Introduction to Information Retrieval

Lecture 4: Dictionaries and tolerant retrieval

This lecture

- Dictionary data structures
- "Tolerant" retrieval
 - Wild-card queries
 - Spelling correction
 - Soundex

Dictionary data structures for inverted indexes

The dictionary data structure stores the term vocabulary, document frequency, pointers to each postings list ... in what data structure?

÷

A naïve dictionary

An array of struct:

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	\longrightarrow

char[20] int Postings *
20 bytes 4/8 bytes 4/8 bytes

- How do we store a dictionary in memory efficiently?
- How do we quickly look up elements at query time?

Dictionary data structures

- Two main choices:
 - Hash table
 - Tree
- Some IR systems use hashes, some trees

Hashes

- Each vocabulary term is hashed to an integer
 - (We assume you've seen hashtables before)
- Pros:
 - Lookup is faster than for a tree: O(1)
- Cons:
 - No easy way to find minor variants:
 - judgment/judgement
 - No prefix search [tolerant retrieval]
 - If vocabulary keeps growing, need to occasionally do the expensive operation of rehashing everything

Tree: binary tree

Tree: B-tree

 Definition: Every internal nodel has a number of children in the interval [a,b] where a, b are appropriate natural numbers, e.g., [2,4].

Trees

- Simplest: binary tree
- More usual: B-trees
- Trees require a standard ordering of characters and hence strings ... but we standardly have one
- Pros:
 - Solves the prefix problem (terms starting with hyp)
- Cons:
 - Slower: O(log M) [and this requires balanced tree]
 - Rebalancing binary trees is expensive
 - But B-trees mitigate the rebalancing problem

Tries

- Pros:
 - Fast exact search: O(|Q|) time
 - Support other functionalities, e.g., longest-prefix match
- Cons:

Naïve implementation takes much space.

to
tea
ted
ten
i
in
inn

WILD-CARD QUERIES

Wild-card queries: *

- mon*: find all docs containing any word beginning "mon".
- Easy with binary tree (or B-tree) lexicon: retrieve all words in range: mon ≤ w < moo</p>
- *mon: find words ending in "mon": harder
 - Maintain an additional B-tree for terms backwards.

Can retrieve all words in range: *nom ≤ w < non*.

Exercise: from this, how can we enumerate all terms meeting the wild-card query **pro*cent**?

Query processing

- At this point, we have an enumeration of all terms in the dictionary that match the wild-card query.
- We still have to look up the postings for each enumerated term.
- E.g., consider the query:

se*ate AND fil*er

This may result in the execution of many Boolean *AND* queries.

B-trees handle *'s at the end of a query term

- How can we handle *'s in the middle of query term?
 - co*tion
- We could look up co* AND *tion in a B-tree and intersect the two term sets
 - Expensive
 - Still need verification to remove false-positives
- The solution: transform wild-card queries so that the
 *'s occur at the end
- This gives rise to the Permuterm Index.

Permuterm index

- For term *hello*, index under:
 - hello\$, ello\$h, llo\$he, lo\$hel, o\$hell
 where \$ is a special symbol.

- Queries:
 - P Exact match P\$
 - P* Range match \$P*
 - *P Range match P\$*
 - *P*
 Range match P*
 - P*Q
 Range match Q\$P*
 - P*Q*R ??? Exercise!

Q: Why not **P*\$***

Query = hel*o
P=hel, Q=o
Lookup o\$hel*

Permuterm query processing

- Rotate query wild-card to the right
- Now use B-tree lookup as before.
- Permuterm problem: ≈ quadruples lexicon size

Empirical observation for English.

How to perform a precise analysis?

Bigram (k-gram) indexes

- Enumerate all k-grams (sequence of k chars)
 occurring in any term
- e.g., from text "April is the cruelest month" we get the 2-grams (bigrams)

```
$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru,
ue,el,le,es,st,t$, $m,mo,on,nt,h$
```

- \$ is a special word boundary symbol
- Maintain a <u>second</u> inverted index <u>from bigrams to</u> <u>dictionary terms</u> that match each bigram.

Bigram index example

The k-gram index finds terms based on a query consisting of k-grams (here k=2).

Processing wild-cards

- Query mon* can now be run as
 - \$m AND mo AND on
- Gets terms that match AND version of our wildcard query.
- But we'd enumerate moon.
- Must verify these terms against query.
- Surviving enumerated terms are then looked up in the term-document inverted index.
- Fast, space efficient (compared to permuterm).

Processing wild-card queries

- As before, we must execute a Boolean query for each enumerated, filtered term.
- Wild-cards can result in expensive query execution (very large disjunctions...)
 - pyth* AND prog*
- If you encourage "laziness" people will respond!

Which web search engines allow wildcard queries?

Resources

- IIR 3, MG 4.2
- Efficient spell retrieval:
 - K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys 24(4), Dec 1992.
 - J. Zobel and P. Dart. Finding approximate matches in large lexicons. Software - practice and experience 25(3), March 1995. http://citeseer.ist.psu.edu/zobel95finding.html
 - Mikael Tillenius: Efficient Generation and Ranking of Spelling Error Corrections. Master's thesis at Sweden's Royal Institute of Technology. http://citeseer.ist.psu.edu/179155.html
- Nice, easy reading on spell correction:
 - Peter Norvig: How to write a spelling corrector
 http://norvig.com/spell-correct.html