Spin-Spin Splitting: Why Does It Happen?

Origin of spin-spin splitting

The magnetic field of the neighboring protons adds or subtracts from the applied magnetic field - so changing the total magnetic field at an observed proton

Total magnetic field at \mathbf{H} (observed) = Applied field + effect of \mathbf{H} (neighbor)

The magnetic field due the H (neighbor) can be either with the applied field...

- These two possibilities have different energies so there are 2 lines
- Each is equally probable so the intensity of the lines is equal

Spin-Spin Splitting: More Than One Neighbor

- These three possibilities have different energies so there are 3 lines
- Probabilities 1:2:1 so the intensity of the lines is 1:2:1

Spin-Spin Splitting: The Coupling Constant

Some typical values for coupling constants (J values)

Type of coupling	Typical structure	Range of coupling constant	Notes
vicinal	H_CCH	6 - 8 Hz	most common type of coupling
geminal	H_C_	0 - 22 Hz	only observed when the two hydrogens are chemically nonequivalent
<i>trans</i> -alkene		11 - 18 Hz	
<i>cis</i> -alkene	H_C C_	6 - 14 Hz	
vinyl geminal	TC H	0 - 3 Hz	

Example:

Spin-Spin Splitting: More Complex Splitting Patterns

• Predict the NMR spectrum of the following molecule:

$$H_3C$$
 O
 H

Chemistry S-20 3

- 3. You have just synthesized a new compound, and the following spectroscopic data is obtained:
 - From the mass spectrum, you deduce that the molecular formula is $C_{10}H_{12}O$.
 - The infrared spectrum is:

Name:

From the infrared spectrum, what functional groups are **definitely present:**

From the infrared spectrum, what functional groups are **definitely absent**:

• The proton NMR spectrum is:

Draw your **best choice** for the structure of this molecule in the box below.

/ 14

Name:

- 3. You have just synthesized a new compound, and the following spectroscopic data is obtained:
 - From the mass spectrum, you deduce that the molecular formula is C₉H₁₂O.
 - The infrared spectrum is:

From the infrared spectrum, what functional groups are **definitely present**:

From the infrared spectrum, what functional groups are **definitely absent**:

• The proton NMR spectrum is:

Draw your **best choice** for the structure of this molecule in the box below.

____ / 14

Test Yourself Now!

You have just synthesized a new compound, and the following spectroscopic data is obtained:

- From the mass spectrum, you deduce that the molecular formula is $C_{10}H_{12}O$.
- · The infrared spectrum is:

From the infrared spectrum, what functional groups are **definitely present**:

From the infrared spectrum, what functional groups are **definitely absent**:

Draw your **best choice** for the structure of this molecule in the space below:

Oxidation of Alcohols

• Alcohols can be oxidized with various oxidizing agents. The most common are various derivatives of CrO₃. We can make the following general observations:

For **primary** alcohols:

(Where else have you seen an "option" for forming aldehydes versus forming carboxylic acids?)

For **secondary** alcohols:

What do you think will happen for tertiary alcohols?

Reading: Sections 10.5 and 10.6

Reduction of Aldehydes and Ketones

• Aldehydes and ketones can be **reduced** to alcohols using NaBH₄. We will not discuss the mechanism of this reaction at this point; you should simply be aware that this reaction gives exactly the reverse of the oxidation reactions discussed above:

Interconversion of primary alcohols and aldehydes:

Interconversion of secondary alcohols and ketones:

Reading: Section 19.8 (no, that's not a typo!)

Thiols vs. Alcohols: Similarities

• The following reactions show some of the similarities between thiols and alcohols. Can you draw curved-arrow mechanisms for each step?

$$\sim$$
 OH \sim NaH \sim O \sim Br \sim O \sim

• Compare alkoxides with thiolates. Which will be better nucleophiles, and why?

Thiols vs. Alcohols: Differences

- Oxidation of thiols proceeds quite differently from oxidation of alcohols. In particular, it is the *sulfur* that is oxidized, rather than the carbon.
- Draw a curved-arrow mechanism for the following oxidation of thiols to disulfides:

• Vigorous oxidation of thiols yields sulfonic acids. (No need to know the mechanism)

Putting It Together: Synthesis

• Propose a synthetic route to the following desired product from the indicated starting material. All of the carbon atoms from the starting material must end up in your product.

Starting Material:

Test Yourself Now!

Using only **alcohols** as starting materials, synthesize the following product:

Synthesis of Ethers 1: Williamson Ether Synthesis

• You already know all of the routes for synthesizing ethers! Let's take a look at the following problem:

Using **only alcohols** as starting materials, synthesize the following ether:

Synthesis of Ethers 2: Alkoxymercuration-Reduction

• What would happen if you tried a "Williamson" route to synthesize the following ether?

• Is there another way to synthesize that ether? Use only **alcohols** as starting materials.

Synthesis of Ethers 3: Routes Involving Carbocations

• Write complete curved-arrow mechanisms for the following reactions, each of which produces the ether MTBE (methyl-*tert*-butyl ether), which has been used as a gasoline additive:

Cleavage of Ethers

• Ethers are generally inert under most reaction conditions; they are often used as solvents. However, ethers can be cleaved under certain conditions. Draw curved-arrow mechanisms for the following reactions:

Cyclic Ethers and Epoxides

• Draw a curved-arrow mechanism and predict the product of the following reactions:

• The three-membered cyclic ether is given the special name **epoxide**. Why might this epoxide exhibit reactivity different from that of the 5-membered ring above?

Synthesis of Epoxides With Halohydrins

• Provide complete curved-arrow mechanisms for each step in the following transformation. Be sure to pay attention to stereochemistry!

$$Br_2$$
, H_2O
 Br_2

• Explain why the following halohydrin *cannot* be transformed into an epoxide: