WE BRING IT ALL TOGETHER

Renewable Energy Based Tribal Utility Formation

ENERGY • WATER • INFORMATION • GOVERNMENT

Introductions

- Lisa Haws
 - Viejas Tribal Government
 - XXXXX
 - 619 659 2341
- Terry Meyer
 - Black & Veatch
 - Project Engineer,
 Renewable Energy Specialist

913 458 7175

- Study Overview
- Renewable Technology Alternatives
- Environmental
- Economic Analysis
- Tribal Benefits
- Conclusions

Study Overview

The Feasibility Study focused on Renewable Energy Alternatives and **Utility Formation** Feasibility.

Study Overview

- Study performed by:
 - Black & Veatch Corporation
 - Viejas Tribal Government Public Works Staff
 - Fredericks, Pelcyger & Hester, LLC
 - Legal Analysis

Strategic Options

- Net Metering on Individual Accounts
- Tribal Utility Interactive with the Grid
- Tribal Utility Independent of the Grid

Renewable Energy Alternatives

- Wind
- Solar
- Bio-Fuels
- Cogeneration
- Energy Storage
- Load Management

Wind Data Analysis

- Wind Strongest in Early Afternoon
- Wind From NE and SW
- Estimated Capacity
 Factor for Wind
 Turbine between 8%
 and 13%

VIEJAS TRIBAL GOVERNMENT

Monthly Power Output

Power Production by Time of Day

Single Wind Turbine

- Connects Directly to Casino Loads
- Offsets Retail Electricity (Net Metering)
- Marginal Wind Resource
- Self Generation Incentive Program (SGIP)
- Good Visibility
- SGIP Currently Overbooked

Small Wind Farm

Better Wind

- Economy of Scale
- Requires Off-**Reservation Land**
- Could Sell Power

Wind Resource Gradient

Photovoltaic (PV) Installation

- Net Metering
- High Reliability
- Good Visibility
- High Cost (per kWh)
- SGIP Applies
- Little Maintenance

Can be Integrated Into Building Roofs or Parking Shade

- Biodiesel, Biogas, and Straight Vegetable Oil Investigated
- Works in Diesel Engine or Combustion Turbine
- Biodiesel is Expensive
- No Known Local Biogas Resource
- Straight Vegetable Oil is Not Proven

Cogeneration

- Can be small or large size
 - 30 kW Micro-Turbine
 - Diesel Generator
 - 3000 kW Combustion Turbine
- Can Use Bio-Fuels

- If Heat is Used Can be Cost-effective
 - Absorption Chillers
 - Hot water
- Follows Electrical or Heat Load

Energy Storage

- Critical for a Renewable-based Independent Utility
- Pumped Hydro May Work for Viejas
- Batteries, Hydrogen, and other options are not currently economic
- Pumped Hydro Requires Development Outside of Reservation Boundries.

Load Management

- Energy Efficiency
- Dispatchable Loads
 - Waste WaterTreatment Plant
 - Well Pumps
 - Central Chiller Plant
 - With Cold Storage

Economic Analysis Process

Levelized Cost Screening Results

Levelized Cost Screening Results

- The results of the screening analysis and PowerOpt model were used to focus on the most economic alternatives:
 - Net Metering
 - 1 to 3 MW of wind turbines
 - Interconnected Utility
 - No Generation
- VIEJAS
 TRIBAL GOVERNMENT
 - **EJAS** Wind turbines added

Cash Flow Results

10 Year Cash Flow Analysis yielded the following results:

Option	10 Year NPV	Capital Cost (after SGIP)
Net Metering – 1 WT	\$223,000	\$700,000
Net Metering – 3 WT	\$651,000	\$2,100,000
Utility Base Case – No Generation	-\$1,929,000	\$8,210,000

Tornado Diagram – Renewable Utility Formation

- Employment
- Self-determination
- Environmental Stewardship
- Energy Cost??

Conclusions

- Viable Net Metering Options Include:
 - Wind Turbine
 - PV Parking Shade
 - Boiler Co-Gen
- Utility Formation may be More Expensive Depending On:
 - Transmission Improvements
 - Cost of Energy
- Stand Alone Utility Possible Using:
 - Wind Farm
 - Pumped Hydro Storage
 - Large Co-Gen

