

<u>Help</u>

konainniaz 🗸

<u>Course</u> **Discussion** <u>Progress</u> <u>Dates</u>

(

< Previous</pre> Next > Quiz 6

□ Bookmark this page

Problem 1

1/1 point (graded)

You are given a binary 4-dimensional linear decision boundary with coefficient vector $\mathbf{w}=[2,1,4,3]$ and b=-12. How would you classify the point (2,1,1,2)?

O -1

0

1

~

Submit

Problem 2

1/1 point (graded)

In which of the following situations has our linear classifier correctly labeled a data point? Select all that apply.

 $oxed{oxed} \ \mathbf{w} \cdot \mathbf{x} + b > 0$ and y > 0

 $extstyle y\left(\mathbf{w}\cdot\mathbf{x}+b
ight)>0$

 $oxed{oxed} \ \mathbf{w} \cdot \mathbf{x} + b < 0$ and y < 0

 $\square y > \mathbf{w} \cdot \mathbf{x} + b$

~

Submit

Problem 3

1/1 point (graded)

Let's say that we have a linear classifier given by $\mathbf{w} = [1, 1, -3, 0]$ and b = -2. Our loss function measures the amount by which our prediction is incorrect: $\mathbf{loss} = -y \, (\mathbf{w} \cdot \mathbf{x} + b)$. If our prediction is correct, there is no loss.

What is the loss on the data point (\mathbf{x},y) where $\mathbf{x}=(3,1,1,4)$ and y=1?

0

1

O 2

O 3

~	
Sub	mit
Prob	olem 4
f the	nt (graded) Perceptron algorithm does $m{9}$ updates before converging on a solution, what value of $m{b}$ can you t to have?
0	b=9
0	b=-9
•	$b \in [-9,9]$
0	$b \in [0,9]$
~	
Sub	mit
0	is a support vector? A data point from the test set that is used to test the classifier A vector that we are trying to minimize
0	A data point which is correctly classified by the optimal solution for ${f w}$
•	A data point from the training set that contributes to the optimal solution for ${f w}$
Sub	mit olem 6
•	nt (graded) is the difference between the perceptron algorithm and the support vector machine?
0	The perceptron uses gradient descent while the SVM uses stochastic gradient descent
	The perceptron finds a linear separator that separates most of the data points in the training set, while a SVM finds a linear separator that separates all of the data in the training set
	The perceptron finds any solution that perfectly separates the training set, while the SVM finds the solution that perfectly separates the training set with the greatest margin of separation
\bigcirc	The perceptron algorithm may not find a solution while the SVM is guaranteed to find a

solution	
✓	
Submit	
Submit	
Problem 7	
1/1 point (graded)	
The optimal solution for a SVM is given by the coefficient vector the margin is given by $oldsymbol{\gamma}$. What is the value of $oldsymbol{\gamma}$?	${f w}$ and the constant ${m b}$. The width of
$leftoonup \gamma = rac{1}{ \mathbf{w} }$	
$\bigcirc \; \gamma = \mathbf{w} $	
$\bigcirc \; \gamma = b - rac{1}{ \mathbf{w} }$	
✓	
Submit	
Problem 8	
1/1 point (graded) True or false: A soft-margin SVM has fewer support vectors thar	n a hard-margin SVM.
O True	
• False	
✓	
Submit	
Problem 9	
1/1 point (graded)	
Decreasing the value of $oldsymbol{C}$ in the soft-margin SVM results in which	ch of the following:
fewer number of support vectors	
wider margin	
more data points being correctly classified	
lower penalty for incorrectly classified data points	
Submit	

Problem 10
1/1 point (graded) True or false: All support vectors are contained between, or on, the margins of the two classes.
O True
• False
✓
Submit
Problem 11
1/1 point (graded) What does the slack variable represent?
It is a vector containing the amount of error each point $(x^{(i)},y^{(i)})$ contributes to the optimization problem
O It is a coefficient that we must determine to optimize the problem
\bigcirc It is a vector containing the number of times each w_i is updated
it is a value that determines how much error the optimization problem is allowed to have
Submit
Problem 12
1/1 point (graded) Using the dual form of the perceptron algorithm, which of the following values are updated during each pass over the training set?
\square w
$\ igsim lpha$
lacksquare b
$oxed{egin{array}{c} oxed{egin{array}{c} oxed{eta}}} oxed{egin{array}{c} oxed{eta}}$
✓
Submit

Problem 13

1/1 point (graded)

When optimizing the dual form of the hard-margin SVM, when are the values $lpha_i$ non-zero?

$igcirc$ When the data point $(x^{(i)},y^{(i)})$ is on the linear separator between the two classes			
$lacktriangle$ When the data point $(x^{(i)},y^{(i)})$ is right on the margin for its class			
$igcup $ When the data point $(x^{(i)},y^{(i)})$ is in the interior of the region for its class			
\bigcirc When the data point $(x^{(i)},y^{(i)})$ is on the wrong side of the linear separator			
✓			
Submit			
Problem 14			
1/1 point (graded) When using multiclass logistic regression on data with labels, $Y=\{1,2,\ldots,k\}$, and a linear classifier specified by $\mathbf{w}_1,\mathbf{w}_2,\ldots,\mathbf{w}_k\in\mathbb{R}^d$ and $b_1,b_2,\ldots,b_k\in\mathbb{R}$, and given a point (\mathbf{x},y) , what is the probability that $y=j$, where $0< j\leq k$?			
$\bigcirc \ Pr\left(y=j \mathbf{x} ight)=e^{\mathbf{w}_{j}\cdot\mathbf{x}+b_{j}}$			
$\bigcirc \ Pr\left(y=j \mathbf{x} ight)=rac{e^{\mathbf{w}_{j}\cdot\mathbf{x}+b_{j}}}{e^{\mathbf{w}_{k}\cdot\mathbf{x}+b_{k}}}$			
$oxedowno Pr\left(y=j \mathbf{x} ight)=rac{e^{\mathbf{w}_{j}\cdot\mathbf{x}+b_{j}}}{e^{\mathbf{w}_{1}\cdot\mathbf{x}+b_{1}}+e^{\mathbf{w}_{2}\cdot\mathbf{x}+b_{2}}++e^{\mathbf{w}_{k}\cdot\mathbf{x}+b_{k}}}$			
$\bigcirc \; Pr\left(y=j \mathbf{x} ight) = rac{e^{\mathbf{w}_{j}\cdot\mathbf{x}+b_{j}}}{1+e^{\mathbf{w}_{j}\cdot\mathbf{x}+b_{j}}}$			
Submit			
Problem 15			
1/1 point (graded) What does $oldsymbol{\xi_i}$ represent in the soft-margin SVM?			
\bigcirc It is the number of times the $m{i}$ 'th point was updated			
$lacksquare$ It is the amount of slack the $m{i}$ 'th point has			
\bigcirc It represents the $m{i}$ 'th support vector			
O It represents the width of the margin			
Submit			

Previous Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

