

Agrégation interne : Résumé d'Analyse

Valérie NACHEF

Chapitre 1

Suites Numériques

1.1 Définitions - Premières propriétés

1.1.1 Définition

Une suite numérique est une application de \mathbb{N} dans \mathbb{K} , $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On la note $(u_n)_{n \in \mathbb{N}}$. Pour chaque $n \in \mathbb{N}$, u_n est appelé le n-nième terme de la suite. Parfois, on étudiera le suite uniquement à partir d'un certain rang i.e. pour $n \geq n_0$.

1.1.2 Convergence - Divergence

1. On dit qu'une suite numérique $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{K}$ si et seulement si :

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \geq N \Rightarrow |u_n - l| \leq \epsilon)$$

2. On dit qu'une suite numérique $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si :

$$\exists l \in \mathbb{K}, \ \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \ge N \Rightarrow |u_n - l| \le \epsilon)$$

3. On dit qu'une suite numérique $(u_n)_{n\in\mathbb{N}}$ diverge si et seulement si :

$$\forall l \in \mathbb{K}, \ \exists \epsilon > 0, \ \forall N \in \mathbb{N}, \ \exists n \in \mathbb{N}, \ (n \geq N \text{ et } |u_n - l| > \epsilon)$$

Proposition

Si une suite numérique converge dans K, alors la limite est unique.

1.1.3 Suites majorées, minorées, bornées

1. On dit qu'un réel A est un majorant d'une suite réelle $(u_n)_{n\in\mathbb{N}}$ si et seulement si :

$$\forall n \in \mathbb{N}, \ u_n \leq A$$

On dit qu'un réel A est un minorant d'une suite réelle $(u_n)_{n\in\mathbb{N}}$ si et seulement si :

$$\forall n \in \mathbb{N}, \ u_n \geq A$$

- 2. Une suite réelle $(u_n)_{n\in\mathbb{N}}$ est dite majorée (resp. minorée) si et seulement si il existe un réel A qui soit un majorant (resp. minorant) de $(u_n)_{n\in\mathbb{N}}$.
- 3. Une suite réelle $(u_n)_{n\in\mathbb{N}}$ est dite bornée si et seulement si il existe $M\in\mathbb{R}^+$ tel que

$$\forall n \in \mathbb{N}, |u_n| \leq M$$

4. On dit qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si et seulement si :

$$\forall A > 0, \; \exists N, \; \forall n, \; (n \ge N \Rightarrow u_n \ge A)$$

5. On dit qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ si et seulement si :

$$\forall A > 0, \; \exists N, \; \forall n, \; (n \geq N \Rightarrow u_n \leq -A)$$

Proposition

- 1. Toute suite complexe convergente est bornée.
- 2. Toute suite réelle tendant vers $+\infty$ est minorée.
- 3. Toute suite réelle tendant vers $-\infty$ est majorée.

1.1.4 Suites de Cauchy

Définition

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ est de Cauchy si et seulement si :

$$\forall \epsilon > 0, \ \exists N_0, \ \forall n \ge N_0, \ \forall p \ge N_0, \ |u_n - u_p| < \epsilon$$

Proposition

Une suite numérique $(u_n)_{n\in\mathbb{N}}$ est convergente si et seulement si elle est de Cauchy.

1.1.5 Propriétés des suites convergentes

Proposition

On considère deux suites $U=(u_n)_{n\in\mathbb{N}}$ et $V=(v_n)_{n\in N}$ convergentes dans \mathbb{K} respectivement vers l et l'. Alors les suites $U+V=(u_n+v_n)_{n\in\mathbb{N}}$ et $U\times V=(u_n\cdot v_n)_{n\in\mathbb{N}}$ sont convergentes vers respectivement l+l' et $l\cdot l'$. Si $l'\neq 0$ la suite $\frac{U}{V}=(\frac{u_n}{v_n})_{n\in\mathbb{N}}$ est définie à partir d'un certain rang et converge vers $\frac{l}{l'}$.

Proposition

Soit une suite réelle $(u_n)_{n\in\mathbb{N}}$ convergent vers un réel l. Alors

- 1. $l > 0 \Rightarrow \exists N \in \mathbb{N}, \ \forall n \geq N, u_n \geq 0$
- 2. $l < 0 \Rightarrow \exists N \in \mathbb{N}, \forall n \geq N, u_n \leq 0$

Proposition

Soit une suite réelle $(u_n)_{n\in\mathbb{N}}$ convergent vers un réel l. Alors

- 1. $\forall N \in \mathbb{N}, \exists n \geq N, u_n \geq 0 \Rightarrow l \geq 0$
- 2. $\forall N \in \mathbb{N}, \exists n \geq N, u_n \leq 0 \Rightarrow l \leq 0$

Corollaire On considère deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergentes respectivement vers les réels l et l'.

- 1. Si à partir d'un certain rang $u_n \leq v_n$, alors $l \leq l'$.
- 2. Si M est un majorant de $(u_n)_{n\in\mathbb{N}}$, alors $l\leq M$.
- 3. Si m est un minorant de $(u_n)_{n\in\mathbb{N}}$, alors $l\geq m$.

Proposition

On considère $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites réelles vérifiant :

$$\forall n \in \mathbb{N}, \ u_n \leq v_n \leq w_n$$

Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers un même réel l, alors la suite $(v_n)_{n\in\mathbb{N}}$ est convergente et converge vers l.

1.1.6 Convergence en moyenne

Définition

On dit qu'une suite $(u_n)_{n\geq 1}$ converge en moyenne, ou au sens de Césaro, si la suite de terme général $U_n=\frac{1}{n}\sum_{k=1}^n u_n$ est convergente.

Théorème

Soit $(u_n)_{n>1}$ une suite convergente de limite ℓ . Alors cette suite converge en moyenne vers ℓ .

Remarque : La réciproque de ce théorème est fausse. Il suffit de considérer la suite de terme général $u_n = (-1)^n$.

1.2 Suites extraites ou sous-suites - Valeurs d'adhérence

1.2.1 Suites extraites

Définition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} . On dit que $(v_n)_{n\in\mathbb{N}}$ est une suite extraite (ou sous-suite) de $(u_n)_{n\in\mathbb{N}}$ s'il existe une application $\varphi:\mathbb{N}\to\mathbb{N}$ strictement croissante vérifiant :

$$\forall n \in \mathbb{N}, \ v_n = u_{\varphi(n)}$$

Remarque : On peut vérifier par récurrence que $\forall n \in \mathbb{N}, \ \varphi(n) \geq n$.

Proposition

Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers l, alors toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge vers l.

1.2.2 Valeurs d'adhérence

Définition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{K} . On dit qu'un élément a de \mathbb{K} est une valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$ s'il est limite d'une suite extraite de $(u_n)_{n\in\mathbb{N}}$.

Proposition

Une suite réelle $(u_n)_{n\in\mathbb{N}}$ est convergente si et seulement si elle est bornée et n'a qu'une seule valeur d'adhérence.

Proposition

Une suite réelle est divergente si et seulement si elle vérifie l'une des deux conditions suivantes :

- Elle est non bornée,
- Elle est bornée et admet au moins deux valeurs d'adhérence.

1.3 Suites monotones - Suites adjacentes

Définition

On dit qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ est croissante si

$$\forall n \in \mathbb{N}, \ u_{n+1} > u_n$$

décroissante si

$$\forall n \in \mathbb{N}, \ u_{n+1} \leq u_n$$

Proposition

- 1. Une suite réelle croissante et majorée converge vers $M = \sup\{u_n, n \in \mathbb{N}\}.$
- 2. Une suite réelle décroissante et minorée converge vers $m = \inf\{u_n, n \in \mathbb{N}\}.$

Définition

Deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites adjacentes si

- 1. $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 2. $(v_n)_{n\in\mathbb{N}}$ est décroissante.

3.
$$\lim_{n \to +\infty} (u_n - v_n) = 0$$

Proposition

Si deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, alors elles convergent et ont même limite. De plus, en notant l cette limite commune, on a :

$$\forall n \in \mathbb{N}, \ u_n \leq u_{n+1} \leq l \leq v_{n+1} \leq v_n$$

1.4 Relations de comparaison

1.4.1 La relation *O*

Définition

On dit que la suite $U=(u_n)_{n\in\mathbb{N}}$ est dominée par la suite $V=(v_n)_{n\in\mathbb{N}}$ s'il existe un réel positif M et un entier positif n_0 tels que

$$\forall n \geq n_0, |u_n| \leq M|v_n|$$

On note U = O(V) ou $u_n = O(v_n)$.

1.4.2 La relation ϕ

Définition

On dit que la suite $U=(u_n)_{n\in\mathbb{N}}$ est négligeable ou infiniment petite devant la suite $V=(v_n)_{n\in\mathbb{N}}$ si

$$\forall \epsilon, \ \exists n_{\epsilon} \in \mathbb{N}, \ \forall n \geq n_{\epsilon}, \ |u_n| \leq \epsilon |v_n|$$

On note U = o(V) ou $u_n = o(v_n)$

Proposition

La suite $(u_n)_{n\in\mathbb{N}}$ est négligeable devant la suite $(v_n)_{n\in\mathbb{N}}$ si et seulement si il existe une suite α_n convergente vers 0 vérifiant :

$$\exists n_1, \ \forall n \geq n_1, \ u_n = \alpha_n \cdot v_n$$

Corollaire

On suppose qu'il existe un entier n_0 tel que pour tout $n \ge n_0$, on ait $v_n \ne 0$. Alors la suite $(u_n)_{n \in \mathbb{N}}$ est négligeable devant la suite $(v_n)_{n \in \mathbb{N}}$ si et seulement si

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = 0$$

1.4.3 L'équivalence

Définition

On dit que la suite $U=(u_n)_{n\in\mathbb{N}}$ est équivalente à la suite $V=(v_n)_{n\in\mathbb{N}}$ si (U-V)=o(V). On note $U\sim V$.

Proposition

Une suite $U=(u_n)_{n\in\mathbb{N}}$ est équivalente à la suite $V=(v_n)_{n\in\mathbb{N}}$ si et seulement si il existe une suite $(\alpha_n)_{n\in\mathbb{N}}$ convergente vers 0 vérifiant

$$\exists n_1, \ \forall n \geq n_1, \ u_n = (1 + \alpha_n)v_n$$

Proposition

Une suite $U=(u_n)_{n\in\mathbb{N}}$ est équivalente à la suite $V=(v_n)_{n\in\mathbb{N}}$ si et seulement si il existe une suite $(\alpha_n)_{n\in\mathbb{N}}$ convergente vers 1 vérifiant

$$\exists n_1, \ \forall n \geq n_1, \ u_n = \alpha_n v_n$$

Corollaire

La relation \sim est une relation d'équivalence.

Corollaire

Lorsque deux suites réelles sont équivalentes, si l'une est convergente, l'autre est aussi convergente vers la même limite.

Proposition

On suppose qu'il existe un entier n_0 tel que pour tout $n \ge n_0$, on ait $v_n \ne 0$. Alors la suite $U = (u_n)_{n \in \mathbb{N}}$ est équivalente à la suite $V = (v_n)_{n \in \mathbb{N}}$ si et seulement si

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$$

Corollaire

Soit l un réel non nul. Une suite $(u_n)_{n\in\mathbb{N}}$ est convergente vers l si et seulement si $u_n \sim l$.

1.5 Suites récurrentes

1.5.1 Définitions

Suites récurrentes d'ordre 1

Soit E un ensemble non vide. Une suite $(u_n)_{n\in\mathbb{N}}$ est dite récurrente d'ordre 1 si on peut la définir de la manière suivante :

$$\begin{cases} u_0 \in E \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

où f est une application définie sur E à valeurs dans E

Exemples

1. Suites arithmétiques. On appelle ainsi les suites $(u_n)_{n\in\mathbb{N}}$ vérifiant une relation de récurrence de la forme $u_{n+1}=u_n+a$ où $a\in\mathbb{R}$. On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison a. On a :

$$\forall n \in \mathbb{N}, \ u_n = u_0 + na$$

$$\forall (k, l) \in \mathbb{N}^2, \ \sum_{n=k}^{n=k+l} u_n = \frac{1}{2}(l+1)(u_k + u_{k+l})$$

2. Suites géométriques. On appelle ainsi les suites $(u_n)_{n\in\mathbb{N}}$ vérifiant une relation de récurrence de la forme $u_{n+1}=qu_n$ où $q\in\mathbb{R}$. On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q. On a :

$$\forall n \in \mathbb{N}, \ u_n = u_0 q^n$$

$$\forall (k, l) \in \mathbb{N}^2, \ \sum_{n=k}^{n=k+l} u_n = u_k \frac{1 - q^{l+1}}{1 - q} \text{ si } q \neq 1$$

$$\forall (k, l) \in \mathbb{N}^2, \ \sum_{n=k}^{n=k+l} u_n = u_k (l+1) \text{ si } q = 1$$

3. Suites arithmético-géométriques. On appelle ainsi les suites $(u_n)_{n\in\mathbb{N}}$ vérifiant une relation de récurrence de la forme $u_{n+1}=au_n+b$ où $(a,b)\in\mathbb{R}^2$. Pour l'étude de ce type de suites, si $a\neq 1$, on pourra utiliser le réel $\frac{b}{1-a}$ unique point fixe de l'application $x\mapsto ax+b$. On peut ainsi vérifier que la suite $(u_n-\frac{b}{1-a})_{n\in\mathbb{N}}$ est géométrique de raison a:

$$\forall n \in \mathbb{N}, \ u_{n+1} - \frac{b}{1-a} = a\left(u_n - \frac{b}{1-a}\right)$$

Suites récurrentes d'ordre k

Soit E un ensemble non vide. Une suite $(u_n)_{n\in\mathbb{N}}$ est dite récurrente d'ordre k si on peut la définir de la manière suivante :

$$\left\{ \begin{array}{l} (u_0, u_1, \dots, u_{k-1}) \in E^k \\ \forall n \in \mathbb{N}, \ u_{n+k} = f(u_n, u_{n+1}, \dots, u_{n+k-1}) \end{array} \right.$$

où f est une application définie sur E^k à valeurs dans E.

1.6 Suites réelles récurrentes d'ordre 1

1.6.1 Propriétés

Soit I un intervalle réel, f une application définie sur I à valeurs dans I et $(u_n)_{n\in\mathbb{N}}$ une suite définie par

$$\left\{ \begin{array}{c} u_0 \in I \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{array} \right.$$

Proposition

- 1. Si l'application f est croissante sur I, alors la suite $(u_n)_{n\in\mathbb{N}}$ est monotone.
- 2. Si l'application f est décroissante sur I, alors les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones de sens de variation opposé.

Proposition

Si la suite $(u_n)_{n\in\mathbb{N}}$ est convergente vers un réel l appartenant à I et si f est continue en ce point, alors l est un point fixe pour l'application f.

1.6.2 Points fixes attractifs - Points fixes répulsifs

Proposition

Soient f une fonction numérique définie sur un intervalle I et l un point fixe de f appartenant à l'intérieur de I. Si f est dérivable en l avec |f'(l)| < 1, on dit que l est un point attractif de f. Il existe un réel α strictement positif tel que toute suite $(u_n)_{n\in\mathbb{N}}$ de la forme

$$\begin{cases} u_0 \in]l - \alpha, l + \alpha[\\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

est définie et converge vers l.

Proposition

Soient f une fonction numérique définie sur un intervalle I et l un point fixe de f appartenant à l'intérieur de I. Si f est dérivable en l avec |f'(l)| > 1, on dit que l est un point répulsif de f. Si une suite $(u_n)_{n \in \mathbb{N}}$ de la forme

$$\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$$

est convergente vers ce point fixe répulsif l, alors elle est stationnaire. Si, de plus, l'application f est injective alors elle est constante.

1.7 Suites récurrentes linéaires du second ordre à coefficients constants

1.7.1 Définition

On appelle suite récurrente linéaire du second ordre à coefficients constants, toute suite $(u_n)_{n\in\mathbb{N}}$ telle qu'il existe $(a,b)\in\mathbb{K}^2$ tels que

$$\forall n \in \mathbb{N}, \, u_{n+2} = au_{n+1} + bu_n$$

On note $E_{a,b}$ l'ensemble de telles suites.

1.7.2 Structure et dimension de $E_{a,b}$

 $E_{a,b}$ est un espace vectoriel de dimension 2.

1.7.3 Expression des éléments de $E_{a,b}$

On commence par chercher si $E_{a,b}$ contient des suites géométriques.

L'équation r^2-ar-b est appelée équation caractéristique. Notons $\Delta=b^2-4ac$ le discriminant de cette équation. Plusieurs cas peuvent se présenter :

Premier cas

L'équation caractéristique admet deux solutions distinctes r_1 et r_2 dans \mathbb{K} (cela revient à $\mathbb{K}=\mathbb{C}$ et $\Delta \neq 0$ ou $\mathbb{K}=\mathbb{R}$ et $\Delta>0$). Alors il existe λ_1 et λ_2 dans \mathbb{K} tels que

$$u_n = \lambda_1 r_1^n + \lambda_2 r_2^n$$

On calcule λ_1 et λ_2 en fonction de u_0 , u_1 , r_1 et r_2 .

Deuxième cas

L'équation caractéristique admet une seule solution r dans \mathbb{K} (cela revient à $\Delta=0$). Alors il existe λ_1 et λ_2 dans \mathbb{K} tels que

$$u_n = (\lambda_1 + n\lambda_2)r^n$$

On calcule λ_1 et λ_2 en fonction de u_0 , u_1 , r.

Troisième cas

L'équation caractéristique n'admet pas de racine dans \mathbb{K} (cela revient à $\mathbb{K} = \mathbb{R}$ et $\Delta < 0$). Cette équation admet deux racines distinctes conjuguées r_1 et r_2 dans \mathbb{C} . Il existe alors A et B réels tels que

$$u_n = \rho^n (A\cos n\theta + B\sin n\theta)$$

où $\rho = |r_1|$ et $\theta = \arg r_1$. On calcule A et B à l'aide de u_0, u_1, ρ et θ .

1.8 Vitesse de convergence d'une suite réelle

1.8.1 Définition

On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$ convergente vers un réel l.

- 1. On suppose que la suite de terme général $\frac{u_{n+1}-l}{u_n-l}$ est convergente. On note λ sa limite.
 - (a) Si $|\lambda| = 1$, on dit que la convergence est lente.
 - (b) Si $|\lambda| \in]0,1[$, on dit que la convergence est géométrique de rapport λ .
 - (c) Si $\lambda = 0$, on dit que la convergence est rapide.
- 2. Soit r un réel strictement supérieur à 1. On dit que la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ est d'ordre r si la suite $\frac{u_{n+1}-l}{|u_n-l|^r}$ est bornée. On remarque que dans ce cas, la convergence est rapide.

1.8.2 Suites convergeant vers un point attractif

On considère f une fonction numérique définie sur un intervalle I et une suite $(u_n)_{n\in\mathbb{N}}$ définie par une récurrence de la forme $u_{n+1}=f(u_n)$ convergeant vers l un point fixe attractif de f. On suppose qu'à partir d'un certain rang, $u_n\neq l$. On a

$$\lim_{t \to l} \frac{f(t) - l}{t - l} = f'(l)$$

La suite $(u_n)_{n\in\mathbb{N}}$ étant convergente vers l; on obtient :

$$\lim_{n \to +\infty} \frac{u_{n+1} - l}{u_n - l} = f'(l)$$

1. Si $f'(l) \neq 0$, la vitesse de convergence de la suite est géométrique de rapport f'(l).

2. Si f'(l) = 0, la vitesse de convergence de la suite est rapide. Si on suppose de plus que l'application f est p fois dérivable en l ($p \ge 2$) avec

$$\forall k \in \{0, 1, \dots, p-1\} \ f^{(k)}(l) = 0, \ \text{et} \ f^{(p)}(l) \neq 0$$

la formule de Taylor-Young à l'ordre p permet d'écrire :

$$\lim_{t \to l} \frac{f(t) - l}{(t - l)^p} = \frac{f^{(p)}(l)}{p!}$$

Donc

$$\lim_{n \to +\infty} \frac{u_{n+1} - l}{(u_n - l)^p} = \frac{f^{(p)}(l)}{p!}$$

La vitesse de convergence de la suite vers l est alors d'ordre p.

1.9 Accélération de la convergence d'une suite

1.9.1 Définitions

Définitions

Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites convergentes vers le même réel l, on dit que la convergence de la suite $(v_n)_{n\in\mathbb{N}}$ est plus élevée que celle de $(u_n)_{n\in\mathbb{N}}$ si $v_n-l=o(u_n-l)$.

Définition

Accélérer la convergence d'une suite consiste à construire à partir de cette dernière une autre suite qui converge plus vite vers la même limite.

1.9.2 Méthode d'accélération de Richardson

Théorème : Méthode d'accélération de Richardson

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente vers l, avec une convergence géométrique de rapport λ , $|\lambda| \in]0,1[$. Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ v_n = \frac{u_{n+1} - \lambda u_n}{1 - \lambda}$$

Alors la suite $(v_n)_{n\in\mathbb{N}}$ converge vers l plus vite que la suite $(u_n)_{n\in\mathbb{N}}$.

On regarde maintenant la vitesse de convergence de la suite $(v_n)_{n\in\mathbb{N}}$.

Proposition

On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ admet un développement asymptotique de la forme :

$$u_n = l + a\lambda^n + o(\lambda^n)$$

où $a \in \mathbb{R}^*$ et $|\lambda| \in]0,1[$. Alors $(u_n)_{n_in\mathbb{N}}$ converge vers l avec une convergence géométrique de rapport λ .

Proposition

Si la suite $(u_n)_{n\in\mathbb{N}}$ admet un développement asymptotique de la forme :

$$u_n = l + a\lambda^n + b\mu^n + o(\mu^n)$$

avec a et b réels non nuls et $0 < |\mu| < |\lambda| < 1$. Alors la suite $(v_n)_{n \in \mathbb{N}}$ accélérée de la suite $(u_n)_{n \in \mathbb{N}}$ avec la méthode de Richardson admet un développement asymptotique de la forme :

$$v_n = l + b'\mu^n + o(\mu^n)$$

où b' est un réel non nul. La convergence de la suite $(v_n)_{n\in\mathbb{N}}$ vers l est géométrique de rapport μ .

Remarque: on peut itérer la méthode de Richardson.

1.9.3 Méthode d'accélération d'Aitken

On considère une suite $(u_n)_{n_i n \mathbb{N}}$ qui converge vers l. On suppose que pour tout n, $u_n \neq l$ et $u_{n+1} \neq u_n$. On suppose également que la suite est géométrique mais que l'on ne connaît pas le rapport λ . Ceci se produit par exemple pour la suite définie par $u_{n+1} = f(u_n)$ avec $f(x) = \cos x$. Dans ce cas, la limite l est un point fixe attractif mais on ne connaît pas f'(l). Or la suite $(u_n)_{n\in\mathbb{N}}$ a une convergence géométrique de rapport

Proposition

La suite $(\lambda_n)_{n\in\mathbb{N}^*}$ définie par $\forall n\geq 1,\ \lambda_n=\frac{u_{n+1}-u_n}{u_n-u_{n-1}}$ converge vers $\lambda.$ **Remarque :** Puisque $\lambda\neq 1$, on peut trouver un rang n_0 tel si $n\geq n_0$ alors $\lambda_n\neq 1$.

Théorème : Méthode d'accélération d'Aitken On considère la suite $(v_n)_{n\geq n_0}$ définie par

$$\forall n \ge n_0, \ v_n = \frac{u_{n+1} - \lambda_n u_n}{1 - \lambda_n}$$

La suite $(v_n)_{n\geq n_0}$ est une accélération de la suite $(u_n)_{n\in\mathbb{N}}$.

Chapitre 2

Séries Numériques

2.1 Généralités

Définition

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans un espace vectoriel E. On appelle série de terme général u_n la suite $(S_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \ S_n = u_0 + u_1 + \ldots + u_n$$

On note cette série $\sum u_n$. Pour tout $n \in \mathbb{N}$, u_n s'appelle le terme d'indice n, S_n s'appelle la somme partielle d'indice n de la série $\sum u_n$.

Lorsque E est un espace vectoriel normé, on dit que $\sum u_n$ converge si la suite $(S_n)_{n\in\mathbb{N}}$ converge. dans ce cas, la limite s'appelle la somme de la série et on la note $\sum_{n=0}^{+\infty}u_n$. Pour tout $n\in\mathbb{N}$, on appelle reste d'indice n, l'élément R_n défini par

$$R_n = \sum_{k=0}^{+\infty} u_k - \sum_{k=0}^{n} u_k = \sum_{k=n+1}^{+\infty} u_k$$

Exemples:

1. Séries arithmétiques. Les séries de la forme $\sum_{n\in\mathbb{N}} na$ où a est une constante complexe sont toujours divergentes dès que $a\neq 0$. Les sommes partielles de la série sont données par

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n ka = a \frac{n(n+1)}{2}$$

2. Séries géométriques. Les séries $\sum_{n\in\mathbb{N}}q^n$ où q est un nombre complexe, convergent si et seulement si, |q|<1. Les sommes partielles sont données par

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} \text{ si } q \neq 1$$

$$\sum_{k=0}^{n} q^{k} = n + 1 \text{ si } q = 1$$

Si |q| < 1, on a alors

$$\sum_{k=0}^{+\infty} q^k = \frac{1}{1-q} \text{ et } \sum_{k=n}^{+\infty} q^k = \frac{q^n}{1-q}$$

2.1.1 Critère de Cauchy pour les séries

Proposition

Une série $\sum u_n$ à valeurs dans un espace de Banach converge si et seulement si

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n > N, \ \forall p \in \mathbb{N}, \ \|u_n + \ldots + u_{n+p}\| < \epsilon$$

Corollaire

Si une série $\sum u_n$ converge, alors $\lim_{n\to+\infty}u_n=0$. La réciproque est fausse.

2.1.2 Séries absolument convergentes

Théorème

Soit $\sum u_n$ une série à valeurs dans un espace vectoriel sur \mathbb{R} . Si la série $\sum \|u_n\|$ converge, on dit que $\sum u_n$ est absolument convergente, et dans ce cas, la série $\sum u_n$ est convergente.

2.2 Séries réelles à termes positifs

Théorème

Un série $\sum u_n$ à termes positifs converge si et seulement si la suite $(S_n)_{n\in n\mathbb{N}}$ des sommes partielles est bornée.

Théorème

On considère deux séries réelles $\sum u_n$ et $\sum v_n$ telles que

$$\forall n \in \mathbb{N}, \ 0 < u_n < v_n$$

Alors si $\sum v_n$ converge, $\sum u_n$ converge ; si $\sum u_n$ diverge, $\sum v_n$ diverge.

Théorème

Soient $\sum u_n$ et $\sum v_n$ deux séries réelles à termes positifs.

- 1. Si $v_n = O(u_n)$ lorsque $n \to +\infty$ et $\sum u_n$ converge, alors $\sum v_n$ converge.
- 2. Si $u_n \sim v_n$ lorsque $n \to +\infty$, alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Théorème : Séries de Riemann

Soit $\alpha \in \mathbb{R}$. La série de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha>1$.

2.2.1 Équivalents des sommes partielles et des restes

Théorème

Soient $\sum u_n$ et $\sum v_n$ deux séries réelles à termes positifs telles que $u_n \sim v_n$ lorsque $n \to +\infty$. Alors

1. Si $\sum u_n$ converge, $\sum v_n$ converge et les restes vérifient

$$\sum_{k=n}^{+\infty} u_k \sim \sum_{k=n}^{+\infty} v_k, \ n \to +\infty$$

2. Si $\sum u_n$ diverge, $\sum v_n$ diverge et les sommes partielles vérifient

$$\sum_{k=0}^{n} u_k \sim \sum_{k=0}^{n} v_k, \ n \to +\infty$$

Comparaison Série-intégrale 2.2.2

Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction décroissante sur \mathbb{R}^+ . Alors la suite $(U_n)_{n \in \mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \ U_n = f(0) + f(1) + \ldots + f(n) - \int_0^n f(t) \, dt$$

est convergente. En particulier, la série $\sum f(n)$ et l'intégrale $\int_0^{+\infty} f(t) dt$ sont de même nature.

2.2.3 Séries de Bertrand

On appelle ainsi les séries numériques de la forme

$$\sum_{n\geq 2} \frac{1}{n^{\alpha} \ln^{\beta} n}, \ (\alpha, \beta) \in \mathbb{R}^2$$

Alors

$$\left(\sum_{n\geq 2} \frac{1}{n^{\alpha} \ln^{\beta} n} \text{ converge}\right) \Leftrightarrow \left(\left(\alpha > 1\right) \text{ ou } \left(\alpha = 1 \text{ et } \beta > 1\right)\right)$$

Comparaison logarithmique pour les séries réelles à termes posi-2.3 tifs

Proposition

On considère deux suites réelles positives $\sum u_n$ et $\sum v_n$. On suppose qu'à partir d'un certain rang n_0 , u_n et v_n sont strictement positifs, et vérifient : $\frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$ Alors $u_n = O(v_n)$, et donc la convergence de la série $\sum v_n$ entraı̂ne celle de la série $\sum u_n$.

2.3.1 Règle de d'Alembert

Soit $\sum u_n$ une série numérique réelle à termes strictement positifs à partir d'un certain rang.

- 1. Si pour un certain a tel que 0 < a < 1, on a $u_{n+1} \le au_n$ alors la série $\sum u_n$ converge.
- 2. Si la suite $(\frac{u_{n+1}}{u_n})$ admet une limite a telle que 0 < a < 1, alors la série $\sum u_n$ converge.
- 3. Si la suite $(\frac{u_{n+1}}{u_n})$ admet une limite a telle que a>1, alors la série $\sum u_n$ diverge. On a même $\lim_{n\to+\infty}=+\infty$.

2.3.2 Règle de Cauchy

Soit $\sum u_n$ une série numérique réelle à termes strictement positifs à partir d'un certain rang.

- 1. Si la série $\sum u_n$ converge, alors $\overline{\lim}(u_n)^{\frac{1}{n}} \leq 1$
- 2. Si $\overline{\lim}(u_n)^{\frac{1}{n}} < 1$, alors la série $\sum u_n$ converge.
- 3. Si $\overline{\lim}(u_n)^{\frac{1}{n}} > 1$, alors la série $\sum u_n$ diverge.

Si $(\frac{u_{n+1}}{u_n})$ admet une limite a, $(u_n)^{\frac{1}{n}}$ admet aussi a pour limite.

2.3.3 Règle de Raabe-Duhamel

Proposition

Soit $\sum u_n$ une série numérique réelle à termes strictement positifs à partir d'un certain rang. On suppose qu'il existe un réel α tel que

$$\lim_{n\to +\infty} \left(n\left(\frac{u_{n+1}}{u_n}-1\right)\right) = -\alpha \text{ c'est à dire } \frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o(\frac{1}{n})$$

Alors la série $\sum u_n$ converge si $\alpha > 1$ et diverge si $\alpha < 1$.

Proposition

Soit $(u_n)_{n\in\mathbb{N}}$ une série à termes positifs telle que

$$\frac{u_{n+1}}{u_n} = \frac{1}{1 + \frac{\alpha}{n} + O(\frac{1}{n^2})} \quad n \to +\infty$$

Alors il existe $\lambda > 0$ tel que $u_n \sim \frac{\lambda}{n^{\alpha}}$ lorsque $n \to +\infty$

Cette règle permet de déterminer la nature de la série $\sum u_n$. Elle converge si et seulement si $\alpha > 1$

2.4 Séries réelles semi-convergentes

2.4.1 Séries alternées

Définition

Soit une série $\sum u_n$. On dit qu'elle est alternée si et seulement si il existe une suite réelle positive $(a_n)_{n\in\mathbb{N}}$ telle que, pour tout n, on a $u_n=(-1)^na_n$, ou bien $u_n=(-1)^{n+1}a_n$.

Proposition

Soit $(a_n)_{n\in\mathbb{N}}$ une suite à termes positifs, décroissante, tendant vers 0. Alors la série alternée $\sum (-1)^n a_n$ converge. Sa somme vérifie $\forall p\in\mathbb{N},\ S_{2p+1}\leq S\leq S_{2p}$; et les restes vérifient $\forall n\in\mathbb{N},\ |R_n|\leq a_n$.

2.4.2 Règle d'Abel

Théorème

Soit une série $\sum u_n$. On suppose que pour tout n, $u_n = \alpha_n v_n$ où

- (α_n) est une suite positive, décroissante, tendant vers 0.
- La série $\sum v_n$ est bornée.

Alors la série $\sum u_n$ est convergente.

2.5 Produit de Cauchy de deux séries numériques

Définition

Soient $\sum u_n$ et $\sum v_n$ deux séries numériques. On définit le produit de Cauchy des ces deux séries comme la série de terme général w_n où

$$w_n = \sum_{k=0}^n u_k v_{n-k}$$

Théorème

Soient deux séries absolument convergentes de sommes respectives U et V. Alors leur produit de Cauchy est une série absolument convergente de somme $U \cdot V$.

Chapitre 3

Dérivation - Formules de Taylor Développements limités - Fonctions convexes

3.1 Fonctions dérivables

3.1.1 Dérivabilité

Définition

Soient E un espace vectoriel sur \mathbb{R} , I un intervalle de \mathbb{R} , $f:I\to E$ une application et $a\in I$. On dit que f est dérivable en a si

$$\lim_{\substack{x \to a \\ x \in I \setminus \{a\}}} \frac{f(x) - f(a)}{x - a}$$

existe. Lorsqu'elle existe, cette limite est notée f'(a).

On dit que f est dérivable à gauche (resp. à droite) en a si

$$\lim_{\substack{x \to a \\ x < a, x \in I}} \frac{f(x) - f(a)}{x - a} \quad \left(\lim_{\substack{x \to a \\ x > a, x \in I}} \frac{f(x) - f(a)}{x - a}\right)$$

existe. On la note alors $f'_q(a)$ (resp. $f'_d(a)$).

Remarques:

- 1. f est dérivable en a intérieur à I si et seulement si f est dérivable à droite et à gauche en a et les dérivées à gauche et à droite coïncident.
- 2. Si f est dérivable en a, alors f est continue en a.
- 3. Sur l'ensemble D des points où f est dérivable, on peut définir l'application $f': a \mapsto f'(a)$ appelée application dérivée de f.
- 4. Une fonction dérivée n'est pas nécessairement continue. Il suffit de considérer par exemple la fonction suivante définie de $\mathbb R$ dans $\mathbb R$ par $f(x)=x^2\sin(1/x)$ si $x\neq 0$ et f(0)=0

Par récurrence, on peut définir la dérivée n-nième (lorqu'elle existe) de la fonction f, par

$$f'' = (f')', \ f^{(3)} = (f'')', \dots, f^{(n)} = (f^{(n-1)})'$$

Définition

Une application $f: I \to E$ est dite de classe C^n si $f^{(n)}$ existe sur I et est continue. Lorsque f est de classe C^n pour tout $n \in \mathbb{N}$, on dit que f est de classe C^{∞} .

Proposition

Soient I un intervalle de \mathbb{R} , f et g deux applications dérivables en $a \in I$. Alors

- 1. f + g est dérivable en a et (f + g)'(a) = f'(a) + g'(a).
- 2. Pour tout $\lambda \in \mathbb{R}$, λf est dérivable en a et $(\lambda f)'(a) = \lambda f'(a)$.
- 3. Si E est une \mathbb{R} -algèbre normée, l'application fg est dérivable en a et (fg)'(a) = f'(a)g(a) +
- 4. Si $E = \mathbb{R}$ ou $E = \mathbb{C}$ et si $g(a) \neq 0$, alors f/g est dérivable en a et $(\frac{f}{g})'(a) = \frac{f'(a)g(a) f(a)g'(a)}{g(a)^2}$.

Proposition : Formule de Leibnitz

Soient I un intervalle de \mathbb{R} , f et g deux applications de I dans \mathbb{K} (avec $\mathbb{K} = \mathbb{R}$ où \mathbb{C}), $a \in I$ tel que $f^{(n)}(a)$ et $f^{(n)}(a)$ existent. Alors le produit fg est dérivable en a et

$$(fg)^{(n)}(a) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(a)g^{(n-k)}(a)$$

Proposition

Soient I et J deux intervalles de \mathbb{R} , E un \mathbb{R} -espace vectoriel normé, $f: J \to E$ et $g: I \to J$ deux applications et $a \in I$ tel que g est dérivable en a et f est dérivable en g(a), alors $f \circ g$ est dérivable en a et $(f \circ g)'(a) = g'(a) \cdot (f' \circ g)(a).$

Proposition

Soit f une bijection de I dans J, dérivable en $a \in I$. L'application f^{-1} est dérivable en b = f(a) si et seulement si $f'(a) \neq 0$, et on a

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$$

Résultats relatifs à la dérivabilité pour les fonctions à valeurs réelles 3.1.2

Proposition

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$. Si f admet un extremum relatif en $c \in \mathring{I}$ et f'(c) existe, alors f'(c) = 0.

Théorème de Rolle

Soit $f:[a,b] \to \mathbb{R}$ une application vérifiant :

- 1. f est continue sur [a, b].
- 2. f est dérivable sur a, b.
- 3. f(a) = f(b).

Alors $\exists c \in]a, b[, f'(c) = 0.$

Théorème des accroissements finis

Soit $f:[a,b]\to\mathbb{R}$ une application continue sur [a,b] et dérivable sur [a,b]. Alors il existe $c\in]a,b[$ tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Remarque : Le théorème de Rolle et le théorème des accroissements finis sont faux lorsque f est à valeurs dans un espace vectoriel normé.

Théorème des accroissements finis généralisé

Soient f et g deux applications de [a, b] dans \mathbb{R} continues sur [a, b] et dérivables sur [a, b]. Alors il existe $c \in]a,b[$ tel que (f(b)-f(a))g'(c)=(g(b)-g(a))f'(c). Si $g'(c)\neq 0$ et $g(a)\neq g(b),$ cette égalité s'écrit aussi $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$.

Conséquence: Règle de l'Hospital Si f(a) = g(a) = 0 et si $l = \lim_{\substack{x \to a \\ x \neq a}} f'(x)/g'(x)$ existe, alors on

a $\lim_{x \to a} f(x)/g(x) = l$.

Remarque : La réciproque à la règle de l'Hospital est fausse.

Théorème : Formule de Taylor-Lagrange

Soit f:[a,b] une application de classe C^n sur [a,b], telle que $f^{(n+1)}$ existe sur [a,b]. Alors

$$\exists c \in]a, b[, f(b) = f(a) + (b - a)f'(c) + \dots + \frac{(b - a)^n}{n!} f^n(a) + \underbrace{\frac{(b - a)^{n+1}}{(n+1)!} f^{(n+1)}(c)}_{reste \ de \ Lagrange}$$

3.1.3 Résultats relatifs à la dérivabilité pour les fonctions à valeurs dans un espace vectoriel normé

Théorème

Soient $F:[a,b]\to E$ et $g:[a,b]\to \mathbb{R}$ deux applications continues sur [a,b] et dérivables sur [a,b]. Si pour tout $t\in]a,b[$, on a $\|F'(t)\|\leq g'(t)$, alors $\|F(b)-F(a)\|\leq g(b)-g(a)$.

Théorème : Inégalités des accroissements finis

Soit $F[a,b] \to E$ une applications continue sur [a,b] et dérivable sur [a,b]. S'il existe M tel que pour tout $t \in]a,b[$, on a $\|F'(t)\| \le M$, alors $\|F(b) - F(a)\| \le M(b-a)$.

Proposition Soit $F:[a,b] \to E$ une application continue, dérivable sur]a,b[et telle que $l=\lim_{a\to a} F'(t)$ existe. Alors F est dérivable à droite en a et $F'_d(a)=l$.

Remarque : La fonction F' est continue en a.

Définition

Soient I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$. On dit que f est k-lipschitzienne k>0 si et seulement si

$$\forall (x_1, x_2) \in I^2, |f(x_1) - f(x_2)| \le k|x_1 - x_2|$$

Proposition

Soient I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$, dérivable sur I. Pour que f soit lipschitzienne, il faut et il suffit que f' soit bornée sur I.

Théorème : Inégalité de Taylor-Lagrange

Soit $F:[a,b]\to E$ une application de classe C^n sur $[a,b],\,n+1$ fois dérivable sur]a,b[. On suppose qu'il existe M>0 tel que $\forall t\in]a,b[,\,\|F^{(n+1)}(t)\|\leq M.$ Alors

$$||F(b) - F(a) - (b-a)F'(a) - \dots - \frac{(x-a)^n}{n!}F^n(a)|| \le M\frac{(b-a)^{n+1}}{(n+1)!}$$

Théorème : Formule de Taylor-Young

Soient $n \in \mathbb{N}$ et F une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans E, de classe C^n sur I. Soit $a \in I$ tel que $F^{(n+1)}(a)$ existe. Alors lorsque $h \to 0$, on a :

$$F(a+h) = F(a) + hF'(a) + \ldots + \frac{h^n}{n!}F^{(n)}(a) + \frac{h^{n+1}}{(n+1)!}F^{(n+1)}(a) + o(h^{n+1})$$

Théorème : Formule de Taylor avec reste intégral Soient $n \in \mathbb{N}^*$ et une application $F : [a, b] \to E$ de classe C^{n+1} sur [a, b] où E est un \mathbb{R} -espace de Banach. Alors

$$F(b) = F(a) + (b-a)F'(a) + \ldots + \frac{(b-a)^n}{n!}F^{(n)}(a) + \int_a^b \frac{(b-t)^n}{n!}F^{(n+1)}(t) dt$$

3.2 Développements limités

3.2.1 Relations de comparaison

Soit X un espace métrique. On considère deux applications f et g de $D \subset X$ dans E espace vectoriel normé et x_0 un point d'accumulation de D.

1. On dit que f est dominée par g au voisinage de x_0 si

$$\exists C > 0, \ \exists V \in \mathcal{V}_{x_0}, \ \forall x \in V \cap D, ||f(x)|| \le C||g(x)||$$

où \mathcal{V}_{x_0} désigne l'ensemble des voisinages de x_0 . On note alors $f(x) = O(g(x)), x \to x_0$.

2. On dit que f est négligeable devant g au voisinage de x_0 si

$$\exists \epsilon > 0, \ \exists V \in \mathcal{V}_{x_0}, \ \forall x \in V \cap D, \|f(x)\| \le \epsilon \|g(x)\|$$

où \mathcal{V}_{x_0} désigne l'ensemble des voisinages de x_0 . On note alors $f(x) = o(g(x)), x \to x_0$.

3. On dit que f et g sont équivalentes au voisinage de x_0 si f(x) - g(x) = o(g(x)). On écrit alors $f(x) \sim g(x), \ x \to x_0$.

Remarque : Il faut faire attention car la relation d'équivalence n'est pas compatible avec l'addition. Elle est compatible avec le produit et la puissance.

3.2.2 Développements asymptotiques

Définition

Soit X un espace métrique et $x_0 \in X$. On appelle échelle de comparaison un ensemble \mathcal{E} de fonctions définies au voisinage de x_0 sauf éventuellement en x_0 et vérifiant la propriété suivante : si $f,g \in \mathcal{E}$, alors f = g ou f = o(g) ou f = O(g).

Remarque : Au voisinage de $+\infty$ pour les fonctions de la variable réelle les échelles, les plus courantes sont les suivantes :

- celles constituées des fonctions de type x^{α} , $\alpha \in \mathbb{R}$.
- celles constituées des fonctions de type $x^{\alpha}(\ln x)^{\beta}), \ \alpha, \beta \in \mathbb{R}$.
- celles constituées des fonctions de type $x^{\alpha}(\ln x)^{\beta}e^{cx^{\gamma}}, \ \alpha, \beta, c \in \mathbb{R}$ et $\gamma > 0$.

Au voisinage de 0, une échelle de comparaison courante est celle contenant les fonctions de type $x^{\alpha}(\ln x)^{\beta}), \ \alpha, \beta \in \mathbb{R}$.

Définition

Soit X un espace métrique. Soient $f:D\subset X\to E$ une application, x_0 un point d'accumulation de D et $k\in\mathbb{N}^*$. On appelle développement asymptotique à k termes de f par rapport à une échelle de comparaison $\mathcal E$ au voisinage de x_0 , toute expression de la forme $c_1f_1+c_2f_2+\ldots+c_kf_k$ vérifiant :

- 1. $c_1, c_2, \ldots, c_k \in E$ sont des constantes multiplicatives.
- 2. $f_1, f_2, \ldots, f_k \in \mathcal{E}$ avec pour tout $i, f_{i+1}(x) = o(f_i(x)), x \to x_0$.
- 3. $f(x) = c_1 f_1(x) + c_2 f_2(x) + \ldots + c_k f_k(x) = o(f_k(x)), x \to x_0.$

Lorsqu'un tel développement existe, il est unique. On a $f(x) \sim c_1 f_1(x)$. On dit que $c_1 f_1$ est la partie principale de f.

3.2.3 Développements limités

Définition

On considère I un intervalle, a un point de I et $f:I\to E$. On dit que f admet un développement limité d'ordre n au voisinage de a s'il existe $a_0,a_1,\ldots,a_n\in E$ tels que, au voisinage de a, on ait :

$$f(x) = a_0 + a_1(x - a) + \dots + a_n(x - a)^n + o((x - a)^n)$$

Le polynôme P défini par $P(x)=a_0+a_1(x-a)+\ldots+a_n(x-a)^n$ est appelée partie régulière du développement limité.

Remarque: Dans la suite, sans perte de généralité, on supposera a=0.

Proposition

Si f admet un développement limité d'ordre n, il est unique.

Proposition

Si f admet un développement limité d'ordre $n \ge 1$ au voisinage de 0, alors $f(0) = a_0$, f est dérivable en 0 et $f'(0) = a_1$.

Remarque : Même lorsque f admet un développement d'ordre 2, cela n'assure pas l'existence de f''(0).

Proposition

Soit a>0 et $f:]-a,a[\to E$ une application admettant au voisinage de 0 un développement limité d'ordre $n\in\mathbb{N}^*$:

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n + o(x^n)$$

- Si f est paire, tous les termes a_k d'indices k impairs sont nuls.
- Si f est impaire, tous les termes a_k d'indices k pairs sont nuls.

Proposition

Si $f:I\to E$ est une application n fois dérivable, alors f admet au voisinage de 0 le développement limité d'ordre n suivant :

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^n(0)}{n!} + o(x^n)$$

3.2.4 Opérations sur les développements limités

Proposition: Intégration terme à terme

Soit $f:I\to E$ (avec $0\in I$) une application dérivable sur I telle qu'au voisinage de 0

$$f'(x) = a_0 + a_1 x + \ldots + a_n x^n + o(x^n)$$

Alors l'application admet au voisinage de 0 le développement limité d'ordre n+1 suivant

$$f(x) = f(0) + a_0 x + \frac{a_1}{2} x^2 + \dots + \frac{a_n}{n+1} + o(x^{n+1})$$

Proposition : Dérivation d'un développement de Taylor

Soit $f:I\to E$ (avec $0\in I$) une application $n\geq 2$ fois dérivable en 0. Si au voisinage de 0 on a

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n)$$

Alors au voisinage de 0,

$$f'(x) = a_1 + 2a_2x + \ldots + na_nx^{n-1} + o(x^{n-1})$$

Proposition : Somme, produit, quotient de développements limités

Soient f et $g:I\to E$, (avec $0\in I$) deux applications admettant au voisinage de 0 un développement limité d'ordre n:

$$f(x) = P_n(x) + o(x^n), \quad g(x) = Q_n(x) + o(x^n)$$

où P_n et Q_n sont deux fonctions polynomiales de degré $\leq n$. Alors

- 1. La somme f+g admet un développement limité d'ordre n donné par $(f+g)(x)=(P_n+Q_n)(x)+o(x^n)$.
- 2. Si E est une algèbre normée, le produit fg admet un développement limité d'ordre n donné par $(fg)(x) = R_n(x) + o(x^n)$, où R_n est le reste de la division euclidienne de P_nQ_n par X^{n+1} : $P_nQ_n = R_n + X^{n+1}S_n$ avec $\deg(S_n) \leq n$.
- 3. Si $E=\mathbb{R}$ ou $E=\mathbb{C}$ et que $g(0)=Q(0)\neq 0$, le quotient f/g admet un développement limité d'ordre n donné par $(f/g)(x)=R_n(x)+o(x^n)$ où R_n est le quotient de la division selon les puissances croissantes de P_n par Q_n à l'ordre n.

Proposition: Développement limité d'une fonction composée

Soient $g:I\to\mathbb{R}$ (avec $0\in I$) une application admettant un développement limité d'ordre n au voisinage de 0, et $f:J\to E$ (où J est un intervalle de \mathbb{R} tel $g(I)\subset J$) une application admettant un développement limité d'ordre n au voisinage de $g_0=g(0)$. On écrit au voisinage de $g_0=g(0)$ on écrit au voisinage de $g_0=g(0)$

$$g(x) = g_0 + P_n(x) + o(x^n), \quad f(g_0 + t) = Q_n(t) + (t^n)$$

où P_n et Q_n sont deux polynômes de degré $\leq n$ avec $P_n(0)=0$. Alors la fonction composée $f\circ g$ admet au voisinage de 0 un développement limité d'ordre $n:f\circ g(x)=R_n(x)+o(x^n)$ où R_n est le reste de la division euclidienne de $P_n\circ Q_n$ par X^{n+1} $(P_n\circ Q_n=R_n+X^{n+1}S_n)$.

3.3 Fonctions convexes

3.3.1 Définitions - Propriétés

I désigne un intervalle de \mathbb{R} non réduit à un point.

Définition

Une application $f: I \to \mathbb{R}$ est dite convexe si

$$\forall (a,b) \in I^2, \ \forall \lambda \in [0,1], \ f((1-\lambda)a + \lambda b) \le (1-\lambda)f(a) + \lambda f(b)$$
 (*)

Elle est dite concave si -f est convexe.

Remarques

- 1. La fonction f est convexe si et seulement si l'ensemble $\{(x,y) \in I \times \mathbb{R}, y \geq f(x)\}$ est convexe.
- 2. L'inégalité (*) exprime le fait que tous les points du segment [(a, f(a)), (b, f(b))] sont au-dessus du graphe de f.

Proposition

Soit une application $f: I \to \mathbb{R}$ convexe. Alors

$$\forall x_1, \dots, x_n, \ \forall \alpha_1, \dots, \alpha_n, \ f\left(\frac{\alpha_1 x_1 + \dots + \alpha_n x_n}{\alpha_1 + \dots + \alpha_n x_n}\right) \le \frac{\alpha_1 f(x_1) + \dots + \alpha_n f(x_n)}{\alpha_1 + \dots + \alpha_n x_n}$$

Proposition

Une application $f: I \to \mathbb{R}$ est convexe si et seulement si pour tout $x_0 \in I$, l'application

$$g_{x_0}: I \setminus \{x_0\} \to \mathbb{R}, \ x \mapsto g_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

est croissante.

Conséquence

Si $f: I \to \mathbb{R}$ est convexe et si avec a < b < c on a l'inégalité suivante entre les taux de variation

$$\frac{f(b) - f(a)}{b - a} \le \frac{f(c) - f(a)}{c - a} \le \frac{f(c) - f(b)}{c - b}$$

Proposition

Une fonction convexe $f: I \to \mathbb{R}$ possède en tout point de \mathring{I} une dérivée à droite et une dérivée à gauche. Elle est donc continue sur \mathring{I} (pas forcément aux bornes de I). De plus, les applications f'_g et f'_d sont croissantes sur \mathring{I} et pour tout $x \in \mathring{I}$, on a $f'_g(x) \leq f'_d(x)$.

Théorème

Soit une application $f:I\to\mathbb{R}$ convexe dérivable. Les assertions suivantes sont équivalentes :

- 1. f est convexe.
- 2. f' est croissante.
- 3. La courbe représentative de f est au-dessus de ses tangentes.

Corollaire

Une application $f: I \to \mathbb{R}$ convexe deux fois dérivable est convexe si, et seulement si, $\forall x \in I, \ f''(x) \geq 0$.

3.3.2 Inégalités classiques

Théorème: Inégalité arithmético-géométrique

Pour tous nombres réels positifs x_1, \ldots, x_n , on a

$$(x_1 \dots x_n)^{1/n} \le \frac{x_1 + \dots + x_n}{n}$$

Théorème: Inégalité de Hölder

Soit deux réels p, q > 0 tels que $\frac{1}{p} + \frac{1}{q} = 1$. Pour tous réels positifs a_1, \ldots, a_n et b_1, \ldots, b_n , on a

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}$$

Remarque : Lorsque p = 2 et q = 2, on retrouve l'inégalité de Schwarz.

Théorème: Inégalité de Minkowsy

Soit ≥ 1 et $x_1, \ldots, x_n, y_1, \ldots, y_n$ des réels positifs. Alors

$$\left(\sum_{i=1}^{n} (x_i + y_i)^p\right)^{1/p} \le \left(\sum_{i=1}^{n} x_i^p\right)^{1/p} + \left(\sum_{i=1}^{n} y_i^p\right)^{1/p}$$

Chapitre 4

Intégration - Primitives - Calcul d'intégrales

4.1 Définition et propriétés

4.1.1 Intégrale des fonctions en escalier

Les fonctions considérées sont à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} définies sur un intervalle [a,b] non réduit à un point. On peut généraliser pour des fonctions à valeurs dans un espace vectoriel normé complet.

Définition

On appelle subdivision de [a,b] toute partie finie de [a,b] contenant a et b. Soit σ une subdivision de [a,b]. On peut écrire $\sigma=\{x_0,x_1,\ldots,x_n\}$ avec $a=x_0< x_1<\ldots< x_n=b$. On appelle pas ou module de la subdivision σ et on note $|\sigma|$ le réel $\sup_{1\leq i\leq n}(x_i-x_{i-1})$.

Définition

Une application $\varphi:[a,b]\to\mathbb{K}$ est dite en escalier s'il existe une subdivision σ de [a,b] telle que pour tout $i\in\{1,\ldots,x_n\}$, φ soit constante sur $]x_{i-1},x_i[$. Une telle subdivision est dite alors bien adaptée à φ . On note $\mathcal{E}([a,b],\mathbb{K})$ l'espace des fonctions en escalier sur [a,b]. C'est un espace vectoriel sur \mathbb{K}

Définition: Intégrale d'une fonction en escalier.

Soit $\varphi:[a,b] \to \mathbb{K}$ une fonction en escalier. Soit $\sigma:a=x_0 < x_1 < \ldots < x_n=b$ une subdivision de [a,b] bien adaptée à φ , telle qu'il existe des constantes $c_i \in \mathbb{K}, 1 \leq i \leq n$ avec $\varphi(x_i)=c_i$ sur $]x_{i-1},x_i[$. La valeur $\sum_{i=1}^n (x_i-x_{i-1})c_i$ est indépendante du choix de σ adaptée à φ . On la note $I(\varphi)$ où $\int_a^b \varphi(x)\,dx$ et on l'appelle intégrale de φ sur [a,b].

Proposition

Si φ et ψ sont des foncions en escalier sur [a,b] et $\lambda \in \mathbb{K}$, on a :

- 1. $I(\lambda \varphi + \psi) = \lambda I(\varphi) + I(\psi)$ (Linéarité de l'intégrale).
- 2. $\forall c \in]a,b[,\ I_{[a,b]}(\varphi)=I_{[a,c]}(\varphi)+I_{[c,b]}(\varphi)$ (Relation de Chasles).
- 3. $|I(\varphi)| \leq I(|\varphi|)$.
- 4. Si φ est réelle et positive sur [a,b] alors $I(\varphi) \geq 0$ (Positivité de l'intégrale).
- 5. Si φ et ψ sont réelles avec $\varphi \leq \psi$ sur [a, b] alors $I(\varphi) \leq I(\psi)$.
- 6. Si m et M sont respectivement un minorant et un majorant de la fonction réelle φ sur [a,b], alors $m(b-a) \leq I(\varphi) \leq M(b-a)$.
- 7. $|I(\varphi)| \leq ||\varphi||_{\infty} (b-a)$ (Continuité de l'intégrale par rapport à φ).

4.1.2 Intégrale des fonctions continues par morceaux

On rappelle que si on note $\mathcal{C}_M([a,b],\mathbb{K})$ l'espace des fonctions continues par morceaux sur l'intervalle [a,b], l'espace $\mathcal{E}([a,b],\mathbb{K})$ est dense dans $\mathcal{C}_M([a,b],\mathbb{K})$ muni de la norme de la convergence uniforme. Ainsi toute fonction continue par morceaux sur [a,b] est limite uniforme d'une suite de fonctions en escalier sur

[a,b]. Soit $f \in \mathcal{C}_M([a,b],\mathbb{K})$ et $(\varphi_n)_{n\in\mathbb{N}}$ une suite de $\mathcal{E}([a,b],\mathbb{K})$ qui converge uniformément vers f sur [a,b]. On définit alors l'intégrale de f sur [a,b] comme la limite de la suite $I(\varphi_n)_{n\in\mathbb{N}}$. Le lemme suivant assure que la limite existe et ne dépend pas du choix de la suite $(\varphi_n)_{n\in\mathbb{N}}$.

Lemme

Soit $f \in \mathcal{C}_M([a,b],\mathbb{K})$ et $(\varphi_n)_{n\in\mathbb{N}}$ une suite de $\mathcal{E}([a,b],\mathbb{K})$ qui converge uniformément vers f sur [a,b]. Alors la suite $I(\varphi_n)_{n\in\mathbb{N}}$ est convergente et sa limite ne dépend pas du choix de la suite $(\varphi_n)_{n\in\mathbb{N}}$.

Définition

Soit $f \in \mathcal{C}_M([a,b],\mathbb{K})$ et $(\varphi_n)_{n \in \mathbb{N}}$ une suite de $\mathcal{E}([a,b],\mathbb{K})$ qui converge uniformément vers f sur [a,b]. On appelle intégrale e f sur [a,b] la limite de la suite $I(\varphi_n)_{n \in \mathbb{N}}$. Cette intégrale est notée $\int_a^b f(t) \, dt$.

Proposition

Soit $f \in \mathcal{C}_M([a,b],\mathbb{K})$. En modifiant f sur un ensemble fini de points de [a,b], on obtient une fonction continue par morceaux \tilde{f} telle que $\int_a^b \tilde{f}(t) dt = \int_a^b f(t) dt$.

Proposition

Si f et g sont des fonctions continues par morceaux sur [a,b] et $\lambda \in \mathbb{K}$, on a :

- 1. $I(\lambda f + g) = \lambda I(f) + I(g)$ (Linéarité de l'intégrale).
- 2. $\forall c \in]a, b[, I_{[a,b]}(f) = I_{[a,c]}(f) + I_{[c,b]}(f)$ (Relation de Chasles).
- 3. $|I(f)| \leq I(|f|)$.
- 4. Si f est réelle et positive sur [a, b] alors $I(f) \ge 0$ (Positivité de l'intégrale).
- 5. Si f et g sont réelles avec $f \leq g$ sur [a, b] alors $I(f) \leq I(g)$.
- 6. Si m et M sont respectivement un minorant et un majorant de la fonction réelle f sur [a,b], alors $m(b-a) \leq I(f) \leq M(b-a)$.
- 7. $|I(f)| \le ||f||_{\infty} (b-a)$ (Continuité de l'intégrale par rapport à f).

Théorème

Soit f continue et positive sur [a, b]. Si $\int_a^b f(t) dt = 0$ alors f est nulle sur [a, b].

Théorème

Soient f et g deux fonctions continues par morceaux sur [a, b] Alors

1. Inégalité de Cauchy-Schwarz:

$$\left| \int_{a}^{b} f(t)g(t) dt \right|^{2} \le \left(\int_{a}^{b} |f(t)|^{2} dt \right) \left(\int_{a}^{b} |g(t)|^{2} dt \right)$$

2. Inégalité de Minkowsky:

$$\sqrt{\int_a^b |f(t) + g(t)|^2 \, dt} \leq \sqrt{\int_a^b |f(t)|^2 \, dt} + \sqrt{\int_a^b |g(t)|^2 \, dt}$$

4.2 Sommes de Riemann

Soit f bornée sur [a,b], $\sigma: a=x_0 < x_1 < \ldots < x_n = b$ une subdivision de [a,b] et $\theta=\{\theta_1,\theta_2,\ldots\theta_n\}$ tel que pour tout $i\in\{1,2,\ldots,n\}$, $\theta_i\in[x_{i-1},x_i]$

Définition

On appelle somme de Riemann de f relative à (σ,θ) la somme $S(f,\sigma,\theta)=\sum_{i=1}^n(x_i-x_{i-1})f(\theta_i)$

- 1. Il existe une infinité de sommes de Riemann de f.
- 2. Si f est une fonction en escalier et si σ est une subdivision bien adaptée à f, alors on a $S(f, \sigma, \theta) = \int_a^b f(t) dt$.

Théorème

Soit f continue par morceaux sur [a,b]. Pour tout $\epsilon>0$, il existe $\alpha>0$ tel que pour toute somme de Riemann $S(f,\sigma,\theta)$, on ait $|\sigma|<\alpha\Rightarrow \left|S(f,\sigma,\theta)-\int_a^b f(t)\,dt\right|<\epsilon$.

Remarque : On utilise souvent ce théorème dans le cas d'une subdivision où le pas est constant : $|\sigma| = \frac{b-a}{n}$. Dans ce cas, σ est déterminée par l'entier n puisque $x_i = a + i \frac{b-a}{n}$. Si $\theta_i \in [x_{i-1}, x_i]$, une somme de Riemann s'écrit $S(f, \sigma, \theta) = \frac{b-a}{n} \sum_{i=1}^n f(\theta_i)$. En reprenant les notations du théorème, on a pour $n > \frac{b-a}{n}$

$$\left| \frac{b-a}{n} \sum_{i=1}^{n} f(\theta_i) - \int_a^b f(t) \, dt \right| < \epsilon$$

On a aussi:

Théorème

Soit f continue par morceaux sur [a,b]. Alors $\lim_{n\to+\infty}\frac{1}{n}\sum_{i=1}^n f(a+i\frac{b-a}{n})=\frac{1}{b-a}\int_a^b f(t)\,dt$

4.3 Formules de la moyenne

Définition

Soit f une fonction continue par morceaux sur [a,b] On appelle moyenne de f sur [a,b] le nombre $\frac{1}{b-a}\int_a^b f(t) dt$.

Théorème : Formule de la moyenne

Soient f et g deux fonctions à valeurs réelles continues par morceaux sur [a,b]. On suppose g positive.

1. Si m et M sont respectivement la borne inférieure et la borne supérieure de f sur [a,b], alors

$$m \int_a^b g(t) dt \le \int_a^b f(t)g(t) dt \le M \int_a^b g(t) dt$$

2. Si, de plus f est continue sur [a, b], alors il existe un réel $c \in [a, b]$ tel que

$$\int_{a}^{b} f(t)g(t) dt = f(c) \int_{a}^{b} g(t) dt$$

Corollaire

Soit f une fonction à valeurs réelles continue par morceaux sur [a,b]. Si m et M sont respectivement la borne inférieure et la borne supérieure de f sur [a,b], alors $m(b-a) \le \int_a^b f(t)g(t) \, dt \le M(b-a)$.

Théorème : Seconde formule de la moyenne

Soient f et g deux fonctions à valeurs réelles continues par morceaux sur [a,b]. On suppose f positive, décroissante. Alors $\exists c \in [a,b], \int_a^b f(t)g(t) dt = f(a^+) \int_a^c g(t) dt$.

4.4 Primitives et intégrales

Définition

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{K}$. On appelle primitive de f sur I, toute application $F: I \to \mathbb{K}$ qui est dérivable sur I et telle que F' = f.

Proposition

Si f admet F pour primitive sur I, alors

- 1. Toutes les primitives de f sur I sont les fonctions $t \mapsto F(t) + C$ avec $C \in \mathbb{K}$.
- 2. Pour tout réel $t_0 \in I$ et pour tout $y_0 \in \mathbb{K}$, il existe une unique primitive ϕ de f sur I telle que $\phi(t_0) = y_0$. Elle est définie par $\phi(t) = F(t) F(t_0) + y_0$.

Remarque : La proposition précédente n'assure pas l'existence d'une primitive. Dans le cas des fonctions continues par morceaux, le lien entre primitive et intégrale est donné par le théorème suivant :

Théorème

Soit f une fonction continue par morceaux sur l'intervalle [a,b]. On définit la fonction F sur [a,b] par $F(x)=\int_a^x f(t)\,dt$. Alors

1. F est lipschitzienne sur [a, b].

- 2. Si f est réelle positive, F est croissante.
- 3. En tout point t_0 où f est continue, F est dérivable avec F'(t) = f(t).

Corollaire

Soit f continue sur un intervalle I. Alors pour tout réel $x_0 \in I$, l'application

$$F: \quad I \to \quad \mathbb{K} \\ x \mapsto \quad \int_{x_0}^x f(t) \, dt$$

est la primitive de f qui s'annule en x_0 .

Corollaire

Soit f continue par morceaux sur un intervalle [a,b] et F une primitive de F sur [a,b]. Alors $\int_a^b f(t) dt = F(b) - F(a)$.

4.5 Calcul d'intégrales

Il faut connaître les primitives des fonctions usuelles. Voici quelques rappels :

Table 4.1 –		
f(t)=	F(t)=	I=
$\frac{1}{(t-a)^n}, n \in \mathbb{N} \setminus \{0,1\}$	$\frac{-1}{(n-1)(t-a)^{n-1}}$	$]-\infty,a[ext{ ou }]a,+\infty[$
$\frac{1}{t^2+a^2}, \ a \in \mathbb{R}^*$	$\frac{1}{a}\arctan\left(\frac{t}{a}\right)$	\mathbb{R}
$\frac{1}{\sqrt{a^2 - t^2}}, \ a \in \mathbb{R}_+^*$	$\arcsin\left(\frac{t}{a}\right)$]-a,a[
$\frac{1}{\sqrt{t^2+a^2}}, \ a \in \mathbb{R}^*$	$\ln(t + \sqrt{t^2 + a^2})$	\mathbb{R}
$\frac{1}{\sqrt{t^2 - a^2}}, \ a \in \mathbb{R}_+^*$	$\ln t + \sqrt{t^2 - a^2}) $	$]-\infty,-a[ext{ ou }]a,+\infty[$
$\frac{1}{\sin t}$	$\ln \tan(\frac{t}{2}) $	$]k\pi, (k+1)\pi[, k \in \mathbb{Z}]$
$\frac{1}{\cos t}$	$\ln \left \tan \left(\frac{t}{2} + \frac{\pi}{4} \right) \right $	$] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[, k \in \mathbb{Z}]$

4.5.1 Intégration par parties

Soient u et v des fonctions complexes de classe C^1 dans I intervalle de \mathbb{R} . Alors pour tout $a,b\in I$, on a $\int_a^b u(t)v'(t)\,dt=[u(t)v(t)]_a^b-\int_a^b u'(t)v(t)\,dt$.

4.5.2 Changement de variable

Théorème

Soit $u \in C^1([a,b],\mathbb{R})$. Alors pour toute function f continue sur le segment u([a,b]), on a

$$\int_{a}^{b} f(u(t))u'(t) dt = \int_{u(a)}^{u(b)} f(x) dx$$

Remarque: L'application " changement de variable u " n'est pas supposée bijective et le segment u([a,b]) n'a pas toujours pour extrémités u(a) et u(b). Ainsi pour calculer $\int_{-2\pi}^{\frac{\pi}{6}} \cos^5 t \, dt$, on considère le changement de variable $u(t)=\sin t$ puisque $\cos^5 t=(1-\sin^2 t)^2\cos t$. On a alors : $f(x)=(1-x)^2$, $u([-2\pi,\frac{\pi}{6}])=[-1,1], u(-2\pi)=0, u(\frac{\pi}{6})=\frac{1}{2}$. D'où $\int_{-2\pi}^{\frac{\pi}{6}} \cos^5 t \, dt=\int_0^{\frac{1}{2}} (1-x^2)^2 \, dx=\ldots=\frac{203}{480}$. Cependant, dans le cas particulier où u est une bijection de [a,b] sur J. Le segment J=u([a,b]) a pour extrémités $\alpha=u(a), \beta=u(b)$. En effet u, dérivable, est obligatoirement strictement monotone et l'on a $J=[\alpha,\beta]$ pour u croissante et $J=[\beta,\alpha]$ pour u décroissante. Le théorème de changement de variable donne alors l'énoncé suivant :

Corollaire

Soit $\alpha < \beta$, I un intervalle de \mathbb{R} et $u: I \to [\alpha, \beta]$ une bijection de classe C^1 . Alors pour toute fonction complexe continue sur $[\alpha, \beta]$, on a

$$\int_{\alpha}^{\beta} f(x) \, dx = \int_{u^{-1}(\alpha)}^{u^{-1}(\beta)} f(u(t)) u(t) \, dt$$

4.5.3 Quelques situations classiques

Fractions rationnelles

On commence par faire une décomposition en éléments simples. On aura alors des primitives en intégrant

- un polynôme (la partie entière);
- des fractions rationnelles du type $\frac{1}{(t-a)^n}$, $n \in \mathbb{N}^*$ (les éléments simples de première espèce).
- des fractions rationnelles du type $\frac{At+B}{((t-a)^2+b^2)^n}$ avec a,b,A,B réels, $b \neq 0,n \in \mathbb{N}^*$ (les éléments simples de deuxième espèce). Pour calculer $\int \frac{At+B}{((t-a)^2+b^2)^n} dt$, on pose t-a=bx, ce qui conduit à calculer les intégrales $\int \frac{x}{(x^2+1)^n} dx$ et $\int \frac{1}{(x^2+1)^n} dx$. Pour calculer $I_n = \int \frac{1}{(x^2+1)^n} dx$, on calcule I_1 , puis à l'aide d'une intégration par parties, on obtient une relation de récurrence entre I_n et I_{n+1} , ce qui permet de calculer I_n de proche en proche.

Fractions rationnelles trigonométriques

Proposition: Règles de Bioche

Soit $f(t) = R(\cos t, \sin t)$ où R est une fraction rationnelle. On peut calculer $\int f(t) \, dt$ avec le changement de variable :

- 1. $u = \cos t$ lorsque f est impaire.
- 2. $u = \sin t$ lorsque f vérifie $f(\pi t) = -f(t)$
- 3. $u = \tan t$ lorsque f est π -périodique.

Lorsque les règles de Bioche ne s'appliquent pas, on peut transformer $R(\cos t, \sin t)$ en une fraction rationnelle de la variable $u = \tan \frac{t}{2}$. Dans ce cas, on a

$$\sin t = \frac{2u}{1+u^2}$$
, $\cos t = \frac{1-u^2}{1+u^2}$, $\tan t = \frac{2u}{1-u^2}$, $dt = \frac{2du}{1+u^2}$

Fractions rationnelles en shx et chx.

Il s'agit de calculer $I(x)=\int R(\sinh x, \cosh x)$ où R est une fraction rationnelle. En pratique, on considère la primitive de J définie par $J(x)=\int R(\sin x,\cos x)$ pour laquelle on essaie d'applique les règles de Bioche. Ceci conduirait à l'utilisation de l'un des changements de variables

$$u = \cos x$$
, $u = \sin x$, $u = \tan x$, $u = \tan \frac{x}{2}$

On utilise alors le changement de variable correspondant pour les fonctions hyperboliques

$$u = \operatorname{ch} x, \ u = \operatorname{sh} x, \ u = \operatorname{th} x, \ \operatorname{th} \frac{x}{2}$$

Fractions rationnelles en x et $\sqrt[n]{\frac{ax+b}{cx+d}}$.

On a $n \in \mathbb{N} \setminus \{0,1\}$ et $(a,b,c,d) \in \mathbb{R}^4$ tels que $ad-bc \neq 0$. On effectue le changement de variable $u = \sqrt[n]{\frac{ax+b}{cx+d}}$

Fractions rationnelles en x et $\sqrt{ax^2 + bx + c}$.

Après mise sous forme canonique de $ax^2 + bx + c$ et changement de variable affine, on se ramène au calcul de $\int R(t, \sqrt{1+t^2}) \, dt$ ou $\int R(t, \sqrt{1-t^2}) \, dt$ ou $\int R(t, \sqrt{t^2-1}) \, dt$, pour lequel on utilise le changement de variable $u = \ln(t+\sqrt{1+t^2})$ ou $u = \arcsin t$ ou $u = \ln(\epsilon t + \sqrt{t^2-1})$.

Chapitre 5

Intégrales généralisées

5.1 Définition de l'intégrale généralisée

5.1.1 Intégrales généralisées sur un intervalle de la forme [a, b]

Définition

Soient [a,b[un intervalle de $\mathbb R$ (avec $-\infty < a < b \le +\infty$) et $f:[a,b[\to \mathbb K$ une fonction continue par morceaux sur [a,b[. Si l'application F définie par

$$\begin{array}{ccc} F: & [a,b[\to & \mathbb{K} \\ & x \mapsto & \int_a^x f(t) \, dt \end{array}$$

admet une limite finie lorsque x tend vers b, on dit que l'intégrale généralisée (ou impropre) $\int_a^b f(t) dt$ converge et on note

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} F(x) = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Dans le cas contraire, on dit que l'intégrale $\int_a^b f(t) dt$ diverge.

Exemples:

- Pour a>0, l'intégrale $\int_a^{+\infty} \frac{1}{t^{\alpha}} dt$ converge si et seulement si $\alpha>1$.
- $-\int_a^b \frac{1}{(b-t)^{\alpha}} dt$ converge si et seulement si $\alpha < 1$.
- Pour $a\in\mathbb{R}$, l'intégrale $\int_a^{+\infty}\mathrm{e}^{-\lambda t}\,dt$ converge si et seulement si $\lambda>0$.

Proposition

Soient [a,b[un intervalle de $\mathbb R$ (avec $-\infty < a < b \le +\infty$) et $f:[a,b[\to \mathbb K$ une fonction continue par morceaux sur [a,b[. Pour tout $c\in]a,b[$, l'intégrale $\int_c^b f(t)\,dt$ est convergente si et seulement si $\int_a^b f(t)\,dt$ l'est. Dans ce cas

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$$

5.1.2 Intégrales généralisées sur un intervalle de la forme]a, b]

Définition

Soient]a,b] un intervalle de $\mathbb R$ (avec $-\infty \le a < b < +\infty$) et $f:]a,b] \to \mathbb K$ une fonction continue par morceaux sur]a,b]. Si l'application définie pour tout $x \in]a,b]$ par

$$\int_{x}^{b} f(t) dt$$

admet une limite finie lorsque x tend vers a, on dit que l'intégrale $\int_a^b f(t)\,dt$ converge et on note

$$\int_{a}^{b} f(t) dt = \lim_{x \to a} \int_{x}^{b} f(t) dt$$

Dans la cas contraire, on dit que l'intégrale $\int_a^b f(t) dt$ diverge.

Exemple

 $\int_a^b \frac{1}{(t-a)^{\alpha}} dt$ converge si et seulement si $\alpha < 1$.

Proposition

Soient]a,b] un intervalle de $\mathbb R$ (avec $-\infty \le a < b < \infty$) et $f:]a,b] \to \mathbb K$ une fonction continue par morceaux sur]a,b]. Pour tout $c\in]a,b[$, l'intégrale $\int_a^c f(t)\,dt$ est convergente si et seulement si $\int_a^b f(t)\,dt$ l'est. Dans ce cas

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{a}^{b} f(t) dt$$

5.1.3 Intégrales généralisées sur un intervalle ouvert

Définition

Soient]a,b[un intervalle de $\mathbb R$ (avec $-\infty \le a < b \le +\infty$) et $f:]a,b[\to \mathbb K$ une application continue par morceaux sur]a,b[. On suppose qu'il existe $c_0 \in]a,b[$ tel que les intégrales

$$\int_a^{c_0} f(t) dt \quad \text{et} \quad \int_{c_0}^b f(t) dt$$

soient convergentes. Alors pour tout réel $c \in]a,b[$ les intégrales

$$\int_a^c f(t) dt$$
 et $\int_c^b f(t) dt$

convergent. on dit alors que $\int_a^b f(t), dt$ converge et on note

$$\int_{a}^{b} f(t) dt = \int_{a}^{c_0} f(t) dt + \int_{c_0}^{b} f(t) dt$$

Cette valeur est indépendante du choix de $c_0 \in]a, b[$.

Dans le cas contraire, on dit que l'intégrale diverge.

Proposition

Les propriétés élémentaires vérifiées par les intégrales sur un segment restent vraies pour les intégrales généralisées convergentes : linéarité, positivité.

5.2 Cas des fonctions positives

Nous donnons ici les propriétés des intégrales généralisées sur un intervalle [a, b[. On obtient des propriétés identiques pour des intégrales généralisées définies sur un intervalle [a, b[.

Proposition

Soit f une application continue par morceaux sur l'intervalle [a,b[et à valeurs réelles positives. Alors $\int_a^b f(t)\,dt$ converge si et seulement si

$$\exists M \geq 0, \ \forall x \in [a, b[, \int_a^x f(t) dt \leq M]$$

Proposition

Soient f et g deux applications continues par morceaux sur l'intervalle [a,b[à valeurs réelles positives et vérifiant $0 \le f \le g$. Alors

- 1. Si $\int_a^b g(t) dt$ converge, alors $\int_a^b f(t) dt$ converge.
- 2. Si $\int_a^b f(t) dt$ diverge, alors $\int_a^b g(t) dt$ diverge.

Proposition

Soient f et g deux applications réelles positives. On suppose qu'au voisinage de b, on a $f=O_b(g)$ (resp. $f=o_b(g)$). Alors

1. Si $\int_a^b g(t) dt$ converge, $\int_a^b f(t) dt$ converge et $\int_x^b f(t) dt = O_b(\int_x^b g(t) dt)$ (resp. $\int_x^b f(t) dt = o_b(\int_x^b g(t) dt)$).

2. Si $\int_a^b f(t) dt$ diverge, $\int_a^b g(t) dt$ converge et $\int_a^x f(t) dt = O_b(\int_a^x g(t) dt)$ (resp. $\int_a^x f(t) dt = o_b(\int_a^x g(t) dt)$).

Proposition

Soient f et g deux fonctions réelles positives. On suppose qu'au voisinage de b, $f \sim_b g$. Alors

- 1. Les intégrales $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ sont de même nature.
- 2. (a) Si les intégrales convergent, $\int_x^b f(t) dt \sim_b \int_x^b g(t) dt$
 - (b) Si les intégrales divergent, $\int_a^x f(t) dt \sim_b \int_a^x g(t) dt$

Proposition: Intégrales de Bertrand

Soient α , β des réels. Alors

$$\left(\int_{\epsilon}^{+\infty} \frac{dt}{x^{\alpha} \ln^{\beta} t}\right) \text{ converge} \Longleftrightarrow \left((\alpha > 1) \text{ ou } (\alpha = 1 \text{ et } \beta > 1)\right)$$

$$\left(\int_0^{1/e} \frac{dt}{x^{\alpha} |\ln t|^{\beta}} \text{ converge} \Longleftrightarrow \left((\alpha < 1) \text{ ou } (\alpha = 1 \text{ et } \beta > 1) \right)$$

Propriétés des intégrales généralisées

On a $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

5.3.1 Critère de Cauchy

Proposition : Critère de Cauchy pour les intégrales

Soit $f:[a,b]\to\mathbb{K}$ une application continue par morceaux sur [a,b]. L'intégrale $\int_a^b f(t) dt$ converge si et seulement si

$$\forall \epsilon, \ \exists c \in [a, b[, \ \forall (x, y) \in ([c, b])^2, \ \Big| \int_x^y f(t) \, dt \Big| < \epsilon$$

On considère a < b vérifiant a < b. Soit $f : [a, b] \to \mathbb{K}$ une fonction continue par morceaux et bornée sur [a, b[. Alors, l'intégrale $\int_a^b f(t) dt$ est convergente.

Intégrales absolument convergentes

Proposition-Définition

Si $\int_a^b |f(t)| \, dt$ est convergente, alors $\int_a^b f(t) \, dt$ est convergente. On dit dans ce cas que l'intégrale généralisée de f est absolument convergente. Si l'intégrale généralisée de f est convergente mais non absolument convergente, on dit qu'elle est semi-convergente.

Intégration par parties 5.3.3

Proposition: Intégration par parties

Soient f et g deux fonctions à valeurs dans \mathbb{K} de classe C^1 sur [a, b].

- 1. Si $\lim_{x\to b} f(x)g(x)$ existe, les intégrales $\int_a^b f'(t)g(t)\,dt$ et $\int_a^b g(t)f'(t)\,dt$ sont de même nature.
- 2. Si ces intégrales sont convergentes, on a

$$\int_{a}^{b} f(t)g'(t) dt = \left[\lim_{x \to b} f(x)g(x) - f(a)g(a) \right] - \int_{a}^{b} f'(t)g(t) dt$$

5.3.4 Changement de variable

Proposition : changement de variable

Soit u une application de classe C^1 bijective strictement croissante de l'intervalle [a,b[sur l'intervalle $[\alpha,\beta[$ et f une application continue par morceaux sur l'intervalle $[\alpha,\beta[$, à valeurs dans $\mathbb K$. Alors les intégrales

$$\int_a^b f(u(t))u'(t) dt \quad \text{et} \quad \int_\alpha^\beta f(t) dt$$

sont de même nature et sont égales en cas de convergence.

Chapitre 6

Suites et séries de fonctions

6.1 Définitions

Définition

Soient X un ensemble, (E,d) un espace métrique, et (f_n) une suite de fonctions de X dans E

1. On dit que (f_n) converge **simplement** sur X vers $f: X \to E$ si pour tout $x \in X$ la suite $(f_n(x))$ converge vers f(x), i.e.

$$\forall \epsilon > 0, \ \forall x \in X, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ d(f_n(x), f(x)) < \epsilon$$

2. On dit que (f_n) converge **uniformément** sur X vers $f:X\to E$ si

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \ge N, \ \forall x \in X \ d(f_n(x), f(x)) < \epsilon$$

Remarque: La convergence uniforme entraîne la convergence simple.

6.1.1 Critère de Cauchy uniforme

Proposition

Une suite de fonctions d'un ensemble X vers un espace métrique complet (E,d) converge uniformément sur X si et seulement si,

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall p \geq N, \ \forall q \geq N, \ \forall x \in X, \ d(f_p(x), f_q(x)) < \epsilon$$

6.1.2 Caractérisation de la convergence uniforme sur l'espace des fonctions

Définition (Norme de la convergence uniforme)

Soit X un ensemble et E un espace vectoriel normé. On note $\mathcal{B}(X,E)$ l'espace vectoriel des applications bornées de X dans E. Pour tout $f \in \mathcal{B}(X,E)$, la norme

$$||f||_{\infty} = \sup_{x \in X} ||f(x)||$$

fait de $\mathcal{B}(X,E)$ un espace vectoriel normé. Cette norme est appelée norme de la convergence uniforme. Une suite (f_n) de $\mathcal{B}(X,E)$, regardée comme une suite de fonctions de X dans E, converge uniformément sur X vers $f \in \mathcal{B}(X,E)$ si et seulement si $\lim_{n \to +\infty} \|f - f_n\|_{\infty} = 0$ (i.e. si $f_n \to f$ dans l'espace vectoriel $\mathcal{B}(X,E)$).

Remarque : Si (f_n) est une suite de fonctions de $\mathcal{B}(X,E)$ et si E est un espace de Banach (i.e. un espace vectoriel normé complet); la condition suffisante de la proposition précédente s'énonce de la façon suivante : si (f_n) est une suite de Cauchy de $\mathcal{B}(X,E)$, alors (f_n) converge uniformément vers une fonction $f:X\to E$. L'espace $\mathcal{B}(X,E)$ est aussi un espace de Banach.

6.1.3 Séries de fonctions - Convergence normale

Comme pour les séries numériques, une série de fonctions $\sum g_n$ est définie comme étant la suite de fonctions (f_n) avec $f_n = g_0 + g_1 + \ldots + g_n$.

Définition

Soit X un ensemble et E un espace de Banach. On dit qu'une série de fonctions $\sum g_n$ à termes dans $\mathcal{B}(X,E)$ converge **normalement** si la série $\sum \|g_n\|$ converge.

Remarque : Il est équivalent de dire que la série $\sum g_n$ converge normalement s'il existe une série à termes positifs $\sum a_n$ convergente telle que

$$\forall n \in \mathbb{N}, \ \forall x \in X, \ \|g_n(x)\| \le a_n$$

Théorème

Une série de fonctions $\sum g_n$ à valeurs dans un espace de Banach qui converge normalement sur un ensemble X converge uniformément sur X.

6.2 Propriétés des suites de fonctions

6.2.1 Continuité de la fonction limite

Théorème

Soient (E,d) et (F,δ) deux espaces métriques et (f_n) une suite de fonctions de E dans f. Si (f_n) converge uniformément vers $f:E\to F$ et si toutes les fonctions (f_n) sont continues en x_0 alors f est continue en x_0 .

6.2.2 Intégration d'une suite de fonctions

Théorème

Soit (f_n) une suite de fonctions continues définies sur $[a,b] \subset \mathbb{R}$ à valeurs dans un espace de Banach E qui converge uniformément vers f sur [a,b]. Alors

$$\int_{a}^{b} f(t) dt = \lim_{n \to +\infty} \int_{a}^{b} f_n(t) dt$$

Les deux théorèmes suivants sont admis :

Théorème de la convergence monotone

Soit (f_n) une suite croissante de fonctions à valeurs positives intégrables (une fonction définie sur un intervalle $I \subset \mathbb{R}$ à valeurs dans \mathbb{C} est dite intégrable si l'intégrale de son module est finie) convergeant simplement vers une fonction f. Si les fonctions f_n et f sont continues par morceaux sur tout segment de I, et si la suite des intégrales des f_n est majorée, alors f est intégrable sur I et son intégrale est la limite de celle des f_n .

Théorème de la convergence dominée

Soit (f_n) une suite de fonctions à valeurs complexes convergeant simplement sur I vers une fonction f. Si les fonctions f_n et f sont continues par morceaux sur tout segment de I, et si la suite des modules des f_n est majorée par une fonction g intégrable sur I, alors f est intégrable sur I et son intégrale est la limite de celle des f_n .

Théorème

Soit une suite de fonctions (f_n) définies et continues sur un segment [a, b], à valeurs dans un espace de Banach E. Si la série $\sum f_n$ est uniformément convergente sur [a, b] alors

$$\int_{a}^{b} \sum_{n=0}^{+\infty} f_n(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt$$

6.2.3 Dérivabilité et dérivée de la fonction limite

Théorème

Soit (f_n) une suite de fonctions de classe C^1 sur un intervalle I à valeurs dans un espace de Banach E. On suppose que

- 1. Il existe un élément $x_0 \in I$ tel que la suite $(f_n(x_0))$ soit convergente.
- 2. La suite de fonctions (f_n') converge uniformément sur I.

Alors

- 1. La suite (f_n) converge simplement vers une fonction f de classe C^1 vérifiant $f' = \lim_{n \to +\infty} f'_n$.
- 2. Si l'intervalle *I* est borné, la convergence est uniforme.

Théorème

Soit (f_n) une suite de fonctions de classe C^1 sur un intervalle I à valeurs dans un espace de Banach E. On suppose que

- 1. Il existe un élément $x_0 \in I$ tel que la série $\sum_{n \geq 0} f_n(x_0)$ converge.
- 2. La série de fonctions $\sum_{n\geq 0} f'_n$ converge uniformément sur I.

Alors

1. La série $\sum_{n\geq 0} f_n$ converge simplement vers une fonction S de classe C^1 vérifiant

$$\forall x \in I, \ S' = \lim_{n \to +\infty} \sum_{n=0}^{+\infty} f'_n(x)$$

2. Si l'intervalle I est borné, la convergence est uniforme.

6.3 Théorème de Weierstrass

Théorème

Toute application continue sur un segment à valeurs dans $\mathbb R$ ou $\mathbb C$ est limite uniforme sur ce segment d'une suite de polynômes.

6.4 Convergences en moyenne

6.4.1 Définitions

On note $C([a,],\mathbb{R})$ l'ensemble des fonctions continues de [a,b] dans \mathbb{R} .

Proposition

Soient a et b deux réels vérifiant a < b. L'application $\|.\|_1$ définie sur $\mathcal{C}([a,],\mathbb{R})$ par

$$\forall f \in \mathcal{C}([a, b], \mathbb{R}), \quad \|f\|_1 = \int_a^b |f(t)| dt$$

est une norme sur $\mathcal{C}([a,b],\mathbb{R})$ appelée norme 1.

Définition

Si une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge en norme 1 vers une fonction f, on dit qu'elle converge en moyenne vers f.

Proposition

Soient a et b deux réels vérifiant a < b. L'application $\langle ., . \rangle$ définie sur $\mathcal{C}([a,], \mathbb{R})^2$ par

$$\forall (f,g) \in \mathcal{C}([a,b],\mathbb{R})^2, \quad \langle f,g \rangle = \int_a^b f(t)g(t) dt$$

est produit scalaire sur $\mathcal{C}([a,b],\mathbb{R})$. La norme associée est notée $\|.\|_2$ et est appelée norme 2.

. Définition

Si une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge en norme 2 vers une fonction f, on dit qu'elle converge en moyenne quadratique vers f.

6.4.2 Comparaison des différents types de convergence

On considère une suite $(f_n)_{n\in\mathbb{N}}$ d'éléments de $\mathcal{C}([a,b],\mathbb{R})$ et une fonction f élément de $\mathcal{C}([a,b],\mathbb{R})$ **Proposition**

Pour tout $f \in \mathcal{C}([a,b],\mathbb{R})$, on a :

- 1. $||f||_1 \le \sqrt{b-a}||f||_2$.
- 2. $||f||_2 \le \sqrt{b-a} ||f||_{\infty}$.
- 3. $||f||_1 \le (b-a)||f||_{\infty}$.

Proposition

Si la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur le segment [a,b] alors elle converge

- 1. simplement sur [a, b].
- 2. en moyenne sur [a, b].
- 3. en moyenne quadratique sur [a, b].

Proposition

Si la suite $(f_n)_{n\in\mathbb{N}}$ converge en moyenne quadratique vers f sur le segment [a,b], alors elle converge en moyenne vers f.

6.5 Critère d'Abel uniforme

Théorème

Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions à valeurs dans un espace de Banach E et $(g_n)_{n\in\mathbb{N}}$ une suite de fonctions à valeurs réelles, toutes deux définies sur un intervalle I, vérifiant

- 1. $\exists M > 0, \ \forall n \in \mathbb{N}, \ \forall x \in I, \ \|\sum_{p=0}^{n} f_p(x)\| \le M.$
- 2. La suite $(g_n)_{n\in\mathbb{N}}$ converge uniformément vers 0 en décroissant.

Alors la série $\sum_{n>0} g_n f_n$ converge uniformément sur I.