

TEST REPORT

No. 2011TAR066

for

ZTE CORPORATION

HSPA LGA Module

Model Name: MF206A

FCC ID: Q78-ZTEMF206A

IC: 5200A-ZTEMF2026A

with

Hardware Version: BD_MF206AV1.0.0B01

Software Version: MF206A-2.0.0

Issued Date: Feb 23, 2011

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

DAR accreditation (DIN EN ISO/IEC 17025): No. DGA-PL-114/01-02

FCC 2.948 Listed: No.733176 IC O.A.T.S listed: No.6629A-1

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology 3/F Shou Xiang Technology Building, No.51 Xueyuan Road, Hai Dian District, Beijing, P. R. China,100191. Tel:+86(0)10-62304633-2604, Fax:+86(0)10-62304793, Email:welcome@emcite.com, web: www.emcite.com

CONTENTS

1. TEST LABORATORY	3
1.1. TESTING LOCATION	3
1.2. TESTING ENVIRONMENT	3
1.3. PROJECT DATA	3
1.4. SIGNATURE	3
2. CLIENT INFORMATION	
2.1. APPLICANT INFORMATION	4
2.2. MANUFACTURER INFORMATION	4
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	
3.1. ABOUT EUT	
3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3.3. GENERAL DESCRIPTION	5
4. REFERENCE DOCUMENTS	6
4.1. REFERENCE DOCUMENTS FOR TESTING	6
5. LABORATORY ENVIRONMENT	
6. SUMMARY OF TEST RESULTS	
7. TEST EQUIPMENTS UTILIZED	9
ANNEX A: MEASUREMENT RESULTS	10
A.1 OUTPUT POWER (§22.913(A)/§24.232(B))	10
A.2 EMISSION LIMT (§2.1051/§22.917§24.238)	
A.3 FREQUENCY STABILITY (§2.1055/§24.235)	22
A.4 OCCUPIED BANDWIDTH (§2.1049(H)(I))	24
A.5 EMISSION BANDWIDTH (§22.917(B)/§24.238(B))	54
A.6 BAND EDGE COMPLIANCE (§22.917(B)/§24.238(B))	84
A 7 CONDUCTED SHIPIOUS EMISSION (82 1057/822 017/824 238)	00

1. Test Laboratory

1.1. Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT

Address: 3/F Shou Xiang Technology Building, No.51 Xueyuan Road, Hai

Dian District, Beijing, P. R. China

Postal Code: 100191

Telephone: 00861062304633 Fax: 00861062304793

1.2. <u>Testing Environment</u>

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: Jan 07, 2011
Testing End Date: Feb 22, 2011

1.4. Signature

登晚刚

Zi Xiaogang

(Prepared this test report)

Sun Xiangqian

别何前

(Reviewed this test report)

路城村

Lu Bingsong

Deputy Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: ZTE CORPORATION

Address /Post: ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan

District, Shenzhen, Guangdong, 518057, P.R.China

City: Shenzhen
Postal Code: 518057
Country: China

Telephone: 0086 21 68895196

2.2. Manufacturer Information

Company Name: ZTE CORPORATION

Address /Post: ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan

District, Shenzhen, Guangdong, 518057, P.R.China

City: Shenzhen
Postal Code: 518057
Country: China

Telephone: 0086 21 68895196

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description HSPA LGA Module

Model Name MF206A

FCC ID Q78-ZTEMF206A IC ID 5200A-ZTEMF2026A

Frequency GSM 850MHz; PCS 1900MHz; WCDMA Band II; WCDMA Band V

Antenna external

Output power 28.39 dBm maximum EIRP measured for GSM1900

Extreme vol. Limits 4.8VDC to 5.2VDC (nominal: 5.0VDC)

Extreme temp. Tolerance -30°C to +50°C

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Telecommunication Metrology Center of MIIT of People's Republic of China.

3.2. <u>Internal Identification of EUT used during the test</u>

EUT ID* SN or IMEI HW Version SW Version

N04 356118040000135 MF206A-2.0.0 BD_MF206AV1.0.0B01

3.3. General Description

The Equipment Under Test (EUT) is a model of HSPA LGA Module with extegrated antenna. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client.

^{*}EUT ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version		
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	V 10.1.06		
FCC Part 22	PUBLIC MOBILE SERVICES	V 10.1.06		
RSS-Gen	RSS-Gen — General Requirements and Information for the	Issue 2,		
	Certification of Radiocommunication Equipment	June		
		2007		
RSS-132	Cellular Telephones Employing New Technologies	Issue 2,		
	Operating in the Bands 824-849 MHz and 869-894 MHz	Septemb		
		er 2005		
RSS-133	2 GHz Personal Communications Services			
		February		
		2009		
ANSI/TIA-603-C	Land Mobile FM or PM Communications Equipment	2004		
	Measurement and Performance Standards			
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from	2003		
	Low-Voltage Electrical and Electronic Equipment in the			
	Range of 9 kHz to 40 GHz			

5. LABORATORY ENVIRONMENT

Semi-anechoic chamber (23 meters×17meters×10meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 ℃, Max. = 30 ℃
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
Normalised site attenuation (NSA)	< ±3.2 dB, 10 m distance, from 30 to 1000 MHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 2000 MHz

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 35 $^{\circ}$ C
Relative humidity	Min. =30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Conducted chamber did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber (6.8 meters **x** 3.08 meters **x** 3.53 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
Uniformity of field strength	Between 0 and 6 dB, from 80 to 2000 MHz

6. SUMMARY OF TEST RESULTS

GSM 850

Items	Test Name	Clause in FCC rules	Clause in IC rules RSS-Gen and RSS-132	Section in this report	Verdict
1	Output Power	§2.1046(a),	4.4	A.1	Р
'	Output i Owei	22.913(a)		Α. Ι	'
2	Emission Limit	22.917, 2.1051	4.5	A.2	Р
3	Frequency Stability	22.235, 2.1055	4.3	A.4	Р
4	Occupied Bandwidth	2.1049(h)(i)	4.6.1	A.5	Р
5	Emission Bandwidth	22.917(b)	4.6.1	A.6	Р
6	Band Edge Compliance	22.917(b)	4.5	A.7	Р
7	Conducted Spurious Emission	22.917, 2.1057	4.5	A.8	Р

PCS 1900

Items	Test Name	Clause in FCC rules	Clause in IC rules RSS-Gen and RSS- 133	Section in this report	Verdict
1	Output Power	24.232(b)	6.4	A.1	Р
2	Emission Limit	24.238, 2.1051	6.5	A.2	Р
3	Frequency Stability	24.235, 2.1055	6.3	A.4	Р
4	Occupied Bandwidth	2.1049(h)(i)	4.6.1	A.5	Р
5	Emission Bandwidth	24.238(b)	4.6.1	A.6	Р
6	Band Edge Compliance	24.238(b)	6.5	A.7	Р
7	Conducted Spurious Emission	24.238, 2.1057	6.5	A.8	Р

Receiver Radiated Emission

Items	Test Name	Clause in FCC rules	Clause in IC rules		Section in	Verdict
items	rest Name		RSS-132	RSS-133	this report	Verdict
1	Receiver Radiated Emissions	15.109 , 2.1053	4.6	6.6	A.2	Р

7. Test Equipments Utilized

NO.	NAME	TYPE	SERIES NUMBER	PRODUCER	CAL DUE DATE
1	Test Receiver	ESCI	100766	R&S	2011-12-06
2	Test Receiver	ESI40	831564/002	R&S	2011-07-12
3	BiLog Antenna	VULB9163	9163-175	Schwarzbeck	2011-07-05
4	BiLog Antenna	VULB9163	9163-302	Schwarzbeck	2011-07-10
5	Signal Generator	SMB100A	102063	R&S	2011-07-05
7	LISN	ESH2-Z5	829991/012	R&S	2011-07-20
8	Spectrum Analyzer	FSU26	200030	R&S	2011-12-18
9	Spectrum Analyzer	FSU46	100054	R&S	2011-10-14
10	Universal Radio Communication Tester	CMU200	100680	R&S	2011-12-23
11	Universal Radio Communication Tester	CMU200	109914	R&S	2011-07-21
12	Dual-Ridge Waveguide Horn Antenna	3117	00119024	ETS	2012-08-31
13	Dual-Ridge Waveguide Horn Antenna	3117	00119021	ETS	2013-07-09
14	Dual-Ridge Waveguide Horn Antenna	3116	2663	EMCO	2011-07-01
15	Dual-Ridge Waveguide Horn Antenna	3116	2661	EMCO	2011-07-01
16	Climatic chamber	PL-2G	343074	ESPEC	2011-12-15

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER (§22.913(a)/§24.232(b))

A.1.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure max power transmission and proper modulation.

This result contains peak output power and EIRP measurements for the EUT.

In all cases, output power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSU (peak)

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0MHz and 1909.8MHz for PCS1900 band; 824.4MHz, 836.6MHz and 848.8MHz for GSM850 band. (bottom, middle and top of operational frequency range).

A.1.2.2 Test Condition

RBW	VBW	Sweep Time	Span
1MHz	1MHz	300ms	10MHz

GSM850

Limit

	Power step	Nominal Peak	Target
	Power step	output power (dBm)	(dB)
GSM	5	33dBm(2W)	32±1
GPRS	3	33dBm(2W)	32±1
EGPRS	6	27dBm(0.5W)	26±1

Measurement result

GSM (GMSK)

Frequency(MHz)	Power Step	Peak output power(dBm)
824.2	5	32.15
836.6	5	32.13
848.8	5	32.02

GPRS (GMSK, 1Slot)

Frequency(MHz)	Power Step	Peak output power(dBm)
824.2	3	32.11
836.6	3	32.11
848.8	3	31.97

EGPRS (8PSK, 1Slot)

Frequency(MHz)	Power Step	Peak output power(dBm)
824.2	6	25.40
836.6	6	25.40
848.8	6	25.30

PCS1900

Limit

	Dower stan	Nominal Peak output	Target
	Power step	power (dBm)	(dB)
GSM	0	30dBm(1W)	30±1
GPRS	3	30dBm(1W)	30±1
EGPRS	5	26dBm(0.4W)	25±1

Measurement result

GSM (GMSK)

Frequency(MHz)	Power Step	Peak output power(dBm)
1850.2	0	29.68
1880.0	0	29.55
1909.8	0	29.19

GPRS (GMSK, 1Slot)

Frequency(MHz)	Power Step	Peak output power(dBm)
1850.2	3	29.57
1880.0	3	29.43
1909.8	3	29.07

EGPRS (8PSK, 1Slot)

Frequency(MHz)	Power Step	Peak output power(dBm)
1850.2	5	24.80
1880.0	5	24.70
1909.8	5	24.50

A.1.3 Radiated

A.1.3.1 Description

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

A.1.3.2 Method of Measurement

The measurements procedures in TIA-603C-2004 are used.

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere

with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 4. The cable loss (P_{cl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.
 - The measurement results are obtained as described below:
 - Power(EIRP)= P_{Mea} + P_{cl} + G_a
- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

GSM 850-ERP 22.913(a)

Limits

	Power Step	Burst Peak ERP (dBm)
GSM	5	≤38.45dBm (7W)
GPRS	3	≤38.45dBm (7W)
EGPRS	6	≤38.45dBm (7W)

Measurement result

GSM

	Dook	P _{cl}	G _a Antenna	Correction	P _{Mea} (dBm)	Polarization
Frequency(MHz)	Peak ERP(dBm)	Cable	Gain(dB)	(dBm)		
	LKF (ubili)	Loss(dB)				
824.2	26.94	20.5	5.3	2.15	3.29	Horizontal
836.6	24.49	20.5	5.3	2.15	0.84	Vertical
848.8	22.30	20.5	5.3	2.15	-1.35	Vertical

GPRS

Frequency(MHz)	Peak ERP(dBm)	P _{cl} Cable Loss(dB)	G _a Antenna Gain(dB)	Correction (dBm)	P _{Mea} (dBm)	Polarization
824.2	26.92	20.5	5.3	2.15	3.27	Horizontal
836.6	24.49	20.5	5.3	2.15	0.84	Horizontal
848.8	22.28	20.5	5.3	2.15	-1.37	Vertical

EGPRS

Frequency(MHz)	Peak ERP(dBm)	P _{cl} Cable Loss(dB)	G _a Antenna Gain(dB)	Correction (dBm)	P _{Mea} (dBm)	Polarization
824.2	21.21	20.5	5.3	2.15	-2.44	Horizontal
836.6	19.17	20.5	5.3	2.15	-4.48	Horizontal
848.8	16.51	20.5	5.3	2.15	-7.14	Vertical

Frequency: 824.2 MHz

Peak ERP(dBm)= $P_{Mea}(3.29dBm)+ P_{cl}(20.5dB)+G_a (5.3dB)-2.15dBm=26.94dBm$

ANALYZER SETTINGS: RBW = VBW = 3MHz

PCS1900-EIRP 24.232(b)

Limits

	Power Step	Burst Peak EIRP (dBm)
GSM	0	≤33dBm (2W)
GPRS	3	≤33dBm (2W)
EGPRS	5	≤33dBm (2W)

Measurement result

GSM

Frequency(MHz)	Peak EIRP(dBm)	P _{cl} Cable Loss(dB)	G _a Antenna Gain(dB)	P _{Mea} (dBm)	Polarization
1850.2	28.39	-10.9	27.5	11.79	Horizontal
1880	28.16	-10.8	27.5	11.46	Vertical
1909.8	27.94	-11.3	27.5	11.74	Vertical

GPRS

0.170								
Frequency(MHz)	Peak EIRP(dBm)	P _{cl} Cable Loss(dB)	G _a Antenna Gain(dB)	P _{Mea} (dBm)	Polarization			
1850.2	28.35	-10.9	27.5	11.75	Horizontal			
1880	28.13	-10.8	27.5	11.43	Vertical			
1909.8	28.00	-11.3	27.5	11.80	Vertical			

EGPRS

Frequency(MHz)	Peak EIRP(dBm)	P _{cl} Cable Loss(dB)	G _a Antenna Gain(dB)	P _{Mea} (dBm)	Polarization
1850.2	24.80	-10.9	27.5	8.20	Horizontal
1880	24.97	-10.8	27.5	8.22	Vertical
1909.8	24.68	-11.3	27.5	8.48	Vertical

Frequency: 1850.2MHz

Peak EIRP(dBm)= $P_{Mea}(11.79dBm)+ P_{cl}(-10.9dB)+G_a (27.5dB) = 28.39dBm$

ANALYZER SETTINGS: RBW = VBW = 3MHz

A.2 EMISSION LIMT (§2.1051/§22.917§24.238)

A.2.1 Measurement Method

The measurement procedures in TIA-603C-2004 are used.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the PCS1900 band and GSM850 band.

The procedure of radiated spurious emissions is as follows:

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.

A amplifier should be connected in for the test.

The Path loss (Ppl) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

Power(EIRP)= P_{Mea} + P_{pl} + G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

A.2.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz) and GSM850 band (824.2MHz, 836.6MHz, 848.8MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 ,GSM850 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
GSM 850MHz	Low	30MHz-10GHz	Pass
	Middle	30MHz-10GHz	Pass
	High	30MHz-10GHz	Pass
GSM 1900MHz	Low	30MHz-20GHz	Pass
	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass
GSM 850MHz	Low	9KHz-30MHz	Pass
	Middle	9KHz-30MHz	Pass
	High	9KHz-30MHz	Pass
GSM 1900MHz	Low	9KHz-30MHz	Pass
	Middle	9KHz-30MHz	Pass
	High	9KHz-30MHz	Pass
Received GSM 850MHz	Idle Mode	9KHz-10GHz	Pass
Received GSM 1900MHz	Idle Mode	9KHz-20GHz	Pass

A.2.5 Sweep Table

A.Z.3 Sweep Table				
Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
rrequeries	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
850MHz	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
1900MHz	5~8	1 MHz	3 MHz	3
1900101112	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

GSM Mode Channel 128/824.2MHz

Fraguesov/MHz)	Peak	Path	Antenna	Correction	P _{Mea} (dBm)	Limit	Polarization
Frequency(MHz)	ERP(dBm)	Loss	Gain	(dBm)		(dBm)	
1648.22	-38.65	7.83	-5.44	2.15	-34.11	-13	Н
2472.73	-41.04	9.55	-5.31	2.15	-34.65	-13	V
3296.96	-46.94	10.98	-7.42	2.15	-41.23	-13	V
4121.39	-46.01	12.27	-8.57	2.15	-40.16	-13	Н
4945.60	-39.29	13.46	-9.61	2.15	-33.29	-13	V
5769.80	-50.82	14.69	-10.11	2.15	-44.09	-13	V

GSM Mode Channel 190/836.6MHz

Fragues av/MIII=)	Peak	Path	Antenna	Correction	P _{Mea} (dBm)	Limit	Polarization
Frequency(MHz)	ERP(dBm)	Loss	Gain	(dBm)		(dBm)	
1673.03	-38.73	7.90	-5.35	2.15	-34.03	-13	Н
2510.06	-41.53	9.61	-5.43	2.15	-35.20	-13	V
3346.79	-52.19	10.99	-7.54	2.15	-46.59	-13	V
4182.82	-39.67	12.34	-8.61	2.15	-33.79	-13	V
5020.02	-46.08	13.55	-9.71	2.15	-40.09	-13	V
5855.60	-46.33	14.77	-10.14	2.15	-39.55	-13	V

GSM Mode Channel 251/848.8MHz

Fraguesov/MHz)	Peak	Path	Antenna	Correction	P _{Mea} (dBm)	Limit	Polarization
Frequency(MHz)	ERP(dBm)	Loss	Gain	(dBm)		(dBm)	
1697.53	-43.38	7.96	-5.22	2.15	-38.49	-13	Н
3395.16	-50.84	11.11	-7.66	2.15	-45.24	-13	V
4243.94	-47.18	12.43	-8.64	2.15	-41.24	-13	V
4550.33	-48.92	12.92	-8.89	2.15	-42.74	-13	V
5093.37	-46.26	13.65	-9.75	2.15	-40.21	-13	V
6790.87	-38.94	15.97	-10.89	2.15	-31.71	-13	V

GSM Receiver Mode 850MHz

OOM RECEIVE	Som Receiver Mode osomiriz									
Eroguenov	Power	P _{cl}	Ga	Correction	P_{Mea}	Limit	Polarity			
Frequency		Cable	Antenna	(dBm)	(dBm)	(dBm)				
(MHz)	(dBm)	Loss(dB)	Gain(dB)							
1649.22	-38.65	7.83	-5.44	2.15	-34.11	-13	Н			
1673.56	-38.73	7.90	-5.35	2.15	-34.03	-13	Н			
3395.19	-50.84	11.11	-7.66	2.15	-45.24	-13	V			
6593.60	-35.62	15.77	-10.69	2.15	-28.39	-13.00	V			
7418.48	-43.61	16.82	-11.35	2.15	-35.99	-13.00	V			
8241.39	-43.25	17.96	-12.04	2.15	-35.18	-13.00	V			

GSM Mode Channel 512/1850.2MHz

Fraguenov/MHz)	Peak	Path	Antenna	P _{Mea} (dBm)	Limit	Polarization
Frequency(MHz)	EIRP(dBm)	Loss	Gain		(dBm)	
3700.48	-34.38	11.56	-8.14	-30.96	-13	Н
5550.75	-20.20	14.27	-10.02	-15.95	-13	V
7400.61	-22.49	16.78	-11.34	-17.05	-13	V
12951.62	-28.81	23.31	-13.24	-18.74	-13	V
14801.40	-49.73	25.12	-13.54	-38.15	-13	V
16652.35	-43.06	27.01	-12.40	-28.45	-13	V

GSM Mode Channel 661/1880.0MHz

Fraguanov/MHz)	Peak	Path	Antenna	P _{Mea} (dBm)	Limit	Polarization
Frequency(MHz)	EIRP(dBm)	Loss	Gain		(dBm)	
3759.99	-21.06	11.67	-8.21	-17.60	-13	Н
5640.19	-16.93	14.45	-10.06	-12.54	-13	V
7520.31	-27.58	17.05	-11.42	-21.95	-13	V
9400.32	-41.62	19.27	-12.60	-34.95	-13	V
13159.59	-24.62	23.43	-13.46	-14.65	-13	V
15040.52	-36.35	25.29	-13.49	-24.55	-13	V

GSM Mode Channel 810/1909.8MHz

Fraguanov/MHz)	Peak	Path	Antenna	P _{Mea} (dBm)	Limit	Polarization
Frequency(MHz)	EIRP(dBm)	Loss	Gain		(dBm)	
3819.46	-18.59	11.88	-8.28	-14.99	-13	Н
5729.56	-16.94	14.57	-10.09	-12.46	-13	V
7639.07	-29.61	17.10	-11.54	-24.05	-13	V
9549.20	-38.63	19.38	-12.58	-31.83	-13	V
11458.71	-42.10	21.58	-12.40	-32.92	-13	V
13368.50	-23.61	23.66	-13.67	-13.62	-13	V

GSM Receiver Mode 1900MHz

Fraguanov/MHz)	Peak	Path	Antenna	P _{Mea} (dBm)	Limit	Polarization
Frequency(MHz)	EIRP(dBm)	Loss	Gain		(dBm)	
3769.50	-34.38	11.56	-8.14	-30.96	-13	Н
7638.08	-29.61	17.10	-11.54	-24.05	-13	V
9400.32	-41.62	19.27	-12.60	-34.95	-13	V
9550.21	-38.63	19.38	-12.58	-31.83	-13	V
11459.82	-42.10	21.58	-12.40	-32.92	-13	V
13370.86	-23.61	23.66	-13.67	-13.62	-13	V

A.3 FREQUENCY STABILITY (§2.1055/§24.235)

A.3.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30℃.
- 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on channel 661 for PCS 1900 and channel 190 for GSM850 measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10℃ increments from -30℃ to +50℃. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 C increments from +50°C to -30°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

A.3.2 Measurement Limit

A.3.2.1 For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 4.8VDC and 5.2VDC, with a nominal voltage of 5VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

A.3.2.2 For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the

fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

A.3.3 Measurement results

GSM 850 Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
4.8	-38	0.040
5	-34	0.036
5.2	-30	0.032

Frequency Error vs Temperature

· · · · · · · · · · · · · · · · · · ·		
temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-30	-41	0.043
-20	-40	0.042
-10	-38	0.040
0	-36	0.038
10	-34	0.036
20	-34	0.036
30	-34	0.036
40	-36	0.038
50	-38	0.040

PCS 1900 Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
4.8	-48	0.051
5	-46	0.049
5.2	-42	0.044

Frequency Error vs Temperature

requested = re-re-re-re-re-re-re-re-re-re-re-re-re-r		
temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-30	-53	0.056
-20	-51	0.054
-10	-49	0.052
0	-48	0.051
10	-46	0.049
20	-46	0.049
30	-46	0.049
40	-47	0.050
50	-49	0.052

A.4 OCCUPIED BANDWIDTH (§2.1049(h)(i))

A.4.1 Occupied Bandwidth Results

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band and GSM850 band. The table below lists the measured -20dBc BW. Spectrum analyzer plots are included on the following pages.

GSM 850(-20dBc)

Frequency(MHz)	Occupied Bandwidth (-20dBc BW)(kHz)
824.2	277.24
836.6	275.64
848.8	269.23

GSM 850 Channel 128-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 23:38:03

Channel 190-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 23:38:30

Channel 251-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 23:38:58

GSM 850(-20dBc)-IC

Frequency(MHz)	Occupied Bandwidth (-20dBc BW)(kHz)
824.2	243.59
836.6	241.99
848.8	238.78

GSM 850

Channel 128-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:27:47

Channel 128-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 06:30:25

Channel 190-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:32:19

Channel 190-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 06:33:06

Channel 251-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:35:02

Channel 251-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 06:35:46

GPRS 850(-20dBc)

Frequency(MHz)	Occupied Bandwidth (-20dBc BW)(kHz)
824.2	269.23
836.6	266.03
848.8	270.83

GPRS 850 Channel 128-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 08:47:16

Channel 190-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 08:47:43

Channel 251-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 08:48:10

GPRS 850(-20dBc)-IC

Frequency(MHz)	Occupied Bandwidth (-20dBc BW)(kHz)
824.2	237.18
836.6	237.18
848.8	240.38

GPRS 850 Channel 128-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:56:31

Channel 128-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 06:57:36

Channel 190-Occupied Reference Level (-20dBc BW)

Date: 18.FEB.2011 06:59:19

Channel 190-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 07:00:41

Channel 251-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 07:06:00

Channel 251-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 07:05:26

EGPRS 850(-20dBc)

Frequency(MHz)	Occupied Bandwidth (-20Bc BW)(kHz)
824.2	275.64
836.6	280.45
848.8	280.45

EGPRS 850 Channel 128-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 09:04:13

Channel 190-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 09:04:40

Channel 251-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 09:05:07

EGPRS 850(-20dBc)-IC

Frequency(MHz)	Occupied Bandwidth (-20Bc BW)(kHz)
824.2	214.74
836.6	224.36
848.8	219.55

EGPRS 850 Channel 128-Occupied Reference level

Date: 21.FEB.2011 03:30:12

Channel 128-Occupied Bandwidth (-20dBc BW)

Date: 21.FEB.2011 03:33:14

Channel 190-Occupied Bandwidth Reference level

Date: 21.FEB.2011 03:54:36

Channel 190-Occupied Bandwidth (-20dBc BW)

Date: 21.FEB.2011 03:57:47

Channel 251-Occupied Reference Level

Date: 21.FEB.2011 03:48:09

Channel 251-Occupied Bandwidth (-20dBc BW)

Date: 21.FEB.2011 03:50:11

PCS 1900(-20dBc)

Frequency(MHz)	Occupied Bandwidth (-20dBc BW)(kHz)
1850.2	267.63
1880.0	266.03
1909.8	269.23

PCS 1900 Channel 512-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 23:50:32

Channel 661-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 23:50:59

Channel 810-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 23:51:27

PCS 1900(-20dBc)-IC

Frequency(MHz)	Occupied Bandwidth (-20dBc BW)(kHz)
1850.2	243.59
1880.0	245.19
1909.8	243.59

PCS 1900 Channel 512-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:42:22

Channel 512-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 06:43:29

Channel 661-Occupied Reference Level

Date: 18.FEB.2011 06:45:29

Channel 661-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 06:46:34

Channel 810-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:48:28

Channel 810-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 06:50:44

GPRS 1900(-20dBc)

Frequency(MHz)	Occupied Bandwidth (-20dBc BW)(kHz)
1850.2	274.04
1880.0	275.64
1909.8	270.83

GPRS 1900 Channel 512-Occupied Bandwidth -20dBc BW)

Date: 17.FEB.2011 08:55:51

Channel 661-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 08:56:18

Channel 810-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 08:56:45

GPRS 1900(-20dBc)-IC

Frequency(MHz)	Occupied Bandwidth (-20dBc BW)(kHz)
1850.2	235.58
1880.0	238.78
1909.8	233.97

GPRS 1900 Channel 512-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 07:20:34

Channel 512-Occupied Bandwidth -20dBc BW)

Date: 18.FEB.2011 07:22:24

Channel 661-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 07:24:14

Channel 661-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 07:25:42

Channel 810-Occupied Reference Level

Date: 18.FEB.2011 07:27:10

Channel 810-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 07:28:14

EGPRS 1900(-20dBc)

Frequency(MHz)	Occupied Bandwidth (-20dBc BW)(kHz)
1850.2	280.45
1880.0	272.44
1909.8	259.62

EGPRS 1900 Channel 512-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 23:24:56

Channel 661-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 23:25:23

Channel 810-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 23:25:51

EGPRS 1900(-20dBc)-IC

Frequency(MHz)	Occupied Bandwidth (-20dBc BW)(kHz)
1850.2	208.33
1880.0	219.55
1909.8	224.36

EGPRS 1900 Channel 512-Occupied Reference Level

Date: 21.FEB.2011 05:41:21

Channel 512-Occupied Bandwidth (-20dBc BW)

Date: 21.FEB.2011 05:46:21

Channel 661-Occupied Reference Level

Date: 21.FEB.2011 05:47:27

Channel 661-Occupied Bandwidth (-20dBc BW)

Date: 21.FEB.2011 05:48:40

Channel 810-Occupied Reference Level

Date: 21.FEB.2011 05:50:07

Channel 810-Occupied Bandwidth (-20dBc BW)

Date: 21.FEB.2011 05:51:02

A.5 EMISSION BANDWIDTH (§22.917(b)/§24.238(b))

A.5.1Emission Bandwidth Results

Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band and GSM850 band. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.

GSM 850(-26dBc)

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
824.2	315.71
836.6	317.31
848.8	306.09

GSM 850 Channel 128-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 23:39:26

Channel 190-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 23:39:54

Channel 251-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 23:40:21

GSM 850(-26dBc)-IC

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
824.2	282.05
836.6	280.45
848.8	282.05

GSM 850

Channel 128-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:27:47

Channel 128-Occupied Bandwidth (-26dBc BW)

Date: 18.FEB.2011 06:31:27

Channel 190-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:32:19

Channel 190-Occupied Bandwidth (-26dBc BW)

Date: 18.FEB.2011 06:34:08

Channel 251-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:35:02

Channel 251-Occupied Bandwidth (-26dBc BW)

Date: 18.FEB.2011 06:36:32

GPRS 850(-26dBc)

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
824.2	315.71
836.6	314.10
848.8	315.71

GPRS 850 Channel 128-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 08:48:39

Channel 190-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 08:49:07

Channel 251-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 08:49:34

GPRS 850(-26dBc)-IC

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
824.2	275.64
836.6	277.24
848.8	277.24

GPRS 850

Channel 128-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:56:31

Channel 128-Occupied Bandwidth (-26dBc BW)

Date: 18.FEB.2011 06:58:37

Channel 190-Occupied Bandwidth (-20dBc BW)

Date: 17.FEB.2011 23:38:30

Channel 190-Occupied Bandwidth (-20dBc BW)

Date: 18.FEB.2011 07:01:34

Channel 251-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 07:06:00

Channel 251-Occupied Bandwidth (-26dBc BW)

Date: 18.FEB.2011 07:04:30

EGPRS 850(-26dBc)

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
824.2	307.69
836.6	314.42
848.8	307.69

EGPRS 850 Channel 128-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 09:05:36

Channel 190-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 09:06:04

Channel 251-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 09:06:31

EGPRS 850(-26dBc)-IC

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
824.2	262.86
836.6	262.82
848.8	261.22

EGPRS 850 Channel 128-Occupied Reference level

Date: 21.FEB.2011 03:30:12

Channel 128-Occupied Bandwidth (-26dBc BW)

Date: 21.FEB.2011 03:35:16

Channel 190-Occupied Bandwidth Reference level

Date: 21.FEB.2011 03:54:36

Channel 190-Occupied Bandwidth (-26dBc BW)

Date: 21.FEB.2011 03:56:47

Channel 251-Occupied Bandwidth Reference Level

Date: 21.FEB.2011 03:48:09

Channel 251-Occupied Bandwidth (-26dBc BW)

Date: 21.FEB.2011 03:51:50

PCS 1900(-26dBc)

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
1850.2	318.91
1880.0	317.31
1909.8	309.29

PCS 1900 Channel 512-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 23:51:55

Channel 661-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 23:52:23

Channel 810-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 23:52:50

PCS 1900(-26dBc)-IC

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
1850.2	280.45
1880.0	269.23
1909.8	278.85

PCS 1900 Channel 512-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:42:22

Channel 512-Occupied Bandwidth (-26dBc BW)

Date: 18.FEB.2011 06:44:22

Channel 661-Occupied Reference Level

Date: 18.FEB.2011 06:45:29

Channel 661-Occupied Bandwidth (-26dBc BW)

Date: 18.FEB.2011 06:47:30

Channel 810-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 06:48:28

Channel 810-Occupied Bandwidth (-26dBc BW)

Date: 18.FEB.2011 06:51:41

GPRS 1900(-26dBc)

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
1850.2	314.10
1880.0	315.71
1909.8	310.90

GPRS 1900 Channel 512-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 08:57:14

Channel 661-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 08:57:42

Channel 810-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 08:58:09

GPRS 1900(-26dBc)-IC

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
1850.2	280.45
1880.0	278.85
1909.8	274.04

GPRS 1900

Channel 512-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 07:20:34

Channel 512-Occupied Bandwidth -26dBc BW)

Date: 18.FEB.2011 07:23:32

Channel 661-Occupied Bandwidth Reference Level

Date: 18.FEB.2011 07:24:14

Channel 661-Occupied Bandwidth (-26dBc BW)

Date: 18.FEB.2011 07:26:29

Channel 810-Occupied Reference Level

Date: 18.FEB.2011 07:27:10

Channel 810-Occupied Bandwidth (-26dBc BW)

Date: 18.FEB.2011 07:28:55

EGPRS 1900(-26dBc)

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
1850.2	315.71
1880.0	304.49
1909.8	307.69

EGPRS 1900

Channel 512-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 23:26:20

Channel 661-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 23:26:47

Channel 810-Occupied Bandwidth (-26dBc BW)

Date: 17.FEB.2011 23:27:14

EGPRS 1900(-26dBc)-IC

Frequency(MHz)	Occupied Bandwidth (–26dBc BW)(kHz)
1850.2	251.60
1880.0	259.62
1909.8	251.60

EGPRS 1900

Date: 21.FEB.2011 05:41:21

Channel 512-Occupied Bandwidth (-26dBc BW)

Date: 21.FEB.2011 05:45:23

Channel 661-Occupied Reference Level

Date: 21.FEB.2011 05:47:27

Channel 661-Occupied Bandwidth (-26dBc BW)

Date: 21.FEB.2011 05:49:23

Channel 810-Occupied Reference Level

Date: 21.FEB.2011 05:50:07

Channel 810-Occupied Bandwidth (-26dBc BW)

Date: 21.FEB.2011 05:52:14

A.6 BAND EDGE COMPLIANCE (§22.917(b)/§24.238(b))

GSM 850 LOW BAND EDGE BLOCK-A (GSM850)-Channel 128

Date: 17.FEB.2011 23:40:50

HIGH BAND EDGE BLOCK-C (GSM850) -Channel 251

Date: 17.FEB.2011 23:41:19

GPRS 850 LOW BAND EDGE BLOCK-A (GSM850)-Channel 128

Date: 17.FEB.2011 08:50:03

HIGH BAND EDGE BLOCK-C (GSM850) -Channel 251

Date: 17.FEB.2011 08:50:32

EGPRS 850 LOW BAND EDGE BLOCK-A (GSM850)-Channel 128

Date: 17.FEB.2011 09:07:00

HIGH BAND EDGE BLOCK-C (GSM850) -Channel 251

Date: 17.FEB.2011 09:07:29

PCS 1900 LOW BAND EDGE BLOCK-A (PCS-1900)-Channel 512

Date: 17.FEB.2011 23:53:19

HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810

Date: 17.FEB.2011 23:53:49

GPRS 1900 LOW BAND EDGE BLOCK-A (PCS-1900)-Channel 512

Date: 17.FEB.2011 08:58:38

HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810

Date: 17.FEB.2011 08:59:07

EGPRS 1900 LOW BAND EDGE BLOCK-A (PCS-1900)-Channel 512

Date: 17.FEB.2011 23:27:44

HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810

Date: 17.FEB.2011 23:28:13

A.7 CONDUCTED SPURIOUS EMISSION (§2.1057/§22.917/§24.238)

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 10 GHz.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

GSM850 Transmitter

Channel	Frequency (MHz)
128	824.2
190	836.6
251	848.8

PCS1900 Transmitter

Channel	Frequency (MHz)
512	1850.2
661	1880.0
810	1909.8

A.7.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.7.3 Measurement result

GSM850

A.7.3.1 Channel 128: 30MHz - 4GHz

Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.

Date: 17.FEB.2011 23:41:48

A.7.3.2 Channel 128: 4GHz - 10GHz

Spurious emission limit -13dBm.

Date: 17.FEB.2011 23:42:16

A.7.3.3 Channel 190: 30MHz - 4GHz

Spurious emission limit –13dBm

NOTE: peak above the limit line is the carrier frequency.

Date: 17.FEB.2011 23:42:45

A.7.3.4 Channel 190: 4GHz -10GHz

Spurious emission limit -13dBm

Date: 17.FEB.2011 23:43:14

A.7.3.5 Channel 251: 30MHz - 4GHz

Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.

Date: 17.FEB.2011 23:43:43

A.7.3.6 Channel 251: 4GHz - 10GHz

Spurious emission limit -13dBm.

Date: 17.FEB.2011 23:44:12

A.7.3.7 Idle mode: 30MHz - 4GHz

Spurious emission limit -13dBm.

Date: 17.FEB.2011 23:44:40

A.7.3.8 Idle mode: 4GHz - 10GHz

Spurious emission limit –13dBm.

Date: 17.FEB.2011 23:45:09

PCS1900

A.7.3.9 Channel 512: 30MHz - 4GHz

Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.

Date: 17.FEB.2011 23:54:18

A.7.3.10 Channel 512: 4GHz - 20GHz

Spurious emission limit -13dBm.

Date: 17.FEB.2011 23:54:46

A.7.3.11 Channel 661: 30MHz - 4GHz

Spurious emission limit -13dBm

NOTE: peak above the limit line is the carrier frequency.

Date: 17.FEB.2011 23:55:15

A.7.3.12 Channel 661: 4GHz -20GHz

Spurious emission limit -13dBm

Date: 17.FEB.2011 23:55:44

A.7.3.13 Channel 810: 30MHz - 4GHz

Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.

Date: 17.FEB.2011 23:56:13

A.7.3.14 Channel 810: 4GHz - 20GHz

Spurious emission limit -13dBm.

Date: 17.FEB.2011 23:56:42

A.7.3.15 Idle mode: 30MHz - 4GHz

Spurious emission limit -13dBm.

Date: 17.FEB.2011 23:57:11

A.7.3.16 Idle mode: 4GHz - 20GHz

Spurious emission limit -13dBm.

Date: 17.FEB.2011 23:57:39

END OF REPORT