2 Statistical Inference Principles

2.1 Statistical Model and Background

Definition 1. A statistical model is a class of possible probability measures \mathcal{P} on the sample space \mathcal{X} , parameterized by parameter(s) θ :

$$\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \}.$$

where P_{θ} is the distribution with parameter θ such that $X \sim P_{\theta}$, and Θ is the parameter space. A sample $X = (X_1, ..., X_n)$ is a collection of independent random variables where X_i is distributed according to a distribution $P_{i,\theta}$. The sample size n is the number of the random variables. A statistic T is a function of the sample

$$T: \boldsymbol{x} \in \mathcal{X} \rightarrow T(\boldsymbol{x}) = t \in \mathcal{T},$$

where \mathcal{T} is some set. With random variable X, the function T(X) is also a random variable, the distribution of which is given by

$$P_{\theta}^{T}(B) = P_{\theta}(\{\boldsymbol{x}: T(\boldsymbol{x}) \in B\}).$$

An estimator of θ is a statistic $\delta(X)$ that we went to use to estimate unknown parameter θ .

Example 1. If we assume $X \sim \text{Bernoulli}(\theta)$, then $P_{\theta} = \text{Bernoulli}(\theta)$, and our statistical model is

$$\mathcal{P} = \{ \operatorname{Bernoulli}(\theta) : \theta \in (0,1) \}.$$

If we observe a sample $X_1, ..., X_n$ from it, one statistic of interest is $T(x) = \sum_{i=1}^n x_i$ or $T(x) = \bar{X} \equiv n^{-1} \sum_{i=1}^n x_i$.

2.2 Sufficient Statistic

Any statistic $T: x \in \mathcal{X} \to T(x) = t \in \mathcal{T}$ generates a partition of the sample space

$$\mathcal{X} = \bigcup_{t} \mathcal{X}_{t}$$
 with $\mathcal{X}_{t} = \{x : T(x) = t\}$.

Example 2. Suppose that we toss a coin 2 times independently. For i = 1, 2, let $X_i = 1$ if we get a head, and 0 otherwise.

- The sample space is $\mathcal{X} = \{(0,0), (0,1), (1,0), (1,1)\}.$
- Define the statistic $T(X_1, X_2) = X_1 + X_2$.
- The partition is

$$\mathcal{X} = \{(0,0)\} \cup \{(0,1),(1,0)\} \cup \{(1,1)\}.$$

Taking any partition incurs loss of information.

• For example, we only know we get 1 head, but don't know whether it is the first toss or the second.

But the lost information may be irrelevant for inference.

Definition 2 (Sufficient Statistic). A statistic T is said to be sufficient for the statistical model $\{P_{\theta}: \theta \in \Theta\}$ if the conditional distribution of X given T=t is independent of θ for all t. Such T is called a sufficient statistic.

Note: the distribution of X depends on θ , the distribution of T depends on θ , but the distribution of $X \mid T$ does not depend on θ . If T is sufficient for θ , then T captures all information about θ included in X.

Example 3 (Sufficient Statistic). Let $X_1, ..., X_n$ be i.i.d. Bernoulli random variables with parameter $\theta \in (0,1)$. Define $T = \sum_{i=1}^{n} X_i$. Then,

$$P(X_{1} = x_{1}, ..., X_{n} = x_{n} \mid T = t) = \frac{P(X_{1} = x_{1}, ..., X_{n} = x_{n}, T = t)}{P(T = t)} = \frac{P(X_{1} = x_{1}, ..., X_{n} = x_{n})}{P(T = t)}$$

$$= \frac{\prod_{i=1}^{n} \theta^{x_{i}} (1 - \theta)^{1 - x_{i}}}{\binom{n}{t} \theta^{t} (1 - \theta)^{n - t}} = \frac{1}{\binom{n}{t}},$$

that does not depend on θ .

Theorem 1 (Factorization theorem). Let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be a family of distributions dominated by μ . A necessary and sufficient condition for a statistic T to be sufficient is that there exist functions $g(T(x), \theta) \geq 0$ and $h(x) \geq 0$ such that the densities satisfy

$$p(x \mid \theta) = g(T(x), \theta) h(x), \text{ almost everywhere under } \mu.$$

Example 4. Let $X_1, ..., X_n$ be i.i.d. random variables with parameter θ .

1. Bernoulli random variables with parameter $\theta \in (0,1)$. Then,

$$p(x \mid \theta) = \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i}.$$

Hence, $T(x) = \sum_{i=1}^{n} x_i$.

2. $N(\mu, \sigma^2)$ with $\theta = (\mu, \sigma^2)$. Then

$$p(x \mid \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x_i - \mu)^2}{2\sigma^2}\right\} = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{n\mu^2}{2\sigma^2}\right\} \exp\left\{\frac{n\mu}{\sigma^2}\bar{x} - \frac{1}{2\sigma^2}\sum_{i=1}^{n} x_i^2\right\}.$$

Hence $T(x) = (\bar{x}, \sum_{i=1}^{n} x_i^2)$.

Theorem 2 (Sufficiency in Exponential Family). Consider exponential family

$$p(x \mid \theta) = \exp \left\{ \sum_{i=1}^{s} \eta_{i}(\theta) T_{i}(x) - A(\eta) \right\} h(x).$$

Then, the statistic $T(x) = (T_1(x), ..., T_s(x))$ is sufficient.

Proof. The factorization theorem directly implies that $T(x) = (T_1(x), ..., T_s(x))$ is sufficient. \square

Example 5. Let $X_1, ..., X_n$ be i.i.d. Bernoulli with parameter θ . Then,

$$p(x \mid \theta) = \exp \left\{ n\bar{X} \log \theta + n \left(1 - \bar{X} \right) \log \left(1 - \theta \right) \right\},$$

belongs to exponential family. Hence, $T(x) = (n\bar{X}, n(1-\bar{X}))$ is sufficient.

2.3 Minimal Sufficiency

Sufficient statistic is not unique. For the normal example, we can rewrite the density as

$$p(x \mid \theta) = \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\left\{-\frac{n\mu^{2}}{2\sigma^{2}}\right\} \exp\left\{\frac{n\mu}{\sigma^{2}}\bar{x} - \frac{1}{2\sigma^{2}}\left[\sum_{i=1}^{n}x_{i}^{2} - n(\bar{x})^{2}\right] - \frac{n}{2\sigma^{2}}(\bar{x})^{2}\right\}$$
$$= \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\left\{-\frac{n\mu^{2}}{2\sigma^{2}}\right\} \exp\left\{\frac{n\mu}{\sigma^{2}}\bar{x} - \frac{n-1}{2\sigma^{2}}S^{2} - \frac{n}{2\sigma^{2}}(\bar{x})^{2}\right\}$$

Hence, $T(x) = (\bar{X}, S^2)$ is also sufficient. If T is sufficient for a family of distributions \mathcal{P} and $T = f(\tilde{T})$, then \tilde{T} is also sufficient for \mathcal{P} .

Example 6. Any sufficient statistic is a function of x. Hence, the original data x is sufficient.

Definition 3 (Minimal Sufficiency). A sufficient statistic T is called a minimal sufficient statistic if T is a measurable function of any other sufficient statistic (almost everywhere under \mathcal{P}). The set where this definition fails is a null set for every $P_{\theta} = \mathcal{P}$.

Theorem 3. Let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be a family of statistical models with density $p(x \mid \theta)$ with respected to a measure μ . Consider two independent samples x and y from P_{θ} . If $p(x \mid \theta)/p(y \mid \theta)$ does not depend on θ if and only if T(x) = T(y) [we do not know T is sufficient yet]. Then T is sufficient and minimal sufficient.

Example 7. Let $X_1, ..., X_n$ be i.i.d. random variables with parameter θ .

1. Bernoulli random variables with parameter $\theta \in (0,1)$. Then,

$$p(x \mid \theta) = \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i}.$$

Consider the ratio

$$\frac{p(x \mid \theta)}{p(y \mid \theta)} = \frac{\theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i}}{\theta^{\sum_{i=1}^{n} y_i} (1 - \theta)^{n - \sum_{i=1}^{n} y_i}} = \theta^{\sum_{i} x_i - \sum_{i} y_i} (1 - \theta)^{\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i}$$

$$= \left(\frac{\theta}{1 - \theta}\right)^{\sum_{i} x_i - \sum_{i} y_i}$$

The minimal sufficient statistic is $T = \sum_{i} x_{i}$.

2. Cauchy distribution with density

$$p(x \mid \theta) = \frac{1}{\pi \left[1 + (x - \theta)^2\right]}.$$

The ratio is

$$\frac{p(x \mid \theta)}{p(y \mid \theta)} = \frac{\prod_{i=1}^{n} \left[1 + (y_i - \theta)^2 \right]}{\prod_{i=1}^{n} \left[1 + (x_i - \theta)^2 \right]} = \frac{\prod_{i=1}^{n} \left[1 + y_i^2 - 2y_i \theta + \theta^2 \right]}{\prod_{i=1}^{n} \left[1 + x_i^2 - 2x_i \theta + \theta^2 \right]}.$$

The minimal sufficient statistic is the order statistic.

2.4 Completeness

Definition 4 (Completeness). A statistical model $\{P_{\theta} : \theta \in \Theta\}$ is called complete, if for any (Borel) measurable function $h : \mathcal{X} \to \mathbb{R}$, the statement

$$E[h(X)] = 0$$
 for all $\theta \in \Theta$

implies the result $P\{h(X) = 0 \mid \theta\} = 1$ for all $\theta \in \Theta$. A statistic $T \sim P_{\theta}^{T}$ is called complete if the statistical model $\{P_{\theta}^{T} : \theta \in \Theta\}$ is complete. If completeness holds for all bounded (Borel) measurable function h(), then we say it is boundedly complete.

Remark 1. By the definition, a complete statistic is also boundedly complete.

Example 8. Completeness means that as long as the expectation is zero for all θ , we must have h = 0 as the only unbiased estimator of 0. In order to show it is not complete, we just need to find a nonzero h such that its expectation is 0 for all θ .

1. Consider the statistical model {Uniform $(0, \theta)$, $\theta \in \mathbb{R}_+$ }. Let h be an arbitrary function. The statement E[h(X)] = 0 is equivalent to

$$\int_{0}^{\theta} h(x) \frac{1}{\theta} dx = 0 \text{ for any } \theta.$$

The statistical model is complete. See P6 of the book Theoretical Statistics for a more detailed discussion.

2. Let $X_1, ..., X_n$ be i.i.d. random variable from Bernoulli (θ) where $\theta \in (0,1)$. Then, $T = \sum_{i=1}^{n} X_i$ follows Binomial. Then,

$$0 = E[h(T)] = \sum_{t=0}^{n} h(t) {n \choose t} \theta^{t} (1-\theta)^{n-t}$$
$$= (1-\theta)^{n} \sum_{t=0}^{n} h(t) {n \choose t} \left(\frac{\theta}{1-\theta}\right)^{t}.$$

The statistic T is a complete statistic.

3. Let $X_1, ..., X_n$ be i.i.d. random variable from $N(\mu, \mu^2)$. The statistic $T = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ is not complete. This is because we let

$$h(T) = \left(\sum_{i=1}^{n} X_i\right)^2 - \frac{n+1}{2} \sum_{i=1}^{n} X_i^2$$

Note that $E\left[\sum_{i=1}^{n} X_{i}\right] = n\mu$, $Var\left[\sum_{i=1}^{n} X_{i}\right] = n\mu^{2}$, $E\left[\sum_{i=1}^{n} X_{i}^{2}\right] = 2n\mu^{2}$. Then,

$$\mathrm{E}\left[h\left(T\right)\right] = \left(n+n^{2}\right)\mu^{2} - \frac{n+1}{2} \cdot 2n\mu^{2} = 0,$$

but $h(T) \neq 0$.

Proposition 1. If T is a complete statistic and $S = \psi(T)$ for a continuous function ψ , then S is also complete. The proposition holds if we change both complete statistic to boundedly complete statistic.

Proof. Since T is complete, then

$$E[h(T)] = 0$$
 for all $\theta \in \Theta$

implies the result $P\{h(T) = 0 \mid \theta\} = 1$ for all $\theta \in \Theta$. Assume that

$$E[h(S)] = E[h(\psi(T))] = 0 \text{ for all } \theta \in \Theta.$$

Since T is complete, we must have $P\{h(\psi(T)) = 0 \mid \theta\} = 1$ for all $\theta \in \Theta$, as long as $h(\psi(\cdot))$ is measurable. That is $P\{h(S) = 0 \mid \theta\} = 1$.

Theorem 4 (Bahadur's theorem: Completeness and Minimal Sufficiency). If a minimal sufficient statistic exits, then

- 1. any sufficient and complete statistic is minimal sufficient.
- 2. any sufficient and boundedly complete statistic is minimal sufficient

Proof. We show the first part of the theorem. Suppose that S is a minimal sufficient statistic, and that T is sufficient and complete. Then, $T - \operatorname{E}[T \mid S] = T - \operatorname{E}[T \mid S(T)]$ is a function of T, since S is minimal sufficient and is a function of any other sufficient statistic (including T). Note that

$$\mathrm{E}\left(T - \mathrm{E}\left[T \mid S\right]\right) = \mathrm{E}\left[T\right] - \mathrm{E}\left(\mathrm{E}\left[T \mid S\right]\right) = 0.$$

Since T is complete, then we must have $T = \operatorname{E}[T \mid S]$ with probability 1, that is, T is also a function of S. Since S is a function of any sufficient statistic, then T is a function of any sufficient statistic, which means that T is minimal sufficient.

Theorem 5. For the exponential family in canonical form

$$p(x \mid \eta) = \exp \left\{ \sum_{i=1}^{s} \eta_{i} T_{i}(x) - A(\eta) \right\} h(x),$$

consider the statistic $T = (T_1(x), \dots, T_d(x))$. If the exponential family is of full rank, T is also complete.

Proof. If you are interested in the proof, see Brown (1986), Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory, Page 44.

2.5 Ancillary Statistic

Definition 5 (Ancillary Statistic). A statistic is called ancillary if its distribution does not depend on θ .

Example 9. Suppose that X_1 , X_2 are iid $N(\theta, 1)$. Then, $X_1 - X_2 \sim N(0, 2)$ is an ancillary statistic.

Theorem 6 (Basu Theorem). If a statistic T is complete and sufficient for $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$, and if V is an ancillary statistic, then T and V are independent under P_{θ} for any $\theta \in \Theta$.

Example 10. Suppose that $X_1, ..., X_n$ are iid $N(\mu, \sigma^2)$. A well-known result is that \bar{X} and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ are independent. To show this result, we note that

$$p(x_1, ..., x_n \mid \theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 + \frac{n\mu}{\sigma^2} \bar{x} - \frac{n\mu^2}{2\sigma^2}\right\}.$$

Hence, we have a full rank two-parameter exponential family. Thus, $T = (\bar{X}, \sum_{i=1}^{n} x_i^2)$ is sufficient and complete for the normal family with unknown μ . Define $Y_i = X_i - \mu \sim N\left(0, \sigma^2\right)$. Then,

$$X_i - \bar{X} = Y_i - \bar{Y}, \quad \forall i,$$

that only depends on σ^2 , not μ . Further

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}$$

only depends on σ^2 , not μ . That is, S^2 is an ancillary statistic [no μ is involved]. By the Basu theorem, \bar{X} and S^2 are independent.