1 General definitions

1.1 Basic

Sample variance

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 (1.1)

• Sample correlation coefficient

$$r_{X,Y} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)\sqrt{(S_X^2 S_Y^2)}}$$
(1.2)

- QQ-plot for cumulative distribution function F is the set of points $\left(q_F\left(\frac{i}{n+1}\right), x_{(i)}\right)$, where $q_F(\cdot)$ is the quantile function for the distribution.
- Mean Squared Error (MSE)

$$MSE(\theta; T(X), g(\theta)) = \mathbb{E}_{\theta} (T(X) - g(\theta))^{2}$$
(1.3)

• Bias-variance decomposition

$$MSE(\theta; T(X)) = var_{\theta}T + (\mathbb{E}_{\theta}T(X) - g(\theta))^{2}$$
(1.4)

• Empirical distribution function

$$\hat{F}_n(x) = \sum_{i=1}^n \mathbb{I}(X_i \le x) \tag{1.5}$$

1.2 k-th order statistic $X_{(k)}$

 $X_{(k)} - k - th$ order statistic distribution for n i.i.d. variables from continuous distribution F.

$$f_{(k)}(x) = \frac{n!}{(k-1)!(n-k)!} F(x)^{k-1} (1 - F(x))^{n-k} f(x)$$
 (1.6)

$$F_{(k)}(x) = \sum_{j=k}^{n} {n \choose j} F(x)^{j} (1 - F(x))^{n-j}$$
(1.7)

$$\mathbb{E}F(X_{(k)}) = \frac{k}{n+1} \tag{1.8}$$

2 Important distributions

- Student's t-distribution $t_{\nu}, \nu \in \mathbb{R}_{>0}$
 - pdf

$$\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu} \Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} \tag{2.1}$$

- cdf

$$\frac{1}{2} + x\Gamma\left(\frac{\nu+1}{2}\right) \frac{{}_{2}F_{1}\left(\frac{1}{2}, \frac{\nu+1}{2}; \frac{3}{2}, -\frac{x^{2}}{\nu}\right)}{\sqrt{\pi\nu} \Gamma(\frac{\nu}{2})}$$
(2.2)

- t-distribution with $n \in \mathbb{N}$ degrees of freedom arises from the ratio of independent N(0,1)- and χ^2_n -distributions
- Poisson distribution Poisson(λ), $\lambda > 0$
 - $-\lambda$ is the average number of events per interval
 - pdf

$$p_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!} \tag{2.3}$$

- Geometric distribution $G(\theta)$, $0 \le \theta \le 1$
 - pdf

$$f_{\theta}(k) = (1 - \theta)^{1 - k} \theta \tag{2.4}$$

- cdf

$$F_{\theta}(k) = 1 - (1 - \theta)^k \tag{2.5}$$

- Exponential distribution $F(x; \lambda)$
 - pdf

$$f_{\lambda}(x) = \lambda e^{-\lambda x} \tag{2.6}$$

- cdf

$$F_{\lambda}(x) = 1 - e^{-\lambda x} \tag{2.7}$$

$$- \mathbb{E}_{\lambda} X = 1/\lambda$$

• Beta distribution $B(\alpha, \beta), \ \alpha, \beta > 0$

- pdf

$$f_{\alpha,\beta}(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \ B(\alpha,\beta) \equiv \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
 (2.8)

- Weibull distribution
 - α and λ are the "shape" and 'inverse scale" parameters.
 - pdf

$$f_{\lambda,\alpha}(x) = \lambda^{\alpha} \alpha x^{\alpha - 1} e^{-(\lambda x)^{\alpha}}$$
(2.9)

- cdf

$$F_{\lambda,\alpha}(x) = 1 - e^{-(\lambda x)^{\alpha}} \tag{2.10}$$

- Gamma distribution $\Gamma(\alpha, \lambda), \ \alpha > 0, \lambda > 0$
 - $-\alpha$ and λ are known as "shape" and "inverse scale" parameters.
 - pdf

$$f_{\alpha,\lambda}(x) = \frac{x^{\alpha-1}\lambda^{\alpha}e^{-\lambda x}}{\Gamma(\alpha)}$$
 (2.11)

– cdf (where $\gamma(s,x)=\int_0^x t^{s-1}e^{-t}dt$ — is the "incomplete gamma function")

$$F_{\alpha,\lambda}(x) = \frac{\gamma(\alpha, x\beta)}{\Gamma(\alpha)}$$
 (2.12)

3 Fundamental results

Theorem 3.1. Let $X_1, \ldots X_n$ be an i.i.d. ramdom variables from the $N(\mu, \sigma^2)$ distribution, then

- 1. \bar{X} is $N(\mu, \sigma^2/n)$ distributed;
- 2. $(n-1)S_X^2/\sigma^2$ is χ_{n-1}^2 -distributed (see 1.1);
- 3. \bar{X} and S_X^2 are independent;
- 4. $\sqrt{n}(\bar{X}-\mu)/\sqrt{S_X^2}$ has the t_{n-1} distribution.

Proof.
$$||X||^2 - n\bar{X}^2 = (n-1)S_X^2$$

4 Estimators

4.1 Maximum of *n* uniformally distributed statistics

Set up: $X_1, X_2, ... X_n$ i.i.d. drown from $U[0, \theta]$, where θ is the parameter of interest.

- $\hat{\theta} = 2\bar{X_n}$
 - method of moments estimator
 - unbiased
 - $MSE(\theta, \hat{\theta}) = \frac{\theta^2}{3n}$, see (1.6)
- $X_{(n)}$ n-th order statistic, i.e. maximum.

$$-\mathbb{E}_{\theta}X_{(n)} = \frac{n}{n+1}\theta$$
, see (1.6)

$$- \text{MSE}(\theta, X_{(n)}) = \frac{2\theta^2}{(n+2)(n+1)}$$

- $\bullet \ \frac{n+2}{n+1}X_{(n)}$
 - best estimator of the form $cX_{(n)}$
 - $MSE(\theta, \frac{n+2}{n+1}X_{(n)}) = \frac{\theta^2}{(n+1)^2}$

4.2 Univariate normal distribution

•
$$(\hat{\mu}, \hat{\sigma}^2) = \left(\bar{X}_n, \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)\right) = \left(\bar{X}_n, \frac{n-1}{n} S_X^2\right)$$

- maximum likelihood estimator
- method of moments estimator
- $-\hat{\mu}$ is unbiased

$$- \mathbb{E}_{(\mu,\sigma^2)} \hat{\sigma}^2 = \frac{n-1}{n} \sigma^2$$

4.3 Empirical distribution function

Let $X_1, \ldots X_n$ be an i.i.d. sample drawn from the distribution F.

- The empirical distribution function (ecdf) $\hat{F}(x) = \sum_{i=1}^{n} \mathbb{I}(X_i \leq x)$ (see 1.1)
 - unbiased
 - $-\operatorname{cov}_F\left(\hat{F}(u),\hat{F}(v)\right) = n^{-1}(F(\min(u,v)) F(u)F(v)) \text{positively}$

5 Statistical tests

5.1 t-tests

5.1.1 One-sample t-test

Let $X_1, X_2, ... X_n$ be an i.i.d. sample from the $N(\mu, \sigma^2)$ -distribution with μ and σ^2 unknown. Given $\mu_0 \in \mathbb{R}$ we test:

$$H_0: \mu \le \mu_0 \text{ against } H_1: \mu > \mu_0$$
 (5.1)

Test statistic:

$$T = \sqrt{n} \frac{\bar{X}_n - \mu_0}{S_X} \tag{5.2}$$

By Theorem 3.1, under $\mu = \mu_0$ the statistic has Student's t_{n-1} distribution, consequently we can use.

$$\sup_{\mu \le \mu_0} \mathbb{P}\left(T \ge t_{n-1,1-\alpha}\right) \le \alpha \tag{5.3}$$

5.1.2 t-Test for paired observations

Let $(X_1, Y_1), (X_2, Y_2), \ldots (X_n, Y_n)$ be the i.i.d. sample of paired observations. We assume that $Z_i \stackrel{\text{def}}{=} X_i - Y_i$ is $N(\Delta, \sigma^2)$ is normally distributed, and the ordinary One-sample t-test can be used to test the null hypotheses $H_0: \Delta \geq 0$. Note that if X_i and Y_i are strongly correlated then variance of Z_i decreases and this improves the power of the t-test.

5.1.3 Two-sample t-test

Let $X_1, X_2, ... X_n$ and $Y_1, Y_2, ... Y_m$ be two mutually independent i.i.d samples from $N(\mu, \sigma^2)$ and $N(\nu, \sigma^2)$. The test checks

$$H_0: \mu - \nu \le 0 \text{ against } H_1: \mu - \nu > 0$$
 (5.4)

Test statistic:

$$T = \frac{\bar{X} - \bar{Y}}{S_{X,Y}\sqrt{\frac{1}{n} + \frac{1}{m}}}$$
 (5.5)

$$S_{X,Y}^{2} = \frac{1}{m+n-2} \left(\sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2} + \sum_{j=1}^{m} (Y_{j} - \bar{Y}_{m})^{2} \right)$$
 (5.6)

Theorem 3.1 implies that the squared denomenator follows $\sigma^2 \cdot \chi^2_{m+n-2}$ distribution.

5.2 Kolmogorov-Smirnov test

Given and i.i.d. sample $X_1, \dots X_n$ from some unknown distribution F, we want to test:

$$H_0: F = F_0 \text{ against } H_1: F \neq F_0$$
 (5.7)

The test statistic is given by

$$T = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)|, \tag{5.8}$$

where $\hat{F}_n(x)$ stands for the empirical distribution function (see 1.1). The distribution of T is the same for every continuous cdf F_0 . The following limit establishes the test:

$$\lim_{n \to \infty} \mathbb{P}_{F_0} \left(T > \frac{z}{n} \right) = 2 \sum_{j=1}^{\infty} (-1)^{j+1} e^{-j^2 z^2}$$
 (5.9)