TAYLOR SPECTRUM

BILICH BORIS

- 1. Introduction
- 2. Preliminaries
- 2.1. **Notation.** In the article all algebras, including Lie algebras, are complex. For Lie algebra \mathfrak{g} we will use the notation $U\mathfrak{g}$ to denote its enveloping algebra. We will denote by \mathfrak{g} -mod and mod- \mathfrak{g} the categories of left and right \mathfrak{g} -modules respectively. We write $\hat{\mathfrak{g}}$ for the set of set of isomorphism classes of simple finitedimensional \mathfrak{g} -modules and \mathbb{C} for trivial bimodule. For \mathfrak{g} -module V can be defined vector spaces

$$(1) V^{\mathfrak{g}} = \{ v \in V : g \cdot v = 0 \ \forall g \in \mathfrak{g} \},$$

called invariants and

$$(2) V_{\mathfrak{g}} = V/gV,$$

called coinvariants. It is known , that $\Box^{\mathfrak{g}}$ and $\Box_{\mathfrak{g}}$ are actually functors from $\mathfrak{g}\text{-}\mathbf{mod}$ (or mod-g) to the category of vector spaces over \mathbb{C} , isomorphic to $\operatorname{Hom}_{\mathfrak{a}}(\mathbb{C},V)$ and $\mathbb{C} \otimes_{U\mathfrak{a}} V$ respectively.

2.2. Functors between categories of modules. For the rest of this section we will denote by \mathfrak{g} an arbitary Lie algebra. We define two functors \square^* : $\mathfrak{g}\text{-}\mathbf{mod}^{op} \to \mathbf{mod}\text{-}\mathfrak{g}$ and \square° : $\mathfrak{g}\text{-}\mathbf{mod} \to \mathbf{mod}\text{-}\mathfrak{g}$ as follows. The first \square^{*} , called duality functor, sends g-module V to it's dual vector space, on which the right action of \mathfrak{g} is defined as

$$(f\cdot g)(v)=f(g\cdot v),\ \text{ for all }f\in V^*,\ v\in V,\ g\in\mathfrak{g}.$$

The second \Box° , called antipode functor, sends V to itself as a vector space with right action

$$v\cdot g=-g\cdot v,\ \text{ for all }v\in V,\ g\in \mathfrak{g}.$$

These two functors define equivalence of categories \mathfrak{g} -mod, mod- \mathfrak{g} , \mathfrak{g} -mod^{op} and $\operatorname{mod-\mathfrak{q}}^{op}$. We will also denote by \square^* and \square° functors from category of right \mathfrak{q} modules to left \mathfrak{g} -modules, defined the same way. It is easy to see, that $(\Box^*)^*$ and $(\Box^{\circ})^{\circ}$ are naturally isomorphic to the identity functor. For some reasons, that will be clear later, for any $V \in \mathfrak{g}\text{-}\mathbf{mod}$ we denote by -V the left $\mathfrak{g}\text{-}\mathrm{module}\ (V^*)^{\circ}$.

Another pair of very important functors are $\square \otimes_{\mathbb{C}} \square \colon \mathbf{mod} \cdot \mathfrak{g} \times \mathfrak{g} \cdot \mathbf{mod} \to \mathfrak{g} \cdot \mathbf{mod}$ and $\operatorname{Hom}_{\mathbb{C}}(\square,\square) \colon \mathfrak{g}\operatorname{-mod}^{op} \times \mathfrak{g}\operatorname{-mod} \to \mathfrak{g}\operatorname{-mod}$. If $V \in \operatorname{\mathbf{mod-g}}$ and $W \in \mathfrak{g}\operatorname{-\mathbf{mod}}$, then $V \otimes_{\mathbb{C}} W$ is the tensor product of V and W as vector space with action of \mathfrak{g} , fully determined by the formula

$$g \cdot v \otimes w = v \otimes (g \cdot w) - (v \cdot g) \otimes w$$
, for all $w \in W$, $v \in V$, $g \in \mathfrak{g}$

. The Hom functor is defined as

$$\operatorname{Hom}_{\mathbb{C}}(V,W) = V^* \otimes_{\mathbb{C}} W.$$

defined as

For $V, W \in \mathfrak{g}\text{-}\mathbf{mod}$ (resp. $\mathbf{mod}\text{-}\mathfrak{g}$), we will denote by $V \otimes W$ left $\mathfrak{g}\text{-}\mathbf{module}\ V^{\circ} \otimes_{\mathbb{C}} W$ (resp. $V \otimes_{\mathbb{C}} W^{\circ}$).

For $V \in \mathfrak{g}\text{-}\mathbf{mod}$ and $S \in \hat{\mathfrak{g}}$, we will write V_S for the $\mathfrak{g}\text{-}\mathrm{module}$ $S \otimes_{\mathbb{C}} V$. If S is one-dimensional, it is fully determined by the character $\lambda \in (\mathfrak{g}/[\mathfrak{g},\mathfrak{g}])$ and in this case we will simply write V_{λ} for it. For example, \mathbb{C}_{λ} stands for one-dimensional module with action, given by $g \cdot s = \lambda(g)s$ for all $s \in \mathbb{C}_{\lambda}$ and $g \in \mathfrak{g}$.

2.3. Homology and cohomology of Lie algebras. In this paragraph we recall the definitions of Lie algebra cohomology, which can be found in any related

Definition 1. For $V \in \mathfrak{g}\text{-mod}$ and for all $i \in \mathbb{Z}_{\geq 0}$ the homology functors are

(3)
$$H_i(\mathfrak{g}, V) = \operatorname{Tor}_i^{U\mathfrak{g}}(\mathbb{C}, V),$$

and, dually, the cohomology as

(4)
$$H^{i}(\mathfrak{g}, V) = \operatorname{Ext}_{U\mathfrak{g}}^{i}(\mathbb{C}, V).$$

The homology can be computed using Chevalley-Eilenberg projective resolution

of

3. Taylor spectrum of a-module

Let \mathfrak{g} be an arbitary Lie algebra and E be a left \mathfrak{g} -module. We will denote by $\hat{\mathfrak{g}}$ the set of isomorphism classes of simple finite dimensional g-modules.

Definition 2. The Taylor spectrum of E is the set, defined as

$$\sigma(E) = \{ V \in \hat{\mathfrak{g}} \mid \exists k \colon \mathrm{Tor}_k^{U\mathfrak{g}}(V^*, E) \neq 0 \}.$$

From it follows, that the definition above coincides with the original Taylor's definition in case of abelian g.

- 4. Case of semisimple Lie algebra
- 5. Spectrum of one-dimensional extensions
 - 6. Case of solvable Lie algebra
 - 7. Case of Nilpotent Lie algebra
- 8. Case of Borel Subalgebra of Semisimple Lie Algebra

ref weibel

Eilenberg, Poincare duality, Tor(A, B) = Tor(C.AxB

Chevalley-

prove it