Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$ Case1: △>0

Case2: △=0

Example 2.

 $\triangle = -1024 < 0$

q(0) = -320 q-intercept.

 $e_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$ computes the e-intercepts of multiplicity 1. q(0) = c computes the single q-intercept.

Given a quadratic $q(e) = a e^2 + b e + c$ compute its discriminant \triangle :

$$q(0) = c$$
 computes the single q-intercept.
 Example 1.

∆=**529**>0 $e_{1,2} = -\frac{9}{2},7$

 $q(e) = 2e^2 - 5e - 63$ compute its discriminant \triangle :

e-intercept 2

e-intercept 1

$$q(e) = -2e^2 - 24e - 72$$
 compute its discriminant \triangle :
 $\triangle = 0$
 $e_{1,2} = -6$, -6
 $q(0) = -72$ q-intercept.

-100

 $e_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single e-intercept of multiplicity 2.

100 q-intercept e-intercept 1,2 -100-200 -300-400 -500 Case3: △<0

no e-intercepts. However there is a q-intercept.

Example 3.

$$q(e) = -4e^2 - 64e - 320$$
 compute its discriminant \triangle :

 $\sqrt{\,\mathsf{b}^2\,}$ – $\mathsf{4}\,\mathsf{ac}\,$ has no value in Real Numbers. Therefore there are

