设置一个欢迎界面

点击退出系统关闭界面,点击进入计算界面出现第二个界面

计算界面	
转运中心个数	
需求者个数	
托盘返还者个数	
	确定

输入个数(可能全是 2, 或者是 3 个, 个数不确定的), 点击确定, 根据输入的个数显示列表的行列数(例如均输入 2 个, 显示如下, 以后均已 2 个为例)

计算界面	
单位运费/元	
需求者1 需求者2 返还者1	返还者2
转运中心1	
转运中心1	
	确定

点击确定, 出现

计算界面			
运输里程/km			
需求者1	需求者2	返还者1	返还者2
转运中心1			
转运中心1			
			确定

点击确定,显示

计算界面	
运输能力	
需求者1 需求者2 返还者	ğ1 返还者2
转运中心1	
转运中心1	
	确定

点击确定,显示

计算界面			
转运中心新运	进数量/成本		
	数量	成本	
转运中心1			
转运中心1			
		确定	

点击确定,显示

计算界面	
库存限制及成本	
限制	成本
转运中心1	
转运中心2	
	确定

点击确定, 显示

计算界面				
需求量	/返还量			
	需求者1	需求者2	返还者1	返还者2
数量				
				计算

根据我给的数学模型公式,进行计算,最后显示结果,要求显示最小 调度费用和路径选择(例如

最小调度费用为 100000 元

转运中心 1 至需求者 1,运送 200 托盘,花费 1000 元,至需求者 2 运送 100 托盘,花费 6000 元, 转运中心 2 至需求者 1,运送 100 托盘,花费 3000 元,至需求者 2 运送 400 托盘,花费 7000 元,

返还者 1 返还 90 托盘至转运中心 1,花费 100 元,返还 20 托盘至转运中心 2,花费 200 元,

返还者 1 返还 90 托盘至转运中心 1,花费 100 元,返还 20 托盘至转运中心 2,花费 200 元,

数学模型及符号意义

3.2 基本假设和参数符号

3. 2. 1 假设条件[10]

- 1. 托盘共用系统运输调度过程中的托盘均为同一型号。
- 2. 转运中心必须准时准量满足需求者的所有需求,若转运中心的供给能力不能满足需求,可向托盘营运企业新进托盘,数量没有限制,但至少提前一个单位周期。
 - 3. 托盘返还者每期的所有待回收托盘必须在下一期返还转运中心。
- 4. 在决策当期范围内,托盘需求者每期的需求量、转运中心的库存能力、 每条线路的运输能力是确定可测的。
- 5. 托盘相关的单位库存成本、单位运输成本和单位托盘的进入成本都已知 并且是确定的。
- 6. 系统中的各成员之间的运输路径的长短是可以度量的,并且计算的是彼此间的最短距离。
 - 7. 统一运输工具。

3.2.2 参数符号

为了便于描述, 定义如下标量、变量和符号:

(1) 标量

 A_i (j=1,2...J)——托盘营运企业所设的各地转运中心。

B_i (i=1,2...I)——需求者。

 D_m (m=1.2...M)——托盘返还者。

t(T=1,2...T)——营运周期。

(2) 变量

 $\mathbf{X}_{A_iB_i}^t$ —— \mathbf{t} 期从转运中心 A_j 将托盘运送至需求者 B_i 的托盘数。

 $\mathbf{X}^t_{D_mA_j}$ —— \mathbf{t} 期从托盘返还者 D_m 将托盘运送至转运中心 A_j 的托盘数。

 $H_{A_i}^t$ ——t 期从托盘运营公司新进入到转运中心 A_j 的托盘数量。

(3) 参数

 $\mathbf{d}_{A_iB_i}$ —一转运中心 A_j 到需求者 B_i 的运输距离。

 $\mathbf{d}_{D_mA_i}$ ——托盘返还者 D_m 到转运中心 A_j 的运输距离。

 $C_{A_iB_i}^t$ —-t 期从转运中心 A_i 将托盘运送至需求者 B_i 的单位距离运输成本。

 $\mathbf{C}^t_{D_mA_i}$ —— \mathbf{t} 期从托盘返还者 D_m 将托盘运送至转运中心 A_j 的单位距离运输成本。

 C_{i} —一转运中心 A_{i} 从托盘营运企业新进托盘的费用。

 C_k —一转运中心 A_j 的托盘库存成本。

 $N_{D_m}^t$ ——t 期从托盘返还者 D_m 返还的托盘数。

 $Z_{B_i}^t$ ——t 期需求者 B_i 所需求的托盘数

 $K_{A_i}^t$ ——t 期转运中心 A_j 的库存量。

 $Ko_{A_i}^t$ ——t 期转运中心 A_j 的库存能力。

 $S_{A_iB_i}^t$ ——t 期从转运中心 A_i 将托盘运送至需求者 B_i 的路线运输能力。

 $\mathbf{S}_{D_mA_i}^t$ —— \mathbf{t} 期从托盘返还者 D_m 将托盘运送至转运中心 A_j 的路线运输能力。

1. 目标函数

在整个托盘调度系统中,涉及到的调度成本有装卸成本、损坏成本、库存成本、运输成本和新进成本等。为了降低讨论问题的复杂性,本文只选取对调度成本影响较大的成本,分别是库存成本 C_k 、运输成本 C_v 及进入成本 C_e [6]。

(1) 转运中心的库存成本 C_k

库存成本指转运中心A_i库存托盘所产生的费用,受单位成本和库存数量影响。

$$C_{k} = \sum_{t=1}^{T} \sum_{j=1}^{J} C_{k} K_{A_{j}}^{t}$$

(2)运输成本 C_{ν}

运输成本由 2 部分组成,包括转运中心 A_j 将托盘运送至需求者 B_i 的运输费用和托盘返还者 D_m 将托盘返还至转运中心 A_j 的运输费用,总运输成本为这两部分之和.

$$C_{y} = \sum_{t=1}^{T} \sum_{i=1}^{J} \sum_{i=1}^{I} C_{A_{i}B_{i}}^{t} d_{A_{j}B_{i}} + \sum_{t=1}^{T} \sum_{i=1}^{J} \sum_{m=1}^{M} C_{D_{m}A_{j}}^{t} d_{D_{m}A_{j}}$$

(3)新进成本C。

当转运中心库存量不足以满足需求者是,转运中心要从托盘营运公司新进托盘,新进托盘所产生的成本即为新进成本。

$$C_e = \sum_{t=1}^T \sum_{j=1}^J C_h H_{A_j}^t$$

综合以上分析,总调度成本为:

$$Z = \sum_{t=1}^{T} \sum_{j=1}^{J} C_{i} H_{A_{j}}^{t} + \sum_{t=1}^{T} \sum_{j=1}^{J} C_{k} K_{A_{j}}^{t} + \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{i=1}^{I} C_{A_{j}B_{i}}^{t} d_{A_{j}B_{i}}$$
$$+ \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{m=1}^{M} C_{D_{m}A_{j}}^{t} d_{D_{m}A_{j}}$$

本文所分析的是调度的优化设计,目标是使得调度成本最小,故目标函数为:

$$\min \mathbf{Z} = \sum_{t=1}^{T} \sum_{j=1}^{J} C_{i_t} H_{A_j}^t + \sum_{t=1}^{T} \sum_{j=1}^{J} C_{i_t} K_{A_j}^t + \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{i=1}^{I} C_{A_j B_i}^t d_{A_j B_i}$$
$$+ \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{m=1}^{M} C_{D_m A_j}^t d_{D_m A_j}$$

2. 约束条件

本节主要考虑的约束条件包括供给约束、库存约束、运输能力约束、取值约束。

(1)供给约束

转运中心 A_j 在 t 期为需求者 B_i 提供托盘数由 t-1 期期末转运中心 A_j 的库存量、在 t-1 期新进的托盘数量和从托盘返还者 D_m 返还托盘数量组成。他们之间的关系为:

$$\sum_{i=1}^{I} X_{A_j B_i}^t < K_{A_j}^{t-1} + \sum_{m=1}^{M} X_{D_m A_j}^{t-1} + H_{A_j}^{t-1}$$
 (i=1,2...I; m=1,2...M)

(2) 需求约束

一方面转运中心 A_i 必须满足需求者 B_i 的需求,即 t 期需求者 B_i 对托盘的需求数量为转运中心 A_i 的供给量。

$$\mathbf{Z}_{B_i}^t = \sum_{i=1}^J \mathbf{X}_{A_j B_i}^t$$

另一方面,每个托盘返还者 D_m 需要返还的托盘数量必须在当期被返还到。故

$$N_{D_m}^t = \sum_{j=1}^J X_{D_m A_j}^t$$

$$(t=1,2...T;: i=m=1,2...J)$$

(3) 库存约束

主要表现为转运中心 A_i 在 t 期的库存量不能超过库存能力:

$$K_{A_i}^t < Ko_{A_i}^t$$

同时,每一期新进的托盘数、回收的托盘数量、上期库存的托盘数和分配出的托盘数量之间的关系:

$$\mathbf{K}_{A_{j}}^{t} = \mathbf{K}_{A_{j}}^{t-1} + H_{A_{j}}^{t} + \sum_{m=1}^{M} \mathbf{X}_{D_{m}A_{j}}^{t} - \sum_{i=1}^{l} \mathbf{X}_{A_{j}B_{i}}^{t}$$

$$(i=1,2...I; m=1, 2...M)$$

(4)运输能力约束

主要考虑从转运中心 A_j 到需求者 B_i 和托盘返还者 D_m 返还托盘之间的运输能力:

$$X_{A_jB_i}^t \le S_{A_jB_i}^t$$

$$X_{D_m A_j}^t \le S_{D_m A_j}^t$$

(j=1,2...J; m=1,2...M; i=1,2...I)

(5)取值约束

研究过程中所有变量均为大于等于零的正整数,

$$X_{A_jB_i}^t$$
, $X_{D_mA_j}^t$, $H_{A_j}^t \ge 0$ and int

$$\min \mathbf{Z} = \sum_{t=1}^{T} \sum_{j=1}^{J} C_{i_{h}} H_{A_{j}}^{t} + \sum_{t=1}^{T} \sum_{j=1}^{J} C_{k} K_{A_{j}}^{t} + \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{i=1}^{I} C_{A_{j}B_{i}}^{t} d_{A_{j}B_{i}}$$

$$+ \sum_{t=1}^{T} \sum_{j=1}^{J} \sum_{m=1}^{M} C_{D_{m}A_{j}}^{t} d_{D_{m}A_{j}}$$

s. t.

$$\sum_{i=1}^{I} X_{A_{j}B_{i}}^{t} < K_{A_{j}}^{t-1} + \sum_{m=1}^{M} X_{D_{m}A_{j}}^{t-1} + H_{A_{j}}^{t-1}$$

$$Z_{B_{i}}^{t} = \sum_{j=1}^{J} X_{A_{j}B_{i}}^{t}$$

$$N_{D_{m}}^{t} = \sum_{j=1}^{J} X_{D_{m}A_{j}}^{t}$$

$$K_{A_{j}}^{t} < Ko_{A_{j}}^{t}$$

$$K_{A_{j}}^{t} = K_{A_{j}}^{t-1} + H_{A_{j}}^{t} + \sum_{m=1}^{M} X_{D_{m}A_{j}}^{t} - \sum_{i=1}^{I} X_{A_{j}B_{i}}^{t}$$

$$X_{A_{j}B_{i}}^{t} \le S_{A_{j}B_{i}}^{t}$$

$$X_{D_{m}A_{j}}^{t} \le S_{D_{m}A_{j}}^{t}$$

$$X_{A_{j}B_{i}}^{t}, X_{D_{m}A_{j}}^{t}, H_{A_{j}}^{t} \ge 0 \quad and \quad int$$