Mitschrieb Planare Graphen SS 2015

Robin

Contents

Grundlegende Eigenschaften planarer Graphen	1
planare Einbettung:	1
Satz von Euler (1790):	2
Dualität von Schnitten und Kreisen	3
Minor bzw. Unterteilung	4
Satz von Kuratowski (1930)	4
Vorbereitung des Beweises	4
Färbung planarer Graphen (Kap.4 im Skript; "Listenfärbung" nicht im Skript, aber Folien)	4
Färbungsproblem (k-Färbung)	4
Listenfärbungsproblem	5
Beweis der schärferen Behauptung per Induktion	5
Matching	6
Matching-Algorithmus für pl. Graph $G=(V,E)$	8
Mixed-Max-Cut in pl. Graphen	8
Beweis zu Folie (Kozykel und st-Schnitte)	10
Beweis zu Folie "Betrachte Fluss von auf P"	10
2015-04-15	

Grundlegende Eigenschaften planarer Graphen

planare Einbettung:

Graph G=(V,E) kann dargestellt werden indem man die Knoten aus V auf Punkte im \mathbb{R}^2 und die Kanten aus E auf Jordan-Kurven (d.h. stetige sich selbst nicht kreuzende Kurven) zwischen den Endpunkten abdeckt.

G heißt planar wenn es eine Darstellung gibt, bei der sich die Kanten höchstens in einem gemeinsamen Endpunkt berühren.

- planare Einstellung zerlegt Ebene in Facetten (Gebiete, Flächen)
- planare Einbettung, die durch ihre Facetten bzw. die Reihenfolge der Kanten in Adjazenzlisten beschrieben ist, heißt kombinatorische Einbettung
- planare Einbettung, die durch Koordinaten der Punkte beschrieben ist, heißt geometrische Einbettung

Facettenmenge \mathcal{F} , $|\mathcal{F}| = f$

Satz von Euler (1790):

In einem zusammenhängenden nichtleeren planaren Graph G = (V, E) gilt für jede planare Einbettung (geg. durch \mathcal{F}), dass

$$n-m+f=2$$

(wobei
$$|V| = n, |E| = m, |\mathcal{F}| = f$$
)

Beweis per Induktion über m:

IA: m = 0, es ist $n = 1, f = 1 \Rightarrow Beh$.

Sei also m > 1

Fall 1: G enthalte einen Kreis

 \Rightarrow es existiert $l \in E$ so dass $G' := G - e = (V, E \setminus e)$ ebenfalls zusammenhängend und e an zwei Facetten grenzt die zu einer Facette in G' werden.

⇒ f' #Facetten von G' erfüllt

$$f' = f - 1 \implies n - (m - 1) + f' = 2$$
$$\implies n - m + f = 2$$

 $\mathit{Fall}\ 2:$ G enthält keinen Kreis, ist also Baum und $|\mathcal{F}|=1$. Für beliebige $e\in E$ zerfällt G'=G-e in zwei Zusammenhangskomponenten $G_1=(V_1,E_2)$ und $G_2=(V_2,E_2)$ und nach IV:

$$n_1-m_1+f_1=2, n_2-m_2+f_2=2$$

Da

Folgerungen:

- #Facetten ist für jede planare Einbettung von G gleich

• #Kanten eines Baumes mit n Knoten ist n-1

Lemma: Ein planarer Graph mit
n Knoten $(n \ge 3)$ hat höchstens 3n-6 Kanten.

Beweis: o.B.d.A sei G maximal planar (d.h. Hinzunahme weiterer Kanten zerstört Planarität)

Bild

Dann ist für jede planare Einbettung jede Facette ein Dreieck und jede Kante grenzt an genau zwei Facetten.

$$3f = 2m$$

$$= mit Euler$$

$$3(2 - n + m) = 6 - 3n + 3m$$

Lemma: Sei G pl. Graph mit mind 3 Knoten.
 $d_{\max}(G)$ bezeichne Maximalgrad in G, n_i #Knoten von Grad
i.

Dann gilt:

$$6n_0 + 5n_1 + 4n_2 + 3n_3 + 2n_4 + n_5 \geq n_7 + 2n_8 + 3n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_1 + 2n_2 + 2n_3 + 2n_4 + n_5 \geq n_7 + 2n_8 + 3n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_2 + 2n_3 + 2n_4 + n_5 \geq n_7 + 2n_8 + 3n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_3 + 2n_4 + n_5 \geq n_7 + 2n_8 + 3n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_8 + 2n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_8 + 2n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_8 + 2n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_8 + 2n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_8 + 2n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + 12n_9 + \dots + (d_{max}(G) - 6) * n_{d_{max}(G)} + \dots +$$

Beweis: Es gilt
$$n = \sum_{i=0}^{d_{max}(G)} n_i$$
 und $2m = \sum_{i=0}^{d_{max}(G)} i \cdot n_i.$

Da $m \le 3n - 6$ folgt

$$6\sum_{i=0}^{d_{max}(G)}n_i = 6n \geq 2m + 12 = \sum_{i=0}^{d_{max}(G)}i \cdot n_i + 12$$

Folgerung: Jeder planare Graph enthält mind. einen Knoten v mit $d(v) \leq 5$.

Dualität von Schnitten und Kreisen

Bild Dualgraph

Planarer Graph G mit Einbettung \mathcal{F}_i Dualgraph G^* dazu. Dann gilt:

Ein Schnitt in G
 ($\widehat{=}$ entspr. Kantenmenge) induziert eine Menge von Kreisen in
 G^* und umgekehrt.

Minor bzw. Unterteilung

Bild G' Subgraph von G

G' = (V', E')heißt Subgraph von G = (V, E)wenn $V' \subseteq V$ und $E' \subseteq E.$

G' = (V', E') heißt *Unterteilung* von G = (V, E) wenn G' aus G entsteht indem man Kanten von G durch einfache Wege ersetzt.

Ein Graph H heißt *Minor* von G wenn H aus G entsteht durch Löschen von Knoten oder/und Kanten und/oder Knotenkontraktion von Knoten von Grad 2.

H ist Minor von G falls G eine Unterteilung von H als Subgraph enthält.

Bild G' Unterteilung von G

Bild G' Minor von G

Satz von Kuratowski (1930)

Ein Graph G=(V,E) ist genau dann planar wenn er weder K_5 noch $K_{3,3}$ als Minor enthält.

" \Rightarrow " klar, da K_5 und $K_{3,3}$ nicht planar.

" \Leftarrow ": Es ist also "nur" zu zeigen: Wenn G nicht planar, dann enthält G einen K_5 oder $K_{3,3}$ als Minor.

Vorbereitung des Beweises

Bild $K_{3,2}$

Nehme Graph der $K_{3,2}$ als Minor enthält -Graph (Minor von $K_{3,2}$)

(2014-04-21)

Siehe Beweisfolien (kuratowski_slides.pdf)

(2014-04-29)

Färbung planarer Graphen (Kap.4 im Skript; "Listenfärbung" nicht im Skript, aber Folien)

Färbungsproblem (k-Färbung)

geg. G = (V, E), k Farben

Problem Existiert korrekte Färbung der Knoten aus V mit diesen k Farben, d.h. falls $\{u,v\}\in E\implies Farbe(u)\neq Farbe(v)$

Listenfärbungsproblem

geg.
$$G = (V, E), k \in \mathbb{N}$$

Problem Gibt es für jede Zuordnung von Listen S_v zu Knoten $v \in V$ mit $|S_v| = k$ eine korrekte Färbung der Knoten bei der jeder Knoten eine Farbe aus seiner Liste enthält?

Beobachtung Listenfärbung ist Verallgemeinerung von Färbungsproblem.

Satz Jeder planare Graph ist 5-listenfärbbar.

Beweis Induktion über |V| = n (benutzen nicht, dass v exist. mit $d(v) \le 5$).

beweisen schärfere Behauptung:

Falls G planar und

- jede innere Facette Dreieck
- äußere Facette durch Kreis $C = v_1 v_2 \dots v_k v_1$ begrenzt
- v_1 mit Farbe 1 gefärbt
- v_2 mit Farbe 2 gefärbt
- jeder Knoten mit Liste von mind. 3 Farben assoziiert
- jeder Knoten aus G-C mit Liste von mind. 5 Farben assoziiert

dann folgt: G korrekt färbbar

Offensichtlich folgt daraus 5-Listenfärbbarkeit.

Beweis der schärferen Behauptung per Induktion

Falls G = (V, E) planar und |V| = 3 trivial

Induktionsschritt G=(V,E) pl. und $|V|\geq 4$, Kreis C der äußeren Facette begrenzt

zwei Fälle: C enthält Sehne $\{v, w\}$ im Inneren oder nicht

bild

Fall 1: C enthält Sehne $\{v,w\}$ $\{v,w\}$ induziert eindeutig bestimmte Kreise C_1 und C_2 welche jeweils Subproblem G_1 und G_2 induzieren. o.B.d.A. enthalte C_1 Kante $\{v_1,v_2\}$ (und damit v_1,v_2 nicht beide auf C_2 . Wende IV auf C_1 an und dann IV auf C_2 wobei v und w Rolle von v_1,v_2 spielen. \Rightarrow Färbung von G_1 und G_2 ind. korrekte Färbung von G.

Fall 2: C enthält keine Sehne Seien $v_{k-1}, u_1, u_2, \dots u_l, v_1$ die Nachbarn von v_k . Da alle inneren Facetten Dreiecke ist $v_{k-1}u_1\dots u_lv_1$ Weg P und $(C-v_k)\cup P=C'$ wird Kreis der äußere Facette begrenzt. "Reserviere" zwei Farben aus Liste von v_k und entferne diese ggf. aus Listen von u_1,\dots,u_l . Wende IV auf durch C' induz. Graph an. Höchstens eine der beiden reservieten Farben wird für v_{k-1} verwendet, die andere kann für v_k verwendet werden.

Satz Nicht jeder planare Graph ist 4-listenfärbbar.

Beweis konst. Gegenbeispiel, d.h. planarer Graph mit Listenzuweisung mit Listen $S_v, |S_v| = 4$, so dass Graph nicht korrekt färbbar unter Berücksichtigung $\operatorname{der} S_{n}$.

Kern der Konstruktion:

bild

hat "vis-à-vis-Eigenschaft", d.h. in korrekte Färbung müssen mind. zwei gegenüberliegende Eckknoten dieselbe Farben haben. (klar!)

2015-05-12

Bemerkung zu Planar Separator Theorem: Linearzeitimplementierung

PST: pl. G=(V,E); exist Separator S der G in $G_1=(V_1,E_1),G_2=(V_2,E_2)$ trennt mit

- 1. $|V_1|, |V_2| \le \frac{2}{3}n$ 2. $|s| \le 4\sqrt{n}$

Matching

G = (V, E), ein Matching $M \subseteq E$ sodass keine zwei Kanten aus M gemeinsame Endknoten haben.

 $w: E \to \mathbb{R}$

- Finde $M \subseteq E$ Matching mit max. Gewicht, wobei $w(m) = \sum_{l \in M} w(l)$
- Finde $M \subseteq E$ Matching mit max. Kardinalität, (Fall w(1) = 1 f.a. $l \in E$

Beide Probleme sind auch für bel. Graphen in P.

bild

alternierender Weg bzgl. M \rightarrow Vertauschen der Kanten auf Weg aus M mit Kanten auf Weg, die nicht in M sind resultiert in größerem Matching M*

$$\sum_{l \in P, l \in E \backslash M} w(l) > \sum_{l \in P, l \in M} w(l)$$

und P entweder Kreis (gerader Länge) oder dessen erste und letzte Kante beide in M sind oder inzident zu einem ungematchten Knoten.

[•] Ein bezüglich einem Matching M alternierender Weg ist ein einfacher Weg oder einfach Kreis, dessen Kanten abwechselnd in M und $E \setminus M$ sind.

Alternierender Weg P (bezeichne entsprechende Kantenmenge) ist erhöhender Weg falls

Beobachtung M Matching, P erhöhender Weg bzgl M \Rightarrow $M' = (M \setminus P) \cup (P \setminus M)$ wieder Matching mit w(M') > w(M).

Lemma $G = (V, E), w : E \to \mathbb{R}$, M Matching in G. Dann ist w(M) maximal genau dann wenn es keinen erhöhenden Weg bzgl. M gibt.

Beweis "⇒" klar

" \Leftarrow " sei M nicht max. Matching in G und es existiert kein bzgl. M erhöhender Weg. Dann exist. Matching M^* mit $w(M^*)>w(m)$. Betrachte Subgraph $G_{M^*\wedge M}$ von G der durch

$$M^* \triangle M = M \cup M^* \setminus (M \cap M^*)$$

induziert wird. In diesem Graph haben alle Knoten Grad 1 und Grad 2 und er besteht aus einfachen Wegen und Kreisen.

Falls kein Kreis in $G_{M \triangle M^*}$ erhöhend bzgl. M so exist in $G_{M \triangle M^*}$ ein inklusions-maximaler Weg, der Weg P in G induziert mit $w(P \cap M^*) > w(P \cap M)$

- \Rightarrow beide Endkanten von P gehören zu M oder eine Endkante gehört nicht zu M und ist inzident zu einem Knoten v, v nicht durch M gematcht.
- ⇒ P erhöhend bzgl. M. (widerspruch)

Lemma $G = (V, E), w : E \to \mathbb{R}, v \in V$, M Matching in G - v (Graph induziert durch $V \setminus \{v\}$)

Dann gilt:

- 1. Falls es keinen bzgl. M erhöhenden Weg in G gibt mit Endknoten v, so hat M auch in G max. Gewicht
- 2. Falls es bzgl. M erhöhenden Weg in G gibt mit Endknoten v und $w(P \cap E \setminus M) w(P \cap M)$ maximal unter allen solchen erhöhenden Wegen, so ist $M^* = M \triangle P$ Matching maximalen Gewichts in G.

bild i) ii)

Beweis erhöhender Weg bzgl. M in G muss v als Endknoten haben. Sei M^* max. Matching in $G \Rightarrow M \triangle M^*$ ist Menge von alternierenden Kreisen und Wegen bzgl. M bzw M^* in G

P erhöhender Weg bzgl. M in $G_{M \triangle M^*} \Rightarrow$ P erhöhender Weg bzgl. M in G.

Da $G_{M\triangle M^*}$ höchstens bzgl. M
 erhöhender Weg P^* mit Endknoten v enthält gil
t $w(M)-w(P^*\cap M)=w(M^*)-w(P^*\cap M^*)$

Gewicht des Matching M', das durch erhöhen entlang P^* entsteht ist:

$$w(M') = w(M) - w(P^* \cap M) + w(P^* \cap E \setminus M) = w(M) - w(P^* \cap M) + w(P^* \cap M^*)$$

$$w(M') = w(M^*)$$

2015-05-20 14:10:24

Matching-Algorithmus für pl. Graph G = (V, E)

- 1. Zerlege G in G_1,G_2 durch Separator S entspr. Planar-Separator-Theorem und berechne rekursiv in G_1 und G_2 Matchings M_1 bzw. M_2 maximalen Gewichts; bezeichne $M=M_1\cup M_2$
- 2. Solange $S \neq \emptyset$
 - wähle $v \in S, S := S \setminus \{v\}$ und berechne mit Lemma aus M' matching max. Gewichts in G' + v

 $t(n) = t(c_1n) + t(c_2n) + c_3 \cdot \sqrt{n} \cdot t'(n)$

t'(n) Laufzeit für Lemma, c_1,c_2,c_3 Konstante; $c_1,c_2\leq\frac23,c_1+c_2\leq1$ Mit Master-Theorem kann t(n) abgeschätzt werden durch

$$t(n) \in O(n^{\frac{3}{2}})$$
 falls $t'(n) \in O(n)$
$$t(n) \in O(n^{\frac{3}{2}} \log n)$$
 falls $t'(n) \in O(n \log n)$

Mixed-Max-Cut in pl. Graphen

 $G=(V,E), S\subseteq E$ Schnitt von G falls durch $E\backslash S$ induz. Subgraph unzusammenhängend und für alle $\{u,v\}\in S$ u und v in verschiedenen Zusammenhangskomponenten dieses Subgraphs.

Kantengewichte $w: E \to \mathbb{R}$

Mixed-Max Cut Finde Schnitt S mit $w(s) = \sum_{l \in S} w(l)$ maximal. Ist in bel. Graphen NP-schwer.

Beobachtung MIXED-MAX CUT Problem und MIXED-MIN CUT Problem äquivalent.

Spezialfall: MIN CUT Problem mit $w:E\to\mathbb{R}^+_0$ ist auch für bel. Graphen in P polynomialer Algorithmus für MIXED-MAX CUT in pl. Graphen: verwende:

• Dualität von Schnitten und Kreisen

• max. Matching bzw. Planar Separator Theorem

Laufzeit in $O(n^{3/2} \log n)$.

Es gilt: G enthält Euler-Kreis g.d.w. E kantendisjunkte Vereinigung einfacher Kreise g.d.w. für alle $v \in V$ ist Knotengrad d(w) gerade.

Dualität von Schnitt in G und Menge von einf. Kreisen (= Kantenmenge, in der f.a. Knoten vd(v) gerade (= gerade Menge)) in Dualgraph G^* (bzgl. bel. pl. Einbettung)

bild gewichteter dualgraph

- Schritt 1 trianguliere G in O(n); zusätzliche Kanten erhalten Gewicht 0
- Schritt 2 berechne in O(n) Dualgraph bzgl. bel. pl. Einbettung; G^* ist dann 3-regulär (d.h. für alle v: d(v) = 3)
- Schritt 3 konstruiere zu G^* Graph G' so dass perfektes Matching min. Gewichts in G' eine gerade Menge (bzw. Menge von Kreisen) max. Gewichts in G^* induziert.
- Schritt 4 berechne in $O(n^{3/2} \log n)$ solch ein Matching bzw. gerade Menge
- Schritt 5 falls diese gerade Menge nicht leer, gib entspr. Schnitt aus. Ansonsten "Sonderfall"

Matching M in G=(V,E) mit |V| gerade heißt perfekt falls $|M|=\frac{|V|}{2}$

zu Schritt 3 beachte dass G^* 3-regulär, Matching ergibt zwei Fälle:

Dreieck mit kante an jeder Ecke

 $Fall \ 1:$ Alle drei äußeren Kanten gematcht $Fall \ 2:$ Eine kante von dreieck, eine äußere bild

G'entsteht aus G^* indem jeder Knoten durch Dreieick ersetzt wird. Sei m $\# {\rm Kanten}$ in $G^*,$ n $\# {\rm Knoten}$ in $G^* \Rightarrow 3n=2m \Rightarrow$ n gerade $\Rightarrow \# {\rm Knoten}$ in Gerade

zu Schritt 4 konstruiere perfektes Matching min. Gewichts in G'

Beobachtung: M perfektes Matching min. Gewichts in G=(V,E) mit $w:E\to\mathbb{R}$ g.d.w. M perfektes Matching max. Gewichts bzgl. Gewichtsfkt. $\overline{w}:E\to\mathbb{R}$ mit $\overline{w}(l):=W-w(l)$, W geeignet gewählte Konstante.

Erzwinge dass Matching max. Gewichts perfekt ist:

• zu M perfekt betrachte

$$\overline{w}(M) = \sum_{l \in M} \overline{w}(l) = \frac{n}{2}W - \sum_{l \in M} w(l) \geq \frac{n}{2} \cdot (W - w_{max})$$

, wobe
i $w_{m\,a\,x} = \max_{l \in E} w(l)$

• zu M' nicht perfekt gilt

$$\overline{w}(M') \leq (\frac{n}{2} - 1)(W - w_{\min}), w_{\min} = \min_{l \in E} w(l)$$

.

Wähle also W so dass $\frac{n}{2} \cdot (W - w_{max}) > (\frac{n}{2} - 1)(W - w_{min})$

zu Schritt 5 Komplementmenge von perfekten Matching min. Gewichts in G' induziert gerade Menge max. Gewichts in G^* und damit max. Schnitt in G.

Es kann sein, dass resultierende Menge leer ist! Passiert wenn max. Schnitt negatives Gewicht hat.

 \rightarrow Sonderfall: Wollen nichttrivialen Schnitt erzwingen.

betrachte wieder Schritt 3: erzwinge, dass in perfekten Matching minimalen Gewichts für mindestens ein Knoten v aus G^* Fall 2 eintritt.

Vorgehensweise: betrachte alle Knoten v aus G^* und G^*-v sowie durch perfektes Matching in G' induzierte Matching in G^*-v und berechne mit "Matching-Lemma" Matching in G^* .

Wähle M mit $w(M) = \min v \in V^*w(M_v)$

Frage: Wie kann man dabei Fall 2 an v erzwingen?

2015-05-26 14:42:21

Beweis zu Folie (Kozykel und st-Schnitte)

- 1) s,t auf selber Seite von $C^* \Rightarrow P$ kreuzt C^* gleich oft in jeder Richtung \Rightarrow C enthält selbe Zahl von Kanten in P und $\text{rev}(P) \Rightarrow \pi(C) = 0$
- 2) s rechts, t links \Rightarrow P kreuzt einmal mehr von rechts nach links \Rightarrow $\pi(C) = 1$
- 3) analog $\Rightarrow pi(C) = -1$

C s,t-Schnitt \Rightarrow P kreuzt C^* von rechts nach links $\Rightarrow \pi(C) = 1$. $\pi(C) = 1 \Rightarrow$ Fall 2; s rechts, t links. \Rightarrow C st-Schnitt.

Beweis zu Folie "Betrachte Fluss von auf P"

Beweis: " \Rightarrow " Angenommen G_{λ}^* enthält neg. Kreis C^*

$$0>c(\lambda,C^*)=\sum_{e\in C}c(\lambda,e)=\sum_{e\in C}c(e)-\lambda\sum_{e\in C}\pi(e)=\underbrace{\sum_{e\in C}c(e)}_{\geq 0}-\underbrace{\lambda}_{\geq 0}\underbrace{\pi(C)}_{> 0}$$

$$\implies \pi(C) = 1. \implies C \text{ ist st-Schnitt}$$

Außerdem $\sum_{e \in C} c(e) < \lambda \implies$ st-Schnitt mit Kap. < $\lambda.$

"<=": G_{λ}^* enthält keinen neg. Kreis \Rightarrow kürzeste Wege wohldef.

Wähle o in G_{λ}^* bel. Ursprung.

 $dist(\lambda, p)$: Distanz von p zu o in G_{λ}^* .

$$\text{Def: } \phi(\lambda,e) := dist(\lambda,head(e^*)) - dist(\lambda,tail(e^*)) + \lambda \cdot \pi(e)$$

Zeige: ϕ ist gültiger st-Fluss.

- 1) Für $v \in V$ gilt: $\sum_{W} \phi(v \to w) = \sum_{W} \pi(v \to w)$ $\implies \phi(\lambda, \cdot)$ ist Fluss mit Wert λ .
- $$\begin{split} 2) & \ slack(\lambda,e^*) := dist(\lambda,tail(e^*)) + c(\lambda,e) dist(\lambda,head(e^*)) \\ & \ \text{Gilt:} & \ slack(\lambda,e) = c(e) \phi(\lambda,e) \\ & \ \phi(\lambda,e) \leq c(e) \Leftrightarrow slack(\lambda,e) \geq 0. \\ & \ \text{W\"{are}} & \ slack(\lambda,e) < 0 \implies dist(\lambda,head(e^*)) > dist(\lambda,tail(e^*)) + c(\lambda,e^*)) \\ & \ (\text{w\'{iderspruch}}) \end{split}$$

Max λ sodass kein neg. Kreis in G_{λ}^* ist Länge eines kürzesten ts-Wege in G_{λ}^* .