Deep Learning

Medical Image Classification with ResNets, DenseNets, EfficientNet and ViT

Team: JAX

GIT Repositary

Road Map

- 1. Problem statement
- 2. Datasets description
- 3. Method
- 4. Model
 - 4.1. ResNet
 - 4.2. DenseNet
 - 4.3. EfficientNet
 - 4.4. ViT
- 5. Evaluation Result
- 6. Conclusion

Problem Statement

Medical image classification plays an increasingly important role in healthcare, especially in diagnosing, treatment planning and disease monitoring.

Problem: The lack of large publicly available datasets with annotations means it is still very difficult, if not impossible, to achieve clinically relevant computer-aided detection and diagnosis (CAD).

Deep learning models have been shown to be very effective at image classification, and they are increasingly being used to **improve medical tasks**.

⇒ discuss the implementation of four different deep learning models for medical image classification: ResNet, DenseNet, Efficient Net, and ViT

Datasets Description

Name	Blood Cell Images	Random Sample of NIH Chest X-ray Dataset		
Description	12,500 augmented images of blood cells	5,606 chest X-rays from random patients		
Number labels	4	15		

Blood Cell Images
Dataset

NIH Chest X-ray Dataset

Datasets Description

Name	Blood Cell Images	Random Sample of NIH Chest X-ray Dataset	
Description	12,500 augmented images of blood cells	5606 chest X-rays from random patients	
Number labels	4	15	

Train split:

Test split:

Multi-class classification

Multi-label classification

Blood Cell Images

Random Sample of NIH Chest X-ray

$$f(s)_i = \frac{e^{s_i}}{\sum_{j=1}^{C} e^{s_j}} \quad CE = -\sum_{i=1}^{C} t_i log(f(s)_i)$$

BCELoss =
$$-\frac{1}{N} \sum_{i=1}^{N} [y_i \cdot \log(p(y_i)) + (1 - y_i) \cdot \log(1 - p(y_i))]$$

each instance belongs to only one class

each instance can belong to multiple labels simultaneously

ResNet - Residual Network

ResNets work by stacking together a series of residual blocks.

Each residual block consists of

- convolutional layers
- followed by a **skip connection**

The skip connection allows the output of the first convolutional layer to be added to the output of the final convolutional layer.

⇒ prevent the *vanishing gradient* problem of the very deep neural networks

ResNet: Architecture

DenseNet - Densely Connected Networks

The main difference between ResNet and DenseNet in cross-layer connections is the use of

addition vs concatenation

DenseNets are characterized by their use of dense connections

DenseNet - Densely Connected Networks

The main components of a DenseNet are

- dense blocks
- transition layers

- \Rightarrow allow information to flow more easily between
 - different layers of the network

EfficientNet

Traditional approaches for a ConvNet scale: width, depth and resolution scaling

Idea: balance dimensions of width, depth, and resolution by scaling with a constant ratio

EfficientNet

ConvNet - a set of blocks of layers with input shape as (H, W, C).

$$\max_{d,w,r} \quad Accuracy \big(\mathcal{N}(d,w,r) \big)$$
 s.t.
$$\mathcal{N}(d,w,r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_i^{d\cdot \hat{L}_i} \big(X_{\langle r\cdot \hat{H}_i,r\cdot \hat{W}_i,w\cdot \hat{C}_i \rangle} \big)$$

$$\text{Memory}(\mathcal{N}) \leq \text{target_memory}$$

$$\text{FLOPS}(\mathcal{N}) \leq \text{target_flops}$$

Compound scaling method

Architecture of EfficientNet B0

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	\hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

Note: use Stochastic Depth with 0,06

EfficientNet family of ConvNet

Vision Transformer (ViT)

Transformer hyperparameters:

Patch size: (8, 8), Model dim: 128,

Depth: 6,

N heads: 16,

Mlp ratio: 4,

Dropout ratio: 0.3,

Attention dropout ratio: 0.3

Evaluation: Multi-class classification Losses

Multi-label Classification Losses

Evaluation: Multi-class classification

Multi-class classification metrics

model	accuracy	precision (macro)	precision (micro)	recall (macro)	recall (micro)	F1 (macro)	F1 (micro)
resnet152	0.914757	0.913539	0.914757	0.914980	0.914757	0.913517	0.914757
resnet18	0.932449	0.936440	0.932449	0.932577	0.932449	0.932841	0.932449
densenet121	0.872939	0.887754	0.872939	0.872932	0.872939	0.874157	0.872939
densenet161	0.916365	0.917669	0.916365	0.916586	0.916365	0.915667	0.916365
effnet	0.931242	0.933620	0.931242	0.931398	0.931242	0.931379	0.931242
vit	0.894250	0.912612	0.894250	0.894179	0.894250	0.895673	0.894250

- ResNet18 and Efficient_b0 are the best model with 0.93 accuracy and F1 score
- DenseNet121 and DenseNet161 are unstable with accuracy and F1 are 0.87 and 0.91 for both nets.
- ViT showed SOTA results (accuracy: 0.89, F1: 0.89) with stable learning

Evaluation: Multi-label classification Losses

Multi-class Classification: Losses

Evaluation: Multi-label classification

model	Exact Match Ratio	Hamming loss	Recall	Precision	F1
ResNet152	0.501338	0.501338	0.502230	0.501933	0.502052
ResNet18	0.473684	0.473684	0.476360	0.474874	0.475320
densenet121	0.513827	0.513827	0.513827	0.513827	0.513827
densenet161	0.520963	0.520963	0.520963	0.520963	0.520963
effnet	0.520963	0.520963	0.520963	0.520963	0.520963
vit	0.520963	0.520963	0.520963	0.520963	0.520963

- DenseNets and Efficient_b0 showed satisfied results with 0.52 accuracy and F1 score
- DenseNets and ResNets were unstable, while EfficientNet_b0 showed stable learning
- ViT with metrics, as other algorithms and showed stable learning.

Conclusion

Number of parameters in models

model	total parameters, ths.	trainable parameters, ths.
resnet_18	11178	11178
resnet_152	58152	58152
densenet_121	6957	6957
densenet_161	26480	26480
effnet	5288	5288
transformer	1368	1368

EfficientNet is the most efficient model for both multi-class and multi-label classification problems. It performs well in all metrics and shows stable learning. ViT performs as other algorithms in terms of metrics. However, there are significantly less params to train. That makes this architecture to be alternative for ConvNets in the future.

Work distribution

Team: JAX

Xavier Aramayo Carrasco

33 %

- Find Dataset for Multi-class classification
- Implementation of DenseNet

Julia Kudryavtseva

33 %

- Implementation of EfficientNet, ViT
- Evaluation

Vo Ngoc Bich Uyen

33 %

- Find Dataset for Multi-label classification
- Implementation of ResNet