AM1 - Prof. Cipriani Appello del 03 luglio 2023 - Aula 26.15 - h 15.00

Cognome e nome:

Codice Persona:

DOMANDE A RISPOSTA MULTIPLA

Per ogni quesito, indicare con una croce l'unica risposta corretta. Per annullare una risposta già data, racchiudere la croce in un cerchio.

- 1. [punti 1] L'equazione $z \cdot \bar{z} = 1 + i$ ha nel campo complesso
 - (a) infinite soluzioni;
 - (b) almeno una soluzione reale;
 - (c) almeno una soluzione immaginaria;
 - (d) nessuna soluzione;
 - (e) nessuna delle altre risposte è corretta.
- 2. [punti 2] Sia P_n un polinomio di grado n. $\lim_{x\to+\infty} P_n(x) \cdot P_n(-x) = -\infty$ vale
 - (a) se e solo se P_n è una funzione dispari;
 - (b) se e solo se n è dispari;
 - (c) se e solo se il coefficiente del termine di grado n è negativo;
 - (d) mai;
 - (e) nessuna delle altre risposte è corretta.
- 3. [punti 1] L'insieme $\{x \in \mathbb{R} : \log(300 + x^3) < 5\}$ è della forma (con $a, b \in \mathbb{R}$)
 - (a) $(a, +\infty)$;
 - (b) $(-\infty, a)$;
 - (c) (a,b);
 - (d) $(-b, -a) \cup (a, b)$
 - (e) nessuna delle altre risposte è corretta.
- 4. [punti 1] Quale dei seguenti può essere un grafico qualitativo, in un intorno di x=0, della funzione f definita da $f(x)=|x|^{\frac{1}{3}}\cdot\sin x$?

- 5. [punti 1] Quale delle seguenti funzioni è una primitiva della funzione f definita da $f(x) = \frac{2x}{1+x^4}$?
 - (a) $\arctan x^2$;
 - (b) $\log(1+x^4)$;
 - (c) $\frac{1}{(1+x^4)^2}$;
 - (d) $\frac{\log(1+x^4)}{2x^2}$;
 - (e) nessuna.
- 6. [punti 2] Sia F la funzione integrale definita da $F(x) = \int_1^x |t-3|^{\frac{1}{3}} dt$. È vero che
 - (a) F è discontinua in x = 3;
 - (b) F ha un punto di flesso a tangente orizzontale in x = 3;
 - (c) F non è derivabile in x = 3;
 - (d) F ha un punto di minimo in x = 3;
 - (e) nessuna delle altre risposte è corretta.
- 7. [punti 2] Si consideri $\sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{n} \sin \frac{1}{n}\right)^{\alpha}$, al variare del parametro $\alpha \in \mathbb{R}$.
 - (a) La serie converge assolutamente se e solo se $\alpha > 1/3$.
 - (b) la serie converge semplicemente $\forall \alpha > 0$, ma non converge assolutamente per alcun α .
 - (c) la serie converge assolutamente se e solo se $\alpha > 1$.
 - (d) la serie converge assolutamente se e solo se $\alpha > 0$.
 - (e) nessuna delle altre risposte è corretta.

Cognome e nome:

ESERCIZI A

Esercizio 1. [punti 5] Data la funzione f definita da $\mathbf{f}(\mathbf{x}) = 2\arcsin(1/\mathbf{x}) + \sqrt{\mathbf{x}^2 - 1}$ determinarne

- a) (1 punto) dominio, limiti, continuita'
- b) (1 punto) derivabilita' e derivata prima
- c) (2 punti) monotonia ed estremi
- d) (1 punto) grafico.

Soluzione.

- a) $D=(-\infty,-1]\cup[+1,+\infty)$, $\lim_{x\to\pm\infty}f(x)=+\infty$, $f(\pm 1)=\pm\pi$, $f\in C(D)$ come composta di funzioni continue.
- b) f e' derivabile in $D=(-\infty,-1)\cup(+1,+\infty)$ in qu<to ivi composta di funzioni derivabili. Applicando in Teorema della Derivata della Funzione Composta abbiamo

$$f'(x) = 2\frac{1}{\sqrt{1 - x^{-2}}} \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{2} \frac{2x}{\sqrt{x^2 - 1}} = \frac{x^3 - 2|x|}{x^2 \sqrt{x^2 - 1}} \qquad |x| > 1.$$

c) Punti critici: f'(x)=0 se e solo se $x=\sqrt{2}$. Segno di f': f'(x)>0 se solo se $x>\sqrt{2}$, f': f'(x)<0 se solo se $x<\sqrt{2}$. Estremi: $x=\sqrt{2}$ minimo locale. Poiche' f e' continua in x=-1 e $\lim_{x\to(-1)^-}f'(x)=+\infty$ si ha che x=-1 e' minimo relativo. Poiche' f e' continua in x=-1 e $\lim_{x\to(+1)^+}f'(x)=+\infty$ si ha che x=+1 e' massimo relativo. Poiche' $\pi/2+1=f(\sqrt{2})>f(-1)=-\pi$ si ha che x=-1 e' minimo assoluto.

Esercizio 2. [punti 3]

- (2.1) (2 punti) Determinare i numeri complessi z = x + iy tali che $z^3 + 1 \in \mathbb{R}$.
- (2.2) (1 punto) Disegnare nel piano di Gauss l'insieme

$$B = \{ w \in \mathbb{C} : w = i(z+1), \text{ dove } z \text{ è soluzione del punto } (2.1) \}.$$

Soluzione.

2.1) Poiche' $1 \in \mathbb{R}$ abbiamo che $z^3 + 1 \in \mathbb{R}$ se e solo se $z^3 \in \mathbb{R}$. In forma algebrica z = x + iy e $z^3 = (x^3 - 3xy^2) + i(3x^2y - y^3) \in \mathbb{R}$ se e solo se $3x^2y - y^3 = 0$ cioe' se $y(3x^2 - y^2) = 0$ le soluzioni essendo y = 0 e $y = \pm \sqrt{3}x$. L'insieme A delle soluzioni e' quindi unione di queste 3 rette.

2.2) B si ottiene da A traslando A verticalmente di una unita' e ruotando poi di 90° in senso antiorario. Quindi B e' unione dell'asse Y e delle rette $y = \pm \frac{\sqrt{3}}{3}x + 1$.

Esercizio 3. [punti 4] Determinare per quali valori del parametro $\alpha > 0$ esiste finito il valore dell'integrale,

$$I := \int_0^{+\infty} \frac{\log x}{|x^2 + 2x - 3|^{\alpha}} \, dx \,.$$

Soluzione.

Poiche' per $x \to +\infty$ si ha $f(x) \sim \frac{\log x}{x^{2\alpha}}$, la funzione e' integrabile nell'intorno di $+\infty$ se e solo se

Poiche' per $x \to 0^+$ si ha $f(x) \sim 3^{-\alpha} \log x$, la funzione e' integrabile in un intorno di $x = 0^+$ per ogni $\alpha > 0$.

Poiche' $x^2 + 2x - 3 = (x - 1)(x + 3)$ ed f e' continua in $D := (0, +1) \cup (+1, +\infty)$, si ha che f e'

integrabile su ogni intervallo $(a,b)\subset D$. Poiche' per $x\to 1$ si ha $|f(x)|\sim \frac{|\log(1+x-1)|}{|x-1|^\alpha|x+3|^\alpha}\sim 2^{-\alpha}\frac{|x-1|}{|x-1|^\alpha}=2^{-\alpha}\frac{1}{|x-1|^{\alpha-1}},$ si ha che f e' integrabile in un intorno di x=1 se e solo se $\alpha<2$.

In conclusione f e' integrabile in $(0, +\infty)$ e I esiste finito se e solo se $1/2 < \alpha < 2$.

Cognome e nome :

TEORIA

 ${\bf T1.}$ Enunciare e dimostrare il Teorema degli Zeri.

T2. (2 punti) Fornire la definizione Lemma di Fermat.	e di punto critico o st	azionario ed enunciare,	senza dimostrarlo, il