Assignment 11, Infinitesimal Calculus

Oleg Sivokon

<2015-03-14 Sat>

Contents

1	Pro	Problems														3							
	1.1	Proble	m 1											•							•		3
		1.1.1	Answer	1																			3
		1.1.2	Answer	2																			4
	1.2	Proble	em 2															•			•		5
		1.2.1	Answer	3														•					6
		1.2.2	Answer	4														•					6
	1.3	Proble	em 3															•			•		6
		1.3.1	Answer	5										•							•		6
	1.4	Proble	em 4															•			•		6
		1.4.1	Answer	6																			7

	1.4.2	Answer 7									•	•	•		7
	1.4.3	Answer 8		•				•				•	•		7
	1.4.4	Answer 9						•				•	•		7
	1.4.5	Answer 10												•	7
1.5	Proble	em 5										•	•		7
	1.5.1	Answer 11										•	•		7
1.6	Proble	em 6													7
	1.6.1	Answer 12													8
	1.6.2	Answer 13													8
	163	Answer 14													8

1 Problems

1.1 Problem 1

1. Prove that for any natural number n it holds that:

$$4^n \ge \binom{2n}{n}$$
.

2. Prove by induction, or in any other way, that for any natural number n it holds that:

$$\binom{2n}{n} \ge \frac{4^n}{2n+1}.$$

1.1.1 Answer 1

Discussion: The idea behind the proof is to show that $\binom{2n}{n}$ is a term in the binomial expansion representing 4^n . Since all other terms in this expansion will be non-negative, then 4^n will be at least as big as $\binom{2n}{n}$.

Proof: Put $4^n = (1+1)^{2n}$, using binomial formula obtains:

$$(1+1)^{2n} = \sum_{k=0}^{2n} {2n \choose k} 1^{2n} 1^{2n-k}$$
$$= {2n \choose n} + \sum_{k=0, k \neq n}^{2n} {2n \choose k}.$$

We know that $\binom{2n}{n}$ is a term of binomial expansion because we know that $k_i \leq 2n$, which implies that since k_i , n are natural numbers, there exists $k_i = n$. Besides, thre might exist other terms in binomial expansion which are guaranteed to be non-negative. Hence, $4^n \geq \binom{2n}{n}$.

1.1.2 Answer 2

Discussion: In order to make the proof a little less verbose, I will prove a stronger claim, viz. $\binom{2n}{n} \ge \frac{4^n}{2n}$. Since n is positive, 2n < 2n + 1, hence $\frac{4^n}{2n} > \frac{4^n}{2n+1}$. The proof will proceed by induction on n. First I will find a factor s.t. multiplying it with S_{n-1} I will obtain S_n , and then multiply it with the $\frac{4^n}{2n}$ to show that it will necessary be at leas as large as $\frac{4^{n+1}}{2(n+1)}$.

Proof: Using mathematical induction, let's first prove the base step, where n = 1:

$$\binom{2*1}{1} \ge \frac{4^1}{2*1} \iff$$

$$\frac{2!}{1!(2-1)!} \ge \frac{4}{2} \iff$$

$$\frac{2}{1} \ge 2 \iff$$

$$2 \ge 2.$$

Now, to the inductive step (for n > 1), some useful simplification first:

$$\binom{2n}{n} = \frac{(2n)!}{n!(2n-n)!}$$

$$= \frac{(2n!)}{n!n!}.$$
(1)

Invoking inductive hypothesis $\binom{2(n+1)}{(n+1)} \ge \frac{4^n}{2n}$:

$$\binom{2(n+1)}{n+1} = \frac{(2(n+1))!}{(n+1)!(2(n+1)-n+1)!}$$

$$= \frac{(2n!)(2n+1)(2n+2)}{n!(n+1)n!(n+1)}$$

$$= \frac{(2n!)(2n+1)2(n+1)}{n!(n+1)n!(n+1)}$$

$$= \frac{(2n!)(2n+1)2}{n!n!(n+1)}.$$
(2)

Dividing (2) by (1) gives us the factor $\frac{(2n+1)2}{(n+1)}$. Thus:

$$\frac{(2n+1)2}{n+1} \times \frac{4^n}{2n} \ge \frac{4^{n+1}}{2(n+1)}$$
$$\frac{(2n+1)2 * 4^n}{2n(n+1)} \ge \frac{4^{n+1}}{2(n+1)}$$
$$\frac{(2n+1)2 * 4^n}{n} \ge 4^{n+1}$$
$$\frac{(2n+1)2 * 4^n}{n} \ge 4$$
$$\frac{(2n+1)2}{n} \ge 4$$
$$\frac{4n+2}{n} \ge 4$$
$$4 + \frac{2}{n} \ge 4$$

Since n>1, $\frac{2}{n}$ is positive, hence the inequality holds. This completes the inductive step. Hence, by using mathematical induction the proof is complete.

1.2 Problem 2

- 1. Given $k, l \in \mathbb{N}$, prove that $a = k + l\sqrt{2}$ is irrational.
- 2. Prove that for every natural number n it holds that:

$$\sum_{i=0}^{n} \sqrt{2}^{i}$$

is irrational.

1.2.1 Answer 3

1.2.2 Answer 4

1.3 Problem 3

1. Given real numbers a and b prove that if

$$\left|\frac{|a|}{2} > \left|b - \frac{a}{2}\right|,$$

then

$$|b-a|<|a|.$$

1.3.1 Answer 5

1.4 Problem 4

Given $a, b, c \in \mathbb{R}$,

- 1. Prove that if a > 0 and a + b > a + c, then b > c.
- 2. Prove that if a > 0 and ab > ac, then b > c.
- 3. Prove that if |a| > |b| iff $a^2 > b^2$.
- 4. Prove that if b > c and |a b| > |a c|, then b > a.
- 5. Show (my means of example) that from b > c and b > a it doesn't follow that |a b| > |a c|.

- 1.4.1 Answer 6
- 1.4.2 Answer 7
- 1.4.3 Answer 8
- 1.4.4 Answer 9
- 1.4.5 Answer 10
- 1.5 Problem 5

Solve the equation:

$$||x+1|-|x-1|| = x.$$

1.5.1 Answer 11

1.6 Problem 6

Definition: set A of real numbers is called **dense in interval** I if for every $x, y \in I$ s.t. x < y there exists $a \in A$ such that x < a < y.

- 1. Let A be dense in interval [0,1], prove that set $B = \{na | a \in A, n \in \mathbb{N}\}$ is dense in interval $[0,\infty)$.
- 2. Let $A = \mathbb{R}$, prove that A isn't dense in I iff exists an open interval (x,y) in I, such that $A \cap (x,y) = \emptyset$.
- 3. Let A be the real numbers in interval [0,1], prove that the set $C=\{\frac{a+1}{n^2}|a\in A,n\in\mathbb{N}\}$ isn't dense in [0,1].

- 1.6.1 Answer 12
- 1.6.2 Answer 13
- 1.6.3 Answer 14