HW4 solution

Problem 1. 3.1

Solution 1.
$$\mathbb{E}[W^2(t) - t | \mathcal{F}_s] = \mathbb{E}[(W(t) - W(s))^2 + 2W(t)W(s) - W(s)^2 | \mathcal{F}_s] - t = t - s + 2W(s)^2 - W(s)^2 - t = W(s)^2 - s$$
.

Problem 2. 3.3

Solution 2. We do the calculation and have

$$\varphi'(u) = \sigma^2 u e^{\frac{\sigma^2 u}{2}},$$

$$\varphi''(u) = (\sigma^2 + \sigma^4 u^2) e^{\frac{\sigma^2 u^2}{2}},$$

$$\varphi'''(u) = (3\sigma^4 u + \sigma^6 u^3) e^{\frac{\sigma^2 u^2}{2}},$$

$$\varphi''''(u) = (3\sigma^4 + 6\sigma^6 u^2 + \sigma^8 u^4) e^{\frac{\sigma^2 u^2}{2}}$$

Therefore, $\mathbb{E}[(X - \mu)^4] = \varphi''''(0) = 3\sigma^4$.

Problem 3. 3.6(i)

Solution 3. We calculate

$$\mathbb{E}[f(X_t)|\mathcal{F}_t] = \mathbb{E}[f(W_t - W_s + (W_s + \mu t))|\mathcal{F}_s] = \int_{-\infty}^{\infty} f(x + W_s + \mu t) \frac{e^{-\frac{x^2}{2(t-s)}}}{\sqrt{2\pi(t-s)}} dx.$$

We do change of variable, let $y = x + W_s + \mu t$, then

$$\mathbb{E}[f(X_t)|\mathcal{F}_t] = \int_{-\infty}^{\infty} f(y) \frac{e^{\frac{-(y-W_s-\mu t)^2}{2(t-s)}}}{\sqrt{2\pi(t-s)}} dy = \int_{-\infty}^{\infty} f(y) \frac{e^{\frac{-(y-W_s-\mu s-\mu(t-s))^2}{2(t-s)}}}{\sqrt{2\pi(t-s)}} dy = g(X_s).$$

Problem 4. Consider a normal random variable $X \sim \mathcal{N}(0,t)$ and a scaled random walk $W^{(n)}(t) = \frac{1}{\sqrt{n}} \sum_{j=1}^{nt} X_j$, whereas $X_j = \begin{cases} 1, & p = 0.5, \\ -1, & p = 0.5 \end{cases}$. Show the limit of the scaled random walk is the normal by comparing their moment-generating function.

Solution 4. In the class, we show that the moment-generating function for the scaled random walk is

$$y = \left(\frac{1}{2}e^{\frac{2}{\sqrt{n}}} + \frac{1}{2}e^{-\frac{s}{\sqrt{n}}}\right)^{nt}.$$

Taking the log, we have $\log(y) = nt \log \left(\frac{1}{2} e^{\frac{2}{\sqrt{n}}} + \frac{1}{2} e^{-\frac{s}{\sqrt{n}}} \right)$. Using the L'Hospital's rule,

$$\lim_{n \to \infty} y = \frac{\frac{d}{dn} \log \left(\frac{1}{2} e^{\frac{2}{\sqrt{n}}} + \frac{1}{2} e^{-\frac{s}{\sqrt{n}}} \right)}{\frac{d}{dn} \frac{1}{nt}} = \lim_{n \to \infty} \frac{st \sqrt{n} e^{\frac{s}{\sqrt{n}}} - st \sqrt{n} e^{-\frac{s}{\sqrt{n}}}}{2e^{\frac{s}{\sqrt{n}}} + 2e^{-\frac{s}{\sqrt{n}}}}.$$

Using the linear approximation, we have $\lim_{n\to\infty}=\frac{s^2t}{2}$. Therefore, $\lim_{n\to\infty}e^y=e^{\frac{s^2t}{2}}$, which is the moment-generating function of X.

Problem 5. Numerically visualize the convergence of the random walk.

Problem 6. Simulate some trajectories of Brownian motions.