MATH 4032: HOMEWORK 7 (DUE APRIL 14 AT 11:59PM)

You are strongly encouraged to typeset your homework solutions using LTEX. Warm-up and bonus questions are not for credit.

Warm-up. The space of multivariate polynomials.

What is the dimension of the space of all polynomials in n variables of degree at most d?

Problem 1. Oddtown.

Fix a positive integer n. An **oddtown** is a set system $\mathcal{F} \subseteq \mathcal{P}([n])$ such that:

- for all $A \in \mathcal{F}$, |A| is odd:
- for all distinct A, B $\in \mathcal{F}$, $|A \cap B|$ is even.
- (a) Construct an oddtown \mathcal{F} of size n.
- (b) Show that $|\mathcal{F}| \leq n$ for every oddtown \mathcal{F} .

Hint. Work over the field \mathbb{Z}_2 .

Problem 2. Eventown.

Fix a positive integer n. An **eventown** is a set system $\mathcal{F} \subseteq \mathcal{P}([n])$ such that:

- for all $A \in \mathcal{F}$, |A| is even;
- for all distinct A, B $\in \mathcal{F}$, $|A \cap B|$ is even.
- (a) Construct an eventown \mathcal{F} of size $2^{\lfloor n/2 \rfloor}$.

Suppose that \mathcal{F} is an eventown and let M be the matrix over \mathbb{Z}_2 whose columns are the characteristic vectors of the members of \mathcal{F} .

- (b) Show that $M^{\top}M = 0$, where M^{\top} denotes the transpose of M.
- (c) Use part (b) to deduce that the rank of M is at most $\lfloor n/2 \rfloor$.
- (*d*) Conclude that $|\mathcal{F}| \leq 2^{\lfloor n/2 \rfloor}$.

Problem 3. Frankl-Wilson mod p.

Prove the "mod p" version of the Frankl–Wilson theorem:

Let p be a prime number and let $L \subseteq \mathbb{Z}_p$ be a set of size $|L| = \ell$. Suppose that $\mathcal{F} \subseteq \mathcal{P}([n])$ is a set system such that:

- for all $A \in \mathcal{F}$, $|A| \pmod{\mathfrak{p}} \not\in L$;
- for all distinct A, $B \in \mathcal{F}$, $|A \cap B| \pmod{\mathfrak{p}} \in L$.

Then $|\mathcal{F}| \leq \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{\ell}$.

Problem 4. Zero, one, three!

Let n be a positive integer and let $\mathcal{F} \subseteq \binom{[n]}{k}$ be a $\{0,1,3\}$ -intersecting system of sets of size k.

- (a) Show that $|\mathcal{F}| = O(n^3)$.
- (b) Show that if k (mod 6) $\notin \{1,3\}$, then $|\mathcal{F}| = O(n^2)$.

Hint. To deal with even k, bound the number of sets in \mathcal{F} that can contain any one element $x \in [n]$.

Remark. In this problem, we write $|\mathcal{F}| = O(f(n))$ to mean that there is some constant c > 0, independent of n and k, such that $|\mathcal{F}| \leq cf(n)$.