Deterministic Pattern Formation in Swarms of Robots

Franck Petit

Problem

Definition (Arbitrary Pattern Formation)

Given a swarm of n robots scattered on the plan, designing a deterministic algorithm so that, the robots eventually form a pattern \mathcal{P} made of n positions and known by each of them in advance.

Problem

Definition (Arbitrary Pattern Formation)

Given a swarm of n robots scattered on the plan, designing a deterministic algorithm so that, the robots eventually form a pattern \mathcal{P} made of n positions and known by each of them in advance.

Problem

Definition (Arbitrary Pattern Formation)

Given a swarm of n robots scattered on the plan, designing a deterministic algorithm so that, the robots eventually form a pattern \mathcal{P} made of n positions and known by each of them in advance.

In other words, at the end of the computation, the positions of the robots coincide, with the positions of \mathcal{P} , where \mathcal{P} can be translated, rotated, and scaled in each local coordinate system.

SoD and Chirality

[Flocchini et al., 1999]

A solution exists for any n and any \mathcal{P} .

SoD and No Chirality

[Flocchini et al., 2002

SoD and Chirality

[Flocchini et al., 1999]

A solution exists for any n and any \mathcal{P} .

SoD and No Chirality

[Flocchini et al., 2002]

SoD and Chirality

[Flocchini et al., 1999]

A solution exists for any n and any \mathcal{P} .

SoD and No Chirality

[Flocchini et al., 2002]

SoD and Chirality

[Flocchini et al., 1999]

A solution exists for any n and any \mathcal{P} .

SoD and No Chirality

[Flocchini et al., 2002] If n is odd, a solution exists for any \mathcal{P} .

SoD and Chirality

[Flocchini et al., 1999]

A solution exists for any n and any \mathcal{P} .

SoD and No Chirality

[Flocchini et al., 2002]

If n is odd, a solution exists for any P.

If n is even, a solution exists provided that P is symmetric.

Question

Assuming no sense of direction (with or without chirality), which kind of patterns can be formed in a deterministic way?

Theorem

[Flocchini et al., 2001]

If the robots share no Sense of Direction, then they cannot solve the Arbitrary Pattern Formation problem deterministically, even having the ability of chirality.

Theorem

[Flocchini et al., 2001]

If the robots share no Sense of Direction, then they cannot solve the Arbitrary Pattern Formation problem deterministically, even having the ability of chirality.

Theorem

[Flocchini et al., 2001]

If the robots share no Sense of Direction, then they cannot solve the Arbitrary Pattern Formation problem deterministically, even having the ability of chirality.

Let Θ be the class of patterns that can be solved deterministically assuming robots devoid of sense of direction.

Corollary

Either Θ is equal to the set of regular polygons (n-gons)

or $\Theta = \emptyset$.

Question

Assuming no sense of direction, is it possible to eventually form a regular *n*-gon (circle)?

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2004] [Défago and Souissi, 2008]

Asymptotic convergence toward the *n*-gon.

Franck Petit Pattern Formation 5/10

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2004] [Défago and Souissi, 2008]

Asymptotic convergence toward the *n*-gon.

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2004] [Défago and Souissi, 2008]

Asymptotic convergence toward the *n*-gon.

[Dieudonné and Petit, 2007]

Prime number of robots

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2004] [Défago and Souissi, 2008]

Asymptotic convergence toward the *n*-gon.

[Dieudonné and Petit, 2007]

Prime number of robots.

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2004] [Défago and Souissi, 2008]

Asymptotic convergence toward the *n*-gon.

[Dieudonné and Petit, 2007]

Prime number of robots.

[Katreniak, 2005]

Any *n* (in ASYNC), but the *n*-gon is not systematically achieved

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2004] [Défago and Souissi, 2008]

Asymptotic convergence toward the *n*-gon.

[Dieudonné and Petit, 2007]

Prime number of robots.

[Katreniak, 2005]

Any *n* (in ASYNC), but the *n*-gon is not systematically achieved.

All previous protocols are based on the two following steps:

- ① Move the robots on (the boundary of) a circle C.
- 2 Without leaving C, arrange them evenly along C.

See also: Flocchini et al. « Distributed Computing by Mobile Robots: Uniform Circle Formation » 2016

All previous protocols are based on the two following steps:

1 Move the robots on (the boundary of) a circle C.

2 Without leaving C, arrange them evenly along C.

All previous protocols are based on the two following steps:

lacktriangledown Move the robots on (the boundary of) a circle \mathcal{C} .

② Without leaving C, arrange them evenly along C.

All previous protocols are based on the two following steps:

1 Move the robots on (the boundary of) a circle C.

EASY PART

2 Without leaving C, arrange them evenly along C.

All previous protocols are based on the two following steps:

lacktriangledown Move the robots on (the boundary of) a circle \mathcal{C} .

EASY PART

2 Without leaving C, arrange them evenly along C.

HARD PART

Theorem

[Flocchini et al, 2006]

There exists no deterministic algorithm that eventually arrange n robots evenly along a circle \mathcal{C} without leaving \mathcal{C} .

Theorem

[Flocchini et al, 2006]

There exists no deterministic algorithm that eventually arrange n robots evenly along a circle \mathcal{C} without leaving \mathcal{C} .

Theorem

[Flocchini et al, 2006]

There exists no deterministic algorithm that eventually arrange n robots evenly along a circle \mathcal{C} without leaving \mathcal{C} .

Question

Are we done, *i.e.*, $\Theta = \emptyset$?

Theorem

[Flocchini et al, 2006]

There exists no deterministic algorithm that eventually arrange n robots evenly along a circle \mathcal{C} without leaving \mathcal{C} .

Question

Are we done, *i.e.*, $\Theta = \emptyset$?

Fortunately, not!

An almost *n*-gon algorithm

Theorem

[Flocchini et al, 2006]

There exists no deterministic algorithm that eventually arrange n robots evenly along a circle C without leaving C.

Let us leave $\mathcal C$

7/10

Ideal Polygon

Property 1

- Either $d_0 \ge d_1 \le \cdots \ge d_{n-1} \le d_0$
- or $d_0 \le d_1 \ge \cdots \le d_{n-1} \ge d_0$

Ideal Polygon

Property 2

A regular *n*-gon can be associated to an Ideal Polygon.

Ideal Polygon

It works if $n \ge 5$ only

- [Katreniak 2005] works if $n \ge 5$ only
- 2 Difficulty to find an invariant

Arbitrary Pattern Formation

Theorem

 $\forall n$, the class of patterns that can be solved deterministically assuming robots devoid of sense of direction (Θ) is equal to the set of regular polygons (n-gons).