1. Consider constants p, $\sigma > 0$ and the problem $p \frac{d^2 \psi}{dx^2} + \mu \sigma \psi = 0 \quad o < x < 1$ $\psi(0) = 0 = \psi(1)$

Then $\psi(x) = \sin \psi(\sigma/\rho) \times j$ so if $0 = \psi(1) = \sin \psi(\sigma/\rho)$ we have $\mu_1 = p_0 n^2\pi^2 n = 1, 2, ...$ We want $\mu_1 \leq \lambda_1$.

By the Monotonicity theorem, we need $p \leq 1 + x^2$ on [0,1] and $\sigma \geq 1 + x^2$ on [0,1]. Choose $p = 1, \sigma = 2$, then $\frac{1}{2}\pi^2 \leq \lambda_1$.

For an upper bound, we want $10 \geq 1 + x^2 \geq \sigma$ on $[0,1] \leq 0$.

Let p = 2, $\sigma = 1$. Therefore $\frac{1}{2}\pi^2 \leq \lambda_1 \leq 2\pi r^2$ (or appears imately $4.93 < \lambda_1 < 19.74 = net$ a very tight bound!)

2. If we let $u(x,t) = A(t)(\pi-x)/\pi + v(x,t)$ then V satisfies $\begin{cases} V_t = V_{xx} + F(x,t) & \text{o} < x < \pi \\ V(0,t) = 0 = V(\pi,t) \end{cases}$

(v(x,0) = 0 , where $F(x,t) \doteq e^{-t} \sin 3x - A(t)(1-x/t)$.

Now we have a problem with homogeneous b.c.s. The sigen functions found from the homogeneous problem are & sin(xx) } so let $V(x,t) = \sum_{i=1}^{\infty} a_{m}(t) \sin(nx)$

 $F(x,t) = \sum_{n=1}^{\infty} f_n(t) \sin(nx)$

Then, upon substitution into the equation, quies $f_n(+) = \frac{2}{\pi} \int_0^T F(x,+) \sin(\ln x) dx = e^{-\frac{1}{2}} \int_0^T A(+) \left(S_{2n} = \{0 \text{ n} \neq 0\} \right)$ $a_n + n^2 a_n = f_n(+) \} \rightarrow a_n(+) = \int_0^+ f_n(\pi) e^{-n^2(+-\pi)} d\pi$ $a_n(0) = 0$

 3. These problem is the damped-wave equation version of a problem I did in class. With eigenfunctions { sin (mix)), u(x,t) = [an(+) sin(mix) . Substitution gries (x) dran + 3 day + n2+2an = file=2 log sin (mx)dx 005 (wt) $= \begin{cases} 0 & \text{n=even} \\ \frac{490}{n\pi} \cos \omega + & \text{n=odd} \end{cases}$ Define wn = vn2 12 - 13/4 > 0 for all n=1,2,1-, then a fundamental set of solutions for the problem is { = Bt/2 cos(Qnt), e-Bt/2 sin (Qnt)}. From the zero initial conditions, ancos=0, dancos=0, so for n= even, and)=0. From new on, n = odd. A garticular so lution of the form a(t) = A cos(at) + B sin(at), substituted into (*) gives the following algebraic system for the exclicionts: [n2H2-02 RO] (A) = (480/NTT) . Thus $\frac{A}{B} = \frac{4q_0/n\pi r}{(n^2 H^2 \omega^2)^2 + \beta^2 \omega^2} \begin{pmatrix} n^2 H^2 - \omega^2 \\ \beta \omega \end{pmatrix}.$ So writing an(t) as the sum of the particular solution and a linear combination of the fundamental set of solutions, then applying the initial conditions, $a_n(t) = A \left\{ \cos \omega t - e^{\beta t/2} \cos(\omega_n t) - \frac{\beta}{2\omega_n} e^{-\beta t/2} \sin(\omega_n t) \right\}$ + B{sin(wt) - wn ext/2 in (wnt)} n=odd

n=even