PC123/PC123F

European Safety Standard Approved Type Long Creepage Distance Photocoupler

* DIN-VDE0884 approved type (PC123Y/PC123FY) is also available as an option.

■ Features

1. Conform to European Safety Standard

2. Internal isolation distance: 0.4mm or more

3. High collector-emitter voltage (V_{CEO} : 70V)

4. Long creepage distance type

5. Recognized by UL (No. E64380)

Approved by VDE (DIN-VDE83601)

Approved by BSI

(BS415 No. 7087, BS7002 No. 7409)

Approved by SEMCO (No. 9216212)

Approved by DEMCO (No. 108954)

Approved by NEMKO (No. 199438181)

Approved by EI (No. 155030)

Recognized by CSA (No. CA95323)

	Creepage distance	Space distance			
PC123	6.4mm or more	6.4mm or more			
PC123F	8mm or more	8mm or more			

Applications

- 1. Power supplies
- 2. OA equipment

■ Absolute Maximum Ratings $(Ta = 25^{\circ}C)$

Parameter		Symbol	Ratings	Unit	
Input	Forward current	I_F	50	mA	
	*1Peak forward current	I_{FM}	1	A	
	Reverse voltage	V_R	6	V	
	Power dissipation	P	70	mW	
Output	Collector-emitter voltage	V _{CEO}	70	V	
	Emitter-collector voltage	V _{ECO}	6	V	
	Collector current	$I_{\rm C}$	50	mA	
	Collector power dissipation	Pc	150	mW	
Total power dissipation		P tot	200	mW	
*2 Isolation voltage		V iso	5	kV rms	
Operating temperature		T opr	- 30 to + 100	°C	
Storage temperature		T stg	- 55 to + 125	°C	
*3 Soldering temperature		T sol	260	°C	

^{*1} Pulse width \leq = 100 μ s, Duty ratio : 0.001

■ Outline Dimensions

^{*2} AC for 1 minute, 40 to 60% RH

^{*3} For 10 seconds

[&]quot; In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.

■ Electro-optical Characteristics

 $(Ta=25^{\circ}C)$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input	Forward voltage		V_F	$I_F = 20mA$	-	1.2	1.4	V
	Reverse current		I_R	$V_R = 4V$	-	-	10	μΑ
	Terminal capacitance		C_t	V = 0, $f = 1kHz$	-	30	250	pF
Output	Collector dark current		I_{CEO}	$V_{CE} = 50V, I_{F} = 0$	-	-	100	nA
	Collector-emitter breakdown voltage		BV CEO	$I_C = 0.1 \text{mA}, I_F = 0$	70	-	-	V
	Emitter-collector breakdown voltage		BV _{ECO}	$I_E = 10 \mu A, I_F = 0$	6	-	-	V
Transfer characte- risitics	Collector current		$I_{\rm C}$	$I_F = 5mA$, $V_{CE} = 5V$	2.5	-	20	mA
	Collector-emitter saturation voltage		V _{CE(sat)}	$I_F = 20mA$, $I_C = 1mA$	-	0.1	0.2	V
	Isolation resistance		R _{ISO}	DC500V, 40 to 60%RH	5 x 10 ¹⁰	1011	-	Ω
	Floating capacitance		$C_{\rm f}$	V = 0, $f = 1MHz$	-	0.6	1.0	pF
	Cut-off frequency		fc	$V_{CE} = 5V$, $I_{C} = 2mA$ $R_{L} = 100\Omega$, - 3dB	-	80	-	kHz
	Response time	Rise time	t _r	$V_{CE} = 2V$, $I_{C} = 2mA$	-	4	18	μs
		Fall time	t_{f}	$R_L = 100 \Omega$	-	3	18	μs

Fig. 1 Forward Current vs.
Ambient Temperature

Fig. 2 Diode Power Dissipation vs.
Ambient Temperature

Fig. 3 Collector Power Dissipation vs.
Ambient Temperature

Fig. 5 Peak Forward Current vs. Duty Ratio

Fig. 7 Current Transfer Ratio vs. Forward Current

Fig. 4 Power Dissipation vs. Ambient Temperature

Fig. 6 Forward Current vs. Forward Voltage

Fig. 8 Collector Current vs. Collector-emitter Voltage

SHARP

Fig. 9 Relative Current Transfer Ratio vs. Ambient Temperature

Fig.11 Collector Dark Current vs.

Ambient Temperature

Fig.13 Frequency Response

Fig.10 Collector-emitter Saturation Voltage vs. Ambient temperature

Fig.12 Response Time vs. Load Resistance

Fig.14 Collector-emitter Saturation Voltage vs. Forward Currnt

Please refer to the chapter "Precautions for Use"