4. Instruction tables

Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs

By Agner Fog. Technical University of Denmark. Copyright © 1996 - 2014. Last updated 2014-02-19.

Introduction

This is the fourth in a series of five manuals:

- 1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac platforms.
- 2. Optimizing subroutines in assembly language: An optimization guide for x86 platforms.
- 3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for assembly programmers and compiler makers.
- 4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs.
- 5. Calling conventions for different C++ compilers and operating systems.

The latest versions of these manuals are always available from www.agner.org/optimize. Copyright conditions are listed below.

The present manual contains tables of instruction latencies, throughputs and micro-operation breakdown and other tables for x86 family microprocessors from Intel, AMD and VIA.

The figures in the instruction tables represent the results of my measurements rather than the official values published by microprocessor vendors. Some values in my tables are higher or lower than the values published elsewhere. The discrepancies can be explained by the following factors:

- My figures are experimental values while figures published by microprocessor vendors may be based on theory or simulations.
- My figures are obtained with a particular test method under particular conditions. It is possible that different values can be obtained under other conditions.
- Some latencies are difficult or impossible to measure accurately, especially for memory access and type conversions that cannot be chained.
- Latencies for moving data from one execution unit to another are listed explicitly in some of my tables while they are included in the general latencies in some tables published by Intel.

Most values are the same in all microprocessor modes (real, virtual, protected, 16-bit, 32-bit, 64-bit). Values for far calls and interrupts may be different in different modes. Call gates have not been tested.

Instructions with a LOCK prefix have a long latency that depends on cache organization and possibly RAM speed. If there are multiple processors or cores or direct memory access (DMA) devices then all locked instructions will lock a cache line for exclusive access, which may involve RAM access. A LOCK prefix typically costs more than a hundred clock cycles, even on single-processor systems. This also applies to the XCHG instruction with a memory operand.

If any text in the pdf version of this manual is unreadable, then please refer to the spreadsheet version.

Introduction

Copyright notice

This series of five manuals is copyrighted by Agner Fog. Public distribution and mirroring is not allowed. Non-public distribution to a limited audience for educational purposes is allowed. The code examples in these manuals can be used without restrictions. A GNU Free Documentation License shall automatically come into force when I die. See www.gnu.org/copyleft/fdl.html

Definition of terms

Operands

Operands can be different types of registers, memory, or immediate constants. Abbreviations used in the tables are: i = immediate constant, r = any general purpose register, r32 = 32-bit register, etc., mm = 64 bit mmx register, x or xmm = 128 bit xmm register, y = 256 bit ymm register, v = any vector register, s = segment register, s = s

Latency

The latency of an instruction is the delay that the instruction generates in a dependency chain. The measurement unit is clock cycles. Where the clock frequency is varied dynamically, the figures refer to the core clock frequency. The numbers listed are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity may increase the latencies by possibly more than 100 clock cycles on many processors, except in move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results may give a similar delay. A missing value in the table means that the value has not been measured or that it cannot be measured in a meaningful way.

Some processors have a pipelined execution unit that is smaller than the largest register size so that different parts of the operand are calculated at different times. Assume, for example, that we have a long dependency chain of 128-bit vector instructions running in a fully pipelined 64-bit execution unit with a latency of 4. The lower 64 bits of each operation will be calculated at times 0, 4, 8, 12, 16, etc. And the upper 64 bits of each operation will be calculated at times 1, 5, 9, 13, 17, etc. as shown in the figure below. If we look at one 128-bit instruction in isolation, the latency will be 5. But if we look at a long chain of 128-bit instructions, the total latency will be 4 clock cycles per instruction plus one extra clock cycle in the end. The latency in this case is listed

Reciprocal throughput

The throughput is the maximum number of instructions of the same kind that can be executed per clock cycle when the operands of each instruction are independent of the preceding instructions. The values listed are the reciprocals of the throughputs, i.e. the average number of clock cycles per instruction when the instructions are not part of a limiting dependency chain. For example, a reciprocal throughput of 2 for FMUL means that a new FMUL instruction can start executing 2 clock cycles after a previous FMUL. A reciprocal throughput of 0.33 for ADD means that the execution units can handle 3 integer additions per clock cycle.

The reason for listing the reciprocal values is that this makes comparisons between latency and throughput easier. The reciprocal throughput is also called issue latency. The values listed are for a single thread or a single core. A missing value in the table means that the value has not been measured.

Definition of terms

µops

Uop or μ op is an abbreviation for micro-operation. Processors with out-of-order cores are capable of splitting complex instructions into μ ops. For example, a read-modify instruction may be split into a read- μ op and a modify- μ op. The number of μ ops that an instruction generates is important when certain bottlenecks in the pipeline limit the number of μ ops per clock cycle.

Execution unit

The execution core of a microprocessor has several execution units. Each execution unit can handle a particular category of μ ops, for example floating point additions. The information about which execution unit a particular μ op goes to can be useful for two purposes. Firstly, two μ ops cannot execute simultaneously if they need the same execution unit. And secondly, some processors have a latency of an extra clock cycle when the result of a μ op executing in one execution unit is needed as input for a μ op in another execution unit.

Execution port

The execution units are clustered around a few execution ports on most Intel processors. Each μ op passes through an execution port to get to the right execution unit. An execution port can be a bottleneck because it can handle only one μ op at a time. Two μ ops cannot execute simultaneously if they need the same execution port, even if they are going to different execution units.

Instruction set

This indicates which instruction set an instruction belongs to. The instruction is only available in processors that support this instruction set. The different instruction sets are listed at the end of this manual. Availability in processors prior to 80386 does not apply for 32-bit and 64-bit operands. Availability in the MMX instruction set does not apply to 128-bit packed integer instructions, which require SSE2. Availability in the SSE instruction set does not apply to double precision floating point instructions, which require SSE2.

32-bit instructions are available in 80386 and later. 64-bit instructions in general purpose registers are available only under 64-bit operating systems. Instructions that use XMM registers (SSE and later) are only available under operating systems that support this register set. Instructions that use YMM registers (AVX and later) are only available under operating systems that support this register set.

How the values were measured

The values in the tables are measured with the use of my own test programs, which are available from www.agner.org/optimize/testp.zip

The time unit for all measurements is CPU clock cycles. It is attempted to obtain the highest clock frequency if the clock frequency is varying with the workload. Many Intel processors have a performance counter named "core clock cycles". This counter gives measurements that are independent of the varying clock frequency. Where no "core clock cycles" counter is available, the "time stamp counter" is used (RDTSC instruction). In cases where this gives inconsistent results (e.g. in AMD Bobcat) it is necessary to make the processor boost the clock frequency by executing a large number of instructions (> 1 million) or turn off the power-saving feature in the BIOS setup.

Instruction throughputs are measured with a long sequence of instructions of the same kind, where subsequent instructions use different registers in order to avoid dependence of each instruction on the previous one. The input registers are cleared in the cases where it is impossible to use different registers. The test code is carefully constructed in each case to make sure that no other bottleneck is limiting the throughput than the one that is being measured.

Instruction latencies are measured in a long dependency chain of identical instructions where the output of each instruction is needed as input for the next instruction.

The sequence of instructions should be long, but not so long that it doesn't fit into the level-1 code cache. A typical length is 100 instructions of the same type. This sequence is repeated in a loop if a larger number of instructions is desired.

Definition of terms

It is not possible to measure the latency of a memory read or write instruction with software methods. It is only possible to measure the combined latency of a memory write followed by a memory read from the same address. What is measured here is not actually the cache access time, because in most cases the microprocessor is smart enough to make a "store forwarding" directly from the write unit to the read unit rather than waiting for the data to go to the cache and back again. The latency of this store forwarding process is arbitrarily divided into a write latency and a read latency in the tables. But in fact, the only value that makes sense to performance optimization is the sum of the write time and the read time.

A similar problem occurs where the input and the output of an instruction use different types of registers. For example, the MOVD instruction can transfer data between general purpose registers and XMM vector registers. The value that can be measured is the combined latency of data transfer from one type of registers to another type and back again $(A \to B \to A)$. The division of this latency between the $A \to B$ latency and the $B \to A$ latency is sometimes obvious, sometimes based on guesswork, μ op counts, indirect evidence, or triangular sequences such as $A \to B \to Memory \to A$. In many cases, however, the division of the total latency between $A \to B$ latency and $B \to A$ latency is arbitrary. However, what cannot be measured cannot matter for performance optimization. What counts is the sum of the $A \to B$ latency and the $B \to A$ latency, not the individual terms.

The µop counts are usually measured with the use of the performance monitor counters (PMCs) that are built into modern microprocessors. The PMCs for VIA processors are undocumented, and the interpretation of these PMCs is based on experimentation.

The execution ports and execution units that are used by each instruction or μ op are detected in different ways depending on the particular microprocessor. Some microprocessors have PMCs that can give this information directly. In other cases it is necessary to obtain this information indirectly by testing whether a particular instruction or μ op can execute simultaneously with another instruction/ μ op that is known to go to a particular execution port or execution unit. On some processors, there is a delay for transmitting data from one execution unit (or cluster of execution units) to another. This delay can be used for detecting whether two different instructions/ μ ops are using the same or different execution units.

Microprocessor versions tested

The tables in this manual are based on testing of the following microprocessors

Processor name	Microarchitecture Code name	number	Model number (hex)	Comment
AMD K7 Athlon		6	6	Step. 2, rev. A5
AMD K8 Opteron		F	5	Stepping A
AMD K10 Opteron		10	2	2350, step. 1
AMD Bulldozer	Bulldozer, Zambezi	15	1	FX-6100, step 2
AMD Piledriver	Piledriver	15	2	FX-8350, step 0. And others
AMD Steamroller	Steamroller, Kaveri	15	30	A10-7850K, step 1
AMD Bobcat	Bobcat	14	1	E350, step. 0
AMD Kabini	Jaguar	16	0	A4-5000, step 1
Intel Pentium	P5	5	2	
Intel Pentium MMX	P5	5	4	Stepping 4
Intel Pentium II	P6	6	6	
Intel Pentium III	P6	6	7	
Intel Pentium 4	Netburst	F	2	Stepping 4, rev. B0
Intel Pentium 4 EM64T	Netburst, Prescott	F	4	Xeon. Stepping 1
Intel Pentium M	Dothan	6	D	Stepping 6, rev. B1
Intel Core Duo	Yonah	6	E	Not fully tested
Intel Core 2 (65 nm)	Merom	6	F	T5500, Step. 6, rev. B2
Intel Core 2 (45 nm)	Wolfdale	6	17	E8400, Step. 6
Intel Core i7	Nehalem	6	1A	i7-920, Step. 5, rev. D0
Intel 2nd gen. Core	Sandy Bridge	6	2A	i5-2500, Step 7
Intel 3rd gen. Core	Ivy Bridge	6	3A	i7-3770K, Step 9
Intel 4th gen. Core	Haswell	6	3C	i7-4770K, step. 3
Intel Atom 330	Diamondville	6	1C	Step. 2
VIA Nano L2200		6	F	Step. 2
VIA Nano L3050	Isaiah	6	F	Step. 8 (prerel. sample)

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory oper-

and, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory oper-

and where the operand is listed as register or memory (r/m).

Reciprocal throughput: This is also called issue latency. This value indicates the average number of

clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the

pipeline.

Execution unit: Indicates which execution unit is used for the macro-operations. ALU means

any of the three integer ALU's. ALUO_1 means that ALU0 and ALU1 are both used. AGU means any of the three integer address generation units. FADD means floating point adder unit. FMUL means floating point multiplier unit. FMISC means floating point store and miscellaneous unit. FA/M means FADD or FMUL is used. FANY means any of the three floating point units can be used. Two macro-operations can execute simultaneously if they go to different

execution units.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOV	r,r	1	1	1/3	ALU	
MOV	r,i	1	1	1/3	ALU	
						Any addr. mode. Add 1 clk if code segment base ≠
MOV	r8,m8	1	4	1/2	ALU, AGU	0
MOV	r16,m16	1	4	1/2	ALU, AGU	do.
MOV	r32,m32	1	3	1/2	AGU	do.
MOV	m8,r8H	1	8	1/2	AGU	AH, BH, CH, DH
MOV	m8,r8L	1	2	1/2	AGU	Any other 8-bit register Any addressing
MOV	m16/32,r	1	2	1/2	AGU	mode
MOV	m,i	1	2	1/2	AGU	
MOV	r,sr	1	2	1		

MOV		0	0.40		I	1 1
MOV	sr,r/m	6	9-13	8		
MOVZX, MOVSX	r,r	1	1	1/3	ALU	
MOVZX, MOVSX	r,m	1	4	1/2	ALU, AGU	
CMOVcc	r,r	1	1	1/3	ALU	
CMOVcc	r,m	1	_	1/2	ALU, AGU	
XCHG	r,r	3	2	1	ALU	
VOLIO		•	40	4.0		Timing depends
XCHG	r,m	3	16	16	ALU, AGU	on hw
XLAT		2	5		ALU, AGU	
PUSH	r	1		1	ALU, AGU	
PUSH	i	1		1	ALU, AGU	
PUSH	m	2		1	ALU, AGU	
PUSH	sr	2		1	ALU, AGU	
PUSHF(D)		1		1	ALU, AGU	
PUSHA(D)		9		4	ALU, AGU	
POP	r	2		1	ALU, AGU	
POP	m	3		1	ALU, AGU	
POP	DS/ES/FS/GS	6		10	ALU, AGU	
POP	SS	9		18	ALU, AGU	
POPF(D)		2		1	ALU, AGU	
POPA(D)		9		4	ALU, AGU	
LEA	r16,[m]	2	3	1	AGU	Any addr. size
LEA	r32,[m]	1	2	1/3	AGU	Any addr. size
LAHF		4	3	2	ALU	
SAHF		2	2	2	ALU	
SALC		1	1	1	ALU	
LDS, LES,	r,m	10		9		
BSWAP	r	1	1	1/3	ALU	
Arithmetic instructions	ļ "			4.10		
ADD, SUB	r,r/i	1	1	1/3	ALU	
ADD, SUB	r,m	1	1	1/2	ALU, AGU	
ADD, SUB	m,r	1	7	2,5	ALU, AGU	
ADC, SBB	r,r/i	1	1	1/3	ALU	
ADC, SBB	r,m	1	1	1/2	ALU, AGU	
ADC, SBB	m,r/i	1	7	2,5	ALU, AGU	
CMP	r,r/i	1	1	1/3	ALU	
CMP	r,m	1		1/2	ALU, AGU	
INC, DEC, NEG	r	1	1	1/3	ALU	
INC, DEC, NEG	m	1	7	3	ALU, AGU	
AAA, AAS		9	5	5	ALU	
DAA		12	6	6	ALU	
DAS		16	7	7	ALU	
AAD		4	5		ALU0	
AAM		31	13		ALU	
MUL, IMUL	r8/m8	3	3	2	ALU0	
MUL, IMUL	r16/m16	3	3	2	ALU0_1	latency ax=3, dx=4
MUL, IMUL	r32/m32	3	4	3	ALU0_1 ALU0_1	
IMUL	r16,r16/m16	3 2	3	2	ALUU_1 ALU0	
INVIOL	110,110/11110	۷	, J		ALUU	

IMUL						
MUL	IMUL	r32,r32/m32	2	4	2,5	ALU0
MUL	IMUL	r16,(r16),i	2	4	1	ALU0
MUL r32,m32,i 3	IMUL	r32,(r32),i	2	5	2	ALU0
DIV r8/m8 32 24 23 ALU DIV r16/m16 47 24 23 ALU DIV r16/m16 47 24 23 ALU DIV r32/m32 79 40 40 ALU DIV r8 41 17 17 ALU DIV r16 56 25 25 ALU DIDV r16 56 25 25 ALU DIDV r16 56 25 25 ALU DIDV r16 57 25 25 ALU DIDV m8 42 17 17 ALU DIDV m8 42 17 17 ALU DIDV m8 42 17 17 ALU DIDV m16 57 25 25 ALU DIDV m32 89 41 41 ALU CBW, CWDE T1 T1 T1/3 ALU CBW, CWDE T1 T1/3 ALU ALU DIDV T1/3 ALU AUD AUD	IMUL	r16,m16,i	3		2	ALU0
DIV	IMUL	r32,m32,i	3		2	ALU0
DIV DIV R8	DIV	r8/m8	32	24	23	ALU
IDIV	DIV	r16/m16	47	24	23	ALU
IDIV	DIV	r32/m32	79	40	40	ALU
IDIV	IDIV	r8	41	17	17	ALU
IDIV	IDIV	r16	56	25	25	
IDIV						
IDIV						
IDIV						
CBW, CWDE 1 1 1/3 ALU CWD, CDQ 1 1 1/3 ALU Logic instructions AND, OR, XOR r,r 1 1 1/3 ALU AND, OR, XOR r,m 1 1 1/2 ALU, AGU AND, OR, XOR m,r 1 7 2,5 ALU, AGU AND, OR, XOR m,r 1 7 2,5 ALU, AGU AND, OR, XOR m,r 1 7 2,5 ALU, AGU AND, OR, XOR m,r 1 1 1/3 ALU AND, OR, XOR m,r 1 1 1/3 ALU AU AND, OR, XOR m,r 1 1 1/3 ALU AU						
Logic instructions r,r 1 1 1/3 ALU AND, OR, XOR r,r 1 1 1/3 ALU AND, OR, XOR r,m 1 1 1/2 ALU, AGU AND, OR, XOR m,r 1 7 2,5 ALU, AGU AND, OR, XOR m,r 1 7 2,5 ALU, AGU AND, OR, XOR m,r 1 1 1/2 ALU, AGU AND, OR, XOR m,r 1 1 1/3 ALU AND, OR, XOR m,r 1 1 1/2 ALU, AGU AND, OR, XOR m,r 1 1 1/3 ALU AND, OR, XOR m,r 1 1 1/3 ALU NOT m 1 1 1/3 ALU ALU, AGU NOT m 1 7 2,5 ALU, AGU ALU SHL, SHR, SAR r,i/CL 1 1 1/3 ALU ALU ALU <td></td> <td>11102</td> <td></td> <td></td> <td></td> <td></td>		11102				
Logic instructions						
AND, OR, XOR r,r 1 1 1/3 ALU AND, OR, XOR r,m 1 1 1/2 ALU, AGU AND, OR, XOR m,r 1 7 2,5 ALU, AGU TEST r,r 1 1 1/3 ALU NOT r,m 1 1 1/3 ALU NOT m 1 7 2,5 ALU, AGU SHL, SHR, SAR r,i/CL 1 1 1/3 ALU RCL, RCR r,i 7 3 3 ALU RCR m,i 1 7 4 ALU, AGU <	CVVD, CDQ		'	'	1/3	ALO
AND, OR, XOR r,r 1 1 1/3 ALU AND, OR, XOR r,m 1 1 1/2 ALU, AGU AND, OR, XOR m,r 1 7 2,5 ALU, AGU TEST r,r 1 1 1/3 ALU NOT r,m 1 1 1/3 ALU NOT m 1 7 2,5 ALU, AGU SHL, SHR, SAR r,i/CL 1 1 1/3 ALU RCL, RCR r,i 7 3 3 ALU RCR m,i 1 7 4 ALU, AGU <	Logic instructions					
AND, OR, XOR AND, OR, XOR AND, OR, XOR AND, OR, XOR TEST T, T T, T T, T T T TEST T, T T, T T T T T T T T T T T T T T T		rr	1	1	1/3	ΔΙΙΙ
AND, OR, XOR TEST T, r, r T, r T, r T, r T, r T, r T, r						
TEST r,r 1 1 1/3 ALU TEST r,m 1 1 1/2 ALU, AGU NOT r 1 1 1/3 ALU NOT m 1 7 2,5 ALU, AGU SHL, SHR, SAR r,i/CL 1 1 1/3 ALU ROL, ROR r,i/CL 1 1 1/3 ALU RCL, RCR r,1 1 1 1/3 ALU RCL, RCR r,i 7 3 3 ALU RCR r,CL 9 3 3 ALU SHL,SHR,SAR,ROL,ROR m,i /CL 1 7 3 ALU, AGU RCL m,i 1 7 4 ALU, AGU						
TEST r,m 1 1 1/2 ALU, AGU NOT r 1 1 1/3 ALU NOT m 1 7 2,5 ALU, AGU SHL, SHR, SAR r,i/CL 1 1 1/3 ALU RCL, ROR r,i/CL 1 1 1/3 ALU RCL, RCR r,1 1 1 1/3 ALU RCL r,i 7 3 3 ALU RCR r,i 7 3 3 ALU RCL r,i 7 3 3 ALU RCR r,CL 9 3 3 ALU RCR m,i/CL 1 7 3 ALU AU AGU RCR, RCR m,i 10 5 4 ALU, AGU AU AU AGU AU AU AGU AGU AU AGU AGU AGU AGU AGU AGU </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
NOT r 1 1 1/3 ALU NOT m 1 7 2,5 ALU, AGU SHL, SHR, SAR r,i/CL 1 1 1/3 ALU ROL, ROR r,i/CL 1 1 1/3 ALU RCL, RCR r,1 1 1 1/3 ALU RCL r,i 9 4 4 ALU RCR r,i 7 3 3 ALU RCL r,CL 9 3 3 ALU RCR r,CL 7 3 3 ALU, AGU RCR r,CL 7 3 3 ALU, AGU RCL, RCR m,1 1 7 4 ALU, AGU RCL m,i 9 8 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU RCR m,CL 8 7 3 ALU, AGU		•				l
NOT m 1 7 2,5 ALU, AGU SHL, SHR, SAR r,i/CL 1 1 1/3 ALU ROL, ROR r,i/CL 1 1 1/3 ALU RCL, RCR r,1 1 1 1/3 ALU RCL r,i 9 4 4 ALU RCR r,i 7 3 3 ALU RCL r,CL 9 3 3 ALU RCL r,CL 9 3 3 ALU RCR r,CL 7 3 3 ALU SHL,SHR,SAR,ROL,ROR m,i /CL 1 7 3 ALU, AGU RCL, RCR m,1 1 7 4 ALU, AGU RCL, RCR m,i 9 8 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU						
SHL, SHR, SAR r,i/CL 1 1 1/3 ALU ROL, ROR r,i/CL 1 1 1/3 ALU RCL, RCR r,1 1 1 1/3 ALU RCL r,i 9 4 4 ALU RCR r,i 7 3 3 ALU RCL r,CL 9 3 3 ALU RCR r,CL 7 3 3 ALU RCR r,CL 7 3 3 ALU, AGU RCL, RCR m,i 10 5 4 ALU, AGU RCL m,i 10 5 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCR m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU, AGU						
ROL, ROR r,i/CL 1 1 1/3 ALU RCL, RCR r,1 1 1 1/3 ALU RCL r,i 9 4 4 ALU RCR r,i 7 3 3 ALU RCL r,CL 9 3 3 ALU RCR r,CL 7 3 3 ALU SHL,SHR,SAR,ROL,ROR m,i /CL 1 7 3 ALU, AGU RCL, RCR m,i /CL 1 7 4 ALU, AGU RCL, RCR m,i 10 5 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCR m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU SHLD, SHRD <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
RCL, RCR r,1 1 1 1/3 ALU RCL r,i 9 4 4 ALU RCR r,i 7 3 3 ALU RCL r,CL 9 3 3 ALU RCR r,CL 7 3 3 ALU SHL,SHR,SAR,ROL,ROR m,i /CL 1 7 3 ALU, AGU RCL, RCR m,1 1 7 4 ALU, AGU RCL, RCR m,1 1 7 4 ALU, AGU RCL m,i 10 5 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU <						l
RCL r,i 9 4 4 ALU RCR r,i 7 3 3 ALU RCL r,CL 9 3 3 ALU RCR r,CL 7 3 3 ALU SHL,SHR,SAR,ROL,ROR m,i /CL 1 7 3 ALU, AGU RCL, RCR m,1 1 7 4 ALU, AGU RCL, RCR m,1 1 7 4 ALU, AGU RCL m,i 10 5 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCL m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU RCR m,CL 8 7 3 ALU, AGU RCR m,CL 8 7 3 ALU, AGU RCL m,i 1 1 1 1 3 <						
RCR r,i 7 3 3 ALU RCL r,CL 9 3 3 ALU RCR r,CL 7 3 3 ALU SHL,SHR,SAR,ROL,ROR m,i /CL 1 7 3 ALU, AGU RCL, RCR m,1 1 7 4 ALU, AGU RCL m,i 10 5 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCR m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 1 1 1/3 ALU						
RCL r,CL 9 3 3 ALU RCR r,CL 7 3 3 ALU SHL,SHR,SAR,ROL,ROR m,i /CL 1 7 3 ALU, AGU RCL, RCR m,1 1 7 4 ALU, AGU RCL m,i 10 5 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCR m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU, AGU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU BT r,r/i 1 1 1/3 ALU, AGU BT m,i 1 1/2 ALU, AGU BTC, BTR, BTS m,i 5 7 2 ALU,						
RCR r,CL 7 3 3 ALU SHL,SHR,SAR,ROL,ROR m,i /CL 1 7 3 ALU, AGU RCL, RCR m,1 1 7 4 ALU, AGU RCL m,i 10 5 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCL m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU, AGU BT r,r/i 1 1 1/3 ALU, AGU <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
SHL,SHR,SAR,ROL,ROR m,i /CL 1 7 3 ALU, AGU RCL, RCR m,1 1 7 4 ALU, AGU RCL m,i 10 5 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCL m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU SHLD, SHRD r,r,i/CL 8 7 3 ALU, AGU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU BT m,r,i/CL 8 7 3 ALU, AGU BT m,i 1 1/2 ALU, AGU BT m,r 5 2 ALU, AGU BTC, BTR, BTS m,i 5 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RCL, RCR m,1 1 7 4 ALU, AGU RCL m,i 10 5 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCL m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU BT r,r/i 1 1 1/3 ALU, AGU BT m,i 1 1/2 ALU, AGU BTC, BTR, BTS r,r/i 2 2 1 ALU, AGU BTC, BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BTC, BTR, BTS m,r 8 6 3				1		
RCL m,i 10 5 4 ALU, AGU RCR m,i 9 8 4 ALU, AGU RCL m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU BT r,r/i 1 1/3 ALU, AGU BT m,i 1 1/2 ALU, AGU BTC, BTR, BTS r,r/i 2 2 1 ALU, AGU BTC m,i 5 7 2 ALU, AGU BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BTC, BTR, BTS r,r 19 7 7 ALU						
RCR m,i 9 8 4 ALU, AGU RCL m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU SHLD, SHRD r,r,cl 7 4 3 ALU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU BT r,r/i 1 1/3 ALU BT m,i 1 1/2 ALU, AGU BTC, BTR, BTS r,r/i 2 2 1 ALU BTC, BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BTC, BTR, BTS m 7 7 ALU		-				
RCL m,CL 9 6 4 ALU, AGU RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU SHLD, SHRD r,r,cl 7 4 3 ALU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU BT r,r/i 1 1/3 ALU ALU BT m,i 1 1/2 ALU, AGU BTC, BTR, BTS r,r/i 2 2 1 ALU BTC, BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU		-				
RCR m,CL 8 7 3 ALU, AGU SHLD, SHRD r,r,i 6 4 2 ALU SHLD, SHRD r,r,cl 7 4 3 ALU, AGU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU BT r,r/i 1 1/3 ALU BT m,i 1 1/2 ALU, AGU BTC, BTR, BTS r,r/i 2 2 ALU, AGU BTC, BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU						
SHLD, SHRD r,r,i 6 4 2 ALU SHLD, SHRD r,r,cl 7 4 3 ALU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU BT r,r/i 1 1/3 ALU BT m,i 1 1/2 ALU, AGU BTC, BTR, BTS r,r/i 2 2 1 ALU BTC, BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU				6		
SHLD, SHRD r,r,cl 7 4 3 ALU SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU BT r,r/i 1 1 1/3 ALU BT m,i 1 1/2 ALU, AGU BTC, BTR, BTS r,r/i 2 2 1 ALU BTC, BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU		m,CL				
SHLD, SHRD m,r,i/CL 8 7 3 ALU, AGU BT r,r/i 1 1 1/3 ALU BT m,i 1 1/2 ALU, AGU BT m,r 5 2 ALU, AGU BTC, BTR, BTS m,i 5 7 2 ALU, AGU BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU	SHLD, SHRD	r,r,i	6	4		
BT r,r/i 1 1 1/3 ALU BT m,i 1 1/2 ALU, AGU BT m,r 5 2 ALU, AGU BTC, BTR, BTS r,r/i 2 2 1 ALU BTC, BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU	SHLD, SHRD		7	4		ALU
BT m,i 1 1/2 ALU, AGU BT m,r 5 2 ALU, AGU BTC, BTR, BTS r,r/i 2 2 1 ALU BTC m,i 5 7 2 ALU, AGU BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU	SHLD, SHRD	m,r,i/CL	8	7	3	ALU, AGU
BT m,r 5 2 ALU, AGU BTC, BTR, BTS r,r/i 2 2 1 ALU BTC m,i 5 7 2 ALU, AGU BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU	ВТ	r,r/i	1	1	1/3	ALU
BTC, BTR, BTS r,r/i 2 2 1 ALU BTC m,i 5 7 2 ALU, AGU BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU	ВТ	m,i	1		1/2	ALU, AGU
BTC m,i 5 7 2 ALU, AGU BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU	ВТ	m,r	5		2	ALU, AGU
BTC m,i 5 7 2 ALU, AGU BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU	BTC, BTR, BTS	r,r/i	2	2	1	ALU
BTR, BTS m,i 4 7 2 ALU, AGU BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU		m,i	5	7	2	ALU, AGU
BTC, BTR, BTS m,r 8 6 3 ALU, AGU BSF r,r 19 7 7 ALU	BTR, BTS	m,i	4	7	2	ALU, AGU
BSF r,r 19 7 7 ALU	BTC, BTR, BTS	m,r	8	6	3	
	BSF		19	7	7	
	BSR	r,r	23	9	9	ALU

		_				
BSF	r,m	20	8	8	ALU, AGU	
BSR	r,m	23	10	10	ALU, AGU	
SETcc	r	1 1	1	1/3	ALU	
SETcc	m	1 1		1/2	ALU, AGU	
CLC, STC		1 1		1/3	ALU	
CMC		1 1	1	1/3	ALU	
CLD		2	Ţ	1	ALU	
STD		3		2	ALU	
Control transfer instruction	ons					
JMP	short/near	1		2	ALU	
						low values = real
JMP	far	16-20	23-32			mode
JMP	r	1		2	ALU	
JMP	m(near)	1		2	ALU, AGU	
						low values = real
JMP	m(far)	17-21	25-33			mode
Jcc	short/near	1		1/3 - 2	ALU	rcp. t.= 2 if jump
J(E)CXZ	short	2		1/3 - 2	ALU	rcp. t.= 2 if jump
LOOP	short	7	3-4	3-4	ALU	' '
CALL	near	3	2	2	ALU	
			_	_	7.25	low values = real
CALL	far	16-22	23-32			mode
CALL	r	4	3	3	ALU	
CALL	m(near)	5	3	3	ALU, AGU	
	(,				,	low values = real
CALL	m(far)	16-22	24-33			mode
RETN	, ,	2	3	3	ALU	
RETN	i	2	3	3	ALU	
						low values = real
RETF		15-23	24-35			mode
DETE		45.04	04.05			low values = real
RETF	i	15-24	24-35			mode
IRET		32	81			real mode
INT	i	33	42			real mode
				_		values are for no
BOUND	m	6		2		jump
INTO		2		2		values are for no jump
INTO				2		Julip
String instructions						
LODS		4	2	2		
REP LODS		5	2	2		values per count
STOS		4	2	2		
REP STOS		3	1	1		values per count
MOVS		7	3	3		. sides per count
REP MOVS		4	1-4	1-4		values per count
SCAS		5	2	2		values per count
REP SCAS			2	2		values per sount
		5				values per count
CMPS DED CMDS		7	6 2.4	6		values per sount
REP CMPS	1	6	3-4	3-4	1	values per count

		AMD K7			
Other NOP (90) Long NOP (0F 1F) ENTER	1 1 i,0	0 0 12	1/3 1/3 12	ALU ALU 12	
LEAVE CLI	3 8-9		3 5		3 ops, 5 clk if 16 bit
STI CPUID	16-17 19-28		27		
RDTSC RDPMC	5 9		11 11		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
FLD	r	1	2	1/2	FA/M	
FLD	m32/64	1	4	1/2	FANY	
FLD	m80	7	16	4		
FBLD	m80	30	41	39		
FST(P)	r	1	2	1/2	FA/M	
FST(P)	m32/64	1	3	1	FMISC	
FSTP	m80	10	7	5		
FBSTP	m80	260		188		
FXCH	r	1	0	0,4		
FILD	m	1	9	1	FMISC	
FIST(P)	m	1	7	1	FMISC, FA/M	
FLDZ, FLD1		1		1	FMISC	
						Low latency im-
FCMOVcc	st0,r	9	6	5	FMISC, FA/M	mediately after FCOMI
FFREE	r	1		1/3	FANY	
FINCSTP, FDECSTP	'		0	1/3	FANY	
I INCOTT, I DECOTI		'		1/3	I ANI	Low latency im-
						mediately after
FNSTSW	AX	2	6-12	12	FMISC, ALU	FCOM FTST
FSTSW	AX	3	6-12	12	FMISC, ALU	do.
FNSTSW	m16	2		8	FMISC, ALU	do.
FNSTCW	m16	3		1	FMISC, ALU	
						faster if
FLDCW	m16	14		42	FMISC, ALU	unchanged
Arithmetic instructions						
FADD(P),FSUB(R)(P)	r/m	1	4	1	FADD	
FIADD,FISUB(R)	m	2	4	1-2	FADD,FMISC	
FMUL(P)	r/m	1	4	1	FMUL	
FIMUL	m	2	4	2	FMUL,FMISC	
FDIV(R)(P)	r/m	1	11-25	8-22	FMUL	Low values are for round divisors

FIDIV(R)	m	2	12-26	9-23	FMUL,FMISC	do.
FABS, FCHS		1	2	1	FMUL	
FCOM(P), FUCOM(P)	r/m	1	2	1	FADD	
FCOMPP, FUCOMPP		1	2	1	FADD	
FCOMI(P)	r	1	3	1	FADD	
FICOM(P)	m	2		1	FADD, FMISC	
FTST		1	2	1	FADD	
FXAM		2		2	FMISC, ALU	
FRNDINT		5	10	3	,	
FPREM		1	7-10	8	FMUL	
FPREM1		1	8-11	8	FMUL	
Math						
FSQRT		1	35	12	FMUL	
FSIN		44	90-100			
FCOS		51	90-100			
FSINCOS		76	100-150			
FPTAN		46	100-200			
FPATAN		72	160-170			
FSCALE		5	8			
FXTRACT		7	11			
F2XM1		8	27			
FYL2X		49	126			
FYL2XP1		63	147			
Other						
FNOP		1	0	1/3	FANY	
(F)WAIT		1	0	1/3	ALU	
FNCLEX		7		24	FMISC	
FNINIT		25		92	FMISC	
FNSAVE		76		147		
FRSTOR		65		120		
FXSAVE		44		59		
FXRSTOR		85		87		

Integer MMX instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVD	r32, mm	2	7	2	FMICS, ALU	
MOVD	mm, r32	2	9	2	FANY, ALU	
MOVD	mm,m32	1		1/2	FANY	
MOVD	m32, r	1		1	FMISC	
MOVQ	mm,mm	1	2	1/2	FA/M	
MOVQ	mm,m64	1		1/2	FANY	
MOVQ	m64,mm	1		1	FMISC	
MOVNTQ	m,mm	1		2	FMISC	
PACKSSWB/DW PACKUSWB	mm,r/m	1	2	2	FA/M	

PUNPCKH/LBW/WD	mm,r/m	1	2	2	FA/M	
PSHUFW	mm,mm,i	1	2	1/2	FA/M	
MASKMOVQ	mm,mm	32		24	I AVIVI	
PMOVMSKB	r32,mm	3		3	FADD	
PEXTRW	· ·	2	5	2	FMISC, ALU	
	r32,mm,i	2		2		
PINSRW	mm,r32,i	2	12	2	FA/M	
Arithmetic instructions						
PADDB/W/D PADDSB/W						
PADDUSB/W						
PSUBB/W/D PSUBSB/W						
PSUBUSB/W						
		4		4/0	E A /N 4	
DOMPEO (OT DAM/D	mm,r/m	1	2 2	1/2	FA/M	
PCMPEQ/GT B/W/D	mm,r/m	1	2	1/2	FA/M	
PMULLW PMULHW		4	2	4	ENAL II	
PMULHUW	mm,r/m	1	3	1	FMUL	
PMADDWD	mm,r/m	1	3	1	FMUL	
PAVGB/W	mm,r/m	1	2	1/2	FA/M	
PMIN/MAX SW/UB	mm,r/m	1	2	1/2	FA/M	
PSADBW	mm,r/m	1	3	1	FADD	
Logic						
PAND PANDN POR						
PXOR	mm,r/m	1	2	1/2	FA/M	
PSLL/RLW/D/Q		_		4.10	E A /3 4	
PSRAW/D	mm,i/mm/m	1	2	1/2	FA/M	
Other						
EMMS		1		1/3	FANY	
		ı		1/3	FAINT	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVAPS	r,r	2	2	1	FA/M	
MOVAPS	r,m	2		2	FMISC	
MOVAPS	m,r	2		2	FMISC	
MOVUPS	r,r	2	2	1	FA/M	
MOVUPS	r,m	5		2		
MOVUPS	m,r	5		2		
MOVSS	r,r	1	2	1	FA/M	
MOVSS	r,m	2	4	1	FANY FMISC	
MOVSS	m,r	1	3	1	FMISC	
MOVHLPS, MOVLHPS	r,r	1	2	1/2	FA/M	
MOVHPS, MOVLPS	r,m	1		1/2	FMISC	
MOVHPS, MOVLPS	m,r	1		1	FMISC	
MOVNTPS	m,r	2		4	FMISC	
MOVMSKPS	r32,r	3		2	FADD	
SHUFPS	r,r/m,i	3	3	3	FMUL	

UNPCK H/L PS	r,r/m	2	3	3	FMUL	
Conversion						
CVTPI2PS	xmm,mm	1	4		FMISC	
CVT(T)PS2PI	mm,xmm	1	6		FMISC	
CVTSI2SS	xmm,r32	4		10	FMISC	
CVT(T)SS2SI	r32,xmm	2		3	FMISC	
Arithmetic						
ADDSS SUBSS	r,r/m	1	4	1	FADD	
ADDPS SUBPS	r,r/m	2	4	2	FADD	
MULSS	r,r/m	1	4	1	FMUL	
MULPS	r,r/m	2	4	2	FMUL	
						Low values are for round divi- sors, e.g. powers
DIVSS	r,r/m	1	11-16	8-13	FMUL	of 2.
DIVPS	r,r/m	2	18-30	18-30	FMUL	do.
RCPSS	r,r/m	1	3	1	FMUL	
RCPPS	r,r/m	2	3	2	FMUL	
MAXSS MINSS	r,r/m	1	2	1	FADD	
MAXPS MINPS	r,r/m	2	2	2	FADD	
CMPccSS	r,r/m	1	2	1	FADD	
CMPccPS	r,r/m	2	2	2	FADD	
COMISS UCOMISS	r,r/m	1	2	1	FADD	
Logic						
ANDPS/D ANDNPS/D		_				
ORPS/D XORPS/D	r,r/m	2	2	2	FMUL	
Math						
SQRTSS	r,r/m	1	19	16	FMUL	
SQRTPS	r,r/m	2	36	36	FMUL	
RSQRTSS	r,r/m	1	3	1	FMUL	
RSQRTPS	r,r/m	2	3	2	FMUL	
Other						
LDMXCSR	m	8		9		
STMXCSR	m	3		10		

3DNow instructions (obsolete)

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes				
Move and convert instructions										
PREFETCH(W)	m	1		1/2	AGU					
PF2ID	mm,mm	1	5	1	FMISC					
PI2FD	mm,mm	1	5	1	FMISC					
PF2IW	mm,mm	1	5	1	FMISC	3DNow E				
PI2FW	mm,mm	1	5	1	FMISC	3DNow E				
PSWAPD	mm,mm	1	2	1/2	FA/M	3DNow E				

mm,mm	1	2	1/2	FA/M	
mm,mm	1	3	1	FMUL	
i					
mm,mm	1	4	1	FADD	
mm,mm	1	2	1	FADD	
mm,mm	1	2	1	FADD	
mm,mm	1	4	1	FMUL	
mm,mm	1	4	1	FADD	
mm,mm	1	4	1	FADD	3DNow E
mm,mm	1	3	1	FMUL	
mm,mm	1	4	1	FMUL	
mm,mm	1	3	1	FMUL	
mm,mm	1	4	1	FMUL	
mm mm	1		1/3	FANY	
	mm,mm mm,mm mm,mm mm,mm mm,mm mm,mm mm,mm mm,mm mm,mm	mm,mm 1	mm,mm 1 3 mm,mm 1 4 mm,mm 1 2 mm,mm 1 4 mm,mm 1 4 mm,mm 1 4 mm,mm 1 3 mm,mm 1 4 mm,mm 1 3 mm,mm 1 3 mm,mm 1 3 mm,mm 1 4	mm,mm 1 3 1 mm,mm 1 4 1 mm,mm 1 2 1 mm,mm 1 4 1 mm,mm 1 4 1 mm,mm 1 4 1 mm,mm 1 3 1 mm,mm 1 4 1 mm,mm 1 3 1 mm,mm 1 3 1 mm,mm 1 3 1 mm,mm 1 4 1	mm,mm 1 3 1 FMUL mm,mm 1 4 1 FADD mm,mm 1 2 1 FADD mm,mm 1 4 1 FADD mm,mm 1 4 1 FADD mm,mm 1 4 1 FADD mm,mm 1 3 1 FMUL mm,mm 1 4 1 FMUL mm,mm 1 3 1 FMUL mm,mm 1 4 1 FMUL mm,mm 1 4 1 FMUL

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the oper-

and is listed as register or memory (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However,

the throughput may be limited by other bottlenecks in the pipeline.

Execution unit: Indicates which execution unit is used for the macro-operations. ALU means any

of the three integer ALU's. ALUO_1 means that ALUO and ALU1 are both used. AGU means any of the three integer address generation units. FADD means floating point adder unit. FMUL means floating point multiplier unit. FMISC means floating point store and miscellaneous unit. FA/M means FADD or FMUL is used. FANY means any of the three floating point units can be used. Two macro-opera-

tions can execute simultaneously if they go to different execution units.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions	·					
MOV	r,r	1	1	1/3	ALU	
MOV	r,i	1	1	1/3	ALU	
MOV	r8,m8	1	4	1/2	ALU, AGU	Any addressing mode.
MOV	r16,m16	1	4	1/2	ALU, AGU	Add 1 clock if code
MOV	r32,m32	1	3	1/2	AGU	segment base ≠ 0
MOV	r64,m64	1	3	1/2	AGU	
MOV	m8,r8H	1	8	1/2	AGU	AH, BH, CH, DH
						Any other 8-bit regis-
MOV	m8,r8L	1	3	1/2	AGU	ter
MOV	m16/32/64,r	1	3	1/2	AGU	Any addressing mode
MOV	m,i	1	3	1/2	AGU	
MOV	m64,i32	1	3	1/2	AGU	
MOV	r,sr	1	2	1/2-1		
MOV	sr,r/m	6	9-13	8		
MOVNTI	m,r	1		2-3	AGU	

1.40.47.4	I			l	l 	1
MOVZX, MOVSX	r,r	1	1	1/3	ALU	
MOVZX, MOVSX	r,m	1	4	1/2	ALU, AGU	
MOVSXD	r64,r32	1	1	1/3	ALU	
MOVSXD	r64,m32	1		1/2	ALU, AGU	
CMOVcc	r,r	1	1	1/3	ALU	
CMOVcc	r,m	1		1/2	ALU, AGU	
XCHG	r,r	3	2	1	ALU	
XCIIC	1,1	3		'	ALO	Timeira e da manda am
VCHC	r m	2	16	16	ALLI ACII	Timing depends on
XCHG	r,m	3	16	16	ALU, AGU	hw
XLAT		2	5		ALU, AGU	
PUSH	r	1	1	1	ALU, AGU	
PUSH	i	1	1	1	ALU, AGU	
PUSH	m	2	1	1	ALU, AGU	
PUSH	sr	2	1	1	ALU, AGU	
PUSHF(D/Q)		5	2	2	ALU, AGU	
PUSHA(D)		9	4	4	ALU, AGU	
POP	r	2	1	1	ALU, AGU	
POP		3	1	1	· ·	
	m	_			ALU, AGU	
POP	DS/ES/FS/GS	4-6	8	8	ALU, AGU	
POP	SS	7-9	28	28	ALU, AGU	
POPF(D/Q)		25	10	10	ALU, AGU	
POPA(D)		9	4	4	ALU, AGU	
LEA	r16,[m]	2	3	1	AGU	Any address size
LEA	r32,[m]	1	2	1/3	AGU	Any address size
LEA	r64,[m]	1	2	1/3	AGU	Any address size
LAHF	104,[111]	4	3	2	ALU	Ally address size
SAHF		1	1	1/3	ALU	
SALC		1	1	1/3	ALU	
LDS, LES,	r,m	10		9		
BSWAP	r	1	1	1/3	ALU	
PREFETCHNTA	m	1		1/2	AGU	
PREFETCHT0/1/2	m	1		1/2	AGU	
SFENCE		6		8		
LFENCE		1		5		
MFENCE		7		16		
IN	r,i/DX	270		10		
OUT	i/DX,r	300				
Arithmetic instruction	1					
ADD, SUB	r,r/i	1	1	1/3	ALU	
ADD, SUB	r,m	1	1	1/2	ALU, AGU	
ADD, SUB	m,r	1	7	2,5	ALU, AGU	
ADC, SBB	r,r/i	1	1	1/3	ALU	
ADC, SBB	r,m	1	1	1/2	ALU, AGU	
ADC, SBB	m,r/i	1	7	2,5	ALU, AGU	
CMP		1	1	1/3	ALU, AGU	
II.	r,r/i	-	I			
CMP	r,m	1	_	1/2	ALU, AGU	
INC, DEC, NEG	r	1	1	1/3	ALU	
INC, DEC, NEG	m	1	7	3	ALU, AGU	
AAA, AAS		9	5	5	ALU	
DAA		12	6	6	ALU	
DAS		16	7	7	ALU	
AAD		4	5		ALU0	
r	I	' '		I	,0	ı L

Δ Δ Δ Δ	1	24	10	I		1
AAM		31	13	4	ALU	
MUL, IMUL	r8/m8	1	3	1	ALU0	
MUL, IMUL	r16/m16	3	3-4	2	ALU0_1	latency ax=3, dx=4
MUL, IMUL	r32/m32	2	3	1	ALU0_1	
MUL, IMUL	r64/m64	2	4-5	2	ALU0_1	latency rax=4, rdx=5
IMUL	r16,r16/m16	1	3	1	ALU0	
IMUL	r32,r32/m32	1	3	1	ALU0	
IMUL	r64,r64/m64	1	4	2	ALU0_1	
IMUL	r16,(r16),i	2	4	1	ALU0	
IMUL	r32,(r32),i	1	3	1	ALU0	
IMUL	r64,(r64),i	1	4	2	ALU0	
IMUL	r16,m16,i	3		2	ALU0	
IMUL	r32,m32,i	3		2	ALU0	
IMUL	r64,m64,i	3		2	ALU0_1	
DIV	r8/m8	31	15	15	ALU	
DIV	r16/m16	46	23	23	ALU	
DIV	r32/m32	78	39	39	ALU	
DIV	r64/m64	143	71	71	ALU	
IDIV	r8	40	17	17	ALU	
IDIV	r16	55	25	25	ALU	
IDIV	r32	87	41	41	ALU	
IDIV	r64	152	73	73	ALU	
IDIV	m8	41	17	17	ALU	
IDIV	m16	56	25	25	ALU	
IDIV	m32	88	41	41	ALU	
IDIV	m64	153	73	73	ALU	
CBW, CWDE, CDQE		1	1	1/3	ALU	
CWD, CDQ, CQO		1	1	1/3	ALU	
Logic instructions						
AND, OR, XOR	r,r	1	1	1/3	ALU	
AND, OR, XOR	r,m	1	1	1/2	ALU, AGU	
AND, OR, XOR	m,r	1	7	2,5	ALU, AGU	
TEST	r,r	1	1	1/3	ALU	
TEST	r,m	1	1	1/2	ALU, AGU	
NOT	r	1	1	1/3	ALU	
NOT	m	1	7	2,5	ALU, AGU	
SHL, SHR, SAR	r,i/CL	1	1	1/3	ALU	
ROL, ROR	r,i/CL	1	1 1	1/3	ALU	
RCL, RCR		1	1 1	1/3	ALU	
RCL, RCR RCL	r,1	-	3			
I	r,i	9	3	3 3	ALU	
RCR	r,i	7			ALU	
RCL	r,CL	9	4	4	ALU	
RCR	r,CL	7	3	3	ALU	
SHL,SHR,SAR,ROL,R			_			
OR	m,i /CL	1	7	3	ALU, AGU	
RCL, RCR	m,1	1	7	4	ALU, AGU	
RCL	m,i	10	9	4	ALU, AGU	
RCR	m,i	9	8	4	ALU, AGU	
RCL	m,CL	9	7	4	ALU, AGU	
RCR	m,CL	8	8	3	ALU, AGU	
SHLD, SHRD	r,r,i	6	3	3	ALU	
SHLD, SHRD	r,r,cl	7	3	3	ALU	

SHLD, SHRD BT BT BT BTC, BTR, BTS BTC BTR, BTS BTC BTR, BTS BTC BTR, BTS BTC BTR, BTS	m,r,i/CL r,r/i m,i m,r r,r/i m,i m,r m,r r16/32,r r64,r	8 1 1 5 2 5 4 8 8 21 22	6 1 2 7 7 5 8 8 9	3 1/3 1/2 2 1 2 2 5 3 8	ALU, AGU	
BSR	r,r	28	10	10	ALU	
BSF	r16,m	20	8	8	ALU, AGU	
BSF	r32,m	22	9	9	ALU, AGU	
BSF	r64,m	25	10	10	ALU, AGU	
BSR	r,m	28	10	10	ALU, AGU	
SETcc	r	1	1	1/3	ALU	
SETcc	m	1		1/2	ALU, AGU	
CLC, STC		1		1/3	ALU	
CMC		1	1	1/3	ALU	
CLD		1		1/3	ALU	
STD		2		1/3	ALU	
Control transfer instru						
JMP	short/near	1		2	ALU	
JMP	far	16-20	23-32			low values = real mode
JMP	r	1	23-32	2	ALU	mode
JMP	m(near)			2	ALU, AGU	
	(.		_	7120,7100	low values = real
JMP	m(far)	17-21	25-33			mode
Jcc	short/near	1		1/3 - 2	ALU	recip. thrp.= 2 if jump
J(E/R)CXZ	short	2		1/3 - 2	ALU	recip. thrp.= 2 if jump
LOOP	short	7	3-4	3-4	ALU	
CALL	near	3	2	2	ALU	
CALL	far	16-22	23-32			low values = real mode
CALL	r	4	3	3	ALU	
CALL	m(near)	5	3	3 3	ALU, AGU	
						low values = real
CALL	m(far)	16-22	24-33			mode
RETN	:	2 2	3 3	3	ALU	
RETN	i	2	3	3	ALU	la
RETF		15-23	24-35			low values = real mode
RETF	i	15-24	24-35			low values = real mode
IRET		32	81			real mode
INT	i	33	42			real mode
BOUND	m	6		2		values are for no jump
INTO		2		2		values are for no jump
String instructions						

LODS	4	2	2		
REP LODS	5	2	2		values are per count
STOS	4	2	2		
REP STOS	1.5 - 2	0.5 - 1	0.5 - 1		values are per count
MOVS	7	3	3		
REP MOVS	3	1-2	1-2		values are per count
SCAS	5	2	2		
REP SCAS	5	2	2		values are per count
CMPS	2	3	3		
REP CMPS	6	2	2		values are per count
Other					
NOP (90)	1	0	1/3	ALU	
Long NOP (0F 1F)	1	0	1/3	ALU	
ENTER	i,0	12	12	12	
LEAVE	2		3		3 ops, 5 clk if 16 bit
CLI	8-9		5		
STI	16-17		27		
CPUID	22-50	47-164			
RDTSC	6	10	7		
RDPMC	9	12	7		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions				tilloughput	uiiit	
FLD	r	1	2	1/2	FA/M	
FLD	m32/64	1	4	1/2	FANY	
FLD	m80	7	16	4	17001	
FBLD	m80	30	41	39		
FST(P)	r	1	2	1/2	FA/M	
FST(P)	m32/64	1	3	1	FMISC	
FSTP	m80	10	7	5		
FBSTP	m80	260	173	160		
FXCH	r	1	0	0,4		
FILD	m	1	9	1	FMISC	
FIST(P)	m	1	7	1	FMISC, FA/M	
FLDZ, FLD1		1		1	FMISC	
						Low latency immedi-
FCMOVcc	st0,r	9	4-15	4	FMISC, FA/M	ately after FCOMI
FFREE	r	1		2	FANY	
FINCSTP, FDECSTP		1	0	1/3	FANY	
						Low latency immedi-
						ately after FCOM
FNSTSW	AX	2	6-12	12	FMISC, ALU	FTST
FSTSW	AX	3	6-12	12	FMISC, ALU	do.
FNSTSW	m16	2		8	FMISC, ALU	do.
FNSTCW	m16	3		1	FMISC, ALU	
FLDCW	m16	18		50	FMISC, ALU	faster if unchanged
Arithmetic instruction	s					

FADD(P),FSUB(R)(P) FIADD,FISUB(R)	r/m m	1 2	4 4	1 1-2	FADD FADD,FMISC	
FMUL(P)	r/m	1	4	1	FMUL	
FIMUL	m	2	4	2	FMUL,FMISC	
FDIV(R)(P)	r/m	1	11-25	8-22	FMUL	Low values are for round divisors
FIDIV(R)	m	2	12-26	9-23	FMUL,FMISC	do.
FABS, FCHS		1	2	1	FMUL	
FCOM(P), FUCOM(P)	r/m	1	2	1	FADD	
FCOMPP, FUCOMPP		1	2	1	FADD	
FCOMI(P)	r	1	3	1	FADD	
FICOM(P)	m	2		1	FADD, FMISC	
FTST		1	2	1	FADD	
FXAM		2		1	FMISC, ALU	
FRNDINT		5	10	3	,	
FPREM		1	7-10	8	FMUL	
FPREM1		1	8-11	8	FMUL	
Math						
FSQRT		1	27	12	FMUL	
FLDPI, etc.		1		1	FMISC	
FSIN		66	140-190			
FCOS		73	150-190			
FSINCOS		98	170-200			
FPTAN		67	150-180			
FPATAN		97	217			
FSCALE		5	8			
FXTRACT		7	12	7		
F2XM1		53	126			
FYL2X		72	179			
FYL2XP1		75	175			
Other						
FNOP		1	0	1/3	FANY	
(F)WAIT		1	0	1/3	ALU	
FNCLEX		8		27	FMISC	
FNINIT		26		100	FMISC	
FNSAVE		77		171		
FRSTOR		70		136		
FXSAVE		61		56		
FXRSTOR		101		95		

Integer MMX and XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput		Notes
Move instructions						
MOVD	r32, mm	2	4	2	FMICS, ALU	
MOVD	mm, r32	2	9	2	FANY, ALU	
MOVD	mm,m32	1		1/2	FANY	
MOVD	r32, xmm	3	2	2	FMISC, ALU	
MOVD	xmm, r32	3	3	2		

MOVE		•	I	l 4	EAND.	1
MOVD	xmm,m32	2		1 1	FANY	
MOVD	m32, r	1		1	FMISC	Marra C4 bita Nama
MOVD (MOVO)	r64 mm/ymm	2		2	EMICC ALL	Moves 64 bits.Name of instruction differs
MOVD (MOVQ)	r64,mm/xmm	2 2	9	2 2	FMISC, ALU	
MOVD (MOVQ)	mm,r64				FANY, ALU	do.
MOVD (MOVQ)	xmm,r64	3	9 2	2	FANY, ALU	do.
MOVQ	mm,mm	1	2	1/2	FA/M	
MOVQ	xmm,xmm	2	2	1 1	FA/M, FMISC	
MOVQ	mm,m64	1		1/2	FANY	
MOVQ	xmm,m64	2		1	FANY, FMISC	
MOVQ	m64,mm/x	1		1	FMISC	
MOVDQA	xmm,xmm	2	2	1	FA/M	
MOVDQA	xmm,m	2		2	FMISC	
MOVDQA	m,xmm	2		2	FMISC	
MOVDQU	xmm,m	4		2		
MOVDQU	m,xmm	5	_	2		
MOVDQ2Q	mm,xmm	1	2	1/2	FA/M	
MOVQ2DQ	xmm,mm	2	2	1	FA/M, FMISC	
MOVNTQ	m,mm	1		2	FMISC	
MOVNTDQ	m,xmm	2		3	FMISC	
PACKSSWB/DW				_		
PACKUSWB	mm,r/m	1	2	2	FA/M	
PACKSSWB/DW				_		
PACKUSWB	xmm,r/m	3	3	2	FA/M	
PUNPCKH/LBW/WD/			_	_		
DQ	mm,r/m	1	2	2	FA/M	
PUNPCKH/LBW/WD/	,	_		_		
DQ	xmm,r/m	2	2	2	FA/M	
PUNPCKHQDQ	xmm,r/m	2	2	1	FA/M	
PUNPCKLQDQ	xmm,r/m	1	2	1/2	FA/M	
PSHUFD	xmm,xmm,i	3	3	1,5	FA/M	
PSHUFW	mm,mm,i	1	2	1/2	FA/M	
PSHUFL/HW	xmm,xmm,i	2	2	1	FA/M	
MASKMOVQ	mm,mm	32		13		
MASKMOVDQU	xmm,xmm	64		26		
PMOVMSKB	r32,mm/xmm	1	2	1	FADD	
PEXTRW	r32,mm/x,i	2	5	2	FMISC, ALU	
PINSRW	mm,r32,i	2	12	2	FA/M	
PINSRW	xmm,r32,i	3	12	3	FA/M	
Arithmetic instruction	S					
PADDB/W/D/Q						
PADDSB/W						
PADDUSB/W PSUBB/W/D/Q						
PSUBSB/W						
PSUBUSB/W	mm r/m	4	2	1/2	FA/M	
	mm,r/m	1		1/2	FAVIVI	
PADDB/W/D/Q PADDSB/W						
ADDUSB/W						
PSUBB/W/D/Q						
PSUBSB/W						
PSUBUSB/W	xmm,r/m	2	2	1	FA/M	
1			I .	I	1	r L

PCMPEQ/GT B/W/D	mm,r/m	1	2	1/2	FA/M	
PCMPEQ/GT B/W/D	xmm,r/m	2	2	1	FA/M	
PMULLW PMULHW						
PMULHUW						
PMULUDQ	mm,r/m	1	3	1	FMUL	
PMULLW PMULHW						
PMULHUW		_	_	_		
PMULUDQ	xmm,r/m	2	3	2	FMUL	
PMADDWD	mm,r/m	1	3	1	FMUL	
PMADDWD	xmm,r/m	2	3	2	FMUL	
PAVGB/W	mm,r/m	1	2	1/2	FA/M	
PAVGB/W	xmm,r/m	2	2	1	FA/M	
PMIN/MAX SW/UB	mm,r/m	1	2	1/2	FA/M	
PMIN/MAX SW/UB	xmm,r/m	2	2	1	FA/M	
PSADBW	mm,r/m	1	3	1	FADD	
PSADBW	xmm,r/m	2	3	2	FADD	
Logic						
PAND PANDN POR PXOR	ma ma .m/ma	4	2	1/2	FA/M	
	mm,r/m	1		1/2	FA/IVI	
PAND PANDN POR PXOR	vmm r/m	2	2	1	FA/M	
PSLL/RL W/D/Q	xmm,r/m	2		I	FA/IVI	
PSRAW/D	mm,i/mm/m	1	2	1/2	FA/M	
PSLL/RL W/D/Q	111111,1/111111/111	ı		1/2	1 7/1/1	
PSRAW/D	x,i/x/m	2	2	1	FA/M	
PSLLDQ, PSRLDQ	xmm,i	2	2	1	FA/M	
i celba, i citeba	AIIIII,I	_	_	ı	I /WIVI	
Other						
EMMS		1		1/3	FANY	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVAPS/D	r,r	2	2	1	FA/M	
MOVAPS/D	r,m	2		2	FMISC	
MOVAPS/D	m,r	2		2	FMISC	
MOVUPS/D	r,r	2	2	1	FA/M	
MOVUPS/D	r,m	4		2		
MOVUPS/D	m,r	5		2		
MOVSS/D	r,r	1	2	1	FA/M	
MOVSS/D	r,m	2	4	1	FANY FMISC	
MOVSS/D	m,r	1	3	1	FMISC	
MOVHLPS, MOVLHPS	r,r	1	2	1/2	FA/M	
MOVHPS/D, MOVLPS/D	r,m	1		1	FMISC	
MOVHPS/D, MOVLPS/D	m,r	1		1	FMISC	
MOVDDUP	r,r	2	2	1		SSE3

MOVSH/LDUP	r,r	2	2	2		SSE3
MOVNTPS/D	m,r	2		3	FMISC	SOLO
MOVMSKPS/D	r32,r	1	8	1	FADD	
SHUFPS/D	r,r/m,i	3	3	2	FMUL	
UNPCK H/L PS/D	r,r/m	2	3	3	FMUL	
UNPOR H/L P3/D	1,1/111		3	3	FIVIOL	
Conversion						
CVTPS2PD	r,r/m	2	4	2	FMISC	
CVTPD2PS	r,r/m	4	8	3	FMISC	
CVTSD2SS	r,r/m	3	8	8	FMISC	
CVTSS2SD	r,r/m	1	2	1	FMISC	
CVTDQ2PS	r,r/m	2	5	2	FMISC	
CVTDQ2PD	r,r/m	2	5	2	FMISC	
CVT(T)PS2DQ	r,r/m	2	5	2	FMISC	
CVT(T)PD2DQ	r,r/m	4	8	3	FMISC	
CVTPI2PS	xmm,mm	1	4	1	FMISC	
CVTPI2PD	xmm,mm	2	5	2	FMISC	
CVT(T)PS2PI	mm,xmm	1	6	1	FMISC	
CVT(T)PD2PI	mm,xmm	3	8	2	FMISC	
CVTSI2SS	xmm,r32	3	14	2	FMISC	
CVTSI2SD	xmm,r32	2	12	2	FMISC	
CVT(T)SD2SI	r32,xmm	2	10	2	FMISC	
CVT(T)SS2SI	r32,xmm	2	9	2	FMISC	
(.)5525.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_		_		
Arithmetic						
ADDSS/D SUBSS/D	r,r/m	1	4	1	FADD	
ADDPS/D SUBPS/D	r,r/m	2	4	2	FADD	
HADDPS/D						
HSUBPS/D	r,r/m	2	4	2	FADD	SSE3
MULSS/D	r,r/m	1	4	1	FMUL	
MULPS/D	r,r/m	2	4	2	FMUL	
						Low values are for
DI) (00	,		44.40	0.40	E. 41 11	round divisors, e.g.
DIVSS	r,r/m	1	11-16	8-13	FMUL	powers of 2.
DIVPS	r,r/m	2	18-30	18-30	FMUL	do.
DIVSD	r,r/m	1	11-20	8-17	FMUL	do.
DIVPD	r,r/m	2	16-34	16-34	FMUL	do.
RCPSS	r,r/m	1	3	1	FMUL	
RCPPS	r,r/m	2	3	2	FMUL	
MAXSS/D MINSS/D	r,r/m	1	2	1	FADD	
MAXPS/D MINPS/D	r,r/m	2	2	2	FADD	
CMPccSS/D	r,r/m	1	2	1	FADD	
CMPccPS/D	r,r/m	2	2	2	FADD	
COMISS/D	,				5400	
UCOMISS/D	r,r/m	1	2	1	FADD	
Logic						
ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	r,r/m	2	2	2	FMUL	
	, •		_	_		
Math						
SQRTSS	r,r/m	1	19	16	FMUL	
SQRTPS	r,r/m	2	36	36	FMUL	

SQRTSD	r,r/m	1	27	24	FMUL	
SQRTPD	r,r/m	2	48	48	FMUL	
RSQRTSS	r,r/m	1	3	1	FMUL	
RSQRTPS	r,r/m	2	3	2	FMUL	
Other						
LDMXCSR	m	8		9		
STMXCSR	m	3		10		

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the oper-

and is listed as register or memory (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However,

the throughput may be limited by other bottlenecks in the pipeline.

Execution unit: Indicates which execution unit is used for the macro-operations. ALU means any

of the three integer ALU's. ALU0_1 means that ALU0 and ALU1 are both used. AGU means any of the three integer address generation units. FADD means floating point adder unit. FMUL means floating point multiplier unit. FMISC means floating point store and miscellaneous unit. FA/M means FADD or FMUL is used. FANY means any of the three floating point units can be used. Two macro-opera-

tions can execute simultaneously if they go to different execution units.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOV	r,r	1	1	1/3	ALU	
MOV	r,i	1	1	1/3	ALU	
MOV	r8,m8	1	4	1/2	ALU, AGU	Any addr. mode. Add
MOV	r16,m16	1	4	1/2	ALU, AGU	1 clock if code seg-
MOV	r32,m32	1	3	1/2	AGU	ment base ≠ 0
MOV	r64,m64	1	3	1/2	AGU	
MOV	m8,r8H	1	8	1/2	AGU	AH, BH, CH, DH
MOV	m8,r8L	1	3	1/2	AGU	Any other 8-bit reg.
MOV	m16/32/64,r	1	3	1/2	AGU	Any addressing mode
MOV	m,i	1	3	1/2	AGU	
MOV	m64,i32	1	3	1/2	AGU	
MOV	r,sr	1	3-4	1/2		
MOV	sr,r/m	6	8-26	8		from AMD manual
MOVNTI	m,r	1		1	AGU	
MOVZX, MOVSX	r,r	1	1	1/3	ALU	

MOVZX, MOVSX MOVSXD MOVSXD CMOVcc CMOVcc XCHG XCHG XLAT PUSH PUSH PUSH	r,m r64,r32 r64,m32 r,r r,m r,r r,m	1 1 1 1 1 1 2 2 2 1 1 1 2	4 1 4 1 4 1 21 5	1/2 1/3 1/2 1/3 1/2 1 1 19 5 1/2 1/2	ALU, AGU	Timing depends on hw
PUSH PUSHF(D/Q) PUSHA(D) POP POP POP POP POPF(D/Q) POPA(D) LEA LEA LEA LAHF SAHF SALC LDS, LES,	r m DS/ES/FS/GS SS r16,[m] r32/64,[m] r32/64,[m]	2 9 9 1 3 6 10 28 9 2 1 1 4 1 1	6 3 10 26 16 6 3 1 2 3 1	1 3 6 1/2 1 8 16 11 6 1 1/3 1/3 2 1/3 1	ALU, AGU ALU ALU AGU ALU	Any address size ≤ 2 source operands W. scale or 3 opr.
BSWAP PREFETCHNTA PREFETCHT0/1/2 PREFETCH(W) SFENCE LFENCE MFENCE IN OUT	r m m m r,i/DX i/DX,r	1 1 1 6 1 4 ~270 ~300	1	1/3 1/2 1/2 1/2 8 1 33	ALU AGU AGU AGU	3DNow
Arithmetic instruction ADD, SUB ADD, SUB ADD, SUB ADC, SBB ADC, SBB ADC, SBB CMP CMP INC, DEC, NEG INC, DEC, NEG AAA, AAS DAA DAS AAD AAM	r,r/i r,m m,r r,r/i r,m m,r/i r,r/i r,m r	1 1 1 1 1 1 1 1 1 9 12 16 4 30	1 4 1 4 1 7 5 6 7 5	1/3 1/2 1 1/3 1/2 1 1/3 1/2 1/3 2 5 6 7 5 13	ALU ALU, AGU ALU, AGU ALU, AGU ALU, AGU ALU, AGU ALU, AGU ALU ALU, AGU ALU ALU ALU ALU ALU ALU ALU	

MUL, IMUL	r8/m8	1	3	1	ALU0	
MUL, IMUL	r16/m16	3	3	2	ALU0 1	latanay ay=3 dy=4
· ·					_	latency ax=3, dx=4
MUL, IMUL	r32/m32	2	3	1	ALU0_1	
MUL, IMUL	r64/m64	2	4	2	ALU0_1	latency rax=4, rdx=5
IMUL	r16,r16/m16	1	3	1	ALU0	
IMUL	r32,r32/m32	1	3	1	ALU0	
IMUL	r64,r64/m64	1	4	2	ALU0_1	
IMUL	r16,(r16),i	2	4	1	ALU0	
IMUL	r32,(r32),i	1	3	1	ALU0	
IMUL	r64,(r64),i	1	4	2	ALU0	
IMUL	r16,m16,i	3		2	ALU0	
IMUL	r32,m32,i	3		2	ALU0	
IMUL	r64,m64,i	3		2	ALU0_1	
DIV	r8/m8	3	17	17	ALU ALU	
				19		
IDIV	r8		19		ALU	
IDIV	m8		22	22	ALU	
DIV	r16/m16		15-30	15-30	ALU	Depends on number
DIV	r32/m32		15-46	15-46	ALU	of significant bits in
DIV	r64/m64		15-78	15-78	ALU	absolute value of divi-
IDIV	r16/m16		24-39	24-39	ALU	dend. See AMD soft-
IDIV	r32/m32		24-55	24-55	ALU	ware optimization guide.
IDIV	r64/m64		24-87	24-87	ALU	guide.
CBW, CWDE, CDQE		1	1	1/3	ALU	
CWD, CDQ, CQO		1	1	1/3	ALU	
Logic instructions						
AND, OR, XOR	r,r	1	1	1/3	ALU	
AND, OR, XOR	r,m	1		1/2	ALU, AGU	
AND, OR, XOR	m,r	1	4	1	ALU, AGU	
TEST	r,r	1	1	1/3	ALU	
TEST		1	'	1/2	ALU, AGU	
NOT	r,m	1	1		ALU, AGU ALU	
1	r			1/3		
NOT	m	1	7	1	ALU, AGU	
SHL, SHR, SAR	r,i/CL	1	1	1/3	ALU	
ROL, ROR	r,i/CL	1	1	1/3	ALU	
RCL, RCR	r,1	1	1	1	ALU	
RCL	r,i	9	3	3	ALU	
RCR	r,i	7	3	3	ALU	
RCL	r,CL	9	4	4	ALU	
RCR	r,CL	7	3	3	ALU	
SHL,SHR,SAR,ROL,RO	m,i /CL	1	7	1	ALU, AGU	
RCL, RCR	m,1	1	7	1	ALU, AGU	
RCL	m,i	10	7	5	ALU, AGU	
RCR	m,i	9	7	6	ALU, AGU	
RCL	m,CL	9	8	6	ALU, AGU	
RCR	m,CL	8	7	5	ALU, AGU	
SHLD, SHRD	r,r,i	6	3	2	ALU	
		7	3	3	ALU	
SHLD, SHRD	r,r,cl m.r.i/Cl	<i>7</i> 8		6		
SHLD, SHRD	m,r,i/CL		7,5		ALU, AGU	
BT	r,r/i	1	1	1/3	ALU	
BT	m,i	1	_	1/2	ALU, AGU	
BT	m,r	5	7	2	ALU, AGU	
BTC, BTR, BTS	r,r/i	2	2	1/3	ALU	

BTC	m,i	5	9	1,5	ALU, AGU	
BTR, BTS	m,i	4	9	1,5	ALU, AGU	
BTC		8	8	10	ALU, AGU	
	m,r	1	8	7		
BTR, BTS	m,r	8			ALU, AGU	
BSF	r,r	6	4	3	ALU	
BSR	r,r	7	4	3	ALU	
BSF	r,m	7	7	3	ALU, AGU	
BSR	r,m	8	7	3	ALU, AGU	
POPCNT	r,r/m	1 1	2	1	ALU	SSE4.A / SSE4.2
LZCNT	r,r/m	1	2	1	ALU	SSE4.A, AMD only
SETcc	r	1 1	1	1/3	ALU	OOL4.A, AIVID ONLY
			'			
SETCC	m	1		1/2	ALU, AGU	
CLC, STC		1		1/3	ALU	
CMC		1	1	1/3	ALU	
CLD		1		1/3	ALU	
STD		2		2/3	ALU	
Control transfer instru						
JMP	short/near	1		2	ALU	
JMP	far	16-20	23-32			low values = real mode
JMP	r	1		2	ALU	
JMP	m(near)	1 1		2	ALU, AGU	
JMP	m(far)	17-21	25-33		,	low values = real mode
Jcc	short/near	1		1/3 - 2	ALU	recip. thrp.= 2 if jump
	short	2		2/3 - 2	ALU	1
J(E/R)CXZ		1				recip. thrp.= 2 if jump
LOOP	short	7	_	3	ALU	
CALL	near	3	2	2	ALU	
CALL	far	16-22	23-32			low values = real mode
CALL	r	4	3	3	ALU	
CALL	m(near)	5	3	3	ALU, AGU	
CALL	m(far)	16-22	24-33			low values = real mode
RETN	, ,	2	3	3	ALU	
RETN	i	2	3	3	ALU	
RETF		15-23	24-35		0	low values = real mode
RETF	i	15-24	24-35			low values = real mode
		1				
IRET		32	81			real mode
INT	i	33	42			real mode
BOUND	m	6		2		values are for no jump
INTO		2		2		values are for no jump
String instructions						
LODS		4	2	2		
REP LODS		5	2	2		values are per count
STOS		4	2	2		
REP STOS		2	1	1		values are per count
MOVS		7	3	3		Sales and por double
REP MOVS				1		values are per count
		3	1			values are per count
SCAS		5	2	2		
REP SCAS		5	2	2		values are per count
CMPS		7	3	3		
REP CMPS		3	1	1		values are per count
				'		· ·

Other					
NOP (90)	1	0	1/3	ALU	
Long NOP (0F 1F)	1	0	1/3	ALU	
ENTER	i,0	12		12	
LEAVE	2		3		3 ops, 5 clk if 16 bit
CLI	8-9		5		
STI	16-17		27		
CPUID	22-50	47-164			
RDTSC	30		67		
RDPMC	13		5		

Floating point x87 instructions

Floating point x87 instructions									
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes			
Move instructions									
FLD	r	1	2	1/2	FA/M				
FLD	m32/64	1	4	1/2	FANY				
FLD	m80	7	13	4					
FBLD	m80	20	94	30					
FST(P)	r	1	2	1/2	FA/M				
FST(P)	m32/64	1	2	1	FMISC				
FSTP	m80	10	8	7					
FBSTP	m80	218	167	163					
FXCH	r	1	0	1/3					
FILD	m	1	6	1	FMISC				
FIST(P)	m	1	4	1	FMISC				
FLDZ, FLD1		1		1	FMISC				
						Low latency immedi-			
FCMOVcc	st0,r	9			,	ately after FCOMI			
FFREE	r	1		1/3	FANY				
FINCSTP, FDECSTP		1	0	1/3	FANY				
EN OTOM				4.0	514100 1111	Low latency immediately			
FNSTSW	AX	2		16	FMISC, ALU	after FCOM FTST			
FSTSW	AX	3		14	FMISC, ALU	do.			
FNSTSW	m16	2		9	FMISC, ALU	do.			
FNSTCW	m16	3		2	FMISC, ALU				
FLDCW	m16	12		14	FMISC, ALU	faster if unchanged			
Arithmetic instruction	 S								
FADD(P),FSUB(R)(P)	r/m	1	4	1	FADD				
FIADD,FISUB(R)	m	2		4	FADD,FMISC				
FMUL(P)	r/m	1	4	1	FMUL				
FIMUL	m	2		4	FMUL,FMISC				
FDIV(R)(P)	r/m	1	?	24	FMUL				
FIDIV(R)	m	2	31	24	FMUL,FMISC				
FABS, FCHS		1	2	2	FMUL				
FCOM(P), FUCOM(P)	r/m	1		1	FADD				
FCOMPP, FUCOMPP		1		1	FADD				
FCOMI(P)	r	1		1	FADD				
FICOM(P)	m	2		1	FADD, FMISC				
FTST		1		1	FADD				

FXAM FRNDINT FPREM FPREM1		2 6 1		1 37 7 7	FMISC, ALU FMUL FMUL	
Math						
FSQRT		1	35	35	FMUL	
FLDPI, etc.		1	33	1	FMISC	
FSIN		45	~51?	ı	TIVIIOC	
FCOS		51	~90?			
FSINCOS		76	~125?			
FPTAN		45	~119			
FPATAN		9	151?	45?		
FSCALE		5	9	29		
FXTRACT		11	9	41		
F2XM1		8	65	30?		
FYL2X		8	13	30?		
FYL2XP1		12	114	44?		
Other						
FNOP		1	0	1/3	FANY	
(F)WAIT		1	0	1/3	ALU	
FNCLEX		8		28	FMISC	
FNINIT		26		103	FMISC	
FNSAVE	m	77	162	149		
FRSTOR	m	70	133	149		
FXSAVE	m	61	63	58		
FXRSTOR	m	85	89	79		

Integer MMX and XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVD	r32, mm	1	3	1	FADD	
MOVD	mm, r32	2	6	3		
MOVD	mm,m32	1	4	1/2	FANY	
MOVD	r32, xmm	1	3	1	FADD	
MOVD	xmm, r32	2	6	3		
MOVD	xmm,m32	1	2	1/2		
MOVD	m32,mm/x	1	2	1	FMISC	
						Moves 64 bits.Name
MOVD (MOVQ)	r64,(x)mm	1	3	1	FADD	of instruction differs
MOVD (MOVQ)	mm,r64	2	6	3		do.
MOVD (MOVQ)	xmm,r64	2	6	3	FMUL, ALU	do.
MOVQ	mm,mm	1	2	1/2	FA/M	
MOVQ	xmm,xmm	1	2,5	1/3	FANY	
MOVQ	mm,m64	1	4	1/2	FANY	
MOVQ	xmm,m64	1	2	1/2	?	
MOVQ	m64,(x)mm	1	2	1	FMISC	
MOVDQA	xmm,xmm	1	2,5	1/3	FANY	
MOVDQA	xmm,m	1	2	1/2	?	

MOVDQA	m,xmm	2	2	1	FMUL,FMISC	
MOVDQU	xmm,m	1	2	1/2		
MOVDQU	m,xmm	3	3	2		
MOVDQ2Q	mm,xmm	1	2	1/3	FANY	
MOVQ2DQ	xmm,mm	1	2	1/3	FANY	
MOVNTQ	m,mm	1		1	FMISC	
MOVNTDQ	m,xmm	2		1	FMUL,FMISC	
PACKSSWB/DW						
PACKUSWB	mm,r/m	1	2	1/2	FA/M	
PACKSSWB/DW	,					
PACKUSWB	xmm,r/m	1	3	1/2	FA/M	
PUNPCKH/LBW/WD/	,					
DQ	mm,r/m	1	2	1/2	FA/M	
PUNPCKH/LBW/WD/	,					
DQ	xmm,r/m	1	3	1/2	FA/M	
PUNPCKHQDQ	xmm,r/m	1	3	1/2	FA/M	
PUNPCKLQDQ	xmm,r/m	1	3	1/2	FA/M	
PSHUFD	xmm,xmm,i	1	3	1/2	FA/M	
PSHUFW	mm,mm,i	1	2	1/2	FA/M	
PSHUFL/HW	xmm,xmm,i	1	2	1/2	FA/M	
MASKMOVQ	mm,mm	32		13	I AVIVI	
MASKMOVDQU	xmm,xmm	64		24		
PMOVMSKB			2		FADD	
	r32,mm/xmm	1	3	1	FADD	
PEXTRW	r32,(x)mm,i	2	6	1	E A /A 4	
PINSRW	(x)mm,r32,i	2	9	3	FA/M	00544 4445 1
INSERTQ	xmm,xmm	3	6	2	FA/M	SSE4.A, AMD only
INSERTQ	xmm,xmm,i,i	3	6	2	FA/M	SSE4.A, AMD only
EXTRQ	xmm,xmm	1	2	1/2	FA/M	SSE4.A, AMD only
EXTRQ	xmm,xmm,i,i	1	2	1/2	FA/M	SSE4.A, AMD only
Arithmetic instruction	s					
PADDB/W/D/Q						
PADDSB/W						
PADDUSB/W						
PSUBB/W/D/Q PSUBSB/W						
PSUBUSB/W			_			
	mm/xmm,r/m	1	2	1/2	FA/M	
PCMPEQ/GT B/W/D	mm/xmm,r/m	1	2	1/2	FA/M	
PMULLW PMULHW						
PMULHUW						
PMULUDQ	mm/xmm,r/m	1	3	1	FMUL	
PMADDWD	mm/xmm,r/m	1	3	1	FMUL	
PAVGB/W	mm/xmm,r/m	1	2	1/2	FA/M	
PMIN/MAX SW/UB	mm/xmm,r/m	1	2	1/2	FA/M	
PSADBW	mm/xmm,r/m	1	3	1	FADD	
Logic						
PAND PANDN POR						
PXOR	mm/xmm,r/m	1	2	1/2	FA/M	
PSLL/RL W/D/Q						
PSRAW/D	mm,i/mm/m	1	2	1/2	FA/M	
PSLL/RL W/D/Q						
PSRAW/D	x,i/(x)mm	1	3	1/2	FA/M	

PSLLDQ, PSRLDQ	xmm,i	1	3	1/2	FA/M	
Other						
EMMS		1		1/3	FANY	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move instructions						
MOVAPS/D	r,r	1	2,5	1/2	FANY	
MOVAPS/D	r,m	1	2	1/2	?	
MOVAPS/D	m,r	2	2	1	FMUL,FMISC	
MOVUPS/D	r,r	1	2,5	1/2	FANY	
MOVUPS/D	r,m	1	2	1/2	?	
MOVUPS/D	m,r	3	3	2	FMISC	
MOVSS/D	r,r	1	2	1/2	FA/M	
MOVSS/D	r,m	1	2	1/2	?	
MOVSS/D	m,r	1	2	1	FMISC	
MOVHLPS, MOVLHPS	r,r	1	3	1/2	FA/M	
MOVHPS/D, MOVLPS/D	r,m	1	4	1/2	FA/M	
MOVHPS/D,	,					
MOVLPS/D	m,r	1		1	FMISC	
MOVNTPS/D	m,r	2		3	FMUL,FMISC	
MOVNTSS/D	m,r	1		1	FMISC	SSE4.A, AMD only
MOVMSKPS/D	r32,r	1	3	1	FADD	
SHUFPS/D	r,r/m,i	1	3	1/2	FA/M	
UNPCK H/L PS/D	r,r/m	1	3	1/2	FA/M	
Conversion						
CVTPS2PD	r,r/m	1	2	1	FMISC	
CVTPD2PS	r,r/m	2	7	1		
CVTSD2SS	r,r/m	3	8	2		
CVTSS2SD	r,r/m	3	7	2		
CVTDQ2PS	r,r/m	1	4	1	FMISC	
CVTDQ2PD	r,r/m	1	4	1	FMISC	
CVT(T)PS2DQ	r,r/m	1	4	1	FMISC	
CVT(T)PD2DQ	r,r/m	2	7	1		
CVTPI2PS	xmm,mm	2	7	1	EN 4100	
CVT/I2PD	xmm,mm	1	4	1	FMISC	
CVT(T)PS2PI	mm,xmm	1	4	1	FMISC	
CVT(T)PD2PI	mm,xmm	2	7	1		
CVTSI2SS	xmm,r32	3	14	3		
CVT/SI2SD	xmm,r32	3	14	3		
CVT(T)SD2SI	r32,xmm	2	8	1	FADD, FMISC	
CVT(T)SS2SI	r32,xmm	2	8	1	FADD,FMISC	
Arithmetic				_	EADD	
ADDSS/D SUBSS/D	r,r/m	1	4	1	FADD	

ADDPS/D SUBPS/D	r,r/m	1	4	1	FADD	
MULSS/D	r,r/m	1	4	1	FMUL	
MULPS/D	r,r/m	1	4	1	FMUL	
DIVSS	r,r/m	1	16	13	FMUL	
DIVPS	r,r/m	1	18	15	FMUL	
DIVSD	r,r/m	1	20	17	FMUL	
DIVPD	r,r/m	1	20	17	FMUL	
RCPSS RCPPS	r,r/m	1	3	1	FMUL	
MAXSS/D MINSS/D	r,r/m	1	2	1	FADD	
MAXPS/D MINPS/D	r,r/m	1	2	1	FADD	
CMPccSS/D	r,r/m	1	2	1	FADD	
CMPccPS/D	r,r/m	1	2	1	FADD	
COMISS/D						
UCOMISS/D	r,r/m	1		1	FADD	
Logic						
ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	r,r/m	1	2	1/2	FA/M	
Math						
SQRTSS	r,r/m	1	19	16	FMUL	
SQRTPS	r,r/m	1	21	18	FMUL	
SQRTSD	r,r/m	1	27	24	FMUL	
SQRTPD	r,r/m	1	27	24	FMUL	
RSQRTSS	r,r/m	1	3	1	FMUL	
RSQRTPS	r,r/m	1	3	1	FMUL	
Other						
LDMXCSR	m	12	12	10		
STMXCSR	m	3	12	11		

Obsolete 3DNow instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution unit	Notes
Move and convert instructions						
PF2ID	mm,mm	1	5	1	FMISC	
PI2FD	mm,mm	1	5	1	FMISC	
PF2IW	mm,mm	1	5	1	FMISC	3DNow extension
PI2FW	mm,mm	1	5	1	FMISC	3DNow extension
PSWAPD	mm,mm	1	2	1/2	FA/M	3DNow extension
Integer instructions						
PAVGUSB	mm,mm	1	2	1/2	FA/M	
PMULHRW	mm,mm	1	3	1	FMUL	
Floating point instructions						
PFADD/SUB/SUBR	mm,mm	1	4	1	FADD	
PFCMPEQ/GE/GT	mm,mm	1	2	1	FADD	
PFMAX/MIN	mm,mm	1	2	1	FADD	
PFMUL	mm,mm	1	4	1	FMUL	

PFACC	mm,mm	1	4	1	FADD	
PFNACC, PFPNACC	mm,mm	1	4	1	FADD	3DNow extension
PFRCP	mm,mm	1	3	1	FMUL	
PFRCPIT1/2	mm,mm	1	4	1	FMUL	
PFRSQRT	mm,mm	1	3	1	FMUL	
PFRSQIT1	mm,mm	1	4	1	FMUL	
Other						
FEMMS	mm,mm	1		1/3	FANY	

Thank you to Xucheng Tang for doing the measurements on the K10.

AMD Bulldozer

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, x = 128 bit xmm register, y = 256 bit ymm register, m = any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the listing

for register and memory operand are joined (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe or unit is used for the macro-operations:

Integer pipes:

EX0: integer ALU, division

EX1: integer ALU, multiplication, jump EX01: can use either EX0 or EX1 AG01: address generation unit 0 or 1 Floating point and vector pipes:

P0: floating point add, mul, div, convert, shuffle, shift

P1: floating point add, mul, div, shuffle, shift

P2: move, integer add, boolean P3: move, integer add, boolean, store

P01: can use either P0 or P1 P23: can use either P2 or P3

Two macro-operations can execute simultaneously if they go to different

execution pipes

Domain: Tells which execution unit domain is used:

ivec: integer vector execution unit. fp: floating point execution unit. fma: floating point multiply/add subunit.

inherit: the output operand inherits the domain of the input operand.

ivec/fma means the input goes to the ivec domain and the output comes from the

fma domain.

There is an additional latency of 1 clock cycle if the output of an ivec instruction goes to the input of a fp or fma instruction, and when the output of a fp or fma instruction goes to the input of an ivec or store instruction. There is no latency between the fp and fma units. All other latencies after memory load and before

memory store instructions are included in the latency counts.

An fma instruction has a latency of 5 if the output goes to another fma instruction, 6 if the output goes to an fp instruction, and 6+1 if the output goes to an ivec or

store instruction.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions						
MOV	r,r	1	1	0.5	EX01	
MOV	r,i	1	1	0.5	EX01	
MOV	r,m	1	4	0.5	AG01	all addr. modes
MOV	m,r	1	4	1	EX01 AG01	all addr. modes
MOV	m,i	1		1		
MOVNTI	m,r	1	5	2		
MOVZX, MOVSX	r,r	1	1	0.5	EX01	
MOVSX	r,m	1	5	0.5	EX01	
MOVZX	r,m	1	4	0.5	EX01	
MOVSXD	r64,r32	1	1	0.5	EX01	
MOVSXD	r64,m32	1	5	0.5	EX01	
CMOVcc	r,r	1	1	0.5	EX01	
CMOVcc	r,m	1		0.5	EX01	
XCHG	r,r	2	1	1	EX01	
	,,,	_				Timing depends on
XCHG	r,m	2	~50	~50	EX01	hw
XLAT		2	6	2		
PUSH	r	1		1		
PUSH	i	1		1		
PUSH	m	2		1.5		
PUSHF(D/Q)		8		4		
PUSHA(D)		9		9		
POP	r	1		1		
POP	m	2		1		
POPF(D/Q)		34		19		
POPA(D)		14		8		
LEA	r16,[m]	2	2-3		EX01	any addr. size
LEA	r32,[m]	2	2-3		EX01	16 bit addr. size scale factor > 1
LEA	r32/64,[m]	1	2	0.5	EX01	or 3 operands
LEA	r32/64,[m]	1	1	0.5	EX01	all other cases
LAHF		4	3	2		
SAHF		2	2	1		
SALC		1	1	1		
BSWAP	r	1	1	0.5	EX01	
PREFETCHNTA	m	1		0.5		
PREFETCHT0/1/2	m	1		0.5		
PREFETCH/W	m	1		0.5		AMD 3DNow
SFENCE		6		89		
LFENCE		1		0,25		
MFENCE		6		89		
Arithmetic instructio		_				
ADD, SUB	r,r	1	1	0.5	EX01	
ADD, SUB	r,i	1	1	0.5	EX01	

ADD, SUB	r,m	1		0.5	EX01
ADD, SUB	m,r	1	7-8	1	EX01
ADD, SUB	m,i	1	7-8	1	EX01
ADC, SBB	r,r	1	1		EX01
ADC, SBB	r,i	1	1		EX01
ADC, SBB	r,m	1	1	1	EX01
ADC, SBB	m,r	1	9	1	EX01
ADC, SBB	m,i	1	9	1	EX01
CMP	r,r	1	1	0.5	EX01
CMP	r,i	1	1	0.5	EX01
CMP	r,m	1	'	0.5	EX01
INC, DEC, NEG	r	1	1	0.5	EX01
		1	7-8		
INC, DEC, NEG	m			1	EX01
AAA, AAS		10	6		
DAA		16	9		
DAS		20	10		
AAD		4	6		
AAM		9	20	20	
MUL, IMUL	r8/m8	1	4	2	EX1
MUL, IMUL	r16/m16	2	4	2	EX1
MUL, IMUL	r32/m32	1	4	2	EX1
MUL, IMUL	r64/m64	1	6	4	EX1
IMUL	r16,r16/m16	1	4	2	EX1
IMUL	r32,r32/m32	1	4	2	EX1
IMUL	r64,r64/m64	1	6	4	EX1
IMUL	r16,(r16),i	2	5	2	EX1
IMUL	r32,(r32),i	1	4	2	EX1
IMUL	r64,(r64),i	1	6	4	EX1
IMUL	r16,m16,i	2		2	EX1
IMUL	r32,m32,i	2		2	EX1
IMUL	r64,m64,i	2		4	EX1
DIV	r8/m8	14	20	20	EX0
DIV	r16/m16	18	15-27	15-28	EX0
DIV	r32/m32	16	16-43	16-43	EX0
DIV	r64/m64	16	16-75	16-75	EX0
IDIV	r8/m8	33	23	20	EX0
IDIV	r16/m16	36	23-33	20-27	EX0
IDIV	r32/m32	36	22-48	20-27	EX0
IDIV	r64/m64	36	22-79	20-45	EX0
CBW, CWDE, CDQE	104/11104	1	1	20-73	EX01
		1	1	0.5	EX01
CDQ, CQO				0.5	
CMD		2	1	1	EX01
Logio inctructions					
Logic instructions		_	_	0.5	EV04
AND, OR, XOR	r,r	1	1	0.5	EX01
AND, OR, XOR	r,i	1	1	0.5	EX01
AND, OR, XOR	r,m	1		0.5	EX01
AND, OR, XOR	m,r	1	7-8	1	EX01
AND, OR, XOR	m,i	1	7-8	1	EX01
TEST	r,r	1	1	0.5	EX01

TEST	r,i	1	1	0.5	EX01	
TEST	m,r	1		0.5	EX01	
TEST	m,i	1		0.5	EX01	
NOT	r	1	1	0.5	EX01	
NOT	m	1	7	1	EX01	
SHL, SHR, SAR	r,i/CL	1	1	0.5	EX01	
ROL, ROR	r,i/CL	1	1	0.5	EX01	
RCL	r,1	1	1	0.0	EX01	
RCL	r,i	16	8		EX01	
RCL	r,cl	17	9		EX01	
RCR	r,1	1	1		EX01	
RCR	r,i	15	8		EX01	
RCR	r,cl	16	8		EX01	
SHLD, SHRD	r,r,i	6	3	3	EX01	
SHLD, SHRD		7	4	3,5	EX01	
SHLD, SHRD	r,r,cl	8	4		EX01	
BT	m,r,i/CL		4	3,5		
	r,r/i	1	1	0.5	EX01	
BT	m,i	1		0.5	EX01	
BT DTD DTD	m,r	7		3,5	EX01	
BTC, BTR, BTS	r,r/i	2	2	1	EX01	
BTC, BTR, BTS	m,i	4		2	EX01	
BTC, BTR, BTS	m,r	10	_	5	EX01	
BSF	r,r	6	3	3	EX01	
BSF	r,m	8	4	4	EX01	
BSR	r,r	7	4	4	EX01	
BSR	r,m	9		5	EX01	
LZCNT	r,r	1	2	2	EX0	SSE4.A
POPCNT	r,r/m	1	4	2	EX1	SSE4.2
SETcc	r	1	1	0.5	EX01	
SETcc	m	1		1	EX01	
CLC, STC		1		0.5	EX01	
CMC		1	1		EX01	
CLD		2		3		
STD		2		4		
POPCNT	r16/32,r16/32	1	4	2		SSE4A
POPCNT	r64,r64	1	4	4		SSE4A
LZCNT	r,r	2	2	2		SSE4A
EXTRQ	x,i,i	1	3	1	P1	SSE4A
EXTRQ	x,x	1	3	1	P1	SSE4A
INSERTQ	x,x,i,i	1	3	1	P1	SSE4A
INSERTQ	x,x	1	3	1	P1	SSE4A
Control transfer instru						
JMP	short/near	1		2	EX1	
JMP	r	1		2	EX1	
JMP	m	1		2	EX1	
Jcc	short/near	1		1-2	EX1	2 if jumping
fused CMP+Jcc	short/near	1		1-2	EX1	2 if jumping
J(E/R)CXZ	short	1		1-2	EX1	2 if jumping
LOOP	short	1		1-2	EX1	2 if jumping
LOOPE LOOPNE	short	1		1-2	EX1	2 if jumping

CALL	near	2		2	EX1	
CALL	r	2		2	EX1	
CALL		3		2	EX1	
	m			2		
RET		1			EX1	
RET	i	4		2-3	EX1	
BOUND	m	11		5		for no jump
INTO		4		24		for no jump
String instructions						
LODS		3		3		
REP LODS		6n		3n		
STOS		3		3		
REP STOS		2n		2n		small n
REP STOS		3 per 16B		3 per 16B		best case
MOVS		5 per 10b		3 per 10B		Desi Case
REP MOVS						amall n
		2n		2n		small n
REP MOVS		4 per 16B		3 per 16B		best case
SCAS		3		3		
REP SCAS		7n		4n		
CMPS		6		3		
REP CMPS		9n		4n		
Synchronization						
LOCK ADD	m,r	1	~55			
XADD	m,r	4	10			
LOCK XADD	m,r	4	~51			
CMPXCHG	m8,r8	5	15			
LOCK CMPXCHG	m8,r8	5	~51			
			~51 14			
CMPXCHG	m,r16/32/64	6				
LOCK CMPXCHG	m,r16/32/64	6	~52			
CMPXCHG8B	m64	18	15			
LOCK CMPXCHG8B	m64	18	~53			
CMPXCHG16B	m128	22	52			
LOCK CMPXCHG16B	m128	22	~94			
Other						
NOP (90)		1		0.25	none	
Long NOP (0F 1F)		1		0.25	none	
PAUSE		40		43		
ENTER	a,0	13		22		
ENTER	a,b	11+5b		16+4b		
LEAVE	-,-	2		4		
CPUID		37-63		112-280		
RDTSC		36		42		
RDPMC		22		300		
	*33 *0		2			
CRC32	r32,r8	3	3	2		
CRC32	r32,r16	5	5	5		
CRC32	r32,r32	5	6	6		
XGETBV		4		31		

Floating point x87 instructions								
Instruction	Operands	Ops	Latency	Reciprocal	Execution	Domain, notes		
Move instructions				throughput	pipes			
FLD	r	1	2	0.5	P01	fp		
FLD	m32/64	1	8	1	101	fp		
FLD	m80	8	14	4		fp		
FBLD	m80	60	61	40	P0 P1 P2 P3	fp		
FST(P)	r	1	2	0.5	P01	fp		
FST(P)	m32/64	2	8	1	101	fp		
FSTP	m80	13	9	20		fp		
FBSTP	m80	239	240	244	P0 P1 F3	fp		
FXCH	r	1	0	0.5	P01	inherit		
FILD	m	1	12	1	F3			
		2	8	1	P0 F3	fp		
FIST(P) FLDZ, FLD1	m		0		P0 F3 P01	fp		
1	-40	1	_	0.5		fp		
FCMOVcc	st0,r	8	3	3	P0 P1 F3	fp		
FFREE	r	1		0.25	none	,		
FINCSTP, FDECSTP		1	0	0.25	none	inherit		
FNSTSW	AX	4	~13	22	P0 P2 P3			
FNSTSW	m16	3	~13	19	P0 P2 P3			
FLDCW	m16	1		3				
FNSTCW	m16	3		2				
Arithmetic instructions	 2							
FADD(P),FSUB(R)(P)	r/m	1	5-6	1	P01	fma		
FIADD,FISUB(R)	m	2		2	P01	fma		
FMUL(P)	r/m	1	5-6	1	P01	fma		
FIMUL	m	2	3-0	2	P01	fma		
FDIV(R)(P)	r	1	10-42	5-18	P01	fp		
FDIV(R)	m	2	10-42	3-10	P01	fp		
FIDIV(R)		2			P01			
, ,	m	1	2	0.5	P01	fp		
FABS, FCHS	r/m			0.5	P01	fp		
FCOMPR FUCOMPR	1/111	1			P01	fp		
FCOMPP, FUCOMPP	_	1	2	0.5		fp		
FCOM(P)	r	2		1 1	P0 P1 F3	fp		
FICOM(P)	m	2			P01	fp		
FTST		1	20	0.5	P01	fp		
FXAM		1	~20	0.5	P01	fp		
FRNDINT		1	4	1	P0	fp		
FPREM		1	19-62		P0	fp		
FPREM1		1	19-65		P0	fp		
Math								
FSQRT	1	1	10-53		P01			
FLDPI, etc.		1		0.5	P01			
FSIN		10-162	65-210	65-210	P0 P1 P3			
FCOS		160-170	~160	~160	P0 P1 P3			

FSINCOS		12-166	95-160	95-160	P0 P1 P3	
FPTAN		11-190	95-245	95-245	P0 P1 P3	
FPATAN		10-355	60-440	60-440	P0 P1 P3	
FSCALE		8	52		P0 P1 P3	
FXTRACT		12	10	5	P0 P1 P3	
F2XM1		10	64-71		P0 P1 P3	
FYL2X		10-175			P0 P1 P3	
FYL2XP1		10-175			P0 P1 P3	
Other						
FNOP		1		0.25	none	
(F)WAIT		1		0.25	none	
FNCLEX		18		57	P0	
FNINIT		31		170	P0	
FNSAVE	m864	103	300	300	P0 P1 P2 P3	
FRSTOR	m864	76	312	312	P0 P3	

Integer MMX and XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions				0.	• •	
MOVD	r32/64, mm/x	1	8	1		
MOVD	mm/x, r32/64	2	10	1		
MOVD	mm/x,m32	1	6	0.5		
MOVD	m32,mm/x	1	5	1		
MOVQ	mm/x,mm/x	1	2	0.5	P23	
MOVQ	mm/x,m64	1	6	0.5		
MOVQ	m64,mm/x	1	5	1	P3	
MOVDQA	xmm,xmm	1	0	0.25	none	inherit domain
MOVDQA	xmm,m	1	6	0.5		
MOVDQA	m,xmm	1	5	1	P3	
VMOVDQA	ymm,ymm	2	2	0.5	P23	
VMOVDQA	ymm,m256	2	6	1		
VMOVDQA	m256,ymm	4	5	3	P3	
MOVDQU	xmm,xmm	1	0	0.25	none	inherit domain
MOVDQU	xmm,m	1	6	0.5		
MOVDQU	m,xmm	1	5	1	P3	
LDDQU	xmm,m	1	6	0.5		
VMOVDQU	ymm,m256	2	6	1-2		
VMOVDQU	m256,ymm	8	6	10	P2 P3	
MOVDQ2Q	mm,xmm	1	2	0.5	P23	
MOVQ2DQ	xmm,mm	1	2	0.5	P23	
MOVNTQ	m,mm	1	6	2	P3	
MOVNTDQ	m,xmm	1	6	2	P3	
MOVNTDQA	xmm,m	1	6	0.5		
PACKSSWB/DW	(x)mm,r/m	1	2	1	P1	
PACKUSWB	(x)mm,r/m	1	2	1	P1	
PUNPCKH/LBW/WD/D						
Q	(x)mm,r/m	1	2	1 1	P1	

DUNDOKHODO		4	۱ ۵	1	D4	
PUNPCKHQDQ	xmm,r/m	1	2	1	P1	
PUNPCKLQDQ	xmm,r/m	1	2	1	P1	
PSHUFB	(x)mm,r/m	1	3	1	P1	
PSHUFD	xmm,xmm,i	1	2	1	P1	
PSHUFW	mm,mm,i	1	2	1	P1	
PSHUFL/HW	xmm,xmm,i	1	2	1	P1	
PALIGNR	(x)mm,r/m,i	1	2	1	P1	
PBLENDW	xmm,r/m	1	2	0.5	P23	SSE4.1
MASKMOVQ	mm,mm	31	38	37	P3	
MASKMOVDQU	xmm,xmm	64	48	61	P1 P3	
PMOVMSKB	r32,mm/x	2	10	1	P1 P3	
PEXTRB/W/D/Q	r,x/mm,i	2	10	1	P1 P3	AVX
PINSRB/W/D/Q	x/mm,r,i	2	12	2	P1	
PMOVSXBW/BD/BQ/						
WD/WQ/DQ	xmm,xmm	1	2	1	P1	SSE4.1
PMOVZXBW/BD/BQ/W						
D/WQ/DQ	xmm,xmm	1	2	1	P1	SSE4.1
VPCMOV	x,x,x,x/m	1	2	1	P1	AMD XOP
VPCMOV	y,y,y,y/m	2	2	2	P1	AMD XOP
VPPERM	x,x,x,x/m	1	2	1	P1	AMD XOP
Arithmetic instructions	S					
PADDB/W/D/Q/SB/SW						
/USB/USW	(x)mm,r/m	1	2	0.5	P23	
PSUBB/W/D/Q/SB/SW/	, , , ,	_		0.5	Doo	
USB/USW	(x)mm,r/m	1	2	0.5	P23	20050
PHADD/SUB(S)W/D	X,X	3	5	2	P1 P23	SSSE3
PHADD/SUB(S)W/D	x,m	4	5	2	P1 P23	SSSE3
PCMPEQ/GT B/W/D	(x)mm,r/m	1	2	0.5	P23	
PCMPEQQ	(x)mm,r/m	1	2	0.5	P23	SSE4.1
PCMPGTQ	(x)mm,r/m	1	2	0.5	P23	SSE4.2
PMULLW PMULHW PMULHUW PMULHUW PMULHUW PMULHUW PMULHUW PMULUDQ						
PINIOLHOW PINIOLODQ	(x)mm,r/m	4	4	1	P0	
DMIIIID	` '	1	5	1 2	P0	SSE4.1
PMULLD	xmm,r/m	1				
PMULDQ	xmm,r/m	1	4	1	P0	SSE4.1
PMULHRSW	(x)mm,r/m	1	4	1	P0	SSSE3
PMADDWD	(x)mm,r/m	1	4	1	P0	
PMADDUBSW	(x)mm,r/m	1	4	1	P0	
PAVGB/W	(x)mm,r/m	1	2	0.5	P23	
PMIN/MAX SB/SW/ SD	()	_	_	0.5	Doo	
UB/UW/UD	(x)mm,r/m	1	2	0.5	P23	0054.4
PHMINPOSUW	xmm,r/m	2	4	1	P1 P23	SSE4.1
PABSB/W/D	(x)mm,r/m	1	2	0.5	P23	SSSE3
PSIGNB/W/D	(x)mm,r/m	1	2	0.5	P23	SSSE3
PSADBW	(x)mm,r/m	2	4	1	P23	
MPSADBW	x,x,i	8	8	4	P1 P23	SSE4.1
VIDOONAD ALVID IO	, .				Doo	AMD XOP
VPCOMB/W/D/Q	x,x,x/m,i	1	2	0.5	P23	latency 0 if i=6,7
VDCOMUD/M/D/O		4	_	0.5	Doo	AMD XOP
VPCOMUB/W/D/Q	x,x,x/m,i	1	2	0.5	P23	latency 0 if i=6,7

VPHADDBW/BD/BQ/						
WD/WQ/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPHADDUBW/BD/BQ/	7,77111	•	_	0.0	1 20	7 IIVIB 7(G)
WD/WQ/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPHSUBBW/WD/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPMACSWW/WD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSDD	x,x,x/m,x	1	5	2	P0	AMD XOP
VPMACSDQH/L	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSSWW/WD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSSDD	x,x,x/m,x	1	5	2	P0	AMD XOP
VPMACSSDQH/L	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSWD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSSWD	x,x,x/m,x	1	4	1	P0	AMD XOP
Logic						
PAND PANDN POR						
PXOR	(x)mm,r/m	1	2	0.5	P23	
PSLL/RL W/D/Q						
PSRAW/D	(x)mm,r/m	1	3	1	P1	
PSLL/RL W/D/Q	, ,					
PSRAW/D	(x)mm,i	1	2	1	P1	
PSLLDQ, PSRLDQ	xmm,i	1	2	1	P1	
PTEST	xmm,r/m	2		1	P1 P3	SSE4.1
VPROTB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPROTB/W/D/Q	x,x,i	1	2	1	P1	AMD XOP
VPSHAB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPSHLB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
String instructions						
PCMPESTRI	x,x,i	27	17	10	P1 P2 P3	SSE4.2
PCMPESTRM	x,x,i	27	10	10	P1 P2 P3	SSE4.2
PCMPISTRI	x,x,i	7	14	3	P1 P2 P3	SSE4.2
PCMPISTRM	x,x,i	7	7	4	P1 P2 P3	SSE4.2
	7,7,1	•		·	2 . 0	0022
Encryption						
PCLMULQDQ	x,x/m,i	5	12	7	P1	pclmul
AESDEC	X,X111,1	2	5	2	P01	aes
AESDECLAST	X,X X,X	2	5	2	P01	aes
AESENC	X,X X,X	2	5	2	P01	aes
AESENCLAST		2	5	2	P01	aes
AESIMC	X,X	1	5	1	P01	
AESKEYGENASSIST	X,X	-				aes
AESKETGENASSIST	x,x,i	1	5	1	P0	aes
Other						
EMMS		1		0.25		

Floating point XMM and YMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes
Move instructions						

MOVAPS/D				0.05		
MOVUPS/D	X,X	1	0	0.25	none	inherit domain
VMOVAPS/D	y,y	2	2	0.5	P23	ivec
MOVAPS/D		_	_	0.5		
MOVUPS/D	x,m128	1	6	0.5		
VMOVAPS/D VMOVUPS/D	v m256	2	6	1-2		
	y,m256		0	1-2		
MOVAPS/D MOVUPS/D	m128,x	1	5	1	P3	
VMOVAPS/D	m256,y	4	5	3	P3	
VMOVUPS/D	m256,y	8	6	10	P2 P3	
MOVSS/D	X,X	1	2	0.5	P01	fp
MOVSS/D	x,m32/64		6	0.5	101	ıρ
MOVSS/D	m32/64,x		5	1		
MOVHPS/D	11132/04,8	I	5	ı		
MOVLPS/D	x,m64	1	7	1		
MOVHPS/D	m64,x	2	8	1	P1 P3	
MOVLPS/D	m64,x	1	7	1	P3	
MOVLHPS MOVHLPS	X,X	1	2	1	P1	ivec
MOVMSKPS/D	r32,x	2	10	1	P1 P3	1000
VMOVMSKPS/D	r32,y	_	10		1113	
MOVNTPS/D	m128,x	1	6	2	P3	
VMOVNTPS/D	m256,y	'		_	1 3	
MOVNTSS/SD	m,x	1		4	P3	SSE4A
SHUFPS/D	x,x/m,i		2	1	P1	ivec
VSHUFPS/D	y,y,y/m,i	2	2	2	P1	ivec
VPERMILPS/PD	x,x,x/m	1	3	1	P1	ivec
VPERMILPS/PD	y,y,y/m	2	3	2	P1	ivec
VPERMILPS/PD	x,x/m,i	1	2	1	P1	ivec
VPERMILPS/PD	y,y/m,i	2	2	2	P1	ivec
VPERM2F128	y,y,111,1 y,y,y,i	8	4	3	P23	ivec
VPERM2F128	y,y,y,i y,y,m,i	10	_	4	P23	ivec
BLENDPS/PD	x,x/m,i	1	2	0.5	P23	ivec
VBLENDPS/PD	y,y,y/m,i	2	2	1	P23	ivec
BLENDVPS/PD	x,x/m,xmm0	1	2	1	P1	ivec
VBLENDVPS/PD	y,y,y/m,y	2	2	2	P1	ivec
MOVDDUP	x, x, X	1	2	1	P1	ivec
MOVDDUP	x,m64			0.5		IVEC
VMOVDDUP		2	2	2	P1	ivec
VMOVDDUP	y,y y,m256	2		1		IVEC
VBROADCASTSS	x,m32	1	6	0.5		
VBROADCASTSS	y,m32	2	6	0.5	P23	
VBROADCASTSD	1	2	6	0.5	P23	
VBROADCASTF128	y,m64	2	6	0.5	P23	
	y,m128		2		P23	ivoo
MOVSH/LDUP MOVSH/LDUP	x,x x,m128	1		0.5	PI	ivec
			_		D4	ivee
VMOVSH/LDUP	y,y v m256	2 2	2	2	P1	ivec
VMOVSH/LDUP	y,m256		2	1	D4	ivoo
UNPCKH/LPS/D	x,x/m	1	2	1	P1	ivec
VUNPCKH/LPS/D	y,y,y/m	2	2	2	P1	ivec
EXTRACTPS	r32,x,i	2	10	1	P1 P3	

EXTRACTPS	m32,x,i	2	14	1	P1 P3	
VEXTRACTF128	x,y,i	1	2	1	P23	ivec
VEXTRACTF128	m128,y,i	2	7	1	P23	
INSERTPS	x,x,i	1	2	1	P1	
INSERTPS	x,m32,i	1		1	P1	
VINSERTF128	y,y,x,i	2	2	1	P23	ivec
VINSERTF128	y,y,m128,i	2	9	1	P23	
VMASKMOVPS/D	x,x,m128	1	9	0.5	P01	
VMASKMOVPS/D	y,y,m256	2	9	1	P01	
VMASKMOVPS/D	m128,x,x	18	22	7	P0 P1 P2 P3	
VMASKMOVPS/D	m256,y,y	34	25	13	P0 P1 P2 P3	
Conversion						
CVTPD2PS	X,X	2	7	1	P01	fp
VCVTPD2PS	x,x x,y	4	7	2	P01	fp
CVTPS2PD	x,y X,X	2	7	1	P01	fp
VCVTPS2PD		4	7	2	P01	fp
CVTSD2SS	y,x x,x	1	4	1	P0	fp
CVTSB2SS CVTSS2SD	x,x X,X	1	4	1	P0	fp
CVT3323D CVTDQ2PS		1	4	1	P0	fp
VCVTDQ2PS	X,X	2	4	2	P0	fp
CVT(T) PS2DQ	у,у	1	4	1	P0	
VCVT(T) PS2DQ	X,X	2	4	2	P0	fp fn
CVTDQ2PD	у,у	2	7	1	P01	fp
VCVTDQ2PD	X,X	4	8	2	P01	fp
	y,x	2	7	1	P01	fp
CVT(T)PD2DQ	X,X	4				fp
VCVT(T)PD2DQ	x,y		7	2	P01	fp
CVTPI2PS	x,mm	1	4	1	P0	fp
CVT(T)PS2PI	mm,x	1	4	1	P0	fp
CVTPI2PD	x,mm	2	7	1	P0 P1	fp
CVT(T) PD2PI	mm,x	2	7	1	P0 P1	fp
CVTSI2SS	x,r32	2	14	1	P0	fp
CVT(T)SS2SI	r32,x	2	13	1	P0	fp
CVTSI2SD	x,r32/64	2	14	1	P0	fp
CVT(T)SD2SI	r32/64,x	2	13	1	P0	fp
Arithmetic						
ADDSS/D SUBSS/D	x,x/m	1	5-6	0.5	P01	fma
ADDPS/D SUBPS/D	x,x/m	1	5-6	0.5	P01	fma
VADDPS/D VSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
ADDSUBPS/D	x,x/m	1	5-6	0.5	P01	fma
VADDSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
HADDPS/D HSUBPS/D	x,x	3	10	2	P01 P1	ivec/fma
HADDPS/D HSUBPS/D VHADDPS/D	x,m128	4		2	P01 P1	ivec/fma
VHSUBPS/D VHADDPS/D	y,y,y	8	10	4	P01 P1	ivec/fma
VHSUBPS/D	y,y,m	10		4	P01 P1	ivec/fma

MIII OO MIII OD		4	.	0.5	D04	6
MULSS MULSD	x,x/m	1	5-6	0.5	P01	fma
MULPS MULPD	x,x/m	1	5-6	0.5	P01	fma
VMULPS VMULPD	y,y,y/m	2	5-6	1	P01	fma
DIVSS DIVPS	x,x/m	1	9-24	4.5-9.5	P01	fp
VDIVPS	y,y,y/m	2	9-24	9-19	P01	fp
DIVSD DIVPD	x,x/m	1	9-27	4.5-11	P01	fp
VDIVPD	y,y,y/m	2	9-27	9-22	P01	fp
RCPSS/PS	x,x/m	1	5	1	P01	fp
VRCPPS	y,y/m	2	5	2	P01	fp
CMPSS/D						
CMPPS/D	x,x/m	1	2	0.5	P01	fp
VCMPPS/D	y,y,y/m	2	2	1	P01	fp
COMISS/D	_	_				_
UCOMISS/D	x,x/m	2		1	P01 P3	fp
MAXSS/SD/PS/PD	,				D0.4	
MINSS/SD/PS/PD	x,x/m	1	2	0.5	P01	fp
VMAXPS/D VMINPS/D	V V V/m	2	2	1	P01	fn
	y,y,y/m				_	fp
ROUNDSS/SD/PS/PD	x,x/m,i	1	4	1	P0	fp
VROUNDSS/SD/PS/ PD	vv/m i	2	4	2	P0	fo
DPPS	y,y/m,i	16	25	6	P01 P23	fp fma
DPPS	X,X,İ		25	7	-	
	x,m128,i	18	07		P01 P23	fma
VDPPS	y,y,y,i	25	27	13	P01 P3	fma
VDPPS	y,m256,i	29	4-	13	P01 P3	fma
DPPD	x,x,i	15	15	5	P01 P23	fma
DPPD	x,m128,i	17		6	P01 P23	fma
VFMADDSS/SD	x,x,x,x/m	1	5-6	0.5	P01	AMD FMA4
VFMADDPS/PD	x,x,x,x/m	1	5-6	0.5	P01	AMD FMA4
VFMADDPS/PD	y,y,y,y/m	2	5-6	1	P01	AMD FMA4
All other FMA4 instruction	ons: same as a	ibove	1			AMD FMA4
Math						
	y y/m	1	14 15	4 5 12	P01	fn
SQRTSS/PS VSQRTPS	x,x/m	1 2	14-15 14-15	4.5-12 9-24	P01	fp fo
	y,y/m			9-2 4 4.5-16.5		fp
SQRTSD/PD	x,x/m	1	24-26		P01	fp
VSQRTPD	y,y/m	2	24-26	9-33	P01	fp
RSQRTSS/PS	x,x/m	1	5	1	P01	fp
VRSQRTPS	y,y/m	2	5	2	P01	fp
VFRCZSS/SD/PS/PD	X,X	2 3	10	2 2	P01	AMD XOP
VFRCZSS/SD/PS/PD	x,m	3	10	2	P01	AMD XOP
Logic						
Logic AND/ANDN/OR/XORPS/						
PD	x,x/m	1	2	0.5	P23	ivec
VAND/ANDN/OR/XOR	23,28 111		_	0.0	. 20	
PS/PD	y,y,y/m	2	2	1	P23	ivec
	<i>J.J.</i> J			-		
Other						
VZEROUPPER		9		4		32 bit mode
VZEROUPPER		16		5		64 bit mode
1		I .	1	1		ı

VZEROALL		17		6	P2 P3	32 bit mode	
VZEROALL		32		10	P2 P3	64 bit mode	
LDMXCSR	m32	1	10	4	P0 P3		
STMXCSR	m32	2	19	19	P0 P3		
FXSAVE	m4096	67	136	136	P0 P1 P2 P3		
FXRSTOR	m4096	116	176	176	P0 P1 P2 P3		
XSAVE	m	122	196	196	P0 P1 P2 P3		
XRSTOR	m	177	250	250	P0 P1 P2 P3		

AMD Piledriver

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, x = 128 bit xmm register, y = 256 bit ymm register, m = 256 any memory operand including indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency listed does not include the memory operand where the listing

for register and memory operand are joined (r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However,

the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe or unit is used for the macro-operations:

Integer pipes:

EX0: integer ALU, division

EX1: integer ALU, multiplication, jump EX01: can use either EX0 or EX1 AG01: address generation unit 0 or 1 Floating point and vector pipes:

P0: floating point add, mul, div, convert, shuffle, shift

P1: floating point add, mul, div, shuffle, shift

P2: move, integer add, boolean P3: move, integer add, boolean, store

P01: can use either P0 or P1 P23: can use either P2 or P3

Two macro-operations can execute simultaneously if they go to different

execution pipes

Domain: Tells which execution unit domain is used:

ivec: integer vector execution unit. fp: floating point execution unit. fma: floating point multiply/add subunit.

inherit: the output operand inherits the domain of the input operand.

ivec/fma means the input goes to the ivec domain and the output comes from the

fma domain.

There is an additional latency of 1 clock cycle if the output of an ivec instruction goes to the input of a fp or fma instruction, and when the output of a fp or fma instruction goes to the input of an ivec or store instruction. There is no latency between the fp and fma units. All other latencies after memory load and before

memory store instructions are included in the latency counts.

An fma instruction has a latency of 5 if the output goes to another fma instruction, 6 if the output goes to an fp instruction, and 6+1 if the output goes to an ivec or

store instruction.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions						
MOV	r8,r8	1	1	0.5	EX01	
MOV	r16,r16	1	1	0.5	EX01	
VOV	r32,r32	1	1	0.3	EX01 or AG01	
VOV	r64,r64	1	1	0.3	EX01 or AG01	
VOV	r,i	1	1	0.5	EX01	
MOV	r,m	1	4	0.5	AG01	all addr. modes
MOV	m,r	1	4	1	EX01 AG01	all addr. modes
MOV	m,i	1		1		
MOVNTI	m,r	1	4	2		
MOVZX, MOVSX	r16,r8	1	1	1	EX01	
MOVZX, MOVSX	r32,r	1	1	0.5	EX01	
MOVZX, MOVSX	r64,r	1	1	0.5	EX01	
MOVSX	r,m	1	5	0.5	EX01	
MOVZX	r,m	1	4	0.5	EX01	
MOVSXD	r64,r32	1	1	0.5	EX01	
MOVSXD	r64,m32	1	5	0.5	EX01	
CMOVcc	r,r	1	1	0.5	EX01	
CMOVcc	r,m	1		0.5	EX01	
KCHG	r8,r8	2	1	1	EX01	
XCHG	r16,r16	2	1	1 1	EX01	
KCHG	r32,r32	2	1	0.5	EX01	
XCHG	r64,r64	2	1	0.5	EX01	
	101,101	_	•	0.0	2,10.	Timing depends on
KCHG	r,m	2	~40	~40	EX01	hw
XLAT	,	2	6	2		
PUSH	r	1		1		
PUSH	i	1		1		
PUSH	m	2		1		
PUSHF(D/Q)		8		4		
PUSHA(D)		9		9		
POP	r	1		1		
POP	m	2		1		
POPF(D/Q)		34		18		
POPA(D)		14		8		
_EA	r16,[m]	2	2-3		EX01	any addr. size
LEA	r32,[m]	2	2-3		EX01	16 bit addr. size
	102,[111]	_			EXC !	scale factor > 1
LEA	r32/64,[m]	1	2	0.5	EX01	or 3 operands
LEA	r32/64,[m]	1	1	0.5	EX01	all other cases
_AHF	102/07,[111]	4	3	2		an other cases
SAHF		2	2	1		
SALC		1	1	1		
BSWAP	r	1	'1	0.5	EX01	
PREFETCHNTA	m	1	'	0.5	LAUI	
PREFETCHT0/1/2	m	1		0.5		
PREFETCH/W		-				DDEEETCUM
	m	1 7		0.5		PREFETCHW
SFENCE		1		81		

			rileurivei		
LFENCE		1		0,25	
MFENCE		7		81	
2.102		•			
Arithmetic instructions	 2				
ADD, SUB	r,r	1	1	0.5	EX01
ADD, SUB	r,i	1	1	0.5	EX01
ADD, SUB	r,m	1	'	0.5	EX01
ADD, SUB	m,r		7-8	1	EX01
ADD, SUB	m,i		7-8 7-8	1	EX01
ADC, SBB	*		1	ı	EX01
ADC, SBB	r,r	1	1		EX01
ADC, SBB	r,i	-	1	1	EX01
	r,m	1 1	9	1	
ADC, SBB	m,r	-	9		EX01
ADC, SBB	m,i	1		1	EX01
CMP	r,r	1	1	0.5	EX01
CMP	r,i	1	1	0.5	EX01
CMP	r,m	1		0.5	EX01
CMP	m,i	1		0.5	EX01
INC, DEC, NEG	r	1	1	0.5	EX01
INC, DEC, NEG	m	1	7-8	1	EX01
AAA, AAS		10	6		
DAA		16	9		
DAS		20	10		
AAD		4	6		
AAM		10	15	15	
MUL, IMUL	r8/m8	1	4	2	EX1
MUL, IMUL	r16/m16	2	4	2	EX1
MUL, IMUL	r32/m32	1	4	2	EX1
MUL, IMUL	r64/m64	1	6	4	EX1
IMUL	r16,r16/m16	1	4	2	EX1
IMUL	r32,r32/m32	1	4	2	EX1
IMUL	r64,r64/m64	1	6	4	EX1
IMUL	r16,(r16),i	2	5	2	EX1
IMUL	r32,(r32),i	1	4	2	EX1
IMUL	r64,(r64),i	1	6	4	EX1
IMUL	r16,m16,i	2		2	EX1
IMUL	r32,m32,i	2		2	EX1
IMUL	r64,m64,i	2		4	EX1
DIV	r8/m8	9	17-22	13-22	EX0
DIV	r16/m16	7	13-26	13-25	EX0
DIV	r32/m32	2	12-40	12-40	EX0
DIV	r64/m64	2	13-71	13-71	EX0
IDIV	r8/m8	9	17-21	13-71	EX0
IDIV	r16/m16	7	13-26	13-16	EX0
IDIV	r32/m32	2	13-20	13-25	EX0
IDIV	r64/m64	2	13-40	13-40	EX0
	104/11104	1	13-71	13-71	EX01
CBW, CWDE, CDQE			-	0.5	
CDQ, CQO		1	1	0.5	EX01
CWD		2	1	1	EX01
Logic instructions					E) (0.4
AND, OR, XOR	r,r	1	1	0.5	EX01
AND, OR, XOR	r,i	1	1	0.5	EX01

AND, OR, XOR	r,m	1		0.5	EX01	
AND, OR, XOR	m,r	1	7-8	1	EX01	
AND, OR, XOR	m,i	1	7-8	1	EX01	
TEST	r,r	1	1	0.5	EX01	
TEST	r,i	1	1	0.5	EX01	
TEST	m,r	1		0.5	EX01	
TEST	m,i	1		0.5	EX01	
NOT	r	1	1	0.5	EX01	
NOT	m	1	7-8	1	EX01	
ANDN	r,r,r	1	1	0.5	EX01	BMI1
SHL, SHR, SAR	r,i/CL	1	1	0.5	EX01	DIVIT
ROL, ROR	r,i/CL	1	1	0.5	EX01	
RCL	r,1	1	1		EX01	
RCL	r,i	16	7		EX01	
RCL	r,cl	17	7		EX01	
RCR	r,1	1	1		EX01	
RCR	r,i	15	7		EX01	
RCR	r,cl	16	6		EX01	
SHLD, SHRD	r,r,i	6	3	3	EX01	
SHLD, SHRD	r,r,cl	7	3	3	EX01	
	m,r,i/CL	8	3		EX01	
SHLD, SHRD			4	3,5		
BT	r,r/i	1	1	0.5	EX01	
BT	m,i	1		0.5	EX01	
BT	m,r	7		3,5	EX01	
BTC, BTR, BTS	r,r/i	2	2	1	EX01	
BTC, BTR, BTS	m,i	4	20		EX01	
BTC, BTR, BTS	m,r	10	21		EX01	
BSF	r,r	6	3	3	EX01	
BSF	r,m	8	4	4	EX01	
BSR	r,r	7	4	4	EX01	
BSR	r,m	9		5	EX01	
SETcc	r	1	1	0.5	EX01	
SETcc	m	1		1	EX01	
CLC, STC	""	1		0.5	EX01	
1			4	0.5	EX01	
CMC		1	1	0	EAUI	
CLD		2		3		
STD		2		4		
POPCNT	r16/32,r16/32	1	4	2		SSE4.2
POPCNT	r64,r64	1	4	4		SSE4.2
LZCNT	r,r	1	2	2	EX0	LZCNT
TZCNT	r,r	2	2	2		BMI1
BEXTR	r,r,r	2	2	0.67		BMI1
BEXTR	r,r,i	2	2	0.67		AMD TBM
BLSI	r,r	2	2	1		BMI1
BLSMSK		2	2	1		BMI1
	r,r					
BLSR	r,r	2	2	1		BMI1
BLCFILL	r,r	2	2	1		AMD TBM
BLCI	r,r	2	2	1		AMD TBM
BLCIC	r,r	2	2	1		AMD TBM
BLCMSK	r,r	2	2	1		AMD TBM
BLCS	r,r	2	2	1		AMD TBM
BLSFILL	r,r	2	2	1		AMD TBM
1	· · · · · · · · · · · · · · · · · · ·		1		ı	ı I

			_			
BLSI	r,r	2	2	1		AMD TBM
BLSIC	r,r	2	2	1		AMD TBM
T1MSKC	r,r	2	2	1		AMD TBM
TZMSK	r,r	2	2	1		AMD TBM
Control transfer instru	ctions					
JMP	short/near	1 1		2	EX1	
JMP	r	1		2	EX1	
JMP	m	1 1		2	EX1	
Jcc	short/near	1		1-2	EX1	2 if jumping
fused CMP+Jcc	short/near	1 1		1-2	EX1	2 if jumping
J(E/R)CXZ	short	1		1-2	EX1	2 if jumping
LOOP	short	1		1-2	EX1	2 if jumping
LOOPE LOOPNE	short	1		1-2	EX1	2 if jumping
CALL	near	2		2	EX1	
CALL	r	2		2	EX1	
CALL	m	3		2	EX1	
RET		1		2	EX1	
RET	i	4		2	EX1	
BOUND	m	11		5		for no jump
INTO		4		2		for no jump
String instructions						
LODS		3		3		
REP LODS	m8/m16	6n		3n		
REP LODS	m32/m64	6n		2.5n		
STOS		3		3		
REP STOS		1n		1n		small n
REP STOS		3 per 16B		3 per 16B		best case
MOVS		5		3		
REP MOVS		1-3n		1n		small n
REP MOVS		4.5 pr 16B		3 per 16B		best case
SCAS		3		3		
REP SCAS		7n		3-4n		
CMPS REP CMPS		6 9n		3 4n		
REP CIVIFS		911		411		
Synchronization						
LOCK ADD	m,r	1	~40			
XADD	m,r	4	20			
LOCK XADD	m,r	4	~39			
CMPXCHG	m,r8/16	5	23			
LOCK CMPXCHG	m,r8/16	5	~40			
CMPXCHG	m,r32/64	6	20			
LOCK CMPXCHG	m,r32/64	6	~40			
CMPXCHG8B	m64	18	25			
LOCK CMPXCHG8B	m64	18	~42			
CMPXCHG16B	m128	22	66			
LOCK CMPXCHG16B	m128	22	~80			
Other						
NOP (90)		1		0.25	none	

Long NOP (0F 1F)		1		0.25	none	
PAUSE		40		40		
ENTER	a,0	13		21		
ENTER	a,b	20+3b		16+4b		
LEAVE		2		4		
CPUID		38-64		105-271		
XGETBV		4		30		
RDTSC		36		42		
RDPMC		21		310		
CRC32	r32,r8	3	3	2		
CRC32	r32,r16	5	5	5		
CRC32	r32,r32	5	6	6		

Floating point x87 instructions

Floating point x87 instructions									
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes			
Move instructions									
FLD	r	1	2	0.5	P01	fp			
FLD	m32/64	1	7	1		fp			
FLD	m80	8	20	4		fp			
FBLD	m80	60	64	35	P0 P1 P2 P3	fp			
FST(P)	r	1	2	0.5	P01	fp			
FST(P)	m32/64	2	7	1		fp			
FSTP	m80	13	22	20		fp			
FBSTP	m80	239	220		P0 P1 F3	fp			
FXCH	r	1	0	0.5	P01	inherit			
FILD	m	1	11	1	F3	fp			
FIST(T)(P)	m	2	7	1	P0 F3	fp			
FLDZ, FLD1		1		0.5	P01	fp			
FCMOVcc	st0,r	8	3	3	P0 P1 F3	fp			
FFREE	r	1		0.25	none				
FINCSTP, FDECSTP		1	0	0.25	none	inherit			
FNSTSW	AX	3		19	P0 P2 P3				
FNSTSW	m16	2		17	P0 P2 P3				
FLDCW	m16	1		3					
FNSTCW	m16	2		2					
Arithmetic instructions	 								
FADD(P),FSUB(R)(P)	r/m	1	5-6	1	P01	fma			
FIADD,FISUB(R)	m	2		2	P01	fma			
FMUL(P)	r/m	1	5-6	1	P01	fma			
FIMUL	m	2		2	P01	fma			
FDIV(R)(P)	r	1	9-40	4-16	P01	fp			
FDIV(R)	m	1			P01	fp			
FIDIV(R)	m	2			P01	fp			
FABS, FCHS		1	2	0.5	P01	fp			
FCOM(P), FUCOM(P)	r/m	1		0.5	P01	fp			
FCOMPP, FUCOMPP		1		0.5	P01	fp			
FCOMI(P)	r	2	2	1	P0 P1 F3	fp			
FICOM(P)	m	2		1	P01	fp			

FTST		1		0.5	P01	fp
FXAM		1	~20	0.5	P01	fp
FRNDINT		1	4	1	P0	fp
FPREM		1	17-60		P0	fp
FPREM1		1	17-60		P0	fp
Math						
FSQRT		1	14-50	5-20	P01	
FLDPI, etc.		1		0.5	P01	
FSIN		10-162	60-210	60-146	P0 P1 P3	
FCOS		160-170	~154	~154	P0 P1 P3	
FSINCOS		12-166	86-141	86-141	P0 P1 P3	
FPTAN		11-190	166-231	86-204	P0 P1 P3	
FPATAN		10-355	60-352	60-352	P0 P1 P3	
FSCALE		8	44	5	P0 P1 P3	
FXTRACT		12	7	5	P0 P1 P3	
F2XM1		10	60-73		P0 P1 P3	
FYL2X		10-176			P0 P1 P3	
FYL2XP1		10-176			P0 P1 P3	
Other						
FNOP		1		0.25	none	
(F)WAIT		1		0.25	none	
FNCLEX		18		54	P0	
FNINIT		31		134	P0	
FNSAVE	m864	103	300	300	P0 P1 P2 P3	
FRSTOR	m864	76	236	236	P0 P3	

Integer MMX and XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions	,					
MOVD	r32/64, mm/x	1	8	1		P3
MOVD	mm/x, r32/64	2	10	1		
MOVD	mm/x,m32	1	6	0.5		
MOVD	m32,mm/x	1	5	1		P3
MOVQ	mm/x,mm/x	1	2	0.5	P23	
MOVQ	mm/x,m64	1	6	0.5		
MOVQ	m64,mm/x	1	5	1	P3	
MOVDQA	xmm,xmm	1	0	0.25	none	inherit domain
MOVDQA	xmm,m	1	6	0.5		
MOVDQA	m,xmm	1	5	1	P3	
VMOVDQA	ymm,ymm	2	2	0.5	P23	
VMOVDQA	ymm,m256	2	6	1		
VMOVDQA	m256,ymm	4	11	17	P3	
MOVDQU	xmm,xmm	1	0	0.25	none	inherit domain
MOVDQU	xmm,m	1	6	0.5		
MOVDQU	m,xmm	1	5	1	P3	
LDDQU	xmm,m	1	6	0.5		
VMOVDQU	ymm,m256	2	6	1		

VMOVDQU	m256,ymm	8	14	20	P2 P3	
MOVDQ2Q	mm,xmm	1	2	0.5	P23	
MOVQ2DQ	xmm,mm	1	2	0.5	P23	
MOVNTQ	m,mm	1	5	2	P3	
MOVNTDQ	m,xmm	1	5	2	P3	
MOVNTDQA	xmm,m	1	6	0.5		
PACKSSWB/DW	(x)mm,r/m	1	2	1	P1	
PACKUSWB	(x)mm,r/m	1	2	1	P1	
PUNPCKH/LBW/WD/D						
Q	(x)mm,r/m	1	2	1	P1	
PUNPCKHQDQ	xmm,r/m	1	2	1	P1	
PUNPCKLQDQ	xmm,r/m	1	2	1	P1	
PSHUFB	(x)mm,r/m	1	3	1	P1	
PSHUFD	xmm,xmm,i	1	2	1	P1	
PSHUFW	mm,mm,i	1	2	1	P1	
PSHUFL/HW	xmm,xmm,i	1	2	1	P1	
PALIGNR	(x)mm,r/m,i	1	2	1	P1	
PBLENDW	xmm,r/m	1	2	0.5	P23	SSE4.1
MASKMOVQ	mm,mm	31	36	59	P3	
MASKMOVDQU	xmm,xmm	64	59	92	P1 P3	
PMOVMSKB	r32,mm/x	2	10	1	P1 P3	
PEXTRB/W/D/Q	r,x/mm,i	2	10	1	P1 P3	SSE4.1
PINSRB/W/D/Q	x/mm,r,i	2	12	2	P1	
EXTRQ	x,i,i	1	3	1	P1	AMD SSE4A
EXTRQ	x,x	1	1	1	P1	AMD SSE4A
INSERTQ	x,x,i,i	1	1	1	P1	AMD SSE4A
INSERTQ	x,x	1	1	1	P1	AMD SSE4A
PMOVSXBW/BD/BQ/						
WD/WQ/DQ	x,x	1	2	1	P1	SSE4.1
PMOVZXBW/BD/BQ/W						
D/WQ/DQ	x,x	1	2	1	P1	SSE4.1
VPCMOV	x,x,x,x/m	1	2	1	P1	AMD XOP
VPCMOV	y,y,y,y/m	2	2	2	P1	AMD XOP
VPPERM	x,x,x,x/m	1	2	1	P1	AMD XOP
Arithmetic instructions	5					
PADDB/W/D/Q/SB/SW						
/USB/USW	(x)mm,r/m	1	2	0.5	P23	
PSUBB/W/D/Q/SB/SW/						
USB/USW	(x)mm,r/m	1	2	0.5	P23	
PHADD/SUB(S)W/D	x,x	3	5	2	P1 P23	SSSE3
PHADD/SUB(S)W/D	x,m	4	5	2	P1 P23	SSSE3
PCMPEQ/GT B/W/D	(x)mm,r/m	1	2	0.5	P23	
PCMPEQQ	(x)mm,r/m	1	2	0.5	P23	SSE4.1
PCMPGTQ	(x)mm,r/m	1	2	0.5	P23	SSE4.2
PMULLW PMULHW						
PMULHUW PMULUDQ						
	(x)mm,r/m	1	4	1	P0	
PMULLD	x,r/m	1	5	2	P0	SSE4.1
PMULDQ	x,r/m	1	4	1	P0	SSE4.1
PMULHRSW	(x)mm,r/m	1	4	1	P0	SSSE3
PMADDWD	(x)mm,r/m	1	4	1	P0	
		•	,		,	,

			i ilculivoi			
PMADDUBSW	(x)mm,r/m	1	4	1	P0	
PAVGB/W	(x)mm,r/m	1	2	0.5	P23	
PMIN/MAX SB/SW/ SD						
UB/UW/UD	(x)mm,r/m	1	2	0.5	P23	
PHMINPOSUW	x,r/m	2	4	1	P1 P23	SSE4.1
PABSB/W/D	(x)mm,r/m	1	2	0.5	P23	SSSE3
PSIGNB/W/D	(x)mm,r/m	1	2	0.5	P23	SSSE3
PSADBW	(x)mm,r/m	2	4	1	P23	
MPSADBW	x,x,i	8	8	4	P1 P23	SSE4.1
						AMD XOP
VPCOMB/W/D/Q	x,x,x/m,i	1	2	0.5	P23	latency 0 if i=6,7
						AMD XOP
VPCOMUB/W/D/Q	x,x,x/m,i	1	2	0.5	P23	latency 0 if i=6,7
VPHADDBW/BD/BQ/			_			
WD/WQ/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPHADDUBW/BD/BQ/						
WD/WQ/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPHSUBBW/WD/DQ	x,x/m	1	2	0.5	P23	AMD XOP
VPMACSWW/WD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSDD	x,x,x/m,x	1	5	2	P0	AMD XOP
VPMACSDQH/L	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSSWW/WD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSSDD	x,x,x/m,x	1	5	2	P0	AMD XOP
VPMACSSDQH/L	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSWD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSSWD	x,x,x/m,x	1	4	1	P0	AMD XOP
Logio						
Logic PAND PANDN POR						
PXOR	(x)mm,r/m	1	2	0.5	P23	
PSLL/RL W/D/Q	(X)111111,1/111	1		0.5	F23	
PSRAW/D	(x)mm,r/m	1	3	1	P1	
PSLL/RL W/D/Q	(*)!!!!!,!/!!!	'	3	I I	F I	
PSRAW/D	(x)mm,i	1	2	1	P1	
PSLLDQ, PSRLDQ	(<i>x</i>);;;;	1	2		P1	
PTEST	x,r/m	2		1	P1 P3	SSE4.1
VPROTB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPROTB/W/D/Q VPROTB/W/D/Q	x,x,x/111 x,x,i	1	2	1	P1	AMD XOP
VPSHAB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPSHAB/W/D/Q VPSHLB/W/D/Q		1	3	1	P1	AMD XOP
VPSHLB/W/D/Q	x,x,x/m	1	3	l l	PI	AIVID AOP
String instructions						
PCMPESTRI	v v i	27	16	10	P1 P2 P3	SSE4.2
	x,x,i			1		
PCMPESTRM	x,x,i	27	10	10	P1 P2 P3	SSE4.2
PCMPISTRI	x,x,i	7	13	3	P1 P2 P3	SSE4.2
PCMPISTRM	x,x,i	7	7	4	P1 P2 P3	SSE4.2
Encryption						
Encryption PCLMULQDQ	v v/m i	5	12	7	P1	polmul
VPCLMULQDQ	x,x/m,i		12	7	P1	pclmul
	x,x,x,i	6				pclmul
PCLMULQDQ	x,x,m,i	7	12	7	P1	pclmul
AESDEC	X,X	2	5	2	P01	aes

AESDECLAST	X,X	2	5	2	P01	aes	
AESENC	x,x	2	5	2	P01	aes	
AESENCLAST	x,x	2	5	2	P01	aes	
AESIMC	x,x	1	5	1	P0	aes	
AESKEYGENASSIST	x,x,i	1	5	1	P0	aes	
Other							
EMMS		1		0.25			

loating point XMM and YMM instructions								
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes		
Move instructions								
MOVAPS/D								
MOVUPS/D	X,X	1	0	0.25	none	inherit domain		
VMOVAPS/D	y,y	2	2	0.5	P23	ivec		
MOVAPS/D MOVUPS/D	x,m128	1	6	0.5				
VMOVAPS/D	X,111120	'		0.5				
VMOVUPS/D	y,m256	2	6	1				
MOVAPS/D								
MOVUPS/D	m128,x	1	5	1	P3			
VMOVAPS/D	m256,y	4	11	17	P3			
VMOVUPS/D	m256,y	8	15	20	P2 P3			
MOVSS/D	x,x	1	2	0.5	P01	fp		
MOVSS/D	x,m32/64	1	6	0.5				
MOVSS/D	m32/64,x	1	5	1				
MOVHPS/D	x,m64	1	8	1	P1			
MOVLPS/D	x,m64	1	7	0.5	P01			
MOVHPS/D	m64,x	2	7	1	P1 P3			
MOVLPS/D	m64,x	1	6	1	P3			
MOVLHPS MOVHLPS	x,x	1	2	1	P1	ivec		
MOVMSKPS/D	r32,x	2	10	1	P1 P3			
VMOVMSKPS/D	r32,y	2		1				
MOVNTPS/D	m128,x	1	5	2	P3			
VMOVNTPS/D	m256,y	4		18				
MOVNTSS/SD	m,x	1		4	P3	AMD SSE4A		
SHUFPS/D	x,x/m,i	1	2	1	P1	ivec		
VSHUFPS/D	y,y,y/m,i	2	2	2	P1	ivec		
VPERMILPS/PD	x,x,x/m	1	3	1	P1	ivec		
VPERMILPS/PD	y,y,y/m	2	3	2	P1	ivec		
VPERMILPS/PD	x,x/m,i	1	2	1	P1	ivec		
VPERMILPS/PD	y,y/m,i	2	2	2	P1	ivec		
VPERM2F128	y,y,y,i	8	4	3	P23	ivec		
VPERM2F128	y,y,m,i	10		4	P23	ivec		
BLENDPS/PD	x,x/m,i	1	2	0.5	P23	ivec		
VBLENDPS/PD	y,y,y/m,i	2	2	1	P23	ivec		
BLENDVPS/PD	x,x/m,xmm0	1	2	1	P1	ivec		
VBLENDVPS/PD	y,y,y/m,y	2	2	2	P1	ivec		
MOVDDUP	x,x	1	2	1	P1	ivec		

MOVDDUP	x,m64	1	[0.5		
VMOVDDUP	y,y	2	2	2	P1	ivec
VMOVDDUP	y,y y,m256	2		1	r i	IVEC
VBROADCASTSS	x,m32	1	6	0.5		
VBROADCASTSS	y,m32	2	6	0.5	P23	
VBROADCASTSD	y,m64	2	6	0.5	P23	
VBROADCASTF128	y,m128	2	6	0.5	P23	
MOVSH/LDUP	X,X	1	2	1	P1	ivec
MOVSH/LDUP	x,m128	1		0.5		IVEC
VMOVSH/LDUP	y,y	2	2	2	P1	ivec
VMOVSH/LDUP	y,y y,m256	2		1		IVEC
UNPCKH/LPS/D	x,x/m	1	2	1	P1	ivec
VUNPCKH/LPS/D	y,y,y/m	2	2	2	P1	ivec
EXTRACTPS	r32,x,i	2		1	P1 P3	IVEC
EXTRACTPS	m32,x,i	2	6	1	P1 P3	
VEXTRACTF128	x,y,i	1	2	0.5	P23	ivec
VEXTRACTF128	m128,y,i	2	6	1	P23	IVEC
INSERTPS	X,X,İ	1	2	1	P1	
INSERTPS	x,m32,i	1	7	2	P1	
VINSERTF128	y,y,x,i	2	2	1	P23	ivec
VINSERTF128	y,y,x,i y,y,m128,i	2	13		P23	1000
VMASKMOVPS/D	x,x,m128	1	7	0.5	P01	
VMASKMOVPS/D	y,y,m256	2	13	1	P01	
VMASKMOVPS/D	m128,x,x	18	~100	~90	P0 P1 P2 P3	
VMASKMOVPS/D	m256,y,y	34	~190	~180	P0 P1 P2 P3	
	55,,,,					
Conversion	_					
CVTPD2PS	X,X	2	8	1	P01	ivec/fp
VCVTPD2PS	x,y	4	7	2	P01	ivec/fp
CVTPS2PD	x,x	2	8	1	P01	ivec/fp
VCVTPS2PD	y,x	4	8	2	P01	ivec/fp
CVTSD2SS	X,X	1	4	1	P0	fp
CVTSS2SD	X,X	1	4	1	P0	fp
CVTDQ2PS	X,X	1	4	1	P0	fp
VCVTDQ2PS	y,y	2	4	2	P0	fp
CVT(T) PS2DQ	X,X	1	4	1	P0	fp
VCVT(T) PS2DQ	y,y	2	4	2	P0	fp
CVTDQ2PD	X,X	2	8	1	P01	ivec/fp
VCVTDQ2PD	y,x	4	8	2	P01	ivec/fp
CVT(T)PD2DQ						
VCVT(T)PD2DQ	x,x	2	8	1	P01	fp/ivec
	x,x x,y	2 4	8 7	1 2	P01 P01	fp/ivec fp/ivec
CVTPI2PS						·
	x,y	4	7	2	P01	fp/ivec
CVTPI2PS	x,y x,mm	4 2	7 8	2 1	P01 P0 P23	fp/ivec ivec/fp
CVTPI2PS CVT(T)PS2PI	x,y x,mm mm,x	4 2 1	7 8 4	2 1 1	P01 P0 P23 P0	fp/ivec ivec/fp fp
CVTPI2PS CVT(T)PS2PI CVTPI2PD	x,y x,mm mm,x x,mm	4 2 1 2	7 8 4 7	2 1 1 1	P01 P0 P23 P0 P0 P1	fp/ivec ivec/fp fp ivec/fp fp/ivec
CVTPI2PS CVT(T)PS2PI CVTPI2PD CVT(T) PD2PI CVTSI2SS	x,y x,mm mm,x x,mm mm,x	4 2 1 2 2	7 8 4 7 7	2 1 1 1 1	P01 P0 P23 P0 P0 P1 P0 P1	fp/ivec ivec/fp fp ivec/fp fp/ivec fp
CVTPI2PS CVT(T)PS2PI CVTPI2PD CVT(T) PD2PI	x,y x,mm mm,x x,mm mm,x x,r32	4 2 1 2 2 2	7 8 4 7 7 13	2 1 1 1 1 1	P01 P0 P23 P0 P0 P1 P0 P1 P0	fp/ivec ivec/fp fp ivec/fp fp/ivec fp fp
CVTPI2PS CVT(T)PS2PI CVTPI2PD CVT(T) PD2PI CVTSI2SS CVT(T)SS2SI CVTSI2SD	x,y x,mm mm,x x,mm mm,x x,r32 r32,x x,r32/64	4 2 1 2 2 2 2	7 8 4 7 7 13 12	2 1 1 1 1 1 1	P01 P0 P23 P0 P0 P1 P0 P1 P0 P0 P3	fp/ivec ivec/fp fp ivec/fp fp/ivec fp fp fp
CVTPI2PS CVT(T)PS2PI CVTPI2PD CVT(T) PD2PI CVTSI2SS CVT(T)SS2SI	x,y x,mm mm,x x,mm mm,x x,r32 r32,x	4 2 1 2 2 2 2 2 2	7 8 4 7 7 13 12 13	2 1 1 1 1 1 1	P01 P0 P23 P0 P0 P1 P0 P1 P0 P0 P3 P0	fp/ivec ivec/fp fp ivec/fp fp/ivec fp fp

VCVTPH2PS	x,x/m	2	8	2	P0 P1	F16C
VCVTPH2PS	y,x/m	4	8	2	P0 P1	F16C
	y ,20111			_		
Arithmetic						
ADDSS/D SUBSS/D	x,x/m	1	5-6	0.5	P01	fma
ADDPS/D SUBPS/D	x,x/m	1	5-6	0.5	P01	fma
VADDPS/D VSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
ADDSUBPS/D	x,x/m	1	5-6	0.5	P01	fma
VADDSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
HADDPS/D HSUBPS/D	x,x	3	10	2	P01 P1	ivec/fma
HADDPS/D HSUBPS/D	x,m	4		2	P01 P1	ivec/fma
VHADDPS/D						
VHSUBPS/D	y,y,y/m	8	10	4	P01 P1	ivec/fma
MULSS MULSD	x,x/m	1	5-6	0.5	P01	fma
MULPS MULPD	x,x/m	1	5-6	0.5	P01	fma
VMULPS VMULPD	y,y,y/m	2	5-6	1	P01	fma
DIVSS DIVPS	x,x/m	1	9-24	5-10	P01	fp
VDIVPS	y,y,y/m	2	9-24	9-20	P01	fp
DIVSD DIVPD	x,x/m	1	9-27	5-10	P01	fp
VDIVPD	y,y,y/m	2	9-27	9-18	P01	fp
RCPSS/PS	x,x/m	1	5	1	P01	fp
VRCPPS	y,y/m	2	5	2	P01	fp
CMPSS/D						
CMPPS/D	x,x/m	1	2	0.5	P01	fp
VCMPPS/D	y,y,y/m	2	2	1	P01	fp
COMISS/D						
UCOMISS/D	x,x/m	2		1	P01 P3	fp
MAXSS/SD/PS/PD						
MINSS/SD/PS/PD	x,x/m	1	2	0.5	P01	fp
VMAXPS/D VMINPS/D	y,y,y/m	2	2	1	P01	fp
ROUNDSS/SD/PS/PD	x,x/m,i	1	4	1	P0	fp
VROUNDSS/SD/PS/						
PD	y,y/m,i	2	4	2	P0	fp
DPPS	x,x,i	16	25	6	P01 P23	SSE4.1
DPPS	x,m,i	18		7	P01 P23	SSE4.1
VDPPS	y,y,y,i	25	27	13	P01 P3	SSE4.1
VDPPS	y,m,i	29		13	P01 P3	SSE4.1
DPPD	x,x,i	15	15	5	P01 P23	SSE4.1
DPPD	x,m,i	17		6	P01 P23	SSE4.1
VFMADD132SS/SD	x,x,x/m	1	5-6	1	P01	FMA3
VFMADD132PS/PD	x,x,x/m	1	5-6	1	P01	FMA3
VFMADD132PS/PD	y,y,y/m	2	5-6	1	P01	FMA3
All other FMA3 instruction	ons: same as a	bove				FMA3
VFMADDSS/SD	x,x,x,x/m	1	5-6	0.5	P01	AMD FMA4
VFMADDPS/PD	x,x,x,x/m	1	5-6	0.5	P01	AMD FMA4
VFMADDPS/PD	y,y,y,y/m	2	5-6	1	P01	AMD FMA4
All other FMA4 instruction		bove	•			AMD FMA4

Math						
SQRTSS/PS	x,x/m	1	13-15	5-12	P01	fp
VSQRTPS	y,y/m	2	14-15	9-24	P01	fp
SQRTSD/PD	x,x/m	1	24-26	5-15	P01	fp
VSQRTPD	y,y/m	2	24-26	9-29	P01	fp
RSQRTSS/PS	x,x/m	1	5	1	P01	fp
VRSQRTPS	y,y/m	2	5	2	P01	fp
VFRCZSS/SD/PS/PD	x,x	2	10	2	P01	AMD XOP
VFRCZSS/SD/PS/PD	x,m	3	10	2	P01	AMD XOP
Logic						
AND/ANDN/OR/XORPS/ PD	x,x/m	1	2	0.5	P23	ivec
VAND/ANDN/OR/XOR PS/PD	y,y,y/m	2	2	1	P23	ivec
Other						
VZEROUPPER		9		4	P2 P3	32 bit mode
VZEROUPPER		16		5	P2 P3	64 bit mode
VZEROALL		17		6	P2 P3	32 bit mode
VZEROALL		32		10	P2 P3	64 bit mode
LDMXCSR	m32	7		34	P0 P3	
STMXCSR	m32	2		17	P0 P3	
FXSAVE	m4096	67	136	136	P0 P1 P2 P3	
FXRSTOR	m4096	116	176	176	P0 P1 P2 P3	
XSAVE	m	122	196	196	P0 P1 P2 P3	
XRSTOR	m	177	250	250	P0 P1 P2 P3	

AMD Steamroller

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB, JNE,

etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, x = 128 bit xmm register, y = 256 bit ymm register, m = 256 any memory operand including indirect operands, m = 256 bit ymm register, m = 256 bit

Ops: Number of macro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 macro-operations use microcode.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. The latency listed does not include the memory operand where the listing for register and memory operand are joined

(r/m).

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/3 indicates that the execution units can handle 3 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe or unit is used for the macro-operations:

Integer pipes:

EX0: integer ALU, division

EX1: integer ALU, multiplication, jump EX01: can use either EX0 or EX1 AG01: address generation unit 0 or 1 Floating point and vector pipes:

P0: floating point add, mul, div. Integer add, mul, bool P1: floating point add, mul, div. Shuffle, shift, pack

P2: Integer add. Bool, store P01: can use either P0 or P1 P02: can use either P0 or P2

Two macro-operations can execute simultaneously if they go to different

execution pipes

Domain: Tells which execution unit domain is used:

ivec: integer vector execution unit. fp: floating point execution unit. fma: floating point multiply/add subunit.

inherit: the output operand inherits the domain of the input operand.

ivec/fma means the input goes to the ivec domain and the output comes from the

fma domain.

There is an additional latency of 1 clock cycle if the output of an ivec instruction goes to the input of a fp or fma instruction, and when the output of a fp or fma instruction goes to the input of an ivec or store instruction. There is no latency between the fp and fma units. All other latencies after memory load and before

memory store instructions are included in the latency counts.

An fma instruction has a latency of 5 if the output goes to another fma instruction, 6 if the output goes to an fp instruction, and 6+1 if the output goes to an ivec or

store instruction.

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions						
MOV	r8,r8	1	1	0.5	EX01	
MOV	r16,r16	1	1	0.5	EX01	
MOV	r32,r32	1	1	0.25	EX01 or AG01	
MOV	r64,r64	1	1	0.25	EX01 or AG01	
MOV	r,i	1	1	0.5	EX01	
MOV	r,m	1	3	0.5	AG01	all addr. modes
MOV	m,r	1	4	1	EX01 AG01	all addr. modes
MOV	m,i	1		1		
MOVNTI	m,r	1	4	1		
MOVZX, MOVSX	r,r	1	1	0.5	EX01	
MOVSX	r,m	1	5	0.5	EX01	
MOVZX	r,m	1	4	0.5	EX01	
MOVSXD	r64,r32	1	1	0.5	EX01	
MOVSXD	r64,m32	1	5	0.5	EX01	
CMOVcc	r,r	1	1	0.5	EX01	
CMOVcc	r,m	1		0.5	EX01	
XCHG	r8,r8	2	1	1	EX01	
XCHG	r16,r16	2	1	1	EX01	
XCHG	r32,r32	2	1	0.5	EX01	
XCHG	r64,r64	2	1	0.5	EX01	
ACITO	104,104	2		0.5	LXUI	Timing depends on
XCHG	r,m	2	~38	~38	EX01	hw
XLAT	.,	2	6	2	2,10.	
PUSH	r	1		1		
PUSH	i	1		1		
PUSH	m	2		1		
PUSHF(D/Q)		8		4		
PUSHA(D)		9		9		
POP	r	1		1		
POP	m	2		1		
POPF(D/Q)		34		19		
POPA(D)		14		8		
POP	sp	1	2			
LEA	r16,[m]	2	2-3		EX01	any addr. size
LEA	r32,[m]	1	2		EX01	16 bit addr. size
LLA	102,[111]	'			LXUI	scale factor > 1
LEA	r32/64,[m]	1	2	0.5	EX01	or 3 operands
LEA	r32/64,[m]	1	1	0.5	EX01	all other cases
LAHF	132/04,[11]	4	3	2	LXUI	all Office Cases
SAHF		2	2	1		
SALC		1		1		
BSWAP	r	1	1 1	0.5	EX01	
PREFETCHNTA	r m	1 1		0.5	ĽΛUΙ	
PREFETCHT0/1/2	m m	1		0.5		
	m m					DDECETOLIM
PREFETCH/W	m	1 7		0.5		PREFETCHW
SFENCE				~80		
LFENCE		1 7		0,25		
MFENCE		1		~80		
Arithmetic instructions	3					

		`	otcurri onc	•	
ADD, SUB	r,r	1	1	0.5	EX01
ADD, SUB	r,i	1	1	0.5	EX01
ADD, SUB	r,m	1		0.5	EX01
ADD, SUB	m,r	1	7	1	EX01
ADD, SUB	m,i	1	7	1	EX01
ADC, SBB	r,r	1	1	'	EX01
ADC, SBB	r,i	1	1		EX01
ADC, SBB	r,m	1	1	1	EX01
ADC, SBB		1	9	1	EX01
ADC, SBB	m,r	1	9	1	EX01
CMP	m,i	1	1		EX01
	r,r		1	0.5	
CMP	r,i	1	I	0.5	EX01
CMP	r,m	1		0.5	EX01
CMP	m,i	1	4	0.5	EX01
INC, DEC, NEG	r	1	1	0.5	EX01
INC, DEC, NEG	m	1	7	1	EX01
AAA, AAS		10	6		
DAA		16	8		
DAS		20	10		
AAD		4	6		
AAM		10	15	15	
MUL, IMUL	r8/m8	1	4	2	EX1
MUL, IMUL	r16/m16	2	4	2	EX1
MUL, IMUL	r32/m32	1	4	2	EX1
MUL, IMUL	r64/m64	1	6	4	EX1
IMUL	r16,r16/m16	1	4	2	EX1
IMUL	r32,r32/m32	1	4	2	EX1
IMUL	r64,r64/m64	1	6	4	EX1
IMUL	r16,(r16),i	2	5	2	EX1
IMUL	r32,(r32),i	1	4	2	EX1
IMUL	r64,(r64),i	1	6	4	EX1
IMUL	r16,m16,i	2		2	EX1
IMUL	r32,m32,i	2		2	EX1
IMUL	r64,m64,i	2		4	EX1
DIV	r8/m8	9	17-22	13-17	EX0
DIV	r16/m16	7	15-25	15-25	EX0
DIV	r32/m32	2	13-39	13-39	EX0
DIV	r64/m64	2	13-70	13-70	EX0
IDIV	r8/m8	9	17-22	13-17	EX0
IDIV	r16/m16	7	14-25	14-24	EX0
IDIV	r32/m32	2	13-39	13-39	EX0
IDIV	r64/m64	2	13-39	13-39	EX0
CBW, CWDE, CDQE	104/11104	1	13-70	10-70	EX01
CDQ, CQO		1	1	0.5	EX01
CWD		2	1	1	EX01
CVVD			ı	l I	EAUI
Logic instructions					
AND, OR, XOR	r,r	1	1	0.5	EX01
AND, OR, XOR	r,i	1	1	0.5	EX01
AND, OR, XOR	r,m	1	'	0.5	EX01
AND, OR, XOR	m,r	1	7	1	EX01
AND, OR, XOR	m,i	1	7	1	EX01
TEST		1	1	0.5	EX01
11231	r,r	ı ı	'	0.5	EAUI

TEST	r,i	1	1	0.5	EX01	
TEST	m,r	1		0.5	EX01	
TEST	m,i	1		0.5	EX01	
NOT	r	1	1	0.5	EX01	
NOT	m	1	7	1	EX01	
ANDN		•				DMIA
	r,r,r	1	1	0.5	EX01	BMI1
SHL, SHR, SAR	r,i/CL	1	1	0.5	EX01	
ROL, ROR	r,i/CL	1	1	0.5	EX01	
RCL	r,1	1	1		EX01	
RCL	r,i	16	7		EX01	
RCL	r,cl	17	7		EX01	
RCR	r,1	1	1		EX01	
RCR	r,i	15	7		EX01	
RCR	r,cl	16	7		EX01	
SHLD, SHRD	r,r,i	6	3	3	EX01	
SHLD, SHRD	r,r,cl	7-8	4	4	EX01	
SHLD, SHRD	m,r,i/CL	8	•	4	EX01	
BT	r,r/i	1	1	0.5	EX01	
BT		=	ı	0.5	EX01	
	m,i	1				
BT DTD DTD	m,r	7		3,5	EX01	
BTC, BTR, BTS	r,r/i	2	2	1	EX01	
BTC, BTR, BTS	m,i	4		2	EX01	
BTC, BTR, BTS	m,r	10		5	EX01	
BSF	r,r	6	3	3	EX01	
BSF	r,m	8	4	4	EX01	
BSR	r,r	7	4	4	EX01	
BSR	r,m	9		5	EX01	
SETcc	r	1	1	0.5	EX01	
SETcc	m	1		1	EX01	
CLC, STC		1		0.5	EX01	
CMC		1	1	0.0	EX01	
CLD		2	'	3	LXUI	
STD		2				
POPCNT	r16/20 r16/20	1	4	4 2		SSE4.2
	r16/32,r16/32					
POPCNT	r64,r64	1	4	4	E) (0	SSE4.2
LZCNT	r,r	1	2	2	EX0	LZCNT
TZCNT	r,r	2	2	2		BMI1
BEXTR	r,r,r	2	2	1		BMI1
BEXTR	r,r,i	2	2	1		AMD TBM
BLSI	r,r	2	2	1		BMI1
BLSMSK	r,r	2	2	1		BMI1
BLSR	r,r	2	2	1		BMI1
BLCFILL	r,r	2	2	1		AMD TBM
BLCI		2	2	1		AMD TBM
	r,r					
BLCIC	r,r	2	2	1		AMD TBM
BLCMSK	r,r	2	2	1		AMD TBM
BLCS	r,r	2	2	1		AMD TBM
BLSFILL	r,r	2	2	1		AMD TBM
BLSI	r,r	2	2	1		AMD TBM
BLSIC	r,r	2	2	1		AMD TBM
T1MSKC	r,r	2	2	1		AMD TBM
TZMSK	r,r	2	2	1		AMD TBM
1 ZIVIOIX	1,1	_		ļ '		VIAID I DIAI

BOUND M							
JMP	Control transfer instru	ctions					
JMP			1 1 I		2	FX1	
JMP							
Just			1				
fused CMP+Jcc J(E/R)CXZ short/near short 1 1-2 EX1 2 if jumping 2 if jumping LOOP LOOPE LOOPNE CALL short 1 1-2 EX1 2 if jumping CALL near 2 2 EX1 2 if jumping 2 if jump							2 if jumping
J(E/R)CXZ							
LOOP							
LOOPE LOOPNE Short 1							
CALL near 2 2 EX1 CALL r 2 2 EX1 CALL m 3 2 EX1 CALL m 3 2 EX1 RET i 4 2 EX1 BOUND m 11 5 EX1 BOUND m 4 2 EX1 BOD m 6 3 3 3 REP LODS m 3			1				
CALL CALL r m 2 3 3 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		short					2 if jumping
CALL m 3 2 EX1 RET 1 2 EX1 BOUND m 11 5 EX1 BOUND (INTO) m 11 5 EX1 BOUND (INTO) m 11 5 EX1 BOUND (INTO) m 11 5 (INTO)		near					
RET i 4 2 EX1 BOUND m 11 5 EX1 BOUND m 11 5 Interpretation LODS m8/m16 6n 3n 3 REP LODS m8/m16 6n 2.5n 3 STOS 3 3 3 3 REP STOS 3 per 16B 2 per 16B best case MOVS 7n -1n -4n small n REP MOVS ~1n -1n small n best case MOVS 7n -1n small n best case MOVS 7n -1n small n best case MOVS 7n 3-4n small n best case SCAS 7n 3-4n small n best case SCAS 7n 3-4n small n best case Synchronization Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation		r					
RET	CALL	m	3			EX1	
BOUND M	RET		1 1			EX1	
NTO	RET	i	4		2	EX1	
NTO String instructions LODS REP LODS REP LODS m8/m16 6n 3n 3 3 3 3 3 3 3 3	BOUND	m	11		5		for no jump
Name	INTO		4		2		
Name	String instructions						
REP LODS m8/m16 6n 3n 2.5n 3 3n 2.5n 3n		-	2		2		
REP LODS STOS m32/m64 6n 3 2.5n 3 3 m32/m64 6n 3 3 m32/m64 6n 3 3 m32/m64 6n 3 3 m32/m64 6n 3 3 m3 m4 m4 <t< td=""><td></td><td>m9/m16</td><td></td><td></td><td></td><td></td><td></td></t<>		m9/m16					
STOS 3 3 -1n small n best case MOVS 3 per 16B 2 per 16B best case mover selection 3 mover selection and selection small n best case best case mover selection and selection small n best case best case mover selection and selection an							
REP STOS 1n ~1n 2 per 16B small n REP STOS 3 per 16B 2 per 16B best case MOVS ~1n ~1n small n REP MOVS 4-5 pr 16B ~2 per 16B small n SCAS 3 3 3 REP SCAS 7n 3-4n 0 CMPS 6 3 3-4n CMPS 6 3 3-4n Synchronization m,r 4 9-12 LOCK ADD m,r 4 9-12 LOCK XADD m,r 4 9-12 LOCK XADD m,r 4 -39 CMPXCHG m,r8 5 15 CMPXCHG m,r16 6 15 CMPXCHG m8,r8 5 -40 LOCK CMPXCHG m16,r16 6 -40 LOCK CMPXCHGBB m64 18 -14 LOCK CMPXCHGBB m64 18 -42 CMPXCHG16B <		m32/m64					
REP STOS 3 per 16B 2 per 16B best case MOVS 71n ~1n small n REP MOVS 4-5 pr 16B ~2 per 16B best case SCAS 3 3 3 REP SCAS 7n 3-4n 3 CMPS 6 3 3 REP CMPS 9n 4n Synchronization LOCK ADD m,r 1 ~39 XADD m,r 4 9-12 LOCK XADD m,r 4 ~39 CMPXCHG m,r8 5 15 CMPXCHG m,r32/64 6 13 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHGBB m64 18 ~14 LOCK CMPXCHGBB m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Ottler NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none							
MOVS 5 3 small n small n best case REP MOVS 4-5 pr 16B -2 per 16B best case SCAS 3 3 3-4n case CMPS 6 3 3-4n case CMPS 9n 4n 4n 4n 4n Synchronization LOCK ADD m,r 1 -39 4n 4							
REP MOVS -1n -1n -2 per 16B small n REP MOVS 3 3 3 SCAS 7n 3 -4n 3 CMPS 6 3 3 -4n CMPS 9n 4n 4n Synchronization LOCK ADD m,r 1 -39 XADD m,r 4 9-12 LOCK XADD m,r 4 -39 CMPXCHG m,r8 5 15 CMPXCHG m,r16 6 15 CMPXCHG m8,r8 5 -40 LOCK CMPXCHG m16,r16 6 -40 LOCK CMPXCHG m,r32/64 6 -40 LOCK CMPXCHG8B m64 18 -14 LOCK CMPXCHG8B m64 18 -42 CMPXCHG16B m128 24 -47 LOCK CMPXCHG16B m128 24 -80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none			1 - 1				best case
REP MOVS 4-5 pr 16B ~2 per 16B 3 SCAS 3 3-4n 3 REP SCAS 6 3 3-4n CMPS 9n 4n Synchronization LOCK ADD m,r 1 ~39 XADD m,r 4 9-12 LOCK XADD m,r 4 ~39 CMPXCHG m,r8 5 15 CMPXCHG m,r16 6 13 LOCK CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 LOCK CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none							
SCAS 3 3 3-4n CMPS 6 3 3-4n REP CMPS 9n 4n Synchronization LOCK ADD m,r 1 ~39 XADD m,r 4 9-12 LOCK XADD m,r 4 ~39 CMPXCHG m,r8 5 15 CMPXCHG m,r16 6 15 CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m732/64 6 ~40 LOCK CMPXCHGBB m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none	REP MOVS		~1n		~1n		small n
REP SCAS 7n 3-4n CMPS 9n 4n Synchronization LOCK ADD m,r 1 ~39 XADD m,r 4 9-12 LOCK XADD m,r 4 9-22 LOCK XADD m,r 4 9-39 CMPXCHG m,r8 5 15 CMPXCHG m,r16 6 13 LOCK CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 LOCK CMPXCHGBB m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none	REP MOVS		4-5 pr 16B		~2 per 16B		best case
CMPS 6 3 REP CMPS 9n 4n Synchronization LOCK ADD m,r 1 ~39 XADD m,r 4 9-12 LOCK XADD m,r 4 ~39 CMPXCHG m,r8 5 15 CMPXCHG m,r16 6 15 CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 LOCK CMPXCHG m6,r16 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none	SCAS		3		3		
Synchronization Synchronization M,r	REP SCAS		7n		3-4n		
Synchronization LOCK ADD m,r 1 ~39 XADD m,r 4 9-12 LOCK XADD m,r 4 ~39 CMPXCHG m,r8 5 15 CMPXCHG m,r16 6 15 CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none	CMPS		6		3		
LOCK ADD m,r 1 ~39 XADD m,r 4 9-12 LOCK XADD m,r 4 ~39 CMPXCHG m,r8 5 15 CMPXCHG m,r32/64 6 13 LOCK CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none	REP CMPS		9n		4n		
LOCK ADD m,r 1 ~39 XADD m,r 4 9-12 LOCK XADD m,r 4 ~39 CMPXCHG m,r8 5 15 CMPXCHG m,r32/64 6 13 LOCK CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none	Synchronization						
XADD m,r 4 9-12 LOCK XADD m,r 4 ~39 CMPXCHG m,r8 5 15 CMPXCHG m,r16 6 15 CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none		m r	1 1	~39			
LOCK XADD m,r 4 ~39 CMPXCHG m,r8 5 15 CMPXCHG m,r16 6 15 CMPXCHG m,r32/64 6 13 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none							
CMPXCHG m,r8 5 15 CMPXCHG m,r16 6 15 CMPXCHG m,r32/64 6 13 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 LOCK CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none							
CMPXCHG m,r16 6 15 CMPXCHG m,r32/64 6 13 LOCK CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none		· ·					
CMPXCHG m,r32/64 6 13 LOCK CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none							
LOCK CMPXCHG m8,r8 5 ~40 LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none							
LOCK CMPXCHG m16,r16 6 ~40 LOCK CMPXCHG m,r32/64 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none							
LOCK CMPXCHG m,r32/64 6 ~40 CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none	1	-					
CMPXCHG8B m64 18 ~14 LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none		· ·					
LOCK CMPXCHG8B m64 18 ~42 CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none		· ·					
CMPXCHG16B m128 24 ~47 LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none							
LOCK CMPXCHG16B m128 24 ~80 Other NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none							
Other 1 0.25 none NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none	1						
NOP (90) 1 0.25 none Long NOP (0F 1F) 1 0.25 none	LOCK CMPXCHG16B	m128	24	~80			
Long NOP (0F 1F) 1 0.25 none	Other						
Long NOP (0F 1F) 1 0.25 none	NOP (90)		1 1		0.25	none	
	Long NOP (0F 1F)		1 1		0.25		
	PAUSE		8		4		

ENTER	a,0	13		21		
ENTER	a,b	11+5b		20-30		
LEAVE		2		3		
CPUID		38-64		100-300		ĺ
XGETBV		4		30		ĺ
RDTSC		44		78		ĺ
RDTSCP		44		105	rdtscp	ĺ
RDPMC		22		360		
CRC32	r32,r8	3	3	2		ĺ
CRC32	r32,r16	5	5	5		
CRC32	r32,r32	7	6	6		

Floating point x87 instructions

Floating point x87 instructions									
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes			
Move instructions									
FLD	r	1	2	0.5	P01	fp			
FLD	m32/64	1	7	1		fp			
FLD	m80	8	11	4		fp			
FBLD	m80	60	52	34	P0 P1 P2	fp			
FST(P)	r	1	2	0.5	P01	fp			
FST(P)	m32/64	2	7	1		fp			
FSTP	m80	13	14	19		fp			
FBSTP	m80	239	222	222	P0 P1 P2	fp			
FXCH	r	1	0	0.5	P01	inherit			
FILD	m	1	11	1	P01	fp			
FIST(T)(P)	m	2	7	1	P0 P2	fp			
FLDZ, FLD1		1		0.5	P01	fp			
FCMOVcc	st0,r	8	3	3	P0 P1 P2	fp			
FFREE	r	1		0.25	none	-			
FINCSTP, FDECSTP		1	0	0.25	none	inherit			
FNSTSW	AX	3	11	19	P0 P2				
FNSTSW	m16	2		17	P0 P2				
FLDCW	m16	1		3					
FNSTCW	m16	2		2					
Arithmetic instructions	 								
FADD(P),FSUB(R)(P)	r/m	1	5	1	P01	fma			
FIADD,FISUB(R)	m	2		2	P01	fma			
FMUL(P)	r/m	1	5	1	P01	fma			
FIMUL	m	2		2	P01	fma			
FDIV(R)(P)	r	1	9-37	4-16	P01	fp			
FDIV(R)	m	1			P01	fp			
FIDIV(R)	m	2		4	P01	fp			
FABS, FCHS		1	2	0.5	P01	fp			
FCOM(P), FUCOM(P)	r/m	1		0.5	P01	fp			
FCOMPP, FUCOMPP		1		0.5	P01	fp			
FCOMI(P)	r	2	2	1	P01 P2	fp			
FICOM(P)	m	2		1	P01	fp			
FTST		1		0.5	P01	fp			

FXAM		1	26	0.5	P01	fp
FRNDINT		1	4	1	P0	fp
FPREM FPREM1		1	17-60	12-53	P0	fp
Math						
FSQRT		1	10-50	5-20	P01	
FLDPI, etc.		1		0.5	P01	
FSIN		10-164	60-210	60-165	P0 P1 P2	
FCOS		18-166	76-158		P0 P1 P2	
FSINCOS		12-168		90-165	P0 P1 P2	
FPTAN		11-192	90-245	90-210	P0 P1 P2	
FPATAN		10-365	60-440	60-365	P0 P1 P2	
FSCALE		10	49	5	P0 P1 P2	
FXTRACT		12	8	5	P0 P1 P2	
F2XM1		10-18	60-74		P0 P1 P2	
FYL2X		9-183	60-280		P0 P1 P2	
FYL2XP1		206	~390		P0 P1 P2	
Other						
FNOP		1		0.25	none	
(F)WAIT		1		0.25	none	
FNCLEX		18		63	P0	
FNINIT		31		131	P0	
FNSAVE	m864	98	256	256	P0 P1 P2	
FRSTOR	m864	73	166	166	P0 P2	

Integer MMX and XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Notes
Move instructions						
MOVD	r32/64, mm/x	1	4	1	P2	
MOVD	mm/x, r32/64	2	5	1		
MOVD	mm/x,m32	1	2	0.5		
MOVD	m32,mm/x	1	3	1		
MOVQ	mm/x,mm/x	1	2	0.5	P02	
MOVQ	mm/x,m64	1	2	0.5		
MOVQ	m64,mm/x	1	3	1		
MOVDQA	xmm,xmm	1	0	0.25	none	inherit domain
MOVDQA	xmm,m	1	2	0.5		
MOVDQA	m,xmm	1	3	1	P2	
VMOVDQA	ymm,ymm	2	2	0.5	P02	
VMOVDQA	ymm,m256	2	3	1		
VMOVDQA	m256,ymm	2	4	1	P2	
MOVDQU	xmm,xmm	1	0	0.25	none	inherit domain
MOVDQU	xmm,m	1	2	0.5		
MOVDQU	m,xmm	1	3	1	P2	
LDDQU	xmm,m	1	2	0.5		
VMOVDQU	ymm,m256	2	3	1		
VMOVDQU	m256,ymm	2	4	1		
MOVDQ2Q	mm,xmm	1	1	0.5	P02	
MOVQ2DQ	xmm,mm	1	1	0.5	P02	

MOVNTQ	m,mm	1	3	1	P2	
MOVNTDQ	m,xmm	1	3	1	P2	
MOVNTDQA	xmm,m	1	2	0.5		
PACKSSWB/DW	(x)mm,r/m	1	2	1	P1	
PACKUSWB	(x)mm,r/m	1	2	1	P1	
PUNPCKH/LBW/WD/D						
Q	(x)mm,r/m	1	2	1	P1	
PUNPCKHQDQ	xmm,r/m	1	2	1	P1	
PUNPCKLQDQ	xmm,r/m	1	2	1	P1	
PSHUFB	(x)mm,r/m	1	3	1	P1	
PSHUFD	xmm,xmm,i	1	2	1	P1	
PSHUFW	mm,mm,i	1	2	1	P1	
PSHUFL/HW	xmm,xmm,i	1	2	1	P1	
PALIGNR	(x)mm,r/m,i	1	2	1	P1	
PBLENDW	xmm,r/m	1	2	0.5	P02	SSE4.1
MASKMOVQ	mm,mm	31	32	16	P2	00L4.1
MASKMOVDQU	xmm,xmm	65	45	31	P0 P1 P2	
PMOVMSKB	r32,mm/x	2	5	1	P1 P2	
PEXTRB/W/D/Q	r,x/mm,i	2	5	1	P1 P2	SSE4.1
PINSRB/W/D/Q	x/mm,r,i	2	6	1	P1	33L4.1
EXTRQ	X/111111,1,1 X,İ,İ	1	3	1	P1	AMD SSE4A
EXTRQ		1	1	1	P1	AMD SSE4A
INSERTQ	X,X	<u> </u>	-	1	P1	AMD SSE4A
INSERTQ	x,x,i,i	1 1	1	1	P1	AMD SSE4A
	X,X	I	1	ı	PI	AIVID SSE4A
PMOVSXBW/BD/BQ/ WD/WQ/DQ		4	_	4	D4	CCE4.4
	x,x	1	2	1	P1	SSE4.1
PMOVZXBW/BD/BQ/W D/WQ/DQ	V V	4	2	4	P1	SSE4.1
	X,X	1		1		
VPCMOV	x,x,x,x/m	1	2	1	P1	AMD XOP
VPCMOV	y,y,y,y/m	2	2	2	P1	AMD XOP
VPPERM	x,x,x,x/m	1	2	1	P1	AMD XOP
Arithmetic instructions	3					
PADDB/W/D/Q/SB/SW	, ,	_				
/USB/USW	(x)mm,r/m	1	2	0.5	P02	
PSUBB/W/D/Q/SB/SW/	, , ,				Doo	
USB/USW	(x)mm,r/m	1	2	0.5	P02	
PHADD/SUB(S)W/D	X,X	3	5	2	P02 2P1	SSSE3
PCMPEQ/GT B/W/D	(x)mm,r/m	1	2	0.5	P02	
PCMPEQQ	(x)mm,r/m	1	2	0.5	P02	SSE4.1
PCMPGTQ	(x)mm,r/m	1	2	0.5	P02	SSE4.2
PMULLW PMULHW						
PMULHUW PMULUDQ						
	(x)mm,r/m	1	4	1	P0	
PMULLD	x,r/m	1	5	2	P0	SSE4.1
PMULDQ	x,r/m	1	4	1	P0	SSE4.1
PMULHRSW	(x)mm,r/m	1	4	1	P0	SSSE3
PMADDWD	(x)mm,r/m	1	4	1	P0	
PMADDUBSW	(x)mm,r/m	1	4	1	P0	
PAVGB/W	(x)mm,r/m	1	2	0.5	P02	
PMIN/MAX SB/SW/ SD						
UB/UW/UD	(x)mm,r/m	1	2	0.5	P02	
PHMINPOSUW	x,r/m	2	4	1	P1 P02	SSE4.1

PABSB/W/D	(v)mm r/m	1	2	0.5	P02	SSSE3
PSIGNB/W/D	(x)mm,r/m		2	0.5	P02	SSSE3 SSSE3
	(x)mm,r/m	1	4		P02	555E3
PSADBW	(x)mm,r/m	2		1		0054.4
MPSADBW	x,x,i	8	8	4	P1 P02	SSE4.1
VDCOMD/M/D/O	v v v/ma i	4	2	0.5	DOO	AMD XOP
VPCOMB/W/D/Q	x,x,x/m,i	1		0.5	P02	latency 0 if i=6,7
VPCOMUB/W/D/Q	y y y/m i	1	2	0.5	P02	AMD XOP
· ·	x,x,x/m,i	I		0.5	P02	latency 0 if i=6,7
VPHADDBW/BD/BQ/ WD/WQ/DQ	x,x/m	1	2	0.5	P02	AMD XOP
VPHADDUBW/BD/BQ/	Χ,Χ/111	I		0.5	F 02	AIVID AOF
WD/WQ/DQ	x,x/m	1	2	0.5	P02	AMD XOP
VPHSUBBW/WD/DQ	x,x/m		2	0.5	P02	AMD XOP
VPMACSWW/WD	x,x/m,x		4	1	P0	AMD XOP
VPMACSDD	x,x,x/m,x		5	2	P0	AMD XOP
VPMACSDDH/L	x,x,x/m,x		4	1	P0	AMD XOP
VPMACSSWW/WD	x,x,x/m,x x,x,x/m,x	1	4	1	P0	AMD XOP
VPMACSSDD	x,x,x/m,x x,x,x/m,x	1	5	2	P0	AMD XOP
VPMACSSDD VPMACSSDQH/L	x,x,x/m,x		4	1	P0	AMD XOP
VPMADCSWD	x,x,x/m,x	1	4	1	P0	AMD XOP
VPMADCSSWD	x,x,x/m,x x,x,x/m,x		4	1	P0	AMD XOP
VI WADOOOVID	A,A,A/111,A	'	_	'	10	AIVID XOI
Logic						
PAND PANDN POR						
PXOR	(x)mm,r/m	1	2	0.5	P02	
PSLL/RL W/D/Q	(**)***********************************		_	0.0	. 02	
PSRAW/D	(x)mm,r/m	1	3	1	P1	
PSLL/RL W/D/Q	(21),	•				
PSRAW/D	(x)mm,i	1	2	1	P1	
PSLLDQ, PSRLDQ	x,i	1	2	1	P1	
PTEST	x,r/m	2	14	1	P1 P2	SSE4.1
VPROTB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPROTB/W/D/Q	x,x,i	1	2	1	P1	AMD XOP
VPSHAB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VPSHLB/W/D/Q	x,x,x/m	1	3	1	P1	AMD XOP
VI CITED/WIDIQ	λ,λ,λι 111			,		7 WILD 7(O)
String instructions						
PCMPESTRI	x,x,i	30	11	11	P0 P1 P2	SSE4.2
PCMPESTRM	x,x,i	30	10	10	P0 P1 P2	SSE4.2
PCMPISTRI	x,x,i	9	5	5	P0 P1 P2	SSE4.2
PCMPISTRM	x,x,i	8	6	6	P0 P1 P2	SSE4.2
I OWN TOTTAM	Χ,Χ,Ι					0021.2
Encryption						
PCLMULQDQ	x,x/m,i	7	11	7	P1	pclmul
VPCLMULQDQ	x,x,x,i	7	11	7	P1	pclmul
PCLMULQDQ	x,x,m,i	8		7	P1	pclmul
AESDEC	X,X,111,1 X,X	2	5	1	P01	aes
AESDECLAST		2	5	1	P01	aes
AESENC	X,X	2	5	1	P01	
AESENCLAST	X,X	2	5 5	1	P01	aes
	X,X				P01	aes
AESIMC	X,X	1	5	1		aes
AESKEYGENASSIST	x,x,i	1	5	1	P0	aes

Other				
EMMS	1	0.25		

Floating point XMM and YMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipes	Domain, notes
Move instructions						
MOVAPS/D						
MOVUPS/D	x,x	1	0	0.25	none	inherit domain
VMOVAPS/D	y,y	2	2	0.5	P02	ivec
MOVAPS/D						
MOVUPS/D	x,m128	1	2	0.5		
VMOVAPS/D						
VMOVUPS/D	y,m256	2	2	1		
MOVAPS/D		_				
MOVUPS/D	m128,x	1	3	1	P2	
VMOVAPS/D	m256,y	2	3	2	P2	
VMOVUPS/D	m256,y	2	3	2	P2	_
MOVSS/D	X,X	1	2	0.5	P01	fp
MOVSS/D	x,m32/64	1	2	0.5		
MOVSS/D	m32/64,x	1	3	1	P2	
MOVHPS/D	x,m64	1	3	1	P1	
MOVLPS/D	x,m64	1	3	0.5	P01	
MOVHPS/D	m64,x	2	4	1	P1 P2	
MOVLPS/D	m64,x	1	3	1	P2	
MOVLHPS MOVHLPS	X,X	1	2	1	P1	ivec
MOVMSKPS/D	r32,x	2	5	1	P1 P2	
VMOVMSKPS/D	r32,y	2	15	1	P1 P2	
MOVNTPS/D	m128,x	1	3	1	P2	
VMOVNTPS/D	m256,y	2	3	2-3	P2	AMD 00E4A
MOVNTSS/SD	m,x	1		3	P2	AMD SSE4A
SHUFPS/D	x,x/m,i	1	2	1	P2	ivec
VSHUFPS/D	y,y,y/m,i	2	2	2	P2	ivec
VPERMILPS/PD	x,x,x/m	1	3	1	P1	ivec
VPERMILPS/PD	y,y,y/m	2	3	2	P1	ivec
VPERMILPS/PD	x,x/m,i	1	2	1	P1	ivec
VPERMILPS/PD	y,y/m,i	2	2	2	P1	ivec
VPERM2F128	y,y,y,i	8	4	3.5	P0 P2	ivec
VPERM2F128	y,y,m,i	12		4	P0 P2	ivec
BLENDPS/PD	x,x/m,i	1	2	0.5	P01	fp
VBLENDPS/PD	y,y,y/m,i	2	2	1	P01	fp
BLENDVPS/PD	x,x/m,xmm0	1	2	0.5	P01	
VBLENDVPS/PD	y,y,y/m,y	2	2	1	P01	
MOVDDUP	X,X	1	2	1	P1	ivec
MOVDDUP	x,m64	1		0.5	5 (
VMOVDDUP	у,у	2	2	2	P1	ivec
VMOVDDUP	y,m256	2		1		
VBROADCASTSS	x,m32	1	8	0.5	DOO	
VBROADCASTSS	y,m32	2	8	0.5	P02	

VBROADCASTSD	y,m64	2	8	0.5	P02	
VBROADCASTF128	y,m128	2	8	0.5	P02	
MOVSH/LDUP	X,X	1	2	1	P1	ivec
MOVSH/LDUP	x,m128	1		0.5		
VMOVSH/LDUP	y,y	2	2	2	P1	ivec
VMOVSH/LDUP	y,m256	2		1		
UNPCKH/LPS/D	x,x/m	1	2	1	P1	ivec
VUNPCKH/LPS/D	y,y,y/m	2	2	2	P1	ivec
EXTRACTPS	r32,x,i	2		1	P1 P2	
EXTRACTPS	m32,x,i	2	10	1	P1 P2	
VEXTRACTF128	x,y,i	1	2	0.5	P02	ivec
VEXTRACTF128	m128,y,i	2	10	1	P0 P2	
INSERTPS	x,x,i	1	2	1	P1	
INSERTPS	x,m32,i	1	9	2	P1	
VINSERTF128	y,y,x,i	2	2	1	P02	ivec
VINSERTF128	y,y,m128,i	2	10	1	P02	
VMASKMOVPS/D	x,x,m128	1	9	0.5	P01	
VMASKMOVPS/D	y,y,m256	2	9	1	P01	
VMASKMOVPS/D	m128,x,x	20	~35	8	P0 P1 P2	
VMASKMOVPS/D	m256,y,y	41	~35	16	P0 P1 P2	
	,,,,,					
Conversion						
CVTPD2PS	X,X	2	6	1	P01	ivec/fp
VCVTPD2PS	x,y	4	6	2	P01	ivec/fp
CVTPS2PD	X,X	2	6	1	P01	ivec/fp
VCVTPS2PD	y,x	4	6	2	P01	ivec/fp
CVTSD2SS	y,x X,X	1	4	1	P0	fp
CVTSS2SD	X,X X,X	1	4	1	P0	fp
CVT3323D CVTDQ2PS		1	4	1	P0	fp
VCVTDQ2PS	X,X	2	4	2	P0	-
CVT(T) PS2DQ	y,y		=	1	P0	fp
\ ',	X,X	1	4			fp
VCVT(T) PS2DQ	y,y	2	4	2	P0	fp
CVTDQ2PD	X,X	2	7	1	P01	ivec/fp
VCVTDQ2PD	y,x	4	7	2	P01	ivec/fp
CVT(T)PD2DQ	X,X	2	7	1	P01	fp/ivec
VCVT(T)PD2DQ	x,y	4	7	2	P01	fp/ivec
CVTPI2PS	x,mm	2	6	1	P0 P2	ivec/fp
CVT(T)PS2PI	mm,x	1	5	1	P0	fp
CVTPI2PD	x,mm	2	7	1	P0 P1	ivec/fp
CVT(T) PD2PI	mm,x	2	7	1	P0 P1	fp/ivec
CVTSI2SS	x,r32	2	13	1	P0	fp
CVT(T)SS2SI	r32,x	2	12	1	P0 P2	fp
CVTSI2SD	x,r32/64	2	12	1	P0	fp
CVT(T)SD2SI	r32/64,x	2	12	1	P0 P2	fp
VCVTPS2PH	x/m,x,i	2	7	2	P0 P1	F16C
VCVTPS2PH	x/m,y,i	4	7	2	P0 P1	F16C
VCVTPH2PS	x,x/m	2	7	2	P0 P1	F16C
VCVTPH2PS	y,x/m	4	7	2	P0 P1	F16C
Arithmetic						
ADDSS/D SUBSS/D	x,x/m	1	5-6	1	P01	fma
I .	1	1	T.		l .	1

Steamroller

		`	Steamfolie	-		
ADDPS/D SUBPS/D	x,x/m	1	5-6	1	P01	fma
VADDPS/D VSUBPS/D	y,y,y/m	2	5-6	2	P01	fma
ADDSUBPS/D	x,x/m	1	5-6	1	P01	fma
VADDSUBPS/D	y,y,y/m	2	5-6	1	P01	fma
VADDOODI O/D	y,y,y/111		3-0	'	101	IIIIa
HADDPS/D HSUBPS/D VHADDPS/D	x,x	4	10	2	P0 P1	ivec/fma
VHSUBPS/D	y,y,y/m	8	10	4	P01 P1	ivec/fma
MULSS MULSD	x,x/m	1	5-6	0.5	P01	fma
MULPS MULPD	x,x/m	1	5-6	0.5	P01	fma
VMULPS VMULPD	y,y,y/m	2	5-6	1	P01	fma
DIVSS DIVPS	x,x/m	1	9-17	4-6	P01	fp
VDIVPS	y,y,y/m	2	9-17	9-12	P01	fp
DIVSD DIVPD	x,x/m	1	9-32	4-13	P01	fp
VDIVPD	y,y,y/m	2	9-32	9-27	P01	fp
RCPSS/PS	x,x/m	1	5	1	P01	fp
VRCPPS	y,y/m	2	5	2	P01	fp
CMPSS/D						
CMPPS/D	x,x/m	1	2	0.5	P01	fp
VCMPPS/D	y,y,y/m	2	2	1	P01	fp
COMISS/D UCOMISS/D	x,x/m	2		1	P01 P2	fp
MAXSS/SD/PS/PD MINSS/SD/PS/PD	x,x/m	1	2	0.5	P01	fp
\ (1.4.\) \(\mathrea{1}{12}\) \(\mathrea{1}\) \(\mathrea{1}\) \(\mathrea{1}\) \(\mathrea{1}\) \(\mathrea{1}\) \(\mathrea{1}\) \(\mathrea{1}\) \(\m	,				D0.4	
VMAXPS/D VMINPS/D	y,y,y/m	2	2	1	P01	fp
ROUNDSS/SD/PS/PD	x,x/m,i	1	4	1	P0	fp
VROUNDSS/SD/PS/ PD	/:	_	4	2	P0	£
DPPS	y,y/m,i	2 9	4 25	2 4	P0 P1	fp SSE4.1
DPPS	x,x,i x,m,i	10	25	5	P0 P1	SSE4.1
VDPPS		13	25	8	P0 P1	SSE4.1
VDPPS	y,y,y,i y,m,i	15	23	8	P0 P1	SSE4.1
DPPD	у,,. Х,Х,İ	7	14	3	P0 P1	SSE4.1
DPPD	x,m,i	8		4	P0 P1	SSE4.1
VFMADD132SS/SD	x,x,x/m	1	5-6	0.5	P01	FMA3
VFMADD132PS/PD	x,x,x/m	1	5-6	0.5	P01	FMA3
VFMADD132PS/PD	y,y,y/m	2	5-6	1	P01	FMA3
All other FMA3 instruction		l		•	. • .	FMA3
VFMADDSS/SD	x,x,x,x/m	1	5-6	0.5	P01	AMD FMA4
VFMADDPS/PD	x,x,x,x/m	1	5-6	0.5	P01	AMD FMA4
VFMADDPS/PD	y,y,y,y/m	2	5-6	1	P01	AMD FMA4
All other FMA4 instruction		1				AMD FMA4
Math						
SQRTSS/PS	x,x/m	1	12-13	4-9	P01	fp
VSQRTPS	y,y/m	2	12-13	9-18	P01	fp
SQRTSD/PD	x,x/m	1	26-29	4-18	P01	fp
VSQRTPD	y,y/m	2	27-28	9-37	P01	fp
RSQRTSS/PS	x,x/m	1	5	1	P01	fp
VRSQRTPS	y,y/m	2	5	2	P01	fp

Steamroller

VFRCZSS/SD/PS/PD	X,X	2	10	2	P01	AMD XOP
VFRCZSS/SD/PS/PD	x,m	4		2	P01	AMD XOP
Logic						
AND/ANDN/OR/XORPS/	_		_			
PD	x,x/m	1	2	0.5	P02	ivec
VAND/ANDN/OR/XOR						
PS/PD	y,y,y/m	2	2	1	P02	ivec
Other						
VZEROUPPER		9		4		32 bit mode
VZEROUPPER		16		5		64 bit mode
VZEROALL		17		6	P02	32 bit mode
VZEROALL		32		10	P02	64 bit mode
LDMXCSR	m32	9		36	P0 P2	
STMXCSR	m32	2		17	P0 P2	
FXSAVE	m4096	59-67		78	P0 P1 P2	
FXRSTOR	m4096	104-112		160	P0 P1 P2	
XSAVE	m	121-137		147-166	P0 P1 P2	
XRSTOR	m	191-209		291-297	P0 P1 P2	

AMD Bobcat

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, m = any memory operand including

indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of micro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 micro-operations are micro-coded.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latencies listed do not include memory operands where the oper-

and is listed as register or memory (r/m).

The clock frequency varies dynamically, which makes it difficult to measure latencies. The values listed are measured after the execution of millions of similar instructions, assuming that this will make the processor boost the clock frequency

to the highest possible value.

Reciprocal through-

put:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/2 indicates that the execution units can handle 2 instructions per clock cycle in one thread. However, the throughput may be limited by other bottlenecks in the pipe-

line.

Execution pipe: Indicates which execution pipe is used for the micro-operations. I0 means integer

pipe 0. I0/1 means integer pipe 0 or 1. FP0 means floating point pipe 0 (ADD). FP1 means floating point pipe 1 (MUL). FP0/1 means either one of the two floating point pipes. Two micro-operations can execute simultaneously if they go to

different execution pipes.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
MOV	r,r	1	1	0.5	I0/1	
MOV	r,i	1		0.5	I0/1	
MOV	r,m	1	4	1	AGU	Any addr. mode
MOV	m,r	1	4	1	AGU	Any addr. mode
MOV	m8,r8H	1	7	1	AGU	AH, BH, CH, DH
MOV	m,i	1		1	AGU	
MOVNTI	m,r	1	6	1	AGU	
MOVZX, MOVSX	r,r	1	1	0.5	I0/1	
MOVZX, MOVSX	r,m	1	5	1		
MOVSXD	r64,r32	1	1	0.5		
MOVSXD	r64,m32	1	5	1		
CMOVcc	r,r	1	1	0.5	I0/1	
CMOVcc	r,m	1		1		
XCHG	r,r	2	1	1	IO/1	
XCHG	r,m	3	20			Timing dep. on hw

XLAT	
IXLAI Z D	
PUSH r 1 1	
PUSH i 1 1	
PUSHF(D/Q) 9 6	
PUSHA(D) 9 9	
POP r 1 1 1	
POP m 4 4	
POPF(D/Q) 29 22	
POPA(D) 9 8	
LEA r16,[m] 2 3 2 10 Any addre	ess size
LEA r32/64,[m] 1 1 0.5 10/1 no scale,	I
LEA r32/64,[m] 1 2-4 1 10 w. scale of	
LEA r64,[m] 1 0.5 10/1 RIP relati	ve
LAHF 4 4 2	
SAHF 1 1 0.5 10/1	
SALC 1 1 1	
BSWAP r 1 1 0.5 10/1	
PREFETCHNTA m 1 1 AGU	
PREFETCHT0/1/2 m 1 1 AGU	
PREFETCH m 1 1 AGU AMD only	,
SFENCE 4 ~45 AGU	
LFENCE 1 1 AGU	
MFENCE 4 ~45 AGU	
Arithmetic instructions	
ADD, SUB r,r/i 1 1 0.5 10/1	
ADD, SUB r,m 1 1 0.5	
ADC, SBB r,m 1 1	
ADC, SBB m,r/i 1 6-7	
CMP r,r/i 1 1 0.5 10/1	
CMP r,m 1 1	
INC, DEC, NEG r 1 1 0.5 10/1	
INC, DEC, NEG m 1 6	
AAA 9 5	
AAS 9 10	
DAA 12 7	
DAS 16 8	
AAD 4 5	
AAM 33 23 23	
MUL, IMUL r8/m8 1 3 1 10	
MUL, IMUL r16/m16 3 3-5 I0 latency ax	=3 dx=5
	k=3, edx=4
MUL, IMUL r64/m64 2 6-7 10 latency rax	I
IMUL r16,r16/m16 1 3 1 10	0, IUA-1
IMUL r64,r64/m64 1 6 4 10	
IMUL r16,(r16),i 2 4 3 10	
IMUL r32,(r32),i 1 3 1 10	
IMUL r64,(r64),i 1 7 4 10	
DIV r8/m8 1 27 27 10	

DIV DIV DIV IDIV IDIV IDIV IDIV CBW, CWDE, CDQE	r16/m16 r32/m32 r64/m64 r8/m8 r16/m16 r32/m32 r64/m64	1 1 1 1 1 1 1	33 49 81 29 37 55 81	33 49 81 29 37 55 81	10 10 10 10 10 10 10	
CWD, CDQ, CQO		1	1		I0/1	
Logic instructions						
AND, OR, XOR	r,r	1	1	0.5	I0/1	
AND, OR, XOR	r,m	1		1		
AND, OR, XOR	m,r	1		1		
TEST	r,r	1	1	0.5	I0/1	
TEST	r,m	1	4	1	10/4	
NOT NOT	r	1	1	0.5	I0/1	
SHL, SHR, SAR	m r,i/CL	1	1	1 0.5	I0/1	
ROL, ROR	r,i/CL	1	1	0.5	10/1	
RCL, RCR	r,1	1	1	1	10/1	
RCL	r,i	9	5	5	10/1	
RCR	r,i	7	4	4		
RCL	r,ČL	9	6	5		
RCR	r,CL	9	5	4		
SHL,SHR,SAR,ROL,						
ROR	m,i /CL	1	7	1		
RCL, RCR	m,1	1	7	1		
RCL	m,i	10		~15		
RCR	m,i	9	18	~14		
RCL	m,CL	9		15		
RCR	m,CL	8		15		
SHLD, SHRD	r,r,i	6 7	3	3		
SHLD, SHRD	r,r,cl	_	4	4		
SHLD, SHRD BT	m,r,i/CL r,r/i	8	18	15 0.5		
BT	m,i	1		1		
BT	m,r	5		3		
BTC, BTR, BTS	r,r/i	2	2	1		
BTC	m,i	5	_	15		
BTR, BTS	m,i	4-5		15		
BTC	m,r	8	16	13		
BTR, BTS	m,r	8	15	15		
BSF, BSR	r,r	11	6	6		
BSF, BSR	r,m	11		6		
POPCNT	r,r/m	9	12	5		SSE4.A/SSE4.2
LZCNT	r,r/m	8	5			SSE4.A, AMD only
SETcc	r	1	1	0.5		
SETcc	m	1		1	10/4	
CLC, STC		1	_	0.5	10/1	
CMC		1	1	0.5	10/1	
CLD STD		1 2		1 2	10 10 11	
טוט		4			10,11	1

Control transfer instru	uctions					
JMP	short/near	1		2		
JMP	r	1		2		
JMP	m(near)	1		2		
Jcc	short/near	1		1/2 - 2		recip. t. = 2 if jump
J(E/R)CXZ	short	2		1 - 2		recip. t. = 2 if jump
LÒOP	short	8		4		
CALL	near	2		2		
CALL	r	2		2		
CALL	m(near)	5		2		
RET	, ,	1		~3		
RET	i	4		~4		
BOUND	m	8		4		values for no jump
INTO		4		2		values for no jump
						, ,
String instructions						
LODS		4		~3		
REP LODS		5		~3		values are per count
STOS		4		2		,
REP STOS		2				best case 6-7 B/clk
MOVS		7		5		
REP MOVS		2				best case 5 B/clk
SCAS		5		3		
REP SCAS		6		3		values are per count
CMPS		7		4		,
REP CMPS		6		3		values are per count
						'
Other						
NOP (90)		1	0	0.5	10/1	
Long NOP (0F 1F)		1	0	0.5	10/1	
PAUSE		6		6		
ENTER		i,0	12		36	
ENTER		a,b	10+6b		34+6b	
LEAVE		2		3		32 bit mode
CPUID		30-52	70-830			
RDTSC		26		87		
RDPMC		14		8		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
FLD	r	1	2	0.5	FP0/1	
FLD	m32/64	1	6	1	FP0/1	
FLD	m80	7	14	5		
FBLD	m80	21	30	35		
FST(P)	r	1	2	0.5	FP0/1	
FST(P)	m32/64	1	6	1	FP1	
FSTP	m80	16	19	9		
FBSTP	m80	217	177	180		

FXCH	r	1	0	1	FP1
FILD	m .	1	9	1	FP1
		1		-	111
FIST(T)(P)	m	1	6	1	
FLDZ, FLD1		1		1	FP1
FCMOVcc	st0,r	12	7	7	FP0/1
FFREE	r	1		1	FP1
FINCSTP, FDECSTP		1	1	1	FP1
FNSTSW	A.V.			-	FP1
	AX	2	~20	10	
FNSTSW	m16	2	~20	10	FP1
FNSTCW	m16	3		2	FP0
FLDCW	m16	12		10	FP1
	_				
A with we at a lime two set and	 -				
Arithmetic instructions		-			ED0
FADD(P),FSUB(R)(P)	r	1	3	1	FP0
FADD(P),FSUB(R)(P)	m	1	3	1	FP0
FIADD,FISUB(R)	m	2		3	FP0,FP1
FMUL(P)	r	1	5	3	FP1
FMUL(P)	m .	1	5	3	FP1
` ,			3	3	
FIMUL	m m	2			FP1
FDIV(R)(P)	r	1	19	19	FP1
FDIV(R)(P)	m	1		19	FP1
FIDIV(R)	m	2		19	FP1
FABS, FCHS		1	2	2	FP1
1	_	1		1	FP0
FCOM(P), FUCOM(P)	r				
FCOM(P), FUCOM(P)	m	1		1	FP0
FCOMPP, FUCOMPP		1		1	FP0
FCOMI(P)	r	1	2	2	FP0
FICOM(P)	m	2		1	FP0, FP1
FTST		1		1	FP0
		1			
FXAM		2		2	FP1
FRNDINT		5	11		FP0, FP1
FPREM		1	11-16		FP1
FPREM1		1	11-19		FP1
Math					
FSQRT		1	31		FP1
			31		
FLDPI, etc.		1		1	FP0
FSIN		4-44	27-105	27-105	FP0, FP1
FCOS		11-51	51-94	51-94	FP0, FP1
FSINCOS		11-75	48-110	48-110	FP0, FP1
FPTAN		~45	~113	~113	FP0, FP1
FPATAN		9-75	49-163	49-163	FP0, FP1
		1		49-103	
FSCALE		5	8		FP0, FP1
FXTRACT		7	9		FP0, FP1
F2XM1		30-56	~60		FP0, FP1
FYL2X		8	29		FP0, FP1
FYL2XP1		12	44		FP0, FP1
1 LE/XI 1		'-			110,111
Othor					
Other			_	0.5	ED2 E54
FNOP		1	0	0.5	FP0, FP1
(F)WAIT		1	0	0.5	ALU
FNCLEX		9		30	FP0, FP1
FNINIT		26		78	FP0, FP1
1	1	1	'	T.	

FNSAVE	m	85	16	3	FP0, FP1	
FRSTOR	m	80	12	3	FP0, FP1	
FXSAVE	m	71	10	5	FP0, FP1	
FXRSTOR	m	111	11	8 1	FP0. FP1	

Integer MMX and XMM instructions

Operands	Ops	Latency	Reciprocal	Execution	Notes
			tiirougriput	pipe	
#22 mama	4	_	4	ED0	
·					
· ·				-	
·	ļ -				
·					
·					
m32,(x)mm	1	6	2	FP1	
		_			Moves 64 bits.
` '					Name differs
·					do.
·					do.
mm,mm	1	1	0.5		
xmm,xmm		1 1	1	FP0/1	
mm,m64	1	5	1	FP0/1	
xmm,m64	2	5	1	FP1	
m64,(x)mm	1	6	2	FP1	
xmm,xmm	2	1	1	FP0/1	
xmm,m	2	6	2	AGU	
m,xmm	2	6	3	FP1	
xmm,m	2	6-9	2-5.5	AGU	
m,xmm	2	6-9	3-6	FP1	
mm,xmm	1	1	0.5	FP0/1	
xmm,mm	2	1	1	FP0/1	
m,mm	1	13	1,5	FP1	
	2	13	3	FP1	
•					
mm,r/m	1	1	0.5	FP0/1	
•					
xmm,r/m	3	2	2	FP0/1	
,				-	
mm,r/m	1	1 1	0.5		
•			-		
xmm,r/m	2	1	1		
·	2	1	1	FP0, FP1	
·	1		-		
·					Suppl. SSE3
					Suppl. SSE3
·					Саррі. ООСО
					Cuppl CCF2
					Suppl. SSE3
	xmm,xmm mm,m64 xmm,m64 m64,(x)mm xmm,xmm xmm,m m,xmm xmm,m m,xmm mm,xmm xmm,mm m,xmm xmm,mm m,xmm xmm,mm m,mm m,mm m,xmm m,xmm	mm, r32	mm, r32 1 7 mm,m32 1 5 r32, xmm 1 6 xmm, r32 3 6 xmm,m32 2 5 m32,(x)mm 1 6 r64,(x)mm 1 7 mm,r64 2 7 xmm,r64 3 7 mm,mm 1 1 xmm,m64 1 5 xmm,m64 2 5 m64,(x)mm 1 6 xmm,xmm 2 1 xmm,xmm 2 6 mm,xmm 2 6 mm,xmm 1 1 xmm,xmm 2 1 xmm,xmm 2 1 xmm,r/m 1 1 xmm,r/m 1 1 xmm,r/m 1 1 xmm,xmm 2 1 xmm,xmm 2 1 xmm,xmm 3 2 mm,mm 1 1 xmm,xmm 2 <td< td=""><td>mm, r32 1 7 3 mm,m32 1 5 1 r32, xmm 1 6 1 xmm, r32 3 6 3 xmm,r32 2 5 1 m32,(x)mm 1 6 2 r64,(x)mm 1 7 1 mm,r64 2 7 3 xmm,r64 3 7 3 mm,mm 1 1 0.5 xmm,xmm 2 1 1 xmm,m64 1 5 1 xmm,m64 2 5 1 xmm,m64 2 5 1 xmm,mm 2 6 2 xmm,xmm 2 6 2 m,xmm 2 6 3 xmm,xmm 1 1 0.5 xmm,xmm 2 1 1 xmm,xmm 2 1 1</td><td>r32, mm</td></td<>	mm, r32 1 7 3 mm,m32 1 5 1 r32, xmm 1 6 1 xmm, r32 3 6 3 xmm,r32 2 5 1 m32,(x)mm 1 6 2 r64,(x)mm 1 7 1 mm,r64 2 7 3 xmm,r64 3 7 3 mm,mm 1 1 0.5 xmm,xmm 2 1 1 xmm,m64 1 5 1 xmm,m64 2 5 1 xmm,m64 2 5 1 xmm,mm 2 6 2 xmm,xmm 2 6 2 m,xmm 2 6 3 xmm,xmm 1 1 0.5 xmm,xmm 2 1 1 xmm,xmm 2 1 1	r32, mm

PMOVMSKB	r32,(x)mm	1	8	2	FP0	
PEXTRW	r32,(x)mm,i	2	12	2	FP0, FP1	
PINSRW	mm,r32,i	2	10	6	FP0/1	
PINSRW	xmm,r32,i	3	10		FP0/1	
INSERTQ	xmm,xmm	3	3-4	3	FP0, FP1	SSE4.A, AMD only
INSERTQ	xmm,xmm,i,i	3	3-4	3	FP0, FP1	SSE4.A, AMD only
						· · · · · · · · · · · · · · · · · · ·
EXTRO	xmm,xmm	1	1	1	FP0/1	SSE4.A, AMD only
EXTRQ	xmm,xmm,i,i	1	2	2	FP0/1	SSE4.A, AMD only
Arithmetic instruction	s					
PADDB/W/D/Q						
PADDSB/W						
PADDUSB/W						
PSUBB/W/D/Q						
PSUBSB/W						
PSUBUSB/W	mm,r/m	1	1	0.5	FP0/1	
PADDB/W/D/Q						
PADDSB/W ADDUSB/W						
PSUBB/W/D/Q						
PSUBSB/W						
PSUBUSB/W	ymm r/m	2	1	1	FP0/1	
	xmm,r/m		-	-		0
PHADD/SUBW/SW/D	mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PHADD/SUBW/SW/D	xmm,r/m	2	4	1	FP0/1	Suppl. SSE3
PCMPEQ/GT B/W/D	mm,r/m	1	1	0.5	FP0/1	
PCMPEQ/GT B/W/D	xmm,r/m	2	1	1	FP0/1	
PMULLW PMULHW						
PMULHUW PMULUDQ		4		4	ED0	
	mm,r/m	1	2	1	FP0	
PMULLW PMULHW PMULHUW						
PMULUDQ	vmm r/m	2	2	2	FP0	
	xmm,r/m	1	2	1		Cumpl CCF2
PMULHRSW	mm,r/m	-			FP0	Suppl. SSE3
PMULHRSW	xmm,r/m	2	2	2	FP0	Suppl. SSE3
PMADDWD	mm,r/m	1	2	1	FP0	
PMADDWD	xmm,r/m	2	2	2	FP0	
PMADDUBSW	mm,r/m	1	2	1	FP0	Suppl. SSE3
PMADDUBSW	xmm,r/m	2	2	2	FP0	Suppl. SSE3
PAVGB/W	mm,r/m	1	1	0.5	FP0/1	
PAVGB/W	xmm,r/m	2	1	1	FP0/1	
PMIN/MAX SW/UB	mm,r/m	1	1	0.5	FP0/1	
PMIN/MAX SW/UB	xmm,r/m	2	1	1	FP0/1	
PABSB/W/D	mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PABSB/W/D	xmm,r/m	2	1	1	FP0/1	Suppl. SSE3
PSIGNB/W/D	mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PSIGNB/W/D	xmm,r/m	2	1	1	FP0/1	Suppl. SSE3
PSADBW	mm,r/m	1	2	2	FP0	
PSADBW	xmm,r/m	2	2	2	FP0, FP1	
Logic]					
PAND PANDN POR						
PXOR	mm,r/m	1	1	0.5	FP0/1	

PAND PANDN POR PXOR	xmm,r/m	2	1	1	FP0/1	
PSLL/RL W/D/Q PSRAW/D	mm,i/mm/m	1	1	1	FP0/1	
PSLL/RL W/D/Q PSRAW/D PSLLDQ, PSRLDQ	xmm,i/xmm/m xmm,i	2 2	1	1 1	FP0/1 FP0/1	
Other EMMS	,	1		0.5	FP0/1	

Floating point XMM						
Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
MOVAPS/D	r,r	2	1	1	FP0/1	
MOVAPS/D	r,m	2	6	2	AGU	
MOVAPS/D	m,r	2	6	3	FP1	
MOVUPS/D	r,r	2	1	1	FP0/1	
MOVUPS/D	r,m	2	6-9	2-6	AGU	
MOVUPS/D	m,r	2	6-9	3-6	FP1	
MOVSS/D	r,r	1	1	0.5	FP0/1	
MOVSS/D	r,m	2	6	2	FP1	
MOVSS/D	m,r	1	5	2	FP1	
MOVHLPS, MOVLHPS						
, ,	r,r	1	1	0.5	FP0/1	
MOVHPS/D,						
MOVLPS/D	r,m	1	6	2	AGU	
MOVHPS/D,						
MOVLPS/D	m,r	1	5	3	FP1	
MOVNTPS/D	m,r	2	12	3	FP1	
MOVNTSS/D	m,r	1	12	2	FP1	SSE4.A, AMD only
MOVDDUP	r,r	2	2	1	FP0/1	SSE3
MOVDDUP	r,m64	2	7	2	FP0/1	SSE3
MOVSHDUP,	,,,,,,	_	-	_		
MOVSLDUP	r,r	2	1	1	FP0/1	
MOVSHDUP,	,					
MOVSLDUP	r,m	2	12	3	AGU	
MOVMSKPS/D	r32,r	1	~6	2	FP0	
SHUFPS/D	r,r/m,i	3	2	2	FP0/1	
UNPCK H/L PS/D	r,r/m	2	1	1	FP0/1	
	,,,,,,,,	_	-	-		
Conversion						
CVTPS2PD	r,r/m	2	5	2	FP1	
CVTPD2PS	r,r/m	4	5	3	FP0, FP1	
CVTSD2SS	r,r/m	3	5	3	FP0, FP1	
CVTSS2SD	r,r/m	1	4	1	FP1	
CVTDQ2PS	r,r/m	2	4	4	FP1	
CVTDQ2PD	r,r/m	2	5	2	FP1	
CVT(T)PS2DQ	r,r/m	2	4	4	FP1	
CVT(T)PD2DQ	r,r/m	4	6	3	FP0, FP1	
CVTPI2PS	xmm,mm	1	4	2	FP1	
0 11 121 0	A111111,111111	'	-	_	1.6.1	I

CVTPI2PD	xmm,mm	2	5	2	FP1	1
CVT(T)PS2PI	mm,xmm	1	4	1	FP1	
CVT(T)PD2PI	mm,xmm	3	6	2	FP0, FP1	
CVTSI2SS	xmm,r32	3	12	3	FP0, FP1	
CVTSI2SD	xmm,r32	2	11	3	FP1	
CVT(T)SS2SI	r32,xmm	2	12	1	FP0, FP1	
CVT(T)SD2SI	r32,xmm	2	11	1	FP0, FP1	
OV1(1)0D201	132,811111	_	11	'	110,111	
Arithmetic						
ADDSS/D SUBSS/D	r,r/m	1	3	1	FP0	
ADDPS/D SUBPS/D	r,r/m	2	3	2	FP0	
ADDSUBPS/D	r,r/m	2	3	2	FP0	SSE3
HADDPS/D	,					
HSUBPS/D	r,r/m	2	3	2	FP0	SSE3
MULSS	r,r/m	1	2	1	FP1	
MULSD	r,r/m	1	4	2	FP1	
MULPS	r,r/m	2	2	2	FP1	
MULPD	r,r/m	2	4	4	FP1	
DIVSS	r,r/m	1	13	13	FP1	
DIVPS	r,r/m	2	38	38	FP1	
DIVSD	r,r/m	1	17	17	FP1	
DIVPD	r,r/m	2	34	34	FP1	
RCPSS	r,r/m	1	3	1	FP1	
RCPPS	r,r/m	2	3	2	FP1	
MAXSS/D MINSS/D	r,r/m	1	2	1	FP0	
MAXPS/D MINPS/D	r,r/m	2	2	2	FP0	
CMPccSS/D	r,r/m	1	2	1	FP0	
CMPccPS/D	r,r/m	2	2	2	FP0	
COMISS/D	,					
UCOMISS/D	r,r/m	1		1	FP0	
Lania						
Logic ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	r,r/m	2	1	1	FP0/1	
ON SID XON SID	1,1/111		ı	'	FFU/I	
Math						
SQRTSS	r,r/m	1	14	14	FP1	
SQRTPS	r,r/m	2	48	48	FP1	
SQRTSD	r,r/m	1	24	24	FP1	
SQRTPD	r,r/m	2	48	48	FP1	
RSQRTSS	r,r/m	1	3	1	FP1	
RSQRTPS	r,r/m	2	3	2	FP1	
Othor						
Other	m	12		10	EDO ED4	
LDMXCSR	m m	12		10	FP0, FP1	
STMXCSR	m	3		11	FP0, FP1	

AMD Jaguar

List of instruction timings and macro-operation breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, m = any memory operand including

indirect operands, m64 means 64-bit memory operand, etc.

Ops: Number of micro-operations issued from instruction decoder to schedulers. In-

structions with more than 2 micro-operations are micro-coded.

Latency: This is the delay that the instruction generates in a dependency chain. The num-

bers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latencies listed do not include memory operands where the oper-

and is listed as register or memory (r/m).

The clock frequency varies dynamically, which makes it difficult to measure latencies. The values listed are measured after the execution of millions of similar instructions, assuming that this will make the processor boost the clock frequency

to the highest possible value.

Reciprocal throughput:

This is also called issue latency. This value indicates the average number of clock cycles from the execution of an instruction begins to a subsequent independent instruction of the same kind can begin to execute. A value of 1/2 indicates that the execution units can handle 2 instructions per clock cycle in one thread. How-

ever, the throughput may be limited by other bottlenecks in the pipeline.

Execution pipe: Indicates which execution pipe is used for the micro-operations. I0 means integer

pipe 0. I0/1 means integer pipe 0 or 1. FP0 means floating point pipe 0 (ADD). FP1 means floating point pipe 1 (MUL). FP0/1 means either one of the two floating point pipes. Two micro-operations can execute simultaneously if they go to

different execution pipes.

Integer instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
MOV	r,r	1	1	0.5	IO/1	
MOV	r,i	1		0.5	IO/1	
MOV	r8/16,m	1	4	1	AGU	Any addressing mode
MOV	m,r8/16	1	4	1	AGU	Any addressing mode
MOV	r32/64,m	1	3	1	AGU	Any addressing mode
						Any addressing
MOV	m,r32/64	1	0	1	AGU	mode
MOV	m,i	1		1	AGU	
MOVNTI	m,r	1	6	1	AGU	
MOVZX, MOVSX	r,r	1	1	0.5	10/1	
MOVZX, MOVSX	r,m	1	4	1		
MOVSXD	r64,r32	1	1	0.5		

			9-			
MOVSXD	r64,m32	1	3	1		
CMOVcc	r,r	1	1	0.5	IO/1	
			'		10/1	
CMOVcc	r,m	1		1		
XCHG	r8,r8	3	2	2	I0/1	
XCHG	r,r	2	1	1	10/1	
						Timing depends on
XCHG	r,m	3	16			hw
XLAT	,,,,,,	2	5	3		
PUSH	_	1		1		
I	ŗ					
PUSH	i	1		1		
PUSH	m	2		1		
PUSH	SP	2		1		
PUSHF(D/Q)		9		6		
PUSHA(D)		9		8		
POP	r	1		1		
POP	m .	3		2		
I				2		
POP	SP	1				
POPF(D/Q)		29		18		
POPA(D)		9		8		
LEA	r16,[m]	2	3	2	10	Any address size
LEA	r32/64,[m]	1	1	0.5	10/1	1-2 comp., no scale
LEA	r32/64,[m]	1	2	1	10	3 comp. or scale
						· ·
LEA	r64,[m]	1		0.5	10/1	RIP relative
LAHF		4	3	2		
SAHF		1	1	0.5	I0/1	
SALC		1	1	1		
BSWAP	r	1	1	0.5	10/1	
MOVBE	r,m	1		1		MOVBE
MOVBE		1		1		MOVBE
	m,r			=	A C I I	WOVBL
PREFETCHNTA	m	1		~100	AGU	
PREFETCHT0/1/2	m	1		~100	AGU	
PREFETCHW	m	1		~100	AGU	
LFENCE		1		0.5	AGU	
MFENCE		4		~45	AGU	
SFENCE		4		~45	AGU	
		-				
Arithmetic instructions	 e					
ADD, SUB	r,r/i	1	1	0.5	10/1	
1			'		10/1	
ADD, SUB	r,m	1		1		
ADD, SUB	m,r	1	6	1		
ADC, SBB	r,r/i	1	1	1	I0/1	
ADC, SBB	r,m	1		1		
ADC, SBB	m,r/i	1	8			
CMP	r,r/i	1	1	0.5	IO/1	
CMP	r,m	1		1		
INC, DEC, NEG	r ','''	1	1	0.5	10/1	
II II					10/1	
INC, DEC, NEG	m	1	6	1		
AAA		9	5			
AAS		9	8			
DAA		12	6			
DAS		16	8			
AAD		4	5			
AAM		8	14	13		
L-A-JIAI		0	'-	13		1

	1		1	ı	ı	
MUL, IMUL	r8/m8	1	3	1	10	
MUL, IMUL	r16/m16	3	3	3	10	
MUL, IMUL	r32/m32	2	3	2	10	
MUL, IMUL	r64/m64	2	6	5	10	
IMUL	r16,r16/m16	1	3	1	10	
IMUL	r32,r32/m32	1	3	1	10	
IMUL	r64,r64/m64	1	6	4	10	
IMUL	r16,(r16),i	2	4	1	10	
IMUL	, ,		3	1	10	
	r32,(r32),i	1	1	-		
IMUL	r64,(r64),i	1	6	4	10	
DIV	r8/m8	1	11-14	11-14	10	
DIV	r16/m16	2	12-19	12-19	10	
DIV	r32/m32	2	12-27	12-27	10	
DIV	r64/m64	2	12-43	12-43	10	
IDIV	r8/m8	1	11-14	11-14	10	
IDIV	r16/m16	2	12-19	12-19	10	
IDIV	r32/m32	2	12-27	12-27	10	
IDIV	r64/m64	2	12-43	12-43	10	
CBW, CWDE, CDQE		1	1		10/1	
CWD, CDQ, CQO		1	1		10/1	
CVVD, CDQ, CQO		'	l 		10/1	
Logic instructions						
AND, OR, XOR	r,i	1	1	0.5	I0/1	
AND, OR, XOR	r,r	1	1	0.5	I0/1	
AND, OR, XOR	r,m	1		1		
AND, OR, XOR	m,r	1	6	1		
ANDN	r,r,r	1	1	0.5		BMI1
ANDN	r,r,m	2		1		BMI1
TEST	r,i	1	1	0.5	IO/1	Divin 1
TEST		1	1	0.5	10/1	
1	r,r		l I		10/1	
TEST	r,m	1	_	1	10/4	
NOT	r	1	1	0.5	IO/1	
NOT	m	1	6	1		
SHL, SHR, SAR	r,i/CL	1	1	0.5	I0/1	
ROL, ROR	r,i/CL	1	1	0.5	I0/1	
RCL, RCR	r,1	1	1	1	I0/1	
RCL	r,i	9	5	5		
RCR	r,i	7	4	4		
RCL	r,CL	9	5	5		
RCR	r,CL	7	4	4		
SHL,SHR,SAR,ROL,	, -					
ROR	m,i /CL	1	6	1		
RCL, RCR	m,1	1		1		
RCL	m,i	10		11		
RCR		9		11		
	m,i					
RCL	m,CL	9		11		
RCR	m,CL	8	_	11		
SHLD, SHRD	r,r,i	6	3	3		
SHLD, SHRD	r,r,cl	7	4	4		
SHLD, SHRD	m,r,i/CL	8		11		
BT	r,r/i	1		0.5		
ВТ	m,i	1		1		
ВТ	m,r	5		3		
1	ı ' '		I	i	I .	1

BTC, BTR, BTS BTC BTR, BTS BTC, BTR, BTS BTC, BTR, BTS BSF BSR BSF, BSR POPCNT LZCNT TZCNT BLSI BLSR BLSI BLSR	r,r/i m,i m,i m,r r,r r,r r,m r,r/m r,r r,r r,r	2 5 4 8 7 8 8 1 1 2 2 3	2 4 4 1 1 2 2	1 11 11 4 4 4 0.5 0.5 1 1		SSE4A/SSE4.2 SSE4A/LZCNT BMI1 BMI1 BMI1
BLSMSK	r,r	2	2	1		BMI1
BLSMSK	r,m	3	4	2		BMI1
BEXTR	r,r,r	1	1	0.5		BMI1
BEXTR SETcc	r,m,r r	2	1	1 0.5		BMI1
SETCC	m	1	ı	1		
CLC, STC	***	1		0.5	I0/1	
CMC		1	1		10/1	
CLD		1		1	10	
STD		2		2	10,11	
Control transfer instru		1		2		
JMP	short/near r	1 1		2 2		
JMP	m(near)	1		2		
Jcc	short/near	1		0.5 - 2		2 if jumping
J(E/R)CXZ	short	2		1 - 2		2 if jumping
LOOP	short	8		5		
LOOPE LOOPNE	short	10		6		
CALL	near	2		2		
CALL	r	2		2		
CALL	m(near)	5		2		
RET RET	i	1 4		3		
KEI	l	4		3		values are for no
BOUND	m	8		4		jump
				_		values are for no
INTO		4		2		jump
String instructions						
LODS		4		2		
REP LODS		~5n		~3n		
STOS		4		2		
REP STOS		~2n		~n		for small n
REP STOS		2/16B		1/16B		best case
MOVS		7		4		
REP MOVS		~2n		~1.5n		for small n
REP MOVS		2/16B		1/16B		best case
SCAS REP SCAS		5 ~6n		3 ~3n		
INEF SUAS		7011		~311		

CMPS		7		4		
REP CMPS		~6n		~3n		
Synchronization						
LOCK ADD	m,r	1	19			
XADD	m,r	4	11			
LOCK XADD	m,r	4	16			
CMPXCHG	m,r8	5	11			
LOCK CMPXCHG	m,r8	5	16			
CMPXCHG	m,r16/32/64	6	11			
LOCK CMPXCHG	m,r16/32/64	6	17			
CMPXCHG8B	m64	18	11			
LOCK CMPXCHG8B	m64	18	19			
CMPXCHG16B	m128	28	32			
LOCK CMPXCHG16B	m128	28	38			
Other						
NOP (90)		1		0.5	I0/1	
Long NOP (0F 1F)		1		0.5	I0/1	
PAUSE		37		46		
ENTER		i,0	12		18	
ENTER		a,b	10+6b	17+3b		
LEAVE		2		3		32 bit mode
CPUID		30-59	70-230			
XGETBV		5		5		
RDTSC		34		41		
RDTSCP		34		42		rdtscp
RDPMC		30		27		
CRC32	r,r	3	3	2		
CRC32	r,m	4		2		

Floating point x87 instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
FLD	r	1	2	0.5	FP0/1	
FLD	m32/64	1	4	1	FP0/1	
FLD	m80	7	9	5		
FBLD	m80	21	24	29		
FST(P)	r	1	2	0.5	FP0/1	
FST(P)	m32/64	1	3	1	FP1	
FSTP	m80	10	9	7		
FBSTP	m80	217	167	168		
FXCH	r	1	0	1	FP1	
FILD	m	1	8	1	FP1	
FIST(T)(P)	m	1	4	1	FP1	
FLDZ, FLD1		1		1	FP1	
FCMOVcc	st0,r	12	7	7	FP0/1	
FFREE	r	1		1	FP1	
FINCSTP, FDECSTP		1	1	1	FP1	
FNSTSW	AX	2		11	FP1	
FNSTSW	m16	2		11	FP1	

FNSTCW	m16	3		2	FP0	
FLDCW	m16	12		9	FP1	
Arithmetic instructions	s					
FADD(P),FSUB(R)(P)	r	1	3	1	FP0	
FADD(P),FSUB(R)(P)	m	1		1	FP0	
FIADD,FISUB(R)	m	2		2	FP0,FP1	
FMUL(P)	r	1	5	3	FP1	
FMUL(P)	m	1		3	FP1	
FIMUL	m	1			FP1	
FDIV(R)(P)	r	1	22	22	FP1	
FDIV(R)(P)	m	1		22	FP1	
FIDIV(R)	m	2		22	FP1	
FABS, FCHS		1	2	2	FP1	
FCOM(P), FUCOM(P)	r	1		1	FP0	
FCOM(P), FUCOM(P)	m	1		1	FP0	
FCOMPP, FUCOMPP		1		1	FP0	
FCOMI(P)	r	1		2	FP0	
FICOM(P)	m	2		1	FP0, FP1	
FTST		1		1	FP0	
FXAM		2		2	1FP1	
FRNDINT		5	8	4	FP0, FP1	
FPREM		1	11-54		FP1	
FPREM1		1	11-56		FP1	
Math						
FSQRT		1	35	35	FP1	
FLDPI, etc.		1		1	FP0	
FSIN		4-44	30-139	30-151	FP0, FP1	
FCOS		11-51	38-93		FP0, FP1	
FSINCOS		11-76		55-180	FP0, FP1	
FPTAN		11-45	55-177	55-177	FP0, FP1	
FPATAN		9-75	44-167	44-167	FP0, FP1	
FSCALE		5	27		FP0, FP1	
FXTRACT		7	9	6	FP0, FP1	
F2XM1		8	32-37		FP0, FP1	
FYL2X		8-51	30-120	30-120	FP0, FP1	
FYL2XP1		61	~160	~160	FP0, FP1	
Other						
FNOP		1		0.5	FP0/1	
(F)WAIT		1	0	0.5	ALU	
FNCLEX		9		32	FP0, FP1	
FNINIT		27		78	FP0, FP1	
FNSAVE	m	88	138-150	138-150	FP0, FP1	
FRSTOR	m	80	136	136	FP0, FP1	

Integer MMX and XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions						
MOVD	r32, mm	1	4	1	FP0	

luov /D	00			1	ED0/4	I I
MOVD	mm, r32	2	6	1	FP0/1	
MOVD	mm,m32	1	4	1	AGU	
MOVD	r32, x	1	4	1	FP0	
MOVD	x, r32	2	6	1	FP1	
MOVD	x,m32	1	4	1	AGU	
MOVD	m32,(x)mm	1	3	1	FP1	
MOVE (MOVE		_		_	ED0	Moves 64 bits.Name of instruction differs
MOVD / MOVQ	r64,(x)mm	1	4	1	FP0	
MOVQ	mm,r64	2	6	1	FP0/1	do.
MOVQ	x,r64	2	6	1	FP0/1	do.
MOVQ	mm,mm	1	1	0.5	FP0/1	
MOVQ	X,X	1	1	0.5	FP0/1	
MOVQ	(x)mm,m64	1	4	1	AGU	
MOVQ	m64,(x)mm	1	3	1	FP1	
MOVDQA	X,X	1	1	0.5	FP0/1	
VMOVDQA	y,y	2	1	1	FP0/1	AVX
MOVDQA	x,m	1	4	1	AGU	
VMOVDQA	y,m	2	4	2	AGU	AVX
MOVDQA	m,x	1	3	1	FP1	
VMOVDQA	m,y	2	3	2	FP1	AVX
MOVDQU, LDDQU	x.m	1	4	1	AGU	
MOVDQU	m,x	1	3	1	FP1	
MOVDQ2Q	mm,x	1	1	0.5	FP0/1	
MOVQ2DQ	x,mm	1	1	0.5	FP0/1	
MOVNTQ	m,mm	1	429	2	FP1	
MOVNTDQ	m,x	1	429	2	FP1	
PACKSSWB/DW	ŕ					
PACKUSWB	mm,r/m	1	1	0.5	FP0/1	
PACKSSWB/DW						
PACKUSWB	x,r/m	1	2	0.5	FP0/1	
PUNPCKH/LBW/WD/D						
Q	mm,r/m	1	1	0.5	FP0/1	
PUNPCKH/LBW/WD/D						
Q	x,r/m	1	2	0.5	FP0/1	
PUNPCKH/LQDQ	x,r/m	1	2	0.5	FP0/1	
PSHUFB	mm,mm	1	1	0.5	FP0/1	Suppl. SSE3
PSHUFB	x,x	3	4	2	FP0/1	Suppl. SSE3
PSHUFD	x,x,i	1	2	0.5	FP0/1	
PSHUFW	mm,mm,i	1	1	0.5	FP0/1	
PSHUFL/HW	x,x,i	1	1	0.5	FP0/1	
PALIGNR	x,x,i	1	2	0.5	FP0/1	Suppl. SSE3
PBLENDW	x,r/m	1	1	0.5	FP0/1	SSE4.1
MASKMOVQ	mm,mm	32	432	17	FP0, FP1	
MASKMOVDQU	x,x	64	43-2210	34	FP0, FP1	
PMOVMSKB	r32,(x)mm	1	3	1	FP0	
PEXTRW	r32,(x)mm,i	1	4	1	FP0	
PINSRW	mm,r32,i	2	8	1	FP0/1	
PINSRB/W/D/Q	x,r,i	2	7	1	FP0/1	
PINSRB/W/D/Q	x,m,i	1	, ,	1	FP0/1	
PEXTRB/W/D/Q	r,x,i	1	3	1	FP0	SSE4.1
PEXTRB/W/D/Q		1		1	FP1	SSE4.1
INSERTQ	m,x,i	3	2	2	FP0, FP1	
IINSERIU	X,X	၂	4		FFU, FF1	SSE4A, AMD only

			J			
INSERTQ	x,x,i,i	3	2	2	FP0, FP1	SSE4A, AMD only
EXTRQ	x,x	1	1	0.5	FP0/1	SSE4A, AMD only
EXTRQ	x,x,i,i	1	1	0.5	FP0/1	SSE4A, AMD only
PMOVSXBW/BD/BQ/						
WD/WQ/DQ	x,x	1	2	0.5	FP0/1	SSE4.1
PMOVZXBW/BD/BQ/						
WD/WQ/DQ	x,x	1	2	0.5	FP0/1	SSE4.1
Arithmetic instruction	S					
PADDB/W/D/Q						
PADDSB/W						
ADDUSB/W						
PSUBB/W/D/Q						
PSUBSB/W PSUBUSB/W						
	(x)mm,r/m	1	1	0.5	FP0/1	
PHADD/SUBW/SW/D	mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PHADD/SUBW/SW/D	x,r/m	1	2	0.5	FP0/1	Suppl. SSE3
PCMPEQ/GT B/W/D	mm,r/m	1	1	0.5	FP0/1	
PCMPEQ/GT B/W/D	x,r/m	1	1	0.5	FP0/1	
PCMPEQQ	(x)mm,r/m	1	1	0.5	FP0/1	SSE4.1
PCMPGTQ	(x)mm,r/m	1	1	0.5	FP0/1	SSE4.2
PMULLW PMULHW						
PMULHUW						
PMULUDQ	(x)mm,r/m	1	2	1	FP0	
PMULLD	x,r/m	3	4	2	FP0 FP1	SSE4.1
PMULDQ	x,r/m	1	2	1	FP0	SSE4.1
PMULHRSW	(x)mm,r/m	1	2	1	FP0	Suppl. SSE3
PMADDWD	(x)mm,r/m	1	2	1	FP0	
PMADDUBSW	(x)mm,r/m	1	2	1	FP0	Suppl. SSE3
PAVGB/W	(x)mm,r/m	1	1	0.5	FP0/1	
PMIN/MAX SW/UB	(x)mm,r/m	1	1	0.5	FP0/1	
PABSB/W/D	(x)mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PSIGNB/W/D	(x)mm,r/m	1	1	0.5	FP0/1	Suppl. SSE3
PSADBW	(x)mm,r/m	1	2	0.5	FP0/1	
MPSADBW	x,x,i	3	4	1	FP0/1	SSE4.1
Logic						
PAND PANDN POR						
PXOR	(x)mm,r/m	1	1	0.5	FP0/1	
PSLL/RL W/D/Q						
PSRAW/D	mm,i/mm/m	1	1	0.5	FP0/1	
PSLL/RL W/D/Q						
PSRAW/D	x,x	1	2	0.5	FP0/1	
PSLL/RL W/D/Q						
PSRAW/D	x,i	1	1	0.5	FP0/1	
PSLLDQ, PSRLDQ	x,i	1	2	0.5	FP0/1	
PTEST	x,x/m	1	3	1	FP0	SSE4.1
String instructions						
PCMPESTRI	x,x,i	9	5	5	FP0/1	SSE4.2
PCMPESTRI	x,m,i	10		5	FP0/1	SSE4.2
PCMPESTRM	x,x,i	9	9	9	FP0/1	SSE4.2
PCMPESTRM	x,m,i	10		9	FP0/1	SSE4.2
i		•	'	'	•	

PCMPISTRI	x,x,i	3	2	2	FP0/1	SSE4.2
PCMPISTRI	x,m,i	4		2	FP0/1	SSE4.2
PCMPISTRM	x,x,i	3	8	8	FP0/1	SSE4.2
PCMPISTRM	x,m,i	4		2	FP0/1	SSE4.2
Encryption						
PCLMULQDQ	x,x/m,i	1	3	1	FP0	PCLMUL
AESDEC	x,x	2	5	1	FP0/1	AES
AESDECLAST	x,x	2	5	1	FP0/1	AES
AESENC	x,x	2	5	1	FP0/1	AES
AESENCLAST	x,x	2	5	1	FP0/1	AES
AESIMC	x,x	1	2	1	FP0/1	AES
AESKEYGENASSIST	x,x,i	1	2	1	FP0/1	AES
Other						
EMMS		1		0.5	FP0/1	

Floating point XMM instructions

Instruction	Operands	Ops	Latency	Reciprocal throughput	Execution pipe	Notes
Move instructions				unougnput	pipo	
MOVAPS/D	X,X	1	1	0.5	FP0/1	
VMOVAPS/D	y,y	2	1	1	FP0/1	
MOVAPS/D	x,m	1	4	1	AGU	
VMOVAPS/D	y,m	2	4	2	AGU	
MOVAPS/D	m,x	1	3	1	FP1	
VMOVAPS/D	m,y	2	3	2	FP1	
MOVUPS/D	X,X	1	1	0.5	FP0/1	
VMOVUPS/D	y,y	2	1	1	FP0/1	
MOVUPS/D	x,m	1	4	1	AGU	
VMOVUPS/D	y,m	2	4	2	AGU	
MOVUPS/D	m,x	1	3	1	FP1	
VMOVUPS/D	m,y	2	3	2	FP1	
MOVSS/D	X,X	1	1	0.5	FP0/1	
MOVSS/D	x,m	1	4	1	AGU	
MOVSS/D	m,x	1	3	1	FP1	
MOVHLPS, MOVLHPS						
	x,x	1	2	2	FP0/1	
MOVHPS/D,						
MOVLPS/D	x,m	1	5	1	FP0/1	
MOVHPS/D,						
MOVLPS/D	m,x	1	4	1	FP1	
MOVNTPS/D	m,x	1	429	1	FP1	
MOVNTSS/D	m,x	1		1	FP1	SSE4A, AMD only
MOVDDUP	X,X	1	2	0.5	FP0/1	SSE3
MOVDDUP	x,m64	1		1	AGU	SSE3
VMOVDDUP	y,y	2	2	1	FP0/1	AVX
VMOVDDUP	y,m	2		2	AGU	AVX
MOVSH/LDUP	X,X	1	1	0.5	FP0/1	
MOVSH/LDUP	x,m	1		1	AGU	
VMOVSH/LDUP	y,y	2	1	1	FP0/1	AVX

			3.			
VMOVSH/LDUP	y,m	2		2	AGU	AVX
MOVMSKPS/D	r32,x	1	3	1	FP0	
VMOVMSKPS/D	r32,y	1	3	1	FP0	AVX
SHUFPS/D	x,x/m,i	1	2	0.5	FP0/1	
VSHUFPS/D	y,y,y,i	2	2	1	FP0/1	AVX
UNPCK H/L PS/D	x,x/m	1	2	0.5	FP0/1	
VUNPCK H/L PS/D	y,y,y	2	2	1	FP0/1	AVX
EXTRACTPS	r32,x,i	1	3	1	FP0	
EXTRACTPS	m32,x,i	1	3	1	FP1	
VEXTRACTF128	x,y,i	1	1	0.5	FP0/1	AVX
VEXTRACTF128	m128,y,i	1	12	1	FP1	AVX
INSERTPS	x,x,i	1		1	FP0/1	
INSERTPS	x,m32,i	1	6	1	FP0/1	
VINSERTF128	y,y,x,i	2	1	1	FP0/1	AVX
VINSERTF128	y,y,m128,i	2	13	2	FP0/1	AVX
VMASKMOVPS/D	x,x,m128	1	15	1	FP0/1	>300 clk if mask=0
VMASKMOVPS/D	y,y,m256	2	15	2	FP0/1	>300 clk if mask=0
VMASKMOVPS/D	m128,x,x	19	21	_ 16	FP1	AVX
VMASKMOVPS/D	m256,y,y	36	32	22	FP1	AVX
VIIII (OTAMO VI O/D	200,,,,		0 _			
Conversion						
CVTPS2PD	x,x/m	1	3	1	FP1	
VCVTPS2PD	y,x/m	2	4	2	FP1	
CVTPD2PS	x,x/m	1	4	1	FP1	
VCVTPD2PS	x,y	3	6	2	FP0, FP1	
CVTSD2SS	x,x/m	2	5	8	FP1	
CVTSS2SD	x,x/m	2	4	7	FP1	
CVTDQ2PS/PD	x,x/m	1	4	1	FP1	
VCVTDQ2PS/PD	y,y	2	4	2	FP1	
CVT(T)PS2DQ	x,x/m	1	4	1	FP1	
VCVT(T)PS2DQ	y,y	2	4	2	FP1	
CVT(T)PD2DQ	x,x/m	1	4	1	FP1	
VCVT(T)PD2DQ	y,y	3	7	2	FP1	
CVTPI2PS	xmm,mm	1	4	1	FP1	
CVTPI2PD	xmm,mm	1	4	1	FP1	
CVT(T)PS2PI	mm,xmm	1	4	1	FP1	
CVT(T)PD2PI	mm,xmm	1	4	1	FP1	
CVTSI2SS	xmm,r32	2	9	1	FP1	
CVTSI2SD	xmm,r32	2	9	1	FP1	
CVT(T)SS2SI	r32,xmm	2	8	1	FP1	
CVT(T)SD2SI	r32,xmm	2	8	1	FP1	
VCVTPS2PH	x/m,x,i	1	4	1	FP1	F16C
VCVTPS2PH	x/m,y,i	3	6	2	FP0, FP1	F16C
VCVTPH2PS	x,x/m	1	4	1	FP1	F16C
VCVTPH2PS	y,x/m	2	5	2	FP1	F16C
Arithmetic						
ADDSS/D SUBSS/D	x,x/m	1	3	1	FP0	
ADDPS/D SUBPS/D	x,x/m	1	3	1	FP0	
VADDPS/D VSUBPS/D	y,y/m	2	3	2	FP0	
ADDSUBPS/D	x,x/m	1	3	1	FP0	SSE3
VADDSUBPS/D	y,y/m	2	3	2	FP0	
		. '			•	'

			9-			
HADD/SUBPS/D	x,x/m	1	4	1	FP0	SSE3
VHADD/SUBPS/D	y,y/m	2	4	2	FP0	
MULSS/PS	x,x/m	1	2	1	FP1	
VMULPS	y,y/m	2	2	2	FP1	
MULSD/PD	x,x/m	1	4	2	FP1	
VMULPD	y,y/m	2	4	2	FP1	
DIVSS	x,x/m	1	14	14	FP1	
DIVPS	x,x/m		19	19	FP1	
VDIVPS		2	38	38	FP1	
DIVSD	y,y/m	1	19		FP1	
	x,x/m	1		19	FP1	
DIVPD	x,x/m	1	19	19		
VDIVPD	y,y/m	2	38	38	FP1	
RCPSS	x,x/m	1	2	1	FP1	
RCPPS	x,x/m	1	2	1	FP1	
VRCPPS	y,y/m	2	2	2	FP1	
MAXSS/D MINSS/D	x,x/m	1	2	1	FP0	
MAXPS/D MINPS/D	x,x/m	1	2	1	FP0	
VMAXPS/D VMINPS/D	y,y/m	2	2	2	FP0	
CMPccSS/D	x,x/m	1	2	1	FP0	
CMPccPS/D	x,x/m	1	2	1	FP0	
VCMPccPS/D	y,y/m	2	2	2	FP0	
(U)COMISS/D	x,x/m	1		1	FP0	
ROUNDSS/SD/PS/PD	x,x/m,i	1	4	1	FP1	
VROUNDSS/D/PS/D	y,y/m,i	2	4	2	FP1	
DPPS	x,x,i	5	11	4	FP0, FP1	SSE4.1
DPPS	x,m,i	6		4	FP0, FP1	SSE4.1
VDPPS	y,y,y,i	10	12	7	FP0, FP1	SSE4.1
VDPPS	y,y,y,i y,m,i	12		7	FP0, FP1	SSE4.1
DPPD	=	3	9	3	FP0, FP1	SSE4.1
DPPD	x,x,i	4	9	3	1	SSE4.1
וספרט	x,m,i	4		3	FP0, FP1	33E4.1
Logic						
ANDPS/D ANDNPS/D						
ORPS/D XORPS/D	x,x/m	1	1	0.5	FP0/1	
VANDPS/D, etc.	•	2				
VANDES/D, etc.	y,y/m	2	1	1	FP0/1	
Math						
SQRTSS	x,x/m	1	16	16	FP1	
SQRTPS	x,x/m	2	21	21	FP1	
VSQRTPS	y,y/m	2	42	42	FP1	
SQRTSD	x,x/m	1	27	27	FP1	
SQRTPD	x,x/m	2	27	27	FP1	
VSQRTPD	y,y/m	2	54	54	FP1	
RSQRTSS/PS	x,x/m	1	2	1	FP1	
VRSQRTPS		2	2	2	FP1	
VROURTES	y,y/m			2	FFI	
Other						
LDMXCSR	m	12	9	8	FP0, FP1	
STMXCSR	m	3	13	12	FP0, FP1	
VZEROUPPER		21		30		32 bit mode
VZEROUPPER		37		46		64 bit mode
VZEROALL		41		58		32 bit mode
VZLINOALL		41	I	50		JZ DIL IIIOGE

VZEROALL	73		90	64 bit mode
FXSAVE	66	66	66	32 bit mode
FXSAVE	58	58	58	64 bit mode
FXRSTOR	115	189	189	32 bit mode
FXRSTOR	123	198	197	64 bit mode
XSAVE	130	145	145	32 bit mode
XSAVE	114	129	129	64 bit mode
XRSTOR	219	342	342	32 bit mode
XRSTOR	251	375	375	64 bit mode

Intel Pentium and Pentium MMX

List of instruction timings

Explanation of column headings:

Operands r = register, accum = al, ax or eax, m = memory, i = immediate data, sr =

segment register, m32 = 32 bit memory operand, etc.

Clock cycles The numbers are minimum values. Cache misses, misalignment, and

exceptions may increase the clock counts considerably.

Pairability u = pairable in u-pipe, v = pairable in v-pipe, uv = pairable in either pipe,

np = not pairable.

Integer instructions (Pentium and Pentium MMX)

integer instructions (Po	1		1
Instruction	Operands	Clock cycles	Pairability
NOP		1	uv
MOV	r/m, r/m/i	1	uv
MOV	r/m, sr	1	np
MOV	sr , r/m	>= 2 b)	np
MOV	m , accum	1	uv h)
XCHG	(E)AX, r	2	np
XCHG	r,r	3	np
XCHG	r, m	>15	np
XLAT		4	np
PUSH	r/i	1	uv
POP	r	1	uv
PUSH	m	2	np
POP	m	3	np
PUSH	sr	1 b)	np
POP	sr	>= 3 b)	np
PUSHF		3-5	np
POPF		4-6	np
PUSHA POPA		5-9 i)	np
PUSHAD POPAD		5	np
LAHF SAHF		2	np
MOVSX MOVZX	r , r/m	3 a)	np
LEA	r, m	1	uv
LDS LES LFS LGS LSS	m	4 c)	np
ADD SUB AND OR XOR	r , r/i	1	uv
ADD SUB AND OR XOR	r, m	2	uv
ADD SUB AND OR XOR	m , r/i	3	uv
ADC SBB	r , r/i	1	u
ADC SBB	r, m	2	u
ADC SBB	m , r/i	3	u
CMP	r , r/i	1	uv
CMP	m , r/i	2	uv
TEST	r,r	1	uv
TEST	m,r	2	uv
TEST	r,i	1	f)
TEST	m,i	2	np
INC DEC	r	1	uv

NC DEC m				
MUL IMUL r8/r16/m8/m16 11 np MUL IMUL all other versions 9 d) np DIV r8/m8 17 np DIV r16/m16 25 np DIV r32/m32 41 np IDIV r16/m16 30 np		m	3	uv
MUL IMUL all other versions r8/m8 17 np DIV r16/m16 25 np DIV r16/m16 25 np DIV r32/m32 41 np IDIV r16/m16 30 np SHZ r1/m1 1/3 u u SHR SA AL r1/m1 1/3				np
DIV				np
DIV r16/m16 25 np DIV r32/m32 41 np IDIV r8/m8 22 np IDIV r16/m16 30 np IDIV		all other versions	,	np
DIV			17	np
IDIV				np
IDIV				np
IDIV				np
CBW CWDE CWD CDQ SHR SHL SAR SAL SHR SHL SAR SAL SHR SHL SAR SAL ROR ROL RCR RCL ROR RO				np
CWD CDQ 2 np SHR SHL SAR SAL r,i 1 u SHR SHL SAR SAL m,i 3 u SHR SHL SAR SAL r/m, CL 4/5 np ROR ROL RCR RCL r/m, 1 1/3 u ROR ROL r/m, i(><1)		r32/m32		np
SHR SHL SAR SAL r, i 1 u SHR SHL SAR SAL m, i 3 u SHR SHL SAR SAL r/m, CL 4/5 np ROR ROL RCR RCL r/m, i(><1)				np
SHR SHL SAR SAL m, i 3 u SHR SHL SAR SAL r/m, CL 4/5 np ROR ROL RCR RCL r/m, 1 1/3 u ROR ROL r/m, i(><1)				np
SHR SHL SAR SAL r/m, CL 4/5 np ROR ROL RCR RCL r/m, 1 1/3 u ROR ROL r/m, i(><1)		r,i		u
ROR ROL RCR RCL ROR ROL ROR ROL ROR ROL ROR ROL RCR RCL RCR RCL RCR RCL RCR RCL RCR RCL RCR RCL RCH, i(><1) RCR RCL RCR RCL RCR RCL RCH, i(><1) RCR RCL RCR RCL RCH, i(><1) RCR RCL RCH, i(><1) RCR RCL RCH, i(><1) RCR RCL RCH, i(><1) RCR RCL RCH, i(><1) RCR RCL RCH, i(><1) RCR RCL RCH, i(><1) RCR RCL RCH, i(><1) RCR RCL RCH, i(><1) RCR RCL RCH, i(><1) RCR RCL RCH, i(><1) RCH RCR RCL RCH, i(><1) RCH RCR RCL RCH, i(><1) RCH RCH RCH RCH RCH RCH RCH RCH RCH RCH			3	u
ROR ROL ROR ROL ROR ROL RCR RCL RCR RCL RCR RCL RCR RCL RCR RCL RCH RCL RCR RCL RCR RCL RCH RCL RCR RCL RCR RCL RCH RCL RCR RCL RCH RCL RCR RCL RCH RCH RCH RCL RCH		·		np
ROR ROL RCR RCL RCR RCL RCR RCL RCR RCL RCR RCL RCH RCR RCL RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCR RCL RCH RCH RCR RCL RCH RCH RCH RCR RCL RCH RCH RCH RCH RCH RCH RCH RCH RCH RCH		· ·		u
RCR RCL r/m, i(><1)		` ′		np
RCR RCL r/m, CL 7/9 np SHLD SHRD r, i/CL 4 a) np SHLD SHRD m, i/CL 5 a) np BT r, r/i 4 a) np BT m, i 4 a) np BT m, i 4 a) np BTR BTS BTC r, r/i 7 a) np BTR BTS BTC m, i 8 a) np BTR BTS BTC m, r 14 a) np BSF BSR r, r/m 7-73 a) np SETCc r/m 1/2 a) np JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN i 3/6 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short		·		np
SHLD SHRD r, i/CL 4 a) np SHLD SHRD m, i/CL 5 a) np BT r, r/i 4 a) np BT m, i 4 a) np BT mp mp mp BT mp mp mp BTR BTS BTC m, i 8 a) np BFR BTS BTC m, r 14 a) np BFR BTS BTC m, r 14 a) np BFT GT m, r 14 a) np BFT GT		` ′		np
SHLD SHRD m, i/CL 5 a) np BT r, r/i 4 a) np BT m, i 4 a) np BT m, i 4 a) np BT m, i 9 a) np BTR BTS BTC m, i 8 a) np BTR BTS BTC m, r 14 a) np BSF BSR r, r/m 7-73 a) np SETCC r/m 1/2 a) np JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN i 3/6 e) np RETF 4/7 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np		·		np
BT r, r/i 4 a) np BT m, i 4 a) np BT m, i 9 a) np BTR BTS BTC r, r/i 7 a) np BTR BTS BTC m, r 14 a) np BSF BSR r, r/m 7-73 a) np SETcc r/m 1/2 a) np JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN i 3/6 e) np RETN i 3/6 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 7+3*n g) np STOS			4 a)	np
BT m, i 4 a) np BT m, i 9 a) np BTR BTS BTC r, r/i 7 a) np BTR BTS BTC m, r 14 a) np BSF BSR r, r/m 7-73 a) np SETcc r/m 1/2 a) np JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN i 3/6 e) np RETN i 3/6 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 7+3*n g) np STOS<		m, i/CL	5 a)	np
BT m, i 9 a) np BTR BTS BTC r, r/i 7 a) np BTR BTS BTC m, i 8 a) np BTR BTS BTC m, r 14 a) np BSF BSR r, r/m 7-73 a) np SETcc r/m 1/2 a) np JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN i 3/6 e) np RETN i 3/6 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLI STI 6-9 np LODS 7+3*n g) np STOS 3 np REP STOS <td></td> <td>r, r/i</td> <td>4 a)</td> <td>np</td>		r, r/i	4 a)	np
BTR BTS BTC r, r/i 7 a) np BTR BTS BTC m, i 8 a) np BTR BTS BTC m, r 14 a) np BSF BSR r, r/m 7-73 a) np SETcc r/m 1/2 a) np JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN i 3/6 e) np RETN i 3/6 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLI STI 6-9 np LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 12		m, i	,	np
BTR BTS BTC m, i 8 a) np BTR BTS BTC m, r 14 a) np BSF BSR r, r/m 7-73 a) np SETCC r/m 1/2 a) np JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN i 3/6 e) np RETN i 3/6 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np <		m, i	9 a)	np
BTR BTS BTC m, r 14 a) np BSF BSR r, r/m 7-73 a) np SETcc r/m 1/2 a) np JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN i 3/6 e) np RETN i 3/6 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np <td></td> <td>r, r/i</td> <td>,</td> <td>np</td>		r, r/i	,	np
BSF BSR r, r/m 7-73 a) np SETcc r/m 1/2 a) np JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN 2/5 e np RETN i 3/6 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np		m, i	,	np
SETcc r/m 1/2 a) np JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN 2/5 e np RETN i 3/6 e) np RETF 4/7 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np		m, r	14 a)	np
JMP CALL short/near 1 e) v JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN 2/5 e np RETN i 3/6 e) np RETF 4/7 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r , m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np			•	np
JMP CALL far >= 3 e) np conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN 2/5 e np RETN i 3/6 e) np RETF 4/7 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r , m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np			,	np
conditional jump short/near 1/4/5/6 e) v CALL JMP r/m 2/5 e np RETN 2/5 e np RETN i 3/6 e) np RETF 4/7 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np MOVS 4 np REP MOVS 12+n g) np			,	V
CALL JMP r/m 2/5 e np RETN i 3/6 e) np RETF i 3/6 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np				np
RETN i 3/6 e) np RETF 4/7 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np			,	V
RETN i 3/6 e) np RETF 4/7 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np		r/m		np
RETF i 4/7 e) np RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np				np
RETF i 5/8 e) np J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np		i	,	np
J(E)CXZ short 4-11 e) np LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np			4/7 e)	np
LOOP short 5-10 e) np BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np	RETF	i	,	np
BOUND r, m 8 np CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np				np
CLC STC CMC CLD STD 2 np CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np		short	5-10 e)	np
CLI STI 6-9 np LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np	BOUND	r, m	8	np
LODS 2 np REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np	CLC STC CMC CLD STD		2	np
REP LODS 7+3*n g) np STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np	CLI STI		6-9	np
STOS 3 np REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np	LODS		2	np
REP STOS 10+n g) np MOVS 4 np REP MOVS 12+n g) np				np
MOVS REP MOVS 12+n g) np				np
REP MOVS 12+n g) np			10+n g)	np
				np
SCAS 4 np			12+n g)	np
	SCAS		4	np

REP(N)E SCAS		9+4*n g)	np
CMPS		5	np
REP(N)E CMPS		8+4*n g)	np
BSWAP	r	1 a)	np
CPUID		13-16 a)	np
RDTSC		6-13 a) j)	np

Notes:

С

е

i

a This instruction has a 0FH prefix which takes one clock cycle extra to de-

code on a P1 unless preceded by a multi-cycle instruction.

b versions with FS and GS have a 0FH prefix. see note a.

versions with SS, FS, and GS have a 0FH prefix. see note a.

d versions with two operands and no immediate have a 0FH prefix, see

f only pairable if register is AL, AX or EAX.

g add one clock cycle for decoding the repeat prefix unless preceded by a

multi-cycle instruction (such as CLD).

h pairs as if it were writing to the accumulator.
i 9 if SP divisible by 4 (imperfect pairing).

on P1: 6 in privileged or real mode; 11 in non-privileged; error in virtual

mode. On PMMX: 8 and 13 clocks respectively.

Floating point instructions (Pentium and Pentium MMX)

Explanation of column headings

Operands r = register, m = memory, m32 = 32-bit memory operand, etc.

Clock cycles The numbers are minimum values. Cache misses, misalignment,

denormal operands, and exceptions may increase the clock counts

considerably.

Pairability + = pairable with FXCH, np = not pairable with FXCH.

i-ov Overlap with integer instructions. i-ov = 4 means that the last four clock

cycles can overlap with subsequent integer instructions.

fp-ov Overlap with floating point instructions. fp-ov = 2 means that the last two

clock cycles can overlap with subsequent floating point instructions.

(WAIT is considered a floating point instruction here)

Instruction	Operand	Clock cycles	Pairability	i-ov	fp-ov
FLD	r/m32/m64	1	0	0	0
FLD	m80	3	np	0	0
FBLD	m80	48-58	np	0	0
FST(P)	r	1	np	0	0
FST(P)	m32/m64	2 m)	np	0	0
FST(P)	m80	3 m)	np	0	0
FBSTP	m80	148-154	np	0	0
FILD	m	3	np	2	2
FIST(P)	m	6	np	0	0
FLDZ FLD1		2	np	0	0
FLDPI FLDL2E etc.		5 s)	np	2	2
FNSTSW	AX/m16	6 q)	np	0	0
FLDCW	m16	8	np	0	0
FNSTCW	m16	2	np	0	0

FADD(P)	r/m	3	0	2	2
FSUB(R)(P)	r/m	3	0	2	2
FMUL(P)	r/m	3	0	2	2 n)
FDIV(R)(P)	r/m	19/33/39 p)	0	38 o)	2
FCHS FABS		1	0	0	0
FCOM(P)(P) FUCOM	r/m	1	0	0	0
FIADD FISUB(R)	m	6	np	2	2
FIMUL	m	6	np	2	2
FIDIV(R)	m	22/36/42 p)	np	38 o)	2
FICOM	m	4	np	0	0
FTST		1	np	0	0
FXAM		17-21	np	4	0
FPREM		16-64	np	2	2
FPREM1		20-70	np	2	2
FRNDINT		9-20	np	0	0
FSCALE		20-32	np	5	0
FXTRACT		12-66	np	0	0
FSQRT		70	np	69 o)	2
FSIN FCOS		65-100 r)	np	2	2
FSINCOS		89-112 r)	np	2	2
F2XM1		53-59 r)	np	2	2
FYL2X		103 r)	np	2	2
FYL2XP1		105 r)	np	2	2
FPTAN		120-147 r)	np	36 o)	0
FPATAN		112-134 r)	np	2	2
FNOP		1	np	0	0
FXCH	r	1	np	0	0
FINCSTP FDECSTP		2	np	0	0
FFREE	r	2	np	0	0
FNCLEX		6-9	np	0	0
FNINIT		12-22	np	0	0
FNSAVE	m	124-300	np	0	0
FRSTOR	m	70-95	np	0	0
WAIT		1	np	0	0

Natas	
notes	Ξ.
140103	

m The value to store is needed one clock cycle in advance.

n 1 if the overlapping instruction is also an FMUL.
o Cannot overlap integer multiplication instructions.

p FDIV takes 19, 33, or 39 clock cycles for 24, 53, and 64 bit precision respectively. FIDIV takes 3 clocks more. The precision is defined by bit 8-9

of the floating point control word.

q The first 4 clock cycles can overlap with preceding integer instructions.
r Clock counts are typical. Trivial cases may be faster, extreme cases may

be slower.

s May be up to 3 clocks more when output needed for FST, FCHS, or

FABS.

MMX instructions (Pentium MMX)

A list of MMX instruction timings is not needed because they all take one clock cycle, except the MMX multiply instructions which take 3. MMX multiply instructions can be pipelined to yield a throughput of one multiplication per clock cycle.

The EMMS instruction takes only one clock cycle, but the first floating point instruction after an EMMS takes approximately 58 clocks extra, and the first MMX instruction after a floating point instruction takes approximately 38 clocks extra. There is no penalty for an MMX instruction after EMMS on the PMMX.

There is no penalty for using a memory operand in an MMX instruction because the MMX arithmetic unit is one step later in the pipeline than the load unit. But the penalty comes when you store data from an MMX register to memory or to a 32-bit register: The data have to be ready one clock cycle in advance. This is analogous to the floating point store instructions.

All MMX instructions except EMMS are pairable in either pipe. Pairing rules for MMX instructions are described in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

Intel Pentium II and Pentium III

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, sr = segment register, m = memory, m32 = 32-bit memory operand, etc.

μορs: The number of μops that the instruction generates for each execution port.

p0: Port 0: ALU, etc.p1: Port 1: ALU, jumps

p01: Instructions that can go to either port 0 or 1, whichever is vacant first.

p2: Port 2: load data, etc.

p3: Port 3: address generation for store

p4: Port 4: store data

Latency: This is the delay that the instruction generates in a dependency chain. (This is

not the same as the time spent in the execution unit. Values may be inaccurate in situations where they cannot be measured exactly, especially with memory operands). The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays by 50-150 clocks, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a

similar delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent

instructions of the same kind.

Integer instructions (Pentium Pro, Pentium II and Pentium III)

Instruction	Operands			μ	ops			Latency	Reciprocal
		р0	p1	p01	p2	p3 p4			throughput
MOV	r,r/i			1					
MOV	r,m				1				
MOV	m,r/i					1	1		
MOV	r,sr			1					
MOV	m,sr			1		1	1		
MOV	sr,r	8						5	
MOV	sr,m	7			1			8	
MOVSX MOVZX	r,r			1					
MOVSX MOVZX	r,m				1				
CMOVcc	r,r	1		1					
CMOVcc	r,m	1		1	1				
XCHG	r,r			3					
XCHG	r,m			4	1	1	1	high b)	
XLAT				1	1				
PUSH	r/i			1		1	1		
POP	r			1	1				
POP	(E)SP			2	1				
PUSH	m			1	1	1	1		
POP	m			5	1	1	1		
PUSH	sr			2		1	1		
POP	sr			8	1				
PUSHF(D)		3		11		1	1		

POPF(D)											
POPA(D)	POPF(D)		10		6	1					
LAHF SÄHF LEA	PUSHA(D)				2		8	8			
LAHF SAHF LEA	POPA(D)				2	8					
LEA					1						
LDS LES LES LGS LSS M ADD SUB AND OR XOR ADD SUB AND OR XOR ADD SUB AND OR XOR ADD SUB AND OR XOR ADD SUB AND OR XOR ADD SUB AND OR XOR ADD SUB AND OR XOR ADD SUB AND OR XOR ADD SUB AND OR XOR ADD SUB AND OR XOR ADD SUB AND OR XOR Mr/fi ADD SUB AND OR XOR ADD		r m	1						1 c)		
LSS		,,,,,							,		
ADD SUB AND OR XOR		m				2					
ADD SUB AND OR XOR ADD SUB AND OR XOR ADC SBB C,r,rii ADC SBB ADC SB ADD S						3					
ADD SUB AND OR XOR ADC SBB ADC SBB CMP TEST CMP TEST CMP TEST INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAM AMM AAM AAM AAM AAM AAA AAS DAA DAS AAM ADC SBB CMP TEST CMP TEST INC DEC NEG NOT AAA AAS DAA DAS AAM AAM AAM AAM AAM AAM AAM AAM AAM A											
ADC SBB											
ADC SBB						1	1	1			
ADC SBB CMP TEST CMP TEST INC DEC NEG NOT INC DEC NEG NOT INC DEC NEG NOT INC DEC NEG NOT INC DEC NEG NOT INC DEC NEG NOT AAA AAS DAA DAS AAD AAD AAM I	ADC SBB	r,r/i			2						
CMP TEST	ADC SBB	r,m			2	1					
CMP TEST	ADC SBB	m,r/i			3	1	1	1			
CMP TEST	CMP TEST	r,r/i			1						
INC DEC NEG NOT					1	1					
INC DEC NEG NOT											
AAA AAS DAA DAS AAD AAAM AAM AAM AAM AAM AAM A						1	1	1			
AAD AAM AAM AAM INUL		""		4	'	'	'	'			
AAM IMUL I			_	'					4		
IMUL			-								
IMUL			-	1	2						
DIV IDIV F8 2		r,(r),(i)	1						4		
DIV IDIV		(r),m	1			1			4	1	
DIV IDIV DIV	DIV IDIV	r8	2		1				19	12	
DIV IDIV m8	DIV IDIV	r16	3		1				23	21	
DIV IDIV m8	DIV IDIV	r32	3		1				39	37	
DIV IDIV					1	1			1		
DIV IDIV									1		
CBW CWDE CWD CDQ SHR SHL SAR ROR ROL SHR SHL SAR ROR ROL ROL RCR RCL RCL RCR RCL RCL RCR RCL R					-	_					
CWD CDQ SHR SHL SAR ROR ROL ROL SHR SHL SAR ROR ROL ROL RCR RCL RCL RCR RCL RC		11132				'			39	37	
SHR SHL SAR ROR r,i/CL 1 SHR SHL SAR ROR m,i/CL 1 1 1 1 ROL m,i/CL 1 1 1 1 1 RCR RCL r,1 1			_		'						
ROL r,i/CL 1<			1								
SHR SHL SAR ROR ROL m,i/CL 1 1 1 1 1 1 1 1 1			_								
ROL m,i/CL 1 1 1 1 1 RCR RCL r,1 1 1 1 1 1 RCR RCL r8,i/CL 4 4 4 4 RCR RCL r16/32,i/CL 3 3 3 3 1		r,i/CL	1								
RCR RCL r,1 1 1 4 4 4 RCR RCL r8,i/CL 4 4 4 4 RCR RCL RCR RCL r16/32,i/CL 3 3 3 3 RCR RCL RCR RCL m,1 1 2 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
RCR RCL r8,i/CL 4 4 4 4 4 RCR RCL r16/32,i/CL 3 3 3 3 1 <t< td=""><td>ROL</td><td>m,i/CL</td><td>1</td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td></t<>	ROL	m,i/CL	1			1	1	1			
RCR RCL r16/32,i/CL 3 3 1	RCR RCL	r,1	1		1						
RCR RCL r16/32,i/CL 3 3 1	RCR RCL	r8,i/CL	4		4						
RCR RCL m,1 1 2 1 1 1 RCR RCL m8,i/CL 4 3 1 1 1 RCR RCL m16/32,i/CL 4 2 1 1 1 SHLD SHRD r,r,i/CL 2 1 1 1 1 BT m,r,i/CL 2 1 1 1 1 BTR BTS BTC r,r/i 1 6 1 1 1 BTR BTS BTC m,r/i 1 6 1 1 1 BSF BSR r,r 1 1 1 1 1 1 BSF BSR r,m 1	RCR RCL		3		3						
RCR RCL m8,i/CL 4 3 1 1 1 RCR RCL m16/32,i/CL 4 2 1 1 1 SHLD SHRD r,r,i/CL 2 1 1 1 1 BT r,r/i 1 6 1 1 BTR BTS BTC r,r/i 1 6 1 1 1 BTR BTS BTC m,r/i 1 6 1			1			1	1	1			
RCR RCL m16/32,i/CL 4 2 1 1 1 SHLD SHRD r,r,i/CL 2 1 1 1 1 BT r,r/i 1 6 1 1 BT BTS BTC r,r/i 1 6 1 1 BTR BTS BTC m,r/i 1 6 1 1 1 BSF BSR r,r 1 1 1 1 1 1 1 BSF BSR r,m 1 </td <td></td> <td></td> <td>-</td> <td></td> <td> </td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>			-			_					
SHLD SHRD r,r,i/CL 2 1 1 1 SHLD SHRD m,r,i/CL 2 1 1 1 BT r,r/i 1 6 1 BTR BTS BTC r,r/i 1 6 1 1 BTR BTS BTC m,r/i 1 6 1 1 1 BSF BSR r,r 1 1 1 1 1 BSF BSR r,m 1 1 1 1 1 SETcc r 1 1 1 1 1		· ·					1				
SHLD SHRD m,r,i/CL 2 1 1 1 BT r,r/i 1 6 1 BT BTS BTC r,r/i 1 6 1 BTR BTS BTC m,r/i 1 6 1 1 BSF BSR r,r 1 1 1 1 BSF BSR r,m 1 1 1 1 SETcc r 1 1 1 1					_	'	'	'			
BT r,r/i 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
BT m,r/i 1 6 1 BTR BTS BTC r,r/i 1 1 1 BTR BTS BTC m,r/i 1 6 1 1 1 BSF BSR r,r 1 1 1 1 1 BSF BSR r,m 1 1 1 1 1 SETcc r 1 1 1 1 1			2			1	1	1			
BTR BTS BTC r,r/i 1											
BTR BTS BTC m,r/i 1 6 1 1 1 BSF BSR r,r 1 1 1 1 BSF BSR r,m 1 1 1 1 SETcc r 1 1 1 1			1			1					
BSF BSR r,r 1 1 1 BSF BSR r,m 1 1 1 SETcc r 1 1 1		r,r/i									
BSF BSR r,m 1 1 1 1 SETcc r 1 <		m,r/i	1		6	1	1	1			
SETcc r 1 1	BSF BSR	r,r		1	1						
SETcc r 1 1	BSF BSR	r,m		1	1	1					
	SETcc				1						
		m			1		1	1			

CLC STC CMC CLD STD CLI STI INTO LODS REP LODS STOS REP STOS MOVS REP MOVS SCAS REP MOVS SCAS REP(N)E SCAS CMPS REP(N)E CMPS BSWAP RF(N)E CMPS BSWAP ROTSC R	JMP	short/near		1						2
JMP	JMP	far	21			1				
JMP	JMP	r		1						2
JMP		m(near)		1		1				2
conditional jump short/near near 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 <th< td=""><td></td><td>1</td><td>21</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		1	21							
CALL far 28				1						2
CALL CALL CALL CALL CALL CALL CALL CALL					1		1	1		
CALL			28	•		1		l		_
CALL CALL CALL CALL CALL Mn(far) CALL Mn(far) CALL Mn(far) CALL Mn(far) CALL Mn(far) CALL Mn(far) CALL Mn(far) CALL Mn(far) CAL Mn(far) CAL Mn(far) CAL Mn(far) CAL Mn(far) CAL Mn(far) CAL CAL Mn(far) CAL CAL Mn(far) CAL CAL Mn(far) CAL CAL CAL CAL Mn(far) CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL				1	2	'		l		2
CALL RETN RETN I RETN I RETF RETF RETF RETF RETF RETF RETF RETF						1				2
RETN		1	20	'	"			l		
RETN		iii(iai)	20	1	2					2
RETF RETF Si J(E)CXZ Short Sho					1					
RETF J(E)CXZ Short LOOP Short		l l	00	'	<u> </u>					
J(E)CXZ short 1 <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			1							
LOOP			23			3				
LOOP(N)E										
ENTER			1							
ENTER LEAVE BOUND		1	2	1						
LEAVE BOUND r,m 7 6 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1								
BOUND CLC STC CMC CLD STD CLI STI INTO LODS REP LODS STOS REP STOS MOVS REP MOVS SCAS REP(N)E SCAS CMPS REP(N)E CMPS BSWAP REP(N)E CMPS BSWAP ROP(90) Long NOP (90 1		a,b	ca.	18	+4b		b-1	2b		
CLC STC CMC CLD STD CLI STI INTO LODS REP LODS STOS REP STOS MOVS REP MOVS SCAS REP MOVS SCAS REP(N)E SCAS CMPS REP(N)E CMPS BSWAP RF(N)E CMPS BSWAP ROTSC R	LEAVE				2	1				
CLD STD CLI STI STI INTO LODS REP LODS STOS REP STOS MOVS REP MOVS SCAS REP MOVS SCAS REP(N)E SCAS CMPS REP(N)E SCAS CMPS REP(N)E CMPS BSWAP ROPS REP(N)E CMPS BSWAP ROPS REP(N)E CMPS BSWAP SCAS REP(N)E CMPS REP(N)	BOUND	r,m	7		6	2				
CLI STI INTO LODS REP LODS STOS REP STOS MOVS REP MOVS SCAS REP(N)E SCAS CMPS REP(N)E CMPS BSWAP NOP (90) Long NOP (0F 1F) CPUID CPU	CLC STC CMC				1					
STI INTO 17 5 2 INTO 10+6n 2 REP LODS 10+6n 3 1 1 STOS 10+6n 3 1 1 REP STOS 13 1 1 1 MOVS 13 1 1 1 REP MOVS 12 1 1 1 SCAS 12+7n 1 1 1 REP(N)E SCAS 12+9n 1 1 1 CMPS 12+9n 1 1 1 BSWAP 1 1 1 1 NOP (90) 1 1 0,5 Long NOP (0F 1F) 23-48 1 RDTSC 31 1 300 IN 18 300 OUT 18 300 PREFETCHNTA d) m 1 1 PREFETCHTO/1/2 d) m 1 1	CLD STD				4					
INTO LODS REP LODS STOS REP STOS MOVS MOVS REP MOVS SCAS REP(N)E SCAS CMPS REP(N)E CMPS BSWAP ROP (90) Long NOP (0F 1F) CPUID ROP (90) LOT (PUID REFETCHNTA d) PREFETCHT0/1/2 d) REP LODS REP (10+6n	CLI		9							
INTO LODS REP LODS STOS REP STOS MOVS MOVS REP MOVS SCAS REP(N)E SCAS CMPS REP(N)E CMPS BSWAP ROP (90) Long NOP (0F 1F) CPUID ROP (90) LOT (PUID REFETCHNTA d) PREFETCHT0/1/2 d) REP LODS REP (10+6n	STI		17							
LODS REP LODS 10+6n 2 10+6n 1					5					
REP LODS 10+6n						2				
STOS 1				10+6	'n					
REP STOS Ca. 5n a) MOVS 1 3 1 1 REP MOVS Ca. 6n a) 1 2 SCAS 1 2 2 REP(N)E SCAS 1 2+7n 2 CMPS 4 2 2 REP(N)E CMPS 1 1 3 BSWAP 1 1 3 NOP (90) 1 1 3 Long NOP (0F 1F) 23-48 3 3 RDTSC 31 31 3 IN 18 300 300 OUT 1 300 300 PREFETCHTO/1/2 d) 1 1 300						1	1	1		
MOVS 1 3 1 1 REP MOVS 1 2 SCAS 1 2 REP(N)E SCAS 1 2 CMPS 1 2 REP(N)E CMPS 1 2 BSWAP 1 1 1 NOP (90) 1 1 1 Long NOP (0F 1F) 1 1 1 CPUID 23-48 RDTSC 31 1 1 IN 18 18				ca 5	n			-		
REP MOVS ca. 6n a) SCAS 1 2 REP(N)E SCAS 12+7n CMPS 4 2 REP(N)E CMPS 12+9n BSWAP r 1 1 NOP (90) 1 1 0,5 Long NOP (0F 1F) 23-48 1 1 CPUID 23-48 23-48 31 1 RDTSC 31 1 300 IN 18 300 300 OUT 1 1 1 PREFETCHNTA d) m 1 1 PREFETCHTO/1/2 d) m 1 1				Jou. 0	1		1	1		
SCAS 1 2 2 12+7n REP(N)E SCAS 4 2 12+9n CMPS 1 1 1 1 1 1 1 1 1 1				ca 6	1		'	'		
REP(N)E SCAS CMPS REP(N)E CMPS BSWAP r 1 1 1 0 0,5 Long NOP (0F 1F) CPUID RDTSC IN OUT PREFETCHNTA d) PREFETCHT0/1/2 d) 12+7n 4 2 12+9n 11 1 0 0,5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ca. o						
CMPS REP(N)E CMPS BSWAP r 1 1 NOP (90) 1 0,5 Long NOP (0F 1F) 23-48 1 RDTSC 31 31 IN 18 >300 OUT 18 >300 PREFETCHNTA d) m 1 PREFETCHT0/1/2 d) m 1				1217	1	_				
REP(N)E CMPS BSWAP r 1 1 1 0,05 Long NOP (90) Long NOP (0F 1F) CPUID RDTSC IN OUT PREFETCHNTA d) PREFETCHT0/1/2 d) r 1 1 1 0,05 11 0,5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, ,			12+1	1	2				
BSWAP r 1 1 1 0,5 Long NOP (90) Long NOP (0F 1F) CPUID 23-48 RDTSC 31				10.0	ļ.	_				
NOP (90) Long NOP (0F 1F) CPUID RDTSC IN OUT PREFETCHNTA d) PREFETCHT0/1/2 d) 1 0,5 1 1 1 23-48 31 18 >300 >300 >300 18 1 PREFETCHT0/1/2 d)	, ,			12+9	1					
Long NOP (0F 1F) 1 1 CPUID 23-48 1 RDTSC 31 IN 18 >300 OUT 18 >300 PREFETCHNTA d) m 1 PREFETCHT0/1/2 d) m 1		r	1		-					0.5
CPUID 23-48 RDTSC 31 IN 18 OUT 18 PREFETCHNTA d) m PREFETCHT0/1/2 d) m										
RDTSC 31			00 : 5		1					1
IN				ı						
OUT										
PREFETCHNTA d) m 1 PREFETCHT0/1/2 d) m 1										
PREFETCHT0/1/2 d) m 1			18						>300	
	PREFETCHNTA d)	m				1				
SFENCE d)	PREFETCHT0/1/2 d)	m				1				
	SFENCE d)						1	1		6

Notes

a) Faster under certain conditions: see manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

- b) Has an implicit LOCK prefix.
- c) 3 if constant without base or index register
- d) P3 only.

Floating point x87 instructions (Pentium Pro, II and III)

Instruction	Operands				ops			Latency	Reciprocal
		р0	p1	p01		р3	p4		throughput
FLD	r	1	İ	<u>'</u>		ļ.			
FLD	m32/64				1			1	
FLD	m80	2			2				
FBLD	m80	38			2				
FST(P)	r	1							
FST(P)	m32/m64					1	1	1	
FSTP	m80	2				2	2		
FBSTP	m80	165				2	2		
FXCH	r							0	⅓ f)
FILD	m	3			1			5	,
FIST(P)	m	2			-	1	1	5	
FLDZ		1				-			
FLD1 FLDPI FLDL2E etc.		2							
FCMOVcc	r	2						2	
FNSTSW	AX	3						7	
FNSTSW	m16	1				1	1		
FLDCW	m16	1		1	1	-		10	
FNSTCW	m16	1		-	-	1	1		
FADD(P) FSUB(R)(P)	r	1				-		3	1
FADD(P) FSUB(R)(P)	m	1			1			3-4	1
FMUL(P)	r	1						5	2 g)
FMUL(P)	m	1			1			5-6	2 g)
FDIV(R)(P)	r	1						38 h)	37
FDIV(R)(P)	m	1			1			38 h)	37
FABS		1						,	
FCHS		3						2	
FCOM(P) FUCOM	r	1						1	
FCOM(P) FUCOM	m	1			1			1	
FCOMPP FUCOMPP		1		1				1	
FCOMI(P) FUCOMI(P)	r	1						1	
FCOMI(P) FUCOMI(P)	m	1			1			1	
FIADD FISUB(R)	m	6			1				
FIMUL	m	6			1				
FIDIV(R)	m	6			1				
FICOM(P)	m	6			1				
FTST		1						1	
FXAM		1						2	
FPREM		23							
FPREM1		33							
FRNDINT		30							
FSCALE		56							
FXTRACT		15							

FSQRT		1 1			69	e,i)
FSIN FCOS		17-97		27-103	e)	
FSINCOS		18-110		29-130	e)	
F2XM1		17-48		66	e)	
FYL2X		36-54		103	e)	
FYL2XP1		31-53		98-107	e)	
FPTAN		21-102		13-143	e)	
FPATAN		25-86		44-143	e)	
FNOP		1				
FINCSTP FDECSTP		1				
FFREE	r	1				
FFREEP	r	2				
FNCLEX			3			
FNINIT		13				
FNSAVE		141				
FRSTOR		72				
WAIT			2			

Notes:

e) Not pipelined

f) FXCH generates 1 μop that is resolved by register renaming without going to any

port.

g) FMUL uses the same circuitry as integer multiplication. Therefore, the combined

throughput of mixed floating point and integer multiplications is 1 FMUL + 1 IMUL

per 3 clock cycles.

h) FDIV latency depends on precision specified in control word: 64 bits precision

gives latency 38, 53 bits precision gives latency 32, 24 bits precision gives latency 18. Division by a power of 2 takes 9 clocks. Reciprocal throughput is 1/(la-

tency-1).

i) Faster for lower precision.

Integer MMX instructions (Pentium II and Pentium III)

Instruction	Operands			μ	ops			Latency	Reciprocal
		p0	p1	p01	p2	рЗ	p4		throughput
MOVD MOVQ	r,r			1				1	0,5
MOVD MOVQ	mm,m32/64				1				1
MOVD MOVQ	m32/64,mm					1	1		1
PADD PSUB PCMP	mm,mm			1				1	0,5
PADD PSUB PCMP	mm,m64			1	1				1
PMUL PMADD	mm,mm	1						3	1
PMUL PMADD	mm,m64	1			1			3	1
PAND(N) POR PXOR	mm,mm			1				1	0,5
PAND(N) POR PXOR	mm,m64			1	1				1
PSRA PSRL PSLL	mm,mm/i		1					1	1
PSRA PSRL PSLL	mm,m64		1		1				1
PACK PUNPCK	mm,mm		1					1	1
PACK PUNPCK	mm,m64		1		1				1
EMMS		11						6 k)	
MASKMOVQ d)	mm,mm			1		1	1	2-8	2 - 30
PMOVMSKB d)	r32,mm		1					1	1
MOVNTQ d)	m64,mm					1	1		1 - 30

PSHUFW d)	mm,mm,i		1			1	1 1
PSHUFW d)	mm,m64,i		1		1	2	1
PEXTRW d)	r32,mm,i		1	1		2	1
PINSRW d)	mm,r32,i		1			1	1
PINSRW d)	mm,m16,i		1		1	2	1
PAVGB PAVGW d)	mm,mm			1		1	0,5
PAVGB PAVGW d)	mm,m64			1	1	2	1 1
PMIN/MAXUB/SW d)	mm,mm			1		1	0,5
PMIN/MAXUB/SW d)	mm,m64			1	1	2	1
PMULHUW d)	mm,mm	1				3	1 1
PMULHUW d)	mm,m64	1			1	4	1 1
PSADBW d)	mm,mm	2		1		5	2
PSADBW d)	mm,m64	2		1	1	6	2

Notes:

d) P3 only.

k) The delay can be hidden by inserting other instructions between EMMS and any subsequent floating point instruction.

Floating point XMM instructions (Pentium III)

Instruction	Operands			μ	ops			Latency	Reciprocal
		p0	p1	p01	p2	р3	p4		throughput
MOVAPS	xmm,xmm			2				1	1
MOVAPS	xmm,m128				2			2	2
MOVAPS	m128,xmm					2	2	3	2
MOVUPS	xmm,m128				4			2	4
MOVUPS	m128,xmm		1			4	4	3	4
MOVSS	xmm,xmm			1				1	1
MOVSS	xmm,m32			1	1			1	1
MOVSS	m32,xmm					1	1	1	1
MOVHPS MOVLPS	xmm,m64			1				1	1
MOVHPS MOVLPS	m64,xmm					1	1	1	1
MOVLHPS MOVHLPS	xmm,xmm			1				1	1
MOVMSKPS	r32,xmm	1						1	1
MOVNTPS	m128,xmm					2	2		2 - 15
CVTPI2PS	xmm,mm		2					3	1
CVTPI2PS	xmm,m64		2		1			4	2
CVT(T)PS2PI	mm,xmm		2					3	1
CVTPS2PI	mm,m128		1		2			4	1
CVTSI2SS	xmm,r32		2		1			4	2
CVTSI2SS	xmm,m32		2		2			5	2
CVT(T)SS2SI	r32,xmm		1		1			3	1
CVTSS2SI	r32,m128		1		2			4	2
ADDPS SUBPS	xmm,xmm		2					3	2
ADDPS SUBPS	xmm,m128		2		2			3	2
ADDSS SUBSS	xmm,xmm		1					3	1
ADDSS SUBSS	xmm,m32		1		1			3	1
MULPS	xmm,xmm	2						4	2
MULPS	xmm,m128	2			2			4	2

MULSS	xmm,xmm	1				4	1
MULSS	xmm,m32	1			1	4	1
DIVPS	xmm,xmm	2				48	34
DIVPS	xmm,m128	2			2	48	34
DIVSS	xmm,xmm	1				18	17
DIVSS	xmm,m32	1			1	18	17
AND(N)PS ORPS XORPS	xmm,xmm		2			2	2
AND(N)PS ORPS XORPS	xmm,m128		2		2	2	2
MAXPS MINPS	xmm,xmm		2			3	2
MAXPS MINPS	xmm,m128		2		2	3	2
MAXSS MINSS	xmm,xmm		1			3	1
MAXSS MINSS	xmm,m32		1		1	3	1
CMPccPS	xmm,xmm		2			3	2
CMPccPS	xmm,m128		2		2	3	2
CMPccSS	xmm,xmm		1			3	1
CMPccSS	xmm,m32		1		1	3	1
COMISS UCOMISS	xmm,xmm		1			1	1
COMISS UCOMISS	xmm,m32		1		1	1	1
SQRTPS	xmm,xmm	2				56	56
SQRTPS	xmm,m128	2			2	57	56
SQRTSS	xmm,xmm	2				30	28
SQRTSS	xmm,m32	2			1	31	28
RSQRTPS	xmm,xmm	2				2	2
RSQRTPS	xmm,m128	2			2	3	2
RSQRTSS	xmm,xmm	1				1	1
RSQRTSS	xmm,m32	1			1	2	1
RCPPS	xmm,xmm	2				2	2
RCPPS	xmm,m128	2			2	3	2
RCPSS	xmm,xmm	1				1	1
RCPSS	xmm,m32	1			1	2	1
SHUFPS	xmm,xmm,i		2	1		2	2
SHUFPS	xmm,m128,i		2		2	2	2
UNPCKHPS UNPCKLPS	xmm,xmm		2	2		3	2
UNPCKHPS UNPCKLPS	xmm,m128		2		2	3	2
LDMXCSR	m32	11				15	15
STMXCSR	m32	6				7	9
FXSAVE	m4096	116				62	
FXRSTOR	m4096	89				68	

Intel Pentium M, Core Solo and Core Duo

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm =

128 bit xmm register, sr = segment register, m = memory, m32 =

32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retire-

ment stages in the pipeline. Fused uops count as one.

μops unfused domain: The number of μops for each execution port. Fused μops count

as two.

p0: Port 0: ALU, etc. p1: Port 1: ALU, jumps

p01: Instructions that can go to either port 0 or 1, whichever is vacant

first.

p2: Port 2: load data, etc.

p3: Port 3: address generation for store

p4: Port 4: store data

Latency: This is the delay that the instruction generates in a dependency

chain. (This is not the same as the time spent in the execution unit. Values may be inaccurate in situations where they cannot be measured exactly, especially with memory operands). The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays by 50-150 clocks, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give

a similar delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of

independent instructions of the same kind.

Integer instructions

Instruction	Operands	μοps fused	μ	ops	unfus	sed d	oma	in	Latency	Recipro-
		domain	p0	p1	p01	p2	рЗ	p4		cal through- put
Move instructions										
MOV	r,r/i	1			1					0,5
MOV	r,m	1				1				1
MOV	m,r	1					1	1		1
MOV	m,i	2					1	1		1
MOV	r,sr	1			1					
MOV	m,sr	2			1		1	1		
MOV	sr,r	8	8						5	
MOV	sr,m	8	7			1			8	
MOVNTI	m,r32	2					1	1		2
MOVSX MOVZX	r,r	1			1				1	0,5
MOVSX MOVZX	r,m	1				1				1
CMOVcc	r,r	2	1		1				2	1,5
CMOVcc	r,m	2	1		1	1				
XCHG	r,r	3			3				2	1,5

XCHG	r,m	7			4	1	1	1	high b)	
XLAT	·	2			1	1			,	1
PUSH	r	1					1	1	1	1
	i						-	-		
PUSH		2				_	1	1	1	1
PUSH	m	2				1	1	1	2	1
PUSH	sr	2			1		1	1		
PUSHF(D)		16	3		11		1	1		6
PUSHA(D)		18			2		8	8	8	8
POP	r	1				1				
POP	(E)SP	3			2	1				
POP	m	2			_	1	1	1	2	1
POP	sr	10			9	1	'	'	_	'
	31		10							16
POPF(D)		17	10		6	1			_	16
POPA(D)		10			2	8			7	7
LAHF SAHF		1			1				1	1
SALC		2	1	1						1
LEA	r,m	1	1						1	1 1
BSWAP	r	2	1		1					
LDS LES LFS LGS LSS	m	11			8	3				
PREFETCHNTA	m	1				1				1
PREFETCHT0/1/2	m	1				1				1 1
						'				
SFENCE/LFENCE/MFENCE	Ť	2	1.0				1	1		6
IN			18						>300	
OUT			18						>300	
Arithmetic instructions										
ADD SUB	r,r/i	1			1				1	0,5
ADD SUB	r,m	1			1	1			2	1 1
ADD SUB	m,r/i	3			1	1	1	1		1
ADC SBB	r,r/i	2		1	1	-			2	2
ADC SBB	r,m	2		1	1	1			_	
ADC SBB		7		'	4		1	1		
	m,r/i					'	'	1		0.5
CMP	r,r/i	1			1				1	0,5
CMP	m,r	1			1	1			1	1
CMP	m,i	2			1	1				1
INC DEC NEG NOT	r	1			1				1	0,5
INC DEC NEG NOT	m	3			1	1	1	1		
AAA AAS DAA DAS		1		1						
AAD		3	1		2				2	
AAM		4	1	1	2				15	
MUL IMUL	r8	1	1						4	1
MUL IMUL	r16/r32	3	3						5	1
IMUL	r,r	1	1						4	1 1
IMUL	r,r,i	1	1						4	1 1
MUL IMUL	m8	1	1			1			4	1
MUL IMUL	m16/m32	3	3			1			5	1
IMUL	r,m	1	1			1			4	1
IMUL	r,m,i	2	1			1			4	1
DIV IDIV		5	4		1				15-16 c)	12
	r8) 3	7			1			10-10-01	14
DIV IDIV					1					
DIV IDIV DIV IDIV	r16 r32	4	3 3						15-24 c) 15-39 c)	12-20 c)

DIV IDIV	m8	6	4		1	1			15-16 c)	12	
DIV IDIV	m16	5	3		1	1			15-24 c)	12-20 c)	
DIV IDIV	m32	5	3		1	1			15-39 c)	12-20 c)	
CBW CWDE		1		1					1	1	
CWD CDQ		1		1					1	1	
Logic instructions											
AND OR XOR	r,r/i	1			1				1	0,5	
AND OR XOR	r,m	1			1	1			2	1	
AND OR XOR	m,r/i	3			1	1	1	1		1	
TEST	r,r/i	1			1				1	0,5	
TEST	m,r	1			1	1			1	1	
TEST	m,i	2			1	1				1	
SHR SHL SAR ROR ROL	r,i/CL	1	1						1	1	
SHR SHL SAR ROR ROL	m,i/CL	3	1			1	1	1		-	
RCR RCL	r,1	2	1		1				2	2	
RCR	r8,i/CL	9	5		4				11		
RCL	r8,i/CL	8	4		4				10		
RCR RCL	r16/32,i/CL	6	3		3				9	9	
RCR RCL	m,1	7	2		2	1	1	1			
RCR	m8,i/CL	12	6		3	1	1	1			
RCL	m8,i/CL	11	5		3	1	1	1			
RCR RCL	m16/32,i/CL	10	5		2	1	1	1			
SHLD SHRD	r,r,i/CL	2	2						2	2	
SHLD SHRD	m,r,i/CL	4	1		1	1	1	1			
ВТ	r,r/i	1		1					1	1	
ВТ	m,r	8			7	1					
ВТ	m,i	2		1		1					
BTR BTS BTC	r,r/i	1		1							
BTR BTS BTC	m,r	10			7	1	1	1	6		
BTR BTS BTC	m,i	3		1		1	1	1			
BSF BSR	r,r	2		1	1						
BSF BSR	r,m	2		1	1	1					
SETcc	r	1		1							
SETcc	m	2		1			1	1			
CLC STC CMC		1		1						1	
CLD STD		4			4					7	
Control transfer instruction	 ns										
JMP	short/near	1		1						1	
JMP	far	22	21			1				28	
JMP	r	1		1		-				1	
JMP	m(near)	2		1		1				2	
JMP	m(far)	25	23			2				31	
conditional jump	short/near	1		1		-				1	
J(E)CXZ	short	2		1	1					1	
LOOP	short	11	2	1	8					6	
LOOP(N)E	short	11	2	1	8					6	
CALL	near	4	-	1	1		1	1		2	
CALL	far	32	27	•		1	2	2		27	
CALL	r	4		1	2	.	1	1		9	
- · ·		•	1			1			1	1	1

CALL	m(near)	4		1		1	1	1		2
CALL	m(far)	35	29			2	2	2		30
RETN		2		1	2	1				2
RETN	i	3		1	1	1				2
RETF		27	24			3				30
RETF	i	27	24			3				30
BOUND	r,m	15	7		6	2				8
INTO		5			5					4
String instructions										
LODS		2				2				4
REP LODS		6n			10+6ı	h				0,5
STOS		3				1	1	1		1
REP STOS		5n			¢a. 5r	a)				0,7
MOVS		6			1	3	1	1		0,7
REP MOVS		6n			ca. 6r	a)				0,5
SCAS		3			1	2				1,3
REP(N)E SCAS		7n			12+71	h				0,6
CMPS		6			4	2				0,7
REP(N)E CMPS		9n			12+9ı	h				0,5
Other										
NOP (90)		1			1					0,5
Long NOP (0F 1F)		1			1					1
PAUSE		2			2					
CLI			9							
STI			17							
ENTER	i,0	12			10		1	1		
ENTER	a,b		ca.	18	+4b		b-1	2b		
LEAVE		3			2	1				
CPUID		38-59	38-59	9					ca. 130	
RDTSC		13	13							42

Notes:

a) Faster under certain conditions: see manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

b) Has an implicit LOCK prefix.

c) High values are typical, low values are for round divisors. Core Solo/Duo is more efficient than Pentium M in cases with round values that allow an early-out algorithm.

Floating point x87 instructions

Instruction Move instructions	Operands	µops fused	μ	ops	unfus	Latency	Recipro- cal			
		domain	p0	p1	p01	p2	р3	р4		through-
Move instructions										-
FLD	r	1	1						1	
FLD	m32/64	1				1			1	
FLD	m80	4	2			2				
FBLD	m80	40	38			2				
FST(P)	r	1	1							

FST(P) FSTP
FBSTP
FXCH
FILD
FIST(P)
FISTTP g) FLDZ FLDZ FLD1 FLDPI FLDL2E etc. FCMOVcc FCMOVcc FCMSTSW FLDZ FNSTSW FNSTSW FNSTSW FNSTSW FNSTCW FLDCW F
FLDZ 1
FLD1 FLDPI FLDL2E etc. 2 2 2 2 2 2 2 2 3 3 7 3 3 7 3 3 3 3 3 3 3 3 3 3 3 3 4 7 3 3 3 3 3 4 7 3 3 3 4 7 3 3 3 4 7 3 3 4 1
FCMOVcc r 2 2 2 2 7 3 FNSTSW m16 2 1
FNSTSW
FNSTSW m16 2 1 1 1 1 1 19 FLDCW m16 3 1 1 1 1 3 FINCSTP FDECSTP
FLDCW m16 3 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 2 2 2 2 </td
FNSTCW m16 3 1 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3<
FINCSTP FDECSTP 1
FFREE r 1
FFREEP r 2 2 FNSAVE 142 142 142 FRSTOR 72 72 91 Arithmetic instructions FADD(P) FSUB(R)(P) r 1 1 3 1 FADD(P) FSUB(R)(P) m 1 1 1 3 1 FMUL(P) r 1 1 1 5 2 FMUL(P) m 1 1 1 5 2 FDIV(R)(P) r 1 1 1 9-38 c) 8-37 c) FDIV(R)(P) m 1 1 1 9-38 c) 8-37 c)
FNSAVE FRSTOR 142 142 142 131 Arithmetic instructions r 1 1 3 1 FADD(P) FSUB(R)(P) r 1 1 1 3 1 FADD(P) FSUB(R)(P) m 1 1 1 3 1 FMUL(P) r 1 1 1 5 2 FMUL(P) m 1 1 1 5 2 FDIV(R)(P) r 1 1 1 9-38 c) 8-37 c) FDIV(R)(P) m 1 1 1 9-38 c) 8-37 c)
FRSTOR 72 72 91 Arithmetic instructions r 1 1 3 1 FADD(P) FSUB(R)(P) r 1 1 1 3 1 FADD(P) FSUB(R)(P) m 1 1 1 3 1 FMUL(P) r 1 1 1 5 2 FMUL(P) m 1 1 1 5 2 FDIV(R)(P) r 1 1 1 9-38 c) 8-37 c) FDIV(R)(P) m 1 1 1 9-38 c) 8-37 c)
Arithmetic instructions FADD(P) FSUB(R)(P) r 1 1 3 1 FADD(P) FSUB(R)(P) m 1 1 1 3 1 FMUL(P) r 1 1 1 5 2 FMUL(P) m 1 1 1 5 2 FDIV(R)(P) r 1 1 1 9-38 c) 8-37 c) FDIV(R)(P) m 1 1 1 9-38 c) 8-37 c)
FADD(P) FSUB(R)(P) r 1 1 3 1 FADD(P) FSUB(R)(P) m 1 1 1 3 1 FMUL(P) r 1 1 1 5 2 FMUL(P) m 1 1 1 5 2 FDIV(R)(P) r 1 1 1 9-38 c) 8-37 c) FDIV(R)(P) m 1 1 1 9-38 c) 8-37 c)
FADD(P) FSUB(R)(P) m 1 1 1 1 3 1 FMUL(P) r 1 1 1 5 2 FMUL(P) m 1 1 1 5 2 FDIV(R)(P) r 1 1 1 9-38 c) 8-37 c) FDIV(R)(P) m 1 1 1 9-38 c) 8-37 c)
FMUL(P) r 1 1 5 2 FMUL(P) m 1 1 1 5 2 FDIV(R)(P) r 1 1 1 9-38 c) 8-37 c) FDIV(R)(P) m 1 1 1 9-38 c) 8-37 c)
FMUL(P) m 1 1 1 5 2 FDIV(R)(P) r 1 1 9-38 c) 8-37 c) FDIV(R)(P) m 1 1 1 9-38 c) 8-37 c)
FDIV(R)(P) r 1 1 9-38 c) 8-37 c) FDIV(R)(P) m 1 1 1 9-38 c) 8-37 c)
FDIV(R)(P) m 1 1 9-38 c) 8-37 c)
FABS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FCHS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FCOM(P) FUCOM r 1 1 1 1 1
FCOM(P) FUCOM
FCOMPP FUCOMPP 2 1 1 1 1 1
FCOMI(P) FUCOMI(P) r 1 1 1 1
FIADD FISUB(R) m 6 3 1 1 1 3 3
FIMUL
FIDIV(R) m 6 5 1 9-38 c) 8-37 c)
FICOM(P) m 6 3 2 1 1 4
FTST ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FXAM 1 1 1 1 1 1
FPREM FPREM1 26 26 37 37
FRNDINT 15 15 19 19
Math
FSCALE 28 28 43
FXTRACT 15 15 9
FSQRT 1 1 1 9 h) 8
FSIN FCOS 80-100 80-110
FSINCOS 90-110 90-110 100-130
F2XM1 ~ 20 ~20 ~45
FYL2X
FYL2XP1

FPTAN	~ 100	~100			~	140		
FPATAN	~ 85	~85			~	·140		
Other								
FNOP	1	1					1	
WAIT	2		1	1			1	
FNCLEX	3	3					13	
FNINIT	14	14					27	

Notes:

c) High values are typical, low values are for low precision or round divisors.

f) FXCH generates 1 μop that is resolved by register renaming without going to

any port.

g) SSE3 instruction only available on Core Solo and Core Duo.

Integer MMX and XMM instructions

Instruction	Operands	μοps fused	μ	ops	unfus	ed d	lomai	in	Latency	Recipro- cal through- put
		domain	p0	p1	p01	p2	р3	p4		
Move instructions										
MOVD	r32,mm	1			1				1	0,5
MOVD	mm,r32	1			1				1	0,5
MOVD	mm,m32	1				1				1
MOVD	m32,mm	1					1	1		1
MOVD	r32,xmm	1		1					1	1
MOVD	xmm,r32	2			2					1
MOVD	xmm,m32	2			1	1				1
MOVD	m32, xmm	1					1	1		1
MOVQ	mm,mm	1			1					0,5
MOVQ	mm,m64	1				1				1
MOVQ	m64,mm	1					1	1		1
MOVQ	xmm,xmm	2			2				1	1
MOVQ	xmm,m64	2			1	1				1
MOVQ	m64, xmm	1					1	1		1
MOVDQA	xmm, xmm	2			2				1	1
MOVDQA	xmm, m128	2				2				2
MOVDQA	m128, xmm	2					2	2		2
MOVDQU	xmm, m128	4			2	2				2-10
MOVDQU	m128, xmm	8			5-6		2-3	2-3		4-20
LDDQU g)	xmm, m128	4								2
MOVDQ2Q	mm, xmm	1		1					1	1
MOVQ2DQ	xmm,mm	2		1	1				1	1
MOVNTQ	m64,mm	1					1	1		2
MOVNTDQ	m128,xmm	4					2	2		3
PACKSSWB/DW PACKUSWB	mm,mm	1	1						1	1
PACKSSWB/DW PACKUSWB	mm,m64	1	1			1			1	1
PACKSSWB/DW PACKUSWB	xmm,xmm	3	2	1		•			2	2

PACKSSWB/DW	400										
PACKUSWB	xmm,m128	4	1	1		2			2	2	
PUNPCKH/LBW/WD/DQ	mm,mm	1	1						1	1	
PUNPCKH/LBW/WD/DQ	mm,m64	1	1			1			_	1	
PUNPCKH/LBW/WD/DQ	xmm,xmm	2	2						2	2 2	
PUNPCKH/LBW/WD/DQ	xmm,m128	3	1	,	,	2			_		
PUNPCKHQDQ	xmm,xmm	2		1	1				1	1	
PUNPCKHQDQ	xmm, m128	3		1		2			_	1	
PUNPCKLQDQ	xmm,xmm	1		1					1	1	
PUNPCKLQDQ	xmm, m128	1				1			_	1	
PSHUFW	mm,mm,i	1	1						1	1	
PSHUFW	mm,m64,i	2	1			1				1	
PSHUFD	xmm,xmm,i	3	2	1		_			2	2	
PSHUFD	xmm,m128,i	4	1	1		2				2	
PSHUFL/HW	xmm,xmm,i	2	1	1						1	
PSHUFL/HW	xmm, m128,i	3		1		2				1	
MASKMOVQ	mm,mm	3			1		1	1			
MASKMOVDQU	xmm,xmm	8		1			2	2			
PMOVMSKB	r32,mm	1	1						1	1	
PMOVMSKB	r32,xmm	1	1	j)					1	1	
PEXTRW	r32,mm,i	2	1	1					2	1	
PEXTRW	r32,xmm,i	4	2	2					3	2	
PINSRW	mm,r32,i	1	1						1	1	
PINSRW	xmm,r32,i	2	2						1	2	
Arithmetic instructions											
PADD/SUB(U)(S)B/W/D	mm,mm	1			1				1	0,5	
PADD/SUB(U)(S)B/W/D	mm,m64	1			1	1				1	
PADD/SUB(U)(S)B/W/D	xmm,xmm	2			2				1	1	
PADD/SUB(U)(S)B/W/D	xmm,m128	4			2	2				2	
PADDQ PSUBQ	mm,mm	2			2				2	1	
PADDQ PSUBQ	mm,m64	2			2	1				1	
PADDQ PSUBQ	xmm,xmm	4			4				2	2	
PADDQ PSUBQ					4						
I ADDQ I SODQ	xmm,m128	6			4	2				2	
PCMPEQ/GTB/W/D	xmm,m128 mm,mm					2			1	2 0,5	
	· '	6			4	2			1		
PCMPEQ/GTB/W/D	mm,mm	6 1			4 1				1	0,5 1 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D	mm,mm mm,m64	6 1 1			4 1 1					0,5 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D	mm,mm mm,m64 xmm,xmm	6 1 1 2			4 1 1 2	1				0,5 1 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D	mm,mm mm,m64 xmm,xmm xmm,m128	6 1 1 2 2			4 1 1 2 2	1			1 3 3	0,5 1 1 2 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm	6 1 1 2 2 1			4 1 1 2 2 1	1 2			1 3 3 3	0,5 1 1 2 1 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW PMULL/HW PMULHUW	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64	6 1 1 2 2 1 1			4 1 1 2 2 1 1	1 2			1 3 3	0,5 1 1 2 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm	6 1 1 2 2 1 1 2	1		4 1 1 2 2 1 1 2	1 2 1			1 3 3 3	0,5 1 1 2 1 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,m128	6 1 1 2 2 1 1 2 4	1 1		4 1 1 2 2 1 1 2	1 2 1			1 3 3 3 3	0,5 1 1 2 1 1 2 2 1 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,xmm xmm,m128 mm,mm	6 1 2 2 1 1 2 4 1			4 1 1 2 2 1 1 2	1 2 1 2			1 3 3 3 3 4	0,5 1 2 1 1 2 1 1 2 1 1 2 2 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULUDQ PMULUDQ	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,xmm xmm,m128 mm,mm	6 1 1 2 2 1 1 2 4 1	1		4 1 1 2 2 1 1 2	1 2 1 2			1 3 3 3 3 4 4	0,5 1 1 2 1 1 2 2 1 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULUDQ PMULUDQ PMULUDQ	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm xmm,m64 xmm,xmm	6 1 2 2 1 1 2 4 1 1 2	1 2		4 1 1 2 2 1 1 2	1 2 1 2			1 3 3 3 3 4 4 4	0,5 1 2 1 1 2 1 1 2 1 1 2 2 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULUDQ PMULUDQ PMULUDQ PMULUDQ	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm xmm,m64 xmm,xmm xmm,m64	6 1 2 2 1 1 2 4 1 1 2 4	1 2		4 1 1 2 2 1 1 2 2	1 2 1 2			1 3 3 3 3 4 4 4 4	0,5 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULUDQ PMULUDQ PMULUDQ PMULUDQ PMULUDQ PMULUDQ PMULUDQ	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm	6 1 2 2 1 1 2 4 1 1 2 4 1	1 2		4 1 1 2 2 1 1 2 2	1 2 1 2 1 2			1 3 3 3 3 4 4 4 4 4 3	0,5 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULU/HW PMULHUW PMULUDQ PMULUDQ PMULUDQ PMULUDQ PMULUDQ PMADDWD	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,xmm	6 1 2 2 1 1 2 4 1 1 2 4 1 1	1 2		4 1 1 2 2 1 1 2 2	1 2 1 2 1 2			1 3 3 3 3 4 4 4 4 4 3 3	0,5 1 1 2 1 1 2 1 1 2 2 1 1 1 2 1 1	
PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PCMPEQ/GTB/W/D PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULL/HW PMULHUW PMULUDQ PMULUDQ PMULUDQ PMULUDQ PMULUDQ PMADDWD PMADDWD	mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,m128 mm,mm xmm,m128 mm,mm mm,m64 xmm,xmm xmm,xmm	6 1 2 2 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2	1 2		4 1 2 2 1 1 2 2	1 2 1 2 1 1			1 3 3 3 3 4 4 4 4 4 3 3 3	0,5 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	

PAVGB/W	mm,m64	1			1	1			1
PAVGB/W	xmm,xmm	2			2			1	1
PAVGB/W	xmm,m128	4			2	2			2
PMIN/MAXUB/SW	mm,mm	1			1			1	0,5
PMIN/MAXUB/SW	mm,m64	1			1	1			1
PMIN/MAXUB/SW	xmm,xmm	2			2			1	1
PMIN/MAXUB/SW	xmm,m128	4			2	2			2
PSADBW	mm,mm	2			2			4	1
PSADBW	mm,m64	2			2	1		4	1
PSADBW	xmm,xmm	4			4			4	2
PSADBW	xmm,m128	6			4	2		4	2
Logic instructions									
PAND(N) POR PXOR	mm,mm	1			1			1	0,5
PAND(N) POR PXOR	mm,m64	1			1	1			1
PAND(N) POR PXOR	xmm,xmm	2			2			1	1
PAND(N) POR PXOR	xmm,m128	4			2	2			2
PSLL/RL/RAW/D/Q	mm,mm/i	1	1					1	1
PSLL/RL/RAW/D/Q	mm,m64	1	1			1			1
PSLL/RL/RAW/D/Q	xmm,i	2	2					2	2
PSLL/RL/RAW/D/Q	xmm,xmm	3	2	1				2	2
PSLL/RL/RAW/D/Q	xmm,m128	3		1		2			2
PSLL/RLDQ	xmm,i	4	3	1				3	3
Other									
EMMS		11			11			6 k)	6

Notes:

SSE3 instruction only available on Core Solo and Core Duo. g)

j) Also uses some execution units under port 1.

You may hide the delay by inserting other instructions between EMMS and any subsequent floating point instruction. k)

Floating point XMM instructions

nstruction	Operands	µops fused	μ	ops	unfus	Latency	Recipro- cal			
		domain	p0	p1	p01	p2	рЗ	p4		through- put
Move instructions										
MOVAPS/D	xmm,xmm	2			2				1	1
MOVAPS/D	xmm,m128	2				2			2	2
MOVAPS/D	m128,xmm	2					2	2	3	2
MOVUPS/D	xmm,m128	4				4			2	2
MOVUPS/D	m128,xmm	8			4		2	2	3	4
MOVSS/D	xmm,xmm	1		1					1	1
MOVSS/D	xmm,m32/64	2		1		1			1	1
MOVSS/D	m32/64,xmm	1					1	1	1	1
MOVHPS/D MOVLPS/D	xmm,m64	1		1		1			1	1
MOVHPS/D MOVLPS/D	m64,xmm	1					1	1	1	1
MOVLHPS MOVHLPS	xmm,xmm	1		1					1	1
MOVMSKPS/D	r32,xmm	1	1	j)					2	1

MOVNTPS/D	m128,xmm	2					2	2		3
SHUFPS/D	xmm,xmm,i	3	2	1					2	2
SHUFPS/D	xmm,m128,i	4	1	1		2			_	2
MOVDDUP g)	xmm,xmm	2		-		_			1	1
MOVSH/LDUP g)	xmm,xmm	2							2	2
MOVSH/LDUP g)	xmm,m128	4							_	_
UNPCKH/LPS	xmm,xmm	4	2	2					3-4	5
UNPCKH/LPS	xmm,m128	4	_	2		2			0 1	5
UNPCKH/LPD	xmm,xmm	2		1	1	_			1	1
UNPCKH/LPD	xmm,m128	3		1	1	1			•	1
ON ON WEI D	XIIIII,III 120	0		'		'				'
Conversion										
CVTPS2PD	xmm,xmm	4	2	2					3	3
CVTPS2PD	xmm,m64	4	1	2		1				3
CVTPD2PS	xmm,xmm	4	3	1					4	3
CVTPD2PS	xmm,m128	6	3	1		2				3
CVTSD2SS	xmm,xmm	2			2				4	2
CVTSD2SS	xmm,m64	3			2	1				2
CVTSS2SD	xmm,xmm	2	2						2	2
CVTSS2SD	xmm,m64	3	2			1				2
CVTDQ2PS	xmm,xmm	2			2				3	2
CVTDQ2PS	xmm,m128	4			2	2				2
CVT(T) PS2DQ	xmm,xmm	2			2				3	2
CVT(T) PS2DQ	xmm,m128	4			2	2				2
CVTDQ2PD	xmm,xmm	4			4				4	2
CVTDQ2PD	xmm,m64	5			4	1				2
CVT(T)PD2DQ	xmm,xmm	4			4				4	3
CVT(T)PD2DQ	xmm,m128	6			4	2				3
CVTPI2PS	xmm,mm	1		1					3	1
CVTPI2PS	xmm,m64	2		1		1				1
CVT(T)PS2PI	mm,xmm	1		1					3	1
CVT(T)PS2PI	mm,m128	2		1		1				1
CVTPI2PD	xmm,mm	4	2	2					5	2
CVTPI2PD	xmm,m64	5	2	2		1				2
CVT(T) PD2PI	mm,xmm	3			3				4	2
CVT(T) PD2PI	mm,m128	5			3	2				2
CVTSI2SS	xmm,r32	2	1	1					4	1
CVT(T)SS2SI	r32,xmm	2		1	1				4	1
CVT(T)SS2SI	r32,m32	3		1	1	1				1
CVTSI2SD	xmm,r32	2	1	1					4	1
CVTSI2SD	xmm,m32	3	1	1		1				1
CVT(T)SD2SI	r32,xmm	2		1	1				4	1
CVT(T)SD2SI	r32,m64	3		1	1	1				1
	,									
Arithmetic										
ADDSS/D SUBSS/D	xmm,xmm	1			1				3	1
ADDSS/D SUBSS/D	xmm,m32/64	2			1	1			3	1
ADDPS/D SUBPS/D	xmm,xmm	2			2				3	2
ADDPS/D SUBPS/D	xmm,m128	4			2	2			3	2
ADDSUBPS/D g)	xmm,xmm	2			2				3	2
HADDPS HSUBPS g)	xmm,xmm	6?			?				7	4

HADDPD HSUBPD g)	xmm,xmm	3			3			4	2
MULSS	xmm,xmm	1	1					4	1
MULSD	xmm,xmm	1	1					5	2
MULSS	xmm,m32	2	1			1		4	1
MULSD	xmm,m64	2	1			1		5	2
MULPS	xmm,xmm	2	2					4	2
MULPD	xmm,xmm	2	2					5	4
MULPS	xmm,m128	4	2			2		4	2
MULPD	xmm,m128	4	2			2		5	4
DIVSS	xmm,xmm	1	1					9-18 c)	8-17 c)
DIVSD	xmm,xmm	1	1					9-32 c)	8-31 c)
DIVSS	xmm,m32	2	1			1		9-18 c)	8-17 c)
DIVSD	xmm,m64	2	1			1		9-32 c)	8-31 c)
DIVPS	xmm,xmm	2	2					16-34 c)	16-34 c)
DIVPD	xmm,xmm	2	2					16-62 c)	16-62 c)
DIVPS	xmm,m128	4	2			2		16-34 c)	16-34 c)
DIVPD	xmm,m128	4	2			2		16-62 c)	16-62 c)
CMPccSS/D	xmm,xmm	1			1			3	1
CMPccSS/D	xmm,m32/64	2			1	1			1
CMPccPS/D	xmm,xmm	2			2			3	2
CMPccPS/D	xmm,m128	4			2	2			2
COMISS/D UCOMISS/D	xmm,xmm	1		1					1
COMISS/D UCOMISS/D	xmm,m32/64	2		1		1			1
MAXSS/D MINSS/D	xmm,xmm	1			1	-		3	1
MAXSS/D MINSS/D	xmm,m32/64	2			1	1		3	1
MAXPS/D MINPS/D	xmm,xmm	2			2	•		3	2
MAXPS/D MINPS/D	xmm,m128	4			2	2		3	2
RCPSS	xmm,xmm	1		1	_	_		3	1
RCPSS	xmm,m32	2		1		1			1
RCPPS	xmm,xmm	2		2		•		3	2
RCPPS	xmm,m128	4		2		2			2
1.0.1.0	X,20	·		_		_			_
Math									
SQRTSS	xmm,xmm	2	2					6-30	4-28
SQRTSS	xmm,m32	3	2			1			4-28
SQRTSD	xmm,xmm	1	1					5-58	4-57
SQRTSD	xmm,m64	2	1			1			4-57
SQRTPS	xmm,xmm	2	2					8-56	16-55
SQRTPD	xmm,xmm	2	2					16-114	16-114
SQRTPS	xmm,m128	4	2			2			16-55
SQRTPD	xmm,m128	4	2			2			16-114
RSQRTSS	xmm,xmm	1		1				3	1
RSQRTSS	xmm,m32	2		1		1			1
RSQRTPS	xmm,xmm	2		3				3	2
RSQRTPS	xmm,m128	4		2		2			2
Logic									
AND/ANDN/OR/XORPS/D	xmm,xmm	2			2			1	1
AND/ANDN/OR/XORPS/D	xmm,m128	4			2	2			1
Other									
o.	J		1		l	ı I	I	1	ı l

LDMXCSR	m32	9	9				20	
STMXCSR	m32	6	6				12	
FXSAVE	m4096	118	32		43	43	63	
FXRSTOR	m4096	87	43	44			72	

Notes:

c) High values are typical, low values are for round divisors.

g) SSE3 instruction only available on Core Solo and Core Duo.

j) Also uses some execution units under port 1.

Intel Core 2 (Merom, 65nm)

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

The number of µops at the decode, rename, allocate and retirement stages in μops fused domain:

the pipeline. Fused uops count as one.

The number of µops for each execution port. Fused µops count as two. Fused μops unfused domain:

> macro-ops count as one. The instruction has upp fusion if the sum of the numbers listed under p015 + p2 + p3 + p4 exceeds the number listed under uops fused domain. An x under p0, p1 or p5 means that at least one of the µops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one µop which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that it is not known which of the three ports these µops go to.

The total number of µops going to port 0, 1 and 5. p015: p0: The number of uops going to port 0 (execution units). p1: The number of μ ops going to port 1 (execution units). The number of µops going to port 5 (execution units). p5: The number of µops going to port 2 (memory read). p2:

The number of uops going to port 3 (memory write address). p3: The number of µops going to port 4 (memory write data). p4:

Tells which execution unit cluster is used. An additional delay of 1 clock cycle Unit:

is generated if a register written by a uop in the integer unit (int) is read by a μορ in the floating point unit (float) or vice versa. flt→int means that an instruction with multiple uops receive the input in the float unit and delivers the output in the int unit. Delays for moving data between different units are included under latency when they are unavoidable. For example, movd eax,xmm0 has an extra 1 clock delay for moving from the XMM-integer unit to the general purpose integer unit. This is included under latency because it occurs regardless of which instruction comes next. Nothing listed under unit means that additional delays are either unlikely to occur or unavoidable and therefore included in the

latency figure. This is the delay that the instruction generates in a dependency chain. The Latency:

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay. The time unit used is core clock cycles, not the reference clock cycles

given by the time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

Integer instructions

Instruction	Operands	μοps fused	μops	un	fuse	d d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	р5	p2	р3	p4			through- put
Move instructions												

MOV	r,r/i	1	1	x	х	х				int	1	0,33
MOV a)	r,m	1					1			int	2	1
MOV a)	m,r	1						1	1	int	3	1
MOV	m,i	1						1	1	int	3	1
MOV	r,sr	1					1			int		1
MOV	m,sr	2					1	1	1	int		1
MOV	sr,r	8	4	x	x	х	4			int		16
MOV	sr,m	8	3	x		х	5			int		16
MOVNTI	m,r	2						1	1	int		2
MOVSX MOVZX	,											
MOVSXD	r,r	1	1	x	Х	Х				int	1	0,33
MOVSX MOVZX	r,m	1					1			int		1
CMOVcc	r,r	2	2	X	Х	X	•			int	2	1
CMOVcc	r,m	2	2	X	X	X	1			int	_	•
XCHG	r,r	3	3	X	X	X	•			int	2	2
XCHG	r,m	7	X	^	^	^	1	1	1	int	high b)	-
XLAT	1,111	2	1				1	l '	'	int	4	1
PUSH	r	1	'				'	1	1	int	3	1
PUSH	r i	1						1	1	int	3	1
							4		-			
PUSH	m	2					1	1	1	int		1
PUSH	sr	2	1					1	1	int		1
PUSHF(D/Q)		17	15	X	X	X		1	1	int		7
PUSHA(D) i)		18	9					1	8	int		8
POP	r	1					1			int	2	1
POP	(E/R)SP	4	3				1			int		
POP	m	2					1	1	1	int		1,5
POP	sr	10	9				1			int		17
POPF(D/Q)		24	23	X	Х	Х	1			int	20	
POPA(D) i)		10	2				8			int		7
LAHF SAHF		1	1	x	х	Х				int	1	0,33
SALC i)		2	2	x	х	Х				int	4	1
LEA a)	r,m	1	1	1						int	1	1
BSWAP	r	2	2	1		1				int	4	1
LDS LES LFS LGS LSS	m	11	11				1			int		17
PREFETCHNTA	m	1					1			int		1
PREFETCHT0/1/2	m	1					1			int		1
LFENCE		2						1	1	int		8
MFENCE		2						1	1	int		9
SFENCE		2						1	1	int		9
CLFLUSH	m8	4	2	x	X	X		1	1	int	240	117
IN	1110		_	^	^	^		l .		int	2.0	
OUT										int		
001										1111		
Arithmetic instructions												
ADD SUB	r,r/i	1	1	x	x	x				int	1	0,33
ADD SUB		1	1				1			int	'	
ADD SUB	r,m m.r/i	2	1	X	X	X	1	1	1	int	6	1
ADC SBB	m,r/i	2		X	X	X	'				6	1
	r,r/i	2	2 2	X	X	X	4			int	2 2	2 2
ADC SBB	r,m			X	X	X	1		4	int		
ADC SBB	m,r/i	4	3	X	X	X	1	1	1	int	7	0.00
CMP	r,r/i	1	1	Х	Х	Х	_			int	1	0,33
CMP	m,r/i	1	1	X	Х	X	1			int	1	1
INC DEC NEG NOT	r	1	1	X	X	X				int	1	0,33

INC DEC NEG NOT	m	3	1	Х	Х	Х	1	1	1	int	6	1
AAA AAS DAA DAS i)		1	1		1					int		1
AAD i)		3	3	х	х	х				int		1
AAM i)		4	4							int	17	
MUL IMUL	r8	1	1		1					int	3	1
MUL IMUL	r16	3	3	х	х	х				int	5	1,5
MUL IMUL	r32	3	3	х	х	х				int	5	1,5
MUL IMUL	r64	3	3	х	х	х				int	7	4
IMUL	r16,r16	1	1		1					int	3	1 1
IMUL	r32,r32	1	1		1					int	3	1 1
IMUL	r64,r64	1	1	1						int	5	2
IMUL	r16,r16,i	1	1		1					int	3	1 1
IMUL	r32,r32,i	1	1		1					int	3	1 1
IMUL	r64,r64,i	1	1	1	١.					int	5	2
MUL IMUL	m8	1	1	'	1		1			int	3	1
MUL IMUL	m16	3	3	x	X	х	1			int	5	1,5
MUL IMUL	m32	3	3				1			int	5	1,5
MUL IMUL	m64	3	2	2	Х	Х				int	7	
IMUL	I I		1	~	4		1					4
	r16,m16	1			1		1			int	3	1 1
IMUL	r32,m32	1	1		1		1			int	3	1
IMUL	r64,m64	1	1	1			1			int	5	2
IMUL	r16,m16,i	1	1		1		1			int		2
IMUL	r32,m32,i	1	1		1		1			int		1
IMUL	r64,m64,i	1	1	1			1			int		2
DIV IDIV	r8	3	3							int	18	12
DIV IDIV	r16	5	5							int	18-26	12-20 c)
DIV IDIV	r32	4	4							int	18-42	12-36 c)
DIV	r64	32	32							int	29-61	18-37 c)
IDIV	r64	56	56							int	39-72	28-40 c)
DIV IDIV	m8	4	3				1			int	18	12
DIV IDIV	m16	6	5				1			int	18-26	12-20 c)
DIV IDIV	m32	5	4				1			int	18-42	12-36 c)
DIV	m64	32	31				1			int	29-61	18-37 c)
IDIV	m64	56	55				1			int	39-72	28-40 c)
CBW CWDE CDQE		1	1	х	х	х				int	1	
CWD CDQ CQO		1	1	х		х				int	1	
Logic instructions												
AND OR XOR	r,r/i	1	1	х	х	х				int	1	0,33
AND OR XOR	r,m	1	1	х	x	х	1			int		1
AND OR XOR	m,r/i	2	1	Х	Х	Х	1	1	1	int	6	1 1
TEST	r,r/i	1	1	X	X	X	•		-	int	1	0,33
TEST	m,r/i	1	1	X	X	X	1			int		1
SHR SHL SAR	r,i/cl	1	1	x	^	X	'			int	1	0,5
SHR SHL SAR	m,i/cl	3	2	x		x	1	1	1	int	6	1
ROR ROL	r,i/cl	1	1				'	'	'	int	1	1 1
	1		2	X		X	1	4	4			
ROR ROL	m,i/cl	3		X		X	ı	1	1	int	6	1 2
RCR RCL	r,1	2	2	X	X	X				int	2	
RCR	r8,i/cl	9	9	X	X	X				int	12	
RCL	r8,i/cl	8	8	Х	Х	Х				int	11	
RCR RCL	r16/32/64,i/cl	6	6	Х	Х	Х				int	11	
RCR RCL	m,1	4	3	Х	Х	Х	1	1	1	int	7	
RCR	m8,i/cl	12	9	X	X	Х	1	1	1	int	14	

RCCL													
RCR RCL m16/32/64./cl pr.r./icl	RCL	m8,i/cl	11	8	Х	X	х	1	1	1	int	13	
SHLD SHRD	RCR RCI		10	7	x	×	x	1	1	1	int	1	
SHLD SHRD			l							•		1	1 1
BT BT BT m,r 10 9 x x x x 1 BT BT m,r 10 9 y x x x x 1 BT BT m,r 10 9 y x x x x 1 BT BT BT m,r 10 10 9 y x x x x 1 BT BT BT BT m,r 10 10 9 x x x x 1 BT BT BT BT BT BT BT BT BT BT BT BT BT			1	I				4	4	4		1	'
BT BT BT BT BT BT BT BT BT BT BT BT BT B								1	1	'			
BTR BTS BTC					X	X	X					1	
BTR BTS BTC	BT	m,r	10	9	Х	Х	Х	1			int		5
BTR BTS BTC	BT	m,i	2	1	Х	Х	Х	1			int		1 1
BTR BTS BTC	BTR BTS BTC	r,r/i	1	1	х	х	х				int	1	
BTR BTS BTC	BTR BTS BTC		11	8	×	×	×	1	1	1	int	1	
BSF BSR			l						-	'			
BSF BSR			l	1				١.	'	'			1
SETCC			l										
SETCC					X	1	X	1					
CLC STC CMC		r	l	1	X	X	X				int	1	1
CLD STD	SETcc	m	2	1	Х	Х	Х		1	1	int		1
STD	CLC STC CMC		1	1	Х	Х	Х				int	1	0,33
STD	CLD		7	7	x	x	x				int		4
Control transfer instructions			6	6	Y	Y	Y						
JMP JMP Short/near far 30 30	015				^	^	^				1110		'-
JMP JMP Short/near far 30 30	Control transfer instructi	one											
JMP i) far 30 <t< td=""><td></td><td></td><td>1</td><td>4</td><td></td><td></td><td>4</td><td></td><td></td><td></td><td>int</td><td></td><td>1.0</td></t<>			1	4			4				int		1.0
JMP r 1							'				-	0	
JMP m(near) m(far) 1	1						١.						
JMP		1		1			1					1	
Conditional jump	JMP	m(near)	1	1			1	1			int	0	1-2
Fused compare/test and branch e,i) J(E/R)CXZ short 2 2 x x 1	JMP	m(far)	31	29				2			int		68
Fused compare/test and branch e,i) J(E/R)CXZ short 2	Conditional jump	short/near	1	1			1				int	0	1
J(E/R)CXZ		ranch e.i)	1	1			1				int	0	1 1
LOOP	-	1	l		Y	Y	1						· ·
LOOP(N)E short near 11 11 x							-						
CALL (CALL i) near far (far (far (far (far (far (far (fa													
CALL i) far 43 44 43 44 42 22 int 75 64 22 int 78 72 72 72 72 72 72 72 72 72 73 72 73 72 73 72 73 72 73 73 73 73 73 73 73 74			l										
CALL r m(near) 3 2 m (near) 1 1 1 int m (a 2 m) 2 m (near) 4 3 m (near) 4 3 m (near) 4 4 4 42 m (a 2 m) 2 m (near) 4 4 4 42 m (a 2 m) 2 mint mint mint 2 mint mint 75 mint 75 mint 75 mint 75 mint 75 mint 75 mint 78 mint 79 mint 79 mint 79 mint 79 min					X	X	X		1	1			
CALL m(near) 4 3 1 1 1 1 int 2 CALL m(far) 44 42 2 int 75 RETN 1 1 1 1 int 2 RETN i 3 x 1 1 int 2 RETF i 32 30 2 int 78 BOUND i) r,m 15 13 2 int 8 BOUND i) r,m 15 13 2 int 1 REP LODS 3 2 1 int 1+5n - 21+3n STOS 4 2 1 1 1 7+2n - 0.55n <t< td=""><td>1</td><td>far</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></t<>	1	far											
CALL m(far) 44 42 2 int 75 RETN 1	CALL	r	3	2					1	1	int		
RETN RETN i 3 x 1 1 1	CALL	m(near)	4	3				1	1	1	int		2
RETN RETN I RETN I RETN I RETF	CALL	m(far)	44	42				2			int		75
RETN i 3 x 1 1 int 2 RETF i 32 30 2 int 78 BOUND i) r,m 15 13 2 int 8 INTO i) 5 5 5 int 8 String instructions 3 2 1 int 1 LODS 3 2 1 int 1 REP LODS 4+7n - 14+6n int 1+5n - 21+3n int 1+5n - 21+3n STOS 4 2 1 1 int 7+2n - 0.55n MOVS 8+5n - 20+1.2n int 7+2n - 0.55n int 7+2n - 0.55n MOVS 8 5 int 1+3n - 0.63n SCAS 7+7n - 13+n int 1 1 int 1 REP(N)E SCAS 7+8n - 17+7n int 3+8n - 23+6n int 3+8n - 23+6n		, ,	1	1			1	1					2
RETF i 32 30 2 int 78 BOUND i) r,m 15 13 2 int 8 INTO i) 5 5 1 int 8 String instructions LODS 3 2 1 int 1 REP LODS 4+7n-14+6n int 1+5n-21+3n STOS 4 2 1 1 int 1 REP STOS 8+5n-20+1.2n int 7+2n-0.55n MOVS 8 5 int 7+2n-0.55n MOVS 7+7n-13+n int 1+3n-0.63n		i	l										
RETF		' '	l				l '	_					
BOUND i) r,m 15 13 2 int 8 INTO i) 3 2 1 int 3 String instructions LODS 3 2 1 int 1 REP LODS 4+7n - 14+6n int 1+5n - 21+3n STOS 4 2 1 1 int 7+2n - 0.55n MOVS 8 5 int 7+2n - 0.55n MOVS 8 5 int 1 1 + 3n - 0.63n REP MOVS 7+7n - 13+n int 1 + 3n - 0.63n 1 + 3n - 0.63n </td <td></td> <td></td> <td>l</td> <td></td>			l										
INTO i)			l										
String instructions LODS 3 2 1 int 1 REP LODS 4+7n - 14+6n int 1+5n - 21+3n STOS 4 2 1 1 REP STOS 8+5n - 20+1.2n int 7+2n - 0.55n MOVS 8 5 int 7+2n - 0.55n REP MOVS 7+7n - 13+n int 1 1 +3n - 0.63n SCAS 4 3 1 int 1 REP(N)E SCAS 7+8n - 17+7n int 3+8n - 23+6n int 3 CMPS 7 5 2 int 3		r,m						2					
STOS STOS	INTO i)		5	5							int		3
STOS STOS													
REP LODS 4+7n - 14+6n int 1+5n - 21+3n STOS 4 2 1 1 int 1 REP STOS 8+5n - 20+1.2n int 7+2n - 0.55n MOVS 8 5 int int 1 REP MOVS 7+7n - 13+n int 1+3n - 0.63n SCAS 4 3 1 int 1 int 1 REP(N)E SCAS 7+8n - 17+7n int 3+8n - 23+6n 3 2 int 3													
STOS 4 2 1 1 int 1 1 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>				1				1					
REP STOS 8+5n - 20+1.2n int 7+2n - 0.55n MOVS 8 5	REP LODS		4+7n -	14+6r	ı						int	1+5n - 2	21+3n
MOVS 8 5 int int int int int int int int int int	STOS		4	2					1	1	int		1 1
MOVS 8 5 int int int int int int int int int int	REP STOS		8+5n - 2	20+1.	2n		•	•		.	int	7+2n - 0).55n
REP MOVS 7+7n - 13+n int 1+3n - 0.63n SCAS 4 3 1 int 1 REP(N)E SCAS 7+8n - 17+7n int 3+8n - 23+6n CMPS 7 5 2 int 3					1		5						
SCAS 4 3 1 int 1 REP(N)E SCAS 7+8n - 17+7n int 3+8n - 23+6n CMPS 7 5 2 int 3	RED MOVS			1 -	'	I	1	l	l	'		1+3n (63n
REP(N)E SCAS 7+8n - 17+7n int 3+8n - 23+6n CMPS 7 5 2 int 3			l	1	I	l	l	4	I			11311-0	
CMPS 7 5 2 int 3				1								0.0	
	, ,				ו		ı	ı	ı	,		3+8n - 2	
REP(N)E CMPS 7+10n - 7+9n int 2+7n - 22+5n			· ·	1				2					
	REP(N)E CMPS		7+10n -	- 7+9r	1						int	2+7n - 2	22+5n

Other												
NOP (90)		1	1	Х	х	х				int	0,33	
Long NOP (0F 1F)		1	1	Х	Х	х				int	1	
PAUSE		3	3	х	Х	Х				int	8	
ENTER	i,0	12	10					1	1	int	8	
ENTER	a,b									int		
LEAVE		3	2				1			int		
CPUID		46-100								int	180-215	
RDTSC		29								int	64	
RDPMC		23								int	54	

Notes:

a) Applies to all addressing modesb) Has an implicit LOCK prefix.

c) Low values are for small results, high values for high results.

e) See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for restric-

tions on macro-op fusion.

i) Not available in 64 bit mode.

Floating point x87 instructions

Instruction	Operands	μορs fused	μops	un	fuse	d d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	р5	p2	р3	p4			through- put
Move instructions												
FLD	r	1	1	1						float	1	1
FLD	m32/64	1	1				1			float	3	1
FLD	m80	4	2	2			2			float	4	3
FBLD	m80	40	38				2			float	45	20
FST(P)	r	1	1	1						float	1	1
FST(P)	m32/m64	1						1	1	float	3	1
FSTP	m80	7	3	х	х	х		2	2	float	4	5
FBSTP	m80	170	166	х	х	х		2	2	float	164	166
FXCH	r	1	0 f)							float	0	1
FILD	m	1	1	1			1			float	6	1
FIST	m	2	1		1			1	1	float	6	1
FISTP	m	3	1		1			1	1	float	6	1
FISTTP g)	m	3	1		1			1	1	float	6	1
FLDZ		1	1	1						float		1
FLD1		2	2	1	1					float		2
FLDPI FLDL2E etc.		2	2		2					float		2
FCMOVcc	r	2	2	2						float	2	2
FNSTSW	AX	1	1	1						float		1
FNSTSW	m16	2	1	1				1	1	float		2
FLDCW	m16	2	1				1			float		10
FNSTCW	m16	3	1					1	1	float		8
FINCSTP FDECSTP		1	1	1						float	1	1
FFREE(P)	r	2	2	2						float		2
FNSAVE	m	142								float	184	192
FRSTOR	m	78								float	169	177

Arithmetic instructions									
FADD(P) FSUB(R)(P)	r	1	1		1		float	3	1
FADD(P) FSUB(R)(P)	m	1	1		1	1	float		1
FMUL(P)	r	1	1	1			float	5	2
FMUL(P)	m	1	1	1		1	float		2
FDIV(R)(P)	r	1	1	1			float	6-38 d)	5-37 d)
FDIV(R)(P)	m	1	1	1		1	float		5-37 d)
FABS		1	1	1			float	1	1
FCHS		1	1	1			float	1	1
FCOM(P) FUCOM	r	1	1		1		float		1 1
FCOM(P) FUCOM	m	1	1		1	1	float		1
FCOMPP FUCOMPP		2	2	1	1		float		
FCOMI(P) FUCOMI(P)	r	1	1		1		float		1
FIADD FISUB(R)	m	2	2	1	1	1	float		2
FIMUL	m	2	2	2		1	float		2
FIDIV(R)	m	2	2	2		1	float		5-37 d)
FICOM(P)	m	2	2	1	1	1	float		2
FTST		1	1		1		float		1
FXAM		1	1		1		float		1
FPREM FPREM1		21-27					float	16-56	
FRNDINT		7-15	7-15				float	22-29	
Math									
FSCALE		27	27				float	41	
FXTRACT		82	82				float	170	
FSQRT		1	1				float	6-69	
FSIN FCOS		~96	~96				float	~96	
FSINCOS		~100	~100				float	~115	
F2XM1		~19	~19				float	~45	
FYL2X FYL2XP1		~53	~53				float	~96	
FPTAN		~98	~98				float	~136	
FPATAN		~70	~70				float	~119	
Other									
FNOP		1	1	1			float		1 1
WAIT		2	2				float		1
FNCLEX		4	4				float		15
FNINIT		15	15				float		63

Notes:

d) Round divisors or low precision give low values.

f) Resolved by register renaming. Generates no μops in the unfused domain.

g) SSE3 instruction set.

Integer MMX and XMM instructions

Instruction	Operands	μορs fused	μops	un	fuse	d d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	p5	p2	p3	p4			through- put
Move instructions												
MOVD k)	r32/64,(x)mm	1	1	Х	Х	х				int	2	0,33
MOVD k)	m32/64,(x)mm	1						1	1		3	1
MOVD k)	(x)mm,r32/64	1	1	Х		Х				int	2	0,5

			_	-								
MOVD k)	(x)mm,m32/64	1					1			int	2	1
MOVQ	(x)mm, (x)mm	1	1	Х	Х	Х				int	1	0,33
MOVQ	(x)mm,m64	1					1			int	2	1
MOVQ	m64, (x)mm	1						1	1		3	1
MOVDQA	xmm, xmm	1	1	х	Х	Х				int	1	0,33
MOVDQA	xmm, m128	1					1			int	2	1
MOVDQA	m128, xmm	1						1	1		3	1
MOVDQU	m128, xmm	9	4	x	Х	Х	1	2	2		3-8	4
MOVDQU	xmm, m128	4	2	х		Х	2			int	2-8	2
LDDQU g)	xmm, m128	4	2	x		Х	2			int	2-8	2
MOVDQ2Q	mm, xmm	1	1	x	x	Х				int	1	0,33
MOVQ2DQ	xmm,mm	1	1	x	х	х				int	1	0,33
MOVNTQ	m64,mm	1						1	1			2
MOVNTDQ	m128,xmm	1						1	1			2
PACKSSWB/DW	mm,mm	1	1	1						int	1	1
PACKUSWB	mm,m64	1	1	1			1			int		1
PACKSSWB/DW	xmm,xmm	3	3							flt→int	3	2
PACKUSWB	xmm,m128	4	3				1			int		2
PUNPCKH/LBW/WD/DQ	mm,mm	1	1	1						int	1	1
PUNPCKH/LBW/WD/DQ	mm,m64	1	1	1			1			int	•	1
PUNPCKH/LBW/WD/DQ	xmm,xmm	3	3	'			·			flt→int	3	2
PUNPCKH/LBW/WD/DQ	xmm,m128	4	3				1			int		2
PUNPCKH/LQDQ	xmm,xmm	1	1				'			int	1	1
PUNPCKH/LQDQ	xmm, m128	2					1			int	'	
PSHUFB h)		1	1			1	'			int	1	
PSHUFB h)	mm,mm mm,m64	2				1	1			int	ı	1 1
PSHUFB h)	'	4	4			'	ı			int	3	2
PSHUFB h)	xmm,xmm	5	4				1			int	3	2
PSHUFW	xmm,m128	ວ 1	1			1	1			int	1	1
PSHUFW	mm,mm,i	2				1	1			int	ı	
	mm,m64,i	2	1 2				1			flt→int	3	1
PSHUFD	xmm,xmm,i	3	2	X	X	1	4				3	1
PSHUFD	xmm,m128,i			X	X	1	1			int	4	
PSHUFL/HW	xmm,xmm,i	1	1			1	4			int	1	1
PSHUFL/HW	xmm, m128,i	2	1	١		1	1			int		1
PALIGNR h)	mm,mm,i	2	2	X	X	X	4			int	2	1
PALIGNR h)	mm,m64,i	2	2	X	X	X	1			int		1
PALIGNR h)	xmm,xmm,i	2	2	Х	Х	Х				int	2	1
PALIGNR h)	xmm,m128,i	2	2	X	X	Х	1			int		1
MASKMOVQ	mm,mm	4								int		2-5
MASKMOVDQU	xmm,xmm	10		١.						int		6-10
PMOVMSKB	r32,(x)mm	1	1	1						int	2	1
PEXTRW	r32,mm,i	2	2							int	3	1
PEXTRW	r32,xmm,i	3	3			١,				int	5	1
PINSRW	mm,r32,i	1	1			1				int	2	1
PINSRW	mm,m16,i	2	1			1	1			int	_	1
PINSRW	xmm,r32,i	3	3	X	X	Х				int	6	1,5
PINSRW	xmm,m16,i	4	3	X	Х	Х	1			int		1,5
Arithmetic instructions	1,											_
PADD/SUB(U)(S)B/W/D	(x)mm, (x)mm	1	1	Х		Х				int	1	0,5
PADD/SUB(U)(S)B/W/D	(x)mm,m	1	1	Х		Х	1			int		1
PADDQ PSUBQ	(x)mm, (x)mm	2	2	Х		Х				int	2	1
PADDQ PSUBQ	(x)mm,m	2	2	X		X	1			int		1

DHADD(C)M	1 1		I		1	I	I				
PHADD(S)W PHSUB(S)W h)	mm,mm	5	5						int	5	4
PHADD(S)W	''''','''''	3	3						1111	3	7
PHSUB(S)W h)	mm,m64	6	5				1		int		4
PHADD(S)W	11111,11104	U							1110		7
PHSUB(S)W h)	xmm,xmm	7	7						int	6	4
PHADD(S)W	AIIIII, AIIIIII	,	'						1111	U	7
PHSUB(S)W h)	xmm,m128	8	7				1		int		4
PHADDD PHSUBD h)	mm,mm	3	3				1		int	3	2
PHADDD PHSUBD h)	mm,m64	4	3				1		int	3	2
,	1	5	5				1		int	_	3
PHADDD PHSUBD h)	xmm,xmm	5 6	5				4			5	3
PHADDD PHSUBD h)	xmm,m128			.,		.,	1		int	4	
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1	X		X	4		int	1	0,5
PCMPEQ/GTB/W/D	(x)mm,m	1	1	X	4	Х	1		int	0	1
PMULL/HW PMULHUW	(x)mm,(x)mm	1	1		1		,		int	3	1
PMULL/HW PMULHUW	(x)mm,m	1	1		1		1		int	0	1
PMULHRSW h)	(x)mm,(x)mm	1	1		1				int	3	1
PMULHRSW h)	(x)mm,m	1	1		1		1		int	•	1
PMULUDQ	(x)mm,(x)mm	1	1		1				int	3	1
PMULUDQ	(x)mm,m	1	1		1		1		int	_	1
PMADDWD	(x)mm,(x)mm	1	1		1				int	3	1
PMADDWD	(x)mm,m	1	1		1		1		int		1
PMADDUBSW h)	(x)mm,(x)mm	1	1		1				int	3	1
PMADDUBSW h)	(x)mm,m	1	1		1		1		int		1
PAVGB/W	(x)mm,(x)mm	1	1	Х		Х			int	1	0,5
PAVGB/W	(x)mm,m	1	1	Х		Х	1		int		1
PMIN/MAXUB/SW	(x)mm,(x)mm	1	1	Х		Х			int	1	0,5
PMIN/MAXUB/SW	(x)mm,m	1	1	Х		Х	1		int		1
PABSB PABSW PABSD	(x)mm,(x)mm	1	1	Х		Х			int	1	0,5
h)	(x)mm,m	1	1	Х		Х	1		int		1
PSIGNB PSIGNW	(x)mm,(x)mm	1	1	Х		Х			int	1	0,5
PSIGND h)	(x)mm,m	1	1	Х		Х	1		int		1
PSADBW	(x)mm,(x)mm	1	1		1				int	3	1
PSADBW	(x)mm,m	1	1		1		1		int		1
Logic instructions											
PAND(N) POR PXOR	(x)mm,(x)mm	1	1	х	Х	Х			int	1	0,33
PAND(N) POR PXOR	(x)mm,m	1	1	х	Х	Х	1		int		1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1	1					int	1	1
PSLL/RL/RAW/D/Q	mm,m64	1	1	1			1		int		1
PSLL/RL/RAW/D/Q	xmm,i	1	1	1					int	1	1
PSLL/RL/RAW/D/Q	xmm,xmm	2	2	х	Х				int	2	1
PSLL/RL/RAW/D/Q	xmm,m128	3	2	х	х		1		int		1
PSLL/RLDQ	xmm,i	2	2	х	х				int	2	1
Other											
EMMS		11	11	Х	Х	х			float		6

Notes:

g) SSE3 instruction set.

h) Supplementary SSE3 instruction set.

MASM uses the name MOVD rather than MOVQ for this instruction even when

k) moving 64 bits.

Floating point XMM instructions

Instruction	Operands	μοps fused	μops	un	fuse	d d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	р5	p2	p3	p4			through- put
Move instructions												
MOVAPS/D	xmm,xmm	1	1	Х	х	Х				int	1	0,33
MOVAPS/D	xmm,m128	1					1			int	2	1
MOVAPS/D	m128,xmm	1						1	1		3	1
MOVUPS/D	xmm,m128	4	2	1		1	2			int	2-4	2
MOVUPS/D	m128,xmm	9	4	X	x	Х	1	2	2		3-4	4
MOVSS/D	xmm,xmm	1	1	X	x	х				int	1	0,33
MOVSS/D	xmm,m32/64	1					1			int	2	1
MOVSS/D	m32/64,xmm	1						1	1		3	1
MOVHPS/D MOVLPS/D	xmm,m64	2	1			1	1	-	-	int	3	1
MOVHPS/D	m64,xmm	2	1	1		'	'	1	1		5	1
MOVLPS/D	m64,xmm	1	'	'				1	1		3	1
MOVLHPS MOVHLPS	xmm,xmm	1	1	1				'	'	float	1	1
MOVMSKPS/D	r32,xmm	1		1						float	1	
MOVNTPS/D	m128,xmm	1	'	'				1	1	lioat	'	2-3
SHUFPS	1 '	3	9		3			'	'	flt→int	3	2-3
SHUFPS	xmm,xmm,i		3		3		1			flt→int	3	2
	xmm,m128,i	4		1	3		ı				1	
SHUFPD	xmm,xmm,i	1	1	1			4			float	1	1
SHUFPD	xmm,m128,i	2	1	1			1			float		1
MOVDDUP g)	xmm,xmm	1	1	1						int	1	1
MOVDDUP g)	xmm,m64	2	1	1		١.	1			int		1
MOVSH/LDUP g)	xmm,xmm	1	1			1				int	1	1
MOVSH/LDUP g)	xmm,m128	2	1			1	1			int	_	1
UNPCKH/LPS	xmm,xmm	3	3		3					flt→int	3	2
UNPCKH/LPS	xmm,m128	4	3		3		1			int		2
UNPCKH/LPD	xmm,xmm	1	1	1						float	1	1
UNPCKH/LPD	xmm,m128	2	1	1			1			float		1
Conversion												
CVTPD2PS	xmm,xmm	2	2							float	4	1
CVTPD2PS	xmm,m128	2	2				1			float		1
CVTSD2SS	xmm,xmm	2	2							float	4	1
CVTSD2SS	xmm,m64	2	2				1			float		1
CVTPS2PD	xmm,xmm	2	2	2						float	2	2
CVTPS2PD	xmm,m64	2	2	2			1			float		2
CVTSS2SD	xmm,xmm	2	2							float	2	2
CVTSS2SD	xmm,m32	2	2	2			1			float		2
CVTDQ2PS	xmm,xmm	1	1		1					float	3	1
CVTDQ2PS	xmm,m128	1	1		1		1			float		1
CVT(T) PS2DQ	xmm,xmm	1	1		1					float	3	1
CVT(T) PS2DQ	xmm,m128	1	1		1		1			float		1
CVTDQ2PD	xmm,xmm	2	2	1	1		'			float	4	1
CVTDQ2PD	xmm,m64	3	2	'	'		1			float		1
CVT/DQ21 D CVT(T)PD2DQ	xmm,xmm	2	2				'			float	4	1
~ · (<i>)</i>	AIIIII,AIIIII			1	1	1	1	1	1	Hoat	, T	1

				i						
CVTPI2PS	xmm,mm	1	1		1			float	3	3
CVTPI2PS	xmm,m64	1	1		1	1		float		3
CVT(T)PS2PI	mm,xmm	1	1		1			float	3	1
CVT(T)PS2PI	mm,m128	1	1		1	1		float		1
CVTPI2PD	xmm,mm	2	2	1	1	'		float	4	1
CVTPI2PD	xmm,m64	2	2	1	1	1		float	-	1
		2	2			'				
CVT(T) PD2PI	mm,xmm			1	1			float	4	1
CVT(T) PD2PI	mm,m128	2	2	1	1	1		float		1
CVTSI2SS	xmm,r32	1	1		1			float	4	3
CVTSI2SS	xmm,m32	1	1		1	1		float		3
CVT(T)SS2SI	r32,xmm	1	1		1			float	3	1
CVT(T)SS2SI	r32,m32	1	1		1	1		float		1
CVTSI2SD	xmm,r32	2	2	1	1			float	4	3
CVTSI2SD	xmm,m32	2	1		1	1		float		3
CVT(T)SD2SI	r32,xmm	1	1		1			float	3	1
CVT(T)SD2SI	r32,m64	1	1		1	1		float		1
0 1 (1)00201	102,11104	'	'		'	'		noat		'
Arithmetic									_	
ADDSS/D SUBSS/D	xmm,xmm	1	1		1			float	3	1
ADDSS/D SUBSS/D	xmm,m32/64	1	1		1	1		float		1
ADDPS/D SUBPS/D	xmm,xmm	1	1		1			float	3	1
ADDPS/D SUBPS/D	xmm,m128	1	1		1	1		float		1
ADDSUBPS/D g)	xmm,xmm	1	1		1			float	3	1
ADDSUBPS/D g)	xmm,m128	1	1		1	1		float		1
HADDPS HSUBPS g)	xmm,xmm	6	6					float	9	3
HADDPS HSUBPS g)	xmm,m128	7	6			1		float		3
HADDPD HSUBPD g)	xmm,xmm	3	3					float	5	2
HADDPD HSUBPD g)	xmm,m128	4	3			1		float		2
		-		4		'				1
MULSS	xmm,xmm	1	1	1				float	4	
MULSS	xmm,m32	1	1	1		1		float		1
MULSD	xmm,xmm	1	1	1				float	5	1
MULSD	xmm,m64	1	1	1		1		float		1
MULPS	xmm,xmm	1	1	1				float	4	1
MULPS	xmm,m128	1	1	1		1		float		1
MULPD	xmm,xmm	1	1	1				float	5	1
MULPD	xmm,m128	1	1	1		1		float		1
DIVSS	xmm,xmm	1	1	1				float	6-18 d)	5-17 d)
DIVSS	xmm,m32	1	1	1		1		float	" "	5-17 d)
DIVSD	xmm,xmm	1	1	1				float	6-32 d)	5-31 d)
DIVSD	xmm,m64	1	1	1		1		float	0-32 d)	5-31 d)
		1	1	-		'			6 10 4)	,
DIVPS	xmm,xmm			1				float	6-18 d)	5-17 d)
DIVPS	xmm,m128	1	1	1		1		float		5-17 d)
DIVPD	xmm,xmm	1	1	1				float	6-32 d)	5-31 d)
DIVPD	xmm,m128	1	1	1		1		float		5-31 d)
RCPSS/PS	xmm,xmm	1	1		1			float	3	2
RCPSS/PS	xmm,m	1	1		1	1		float		2
CMPccSS/D	xmm,xmm	1	1		1			float	3	1
CMPccSS/D	xmm,m32/64	1	1		1	1		float		1
CMPccPS/D	xmm,xmm	1	1		1			float	3	1
CMPccPS/D	xmm,m128	1	1		1	1		float		1
COMISS/D UCOMISS/D	xmm,xmm	1	1		1	'		float	3	1
COMISS/D UCOMISS/D		-				1		float	J	•
	xmm,m32/64	1	1		1	'				1
MAXSS/D MINSS/D	xmm,xmm	1	1		1			float	3	1

MAXSS/D MINSS/D	xmm,m32/64	1	1		1		1			float		1	
MAXPS/D MINPS/D	xmm,xmm	1	1		1					float	3	1	
MAXPS/D MINPS/D	xmm,m128	1	1		1		1			float		1	
Math													
SQRTSS/PS	xmm,xmm	1	1	1						float	6-29	6-29	
SQRTSS/PS	xmm,m	2	1	1			1			float		6-29	
SQRTSD/PD	xmm,xmm	1	1	1						float	6-58	6-58	
SQRTSD/PD	xmm,m	2	1	1			1			float		6-58	
RSQRTSS/PS	xmm,xmm	1	1		1					float	3	2	
RSQRTSS/PS	xmm,m	1	1		1		1			float		2	
Logic													
AND/ANDN/OR/XORPS/D	xmm,xmm	1	1	х	х	Х				int	1	0,33	
AND/ANDN/OR/XORPS/D	xmm,m128	1	1	Х	Х	Х	1			int		1	
Other													
LDMXCSR	m32	14	13				1					42	
STMXCSR	m32	6	4					1	1			19	
FXSAVE	m4096	141									145	145	
FXRSTOR	m4096	119									164	164	

Notes:

d) Round divisors give low values.

g) SSE3 instruction set.

Intel Core 2 (Wolfdale, 45nm)

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit

xmm register, (x)mm = mmx or xmm register, sr = segment register, m =

memory, m32 = 32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused µops count as one.

μops unfused domain: The number of μops for each execution port. Fused μops count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p2 + p3 + p4 exceeds the number listed under μ ops fused domain. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that it is not known which of the three ports these

μops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).
p2: The number of μops going to port 2 (memory read).

p3: The number of μops going to port 3 (memory write address).p4: The number of μops going to port 4 (memory write data).

Unit: Tells which execution unit cluster is used. An additional delay of 1 clock cycle

is generated if a register written by a µop in the integer unit (int) is read by a µop in the floating point unit (float) or vice versa. flt→int means that an instruction with multiple µops receive the input in the float unit and delivers the output in the int unit. Delays for moving data between different units are included under latency when they are unavoidable. For example, movd eax,xmm0 has an extra 1 clock delay for moving from the XMM-integer unit to the general purpose integer unit. This is included under latency because it occurs regardless of which instruction comes next. Nothing listed under unit means that additional delays are either unlikely to occur or unavoidable and therefore in-

cluded in the latency figure.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay. The time unit used is core clock cycles, not the reference clock cycles

given by the time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

Integer instructions

Instruction	Operands	μορs fused	μops	un	fuse	ed d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	р5	p2	р3	p4			through- put

Move instructions											
MOV	r,r/i	1	1	Х	Х	х				1	0,33
MOV a)	r,m	1					1			2	1
MOV a)	m,r	1						1	1	3	1
MOV	m,i	1						1	1	3	1
MOV	r,sr	1					1	'	•		1
MOV	m,sr	2					1	1	1		1
MOV	sr,r	8	4	x	x	x	4	'	'		16
MOV		8	3	x	^	x	5				16
MOVNTI	sr,m	2	٦	^		^	5	4	1		2
	m,r	2						1	'		2
MOVSX MOVZX		4									0.00
MOVSXD	r,r	1	1	X	Х	X				1	0,33
MOVSX MOVZX	r16/32,m	1					1				1
MOVSX MOVSXD	r64,m	2	1	X	X	X	1				1
CMOVcc	r,r	2	2	X	Х	X				2	1
CMOVcc	r,m	2	2	X	X	Х	1				
XCHG	r,r	3	3	X	Х	х				2	2
XCHG	r,m	7	х				1	1	1	high b)	
XLAT		2	1				1			4	1
PUSH	r	1						1	1	3	1
PUSH	i	1						1	1		1
PUSH	m	2					1	1	1		1
PUSH	sr	2	1					1	1		1
PUSHF(D/Q)		17	15	x	X	x		1	1		7
PUSHA(D) i)		18	9					1	8		8
POP	r	1					1	'	ľ	2	1
POP	(E/R)SP	4	3				1			_	'
POP	m (L/IX)SI	2	"				1	1	1		1,5
POP	sr	10	9				1	'	'		1,3
POPF(D/Q)	31	24	23	\ ,	\ ,		1			20	17
		10	23	X	X	X	8			20	7
POPA(D) i) LAHF SAHF				.,	.,		0			4	
		1	1	X	X	X				1	0,33
SALC i)		2	2	X	X	X				4	1
LEA a)	r,m	1	1	1						1	1
BSWAP	r	2	2	1		1				4	1
LDS LES LFS LGS LSS	m	11	11				1				17
PREFETCHNTA	m	1					1				1
PREFETCHT0/1/2	m	1					1				1
LFENCE		2						1	1		8
MFENCE		2						1	1		6
SFENCE		2						1	1		9
CLFLUSH	m8	4	2	1		1		1	1	120	90
IN											
OUT											
Arithmetic instructions											
		4	4	,,	,,	,,				4	0.22
ADD SUB	r,r/i	1	1	X	X	X				1	0,33
ADD SUB	r,m	1	1	Х	Х	Х	1				1
ADD SUB	m,r/i	2	1	X	X	X	1	1	1	6	1
ADC SBB	r,r/i	2	2	X	Х	Х				2	2
ADC SBB	r,m	2	2	Х	Х	Х	1			2	2
ADC SBB	m,r/i	4	3	Х	Х	Х	1	1	1	7	
CMP	r,r/i	1	1	X	X	Х				1	0,33

			_		_							
CMP	m,r/i	1	1	х	x	x	1				1	1
INC DEC NEG NOT	r	1	1	Х	Х	X					1	0,33
INC DEC NEG NOT	m	3	1	Х	X	Х	1	1	1		6	1
AAA AAS DAA DAS i)		1	1		1							1
AAD i)		3	3	х	Х	x						1
AAM i)		5	5	х	х	x					17	
MUL ÍMUL	r8	1	1		1						3	1
MUL IMUL	r16	3	3	x	х	x					5	1,5
MUL IMUL	r32	3	3	х	X	X					5	1,5
MUL IMUL	r64	3	3	Х	X	X					7	4
IMUL	r16,r16	1	1	``	1	*					3	1
IMUL	r32,r32	1	1		1						3	1
IMUL	r64,r64	1	1	1	ļ '						5	2
IMUL	r16,r16,i	1	1	'	1						3	1
IMUL	r32,r32,i	1	1		1						3	1
IMUL	r64,r64,i	1		1	'						5	2
MUL IMUL	m8	1		'	1		1				3	1
MUL IMUL	m16	3	3			\ <u>,</u>	1				5	1,5
MUL IMUL	m32	3	3	X	X	X	1				5	
		3		X	X	X	-				7	1,5
MUL IMUL	m64		2	2	_		1				1 1	4
IMUL	r16,m16	1	1		1		1				3	1
IMUL	r32,m32	1	1		1		1				3	1
IMUL	r64,m64	1	1	1			1				5	2
IMUL	r16,m16,i	1	1		1		1					2
IMUL	r32,m32,i	1	1		1		1					1
IMUL	r64,m64,i	1	1	1			1					2
DIV IDIV	r8	4	4	1	2	1					9-18 c)	
DIV IDIV	r16	7	7	Х	Х	X					14-22 c)	
DIV IDIV	r32	7	7	2	3	2					14-23 c)	
DIV	r64	32-38	32-38	9	10	13					18-57 c)	
IDIV	r64	56-62	56-62	Х	Х	Х					34-88 c)	
DIV IDIV	m8	4	3	1	2		1				9-18	
DIV IDIV	m16	7	7	2	3	2	1				14-22 c)	
DIV IDIV	m32	7	6	Х	х	х	1				14-23 c)	
DIV	m64	32	31	х	Х	х	1				34-88 c)	
IDIV	m64	56	55	х	х	x	1				39-72 c)	
CBW CWDE CDQE		1	1	х	х	x					1	
CWD CDQ CQO		1	1	х		x					1	
Logic instructions												
AND OR XOR	r,r/i	1	1	х	Х	х					1	0,33
AND OR XOR	r,m	1	1	Х	х	х	1					1
AND OR XOR	m,r/i	2	1	х	Х	x	1	1	1		6	1
TEST	r,r/i	1	1	х	х	x					1	0,33
TEST	m,r/i	1	1	х	х	x	1					1
SHR SHL SAR	r,i/cl	1	1	Х		X					1	0,5
SHR SHL SAR	m,i/cl	3	2	X		X	1	1	1		6	1
ROR ROL	r,i/cl	1	1	x		X		ļ .	'		1	1
ROR ROL	m,i/cl	3	2	x		x	1	1	1		6	1
RCR RCL	r,1	2	2	x	x	x	'	'	'		2	2
RCR	r8,i/cl	9	9	X	X	X					12	_
RCL	r8,i/cl	8	8	X	X	X					11	
RCR RCL	r,i/cl	6	6								11	
NOR NOL	1,1/01	l O	U	X	X	X					11	

RCR RCL RCR RCL RCR RCL SHLD SHRD SHLD SHRD BT BT BT BT BTR BTS BTC BTR BTS BTC BTR BTS BTC BTR BTS BTC C CCC CCC CCC CCC CCC CCC CCC CCC CC	m,1 m8,i/cl m8,i/cl m8,i/cl r,r,i/cl r,r,i/cl r,r/i m,r m,i r,r/i m,r r,r,r m,i r,r m,i r,r m,i r,r	4 12 11 10 2 3 1 9 3 1 10 3 2 2 1 2 1 6 6	3 9 8 7 2 2 1 8 2 1 7 1 2 2 1 1 1 6 6	X	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	7 14 13 13 2 7 1 1 5 6 2	1 1 4 1 1 1 1 0,33 3 14
Control transfer instructi JMP	ons short/near	1	1			1				0	1-2
JMP i)	far	30	30								76
JMP	r	1	1			1				0	1-2
JMP	m(near)	1	1			1	1			0	1-2
JMP	m(far)	31	29				2				68
Conditional jump	short/near	1	1			1				0	1
Fused compare/test and b	ranch e,i)	1	1			1				0	1
J(E/R)CXZ	short	2	2	х	х	1					1-2
LÒOP	short	11	11	х	х	х					5
LOOP(N)E	short	11	11	х	х	х					5
CALL	near	3	2	х	х	х		1	1		2
CALL i)	far	43	43								75
CALL	r	3	2					1	1		2
CALL	m(near)	4	3				1	1	1		2
CALL	m(far)	44	42				2				75
RETN		1	1			1	1				2
RETN	i	3	1			1	1				2
RETF		32	30				2				78
RETF	i	32	30				2				78
BOUND i)	r,m	15	13				2				8
INTO i)		5	5								3
String instructions											
LODS		3	2				1				1 1
REP LODS		4+7n-1		ı	ı	ı			1 .	1+5n-2	1
STOS		4	2					1	1		1 1
REP STOS		8+5n-2		2n	I	I	ı	ı	ı	7+2n-0).55n
MOVS		8	5			_					
DED 1403 /2		1	1	1		5					
REP MOVS		7+7n-1		ı	I	I	ء ا	ı	l	1+3n-0	1
SCAS		4	3				1				1 1
REP(N)E SCAS		7+8n-1	/+/n							3+8n-2	23+0N

CMPS		7	5				2				3
REP(N)E CMPS		7+10n-	7+9n							2+7n-22	2+5n
Other											
NOP (90)		1	1	Х	Х	Х					0,33
Long NOP (0F 1F)		1	1	Х	Х	Х					1
PAUSE		3	3	Х	Х	Х					8
ENTER	i,0	12	10					1	1		8
ENTER	a,b										
LEAVE		3	2				1				
CPUID		53-117									53-211
RDTSC		13									32
RDPMC		23									54

Notes:

Applies to all addressing modes a) Has an implicit LOCK prefix. b)

Low values are for small results, high values for high results. The reciprocal throughput is only slightly less than the latency. c)

See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for ree)

strictions on macro-op fusion.

Not available in 64 bit mode. i)

Floating point x87 instructions

Instruction	Operands	μοps fused	µops	un	fuse	ed d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	p 5	p2	р3	р4			through- put
Move instructions												
FLD	r	1	1	1						float	1	1
FLD	m32/64	1	1				1			float	3	1
FLD	m80	4	2	2			2			float	4	3
FBLD	m80	40	38	Х	Х	Х	2			float	45	20
FST(P)	r	1	1	1						float	1	1
FST(P)	m32/m64	1						1	1	float	3	1
FSTP	m80	7	3	Х	Х	Х		2	2	float	4	5
FBSTP	m80	171	167	Х	х	Х		2	2	float	164	166
FXCH	r	1	0 f)							float	0	1
FILD	m	1	1		1		1			float	6	1
FIST	m	2	1		1			1	1	float	6	1
FISTP	m	3	1		1			1	1	float	6	1
FISTTP g)	m	3	1		1			1	1	float	6	1
FLDZ		1	1	1						float		1
FLD1		2	2	1	1					float		2
FLDPI FLDL2E etc.		2	2		2					float		2
FCMOVcc	r	2	2	2						float	2	2
FNSTSW	AX	1	1	1						float		1
FNSTSW	m16	2	1	1				1	1	float		2
FLDCW	m16	2	1				1			float		10
FNSTCW	m16	3	1			1		1	1	float		8
FINCSTP FDECSTP		1	1	1						float	1	1

FFREE(P)	r	2	2	x	x	x				float		2
FNSAVE	m	141	95	Х	х	x	7	23	23	float		142
FRSTOR	m	78	51	Х	х	x	27			float		177
Arithmetic instructions												
FADD(P) FSUB(R)(P)	r	1	1		1					float	3	1
FADD(P) FSUB(R)(P)	m	1	1		1		1			float		1
FMUL(P)	r	1	1	1						float	5	2
FMUL(P)	m	1	1	1			1			float		2
FDIV(R)(P)	r	1	1	1						float	6-21 d)	5-20 d)
FDIV(R)(P)	m	1	1	1			1			float	6-21 d)	5-20 d)
FABS		1	1	1						float	1	1
FCHS		1	1	1						float	1	1
FCOM(P) FUCOM	r	1	1		1					float		1
FCOM(P) FUCOM	m	1	1		1		1			float		1
FCOMPP FUCOMPP		2	2	1	1					float		
FCOMI(P) FUCOMI(P)	r	1	1		1					float		1
FIADD FISUB(R)	m	2	2		2		1			float	3	2
FIMUL	m	2	2	1	1		1			float	5	2
FIDIV(R)	m	2	2	1	1		1			float	6-21	5-20 d)
FICOM(P)	m	2	2		2		1			float		2
FTST		1	1		1					float		1
FXAM		1	1		1					float		1
FPREM		26-29	1	Х	х	x				float	13-40	
FPREM1		28-35		Х	х	x				float	18-41	
FRNDINT		17-19		х	х	х				float	10-22	
Math												
FSCALE		28	28	Х	Х	Х				float	43	
FXTRACT		53-84		Х	Х	Х				float	~170	
FSQRT		1	1	1						float	6-20	
FSIN		18-85		Х	Х	х				float	32-85	
FCOS		76-100		Х	Х	х				float	70-100	
		18-										
FSINCOS		105		Х	Х	х				float	38-107	
F2XM1		19	19	Х	Х	х				float	45	
FYL2X FYL2XP1		57-65		Х	Х	х				float	50-100	
FPTAN		19-100		Х	Х	Х				float	40-130	
FPATAN		23-87	ı	Х	х	х				float	55-130	
Other										.		,
FNOP		1	1	1						float		1
WAIT		2	2	Х	Х	Х				float		1
FNCLEX		4	4		Х	Х				float		15
FNINIT		15	15	Х	Х	Х				float		63

Notes:

d) Round divisors or low precision give low values.

f) Resolved by register renaming. Generates no μops in the unfused domain.

g) SSE3 instruction set.

Integer MMX and XMM instructions

Instruction	Operands	µops fused	µops	un	fuse	ed d	oma	ain		Unit	Laten- cy	Reci- procal
		do- main	p015	p0	p1	р5	p2	р3	p4			through- put
Move instructions												
MOVD k)	r,(x)mm	1	1	Х	Х	Х				int	2	0,33
MOVD k)	m,(x)mm	1						1	1		3	1
MOVD k)	(x)mm,r	1	1	Х		Х				int	2	0,5
MOVD k)	(x)mm,m	1					1			int	2	1
MOVQ		1	1	Х	x	х				int	1	0,33
MOVQ	(x)mm,m64	1					1			int	2	1
MOVQ	m64, (x)mm	1						1	1		3	1
MOVDQA	xmm, xmm	1	1	x	x	x				int	1	0,33
MOVDQA	xmm, m128	1					1			int	2	1
MOVDQA	m128, xmm	1						1	1		3	1
MOVDQU	m128, xmm	9	4	X	x	X	1	2	2		3-8	4
MOVDQU	xmm, m128	4	2	X		X	2	-	-	int	2-8	2
LDDQU g)	xmm, m128	4	2	x		x	2			int	2-8	2
MOVDQ2Q	mm, xmm	1	1	x	x	x	_			int	1	0,33
MOVQ2DQ	xmm,mm	1	1	x	x	x				int	1	0,33
MOVNTQ	m64,mm	1	'	^	^	^		1	1		'	2
MOVNTDQ	m128,xmm	1						1	1			2
MOVNTDQA j)	xmm, m128	1					1	'	'		2	1
PACKSSWB/DW	XIIIII, III 120						'					1
PACKUSWB	mm,mm	1	1	1						int	1	1
PACKSSWB/DW PACKUSWB	mm,m64	1	1	' 1			1			int	'	1
PACKSSWB/DW	111111,11104	'	1	'			'			IIIL		1
PACKUSWB	xmm,xmm	1	1			1				int	1	1
PACKSSWB/DW	400											
PACKUSWB	xmm,m128	1	1			1	1			int		1
PACKUSDW j)	xmm,xmm	1	1			1				int	1	1
PACKUSDW j)	xmm,m	1	1			1	1			int		1
PUNPCKH/LBW/WD/DQ	mm,mm	1	1	1						int	1	1
PUNPCKH/LBW/WD/DQ	mm,m64	1	1	1			1			int		1
PUNPCKH/LBW/WD/DQ	xmm,xmm	1	1			1				int	1	1
PUNPCKH/LBW/WD/DQ	xmm,m128	1	1			1	1			int		1
PUNPCKH/LQDQ	xmm,xmm	1	1			1				int	1	1
PUNPCKH/LQDQ	xmm, m128	2	1			1	1			int		1
PMOVSX/ZXBW j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXBW j)	xmm,m64	1	1			1	1			int		1
PMOVSX/ZXBD j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXBD j)	xmm,m32	1	1			1	1			int		1
PMOVSX/ZXBQ j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXBQ j)	xmm,m16	1	1			1	1			int		1
PMOVSX/ZXWD j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXWD j)	xmm,m64	1	1			1	1			int		1
PMOVSX/ZXWQ j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXWQ j)	xmm,m32	1	1			1	1			int		1
PMOVSX/ZXDQ j)	xmm,xmm	1	1			1				int	1	1
PMOVSX/ZXDQ j)	xmm,m64	1	1			1	1			int		1

PSHUFB h)	mm,mm	1	1			1				int	1	1
PSHUFB h)	mm,m64	2	1			1	1			int		1
PSHUFB h)	xmm,xmm	1	1			1				int	1	1
PSHUFB h)	xmm,m128	1	1			1	1			int		1
PSHUFW	mm,mm,i	1	1			1				int	1	1
PSHUFW	mm,m64,i	2	1			1	1			int		1
PSHUFD	xmm,xmm,i	1	1			1				int	1	1
PSHUFD	xmm,m128,i	2	1			1	1			int		1
PSHUFL/HW	xmm,xmm,i	1	1			1				int	1	1
PSHUFL/HW	x, m128,i	2	1			1	1			int		1
PALIGNR h)	mm,mm,i	2	2			2				int	2	1
PALIGNR h)	mm,m64,i	3	3			3	1			int		1
PALIGNR h)	xmm,xmm,i	1	1			1				int	1	1
PALIGNR h)	xmm,m128,i	1	1			1	1			int		1
PBLENDVB j)	x,x,xmm0	2	2			2				int	2	2
PBLENDVB j)	x,m,xmm0	2	2			2	1			int		2
PBLENDW j)	xmm,xmm,i	1	1			1				int	1	1 1
PBLENDW j)	xmm,m,i	1	1			1	1			int		1 1
MASKMOVQ	mm,mm	4	1	1		-	1	1	1	int		2-5
MASKMOVDQU	xmm,xmm	10	4	1		3	2	2	3	int		6-10
PMOVMSKB	r32,(x)mm	1	1	1			_	_		int	2	1
PEXTRB j)	r32,xmm,i	2	2	X	x	х				int	3	1 1
PEXTRB j)	m8,xmm,i	2	2	X	X	X				int	3	1 1
PEXTRW	r32,(x)mm,i	2	2	X	X	X	1			int	3	1 1
PEXTRW j)	m16,(x)mm,i	2	2	?	?	1	'	1	1	int		1 1
PEXTRD j)	r32,xmm,i	2	2	X	X	X		'	•	int	3	
PEXTRD j)	m32,xmm,i	2	1	^	^	1		1	1	int		
PEXTRQ j,m)	r64,xmm,i	2	2	X	x	X		'	•	int	3	1 1
PEXTRQ j,m)	m64,xmm,i	2	1	^	^	1		1	1	int		1 1
PINSRB j)	xmm,r32,i	1				1		'	'	int	1	
PINSRB j)	xmm,m8,i	2				1	1			int	'	
PINSRW	(x)mm,r32,i	1				1	'			int	2	
PINSRW	(x)mm,m16,i	2				1	1			int		
PINSRD j)	xmm,r32,i	1				1	'			int	1	1 1
PINSRD j)	xmm,m32,i	2				1	1			int	'	
PINSRQ j,m)	xmm,r64,i	1				1	'			int	1	
PINSRQ j,m)	xmm,m64,i	2				1	1			int	'	
FINSKQ J,III)	XIIIII,III04,I	2	1			'	'			шц		'
Arithmetic instructions												
PADD/SUB(U)(S)B/W/D	- V,V	1	1	X		x				int	1	0,5
PADD/SUB(U)(S)B/W/D	(x)mm,m	1		X		X	1			int	'	1
PADDQ PSUBQ	V,V	2	2	X		X	'			int	2	1 1
PADDQ PSUBQ	(x)mm,m	2	2				1			int	_	1 1
PHADD(S)W	(X)!!!!!,!!!	2	2	X		X	l			Ш		'
PHSUB(S)W h)	\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3	3	1		2				int	3	2
` ' '	V,V	3	3	'		_				Ш	3	
PHADD(S)W PHSUB(S)W h)	(x)mm,m64	4	3	1		2	1			int		2
	1 ' '	3	3	1		2	1				3	2
PHADDD PHSUBD h)	V,V		3	1 .		2	4			int	3	2
PHADDD PHSUBD h)	(x)mm,m64	4		1			1			int	4	
PCMPEQ/GTB/W/D	V,V	1	1	X		X	4			int	1	0,5
PCMPEQ/GTB/W/D	(x)mm,m	1	1	Х		X 1	1			int	4	1
PCMPEQQ j) PCMPEQQ j)	xmm,xmm	1	1			1	4			int	1	1 1
FUNIFERR J)	xmm,m128	1	1	1		1	1			int		1

PMULL/HW PMULHUW	V,V	1	1		1				int	3	1	
PMULL/HW PMULHUW	(x)mm,m	1	1		1		1		int		1	
PMULHRSW h)	V,V	1	1		1				int	3	1	
PMULHRSW h)	(x)mm,m	1	1		1		1		int		1	
PMULLD j)	xmm,xmm	4	4		2	2			int	5	2	
PMULLD j)	xmm,m128	6	5	1	2	2	1		int	5	4	
PMULDQ j)	xmm,xmm	1	1		1				int	3	1	
PMULDQ j)	xmm,m128	1	1		1		1		int		1	
PMULUDQ	V,V	1	1		1				int	3	1	
PMULUDQ	(x)mm,m	1	1		1		1		int		1	
PMADDWD	v,v	1	1		1		-		int	3	1	
PMADDWD	(x)mm,m	1	1		1		1		int		1	
PMADDUBSW h)	V,V	1	1		1		'		int	3	1	
PMADDUBSW h)	(x)mm,m	1	1		1		1		int		1	
PAVGB/W	V,V	1	1	X	'	X	'		int	1	0,5	
PAVGB/W	(x)mm,m	1	1	X		X	1		int		1	
PMIN/MAXSB j)	xmm,xmm	1	1	1		^	'		int	1	1	
PMIN/MAXSB j)	xmm,m128	1		1			1		int		1	
PMIN/MAXUB		1		X		x	'		int	1	0,5	
	V,V (v)mm m	1					1			'	1	
PMIN/MAXUB PMIN/MAXSW	(x)mm,m	1 1		X		X	'		int	1		
	V,V			X		X	1		int	ı	0,5	
PMIN/MAXSW	(x)mm,m	1		X		X	'		int	4	1	
PMIN/MAXUW j)	xmm,xmm	1	1	1			,		int	1	1	
PMIN/MAXUW j)	xmm,m	1	1				1		int		1	
PMIN/MAXSD j)	xmm,xmm	1	1	1					int	1	1	
PMIN/MAXSD j)	xmm,m128	1	1	1			1		int		1	
PMIN/MAXUD j)	xmm,xmm	1	1	1					int	1	1	
PMIN/MAXUD j)	xmm,m128	1	1	1		١.	1		int	_	1	
PHMINPOSUW j)	xmm,xmm	4	4			4			int	4	4	
PHMINPOSUW j)	xmm,m128	4	4			4	1		int		4	
PABSB PABSW PABSD h	V,V	1	1	X		X			int	1	0,5	
PABSB PABSW PABSD												
h)	(x)mm,m	1	1	X		X	1		int		1	
PSIGNB PSIGNW		_										
PSIGND h)	V,V	1	1	X		X			int	1	0,5	
PSIGNB PSIGNW												
PSIGND h)	(x)mm,m	1	1	X		X	1		int	_	1	
PSADBW	V,V	1	1		1				int	3	1	
PSADBW	(x)mm,m	1	1		1		1		int		1	
MPSADBW j)	xmm,xmm,i	3	3		1	2			int	5	2	
MPSADBW j)	xmm,m,i	4	3		1	2	1		int		2	
Logic instructions												
PAND(N) POR PXOR	V,V	1	1	X	Х	X			int	1	0,33	
PAND(N) POR PXOR	(x)mm,m	1	1	X	Х	X	1		int		1	
PTEST j)	xmm,xmm	2	2	1	Х	X			int	1	1	
PTEST j)	xmm,m128	2	2	1	Х	X	1		int		1	
PSLL/RL/RAW/D/Q	mm,mm/i	1	1	1					int	1	1	
PSLL/RL/RAW/D/Q	mm,m64	1	1	1			1		int		1	
PSLL/RL/RAW/D/Q	xmm,i	1	1	1					int	1	1	
PSLL/RL/RAW/D/Q	xmm,xmm	2	2	Х		Х			int	2	1	
PSLL/RL/RAW/D/Q	xmm,m128	3	2	х		Х	1		int		1	
PSLL/RLDQ	xmm,i	1	1	X		x			int	1	1	

Other									
EMMS	11	11	х	х	х		float	6	

Notes:

g) SSE3 instruction set.

h) Supplementary SSE3 instruction set.

j) SSE4.1 instruction set

k) MASM uses the name MOVD rather than MOVQ for this instruction even

when moving 64 bits

m) Only available in 64 bit mode

Floating point XMM instructions

Instruction	Operands	μοps fused	μops	un	fuse	ed d	oma	ain		Unit	Laten- cy	Reci- procal
		do-	p015	p0	p1	р5	p2	р3	p4			through-
Move instructions		main					Î					put
MOVAPS/D	xmm,xmm	1	1	Х	Х	Х				int	1	0,33
MOVAPS/D	xmm,m128	1					1			int	2	1
MOVAPS/D	m128,xmm	1						1	1		3	1
MOVUPS/D	xmm,m128	4	2	1		1	2			int	2-4	2
MOVUPS/D	m128,xmm	9	4	Х	Х	Х	1	2	2		3-4	4
MOVSS/D	xmm,xmm	1	1	Х	Х	Х				int	1	0,33
MOVSS/D	x,m32/64	1					1			int	2	1
MOVSS/D	m32/64,x	1						1	1		3	1
MOVHPS/D MOVLPS/D	xmm,m64	2	1			1	1			int	3	1
MOVHPS/D	m64,xmm	2	1	1				1	1		5	1
MOVLPS/D	m64,xmm	1						1	1		3	1
MOVLHPS MOVHLPS	xmm,xmm	1	1	1						float	1	1
MOVMSKPS/D	r32,xmm	1	1	1						float	1	1
MOVNTPS/D	m128,xmm	1						1	1			2-3
SHUFPS	xmm,xmm,i	1	1			1				int	1	1
SHUFPS	xmm,m128,i	2	1			1	1			int		1
SHUFPD	xmm,xmm,i	1	1	1						float	1	1
SHUFPD	xmm,m128,i	2	1	1			1			float		1
BLENDPS/PD j)	xmm,xmm,i	1	1			1				int	1	1
BLENDPS/PD j)	xmm,m128,i	1	1			1	1			int		1
BLENDVPS/PD j)	x,x,xmm0	2	2			2				int	2	2
BLENDVPS/PD j)	x,m,xmm0	2	2			2	1			int		2
MOVDDUP g)	xmm,xmm	1	1	1						int	1	1
MOVDDUP g)	xmm,m64	2	1	1			1			int		1
MOVSH/LDUP g)	xmm,xmm	1	1			1				int	1	1
MOVSH/LDUP g)	xmm,m128	2	1			1	1			int		1
UNPCKH/LPS	xmm,xmm	1	1			1				int	1	1
UNPCKH/LPS	xmm,m128	1	1			1	1			int		1
UNPCKH/LPD	xmm,xmm	1	1	1						float	1	1
UNPCKH/LPD	xmm,m128	2	1	1			1			float		1
EXTRACTPS j)	r32,xmm,i	2	2	х	х	х				int	4	1
EXTRACTPS j)	m32,xmm,i	2	1			1		1	1	int		1
INSERTPS j)	xmm,xmm,i	1	1			1				int	1	1
INSERTPS j)	xmm,m32,i	2	1			1	1			int		1
Conversion												

lo. =====	1			1.		1		1	1	1 .	
CVTPD2PS	xmm,xmm	2	2	1	1				float	4	1
CVTPD2PS	xmm,m128	2	2	1	1		1		float		1
CVTSD2SS	xmm,xmm	2	2	1	1				float	4	1
CVTSD2SS	xmm,m64	2	2	1	1		1		float		1
CVTPS2PD	xmm,xmm	2	2	2					float	2	2
CVTPS2PD	xmm,m64	2	2	2			1		float		2
CVTSS2SD	xmm,xmm	2	2	2					float	2	2
CVTSS2SD	xmm,m32	2	2	2			1		float		2
CVTDQ2PS	xmm,xmm	1	1	_	1				float	3	1
CVTDQ2PS	xmm,m128	1	1		1		1		float		1
CVTDQ2F3 CVT(T) PS2DQ		1			1		'		float	3	1
` '	xmm,xmm		1		-		,			3	
CVT(T) PS2DQ	xmm,m128	1	1		1		1		float		1
CVTDQ2PD	xmm,xmm	2	2	1	1				float	4	1
CVTDQ2PD	xmm,m64	2	2	1	1		1		float		1
CVT(T)PD2DQ	xmm,xmm	2	2	1	1				float	4	1
CVT(T)PD2DQ	xmm,m128	2	2	1	1		1		float		1
CVTPI2PS	xmm,mm	1	1		1				float	3	3
CVTPI2PS	xmm,m64	1	1		1		1		float		3
CVT(T)PS2PI	mm,xmm	1	1		1				float	3	1
CVT(T)PS2PI	mm,m128	1	1		1		1		float		1 1
CVTPI2PD	xmm,mm	2	2	1	1				float	4	1
CVTPI2PD	xmm,m64	2	2	1	1		1		float		1
CVT(T) PD2PI	mm,xmm	2	2	1	1		•		float	4	1
1 ' '	mm,m128	2	2	1	1		1		float	7	1
CVT(T) PD2PI	'			'			'			4	
CVTSI2SS	xmm,r32	1	1		1				float	4	3
CVTSI2SS	xmm,m32	1	1		1		1		float		3
CVT(T)SS2SI	r32,xmm	1	1		1				float	3	1
CVT(T)SS2SI	r32,m32	1	1		1		1		float		1
CVTSI2SD	xmm,r32	2	2	1	1				float	4	3
CVTSI2SD	xmm,m32	2	1		1		1		float		3
CVT(T)SD2SI	r32,xmm	1	1		1				float	3	1
CVT(T)SD2SI	r32,m64	1	1		1		1		float		1
Arithmetic											
ADDSS/D SUBSS/D	xmm,xmm	1	1		1				float	3	1
ADDSS/D SUBSS/D	x,m32/64	1	1		1		1		float		1 1
ADDPS/D SUBPS/D	xmm,xmm	1	1		1		'		float	3	1
ADDPS/D SUBPS/D	· '						1			3	
	xmm,m128	1	1		1		'		float		1 1
ADDSUBPS/D g)	xmm,xmm	1	1		1				float	3	1 1
ADDSUBPS/D g)	xmm,m128	1	1		1		1		float	_	1
HADDPS HSUBPS g)	xmm,xmm	3	3		1	2			float	7	3
HADDPS HSUBPS g)	xmm,m128	4	3		1	2	1		float		3
HADDPD HSUBPD g)	xmm,xmm	3	3	X	Х	Х			float	6	1,5
HADDPD HSUBPD g)	xmm,m128	4	3	X	Х	Х	1		float		1,5
MULSS	xmm,xmm	1	1	1					float	4	1
MULSS	xmm,m32	1	1	1			1		float		1
MULSD	xmm,xmm	1	1	1					float	5	1
MULSD	xmm,m64	1	1	1			1		float		1
MULPS	xmm,xmm	1	1	1					float	4	1 1
MULPS	xmm,m128	1	1	1			1		float	•	1
MULPD			1	1			'			5	1 1
l l	xmm,xmm	1		1 .					float	5	
MULPD	xmm,m128	1	1	1			1		float	0.40 =1	
DIVSS	xmm,xmm	1	1	1					float	6-13 d)	5-12 d)

DIVSS	xmm,m32	1	1	1	l	l	1		1	float	1 1	5-12 d)
DIVSD	xmm,xmm	1		1			'			float	6-21 d)	5-12 d) 5-20 d)
DIVSD	xmm,m64	1		1			1			float	0-2 i u)	5-20 d) 5-20 d)
DIVPS	· '	1		1			'			float	6-13 d)	,
	xmm,xmm			-			4				0-13 u)	5-12 d)
DIVPS	xmm,m128	1	1	1			1			float	0.04 -1	5-12 d)
DIVPD	xmm,xmm	1	1	1						float	6-21 d)	5-20 d)
DIVPD	xmm,m128	1	1	1			1			float		5-20 d)
RCPSS/PS	xmm,xmm	1	1		1					float	3	2
RCPSS/PS	xmm,m	1	1		1		1			float		2
CMPccSS/D	xmm,xmm	1	1		1		١.			float	3	1
CMPccSS/D	x,m32/64	1	1		1		1			float		1
CMPccPS/D	xmm,xmm	1	1		1					float	3	1
CMPccPS/D	xmm,m128	1	1		1		1			float		1
COMISS/D UCOMISS/D	xmm,xmm	1	1		1					float	3	1
COMISS/D UCOMISS/D	x,m32/64	1	1		1		1			float		1
MAXSS/D MINSS/D	xmm,xmm	1	1		1					float	3	1
MAXSS/D MINSS/D	x,m32/64	1	1		1		1			float		1
MAXPS/D MINPS/D	xmm,xmm	1	1		1					float	3	1
MAXPS/D MINPS/D	xmm,m128	1	1		1		1			float		1
ROUNDSS/D j)	xmm,xmm,i	1	1		1					float	3	1
ROUNDSS/D j)	xmm,m128,i	1	1		1		1			float		1
ROUNDPS/D j)	xmm,xmm,i	1	1		1					float	3	1
ROUNDPS/D j)	xmm,m128,i	1	1		1		1			float		1
DPPS j)	xmm,xmm,i	4	4	2	2					float	11	3
DPPS j)	xmm,m128,i	4	4	2	2		1			float		3
DPPD j)	xmm,xmm,i	4	4	х	х	x				float	9	3
DPPD j)	xmm,m128,i	4	4	x	x	×	1			float		3
37	, -,											
Math												
SQRTSS/PS	xmm,xmm	1	1	1						float	6-13	5-12
SQRTSS/PS	xmm,m	2	1	1			1			float		5-12
SQRTSD/PD	xmm,xmm	1	1	1						float	6-20	5-19
SQRTSD/PD	xmm,m	2	1	1			1			float		5-19
RSQRTSS/PS	xmm,xmm	1	1		1					float	3	2
RSQRTSS/PS	xmm,m	1	1		1		1			float		2
Logic												
AND/ANDN/OR/XORPS/D	xmm,xmm	1	1	Х	Х	X				int	1	0,33
AND/ANDN/OR/XORPS/D	xmm,m128	1	1	Х	х	Х	1			int		1
Other												
LDMXCSR	m32	13	12	v	V		1					38
	m32	10		X	X	X	'	4	1			20
STMXCSR			8	X	X	X	0	1				
FXSAVE	m4096	151	67	X	X	X	8	38	38			145
FXRSTOR	m4096	121	74	Х	Х	X	47					150

Notes:

d) Round divisors give low values.

g) SSE3 instruction set.

Intel Nehalem

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused µops count as one.

μορs unfused domain: The number of μορs for each execution port. Fused μορs count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p2 + p3 + p4 exceeds the number listed under μ ops fused domain. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that it is not known which of the three ports these μ ops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).
p2: The number of μops going to port 2 (memory read).

p3: The number of μops going to port 3 (memory write address).
 p4: The number of μops going to port 4 (memory write data).

Domain: Tells which execution unit domain is used: "int" = integer unit (general purpose

registers), "ivec" = integer vector unit (SIMD), "fp" = floating point unit (XMM and x87 floating point). An additional "bypass delay" is generated if a register written by a μ op in one domain is read by a μ op in another domain. The bypass delay is 1 clock cycle between the "int" and "ivec" units, and 2 clock cy-

cles between the "int" and "fp", and between the "ivec" and "fp" units.

The bypass delay is indicated under latency only where it is unavoidable because either the source operand or the destination operand is in an unnatural domain such as a general purpose register (e.g. eax) in the "ivec" domain. For example, the PEXTRW instruction executes in the "int" domain. The source operand is an xmm register and the destination operand is a general purpose register. The latency for this instruction is indicated as 2+1, where 2 is the latency of the instruction itself and 1 is the bypass delay, assuming that the xmm operand is most likely to come from the "ivec" domain. If the xmm operand comes from the "fp" domain then the bypass delay will be 2 rather than one. The flags register can also have a bypass delay. For example, the COMISS instruction (floating point compare) executes in the "fp" domain and returns the result in the integer flags. Almost all instructions that read these flags execute in the "int" domain. Here the latency is indicated as 1+2, where 1 is the latency of the instruction itself and 2 is the bypass delay from the "fp" domain to the "int" domain.

The bypass delay from the memory read unit to any other unit and from any unit to the memory write unit are included in the latency figures in the table. Where the domain is not listed, the bypass delays are either unlikely to occur or unavoidable and therefore included in the latency figure.

Nehalem

Latency:

This is the delay that the instruction generates in a dependency chain. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar delay. The time unit used is core clock cycles, not the reference clock cycles given by the time stamp counter.

Reciprocal throughput:

The average number of core clock cycles per instruction for a series of independent instructions of the same kind in the same thread.

Integer instructions

Instruction	Operands	μορs fused	μops unfused domain							Do- main	Laten- cy	Reci- procal
		do-	p015	p0	p1	p5	p2	р3	p4			through-
Move instructions		main										put
MOV	r,r/i	1	1	Х	Х	Х				int	1	0.33
MOV a)	r,m	1					1			int	2	1
MOV a)	m,r	1						1	1	int	3	1
MOV	m,i	1						1	1	int	3	1
MOV	r,sr	1					1			int		1
MOV	m,sr	2					1	1	1	int		1
MOV	sr,r	6	3	Х	Х	х	3			int		13
MOV	sr,m	6	2	Х		х	4			int		14
MOVNTI	m,r	2						1	1	int	~270	1
MOVSX MOVZX												
MOVSXD	r,r	1	1	Х	Х	х				int	1	0.33
MOVSX MOVZX												
MOVSXD	r,m	1					1			int		1
CMOVcc	r,r	2	2	Х	Х	х				int	2	1
CMOVcc	r,m	2	2	Х	Х	х	1			int		
XCHG	r,r	3	3	Х	Х	Х				int	2	2
XCHG	r,m	7	Х				1	1	1	int	20 b)	
XLAT		2	1				1			int	5	1
PUSH	r	1						1	1	int	3	1
PUSH	i	1						1	1	int		1
PUSH	m	2					1	1	1	int		1
PUSH	sr	2	1					1	1	int		1
PUSHF(D/Q)		3	2	Х	х	х		1	1	int		1
PUSHA(D) i)		18	2	х	1	х		8	8	int		8
POP	r	1					1			int	2	1
POP	(E/R)SP	3	2	х	1	х	1			int		5
POP	m	2					1	1	1	int		1
POP	sr	7	2				5			int		15
POPF(D/Q)		8	7	X	Х	х	1			int		14
POPA(D) i)		10	2				8			int		8
LAHF SAHF		1	1	X	х	х				int	1	0.33
SALC i)		2	2	X	X	X				int	4	1
LEA a)	r,m	1	1		1					int	1	1
BSWAP	r32	1	1		1					int	1	1
BSWAP	r64	1	1		1					int	3	1
LDS LES LFS LGS LSS	m	9	3	x	X	X	6			int		15
PREFETCHNTA	m m	1				"	1			int		1

Nehalem

			Cilaic									
PREFETCHT0/1/2	m	1					1			int		1
LFENCE		2						1	1	int		9
MFENCE		3	1	х	Х	Х		1	1	int		23
SFENCE		2						1	1	int		5
Arithmetic instructions												
ADD SUB	r,r/i	1	1	Х	Х	Х				int	1	0.33
ADD SUB	r,m	1	1	х	Х	Х	1			int		1
ADD SUB	m,r/i	2	1	Х	Х	Х	1	1	1	int	6	1
ADC SBB	r,r/i	2	2	Х	Х	Х				int	2	2
ADC SBB	r,m	2	2	Х	Х	Х	1			int	2	2
ADC SBB	m,r/i	4	3	Х	Х	Х	1	1	1	int	7	
CMP	r,r/i	1	1	Х	Х	Х				int	1	0.33
CMP	m,r/i	1	1	Х	Х	Х	1			int	1	1
INC DEC NEG NOT	r	1	1	Х	Х	Х				int	1	0.33
INC DEC NEG NOT	m	3	1	Х	Х	Х	1	1	1	int	6	1
AAA AAS DAA DAS i)		1	1		1					int	3	1
AAD i)		3	3	Х	Х	Х				int	15	2
AAM i)		5	5	Х	Х	Х				int	20	7
MUL IMUL	r8	1	1		1					int	3	1
MUL IMUL	r16	3	3	Х	Х	Х				int	5	2
MUL IMUL	r32	3	3	Х	Х	Х				int	5	2
MUL IMUL	r64	3	3	X	Х	Х				int	3	2
IMUL	r16,r16	1	1		1					int	3	1
IMUL	r32,r32	1	1		1					int	3	1
IMUL	r64,r64	1	1	1						int	3	1
IMUL	r16,r16,i	1	1		1					int	3	1
IMUL	r32,r32,i	1	1		1					int	3	1
IMUL	r64,r64,i	1	1	1						int	3	2
MUL IMUL	m8	1	1		1		1			int	3	1
MUL IMUL	m16	3	3	X	Х	Х	1			int	5	2
MUL IMUL	m32	3	3	X	Х	Х	1			int	5	2
MUL IMUL	m64	3	2	2			1			int	3	2
IMUL	r16,m16	1	1		1		1			int	3	1
IMUL	r32,m32	1	1		1		1			int	3	1
IMUL	r64,m64	1	1	1			1			int	3	1
IMUL	r16,m16,i	1	1		1		1			int		1
IMUL	r32,m32,i	1	1	,	1		1			int		1
IMUL	r64,m64,i	1	1	1	2	4	1			int	44.04	1
DIV c)	r8	4 6	4	1	2	1				int	11-21	7-11
DIV c)	r16 r32	6	6 6	X	4	X				int int	17-22	7-12 7-17
DIV c)		~40		X		X					17-28	
IDIV c)	r64 r8		Х 4	X 1	х 2	X 1				int int	28-90	19-69 7-11
IDIV c)	r16	4 8	8	1	5	1				int	10-22 18-23	7-11 7-12
IDIV c)	r32	7	7	X	3	X				int	17-28	7-12 7-17
IDIV c)	r64	~60		X		X				int	37-100	7-17 26-86
1	104		X 1	X	X	X						
CBW CWDE CDQE CWD CDQ CQO		1	1	X	Х	X				int int	1 1	1 1
POPCNT ()	rr	1	1	X	1	Х				int	3	1
POPCNT ()	r,r	1	1		1		1			int	3	1
CRC32 ()	r,m r r	1	1		1		'			int	3	1
CRC32 ()	r,r r m	1	1		1		1			int	3	1
UNUUZ 1)	r,m	'	ı .	1	'		1			IIIL		ı

Logic instructions												
AND OR XOR	r,r/i	1	1	х	х	Х				int	1	0.33
AND OR XOR	r,m	1	1	x	х	х	1			int		1
AND OR XOR	m,r/i	2	1	x	Х	Х	1	1	1	int	6	1
TEST	r,r/i	1	1	X	Х	Х		-		int	1	0.33
TEST	m,r/i	1	1	X	X	Х	1			int	•	1
SHR SHL SAR	r,i/cl	1	1	X	^	X	'			int	1	0.5
SHR SHL SAR	m,i/cl	3	2	X		Х	1	1	1	int	6	1
ROR ROL	r,i/cl	1	1	X		X	'	' '		int	1	1
ROR ROL	m,i/cl	3	2	X		X	1	1	1	int	6	1
RCR RCL	r,1	2	2	X	х	X	'	'	'	int	2	2
RCR	r8,i/cl	9	9	x	X	X				int	13	_
RCL	r8,i/cl	8	8	x	X	X				int	11	
RCR RCL	r16/32/64,i/cl	6	6	x						int	12-13	12-13
RCR RCL	m,1	4	3		X	X	1	1	1	int	7	12-13
RCR	m8,i/cl	12	9	X	X	X	1	1		int	16	
RCL	m8,i/cl	11	8	X	X	X						
RCR RCL	,			X	X	X	1	1	1	int	14	
SHLD	m16/32/64,i/cl	10	7 2	X	X	X	1	1	1	int	15 3	4
	r,r,i/cl	2		X	X	X	_	_	,	int		1
SHLD	m,r,i/cl	3	2	X	X	X	1	1	1	int	8	4
SHRD	r,r,i/cl	2	2	Х	Х	Х		_		int	4	1
SHRD	m,r,i/cl	3	2	Х	Х	Х	1	1	1	int	9	
BT	r,r/i	1	1	Х		Х				int	1	1
BT	m,r	9	8	Х		Х	1			int		5
BT	m,i	2	2	Х		Χ	1			int		1
BTR BTS BTC	r,r/i	1	1	Х		Х				int	1	1
BTR BTS BTC	m,r	10	7	Х	Х	Χ	1	1	1	int	6	
BTR BTS BTC	m,i	3	3	Х		Χ	1	1	1	int	6	
BSF BSR	r,r	1	1		1					int	3	1
BSF BSR	r,m	2	1		1		1			int	3	1
SETcc	r	1	1	Х		Х				int	1	1
SETcc	m	2	1	Х	Х	Χ		1	1	int		1
CLC STC CMC		1	1	Х	Х	Х				int	1	0.33
CLD		2	2	Х	Х	Х				int		4
STD		2	2	x	Х	Χ				int		5
Control transfer instructi	ons											
JMP	short/near	1	1			1				int	0	2
JMP i)	far	31	31							int		- 67
JMP	r	1	1			1				int	0	2
JMP	m(near)	1	1			1	1			int	0	2
JMP	m(far)	31	31			•	11			int		73
Conditional jump	short/near	1	1			1				int	0	2
Fused compare/test and bi	l .	1	1			1				int	0	2
J(E/R)CXZ	short	2	2	x	х	1				int		2
LOOP	short	6	6	X	X	X				int		4
LOOP(N)E	short	11	11	X	X	X				int		7
CALL	near	2	2	?	?	1		1	1	int		2
CALL i)	far	46	46			'	9	'		int		74
CALL	r	3	2	?	?	1	9	1	1	int		2
CALL	m(near)	4	3	?	?	1	1	1		int		2
CALL	m(far)	4 47	47	'	·	'	1	'		int		79
OALL	III(IaI <i>)</i>	47	41				'		ı l	1111		19

RETN		1	1			1	1			int		2
RETN	i	3	2			1	1			int		2
RETF		39	39							int		120
RETF	i	40	40							int		124
BOUND i)	r,m	15	13				2			int		7
INTO i)	,	4	4							int		5
String instructions												
LODS	•	2	1	х	Х	Х	1			int		1
REP LODS		11+4n	ļ II	1		1	l		'	int	40+12n	l
STOS		3	1	Х	Х	Х		1	1	int		1
REP STOS	small n	60+n	!	1	l	!			'	int	12+n	ı
REP STOS	large n	2.5/16	bytes							int	1 clk / 1	6 bytes
MOVS	_	5	2	Х	Х	Х	1	1	1	int		4
REP MOVS	small n	13+6n		1	ll	!			'	int	12+n	ı
REP MOVS	large n	2/16 by	tes							int	1 clk / 1	6 bytes
SCAS	_	3	2	х	Х	Х	1			int		1
REP SCAS		37+6n				'			.	int	40+2n	
CMPS		5	3	х	Х	Х	2			int		4
REP CMPS		65+8n	İ	I		I	İ	I		int	42+2n	· I
Other												
NOP (90)		1	1	х	Х	х				int		0.33
Long NOP (0F 1F)		1	1	х	Х	х				int		1
PAUSE		5	5	х	Х	х				int		9
ENTER	a,0	11	9	х	Х	Х	1	1	1	int		8
ENTER	a,b	34+7b								int	79+5b	ı
LEAVE		3	3				1			int		5
CPUID		25-100								int	~200	~200
RDTSC		22								int		24
RDPMC		28								int		40-60

Notes:

a) Applies to all addressing modesb) Has an implicit LOCK prefix.

c) Low values are for small results, high values for high results.

e) See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for restric-

tions on macro-op fusion.

i) Not available in 64 bit mode.

ℓ) SSE4.2 instruction set.

Floating point x87 instructions

Instruction	Operands	μοps fused	μops	un	fuse	ed d	oma	ain		Do- main	Laten- cy	Reci- procal
		do-	p015	p0	p1	р5	p2	р3	p4			through-
Move instructions		main										put
FLD	r	1	1	1						float	1	1
FLD	m32/64	1	1				1			float	3	1
FLD	m80	4	2	1	1		2			float	4	2
FBLD	m80	41	38	Х	Х	Х	3			float	45	20
FST(P)	r	1	1	1						float	1	1
FST(P)	m32/m64	1						1	1	float	4	1

FSTP	m80	7	3	Х	х	х	1	2	2	float	5	5
FBSTP	m80	208	204	X	X	X		2	2	float	242	245
FXCH	r	1	0 f)	^	^	^		_	-	float	0	1
FILD	m '	1	1		1		1			float	6	1
FIST(P)		3	1		1		'	1	1	float	7	1
` '	m 		-								7	
FISTTP g)	m	3	1		1			1	1	float	/	1
FLDZ		1	1	1						float		1
FLD1		2	2	1	1					float		2
FLDPI FLDL2E etc.		2	2		2					float		2
FCMOVcc	r	2	2	2						float	2+2	2
FNSTSW	AX	2	2							float		1
FNSTSW	m16	3	2					1	1	float		2
FLDCW	m16	2	1				1			float	7	31
FNSTCW	m16	2	1	1				1	1	float	5	1
FINCSTP FDECSTP		1	1	1						float	1	1
FFREE(P)	r	2	2	Х	Х	Х				float		4
FNSAVE	m	143	89	Х	X	X	8	23	23	float	178	178
FRSTOR	m	79	52	X	X	X	27		20	float	156	156
INOTOR	111	13	52	^	^	^	21			iloat	130	150
Arithmetic instructions												
FADD(P) FSUB(R)(P)	r	1	1		1					float	3	1
FADD(P) FSUB(R)(P)	m	1	1		1		1			float		1
FMUL(P)	r	1	1	1						float	5	1
FMUL(P)	m	1	1	1			1			float		1
FDIV(R)(P)	r	1	1	1						float	7-27 d)	7-27 d)
FDIV(R)(P)	m	1	1	1			1			float	7-27 d)	7-27 d)
FABS	'''	1	1	1			١.			float	1	1
FCHS		1	1	1						float	1 1	1
FCOM(P) FUCOM	r	1	1	'	1					float	'	1
FCOM(P) FUCOM		1	1		1		1			float		1
1 ' '	m m		-	4	-		1					
FCOMPP FUCOMPP	_	2	2	1	1					float		1
FCOMI(P) FUCOMI(P)	r	1	1		1					float		1
FIADD FISUB(R)	m	2	2		2		1			float	3	2
FIMUL	m m	2	2	1	1		1			float	5	2
FIDIV(R)	m	2	2	1	1		1			float	7-27 d)	7-27 d)
FICOM(P)	m	2	2		2		1			float		1
FTST		1	1		1					float		1
FXAM		1	1		1					float		1
FPREM		25	25	Х	Х	Х				float	14	
FPREM1		35	35	Х	Х	Х				float	19	
FRNDINT		17	17	Х	х	Х				float	22	
Math												
Math		0.4	0.4							£1 - · ·	40	
FSCALE		24	24	Х	Х	Х				float	12	
FXTRACT		17	17	X	Х	Х				float	13	
FSQRT		1	1	1						float	~27	
FSIN		~100	~100	Χ	Х	Х				float	40-100	
FCOS		~100	~100	Х	Х	Х				float	40-100	
FSINCOS		~100	~100	Χ	Χ	Х				float	~110	
F2XM1		19	19	Х	Х	Х				float	58	
FYL2X FYL2XP1		~55	~55	Х	Х	Х				float	~80	
FPTAN		~100	~100	Х	Х	Х				float	~115	
FPATAN		~82	~82	Х	Х	Х				float	~120	

Other									
FNOP		1	1	1			float	1	
WAIT		2	2	Х	х	х	float	1	
FNCLEX		3	3		х	х	float	17	
FNINIT	~1	190	~190	Х	х	х	float	77	

Notes:

d) Round divisors or low precision give low values.

f) Resolved by register renaming. Generates no μops in the unfused domain.

g) SSE3 instruction set.

Integer MMX and XMM instructions

Instruction	Operands	μοps fused	μops	un	fus	ed d	lom	ain		Do- main	Laten- cy	Reci- procal
		do-	p015	p0	p1	р5	p2	р3	p4			through-
Move instructions		main										put
MOVD k)	r32/64,(x)mm	1	1	Х	х	х				int	1+1	0.33
MOVD k)	m32/64,(x)mm	1						1	1		3	1
MOVD k)	(x)mm,r32/64	1	1	Х	х	х				ivec	1+1	0.33
MOVD k)	(x)mm,m32/64	1					1				2	1
MOVQ	(x)mm, (x)mm	1	1	Х	Х	Х				ivec	1	0.33
MOVQ	(x)mm,m64	1					1				2	1
MOVQ	m64, (x)mm	1						1	1		3	1
MOVDQA	xmm, xmm	1	1	Х	Х	Х				ivec	1	0.33
MOVDQA	xmm, m128	1					1				2	1
MOVDQA	m128, xmm	1						1	1		3	1
MOVDQU	xmm, m128	1	1				1				2	1
MOVDQU	m128, xmm	1	1					1	1		3	1
LDDQU g)	xmm, m128	1	1				1				2	1
MOVDQ2Q	mm, xmm	1	1	Х	х	х				ivec	1	0.33
MOVQ2DQ	xmm,mm	1	1	Х	Х	х				ivec	1	0.33
MOVNTQ	m64,mm	1						1	1		~270	2
MOVNTDQ	m128,xmm	1						1	1		~270	2
MOVNTDQA j)	xmm, m128	1					1				2	1
PACKSSWB/DW												
PACKUSWB	mm,mm	1	1		1					ivec	1	1
PACKSSWB/DW												
PACKUSWB	mm,m64	1	1		1		1					2
PACKSSWB/DW												
PACKUSWB	xmm,xmm	1	1	Х		Х				ivec	1	0.5
PACKSSWB/DW												
PACKUSWB	xmm,m128	1	1	Х		Х	1					2
PACKUSDW j)	xmm,xmm	1	1	Х		Х				ivec	1	2
PACKUSDW j)	xmm,m	1	1	Х		Х	1					2
PUNPCKH/LBW/WD/DQ	(x)mm, (x)mm	1	1	Х		Х				ivec	1	0.5
PUNPCKH/LBW/WD/DQ	(x)mm,m	1	1	Х		Х	1					2
PUNPCKH/LQDQ	xmm,xmm	1	1	х		Х				ivec	1	0.5
PUNPCKH/LQDQ	xmm, m128	2	1	х		Х	1					1
PMOVSX/ZXBW j)	xmm,xmm	1	1	Х		Х				ivec	1	1
PMOVSX/ZXBW j)	xmm,m64	1	1	х		Х	1					2
PMOVSX/ZXBD j)	xmm,xmm	1	1	Х		Х				ivec	1	1
PMOVSX/ZXBD j)	xmm,m32	1	1	Х		Х	1				1	2

PMOVSX/ZXBQ j)	xmm,xmm	1	1	Х		Х				ivec	1	1
PMOVSX/ZXBQ j)	xmm,m16	1	1	Х		Х	1					2
PMOVSX/ZXWD j)	xmm,xmm	1	1	х		Х				ivec	1	1
PMOVSX/ZXWD j)	xmm,m64	1	1	х		Х	1					2
PMOVSX/ZXWQ j)	xmm,xmm	1	1	х		Х				ivec	1	1
PMOVSX/ZXWQ j)	xmm,m32	1	1	х		х	1					2
PMOVSX/ZXDQ j)	xmm,xmm	1	1	х		х				ivec	1	1
PMOVSX/ZXDQ j)	xmm,m64	1	1	х		х	1					2
PSHUFB h)	(x)mm, (x)mm	1	1	х		х				ivec	1	0.5
PSHUFB n)	(x)mm,m	2	1	x		х	1					1
PSHUFW	mm,mm,i	1	1	х		Х				ivec	1	0.5
PSHUFW	mm,m64,i	2	1	X		Х	1					1
PSHUFD	xmm,xmm,i	1	1	X		X	•			ivec	1	0.5
PSHUFD	xmm,m128,i	2	1	X		X	1			1700		1
PSHUFL/HW	xmm,xmm,i	1	1	X		X	•			ivec	1	0.5
PSHUFL/HW	xmm, m128,i	2	1	X		X	1			1000	'	1
PALIGNR h)	(x)mm,(x)mm,i	1	1	x		X				ivec	1	1
PALIGNR h)	(x)mm,m,i	2	1	X		X	1			IVEC	'	1
PBLENDVB j)	x,x,xmm0	2	2	1		1	'			ivec	2	1
3,		3	2	1		1	1			IVEC		1
PBLENDVB j)	xmm,m,xmm0) 1		1		_	'				1	· ·
PBLENDW j)	xmm,xmm,i		1	X		X	1			ivec	ı	0.5
PBLENDW j)	xmm,m,i	2	1	X		Х	1	_	,			1
MASKMOVQ	mm,mm	4	1	1			1	1	1	ivec		2
MASKMOVDQU	xmm,xmm	10	4	X	Х	Х	2	2	X	ivec		7
PMOVMSKB	r32,(x)mm	1	1	1						float	2+2	1
PEXTRB j)	r32,xmm,i	2	2	X	Х	Х				ivec	2+1	1
PEXTRB j)	m8,xmm,i	2	2	X		Х						1
PEXTRW	r32,(x)mm,i	2	2	X	Х	Х				ivec	2+1	1
PEXTRW j)	m16,(x)mm,i	2	2	Х		Х		1	1			1
PEXTRD j)	r32,xmm,i	2	2	Х	Х	Х				ivec	2+1	1
PEXTRD j)	m32,xmm,i	2	1	Х		Х		1	1			1
PEXTRQ j,m)	r64,xmm,i	2	2	Х	Х	Х				ivec	2+1	1
PEXTRQ j,m)	m64,xmm,i	2	1	Х		Х		1	1			1
PINSRB j)	xmm,r32,i	1	1	Х		Х				ivec	1+1	1
PINSRB j)	xmm,m8,i	2	1	х		Х	1					1
PINSRW	(x)mm,r32,i	1	1	х		Х				ivec	1+1	1
PINSRW	(x)mm,m16,i	2	1	х		Х	1					1
PINSRD j)	xmm,r32,i	1	1	х		Х				ivec	1+1	1
PINSRD j)	xmm,m32,i	2	1	х		Х	1					1
PINSRQ j,m)	xmm,r64,i	1	1	х		Х				ivec	1+1	1
PINSRQ j,m)	xmm,m64,i	2	1	х		Х	1					1
,												
Arithmetic instructions												
PADD/SUB(U)	1											
(S)B/W/D/Q	(x)mm, (x)mm	1	1	Х		х				ivec	1	0.5
PADD/SUB(U)												
(S)B/W/D/Q	(x)mm,m	1	1	Х		х	1					2
PHADD/SUB(S)W/D h)	(x)mm, (x)mm	3	3	X		Х				ivec	3	1,5
PHADD/SUB(S)W/D h)	(x)mm,m64	4	3	X		X	1					3
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1	X		X				ivec	1	0.5
PCMPEQ/GTB/W/D	(x)mm,m	1	1	X		X	1					2
PCMPEQQ j)	xmm,xmm	1	1	X		X				ivec	1	0.5
PCMPEQQ j)	xmm,m128	1	1	X		X	1			.,,,,	'	2
. J. L. L. L. L. J.	, A.I.I.I.,III.I.Z.O	'	l '	^	l	_ ^	'	I	1		I	

PCMPGTQ t)	l-0.1-0-0	l I			ı		1	1	1 1	1.	_	
PMULLHW PMULHUW (x)mm,(x)mm	PCMPGTQ ()	xmm,xmm	1	1		1				ivec	3	1
PMULLHW PMULHUW Manual Color M	· ·	· ·	•			_		1				
PMULHRSW h)		, , , , ,	-							ivec	3	-
PMULHRSW h)		· , .				-		1				
PMULLD	,	, , , , ,								ivec	3	
PMULLD	,	(x)mm,m						1				
PMULDQ		xmm,xmm								ivec	6	2
PMULDQ		xmm,m128	3	2		2		1				
PMULUDQ	PMULDQ j)	xmm,xmm	1	1		1				ivec	3	1
PMULUDQ	PMULDQ j)	xmm,m128	1	1		1		1				1
PMADDWD	PMULUDQ	(x)mm,(x)mm	1	1		1				ivec	3	1
PMADDWS	PMULUDQ	(x)mm,m	1	1		1		1				1
PMADDUBSW h)	PMADDWD	(x)mm,(x)mm	1	1		1				ivec	3	1
PMADDUBSW h)	PMADDWD	(x)mm,m	1	1		1		1				1
PMADDUBSW h)	PMADDUBSW h)	l ', '	1	1		1				ivec	3	1
PAVGB/W	PMADDUBSW h)		1	1		1		1				1
PAVGB/W	,	, ,	1	1	×		х			ivec	1	0.5
PMIN/MAXSB j)		, , , , ,	1	1	×		x	1				
PMIN/MAXSB j)		', '						-		ivec	1	1
PMIN/MAXUB		·						1				
PMIN/MAXUB	27	i i						•		ivec	1	
PMIN/MAXSW		, , , , ,						1		1,00	•	
PMIN/MAXSW		· , .	•							ivec	1	
PMIN/MAXUW j)		, , , , ,	•	-				1		1000	•	
PMIN/MAXUW j) xmm,m 1 1 x x 1 2 PMIN/MAXU/SD j) xmm,xmm 1 1 x x 1 1 xmm,xmm 1 1 x x 1 <td></td> <td> ', '</td> <td>•</td> <td>-</td> <td></td> <td></td> <td></td> <td>'</td> <td></td> <td>ivec</td> <td>1</td> <td></td>		', '	•	-				'		ivec	1	
PMIN/MAXU/SD j) xmm,xmm 1 1 x x ivec 1 1 PMIN/MAXU/SD j) xmm,m128 1 1 x x 1 2 PHMINPOSUW j) xmm,xmm 1 1 1 1 1 1 2 PABSB PABSW PABSD h) xmm,(x)mm 1 1 1 1 1 1 1 3 3 PABSB PABSW PABSD h) (x)mm,(x)mm 1 1 x x 1 1 1 1 1 1 1 2 1 0.5 1 </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>IVEC</td> <td>ı</td> <td></td>			-					1		IVEC	ı	
PMIN/MAXU/SD j) xmm,m128 1 1 x x 1 ivec 3 1 PHMINPOSUW j) xmm,xmm 1 1 1 1 1 1 1 3 PABSB PABSW PABSD h) (x)mm,(x)mm 1 1 x x 1 0.5 PABSB PABSW PABSD h) (x)mm,(x)mm 1 1 x x 1 1 0.5 PABSB PABSW PABSD h) (x)mm,(x)mm 1 1 x x 1	37	· ·		-				'		ivoc	1	
PHMINPOSUW j) xmm,xmm 1 1 1 1 1 1 1 3 3 PABSB PABSW PABSD h) (x)mm,(x)mm 1			•					4		ivec	ı	
PHMINPOSUW j) xmm,m128 1					*	4	×	'			2	
PABSB PABSW PABSD h) (x)mm,(x)mm 1 1 1 x x ivec 1 0.5 PABSB PABSW PABSD h) (x)mm,(x)mm 1 1 x x 1 2 2 2 2 3 1 </td <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td>ivec</td> <td>3</td> <td></td>		·						4		ivec	3	
h) PABSB PABSW PABSD h) (x)mm,(x)mm 1 1 1 x x 1 livec 1 0.5 PABSB PABSW PABSD h) (x)mm,m 1 1 1 x x 1 livec 1 0.5 PSIGNB PSIGNW PSIGND h) (x)mm,(x)mm 1 1 1 x x 1 livec 1 0.5 PSIGNB PSIGNW PSIGND h) (x)mm,m 1 1 1 x x 1 livec 1 0.5 PSIGNB PSIGNW PSIGND h) (x)mm,m 1 1 1 x x x 1 livec 1 0.5 PSIGNB PSIGNW PSIGND h) (x)mm,m 1 1 1 x x x 1 livec 1 0.5 PSADBW (x)mm,(x)mm 1 1 1 x x x 1 livec 1 0.5 x x x x x x x x x x x x x x x x x x	3,	XIIIII,III 120	ı	'		l		'				ა
PABSB PABSW PABSD h) (x)mm,m 1 1 x x 1 </td <td></td> <td>()() ===== ()() =====</td> <td>4</td> <td>4</td> <td>١.,</td> <td></td> <td>.,</td> <td></td> <td></td> <td></td> <td>4</td> <td>0.5</td>		()() ===== ()() =====	4	4	١.,		.,				4	0.5
h) (x)mm,m 1 1 x x 1<	'	(x)mm,(x)mm	ı	ı	X		X			ivec	ı	0.5
PSIGNB PSIGNW PSIGND h) (x)mm,(x)mm 1 1 x x ivec 1 0.5 PSIGNB PSIGNW PSIGND h) (x)mm,(x)mm 1 1 x x 1 2 PSADBW PSADBW PSADBW j) (x)mm,(x)mm 1 1 1 1 1 1 3 ivec 3 1 MPSADBW j) MPSADBW j) PCLMULQDQ n) AESDEC, AESDECLAST, AESENC, AESENCLAST n) xmm,xmm,i 4 3 x x x 1 2 2 AESIMC n) AESKEYGENASSIST n) xmm,xmm xmm,xmm,i xmm,xmm,i xmm,xmm,xmm,i xmm,xmm,xmm,i xmm,xmm,xmm,i xmm,xmm,xmm,xmm,xmm,xmm,xmm,xmm,xmm,xmm		()()	4	4	١.,		.,	4				4
PSIGND h) (x)mm,(x)mm 1 1 x x ivec 1 0.5 PSIGNB PSIGNW PSIGND h) (x)mm,m 1 1 x x 1 2 PSADBW (x)mm,(x)mm 1 1 1 1 ivec 3 1 PSADBW (x)mm,mm 1 1 1 1 1 3 3 x x x ivec 3 1 1 x x x 1 1 1 1 1 1 1 2 1 x x x x 1 1 x		(x)mm,m	ı	ı	X		X	ı				l
PSIGNB PSIGNW PSIGND h) (x)mm,m 1 1 x x 1 2 PSADBW PSADBW PSADBW j) (x)mm,(x)mm 1		(-)(-)									4	0.5
PSIGND h) (x)mm,m 1 1 x x 1 2 PSADBW (x)mm,(x)mm 1 1 1 1 1 1 3 1 PSADBW (x)mm,m 1 1 1 1 1 1 3 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 8 1 2 8 1 2	,	(x)mm,(x)mm	1	1	X		X			ivec	1	0.5
PSADBW (x)mm,(x)mm 1 1 1 1 1 1 3 PSADBW (x)mm,m 1 1 1 1 1 1 3 3 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx			4									
PSADBW (x)mm,m 1 1 1 1 1 1 3 MPSADBW j) xmm,xmm,i 3 3 x x x 1 2 PCLMULQDQ n) xmm,xmm,i 4 3 x x x 1 2 AESDEC, AESDECLAST, AESENCLAST n) xmm,xmm xmm,xmm -5 -2 AESIMC n) xmm,xmm xmm,xmm,i -5 -2 AESKEYGENASSIST n) xmm,xmm,i -5 -2 Logic instructions PAND(N) POR PXOR (x)mm,(x)mm 1 1 x x x ivec 1 0.33	,	· , .			X		X	1			•	
MPSADBW j) xmm,xmm,i 3 3 x x x 1 ivec 5 1 MPSADBW j) xmm,xmm,i 4 3 x x x 1 2 PCLMULQDQ n) xmm,xmm,i xmm,xmm,i 12 8 AESDEC, AESDECLAST, AESENCLAST n) xmm,xmm ~5 ~2 AESIMC n) xmm,xmm xmm,xmm ~5 ~2 AESKEYGENASSIST n) xmm,xmm,i xmm,xmm,i wivec 1 0.33		' ' ' '								ivec	3	
MPSADBW j) xmm,m,i 4 3 x x 1 2 PCLMULQDQ n) xmm,xmm,i 4 3 x x x 1 12 8 AESDEC, AESDECLAST, AESENC, AESENCLAST n) xmm,xmm ~5 ~2 ~2 AESIMC n) xmm,xmm ~5 ~2 ~5 ~2 AESKEYGENASSIST n) xmm,xmm,i ~5 ~2 ~5 ~2 Logic instructions PAND(N) POR PXOR (x)mm,(x)mm 1 1 x x x ivec 1 0.33		, , ,				-		1				
PCLMULQDQ n) xmm,xmm,i 12 8 AESDEC, AESDECLAST, AESENC, AESENCLAST n) xmm,xmm ~5 ~2 AESIMC n) xmm,xmm ~5 ~2 AESKEYGENASSIST n) xmm,xmm,i ~5 ~2 Logic instructions PAND(N) POR PXOR (x)mm,(x)mm 1 1 x x x ivec 1 0.33	37				X	Х	X			ivec	5	
AESDEC, AESDECLAST, AESENC, AESENCLAST n) xmm,xmm ~5 ~2 AESIMC n) xmm,xmm ~5 ~2 AESKEYGENASSIST n) xmm,xmm,i ~5 ~2 Logic instructions PAND(N) POR PXOR (x)mm,(x)mm 1 1 xxxxxx ivec 1 0.33	37	xmm,m,i	4	3	Х	X	X	1				
AESENC, AESENCLAST n) xmm,xmm xmm xmm,xmm xmm,xmm xmm,xmm xmm,xmm,	PCLMULQDQ n)	xmm,xmm,i									12	8
N												
xmm,xmm												
AESIMC n) xmm,xmm ~5 ~2 AESKEYGENASSIST n) xmm,xmm,i ~5 ~2 Logic instructions PAND(N) POR PXOR (x)mm,(x)mm 1 1 x x ivec 1 0.33	n)											
AESKEYGENASSIST n) xmm,xmm,i ~5 ~2 Logic instructions PAND(N) POR PXOR (x)mm,(x)mm 1 1 x x ivec 1 0.33		xmm,xmm										1
Logic instructions PAND(N) POR PXOR (x)mm,(x)mm 1 1 x x x x ivec 1 0.33	· · · · · · · · · · · · · · · · · · ·	xmm,xmm									~5	
PAND(N) POR PXOR (x)mm,(x)mm 1 1 x x x ivec 1 0.33	AESKEYGENASSIST n)	xmm,xmm,i									~5	~2
PAND(N) POR PXOR (x)mm,(x)mm 1 1 x x x ivec 1 0.33												
PAND(N) POR PXOR (x)mm m 1 1 x v v 1 1 1	PAND(N) POR PXOR	(x)mm,(x)mm	1	1	Х	Х	Х			ivec	1	0.33
	PAND(N) POR PXOR	(x)mm,m	1	1	Х	Х	Х	1				1

PTEST j)	xmm,xmm	2	2	Х	Х	Х		ivec	3	1
PTEST j)	xmm,m128	2	2	х	Х	Х	1			1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1		1			ivec	1	1
PSLL/RL/RAW/D/Q	mm,m64	1	1		1		1			2
PSLL/RL/RAW/D/Q	xmm,i	1	1		1			ivec	1	1
PSLL/RL/RAW/D/Q	xmm,xmm	2	2	Х	1	Х		ivec	2	2
PSLL/RL/RAW/D/Q	xmm,m128	3	2	Х	1	Х	1			1
PSLL/RLDQ	xmm,i	1	1	Х		Х		ivec	1	1
String instructions										
PCMPESTRI ()	xmm,xmm,i	8	8	х	Х	Х		ivec	14	5
PCMPESTRI ()	xmm,m128,i	9	8	Х	Х	Х	1	ivec	14	6
PCMPESTRM ()	xmm,xmm,i	9	9	Х	Χ	Х		ivec	7	6
PCMPESTRM ℓ)	xmm,m128,i	10	10	Х	Х	Х	1	ivec	7	6
PCMPISTRI ()	xmm,xmm,i	3	3	Х	Χ	Х		ivec	8	2
PCMPISTRI ()	xmm,m128,i	4	4	Х	Х	Х	1	ivec	8	2
PCMPISTRM ℓ)	xmm,xmm,i	4	4	х	Χ	Х		ivec	7	2
PCMPISTRM ()	xmm,m128,i	6	5	х	X	Х	1	ivec	7	5
Other										
EMMS		11	11	х	Х	х		float		6

Notes:

g) SSE3 instruction set.

h) Supplementary SSE3 instruction set.

j) SSE4.1 instruction set

k) MASM uses the name MOVD rather than MOVQ for this instruction even when

moving 64 bits

ℓ) SSE4.2 instruction set

m) Only available in 64 bit moden) Only available on newer models

Floating point XMM instructions

Instruction	Operands	μοps fused	μops	un	fus	ed d	lom	ain		Do- main	Laten- cy	Reci- procal
		do-	p015	p0	p1	р5	p2	р3	p4			through-
Move instructions		main										put
MOVAPS/D	xmm,xmm	1	1			1				float	1	1
MOVAPS/D	xmm,m128	1					1				2	1
MOVAPS/D	m128,xmm	1						1	1		3	1
MOVUPS/D	xmm,m128	1					1				2	1-4
MOVUPS/D	m128,xmm	1						1	1		3	1-3
MOVSS/D	xmm,xmm	1	1			1					1	1
MOVSS/D	xmm,m32/64	1					1				2	1
MOVSS/D	m32/64,xmm	1						1	1		3	1
MOVHPS/D MOVLPS/D	xmm,m64	2	1			1	1				3	2
MOVH/LPS/D	m64,xmm	2	1			1		1	1		5	1
MOVLHPS MOVHLPS	xmm,xmm	1	1			1				float	1	1
MOVMSKPS/D	r32,xmm	1	1	1						float	1+2	1
MOVNTPS/D	m128,xmm	1						1	1		~270	2
SHUFPS/D	xmm,xmm,i	1	1			1				float	1	1
SHUFPS/D	xmm,m128,i	2	1			1	1			float		1

DI ENDDO/DD ;)	l vmm vmm i	4	1	l	I	1	l	I	I	float	4	1 4
BLENDPS/PD j)	xmm,xmm,i	1 2	1			1	1				1	1
BLENDPS/PD j)	xmm,m128,i	2	1 2			1 2	'			float	2	1 2
BLENDVPS/PD j)	x,x,xmm0	3					1			float	2	2
BLENDVPS/PD j)	xmm,m,xmm0		2			2	1			float	4	
MOVDDUP g)	xmm,xmm	1	1			1				float	1	1
MOVDDUP g)	xmm,m64	1					1				2	1
MOVSH/LDUP g)	xmm,xmm	1	1			1				float	1	1
MOVSH/LDUP g)	xmm,m128	1					1					1
UNPCKH/LPS/D	xmm,xmm	1	1			1				float	1	1
UNPCKH/LPS/D	xmm,m128	1	1			1	1			float		1
EXTRACTPS j)	r32,xmm,i	1	1			1				float	1+2	1
EXTRACTPS j)	m32,xmm,i	2	1			1		1	1			1
INSERTPS j)	xmm,xmm,i	1	1			1				float	1	1
INSERTPS j)	xmm,m32,i	3	2			2	1			float		2
Conversion												
CVTPD2PS	xmm,xmm	2	2		1	1				float	4	1
CVTPD2PS	xmm,m128	2	2		1		1			float		1
CVTSD2SS	xmm,xmm	2	2		1	1				float	4	1
CVTSD2SS	xmm,m64	2	2	?	?	?	1			float		1
CVTPS2PD	xmm,xmm	2	2	1		1				float	2	1
CVTPS2PD	xmm,m64	2	2	1		1	1			float		1
CVTSS2SD	xmm,xmm	1	1	1						float	1	1
CVTSS2SD	xmm,m32	1	1	1			1			float		2
CVTDQ2PS	xmm,xmm	1	1		1					float	3+2	1
CVTDQ2PS	xmm,m128	1	1		1		1			float		1
CVT(T) PS2DQ	xmm,xmm	1	1		1					float	3+2	1
CVT(T) PS2DQ	xmm,m128	1	1		1		1			float	· -	1
CVTDQ2PD	xmm,xmm	2	2		1	1				float	4+2	1
CVTDQ2PD	xmm,m64	2	2		1	1	1			float	. –	1
CVT(T)PD2DQ	xmm,xmm	2	2		1	1				float	4+2	1
CVT(T)PD2DQ	xmm,m128	2	2		1	1	1			float	7.2	1
CVTPI2PS	xmm,mm	1	1		1	'	ļ .			float	3+2	3
CVTPI2PS	xmm,m64	1	1		1		1			float	5.2	3
CVT(T)PS2PI	mm,xmm	1	1		1		'			float	3+2	1
CVT(T)PS2PI	mm,m128	1	1		1		1			float	312	
CVTPI2PD	xmm,mm	2	2		1	1	l '			ivec/float	6	
CVTPI2PD	xmm,m64	2	2		1	1	1			ivec/iioat	O	1
	1	2					'			floot/iv.oo	6	
CVT(T) PD2PI CVT(T) PD2PI	mm,xmm	2	2 2	X	1	X	4			float/ivec	6	1
' '	mm,m128			Х	1	Х	1			floot	212	1
CVTSI2SS	xmm,r32	1	1		1		4			float	3+2	3
CVT/T/SS2SI	xmm,m32	1	1		1		1			float	2.0	3
CVT(T)SS2SI	r32,xmm	1	1		1		_			float	3+2	1
CVT(T)SS2SI	r32,m32	1	1		1		1			float	4 : 0	1
CVTSI2SD	xmm,r32	2	2	1	1					float	4+2	3
CVTSI2SD	xmm,m32	2	1		1		1			float		3
CVT(T)SD2SI	r32,xmm	1	1		1					float	3+2	1
CVT(T)SD2SI	r32,m64	1	1		1		1			float		1
Arithmetic												
ADDSS/D SUBSS/D	xmm,xmm	1	1		1					float	3	1

xmm,m32/64 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm	1 1 1 1 3 4 3	1 1 1 1 1 3 3		1 1 1 1		1		float float float float	3	1 1 1
xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,xmm	1 1 1 3 4 3	1 1 1 3		1 1		1		float		1
xmm,xmm xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128	1 1 3 4 3	1 1 3		1		1			3	_
xmm,m128 xmm,xmm xmm,m128 xmm,xmm xmm,m128	1 3 4 3	1 3		_				∣float	3	1
xmm,xmm xmm,m128 xmm,xmm xmm,m128	3 4 3	3		1						_
xmm,m128 xmm,xmm xmm,m128	4 3					1		float		1
xmm,xmm xmm,m128	3	3		1	2			float	5	2
xmm,m128				1	2	1		float		2
,	-	3		1	2			float	3	2
xmm,xmm	4	3		1	2	1		float		2
	1	1	1					float	4	1
xmm,m	1	1	1			1		float		1
xmm,xmm	1	1	1					float	5	1
xmm,m	1	1	1			1		float		1
xmm,xmm	1	1	1					float	7-14	7-14
xmm,m	1	1	1			1		float		7-14
xmm,xmm	1	1	1					float	7-22	7-22
xmm,m	1	1	1			1		float		7-22
xmm,xmm	1	1		1				float	3	2
xmm,m	1	1		1		1		float		2
xmm,xmm	1	1		1				float	3	1
xmm,m	2	1		1		1		float		1
xmm,xmm	1	1		1				float	1+2	1
xmm,m32/64	1	1		1		1		float		1
xmm,xmm	1	1		1				float	3	1
xmm,m32/64	1	1		1		1		float		1
xmm,xmm	1	1		1				float	3	1
xmm,m128	1	1		1		1		float		1
xmm,xmm,i	1	1		1				float	3	1
xmm,m128,i	2	1		1		1		float		1
xmm,xmm,i	4	4	1	2	1			float	11	2
xmm,m128,i	6	5	Х	Χ	Х	1		float		
xmm,xmm,i	3	3	Х	Χ	Х			float	9	1
xmm,m128,i	4	3	Х	Х	Х	1		float		3
xmm,xmm	1	1	1					float	7-18	7-18
xmm,m	2	1	1			1		float		7-18
xmm,xmm	1	1	1					float	7-32	7-32
xmm,m	2	1	1			1		float		7-32
xmm,xmm	1	1		1				float	3	2
xmm,m	1	1		1		1		float		2
xmm,xmm	1	1			1			float	1	1
xmm,m128	1	1			1	1		float		1
	xmm,xmm xmm,xmm,	xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm 1 xmm,xmm,i 2 xmm,xmm,i 4 xmm,xmm,i 3 xmm,xmm,i 3 xmm,xmm,i 3 xmm,xmm 1 xmm,xmm 1	xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm 1 1 xmm,xmm,i 1 1 xmm,xmm,i 4 4 xmm,xmm,i 4 3 xmm,xmm,i 3 3 xmm,xmm 1 1 xmm,xmm 1	xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm,i 1 1 1 xmm,xmm,i 2 1 1 xmm,xmm,i 4 4 1 xmm,xmm,i 4 4 1 xmm,xmm,i 4 3 x xmm,xmm,i 4 3 x xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1	xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm 1 1 1 xmm,xmm,i 1 1 1 xmm,xmm,i 4 4 1 2 xmm,xmm,i 4 4 1 2 xmm,xmm,i 3 3 x x xmm,xmm 1 1 1 1 xmm,xmm 2 1 1 1 x	xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm 1 1 1 1 xmm,xmm,i 1 1 1 1 xmm,xmm,i 2 1 1 1 xmm,xmm,i 3 3 x x xmm,xmm 1 1 1 1 xmm,xmm 2 1 1 1 <td>xmm,xmm 1<!--</td--><td>xmm,xmm 1<!--</td--><td>xmm,xmm 1<!--</td--><td>xmm,xmm 1<!--</td--></td></td></td></td>	xmm,xmm 1 </td <td>xmm,xmm 1<!--</td--><td>xmm,xmm 1<!--</td--><td>xmm,xmm 1<!--</td--></td></td></td>	xmm,xmm 1 </td <td>xmm,xmm 1<!--</td--><td>xmm,xmm 1<!--</td--></td></td>	xmm,xmm 1 </td <td>xmm,xmm 1<!--</td--></td>	xmm,xmm 1 </td

LDMXCSR	m32	6	6	Х	Х	Х	1				5	
STMXCSR	m32	2	1			1		1	1		1	
FXSAVE	m4096	141	141	Х	Х	Х	5	38	38	90	90	
FXRSTOR	m4096	112	90	x	х	х	42				100	

Notes:

g) SSE3 instruction set.

Intel Sandy Bridge

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm reg-

ister, (x)mm = mmx or xmm register, y = 256 bit ymm register, same = same register for both operands. m = memory operand, m32 = 32-bit memory oper-

and, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused uops count as one.

μops unfused domain: The number of μops for each execution port. Fused μops count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p23 + p4 exceeds the number listed under μ ops fused domain. A number indicated as 1+ under a read or write port means a 256-bit read or write operation using two clock cycles for handling 128 bits each cycle. The port cannot receive another read or write μ op in the second clock cycle, but a read port can receive an address-calculation μ op in the second clock cycle. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that

it is not known which of the three ports these µops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).

p23: The number of μops going to port 2 or 3 (memory read or address calculation).

p4: The number of μops going to port 4 (memory write data).

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Where hyperthreading is enabled, the use of the same execution units in the other thread leads to inferior performance. Denormal numbers, NAN's and infinity do not increase the latency. The time unit used is core clock cycles, not the reference clock cycles given by the

time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

The latencies and throughputs listed below for addition and multiplication using full size YMM registers are obtained only after a warm-up period of a thousand instructions or more. The latencies may be one or two clock cycles longer and the reciprocal throughputs double the values for shorter sequences of code.

There is no warm-up effect when vectors are 128 bits wide or less.

Integer instructions

Instruction	Operands	μops	μops	un	fuse	ed d	oma	in	Latency Reci	Reci-	ci- Com-
		fused do- main	p015	p0	p1	р5	p23	p4		procal through- put	ments
Move instructions											
MOV	r,r/i	1	1	x	х	х			1		

			,								
MOV	r,m	1					1		2	0.5	all ad- dressing
											modes
MOV	m,r	1					1	1	3	1	
MOV	m,i	1					1	1		1	
MOVNTI	m,r	2					1	1	~350	1	
MOVSX MOVZX MOVSXD	r,r	1	1	X	Х	X			1		
MOVSX MOVZX MOVSXD	r,m	1					1			0.5	
CMOVcc	r,r	2	2	Х	Х	Х			2	1	
CMOVcc	r,m	2	2	Х	Х	Х	1			1	
XCHG	r,r	3	3	Х	Х	Х			2	1	
XCHG	r,m	8	X				2	1	25		implicit lock
XLAT		3	2				1		7	1	
PUSH	r	1					1	1	3	1	
PUSH	i	1					1	1		1	
PUSH	m	2					2	1		1	
PUSHF(D/Q)		3	2	Х	Х	Х	1	1		1	
PUSHA(D)		16	0				8	8		8	not 64 bit
POP	r	1					1		2	0.5	
POP	(E/R)SP	1	0				1			0.5	
POP	m	2					2	1		1	
POPF(D/Q)		9	8	х	Х	Х	1			18	
POPA(D)		18	10				8			9	not 64 bit
LAHF SAHF		1	1						1	1	
SALC		3	3						1	1	not 64 bit
LEA	r,m	1	1	х		Х			1	0.5	simple
LEA	r,m	1	1		1				3	1	complex
	,										or rip rel-
											ative
BSWAP	r32	1	1		1				1	1	
BSWAP	r64	2	2		2				2	1	
PREFETCHNTA	m	1					1			0.5	
PREFETCHT0/1/2	m	1					1			0.5	
LFENCE		2					1	1		4	
MFENCE		3	1				1	1		33	
SFENCE		2					1	1		6	
Arithmetic instructions											
ADD SUB	r,r/i	1	1	Х	Х	Х			1		
ADD SUB	r,m	1	1	Х	X	Х	1			0.5	
ADD SUB	m,r/i	2	1	Х	Х	Х	2	1	6	1	
SUB	r,same	1	0						0	0.25	
ADC SBB	r,r/i	2	2	х	Х	Х			2	1	
ADC SBB	r,m	2	2	х	Х	Х	1		2	1	
ADC SBB	m,r/i	4	3	х	Х	Х	2	1	7	1,5	
CMP	r,r/i	1	1	х	Х	Х			1		
CMP	m,r/i	1	1	х	Х	Х	1		1	0.5	
INC DEC NEG NOT	r	1	1	х	X	X			1		

	ı	1	,	,	ı	ı	ı		,		1
INC DEC NEG NOT	m	3	1	Х	Х	Х	2	1	6	2	
AAA AAS		2	2						4		not 64 bit
DAA DAS		3	3						4		not 64 bit
AAD		3							2		not 64 bit
AAM		8	3							44	
	0		8		4				20	11	not 64 bit
MUL IMUL	r8	1	1		1				3	1	
MUL IMUL	r16	4	4						4	2	
MUL IMUL	r32	3	3						4	2	
MUL IMUL	r64	2	2						3	1	
IMUL	r,r	1	1		1				3	1	
IMUL	r16,r16,i	2	2						4	1	
IMUL	r32,r32,i	1	1		1				3	1	
IMUL	r64,r64,i	1	1		1				3	1	
MUL IMUL	m8	1	1		1		1		3	1	
MUL IMUL	m16	4	3				1			2	
MUL IMUL	m32	3	2				1			2	
MUL IMUL	m64	2	1				1			2	
IMUL	r,m	1	1		1		1			1	
IMUL	r16,m16,i	2	2				1			1	
IMUL	r32,m32,i	1	1		1		1			1	
IMUL	r64,m64,i	1	1		1		1			1	
DIV	r8	10	10						20-24	11-14	
DIV	r16	11	11						21-25	11-14	
DIV	r32	10	10						20-28	11-18	
DIV	r64	34-56	х						30-94	22-76	
IDIV	r8	10	10						21-24	11-14	
IDIV	r16	10	10						21-25	11-14	
IDIV	r32	9	9						20-27	11-18	
IDIV	r64	59-	х						40-103	25-84	
		138									
CBW		1	1						1	0.5	
CWDE		1	1			1			1	1	
CDQE		1	1						1	0.5	
CWD		2	2						1	1	
CDQ		1	1						1	1	
cqo		1	1						1	0.5	
POPCNT	r,r	1	1		1				3	1	SSE4.2
POPCNT	r,m	1	1		1		1			1	SSE4.2
CRC32	r,r	1	1		1				3	1	SSE4.2
CRC32	r,m	1	1		1		1			1	SSE4.2
	,										
Logic instructions											
AND OR XOR	r,r/i	1	1	х	Х	х			1		
AND OR XOR	r,m	1	1	х	х	х	1			0.5	
AND OR XOR	m,r/i	2	1	Х	х	х	2	1	6	1	
XOR	r,same	1	0						0	0.25	
TEST	r,r/i	1	1	х	х	х			1		
TEST	m,r/i	1	1	х	х	х	1			0.5	
SHR SHL SAR	r,i	1	1	х		х			1	0.5	
SHR SHL SAR	m,i	3	1				2	1	1	2	
1	·	1	ı	1	I .	I	ı				1

		Oui	ay Di	lugu	•						
SHR SHL SAR	r,cl	3	3						2	2	
SHR SHL SAR	m,cl	5	3				2	1		4	
ROR ROL	r,i	1	1						1	1	
ROR ROL	m,i	4	3				2	1		2	
ROR ROL	r,cl	3	3						2	2	
ROR ROL	m,cl	5	3				2	1		4	
RCR	r8,1	high					_		high	high	
RCR	r16/32/64,1	3	3						2	2	
RCR	r,i	8	8						5	5	
RCR	m,i	11	7				х	х	Ū	6	
RCR	r,cl	8	8				^	_	5	5	
RCR	m,cl	11	7				Х	х	O	6	
RCL	r,1	3	3				^	^	2	2	
RCL	r,i	8	8						6	6	
RCL	m,i	11	7				х	x	O	6	
RCL	r,cl	8	8				^	^	6	6	
RCL		11	7				\ <u>\</u>	\ \	U	6	
SHRD SHLD	m,cl	1	1				Х	X		0.5	
SHRD SHLD	r,r,i	3	1				2	1			
	m,r,i		4						0	2 2	
SHRD SHLD	r,r,cl	4	4						2		
SHRD SHLD	m,r,cl	5	3				2	1	4	4	
BT	r,r/i	1	1						1	0.5	
BT	m,r	10	8				X			5	
BT DTO DTO	m,i	2	1				1			0.5	
BTR BTS BTC	r,r/i	1	1						1	0.5	
BTR BTS BTC	m,r	11	7				Х	X		5	
BTR BTS BTC	m,i	3	1				2	1	_	2	
BSF BSR	r,r	1	1		_				3	1	
BSF BSR	r,m	1	1		1		1			1	
SETcc	r	1	1	Х		Х			1	0.5	
SETcc	m	2	1	Х		Х	1	1		1	
CLC		1	0							0.25	
STC CMC		1	1	Х	Х	Х			1		
CLD STD		3	3							4	
Control transfer instructi											
JMP	short/near	1	1			1			0	2	
JMP	r	1	1			1			0	2	
JMP	m	1	1			1	1		0	2	
Conditional jump	short/near	1	1			1			0	1-2	fast if not jumping
Fused arithmetic and		1	1			1			0	1-2	Jumping
branch			-						-		
J(E/R)CXZ	short	2	2	х	х	1				2-4	
LOOP	short	7	7							5	
LOOP(N)E	short	11	11							5	
CALL	near	3	2			1	1	1		2	
CALL	r	2	1			1	1	1		2	
CALL	m	3	2			1	2	1		2	
RET		2	2			1	1	-		2	
RET	i	3	2			1	1			2	
1	I	1	1	1	1	1	1	1		T.	1

BOUND INTO	r,m	15 4	13 4					7 6	not 64 bit not 64 bit
String instructions									
LODS REP LODS		3 5n+12	2		1		~2n	1	
STOS		3	1		1	1	~211	1	
REP STOS		2n	•			•	n		worst case
REP STOS		1.5/16E	3				1/16B		best case
MOVS		5						4	
REP MOVS		2n					1.5 n		worst case
REP MOVS		3/16B					1/16B		best case
SCAS		3						1	
REP SCAS		6n+47					2n+45		
CMPS REP CMPS		5					2n+80	4	
REP CIVIPS		8n+80					211+00		
Other									
NOP (90)		1	0					0.25	
Long NOP (0F 1F)		1	0					0.25	decode only 1
									per clk
PAUSE		7	7					11	
ENTER	a,0	12	10		2	1		8	
ENTER	a,b	49+6b					84+3b	7	
LEAVE CPUID		3 31-75	3		1		100-250	7	
RDTSC		21					100-230	28	
RDPMC		35						42	

Floating point x87 instructions

Instruction	Operands	μops	μops	un	fus	ed d	loma	in	Latency	Reci-	Com-
		fused do- main	p015	p0	p1	р5	p23	p4		procal through- put	ments
Move instructions											
FLD	r	1	1	1					1	1	
FLD	m32/64	1	1				1		3	1	
FLD	m80	4	2	1	1		2		4	2	
FBLD	m80	43	40				3		45	21	
FST(P)	r	1	1	1					1	1	
FST(P)	m32/m64	1					1	1	4	1	
FSTP	m80	7	3				2	2	5	5	
FBSTP	m80	246								252	
FXCH	r	1	0						0	0.5	
FILD	m	1	1		1		1		6	1	
FIST(P)	m	3	1		1		1	1	7	2	

FISTIP FLDZ FLDZ FLD1 FLD2 FLD2 FLD1 FLD2E etc. FCMOVcc			-	ay Di	- 5							
FLD1 FLD12E etc. FCMOVcc		m				1		1	1	7		SSE3
FLDPI FLDLZE etc. FCMOVCC FCMO					l							
FCMOVCC					1							
FINSTSW FINSTS	FLDPI FLDL2E etc.		2	2		2						
FINSTSW	FCMOVcc	r	3	3						3	2	
FLDCW m16 3 2 2 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FNSTSW	AX	2	2						2	1	
FNSTCW FINCSTP FDECSTP FFREE(P) FREE(P) FREE(P) FRADE(P) FRADE(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FMUL(P)	FNSTSW	m16	2	1				1	1		1	
FINCSTP FDECSTP FFREE(P) FREE(P) FROM	FLDCW	m16	3	2				1		8		
FFREE(P)	FNSTCW	m16	2	1	1			1	1	5	1	
FNSAVE FRSTOR	FINCSTP FDECSTP		1	1	1					1	1	
FRSTOR Arithmetic instructions FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R) FOLICY FABS FOLICY FOLICY FABS FOLICY FOLICY FABS FOLICY FOLI	FFREE(P)	r	1	1							1	
Arithmetic instructions FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FMUL(P) FM	FNSAVE	m	143								166	
FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FADD(P) FSUB(R)(P) FMUL(P) FRUL	FRSTOR	m	90								165	
FADD(P) FSUB(R)(P) FMUL(P) FMU	Arithmetic instructions											
FMUL(P) FMUL(P	FADD(P) FSUB(R)(P)	r	1	1		1				3	1	
FMUL(P) FMUL(P		m	2	2		1		1			1	
FMUL(P)		r	1	1	1					5	1	
FDIV(R)(P)								1			1	
FDIV(R)(P) FABS FCHS FCHS FCHS FCHS FCOM(P) FUCOM F FCOM(P) FUCOM F FCOM(P) FUCOMP FCOM(P) FUCOMPP FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FUCOMI(P) FCOM(P) FCO				1	1					10-24	10-24	
FABS FCHS FCHS FCOM(P) FUCOM FCOM(P) FUCOM FCOM(P) FUCOM FCOM(P) FUCOM FCOM(P) FUCOM FCOM(P) FUCOM FCOM(P) FUCOM FCOM(P) FUCOM(P) FCOM(P) FUCOM(P) FCOM(P) FUCOM(P) FCOM(P) FUCOM(P) FIADD FISUB(R) FIADD FISUB(R) FIMUL FIDIV(R) FICOM(P) FICOM(P) FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX		m	1	1	1			1			10-24	
FCOM(P) FUCOM r 1 1 1 1 1 1 1 1 1			1	1	1					1	1	
FCOM(P) FUCOM r 1 1 1 1 1 1 1 1 1			1	1	1						1	
FCOM(P) FUCOM		r			-	1						
FCOMPP FUCOMPP FCOMI(P) FUCOMI(P) FCOMI(P) FUCOMI(P) FIADD FISUB(R) m 2 2 2 1 1 1 1 FIMUL m 2 2 1 1 1 1 FIDIV(R) m 2 2 2 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) FICOM(P) m 2 2 2 1 1 1 1 FICOM(P) FICOM(, ,							1				
FCOMI(P) FUCOMI(P) FIADD FISUB(R) FIMUL FIDIV(R) FICOM(P)	, ,				1			-			1	
FIADD FISUB(R) FIMUL FIDIV(R) FICOM(P) FICOM(P) FYAM FYAM FYAM FYAM FYAM FYAM FYAM FYAM		r			l		?			4		
FIMUL m 2 2 1 1 1 1 1 1 1 1 1 FIDIV(R) m 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , , , , , , , , , , , , , , , , , , ,				•			1		•		
FIDIV(R) FICOM(P) FICOM(P) FIST FXAM FXAM FEREM FREM FREM1 FROD FREM FSCALE FXTRACT FSUN FSUN FCOS FSIN FSIN FSIN FSIN FSIN FSIN FSIN FSI	` '				1	1						
FICOM(P) FTST FXAM FXAM FREM FREM FREM FSCALE FXTRACT FSUN FSUN FSUN FSUN FCOS FSIN FSUN FCOS FYL2X FYL2X FYL2X FYLAT FYLAT FNOP M											•	
FTST	, ,				'						2	
FXAM 2 2 1 FPREM 28 28 21 FPREM1 41-87 26-50 26-50 FRNDINT 17 17 17 Math FSCALE 27 27 12 FXTRACT 17 17 10 FSQRT 1 1 1 10-24 FSIN 64-100 x 47-100 FCOS 20-110 x 47-115 FSINCOS 20-110 x 43-123 F2XM1 53-118 x 61-69 FYL2X FYL2XP1 102 130 FPTAN 102 102 130 FPATAN 28-91 x 93-146 Other FNOP 1 1 1 1	, ,	1111						'				
FPREM 28 28 21 21 FPREM1 41-87 26-50 26-50 FRNDINT 17 17 17 Math FSCALE 27 27 12 FXTRACT 17 17 10 FSQRT 1 1 10-24 FSIN 64-100 x 47-100 FCOS 20-110 x 47-115 FSINCOS 20-110 x 43-123 F2XM1 53-118 x 61-69 FYL2X FYL2XP1 102 130 FPTAN 102 102 130 FPATAN 28-91 x 93-146 Other FNOP 1 1 1 1												
FPREM1 41-87 26-50 26-50 FRNDINT 17 17 17 Math 27 27 12 FSCALE 17 17 10 FSQRT 1 1 10-24 FSIN 64-100 x 47-100 FCOS 20-110 x 47-115 FSINCOS 20-110 x 43-123 F2XM1 53-118 x 61-69 FYL2X FYL2XP1 102 130 FPATAN 28-91 x 93-146 Other 1 1 1 1						'				21		
Math 27 27 12 FSCALE 27 27 10 FXTRACT 17 17 10 FSQRT 1 1 1 10-24 FSIN 64-100 x 47-100 FCOS 20-110 x 47-115 FSINCOS 20-110 x 43-123 F2XM1 53-118 x 61-69 FYL2X FYL2XP1 102 130 FPATAN 28-91 x 93-146 Other 1 1 1 1				20								
Math FSCALE FXTRACT 17 17 10 FSQRT 1 1 1 10-24 FSIN 64-100 x 47-100 FCOS 20-110 x 47-115 FSINCOS 20-110 x 43-123 F2XM1 53-118 x 61-69 FYL2X FYL2XP1 102 130 FPTAN 102 102 130 FPATAN 28-91 x 93-146 Other FNOP				17							20-30	
FSCALE FXTRACT FSQRT FSQRT FSIN FCOS FCOS F2XM1 FYL2X FYL2XP1 FPTAN FPATAN Cother FNOP 1	FRINDINI		17	17						22		
FXTRACT FSQRT FSIN FCOS FCOS FSINCOS F2XM1 FYL2X FYL2XP1 FPTAN FPATAN Other FNOP 17 17 17 10 10 10-24 47-100 47-100 47-115 43-123 61-69 130 93-146												
FSQRT FSIN FCOS FCOS FSINCOS F2XM1 FYL2X FYL2XP1 FPTAN FPATAN Other FNOP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I											
FSIN 64-100 x 20-110 x 47-100 47-115 FSINCOS 20-110 x 53-118 x 61-69 FYL2X FYL2XP1 FPTAN 102 102 130 FPATAN 28-91 x 93-146 FNOP 1 1 1 1 1 1			17									
FCOS				1	1							
FSINCOS F2XM1 FYL2X FYL2XP1 FPTAN FPATAN Other FNOP 20-110 x 53-118 x 43-123 61-69 130 93-146				Х						47-100		
F2XM1 53-118 x 61-69 FYL2X 102 102 130 FPTAN 28-91 x 93-146 Other 1 1 1 FNOP 1 1 1	FCOS		20-110	Х						47-115		
FYL2X FYL2XP1 FPTAN FPATAN 102 102 28-91 x Other FNOP 1 1 1 1 1 1 1	FSINCOS		20-110	Х						43-123		
FYL2XP1 FPTAN 102 102 28-91 X Other FNOP 102 102 102 102 102 102 102 102 102 102 102 102 102 102 103 104 105 106 107 108 109 100<	F2XM1		53-118	Х						61-69		
FPTAN 102 102 28-91 x 130 93-146 Other 1 1 1 1 1	FYL2X											
PPATAN 28-91 x 93-146 Other 1 1 1	FYL2XP1											
Other 1 1 1 FNOP 1 1 1	FPTAN		102	102						130		
FNOP 1 1 1 1 1 1 1	FPATAN		28-91	X						93-146		
WAIT					1							
	WAIT		2	2							1	

FNCLEX	5	5			22	
FNINIT	26	26			81	

Integer MMX and XMM instructions

Instruction	Operands	μops	μops	un	fuse	ed d	oma	in	Latency	Reci-	Com-
		fused do- main	p015	p0	p1	р5	p23	p4		procal through- put	ments
Move instructions											
MOVD	r32/64,(x)mm	1	1	Х	Х	Х			1		
MOVD	m32/64,(x)mm	1					1	1	3	1	
MOVD	(x)mm,r32/64	1	1	Х	Х	Х			1		
MOVD	(x)mm,m32/64	1					1		3	0.5	
MOVQ	(x)mm,(x)mm	1	1	Х	Х	Х			1		
MOVQ	(x)mm,m64	1					1		3	0.5	
MOVQ	m64, (x)mm	1					1	1	3	1	
MOVDQA	x,x	1	1	Х	Х	Х			1		
MOVDQA	x, m128	1					1		3	0.5	
MOVDQA	m128, x	1					1	1	3	1	
MOVDQU	x, m128	1	1				1		3	0.5	
MOVDQU	m128, x	1	1				1	1	3	1	
LDDQU	x, m128	1	1				1		3	0.5	SSE3
MOVDQ2Q	mm, x	2	2						1	1	
MOVQ2DQ	x,mm	1	1						1		
MOVNTQ	m64,mm	1					1	1	~300	1	
MOVNTDQ	m128,x	1					1	1	~300		
MOVNTDQA	x, m128	1					1			0.5	SSE4.
PACKSSWB/DW											
PACKUSWB	mm,mm	1	1						1	1	
PACKSSWB/DW											
PACKUSWB	mm,m64	1	1		1		1				
PACKSSWB/DW											
PACKUSWB	X,X	1	1	Х		Х			1	0.5	
PACKSSWB/DW											
PACKUSWB	x,m128	1	1	Х		Х	1			0.5	
PACKUSDW	X,X	1	1	Х		Х			1	0.5	SSE4.1
PACKUSDW	x,m	1	1	Х		Х	1			0.5	SSE4.1
PUNPCKH/LBW/WD/DQ	(x)mm,(x)mm	1	1	Х		Х			1	0.5	
PUNPCKH/LBW/WD/DQ	(x)mm,m	1	1	Х		Х	1			0.5	
PUNPCKH/LQDQ	X,X	1	1	Х		Х			1	0.5	
PUNPCKH/LQDQ	x, m128	2	1	Х		Х	1			0.5	
PMOVSX/ZXBW	x,x	1	1	Х		Х			1	0.5	SSE4.1
PMOVSX/ZXBW	x,m64	1	1	Х		Х	1			0.5	SSE4.1
PMOVSX/ZXBD	x,x	1	1	Х		Х			1	0.5	SSE4.1
PMOVSX/ZXBD	x,m32	1	1	Х		Х	1			0.5	SSE4.1
PMOVSX/ZXBQ	x,x	1	1	Х		Х			1	0.5	SSE4.1
PMOVSX/ZXBQ	x,m16	1	1	Х		Х	1			0.5	SSE4.1
PMOVSX/ZXWD	x,x	1	1	Х		Х			1	0.5	SSE4.
PMOVSX/ZXWD	x,m64	1	1	Х		Х	1			0.5	SSE4.1
PMOVSX/ZXWQ	x,x	1	1	Х		Х			1	0.5	SSE4.1
PMOVSX/ZXWQ	x,m32	1	1	Х		Х	1			0.5	SSE4.1
PMOVSX/ZXDQ	X,X	1	1	Х		Х			1	0.5	SSE4.1

			,								
PMOVSX/ZXDQ	x,m64	1	1	х		х	1			0.5	SSE4.1
PSHUFB	(x)mm,(x)mm	1	1	х		х			1	0.5	SSSE3
PSHUFB	(x)mm,m	2	1	Х		х	1			0.5	SSSE3
PSHUFW	mm,mm,i	1	1	х		х			1	0.5	
PSHUFW	mm,m64,i	2	1	Х		х	1			0.5	
PSHUFD	xmm,x,i	1	1	Х		х			1	0.5	
PSHUFD	x,m128,i	2	1	х		х	1			0.5	
PSHUFL/HW	x,x,i	1	1	х		х			1	0.5	
PSHUFL/HW	x, m128,i	2	1	x		х	1			0.5	
PALIGNR	(x)mm,(x)mm,i	1	1	х		х			1	0.5	SSSE3
PALIGNR	(x)mm,m,i	2	1	х		х	1			0.5	SSSE3
PBLENDVB	x,x,xmm0	2	2	1		1			2	1	SSE4.1
PBLENDVB	x,m,xmm0	3	2	1		1	1		_	1	SSE4.1
PBLENDW	x,x,i	1	1	X		X	-		1	0.5	SSE4.1
PBLENDW	x,m,i	2	1	X		Х	1		•	0.5	SSE4.1
MASKMOVQ	mm,mm	4	1	1			2	1		1	002
MASKMOVDQU	x,x	10	4				4	X		6	
PMOVMSKB	r32,(x)mm	1	1	1			_	^	2	1	
PEXTRB	r32,x,i	2	2	X	х	х			2	1	SSE4.1
PEXTRB	m8,x,i	2	1	X	^	X	1	1		1	SSE4.1
PEXTRW	r32,(x)mm,i	2	2	x		X	'	•	2	1	30L4.1
PEXTRW	m16,(x)mm,i	2	1	x		X	1	1	۷	2	SSE4.1
PEXTRD	r32,x,i	2	2	x	х	X	'	'	2	1	SSE4.1
PEXTRD	m32,x,i	3	2	X	^	X	1	1	2	1	SSE4.1
PEXTRO	r64,x,i	2	2	X	x		1	'	2	1	SSE4.1,
PEXTRQ	m64,x,i	3	2		^	X	1	1	2	1	64b
PINSRB	x,r32,i	2	2	X			1	'	2	1	SSE4.1
PINSRB	x,132,1 x,m8,i	2	1			X	1		2	0.5	SSE4.1
PINSRW		2	2	X		X	1		2	1	33E4.1
PINSRW	(x)mm,r32,i (x)mm,m16,i	2	1	X		X	1		2	0.5	
PINSRD	x,r32,i	2	2	X		X	ı		2	1	SSE4.1
	· · ·	2	1	X		X	1		2	-	SSE4.1
PINSRD	x,m32,i	2	2	X		X	ı		2	0.5	
PINSRQ	x,r64,i	2		X		X	4		2	1	SSE4.1, 64 b
PINSRQ	x,m64,i	2	1	X		Х	1			0.5	04 0
Arithmetic instructions											
PADD/SUB(U,S)B/W/D/Q	(x)mm, (x)mm	1	1	х		х			1	0.5	
PADD/SUB(U,S)B/W/D/Q	(x)mm,m	1	1	X		X	1		•	0.5	
PHADD/SUB(S)W/D	(x)mm, (x)mm	3	3	X		X	'		2	1,5	SSSE3
PHADD/SUB(S)W/D	(x)mm,m64	4	3	X		X	1			1,5	SSSE3
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1	X		X	'		1	0.5	OOOLO
PCMPEQ/GTB/W/D	(x)mm,m	1	1	X		X	1		'	0.5	
PCMPEQQ	X,X	1	1	X		X	'		1	0.5	SSE4.1
PCMPEQQ	x,m128	1	1	x		X	1		ı	0.5	SSE4.1
PCMPGTQ	X,111120	1	1	1		^	'		5	1	SSE4.2
PCMPGTQ	x,m128	1	1	1			1		5	1	SSE4.2
PSUBxx, PCMPGTx	x,iii126	1	0	'			'		0	0.25	33L4.2
PCMPEQx	x,same	1	1						0	0.25	
PMULL/HW PMULHUW	· ·	1	1		1				5	1	
PMULL/HW PMULHUW	(x)mm,(x)mm	1	1		1		1		Ü	1	
	(x)mm,m	-		4	I		'		5		CCCT2
PMULHRSW	(x)mm,(x)mm	1	1	1			1		Э	1 1	SSSE3 SSSE3
PMULHRSW	(x)mm,m	1	1	1			'		E		
PMULLD	X,X	1	1	1					5	1	SSE4.1

I=	1	1 _	1 .		1	1		I	1 .	1
PMULLD	x,m128	2	1	1			1	_	1	SSE4.1
PMULDQ	X,X	1	1	1				5	1	SSE4.1
PMULDQ	x,m128	1	1	1			1		1	SSE4.1
PMULUDQ	(x)mm,(x)mm	1	1	1				5	1	
PMULUDQ	(x)mm,m	1	1	1			1		1	
PMADDWD	(x)mm,(x)mm	1	1	1				5	1	
PMADDWD	(x)mm,m	1	1	1			1		1	
PMADDUBSW	(x)mm,(x)mm	1	1	1				5	1	SSSE3
PMADDUBSW	(x)mm,m	1	1	1			1		1	SSSE3
PAVGB/W	(x)mm,(x)mm	1	1	x		х		1	0.5	
PAVGB/W	(x)mm,m	1	1	x		х	1		0.5	
PMIN/MAXSB	x,x	1	1	x		х		1	0.5	SSE4.1
PMIN/MAXSB	x,m128	1	1	X		Х	1		0.5	SSE4.1
PMIN/MAXUB	(x)mm,(x)mm	1	1	X		X	•	1	0.5	332
PMIN/MAXUB	(x)mm,m	1	1	X		X	1	·	0.5	
PMIN/MAXSW	(x)mm,(x)mm	1	1	X		X	'	1	0.5	
PMIN/MAXSW	(x)mm,m	1	1	X		X	1	'	0.5	
PMIN/MAXUW	1 ' '	1	1	^		X		1	0.5	SSE4.1
PMIN/MAXUW	X,X	1	1				1	'	0.5	SSE4.1
	x,m	ļ -	1	X		X	ı	4		
PMIN/MAXU/SD	X,X	1	1	Х		Х		1	0.5	SSE4.1
PMIN/MAXU/SD	x,m128	1	1	X		Х	1	_	0.5	SSE4.1
PHMINPOSUW	X,X	1	1	1				5	1	SSE4.1
PHMINPOSUW	x,m128	1	1	1			1		1	SSE4.1
PABSB/W/D	(x)mm,(x)mm	1	1	X		Х		1	0.5	SSSE3
PABSB/W/D	(x)mm,m	1	1	X		Х	1		0.5	SSSE3
PSIGNB/W/D	(x)mm,(x)mm	1	1	X		Х		1	0.5	SSSE3
PSIGNB/W/D	(x)mm,m	1	1	X		Х	1		0.5	SSSE3
PSADBW	(x)mm,(x)mm	1	1	1				5	1	
PSADBW	(x)mm,m	1	1	1			1		1	
MPSADBW	x,x,i	3	3	1	1	1		6	1	SSE4.1
MPSADBW	x,m,i	4	3	1	1	1	1		1	SSE4.1
Logic instructions										
PAND(N) POR PXOR	(x)mm,(x)mm	1	1	Х	Х	Х		1		
PAND(N) POR PXOR	(x)mm,m	1	1	х	Х	х	1		0.5	
PXOR	x,same	1	0					0	0.25	
PTEST	x,x	1	1					1	1	SSE4.1
PTEST	x,m128	1	1				1		1	SSE4.1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1		1			1	1	
PSLL/RL/RAW/D/Q	mm,m64	1	1		1		1		2	
PSLL/RL/RAW/D/Q	xmm,i	1	1		1			1	1	
PSLL/RL/RAW/D/Q	x,x	2	2					2	1	
PSLL/RL/RAW/D/Q	x,m128	3	2				1	_	1	
PSLL/RLDQ	x,i	1	1					1	1	
String instructions										
PCMPESTRI	x,x,i	8	8					4	4	SSE4.2
PCMPESTRI	x,m128,i	8	7				1	, r	4	SSE4.2
PCMPESTRM	x,111120,1 x,x,i	8	8				'	11-12	4	SSE4.2
PCMPESTRM	x,m128,i	8	7				1	11-12	4	SSE4.2
PCMPISTRI	1 '	3	3					3	3	SSE4.2
	X,X,İ							٥		
PCMPISTRI	x,m128,i	4	3				1	4.4	3	SSE4.2
PCMPISTRM	x,x,i	3	3					11	3	SSE4.2

PCMPISTRM	x,m128,i	4	3		1		3	SSE4.2
Encryption instructions PCLMULQDQ AESDEC, AESDECLAST, AESENC, AESENCLAST	x,x,i	18	18			14	8	CLMUL
	X,X	2	2			8	4	AES
AESIMC	X,X	2	2				2	AES
AESKEYGENASSIST	x,x,i	11	11			8	8	AES
Other								
EMMS		31	31				18	

Instruction	Operands	μops	μops	un	fuse	ed d	oma	in	Latency	Reci-	Com-
		fused do- main	p015	p0	р1	р5	p23	p4		procal through- put	ments
Move instructions											
MOVAPS/D	x,x	1	1			1			1	1	
VMOVAPS/D	y,y	1	1			1			1	1	AVX
MOVAPS/D MOVUPS/D	x,m128	1					1		3	0.5	
VMOVAPS/D											
VMOVUPS/D	y,m256	1					1+		4	1	AVX
MOVAPS/D MOVUPS/D	m128,x	1					1	1	3	1	
VMOVAPS/D											
VMOVUPS/D	m256,y	1					1	1+	3	1	AVX
MOVSS/D	x,x	1	1			1			1	1	
MOVSS/D	x,m32/64	1					1		3	0.5	
MOVSS/D	m32/64,x	1					1	1	3	1	
MOVHPS/D MOVLPS/D	x,m64	1	1			1	1		3	1	
MOVH/LPS/D	m64,x	1	1			1	1	1	3	1	
MOVLHPS MOVHLPS	x,x	1	1			1			1	1	
MOVMSKPS/D	r32,x	1	1	1					2	1	
VMOVMSKPS/D	r32,y	1	1	1					2	1	
MOVNTPS/D	m128,x	1					1	1	~300	1	
VMOVNTPS/D	m256,y	1					1	4	~300	25	AVX
SHUFPS/D	x,x,i	1	1			1			1	1	
SHUFPS/D	x,m128,i	2	1			1	1			1	
VSHUFPS/D	y,y,y,i	1	1			1			1	1	AVX
VSHUFPS/D	y, y,m256,i	2	1			1	1+			1	AVX
VPERMILPS/PD	x,x,x/i	1	1			1			1	1	AVX
VPERMILPS/PD	y,y,y/i	1	1			1			1	1	AVX
VPERMILPS/PD	x,x,m	2	1			1	1			1	AVX
VPERMILPS/PD	y,y,m	2	1			1	1+			1	AVX
VPERMILPS/PD	x,m,i	2	1			1	1			1	AVX
VPERMILPS/PD	y,m,i	2	1			1	1+			1	AVX
VPERM2F128	y,y,y,i	1	1			1			2	1	AVX
VPERM2F128	y,y,m,i	2	1			1	1+			1	AVX
BLENDPS/PD	x,x,i	1	1	х		Х			1	0.5	SSE4
BLENDPS/PD	x,m128,i	2	1	х		Х	1			0.5	SSE4.
VBLENDPS/PD	y,y,i	1	1	Х		Х			1	1	AVX

			,								
VBLENDPS/PD BLENDVPS/PD BLENDVPS/PD VBLENDVPS/PD VBLENDVPS/PD MOVDDUP MOVDDUP VMOVDDUP VMOVDDUP VBROADCASTSS VBROADCASTSS VBROADCASTSD VBROADCASTF128 MOVSH/LDUP VMOVSH/LDUP VMOVSH/LDUP VMOVSH/LDUP VMOVSH/LDUP UNPCKH/LPS/D VUNPCKH/LPS/D VUNPCKH/LPS/D VUNPCKH/LPS/D EXTRACTPS EXTRACTPS VEXTRACTF128	y,m256,i x,x,xmm0 x,m,xmm0 y,y,y,y y,y,m,y x,x x,m64 y,y y,m256 x,m32 y,m32 y,m64 y,m128 x,x x,m128 y,y y,m256 x,x x,m128 y,y,y y,m256 x,x x,m128 y,y,y	2 2 3 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 1	x	? ?	x x x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1+ 1 1+ 1 1 1 1 1+ 1 1+ 1	1	2 1 3 1 3 1 4 1 1 2	1 1 1 1 0.5 1 1 1 1 0.5 1 1 1 1 1 1 1 1 1	AVX SSE4.1 SSE4.1 AVX AVX SSE3 SSE3 AVX AVX AVX AVX SSE3 SSE3 AVX AVX SSE3 SSE3 AVX AVX SSE3 AVX AVX SSE4.1 SSE4.1 AVX
VEXTRACTF128	m128,y,i	2	1			'	1	1		1	AVX
INSERTPS	x,x,i	1	1			1		•	1	1	SSE4.1
INSERTPS	x,m32,i	2	1			1	1		-	1	SSE4.1
VINSERTF128	y,y,x,i	1	1			1			2	1	AVX
VINSERTF128	y,y,m128,i	2	1			1	1			1	AVX
VMASKMOVPS/D	x,x,m128	3	2				1			1	AVX
VMASKMOVPS/D	y,y,m256	3	2				1+			1	AVX
VMASKMOVPS/D	m128,x,x	4	2				1	1		1	AVX
VMASKMOVPS/D	m256,y,y	4	2				1	1+		2	AVX
Conversion		_									
CVTPD2PS	X,X	2	2		1	1	4		4	1	
CVTPD2PS VCVTPD2PS	x,m128	2 2	2 2	?	1	?	1		4	1	A\/\
VCVTPD2PS VCVTPD2PS	x,y x,m256	2	2	?	1	1 ?	1+		4	1	AVX AVX
CVTSD2SS	X,111256 X,X	2	2	'	1	1	' -		3	1	71/
CVTSD2SS	x,m64	2	2		1	1	1		Ŭ	1	
CVTPS2PD	x,x	2	2	1	•	1			3	1	
CVTPS2PD	x,m64	2	2	1		1	1			1	
VCVTPS2PD	y,x	2	2	1		1			4	1	AVX
VCVTPS2PD	y,m128	3	3	?	?	1	1		_	1	AVX
CVTSS2SD	X,X	2	2	1		1			3	1	
CVTSS2SD CVTDQ2PS	x,m32	2	1	1	1		1		3	1	
CVTDQ2PS CVTDQ2PS	x,x x,m128	1	1		1		1		J	1	
VCVTDQ2PS	y,y	1	1		1		'		3	1	AVX
VCVTDQ2PS	y,m256	1	1		1		1+		•	1	AVX
CVT(T) PS2DQ	x,x	1	1		1				3	1	
CVT(T) PS2DQ	x,m128	1	1		1		1			1	

h	I	1 .	1 .	ı	1 .	ı	1 1	1 _		
VCVT(T) PS2DQ	y,y	1	1		1			3	1	AVX
VCVT(T) PS2DQ	y,m256	1	1		1		1+		1	AVX
CVTDQ2PD	X,X	2	2		1	1		4	1	
CVTDQ2PD	x,m64	2	2		1	1	1		1	
VCVTDQ2PD	y,x	2	2		1	1		5	1	AVX
VCVTDQ2PD	y,m128	3	2		1	1	1	Ū	1	AVX
CVT(T)PD2DQ	x,x	2	2		1	1	'	4	1	7.07.
1 ' '	· ·	2	2		-		1	7	1	
CVT(T)PD2DQ	x,m128				1	1	ı	_		A \ /\/
VCVT(T)PD2DQ	x,y	2	2		1	1		5	1	AVX
VCVT(T)PD2DQ	x,m256	2	2		1	1	1+		1	AVX
CVTPI2PS	x,mm	1	1		1			4	2	
CVTPI2PS	x,m64	1	1		1		1		2	
CVT(T)PS2PI	mm,x	2	2	?	1	?		4	1	
CVT(T)PS2PI	mm,m128	2	1		1		1		1	
CVTPI2PD	x,mm	2	2		1	1	-	4	1	
CVTPI2PD	x,m64	2	2		1	1	1	•	1	
CVT(T) PD2PI	· ·	2	2		'	'	'	4	1	
	mm,x	2	2					4		
CVT(T) PD2PI	mm,m128						1		1	
CVTSI2SS	x,r32	2	2	?	1	?		4	1,5	
CVTSI2SS	x,m32	1	1		1		1		1,5	
CVT(T)SS2SI	r32,x	2	2	?	1	?		4	1	
CVT(T)SS2SI	r32,m32	2	2	?	1	?	1		1	
CVTSI2SD	x,r32	2	2	1	1			4	1,5	
CVTSI2SD	x,m32	1	1		1		1		1,5	
CVT(T)SD2SI	r32,x	2	2	?	1	?	•	4	1	
CVT(T)SD2SI	r32,m64	2	2	?	1	?	1	•	1	
OV1(1)3D231	132,11104		_	.	١.		'		'	
A widle we add a										
Arithmetic	-	_						0	4	
ADDSS/D SUBSS/D	X,X	1	1		1			3	1	
ADDSS/D SUBSS/D	x,m32/64	1	1		1		1		1	
ADDPS/D SUBPS/D	X,X	1	1		1			3	1	
ADDPS/D SUBPS/D	x,m128	1	1		1		1		1	
VADDPS/D VSUBPS/D	y,y,y	1	1		1			3	1	AVX
VADDPS/D VSUBPS/D	y,y,m256	1	1		1		1+		1	AVX
ADDSUBPS/D	X,X	1	1		1			3	1	SSE3
ADDSUBPS/D	x,m128	1	1		1		1		1	SSE3
VADDSUBPS/D	·	1	1		1		•	3	1	AVX
VADDSUBPS/D	y,y,y	· -	1		-		1+	3	-	
	y,y,m256	1	-		1	_	+	-	1	AVX
HADDPS/D HSUBPS/D	X,X	3	3		1	2		5	2	SSE3
HADDPS/D HSUBPS/D	x,m128	4	3		1	2	1		2	SSE3
VHADDPS/D										
VHSUBPS/D	y,y,y	3	3		1	2		5	2	AVX
VHADDPS/D										
VHSUBPS/D	y,y,m256	4	3		1	2	1+		2	AVX
MULSS MULPS	X,X	1	1	1				5	1	
MULSS MULPS	x,m	1	1	1			1		1	
VMULPS		1	1	1			'	5	1	AVX
	y,y,y						, ,	5		
VMULPS	y,y,m256	1	1	1			1+	_	1	AVX
MULSD MULPD	X,X	1	1	1				5	1	
MULSD MULPD	x,m	1	1	1			1		1	
VMULPD	y,y,y	1	1	1				5	1	AVX
VMULPD	1,1,1		_	1 .				•		
VIVIOLPD	y,y,m256	1	1	1			1+	Ü	1	AVX
DIVSS DIVPS		1 1	-	1			1+	10-14		

DIV (00 DIV (D0	I	1 4	1 ,	۰ ا	l	1		1	1011	į.
DIVSS DIVPS	x,m	1	1	1			1	0:05	10-14	4101
VDIVPS	y,y,y	3	3	2		1		21-29	20-28	AVX
VDIVPS	y,y,m256	4	3	2		1	1+		20-28	AVX
DIVSD DIVPD	X,X	1	1	1				10-22	10-22	
DIVSD DIVPD	x,m	1	1	1			1		10-22	
VDIVPD	y,y,y	3	3	2		1		21-45	20-44	AVX
VDIVPD	y,y,m256	4	3	?	?	?	1+		20-44	AVX
RCPSS/PS	X,X	1	1	1				5	1	
RCPSS/PS	x,m128	1	1	1			1		1	
VRCPPS	y,y	3	3	2		1		7	2	AVX
VRCPPS	y,m256	4	3				1+		2	AVX
CMPccSS/D CMPccPS/D	, , , , , ,									
	X,X	1	1		1			3	1	
CMPccSS/D CMPccPS/D	λ,λ				•					
CIVII GOCO/B CIVII COI C/B	x,m128	2	1		1		1		1	
VCMPccPS/D	у,у,у	1	1		1			3	1	AVX
VCMPccPS/D	y,y,y y,y,m256	2	1		1		1+		1	AVX
COMISS/D UCOMISS/D		2	2	1	1		' '	2	1	71/
COMISS/D UCOMISS/D	X,X	2	2	1	1				1	
	x,m32/64			'			1	2		
MAXSS/D MINSS/D	X,X	1	1		1			3	1	
MAXSS/D MINSS/D	x,m32/64	1	1		1		1		1	
MAXPS/D MINPS/D	X,X	1	1		1			3	1	
MAXPS/D MINPS/D	x,m128	1	1		1		1	_	1	
VMAXPS/D VMINPS/D	y,y,y	1	1		1			3	1	AVX
VMAXPS/D VMINPS/D	y,y,m256	1	1		1		1+		1	AVX
ROUNDSS/SD/PS/PD	x,x,i	1	1		1			3	1	SSE4.1
ROUNDSS/SD/PS/PD	x,m128,i	2	1		1		1		1	SSE4.1
VROUNDSS/SD/PS/PD	y,y,i	1	1		1			3	1	AVX
VROUNDSS/SD/PS/PD	y,m256,i	2	1		1		1+		1	AVX
DPPS	x,x,i	4	4	1	2	1		12	2	SSE4.1
DPPS	x,m128,i	6	5				1		4	SSE4.1
VDPPS	y,y,y,i	4	4	1	2	1		12	2	AVX
VDPPS	y,m256,i	6	5				1+		4	AVX
DPPD	x,x,i	3	3	1	1	1		9	2	SSE4.1
DPPD	x,m128,i	4	3				1		2	SSE4.1
Math				_				40.44	10.44	
SQRTSS/PS	X,X	1	1	1				10-14	10-14	
SQRTSS/PS	x,m128	1	1	1			1		10-14	A > 0 :
VSQRTPS	y,y	3	3						21-28	AVX
VSQRTPS	y,m256	4	3				1+		21-28	AVX
SQRTSD/PD	X,X	1	1	1				10-21	10-21	
SQRTSD/PD	x,m128	2	1	1			1		10-21	
VSQRTPD	y,y	3	3					21-43	21-43	AVX
VSQRTPD	y,m256	4	3				1+		21-43	AVX
RSQRTSS/PS	X,X	1	1	1				5	1	
RSQRTSS/PS	x,m128	1	1	1			1		1	
VRSQRTPS	y,y	3	3					7	2	AVX
VRSQRTPS	y,m256	4	3				1+		2	AVX
Logic										
AND/ANDN/OR/XORPS/PD	X,X	1	1			1		1	1	
AND/ANDN/OR/XORPS/PD	x,m128	1	1			1	1		1	

VAND/ANDN/OR/XORPS/ PD	y,y,y	1	1			1			1	1	AVX
VAND/ANDN/OR/XORPS/											
PD	y,y,m256	1	1			1	1+			1	AVX
(V)XORPS/PD	x/y,x/y,same	1	0						0	0.25	
Other											
VZEROUPPER		4							2	1	AVX
											AVX,
VZEROALL		12								11	32 bit
											AVX,
VZEROALL		20								9	64 bit
LDMXCSR	m32	3	3				1			3	
STMXCSR	m32	3	3	?	?	1	1	1		1	
VSTMXCSR	m32	3	3	?	?	1	1	1		1	AVX
FXSAVE	m4096	130								68	
FXRSTOR	m4096	116								72	
XSAVEOPT	m	100-16	1						60-500		

Intel Ivy Bridge

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm

register, (x)mm = mmx or xmm register, y = 256 bit ymm register, same = same register for both operands. m = memory operand, m32 = 32-bit memory

operand, etc.

μops fused domain: The number of μops at the decode, rename, allocate and retirement stages in

the pipeline. Fused µops count as one.

μορs unfused domain: The number of μορs for each execution port. Fused μορs count as two. Fused

macro-ops count as one. The instruction has μ op fusion if the sum of the numbers listed under p015 + p23 + p4 exceeds the number listed under μ ops fused domain. A number indicated as 1+ under a read or write port means a 256-bit read or write operation using two clock cycles for handling 128 bits each cycle. The port cannot receive another read or write μ op in the second clock cycle, but a read port can receive an address-calculation μ op in the second clock cycle. An x under p0, p1 or p5 means that at least one of the μ ops listed under p015 can optionally go to this port. For example, a 1 under p015 and an x under p0 and p5 means one μ op which can go to either port 0 or port 5, whichever is vacant first. A value listed under p015 but nothing under p0, p1 and p5 means that it is not known which of the three ports these μ ops go to.

p015: The total number of μops going to port 0, 1 and 5.
p0: The number of μops going to port 0 (execution units).
p1: The number of μops going to port 1 (execution units).
p5: The number of μops going to port 5 (execution units).

p23: The number of μops going to port 2 or 3 (memory read or address calculation).

p4: The number of μops going to port 4 (memory write data).

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Where hyperthreading is enabled, the use of the same execution units in the other thread leads to inferior performance. Denormal numbers, NAN's and infinity do not increase the latency. The time unit used is core clock cycles, not the reference clock cycles given by

the time stamp counter.

Reciprocal throughput: The average number of core clock cycles per instruction for a series of inde-

pendent instructions of the same kind in the same thread.

The latencies and throughputs listed below for addition and multiplication using full size YMM registers are obtained only after a warm-up period of a thousand instructions or more. The latencies may be one or two clock cycles longer and the reciprocal throughputs double the values for shorter sequences of code.

There is no warm-up effect when vectors are 128 bits wide or less.

Integer instructions

Instruction	 μορs fused	μops	un	fuse	d d	oma	in	Latency	_	Com- ments
	do- main	p015	p0	р1	р5	p23	p4		through- put	

Move instructions]										
MOV	r,i	1	1	Х	Х	Х			1	0.33	
MOV	r8/16,r8/16	1	1	Х	Х	Х			1	0.33	
MOV	r32/64,r32/64	1	1	х	х	х			0-1	0.25	may be elimin.
MOV	r8/16,m8/16	1	1	x	х	х	1		2	0.5	
MOV	r32/64,m32/64	1					1		2	0.5	
MOV	r,m	1					1		2	1	64 b abs address
MOV	m,r	1					1	1	3	1	
MOV	m,i	1					1	1		1	
MOVNTI	m,r	2					1	1	~340	1	
MOVSX MOVSXD	r,r	1	1	Х	Х	Х			1	0.33	
MOVZX	r16,r8	1	1	Х	Х	Х			1	0.33	
MOVZX	r32/64,r8	1	1	х	х	х			0-1	0.25	may be elimin.
MOVZX	r32/64,r16	1	1	x	х	х			1	0.33	
MOVSX MOVZX	r16,m8	2	1	Х	Х	Х	1		3	0.5	
MOVSX MOVZX MOVSXD	r32/64,m	1					1		2	0.5	
CMOVcc	r,r	2	2	Х	Х	Х			2	0.67	
CMOVcc	r,m	2	2	Х	Х	Х	1			~0.8	
XCHG	r,r	3	3	Х	Х	Х			2	1	
XCHG	r,m	7	x				2	3	25		implicit lock
XLAT		3	2				1		7	1	
PUSH	r	1					1	1	3	1	
PUSH	i	1					1	1		1	
PUSH	m	2					2	1		1	
PUSH	(E/R)SP	2	1	Х	Х	Х	1	1	3	1	
PUSHF(D/Q)		3	2	Х	Х	Х	1	1		1	
PUSHA(D)		19	3	Х	Х	Х	8	8		8	not 64 bit
POP	r	1					1		2	0.5	
POP	(E/R)SP	3	2	Х	Х	Х	1			0.5	
POP	m	2					2	1		1	
POPF(D/Q)		9	8	Х	Х	Х	1			18	
POPA(D)		18	10	Х	Х	Х	8			9	not 64 bit
LAHF SAHF		1	1	Х		Х			1	1	
SALC		3	3	Х	Х	Х			1	1	not 64 bit
LEA	r16,m	2	2	Х	1	Х			2-4	1	
LEA	r32/64,m	1	1	х	Х				1	0.5	1-2 components
LEA	r32/64,m	1	1		1				3	1	3 com- ponents or RIP
BSWAP	r32	1	1		1				1	1	
BSWAP	r64	2	2	х	1	Х			2	1	
PREFETCHNTA	m	1					1			43	
PREFETCHT0/1/2	m	1					1			43	
LFENCE		2								4	
MFENCE		3					1	1		36	

			y Dila	90							
SFENCE		2					1	1		6	
Arithmetic instructions											
ADD SUB	r,r/i	1	1	х	х	х			1	0.33	
ADD SUB	r,m	1	1	X	X	X	1			0.5	
ADD SUB	m,r/i	2	1	X	X	X	2	1	6	1	
ADC SBB	r,r/i	2	2	X	X	X	_	'	2	1	
ADC SBB	r,m	2	2	X	X	X	1		2	1	
ADC SBB	m,r/i	4	3	X	X	X	2	1	7-8	2	
CMP	r,r/i	1	1	X	X	X	_	'	1	0.33	
CMP	m,r/i	1	1	X	X	X	1		1	0.5	
INC DEC NEG NOT	r	1	1	X	Х	Х	_		1	0.33	
INC DEC NEG NOT	m .	3	1	X	X	X	2	1	6	1	
AAA AAS		2	2	X	1	X	_	'	4	•	not 64 bit
DAA DAS		3	3	^					4		not 64 bit
AAD		3	3						2		not 64 bit
AAM		8	8						20	8	not 64 bit
MUL IMUL	r8	1	1		1				3	1	
MUL IMUL	r16	4	4		-				4	2	
MUL IMUL	r32	3	3						4	2	
MUL IMUL	r64	2	2						3	1	
IMUL	r,r	1	1		1				3	1	
IMUL	r16,r16,i	2	2						4	1	
IMUL	r32,r32,i	1	1		1				3	1	
IMUL	r64,r64,i	1	1		1				3	1	
MUL IMUL	m8	1	1		1		1		3	1	
MUL IMUL	m16	4	3				1			2	
MUL IMUL	m32	3	2				1			2	
MUL IMUL	m64	2	1				1			2	
IMUL	r,m	1	1		1		1			1	
IMUL	r16,m16,i	2	2				1			1	
IMUL	r32,m32,i	1	1		1		1			1	
IMUL	r64,m64,i	1	1		1		1			1	
DIV	r8	11	11						19-22	9	
DIV	r16	11	11						20-24	10	
DIV	r32	10	10						19-27	11	
DIV	r64	35-57	Х						29-94	22-76	
IDIV	r8	11	11						20-23	8	
IDIV	r16	11	11						20-24	8	
IDIV	r32	9	9						19-26	8-11	
IDIV	r64	59- 134	Х						28-103	26-88	
CBW		1	1	x	х	х			1	0.33	
CWDE		1	1	Х	Х	Х			1		
CDQE		1	1	Х	Х	Х			1		
CWD		2	2	Х	х	х			1		
CDQ		1	1	х		х			1		
CQO		1	1	х		х			1	0.5	
POPCNT	r,r	1	1		1				3	1	SSE4.2
POPCNT	r,m	1	1		1		1			1	SSE4.2
CRC32	r,r	1	1		1				3	1	SSE4.2
•	•	•	•		•				. '		. 1

			y Dila	90							
CRC32	r,m	1	1		1		1				SSE4.2
Logic instructions											
AND OR XOR	r,r/i	1	1	X	Х	Х			1	0.33	
AND OR XOR	r,m	1	1	Х	Х	Х	1			0.5	
AND OR XOR	m,r/i	2	1	X	х	Х	2	1	6	1	
TEST	r,r/i	1	1	X	Х	Х			1	0.33	
TEST	m,r/i	1	1	X	Х	Х	1		-	0.5	
SHR SHL SAR	r,i	1	1	X		х			1	0.5	
SHR SHL SAR	m,i	3	1	'			2	1	1	2	
SHR SHL SAR	r,cl	2	2	1		1			1	1	
SHR SHL SAR	m,cl	5	3	•		-	2	1	-	4	
ROR ROL	r,1	2	2	X		х			1	1	short form
ROR ROL	r,i	1	1	X		X			1	0.5	
ROR ROL	m,i	4	3				2	1	-	2	
ROR ROL	r,cl	2	2	X		х	_	-	1	1	
ROR ROL	m,cl	5	3				2	1	-	4	
RCL RCR	r,1	3	3	X	х	х	_	-	2	2	
RCL RCR	r,i	8	8	X	X	X			5	5	
RCL RCR	m,i	11	8	X	X	X	2	1		6	
RCL RCR	r,cl	8	8	X	X	X	_	'	5	5	
RCL RCR	m,cl	11	8	X	X	X	2	1		6	
SHRD SHLD	r,r,i	1	1	X	^	X	_	'	1	0.5	
SHRD SHLD	m,r,i	3	3	x	х	X	2	1		2	
SHRD SHLD	r,r,cl	4	4	X	1	X	_	'	2	2	
SHRD SHLD	m,r,cl	5	4	x	1	X	2	1		4	
BT	r,r/i	1	1	X		X	_	'	1	0.5	
BT	m,r	10	9	x	х	X	1		'	5	
BT	m,i	2	1	x	^	X	1			0.5	
BTR BTS BTC	r,r/i	1	1	x		X	'		1	0.5	
BTR BTS BTC	m,r	11	8	X	х	X	2	1		5	
BTR BTS BTC	m,i	3	2	x	^	X	1	1		2	
BSF BSR	r,r	1	1	^	1	^	ļ '	'	3	1	
BSF BSR	r,m	1	1		1		1			1	
SETcc	r	1	1	x		х	'		1	0.5	
SETCC	m	2	1	x		X	1	1	'	1	
CLC		1	0	^		^	ļ '	'		0.25	
STC CMC		1	1	x	х	х			1	0.33	
CLD STD		3	3	x	X	X			'	4	
OLD STD				^	^	^					
Control transfer instructi											
JMP	short/near	1	1			1			0	2	
JMP	r	1	1			1			0	2	
JMP	m	1	1			1	1		0	2	
Conditional jump	short/near	1	1			1			0	1-2	fast if no jump
Fused arithmetic and branch		1	1			1			0	1-2	fast if no jump
J(E/R)CXZ	short	2	2	х	х	1				1-2	
LOOP	short	7	7							4-5	
LOOP(N)E	short	11	11							6	

lovu	l	ا م ا	4	ı	I	۱.	۱ ۵		l		l I
CALL	near	2	1			1	1	1		2	
CALL	r	2	1			1	1	1		2	
CALL	m	3	1			1	2	1		2	
RET		2	1			1	1			2	
RET	i	3	2	X	Х	1	1			2	
BOUND	r,m	15	13				2			7	not 64 bit
INTO		4	4	Х	Х	Х				6	not 64 bit
String instructions											
LODS		3	2	Х	Х	Х	1			1	
REP LODS		~5n							~2n		
STOS		3	1	Х	Х	Х	1	1		1	
REP STOS		many							n		worst case
REP STOS		many							1/16B		best case
MOVS		5	2	х	х	х	2	1		4	
REP MOVS		2n							n		worst case
REP MOVS		4/16B							1/16B		best case
SCAS		3	2	x	х	х	1			1	
REP SCAS		~6n	_	``			•		~2n		
CMPS		5	3	x	х	х	2			4	
REP CMPS		~8n	Ü	^			_		~2n	•	
Synchronization instructi			2	١.,	.,	.,	4	_	7		
XADD LOCK XADD	m,r	4 8	3	X	X	X	1	1 1			
	m,r		5	X	X	X	2				
LOCK ADD CMPXCHG	m,r	7	5	X	X	X	1	1	22 7		
LOCK CMPXCHG	m,r	5	3	X	X	X	2	1			
	m,r	9	6	X	X	X	2	1			
CMPXCHG8B	m,r	14	11	Х	Х	Х	2	1			
LOCK CMPXCHG8B	m,r	18	15	Х	Х	Х	2	1			
CMPXCHG16B LOCK CMPXCHG16B	m,r	22	19	X	X	X	2	1	_		
LOCK CIVII ACTIO TOD	m,r	24	21	X	Х	Х	2	1	27		
Other											
NOP / Long NOP		1	0							0.25	
PAUSE		7	7							10	
ENTER	a,0	12	9	х	х	х	2	1		8	
ENTER	a,b	45+7b							84+3b		
LEAVE		3	2	х	х	х	1			6	
XGETBV		8								9	XGETBV
CPUID		37-82							100-340		
RDTSC		21								27	
RDPMC		35								39	
RDRAND	r	13	12	x	х	х	1			104-117	RDRAND

Instruction	Operands	μορs fused	sed						Latency	Reci- procal	Com- ments
		do- main	p015	p0	p1	р5	p23	p4		through- put	
Move instructions											
FLD	r	1	1			1			1	1	
FLD	m32/64	1					1		3	1	
FLD	m80	4	2		1	1	2		5	2	
FBLD	m80	43	40				3		45	21	
FST(P)	r	1	1			1			1	1	
FST(P)	m32/m64	1					1	1	4	1	
FSTP	m80	7	3				2	2	5	5	
FBSTP	m80	243					-			252	
FXCH	r	1	0						0	0.5	
FILD	m	1	1		1		1		6	1	
FIST(P)	m	3	1		1		1	1	7	1	
FISTTP	m	3	1		1		1	<u>'</u>	7	2	SSE3
FLDZ	""	1	1		'	1	'	'	,		JOLJ
FLD1		2	2		1	1					
FLDPI FLDL2E etc.		2	2	1	1	'				2	
FCMOVcc	_	3	3	1	'	2			2	2	
l .	r AX	2	2	1					2 4		
FNSTSW		2		'	X	Х	4	,	4	1	
FNSTSW	m16	3	1			_	1	1		1	
FLDCW	m16		2			2	1			3	
FNSTCW	m16	2	1			1	1	1		1	
FINCSTP FDECSTP	_	1	1			1			1	1	
FFREE(P)	r	1	1			1				1	
FNSAVE	m	143								167	
FRSTOR	m	90								162	
Arithmetic instructions											
FADD(P) FSUB(R)(P)	r	1	1		1		١.		3	1	
FADD(P) FSUB(R)(P)	m	2	1		1		1		_	1	
FMUL(P)	r	1	1	1			١.		5	1	
FMUL(P)	m	2	1	1			1			1	
FDIV(R)(P)	r	1	1	1			١.		10-24	8-18	
FDIV(R)(P)	m	2	1	1			1			8-18	
FABS		1	1			1			1	1	
FCHS		1	1			1			1	1	
FCOM(P) FUCOM	r	1	1		1				3	1	
FCOM(P) FUCOM	m	1	1		1		1			1	
FCOMPP FUCOMPP		2	2	.	1	1			4	1	
FCOMI(P) FUCOMI(P)	r	3	3	1	1	1			5	1	
FIADD FISUB(R)	m	2	2	.	2		1			2	
FIMUL	m	2	2	1	1		1			2	
FIDIV(R)	m	2	2	1	1		1				
FICOM(P)	m	2	2		2		1			2	
FTST		1	1		1					1	
FXAM		2	2		2					2	
FPREM		28	28						21-26	12	
FPREM1		41							27-50	19	
FRNDINT		17	17						22	11	

Math								
FSCALE	25	25	Х	Χ	х	49	49	
FXTRACT	17	17	Χ	Χ	Х	10	10	
FSQRT	1	1	1			10-23	8-17	
FSIN	21-78		Х	Х	х	47-106	47-106	
FCOS	23-100		Х	Х	х	48-115	48-115	
FSINCOS	20-110		Х	Χ	Х	50-123	50-123	
F2XM1	16-23		Х	Χ	Х	~68	~68	
FYL2X	42	42	Χ	Χ	Х	90-106		
FYL2XP1	56	56	Х	Χ	Х	82		
FPTAN	102	102	Х	Χ	Х	130		
FPATAN	28-72		Х	X	х	94-150		
Other								
FNOP	1	1			1		1	
WAIT	2	2	Х	Х	1		1	
FNCLEX	5	5	Х	Χ	х		22	
FNINIT	26	26	Х	Х	Х		80	

Instruction	Operands	μοps fused	μops	un	fus	ed d	loma	in	Latency	Reci- procal through- put	Com- ments
		do- main	p015	p0	p1	р5	p23	p4			
Move instructions											
MOVD	r32/64,(x)mm	1	1	1					1	1	
MOVD	m32/64,(x)mm	1					1	1	3	1	
MOVD	(x)mm,r32/64	1	1			1			1	1	
MOVD	(x)mm,m32/64	1					1		3	0.5	
MOVQ	(x)mm,(x)mm	1	1	Х	Х	Х			1	0.33	
MOVQ	(x)mm,m64	1					1		3	0.5	
MOVQ	m64, (x)mm	1					1	1	3	1	
MOVDQA MOVDQU	x,x	1	1	Х	Х	Х			0-1	0.25	eliminat
MOVDQA MOVDQU	x, m128	1					1		3	0.5	
MOVDQA MOVDQU	m128, x	1					1	1	3	1	
LDDQU	x, m128	1	1				1		3	0.5	SSE3
MOVDQ2Q	mm, x	2	2	Х	Х	1			1	1	
MOVQ2DQ	x,mm	1	1						1	0.33	
MOVNTQ	m64,mm	1					1	1	~360	1	
MOVNTDQ	m128,x	1					1	1	~360	1	
MOVNTDQA	x, m128	1					1		3	0.5	SSE4.1
PACKSSWB/DW PACKUSWB	mm,mm	1	1	1					1	1	
PACKSSWB/DW PACKUSWB	mm,m64	1	1	1			1			1	
PACKSSWB/DW PACKUSWB	X,X	1	1		х	х			1	0.5	
PACKSSWB/DW PACKUSWB	x,m128	1	1		х	X	1		1	0.5	
PACKUSDW	X,X	1	1		Х	Х			1	0.5	SSE4.1

			,						i		
PACKUSDW	x,m	1	1		Х	Х	1			0.5	SSE4.1
PUNPCKH/LBW/WD/DQ	(x)mm,(x)mm	1	1		Х	Х			1	0.5	
PUNPCKH/LBW/WD/DQ	(x)mm,m	1	1		Х	Х	1			0.5	
PUNPCKH/LQDQ	X,X	1	1		Х	Х			1	0.5	
PUNPCKH/LQDQ	x, m128	2	1		Х	Х	1			0.5	
PMOVSX/ZXBW	X,X	1	1		Х	Х			1	0.5	SSE4.1
PMOVSX/ZXBW	x,m64	1	1		Х	Х	1			0.5	SSE4.1
PMOVSX/ZXBD	X,X	1	1		Х	Х			1	0.5	SSE4.1
PMOVSX/ZXBD	x,m32	1	1		Х	Х	1			0.5	SSE4.1
PMOVSX/ZXBQ	X,X	1	1		х	Х			1	0.5	SSE4.1
PMOVSX/ZXBQ	x,m16	1	1		х	Х	1			0.5	SSE4.1
PMOVSX/ZXWD	X,X	1	1		Х	Х			1	0.5	SSE4.1
PMOVSX/ZXWD	x,m64	1	1		х	Х	1			0.5	SSE4.1
PMOVSX/ZXWQ	X,X	1	1		х	х			1	0.5	SSE4.1
PMOVSX/ZXWQ	x,m32	1	1		х	Х	1			0.5	SSE4.1
PMOVSX/ZXDQ	x,x	1	1		х	х			1	0.5	SSE4.1
PMOVSX/ZXDQ	x,m64	1	1		х	х	1			0.5	SSE4.1
PSHUFB	(x)mm,(x)mm	1	1		Х	Х			1	0.5	SSSE3
PSHUFB	(x)mm,m	2	1		X	X	1		·	0.5	SSSE3
PSHUFW	mm,mm,i	1	1		X	X			1	0.5	COCLO
PSHUFW	mm,m64,i	2	1		X	X	1		•	0.5	
PSHUFD	xmm,x,i	1	1		X	Х	-		1	0.5	
PSHUFD	x,m128,i	2	1		X	X	1		•	0.5	
PSHUFL/HW	x,x,i	1	1		X	Х	-		1	0.5	
PSHUFL/HW	x, m128,i	2	1		Х	Х	1		-	0.5	
PALIGNR	(x)mm,(x)mm,i	1	1		х	х			1	0.5	SSSE3
PALIGNR	(x)mm,m,i	2	1		Х	Х	1		-	0.5	SSSE3
PBLENDVB	x,x,xmm0	2	2		1	1	-		2	1	SSE4.1
PBLENDVB	x,m,xmm0	3	2		1	1	1		_	1	SSE4.1
PBLENDW	x,x,i	1	1		X	X			1	0.5	SSE4.1
PBLENDW	x,m,i	2	1		X	X	1			0.5	SSE4.1
MASKMOVQ	mm,mm	4	1	1	^	^	2	1		1	OOL4.1
MASKMOVDQU	x,x	10	4	X	1	х	4	2		6	
PMOVMSKB	r32,(x)mm	1	1	1	ľ	^	•	_	2	1	
PEXTRB	r32,x,i	2	2	1	х	х			2	1	SSE4.1
PEXTRB	m8,x,i	2	1	'	X	X	1	1	_	1	SSE4.1
PEXTRW	r32,(x)mm,i	2	1	1	X	X		'	2	1	OOL4.1
PEXTRW	m16,(x)mm,i	2	1	'	X	X	1	1	_	1	SSE4.1
PEXTRD	r32,x,i	2	2	1	X	X		'	2	1	SSE4.1
PEXTRD	m32,x,i	2	1	'	X	X	1	1	_	1	SSE4.1
PEXTRQ	r64,x,i	2	2	1	X	X	'	ļ '	2	1	SSE4.1
PEXTRQ	m64,x,i	2	1	'	X	x	1	1		1	33L4.1
PINSRB	x,r32,i	2	2			x	'	ļ '	2	1	SSE4.1
PINSRB	x,132,1 x,m8,i	2	1		X	X	1			0.5	SSE4.1
PINSRW	(x)mm,r32,i	2	2		X	X	'		2	1	JJL4.1
PINSRW	(x)mm,m16,i	2	1		X	X	1			0.5	
PINSRD	x,r32,i	2	1				'		2	1	SSE4.1
PINSRD		2			X	X	1			0.5	SSE4.1
	x,m32,i		1		X	X	ı		2		
PINSRQ	x,r64,i	2	1		X	X	4			1	SSE4.1
PINSRQ	x,m64,i	2	1		Х	Х	1			0.5	SSE4.1

Arithmetic instructions	1				I	l				
PADD/SUB(U,S)B/W/D/Q	(x)mm, (x)mm	1	1		x	х		1	0.5	
PADD/SUB(U,S)B/W/D/Q	(x)mm,m	1	1		X	X	1	'	0.5	
PHADD/SUB(S)W/D	(x)mm, (x)mm	3	3		X	X	'	3	1,5	SSSE3
PHADD/SUB(S)W/D	(x)mm,m64	4	3		X	X	1	3	1,5	SSSE3
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	1		X	X	'	1	0.5	333L3
PCMPEQ/GTB/W/D	(x)mm,m	1	1		X	X	1	'	0.5	
PCMPEQQ	X,X	1	1		X	X	'	1	0.5	SSE4.1
PCMPEQQ	x,m128	1	1		X	X	1	'	0.5	SSE4.1
PCMPGTQ		1	1	1	^	^	'	5	1	SSE4.1
PCMPGTQ	x,x x,m128	1	1	1			1	ວ	1	SSE4.2 SSE4.2
PMULL/HW PMULHUW	(x)mm,(x)mm	1	1	1			!	5	1 1	33E4.2
PMULL/HW PMULHUW	(x)mm,m	1	1	1			1	5	1 1	
PMULHRSW	` '	1	1	1			!	5	1	SSSE3
	(x)mm,(x)mm	-		1 -			4	5	_	SSSE3
PMULHRSW	(x)mm,m	1	1	1			1	_	1	
PMULLD	X,X	1	1	1				5	1	SSE4.1
PMULLD	x,m128	2	1	1			1	_	1	SSE4.1
PMULDQ	X,X	1	1	1				5	1	SSE4.1
PMULDQ	x,m128	1	1	1			1	_	1	SSE4.1
PMULUDQ	(x)mm,(x)mm	1	1	1				5	1	
PMULUDQ	(x)mm,m	1	1	1			1	_	1	
PMADDWD	(x)mm,(x)mm	1	1	1				5	1	
PMADDWD	(x)mm,m	1	1	1			1	_	1	
PMADDUBSW	(x)mm,(x)mm	1	1	1				5	1	SSSE3
PMADDUBSW	(x)mm,m	1	1	1			1		1	SSSE3
PAVGB/W	(x)mm,(x)mm	1	1		Х	Х		1	0.5	
PAVGB/W	(x)mm,m	1	1		Х	Х	1		0.5	
PMIN/MAXSB	X,X	1	1		Х	Х		1	0.5	SSE4.1
PMIN/MAXSB	x,m128	1	1		Х	Х	1		0.5	SSE4.1
PMIN/MAXUB	(x)mm,(x)mm	1	1		Х	Х		1	0.5	
PMIN/MAXUB	(x)mm,m	1	1		Х	Х	1		0.5	
PMIN/MAXSW	(x)mm,(x)mm	1	1		Х	Х		1	0.5	
PMIN/MAXSW	(x)mm,m	1	1		Х	Х	1		0.5	
PMIN/MAXUW	X,X	1	1		Х	Х		1	0.5	SSE4.1
PMIN/MAXUW	x,m	1	1		Х	Х	1		0.5	SSE4.1
PMIN/MAXU/SD	x,x	1	1		Х	Х		1	0.5	SSE4.1
PMIN/MAXU/SD	x,m128	1	1		Χ	Х	1		0.5	SSE4.1
PHMINPOSUW	x,x	1	1	1				5	1	SSE4.1
PHMINPOSUW	x,m128	1	1	1			1		1	SSE4.1
PABSB/W/D	(x)mm,(x)mm	1	1		Х	Х		1	0.5	SSSE3
PABSB/W/D	(x)mm,m	1	1		Х	Х	1		0.5	SSSE3
PSIGNB/W/D	(x)mm,(x)mm	1	1		Х	Х		1	0.5	SSSE3
PSIGNB/W/D	(x)mm,m	1	1		Х	Х	1		0.5	SSSE3
PSADBW	(x)mm,(x)mm	1	1	1				5	1	
PSADBW	(x)mm,m	1	1	1			1		1	
MPSADBW	x,x,i	3	3	1	1	1		6	1	SSE4.1
MPSADBW	x,m,i	4	3	1	1	1	1		1	SSE4.1
Logic instructions										
PAND(N) POR PXOR	(x)mm,(x)mm	1	1	х	х	Х		1	0.33	
PAND(N) POR PXOR	(x)mm,m	1	1	Х	Х	Х	1		0.5	
PTEST	x,x	2	2	1	х	х		1	1	SSE4.1

PTEST	x,m128	3	2	1	х	х	1		1	SSE4.1
PSLL/RL/RAW/D/Q	mm,mm/i	1	1	1				1	1	
PSLL/RL/RAW/D/Q	mm,m64	1	1	1			1		1	
PSLL/RL/RAW/D/Q	xmm,i	1	1	1				1	1	
PSLL/RL/RAW/D/Q	X,X	2	2	1	Х	Х		2	1	
PSLL/RL/RAW/D/Q	x,m128	3	2	1	х	х	1		1	
PSLL/RLDQ	x,i	1	1		х	х		1	0.5	
String instructions										
PCMPESTRI	x,x,i	8	8	3	1	4		4	4	SSE4.2
PCMPESTRI	x,m128,i	8	7	3	1	3	1		4	SSE4.2
PCMPESTRM	x,x,i	8	8	3	1	4		12	4	SSE4.2
PCMPESTRM	x,m128,i	8	7	3	1	3	1		4	SSE4.2
PCMPISTRI	x,x,i	3	3	3				3		SSE4.2
PCMPISTRI	x,m128,i	4	3	3			1		3	SSE4.2
PCMPISTRM	x,x,i	3	3	3				11		SSE4.2
PCMPISTRM	x,m128,i	4	3	3			1		3	SSE4.2
Encryption instructions										
PCLMULQDQ	x,x,i	18	18	Х	Х	Х		14	8	CLMUL
PCLMULQDQ	x,m,i	18	17	Х	Х	Х	1		8	CLMUL
AESDEC, AESDECLAST, AESENC, AESENCLAST										
	x,x	2	2	Х	Х	1		4	1	AES
AESDEC, AESDECLAST, AESENC, AESENCLAST										
	x,m	3	2	Х	Х	1	1		1	AES
AESIMC	x,x	2	2			2		14	2	AES
AESIMC	x,m	3	2			2	1		2	AES
AESKEYGENASSIST	x,x,i	11	11	Х	Х	Х		10	8	AES
AESKEYGENASSIST	x,m,i	11	10	х	х	х	1		7	AES
Other										
EMMS		31	31						18	

Floating point XMM and YMM instructions

Instruction	Operands	μορs fused	µops	un	fus	ed d	loma	in	Latency	'	Com- ments
		do- main	p015	p0	p1	р5	p23	p4			
Move instructions											
MOVAPS/D	x,x	1	1			1			0-1	≤1	elimin.
VMOVAPS/D	y,y	1	1			1			0-1	≤1	elimin.
MOVAPS/D MOVUPS/D	x,m128	1					1		3	0.5	
VMOVAPS/D											
VMOVUPS/D	y,m256	1					1+		4	1	AVX
MOVAPS/D MOVUPS/D	m128,x	1					1	1	3	1	
VMOVAPS/D											
VMOVUPS/D	m256,y	1					1	1+	4	2	AVX
MOVSS/D	X,X	1	1			1			1	1	

		i	, .	,	1						
MOVSS/D	x,m32/64	1					1		3	0.5	
MOVSS/D	m32/64,x	1					1	1	3	1	
MOVHPS/D MOVLPS/D	x,m64	1	1			1	1		4	1	
MOVH/LPS/D	m64,x	1	1				1	1	3	1	
MOVLHPS MOVHLPS	X,X	1	1	١.		1			1	1	
MOVMSKPS/D	r32,x	1	1	1					2	1	
VMOVMSKPS/D	r32,y	1	1	1					2	1	
MOVNTPS/D	m128,x	1					1	1	~380	1	
VMOVNTPS/D	m256,y	1					1	1+	~380	2	AVX
SHUFPS/D	x,x,i	1	1			1			1	1	
SHUFPS/D	x,m128,i	2	1			1	1			1	
VSHUFPS/D	y,y,y,i	1	1			1			1	1	AVX
VSHUFPS/D	y, y,m256,i	2	1			1	1+			1	AVX
VPERMILPS/PD	x,x,x/i	1	1			1			1	1	AVX
VPERMILPS/PD	y,y,y/i	1	1			1			1	1	AVX
VPERMILPS/PD	x,x,m	2	1			1	1			1	AVX
VPERMILPS/PD	y,y,m	2	1			1	1+			1	AVX
VPERMILPS/PD	x,m,i	2	1			1	1			1	AVX
VPERMILPS/PD	y,m,i	2	1			1	1+			1	AVX
VPERM2F128	y,y,y,i	1	1			1			2	1	AVX
VPERM2F128	y,y,m,i	2	1			1	1+			1	AVX
BLENDPS/PD	x,x,i	1	1	x		Х			1	0.5	SSE4.1
BLENDPS/PD	x,m128,i	2	1	x		Х	1			0.5	SSE4.1
VBLENDPS/PD	y,y,i	1	1	x		Х			1	0.5	AVX
VBLENDPS/PD	y,m256,i	2	1	x		Х	1+			1	AVX
BLENDVPS/PD	x,x,xmm0	2	2	x		Х			2	1	SSE4.1
BLENDVPS/PD	x,m,xmm0	3	2	x		Х	1			1	SSE4.1
VBLENDVPS/PD	y,y,y,y	2	2	x		Х			2	1	AVX
VBLENDVPS/PD	y,y,m,y	3	2	×		х	1+			1	AVX
MOVDDUP	x,x	1	1			1			1	1	SSE3
MOVDDUP	x,m64	1					1		3	0.5	SSE3
VMOVDDUP	y,y	1	1			1			1	1	AVX
VMOVDDUP	y,m256	1				-	1+		3	1	AVX
VBROADCASTSS	x,m32	1					1		4	0.5	AVX
VBROADCASTSS	y,m32	2	1			1	1		5	1	AVX
VBROADCASTSD	y,m64	2	1			1	1		5	1	AVX
VBROADCASTF128	y,m128	2	1			1	1		5	1	AVX
MOVSH/LDUP	x,x	1	1			1			1	1	SSE3
MOVSH/LDUP	x,m128	1	'			'	1		3	0.5	SSE3
VMOVSH/LDUP	y,y	1	1			1			1	1	AVX
VMOVSH/LDUP	y,y y,m256	1	'			'	1+		'	1	AVX
UNPCKH/LPS/D		1	1			1	١.,		1	1	SSE3
UNPCKH/LPS/D	x,x x,m128	1	1			1	1		,	1	SSE3
VUNPCKH/LPS/D		1	1			1	'		1	1	AVX
VUNPCKH/LPS/D	y,y,y	1	1			1	1+		ı	1	AVX
	y,y,m256			,			+		0		
EXTRACTPS	r32,x,i	2	2	X		X	4		2	1	SSE4.1
EXTRACTPS	m32,x,i	3	2	X		X	1	1	•	1	SSE4.1
VEXTRACTF128	x,y,i	1	1			1	_		2	1	AVX
VEXTRACTF128	m128,y,i	2	0			_	1	1	4	1	AVX
INSERTPS	x,x,i	1	1			1			1	1	SSE4.1
INSERTPS	x,m32,i	2	1			1	1			1	SSE4.1

VINSERTF128	l vvvi	1	1	ı	l	1			2	1	AVX
VINSERTF128	y,y,x,i	2	1				1		4	1	AVX
	y,y,m128,i		1 -	X		X			•	· ·	
VMASKMOVPS/D	x,x,m128	3	2	X		Х	1		4	1	AVX
VMASKMOVPS/D	y,y,m256	3	2				1+		5	1	AVX
VMASKMOVPS/D	m128,x,x	4	2	X	Х		1	1		1	AVX
VMASKMOVPS/D	m256,y,y	4	2	Х	Х		1	1+		2	AVX
Conversion											
CVTPD2PS	X,X	2	2		1	1			4	1	
CVTPD2PS	x,m128	2	2		1	1	1			1	
VCVTPD2PS	x,y	2	2		1	1			4	1	AVX
VCVTPD2PS	x,m256	2	2		1	1	1+			1	AVX
CVTSD2SS	x,x	2	2		1	1			4	1	
CVTSD2SS	x,m64	2	2		1	1	1			1	
CVTPS2PD	x,x	2	2	1		1			1	1	
CVTPS2PD	x,m64	2	2	1			1			1	
VCVTPS2PD	y,x	2	2	1		1			4	1	AVX
VCVTPS2PD	y,m128	3	2	1		1	1			1	AVX
CVTSS2SD	x,x	2	2	1		1			2	1	
CVTSS2SD	x,m32	2	1	1			1			1	
CVTDQ2PS	x,x	1	1		1				3	1	
CVTDQ2PS	x,m128	1	1		1		1			1	
VCVTDQ2PS	y,y	1	1		1				3	1	AVX
VCVTDQ2PS	y,m256	1	1		1		1+			1	AVX
CVT(T) PS2DQ	x,x	1	1		1				3	1	
CVT(T) PS2DQ	x,m128	1	1		1		1			1	
VCVT(T) PS2DQ	, y,y	1	1		1				3	1	AVX
VCVT(T) PS2DQ	y,m256	1	1		1		1+			1	AVX
CVTDQ2PD	x,x	2	2		1	1	-		4	1	
CVTDQ2PD	x,m64	2	2		1	1	1			1	
VCVTDQ2PD	y,x	2	2		1	1	ľ		5	1	AVX
VCVTDQ2PD	y,m128	2	2		1	1	1		Ū	1	AVX
CVT(T)PD2DQ	x,x	2	2		1	1	'		4	1	
CVT(T)PD2DQ	x,m128	2	2		1	1	1		-	1	
VCVT(T)PD2DQ	x,y	2	2		1	1	'		5	1	AVX
VCVT(T)PD2DQ	x,m256	2	2		1	1	1+		3	1	AVX
CVTPI2PS	x,mm	1	1		1	'	'''		4	l l	^\/
CVTPI2PS	x,m64	1	1		1		1		7	3	
CVT(T)PS2PI	mm,x	2	2		1	1	'		4	1	
CVT(T)PS2PI	mm,m128	2	1		1	'	1		4	1	
CVT(T)F32FT CVTPI2PD	x,mm	2	2		1	1	ı		4	1	
CVTP12PD	x,m64	2	2		1	1	1		7	1	
CVT(T) PD2PI	· ·	2	2		1	1	'		4	1	
CVT(T) PD2PI	mm,x mm,m128	2	2		1	1	1		4	1	
CVT(1) FD2F1	x,r32	2	2		1	1	ı		4	3	
CVTSI2SS CVTSI2SS	x,m32	1	1		1	'	1		4	3	
CVT(T)SS2SI	r32,x	2	2	1			'		4	1	
CVT(T)SS2SI CVT(T)SS2SI	r32,m32	2	2	1	1		1		4	1	
CVT(1)55251 CVTSI2SD	x,r32	2	2	'	1	1	'		4	3	
CVTSI2SD CVTSI2SD	x,132 x,m32	2	1		1	'	1		4	3	
CVTSI2SD CVT(T)SD2SI	r32,x	2	2	1	1				4	1	
1 ' '		2	2				1		4	1	
CVT(T)SD2SI	r32,m64		2	1	1		1			ļ I	

Ivy Bridge

1	l	1	, 	J -	ı	ĺ	1 1	1		I	l I
Arithmetic											
ADDSS/D SUBSS/D	X,X	1	1		1				3	1	
ADDSS/D SUBSS/D	x,m32/64	1	1		1		1		3		
ADDSS/D SUBPS/D		1	1		1				3		
ADDPS/D SUBPS/D	x,x x,m128	1	1		1		1		3	1	
		•			-		'		2	· •	A \ / \
VADDPS/D VSUBPS/D	y,y,y 250	1	1		1				3	1	AVX
VADDPS/D VSUBPS/D	y,y,m256	1	1		1		1+		_	1	AVX
ADDSUBPS/D	X,X	1	1		1				3	1	SSE3
ADDSUBPS/D	x,m128	1	1		1		1			1	SSE3
VADDSUBPS/D	y,y,y	1	1		1				3	1	AVX
VADDSUBPS/D	y,y,m256	1	1		1		1+			1	AVX
HADDPS/D HSUBPS/D	X,X	3	3		1	2			5	2	SSE3
HADDPS/D HSUBPS/D	x,m128	4	3		1	2	1			2	SSE3
VHADDPS/D											
VHSUBPS/D	y,y,y	3	3		1	2			5	2	AVX
VHADDPS/D											
VHSUBPS/D	y,y,m256	4	3		1	2	1+			2	AVX
MULSS MULPS	X,X	1	1	1					5	1	
MULSS MULPS	x,m	1	1	1			1			1	
VMULPS	y,y,y	1	1	1					5	1	AVX
VMULPS	y,y,m256	1	1	1			1+			1	AVX
MULSD MULPD	x,x	1	1	1					5	1	
MULSD MULPD	x,m	1	1	1			1			1	
VMULPD	у,у,у	1	1	1					5	1	AVX
VMULPD	y,y,m256	1	1	1			1+		-	1	AVX
DIVSS DIVPS	x,x	1	1	1					10-13	7	/ (/)
DIVSS DIVPS	x,m	1	1	1			1			7	
VDIVPS	у,у,у	3	3	2		1			19-21	14	AVX
VDIVPS	y,y,m256	4	3	2		1	1+		10 21	14	AVX
DIVSD DIVPD	x,x	1	1	1		'	' '		10-20	8-14	/\\/
DIVSD DIVPD	x,m	1	1	1			1		10 20	8-14	
VDIVPD	у,у, у	3	3	2		1	'		20-35	16-28	AVX
VDIVPD	y,y,y y,y,m256	4	3	2		1	1+		20-00	16-28	AVX
RCPSS/PS	y,y,111230 X,X	1	1	1		'	' '		5	10-20	^\^
RCPSS/PS	x,m128	1	1	1			1		3	1	
VRCPPS	,	3	3	2		1	'		7	2	AVX
VRCPPS	y,y v m256	4	3	2		1	1+		,	2	AVX
CMPccSS/D CMPccPS/D	y,m256	4	3	~		ı					AVA
CMPCC55/D CMPCCP5/D	V V	1	1		1				3	1	
CMDaaSS/D CMDaaDS/D	X,X	'	'		ı				3	ı	
CMPccSS/D CMPccPS/D	v m100	2	4		4		1			4	
VCMPacPC/D	x,m128		1		1		'		2	1	A \ / \
VCMPccPS/D	y,y,y	1	1		1		١,, ١		3	1	AVX
VCMPccPS/D	y,y,m256	2	1		1		1+			1	AVX
COMISS/D UCOMISS/D	X,X	2	2	1	1					1	
COMISS/D UCOMISS/D	x,m32/64	2	2	1	1		1		0	1	
MAXSS/D MINSS/D	X,X	1	1		1				3	1	
MAXSS/D MINSS/D	x,m32/64	1	1		1		1			1	
MAXPS/D MINPS/D	X,X	1	1		1				3	1	
MAXPS/D MINPS/D	x,m128	1	1		1		1			1	
VMAXPS/D VMINPS/D	y,y,y	1	1		1				3	1	AVX
VMAXPS/D VMINPS/D	y,y,m256	1	1		1		1+			1	AVX

Ivy Bridge

DOLINDSS/SD/DS/DD	l:	4	4	ı	a	l	I	ı	2	4	00544
ROUNDSS/SD/PS/PD	X,X,İ	1	1		1		1		3	1	SSE4.1
ROUNDSS/SD/PS/PD	x,m128,i	2	1				1		3	1	SSE4.1
VROUNDSS/SD/PS/PD	y,y,i	1	1		1		۱.		3	1	AVX
VROUNDSS/SD/PS/PD	y,m256,i	2	1		1		1+		40	1	AVX
DPPS	x,x,i	4	4	1	2	1			12	2	SSE4.1
DPPS	x,m128,i	6	5	1	2	2	1		4.0	4	SSE4.1
VDPPS	y,y,y,i	4	4	1	2	1			12	2	AVX
VDPPS	y,m256,i	6	5	1	2	2	1+			4	AVX
DPPD	x,x,i	3	3	1	1	1			9	1	SSE4.1
DPPD	x,m128,i	4	3	1	1	1	1			1	SSE4.1
Math											
SQRTSS/PS	X,X	1	1	1					11	7	
SQRTSS/PS	x,m128	1	1	1			1			7	
VSQRTPS	y,y	3	3	2		1			19	14	AVX
VSQRTPS	y,m256	4	3	2		1	1+			14	AVX
SQRTSD/PD	X,X	1	1	1					16	8-14	
SQRTSD/PD	x,m128	1	1	1			1			8-14	
VSQRTPD	y,y	3	3	2		1			28	16-28	AVX
VSQRTPD	y,m256	4	3	2		1	1+			16-28	AVX
RSQRTSS/PS	X,X	1	1	1					5	1	
RSQRTSS/PS	x,m128	1	1	1			1			1	
VRSQRTPS	y,y	3	3	2		1			7	2	AVX
VRSQRTPS	y,m256	4	3	2		1	1+			2	AVX
Logic											
AND/ANDN/OR/XORPS/PD	x,x	1	1			1			1	1	
AND/ANDN/OR/XORPS/PD	x,m128	1	1			1	1			1	
VAND/ANDN/OR/XORPS/											
PD	y,y,y	1	1			1			1	1	AVX
VAND/ANDN/OR/XORPS/											
PD	y,y,m256	1	1			1	1+			1	AVX
Other											
VZEROUPPER		4	0							1	AVX
VZEROALL		12	2							11	32 bit
VZEROALL		20	2							9	64 bit
LDMXCSR	m32	3	2	1		1	1		6	3	
STMXCSR	m32	3	2	1		1	1	1	7	1	
FXSAVE	m4096	130								66	
FXRSTOR	m4096	116								68	
XSAVEOPT	m	100-16	1						60-500		

Intel Haswell

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Name of instruction. Multiple names mean that these instructions have the same data.

Instructions with or without V name prefix behave the same unless otherwise noted.

Operands: i = immediate data, r = register, mm = 64 bit mmx register, x = 128 bit xmm register,

(x)mm = mmx or xmm register, y = 256 bit ymm register, v = any vector register (mmx, xmm, ymm). same = same register for both operands. m = memory operand, m32 = 32-

bit memory operand, etc.

μορs fused domain:

The number of µops at the decode, rename and allocate stages in the pipeline. Fused

μops count as one.

μορs unfused domain:

The total number of µops for all execution port. Fused µops count as two. Fused macroops count as one. The instruction has µop fusion if this number is higher than the num-

ber under fused domain. Some operations are not counted here if they do not go to any

execution port or if the counters are inaccurate.

μορs each port: The number of μορs for each execution port. p0 means a μορ to execution port 0.

p01means a μ op that can go to either port 0 or port 1. p0 p1 means two μ ops going to

port 0 and 1, respectively.

Port 0: Integer, f.p. and vector ALU, mul, div, branch

Port 1: Integer, f.p. and vector ALU

Port 2: Load Port 3: Load Port 4: Store

Port 5: Integer and vector ALU Port 6: Integer ALU, branch Port 7: Store address

Latency:

This is the delay that the instruction generates in a dependency chain. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Where hyperthreading is enabled, the use of the same execution units in the other thread leads to inferior performance. Denormal numbers, NAN's and infinity do not increase the latency. The time unit used is core clock cycles, not the reference clock cycles given by the time stamp counter.

Reciprocal throughput:

The average number of core clock cycles per instruction for a series of independent in-

structions of the same kind in the same thread.

Integer instructions

Instruction	Operands	μορs fused domain	μορs unfused domain	μορs each port	Latency	Recipro- cal through put	Comments
Move instruc- tions							
MOV	r,i	1	1	p0156		0.25	
MOV	r8/16,r8/16	1	1	p0156	1	0.25	
MOV	r32/64,r32/64	1	1	p0156	0-1	0.25	may be elim.
MOV	r8l,m	1	2	p23 p0156		0.5	
MOV	r8h,m	1	1	p23		0.5	
MOV	r16,m	1	2	p23 p0156		0.5	
MOV	r32/64,m	1	1	p23	2	0.5	all addressing modes

MOV	m,r	1	2	p237 p4	3	1	
MOV	m,i	1	2	p237 p4	3	1	
MOVNTI	m,r	2	2	p237 p4	~400	1	
MOVSX MOVZX	r,r	1	1	p0156	1	0.25	
MOVSXD		-			'		
MOVSX MOVZX	r16,m8	1	2	p23 p0156		0.5	
MOVSX MOVZX MOVSXD	r,m	1	1	p23		0.5	all other combinations
CMOVcc	r,r	2	2	2p0156	2	0.5	
CMOVcc	r,m	3	3	2p0156 p23		1	
XCHG	r,r	3	3	3p0156	2	1	
XCHG	r,m	8	8		21		implicit lock
XLAT		3	3		7	2	
PUSH	r	1	2	p237 p4	3	1	
PUSH	i	1	2	p237 p4		1	
PUSH	m	2	3	p4 2p237		1	
PUSH	stack pointer	2	3	p0156 p237 p4		1	
PUSHF(D/Q)		3	4	p1 p4 p237 p06		1	
PUSHA(D)		11	19	p . p . p=0. p00		8	not 64 bit
POP	r	1	1	p23	2	0.5	1100 0 1 510
POP	stack pointer	3	3	p23 2p0156	_	4	
POP	m	2	3	2p237 p4		1	
POPF(D/Q)	""	9	9	Ζρ237 ρ4		18	
POPA(D)		18	18			9	not 64 bit
LAHF SAHF		10	10	p06	1	1	1101 04 011
SALC		3	3	3p0156	1	1	not 64 bit
LEA	r16 m	2	2	•	4	-	16 or 32 bit
	r16,m	2		p1 p0156	4	1	address size
LEA	r32/64,m	1	1	p15	1	0.5	1 or 2 compo- nents in address
LEA	r32/64,m	1	1	p1	3	1	3 components in address
LEA	r32/64,m	1	1	p1		1	rip relative address
BSWAP	r32	1	1	p15	1	0.5	
BSWAP	r64	2	2	p06 p15	2	1	
MOVBE	r16,m16	3	3	2p0156 p23		0.5	MOVBE
MOVBE	r32,m32	2	2	p15 p23		0.5	MOVBE
MOVBE	r64,m64	3	3	2p0156 p23		0.5	MOVBE
MOVBE	m16,r16	2	3	p06 p237 p4		1	MOVBE
MOVBE	m32,r32	2	3	p15 p237 p4		1	MOVBE
MOVBE	m64,r64	3	4	p06 p15 p237 p4		1	MOVBE
PREFETCHNTA/ 0/1/2	m	1	1	p23		0.5	
LFENCE		2		none counted		4	
MFENCE		3	2	p23 p4		33	
SFENCE		2	2	p23 p4		5	
Arithmetic in- structions							
	ı		I	1			i L

ADD SUB	r,r/i	1	1	p0156	1	0.25	
ADD SUB	r,m	1	2	p0156 p23	•	0.5	
ADD SUB	m,r/i	2	4	2p0156 2p237 p4	6	1	
ADC SBB	r r/i	2	2	2p0156	2	1	
ADC SBB	r,r/i	2	3	· ·	2		
	r,m	4	6	2p0156 p23 3p0156 2p237 p4	7	1 2	
ADC SBB	m,r/i	4	0	3p0130 2p237 p4	/	2	
CMP	r,r/i	1	1	p0156	1	0.25	
CMP	m,r/i	1	2	p0156 p23	1	0.5	
INC DEC NEG NOT	r	1	1	p0156	1	0.25	
INC DEC NOT	m	3	4	p0156 2p237 p4	6	1	
NEG	m	2	4	p0156 2p237 p4	6	1	
AAA		2	2	p1 p0156	4		not 64 bit
AAS		2	2	p1 p56	6		not 64 bit
DAA DAS		3	3	p1 2p0156	4		not 64 bit
AAD		3	3	p1 2p0156	4		not 64 bit
AAM		8	8	p0 p1 p5 p6	21	8	not 64 bit
MUL IMUL	r8	1	1	p1	3	1	
MUL IMUL	r16	4	4	p1 p0156	4	2	
MUL IMUL	r32	3	3	p1 p0156	4	2	
MUL IMUL	r64	2	2	p1 p6	3	1	
MUL IMUL	m8	1	2	p1	J	1	
MUL IMUL	m16	4	5	p1 p0156 p23		2	
MUL IMUL	m32	3	4	p1 p0156 p23		2	
MUL IMUL	m64	2	3	p1 p6 p23		1	
IMUL		1	1	p1 p0 p23	3	1	
IMUL	r,r	1	2		3	1	
IMUL	r,m	2	2	p1 p23	4	1	
IMUL	r16,r16,i		1	p1 p0156	4		
	r32,r32,i	1		p1	3	1	
IMUL	r64,r64,i	1	1	p1	3	1	
IMUL	r16,m16,i	2	3	p1 p0156 p23		1	
IMUL	r32,m32,i	1	2	p1 p23		1	
IMUL	r64,m64,i	1	2	p1 p23		1	A) ()(O
MULX	r32,r32,r32	3	3	p1 2p056	4	1	AVX2
MULX	r32,r32,m32	3	4	p1 2p056 p23		1	AVX2
MULX	r64,r64,r64	2	2	p1 p6	4	1	AVX2
MULX	r64,r64,m64	2	3	p1 p6 p23	00.0=	1	AVX2
DIV	r8	9	9	p0 p1 p5 p6	22-25	9	
DIV	r16	11	11	p0 p1 p5 p6	23-26	9	
DIV	r32	10	10	p0 p1 p5 p6	22-29	9-11	
DIV	r64	36	36	p0 p1 p5 p6	32-96	21-74	
IDIV	r8	9	9	p0 p1 p5 p6	23-26	8	
IDIV	r16	10	10	p0 p1 p5 p6	23-26	8	
IDIV	r32	9	9	p0 p1 p5 p6	22-29	8-11	
IDIV	r64	59	59	p0 p1 p5 p6	39-103	24-81	
CBW		1	1	p0156	1		
CWDE		1	1	p0156	1		
CDQE		1	1	p0156	1		
CWD		2	2	p0156	1		

CDQ		1	1	p06	1		
CQO		1	1	p06	1		
POPCNT	r,r	1	1	p1	3	1	SSE4.2
POPCNT	r,m	1	2	p1 p23		1	SSE4.2
CRC32	r,r	1	1	p1	3	1	SSE4.2
CRC32	r,m	1	2	p1 p23		1	SSE4.2
	,						
Logic instruc- tions							
AND OR XOR	r,r/i	1	1	p0156	1	0.25	
AND OR XOR	r,m	1	2	p0156 p23		0.5	
AND OR XOR	m,r/i	2	4	2p0156 2p237 p4	6	1	
TEST	r r/i	1	1	p0156	1	0.25	
TEST	r,r/i	1	2	p0156 p23	1 1	0.25	
	m,r/i						
SHR SHL SAR	r,i	1	1	p06	1	0.5	
SHR SHL SAR	m,i	3	4	2p06 p237 p4	1	2	
SHR SHL SAR	r,cl	3	3	3p06	2	2	
SHR SHL SAR	m,cl	5	6	3p06 2p23 p4		4	
ROR ROL	r,1	2	2	2p06	1	1	short form
ROR ROL	r,i	1	1	p06	1	0.5	
ROR ROL	m,i	4	5	2p06 2p237 p4		2	
ROR ROL	r,cl	3	3	3p06	2	2	
ROR ROL	m,cl	5	6			4	
RCR RCL	r,1	3	3	2p06 p0156	2	2	
RCR RCL	m,1	4	6			3	
RCR RCL	r,i	8	8	p0156	6	6	
RCR RCL	m,i	11	11			6	
RCR RCL	r,cl	8	8	p0156	6	6	
RCR RCL	m,cl	11	11			6	
SHRD SHLD	r,r,i	1	1	p1	3	1	
SHRD SHLD	m,r,i	3	5			2	
SHLD	r,r,cl	4	4	p0156	3	2	
SHRD	r,r,cl	4	4	p0156	4	2	
SHRD SHLD	m,r,cl	5	7			4	
SHLX SHRX SARX	r,r,r	1	1	p06	1	0.5	BMI2
SHLX SHRX SARX	r,m,r	2	2	p06 p23		0.5	BMI2
RORX	r,r,i	1	1	p06	1	0.5	BMI2
RORX	r,m,i	2	2	p06 p23		0.5	BMI2
ВТ	r,r/i	1	1	p06	1	0.5	
BT	m,r	10	10	F		5	
BT	m,i	2	2	p06 p23		0.5	
BTR BTS BTC	r,r/i	1	1	p06	1	0.5	
BTR BTS BTC	m,r	10	11	Poo	•	5	
BTR BTS BTC	m,i	3	4	2p06 p23 p4		2	
BSF BSR	r,r	1	1	p1	3	1	
BSF BSR	r,m	1	2	p1 p23	J	1	
SETCC		1	1	p1 p23	1	0.5	
SETCC	r	2	3		ı	1	
CLC	m	1	0	p06 p237 p4		0.25	
				none			
STC		1	1	p0156		0.25	

			_				
CMC		1	1	p0156	1		
CLD STD		2	3	p15 p6		4	
LZCNT	r,r	1	1	p1	3	1	LZCNT
LZCNT	r,m	1	2	p1 p23		1	LZCNT
TZCNT	r,r	1	1	p1	3	1	BMI1
TZCNT	r,m	1	2	p1 p23		1	BMI1
ANDN	r,r,r	1	1	p15	1	0.5	BMI1
ANDN	r,r,m	1	2	p15 p23	1	0.5	BMI1
BLSI BLSMSK BLSR	r,r	1	1	p15	1	0.5	BMI1
BLSI BLSMSK BLSR	r,m	1	2	p15 p23		0.5	BMI1
BEXTR	r,r,r	2	2	2p0156	2	0.5	BMI1
BEXTR	r,m,r	3	3	2p0156 p23		1	BMI1
BZHI	r,r,r	1	1	p15	1	0.5	BMI2
BZHI	r,m,r	1	1	p15 p23	-	0.5	BMI2
PDEP	r,r,r	1	1	p1	3	1	BMI2
PDEP	r,r,m	1	2	p1 p23		1	BMI2
PEXT	r,r,r	1	1	p1	3	1	BMI2
PEXT	r,r,m	1	2	p1 p23		1 1	BMI2
	.,.,	'	_	p : p20			Biviiz
Control transfer	instructions						
JMP	short/near	1	1	p6		1-2	
JMP	r	1	1	p6		2	
JMP	m	1	2	p23 p6		2	
Conditional jump	short/near	1	1	p6		1-2	predicted taken
Conditional jump	short/near	1	1	p06		0.5-1	predicted not taken
Fused arithmetic and branch		1	1	р6		1-2	predicted taken
Fused arithmetic and branch		1	1	p06		0.5-1	predicted not taken
J(E/R)CXZ	short	2	2	p0156 p6		0.5-2	
LOOP	short	7	7			5	
LOOP(N)E	short	11	11			6	
CALL	near	2	3	p237 p4 p6		2	
CALL	r	2	3	p237 p4 p6		2	
CALL	m	3	4	2p237 p4 p6		3	
RET		1	2	p237 p6		1	
RET	i	3	4	p23 2p6 p015		2	
BOUND	r,m	15	15	P - P - P - P - P - P - P - P - P - P		8	not 64 bit
INTO	,	4	4			5	not 64 bit
String instruc- tions							
LODSB/W		3	3	2p0156 p23		1	
LODSD/Q		2	2	p0156 p23		1	
REP LODS		5n+12				~2n	
STOS		3	3	p23 p0156 p4		1	
REP STOS		<2n				~0.5n	worst case

REP STOS		2.6/32B				1/32B	best case aligned by 32
MOVS		5	5	2p23 p4 2p0156		4	,
REP MOVS		~2n		' ' '		~1.5 n	worst case
REP MOVS		4/32B				1/32B	best case
		_	_				aligned by 32
SCAS		3	3	p23 2p0156		1	
REP SCAS		≥6n				≥2n	
CMPS		5	5	2p23 3p0156		4	
REP CMPS		≥8n				≥2n	
Synchronization	instructions						
XADD	m,r	4	5			7	
LOCK XADD	m,r	9	9			19	
LOCK ADD	m,r	8	8			19	
CMPXCHG	m,r	5	6			8	
LOCK CMPXCHG	m,r	10	10			19	
CMPXCHG8B	m,r	15	15			9	
LOCK CMPXCHG8B	m,r	19	19			19	
CMPXCHG16B	m,r	22	22			15	
LOCK CMPXCHG16B	m,r	24	24			25	
Other							
NOP (90)		1	0	none		0.25	
Long NOP (0F 1F)		1	0	none		0.25	
PAUSE		5	5	205 206		9	
ENTER	2.0	12	12	p05 3p6		8	
	a,0				07.06	0	
ENTER	a,b	~14+7b	~45+7b	0-0450 -00	~87+2b	0	
LEAVE		3	3	2p0156 p23	100.050	6	
CPUID		34-69	34-116		100-250	100-250	VOETOV.
XGETBV		8	8			9	XGETBV
RDTSC		15	15			24	
RDPMC		34	34			37	
RDRAND	r	17	17	p23 16p0156		~320	RDRAND

Floating point x87 instructions

Instruction	Operands	μορs fused domain	μορs unfused domain	μops each port	Latency	Recipro- cal through put	Comments
Move instruc-							
tions							
FLD	r	1	1	p01	1	0.5	
FLD	m32/64	1	1	p23	3	0.5	
FLD	m80	4	4	2p01 2p23	4	2	
FBLD	m80	43	43		47	22	
FST(P)	r	1	1	p01	1	0.5	
FST(P)	m32/m64	1	2	p4 p237	4	1	
FSTP	m80	7	7	3p0156 2p23 2p4	1	5	
FBSTP	m80	238	226			265	

FXCH	r	2	0	none	0	0.5	
FILD	m	1	2	p01 p23	6	1	
FIST(P)	m	3	3	p1 p23 p4	7	1	
FISTTP	m	3	3	p1 p23 p4	7	2	SSE3
	111				'		SSES
FLDZ		1	1	p01		1	
FLD1		2	2	2p01		2	
FLDPI FLDL2E et	c.	2	2	2p01		2	
FCMOVcc	r	3	3	2p0 p5	2	2	
FNSTSW	AX	2	2	p0 p0156		1	
FNSTSW	m16	2	3	p0 p4 p237	6	1	
FLDCW	m16	3	3	p01 p23 p6	7	2	
FNSTCW	m16	2	3	p237 p4 p6		1	
FINCSTP FDECS		1	1		0	0.5	
				p01	0		
FFREE(P)	r	1	1	p01		0.5	
FNSAVE	m	147	147			150	
FRSTOR	m	90	90			164	
Arithmetic in-							
structions							
FADD(P)							
FSUB(R)(P)	r	1	1	p1	3	1	
FADD(P)							
FSUB(R)(P)	m	1	2	p1 p23		1	
FMUL(P)	r	1	1	p0	5	1	
FMUL(P)	m	1	2	p0 p23		1	
FDIV(R)(P)	r	1	1	p0	10-24	8-18	
FDIV(R)(P)	m	1	2	p0 p23		8-18	
FABS		1	1	p0	1	1	
FCHS		1	1	p0	1	1	
FCOM(P) FUCOM	r	1	1	p1	•	1	
, ,							
FCOM(P) FUCOM	m m	1	1	p1 p23		1	
FCOMPP FUCON		2	2	2p01		1	
FCOMI(P) FUCOI		3	3	3p01		1.5	
FIADD FISUB(R)	m	2	3	2p1 p23		2	
FIMUL	m	2	3	p0 p1 p23		2	
FIDIV(R)	m	2	3	p0 p1 p23			
FICOM(P)	m	2	3	2p1 p23		2	
FTST		1	1	p1		1	
FXAM		2	2	2p1		2	
FPREM		28	28		19	13	
FPREM1		41	41		27	17	
FRNDINT		17	17		11	23	
		''	',		''		
Math							
FSCALE	1	25-75			49-125		
FXTRACT		17	17		15	11	
FSQRT		1	1	р0	10-23	8-17	
FSIN		71-100	'		47-106	5 17	
FCOS		110			112		
FSINCOS		70-120			52-123		
F2XM1		58-89			63-68		
FYL2X		55-417			58-680		
FYL2XP1		55-228			58-360		

FPTAN	110-121			130		
FPATAN	78-160			96-156		
Other						
FNOP	1 1	1	p01		0.5	
WAIT	2	2	p01		1	
FNCLEX	5	5	p0156		22	
FNINIT	26	26			83	

Integer MMX and XMM instructions

		μοps fused	μορs unfused			Recipro- cal through	
Instruction	Operands	domain	domain	µops each port	Latency	put	Comments
Move instruc- tions							
MOVD	r32/64,(x)mm	1	1	р0	1	1	
MOVD	m32/64,(x)mm	1	2	p237 p4	3	1	
MOVD	(x)mm,r32/64	1	1	p5	1	1	
MOVD	(x)mm,m32/64	1	1	p23	3	0.5	
MOVQ	r64,(x)mm	1	1	p0	1	1	
MOVQ	(x)mm,r64	1	1	p5	1	1	
MOVQ	(x)mm,(x)mm	1		p015	1	0.33	
MOVQ	(x)mm,m64	1	1	p23	3	0.5	
MOVQ	m64, (x)mm	1	2	p237 p4	3	1	
MOVDQA/U	x,x	1	1	p015	0-1	0.33	may be elim.
MOVDQA/U	x, m128	1	1	p23	3	0.5	
MOVDQA/U	m128, x	1	2	p237 p4	3	1	
	,						AVX
VMOVDQA/U	y,y	1	1	p015	0-1	0.33	may be elim.
VMOVDQA/U	y,m256	1	1	p23	3	1	AVX
VMOVDQA/U	m256,y	1	2	p237 p4	4	1	AVX
LDDQU	x, m128	1	1	p23	3	0.5	SSE3
MOVDQ2Q	mm, x	2	2	p01 p5	1	1	
MOVQ2DQ	x,mm	1	1	p015	1	0.33	
MOVNTQ	m64,mm	1	2	p237 p4	~400	1	
MOVNTDQ	m128,x	1	2	p237 p4	~400	1	
VMOVNTDQ	m256,y		2	p237 p4	~400	1	AVX2
MOVNTDQA	x, m128	1	1	p23	3	0.5	SSE4.1
VMOVNTDQA	y,m256	1	1	p23	3	0.5	AVX2
PACKSSWB/DW PACKUSWB	1 -	3	3	p5	2	2	
PACKSSWB/DW PACKUSWB	mm,m64	3	3	p23 2p5		2	
PACKSSWB/DW PACKUSWB	x,x / y,y,y	1	1	p5	1	1	
PACKSSWB/DW				-			
PACKUSWB	x,m / y,y,m	1	2	p23 p5		1	
PACKUSDW	x,x / y,y,y	1	1	p5	1	1	SSE4.1
PACKUSDW	x,m / y,y,m	1	2	p23 p5		1	SSE4.1
PUNPCKH/L BW/WD/DQ	v,v / v,v,v	1	1	p5	1	1	

PUNPCKH/L							
BW/WD/DQ	v,m / v,v,m	1	2	p23 p5		1	
PUNPCKH/L	_						
QDQ	x,x / y,y,y	1	1	p5	1	1	
PUNPCKH/L	,						
QDQ	x,m / y,y,m	2	2	p23 p5		1	
PMOVSX/ZX BW BD BQ DW DQ	X,X	1	1	p5	1	1	SSE4.1
PMOVSX/ZX BW	Α,Λ	•	•	Po	•	•	002
BD BQ DW DQ	x,m	1	2	p23 p5		1	SSE4.1
VPMOVSX/ZX BW BD BQ DW DQ	y,x	1	1	р5	3	1	AVX2
VPMOVSX/ZX BW				-F -00		4	A) ()(0
BD BQ DW DQ	y,m	2	2	p5 p23	4	1	AVX2
PSHUFB	v,v / v,v,v	1	1	p5	1	1	SSSE3
PSHUFB	v,m / v,v,m	2	2	p23 p5	4	1	SSSE3
PSHUFW	mm,mm,i	1	1	p5	1	1	
PSHUFW	mm,m64,i	2	2	p23 p5	4	1	
PSHUFD	v,v,i	1	1	p5	1	1	
PSHUFD	v,m,i	2	2	p23 p5	4	1	
PSHUFL/HW	v,v,i	1	1	p5	1	1	
PSHUFL/HW	v,m,i	2	2	p23 p5		1	
PALIGNR	v,v,i / v,v,v,i	1	1	p5	1	1	SSSE3
PALIGNR	v,m,i / v,v,m,i	2	2	p23 p5	_	1	SSSE3
PBLENDVB	x,x,xmm0	2	2	2p5	2	2	SSE4.1
PBLENDVB	x,m,xmm0	3	3	2p5 p23		1	SSE4.1
VPBLENDVB	V,V,V,V	2	2	2p5	2	2	AVX2
VPBLENDVB	v,v,m,v	3	3	2p5 p23		2	AVX2
PBLENDW	x,x,i / v,v,v,i	1	1	p5	1	1	SSE4.1
PBLENDW	x,m,i / v,v,m,i	2	2	p23 p5		1	SSE4.1
VPBLENDD	v,v,v,i	1	1	p015	1	0.33	AVX2
VPBLENDD	v,v,m,i	2	2	p015_p23	_	0.5	AVX2
VPERMD	y,y,y	1	1	p5	3	1	AVX2
VPERMD	y,y,m	1	2	p5 p23		1	AVX2
VPERMQ	y,y,i	1	1	p5	3	1	AVX2
VPERMQ	y,m,i	2	2	p5 p23	_	1	AVX2
VPERM2I128	y,y,y,i	1	1	p5	3	1	AVX2
VPERM2I128	y,y,m,i	2	2	p5 p23		1	AVX2
MASKMOVQ	mm,mm	4	4	p0 p4 2p23	13-413	1	
MASKMOVDQU	X,X	10	10	4p04 2p56 4p23	14-438	6	
VPMASKMOVD/Q	v,v,m	3	3	p23 2p5	4	2	AVX2
VPMASKMOVD/Q	m,v,v	4	4	p0 p1 p4 p23	13-14	1	AVX2
PMOVMSKB	r,v	1	1	p0	3	1	
PEXTRB/W/D/Q	r32,x,i	2	2	p0 p5	2	1	SSE4.1
PEXTRB/W/D/Q	m8,x,i	2	3	p23 p4 p5		1	SSE4.1
VEXTRACTI128	x,y,i	1	1	p5	3	1	AVX2
VEXTRACTI128	m,y,i	2	2	p23 p4	4	1	AVX2
PINSRB	x,r32,i	2	2	p5	2	2	SSE4.1
PINSRB	x,m8,i	2	2	p23 p5	_	1	SSE4.1
PINSRW	(x)mm,r32,i	2	2	p5	2	2	
PINSRW	(x)mm,m16,i	2	2	p23_p5	_	1	
PINSRD/Q	x,r32,i	2	2	p5	2	2	SSE4.1
PINSRD/Q	x,m32,i	2	2	p23 p5		1	SSE4.1
VINSERTI128	y,y,x,i	1	1	p5	3	1	AVX2

				011011			
VINSERTI128	y,y,m,i	2	2	p015 p23	4	0.5	AVX2
VPBROADCAST B/W/D/Q	x,x	1	1	p5	1	1	AVX2
VPBROADCAST B/W	x,m8/16	3	3	p01 p23 p5	5	1	AVX2
VPBROADCAST							
D/Q	x,m32/64	1	1	p23	4	0.5	AVX2
VPBROADCAST B/W/D/Q	y,x	1	1	p5	3	1	AVX2
VPBROADCAST B/W	y,m8/16	3	3	p01 p23 p5	7	1	AVX2
VPBROADCAST D/Q	y,m32/64	1	1	p23	5	0.5	AVX2
VBROADCASTI128	y,m128	1	1	p23	3	0.5	AVX2
VPGATHERDD	x,[r+s*x],x	20	20	ρ23	3	9	AVX2 AVX2
VPGATHERDD		34	34			12	AVX2 AVX2
	y,[r+s*y],y						
VPGATHERQD	x,[r+s*x],x	15	15			8	AVX2
VPGATHERQD	x,[r+s*y],x	22	22			7	AVX2
VPGATHERDQ	x,[r+s*x],x	12	12			7	AVX2
VPGATHERDQ	y,[r+s*x],y	20	20			9	AVX2
VPGATHERQQ	x,[r+s*x],x	14	14			7	AVX2
VPGATHERQQ	y,[r+s*y],y	22	22			9	AVX2
Arithmetic in-							
structions							
PADD/SUB(S,US) B/W/D/Q	v,v / v,v,v	1	1	p15	1	0.5	
PADD/SUB(S,US) B/W/D/Q	v,m / v,v,m	1	2	p15 p23		0.5	
PHADD(S)W/D PHSUB(S)W/D	v,v / v,v,v	3	3	p1 2p5	3	2	SSSE3
PHADD(S)W/D PHSUB(S)W/D	v,m / v,v,m	4	4	p1 2p5 p23		2	SSSE3
PCMPEQB/W/D PCMPGTB/W/D	v,v / v,v,v	1	1	p15	1	0.5	
PCMPEQB/W/D							
PCMPGTB/W/D	v,m / v,v,m	1	2	p15 p23		0.5	
PCMPEQQ	v,v / v,v,v	1	1	p15	1	0.5	SSE4.1
PCMPEQQ	v,m / v,v,m	1	2	p15 p23		0.5	SSE4.1
PCMPGTQ	v,v / v,v,v	1	1	p0	5	1	SSE4.2
PCMPGTQ	v,m / v,v,m	1	2	p0 p23		1	SSE4.2
PMULL/HW							
PMULHUW	v,v / v,v,v	1	1	p0	5	1	
PMULL/HW PMULHUW	v,m / v,v,m	1	2	p0 p23		1	
PMULHRSW	v,v / v,v,v	1	1	p0	5	1	SSSE3
PMULHRSW	v,v / v,v,v v,m / v,v,m	1	2	p0 p23		1	SSSE3
PMULLD		2	2		10	2	SSE4.1
PMULLD	x,x / y,y,y	3	3	2p0	10	2	SSE4.1
	x,m / y,y,m			2p0 p23	_		
PMULDQ	x,x / y,y,y	1	1	p0	5	1	SSE4.1
PMULDQ	x,m / y,y,m	1	2	p0 p23	_	1	SSE4.1
PMULUDQ	v,v / v,v,v	1	1	p0	5	1	
PMULUDQ	v,m / v,v,m	1	2	p0 p23		1	
PMADDWD	v,v / v,v,v	1	1	p0	5	1	

PMADDWD	v,m / v,v,m	1	2	p0 p23		1		
PMADDUBSW	v,v / v,v,v	1	1	p0	5	1	SSSE3	
PMADDUBSW	v,m / v,v,m	1	2	p0 p23		1	SSSE3	
PAVGB/W	v,v / v,v,v	1	1	p15	1	0.5		
PAVGB/W	v,m / v,v,m	1	2	p15 p23		0.5		
PMIN/PMAX								
SB/SW/SD								
UB/UW/UD	x,x / y,y,y	1	1	p15	1	0.5	SSE4.1	
PMIN/PMAX								
SB/SW/SD	,			4= 00			00544	
UB/UW/UD	x,m / y,y,m	1	2	p15 p23	_	0.5	SSE4.1	
PHMINPOSUW	X,X	1	1	p0	5	1	SSE4.1	
PHMINPOSUW	x,m128	1	2	p1 p23	_	1	SSE4.1	
PABSB/W/D	V,V	1	1	p15	1	0.5	SSSE3	
PABSB/W/D	v,m	1	2	p15 p23	_	0.5	SSSE3	
PSIGNB/W/D	V,V / V,V,V	1	1	p15	1	0.5	SSSE3	
PSIGNB/W/D	v,m / v,v,m	1	2	p15 p23	_	0.5	SSSE3	
PSADBW	V,V / V,V,V	1	1	p0	5	1		
PSADBW	v,m / v,v,m	1 3	2 3	p0 p23		1	00544	
MPSADBW	x,x,i / v,v,v,i	3 4	4	p0 2p5	6	2 2	SSE4.1 SSE4.1	
MPSADBW	x,m,i / v,v,m,i	4	4	p0 2p5 p23			55E4.1	
Logic instruc-								
PAND PANDN	-							
POR PXOR	v,v / v,v,v	1	1	p015	1	0.33		
PAND PANDN				•				
POR PXOR	v,m / v,v,m	1	2	p015 p23		0.5		
PTEST	V,V	2	2	p0 p5	2	1	SSE4.1	
PTEST	v,m	2	3	p0 p5 p23		1	SSE4.1	
PSLLW/D/Q								
PSRLW/D/Q								
PSRAW/D/Q	mm,mm	1	1	p0	1	1		
PSLLW/D/Q								
PSRLW/D/Q		4		0		_		
PSRAW/D/Q	mm,m64	1	2	p0 p23		1		
PSLLW/D/Q								
PSRLW/D/Q PSRAW/D/Q	x,x / v,v,x	2	2	p0 p5	2	1		
	X,X / V,V,X	2		ρυ ρυ		'		
PSLLW/D/Q PSRLW/D/Q								
PSRAW/D/Q	x,m / v,v,m	2	2	p0 p23		1		
PSLLW/D/Q	7,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	_	po p=0				
PSRLW/D/Q								
PSRAW/D/Q	v,i / v,v,i	1	1	р0	1	1		
VPSLLVD/Q				'				
VPSRAVD								
VPSRLVD/Q	V,V,V	3	3	2p0 p5	2	2	AVX2	
VPSLLVD/Q				-				
VPSRAVD								
VPSRLVD/Q	v,v,m	4	4	2p0 p5 p23		2	AVX2	
PSLLDQ								
PSRLDQ	x,i / v,v,i	1	1	p5	1	1		

String instruc- tions							
PCMPESTRI	x,x,i	8	8	6p05 2p16	11	4	SSE4.2
PCMPESTRI	x,m128,i	8	8	3p0 2p16 2p5 p23		4	SSE4.2
PCMPESTRM	x,x,i	9	9	3p0 2p16 4p5	10	5	SSE4.2
PCMPESTRM	x,m128,i	9	9	6p05 2p16 p23		5	SSE4.2
PCMPISTRI	x,x,i	3	3	3p0	11	3	SSE4.2
PCMPISTRI	x,m128,i	4	4	3p0 p23		3	SSE4.2
PCMPISTRM	x,x,i	3	3	3p0	10	3	SSE4.2
PCMPISTRM	x,m128,i	4	4	3p0 p23		3	SSE4.2
Encryption instru	uctions						
PCLMULQDQ	x,x,i	3	3	2p0 p5	7	2	CLMUL
PCLMULQDQ	x,m,i	4	4	2p0 p5 p23		2	CLMUL
AESDEC, AESDECLAST, AESENC, AESENCLAST AESDEC,	x,x	1	1	р5	7	1	AES
AESDEC, AESDECLAST, AESENC, AESENCLAST	x,m	2	2	p5 p23		1.5	AES
AESIMC	x,x	2	2	2p5	14	2	AES
AESIMC	x,m	3	3	2p5 p23		2	AES
AESKEYGENAS SIST	x,x,i	10	10	2p0 8p5	10	9	AES
AESKEYGENAS							
SIST	x,m,i	10	10	2p0 p23 7p5		8	AES
Other							
EMMS		31	31			13	

Floating point XMM and YMM instructions

Instruction	Operands	μορs fused domain	µops unfused domain	μοps each port	Latency	Recipro- cal through put	Comments
Move instruc- tions							
MOVAPS/D	X,X	1	1	p5	0-1	1	may be elim.
VMOVAPS/D	y,y	1	1	p5	0-1	1	may be elim.
MOVAPS/D MOVUPS/D VMOVAPS/D VMOVUPS/D	x,m128 y,m256	1	1 1	p23	3	0.5	AVX
MOVAPS/D MOVUPS/D VMOVAPS/D VMOVUPS/D	m128,x m256,y	1	2	p237 p4	3	1	AVX
MOVSS/D	1		1	1 .	1 4	1	AVA
MOVSS/D	x,x x,m32/64	1 1	1	p5 p23	3	0.5	
MOVSS/D	m32/64,x	1 1	2	p237 p4	3	1	
MOVHPS/D	x,m64	1	2	p23 p5	4	1	

		1				1	
MOVHPS/D	m64,x	1	2	p4 p237	3	1	
MOVLPS/D	x,m64	1	2	p23 p5	4	1	
MOVLPS/D	m64,x	1	2	p4 p237	3	1	
MOVHLPS	X,X	1	1	p5	1	1	
MOVLHPS	x,x	1	1	p5	1	1	
MOVMSKPS/D	r32,x	1	1	p0	3	1	
VMOVMSKPS/D	r32,y	1	1	p0	2	1	
MOVNTPS/D	m128,x	1	2	p4 p237	~400	1	
VMOVNTPS/D	m256,y	1	2	p4 p237	~400	1	AVX
SHUFPS/D	x,x,i / v,v,v,i	1	1	p5	1	1	
SHUFPS/D	x,m,i / v,v,m,i	2	2	p5 p23		1	
VPERMILPS/PD	v,v,i	1	1	p5	1	1	AVX
VPERMILPS/PD	v,m,i	2	2	p5 p23		1	AVX
VPERMILPS/PD	V,V,V	1	1	p5	1	1	AVX
VPERMILPS/PD	v,v,m	2	2	p5 p23		1	AVX
VPERM2F128	y,y,y,i	1	1	p5	3	1	AVX
VPERM2F128	y,y,m,i	2	2	p5 p23		1	AVX
VPERMPS	y,y,v, y,y,y	1	1	p5	3	1	AVX2
VPERMPS	y,y,y y,y,m	1	2	p5 p23		1	AVX2
VPERMPD	y,y,iii y,y,i	1	1	p5 p20	3	1	AVX2
VPERMPD	y,y,i y,m,i	2	2	p5 p23	J 3		AVX2 AVX2
BLENDPS/PD	x,x,i / v,v,v,i	1	1	p015	1	0.33	SSE4.1
BLENDPS/PD	x,m,i / v,v,m,i	2	2	p015 p015 p23	I	0.55	SSE4.1
BLENDVPS/PD		2	2		2	2	SSE4.1
BLENDVPS/PD	x,x,xmm0	3	3	p5		2	SSE4.1
	x,m,xmm0	2	2	2p5 p23	2	2	AVX
VBLENDVPS/PD	V,V,V,V	3	3	2p5		2	AVX
VBLENDVPS/PD	v,v,m,v) 1	ა 1	2p5 p23	4	1	
MOVDDUP	V,V	•	-	p5	1		SSE3
MOVDDUP	v,m	1	1	p23	3	0.5	SSE3
VBROADCASTSS	x,m32	1	1	p23	4	0.5	AVX
VBROADCASTSS	y,m32	1	1	p23	5	0.5	AVX
VBROADCASTSS	x,x	1	1	p5	1	1	AVX2
VBROADCASTSS	y,x	1	1	p5	3	1	AVX2
VBROADCASTSD	y,m64	1	1	p23	5	0.5	AVX
VBROADCASTSD	y,x	1	1	p5	3	1	AVX2
VBROADCASTF128	y,m128	1	1	p23	3	0.5	AVX
MOVSH/LDUP	V,V	1	1	p5	1	1	SSE3
MOVSH/LDUP	v,m	1	1	p23	3	0.5	SSE3
UNPCKH/LPS/D	x,x / v,v,v	1	1	p5	1	1	SSE3
UNPCKH/LPS/D	x,m / v,v,m	1	2	p5 p23		1	SSE3
EXTRACTPS	r32,x,i	2	2	p0 p5		1	SSE4.1
EXTRACTPS	m32,x,i	3	3	p0 p5 p23	4	1	SSE4.1
VEXTRACTF128	x,y,i	1	1	p5	3	1	AVX
VEXTRACTF128	m128,y,i	2	2	p23 p4	4	1	AVX
INSERTPS	x,x,i	1	1	p5	1	1	SSE4.1
INSERTPS	x,m32,i	2	2	p23 p5	4	1	SSE4.1
VINSERTF128	y,y,x,i	1	1	p5	3	1	AVX
VINSERTF128	y,y,m128,i	2	2	p015 p23	4	1	AVX
VMASKMOVPS/D	v,v,m	3	3	2p5 p23	4	2	AVX
VMASKMOVPS/D	m128,x,x	4	4	p0 p1 p4 p23	13	1	AVX
VMASKMOVPS/D	m256,y,y	4	4	p0 p1 p4 p23	14	2	AVX
VPGATHERDPS	x,[r+s*x],x	20	20			9	AVX2
VPGATHERDPS	y,[r+s*y],y	34	34			12	AVX2

VPGATHERQPS x,[r+s*y],x 22 22 VPGATHERQPS x,[r+s*y],x 22 22 VPGATHERDPD x,[r+s*x],y 20 20 VPGATHERDPD x,[r+s*x],x 14 14 VPGATHERQPD x,[r+s*x],x 14 14 VPGATHERQPD x,[r+s*x],y 20 20 VPGATHERQPD x,[r+s*x],x 14 14 VPGATHERQPD x,x 2 2 p1 p5 2 1 CVTPD2PS x,m64 3 3 p1 p5 p23 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th>							_	
VPGATHERDPD x,[r+s*x],x 12 12 12 7 AVX2 VPGATHERDPD y,[r+s*x],y 20 20 9 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 14 14 CVTPD2PS x,m128 2 2 p1 p5 4 1 1 CVTPD2PS x,m64 2 2 p1 p5 p23 1 1 AVX CVTPS2PD x,x <t< td=""><td>VPGATHERQPS</td><td>x,[r+s*x],x</td><td>15</td><td>15</td><td></td><td></td><td>8</td><td>AVX2</td></t<>	VPGATHERQPS	x,[r+s*x],x	15	15			8	AVX2
VPGATHERDPD x,[r+s*x],x 12 12 7 AVX2 VPGATHERDPD y,[r+s*x],y 20 20 9 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 7 AVX2 VPGATHERQPD x,x 2 2 p1 p5 4 1 CVTPD2PS x,m128 2 3 p1 p5 p23 1 AVX VCVTPD2PS x,m2 2 2 p1 p5 4 1 CVTSD2SS x,m64 3 3 p1 p5 p23 1 1 CVTPS2PD x,x 2 2	VPGATHERQPS	x,[r+s*y],x	22	22			7	AVX2
VPGATHERDPD y,[r+s*x],y 20 20 VPGATHERQPD x,[r+s*x],x 14 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],x 14 14 14 7 AVX2 VPGATHERQPD x,[r+s*x],y 22 22 p1 p5 9 AVX2 COTPD2PS x,x 2 2 p1 p5 4 1 CVTPD2PS x,x 2 2 p1 p5 p23 1 AVX AVX VCVTPD2PS x,x 2 2 p1 p5 p23 1 AVX AVX VCVTPD2PS x,m256 2 3 p1 p5 p23 1 AVX <td></td> <td></td> <td>12</td> <td>12</td> <td></td> <td></td> <td>7</td> <td>AVX2</td>			12	12			7	AVX2
VPGATHERQPD X,[r+s*x],x 14 14 14 7 AVX2 VPGATHERQPD X,[r+s*x],x 14 14 14 9 AVX2 Conversion CVTPD2PS x,x 2 2 p1 p5 4 1 CVTPD2PS x,m128 2 3 p1 p5 p23 1 AVX VCVTPD2PS x,m256 2 3 p1 p5 p23 1 AVX CVTSD2SS x,m256 2 3 p1 p5 p23 1 AVX CVTSD2SS x,m64 3 3 p1 p5 p23 1 AVX CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD x,m64 2 2 p0 p5 5 1 AVX VCVTPS2PD y,x 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 5 1 AVX CVTSS2SD x,x 2			1					
CONVERSION X,X 2 2 P1 p5 4 1 CVTPD2PS X,M128 2 3 p1 p5 p23 1 VCVTPD2PS X,M128 2 3 p1 p5 p23 1 VCVTPD2PS X,M256 2 3 p1 p5 p23 1 CVTSD2SS X,X 2 2 p1 p5 4 1 CVTSD2SS X,M64 3 3 p1 p5 p23 1 AVX CVTSD2SS X,M64 3 3 p1 p5 p23 1 AVX CVTPS2PD X,X 2 2 p0 p5 2 1 CVTPS2PD X,X 2 2 p0 p5 5 1 AVX VCVTPS2PD Y,X 2 2 p0 p5 5 1 AVX VCVTPS2PD Y,M128 2 2 p0 p23 1 AVX CVTSS2SD X,X 2 2 p0 p5 2 1 CVTSS2SD<			1					
Conversion x,x 2 2 p1 p5 4 1 CVTPD2PS x,m128 2 3 p1 p5 p23 1 VCVTPD2PS x,y 2 2 p1 p5 5 1 VCVTPD2PS x,m256 2 3 p1 p5 p23 1 AVX CVTSD2SS x,x 2 2 p1 p5 4 1 AVX CVTSD2SS x,m64 3 3 p1 p5 p23 1 AVX CVTS2SD x,m64 3 3 p1 p5 p23 1 AVX CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD y,x 2 2 p0 p23 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 2 1 AVX CVTS2SD x,x 2 2 p0 p5 2		•						
CVTPD2PS x,x 2 2 p1 p5 p23 4 1 CVTPD2PS x,m128 2 3 p1 p5 p23 1 VCVTPD2PS x,y 2 2 p1 p5 p23 1 VCVTPD2PS x,m256 2 3 p1 p5 p23 1 CVTSD2SS x,x 2 2 p1 p5 p23 1 CVTSD2SS x,m64 3 3 p1 p5 p23 1 CVTSD2SS x,m64 3 3 p1 p5 p23 1 CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD y,m64 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 5 1 AVX VCVTSS2SD x,x 2 2 p0 p5 2 1 AVX CVTSS2SD x,x 2 2 p0 p5 2 1 AVX CVTDQ2PS	VEGATIERQED	y,[i+5 y],y					9	AVAZ
CVTPD2PS x,x 2 2 p1 p5 p23 4 1 CVTPD2PS x,m128 2 3 p1 p5 p23 1 VCVTPD2PS x,y 2 2 p1 p5 p23 1 VCVTPD2PS x,m256 2 3 p1 p5 p23 1 CVTSD2SS x,x 2 2 p1 p5 p23 1 CVTSD2SS x,m64 3 3 p1 p5 p23 1 CVTSD2SS x,m64 3 3 p1 p5 p23 1 CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD y,m64 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 5 1 AVX VCVTSS2SD x,x 2 2 p0 p5 2 1 AVX CVTSS2SD x,x 2 2 p0 p5 2 1 AVX CVTDQ2PS								
CVTPD2PS x,x 2 2 p1 p5 p23 4 1 CVTPD2PS x,m128 2 3 p1 p5 p23 1 VCVTPD2PS x,y 2 2 p1 p5 p23 1 VCVTPD2PS x,m256 2 3 p1 p5 p23 1 CVTSD2SS x,x 2 2 p1 p5 p23 1 CVTSD2SS x,m64 3 3 p1 p5 p23 1 CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD x,m64 2 2 p0 p5 5 1 AVX VCVTPS2PD y,x 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 5 1 AVX VCVTS2SDD x,x 2 2 p0 p5 2 1 AVX CVTSS2SD x,x 2 2 p0 p5 2 1 AVX	Camuawaian							
CVTPD2PS x,m128 2 3 p1 p5 p23 1 VCVTPD2PS x,y 2 2 p1 p5 5 1 AVX VCVTPD2PS x,m256 2 3 p1 p5 p23 1 AVX CVTSD2SS x,x 2 2 p1 p5 p23 1 AVX CVTSD2SS x,m64 3 3 p1 p5 p23 1 AVX CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD x,m64 2 2 p0 p5 5 1 AVX VCVTPS2PD y,x 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 5 1 AVX VCVTS2S2D x,x 2 2 p0 p5 2 1 AVX CVTSS2SD x,x 2 2 p0 p5 2 1 AVX CVTDQ2PS x,m128 1				_	n1 n5	4	4	
VCVTPD2PS x,y 2 2 p1 p5 p23 5 1 AVX VCVTD2PS x,m256 2 3 p1 p5 p23 1 AVX CVTSD2SS x,x 2 2 p1 p5 4 1 CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD x,m64 2 2 p0 p23 1 AVX VCVTPS2PD y,x 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 2 1 AVX VCVTS2SSD x,x 2 2 p0 p5 2 1 AVX CVTDQ2PS x,m128 1 2 p1 p23 1 AVX VCVTQ1PS2DQ x,x			I .			4		
VCVTPD2PS x,m256 2 3 p1 p5 p23 1 AVX CVTSD2SS x,x 2 2 p1 p5 4 1 CVTSD2SS x,m64 3 3 p1 p5 p23 1 CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD x,m64 2 2 p0 p5 5 1 AVX VCVTPS2PD y,x 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 5 1 AVX VCVTSS2SD x,x 2 2 p0 p5 2 1 AVX CVTSS2SD x,m32 2 2 p0 p23 1 AVX CVTDQ2PS x,m128 1 2 p1 p23 1 AVX VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ y,m128 1 2 p1 p23 <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>						_		
CVTSD2SS x,x 2 2 p1 p5 4 1 CVTSD2SS x,m64 3 3 p1 p5 p23 1 CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD x,m64 2 2 p0 p5 5 1 AVX VCVTPS2PD y,x 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p5 5 1 AVX VCVTSS2SD x,x 2 2 p0 p5 2 1 AVX CVTSS2SD x,m32 2 2 p0 p23 1 AVX CVTDQ2PS x,m32 2 2 p0 p23 1 AVX CVTDQ2PS x,m128 1 2 p1 p23 1 AVX VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,m128 1 2 p1 p23		-	1			5	-	
CVTSD2SS x,m64 3 3 p1 p5 p23 1 CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD x,m64 2 2 p0 p23 1 AVX VCVTPS2PD y,x 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p23 1 AVX CVTSS2SD x,x 2 2 p0 p5 2 1 CVTSS2SD x,m32 2 2 p0 p23 1 AVX CVTDQ2PS x,m32 2 2 p0 p23 1 AVX CVTDQ2PS x,m32 2 2 p0 p23 1 AVX CVTDQ2PS x,m128 1 2 p1 p23 1 AVX VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX VCVT(T) PS2DQ x,x 1 1 p1 p23 1 AVX <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>AVX</td></tr<>								AVX
CVTPS2PD x,x 2 2 p0 p5 2 1 CVTPS2PD x,m64 2 2 p0 p23 1 AVX VCVTPS2PD y,x 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p23 1 AVX CVTSS2SD x,x 2 2 p0 p23 1 AVX CVTDQ2PS x,m32 2 2 p0 p23 1 AVX CVTDQ2PS x,m128 1 2 p1 p23 1 AVX CVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,x 1 1 p1 3 1 AVX CVT(T) PS2DQ x,m128 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,y 1 1 p1 p23 1 AVX VCVTDQ2PD x,x 2 2 p1 p23 1 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>4</td> <td>1</td> <td></td>			1			4	1	
CVTPS2PD x,m64 2 2 p0 p23 1 VCVTPS2PD y,x 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p23 1 AVX CVTSS2SD x,x 2 2 p0 p5 2 1 CVTSS2SD x,m32 2 2 p0 p23 1 CVTDQ2PS x,m32 2 2 p0 p23 1 CVTDQ2PS x,m128 1 p1 p23 1 VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,x 1 1 p1 p2 3 1 AVX CVT(T) PS2DQ x,m128 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,y 1 1 p1 p23 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x		x,m64	1		p1 p5 p23		1	
VCVTPS2PD y,x 2 2 p0 p5 5 1 AVX VCVTPS2PD y,m128 2 2 p0 p23 1 AVX CVTSS2SD x,x 2 2 p0 p23 1 1 CVTDQ2PS x,m32 2 2 p0 p23 1 1 CVTDQ2PS x,m32 2 2 p0 p23 1 1 CVTDQ2PS x,m32 1 1 p1 3 1 AVX CVTDQ2PS x,m128 1 2 p1 p23 1 AVX AVX VCVT(T) PS2DQ x,x 1 1 p1 3 1 AVX VCVT(T) PS2DQ x,m128 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX VCVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD y,x 2 2	CVTPS2PD	X,X	1		p0 p5	2	1	
VCVTPS2PD y,m128 2 2 p0 p23 1 AVX CVTSS2SD x,x 2 2 p0 p5 2 1 CVTSS2SD x,m32 2 2 p0 p23 1 CVTDQ2PS x,x 1 1 p1 3 1 CVTDQ2PS x,m128 1 2 p1 p23 1 AVX VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,x 1 1 p1 3 1 AVX CVT(T) PS2DQ x,m128 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 AVX CVTDQ2PD y,x 2 2 p1 p23 1 AVX<	CVTPS2PD	x,m64	2		p0 p23		1	
CVTSS2SD x,x 2 2 p0 p5 2 1 CVTSS2SD x,m32 2 2 p0 p23 1 CVTDQ2PS x,x 1 1 p1 3 1 CVTDQ2PS x,m128 1 2 p1 p23 1 AVX VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,x 1 1 p1 3 1 AVX CVT(T) PS2DQ x,m128 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,y 1 1 p1 3 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX VCVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD x,m64 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1	VCVTPS2PD	y,x	2	2	p0 p5	5	1	AVX
CVTSS2SD x,m32 2 2 p0 p23 1 CVTDQ2PS x,x 1 1 p1 3 1 CVTDQ2PS x,m128 1 2 p1 p23 1 AVX VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,x 1 1 p1 3 1 AVX CVT(T) PS2DQ x,m128 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD x,m64 2 2 p1 p23 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p23 1 AVX <td>VCVTPS2PD</td> <td>y,m128</td> <td>2</td> <td>2</td> <td>p0 p23</td> <td></td> <td>1</td> <td>AVX</td>	VCVTPS2PD	y,m128	2	2	p0 p23		1	AVX
CVTSS2SD x,m32 2 2 p0 p23 1 CVTDQ2PS x,x 1 1 p1 3 1 CVTDQ2PS x,m128 1 2 p1 p23 1 AVX VCVTDQ2PS y,y2 1 1 p1 3 1 AVX VCVTQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,x 1 1 p1 3 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD x,m64 2 2 p1 p23 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p23 1 AVX	CVTSS2SD	X,X	2	2	p0 p5	2	1	
CVTDQ2PS x,x 1 1 p1 3 1 CVTDQ2PS x,m128 1 2 p1 p23 1 VCVTDQ2PS y,y 1 1 p1 3 1 VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,x 1 1 p1 3 1 AVX CVT(T) PS2DQ x,m128 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,y 1 1 p1 3 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD y,m64 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4	CVTSS2SD		2	2			1	
CVTDQ2PS x,m128 1 2 p1 p23 1 VCVTDQ2PS y,y 1 1 p1 p23 1 AVX VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,x 1 1 p1 p23 1 AVX CVT(T) PS2DQ x,m128 1 2 p1 p23 1 AVX VCVT(T) PS2DQ y,y 1 1 p1 p23 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD y,x 2 2 p1 p23 1 AVX VCVTDQ2PD y,x 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1 <td>CVTDQ2PS</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>3</td> <td>1</td> <td></td>	CVTDQ2PS		1	1	1	3	1	
VCVTDQ2PS y,y 1 1 p1 3 1 AVX VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,x 1 1 p1 3 1 CVT(T) PS2DQ x,m128 1 2 p1 p23 1 VCVT(T) PS2DQ y,y 1 1 p1 3 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD y,x 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1 CVT(T)PD2DQ x,x 2 2 p1 p5 4 1			1				1	
VCVTDQ2PS y,m256 1 2 p1 p23 1 AVX CVT(T) PS2DQ x,x 1 1 p1 3 1 CVT(T) PS2DQ x,m128 1 2 p1 p23 1 VCVT(T) PS2DQ y,y 1 1 p1 3 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD y,x 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 6 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1			1			3		AVX
CVT(T) PS2DQ x,x 1 1 p1 3 1 CVT(T) PS2DQ x,m128 1 2 p1 p23 1 VCVT(T) PS2DQ y,y 1 1 p1 3 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD y,x 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1			Ī -		1			
CVT(T) PS2DQ x,m128 1 2 p1 p23 1 VCVT(T) PS2DQ y,y 1 1 p1 3 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD x,m64 2 2 p1 p23 1 VCVTDQ2PD y,x 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1		-				3		7.07.
VCVT(T) PS2DQ y,y 1 1 p1 3 1 AVX VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD x,m64 2 2 p1 p23 1 VCVTDQ2PD y,x 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1	1 ' '						-	
VCVT(T) PS2DQ y,m256 1 2 p1 p23 1 AVX CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD x,m64 2 2 p1 p23 1 VCVTDQ2PD y,x 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1	1 ' '				1	3		Δ\/Χ
CVTDQ2PD x,x 2 2 p1 p5 4 1 CVTDQ2PD x,m64 2 2 p1 p23 1 VCVTDQ2PD y,x 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1	1 ' '						-	
CVTDQ2PD x,m64 2 2 p1 p23 1 VCVTDQ2PD y,x 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1	1 1	•				4		AVA
VCVTDQ2PD y,x 2 2 p1 p5 6 1 AVX VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1			1				-	
VCVTDQ2PD y,m128 2 2 p1 p23 1 AVX CVT(T)PD2DQ x,x 2 2 p1 p5 4 1						6	-	A\/\
CVT(T)PD2DQ x,x 2 2 p1 p5 4 1		-	1			0	-	
		•	I .			4		AVA
O\/T/T\DDODO						4		
CVT(T)PD2DQ x,m128 2 3 p1 p5 p23 1								A \ /\/
VCVT(T)PD2DQ x,y 2 2 p1 p5 6 1 AVX			I .			Ь		
VCVT(T)PD2DQ x,m256 2 3 p1 p5 p23 1 AVX								AVX
CVTPI2PS x,mm 1 1 p1 4 4					1	4		
CVTPI2PS x,m64 1 2 p1 p23 3			1					
CVT(T)PS2PI mm,x 2 2 p1 p5 4 1						4		
CVT(T)PS2PI mm,m128 2 2 p1 p23 1		•	1					
CVTPI2PD x,mm 2 2 p1 p5 4 1			1			4		
CVTPI2PD x,m64 2 2 p1 p23 1		x,m64	I .		1		-	
CVT(T) PD2PI mm,x 2 2 p1 p5 4 1			I .			4		
CVT(T) PD2PI mm,m128 2 3 p1 p5 p23 1	1 1	mm,m128	1		p1 p5 p23			
CVTSI2SS x,r32 2 p1 p5 4 3		x,r32	2		p1 p5	4		
CVTSI2SS x,m32 1 2 p1 p23 3		x,m32			p1 p23		3	
CVT(T)SS2SI r32,x 2 2 p0 p1 4 1	CVT(T)SS2SI	r32,x	1		p0 p1	4	1	
CVT(T)SS2SI r32,m32 2 3 p0 p1 p23 1	CVT(T)SS2SI	r32,m32	1	3	p0 p1 p23		1	
CVTSI2SD x,r32/64 2 2 p1 p5 4 3	CVTSI2SD	x,r32/64	2	2	p1 p5	4	3	
CVTSI2SD x,m32 2 2 p1 p23 3	CVTSI2SD	x,m32	2	2			3	
CVT(T)SD2SI r32/64,x 2 2 p0 p1 4 1	CVT(T)SD2SI	r32/64,x	2	2		4	1	
CVT(T)SD2SI r32,m64 2 3 p0 p1 p23 1		r32,m64	2	3			1	

VCVTPS2PH	x,v,i	2	2	p1 p5	4	1	F16C
VCVTPS2PH	m,v,i	4	4	p1 p4 p5 p23		1	F16C
VCVTPH2PS	V,X	2	2	p1 p4 p5 p25	4	1	F16C
VCVTPH2PS	v,x v,m	2	2	p1 p23	7	1	F16C
V	V,111	2		ρι ρ23		ı	1 100
Arithmetic							
ADDSS/D PS/D							
SUBSS/D PS/D	x,x / v,v,v	1	1	p1	3	1	
ADDSS/D PS/D	A,A / V,V,V	'	'	μ	3	ľ	
SUBSS/D PS/D	x,m / v,v,m	1	2	p1 p23		1	
ADDSUBPS/D	x,x / v,v,v	1	1	p1	3	1	SSE3
ADDSUBPS/D	x,m / v,v,m	1	2	p1 p23	3	1	SSE3
HADDPS/D	A,111 / V,V,111	'		ρι μ23		ı	33L3
HSUBPS/D	x,x / v,v,v	3	3	p1 2p5	5	2	SSE3
HADDPS/D	A,A / V,V,V	3	3	p1 2p3	3		JOLJ
HSUBPS/D	x,m / v,v,m	4	4	p1 2p5 p23		2	SSE3
MULSS/D PS/D	x,x / v,v,v	1	1	p01	5	0.5	OOLO
MULSS/D PS/D	x,m / v,v,m	1	2	p01 023	3	0.5	
DIVSS DIVPS	X,111 / V,V,111 X,X	1	1	p01 023	10-13	7	
DIVSS DIVPS	x,m	1	2	p0 p23	10-13	7	
DIVSD DIVPD	x,x	1	1	p0 p23	10-20	8-14	
DIVSD DIVPD	x,m	1	2	p0 p23	10-20	8-14	
VDIVPS	y,y,y	3	3	2p0 p15	18-21	14	AVX
VDIVPS	y,y,y y,y,m256	4	4	2p0 p15 p23	10-21	14	AVX
VDIVPD	y,y,111230 y,y,y	3	3	2p0 p15 p25	19-35	16-28	AVX
VDIVPD	y,y,y y,y,m256	4	4	2p0 p15 p23	19-55	16-28	AVX
RCPSS/PS	x,x	1	1	p0	5	10-20	AVA
RCPSS/PS	x,m128	1	2	p0 p23	O	1	
VRCPPS	у,у у,у	3	3	2p0 p15	7	2	AVX
VRCPPS	y,m256	4	4	2p0 p15 p23	•	2	AVX
CMPccSS/D	y,200	•		2po p 10 p20		_	7,47,7
CMPccPS/D	x,x / v,v,v	1	1	p1	3	1	
CMPccSS/D	24,24.2.4,4,4	·		μ.			
CMPccPS/D	x,m / v,v,m	2	2	p1 p23		1	
(U)COMISS/D	x,x	1	1	p1		1	
(U)COMISS/D	x,m32/64	2	2	p1 p23		1	
MAXSS/D PS/D	,						
MINSS/D PS/D	x,x / v,v,v	1	1	p1	3	1	
MAXSS/D PS/D				·			
MINSS/D PS/D	x,m / v,v,m	1	2	p1 p23		1	
ROUNDSS/D PS/D	v,v,i	2	2	2p1	6	2	SSE4.1
ROUNDSS/D PS/D	v,m,i	3	3	2p1 p23		2	SSE4.1
DPPS	x,x,i / v,v,v,i	4	4	2p0 p1 p5	14	2	SSE4.1
DPPS	x,m,i / v,v,m,i	6	6	2p0 p1 p5 p23 p6		4	SSE4.1
DPPD	x,x,i	3	3	p0 p1 p5	9	1	SSE4.1
DPPD	x,m128,i	4	4	p0 p1 p5 p23		1	SSE4.1
VFMADD							
(all FMA instr.)	V,V,V	1	1	p01	5	0.5	FMA
VFMADD							
(all FMA instr.)	v,v,m	1	2	p01 p23		0.5	FMA
Math							
SQRTSS/PS	x,x	1	1	p0	11	7	

SQRTSS/PS	x,m128	1	2	p0 p23		7	
VSQRTPS	y,y	3	3	2p0 p15	19	14	AVX
VSQRTPS	y,m256	4	4	2p0 p15 p23		14	AVX
SQRTSD/PD	X,X	1	1	р0	16	8-14	
SQRTSD/PD	x,m128	1	2	p0 p23		8-14	
VSQRTPD	y,y	3	3	2p0 p15	28-29	16-28	AVX
VSQRTPD	y,m256	4	4	2p0 p15 p23		16-28	AVX
RSQRTSS/PS	X,X	1	1	p0	5	1	
RSQRTSS/PS	x,m128	1	2	p0 p23		1	
VRSQRTPS	y,y	3	3	2p0 p15	7	2	AVX
VRSQRTPS	y,m256	4	4	2p0 p15 p23		2	AVX
Logic							
AND/ANDN/OR/XO							
RPS/PD	x,x / v,v,v	1	1	p5	1	1	
AND/ANDN/OR/XO RPS/PD		_		"F "OO		,	
KF3/FD	x,m / v,v,m	1	2	p5 p23		1	
Other							
VZEROUPPER		4	4	none		1 1	AVX
							AVX,
VZEROALL		12	12	none		10	32 bit
							AVX,
VZEROALL		20	20	none		8	64 bit
LDMXCSR	m32	3	3	p0 p6 p23	6	3	
STMXCSR	m32	3	4	p0 p4 p6 p237	7	1	
VSTMXCSR	m32	3				1	AVX
FXSAVE	m4096	130				68	
FXRSTOR	m4096	116				72	
XSAVE		224				84	
XRSTOR		173				111	
XSAVEOPT	m						

Intel Pentium 4

List of instruction timings and uop breakdown

This list is measured for a Pentium 4, model 2. Timings for model 3 may be more like the values for P4E, listed on the next sheet

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE. etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory op-

erand, etc.

Number of µops issued from instruction decoder and stored in trace cache. µops:

Number of additional µops issued from microcode ROM. Microcode:

This is the delay that the instruction generates in a dependency chain if the Latency:

next dependent instruction starts in the same execution unit. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency of moves to and from memory cannot be measured accurately because of the problem with memory intermediates explained

above under "How the values were measured".

This number is added to the latency if the next dependent instruction is in a Additional latency:

different execution unit. There is no additional latency between ALU0 and

ALU1.

This is also called issue latency. This value indicates the number of clock cy-Reciprocal throughput:

cles from the execution of an instruction begins to a subsequent independent

instruction can begin to execute in the same execution subunit. A value of

0.25 indicates 4 instructions per clock cycle in one thread.

The port through which each uop goes to an execution unit. Two independent Port:

μops can start to execute simultaneously only if they are going through differ-

ent ports.

Execution unit: Use this information to determine additional latency. When an instruction with

more than one uop uses more than one execution unit, only the first and the

last execution unit is listed.

Execution subunit: Throughput measures apply only to instructions executing in the same sub-

unit.

Indicates the compatibility of an instruction with other 80x86 family micropro-Instruction set

cessors. The instruction can execute on microprocessors that support the in-

struction set indicated.

Integer instructions

Instruction	Operands	pops	Microcode	Latency	Additional latency	Reciprocal through-	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOV	r,r	1	0	0,5	0.5-1	0,25	0/1	alu0/1		86	С
MOV	r,i	1	0	0,5	0.5-1	0,25	0/1	alu0/1		86	
MOV	r32,m	1	0	2	0	1	2	load		86	
MOV	r8/16,m	2	0	3	0	1	2	load		86	
MOV	m,r	1	0	1		2	0	store		86	b, c
MOV	m,i	3	0			2	0,3	store		86	
MOV	r,sr	4	2			6				86	
MOV	sr,r/m	4	4	12	0	14				86	a, q
MOVNTI	m,r32	2	0			≈33				sse2	
MOVZX	r,r	1	0	0,5	0.5-1	0,25	0/1	alu0/1		386	С
MOVZX	r,m	1	0	2	0	1	2	load		386	
MOVSX	r,r	1	0	0,5	0.5-1	0,5	0	alu0		386	С
MOVSX	r,m	2	0	3	0.5-1	1	2,0			386	
CMOVcc	r,r/m	3	0	6	0	3				ppro	a, e
XCHG	r,r	3	0	1,5	0.5-1	1	0/1	alu0/1		86	
XCHG	r,m	4	8	>100						86	
XLAT		4	0	3						86	
PUSH	r	2	0	1		2				86	
PUSH	i	2	0	1		2				186	
PUSH	m	3	0			2				86	
PUSH	sr	4	4			7				86	
PUSHF(D)		4	4			10				86	
PUSHA(D)		4	10			19				186	
POP	r	2	0	1	0	1				86	
POP	m	4	8			14				86	
POP	sr	4	5			13				86	
POPF(D)		4	8			52				86	
POPA(D)		4	16			14				186	
LEA	r,[r+r/i]	1	0	0,5	0.5-1	0,25	0/1	alu0/1		86	
LEA	r,[r+r+i]	2	0	1	0.5-1	0,5	0/1	alu0/1		86	
LEA	r,[r*i]	3	0	4	0.5-1	1	1	int,alu		386	
LEA	r,[r+r*i]	2	0	4	0.5-1	1	1	int,alu		386	
LEA	r,[r+r*i+i]	3	0	4	0.5-1	1	1	int,alu		386	
LAHF		1	0	4	0	4	1	int		86	
SAHF		1	0	0,5	0.5-1	0,5	0/1	alu0/1		86	d
SALC		3	0	5	0	1	1	int		86	
LDS, LES,	r,m	4	7			15				86	
BSWAP	r	3	0	7	0	2		int,alu		486	
IN, OUT	r,r/i	8	64			>100	0		86		
PREFETCHNTA	m	4	2			6				sse	
PREFETCHT0/1/2	m	4	2			6				sse	

SFENCE		4	2			40				sse	
LFENCE		4	2			38				sse2	
MFENCE		4	2			100				sse2	
Arithmetic instructions											
ADD, SUB	r,r	1	0	0,5	0.5-1	0.25	0/1	alu0/1		86	С
ADD, SUB	r,m	2	0	1	0.5-1	1				86	С
ADD, SUB	m,r	3	0	≥ 8		≥ 4				86	С
ADC, SBB	r,r	4	4	6	0	6	1	int,alu		86	
ADC, SBB	r,i	3	0	6	0	6	1	int,alu		86	
ADC, SBB	r,m	4	6	8	0	8	1	int,alu		86	
ADC, SBB	m,r	4	7	≥ 9		8	·	,		86	
CMP	r,r	1	0	0,5	0.5-1	_	0/1	alu0/1		86	С
CMP	r,m	2	0	1	0.5-1	1	0, .	alao, i		86	С
INC, DEC	r	2	0	0,5	0.5-1		0/1	alu0/1		86	
INC, DEC	m '	4	0	4	0.0 1	≥ 4	0/ 1	aldo/ i		86	
NEG	r	1	0	0,5	0.5-1		0	alu0		86	
NEG	m '	3	0	0,0	0.0 1	≥ 3	0	aido		86	
AAA, AAS	'''	4	27	90		_ 5				86	
DAA, DAS		4	57	100						86	
AAD		4	10	22			1	int	fpmul	86	
AAM		4	22	56			1	int	fpdiv	86	
MUL, IMUL	r8/32	4	6	16	0	8	1	int	fpmul	86	
MUL, IMUL	r16	4	7	17	0	8	1	int	fpmul	86	
MUL, IMUL	m8/32	4	7-8	16	0	8	1	int	fpmul	86	
MUL, IMUL	m16	4	10	16	0	8	1	int	fpmul	86	
IMUL	r32,r	4	0	14	0	4,5	1	int	fpmul	386	
IMUL	r32,(r),i	4	0	14	0	4,5	1	int	fpmul	386	
IMUL	r16,r	4	5	16	0	9	1	int	fpmul	386	
IMUL	r16,r,i	4	5	15	0	8	1	int	fpmul	186	
IMUL	r16,m16	4	7	15	0	10	1	int	fpmul	386	
IMUL	r32,m32	4	Ó	14	0	8	1	int	fpmul	386	
IMUL	r,m,i	4	7	14	0	10	1	int	fpmul	186	
DIV	r8/m8	4	20	61	0	24	1	int	fpdiv	86	а
DIV	r16/m16	4	18	53	0	23	1	int	fpdiv	86	a
DIV	r32/m32	4	21	50	0	23	1	int	fpdiv	386	u
IDIV	r8/m8	4	24	61	0	24	1	int	fpdiv	86	а
IDIV	r16/m16	4	22	53	0	23	1	int	fpdiv	86	a
IDIV	r32/m32	4	20	50	0	23	1	int	fpdiv	386	a
CBW	102/11102	2	0	1	0.5-1		0	alu0	ipaiv	86	u
CWD, CDQ		2	0	1	0.5-1		0/1	alu0/1		86	
CWDE		1	0	0,5	0.5-1		0	alu0		386	
CVVDL		'		0,5	0.5-1	0,5	U	aluo		300	
Logic instructions											
AND, OR, XOR	r,r	1	0	0,5	0.5-1	0.5	0	alu0		86	С
AND, OR, XOR	r,m	2	0	≥ 1	0.5-1			-		86	С
AND, OR, XOR	m,r	3	0	≥ 8		≥ 4				86	С
TEST	r,r	1	0	0,5	0.5-1		0	alu0		86	С
TEST	r,m	2	0	≥ 1	0.5-1					86	С
NOT	r	1	0		0.5-1		0	alu0		86	

NOT	I		۱ ۵	1 1		اما			1 1	0.0	1 1
NOT	m	4	0			≥ 4				86	
SHL, SHR, SAR	r,i	1	0	4	1	1	1	int	mmxsh	186	
SHL, SHR, SAR	r,CL	2	0	6	0	1	1	int	mmxsh	86	d
ROL, ROR	r,i	1	0	4	1	1	1	int	mmxsh	186	d
ROL, ROR	r,CL	2	0	6	0	1	1	int	mmxsh	86	d
RCL, RCR	r,1	1	0	4	1	1	1	int	mmxsh	86	d
RCL, RCR	r,i	4	15	16	0	15	1	int	mmxsh	186	d
RCL, RCR	r,CL	4	15	16	0	14	1	int	mmxsh	86	d
SHL,SHR,SAR,ROL,					_						
ROR	m,i/CL	4	7-8	10	0	10	1	int	mmxsh	86	d
RCL, RCR	m,1	4	7	10	0	10	1	int	mmxsh	86	d
RCL, RCR	m,i/CL	4	18	18-28		14	1	int	mmxsh	86	d
SHLD, SHRD	r,r,i/CL	4	14	14	0	14	1	int	mmxsh	386	
SHLD, SHRD	m,r,i/CL	4	18	14	0	14	1	int	mmxsh	386	
BT	r,i	3	0	4	0	2	1	int	mmxsh	386	d
BT	r,r	2	0	4	0	1	1	int	mmxsh	386	d
BT	m,i	4	0	4	0	2	1	int	mmxsh	386	d
BT	m,r	4	12	12	0	12	1	int	mmxsh	386	d
BTR, BTS, BTC	r,i	3	0	6	0	2	1	int	mmxsh	386	
BTR, BTS, BTC	r,r	2	0	6	0	4	1	int	mmxsh	386	
BTR, BTS, BTC	m,i	4	7	18	0	8	1	int	mmxsh	386	
BTR, BTS, BTC	m,r	4	15	14	0	14	1	int	mmxsh	386	
BSF, BSR	r,r	2	0	4	0	2	1	int	mmxsh	386	
BSF, BSR	r,m	3	0	4	0	3	1	int	mmxsh	386	
SETcc	r	3	0	5	0	1	1	int		386	
SETcc	m	4	0	5	0	3	1	int		386	
CLC, STC		3	0	10	0	2				86	d
CMC		3	0	10	0	2				86	
CLD		4	7	52	0	52				86	
STD		4	5	48	0	48				86	
CLI		4	5	35		35				86	
STI		4	12	43		43				86	
Control transfer instruc	tions										
JMP	short/near	1	0	0	0	1	0	alu0	branch	86	
JMP	far	4	28	118		118	0			86	
JMP	r	3	0	4		4	0	alu0	branch	86	
JMP	m(near)	3	0	4		4	0	alu0	branch	86	
JMP	m(far)	4	31	11		11	0			86	
Jcc	short/near	1	0	0		2-4	0	alu0	branch	86	
J(E)CXZ	short	4	4	0		2-4	0	alu0	branch	86	
LOOP	short	4	4	0		2-4	0	alu0	branch	86	
CALL	near	3	0	2		2	0	alu0	branch	86	
CALL	far	4	34				0			86	
CALL	r	4	4	8			0	alu0	branch	86	
CALL	m(near)	4	4	9			0	alu0	branch	86	
CALL	m(far)	4	38				0			86	
RETN		4	0	2			0	alu0	branch	86	
RETN	i	4	0	2			0	alu0	branch	86	
RETF		4	33	11			0	3.30	2.3.1011	86	
1	ı		, 55			1	J		1 1		ı İ

RETF	i	4	33	11			0			86	
IRET		4	48	24			0			86	
ENTER	i,0	4	12	26		26				186	
ENTER	i,n	4	45+2	4n		128+	16n		186		
LEAVE		4	0	3		3				186	
BOUND	m	4	14	14		14				186	
INTO		4	5	18		18				86	
INT	i	4	84	644						86	
String instructions											
LODS		4	3	6		6				86	
REP LODS		4	5n	≈ 4n-	-36			86			
STOS		4	2	6		6				86	
REP STOS		4	2n+3	≈ 3n-	-10			86			
MOVS		4	4	6		4				86	
REP MOVS		4	≈163·	+1.1n				86			
SCAS		4	3			6				86	
REP SCAS		4	≈ 40+	-6n	≈4n				86		
CMPS		4	5			8				86	
REP CMPS		4	≈ 50+	-8n	≈4n				86		
Other											
NOP (90)		1	0	0		0,25	0/1	alu0/1		86	
Long NOP (0F 1F)		1	0	0		0,25	0/1	alu0/1		ppro	
PAUSE		4	2							sse2	
CPUID		4	39-81	ļ	200-5	00		p5			
RDTSC		4	7			80				p5	

Notes:

a) Add 1 µop if source is a memory operand.

Uses an extra µop (port 3) if SIB byte used. A SIB byte is needed if the memb)

ory operand has more than one pointer register, or a scaled index, or ESP is

used as base pointer.

Add 1 µop if source or destination, but not both, is a high 8-bit register (AH, c)

BH, CH, DH).

d) Has (false) dependence on the flags in most cases.

Not available on PMMX e)

Latency is 12 in 16-bit real or virtual mode, 24 in 32-bit protected mode. q)

Floating point x87 instructions

Instruction	Operands	µops	Microcode	Latency	Additional latency	Reciprocal through-	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
FLD	r	1	0	6	0	1	0	mov		87	
FLD	m32/64	1	0	≈ 7	0	1	2	load		87	

FLD	m80	3	4			6	2	load		87	
FBLD	m80	3	75			90	2	load		87	
FST(P)	r	1	0	6	0	1	0	mov		87	
FST(P)	m32/64	2	0	≈ 7		2-3	0	store		87	
FSTP	m80	3	8			8	0	store		87	
FBSTP	m80	3	311			400	0	store		87	
FXCH	r	1	0	0	0	1	0	mov		87	
FILD	m16	3	3	≈ 10		6	2	load		87	
FILD	m32/64	2	0	≈ 10		1	2	load		87	
FIST	m16	3	0	≈ 10		2-4	0	store		87	
FIST	m32/64	2	0	≈ 10		2-3	0	store		87	
FISTP	m	3	0	≈ 10		2-4	0	store		87	
FLDZ		1	0			2	0	mov		87	
FLD1		2	0			2	0	mov		87	
FCMOVcc	st0,r	4	0	2-4	1	4	1	fp		PPro	е
FFREE	r	3	0			4	0	mov		87	
FINCSTP, FDECSTP		1	0	0	0	1	0	mov		87	
FNSTSW	AX	4	0	11	0	3	1	-		287	
FSTSW	AX	6	0	11	0	3	1			287	
FNSTSW	m16	4	4			6	0			87	
FNSTCW	m16	4	4			6	0			87	
FLDCW	m16	4	7	(3)		(8)	0,2			87	f
LEGOTT	11110	•		(0)		(0)	0,2			0.	•
Arithmetic instructions											
FADD(P),FSUB(R)(P)	r	1	0	5	1	1	1	fp	add	87	
FADD,FSUB(R)	m	2	0	5	1	1	1	fp	add	87	
FIADD,FISUB(R)	m16	3	4	6	0	6	1	fp	add	87	
FIADD,FISUB(R)	m32	3	0	5	1	2	1	fp	add	87	
FMUL(P)	r	1	0	7	1	2	1	fp	mul	87	
FMUL	m	2	0	7	1	2	1	fp	mul	87	
FIMUL	m16	3	4	7	1	6	1	fp	mul	87	
FIMUL	m32	3	0	7	1	2	1	fp	mul	87	
FDIV(R)(P)	r	1	0	43	0	43	1	fp	div	87	g, h
FDIV(R)	m	2	0	43	0	43	1	fp	div	87	g, h
FIDIV(R)	m16	3	4	43	0	43	1	fp	div	87	g, h
FIDIV(R)	m32	3	0	43	0	43	1	fp	div	87	g, h
FABS		1	0	2	1	1	1	fp	misc	87	3,
FCHS		1	0	2	1	1	1	fp	misc	87	
FCOM(P), FUCOM(P)	r	1	0	2	0	1	1	fp	misc	87	
FCOM(P)	m	2	0	2	0	1	1	fp	misc	87	
FCOMPP, FUCOMPP		2	0	2	0	1	1	fp	misc	87	
FCOMI(P)	r	3	0	10	0	3	0,1	fp	misc	PPro	
FICOM(P)	m16	4	4			6	1	fp	misc	87	
FICOM(P)	m32	3	0	2	0	2	1,2	fp	misc	87	
FTST		1	0	2	0	1	1	fp	misc	87	
FXAM		1	0	2	0	1	1	fp	misc	87	
FRNDINT		3	15	23	0	15	0,1	٦,	1.1100	87	
FPREM		6	84	212		10	1	fp		87	
FPREM1		6	84	212			1	fp		387	
			3-7	_ ' _			'	יף		307	
		I	I	1 1		I	I		I	I	ı İ

Math										
FSQRT	1	0	43	0	43	1	fp	div	87	g, h
FLDPI, etc.	2	0			3	1	fp		87	
FSIN	6	≈150	≈180		≈170	1	fp		387	
FCOS	6	≈175	≈207		≈207	1	fp		387	
FSINCOS	7	≈178	≈216		≈211	1	fp		387	
FPTAN	6	≈160	≈230		≈200	1	fp		87	
FPATAN	3	92	≈187		≈153	1	fp		87	
FSCALE	3	24	57		66	1	fp		87	
FXTRACT	3	15	20		20	1	fp		87	
F2XM1	3	45	≈165		63	1	fp		87	
FYL2X	3	60	≈200		90	1	fp		87	
FYL2XP1	11	134	≈242		≈220	1	fp		87	
Other										
FNOP	1	0	1	0	1	0		mov	87	
(F)WAIT	2	0	0	0	1	0		mov	87	
FNCLEX	4	4			96	1			87	
FNINIT	6	29			172				87	
FNSAVE	4	174	456		420	0,1			87	
FRSTOR	4	96	528		532				87	
FXSAVE	4	69	132		96				sse	i
FXRSTOR	4	94	208		208				sse	i

Notes:

e) Not available on PMMX

f) The latency for FLDCW is 3 when the new value loaded is the same as the

value of the control word before the preceding FLDCW, i.e. when alternating between the same two values. In all other cases, the latency and reciprocal

throughput is 143.

g) Latency and reciprocal throughput depend on the precision setting in the F.P.

control word. Single precision: 23, double precision: 38, long double precision

(default): 43.

h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.

i) Takes 6 μops more and 40-80 clocks more when XMM registers are disabled.

Integer MMX and XMM instructions

Instruction	Operands	nops	Microcode	Latency	Additional latency	Reciprocal through-	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOVD	r32, mm	2	0	5	1	1	0	fp		mmx	
MOVD	mm, r32	2	0	2	0	2	1	mmx	alu	mmx	
MOVD	mm,m32	1	0	≈ 8	0	1	2	load		mmx	
MOVD	r32, xmm	2	0	10	1	2	0	fp		sse2	

MOVD	xmm, r32	2	0	6	1	2	1	mmx	shift	sse2	
MOVD	xmm,m32	1	0	≈ 8	0	1	2	load	SHIIL	sse2	
MOVD	m32, r	2	0	≈ 8	U	2	0,1	load		mmx	
MOVQ	· /	1	0	6	0	1	0, 1	mov			
MOVQ	mm,mm	-	0	2	1	2		mov	ob:ft	mmx	
	xmm,xmm	1	-		1		1	mmx	shift	sse2	
MOVQ	r,m64	1	0	≈ 8		1	2	load		mmx	
MOVQ	m64,r	2	0	≈ 8		2	0	mov		mmx	
MOVDQA	xmm,xmm	1	0	6	0	1	0	mov		sse2	
MOVDQA	xmm,m	1	0	≈ 8		1	2	load		sse2	
MOVDQA	m,xmm	2	0	≈ 8		2	0	mov		sse2	
MOVDQU	xmm,m	4	0			2	2	load		sse2	k
MOVDQU	m,xmm	4	6			2	0	mov		sse2	k
MOVDQ2Q	mm,xmm	3	0	8	1	2	0,1	mov-mmx	sse2		
MOVQ2DQ	xmm,mm	2	0	8	1	2	0,1	mov-mmx	sse2		
MOVNTQ	m,mm	3	0			75	0	mov		sse	
MOVNTDQ	m,xmm	2	0			18	0	mov		sse2	
PACKSSWB/DW											
PACKUSWB	mm,r/m	1	0	2	1	1	1	mmx	shift	mmx	а
PACKSSWB/DW						_					
PACKUSWB	xmm,r/m	1	0	4	1	2	1	mmx	shift	mmx	а
PUNPCKH/LBW/WD/	,		_								
DQ	mm,r/m	1	0	2	1	1	1	mmx	shift	mmx	а
PUNPCKHBW/WD/DQ/			0						- I- :£4	0	_
QDQ	xmm,r/m	1	0	4	1	2	1	mmx	shift	sse2	а
PUNPCKLBW/WD/DQ/QDQ	vmm r/m	4	0	2	4	2	4	mmy	ob:ft	222	
	xmm,r/m	1	0	2	1	2	1	mmx	shift	sse2	а
PSHUFD	xmm,xmm,i	1	0	4	1	2	1	mmx	shift	sse2	
PSHUFL/HW	xmm,xmm,i	1	0	2	1	2	1	mmx	shift	sse2	
PSHUFW	mm,mm,i	1	0	2	1	1 -	1	mmx	shift	mmx	
MASKMOVQ	mm,mm	4	4			7	0	mov		sse	
MASKMOVDQU	xmm,xmm	4	6	_		10	0	mov		sse2	
PMOVMSKB	r32,r	2	0	7	1	3	0,1	mmx-alu0	sse		
PEXTRW	r32,mm,i	3	0	8	1	2	1	mmx-int	sse		
PEXTRW	r32,xmm,i	3	0	9	1	2	1	mmx-int	sse2		
PINSRW	mm,r32,i	2	0	3	1	2	1	int-mmx	sse		
PINSRW	xmm,r32,i	2	0	4	1	2	1	int-mmx	sse2		
Arithmetic instructions											
PADDB/W/D											
PADD(U)SB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PSUBB/W/D											
PSUB(U)SB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PADDQ, PSUBQ	mm,r/m	1	0	2	1	1	1	mmx	alu	sse2	а
PADDQ, PSUBQ	xmm,r/m	1	0	4	1	2	1	fp	add	sse2	а
PCMPEQB/W/D											
PCMPGTB/W/D	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PMULLW PMULHW	r,r/m	1	0	6	1	1,2	1	fp	mul	mmx	a,j
PMULHUW	r,r/m	1	0	6	1	1,2	1	fp	mul	sse	a,j
PMADDWD	r,r/m	1	0	6	1	1,2	1	fp	mul	mmx	a,j
PMULUDQ	r,r/m	1	0	6	1	1,2	1	fp	mul	sse2	a,j
PAVGB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j
1				1	1	, ,	1	ı	ı	1	

PMIN/MAXUB	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j
PMIN/MAXSW	r,r/m	1	0	2	1	1,2	1	mmx	alu	sse	a,j
PSADBW	r,r/m	1	0	4	1	1,2	1	mmx	alu	sse	a,j
Logic											
PAND, PANDN	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
POR, PXOR	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PSLL/RLW/D/Q,											
PSRAW/D	r,i/r/m	1	0	2	1	1,2	1	mmx	shift	mmx	a,j
PSLLDQ, PSRLDQ	xmm,i	1	0	4	1	2	1	mmx	shift	sse2	а
Other											
EMMS		4	11	12		12	0			mmx	

Notes:

a) Add 1 µop if source is a memory operand.

j) Reciprocal throughput is 1 for 64 bit operands, and 2 for 128 bit operands.

k) It may be advantageous to replace this instruction by two 64-bit moves

Floating point XMM instructions

Instruction			2		>	ਰ ਸ	T	т	S	=	7
Instruction	Operands	sdon	Microcode	Latency	Additional latency	Reciproca put	Port	Execution unit	Subunit	Instruction	Notes
					latency	Reciprocal through-		unit		n set	
Move instructions											
MOVAPS/D	r,r	1	0	6	0	1	0	mov		sse	
MOVAPS/D	r,m	1	0	≈ 7	0	1	2			sse	
MOVAPS/D	m,r	2	0	≈ 7		2	0			sse	
MOVUPS/D	r,r	1	0	6	0	1	0	mov		sse	
MOVUPS/D	r,m	4	0			2	2			sse	k
MOVUPS/D	m,r	4	6			8	0			sse	k
MOVSS	r,r	1	0	2	0	2	1	mmx	shift	sse	
MOVSD	r,r	1	0	2	1	2	1	mmx	shift	sse	
MOVSS, MOVSD	r,m	1	0	≈ 7	0	1	2			sse	
MOVSS, MOVSD	m,r	2	0			2	0			sse	
MOVHLPS	r,r	1	0	4	0	2	1	mmx	shift	sse	
MOVLHPS	r,r	1	0	2	0	2	1	mmx	shift	sse	
MOVHPS/D, MOVLPS/D											
	r,m	3	0			4	2			sse	
MOVHPS/D, MOVLPS/D											
140) (14TDG (D	m,r	2	0			2	0			sse	
MOVNTPS/D	m,r	2	0			4	0			sse/2	
MOVMSKPS/D	r32,r	2	0	6	1	3	1	fp		sse	
SHUFPS/D	r,r/m,i	1	0	4	1	2	1	mmx	shift	sse	
UNPCKHPS/D	r,r/m	1	0	4	1	2	1	mmx	shift	sse	
UNPCKLPS/D	r,r/m	1	0	2	1	2	1	mmx	shift	sse	

Conversion											
CVTPS2PD	r,r/m	4	0	7	1	4	1	mmx	shift	sse2	а
CVTPD2PS	r,r/m	2	0	10	1	2	1	fp-mmx	sse2	а	
CVTSD2SS	r,r/m	4	0	14	1	6	1	mmx	shift	sse2	а
CVTSS2SD	r,r/m	4	0	10	1	6	1	mmx	shift	sse2	а
CVTDQ2PS	r,r/m	1	0	4	1	2	1	fp		sse2	а
CVTDQ2PD	r,r/m	3	0	9	1	4	1	mmx-fp	sse2	а	
CVT(T)PS2DQ	r,r/m	1	0	4	1	2	1	fp		sse2	а
CVT(T)PD2DQ	r,r/m	2	0	9	1	2	1	fp-mmx	sse2	а	
CVTPI2PS	xmm,mm	4	0	10	1	4	1	mmx		sse	а
CVTPI2PD	xmm,mm	4	0	11	1	5	1	fp-mmx	sse2	а	
CVT(T)PS2PI	mm,xmm	3	0	7	0	2	0,1	fp-mmx	sse	а	
CVT(T)PD2PI	mm,xmm	3	0	11	1	3	0,1	fp-mmx	sse2	а	
CVTSI2SS	xmm,r32	3	0	10	1	3	1	fp-mmx	sse	а	
CVTSI2SD	xmm,r32	4	0	15	1	6	1	fp-mmx	sse2	а	
CVT(T)SD2SI	r32,xmm	2	0	8	1	2,5	1	fp		sse2	а
CVT(T)SS2SI	r32,xmm	2	0	8	1	2,5	1	fp		sse	а
Arithmetic											
ADDPS/D ADDSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	а
SUBPS/D SUBSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	a
MULPS/D MULSS/D	r,r/m		0	6	1	2	1	fp	mul	sse	a
DIVSS	r,r/m		0	23	0	23	1	fp	div	sse	a,h
DIVPS	r,r/m		0	39	0	39	1	fp	div	sse	a,n
DIVSD	r,r/m		0	38	0	38	1	fp	div	sse2	a,n
DIVPD	r,r/m		0	69	0	69	1	fp	div	sse2	a,n
RCPPS RCPSS	r,r/m	2	0	4	1	4	1	mmx	aiv	sse	a
MAXPS/D	1,17111	_		_	'	_	'	IIIIIX		330	"
MAXSS/DMINPS/D											
MINSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	а
CMPccPS/D											
CMPccSS/D	r,r/m	1	0	4	1	2	1	fp	add	sse	а
COMISS/D UCOMISS/D	r,r/m	2	0	6	1	3	1	fp	add	sse	а
Logic											
ANDPS/D ANDNPS/D											
ORPS/D XORPS/D	r,r/m	1	0	2	1	2	1	mmx	alu	sse	а
Math											
SQRTSS	r,r/m	1	0	23	0	23	1	fp	div	sse	a,h
SQRTPS	r,r/m	1	0	39	0	39	1	fp	div	sse	a,h
SQRTSD	r,r/m	1	0	38	0	38	1	fp	div	sse2	a,h
SQRTPD	r,r/m	1	0	69	0	69	1	fp	div	sse2	a,h
RSQRTSS	r,r/m	2	0	4	1	3	1	mmx		sse	a
RSQRTPS	r,r/m	2	0	4	1	4	1	mmx		sse	а
Other											
LDMXCSR	m	4	8	98		100	1			sse	
STMXCSR	m	4	4			6	1			sse	
Notes		<u>'</u>	<u> </u>	1			· '	L			

Notes:

a)	Add 1 µop if source is a memory operand.
h)	Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.
k)	It may be advantageous to replace this instruction by two 64-bit moves.

Intel Pentium 4 w. EM64T (Prescott)

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate constant, r = any register, r32 = 32-bit register, etc., mm = 64 bit

mmx register, xmm = 128 bit xmm register, sr = segment register, m = any memory operand including indirect operands, m64 means 64-bit memory oper-

and, etc., mabs = memory operand with 64-bit absolute address.

μορs: Number of μops issued from instruction decoder and stored in trace cache.

Microcode: Number of additional μops issued from microcode ROM.

Latency: This is the delay that the instruction generates in a dependency chain if the next

dependent instruction starts in the same execution unit. The numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's, infinity and exceptions increase the delays. The latency of moves to and from memory cannot be measured accurately because of the problem with memory intermediates explained above under

"How the values were measured".

Additional latency: This number is added to the latency if the next dependent instruction is in a dif-

ferent execution unit. There is no additional latency between ALU0 and ALU1.

ReciprocalThis is also called issue latency. This value indicates the number of clock cycles throughput:
from the execution of an instruction begins to a subsequent independent in-

from the execution of an instruction begins to a subsequent independent instruction can begin to execute in the same execution subunit. A value of 0.25

indicates 4 instructions per clock cycle in one thread.

Port: The port through which each μop goes to an execution unit. Two independent

μops can start to execute simultaneously only if they are going through different

ports.

Execution unit: Use this information to determine additional latency. When an instruction with

more than one uop uses more than one execution unit, only the first and the

last execution unit is listed.

Execution subunit:

Instruction set

Throughput measures apply only to instructions executing in the same subunit. Indicates the compatibility of an instruction with other 80x86 family micropro-

cessors. The instruction can execute on microprocessors that support the in-

struction set indicated.

Integer instructions

Instruction	Operands	sdor	Microcode	Latency	Additional latency	Reciprocal through- put	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOV	r,r	1	0	1	0	0,25	0/1	alu0/1		86	С
MOV	r8/16/32,i	1	0	1	0	0,25	0/1	alu0/1		86	
MOV	r64,i32	1	0		0	0,5	0/1	alu0/1		x64	

MOV	r64,i64	2	0	1 1	0	1 1	1	alu1		x64	1 1
MOV	r8/16,m	2	0	3	0	1	2	load		86	
MOV	r32/64,m	1	0	2	0	1	2	load		86	
MOV	·	1	0		U	2	0	store		86	h a
MOV	m,r	2	0			2	0,3			86	b,c
	m,i	2				2		store			
MOV	m64,i32		0 2				0,3	store		x64	
MOV	r,sr	1				8				86	
MOV	sr,r/m	1	8			27				86	a,q
MOV	r,mabs	3	0			1				x64	
MOV	mabs,r	3	0			2				x64	I
MOVNTI	m,r32	2	0		_	2				sse2	
MOVZX	r,r	1	0	1	0	0,25	0/1	alu0/1		386	C
MOVZX	r16,r8	2	0	2	0	1	0/1	alu0/1		386	C
MOVZX	r,m	1	0	2	0	1	2	load		386	
MOVSX	r16,r8	2	0	2	0	1	0	alu0		386	a,c,o
MOVSX	r32/64,r8/16	1	0	1	0	0,5	0	alu0		386	a,c,o
MOVSX	r,m	2	0	3	0	1	2	load		386	
MOVSXD	r64,r32	1	0	1	0	0,5	0	alu0		x64	а
CMOVcc	r,r/m	3	0	9,5	0	3				PPro	a,e
XCHG	r,r	3	0	2	0	1	0/1	alu0/1		86	
XCHG	r,m	2	6	≈100						86	
XLAT		4	0	6						86	
PUSH	r	2	0	2		2				86	
PUSH	i	2	0	2		2				186	
PUSH	m	3	0	2		2				86	
PUSH	sr	1	3			9				86	
PUSHF(D/Q)		1	3			9				86	
PUSHA(D)		1	9			16				186	m
POP	r	2	0	1	0	1				86	
POP	m	2	6			10				86	
POP	sr	1	8			30				86	
POPF(D/Q)		1	8			70				86	
POPA(D)		2	16			15				186	m
LEA	r,[m]	1	0			0,25	0/1	alu0/1		86	p
LEA	r,[r+r/i]	1	0	2,5	0	0,25	0/1	alu0/1		86	
LEA	r,[r+r+i]	2	0	3,5	0	0,5	0/1	alu0/1		86	
LEA	r,[r*i]	3	0	3,5	0	1	1	alu		386	
LEA	r,[r+r*i]	2	0	3,5	0	1	0,1	alu0,1		386	
LEA	r,[r+r*i+i]	3	0	3,5	0	1 1	1	alu		386	
LAHF	1,[1.1.11]	1	0	4	0	'	1	int		86	n
SAHF		1	0	5	0		0/1	alu0/1		86	d,n
SALC		2	0	5	0	1	1	int		86	
	r m	2	10		U	28	ı	Ш		86	m
LDS, LES,	r,m	1	3	0		8					m
LODS				8	E0	0		0.0		86	
REP LODS		1	5n	≈ 4n+	อบ			86		0.6	
STOS		1	2	8		8		00		86	
REP STOS		1	2.5n	≈ 3n				86		00	
MOVS		1	4	8		8		00		86	
REP MOVSB		9		≈.3n				86			
REP MOVSW		1	≈.5-1.1r	,≈ .6-1	.4n			86			

								i				
REP MOVSD		1	≈1.1n	≈ 1.4	n			86				
REP MOVSQ		1	≈1.1n	≈ 1.4				x64				
BSWAP	r	1	0	1	0	1		alu		486		
IN, OUT	r,r/i	1	52			>100	0		86			
PREFETCHNTA	m	1	0			1				sse		
PREFETCHT0/1/2	m	1	0			1				sse		
SFENCE		1	2			50				sse		
LFENCE		1	2			50				sse2		
MFENCE		1	4			124				sse2		
Arithmetic instructions												
ADD, SUB	r,r	1	0	1	0	0,25	0/1	alu0/1		86	С	
ADD, SUB	r,m	2	0	1	0	1				86	С	
ADD, SUB	m,r	3	0	5		2				86	С	
ADC, SBB	r,r/i	3	0	10	0	10	1	int,alu		86		
ADC, SBB	r,m	2	5	10	0	10	1	int,alu		86		
ADC, SBB	m,r	2	6	20		10		,		86		
ADC, SBB	m,i	3	5	22		10				86		
CMP	r,r	1	0	1	0	0,25	0/1	alu0/1		86	С	
CMP	r,m	2	0	1	0	1	0, .	alao, i		86	C	
INC, DEC	r	2	0	1	0	0,5	0/1	alu0/1		86		
INC, DEC	m '	4	0	5		3	0,1	aldo/ i		86		
NEG	r	1	0	1	0	0,5	0	alu0		86		
NEG	m '	3	0	5		3		aido		86		
AAA, AAS	'''	1	10	26		3				86	m	
DAA, DAS		1	16	29						86	m	
AAD		2	5	13			1	int	mul	86	m	
AAM		2	17	71			1	int	fpdiv	86		
MUL, IMUL	r8	1	0	10	0		1	int	mul	86	m	
MUL, IMUL	r16	4	0	11	0		1	int	mul	86		
MUL, IMUL	r32	3	0	11	0		1	int	mul	86		
MUL, IMUL	r64	1	5	11	0		1			x64		
MUL, IMUL	m8	2	0	10	0			int int	mul mul	86		
		2	5		0		1			l		
MUL, IMUL	m16 m32	3	0	11 11			1	int	mul	86 86		
MUL, IMUL		2	6	11	0		1	int	mul			
MUL, IMUL	m64		0		0	2.5	1	int	mul	x64		
IMUL	r16,r16	1 2		10	0	2,5	1	int	mul	386		
IMUL	r16,r16,i		0	11	0	2,5	1	int	mul	186		
IMUL	r32,r32	1		10	0	2,5	1	int	mul	386		
IMUL	r32,(r32),i r64,r64	1	0	10	0	2,5	1	int	mul	386		
IMUL	,	1	0	10	0	2,5	1	int	mul	x64		
IMUL	r64,(r64),i	1	0	10	0	2,5	1	int	mul	x64		
IMUL	r16,m16	2	0	10	0	2,5	1	int	mul	386		
IMUL	r32,m32	2	0	10	0	2,5	1	int	mul	386		
IMUL	r64,m64	2	0	10	0	2,5	1	int	mul	x64		
IMUL	r,m,i	3	0	10	0	1-2.5	1	int	mul foodise	186	_	
DIV	r8/m8	1	20	74	0	34	1	int	fpdiv	86	a	
DIV	r16/m16	1	19	73	0	34	1	int	fpdiv	86	a	
DIV	r32/m32	1	21	76	0	34	1	int	fpdiv	386	a	
DIV	r64/m64	1	31	63	0	52	1	int	fpdiv	x64	а	

IDIV IDIV IDIV CBW CWD CDQ CQO CWDE CDQE SCAS REP SCAS CMPS REP CMPS	r8/m8 r16/m16 r32/m32 r64/m64	1 1 1 1 2 2 1 1 1 2 1 1 1 1	21 19 19 58 0 0 0 0 0 0 3 ≈ 54+6 5 ≈ 81+8		0 0 0 0 0 0 0 0 0 0 ≈ 4n	34 34 91 1 1 1 1 1 8	1 1 1 0 0/1 0/1 0/1 0/1 0/1	int int int alu0 alu0/1 alu0/1 alu0/1 alu0/1	fpdiv fpdiv fpdiv fpdiv 86	86 86 386 x64 86 386 x64 386 x64 86	a a a a
Logic											
AND, OR, XOR	r,r	1	0	1	0	0,5	0	alu0		86	С
AND, OR, XOR	r,m	2	0	1	0	1				86	С
AND, OR, XOR	m,r	3	0	5		2				86	С
TEST	r,r	1	0	1	0	0,5	0	alu0		86	С
TEST	r,m	2	0	1	0	1				86	С
NOT	r	1	0	1	0	0,5	0	alu0		86	
NOT	m	3	0	5		2				86	
SHL	r,i	1	0	1	0	0,5	1	alu1		186	
SHR, SAR	r8/16/32,i	1	0	1	0	0,5	1	alu1		186	
SHR, SAR	r64,i	1	0	7	0	2	1	alu1		x64	
SHL	r,CL	2	0	2	0	2	1	alu1		86	
SHR, SAR	r8/16/32,CL	2	0	2	0	2	1	alu1		86	
SHR, SAR	r64,CL	2	0	8	0		1	alu1		x64	
ROL, ROR	r8/16/32,i	1	0	1	0	1	1	alu1		186	d
ROL, ROR	r64,i	1	0	7	0	7	1	alu1		x64	d
ROL, ROR	r8/16/32,CL	2	0	2	0	2	1	alu1		86	d
ROL, ROR	r64,CL	2	0	8	0	8	1	alu1		x64	d
RCL, RCR	r,1	1	0	7	0	7	1	alu1		86	d
RCL	r,i	2	11	31	0	31	1	alu1		186	d
RCR	r,i	2	11	25	0	25	1	alu1		186	d
RCL	r,CL	1	11	31	0	31	1	alu1		86	d
RCR	r,CL	1	11	25	0	25	1	alu1		86	d
SHL, SHR, SAR	m8/16/32,i	3	6	10	0		1	alu1		86	
ROL. ROR	m8/16/32,i	3	6	10	0		1	alu1		86	d
SHL, SHR, SAR	m8/16/32,cl	2	6	10	0		1	alu1		86	
ROL. ROR	m8/16/32,cl	2	6	10	0		1	alu1		86	d
RCL, RCR	m8/16/32,1	2	5	27	0	27	1	alu1		86	d
RCL, RCR	m8/16/32,i	3	13	38	0	38	1	alu1		86	d
RCL, RCR	m8/16/32,cl	2	13	37	0	37	1	alu1		86	d
SHLD, SHRD	r8/16/32,r,i	3	0	8	0	7	1	alu1		386	
SHLD	r64,r64,i	4	5	10	0		1	alu1		x64	
SHRD	r64,r64,i	3	7	10	0		1	alu1		x64	
SHLD, SHRD	r8/16/32,r,cl	4	0	9	0	8	1	alu1		386	
SHLD	r64,r64,cl	4	5	14	0		1	alu1		x64	

SHRD SHLD, SHRD SHLD, SHRD BT BT BT BT BT BT, BTS, BTC BTR, BTS, BTC BTR, BTS, BTC BTR, BTS, BTC CBTR, BTS, BTC CCC CCC, STC CMC CLD, STD	r64,r64,cl m,r,i m,r,CL r,i r,r m,i m,r r,i r,r m,i m,r r,r/m r	3 3 2 1 2 3 2 1 2 3 2 2 3 3 1 1	8 8 8 0 0 7 0 0 6 10 0 0 0 0 8	12 20 20 8 9 8 10 8 9 28 14 16 9		10 10 8 9 8 10 8 9 10 14 4 1 2 8	1 1 1 1 1 1 1 1 1 1 1 1	alu1 alu1 alu1 alu1 alu1 alu1 alu1 alu1		x64 386 386 386 386 386 386 386 386 386 386	d d d d
CLD, STD		1	8		U	53				86	
Control transfer instruc	∣ tions										
JMP JMP JMP JMP JMP JCC J(E)CXZ LOOP CALL CALL CALL CALL CALL CALL RETN RETN RETF RETF IRET BOUND INT INTO	short/near far r m(near) m(far) short/near short short near far r m(near) m(far) i i	1 2 3 3 2 1 4 4 3 3 4 4 2 4 4 1 2 1 2 2 1	0 25 0 0 28 0 0 0 0 29 0 0 32 0 0 30 30 49 11 67 4	0	0	1 154 15 10 157 2-4 4 7 160 7 9 160 7 7 160 160 325 12 470 26		alu0 alu0 alu0 alu0 alu0 alu0 alu0 alu0	branch branch branch branch branch branch branch branch branch	86 86 86 86 86 86 86 86 86 86 86 86 86 8	m m
Other NOP (90) Long NOP (0F 1F) PAUSE LEAVE CLI STI CPUID RDTSC		1 1 1 4 1 1 1 1	0 0 2 0 5 11 49-90	0 0 5	300-{	0,25 0,25 50 5 52 64	0/1 0/1	alu0/1 alu0/1 p5		86 ppro sse2 186 86 86	

RDPMC (bit 31 = 1)	1	37	100	p5	
RDPMC (bit 31 = 0)	4	154	240	p5	
MONITOR				(sse3)	
MWAIT				(sse3)	

Notes:

a) Add 1 μop if source is a memory operand.
b) Uses an extra μop (port 3) if SIB byte used.

c) Add 1 µop if source or destination, but not both, is a high 8-bit register (AH, BH,

CH, DH).

d) Has (false) dependence on the flags in most cases.

e) Not available on PMMX

I) Move accumulator to/from memory with 64 bit absolute address (opcode A0 -

A3).

m) Not available in 64 bit mode.

n) Not available in 64 bit mode on some processors.

o) MOVSX uses an extra μop if the destination register is smaller than the biggest

register size available. Use a 32 bit destination register in 16 bit and 32 bit mode, and a 64 bit destination register in 64 bit mode for optimal performance.

p) LEA with a direct memory operand has 1 μop and a reciprocal throughput of

0.25. This also applies if there is a RIP-relative address in 64-bit mode. A sign-extended 32-bit direct memory operand in 64-bit mode without RIP-relative address takes 2 μ ops because of the SIB byte. The throughput is 1 in this case.

You may use a MOV instead.

q) These values are measured in 32-bit mode. In 16-bit real mode there is 1 mi-

crocode µop and a reciprocal throughput of 17.

Floating point x87 instructions

Instruction	Operands	sdor	Microcode	Latency	Addition	Recipro	Port	Execution unit	Subunit	Instruction	Notes
			de		Additional latency	Reciprocal through-		on unit		on set	
Move instructions											
FLD	r	1	0	7	0	1	0	mov		87	
FLD	m32/64	1	0		0	1	2	load		87	
FLD	m80	3	3			8	2	load		87	
FBLD	m80	3	74			90	2	load		87	
FST(P)	r	1	0	7	0	1	0	mov		87	
FST(P)	m32/64	2	0	7		2	0	store		87	
FSTP	m80	3	6			10	0	store		87	
FBSTP	m80	3	311			400	0	store		87	
FXCH	r	1	0	0	0	1	0	mov		87	
FILD	m16	3	2			8	2	load		87	
FILD	m32/64	2	0			2	2	load		87	
FIST(P)	m	3	0			2,5	0	store		87	
FISTTP	m	3	0			2,5	0	store		sse3	
FLDZ		1	0			2	0	mov		87	

FLD1		2	0			2	0	mov		87	
FCMOVcc	st0,r	4	0	5	1	4	1	fp		PPro	e
FFREE	r	3	0			3	0	mov		87	
FINCSTP, FDECSTP	•	1	0	0	0	1	0	mov		87	
FNSTSW	AX	4	0		0	3	1			287	
FSTSW	AX	6	0		0	3	1			287	
FNSTSW	m16	2	3		Ü	8	0			87	
FNSTCW	m16	4	0			3	0			87	
FLDCW	m16	3	6			10	0,2			87	f
LDCVV	11110					10	0,2			07	'
Arithmetic instructions											
FADD(P),FSUB(R)(P)	r	1	0	6	1	1	1	fp	add	87	
FADD,FSUB(R)	m	2	0	6	1	1	1	fp	add	87	
FIADD,FISUB(R)	m16	3	3	7	1	6	1	fp	add	87	
FIADD,FISUB(R)	m32	3	0	6	1	2	1	fp	add	87	
FMUL(P)	r	1	0	8	1	2	1	fp	mul	87	
FMUL	m	2	0	8	1	2	1	fp	mul	87	
FIMUL	m16	3	3	8	1	8	1	fp	mul	87	
FIMUL	m32	3	0	8	1	3	1	fp	mul	87	
FDIV(R)(P)	r	1	0	45	1	45	1	fp	div	87	g,h
FDIV(R)	m	2	0	45	1	45	1	fp	div	87	g,n g,h
FIDIV(R)	m16	3	3	45	1	45	1	fp	div	87	g,n g,h
FIDIV(R)	m32	3	3	45	1	45	1	fp	div	87	g,n g,h
FABS	11102	1	0	3	1	1	1	fp	misc	87	9,11
FCHS		1	0	3	1	1	1	fp	misc	87	
FCOM(P), FUCOM(P)	r	1	0	3	0	1	1	fp	misc	87	
FCOM(P)	m	2	0	3	0	1	1	fp	misc	87	
FCOMPP, FUCOMPP	•••	2	0	3	0	1	1	fp	misc	87	
FCOMI(P)	r	3	0	5	U	3	0,1	fp	misc	PPro	
FICOM(P)	m16	3	3			8	1	fp	misc	87	
FICOM(P)	m32	3	0			2	1,2	fp	misc	87	
FTST	11132	1	0			1	1,2	fp	misc	87	
FXAM		1	0			1	1	-		87	
FRNDINT		3	14	28	1	16	0,1	fp	misc	87	
FPREM		8	86	220	1	10	1	fn		87	
FPREM1		9	92	220	1		1	fp		387	
FREIVII		9	92	220	'		ı	fp		367	
Math											
FSQRT		1	0	45	1	45	1	fp	div	87	g,h
FLDPI, etc.		2	0			2	1	fp		87	
FSIN, FCOS		3	≈100	≈200		≈200	1	fp		387	
FSINCOS		5	≈150	≈200		≈200	1	fp		387	
FPTAN		8	≈170	≈270		≈270	1	fp		87	
FPATAN		4	97	≈250		≈250	1	fp		87	
FSCALE		3	25	96			1	fp		87	
FXTRACT		4	16	27			1	fp		87	
F2XM1		3	190	≈270			1	fp		87	
FYL2X		3	63	≈170			1	fp		87	
FYL2XP1		3	58	≈170			1	fp		87	

Other										
FNOP	1	0	1	0	1	0	mov	87		
(F)WAIT	2	0	0	0	1	0	mov	87		
FNCLEX	1	4			120	1		87		
FNINIT	1	30			200			87		
FNSAVE	2	181	500			0,1		87		
FRSTOR	2	96	570					87		
FXSAVE	2	121			160			sse	i	
FXRSTOR	2	118			244			sse	i	

Notes:

e) Not available on PMMX

The latency for FLDCW is 3 when the new value loaded is the same as the value of the control word before the preceding FLDCW, i.e. when alternating

between the same two values. In all other cases, the latency and reciprocal

throughput is > 100.

g) Latency and reciprocal throughput depend on the precision setting in the F.P.

control word. Single precision: 32, double precision: 40, long double precision

(default): 45.

h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.

i) Takes fewer microcode µops when XMM registers are disabled, but the

throughput is the same.

Integer MMX and XMM instructions

Instruction	Operands	sdori	Microcode	Latency	Additional latency	Reciprocal through- put	Port	Execution unit	Subunit	Instruction set	Notes
Move instructions											
MOVD	r32, mm	2	0	6	1	1	0	fp		mmx	
MOVD	mm, r32	1	0	3	1	1	1	mmx	alu	mmx	
MOVD	mm,m32	1	0			1	2	load		mmx	
MOVD	r32, xmm	1	0	7	1	1	0	fp		sse2	
MOVD	xmm, r32	2	0	4	1	2	1	mmx	shift	sse2	
MOVD	xmm,m32	1	0			1	2	load		sse2	
MOVD	m32, r	2	0			2	0,1			mmx	
MOVQ	mm,mm	1	0	7	0	1	0	mov		mmx	
MOVQ	xmm,xmm	1	0	2	1	2	1	mmx	shift	sse2	
MOVQ	r,m64	1	0			1	2	load		mmx	
MOVQ	m64,r	2	0			2	0	mov		mmx	
MOVDQA	xmm,xmm	1	0	7	0	1	0	mov		sse2	
MOVDQA	xmm,m	1	0			1	2	load		sse2	
MOVDQA	m,xmm	2	0			2	0	mov		sse2	
MOVDQU	xmm,m	4	0			23	2	load		sse2	k
MOVDQU	m,xmm	4	2			8	0	mov		sse2	k
LDDQU	xmm,m	4	0			2,5	2	load		sse3	
MOVDQ2Q	mm,xmm	3	0	10	1	2	0,1	mov-mmx	sse2		

MOVQ2DQ	xmm,mm	2	0	10	1	2	0,1	mov-mmx	sse2		
MOVNTQ	m,mm	3	0	10	'	4	0, 1	mov	3362	sse	
MOVNTDQ	m,xmm	2	0			4	0	mov		sse2	
MOVDDUP		1	0	2	1	2	1	mmx	shift	sse3	
MOVSHDUP	xmm,xmm	'	U		1			IIIIIX	SHIIL	5563	
MOVSLDUP	xmm,xmm	1	0	4	1	2	1	mmx	shift	sse3	
PACKSSWB/DW	AIIIII, AIIIIII	•	U	"	'	_	'	111111	Silit	3300	
PACKUSWB	mm,r/m	1	0	2	1	2	1	mmx	shift	mmx	a
PACKSSWB/DW	,	•	Ū	_	•	_					
PACKUSWB	xmm,r/m	1	0	4	1	4	1	mmx	shift	mmx	a
PUNPCKH/LBW/WD/	,										
DQ	mm,r/m	1	0	2	1	2	1	mmx	shift	mmx	а
PUNPCKHBW/WD/DQ/											
QDQ	xmm,r/m	1	0	4	1	4	1	mmx	shift	sse2	а
PUNPCKLBW/WD/DQ/Q											
DQ	xmm,r/m	1	0	2	1	2	1	mmx	shift	sse2	а
PSHUFD	xmm,xmm,i	1	0	4	1	2	1	mmx	shift	sse2	
PSHUFL/HW	xmm,xmm,i	1	0	2	1	2	1	mmx	shift	sse	
PSHUFW	mm,mm,i	1	0	2	1	1	1	mmx	shift	sse	
MASKMOVQ	mm,mm	1	4			10	0	mov		sse	
MASKMOVDQU	xmm,xmm	1	6			12	0	mov		sse2	
PMOVMSKB	r32,r	2	0	7		3	0,1	mmx-alu0	sse		
PEXTRW	r32,mm,i	2	0	7		2	1	mmx-int	sse		
PEXTRW	r32,xmm,i	2	0	7		3	1	mmx-int	sse2		
PINSRW	r,r32,i	2	0	4		2	1	int-mmx	sse		
Arithmetic instructions											
PADDB/W/D											
PADD(U)SB/W	r,r/m	1	0	2	1	1,2	1	mmx	alu	mmx	a,j
PSUBB/W/D			_	_							
PSUB(U)SB/W	r,r/m	1						mmy			
D 4 D D Q D Q 1 1 D Q		[]	0	2	1	1,2	1	mmx	alu	mmx	a,j
PADDQ, PSUBQ	mm,r/m	1	0	2	1	1	1	mmx	alu	sse2	a
PADDQ, PSUBQ	mm,r/m xmm,r/m	1	-		-						· ·
PADDQ, PSUBQ PCMPEQB/W/D	xmm,r/m	1	0	2 5	1	1 2	1	mmx fp	alu add	sse2 sse2	a
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D	xmm,r/m r,r/m	1	0 0	2 5 2	1 1 1	1,2	1 1 1	mmx fp mmx	alu add alu	sse2 sse2 mmx	a a a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW	xmm,r/m r,r/m r,r/m	1 1 1	0 0 0	2 5 2 7	1 1 1 1	1 2 1,2 1,2	1 1 1 1	mmx fp mmx fp	alu add alu mul	sse2 sse2 mmx mmx	a a a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW	xmm,r/m r,r/m r,r/m r,r/m	1 1 1 1	0 0 0 0 0	2 5 2 7 7	1 1 1 1	1 2 1,2 1,2 1,2	1 1 1 1 1	mmx fp mmx fp fp	alu add alu mul mul	sse2 sse2 mmx mmx sse	a a,j a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD	xmm,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1	0 0 0 0 0	2 5 2 7 7	1 1 1 1 1 1	1 2 1,2 1,2 1,2 1,2	1 1 1 1 1 1	mmx fp mmx fp fp fp	alu add alu mul mul mul	sse2 sse2 mmx mmx sse mmx	a a,j a,j a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1	0 0 0 0 0 0 0 0	2 5 2 7 7 7	1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1	mmx fp mmx fp fp fp fp	alu add alu mul mul mul mul	sse2 sse2 mmx mmx sse mmx sse2	a a,j a,j a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1	0 0 0 0 0 0 0	2 5 7 7 7 7 2	1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp fp fp mmx	alu add alu mul mul mul mul alu	sse2 sse2 mmx mmx sse mmx sse2 sse	a a,j a,j a,j a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1	0 0 0 0 0 0 0	2 5 2 7 7 7 7 2 2	1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx	alu add alu mul mul mul alu alu	sse2 sse2 mmx mmx sse mmx sse2 sse sse	a a,j a,j a,j a,j a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	2 5 2 7 7 7 7 2 2	1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx	alu add alu mul mul mul alu alu alu	sse2 sse2 mmx mmx sse mmx sse2 sse sse sse	a a,j a,j a,j a,j a,j a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1	0 0 0 0 0 0 0	2 5 2 7 7 7 7 2 2	1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx	alu add alu mul mul mul alu alu	sse2 sse2 mmx mmx sse mmx sse2 sse sse	a a,j a,j a,j a,j a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	2 5 2 7 7 7 7 2 2	1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx	alu add alu mul mul mul alu alu alu	sse2 sse2 mmx mmx sse mmx sse2 sse sse sse	a a,j a,j a,j a,j a,j a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0	2 5 7 7 7 7 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx mmx	alu add alu mul mul mul alu alu alu	sse2 sse2 mmx mmx sse mmx sse2 sse sse sse sse	a a a, j a, j a, j a, j a, j a, j a, j a
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic PAND, PANDN	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	2 5 7 7 7 7 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx mmx mmx	alu add alu mul mul mul alu alu alu alu	sse2 sse2 mmx mmx sse mmx sse2 sse sse sse sse	a a a,j a,j a,j a,j a,j a,j a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic PAND, PANDN POR, PXOR	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0	2 5 7 7 7 7 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx mmx	alu add alu mul mul mul alu alu alu	sse2 sse2 mmx mmx sse mmx sse2 sse sse sse sse	a a a, j a, j a, j a, j a, j a, j a, j a
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic PAND, PANDN POR, PXOR PSLL/RLW/D/Q,	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	2 5 2 7 7 7 7 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx mmx mmx	alu add alu mul mul alu alu alu alu	sse2 sse2 mmx mmx sse mmx sse2 sse sse sse sse sse	a a a, j a, j a, j a, j a, j a, j a, j a
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic PAND, PANDN POR, PXOR PSLL/RLW/D/Q, PSRAW/D	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1 1		2 5 2 7 7 7 7 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx mmx mmx mmx	alu add alu mul mul mul alu alu alu alu alu shift	sse2 sse2 mmx mmx sse mmx sse2 sse sse sse sse sse mmx mmx mmx	a a a,j a,j a,j a,j a,j a,j a,j a,j
PADDQ, PSUBQ PCMPEQB/W/D PCMPGTB/W/D PMULLW PMULHW PMULHUW PMADDWD PMULUDQ PAVGB/W PMIN/MAXUB PMIN/MAXSW PSADBW Logic PAND, PANDN POR, PXOR PSLL/RLW/D/Q,	xmm,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m r,r/m	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	2 5 2 7 7 7 7 2 2 4	1 1 1 1 1 1 1 1 1 1	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1 1 1 1 1 1 1 1 1 1	mmx fp mmx fp fp fp fp mmx mmx mmx mmx mmx	alu add alu mul mul alu alu alu alu	sse2 sse2 mmx mmx sse mmx sse2 sse sse sse sse sse	a a a, j a, j a, j a, j a, j a, j a, j a

Other								
EMMS	10	10		12	0		mmx	

Notes:

a) Add 1 µop if source is a memory operand.

j) Reciprocal throughput is 1 for 64 bit operands, and 2 for 128 bit operands.

k) It may be advantageous to replace this instruction by two 64-bit moves or LD-

DQU.

Floating point XMM instructions

Instruction	Operands	on	<u> </u>	La	Ad	Rec	Port	Ex	NS.	lns.	Z
		hobs	Microcode	Latency	Additional latency	Reciprocal through- put	ort .	Execution unit	Subunit	Instruction set	Notes
						\ \					
Move instructions											
MOVAPS/D	r,r	1	0	7	0	1	0	mov		sse	
MOVAPS/D	r,m	1	0		0	1	2			sse	
MOVAPS/D	m,r	2	0			2	0			sse	
MOVUPS/D	r,r	1	0	7	0	1	0	mov		sse	
MOVUPS/D	r,m	4	0			2	2			sse	k
MOVUPS/D	m,r	4	2			8	0			sse	k
MOVSS	r,r	1	0	2	1	2	1	mmx	shift	sse	
MOVSD	r,r	1	0	4	1	2	1	mmx	shift	sse	
MOVSS, MOVSD	r,m	1	0		0	1	2			sse	
MOVSS, MOVSD	m,r	2	0			2	0			sse	
MOVHLPS	r,r	1	0	4	1	2	1	mmx	shift	sse	
MOVLHPS	r,r	1	0	2	1	2	1	mmx	shift	sse	
MOVHPS/D, MOVLPS/D	r,m	2	0			2	2			sse	
MOVHPS/D, MOVLPS/D	m,r	2	0			2	0			sse	
MOVSH/LDUP	r,r	1	0	4	1	2	1			sse3	
MOVDDUP	r,r	1	0	2	1	2	1			sse3	
MOVNTPS/D	m,r	2	0			4	0			sse	
MOVMSKPS/D	r32,r	2	0	5	1	3	1	fp		sse	
SHUFPS/D	r,r/m,i	1	0	4	1	2	1	mmx	shift	sse	
UNPCKHPS/D	r,r/m	2	0	4	1	2	1	mmx	shift	sse	
UNPCKLPS/D	r,r/m	1	0	2	1	2	1	mmx	shift	sse	
Conversion											
CVTPS2PD	r,r/m	1	0	4	1	4	1	mmx	shift	sse2	а
CVTPD2PS	r,r/m	2	0	10	1	2	1	fp-mmx	sse2	а	
CVTSD2SS	r,r/m	3	0	14	1	6	1	mmx	shift	sse2	а
CVTSS2SD	r,r/m	2	0	8	1	6	1	mmx	shift	sse2	а
CVTDQ2PS	r,r/m	1	0	5	1	2	1	fp		sse2	а
CVTDQ2PD	r,r/m	3	0	10	1	4	1	mmx-fp	sse2	а	
CVT(T)PS2DQ	r,r/m	1	0	5	1	2	1	fp		sse2	а
CVT(T)PD2DQ	r,r/m	2	0	11	1	2	1	fp-mmx	sse2	а	
CVTPI2PS	xmm,mm	4	0	12	1	6	1	mmx		sse	а

CVTPI2PD	xmm,mm	4	0	12	1	5	1	fp-mmx	sse2	а	
CVT(T)PS2PI	mm,xmm	3	0	8	0	2	0,1	fp-mmx	sse	a	
CVT(T)PD2PI	mm,xmm	4	0	12	1	3	0,1	fp-mmx	sse2	a	
CVTSI2SS	xmm,r32	3	0	20	1	4	1	fp-mmx	sse	a	
CVTSI2SD	xmm,r32	4	0	20	1	5	1	fp-mmx	sse2	a	
CVT(T)SD2SI	r32,xmm	2	0	12	1	4	1	fp		sse2	a
CVT(T)SS2SI	r32,xmm	2	0	17	1	4	1	fp		sse	a
(. / 5 5 2 5 .	. •=,>	_			-	-		.,			_
Arithmetic											
ADDPS/D ADDSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	a
SUBPS/D SUBSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	a
ADDSUBPS/D	r,r/m	1	0	5	1	2	1	fp	add	sse3	a
HADDPS/D HSUBPS/D	r,r/m	3	0	13	1	5-6	1	fp	add	sse3	a
MULPS/D MULSS/D	r,r/m	1	0	7	1	2	1	fp	mul	sse	a
DIVSS	r,r/m	1	0	32	1	23	1	fp	div	sse	a,h
DIVPS	r,r/m	1	0	41	1	41	1	fp	div	sse	a,h
DIVSD	r,r/m	1	0	40	1	40	1	fp	div	sse2	a,h
DIVPD	r,r/m	1	0	71	1	71	1	fp	div	sse2	a,h
RCPPS RCPSS	r,r/m	2	0	6	1	4	1	mmx	-	sse	a
MAXPS/D	,										
MAXSS/DMINPS/D											
MINSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	а
CMPccPS/D											
CMPccSS/D	r,r/m	1	0	5	1	2	1	fp	add	sse	a
COMISS/D UCOMISS/D	r,r/m	2	0	6	1	3	1	fp	add	sse	a
Logio											
Logic ANDPS/D ANDNPS/D											
ORPS/D XORPS/D	r,r/m	1	0	2	1	2	1	mmx	alu	sse	a
	1,1/111	'		_	'	_	'	IIIIIX	aid	330	"
Math											
SQRTSS	r,r/m	1	0	32	1	32	1	fp	div	sse	a,h
SQRTPS	r,r/m	1	0	41	1	41	1	fp	div	sse	a,h
SQRTSD	r,r/m	1	0	40	1	40	1	fp	div	sse2	a,h
SQRTPD	r,r/m	1	0	71	1	71	1	fp	div	sse2	a,h
RSQRTSS	r,r/m	2	0	5	1	3	1	mmx		sse	а
RSQRTPS	r,r/m	2	0	6	1	4	1	mmx		sse	а
Other											
LDMXCSR	m	2	11			13	1			sse	
STMXCSR	m	3	0			3	1			sse	

Notes:

a) Add 1 µop if source is a memory operand.

h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit.

k) It may be advantageous to replace this instruction by two 64-bit moves or LDDQU.

Intel Atom

List of instruction timings and µop breakdown

Explanation of column headings:

Instruction: Instruction name. cc means any condition code. For example, Jcc can be JB,

JNE, etc.

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit

xmm register, (x)mm = mmx or xmm register, sr = segment register, m =

memory, m32 = 32-bit memory operand, etc.

μops: The number of μops from the decoder or ROM.

Unit: Tells which execution unit is used. Instructions that use the same unit cannot

execute simultaneously.

ALU0 and ALU1 means integer unit 0 or 1, respectively.

ALU0/1 means that either unit can be used. ALU0+1 means that both units

are used.

Mem means memory in/out unit.

FP0 means floating point unit 0 (includes multiply, divide and other SIMD in-

structions).

FP1 means floating point unit 1 (adder).

MUL means multiplier, shared between FP and integer units. DIV means divider, shared between FP and integer units.

np means not pairable: Cannot execute simultaneously with any other in-

struction.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a

similar delay.

Reciprocal throughput: The average number of clock cycles per instruction for a series of indepen-

dent instructions of the same kind in the same thread.

Integer instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOV	r,r	1	ALU0/1	1	1/2	
MOV	r,i	1	ALU0/1	1	1/2	
MOV	r,m	1	ALU0, Mem	1-3	1	All addr. modes
MOV	m,r	1	ALU0, Mem	1	1	All addr. modes
MOV	m,i	1	ALU0, Mem		1	
MOV	r,sr	1		1	1	
MOV	m,sr	2			5	
MOV	sr,r	7			21	
MOV	sr,m	8			26	
MOVNTI	m,r	1	ALU0, Mem		2,5	
MOVSX MOVZX MOVSXD	r,r/m	1	ALU0	1	1	
CMOVcc	r,r	1	ALU0+1	2	2	
CMOVcc	r,m	1			3	
XCHG	r,r	3		6	6	

XCHG	r,m	4		6	6	Implicit lock
XLAT		3		6	6	
PUSH	r	1	np	1	1	
PUSH	i	1	np		1	
PUSH	m m	2	p		5	
PUSH	sr	3			6	
	51					
PUSHF(D/Q)		14			12	
PUSHA(D)		9			11	Not in x64 mode
POP	r	1	np	1	1	
POP	(E/R)SP	1	np	1	1	
POP	m	3			6	
POP	sr	7			31	
POPF(D/Q)		19			28	
POPA(D)		16			12	Not in x64 mode
LAHF		1	ALU0+1	2	2	
SAHF		1	ALU0/1	1	1/2	
SALC		2	ALOUT	7	5	Not in x64 mode
SALC				/	5	
LEA		1	AGU1	4.4	_	4 clock latency on input register
	r,m	1		1-4	1	on input register
BSWAP	r	1	ALU0	1	1	
LDS LES LFS LGS LSS	m	10		30	30	
PREFETCHNTA	m	1	Mem		1	
PREFETCHT0/1/2	m	1	Mem		1	
LFENCE		1			1/2	
MFENCE		1			1	
SFENCE		1			1	
Arithmetic instructions						
	- r/i	1	A1 110/4	1	1/2	
ADD SUB	r,r/i	1	ALU0/1		1/2	
ADD SUB	r,m	1	ALU0/1, Mer		1	
ADD SUB	m,r/i	1		2	1	
ADC SBB	r,r/i	1		2	2	
ADC SBB	r,m	1		2	2	
ADC SBB	m,r/i	1		2	2	
CMP	r,r/i	1	ALU0/1	1	1/2	
CMP	m,r/i	1			1	
INC DEC NEG NOT	r	1	ALU0/1	1	1/2	
INC DEC NEG NOT	m	1		1		
AAA		13		16		Not in x64 mode
AAS		13		12		Not in x64 mode
DAA		20		20		Not in x64 mode
DAS		21		25		Not in x64 mode
AAD		4		7		Not in x64 mode
AAM		10		24		Not in x64 mode
MUL IMUL	r8	3	ALU0, Mul	7	7	
MUL IMUL	r16	4	ALU0, Mul	6	6	
MUL IMUL	r32	3	ALU0, Mul	6	6	
MUL IMUL	r64	8	ALU0, Mul	14	14	
IMUL	r16,r16	2	ALU0, Mul	6	5	
IMUL	r32,r32	1	ALU0, Mul	5	2	
J 0 L	. 52,152		, 30, IVIUI	, ,	_	I I

IMUL	r64 r64	6	ALU0, Mul	12	11	
IMUL	r64,r64 r16,r16,i	6 2	ALU0, Mul	13 5	11 5	
			· ·			
IMUL	r32,r32,i	1	ALU0, Mul	5	2	
IMUL	r64,r64,i	7	ALU0, Mul	14	14	
MUL IMUL	m8	3	ALU0, Mul	6		
MUL IMUL	m16	5	ALU0, Mul	7		
MUL IMUL	m32	4	ALU0, Mul	7		
MUL IMUL	m64	8	ALU0, Mul	14		
DIV	r/m8	9	ALU0, Div	22	22	
DIV	r/m16	12	ALU0, Div	33	33	
DIV	r/m32	12	ALU0, Div	49	49	
DIV	r/m 64	38	ALU0, Div	183	183	
IDIV	r/m8	26	ALU0, Div	38	38	
IDIV	r/m16	29	ALU0, Div	45	45	
IDIV	r/m32	29	ALU0, Div	61	61	
IDIV	r/m64	60	ALU0, Div	207	207	
CBW		2	ALU0	5		
CWDE		1	ALU0	1		
CDQE		1	ALU0	1		
CWD		2	ALU0	5		
CDQ		1	ALU0	1		
CQO		1	ALU0	1		
			, ,,,,			
Logic instructions						
AND OR XOR	r,r/i	1	ALU0/1	1	1/2	
AND OR XOR	r,m	1	ALU0/1, Mer	n	1	
AND OR XOR	m,r/i	1	ALU0/1, Mer	1	1	
TEST	r,r/i	1	ALU0/1	1	1/2	
TEST	m,r/i	1	ALU0/1, Mer	n	1	
SHR SHL SAR	r,i/cl	1	ALU0	1	1	
SHR SHL SAR	m,i/cl	1	ALU0	1	1	
ROR ROL	r,i/cl	1	ALU0	1	1	
ROR ROL	m,i/cl	1	ALU0	1	1	
RCR	r,1	5	ALU0	7		
RCL	r,1	2	ALU0	1		
RCR	r/m,i/cl	12-17	ALU0	12-15		
RCL	r/m,i/cl	14-20	ALU0	14-18		
SHLD	r16,r16,i	10	ALU0	10		1-2 more if mem
SHLD	r32,r32,i	2	ALU0	5		1-2 more if mem
SHLD	r64,r64,i	10	ALU0	11		1-2 more if mem
SHLD	r16,r16,cl	9	ALU0	9		1-2 more if mem
SHLD	r32,r32,cl	2	ALU0	5		1-2 more if mem
SHLD	r64,r64,cl	9	ALU0	10		1-2 more if mem
SHRD			ALU0	8		1-2 more if mem
	r16,r16,i	8				
SHRD	r32,r32,i	2	ALU0	5		1-2 more if mem
SHRD	r64,r64,i	10	ALU0	9		1-2 more if mem
SHRD	r16,r16,cl	7	ALU0	8		1-2 more if mem
SHRD	r32,r32,cl	2	ALU0	5		1-2 more if mem
SHRD	r64,r64,cl	9	ALU0	9	_	1-2 more if mem
BT	r,r/i	1	ALU1	1	1	

ВТ	m,r	9		10		
вт	m,i	2		5		
BTR BTS BTC	r,r/i	1	ALU1	1	1	
BTR BTS BTC				11	'	
	m,r	10	ALU1			
BTR BTS BTC	m,i	3	ALU1	6		
BSF BSR	r,r/m	10		16		
SETcc	r	1	ALU0+1	2	2	
SETcc	m	2			5	
CLC STC		1	ALU0/1		1/2	
CMC		1		2	2	
CLD		5		_	7	
STD		6			, 25	
SID		0			25	
Control transfer instruction	∣ ns					
JMP	short/near	1	ALU1		2	
JMP	far	29			66	Not in x64 mode
JMP	r	1			4	
JMP	m(near)	2			7	
JMP	m(far)	30			, 78	
	short/near	1	A1 1 14		2	
Conditional jump			ALU1			
J(E/R)CXZ	short	3			7	
LOOP	short	8			8	
LOOP(N)E	short	8			8	
CALL	near	1			3	
CALL	far	37			65	Not in x64 mode
CALL	r	1			18	
CALL	m(near)	2			20	
CALL	m(far)	38			64	
RETN	()	1	np		6	
RETN	i	1 1	np		6	
RETF	'		пр			
		36			80	
RETF	i	36			80	
BOUND	r,m	11			10	Not in x64 mode
INTO		4			6	Not in x64 mode
String instructions						
LODS	1	3		6		
REP LODS		5n+11		3n+50		
STOS		2		5		
REP STOS		3n+10		2n+4		
MOVS		4		6		
REP MOVS		4n+11		2n - 4n		fastest for high n
SCAS		3		6		
REP SCAS		5n+16		3n+60		
CMPS		5		7		
REP CMPS		6n+16		4n+40		
Other						
NOP (90)		1	ALU0/1		1/2	
Long NOP (0F 1F)		1 1	ALU0/1		1/2	
Long Nor (or 11-)	I	'	ALUU/ I	1 1	1/4	

PAUSE		5	24		
ENTER	a,0	14	23		
ENTER	a,b	20+6b			
LEAVE		4		6	
CPUID		40-80	100-170		
RDTSC		16	29		
RDPMC		24	48		

Floating point x87 instructions

	Operands	μops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
FLD	r	1		1	1	
FLD	m32/m64	1		3	1	
FLD	m80	4		9	10	
FBLD	m80	52		92	92	
FST(P)	r	1		1	1	
FST(P)	m32/m64	3		7	9	
FSTP	m80	8		12	13	
FBSTP	m80	189		221	221	
FXCH	r	1		1	1	
FILD	m	1		7	6	
FIST(P)	m	3		11	9	
FISTTP	m	3		11	9	SSE3
FLDZ		1			1	
FLD1		2			8	
FLDPI FLDL2E etc.		2			10	
FCMOVcc	r	3		9	9	
FNSTSW	AX	4			10	
FNSTSW	m16	4			10	
FLDCW	m16	2			8	
FNSTCW	m16	3			9	
FINCSTP FDECSTP		1		1	1	
FFREE(P)		1			1	
FNSAVE	m	166		321	321	
FRSTOR	m	83		177	177	
Arithmetic instructions						
FADD(P) FSUB(R)(P)	r/m	1		5	1	
FMUL(P)	r/m	1	Mul	5	2	
FDIV(R)(P)	r/m	1	Div	71	71	
FABS		1		1	1	
FCHS		1		1	1	
FCOM(P) FUCOM	r/m	1		1	1	
FCOMPP FUCOMPP		1		1	1	
FCOMI(P) FUCOMI(P)	r	5			10	
FIADD FISUB(R)	m	3			9	
FIMUL	m	3	Mul		9	
FIDIV(R)	m	3	Div		73	

FICOM(P)	m	3			9	
FTST		1		1	1	
FXAM		1		1	1	
FPREM		26		~110		
FPREM1		37		~130		
FRNDINT		19		48		
Math						
FSCALE		30		56		
FXTRACT		15		24		
FSQRT		1	Div	71		
FSIN FCOS		9		~260		
FSINCOS		112		~260		
F2XM1		25		~100		
FYL2X FYL2XP1		63		~220		
FPTAN		100		~300		
FPATAN		91		~300		
Other						
FNOP		1			1	
WAIT		2		5	5	
FNCLEX		4			26	
FNINIT		23		74		

Integer MMX and XMM instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOVD	r32/64,(x)mm	1		4	2	
MOVD	m32/64,(x)mm	1	Mem	5	1 1	
MOVD	(x)mm,r32/64	1		3	1 1	
MOVD	(x)mm,m32/64	1	Mem	4	1	
MOVQ	(x)mm, (x)mm	1	FP0/1	1	1/2	
MOVQ	(x)mm,m64	1	Mem	4	1	
MOVQ	m64, (x)mm	1	Mem	5	1	
MOVDQA	xmm, xmm	1	FP0/1	1	1/2	
MOVDQA	xmm, m128	1	Mem	4	1	
MOVDQA	m128, xmm	1	Mem	5	1	
MOVDQU	m128, xmm	3	Mem	6	6	
MOVDQU	xmm, m128	4	Mem	6	6	
LDDQU	xmm, m128	4	Mem	6	6	
MOVDQ2Q	mm, xmm	1		1	1	
MOVQ2DQ	xmm,mm	1		1	1 1	
MOVNTQ	m64,mm	1	Mem	~400	1	
MOVNTDQ PACKSSWB/DW	m128,xmm	1	Mem	~450	3	
PACKUSWB	(x)mm, (x)mm	1	FP0	1	1	

PUNPCKH/LBW/WD/DQ	(v)mm (v)mm	1	FP0	4	1	
PUNPCKH/LQDQ	(x)mm, (x)mm (x)mm, (x)mm	1	FP0	1	1	
PSHUFB	1 , , , , , , ,	1	FP0	1 1	1	
PSHUFB	mm,mm	1 4		6	6	
	xmm,xmm		ED0		1	
PSHUFW	mm,mm,i	1	FP0	1		
PSHUFL/HW	xmm,xmm,i	1	FP0	1	1	
PSHUFD	xmm,xmm,i	1	FP0	1	1	
PALIGNR	xmm, xmm,i	1	FP0	1	1	
MASKMOVQ	mm,mm	1	Mem		2	
MASKMOVDQU	xmm,xmm	2	Mem		7	
PMOVMSKB	r32,(x)mm	1		4	2	
PINSRW	(x)mm,r32,i	1		3	1	
PEXTRW	r32,(x)mm,i	2		5	5	
Arithmetic instructions						
PADD/SUB(U)(S)B/W/D	(x)mm, (x)mm	1	FP0/1	1	1/2	
PADDQ PSUBQ	(x)mm, (x)mm	2		5	5	
PHADD(S)W PHSUB(S)W	(x)mm, (x)mm	7		8	8	
PHADDD PHSUBD	(x)mm, (x)mm	3		6		
PCMPEQ/GTB/W/D	(x)mm,(x)mm	1	FP0/1	1	1/2	
PMULL/HW PMULHUW	mm,mm	1	FP0, Mul	4	1	
PMULL/HW PMULHUW	xmm,xmm	1	FP0, Mul	5	2	
PMULHRSW	mm,mm	1	FP0, Mul	4	1	
PMULHRSW	xmm,xmm	1	FP0, Mul	5	2	
PMULUDQ	mm,mm	1	FP0, Mul	4	1	
PMULUDQ	·	1	FP0, Mul	5	2	
PMADDWD	xmm,xmm	1	· ·	4	1	
	mm,mm		FP0, Mul			
PMADDUDOW	xmm,xmm	1	FP0, Mul	5	2	
PMADDUBSW	mm,mm	1	FP0, Mul	4	1	
PMADDUBSW	xmm,xmm	1	FP0, Mul	5	2	
PSADBW	mm,mm	1	FP0, Mul	4	1	
PSADBW	xmm,xmm	1	FP0, Mul	5	2	
PAVGB/W	(x)mm,(x)mm	1	FP0/1	1	1/2	
PMIN/MAXUB	(x)mm,(x)mm	1	FP0/1	1	1/2	
PMIN/MAXSW	(x)mm,(x)mm	1	FP0/1	1	1/2	
PABSB PABSW PABSD	(x)mm,(x)mm	1	FP0/1	1	1/2	
PSIGNB PSIGNW PSIGND	()()mm ()()mm	4	ED0/4	4	1/0	
	(x)mm,(x)mm	1	FP0/1	1	1/2	
Logic instructions						
PAND(N) POR PXOR	(x)mm,(x)mm	1	FP0/1	1	1/2	
PSLL/RL/RAW/D/Q	(x)mm,(x)mm	2	FP0	5	5	
PSLL/RL/RAW/D/Q	(x)xmm,i	1	FP0	1	1	
PSLL/RLDQ	xmm,i	1	FP0	1	1	
Other						
EMMS		9			9	
		_	l			<u> </u>

Floating point XMM instructions

	Operands	µops	Unit	Latency	Reciprocal throughput	Remarks
Move instructions						
MOVAPS/D	xmm,xmm	1	FP0/1	1	1/2	
MOVAPS/D	xmm,m128	1	Mem	4	1	
MOVAPS/D	m128,xmm	1	Mem	5	1	
MOVUPS/D	xmm,m128	4	Mem	6	6	
MOVUPS/D	m128,xmm	3	Mem	6	6	
MOVSS/D	xmm,xmm	1	FP0/1	1	1/2	
MOVSS/D	xmm,m32/64	1	Mem	4	1	
MOVSS/D	m32/64,xmm	1	Mem	5	1	
MOVHPS/D MOVLPS/D	xmm,m64	1	Mem	5	1	
MOVHPS/D	m64,xmm	1	Mem	4	1	
MOVLPS/D	m64,xmm	1	Mem	4	1	
MOVLHPS MOVHLPS	xmm,xmm	1	FP0	1	1	
MOVMSKPS/D	r32,xmm	1		4	2	
MOVNTPS/D	m128,xmm	1	Mem	~500	3	
SHUFPS	xmm,xmm,i	1	FP0	1	1	
SHUFPD	xmm,xmm,i	1	FP0	1	1	
MOVDDUP	xmm,xmm	1	FP0	1	1	
MOVSH/LDUP	xmm,xmm	1	FP0	1	1	
UNPCKH/LPS	xmm,xmm	1	FP0	1	1	
UNPCKH/LPD	xmm,xmm	1	FP0	1		
Conversion						
CVTPD2PS	xmm,xmm	4		11	11	
CVTSD2SS	xmm,xmm	3		10	10	
CVTPS2PD	xmm,xmm	4		7	6	
CVTSS2SD	xmm,xmm	3		6	6	
CVTDQ2PS	xmm,xmm	3		6	6	
CVT(T) PS2DQ	xmm,xmm	3		6	6	
CVTDQ2PD	xmm,xmm	3		7	6	
CVT(T)PD2DQ	xmm,xmm	3		6	6	
CVTPI2PS	xmm,mm	1		6	5	
CVT(T)PS2PI	mm,xmm	1		4	1	
CVTPI2PD	xmm,mm	3		7	6	
CVT(T) PD2PI	mm,xmm	4		7	7	
CVTSI2SS	xmm,r32	3		7	6	
CVT(T)SS2SI	r32,xmm	3		10	8	
CVTSI2SD	xmm,r32	3		8	6	
CVT(T)SD2SI	r32,xmm	3		10	8	
Arithmetic						
ADDSS SUBSS	xmm,xmm	1	FP1	5	1	
ADDSD SUBSD	xmm,xmm	1	FP1	5	1	
ADDPS SUBPS	xmm,xmm	1	FP1	5	1	
ADDPD SUBPD	xmm,xmm	3	FP1	6	6	
ADDSUBPS	xmm,xmm	1	FP1	5	1	
ADDSUBPD	xmm,xmm	3	FP1	6	6	
HADDPS HSUBPS	xmm,xmm	5	FP0+1	8	7	

HADDPD HSUBPD		<i>-</i>	FP0+1	٥	7]
MULSS	xmm,xmm	5 1	FP0+1	8 4	7 1	
	xmm,xmm		· '		2	
MULSD	xmm,xmm	1	FP0, Mul	5 5	2	
MULPS	xmm,xmm	1	FP0, Mul		9	
MULPD	xmm,xmm	6	FP0, Mul	9		
DIVSS	xmm,xmm	3	FP0, Div	31	31	
DIVSD	xmm,xmm	3	FP0, Div	60	60	
DIVPS	xmm,xmm	6	FP0, Div	64	64	
DIVPD	xmm,xmm	6	FP0, Div	122	122	
RCPSS	xmm,xmm	1		4	1	
RCPPS	xmm,xmm	5		9	8	
CMPccSS/D	xmm,xmm	1	FP0	5	1	
CMPccPS/D	xmm,xmm	3	FP0	6	6	
COMISS/D UCOMISS/D	xmm,xmm	4	FP0	9	9	
MAXSS/D MINSS/D	xmm,xmm	1	FP0	5	1	
MAXPS/D MINPS/D	xmm,xmm	3	FP0	6	6	
Math						
SQRTSS	xmm,xmm	3	FP0, Div	31	31	
SQRTPS	xmm,xmm	5	FP0, Div	63	63	
SQRTSD	xmm,xmm	3	FP0, Div	60	60	
SQRTPD	xmm,xmm	5	FP0, Div	121	121	
RSQRTSS	xmm,xmm	1	FP0	4	1	
RSQRTPS	xmm,xmm	5	FP0	9	8	
Logic						
ANDPS/D	xmm,xmm	1	FP0/1	1	1/2	
ANDNPS/D	xmm,xmm	1	FP0/1	1	1/2	
ORPS/D	xmm,xmm	1	FP0/1	1	1/2	
XORPS/D	xmm,xmm	1	FP0/1	1	1/2	
Other						
LDMXCSR	m32	4		5	6	
STMXCSR	m32	4		14	15	
FXSAVE	m4096	121		142	144	
FXRSTOR	m4096	116		149	150	

VIA Nano 2000 series

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μορs: The number of micro-operations from the decoder or ROM. Note that the VIA

Nano 2000 processor has no reliable performance monitor counter for $\mu\text{ops}.$ Therefore the number of μops cannot be determined except in simple cases.

Port: Tells which execution port or unit is used. Instructions that use the same port

cannot execute simultaneously.

Integer add, Boolean, shift, etc.Integer add, Boolean, move, jump.

I12: Can use either I1 or I2, whichever is vacant first.MA: Multiply, divide and square root on all operand types.MB: Various Integer and floating point SIMD operations.

MBfadd: Floating point addition subunit under MB.

SA: Memory store address.

ST: Memory store. LD: Memory load.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar de-

lay.

Note: There is an additional latency for moving data from one unit or subunit to another. A table of these latencies is given in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". These additional latencies are not included in the listings below where the source and destination operands are of the

same type.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent instructions of the same kind in the same thread.

Integer instructions

	Operands	μops	Port	Latency	Reciprocal thruoghput	Remarks
Move instructions						
MOV	r,r	1	12	1	1	
MOV	r,i	1	12	1	1	
						Latency 4 on
MOV	r,m	1	LD	2	1	pointer register
MOV	m,r	1	SA, ST	2	1,5	
MOV	m,i	1	SA, ST		1,5	
MOV	r,sr				1	
MOV	m,sr				2	
MOV	sr,r			20	20	
MOV	sr,m			20	20	

MOVNTI	m,r		SA, ST	2	1,5	
MOVSX MOVSXD						
MOVZX	r,r	1	I2	1	1	
MOVSX MOVSXD	r,m	2	LD, I2	3	1	
MOVZX	r,m	1	LD	2	1	
CMOVcc	r,r	2	I1, I2	2	1	
CMOVcc	r,m		LD, I1	5	2	
XCHG	r,r	3	12	3	3	
XCHG	r,m			20	20	Implicit lock
XLAT	m			6		
PUSH	r		SA, ST		1-2	
PUSH	i		SA, ST		1-2	
PUSH	m		Ld, SA, ST		2	
PUSH	sr		, , , ,		17	
PUSHF(D/Q)	_			8	8	
PUSHA(D)					15	Not in x64 mode
POP	r		LD		1,25	THO CHI XO T THOUGO
POP	(E/R)SP				4	
POP	m (L/TC)OT				5	
POP					20	
	sr			0		
POPF(D/Q)				9	9	Notice would be a de-
POPA(D)		_	14	4	12	Not in x64 mode
LAHF		1	I1	1	1	
SAHF		1	I1	1	1	
SALC				9	6	Not in x64 mode
LEA	r,m	1	SA	1	1	3 clock latency on input register
BSWAP	r	1	12	1	1	
LDS LES LFS LGS LSS						
	m			30	30	
PREFETCHNTA	m		LD		1-2	
PREFETCHT0/1/2	m		LD		1-2	
LFENCE					14	
MFENCE					14	
SFENCE					14	
Arithmetic instructions						
ADD SUB	r,r/i	1	l12	1	1/2	
ADD SUB	r,m	2	LD I12		1	
ADD SUB	m,r/i	3	LD I12 SA ST	5	2	
ADC SBB	r,r/i	1	I1	1	1	
ADC SBB	r,m	2	LD I1	•	1	
ADC SBB	m,r/i	3	LD I1 SA ST	5	2	
CMP	r,r/i	1	112	1	1/2	
CMP		2	LD I12	'	1/2	
INC DEC NEG NOT	m,r/i	1	112	4	1/2	
	r			1	1/∠	
INC DEC NEG NOT	m	3	LD I12 SA ST	5	27	Notice vC4
AAA					37	Not in x64 mode
AAS					37	Not in x64 mode
DAA					22	Not in x64 mode

DAS					24	Not in x64 mode
AAD					23	Not in x64 mode
AAM					30	Not in x64 mode
						Extra latency to
MUL IMUL	r8		MA	7-9		other ports
MUL IMUL	r16		MA	7-9		do.
MUL IMUL	r32		MA	7-9		do.
MUL IMUL	r64		MA	8-10		do.
IMUL	r16,r16		MA	4-6	1	do.
IMUL	r32,r32		MA	4-6	1	do.
IMUL	r64,r64		MA	5-7	2	do.
IMUL	r16,r16,i		MA	4-6	1	do.
IMUL	r32,r32,i		MA	4-6	1	do.
IMUL	r64,r64,i		MA	5-7	2	do.
DIV	r8		MA	26	26	do.
DIV	r16		MA	27-35	27-35	do.
DIV	r32		MA	25-41	25-41	do.
DIV	r64		MA	148-183	148-183	do.
IDIV	r8		MA	26	26	do.
IDIV	r16		MA	27-35	27-35	do.
IDIV	r32		MA	23-39	23-39	do.
IDIV	r64		MA	187-222	187-222	do.
CBW CWDE CDQE		1	I1	1	1	
CWD CDQ CQO		1	I1	1	1	
Logic instructions						
AND OR XOR	r,r/i	1	l12	1	1/2	
AND OR XOR	r,m	2	LD I12		1	
AND OR XOR	m,r/i	3	LD I12 SA ST	5	2	
TEST	r,r/i	1	l12	1	1/2	
TEST	m,r/i	2	LD I12		1	
SHR SHL SAR	r,i/cl	1	I1	1	1	
ROR ROL	r,i/cl	1	I1	1	1	
RCR RCL	r,1	1	I1	1	1	
RCR RCL	r,i/cl		I1	28+3n	28+3n	
SHLD SHRD	r16,r16,i		I1	11	11	
SHLD SHRD	r32,r32,i		I1	7	7	
SHLD	r64,r64,i		I1	33	33	
SHRD	r64,r64,i		I1	43	43	
SHLD SHRD	r16,r16,cl		I1	11	11	
SHLD SHRD	r32,r32,cl		I1	7	7	
SHLD	r64,r64,cl		I1	33	33	
SHRD	r64,r64,cl		I1	43	43	
BT	r,r/i	1	I1	1	1	
ВТ	m,r		I1		8	
ВТ	m,i	2	I1		1	
BTR BTS BTC	r,r/i	2	I1	2	2	
BTR BTS BTC	m,r		I1	10	10	
BTR BTS BTC	m,i		I1	8	8	
BSF BSR	r,r		I1	3	2	

SETcc	r		I1	2	1	
SETcc	m				1	
CLC STC CMC			I1	3	3	
CLD STD				3	3	
Control transfer instruc	tions					
JMP	short/near	1	12	3	3	8 if >2 jumps in 16 bytes block
JMP	far			58		Not in x64 mode
JMP	r		12	3	3	8 if >2 jumps in 16 bytes block
JMP	m(near)			3	3	do.
JMP	m(far)			55		uo.
Conditional jump	short/near			1-3-8	1-3-8	1 if not jumping.
Conditional jump	Shortmean			1-3-0	1.0.0	3 if jumping. 8 if >2 jumps in 16 bytes block
J(E/R)CXZ	short			1-3-8	1-3-8	do.
LOOP	short			1-3-8	1-3-8	do.
LOOP(N)E	short			25	25	
CALL	near			3	3	8 if >2 jumps in 16 bytes block
CALL	far			72	72	Not in x64 mode
OALL	lai			12	12	8 if >2 jumps in 16
CALL	r			3	3	bytes block
CALL	m(near)			4	3	do.
CALL	m(far)			72	72	
07.22	()					8 if >2 jumps in 16
RETN				3	3	bytes block
RETN	i			3	3	do.
RETF				39	39	
RETF	i			39	39	
BOUND	r,m				13	Not in x64 mode
INTO	,				7	Not in x64 mode
String instructions						
LODSB/W/D/Q					1	
REP LODSB/W/D/Q					3n+22	
STOSB/W/D/Q					1-2	
REP STOSB/W/D/Q					Small: 2n+2,	
INEL OTOOBIWIDIN					Big: 6 bytes per clock	
MOVSB/W/D/Q					2	
REP MOVSB/W/D/Q					Small: 2n+45, Big: 6 bytes per clock	
SCASB/W/D/Q REP SCASB					1 2.2n	

REP SCASW/D/Q					Small: 2n+50 Big: 5 bytes per clock	
CMPSB/W/D/Q					6	
REP CMPSB/W/D/Q					2.4n+24	
Other						
NOP (90)		1	All		1	Blocks all ports
Long NOP (0F 1F)		1	l12		1/2	
PAUSE					25	
ENTER	a,0				23	
ENTER	a,b				52+5b	
LEAVE				4	4	
CPUID				53-173		
RDTSC					39	
RDPMC				40	40	

Floating point x87 instructions

	Operands	μops	Port and Unit	Latency	Reciprocal thruoghput	Remarks
Move instructions						
FLD	r	1	MB	1	1	
FLD	m32/m64	2	LD MB	4	1	
FLD	m80	2	LD MB	4	1	
FBLD	m80			54	54	
FST(P)	r	1	MB	1	1	
FST(P)	m32/m64	3	MB SA ST	5	1-2	
FSTP	m80	3	MB SA ST	5	1-2	
FBSTP	m80			125	125	
FXCH	r	1	12	0	1	
FILD	m16			7		
FILD	m32			5		
FILD	m64			5		
FIST(T)(P)	m16			6		
FIST(T)(P)	m32			5		
FIST(T)(P)	m64			5		
FLDZ FLD1		1	MB		1	
FLDPI FLDL2E etc.					10	
FCMOVcc	r			2	2	
FNSTSW	AX				5	
FNSTSW	m16				3	
FLDCW	m16			13	13	
FNSTCW	m16				2	
FINCSTP FDECSTP		1	12	0	1	
FFREE(P)		1	MB		1	
FNSAVE	m			321	321	
FRSTOR	m			195	195	
Arithmetic instructions						

						Lower precision:
FADD(P) FSUB(R)(P)	r/m	1	MB	2	1	Lat: 4, Thr: 2
FMUL(P)	r/m	1	MA	4	2	
FDIV(R)(P)	r/m		MA	15-42	15-42	
FABS		1	MB	1	1	
FCHS		1	MB	1	1	
FCOM(P) FUCOM	r/m	1	MB		1	
FCOMPP FUCOMPP		1	MB		1	
FCOMI(P) FUCOMI(P)	r	1	MB		1	
FIADD FISUB(R)	m		MB		2	
FIMUL	m				4	
FIDIV(R)	m				42	
FICOM(P)	m	1			2	
FTST		1	MB		1	
FXAM					41	
FPREM				151-171		
FPREM1				106-155		
FRNDINT				29		
Math						
FSCALE				39		
FXTRACT				36-57		
FSQRT				73		
FSIN FCOS				51-159		
FSINCOS				270-360		
F2XM1				50-200		
FYL2X				~60		
FYL2XP1				~170		
FPTAN				300-370		
FPATAN				~170		
Other						
FNOP		1	MB		1	
WAIT		1	112	0	1/2	
FNCLEX					57	
FNINIT					85	

Integer MMX and XMM instructions

	Operands	µops	Port and Unit	Latency	Reciprocal thruoghput	Remarks
Move instructions						
MOVD	r32/64,(x)mm	1		3	1	
MOVD	n32/64,(x)mn	1	SA ST	2-3	1-2	
MOVD	(x)mm,r32/64			4	1	
MOVD	x)mm,m32/64	1	LD	2-3	1	
MOVQ	x)mm, (x)mm	1	MB	1	1	
MOVQ	(x)mm,m64	1	LD	2-3	1	
MOVQ	m64, (x)mm	1	SA ST	2-3	1-2	
MOVDQA	xmm, xmm	1	MB	1	1	
MOVDQA	xmm, m128	1	LD	2-3	1	

MOVDQA	m120 vmm	1	SA ST	2-3	1-2
MOVDQU	m128, xmm m128, xmm	1	SA ST	2-3 2-3	1-2
		1			
MOVDQU	xmm, m128	-	LD	2-3	1
LDDQU	xmm, m128	1	LD	2-3	1
MOVDQ2Q	mm, xmm	1	MB	1	1
MOVQ2DQ	xmm,mm	1	MB	1	1
MOVNTQ	m64,mm	3		~300	2
MOVNTDQ	m128,xmm	3		~300	2
PACKSSWB/DW					
PACKUSWB	V,V	1	MB	1	1
PUNPCKH/LBW/WD/					
DQ	V,V	1	MB	1	1
PUNPCKH/LQDQ	V,V	1	MB	1	1 1
PSHUFB	V,V	1	MB	1	1 1
PSHUFW	mm,mm,i	1	MB	1	1 1
PSHUFL/HW	x,x,i	1	MB	1	1 1
PSHUFD	x,x,i	1	MB	1	1
PALIGNR	x,x,i x,x,i	1	MB	1	1 1
MASKMOVQ		Ī	IVID		1-3
MASKMOVDQU	mm,mm				
	xmm,xmm			_	1-3
PMOVMSKB	r32,(x)mm			3	1
PEXTRW	r32 ,(x)mm,i			3	1
PINSRW	(x)mm,r32,i			9	9
Arithmetic instructions					
PADD/SUB(U)(S)B/W/D					
	V,V	1	MB	1	1 1
PADDQ PSUBQ	V,V	1	MB	1	1 1
PHADD(S)W					
PHSUB(S)W	V,V	3	MB	3	3
PHADDD PHSUBD	V,V	3	MB	3	3
PCMPEQ/GTB/W/D	V,V	1	MB	1	1 1
PMULL/HW PMULHUW	V,V	1	MA	3	1 1
PMULHRSW	V,V	1	MA	3	1 1
PMULUDQ	V,V	1	MA	3	1 1
PMADDWD	V,V			4	2
PMADDUBSW	V,V			10	8
PSADBW	v,v		MB	2	1 1
PAVGB/W	V,V	1	MB	1	1 1
PMIN/MAXUB	V,V	1	MB	1	1 1
PMIN/MAXSW	v,v	1	MB	1	1 1
PABSB PABSW PABSD	,				
	V,V	1	MB	1	1 1
PSIGNB PSIGNW	,				
PSIGND	V,V	1	MB	1	1
Logic instructions		_		_	
PAND(N) POR PXOR	V,V	1	MB	1	1
PSLL/RL/RAW/D/Q	V,V	1	MB	1	1
PSLL/RL/RAW/D/Q	v,i	1	MB	1	1
PSLL/RLDQ	x,i	1	MB	1	1

Other				
EMMS	1	MB	1	

Floating point XMM instructions

Floating point XIVIIV		1	_	T -		
	Operands	μops	Port and Unit	Latency	Reciprocal thruoghput	Remarks
Move instructions						
MOVAPS/D	xmm,xmm	1	MB	1	1	
MOVAPS/D	xmm,m128	1	LD	2-3	1	
MOVAPS/D	m128,xmm	1	SA ST	2-3	1-2	
MOVUPS/D	xmm,m128	1	LD	2-3	1	
MOVUPS/D	m128,xmm	1	SA ST	2-3	1-2	
MOVSS/D	xmm,xmm	1	MB	1	1	
MOVSS/D	x,m32/64	1	LD	2-3	1	
MOVSS/D	m32/64,x	1	SA ST	2-3	1-2	
MOVHPS/D	xmm,m64			6	1 1	
MOVLPS/D	xmm,m64			6	1	
MOVHPS/D	m64,xmm			6	1-2	
MOVLPS/D	m64,xmm			2	1-2	
MOVLHPS MOVHLPS	xmm,xmm	1	MB	1	1 1	
MOVMSKPS/D	r32,xmm			3	1 1	
MOVNTPS/D	m128,xmm			~300	2,5	
SHUFPS	xmm,xmm,i	1	MB	1	1 1	
SHUFPD	xmm,xmm,i	1	MB	1	1 1	
MOVDDUP	xmm,xmm	1	MB	1	1 1	
MOVSH/LDUP	xmm,xmm	1	MB	1	1 1	
UNPCKH/LPS	xmm,xmm	1	MB	1	1	
UNPCKH/LPD	xmm,xmm	1	MB	1	1	
Conversion						
CVTPD2PS	xmm,xmm			3-4		
CVTSD2SS	xmm,xmm			15		
CVTPS2PD	xmm,xmm			3-4		
CVTSS2SD	xmm,xmm			15		
CVTDQ2PS	xmm,xmm			3		
CVT(T) PS2DQ	xmm,xmm			2		
CVTDQ2PD	xmm,xmm			4		
CVT(T)PD2DQ	xmm,xmm			3		
CVTPI2PS	xmm,mm			4		
CVT(T)PS2PI	mm,xmm			3		
CVTPI2PD	xmm,mm			4		
CVT(T) PD2PI	mm,xmm			3		
CVTSI2SS	xmm,r32			5		
CVT(T)SS2SI	r32,xmm			4		
CVTSI2SD	xmm,r32			5		
CVT(T)SD2SI	r32,xmm			4		
Arithmetic						
ADDSS SUBSS	xmm,xmm	1	MBfadd	2-3	1	

ADDSD SUBSD	xmm,xmm	1	MBfadd	2-3	1	
ADDPS SUBPS	xmm,xmm	1	MBfadd	2-3	1	
ADDPD SUBPD	xmm,xmm	1	MBfadd	2-3	1	
ADDSUBPS	xmm,xmm	1	MBfadd	2-3	1	
ADDSUBPD	xmm,xmm	1	MBfadd	2-3	1	
HADDPS HSUBPS	xmm,xmm	-	MBfadd	5	3	
HADDPD HSUBPD	xmm,xmm		MBfadd	5	3	
MULSS	xmm,xmm	1	MA	3	1	
MULSD	xmm,xmm	1	MA	4	2	
MULPS	xmm,xmm		MA	3	1	
MULPD	xmm,xmm		MA	4	2	
DIVSS	xmm,xmm		MA	15-22	15-22	
DIVSD	xmm,xmm		MA	15-36	15-36	
DIVPS	xmm,xmm		MA	42-82	42-82	
DIVPD	xmm,xmm		MA	24-70	24-70	
RCPSS	xmm,xmm			5	5	
RCPPS	xmm,xmm			14	11	
CMPccSS/D	xmm,xmm	1	MBfadd	2	1	
CMPccPS/D	xmm,xmm	1	MBfadd	2	1	
COMISS/D UCOMISS/D	,					
	xmm,xmm			3	1	
MAXSS/D MINSS/D	xmm,xmm	1	MBfadd	2	1	
MAXPS/D MINPS/D	xmm,xmm	1	MBfadd	2	1	
Math						
SQRTSS	xmm,xmm		MA	33	33	
SQRTPS	xmm,xmm		MA	126	126	
SQRTSD	xmm,xmm		MA	62	62	
SQRTPD	xmm,xmm		MA	122	122	
RSQRTSS	xmm,xmm			5	5	
RSQRTPS	xmm,xmm			14	11	
	·					
Logic						
ANDPS/D	xmm,xmm	1	MB	1	1	
ANDNPS/D	xmm,xmm	1	MB	1	1	
ORPS/D	xmm,xmm	1	MB	1	1	
XORPS/D	xmm,xmm	1	MB	1	1	
Other						
LDMXCSR	m32			45	29	
STMXCSR	m32			13	13	
FXSAVE	m4096			208	208	
FXRSTOR	m4096			232	232	

VIA-specific instructions

The opening mentioned										
Instruction	Conditions	Clock cycles, approximately								
XSTORE	Data available	160-400 clock giving 8 bytes								
XSTORE	No data available	50-80 clock giving 0 bytes								
REP XSTORE	Quality factor = 0	4800 clock per 8 bytes								
REP XSTORE	Quality factor > 0	19200 clock per 8 bytes								

REP XCRYPTECB	128 bits key	44 clock per 16 bytes
REP XCRYPTECB	192 bits key	46 clock per 16 bytes
REP XCRYPTECB	256 bits key	48 clock per 16 bytes
REP XCRYPTCBC	128 bits key	54 clock per 16 bytes
REP XCRYPTCBC	192 bits key	59 clock per 16 bytes
REP XCRYPTCBC	256 bits key	63 clock per 16 bytes
REP XCRYPTCTR	128 bits key	43 clock per 16 bytes
REP XCRYPTCTR	192 bits key	46 clock per 16 bytes
REP XCRYPTCTR	256 bits key	48 clock per 16 bytes
REP XCRYPTCFB	128 bits key	54 clock per 16 bytes
REP XCRYPTCFB	192 bits key	59 clock per 16 bytes
REP XCRYPTCFB	256 bits key	63 clock per 16 bytes
REP XCRYPTOFB	128 bits key	54 clock per 16 bytes
REP XCRYPTOFB	192 bits key	59 clock per 16 bytes
REP XCRYPTOFB	256 bits key	63 clock per 16 bytes
REP XSHA1		3 clock per byte
REP XSHA256		4 clock per byte

VIA Nano 3000 series

List of instruction timings and µop breakdown

Explanation of column headings:

Operands: i = immediate data, r = register, mm = 64 bit mmx register, xmm = 128 bit xmm

register, (x)mm = mmx or xmm register, sr = segment register, m = memory,

m32 = 32-bit memory operand, etc.

μορs: The number of micro-operations from the decoder or ROM. Note that the VIA

Nano 3000 processor has no reliable performance monitor counter for μ ops. Therefore the number of μ ops cannot be determined except in simple cases.

Port: Tells which execution port or unit is used. Instructions that use the same port

cannot execute simultaneously.

Integer add, Boolean, shift, etc.Integer add, Boolean, move, jump.

I12: Can use either I1 or I2, whichever is vacant first.MA: Multiply, divide and square root on all operand types.MB: Various Integer and floating point SIMD operations.

MBfadd: Floating point addition subunit under MB.

SA: Memory store address.

ST: Memory store.
LD: Memory load.

Latency: This is the delay that the instruction generates in a dependency chain. The

numbers are minimum values. Cache misses, misalignment, and exceptions may increase the clock counts considerably. Floating point operands are presumed to be normal numbers. Denormal numbers, NAN's and infinity increase the delays very much, except in XMM move, shuffle and Boolean instructions. Floating point overflow, underflow, denormal or NAN results give a similar de-

lay.

Note: There is an additional latency for moving data from one unit or subunit to another. A table of these latencies is given in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". These additional latencies are not included in the listings below where the source and destination operands are of the

same type.

Reciprocal throughput: The average number of clock cycles per instruction for a series of independent instructions of the same kind in the same thread.

Integer instructions

	Operands	µops	Port	Latency	Reciprocal thruogh- put	Remarks
Move instructions						
MOV	r,r	1	12	1	1	
MOV	r,i	1	l12	1	1/2	
						Latency 4 on pointer
MOV	r,m	1	LD	2	1	register
MOV	m,r	1	SA, ST	2	1,5	
MOV	m,i	1	SA, ST		1,5	
MOV	r,sr		l12		1/2	
MOV	m,sr				1,5	
MOV	sr,r			20	20	

	ſ	I	I			
MOV	sr,m			20	20	
MOVNTI	m,r		SA, ST	2	1,5	
MOVSX MOVZX	r,r	1	l12	1	1/2	
MOVSXD	r64,r32	1		1	1	
MOVSX MOVSXD	r,m	2	LD, I12	3	1	
MOVZX	r,m	1	LD	2	1	
CMOVcc	r,r	1	l12	1	1/2	
CMOVcc	r,m		LD, I12	5	1	
XCHG	r,r	3	l12	3	1,5	
XCHG	r,m			18	18	Implicit lock
XLAT	m	3	LD, I1	6	2	
PUSH	r	1	SA, ST		1-2	
PUSH	i	1	SA, ST		1-2	
PUSH	m		LD, SA, ST		2	
PUSH	sr		, ,		6	
PUSHF(D/Q)	_	3		2	2	
PUSHA(D)		9		_	_ 15	Not in x64 mode
POP	r	2	LD		1,25	1100 210 1
POP	(E/R)SP	_			4	
POP	m	3			2	
POP	sr				11	
POPF(D/Q)	31	3			1	
POPA(D)		16			12	Not in x64 mode
LAHF		10	l1	4		Not in x04 mode
SAHF			II	1	1	
		1	11	· ·	1	Not in vC4 mode
SALC		2		10	6	Not in x64 mode
LEA	r m	1	SA	1	1	Extra latency to other ports
BSWAP	r,m	1	12	1		ports
LDS LES LFS LGS LSS	r	'	12	'	1	
LDS LES LFS LGS LSS	m	12		28	28	
PREFETCHNTA	m	1	LD	20	1	
PREFETCHT0/1/2	m	1	LD		1	
LFENCE MFENCE	111	'			ı	
SFENCE					15	
0. 2.102					10	
Arithmetic instructions						
ADD SUB	r,r/i	1	l12	1	1/2	
ADD SUB	r,m	2	LD I12		1	
ADD SUB	m,r/i	3	LD I12 SA ST	5	2	
ADC SBB	r,r/i	1	11	1	1	
ADC SBB	r,m	2	LD I1	'	1	
ADC SBB	m,r/i	3	LD I1 SA ST	5	2	
CMP		1	I12	1	1/2	
CMP	r,r/i m. r/i	_	LD I12	'	1/2	
	m,r/i	2		4	-	
INC DEC NEG NOT	r	1	I12	1	1/2	
INC DEC NEG NOT	m	3	LD I12 SA ST	5	0.7	Notice and a second
AAA		12			37	Not in x64 mode
AAS		12			22	Not in x64 mode
DAA		14			22	Not in x64 mode

DAS		14			24	Not in x64 mode
AAD		7			24	Not in x64 mode
AAM		13			31	Not in x64 mode
MUL IMUL	r8	1	12	2		
MUL IMUL	r16	3	12	3		
MUL IMUL	r32	3	12	3		
MOE MOE	102					Extra latency to other
MUL IMUL	r64	3	MA	8	8	ports
IMUL	r16,r16	1	12	2	1	
IMUL	r32,r32	1	12	2	1	
	102,102	•		_		Extra latency to other
IMUL	r64,r64	1	MA	5	2	ports
IMUL	r16,r16,i	1	12	2	1	
IMUL	r32,r32,i	1	12	2	1	
				_	•	Extra latency to other
IMUL	r64,r64,i	1	MA	5	2	ports
DIV	r8		MA	22-24	22-24	
DIV	r16		MA	24-28	24-28	
DIV	r32		MA	22-30	22-30	
DIV	r64		MA	145-162	145-162	
IDIV	r8		MA	21-24	21-24	
IDIV	r16		MA	24-28	24-28	
IDIV	r32		MA	18-26	18-26	
IDIV	r64		MA	182-200	182-200	
CBW CWDE CDQE	104	1	12	1	102-200	
CWD CDQ CQO		1	12	1 1	1	
CWD CDQ CQO		'	12	'	I	
Logic instructions						
AND OR XOR	r,r/i	1	l12	1	1/2	
AND OR XOR	r,m	2	LD I12	'	1	
AND OR XOR	m,r/i	3	LD 112 LD 112 SA ST	5	2	
TEST	r,r/i	1	I12 SA ST	1	1/2	
TEST		2	LD I12			
SHR SHL SAR	m,r/i	1	I12	1	1 1/2	
ROR ROL	r,i/cl	1	112	1 1		
	r,i/cl			-	1	
RCR RCL	r,1	1	l1	1	1	
RCR RCL	r,i/cl	5+2n	l1	28+3n	28+3n	
SHLD SHRD	r16,r16,i/cl	2	l1	2	2	
SHLD SHRD	r32,r32,i/cl	2	l1	2	2	
SHLD	r64,r64,i/cl	16	I1	32	32	
SHRD	r64,r64,i/cl	23	l1	42	42	
BT	r,r/i	1	I1	1	1	
BT	m,r	6	l1		8	
BT	m,i	2	I1		1	
BTR BTS BTC	r,r/i	2	I1	2	2	
BTR BTS BTC	m,r	8	I1	10	10	
BTR BTS BTC	m,i	5	I1	8	8	
BSF BSR	r,r	2	l1	2	2	
SETcc	r8	1	I1	1	1	
SETcc	m	2			2	

CLC STC CMC		3	l1	3	3	
CLD STD		3	l1	3	3	
Control transfer instruc	tions					
JMP	short/near	1	12	3	3	8 if >2 jumps in 16 bytes block
JMP	far	14	12		50	Not in x64 mode
						8 if >2 jumps in 16
JMP	r	2	l2	3	3	bytes block
JMP	m(near)	2		3	3	do.
JMP	m(far)	17			42	1 if not jumping.
						3 if jumping.
						8 if >2 jumps in 16
Conditional jump	short/near	1	12	1-3-8	1-3-8	bytes block
J(E/R)CXZ	short	2		1-3-8	1-3-8	
LOOP	short	2		1-3-8	1-3-8	
LOOP(N)E	short	5		24	24	9 if >2 iumno in 16
CALL	near	2		3	3	8 if >2 jumps in 16 bytes block
CALL	far	_ 17			58	Not in x64 mode
						8 if >2 jumps in 16
CALL	r	2		3	3	bytes block
CALL	m(near)	3		4	3	do.
CALL	m(far)	19			54	
RETN		3		3	3	8 if >2 jumps in 16 bytes block
RETN	i	4		3	3	do.
RETF	•	20			49	uo.
RETF	i	20			49	
BOUND	r,m	9			13	Not in x64 mode
INTO	,	3			7	Not in x64 mode
String instructions						
LODSB/W/D/Q		2			1	
REP LODSB/W/D/Q		3n			3n+27	
STOSB/W/D/Q		1			1-2	
					Small:	
					n+40, Big:	
DED STOSDAVIDIO					6-7 bytes/clk	
REP STOSB/W/D/Q MOVSB/W/D/Q		3			2	
MOVSD/W/D/Q		3			Small:	
					2n+20,	
					Big: 6-7	
REP MOVSB/W/D/Q					bytes/clk	
SCASB/W/D/Q		3			1	
REP SCASB					2.4n	
					Small: 2n+31,	
					Big: 5	
REP SCASW/D/Q					bytes/clk	

CMPSB/W/D/Q		5			6	
REP CMPSB/W/D/Q					2.2n+30	
Other						
NOP (90)		0-1	l12	0	1/2	Sometimes fused
long NOP (0F 1F)		0-1	l12	0	1/2	
PAUSE		2			6	
ENTER	a,0	10			21	
ENTER	a,b				52+5b	
LEAVE		3		2	2	
CPUID				55-146		
RDTSC					37	
RDPMC					40	

Floating point x87 instructions

	Operands	µops	Port	Latency	Reciprocal thruogh- put	Remarks
Move instructions						
FLD	r	1	MB	1	1 1	
FLD	m32/m64	2	LD MB	4	1 1	
FLD	m80	2	LD MB	4	1 1	
FBLD	m80	36		54	54	
FST(P)	r	1	MB	1	1 1	
FST(P)	m32/m64	3	MB SA ST	5	1-2	
FSTP	m80	3	MB SA ST	5	1-2	
FBSTP	m80	80		125	125	
FXCH	r	1	12	0	1 1	
FILD	m16	3		7		
FILD	m32	2		5		
FILD	m64	2		5		
FIST(T)(P)	m16	3		6		
FIST(T)(P)	m32	3		5		
FIST(T)(P)	m64	3		5		
FLDZ FLD1		1	MB		1 1	
FLDPI FLDL2E etc.		3			10	
FCMOVcc	r	1	MB	2	2	
FNSTSW	AX	1			1 1	
FNSTSW	m16	3			2	
FLDCW	m16	5			8	
FNSTCW	m16	3			2	
FINCSTP FDECSTP		1	12	0	1 1	
FFREE(P)		1	MB		1 1	
FNSAVE	m	122		319	319	
FRSTOR	m	115		196	196	
Arithmetic instructions						
FADD(P) FSUB(R)(P)	r/m	1	MB	2	1 1	

FMUL(P)	r/m	1	MA	4	2	
FDIV(R)(P)	r/m		MA	14-23	14-23	
FABS		1	MB	1	1	
FCHS		1	MB	1	1	
FCOM(P) FUCOM	r/m	1	MB		1	
FCOMPP FUCOMPP		1	MB		1	
FCOMI(P) FUCOMI(P)	r	1	MB	2	1	
FIADD FISUB(R)	m	3	MB		2	
FIMUL	m	3			4	
FIDIV(R)	m	3			16	
FICOM(P)	m	3			2	
FTST		1	MB	2	1	
FXAM		15		38	38	
FPREM				~130		
FPREM1				~130		
FRNDINT		11		27		
Math						
FSCALE		22		37		
FXTRACT		13		57		L t lavvaa
FSQRT				73		Less at lower precision
FSIN FCOS				~150		prodictorr
FSINCOS				270-360		
F2XM1				50-200		
FYL2X				~50		
FYL2XP1				~50		
FPTAN				300-370		
FPATAN				~180		
Other						
FNOP		1	MB		1	
WAIT		1	l12	0	1/2	
FNCLEX					59	
FNINIT					84	

Integer MMX and XMM instructions

	Operands	µops	Port	Latency	Reciprocal thruogh- put	Remarks
Move instructions						
MOVD	r,(x)mm	1	MB	3	1 1	
MOVD	m,(x)mm	1	SA ST	2	1-2	
MOVD	(x)mm,r	1	12	4	1 1	
MOVD	(x)mm,m	1	LD	2	1 1	
MOVQ	V,V	1	MB	1	1 1	
MOVQ	(x)mm,m64	1	LD	2	1 1	
MOVQ	m64, (x)mm	1	SA ST	2	1-2	
MOVDQA	x,x	1	MB	1	1	

I			I	1 .	
MOVDQA	x, m128	1	LD	2	1
MOVDQA	m128, x	1	SA ST	2	1-2
MOVDQU	m128, x	1	SA ST	2	1-2
MOVDQU	x, m128	1	LD	2	1
LDDQU	x, m128	1	LD	2	1 1
MOVDQ2Q	mm, x	1	MB	1	1 1
MOVQ2DQ	x,mm	1	MB	1	1 1
MOVNTQ	m64,mm	2		~360	2
MOVNTDQ	m128,x	2		~360	2
MOVNTDQA	x,m128	1		2	1
PACKSSWB/DW	X,111120	ı			'
PACKUSWB	V,V	1	МВ	1	1 1
PACKUSDW	· ·	1	MB	1	1 1
PUNPCKH/LBW/WD/DQ	X,X	-		-	· .
	V,V	1	MB	1	1 1
PUNPCKH/LQDQ	V,V	1	MB	1	1
PSHUFB	V,V	1	MB	1	1
PSHUFW	mm,mm,i	1	MB	1	1
PSHUFL/HW	x,x,i	1	MB	1	1
PSHUFD	x,x,i	1	MB	1	1
PBLENDVB	x,x,xmm0	1	MB	2	2
PBLENDW	x,x,i	1	MB	1	1 1
PALIGNR	x,x,i	1	MB	1	1 1
MASKMOVQ	mm,mm				1-2
MASKMOVDQU	x,x				1-2
PMOVMSKB	r32,(x)mm			3	1
PEXTRW	r32 ,(x)mm,i	1	MB	3	1 1
PEXTRW/D/Q	` ′	1	MB	3	1 1
	r32/64,x,i			5 5	
PINSRW	(x)mm,r32,i	2	MB		1 1
PINSRB/D/Q	x,r32/64,i	2	MB	5	1
PMOVSX/ZXBW/BD/		4	NAD.	4	_
BQ/WD/WQ/DQ	X,X	1	MB	1	1
Arithmetic instructions					
PADD/SUB(U)(S)B/W/D		1	MB	1	1
PADDQ PSUBQ	V,V	1	MB	1	1 1
	V,V	1	IVID	ı	'
PHADD(S)W PHSUB(S)W	V V	3	MB	3	3
PHADDD PHSUBD	V,V	3	MB	3	3
PCMPEQ/GTB/W/D	V,V	3 1	MB	1	1
	V,V			1	1 1
PCMPEQQ	X,X	1	MB		
PMULL/HW PMULHUW	V,V	1	MA	3	1 1
PMULHRSW	V,V	1	MA	3	1
PMULLD	X,X	1	MA	3	1
PMULUDQ	V,V	1	MA	3	1
PMULDQ	x,x	1	MA	3	1
PMADDWD	V,V	1	MA	4	2
PMADDUBSW	V,V	7		10	8
PSADBW	V,V	1	MB	2	1
MPSADBW	x,x,i	1	MB	2	1
PAVGB/W	V,V	1	MB	1	1

PMIN/MAXSW	V,V	1	MB	1	1	
PMIN/MAXUB	V,V	1	MB	1	1	
PMIN/MAXSB/D	x,x	1	MB	1	1	
PMIN/MAXUW/D	x,x	1	MB	1	1	
PHMINPOSUW	x,x	1	MB	2	1	
PABSB PABSW PABSD						
	V,V	1	MB	1	1	
PSIGNB PSIGNW						
PSIGND	V,V	1	MB	1	1	
Logic instructions						
PAND(N) POR PXOR	V,V	1	MB	1	1	
PTEST	V,V	1	MB	3	1	
PSLL/RL/RAW/D/Q	V,V	1	MB	1	1	
PSLL/RL/RAW/D/Q	(x)xmm,i	1	MB	1	1	
PSLL/RLDQ	x,i	1	MB	1	1	
Other						
EMMS		1	MB		1	

Floating point XMM instructions

	Operands	μops	Port	Latency	Reciprocal thruogh-	Remarks
Move instructions					put	
MOVAPS/D	x,x	1	MB	1	1 1	
MOVAPS/D	x,m128	1	LD	2	1 1	
MOVAPS/D	m128,x	1	SA ST	2	1 1	
MOVUPS/D	x,m128	1	LD	2	1 1	
MOVUPS/D	m128,x	2	SA ST	2	1 1	
MOVSS/D	x,x	1	MB	1	1 1	
MOVSS/D	x,m32/64	1	LD	2-3	1 1	
MOVSS/D	m32/64,x	2	SA ST	2-3	1-2	
MOVHPS/D	x,m64	2		6	1 1	
MOVLPS/D	x,m64	2		6	1 1	
MOVHPS/D	m64,x	3		6	1-2	
MOVLPS/D	m64,x	1		2	1-2	
MOVLHPS MOVHLPS	x,x	1		1	1	
MOVMSKPS/D	r32,x			3	1	
MOVNTPS/D	m128,x	2		~360	1-2	
SHUFPS	x,x,i	1	MB	1	1	
SHUFPD	x,x,i	1	MB	1	1	
MOVDDUP	x,x	1	MB	1	1 1	
MOVSH/LDUP	x,x	1	MB	1	1 1	
UNPCKH/LPS	x,x	1	MB	1	1 1	
UNPCKH/LPD	X,X	1	MB	1	1	
Conversion						
CVTPD2PS	x,x	2		5	2	
CVTSD2SS	x,x	1		2		
CVTPS2PD	x,x	2		5	1 1	

0./T0000D		4	I		1 1
CVTSS2SD	X,X	1	MD	2	_
CVTDQ2PS	X,X	1	MB	3	1 1
CVT(T) PS2DQ	X,X	1		2	1 1
CVTDQ2PD	X,X	2		5	1
CVT(T)PD2DQ	X,X			4	2
CVTPI2PS	x,mm	2		5	2
CVT(T)PS2PI	mm,x	1		4	1
CVTPI2PD	x,mm	2		4	1
CVT(T) PD2PI	mm,x	2		4	2
CVTSI2SS	x,r32	2		5	
CVT(T)SS2SI	r32,x	1		4	1
CVTSI2SD	x,r32	2		5	
CVT(T)SD2SI	r32,x	1		4	1
Arithmetic					
ADDSS SUBSS	x,x	1	MBfadd	2	1
ADDSD SUBSD	X,X	1	MBfadd	2	1
ADDPS SUBPS	X,X	1	MBfadd	2	1
ADDPD SUBPD	X,X	1	MBfadd	2	1
ADDSUBPS	X,X X,X	1	MBfadd	2	1
ADDSUBPD	X,X X,X	1 1	MBfadd	2	1
HADDPS HSUBPS	X,X X,X	3	MBfadd	5	3
HADDPD HSUBPD	x,x x,x	3	MBfadd	5	3
MULSS		1	MA	3	1
MULSD	X,X	1	MA	4	2
MULPS	X,X	1		3	1
	X,X	1	MA	4	1
MULPD	X,X	1	MA		2
DIVSS	X,X	1	MA	13	13
DIVSD	X,X	1	MA	13-20	13-20
DIVPS	X,X	1	MA	24	24
DIVPD	X,X	1	MA	21-38	21-38
RCPSS	x,x	1	MA	5	5
RCPPS	x,x	3	MA	14	11
CMPccSS/D	x,x	1	MBfadd	2	1
CMPccPS/D	X,X	1	MBfadd	2	1
COMISS/D UCOMISS/D					
	x,x	1	MBfadd	3	1
MAXSS/D MINSS/D	x,x	1	MBfadd	2	1
MAXPS/D MINPS/D	X,X	1	MBfadd	2	1
Math					
SQRTSS	X,X	1	MA	33	33
SQRTPS	X,X	1	MA	64	64
SQRTSD	X,X	1	MA	62	62
SQRTPD	X,X	1	MA	122	122
RSQRTSS	X,X	1		5	5
RSQRTPS	X,X	3		14	11
Logic					
ANDPS/D	x,x	1	MB	1	1
	•	1	I .	1	

ANDNPS/D	X,X	1	MB	1	1
ORPS/D	x,x	1	MB	1	1
XORPS/D	x,x	1	MB	1	1
Other					
LDMXCSR	m32				31
STMXCSR	m32				13
FXSAVE	m4096				97
FXRSTOR	m4096				201

VIA-specific instructions

Instruction	Conditions	Clock cycles, approximately
XSTORE	Data available	160-400 clock giving 8 bytes
XSTORE	No data available	50-80 clock giving 0 bytes
REP XSTORE	Quality factor = 0	1300 clock per 8 bytes
REP XSTORE	Quality factor > 0	5455 clock per 8 bytes
REP XCRYPTECB	128 bits key	15 clock per 16 bytes
REP XCRYPTECB	192 bits key	17 clock per 16 bytes
REP XCRYPTECB	256 bits key	18 clock per 16 bytes
REP XCRYPTCBC	128 bits key	29 clock per 16 bytes
REP XCRYPTCBC	192 bits key	33 clock per 16 bytes
REP XCRYPTCBC	256 bits key	37 clock per 16 bytes
REP XCRYPTCTR	128 bits key	23 clock per 16 bytes
REP XCRYPTCTR	192 bits key	26 clock per 16 bytes
REP XCRYPTCTR	256 bits key	27 clock per 16 bytes
REP XCRYPTCFB	128 bits key	29 clock per 16 bytes
REP XCRYPTCFB	192 bits key	33 clock per 16 bytes
REP XCRYPTCFB	256 bits key	37 clock per 16 bytes
REP XCRYPTOFB	128 bits key	29 clock per 16 bytes
REP XCRYPTOFB	192 bits key	33 clock per 16 bytes
REP XCRYPTOFB	256 bits key	37 clock per 16 bytes
REP XSHA1		5 clock per byte
REP XSHA256		5 clock per byte