1 Enunciado

Num refrigerador por compressão de vapor operando em estado estacionário com vazão de 20 kg/min de HFC-134a, o evaporador fornece vapor saturado a -50 °C, o compressor tem eficiência de 75% e o condensador fornece um fluido a 1.0 MPa e 20 °C. No diagrama PH do HFC-134a, identifique o ponto correspondente a cada corrente do refrigerador. Calcule as potencias térmica e elétrica e o coeficiente de desempenho do refrigerador.

Dados:

- F = 20 kg/min
- Saída do evaporador => corrente 1
 - o temperatura dada
 - $T_1 = -50^{\circ} \text{C}$
 - o dado que é vapor saturado
 - $x^{V} = V^{SAT}(1)$
- Eficiência do compressor => processo 1-2
 - o eficiência dada
 - $\eta_{1\to 2} = 75\%$
- Saída do condensador => corrente 3
 - o pressão dada
 - $P_3 = 1 \text{ MPa}$
 - o temperatura dada
 - $T_3 = 20^{\circ} \text{C}$

Resolução:

2 ideal

- 1. Marcar a corrente 1 da qual foram dadas propriedades
 - 1. de T_1 =-50°C => Encontrar a isoterma de -50°C
 - 2. de $x^{\rm V}=V^{\rm SAT}(1)$ => Marcar a interseção da isoterma T_1 com a curva de ponto de orvalho
 - 3. é possível ler a pressão da corrente no eixo y
 - 4. é possível ler a entalpia da corrente no eixo x
 - 5. é possível ler a entropia da corrente procurando qual isopleta passa pelo ponto marcado
- 2. Marcar a corrente 3, da qual já foram dadas 2 propriedades
 - 1. de T_3 = 20 => procurar a isoterma
 - 2. de P_3 = 1000 => marcar a interseção da isoterma com a horizontal de pressão
 - 3. é possível ler a entalpia no eixo x
 - 4. é possível ler a entropia procurando a isopleta
 - 5. Note que o ponto fica à esquerda do envelope de fases, logo é liquido subresfriado
- 3. Calcular corrente 4
 - 1. Considerando evaporador isobárico
 - 1. $P_4 = P_1$
 - 2. Considerando a válvula adiabática e sem trabalho => Q=0, W=0 : $.\Delta H_{4\to 3}=0$ => isentálpica
 - 1. $H_4 = H_3$
 - 3. a corrente 4 está na interseção entre a vertical de entalpia $H_4=H_3$ e a horizontal de pressão $P_4=P_1$
 - 1. é possível ler a temperatura procurando a isoterma
 - 2. é possível ler a entropia procurando a isopleta
 - 3. é possível ler a fração de vapor pois esse diagrama também possui isopletas de $x^{\rm V}$ dentro do envelope
- 4. Calcular corrente 2
 - 1. Considerando compressor adiabático e reversível => isoentrópico
 - 1. $S_2 = S_1$
 - 2. Considerando o condensador isobárico
 - 1. $P_3 = P_2$

- 3. marcar o ponto da corrente 2 na interseção entre a horiza
ontal de $P_3=P_2$ com a isopleta de $S_2=S_1$
 - 1. é possivel ler temperatura buscando as isotermas proximas
 - 2. é possível ler entalpia no eixo x
- 5. trabalho no compressor
 - 1. $W_{\text{compressor}} = \Delta H_{1\to 2}$
- 6. calor no condensador
 - 1. $Q_{\text{condensador}} = \Delta H_{2\rightarrow 3}$
- 7. calor no evaporador
 - 1. $Q_{\text{evaporador}} = \Delta H_{4\rightarrow 1}$
- 8. Potencia térmica (energia por tempo) = Calor retirado (por massa) x vazão mássica
 - 1. $Q_{\text{evaporador}}/F$
- 9. Potencia elétrica (energia por tempo) = Trabalho gasto (por massa) x vazão mássica
 - 1. $W_{\text{compressor}}/F$
- 10. Coeficiente de operação (desempenho) = calor removido / trabalho gasto
 - 1. $Q_{\text{evaporador}}/W_{\text{compressor}}$

Corrente [i]	(item da resolução) propriedades da corrente								
Contente [i]	T/degC		P/kPa		H_	_T		x_V	
[1]	(0) -50	.00 ((1)	3.00	(1)	370.00	(0)	V_sat	(1)
[2]	(4) 60	.00 ((4)	1000.00	(4)	445.00	(4)	V_sup	(1)
[3]	(0) 20	.00 ((0)	1000.00	(2)	230.00	(2)	L_sub	(0)
[4]	(3) 50	.00 ((3)	3.00	(3)	230.00	(3)	ELV (9.4)

Cálculos de props. Intensivas							
W[1 \rightarrow 2](compressor) (5) 75.00 [kJ/kg]							
$Q[2\rightarrow 3]$ (condensador)	(6)	-215.00 [kJ/kg]					
$Q[4\rightarrow 1]$ (evaporador)	(7)	140.00 [kJ/kg]					

Cálculos de prop. Extensivas						
vazão mássica	(0)	20.00 [kg/min]				
Potencia termica	(8)	2.80E+03 [kJ/min]				
Potencia eletrica	(9)	1.50E+03 [kJ/min]				
Coeficiente desempenho	(10)	1.87 [kJ/min]				

3 considerando a eficiência de 75%

- 1. Resolução idem à anteriormente
- 2. Resolução idem à anteriormente
- 3. Resolução idem à anteriormente
- 4. Calcular corrente 2 ideal
 - 1. Resolução idem à anteriormente
- 5. Calcular corrente 2 real
 - 1. $\eta_{
 m compressor}$ é definida por: W_mínimo_isentropico / W_consumido_real $\Delta H = W$ $\eta_{
 m compressor} = (H_2' H_1)/(H_2 H_1)$
 - 2. Resolver para descobrir H_2
 - 1. $H_2 = H_1 + (H_2' H_1)/(\eta_{\text{compressor}})$
 - 3. calcular trabalho no compressor não ideal
 - 1. $\Delta H = W$
- 6. calcular potencia eletrica
 - 1. equação idem a anteriormente, resultado dá valor diferente
- 7. calcular potencia termica
 - 1. idem a anteriormente, as correntes envolvidas nessa parte não mudaram, resultado igual
- 8. calcular coeficiente de operação
 - 1. equação idem a anteriormente, resultado dá valor diferente

Corrente [i]	(item da resolução) propriedades da corrente									
Contente [i]	T/de	T/degC P/kPa H_T		P/kPa		x_V		Efici	i.[i-1 → i]	
[1]	(0)	-50.00	(1)	3.00	(1)	370.00	(0)	V_sat (1)	-	-
[2']	(4)	60.00	(4)	1000.00	(4)	445.00	(4)	V_sup (1)	is	sentropico
[2]	(5)	90.00	(5)	1000.00	(5)	470.00	(5)	V_sup (1)		0.75
[3]	(0)	20.00	(0)	1000.00	(2)	230.00	(2)	L_sub (0)	-	-
[4]	(3)	50.00	(3)	3.00	(3)	230.00	(3)	ELV (0.4)	-	-

-						
Cálculos de props. Intensivas						
Dhideal	75.00 [kJ/kg]					
eficiencia	0.75 [kJ/kg]					
Dhreal	100.00 [kJ/kg]					
W[1→2](compressor)	100.00 [kJ/kg]					
H_2 real	470.00 [kJ/kg]					
$Q[2\rightarrow 3]$ (condensador)	-240.00 [kJ/kg]					
$Q[4\rightarrow 1]$ (evaporador)	140.00 [kJ/kg]					

Cálculos de prop. Extensivas						
vazão mássica	(0)	20.00 [kg/min]				
Potencia termica	(8)	2.80E+03 [kJ/min]				
Potencia eletrica	(9)	2.00E+03 [kJ/min]				
Coeficiente desempenho	(10)	1.40 [kJ/min]				