Formation de Data Science - Openclassrooms Formation Ouverte et à Distance – FOAD par Pôle Emploi Solutions 100% à distance

Projet 4 : Anticipez les besoins en consommation électrique de bâtiments

Étudiant : Maria Daniela Barrios

Mentor: Dan Slama

Contexte du problème

- → Le projet consiste à créer des stratégies basées sur des données pour la ville de Seattle, aux États-Unis. Pour atteindre l'objectif d'une ville neutre en carbone d'ici 2050, l'équipe porte une attention particulière aux émissions des bâtiments non résidentiels
- → Mission : prédire les **émissions de CO₂** et la **consommation totale d'énergie** de bâtiments pour lesquels elles n'ont pas encore été mesurées.
- → Les données de consommation peuvent être téléchargées à cette adresse : https://www.kaggle.com/city-of-seattle/sea-building-energy-benchmarking#2015-building-energy-benchmarking.csv
- → Les prédictions seront basées sur les données déclaratives du permis d'exploitation commerciale (taille et utilisation des bâtiments, mention de travaux récents, date de construction, etc.)

Stratégie pour réaliser la mission

- → Phase pré-exploratoire : Analyse générale et découverte des fichiers
 - Décrire les informations contenues dans l'ensemble de données: nombre de lignes et de colonnes
 - Sélection et explication d'indicateurs (variables) pertinents
- → Analyse exploratoire et nettoyage des données
 - Exploration des valeurs manquantes et nettoyage des données
 - Création de nouvelles variables feature engineering
 - Analyse de la corrélation des variables
 - Détection des valeurs aberrantes et standardisation des données

- → Analyse des prédictions
 - Test de deux algorithmes de prédiction différents: Ordinary Least Squares Linear Regression et Random Forest Regressor
 - Prédiction de la consommation et des émissions de CO₂
 - Déterminer l'influence du ENERGYSTARScore dans les prévisions d'émissions de gaz

Phase pré-exploratoire : Analyse générale et découverte des fichiers

Deux fichiers contenant:

2015-building-energy-benchmarking.csv:

- 3340 lignes et 47 colonnes

2016-building-energy-benchmarking.csv:

- 3376 lignes et 47 colonnes

Les fichiers de données des années 2015 et 2016 sont différents. Nous pouvons vérifier quelles colonnes sont différentes :

Colonnes communes

Colonnes présentes dans le fichier 2015 et non dans le fichier 2016 :

Colonnes présentes dans le fichier 2016 et non dans le fichier 2015 :

Phase pré-exploratoire : Analyse générale et découverte des fichiers

Comme la mission du projet concerne les émissions de CO₂, nous devons accorder une attention particulière aux variables :

- **GHGEmissionsIntensity** : total des émissions Greenhouse Gas divisé par la surface brute de la propriété (mesurée en kilogrammes d'équivalent de dioxyde de carbone par pied carré)
- **TotalGHGEmissions** : quantité totale d'émissions de Greenhouse Gases, y compris le dioxyde de carbone, le méthane et l'oxyde nitreux libérés dans l'atmosphère en raison de la consommation d'énergie de la propriété (mesurée en tonnes métriques d'équivalent de dioxyde de carbone)
- ENERGYSTARScore : Une note de 1 à 100 qui évalue la performance énergétique globale d'un bien immobilier
- SiteEUI(kBtu/sf): Energy Use Intensity du site (EUI) divisée par sa surface brute
- SourceEUI(kBtu/sf): Energy Use Intensity à la source (EUI) divisée par la surface
- SiteEnergyUse(kBtu) : La quantité annuelle d'énergie consommée par la propriété, toutes sources d'énergie comprises
- Electricity(kBtu): La quantité annuelle d'électricité consommée par le bien sur place
- NaturalGas(kBtu) : La quantité annuelle de gaz naturel fourni par le distributeur et consommé par la propriété.

https://data.seattle.gov/dataset/2016-Building-Energy-Benchmarking/2bpz-gwpy

Phase pré-exploratoire : Analyse générale et découverte des fichiers

D'autres variables importantes :

- OSEBuildingID
- DataYear
- BuildingType
- PrimaryPropertyType
- Latitude
- Longitude
- Address
- Neighborhood
- YearBuilt
- NumberofBuildings
- NumberofFloors
- PropertyGFATotal
- PropertyGFABuilding(s)
- PropertyGFAParking
- LargestPropertyUseType and LargestPropertyUseTypeGFA
- SecondLargestPropertyUseType and SecondLargestPropertyUseTypeGFA
- ThirdLargestPropertyUseType and ThirdLargestPropertyUseTypeGFA

Identifiant unique attribué à chaque propriété : utile pour trouver des données doublées

Le nombre de valeurs dupliquées dans les variables "OSEBuildingID" du fichiers pour 2015 et pour 2016 était de 0

Fichier de données unique avec les données des années 2015 et 2016 avec les variables pertinentes contient 6716 lignes et 23 colonnes

Valeurs manquantes parmi les variables

Bâtiments non résidentiels et leurs quartiers

Principal type de propriété, principal type d'utilisation de la propriété et son emplacement sur la carte de

Création de nouvelles variables - feature engineering

- Âge des bâtiments - 'BuildingAge' from ('DataYear' - 'YearBuilt')

- Surface par étage - 'GFAPerFloor' from ('PropertyGFATotal'/'NumberofFloors')

- Surface par bâtiment - 'GFAPerBuilding' from ('PropertyGFATotal'/'NumberofBuildings')

- Y a-t-il un parking? - 'HasParking' - ('PropertyGFAParking' > 0) ou ('PropertyGFAParking' < 0)

Méthode de Kendall : le coefficient de corrélation mesure la relation monotone entre deux variables. Il n'est pas nécessaire que les variables soient normalement distribuées

Afin d'éviter le sur-apprentissage, nous devons **éliminer** les variables à forte corrélation > 0.75

GFAPerBuilding		0.970971
HasParking	- PropertyGFAParking -	0.941702
- PropertyGFABuilding(s)	- PropertyGFATotal	0.927388
—PropertyGFABuilding(s)—	- GFAPerBuilding	0.899975
LargestPropertyUseTypeGFA	— PropertyGFABuilding(s)—	0.793218
	LargestPropertyUseTypeGFA	0.788412
GFAPerBuilding	LargestPropertyUseTypeGFA	0.762522
	BuildingAge	-0.994586

- 0.75

- Avant de traiter les valeurs aberrantes, nous avons remplacé les valeurs manquantes par la valeur des médianes
- Nous avons également transformé les variables catégorielles en variables numériques

Int64Index: 2938 entries 0 to 6715

11104111dex. 2536 entries, 6 to 6/13				
Data columns (total 15 columns):				
#	Column	Non-Null Count	Dtype	
0	PrimaryPropertyType	2938 non-null	float64	
1	Latitude	2938 non-null	float64	
2	Longitude	2938 non-null	float64	
3	Address	2938 non-null	float64	
4	Neighborhood	2938 non-null	float64	
5	ENERGYSTARScore	2938 non-null	float64	
6	SiteEnergyUse(kBtu)	2938 non-null	float64	
7	NumberofBuildings	2938 non-null	float64	
8	NumberofFloors	2938 non-null	float64	
9	TotalGHGEmissions	2938 non-null	float64	
10	LargestPropertyUseType	2938 non-null	float64	
11	BuildingAge	2938 non-null	float64	
12	GFAPerBuilding	2938 non-null	float64	
13	GFAPerFloor	2938 non-null	float64	
14	HasParking	2938 non-null	float64	

Pourquoi transformer?

Nous avons aussi transformé les variables qui sont fortement asymétriques en faisant une transformation logarithmique

Pourquoi normaliser ou standardiser?

De nombreux algorithmes d'apprentissage automatique tentent de trouver des tendances dans les données en comparant les caractéristiques des points de données. Cependant, un problème se pose lorsque les caractéristiques sont à des échelles radicalement différentes

Z-scores pour détecter les valeurs aberrantes

Nous avons utilisé la standardisation des z-scores en considérant une tolérance de +/-3 des z-scores

Données transformées et standardisées

Données transformées et standardisées

https://blogs.sas.com/content/subconsciousmusings/2020/12/09/machine-learning-algorithm-use/

- → Fractionnement des données : nous utilisons 80 % pour la traning et 20 % pour le test
- → <u>Nous avons éliminé des données d'entrée les deux variables cibles</u> : 'SiteEnergyUse(kBtu)' et 'TotalGHGEmissions' Nous avons d'abord choisi une variable pour tester les algorithmes: 'SiteEnergyUse(kBtu)'

Analyse par régression linéaire (moindres carrés ordinaires - ordinary least squares)

Nous effectuons une validation croisée K-Fold pour évaluer la performance du modèle de **régression** linéaire (moindres carrés ordinaires)

Training

Validation

Fold

1st R^2 moyen = 0.634 R^2 std = 0.042

2nd

La valeur moyenne de R^2 parmi les k-folds est une indication de la bonne performance du modèle

Après d'entraîner le modèle de régression linéaire, on teste le modèle dans des données non vues et les résultats sont les suivants

Données de test $R^2 = 0.616$

MSE = 0.167

MAE = 0.297

La valeur R² dans le sous-ensemble de données de test suggère que le modèle s'adapte modérément bien aux données non vues

Analyse par régression linéaire (moindres carrés ordinaires - ordinary least squares)

Nous constatons la tendance à une corrélation linéaire entre les valeurs prédites et les valeurs réelles

Points bleus : données prédites Points orange : données réelles

Analyse utilisant une régression par forêt aléatoire (random forest regressor)

Nous avons effectué aussi une validation croisée K-Fold pour évaluer la performance du modèle de régression par forêt aléatoire

Après avoir optimisé le modèle avec une validation croisée et après l'avoir entraîné, on teste le modèle dans des données non vues et les résultats sont les suivants

Données de test $R^2 = 0.800$

MSE = 0.087

MAE = 0.201

La valeur R² dans le sous-ensemble de données de test suggère que le modèle de régression par forêt aléatoire s'est mieux adapté aux données non vues que le modèle de régression linéaire (moindres carrés ordinaires)

Analyse utilisant une régression par forêt aléatoire (random forest regressor)

Nous observons que la performance du régresseur de la forêt aléatoire est supérieure à celle de la régression linéaire des moindres carrés ordinaires

Points bleus : données prédites Points orange : données réelles

Comparaison entre les résultats des prédictions utilisant la régression linéaire des moindres carrés et le régresseur de la forêt aléatoire

Linear regression- ordinary least squares Random forest regressor

Analyse utilisant une régression par forêt aléatoire (random forest regressor)

En utilisant le régresseur de la forêt aléatoire, nous allons montrer la prédiction des émissions de gaz à effet de serre en choisissant la variable 'TotalGHGEmissions' - Avec l'influence du ENERGYSTARScore

Analyse utilisant une régression par forêt aléatoire (random forest regressor)

En utilisant le régresseur de la forêt aléatoire, nous allons montrer la prédiction de la consommation d'énergie en choisissant la variable 'TotalGHGEmissions' - Sans l'influence du ENERGYSTARScore

Conclusions

- → Après une sélection appropriée des variables d'intérêts pour réaliser cette mission, nous avons évalué deux modèles de prédiction, basés sur le besoin de prédictions numériques :
 - Régression linéaire (moindres carrés ordinaires ordinary least squares)
 - ◆ Régression par forêt aléatoire (random forest regressor)
- → Nous avons obtenu une meilleure performance du modèle random forest regressor en termes de fidélité des prédictions
 - ◆ Il est important de noter qu'en choisissant ce modèle, on compromet les ressources informatiques en augmentant le temps de calcul
 - ♦ Bien que la régression par forêt aléatoire a eu une performance élevée, nous avons effectué une validation croisée pour optimiser le modèle et nous avons obtenu des résultats proches
- → Nous pouvons utiliser un régresseur de forêt aléatoire pour prédire les valeurs d'ENERGY STAR Score pour la performance énergétique des bâtiments
- → À partir des valeurs obtenues avec l'influence et sans l'influence du ENERGYSTARScore, on ne voit pas la pertinence d'utiliser cet indicateur pour la prédiction des émissions de gaz.