Introduction to Machine Learning

CART: Growing a Tree

compstat-lmu.github.io/lecture_i2ml

We start with an empty tree, a root node that contains all the data. Trees are then grown by recursively applying *greedy* optimization to each node \mathcal{N} .

Greedy means we do an **exhaustive search**: All possible splits of \mathcal{N} on all possible points t for all features x_j are compared in terms of their empirical risk $\mathcal{R}(\mathcal{N}, j, t)$.

The training data is then distributed to child nodes according to the optimal split and the procedure is repeated in the child nodes.

Start with a root node of all data, then search for a feature and split-point that minimizes the empirical risk in the child nodes.

Nodes display their current label distribution here for illustration.

We then proceed recursively for each child node: Iterate over all features, and for each feature over all possible split points. Select the best split an divide data in parent node into left and right child nodes:

We then proceed recursively for each child node: Iterate over all features, and for each feature over all split points. Select the "best" split and divide data in parent node into left and right child nodes:

SPLIT PLACEMENT

Splits are usually placed at the mid-point of the observations they split: the large margin to the next closest observations makes better generalization on new, unseen data more likely.