

Recap from Week 03

Forecast for Week 04A

Learning Outcomes for this week

- Describe the basic idea of linear classification;
- Understand how both linear and logistic regression works;

Other important concepts:

- Curse of Dimensionality
- Gradient Descent
- Non-linear Mappings

k NN is one classifier that suffers from the curse of dimensionality.

What is this "curse"?

In high dimensions:

The number of points needed to keep the same density grows exponentially.

The distance between arbitrary points is similar, making it hard to distinguish.

Sparsity with high dimensions

$$m = 5$$

 $n = 1$

Sparsity with high dimensions

$$m = 5$$

 $n = 1$

$$m = 25$$
$$n = 2$$

$$m = 125$$

 $n = 3$

Sparsity problem: maintaining density of samples depends on exponential growth of the data

Unit Hypercube w/ Colab

Let's Go! (5 minutes)

http://www.comp.nus.edu.sg/~cs3244/AY2122S1/ 04.colab.html

Machine Learning

NUS SoC, 2021/2022, Semester I, Hybrid: Physically Mondays, 16:00-18:00 (i3 Auditorium) and Thursdays, 11:00-12:00 (LT15); Virtually on Zoom via LumiNUS Conferencing.

NUS CS3244: Machine Learning

ς

Standard Deviation σ grows slowly


```
1 dimensions:
   Generated 200 points
Average distance (STD) of test point to 200 samples: 0.908554 (0.627194)
2 dimensions:
# Generated 200 points
Average distance (STD) of test point to 200 samples: 1.357414 (0.672876)
3 dimensions:
    Generated 200 points
Average distance (STD) of test point to 200 samples: 2.104206 (0.862900)
4 dimensions:
   Generated 200 points
Average distance (STD) of test point to 200 samples: 2.857518 (0.851753)
8 dimensions:
   Generated 200 points
Average distance (STD) of test point to 200 samples: 4.298752 (0.915833)
10 dimensions:
   Generated 200 points
Average distance (STD) of test point to 200 samples: 4.240121 (0.873999)
100 dimensions:
    Generated 200 points
Average distance (STD) of test point to 200 samples: 14.180229 (0.844941)
200 dimensions:
# Generated 200 points
Average distance (STD) of test point to 200 samples: 19.588471 (0.845534)
```

Curse of Dimensionality

In high dimensional space, most points are nearly the same distance away.

The result: learners that depend on distance break down in high dimensions.

 $\underline{https://stats.stackexchange.com/questions/451027/mathematical-demonstration-of-the-distance-concentration-in-high-dimensions}$

Summary — in high dimensions

Hard to visualize, but 3B1B does a great job: Thinking outside the 10-dimensional box https://www.youtube.com/watch?v=zwAD6dRSVyl

Difficult to get sufficient samples

Most points end up far away; Euclidean distance becomes less meaningful

 High dimensional hypercube is most all "edge" space, far from the center of the hypercube

Choose or design an appropriate distance metric

Three learning problems

Linear models are the fundamental models.

The linear model is the first model to try.

The linear signal

Recap: The Learning Diagram

NUS CS3244: Machine Learning

16

Choosing a model

We choose a Learning Algorithm \mathcal{A} (equivalent to choosing \mathcal{H}), and any associated hyperparameters.

We employ \mathcal{A} to then choose an h parameterized by its θ .

i.e., the learning algorithm \mathcal{A} selects $h_{\theta} \in \mathcal{H}$.

${\cal H}$ for linear models

 ${\mathcal H}$ represents the universe of possible hypotheses that a certain learning algorithm A can generate.

That is, given the choices of θ , what types of decision boundaries can it generate?

NUS CS3244: Machine Learning

What do you think? 👍 or 👎

the information we know?

Do we extend credit to this person, if this is all

Do we extend credit to this person?

Criterion	Value
Age	32 years

h(x): [[x > 25]]

[test] here
means return 1 if
 test is true, 0
 otherwise.

Normalize x:

$$h(x): [\left(\frac{x}{100}\right) > 0.25\right]]$$

The 'bias weight' θ_0 corresponds to the threshold. θ_1 and θ_0 are parameters!.

Offset (Bias)
$$h(\mathbf{x}): \left(\frac{1}{100}\right) x_1 - (0.25) x_0 > 0$$

Introduce artificial x_0 as always equal to 1.

Do we extend credit to this person?

Criterion	Value
Age	32 years
Gender	Male
Salary	40 K

Do we extend credit to this person?

Criterion	Value
Age	32 years
Gender	Male
Salary	40 K
Debt	26 K
•••	•••
Years in Job	1 year
Years at Current Residence	3 years

$$h(\mathbf{x}): \theta_2 x_2 + \left(\frac{1}{100}\right) x_1 + (-0.25) x_0 > 0$$

$$h(\mathbf{x}): \theta_3 x_3 + \theta_2 x_2 + \theta_1 x_1 + \theta_0 x_0 > 0$$

$$h(\mathbf{x}): \sum_{i=1}^{n} \theta_i x_i > 0$$

Simplifying with vector notation

$$h(\mathbf{x}): \theta_n x_n + \dots + \theta_0 x_0 > 0$$

Two vectors: $\mathbf{\theta} = \theta_n, \dots, \theta_0$ and $\mathbf{x} = x_n, \dots, x_0$.

Solve by default vectors are vectors

How to multiply?

Simplifying with vector notation

How to multiply?

$$\mathbf{X}$$

Which to transpose?
$$\boldsymbol{\theta}$$
 or \mathbf{X} ? $\begin{bmatrix} \theta_0 \\ \dots \\ \theta_n \end{bmatrix} \times [x_0 \quad \dots \quad x_n] =$

$$[\theta_0 \quad \dots \quad \theta_n] \times \begin{bmatrix} x_0 \\ \dots \\ x_n \end{bmatrix} =$$

Simplifying with vector notation

How about with an entire matrix X of instances?

(Recall X is the data matrix, Xs stacked on top of each other) (Recall

Which to transpose? $\boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}$ or $\mathbf{X} \boldsymbol{\theta}$?

$$X\theta =$$

e.g., \mathbf{X} consisting of $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$

$$= \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} \\ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} \end{bmatrix} \times \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix} = \begin{bmatrix} \theta_1 x_1^{(1)} + \theta_2 x_2^{(1)} + \theta_3 x_3^{(1)} \\ \theta_1 x_1^{(1)} + \theta_2 x_2^{(2)} + \theta_3 x_3^{(3)} \end{bmatrix}$$
$$= \begin{bmatrix} \boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}^{(1)} \\ \boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}^{(2)} \end{bmatrix}$$
$$= \begin{bmatrix} \hat{\boldsymbol{y}}^{(1)} \\ \hat{\boldsymbol{v}}^{(2)} \end{bmatrix}$$

A simple \mathcal{H} : hyperplane with a threshold (bias)

For an input $\mathbf{x} = (x_1, x_2, ..., x_n)$ 'attributes of a customer'

 $\sum_{i=1}^{n} \theta_i x_i > 0$ • Approve credit if:

• Deny credit otherwise: $\sum_{i=1}^{n} \theta_i x_i < 0$

This linear formula $h \in \mathcal{H}$ can be written as:

$$h_{\theta}(x) = \text{sign}\left(\sum_{i=1}^{n} \theta_{i} x_{i}\right)$$

MNIST (recap)

Each digit is a 16x16 pixel gray-intensity image.

Input representation

Raw input $\mathbf{x} = (x_0, x_1, x_2, x_3, x_4, \dots, x_{256})$

Linear model: $(\theta_0, \theta_1, \theta_2, \dots, \theta_{256})$

Features: extract useful information, e.g.,

Intensity and symmetry: $\mathbf{x} = (x_0, x_1, x_2)$

Linear model: $(\theta_0, \theta_1, \theta_2)$

Illustration of features

How much credit do we extend this person?

Criterion	Value
Age	32 years
Gender	Male
Salary	40 K
Debt	26 K
Years in Job	1 year
Years at Current Residence	3 years

Classification: Approve/Deny

- Regression: Credit line (real-valued dollar amount)
- Input:
- Linear regression output: $h_{\theta}(\mathbf{x}) = \sum_{i=0}^{n} \theta_{i} x_{i} = \theta^{\top} \mathbf{x}$ = $\theta_{0} + \theta_{1} x_{1} + \theta_{2} x_{2} + \dots + \theta_{n} x_{n}$
- Officers decide on credit lines based on historical data **X**: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$

 $y^{(j)} \in \mathbb{R}$ is the credit line for customer $x^{(j)}$; regression tries to replicate this.

Linear Regression

R-valued cost function

How well does $h_{\theta}(\mathbf{x}) = \theta^{\mathsf{T}}\mathbf{x}$ approximate $f(\mathbf{x})$?

In linear regression, we use squared error: $(h_{\theta}(\mathbf{x}) - f(\mathbf{x}))^2$

Training error:

R-valued cost function

The sweet spot:

How well does $h_{\theta}(\mathbf{x}) = \theta^{\mathsf{T}}\mathbf{x}$ approximate $f(\mathbf{x})$?

In linear regression, we use squared error: $(h_{\theta}(\mathbf{x}) - f(\mathbf{x}))^2$

Training error:

 $L_{train}(h) = rac{1}{m} \sum_{i=1}^{m} (h_{ heta}(x^{(j)}) - y^{(j)})^2$ Plausible AND Convenient

Pointwise Average How bad is our prediction?

NUS CS3244: Machine Learning

Illustration of linear regression

Illustration of linear regression

Hypothesis: $h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1$

A third linear model

$$s = \sum_{i=0}^{n} \theta_i x_i$$

Linear classification

Linear regression

Logistic regression

The logistic function g

We choose a form for $g(\cdot)$ out of convenience. We use the logistic function, which has the form:

$$g(s) = \frac{exp^s}{1 + exp^s}$$

The logistic function g

We choose a form for $g(\cdot)$ out of convenience. We use the logistic function, which has the form:

$$g(s) = \frac{exp^s}{1 + exp^s}$$

g(s): needs to map any $x: \mathbb{R}$ to y: [0,1]

Soft threshold: uncertainty

Sigmoid: flattened out 's' shape

Probability Interpretation

 $h_{ heta}(\mathbf{x}) = g(s)$ is interpreted as a probability

Example: Prediction of heart attacks

Input X: cholesterol level, age,

weight, diabetic, etc.

output g(s): Likelihood of a heart

attack

The signal: $s = \theta^T \mathbf{x}$

"risk score"

Logistic regression $\equiv y \ \overline{\epsilon \ [0,1]}$

Labels are binary, yet our outputs are probabilities

$$\mathbf{X} = (\mathbf{x}^{(1)}, y^{(1)} = \pm 1), \dots (\mathbf{x}^{(m)}, y^{(m)} = \pm 1)$$

 $\mathbf{x}^{(j)}$ — a person's health information

 $y^{(j)} = \pm 1$ — did they have a heart attack?

We cannot measure a <u>probability</u>.

Why?

We can only see the occurrence of an event and try to <u>infer</u> a probability.

Genuine Probability

Data (x, y) with binary y, generated by a noisy target:

$$P(y|x) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1; \\ 1 - f(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

The target $f: \mathbb{R}^n \to [0,1]$ is the probability

Learn
$$h_{\theta}(\mathbf{x}) = g(\mathbf{\theta}^{\mathsf{T}}\mathbf{x}) \approx f(\mathbf{x})$$

Cost Function for Logistic Regression

For logistic regression,

$$L_{train}(\mathbf{\theta}) = \frac{1}{m} \sum_{j=1}^{m} ln(1 + exp^{-y^{(j)}} \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)})$$
 | Iterative Solution

Compare to linear regression:

$$L_{train}(\mathbf{\theta}) = \frac{1}{m} \sum_{j=1}^{m} (\mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)} - y^{(j)})^{2}$$

Closed-form solution; but iteration also possible

Climbing up (down) one step at a time

NUS CS3244: Machine Learning

Our L_{train} only has one valley

... Because L_{train} is a convex function of θ .

Univariate Linear Regression: Salary to predict Credit Line

NUS CS3244: Machine Learning

Ignoring the bias term

Cost Function $L(\theta_0, \theta_1)$

Iterative method: gradient descent

General method for nonlinear optimization

Start at $\theta(0)$; take a step along steepest slope

Notation: $\theta(t) \equiv \text{set of}$ parameters at iteration t

Fixed step size $\eta: \theta(1) = \theta(0) + \eta v$

We get to pick the direction of v. What is the best direction to pick?

The one to minimize L_{train} .

Gradient descent can minimize any smooth function.

Oh yeah!

Formula for the direction v

Notation: ∇ ("nabla") \equiv Gradient. Generalization of slope for higher dimensions

Create v to be a unit vector:

$$v = -\frac{\nabla L_{train}(\theta(t))}{\|\nabla L_{train}(\theta(t))\|}$$

Goldilocks step size

 η should increase with the slope

Varying step size, for free

Instead of

$$\Delta\theta = \frac{\eta v}{ = -\eta \frac{L_{train}(\theta(t))}{\|L_{train}(\theta(t))\|}$$

Have

$$\Delta\theta = -\alpha L_{train}(\theta(t))$$

Fixed learning <u>rate</u> α instead of fixed learning <u>step</u> η

Logistic regression algorithm

- 1. Initialize the weights at t = 0 to $\theta(0)$
- 2. Do
- 3. Compute the gradient

$$\nabla(t) = \nabla L_{train}(\theta(t)) = -\frac{1}{m} \sum_{j=1}^{m} \frac{y^{(j)} x^{(j)}}{1 + e^{y^{(j)} \theta(t)^{\mathsf{T}} x^{(j)}}}$$

- 4. // Move in the direction $v(t) = -\nabla(t)$ Update the weights $\theta(t+1) = \theta(t) - \alpha \nabla L_{train}$
- 5. Continue to next iteration, until it is time to stop
- 6. Return the final weights θ^*

Termination Condition

When to stop?

Natural choice: gradient < threshold

But lots of flat regions in most spaces:

Instead, use criteria:

- error change is small and/or;
 error is small;
 maximum number of iterations is reached.

(Batch) Gradient Descent

Gradient Descent minimizes:

$$L_{train}(\theta) = \frac{1}{m} \sum_{j=1}^{m} I(h_{\theta}(\mathbf{x}^{(j)}), y^{(j)})$$

$$\ln(1 + e^{y^{(j)}\theta^{\mathsf{T}}\mathbf{x}^{(j)}})$$

By iterative steps along $-\nabla L$:

$$\Delta\theta = -\alpha \nabla L_{train}(\theta(t))$$

 $-\alpha \nabla L_{train}$ is based on **all** examples (\mathbf{X}, y)

This is "batch" Gradient Descent

Overly conservative?

In Zoom breakout or physical subgroups:

(5 mins): Suggest a way to speed up Gradient Descent

Hint: $-\alpha \nabla L_{train}$ is based on **all** examples (\mathbf{X}, y)

Ask one member to write it to the #general thread. Upvote others that you like.

Stochastic Gradient Descent

A variation of GD that considers only the error on one data point.

Pick one $(\mathbf{X}^{(*)}, \mathbf{y}^{(*)})$ at a time.

Apply GD to
$$I(h_{ heta}(\mathbf{x}^{(*)}), y^{(*)})$$

"Average" Direction:
$$\mathbb{E}_* \Big[- \nabla I(h_{\theta}(\mathbf{x}^{(*)}), y^{(*)}) \Big]$$

$$= \frac{1}{m} \sum_{k=1}^m - \nabla I(h_{\theta}(\mathbf{x}^{(*)}), y^{(*)})$$

$$= - \nabla L_{train}$$

Stochastic Gradient Descent (SGD)

Benefits of SGD

- 1. Cheaper computation: Fraction 1/m cheaper per step
- 2. Stochastic: Helps escape local minima
- 3. Simple

Rule of Thumb: $\alpha=0.1$ usually works!

GD vs. SGD on m=10

Mini Batch Gradient Descent

Gradient Descent

Mini Batch

Stochastic Gradient Descent

Batch size determined

The expression for L_{train}

$$L_{train} = \frac{1}{m} \sum_{j=1}^{m} (\mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)} - \mathbf{y}^{(j)})^{2}$$

$$= \frac{1}{m} ||\mathbf{X}\mathbf{\theta} - \mathbf{y}||^{2}$$

$$= \begin{bmatrix} -\mathbf{x}^{(1)}^{\mathsf{T}} - \\ -\mathbf{x}^{(2)}^{\mathsf{T}} - \\ -\mathbf{x}^{(3)}^{\mathsf{T}} - \\ \vdots \\ -\mathbf{x}^{(m)}^{\mathsf{T}} - \end{bmatrix}, \mathbf{y} = \begin{bmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \\ \mathbf{y}^{(3)} \\ \vdots \\ \mathbf{y}^{(m)} \end{bmatrix}$$
where $\mathbf{X} = \begin{bmatrix} -\mathbf{x}^{(1)}^{\mathsf{T}} - \\ -\mathbf{x}^{(3)}^{\mathsf{T}} - \\ \vdots \\ \mathbf{y}^{(m)} \end{bmatrix}$

Minimizing L_{train}

Let's re-write L_{train} first.

$$L_{train} = \frac{1}{m} \|\mathbf{X}\mathbf{\theta} - \mathbf{y}\|^2$$

Minimizing L_{train}

Let's re-write L_{train} first.

Then solve for
$$\theta$$
:

$$\frac{\partial L_{train}}{\partial \boldsymbol{\theta}} \equiv$$

$$L_{train} = \frac{1}{m} ||\mathbf{X}\boldsymbol{\theta} - \mathbf{y}||^{2}$$

$$= (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

$$= (\mathbf{X}\boldsymbol{\theta})^{\mathsf{T}} \mathbf{X}\boldsymbol{\theta} - (\mathbf{X}\boldsymbol{\theta})^{\mathsf{T}} \mathbf{y}$$

$$-\mathbf{y}^{\mathsf{T}} \mathbf{X}\boldsymbol{\theta} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

 $= \mathbf{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{\theta} - 2(\mathbf{X} \mathbf{\theta})^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$

y and Xθ both vectors, ordering in multiplication doesn't matter

Minimizing L_{train}

Let's re-write L_{train} first.

$$L_{train} = \frac{1}{m} ||\mathbf{X}\boldsymbol{\theta} - \mathbf{y}||^{2}$$

$$= (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

$$= (\mathbf{X}\boldsymbol{\theta})^{\mathsf{T}} \mathbf{X}\boldsymbol{\theta} - (\mathbf{X}\boldsymbol{\theta})^{\mathsf{T}} \mathbf{y}$$

$$-\mathbf{y}^{\mathsf{T}} \mathbf{X}\boldsymbol{\theta} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

$$= \boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}\boldsymbol{\theta} - 2(\mathbf{X}\boldsymbol{\theta})^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}$$

Then solve for θ :

$$\frac{\partial \mathit{L}_{train}}{\partial \theta} \equiv \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta} - \mathbf{X}^{\top} \mathbf{y} = \mathbf{0}$$
 Column of zeroes
$$\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta} = \mathbf{X}^{\top} \mathbf{y}$$

$$\boldsymbol{\theta} = \left((\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \right) \mathbf{y}$$

 $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$ is called the **pseudo inverse** of \mathbf{X}

The pseudo inverse X^{\dagger}

The pseudo inverse X^{\dagger}

$$\mathbf{X}^{\dagger} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$$

Linear regression by Normal Equation

1. Construct the matrix X and the vector y from the data set as follows:

$$\mathbf{X} = \begin{bmatrix} -\mathbf{x}^{(1)}^{\mathsf{T}} - \\ -\mathbf{x}^{(2)}^{\mathsf{T}} - \\ -\mathbf{x}^{(3)}^{\mathsf{T}} - \\ \vdots \\ -\mathbf{x}^{(m)}^{\mathsf{T}} - \end{bmatrix}, y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

1. Compute the pseudo inverse $\mathbf{X}^{\dagger} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$

input data matrix

2. Return $\theta = \mathbf{X}^{\dagger} y$

The normal equation for LR. One-step learning!

target vector

Linear Regression – Summary

Two methods for training

- 1. Gradient Descent
 - ullet Works well, even when n is large
 - Works even if $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is non-invertible

Your Turn: What are some reasons that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ might not be invertible?

2. Normal Equation

- Don't need to choose α
- Don't need to iterate
- Need to compute $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$, an $O(n^3)$ operation

Logistic Regression Cost Function

For each (x, y), y is generated by probability f(x)

Plausible cost function based on likelihood:

If $h_{\theta} = f$, how "likely" is it to obtain output y from input x?

$$P(y|\mathbf{x}) = \begin{cases} h_{\theta}(\mathbf{x}) & \text{for } y = +1; \\ 1 - h_{\theta}(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

Formula for likelihood

$$P(y|\mathbf{x}) = \begin{cases} h_{\theta}(\mathbf{x}) & \text{for } y = +1; \\ 1 - h_{\theta}(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

Substitute
$$h_{\theta}(\mathbf{x}) = g(\mathbf{\theta}^{\mathsf{T}}\mathbf{x})$$
, noting $g(-s) = 1 - g(s)$

$$P(y|\mathbf{x}) = g(y \cdot \mathbf{\theta}^{\mathsf{T}} \mathbf{x})$$

Formula for likelihood

$$P(y|\mathbf{x}) = \begin{cases} h_{\theta}(\mathbf{x}) & \text{for } y = +1; \\ 1 - h_{\theta}(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

Substitute $h_{\theta}(\mathbf{x}) = g(\mathbf{\theta}^{\mathsf{T}}\mathbf{x})$, noting g(-s) = 1 - g(s)

$$P(y|\mathbf{x}) = g(y \cdot \mathbf{\theta}^{\mathsf{T}} \mathbf{x})$$

Likelihood of $\mathbf{X} = (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})$ where samples are i.i.d. is:

$$P(y^{(1)},...,y^{(m)}|\mathbf{x}^{(1)},...,\mathbf{x}^{(m)}) = \prod_{j=1}^{m} P(y^{(j)}|\mathbf{x}^{(j)}) = \prod_{j=1}^{m} g(y^{(j)}\mathbf{\theta}^{\mathsf{T}}\mathbf{x}^{(j)})$$

Maximizing the likelihood ≡ Minimizing cross entropy

$$= \max \qquad \prod_{j=1}^{m} g(y^{(j)} \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)})$$

Maximizing the likelihood ≡ Minimizing cross entropy

$$= max \qquad \prod_{j=1}^{m} g(y^{(j)} \mathbf{0}^{\mathsf{T}} \mathbf{x}^{(j)})$$

$$\iff \max \qquad \frac{1}{m} \ln \left(\prod_{j=1}^{m} g\left(y^{(j)} \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)} \right) \right)$$

$$= max \qquad \frac{1}{m} \sum_{j=1}^{m} \ln g(y^{(j)} \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)})$$

$$\Leftrightarrow min$$

$$-\frac{1}{m}\sum_{j=1}^{m}\ln g(y^{(j)}\mathbf{\theta}^{\mathsf{T}}\mathbf{x}^{(j)})$$

Maximizing the likelihood \equiv Minimizing cross entropy

$$= \max \qquad \prod_{j=1}^{m} g(y^{(j)} \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)})$$

$$\Rightarrow \max \qquad \frac{1}{m} \ln \left(\prod_{j=1}^{m} g(y^{(j)} \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)}) \right)$$

$$= \max \qquad \frac{1}{m} \sum_{j=1}^{m} \ln g(y^{(j)} \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)})$$

$$\Rightarrow \min \qquad -\frac{1}{m} \sum_{j=1}^{m} \ln g(y^{(j)} \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)})$$

$$\Leftrightarrow \min \qquad -\frac{1}{m} \sum_{j=1}^{m} \ln g(y^{(j)} \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)})$$

$$\text{"cross entropy" error}$$

"cross entropy" error

Maximizing the likelihood ≡ Minimizing cross entropy

$$= \max \qquad \prod_{j=1}^{m} g(y^{(j)} \mathbf{e}^{\mathsf{T}} \mathbf{x}^{(j)})$$

$$\Rightarrow \max \qquad \frac{1}{m} \ln \left(\prod_{j=1}^{m} g(y^{(j)} \mathbf{e}^{\mathsf{T}} \mathbf{x}^{(j)}) \right)$$

$$= \max \qquad \frac{1}{m} \sum_{j=1}^{m} \ln g(y^{(j)} \mathbf{e}^{\mathsf{T}} \mathbf{x}^{(j)})$$

$$= \min \qquad \frac{1}{m} \sum_{j=1}^{m} \ln \left(1 + e^{-y^{(j)} \mathbf{e}^{\mathsf{T}} \mathbf{x}^{(j)}} \right)$$

$$\Rightarrow \min \qquad -\frac{1}{m} \sum_{j=1}^{m} \ln g(y^{(j)} \mathbf{e}^{\mathsf{T}} \mathbf{x}^{(j)})$$

$$\Leftrightarrow \min \qquad -\frac{1}{m} \sum_{j=1}^{m} \ln g(y^{(j)} \mathbf{e}^{\mathsf{T}} \mathbf{x}^{(j)})$$

$$\Leftrightarrow \min \qquad -\frac{1}{m} \sum_{j=1}^{m} \ln g(y^{(j)} \mathbf{e}^{\mathsf{T}} \mathbf{x}^{(j)})$$

"cross entropy" error

Summary: Minimizing L_{train}

For logistic regression,

$$L_{train}(\mathbf{\theta}) = \frac{1}{m} \sum_{j=1}^{m} ln(1 + e^{-y^{(j)} \mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)}})$$

Compare to linear regression:

$$L_{train}(\mathbf{\theta}) = \frac{1}{m} \sum_{j=1}^{m} (\mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(j)} - y^{(j)})^{2}$$

