Ciência de Dados

Planejamento de experimentos

Revisado: Roseli Romero SCC-ICMC-USP

Prof. Dr. André C. P. L. F. de Carvalho Dr. Isvani Frias-Blanco ICMC-USP

Principais tópicos

- Desempenho preditivo
- Partição dos dados
- Reamostragem
- Tipos de erro
- Avaliação do desempenho
- Curvas ROC

- Após a exploração e pré-processamento vem a modelagem
 - Permite avaliar benefícios do pré-processamento
 - E eventualmente retornar para as fases de exploração e pré-processamento
- Procedimentos experimentais e avaliação de desempenho
 - Diferente para tarefas descritivas e preditivas
 - Este módulo tratará de tarefas preditivas (classificação e regressão)

Desempenho

- Preditivo
 - Tarefa de classificação
 - Tarefa de regressão
- Custo
 - Tempo de processamento
 - Memória necessária
- Algoritmo e/ou modelo

Tarefa preditiva

- Depende da tarefa a ser resolvida:
 - Classificação: considera taxa de exemplos incorretamente classificados
 - Acurácia
 - Regressão: considera diferença entre valor previsto e valor correto
 - Agrupamento: diferentes critérios
- Média dos erros obtidos em diferentes execuções de um experimento

- Pode ser avaliado para:
 - Buscar o melhor modelo(s) de classificação
 - Gerados pelo mesmo algoritmo, variando
 - Valores de hiperparâmetros
 - Partições/atributos nos dado de treinamento
 - Para escolher melhor modelo preditivo
 - Buscar melhor algoritmo(s) de classificação
 - Avalia modelos gerados (funções, hipóteses)
 - Hiper-parâmtros de cada algoritmo com valores default ou otimizados
 - Conjuntos de dados com mesmas partições e atributos preditivos
 - Para escolher melhor algoritmo preditivo

- Principal objetivo:
 - Classificação correta de novos exemplos
 - Errar o mínimo possível
 - Minimizar taxa de erro para novos exemplos
- Geralmente não é possível medir com exatidão essa taxa de erro
 - Deve ser estimada
 - Para uma amostra de teste (simula novos exemplos) do conjunto de dados disponível
 - Utilizando modelo induzido com uma amostra de treinamento do conjunto de dados disponível

Amostragem de dados

- Permite melhor estimativa do desempenho de um modelo ou algoritmo
 - Treinamento (validação) e teste
- Procedimentos
 - Amostragem única
 - Hold-out
 - Re-amostragem

Hold-out

Métodos de reamostragem

- Amostragem única é pouco confiável
- Geram várias partições para conjuntos de treinamento e teste (validação)
 - Random subsampling
 - K-fold Cross-validation
 - Leave-one-out
 - Bootstrap (ou Bootstrapping)

Random subsampling

Partição 2

Partição 3

Treinamento

K-fold cross-validation

Leave-one-out

- Estimativa de erro praticamente não tendenciosa
 - Tende a taxa de erro verdadeiro
- Computacionalmente caro para conjuntos grandes
 - Geralmente utilizado para pequenos conjuntos de dados
 - 10-fold cross validation aproxima leave-one-out
- Variância tende a ser elevada

5 x 2 Cross-validation

 Conjuntos de treinamento e teste com mesmo tamanho

```
Seja um conjunto de N exemplos

Para i = 1 até 5

Dividir N aleatoriamente em duas metades

Usar metade 1 para treinamento e metade 2 para teste

Usar metade 2 para treinamento e metade 1 para teste
```

Bootstrap

- Estocástico, com diversas variações
 - Alguns exemplos podem não participar do treinamento
 - Variação mais simples:
 - Amostragem com reposição
 - Cada partição é uma amostra aleatória com reposição do conjunto total de exemplos
 - Conjunto de treinamento têm o mesmo número de exemplos do conjunto total
 - Esta reamostragem é feita muitas vezes(de 1000 a 10000 vezes) para criar uma estimativa da função de distribuição acumulada.

Bootstrap

- Se conjunto original tem N exemplos
 - A probabilidade de um exemplo não ser amostrado é de: (1-1/n)^n ~e^-1~0.368.
 - Amostra de tamanho N tem ≈ 63,2% dos exemplos originais
- Processo é repetido k vezes
 - Resultado final é a média dos k experimentos

Bootstrap

- Estima incerteza de um algoritmo
 - K-fold cross-validation é mais usado para estimar acurácia preditiva
 - Seleção de algoritmos/modelos
- Tende a ter menor variância e ser mais pessimista que k-fold cross-validation

Classificação binária

- Classe de interesse é a classe positiva
- Dois tipos de erro:
 - Classificação de um exemplo N como P
 - Falso positivo (alarme falso)
 - Ex.: Diagnosticado como doente, mas está saudável
 - Classificação de um exemplo P como N
 - Falso negativo
 - Ex.: Diagnosticado como saudável, mas está doente

Classificação binária

- Predito como positivo
- Predito como negativo

- Predito como positivo
- Predito como negativo

- Matriz de confusão (tabela de contingência) pode ser utilizada para distinguir os erros
 - Base de várias medidas
 - Pode ser utilizada com 2 ou mais classes

Classe predita 1 2 3 1 25 0 5 2 10 40 0 3 0 0 20				
	1	2	3	
1	25	0	5	
2	10	40	0	
3	0	0	20	
		1 1 25 2 10	1 2 1 25 0 2 10 40	1 2 3 1 25 0 5 2 10 40 0

Exemplo

 Matriz de confusão para 200 exemplos divididos em 2 classes

Medidas de avaliação

Taxa de FP (TFP) =
$$\frac{FP}{FP + VN}$$
 (Alarmes falsos)

Taxa de FN (TFN) =
$$\frac{FN}{VP + FN}$$

Erro do tipo I

Erro do tipo II

Medidas de avaliação

Taxa de FP (TFP) =
$$\frac{FP}{FP + VN}$$
 (Alarmes falsos)

Taxa de VP (TVP) =
$$\frac{VP}{FN + VP}$$

Benefício

$$\frac{VP}{VP + FN} \qquad \frac{FP}{FP + VN}$$

Avaliação de 3 classificadores

Classe predita p n 20 30 N 15 35

	asse p	redita
aq	р	n
verd d	70	30
Classe Z	50	50

ej. Cla	asse p	redita
aq	р	n
verd _J	60	40
Slasse Z	20	80

Classificador 1 TVP = TFP =

Classificador 3 TVP = TFP =

$$\frac{VP}{VP + FN} \qquad \frac{FP}{FP + VN}$$

Avaliação de 3 classificadores

Classe predita p n 20 30 N 15 35

ladeira Cig	asse p	redita
lade	р	n
Verd d	70	30
Classe Z	50	50

e <u>i</u> Cla	asse p	redita
aq	р	n
verd A	60	40
Classe Z	20	80

Classificador 1 TVP = 0.4TFP = 0.3

Classificador 2

$$TVP = 0.7$$

 $TFP = 0.5$

Classificador 3

$$TVP = 0.6$$

 $TFP = 0.2$

Medidas de avaliação

$$\frac{FP}{FP + VN}$$

Taxa de falso positivo (TFP) = 1-TVN

$$\frac{FN}{VP + FN}$$

Taxa de falso negativo (TFN) = 1-TVP

$$\frac{VP}{VP + FN}$$

$$\frac{VN}{VN + FP}$$

Taxa de verdadeiro positivo (TVP), Sensibilidade ou Revocação (Recall)

Taxa de verdadeiro negativo (TVN), especificidade

$$\frac{VP}{VP + FP}$$

VNVN + FN

Valor predito negativo (VPN)

$$\frac{VP + VN}{VP + VN + FP + FN}$$

$$\frac{1}{1+VN+FP+FN}$$
 Acurácia

$$\frac{2}{1/prec.+1/revoc.}$$

Medida-F1

Medidas de avaliação

$$\frac{FP}{FP + TN}$$

$$\frac{FN}{TP + FN}$$

 $\frac{TP}{TP + FN}$

$$\frac{TN}{TN + FP}$$

False positive rate (FPR) = 1-TNR

False negative rate (FNR) = 1-TPR

True positive rate (TPR), also known as recall or sensitivity

True negative rate (TNR), also known as specificity

$$\frac{TP}{TP + FP}$$

$$\frac{TN}{TN + FN}$$

$$\frac{TP + TN}{TP + TN + FP + FN}$$

$$\frac{2}{1/\operatorname{precision} + 1/\operatorname{recall}}$$

Positive predictive value (PPV), also known as precision

Negative predictive value (NPV)

Accuracy

F1-measure