Опр. Элемент $a \in (A, \leq)$ называется наибольшим элементом множества A, если $\forall x \in A \ x \leq a$

Опр. Элемент $b \in (A, \leq)$ называется максимальным элементом множества A, если $\forall x \in A \ x \leq b$ или x и a несравнимы

Теорема. Наибольший (наименьший) элемент упорядоченного множества, если он существует, является единственным

Доказательство.

Пусть (A, \leq) . Предположим, что в нём 2 максимальных элемента a_1, a_2 . Тогда $\forall x \in A \ x \leq a_1, x \leq a_2$ Так как $a_1, a_2 \in A$, то $a_1 \leq a_2$ и $a_2 \leq a_1 \Rightarrow a_1 = a_2 \Rightarrow$ наибольший элемент единственный \blacksquare

Опр. Пусть $(A, \leq), B \subset A$. Элемент $a \in A$ называется верхней (нижней) гранью множества B, если $\forall x \in B \ x \leq a \ (x \geq a)$

Опр. Наименьший элемент множества всех верхних граней множества B называется точной верхней гранью множества B

Обоз. $\sup B$ - \sup

Опр. Наибольший элемент множества всех нижних граней множества B называется точной нижней гранью множества B

Обоз. inf B - infinum

Теорема. Всякое ограниченное сверху непустое множество имеет верхнюю грань, а всякое ограниченное снизу непустое множество имеет нижнюю грань

Опр. (A, \leq) называется вполне упорядоченным, если любое его непустое подмножество имеет наименьший элемент

Если есть (A, \leq) и есть свойство, доказанное для этого порядка, то это свойство будет справедливо для двойственного порядка, если:

- 1. заменить ≤ на ≥ и наоборот
- 2. максимальный элемент заменить минимальным
- 3. inf заменить на sup и наоборот

Конечное упорядоченное множество малой мощности удобно показать с помощью диаграммы Хассе

 $\{x_i\}, i \in \mathbb{N}$ - последовательность элементов

Опр. Последовательность элементов (A, \leq) $\{x_i\}$, $i \in \mathbb{N}$ называется неубывающей, если $\forall i \in \mathbb{N}$ $x_i \leq x_{i+1}$ **Опр.** Элемент $x \in (A, \leq)$ называется точной верхней гранью последовательности $\{x_i\}$, если он является точной верхней гранью множества всех членов последовательности.

Опр. Упорядоченное множество (A, \leq) называется индуктивным, если:

- 1. оно содержит наименьший элемент
- 2. всякая неубывающая последовательность $\{x_i\}$ элементов этого множества имеет точную верхнюю грань

Опр. Пусть имеется 2 индуктивных упорядоченных множества (A_1, \leq) и (A_2, \leq) . Отображение $f: A_1 \to A_2$ называется непрерывным, если для любой неубывающей последовательности элементов множества $A_1: a_1, a_2, \ldots, a_n, \ldots$ образ её точной верхней грани равен точной верхней грани последовтельности $f(a_1), f(a_2), \ldots, f(a_n), \ldots$

$$f(\sup\{a_n\}) = \sup\{f(a_n)\}\$$

Опр. Отображение $f:A_1\to A_2$ называется монотонным, если $\forall a,b\in A_1\quad a\leq b:f(a)\preceq f(b)$

Теорема. Всякое непрерывное отображение одного индуктивного упорядоченного множества в другое является монотонным

Опр. Элемент $a \in (A, \leq)$ называется неподвижной точкой отображения $f: A \to A,$ если f(a) = a

Теорема о неподвижной точке.

Любое непрерывное отображение $f:A\to A$ индуктивного упорядоченного множества A в себя имеет наименьшую неподвижную точку

Уравнение f(x) = x имеет решение $x_0 \in A$ $x_0 = f(x_0)$

Множество всех решений уравнения образует множество всех неподвижных точек и оно имеет наименьший элемент.

 Π ример:

Множество (A, \leq) : A = [0, 1] - индуктивно

Отображение: $f: A \to A$

$$f(x) = \frac{1}{2}x + \frac{1}{4}$$

$$x_0 = f(x_0), x_0 = 0$$

$$f^0(0) \neq 0$$

$$f^1(0) = \frac{1}{4}$$

$$f^2\left(\frac{1}{4}\right) = \frac{3}{8}$$

$$f^3\left(\frac{3}{8}\right) = \frac{7}{16}$$

$$f^4\left(\frac{7}{16}\right) = \frac{15}{32}$$

$$0 \le \frac{1}{4} \le \frac{3}{8} \le \frac{7}{16} \le \frac{15}{32}$$

Путём бесконечного числа итераций получается неубывающая последовательность

$$\lim_{n \to \infty} \frac{2^n - 1}{2^{n+1}} = \frac{1}{2} = x$$

$$x = f(x)$$

$$\frac{1}{2} = f\left(\frac{1}{2}\right) = \frac{1}{2}\frac{1}{2} + \frac{1}{4} = \frac{1}{2}$$
 - верно

Наименьшая неподвижная точка - $\frac{1}{2}$

Мощность множеств

Опр. Множество A называется равномощным множеству B, если существует биекция $f:A\leftrightarrow B$ **Обоз.** $A\sim B$

- Из равномощности A и B следует, что $\exists f^{-1}: B \leftrightarrow A$
- ullet Из определения равномощности и свойств биекции следует, что $A\sim A$
- Равномощность рефлексивна, симметрична и транзитивна, то есть относится к классу эквивалентности
- Равномощность это не то же самое, что равенство множеств
- \bullet Если обозначить класс эквивалентности |A| по отношению равномощности, то получим мощность множества A

Опр. Мощность множества А - класс эквивалентности по отношению равномощности

- Если |A| = |B|, $A = \{a_1, \dots, a_n\}$, и $B = \{b_1, \dots, b_m\}$, то m = n
- Если множество конечно, оно не будет равномощно ни одному своему собственному подмножеству

Теорема. Если A - некоторое множество и имеет место инъекция из A в A, то она является сюръекцией и биекцией.

На примере счётных множеств:

Опр. Любое множество, равномощное множеству № называется счётным

Опр. Биекцию множества M с множеством $\mathbb N$ называют нумерацией: $\varphi:M\leftrightarrow \mathbb N$

 $|2^{\mathbb{N}}| = \mathfrak{C}$ - континуум

 $|\mathbb{N}| = \aleph_0$ - алеф-нуль

Сравнение мощностей бесконечных множеств.

Опр. Даны множества A и B, считается, что $|A| \leq |B|$, если A равномощно некоторому подмножеству B

 $|A| \le |B| \land |A| \ge |B| \implies A \sim B$

Опр. |A| < |B|, если $|A| \neq |B|$ и $\exists C \subset B : A \sim C$

Сравнение мощностей транзитивно: $|A| < |B| \land |B| < |C| \implies |A| < |C|$

Свойства счётных множеств (теоремы)

- 1. Любое бесконечное множество содержит счётное подмножество
- 2. В любом бесконечном множестве можно выделить 2 не пересекающихся счётных подмножества
- 3. Любое подмножество счётного множества конечно или счётно
- 4. Объединение любого конечного или счётного семейства счётных множеств является счётным
- 5. Объединение конечного и счётного множества счётно
- 6. Следующие множества равномощны:
 - (a) $[0,1] \in \mathbb{R}$
 - (b) $(0,1) \in \mathbb{R}$
 - (c) $[a, b] \in \mathbb{R}$
 - (d) $(a,b) \in \mathbb{R}$
 - (e) ℝ
 - (f) $2^{\mathbb{N}}$
- 7. Теорема о квадрате. Для произвольного множества A верно, что $|A| \sim |A^2|$
- 8. Теорема Кантора-Бернштейна. Для любых множеств A и B верно одно из трёх:
 - 1) |A| < |B|

- 2) |A| > |B|
- 3) |A| = |B|
- 9. Для любого множества A верно неравенство: $|2^{\mathbb{N}}| > |A|$

Для каждого множества существует множество большей мощности - булеан.

- 10. Следствие из теоремы о квадрате. Множество рациональных чисел $\mathbb Q$ счётно.
 - Любое рациональное число можно представить в виде дроби $\frac{a}{b}$ или пары взаимно простых чисел (a,b)
 - ullet Тогда $\mathbb{Q}\sim$ некоторому подмножеству \mathbb{Z}^2
 - ullet Согласно теореме о квадрате $\mathbb{Z} \sim \mathbb{Z}^2$
 - Так как $\mathbb Z$ и $\mathbb Z^2$ счётны, а любое подмножество счётного множества конечно или счётно, то $\mathbb Q$ счётно.