

ESTUDIO DEL MOVIMIENTO RECTILÍNEO DE LOS CUERPOS

PROF. ERIK RONALD AGUIRRE HUMÉREZ

Cinemática.

Es parte de la mecánica que estudia el movimiento de los cuerpos sin tomar en cuenta las causas que lo originan, es decir las fuerzas.

¿Qué es el movimiento?

A A S

Es un cambio de la posición de un cuerpo a lo largo del tiempo respecto de un sistema de referencia.

Trayectoria(distancia) y desplazamiento.

La **trayectoria** es el camino seguido por el cuerpo en su movimiento. El **desplazamiento** es la distancia en línea recta entre la posición inicial y final

Ecuación del desplazamiento: $|\triangle \vec{x} = \vec{x}_f - \vec{x}_i|$

$$\triangle \vec{\mathbf{x}} = \vec{\mathbf{x}}_f - \vec{\mathbf{x}}_i$$

 $\triangle \vec{X}$ = variación de desplazamiento

 \vec{X}_f = posición final

 \vec{X}_i = posición inicial

Ejemplo 1: Si un móvil se encuentra a 6m del punto de partida y retrocede hasta llegar a 2m del punto de partida. ¿Cuál es su desplazamiento? ¿Cuál es la distancia recorrida?

$$\sqrt{\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{x}}_{\mathsf{f}} - \overrightarrow{\mathbf{x}}_{\mathsf{i}}}$$

$$\triangle \vec{x} = 2m - 6m$$
 \longrightarrow $\triangle \vec{x} = -4m$ \longrightarrow $d = 4m$

Ejemplo 2: Una persona realiza una caminata de A hasta F, como se muestra en la figura. Calcular la distancia y su desplazamiento.

Calculamos la distancia

$$d = 2m + 4m + 5m + 7m + 7m$$

 $d = 25m$

Calculamos el desplazamiento

Velocidad y rapidez

La **velocidad** es una magnitud vectorial que relaciona el cambio de posición (o desplazamiento) con el tiempo.

$$v = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

La **rapidez** es una magnitud escalar que relaciona la distancia recorrida con el tiempo.

$$V = \frac{V}{2}$$

$$\frac{m}{s}$$
; $\frac{cm}{s}$; $\frac{km}{h}$; $\frac{pie}{s}$; $\frac{mi}{h}$; $\frac{in}{s}$

Ejemplo: Un móvil al entrar a un puente recorrió 149 km siendo las 9:45. Cuando termina de atravesar el puente pasó al kilometro 152, siendo las 9:47. ¿Cuál es la velocidad media en km/h al cruzar el puente?

$$v = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

$$V = \frac{152 - 149}{9:47 - 9:45}$$

Movimiento Rectilíneo Uniforme (MRU)

• Es el tipo de movimiento mas simple con <u>velocidad</u> constante y cuya <u>trayectoria</u> es una línea recta sin cambiar su sentido.

$$V = \frac{d}{t}$$

$$V = velocidad (m/s)$$

$$t = tiempo(s)$$

$$d = v * t$$

$$v = \frac{d}{t}$$

$$t = \frac{d}{v}$$

Gráficos del MRU

Ejercicio 1 Un automóvil tiene una rapidez de 90 km/h. ¿Cuál es el espacio recorrido en 8 minutos?

AAS

Datos

$$v = 90 \text{ km/h}$$

$$t = 8 min = 2/15 h$$

$$d = v * t$$

$$d = 90 \frac{km}{h} * \frac{2}{15} h$$

$$d = 12 \text{ km}$$

Ejercicio 2 Calcular el tiempo que empleará la luz en llegar del sol a la tierra si la distancia que los separa es 150x10⁶ km

a AAS

Datos

 $d = 150 \times 10^6 \text{ km}$

v = 300000 km/s

$$t = \frac{d}{v}$$

$$t = \frac{150 \times 10^6 km}{300000 \text{ km/s}}$$

$$t = 500 \text{ s} * \frac{1min}{60 \text{ s}}$$

t = 8min y 20s

Situación de persecución

- Un móvil delante de otro
- Se usa la ecuación: d=v*t de forma independiente para cada móvil
- El tiempo de encuentro será el mismo para ambos móviles.

Ejemplo 1. El automóvil B quiere dar alcance a un automóvil A que se encuentra en una distancia de 150 m de él, este automóvil A tiene una velocidad constante de 8 m/s y el automóvil B pose una velocidad de 10 m/s. Como se observa.

$$V_A = 8 \text{ m/s}$$

$$V_B = 10 \text{ m/s}$$

$$d = 150 \text{ m}$$

Analizamos de forma independiente cada móvil

$$d_B = V_B * t_B$$

$$d_A = V_A * t_A$$

Entendemos que existe una variación, en relación a las distancias A y B

$$\triangle d = d_B - d_A$$

$$\triangle d = V_B * t_B - V_A * t_A$$

Sabiendo que: $t_A = t_B$

$$\triangle d = t (V_B - V_A)$$

$$t = \frac{d}{V_B - VA}$$

$$t = \frac{150 m}{10 m/s - 8m/s}$$

$$t = 75 s$$

Situación de encuentro en sentidos opuestos

A A S

- Dos móviles se encuentran frente a frente
- Se usa la ecuación: d=v*t de forma independiente para cada móvil
- El tiempo de encuentro será el mismo para ambos móviles

Ejemplo 2. Dos perros están separados a una distancia de 1 km y van en sentidos contrarios con velocidades constantes. El perro A posee una velocidad de 6m/s y el perro B 8m/s. ¿En que tiempo se cruzan?

Analizamos de forma independiente cada móvil

$$d_A = V_A * t_A$$

$$d_B = V_B * t_B$$

Entendemos que existe una variación, en relación a las distancias A y B

$$\triangle d = d_A + d_B$$

$$\triangle d = V_A * t_A + V_B * t_B$$

Sabiendo que:
$$t_A = t_B$$

$$\triangle d = t (V_A + V_B)$$

$$t = \frac{d}{V_A + VB}$$

$$t = \frac{1000 m}{6m/s + 8m/s}$$

Ejemplo 3. Se le cita a un estudiante a las 10 de la mañana a la universidad. Si parte de su casa a 2 km/h, llega 2 horas mas tarde, pero si va a 4 km/h llega 3 horas antes. ¿Con

que rapidez o velocidad debe caminar para llegar a la hora exacta?

Analizamos los espacios recorridos, a partir de sus velocidades y tiempos d=v*t

Si va a 2 km/h: d = 2(t + 2) (1)

Si va a 4 km/h: d = 4(t - 3) (2)

Igualando las ecuaciones 1 y 2

$$2(t+2) = 4(t-3)$$

$$2t + 4 = 4t - 12$$

$$16 = 2t$$

$$t = 8 h$$

El tiempo reemplazamos en (1)

$$d = 2(8 + 2)$$

$$d = 20 \text{ km}$$

Determinamos la velocidad

$$V = \frac{d}{t}$$

$$V = \frac{20 \ km}{8 \ h}$$

$$V = 2.5 \text{ km/h}$$

Ejemplo 4. Un peatón camina a razón de 4 km/h los 3/5 de la distancia que une dos lugares separados en 10 km. Si el resto lo camina a 3 km/h. ¿Cuánto tiempo demoró en todo el recorrido?

3/5 d

2/5 d

 $v_2 = 3 \text{ km/h}$

d = 10 km

Sacamos los tiempos para cada tramo

$$t_1 = \frac{d_1}{V_1}$$
; $t_1 = \frac{6 \text{ km}}{4 \text{ km/h}}$; $t_1 = \frac{3}{2} \text{ h}$

$$t_2 = \frac{d_2}{V_2}$$
; $t_2 = \frac{4 \text{ km}}{3 \text{ km/h}}$; $t_2 = \frac{4}{3} \text{ h}$

Entendemos que existe una variación, en relación a los tiempos A y B

$$\triangle \mathbf{t} = \mathbf{t}_1 + \mathbf{t}_2$$

$$\triangle \mathbf{t} = \frac{3}{2}h + \frac{4}{3}h$$

$$t = \frac{17}{6} h$$

t = 2h 50 min

Ejemplo 5. A las 11 a.m. parte de un punto A, un móvil con velocidad de 60 km/h; a las 13 horas, parte otro móvil del mismo punto a la velocidad de 100 km/h, siguiendo la misma dirección del primero. ¿A qué hora y a qué distancia de A, el 2do alcanza al 1ro?

Solución gráfica

Según el gráfico, a las 16:00 el 2do alcanza al 1ro, a 300 km de distancia.

Ejemplo 5. A las 11 a.m. parte de un punto A, un móvil con velocidad de 60 km/h; a las 13 horas, parte otro móvil del mismo punto a la velocidad de 100 km/h, siguiendo la misma dirección del primero. ¿A qué hora y a qué distancia de A, el 2do alcanza al 1ro?

Solución analítica

Analizamos los espacios recorridos, a partir de sus velocidades y tiempos d=v*t

Para el móvil 1: d = 60*t (1)

Para el móvil 2: d = 100(t - 2) (2)

Igualando las ecuaciones 1 y 2

$$60t = 100(t - 2)$$

$$60t = 100t - 200$$

$$200 = 40t$$

$$t = 5 h$$

Lo que significa que después de 5h, desde que partió el primero, se cruzaran.

$$11h + 5h = 16h$$

El tiempo reemplazamos en (1), para hallar la distancia recorrida.

$$d = 60*5$$

$$d = 300 \text{ km}$$

Ejemplo 6. Un avión cuando esta en un punto A es visto por un observador en tierra en el punto B, pero el ruido es percibido cuando el avión llega a C. Si la rapidez del sonido es 340 m/s, calcular la rapidez del avión.

Dado el triángulo, aplicamos ley de senos

$$\frac{\mathbf{v}_{A}}{\text{sen } 15} = \frac{AB}{\text{sen } 45} = \frac{BC}{\text{sen } 120}$$

$$\frac{\mathbf{v}_{A}}{\text{sen } 15} = \frac{BC}{\text{sen } 120}$$

$$\mathbf{v}_{A} = \frac{340 \ sen \ 15}{\text{sen } 120}$$

$$V_A = 101, 6 m/s$$

Ejemplo 7. Dos móviles parten de un mismo punto en direcciones perpendiculares entre sí; se desplazan con rapideces constantes de 30 y 40 m/s. ¿Al cabo de que tiempo estarán separados 12 km?

Aplicamos Pitágoras

$$d^2 = d_1^2 + d_2^2$$

$$d = \sqrt{(V_1 * t)^2 + (V_2 * t)^2}$$

$$d = t \sqrt{(V_1)^2 + (V_2)^2}$$

$$t = \frac{d}{\sqrt{(V_1)^2 + (V_2)^2}}$$

$$t = 240 s$$

Ejemplo 8. Dos estaciones A y B están separadas 430 km. De la estación A sale un ferrobús hacia la estación B con velocidad de 40 km/h y dos horas mas tarde sale otro ferrobús de B hacia A con velocidad de 30 km/h. Calcular a que distancia de la estación "A" se cruzan y en que tiempo, después de haber partido el segundo ferrobús.

Analizamos de forma independiente cada móvil

$$d_A = V_A * t_A + 2h$$

$$d_B = V_B * t_B$$

Entendemos que existe una variación, en relación a las distancias A y B

$$\triangle d = d_A + d_B$$

$$\triangle d = V_A * (t_A + 2h) + V_B * t_B$$

$$t_A = t_B$$

$$430 = 40 t + 80 + 30 t$$
Trabajamos con términos semejantes

$$430 - 80 = 40 t + 30 t$$

$$350 = 70 t$$

$$350/70 = t$$

$$t = 5h$$

Ejemplo 8. Dos estaciones A y B están separadas 430 km. De la estación A sale un ferrobús hacia la estación B con velocidad de 40 km/h y dos horas mas tarde sale otro ferrobús de B hacia A con velocidad de 30 km/h. Calcular a que distancia de la estación A se cruzan y en que tiempo, después de haber partido el segundo ferrobús.

Analizamos de forma independiente el móvil A para conocer su distancia

$$d_A = V_A * (t_A + 2)$$
 $d_A = 40 * (5 + 2)$
 $d_A = 200 + 80$
 $d_A = 280 \text{ km}$

Ejemplo 9. Dos lugares A y B están separados por 100 km. De A sale una motocicleta hacia B y demora 4 horas en llegar. De B sale otra moto hacia A y demora 5 horas en llegar. Calcular

- a) ¿A que distancia de A se cruzan?
- b) ¿Cuánto tiempo después que partieron?

Primero establecemos sus velocidades

$$v = \frac{d}{t}$$

 $V_1 = 25 \text{ km/h}$

$$V_1 = \frac{100 \, km}{4h}$$

$$V_2 = \frac{100 \ km}{5 \ h}$$
 $V_2 = 20 \ km/h$

Analizamos cada móvil de forma independiente

$$d_A = V_A * t_A$$

$$d_B = V_B * t_B$$

$$\triangle d = d_A + d_B$$

$$\triangle d = V_A * t_A + V_B * t_B$$

Ejemplo 9. Dos lugares A y B están separados por 100 km. De "A" sale una motocicleta hacia "B" y demora 4 horas en llegar. De "B" sale otra moto hacia "A" y demora 5 horas en llegar. Calcular

- a) ¿A que distancia de A se cruzan?
- b) ¿Cuánto tiempo después que partieron?

Analizamos cada móvil de forma independiente

$$d_{A} = V_{A} * t_{A}$$

$$d_{B} = V_{B} * t_{B}$$

$$\Delta d = d_{A} + d_{B}$$

$$\Delta d = V_{A} * t_{A} + V_{B} * t_{B}$$

$$100 = 25t + 20t$$

 $100 = 45t$

$$t = \frac{100}{45}$$
 $t = 2,22 s$

Sabiendo que:
$$t_A = t_B$$

$$\triangle d = t (V_A + V_B)$$

$$t = \frac{d}{V_A + V_B}$$

$$t = \frac{100 \text{ km}}{25 \text{km/h} + 20 \text{km/h}}$$

$$t = 2,22 \text{ s}$$

Ejemplo 9. Dos lugares A y B están separados por 100 km. De "A" sale una motocicleta hacia "B" y demora 4 horas en llegar. De "B" sale otra moto hacia "A" y demora 5 horas en llegar. Calcular

- a) ¿A que distancia de A se cruzan?
- b) ¿Cuánto tiempo después que partieron?

Para hallar la distancia, reemplazamos el tiempo encontrado en da

$$d_A = V_A * t_A$$

$$d_{\Delta} = 25 \text{ km/h} * 2,22 \text{ h}$$

$$d_{\Delta} = 55,5 \text{ km}$$

Ejemplo 10. Dos móviles recorren una trayectoria rectilínea MN de 600 m de distancia de ida y vuelta. Si parten del reposo simultáneamente y con rapideces de 24 y 36 m/s. ¿Qué tiempo transcurrirá para que estén

Del gráfico: y + 30 + x = 600 Despejando y: y = 570 - x (1)

$$t_1 = \frac{y}{24}$$

$$t_2 = \frac{(y+30+x)+x}{36}$$

Igualamos los tiempos

$$\frac{y}{24} = \frac{600 + x}{36}$$

De donde: 36y = 24(600 + x)

$$36y = 14400 + 24x$$
 (/12)
 $3y = 1200 + 2x$ (2)

Reemplazamos 1 en 2 y = 570 - x (1) 3(570 - x) = 1200 + 2x 1710 - 3x = 1200 + 2xx = 102 m

Reemplazamos x en t₂

$$t = \frac{600 + 102}{36}$$
$$t = 19,5 s$$