- Určete rychlost v(t) v m \cdot s $^{-1}$ a dráhu s(t)pohybu v metrech trech v čase t_0 v sekundách. v tomto intervalu, rychlost $v(t_0)$ v m·s⁻¹ a dráha $s(t_0)$ v me v daném časovém intervalu, je-li dáno zrychlení a(t) v m·s
- a) a(t) = 2, $t \in (0; 16)$, v(0) = 1,5, s(0) = 40
- b) a(t) = 1 + 0.2t, $t \in \langle 1; 30 \rangle$, v(1) = 0.8, s(1) = 16

[a)
$$v(t) = 2t + 1.5$$
, $s(t) = t^2 + 1.5t + 40$, $t \in \langle 0; 16 \rangle$;
b) $v(t) = t + 0.1t^2 - 0.3$,
 $s(t) = \frac{t^2}{2} + \frac{t^3}{30} - 0.3t + \frac{473}{30}$, $t \in \langle 1; 30 \rangle$.]

Předpokládejme, že se sportovní automobil rozjíždí zrychleným Za jak dlouho dosáhne rychlosti 60 km·h⁻¹? Jakou dráhu při pohybem se zrychlením $a(t)=1,\!1+0,\!8t$ vyjádřeném v m $\cdot\,\mathrm{s}^{-z}$

[
$$t \doteq 5,22 \text{ s}, \ s \doteq 33,9 \text{ m}$$

- 9.14 Vypočítejte
- a) $\int dx$,

b) $\int 4 dx$,

c) $\int 0 dx$,

d) $\int 0,11 \, dx$,

g) $\int 2x^{18} dx$,

h) $\int x^{-2} dx$,

- e) $\int x^2 dx$,
- f) $\int x^{1,3} dx$
- 1) $\int \sqrt{x} \, \mathrm{d}x$,
- $k) \int \frac{1}{x^{-7}} \, \mathrm{d}x,$
- n) $\int \frac{1}{\sqrt[4]{x}} \, \mathrm{d}x$, o) $\int \sqrt[4]{x^5} \, \mathrm{d}x$

m) $\int \sqrt[3]{x} \, \mathrm{d}x$,

j) $\int x^{-\frac{1}{2}} dx$,

 $p) \int \frac{3}{x} dx,$

- q) $\int 2x^{-1} dx$, r) $\int (7x)^{-1} dx$
- $[\quad \text{a) } x+c, \ x\in \mathsf{R}; \ \text{b) } 4x+c, \ x\in \mathsf{R}; \ \text{c) } c, \ x\in \mathsf{R};$ d) $0,11x+c, x \in \mathbb{R}$; e) $\frac{1}{3}x^3+c, x \in \mathbb{R}$;
- f) $\frac{1}{2,3}x^{2,3} + c$, $x \in \mathbb{R}$; g) $\frac{2}{19}x^{19} + c$, $x \in \mathbb{R}$;
- h) $-\frac{1}{x} + c$, $x \in \mathbb{R} \setminus \{0\}$; i) $-\frac{1}{2x^2} + c$, $x \in \mathbb{R} \setminus \{0\}$

- j) $2\sqrt{x} + c$, $x \in (0; \infty)$;
- k) $\frac{1}{8}x^8 + c$, $x \in (-\infty; 0)$ nebo $x \in (0; \infty)$;
- 1) $\frac{2}{3}x\sqrt{x} + c$, $x \in (0, \infty)$; m) $\frac{3}{4}x^{\frac{4}{3}} + c$, $x \in (0, \infty)$;
- $\mathrm{n)}\ \frac{4}{3}x^{\frac{3}{4}}+c,\ x\in(0;\infty);\ \mathrm{o)}\ \frac{4}{9}x^{\frac{9}{4}}+c,\ x\in(0;\infty);$
- p) 3 ln |x|+c, $x\in(0,\infty)$ nebo $x\in(-\infty,0);$ q) 2 ln |x|+c, $x\in\mathbb{R}\setminus\{0\}$; r) $\frac{1}{7}$ ln |x|+c, $x\in\mathbb{R}\setminus\{0\}$.
- 9.15 Vypočítejte:
- a) $\int (3x+1)^2 dx$,
- b) $\int \left[\left(x + \frac{1}{2} \right)^4 3x \right] dx,$
- c) $\int (2x^2 4x + 2) dx$,
- e) $\int \frac{x^2 3x}{4} \, dx$, d) $\int (2x^3 + \sqrt{x} - x) \, \mathrm{d}x,$ f) $\int \frac{5x-1+x^2}{3} \, \mathrm{d}x$,
- (g) $\int \frac{2\sqrt{x} \sqrt[3]{x} + x}{5} \, dx$,
- i) $\int \frac{2x^3 + x 3}{x^2} \, \mathrm{d}x$,
- j) $\int \frac{x^3 2x^2 + x}{x 1} \, \mathrm{d}x$, h) $\int \frac{3x^4 - 2x^3 + x - 2}{x} \, \mathrm{d}x$,
- k) $\int \left(\frac{2}{5}x^7 \sqrt{x} + 2\right)\sqrt{x} \, dx$, 1) $\int \frac{(3x+2)^2}{\sqrt[3]{x}} \, dx$,
- m) $\int (5\sqrt{x} \sqrt[4]{x})^2 dx$, n) $\int (3\sqrt[3]{x} \sqrt[4]{x})^3 dx$
- [a) $3x^3 + 3x^2 + x + c = \frac{1}{9}(3x+1)^3 + c, x \in \mathbb{R};$
- b) $\frac{1}{5}x^5 + \frac{1}{2}x^4 + \frac{1}{2}x^3 \frac{5}{4}x^2 + \frac{1}{16}x + c, \ x \in \mathbb{R};$
- c) $2\left(\frac{1}{3}x^3 x^2 + x\right) + c, \ x \in \mathbb{R};$
- d) $\frac{x^4}{2} + \frac{2}{3}x^{\frac{3}{2}} \frac{1}{2}x^2 + c, \ x \in (0; \infty);$ e) $\frac{x^3}{12} \frac{3}{8}x^2 + c, \ x \in \mathbb{R}; \ f) \frac{x^3}{9} + \frac{5}{6}x^2 \frac{1}{3}x + c, \ x \in \mathbb{R};$