Chapter 1

Regular Languages

1.1 Deterministic Finite State Automata

Definition 1.1.1. An alphabet Σ is a finite set of symbols.

- A string over Σ is a finite sequence of symbols from Σ .
- The **length** of a string w, denoted by |w|, is the number of symbols it contains.
- The string of length 0 is called the **empty string**, denoted by ϵ .

Definition 1.1.2. Let Σ be an alphabet.

- For any nonnegative integer n, Σ^n denotes the set of words of length n.
- Σ^* denotes the set of all strings over Σ .
- A language over Σ is a subset of Σ^* .

Definition 1.1.3. A deterministic finite state automaton (DFA) is a system $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$, where each component is as follows.

- Σ is the alphabet.
- Q is a finite set of **states**.
- $q_0 \in Q$ is the **initial** state.
- $F \subseteq Q$ is the set of **accepting** states.
- δ is the **transition function** from $Q \times \Sigma$ to Q.

Definition 1.1.4. The **run** of DFA $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ on an input string $w = a_1 \cdots a_n$ over Σ is the sequence of states

$$r = (r_0, r_1, \dots, r_n)$$

where $r_0 = q_0$ and $\delta(r_{i-1}, a_i) = r_i$ for each $i \in \{1, \ldots, n\}$.

- r is an **accepting** run if $r_n \in F$.
- We say that \mathcal{A} accepts w if the run of \mathcal{A} on w is an accepting run.

- The language of all strings accepted by \mathcal{A} is denoted by $L(\mathcal{A})$.
- A language L is **regular** if there is a DFA \mathcal{A} with $L = L(\mathcal{A})$.

Remark.

• For DFA $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$, the empty string ϵ is accepted by \mathcal{A} if and only if $q_0 \in F$.

1.2 Nondeterministic Finite State Automata

Definition 1.2.1. A nondeterministic finite state automaton (NFA) is a system $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$, where each component is as follows.

- Σ is the alphabet.
- Q is a finite set of **states**.
- $q_0 \in Q$ is the **initial** state.
- $F \subseteq Q$ is the set of **accepting** states.
- $\delta \subseteq Q \times \Sigma \times Q$ is the **transition relation**.

Definition 1.2.2. A run of NFA $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ on an input string $w = a_1 \cdots a_n$ over Σ is the sequence of states

$$r=(r_0,r_1,\ldots,r_n)$$

where $r_0 = q_0$ and $(r_{i-1}, a_i, r_i) \in \delta$ for each $i \in \{1, \ldots, n\}$.

- r is an **accepting** run if $r_n \in F$.
- We say that \mathcal{A} accepts w if there is an accepting run of \mathcal{A} on w.
- The language of all strings accepted by A is denoted by L(A).

Theorem 1.2.3. For every NFA \mathcal{A} , there is a DFA $\widehat{\mathcal{A}}$ with $L(\mathcal{A}) = L(\widehat{\mathcal{A}})$.

Proof. Let $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$. We construct $\widehat{\mathcal{A}} = (\Sigma, \widehat{Q}, \widehat{q_0}, \widehat{F}, \widehat{\delta})$ as follows.

- $\widehat{Q} = \mathcal{P}(Q)$.
- $\widehat{q_0} = \{q_0\}.$
- $\widehat{F} = \{\widehat{q} \in \widehat{Q} : q \in \widehat{q} \text{ for some } q \in F\}.$
- $\widehat{\delta}:\widehat{Q}\times\Sigma\to\widehat{Q}$ is the transition function such that

$$\widehat{\delta}(\widehat{q},a) = \{q \in Q : (p,a,q) \in \delta \text{ for some } p \in \widehat{q} \}.$$

holds for each $\widehat{q} \in \widehat{Q}$ and $a \in \Sigma$.

Now we prove that $L(\mathcal{A}) = L(\widehat{\mathcal{A}})$. For $w \in \Sigma^*$, let $\widehat{r} = (\widehat{r}_0, \widehat{r}_1, \dots, \widehat{r}_n)$ be the run of $\widehat{\mathcal{A}}$ on w

- (i) Suppose that $r = (r_0, r_1, \ldots, r_n)$ is an accepting run of \mathcal{A} on w, and we prove that \widehat{r} is an accepting run on w. It is obvious that $r_0 \in \widehat{r}_0$. If $r_{i-1} \in \widehat{r}_{i-1}$ for some $i \in \{1, \ldots, n\}$, then we have $r_i \in \widehat{\delta}(\widehat{r}_{i-1}, a_i) = \widehat{r}_i$ since $(r_{i-1}, a_i, r_i) \in \delta$. Thus, $r_n \in \widehat{r}_n$, and it follows that $\widehat{r}_n \in \widehat{F}$. Therefore, we have $L(\mathcal{A}) \subseteq L(\widehat{\mathcal{A}})$.
- (ii) Suppose that \hat{r} is an accepting run. Then due to the construction of \hat{F} and $\hat{\delta}$, we can construct an accepting run $r = (r_0, r_1, \dots, r_n)$ of \mathcal{A} on w as follows.
 - Let r_n be a state in $\widehat{r}_n \cap F$.
 - For $i \in \{0, \ldots, n-1\}$, let r_i be a state in \widehat{r}_i such that $(r_i, a_{i+1}, r_{i+1}) \in \delta$.

Thus, we have $L(\widehat{A}) \subseteq L(A)$, which completes the proof.

1.3 Regular Expressions

Definition 1.3.1. Let Σ be an alphabet. A **regular expression** over Σ is a string in the minimal language over $\Sigma \cup \{\emptyset, \epsilon, *, \cdot, \cup, (,)\}$ that satisfies the following conditions.

- 1. \emptyset is a regular expression.
- 2. ϵ is a regular expression.
- 3. If $a \in \Sigma$, then a is a regular expression.
- 4. If e_1 and e_2 are regular expressions, then so is $(e_1 \cdot e_2)$.
- 5. If e_1 and e_2 are regular expressions, then so is $(e_1 \cup e_2)$.
- 6. If e is a regular expression, then so is $(e)^*$.

Definition 1.3.2. A regular expression e over an alphabet Σ defines a language L(e) as follows.

- 1. $L(\emptyset) = \emptyset$.
- 2. $L(\epsilon) = {\epsilon}$.
- 3. $L(a) = \{a\}$ for each $a \in \Sigma$.
- 4. $L((e_1 \cdot e_2)) = L(e_1) \cdot L(e_2)$ for each regular expressions e_1 and e_2 .
- 5. $L((e_1 \cup e_2)) = L(e_1) \cup L(e_2)$ for each regular expressions e_1 and e_2 .
- 6. $L((e)^*) = L(e^*)$ for each regular expression e.

Remark. We will write (e_1e_2) instead of $(e_1 \cdot e_2)$ for simplification. Furthermore, we may omit parentheses if there is no ambiguity.

Theorem 1.3.3. Let Σ be an alphabet. A language L over Σ is regular if and only if there is a regular expression e over Σ such that L = L(e).

Proof. (\Leftarrow) It holds trivially since all finite languages are regular, and regular languages are closed under union, cancatenation and star operations.

 (\Rightarrow) Since L is regular, there is a DFA $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ with $L = L(\mathcal{A})$. For $p, q \in Q$ and $S \subseteq Q$, define L(p, S, q) to be the language of strings $w \in \Sigma^*$ such that the run r of $w = a_1 \cdots a_n$ on \mathcal{A} with

$$r = (r_0, r_1, \dots, r_{n-1}, r_n)$$

satisfying $r_0 = p$, $r_n = q$ and $r_i \in S$ for each $i \in \{1, ..., n-1\}$. Then it suffices to prove that there exists a regular expression e with L(e) = L(p, S, q) for each $p, q \in Q$ and $S \subseteq Q$ since

$$L = \bigcup_{q \in F} L(q_0, Q, q).$$

The proof is by induction on |S|. For the induction basis, let |S| = 0, i.e., $S = \emptyset$. Then we have

$$L(p,\varnothing,p)=\{\epsilon\}\cup\{a\in\Sigma:\delta(p,a)=p\}$$

and

$$L(p,\varnothing,q) = \{a \in \Sigma : \delta(p,a) = q\}$$

for all $p, q \in Q$ with $p \neq q$, and thus the induction basis is proved. Now assume the induction hypothesis that the statement holds for |S| = k, and we prove that it is true for |S| = k + 1. Let s be an arbitrary state in S and let $S' = S \setminus \{s\}$. Then it suffices to prove that

$$L(p, S, q) = L(p, S', q) \cup L(p, S', s) \cdot (L(s, S', s))^* \cdot L(s, S', q).$$

since |S'| = k.

(i) It is obvious that

$$L(p,S,q) \quad \supseteq \quad L(p,S',q) \quad \cup \quad L(p,S',s) \cdot (L(s,S',s))^* \cdot L(s,S',q)$$
 since $S=S' \cup \{s\}$.

(ii) Then we prove that

$$L(p, S, q) \subseteq L(p, S', q) \cup L(p, S', s) \cdot (L(s, S', s))^* \cdot L(s, S', q).$$

Suppose that $w \in L(p, S, q)$. Let i_1, i_2, \ldots, i_ℓ be all indices in $\{1, \ldots, n-1\}$ such that $r_{i_j} = s$ for each $j \in \{1, \ldots, \ell\}$, where $i_1 < i_2 < \cdots < i_\ell$.

If $\ell = 0$, then $w \in L(p, S', q)$ since $r_i \neq s$ for all $i \in \{1, \ldots, n-1\}$. Otherwise, we have

$$a_{1} \cdots a_{i_{1}} \in L(p, S', s)$$
 $a_{i_{1}+1} \cdots a_{i_{2}} \in L(s, S', s)$
 \vdots
 $a_{i_{\ell-1}+1} \cdots a_{i_{\ell}} \in L(s, S', s)$
 $a_{i_{\ell}+1} \cdots a_{n} \in L(s, S', q),$

and thus $w \in L(p, S', s) \cdot (L(s, S', s))^* \cdot L(s, S', q)$. This completes the proof. \square