8/09/2006

Algebra lineare – Corso di laurea in Informatica

Nome:	Cognome:	Matricola:
-------	----------	------------

N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso (gli esercizi svolti in altri fogli non verranno presi in considerazione).

N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo.

N.B.3 Gli esercizi senza nome e cognome hanno valore nullo.

Esercizio 1 [2.5 PUNTI]

Calcolare z^5 , dove $z = \sqrt{2}(\cos \frac{\pi}{5} + i \sin \frac{\pi}{5})$.

Risposta:

Esercizio 2 [2.5 PUNTI]

Trovare i numeri complessi che soddisfano l'equazione $z^4 = 8z$.

Risposta:

Esercizio 3 [2.5 PUNTI]

Scrivere due numeri complessi non nulli z e w tale che $z \neq w$ e $\operatorname{Arg} z = \operatorname{Arg} w$.

Esercizio	4	[2.5]	PUNTI
-----------	---	-------	-------

Trovare un vettore \mathbf{v} di \mathbb{R}^3 ortogonale ai vettori $\mathbf{v_1} = (1,1,1)$ e $\mathbf{v_2} = (1,0,-2)$ e tale che $\|\mathbf{v}\| = 1$.

Risposta:

Esercizio 5 [2.5 PUNTI]

Siano ${\bf u},\,{\bf v}$ e ${\bf w}$ tre vettori di \mathbb{R}^3 . Allora $({\bf u}+{\bf v})\wedge{\bf w}={\bf u}\wedge({\bf v}+{\bf w})$ ${\bf V}$ ${\bf F}$ Giustificazione:

Esercizio 6 [2.5 PUNTI]

Calcolare il volume del parallelepipedo generato dai tre vettori ${\bf u}=(1,0,1),\,{\bf v}=(1,1,2)$ e ${\bf w}=(1,2,3).$

Esercizio 7 [2.5 PUNTI]

Dire se la matrice
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 é invertibile e in caso affermativo calcolare A^{-1} .

Risposta:

Esercizio 8 [2.5 PUNTI]

Trovare i valori di $\lambda \in \mathbb{R}$ per i quali i vettori u = (0, 1, 1, 0, -1, 9, 10) e $v = (\pi, 1, 1, \sqrt{2}, 2\lambda, 2, -5)$ di \mathbb{R}^7 sono linearmente indipendenti.

Risposta:

Esercizio 9 [2.5 PUNTI]

Scrivere due vettori di \mathbb{R}^4 che formano un angolo di $\frac{\pi}{4}$.

Esercizio 10 [2.5 PUNTI]

Trovare i valori del parametro reale λ tale che (0,0,1) sia una soluzione del seguente sistema.

$$\begin{cases} x+y+z=1\\ 2x+3y+\lambda^2z=3\\ x+\lambda y+3z=3 \end{cases}$$

Risposta:

Esercizio 11 [2.5 PUNTI] Trovare le soluzioni del seguente sistema riducendolo a gradini.

$$\begin{cases} x - 2y + z = 7 \\ 2x - y + 4z = 17 \\ 3x - 2y + 2z = 14 \end{cases}$$

Risposta:

Esercizio 12 [2.5 PUNTI]

Trovare le soluzioni del seguente sistema lineare (di un equazione in tre incognite) al variare del parametro reale λ .

$$\lambda(x+y+z) = 1$$