Neuronové sítě

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky

Matematicko-fyzikální fakulta

Univerzity Karlovy v Praze

Neuronové sítě

Perceptron a lineární separabilita –

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Formální neuron

$$y = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} w_{i} x_{i} + \mathcal{G} \geq \mathbf{0} : \text{ TŘÍDA A} \\ \\ \mathbf{0} & \text{if } \sum_{i=1}^{n} w_{i} x_{i} + \mathcal{G} < \mathbf{0} : \text{ TŘÍDA B} \end{cases}$$

Typy přenosových funkcí

Skoková

$$y = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} w_i x_i + \mathcal{G} \ge \mathbf{0} : \text{ TŘÍDA A} \\ \\ \mathbf{0} & \text{if } \sum_{i=1}^{n} w_i x_i + \mathcal{G} < \mathbf{0} : \text{ TŘÍDA B} \end{cases}$$

Sigmoidální

Radiální (RBF)

Waveletová

Definice formálního neuronu

Neuron s vahami $(w_1, \ldots, w_n) \in R^n$, prahem $\vartheta \in R$ a přenosovou funkcí $f: R^{n+1} \times R^n \longrightarrow R$ počítá pro libovolný vstup $\vec{z} \in R^n$ svůj výstup $y \in R$ jako hodnotu přenosové funkce v \vec{z} , $f[\vec{w}, \vartheta](\vec{z})$.

Nejčastěji se uvažuje tzv. sigmoidální přenosová funkce:

$$y = f[\vec{w}, \vartheta](\vec{z}) = f(\xi) = \frac{1}{1 + e^{-\xi}}$$

$$\xi = \sum_{i=1}^n z_i w_i + \vartheta$$
 označuje tzv. potenciál

neuronu, R množinu reálných čísel.

Definice stavů neuronu

Nechť z označuje vstup neuronu.

- Jestliže $f[\vec{w}, \vartheta](\vec{z}) = 1$, říkáme, že je neuron aktivní;
- Jestliže $f[\vec{w}, \vartheta](\vec{z}) = \frac{1}{2}$, říkáme, že je neuron tichý; Tato skutečnost znamená, že příslušný vstup leží v dělicí nadrovině určené tímto neuronem.
- Jestliže $f[\vec{w}, \vartheta](\vec{z}) = 0$, říkáme, že je neuron pasivní.

Učení a rozpoznávání

Učení:

- S učitelem trénovací množina tvaru [vstup/požadovaný výstup]
- Bez učitele (samoorganizace) chybí požadovaný výstup
- ⇒ Cíl: nastavení (adaptace) synaptických vah (např. minimalizací střední kvadratické odchylky)

Cílová funkce: např.
$$\sum_{p} \sum_{j} \left(y_{p,j} - d_{p,j} \right)^{2}$$

y je skutečný a d je požadovaný výstup

Rozpoznávání:

- nově předkládaných vstupních vzorů
- => Cíl: získat odezvu (výstup) neuronové sítě

Definice trénovacích vzorů

Pro BP-síť B s n vstupními a m výstupními neurony:

- vstupní vzor označuje vstupní vektor
 x̄ ∈ Rⁿ zpracovávaný sítí.
- požadovaný výstup $\vec{d} = (d_1, \ldots, d_m)$ tvoří požadované výstupy neuronů výstupní vrstvy.
- Pro daný vstupní vzor představuje skutečný výstup B vektor $\vec{y}=(y_1,\ldots,y_m)$ tvořený skutečnými výstupy neuronů výstupní vrstvy.

Trénovací množina T je množina p uspořádaných dvojic tvaru vstupní vzor/požadovaný výstup:

$$T = \{ [\vec{x}_1, \vec{d}_1], \dots, [\vec{x}_p, \vec{d}_p] \}.$$

Perceptron a lineární separabilita (1)

D: Jednoduchý perceptron je výpočetní jednotka s prahem θ , která pro n reálných vstupů x_1 , x_2 , ..., x_n a váhy w_1 , ..., w_n dává výstup 1, jestliže platí nerovnost

$$\sum_{i=1}^{n} w_{i} x_{i} \geq \mathcal{G} \quad \text{(tzn. pokud } \vec{w} \cdot \vec{x} \geq \mathcal{G} \text{) a } \boldsymbol{\theta} \text{ jinak.}$$

Pozn.: Obdobně pro tzv. rozšířený váhový a vstupní vektor:

$$\vec{w} = (w_1, w_2, \dots, w_n, w_{n+1}) ; \quad w_{n+1} = -\theta$$

$$\vec{x} = (x_1, x_2, \dots, x_n, 1)$$

$$=> \text{ výstup 1, jestliže } \vec{w} \cdot \vec{x} \ge 0$$

Perceptron a lineární separabilita (2)

Lineární separabilita:

D: Dvě množiny A a B se nazývají lineárně separabilní v n-rozměrném prostoru, pokud existuje n+1 reálných čísel $w_1, ..., w_n, \vartheta$ takových, že každý bod $(x_1, x_2, ..., x_n) \in A$ splňuje $\sum_{i=1}^n w_i x_i \ge \vartheta$ a každý bod $(x_1, x_2, ..., x_n) \in B$ splňuje $\sum_{i=1}^n w_i x_i < \vartheta$

Perceptron a lineární separabilita (3)

Příklad:

- *n*=2 => 14 z 16 možných Boolovských funkcí je "lineárně separabilních"
- n=3 = 104 z 256 ''
- $n=4 \implies 1882 \text{ z } 65536 \quad \text{ ''} = 1882 \text{ z } 65536$
- Pro obecný případ zatím není znám výraz pro vyjádření odpovídajícího počtu lineárně separabilních funkcí v závislosti na n

Perceptron a lineární separabilita (4)

Absolutní lineární separabilita:

D: Dvě množiny A a B se nazývají **absolutně lineárně separabilní** v n-rozměrném prostoru, pokud existuje n+1 reálných čísel $w_1, ..., w_n, \vartheta$ takových, že každý bod $(x_1, x_2, ..., x_n) \in A$ splňuje $\sum_{i=1}^n w_i x_i > \vartheta$ a každý bod $(x_1, x_2, ..., x_n) \in B$ splňuje $\sum_{i=1}^n w_i x_i < \vartheta$

Perceptron a lineární separabilita (5)

V: Dvě konečné množiny bodů A a B, které jsou lineárně separabilní v n-rozměrném prostoru, jsou také absolutně lineárně separabilní.

Důkaz: Protože jsou množiny A a B lineárně separabilní, existují reálná čísla w_1 , ..., w_n , ϑ taková, že platí $\sum_{i=1}^n w_i \, x_i \geq \vartheta \text{ pro všechny body } \left(x_1, \, x_2 \,, \ldots \,, \, x_n \,\right) \in A$ a $\sum_{i=1}^n w_i \, x_i < \vartheta \text{ pro všechny body } \left(x_1, \, x_2 \,, \ldots \,, \, x_n \,\right) \in B$

Perceptron a lineární separabilita (6)

Dále nechť:
$$\varepsilon = \max \left\{ \sum_{i=1}^{n} w_i b_i - \theta; (b_1, \dots, b_n) \in B \right\}$$
 a zřejmě $\varepsilon < \varepsilon/2 < 0$

Necht'
$$\theta' = \theta + \frac{\varepsilon}{2}$$
 (tedy: $\theta = \theta' - \frac{\varepsilon}{2}$)

=> Pro všechny body z
$$A$$
 platí, že $\sum_{i=1}^{n} w_{i} a_{i} - \left(\vartheta' - \frac{1}{2} \varepsilon \right) \geq 0$

To znamená, že
$$\sum_{i=1}^{n} w_i a_i - \vartheta' \ge -\frac{1}{2} \varepsilon > 0$$

$$\Rightarrow \sum_{i=1}^{n} w_{i} a_{i} > \mathcal{G}' \qquad (\forall (a_{1}, \dots, a_{n}) \in A) \qquad (*)$$

Perceptron a lineární separabilita (6)

Podobně pro všechny body z B

$$\sum_{i=1}^{n} w_{i} b_{i} - \mathcal{G} = \sum_{i=1}^{n} w_{i} b_{i} - \left(\mathcal{G}' - \frac{1}{2} \varepsilon \right) \leq \varepsilon$$

a tedy
$$\sum_{i=1}^{n} w_i b_i - \mathcal{G}' \le \frac{1}{2} \varepsilon < 0 \qquad (**)$$

Z (*) a (**) vyplývá, že množiny A a B jsou absolutně lineárně separabilní.

QED

Dělicí nadrovina – pro rozšířený váhový, resp. příznakový prostor (1)

D: Otevřený (uzavřený) pozitivní poloprostor určený n – rozměrným váhovým vektorem \vec{w} je množina všech bodů $\vec{x} \in R^n$, pro které $\vec{w} \cdot \vec{x} > 0$ $(\vec{w} \cdot \vec{x} \ge 0)$

Otevřený (uzavřený) negativní poloprostor určený \mathbf{n} – rozměrným váhovým vektorem $\vec{\mathbf{w}}$ je množina všech bodů $\vec{x} \in R^n$, pro které $\vec{\mathbf{w}} \cdot \vec{\mathbf{x}} < 0$ $(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}} \le 0)$

Dělicí nadrovina – pro rozšířený váhový, resp. příznakový prostor (2)

D: Dělicí nadrovina určená n – rozměrným váhovým vektorem \vec{w} je množina všech bodů $\vec{x} \in R^n$, pro které $\vec{w} \cdot \vec{x} = 0$

Problém: Nalézt takové váhy, resp. práh, které by umožnily separaci (oddělení) dvou množin vzorů

=> např. PERCEPTRONOVÝ ALGORITMUS UČENÍ

Předpoklad:

- ◆ A ... množina vstupních vektorů v n –rozměrném prostoru
- ◆ B ... množina vstupních vektorů v n –rozměrném prostoru

Dělicí nadrovina – pro rozšířený váhový, resp. příznakový prostor (3)

SEPARACE A a B:

- \Rightarrow Perceptron by měl realizovat binární funkci $f_{\vec{w}}$ tak, aby $f_{\vec{w}}(\vec{x}) = 1 \quad \forall \vec{x} \in A \quad \text{a} \quad f_{\vec{w}}(\vec{x}) = 0 \quad \forall \vec{x} \in B$ ($f_{\vec{w}}$ závisí na vahách, resp. prahu)
- Chybová funkce odpovídá počtu chybně "zařazených" vzorů: $E(\vec{w}) = \sum (1 f_{\vec{w}}(\vec{x})) + \sum f_{\vec{w}}(\vec{x})$

Cíl učení: minimalizace $E(\vec{w})$ ve váhovém prostoru (=> nejlépe $E(\vec{w})$ = 0)

Perceptronový algoritmus učení (1)

Hledáme váhový vektor \vec{w} s pozitivním skalárním součinem pro všechny vektory reprezentované body v P a se záporným skalárním součinem pro všechny vektory reprezentované body v N

Perceptronový algoritmus učení (2)

⇒ **OBECNĚ:** za předpokladu, že P a N jsou množiny n – rozměrných vektorů chceme nalézt takový váhový vektor \vec{w} , že: $\vec{w} \cdot \vec{x} > 0 \quad \forall \vec{x} \in P$

$$\vec{w} \cdot \vec{x} < 0 \quad \forall \vec{x} \in N$$

- Perceptronový algoritmus učení začíná s náhodně zvoleným váhovým vektorem \vec{w}_0
- Pokud existuje vektor $\vec{x} \in P$ takový, že $\vec{w} \cdot \vec{x} < 0$, znamená to, že <u>úhel</u> mezi těmito dvěma vektory <u>je větší než 90°</u>
 - \rightarrow Váhový vektor je nutné zadaptovat (\sim otočit) ve směru \vec{x} (tak, aby se tento vektor dostal do "pozitivního" poloprostoru definovaného \vec{w}

Perceptronový algoritmus učení (3)

- \rightarrow Otočení ve směru \vec{x} lze provést <u>přičtením \vec{x} k vektoru</u> \vec{w}
- Pokud existuje vektor $\vec{x} \in N$ takový, že $\vec{w} \cdot \vec{x} > 0$, znamená to, že <u>úhel</u> mezi těmito dvěma vektory <u>je menší než 90°</u>
 - \rightarrow Váhový vektor je nutné zadaptovat (\sim otočit) směrem od \vec{x} (tak, aby se tento vektor dostal do "negativního" poloprostoru definovaného \vec{w}
 - \rightarrow Otočení směrem od \vec{x} lze provést <u>odečtením \vec{x} od vektoru</u> \vec{w}
- vektory z P tedy otáčejí váhový vektor opačným směrem než vektory z N
- Pokud existuje řešení, lze ho nalézt v konečném počtu kroků

Perceptronový algoritmus učení (4)

Krok 1: Inicializace vah malými náhodnými hodnotami $w_i(\theta)$

 $w_i(0)$... váha vstupu i v čase 0; $(1 \le i \le n+1)$

Krok 2: Předložení trénovacího vzoru ve tvaru

 $(x_1, ..., x_{n+1})$... vstupní vzor a

d(t) požadovaný výstup (pro předložený vstup)

Krok 3: Výpočet skutečného výstupu (odezvy sítě)

$$y(t) = \operatorname{sgn}\left(\sum_{i=1}^{n+1} w_i(t) x_i(t)\right)$$

Krok 4: Adaptace vah podle:

$$w_i(t+1) = w_i(t)$$
 výstup je správný
 $w_i(t+1) = w_i(t) + x_i(t)$ výstup je 0 a měl být 1
 $w_i(t+1) = w_i(t) - x_i(t)$ výstup je 1 a měl být 0

Krok 5: Pokud *t* nedosáhl požadované hodnoty, přejdi ke Kroku 2

Perceptronový algoritmus učení (5)

- Heuristika pro počáteční nastavení vah:
 Začít s průměrem "pozitivních" vstupních vektorů minus průměr "negativních" vektorů
- Modifikace: parametr učení η ($0 \le \eta \le 1$) (stupeň adaptivity vah ~ plasticita sítě)
 - Adaptace vah podle:

$$w_i(t+1) = w_i(t)$$
 výstup je správný
 $w_i(t+1) = w_i(t) + \eta x_i(t)$ výstup je 0 a měl být 1
 $w_i(t+1) = w_i(t) - \eta x_i(t)$ výstup je 1 a měl být 0

Konvergence perceptronového algoritmu učení (Rosenblatt, 1959)

V: Nechť P a N jsou konečné a lineárně separabilní množiny. Potom provede perceptronový algoritmus učení konečný počet aktualizací váhového vektoru \vec{w}_t .

(Pokud se budou cyklicky testovat jeden po druhém vzory z P a N, najde perceptronový algoritmus učení po provedení konečného počtu aktualizací váhový vektor, pomocí něhož lze navzájem separovat P a N.)

Důkaz: Ukážeme, že perceptronový algoritmus učení přiblíží počáteční váhový vektor \vec{w}_0 dostatečně blízko "hledaného řešení" \vec{w}^* .

Konvergence perceptronového algoritmu učení (2)

<u>Tři zjednodušení</u> – bez újmy na obecnosti:

- a) Namísto P a N vytvoříme jedinou množinu $P' = P \cup N^-$ (N^- tvoří "negované" prvky z N)
- b) Vektory z P' budou normalizované (Jestliže byl nalezen váhový vektor \vec{w} , pro který platí $\vec{w} \cdot \vec{x} > 0$, potom totéž platí i pro každý další vektor $\eta \ \vec{x} \ ; \eta > 0$.)
- c) Váhový vektor bude také normalizovaný (Předpokládané normalizované řešení problému lineární separace budeme označovat jako \vec{w}^* .)

Konvergence perceptronového algoritmu učení (3)

- Předpokládejme, že po t+1 aktualizacích byl vypočten váhový vektor \vec{w}_{t+1}
 - \rightarrow to znamená, že po t aktualizacích byl vektor $\vec{p}_i \in P'$ chybně klasifikován (pomocí váhového vektoru \vec{w}_t), a tedy $\vec{w}_{t+1} = \vec{w}_t + \vec{p}_i$
- Kosinus úhlu ρ mezi \vec{w}_{t+1} a \vec{w}^* je:

$$\cos \rho = \frac{\vec{w}^* \cdot \vec{w}_{t+1}}{\|\vec{w}_{t+1}\|}$$
 (*)

Konvergence perceptronového algoritmu učení (4)

Pro výraz v čitateli (*) víme, že:

$$\vec{w}^* \cdot \vec{w}_{t+1} = \vec{w}^* \cdot (\vec{w}_t + \vec{p}_i) = \vec{w}^* \cdot \vec{w}_t + \vec{w}^* \cdot \vec{p}_i \ge \vec{w}^* \cdot \vec{w}_t + \delta$$

$$\text{kde} \quad \delta = \min \left\{ \vec{w}^* \cdot \vec{p} ; \forall \vec{p} \in P' \right\}$$

- Protože váhový vektor \vec{w}^* definuje absolutní lineární separaci P a N, víme, že $\delta > 0$
 - → indukcí dostáváme:

$$\vec{w}^* \cdot \vec{w}_{t+1} \geq \vec{w}^* \cdot \vec{w}_0 + (t+1) \delta \qquad (**)$$

Konvergence perceptronového algoritmu učení (5)

◆ Zároveň víme, že pro výraz ve jmenovateli (*) platí:

$$\|\vec{w}_{t+1}\|^2 = (\vec{w}_t + \vec{p}_i) \cdot (\vec{w}_t + \vec{p}_i) = \|\vec{w}_t\|^2 + 2\vec{w}_t \cdot \vec{p}_i + \|\vec{p}_i\|^2$$

- Protože $\vec{w}_t \cdot \vec{p}_i \le 0$ (Jinak by nebylo třeba aktualizovat \vec{w}_t podle \vec{p}_i .)
- Platí, že: $\|\vec{w}_{t+1}\|^2 \le \|\vec{w}_t\|^2 + \|\vec{p}_i\|^2 \le \|\vec{w}_t\|^2 + 1$ (Protože všechny vektory z P' byly normalizovány.)
 - → indukcí dostáváme:

$$\|\vec{w}_{t+1}\|^2 \le \|\vec{w}_0\|^2 + (t+1)$$
 (***)

Konvergence perceptronového algoritmu učení (6)

◆ Z (**) a (***) dostáváme porovnáním s (*) nerovnici:

$$\cos \rho \ge \frac{\vec{w}^* \cdot \vec{w}_0 + (t+1)\delta}{\sqrt{\|\vec{w}_0\|^2 + (t+1)}}$$

- \rightarrow pravá strana nerovnice roste proporcionálně k \sqrt{t} , a protože $\delta>0$, mohla by být libovolně velká
- × protože ale $\cos \rho \le 1$, musí existovat horní mez a počet aktualizací váhového vektoru musí být konečný.

QED

Přihrádkový algoritmus učení (1) Gallant, 1990

(aproximuje "ideální lineární separaci")

IDEA:

- Nejlepší váhový vektor nalezený pomocí perceptronového algoritmu učení je "uložen v přihrádce"
- Současně se pokračuje v aktualizaci váhového vektoru
- Pokud se najde "lepší" váhový vektor, nahradí se ním vektor uložený v přihrádce

Přihrádkový algoritmus učení (2)

START:

- Náhodná inicializace váhového vektoru \vec{w} a uložení váhového vektoru do přihrádky: $\vec{w}_s = \vec{w}$
- Nastavení historie uloženého váhového vektoru: $h_S = 0$

ITERACE:

- Aktualizace \vec{w} pomocí jedné iterace perceptronového algoritmu učení
- Aktualizace h podle po sobě jdoucích úspěšně testovaných vektorech
- Jestliže nastane $h > h_S$, nahraď \vec{w}_S vektorem \vec{w} a h_S číslem h
- Pokračuj v iteraci

Přihrádkový algoritmus učení (3)

- Protože se bere v úvahu jen informace o posledně zvolených vzorech, může dojít i k záměně "správného" váhového vektoru za horší – pravděpodobnost tohoto jevu by však měla klesat s rostoucím počtem iterací
- Pokud je trénovací množina konečná a složky váhového a příznakových vektorů jsou racionální, lze ukázat, že přihrádkový algoritmus konverguje k optimálnímu řešení s pravděpodobností 1