RWTH AACHEN UNIVERSITY CENTER FOR COMPUTATIONAL ENGINEERING SCIENCE

Selbstrechenübung 2

Student: Joshua Feld, 406718

Kurs: Mathematische Grundlagen I – Professor: Prof. Dr. Torrilhon & Prof. Dr. Stamm

Aufgabe 1. (Natürliche Zahlen, Beweistechniken)

Die Zahl 39 hat die interessante Eigenschaft, dass

$$39 = 3 \cdot 9 + 3 + 9$$

gilt. Zeigen Sie, dass eine solche Darstellung für alle natürlichen Zahlen größer als 9 gilt, deren Dezimaldarstellung auf 9 endet. Analysieren Sie Ihren Beweis. Haben Sie eine Folgerung oder eine Äquivalenz gezeigt? Wie müssen Sie Ihren Beweis gegebenenfalls erweitern um die Äquivalenz zu zeigen?

Lösung. Jede natürliche Zahl, insbesondere alle Zahlen ≥ 9 , kann geschrieben werden als

$$10a + b$$
, $a, b \in \mathbb{N}$.

Für die Zahlen, die mit 9 enden, soll entsprechend gelten

$$10a + 9 = 9a + a + 9 \iff 10a = 10a$$

und das ist immer wahr. Wir haben hier gezeigt, dann jede Zahl, die auf 9 endet, diese Darstellung hat. Um auch die andere Richtung zu zeigen beginnen wir mit

$$10a + b = ab + a + b \iff 10a = ab + a \iff 10 = b + 1 \iff 9 = b$$

Für a = 0 erhalten wir die Zahlen $1, \dots, 9$, d.h. für diese gilt

$$10 \cdot 0 + b = 0 \cdot b + 0 + b.$$

Deshalb waren sie in der Aufgabenstellung ausgenommen. Damit sind \implies und \iff und somit auch die Äquivalenz gezeigt.

Aufgabe 2. (Abbildungen)

Wir betrachten die Funktion $f: X \to Y, X, y \subset \mathbb{R}$ mit Funktionsvorschrift $f(x) = \frac{1}{x+1}$. a) Geben Sei die größte Menge $X \subset \mathbb{R}$ an, sodass $f(x), x \in X$, eine reelle Zahl ist. Diese Menge nennen wir den maximalen Definitionsbereich. Der maximale Wertebereich $Y \subset \mathbb{R}$ ist dann gegeben durch Y = f(X). Begründen Sie Ihre Wahl.

- b) Für welchen Definitions-/Bildbereich ist f invertierbar? Bestimmen Sie die Umkehrabbildung f^{-1} .
- c) Skizzieren Sie f und f^{-1} . Was fällt Ihnen auf?

Lösung.

a) Der Wert $\frac{1}{-1+1}$ ist nicht definiert. Folglich ergibt sich für den maximalen Definitionsbereich

$$X = \mathbb{R} \setminus \{-1\}.$$

Es gilt $\lim_{x\to -1^+} f(x) = \infty$, $\lim_{x\to -1^-} f(x) = -\infty$ und $\lim_{x\to \infty} f(x) = 0$, aber $0 = \frac{1}{x+1} \iff 0 = 1$ ξ . Also ergibt sich für den maximalen Wertebereich

$$Y = \mathbb{R} \setminus \{0\}.$$

- b) $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{0\}$ ist bijektiv und somit invertierbar.
 - Injektivität: Seien $x_1, x_2 \in \mathbb{R} \setminus \{-1\}$. Dann gilt

$$\frac{1}{x_1+1} = \frac{1}{x_2+1} \iff x_2+1 = x_1+1 \iff x_1 = x_2.$$

• Surjektivität: siehe oben

Für die Umkehrfunktion lösen wir die Funktionsgleichung f(x) = y nach x auf:

$$y = \frac{1}{x+1} \iff x+1 = \frac{1}{y} \iff x = \frac{1}{y} - 1,$$

also gilt

$$f^{-1}: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{-1\}, y \mapsto f^{-1}(y) = \frac{1}{y} - 1.$$

c) Es fällt auf, dass die Graphen von f und f^{-1} sich als Spiegelungen des jeweils anderen Graphen an der Winkelhalbierenden y = x ergeben.

Aufgabe 3. (Abbildungen)

Geben Sie Abbildungen mit den folgenden Eigenschaften an und begründen Sie Ihre Wahl.

- a) $f_1: \mathbb{R} \to \mathbb{R}$ ist injektiv, aber nicht surjektiv.
- b) $f_2: \mathbb{R} \to \mathbb{R}$ ist surjektiv, aber nicht injektiv.
- c) $f_2: \mathbb{R} \to [-1, 1]$ ist surjektiv, aber nicht injektiv.
- d) $f_2: [-1, 1] \to [1, 10]$ ist bijektiv.

Lösung.

- a) z.B. $f_1(x) = \arctan(x)$, denn
 - Injektivität: Sei $f_1(x) = f_1(y)$ und $x \neq y$. Es gilt $\arctan(x) \neq \arctan(y)$, da der Arkustangens streng monoton steigend ist.
 - Surjektivität: Da der Wertebereich $W_{f_1} = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ eine echte Teilmenge des Bildbereichs \mathbb{R} ist, ist f_1 nicht surjektiv (Wertebereich \neq Bildbereich).
- b) z.B. $f_2(x) = x(x-1)(x+1) = x^3 x$, denn
 - Injektivität: Seien $x = -1, y = 1 \in \mathbb{R}$, dann gilt $f_2(x) = 0 = f_2(y)$ aber $x \neq y$.
 - Surjektivität: Für alle $y \in \mathbb{R}$ existiert mindestens ein $x \in \mathbb{R}$ mit $f_2(x) = y$. $(f_2(x))$ geht gegen plus Unendlich für x gegen plus Unendlich und $f_2(x)$ geht gegen minus Unendlich für x gegen minus Unendlich.)
- c) z.B. $f_3(x) = \sin(x)$, denn
 - Injektivität: Seien $x=0,y=2\pi\in\mathbb{R},$ dann gilt $\sin(x)=\sin(y)$ aber $x\neq y.$
 - Surjektivität: Da jeder Wert in [-1,1] mindestens einmal (sogar unendlich oft) angenommen wird, ist f_3 surjektiv.
- d) z.B. $f_4(x) = \frac{9}{2}x + \frac{11}{2}$. Diese Funktion kann wie folgt konstruiert werden. konstruiere $f_4(x) = ax + b$ (Geradengleichung) mit $a, b \in \mathbb{R}$, die durch die Punkte (-1, 1) und (1, 10) geht:

$$a = \frac{10-1}{1-(-1)} = \frac{9}{2}$$
 und $b = 1 + \frac{9}{2} = \frac{11}{2}$.

Aufgabe 4. (Vollständige Induktion)

Zeigen Sie per vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt:

133 ist Teiler von
$$11^{n+1} + 12^{2n-1}$$
.

Lösung.

• Induktionsverankerung: (n = 1)

$$11^{1+1} + 12^{2 \cdot 1 - 1} = 121 + 12 = 133.$$

Offensichtlich ist 133 ein Teiler von 133.

- Induktionsvoraussetzung: Die Aussage gelte für ein beliebiges aber festes $n \in \mathbb{N}$.
- Induktionsschritt: $(n \to n+1)$

$$\begin{aligned} 11^{(n+1)+1} + 12^{2(n+1)-1} &= 11^{n+2} + 12^{2n+1} \\ &= 11 \cdot 11^{n+1} + 12^2 \cdot 12^{2n-1} \\ &= 11 \cdot 11^{n+1} + (133+11) \cdot 12^{2n-1} \\ &= 11 \cdot \left(11^{n+1} + 12^{2n-1}\right) + 133 \cdot 12^{2n-1} \end{aligned}$$

und nach Induktionsvoraussetzung ist 133 ein Teiler von $11^{n+1} + 12^{2n-1}$ und damit teilt 133 beide Summanden, also auch die Summe.

Nach dem Prinzip der vollständigen Induktion gilt die Aussage für alle $n \in \mathbb{N}$.