

MACHINE LEARNING NEURAL NETWORKS REPRESENTATION

Machine Learning - Andrew Ng

HueAI - April 2019

NON-LINEAR HYPOTHESES

Non-linear Classification

$$x_1 = size$$

$$x_2 = \# \, \mathsf{bedrooms}$$

$$x_3 = \#$$
 floors

$$x_4 = age$$

$$x_{100}$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \theta_6 x_1 x_2^2 + \cdots)$$

$$x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_{100}, x_2^2, x_2 x_3, \dots$$

 $\approx 5000 \ features.$

$$\approx \frac{n^2}{2}$$

$$x_1 x_2 x_3, x_1 x_3 x_4, \dots, x_1 x_{99} x_{100}, x_2 x_3 x_4, \dots$$

 $\approx O(n^3). \approx 170.000$

WHAT IS THIS?

You see this:

COMPUTER VISION CAR DETECTION

Testing:

What is this?

CAR DETECTION

Learning Algorithm

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \theta_6 x_1 x_2^2 + \cdots)$$

$$x_1^2, x_1x_2, x_1x_3, \dots, x_1x_{100}, x_2^2, x_2x_3, \dots$$

 $\approx 5000 \ features.$

$$\approx \frac{n^2}{2}$$

$$x_1 x_2 x_3, x_1 x_3 x_4, \dots, x_1 x_{99} x_{100}, x_2 x_3 x_4, \dots$$

 $\approx O(n^3). \approx 170.000$

NEURON MODEL: LOGISTIC UNIT

$$\begin{split} g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 \\ + \theta_5 x_2^2 + \theta_6 x_1 x_2^2 + \cdots) \\ x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_{100}, x_2^2, x_2 x_3, \dots \\ &\approx 5000 \ features. \\ &\approx \frac{n^2}{2} \\ x_1 x_2 x_3, x_1 x_3 x_4, \dots, x_1 x_{99} x_{100}, x_2 x_3 x_4, \dots \\ &\approx O(n^3). \quad \approx 170.000 \end{split}$$

 $g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \theta_6 x_1 x_2^2 + \cdots)$ $x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_{100}, x_2^2, x_2 x_3, \dots$ $\approx 5000 \ features.$

NEURAL NETWORK

NEURAL NETWORK

$$g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2} + \theta_{5}x_{2}^{2} + \theta_{6}x_{1}x_{2}^{2} + \cdots)$$

$$x_{1}^{2}, x_{1}x_{2}, x_{1}x_{3}, \dots, x_{1}x_{100}, x_{2}^{2}, x_{2}x_{3}, \dots$$

$$\approx 5000 \ features.$$

$$\approx \frac{n^{2}}{2}$$

$$x_{1}x_{2}x_{3}, x_{1}x_{3}x_{4}, \dots, x_{1}x_{99}x_{100}, x_{2}x_{3}x_{4}, \dots$$

$$\approx O(n^{3}). \approx 170.000$$

$$g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2} + \theta_{5}x_{2}^{2} + \theta_{6}x_{1}x_{2}^{2} + \cdots)$$

$$x_{1}^{2}, x_{1}x_{2}, x_{1}x_{3}, \dots, x_{1}x_{100}, x_{2}^{2}, x_{2}x_{3}, \dots$$

$$\approx 5000 \ features.$$

$$\approx \frac{n^{2}}{2}$$

$$x_{1}x_{2}x_{3}, x_{1}x_{3}x_{4}, \dots, x_{1}x_{99}x_{100}, x_{2}x_{3}x_{4}, \dots$$

$$\approx O(n^{3}). \approx 170.000$$

FORWARD PROPAGATION: VECTORIZED IMPLEMENTATION

$$g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2} + \theta_{5}x_{2}^{2} + \theta_{6}x_{1}x_{2}^{2} + \cdots)$$

$$x_{1}^{2}, x_{1}x_{2}, x_{1}x_{3}, \dots, x_{1}x_{100}, x_{2}^{2}, x_{2}x_{3}, \dots$$

$$\approx 5000 \ features.$$

$$\approx \frac{n^{2}}{2}$$

$$x_{1}x_{2}x_{3}, x_{1}x_{3}x_{4}, \dots, x_{1}x_{99}x_{100}, x_{2}x_{3}x_{4}, \dots$$

$$\approx O(n^{3}). \approx 170.000$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \theta_6 x_1 x_2^2 + \cdots)$$

$$x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_{100}, x_2^2, x_2 x_3, \dots$$

 $\approx 5000 \ features.$
 $\approx \frac{n^2}{2}$

$$x_1 x_2 x_3, x_1 x_3 x_4, \dots, x_1 x_{99} x_{100}, x_2 x_3 x_4, \dots$$

 $\approx O(n^3). \approx 170.000$

OTHER NETWORK ARCHITECTURES

Layer 1 – Input layer

Layer 2, 3 – Hidden layer

Layer 4 – Output layer

NON-LINEAR CLASSIFICATION EXAMPLE: XOR/XNOR

HUE UNIVERSITY

SIMPLE EXAMPLE: AND

$$\begin{split} g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \ \theta_4 x_1^2 \\ + \theta_5 x_2^2 + \theta_6 x_1 x_2^2 + \cdots) \\ x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_{100}, x_2^2, x_2 x_3, \dots \\ &\approx 5000 \ features. \\ &\approx \frac{n^2}{2} \end{split}$$

x_1	x_2	$h_{\Theta}(x)$
0	0	9(-30) 20
0	1	
1	0	g(-10) 20 g(-10) 20
1	1	9(10) %1
		3

+ 05x2 + 06x1x2 + ··· /

 $x_1^2, x_1x_2, x_1x_3, \dots, x_1x_{100}, x_2^2, x_2x_3, \dots$ $\approx 5000 \ features.$ $\approx \frac{n^2}{2}$

EXAMPLE: OR FUNCTION

x_1	x_2	$h_{\Theta}(x)$
0	0	9 (-10) 20
0	1	9 (10) 21
1	0	21
1	1	21

EXAMPLE: NOT FUNCTION

x_1	$h_{\Theta}(x)$
0	9(10) 21
1	9 (-10) 20

$$h_{\Theta}(x) = g(10 - 20x_1)$$

EXAMPLE: XOR FUNCTION

MULTICLASS CLASSIFICATION

MULTIPLE OUTPUT UNITS: ONE-VS-ALL

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc. when pedestrian when car when motorcycle

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$y^{(i)}$$
 one of $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$

pedestrian car motorcycle truck

NEURAL NETWORK LEARNING COST FUNCTION

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \theta_6 x_1 x_2^2 + \cdots)$$

$$x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_{100}, x_2^2, x_2 x_3, \dots$$

 $\approx 5000 \ features.$

$$\approx \frac{n^2}{2}$$

$$x_1 x_2 x_3, x_1 x_3 x_4, \dots, x_1 x_{99} x_{100}, x_2 x_3 x_4, \dots$$

 $\approx O(n^3), \approx 170.000$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \theta_6 x_1 x_2^2 + \cdots)$$

$$x_1^2, x_1x_2, x_1x_3, \dots, x_1x_{100}, x_2^2, x_2x_3, \dots$$

 $\approx 5000 \ features.$

$$\approx \frac{n^2}{2}$$

$$x_1x_2x_3, x_1x_3x_4, \dots, x_1x_{99}x_{100}, x_2x_3x_4, \dots$$

 $\approx O(n^3). \approx 170.000$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \theta_6 x_1 x_2^2 + \cdots)$$

$$x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_{100}, x_2^2, x_2 x_3, \dots$$

 $\approx 5000 \ features.$
 $\approx \frac{n^2}{3}$

$$x_1 x_2 x_3, x_1 x_3 x_4, \dots, x_1 x_{99} x_{100}, x_2 x_3 x_4, \dots$$

 $\approx O(n^3). \approx 170.000$

NEURAL NETWORK LEARNING COST FUNCTION

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \theta_6 x_1 x_2^2 + \cdots)$$

$$x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_{100}, x_2^2, x_2 x_3, \dots$$

$$\approx 5000 \ features.$$

$$\approx \frac{n^2}{2}$$

$$x_1 x_2 x_3, x_1 x_3 x_4, \dots, x_1 x_{99} x_{100}, x_2 x_3 x_4, \dots$$

 $\approx O(n^3). \approx 170.000$

BACKPROPAGATION ALGORITHM: GRADIENT COMPUTATION

$$g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2} + \theta_{5}x_{2}^{2} + \theta_{6}x_{1}x_{2}^{2} + \cdots)$$

$$x_{1}^{2}, x_{1}x_{2}, x_{1}x_{3}, \dots, x_{1}x_{100}, x_{2}^{2}, x_{2}x_{3}, \dots$$

$$\approx 5000 \ features.$$

$$\approx \frac{n^{2}}{2}$$

$$x_{1}x_{2}x_{3}, x_{1}x_{3}x_{4}, \dots, x_{1}x_{99}x_{100}, x_{2}x_{3}x_{4}, \dots$$

$$\approx O(n^{3}). \approx 170.000$$

BACKPROPAGATION ALGORITHM: GRADIENT COMPUTATION

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + (\theta_1 x_2 + \theta_2 x_2 + \theta_3 x_1 x_2^2 + \cdots)$$

 $x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_{10}$ \approx 5000 features.

$$\approx \frac{n^2}{2}$$

Layer 1 Layer 2

$$x_1 x_2 x_3, x_1 x_3 x_4, \dots, x_1 x_{99} x_{100}, x_2 x_3 x_4, \dots$$

 $\approx O(n^3). \approx 170.000$

THANK YOU!

