Primeira Lista de Preparação para a LI IMO e XXV Olimpíada Iberoamericana de Matemática

Nível III

▶ PROBLEMA 1

Seja d(n) o número de divisores positivos do inteiro positivo n. Qual é o menor valor real da constante c tal que $d(n) \leq c\sqrt{n}$ para todo inteiro positivo n?

▶PROBLEMA 2

Seja $n \geqslant 1$ e $a_1 < a_2 < \ldots < a_n$ inteiros positivos. Prove que a quantidade de pares (i,j) com $1 \leqslant i < j \leqslant n$ tais que $a_j - a_i$ é uma potência de 2 é menor ou igual à quantidade de pares (i,j) com $1 \leqslant i < j \leqslant n$ tais que j-i é uma potência de 2.

▶PROBLEMA 3

Dado o triângulo ABC, seja ω o ex-incírculo tangente ao lado BC. Seja r uma reta paralela a BC que intercepta os lados AB e AC em D e E, respectivamente. Seja ω' o incírculo do triângulo ADE. As tangentes ao círculo ω que passam respectivamente por D e E e que não passam por A cortam-se em P. As tangentes ao círculo ω' que passam respectivamente por B e C e não passam por A cortam-se em Q. Prove que todas as retas PQ obtidas ao variar a reta r passam por um ponto fixado, que não depende de r.

▶PROBLEMA 4

Dado um inteiro $n \ge 16$, considere o conjunto

$$A = \{(x,y) \mid x,y \in \{1,2,\ldots,n\}\}$$

que consiste de n^2 pontos do plano. Seja X um subconjunto de A com pelo menos $4n\sqrt{n}$ pontos. Prove que existem pelo menos n^2 quadriláteros convexos cujos vértices pertencem a X e cujas $2n^2$ diagonais passam todas pelo mesmo ponto.

▶PROBLEMA 5

Encontre todas as funções $g: R \to R$ para as quais existe uma função estritamente crescente $f: R \to R$ tal que

$$f(x + y) = f(x)g(y) + f(y)$$

para todos x, y reais.

▶PROBLEMA 6

Seja Γ o circuncírculo do triângulo ABC, que tem o ângulo interno $\angle B$ obtuso. Seja B_1 a interseção da reta AB e a reta que passa por C e é tangente a Γ . Seja O_1 o circuncentro do triângulo AB_1C . Seja B_2 um ponto arbitrário sobre o segmento de reta BB_1 , com $B_2 \neq B$ e $B_2 \neq B_1$. Uma reta que passa por B_2 e tangencia Γ em C_1 mais próximo de C. Seja O_2 o circuncentro do triângulo AB_2C_1 . Suponha que a reta OO_2 é perpendicular à reta AO_1 . Prove que os pontos O, circuncentro de ABC, O_1 , O_2 , C_1 e C estão sobre uma mesma circunferência.

▶ PROBLEMA 7

Prove que, para todo k inteiro positivo, existe um inteiro positivo n com exatamente k fatores primos distintos tal que $2^{n^2} + 1$ é múltiplo de n^3 .

▶PROBLEMA 8

Seja p(x) um polinômio de coeficientes complexos e de grau menor do que 2n. Prove que

$$|p(n)| \leq 2\sqrt{n} \cdot \max\{|p(0)|, |p(1)|, \dots, |p(n-1)|, |p(n+1)|, |p(n+2)|, \dots, |p(2n)|\}$$