2 PARAMETRICKÉ VYJADRENIE PRIAMKY V ROVINE

Na určenie priamky potrebujeme poznať jeden jej bod a smer. Smer priamky sa dá definovať viacerými spôsobmi. Jeden z nich je pomocou vektora, s ktorým je priamka rovnobežná (smerového vektora priamky).

Označme:

X[x;y] ... ľubovoľný bod priamky p

 $A[x_0; y_0]$... bod, ktorým je priamka určená

 $\vec{a} = (a_1; a_2)$... smerový vektor priamky

Vektory \overrightarrow{AX} a \overrightarrow{a} sú lineárne závislé, teda platí:

$$\overrightarrow{AX} = t.\overrightarrow{a}$$

$$X - A = t.\vec{a}$$

$$X = A + t.\vec{a}$$

Parametrické vyjadrenie priamky v rovine: $X = A + t \cdot \vec{a}$

Parametrické rovnice priamky: $p: x = x_0 + t.a_1$

$$y = y_0 + t.a_2$$

Napríklad: p: x = 7 + 2t

$$y = 3 - t$$

Príklad 2.1

Napíšte parametrické rovnice priamky p
, ktorá prechádza bodom A[2;3]a je rovnobežná

s vektorom $\vec{a} = (5; -4)$

Riešenie:

Parametrické vyjadrenie priamky je: $X = A + t \cdot \vec{a}$

Parametrické rovnice priamky p sú:

$$p: x = 2 + 5t$$
$$y = 3 - 4t$$

Príklad 2.2

Napíšte parametrické rovnice priamky p, ktorá prechádza bodmi A[-9;2] a B[-1;5].

Riešenie:

K parametrickému vyjadreniu priamky potrebujeme poznať jeden bod ktorým priamka prechádza a jej smerový vektor. Bod poznáme. Nájdeme smerový vektor tejto priamky. Môže to byť napríklad \overrightarrow{AB} , pretože body A a B ležia na tejto priamke.

$$\vec{a} = \overrightarrow{AB} = B - A = (-1 - (-9); 5 - 2) = (8;3)$$

Parametrické rovnice priamky p sú:

$$p: x = -9 + 8t$$
$$y = 2 + 3t$$

Príklad 2.3

Napíšte parametrické rovnice priamky q, ktorá prechádza bodom A[-4;7] a je rovnobežná

s priamkou
$$p: x = -2 + t$$
$$y = 5 + 2t$$

Riešenie:

Keďže priamky p a q sú rovnobežné, majú rovnaké smerové vektory:

$$\overrightarrow{a_p} = \overrightarrow{a_q} = (1;2)$$

Výsledok: Parametrické rovnice priamky "q" sú:

$$q: x = -4 + t$$
$$y = 7 + 2t$$

ILUSTRAČNÝ OBRÁZOK:

Príklad 2.4

Napíšte parametrické rovnice priamky q, ktorá prechádza bodom A[3;-1] a je kolmá na

priamku
$$p: x = 5+2t$$

 $y = -4+t$

Riešenie:

Keďže priamky p a q sú na seba kolmé, skalárny súčin ich smerových vektorov sa rovná nule. Nájdeme smerový vektor priamky q.

$$\overrightarrow{a_p} = (2; 1)$$
 $\overrightarrow{a_q} = (1; -2)$ (súradnice $\overrightarrow{a_q}$ doplníme tak, aby platilo: $2 \cdot 1 + 1 \cdot (-2) = 0$)

Výsledok: Parametrické rovnice priamky "q" sú:

$$q: x = 3 + t$$
$$y = -1 - 2t$$

ILUSTRAČNÝ OBRÁZOK:

Príklad 2.5

Nájdite dva body K, L, ktoré ležia na priamke p: x = 4+3ty = -1+5t

Riešenie:

Súradnice každého bodu priamky p dostaneme tak, že si za "t" zvolíme ľubovoľné reálne číslo. Napríklad:

$$t = 2$$

 $p: x = 4 + 3.2 = 4 + 6 = 10$
 $y = -1 + 5.2 = -1 + 10 = 9$
 $K[10;9]$

$$t = -1$$

 $p: x = 4+3.(-1)=4-3=1$
 $y = -1+5.(-1)=-1-5=-6$

$$L[1;-6]$$

Príklad 2.6

Zistite, či body M[3;-2]aN[-4;6] ležia na priamke p: x=1-5ty=2+4t

Riešenie:

Do parametrických rovníc priamky p dosádíme súradnice bodu M (za x = 3, za y = -2) a z každej rovnice vypočítame t. Ak sa vypočítané čísla budú rovnať, bod M leží na priamke p, ak budú rôzne, bod M na priamke p neleží. To isté urobíme aj s bodom N.

N:

