

Europäisches Patentamt European Patent Office

Office européen des brevets

EP 0 864 585 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

16.09.1998 Bulletin 1998/38

(21) Application number: 97310517.4

(22) Date of filing: 23.12.1997

(51) Int. Cl.⁶: **C07K 14/715**, A61K 38/17, A61K 39/00

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE**

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 12.03.1997 JP 74697/97

28.07.1997 JP 215488/97 09.10.1997 JP 291837/97

(71) Applicant:

KABUSHIKI KAISHA HAYASHIBARA SEIBUTSU **KAGAKU KENKYUJO** Okayama-shi Okayama (JP)

(72) Inventors:

- Torigoe, Kakuji Kurashiki-shi, Okayama (JP)
- Okura, Takanori Kurashiki-shi, Okayama (JP)
- · Kurimoto, Masashi Okayama-shi, Okayama (JP)
- (74) Representative:

Daniels, Jeffrey Nicholas et al Page White & Farrer 54 Doughty Street London WC1N 2LS (GB)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(54)Interleukin-18-receptor proteins

(57)Disclosed are a polypeptide (including that in soluble form) as receptor for a novel cytokine, i.e., interleukin-18, a DNA encoding the polypeptide, and the uses of the polypeptide including pharmaceutical and neutralizer to interleukin-18. Pharmaceuticals with the polypeptide is useful to treat and prevent autoimmune and allergic disease because it suppresses and regulates excessive immunoreaction.

Description

Background of the Invention

5 1. Field of the Invention

This invention relates to a novel receptor protein which recognizes a cytokine, more particularly, to a novel polypeptide which recognizes interleukin-18 (hereinafter abbreviated as "IL-18").

2. Description of the Prior Art

IL-18 is a type of cytokine or substance which mediates signal transduction in immune system. As seen in Japanese Patent Kokai Nos.27,189/96 and 193,098/96 and Haruki Okamura et al., *Nature*, Vol.378, No.6,552, pp.88-91 (1995), IL-18 was provisionally designated as "interferon-gamma inducing factor" immediately after its discovery: This designation was changed later into "IL-18" in accordance with the proposal in Shimpei Ushio et al., *The Journal of Immunology*, Vol.156, pp.4,274-4,279 (1996). IL-18 in mature form consists of 157 amino acids and possesses properties of inducing in immunocompetent cells the production of interferon-gamma (hereinafter abbreviated as "IFN-7") which is known as useful biologically-active protein, as well as of inducing and enhancing the generation and cytotoxicity of killer cells. Energetic studies are now in progress to develop and realize various uses of IL-18 in pharmaceuticals such as antiviral, antimicrobial, antitumor and anti-immunopathic agents which have been in great expectation because of these properties of IL-18.

As described above, in nature, cytokines including IL-18 are produced and secreted as substances responsible for signal transduction in immune system. Therefore, excessive amounts of cytokines may disturb the equilibria in immune system when they are produced or administered in the body of mammals. The surface of usual mammalian cells may bear certain sites or "receptors" which are responsible for recognition of cytokines: Secreted cytokines transduce no signal in cells till they are bound to the receptors. In normal immune system, there would be definite equilibria between respective cytokines and their receptors. Thus, in this field, with the purpose of developing and realizing IL-18 as pharmaceuticals, in addition to the clarification of physiological activities of IL-18, an expedited establishment of mass production and characterization of IL-18 receptor (hereinafter abbreviated as "IL-18R") have been in great expectation.

Summary of the Invention

30

35

40

55

In view of the foregoing, the first object of this invention is to provide a polypeptide as IL-18R which can be easily prepared on a large scale.

The second object of this invention is to provide uses of such polypeptide as pharmaceuticals.

The third object of this invention is to provide a DNA which encodes the polypeptide.

The fourth object of this invention is to provide a process to prepare the polypeptide.

The fifth object of this invention is to provide an agent to neutralize IL-18 using the polypeptide.

The sixth object of this invention is to provide a method to neutralize IL-18 using the polypeptide.

We energetically and extensively screened various means which might attain these objects, eventually resulting in the finding that a substance which recognized IL-18 was present in L428 cell, a type of lymphoblastoid cell derived from a patient with Hodgkin's disease. We isolated and characterized this substance, revealing that its nature was proteinaceous, as well as that it well recognized and bound IL-18 even when in isolated form. It was also found that the IL-18R thus identified was efficacious in treatment and prevention of various diseases resulting from excessive immunoreaction, such as autoimmune diseases, because in mammals including human, IL-18R recognized and neutralized IL-18 which activated immune system. Further, we have energetically studied L428 cell using as probe some partial amino acid sequences of the IL-18R, resulting in obtainment of a DNA which did encode IL-18R. We confirmed that a polypeptide obtained by bringing such DNAs into expression in artificial manner well recognized IL-18 and shared some essential physiological activities with the IL-18R separated from L428 cell, as well as that it was preparable in desired amounts by recombinant DNA techniques using such DNA. Thus we accomplished this invention.

More particularly, this invention attains the first object with a polypeptide as IL-18R, which is obtainable through gene expression.

This invention attains the second object with an agent for IL-18R susceptive diseases, which contains as effective ingredient such polypeptide.

This invention attains the third object with a DNA which encodes the polypeptide.

This invention attains the forth object with a process to prepare polypeptide, comprising bringing into expression a DNA which encodes the polypeptide, and collecting the resultant polypeptide.

This invention attains the fifth object with an agent to neutralize IL-18, which contains as effective ingredient the

polypeptide.

This invention attains the sixth object with a method to neutralize IL-18, characterized by allowing the polypeptide to act on IL-18.

L428 cell, which is feasible in this invention, have been deposited in the Patent Microorganism Depository, National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, 1-3, Higashi 1 chome, Tsukuba-shi, Ibaraki-ken, 305, Japan, under the accession number of "FERM BP-5777" on and after December 24th, 1996.

Brief Explanation of the Accompanying Drawings

- FIG. 1 shows that the monoclonal antibody MAb #117-10C binds to L428 cells and IL-18R while competing with IL-18.
- FIG. 2 is an image of intermediate tone given on display, which shows IL-18R on gel electrophoresis visualized by the Western blotting method using the monoclonal antibody MAb #117-10C.
 - FIG. 3 shows the inhibitory action of the monoclonal antibody MAb #117-10C on the activity of IL-18.
- FIG. 4 is the chromatogram obtained by applying to IL-18R an immunoaffinity chromatography using the monoclonal antibody MAb #117-10C.
 - FIG. 5 is the peptide map of IL-18R.
 - FIG. 6 shows the structure of the recombinant DNA "pcDNA/HuIL-18R" of this invention.
 - FIG. 7 shows the structure of the recombinant DNA "pEFHIL18R-14" of this invention.
 - FIG. 8 shows the structure of the recombinant DNA "pEFHIL18RD1-2-H" of this invention.
 - FIG. 9 shows the structure of the recombinant DNA "pEFHIL18RD1-H" of this invention.
 - FIG. 10 shows the structure of the recombinant DNA "pEFMIL18RSHT" of this invention.

Throughout the Figures, the symbol "Pcmv" indicates the cytomegalo virus promotor; "EF1 α P", the elongation factor promotor; "IL-18R cDNA", the cDNA encoding the polypeptide of this invention; "EFHIL18R-14 cDNA", the cDNA encoding the soluble polypeptide of human origin according to this invention; "HIL18RD1-2-H cDNA", the cDNA encoding the soluble polypeptide of human origin according to this invention; "HIL18RD1-H cDNA", the cDNA encoding the soluble polypeptide of human origin according to this invention; and "EFMIL18RSHT cDNA", the cDNA encoding the soluble polypeptide of mouse origin according to this invention.

Detailed Description of the Invention

This invention relates to a polypeptide as IL-18R, which is obtainable through gene expression. The polypeptide of human origin according to this invention usually contains as partial amino acid sequence(s) one or more amino acid sequences of SEQ ID NOs:12 to 19: As a whole, it contains a part or whole of the amino acid sequence of SEQ ID NO:20. While the polypeptide of mouse origin according to this invention usually contains a part or whole of the amino acid sequence of SEQ ID NO:21. Thus, the wording "polypeptide" as referred to in this invention shall include, in addition to those which wholly contain the amino acid sequence of either SEQ ID NO:20 or 21, for example, those which contain the same amino acid sequence but with addition of one or more acids, in particular, those which contain one or more amino acids linked to the C-and/or N-termini in SEQ ID NO:20 or 21; those which contain the same amino acid sequence as in SEQ ID NOs:20 and 21 but with deletion of one or more amino acids, in particular, soluble polypeptides which contain the amino acid sequences of SEQ ID NOs:22 to 25; and those which contain either of the amino acid sequences as described above but with a saccharide chain, as far as they are obtainable through gene expression and possess the essential functions of IL-18R. As to IL-18, those of human and mouse origins commonly consisting of 157 amino acids have been documented: Human IL-18 bears the amino acid sequence of SEQ ID NO:26 (where the amino acid with symbol "Xaa" represents either isoleucine or threonine), while mouse counterpart, the amino acid sequence of SEQ ID NO:27 (where the amino acid with symbol "Xaa" represents either methionine or threonine).

The polypeptide of this invention is usually prepared by applying recombinant DNA techniques, more particularly, by bringing into expression in artificial manner a DNA which encodes the polypeptide, and collecting the resultant polypeptide. This invention provides, in addition to a DNA which encodes the polypeptide, a process to prepare the polypeptide using recombinant DNA techniques: By practicing such a process according to this invention, desired amounts the polypeptide can be easily obtained.

The DNA which is used in this invention are those which originating natural sources, those which can be obtained by artificially modifying them and those which can be obtained through chemical synthesis, provided that they do encode the polypeptide. Generally, in this field, in case of artificially expressing DNAs which encode polypeptides, one may replace one or more nucleotides in the DNAs with different nucleotides and/or link an appropriate nucleotide sequence to the DNAs, with purpose of improving their expression efficiency and/or the physiological and physicochemical properties of the polypeptides. Such modifications are feasible in the DNA of this invention of course: For

30

35

10

15

example, one can link to the 5'-and 3'-termini of the DNA as described above recognition sites for appropriate restriction enzymes, initiation and termination codons, promotors and/or enhancers, as far as the final polypeptide products do retain desired physiological activities. Thus, the wording "DNA" as referred to in this invention shall mean, in addition to those which encode any polypeptides as described above, those which are complementary thereto, and further those where one or more nucleotides have been replaced with different nucleotides while conserving the amino acid sequence.

5

To obtain such a DNA from natural sources, for example, mammalian cells including epithelial cells, endothelial cells, interstitial cells, chondrocytes, monocytes, granulocytes, lymphocytes neurocytes and their established cell lined of human and mouse origins are screened with oligonucleotides as probe which can be prepared with reference to the amino acid sequences of SEQ ID NOs;12 to 25. Examples of preferred cells are cell lines which are obtained by establishing hemopoietic cells including lymphocytes, in particular, JM cells, HDLM-2 cells, MOLT-16 cells and PEER cells described in Jun Minowada, Cancer Review, Vol.10, pp.1-18 (1988), and lymphoblastoid cells such as L428 cell (FERM BP-5777), KG-1 cell (ATCC CCL-246) and U-937 cells (ATCC CRL-1593.2). The human and mouse DNAs obtained in this way usually contain a part or whole of respective nucleotide sequences of SEQ ID NOs:1 and 2. For example, as shown in SEQ ID NO:7, the DNA obtained from L428 cell, a type of lymphoblastoid cell derived from a patient with Hodgkin's disease, consists of the nucleotide sequence of SEQ ID NO:1 encoding the amino acid sequence of SEQ ID NO:20, and another nucleotide sequence encoding signal peptide which is linked to the 5'-terminal in the nucleotide sequence of the SEQ ID NO:1. Soluble polypeptides with the amino acid sequences of SEQ ID NOs:22 to 25 are usually encoded by respective nucleotide sequences of SEQ ID NOs:3 to 6, which are usually used in a form where, as shown in the nucleotide sequences of SEQ ID NOs:8 to 11, a nucleotide sequence encoding signa1 peptide is linked to the 5'-terminal in the nucleotide sequences of SEQ ID NOs:3 to 6. Such a DNA can be also obtained through usual chemical synthesis, and in any case, DNAs can be amplified to desired levels by PCR method once they become available. By the way, the amino acid sequences of SEQ ID NOs:20 and 21 are described along with the amino acid sequences for signal peptides in P. Parnet et al., The Journal of Biological Chemistry, Vol.271, pp.3,967-3,970 (1996): This paper however makes neither suggestion nor teaching that the polypeptides with the amino acid sequences of SEQ ID NOs:20 and 21 do function as IL-18R.

Such DNA expresses the polypeptide when introduced into an appropriate host of microbe, animal or plant origin. The DNA of this invention is usually prepared into a recombinant DNA prior to introduction into host. Such recombinant DNA, which consists of the DNA of this invention and an autonomously replicable vector, can be easily prepared with usual recombinant DNA techniques, provided that the DNA is available. Examples of vectors which can receive the DNA of this invention are plasmid vectors including pKK223-3, pCDNAI/Amp, BCMGSNeo, pcDL-SR α , pKY4, pCDM8, pCEV4, pME18S and pEF-BOS. Autonomously replicable vectors usually comprises other nucleotide sequences, for example, promotor, enhancer, replication origin, terminator of transcription, splicing sequence and/or selection marker which facilitate the expression of the DNA of this invention in particular hosts. Expression of the DNA becomes artificially regulatable upon external stimuli when it is used in combination with either heat shock protein promotor or interferon- α promotor as disclosed in Japanese Patent Kokai No. 163,368/95 by the same applicant.

Conventional methods are feasible in the insertion of the DNA of this invention into such vector. More particularly, a gene with the DNA of this invention and an autonomously replicable vector are first digested with restriction enzyme and/or ultrasonication, then the resultant DNA and vector fragments are ligated. Ligation of DNA and vector fragments become much easier when genes and vectors are digested with restriction enzymes specific to particular nucleotides, for example, *Acc*I, *Bam*HI, *Bst*XI, *Eco*RI, *Hin*dIII, *Not*I, *Pst*I, *Sac*I, *Sal*I, *Sma*I, *Spe*I, *Xba*I and *Xho*I. To ligate DNA and vector fragments, they are first annealed, if necessary, then exposed to DNA ligase *in vivo* or *in vitro*. The recombinant DNA thus obtained is unlimitedly replicable in hosts of microbe and animal origins.

Such recombinant DNA is introduced into an appropriate host, prior to use in preparation of the polypeptide. Although conventional hosts of microbe, animal and plant origins are feasible in this invention, it is preferable to choose a host of yeast or mammalian origin in case that the final use of the polypeptide is pharmaceuticals. Examples of host cells of mammalian origin are epithelial cell, interstitial cell and hemopoietic cell of human, monkey, mouse and hamster origins, in particular, 3T3 cell (ATCC CCL-92), C127l cell (ATCC CRL-1616), CHO-K1 cell (ATCC CCL-61), CV-1 cell (ATCC CCL-70), COS-1 cell (ATCC CRL-1650), HeLa cell (ATCC CCL-2), MOP-8 cell (ATCC CRL-1709) and their mutant strains. To introduce the DNA of this invention into such a host, one can employ conventional methods, for example, DEAE-dextran method, calcium phosphate transfection method, electroporation method, lipofection method, microinjection method and viral infection method using retrovirus, adenovirus, herpesvirus and vaccinia virus. To select among the resultant transformants a clone which is capable of producing the polypeptide, the transformants are cultivated on culture medium, followed by selecting one or more clones where production of the polypeptide is observed. Recombinant DNA techniques using host cells of mammalian origin are detailed, for example, *Jikken-Igaku-Bessatsu*, *Saibo-Kogaku Handbook* (The handbook for the cell engineering), edited by Toshio KUROKI, Masaru TANIGUCHI and Mitsuo OSHIMURA, published by Yodosha. Co., Ltd., Tokyo, Japan (1992), and *Jikken-Igaku-Bessatsu*, *Biomanual Series 3*, *Idenshi-Cloning-Jikken-Ho* (The experimental methods for the gene cloning), edited by Takashi YOKOTA and

Kenichi ARAI, published by Yodosha Co., Ltd., Tokyo, Japan (1993).

10

15

20

25

35

The transformant thus obtained produces and secretes the polypeptide inside and/or outside the host cell when cultivated on culture medium. Such cultivation is feasible with conventional culture media directed to cultivation of transformants, which are usually composed by adding to a bufferized water as base inorganic ions such as sodium ion, potassium ion, calcium ion, phosphoric ion and chloric ion; minor elements, carbon sources, nitrogen sources, amino acids and vitamins which meet to the metabolism of particular hosts; and, if necessary, sera, hormones, cell growth factors and cell adhesion factors. Particular media are, for example, 199 medium, DMEM medium, Ham's F12 medium, IMDM medium, MCDB 104 medium, MCDB 153 medium, MEM medium, RD medium, RITC 80-7 medium, RPMI-1630 medium, RPMI-1640 medium and WAJC 404 medium. One can obtain a culture product containing the polypeptide by inoculating on such a culture medium a transformant in an amount of $1 \times 10^4 - 1 \times 10^7$ cells/ml, preferably, $1 \times 10^5 - 1 \times 10^6$ cells/ml, and subjecting the transformant to suspension or monolayer culture at around 37° C for 1 day to 1 week, preferably, 2 to 4 days while replacing the culture medium with a fresh preparation, if necessary. The culture product thus obtained usually contains about 1 μ g/l to 1 mg/l polypeptide, dependently of the type of transformant and cultivation conditions.

The culture product obtained in this way is first subjected to ultrasonication, cell-lytic enzyme and/or detergent to disrupt cells, if necessary, then polypeptides are separated from the cells or cell debris by filtration and centrifugation, followed by purification. In the purification, a culture product which has been separated from cell or cell debris is subjected to conventional methods common in purification of biologically-active proteins, for example, salting-out, dialysis, filtration, concentration, fractional precipitation, ion-exchange chromatography, gel filtration chromatography, adsorption chromatography, isoelectric focusing chromatography, hydrophobic chromatography, reversed phase chromatography, affinity chromatography, gel electrophoresis and isoelectric focusing gel electrophoresis which are used in combination, if necessary. The purified polypeptide is then concentrated and lyophilized into liquid or solid to meet to its final use. The IL-18 and monoclonal antibody, disclosed in Japanese Patent Kokai No.193,098/96 and Japanese Patent Application No.356,426/96 by the same applicant, are very useful in purification of the polypeptide: Immunoaffinity chromatographies using these do yield a high-purity preparation of the polypeptide with minimized costs and labors.

The polypeptide of this invention exhibits a remarkable efficacy in treatment and prevention of various diseases resulting from excessive immunoreaction because in mammals including human, the polypeptide recognizes and binds IL-18 which may activate immune system. Immune system, which is in nature to defend living bodies from harmful foreign substances, may cause unfavorable results in living bodies because of its nature. When mammals receive a graft of organ, for example, skin, kidney, liver, heart and bone marrow, the rejection reaction and immunoreaction against alloantigen may activate T-cells, resulting in the occurrence of inflammation and proliferation of lymphocytes. Similar phenomena are observed in case that host receives the invasion by heteroantigens, for example, allergens, which are not recognized as self. In autoimmune diseases, allergic reactions are induced by substances which must be recognized as self. The polypeptide of this invention exhibits a remarkable efficacy in treatment and prevention of various diseases resulting from such an immunoreaction because the polypeptide suppresses or regulates the immunoreaction when administered in mammals including human. Thus, the wording "susceptive diseases" as referred to in this invention shall mean all the diseases resulting from augmented immunoreaction which can be treated and/or prevented by the direct or indirect action of IL-18R: Particular susceptive diseases are, for example, rejection reactions associated with a graft of organ as described above, autoimmune and allergic diseases including pernicious anemia, atrophic gastritis, insulin-resistant diabetes, Wegener granulomatosis, discoid lupus erythematosus, ulcerative colitis, cold agglutinin-relating diseases, Goodpasture's syndrome, primary biliary cirrhosis, sympathetic ophtalmitis, hyperthyroidism, juvenile onset type diabetes, Sjögren syndrome, autoimmune hepatitis, autoimmune hemolytic anemia, myasthenia gravis, systemic scleroderma, systemic lupus erythematosus, polyleptic cold hemoglobinuria, polymyositis, periarteritis nodosa, multiple sclerosis, Addison's disease, purpura hemorrhagica, Basedow's disease, leukopenia, Behçet's disease, climacterium praecox, rheumatoid arthritis, rheumatopyra, chronic thyroiditis, Hodgkin's disease, HIV-infections, asthma, atopic dermatitis, allergic nasitis, pollinosis and apitoxin-allergy. In addition, the polypeptide of this invention is efficacious in treatment and prevention of septic shock which results from production or administration of excessive IFN-γ.

Thus, the agent for susceptive disease, which contains as effective ingredient the polypeptides of this invention, would find a variety of uses as anti-autoimmune-diseases, anti-allergies, anti-inflammatories, immunosuppressants, hematopoietics, leukopoietics, thrombopoietics, analgesics and antipyretics directed to treatment and/or prevention of susceptive diseases as illustrated in the above. The agent according to this invention is usually prepared into liquid, suspension, paste and solid forms which contain the polypeptide in an amount of 0.00001-100 w/w %, preferably, 0.0001-20 w/w %, dependently on the forms of agents as well as on the types and symptoms of susceptive disease.

The agent for susceptive diseases according to this invention includes those which are solely composed of the polypeptide, as well as including those in composition with, for example, one or more physiologically-acceptable carriers, excipients, diluents, adjuvants, stabilizers and, if necessary, other biologically-active substances: Examples of such stabilizer are proteins such as serum albumins and gelatin; saccharides such as glucose, sucrose, lactose, maltose,

trehalose, sorbitol, maltitol, mannitol and lactitol; and buffers which are mainly composed of phosphate or succinate. Examples of the biologically-active substances usable in combination are FK506, glucocorticoid, cyclophosphamide, nitrogen mustard, triethylenethiophosphoramide, busulfan, pheniramine mustard, chlorambucil, azathioprine, 6-mercaptopurine, 6-thioguanine, 6-azaguanine, 8-azaguanine, 5-fluorouracil, cytarabine, methotrexate, aminopterin, mitomycin C, daunorubicin hydrochloride, actinomycin D, chromomycin A_3 , bleomycin hydrochloride, doxorubicin hydrochloride, cyclosporin A, L-asparaginase, vincristine, vinblastine, hydroxyurea, procarbazine hydrochloride, adrenocortical hormone and auri colloid; receptor antagonists to cytokines other than IL-18, for example, antibodies respectively against interleukin-1 receptor protein, interleukin-2 receptor protein, interleukin-5 receptor protein, interleukin-6 receptor protein, interleukin-1 receptor, interleukin-1 receptor, interleukin-1 receptor, interleukin-1 receptor, interleukin-1 receptor, interleukin-1 receptor.

The agent for susceptive diseases according to this invention includes pharmaceuticals in minimal dose unit: The wording "pharmaceutical in minimal dose unit" represents those which are prepared into a physically united form suitable for prescription and also allowed to contain the polypeptide in an amount corresponding to its single dose or multiple (up to 4-fold) or divisor (up to 1/40) thereof: Examples of such form are injection, liquid, powder, granule, tablet, capsule, sublingual, ophthalmic solution, nasal drop and suppository. The agent for susceptive diseases according to this invention can be administrated through both oral and parenteral routes to exhibit in each case a remarkable efficacy in treatment and prevention of susceptive diseases. More particularly, the polypeptide is administered through oral route or parenteral route such as intradermal, subcutaneous, intramuscular or intravenous route at a dose of about 1 µg/time/adult to about 1g/time/adult, preferably, about 10 µg/time/adult to about 100 mg/time/adult 1 to 4 times/day or 1 to 5 times/week over 1 day to 1 year.

The DNA which encodes the polypeptide of this invention is useful in "gene therapies". Particularly, in usual gene therapies, the DNA of this invention is first inserted in a vector derived from virus such as retrovirus, adenovirus or adeno-associated virus and, alternatively, embedded in either cationic- or membrane fusible-liposomes, then the inserted or embedded DNA is directly injected in a patient with an IL-18 susceptive disease and, alternatively, introduced into lymphocytes, which have been collected from the patient, and implanted in the patient. In adoptive immuno gene therapies, by introducing the DNA of this invention into effector cells similarly as in the usual gene therapies, the cytotoxicity of effector cells against tumors and virus-infected cells is enhanced and this would strengthen adoptive immunotherapy. In tumor vaccine gene therapy, tumor cells, which have been extracted from a patient, are introduced with the DNA of this invention similarly as in the usual gene therapies, allowed to proliferate in vitro to a prescribed level and then self-transplanted to the patient: The transplanted tumor cells act as vaccine in the body of the patient, exhibiting a strong and antigen-specific antitumor immunity. Thus, the DNA of this invention exhibits a remarkable efficacy in gene therapies for various diseases including, for example, malignant tumors, vial diseases, infections and autoimmune diseases, as well as in suppression of rejection reaction and excessive immunoreaction associated with grafts of organs and allergic diseases. General procedures for gene therapies are detailed in Jikken-Igaku-Bessatsu, Biomanual UP Series, Idenshichiryo-no-Kisogijutsu (Basic techniques for the gene therapy), edited by Takashi SHIMADA, Izumi SAITO, and Keiya OZAWA, published by Yodosha Co., Ltd., Tokyo, Japan (1996).

Further, the polypeptide of this invention is useful in affinity chromatography and labelled assay directed to purification and detection of IL-18 because the polypeptide bears properties of recognizing and binding IL-18. In addition, the polypeptide of this invention, in particular, that in soluble form is useful in screening *in vivo* or *in vitro* agonists and antagonists to IL-18. Furthermore, the agent to neutralize IL-18 containing as effective ingredient the polypeptide and the method to neutralize IL-18 where IL-18 is exposed to the polypeptide are useful in treatment of various diseases which result from production and administration of excessive IL-18.

The following Examples are to illustrate the way of practicing this invention. The techniques employed in Examples 1 to 3 are common in this field as detailed, for example, *Jikken-Igaku-Bessatsu*, *Saibo-Kogaku Handbook* (The handbook for the cell engineering), edited by Toshio KUROKI, Masaru TANIGUCHI and Mitsuo OSHIMURA, published by Yodosha. Co., Ltd., Tokyo, Japan (1992), and *Jikken-Igaku-Bessatsu*, *Biomanual Series 3*, *Idenshi-Cloning-Jikken-Ho* (The experimental methods for the gene cloning), edited by Takashi YOKOTA and Kenichi ARAI, published by Yodosha Co., Ltd., Tokyo, Japan (1993).

50 <u>Example 1</u>

55

10

Preparation and characterization of IL-18R

Example 1-1

Preparation of IL-18R

Newborn hamsters were intraperitoneally injected with an anti-lymphocyte antibody of rabbit origin to suppress

their possible immunoreaction, subcutaneously injected at their dorsal areas with about 5x10⁵ cell/animal of L428 cells (FERM BP-5777), a type of lymphoblastoid cell derived from a patient with Hodgkin's disease, and fed in usual manner for 3 weeks. The tumor masses, subcutaneously occurred, about 10g each, were extracted, disaggregated and washed in usual manner in serum-free RPMI-1640 medium (pH 7.4), thus obtaining proliferated cells.

The proliferated cells were added with a mixture solution (volume ratio of 9:1) of 0.83 w/v % NH₄Cl and 170mM Tris-HCl buffer (pH 7.7) in an amount 10-fold larger than the wet weight of the cells, stirred and collected by centrifugation at 2,000rpm for 10 minutes. The cells were then suspended in an appropriate amount of phosphate buffered saline (hereinafter abbreviated as "PBS"), stirred, collected by centrifugation at 2,000rpm, resuspended to give a cell density of about 1×10⁸ cells/ml in 10mM Tris-HCl buffer (pH 7.2) with 1mM MgCl₂ and disrupted with "POLYTRON", a cell disrupter commercialized by Kinematica AG, Littau/Lucerne, Switzerland. The resultant was added with 10mM Tris-HCl buffer (pH 7.2) containing both 1mM MgCl₂ and 1M sucrose to give a final sucrose concentration of 0.2M, and centrifuged at 1,000rpm to collect the supernatant which was then centrifuged at 25,000rpm for 60 minutes, followed by collecting the precipitate. The precipitate was added with adequate amounts of 12mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (hereinafter abbreviated as "CHAPS"), 10mM ethylenediaminetetraacetatic acid (hereinafter abbreviated as "EDTA") and 1mM phenylmethylsulfonylfluoride, stirred at 4°C for 16 hours, and centrifuged at 25,000rpm for 60 min, followed by collecting the supernatant.

The supernatant was charged to a column of "WHEAT GERM LECTIN SEPHAROSE 6B", a gel product for affinity chromatography commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, pre-equilibrated in PBS with 12mM CHAPS, and the column was washed with PBS containing 12mM CHAPS, and then charged with PBS containing both 0.5 M N-acetyl-D-glucosamine and 12mM CHAPS while monitoring the protein content in the eluate with the absorbance of ultraviolet at a wave length of 280nm. The fractions with an absorbance of 0.16-0.20 were collected and pooled, thus obtaining about 25 liters of aqueous solution with a protein content of about 1 mg/ml per 10¹² starting cells.

A small portion of the solution was sampled, added with 4ng human IL-18 which had been ¹²⁵I-labelled in usual manner, incubated at 4°C for 1 hour, added with appropriate amounts of "POLYETHYLENE GLYCOL 6000", a polyethylene glycol preparation with an averaged molecular weight of 6,000 daltons, commercialized by E. Merck, Postfach, Germany, and allowed to stand under ice-chilling conditions for 30 minutes to effect binding reaction. The reaction product was centrifuged at 6,000rpm for 5 minutes and the resultant precipitate was collected to determine the level of radioactivity. In parallel, there was provided another sections as control in which 3µg non-labelled human IL-18 was used along with ¹²⁵I-labelled human IL-18 and treated similarly as above. Comparison with control revealed that the radioactivity of the precipitate from the sample solution was significantly higher. This indicated that the aqueous solution obtained in the above did contain IL-18R and the I-18R recognized and bound IL-18 when exposed to IL-18.

Example 1-2

5

35 Binding ability to monoclonal antibody

L428 cells (FERM BP-5777) were suspended in RPMI-1640 medium (pH7.4), supplemented with 0.1 v/v % bovine serum albumin and also containing 0.1 v/v % NaN $_3$, to give a cell density of 4×10 7 cells/ml, while monoclonal antibody MAb#117-10C specific to human IL-18R, obtained by the method described in Japanese Patent Application No.356,426/96 by the same applicant, was dissolved in another preparation of RPMI-1640 medium supplemented with 0.1 w/v% bovine serum albumin to give different concentrations of 0.019 μ g/ml, 0.209 μ g/ml, 2.3 μ g/ml and 139.5 μ g/ml.

Fifty microliter aliquots of the cell suspension prepared in the above were mixed with 50μ l of either solution with different monoclonal antibody concentrations, agitated at 4°C for 2 hours, added with 50μ l of RPMI-1640 medium supplemented with 0.1 v/v % bovine serum albumin and also containing 4ng 125 l-labelled human IL-18 prepared in usual manner, and agitated at the same temperature for an additional 30 minutes. Subsequently, each cell suspension was added with 200μ l mixture solution (volume ratio 1:1) of dibutylphthalate and diocthylphtalate and centrifuged at 10,000rpm and 20°C for 5 minutes, followed by collecting the resultant precipitates containing the cells which were then determined for radioactivity using "MODEL ARC-300", a gamma-ray counter commercialized by Aloka Co., Ltd, Tokyo, Japan.

In parallel, there were provided additional two sections where the monoclonal antibody was neglected, while 4ng ¹²⁵I-labelled human IL-18 was treated similarly as in the sample testing section with or without 4 micrograms of non-labelled human IL-18 (hereinafter referred to as "non-specific binding section" and "whole binding section" respectively). The levels of radioactivity found in "non-specific binding section" and "whole binding section" were put in Formula 1 together with that found in the sample testing section to calculate percent inhibition. The results were as shown in FIG. 1.

Percent Inhibition =
$$\frac{\text{(Whole binding)} - \text{(Testing)}}{\text{(Whole binding)} - \text{(Non-specific binding)}} \times 100$$

Formula 1

Fifty microliter aliquots of an IL-18R in aqueous solution obtained by the method in Example 1-1 were added with 50 μ l solution with different concentrations for monoclonal antibody MAb #117-10C prepared similarly as above, agitated at 4°C for 2 hours, added with 4ng ¹²⁵l-labelled human IL-18, and agitated at 4°C for an additional 30 minutes. Subsequently, each mixture was added with 50 μ l of 4 mg/ml γ -globulin, allowed to stand under ice-chilling conditions for 30 minutes, added with 250 μ l of PBS with 20 w/v % polyethylene glycol, allowed to stand under ice-chilling conditions for an additional 30 minutes, and centrifuged at 6,000rpm at 4°C for 5 minutes, followed by collecting the resultant precipitates which were then determined for radioactivity similarly as above.

At the same time, there were provided additional two sections where the monoclonal antibody was neglected, while 4ng of 125 I-labelled human IL-18 were treated similarly as in the sample testing section with or without 4 μ g of non-labelled human IL-18 (hereinafter referred to as "whole binding section" and "non-specific binding section" respectively). The levels of radioactivity found in these two section were put in Formula 1 together in that found in the sample testing section to calculate percent inhibition. The results were as shown in FIG.1.

As seen in FIG. 1, in both cases of using L428 cell and IL-18R in solution, the binding of IL-18 to L428 cell and IL-18R were inhibited much more as the concentration of monoclonal antibody MAb #117-10C elevated. This indicated that the monoclonal antibody MAb #117-10C was bound to the possible IL-18R on the surface of L428 cell in a fashion competing with IL-18, as well as that the aqueous solution obtained by the method in Example 1 did contain a protein capable of recognizing IL-18 or IL-18R and the monoclonal antibody MAb #117-10C specifically reacted with the IL-18R.

Example 1-3

25

5

Western blotting

A portion of the IL-18R in aqueous solution obtained by the method in Example 1 was sampled, added with 2/3 volume of a mixture solution of 2.5 w/v % sodium dodecyl sulfate and 50 v/v % glycerol, incubated at 37°C for 1 hour, and separated into respective proteinaceous components on conventional SDS-PAGE using 10-20% gradient gel but using no reducing agent. The proteinaceous components on the gel were transferred in usual manner to a nitrocellulose membrane which was then soaked for 1 hour in an appropriate amount of 50mM Tris-HCl buffer (pH7.5) with 10µg/ml of monoclonal antibody MAb #117-10C obtained by the methods described in Japanese Patent Application No.356,426/96 by the same applicant, 10 v/v % "BLOCK ACE", an immobilizing agent commercialized by Dainippon Seiyaku Co., Ltd., Osaka, Japan, and 0.05 v/v % "TWEEN 20", a detergent commercialized by City Chemical Corp., New York, U.S.A., and washed in 50mM Tris-HCl buffer (pH7.5) with 0.05 v/v % Tween 20 to remove the remaining antibody. The membrane was then soaked in Tris-HCl buffer (pH 7.5) with an appropriate amount of an anti-mouse immunoglobulin antibody of rabbit origin prelabelled with horse radish peroxidase, 10 v/v % "BLOCK ACE" and 0.05 v/v % "TWEEN 20" for 1 hour to effect reaction, washed in 50mM Tris-HCl buffer (pH 7.5) with 0.05 v/v % "TWEEN 20" and developed using "ECL kit", a kit for development commercialized by Amersham Corp., Arlington Heights, U.S.A.

At the same time, there was provided another section without the monoclonal antibody MAb #117-10C as control and it was treated similarly as above. The molecular weight markers were bovine serum albumin (67,000 daltons), ovalbumin (45,000 daltons), carbonic anhydrase (30,000 daltons), trypsin inhibitor (20,100 daltons) and α -lactoalbumin (14,000 daltons). The results were as shown in FIG. 2.

In the gel electrophoresis in FIG. 2, Lane 2 (with monoclonal antibody) bore a distinct band of IL-18R which was never found in Lane 3 (without monoclonal antibody).

Example 1-4

Inhibition of IL-18 activity

KG-1 cells (ATCC CCL246), an established cell line derived from a patient with acute myelogenous leukemia, were suspended in RPMI-1640 medium (pH 7.2), supplemented with 10 v/v % fetal bovine serum and also containing $100\mu g/ml$ kanamycin and 18.8mM Na₂HPO₄, to give a cell density of 1×10^7 cells/ml, added with monoclonal antibody MAb #117-10C, obtained by the method described in Japanese Patent Application No.356,426/96 by the same applicant, to give a concentration of $10\mu g/ml$ and incubated at 37° C for 30 minutes.

The KG-1 cells in suspension were distributed on 96-well microplate to give respective amounts of 50µl/well, added with 50µl of human IL-18 which had been dissolved in a fresh preparation of the same medium to give respective con-

centrations of 0ng/ml, 1.56ng/ml, 3.12ng/ml, 6.25ng/ml, 12.5ng/ml and 25ng/ml, further added with 50μl/well of 5μg/ml lipopolysaccharide in a fresh preparation of the above medium, and incubated at 37°C for 24 hours, after which each supernatant was collected and determined for IFN-γ content by conventional enzyme immunoassay. In parallel, there were provided additional sections without the monoclonal antibody MAb #117-10C for respective IL-18 concentrations as control and they were treated similarly as above. The results were as shown in FIG. 3. The IFN-γ contents in FIG. 3 were calibrated with reference to the standardized IFN-γ preparation Gg23-901-530 available from the International Institute of Health, USA, and expressed in the International Unit(IU).

The results in FIG. 3 indicated that the presence of monoclonal antibody MAb #117-10C inhibited the induction of IFN-γ by IL-18 in KG-1 cell as immunocompetent cell. This also indicated that monoclonal antibody MAb #117-10C blocked the IL-18R on the surface of KG-1 cell in a fashion competing with Il-18, thus preventing the signal transduction of IL-18 to KG-1 cell.

Example 1-5

15 Purification of IL-18R

Seventy-eight milligrams of a monoclonal antibody MAb #117-10C, obtained by the method described in Japanese Patent Application No.356,426/96 by the same applicant, was dissolved in an appropriate amount of distilled water and the solution was dialyzed against borate buffer (pH 8.5) with 0.5M NaCl at 4°C for 16 hours. Thereafter, in usual manner, an appropriate amount of "CNBr-ACTIVATED SEPHAROSE 4B", a CNBr-activated gel, commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, was added to the dialyzed solution and allowed to react at 4°C for 18 hours under gentle stirring conditions to immobilize the monoclonal antibody MAb #117-10C on the gel.

The gel was packed into column in a plastic cylinder, equilibrated with 2mM CHAPS, charged with an IL-18R in aqueous solution obtained by the method in Example 1-1, and applied with PBS with 12mM CHAPS to remove non-adsorbed components. The column was then applied with 35mM ethylamine containing 2mM CHAPS (pH 10.8) while collecting the eluate in every 8ml fractions which were then checked for presence of IL-18R by the method in Example 1-1 using ¹²⁵I-labelled human IL-18. The chromatogram obtained in this operation was as shown in FIG.4.

As seen in FIG. 4, IL-18R was eluted in a single sharp peak when immunoaffinity chromatography using monoclonal antibody MAb #117-10C was applied to a mixture of IL-18R and contaminants such as the aqueous solution of IL-18R in Example 1-1. The fractions corresponding to this single peak were collected, pooled and lyophilized, thus obtaining a purified IL-18R in solid form.

Thereafter, a portion of the purified IL-18R was sampled, incubated in PBS at 100°C for 5 minutes, and determined for residual activity by the method in Example 1-2, resulting in no binding to IL-18 which proved that IL-18R was inactivated by heating. This would support that the nature of this receptor is proteinaceous.

Further, a portion of the purified IL-18R obtained in the above was dissolved in an appropriate amount of PBS, dialyzed against PBS at ambient temperature overnight, added with an appropriate amount of ¹²⁵I-labelled human IL-18 prepared by the method in Example 1-1 and 1mM "BS³", a polymerizing agent commercialized by Pierce, Rockford, U.S.A., and allowed to stand at 0°C for 2 hours to form a conjugate of IL-18R and ¹²⁵I-labelled human IL-18. The reaction mixture was added with Tris-HCI buffer (pH7.5), allowed to stand at 0°C for an additional 1 hour to suspend the conjugation reaction, separated into respective proteinaceous components on SDS-PAGE using a set of molecular weight markers and dithiothreitol as reducing agent, and subjected to autoradiogram analysis.

The apparent molecular weight for this conjugate of IL-18R and ¹²⁵I-labelled human IL-18 was about 50,000 to 200,000 daltons when estimated with reference to the mobility of molecular weight markers on the autoradiogram. Since the molecular weight of IL-18 is about 20,000 daltons, the molecular weight of IL-18R can be estimated about 30,000-180,000 daltons on the assumption that IL-18R binds one human IL-18 molecule.

Example 1-6

Peptide mapping of IL-18R

50

35

A purified IL-18R obtained by the method in Example 1-5 was electrophoresed on SDS-PAGE using 7.5 w/v % gel with 2 w/v % dithiothreitol as reducing agent, and the gel was then soaked for 5 minutes in a mixture solution of 40 v/v % aqueous methanol and 1 v/v % acetic acid with 0.1 w/v % Coomassie Brilliant Blue for development, and soaked for an additional 2 hours for destaining in the same solution but without Coomassie Brilliant Blue, after which the stained part in the gel, molecular weight of 80,000-110,000 daltons, was cut off, added with 50 v/v % aqueous acetonitrile containing 0.2 M (NH₄) $_2$ CO $_3$ and repeatedly agitated at ambient temperature. Thereafter, the gel slices were lyophilized, added with 0.2M (NH₄) $_2$ CO $_3$ (pH 8.0), allowed to stand for 5 minutes to effect swelling, added with appropriate amounts of 1mM hydrochloric acid with 0.1 μ g/ μ l "SEQUENCING GRADE MODIFIED TRYPSIN", a reagent of trypsin commer-

cialized by Promega Corp., Madison, U.S.A., and 0.2 M (NH₄) $_2$ CO $_3$ (pH 8.9), and allowed to react at 37°C overnight. After suspending with 10 v/v % aqueous acetic acid solution, the reaction mixture was added with a mixture solution of 0.1 v/v % trifluoroacetic acid and 60 v/v % aqueous acetonitrile and agitated at ambient temperature, after which the resultant supernatant was collected, concentrated *in vacuo* and centrifugally filtered, thus obtaining a concentrate with peptide fragments.

The concentrate was charged to "µRPC C2/C18 SC2.1/10", a column for high-performance liquid chromatography commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, pre-equilibrated with 0.065 v/v % trifluoroacetic acid, and then applied at a flow rate of 100µl/min with 0.055 v/v % trifluoroacetic acid containing 80 v/v % aqueous acetonitrile under liner gradient of acetonitrile increasing from 0 to 80 v/v % over 160 minutes immediately after application of the eluent. While monitoring the absorbance at a wavelength of 240nm, the eluate was fractioned to separately collect respective peptide fragments which eluted about 45, 50, 55, 58, 62, 72, 75 and 77 minutes after application of the eluent. The peptide fragments (hereinafter referred to as "peptide fragment 1", "peptide fragment 2", "peptide fragment 3", "peptide fragment 4", "peptide fragment 5", "peptide fragment 6", "peptide fragment 7" and "peptide fragment 8" in the order of elution) were analyzed in usual manner for amino acid sequence using "MODEL 473A", a protein sequencer commercialized by Perkin-Elmer Corp., Norwalk, U.S.A, revealing that the peptide fragments 1 to 8 bore the amino acid sequences of SEQ ID NOs:12 to 19 respectively. The peptide map obtained by this operation was as shown in FIG.5.

Example 2

20

5

Preparation of DNA

Example 2-1

25 Preparation of total RNA

In usual manner, L428 cells (FERM BP-5777) were suspended in RPMI-1640 medium (pH7.2) supplemented with 10 v/v % fetal bovine serum, and proliferated at 37°C while scaling up the cultivation. When the cell density reached a prescribed level, the proliferated cells were collected, suspended in 10mM sodium citrate (pH7.0) containing both 6M guanidine isothiocyanate and 0.5 w/v% sodium N-laurylsarcosinate, and then disrupted with a homogenizer.

Aliquots of 0.1M EDTA (pH 7.5) containing 5.7M CsCl₂ were placed in 35ml-reaction tubes, poured with the cell disruptant obtained in the above in layer over the EDTA in each tube, and subjected to ultracentrifugation at 20°C at 25,000rpm for 20 hours to collect the RNA fraction. The RNA fraction was distributed in 15ml-centrifugation tubes, added with an equivolume each of a mixture solution of chloroform/1-butanol (volume ratio 4:1), agitated for 5 minutes and centrifuged at 4°C at 10,000rpm for 10 minutes, after which the aqueous layer was collected, added with 2.5-fold volume of ethanol and allowed to stand at 20°C for 2 hours to precipitate the total RNA. The precipitate was collected, washed with 75 v/v % aqueous ethanol, and then dissolved in 0.5ml of sterilized distilled water to obtain a solution of the total RNA originating from L428 cell.

40 <u>Example 2-2</u>

Preparation of mRNA

An aqueous solution containing total RNA solution obtained by the method in Example 2-1 was added with 0.5ml of 10mM Tris-HCl buffer (pH 7.5), containing both 1mM EDTA and 0.1 w/v % sodium N-laurylsarcosinate, to bring the total volume to 1 ml. The mixture solution was added with 1 ml of "OLIGOTEX™-dT30 ⟨SUPER⟩", a latex with an oligonucleotide of (dT)₃₀ commercialized by Japan Roche K. K., Tokyo, Japan, reacted at 65°C for 5 minutes and rapidly cooled in an ice-chlling bath. Thereafter, the reaction mixture was added with 0.2ml of 5mM NaCl, incubated at 37°C for 10 minutes, centrifuged at 10,000rpm for 10 minutes to collect the resultant precipitate in pellet form which was then suspended in 0.5ml of sterilized distilled water and incubated at 65°C for 5 minutes to desorb the mRNA from the latex. The obtained solution was added with an appropriate amount of ethanol, and the resultant precipitate was collected and lyophilized to obtain a solid of mRNA.

Example 2-3

55

Preparation of DNA fragment encoding polypeptide

Four microliters of 25mM MgCl₂, 2µl of 100mM Tris-HCl buffer (pH 8.3) containing 500mM KCl, 1µl of 25mM dNTP

mix, $0.5\,\mu$ l of 40units/ μ l ribonuclease inhibitor and 1μ l of 200units/ μ l reverse transcriptase were placed in a 0.5ml-reaction tube, added with 10 ng of an mRNA, obtained by the method in Example 2-2, along with an appropriate amount of random hexanucleotides, and added with sterilized distilled water to bring the total volume of 20μ l. The obtained mixture was incubated first at 42° C for 20 minutes, then at 99° C for 5 minutes to suspend the reaction, thus obtaining a reaction mixture containing a first strand cDNA.

Twenty microliters of the reaction mixture was added with 1µl of 2.5 units/µl "CLONED Pfu POLYMERASE", a DNA polymerase commercialized by Stratagene Cloning Systems, California, U.S.A., 10µl of the reaction buffer and 1µl of 25mM dNTP mix, both commercialized by Stratagene Cloning Systems, added with 0.1µg each of oligonucleotides as sense and antisense primers having respective nucleotide sequences as shown with 5′-TCAGTCGACGCCACCAT-GAATTGTAGAGAA-3′ and 5′-GAAGCGGCCGCATCATTAAGACTCGGAAAGAAC-3′ which had been prepared on the basis of the amino acid sequence described in P. Parnet et al., *The Journal of Biological Chemistry*, Vol.271, pp.3967-3970 (1996), added with sterile distilled water to bring the total volume to 100µl. The resultant mixture was subjected first to 3-time cycles of incubating at 95°C for 1 minute, 42°C for 2 minutes and 72°C for 3 minutes in the given order, then to 35-time cycles of incubating at 95°C for 1 minute, 60°C for 2 minutes and 72°C for 3 minutes in the given order to effect PCR reaction.

Fifty nanograms of the obtained PCR product was added with 1 ng of "pCR-Script Cam SK(+)", a plasmid vector commercialized by Stratagene Cloning Systems, California, U.S.A., and then subjected to ligation reaction at 16°C for 2 hours using "DNA LIGATION KIT VERSION 2", a DNA ligation kit commercialized by Takara Syuzo, Co., Ltd., Otsu, Shiga, Japan, to insert the DNA fragment of the PCR product in the plasmid vector. A portion of the reaction product was sampled and used in usual manner to transform "XL1-BLUE MRF' KAN", an *Escherichia coli* strain commercialized by Stratagene Cloning Systems, California, U.S.A.

Example 3

5

15

20

Preparation of recombinant DNA

A transformant obtained by the method in Example 2-3 was inoculated in LB medium containing 30µg/ml chloramphenicol and cultivated at 37°C for 18 hours, after which the cells were collected from the culture and treated in usual manner to obtain the plasmid DNA. After confirming by the dideoxy method that the plasmid DNA contained the nucleotide sequence of SEQ ID NO:7, the plasmid DNA was exposed to both restriction enzymes *Not*I and *SaI*I, and 100 ng of the obtained DNA fragment was added with 10ng of "pcDNAI/Amp", a plasmid vector with a modified multiple cloning site, commercialized by Invitrogen Corporation, San Diego, U.S.A., which had been predigested with both restriction enzymes *Not*I and *Xho*I, and subjected to ligation reaction at 16°C for 2 hours using "LIGATION KIT VERSION 2", a ligation kit commercialized by Takara Syuzo Co., Ltd., Otsu, Shiga, Japan. A portion of the reaction product was sampled and introduced in usual manner into "XL1-BLUE MRF' KAN", a strain of *Escherichia coli* commercialized by Stratagene Cloning Systems, California, U.S.A., to obtain a transformant "cDNA/HuIL-18R" which contained a recombinant DNA "pcDNA/HuIL-18R" of this invention. The recombinant DNA "pcDNA/HuIL-18R" was analyzed in usual manner, revealing that in the recombinant DNA, a DNA "IL-18R cDNA", which contained the nucleotide sequence of SEQ ID NO:1 encoding the polypeptide of this invention, was linked downstream the cytomegalo virus promotor Pcmv, as shown in FIG. 6.

Example 4

45

Preparation of transformant

A transformant "cDNA/HuIL-18R" obtained by the method in Example 3 was inoculated in LB medium (pH 7.5) containing $100\mu g/ml$ ampicillin and cultured at $37^{\circ}C$ for 18 hours, after which the cells were collected from the culture and treated in usual manner to obtain the plasmid DNA. Separately, COS-1 cell (ATCC CRL-1650), a fibroblastic cell line derived from a kidney of African green monkey was proliferated in usual manner, and 20 micrograms of the plasmid DNA obtained in the above was introduced by conventional electroporation method into 1×10^7 COS-1 cells to obtain transformant cells which contained the DNA of this invention.

Example 5

Preparation of polypeptide

DMEM medium (pH 7.2) supplemented with 10 v/v % fetal bovine serum was distributed in flat-bottomed culture bottles, inoculated with transformant cells, obtained by the method in Example 4, to give a cell density of 1×10^5

cells/ml, and cultured at 37°C in 5 v/v % $\rm CO_2$ incubator for 3 days. After removing the supernatant from the culture, PBS containing both 5mM EDTA and 0.02 w/v % $\rm NaN_3$ was placed in the culture bottles to desorb the proliferated cells.

After washing in PBS, the proliferated cells were rinsed in a buffer containing 20mM HEPES, 10mM KCl, 1.5mM $MgCl_2$ and 0.1mM EDTA (hereinafter referred to as "hypotonic buffer"), and suspended in a fresh preparation of the hypotonic buffer to give a cell density of 2×10^7 cells/ml. The cell suspension was homogenized with a Dounce-type homogenizer under ice-chilling conditions, and the resultant homogenate was centrifuged at 15,000rpm at 5 minutes to remove both cell nuclei and intact cells, and dialyzed overnight against PBS containing 2mM CHAPS.

The dialyzed product was charged to a column of immobilized monoclonal antibody MAb #117-10C, prepared by the method in Example 1-5, which was then applied with PBS containing 12mM CHAPS to remove non-adsorbed components. Thereafter, the column was applied with 35 mM ethylamine (pH10.8) containing 2 mM CHAPS while collecting and fractionating the eluate. was applied to the column, and the eluate was fractionally collected. Each fraction was then checked for presence of the polypeptide of human origin by the method in Example 1-1 using ¹²⁵I-labelled human IL-18, selected and pooled to obtain per 10⁸ starting cells about 2 ml of an aqueous solution which contained a polypeptide with the amino acid sequence of SEQ ID NO:20. The protein content in the solution was about 10µg/ml.

The polypeptide thus obtained was studied for physicochemical properties by the methods in Example 1. As the result, the polypeptide obtained in this Example contained each amino acid sequence in SEQ ID NOs:12 to 19 as partial amino acid sequences, as well as exhibiting physiological activities which were similar to those of the IL-18R from L428 cell.

20 Example 6

15

25

Soluble polypeptide from human origin

Example 6-1

Preparation of recombinant DNA

One nanogram of a recombinant DNA "pcDNA/HulL-18R" obtained by the method in Example 3, 10µl of 10×PCR buffer and 1µl of 25mM dNTP mix were placed in 0.5ml-reaction tube, added with 1 microliter of 2. units/microliter Pfu DNA polymerase, added with appropriate amounts of oligonucleotides as sense and antisense primers having respective nucleotide sequences as shown with 5′-TCAGTCGACGCCACCATGAATTGTAGAGAATTA-3′ and 5′-GAAGCG-GCCGCATCATTATCTTGTGAAGACGTG-3′, and with sterile distilled water to bring the total volume to 100µl. The resultant mixture was subjected first to 3-time cycles of incubating at 94°C for 1 minute, 42°C for 2 minutes and 72°C for 3 minutes in the given order, then to 35-time cycles of incubating at 94°C for 1 minute, 60°C for 2 minutes and 72°C for 3 minutes in the given order to effect PCR reaction.

Fifty nanograms of the obtained PCR product was added with 1ng of "pCR-SCRIPT SK(+)", a plasmid vector commercialized by Takara Syuzo Co. Ltd., Otsu, Shiga, Japan, and reacted using "DNA LIGATION KIT VERSION 2", a DNA ligation kit commercialized by Takara Shuzo Co. Ltd., Otsu, Shiga, Japan, at 16°C for 2 hours to insert the DNA fragment as the PCR product into the plasmid vector. A portion of the reaction product was sampled and "XL1-BLUE MRF' KAN", a strain of *Escherichia coli* commercialized by Stratagene Cloning Systems, California, U.S.A., was transformed therewith in usual manner.

The transformant obtained in the above was inoculated in LB medium (pH 7.5) containing 100μg/ml ampicillin and cultivated at 37°C for 18 hours, after which the cells were collected from the culture and treated in usual manner to obtain the plasmid DNA. After confirming by the dideoxy method that the plasmid DNA contained the nucleotide sequence of SEQ ID NO:10, the plasmid DNA was exposed to both restriction enzymes *Not*I and *SaI*I, and 100 ng of the resultant DNA fragment was added with 10ng of "pEF-BOS", a plasmid vector prepared in accordance with the method described in S. Mizushima, *Nucleic Acid Research*, Vol.18, No.17, pp.5,332 (1990) with slight modification and also predigested with both restriction enzymes *Not*I and *Xho*I, and subjected to ligation reaction using "LIGATION KIT VERSION 2", a DNA ligation kit commercialized by Takara Shuzo Co., Ltd., Otsu, Shiga, Japan, at 16°C for 2 hours. A portion of the reaction product was sampled and introduced in usual manner into "XL1-BLUE MRF' KAN", a strain of *Escherichia coli* commercialized by Stratagene Cloning Systems, California, U.S.A., thus obtaining a transformant "EFHIL18R-14" which contained a recombinant DNA "pEFHIL18R-14" of this invention. The recombinant DNA "pEFHIL18R-14" was analyzed in usual manner, revealing that in the recombinant DNA, a cDNA "EFHIL18R-14 cDNA", which contained the nucleotide sequence of SEQ ID NO:6 encoding the polypeptide of this invention, was located downstream the elongation factor 1 promotor EF1αP as shown in FIG. 7.

Example 6-2

5

10

15

20

25

30

35

Preparation of transformant

A transformant "EFHIL18R-14" obtained by the method in Example 6-1 was inoculated in LB medium (pH 7.5) containing $100\mu g/ml$ ampicillin and cultivated at 37° C for 18 hours, after which the cells were collected from the culture and treated in usual manner to obtain the plasmid DNA. Separately, COS-1 cell (ATCC CRL-1650), a fibroblastoid cell line derived from a kidney of African green monkey, was proliferated in usual manner, and 20 micrograms of the plasmid DNA obtained in the above was introduced by conventional electroporation method into 1×10^7 COS-1 cells to obtain transformant cells which contained the DNA of this invention.

Example 6-3

Preparation of soluble polypeptide

"ASF104", a serum-free nutrient culture medium commercialized by Ajinomoto Co., Inc., Tokyo, Japan, was distributed in flat-bottomed culture bottles, inoculated with ransformant cells, obtained by the method in Example 6-2, to givee a cell density of 1×10^5 cells/ml, and cultured in usual manner at 37°C in 5 v/v % CO $_2$ incubator for 3 days. The supernatant was collected from the culture and charged to a column of an immobilized monoclonal antibody #117-10C prepared by the method in Example 1-5, after which the column was applied first with PBS containing 12mM CHAPS to remove non-adsorbed components, then with 35mM ethylamine (pH 10.8) containing 2 mM CHAPS while collecting and fractionating the eluate. Each fraction was checked for presence of human soluble polypeptide by the method in Example 1-1 using 125 I-labelled human IL-18, selected and pooled to obtain per 108 starting cells about 2 ml of an aqueous solution which contained a polypeptide with the amino acid sequence of SEQ ID NO:22. The protein content in the solution was about 10 µg/ml.

The soluble polypeptide thus obtained was studied for physicochemical properties by the method in Example 1. As the result, the soluble polypeptide obtained in this Example contained each amino acid sequences in SEQ ID NOs:12 to 17 and 19 as partial sequences, as well as exhibiting physiological activities which were similar to the IL-18R from L428 cell.

Example 7

Soluble polypeptide of human origin

One nanogram of an recombinant DNA "pEFHIL18R-14" obtained by the method in Example 6-1, 10µl of 10xPCR buffer and 1µl of 25mM dNTP mix were placed in 0.5ml-reaction tube, added with 1µl of 2.5units/µl Pfu DNA polymerase, further added with appropriate amounts of oligonucleotides as sense and antisense primers having respective 5'-TCAGTCGACGCCACCATGAATTGTAGAG-3' nucleotide sequences as shown with GAAGCGGCCGCTCATTAGTGATGGTGATGGTGATGTGCAACATGGTTAAGCTT-3', and filled up to 100µl with sterile distilled water. The resultant mixture was subjected first to 3-time cycles of incubating at 94°C for 1 minute, 42°C for 2 minutes and 72°C for 1 minute in the given order, then to 35-time cycles of incubating at 94°C for 1 minute, 64°C for 1 minute and 72°C for 1 minute in the given order to effect PCR reaction, thus obtaining a DNA fragment which consisted of the nucleotide sequence of SEQ ID NO:5, a digestion site for restriction enzyme Sall and a Kozak's sequence both linked to the 5'-terminal of the nucleotide sequence of SEQ ID NO:5, and a digestion site for restriction enzyme NotI and a nucleotide sequence encoding (His)6 tag both linked to the 3'-terminal of the nucleotide sequence of SEQ ID NO:5. This DNA fragment was introduced similarly as in Example 6-1 in "XL1-Blue MRF Kan", a strain of Escherichia coli commercialized by Stratagene Cloning Systems, California, U.S.A., to obtain a transformant which contained a recombinant DNA "pEFHIL18RD1-2-H" according to this invention. Analysis of the recombinant DNA in usual manner confirmed that in this recombinant DNA a cDNA "HIL18RD1-2-H", which contained the nucleotide sequence of SEQ ID NO:5 encoding the polypeptide of this invention, was located downstream the elongation factor promotor EF1 α P as shown in FIG. 8.

The recombinant DNA "pEFHIL18RD1-2-H" was introduced in COS-1 cells similarly as in Example 6-2 using the transformant thus obtained, and the COS-1 cells were then cultivated similarly as in Example 6-3. The supernatant of the resultant culture was concentrated with membrane filtration, and charged on a column of "Ni-NTA Spin Kit", a gel product for affinity chromatography commercialized by QIAGEN GmbH, Hilden, Germany, which was then applied with PBS containing 20mM imidazole to remove the non-adsorbed fractions. Thereafter, the column was applied with PBS containing 250mM imidazole, and the eluate was collected in fractions while checking the presence of human soluble polypeptide in each fraction by the method in Example 1-1 using ¹²⁵I-labelled human IL-18, after which the fractions

with the polypeptide were collected and pooled, thus obtaining about 2ml of an aqueous solution containing the polypeptide with the amino acid sequence of SEQ ID NO:23 per starting 10^8 cells. The protein content in the solution was about $10\mu g/ml$.

The soluble polypeptide thus obtained was studied for physicochemical properties by the method in Example 1. As the result, the soluble polypeptide obtained in this Example contained a part or whole of each amino acid sequences in SEQ ID NOs:14 to 16 and 19 as partial amino acid sequences, as well as exhibiting physiological activities which were similar to those of IL-18R from L428 cell.

Example 8

5

10

Soluble polypeptide of human origin

A transformant containing a recombinant DNA "pEFHIL18RD1-H" according to this invention was prepared similarly as in Example 7, except that sense and antisense primers were replaced with oligonucleotides having respective nucleotide sequences as shown with 5′-TCAGTCGACGCCACCATGAATTGTAGAG-3′ and GAAGCGGCCGCTCATTAGTGATGGTGATGGTGATGTCTTTCAGTGAAACAGCT-3′. Analysis of the recombinant DNA in usual manner confirmed that in the recombinant DNA a cDNA "HIL18RD1-H", which contained the nucleotide sequence of SEQ ID NO:3 encoding the polypeptide of this invention, was located downstream the elongation factor promotor EF1 α P as shown in FIG. 9. Thereafter, similarly as in Example 7, the recombinant DNA was introduced in COS-1 cells and brought into expression, thus obtaining about 2ml of an aqueous solution containing a polypeptide with the amino acid sequence of SEQ ID NO:24 per 10⁸ starting cells. The protein content in the solution was about 10 μ g/ml.

The polypeptide of this invention thus obtained were studied for physicochemical properties by the method in Example 1. As the result, the soluble polypeptide obtained in this Example contained each amino acid sequences of SEQ ID NOs:14 and 15 as partial amino acid sequences, as well as exhibiting physiological activities which were similar to those of the IL-18R from L428 cell.

Example 9

30

35

Soluble polypeptide of mouse origin

Example 9-1

Preparation of recombinant DNA

A reaction product containing a first strand cDNA was obtained by subjecting an mRNA, prepared in usual manner from mouse liver, in place with that from L428 cell to the same reaction to synthesize first strand cDNA as in Example 2-3. The reaction product was treated by the same PCR method as in Example 2-3, except that the sense and antisense primers were replaced with oligonucleotides having respective nucleotide sequence as shown with 5'-TCAGTCGACGCCACCATGCATCATGAAGAA-3' and 5'-GAAGCGGCCGCATCATTAGTGATGGTGAT-GGTGATGTGTAAAGACATGGCC-3', which had been prepared on the basis of the amino acid sequence described in P. Parnet et al., *The Journal of Biological Chemistry*, Vol.271, pp.3,967-3,970 (1996) and also the nucleotide sequence of SEQ ID NO:11, a digestion site for restriction enzyme *Sal*I linked to the 5'-terminal in the nucleotide sequence of the SEQ ID NO:11, and a cleavage site for restriction enzyme *Not*I and a nucleotide sequence encoding (His)₆ tag both linked to the 3'-terminal in the nucleotide sequence of the SEQ ID NO:11.

According to the method in Example 6-1, this DNA fragment was introduced into "XL1-BLUE MRF' KAN", a strain of *Escherichia coli* commercialized by Stratagene Cloning Systems, California, U.S.A., to transform. After a plasmid DNA was collected from the transformant and confirmed to contain the nucleotide sequence of SEQ ID NO:11, the plasmid DNA was introduced into "XL1-BLUE MRF' KAN", a strain of *Escherichia coli* strain commercialized by Stratagene Cloning Systems, California, U.S.A., to obtain a transformant "EFMIL18RSHT" which contains a recombinant DNA "pEFMIL18RSHT" according to this invention. Analysis in usual manner confirmed that in the recombinant DNA "pEFMIL18RSHT" a cDNA "EFMIL18RSHT cDNA", which contained the nucleotide sequence of SEQ ID NO:4 encoding the polypeptide of this invention, was linked to downstream of the elongation factor 1 promotor EF1 α P, as shown in FIG. 8.

Example 9-2

5

Preparation of transformant and soluble polypeptide

According to the method in Example 6-2, a plasmid DNA was collected from a transformant "EFMIL18RSHT" obtained by the method in Example 9-1, and introduced into COS-1 cells to obtain transformant cells which contained a DNA encoding a soluble polypeptide of mouse origin.

"ASF104", a serum-free nutrient culture medium commercialized by Ajinomoto Co., Inc., Tokyo, Japan, was distributed in flat-bottomed culture bottles, inoculated with the transformed COS-1 cells to give a cell density of 1 \times 10⁵cells/ml, and cultivated in usual manner at 37°C in 5 v/v % CO₂ incubator for 3 days. The supernatant was collected from the resultant culture and charged to a column of "Ni-NTA", a gel product for affinity chromatography, commercialized by QIAGEN GmbH, Hilden, Germany, after which the column was applied first with PBS containing 20mM imidazole to remove non-adsorbed components, then with PBS containing 250mM imidazole while collecting and fractionating the eluate. The fractions were checked for presence of mouse soluble polypeptide by the method in Example 1-1 using 125 l-labelled mouse IL-18, selected and pooled, thus obtaining per 10⁸ starting cells about 2 ml of an aqueous solution which contained a polypeptide with the amino acid sequence of SEQ ID NO:25. The protein content in the solution was about 100 μ g/ml. The soluble polypeptide thus obtained was studied in accordance with the method in Example 1, revealing that it efficiently neutralized mouse IL-18.

20 <u>Example 10</u>

Liquid agent

Either polypeptide obtained by the method in Examples 5 to 8 was separately dissolved in aliquots of physiological saline containing as stabilizer 1 w/v % "TREHAOSE", a powdered crystalline trehalose commercialized by Hayashibara Co., Ltd., Okayama, Japan, to give respective concentration of 1 mg/ml, and the resultant mixtures were separately and sterilely filtered with membrane in usual manner to obtain four distinct liquid agents.

The products, which are excellent in stability, are useful as injection, ophthalmic solution and collunarium in treatment and prevention of susceptive diseases including autoimmune diseases.

Example 11

30

35

40

45

Dried injection

One hundred milligrams of either polypeptide obtained by the methods in Example 5 to 8 was separately dissolved in aliquots of physiological saline containing 1 w/v % sucrose as stabilizer, the resultant solutions were separately and sterilely filtered with membrane, distributed in vials in every 1 ml aliquot, lyophilized and sealed in usual manner to obtain four distinct pulverized agents.

The products, which are excellent in stability, are useful as dried injection in treatment and prevention of susceptive diseases including autoimmune diseases.

Example 12

Ointment

"HI-BIS-WAKO 104", a carboxyvinylpolymer commercialized by Wako Pure Chemicals, Tokyo, Japan, and "TRE-HAOSE", a powdered crystalline trehalose commercialized by Hayashibara Co., Ltd., Okayama, Japan, were dissolved in sterilized distilled water to give respective concentrations of 1.4 w/w % and 2.0 w/w %, and either polypeptide obtained by the methods in Examples 5 to 8 was separately mixed with aliquots of the resultant solution to homogeneity, and adjusted to pH7.2 to obtain four distinct paste agents containing about 1 mg/g of the polypeptide of this invention each.

The products, which are excellent in both spreadablity and stability, are useful as ointment in treatment and prevention of susceptive diseases including autoimmune diseases.

55

Example 13

Tablet

5

10

15

Aliquots of "FINETOSE", a pulverized anhydrous crystalline alpha-maltose commercialized by Hayashibara Co., Ltd., Okayama, Japan, were separately admixed with either polypeptide, obtained by the methods in Examples 5 to 8, and aliquots of "LUMIN" as cell activator, [bis-4-(1-ethylquinoline)][γ -4'-(1-ethylquinoline)] pentamethionine cyanine, to homogeneity, and the resultant mixtures were separately tableted in usual manner to obtain four distinct types of tablets, about 200 mg each, containing about 1mg/tablet of the polypeptide of this invention and also 1mg/tablet of LUMIN each.

The products, which are excellent in swallowability and stability and also bears an cell activating property, are useful as tablet in treatment and prevention of susceptive diseases including autoimmune diseases.

Experiment

Acute toxicity test

In usual manner, a variety of agents, obtained by the methods in Examples 8 to 11, were percutaneously or orally administrated or intraperitoneally injected to 8 week-old mice. As the result, the LD_{50} of each sample was proved about 1 mg or higher per body weight of mouse in terms of the amount of the polypeptide, regardless of administration route. This does support that the polypeptide of this invention is safe when incorporated in pharmaceuticals directed to use in mammals including human.

As explained above, this invention is based on the discovery of a novel receptor protein which recognizes IL-18. The polypeptide of this invention exhibits a remarkable efficacy in relief of rejection reaction associated with grafts of organs and also in treatment and prevention of various disease resulting from excessive immunoreaction because the polypeptide bears properties of suppressing and regulating immunoreaction in mammals including human. Further, the polypeptide of this invention is useful in clarification of physiological activities of IL-18, establishment of hybridoma cells which are capable of producing monoclonal antibodies specific to IL-18R, and also affinity chromatography and labelled assay to purify and detect IL-18. In addition, the polypeptide of this invention, in particular, that in soluble form is useful in screening *in vivo* and *in vitro* agonists and antagonists to IL-18. The polypeptide of this invention, which bears these outstanding usefulness, can be easily prepared in desired amounts by the process according to this invention using recombinant DNA techniques.

This invention, which exhibits these remarkable effects, would be very significant and contributive to the art.

35

40

45

50

SEQUENCE LISTING

	(1) GENERAL INFORMATION:														
5	(i) APPLICANT: NAME:KABUSHIKI KAISHA HAYASHIBARA SEIBUTSU KAGAKU KENKYUJO														
	(ii) TITLE OF INVENTION: POLYPEPTIDES														
10	(iii) NUMBER OF SEQUENCES:27														
15	(iv) ADDRESS: (A) ADDRESSEE: KABUSHIKI KAISHA HAYASHIBARA SEIBUTSU KAGAKU KENKYUJO (B) STREET: 2-3, 1-CHOME, SHIMOISHII (C) CITY: OKAYAMA (E) COUNTRY: JAPAN (F) POSTAL CODE (ZIP): 700														
20	(v) COMPUTER READABLE FORM:(A) MEDIUM TYPE:Floppy disk(B) COMPUTER:IBM PC compatible(C) OPERATING SYSTEM:PC-DOS/MS-DOS														
25	<pre>(vii) PRIOR APPLICATION DATA:</pre>														
30	(A2) APPLICATION NUMBER: JP 215,488/97 (B2) FILING DATE:July 28, 1997 (Vii) PRIOR APPLICATION DATA: (A3) APPLICATION NUMBER: JP 291,837/97 (B3) FILING DATE:October 9, 1997														
35	(2) INFORMATION FOR SEQ ID NO:1: (i)SEQUENCE CHARACTERISTICS: (A)LENGTH:1563 base pairs (B)TYPE:nucleic acid (C)strandedness:double (D)TOPOLOGY:linear														
40	<pre>(ii) MOLECULE TYPE:cDNA (ix) FEATURE:</pre>														
45	GAA TCT TGT ACT TCA CGT CCC CAC ATT ACT GTG GTT GAA GGG GAA CCT														
10	Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu Gly Glu Pro														
	TTC TAT CTG AAA CAT TGC TCG TGT TCA CTT GCA CAT GAG ATT GAA ACA														
50	Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu Ile Glu Thr														
50	20 25 30 ACC ACC AAA AGC TGG TAC AAA AGC AGT GGA TCA CAG GAA CAT GTG GAG														
	144 Thr Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Gln Glu His Val Glu														

17

			2 =					40					45			
	CTG 192	AAC	35 CCA	AGG	AGT	TCC	TCG		ATT	GCT	TTG	CAT	45 GAT	TGT	GTT	TTG
5	Leu	Asn 50	Pro	Arg	Ser	Ser	Ser 55	Arg	Ile	Ala	Leu	His	Asp	Cys	Val	Leu
	GAG 240	TTT	TGG	CCA	GTT	GAG		AAT	GAC	ACA	GGA		TAC	TTT	TTC	CAA
	Glu 65	Phe	Trp	Pro	Val	Glu 70	Leu	Asn	Asp	Thr	Gly 75	Ser	Tyr	Phe	Phe	Gln 80
10		AAA	AAT	TAT	ACT	-	AAA	TGG	AAA	TTA		GTC	ATC	AGA	AGA	
		Lys	Asn	Tyr	Thr 85	Gln	Lys	Trp	Lys	Leu 90	Asn	Val	Ile	Arg	Arg 95	Asn
	AAA 336	CAC	AGC	TGT	TTC	ACT	GAA	AGA	CAA	GTA	ACT	AGT	AAA	ATT	GTG	GAA
15		His	Ser	Cys 100	Phe	Thr	Glu	Arg	Gln 105	Val	Thr	Ser	Lys	Ile 110	Val	Glu
	GTT 384	AAA	AAA	TTT	TTT	CAG	ATA	ACC	TGT	GAA	AAC	AGT	TAC	TAT	CAA	ACA
	Val	Lys	Lys 115	Phe	Phe	Gln	Ile	Thr 120	Cys	Glu	Asn	Ser	Tyr 125	Tyr	Gln	Thr
20	CTG 432	GTC	AAC	AGC	ACA	TCA	TTG	TAT	AAG	AAC	TGT	AAA	AAG	CTA	CTA	CTG
		Val 130	Asn	Ser	Thr	Ser	Leu 135	Tyr	Lys	Asn	Cys	Lys 140	Lys	Leu	Leu	Leu
	GAG 480	AAC	AAT	AAA	AAC	CCA	ACG	ATA	AAG	AAG	AAC	GCC	GAG	TTT	GAA	GAT
25	Glu 145	Asn	Asn	Lys	Asn	Pro 150	Thr	Ile	Lys	Lys	Asn 155	Ala	Glu	Phe	Glu	Asp 160
		GGG	TAT	TAC	TCC		GTG	CAT	TTC	CTT		CAT	AAT	GGA	AAA	
		Gly	Tyr	Tyr	Ser 165	Cys	Val	His	Phe	Leu 170	His	His	Asn	Gly	Lys 175	Leu
30	TTT 576	AAT	ATC	ACC	AAA	ACC	TTC	AAT	ATA	ACA	ATA	GTG	GAA	GAT	CGC	AGT
	Phe	Asn	Ile	Thr 180	Lys	Thr	Phe	Asn	Ile 185	Thr	Ile	Val	Glu	Asp 190	Arg	Ser
	AAT 624	ATA	GTT	CCG	GTT	CTT	CTT	GGA	CCA	AAG	CTT	AAC	CAT	GTT	GCA	GTG
35	Asn	Ile	Val 195	Pro	Val	Leu	Leu	Gly 200	Pro	Lys	Leu	Asn	His 205	Val	Ala	Val
	GAA 672	TTA	GGA	AAA	AAC	GTA	AGG	CTC	AAC	TGC	TCT	GCT	TTG	CTG	AAT	GAA
	Glu	Leu 210	Gly	Lys	Asn	Val	Arg 215	Leu	Asn	Cys	Ser	Ala 220	Leu	Leu	Asn	Glu
40	GAG 720	GAT	GTA	ATT	TAT	TGG	ATG	TTC	GGG	GAA	GAA	AAT	GGA	TCG	GAT	CCT
	Glu 225	Asp	Val	Ile	Tyr	Trp 230	Met	Phe	Gly	Glu	Glu 235	Asn	Gly	Ser	Asp	Pro 240
	AAT 768	ATA	CAT	GAA	GAG	AAA	GAA	ATG	AGA	ATT	ATG	ACT	CCA	GAA	GGC	AAA
45	Asn	Ile	His	Glu	Glu 245	Lys	Glu	Met	Arg	Ile 250	Met	Thr	Pro	Glu	Gly 255	Lys
	816	CAT														
	Trp	His	Ala	Ser 260	Lys	Val	Leu	Arg	Ile 265	Glu	Asn	Ile	Gly	Glu 270	Ser	Asn
50	CTA 864	AAT	GTT		TAT	AAT	TGC	ACT		GCC	AGC	ACG	GGA	GGC	ACA	GAC
		Asn	Val 275	Leu	Tyr	Asn	Cys	Thr 280	Val	Ala	Ser	Thr	Gly 285	Gly	Thr	Asp

	ACC AAA 912	AGC	TTC	ATC	TTG	GTG	AGA	AAA	GAC	ATG	GCT	GAT	ATC	CCA	GGC
	Thr Lys		Phe	Ile	Leu	Val 295	Arg	Lys	Asp	Met	Ala 300	Asp	Ile	Pro	Gly
5	CAC GTC		ACA	AGA	GGA		ATC	ATA	GCT	GTT		ATC	TTG	GTG	GCA
	His Val	Phe	Thr	Arg	Gly 310	Met	Ile	Ile	Ala	Val 315	Leu	Ile	Leu	Val	Ala 320
	GTA GTG	TGC	CTA	GTG		GTG	TGT	GTC	ATT		AGA	GTT	GAC	TTG	
10	Val Val	Cys	Leu	Val 325	Thr	Val	Cys	Val	Ile 330	Tyr	Arg	Val	Asp	Leu 335	Val
	CTA TTT 1056	TAT	AGA		TTA	ACG	AGA	AGA		GAA	ACA	TTA	ACA		GGA
15	Leu Phe	Tyr	Arg 340	His	Leu	Thr	Arg	Arg 345	Asp	Glu	Thr	Leu	Thr 350	Asp	Gly
15	AAA ACA 1104	TAT	GAT	GCT	TTT	GTG	TCT	TAC	CTA	AAA	GAA	TGC		CCT	GAA
	Lys Thr	355					360					365	_		
20	AAT GGA 1152														
20	Asn Gly 370					375					380		_		
	GAG AAA 1200														
<i>25</i>	Glu Lys 385	His	Phe	Gly	Tyr 390	Lys	Leu	Cys	Ile	Phe 395	Glu	Arg	Asp	Val	Val 400
25	CCT GGA 1248	GGA	GCT	GTT	GTT	GAT	GAA	ATC	CAC	TCA	CTG	ATA	GAG	AAA	AGC
	Pro Gly	_		405		_			410					415	
30	CGA AGA 1296	CTA	ATC	ATT	GTC	CTA	AGT	AAA	AGT	TAT	ATG	TCT	AAT	GAG	GTC
	Arg Arg		420					425		-			430		
	AGG TAT 1344	GAA	CTT	GAA	AGT	GGA	CTC	CAT	GAA	GCA	TTG	GTG	GAA	AGA	AAA
<i>35</i>	Arg Tyr	435				_	440					445		-	-
	ATT AAA 1392														
	Ile Lys 450					455					460	_			
40	TTG CCC														
	Leu Pro 465				470			-		475	_			-	480
	AAG GCC 1488														
45	Lys Ala	_	-	485			-		490				-	495	
	CTT TAC 1536				_		_	_						_	
	Leu Tyr	Leu	Met 500	Pro	Ala	Lys	Thr	Val 505	Lys	Pro	Gly	Arg	Asp 510	Glu	Pro
50	GAA GTC 1563														
	Glu Val	Leu 515	Pro	Val	Leu	Ser	Glu 520	Ser							

```
(3) INFORMATION FOR SEQ ID NO:2:
                (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 1557 base pairs
                     (B) TYPE: nucleic acid
5
                     (C) strandedness: double
                     (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE:cDNA
                (ix) FEATURE:
                     (A) NAME/KEY: mat peptide
10
                     (B) LOCATION: 1...1557
                     (C) IDENTIFICATION METHOD:S
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
          TCA AAA AGT TGT ATT CAC CGA TCA CAA ATT CAT GTG GTA GAG GGA GAA
15
           Ser Lys Ser Cys Ile His Arg Ser Gln Ile His Val Val Glu Glv Glu
                                                 10
          CCT TTT TAT CTG AAG CCA TGT GGC ATA TCT GCA CCA GTG CAC AGG AAT
          Pro Phe Tyr Leu Lys Pro Cys Gly Ile Ser Ala Pro Val His Arg Asn
          GAA ACA GCC ACC ATG AGA TGG TTC AAA GGC AGT GCT TCA CAT GAG TAT
20
          Glu Thr Ala Thr Met Arg Trp Phe Lys Gly Ser Ala Ser His Glu Tyr
                                          40
          AGA GAG CTG AAC AGA AGC TCG CCC AGA GTC ACT TTT CAT GAT CAC
          192
25
          Arg Glu Leu Asn Asn Arg Ser Ser Pro Arg Val Thr Phe His Asp His
               50
                                    55
          ACC TTG GAA TTC TGG CCA GTT GAG ATG GAG GAT GAG GGA ACG TAC ATT
          Thr Leu Glu Phe Trp Pro Val Glu Met Glu Asp Glu Gly Thr Tyr Ile
           65
                                70
                                                     75
30
          TCT CAA GTC GGA AAT GAT CGT CGC AAT TGG ACC TTA AAT GTC ACC AAA
          Ser Gln Val Gly Asn Asp Arg Arg Asn Trp Thr Leu Asn Val Thr Lys
          AGA AAC AAA CAC AGC TGT TTC TCT GAC AAG CTC GTG ACA AGC AGA GAT
35
          Arg Asn Lys His Ser Cys Phe Ser Asp Lys Leu Val Thr Ser Arg Asp
                       100
                                           105
          GTT GAA GTT AAC AAA TCT CTG CAT ATC ACT TGT AAG AAT CCT AAC TAT
          Val Glu Val Asn Lys Ser Leu His Ile Thr Cys Lys Asn Pro Asn Tyr
                  115
                                       120
          GAA GAG CTG ATC CAG GAC ACA TGG CTG TAT AAG AAC TGT AAG GAA ATA
40
          432
          Glu Glu Leu Ile Gln Asp Thr Trp Leu Tyr Lys Asn Cys Lys Glu Ile
                                   135
          TCC AAA ACC CCA AGG ATC CTG AAG GAT GCC GAG TTT GGA GAT GAG GGC
45
          Ser Lys Thr Pro Arg Ile Leu Lys Asp Ala Glu Phe Gly Asp Glu Gly
          TAC TAC TCC TGC GTG TTT TCT GTC CAC CAT AAT GGG ACA CGG TAC AAC
          Tyr Tyr Ser Cys Val Phe Ser Val His His Asn Gly Thr Arg Tyr Asn
                                               170
50
          ATC ACC AAG ACT GTC AAT ATA ACA GTT ATT GAA GGA AGG AGT AAA GTA
          Ile Thr Lys Thr Val Asn Ile Thr Val Ile Glu Gly Arg Ser Lys Val
                                           185
```

	ACT CCA 624	GCT	ATT	TTA	GGA	CCA	AAG	TGT	GAG	AAG	GTT	GGT	GTA	GAA	CTA
5	Thr Pro	Ala 195	Ile	Leu	Gly	Pro	Lys 200	Cys	Glu	Lys	Val	Gly 205	Val	Glu	Leu
_	GGA AAG 672		GTG	GAG	TTG	AAC		AGT	GCT	TCA	TTG		AAA	GAC	GAT
	Gly Lys 210	_	Val	Glu	Leu	Asn 215	Cys	Ser	Ala	Ser	Leu 220	Asn	Lys	Asp	Asp
10	CTG TTT		TGG	AGC	ATC		AAA	GAG	GAC	AGC		GAC	CCT	AAT	GTG
	Leu Phe 225	Tyr	Trp	Ser	Ile 230	Arg	Lys	Glu	Asp	Ser 235	Ser	Asp	Pro	Asn	Val 240
	CAA GAA 768	GAC	AGG	AAG		ACG	ACA	ACA	TGG		TCT	GAA	GGC	AAA	
15	Gln Glu	Asp	Arg	Lys 245	Glu	Thr	Thr	Thr	Trp 250	Ile	Ser	Glu	Gly	Lys 255	Leu
	CAT GCT 816	TCA	AAA	ATA	CTG	AGA	TTT	CAG	AAA	ATT	ACT	GAA	AAC	TAT	CTC
	His Ala	Ser	Lys 260	Ile	Leu	Arg	Phe	Gln 265	Lys	Ile	Thr	Glu	Asn 270	Tyr	Leu
20	AAT GTT 864	TTA	TAT	AAT	TGC	ACC	GTG	GCC	AAC	GAA	GAA	GCC	ATA	GAC	ACC
	Asn Val	275	_				280					285			
	AAG AGC 912	TTC	GTC	TTG	GTG	AGA	AAA	GAA	ATA	CCT	GAT	ATC	CCA	GGC	CAT
25	Lys Ser 290					295	_				300			_	
	GTC TTT 960	ACA	GGA	GGA	GTA	ACT	GTG	CTT	GTT	CTC	GCC	TCT	GTG	GCA	GCA
	Val Phe 305		-	-	310				3	315					320
30	GTG TGT 1008														
	Val Cys			325					330					335	
	TTC TAT 1056														
35	Phe Tyr		340					345					350		
	ACA TAT 1104														
	Thr Tyr	355					360					365			
40	AAA GAA 1152														
	Lys Glu 370		_			375					380				
	AAA CAG 1200														
45	Lys Gln 385		_	_	390					395					400
	GGC GGA														
	Gly Gly			405					410					415	
50	AGG CTA 1296														
	Arg Leu		420					425					430		
	CGT GAG	CTC	GAG	AGT	GGA	CTC	CAC	GAA	GCA	CTG	ďΤΑ	GAG	AGG	HAG	AII

```
1344
          Arg Glu Leu Glu Ser Gly Leu His Glu Ala Leu Val Glu Arg Lys Ile
                                       440
                   435
          AAG ATC ATC TTA ATT GAG TTT ACT CCA GCC AGC AAC ATC ACC TTT CTC
5
          1392
          Lys Ile Ile Leu Ile Glu Phe Thr Pro Ala Ser Asn Ile Thr Phe Leu
                                   455
                                                        460
          CCC CCG TCG CTG AAA CTC CTG AAG TCC TAC AGA GTT CTA AAA TGG AGG
          Pro Pro Ser Leu Lys Leu Lys Ser Tyr Arg Val Leu Lys Trp Arg
10
                               470
                                                    475
                                                                         480
          GCT GAC AGT CCC TCC ATG AAC TCA AGG TTC TGG AAG AAT CTT GTT TAC
          Ala Asp Ser Pro Ser Met Asn Ser Arg Phe Trp Lys Asn Leu Val Tyr
                           485
                                                490
          CTG ATG CCC GCA AAA GCC GTC AAG CCA TGG AGA GAG GAG TCG GAG GCG
15
          Leu Met Pro Ala Lys Ala Val Lys Pro Trp Arg Glu Glu Ser Glu Ala
                                           505
                       500
          CGG TCT GTT CTC TCA GCA CCT
          Arg Ser Val Leu Ser Ala Pro
20
                  515
           (4) INFORMATION FOR SEQ ID NO:3:
                (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 312 base pairs
                     (B) TYPE: nucleic acid
25
                     (C) strandedness: double
                     (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE: cDNA
                (ix) FEATURE:
                     (A) NAME/KEY: mat peptide
                     (B) LOCATION: 1..312
30
                     (C) IDENTIFICATION METHOD:S
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
          GAA TCT TGT ACT TCA CGT CCC CAC ATT ACT GTG GTT GAA GGG GAA CCT
          Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu Gly Glu Pro
35
                                                 10
          TTC TAT CTG AAA CAT TGC TCG TGT TCA CTT GCA CAT GAG ATT GAA ACA
          Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu Ile Glu Thr
                                            25
                        20
          ACC ACC AAA AGC TGG TAC AAA AGC AGT GGA TCA CAG GAA CAT GTG GAG
40
          Thr Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Gln Glu His Val Glu
          CTG AAC CCA AGG AGT TCC TCG AGA ATT GCT TTG CAT GAT TGT GTT TTG
          192
          Leu Asn Pro Arg Ser Ser Ser Arg Ile Ala Leu His Asp Cys Val Leu
45
               50
          GAG TTT TGG CCA GTT GAG TTG AAT GAC ACA GGA TCT TAC TTT TTC CAA
          Glu Phe Trp Pro Val Glu Leu Asn Asp Thr Gly Ser Tyr Phe Phe Gln
           65
          ATG AAA AAT TAT ACT CAG AAA TGG AAA TTA AAT GTC ATC AGA AGA AAT
50
          288
          Met Lys Asn Tyr Thr Gln Lys Trp Lys Leu Asn Val Ile Arg Arg Asn
                                                 90
                                                                     95
                            85
```

```
AAA CAC AGC TGT TTC ACT GAA AGA
           312
           Lys His Ser Cys Phe Thr Glu Arq
                       100
5
           (5) INFORMATION FOR SEQ ID NO:4:
                (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 921 base pairs
                     (B) TYPE: nucleic acid
                     (C) strandedness: double
10
                     (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE:cDNA
                (ix) FEATURE:
                     (A) NAME/KEY: mat peptide
                     (B) LOCATION: 1..921
                     (C) IDENTIFICATION METHOD:S
15
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
          TCA AAA AGT TGT ATT CAC CGA TCA CAA ATT CAT GTG GTA GAG GGA GAA
          Ser Lys Ser Cys Ile His Arg Ser Gln Ile His Val Val Glu Gly Glu
                                                 10
20
          CCT TTT TAT CTG AAG CCA TGT GGC ATA TCT GCA CCA GTG CAC AGG AAT
          Pro Phe Tyr Leu Lys Pro Cys Gly Ile Ser Ala Pro Val His Arg Asn
          GAA ACA GCC ACC ATG AGA TGG TTC AAA GGC AGT GCT TCA CAT GAG TAT
25
          Glu Thr Ala Thr Met Arg Trp Phe Lys Gly Ser Ala Ser His Glu Tyr
          AGA GAG CTG AAC AAC AGA AGC TCG CCC AGA GTC ACT TTT CAT GAT CAC
          192
          Arg Glu Leu Asn Asn Arg Ser Ser Pro Arg Val Thr Phe His Asp His
                                    55
30
          ACC TTG GAA TTC TGG CCA GTT GAG ATG GAG GAT GAG GGA ACG TAC ATT
          Thr Leu Glu Phe Trp Pro Val Glu Met Glu Asp Glu Gly Thr Tyr Ile
                                70
          TCT CAA GTC GGA AAT GAT CGT CGC AAT TGG ACC TTA AAT GTC ACC AAA
35
          Ser Gln Val Gly Asn Asp Arg Arg Asn Trp Thr Leu Asn Val Thr Lys
          AGA AAC AAA CAC AGC TGT TTC TCT GAC AAG CTC GTG ACA AGC AGA GAT
          Arg Asn Lys His Ser Cys Phe Ser Asp Lys Leu Val Thr Ser Arg Asp
                       100
40
                                            105
          GTT GAA GTT AAC AAA TCT CTG CAT ATC ACT TGT AAG AAT CCT AAC TAT
          384
          Val Glu Val Asn Lys Ser Leu His Ile Thr Cys Lys Asn Pro Asn Tyr
                  115
                                       120
          GAA GAG CTG ATC CAG GAC ACA TGG CTG TAT AAG AAC TGT AAG GAA ATA
          432
45
          Glu Glu Leu Ile Gln Asp Thr Trp Leu Tyr Lys Asn Cys Lys Glu Ile
              130
                                   135
                                                        140
          TCC AAA ACC CCA AGG ATC CTG AAG GAT GCC GAG TTT GGA GAT GAG GGC
          480
          Ser Lys Thr Pro Arg Ile Leu Lys Asp Ala Glu Phe Gly Asp Glu Gly
50
                               150
                                                    155
          TAC TAC TCC TGC GTG TTT TCT GTC CAC CAT AAT GGG ACA CGG TAC AAC
          Tyr Tyr Ser Cys Val Phe Ser Val His His Asn Gly Thr Arg Tyr Asn
```

```
165
                                                170
           ATC ACC AAG ACT GTC AAT ATA ACA GTT ATT GAA GGA AGG AGT AAA GTA
           Ile Thr Lys Thr Val Asn Ile Thr Val Ile Glu Gly Arg Ser Lys Val
5
                       180
           ACT CCA GCT ATT TTA GGA CCA AAG TGT GAG AAG GTT GGT GTA GAA CTA
           624
           Thr Pro Ala Ile Leu Gly Pro Lys Cys Glu Lys Val Gly Val Glu Leu
                                        200
           GGA AAG GAT GTG GAG TTG AAC TGC AGT GCT TCA TTG AAT AAA GAC GAT
10
           672
           Gly Lys Asp Val Glu Leu Asn Cys Ser Ala Ser Leu Asn Lys Asp Asp
               210
           CTG TTT TAT TGG AGC ATC AGG AAA GAG GAC AGC TCA GAC CCT AAT GTG
           720
          Leu Phe Tyr Trp Ser Ile Arg Lys Glu Asp Ser Ser Asp Pro Asn Val
15
           225
                                                    235
           CAA GAA GAC AGG AAG GAG ACA ACA TGG ATT TCT GAA GGC AAA CTG
          Gln Glu Asp Arg Lys Glu Thr Thr Trp Ile Ser Glu Gly Lys Leu
          CAT GCT TCA AAA ATA CTG AGA TTT CAG AAA ATT ACT GAA AAC TAT CTC
20
          His Ala Ser Lys Ile Leu Arg Phe Gln Lys Ile Thr Glu Asn Tyr Leu
                       260
                                            265
          AAT GTT TTA TAT AAT TGC ACC GTG GCC AAC GAA GAA GCC ATA GAC ACC
          864
          Asn Val Leu Tyr Asn Cys Thr Val Ala Asn Glu Glu Ala Ile Asp Thr
25
                   275
                                        280
          AAG AGC TTC GTC TTG GTG AGA AAA GAA ATA CCT GAT ATC CCA GGC CAT
          Lys Ser Phe Val Leu Val Arg Lys Glu Ile Pro Asp Ile Pro Gly His
              290
                                   295
          GTC TTT ACA
30
          921
          Val Phe Thr
          305
           (6) INFORMATION FOR SEQ ID NO:5:
35
                (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 621 base pairs
                     (B) TYPE: nucleic acid
                     (C) strandedness: double
                     (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE:cDNA
                (ix) FEATURE:
40
                     (A) NAME/KEY: mat peptide
                     (B) LOCATION: 1..621
                     (C) IDENTIFICATION METHOD:S
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
          GAA TCT TGT ACT TCA CGT CCC CAC ATT ACT GTG GTT GAA GGG GAA CCT
45
          Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu Gly Glu Pro
                                                 10
          TTC TAT CTG AAA CAT TGC TCG TGT TCA CTT GCA CAT GAG ATT GAA ACA
          Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu Ile Glu Thr
50
                                            2.5
          ACC ACC AAA AGC TGG TAC AAA AGC AGT GGA TCA CAG GAA CAT GTG GAG
```

```
Thr Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Gln Glu His Val Glu
                   35
                                        40
          CTG AAC CCA AGG AGT TCC TCG AGA ATT GCT TTG CAT GAT TGT GTT TTG
          192
5
          Leu Asn Pro Arg Ser Ser Ser Arg Ile Ala Leu His Asp Cys Val Leu
                                    55
          GAG TTT TGG CCA GTT GAG TTG AAT GAC ACA GGA TCT TAC TTT TTC CAA
          Glu Phe Trp Pro Val Glu Leu Asn Asp Thr Gly Ser Tyr Phe Phe Gln
                                70
10
          ATG AAA AAT TAT ACT CAG AAA TGG AAA TTA AAT GTC ATC AGA AGA AAT
          288
          Met Lys Asn Tyr Thr Gln Lys Trp Lys Leu Asn Val Ile Arg Arg Asn
                                                90
                                                                     95
          AAA CAC AGC TGT TTC ACT GAA AGA CAA GTA ACT AGT AAA ATT GTG GAA
          336
15
          Lys His Ser Cys Phe Thr Glu Arg Gln Val Thr Ser Lys Ile Val Glu
                      100
                                           105
                                                                110
          GTT AAA AAA TTT TTT CAG ATA ACC TGT GAA AAC AGT TAC TAT CAA ACA
          384
          Val Lys Lys Phe Phe Gln Ile Thr Cys Glu Asn Ser Tyr Tyr Gln Thr
                  115
                                       120
                                                            125
20
          CTG GTC AAC AGC ACA TCA TTG TAT AAG AAC TGT AAA AAG CTA CTG
          432
          Leu Val Asn Ser Thr Ser Leu Tyr Lys Asn Cys Lys Lys Leu Leu Leu
              130
                                   135
          GAG AAC AAT AAA AAC CCA ACG ATA AAG AAG AAC GCC GAG TTT GAA GAT
25
          Glu Asn Asn Lys Asn Pro Thr Ile Lys Lys Asn Ala Glu Phe Glu Asp
          145
                               150
                                                   155
          GAG GGG TAT TAC TCC TGC GTG CAT TTC CTT CAT CAT AAT GGA AAA CTA
          528
          Gln Gly Tyr Tyr Ser Cys Val His Phe Leu His His Asn Gly Lys Leu
                           165
                                               170
30
          TTT AAT ATC ACC AAA ACC TTC AAT ATA ACA ATA GTG GAA GAT CGC AGT
          576
          Phe Asn Ile Thr Lys Thr Phe Asn Ile Thr Ile Val Glu Asp Arg Ser
                      180
                                           185
                                                                190
          AAT ATA GTT CCG GTT CTT GGA CCA AAG CTT AAC CAT GTT GCA
35
          Asn Ile Val Pro Val Leu Leu Gly Pro Lys Leu Asn His Val Ala
                  195
                                       200
          (7) INFORMATION FOR SEQ ID NO:6:
               (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 927 base pairs
40
                     (B) TYPE: nucleic acid
                    (C) strandedness: double
                    (D) TOPOLOGY: linear
               (ii) MOLECULE TYPE:cDNA
               (ix) FEATURE:
                    (A) NAME/KEY: mat peptide
45
                    (B) LOCATION: 1..927
                    (C) IDENTIFICATION METHOD: E
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
          GAA TCT TGT ACT TCA CGT CCC CAC ATT ACT GTG GTT GAA GGG GAA CCT
50
          Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu Gly Glu Pro
                                                10
          TTC TAT CTG AAA CAT TGC TCG TGT TCA CTT GCA CAT GAG ATT GAA ACA
```

25

Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu Ile Glu Thr 20 2.5 ACC ACC AAA AGC TGG TAC AAA AGC AGT GGA TCA CAG GAA CAT GTG GAG 5 Thr Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Gln Glu His Val Glu 3.5 40 45 CTG AAC CCA AGG AGT TCC TCG AGA ATT GCT TTG CAT GAT TGT GTT TTG Leu Asn Pro Arg Ser Ser Ser Arg Ile Ala Leu His Asp Cys Val Leu 10 5.0 55 GAG TTT TGG CCA GTT GAG TTG AAT GAC ACA GGA TCT TAC TTT TTC CAA Glu Phe Trp Pro Val Glu Leu Asn Asp Thr Gly Ser Tyr Phe Phe Gln 65 70 75 ATG AAA AAT TAT ACT CAG AAA TGG AAA TTA AAT GTC ATC AGA AGA AAT 15 Met Lys Asn Tyr Thr Gln Lys Trp Lys Leu Asn Val Ile Arg Arg Asn 90 85 AAA CAC AGC TGT TTC ACT GAA AGA CAA GTA ACT AGT AAA ATT GTG GAA Lys His Ser Cys Phe Thr Glu Arg Gln Val Thr Ser Lys Ile Val Glu 20 100 105 GTT AAA AAA TTT TTT CAG ATA ACC TGT GAA AAC AGT TAC TAT CAA ACA 384 Val Lys Lys Phe Phe Gln Ile Thr Cys Glu Asn Ser Tyr Tyr Gln Thr 115 120 CTG GTC AAC AGC ACA TCA TTG TAT AAG AAC TGT AAA AAG CTA CTG 25 432 Leu Val Asn Ser Thr Ser Leu Tyr Lys Asn Cys Lys Leu Leu Leu 135 GAG AAC AAT AAA AAC CCA ACG ATA AAG AAG AAC GCC GAG TTT GAA GAT Glu Asn Asn Lys Asn Pro Thr Ile Lys Lys Asn Ala Glu Phe Glu Asp 30 155 CAG GGG TAT TAC TCC TGC GTG CAT TTC CTT CAT CAT AAT GGA AAA CTA Gln Gly Tyr Tyr Ser Cys Val His Phe Leu His His Asn Gly Lys Leu 165 170 TTT AAT ATC ACC AAA ACC TTC AAT ATA ACA ATA GTG GAA GAT CGC AGT 35 Phe Asn Ile Thr Lys Thr Phe Asn Ile Thr Ile Val Glu Asp Arg Ser 185 AAT ATA GTT CCG GTT CTT CGA CCA AAG CTT AAC CAT GTT GCA GTG Asn Ile Val Pro Val Leu Leu Gly Pro Lys Leu Asn His Val Ala Val 40 195 200 GAA TTA GGA AAA AAC GTA AGG CTC AAC TGC TCT GCT TTG CTG AAT GAA Glu Leu Gly Lys Asn Val Arg Leu Asn Cys Ser Ala Leu Leu Asn Glu GAG GAT GTA ATT TAT TGG ATG TTC GGG GAA GAA AAT GGA TCG GAT CCT 45 Glu Asp Val Ile Tyr Trp Met Phe Gly Glu Glu Asn Gly Ser Asp Pro 225 230 235 AAT ATA CAT GAA GAG AAA GAA ATG AGA ATT ATG ACT CCA GAA GGC AAA Asn Ile His Glu Glu Lys Glu Met Arg Ile Met Thr Pro Glu Gly Lys 50 245 250 TGG CAT GCT TCA AAA GTA TTG AGA ATT GAA AAT ATT GGT GAA AGC AAT

```
Trp His Ala Ser Lys Val Leu Arg Ile Glu Asn Ile Gly Glu Ser Asn
                       260
                                            265
                                                                270
          CTA AAT GTT TTA TAT AAT TGC ACT GTG GCC AGC ACG GGA GGC ACA GAC
          864
5
          Leu Asn Val Leu Tyr Asn Cys Thr Val Ala Ser Thr Gly Gly Thr Asp
                  275
                                       280
                                                            285
          ACC AAA AGC TTC ATC TTG GTG AGA AAA GAC ATG GCT GAT ATC CCA GGC
          912
          Thr Lys Ser Phe Ile Leu Val Arg Lys Asp Met Ala Asp Ile Pro Gly
              290
                                   295
10
          CAC GTC TTC ACA AGA
          927
          His Val Phe Thr Arg
          305
          (8) INFORMATION FOR SEQ ID NO:7:
15
               (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 1620 base pairs
                     (B) TYPE: nucleic acid
                     (C) strandedness: double
                     (D) TOPOLOGY: linear
               (ii) MOLECULE TYPE:cDNA
20
                (vi)ORIGINAL SOURCE:
                     (A) ORGANISM: lymphoblastoid cell derived from a patient
                                with Hodgkin's disease
                     (B) INDIVIDUAL ISOLATE: L428 (FERM BP-5777)
               (ix) FEATURE:
25
                     (A) NAME/KEY: sig peptide
                     (B) LOCATION: 1..57
                     (C) IDENTIFICATION METHOD: E
               (ix) FEATURE:
                     (A) NAME/KEY: mat peptide
                     (B) LOCATION: 58..1620
30
                     (C) IDENTIFICATION METHOD: E
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
          ATG AAT TGT AGA GAA TTA CCC TTG ACC CTT TGG GTG CTT ATA TCT GTA
          48
          Met Asn Cys Arg Glu Leu Pro Leu Thr Leu Trp Val Leu Ile Ser Val
35
                           -15
                                                -10
          AGC ACT GCA GAA TCT TGT ACT TCA CGT CCC CAC ATT ACT GTG GTT GAA
          Ser Thr Ala Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu
          GGG GAA CCT TTC TAT CTG AAA CAT TGC TCG TGT TCA CTT GCA CAT GAG
40
          Gly Glu Pro Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu
                                                         2.5
          ATT GAA ACA ACC ACC AAA AGC TGG TAC AAA AGC AGT GGA TCA CAG GAA
          Ile Glu Thr Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Gln Glu
45
                                35
                                                     40
          CAT GTG GAG CTG AAC CCA AGG AGT TCC TCG AGA ATT GCT TTG CAT GAT
          His Val Glu Leu Asn Pro Arg Ser Ser Ser Arg Ile Ala Leu His Asp
                                                 55
          TGT GTT TTG GAG TTT TGG CCA GTT GAG TTG AAT GAC ACA GGA TCT TAC
50
          288
          Cys Val Leu Glu Phe Trp Pro Val Glu Leu Asn Asp Thr Gly Ser Tyr
          TTT TTC CAA ATG AAA AAT TAT ACT CAG AAA TGG AAA TTA AAT GTC ATC
```

27

336 Phe Phe Gln Met Lys Asn Tyr Thr Gln Lys Trp Lys Leu Asn Val Ile 80 85 AGA AGA AAT AAA CAC AGC TGT TTC ACT GAA AGA CAA GTA ACT AGT AAA 5 Arg Arg Asn Lys His Ser Cys Phe Thr Glu Arg Gln Val Thr Ser Lys 105 100 ATT GTG GAA GTT AAA AAA TTT TTT CAG ATA ACC TGT GAA AAC AGT TAC 432 Ile Val Glu Val Lys Lys Phe Phe Gln Ile Thr Cys Glu Asn Ser Tyr 10 110 115 TAT CAA ACA CTG GTC AAC AGC ACA TCA TTG TAT AAG AAC TGT AAA AAG 480 Tyr Gln Thr Leu Val Asn Ser Thr Ser Leu Tyr Lys Asn Cys Lys 130 135 CTA CTG GAG AAC AAT AAA AAC CCA ACG ATA AAG AAG AAC GCC GAG 15 528 Leu Leu Leu Glu Asn Asn Lys Asn Pro Thr Ile Lys Lys Asn Ala Glu 145 150 TTT GAA GAT CAG GGG TAT TAC TCC TGC GTG CAT TTC CTT CAT CAT AAT Phe Glu Asp Gln Gly Tyr Tyr Ser Cys Val His Phe Leu His His Asn 20 165 GGA AAA CTA TTT AAT ATC ACC AAA ACC TTC AAT ATA ACA ATA GTG GAA 624 Gly Lys Leu Phe Asn Ile Thr Lys Thr Phe Asn Ile Thr Ile Val Glu GAT CGC AGT AAT ATA GTT CCG GTT CTT CTT GGA CCA AAG CTT AAC CAT 25 Asp Arg Ser Asn Ile Val Pro Val Leu Leu Gly Pro Lys Leu Asn His 195 200 GTT GCA GTG GAA TTA GGA AAA AAC GTA AGG CTC AAC TGC TCT GCT TTG Val Ala Val Glu Leu Gly Lys Asn Val Arg Leu Asn Cys Ser Ala Leu 30 210 CTG AAT GAA GAG GAT GTA ATT TAT TGG ATG TTC GGG GAA GAA AAT GGA Leu Asn Glu Glu Asp Val Ile Tyr Trp Met Phe Gly Glu Glu Asn Gly 230 TCG GAT CCT AAT ATA CAT GAA GAG AAA GAA ATG AGA ATT ATG ACT CCA 35 Ser Asp Pro Asn Ile His Glu Glu Lys Glu Met Arg Ile Met Thr Pro 240 245 GAA GGC AAA TGG CAT GCT TCA AAA GTA TTG AGA ATT GAA AAT ATT GGT Glu Gly Lys Trp His Ala Ser Lys Val Leu Arg Ile Glu Asn Ile Gly 40 260 GAA AGC AAT CTA AAT GTT TTA TAT AAT TGC ACT GTG GCC AGC ACG GGA 912 Glu Ser Asn Leu Asn Val Leu Tyr Asn Cys Thr Val Ala Ser Thr Gly 270 275 280 GGC ACA GAC ACC AAA AGC TTC ATC TTG GTG AGA AAA GAC ATG GCT GAT 45 Gly Thr Asp Thr Lys Ser Phe Ile Leu Val Arg Lys Asp Met Ala Asp 290 295 ATC CCA GGC CAC GTC TTC ACA AGA GGA ATG ATC ATA GCT GTT TTG ATC Ile Pro Gly His Val Phe Thr Arg Gly Met Ile Ile Ala Val Leu Ile 50 305 310 TTG GTG GCA GTA GTG TGC CTA GTG ACT GTG TGT GTC ATT TAT AGA GTT

```
Leu Val Ala Val Val Cys Leu Val Thr Val Cys Val Ile Tyr Arg Val
                   320
                                       325
                                                            330
          GAC TTG GTT CTA TTT TAT AGA CAT TTA ACG AGA AGA GAT GAA ACA TTA
          1104
5
          Asp Leu Val Leu Phe Tyr Arg His Leu Thr Arg Arg Asp Glu Thr Leu
                                   340
                                                        345
          ACA GAT GGA AAA ACA TAT GAT GCT TTT GTG TCT TAC CTA AAA GAA TGC
          1152
          Thr Asp Gly Lys Thr Tyr Asp Ala Phe Val Ser Tyr Leu Lys Glu Cys
                                                    360
10
          CGA CCT GAA AAT GGA GAG GAG CAC ACC TTT GCT GTG GAG ATT TTG CCC
          Arg Pro Glu Asn Gly Glu Glu His Thr Phe Ala Val Glu Ile Leu Pro
                           370
                                                375
                                                                    380
          AGG GTG TTG GAG AAA CAT TTT GGG TAT AAG TTA TGC ATA TTT GAA AGG
          1248
15
          Arg Val Leu Glu Lys His Phe Gly Tyr Lys Leu Cys Ile Phe Glu Arg
                                            390
                       385
                                                                395
          GAT GTA GTG CCT GGA GGA GCT GTT GTT GAT GAA ATC CAC TCA CTG ATA
          1296
          Asp Val Val Pro Gly Gly Ala Val Val Asp Glu Ile His Ser Leu Ile
                  400
                                       405
20
                                                            410
          GAG AAA AGC CGA AGA CTA ATC ATT GTC CTA AGT AAA AGT TAT ATG TCT
          1344
          Glu Lys Ser Arg Arg Leu Ile Ile Val Leu Ser Lys Ser Tyr Met Ser
              415
                                   420
          AAT GAG GTC AGG TAT GAA CTT GAA AGT GGA CTC CAT GAA GCA TTG GTG
25
          Asn Glu Val Arg Tyr Glu Leu Glu Ser Gly Leu His Glu Ala Leu Val
          430
                               435
                                                    440
          GAA AGA AAA ATT AAA ATA ATC TTA ATT GAA TTT ACA CCT GTT ACT GAC
          1440
          Glu Arg Lys Ile Lys Ile Ile Leu Ile Glu Phe Thr Pro Val Thr Asp
30
                           450
                                               455
          TTC ACA TTC TTG CCC CAA TCA CTA AAG CTT TTG AAA TCT CAC AGA GTT
          1488
          Phe Thr Phe Leu Pro Gln Ser Leu Lys Leu Lys Ser His Arg Val
                       465
                                           470
                                                                475
          CTG AAG TGG AAG GCC GAT AAA TCT CTT TCT TAT AAC TCA AGG TTC TGG
35
          1536
          Leu Lys Trp Lys Ala Asp Lys Ser Leu Ser Tyr Asn Ser Arg Phe Trp
                  480
                                       485
                                                            490
          AAG AAC CTT CTT TAC TTA ATG CCT GCA AAA ACA GTC AAG CCA GGT AGA
          1584
          Lys Asn Leu Leu Tyr Leu Met Pro Ala Lys Thr Val Lys Pro Gly Arg
40
              495
                                   500
                                                        505
          GAC GAA CCG GAA GTC TTG CCT GTT CTT TCC GAG TCT
          1620
          Asp Glu Pro Glu Val Leu Pro Val Leu Ser Glu Ser
          510
                               515
                                                   520
45
          (9) INFORMATION FOR SEQ ID NO:8:
               (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 369 base pairs
                     (B) TYPE: nucleic acid
                     (C) strandedness: double
                     (D) TOPOLOGY: linear
50
               (ii) MOLECULE TYPE:cDNA
               (ix) FEATURE:
```

(A) NAME/KEY: sig peptide

```
(B) LOCATION: 1..57
                      (C) IDENTIFICATION METHOD:S
                 (ix) FEATURE:
                      (A) NAME/KEY: mat peptide
5
                      (B) LOCATION: 58..369
                      (C) IDENTIFICATION METHOD:S
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
           ATG AAT TGT AGA GAA TTA CCC TTG ACC CTT TGG GTG CTT ATA TCT GTA
10
           Met Asn Cys Arg Glu Leu Pro Leu Thr Leu Trp Val Leu Ile Ser Val
                            -15
           AGC ACT GCA GAA TCT TGT ACT TCA CGT CCC CAC ATT ACT GTG GTT GAA
           96
           Ser Thr Ala Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu
15
           GGG GAA CCT TTC TAT CTG AAA CAT TGC TCG TGT TCA CTT GCA CAT GAG
           Gly Glu Pro Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu
                                                          25
           ATT GAA ACA ACC ACC AAA AGC TGG TAC AAA AGC AGT GGA TCA CAG GAA
           192
20
           Ile Glu Thr Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Glu Glu
            30
           CAT GTG GAG CTG AAC CCA AGG AGT TCC TCG AGA ATT GCT TTG CAT GAT
           His Val Glu Leu Asn Pro Arg Ser Ser Ser Arg Ile Ala Leu His Asp
25
           TGT GTT TTG GAG TTT TGG CCA GTT GAG TTG AAT GAC ACA GGA TCT TAC
           Cys Val Leu Glu Phe Trp Pro Val Glu Leu Asn Asp Thr Gly Ser Tyr
           TTT TTC CAA ATG AAA AAT TAT ACT CAG AAA TGG AAA TTA AAT GTC ATC
           336
30
           Phe Phe Gln Met Lys Asn Tyr Thr Gln Lys Trp Lys Leu Asn Val Ile
                                         85
           AGA AGA AAT AAA CAC AGC TGT TTC ACT GAA AGA
           Arg Arg Asn Lys His Ser Cys Phe Thr Glu Arg
35
           (10) INFORMATION FOR SEQ ID NO:9:
                (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 678 base pairs
                      (B) TYPE: nucleic acid
                      (C) strandedness: double
40
                      (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE:cDNA
                (ix) FEATURE:
                      (A) NAME/KEY: sig peptide
                      (B) LOCATION:1..57
                      (C) IDENTIFICATION METHOD:S
45
                (ix) FEATURE:
                      (A) NAME/KEY: mat peptide
                      (B) LOCATION: 58..678
                      (C) IDENTIFICATION METHOD:S
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
50
           ATG AAT TGT AGA GAA TTA CCC TTG ACC CTT TGG GTG CTT ATA TCT GTA
           Met Asn Cys Arg Glu Leu Pro Leu Thr Leu Trp Val Leu Ile Ser Val
```

30

```
-15
                                               -10
          AGC ACT GCA GAA TCT TGT ACT TCA CGT CCC CAC ATT ACT GTG GTT GAA
          Ser Thr Ala Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu
5
          GGG GAA CCT TTC TAT CTG AAA CAT TGC TCG TGT TCA CTT GCA CAT GAG
          Gly Glu Pro Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu
          ATT GAA ACA ACC ACC AAA AGC TGG TAC AAA AGC AGT GGA TCA CAG GAA
10
          192
          Ile Glu Thr Thr Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Gln Glu
                                                    40
          CAT GTG GAG CTG AAC CCA AGG AGT TCC TCG AGA ATT GCT TTG CAT GAT
          His Val Glu Leu Asn Pro Arg Ser Ser Ser Arg Ile Ala Leu His Asp
15
          TGT GTT TTG GAG TTT TGG CCA GTT GAG TTG AAT GAC ACA GGA TCT TAC
          Cys Val Leu Glu Phe Trp Pro Val Glu Leu Asn Asp Thr Gly Ser Tyr
          TTT TTC CAA ATG AAA AAT TAT ACT CAG AAA TGG AAA TTA AAT GTC ATC
20
          336
          Phe Phe Gln Met Lys Asn Tyr Thr Gln Lys Trp Lys Leu Asn Val Ile
                   80
                                        85
          AGA AGA AAT AAA CAC AGC TGT TTC ACT GAA AGA CAA GTA ACT AGT AAA
          384
          Arg Arg Asn Lys His Ser Cys Phe Thr Glu Arg Gln Val Thr Ser Lys
25
                                   100
                                                       105
          ATT GTG GAA GTT AAA AAA TTT TTT CAG ATA ACC TGT GAA AAC AGT TAC
          432
          Ile Val Glu Val Lys Lys Phe Phe Gln Ile Thr Cys Glu Asn Ser Tyr
          110
                               115
                                                   120
          TAT CAA ACA CTG GTC AAC AGC ACA TCA TTG TAT AAG AAC TGT AAA AAG
30
          Tyr Gln Thr Leu Val Asn Ser Thr Ser Leu Tyr Lys Asn Cys Lys
                           130
                                               135
          CTA CTG GAG AAC AAT AAA AAC CCA ACG ATA AAG AAG AAC GCC GAG
          Leu Leu Leu Glu Asn Asn Lys Asn Pro Thr Ile Lys Lys Asn Ala Glu
35
                      145
                                           150
          TTT GAA GAT CAG GGG TAT TAC TCC TGC GTG CAT TTC CTT CAT CAT AAT
          576
          Phe Glu Asp Gln Gly Tyr Tyr Ser Cys Val His Phe Leu His His Asn
                  160
                                       165
                                                           170
          GGA AAA CTA TTT AAT ATC ACC AAA ACC TTC AAT ATA ACA ATA GTG GAA
40
          624
          Gly Lys Leu Phe Asn Ile Thr Lys Thr Phe Asn Ile Thr Ile Val Glu
                                   180
          GAT CGC AGT AAT ATA GTT CCG GTT CTT CTT GGA CCA AAG CTT AAC CAT
          Asp Arg Ser Asn Ile Val Pro Val Leu Leu Gly Pro Lys Leu Asn His
45
          190
                               195
                                                   200
                                                                       205
          GTT GCA
          678
          Val Ala
```

(11) INFORMATION FOR SEQ ID NO:10:
 (i)SEQUENCE CHARACTERISTICS:
 (A)LENGTH:984 base pairs
 (B)TYPE:nucleic acid

50

55

```
(C) strandedness: double
                     (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE:cDNA
                (ix) FEATURE:
5
                     (A) NAME/KEY:sig peptide
                     (B) LOCATION:1..57
                     (C) IDENTIFICATION METHOD: E
                (ix) FEATURE:
                     (A) NAME/KEY:mat peptide
                     (B) LOCATION: 58..984
10
                     (C) IDENTIFICATION METHOD: E
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
          ATG AAT TGT AGA GAA TTA CCC TTG ACC CTT TGG GTG CTT ATA TCT GTA
           Met Asn Cys Arg Glu Leu Pro Leu Thr Leu Trp Val Leu Ile Ser Val
15
                           -15
                                                -10
          AGC ACT GCA GAA TCT TGT ACT TCA CGT CCC CAC ATT ACT GTG GTT GAA
          Ser Thr Ala Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu
          GGG GAA CCT TTC TAT CTG AAA CAT TGC TCG TGT TCA CTT GCA CAT GAG
20
          Gly Glu Pro Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu
                                    20
          ATT GAA ACA ACC ACC AAA AGC TGG TAC AAA AGC AGT GGA TCA CAG GAA
          Ile Glu Thr Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Glu Glu
25
           3.0
                                35
                                                     40
          CAT GTG GAG CTG AAC CCA AGG AGT TCC TCG AGA ATT GCT TTG CAT GAT
          His Val Glu Leu Asn Pro Arg Ser Ser Ser Arg Ile Ala Leu His Asp
          TGT GTT TTG GAG TTT TGG CCA GTT GAG TTG AAT GAC ACA GGA TCT TAC
30
          Cys Val Leu Glu Phe Trp Pro Val Glu Leu Asn Asp Thr Gly Ser Tyr
                        65
                                            70
          TTT TTC CAA ATG AAA AAT TAT ACT CAG AAA TGG AAA TTA AAT GTC ATC
          336
          Phe Phe Gln Met Lys Asn Tyr Thr Gln Lys Trp Lys Leu Asn Val Ile
35
                   80
                                        85
          AGA AGA AAT AAA CAC AGC TGT TTC ACT GAA AGA CAA GTA ACT AGT AAA
          384
          Arg Arg Asn Lys His Ser Cys Phe Thr Glu Arg Gln Val Thr Ser Lys
                                   100
          ATT GTG GAA GTT AAA AAA TTT TTT CAG ATA ACC TGT GAA AAC AGT TAC
40
          432
          Ile Val Glu Val Lys Lys Phe Phe Gln Ile Thr Cys Glu Asn Ser Tyr
          110
                               115
          TAT CAA ACA CTG GTC AAC AGC ACA TCA TTG TAT AAG AAC TGT AAA AAG
          Tyr Gln Thr Leu Val Asn Ser Thr Ser Leu Tyr Lys Asn Cys Lys
45
                           130
                                               135
          CTA CTA CTG GAG AAC AAT AAA AAC CCA ACG ATA AAG AAG AAC GCC GAG
          528
          Leu Leu Glu Asn Asn Lys Asn Pro Thr Ile Lys Lys Asn Ala Glu
          TTT GAA GAT CAG GGG TAT TAC TCC TGC GTG CAT TTC CTT CAT CAT AAT
50
          576
          Phe Glu Asp Gln Gly Tyr Tyr Ser Cys Val His Phe Leu His His Asn
                  160
                                       165
```

	624															GAA
5	Gly	Lys 175	Leu	Phe	Asn	Ile	Thr 180	Lys	Thr	Phe	Asn	Ile 185	Thr	Ile	Val	Glu
5	672						CCG		CTT			CCA				
	Asp 190	Arg	Ser	Asn	Ile	Val 195	Pro	Val	Leu	Leu	Gly 200	Pro	Lys	Leu	Asn	His 205
10	GTT 720	GCA	GTG	GAA	TTA	GGA	AAA	AAC	GTA	AGG	CTC	AAC	TGC	TCT	GCT	
70	Val	Ala	Val	Glu	Leu 210	Gly	Lys	Asn	Val	Arg 215	Leu	Asn	Cys	Ser	Ala 220	Leu
	CTG 768	AAT	GAA	GAG	GAT	GTA	ATT	TAT	TGG		TTC	GGG	GAA	GAA		GGA
15	Leu	Asn	Glu	Glu 225	Asp	Val	Ile	Tyr	Trp 230	Met	Phe	Gly	Glu	Glu 235	Asn	Gly
15	TCG 816	GAT	CCT		ATA	CAT	GAA	GAG	AAA	GAA	ATG	AGA	ATT		ACT	CCA
		Asp	Pro 240	Asn	Ile	His	Glu	Glu 245	Lys	Glu	Met	Arg	Ile 250	Met	Thr	Pro
00	GAA 864	GGC		TGG	CAT	GCT	TCA		GTA	TTG	AGA	ATT		AAT	ATT	GGT
20		Gly 255	Lys	Trp	His	Ala	Ser 260	Lys	Val	Leu	Arg	Ile 265	Glu	Asn	Ile	Gly
	GAA 912		AAT	CTA	AAT	GTT	TTA	TAT	AAT	TGC	ACT		GCC	AGC	ACG	GGA
25		Ser	Asn	Leu	Asn	Val 275	Leu	Tyr	Asn	Cys	Thr 280	Val	Ala	Ser	Thr	Gly 285
25		ACA	GAC	ACC	AAA		TTC	ATC	TTG	GTG		AAA	GAC	ATG	GCT	
		Thr	Asp	Thr	Lys 290	Ser	Phe	Ile	Leu	Val 295	Arg	Lys	Asp	Met	Ala 300	Asp
30	ATC 984	CCA	GGC	CAC		TTC	ACA	AGA							300	
30		Pro	Gly	His 305	Val	Phe	Thr	Arg								
	(12)		RMAT													
35		(1)) LEN	IGTH:	975	base	pai								
	(B)TYPE:nucleic acid (C)strandedness:double															
			.) MOI		E TY											
40		(1)		AAN (IE/KE			ptid	le							
		, .	(0		NTIF			METH	IOD:S							
		(lX) NAM	IE/KE				le							
45		, .	(0		NTIF	'ICAT	NOI	METH	IOD:S							
									Q ID							
	48								ACA							
50				-15					Thr -10		-			-5		-
	96								CGA							
	Ser	Ala	Ser	Lys	Ser	Cys	Ile	His	Arg	Ser	Gln	Ile	His	Val	Val	Glu

GGA GAA CCT TTT TAT CTG AAG CCA TGT GGC ATA TCT GCA CCA GTG CAC Gly Glu Pro Phe Tyr Leu Lys Pro Cys Gly Ile Ser Ala Pro Val His 5 15 20 AGG AAT GAA ACA GCC ACC ATG AGA TGG TTC AAA GGC AGT GCT TCA CAT 192 Arg Asn Glu Thr Ala Thr Met Arg Trp Phe Lys Gly Ser Ala Ser His 40 GAG TAT AGA GAG CTG AAC AAC AGA AGC TCG CCC AGA GTC ACT TTT CAT 10 Glu Tyr Arg Glu Leu Asn Asn Arg Ser Ser Pro Arg Val Thr Phe His 55 GAT CAC ACC TTG GAA TTC TGG CCA GTT GAG ATG GAG GAT GAG GGA ACG Asp His Thr Leu Glu Phe Trp Pro Val Glu Met Glu Asp Glu Gly Thr 15 TAC ATT TCT CAA GTC GGA AAT GAT CGT CGC AAT TGG ACC TTA AAT GTC Tyr Ile Ser Gln Val Gly Asn Asp Arg Asn Trp Thr Leu Asn Val ACC AAA AGA AAC AAA CAC AGC TGT TTC TCT GAC AAG CTC GTG ACA AGC 20 Thr Lys Arg Asn Lys His Ser Cys Phe Ser Asp Lys Leu Val Thr Ser 100 105 AGA GAT GTT GAA GTT AAC AAA TCT CTG CAT ATC ACT TGT AAG AAT CCT 432 Arg Asp Val Glu Val Asn Lys Ser Leu His Ile Thr Cys Lys Asn Pro 25 115 120 AAC TAT GAA GAG CTG ATC CAG GAC ACA TGG CTG TAT AAG AAC TGT AAG Asn Tyr Glu Glu Leu Ile Gln Asp Thr Trp Leu Tyr Lys Asn Cys Lys 130 135 GAA ATA TCC AAA ACC CCA AGG ATC CTG AAG GAT GCC GAG TTT GGA GAT 30 Glu Ile Ser Lys Thr Pro Arg Ile Leu Lys Asp Ala Glu Phe Gly Asp 150 GAG GGC TAC TAC TCC TGC GTG TTT TCT GTC CAC CAT AAT GGG ACA CGG Glu Gly Tyr Tyr Ser Cys Val Phe Ser Val His His Asn Gly Thr Arg 35 165 170 TAC AAC ATC ACC AAG ACT GTC AAT ATA ACA GTT ATT GAA GGA AGG AGT 624 Tyr Asn Ile Thr Lys Thr Val Asn Ile Thr Val Ile Glu Gly Arg Ser 175 180 185 AAA GTA ACT CCA GCT ATT TTA GGA CCA AAG TGT GAG AAG GTT GGT GTA 40 Lys Val Thr Pro Ala Ile Leu Gly Pro Lys Cys Glu Lys Val Gly Val 200 GAA CTA GGA AAG GAT GTG GAG TTG AAC TGC AGT GCT TCA TTG AAT AAA Glu Leu Gly Lys Asp Val Glu Leu Asn Cys Ser Ala Ser Leu Asn Lys 45 210 215 GAC GAT CTG TTT TAT TGG AGC ATC AGG AAA GAG GAC AGC TCA GAC CCT Asp Asp Leu Phe Tyr Trp Ser Ile Arg Lys Glu Asp Ser Ser Asp Pro 225 230 235 AAT GTG CAA GAA GAC AGG AAG GAG ACA ACA TGG ATT TCT GAA GGC 50 816 Asn Val Gln Glu Asp Arg Lys Glu Thr Thr Thr Trp Ile Ser Glu Gly 245 250

```
AAA CTG CAT GCT TCA AAA ATA CTG AGA TTT CAG AAA ATT ACT GAA AAC
          Lys Leu His Ala Ser Lys Ile Leu Arg Phe Gln Lys Ile Thr Glu Asn
          255
5
                                260
                                                      265
                                                                           270
          TAT CTC AAT GTT TTA TAT AAT TGC ACC GTG GCC AAC GAA GAA GCC ATA
          912
          Tyr Leu Asn Val Leu Tyr Asn Cys Thr Val Ala Asn Glu Glu Ala Ile
                            275
                                                 280
          GAC ACC AAG AGC TTC GTC TTG GTG AGA AAA GAA ATA CCT GAT ATC CCA
10
          960
          Asp Thr Lys Ser Phe Val Leu Val Arg Lys Glu Ile Pro Asp Ile Pro
                                             295
          GGC CAT GTC TTT ACA
          975
          Gly His Val Phe Thr
15
                   305
          (13) INFORMATION FOR SEQ ID NO:12:
                (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 5
                     (B) TYPE: amino acid
20
                     (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE: peptide
                (v) FRAGMENT TYPE: internal fragment
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
          Trp His Ala Ser Lys
25
          (14) INFORMATION FOR SEQ ID NO:13:
                (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 7
                     (B) TYPE: amino acid
30
                     (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE:peptide
                (v) FRAGMENT TYPE: internal fragment
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
          Ile Met Thr Pro Glu Gly Lys
35
            1
                             5
          (15) INFORMATION FOR SEQ ID NO:14:
                (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 13
                     (B) TYPE: amino acid
40
                     (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE:peptide
               (v) FRAGMENT TYPE: internal fragment
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
          Ser Ser Gly Ser Gln Glu His Val Glu Leu Asn Pro Arg
45
          (16) INFORMATION FOR SEQ ID NO:15:
               (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 4
                     (B) TYPE: amino acid
50
                     (D) TOPOLOGY: linear
               (ii) MOLECULE TYPE:peptide
               (v) FRAGMENT TYPE: internal fragment
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
```

35

```
Ser Trp Tyr Lys
            (17) INFORMATION FOR SEQ ID NO:16:
5
                 (i) SEQUENCE CHARACTERISTICS:
                       (A) LENGTH: 10
                       (B) TYPE: amino acid
                       (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE:peptide
                  (v) FRAGMENT TYPE: internal fragment
10
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
            Leu Asn His Val Ala Val Glu Leu Gly Lys
            (18) INFORMATION FOR SEQ ID NO:17:
15
                 (i) SEQUENCE CHARACTERISTICS:
                       (A) LENGTH: 6
                       (B) TYPE: amino acid
                       (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE:peptide
                 (v) FRAGMENT TYPE:internal fragment
20
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
           Ser Phe Ile Leu Val Arg
            (19) INFORMATION FOR SEQ ID NO:18:
25
                 (i) SEQUENCE CHARACTERISTICS:
                       (A) LENGTH: 15
                       (B) TYPE: amino acid
                       (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE: peptide
                 (v) FRAGMENT TYPE: internal fragment
30
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
           Thr Val Lys Pro Gly Arg Asp Glu Pro Glu Val Leu Pro Val Leu 1 5 10 15
           (20) INFORMATION FOR SEQ ID NO:19:
35
                 (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 11
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE:peptide
                 (v) FRAGMENT TYPE: internal fragment
40
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
           Ser Asn Ile Val Pro Val Leu Leu Gly Pro Lys
           (21) INFORMATION FOR SEQ ID NO:20:
45
                 (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 521
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE: peptide
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
50
           Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu Gly Glu Pro
                               5
                                                    10
```

36

	Phe	Tyr	Leu	Lys 20	His	Cys	Ser	Cys	Ser 25		Ala	His	Glu	. Ile 30		Thr
	Thr	Thr	Lys 35	Ser	Trp	Tyr	Lys	Ser 40	Ser		Ser	Gln	Glu 45	His	Val	Glu
5	Leu	Asn 50	Pro	Arg	Ser	Ser	Ser 55		Ile	Ala	Leu	His 60	Asp		Val	Leu
	Glu 65	Phe	Trp	Pro	Val	Glu 70	Leu	Asn	Asp	Thr	Gly 75	Ser	Tyr	Phe	Phe	Gln 80
					85					90					95	Asn
10				100					105				_	110		Glu
			115					120					125			Thr
15		130					135					140				Leu
15	145					150					155					Asp 160
					165					170				-	175	Leu
00				180					185	Thr				190	-	
20			195					200		Lys			205			
		210					215			Cys		220				
25	225					230				Glu	235					240
25					245					Ile 250					255	
				260					265	Glu			_	270		
30			275					280		Ala			285			_
		290					295			Asp		300				_
	305					310				Ala	315					320
35					325					Ile 330					335	
				340					345	Asp -				350		
			355					360		Leu			365			
40		370					375			Glu		380		-		
	385					390				Ile	395					400
					405					His 410					415	
45			_	420	_				425	Ser				430		
			435				_	440		Glu			445		-	-
		450					455			Pro		460				
50	465					470				Ser	475				_	480
					485					Ser 490					495	
	Leu	ryr	ьeu	мес	rro	Ата	ьys	Inr	val	ьys	Pro	GLY	Arg	Asp	Glu	Pro

```
500
                                          505
                                                              510
          Glu Val Leu Pro Val Leu Ser Glu Ser
                  515
5
          (22) INFORMATION FOR SEQ ID NO:21:
               (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 519
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
               (ii) MOLECULE TYPE: peptide
10
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
          Ser Lys Ser Cys Ile His Arg Ser Gln Ile His Val Val Glu Gly Glu
                                               10
          Pro Phe Tyr Leu Lys Pro Cys Gly Ile Ser Ala Pro Val His Arg Asn
                                          25
15
          Glu Thr Ala Thr Met Arg Trp Phe Lys Gly Ser Ala Ser His Glu Tyr
                                      40
          Arg Glu Leu Asn Asn Arg Ser Ser Pro Arg Val Thr Phe His Asp His
                                  55
          Thr Leu Glu Phe Trp Pro Val Glu Met Glu Asp Glu Gly Thr Tyr Ile
                              70
                                                  75
20
          Ser Gln Val Gly Asn Asp Arg Arg Asn Trp Thr Leu Asn Val Thr Lys
                          85
                                              90
         Arg Asn Lys His Ser Cys Phe Ser Asp Lys Leu Val Thr Ser Arg Asp
                     100
                                         105
                                                             110
          Val Glu Val Asn Lys Ser Leu His Ile Thr Cys Lys Asn Pro Asn Tyr
                                    120
                                                         125
25
         Glu Glu Leu Ile Gln Asp Thr Trp Leu Tyr Lys Asn Cys Lys Glu Ile
             130
                                  135
                                                    140
          Ser Lys Thr Pro Arg Ile Leu Lys Asp Ala Glu Phe Gly Asp Glu Gly
                             150
                                                155
         Tyr Tyr Ser Cys Val Phe Ser Val His His Asn Gly Thr Arg Tyr Asn
                        165
                                             170
                                                                 175
30
          Ile Thr Lys Thr Val Asn Ile Thr Val Ile Glu Gly Arg Ser Lys Val
                    180
                                         185
                                                             190
         Thr Pro Ala Ile Leu Gly Pro Lys Cys Glu Lys Val Gly Val Glu Leu
                195
                                     200
                                                         205
         Gly Lys Asp Val Glu Leu Asn Cys Ser Ala Ser Leu Asn Lys Asp Asp
             210
                                 215
                                                     220
35
         Leu Phe Tyr Trp Ser Ile Arg Lys Glu Asp Ser Ser Asp Pro Asn Val
                            230
                                                235
         Gln Glu Asp Arg Lys Glu Thr Thr Thr Trp Ile Ser Glu Gly Lys Leu
                         245
                                            250
                                                                 255
         His Ala Ser Lys Ile Leu Arg Phe Gln Lys Ile Thr Glu Asn Tyr Leu
                     260
                                         265
                                                             270
40
         Asn Val leu Tyr Asn Cys Thr Val Ala Asn Glu Glu Ala Ile Asp Thr
                                  280
                 275
                                                         285
         Lys Ser Phe Val Leu Val Arg Lys Glu Ile Pro Asp Ile Pro Gly His
             290
                                 295
                                                    300
         Val Phe Thr Gly Gly Val Thr Val Leu Val Leu Ala Ser Val Ala Ala
                             310
                                               315
45
         Val Cys Ile Val Ile Leu Cys Val Ile Tyr Lys Val Asp Leu Val Leu
                         325
                                             330
                                                                 335
         Phe Tyr Arg Arg Ile Ala Glu Arg Asp Glu Thr Leu Thr Asp Gly Lys
                     340
                                         345
                                                             350
         Thr Tyr Asp Ala Phe Val Ser Tyr Leu Lys Glu Cys His Pro Glu Asn
                 355
                                    360
                                                        365
         Lys Glu Glu Tyr Thr Phe Ala Val Glu Thr Leu Pro Arg Val Leu Glu
                                 375
                                                     380
         Lys Gln Phe Gly Tyr Lys Leu Cys Ile Phe Glu Arg Asp Val Val Pro
```

```
385
                               390
          Gly Gly Ala Val Val Glu Glu Ile His Ser Leu Ile Glu Lys Ser Arg
                           405
                                               410
                                                                  415
          Arg Leu Ile Ile Val Leu Ser Gln Ser Tyr Leu Thr Asn Gly Ala Arg
5
                                           425
                                                               430
          Arg Glu Leu Glu Ser Gly Leu His Glu Ala Leu Val Glu Arg Lys Ile
                                       440
                                                            445
          Lys Ile Ile Leu Ile Glu Phe Thr Pro Ala Ser Asn Ile Thr Phe Leu
                                  455
                                                        460
          Pro Pro Ser Leu Lys Leu Lys Ser Tyr Arg Val Leu Lys Trp Arg
10
                               470
                                                   475
          Ala Asp Ser Pro Ser Met Asn Ser Arg Phe Trp Lys Asn Leu Val Tyr
                                               490
          Leu Met Pro Ala Lys Ala Val Lys Pro Trp Arg Glu Glu Ser Glu Ala
                      500
                                           505
          Arg Ser Val Leu Ser Ala Pro
15
                  515
          (23) INFORMATION FOR SEQ ID NO:22:
                (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 309
                     (B) TYPE: amino acid
20
                     (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE: peptide
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:
          Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu Gly Glu Pro
25
          Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu Ile Glu Thr
                                            25
          Thr Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Gln Glu His Val Glu
                                        40
          Leu Asn Pro Arg Ser Ser Ser Arg Ile Ala Leu His Asp Cys Val Leu
                                    55
30
          Glu Phe Trp Pro Val Glu Leu Asn Asp Thr Gly Ser Tyr Phe Phe Gln
                                70
                                                    75
          Met Lys Asn Tyr Thr Gln Lys Trp Lys Leu Asn Val Ile Arg Arg Asn
                                                90
          Lys His Ser Cys Phe Thr Glu Arg Gln Val Thr Ser Lys Ile Val Glu
                      100
                                           105
                                                               110
35
          Val Lys Lys Phe Phe Gln Ile Thr Cys Glu Asn Ser Tyr Tyr Gln Thr
                                       120
                                                           125
          Leu Val Asn Ser Thr Ser Leu Tyr Lys Asn Cys Lys Lys Leu Leu Leu
                                   135
                                                       140
          Glu Asn Asn Lys Asn Pro Thr Ile Lys Lys Asn Ala Glu Phe Glu Asp
                                                   155
40
          Gln Gly Tyr Tyr Ser Cys Val His Phe Leu His His Asn Gly Lys Leu
                          165
                                               170
                                                                   175
          Phe Asn Ile Thr Lys Thr Phe Asn Ile Thr Ile Val Glu Asp Arg Ser
                      180
                                          185
          Asn Ile Val Pro Val Leu Leu Gly Pro Lys Leu Asn His Val Ala Val
                  195
                                       200
                                                           205
45
          Glu Leu Gly Lys Asn Val Arg Leu Asn Cys Ser Ala Leu Leu Asn Glu
                                  215
                                                       220
          Glu Asp Val Ile Tyr Trp Met Phe Gly Glu Glu Asn Gly Ser Asp Pro
                              230
                                                   235
          Asn Ile His Glu Glu Lys Glu Met Arg Ile Met Thr Pro Glu Gly Lys
                          245
                                               250
50
          Trp His Ala Ser Lys Val Leu Arg Ile Glu Asn Ile Gly Glu Ser Asn
                                           265
          Leu Asn Val Leu Tyr Asn Cys Thr Val Ala Ser Thr Gly Gly Thr Asp
```

```
280
          Thr Lys Ser Phe Ile Leu Val Arg Lys Asp Met Ala Asp Ile Pro Gly
              290
                                   295
                                                        300
          His Val Phe Thr Arg
5
          (24) INFORMATION FOR SEQ ID NO:23:
                (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 207
                     (B) TYPE: amino acid
10
                     (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE: peptide
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
          Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu Gly Glu Pro
15
                                                 10
                                                                     15
          Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu Ile Glu Thr
                                            25
          Thr Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Gln Glu His Val Glu
                   35
                                        40
          Leu Asn Pro Arg Ser Ser Ser Arg Ile Ala Leu His Asp Cys Val Leu
                                    55
                                                         60
20
          Glu Phe Trp Pro Val Glu Leu Asn Asp Thr Gly Ser Tyr Phe Phe Gln
                                70
                                                    75
          Met Lys Asn Tyr Thr Gln Lys Trp Lys Leu Asn Val Ile Arg Arg Asn
                           85
                                                90
          Lys His Ser Cys Phe Thr Glu Arg Gln Val Thr Ser Lys Ile Val Glu
                      100
                                           105
25
                                                                110
          Val Lys Lys Phe Phe Gln Ile Thr Cys Glu Asn Ser Tyr Tyr Gln Thr
                  115
                                       120
                                                            125
          Leu Val Asn Ser Thr Ser Leu Tyr Lys Asn Cys Lys Lys Leu Leu
              130
                                   135
                                                        140
          Glu Asn Asn Lys Asn Pro Thr Ile Lys Lys Asn Ala Glu Phe Glu Asp
                              150
30
                                                   155
          Gln Gly Tyr Tyr Ser Cys Val His Phe Leu His His Asn Gly Lys Leu
                          165
                                               170
                                                                    175
          Phe Asn Ile Thr Lys Thr Phe Asn Ile Thr Ile Val Glu Asp Arg Ser
                                           185
                                                                190
          Asn Ile Val Pro Val Leu Leu Gly Pro Lys Leu Asn His Val Ala
                  195
35
                                       200
          (25) INFORMATION FOR SEQ ID NO:24:
               (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 104
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
40
               (ii) MOLECULE TYPE: peptide
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
          Glu Ser Cys Thr Ser Arg Pro His Ile Thr Val Val Glu Gly Glu Pro
                                                10
          Phe Tyr Leu Lys His Cys Ser Cys Ser Leu Ala His Glu Ile Glu Thr
45
                       20
                                            25
                                                                30
          The Thr Lys Ser Trp Tyr Lys Ser Ser Gly Ser Gln Glu His Val Glu
          Leu Asn Pro Arg Ser Ser Ser Arg Ile Ala Leu His Asp Cys Val Leu
                                    55
                                                        60
          Glu Phe Trp Pro Val Glu Leu Asn Asp Thr Gly Ser Tyr Phe Phe Gln
50
                               70
                                                    75
          Met Lys Asn Tyr Thr Gln Lys Trp Lys Leu Asn Val Ile Arg Arg Asn
                                                90
```

```
Lys His Ser Cys Phe Thr Glu Arg
                        100
            (26) INFORMATION FOR SEQ ID NO:25:
5
                 (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 307
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE:peptide
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:
10
           Ser Lys Ser Cys Ile His Arg Ser Gln Ile His Val Val Glu Gly Glu
                                                                       15
           Pro Phe Tyr Leu Lys Pro Cys Gly Ile Ser Ala Pro Val His Arg Asn
                         2.0
                                              25
                                                                   3.0
           Glu Thr Ala Thr Met Arg Trp Phe Lys Gly Ser Ala Ser His Glu Tyr
15
                     35
                                          40
                                                               45
           Arg Glu Leu Asn Asn Arg Ser Ser Pro Arg Val Thr Phe His Asp His
                                     55
                                                          60
           Thr Leu Glu Phe Trp Pro Val Glu Met Glu Asp Glu Gly Thr
                                 70
                                                      75
           Ser Gln Val Gly Asn Asp Arg Arg Asn Trp Thr Leu Asn Val Thr Lys
20
                             85
                                                  90
           Arg Asn Lys His Ser Cys Phe Ser Asp Lys Leu Val Thr Ser Arg Asp
                        100
                                             105
                                                                  110
           Val Glu Val Asn Lys Ser Leu His Ile Thr Cys Lys Asn Pro Asn Tyr
                   115
                                        120
                                                             125
           Glu Glu Leu Ile Gln Asp Thr Trp Leu Tyr Lys Asn Cys Lys Glu Ile
25
               130
                                    135
                                                         140
           Ser Lys Thr Pro Arg Ile Leu Lys Asp Ala Glu Phe Gly Asp Glu Gly
                                150
                                                     155
                                                                          160
           Tyr Tyr Ser Cys Val Phe Ser Val His His Asn Gly Thr Arg Tyr Asn
                            165
                                                 170
                                                                      175
           Ile Thr Lys Thr Val Asn Ile Thr Val Ile Glu Gly Arg Ser Lys Val
30
                       180
                                            185
                                                                 190
           Thr Pro Ala Ile Leu Gly Pro Lys Cys Glu Lys Val Gly Val Glu Leu
                                        200
                                                             205
           Gly Lys Asp Val Glu Leu Asn Cys Ser Ala Ser Leu Asn Lys Asp Asp
               210
                                    215
                                                         220
           Leu Phe Tyr Trp Ser Ile Arg Lys Glu Asp Ser Ser Asp Pro Asn Val
35
                                230
                                                     235
                                                                          240
           Gln Glu Asp Arg Lys Glu Thr Thr Trp Ile Ser Glu Gly Lys Leu
                            245
                                                 250
                                                                     255
           His Ala Ser Lys Ile Leu Arg Phe Gln Lys Ile Thr Glu Asn Tyr Leu
                        260
                                            265
                                                                 270
           Asn Val Leu Tyr Asn Cys Thr Val Ala Asn Glu Glu Ala Ile Asp Thr
40
                   275
                                        280
                                                            285
           Lys Ser Phe Val Leu Val Arg Lys Glu Ile Pro Asp Ile Pro Gly His
               290
                                    295
           Val Phe Thr
           305
45
           (27) INFORMATION FOR SEQ ID NO:26:
                (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 157
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE:peptide
50
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:
```

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn

```
10
           Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp
                         20
                                              25
                                                                   30
5
               Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile
                    35
                                          40
                                                              45
           Ile Ser Met
                       Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile
                50
                                     55
                                                          60
           Ser Val Lys
                           Glu Lys Ile Ser Xaa Leu Ser Cys Glu Asn Lys Ile
            65
                                 70
                                                      75
           Ile Ser Phe Lys
                           Glu Met Asn Pro Pro Asp Asn Ile Lys Asp
10
                                                                     Thr Lys
                             85
                                                  90
           Ser Asp Ile Ile Phe
                               Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys
                        100
                                             105
                                                                 110
           Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu
                                        120
                   115
                                                             125
15
           Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu
               130
                                    135
                                                         140
           Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp
           145
                                150
                                                     155
20
           (28) INFORMATION FOR SEQ ID NO:27:
                (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 157
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
                (ii) MOLECULE TYPE:peptide
25
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:
           Asn Phe Gly Arg Leu His Cys Thr Thr Ala Val Ile Arg Asn Ile Asn
             1
                                                  10
           Asp Gln Val Leu Phe Val Asp Lys Arg Gln Pro Val Phe Glu Asp Met
                        20
                                             25
                                                                  30
30
           Thr Asp Ile Asp Gln Ser Ala Ser Glu Pro Gln Thr Arg Leu Ile Ile
                    35
                                         40
           Tyr Met Tyr Lys Asp Ser Glu Val Arg Gly Leu Ala Val Thr Leu Ser
                50
                                     55
                                                          60
           Val Lys Asp Ser Lys Xaa Ser Thr Leu Ser Cys Lys Asn Lys Ile Ile
            65
                                 70
                                                      75
35
           Ser Phe Glu Glu Met Asp Pro Pro Glu Asn Ile Asp Asp Ile Gln Ser
                             85
                                                  90
          Asp Leu Ile Phe Phe Gln Lys Arg Val Pro Gly His Asn Lys Met Glu
                       100
                                            105
              Glu Ser Ser Leu Tyr Glu Gly His Phe Leu Ala Cys Gln Lys Glu
                   115
                                        120
                                                             125
40
          Asp Asp Ala Phe Lys Leu Ile Leu Lys Lys Asp Glu Asn Gly Asp
               130
                                    135
                                                         140
          Lys Ser Val Met Phe Thr Leu Thr Asn Leu His Gln Ser
          145
                                150
```

Claims

- A polypeptide as interleukin-18 receptor, which is obtainable through gene expression.
 - 2. The polypeptide of claim 1, which is obtainable by bringing into expression a human or mouse gene in a host of animal, plant or microbe origin.
- 55 3. The polypeptide of claim 1, wherein said gene contains a part or whole of the nucleotide sequence of SEQ ID NO:1 or 2.
 - 4. The polypeptide of claim 1, wherein said gene contains the nucleotide sequence of SEQ ID NO:3 or 4.

- 5. The polypeptide of claim 1, wherein said gene contains either nucleotide sequence of SEQ ID NOs:5 to 11.
- 6. The polypeptide of claim 1, which contains one or more amino acid sequences of SEQ ID NOs:12 to 19.
- 5 7. The polypeptide of claim 1, which contains a part or whole of the nucleotide sequence of SEQ ID NO:20 or 21.
 - 8. The polypeptide of claim 1, which contains either amino acid sequence of SEQ ID NOs:22 to 25.
- 9. An agent for interleukin-18 receptor susceptive diseases, which contains as effective ingredient the polypeptide of claim 1.
 - 10. The agent of claim 9, which contains as stabilizer a protein, saccharide and/or buffer.
 - 11. An anti-autoimmune disease agent in accordance with claim 9.
 - 12. An immunosuppressant in accordance with claim 9.
 - **13.** A DNA which encodes the polypeptide of claim 1.
- 20 14. The DNA of claim 13, which originates from human or mouse.
 - 15. The DNA of claim 13, which contains a part or whole of either nucleotide sequence of SEQ ID NO:1, SEQ ID NO:2 or their complementary sequence.
- 25 16. The DNA of claim 13, which contains either nucleotide sequence of SEQ ID NO:3, SEQ ID NO:4 or their complementary sequence.
 - 17. The DNA of claim 13, which contains either nucleotide sequence of SEQ ID NO: 5, SEQ ID: 6, SEQ ID NO: 7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11 or their complementary sequence.
 - **18.** The DNA of claim 13, wherein, based on the degeneracy of genetic codes, one or more nucleotides are replaced with different nucleotides while conserving the amino acid sequence.
 - 19. The DNA of claim 13, which is placed in an autonomously replicable vector.
 - 20. The DNA of claim 13, which is placed in a host of animal, plant or microbe origin.
 - 21. A process to prepare polypeptide, comprising bringing into expression a DNA which encodes the polypeptide of claim 1; and collecting the resultant polypeptide.
 - 22. The process of claim 21, wherein the resultant polypeptide is collected through a step which includes salting out, dialysis, filtration, concentration, fractional precipitation, ion-exchange chromatography, gel filtration chromatography, adsorption chromatography, isoelectric focusing chromatography, hydrophobic chromatography, reversed phase chromatography, affinity chromatography, gel electrophoresis and/or isoelectric focusing gel electrophoresis.
 - 23. The process of claim 21, wherein the resultant polypeptide is collected through a step which includes immunoaffinity chromatography using monoclonal antibody.
 - 24. A agent to neutralize interleukin-18, which contains as effective ingredient the polypeptide of claim 1.
 - 25. A method to neutralize interleukin-18, characterized by allowing the polypeptide of claim 1 to act on interleukin-18.

55

50

15

30

35

40

FIG. 1

Lane 1: Molecular weight markers

Lane 2: Sample (with monoclonal antibody)

Lane 3: Sample (without monoclonal antibody)

Lane 4: Molecular weight markers

FIG. 2

- Sample without monoclonal antibody
- Sample with 10 μg/ml monoclonal antibody

FIG. 3

FIG. 4

FIG. 6

<u>FIG. 8</u>

FIG. 9

EUROPEAN SEARCH REPORT

Application Number

EP 97 31 0517

		RED TO BE RELEVANT		
Category	Citation of document with in of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	receptor-like molec	(8), 3967-70, XP002059933	1-11,27	C07K14/715 A61K38/17 A61K39/00
P,X	WO 97 31010 A (IMMU 1997 * the whole documen		1-28	
				TECHNICAL FIELDS SEARCHED (Int.Cl.6) C07K A61K
	The present search report has	been drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	MUNICH	25 March 1998	Cha	akravarty, A
X : pai Y : pai doo A : teo O : no	CATEGORY OF CITED DOCUMENTS tricularly relevant if taken alone tricularly relevant if combined with anot sument of the same category thnological background n-written disclosure ermediate document	L : document cited	ocument, but publ ate I in the application for other reasons	lished on, or