Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001222

International filing date:

28 January 2005 (28.01.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-228536

Filing date:

04 August 2004 (04.08.2004)

Date of receipt at the International Bureau: 24 March 2005 (24.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁 JAPAN PATENT OFFICE

PCT/JP 2005/001222 28. 1. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 8月 4日

出 願 番 号 Application Number:

特願2004-228536

[ST. 10/C]:

[J P 2 0 0 4 - 2 2 8 5 3 6]

出 願 人 Applicant(s):

株式会社ソミック石川

特許庁長官 Commissioner, Japan Patent Office 2005年 3月10日

1) 11

1/E

【書類名】 【整理番号】 【あて先】

特許願 SP-20-510 特許庁長官殿

【発明者】

【住所又は居所】

東京都墨田区本所1丁目34番6号 株式会社ソミック石川内 菅野 秀則

【氏名】 【発明者】

【住所又は居所】 東京都墨田区本所1丁目34番6号 株式会社ソミック石川内

【氏名】 志村 良太

【発明者】

【住所又は居所】 東京都墨田区本所1丁目34番6号 株式会社ソミック石川内

【氏名】 板垣 正典

【発明者】

【住所又は居所】 東京都墨田区本所1丁目34番6号 株式会社ソミックエンジニ

アリング内

【氏名】

長島 良彦

【特許出願人】

【識別番号】 000198271

【氏名又は名称】 株式会社ソミック石川

【代理人】

【識別番号】 100073139

【弁理士】

【氏名又は名称】 千田 稔

【手数料の表示】

【予納台帳番号】 011796 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【包括委任状番号】 0203076

【曹類名】特許請求の範囲

【請求項1】

制御対象物に負荷が加えられたときに伝達される力を流体圧を利用して減衰させる減衰機構と、該減衰機構の作動を制御する制御手段とを具備する運動制御装置であって、

前記制御手段が、

流体が流入する第1流入口と、流体が流出する第1流出口とを備える第1作動室と、該第1作動室内に設けられる第1弁体と、該第1弁体が常態において前記第1流入口を閉塞するように該第1弁体を付勢する第1ばねとを有し、前記第1流出口が微小孔からなるとともに、前記第1弁体は停止状態の制御対象物に負荷が加えられたときに伝達される力が所定値に達すると、前記第1流入口を開放する第1逆止弁と、

流体が流入する第2流入口と、流体が流出する第2流出口とを備える第2作動室と、該第2作動室内に設けられる第2弁体と、該第2弁体が常態において前記第2流入口が開口する前記第2作動室内面に当接するように該第2弁体を付勢する第2ばねとを有し、前記第2弁体の受圧面を、開弁時には小さく、開弁後は大きくなるようにして、制御対象物に負荷が加えられたときに伝達される力が所定値以下では、前記第2弁体が前記第2作動室内面に当接した状態を維持し、その力が所定値を超えると、前記第2弁体が前記第2作動室内面から離間し、その後は、その力が所定値以下でも前記第2弁体が前記第2作動室内面から離間した状態を維持し得る第2逆止弁と

を具備することを特徴とする運動制御装置。

【請求項2】

前記第1逆止弁が前記第2弁体に設けられていることを特徴とする請求項1に記載の運動制御装置。

【請求項3】

前記第2逆止弁の開弁後、前記第2弁体が原位置に復帰するまでの該第2弁体の動きを 遅延させる遅延機構を具備することを特徴とする請求項1又は2に記載の運動制御装置。

【請求項4】

前記遅延機構が、前記第2弁体の周囲に張り出した出張りと、前記第2作動室内面との間に形成される隙間を流体が通過するときに生じる抵抗を利用して前記第2弁体の動きを遅延させるものであることを特徴とする請求項1から3のいずれか1に記載の運動制御装置。

【請求項5】

前記減衰機構が、ケーシング内に収容されるロータと、該ロータとケーシングとの間に 形成される空間を仕切る隔壁と、該隔壁に仕切られることにより形成される流体室に充填 される流体と、前記流体室内に設けられ、前記ロータの回転に伴い周方向に移動するベー ンとを有して構成されていることを特徴とする請求項1から4のいずれか1に記載の運動 制御装置。

【請求項6】

前記減衰機構が、前記ロータと前記隔壁との間及び前記ケーシングと前記ベーンとの間にそれぞれ形成される隙間を通じた流体の移動を阻止するシール部材を具備して構成されていることを特徴とする請求項5に記載の運動制御装置。

【請求項7】

請求項1から6のいずれか1に記載の運動制御装置により開閉動作が制御されることを 特徴とする開閉体。

【発明の名称】運動制御装置

【技術分野】·

[0001]

本発明は、停止状態の制御対象物に加えられる負荷が所定値以下では、該制御対象物の 停止状態を保持し、該制御対象物に所定値を超える負荷が加えられると、該制御対象物の 停止状態を解除して運動可能とし、その後は、該制御対象物に加えられる負荷が所定値以 下でも該制御対象物の運動を許容し、該制御対象物の運動が停止したならば、該制御対象 物に加えられる負荷が所定値を超えない限り該制御対象物の停止状態を再び保持する運動 制御装置及び該運動制御装置により開閉動作が制御される開閉体に関するものである。

【背景技術】

[0002]

この種の運動制御装置としては、制御対象物に負荷が加えられたときに伝達される力を 流体圧を利用して減衰させる減衰機構と、該減衰機構の作動を制御する制御手段とを具備 するものが知られている(例えば、特開平6-323356号公報参照)。

[0003]

かかる運動制御装置の減衰機構は、流体が充填される流体室内に、軸方向に移動するピストンが配置されて構成される。かかる減衰機構は、ピストンの軸方向に沿った直線的な移動により生ずる流体の圧力を利用して、制御対象物に負荷が加えられたときにピストンロッドを介して伝達される力を減衰させるものである。

[0004]

また、制御手段は、流体が流入する流入口と、流体が流出する流出口とを備えた作動室と、該作動室内に設けられる弁体と、該弁体が常態において前記流入口を閉塞するように該弁体を付勢するばねとを有して構成される逆止弁を1つ又は2つ組み合わせたものであって、かかる逆止弁は、前記弁体の受圧面を、開弁時には小さく、開弁後は大きくなるようにしたものである。

[0005]

かかる制御手段によれば、逆止弁を開弁させるときには、弁体の受圧面が小さいため、大きな圧力が必要とされる。従って、停止状態の制御対象物に負荷が加えられても、このときに伝達される力が所定値以下では、弁体が移動せず、該弁体によって流入口が塞がれたままであるため、流体の移動が阻止される。一方、減衰機構を作動させるためには、流体が移動し得る環境下にピストンがおかれていることが必要であるが、制御手段により流体の移動が阻止されるため、ピストンが移動できず、減衰機構の作動が抑制される。従って、この場合、減衰機構が発揮する制動力により制御対象物の運動が阻止され、制御対象物は停止状態のまま保持されることになる。

[0006]

一方、停止状態の制御対象物に大きな負荷が加えられ、このときに伝達される力が所定値を超える場合には、弁体の小さな受圧面に大きな圧力が加えられることにより、弁体がばねを圧縮しながら移動する。これにより、流入口が開放されるため、流体の移動が可能となる。そして、このように流体の移動が許容されることにより、減衰機構が作動して、制御対象物の停止状態が解除される。また、開弁後は、弁体の受圧面が大きくなるため、小さな圧力でも弁体がばねを圧縮した状態を維持できるようになる。このため、制御対象物の停止状態が解除された後は、負荷が小さくても制御対象物は運動可能となる。

[0007]

そして、制御対象物に対する負荷が除去され、制御対象物が再び停止状態となったときには、ばねの付勢力により弁体が原位置に復帰して流入口を閉塞する。これにより、流体の移動が再び阻止されるため、減衰機構の作動が抑制される。従って、制御対象物は停止位置にてその状態が保持されることになる。

[0008]

しかしながら、従来の運動制御装置では、制御対象物の停止状態が解除されると、該制 出証特2005-3020559 御対象物が勢いよく動き出してしまうという問題があった。この現象は、逆止弁が開弁した直後に、減衰機構が発揮する制動力が急激に低下することが原因で生じるものである。もっとも、例えば、自動車のドアを制御対象物とした場合に、ドアを速く開閉するときに、大きな抵抗を生じさせるとドアの開閉の妨げとなるので、この場合には、逆止弁が開弁した直後に、減衰機構が発揮する制動力が急激に低下することが望ましい。ここで特に問題となるのは、ドアを遅く開閉するときにも、ドアを速く開閉するときと同じように抵抗が急激に小さくなるため、ドアが意図しない速さで開閉してしまうことである。

[0.009]

また、従来の運動制御装置では、制御対象物の動作速度が遅い場合に、制御対象物が、 短い周期で運動状態と停止状態(ないしは停止状態に近い状態)を繰り返す断続的な動き となるという問題があった。この現象は、制御対象物の動作速度が遅いために、逆止弁の 開弁後に、本来、流入口を開放する方向へ移動した状態を維持すべき弁体が、ばねの付勢 力によって押し戻されて流入口を閉塞し、その直後に、再び流入口を開放する方向に移動 した後、再度ばねの付勢力によって押し戻されて流入口を閉塞するという動作を短い周期 で繰り返すことによって生じるものである。

[0010]

また、従来の運動制御装置では、減衰機構が、ピストンの軸方向に沿った直線的な移動により流体の圧力を生じさせる、いわゆる直線型であるため、以下の問題点がある。すなわち、ピストンの移動領域を確保するために、どうしても軸方向長さが長くなるという不可避的な問題がある。また、制御手段の配設スペースを確保するために、さらに軸方向長さが長くなるので、装置全体の大型化を招き易いという問題がある。さらに、流体が移動し得る通路を確保するために、構造が複雑となり易く、部品点数も増大し易いという問題がある。なお、出願人は、減衰機構が直線型であることによる問題を解消するため、減衰機構をいわゆる回転型とした運動制御装置を既に提案している(特願2004-19573号明細書参照)。

[0011]

【特許文献1】特開平6-323356号公報

【発明の開示】

【発明が解決しようとする課題】

[0012]

本発明は上記事情に鑑みなされたものであり、制御対象物が意図しない速さで動作することを防ぐことができる運動制御装置及び該運動制御装置により開閉動作が制御される開閉体を提供することを課題とするものである。

【課題を解決するための手段】

[0013]

本発明は、上記課題を解決するため、以下の運動制御装置及び開閉体を提供する。

(1) 制御対象物に負荷が加えられたときに伝達される力を流体圧を利用して減衰させる 減衰機構と、該減衰機構の作動を制御する制御手段とを具備する運動制御装置であって、 前記制御手段が、

流体が流入する第1流入口と、流体が流出する第1流出口とを備える第1作動室と、該第1作動室内に設けられる第1弁体と、該第1弁体が常態において前記第1流入口を閉塞するように該第1弁体を付勢する第1ばねとを有し、前記第1流出口が微小孔からなるとともに、前記第1弁体は停止状態の制御対象物に負荷が加えられたときに伝達される力が所定値に達すると、前記第1流入口を開放する第1逆止弁と、

流体が流入する第2流入口と、流体が流出する第2流出口とを備える第2作動室と、該第2作動室内に設けられる第2弁体と、該第2弁体が常態において前記第2流入口が開口する前記第2作動室内面に当接するように該第2弁体を付勢する第2ばねとを有し、前記第2弁体の受圧面を、開弁時には小さく、開弁後は大きくなるようにして、制御対象物に負荷が加えられたときに伝達される力が所定値以下では、前記第2弁体が前記第2作動室内面に当接した状態を維持し、その力が所定値を超えると、前記第2弁体が前記第2作動

室内面から離間し、その後は、その力が所定値以下でも前記第2弁体が前記第2作動室内 面から離間した状態を維持し得る第2逆止弁と

を具備することを特徴とする運動制御装置。

- (2) 前記第1逆止弁が前記第2弁体に設けられていることを特徴とする前記(1) に記載の運動制御装置。
- (3) 前記第2逆止弁の開弁後、前記第2弁体が原位置に復帰するまでの該第2弁体の動きを遅延させる遅延機構を具備することを特徴とする前記(1)又は(2)に記載の運動制御装置。
- (4) 前記遅延機構が、前記第2弁体の周囲に張り出した出張りと、前記第2作動室内面との間に形成される隙間を流体が通過するときに生じる抵抗を利用して前記第2弁体の動きを遅延させるものであることを特徴とする前記(1)から(3)のいずれか1に記載の運動制御装置。
- (5)前記減衰機構が、ケーシング内に収容されるロータと、該ロータとケーシングとの間に形成される空間を仕切る隔壁と、該隔壁に仕切られることにより形成される流体室に充填される流体と、前記流体室内に設けられ、前記ロータの回転に伴い周方向に移動するベーンとを有して構成されていることを特徴とする前記(1)から(4)のいずれか1に記載の運動制御装置。
- (6)前記減衰機構が、前記ロータと前記隔壁との間及び前記ケーシングと前記ベーンとの間にそれぞれ形成される隙間を通じた流体の移動を阻止するシール部材を具備して構成されていることを特徴とする前記(5)に記載の運動制御装置。
- (7) 前記 (1) から (6) のいずれか1 に記載の運動制御装置により開閉動作が制御されることを特徴とする開閉体。

【発明の効果】

[0014]

前記(1)に記載の本発明によれば、停止状態の制御対象物に負荷が加えられることにより伝達される力が所定値に達すると、第1逆止弁が開弁する。これにより、流体の移動が可能となるため、減衰機構が作動して、制御対象物の停止状態が解除される。この際、第1逆止弁の第1流出口が微小孔からなるため、流体が第1流出口から流出するときがで発生し、かかる流体の抵抗により、制御対象物の動作を緩慢なものとすることができる。従って、制御対象物を遅く動作させるときは、生じる抵抗を大きなものとして、停止状態が解除された後に制御対象物が勢いよく動き出すことを防ぐことができる。また、停止状態の、又は運動中の制御対象物に負荷が加えられることにより伝達される力が所定値を超えると、第2逆止弁が開弁する。これにより、減衰機構に伝達される力が所定値以下でも流体の移動が可能となり、減衰機構が発揮する制動力も小さくなる。従って、制御対象物を速く動作させるときは、生じる抵抗を小さなものとして、円滑に動作させることができる。よって、本発明によれば、制御対象物が意図しない速さで動作することを防ぐことが可能となる。

前記 (2) に記載の本発明によれば、第1逆止弁と第2逆止弁を分離して設置する場合と比較して、それらの設置スペースを小さくすることができ、装置全体の小型化を図ることが可能となる。

前記(3)に記載の本発明によれば、制御対象物の動作速度が遅いために、一旦第2流入口を開放する方向へ移動した第2弁体が、第2ばねの付勢力によって押し戻されようとしても、遅延機構により、第2弁体の原位置への復帰動作を遅延させることができるため、第2逆止弁の開閉の周期をより長くすることができる。従って、制御対象物の動作速度が遅い場合でも、制御対象物を円滑に運動させることが可能となる。

前記(4)に記載の本発明によれば、制御対象物の動作速度が遅い場合でも、該制御対象物を円滑に運動させるという課題を、極めて簡素な構成で解決することができる。

前記 (5) に記載の本発明によれば、装置の軸方向長さを、従来の直線型のものと比較して大幅に短くすることができ、装置全体の小型化を図ることが可能となる。また、制御手段の配設スペースや流体が移動し得る通路を簡素な構造で確保することが可能となる。

前記(6)に記載の本発明よれば、シール部材により、ロータと隔壁との間及びケーシングとベーンとの間にそれぞれ形成される隙間を通じた流体の移動を阻止することができるため、制動特性の向上と安定を図ることが可能となる。

前記(7)に記載の本発明によれば、任意の位置にて停止状態を維持できるとともに、 開閉動作の開始後は意図しない速さで動作することを防ぐことが可能となる。また、開閉 体の動作速度が遅い場合でも、円滑に開閉させることが可能となる。さらに、このような 運動特性を得るために設けられる運動制御装置の設置スペースを小さくできるという利点 がある。

【発明を実施するための最良の形態】

[0015]

以下、本発明の実施の形態を図面に示した実施例に従って説明する。

【実施例】

[0016]

図1から図3は、本発明の一実施例に係る運動制御装置を示す図であり、図1は、断面図、図2は、図1におけるA-A部断面図、図3は、図1とは異なる角度からみた断面図である。

[0017]

本実施例に係る運動制御装置は、減衰機構が、ケーシング 10 内に収容されるロータ 20 と、ロータ 20 とケーシング 10 との間に形成される空間を仕切る隔壁 31, 32 と、隔壁 31, 32 に仕切られることにより形成される流体室 41, 42 に充填される流体と、流体室 41, 42 内に設けられ、ロータ 20 の回転に伴い周方向に移動するベーン 51, 52 とを有して構成される(図 1 及び図 2 参照)。

[0018]

ケーシング10は、筒状部11、内壁部12、上蓋13及び下蓋14を有して構成される(図1参照)。筒状部11の一端側開口部は、上蓋13により閉塞され、筒状部11の他端側開口部は、内壁部12により閉塞される。下蓋14は、筒状部11との間に内壁部12を挟んだ形で取り付けられる。内壁部12の一方の端面には、ロータ20の他端側がはまり込む孔部12aが形成され、内壁部12の他方の端面には、凹部12bが形成されており、凹部12b内面と下蓋14内面とにより囲まれた空間が環流室60となる。

[0019]

ロータ20は、断面円形の軸からなり、一端側が上蓋13に形成された貫通孔13aに 挿通されることにより、上蓋13に支持されるとともに、他端側が内壁部12に形成された孔部12aにはめ込まれることにより、内壁部12に支持されており、ケーシング10 に対して相対的に回転し得るよう、ケーシング10内に収容されている(図1及び図2参照)。

[0020]

隔壁 31, 32 は、ケーシング 10 (筒状部 11) とロータ 20 との間に形成される空間を仕切るように設けられる。本実施例では、ロータ 20 を挟んで対向する 2 つの隔壁 31, 32 が設けられており、ケーシング 10 内には、各隔壁 31, 32 により隔てられた 2 つの流体室 41, 42 が形成されている(図 2 参照)。また、各隔壁 31, 32 には、弾性樹脂からなるシール部材 71 が取り付けられている。このシール部材 71 は、隔壁 31, 32 と上蓋 13 との間、隔壁 31, 32 と内壁部 12 との間、隔壁 31, 32 と筒状部 11 との間及び隔壁 31, 32 とロータ 20 との間にそれぞれ形成される隙間を通じて流体が移動することを防止するため、かかる隙間を密閉する役割を果たしている(図 1 参照)。

[0021]

ベーン51,52は、流体室41,42内において、ロータ20の回転に伴い周方向に移動するように設けられる。本実施例では、ロータ20を挟んで対向する位置に2つのベーン51,52が設けられ、各ベーン51,52は、射出成形などの製法により、ロータ20と一体的に成形されている。また、各ベーン51,52には、弾性樹脂からなるシー

ル部材72が取り付けられている。このシール部材72は、ベーン51,52と流体室41,42内面との間に形成される隙間を通じて流体が移動することを防止するため、かかる隙間を密閉する役割を果たしている(図2参照)。

[0022]

各ベーン 51, 52 はそれぞれ各流体室 41, 42 内に配設されるが、これにより、2 つの流体室 41, 42 のうち、一の流体室 41 は、2 つの流体室(第1 室 41 a 及び第2 室 41 b)に区画され、他の流体室 42 も、2 つの流体室(第3 室 42 a 及び第4 室 42 b)に区画される(図2 参照)。

[0023]

各流体室41,42には、流体が充填されるが、ロータ20がケーシング10に対して相対的に回転するためには、減衰機構内部において、流体が移動し得る通路が確保されていなければならない。本実施例では、かかる流体通路がロータ20に形成されている。この流体通路は、ロータ20により隔てられた第1室41aと第3室42aとにそれぞれ開口する第1通路81と、ロータ20により隔てられた第2室41bと第4室42bとにそれぞれ開口する第2通路82とからなる(図1及び図2参照)。また、本実施例では、流体として、オイルが用いられている。

[0024]

本実施例に係る運動制御装置は、制御手段が、内壁部12に設けられている。また、本 実施例では、各流体室41,42と環流室60とが、内壁部12を隔てて隣り合う位置関 係で設けられている。また、流体は、各流体室41,42のみならず、環流室60を含む ケーシング10の内部空間に充填される。

[0025]

制御手段は、一の流体室41(第1室41a及び第2室41b)から環流室60への流体の移動のみを許容する第1逆止弁90と、同じく一の流体室41(第1室41a及び第2室41b)から環流室60への流体の移動のみを許容する第2逆止弁100と、環流室60から他の流体室42(第3室42a及び第4室42b)への流体の移動のみを許容する第3逆止弁110とを有して構成される(図2及び図3参照)。

[0026]

本実施例における第1逆止弁90は、図3に示したように、第2逆止弁100を構成する第2弁体103に設けられているが、第2逆止弁100と分離して設けることも可能である。本実施例における第1逆止弁90は、図4に示したように、第1室41a及び第2室41bにそれぞれ連通し、流体の第1流入口として機能する第1小孔91と、環流室60に開口し、流体の第1流出口として機能する第2小孔95とを備え、第1小孔91の断面積よりも大きな断面積を有する第1作動室92と、第1作動室92内に設けられる第1弁体93と、第1弁体93が常態において第1小孔91を閉塞するように、第1弁体93を付勢するばね94とを有して構成される。ここで、第2小孔95は、断面積が非常に小さい微小孔からなる。また、第1逆止弁90は、後述する作用を有するものであるから、かかる作用を発揮し得るように、第1小孔91の断面積や第1弁体93の受圧面の面積等が設定される。

[0027]

第2逆止弁100は、図3及び図4に示したように、第1室41a及び第2室41bにそれぞれ開口し、流体の第2流入口として機能する第3小孔101と、第3小孔101の断面積よりも大きな断面積を有し、環流室60に開口する第2作動室102と、第2作動室102内に設けられ、開弁時には小さな受圧面を提供し、開弁後は大きな受圧面を提供し得る形状に形成された第2弁体103と、第2弁体103が常態において第3小孔101が開口する第2作動室102内面に当接するように、第2弁体103を付勢する第2ばね104とを有して構成される。ここで、第2逆止弁100は、後述する作用を有するものであるから、かかる作用を発揮し得るように、第3小孔101の断面積や第2弁体103の受圧面の面積等が設定される。なお、環流室60に開口する第2作動室102の開口部は、流体が流出する第2流出口として機能する。

[0028]

第3逆止弁110は、図3に示したように、環流室60に開口する第4小孔111と、第4小孔1110断面積よりも大きな断面積を有し、第3室42a及び第4室42bにそれぞれ開口する第3作動室112と、第3作動室112内に設けられる第3弁体113と、第3弁体113が常態において第4小孔111を閉塞するように、第3弁体113を付勢する第3ばね114とを有して構成される。なお、第3逆止弁100としては、少なくとも流体の流れ方向を規制する機能を果たし得るものであればよい。

[0029]

上記のように構成される第1逆止弁90及び第2逆止弁100は、第1室41a及び第2室41bからそれぞれ環流室60へ移動する流体の流れ方向を規制し得るように設けられ、第3逆止弁110は、環流室60から第3室42a及び第4室42bへそれぞれ移動する流体の流れ方向を規制し得るように設けられる。

[0030]

制御手段は、また、遅延機構を有して構成される。この遅延機構は、第2逆止弁100の開弁後、第2弁体103が原位置に復帰するまでの該第2弁体103の動きを遅延させる機能を果たすものである。本実施例における遅延機構は、図4及び図7に示したように、第2弁体103の周囲に外方に張り出す出張り103aを形成し、この出張り103aと、第2作動室102内面との間に形成される隙間を流体が通過するときに生じる抵抗を利用して、第2弁体103の復帰動作を遅延させるものである。

[0031]

本実施例に係る運動制御装置は、さらに、制御対象物と減衰機構との間に介在して、第 1逆止弁90及び/又は第2逆止弁100が開弁する直前に制御対象物の運動を可能とする弾性部材120を具備して構成される。

[0032]

本実施例における弾性部材120は、図1及び図3に示したように、減衰機構を構成するロータ20の一端側において、ロータ20と歯車130との間に介在して設けられている。歯車130は制御対象物の運動に連動して回転するものである。制御対象物に負荷が加えられたときに生じる力は、歯車130を介してロータ20に伝達され、ロータ20が回転すると歯車130との間に弾性部材120を設けることにより、かかる弾性部材120の変形を利用して、ロータ20が回転しないときに歯車130のみを回転させることが可能となる。ここで、弾性部材120は、ある一定以上の外力が加えられなければ変形を生じないものが用いられ、制御対象物に負荷が加えられることにより減衰機構に伝達される力の大きさが、第1逆止弁90を開弁させる程大きくはないが、ある一定以上の大きさに達したときに、変形を生じて、歯車130のみを回転させる。従って、制御対象物は、第1逆止弁90が開弁する直前に停止状態が解除され、運動可能となる。そして、減衰機構に伝達される力の大きさがさらに高められ、第1逆止弁90を開弁させる大きさに達すると、第1逆止弁90が開弁してロータ20も歯車130とともに回転することとなる。

[0033]

上記のように構成される運動制御装置は、例えば、ケーシング10が回転不能に固定され、ロータ20が制御対象物の運動に伴い回転し得るように設置され、使用される。

[0034]

例えば、回転運動によって開閉動作する自動車のドアを制御対象物とし、このドアの開閉に伴う運動を制御すべく、本実施例の運動制御装置を適用した場合、ドアに加えられる 負荷は、減衰機構を構成するロータ20を回転させる力としてロータ20に伝達される。

[0035]

今、ドアを半分開き、その位置にて停止させたとする。このとき、減衰機構を構成する2つのペーン51,52は、図2に示したように、各流体室41,42をそれぞれ二等分する位置に存在し、また、制御手段を構成する第1逆止弁90、第2逆止弁100及び第3逆止弁110は、ともに閉弁した状態にある。

[0036]

停止状態のドアに対して、突風など、意図しない負荷が加えられることにより、ドアが 開方向に回転運動しようとするとき、ロータ20は、図2において反時計回り方向に回転 しようとする。しかし、このときに、ロータ20に伝達される力が所定値に満たなければ 、ベーン51によって流体が圧縮されることにより高められる第1室41aの内圧が低い ため、第1逆止弁90が開弁せず、流体の移動が阻止される。

[0037]

すなわち、第1逆止弁90を開弁させるためには、第1小孔91の断面積が小さく、また該第1小孔91を塞ぐ第1弁体93の受圧面が小さいため、大きな流体の圧力が必要とされる。このため、第1室41aの内圧が低い場合には、図4に示したように、第1小孔91が第1弁体93によって塞がれたままであるので、流体が第1室41aから環流室60个移動できない。その結果、環流室60の内圧も上昇しないため、第3逆止弁110も開弁されることがなく、さらに、第3逆止弁110が閉弁されたままであるため、第4室42bから第2通路82を通じて第2室41bへ流体が移動することもない。従って、ロータ20は回転することができず、減衰機構が作動しないため、ドアの停止状態が保持される。

[0038]

この際、本実施例では、ロータ20と隔壁31,32との間及びケーシング10 (流体室41,42の内面)とベーン51,52との間にそれぞれ形成される隙間を通じた流体の移動を阻止するシール部材71,72を具備して構成されるため、ドアの停止状態をより確実に保持することが可能である。

[0039]

停止状態のドアを意図的に開方向へ回転運動させるときには、ロータ20に伝達される力が所定値に達しないと第1逆止弁90が開弁しないため、当初大きな力が必要とされる。この際、ドアを遅い速度で開くときには、ドアの運動に抵抗を付与して、停止状態が解除された後にドアが勢いよく開くことを防ぐことができる。

[0040]

すなわち、ロータ20に伝達される力が所定値に達すると、第1室41a及び第3室42aの内圧が高くなり、第3室42a内の流体が第1通路81を通じて第1室41aへ移動するとともに、第1室41aに連通する第1逆止弁90の第1小孔91を塞ぐ第1弁体93の小さな受圧面に大きな圧力が加えられることになるため、第1弁体93が第1ばね94を圧縮しながら移動する。これにより、図5に示したように、第1小孔91が開放されることとなり、流体は、第2小孔95を通じて第1室41aから環流室60へ移動することが可能となる。もっとも、第2小孔95が微小孔からなるため、第1室41aから環流室60に移動する流体の流量は、第2小孔95を通過する際に少量に制限されることとなる。その結果、流体が第2小孔95を通過するときに抵抗が発生し、かかる流体の抵抗が、ドアの開動作を緩慢なものとさせる制動力としてドアに付与されることになる。従って、ドアは、停止状態が解除された後に勢いよく動き出すことなく、遅い速度で開くこととなる。

[0041]

図8は、制御対象物の動作速度が遅い場合の、本実施例に係る運動制御装置の特性を示すグラフである。このグラフには、制御対象物の動作角度と、本実施例に係る運動制御装置が発揮する制動トルクとの関係が示されており、上記のように制御対象物の動作速度が遅い場合には、制御対象物の停止状態が解除された後にも、制御対象物に大きな制動力(制動トルク)が付与されることが示されている。

[0042]

ドアを当初は遅い速度で開き、途中から速い速度で開いたときには、ドアの動作速度を速くするときにドアに大きな負荷が加えられるため、ロータ20に伝達される力も大きくなる。この際、ロータ20に伝達される力が所定値を超えると、第1室41a及び第3室42aの内圧が高くなり、第3室42a内の流体が第1通路81を通じて第1室41aへ

移動するとともに、第1室41aに開口する第2逆止弁100の第3小孔101を塞ぐ第2弁体103の小さな受圧面に大きな圧力が加えられることになるため、第2弁体103が第2ばね104を圧縮しながら移動する。これにより、図6に示したように、第3小孔101が完全に開放されることとなり、流体は、第1室41aから環流室60へ大量に移動することが可能となる。流体が第1室41aから環流室60へ流入することにより、電42bに開口する第3作動室112を有する第3逆止弁110の第3弁体113が、第3ばね114を圧縮しながら移動して第4小孔111を開放させる。環流室60内へ流入の第3逆止弁110の第3弁体113が、第3ばね114を圧縮しながら移動して第4小孔111を開放させる。環流室60内の流流等2通にで第2室41bへ移動する。そして、このように流体が大量に移動可能になることで、減衰機構が発揮する制動力が急激に小さくなる。また、第2逆止弁100の開升後においては、第2弁体103の受圧面が大きくなるため、第2弁体103に対する流体の圧力が小さくても、第2弁体103が第2ばねを圧縮し、第3小孔101を開放させた状態(図6参照)が維持される。従って、ドアの動作速度を速くした後は、ドアを小さい力で、速く開動作させることができる。

[0043]

図9は、制御対象物の動作速度を途中で遅い速度から速い速度に変化させた場合の、本実施例に係る運動制御装置の特性を示すグラフである。このグラフには、制御対象物の動作角度と、本実施例に係る運動制御装置が発揮する制動トルクとの関係が示されており、上記のように制御対象物の動作速度を途中から速くしたときには、速くした時点で制御対象物に付与される制動力(制動トルク)が急激に小さくなり、その後は、制御対象物に対して小さな制動力しか付与されないことが示されている。

[0044]

ドアを当初から速い速度で開くときには、当初においてドアに大きな負荷が加えられる ため、ロータ20に伝達される力も大きくなる。この際、ロータ20に伝達される力が所 定値を超えると、第1室41a及び第3室42aの内圧が高くなり、第3室42a内の流 体が第1通路81を通じて第1室41aへ移動するとともに、第1室41aに開口する第 2 逆止弁100の第3小孔101を塞ぐ第2弁体103の小さな受圧面に大きな圧力が加 えられることになるため、第2弁体103が第2ばね104を圧縮しながら移動する。こ れにより、図6に示したように、第3小孔101が完全に開放されることとなり、流体は 、第1室41aから環流室60へ大量に移動することが可能となる。流体が第1室41a から環流室60へ流入することにより、環流室60の内圧が上昇し、これにより、2つあ る第3逆止弁110, 110のうち、第4室42bに開口する第3作動室112を有する 第3逆止弁110の第3弁体113が、第3ばね114を圧縮しながら移動して第4小孔 111を開放させる。環流室60内の流体は、かかる第3逆止弁110が開弁されること により、第4室42bへ移動し、さらに第2通路82を通じて第2室41bへ移動する。 そして、このように流体が大量に移動可能になることで、減衰機構が発揮する制動力が急 激に小さくなる。また、第2逆止弁100の開弁後においては、第2弁体103の受圧面 .が大きくなるため、第2弁体103に対する流体の圧力が小さくても、第2弁体103が 第2ばねを圧縮し、第3小孔101を開放させた状態(図6参照)が維持される。従って 、ドアの運動が開始された後は、ドアを小さい力で、速く開くことができる。

[0045]

図10は、制御対象物の動作速度が速い場合の、本実施例に係る運動制御装置の特性を示すグラフである。このグラフには、制御対象物の動作角度と、本実施例に係る運動制御装置が発揮する制動トルクとの関係が示されており、上記のように制御対象物の動作速度が当初から速い場合には、第2逆止弁100が開弁した直後に、制御対象物に付与される制動力(制動トルク)が急激に小さくなり、その後は、制御対象物に対して小さな制動力しか付与されないことが示されている。

[0046]

上記したいずれの場合も、開動作するドアの運動を任意の位置で再び停止させたときに 出証特2005-3020559 は、第1逆止弁90, 第2逆止弁100及び第3逆止弁110をそれぞれ構成する第1弁体93, 第2弁体103及び第3弁体113が第1ばね94, 第2ばね104及び第3ばね114の付勢力により原位置に復帰して、第1逆止弁90, 第2逆止弁100及び第3逆止弁110がそれぞれ閉弁するため、減衰機構の作動が停止して、ドアの停止状態が再び保持されることになる。

[0047]

また、本実施例に係る運動制御装置によれば、停止状態のドアを意図的に閉方向へ回転運動させるときにも、開方向へ回転運動させる場合と同様に、ドアの運動を制御することができる。

[0048]

この場合、ロータ20に伝達される力が所定値に達すると、第2室41b及び第4室42bの内圧が高くなり、第4室42b内の流体が第2通路82を通じて第2室41bへ移動するとともに、第2室41bに連通する第1逆止弁90の第1小孔91を塞ぐ第1弁体93の小さな受圧面に大きな圧力が加えられることになるため、第1弁体93が第1ばね94を圧縮しながら移動する。これにより、第1小孔91が開放されることとなり、流体は、第2室41bから環流室60へ移動する。流体が第2室41bから環流室60へ流入することにより、環流室60の内圧が上昇し、これにより、2つある第3逆止弁110の第3弁体113が、第3ばね114を圧縮しながら移動して第4小孔111を開放させる。環流室60内の流体は、かかる第3逆止弁110が開弁されることにより、第3室42aへ移動し、さらに第1通路81を通じて第1室41aへ移動する。そして、このように流体の移動が可能になることで、ロータ20は回転することができるようになり、減衰機構の作動が開始され、ドアの停止状態が解除される。

[0049]

一方、ロータ20に伝達される力が所定値を超えると、第2室41b及び第4室42bの内圧が高くなり、第4室42b内の流体が第2通路82を通じて第2室41bへ移動するとともに、第2室41bに開口する第2逆止弁100の第2小孔101を塞ぐ第2弁体103の小さな受圧面に大きな圧力が加えられることになるため、第2弁体103が第2ばね104を圧縮しながら移動する。これにより、第2小孔101が開放されることとなり、流体は、第2室41bから環流室60へ大量に移動する。流体が第2室41bから環流室60へ流入することにより、環流室60の内圧が上昇し、これにより、2つある第3逆止弁110,110のうち、第3室42aに開口する第3作動室112を有する第3逆止弁110の第3弁体113が、第3ばね114を圧縮しながら移動して第4小孔111を開放させる。環流室60内の流体は、かかる第3逆止弁110が開弁されることにより、第3室42aへ移動し、さらに第1通路81を通じて第1室41aへ移動する。そして、このように流体が大量に移動可能になることで、減衰機構が発揮する制動力が急激に小さくなり、ドアの停止状態が解除される。

[0050]

そして、閉動作するドアの運動を任意の位置で再び停止させたときには、第1逆止弁90,第2逆止弁100及び第3逆止弁110をそれぞれ構成する第1弁体93,第2弁体103及び第3弁体113が第1ばね94,第2ばね104及び第3ばね114の付勢力により原位置に復帰して、第1逆止弁90,第2逆止弁100及び第3逆止弁110がそれぞれ閉弁するため、ドアの停止状態が再び保持されることになる。

[0051]

本実施例に係る運動制御装置によれば、減衰機構が、ロータ20の回転に伴いベーン51,52が周方向に移動することにより流体の圧力を生じさせる、いわゆる回転型であるため、直線型の減衰機構を備えた従来の運動制御装置と比較して、軸方向長さを大幅に短くすることができ、装置全体の小型化を図ることが可能である。

[0052]

また、減衰機構を回転型としたことにより、制御手段の配設スペースや流体が移動し得出証券2005-30205-9

る通路を簡素な構造で確保することが可能である。

[0053]

また、制御手段が、遅延機構を有して構成されるため、制御対象物の動作速度が遅い場合、すなわち、第2逆止弁100を開弁させることはできるが、第2逆止弁100が開弁した状態を維持し得る程の動作速度には満たない場合でも、制御対象物を円滑に運動させることが可能となる。以下、本実施例における遅延機構の作用及び効果を、遅延機構を有しない比較例と比較して説明する。

[0054]

比較例に係る運動制御装置は、制御手段が、遅延機構を有しない点で、本実施例に係る運動制御装置と相違する。図12は、比較例における第2逆止弁100°の構成を示す部分断面図である。この図に示したように、比較例における第2逆止弁100°は、流体が流入する第2流入口として機能する第3小孔101°と、流体が流出する第2流出口とを備える第2作動室102°と、第2作動室102°内に設けられ、開弁時には小さな受圧面を提供し、開弁後は大きな受圧面を提供し得る形状に形成された第2弁体103°と、第2弁体103°が常態において第3小孔101°が開口する第2作動室102°内面に当接するように、第2弁体103°を付勢する第2ばね104°とを有し、第2弁体103°の受圧面を、開弁時には小さく、開弁後は大きくなるようにして、制御対象物に負荷が加えられたときに伝達される力が所定値以下では、第2弁体103°が第2作動室102°内面から離間し、その後は、その力が所定値以下でも第2弁体103°が第2作動室102°内面から離間した状態を維持し得るものであるが、第2弁体103°の動きを遅延させる遅延機構は設けられていない。

[0055]

例えば、自動車のドアの開閉運動を制御する場合に、停止状態のドアに負荷が加えられると、本実施例に係る運動制御装置も、比較例に係る運動制御装置もともに、第2逆止弁100,100,が開弁するまでは、制動トルクが上昇していくが、制動トルクがピークに達して第2逆止弁100,100,が開弁すると、その直後に制動トルクが下降し、ドアの運動が開始される(図10,図11,図13及び図14参照)。この際、ドアの動作速度が速い場合には、ドアの運動を停止させるまで、制動トルクは再び上昇することなく低い値で維持される(図10及び図13参照)。従って、ドアを円滑に開閉動作させることができる。

[0056]

一方、ドアの動作速度が遅い(あまり速くない)場合には、比較例に係る運動制御装置では、ドアの運動を停止させるまでの間に、制動トルクの上昇・下降が短い周期で繰り返されることとなる(図14参照)。この現象は、第2弁体103′が第3小孔101′を開放した後、第2ばね104′の付勢力によって素早く押し戻されるため、第2逆止弁100′の開閉が短い周期で繰り返されることにより生じるものである。従って、ドアの開閉動作は断続的なものとなってしまう。

[0057]

これに対し、本実施例に係る運動制御装置では、第2逆止弁100の開弁後、第2弁体103が第2ばね104の付勢力により原位置へ復帰しようとしても、遅延機構の働きにより、すなわち、図7に示したように、第2弁体103の周囲に張り出した出張り103aが第2作動室102の内面に摺接して、第2弁体103の復帰動作に伴い第2作動室102から環流室60へ移動する流体の流量を少量に制限することができるため、原位置へ復帰するまでの第2弁体103の動きを遅くすることができる。従って、本実施例に係る運動制御装置によれば、ドアの動作速度が遅い場合、すなわち、第2逆止弁100を開弁させることはできるが、第2逆止弁100が開弁した状態を維持し得る程の動作速度には満たない場合でも、図11に示したように、制動トルクが上昇・下降を繰り返す周期を比較例よりも延長することができるので、ドアが断続的に動作する現象の発生を少なくして、ドアを円滑に開閉動作させることができる。

[0058]

また、本実施例に係る運動制御装置によれば、制御対象物と減衰機構との間に介在する 弾性部材120を有するため、例えば、図8に示したように、減衰機構が発揮する制動トルクがピークに達する直前に制御対象物の停止状態を解除して、その運動を適度に許すことができる。具体的には、第1逆止弁90が開弁する直前に至るまでは、弾性部材120が変形せず、ロータ20及び歯車130が回転しないため、制御対象物の停止状態を保持し、その後、制御対象物にさらに大きな負荷が加えられると、弾性部材120が変形して、歯車130のみを回転させる。これにより、制御対象物の運動が開始されるが、減衰機構が発揮する制動トルクがピークに達するまでは、弾性部材120の弾力を制御対象物に対して付与し得るため、制御対象物の急激な動きを抑えることができる。また、第1逆止弁90が開弁した直後においても、制御対象物が既に運動を開始しているため、制御対象物が勢いよく動き出すことがない。従って、本実施例に係る運動制御装置によれば、制御対象物が停止状態の解除後に勢いよく動き出すことをより確実に防ぐことができる。

[0059]

本発明の運動制御装置は、上記した自動車のドアに限らず、例えば、自動車以外の用途に用いられるドアにも適用することができるし、扉や蓋等にも適用できる。また、これらのドア、扉又は蓋等の開閉体は、回転運動するものに限定されず、直線運動するものであってもよい。

【図面の簡単な説明】

[0060]

- 【図1】図1は、本発明の一実施例に係る運動制御装置を示す断面図である。
- 【図2】図2は、図1におけるA-A部断面図である。
- 【図3】図3は、図1とは異なる角度からみた断面図である。
- 【図4】図4は、第1逆止弁及び第2逆止弁の閉弁状態を示す部分断面図である。
- 【図5】図5は、第1逆止弁の開弁状態を示す部分断面図である。
- 【図6】図6は、第2逆止弁の開弁状態を示す部分断面図である。
- 【図7】図7は、遅延機構の作用を説明するための図である。
- 【図8】図8は、制御対象物の動作速度が遅い場合の、実施例に係る運動制御装置の 特性を示すグラフである。
- 【図9】図9は、制御対象物の動作速度を途中で遅い速度から速い速度に変化させた 場合の、本実施例に係る運動制御装置の特性を示すグラフである。
- 【図10】図10は、制御対象物の動作速度が速い場合の、実施例に係る運動制御装置の特性を示すグラフである。
- 【図11】図11は、制御対象物の動作速度が遅い(あまり速くない)場合、すなわち、第2逆止弁を開弁させることはできるが、第2逆止弁が開弁した状態を維持し得る程の動作速度には満たない場合の、実施例に係る運動制御装置の特性を示すグラフである。
- 【図12】図12は、比較例に係る運動制御装置の第2逆止弁の構成を示す部分断面図である。
- 【図13】図13は、制御対象物の動作速度が速い場合の、比較例に係る運動制御装置の特性を示すグラフである。
- 【図14】図14は、制御対象物の動作速度が遅い(あまり速くない)場合の、比較 例に係る運動制御装置の特性を示すグラフである。

【符号の説明】

[0061]

- 10 ケーシング
- 11 筒状部
- 12 内壁部
- 12a 孔部
- 12b 凹部

- 13 上蓋
- 13a 貫通孔
- 14 下蓋
- 20 ロータ
- 31,32 隔壁
- 41,42 流体室
- 51,52 ベーン
- 60 環流室
- 71,72 シール部材
- 8.1 第1通路
- 82 第2通路
- 90 第1逆止弁
- 91 第1小孔
- 92 第1作動室
- 93 第1弁体
- 93a 出張り
- 94 第1ばね
- 95 第2小孔
- 100 第2逆止弁
- 101 第3小孔
- 102 第2作動室
- 103 第2升体
- 104 第2ばね
- 110 第3逆止弁
- 111 第4小孔
- 112 第3作動室
- 113 第3弁体
- 114 第3ばね
- 120 弾性部材
- 130 歯車

【曹類名】図面 【図1】

【図2】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

ページ: 1/E

【書類名】要約書

【要約】

【課題】制御対象物が意図しない速さで動作することを防ぐことができる運動制御装置を 提供する。

【解決手段】本発明は、減衰機構と、該減衰機構の作動を制御する制御手段とを有する運動制御装置において、制御手段が、第1逆止弁90と第2逆止弁を備えることを特徴とする。第1逆止弁90は、第1流出口として機能する第2小孔95が微小孔からなるとともに、停止状態の制御対象物に負荷が加えられたときに伝達される力が所定値に達すると、第1弁体93が第1流入口として機能する第1小孔91を開放する。第2逆止弁100は、第2弁体103の受圧面を、開弁時には小さく、開弁後は大きくなるようにして、制御対象物に負荷が加えられたときに伝達される力が所定値以下では、第2弁体103が第2作動室102内面に当接した状態を維持し、その力が所定値を超えると、第2弁体103が第2作動室102内面から離間し、その後は、その力が所定値以下でも第2弁体103が第2作動室102内面から離間した状態を維持し得る。

【選択図】図3

-ジ: 1Æ

認定 · 付加情報

特許出願の番号

特願2004-228536

受付番号

5 0 4 0 1 3 1 9 0 5 4

書類名

特許願

担当官

第三担当上席

0092

作成日

平成16年 8月 5日

<認定情報・付加情報>

【提出日】

平成16年 8月 4日

特願2004-228536

出 願 人 履 歴 情

識別番号

[000198271]

1. 変更年月日

1991年 7月10日

[変更理由]

名称変更

住 所

東京都墨田区本所1丁目34番6号

氏 名 株式会社ソミック石川