OBJECTIVE TYPE QUESTIONS - VOL I

Choose the correct or most suitable answer:

(1) The rank of the matrix
$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 4 & -4 & 8 \end{bmatrix}$$
 is

(2) 2 (3) 3 (4) 4

Ans: R_2 and R_3 are proportional to R_1

.. The matrix reduces to a matrix with a single non-zero row.

.: Rank is I

Ans: For the diagonal matrix except leading diagonal, all the other elements are zeroes.

.. The matrix has only three non-zero rows.

 \therefore Rank is 3.

(3) If
$$A = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix}$$
, then rank of AA^{T} is (2) 2 (3) 3 (4) 0

Ans: The order of A is 1×3 and A^T is 3×1

 \therefore Order of AA^T is 1×1

 \therefore Rank of AA^T is 1

(4) If
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then the rank of AA^{T} is

(1) 3

(2) 0

(3) 1

(4) 2

As: $AA^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$

Since R_2 and R_3 are proportional to R_1 , it reduces to a matrix with a single nonzero row.

Zero row.

Rank is 1

$$\begin{array}{c}
\lambda & -1 & 0 \\
0 & \lambda & -1
\end{array}$$
is 2, then λ is

$$\begin{array}{c}
\lambda & -1 & 0 \\
0 & \lambda & -1
\end{array}$$
is 2, then λ is

$$\begin{array}{c}
\lambda & -1 & 0 \\
0 & \lambda & -1
\end{array}$$
is 2, then λ is

$$\begin{array}{c}
\lambda & -1 & 0 \\
0 & \lambda & -1
\end{array}$$
is 2, then λ is λ any real number and λ is λ is λ and λ is λ is

Ans: 'The rank of 3×3 matrix is 2' means the determinant value is 0

i.e.,
$$\lambda^3 - 1 = 0 \Rightarrow \lambda = 1$$

(i)
$$\frac{1}{k^2}$$
 1 (2) $\frac{1}{k^3}$ 1 (2) $\frac{1}{k^3}$ 1 (4) kI

(ii) $\frac{1}{k^2}$ 1 (2) $\frac{1}{k^3}$ 1 (4) kI

(iii) $\frac{1}{k^2}$ 1 (2) $\frac{1}{k^3}$ 1 (4) kI

(iii) $\frac{1}{k^2}$ 1 (2) $\frac{1}{k^3}$ 1 (4) kI

(iii) $\frac{1}{k^2}$ 1 (4) kI

(iv) $\frac{1}{k^2}$ 1 and adj $(kI) = k^{n-1}I$ where k is a constant.

For A is a scalar matrix with scalar k of order 3, i.e., $A = kI$

(ii) $\frac{1}{k^2}$ 1 if the matrix $\begin{bmatrix} -1 & 3 & 2 \\ 1 & k & -3 \\ 1 & 4 & 5 \end{bmatrix}$ has an inverse then the values of k

(i) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(ii) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(iii) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(iv) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(iv) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(iv) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(iv) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(iv) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(iv) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(iv) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(iv) k is any real number (2) $k = -4$ (3) $k \neq -4$ (4) $k \neq 4$

(iv) $k \neq 4$

(iv) k is any real number (2) $k \neq -4$ (4) $k \neq 4$

(iv) $k \neq 4$

(iv)

$(1) \land \det(A) \qquad (2) \land \det(A)$	(5) K (let (1))
Ans: To multiply a matrix by a scalar, we in the case of determinant, multimultiplying one row elements or on	e multiply each element with that scalar. But plying a determinant by a scalar means e column elements.
$\therefore \det(kA) = k^n A $	
\therefore If A is of order 3 then det $(kA) = k$	$k^3 A $
(12) If <i>I</i> is the unit matrix of order <i>n</i> , who $adj(kI) =$	
(1) k^n (adj I) (2) k (adj I)	(3) k^2 (adj (1)) (4) k^{n-1} (adj 1)
Ans : It is a formula, $adj(kI) = k^{n-1}(adj I)$	
(13) If A and B are any two matrices such	h that $AB = O$ and A is non-singular, then
(1) $\hat{B} = O$ (2) B is singular	(3) B is non-singular (4) $B = A$
Ans: Since A is non-singular, A^{-1} exists	A. Carlotte and the second sec
$AB = 0 \Rightarrow A^{-1}(AB) = A^{-1}O \Rightarrow IB =$	$O \Rightarrow B = O$
(14) If $A = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$, then A^{12} is	£
$(1)\begin{bmatrix} 0 & 0 \\ 0 & 60 \end{bmatrix} \qquad (2)\begin{bmatrix} 0 & 0 \\ 0 & 5^{12} \end{bmatrix}$	$(3)\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad (4)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Ans : Clearly $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 5^2 \end{bmatrix}$, $A^3 = \begin{bmatrix} 0 & 0 \\ 0 & 5^3 \end{bmatrix}$	$A^{12} = \begin{bmatrix} 0 & 0 \\ 0 & 5^{12} \end{bmatrix}$
(15) Inverse of $\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$ is	
$(2)\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} \qquad (2)\begin{bmatrix} -2 & 5 \\ 1 & -3 \end{bmatrix}$	$(3)\begin{bmatrix} 3 & -1 \\ -5 & -3 \end{bmatrix} (4)\begin{bmatrix} -3 & 5 \\ 1 & -2 \end{bmatrix}$
Ans: Cofactor matrix is $\begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$, adj is	$\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$, det value is 1
$\therefore \text{ inverse is } \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$,
(16) In a system of 3 linear non-homo	geneous equation with three unknowns, if
$\Delta = 0$ and $\Delta_x = 0$, $\Delta_y \neq 0$ and $\Delta_z = 0$ th	nen the system has
(1) unique solution	(2) two solutions
(3) infinitely many solutions	

(4) det (A)

(11) If A is a matrix of order 3, then det (kA)

 $(2) k^2 \det(A)$

Ans: If $\Delta = 0$ and any one of Δ_x , Δ_y , Δ_z is non-zero then the system is inconsistent and hence no solutions.

(17) The system of equations
$$ax + y + z = 0$$
; $x + by + z = 0$; $x + y + cz = 0$ has a non-trivial solution then $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = \frac{1}{1-a}$ (2) 2 (4) 0

Ans: Since it has a non-trivial solution, $\Delta = 0$

$$\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \implies \begin{vmatrix} a & 1 & 1 \\ 1 - a & b - 1 & 0 \\ 1 - a & 0 & c - 1 \end{vmatrix} = 0$$

$$\Rightarrow a (1 - b) (1 - c) + (1 - a) (1 - c) + (1 - a) (1 - c)$$

$$\Rightarrow a (1-b) (1-c) + (1-a) (1-c) + (1-a) (1-b) = 0$$

$$\div by (1-a) (1-b) (1-c)$$

$$\Rightarrow$$
 by $(1-a)(1-b)(1-c)$

$$\Rightarrow \frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$$

i.e.
$$\left(-1 + \frac{1}{1-a}\right) + \frac{1}{1-b} + \frac{1}{1-c} = 0$$

The required value is 1

(18) If
$$ae^{x} + be^{y} = c$$
; $pe^{x} + qe^{y} = d$ and $\Delta_{1} = \begin{vmatrix} a & b \\ p & q \end{vmatrix}$; $\Delta_{2} = \begin{vmatrix} c & b \\ d & q \end{vmatrix}$,
$$\Delta_{3} = \begin{vmatrix} a & c \\ p & d \end{vmatrix} \text{ then the value of } (x, y) \text{ is}$$

$$(1) \left(\frac{\Delta_{2}}{\Delta_{1}}, \frac{\Delta_{3}}{\Delta_{1}} \right) (2) \left(\log \frac{\Delta_{2}}{\Delta_{1}}, \log \frac{\Delta_{3}}{\Delta_{1}} \right) (3) \left(\log \frac{\Delta_{1}}{\Delta_{3}}, \log \frac{\Delta_{1}}{\Delta_{2}} \right) (4) \left(\log \frac{\Delta_{1}}{\Delta_{2}}, \log \frac{\Delta_{1}}{\Delta_{3}} \right)$$

Ans: Solve for e^x and e^y

$$e^{x} = \frac{\begin{vmatrix} c & b \\ d & q \end{vmatrix}}{\begin{vmatrix} a & b \\ p & q \end{vmatrix}} = \frac{\Delta_{2}}{\Delta_{1}} \Rightarrow x = \log\left(\frac{\Delta_{2}}{\Delta_{1}}\right)$$

Similarly
$$e^y = \frac{\Delta_3}{\Delta_1} \Rightarrow y = \log\left(\frac{\Delta_3}{\Delta_1}\right) \Rightarrow \text{option (2)}$$

(19) If the equations
$$-2x + y + z = l$$
$$x - 2y + z = m$$
$$x + y - 2z = n$$

such that l + m + n = 0, then the system has

(1) a non-zero unique solution

(2) trivial solution

(3) Infinitely many solution

(4) No Solution

Ans:
$$[A, B] = \begin{vmatrix} -2 & 1 & 1 & l \\ 1 & -2 & 1 & m \\ 1 & 1 & -2 & n \end{vmatrix} \begin{vmatrix} -2 & 1 & l & l \\ 1 & -2 & 1 & m \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

⇒ has infinitely many solutions.

 $\Rightarrow \rho(A) = \rho(A, B) = 2$

(20) If \vec{d} is a non-zero vector and m is a non-zero scalar then $m\vec{d}$ is a unit vector if (4) a = 1 $(3) a = \overline{|m|}$ (2) a = |m| $(1) m = \pm 1$

Ans: $\left| m \overrightarrow{d} \right| = 1 \Rightarrow m \left| \overrightarrow{d} \right| = 1 \Rightarrow \left| \overrightarrow{d} \right| = \frac{1}{m}$