

Overview of Expression Normalization, Equivalence and Subsumption Testing

David Markwell Head of Education

Overview

- Different ways to express the same meaning
- Different logical views of expressions
- Normalizing expressions
- Normal forms and canonical forms
- Testing for equivalence and subsumption
- Taking account of context
- Limitations to subsumption testing
- Optimizing expression subsumption tests
- Summary
- Links to Further Information

Different Ways to Express the Same Meaning

Different Ways to Represent a Closed Fracture of the Shaft of the Tibia

ihtsdo Delivering SNOMED CT

28012007 | Closed fracture of shaft of tibia

125605004 | Fracture of bone | :

{ 363698007 |Finding site| = 52687003 |Bone structure of shaft of tibia|, 116676008 |Associated morphology| = 20946005 |Fracture, closed | }

64572001 | Disease | :

{ 363698007 |Finding site| = 52687003 |Bone structure of shaft of tibia|, 116676008 |Associated morphology| = 20946005 |Fracture, closed | }

423125000 | Closed fracture of bone |:

363698007 |Finding site| = 52687003 |Bone structure of shaft of tibia|

6990005 Fracture of shaft of tibia:

116676008 | Associated morphology | = 20946005 | Fracture, closed

Comparing Fractions and Comparing Ideas

- Simplifying fractions helps us to compare them
 - 3/12 → 1/₄
 - 2/8 → ½
 - 1 ÷ 4 → 1/4
 - $0.25 \rightarrow 0.25/1 \rightarrow \frac{1}{4}$
 - 25% → 25/100 → 1/4

- Breaking down ideas helps us to answer questions like
 - Is red a rainbow color?
 - Does a rainbow contain blue?

Normalization Breaks an Expression into Parts

- The process of normalization
 - Replaces each fully-defined concept with an expression representing the definition of that concept
 - The definition of a fully-defined concept has the same meaning as the concept itself
 - Parts of the resulting expression that repeat the same information are merged to reduce or remove redundancy
- The result of normalization
 - All identifiers in the expression refer to primitive concepts
 - Primitive concepts cannot be replaced, as primitive definitions do not fully represent the meaning of the concept

Short and Long Normal Forms

- Short normal form
 - No redundancy or duplication of meaning
 - Includes only attributes that cannot be inferred from primitive supertype concepts in the expression
- Long normal form
 - Includes all attributes even those that can be inferred from primitive supertypes in the expression
- Subsumption testing is most efficient if ...
 - The test conditions are represented in short normal form
 - More efficient testing as there are fewer conditions to test
 - The expressions being tested for subsumption are represented in long normal form
 - All attributes and values are available for testing

Alternative Representations of the Same Normal Form Expression


```
125605004 Fracture of bone:
 { 363698007 | Finding site | = 52687003 | Bone structure of shaft of tibia |,
 116676008 | Associated morphology | = 20946005 | Fracture, closed | }
125605004 Fracture of bone :
 {116676008 | Associated morphology | = 20946005 | Fracture, closed |,
  363698007 | Finding site | = 52687003 | Bone structure of shaft of tibia | }
125605004 Fracture of bone (disorder) :
{ 363698007 | Finding site (attribute)| = 52687003 | Bone structure of shaft of
tibia (body structure),
 116676008 | Associated morphology (attribute) | = 20946005 | Fracture,
closed (morphological abnormality) | }
125605004:
                            125605004 broken
                            bone : {116676008=20946005,363698007=
\{116676008 = 20946005,
363698007 = 52687003
                            52687003}
```


Testing for Equivalence and Subsumption

Testing if Two Expressions are Equivalent

- Convert both expressions to the normal form
 - This can be either the long normal form or the short normal form
 - The same normal form must be used for both expressions
- Convert both normal form expressions to the canonical representation
- Compare the two canonical expressions
 - If they are identical the original expressions have the same logical meaning

Testing if Expression-A Subsumes Expression-B

- Transform both expressions to normal forms
 - To make the comparison simpler
 - Transform expression-A to short normal form
 - Transform expression-B to long normal form
- Compare the primitive focus concepts
 - Do the primitive focus concepts of expression-A subsume all the primitive focus concepts of expression-B?
 - If no expression-A does not subsume expression-B
 - If yes continue by comparing the defining attributes
- Compare the defining attributes
 - Are all the defining attributes of expression-A present in the expression-B?
 - If so are the values of those attributes in the expression-B subtypes
 of the values of those attributes in expression-A
- If so then expression-B is subsumed by expression-A

Note: The above outline is a simplification. In practice, attribute hierarchies, attribute groups and nested expressions also affect these tests

Equivalence and Subsumption in Context

- Clinical ideas represented by expressions may be modified by context
 - For example: Family history, past history, planned procedure
- Context may be represented by
 - User-interface designs in which information is captured
 - Information model structures that represent particular contexts
 - Additional data in related record or message elements
 - Applying the SNOMED CT |Situation with explicit context| model
- Subsumption testing must take account of context
 - Representing context using the |Situation with explicit context| model enables subsumption tests to take account of context
 - Terminology binding can allow context represented in other ways to be added to expressions prior to subsumption testing

Subsumption of Concepts with Negative Contexts

- The context model includes context values that indicate negative information about findings or procedures
 For example
 - |finding context| = |known absent|
 - | procedure context| = |not done|
- When working with these type of context the logical direction of subsumption is reversed

For example

- Subject does <u>not</u> have a |fracture of tibia|
 - Does not imply that they have no |fracture of bone|
 - Does imply they have no |fracture of shaft of tibia|

Note: There are other complexities associated with the way negative statements like these are used in practice and detailed consideration of this is beyond the scope of this presentation.

Subsumption Tests and Primitive Concepts

- Description Logic classifiers can infer whether ...
 - A fully defined concept or expression subsumes another fully defined concept or expression
 - A fully defined concept or expression subsumes a primitive concept
- Description Logic cannot infer whether a primitive concept subsumes another concept unless either ...
 - There is a stated |is a| relationship between the potential subtype concept and the primitive concept; or
 - The potential subtype concept is subsumed by a concept that is itself subsumed by the primitive concept
- Description Logic cannot infer whether a primitive concept subsumes an expression unless
 - One of the focus concepts in the expression is either the primitive concept or a concept subsumed by the primitive concept

Using a Description Logic Classifier to Test Expression Subsumption

- Description Logic classifiers
 - DL classifiers are used to classify SNOMED CT concepts
 - They can also be used to check subsumption between expressions
 - Logically an expression is a definition of an anonymous concept (i.e. a concept without a SNOMED CT identifier)

Note: Implementation Course Module F includes a presentation on practical use of a Description Logic classifier.

Using an Expression Repository to Optimize Expression Subsumption Tests

- An expression repository is a database containing all the expressions used in an institution
 - Expressions are added to the repository when first used
 - Each expression is allocated a unique internal identifier
 - The internal identifier is used to represent the expression in health records
- An expression repository can be classified using a Description Logic classifier
 - In the same way as SNOMED CT concepts are classified
- A transitive closure table including expression identifiers allows expression subsumption to be tested rapidly for retrieval and analytics

ihtsdo Delivering SNOMEDCT

25%

Summary

- Different expressions can represent the same clinical meaning
- Expressions can be transformed to a common normal form to facilitate equivalence and subsumption tests
- All concept identifiers in a normal form expression refer to primitive concepts
 - During normalization, each reference to a fully defined concept is replaced by its proximal primitive supertypes and it defining attributes
 - A canonical form orders expression elements, excludes terms and removes spaces
- Context can be taken into account during expression normalization
- Methods for rapid expression subsumption tests include
 - Use of Description Logic classifiers and/or an expression repository

Links to Further Information

- Optional materials available in Implementation Module C
 - A more detailed presentation on normalization and subsumption processes
 - A short handout on using the SNOMED CT Brower to identify proximal primitive supertype concepts
- SNOMED CT Technical Implementation Guide
 - 7.8.2.4 Expression retrieval and normal forms
 - http://snomed.org/tig