氯化聚氯乙烯热稳定和润滑体系研究

朱浩南, 高材 1314, 2013012433

指导教师: 武德珍, 教授

April,2017

摘要

氯化聚氯乙烯 (CPVC) 的热稳定性差,熔体黏度高,加工时易发生热分解脱氯化氢,因此需要在 CPVC 加工过程中加入热稳定剂和润滑剂。

目录

第一章	绪论	5
第1	. 1 节 CPVC 简介及其基本性能	5
	1. 1. 1 CPVC 简介	5
	1. 1. 2 CPVC 相对于 PVC 的优缺点	5
	1. 1. 3 CPVC 性能特点	6
	1. 1. 4 CPVC 降解机理	7
	1.1.5 CPVC 不稳定氯原子的测定	8
第1	. 2 节 CPVC 树脂的应用[1]	8
	1.2.1 管件、管材	9
	1.2.2 阻燃材料	10
	1.2.3 涂料和黏合剂	10
	1.2.4 电力电缆用 CPVC 套管	10
第1	. 3 节 CPVC 的结构与合成工艺	10
	1.3.1 CPVC 分子结构	10
	1. 3. 2 氯在 CPVC 中的分布	10
	1.3.3 氯化反应机理	11
	1.3.4 CPVC 合成方法	12
第1	. 4 节 CPVC 加工与改性	13
	1.4.1 热稳定剂	13
	1.4.2 润滑剂	13
	1.4.3 抗冲改性剂	14
第1	.5节 热稳定剂概述	14
	1.5.1 热稳定机理	14
	1.5.2 热稳定剂分类	15
	1.5.3 钙锌复合热稳定剂	16
	1.5.4 辅助型热稳定剂	16
第1	. 6 节 润滑剂概述 ^[2]	16
	1.6.1 外润滑剂	16
	1.6.2 内润滑剂	16

北京化工大学毕业设计(论文)

		1.6.3 润滑剂的分类		17
		1.6.4 常用树脂所适用的润滑剂		19
	-	实验试剂与设备		20
	第 2.	.1节 原料准备		
		2.1.1 外润滑剂		20
	第 2.	. 2 节 制样设备		20
	第 2.	. 3 节 表征仪器		21
笙=	音	研究方案及步骤		22
•	-	. 1 节 配方设计原则		
		. 2 节 制样流程		
	M 2.	3. 2. 1 混料		
		3. 2. 2 塑化开炼		
		3. 2. 3 压片		
		3. 2. 4 切割		
	笙 3	. 3 节 表征方法		
	M 2.	3.3.1 动态热稳定性		
		3. 3. 2 静态热稳定性		
		3. 3. 3 玻璃化转变温度		
		3. 3. 4 维卡软化点		25
		3. 3. 5 拉伸强度		
		3. 3. 6 弯曲强度		
		3. 3. 7 缺口冲击强度		
		3. 3. 8 SEM 观测冲击断裂面样貌		
		3. 3. 6 BEN /%[[[]] 田西汉 [[]] 1		20
第四	章	润滑剂对 CPVC 热稳定性和力学性能作用研	究	27
	第 4.	. 1 节 外润滑剂种类对 CPVC 性能的影响		27
		4.1.1 配方设计		27
		4.1.2 动态热稳定性		27
		4.1.3 静态热稳定性		28
		4.1.4 玻璃化转变温度		29
		4.1.5 力学性能		29
	第 4.	. 2 节 内外润滑剂组合对 CPVC 性能的影响 .		30
		4.2.1 配方设计		30
		4. 2. 2 玻璃化转变温度		30
第王	i章	CPVC 热稳定体系研究		32

北京化工大学毕业设计(论文)

第六章	实验数据与处理	33
第 6.	1 节 热稳定体系测试	33
	6.1.1 动态热稳定性	33
	6.1.2 玻璃化转变温度	34
参考文献	${f \sharp}$	36

第一章 绪论

第 1. 1 节 CPVC 简介及其基本性能

1.1.1 CPVC 简介

氯化聚氯乙烯(CPVC),也称为过氯乙烯,是通过将聚氯乙烯(PVC)进一步氯化改性得到的产品。CPVC 最早由德国 *I.G. Farben AG* 公司以溶液法制得。在 20 世纪 60 年代初期,美国 *Genova* 产品公司首次为冷热水分配系统制造了第一套 CPVC 管道和配件。而后,*Genova* 与 CPVC 树脂的开发商 *B.F. Goodrich* 公司合作开发了第一代用于 CPVC 黏合剂的四氢呋喃(THF)/甲基乙基酮(MEK)配方。我国在 1964 年由锦西化工研究院研制成功,在锦西化工总厂投入生产。

理想的聚 1,2-二氯乙烯的 ω_{Cl} 为 73.7%。在氯化过程中,一般可将 ω_{Cl} 从 56.7% 提高到 61.0%~68.0%。研究表明,当氯含量达到 65% 以上时,CPVC 的拉伸强度和弯曲强度呈线性增加,同时脆性也随之增大。由于分子在结构上的不规整性增大,分子结晶度下降,分子链的极性增强,因而其热变形温度大大上升^[3]。随着氯含量的增加,CPVC 分子中共价键极性增大,分子间相互作用力增强,使得 CPVC 树脂的物理力学性能,特别是耐候性、抗老化性、耐化学腐蚀性、热变形温度、阻燃自熄性等均比 PVC 有较大的提高,使其在塑料、建材、电气、医学、农业、橡胶、油漆、颜料、轮船、造纸、纺织、包装、涂料、钢材等方面有广泛的应用^[4]。

1. 1. 2 CPVC 相对于 PVC 的优缺点

• 优点:

CPVC 的 T_g 比 PVC 高 20~30°C^{\bullet},阻燃性能也有所提高。并且保持了 PVC 原有的优点,即具有良好的耐化学腐蚀性、电绝缘性、耐候性等。CPVC 在沸水中不变形,是应用前景广阔的耐热耐腐蚀塑料材料。

• 缺点:

 $[\]bullet_{\omega_{Cl}}$: Cl 的质量分数

 $[\]omega_{Cl.PVC} = 56.7\%$

 $^{{}^{\}bullet}T_{g,CPVC} = 106 \sim 115 {}^{\circ}\text{C}, T_{g,PVC} = 82 {}^{\circ}\text{C}$

- (1) CPVC 树脂的熔融温度与热分解温度相近,可加工温度范围小[●],容易发生 热分解;
- (2) CPVC 熔体黏度高,约为 PVC 树脂熔体黏度的 3 倍左右,加工成型能耗大;
- (3) 制品脆性大,冲击强度较低。

1.1.3 CPVC 性能特点

CPVC 树脂在塑料管材(冷热水管、化工管、电力电缆护套、喷灌水管等)方面应用广泛,主要得益于其具有如下的优良特性。

(1) CPVC 具有优异的力学性能与热学性能,具体数据见表 1.1 和表 1.2。

表 1.1: 通用 CPVC 的力学性能数据表

物理参数		力学参数				
密度/ (g/cm³)	吸水率	杨氏模量 (E)/ GPa	拉伸强度 $(\sigma_t)/$ MPa	断裂伸长率	冲击强度/ kJ/m²	
1.56	$0.04 \sim 0.4$	2.9~3.4	50~80	20~40%	2~5	

表 1.2: 通用 CPVC 的热学性能数据表

热学参数							
熔点 (T_m) /	玻璃化转变温度 (T_g) /	维卡软化点/	热导率/	线膨胀系数 (α)/	比热容 (c)/		
$^{\circ}\mathrm{C}$	$^{\circ}\mathrm{C}$	$^{\circ}\mathrm{C}$	$(W/(m \cdot K))$	K	$(kJ/(kg \cdot K))$		
150	106~115	106~115	0.16	8×10^{-5}	0.9		

(2) 与其他塑料管材相比, CPVC 树脂具有拉伸强度高、热膨胀系数小、热传导率低、 难燃、氧气透过率小等特点,具体数据见表 1.3。

表 1.3: CPVC 管材与其他塑料管材主要力学性能对比[5]

塑料管材	拉伸强度	热膨胀系数	热传导率/	氧指数/	氧气透过量 (70°C、1 个大气压)/
	(23°C)/MPa	$\times 10^{4} / \mathrm{K}^{-1}$	$[W/(m\cdot K)]$	%	$[cm^3/(m^2 \cdot d)]$
CPVC 管材	55	0.7	0.14	60	<1
PVC 管材	50	0.7	0.14	45	<1
PP-R 管材	30	1.5	0.22	18	13~16
PE-X 管材	25	1.5	0.22	17	13
PB 管材	27	1.3	0.22	18	16

[●]一般为 180~190°C

- (3) 耐化学腐蚀性能好。工业用化学药剂大都会对金属设备造成腐蚀,导致渗漏、流程限制、使用寿命短等问题。CPVC不仅在常温下耐化学腐蚀性能优异,而且在较高温度下,CPVC仍能保持较好的耐酸、耐碱、耐腐蚀性能,远优于PVC以及其他树脂。CPVC在许多应用方面可取代传统材料,用以应对需要直接接触腐蚀性物品的场合,如处理氨基磺酸、氯酸钠、硅酸钠、25%高锰酸钾、大于25%浓度的丙二醇、酚、甲酸(<25%浓度)、铬酸、丁酸(<3%浓度)、氯胺、氯化铵等溶液。CPVC能提供较长的使用寿命、较低的维修成本,并拥有良好的环境适应力。
- (4) 阻燃性能好。CPVC 的氧指数为 60, 所以其阻燃性高, 燃烧后不产生滴落物, 燃烧扩散慢, 可限制烟雾的产生, 并且不会产生有害气体。
- (5) 很多聚烯烃材料(包括 PP、PE、PB等) 遇水中余氯时可能会发生分解,而 CPVC则不会受水中的余氯的影响,不会出现裂痕和崩漏^[6,7]。

1.1.4 CPVC 降解机理

在加工过程中PVC具有较差的热稳定性,极易发生降解脱除HCl,其重要原因是PVC分子链中的多种结构缺陷。通过红外光谱(IR)及核磁共振波谱观察发现,PVC中的结构缺陷主要包括头-头结构、不饱和双键结构(末端双键、内部双键及共轭双键)、不稳定氯结构(烯丙基氯与叔碳氯)、支链结构(短支链结构与长支链结构)及二氯末端结构等。不稳定氯原子主要包括链端烯丙基氯、链内烯丙基氯和叔氯^[8],其中烯丙基氯结构的含量远远高于叔碳氯结构的含量,极易诱发PVC脱HCl。CPVC与PVC具有相似的结构,分子链中也存在着这些结构缺陷,并且CPVC树脂的加工稳定性远不如PVC^[9]。

靖志国等 $^{[10]}$ 利用 13 C NMR 对 CPVC 分子链序列结构的测定发现,CPVC 分子中氯原子沿碳链分布情况复杂,其分子链结构相当于氯乙烯、1,2-二氯乙烯以及 1,1-二氯乙烯的三元共聚物。CPVC 分子中主要结构的摩尔分数为:—CHCl— 含量为 65%~70%;—CH2—含量为 20%~30%;—CCl2—含量为 5%~10%。随着 ω_{Cl} 的增大,—CHCl—和—CCl2—两种结构单元的总量增加,—CH2—结构单元减少。在 ω_{Cl} 大于 65%以后,CPVC 分子的主要性能由 十CHCl—CHCl— 结构控制,随着 十CHCl—CHCl— 结构增加,CPVC 的玻璃化转变温度提高,耐热性增强。因而提高 CPVC 的性能需要在增加—CHCl—结构和减少—CH2—结构的同时尽量避免—CCl2—结构和各种缺陷结构的产生。—CCl2—结构会使分子链的极性减小,导致材料的玻璃化转变温度相应降低;另外,—CCl2—结构易使材料受热脱 HCl,使分子链容易受热分解,热稳定性变差。

Cl H 研究表明,CPVC的热分解分为两步进行[11]。第一步为脱除 HCl,生成 \sim C = C \sim 0 和 \sim $C \sim$ 结构单元以及它们的共轭结构。第二步按 Diels-Alder 机理发生缩合反应,进一步生成具有多环结构的含氯芳香族化合物。

含氯聚合物的脱 HCl 机理有单分子机理、离子型机理和自由基机理。马文光等[12] 通过 ESR[●]的研究结果表明,CPVC 最可能发生的是自由基机理脱 HCl。其过程为不稳定氯原子在热的作用下脱离形成 Cl·,Cl·进一步引发拉链式分解反应。如反应 (1.1) 至反应 (1.3) 所示。

氯化聚氯乙烯分子中某些薄弱结构,特别是烯丙基氯结构分解,产生 Cl:

Cl· 从氯化聚氯乙烯分子中吸取氢原子,形成链自由基。ESR 信号证明了大分子自由基的存在:

$$Cl \qquad Cl \qquad Cl \qquad Cl \qquad Cl \qquad Cl$$

$$Cl^{+} \leftarrow CH_{2} - CH - CH_{2} - CH \sim \rightarrow \sim \dot{C}H - CH_{2} - CH \sim \rightarrow + HCl \qquad (1.2)$$

氯化聚氯乙烯链自由基脱除 Cl·, 在大分子中形成双键。新生成的 Cl· 促进反应 (1.2) 的发生, 使两步反应反复进行, 即发生拉链式脱 HCl 反应:

大分子末端的引发剂残基在热的作用下也会脱去形成自由基 R·, R· 又引起进一步的链锁分解反应:

$$R \cdot + \sim CH_2 - CH - CH_2 - CH \sim \longrightarrow \sim \dot{C}H - CH_2 - CH \sim + RH$$

$$(1.4)$$

在反应(1.4)之后,又会连续地发生反应(1.3)和反应(1.2)。分解生成的大分子自由基也会发生链的转移,终止等反应形成支化、交联和不饱和双键结构。

1.1.5 CPVC 不稳定氯原子的测定

不稳定氯原子是引起 CPVC 热分解的主要原因。目前,测定不稳定氯原子含量的唯一有效的方法是酚烷基化法^[13]。烯丙基氯与叔碳氯较一般的氯原子有较大的反应活性,它们均可与苯酚发生取代反应,如图 1.1所示。

第 1. 2 节 CPVC 树脂的应用[1]

CPVC具有卓越的耐高温、抗腐蚀和阻燃性能,而且与其他热塑性塑料相比,CPVC成本更低。因此其被广泛应用于制造各种管材、板材、型材、片材、泡沫材料、防腐

[●]电子自旋法

图 1.1: 利用 A. A. Caraculacu 酚烷基化法测定 CPVC 样品中不稳定氯原子含量的方法

涂料等产品。自 20 世纪 60 年代开始,CPVC 管材开始在美国应用,目前在北美已被普遍使用。其市场占有率由 1995 年的 20% 提高至 2000 年的 30%, 2000 年的总销售量比 1984 年高 3 倍。

近 20 年来, 我国的 CPVC 树脂也高速发展, 其已成为除普通 PVC 树脂外用量最大的含氯树脂品种。目前主要应用领域包括如下 6 个方面。

1.2.1 管件、管材

由于 CPVC 对严重腐蚀(如硫酸、铬酸、盐酸、烧碱、矿物盐、烃类有机物等化学药品腐蚀)和对恶劣环境侵蚀的优良耐受力,被广泛应用于冶炼工业、石油化工、造纸业、电镀业以及民用排污管道。在民用方面, CPVC 管材广泛应用于家庭、办公室、医院、学校等楼房的采暖供热水管,亦可用作太阳能供水管和温泉供水管。使用CPVC 冷热水管可提供一套清洁(细菌增长慢)、安全(静液压强度高)、易于安装(热膨胀系数低)、耐热、耐腐蚀、阻燃(氧指数高)、热损失少(热传导率低)的管道系统。

1.2.2 阻燃材料

CPVC 具有优异的阻燃性能及消烟性能,使其成为严格消防要求下的塑料产品的首选,可应用于电子电器产品的配件、包装材料、建筑材料、交通设施等领域,具有十分广阔的发展前景。

1.2.3 涂料和黏合剂

CPVC 在丙酮、氯代烃等有机溶剂中具有良好的溶解性,因此将 CPVC(或于其他树脂配合)与溶剂结合,可制得具有用途的涂料和黏合剂。CPVC 涂料可应用于化工防腐涂层、材料纤维制品的阻燃、建筑涂料等领域。CPVC 树脂具有优良的耐化学药品性、阻燃性以及耐热性,同时具有低的氧气透过量[●],使其成为最重要的防腐涂料品种之一。CPVC 制得的黏合剂具有粘结强度高、耐化学性能好等优点,可用来黏合各种 PVC、CPVC 的管件。

1. 2. 4 电力电缆用 CPVC 套管

CPVC 套管主要用于电力电缆的铺设并起导向和保护作用,更多的用于路灯目埋地电缆套管,要求电缆套管具有优良的耐热性、绝缘性以及阻燃性。CPVC 套管的维卡软化温度高于93°C,不怕因电力传输过程中因焦耳效应产生的高温。

第1.3节 CPVC 的结构与合成工艺

1. 3. 1 CPVC 分子结构

CPVC 是 PVC 与 Cl_2 在热及引发剂等作用下反应生成的产物。研究表明,在氯化反应中,氯原子优先进攻 PVC 分子链中的 $-CH_2-$ 基团,而不是 -CHCl- 基团,因此得到的 CPVC 主要是 +CHCl- CHCl+ 链节构成。当 CPVC 的 ω_{Cl} 低于 63%时,生成的结构大部分为 +CHCl- CHCl+ ,该结构具有一定的偶极矩,使得分子间范德华力增强;当 ω_{Cl} 高于 63%时,才逐渐生成极性较小的 $+CCl_2-$ CH $_2$ + 结构。由此可见,PVC 的氯化反应主要发生在亚甲基碳原子上,生成 +CHCl- CHCl $_2$ 链节;其次再发生在次甲基碳原子上,生成 $+CCl_2-$ CH $_2$ + 链节。随着氯化程度的提高, $+CCl_2-$ CH $_2$ + 与 +CHCl- CHCl $_2$ 链节含量的比值增大。最终 CPVC 的 ω_{Cl} 由通氯量决定,其性能主要取决于氯化工艺。

1. 3. 2 氯在 CPVC 中的分布

CPVC 的结构单元主要包括 3 种基本结构(见图 1.2)。其中各种结构单元在分子链中的含量与分布情况会在很大程度上影响分子链的断裂速率和方式,从而对 CPVC

[●]表 1.3

的热稳定性以及加工性能产生很大的影响。因此,测定 CPVC 中的 ω_{Cl} 及在分子链中的分布情况是非常重要的。

图 1.2: CPVC 分子链中 3 种基本结构单元

1.3.3 氯化反应机理

实验室一般采用气固相氯化法氯化 PVC 制备 CPVC,该反应为自由基机理,反应过程分为链引发、链传递、链终止三个阶段^[14],反应机理如反应 (1.5)~(1.9) 所示。

链引发反应:

$$Cl_2 \longrightarrow 2Cl$$
 (1.5)

链传递反应:

$$H \cdot + Cl_2 \longrightarrow HCl + Cl \cdot$$
 (1.8)

链终止反应:

$$2Cl \cdot \longrightarrow Cl_2$$
 (1.9)

常见的引发方式主要有单纯热引发、紫外光引发及低温等离子体引发。

- (1) 单纯热引发方式即单纯依靠加热使 PVC 分子产生自由基从而制备 CPVC, 所得产品的 ω_{Cl} 较低, 反应过程中物料极易发黏变黄从而影响氯化反应的进行。
- (2) 低温等离子体引发 PVC 氯化虽然能得到氯化均匀且具有较高 ω_{Cl} 的 CPVC,但是该引发方式制备 CPVC 较难实现工业化。
- (3) 采用紫外光引发方式能够得到氯化均匀且具有较高 ω_{Cl} 的 CPVC,若能解决工程问题,有望实现工业化,以期解决目前 CPVC 生产工艺中存在的环境污染、产品后处理繁琐等弊端。

1. 3. 4 CPVC 合成方法

目前,CPVC 树脂的生产工艺按氯化介质不同分为溶剂法、水相悬浮法和气固相法。

1.3.4.1 溶液法

溶液法是 CPVC 生产最早采用的方法,工艺比较成熟。它是将疏松型 PVC 树脂用适当的溶剂进行处理,然后在 80~100°C 下加入偶氮二乙腈,通入氯气发生氯化反应生成 CPVC 树脂。在溶液中加入沉淀剂甲醇可使 CPVC 沉淀,抽滤后酸洗、干燥得氯含量为 64%~75% 的白色 CPVC 粉末产品。该方法制得的 CPVC 产品氯分布均匀,具有良好的溶解性能,易溶于 THF、二氯乙烷、氯苯等有机溶剂,适合用做涂料和黏合剂等。但由于为无规均质产品,其热稳定性、耐热性和机械性能较差,不能用于管材等硬质制品。溶剂法由于其使用四氯化碳、氯己烷等有机溶剂,毒性大、污染严重、溶剂回收复杂,并且能耗较高,目前几乎被淘汰。

1.3.4.2 水相悬浮法

水相悬浮法是以水或盐酸水溶液为介质,在搅拌作用下使 PVC 树脂悬浮于反应体系中。通入氮气充分除氧后,向反应体系中加入所需催化剂。缓慢向体系中通入氯气使反应开始进行,体系温度和压力上升。随着反应的进行,体系压力下降,至压力恒定时反应结束。泄压,在氮气保护下进行两次过滤、洗涤操作,滤饼进入稳定化工序^[15]。该法制得的非均质 CPVC 含氯量高、氯化均匀、热稳定性好。水相悬浮法具有操作简单、产品性能较好等优点,是目前国内外 CPVC 生产所采用的主要方法。但由于流程较长,生产"三废"较多,成本相对较高。

1.3.4.3 气固相法

由张向京等[14] 报导的由气固相法制备 CPVC 的方法如下:

- (1) 准确称量 5.0 g PVC 粉末置于流化床反应器中。
- (2) 采用金属镀膜给反应器加热。料温达到 $50\sim70^{\circ}$ C 时,通入 N_2 防止 PVC 被氧化。持续升温至 80° C 后,加大 N_2 流量使物料流化,并保持料温稳定。
- (3) 待达到氯化温度时,打开紫外灯 $^{\bullet}$ 并开始通入 Cl_2 ,通过调节 N_2 与 Cl_2 的流量来 改变原料气中的 $\varphi_{Cl_2}{}^{\bullet}$,尾气用 KOH 吸收。
- (4) 反应结束后,用蒸馏水浸泡样品 0.5 h,抽滤,重复操作至中性后于 60°C 真空干燥至恒重。

[●]为充分活化 Cl₂ 并防止紫外光能量过高时造成 PVC 分解,选择能量相对适中的波长为 300 nm 的紫外光作为引发光源。

 $[\]Theta_{\varphi_{Cl_2}}$: Cl₂ 的体积分数

用该法生产 CPVC,具有流程简单、污染物排放小的优点,但由于传热效果较差,不适宜大规模生产。

第1.4节 CPVC 加工与改性

不同用途和性能的 CPVC 制品其配方设计不同,但是其基本配方都含有热稳定剂、润滑剂及其他助剂(如加工改性剂、冲击改性剂、填料、光稳定剂、着色剂、抗静电剂等)。

1.4.1 热稳定剂

由于 CPVC 树脂中的氯含量更高,在加工过程中较 PVC 更易发生热分解释放氯 化氢,因此需选用合适的热稳定剂来防止降解的发生。

马玫等^[9] 研究了复合铅体系对加工稳定性的影响。研究结果表明:将三盐基硫酸铅与二盐基亚磷酸铅复合使用能提供比单独使用更好的稳定性,与使用有机铅盐相近。铅盐稳定剂复合使用,对 CPVC 确有协同效应,6 份的铅盐稳定剂可以满足 CPVC 的加工需求。对于共稳定剂,亚磷酸盐能与铅盐稳定剂产生协同效应,随着亚磷酸酯的用量增大,CPVC 的塑化温度和平衡扭矩显著减小,提高了塑化效果的同时也使其性能(维卡软化温度、冲击强度)得到了提高。

柯伟席等^[16] 研究了二盐、三盐、有机锡稳定剂和复合铅盐类热稳定剂以及辅助稳定剂对 CPVC 热稳定性及加工性能的影响。研究结果表明:复合铅盐类热稳定剂的稳定效果最好,且使得 CPVC 更易于加工。对于辅助热稳定剂,发现 Pb-St 和 Ba-St 具有良好的长期热稳定性及润滑性,并且两者具有协同作用。随着辅助热稳定剂用量的增加,CPVC 的塑化时间呈先上升后下降的趋势,Pb-St 和 Ba-St 的用量为 0.7~份比较合适。

1.4.2 润滑剂

CPVC 树脂比 PVC 树脂具有更高的熔体黏度以及更差的热稳定性,因此需要在加工过程中加入一定量的润滑剂来降低熔体的黏度和改善熔体的金属剥离性,从而延长树脂的热稳定时间以及降低加工能耗。

毛季红^[2] 研究了内外润滑剂的品种和用量对 CPVC 材料流变性能的影响。该研究表明:在相同用量下,微晶石蜡和酰胺蜡作为外润滑剂具有最长的塑化时间以及最低的平衡转矩,因此认为其能够产生相对较好的润滑效果。进一步使用微晶石蜡和酰胺蜡,控制组成不变的情况下改变用量,发现外润滑剂用量越多则 CPVC 树脂的塑化时间越长,且平衡转矩也逐步降低,说明须足够的润滑剂用量[●]才能保证较好的挤出效果。对于内润滑剂的研究发现,多元醇酯和脂肪酸酯的润滑效果相近,同时增加内润

[●]从实验结果来看,外润滑剂用量须在2.5~3.0份之间

滑剂的用量可以促进树脂塑化。但内润滑剂熔点一般较低,对 CPVC 的热稳定性有较大的影响,因此需控制其用量。

1.4.3 抗冲改性剂

随着 CPVC 中氯含量的增加,分子链的极性增强,形成的大分子链间的范德华作用增大,致使 CPVC 的脆性增大,制品的抗冲击性能变差。考虑到 CPVC 树脂的加工性能以及在运输和安装过程中受到的冲击的影响,在 CPVC 的加工过程中须添加不同种类和用量的抗冲改性剂,以提高塑化质量及增加 CPVC 制品的低温抗冲性和韧性。

目前在 CPVC 制品的生产中,普遍使用 CPE[®]、MBS[®]、ACR[®]、ABS[®] 对 CPVC 进行改性。作为常用的抗冲改性剂,MBS、ACR 都具有典型的"核-壳"结构,都可在低用量下明显改善 CPVC 制品的脆性以及加工性能^[17]。

第1.5节 热稳定剂概述

CPVC的热稳定性差,加工过程中易分解放出 HCl,生成不饱和共轭多烯,导致制品变色、变硬和烧焦。热稳定剂是一类能防止或减少聚合物在加工使用过程中受热而发生降解或交联,延长复合材料使用寿命的添加剂。CPVC 常用的热稳定剂种类主要有铅盐类热稳定剂、金属皂复合热稳定剂、有机锡热稳定剂和稀土类热稳定剂。

1.5.1 热稳定机理

热稳定剂可以通过取代不稳定氯原子、中和 HCl、与不饱和结构发生反应等方式抑制 CPVC 分子的降解。吸收降解早期阶段释放出的 HCl,以防止内在自动催化反应的发生。热稳定剂的稳定机理主要有以下 4 种:

- (1) 吸收中和 HCl, 抑制其自动催化作用。这类稳定剂包括铅盐类、有机酸金属皂类、有机锡化合物、环氧化合物、酚盐及金属硫醇盐等。它们可与 HCl 反应, 抑制 CPVC 脱 HCl 的反应。
- (2) 置换 CPVC 分子中不稳定的烯丙基氯原子抑制脱 HCl。如有机锡稳定剂与 CPVC 分子的不稳定氯原子发生配位结合,在配位体中,有机锡与不稳定氯原子置换。
- (3) 与多烯结构发生加成反应,破坏大共轭体系的形成,减少着色。不饱和酸的盐或酯含有双键,与 CPVC 分子共轭双键发生双烯加成反应,从而破坏其共轭结构,抑制变色。

[●]氯化聚乙烯

❷(甲基丙烯酸甲醋-丁二烯-苯乙烯) 共聚树脂

❸抗冲型丙烯酸醋橡胶

[●]丙烯睛-丁二烯-苯乙烯

(4) 捕捉自由基,阻止氧化反应。如加入酚类热稳定剂能阻滞脱 HCl,是由于酚给出的 H原子自由基能与降解的 CPVC 大分子自由基偶合,形成不能与 O₂ 反应的物质,而具有热稳定作用。这种热稳定剂可具有一种或兼具几种作用。

1.5.2 热稳定剂分类

1.5.2.1 铅盐类热稳定剂

铅盐类热稳定剂是开发最早的一类稳定剂,其生产成本低, 热稳定性好。最重要的铅盐类稳定剂有三碱式硫酸铅 (3PbO·PbSO₄·H₂O)、二碱式亚磷酸铅 (2PbO·PbHPO₃)、二碱式硬脂酸铅 (2PbO·Pb(C₁₇H₃₅COO)₂) 和铅白 (2PbCO₃·Pb(OH)₂)。铅盐稳定剂的热稳定作用较强,具有良好的介电性能,且价格相对低廉。与润滑剂配比合理时可使CPVC 树脂的加工温度范围变宽,加工及后加工的产品质量稳定,故应用广泛。但铅盐有毒,不能用于接触食品的制品,也不能制得透明的制品,而且易被硫化物污染生成黑色的硫化铅。稳定机理:铅元素具有优异的的吸收 HCl 能力,且生成的氯化铅不会对 CPVC 分解产生催化作用。

1.5.2.2 金属皂类热稳定剂

金属皂是高级脂肪酸金属盐的总称,作为 CPVC 热稳定剂的金属皂中,金属基一般为 Pb、Ba、Ca、Cd、Zn、Mg等。脂肪酸基一般为硬脂酸、油酸等,其中硬脂酸最为常用。依据稳定机理和功能的不同,金属皂稳定剂可分为两大类:一类是以 Cd 和 Zn 为金属基,称为主金属皂稳定剂,它们能够吸收 HCl 且能置换烯丙基氯抑制多链烯的生成。但其生成的金属氯化物是路易斯酸,能够促进脱 HCl 反应的进行;另一类以 Ba、Sr、Ca、Mg等碱土金属为金属基,称为辅助金属皂稳定剂,其仅仅显示捕获 HCl 的作用,但生成的金属氯化物对脱 HCl 无催化作用,并能有效置换主金属稳定剂反应生成的氯化物。金属皂热稳定剂单独使用都无法达到理想的效果,因此一般将其配合使用,使其发挥协同效应,从而达到最好的热稳定作用。这类稳定剂热稳定性一般,但透明性、润滑性较铅盐好。

1.5.2.3 有机锡热稳定剂

有机锡是热稳定性能较好的 CPVC 热稳定剂之一,其透明性好且大多无毒。常用的有机锡稳定剂可分为含硫有机锡和有机锡羧酸盐。含硫有机锡主要为硫醇有机锡和有机锡硫化物,这类稳定剂与 Pb、Cd 皂并用时热稳定效果极好,且透明性好,但其会产生硫化污染。有机锡羧酸盐主要包括脂肪酸锡盐、月桂酸锡盐和马来酸锡盐,其热稳定性不如含硫有机锡。有机锡稳定剂热稳定性好但价格太高,限制了其广泛推广应用。

1. 5. 2. 4 稀土类热稳定剂

稀土稳定剂是我国特有的稳定剂体系,与我国有丰富的稀土资源有关。稀土包括原子序号从57~71的15个镧系元素及其相近的钇、钍共17个元素。稀土稳定剂有促进 CPVC 塑化的特点,目前我国在管材、型材方面大力推广应用。稀土稳定剂主要包括稀土的氧化物、氢氧化物及其有机弱酸盐。稀土类稳定剂稳定效果好且无毒,同时与其他稳定剂有协同作用。

1.5.3 钙锌复合热稳定剂

待定

1.5.4 辅助型热稳定剂

辅助热稳定剂单独使用时稳定效果较差,但它作为辅助热稳定剂与主稳定剂配合使用,则能大大增强主稳定剂的热稳定效果。目前广泛使用的有机热稳定剂主要有亚磷酸酯、环氧化合物、多元醇、含氮化合物、含硫化合物、 β -二酮化合物等 $^{[18]}$ 。

第1.6节 润滑剂概述[2]

润滑剂是一类用于降低树脂熔体黏度以及改善熔体金属剥离性,从而延长材料热稳定时间以及提高加工性能的加工助剂。从实现的功能上进行分类,润滑剂可分为外润滑剂和内润滑剂。

1.6.1 外润滑剂

外润滑剂是由极性较小的长碳链分子组成,其作用主要是降低聚合物和加工机械 设备之间的摩擦,改善熔体的金属剥离性,调节混合物的熔点以及流变学性能,减小 挤出负载,减少热稳定剂的消耗量等。外润滑剂与聚合物的相容性较差,容易从熔料 中向外迁移,在成型过程中能在物料与模具间形成一层很薄的隔离膜,使塑料不易粘 着在模具表面。但外润滑剂的加入会使力学和耐热性能均有所下降。因此,在满足加 工性能的基础上外润滑剂的加入量越少越好,即要求其在相同的加入量下能够产生更 好的润滑效果。

1.6.2 内润滑剂

内润滑剂与聚合物有良好的相容性,其在聚合物内部起着降低聚合物分子间内聚力的作用,从而降低聚合物大分子之间的摩擦,降低熔体黏度,缓解熔体破裂和出膜膨胀现象。内润滑剂和聚合物长链分子间的结合是不强的,它们可能产生类似于滚动轴承的作用,因此其自身能在熔体流动方向上排列,从而互相滑动,使得内摩擦力降

低。加入内润滑剂对塑化时间以及产品透明性的影响不大,但会降低材料的维卡软化点。

1. 6. 3 润滑剂的分类

润滑剂按化学结构可划分为脂肪酸酰胺类、烃类、脂肪酸类、酯类、醇类、金属皂类、复合润滑剂类。

1. 6. 3. 1 脂肪酸酰胺类润滑剂

- (1) 硬脂酸酰胺: 白色或淡黄褐色粉末,相对密度 0.96,分子量 283,熔点 98~103°C,溶于水,溶于热乙醇、氯仿、乙醚。具有优良的外部润滑效果和脱膜性,制品的透明性、分散性、光泽性和电绝缘性亦佳,并且无毒。是 PVC、PS、UF 等树脂加工润滑剂,还可作为聚烯烃的爽滑剂和抗粘连剂。一般用量 0.1%~2.0%。
- (2) N,N-亚乙基双硬脂酰胺 (EBS): 白色或乳白色粉末或粒状物。相对密度 0.98,分子量 593,熔点 142°C,不溶于水,溶于热的氯代烃类和芳烃类溶剂。广泛用于爽滑剂、抗粘连剂、润滑剂和抗静电剂。无毒,适用于 PE、PP、PS、ABS 树脂及热固性塑料的内部和外部润滑剂。一般用量为 0.2%~2.0%。
- (3) 油酸酰胺: 白色粉末状、碎片状或珠粒状物。相对密度 0.90, 分子量 281, 熔点 68~79°C, 不溶于水,溶于乙醇等许多溶剂。无毒,可作为 PE、PP、PA 等塑料的 爽滑剂、防黏剂,改善加工成型性能,还具有抗静电效果,可减少灰尘在制品表面的附着,在 PVC 加工成型中本品是良好的内部润滑剂。
- (4) 芥酸酰胺:形状、性能及用途与油酸酰胺相似,比油酸酰胺更佳。
- (5) 硬脂酸正丁酯 (BS): 淡黄色液体,相对密度 0.855~0.862,溶于大多数有机溶剂, 微溶于甘油、乙二醇和某些胺类,与乙基纤维素相容,与硝酸纤维素、乙酸丁酸纤维素、氯化橡胶等部分相。本品无毒,作为树脂加工时的内部润滑剂,具有防水性和较好的热稳定性,可用于涂料。虽与 PVC 不相容,但可作为 PVC 透明片挤出、注塑、压延的润滑剂、脱膜剂。一般用量 0.5%~1.0%。
- (6) 甘油三羟硬脂酸酯:粉末状物,熔点85~87°C。本品无毒,具有优良的耐热性和流动性。可作为PVC、ABS、MBS的润滑剂和爽滑剂和合成橡胶的脱膜剂。一般用量为0.25%~1.5%。

1. 6. 3. 2 烃类润滑剂

(1) 微晶石蜡: 白色或微黄色鳞片状或粒状物,固体相对密度 0.89~0.94,液体相对密度 0.78~0.81,熔点 70~90°C,溶于非极性溶剂,不溶于极性溶剂。热稳定性、润滑性优于石蜡,但会降低凝胶化速度,故用量不宜过大。无毒,常与硬脂酸丁酯或高级脂肪酸并用,用于塑料润滑剂。一般用量 0.1%~0.2%。

- (2) 液体石蜡: 无色透明液体,相对密度 0.89,凝固点 -35~-15℃,溶于苯、乙醚、二硫化碳,微溶于醇类,在热稳定及润滑性均良好。用于 PVC、PS 等树脂加工时,作为内润滑剂,与树脂相容性差。添加量一般为 0.3%~0.5%,过多时,反而使加工性能变坏。
- (3) 固体石蜡:白色固体,相对密度 0.9,熔点 57~60°C,不溶于水,溶于汽油、氯仿、二硫化碳、二甲苯、乙醚等有机溶剂,微溶于醇类。属于外润滑剂,可改善制品表面光泽,为非极性直链烃,不能润湿金属表面,也就是不能阻止 PVC 黏金属壁,只有与硬脂酸钙并用时,才能发挥协同效应,但其相容性、分散性和热稳定性均比较差。本品无毒,用于 PVC、PE、PP、PS、ABS、PBT、PET 及纤维素等塑料。
- (4) 氯化石蜡:石蜡经氯化而制得。无臭透明液体,含氯量有 42%,52%,70% 等多种,与 PVC 相容性好,还起增塑剂、阻燃剂的作用,但透明度差,用量在 0.3%以下,与其他增塑剂并用效果较好。一般用量 0.3%。
- (5) 聚乙烯蜡:又称低分子量聚乙烯,白色粉末或片状物,为乙烯的低度聚合产品。相对密度为0.9~0.93,分子量1000~5000,软化点100~115°C,具有良好的中期及后期润滑性,能起防黏剂作用,在色母粒加工中作颜料分散剂,在PVC-U中作润滑剂,在PVC、PE、PP、ABS、PET、PBT塑料成型中作润滑剂和脱模剂。一般用量0.1%~0.5%。
- (6) 氧化聚乙烯蜡:白色粉末或珠粒状固体,为含羧酸的低分子量聚乙烯,并含有醇、酮及酯类化合物,由于氧化使烷烃链上生成一定数量带有极性的羧基,提高了它在 CPVC 的相容性,使其同时兼有良好的内、外润滑性能,并赋予制品良好的透明性和光泽性,与高级脂肪或脂肪酸进行部分酯化,或用氢氧化钙进行部分皂化,得到的衍生物均具优异的内、外润滑性能。主要应用于 PVC、PE、PP、ABS、PBT、PET 等树脂的优秀润滑剂。用量 0.1%~1.0%。

1. 6. 3. 3 复合润滑剂

复合润滑剂是具有良好的内、外润滑剂的功效。常用的复合润滑剂有:石蜡类、金属皂与石蜡复合、脂肪酰胺与其他润滑剂复合物、一褐煤蜡为主体的复合润滑剂、稳定剂与润滑剂的复合体系。

1. 6. 3. 4 硅氧烷润滑剂

硅氧烷系作为脱模剂、防粘连剂和润滑剂广泛应用于酚醛、环氧、聚酯等塑料的加工成型上。常用的品种有聚硅氧烷、合成蜡、硅油、二氧化硅和硅藻土等。

(1) 甲基硅油: 即聚二甲基硅氧烷, 无色、无味, 透明、黏稠液体, 分子量为 5000~10000, 溶于乙醚、苯、甲苯, 部分溶于丙酮、乙醇、丁醇, 不溶于甲醇、环已醇、石蜡

油、植物油。可在-50~200°C 范围内使用。具有优良的耐高、低温性能,透光性、电性能、增水性和化学稳定性均良好。用作为脱模润滑剂。

- (2) 苯甲基硅油:即聚甲基苯基硅氧烷,性能同甲基硅油。
- (3) 乙基硅油: 即聚二乙基硅氧烷, 无色或浅黄色透明液体, 平均分子量 300~10000。 溶于乙醚、氯仿、甲苯。可与石油产品任意混合, 使用温度 -70~150°C, 具有优良的润滑性和电绝缘性, 表面张力较小, 防水、耐化学腐蚀性能好。可以作为脱模剂和润滑剂应用于塑料、橡胶加工润滑剂。

1.6.4 常用树脂所适用的润滑剂

- (1) 聚氯乙烯:适用:液体石蜡、固体石蜡、高熔点石蜡、聚乙烯蜡、乙撑双硬脂酰 胺、酯蜡硬脂酸丁酯、单硬脂酸甘油酯、金属皂、硬脂酸、硬脂醇。
- (2) 聚乙烯、聚丙烯:适用:乙撑双硬脂酰胺、硬脂酰胺、油酸酰胺、硬脂酸钙、硬脂酸锌、高沸点石蜡、微晶石蜡、脂肪酸。
- (3) 聚苯乙烯:适用硬脂酸锌、乙撑双硬脂酰胺、高熔点石蜡、硬脂酸丁酯。
- (4) ABS 树脂:适用硬脂酸锌等金属皂、脂肪酰胺、乙撑双硬脂酰胺、高熔点石蜡。
- (5) 聚酰胺: 适用油酸酰胺、硬脂酰胺、乙撑双硬酯酰胺。
- (6) PBT/PET 树脂:适用硬脂酸锌、硬脂酸钙、脂肪酰胺、高熔点石蜡、聚乙烯蜡。
- (7) 酚醛、氨基树脂:适用硬脂酸锌等金属皂、脂肪酰胺、乙撑双硬脂硬酰胺、高熔 点石蜡

第二章 实验试剂与设备

第2.1节 原料准备

2.1.1 外润滑剂

外润滑剂使用 Honeywell 公司的 AC-316、AC-617、AC-629, 具体参数见表 2.1。

表 2.1: AC-316、AC-617、AC-629 的物理参数对比

产品型号	密度/(g/cm³)	滴点/℃	黏度 @ 140°C/Pa·s
AC-316	0.98	140	8500
AC-617	0.91	101	180
AC-629	0.93	101	200

- (1) 树脂: 氯化聚氯乙烯 (CPVC)
- (2) 抗冲改性剂:
- (3) 热稳定剂:有机锡(TMG-234)、有机锡(实验室)、液体有机锡
- (4) 外润滑剂: AC-316、AC-617、AC-629、PEW-0380、A 蜡、OP 蜡
- (5) 内润滑剂: 汉高 G-60、OA2 蜡、E 蜡
- (6) 加工助剂:
- (7) 钛白粉:

第2.2节 制样设备

- (1) 高速混合机
- (2) 双辊开炼机

- (3) 平板硫化机
- (4) 切割设备

第2.3节 表征仪器

- 1. 转矩流变仪
- 2. 热烘箱
- 3. 动态热机械分析仪 (DMA)
- 4. 维卡软化仪
- 5. 万能试验机

第三章 研究方案及步骤

图 3.1: 研究方案流程图

第3.1节 配方设计原则

CPVC 润滑体系与热稳定体系采用控制变量法进行配方设计,配方的基本组成如表 3.1 所示

表 3.1: CPVC 基本配方设计表

CPVC	抗冲击改性剂	热稳定剂	外润滑剂	内润滑剂	加工助剂	钛白粉
100 °	8	2	1.3	1.2	3	2

第3.2节 制样流程

3.2.1 混料

配混料混合效果的好坏将直接影响制品的均匀性与力学性能,因而该步采用高速 混合机进行原料的混合。

按配方准确称量各助剂,将 CPVC 树脂及各助剂按顺序加入到高速混合机中,混合 3 分钟制成配混料。为防止因摩擦生热使得 CPVC 发生热分解,采用每搅拌 2 s 暂停 3 s 的间歇式搅拌方法,控制在树脂在较低的温度。

3. 2. 2 塑化开炼

该步是将制得的配混料加入到双辊开炼机中,通过控制两个辊筒的转速比使得物料受到剪切作用,从而达到塑炼的混合效果。

[●]均表示份数

通过对 CPVC 玻璃化转变温度 T_g 与热分解温度 T_d 的参考,将双辊开炼机的辊温设定为 190°C。将配混料加入到开炼机中反复进行塑化开炼,塑化时间约 5 \min 。

3.2.3 压片

在 180° C、10 MPa 条件下,采用平板硫化机热压 3 min 左右,重复开合压板排气 $4\sim5$ 次,再冷压 5 min 即得到待测试样片。

3.2.4 切割

按照最终性能测试的要求,将样片切割成标准样条。

第3.3节 表征方法

CPVC 作为含氯聚合物,其热分解主要发生在加工与使用阶段。特别在加工过程中,CPVC 树脂长时间处于高温,或在较高温度下长期使用都会使 CPVC 发生热分解与热老化。加工状态又可分为静置压制或模中停留等静态受热与注塑、挤出、混炼、辊压等动态受热过程。因此 CPVC 的热稳定性测试分为静态热稳定测试与动态热稳定测试,同时用玻璃化转变温度和维卡热变形温度对 CPVC 的耐热性能进行表征。

对于力学性能采用国家标准对 CPVC 的拉伸强度、弯曲强度、冲击强度进行测试,同时采用 SEM[●] 对冲击断面的形貌进行观测。

3.3.1 动态热稳定性

动态热稳定性是指在热、空气和剪切力的共同作用下,热稳定剂抵抗 CPVC 热分解的能力。本实验采用转矩流变仪进行测试。首先将流变仪的温度设定为 205°C,转速为 50 r/min。将 60 g 的样品加入到流变仪中,记录流变仪的转矩随时间的变化。在最终得到的转矩-时间曲线中,如图 3.2 所示,第一个峰为熔化峰,所对应的转矩为熔化转矩(fusion torgue)。熔化峰之后,由于物料进一步塑化并且熔体温度上升,使试样转矩下降,并随着熔体温度趋于恒定,转矩曲线呈现基本平稳段,所对应的转矩称为熔体转矩(melt torgue),也称平衡转矩。平衡转矩可用于评定样品的加工性能,平衡转矩越小,样品加工时所需的能耗越小,对设备的损耗也越小。随着试验的继续,CPVC 发生分解,此时曲线急速上升,混合物的长期热稳定性就是根据从熔化峰到转矩突然增大点所经历的时间来评定。

[●]扫描电子显微镜

图 3.2: CPVC 转矩-时间曲线示例图

3.3.2 静态热稳定性

CPVC 配混料在加工或再加工过程都会在较高温度的设备中停留一定时间, CPVC 制品在使用过程中也会经受一定的环境温度,这就要求热稳定剂能赋予 CPVC 以合适的静态热稳定性。根据 CPVC 热分解导致物料颜色变化或释放出氯化氢的特征,建立了变色法和脱氯化氢法两类评价静态热稳定性的方法。本实验采用变色法[●]进行 CPVC 静态热稳定性的表征。

烘箱法:将边长 15 mm,厚度约 1 mm 的正方形试样,放在平铺于架子上的新的干净铝箔上面,在强制鼓风烘箱中于高温下加热不同时间。每隔一定时间取出一片试样,从测试开始至最初观察到颜色变化即为初期热稳定定性,从测试开始至试样完全变黑的时间则为长期热稳定性。

3.3.3 玻璃化转变温度

本实验中采用 DMA 对玻璃化转变温度进行测试。DMA 是对试样施加恒定振幅的正弦交变应力,观察应变随温度或时间的变化规律,从而计算力学参数用以表征材料粘弹性的一种试验方法。在聚合物玻璃化转变过程中,其粘弹性有很大改变,从而可用 DMA 测定 T_g 。DMA 曲线通常有储能模量、损耗模量、损耗因子这三个信号,对应的 T_g 也可有三种取法,分别为储能模量的台阶式下降曲线部分的起始点、损耗模

[●]执行标准 GB/T 9349—2002《聚氯乙烯、相关含氯均聚物和共聚物及其共混物热稳定性的测定变色法》

量的峰值温度、损耗因子[●]的峰值温度。本实验取损耗因子的峰值温度作为最终测试得到的玻璃化转变温度。如图 3.3 所示,在加热过程中,样品的损耗因子出现了一个峰值,取峰值所在温度为样品的玻璃化转变温度。

图 3.3: CPVC DMA 损耗因子-温度曲线示例图

3.3.4 维卡软化点

维卡软化点是将热塑性塑料置于特定液体传热介质中,在一定的负荷、一定的等速升温条件下,测定试样被 1 mm² 针头压入 1 mm 时的温度[€]。实验测得的维卡软化点适用于控制质量和作为衡量材料热性能的一个指标,但不代表材料的使用温度。

3.3.5 拉伸强度

拉伸强度定义为断裂前试样所能承受的最大应力,单位为 MPa,用来评价材料的抗拉性能。拉伸强度的计算公式见式 (3.1),其中 P 为样品承受的最大载荷,b 和 d 分别为试样的宽度和厚度。

$$\sigma_t = \frac{P}{bd} \tag{3.1}$$

 $[\]bullet$ 损耗角正切: $tan \delta = \frac{G''}{G'}$

❷执行标准 GB 1633-1979

本实验中采用万能试验机进行拉伸强度测试[●],设置拉伸速率为 10 mm/min,夹 具距离为 80 mm,样条的最窄宽度为 6 mm,厚度为 4 mm。

3.3.6 弯曲强度

弯曲强度是指材料在弯曲负荷作用下破裂或达到规定弯矩时能承受的最大应力,此应力为弯曲时的最大正应力,以 MPa 为单位。它反映了材料抗弯曲的能力,用来评价材料的弯曲性能。横力弯曲时,弯矩 M 随截面位置变化,一般情况下,最大正应力 σ_{max} 发生于弯矩最大的截面上,且离中性轴最远处。因此,最大正应力不仅与弯矩 M 有关,还与截面形状和尺寸有关。最大正应力计算公式见式 (3.2),其中 σ_{max} 为最大弯矩,W 为抗弯截面系数。

$$\sigma_{max} = \frac{M_{max}}{W} \tag{3.2}$$

本实验同样使用万能试验机进行弯曲强度测试[®],设置移动速率为2 mm/min,样条尺寸为80 mm×10 mm×4 mm,跨度为64 mm。

3.3.7 缺口冲击强度

冲击强度是材料在受到冲击后断裂吸收冲击能量的能力,用于评价材料的抗冲击能力或判断材料的脆性和韧性程度。缺口冲击强度的计算公式见式 (3.3),其中 aiN 为缺口冲击强度 (Izod impact strength of a notched specimen),x% 为实验测得百分比,S 为缺口处截面面积。

$$aiN = \left(\frac{2.57J \times x\%}{S}\right)KJ/m^2 \tag{3.3}$$

本实验采用落锤冲击强度仪进行缺口冲击强度测试[®],缺口形状为"V"形,深度为2mm,落锤满载能量为2.75 J。

3.3.8 SEM 观测冲击断裂面样貌

SEM 的最大特点是图像富有立体感,放大倍数连续可变,特别适合表面形态的研究,是研究固体材料表面三维结构形态的有效工具,成为常用的高分子表面形貌剖析手段。

[●]执行标准 GB/T 1040.2-2006

❷执行标准 GB/T 9341-2008

^❸执行标准 ISO 180/1A

第四章 润滑剂对 CPVC 热稳定性和力 学性能作用研究

第 4.1 节 外润滑剂种类对 CPVC 性能的影响

4.1.1 配方设计

本实验中使用了1种聚乙烯蜡: PEW-0380以及3种氧化聚乙烯蜡: AC-316、AC-617、AC-629。聚乙烯蜡为乙烯的低度聚合产品,具有良好的中期及后期润滑性,并能在CPVC注塑加工中作为脱模剂使用。氧化聚乙烯蜡为含羧基的低分子量聚乙烯,并含有醇、酮及酯类化合物。由于氧化使烷烃链上生成一定数量极性的羧基,提高了它在CPVC的相容性,使其同时兼有良好的内、外润滑性能,并赋予制品良好的透明性和光泽性。

一般认为,外润滑剂的加入会使材料的力学和耐热性能均有所下降。因此我们通过控制其他组成不变,单独改变外润滑剂的种类,从而找到一种在相同用量下能实现最好润滑效果且对材料热稳定性和力学性能影响最小的外润滑剂种类。具体配方如表4.1 所示。

组别	CPVC	抗冲击 改性剂	有机锡	AC- 316	AC- 617	AC- 629	PEW- 0380	汉高 G-60	加工 助剂	钛白粉
$\overline{E_1}$	100	8	2	1.3				1.2	3	2
E_2	100	8	2		1.3			1.2	3	2
E_3	100	8	2			1.3		1.2	3	2
E_4	100	8	2				1.3	1.2	3	2

表 4.1: CPVC 4 种外润滑剂配方设计表

4.1.2 动态热稳定性

图 4.1 所示为 $E_1 \sim E_4$ 四种配方在转矩流变仪中进行加热剪切过程的转矩-时间曲线。由图中数据可得到该体系的熔化转矩、平衡转矩与热稳定时间 $^{\bullet}$,具体数据见

[●]见23页3.3.1动态热稳定性

表 4.2所示。

图 4.1: $E_1 \sim E_4$ 组转矩流变仪转矩-时间曲线

表 4.2: $E_1 \sim E_4$ 组动态热稳定性能数据表

组别	润滑剂种类	熔化转矩 M_{fus} /N·m	平衡转矩 $M_{melt}/$ N·m	热稳定时间 $T_s/$ min
$\overline{E_1}$	AC-316	29.6	12.1	6.2
E_2	AC-617	26.5	12.5	6.6
E_3	AC-629	24.9	12.4	5.9
E_4	PEW-0380	28.0	12.2	7.3

结合图表数据可以看出, E_3 组配方具有最小的熔化转矩,为 24.9 N·m,剩余组别顺序依次为 $M_{fus,E_2} < M_{fus,E_4} < M_{fus,E_1}$ 。4 组的平衡转矩相差不大,顺序依次为 $M_{melt,E_1} < M_{melt,E_3} < M_{melt,E_2}$,AC-316 与 PEW-0380 对于 CPVC 加工性能的改善略优于 AC-617 与 AC-629。 E_4 组具有最长的热稳定时间,其 T_s 为 7.3 min,能够满足 CPVC 塑化加工的要求。

4.1.3 静态热稳定性

将 4 组配方的样板进行切割,取 1 cm² 的试样进行测试,结果如表 4.3 所示。 E_1 组和 E_2 组的样品在实验开始的 20 min 后表面开始出现起伏,当达到 360 min 时,表面已严重变黑且因 CPVC 分解产生 HCl 而形成了大量的气泡。分析原因是 AC-316 与

AC-617 对 CPVC 树脂的塑化改善不大,CPVC 树脂由于塑化不佳致其容易发生分解。 E_4 组在 360 min 时轻微发黄,认为 PEW-0380 对 CPVC 塑化效果改善最大。

Sample -					C烘箱中颜色		
	0 min	20 min	30 min	70 min	120 min	250 min	360 min
E_1							
E_2							
E_3			1 7		28.3		!
E_4					15.80		

表 4.3: $E_1 \sim E_4$ 组热烘箱法测定样品颜色随时间变化

4.1.4 玻璃化转变温度

根据 $E_1 \sim E_4$ 四组配方的损耗因子-时间数据制得图 4.2,取损耗因子的峰值温度作为试样的玻璃化转变温度。根据实验结果, E_3 和 E_4 组具有最高的玻璃化温度,分别为 155.17°C 和 154.03°C,比 E_1 和 E_2 组的 146.09°C 和 147.78°C 平均高 7°C 左右。本实验结果与静态热稳定性测试的结果一致,认为 AC-629 与 PEW-0380 对 CPVC 热性能的影响较小。

4.1.5 力学性能

采用万能试验机对 $E_1 \sim E_4$ 组的标准试样进行拉伸强度、弯曲强度和缺口冲击强度的测试,具体数据如表 4.4 所示。从表中数据可见,四组的拉伸强度和弯曲强度差别不大,但缺口冲击强度呈 $aiN_{E_4} > aiN_{E_3} > aiN_{E_2} > aiN_{E_1}$ 的趋势,并且 $aiN_{E_4} \approx 2 \cdot aiN_{E_1}$,说明 E_4 组的塑化效果最好,PEW-0380 对 CPVC 加工性能的改善最大。

图 4.2: 外润滑剂玻璃化转变温度

表 4.4: $E_1 \sim E_4$ 组力学性能数据表

组别	σ_t /	弯曲强度 σ_b /	缺口冲击强度 aiN/
组加	MPa	Mpa	KJ/m^2
$\overline{E_1}$	57.30	63.73	8.01
E_2	59.16	60.29	10.57
E_3	58.77	60.59	14.10
E_4	59.48	60.61	16.04

第 4. 2 节 内外润滑剂组合对 CPVC 性能的影响

4. 2. 1 配方设计

由上一组实验我们得到 PEW-0380 外润滑剂具有最好的综合润滑性能,因此在本组实验中我们选用 PEW-0380/G-60 润滑剂组合作为对照组,并且使用 A 蜡和 OP 蜡两种外润滑剂以及 OA2 蜡和 E 蜡两种内润滑剂两两组合配方,共 5 组配方做为实验组进行热稳定性和力学性能的测试。探究内外润滑剂对于 CPVC 热稳定性和加工性能的协同影响。具体配方如表 4.5 所示。

4.2.2 玻璃化转变温度

根据 $S_1 \sim S_5$ 五组配方的损耗因子-时间数据制得图 4.3,取损耗因子的峰值温度作为试样的玻璃化转变温度。

表 4.5: CPVC 内外润滑剂组合配方设计表

组别	CPVC	抗冲击	有机锡	外润滑剂			内润滑剂			加工	钛白粉
		改性剂		PEW-0380	A蜡	OP 蜡	G-60	OA2 蜡	E蜡	助剂	拟口彻
S_1	100	8	2	1.3			1.2			3	2
S_2	100	8	2		1.3			1.2		3	2
S_3	100	8	2		1.3				1.2	3	2
S_4	100	8	2			1.3		1.2		3	2
S_5	100	8	2			1.3			1.2	3	2

图 4.3: 外润滑剂玻璃化转变温度

第五章 CPVC 热稳定体系研究

第六章 实验数据与处理

第6.1节 热稳定体系测试

6.1.1 动态热稳定性

图 6.1: 热稳定剂动态热稳定性

6.1.2 玻璃化转变温度

图 6.2: 热稳定剂玻璃化转变温度

致谢

感谢

参考文献

- [1] 宫岐山. CPVC 的热稳定性及加工性能研究. Master's thesis, 青岛科技大学, 2012.
- [2] 毛季红. 热稳定剂和润滑剂对氯化聚氯乙烯树脂性能的影响. 中国塑料, Vol.23 (11):63-68, 2009.
- [3] 周秉武. 氯化聚氯乙烯管材性能及应用. 第 19 届全国氯碱行业技术年会论文集, pages 201-202, 205, 2001.
- [4] 管延彬. 氯化聚氯乙烯的发展概况. 聚氯乙烯, Vol.1:4-10, 2002.
- [5] 赵劲松; 付志敏. CPVC 树脂的应用现状. 聚氯乙烯, Vol.41(8):19-27, 8 2013.
- [6] 吕咏梅. 氯化聚氯乙烯生产与应用. 杭州化工, Vol.32:11-13, 2002.
- [7] 黄静雯. 氯化聚氯乙烯 (CPVC) 冷热水管系统. 塑料, Vol.30:54-56, 2001.
- [8] 周达飞; 王书忠; 俞蔼默. 悬浮法聚氯乙烯树脂的研究——酚烷基化法测定聚氯乙烯的不稳定氯原子. 聚氯乙烯, (6):1-11, 1983.
- [9] 马玫; 胡行俊; 麦伟宗; 雷祖碧. CPVC 加工稳定性研究-复合铅体系. 合成材料老化 与应用, Vol.37(1):16–19, 2008.
- [10] 靖志国; 刘军; 熊新阳. CPVC 的不稳定性分析. 聚氯乙烯, Vol.42(4):32-38, 2014.
- [11] Robert P. Lattimer, Jerry B. Pausch, and Henk L. C. Meuzelaar. Pyrolysis studies of chlorinated poly(vinyl chloride). *Macromolecules*, 16(12):1896–1900, 1983. doi: 10.1021/ma00246a017. URL http://dx.doi.org/10.1021/ma00246a017.
- [12] 马文光; 张正柏; 张玉田. 氯化聚氯乙烯热稳定研究进展. 聚氯乙烯, (5):40-49, 1988.
- [13] Gabriela Robilă; E. C. Buruiană; A. A. Caraculacu. Determination of labile chlorine in PVC with the aid of phenolysis reaction. *European Polymer Journal*, Vol.13(1):21–24, 1977.

- [14] 张向京; 郭欣欣; 马瑞平; 乔永智; 熊春燕; 胡永琪. 气固相法合成氯化聚氯乙烯树脂. 合成树脂及塑料, Vol.28(4):5-8, 2011.
- [15] 褚钰宇; 蒋文伟; 杨琴; 罗芩; 宋倩茜. 水相悬浮法 CPVC 生产新工艺. 聚氯乙烯, Vol.38(11):7-9, 2010.
- [16] 柯伟席; 王澜; 张萌; 杜文硕; 沈传熙. CPVC 热稳定性能研究. 中国塑料, Vol.25(3): 34–38, 3 2011.
- [17] 滕谋勇; 孙章春; 王延胜; 徐保良; 王艳芳. MBS、ACR 对 CPVC 凝胶化性能及其力学性能的对比分析. 塑料, Vol.40(5):31–34, 2011.
- [18] 蔡宏国. 有机辅助热稳定剂的功能及其应用. 现代塑料加工应用, Vol.6(5):29–33, 1994.