Deep Learning-Based Hybrid Intelligent Intrusion **Detection System**

Guided by Prof. Dr Vinod Chandra SS

Presented by

Ajay Prasad P K 97422607003

DCS KU

November 26, 2023

Overview of Cybersecurity Threats

- Cybersecurity threats are increasing in frequency and complexity, posing a significant risk to individuals, organizations, and governments.
- Examples of common cybersecurity threats include:
 - Malware: malicious software designed to harm or exploit computer systems, including viruses, worms, and Trojan horses.
 - Phishing: a type of social engineering attack that uses fraudulent emails or websites to trick users into revealing sensitive information, such as passwords or credit card numbers.
 - DDoS attacks: Distributed Denial of Service attacks that flood a network or website with traffic, causing it to become unavailable to users.
- Other types of cybersecurity threats include ransomware, insider threats, and advanced persistent threats (APTs).
- The consequences of cybersecurity threats can be severe, including financial losses, reputational damage, and legal liabilities.

Need for Intrusion Detection Systems

- Cybersecurity threats are constantly evolving, and traditional security measures are no longer sufficient to protect against them.
- Proactive security measures are essential to detect and prevent cyber attacks before they can cause damage.
- Intrusion Detection Systems (IDS) are a critical component of proactive security measures, designed to detect and respond to malicious activities in a network.
- IDS can help organizations to:
 - Identify and respond to security incidents in real-time
 - Minimize the impact of security breaches
 - Improve overall network security posture
- IDS can be classified into three categories based on their detection approaches: signature-based systems (SBS), anomaly-based systems (ABS), and stateful protocol analysis detection.
- IDS can be used in conjunction with other security measures, such as firewalls and antivirus software, to provide a comprehensive security solution.

Purpose and Scope

- The purpose of this presentation is to introduce a Deep Learning-Based Hybrid Intelligent Intrusion Detection System (DL-HIDS) that can effectively detect and respond to cyber threats.
- The scope of the discussion includes:
 - An overview of traditional intrusion detection systems (IDS) and their limitations
 - The need for a more advanced IDS that can leverage machine learning algorithms to improve detection accuracy
 - The design and implementation of the DL-HIDS, including the use of deep learning algorithms and feature extraction techniques
 - The evaluation of the DL-HIDS using real-world network traffic data and comparison with other IDS approaches
 - The potential applications and future directions of the DL-HIDS in the field of cybersecurity.

Traditional IDS Overview

- Traditional intrusion detection systems (IDS) are based on signature-based or anomaly-based detection techniques.
- Signature-based IDS use a database of known attack signatures to identify and block malicious traffic.
- Anomaly-based IDS use statistical models to detect deviations from normal network behavior, which may indicate a security breach.
- However, traditional IDS have several limitations, including:
 - Inability to detect unknown or zero-day attacks
 - High false positive rates, which can lead to alert fatigue and reduced effectiveness
 - Limited scalability and adaptability to changing network environments
- These limitations highlight the need for more advanced IDS that can leverage machine learning algorithms to improve detection accuracy and reduce false positives.

Challenges of Traditional ML Techniques

- Explanation of why traditional ML techniques are less effective
- Mention issues like false positives/negatives
- Traditional ML techniques in intrusion detection systems face challenges:
 - Rely on pre-defined features, often unable to capture the dynamic nature of cyber threats.
 - Issues such as false positives and false negatives may arise.
 - Struggle with handling large amounts of data, common in high-volume network traffic.
- These challenges emphasize the need for more advanced techniques, such as deep learning, to improve accuracy and efficiency in intrusion detection systems.

Hybrid Intelligent Approach

Brief explanation of the proposed hybrid intelligent approach

Proposed Hybrid Intelligent Approach

- Combines deep learning techniques: deep belief networks (DBNs) and convolutional neural networks (CNNs)
- With traditional machine learning algorithms: support vector machines (SVMs) and decision trees (DTs)
- Aims to leverage the strengths of both approaches for improved accuracy and efficiency in intrusion detection systems.
- Deep learning algorithms extract high-level features from raw network traffic data.
- Traditional machine learning algorithms handle classification tasks.
- Outperforms traditional machine learning and deep learning techniques alone in terms of accuracy and efficiency.
- Addresses challenges of traditional ML techniques, enhancing accuracy and efficiency in intrusion detection systems.

Architecture Overview

Overview of the architecture of the hybrid IDS

Figure: Architecture of the Hybrid IDS (Figure 1)

Architecture Overview

- Overview of the architecture of the hybrid IDS
- The architecture consists of two stages: Stage-1 and Stage-2.
- In Stage-1:
 - Network traffic is preprocessed for both Spark MLlib and LSTMAE-based modules.
 - Deep learning algorithms extract high-level features from raw network traffic data.
- In Stage-2:
 - Traditional machine learning algorithms (SVM and DT classifiers) handle classification tasks.
- The hybrid IDS combines HIDS and NIDS for better-quality security mechanisms.
- Adaptable and effective in handling the complex and dynamic nature of malicious threats.
- Designed to leverage the strengths of both deep learning and traditional machine learning for improved accuracy and efficiency in intrusion detection systems.

Stage-1: Spark MLlib

- Explanation of the first stage using Spark MLlib
- Stage-1 uses Spark MLlib for anomaly detection.
- Spark MLlib is a powerful big data processing engine for detecting cybersecurity attacks.
- Efficient big data analytics library with over 55 ML algorithms.
- In Stage-1:
 - Network traffic data is preprocessed.
 - Fed into Spark MLlib classifiers for anomaly detection.
 - Classifiers trained on a labeled dataset of normal and malicious network traffic.
- Trained classifiers can detect anomalies in real-time network traffic.
- Highly efficient, capable of processing large volumes of data quickly, suitable for real-time intrusion detection.
- Stage-1 is an effective approach to detecting anomalies in network traffic, contributing to improved accuracy and efficiency in intrusion detection systems.

Stage-2: LSTMAE-based Modules

Explanation of the second stage using LSTMAE-based modules

Figure: LSTMAE-based Modules in Stage-2 (Figure 2)

Stage-2: LSTMAE-based Modules Cntd.

- Stage-2 uses LSTMAE-based modules for misuse attack detection and classification.
- LSTMAE is a variant of the LSTM (Long Short-Term Memory) algorithm, suitable for processing sequential data.
- In Stage-2:
 - Preprocessed and classified anomalous network traffic from Stage-1 is further analyzed.
 - LSTMAE-based modules used to detect and classify the specific type of attack in the network traffic.
- LSTMAE-based modules trained on a labeled dataset of different types of attacks (DOS, Scan, HTTP, R2L) to learn attack characteristics.
- Trained modules can detect and classify attacks in real-time network traffic.
- Stage-2 is an effective approach to detecting and classifying specific types of attacks, contributing to improved accuracy and efficiency in intrusion detection systems.

Advantages of Deep Learning

- Discussion on the advantages of using deep learning algorithms for intrusion detection
- Deep learning algorithms offer several advantages for intrusion detection:
 - Learn complex and abstract features from raw data, challenging for traditional ML algorithms.
 - Handle high-dimensional data and automatically learn feature representations, reducing the need for manual feature engineering.
 - Improve accuracy by detecting subtle patterns and anomalies in network traffic data, often missed by traditional ML algorithms.
 - Adapt to changing network traffic patterns and continuously learn from new data, enhancing effectiveness over time.
- Overall, deep learning algorithms have several advantages over traditional machine learning algorithms for intrusion detection, improving the accuracy and effectiveness of intrusion detection systems.

Importance of Choosing a Suitable Dataset

- The choice of dataset significantly influences testing the effectiveness of intrusion detection systems.
- A suitable dataset should:
 - Contain a diverse range of network traffic data reflecting real-world cyber threats.
- Challenges and considerations in selecting a suitable dataset:
 - Dataset size, quality, and diversity.
 - Careful consideration of these factors and evaluation using appropriate metrics are crucial.
- Ethical considerations:
 - Anonymization of data.
 - Obtain appropriate ethical clearance before using datasets with sensitive information.
- Overall, selecting a suitable dataset is crucial for testing the effectiveness of intrusion detection systems. Researchers should carefully consider challenges, ethical implications, and evaluate datasets appropriately.

ISCX-2012 Dataset Overview

Table 2: Daily traffic ISCX-IDS 2012 dataset summary

Days	Date	Explanation	Size (GB)
Sunday	13/6/2010	Infiltrating the traffic from internal and regular activities	3.95
Monday	14/6/2010	HTTP DOS and regular activities	6.85
Tuesday	15/6/2010	DDOS with a Botnet IRC	23.04
Wednesday	16/6/2010	Normal, hence there are no abnormal activities	17.6
Thursday	17/6/2010	Brute force (SSH) and regular activities	12.3
Friday	11/6/2010	Regular, hence there are no abnormal activities	16.1
Saturday	12/6/2010	Infiltrating the Network traffic from internal and usual activities	4.22

Figure: ISCX-2012 Dataset Overview (Figure 3)

ISCX-2012 Dataset Overview Cntd.

- The ISCX-2012 dataset:
 - Created by the Canadian Institute of Cybersecurity.
 - Contains multi-stage malicious intrusion scenarios: HTTP, DoS, brute force SSH, infiltration, DDoS via an IRC botnet.
 - Comprises over 1.5 million network traffic packets.
 - Carefully designed to accurately reflect real-world cyber threats.
- Summary in Table [Figure 3]:
 - Daily traffic data from June 11 to June 17, 2010.
 - Dataset size ranges from 3.95 GB to 23.04 GB per day.
 - Each day's traffic data reflects different types of cyber threats.
- Overall, the ISCX-2012 dataset is a crucial component of the study, with key features including size, diversity, and accuracy in reflecting real-world cyber threats.

Dataset Utilization

- Explanation of how the ISCX-2012 dataset was used to demonstrate the effectiveness of the proposed HIDS
- The ISCX-2012 dataset:
 - Used to demonstrate the effectiveness of the proposed HIIDS.
 - Contains up-to-date traffic patterns and was created by the Canadian Institute of Cybersecurity.
 - Carefully selected to ensure suitability for testing the HIIDS approach.
- HIIDS Evaluation using ISCX-2012 dataset:
 - Normal and attack classifications.
 - Evaluation metrics:
 - False positive, false negative, true positive.
 - Attack detection precision, error rate.
- Experimental results:
 - Proposed HIIDS outperformed other state-of-the-art IDS in accuracy and efficiency.
 - Achieved a detection rate of 97.52
- Results demonstrate the effectiveness of the proposed hybrid intelligent approach in accurately detecting malicious cyber threats.

Presentation of Results

Proposed HIIDS Results:

Detection rate: 97.52False positive rate: 1.2

Table 6: Classifier performance at several stages

Classifier	Stage	Precision	Recall	F1-score	FAR	DR
LR	1	0.830	0.823	0.8264	10.50	0.82
XGB	1	0.8775	0.8745	0.8759	8.13	0.87
LSTMAE	2	0.9653	0.9752	0.9702	1.2	0.9752

Figure: Classifier Performance (Figure 4)

Presentation of Results Cntd.

- Experimental results:
 - Proposed HIIDS outperformed other state-of-the-art IDS in accuracy and efficiency.
 - Able to detect various types of cyber threats: DoS, port scanning, botnet attacks.
- Effectiveness of the proposed hybrid intelligent approach:
 - Accurate detection of malicious cyber threats demonstrated.
 - Able to detect previously unknown attacks, a significant advantage over traditional IDS.
 - Reduction in the number of false positives, addressing a common problem in traditional IDS.
- Results suggest the potential use of the proposed HIIDS in real-world applications to improve cybersecurity.

Strengths and Weaknesses

• Strengths:

- The proposed HIIDS approach combines the strengths of two different machine learning techniques, improving accuracy and efficiency.
- Able to detect previously unknown attacks, a significant advantage over traditional IDS.
- Reduces the number of false positives, addressing a common problem in traditional IDS.
- Achieves a high detection rate and a low false positive rate, demonstrating effectiveness in accurately detecting malicious cyber threats.
- Has the potential to be used in real-world applications to improve cybersecurity.

Strengths and Weaknesses Cntd.

• Weaknesses:

- Requires a large amount of data for training, which can be time-consuming and resource-intensive.
- May not be effective against sophisticated attacks designed to evade detection.
- May produce false negatives, allowing some attacks to go undetected.
- May not be suitable for real-time detection of cyber threats, as it requires preprocessing of network traffic data.

Comparison with Other ML Methods

 Compare the proposed approach with other state-of-the-art ML methods for intrusion detection

Table 7: Comparison of existing approaches to ISCX-2012 data

Reference	Approach	DR (%)	False alarm rate (%)
Thi-Thu et al. [28]	FS+DT+Variant of RNN	96.33	NA
Kumar et al. [44]	AMGA2 – NB	43.2	7.0
Tan et al. [47]	MCA + EMD	90.12	7.92
Sally et al. [48]	PLL + NGL	95.31	0.80
Heidarian et al. [62]	SVM	89.6	8.6
Keisuke et al. [63]	IDS using Hadoop	86.2	13
Hamed et al. [64]	RFA bigram Approach	89.6	2.6
Mighan et al. [65]	SAE + Classical classifiers	90.3	9.8
Kumar et al. [66]	Ensemble approach	97.0	2.4
Li et al. [67]	RNN – RBM	93.83	1.98
Our approach	HIIDS	97.52	1.2

Figure: ISCX-2012 Dataset Overview (Figure 4)

Comparison with Other ML Methods Cntd.

- Comparison with Other ML Methods:
 - Proposed HIIDS approach compared with other state-of-the-art machine learning methods for intrusion detection.
 - Comparison results:
 - Outperformed other methods in terms of accuracy and efficiency.
 - Able to detect various types of cyber threats: DoS, port scanning, botnet attacks.
 - Reduced the number of false positives, addressing a common problem in other methods.
 - Detected previously unknown attacks, providing another advantage over other methods.
- The comparison suggests that the proposed HIIDS approach has the potential to be used in real-world applications to improve cybersecurity.

Summary

- Proposed Approach (HIIDS):
 - Combines strengths of two machine learning techniques for improved accuracy and efficiency.
 - Uses Spark MLlib and state-of-the-art deep learning approaches, such as LSTMAE.
 - Addresses limitations of conventional intrusion detection techniques.
- Experimental Results:
 - Outperformed other state-of-the-art IDS in accuracy and efficiency.
 - Detected previously unknown attacks, reduced false positives, and identified various cyber threats (DoS, port scanning, botnet attacks).
- Limitations:
 - Requires a large amount of data for training.
 - May not be effective against sophisticated attacks designed to evade detection.
 - May produce false negatives.
- Overall:
 - Potential for real-world applications to improve cybersecurity.
 - Future work should focus on improving scalability and efficiency, exploring applicability to other domains.

Significance of the Study

- Significance of the Study:
 - Potential Impact on Cybersecurity:
 - Cybersecurity attacks are on the rise, and traditional IDS struggle with sophisticated attacks.
 - Proposed HIIDS approach has the potential to overcome limitations and enhance accuracy and efficiency.
 - Experimental Results:
 - Outperformed other state-of-the-art IDS in accuracy and efficiency.
 - Detected previously unknown attacks, reduced false positives, and identified various cyber threats.
 - Potential Real-World Applications:
 - HIIDS can improve cybersecurity by effectively detecting and responding to cyber threats.
 - Helps organizations protect sensitive data, prevent financial losses, and stay ahead of evolving threats.
- In summary, the significance of this study lies in its potential to improve the accuracy and efficiency of intrusion detection systems, impacting cybersecurity and helping organizations stay ahead of ever-evolving threats.

Future Research

- Suggestions for Future Research:
 - Investigate the use of other deep learning techniques:
 - Explore techniques like convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to enhance accuracy and efficiency.
 - Improve the scalability and efficiency of the proposed approach:
 - Address challenges related to the large amount of data required for training to make the approach more practical for real-world applications.
 - Second Explore the applicability of the proposed approach to other domains:
 - Investigate whether the proposed HIIDS approach can be applied to domains beyond intrusion detection, such as fraud detection or anomaly detection in healthcare.
 - Investigate the use of ensemble methods:
 - Explore the application of ensemble methods (e.g., bagging, boosting) to improve the accuracy and robustness of intrusion detection systems.

Q&A

• Open the floor for questions and answers

References I

- X. C. Shen, J. X. Du, and F. Zhang, "An intrusion detection system using a deep neural network with gated recurrent units," IEEE Access, vol. 6, pp. 48697–48707, 2018.
- K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun et al., "A review of Android malware detection approaches based on machine learning," IEEE Access, vol. 8, pp. 124579–124607, 2020.
- M. A. Khan and J. Kim, "Toward developing efficient Conv-AE-based intrusion detection system using the heterogeneous dataset," Electronics, vol. 9, no. 11, pp. 1–17, 2020.
- J. Kim and H. Kim, "An effective intrusion detection classifier using long short-term memory with gradient descent
 optimization," in Proc. Platform Technology and Service (Plat Con), Busan, South Korea, pp. 1–5, 2017.
- G. E. Hinton, S. Osindero, and Y. W. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.
- H. Alqahtani, I. H. Sarker, A. Kalim, S. M. Hossain, S. Ikhlaq et al., "Cyber intrusion detection using machine learning classification techniques," in Proc. Computing Science, Communication and Security, Gujarat, India, pp. 121–131, 2020.

References (continued) I

- N. Kaloudi and L. Jingyue, "The Al-based cyber threat landscape: A survey," ACM Computing Surveys, vol. 53, no. 1, pp. 1–34, 2020.
- B. Li, Y. Wu, J. Song, R. Lu, T. Li et al., "Deep Fed: Federated deep learning for intrusion detection in industrial cyber-physical systems," IEEE Transactions on Industrial Informatics, vol. 1, pp. 1–10, 2020.
- M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, "Deep learning for cybersecurity intrusion detection approaches datasets and comparative study," Journal of Information Security and Applications, vol. 50, pp. 1–19, 2019.