

Overview of Device SEE Susceptibility from Heavy Ions

15 January 1998

Prepared by

D. K. NICHOLS, J. R. COSS, K. P. McCARTY, H. R. SCHWARTZ,
L. S. SMITH, G. M. SWIFT, and R. K. WATSON
Jet Propulsion Laboratory
Pasadena, CA

and

R. KOGA, W. R. CRAIN, K. B. CRAWFORD, AND S. J. HANSEL
Space and Environment Technology Center
Technology Operations
The Aerospace Corporation

Prepared for

SPACE AND MISSILE SYSTEMS CENTER
AIR FORCE MATERIEL COMMAND
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

Engineering and Technology Group

DATA QUALITY INSTITUTE
APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

19980605 109
601

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Contract No. F04701-93-C-0094 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd., Suite 6037, Los Angeles AFB, CA 90245-4687. It was reviewed and approved for The Aerospace Corporation by A. B. Christensen, Principal Director, Space and Environment Technology Center. Maj. J. W. Cole was the project officer for the Mission-Oriented Investigation and Experimentation Program (MOIE) program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

J. W. Cole, Maj. USAF
SMC/AXES

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (<i>Leave blank</i>)			2. REPORT DATE 15 January 1998	3. REPORT TYPE AND DATES COVERED
4. TITLE AND SUBTITLE Overview of Device SEE Susceptibility from Heavy Ions			5. FUNDING NUMBERS F04701-93-C-0094	
6. AUTHOR(S) Nichols, D.K., Coss, J. R. McCarty, K. P., Schwartz, H. R. , Smith, L. S., Swift, G. M., Watson, R. K., Jet Propulsion Laboratory; Koga, R., Crain, W.R., Crawford, K.B. and Hansel, S.J. The Aerospace Corporation				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) The Aerospace Corporation Technology Operations El Segundo, CA 90245-4691			8. PERFORMING ORGANIZATION REPORT NUMBER TR-93(3940)-4	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Space and Missile Systems Center Air Force Materiel Command 2430 E. El Segundo Blvd. Los Angeles Air Force Base, CA 90245			10. SPONSORING/MONITORING AGENCY REPORT NUMBER SMC-TR-98-16	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited			12b. DISTRIBUTION CODE	
13. ABSTRACT (<i>Maximum 200 words</i>) A fifth set of heavy ion single event effects (SEE) test data have been collected since the last IEEE publications (1,2,3,4) in December issues for 1985, 1987, 1989, and 1991. Trends in SEE susceptibility (including soft errors and latchup) for state-of-the-art parts are evaluated.				
14. SUBJECT TERMS Heavy ion accelerator Heavy ion irradiation effects Latchup		Linear energy transfer	Single event effects Single event upset Space-borne electronics	15. NUMBER OF PAGES 16
		Microcircuits Radiation effects		16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified		18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT

OVERVIEW OF DEVICE SEE SUSCEPTIBILITY FROM HEAVY IONS

D. K. Nichols, J. R. Coss, K. P. McCarty, H. R. Schwartz,
L. S. Smith, G. M. Swift, R. K. Watson
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

and

R. Koga, W. R. Crain, K. B. Crawford, S. J. Hansel
Space Sciences Laboratory
The Aerospace Corporation
El Segundo, California

Abstract

A fifth set of heavy ion single event effects (SEE) test data have been collected since the last IEEE publications (1, 2, 3, 4) in December issues for 1985, 1987, 1989 and 1991. Trends in SEE susceptibility (including soft errors and latchup) for state-of-the-art parts are evaluated.

Introduction

Ongoing SEE test programs at JPL ,The Aerospace Corporation, the European Space Agency (ESA), CNES and other organizations are continuing to assess specific part performance for interplanetary and satellite environments and to establish SEE response trends of an ever-increasing body of device data.

In 1985, Nichols et al (Ref. 1) published the first nearly comprehensive listing of SEE test data for 186 parts. This presentation was updated in 1987 (Ref. 2) with the publication of data for 83 additional parts, in 1989 (Ref. 3) with data for 154 parts, and in 1991 (Ref. 4) with data for 182 parts. In this paper, the authors extend the data base for 165 new parts. As before, the data are collected according to technology, function and manufacturer in order to identify trends, generalizations and data gaps.

Testing Approaches

The experimental procedures, such as those used by JPL and The Aerospace Corporation, are evolutionary and are described in detail from time to time in December issues of IEEE Transactions on Nuclear Science (5,6) or in in-house reports. In general, procedures comply with the guidelines for SEE testing set forth by the ASTM F1.11 document (7). They also comply with a JEDEC 13.4 document in preparation, "Test Procedure for the Measurement of Single Event Effects in Semiconductor Devices from Heavy Ion Irradiation."

Organization and Scope of Data

This paper summarizes soft error and latchup experimental test data from the Jet Propulsion Laboratory (JPL), The Aerospace Corporation (A), John Hopkins Applied Physics Laboratory (JH), Centre National D'Etudes Spatiales (CNES, France), European Space Agency (ESA) and other SEE testers. These data are provided directly to JPL or were otherwise made available to the community during the two-year period from January, 1991, through December, 1992. We are pleased to include smaller SEE data sets generated by all U. S. and foreign researchers when these data are made directly available to us. Not included are proprietary data generated by subcontractors who used JPL hardware. Also omitted are now fairly extensive data sets on power transistor burnout obtained by JPL, Rockwell, Boeing and others-- such data require a significantly different organization.

The SEE data presented here and in the previous four reports (1,2,3, 4) represent a substantial majority of all test data obtained on SEE throughout the world. Some additional data may exist in other articles of this publication (IEEE-Nuclear Science [Dec. 1993] or this conference's IEEE Workshop Record), in other journals or in published and unpublished presentations of SEE symposia.

The data from all organizations are summarized and collected together even though there are differences in the data from each organization. For example, JPL defines the threshold LET as that value of LET where soft errors are first counted at fluences of 10^6 ions/cm²; Aerospace now defines their LET threshold as occurring at that point where the measured upset cross section is 0.01 times the measured maximum cross section, CNES reports a threshold at 0.1 times the saturated cross section. JPL's definition virtually guarantees no upset below threshold but results in an overestimate of error rate if the cross section is erroneously assumed to be constant at all LETs greater than the threshold LET. Specifying a threshold LET at a fraction of the saturated cross section attempts to approximate the error rate better, but it introduces an arbitrary factor (to account for the slope of the

cross section vs. LET) and an assumption that the saturated value is known and/or achieved with the highest LET test ions.

The best way to calculate error rates is to use the full curve of cross section vs. LET, which may be available from the parent test organization^[1], and integrate it over all angles and all ions of various LETs. But even this method, which involves the use of a computer, relies critically on what assumptions are made about grazing ion impacts and the dimensions of the device cell's sensitive volume.

All data are presently divided into two tables. Table 1 has been revised to include all SEE (soft error) data for both MOS/CMOS and bipolar devices. Table 2 exhibits data for "Latchup Tests Only". All data listed here represent a substantial abbreviation and ignore statistical features altogether. LET limits are for nominal effective values without correction for degradation that can occur when an ion traverses device overlayers. Gold data, in particular, are seldom as damaging as one would expect on the basis of nominal LET and such data are labeled when known, and Au testing is usually not recommended. SEE tests use a dynamic nominal bias (often 4.5 or 5.0 V); latchup tests are usually performed at the maximum value of the nominal bias range (e.g. 5.5V) -- a condition usually (but not always) enhancing the possibility of latchup. Reported data were taken at room temperature or ambient temperature; higher test temperature measurements may exist for some parts. In some instances, data on transients is noted, which may or may or may not impact electronics down the line. Hence, a system designer interested in a specific part is again urged to contact the appropriate test organization for further information.

Users are cautioned that manufacturers (Appendix I defines manufacturer abbreviations) may often change their process, and resultant SEE susceptibility, without changing the part number or notifying tester organizations. Hence, a test of flight parts is always a good policy.

Trends & Limitations

Trends and device comparisons in the recent data are offered in the "Remarks" column of Tables 1 and 2 and in the following section. However, the organized tabular format is designed to facilitate comparisons. Special studies (such as variation of SEE response with temperature) or a comparison between high energy (GANIL) heavy ion data and that from the lower energy Berkeley 88-inch cyclotron and BNL Van de Graaff are beyond the scope of this presentation. In addition, test data for the whole class of catastrophic failures of power transistors, both MOSFET and bipolar, has recently been organized by Nichols under a substantially different format.

Some colleagues have commented that a measure of the shape of the cross sections vs. LET might be useful-- such as given by a tabulation of the Weibull parameters. Others point out that it may be more difficult to assure that such parameters are properly derived and applied than it is to calculate SEE rates directly from known (and readily available) experimental cross sections.

Program managers concerned with critical system reliability issues will ultimately need an appropriate set of cross sectional data to assess statistical features and focus on specific answers. Ballpark estimates will also have a place, however, by helping assure that expensive experiments are limited to only critical SEE issues.

An Evaluation of SEE Data

Microprocessors

JPL tested a large body of SEE data for microprocessors this year, mostly with 16-bit and 32-bit capability. Soft error thresholds are consistently low for all high-capability machines, with $\text{LET}(\text{th})$ ranging from approximately 1 to 10 MeV/(mg/cm²). Important exceptions are two 16-bit devices by Marconi (GEC-Plessey), using their well-established SEE-resistant SOS technology. Most microprocessors are not very susceptible to latchup although there are exceptions (e.g. the IDT R3000 and R3000A.) The Intel CHMOSIV technology is marginally susceptible to latchup, whereas its earlier CHMOSIII technology was not. There is a very large set of data from ESA and Harris on the R3000 and R3000A RISC developed by many manufacturers.

Questions raised last year regarding the best approach to microprocessor testing remain open. The purists argue that static testing of known registers in a known state is the best approach to understanding SEE effects. JPL presently pursues this view and has demonstrated that not all elements of a microprocessor are equally SEE-susceptible. The pragmatists claim that testing with dynamic programs (the more the better) will usually show that static tests provide an unrealistic worst case.

Some data taken by European groups at GANIL, the higher-energy (10 to 100 MeV/amu) cyclotron in France, are available. The results suggest that these ions, which are more representative of interplanetary cosmic rays, are more damaging than the familiar lower-energy (2 MeV/amu) ions provided by Brookhaven's Van de Graaff and Berkeley's 88-inch cyclotron. Direct comparisons between energy regimes are few.

It will also be observed in Table 1 that there are data for several controllers and processors of various types. They have similarly low soft error thresholds [$< 10 \text{ MeV}/(\text{mg}/\text{cm}^2)$] and varying latchup susceptibility.

[1] JPL data, including more recent results, may be accessed directly from JPL's computer data base, RADATA.

Analog-to-Digital Converters (ADCs)

There are several data sets for ADCs and data for two digital-to-analog converters (DACs). Much of the data were taken by JPL in a quest for the least SEE-susceptible 12-bit ADC. The MAXIM devices were clear standouts in this subcategory, but one observes that a completely hard ADC or DAC is a rarity. This is one device type where knowledge of how the device ties in with the system is an all-important consideration in assessing its ultimate suitability.

Static RAMs (SRAMs)

There is much new data to add to the accumulation for SRAMs--with device sizes up to 4 Mbits. All devices employ variations of CMOS technology this test period, and SOI and SOS offer markedly superior resistance to soft errors and latchup. Epi technology (where the epi layer is less than ~10 microns thick) is a good guarantee against latchup but offers no significant advantages against soft errors. A tendency toward stuck bits was observed in the 0.5 micron feature-size Hitachi 4 M SRAM.

Other RAMS

ESA tested a large set of 4M DRAMs and observed a consistent very low soft error threshold typical of this device function. Some non-volatile RAMs were tested-- with two Ferroelectric RAMs (FRAMs) for the first time. Some bipolar and CMOS PROMs exhibited relatively high SEU thresholds, but one should note that PROMs are occasionally susceptible to latchup.

Gate Arrays & Bus Controllers

Several gate arrays, configured in different ways, were tested. It is difficult to sort out the large variability in soft error threshold-- even among devices made by the same manufacturer. It is encouraging that no cases of latchup were reported.

Latchup Data

Tests for latchup only are much easier to set up than those designed to measure soft errors as well. Such data are given separately in Table 2-- primarily for devices with different variations of CMOS technology. It has so far held true that bipolar devices will not latchup with heavy ions. However, latchup has occurred in bipolar devices when exposed to high intensity gamma pulses, and the requisite pnpn parasitic structure exists.

The LET thresholds listed in Table 2 are for latchup only, and cross section data is rarer because of the difficulty in obtaining repeat measurements where catastrophic burnout

and overheating may occur. Also presented are data for GANIL which appears to have a devastating effect-- including latchup in several devices with epi technology. Once again a need to compare data on identical parts for both high energy GANIL ions and lower-energy ions is manifest.

JPL was able to employ Cf-252 usefully for the first time-- as a screen to reject some ADCs because of latchup. It is cautioned, however, that Cf-252 can never be used to pass a part for latchup because of the possibility that the fission ions do not have adequate range to maintain an adequate LET while generating a funnel at the well-substrate junction.

Latchup observed by MIT-Lincoln Lab in the NSC driver/receivers 26C31 & 26C32, a pair of linear devices, is explained by Sferrino [9]. He notes that the chips have tri-stated digital outputs, comprising an npn and pnp transistor in series-- the familiar structure for latchup paths. This result suggests that other transistor arrangements, such as silicon-controlled-rectifiers, may be susceptible to latchup.

Conclusions

The new data presented here can be combined with data given in References (1, 2, 3 and 4) to develop certain generalizations useful for protecting flight electronics from SEE. Hard technologies and unacceptably soft technologies can be flagged. In some instances, specific tested parts can be taken as candidates for key functions-- such as microprocessing or memory. As always with radiation test data, specific test data for qualified flight parts is recommended for critical applications. Calculations of accurate SEE rates will require the assistance of a computer code, a well-defined environment [in terms of flux vs. LET] and a complete device characterization [cross section vs. LET at the appropriate temperature.] Evaluation of catastrophic effects requires its own statistical treatment, in which flares are considered. The recent concern of JPL and others with power transistor burnout and single event gate rupture is beyond the scope of this compendium.

Acknowledgments

At JPL special thanks are due to Charles Barnes, Radiation Effects & Testing supervisor, and Mike O'Connor.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Special thanks are also extended by all to Dr. Peter Thieberger and staff at the Brookhaven National Laboratory Van de Graaff facility and to Dr. Claude Lyneis, Peggy McMahan and staff at the Lawrence Berkeley Laboratory, 88-inch cyclotron facility-- for their excellent support.

Appendix I – Manufacturer Abbreviations

ACT	Actel Corp.
ADA	Advanced Analog
ADI	Analog Devices Inc.
ALS	Allied Signal
ALT	Altera Corp.
AMD	Advanced Microdevices Corp.
ATM	Atmel
ATT	American Tel & Tel
BUB	Burr-Brown Research
CRY	Crystal Semiconductor Inc.
CYP	Cypress Corp.
DAT	Datel
DDC	DDC ILC Data Device Corp.
EDI	EDI Corp.
FER	Ferranti
FUJ	Fujitsu Ltd.
GEC	GE
HAR	Harris Corp., Semiconductor Div.
HIT	Hitachi Ltd.
HON	Honeywell Inc.
IBM	IBM
IDT	Integrated Device Technologies, Inc.
INM	INMOS Corporation
INT	Intel Corp.
LDI	Logic Devices Inc.
LTC	Linear Technology Corp.
LSI	LSI Logic Corp.
MED	Marconi Electronic Devices
MCN	Micron Technologies
MIT	Mitsubishi
MMI	Monolithic Memories Inc.
MOT	Motorola Semiconductor Products Inc.
MPS	Micro Power System
MTA	Matra Harris Semiconductor
NAT	MAXIM
NEC	Natrel Engineering
NSC	Nippon Electric Corp.
OWI	National Semiconductor Corp.
PFS	Omni-Wave, Inc.
PLS	Performance Semiconductor Corp.
PMI	Plessey Semiconductors
RAY	Precision Monolithics, Inc.
RCA	Raytheon Co., Semiconductor Division
RTN	Radio Corporation of America
SAM	Ramtron
SEI	Samsung
SEQ	Seiko
SGN	SEEQ Technology Inc.
SIE	Signetics Corp.
SIL	Siemens Inc.
SIP	Siliconix
SLG	Sipex
SNL	Silicon General
SNY	Sandia National Laboratories
SOR	Sony Corp.
TEL	SOREP
TIX	Teledyne Crystalronics
TMS	Texas Instruments Inc.
	Thomson Military & Space, France

TOS	Toshiba
TRW	TRW Inc.
UTM	United Technologies Microelectronics Center
WAF	WaferScale
XIC	Xicor Inc.
XIL	Xilinx Corp.
ZOR	Zoran
ZYR	Zyrel

Appendix II – Test Organizations

A	The Aerospace Corporation; El Segundo, CA
BPS	Boeing Physical Sciences Research Center, Seattle
CLM	Clemson University; Clemson, SC
CNES	Centre National d'Etudes Spatiales; Toulouse, France
ESA	European Space Agency-- several facilities
GD	General Dynamics
GDD	NASA Goddard Space Flight Center; Greenbelt, MD
GE	GETSCO, Philadelphia
HAR	Harris Semiconductor, Melbourne, FL
HON	Honeywell, Clearwater, FL
J	Jet Propulsion Laboratory (JPL); Pasadena, CA
JH	John Hopkins Applied Physics Laboratory; Laurel, MD
LIN	Lincoln Laboratories, M. I. T.; Cambridge, MA
MMS	Matra Marconi Space; Vélizy, France
NASA	NASA
NRL	Naval Research Laboratories, Washington D. C.
R	Rockwell International (Anaheim, CA)
SSS	S-Cubed, San Diego
TRW	TRW Space and Defense Sector (Los Angeles, CA)

Appendix III – Test Facilities

88-in.	= 88-inch cyclotron, Lawrence Berkeley Laboratory
BNL	= Tandem Van de Graaff, Brookhaven National Laboratory, Long Island, NY
Cf-252	= A Cf-252 fission source
ESA	= European Space Agency-- several sites
GANIL	= Cyclotron for Heavy Ions; Caen, France
HAR	= Van de Graaff at Harwell, England
IPN	= Tandem Van de Graaff, Institut de Physique Nucléaire; Orsay, France
UW	= Tandem Van de Graaff, University of Washington, Seattle

References

- [1] D. K. Nichols, W. E. Price, W. A. Kolasinski, R. Koga, J. C. Pickel, J. T. Blandford, A. E. Waskiewicz, "Trends in Parts Susceptibility to Single Event Upset from Heavy Ions," IEEE Trans. on Nuc. Sci., NS-32, No. 6, 4189 (Dec. 1985)
- [2] D. K. Nichols, L. S. Smith, W. E. Price, R. Koga, W. A. Kolasinski, "Recent Trends in Parts SEU Susceptibility from Heavy Ions", IEEE Trans on Nuc. Sci., NS-34, No. 6, 1332 (Dec. 1987)

- [3] D. K. Nichols, L. S. (Ted) Smith, George A. Soli, R. Koga, W. A. Kolasinski, "Latest Trends in Parts SEP Susceptibility from Heavy Ions," IEEE Trans. on Nuc. Sci., NS-36, No. 6, 2388 (Dec. 1989)
- [4] D. K. Nichols, L. S. Smith, H. R. Schwartz, G. Soli, K. Watson, R. Koga, W. R. Crain, K. B. Crawford, S. J. Hansel and D. D. Lau, "Update on Parts SEE Susceptibility from Heavy Ions," IEEE Trans. on Nuc. Sci., NS-38, No. 6, 1529 (Dec. 1991)
- [5] R. Koga, W. A. Kolasinski, J.V. Osborn, J. H. Elder & R. Chitty, "SEU Test Techniques..." IEEE Trans. on Nuc. Sci., NS-35, No. 6, 1638 (Dec. 1988)
- [6] D. K. Nichols, J. R. Coss, L. S. Smith, B. Rax, M. Huebner, K. Watson, "Full Temperature Characterization of Two Microprocessor Technologies", *ibid* p 1619 (Dec. 1988)
- [7] ASTM Designation: F 1192-90, "Standard Guide for the Measurement of SEP Induced by Heavy Ion Irradiation of Semiconductor Devices" ASTM, 1919 Race St., Philadelphia, Pa. 19103
- [8] R. Koga, W. R. Chin, S. J. Hansel, S. D. Pinkerton, T. K. Tsubota, "The Impact of ASIC Devices on the SEU Vulnerability of Space-Borne Computers", Preprint, IEEE, Trans. on Nuc. Sci., NS-39, No. 6 (Dec. 1992)
- [9] Vince Sferrino, MIT Lincoln Lab, private communication.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

TABLE 1. SEU DATA – 1991-1992 (MOS & BIPOLEAR DEVICES)

Test Org. ^{****}	Device	Function	Technology	MT [*]	Bits	Effective LET ^{**}	Cross Section (cm ²) ^{***}	Cross Section Per Bit (sq μm)	Facility ^{****}	Remarks
J	80C95RH	MicroP 8-bit	CMOS/epi	HAR	95 bits tested	30	–	65 @ LET=60	BNL	7/91. No LU<120. See also J: 6/87.
J	81C55RH	Peripheral 8085	CMOS/epi	HAR	~2K	40	4E-4[1]	200	88-In	9/91. [1] RAM data at high LET.
CNES	SBP989	MicroP 16-bit	Bipolar/[L] ¹	TIX	–	8	1E-2	–	GANIL	11/90. Chapuis.
ESA	80C86-2/B	MicroP 16-bit	CMOS/epi	INT	–	-1	–	1000 @ LET=9	GANIL	Harboe-Sorensen IEEE NS 7/92
ESA	80C86	MicroP 16-bit	CMOS/epi Mask 1860	HAR	–	-1	–	2000 @ LET=9	GANIL	Harboe-Sorensen IEEE NS 7/92
ESA	80C86	MicroP 16-bit	CMOS/epi Mask 3884	HAR	–	-1	–	3000 @ LET=9	GANIL	Harboe-Sorensen IEEE NS 7/92
ESA	80C86	MicroP 16-bit	CMOS/epi Masks 1860 & 1750	HAR	–	Test data taken with low energy Harwell Tandem Van de G. gives much smaller cross sections than preceding data.	–	250[1]; 450[2]	BNL	9/92 [1]=AX, BP, ES [2] = Relocation, SPR, DPR, TCR
J	N80DC186	MicroP 16-bit	CHMOS III	INT	~600	9/33	–	250[1]; 450[2] [LET=61]	BNL	6/92. No LU with Au @ 42° angle. See proceeding.
GE	80C186	MicroP 16-bit	CHMOS III	INT	510 of 752	4	–	20[LET=13]	BNL	6/92. LU<100. 10/91
A	MG80C186	MicroP 16-bit	CHMOS	INT	–	12	1E-3	–	88-In	No LU<100. 10/91
A	MD82510	UART	CHMOS/SOS 3-chips	INT	–	~10	–	4000	88-In	No LU<100. 7/91
JH	1750A	MicroP 16-bit	CHMOS/SOS 3-chips	PFS	all 3 chips	19	3E-4 IMMJ @ LET=30	5	BNL	92IEEE Workshop. J. Klinison (7/92)
J	MA31750	MicroP 16-bit	CMOS/SOS	MED[1]	–	175	No upset	No upset	BNL	6/92. LU<175. [1] GEC-Plessey
ESA	MAS281	MicroP 16-bit	CMOS/SOS	MED	–	>60	No upset	No upset	GANIL	Consistent with JPL data of 5/92 2.5 μm.
JH	RTX2010RH	MicroP 16-bit	TSOS-4 process	HAR	–	150(AU)	–	–	BNL	No LU. 92IEEE Workshop (7/92)
J	80386	MicroP 32-bit	CMOS	AMD	–	>>2.5	–	–	BNL	7/91. LU(W)<24.
GDD	J	80386	MicroP 32-bit	CHMOSIV	INT	272	3.5±1	–	BNL	7/92. LU<27. 7E-5 cm ² .
CNES	68020	MicroP 32-bit	CHMOS/epi	MOT	varies	<1.7	1E-2[1]	–	IPN	92IEEE Workshop. 1=register test
CNES	68020	MicroP 32-bit	CHMOS/ulk	MOT	varies	<1.7	1E-2[1]	–	IPN	92IEEE Workshop. 1=register test
HAR	R3000	MicroP 32-bit	Adv. CMOS	PFS	~1300	<3.4	1E-3	–	BNL	5/91. No LU<120. D. Vail (HAR). Table 2. VLSI MPS RISC.
HAR	R3000	MicroP 32-bit	Adv. CMOS	SIE	~1300	6	1E-3	–	BNL	5/91. No LU<120. D. Vail (HAR). Table 2. VLSI MPS RISC.
ESA	R3000	MicroP 32-bit	CEMOS IV	IDT	736 (23 reg)	–	–	–	BNL	LU(W)<3.3. RISC Harboe-Sorensen 92IEEE Workshop
ESA	R3000	MicroP 32-bit	CMOS	LSI	736 (23 reg)	~3	–	300	BNL	No LU>60. RISC Harboe-Sorensen. 92IEEE Workshop
ESA	R3000	MicroP 32-bit	PACE I	PFS	736 (23 reg)	~6	–	100	BNL	No LU>60. RISC Harboe-Sorensen. 92IEEE Workshop
ESA	R3000	MicroP 32-bit	Adv. CMOS	SIE	736 (23 reg)	<10	–	100	BNL	No LU>60. RISC Harboe-Sorensen. 92IEEE Workshop
ESA	R3000	MicroP 32-bit	CMOS	NEC	736 (23 reg)	<10	–	120	BNL	LU(W)=60. RISC Harboe-Sorensen. 92IEEE Workshop
ESA	R3000A	MicroP 32-bit	CEMOS V	IDT	736 (23 reg)	~6	–	>100	BNL	LU(W)>27. RISC Harboe-Sorensen. 92IEEE Workshop
ESA	R3000A	MicroP 32-bit	HCmos	LSI	736 (23 reg)	~8	–	100	BNL	LU(W)=60. RISC Harboe-Sorensen. 92IEEE Workshop
ESA	R3000A	MicroP 32-bit	PACE II	PFS	736 (23 reg)	~8	–	120	BNL	No LU>60. RISC Harboe-Sorensen. 92IEEE Workshop
ESA	R3000A	MicroP 32-bit	Adv. CMOS	SIE	736 (23 reg)	~8	–	200	BNL	No LU>60. RISC Harboe-Sorensen. 92IEEE Workshop
CNES	L64730	DCT Proc.	CMOS	LSI	–	8	2E-3	–	GANIL	92IEEE Workshop Dufour. 7/92
BPS	87C51FB/ 87C51FC	MicroC 8-bit	CHMOS III	INT	-2300 total	-3[1% sat]	–	400[1]	88-In	8/92 This is non-hard version of 80C51. Oberig.

^{*} See listing of abbreviations in Appendix I.^{**} LET is Linear Energy Transfer = the density of ionization along an ion's path in MeV/(mg/cm²).^{***} See listing of abbreviations in Appendix III.^{****} See listing of abbreviations in Appendix II.^{****} Unless otherwise noted, the cross section (upsets/influence per device) is given for 240-380 MeV Kr or Br at normal incidence, having an LET=36 to 40 MeV/(mg/cm²).[1]=IRAMDRAM LU=10; 1E-3 cm².

TABLE 1. (Cont'd)

Test Org.	Device	Funktion	Technology	Mfr.*	Bits	Effective LET*	Device Cross Section (cm ²)**	Cross Section Per Bit (sq μm)	Facility***	Remarks
GDD	82280	DMA Contr. 32-bit	CMOS III	INT	900	<11	>1E-4	-	BNL	IEEE92 Workshop Record, p1.
ESA	R3010A	FP Accel. Coprocessor	CMOS V	IDT	1024 (32 reg.)	<8	-	>100	BNL	No LU>27. Harboe-Sorensen 92IEEE Workshop
ESA	R3010A	FP Accel. Coprocessor	HCMOS	LSI	1024 (32 reg.)	>8	-	100	BNL	LU=27. Harboe-Sorensen 92IEEE Workshop
ESA	R3010A	FP Accel. Coprocessor	-	PFS	1024 (32 reg.)	<6	-	>40	BNL	No LU>27. Harboe-Sorensen 92IEEE Workshop
ESA	R3010A	FP Accel. Coprocessor	Vdly. CMOS	SIE	1024 (32 reg.)	>6	-	200	BNL	No LU>60. Harboe-Sorensen 92IEEE Workshop
ESA	R30387-16	Coprocessor	CMOS IV	INT all 640	4	-	20[LET=24]	-	BNL	10/92. See Table 2. LU(h)=24 to 37.
GE	CNES 68882	FP Coproc. 32-bit	CMOS/epi	MOT	varies	3	1E-2[1]	-	IPN	92IEEE Workshop. 1=register test
CNES	68882	FP Coproc. 32-bit	CMOS	MOT	varies	3	1E-2[1]	-	IPN	92IEEE Workshop. 1=register test
MMS	TMS320C25	DSP	CMOS	TIX(F)?	[Ref 1]	7	4E-4	-	GANIL	Dutour, 92IEEE Workshop. (1)=MPY test program;
JH	ADSP2100A	DSP	CMOS/epi commercial	ADI	-	13	5E-3	-	BNL	(2)=RAM test. LU=31, 1E-4 cm ² .
JH	ADSP2100A	DSP	CMOS/epi 13 μm	ADI	-	7	3E-4	-	BNL	LU=3.5, 1E-4 cm ² .
NRL	ADSP2100A	DSP	CMOS/epi 12.5 μm	ADI	531	8	-	300	IPN	JH also reports that an experimental version of the above, having a different substrate, exists with No LU>120. (See J. Kinnison, IEEE NS Doc 91, p 139B). Availability not known.
NRL	ADSP2100A	DSP	CMOS/epi 13 μm	ADI	-	7	3E-4	-	BNL	No LU>>38, but a 17 μm epi std. production part latched up easily. M. Delaunay - 1/91.
ESA	ADSP2100A	DSP	CMOS/epi 12.5 μm	ADI	-	-	-	-	IPN	LU=12; 2E-5 cm ² . Harboe-Sorensen IEEE NS Dec 92, p 441. See above.
J	HSRD1056	Reactive Dg. Conv.	Hybrid RH CMOS	NAT	16 tested	<13	5E-5	-	BNL	12/91. No LU>110.
SSS	DAC9408	8-bit DAC	CMOS	PM	-	45	4E-5	-	BNL	1/92. No LU>89.
BPS	AD558	8-bit DAC	Bipolar (1 ² L)	ADI	-	<5	>2E-4	-	UW	2/92.
HON	PM7545	12-bit DAC	-	PM	-	24	1.4E-4	-	BNL	10/92. DC: 9142 No LU>37. WP-02
A	DAC412	12-bit DAC	BiCMOS	PM	-	25	2E-4	-	BNL	No LU>100. 10/92
HON	AD9048TQ	8-bit ADC/Flash	[1]	ADI	-	<3	3.2E-4	-	BNL	LU=7.1.3E-5 cm ² . [1]= bipolar, but LU raises questions of possible CMOS also. DC: 9142 & 9222 WP-02. 10/92
A	MF7684	8-bit ADC/Flash	CMOS	MPS	-	<1	1E-3	-	BNL	12/91. See Table 2: J: No LU>120. 11/92
BPS	AD7824	8-bit ADC	CMOS	ADI	-	<5	>1E-4[LET=10]	-	UW	2/91. Fiction only.
J	AD7672B	12-bit ADC	CMOS	ADI	-	6	2E-4[8 MSB's]	-	BNL &	7 & 9/91. No LU>175. See Table 2.
J	MX7672	12-bit ADC	BiCMOS	MXM	-	20	>2E-4	-	BNL	8B-In
J	MX7572	12-bit ADC	Bipolar/CMOS?	MXM	-	20	>2E-4	-	BNL	11/92
HON	H1574	12-bit ADC	CMOS	HAR	-	10	8E-5	-	BNL	No LU>>37. 10/92 DC: 9210
J	H1674ALD	12-bit ADC	DC3205	HAR	-	6	>1E-4	-	BNL	11/92 See Below. No LU>120 at 80° C.
J	H1674ASD	12-bit ADC	DC3028	HAR	-	6	-	-	BNL	Earlier DC is latchable.
J	AD574A	12-bit ADC	BiMOS	ADI	-	<3	-	-	BNL	11/92 LU(h)=30. See above.
J	AD674A	12-bit ADC	Bipolar (Two chip)	ADI	-	<3	-	-	BNL	9/91. No LU>110.
J	AD674B	12-bit ADC	BiMOS	ADI	-	<3	>5E-4	-	BNL	9/91. No LU>110.
J	MX674A	12-bit ADC	BiCMOS	MXM	-	>3	>1E-3	-	BNL	11/92. No LU>120.
J	ADC574A	12-bit ADC	Bipolar/CMOS	BUB	-	<>40	-	-	BNL	7/91. LU LET<>40.
J	ADC674	12-bit ADC	Bipolar/CMOS	ADI	-	<>40	-	-	BNL	7/91. LU LET<>40.
J	AD7872	14-bit ADC	BiCMOS	ADI	-	<1.4	1E-3	-	BNL	9/92, No LU>104
A	HS9576RH	16-bit ADC	CMOS Hybrid	SIP	-	3	5E-4	-	BNL	No LU>100. 1/92

TABLE 1. (Cont'd)

Test Org.***	Device	Function	Technology	Mfr.*	Blts	Effective LET*	Device Cross Section (cm ²)**	Cross Section Per Bit (sq μm)	Facility***	Remarks
JH	54ACT08	FIFO	CMOS/epi	NSC	64x9	21	8E-4	-	BNL	92IEEE Workshop Kinnison
JH	74ACT25	FIFO	CMOS/epi	NSC	512x9	9	3E-3	-	BNL	92IEEE Workshop Kinnison. "Minilatch"
GGD	T202RE	FIFO (10 μm)	CMOS/epi	IDT	1Kx9	3.5	4.2E-3	46	BNL	LU=38. 9/92. Compare Table 2
CLM	HC5517A	SRAM	CMOS	TIX	2Kx8	5	5E-6 @ LET=24	-	BNL	McNamee- IEEE '91
A	L6116	SRAM	CMOS/NMOS	LDI	2Kx8	5	8E-3	50	88-in	LU=15; 1E-3 cm ² . 12/92
A	CYPC128A	SRAM	CMOS/NMOS	CYP	2Kx8	2	7E-3	40	88-in	LU=10; 1E-4 cm ² . 12/92
HON	HC6116	SRAM	CMOS[1]	HON	2Kx8	14	-	100	BNL	IEEE NS 6/92 p450 [1]=with variable R.
HON	HC9216	SRAM	CMOS[SOIC8029]	HON	2Kx8	25 to 40	-	80	BNL	IEEE NS 6/92 p450 [1]=with variable R.
J	HX6364	SRAM	CMOS/epi	HON	8Kx8	>90	-	-	BNL	5/91. No LU>90 up to 125 deg C.
HON	HC8364	SRAM	CMOS/epi	HON	8Kx8	56	-	-	BNL	DC=? See above.
HAR	TS054	SRAM	Sid Cell[1]	HAR	64K	>138	-	-	BNL	No LU. W. Newman 10/91. [1]=Rad Hard CMOS/SOS
ESA	MA6167	SRAM	CMOS/SOS	MED	16Kx1	<40	-	2 @ LET=75	3.0 μm technology	
ESA	MA6116	SRAM	CMOS/SOS	MED	2Kx8	30	-	5 @ LET=75	3.0 μm technology	
ESA	MA9187	SRAM	CMOS/SOS	MED	64Kx1	<60	-	2 @ LET=120	1.5 μm technology	
J	IBM401	SRAM	CMOS/epi	IBM	64Kx1	>115	No upset	No upset	6/92. Development SRAM. No LU>115.	
ESA	EDH8832C	SRAM	NMOS/CMOS	EDI	32Kx8	<2	-	100	IPN	1/91. No LU reported IEEE '91. Compare '97. Aerospace data.
A	MT5C256	SRAM	CMOS/NMOS	MCN	256Kx1	<3	>111	-	88-in	[1]=Factor of 100 lower for high R. No LU>100. 6/92
A	MT5C2568	SRAM	CMOS/epi	MCN	32Kx8	3	0.9	-	88-in	No LU>100. 7/91
MMS	MT5C2568C	SRAM	CMOS 2M+2P	MCN	32Kx8	<1	0.6	-	CANIL	LU(11)=23; 1E-2 cm ² Dose! 92IEE Workshop
CNEES	MT5C1001	SRAM	CMOS	MCN	1Mx1	4.5	0.5	-	IPN	7/92 Multiple upsets
CNEES	MT5C1008	SRAM	CMOS/epi	MCN	128Kx8	<2	0.6[1]	-	IPN	Date Code 9133
CNEES	MT5C1008	SRAM	CMOS	MCN	128Kx8	6[1]	1.8	-	IPN	<5/91. DC8116 No LU>26. Possible multiple errors/strike. [1]=Worst case all 1's
CNEES	MT5C1008	SRAM	CMOS/epi	MCN	128Kx8	5[4]	2.0	-	IPN	Date Code 9125. [1]=at 10% of sat. See Table 2.
CNEES	MT5C1008	SRAM	CMOS	MCN	128Kx8	<7[4]	2E-3	-	IPN	Date Code 9101 [1]= Worst case all 1's [2]=at 10% of sat.
A	MT5C1008	SRAM	CMOS/epi/NMOS	MCN	128Kx8	4	2	-	IPN	[1]=low current resistor process. [2]=at 10% of sat.
J	MT5C1008C	SRAM	CMOS/epi [new version]	MCN	128Kx8	<3	2E-2	-	88-in	IEEE'91. No LU>100. Multiple errors/strike. A high resistivity DUT: SEU cross=-1E-2 cm ² .
CNES	HMS65641	SRAM	CMOS/epi [12 μm]	MTA	8Kx8	2.5 to 10[1]	0.2	300	IPN	9/91. No LU>110. No date code.
CNES	HMS65656	SRAM	SCMOS	MTA	32Kx8	6[1]0% set]	0.1	-	IPN	8/91. LU=50; 4E-4 cm ² . [1]=at 10% of sat. Compare earlier CNES data.
CNES	HMS6564	SRAM	SCMOS Final process	MTA	8Kx8	9[1]0% set]	0.4	-	IPN	1992. Engr. sample
NASA	HMS6564	SRAM	SCMOS/epi	MTA	8Kx8	5	-	30	BNL; CANIL/TPN	9/91. No LU>50. R. Ecoffee
CNES	HMS65641	SRAM	CMOS/epi	MTA	8Kx8	10	0.2	-	IPN	12/90. 1μm; No LU at LET=116
CNES	TS4H6408	SRAM	SOI	TMS	8Kx8	>114	-	-	IPN	Date Code 8933
A	IDT7052	SRAM	CMOS/NV/NMOS	IDT	2Kx8	4	8E-2	-	88-in	No LU>100. 1/92
A	IDT7164	SRAM	CMOS/NV/NMOS	IDT	8Kx8	3	0.1	-	88-in	LU=8; 8E-3 cm ² . 10/92
A	MCM6226	SRAM	CMOS/NMOS	MOT	128Kx8	<3	0.2	-	88-in	LU=45; 2E-5 cm ² . 10/92
A	CXK51000P-10L	SRAM	CMOS/NMOS	SNY	128Kx8	3	8E-2	-	88-in	LU=55; 2E-5 cm ² . 2/90 (Corrected)

TABLE 1. (Cont'd)

Test Org.****	Device	Function	Technology	Mr.*	Bits	Effective LET* Threshold	Device Cross Section (cm ²)***	Cross Section Per Bit (sq μm)	Facility***	Remarks
A GDD	CXK581001 HM628512	SRAM SRAM	CMOS/NMOS Hi-CMOSEpi 0.5 μm feature	SNY HIT	128Kx8 512Kx8	3 -1.5	0.15 1.25	- 30	88-In BNL	LU=30; 5E-5 cm ² . 10/92 9/92. No LU>80 Stuck bits seen.
R	EDI41024C100QB	DRAM	-	EDI	1Mx1	1.4	0.11	10	BNL	No LU>82. 4/92
R	MDM1100TMB	DRAM	-	NEC	1Mx1	<0.5	0.24	24	BNL	LU(h)=25; 1E-4 cm ² dynamic test. 4/92
R	Mosaic MDM1400G	DRAM	-	HIT	4Mx1	>2	-	12	BNL	No LU>82. 4/92
ESA	MBB14100-10PSZ	DRAM	CMOS	FUJ	4Mx1	<1	-	80	IPN	No LU>50 RADEC91
ESA	HM514100ZP8	DRAM	CMOS	HIT	4Mx1	>2	-	12	IPN	No LU>40 RADEC91
ESA	MT4C1004C	DRAM	CMOS[1]	MCN	4Mx1	>2	-	30	IPN	No LU>40 RADEC91 [1]=Engr. sample. See also Table 2 & below.
A	MT4C4001	DRAM	CMOS/epi 1 micron	MCN	1Mx4	>3	-2(4.5V)	-	88-In	No LU>100. 3/92
ESA	D42100V-80	DRAM	CMOS	NEC	4Mx1	>1	-	40	IPN	No LU>50 RADEC91
ESA	KM4CA000Z-8	DRAM	CMOS	SAM	4Mx1	>2	-	40	IPN	No LU>40 RADEC91
ESA	HYB514100JJ-10	DRAM	CMOS	SIE	4Mx1	>1	-	60	IPN	No LU>40 RADEC91
ESA	TMS41100DDN-80	DRAM	CMOS [EPIC]	TMS	4Mx1	>1	-	40	IPN	No LU>40 RADEC91
ESA	TC514100Z-10	DRAM	CMOS	TOS	4Mx1	>1	-	60	IPN	No LU>40 RADEC91
9	CNES P10C68	RAM Non-vol.	CMOS/NMOS	PLS	8Kx8	7 (1)	0.35 (1)	-	IPN	(1)=SRAM configuration.
CNES	P10C68	RAM Non-vol.	CMOS/NMOS	PLS	8Kx8	>114 (1)	-	-	IPN	(1)=EEPROM configuration.
J	FRb1408	FRAM	CHOS	RTN	2Kx8	<>30	2E-4(dyn.)	-	CF252	6/92. LU LET<<30
J	FRb1208	FRAM	CHOS(epi)	RTN	512x8	>11	3E-3(dyn.)	-	BNL	6/92. LU LET<45.
CNES	28HC256	EPPROM	CMOS/FG	SEQ	32Kx8	>54	-	-	IPN	Date Code 9025
CNES	28HC256	EPPROM	CMOS/FG	ATM	32Kx8	>54	-	-	IPN	Date Code 9032
CNES	X28C256	EPPROM	CMOS/FG	XIC	32Kx8	-	-	-	IPN	DC 9032. Table 2
A	DM28C256	EPPROM	CMOS/FG	SEQ	32Kx8	>15*	1E-4*	-	IPN	No LU>100. 5/91 *READ. **=WRITE
GDD	28C256	EPPROM	CMOS/epi	SEQ	32Kx8	5**	4E-4**	-	IPN	Compare following.
VS	C177C281-5S	EPPROM	CYP	8Kx8	<32	0.2	-	-	BNL	Perm. fail @ LET=50 IEEE92 Workshop p1
VS	WS557C49B	EPPROM	CHOS/FG	WAF	8Kx8	45	5E-2	-	GANIL	92 IEEE Workshop Dufour 7/92
HS	HM6817	PROM	CHOS	HAR	2Kx8	32	3E-4	-	GANIL	92 IEEE Workshop Dufour 7/92 LU(h)<32; 3E-4 cm ² .
HS	R23732DM	PROM	Bipolar	RAY	8Kx8	8	3E-5 (peripherals only)	-	GANIL	No LU>87. Dufour 92 IEEE Workshop
GDD	821HS641A	PROM	Bipolar	SGN	8Kx8	>73	-	-	BNL	No LU>73. 7/92. Compare to next.
HS	82HS641	PROM	Bipolar	SGN	8Kx8	31	7E-6	-	GANIL	No LU>120 7/92 Compare above.
J	UT1553	Bus Controller	CMOS/epi	UTM	164/732	60	-	-	BNL	5/91. No LU>120.
MNS	TC02	MACS Bus Cont.	MA GA	MTA	-	110	>3E-6	-	GANIL	No LU>124. Dufour 92 IEEE Workshop
GDD	Bus Cont.	ASIC (Bus)	CMOS(epi)	MTA	-	8	1.5E-5	-	BNL	No LU>87. 7/92 FSC design
GDD	Sensl Cont.	ASIC (Bus)	CMOS(epi)	MTA	-	4.5	>4E-5	-	BNL	No LU>87. 7/92 FSC design

TABLE 1. (Cont'd)

Test Org.***	Device	Function	Technology	Mfg.*	Bits	Effective LET**	Device Cross Section (cm ²)***	Cross Section Per Bit (sq μm)	Facility****	Remarks
CNES	ULA 5NH04	ASIC (Bus)	Bipolar	FER	-	<5.5	2E-3	-	GANIL	Chapuis, ESA Conf. 11/90 No LU>88.
MMS	MC5000	Gate Array (Memory Plane)	CMOS	MTA	-	30	5E-3	-	GANIL	No LU>62. Dufour 92 IEEE Workshop See JPL data '87.
HON	HR1060	Gate Array	RICMOS III	HON	Multicell	22	-	-	1200[1]	7/91 [1]=D flip-flop [2]=RAM config.
GDD	XC3090	FPGA	CHROS	XIL	-	-	-	-	BNL	LU(h)=5; 5E-3 cm ² DC3110 & 9045, 7/92
A	A1280	FPGA	CHROS/epi (1.2 μm feature)	ACT	1200	30[1]	-	-	300[1]	1991, ACT II family [1]=C module [-10 PLD-equivalent gates], [2]=S module. No LU>120. See Ref. 8
A	LRF10038Q	PPGA[1]	CMOS/epi red-hard	LSI	30K gates	30	-	-	8000[2]	See Ref. 8 [1]=Process Prog. G A No LU>120.
A	HP03	PPGA	CMOS/epi red-hard	UTM	Test Chip	45	-	-	10	88-In
A	RA20K	PPGA	CMOS/epi red-hard (1.0 μm feature)	UTM	Test Chip	55	-	-	10	88-In
ESA	EP310	Prog. Logic Dev.	-	ALT	-	5.4	3.6E-6(stat)	-	HARI	6/91 [1]=Van de G.
ESA	EP600	PLD	-	ALT	-	8	3E-6(stat)	-	HARI	6/91 [1]=Van de G.
ESA	20RA10Z	PLD	-	SEQ	-	-	4.2E-5	-	CI-252	6/91, Latchup.
GDD	22V10C-10	PAL	BICMOS	CYP	-	>120	-	-	BNL	No LU>120. 12/92
GDD	22V10D-15DMB	PAL	CMOS	CYP	-	-	-	-	BNL	LU(h)<26. 12/92
A	22V10B	PAL	CMOS	CYP	-	5	-	-	BNL	LU(h)=21; 5E-4 12/92
IBM	22V10	PAL	CMOS	CYP	-	5	7E-6	-	BNL	LU(h)=25; 3E-4 cm ² Die similar to below.
IBM	22V10	PAL	CMOS	MMI	-	5	1E-5	-	BNL	LU(h)=25; 3E-4 cm ² Die similar to above.
A	22V10A	PAL	Bipolar	AMD	-	4	2E-5	-	BNL	6/92
A	22V10A	PAL	Bipolar	TIX	-	4	2E-5	-	BNL	88-In
IBM	IDT49C460	EDAC (32-bit)	CMOS	IDT	-	17	-	-	BNL	LU(h)=25; 2E-3 cm ² .
A	IDT49C460	EDAC (32-bit)	CMOS	IDT	-	>100	<1E-7	-	BNL	No LU>100. 5/91 Compare preceding.
IBM	-	EDAC (32-bit)	CMOS	AMD	-	5	1E-4	-	BNL	LU(h)=25; 5E-4 cm ² .
MMS	54LS630	EDAC	LSTTL	TIX	-	7	1E-3	-	GANIL	No LU>32. Dufour, 92 IEEE Workshop
MMS	54LS74A	D-FF	LSTTL	TIX	4	7	1E-4	2500	GANIL	No LU>32. Dufour, 92 IEEE Workshop
MMS	MC10531	D-FF	bipolar/ECL	MOT	4	<32	1E-5	250	GANIL	No LU>116. Dufour, 92 IEEE Workshop
A	54LS112	J-K FF	TTL(LS)	MOT	2	6	1E-4	5000	88-In	6/92
BPS	555	Timer	bipolar	NSC	-	5	>2E-5(LET=0)	-	UW	2/92
BPS	555	Timer	bipolar	SQN	-	5	>2E-5(LET=0)	-	UW	2/92
MMS	54ACT163	Counter	FACT	MOT	-	80	6E-6	-	GANIL	No LU>140. Dufour, 92 IEEE Workshop
MMS	54ACT174	D FF	FACT	MOT	-	>140	-	-	GANIL	No LU>140. Dufour, 92 IEEE Workshop
HON	54ACTQ373	D-Latch	-	NSC	Octal	29	8.6E-5	-	BNL	No LU>>37. DC8942 Wp-02 10/92
A	54HCT173	Latch	CMOS/HCT	TIX	Octal	>70	5E-6	-	88-In	No LU>100. 1/91
A	54HCT393	Counter	CMOS/HCT	HAR/G	8	23	4E-5	-	88-In	No LU>100. 6/92
J	PWM1526	PWM	bipolar (&1 JFET)	SLG	-	10	2E-3	-	88-In	9/91. No LU>110.

TABLE 2. LATCHUP TEST ONLY (1991-1992)

Test Org.****	Device	Function	Technology	Mfr.*	Bits	Effective LET* Threshold	Device Cross Section (cm ²)**	Facility***	Remarks
JH	645001	MicroP (16-bit)	CMOS/epi	LSI	-	75	-	BNL	1750A CPU.
LN	68020	MicroP (16-bit)	CMOS/epi	NOT	-	32E6	-	BNL	4/91
A	HS82C98	Bus Cont.	CMOS	HAR	-	55	4E-6	88-In	12/91
A	HS82C59A	Priority Int. Controller	CHMOS	HAR	-	16	2E-3	BNL	12/91
A	HS82C52	Ser. Cont. Interface	CHMOS	HAR	-	50	2E-5	BNL	May 91. Table 1. MIPS RISC. D. Vall (HAR)
HAR	R3000	MicroP (32-bit)	CHMOS?	IDT	-	4.8	-	BNL	May 91. Table 1. MIPS RISC. D. Vall (HAR)
HAR	R3000A	MicroP (32-bit)	CHMOS?	IDT	-	26	-	BNL	May 91. Table 1. MIPS RISC. D. Vall (HAR)
HAR	R3000	MicroP (32-bit)	CHMOS?	PFS	-	60	-	BNL	May 91. Table 1. MIPS RISC. D. Vall (HAR)
HAR	L64801	MicroP (32-bit)	CHMOS	LSI	-	53	-	BNL	May 91. Table 1. MIPS RISC. D. Vall (HAR)
MNS	L64811	MicroP (32-bit)	CHMOS/epi	LSI	-	16.5	4E-3	GANIL	SPARC. Dufour, 92 IEEE Workshop
MNS	L64814	F.P.U. (32-bit)	CHMOS/epi	LSI	-	8.2	5E-2	GANIL	SPARC. Dufour, 92 IEEE Workshop
MNS	T800	Transputer (32-bit)	CMOS	INM	-	10	2E-3	GANIL	SPARC. Dufour, 92 IEEE Workshop
A	WE-DSP32C	DSP	CMOS	ATT	-	45	>1E-4	GANIL	Dufour, 92 IEEE Workshop
J	320C25	DSP	CMOS/epi	TIX (France)	-	17	1.7E-2	88-In	June 1992
J	320C25	DSP 6 μm epi	New CMOS/epi	TIX	-	36 @ 1E5 ions/cm ²	-	BNL	L1=26 at 125 deg. C 5/91. DC 8939. Compare to earlier data.
A	320C30	DSP	CMOS/epi 7 μm	TIX	-	80	-	BNL	See Table 1.
J	320C50	DSP	CMOS/epi	TIX	-	13	5E-5	BNL	92 IEEE Workshop, Klimbison. 7/92. See previous & Table 1.
LN	56001	DSP (16-bit)	CHMOS/epi 18 μm	NOT	-	>69	-	BNL	12/92. Compare to IEEE 91
JH	ADSP2100A	DSP (16-bit)	CHMOS/epi	ADI	-	12	-	BNL	4/91. Dynamic test. See also Table 1.
MNS	ADSP2100A	DSP (16-bit)	CHMOS/epi	ADI	-	13	1E-4	BNL	IEEE NS (Doc 91) P 1398. See below.
JH	ADSP2100	DSP (16-bit)	-	HIT	-	26	1E-3	GANIL	92 IEEE Workshop Dufour 7/92
MNS	ADSP2100	DSP (16-bit)	CHMOS/epi	ADI	-	>12	-	BNL	4/90
J	AM29CEPL154	MicroC.	CHMOS	AND	-	<30	-	GANIL	92 IEEE Workshop Dufour 7/92
CNES	66881	Coprocessor	HCMOS/bulk 1.5 μm	NOT	Custom	10	2E-3	BNL	6/92
CNES	66882	Coprocessor	HCMOS/bulk 1.2 μm	NOT	Custom	6	4E-3	IPN	DC 8942 Compare to 68802 below.
J	80387	Coprocessor	CHMOS IV	INT	all 640	12	1E-3	IPN	DC 9022. compare to 68881 above.
GE / GDD	/ 80387-16	Coprocessor	CHMOS IV	INT	all 640	40	3E-5(set)	IPN	9/91. *Deduced from INT 80386 – Table 1, CHMOS IV (J, 7/91).
J	MP7684/MP7684A	8-bit ADC (Flash)	CMOS	MPS	all 640	24 to 37	-	88-In	10/92. See Table 1.
CNES	TM8338	8-bit ADC	CMOS (HS13)	TMS	-	>120	-	BNL	7/92
CNES	TM8338	8-bit ADC	CMOS (HCMOS)	TMS	-	>20	5E-4	IPN	Aug 91. See following entry.
A	MP7685	10-bit ADC	CMOS	MPS	-	12	2E-3	IPN	Aug 91. See preceding entry.
TRW	ADC37	12-bit ADC	Hybrid? DC: 8920/9128	BUB	-	>>100	-	BNL	Jun 92
TRW	ADC35	12-bit ADC	Hybrid? DC: 9203	SIP	-	? [LET=60]	>>E-5	BNL	7/92. T.C. Lunn
J	SP7800	12-bit ADC	CHMOS	SIP	-	>>60	-	BNL	7/92. T.C. Lunn
J	LTC1272	12-bit ADC	CMOS	LTC	-	<<30	<1E-4	Cr-252	4/92
J	HI774B	12-bit ADC	BiCMOS	HAR	-	<<30	-	Cr-252	10/92 (DC9022)
								BNL	11/92

* See listing of abbreviations in Appendix I.

** LET is Linear Energy Transfer = the density of ionization along an ion's path in MeV/(mg/cm²). The cosine law for beam angle is applied where valid to obtain "effective" LET.

*** See listing of abbreviations in Appendix III.

**** See listing of abbreviations in Appendix II.

***** Unless otherwise noted, the cross section (upset/sfluence per device) is given for 240-380 MeV Kr or Bi at normal incidence, having an LET=36 to 40 MeV/(mg/cm²).

TABLE 2. (Cont'd)

Test Org.****	Device	Function	Technology	Mfr.*	Bias	Effective LET** Threshold	Device Cross Section (cm ²)**	Facility***	Remarks
LIN SSS	ADS112 CS5016	12-bit ADC 16-bit ADC	CMOS CMOS/epi	DAT CRY	-	<38 <<12	-	BNL BNL	4/91 1/92. Compare JH; Aerospace data [5/90].
A J	AD7533 MP7533	16-bit ADC 10-bit DAC 10-bit DAC	CMOS CMOS	ADI MPS	-	15 >120	5E-3	BNL BNL	5/91. See above. 11/92. Up to 125 °C. 11/92. Up to 125 °C.
MMS	SOR7541	12-bit DAC	CMOS	SOR	-	>120 >116	-	BNL GANIL	11/92. Up to 125 °C. Dufour, 92 IEEE Workshop
JH	7134RT	FIFO	CMOS	IDT	8Kx8?	15	-	BNL	Kinnison 4/92
JH	7202RT	FIFO	CMOS	IDT	1Kx9?	15	-	BNL	Kinnison 4/92
GDD MSS	7202RE M67202	FIFO	CMOS/epi RT	IDT MTA	1Kx9	38 >140	-	BNL GANIL	See Table 1. 92 IEEE Workshop Dufour 7/92
GD	CYC185	SRAM	CMOS	CYP	8Kx8	<<40 <40	8E-5	CF253	4/94 SEE Symp. High Temp data exists.
CNES	HMG65641	SRAM	CMOS/epi	MTA	8Kx8	<55	-	IPN	Chapuis, at ESA Conf. 11/90
MMS	HMG6564	SRAM	SCMOS/epi RT	MTA	8Kx8	>140	-	GANIL	92 IEEE Workshop Dufour 7/92. See Table 1.
MMS	HMG6556	SRAM	SCMOS/epi RT	MTA	32Kx8	>140	-	GANIL	92 IEEE Workshop Dufour 7/92. See Table 1.
ESA	D464D	SRAM	CMOS	NEC	64K	<2	0.15[LET=12]	Harwell	IEEE '92. Proton LU also occurs.
LIN	MT5C1808	SRAM	-	MCN	2Kx8	27	-	BNL	April '91
LIN	MT5C2568	SRAM	CMOS/epi	MCN	32Kx8	>164	-	BNL	Sternino '91
LIN	MT5C2568	SRAM	CMOS	MCN	32Kx8	38 to 69	-	BNL	Sternino '91. Compare above.
MS	MT5C1008CW	SRAM	CMOS/bulk	MCN	128Kx8	75	4E-4	GANIL	Compare Table 1. 92 IEEE Workshop Dufour, 7/92
LIN	DPS2256G	SRAM	CMOS	HT	32Kx8	<27	-	BNL	Sternino '91
CNES	MT4C1004C	DRAM	CMOS/epi 0.8 µm epi	MCN	1Kx4	>54	-	IPN	DC 9/10
LIN	R29793	SRAM	CMOS/epi? fuse-link	RAY	8Kx8	>164	-	BNL	Sternino '91
CNES	X2C256	EEPROM	CMOS/FG	XIC	32Kx8	18	1E-3	IPN	Date Code 9032
LIN	28C256	EEPROM	CMOS/epi	SEQ	32Kx8	>164	-	BNL	Sternino '91
LIN	28C64	EEPROM	CMOS/epi?	SEQ	8Kx8	>164	-	BNL	Sternino '91
MMS	MB7144E	PROM	Bipolar	FUJ	8Kx8	>104	-	GANIL	92 IEEE Workshop Dufour 7/92
CNES	1020A	FPGA	CMOS/epi	TIX[1]	-	>27	-	IPN	DC 9/09 [1] = 547 logic modules, 4 ports/module, config. amifuse
MMS	MC5000	GA 35K	SCMOS/epi RT	MTA	-	>80	-	GANIL	92 IEEE Workshop Dufour 7/92
MMS	MA805	1553 Bus Cont.	CMOS	MED	-	<36	-	GANIL	92 IEEE Workshop Dufour 7/92
MMS	TMK2210	Mult./Accum.	CMOS	TRW	-	>61	-	GANIL	92 IEEE Workshop Dufour 7/92
A	ATW28XX	DC/DC Conv. module	CMOS (one IC)	ADA	-	51 to 80	1E-6	8B-in	10/92
J	26C31	Driver	CMOS/SOS	HAR	None	>120	-	BNL	9/92
LIN	26C31	Driver	CMOS	NSC	None	20	-	BNL	Sternino '91
J	26C32	Receiver	CMOS/SOS	HAR	None	>120	-	BNL	9/92, saturated SEU=3E-5 cm ²
LIN/SSS	26C32	Receiver	CMOS	NSC	None	20	-	BNL	LIN: 1991; S.: 1992
A	LTC48BCN8	Transceiver	CMOS	LTC	-	3	8E-5	BNL	June 1991
MMS	DG271	Analog Switch	CMOS	SIL	Quad	>137	-	GANIL	92 IEEE Workshop Dufour 7/92
MMS	DG300	Analog Switch	CMOS	SIL	Dual	>137	-	GANIL	92 IEEE Workshop Dufour 7/92
A	DG601AK	Analog Switch	CMOS/epi 13 mil crons	SIL	-	>100	-	8B-in	3/92
A	IHE208	Analog MIX	CMOS	HAR	-	>100	-	8B-in	12/92
A	LTC1084	Low Pass Filter	CMOS	LTC	-	15	3E-4	BNL	12/92
JH	S4ACTQ24	Logic	FACT w. I/O	NSC	-	>120	-	BNL	1/91 - NSC's FACT DC>8826 are designed LU-proof
LIN	P54PCT245	Logic	CMOS	PFS	-	<27	-	BNL	4/91
A	25HCT04	SAR	CMOS	ZYR	-	22	3E-4	BNL	7/91

TECHNOLOGY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security programs, specializing in advanced military space systems. The Corporation's Technology Operations supports the effective and timely development and operation of national security systems through scientific research and the application of advanced technology. Vital to the success of the Corporation is the technical staff's wide-ranging expertise and its ability to stay abreast of new technological developments and program support issues associated with rapidly evolving space systems. Contributing capabilities are provided by these individual Technology Centers:

Electronics Technology Center: Microelectronics, VLSI reliability, failure analysis, solid-state device physics, compound semiconductors, radiation effects, infrared and CCD detector devices, Micro-Electro-Mechanical Systems (MEMS), and data storage and display technologies; lasers and electro-optics, solid state laser design, micro-optics, optical communications, and fiber optic sensors; atomic frequency standards, applied laser spectroscopy, laser chemistry, atmospheric propagation and beam control, LIDAR/LADAR remote sensing; solar cell and array testing and evaluation, battery electrochemistry, battery testing and evaluation.

Mechanics and Materials Technology Center: Evaluation and characterization of new materials: metals, alloys, ceramics, polymers and composites; development and analysis of advanced materials processing and deposition techniques; nondestructive evaluation, component failure analysis and reliability; fracture mechanics and stress corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures; launch vehicle fluid mechanics, heat transfer and flight dynamics; aerothermodynamics; chemical and electric propulsion; environmental chemistry; combustion processes; spacecraft structural mechanics, space environment effects on materials, hardening and vulnerability assessment; contamination, thermal and structural control; lubrication and surface phenomena; microengineering technology and microinstrument development.

Space and Environment Technology Center: Magnetospheric, auroral and cosmic ray physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and ionospheric physics, density and composition of the upper atmosphere, remote sensing, hyperspectral imagery; solar physics, infrared astronomy, infrared signature analysis; effects of solar activity, magnetic storms and nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere; effects of electromagnetic and particulate radiations on space systems; component testing, space instrumentation; environmental monitoring, trace detection; atmospheric chemical reactions, atmospheric optics, light scattering, state-specific chemical reactions and radiative signatures of missile plumes, and sensor out-of-field-of-view rejection.