WSPÓŁCZYNNIKI ZAŁAMANIA W RUTYLU

T. Fąs

14 grudnia 2017

STRESZCZENIE

W doświadczeniu wyznaczono zależność współczynników załamania światła od długości fali dla promienia zwyczajnego i nadzwyczajnego w uproszczonym modelu Sellmeiera postaci $n^2-1=B_i\lambda^2/(\lambda^2-C_i)$. Otrzymano wartości: dla promienia zwyczajnego $B_z=5,0929\pm0,0083~1/\mathrm{nm}^2,~C_z=46524\pm432~\mathrm{nm}^2,$ dla promienia nadzwyczajnego: $B_n=6,309\pm0,038~1/\mathrm{nm}^2,~C_n=51692\pm1564~\mathrm{nm}^2.$

WSTEP

Kryształ rutylu — TiO_2 — jest kryształem wykazującym dwójłomność. W związku z tym promień padający na taki kryształ ulega rozdzieleniu na promień zwyczajny i nadzwyczajny, o różnych właściwościach. Zależność współczynnika załamania dla kryształu rutylu jest inna dla promienia zwyczajnego i nadzwyczajnego. Celem doświadczenia było znalezienie tej zależności dla obu promieni.

kolimator

krag
pomiarowy

270° φ 180°

Rysunek 1: Wyznaczanie kąta najmniejszego odbicia.

Rysunek 2: Wyznaczanie kąta łamiącego.

Jeżeli promień pada na kryształ tak, jak na Rysunku 1, to współczynnik załamania n można wyznaczyć, korzystając z prawa Snella. Jeżeli znamy kąt najmniejszego odbicia δ oraz kąt łamiący pryzmatu φ , to n wyrażone jest wzorem:

$$n = \frac{\sin\left(\frac{1}{2}(\delta + \varphi)\right)}{\sin\left(\frac{1}{2}\varphi\right)},\tag{1}$$

przy czym zachodzi równość:

$$\delta = \frac{1}{2} \left(\delta_l - \delta_p \right). \tag{2}$$

Z kolei z Rysunku 2 wynika, iż kąt łamiący pryzmatu można wyznaczyć ze związku

$$\varphi = \frac{1}{2} \left(\alpha_l - \alpha_p \right). \tag{3}$$

Jeżeli znane są rożne wartości współczynników n dla rożnych długości fali λ , to można do tych danych dopasować zależność:

$$n = A_0 + \frac{A_1}{\lambda^2},\tag{4}$$

lub

$$n^2 - 1 = \frac{B_1 \lambda^2}{\lambda^2 - C_1},\tag{5}$$

przy czym A, B, C to współczynniki dopasowania.

UKŁAD DOŚWIADCZALNY

Do pomiarów kątów skorzystano z goniometru, a źródłem światła była lampa sodowa i rtęciowa. Goniometr w trakcie pomiarów był ustawiany zgodnie z Rysunkiem 1 i Rysunkiem 2. Do rozróżnienia promienia zwyczajnego od nadzwyczajnego wykorzystano polaryzator.

WYNIKI POMIARÓW

Zmierzono: $\alpha_p = 140^{\circ}01'$, $\alpha_l = 200^{\circ}20'$. Tabela 1 przedstawia pomiary kątów δ_l i δ_p wraz z powiązanymi z nimi długościami fali.

Tabela 1: Katy załamania.

Długość fali λ [nm]	589,3	650,0	546,1	404,1
δ_p (zwyczajny)	123°33'	125°10'	122°59'	114°29'
δ_l	247°46'	234°20'	236°56'	245°27'
δ_p (nadzwyczajny)	112°14'	113°03'	109°55'	97°33'
δ_l	235°23'	246°55'	249°54'	262°20'

ANALIZA DANYCH

Niepewność pomiarów kątów α_l i α_p oszacowano na $\Delta_{\alpha}=1'$. Z kolei niepewności kątów δ_i przyjęto jako równe $\Delta_{\delta}=5'$, ponieważ uchwycenie momentu, w którym dochodzi do cofania się obrazu kolimatora jest trudne. Również goniometr nie był idealnie wypoziomowany, co mogło zaburzyć niektóre pomiary.

Aby przenieść te niepewności na niepewności kąta łamiącego i kąta najmniejszego odchylenia, skorzystano z metody propagacji małych błędów. Ogólny wzór przenoszenia niepewności w tej metodzie jest następujący:

$$u_f^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} u_i\right)^2 + \sum_{i=1, i \neq j}^n \left(\frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} c_{ij}\right),\tag{6}$$

gdzie wielkość f zależy od wielkości x_i o niepewnościach u_i i o ocenach kowariancji c_{ij} [1]. W przypadku mierzonych kątów, kowariancja między nimi wynosi 0.

Stosując dane z Tabeli 1 oraz Równanie (6) wyznaczono kąt łamiący pryzmatu $\varphi = (30, 158 \pm 0, 012)^{\circ}$ oraz współczynniki załamania n_z i n_n dla kolejno promienia zwyczajnego i nadzwyczajnego wraz z ich niepewnościami u_i . Wyniki umieszczono w Tabeli 2.

Tabela 2: Współczynniki załamania i ich niepewności.

Długość fali λ [nm]	589,3	650,0	546,1	404,7
n_z	2,623	2,590	2,649	2,849
u_{nz}	0,099	0,102	0,102	0,099
n_n	2,899	2,881	2,948	3,197
u_{nn}	0,102	0,099	0,098	0,095

Otrzymane współczynniki dla linii widmowej sodu $\lambda=589,3$ nm są zgodne ze współczynnikami wzorcowymi, które wynoszą odpowiednio $n_z=2,61,\,n_n=2,910$ [2]. Zgodność zbadano za pomocą testu 3σ , czyli sprawdzono, czy różnica wyników jest mniejsza od trzykrotnej niepewności tej różnicy.

W następnym kroku, korzystając z programu gnuplot wykonano dopasowanie danych z Tabeli 2 zgodnie z Równaniem (4). Krzywe najlepszego dopasowania są przedstawione na Rysunku 3 i Rysunku 4, a parametry dopasowania wraz z ich niepewnościami u_i przedstawione są w Tabeli 3.

Rysunek 3: Dopasowanie danych: promień zwyczajny.

Rysunek 4: Dopasowanie danych: promień nadzwyczaj-

Tabela 3: Parametry dopasowania.

Table of Taraniet, aspace wanter					
Promień	A_0	$A_1 [\mathrm{nm}^2]$	u_{A0}	$u_{A1} [\mathrm{nm}^2]$	χ^2
Zwyczajny	2,4234	69696	0,0050	1629	0,0028
Nadzwyczajny	2,638	91080	0,015	4894	0,028

Rysunek 5: Dopasowanie danych: promień zwyczajny. Rysunek 6: Dopasowanie danych: promień nadzwyczajny. $_{\rm ny.}$

Tabela 4: Parametry dopasowania.

Promień	$B_1 \ [1/{\rm nm}^2]$	$C_1 [\mathrm{nm}^2]$	$u_{B1} [1/\text{nm}^2]$	$u_{C1} [\mathrm{nm}^2]$	χ^2
Zwyczajny	5,0929	46525	0,0084	432	0,00077
Nadzwyczajny	6,308	51693	0,038	1564	0,017

Analogiczną procedurę zastosowano w przypadku dopasowywania danych do Równania (5). Krzywe wynikłe z tego dopasowania przedstawiono na Rysunku (5) i Rysunku (6), a parametry dopasowania są przedstawione w Tabeli 4.

Otrzymane wartości χ^2 sugerują, iż zależność wyrażona Równaniem (5), czyli model Sellmeiera, jest lepszym odwzorowaniem faktycznie uzyskiwanych wyników.

DYSKUSJA WYNIKÓW I WNIOSKI

Dysponując gotową krzywą kalibracyjna, można odwrócić zależność wyrażoną przez Równanie (5) by uzyskać zależność pozwalającą na wyznaczanie długości fali przy znajomości współczynnika załamania. W ten sposób otrzymano spektroskop. Jednak nie przeprowadzono tej procedury w analizie danych, gdyż ze względu na małą liczbę punktów zdecydowano się włączyć współczynniki załamania sodu do analizy kalibracyjnej. Jednak niezwykle niskie wartości χ^2 jak i niskie wartości niepewności współczynników pozwalają sądzić, iż otrzymane długości fali byłyby zgodne z wartościami rzeczywistymi jak i byłyby obarczona małymi niepewnościami.

Literatura

- $[1]\,$ J. R. Taylor, Wstep do analizy błędu pomiarowego, PWN, Warszawa, 1995, s. 175.
- [2] J. R. DeVore, Refractive Indices of Rutile and Sphalerite, OSA, 06.1951, t. 41 s. 416–419.