Recent Advances in Mixed Integer Programming Modeling and Computation

Juan Pablo Vielma

Massachusetts Institute of Technology

Departamento de Ingeniería Industrial y de Sistemas Pontificia Universidad Católica de Chile.

Santiago, Chile, Agosto, 2017.

(Nonlinear) Mixed Integer Programming (MIP)

$$\min f(x)$$

s.t.

$$x \in C$$

$$x_i \in \mathbb{Z} \quad i \in I$$

Mostly convex f and C.

50+ Years of MIP = Significant Solver Speedups

Algorithmic Improvements (Machine Independent):

• v1.2 (1991) – v11 (2007): **29,000** x speedup

≈ 1.9 x / year

- v1 (2009) v6.5 (2015): **48.7** x speedup
- Also convex nonlinear:

v6.0 (2014) – v6.5 (2015) quadratic: 4.43 x
 (V., Dunning, Huchette, Lubin, 2015)

Widespread Use of Linear/Quadratic MIP Solvers

State of MIP Solvers

- Mature: Linear and Quadratic (Conic Quadratic/SOCP)
 - Commercial:

"Open Source"

- Emerging: Convex Nonlinear (e.g. SDP)
 - Open-Source + Commercial linear MIP Solver > Commercial

Accessing MIP Solvers = Modelling Languages

User-friendly algebraic modelling languages (AML):

Standalone and Fast

Based on General Language and Versatile

- Fast and Versatile, but complicated
 - Proprietary low-level C/C++ solver interphases.
 - C/C++ Coin-OR interphases and frameworks

Outline

- Advanced MIP formulations.
- Convex nonlinear MIP solvers.
- Optimal Control with Julia, JuMP and Pajarito.
- Other applications if time permits.

JuMP--julia

• julia http://julialang.org

- 21st century programming language
- MIT licensed (and developed): free and open source
- (Almost) as fast as C (LLVM JIT) and as easy as Matlab
 - "Floats like python/matlab, stings like C/Fortran"
- Easy to use and wide library ecosystem (specialized and frontend)
- Only language besides C/C++/Fortran to scale to 1
 Petaflop!
 - 10¹⁵ floating point operations per second on NERSC Cori Phase II (9,300 nodes and 650,000 cores)

Jump https://github.com/JuliaOpt/Jump.jl

- Also open-source and free.
- Julia-based algebraic modelling language for optimization
- Easy and natural syntax for linear, quadratic and conic (e.g. SDP) mixed-integer optimization.
- Modular, extensible, easy to embed (e.g. simulation, visualization, etc.) and FAST.
- Solver-independent access to advanced MIP features (e.g. cutting plane callbacks)

Extensive Stack of Modelling and Solver Packages

- JuMP extensions for: block stochastic optimization, robust optimization, chance constraints, piecewise linear optimization, polynomial optimization, multiobjective optimization, discrete time stochastic optimal control, sum of squares optimization, etc.
- Useful Julia Packages: Multivariate Polynomials, etc.

Advanced MIP Formulations

Simple Formulation for Univariate Functions

$$z = f(x)$$

$$\begin{pmatrix} x \\ z \end{pmatrix} = \sum_{j=1}^{5} \begin{pmatrix} d_j \\ f(d_j) \end{pmatrix} \lambda_j$$

$$1 = \sum_{j=1}^{5} \lambda_j, \quad \lambda_j \geq 0$$

$$y \in \{0,1\}^4, \quad \sum_{i=1}^4 y_i = 1$$

$$0 \leq \lambda_1 \leq y_1$$

$$0 \leq \lambda_2 \leq y_1 + y_2$$

$$0 \leq \lambda_3 \leq y_2 + y_3$$

$$0 \leq \lambda_4 \leq y_3 + y_4$$
Non-Ideal: Fractional Extreme Points
$$0 \leq \lambda_5 \leq y_4$$

Advanced Formulation for Univariate Functions

$$z = f(x)$$

$$\begin{pmatrix} x \\ z \end{pmatrix} = \sum_{j=1}^{5} \begin{pmatrix} d_j \\ f(d_j) \end{pmatrix} \lambda_j$$

$$1 = \sum_{j=1}^{5} \lambda_j, \quad \lambda_j \ge 0$$

$$y \in \{0,1\}^2$$

$$0 \le \lambda_1 + \lambda_5 \le 1 - y_1$$

$$0 \le \lambda_3 \qquad \le y_1$$

$$0 \le \lambda_4 + \lambda_5 \le 1 - y_2$$

$$0 \le \lambda_1 + \lambda_2 \le y_2$$

$$0 \le \lambda_1 + \lambda_2 \le y_2$$

V. and Nemhauser 2011.

Formulation Improvements can be Significant

of pieces

Transportation Problems with Concave Costs using GUROBI

14 / 37

All Easily Accessible Through JuMP Extensions

PiecewiseLinearOpt.jl (Huchette and V. 2017)

```
using JuMP, PiecewiseLinearOpt
m = Model()
@variable(m, x)
@variable(m, y)

z = piecewiselinear(m, x, y, 0:0.1:1, 0:0.1:1, (u,v) -> exp(u+v))
@objective(m, Min, z)
```

Convex Nonlinear MIP Solvers

Nonlinear MIP B&B Algorithms

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.
- Lifted LP B&B
 - Extended or Lifted relaxation.
 - Static relaxation
 - Mimic NLP B&B.
 - Dynamic relaxation
 - Standard LP B&B

$$\max \sum_{i=1}^{n} c_i x_i$$

$$s.t. \quad Ax + Dz \leq b,$$

$$g_i(x) \leq 0, \ i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

Second Order Conic or Conic Quadratic Problems

- Problems using Euclidean norm:
 - e.g. Portfolio Optimization Problems

$$\max \quad \bar{a}x$$

$$s.t.$$

$$\|Q^{1/2}x\|_{2} \leq \sigma$$

$$\sum_{j=1}^{n} x_{j} = 1, \quad x \in \mathbb{R}^{n}_{+}$$

$$x_{j} \leq z_{j} \quad \forall j \in [n]$$

$$\sum_{j=1}^{n} z_{j} \leq K, \quad z \in \{0, 1\}^{n}$$

- \bar{a} expected returns.
- $Q^{1/2}$ square root of covariance matrix.
- K maximum number of assets.
- σ maximum risk.

LP v/s NLP B&B for CPLEX v11 for n = 20 and 30

Results from V., Ahmed and Nemhauser 2008.

Lifted or Extended Approximations

- Projection = multiply constraints.
- V., A. and N. 2008:
 - Extremely accurate, but static and complex approximation by Ben-Tal and Nemirovski
- V., Dunning, Huchette and Lubin 2016: Simple, dynamic and good approximation:

$$||y||_{2} \le y_{0} \longrightarrow \sum_{i=1}^{n} z_{i} \le y_{0} \quad \forall i \in [n]$$

CPLEX v12.6 for n = 20, 30, 40, 50 and 60

Gurobi v5.6.3 for n = 20, 30, 40, 50 and 60

All Major Solvers Now Implement Lifted LP

First Talks:

- SIAM Optimization (SIOPT), May 2014 ≈ two weeks coding.
- IBM Thomas J. Watson Research Center, December 2014.
- Paper in arxive, May 28, 2015.

Two weeks!

- GUROBI v6.5, October 2015.
- FICO v8.0, May 2016.
- SCIP 1 v4.0, March 2017.

However... We Can Sill Beat CPLEX!

solver Pajarito

 Lubin, Yamangil, Bent and V. '16 and Coey, Lubin and V. '17.

	termination status counts				
solver	conv	wrong	not conv	limit	time(s)
SCIP	78	1	0	41	43.36
CPLEX	96	3	5	16	14.30
Paj-iter	96	1	0	23	38.70
Paj-MSD	101	0	0	19	18.12

Flexible Architecture Thanks to Julia-Opt Stack

- Fastest Open Source MISOCP Solver!
- Pajarito can also solve MISDPs and MI-"EXP"

Optimal Control with Julia, JuMP and Pajarito

Joey Huchette ≈ two weeks for SIOPT '17

Trajectory Planning with Collision Avoidance

- Motivating: Steering a quadcopter through obstacles [Deits/Tedrake:2015]
- Position described by polynomials:

$$-(p^x(t), p^y(t))_{t \in [0,1]}$$

- avoid obstacles
- initial/terminal conditions
- minimize "jerk" of path
- Solution approach:
 - split domain into "safe" polyhedrons + discretize time into intervals
 - "smooth" piecewise polynomial trajectories in each interval, which chose polyhedron

variables = polynomials

Mixed-Integer Polynomial Programming

Disjunctive Polynomial Optimization Formulation

$$\begin{array}{ll} & \underset{p}{\text{min}} & \sum_{i=1}^{N} ||p_i'''(t)||^2 \\ \text{s.t.} & p_1(0) = X_0, \ p'(0) = X_0', \ p''(0) = X_0'' & \text{Initial/Terminal} \\ & p_N(1) = X_f, \ p_N'(1) = X_f', \ p_N''(1) = X_f'' & \text{Conditions} \\ & p_i(T_{i+1}) = p_{i+1}(T_{i+1}) & \forall i \in \{1,\dots,N-1\} & \text{Interstitial} \\ & p_i'(T_{i+1}) = p_{i+1}'(T_{i+1}) & \forall i \in \{1,\dots,N-1\} & \text{Smoothing} \\ & p_i''(T_{i+1}) = p_{i+1}'(T_{i+1}) & \forall i \in \{1,\dots,N-1\} & \text{Conditions} \\ & \bigvee_{n=1}^{R} [A^r p_i(t) \leq b^r] & \text{for } t \in [T_i,T_{i+1}] & \forall i \in \{1,\dots,N-1\} \\ \end{array}$$

Avoid Collision = Remain in Safe Regions

Disiunctive Polynomial Optimization Formulation Mixed-Integer

$$wo$$
 Variables = Polynomials : $\{p_i: [T_i, T_{i+1}] o \mathbb{R}^2\}_{i=1}^N$

$$b_j^r + M_j^r (1 - z_{i,r}) - A_j^r p_i(t) \ge 0$$
 for $t \in [T_i, T_{i+1}] \quad \forall i, j, r$

$$\sum_{r=1}^{R} z_{i,r} = 1 \quad \forall i, z \in \{0, 1\}^{N \times R}$$

Avoid Collision = Remain in Safe Regions

Disjunctive Polynomial Optimization Formulation Mixed-Integer Sum-of-Squares

$$wo$$
 Variables = Polynomials : $\{p_i: [T_i, T_{i+1}]
ightarrow \mathbb{R}^2\}_{i=1}^N$

$$\min_{p} \sum_{i=1}^{N} ||p_i'''(t)||^2$$
s.t. $p_1(0) = X_0, p'(0) = X_0', p''(0) = X_0''$

$$p_N(1) = X_f, p_N'(1) = X_f', p_N''(1) = X_f''$$

Initial/Terminal Conditions

$$p_i(T_{i+1}) = p_{i+1}(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\}$$
 Interstitial $p_i'(T_{i+1}) = p_{i+1}'(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\}$ Smoothing $p_i''(T_{i+1}) = p_{i+1}''(T_{i+1}) \quad \forall i \in \{1, \dots, N-1\}$ Conditions

$$b_j^r + M_j^r (1 - z_{i,r}) - A_j^r p_i(t)$$
 is SOS for $t \in [T_i, T_{i+1}] \quad \forall i, j, r$

$$\sum_{r=1}^{R} z_{i,r} = 1 \quad \forall i, z \in \{0, 1\}^{N \times R}$$

Avoid Collision = Remain in Safe Regions

From Sum of Squares to Semidefinite Programming

- Sufficient condition for non-negative polynomial:
 - Sum of Squares : $f(x) = \sum_{i} g_i^2(x)$
 - SDP representable for fixed degree:

degree
$$\leq k \rightarrow (k-1) \times (k-1)$$
 matrices

- MI-SOCP: solvable by Gurobi/CPLEX
- Deits/Tedrake:2015
- Higher degree polynomials:
 - MI-SDP: solvable by Pajarito

Results for 9 Regions and 8 time steps

- Infeasible for degree ≤ 3 (MI-SOCP)
- Pajarito results for degree 5:

First Feasible Solution: 58 seconds

Optimal Solution: 651 seconds

```
function eval poly(r)
model = SOSModel(solver=PajaritoSolver())
                                                                  for i in 1:N
                                                                      if T[i] <= r <= T[i+1]
@polyvar(t)
                                                                          return PP[(:x,i)]([r], [t]), PP[(:y,i)]([r], [t])
Z = monomials([t], 0:r)
                                                                      end
@variable(model, H[1:N,boxes], Bin)
                                                                  end
                                                             end
p = Dict()
for j in 1:N
   @constraint(model, sum(H[j,box] for box in boxes) == 1)
   p[(:x,j)] = @polyvariable(model, _, Z)
   p[(:y,j)] = @polyvariable(model, , Z)
   for box in boxes
       xl, xu, yl, yu = box.xl, box.xu, box.yl, box.yu
       @polyconstraint(model, p[(:x,j)] >= Mxl + (xl-Mxl)*H[j,box], domain = (t >= T[j] && t <= T[j+1]))
       @polyconstraint(model, p[(:x,j)] \le Mxu + (xu-Mxu)*H[j,box], domain = (t >= T[j] && t <= T[j+1]))
       @polyconstraint(model, p[(:y,j)] >= Myl + (yl-Myl)*H[j,box], domain = (t >= T[j] && t <= T[j+1]))
       @polyconstraint(model, p[(:y,j)] \le Myu + (yu-Myu)*H[j,box], domain = (t >= T[j] && t <= T[j+1]))
   end
end
for ax in (:x,:y)
   @constraint(model,
                                    p[(ax,1)
                                                   ]([0], [t]) == X_o[ax])
   @constraint(model, differentiate(p[(ax,1)], t )([0], [t]) == X_0'[ax])
   @constraint(model, differentiate(p[(ax,1)], t, 2)([0], [t]) == X_0''[ax])
   for j in 1:N-1
                                                      ]([T[j+1]],[t]) ==
       @constraint(model,
                                        p[(ax,j)
                                                                                       p[(ax,j+1)
                                                                                                      ]([T[j+1]],[t]))
       @constraint(model, differentiate(p[(ax,j)],t )([T[j+1]],[t]) == differentiate(p[(ax,j+1)],t )([T[j+1]],[t]))
       @constraint(model, differentiate(p[(ax,j)],t,2)([T[j+1]],[t]) == differentiate(p[(ax,j+1)],t,2)([T[j+1]],[t]))
   end
   @constraint(model,
                                                   ([1], [t]) == X_1[ax]
                                    p[(ax,N)
   @constraint(model, differentiate(p[(ax,N)], t )([1], [t]) == X_1'[ax])
   @constraint(model, differentiate(p[(ax,N)], t, 2)([1], [t]) == X_1''[ax])
end
@variable(model, \gamma[\text{keys}(p)] \ge 0)
for (key, val) in p
   @constraint(model, v[kev] \ge norm(differentiate(val, t, 3)))
end
@objective(model, Min, sum(\gamma))
```

```
using SFML
const window width = 800
const window height = 600
window = RenderWindow("Helicopter",
                       window width, window height)
event = Event()
rects = RectangleShape[]
for box in boxes
    rect = RectangleShape()
    xl = (window width/M)*box.xl
    xu = (window width/M)*box.xu
    vl = window height*(domain.yu-box.yl)
    yu = window height*(domain.yu-box.yu)
    set size(rect, Vector2f(xu-xl, yu-yl))
    set_position(rect, Vector2f(xl, yl))
    set fillcolor(rect, SFML.white)
    push!(rects, rect)
end
type Helicopter
    shape::CircleShape
    past path::Vector{Vector2f}
    path func::Function
end
const radius = 10
heli = Helicopter(CircleShape(),
                  Vector2f[Vector2f(X₀[:x]*window width,
                       X<sub>o</sub>[:y]*window height)], eval poly)
set position(heli.shape, Vector2f(window width/2,
             window height/2))
set radius(heli.shape, radius)
set fillcolor(heli.shape, SFML.red)
set origin(heli.shape, Vector2f(radius, radius))
```

```
function update heli!(heli::Helicopter, tm)
    ( x, y) = heli.path func(tm)
    x = window width / M * x
    y = window height * (1- y)
    pt = Vector2f(x,v)
    set position(heli.shape, pt)
    # move(heli.shape, pt-heli.past path[end])
    push!(heli.past_path, pt)
    get position(heli.shape)
    nothing
end
const maxtime = 10.0
make gif(window, window width, window height,
         1.05*maxtime, "foobarbat.gif", 0.05)
clock = Clock()
restart(clock)
while isopen(window)
    frametime = as_seconds(get_elapsed_time(clock))
    @show normalizedtime = Tmin +
                    (frametime / maxtime)*(Tmax-Tmin)
    (normalizedtime >= Tmax) && break
    while pollevent(window, event)
        if get type(event) == EventType.CLOSED
            close(window)
        end
    clear(window, SFML.blue)
    for rect in rects
        draw(window, rect)
    end
    update heli!(heli, normalizedtime)
    draw(window, heli.shape)
    display(window)
end
```

Helicopter Game / Flappy Bird

• 60 horizontal segments, obstacle every 5 = 80 sec. to opt.

Summary

- Advances in MIP
 - Advanced Formulations
 - Advanced Solvers
 - Easy Access Through
 Jump

- JuMP extensions
 - Even more domain-specific languages
 - Power Systems:

