STATS 131 FINAL PROJECT

Melbourne Housing Data

-----Jieming Fang, Jin Wang, Huijun Yan

Background information on the subject and field of study.

- Choosing "Melbourne Housing Data" as our data set.
- Information of data collection:
 - > Tony Pino collected the data starting from 2016
 - > The data was scraped from publicly available resulted posted every week from Domain.com.au
 - > The dataset includes Address, Type of Real estate, Suburb, Method of Selling, Rooms, Price, Real Estate Agent, Date of Sale and Distance from C.B.D.
 - > 34857 observation & 21 variables
- Research Question:
 - What housing characteristics associate with housing price in Melbourne?

Exploratory Analysis of the Data

--Potential Relationships

- Scatter plots for relationships between numeric data
 - Create a Pairplot and linear regression plots to see the top 4 ("Rooms"; "Bathroom"; "Bedroom2"; "Car") correlation with "Price"
 - It implies that there are collinearity relationship among "Rooms"; "Bathroom"; and "Bedroom2"

Exploratory Analysis of the Data

--Potential Relationships

- Analysis the Year of Built to create a new variabels (Year Group)
 - > Based on the "YearBuilt" statistics (starting with it medium), we divide it into 6 groups
 - Table shows the mean price for each group
 - > The line plot shows the trend of mean price between 1965 to 2020 year

	Price
oup	
1975)	7.894192e+05
1985)	8.578595e+05
1995)	9.233559e+05
2005)	9.456095e+05
2015)	9.229580e+05
2025)	1.225991e+06
	1975) 1985) 1995) 2005) 2015) 2025)

Exploratory Analysis of the Data

- Create boxplots to see the relationship of each categorical variables ('Type'; 'Method'; 'RangeofDistance'; 'yeargroup') with "Price"
 - "Method" v.s "Price": each level are similar (medium almost on the same line)
 - "Type" v.s "Price"; "RangeofDistance" v.s "Price" and "yeargroup" v.s "Price"; different for each level (mediums are not on the same line)

--Potential Relationships

Data Modeling

- Pick High correlation variables and "Price" as a new data
- ❖ use test size= 0.2 to split new data as training data and testing data.
- They have the same outcome variables---"Price"
- Model with Numerical & Categorical
 - Rooms + Bathroom + Car + YearBuilt + C(RangeofDistance) + C(Type)
 - > Each predictors's P-value are equal to 0
 - > MSE: 154504501092.9267
- Model Only with Numerical
 - Rooms + Bathroom + Car + YearBuilt
 - \succ P-value: some of larger than the model 1
 - MSE: 182985781375.0511

