Inhaltsverzeichnis

KAF	PITEL '	1 Introduction	8
KAF	PITEL :	2 Sources	9
KAF	PITEL :	3 Parameter and Parameter Groups	10
KAF	PITEL 4	4 Integrity Rules classified by Parameter Combination	17
4.1	Limit to	ests	
		lity	
	4.2.1	Maximum Variability	
	4.2.2	Dead-band check	
4.3	Consist	tency between measurements	
	4.3.1	Consistency between two measurements	
	4.3.2	Consistency between three measurements	
	4.3.3	Consistency between measurements and sensor status words	
4.4	Consist	tency between present weather and measurements	
	4.4.1	Consistency between present weather and air temperature/ humidity	
	4.4.2	Consistency between present weather and precipitation	
	4.4.3	Consistency between present weather and sunshine duration	
	4.4.4	Consistency between present weather and wind	
	4.4.5	Consistency between present weather and lightning	45
4.5	Consist	tency between past weather and measurements	46
	4.5.1	Consistency between past weather and precipitation (stations of synoptic network)	
	4.5.2	Consistency between past weather and precipitation (stations of climatological network)	

	4.5.3	Consistency between past weather and temperature or humidity (stations of climatological network)	54
4.6	Consist	ency between state of the ground and measurements	56
	4.6.1	Consistency between state of the ground and temperature	
4.7	Consist	ency between observations.	56
	4.7.1	Consistency between present weather and state of the ground	
	4.7.2	Consistency between present weather and past weather (past weather in SYNOP Code; stations of synoptic network)	
	4.7.3	Consistency between present weather and past weather (past weather in climatological code; stations of synoptic network)	
	4.7.4	Consistency between present weather and past weather (past weather in climatological code; stations of climatological network)	
	4.7.5	Consistency between present weather and cloud genera (detailed classification)	
	4.7.6	Consistency between present weather and visibility (given in SYNOP Code)	
	4.7.7	Consistency between present weather and total amount of cloud cover	71
	4.7.8	Consistency between present weather and the density of clouds	
	4.7.9	Consistency between the two positions of past weather (past weather in SYNOP Code)	72
	4.7.10	Consistency between past weather in SYNOP Code and past weather in climatological code	
	4.7.11	Consistency between total amount of clouds and past weather (past weather in SYNOP Code; only for stations of synoptic network)	
	4.7.12	Consistency between different positions of cloud genera (detailed classification)	76
	4.7.13	Consistency between cloud genera (detailed classification and cloud genera (10 genera classification)	76
	4.7.14	Consistency between total amount of clouds and cloud genera (detailed classification)	
	4.7.15	Consistency between cloud amount of cloud genera and cloud genera (10 genera classification)	80
	4.7.16	Consistency between cloud amount of cloud genera and total amount of clouds	
	4.7.17	Consistency between genus of clouds whose base is below the level of the station and station height	80
	4.7.18	Consistency between genus of clouds whose base is below the level of the station and the total amount of clouds	81
	4.7.19	Consistency between the amount of clouds of a specific genus and the total amount of clouds	81
	4.7.20	Consistency between total amount of clouds and the density of clouds	81
4.8	Obsole	te Tests	82
	Obsole		

Tabellenverzeichnis

Variable Names	10
Parameter groups	16
Zeichenerklärung	17
Farbcode für die Realisierung im MeteoSchweiz Data Warehouse System (PuMVerwaltung)	18
Maximum Variability checks	25
Dead-band check	27
Consistency between two measurements	28
Consistency between three measurements	38
Consistency between measurements and sensor status words	40
Consistency between present weather and air temperature/ humidity	42
Consistency between present weather and precipitation	44
Consistency between present weather and sunshine duration	44
Consistency between present weather and lightning	45
Consistency between past weather and precipitation (stations of synoptic network)	48
Consistency between past weather and precipitation (stations of climatological network)	51
Consistency between past weather and temperature or humidity (stations of climatological network)	54
Consistency between present weather and state of the ground	57
Consistency between present weather and past weather (stations of synoptic network)	58
Consistency between present weather and past weather (past weather in climatological code, stations of climatological network)	66
Consistency between present weather and cloud genera (detailed classification)	68
	Variable Names Parameter groups. Zeichenerklärung Farbcode für die Realisierung im MeteoSchweiz Data Warehouse System (PuMVerwaltung) Limit tests Maximum Variability checks Dead-band check Consistency between two measurements. Consistency between three measurements. Consistency between three measurements and sensor status words. Consistency between measurements and sensor status words. Consistency between present weather and air temperature/ humidity Consistency between present weather and precipitation Consistency between present weather and sunshine duration Consistency between present weather wind. Consistency between present weather wind. Consistency between present weather and lightning Consistency between past weather and precipitation (stations of synoptic network). Consistency between past weather and recipitation (stations of climatological network) Consistency between past weather and temperature or humidity (stations of climatological network) Consistency between present weather and state of the ground. Consistency between present weather and state of the ground. Consistency between present weather and past weather (stations of synoptic network). Consistency between present weather and past weather (past weather in climatological code, stations of synoptic network) Consistency between present weather and past weather (past weather in climatological code, stations of climatological network). Consistency between present weather and past weather (past weather in climatological code, stations of climatological network). Consistency between present weather and past weather (past weather in climatological code, stations of climatological network).

Tabelle 25	Consistency between present weather and visibility
Tabelle 26	Consistency between present weather and visibility
Tabelle 27	Consistency between present weather and the density of clouds
Tabelle 28	Consistency between the two posistions of past weather (past weather in SYNOP Code)
Tabelle 29	Consistency between past weather in SYNOP Code and past weather in climatological code
Tabelle 30	Consistency between total amount of clouds and past weather (past weather in SYNOP Code; only for stations of synoptic network)
Tabelle 31	Consistency between different positions of cloud genera (detailed classification)
Tabelle 32	Consistency between cloud genera (detailed classification) and cloud genera (10 genera table)
Tabelle 33	Consistency between total amount of clouds and cloud genera (detailed classification)
Tabelle 34	Consistency between cloud amount and cloud genera (10 genera classification)
Tabelle 35	Consistency between cloud amount of cloud genera and total amount of clouds
Tabelle 36	Consistency between genus of clouds whose base is below the level of the stations and the altitude of their upper surface
Tabelle 37	Consistency between genus of clouds whose base is below the level of the station and the total amount of clouds
Tabelle 38	Consistency between the amount of clouds of a specific genus and the total amount of clouds
Tabelle 39	Consistency between total amount of clouds and the density of clouds
Tabelle 40	All Rules Concerning Precipitation with Lightning

Specifications of Inter-Parameter Constraints at MeteoSwiss (Internal Consistancies)

Specification Document DABES.2

Rudolf Dössegger

Andreas Ernst

Martin Kiene

Thomas Konzelmann

Christian Häberli

Daniela Lorenzi

Josefa Mettler

Mario Rohrer

Urs Steinegger

Version: 3.2 Freigabedatum: 1.9. 2001

Dokumentenverwaltung

Verteiler

Person	Firma/Prozess/Projekt	Funktion	Änderungsberechtigt
Ch. Häberli	MCH	PL DWH	

Versionenkontrolle

ErstellerIn	Freigabe datum	Version	Tätigkeit	Anmerkungen
Andreas Ernst, Martin Kiene	03.09. 98	1.0	Dokumentenerstellung	FM-Dokument 'InterParameterIntegrity_97_1127.fmx'
				This document gives the specifications of inter-parameter integrity rules used for plausibility tests at SMI.
Christian Häberli, Thomas Konzelmann, Daniela Lorenzi, Josefa Mettler,	09.12.98	2.0	Überarbeitung, Ergänzung	Directory: '/dabes/doc/Realisierung/PuM/ Dok_PuM'
Mario Rohrer				FM-Dokument 'InterParameterIntegrity_98_10.fmx'

ErstellerIn	Freigabe datum	Version	Tätigkeit	Anmerkungen
Rudolf Dössegger, Christian Häberli, Thomas Konzelmann, Daniela Lorenzi, Josefa Mettler, Mario Rohrer, Urs Steinegger	19.02. 99	3.0	Überarbeitung, Ergänzung	Directory: '/dabes/doc/Realisierung/PuM/ Dok_PuM' FM-Dokument 'InterParameterIntegrity_98_12.fmx'
Christian Häberli	17.05. 01		Überarbeitung, Ergänzung	Directory: '/proj/MAZ/MCH-DWH/work/ sw_dokumente/PuM' FM-Dokument 'InterParameterIntegrity_98_12.fmx'
Josefa Mettler, Christian Häberli	09. 01	3.2	Überarbeitung, Ergänzung; Dokument wird in MCH-DWH Dokumentation übernommen	FM-Dokument 'inter_parameter_integrity.fmx'
Josefa Mettler	26.02. 02		Anmerkung: - bei der Ablage unter spez_doc gemerkt, dass es zw. 27.9. 01 und 26.2. 02 Änderungen durch Mit- glieder der Gruppe 'dwh' gege- ben hat - Änderungen können mit diff herausgefunden werden, aber es ist nicht möglich nachzuvollzie- hen, wer wann welche Änderung ausgeführt hat	

KAPITEL 1 Introduction

This document gives the collection of inter-parameter rules, which are used to test the internal consistency of meteorological measurements at MeteoSwiss. Parameters are classified in 20 groups. Each group is tagged with a three letter word (e. g. vis for the group visibility). Each test can be assigned to a group combination.

Group combination and their tests are named as follows:

- Group combination tag: It is always the combination of the group tags preceded by the letter 'i'.
- Test tag: The group combination tag is further specified by a number.

The chapter "Integrity Rules classified by Parameter Combination" auf Seite 17 lists all group combinations together with a table of their tests. The specified rule for each test indicates the condition for *inconsistency*. The condition is TRUE if tested parameters are not consistent. Most tests are specified with a sort of C-syntax ('||' is a logical 'or', '&&' is a logical 'and', '!' means 'not', '!=' means 'not equal').

For each test its source is indicated. The first three letters are an abbreviation for the references. This abbreviation is succeeded by a number which corresponds to the internal rule number of the original document. All source documents are listed in chapter "References" auf Seite 83.

Some tests require - apart from parameter values - the sequence of all measurements of the last three, six or twelve hours. In the formula such parameters are marked with an upper right index. E. g.: T_{200}^{-2} denotes the second measurement before the reference time.

It has to be considered that all specifications cannot be applied to aggregated values.

KAPITEL 2 Sources

The collection of rules in this document is based on two sources.

The major source are tests defined and applied in VAMP (Verarbeitung von ANETZ-Daten mit METEOR Programmen). The second source are tests defined and applied in kaa (Kontrolle der Augenbeobachtungen ANETZ). In VAMP hourly data and Terminwerte are checked with the intension to detect critical values. In kaa the intension was to detect formal errors in the eye observation data. Some aditional sources where used to define tests (see also "References" auf Seite 83). Some tests or testlimits are defined in this work specially to take into account the testing of data with a 10 minutes timestep.

In this document tests of different sources and logical context are defined. Therefore it has to be considered what result a certain test is producing.

KAPITEL 3 Parameter and Parameter Groups

Table 1 on page 10 lists all parameters used for our tests, together with the parameter's location in the MCH Data Warehouse system (source document var_names_DABESQ.fmx).

Name of Variable	Description of Variables	Unit	Table in MCH DWH System	Short Name in MCH DWH System
С	c-factor; station dependent constant for calculating daily means of relative humidity at conventional stations	-		
d	Winddirection (Symbol is also used in general sense)	deg	wind_princ	dkl010z0
d _d	Winddirection	ddeg		
d _g	Winddirection of maximal 1s-gust within 10min	deg	wind_princ	dkl010z1
e	Vapour pressure	hPa	komf_hour	pva200h0
f _{kn}	Windspeed	kn		
f _{kmh}	Windspeed	km/h		
f _v	Windspeed, vectorized	m/s	wind_princ	fve010z0
f _s	Windspeed, scalar (Symbol is also used in general sense)	m/s	wind_princ	fkl010z0
f_g	Maximal windspeed within 10min (1s gust)	m/s	wind_princ	fkl010z1
h	Height of base of deepest cloud above station (normal scale)	Code	eye_obs	chh000s0
h _{s1}	Height of base of lowest cloud layer above station (reduced scale)	Code	eye_obs	ch1000s0
h _{s2}	Height of base of middle cloud layer above station (reduced scale)	Code	eye_obs	ch2000s0

Tabelle 1. Variable Names

Name of Variable	Description of Variables	Unit	Table in MCH DWH System	Short Name in MCH DWH System
h _{s3}	Height of base of highest cloud layer above station (reduced scale)	Code	eye_obs	ch3000s0
h _b	Altitude of the barometer	m a.s.l.	(disposition)	
i	intensity of weather event (code of Swiss 'National Bulletin EB'	Code	-	-
h _s	Altitude of the station	m a.s.l.	(measure_site)	
k	k-factor; station dependent constant for calculating daily means of temperature at conventional stations	-	(sta_coeff)	
s _n	Depth of fresh snow	cm	snow	hns000s0
s _h	Total depth of snow cover	cm	snow	hto000s0
u	East-component of wind (sign does not correspond to conventional use!)	m/s	wind_princ	fea010z0
v	North-component of wind (sign does not correspond to conventional use!)	m/s	wind_princ	fna010z0
W	Weather at time of observation (code of Swiss 'National Bulletin EB')	Code	-	-
ww	Present weather according to WMO Table 4677	Code	eye_obs	wat000s0
\mathbf{w}_1	Past weather, drizzle or rain	Code	eye_obs	w1p000i0
w ₂	Past weather, rain with snow or snow	Code	eye_obs	w2p000i0
w ₃	Past weather, small hail or hail	Code	eye_obs	w3p000i0
w_4	Past weather, thunder storm far or close	Code	eye_obs	w4p000i0
w ₅	Past weather, mist or fog	Code	eye_obs	w5p000i0
w ₆	Past weather, dew or hoar frost	Code	eye_obs	w6p000i0
w ₇	Past weather, hoar frost or black ice	Code	eye_obs	w7p000i0
B _n	Close lightning	Anzahl	princ	brecloz0

Tabelle 1. Variable Names

Name of Variable	Description of Variables	Unit	Table in MCH DWH System	Short Name in MCH DWH System
B _f	Distant lightning	Anzahl	princ	brefarz0
C_{L}	Clouds of type Sc, St, Cu, Cb (normal scale)	Code	eye_obs	ccl000s0
C_{M}	Clouds of type Ac, As, Ns (normal scale)	Code	eye_obs	ccm000s0
C _H	Clouds of type Ci, Cc, Cs (normal scale)	Code	eye_obs	cch000s0
C ₁	Type of lowest clouds (reduced scale)	Code	eye_obs	cc1000s0
C ₂	Type of middle clouds (reduced scale)	Code	eye_obs	cc2000s0
C ₃	Type of highest clouds (reduced scale)	Code	eye_obs	cc3000s0
C'	Type of cloud whose base is below the station	Code	eye_obs	cca000s0
Е	State of the ground	Code	eye_obs	est000s0
EV	Evaporation	mm	agro	eva000s0
G	Global radiation	W/m ²	princ	gre000z0
G _c	Circum global radiation	W/m ²	day_values_c	gci000d0
H'	Altitude of the upper surface of clouds with base below the level of the station	Code	eye_obs	cha000s0
HGTZ	Heating-degree-day-number 20/12	°C	month_princ	xno000m0
L	Luminosity	Code	princ	lre000s0
N	Total cloud amount	Code	eye_obs	nto000s0
N _h	Amount of all the C_L clouds and of all the C_M clouds	Code	eye_obs	nsh000s0
N _d	Density of cloudiness	Code	eye_obs	cnd000s0
N _{s1}	Amount of individual cloud layer indicated by C_{L} (reduced scale)	Code	eye_obs	ns1000s0
N _{s2}	Amount of individual cloud layer indicated by $\mathbf{C}_{\mathbf{M}}$ (reduced scale)	Code	eye_obs	ns2000s0
N _{s3}	Amount of individual cloud layer indicated by $C_{\mbox{\scriptsize H}}$ (reduced scale)	Code	eye_obs	ns3000s0

Tabelle 1. Variable Names

Name of Variable	Description of Variables	Unit	Table in MCH DWH System	Short Name in MCH DWH System
N'	Amount of cloud whose base is below the level of the station	Code	eye_obs	nsa000s0
P	Pressure at station level	hPa	princ	prestas0
P _R	Pressure at station level, redundant measurement	hPa	values_c	ppcstas0
P _{sl}	Pressure reduced to mean sea level	hPa	values_calc	pp0qffs0
P _{qnh}	Pressure reduced to mean sea level without consideration of temperature	hPa	values_calc	pp0qnhs0
P _{qnh500}	Pressure reduced to the 500m-level without consideration of temperature	hPa	values_calc	pp0500s0
R	Precipitation	mm	princ	rre150z0
R _{Ra}	Precipitation, redundant instrument; automatic	mm	values_c	ra1150z0
R _{Rc}	Precipitation, redundant instrument; conventional	mm	day_values_c	rc1150d0
RA	Radioactivity	nSievert	princ	are000z0
S	Sunshine duration	min	princ	sre000z0
S_R	Sunshine duration, redundant measurement	min	day_values_c	sa1000d0
S _a	Sunshine duration, astronomical			
S _{max}	Sunshine duration, maximal			
T	Temperature	°C		
T ₅	Air temperature, 0.05m	°C	princ	tre005s0
T ₅₀	Air temperature, 0.5m; frost warning	°C	agro	tre050s0
T ₂₀₀	Air temperature, 2.0m; reference	°C	princ	tre200s0
T ₋₅	Ground temperature, -0.05m	°C	agro	tso005s0
T ₋₁₀	Ground temperature, -0.1m	°C	agro	tso010s0
T ₋₂₀	Ground temperature, -0.2m	°C	agro	tso020s0
T ₋₃₀	Ground temperature, -0.3m	°C	agro	tso030s0

Tabelle 1. Variable Names

Name of Variable	Description of Variables	Unit	Table in MCH DWH System	Short Name in MCH DWH System
T ₋₅₀	Ground temperature, -0.5m	°C	agro	tso050s0
T ₋₁₀₀	Ground temperature, -1.0m	°C	agro	tso100s0
T _{S0}	Temperature of snow at ground level	°C	snow	tht000s0
T _{S1}	Temperature of snow at level 1	°C	snow	tht001s0
T _{S2}	Temperature of snow at level 2	°C	snow	tht002s0
T _{S3}	Temperature of snow at level 3	°C	snow	tht003s0
$T_{\mathbf{M}}$	Temperature of snow-height meter	°C	snow	tsa000s0
T _d	Dew-point temperature	°C	princ	tde200s0
T _w	Wet-bulb temperature	°C	values_c	tps200s0
T _H	Air temperature, screen	°C	air_temp_c	ta1200s0
T _{HUTC06}	Air temperature, screen (UTC 06)	°C	air_temp_c	ta1200s0
T _{HUTC12}	Air temperature, screen (UTC 12)	°C	air_temp_c	ta1200s0
T _{HUTC18}	Air temperature, screen (UTC 18)	°C	air_temp_c	ta1200s0
T _H	Mean value of air temperature, screen	°C		
T _{max}	maximum air temperature /inkl. halfday	°C	day_princ	tre200dx, tre200nx, tre200jx
T _{min}	minimum air temperature /inkl. halfday	°C	day_princ	tre200dn, tre200nn, tre200jn
T _U	Temperature of hygrometer shield	°C	air_temp_c	ta2200s0
T _{Ac}	Temperature of, ASTA-cabin	°C	air_temp_c	ta3200s0
T _{Ar}	Temperature of ASTA-room	°C	air_temp_c	ta4200s0
T _x	Temperature at level x (meteorological towers)	°C	tower	ta1tows0
	1		+	

Tabelle 1. Variable Names

Name of Variable	Description of Variables	Unit	Table in MCH DWH System	Short Name in MCH DWH System
T _R	Temperature, redundant measurement	°C		
U ₂₀₀	Relative humidity, 2.0m; reference	%	princ	ure200s0
U _H	Relative humidity, screen	%	values_c	ua1200s0
U _{HUTC06}	Relative humidity, screen (UTC 06)	%	values_c	ua1200s0
U _{HUTC12}	Relative humidity, screen (UTC 12)	%	values_c	ua1200s0
U _{HUTC18}	Relative humidity, screen (UTC 18)	%	values_c	ua1200s0
U _{Hc}	Relative humidity, corrected; screen	%		
$\overline{\mathrm{U}}_{\mathrm{H}}$	Mean value of relative humidity, screen	%		
V	Horizontal visibility at surface	Code	eye_obs	vho000s0
\mathbf{W}_1	Past weather 1	Code	eye_obs	ww1000i0
W ₂	Past weather 2	Code	eye_obs	ww2000i0
Y _r	Heating power of precipitation-gauge ring	Code	tech_info	yri150s0
Y _t	Heating power of precipitation-gauge funnel	Code	tech_info	ytr150s0
Y_{+}	positive control-voltage (ANETZ)	V	tech_info	yisocps0
Y_	negative control-voltage (ANETZ)	V	tech_info	yisocos0
Y _{swTH}	status word THYGAN	Code	tech_info	ythycos0

Tabelle 1. Variable Names

Tests are classified according to group combinations. Table 2 on page 16 gives an overview of defined parameter groups.

Name of Group	Abbreviation	Parameters
Air temperature and humidity	tea	T ₂₀₀ , T ₅ , T _H , T ₅₀ , T _U , T _{Ac} , T _{Ar} , T _M , U ₂₀₀ , U _H
Soil temperature	teg	T ₋₅ , T ₋₁₀ , T ₋₂₀ , T ₋₃₀ , T ₋₅₀ , T ₋₁₀₀
Snow temperature	tes	$T_{S0}, T_{S1}, T_{S2}, T_{S3}$
Precipitation	pre	$R, R_{Ra}, R_{Rc}, s_n, s_h$
Air pressure	pru	P, P _R
Sunshine	sun	S, S _R
Radiation	rad	G, G_c
Illuminance	lum	L
Wind	win	f_v , f_s , f_g , d , d_g
Lightning	lig	B_n, B_f
Ground	gro	Е
Present weather	wob	ww
Weather before observation	web	W_1, W_2
Past weather	paw	w ₁ , w ₂ , w ₃ , w ₄ , w ₅ , w ₆ , w ₇
Clouds, normal classification	noc	C_L , h, C_M , C_H
Clouds, recuced classification	rec	N _{s1} , N _{s2} , N _{s3} , C ₁ , C ₂ , C ₃ , h _{s1} , h _{s2} , h _{s3}
Clouds, base below station	bec	N', C', H'
Visibility	vis	V
Amount of total cloudiness	clo	N, N _h
Density of total cloudiness	den	N _d
Instruments	ins	Y_r, Y_t

Tabelle 2. Parameter groups

KAPITEL 4 Integrity Rules classified by Parameter Combination

This chapter gives the present set of rules which have to be applied in order to test internal consistency at MeteoSwiss. The tests are classified by test functionality. The limits are in all cases station-specific. But in some cases, the same values of the limits are applied for several or all stations.

The tests defined in the following chapters are based on two different logical ideas: to find critical values (measurements) and to discover formal errors (eye-observations)

Zeichen	Beschreibung	Description
>	grösser als	arithmetic greater then
<	kleiner als	arithmetic less then
==	gleich	arithmetic equal
!=	nicht gleich	arithmetic not equal
?	Betrag	
&&	und	logical and
	oder	logical or
۸		
V		
()	logisches "und" für einen Vektor von Daten	logical 'and' for a vector of data
≥ oder >=	grösser gleich	arithmetic grater then or equal to
≤ oder <=	kleiner gleich	arithmetic less then or equal to
U	logisches 'oder' für einen Vektor von Daten	logical 'or' for a vector of data

Tabelle 3. Zeichenerklärung

Zeichen	Beschreibung	Description				
Σ	Summe von bis	sum from to				
€	Teil von (enthält)	part of				

Tabelle 3. Zeichenerklärung

Farbe	Beschreibung	
grün	Funktionen inkl. Nummern erfasst in 'method_group'	
gelb	Test erfasst in 'method' aber noch nicht in 'method_param'	
magenta ^a	Test in 'method_param' und 'method_in' zugewiesen	27.01. 99: für ASTA 1 (La Dole) exkl Limiten für Temperaturen im SIAP Gehäuse, ASTA 2 (Payerne) ab 19.2.
magenta ^b		09.02. 99: für ASTA 1 (La Dole) für ASTA 2 Payerne, KKW Gösgen
	Limiten erfasst (resp. sta_check_nr generiert)	
blau ^c		26.0.3. 99: nur für ENET-Station Cham
	Limiten erfasst (resp. sta_check_nr generiert)	
^d cyan		06.05. 99: nur für Ferneingabestation Delémont (95)
	Limiten erfasst (resp. sta_check_nr generiert)	
rot	in Kolonne 'remarks': Neue Tests oder Unstimmigkeiten zwischen VAMP und DABES, VAMP und Kontrolle der Augenbeobachtungen oder VAMP und FE	

TABLE 4.

Farbcode für die Realisierung im MeteoSchweiz Data Warehouse System (PuMVerwaltung)

- a. in Kolonne 'Name of Test'
- b. in Kolonne 'Test (Application to)'
- c. in Kolonne 'Test (Application to)'
- d. in Kolonne 'Test (Application to)'

4.1 Limit tests

Fct Nr.	Fct name (in libpum)	Test Rule (Violation if)	Description	Name of Test	Test (Application to)	VAMP Tag	EQ Nr in FE	Retrieved from	Remarks
0	hard_soft_lower_limit	X < Lim	X must not be smaller than Lim.	iliuh	P < 600	LIU	1	Filippov, 1968; WMO 305, 1985	
				iliuh	T < - 50		7		applicable for all air Temperatures (THYGAN, Screen, VHT etc) and for Temperature in ASTA room/cabin and SIAP cabin
				iliuh	$T_5 < -50$				
				iliuh	T _{max} < - 50		10		
				iliuh	T _{min} < - 50		17		
				iliuh	U < 0		30		applicable for all 2m Humidities (THYGAN, Screen, Hygrometer etc)
				iliuh	E < 0		(32)		
				iliuh	G < -7			VAMP	Einheit?
				iliuh	d < 0		33		
				iliuh	f < 0				
				iliuh	$f_g < 0$				
				iliuh	N < 0		(37)		may be applied to all cloud amount variables
				iliuh	$N_d < 0$				
				iliuh	C < 0				applicable to all cloud type codes
				iliuh	ww < 0		38		
				iliuh	$w_x < 0$				
				iliuh	R < 0				
				iliuh	V < 0				
				iliuh	$s_n < 0$ cm		(41)		

Tabelle 5. Limit tests

Fct Nr.	Fct name (in libpum)	Test Rule (Violation if)	Description	Name of Test	Test (Application to)	VAMP Tag	EQ Nr in FE	Retrieved from	Remarks
				iliuh	$s_h < 0 \text{ cm}$		(42)		
				iliuh	$B_n < 0$				
				iliuh	$B_f < 0$				
				iliuh	L < -650				for values between 145000000830; Einheit?
				iliuh	L < 0				for values between 0840 and 1440
				iliuh	S < 0				
				iliuh	EV < 0				
				iliuh	$T_{-5} < -20$				
				iliuh	$T_{-10} < -18$				
				iliuh	$T_{-20} < -16$				
				iliuh	T ₋₃₀ < -15				ust
				iliuh	$T_{-50} < -13$				
				iliuh	$T_{-100} < -10$				
				iliuh	$Y_r < -10$				
				iliuh	$Y_t < -10$				
				iliuh	$Y_{+} < 680$				
				iliuh	Y_ < -516				
				ilius	T < Lim		a		Lim for each station and month
									applicable for all 2m Temperatures (THYGAN, Screen, VHT etc) and for Temperature in ASTA room/cabin
				ilius	T ₅ < Lim				Lim for each station and month
				ilius	T _{max} < Lim		b		Lim for each station and month
				ilius	T _{min} < Lim		С		Lim for each station and month

Tabelle 5. Limit tests

Fct Nr.	Fct name (in libpum)	Test Rule (Violation if)	Description	Name of Test	Test (Application to)	VAMP Tag	EQ Nr in FE	Retrieved from	Remarks
				ilius	U < Lim		XXX ^d		Lim: 20% for lowland stations, 10% for stations above 800 m asl.;
									applicable for all 2m Humidities (THYGAN, Screen, Hygrometer etc)
				ilius	RA < Lim				Lim for each station
									Limiten von Leonrdi NAZ?
1	hard_soft_upper_limit	X > Lim	X must not exceed Lim.	ilioh	P > 1050	LIO	2	Filippov, 1968; WMO 305, 1985	
				ilioh	T > 50		8		applicable for all 2m Temperatures (THYGAN, Screen, VHT etc) and for Temperature in ASTA room/cabin
				ilioh	$T_5 > 50$				
				ilioh	$T_{\text{max}} > 50$		11		
				ilioh	$T_{\min} > 50$		18		
				ilioh	h > 90				falsche Limite, korrekt 9.0
				ilioh	h _{sx} > 99				wieso nur oben hart?
				ilioh	V > 89				
				ilioh	U > 100		31		applicable for all 2m Humidities (THYGAN, Screen, Hygrometer etc)
				ilioh	E > 9		(32)		
				ilioh	d > 360		34		
				ilioh	f > 40 kn/50m/s		35 VAMP		VAMP=30 m/s
				ilioh	$f_g > 250 \text{ km/}$ 60 m/s		36 VAMP		Limit of 250 kn for FE Stations is much too high! VAMP=35 m/s

Tabelle 5. Limit tests

Fct Nr.	Fct name (in libpum)	Test Rule (Violation if)	Description	Name of Test	Test (Application to)	VAMP Tag	EQ Nr in FE	Retrieved from	Remarks
				ilioh	N > 1.125		(37)		applicable to all cloud amount variables
				ilioh	C > 9				applicable to all cloud type codes
				ilioh	ww > 99		39		
				ilioh	$w_x > 2$				
				ilioh	R > 500 mm		40	after Dössegger, 1978 (increased limit)	for daily values
				ilioh	R > 350 mm			ust	for semi daily values
				ilioh	R > 21.0				for 10' values; Limit from VAMP=15.0
				ilioh	$s_n > 150 \text{ cm}$		(41)		Limite in Müller 1987 ist 400 cm
									(200 cm erfasst)
				ilioh	$s_h > 400 \text{ cm}$		(42)		Limite in Müller 1987 ist 800 cm (erfasst)
				ilioh	EV > 15 mm		43	Dössegger 1978	Limite in VAMP: 20 mm (Tageswert?)
				ilioh	EV > 2.0 mm			ust	for hourly values
				ilioh	$N_d > 6$			-	
				ilioh	G > 7			VAMP	for values between 20400340, Einheiten?
				ilioh	G > 1500			VAMP	for values between 03502030
				ilioh	$B_n > 99$				
				ilioh	B _f > 99				
				ilioh	L > 0			VAMP	for values between 20400340, Ein heiten?
				ilioh	L > 300				for values between 03502030
				ilioh	S > 0				for values between 20400340

Tabelle 5. Limit tests

Fct Nr.	Fct name (in libpum)	Test Rule (Violation if)	Description	Name of Test	Test (Application to)	VAMP Tag	EQ Nr in FE	Retrieved from	Remarks
				ilioh	S > 10				for values between 03502030
				ilioh	$T_{-5} > 30$				
				ilioh	$T_{-10} > 28$				
				ilioh	$T_{-20} > 26$				
				ilioh	$T_{-30} > 25$				
				ilioh	$T_{-50} > 23$				
				ilioh	$T_{-100} > 20$				
				ilioh	$Y_{+} > 860$				
				ilioh	Y ₋ >-510				
				ilios	H' > h _s + Lim		XXX	_	Lim in der Regel 100 m, bei gewis-
					H' > 2				sen Stationen (JFJ, Gemmi) mehr. Der erste Test muss evtl zu den Konsistenztests umplaziert werden.
				ilios	s _n > 99 (ust)		XXX	DDR 1987	Lim: 100 cm for stations below 800 m asl: 300 cm for stations above 800 m asl
				ilios	$s_h > 200 \text{ (ust)}$		XXX	DDR 1987	Lim: 100 cm for stations below 800 m asl: 400 cm for stations above 800 m asl
				ilios	T > Lim		1		Lim for each station and month;
									applicable for all 2m Temperatures (THYGAN, Screen, VHT etc) and for Temperature in ASTA room/cabin
				ilios	$T_5 > Lim$				Lim for each station and month
				ilios	T _{max} > Lim		1		Lim for each station and month
				ilios	T _{min} > Lim		1		Lim for each station and month
				ilios	$f_s > Lim$				Lim for each station and month

Tabelle 5. Limit tests

Fct Nr.	Fct name (in libpum)	Test Rule (Violation if)	Description	Name of Test	Test (Application to)	VAMP Tag	EQ Nr in FE	Retrieved from	Remarks
				ilios	f _g > Lim		XXX		Lim: 80 kn for lowland stations, 140 kn for stations above 800 m asl.
				ilios	R > Lim		1		Lim for each station and month
				ilios	RA > Lim				Lim for each station
				ilios	f _{kn} > Lim		XXX		unnötig
				ilios	G > Lim				
				ilios	L > Lim				

Tabelle 5. Limit tests

- a. weiche Limiten im stationsspezifischen Teil
- b. weiche Limiten im stationsspezifischen Teil
- c. weiche Limiten im stationsspezifischen Teil
- d. XXX means 'not yet implemented'

4.2 Variability

4.2.1 Maximum Variability

Fct Nr.	Fct name (in libpum)	Test Rule (Violation if)	Description	Name of Test	Test (Application to)	VAMP Tag	EQ Nr in FE	Retrieved from	Remarks
2	hard_soft_jump	$ X_t - X_{t-1} > Lim$	Difference between two subsequent values must not exceed Lim	-					Test may be applied using hard (wide) and soft (narrow) limits.
				ivarmaxh	$ P_t - P_{t-1} > Lim$		36	Dössegger, 1978;	$Lim = 12 if t - t_{-1} = 12 h$
								WMO 305, 1985	$Lim = 8 \text{ if } t - t_{-1} = 6h$
				ivarmaxh	$ T_t - T_{t-1} > 20 \text{ K}$		9	Dössegger, 1978;	applicable to T measured in intervals of
								WMO 305, 1985	6 or 12 h
				ivarmaxh	$\begin{aligned} T_{max,t} - T_{max, t-1} \\ > 20 \text{ K} \end{aligned}$		12	after Dössegger, 1978	
				ivarmaxh	$ T_{min,t} - T_{min, t-1} $ $> 15 \text{ K}$		19	after Dössegger, 1978	
				ivarmaxh	$ T_t - T_{t-1} > 5 \text{ K}$	VTL		VAMP	applicable to T measured in intervals of 10'
									applicable for all 2m Temperatures (THYGAN, Screen, VHT etc)
				ivarmaxh	$ T_{5t} - T_{5t-1} > 15K$	VTG		VAMP	
				ivarmaxh	$ U_t - U_{t-1} > 30\%$	VUU		VAMP	applicable for all 2m Humidities (THYGAN, Screen, Hygrometer etc)
				ivarmaxh	$ P_t - P_{t-1} > 4 \text{ hPa}$	VPP		VAMP	
				ivarmaxh	$ T_{-5t} - T_{-5t-1} > 4K$	VTB		VAMP	
				ivarmaxh	$ T_{-10t} - T_{-10t-1} > 4K$	VTB		VAMP	
				ivarmaxh	$ T_{-20t} - T_{-20t-1} > 3K$	VTB		VAMP	

Tabelle 6. Maximum Variability checks

Fct Nr.	Fct name (in libpum)	Test Rule (Violation if)	Description	Name of Test	Test (Application to)	VAMP Tag	EQ Nr in FE	Retrieved from	Remarks
				ivarmaxh	$ T_{-50t} - T_{-50t-1} > 2K$	VTB		VAMP	
				ivarmaxh	$\begin{array}{c} T_{\text{-}100t} \text{ - } T_{\text{-}100t\text{-}1} \! > \\ 1 \mathrm{K} \end{array}$	VTB		VAMP	
				ivarmaxs	s _{h06UTC} - s _{h18UTCprevday} < Lim		XXX	DDR 1987	Lim is dependent on station and month
				ivarmaxs	$s_{ m h18UTC}$ - $s_{ m h06UTC}$ < Lim		XXX	DDR 1987	Lim is dependent on station and month

Tabelle 6. Maximum Variability checks

Anleitung zur Erfassung dieser Tests im MeteoSchweiz Data Warehouse System (PuMVerwaltung):

Die Limite, die zum "Prüfparameter" gehört, ist die Länge des Vergleichsbandes (Lim₁ = Anzahl Werte, in der Regel = 2)

Es muss in jedem Fall der Prüfparameter auch als Vergleichsparameter auf Position 2 erfasst werden. Die zugehörige Limite ist dann die Limite (Bandbreite = Lim₂)

4.2.2 Dead-band check

Fct Nr.	Fct name (in libpum)	Test Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr in FE	Retrieved from	Remarks
3	hard_soft_dea d	$ X_t - X_{t-j} < Lim_2$ where: $j=1Lim_1-1$	The differences between one value in a row and the first value in this row must be greater than a limit. The length of the row is specified by a second limit	ivarminh					
				ivarminh	$ d_t - d_{t-j} < 0.1$	VDD		VAMP	
					where: Lim ₁ =6				
				ivarminh	$ f_t - f_{t-j} < 0.1$	VFF		VAMP	
					where: Lim ₁ =6				
				ivarminh	$ T_t - T_{t-j} < 0.1$	VTL		VAMP	
					where: Lim ₁ =6				
				ivarminh	$ T_{5t} - T_{5t-j} < 0.1$	VTG		VAMP	
					where: Lim ₁ =6				
				ivarminh	$ U_{t} - U_{t-j} < 0.1$	VUU		VAMP	Test is not fully identical to VAMP
					where: Lim ₁ =6				
				ivarminh	$ T_{-5t} - T_{-5t-j} < 0.1$	VTG		VAMP	Limit was undef in VAMP?
					where: Lim ₁ =6				
				ivarmins	ID D 1 40.1	VDD		VAMD	
				ivarmins	$ P_t - P_{t-j} < 0.1$	VPP		VAMP	
					where: Lim ₁ =12				

Tabelle 7. Dead-band check

Anleitung zur Erfassung dieser Tests im MeteoSchweiz Data Warehouse System (PuMVerwaltung):

Die Limite, die zum "Prüfparameter" gehört, ist die Länge des Vergleichsbandes (Lim₁ = Anzahl Werte)

Es muss in jedem Fall der Prüfparameter auch als Vergleichsparameter auf Position 2 erfasst werden. Die zugehörige Limite ist dann die Limite (Bandbreite = Lim_2)

4.3 Consistency between measurements

4.3.1 Consistency between two measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
4	absolut_diff_g t	$ X_1 - X_2 > \text{Lim}_1$	Difference between parameter X1 and X2 may not be > Lim						ACHTUNG: Bei der Ablage auf im MCH DWH Sysstem wird Lim1 auf die Position 1, d.h. zusammen mit dem 'Prüfparameter' abge- legt. Die Limite zum Vergleichsparameter wird als 'NULL' eingegeben.
				iteatea1	$ T_{200} - T_H > 5$	KTT		pld51	
				iteatea2	$ T_{200} - T_U > 5$	KTT		pld52	
				iteatea3	$ T_{200} - T_{Ac} > 5$	-		pld53	
				iteatea4	$ T_{200} - T_{Ar} > 5$	-		pld54	•
				iteatea5	$ T_{200} - T_5 > 15$	KTT		pld55	
				iteatea6	$ T_{200} - T_{50} > 10$	-		pld56	
				iteatea7	$ T_5 - T_{50} > 10$	-		pld57	
				iteatea8	$ T_{200} - T_M > 5$	-		pld58	•
				iteatea10	$ U_{200} - U_H > 30$	-		pld501	Limite unterscheiden nach Berg-/Flachland- station oder konservative Feuchtegrösse für den Vergleich verwenden.
				iteatea25	$ T - T_R > 0.8$	-			alte Test Nr 321, nur für Türme?
				iteateg1	$ T_5 - T_{-5} > 30$	KTB		VAMP	
				itegteg1	$ T_{-5} - T_{-10} > 5$	KTB		pld1	
				itegteg2	$ T_{-10} - T_{-20} > 5$	KTB		pld2	
				itegteg3	$ T_{-20} - T_{-30} > 5$	-		pld3	

Tabelle 8. Consistency between two measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
				itegteg4	$ T_{-20} - T_{-50} > 5$	KTB		pld3	
				itegteg5	$ T_{-30} - T_{-50} > 5$	-		pld4	
				itegteg6	$ T_{-30} - T_{-100} > 5$	-		pld4	
				itegteg7	$ T_{-50} - T_{-100} > 5$	KTB		pld5	
				iprepre1	$ R - R_{Ra} > 5$	-		pld106	
				iprepre2	$ R_{Rc} - R_{Ra} > 5$	-		pld107	
				isunsun1	$ S - S_R > 0$	-		pld301	
5	lt_and_lt	$(X_1 \le Lim_1) \&\& (X_2 \le Lim_2)$	X_2 must be more than Lim_2 if X_1 is less than Lim_1	iteains1	$(T_{200} \le 0.0)$ && $(Y_t \le 0)$	KHR		pld901	Bei diesem Test muss auch die Sonnen- scheindauer berücksichtigt werden, d.h. wenn Sonne auf Niederschlagskübel scheint, kann die Temperatur unter Null sein, und die Hei- zung trotzdem ausgeschaltet Der programmierte Test entspricht nicht der
				iteains3	$(T_{200} \le 0.0)$ && $(Y_r \le 0)$	KHR		pld903	Spezifikation!!! 1. Bei diesem Test muss auch die Sonnenscheindauer berücksichtigt werden, d.h. wenn Sonne auf Niederschlagskübel scheint, kann die Temperatur unter Null sein, und die Hei-
									zung trotzdem ausgeschaltet 2. Der programmierte Test entspricht nicht der Spezifikation!!!
6	gt_and_lt	$(X_1 > Lim_1) \&\& (X_2 < Lim_2)$	X_2 must be more than Lim_2 if X_1 is more than Lim_1	iteapre1	(R > 0.0) && (U ₂₀₀ < 70)	KRU		pld102	
	0.0			iradlum1	(G > 30) && (L < 10)	-		pld306	Einheiten G: W/m2 Anpassung:5.2000 alt: Lim ₁ =10

Tabelle 8. Consistency between two measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
				iradlum2	(G > 15) && (L < 0)	-		pld307	Einheiten G: W/m2 Anpassung:5.2000 alt: Lim ₁ =5
				ipregro1	(R > 0) && (E < 1)	-		pld104	
				ipregro2	$(s_h > 0) \&\& (E \le 4)$	-	100, 105?	chi46 pld620 kaa55	in FE Eq. 100, 105 heisst der Test: $(s_h > 0)$ && $(E < 6)$ evtl. Test von ern brauchen, der neben der Schnee-decke auch den Erdbodenzustand 'gefroren' und 'vereist' berücksichtigt.
				ivisvis1	(V>50)&&(V<56	-			
				inocnoc3	(h >50)&&(h <56)	-			!!! ACHTUNG: neu, war in ern's Doku bis anhin nicht drin, harter Test
				irecrec5	(h _{sx} >50) && (h _{sx} <56)	-			harter Test
				ipreclo1	(R > 0)&&(N < 0.625)	-		pld103	ist neu hier, war vorher in 3.6.1., welches jetzt gestrichen ist (alt $N < 5$)
127	sum_gt_and_lt	(X ₁ > Lim ₁) && (X ₂ < Lim ₂)	X_2 must be more than Lim_2 if X_1 (sum of last hour) is more than Lim_1	ipregro3	$\left(\left(\sum_{0}^{5} R\right) > 3\right)$ $\wedge E < I$	-		chi	neue Funktion: Niederschlag der letzten Stunde
7	gt_and_gt	$(X_1 > Lim_1) && (X_2 > Lim_2)$	X_2 must be less than Lim_2 if X_1 is more than Lim_1	ipresun1	(R > 0) && (S > 9)	KRS		pld101	in VAMP \lim_2 is ==10
				isunlig1	$(S > 5) \&\& (B_n > 0)$	-		pld304	
				iteains2	$(T_{200} >= 5.0)$ && $(Y_t > 10.0)$	KHR		pld902	

Tabelle 8. Consistency between two measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
				iteains4	$(T_{200} >= 5.0)$ && $(Y_r > 10.0)$	KHR		pld904	
				iteapre3	$(T > 10) \&\& (s_n > 0)$	KSH	45	VAMP	
				isunclo1	(S > 0) && (N > 0.875)	-		pld305	war vorher in 3.6.2, welches jetzt gelöscht ist alt: $N > 7$
8	eq_and_gt	$(X_1 = Lim_1) \&\& (X_2 > Lim_2)$	X_2 must be less than Lim_2 if X_1 is equal	isunrad1	(S = 0) && (G > Lim ₂)	KGS		pld302	Lim_2 = 3.82 Test for lowland stations (neu 360 W/m2)
			Lim ₁						$Lim_2 = 5.2$ for mountain stations (neu 500 W/m2)
									Anpassung:5.2000 alt: Lim ₂ =230 resp. 312
									Einheit der Limite von G unklar; welche Höhe als Grenze?
				iprelig1	$(R = 0) \&\& (B_n > 0)$	KRB		pld108	eine sep Fkt für $R < Lim_1 \&\& B_n >= Lim_2$ ist vorhanden (clightning_without_precip)
				ivisclo1	(N=1.125) && (V > 10)	KAA		pld626	
9	eq_and_lt	$(X_1 = Lim_1) \&\& (X_2 < Lim_2)$	X_2 must be more than Lim_2 if X_1 is equal Lim_1	isunrad2	(S = 10) && (G < 30)	KGS		pld303	Test for all stations
10	greater_than	$X_1 > X_2$	X_1 must be smaller than X_2	iwinwin2	$f_s > f_g$	-		pld203	
				iwinwin5	$f_v > f_g$	KFF		VAMP	
				irecclo1	$N_{s1} > N$	-		kaa95	sep Fkt allenfalls vorhanden (lrclds_gt_cldcov)
				irecclo2	$N_{s2} > N$	-		kaa96	sep Fkt allenfalls vorhanden (mrclds_gt_cldcov)

Tabelle 8. Consistency between two measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
				irecclo3	$N_{s3} > N$	-		kaa97	sep Fkt allenfalls vorhanden (hrclds_gt_cldcov)
				icloclo1	$N_h > N$	KAA		kaa80 pld627	, 22
11	lower_than	$X_1 < X_2$	X_1 must be more than X_2	iradrad1	$G_c < G$	-		pld308	•
				irecrec3	$h_{s2} < h_{s1}$	-		kaa92	
				irecrec4	$h_{s3} < h_{s2}$	-		kaa93	
				iwebweb1	$W_1 < W_2$	-		kaa45 pld659	
				iprepre8	$s_h < s_n$	KSH		kaa56	war in ern's Sammlung nicht drin
12	gt_and_eq_or_ eq_and_ne	$((X_1 > Lim_1) \&\& (X_2 = Lim_2)) \parallel ((X_1 = Lim_1) \&\& (X_2 != Lim_2))$		iwinwin3	$(f_v > 0)\&\&(d = 0)$ $ ((f_v = 0)$ &&(d! = 0))	KDD	101, 102	pld204	entspricht nicht exakt der ursprünglichen Doku von ern
				iwinwin4	$(f_s > 0) \&\& (d = 0) ((f_s = 0)) (f_s = 0))$	-		pld205	entspricht nicht exakt der ursprünglichen Doku von ern
				iwinwin9	$(f_g > 0) \&\& (dg = 0) ((f_g = 0)) (f_g = 0))$	-		pld205	neu: ust
15	diff_gt								

Tabelle 8. Consistency between two measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
16	fsnow_with_hi gh_temp	6z: $\left(\frac{\sum_{t=0}^{71} T_{200(t)}}{\frac{t=0}{72}} \ge 5\right)$ $\wedge ((s_n^{\ 0} - s_n^{\ -1}) > 0)$ $18z$ $\left(\frac{\sum_{t=0}^{71} T_{200}^{\ -t}}{\frac{t=0}{72}} \ge 5\right)$ $\wedge (s_n^{\ 0} > 0)$	If the mean air temperature of the last 12 hours exceeds 5 degrees there may be no fresh snow.	iteapre2	see consistency rule	VOT		pld60 (chi1)	Dieser Test ist nicht richtig implementiert. Er sollte heissen: Wenn Neuschnee > 0, dann muss die Temperatur in der entsprechenden Periode mindestens einmal kleiner als 5 Grad gewesen sein (bzw. es dürfen nicht alle Temperaturen im entsprechenden Zeitraum grösser als 5 Grad gewesen sein), d.h.: $6z$, $18z$ $(s_n > 0) \land (\bigcap_0^{71} T \ge 5, 0)$ in Phase 2 wie oben implementieren dlo: Aufwandschätzung Funktion 16 falsch!
23	e_more_than_ fsnow	6z: $(s_n - s_n^{-1}) < (s_h - s_h^{-1})$ 18z: $s_n < (s_h - s_h^{-1})$	Within two measure- ments snow cover can- not increase more than the corresponding new snow depth.	iprepre3		VOH	98	chi43 (kaa125 pld61)	

Tabelle 8. Consistency between two measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
24	snow_melted_ too_much	6z: $(s_n - s_n^{-1} - 10) > (s_h - s_h^{-1})$ 18z: $(s_n - 10) > (s_h - s_h^{-1})$	Within two measurements snow cover cannot diminish (compress) more than 10 cm.	iprepre4		-	XXX	chi42	
25	little_precip_a nd_too_much_ snow	$\left(\sum_{0}^{71} R \le 5\right)$ $\wedge \left(s_n \ge \left(3 \cdot \sum_{0}^{71} R\right)\right)$	New snow depth depends on the amount of precipitation (water equivalent)	iprepre5	6z: (R <= 5) && $((s_n - s_n^{-1}) >= (3 *$ R)) 18z: (R <= 5) && $(s_n >= (3 * R))$	-	XXX	chi	Einheit von R [mm] Einheit von s_n [cm] R in coloumn 'Tests' equals the precipitation sum of the last 12 hours.
26	lotof_precip_a nd_too_much_ snow	$\left(\sum_{0}^{71} R > 5\right)$ $\wedge \left(s_{n} \ge \left(2 \cdot \sum_{0}^{71} R\right)\right)$	New snow depth depends on the amount of precipitation (water equivalent)	iprepre6	6z: (R > 5) && $((s_n - s_n^{-1}) >= (2 *$ R)) 18z: (R > 5) && $(s_n >= (2 * R))$	-	XXX	chi	Einheit von R [mm] Einheit von s _n [cm] R in coloumn 'Tests' equals the precipitation sum of the last 12 hours
27	more_fsnow_t han_tsnow	6z: $((s_n - s_n^{-1}) > 0) \&\& (s_h < (s_n - s_n^{-1}))$ 18z: $(s_n > 0) \&\& (s_h < s_n)$	Total snow cover may not be smaller than new snow depth	iprepre7		VOH	97	chi41	Only for stations below 800 m, because where s_h is high (in the mountains) this test will never or seldom fail Test ist nicht exakt identisch mit VAMP Code nicht vollständig (hap)! $(s_n - s_n^{-1}) > 0$ fehlt
	p	$\left(\frac{f_v}{f_s} > 1\right) \lor \left(\frac{f_v}{f_s} < 0.83\right)$		iwinwin1		-		pld202	ENET

Tabelle 8. Consistency between two measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
		extremum(X_t , X_{t-1} , X_{t-2} ,) - $X_{\text{extrem}} > \text{Lim}$	The extreme value (min, max) of the readings at specific observation terms may exceed the extreme value for this period only by a very small amount.	iteateal I	$\begin{aligned} & \max(T_{H06UTC}, \\ & T_{H12UTC}, \\ & T_{H18UTC}) - \\ & T_{\max18UTC} \\ & > 0.3 \text{ K} \end{aligned}$	-	13	KLIBER	Phase 2 dlo: Aufwandschätzung
				iteatea12	$ \begin{array}{ c c } \hline max(T_{H18UTCprev} \\ \hline a_{day}, T_{H06UTC}) - \\ \hline T_{max06UTC} \\ > 0.3 \ K \\ \hline \end{array} $	-	14	Dösseg- ger, 1978 (KLIBER)	
				iteatea13	$\begin{aligned} & \min(T_{H06UTC}, \\ & T_{H12UTC}, \\ & T_{H18UTC}) - \\ & T_{min18UTC} > 5 \text{ K} \end{aligned}$	-	29	Dösseg- ger, 1978 (KLIBER)	
		X_{extrem} - extremum(X_{t} , X_{t-1} , X_{t-2} ,) > Lim	The maximum value for a given period may exceed the readings at the observation terms in this period only by Lim.	iteatea14	$T_{max06UTC} - \\ max(T_{H18UTCprev} \\ day, T_{H06UTC}) > \\ 10 \text{ K}$	-	15	Dösseg- ger, 1978 (KLIBER)	Phase 2 dlo: Aufwandschätzung
				iteatea15	$T_{max18UTC} - \\ max(T_{H06UTC}, \\ T_{H12UTC}, \\ T_{H18UTC}) > 10 \text{ K}$	-	16	Dösseg- ger, 1978 (KLIBER)	
				iteatea16	$ \begin{aligned} &T_{min06UTC} - \\ &min(T_{H18UTCprevd} \\ &ay, T_{H06UTC}) > \\ &0.3K \end{aligned} $	-	20	Dösseg- ger, 1978 (KLIBER)	

Tabelle 8. Consistency between two measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
				iteatea17	$T_{\min 18UTC} - \\ \min(T_{H06UTC}, \\ T_{H12UTC}, \\ T_{H18UTC}) > 0.3 \text{ K}$		21	Dösseg- ger, 1978 (KLIBER)	
		X ₁ - X ₂ < Lim	X ₂ may exceed X ₁ only by Lim	iteatea18	T _{H18UTCprevday} - T _{min06UTC} < - 0.3 K		22	Dösseg- ger, 1978 (KLIBER)	Phase 2 dlo: Aufwandschätzung
				iteatea19	$T_{\rm H06UTC} - \\ T_{\rm min06UTC} < -0.3 \\ K$		24	Dösseg- ger, 1978 (KLIBER)	
				iteatea20	$T_{min18UTC} - T_{H06UTC} > 0.3 \text{ K}$		26	Dösseg- ger, 1978 (KLIBER)	
				iteatea21	$T_{min18UTC} - T_{H12UTC} > 0.3 \text{ K}$		27	Dösseg- ger, 1978 (KLIBER)	
				iteatea22	$T_{min18UTC} - T_{H18UTC} > 0.3 \text{ K}$		28	Dösseg- ger, 1978 (KLIBER)	
		$X_1 - X_2 > Lim$	X_2 may not be greater than X_1 + Lim	iteatea23	$ \begin{aligned} T_{\rm H18UTCprevday} - \\ T_{\rm min06UTC} > 15 \\ K \end{aligned} $		23	Dösseg- ger, 1978 (KLIBER)	Phase 2 dlo: Aufwandschätzung
				iteatea24	T_{H06UTC} - $T_{min06UTC} > 15$ K		25	Dösseg- ger, 1978 (KLIBER)	
111	func_322	$\begin{aligned} ax(X,X_R) > Lim_1 \land \\ X-X_R > Lim_2 \end{aligned}$		iwinwin6	$ax(f, f_R) > ms^{-1} \land f - f_R > 0, 7ms^{-1}$			AZEN	alte Test Nr 322

Tabelle 8. Consistency between two measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
112		$\begin{aligned} \max(X, X_R) > Lim_1 \wedge \\ \left(\left \frac{X}{X_R} - 1 \right > Lim_2 \vee \\ \left X - X_R \right > Lim_3 \right) \end{aligned}$		iwinwin7	$\max(f, f_R) > 1ms^{-1} \land \left(\left \frac{f}{f_R} - 1 \right > \dot{0}, 28 \lor f - f_R > 0, 7ms^{-1} \right)$			AZEN	alte Test Nr 323
113	func_324	$\begin{aligned} & \max(f, f_R) > Lim_1 \land \\ & ((\left d - d_R - 180 \right) > Lim_2 \\ & (\left d - d_R + 180 \right) > Lim_2) \end{aligned}$		iwinwin8	$max(f, f_R) > 1ms^{-1} \land ((d - d_R - 180) > 14deg \lor (d - d_R + 180) > 14deg)$			AZEN	alte Test Nr 324

Tabelle 8. Consistency between two measurements

4.3.2 Consistency between three measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
13	gt_and_absolu t_diff_gt	$(X_1>=Lim_1)$ && $ X_2-X_3 >Lim_2$	The difference between X2 and X3 must not exceed Lim2, if X1 is more or equal Lim1.	itespre1	$(s_h >= 30) \&\&$ $ T_{S1} - T_{S0} > 3.0$	-	pld6	
				itespre2	$(s_h >= 55) \&\& T_{S2} - T_{S0} > 3.0$	-	pld7	
				itespre3	$(s_h >= 100) \&\& T_{S3} - T_{S0} > 3.0$	-	pld8	
14	red2_nbetwee n_red1_and_3		The algorithm is testing whether parameter X1 lies between X2 and X3	iteatea9	X ₁ : T ₅₀ X ₂ : T ₂₀₀ X ₃ : T ₅	-	pld59	Test muss neu spezifiziert werden. Es kann sein dass die 50 cm Temperatur um einige wenige Zehntel ausserhalb des durch die 2m und 5 cm Temperatur vorgegebenen Toleranzbands liegt. Phase 2! dlo: Aufwandschätzung

Tabelle 9. Consistency between three measurements

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
114	func_325	(1)∧(2)		iteatea26	see consistency		AZEN	alte Test Nr. 325
		where (1):			rule			the indices x denote the level of the tower:
		$((T_x - (T'_{x-1} + Lim_1) > Lim_2))$			T: ta1tows0			x-1 = level below the actual level
		$\underbrace{(-x + -1) - \dots + (-x + 1)}_{x - 1}$			T _R : ta2tows0			x+1 = level above the actual level
		and (2):			Lim ₁ : 12°C			If the test is performed for data of the lowest level, (1) is omitted. If the test is performed
		$(\underbrace{(T_x - (T'_{x+1} - Lim_1) > Lim_2)})$			Lim ₂ : 34 °C			for the uppermost level, (2) is omitted.
		and:						Station 55: $Lim1 = 1.0$, $Lim2 = 3.0$
								Station 60: $Lim1 = 1.0$, $Lim2 = 3.0$
		$T' = (T + T_R)/2$						Station 61: $Lim1 = 2.0$, $Lim2 = 4.0$
								Station 64: $Lim1 = 1.0$, $Lim2 = 3.0$
				iteatea27	see consistency		AZEN	alte Test Nr. 325
					rule			the indices x denote the level of the tower:
					T: ta2tows0			x-1 = level below the actual level
					T _R : ta1tows0			x+1 = level above the actual level
					Lim ₁ : 12°C			If the test is performed for data of the lowest level, (1) is omitted. If the test is performed
					Lim ₂ : 34 °C			for the uppermost level, (2) is omitted.
								Station 55: $Lim1 = 1.0$, $Lim2 = 3.0$
								Station 60: Lim1 = 1.0, Lim2 = 3.0
								Station 61: Lim1 = 2.0 , Lim2 = 4.0
								Station 64: Lim1 = 1.0, Lim2 = 3.0

Tabelle 9. Consistency between three measurements

4.3.3 Consistency between measurements and sensor status words

Fct

Nr.

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retriev ed from	Remarks	Fct Nr.
			If the THYGAN status- word takes a value between 5000 and 5999 then the relative humidity violates a hard limit.	iteains7	$U > -1.0\varepsilon + 11 \&\& Y_{swTH} > 4999 \&\& Y_{swTH} < 6000$				any value of the relative humidity has to be flagged.
126	thyg_sens_status	$X_1 > Lim_1 \&\& X_1 < Lim_2 \&\& X_2 = Lim_3 \\ \&\& X_2 - (X_2 + X_{2 t-1})/2 < Lim_4$	If the THYGAN status- word takes a value between 2000 and 3999 and the absolute difference of the relative humidity between the actual value and the arithmetic mean of the actual and the previous value is smaller than 30% then the relative humidity violates a hard limit.	iteains8	U > -1.0e+10 && U - (U + U _{t-1})/2 < 30% && Y _{swTH} > 1999 && Y _{swTH} < 4000				any value of the relative humidity has to be flagged.
			If the THYGAN status- word takes a value between 6000 and 6999 and the absolute difference of the relative humidity between the actual value and the arithmetic mean of the actual and the previous value is smaller than 30% then the relative humidity violates a hard limit.	iteains9	$\begin{array}{l} U>-1.0e+10~\&\&~U-\\ (U+U_{t-1})/2<30\%\\ \&\&~Y_{swTH}>5999~\&\&\\ Y_{swTH}<7000 \end{array}$				

Tabelle 10. Consistency between measurements and sensor status words

4.4 Consistency between present weather and measurements

4.4.1 Consistency between present weather and air temperature/ humidity

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
17		(wwe {48, 49, 56, 57, 66, 69, 7278}) && (T ₂₀₀ > 2.0)	If air temperature is > X then there may be neither snow flurry, fog, hoarfrost, freezing drizzle, freezing rain nor snowfall.	iteawob1		KAT	69,70	chi18 (kaa160 pld601)	!!!ACHTUNG: inhaltliche und formale Änderung!!! In VAMP lautet dieser Test: $(ww \in \{7079\}) \&\& (T_{200}>=5.0)$
115		(ww \in {48, 49, 56, 57, 66, 67}) && (T ₂₀₀ > 2.0)	If air temperature is > X then there may be neither snow flurry, fog, hoarfrost, freezing drizzle nor freezing rain.	iteawob7				chi	neu
116		$(ww \in \{68, 69\}) \&\& (T_{200} > 7.0)$	If air temperature is > X then there may be no sleet.	iteawob8				chi	neu
18		$(ww \in \{83-88\}) && (T_{200} > 5.0)$	If air temperature is > X then ther may be no shower of rain/snow.	iteawob2		-	71	chi19 (kaa160 pld602)	!!!ACHTUNG: formale Änderung!!!
19	rain_obsd_wit h_low_temp	$ \begin{array}{l} (ww \in \{50\text{-}55,58\text{-}65,80\text{-}\\ 82,91,92\}) \;\&\&\; (T_{200} < \text{-}\\ 2.0) \end{array} $	If air temperature is < X then there may be no rain.	iteawob3		1	73,74	chi21 (kaa160 pld603)	!!!ACHTUNG: formale Änderung!!

Tabelle 11. Consistency between present weather and air temperature/ humidity

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
20	fog_obsd_with _dry_air	$\begin{aligned} &(\text{ww} \in \{42\text{-}49\}) \&\&\\ &!((T_{200} < 0)\&\&(U_{200} < = \\ &85)) \\ &!((T_{200} < = \text{-}15)\&\&(T_{200} \\ &>= 0)\&\&(U_{200} < = \\ &75)) \mid \\ &!((T_{200} > \text{-}15)\&\&(U_{200} < = \\ &70)) \end{aligned}$	If there is fog and air- temperature $>= 0$ then humidity must be $>= X$ If there is fog and air temperature > -15 and less than 0 then humid- ity must be $>= Y$ If there is fog and air temperature $=< -15$ then humidity must be >= Z	iteawob4		KAU	75	chi22 (kaa161 pld604)	Description unvollständig !!!ACHTUNG: formale Änderung!! In VAMP lautet dieser Test: ww ∈ {4149}&&U<85 Testlogik?
21	precip_obsd_ with_dry_air	$\begin{aligned} &(\text{ww} \in \{50\text{-}75, 80\text{-}99\}) \&\&\\ &!((T_{200} < 0)\&\&(U_{200} < = 80)) \\ &!((T_{200} < = -15)\&\&(T_{200} \\ &>= 0)\&\&(U_{200} < = 75)) \\ &!((T_{200} > -15)\&\&(U_{200} < = 70)) \end{aligned}$	If precipitation is observed and airtemperature >= 0 then humi ity must be >= X If precipitation is observed and air temperature > -15 and less than 0 then humidity must be >= Y If precipitation is observed and air temperature =< -15 then humidity must be >= Z	iteawob5		KAA	76,77	chi23 (kaa162 pld607)	description unvollständig $!!!ACHTUNG: formale \ \ddot{A}nderung!!!$ In VAMP lautet dieser Test $(ww \in \{50\text{-}75, 80\text{-}99\}) \&\& \ U_{200} < 70$ Testlogik?
22		(ww ∈ {36-39}) && T > 6.0	if there is light snowfall, snow drift (Schneetreiben) snow sweep (Schneefegen) then air temperature must be below X degrees.	iteawob6		-	72	chi	!!!ACHTUNG: formale Änderung!!!

Tabelle 11. Consistency between present weather and air temperature/ humidity

4.4.2 Consistency between present weather and precipitation

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernein- gabe	Retrieved from	Remarks
28		(ww ∈ {54, 55, 59, 62, 63, 64, 65, 81-84, 92}) && (R < Lim)	If the precipitation is < X then there may no heavy or moderate rain be observed.	iprewob1		KAR	78, 79	chi24 (kaa163 pld605 pld606)	!!!ACHTUNG: formale Änderung!!! In VAMP lauetet dieser Test: $(ww \in \{5075, 8099\}) \&\& (R = 0.0)$
29	no_precip_obs d_but_msd	(R > 0.0) && (ww < 50)	Precipitation may not be > X if observer reports precipitation at the station for present weather or during the last hour.	iprewob2		-		pld105	

Tabelle 12. Consistency between present weather and precipitation

4.4.3 Consistency between present weather and sunshine duration

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
36		$(ww = 50-75, 80-99) \&\& (S^0+S^{-1}+S^{-2}+S^{-3}+S^{-4}+S^{-5} = 60)$	If there is any form of precipitation then sunshine duration within the last hour can not be 60min.	isunwob1		KAS	kaa164 pld609	

Tabelle 13. Consistency between present weather and sunshine duration

4.4.4 Consistency between present weather and wind

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernein- gabe	Retrieved from	Remarks
38	storm_obsd_y not_msd	$(ww \in \{9, 30-39\}) \&\& (f_s < 4.63)$	If windspeed is below X then there may be no storm, no snow drifting (Schneetreiben) and no snow sweep (Schneefe- gen)	iwinwob1		-	68	chi20	Take care of the unit of windspeed!!!

Tabelle 14. Consistency between present weather wind

4.4.5 Consistency between present weather and lightning

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
39	thstorm_missi	$ \begin{aligned} &((ww = 17, 95\text{-}99) \;\&\&\; (B_n \\ &= 0) \; \\ &(!(ww = 17, 95\text{-}99) \;\&\&\; (B_n \\ &> 0)) \end{aligned} $	If there is close light- ning then a thunder storm must be reported	iligwob1		-	kaa165 pld615	
40	thstorml6_mis sing	$\begin{split} &((ww=29,91\text{-}94)\&\&\\ &((B_n{}^0+B_n{}^{-1}+B_n{}^{-2}+B_n{}^{-3}+B_n{}^-\\ &^4+B_n{}^{-5})=0)\parallel\\ &(!(ww=29,91\text{-}94)\&\&\\ &((B_n{}^0+B_n{}^{-1}+B_n{}^{-2}+B_n{}^{-3}+B_n{}^-\\ &^4+B_n{}^{-5})>0)) \end{split}$	If there was a thunder storm during the last hour (but not at the moment of observation), there may be no close lightning at the moment of observation, but there must be close lightning during the period 60min to 10min before observation.	iligwob2		-	kaa166 pld616	

Tabelle 15. Consistency between present weather and lightning

4.5 Consistency between past weather and measurements

4.5.1 Consistency between past weather and precipitation (stations of synoptic network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
30	msd_ynot_obs d	$6z, 12z, 18z, 24z:$ $\left(\sum_{t=0}^{35} R_t \ge 0.3\right) \land$ $((W_1 < 5) \land$ $(W_2 < 5))$ $3z, 9z, 15z, 21z:$ $\left(\sum_{t=0}^{17} R_t \ge 0.3\right) \land$ $((W_1 < 5) \land$ $(W_2 < 5))$	If precipitation is >= X then there must be any form of precipitation in the past weather.	ipreweb1	see consistency rule	-	kaa155 pld624	

Tabelle 16. Consistency between past weather and precipitation (stations of synoptic network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
31	bsd_ynot_msd	$\begin{aligned} &6z, 12z, 18z, 24z: \\ &\left(\sum_{t=0}^{35} R_t = 0\right) \land \\ &\left((W_1 \in \{5, 6, 7, 8\}) \lor \right. \\ &\left. (W_2 \in \{5, 6, 7, 8\}) \lor \right. \\ &\left. \left(\sum_{t=0}^{17} R_t = 0\right) \land \\ &\left. ((W_1 \in \{5, 6, 7, 8\}) \lor \right. \right. \\ &\left. ((W_2 \in \{5, 6, 7, 8\}) \lor) \right] \\ &\left. ((W_2 \in \{5, 6, 7, 8\}) \lor) \right] \\ &\left. ((W_2 \in \{5, 6, 7, 8\}) \lor \right] \\ \\ &\left.$	If precipitation is 0 then there may not be any form of precipitation in the weather before the observation.	ipreweb2	see consistency rule	-	kaa156 pld625	!!! ACHTUNG auf formale Änderungen im Vergleich zur Doku von ern !!!

Tabelle 16. Consistency between past weather and precipitation (stations of synoptic network)

4.5.2 Consistency between past weather and precipitation (stations of climatological network)

Fet Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
32	precip_past_msd_ ynot_obsd	6z: $\left(\left(\sum_{t=0}^{71} R_{t}\right) \ge 0.3\right) \land$ $(w_{1} = 0) \land$ $(w_{1} = 0) \land$ $(w_{1} = 0) \land$ $(w_{2} = 0) \land$ $(w_{2} = 0) \land$ $(w_{3} = 0))$	If the precipitation sum of the last 12 or 6 hours is equal or larger than X then there must have been any form of precipitation (rain, snow, hail etc.) in the past weather.	iprepaw1		VWR	93, 103	chi37 (kaa150 pld621)	in VAMP ist die Limite 0.1

Tabelle 17. Consistency between past weather and precipitation (stations of climatological network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
33	precip_past_obsd _ynot_msd	6z: $\left(\sum_{t=0}^{71} R_t = 0.0\right) \land \\ ((w_1 \neq 0) \lor \\ (w_2 \neq 0) \lor \\ (w_3 \neq 0))$ 12z, 18z: $\left(\sum_{t=0}^{35} R_t = 0.0\right) \land \\ ((w_1 \neq 0) \lor \\ (w_2 \neq 0) \lor \\ (w_3 \neq 0))$	If the precipitation sum of the last 12 or 6 hours is 0 then there may not have been any form of precipitation in the past weather.	iprepaw2		VWR	94	chi38 kaa151 pld622)	
34		$((R_0+R_{-1}+R_{-2}+R_{-3}+R_{-4}+R_{-5})>0.3)$ && $(w_6 !=0)$	If there was dew or hoarfrost in the past weather then precipitation sum of the last hour may not be > Y.	iprepaw3		-		kaa152 pld623	

Tabelle 17. Consistency between past weather and precipitation (stations of climatological network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
35	fsnow_without_pr ecip_past_6	6z: $((s_n - s_n^{-1}) > 0) \land$ $\left((w_2 = 0) \lor$ $\left(\sum_{t=0}^{71} R_t = 0\right)\right)$	If there is new snow in the morning there must have been precipitation within the last 12 hours.	iprepaw4		VOR/ VOW	95, 96	chi39 chi40	Array für s _N
	fsnow_without_pr ecip_past_18	18z: $(s_n > 0) \land$ $\left(((w_2 = 0) \land (w_{2-1} = 0)) \lor$ $\left(\sum_{t=0}^{71} R_t = 0\right)\right)$	If there is new snow in the evening there must have been precipitation within the last 12 hours.	iprepaw6		VOR/ VOW	95, 96	chi39 chi40	Array für \mathbf{w}_2
117	rain_bobs_msd_y not_past	6z: $\left(\sum_{t=0}^{71} R_t > 5\right) \land (w_1 = 1)$ 12z, 18z: $\left(\sum_{t=0}^{35} R_t > 5\right) \land (w_1 = 1)$	If lot of rain is measured rain must be observed.	iprepaw5		VWR	-	VAMP	!!!ACHTUNG: neue Funktion, die bisher in ern's Library nicht vorhanden ist!!!

Tabelle 17. Consistency between past weather and precipitation (stations of climatological network)

4.5.3 Consistency between past weather and temperature or humidity (stations of climatological network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernein -gabe	Retrieved from	Remarks
118	rain_bobs_with_l ow_temp	6z: $(w_1 \neq 0) \land (\bigcap_0^{71} T < 1, 0)$ 12z, 18z: $(w_1 \neq 0) \land (\bigcap_0^{35} T < 1, 0)$	If drizzle or rain is given in past weather, all tem- peratures in the respec- tive interval have to be above 1 C.	iteapaw1	see consistency rule	VWT	-	VAMP	!!!ACHTUNG: neue Funktion, die bisher in ern's Library nicht vorhanden ist!!!
119	solid_precip_bobs _with_high_temp	6z: $(w_2 \neq 0) \land (\bigcap_0^{71} T \geq 5, 0)$ 12z, 18z: $(w_2 \neq 0) \land (\bigcap_0^{35} T \geq 5, 0)$	If rain-snow or snowfall is given in past weather, all temperatures in the respective interval have to be 5 C or less.	iteapaw2	see consistency rule	VWT		VAMP	!!!ACHTUNG: neue Funktion, die bisher in ern's Library nicht vorhanden ist!!!
120	rainsnow_bobs_w ith_low_temp	6z: $(w_2 = 1) \land (\bigcap_0^{71} T < 1, 0)$ 12z,18z $(w_2 = 1) \land (\bigcap_0^{35} T) < 1, 0$	If rain-snow is given in past weather, all temperatures in the respective interval have to be above 1 C.	iteapaw3	see consistency rule	VWT		VAMP	!!!ACHTUNG: neue Funktion, die bisher in ern's Library nicht vorhanden ist!!!
121	thin_fog_bobs_wi th_dry_air	6z: $(w_5 = 1) \land (\bigcap_0^{71} U < 75, 0)$ 12z, 18z: $(w_5 = 1) \land (\bigcap_0^{35} U < 75, 0)$	respective interval have to be above 75%.	iteapaw4	see consistency rule	VWU		VAMP	!!!ACHTUNG: neue Funktion, die bisher in ern's Library nicht vorhanden ist!!!

Tabelle 18. Consistency between past weather and temperature or humidity (stations of climatological network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernein -gabe	Retrieved from	Remarks
122	dense_fog_bobs_ with_dry_air	6z: $(w_5 = 2) \land (\bigcap_0^{71} U < 85, 0)$ 12z, 18z: $(w_5 = 2) \land (\bigcap_0^{35} U < 85, 0)$	tive interval have to be above 85%.	iteapaw5	see consistency rule	VWU		VAMP	!!!ACHTUNG: neue Funktion, die bisher in ern's Library nicht vorhanden ist!!!
123	smooth_hfrost_bo bs_with_high_te mp	6z: $(w_6 = 2) \land (\bigcap_0^{71} T_5 > 0)$ 12z, 18z: $(w_6 = 2) \land (\bigcap_0^{35} T_5 > 0)$	If hoarfrost is given in past weather, all temperatures in the respective interval have to be below 0 C.	iteapaw6	see consistency rule	VWU		VAMP	!!!ACHTUNG: neue Funktion, die bisher in ern's Library nicht vorhanden ist!!!

Tabelle 18. Consistency between past weather and temperature or humidity (stations of climatological network)

4.6 Consistency between state of the ground and measurements

4.6.1 Consistency between state of the ground and temperature

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retriev ed from	Remarks
124	eq_or_eq_and_gt	(E==3 E==4) && T > 6	if the temperature is high the ground may not be frozen.	igrotea1	see consistency rule	-	99		neu
		(E==8 E==9) && T > 2	if the temperature is high the ground may not be covered with try snow.	igrotea2	see consistency rule	-	104		neu

Tabelle 19. Consistency between state of the ground and temperature

4.7 Consistency between observations

4.7.1 Consistency between present weather and state of the ground

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
41	precip_obsd_ with_dry_grd	(ww > 50) && (ww ∉ {60, 70, 76, 78}) && (E = 0)	If there is precipitation (but neither ice prism nor single snow flakes) then state of the ground may not be 'dry'.	igrowob1		-	61	chi11 (kaa50 pld617)	!!!ACHTUNG: inhaltliche und formale Änderung!!!
42	sflurry_obsd_ without_grd_s now	(ww∈ {3639}) && (E<= 4)	If there is snow flurry then state of the ground may not be dry, wet or frozen without snow or ice.	igrowob2		-	62	chi12 (kaa51 pld618)	!!!ACHTUNG: formale Änderung!!!
43	snow_obsd_wi thout_snow_la yer	(ww ∈ {75, 86}) && (E <= 5)	If there is moderate or heavy snowfall, then ground must be cov- ered by snow.	igrowob3		-	63	chi13 (kaa52 pld619)	!!!ACHTUNG: formale Änderung!!!

Tabelle 20. Consistency between present weather and state of the ground

4.7.2 Consistency between present weather and past weather (past weather in SYNOP Code; stations of synoptic network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
44		6z, 12z, 18z, 24z: $((ww^{-2} = 30-35, 38, 39) \parallel (ww^{-1} = 30-35, 38, 39))$ && $((W_1 < 3) \&\& (W_2 < 3))$		iwobweb1		-	kaa110	
		3z, $9z$, $15z$, $21z$: $(ww^{-1} = 30-35, 38, 39))$ && $((W_1 < 3))$ && $(W_2 < 3))$						
45		6z, 12z, 18z, 24z: $((ww^{-2} = 42-49) \parallel (ww^{-1} = 28, 42-49)) \&\& ((W1 < 4) && (W2 < 4))$		iwobweb2		-	kaa111	
		3z, 9z, 15z, 21z: (ww ⁻¹ = 42-49)) && ((W ₁ < 4) && (W ₂ < 4))						
46		6z, 12z, 18z, 24z: $((ww^{-2} = 50-57) \parallel (ww^{-1} = 24, 50-57)) \&\& ((W1 < 5) && (W2 < 5))$		iwobweb3		-	kaa112	
		3z, 9z, 15z, 21z: $(ww^{-1} = 50-57)) \&\&$ $((W_1 < 5) \&\& (W_2 < 5))$						

Tabelle 21. Consistency between present weather and past weather (stations of synoptic network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
49		$\begin{aligned} &6z, 12z, 18z, 24z: \\ &((ww^{-2} = 80\text{-}90) \parallel \\ &(ww^{-1} = 25\text{-}27, 80\text{-}90)) \&\& \\ &((W_1 < 8) \&\& (W_2 < 8)) \\ &3z, 9z, 15z, 21z: \\ &(ww^{-1} = 80\text{-}90)) \&\& \\ &((W_1 < 8) \&\& (W_2 < 8)) \end{aligned}$		iwobweb6		-	kaa115	
50		$\begin{aligned} &6z, 12z, 18z, 24z:\\ &((ww^{-2} = 17, 95-99) \parallel \\ &(ww^{-1} = 17, 91-94, 95-99))\\ &\&\&\\ &((W_1 < 9) \&\& (W_2 < 9))\\ &3z, 9z, 15z, 21z:\\ &(ww^{-1} = 17, 95-99)) \&\&\\ &((W_1 < 9) \&\& (W_2 < 9)) \end{aligned}$		iwobweb7		-	kaa116	

Tabelle 21. Consistency between present weather and past weather (stations of synoptic network)

4.7.3 Consistency between present weather and past weather (past weather in climatological code; stations of synoptic network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
51	solid_precip_a tobs_ynot_pas t	6z: $((ww^{-4} = 93, 94) \parallel (ww^{-3} = 93, 94) \parallel (ww^{-2} = 93, 94) \parallel (ww^{-1} = 93, 94) \parallel (ww = 93, 94)) && ((w2 = 0) && (w3 = 0))$	sleet, snow, hail or small hail must be coded in the past weather until now and at time of observation	iwobpaw1		(KAA)	kaa100	In VAMP ist diese Funktionalität in Testfkt 56 enthalten
		12z, 18z: $((ww^{-2} = 93, 94) \parallel (ww^{-1} = 93, 94) \parallel (ww = 93, 94)) && ((w2 = 0) && (w3 = 0))$						
52	drizzle_atobs_ ynot_past	6z: $((ww^{-4} = 50-57) \parallel (ww^{-3} = 24, 50-57) \parallel (ww^{-2} = 24, 50-57) \parallel (ww^{-1} = 24, 50-57) \parallel (ww = 24, 50-57)) && (w_1 != 1)$	If there is drizzle during the observation time then there also must have been drizzle in the past weather.	iwobpaw2		KAA	kaa101 (chi26) (pld647)	!!!ACHTUNG: inhaltliche Änderung (!=1 statt < 1)
		12z, 18z: $((ww^{-2} = 50-57) \parallel (ww^{-1} = 24, 50-57) \parallel (ww = 24, 50-57)) \&\& (w_1 != 1)$						

Tabelle 22. Consistency between present weather and past weather (past weather in climatological code, stations of synoptic network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
53	rain_atobs_yn ot_past	6z: $((ww^{-4} = 58-67, 80-82, 91, 92, 95, 97) \parallel \\ (ww^{-3} = 21, 25, 58-67, 80-82, 91, 92, 95, 97) \parallel \\ (ww^{-2} = 21, 25, 58-67, 80-82, 91, 92, 95, 97) \parallel \\ (ww^{-1} = 21, 25, 58-67, 80-82, 91, 92, 95, 97) \parallel \\ (ww = 21, 25, 58-67, 80-82, 91, 92, 95, 97)) \&\&(w_1 != 2) \\ 12z, 18z: \\ ((ww^{-2} = 58-67, 80-82, 91, 92, 95, 97)) \parallel \\ (ww^{-1} = 21, 25, 58-67, 80-82, 91, 92, 95, 97) \parallel \\ (ww^{-1} = 21, 25, 58-67, 80-82, 91, 92, 95, 97) \parallel \\ (ww = 21, 25, 58-67, 80-82, 91, 92, 95, 97)) \&\&(w_1 != 2)$	If there is drizzle, rain, showers, hail or hoar-frost hail at time of observation then there must have been rain in the past weather.	iwobpaw3		KAA	kaa102 (chi27) (pld648)	In VAMP lautet die Liste für ww: 5867, 8082, 8992, 9597, 99
54	sleet_snow_at ob_ynot_past	6z: $((ww^{-4} = 68, 69, 83, 84, 93, 94) \parallel (ww^{-3} = 26, 68, 69, 83, 84, 93, 94) \parallel (ww^{-2} = 26, 68, 69, 83, 84, 93, 94) \parallel (ww^{-1} = 26, 68, 69, 83, 84, 93, 94) \parallel (ww = 26, 68, 69, 83, 84, 93, 94)) \&\& (w_2 != 1)$ $12z, 18z:$ $((ww^{-2} = 68, 69, 83, 84, 93, 94) \parallel (ww^{-1} = 26, 68, 69, 83, 84, 93, 94) \parallel (ww = 26, 68, 69, 83, 84, 93, 94) \parallel (ww = 26, 68, 69, 83, 84, 93, 94)) \&\& (w_2 != 1)$	If there is sleet, drizzle, shower, hail or small hail then there must have been rain with snow in the past weather.	iwobpaw4		KAA	kaa103 (chi28) (pld649)	!!!ACHTUNG: inhaltliche Änderung!!! (!=1 statt < 1)

Tabelle 22. Consistency between present weather and past weather (past weather in climatological code, stations of synoptic network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
55	snow_atobs_y not_past	6z: $((ww^{-4} = 70-75, 77, 85, 86) \parallel (ww^{-3} = 22, 70-75, 77, 85, 86) \parallel (ww^{-2} = 22, 70-75, 77, 85, 86) \parallel (ww^{-1} = 22, 70-75, 77, 85, 86) \parallel (ww = 22, 70-75, 77, 85, 86)) \&\& (w_2 != 2)$	If there is snowfall, hoarfrost, hail or snow showers, then there must have been snow in the past weather.	iwobpaw5		KAA	kaa104 (chi29) (pld650)	In VAMP lautet die Liste für ww: 7075, 77, 79, 8588
		12z, 18z: $((ww^{-2} = 70-75, 77, 85, 86) \parallel (ww^{-1} = 22, 70-75, 77, 85, 86) \parallel (ww = 22, 70-75, 77, 85, 86))$ $\&\& (w_2 != 2)$						
56	shail_hail_ato bs_ynot_past	6z: $((ww^{-4} = 87-90, 96, 99) \parallel (ww^{-3} = 27, 87-90, 96, 99) \parallel (ww^{-2} = 27, 87-90, 96, 99) \parallel (ww^{-1} = 27, 87-90, 96, 99) \parallel (ww = 27, 87-90, 96, 99)) && (w3!= 2)$	If there is hoarfrost, hail, rain or snow then there must have been observed at last one of these phenomenons.	iwobpaw6		KAA	kaa105 (chi30) (pld651)	In VAMP lautet die Liste für ww: 8790, 93, 94, 96, 99 !!!ACHTUNG: inhaltliche Änderung!!!
		12z, 18z: $((ww^{-2} = 87-90, 96, 99) \parallel \\ (ww^{-1} = 27, 87-90, 96, 99) \parallel \\ (ww = 27, 87-90, 96, 99)) \&\& \\ (w_3 != 2)$						

Tabelle 22. Consistency between present weather and past weather (past weather in climatological code, stations of synoptic network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
57	fog_atobs_yno t_past	6z: $((ww^{-4} = 42-49) \parallel (ww^{-3} = 28, 42-49) \parallel (ww^{-2} = 28, 42-49) \parallel (ww^{-1} = 28, 42-49) \parallel (ww = 28, 42-49)) && (w_5 != 2)$	If there is 'fog' in present weather then there must have been 'fog' in the past weather.	iwobpaw7		KAA	kaa106 (chi31) (pld652)	
		12z, 18z: $((ww^{-2} = 42-49) \parallel (ww^{-1} = 28, 42-49) \parallel (ww = 28, 42-49)) && (w_5 != 2)$						
58	hfrost_atobs_y not_past	6z: $((ww^{-4} = 48-49) \parallel (ww^{-3} = 48-49) \parallel (ww^{-2} = 48-49) \parallel (ww^{-1} = 48-49) \parallel (ww = 48-49)) && (w7! = 1)$	If there is 'fog' in present weather with deposition/formation of 'hoarfrost' then there must have been 'hoarfrost' in the past weather.	iwobpaw8		KAA	kaa107 (chi32) (pld653)	!!!ACHTUNG: inhaltliche Änderung!!! (!=1 statt < 1)
		12z, 18z: $((ww^{-2} = 48-49) \parallel (ww^{-1} = 48-49) \parallel (ww = 48-49)) && (w7 != 1)$						

Tabelle 22. Consistency between present weather and past weather (past weather in climatological code, stations of synoptic network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
59	icing_rain_ato bs_ynot_past	6z: $((ww^{-4} = 56-57, 66-67) \parallel (ww^{-3} = 24, 56-57, 66-67) \parallel (ww^{-2} = 24, 56-57, 66-67) \parallel (ww^{-1} = 24, 56-57, 66-67) \parallel (ww = 24, 56-57, 66-67)) \&\& (w_7 != 2)$	If there is 'freezing driz- zle' or 'freezing rain' then there must have been 'ice' in past weather.	iwobpaw9		KAA	kaa108 (chi33) (pld654)	
		12z, 18z: $((ww^{-2} = 56-57, 66-67) \parallel (ww^{-1} = 24, 56-57, 66-67) \parallel (ww = 24, 56-57, 66-67)) \&\& (w_7 != 2)$						
60	rain_snow_ato bs_ynot_past	6z: $((ww^{-4} = 95, 97) \parallel (ww^{-3} = 95, 97) \parallel (ww^{-2} = 95, 97) \parallel (ww^{-1} = 95, 97) \parallel (ww = 95, 97) \&\& ((w_1 != 2) && (w_2 < 1))$	rain, sleet, snow	iwobpaw1 0			kaa109	
		12z, 18z: $((ww^{-2} = 95, 97) \parallel (ww^{-1} = 95, 97) \parallel (ww = 95, 97)) && ((w_1 != 2) && (w_2 < 1))$						

Tabelle 22. Consistency between present weather and past weather (past weather in climatological code, stations of synoptic network)

4.7.4 Consistency between present weather and past weather (past weather in climatological code; stations of climatological network)

The functions described in the chapter are completely identical to those in Kapitel 4.7.3. Since these functions are used here in a completely different context, they are listed here again.

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Test	Name of Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
51	solid_precip_a tobs_ynot_pas t	$((ww^{-1} = 93, 94) $ (ww = 93, 94)) && $((w_2 = 0) && (w_3 = 0))$	sleet, snow, hail or small hail		iwobpaw1	-		kaa100	
52	drizzle_atobs_ ynot_past	$((ww^{-1} = 50-57) \parallel$ (ww = 24, 50-57)) && $(w_1 != 1)$	If there is drizzle during the observation time then there also must have been drizzle in the past weather.		iwobpaw2	-	81	kaa101 (pld647)	
53	rain_atobs_yn ot_past	$((ww^{-1} = 58-67, 80-82, 91, 92, 95-97, 99) (ww = 21, 25, 58-67, 80-82, 91, 92, 95-97, 99)) && (w_1 < 2)$	If there is drizzle, rain, rainshowers, hail or snow pellets at time of observation then there must have been rain in the past weather.		iwobpaw3	-	82,83	kaa102 (pld648)	!!!ACHTUNG: inhaltliche Änderung!!!
54	sleet_snow_at ob_ynot_past	$((ww^{-1} = 68, 69, 83, 84, 93, 94) $ (ww = 26, 68, 69, 83, 84, 93, 94)) && $(w_2 != 1)$	If there is sleet, drizzle, shower, hail or small hail then there must have been rain with snow in the past weather.		iwobpaw4	-	84	kaa103 (pld649)	!!!ACHTUNG: inhaltliche Änderung!!!
55	snow_atobs_y not_past	$((ww^{-1} = 70-75, 77, 85, 86))$ \parallel $(ww = 22, 70-75, 77, 85, 86)) &&$ $(w_2 != 2)$	If there is snowfall, hoarfrost hail or snow showers, then there must have been snow in the past weather.		iwobpaw5	-	85,86	kaa104 (pld650)	!!!ACHTUNG: inhaltliche Änderung!!!

Tabelle 23. Consistency between present weather and past weather (past weather in climatological code, stations of climatological network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Test	Name of Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
56	shail_hail_ato bs_ynot_past	$(ww^{-1} = 87-90, 96, 99) \parallel$ (ww = 27, 87-90, 96, 99)) && $(w_3 != 2)$	If there is hoarfrost, hail, rain or snow then there must have been observed at least one of these phenomenon.		iwobpaw6	-	87, 88	kaa105 (pld651)	!!!ACHTUNG: inhaltliche Änderung!!!
57	fog_atobs_yno t_past	$((ww^{-1} = 42-49) \parallel$ (ww = 28, 42-49)) && $(w_5 != 2)$	If there is fog then there must have been fog in the past weather.		iwobpaw7	-	89	kaa106 (pld652)	!!!ACHTUNG: inhaltliche Änderung!!!
58	hfrost_atobs_y not_past	$((ww^{-1} = 48-49) \parallel (ww = 48-49)) \&\& (w_7 != 1)$	If there is fog with continuing construction of hoarfrost then there must have been hoarfrost in the past weather.		iwobpaw8	-	90	kaa107 (pld653)	
59	icing_rain_ato bs_ynot_past	$((ww^{-1} = 56-57, 66-67) $ (ww = 24, 56-57, 66-67)) && $(w_7 != 2)$	If there is freezing driz- zle or freezing rain then there must have been ice.		iwobpaw9	-	91	kaa108 (pld654)	!!!ACHTUNG: inhaltliche Änderung!!!
60	rain_snow_ato bs_ynot_past	$((ww^{-1} = 95, 97) \parallel (ww = 95, 97)) \&\& ((w_1 != 2) \&\& (w_2 < 1))$	rain, sleet, snow		iwobpaw1 0	-		kaa109	

Tabelle 23. Consistency between present weather and past weather (past weather in climatological code, stations of climatological network)

4.7.5 Consistency between present weather and cloud genera (detailed classification)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
61	thstorm_obsd_wit hout_cb	$(ww \in \{17, 95 99\} \&\& (C_L != 3, 9) \&\& (C_L != -1)^a$	If there is a thunderstorm with or without precipitation then ther must be any type of cumulonimbus.	iwobnoc1		-	kaa40 pld610	
62	heavy_precip_obs d_ynot_cb_fract	(ww = 82) && (C _L != 3, 7, 9) && (C _L != -1)	If there is heavy precipitation then there must be any type of cumulonimbus or fractus.	iwobnoc2		-	kaa41 pld611	
63	precip_visib_with out_cl_cm	$ \begin{aligned} &(ww \in \{14 \dots 16\} \&\& ((C_L \\ &= 0) \parallel (C_L = -1)) \&\& ((C_M \\ &= 0) \parallel (C_M =)) \end{aligned} $	If there is precipitation visible (but not reaching the point of observation) there must be clouds of type C_L and C_M .	iwobnoc3		-	kaa42 pld612	
64	decrs_cldcov_wit h_incrs_clds	(ww < 3) && (($C_H = 4, 5, 6$) ($C_M = 5$))	If sky did not change or cloud coverage has decreased then no clouds of increasing characteristic ($C_H = 4, 5$ or 6, or $C_M = 5$) may be observed.	iwobnoc4		-	kaa43 pld613	
65	incrs_cldcov_with _decrs_clds	(ww = 3) && (C _H != 4) && (C _H != 5) && (C _H != 6) && (C _M != 5)	If cloud coverage is growing then clouds with increasing characteristics ($C_H = 4, 5, 6$ or $C_M = 5$) must be observed.	iwobnoc5		-	pld614 (kaa44)	'kaa44' modified to 'pld614'

Tabelle 24. Consistency between present weather and cloud genera (detailed classification)

a. -1 means here 'not observable' and is equivalent to '/' in the SYNOP Code (FM-12, WMO 306)

4.7.6 Consistency between present weather and visibility (given in SYNOP Code)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
66	fog_obsd_but_ high_vr	(ww ∈ {4249}) && (V >= 10)		iwobvis1		KAA	46	chi2 kaa20 pld635	!!!ACHTUNG: formale und inhaltliche Änderung!!!
67		$(ww \in \{50, 51, 56, 58, 60, 61, 66, 68, 70, 71, 77, 79, 80, 83, 85, 87, 89, 91, 93\})$ && $(V > 80)$		iwobvis2		KAA	47-49	chi3 (pld636 kaa21)	!!!ACHTUNG: formale Änderung!!! in VAMP lautet die Liste für ww: 50,51,56,58,60,61,66,68,70,71,77,79,89,91,93
68	mod_precip_o bsd_but_high_ vr	(ww ∈ {52, 53, 59, 62, 63}) && (V > 70)		iwobvis3		KAA	50	chi4 (kaa22 pld637)	!!!ACHTUNG: formale Änderung!!! In VAMP lautet die Liste für ww: 52,53,59,62,63,80,83
69	heavy_precip_ obsd_but_high _vr	(ww ∈ {54, 55, 57, 64, 65, 67, 69, 72, 73, 81, 82, 84, 85, 87, 90, 92, 95}) && (V > 60)	If there is weak drizzle, rainfall, shower, shower with hail or moderate snowfall then visibility must be <= X.	iwobvis4		KAA	51-54	chi5 (kaa23 pld638)	!!!ACHTUNG: formale und inhaltliche Änderung!!! In VAMP lautet die Liste für ww: 54, 55, 57, 64, 65, 67, 69, 72, 73, 81, 82, 84, 85, 87, 90, 92
70	• •	(ww ∈ {74, 75, 86, 88, 94, 96, 97, 99}) && (V > 50)	If there is heavy snow- fall, snow shower, hail or hoarfrost hail then visibility must be <= X.	iwobvis5		KAA	55-56	chi6 (kaa24 pld639)	!!!ACHTUNG: formale Änderung!!! In VAMP lautet die Liste für ww: 74, 75, 86, 88, 94-97, 99
71	no_precip_fog _obsd_but_lo w_vr	(ww < 39) && (V < 10)	If there is neither rain nor fog at time of observation then visibility may not be < Y.	iwobvis6		KAA	60	chi10 (pld633)	
72	haze_obsd_but _vr_out_of_bo unds	(ww ∈ {5, 10}) && (V>65 V <10)		iwobvis7		(KAA)	57	chi7 (kaa25 kaa26)	!!!ACHTUNG: formale Änderung!!! In VAMP heisst der entsprechende Test ww=10 && V > 70

Tabelle 25. Consistency between present weather and visibility

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
73	no_spec_feat_ obsd_but_low _vr	(ww ∈ {1,2,3) && (V < 65)		iwobvis8		-	58	chi8 kaa27	!!!ACHTUNG: formale Änderung!!!
74	heavy_sflurry_ obsd_but_high _vr	(ww = 39) && (V >= 10)		iwobvis9		-	59	chi9 (kaa28)	

Tabelle 25. Consistency between present weather and visibility

4.7.7 Consistency between present weather and total amount of cloud cover

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
75	no_sky_obsd_ with_cldover_ info	(ww ∈ {43, 45, 47, 49}) && (N!=9/8, -1) ^a	If there is fog and the sky is not visible then cloudiness can not be observed.	iwobclo1		KAA	64	chi14 kaa60 pld640	!!!ACHTUNG: formale Änderung!!!
76	sky_obsd_wit hout_cldover_ info	(ww ∈ {42, 44, 46, 48}) && (N = 9/8, -1)	If there is fog or ice fog and the sky is visible then cloudiness has to be observed.	iwobclo2		KAA	65	chi15 kaa61 pldk641	!!!ACHTUNG: formale Änderung!!
77	clds_obsd_wit hout_cldover	(ww ∈ {3, 14-17, 50-75, 77-99}) && (N = 0.0)		iwobclo3		(KAA)	66, 67	chi16 kaa62	!!!ACHTUNG: formale Änderung!!
								VAMP	In VAMP ist Test 77 auf 2 Tests aufgeteilt: ww ∈ {5075} && N < 6 Phase 2 dlo: Aufwandschätzung
				-				VAMP	In VAMP ist Test 77 auf 2 Tests aufgeteilt: $ww \in \{8099\} \&\& N < 4$ Phase 2 dlo: Aufwandschätzung

Tabelle 26. Consistency between present weather and total amount of cloud cover

a. -1 means here 'not observable' and is equivalent to '/' in the SYNOP Code (FM-12, WMO 306)

4.7.8 Consistency between present weather and the density of clouds

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	EQ Nr Fernei n-gabe	Retrieved from	Remarks
78	fog_obsd_with _low_clddens	$((ww \in \{ 42-49 \}) \&\& (N_d < 3))$	If there is fog then density of cloudiness may not be < 3.	iwobden1		KAA	XXX	chi25 kaa65 pld644	
79		(N _d >=3) && ((ww <= 42) && (ww != 17))	If station is in fog then there must be fog or ice fog (cross check).	iwobden2		KAA	80	kaa66 (pld646)	!!!ACHTUNG: inhaltliche Änderung!!!

Tabelle 27. Consistency between present weather and the density of clouds

4.7.9 Consistency between the two positions of past weather (past weather in SYNOP Code)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
80	one_bobs_not _observable	$(W_1 != -1) \&\& (W_2 != -1)^a$	There must be at least one observation about the weather before the observation.	iwebweb2		-	kaa46 (pld660)	
81	lotof_cldcov_ bobs1_ynot_b obs2	$(W_1 = 2) \&\& (W_2 < 2)$	If more than half of the sky is clouded during the whole period then the cloudiness can not have partly changed to less than half of the sky.	iwebweb3		-	kaa47 pld661	
82	medium_cldco v_bobs1_ynot _bobs2	$(W_1 = 1) \&\& (W_2 = 0)$	If the sky is covered only halfly or less during the whole period then the other code may not indicate a coverage of more than a half.	iwebweb4		-	kaa48 pld662	

Tabelle 28. Consistency between the two posistions of past weather (past weather in SYNOP Code)

a. -1 means here 'not observable' and is equivalent to '/' in the SYNOP Code (FM-12, WMO 306)

4.7.10 Consistency between past weather in SYNOP Code and past weather in climatological code

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
83		$((W_1 = 5) (W_2 = 5)) &&$ $(w_1 < 1)$	If there was drizzle before the observation then there must have been drizzle or rain in the past weather.	iwebpaw1		1	kaa120 pld655	
84		$((W_1 = 6) (W_2 = 6)) \&\&$ $(w_1 < 2)$	If there was rain before the observation then there must have been rain in the past weather.	iwebpaw2		-	kaa120 pld656	
85		$((W_1 = 7) (W_2 = 7)) &&$ $(w_2 < 1)$	If there was snow or sleet before the observation then there must have been snow or sleet in the past weather.	iwebpaw3		-	kaa121 pld657	
86		$((W_1 = 8) (W_2 = 8)) && \\ ((w_1 < 2) && (w_2 < 1) && \\ (w_3 < 1))$	If there was shower before the observation then there must have been rain, sleet, snow, small hail or hail in the past weather.	iwebpaw4		-	kaa122 pld658	

Tabelle 29. Consistency between past weather in SYNOP Code and past weather in climatological code

4.7.11 Consistency between total amount of clouds and past weather (past weather in SYNOP Code; only for stations of synoptic network)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
87	obs_ynot_atob	6z, 12z, 18z, 24z: $((N^{-2} \le 4/8) \parallel + (N^{-1} \le 4/8) \parallel + (N \le 4/8) \parallel + (W_1 = 2) \parallel + (W_2 = 2))$		iwebclo1		-	kaa117	!!!ACHTUNG: inhaltliche Änderung!!!
		3z, 9z, 15z, 21z: $((N^{-1} \le 4/8) \parallel (N \le 4/8)) \&\& ((W_1 = 2) \parallel (W_2 = 2))$						
88	s_ynot_atobs	$\begin{aligned} &6z,12z,18z,24z;\\ &((N^{-2}>4/8)\parallel(N^{-1}>4/8)\parallel\\ &(N>4/8))\;\&\&\;((W_1=0)\parallel\\ &(W_2=0)) \end{aligned}$		iwebclo2		-	kaa118	!!!ACHTUNG: inhaltliche Änderung!!!
		3z, 9z, 15z, 21z: $((N^{-1} > 4/8) \parallel (N > 4/8))$ && $((W_1 = 0) \parallel (W_2 = 0))$						

Tabelle 30. Consistency between total amount of clouds and past weather (past weather in SYNOP Code; only for stations of synoptic network)

4.7.12 Consistency between different positions of cloud genera (detailed classification)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
89	no_lmclds_but _low_cldheight	$((C_L = 0) \&\& (C_M = 0))$		inocnoc1		-	kaa78	
90	_uppclds_unob	$\begin{split} &((C_L = 0) \; \&\& \; (C_M \; != 0\text{-}9)) \\ &\parallel ((CL = 0) \; \&\& \; (CM = 0) \\ &\&\& \; (CH \; != 0\text{-}9)) \end{split}$		inocnoc2		-	kaa89	

Tabelle 31. Consistency between different positions of cloud genera (detailed classification)

4.7.13 Consistency between cloud genera (detailed classification and cloud genera (10 genera classification)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
91	cds_clds_unob s	$\begin{split} &((C_L = 0 \parallel C_L = -1) \; \&\& \\ &(C_M = 0 \parallel C_M = -1) \; \&\& \\ &(C_H = 0 \parallel C_H = -1) \; \&\& \\ &(N_{s1} \mathrel{!} = -1)) \parallel ((C_L = 1 - 9) \parallel \\ &(C_M = 1 - 9) \parallel (C_H = 1 - 9) \\ &\&\& \; (N_{s1} = -1))^a \end{split}$	If there are no clouds in any layer then there may no clouds be described or vice versa	inocrec1		-	kaa74	
92	clds_and_nors _clds	$(((C_{L} = 0 \parallel C_{L} = -1) \&\& \\ ((C_{1} = 6-9) \parallel (C_{2} = 6-9) \parallel \\ (C_{3} = 6-9)))$ $\parallel \\ (((C_{M} = 0 \parallel C_{M} = -1) \&\& \\ ((C_{1} = 3-5) \parallel (C_{2} = 3-5) \parallel \\ (C_{3} = 3-5)))$ $\parallel \\ (((C_{H} = 0 \parallel C_{H} = -1) \&\& \\ ((C_{1} = 0-2) \parallel (C_{2} = 0-2) \parallel \\ (C_{3} = 0-2)))$	If there are no clouds on a certain level then there may also not be any typ- ical clouds of this level.	inocrec2		-	kaa79	

Tabelle 32. Consistency between cloud genera (detailed classification) and cloud genera (10 genera table)

a. -1 means here 'not observable' and is equivalent to '/' in the SYNOP Code (FM-12, WMO 306)

4.7.14 Consistency between total amount of clouds and cloud genera (detailed classification)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
93	no_low_cldco v_but_lmclds	$(N_h = 0.0) \&\& ((C_L != 0) $ $(C_M != 0))$	Total amount of C_L and C_M clouds may not be = 0 if there are such clouds.	inocclo1		-	kaa75	
94	no_lmclds_but _low_cldcov	$(N_h != 0.0) \&\& ((C_L = 0)$	$\label{eq:continuous} Total \ amount \ of \ C_L \ and \\ C_M \ clouds \ may \ not \ be > \\ 0 \ if \ there \ are \ no \ such \\ clouds$	inocclo2		-	kaa76	
95	tot_low_cldco v_but_hclds	$(N_h = 8/8) \&\& (C_H != -1)$	if sky is covered by clouds in strato- or altolayer then are no cir- rus clouds observable.	inocclo3		-	kaa77	
96	high_cldcov	$\begin{split} &((N_h = 0) \;\&\& \; (N \in \{1/88/\\ 8\})) \;\&\& \; (C_H = 0 \parallel h \;! = 9\\ &\ C_L \;! = 0 \parallel C_M \;! = 0) \end{split}$	checking amounts of clouds	inocclo4		KAA	kaa82	
97		$\begin{split} &((N=9/8,-1)\;\&\&\;(h=-1)\\ &\&\&\;(N_h=9/8,-1))\;\&\&\\ &((C_L\;!=-1)\; \;(C_M\;!=-1)\\ &\&\&\;(C_H\;!=-1)) \end{split}$	checking amounts of clouds	inocclo5		-	kaa83	
98		$((C_L = 0) \&\& (C_M = 0) \&\& (C_H = 5)) \&\& (N > 3/8)$	Cloud layer is not yet 45 degrees above horizon.	inocclo6			kaa84	
99	tot_hclds_but_ little_cldcov	$(C_H = 7) \&\& (N < 7/8)$		inocclo7		-	kaa85	
100		$\begin{split} &(((C_L=0) \ \&\& \ (C_M=0) \\ \&\& \ (C_H=8)) \ \&\& \ (N \not \in \{8/8,9/8) \ \\ &(((C_L=0) \ \&\& \ (C_M=0) \\ \&\& \ (C_H=6)) \ \&\& \ (N \in \{0,0.125,0.25\})) \end{split}$		inocclo8		-	kaa86	

Tabelle 33. Consistency between total amount of clouds and cloud genera (detailed classification)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
101	mhclds_vis_y not_obsd	$\begin{split} &(((C_L=0) \&\& (C_M>0) \\ \&\& (N_h<0.75)) \&\& (C_H \\ !=0-9)) \\ &\parallel \\ &(((C_L>0) \&\& (C_M=0) \\ \&\& (N_h<0.75)) \&\& (C_H \\ !=0-9)) \\ &\parallel \\ &(((C_L>0) \&\& (N_h<0.75)) \\ \&\& (C_H !=0-9)) \end{split}$	Highest cloud layer should be observable through lower clouds that don't cover the whole sky.	inocclo9		-	kaa87	
102	mhclds_invis_ but_obsd	$((C_L > 0) \&\& (N_h = 1.0)) \\ \&\& ((C_M = 0-9) \parallel (C_H = 0-9))$	Clouds in alto layer are not observable through fully sky covering clouds in stratus layer.	inocclo10		-	kaa88	
103	no_cldcov_but _clds	$(N = 0.0) \&\& (N_h = 0.0) \\ \&\& ((C_L != 0) (C_M != 0) \\ (C_H != 0))\&\&h != 9)$		inocclo11		KAA	pld628	!!!ACHTUNG!!! Erweiterung im Vgl. mit ern's Version!!! (h eingeführt)

Tabelle 33. Consistency between total amount of clouds and cloud genera (detailed classification)

4.7.15 Consistency between cloud amount of cloud genera and cloud genera (10 genera classification)

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
104	lrclds_with_lit tle_mrclds_cb	$(N_{s1} > 0) \&\& (N_{s2} < 0.375)$ && $(C_2 != 9)$		irecrec1		-	kaa90	
105	mrclds_with_l ittle_hrclds_cb	$(N_{s2} > 0) \&\& (N_{s3} < 0.625)$ && $(C_3 = 9)$		irecrec2		-	kaa91	

Tabelle 34. Consistency between cloud amount and cloud genera (10 genera classification)

4.7.16 Consistency between cloud amount of cloud genera and total amount of clouds

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
106	sum_rclds_lt_ cldcov	$(N_{s1} + N_{s2} + N_{s3}) < N$		irecclo4		-	kaa98	

Tabelle 35. Consistency between cloud amount of cloud genera and total amount of clouds

4.7.17 Consistency between genus of clouds whose base is below the level of the station and station height

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
107	altocld_below _stat	$(C' = 4) \&\& (h_s < 2000)$		ibecbec1		-	(pld630) kaa35	Stationshöhe wie berücksichtigen?
		(C' = 3) && (h _s >=2000)		ibecbec2		-	kaa36	!!!ACHTUNG: Test neu, bisher in ern's Doku nicht enthalten!!! Testfunktion ist bereits vorhanden. Ver- wende 'eq_and_gt'

Tabelle 36. Consistency between genus of clouds whose base is below the level of the stations and the altitude of their upper surface

4.7.18 Consistency between genus of clouds whose base is below the level of the station and the total amount of clouds

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
108	no_cldcov_but _cldbnd_abov e_stat	(N = 0.0) && (H'*100 > h _s)		ibecclo1		-	pld632, kaa37	

Tabelle 37. Consistency between genus of clouds whose base is below the level of the station and the total amount of clouds

4.7.19 Consistency between the amount of clouds of a specific genus and the total amount of clouds

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
109	_tot_cldcov_u nobs	$\begin{split} &(N = 1.125, NULL) \; \&\& \\ &(N_h \; != 1,125, NULL) \; \; (N \\ &!= 1,125, NULL) \; \&\& \; (N_h \\ &= 1.125, NULL) \end{split}$		icloclo2		-	kaa81	

Tabelle 38. Consistency between the amount of clouds of a specific genus and the total amount of clouds

4.7.20 Consistency between total amount of clouds and the density of clouds

Fct Nr.	Fct name (in libpum)	Consistency Rule (Violation if)	Description	Name of Test	Test	VAMP Tag	Retrieved from	Remarks
110	no_cldcov_but	$(N = 0.0) \&\& (N_d \notin \{0, 3\})$		icloden1		-	chi34	!!!ACHTUNG: inahaltliche Änderung!!!
	_high_clddens						(kaa70)	

Tabelle 39. Consistency between total amount of clouds and the density of clouds

4.8 Obsolete Tests

	Rule Tag						
Quality Bytes	Combination No		Violation if	Retrieved from	Description	Comments	
102	iprelig	2	$(B_f > 0) \land \left(\sum_{t=-2}^{2} R^t = 0\right)$	proposition of mki	Far lightning and no precipitation at observation time and during the 2 intervalls before and after is not possible	Realtime testing is not possible, since future precipitation values wouldn't be available.	

Tabelle 40. All Rules Concerning Precipitation with Lightning

KAPITEL 5 References

[chi] Häberli C., Chassot A.: Tests de plausibilité pour chaque paramètre. Internal document of the Swiss meteorological institute, Zurich, April 13, 1996

[kaa] Müller G.: Kontrolle der Augenbeobachtungen ANETZ. Internal document of the Swiss meteorological institute, Zurich, June 18, 1987

[pld] Kiene M.: Plaustests des DABES-Teilbereichs 'Prüfung und Mutation' (PuM). Internal document of the Swiss meteorological institute, Zurich, August 18, 1996

[KLIBER] Dössegger und Kamm:

[VAMP] Verarbeitung von ANETZ-Daten mit METEOR-Programmen (SIEMENS System) an der SMA von 1980 - 1999.