From "Atomic Transition Probabilities," 1966, the following transitions correspond to the $H-\alpha$ line of the hydrogen spectrum.

Transition	λ(Å)	$A_{ki} (\operatorname{second}^{-1})$
2p-3s	6562.86	6.313×10^6
2s-3p	6562.74	2.245×10^{7}
2p-3d	6562.81	6.465×10^{7}

 A_{ki} is the spontaneous emission rate for $k \to i$. For H- α , k = 3 and i = 2. Orbital names correspond to the following azimuthal quantum numbers ℓ .

Name	ℓ
s	0
p	1
d	2

Because of the magnetic quantum number m_{ℓ} there are multiple ways for each orbital transition to occur. $(m_{\ell} = 0, \pm 1, \dots, \pm \ell)$

There are three transitions for $3s \to 2p$.

$$\psi_{3,0,0} \to \psi_{2,1,1}$$

 $\psi_{3,0,0} \to \psi_{2,1,0}$
 $\psi_{3,0,0} \to \psi_{2,1,-1}$

There are three transitions for $3p \rightarrow 2s$.

$$\psi_{3,1,1} \to \psi_{2,0,0}$$

$$\psi_{3,1,0} \to \psi_{2,0,0}$$

$$\psi_{3,1,-1} \to \psi_{2,0,0}$$

Finally, there are fifteen transitions for $3d \rightarrow 2p$.

$\psi_{3,2,2} \to \psi_{2,1,1}$	$\psi_{3,2,2} \to \psi_{2,1,0}$	$\psi_{3,2,2} \to \psi_{2,1,-1}$
$\psi_{3,2,1} \to \psi_{2,1,1}$	$\psi_{3,2,1} \to \psi_{2,1,0}$	$\psi_{3,2,1} \to \psi_{2,1,-1}$
$\psi_{3,2,0} \to \psi_{2,1,1}$	$\psi_{3,2,0} \to \psi_{2,1,0}$	$\psi_{3,2,0} \to \psi_{2,1,-1}$
$\psi_{3,2,-1} \to \psi_{2,1,1}$	$\psi_{3,2,-1} \to \psi_{2,1,0}$	$\psi_{3,2,-1} \to \psi_{2,1,-1}$
$\psi_{3,2,-2} \to \psi_{2,1,1}$	$\psi_{3,2,-2} \to \psi_{2,1,0}$	$\psi_{3,2,-2} \to \psi_{2,1,-1}$

For each H- α line, an average A_{ki} is computed by summing over A_{ki} for individual transitions and dividing by the number of distinct initial states. For example, $3d \to 2p$ has five distinct initial states, so the divisor is five.

 A_{ki} is computed from the following formula.

$$A_{ki} = \frac{e^2}{3\pi\varepsilon_0\hbar c^3} \,\omega_{ki}^3 \,|r_{ki}|^2$$

The transition frequency ω_{ki} is given by Bohr's frequency condition.

$$\omega_{ki} = \frac{1}{\hbar} (E_k - E_i)$$

The transition probability (multiplied by a physical constant) is

$$|r_{ki}|^2 = |x_{ki}|^2 + |y_{ki}|^2 + |z_{ki}|^2$$

For wave functions ψ in spherical coordinates we have the following transition amplitudes.

$$x_{ki} = \int \psi_k^* (r \sin \theta \cos \phi) \, \psi_i \, dV$$
$$y_{ki} = \int \psi_k^* (r \sin \theta \sin \phi) \, \psi_i \, dV$$
$$z_{ki} = \int \psi_k^* (r \cos \theta) \, \psi_i \, dV$$

Using Eigenmath we obtain the following values for average A_{ki} .

$$A_{3s2p} = 6.31358 \times 10^6 \text{ second}^{-1}$$

 $A_{3p2s} = 2.24483 \times 10^7 \text{ second}^{-1}$
 $A_{3d2p} = 6.4651 \times 10^7 \text{ second}^{-1}$

These values are essentially identical to the values shown in the table.

Some of the $|r_{ki}|^2$ are zero, indicating forbidden transitions.

The following table shows $|r_{ki}|^2$ for each transition (multiply given values by $a_0^2 = 2.8 \times 10^{-21}$ meter²).

Initial state	Final state	Final state	Final state	Final state
	$\psi_{2,0,0}$	$\psi_{2,1,1}$	$\psi_{2,1,0}$	$\psi_{2,1,-1}$
$\psi_{3,0,0}$	_	0.293534	0.293534	0.293534
$\psi_{3,1,1}$	3.13103	_	_	_
$\psi_{3,1,0}$	3.13103	_	_	_
$\psi_{3,1,-1}$	3.13103	_	_	_
$\psi_{3,2,2}$	_	9.01737	0	0
$\psi_{3,2,1}$	_	4.50868	4.50868	0
$\psi_{3,2,0}$	_	1.50289	6.01158	1.50289
$\psi_{3,2,-1}$	_	0	4.50868	4.50868
$\psi_{3,2,-2}$	_	0	0	9.01737