Battling the HIV epidemic: the role of mathematical and simulation models

- CANFAR McMaster
- HIV/AIDS Research and Healthcare Conference 2016

- Jonathan Dushoff
- Department of Biology

Outline

The HIV Epidemic

Disease modeling

Gendered effects of intervention Testing and treatment Routes of HIV transmission

Heterogeneity

Risk factors and targeting

New HIV cases per year (UNAIDS est.)

Questions

- Why is HIV declining?
- What will it take to keep it declining?
- What will it take to eliminate the disease?

Awareness and education

Dynamics of the disease

Measles reports from England and Wales

Male circumcision

Testing and care

Drugs

Outline

The HIV Epidemic

Disease modeling

Gendered effects of intervention Testing and treatment Routes of HIV transmission

Heterogeneity
Risk factors and targeting

Models

Dynamic models

Small-scale events ⇔ Large-scale patterns and outcomes

Dynamic models

Measles reports from England and Wal

Dynamic models

Male circumcision and HIV transmission

Male circumcision and HIV transmission

Male circumcision and HIV transmission

Transmission and prevalence

endemic equilibrium

Transmission and prevalence

endemic equilibrium

Heterosexual transmission and prevalence

Testing and treatment

Modeling the effects of universal treatment

$$\lambda = \lambda_0 e^{-\alpha P^n} \quad P = \frac{1}{N} \quad I = \Sigma_i (I_i + A_i) \quad J = \Sigma_i (I_i + \varepsilon A_i)$$

$$\beta N \longrightarrow S \quad \lambda SJ/N \quad I_1 \quad \rho \quad I_2 \quad \rho \quad I_3 \quad \rho \quad I_4 \quad \rho \quad D$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

Success!

Outline

The HIV Epidemic

Disease modeling

Gendered effects of intervention Testing and treatment Routes of HIV transmission

Heterogeneity
Risk factors and targeting

The resilience of infectious disease

1967: It's time to close the book on infectious diseases

Human heterogeneity

Human heterogeneity

Human heterogeneity

Heterogeneity in TB

Tuberculosis Notifications in USA, 1980s

- Progression: Nutrition, stress
- Contact: Overcrowding, poor ventilation
- Cure: Access to medical care

Heterogeneity and elimination

endemic equilibrium

Condom use

HIV risk

HIV risk

Future work

Thanks

- Collaborators
- Funders: CIHR, NIH, JS McDonnell Foundation
- CANFAR
- This audience