Notes/Solutions to Mehryar Mohri's Foundations of Machine Learning

Lucas Tucker

Last updated August 13, 2023

Chapter 2

To show $E[\widehat{R}_S(h)] = R(h)$, we have

$$E_{S \sim D^m}[\widehat{R}_S(h)] = \frac{1}{m} \sum_{i=1}^m E_{S \sim D^m}[\chi_{c(x_i) \neq h(x_i)}]$$

$$= E_{S \sim D^m, x \in S}[\chi_{c(x) \neq h(x)}] = E_{x \sim D}[\chi_{c(x) \neq h(x)}] = R(h)$$

Definition (PAC-learning): A concept class \mathcal{C} is "PAC-learnable" if there exists an algorithm \mathcal{A} and a polynomial function poly(., ., ., .) such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathcal{D} on \mathcal{X} and for any target concept $c \in \mathcal{C}$,

$$\mathbb{P}_{S \sim D^m}[R(h_S) \le \epsilon] \ge 1 - \delta$$

where h_S denotes the hypothesis returned by \mathcal{A} after receiving the labeled sample S. If \mathcal{A} further runs in poly $(1/\epsilon, 1/\delta, n, \operatorname{size}(c))$ then \mathcal{C} is said to be "efficiently PAC-learnable" and \mathcal{A} is deemed a "PAC learning algorithm for \mathcal{C} ".

Theorem (Learning Bound – finite, \mathcal{H} consistent): Let \mathcal{H} be a finite set of functions from \mathcal{X} to \mathcal{Y} . Let \mathcal{A} be an algorithm that for any target concept $c \in \mathcal{H}$ and iid sample S returns a consistent hypothesis h_S such that $\widehat{R}_S(h_S) = 0$. Then for any $\epsilon, \delta > 0$,

$$m \ge \frac{1}{\epsilon} (\log |\mathcal{H}| + \log \frac{1}{\delta})$$

$$\Rightarrow \mathbb{P}_{S \sim D^m}[R(h_S) \le \epsilon] \ge 1 - \delta$$

Proof: Fix $\epsilon > 0$ and consider $\mathcal{H}_{\epsilon} := \{h \in \mathcal{H} : R(h) > \epsilon\}$. Then, $\mathbb{P}[\widehat{R}_S(h) = 0] \leq (1 - \epsilon)^m$ for $S \sim \mathcal{D}$ of size m. Hence,

$$\mathbb{P}[\exists h \in \mathcal{H}_{\epsilon} : \widehat{R}_{S}(h) = 0]$$

$$= \mathbb{P}[\widehat{R}_S(h_1) = 0 \lor \widehat{R}_S(h_2) = 0 \lor \dots \lor \widehat{R}_S(|\mathcal{H}|) = 0]$$

$$\leq \sum_{h \in \mathcal{H}} \mathbb{P}[\widehat{R}_S(h) = 0] \leq |\mathcal{H}|(1 - \epsilon)^m \leq |\mathcal{H}|e^{-m\epsilon}$$

$$\Rightarrow \mathbb{P}_{S \sim D^m}[R(h_S) \le \epsilon] = \mathbb{P}[h_S \notin \mathcal{H}_{\epsilon} | \widehat{R}_S(h_S) = 0] = 1 - \mathbb{P}[h_S \in \mathcal{H}_{\epsilon} | \widehat{R}_S(h_S) = 0] \ge 1 - \delta$$

Corollary 2.10: Fix $\epsilon > 0$. Then, for any hypothesis $h : \mathcal{X} \to \{0,1\}$, we have

$$\mathbb{P}_{S \sim \mathcal{D}^m} [\widehat{R}_S(h) - R(h) \ge \epsilon] \le e^{-2m\epsilon^2}$$

and

$$\mathbb{P}_{S \sim \mathcal{D}^m}[\widehat{R}_S(h) - R(h) \le -\epsilon] \le e^{-2m\epsilon^2}$$

hence

$$\mathbb{P}_{S \sim \mathcal{D}^m}[|\widehat{R}_S(h) - R(h)| \ge \epsilon] \le 2e^{-2m\epsilon^2}$$

Proof: Use Hoeffding's Lemma $(E[e^{tX}] \leq e^{\frac{t^2(b-a)^2}{8}})$ and the Chernoff Bounding technique $(\mathbb{P}[X \geq \epsilon] = \mathbb{P}[e^{tX} \geq e^{t\epsilon}] \leq e^{-t\epsilon}E[e^{tX}])$ for Hoeffding's Inequality $(\mathbb{P}[X - E[X] \geq \epsilon] \leq e^{\frac{-2\epsilon^2}{\sum_{i=1}^m (a_i - b_i)^2}}$ for $X = \sum_{i=1}^m X_i$ with $X_i \in (a_i, b_i)$). Note that here $\hat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m \chi_{h(x) \neq c(x)}$ so that the value $\sum_{i=1}^m (a_i - b_i)^2$ in this case is equal to $\sum_{i=1}^m (\frac{1-0}{m})^2 = m \cdot \frac{1}{m^2} = \frac{1}{m}$.

Corollary 2.11 (Generalization Bound): Set $2\epsilon^{-2m\epsilon^2} = \delta$ in the previous part.

Theorem 2.13 (Learning bound – finite, \mathcal{H} inconsistent case): Let \mathcal{H} be a finite hypothesis set. Then, for any $\delta > 0$ and any $h \in \mathcal{H}$, we have

$$\mathbb{P}\left[R(h) \le \widehat{R}_S(h) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta}}{2m}}\right] \ge 1 - \delta$$

.

Proof: We find that

$$\mathbb{P}[\exists h \in \mathcal{H} : R(h) - \widehat{R}_S(h) > \epsilon]$$

$$= \mathbb{P}[(R(h_1) - \widehat{R}_S(h_1) > \epsilon) \vee ... \vee (R(h_{|\mathcal{H}|}) - \widehat{R}_S(h_{|\mathcal{H}|}) > \epsilon)]$$

$$\leq \sum_{i=1}^{|\mathcal{H}|} \mathbb{P}[R(h_i) - \widehat{R}_S(h_i) > \epsilon] \leq 2|\mathcal{H}|e^{-2m\epsilon^2}$$

so then

$$\delta := 2|\mathcal{H}|e^{-2m\epsilon^2} \Rightarrow -2m\epsilon^2 = \log\frac{\delta}{2|\mathcal{H}|} \Rightarrow \epsilon = \sqrt{\frac{-\log\frac{\delta}{2|\mathcal{H}|}}{2m}} = \sqrt{\frac{\log|\mathcal{H}| + \log\frac{2}{\delta}}{2m}}$$

Definition (Agnostic PAC-learning): Let \mathcal{H} be a hypothesis set. Then, \mathcal{A} is an agnostic PAC-learning algorithm if there exists a polynomial function poly(.,.,.) such that for any $\epsilon, \delta > 0$ and any distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$,

$$m \ge \operatorname{poly}(\frac{1}{\epsilon}, \frac{1}{\delta}, n, \operatorname{size}(c)) \Rightarrow \mathbb{P}_{S \sim \mathcal{D}^m}[R(h_S) - \min_{h \in \mathcal{H}} R(h) \le \epsilon] \ge 1 - \delta$$

Note further that if \mathcal{A} is $\operatorname{poly}(\frac{1}{\epsilon}, \frac{1}{\delta}, n, \operatorname{size}(c))$, it is said to be an "efficient agnostic PAC-learning algorithm".

Definition: A scenario is "deterministic" if the label of a point can be uniquely determined by some measurable function $f: \mathcal{X} \to \mathcal{Y}$ with probability 1.

Definition (Bayes Error) Given a distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, the Bayes Error

$$R^* := \inf_{\substack{h: \mathcal{X} \to \mathcal{Y} \\ h \text{ measurable}}} R(h)$$

satisfies $R^* = 0$ in the deterministic case, and $R^* \neq 0$ in the stochastic case. A hypothesis h with $R(h) = R^*$ is called a "Bayes classifier".

Ch. 2 Exercises

2.2

An axis-aligned hyper-rectangle in \mathbb{R}^n is a set of the form $[a_1, b_1] \times ... \times [a_n, b_n]$. Suppose the set of all instances belong in $\mathcal{X} = \mathbb{R}^n$ and \mathcal{C} is the set of all axis-aligned hyper-rectangles in \mathbb{R}^n .

Let $R \in \mathcal{C}$ be a target concept and fix $\epsilon > 0$ so that $\mathbb{P}[R] > \epsilon$ (or else the algorithm presented below works immediately). Let $a_1, ..., a_n$ and $b_1, ..., b_n$ be 2n real values defining $R = [a_1, b_1] \times ... \times [a_n, b_n]$. We then define rectangles on the perimeter as $R_{i,0} := [a_1, b_1] \times ... \times [r_i, b_i] \times ... \times [a_n, b_n]$ and $R_{i,1} := [a_1, b_1] \times ... \times [a_i, r_i] \times ... \times [a_n, b_n]$ such that $r_i = \inf\{r \in \mathbb{R} : \mathbb{P}[[a_1, b_1] \times ... \times [a_i, r] \times ... \times [a_n, b_n]] \geq \frac{\epsilon}{2n}\}$.

We define our algorithm \mathcal{A} as returning the tightest axis-aligned hyper-rectangle R_S containing the points labeled with 1. If $R(R_S) > \epsilon$, R_S must miss at least one rectangle R_i so that

$$\mathbb{P}_{S \sim \mathcal{D}^m}[R(R_S) > \epsilon] \leq \mathbb{P}_{S \sim \mathcal{D}^m}[\bigcup_{i=1}^n \bigcup_{j=0}^1 \{R_S \cap R_{i,j} = \emptyset\}] \leq \sum_{i=1}^n \sum_{j=0}^1 \mathbb{P}_{S \sim \mathcal{D}^m}[\{R_S \cap R_{i,j} = \emptyset\}]$$

$$\leq \sum_{i=1}^{n} 2(1 - \frac{\epsilon}{2n})^m = 2n(1 - \frac{\epsilon}{2n})^m = 2ne^{m\log(1 - \frac{\epsilon}{2n})} \leq 2ne^{-\frac{m\epsilon}{2n}}$$

Hence,

$$\delta \ge 2ne^{-\frac{m\epsilon}{2n}} \iff m \ge \frac{2n}{\epsilon}\log\frac{2n}{\delta}$$

so that \mathcal{C} is PAC-learnable.

2.3

Let $\mathcal{X} = \mathbb{R}^2$ and consider the class \mathcal{C} of concepts of the form $c = \{(x,y) : x^2 + y^2 \leq r^2\}$ for some $r \in \mathbb{R}$. We fix $C \in \mathcal{C}$ as a target concept, along with an $\epsilon > 0$, and we define our algorithm \mathcal{A} as that which returns the infimum of circles containing the points labeled with 1. We denote this infimum as C_S .

We then define the circle C_0 as $C_0 = \operatorname{argmax}_{c \in \mathcal{C}} \{ \mathbb{P}[c \backslash C_s] : \mathbb{P}[c \backslash C_s] \leq \epsilon \}$. Therefore, if $R(C_S) > \epsilon$, then $C_S \cap C_0 = \emptyset$, so that

$$\mathbb{P}_{S \sim \mathcal{D}^m}[R(C_S) > \epsilon] \le \mathbb{P}_{S \sim \mathcal{D}^m}[C_S \cap C_0 = \emptyset] = (1 - \epsilon)^m \le e^{-m\epsilon}$$

Hence,

$$\delta \ge e^{-m\epsilon} \iff \log \frac{1}{\delta} \le m\epsilon \iff m \ge (\frac{1}{\epsilon}) \log \frac{1}{\delta}$$

as desired.

2.4

Let $\mathcal{X} = \mathbb{R}^2$ and consider the set of concepts of the form $c = \{x \in \mathbb{R}^2 : ||x - x_0|| \le r\}$ for some $x_0 \in \mathbb{R}^2$ and $r \in \mathbb{R}$. Suppose the target concept $c_0 \in \mathcal{C}$ has $\mathbb{P}[c_0] = k > 0$ and radius r_0 for some $k, r_0 \in \mathbb{R}$. If $p \in r_1 \cap r_2$ and $\ell \in \mathbb{R}^2$ is a line which passes through the intersection $r_1 \cap r_2$, we consider a translation of the circle along ℓ from p toward the center of the circle. In particular, a translation $c' := c_0 + \frac{r_0}{2}$ intersects each of the three regions r_i yet maintains an error of at least $\frac{k}{2}$ so that Gertrude's method does not work.

2.6

Consider now the case where the training points recieved by the learner are subject to the following noise: points labeled positively are randomly flipped to negative with probability less than $\eta' < 1/2$. We again consider the algorithm \mathcal{A} which returns the tightest rectangle containing positive points.

- a) For a target concept R we can again assume $\mathbb{P}[R] > \epsilon$. Now suppose that $R(R') > \epsilon$. Then, the probability that R' (due to \mathcal{A}) misses a region r_j for $j \in [4]$ is at most $(1 \frac{\epsilon}{4})^{m\eta'}$ for a sample S of size m.
- b) Hence, $\mathbb{P}[R(R') > \epsilon] \leq 4(1 \frac{\epsilon}{4})^{m\eta'} = 4e^{m\eta'\log(1-\frac{\epsilon}{4})} \leq 4e^{-\frac{m\eta'\epsilon}{4}}$ so that $\delta \geq 4e^{-\frac{m\eta'\epsilon}{4}}$ yields a sample complexity bound of $m \geq \frac{4\log\frac{4}{\delta}}{\epsilon\eta'}$.

Consider a finite hypothesis set \mathcal{H} , assume that the target concept is in \mathcal{H} and that the label of a training point received by the learner is randomly changed with probability $\eta \in (0, \frac{1}{2})$ where $\eta \leq \eta' < \frac{1}{2}$.

a) For any $h \in \mathcal{H}$, let d(h) denote the probability that the label of a training point received by the learner disagrees with the one given by h. Let h^* be the target hypothesis. Since the learner will error with probability η (assuming R(h) = 0), we have $d(h^*) = \eta$.

Chapter 3

Definition: We define $\mathcal{G} := \{g : (x,y) \to L(h(x),y) \mid h \in \mathcal{H}\}$ as a family of loss functions $L : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ and let $\mathcal{Z} := \mathcal{X} \times \mathcal{Y}$. Note that many results below hold for arbitrary loss functions $L : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.

Definition (Empirical Rademacher Complexity): Let \mathcal{G} be a family of functions mapping from \mathcal{Z} to [a,b] and $S:=(z_1,...,z_m)$ a fixed sample in \mathcal{Z} . Then, the Rademacher complexity of \mathcal{G} with respect to sample S is given by

$$\widehat{\mathfrak{R}}_{S}(\mathcal{G}) = E_{\sigma} \Big[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(z_{i}) \Big] = E_{\sigma} \Big[\sup_{g \in \mathcal{G}} \frac{\sigma \cdot g_{S}}{m} \Big]$$

where $\sigma := (\sigma_1, ..., \sigma_m)^T$ with independent uniform random variables (Rademacher variables) $\sigma_i \in \{-1, 1\}$, and $g_S := (g(z_1), ..., g(z_m))^T$.

Definition (Rademacher Complexity): Let \mathcal{D} denote the distribution according to which samples are drawn. For $m \in \mathbb{N}$ with $m \geq 1$, we define

$$\mathfrak{R}_m(\mathcal{G}) := E_{S \sim \mathcal{D}^m}[\widehat{\mathfrak{R}}_S(\mathcal{G})]$$

Intuitively, Rademacher Complexity measures how robust a class of loss functions is, as a higher $\widehat{\mathfrak{R}}_S(\mathcal{G})$ for a set S indicates a space of functions more adaptable to arbitrary labelings.

Definition (Martingale Difference Sequence): A sequence of random variables $V_1, V_2, ...$ is a martingale difference sequence with respect to $X_1, X_2, ...$ if for any i > 0, V_i is a function of $X_1, ... X_i$ and $E[V_{i+1}|X_1, ..., X_i] = 0$.

Lemma D.6 Let V, Z be random variables such that E[V|Z] = 0 and for some function f and constant $c \ge 0$, $f(Z) \le V \le f(Z) + c$. Then $t > 0 \Rightarrow E[e^{tV}|Z] < e^{\frac{t^2c^2}{8}}$

 ${\it Proof:}$ Repeat the proof of Hoeffding's Lemma but with conditional expectations.

Theorem D.7 (Azuma's Inequality): Let $V_1, V_2, ...$ be a martingale difference sequence with respect to random variables $X_1, X_2, ...$ and assume that for any i > 0 there exists $c_i \geq 0$ and a random variable $Z_i(X_1, ..., X_{i-1})$ such that $Z_i \leq V_i \leq Z_i + c_i$. Then for any $\epsilon > 0$ and $m \in \mathbb{N}$,

$$\mathbb{P}\left[\sum_{i=1}^{m} V_{i} \ge \epsilon\right] \le e^{\frac{-2\epsilon^{2}}{\sum_{i=1}^{m} c_{i}^{2}}}$$

and

$$\mathbb{P}\left[\sum_{i=1}^{m} V_{i} \le -\epsilon\right] \le e^{\frac{-2\epsilon^{2}}{\sum_{i=1}^{m} c_{i}^{2}}}$$

Proof: Using Lemma D.6, we find that $S_m:=\sum_{i=1}^m V_i$ we have that $\mathbb{P}[S_m\geq\epsilon]=\mathbb{P}[e^{tS_m}\geq e^{t\epsilon}]\leq e^{-t\epsilon}E[e^{tS_m}]=e^{-t\epsilon}E[e^{tS_{m-1}}]E[e^{tV_m}|X_1,...,X_{m-1}]\leq e^{-t\epsilon}E[e^{tS_{m-1}}]e^{\frac{t^2c_m^2}{8}}\leq e^{-t\epsilon}e^{\frac{t^2\sum_{i=1}^mc_i^2}{8}}.$ We then choose $t=\frac{4\epsilon}{\sum_{i=1}^mc_i^2}$ and repeat for the other inequality.

Theorem D.8 (McDiarmid's Inequality) Let $X_1,...,X_m \in \mathcal{X}^m$ be a set of $m \geq 1$ independent random variables and suppose there exists $c_1,...,c_m > 0$ such that $f: X^m \to \mathbb{R}$ satisfies

$$|f(x_1,...,x_i,...,x_m) - f(x_1,...,x_i',...,x_m)| \le c_i$$

for any $i \in [m]$ and $x_1, ..., x_m, x_i' \in \mathcal{X}^m$. Then for $f(S) := f(X_1, ..., X_m)$ and any $\epsilon > 0$ we have

$$\mathbb{P}[f(S) - E[f(S)] \ge \epsilon] \le e^{\frac{-2\epsilon^2}{\sum_{i=1}^{m} c_i^2}}$$

and

$$\mathbb{P}[f(S) - E[f(S)] \le -\epsilon] \le e^{\frac{-2\epsilon^2}{\sum_{i=1}^{m} c_i^2}}$$

Proof: We define variables V = f(S) - E[f(S)] and $V_k = E[V|X_1,...,X_k] - E[V|X_1,...,X_{k-1}]$. Then, $E[V_k|X_1,...,X_{k-1}] = E[E[V|X_1,...,X_k] - E[V|X_1,...,X_{k-1}] = 0$ so that the V_k are a martingale difference sequence. Then, we define

$$L_k := \inf_x E[V|X_1,...,X_{k-1},x] - E[V|X_1,...,X_{k-1}]$$

and

$$U_k := \sup_{\cdot} E[V|X_1,...,X_{k-1},x] - E[V|X_1,...,X_{k-1}]$$

so that $U_k - L_k \leq \sup_{x,x'} E[V|X_1,...,X_{k-1},x] - E[V|X_1,...,X_{k-1},x'] \leq c_k$ so that $L_k \leq V_k \leq L_k + c_k$ and we may apply Azuma's Inequality.

Theorem 3.3 For \mathcal{G} a family of functions mapping \mathcal{Z} to [0,1], for any $\delta > 0$ and $g \in \mathcal{G}$ we have

$$\mathbb{P}\left[E[g(z)] \le \frac{1}{m} \sum_{i=1}^{m} g(z_i) + 2\mathfrak{R}_m(\mathcal{G}) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}\right] \ge 1 - \delta$$

$$\mathbb{P}\left[E[g(z)] \le \frac{1}{m} \sum_{i=1}^{m} g(z_i) + 2\widehat{\Re}_S(\mathcal{G}) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2m}}\right] \ge 1 - \delta$$

Proof: For any sample $S = (z_1, ..., z_m)$ and $g \in \mathcal{G}$, denote $\widehat{E}_S[g] := \frac{1}{m} \sum_{i=1}^m g(z_i)$. We then define

$$\Phi(S) := \sup_{g \in \mathcal{G}} (E[g] - \widehat{E}_S[g])$$

Let S, S' be two different samples (differing by z_m in S and z'_m in S') so

$$\Phi(S') - \Phi(S) \le \sup_{g \in \mathcal{G}} (E[g] - E[g] - \widehat{E}_S[g] + \widehat{E}_S[g]) \le \sup_{g \in \mathcal{G}} \frac{g(z_m) - g(z'_m)}{m} \le \frac{1}{m}$$

Repeating the argument for $\phi(S') - \phi(S)$, we get $|\Phi(S) - \Phi(S')| \leq \frac{1}{m}$. Then, by McDiarmid's Inequality we have

$$\mathbb{P}[\Phi(S) - E[\Phi(S)] \leq \epsilon] \leq e^{\frac{-2\epsilon^2}{\sum_{i=1}^m \frac{1}{m^2}}} = e^{-2\epsilon^2 m}$$

. Note further that

$$\frac{\delta}{2} := e^{-2\epsilon^2 m} \Rightarrow \epsilon = \sqrt{\frac{\log \frac{2}{\delta}}{2m}}$$

. Then,

$$\begin{split} E_{S}[\Phi(S)] &= E_{S}[\sup_{g \in \mathcal{G}} (E[g] - \widehat{E}_{S}[g])] = E_{S}[\sup_{g \in \mathcal{G}} (E_{S'}[\widehat{E}_{S'}[g] - \widehat{E}_{S}[g]))] \\ &\leq E_{S,S'}[\sup_{g \in \mathcal{G}} (\widehat{E}_{S'}[g] - \widehat{E}_{S}[g])] = E_{S,S'}[\sup_{g \in \mathcal{G}} (\frac{1}{m} \sum_{i=1}^{m} g(z'_{i}) - g(z_{i}))] \\ &= E_{S,S',\sigma}[\sup_{g \in \mathcal{G}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i}(g(z'_{i}) - g(z_{i})))] \\ &\leq E_{S',\sigma}[\sup_{g \in \mathcal{G}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i}g(z'_{i}))] + E_{S,\sigma}[\sup_{g \in \mathcal{G}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i}g(z_{i}))] = 2\mathfrak{R}_{m}(\mathcal{G}) \end{split}$$

We then note that, for sets S and S' differing by one point,

$$|\widehat{\mathfrak{R}}_{S}(\mathcal{G}) - \widehat{\mathfrak{R}}_{S'}(\mathcal{G})| \le \frac{1}{m}$$

so again by McDiarmid's we have

$$\mathbb{P}[\mathfrak{R}_m(\mathcal{G}) - \widehat{\mathfrak{R}}_{S'}(\mathcal{G}) > \epsilon] < e^{-2m\epsilon^2}$$

hence

$$\frac{\delta}{2} = e^{-2m\epsilon^2} \Rightarrow \Phi(S) \le 2\widehat{\Re}_S(\mathcal{G}) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2m}}$$

Lemma 3.4: Let \mathcal{H} be a family of functions taking values in $\{-1,1\}$, and let \mathcal{G} be a family of loss functions "associated to \mathcal{H} for the zero-one loss", i.e. $\mathcal{G} = \{(x,y) \mapsto \chi_{h(x)\neq y} \mid h \in \mathcal{H}\}$. For any sample $S = ((x_1,y_1),...,(x_m,y_m))$ of elements in $\mathcal{X} \times \{-1,1\}$, let $S_{\mathcal{X}} = (x_1,...,x_m)$. Then, $\widehat{\mathfrak{R}}_S(\mathcal{G}) = \frac{1}{2}\widehat{\mathfrak{R}}_{S_{\mathcal{X}}}(\mathcal{H})$

Proof: We have that

$$\widehat{\mathfrak{R}}_{S}(\mathcal{G}) = E_{\sigma}[\sup_{h \in \mathcal{H}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} \chi_{h(x_{i}) \neq y_{i}})]$$

$$= E_{\sigma}[\frac{1}{m} \sup_{h \in \mathcal{H}} (\sum_{i=1}^{m} \sigma_{i} \frac{1 - h(x_{i})y_{i}}{2})] = E_{\sigma}[\frac{1}{2m} \sup_{h \in \mathcal{H}} (\sum_{i=1}^{m} \sigma_{i} - h(x_{i})y_{i})]$$

$$= \frac{1}{2} E_{\sigma}[\sup_{h \in \mathcal{H}} (\frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h(x_{i}))] = \frac{1}{2} \widehat{\mathfrak{R}}_{S_{\mathcal{X}}}(\mathcal{H})$$

Theorem 3.5: For a family of functions \mathcal{H} taking values in $\{-1,1\}$ and \mathcal{D} a distribution over \mathcal{X} (the input space), then for any $\delta > 0$ and any $h \in \mathcal{X}$, over a sample S of size m drawn according to \mathcal{D} , we have

$$\mathbb{P}\left[R(h) \le \widehat{R}_S(h) + \mathfrak{R}_m(\mathcal{H}) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}\right] \ge 1 - \delta$$

$$\mathbb{P}\left[R(h) \le \widehat{R}_S(h) + \widehat{\mathfrak{R}}_S(\mathcal{H}) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2m}}\right] \ge 1 - \delta$$

Proof: We consider the functions $g:(x,y)\to 1_{h(x)\neq y}$ so that E[g(z)]=R(h) and $\widehat{R}_S(h)=\frac{1}{m}\sum_{i=1}^m g(z_i)$. Further, $\widehat{\mathfrak{R}}_S(\mathcal{G})=\frac{1}{2}\widehat{\mathfrak{R}}_{S_{\mathcal{X}}}(\mathcal{H})$ so that $\mathfrak{R}_m(\mathcal{G})=\frac{1}{2}\mathfrak{R}_m(\mathcal{H})$. We then combine Theorem 3.3 with Lemma 3.4.

Note:

$$\widehat{\mathfrak{R}}_{S}(\mathcal{H}) = E_{\sigma}[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} -\sigma_{i} h(x_{i})] = -E_{\sigma}[\inf_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h(x_{i})]$$

which then calculates the negative expectation over sigma of "empirical risk minimization", which is computationally hard for some \mathcal{H} .

Definition: The growth function $\Pi_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$ is defined as

$$\Pi_{\mathcal{H}}(m) = \max_{(x_1,...,x_m) \subset \mathcal{X}} |\{h(x_1),...,h(x_m)\}| : h \in \mathcal{H}|$$

where each such distinct classification is referred to as a "dichotomy".

Maximal Inequality: Let $X_1, ..., X_n$ be $n \ge 1$ real-valued random variables such that, for any $j \in [n]$ and t > 0, $E[e^{tX_j} \le e^{\frac{t^2r^2}{2}}]$ for some r > 0. Then, $E[\max_{j \in [n]} X_j] \le r\sqrt{2\log n}$

Proof: We have that

$$e^{tE[\max_{j \in [n]} X_j]} \le E[\max_{j \in [n]} e^{tX_j}] \le \sum_{i=1}^n E[e^{tX_j}] \le ne^{\frac{t^2r^2}{2}}$$

then for $t = \frac{\sqrt{2 \log n}}{r}$,

$$E[\max_{j \in [n]} X_j] \le \frac{\log n + \frac{t^2 r^2}{2}}{t} = r\sqrt{2\log n}$$

Corollary D.11: Let $X_1,...,X_n$ be $n \geq 1$ real-valued random variables such that, for any $j \in [n], X_j = \sum_{i=1}^m Y_{ij}$. Suppose that for fixed $j \in [n], Y_{ij}$ are independent, zero mean random variables taking values in $[-r_i,r_i]$ for some $r_i > 0$. Then, $E[\max_{j \in [n]} X_j] \leq \sqrt{2 \log(n) \sum_{i=1}^m r_i^2}$

Proof: We find that

$$E[e^{tX_j}] = \prod_i E[e^{tY_{ij}}] \le \prod_i e^{\frac{t^2(2r_i)^2}{8}}$$

hence

$$E[e^{tX_j}] \leq \frac{t\sum_i r_i^2}{2}$$

so that we may apply the Maximal Inequality for $r = \sqrt{\sum_{i=1}^{m} r_i^2}$

Theorem 3.7 (Massart's Lemma): Let $A \subset \mathbb{R}^m$ be a finite set such that $r := \max_{x \in A} ||x||_2$. Then,

$$E_{\sigma}\left[\frac{1}{m} \sup_{x \in A} \sum_{i=1}^{m} \sigma_{i} x_{i}\right] \leq \frac{r\sqrt{2\log|A|}}{m}$$

where the $\sigma_i \in \{-1, 1\}$ are independent uniform random variables and $x_1, ..., x_m$ are components of x.

Proof: Apply Corollary D.11 to $X_i = \frac{1}{m} \sum_{j=1}^m \sigma_i x_j^i$ for $i \in [|A|]$, noting that each $\sigma_i x_j^i \in \{-|x_j^i|, |x_j^i|\}$ hence $\sum_{i=1}^m |x_i|^2 \le r^2$.

Corollary 3.8: Let \mathcal{G} be a family of functions taking values in $\{-1,1\}$. Then,

$$\mathfrak{R}_m(\mathcal{G}) \le \sqrt{\frac{2\log \Pi_{\mathcal{G}}(m)}{m}}$$

Proof: For a fixed sample $S = (z_1, ..., z_m)$, we have

$$\widehat{\mathfrak{R}}_{S}(\mathcal{G}) = E_{\sigma} \Big[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(z_{i}) \Big] \leq \frac{\sqrt{m} \sqrt{2 \log \Pi_{\mathcal{G}}(m)}}{m}$$

so the expectation is bounded similarly.

Corollary 3.9: For a family of functions \mathcal{H} valued in $\{-1,1\}$, for any $\delta > 0$ and any $h \in \mathcal{H}$,

$$\mathbb{P}\left[R(h) \le \widehat{R}_S(h) + \sqrt{\frac{2\log \Pi_{\mathcal{H}}(m)}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}\right] \ge 1 - \delta$$

where we use the Rademacher complexity bound from Corollary 3.8 and Theorem 3.5.

Definition: A set S of $m \geq 1$ points is "shattered" by a hypothesis set \mathcal{H} if \mathcal{H} realizes all possible dichotomies of S, i.e. $\Pi_{\mathcal{H}}(m) = 2^m$.

Definition (VC-dimension): The VC-dimension of a hypothesis set \mathcal{H} is the size of the largest set that can be shattered by \mathcal{H} , i.e.

$$VCdim(\mathcal{H}) = \max\{m \in \mathbb{N} : \Pi_{\mathcal{H}}(m) = 2^m\}$$

Example: Consider the d+1 points $x_i := (0, ..., 1, ..., 0)$ for $i \in \{0, 1, ..., d\}$ where the 1 is in the *i*-th position and x_0 is the origin. Further, let $w = (y_0, y_1, ..., y_d)$ where $y_i \in \{-1, 1\}$. Then, the hyperplane defined as

$$w \cdot x + \frac{y_0}{2} = 0$$

satisfies

$$\operatorname{sgn}(w \cdot x_i + \frac{y_0}{2}) = y_i$$

for $i \in \{1, ..., d\}$ and

$$\operatorname{sgn}(w \cdot x_0 + \frac{y_0}{2}) = y_0$$

hence the VC-dimension of hyperplanes in \mathbb{R}^d is at least d+1.

Definition: The convex hull $conv(\mathcal{X})$ of $\mathcal{X} \subset \mathbb{R}^N$ is defined as

$$conv(\mathcal{X}) = \left\{ \sum_{i=1}^{|\mathcal{X}|} \alpha_i x_i \mid \sum_{i=1}^{|\mathcal{X}|} \alpha_i = 1, \ x_i \in \mathcal{X}, \ \alpha_i \ge 0 \right\}$$

Radon's Theorem: Any set \mathcal{X} of d+2 points in \mathbb{R}^d can be partitioned into two subsets \mathcal{X}_1 and \mathcal{X}_2 such that $\operatorname{conv}(\mathcal{X}_1) \cap \operatorname{conv}(\mathcal{X}_2) \neq \emptyset$

Proof: Let $\mathcal{X} = \{x_1, ..., x_{d+2}\} \subset \mathbb{R}^d$. We find that the system

$$\sum_{i=1}^{d+2} \alpha_i x_i = 0, \quad \sum_{i=1}^{d+2} \alpha_i = 0$$

has d+1 independent equations and d+2 unknowns, so that there exists a non-zero solution $\beta_1,...,\beta_{d+2}$. Since $\sum_{i=1}^{d+2}\beta_i=0$, the sets

$$\mathcal{J}_1 := \{i \in [d+2] \mid \beta_i \le 0\}, \quad \mathcal{J}_2 := \{i \in [d+2] \mid \beta_i > 0\}$$

are nonempty and they satisfy

$$\sum_{i \in \mathcal{J}_1} \beta_i x_i = -\sum_{i \in \mathcal{J}_2} \beta_i x_i$$

so that

$$\beta := \sum_{i \in \mathcal{J}_1} \beta_i \Rightarrow \frac{1}{\beta} \sum_{i \in \mathcal{J}_1} \beta_i x_i$$

belongs in the convex hulls of both \mathcal{X}_1 and \mathcal{X}_2 .

Theorem 3.17 (Sauer's Lemma): Let \mathcal{H} be a hypothesis set such that $VCdim(\mathcal{H}) = d$. Then, for any $m \in \mathbb{N}$, $\Pi_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} {m \choose i}$

Proof: We proceed by induction. The statement holds for m=1 and d=1 or d=0. Then, assume the statement holds for (m-1,d) and (m-1,d-1). We then fix a sample S of size m given by $S=(x_1,...,x_m)$. Let \mathcal{G} denote the space of hypotheses due to S. Identifying each $g \in \mathcal{G}$ with those x_i classified as 1 (rather than -1), let \mathcal{G}_1 denote the space of hypotheses due to $(x_1,...,x_{m-1})$ and let \mathcal{G}_2 denote those $g \in \mathcal{G}$ such that if $Z \subset \{0,1\}^{m-1}$ is expressed among the $\{x_1,...,x_{m-1}\}$, so is $Z \cup x_m$. Hence, $|\mathcal{G}| = |\mathcal{G}_1| + |\mathcal{G}_2|$. Since \mathcal{G}_1 has VC dimension at most d while \mathcal{G}_2 has VC dimension at most d-1 (else \mathcal{G} would also shatter a set of size d+1 by adding x_m). Therefore,

$$|\mathcal{G}| \le \sum_{i=0}^{d-1} \binom{m-1}{i} + \sum_{i=0}^{d} \binom{m-1}{i}$$

$$= \sum_{i=1}^{d} \binom{m-1}{i-1} + \sum_{i=1}^{d} \binom{m-1}{i} = \sum_{i=0}^{d} \binom{m}{i}$$

Corollary 3.18: Let \mathcal{H} be a hypothesis set such that $VCdim(\mathcal{H}) = d$. Then, for any $m \geq d$, $\Pi_{\mathcal{H}}(m) \leq \left(\frac{em}{d}\right)^d = O(m^d)$

Proof: From Sauer's Lemma, we have that

$$\Pi_{\mathcal{H}}(m) \le \sum_{i=0}^{d} \binom{m}{i} \le \sum_{i=0}^{d} \binom{m}{i} \left(\frac{m}{d}\right)^{d-i} \le \sum_{i=0}^{m} \binom{m}{i} \left(\frac{m}{d}\right)^{d-i}$$
$$= \left(\frac{m}{d}\right)^{d} \sum_{i=0}^{m} \binom{m}{i} \left(\frac{d}{m}\right)^{i} = \left(\frac{m}{d}\right)^{d} (1 + \frac{d}{m})^{m} \le \left(\frac{em}{d}\right)^{d}$$

Corollary 3.19: Let \mathcal{H} be a family of functions taking values in $\{-1,1\}$ with VC-dimension d. Then, for any $\delta > 0$,

$$\mathbb{P}\left[R(h) \le \widehat{R}_S(h) + \sqrt{\frac{2d\log\frac{em}{d}}{m}} + \sqrt{\frac{\log\frac{1}{\delta}}{2m}}\right] \ge 1 - \delta$$

Proof: Combine Corollary 3.18 and Corollary 3.9.

Definition (Relative Entropy): The relative entropy (or Kullback Leibler Divergence) of 2 distributions p and q is denoted D(p||q), and is defined by

$$D(p||q) = E_p \left[\log \frac{p(x)}{q(x)} \right] = \sum_{x \in \mathcal{X}} p(x) \log(\frac{p(x)}{q(x)})$$

Sanov's Theorem (D.3): Let $X_1,...,X_m$ be independent variables drawn according to some distribution \mathcal{D} with mean p and support included in [0,1]. Then, for $\widehat{p} := \frac{1}{m} \sum_{i=1}^m X_i$ and any $q \in [0,1]$, we have

$$\mathbb{P}[\widehat{p} \ge q] \le e^{-mD(p||q)}$$

Proof: We have

$$\mathbb{P}[\widehat{p} \ge q] \le e^{-tmq} E[e^{tm\widehat{p}}] = e^{-tmq} \prod_{i=1}^{m} E[e^{tX_i}] \le e^{-tmq} \left(1 - p + pe^t\right)^m$$

$$= \left((1-p)e^{-q\log\frac{q(1-p)}{p(1-q)}} + pe^{(1-q)\log\frac{q(1-p)}{p(1-q)}} \right)^m = e^{m(-q\log\frac{q}{p} + (q-1)\log\frac{1-q}{1-p})}$$

where $t \geq 0$ is used for the Chernoff bound

Theorem D.4: Let $X_1, ..., X_m$ be independent random variables drawn according to some distribution \mathcal{D} with mean p and support included in [0,1]. Then, for any $\gamma \in [0, \frac{1}{p} - 1]$, for $\widehat{p} := \frac{1}{m} \sum_{i=1}^{m} X_i$, we have

$$\mathbb{P}[\widehat{p} \ge (1+\gamma)p] \le e^{\frac{-mp\gamma^2}{3}}$$

and

$$\mathbb{P}[\widehat{p} \le (1 - \gamma)p] \le e^{\frac{-mp\gamma^2}{2}}$$

Proof: For $q = (1 + \gamma)p$,

$$\begin{split} D(q||p) &= (1+\gamma)p\log\frac{p}{(1+\gamma)p} + (1-(1+\gamma)p)\log\frac{1-p}{1-(1+\gamma)p} \\ &= -p(1+\gamma)\log(1+\gamma) + (1-(1+\gamma)p)\log(1+\frac{\gamma p}{1-(1+\gamma)p}) \\ &\leq (1+\gamma)p\frac{-\gamma}{1+\frac{\gamma}{2}} + (1-p-\gamma p)\frac{\gamma p}{1-p-\gamma p} = -\gamma p\Big(1+\frac{\frac{\gamma}{2}}{1+\frac{\gamma}{2}}-1\Big) = -\frac{\gamma^2 p}{2+\gamma} \leq -\frac{\gamma^2 p}{3} \end{split}$$

For $q = (1 - \gamma)p$, we have

$$\begin{split} D(q||p) &= (1-\gamma)p\log\frac{p}{(1-\gamma)p} + (1-(1-\gamma)p)\log\frac{1-p}{1-(1-\gamma)p} \\ &= -p(1-\gamma)\log(1-\gamma) + (1-(1-\gamma)p)\log(1-\frac{\gamma p}{1-(1-\gamma)p}) \\ &\leq (1-\gamma)p\frac{\gamma}{1-\frac{\gamma}{2}} + (1-p+\gamma p)\frac{-\gamma p}{1-p+\gamma p} = \gamma p(\frac{1-\gamma}{1-\frac{\gamma}{2}}-1) = -\frac{\gamma^2 p}{2-\gamma} \leq -\frac{\gamma^2 p}{2} \end{split}$$

Theorem 3.20: Let \mathcal{H} be a hypothesis set with VC dimension d > 1. Then, for any $m \geq 1$ and any learning algorithm \mathcal{A} , there exists a distribution \mathcal{D} over \mathcal{X} and a target function $f \in \mathcal{H}$ such that

$$\mathbb{P}[R_{\mathcal{D}}(h_S, f) > \frac{d-1}{32m}] \ge \frac{1}{100}$$

Proof: Let $\overline{\mathcal{X}} = \{x_0, ..., x_{d-1}\} \subset \mathcal{X}$ be shattered by \mathcal{H} . For any $\epsilon > 0$, choose \mathcal{D} such that its support is reduced to $\overline{\mathcal{X}}$ and so that one point (x_0) has probability $1 - 8\epsilon$ with the rest of the mass distributed uniformly, i.e. $\mathbb{P}_{\mathcal{D}}[x_0] = 1 - 8\epsilon$ and for any $i \in [d-1]$, $\mathbb{P}_{\mathcal{D}}[x_i] = \frac{8\epsilon}{d-1}$. Without loss of generality, \mathcal{A} makes no error on x_0 . For a sample S, let \overline{S} denote the set of its elements falling in $\{x_1, ..., x_{d-1}\}$ and let \mathcal{S} denote samples S of size m such that $|\overline{S}| \leq \frac{d-1}{2}$. Fix

 $S \in \mathcal{S}$ and consider the uniform distribution \mathcal{U} over all labelings $f : \overline{\mathcal{X}} \to \{0, 1\}$ (which are all in \mathcal{H} since the set is shattered). Then,

$$E_{f \sim \mathcal{U}}[R_{\mathcal{D}}(h_S, f)] = \sum_{f} \sum_{x \in \overline{\mathcal{X}}} 1_{h_S(x) \neq f(x)} \mathbb{P}[x] \mathbb{P}[f] \ge \sum_{f} \sum_{x \notin \overline{S}} 1_{h_S(x) \neq f(x)} \mathbb{P}[x] \mathbb{P}[f]$$

$$= \frac{1}{2} \sum_{x \notin \overline{S}} \mathbb{P}[x] \ge \frac{1}{2} \frac{d-1}{2} \frac{8\epsilon}{d-1} = 2\epsilon \Rightarrow E_{f \sim \mathcal{U}}[E_{S \in \mathcal{S}}[R_{\mathcal{D}}(h_S, f)]] \ge 2\epsilon$$

Hence $E_{S \in \mathcal{S}}[R_{\mathcal{D}}(h_S, f_0)] \ge 2\epsilon$ for at least one labeling $f_0 \in \mathcal{H}$. Since $R_{\mathcal{D}}(h_S, f_0) \le \mathbb{P}_{\mathcal{D}}[\overline{\mathcal{X}} - \{x_0\}]$, we have that

$$E_{S \in \mathcal{S}}[R_{\mathcal{D}}(h_S, f_0)] = \sum_{S: R_{\mathcal{D}}(h_S, f_0) \geq \epsilon} R_{\mathcal{D}}(h_S, f_0) \mathbb{P}[R_{\mathcal{D}}(h_S, f_0)] + \sum_{S: R_{\mathcal{D}}(h_S, f_0) < \epsilon} R_{\mathcal{D}}(h_S, f_0) \mathbb{P}[R_{\mathcal{D}}(h_S, f_0)]$$

$$\leq \mathbb{P}_{\mathcal{D}}[\overline{\mathcal{X}} - \{x_0\}] \mathbb{P}_{S \in \mathcal{S}}[R_{\mathcal{D}}(h_S, f_0) \geq \epsilon] + \epsilon (1 - \mathbb{P}_{S \in \mathcal{S}}[R_{\mathcal{D}}(h_S, f_0) \geq \epsilon])$$

$$\leq 7\epsilon \mathbb{P}_{S \in \mathcal{S}}[R_{\mathcal{D}}(h_S, f_0) \geq \epsilon] + \epsilon \Rightarrow \frac{\mathbb{P}[\mathcal{S}]}{7} \leq \frac{1}{7} \leq \mathbb{P}_{S \in \mathcal{S}}[R_{\mathcal{D}}(h_S, f_0) \geq \epsilon]$$

Then, for a set $S=(x_1,...,x_m)$ of size m, define $S_m=\sum_{i=1}^m 1_{x_i\in\overline{\mathcal{X}}}$. Since each $1_{x_i\in\overline{\mathcal{X}}}$ has an expected value of 8ϵ , the mean is $8\epsilon m$ in this case. Then, for any $\gamma>0$, we use Theorem D.4 as

$$\mathbb{P}[S_m \ge 8\epsilon m(1+\gamma)] \le e^{-8\epsilon m\frac{\gamma^2}{3}}$$

hence

$$\epsilon = \frac{(d-1)}{32m}, \ \gamma = 1 \Rightarrow 1 - \mathbb{P}[S] = \mathbb{P}[S_m \ge \frac{d-1}{2}] \le e^{-\frac{d-1}{12}} \le e^{-\frac{1}{12}} \le 1 - 7\delta$$

for
$$\delta \leq \frac{1}{100} \leq \frac{1-e^{-\frac{1}{12}}}{7}$$
. Then, $1 - \mathbb{P}[\mathcal{S}] \leq 1 - 7\delta$ so

$$7\delta \leq \mathbb{P}[S] \Rightarrow \delta \leq \frac{\mathbb{P}[S]}{7} \leq \mathbb{P}_{S \in S}[R_{\mathcal{D}}(h_S, f_0) \geq \epsilon]$$

Note: Since there exists a distribution over \mathcal{X} for which the error of the hypothesis returned by \mathcal{A} (with respect to a target function f) is bounded by $C \cdot \frac{d}{m}$, infinite VC-dimension indicates that PAC-learning in the realizable case is not possible.

Slud's Inequality Let X be a random variable following the binomial distribution B(m,p) and let k be an integer such that $p \leq \frac{1}{4}$ and $k \geq mp$ or $p \leq \frac{1}{2}$ and $mp \leq k \leq m(1-p)$. Then,

$$\mathbb{P}[X \ge k] \ge \mathbb{P}\left[N \ge \frac{k - mp}{\sqrt{mp(1 - p)}}\right]$$

where N is in standard normal form.

Normal distribution tails: Lower bound: If N is a random variable following the standard normal distribution, then for u > 0 we have

$$\mathbb{P}[N \ge u] \ge \frac{1}{2} \left(1 - \sqrt{1 - e^{-u^2}} \right)$$

Exercise D.3: Let x_A and x_B be random variables (coins), with $\mathbb{P}[x_A = 0] = \frac{1}{2} - \frac{\epsilon}{2}$ and $\mathbb{P}[x_B = 0] = \frac{1}{2} + \frac{\epsilon}{2}$, where $0 < \epsilon < 1$ is a small positive number, 0 denotes heads and 1 denotes tails. Consider selecting a coin $x \in \{x_A, x_B\}$ uniformly at random, tossing it m times, and predicting which coin was tossed based on the sequence of 0s and 1s obtained.

a) Let S be a sample of size m. Consider playing the above game according to the decision rule $f_o: \{0,1\}^m \to \{x_A,x_B\}$ defined by $f_o(S) = x_A$ if and only if $N(S) < \frac{m}{2}$, where N(S) is the number of 0's in sample S. Suppose m is even. Then, this rule fails in the case that $x = x_A$ yet at least half of the flips were heads. Hence,

$$\operatorname{error}(f_0) = E_x[\mathbb{P}_{\mathcal{D}_x^m}[f_o(S) \neq x]]$$

$$= \mathbb{P}[x = x_A]\mathbb{P}_{\mathcal{D}_{x_A}^m}[f_o(S) \neq x_A] + \mathbb{P}[x = x_B]\mathbb{P}_{\mathcal{D}_{x_B}^m}[f_o(S) \neq x_B]$$

$$\geq \frac{1}{2}\mathbb{P}\left[N(S) \geq \frac{m}{2} \mid x = x_A\right]$$

b) Again assuming m is even, we find that N(S) follows the binomial distribution B(m,p) for $p=\frac{1}{2}-\frac{\epsilon}{2}$, where $m(\frac{1}{2}-\frac{\epsilon}{2})\leq \frac{m}{2}\leq m(\frac{1}{2}+\frac{\epsilon}{2})$. Hence, Slud's Inequality implies

$$\mathbb{P}[N(S) \geq \frac{m}{2}] \geq \mathbb{P}\bigg[N \geq \frac{\frac{m}{2} - m(\frac{1}{2} - \frac{\epsilon}{2})}{\sqrt{m(\frac{1}{2} - \frac{\epsilon}{2})(\frac{1}{2} + \frac{\epsilon}{2})}}\bigg] = \mathbb{P}\Big[N \geq \frac{\epsilon\sqrt{m}}{\sqrt{1 - \epsilon^2}}\Big]$$

to which we can apply the lower bound for normal distribution tails as

$$\mathbb{P}\Big[N \ge \frac{\epsilon\sqrt{m}}{\sqrt{1-\epsilon^2}}\Big] \ge \frac{1}{2}\Big(1-\sqrt{1-e^{-\frac{m\epsilon^2}{1-\epsilon^2}}}\Big)$$

hence

$$\operatorname{error}(f_o) \ge \frac{1}{4} \left(1 - \sqrt{1 - e^{-\frac{m\epsilon^2}{1 - \epsilon^2}}} \right)$$

c) If m is odd, then note that f_o fails in the case that $N(S) \geq \frac{m}{2} \iff N(S) \geq \frac{m}{2}$. Hence, N(S) effectively follows a binomial distribution (by adding an arbitrary element to S) B(m+1,p) for $p=\frac{1}{2}-\frac{\epsilon}{2}$, where $(m+1)(\frac{1}{2}-\frac{\epsilon}{2}) \leq \frac{m}{2} \leq (m+1)(\frac{1}{2}+\frac{\epsilon}{2})$. Using Slud's Inequality and the lower bound for normal distribution with $p=\frac{1}{2}-\frac{\epsilon}{2}$, we have

$$\frac{1}{2}\mathbb{P}\Big[N(S) \geq \frac{m}{2}\Big] \geq \frac{1}{2}\mathbb{P}\Bigg[N \geq \frac{\frac{m+1}{2} - (m+1)p}{\sqrt{(m+1)p(1-p)}}\Bigg] = \frac{1}{2}\mathbb{P}\Bigg[N \geq \frac{\epsilon\sqrt{m+1}}{\sqrt{1-\epsilon^2}}\Bigg]$$

$$\geq \frac{1}{4} \left(1 - \sqrt{1 - e^{-\frac{\epsilon^2(m+1)}{1 - \epsilon^2}}} \right) = \frac{1}{4} \left(1 - \sqrt{1 - e^{-\frac{2\lceil \frac{m}{2} \rceil \epsilon^2}{1 - \epsilon^2}}} \right)$$

Since the rightmost expression holds as the same bound in the even case, both m odd and even share this bound.

d) If the error of f_o is to be at most δ , where $0 < \delta < \frac{1}{4}$, then

$$\begin{split} \delta & \geq \frac{1}{4} \bigg(1 - \sqrt{1 - e^{-\frac{2 \lceil \frac{m}{2} \rceil \epsilon^2}{1 - \epsilon^2}}} \bigg) \Rightarrow (1 - 4\delta)^2 \leq 1 - e^{-\frac{2 \lceil \frac{m}{2} \rceil \epsilon^2}{1 - \epsilon^2}} \\ & \Rightarrow -\frac{2 \lceil \frac{m}{2} \rceil \epsilon^2}{1 - \epsilon^2} \leq \log \Big(1 - (1 - 4\delta)^2 \Big) \Rightarrow -\frac{1 - \epsilon^2}{2 \epsilon^2} \log \Big(1 - (1 - 4\delta)^2 \Big) \leq \left\lceil \frac{m}{2} \right\rceil \leq \frac{m + 1}{2} \\ & \Rightarrow m \geq \frac{1 - \epsilon^2}{\epsilon^2} \log \Big(\frac{1}{1 - (1 - 4\delta)^2} \Big) - 1 \end{split}$$

Note that $\epsilon \to 0 \Rightarrow m \to \infty$

e) Now consider an arbitrary decision rule $f:\{0,1\}^m \to \{x_A,x_B\}$. Note that, if $f(S')=x_A$ on a particular outcome S' with $N(S)\geq \frac{m}{2}$ then the error of f on S' is at least $\frac{1}{2}\mathbb{P}\Big[N(S)<\frac{m}{2}\mid x=x_A\Big]\geq \frac{1}{2}\mathbb{P}\Big[N(S)\geq \frac{m}{2}\mid x=x_A\Big]$. Similarly, if $f(S')=x_A$ on an outcome S' with $N(S)<\frac{m}{2}-1$, f errors on S' with at least $\frac{1}{2}\mathbb{P}\Big[N(S)\geq \frac{m}{2}-1\mid x=x_A\Big]\geq \frac{1}{2}\mathbb{P}\Big[N(S)\geq \frac{m}{2}\mid x=x_A\Big]$, hence

$$\operatorname{error}(f) \ge \frac{1}{2} \mathbb{P}\Big[N(S) \ge \frac{m}{2} \mid x = x_A\Big]$$

so that the lower bound in part d applies to all decision rules.

Lemma 3.21: Let α be a uniformly distributed random variable taking values in $\{\alpha_-, \alpha_+\}$, where $\alpha_- = \frac{1}{2} - \frac{\epsilon}{2}$ and $\alpha_+ = \frac{1}{2} + \frac{\epsilon}{2}$. Let S be a sample of $m \geq 1$ random variables $X_1, ..., X_m$ taking values in $\{0, 1\}$ and drawn i.i.d. according to the distribution \mathcal{D}_{α} defined by $\mathbb{P}_{\mathcal{D}_{\alpha}}[X = 1] = \alpha$. Then, if $h : \mathcal{X}^m \to \{\alpha_-, \alpha_+\}$, we have

$$E_{\alpha}[\mathbb{P}_{\mathcal{D}_{\alpha}^{m}}[h(S) \neq \alpha]] \geq \Phi\left(2\left\lceil \frac{m}{2}\right\rceil, \epsilon\right)$$

for
$$\Phi(m,\epsilon) = \frac{1}{4} \left(1 - \sqrt{1 - e^{-\frac{m\epsilon^2}{1 - \epsilon^2}}} \right)$$
 for all m and ϵ .

Proof: This follows from the previous exercise.

Lemma 3.22: Let Z be a random variable taking values in [0,1]. Then, for any $\gamma \in [0,1)$, we have

$$\mathbb{P}[Z > \gamma] \ge \frac{E[Z] - \gamma}{1 - \gamma} > E[Z] - \gamma$$

Proof: We find that

$$\begin{split} E[Z] &\leq (1)(\mathbb{P}[Z > \gamma]) + (\gamma)(\mathbb{P}[Z \leq \gamma]) \\ &= \mathbb{P}[Z > \gamma] + (\gamma)(1 - \mathbb{P}[Z > \gamma]) \Rightarrow E[Z] - \gamma \leq \mathbb{P}[Z > \gamma](1 - \gamma) \end{split}$$

Theorem 3.23 (Lower bound, non-realizable case): let \mathcal{H} be a hypothesis set with VC-dimension d > 1. Then, for any $m \geq 1$ and any learning algorithm \mathcal{A} , there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[R_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} R_{\mathcal{D}}(h) > \sqrt{\frac{d}{320m}} \right] \ge \frac{1}{64}$$

or equivalently, for any learning algorithm, the sample complexity verifies

$$m \ge \frac{d}{320\epsilon^2}$$

Proof: Let $\overline{\mathcal{X}} = \{x_1, ..., x_d\} \subset \mathcal{X}$ be a set shattered by \mathcal{H} . For any $\alpha \in [0, 1]$ and any vector $\sigma = (\sigma_1, ..., \sigma_d)^T \in \{-1, 1\}^d$, we define a distribution \mathcal{D}_{σ} with support $\overline{\mathcal{X}} \times \{0, 1\}$ as follows: for any $i \in [d]$,

$$\mathbb{P}_{\mathcal{D}_{\sigma}}[(x_i, 1)] = \frac{1}{d} \left(\frac{1}{2} + \frac{\sigma_i \alpha}{2} \right)$$

For $i \in [d]$, we define the Bayes classifier as

$$h_{\mathcal{D}_{-}}^{*}(x_i) = \operatorname{argmax}_{y \in \{0,1\}} \mathbb{P}[y \mid x_i]$$

Note that $h_{\mathcal{D}_{\sigma}}^{*}$ is in \mathcal{H} since $\overline{\mathcal{X}}$ is shattered. Further, for all $h \in \mathcal{H}$,

$$R_{\mathcal{D}_{\sigma}}(h) - R_{\mathcal{D}_{\sigma}}(h_{\mathcal{D}_{\sigma}}^{*}) = E_{\mathcal{D}_{\sigma}} \left[\frac{1}{d} \sum_{x \in \overline{\mathcal{X}}} 1_{h(x) \neq y} \right] - E_{\mathcal{D}_{\sigma}} \left[\frac{1}{d} \sum_{x \in \overline{\mathcal{X}}} 1_{h_{\mathcal{D}_{\sigma}}^{*}(x) \neq y} \right]$$

$$=\frac{1}{d}\sum_{x\in\overline{\mathcal{X}}}\left(\left(\frac{1}{2}+\frac{\alpha}{2}\right)-\left(\frac{1}{2}-\frac{\alpha}{2}\right)\right)1_{h(x)\neq h^*_{\mathcal{D}_{\sigma}}(x)}=\frac{\alpha}{d}\sum_{x\in\overline{\mathcal{X}}}1_{h(x)\neq h^*_{\mathcal{D}_{\sigma}}(x)}$$

Let h_S denote the hypothesis returned by the learning algorithm \mathcal{A} after receiving the labeled sample S drawn according to \mathcal{D}_{σ} . Let $|S|_x$ denote the number of occurrences of a point x in S. Let \mathcal{U} denote the uniform distribution over $\{-1,1\}^d$. Then,

$$E_{\substack{\sigma \sim \mathcal{U} \\ S \sim \mathcal{D}_{\sigma}^{m}}} \left[\frac{1}{\alpha} [R_{\mathcal{D}_{\sigma}}(h_{S}) - R_{\mathcal{D}_{\sigma}}(h_{\mathcal{D}_{\sigma}}^{*})] \right] = \frac{1}{d} \sum_{x \in \overline{\mathcal{X}}} E_{\substack{\sigma \sim \mathcal{U} \\ S \sim \mathcal{D}_{\sigma}^{m}}} \left[1_{h_{S}(x) \neq h_{\mathcal{D}_{\sigma}}^{*}(x)} \right]$$
$$= \frac{1}{d} \sum_{\sigma \in \overline{\mathcal{X}}} E_{\sigma \sim \mathcal{U}} \left[\mathbb{P}_{S \sim \mathcal{D}_{\sigma}^{m}} [h_{S}(x) \neq h_{\mathcal{D}_{\sigma}}^{*}(x)] \right]$$

$$= \frac{1}{d} \sum_{x \in \overline{\mathcal{X}}} \sum_{n=0}^{m} E_{\sigma \sim \mathcal{U}} \Big[\mathbb{P}_{S \sim \mathcal{D}_{\sigma}^{m}} [h_{S}(x) \neq h_{\mathcal{D}_{\sigma}}^{*}(x) \mid |S|_{x} = n] \Big] \mathbb{P}[|S|_{x} = n]$$

$$\geq \frac{1}{d} \sum_{x \in \overline{\mathcal{X}}} \sum_{n=0}^{m} \Phi(n+1, \alpha) \mathbb{P}[|S|_{x} = n] \geq \frac{1}{d} \sum_{x \in \overline{\mathcal{X}}} \Phi\left(\frac{m}{d} + 1, \alpha\right) = \Phi\left(\frac{m}{d} + 1, \alpha\right)$$

Hence there exists $\sigma \in \{-1,1\}^d$ such that

$$E_{S \sim \mathcal{D}_{\sigma}^{m}} \left[\frac{1}{\alpha} [R_{\mathcal{D}_{\sigma}}(h_{S}) - R_{\mathcal{D}_{\sigma}}(h_{\mathcal{D}_{\sigma}}^{*})] \right] > \Phi\left(\frac{m}{d} + 1, \alpha\right)$$

By Lemma 3.22, for the same σ and any $\gamma \in [0,1]$ we have

$$\mathbb{P}_{S \sim \mathcal{D}_{\sigma}^{m}} \left[\frac{1}{\alpha} [R_{\mathcal{D}_{\sigma}}(h_{S}) - R_{\mathcal{D}_{\sigma}}(h_{\mathcal{D}_{\sigma}}^{*})] \ge \gamma u \right] > (1 - \gamma)u$$

for $u = \Phi\left(\frac{m}{d} + 1, \alpha\right)$. If we bound $\delta \leq (1 - \gamma)u$ and $\epsilon \leq \gamma \alpha u$, then

$$\mathbb{P}_{S \sim \mathcal{D}_{\sigma}^{m}} \left[R_{\mathcal{D}_{\sigma}}(h_{S}) - R_{\mathcal{D}_{\sigma}}(h_{\mathcal{D}_{\sigma}}^{*}) > \epsilon \right] > \delta$$

For $\gamma = 1 - 8\delta$, we have

$$\delta \le (1 - \gamma)u \iff u \ge \frac{1}{8}$$

$$\iff \frac{1}{4} \left(1 - \sqrt{1 - e^{-\frac{(\frac{m}{d} + 1)\alpha^2}{1 - \alpha^2}}} \right) \ge \frac{1}{8} \iff \frac{1}{4} \ge 1 - e^{-\frac{(\frac{m}{d} + 1)\alpha^2}{1 - \alpha^2}}$$

$$\iff -\frac{(\frac{m}{d} + 1)\alpha^2}{1 - \alpha^2} \ge \log \frac{3}{4} \iff \frac{m}{d} \le \frac{1 - \alpha^2}{\alpha^2} \log \frac{4}{3} - 1$$

Hence $\alpha = \frac{8\epsilon}{1-8\delta}$ gives $\epsilon = \frac{\gamma\alpha}{8}$ and

$$\frac{m}{d} \le \left(\frac{(1-8\delta)^2}{64\epsilon^2} - 1\right) \log \frac{4}{3} - 1 := f\left(\frac{1}{\epsilon^2}\right)$$

Then, to obtain a bound of the form $\frac{m}{d} \leq \frac{\omega}{\epsilon^2}$, since $\epsilon \leq \frac{1}{64}$, it suffices to set $\frac{\omega}{(\frac{1}{64})^2} = f\left(\frac{1}{(\frac{1}{64})^2}\right)$. Hence, for $\delta = \frac{1}{64}$, we have $\omega = \frac{1}{(64)^2}((7^2-1)\log\frac{4}{3}-1) \approx \frac{1}{320}$ so that $\epsilon^2 \leq \frac{1}{320(m/d)}$ suffices.

Ch. 3 Exercises

3.1

Let \mathcal{H} be the set of intervals in \mathbb{R} . The VC-dimension of \mathcal{H} is 2, and its growth function satisfies $\Pi_{\mathcal{H}}(m) \leq \sum_{i=0}^{m} (m-i+1) = m^2 + m - \sum_{i=0}^{m}$.

Let \mathcal{H} be the family of threshold functions over the real line: $\mathcal{H} = \{x \mapsto 1_{x \leq \theta} | \theta \in \mathbb{R}\}$ Using this case, given m points in \mathbb{R} , we can exclude or include all, as well as include from opposite sides of the real line. Hence, $\Pi_m(\mathcal{H}) \leq 2 + (m-1)(2) = 2m$. Hence,

$$\Re_m(\mathcal{G}) \le \sqrt{\frac{2\log(2m)}{m}}$$

3.3

We define a linearly separable labeling of a set \mathcal{X} of vectors in \mathbb{R}^d as a classification of \mathcal{X} into two sets \mathcal{X}^+ and \mathcal{X}^- with $\mathcal{X}^+ = \{x \in \mathcal{X} \mid w \cdot x > 0\}$ and $\mathcal{X}^- = \{x \in \mathcal{X} \mid w \cdot x < 0\}$ for some $w \in \mathbb{R}^d$. Let $\mathcal{X} = \{x_1, ..., x_m\}$ be a subset of \mathbb{R}^d .

(a) Let $\{\mathcal{X}^+, \mathcal{X}^-\}$ be a dichotomy of \mathcal{X} and let $x_{m+1} \in \mathbb{R}^d$. Suppose that $\{\mathcal{X}^+, \mathcal{X}^-\}$ is linearly separable by a hyperplane

$$w \cdot x = 0, \ w \in \mathbb{R}^d$$

passing through the origin and $x_{m+1} = (x_{m+1}^1, ..., x_{m+1}^d)$. Then, since

$$\sum_{i=1}^{d} x_{m+1}^i w_i = 0$$

there exist $\epsilon_1, \epsilon_2 \in \mathbb{R}$ and $j, k \in \{1, ..., d\}$ for which $w' := (w_1, ..., w_j \pm \epsilon_1, ..., w_d)$ and $w'' := (w_1, ..., w_k \pm \epsilon_1, ..., w_d)$ satisfy

$$(w_j \pm \epsilon_1)x_{m+1}^j + \sum_{i \neq j} x_{m+1}^i w_i > 0$$

$$(w_k \pm \epsilon_2)x_{m+1}^j + \sum_{i \neq k} x_{m+1}^i w_i < 0$$

and $w \cdot x = 0$ still separates $\{\mathcal{X}^+, \mathcal{X}^-\}$.

Conversely, if $\{\mathcal{X}^+, \mathcal{X}^- \cup \{x_{m+1}\}\}$ and $\{\mathcal{X}^+ \cup \{x_{m+1}\}, \mathcal{X}^-\}$ are linearly separable by hyperplanes, those hyperplanes separate $\{\mathcal{X}^+, \mathcal{X}^-\}$.

b) Let $\mathcal{X} = \{x_1, ..., x_m\}$ be a subset of \mathbb{R}^d such that any k-element subset of \mathcal{X} with $k \leq d$ is linearly independent. Let C(m,d) denote the number of linearly separable labelings of \mathcal{X} . Then, we find that C(m+1,d) counts the linearly separable labelings in the m case for \mathbb{R}^d , and also double counts those cases in which the hyperplane (given by a vector $w \in \mathbb{R}^d$) can intersect the m+1-th vector. In such cases, the m+1-th vector may belong to

either \mathcal{X}^+ or \mathcal{X}^- by part (a), thereby defining two linearly separable labelings. Hence, C(m+1,d)=C(m,d)+C(m,d-1). For m=1, we have 1=C(2,1)=C(1,1)+C(1,0)=1+0. We may now inductively assume

$$C(m,d) = 2\sum_{k=0}^{d-1} {m-1 \choose k}, \ C(m,d-1) = 2\sum_{k=0}^{d-2} {m-1 \choose k}$$

Then,

$$C(m+1,d) = 2\sum_{k=0}^{d-1} {m-1 \choose k} + 2\sum_{k=0}^{d-2} {m-1 \choose k}$$
$$= 2\sum_{k=0}^{d-1} {m-1 \choose k} + 2\sum_{k=0}^{d-1} {m-1 \choose k-1} = 2\sum_{k=0}^{d-1} {m \choose k}$$

c) Let $f_1, ..., f_p$ be p functions mapping \mathbb{R}^d to \mathbb{R} . Define \mathcal{F} as the family of classifiers based on linear combinations of the functions:

$$\mathcal{F} = \left\{ x \mapsto \operatorname{sgn}\left(\sum_{k=1}^{p} a_k f_k(x)\right) : a_1, ..., a_p \in \mathbb{R} \right\}$$

Define Ψ by $\Psi(x) = (f_1(x), ..., f_p(x))$. Assume that there exists $x_1, ..., x_m \in \mathbb{R}^d$ such that every p-subset of $\{\Psi(x_1), ..., \Psi(x_m)\}$ is linearly independent. In this case,

$$\Pi_{\mathcal{F}}(m) = \sup_{\{x_1, ..., x_m\} \subset \mathbb{R}^d} |\{g(x_1), ..., g(x_m) : g \in \mathcal{F}\}|$$

so since each set $\{g(x_1),...,g(x_m)\}$ represents a linearly separable labeling of the *p*-dimensional points $\{\Psi(x_1),...,\Psi(x_m)\}$,

$$\sup_{\{x_1,...,x_m\}\subset\mathbb{R}^d} |\{g(x_1),...,g(x_m) : g\in\mathcal{F}\}| = 2\sum_{i=0}^{p-1} {m-1 \choose i}$$

using part (b) and . Therefore,

$$\Pi_{\mathcal{F}}(m) = 2\sum_{i=0}^{p-1} \binom{m-1}{i}$$

3.11

For an input space $\mathcal{X} := \mathbb{R}^{n_1}$, we consider the family of regularized neural networks defined by the following set of functions mapping \mathcal{X} to \mathbb{R} :

$$\mathcal{H} = \left\{ x \mapsto \sum_{j=1}^{n_2} w_j \sigma(u_j \cdot x) : ||w||_1 \le \Lambda', ||u_j||_2 \le \Lambda, \text{ for any } j \in [n_2] \right\}$$

where σ is an L-Lipschitz function (e.g. σ could be the sigmoid function which is 1-Lipschitz).

a) We find that

$$\widehat{\mathfrak{R}}_S(\mathcal{H}) = E_{\sigma} \Big[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \sigma_i h(x_i) \Big] = E_{\sigma} \Big[\sup_{w, u_j} \frac{1}{m} \sum_{i=1}^m \sigma_i \sum_{j=1}^{n_2} w_j \sigma(u_j \cdot x_i) \Big]$$

$$=\frac{1}{m}E_{\sigma}\Big[\sup_{w}\sum_{j=1}^{n_{2}}w_{j}\sup_{||u||_{2}\leq\Lambda}\sum_{i=1}^{m}\sigma_{i}\sigma(u\cdot x_{i})\Big]=\frac{\Lambda'}{m}E_{\sigma}\Big[\sup_{||u||_{2}\leq\Lambda}\sum_{i=1}^{m}\sigma_{i}\sigma(u\cdot x_{i})\Big]$$

b) We now use the following form of Talagrand's lemma valid for all hypothesis sets \mathcal{H} and L-lipschitz functions Φ :

$$\frac{1}{m} E_{\sigma} \left[\sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{m} \sigma_{i}(\Phi \circ h)(x_{i}) \right| \right] \leq \frac{L}{m} E_{\sigma} \left[\sup_{h \in \mathcal{H}} \left| \sum_{i=1}^{m} \sigma_{i}h(x_{i}) \right| \right]$$

so that

$$\widehat{\mathfrak{R}}_{S}(\mathcal{H}) \leq \frac{\Lambda' L}{m} E_{\sigma} \Big[\sup_{||u||_{2} \leq \Lambda} \sum_{i=1}^{m} \sigma_{i}(u \cdot x_{i}) \Big] \leq \Lambda' L E_{\sigma} \Big[\sup_{h \in \mathcal{H}'} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}h(x_{i}) \Big]$$
$$= \Lambda' L \widehat{\mathfrak{R}}_{S}(\mathcal{H}')$$

c) We then find that

$$\widehat{\mathfrak{R}}_{S}(\mathcal{H}') = E_{\sigma} \left[\sup_{s,u} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} s(u \cdot x_{i}) \right] = E_{\sigma} \left[\frac{1}{m} \left\| u \right\|_{2} \left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{2} \right]$$

$$= \frac{\Lambda}{m} E_{\sigma} \left[\left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{2} \right]$$

d) By Jensen's inequality, we have

$$E_v[||v||_2] \le \sqrt{E_v[||v||_2^2]}$$

hence

$$\widehat{\mathfrak{R}}_S(\mathcal{H}') \le \frac{\Lambda}{m} \sqrt{E_{\sigma} \left[\left\| \sum_{i=1}^m \sigma_i x_i \right\|_2^2 \right]}$$

e) If for any $x \in S$ we have $||x||_2 \le r$ for some r > 0, then

$$\widehat{\mathfrak{R}}_{S}(\mathcal{H}) \leq \Lambda' L \left(\frac{\Lambda}{m} \sqrt{\left(\sum_{i=1}^{m} ||\sigma_{i} x_{i}||_{2} \right)^{2}} \right) \leq \Lambda' L \left(\frac{\Lambda}{m} (mr) \right) = \Lambda' \Lambda L r$$

3.27

Let \mathcal{C} be a concept class over \mathbb{R}^r with VC-dimension d. A \mathcal{C} -neural network with one intermediate layer is a concept defined over \mathbb{R}^n that can be represented by a direct acyclic graph in which the input nodes are those at the bottom and in which each other node is labeled with a concept $c \in \mathcal{C}$.

The output of the neural network for a given input vector $(x_1, ..., x_n)$ is obtained as follows. First, each of the n input nodes is labeled with the corresponding value $x_i \in \mathbb{R}$. Next, the value at a node u in the higher layer (labeled with c) is obtained by applying c to the values of the input nodes admitting an edge ending in u. Since $c \in \{0, 1\}$, $u \in \{0, 1\}$. The value at the top (output) node is obtained similarly by applying the corresponding concept to the values of the nodes admitting an edge to the output node.

- a) Let \mathcal{H} denote the set of all neural networks defined with $k \geq 2$ internal nodes. Let $\Pi_{\mathcal{C}}(m) = \max_{z_1,...,z_m \subset \mathbb{R}^r} |\{(c(z_1),...,c(z_m)) : c \in \mathcal{C}\}|$ denote the growth function of the concept class \mathcal{C} . We then have $\Pi_{\mathcal{H}}(m) \leq \left(\Pi_c(m)\right)^{k+1}$ if there are k intermediate nodes and 1 final node.
- b) Since $\Pi_{\mathcal{H}}(m) \leq \Pi_{\mathcal{C}}(m)^{k+1}$, by Sauer's Lemma we have

$$\Pi_{\mathcal{C}}(m) \le \left(\frac{em}{d}\right)^d \Rightarrow \Pi_{\mathcal{H}}(m) \le \left(\frac{em}{d}\right)^{d(k+1)}$$

so that

$$m := 2(k+1)d\log_2(ek+e) \Rightarrow m > d(k+1)\log_2\left(\frac{em}{d}\right)$$

hence

$$2^m > \left(\frac{em}{d}\right)^{d(k+1)}$$

so since we must have

$$2^{m^*} \le \left(\frac{em^*}{d}\right)^{d(k+1)}$$

for the VC-dimension m^* , we have that

$$VCdim(\mathcal{H}) \le 2(k+1)d\log_2(ek+e)$$

c) Let \mathcal{C} be the family of concept classes defined by threshold functions $\mathcal{C} = \left\{ \operatorname{sgn}\left(\sum_{j=1}^r w_j x_j\right) : w \in \mathbb{R}^r \right\}$. In this case, $\operatorname{VCdim}(\mathcal{C}) = r$ since the r-dimensional vectors with 1's in the *i*-th spot may be shattered but not the origin x_0 (since \mathcal{C} does not involve a term added to the dot product. Hence,

$$VCdim(\mathcal{H}) \le 2(k+1)r\log_2(ek+e)$$

3.31

Let \mathcal{H} be a family of functions mapping \mathcal{X} to a subset of real numbers $\mathcal{Y} \subset \mathbb{R}$. For any $\epsilon > 0$, the "covering number" $\mathcal{N}(\mathcal{H}, \epsilon)$ of \mathcal{H} for the L_{∞} norm is the minimal $k \in \mathbb{N}$ such that \mathcal{H} can be covered with k balls of radius ϵ , i.e. there exists $\{h_1, ..., h_k\} \subset \mathcal{H}$ such that for all $h \in \mathcal{H}$ there exists $i \leq k$ with $||h - h_i||_{\infty} = \max_{x \in mcX} |h(x) - h_i(x)| \leq \epsilon$. Hence, when \mathcal{H} is compact, the finite subcover due to an ϵ covering of \mathcal{H} indicates that $\mathcal{N}(\mathcal{H}, \epsilon)$ is finite.

Let \mathcal{D} denote a distribution of $\mathcal{X} \times \mathcal{Y}$ according to which labeled examples are drawn. Then, for $h \in \mathcal{H}$, $R(h) = E_{(x,y) \sim \mathcal{D}}[(h(x) - y)^2]$ and $\widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i)^2$ for a lebeled sample $S = ((x_1, y_1), ..., (x_m, y_m))$. Suppose \mathcal{H} is bounded and that there exists M > 0 such that $|h(x) - y| \leq M$ for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$.

a) Let $L_S(h) = R(h) - \widehat{R}_S(h)$. Then, we find that

$$|L_{S}(h_{1}) - L_{S}(h_{2})| = \left| E[(h_{1}(x) - y)^{2} - (h_{2}(x) - y)^{2}] + \frac{1}{m} \sum_{i=1}^{m} (h_{2}(x_{i}) - y_{i})^{2} - (h_{1}(x_{i}) - y_{i})^{2} \right|$$

$$= \left| E[h_{1}(x)^{2} - 2h_{1}(x)y - (h_{2}(x)^{2} - 2h_{2}(x)y)] + \frac{1}{m} \sum_{i=1}^{m} h_{1}(x_{i})^{2} - 2h_{1}(x_{i})y_{i} - (h_{2}(x_{i})^{2} - 2h_{2}(x_{i})y_{i}) \right|$$

$$= \left| E[(h_{1}(x) - h_{2}(x))(h_{1}(x) - y) - (h_{2}(x) - h_{1}(x))(h_{2}(x) - y)] + \frac{1}{m} \sum_{i=1}^{m} (h_{1}(x_{i}) - h_{2}(x_{i}))(h_{1}(x_{i}) - y_{i}) - (h_{2}(x_{i}) - h_{1}(x_{i}))(h_{2}(x_{i}) - y_{i}) \right|$$

$$\leq |ME[h_{1}(x) - h_{2}(x)]| + |ME[h_{2}(x) - h_{1}(x)]| + \frac{1}{m} \sum_{i=1}^{m} 2M \max_{i} |h_{1}(x_{i}) - h_{2}(x_{i})|$$

$$\leq 4M||h_{1} - h_{2}||_{\infty}$$

b) Assume that \mathcal{H} can be covered by k subsets $\mathcal{B}_1,...,\mathcal{B}_k$, i.e. $\mathcal{H} = \mathcal{B}_1 \cup ... \cup \mathcal{B}_k$. Fix $\epsilon > 0$. We then have that

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{H}} |L_S(h)| \ge \epsilon \right] = \mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_1} |L_S(h)| \ge \epsilon \vee \dots \vee \sup_{h \in \mathcal{B}_k} |L_S(h)| \ge \epsilon \right]$$

$$\leq \sum_{i=1}^{k} \mathbb{P}_{S \sim \mathcal{D}^{m}} \Big[\sup_{h \in \mathcal{B}_{i}} |L_{S}(h)| \geq \epsilon \Big]$$

by the union bound.

c) We then let $k = \mathcal{N}(\mathcal{H}, \frac{\epsilon}{8M})$ and let $\mathcal{B}_1, ..., \mathcal{B}_k$ be balls of radius $\frac{\epsilon}{8M}$ centered at $h_1, ..., h_k$ covering \mathcal{H} . Fix $i \in [k]$. Note that if $h' := \operatorname{argmax}_{h \in \mathcal{B}_i} |L_S(h)|$, then since

$$|L_S(h') - L_S(h_i)| \le 4M||h' - h_i||_{\infty} \le \frac{\epsilon}{2}$$

we have

$$|L_S(h')| \ge \epsilon \Rightarrow |L_S(h_i)| \ge \frac{\epsilon}{2}$$

hence

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_i} |L_S(h)| \ge \epsilon \right] \le \mathbb{P}_{S \sim \mathcal{D}^m} \left[|L_S(h_i)| \ge \frac{\epsilon}{2} \right]$$

so by Hoeffding's Inequality and part b),

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{H}} |L_S(h)| \ge \epsilon \right] \le \sum_{i=1}^k \mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_i} |L_S(h)| \ge \epsilon \right] \\
\le \sum_{i=1}^k \mathbb{P}_{S \sim \mathcal{D}^m} \left[|L_S(h_i)| \ge \frac{\epsilon}{2} \right] = \sum_{i=1}^k \mathbb{P}_{S \sim \mathcal{D}^m} \left[|R(h) - \widehat{R}_S(h)| \ge \frac{\epsilon}{2} \right] \\
\le 2ke^{-\frac{2(\frac{\epsilon}{2})^2}{\sum_{i=1}^m (\frac{M^2}{m})^2}} = 2\mathcal{N} \left(\mathcal{H}, \frac{\epsilon}{8M} \right) e^{-\frac{m\epsilon^2}{2M^2}}$$

Chapter 4

Definition: A standard algorithm to bound estimation error is Empirical Risk Minimization (ERM):

$$h_S^{\text{ERM}} = \operatorname{argmin}_{h \in \mathcal{H}} \widehat{R}_S(h)$$

Proposition 4.1: For any sample S, the following inequality holds for the hypothesis returned by ERM:

$$\mathbb{P}\Big[R(h_S^{\text{ERM}}) - \inf_{h \in \mathcal{H}} R(h) > \epsilon\Big] \le \mathbb{P}\Big[\sup_{h \in \mathcal{H}} |R(h) - \widehat{R}_S(h)| > \frac{\epsilon}{2}\Big]$$

Proof: We find that

$$\epsilon < R(h_S^{\text{ERM}}) - \inf_{h \in \mathcal{H}} R(h) \le |R(h_S^{\text{ERM}}) - \widehat{R}_S(h_S^{\text{ERM}})| + |\inf_{h \in \mathcal{H}} R(h) - \widehat{R}_S(h_S^{\text{ERM}})|$$

so at least one of the terms on the right hand side exceeds $\frac{\epsilon}{2}$, hence

$$\sup_{h \in \mathcal{H}} |R(h) - \widehat{R}_S(h)| > \frac{\epsilon}{2}$$

satisfying

$$\mathbb{P}\Big[R(h_S^{\text{ERM}}) - \inf_{h \in \mathcal{H}} R(h) > \epsilon\Big] \leq \mathbb{P}\Big[\sup_{h \in \mathcal{H}} |R(h) - \widehat{R}_S(h)| > \frac{\epsilon}{2}\Big]$$

Definition: Regularization-based algorithms consist of selecting a family \mathcal{H} that is an uncountable union of nested hypothesis sets \mathcal{H}_{γ} , i.e. $\mathcal{H} = \bigcup_{\gamma>0} \mathcal{H}_{\gamma}$, and \mathcal{H} is often chosen to be dense in the space of continuous functions over \mathcal{X} . Often there exists $\mathcal{R}: \mathcal{H} \to \mathbb{R}$ such that, for any $\gamma > 0$, the constrained optimization problem

$$\operatorname{argmin}_{\gamma>0,h\in\mathcal{H}}\widehat{R}_S(h) + \operatorname{pen}(\gamma,m)$$

where pen (γ, m) refers to a penalty term such as $\mathfrak{R}_m(\mathcal{H}_{\gamma}) + \sqrt{\frac{\log \gamma}{m}}$, can be written as the unconstrained optimization problem

$$\operatorname{argmin}_{h \in \mathcal{H}} \widehat{R}_S(h) + \lambda \mathcal{R}(h)$$

for some $\lambda > 0$. Note that $\mathcal{R}(h)$ is a "regularization term— and λ is treated as a "regularization" hyperparameter (optimal value not known). Larger λ helps penalize more complex hypotheses while $\lambda \approx 0$ coincides with ERM. Cross-validation or n-fold cross-validation help select a value for λ .

Remark: Solving the ERM optimization problem is often NP-hard since the zero-one loss function is not convex, hence using a convex "surrogate" loss function can help upper bound the zero-one loss. In particular, for real-valued $h: \mathcal{X} \to \mathbb{R}$, we denote the binary classifier

$$f_h(x) = \begin{cases} 1 & h(x) \ge 0 \\ -1 & h(x) < 0 \end{cases}$$

and define the expected error R(h) as

$$R(h) = E_{(x,y) \sim \mathcal{D}}[1_{f_h(x) \neq y}]$$

For any $x \in \mathcal{X}$ we write $\eta(x) := \mathbb{P}[y = 1|x]$. For $\mathcal{D}_{\mathcal{X}}$ the marginal distribution over \mathcal{X} and any h, we then have

$$R(h) = E_{(x,y)\sim\mathcal{D}}[1_{f_h(x)\neq y}] = E_{x\sim\mathcal{D}_{\mathcal{X}}} \left[\eta(x) 1_{h(x)<0} + (1-\eta(x)) 1_{h(x)\geq 0} \right]$$

We then define the "Bayes scoring function" $h^*: \mathcal{X} \to \mathbb{R}$ as

$$h^*(x) := \eta(x) - \frac{1}{2}$$

where

$$R^* := R(h^*)$$

denotes the error of the Bayes scoring function.

Lemma 4.5: The "excess error" of any hypothesis $h:\mathcal{X}\to\mathbb{R}$ can be expressed as

$$R(h) - R^* = 2E_{x \sim \mathcal{D}_{\mathcal{X}}} \left[|h^*(x)| 1_{h(x)h^*(x) \le 0} \right]$$

Proof: For any h we have

$$R(h) = E_{x \sim \mathcal{D}_{\mathcal{X}}} [\eta(x) 1_{h(x) < 0} + (1 - \eta(x)) 1_{h(x) \ge 0}]$$

$$= E_{x \sim \mathcal{D}_{\mathcal{X}}} [\eta(x) 1_{h(x) < 0} + (1 - \eta(x)) (1 - 1_{h(x) < 0})]$$

$$= E_{x \sim \mathcal{D}_{\mathcal{X}}} [2\eta(x) 1_{h(x) < 0} + 1 - 1_{h(x) < 0} - \eta(x)]$$

$$= E_{x \sim \mathcal{D}_{\mathcal{X}}} [2h^{*}(x) 1_{h(x) < 0} + (1 - \eta(x))]$$

so that

$$R(h) - R^* = 2E_{x \sim \mathcal{D}_{\mathcal{X}}}[h^*(x)1_{h(x)<0} - h^*(x)1_{h^*(x)<0}]$$
$$= 2E_{x \sim \mathcal{D}_{\mathcal{X}}}[1_{h(x)h^*(x)<0}|h^*(x)|]$$

Definition: Let $\Phi : \mathbb{R} \to \mathbb{R}$ be a convex and non-decreasing function so that for any $u \in \mathbb{R}$, $1_{u \leq 0} \leq \Phi(-u)$. The " Φ -loss" of a function $h : \mathcal{X} \to \mathbb{R}$ at a point $(x,y) \in \mathcal{X} \times \{-1,1\}$ is defined as $\Phi(-yh(x))$ and its expected loss is given by

$$\mathcal{L}_{\Phi}(h) := E_{(x,y) \sim \mathcal{D}}[\Phi(-yh(x))]$$
$$= E_{x \sim \mathcal{D}_{\mathcal{X}}}[\eta(x)\Phi(-h(x)) + (1 - \eta(x))\Phi(h(x))]$$

Note that $1_{u < 0} \le \Phi(-u) \Rightarrow R(h) \le \mathcal{L}_{\Phi}(h)$.

Definition: We further define $u \mapsto L_{\Phi}(x, u)$ for any $x \in \mathcal{X}$ and $u \in \mathbb{R}$ as

$$L_{\Phi}(x, u) = \eta(x)\Phi(-u) + (1 - \eta(x))\Phi(u)$$

so that $\mathcal{L}_{\Phi}(h) = E_{x \sim \mathcal{D}_{\mathcal{X}}}[L_{\Phi}(x, h(x))]$ Note that since Φ is convex, so is $u \mapsto L_{\Phi}(x, u)$.

Definition: Let $h_{\Phi}^*: \mathcal{X} \to [-\infty, \infty]$ denote the "Bayes solution for the loss function L_{Φ} ", i.e. $h_{\Phi}^*(x)$ solves the convex optimization problem:

$$h_{\Phi}^*(x) = \operatorname{argmin}_{u \in [-\infty, \infty]} L_{\Phi}(x, u)$$

Note that this solution may not be unique. We lastly define

$$\mathcal{L}_{\Phi}^* := E_{(x,y) \sim \mathcal{D}}[\Phi(-yh_{\Phi}^*(x))]$$

Proposition 4.6: Let Φ be a convex non-decreasing function with $\Phi'(0) > 0$. Then, for any $x \in \mathcal{X}$, $h_{\Phi}^*(x) > 0 \iff h^*(x) > 0$ and $h^*(x) = 0 \iff h_{\Phi}^*(x) = 0$, hence $\mathcal{L}_{\Phi}^* = R^*$

Theorem 4.7: Let Φ be a convex and non-decreasing function. Assume that there exists $s \geq 1$ and c > 0 such that the following holds for all $x \in \mathcal{X}$:

$$|h^*(x)|^s = |\eta(x) - \frac{1}{2}|^s \le c^s [L_{\Phi}(x,0) - L_{\Phi}(x,h_{\Phi}^*(x))]$$

Then, for any hypothesis h, the excess error of h satisfies

$$R(h) - R^* \le 2c(\mathcal{L}_{\Phi}(h) - \mathcal{L}_{\Phi}^*)^{\frac{1}{s}}$$

Proof: First note that, for $sgn(h) \neq sgn(h^*)$

(*)
$$\eta(x)\Phi(0) + (1 - \eta(x))\Phi(0) = \Phi(0) \le \eta(x)(\Phi(-h(x))) + (1 - \eta(x))\Phi(h(x))$$

as h>0 for $\eta(x)<\frac{1}{2}$ and h<0 for $\eta>\frac{1}{2},$ and Φ is non-decreasing with non-decreasing derivative.

We find that

$$R(h) - R^* = 2E_{x \sim \mathcal{D}_{\mathcal{X}}}[|h^*(x)|1_{h(x)h^*(x) \leq 0}]$$

$$\leq 2E_{x \sim \mathcal{D}_{\mathcal{X}}}[c(L_{\Phi}(x,0) - L_{\Phi}(x,h_{\Phi}^*(x)))^{\frac{1}{s}}1_{h(x)h^*(x) \leq 0}]$$

$$= 2cE_{x \sim \mathcal{D}_{\mathcal{X}}}[((L_{\Phi}(x,0) - L_{\Phi}(x,h_{\Phi}^*(x)))1_{h(x)h^*(x) \leq 0})^{\frac{1}{s}}]$$

and since $x \mapsto x^{\frac{1}{s}}$ is a concave function for s > 1,

$$\leq 2c(E_{x \sim \mathcal{D}_{\mathcal{X}}}[(L_{\Phi}(x,0) - L_{\Phi}(x,h_{\Phi}^{*}(x)))1_{h(x)h^{*}(x) < 0}])^{\frac{1}{s}}$$

By (*) we then have

$$\leq 2c(E_{x \sim \mathcal{D}_{\mathcal{X}}}[(L_{\Phi}(x, h(x)) - L_{\Phi}(x, h_{\Phi}^{*}(x)))1_{h(x)h^{*}(x) \leq 0}])^{\frac{1}{s}}$$

so since since $L_{\Phi}(x, h(x)) \ge L_{\Phi}(x, h_{\Phi}^*(x))$ for any h,

$$\leq 2c(E_{x \sim \mathcal{D}_{\mathcal{X}}}[L_{\Phi}(x, h(x)) - L_{\Phi}(x, h_{\Phi}^{*}(x))])^{\frac{1}{s}} = 2c(\mathcal{L}_{\Phi}(h) - \mathcal{L}_{\Phi}^{*})^{\frac{1}{s}}$$

Ch. 4 Exercises

4.1

We find that, for any $h \in \mathcal{H}$, $\widehat{R}_S(h_S^{\mathrm{ERM}}) \leq \widehat{R}_S(h)$, hence $E_{S \sim \mathcal{D}^m}[\widehat{R}_S(h_S^{\mathrm{ERM}})] \leq \inf_{h \in \mathcal{H}} E_{S \sim \mathcal{D}^m}[\widehat{R}_S(h)]$. Further, $R(h_S^{\mathrm{ERM}}) \geq \inf_{h \in \mathcal{H}} R(h)$ for any $S \sim \mathcal{D}^m$, hence $\inf_{h \in \mathcal{H}} E_{S \sim \mathcal{D}^m}[\widehat{R}_S(h)] \leq E_{S \sim \mathcal{D}^m}[R(h_S^{\mathrm{ERM}})]$

4.2

Let $\Phi(u) = (1+u)^2$, so that Φ is non-decreasing on $[-1,\infty]$ and convex with $\Phi''(u) = 2 > 0$. We observe that

$$\eta(x)\Phi(-u) + (1 - \eta(x))\Phi(u) = (1 + u)^2 - 4\eta(x)u$$

so for $\eta = 0$,

$$|h^*(x)|^2 = \frac{1}{4} = (\frac{1}{2})^2 (1 - \inf_u((1+u)^2))$$

For $\eta = \frac{1}{2}$ we have

$$|h^*(x)|^2 = 0 = \frac{1 - \inf_u(1 + u^2)}{4} = (\frac{1}{2})^2 (1 - \inf_u(1 + u)^2 - 2u))$$

For $\eta = \frac{1}{2} + \epsilon$ with $\epsilon \in (0, \frac{1}{2}]$, since $\inf_u \frac{u^2 - 4u\epsilon}{4} \le -\epsilon^2$,

$$|h^*(x)|^2 = \epsilon^2 = -\frac{4\epsilon^2 - 8\epsilon^2}{4} \le -\inf_u \frac{u^2 - 4u\epsilon}{4} = \frac{1 - \inf_u ((1+u)^2 - 4u(\frac{1}{2} + \epsilon))}{4}$$

Similarly, for $\eta=\frac{1}{2}-\epsilon$ with $\epsilon\in(0,\frac{1}{2}]$, since $\inf_u\frac{u^2-4u\epsilon}{4}\leq-\epsilon^2$ (choosing $u=-2\epsilon$),

$$|h^*(x)|^2 = \epsilon^2 = -\frac{4\epsilon^2 - 8\epsilon^2}{4} \le -\inf_{u} \frac{u^2 + 4u\epsilon}{4}$$

$$=\frac{1-\inf_{u}((1+u)^{2}-4u(\frac{1}{2}-\epsilon))}{4}=\frac{1}{4}(\Phi(0)-L_{\Phi}(x,h_{\Phi}^{*}(x)))=\frac{1}{4}(L_{\Phi}(x,0)-L_{\Phi}(x,h_{\Phi}^{*}(x)))$$

Hence, for s=2 and $c=\frac{1}{2}$ we have

$$R(h) - R^* \le \left[\mathcal{L}_{\Phi}(h) - \mathcal{L}_{\Phi}^*\right]^{\frac{1}{2}}$$

4.3

We then consider the Hinge loss $\Phi(u) = \max(0, 1 + u)^2$. Since this function is the same as that in 4.2 on $[-1, \infty]$, the same bounds hold.

4.4

Define the loss of $h: \mathcal{X} \to \mathbb{R}$ at a point $(x,y) \in \mathcal{X} \times \{-1,1\}$ to be $1_{uh(x)<0}$.

a) The Bayes classifier in this case is

$$h'(x) := \mathrm{argmin}_{y \in \{-1,1\}} \mathbb{P}[y|x]$$

hence a scoring function could be

$$h^*(x) := \begin{cases} \eta(x) - \frac{1}{2} & \eta(x) \neq \frac{1}{2} \\ -1 & \eta(x) = \frac{1}{2} \end{cases}$$

where $\eta(x) = \mathbb{P}[1|x]$.

b) In this case, replacing $1_{h(x)<0}$ with $1_{h(x)<0}+1_{h(x)=0}$ yields

$$R(h) = E_{x \sim \mathcal{D}_{\mathcal{X}}} [\eta(x)(1 - 1_{h(x) > 0}) + (1 - \eta(x))(1_{h(x) > 0} + 1_{h(x) = 0})]]$$

$$\begin{split} R(h) - R^* &= E_{(x,y) \in \mathcal{D}}[1_{yh(x) \leq 0} - 1_{yh^*(x) \leq 0}] \\ &= E_{x \sim \mathcal{D}_{\mathcal{X}}}[\eta(x) 1_{h(x) \leq 0} + (1 - \eta(x)) 1_{h(x) \geq 0} - (\eta(x) 1_{h^*(x) \leq 0} + (1 - \eta(x)) 1_{h^*(x) \geq 0})] \\ \text{where replacing } 1_{h(x) \leq 0} \text{ with } 1_{h(x) < 0} + 1_{h(x) = 0} \text{ yields} \end{split}$$

$$= E_{x \sim \mathcal{D}_{\mathcal{X}}} [2|h^*(x)|1_{h(x)*h^*(x) \le 0} + (-h^*(x) + \frac{1}{2})(1_{h(x)=0} - 1_{h^*(x)=0})]$$

Chapter 15

Definition: A projection on a vector space V is a linear operator $P: V \to V$ such that $P^2 = P$. A projection on a Hilbert space V is an orthogonal projection if $\langle Px, y \rangle = \langle x, Py \rangle$

Definition: The "Frobenius norm", denoted by $||.||_F$ is a matrix norm defined over $\mathbb{R}^{m \times n}$ as

$$||\mathbf{M}||_F := \sqrt{\sum_{i=1}^m \sum_{j=1}^n \mathbf{M}_{ij}^2}$$

Definition: For a sample $S = (x_1, ..., x_m)$ and feature mapping $\mathbf{\Phi} : \mathcal{X} \to \mathbb{R}^N$, we define the data matrix $(\mathbf{\Phi}(x_1), ..., \mathbf{\Phi}(x_m)) =: \mathbf{X} \in \mathbb{R}^{N \times m}$. If \mathbf{X} is a mean-centered data matrix $(\sum_{i=1}^m \mathbf{\Phi}(x_i) = \mathbf{0})$, let \mathcal{P}_k denote the set of N-dimensional rank-k orthogonal projection matrices. PCA (Principal Component Analysis) is defined by the orthogonal projection matrix

$$\mathbf{P}^* := \mathrm{argmin}_{\mathbf{P} \in \mathcal{P}_k} ||\mathbf{P}\mathbf{X} - \mathbf{X}||_F^2$$

Definition: The "top singular vector" of a matrix \mathbf{M} is the vector \mathbf{x} which maximizes the Rayleigh quotient

$$r(\mathbf{x}, \mathbf{M}) = \frac{\mathbf{x}^T \mathbf{M} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

Theorem 15.1: Let $\mathbf{P}^* \in \mathcal{P}_k$ be the PCA solution for a centered data matrix \mathbf{X} . Then, $\mathbf{P}^* = \mathbf{U}_k \mathbf{U}_k^T$, where $\mathbf{U}_k \in \mathbb{R}^{N \times k}$ is the matrix formed by the top

k singular vectors of $\mathbf{C} := \frac{1}{m} \mathbf{X} \mathbf{X}^T$, the sample covariance matrix corresponding to \mathbf{X} . Note that this is the sample covariance matrix since

$$\frac{1}{m}(\mathbf{X}\mathbf{X}^T)_{ij} = \frac{1}{m} \sum_{\ell=1}^m \mathbf{X}_{i\ell} \mathbf{X}_{\ell j}^T = \frac{1}{m} \sum_{\ell=1}^m \mathbf{\Phi}(x_\ell)_i \mathbf{\Phi}(x_\ell)_j$$

$$= E[\mathbf{\Phi}(x)_i \mathbf{\Phi}(x)_j] = E[\mathbf{\Phi}(x)_i \mathbf{\Phi}(x)_j] - E[\mathbf{\Phi}(x)_i] E[\mathbf{\Phi}(x)_j] = Cov(\mathbf{\Phi}(x)_i, \mathbf{\Phi}(x)_j)$$

where the right hand term is the covariance between i-th and j-th coordinates of the feature output based on m samples. Moreover, the associated k-dimensional representation of \mathbf{X} is given by $\mathbf{Y} = \mathbf{U}_k^T \mathbf{X}$.

Proof: For $\mathbf{P} = \mathbf{P}^T$ an orthogonal projection matrix, we seek to minimize

$$||\mathbf{PX} - \mathbf{X}||_F^2 = \sum_{i=1}^N \sum_{j=1}^N ((\mathbf{PX} - \mathbf{X})_{ij})^2 = \text{Tr}[(\mathbf{PX} - \mathbf{X})^T (\mathbf{PX} - \mathbf{X})]$$

$$= \text{Tr}[\mathbf{X}^T \mathbf{P}^2 \mathbf{X} - \mathbf{X}^T \mathbf{P}^T \mathbf{X} - \mathbf{X}^T \mathbf{P} \mathbf{X} + \mathbf{X}^T \mathbf{X}] = \text{Tr}[\mathbf{X}^T \mathbf{P} \mathbf{X} - 2 \mathbf{X}^T \mathbf{P} \mathbf{X} + \mathbf{X}^T \mathbf{X}]$$
$$= \text{Tr}[\mathbf{X}^2] - \text{Tr}[\mathbf{X}^T \mathbf{P} \mathbf{X}]$$

hence we seek to maximize

$$\operatorname{Tr}[\mathbf{X}^T \mathbf{P} \mathbf{X}] = \operatorname{Tr}[\mathbf{X}^T \mathbf{U}_k \mathbf{U}_k^T \mathbf{X}] = \operatorname{Tr}[\mathbf{U}_k^T \mathbf{X} \mathbf{X}^T \mathbf{U}_k]$$

$$=\sum_{i=1}^k \left(\sum_{j=1}^N (\mathbf{U}_k^T \mathbf{X} \mathbf{X}^T)_{ij} (\mathbf{U}_k)_{ji}\right) = \sum_{i=1}^k \left(\sum_{j=1}^N \left(\sum_{\ell=1}^N (\mathbf{U}_k^T)_{i\ell} (\mathbf{X} \mathbf{X}^T)_{\ell j}\right) (\mathbf{U}_k)_{ji}\right)$$

so for $\mathbf{u}_i := ((\mathbf{U}_k)_{1i}, ..., (\mathbf{U}_k)_{Ni}),$

$$= \sum_{i=1}^{N} \left(\mathbf{u}_{i}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{u}_{i} \right)$$

where

$$\mathbf{P}\mathbf{X} = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$$

so that $\mathbf{Y} := \mathbf{U}_k^T \mathbf{X}$ is a k-dimensional representation of \mathbf{X} .

Note: The top singular vectors of \mathbf{C} are the directions of maximal variance in the data, and the \mathbf{u}_i are the variances, so that PCA may be understood as projection onto the subspace of maximal variance.

b) In the 1-dimensional case, PCA seeks to minimize $||\mathbf{PX} - \mathbf{X}||_F^2$, which by part a) gives the direction in which projection yields maximal variance.

Remark: In Kernel principle component analysis (KPCA), the feature map Φ send \mathcal{X} to an arbitrary Reproducing Kernel Hilbert Space (RKHS) equipped with its own inner product (kernel function K).

Definition: Isomap extracts the low-dimensional data that best preserves pairwise distances between inputs based on their geodesic distances along a manifold. The algorithm is specified as follows:

- 1. Using the L_2 norm, find the t closest neighbors for each data point and construct an undirected neighborhod graph \mathcal{G} , in which points are nodes and links are edges.
- 2. Compute approximate geodesic distances Δ_{ij} between all pairs of nodes (i,j) by computing all-pairs shortest distances in \mathcal{G} .
- 3. Calculate the $m \times m$ similarity matrix as $\mathbf{K}_{\text{Iso}} := -\frac{1}{2}(\mathbf{I}_m \frac{1}{m}\mathbf{1}\mathbf{1}^T)\mathbf{\Delta}(\mathbf{I}_m \frac{1}{m}\mathbf{1}\mathbf{1}^T)$, where $\mathbf{1}$ is a column vector of all ones and $\mathbf{\Delta}$ is the squared distance matrix.
- 4. Find the optimal k-dimensional representation $\mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n$ where

$$\mathbf{Y} = \operatorname{argmin}_{\mathbf{Y}'} \sum_{i,j} \left(||\mathbf{y}_i' - \mathbf{y}_j'||_2^2 - \mathbf{\Delta}_{ij}^2 \right)$$

given by

$$\mathbf{Y} = (\mathbf{\Sigma}_{\mathrm{Iso, j}})^{\frac{1}{2}} \mathbf{U}_{\mathrm{Iso, k}}^T$$

Note that $\Sigma_{\rm Iso,\ j}$ is the diagonal matrix of the top k singular values of $\mathbf{K}_{\rm Iso}$ and $\mathbf{u}_{\rm Iso,\ k}$ are the corresponding singular vectors. Further, $\mathbf{K}_{\rm Iso}$ serves as a kernel matrix (similarity matrix for data points in feature space) if it is positive semidefinite.

Definition The Laplacian Eigenmaps algorithm aims to find a k-dimensional representation of the data matrix \mathbf{X} which best preserves the weighted neighborhood relations specified by a matrix \mathbf{W} :

- 1. Find the t nearest neighbors of each point
- 2. Define $\mathbf{W} \in \mathbb{R}^{m \times m}$ as $\mathbf{W}_{ij} := e^{\frac{||\mathbf{x}_i \mathbf{x}_j||_2^2}{\sigma^2}}$ if \mathbf{x}_i and \mathbf{x}_j are neighbors, or as 0 otherwise, where σ is a scaling parameter.
- 3. Construct a diagonal matrix $\mathbf{D} \in \mathbb{R}^{m \times m}$ as $\mathbf{D}_{ii} = \sum_{j=1}^{m} \mathbf{W}_{ij}$.
- 4. Find $\mathbf{Y} \in \mathbb{R}^{k \times m}$ satisfying

$$\operatorname{argmin}_{\mathbf{Y}'} \Big\{ \sum_{i,j} \mathbf{W}_{ij} ||\mathbf{y}_i' - \mathbf{y}_j'||_2^2 \Big\}$$

Intuitively, the above minimization penalizes k-dimensional representations of neighbors that differ largely under the L_2 norm.

Proposition (my own proof): The solution to the Laplacian eigenmap minimization is $\mathbf{U}_{\mathbf{L},k}^T$, where $\mathbf{L} = \mathbf{D} - \mathbf{W}$ is the "graph Laplacian" and $\mathbf{U}_{\mathbf{L},k}^T$ are the bottom k singular vectors of \mathbf{L} (excluding 0 if the underlying neighborhood graph has connections).

Proof: We find that, for $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{Y} \in \mathbb{R}^{k \times m}$ we have

$$(\mathbf{Y}\mathbf{L}\mathbf{Y}^T)_{ij} = \sum_{\ell=1}^m \mathbf{Y}_{i\ell}^T (\mathbf{L}\mathbf{Y})_{\ell j} = \sum_{\ell=1}^m \mathbf{Y}_{\ell i} \Big(\sum_{t=1}^m \mathbf{L}_{\ell t} \mathbf{Y}_{tj}\Big)$$
 $(*) = \sum_{\ell=1}^m \mathbf{Y}_{\ell i} \sum_{t \neq \ell} \mathbf{W}_{\ell t} (\mathbf{Y}_{\ell j} - \mathbf{Y}_{tj})$

while

$$\sum_{i,\ell} \mathbf{W}_{i\ell} ||\mathbf{y}_i' - \mathbf{y}_\ell'||_2^2 = \sum_{i=1}^m \sum_{\ell=1}^m \mathbf{W}_{i\ell} (\mathbf{y}_i' - \mathbf{y}_\ell')^T (\mathbf{y}_i' - \mathbf{y}_\ell')$$

$$= \sum_{i=1}^m \sum_{\ell=1}^m \mathbf{W}_{i\ell} ((\mathbf{y}_i')^2 - 2(\mathbf{y}_\ell'^T \mathbf{y}_i') + (\mathbf{y}_\ell')^2)$$

$$= \sum_{i=1}^m \sum_{\ell=1}^m \mathbf{W}_{i\ell} \left(\sum_{j=1}^m (\mathbf{y}_i')_j^2 - 2(\mathbf{y}_\ell')_j (\mathbf{y}_i')_j + (\mathbf{y}_\ell')_j^2 \right)$$

$$= \sum_{i=1}^m \sum_{\ell=1}^m \mathbf{W}_{i\ell} \left(\sum_{j=1}^m \mathbf{Y}_{ji}'^2 - 2\mathbf{Y}_{j\ell}' \mathbf{Y}_{ji}' + \mathbf{Y}_{j\ell}'^2 \right)$$

hence by (*)

$$= \sum_{i=1}^{k} (\mathbf{Y}' \mathbf{L} \mathbf{Y}'^T)_{ii}$$

so for $\mathbf{Y} := \mathbf{Y}^{\prime T}$, by the final simplication used in Theorem 15.1,

$$= \sum_{i=1}^k \mathbf{y}_i^T \mathbf{L} \mathbf{y}_i$$

Remark (PCA Gradient Descent): From Theorem 15.1, we have that

$$\frac{\partial}{\partial (U_k)_{ab}} ||PX - X||_F^2 = -\frac{\partial}{\partial (U_k)_{ab}} \sum_{i=1}^k \sum_{j=1}^N \sum_{\ell=1}^N (U_k^T)_{i\ell} (XX^T)_{\ell j} (U_k)_{ji}$$

$$= -\left(2(U_k)_{ab} (XX^T)_{aa} + \sum_{\ell=1}^N (U_k^T)_{b\ell} (XX^T)_{\ell a} + \sum_{\ell=1}^N (XX^T)_{aj} (U_k)_{jb}\right)$$

$$= -2\sum_{\ell=1}^{N} (U_k)_{\ell b} (XX^T)_{a\ell}$$

since

$$XX_{ij}^{T} = \sum_{s=1}^{m} X_{is} X_{sj}^{T} = \sum_{s=1}^{m} X_{js} X_{si}^{T} = XX_{ji}^{T}$$

so for $F(U_k) = ||U_k U_k^T X - X||_F^2$ and $DF(U_k)_{ji} = \frac{\partial}{\partial (U_k)_{ji}} ||PX - X||_F^2$, we perform gradient descent steps as

$$U_k - \lambda DF(U_k)$$

for step size λ .

Ch. 15 Exercises

15.1

Let **X** be an uncentered data matrix and let $\overline{\mathbf{x}} := \frac{1}{m} \sum_{i=1}^{N} \mathbf{x}_i$ be the sample mean of the columns of **X**.

a) We require

$$\mathbf{C}_{ij} = \operatorname{Cov}(\mathbf{\Phi}(x)_i, \mathbf{\Phi}(x)_j) = E[\mathbf{\Phi}(x)_i \mathbf{\Phi}(x)_j] - E[\mathbf{\Phi}(x)_i] E[\mathbf{\Phi}(x)_j]$$

$$= \frac{1}{m} \sum_{\ell=1}^m \mathbf{\Phi}(x_\ell)_i \mathbf{\Phi}(x_\ell)_j - \overline{\mathbf{x}}_i \overline{\mathbf{x}}_j = \frac{1}{m} \sum_{\ell=1}^m (\mathbf{x}_\ell)_i (\mathbf{x}_\ell)_j - \overline{\mathbf{x}}_i \overline{\mathbf{x}}_j$$

$$= \frac{1}{m} \Big(\sum_{\ell=1}^m (\mathbf{x}_\ell)_i (\mathbf{x}_\ell)_j - (\mathbf{x}_\ell)_i (\overline{\mathbf{x}}_j) - (\mathbf{x}_\ell)_j (\overline{\mathbf{x}}_i) + (\overline{\mathbf{x}}_i) (\overline{\mathbf{x}}_j) \Big)$$

hence

$$\mathbf{C} = \frac{1}{m} \sum_{\ell=1}^{m} (\mathbf{x}_{\ell} \mathbf{x}_{\ell}^{T} - \mathbf{x}_{\ell} \overline{\mathbf{x}}^{T} - \overline{\mathbf{x}}^{T} \mathbf{x}_{\ell} + \overline{\mathbf{x}}^{T} \overline{\mathbf{x}}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i} - \overline{\mathbf{x}}) (\mathbf{x}_{i} - \overline{\mathbf{x}})^{T}$$

Then, for a vector $\mathbf{u} \in \mathbb{R}^N$, we have

$$\operatorname{Var}(\mathbf{u}^{T}\mathbf{x}_{i}) = E[(\mathbf{u}^{T}\mathbf{x}_{i})^{2}] - E[\mathbf{u}^{T}\mathbf{x}_{i}]^{2}$$

$$= \frac{1}{m} \left(\sum_{i=1}^{m} (\mathbf{u}^{T}\mathbf{x}_{i})^{2} \right) - (\mathbf{u}^{T}\overline{\mathbf{x}})^{2} = \frac{1}{m} \left(\sum_{i=1}^{m} (\mathbf{u}^{T}\mathbf{x}_{i})^{2} - (\mathbf{u}^{T}\overline{\mathbf{x}})^{2} \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \mathbf{u}^{T} (\mathbf{x}_{i}\mathbf{x}_{i}^{T} - \mathbf{x}_{i}\overline{\mathbf{x}}^{T} - \overline{\mathbf{x}}^{T}\mathbf{x}_{i} + \overline{\mathbf{x}}^{T}\overline{\mathbf{x}})\mathbf{u} = \mathbf{u}\mathbf{C}\mathbf{u}^{T}$$

15.2

In this problem we prove the correctness of double centering (computing $\mathbf{K}_{\mathrm{Iso}}$) using Euclidean distance. Define \mathbf{X} as in 15.1, and define \mathbf{X}^* to have $\mathbf{x}_i^* := \mathbf{x}_i - \overline{\mathbf{x}}$ as its *i*-th column. Let $\mathbf{K} := \mathbf{X}\mathbf{X}^T$ and let \mathbf{D} denote the Euclidean distance matrix with $\mathbf{D}_{ij} = ||\mathbf{x}_i - \mathbf{x}_j||$. Further, let $\boldsymbol{\Delta}$ denote the squared distance matrix with $\boldsymbol{\Delta}_{ij} = \mathbf{D}_{ij}^2$.

a) We find that

$$\begin{aligned} \mathbf{K}_{ij} &= \sum_{\ell=1}^{m} \mathbf{X}_{i\ell}^{T} \mathbf{X}_{\ell j} = \frac{1}{2} \Big(\sum_{\ell=1}^{m} \mathbf{X}_{\ell i}^{2} - \mathbf{X}_{\ell i}^{2} + \mathbf{X}_{\ell j}^{2} - \mathbf{X}_{\ell j}^{2} + 2 \mathbf{X}_{\ell i} \mathbf{X}_{\ell j} \Big) \\ &= \frac{1}{2} \Big(\sum_{\ell=1}^{m} \mathbf{X}_{\ell i}^{2} + \mathbf{X}_{\ell j}^{2} - (\mathbf{X}_{\ell j} - \mathbf{X}_{\ell i})^{2} \Big) = \frac{1}{2} (\mathbf{K}_{ii} + \mathbf{K}_{jj} - ||\mathbf{x}_{i} - \mathbf{x}_{j}||^{2}) \\ &= \frac{1}{2} (\mathbf{K}_{ii} + \mathbf{K}_{jj} - \mathbf{D}_{ij}^{2}) \end{aligned}$$

b) Let $\mathbf{K}^* := \mathbf{X}^{*T} \mathbf{X}^*$. We first find that

$$\frac{1}{m}(\mathbf{K}\mathbf{1}\mathbf{1}^{T})_{ij} = \frac{1}{m} \sum_{t=1}^{m} \mathbf{K}_{it} = \frac{1}{m} \sum_{t=1}^{m} \sum_{\ell=1}^{m} \mathbf{X}_{\ell i} \mathbf{X}_{\ell t} = \sum_{\ell=1}^{m} (\overline{\mathbf{x}})_{\ell}(\mathbf{x}_{i})_{\ell}$$

$$\frac{1}{m} (\mathbf{1} \mathbf{1}^T \mathbf{K})_{ij} = \frac{1}{m} \sum_{t=1}^m \mathbf{K}_{tj} = \frac{1}{m} \sum_{t=1}^m \sum_{\ell=1}^m \mathbf{X}_{\ell t} \mathbf{X}_{\ell j} = \sum_{\ell=1}^m (\overline{\mathbf{x}})_{\ell} (\mathbf{x}_j)_{\ell}$$

and

$$\frac{1}{m^2} (\mathbf{1} \mathbf{1}^T \mathbf{K} \mathbf{1} \mathbf{1}^T)_{ij} = \frac{1}{m^2} \sum_{t=1}^m (\mathbf{1} \mathbf{1}^T)_{it} (\mathbf{K} \mathbf{1} \mathbf{1}^T)_{tj} = \frac{1}{m} \sum_{t=1}^m \sum_{\ell=1}^m (\overline{\mathbf{x}}_\ell)_\ell (\mathbf{x}_t)_\ell = \sum_{\ell=1}^m (\overline{\mathbf{x}}_\ell)^2$$

Then,

$$\mathbf{K}_{ij}^* = \sum_{\ell=1}^N \mathbf{X}_{i\ell}^{*T} \mathbf{X}_{\ell j}^* = \sum_{\ell=1}^N (\mathbf{x}_i - \overline{\mathbf{x}})_{\ell} (\mathbf{x}_j - \overline{\mathbf{x}})_{\ell}$$
$$= \sum_{\ell=1}^N (\mathbf{x}_i)_{\ell} (\mathbf{x}_j)_{\ell} - (\mathbf{x}_i)_{\ell} (\overline{\mathbf{x}})_{\ell} - (\mathbf{x}_j)_{\ell} (\overline{\mathbf{x}})_{\ell} + (\overline{\mathbf{x}})_{\ell}^2$$
$$= \mathbf{K}_{ij} - \frac{1}{m} (\mathbf{K} \mathbf{1} \mathbf{1}^T)_{ij} - \frac{1}{m} (\mathbf{1} \mathbf{1}^T \mathbf{K})_{ij} + \frac{1}{m^2} (\mathbf{1} \mathbf{1}^T \mathbf{K} \mathbf{1} \mathbf{1}^T)_{ij}$$

so that

$$\mathbf{K}^* = \mathbf{K} - \frac{1}{m}\mathbf{K}\mathbf{1}\mathbf{1}^T - \frac{1}{m}\mathbf{1}\mathbf{1}^T\mathbf{K} + \frac{1}{m^2}\mathbf{1}\mathbf{1}^T\mathbf{K}\mathbf{1}\mathbf{1}^T$$

c) We find that

$$\begin{split} \mathbf{K}_{ij}^* &= \mathbf{K}_{ij} - \frac{1}{m} (\mathbf{K} \mathbf{1} \mathbf{1}^T)_{ij} - \frac{1}{m} (\mathbf{1} \mathbf{1}^T \mathbf{K})_{ij} + \frac{1}{m^2} (\mathbf{1} \mathbf{1}^T \mathbf{K} \mathbf{1} \mathbf{1}^T)_{ij} \\ &= \frac{1}{2} (\mathbf{K}_{ii} + \mathbf{K}_{jj} - \mathbf{D}_{ij}^2) - \frac{1}{m} (\mathbf{K} \mathbf{1} \mathbf{1}^T)_{ij} - \frac{1}{m} (\mathbf{1} \mathbf{1}^T \mathbf{K})_{ij} + \frac{1}{m^2} (\mathbf{1} \mathbf{1}^T \mathbf{K} \mathbf{1} \mathbf{1}^T)_{ij} \\ &= \frac{1}{2} (\mathbf{K}_{ii} + \mathbf{K}_{jj} - \mathbf{D}_{ij}^2) - \frac{1}{m} \sum_{t=1}^{m} \mathbf{K}_{it} - \frac{1}{m} \sum_{t=1}^{m} \mathbf{K}_{tj} + \frac{1}{m^2} \sum_{t=1}^{m} \sum_{\ell=1}^{m} \mathbf{K}_{t\ell} \\ &= \frac{1}{2} (\mathbf{K}_{ii} + \mathbf{K}_{jj} - \mathbf{D}_{ij}^2) - \frac{1}{2m} \sum_{t=1}^{m} \left((\mathbf{K}_{ii} + \mathbf{K}_{tt} - \mathbf{D}_{it}^2) + (\mathbf{K}_{tt} + \mathbf{K}_{jj} - \mathbf{D}_{tj}^2) - \frac{1}{m} \sum_{\ell=1}^{m} (\mathbf{K}_{tt} + \mathbf{K}_{\ell\ell} - \mathbf{D}_{t\ell}^2) \right) \\ &= \frac{1}{2} \left(- \mathbf{D}_{ij}^2 \right) - \frac{1}{2m} \sum_{t=1}^{m} \left((\mathbf{K}_{tt} - \mathbf{D}_{it}^2) - \mathbf{D}_{tj}^2 \right) - \frac{1}{m} \sum_{\ell=1}^{m} (\mathbf{K}_{\ell\ell} - \mathbf{D}_{t\ell}^2) \right) \\ &= \frac{1}{2} \left(- \mathbf{D}_{ij}^2 - \frac{1}{m} \sum_{t=1}^{m} (\mathbf{K}_{tt} - \mathbf{D}_{it}^2) + \frac{1}{m^2} \sum_{t=1}^{m} \sum_{\ell=1}^{m} (\mathbf{K}_{\ell\ell} - \mathbf{D}_{t\ell}^2) \right) \\ &= -\frac{1}{2} \left(\mathbf{D}_{ij}^2 - \frac{1}{m} \sum_{t=1}^{m} (\mathbf{D}_{it}^2 + \mathbf{D}_{tj}^2) + \frac{1}{m^2} \sum_{t=1}^{m} \sum_{\ell=1}^{m} \mathbf{D}_{t\ell}^2 \right) \end{split}$$

d) We then find that

$$(\mathbf{\Delta}(\mathbf{I}_m - \frac{1}{m}\mathbf{1}\mathbf{1}^T))_{\ell j} = \mathbf{\Delta}_{\ell j} - \frac{1}{m}\sum_{t=1}^m \mathbf{\Delta}_{\ell t}$$

hence we may solve for $(\mathbf{H}\Delta\mathbf{H})_{ij}$ as

$$((\mathbf{I}_m - \frac{1}{m} \mathbf{1} \mathbf{1}^T) \Delta (\mathbf{I}_m - \frac{1}{m} \mathbf{1} \mathbf{1}^T))_{ij} = \Delta_{ij} - \frac{1}{m} \sum_{t=1}^m \Delta_{it} - \frac{1}{m} \sum_{\ell=1}^m (\Delta_{\ell j} - \frac{1}{m} \sum_{t=1}^m \Delta_{\ell t})$$
$$= -2\mathbf{K}_{ij}^* \Rightarrow \mathbf{K}^* = -\frac{1}{2} \mathbf{H} \Delta \mathbf{H}$$