Dr. Shashi Ranjan Kumar

Assistant Professor
Department of Aerospace Engineering
Indian Institute of Technology Bombay
Powai, Mumbai, 400076 India

1 / 35

Dr. Shashi Ranjan Kumar AE 305/717 Lecture 18 Flight Mechanics/Dynamics

Uncontrolled Motion: Lateral Modes

• System matrix with state vector as $[v \ p \ r \ \phi]^T$

$$A = \begin{bmatrix} -0.0558 & 0 & -774 & 32.2 \\ -0.003865 & -0.4342 & 0.4136 & 0 \\ 0.001086 & -0.006112 & -0.1458 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Characteristic equation

$$\lambda^4 + 0.6358\lambda^3 + 0.9388\lambda^2 + 0.5114\lambda + 0.003682 = 0$$

- How to check stability for lateral modes?
- Stability criteria

$$E = 0.003682 > 0$$
, $R = 0.04223 > 0$

• What about stability of lateral modes? No unstable modes

Uncontrolled Motion: Lateral Modes

Eigenvalues

$$\lambda_1 = -0.0072973, \ \lambda_2 = -0.56248, \ \lambda_{3,4} = -0.033011 \pm 0.94655i$$

• What can you say about the lateral modes?

$$\underbrace{\lambda_1 = -0.0072973}_{\text{Spiral mode}}, \ \ \underbrace{\lambda_2 = -0.56248}_{\text{Roll mode}}, \ \ \underbrace{\lambda_{3,4} = -0.033011 \pm 0.94655i}_{\text{Dutch Roll mode}}$$

 Two modes are convergences, one very rapid, one very slow, and one lightly damped oscillation with a period similar to that of the longitudinal SP mode

Mode	Name	Period	$t_{ m half}$	$N_{ m half}$
1	Spiral		95	
2	Roll		1.23	
3	Dutch Roll	6.64	21	3.16

Dr. Shashi Ranjan Kumar

Eigenvectors (polar form)

	Spiral		Rolling convergence		Dutch Roll	
	Magnitude	Phase	Magnitude	Phase	Magnitude	Phase
$\beta = \hat{v}$	0.00119	180°	0.0198	180°	0.33	-28.1°
p	1.63×10^{-4}	Oo	0.0712	180°	0.12	92.0°
p	9.20×10^{-4}	180°	0.0040	Oo	0.037	-112.3°
φ	0.177	180°	1.0	Oo	1.0	Oo
ψ	1.0	00	0.0562	180°	0.31	155.7°
$\frac{y_E}{u_0t^*}$	7.772×10^3	180°	7.65	0°	1.69	-165.8°

• For spiral mode,

$$\beta: \phi: \psi = -0.001119: -0.177: 1$$

- Yawing at nearly zero sideslip with some rolling
- Aerodynamic variables

$$\beta : \hat{p} : \hat{r} = 1 : -0.137 : 0.773$$

- ullet Largest of these eta is negligibly small for moderate value of ϕ, ψ
- A weak mode because aerodynamic forces are very small.

For rolling mode,

$$\beta: \phi: \psi = -0.0198:1:-0.0625$$

- Pure rotation around x- axis
- Aerodynamic variables

$$\beta: \hat{p}: \hat{r} = 0.278: 1: -0.0561$$

- Largest rolling moment is $C_{l_n}\hat{p}$, \hat{r} contribution is small.
- In DR mode, β, ϕ, ψ are of same magnitude.
- ullet \hat{r} is one order smaller while eta and ψ are almost equal and opposite.
- ullet Rectilinear motion with yawing and rolling with rolling lagging yawing by 160°

Uncontrolled Motion: Spiral and DR Modes

Lateral Modes: Spiral Mode

- Eigenvalue of the spiral mode is two orders of magnitude smaller than the next larger one.
- How to approximate this mode?
- Approximation: only two lowest-order terms in characteristic equation.

$$D\lambda_S + E = 0 \implies \lambda_S = -\frac{E}{D}$$

System matrix for lateral modes

$$m{A} = \left[egin{array}{cccc} \mathcal{Y}_{v} & 0 & \mathcal{Y}_{r} & g\cos heta_{0} \ \mathcal{L}_{v} & \mathcal{L}_{p} & \mathcal{L}_{r} & 0 \ \mathcal{N}_{v} & \mathcal{N}_{p} & \mathcal{N}_{r} & 0 \ 1 & 1 & an heta_{0} & 0 \end{array}
ight]$$

$$\bullet \ \mathcal{L}_v = \frac{L_v}{I'} + I'_{zx} N_v$$

Values of D, E

$$\begin{split} E = &g\left[\left(\mathcal{L}_{v} \mathcal{N}_{r} - \mathcal{L}_{r} \mathcal{N}_{v} \right) \cos \theta_{0} + \left(\mathcal{L}_{p} \mathcal{N}_{v} - \mathcal{L}_{v} \mathcal{N}_{p} \right) \sin \theta_{0} \right] \\ D = &- g\left(\mathcal{L}_{v} \cos \theta_{0} + \mathcal{N}_{v} \sin \theta_{0} \right) + \mathcal{Y}_{v} \left(\mathcal{L}_{r} \mathcal{N}_{p} - \mathcal{L}_{p} \mathcal{N}_{r} \right) + \mathcal{Y}_{r} \left(\mathcal{L}_{p} \mathcal{N}_{v} - \mathcal{L}_{v} \mathcal{N}_{p} \right) \end{split}$$

On neglecting smaller terms in D

$$D = -g \left(\mathcal{L}_{v} \cos \theta_{0} + \mathcal{N}_{v} \sin \theta_{0} \right) - u_{0} \left(\mathcal{L}_{p} \mathcal{N}_{v} - \mathcal{L}_{v} \mathcal{N}_{p} \right)$$

- Eigenvalue, $\lambda_S = -0.00725$, 1% different form correct value
- Condition for static stability

$$\begin{split} &\left(\mathcal{L}_{\nu}\mathcal{N}_{r}-\mathcal{L}_{r}\mathcal{N}_{\nu}\right)\cos\theta_{0}+\left(\mathcal{L}_{p}\mathcal{N}_{\nu}-\mathcal{L}_{\nu}\mathcal{N}_{p}\right)\sin\theta_{0}>0\\ &\left(\mathit{C}_{\mathit{I}_{\beta}}\mathit{C}_{\mathit{n}_{r}}-\mathit{C}_{\mathit{n}_{\beta}}\mathit{C}_{\mathit{I}_{r}}\right)\cos\theta_{0}+\left(\mathit{C}_{\mathit{I}_{p}}\mathit{C}_{\mathit{n}_{\beta}}-\mathit{C}_{\mathit{I}_{\beta}}\mathit{C}_{\mathit{n}_{p}}\right)\sin\theta_{0}>0 \end{split}$$

• Stability varies with flight conditions, as some of the derivatives depend on C_{L_0} .

- Rolling convergence: A motion of almost a single degree of freedom, rotation about the x-axis
- Approximation: v = r = 0,

$$\dot{p} = \mathcal{L}_p p$$

• Eigenvalue:

$$\lambda_R = \mathcal{L}_p = rac{L_p}{I_x'} + I_{zx}' N_p$$

- $\lambda_R = -0.434$, 23% smaller than true value -0.562.
- How can we approximate in a better way?
- Another approximation leads to a second-order system: two roots correspond to roll and spiral modes.
- Additionally, Y_p and Y_r are neglected.

 With no approximation to the rolling and yawing moment equations the system that results for horizontal flight is

$$\begin{aligned} 0 &= -u_0 r + g \phi \\ \dot{p} &= \mathcal{L}_v v + \mathcal{L}_p p + \mathcal{L}_r r \\ \dot{r} &= \mathcal{N}_v v + \mathcal{N}_p p + \mathcal{N}_r r \\ \dot{\phi} &= p \end{aligned}$$

Characteristic equation

$$\begin{split} \mathcal{C}\lambda^2 + D\lambda + E &= 0 \\ \mathcal{C} &= \textit{u}_0\mathcal{N}_v, \ D = \textit{u}_0(\mathcal{L}_v\mathcal{N}_p - \mathcal{L}_p\mathcal{N}_v) - g\mathcal{L}_v, \ E = g(\mathcal{L}_v\mathcal{N}_r - \mathcal{L}_r\mathcal{N}_v) \end{split}$$

• For B747, $\lambda_S=-0.00734,~\lambda_R=-0.597,~1\%,~\text{and}~6\%$ less than true values

Lateral Modes: Dutch Roll Mode

- An approximation to lateral oscillation: A "flat" yawing/sideslipping motion with suppressed rolling
- With $p = \phi = 0$, neglecting rolling moment equation and Y_r in first equation.

$$\begin{bmatrix} \dot{v} \\ \dot{p} \\ \vdots \\ \dot{r} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \frac{Y_v}{m} & \frac{Y_p}{m} & \left(\frac{Y_r}{m} - u_o\right) & g \cos \theta_0 \\ \frac{L_v}{I_x'} + I_{cx}'N_v \end{pmatrix} & \left(\frac{L_p}{I_x'} + I_{cx}'N_p\right) & \left(\frac{L_r}{I_x'} + I_{cx}'N_r\right) & 0 \\ \vdots \\ \left(\frac{I_{cx}'}{I_x'} + \frac{N_v}{I_z'}\right) & \left(I_{cx}'L_p + \frac{N_p}{I_z'}\right) & \left(I_{cx}'L_p + \frac{N_r}{I_z'}\right) & 0 \\ \vdots \\ 0 & 1 & \tan \theta_0 & 0 \end{bmatrix} \begin{bmatrix} v \\ p \\ r \\ \phi \end{bmatrix} + \begin{bmatrix} \frac{\Delta Y_c}{m} \\ \frac{\Delta L_c}{T_x'} + I_{cx}'N_c \\ \frac{I_{cx}'\Delta L_c}{I_x'} + \frac{\Delta N_c}{I_z'} \\ \vdots \\ 0 \end{bmatrix}$$

Resultant EOM

$$\dot{v} = \mathcal{Y}_v v - u_0 r, \quad \dot{r} = \mathcal{N}_v v + \mathcal{N}_r r$$

- Characteristic equation $\lambda^2 (\mathcal{Y}_v + \mathcal{N}_r)\lambda + (\mathcal{Y}_v \mathcal{N}_r + u_0 \mathcal{N}_v) = 0$
- ullet Eigenvalues: $\lambda_{DR}=-0.1008\pm0.9157$ i, T=6.86 sec (3% error), $N_{
 m half}=1$
- Damping is overestimated.

- What would be other approximation for damping of DR mode?
- Coefficient of second highest term in characteristic equation is sum of dampings.

$$2n_{DR} + \lambda_R + \lambda_S = \mathcal{Y}_v + \mathcal{L}_p + \mathcal{N}_r \implies n_{DR} = \frac{1}{2} \left[\mathcal{Y}_v + \mathcal{L}_p + \mathcal{N}_r - (\lambda_R + \lambda_S) \right]$$

• As $\lambda_R + \lambda_S = -\frac{D}{C}$,

$$n_{DR} = \frac{1}{2} \left[\mathcal{Y}_{v} + \mathcal{N}_{r} + \frac{\mathcal{L}_{v}}{\mathcal{N}_{v}} \left(\mathcal{N}_{p} - \frac{g}{u_{0}} \right) \right]$$

- Damping $n_{DR} = -0.0159$, while the true value is -0.0330.
- Can the average of two approximation provide better answer?
- Average of the two approximation $n_{DR} = -0.0584$, 77% off from true value.

Response to Actuation of Controls

- Response of aircraft to actuation of the control inputs
- Quantities of interest in symmetric flight: Speed and flight path angle
 Velocity vector
- ullet Ability to apply control forces both $\|$ and \bot to the flight path
- Thrust or drag control and lift control via elevator deflection or wing flaps
- What are the initial responses of these control inputs?
- Thrust control change forward acceleration and initial speed, while the elevator change pitch angle, angle of attack, and lift.
- Short-term and long-term effects of the control inputs (throttle and elevator angle) are quite contrary.

Response to Actuation of Controls

- Steady speed V is governed by lift coefficient, fixed by δ_e .
- A constant $\delta_e \implies$ a fixed V.
- Flight-path angle $\gamma = \theta \alpha$ at any given speed is determined by thrust.
- Result of moving throttle at fixed δ_e is a change in γ without change in V.
- Main initial effect of moving elevator: to rotate the vehicle and influence γ , whereas ultimate effect at fixed throttle is to change both V and γ .
- Responses dominated by long-period, lightly damped phugoid oscillation, and steady state with step inputs reached only after a long time.

Response to Actuation of Controls

Linear time invariant (LTI) system:

$$\dot{x} = Ax + Bc$$

Response to Actuation of Controls

• Transfer function: Ratio of the Laplace transform of the response to that of the input when the system is quiescent for t < 0.

$$\boldsymbol{G}(s) = (s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B}$$

• Response of i^{th} state variable

$$\bar{x}_i(s) = \sum_j G_{ij}(s)\bar{c}_j(s)$$

For single input system

$$\bar{x}(s) = G(s)\bar{c}(s)$$

Overall transfer function

$$G(s) = G_1(s)G_2(s)$$

- High-Order System: Representation as chain of subsystems
- Elemental building blocks: first or second order systems, How?

$$(s\mathbf{I} - A)^{-1} = \frac{\operatorname{adj}(s\mathbf{I} - \mathbf{A})}{\det(s\mathbf{I} - \mathbf{A})}$$

• As **B** is constant matrix, each element of G(s): $G_{ij} = N_{ij}/f(s)$.

$$G_{ij} = \frac{N_{ij}}{(s - \lambda_1) \cdots (s - \lambda_n)} = \frac{N_{ij}}{\prod_{r=1}^m (s - \lambda_r) \prod_{r=m+1}^{(n+m)/2} (s^2 + a_r s + b_r)}$$

Eigenvalues may be real or occurs in complex conjugate pairs.

• Impulse response or impulsive admittance $h_{ij}(t)$: Response to unit impulse given to a system which is initially quiescent.

$$c_j(s) = \delta(t) \implies G_{ij}(s)\overline{\delta}(s) = G_{ij}(s)$$

Impulse response

$$h_{ij}(s) = G_{ij}(s) \implies h_{ij}(t) = \mathcal{L}^{-1}G_{ij}(s)$$

Consider a first order system

$$G(s) = \frac{1}{s - \lambda} = h(s) \implies h(t) = e^{\lambda t}$$

• Usually, $\lambda = -1/T$, where T is time constant, we have

$$h(t) = e^{-t/T}$$

Consider a second order system with differential equation

$$\ddot{y} + 2\zeta\omega_n\dot{y} + \omega_n^2 = c,$$

where state-vector is given by $\mathbf{x} = [y \ \dot{y}]^T$.

Transfer function

$$G(s) = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- Eigenvalues: $\lambda = n \pm i\omega = -\zeta \omega_n \pm i\omega_n \sqrt{1-\zeta^2}$
- Impulse response

$$h(s) = \frac{1}{(s+n)^2 + \omega^2} \implies h(t) = \frac{1}{\omega} e^{nt} \sin \omega t$$

• Does this result hold for $\zeta > 1$? $h(t) = \frac{1}{\omega'} e^{nt} \sinh \omega' t$, $\omega' = \omega_n \sqrt{\zeta^2 - 1}$

• Step response or Indicial admittance, $A_{ij}(t)$: Response to unit step function

$$\bar{\mathcal{A}}_{ij}(s) = G_{ij}(s)I(s) = \frac{G_{ij}(s)}{s}$$

Relation of transfer functions for impulse and step response

$$\bar{\mathcal{A}}_{ij}(s) = \frac{h_{ij}(s)}{s}$$

• Since the initial values of both h_{ij} and A_{ij} are zero,

$$\mathcal{A}_{ij}(t) = \int_0^t h_{ij}(au) d au \implies h_{ij}(t) = rac{d\mathcal{A}_{ij}(t)}{dt}$$

• $A_{ij}(t)$ can be found by Laplace inverse or integration of impulse response.

Step response

First order system

$$\mathcal{A}(t) = T(1 - e^{-t/T})$$

• Second order system, with $\zeta < 1$,

$$\mathcal{A}(t) = \frac{1}{\omega_n^2} \left[1 - e^{nt} \left(\cos \omega t - \frac{n}{\omega} \sin \omega t \right) \right]$$

- What about $\zeta > 1$?
- What is static gain?
- Asymptotic value as $t \to \infty$

$$\lim_{t\to\infty} \mathcal{A}(t) = \lim_{s\to 0} s\mathcal{A}(s) = \lim_{s\to 0} G(s) = K$$

Impulse and Step Response of Second Order System

Response to Actuation of Controls

- A stable LTI system, with sinusoidal input, results in a steady-state sinusoidal response at the same frequency as that of the input.
- What about amplitude and phase of the output?
- Amplitude and phase are generally different from those of the input.
- Consider an input of the form

$$c = A_1 e^{i\omega t} \implies c(s) = \frac{A_1}{s - i\omega}$$

• Form of the response is assumed to be $x = A_2 e^{i\omega t}$.

Frequency Response to Actuation of Controls

Response of system

$$x = A_1 \frac{G(s)}{s - i\omega} = A_1 \frac{N(s)}{(s - i\omega)f(s)}$$

- Roots of denominator: $\lambda_1 \cdots \lambda_n, i\omega$
- Response of the system

$$x(t) = A_1 \sum_{r=1}^{n+1} \left[\frac{(s - \lambda_r) N(s)}{(s - i\omega) f(s)} \right]_{s=\lambda_r} e^{\lambda_r t}$$

$$= A_1 \left[\frac{N(i\omega)}{f(i\omega)} e^{i\omega t} + c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + \dots + c_n e^{\lambda_n t} \right]$$

- What would the response when $t \to \infty$?
- As $t \to \infty$, $e^{\lambda_r t} \to 0 \ \forall \ r$ for stable system.
- Steady state response

$$x(t) = A_1 \frac{N(i\omega)}{f(i\omega)} e^{i\omega t}, \ t \to \infty$$

Steady state response

$$x(t) = A_1 \frac{N(i\omega)}{f(i\omega)} e^{i\omega t} = A_1 G(i\omega) e^{i\omega t} = A_2 e^{i\omega t}$$

We have relation

$$A_2 = A_1 G(i\omega) \implies G(i\omega) = \frac{A_2}{A_1}$$

• Frequency response function, $G(i\omega)$,

$$G(i\omega) = KMe^{i\phi}$$

where K and M are static and dynamic gains, and KM represents total gain.

ullet What about dependency of M and ϕ on frequency? Frequency-dependent

Effect of Poles and Zeros on Frequency Response

• Transfer function of system

$$G(s) = \frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-\lambda_1)(s-\lambda_2)\cdots(s-\lambda_n)}$$

where $\lambda_i \, \forall i = 1 \cdots n$ and $z_j \, \forall j = 1 \cdots m$ are poles and zeros of the system, respectively.

- Assume $(s z_k) = \rho_k e^{i\alpha_k}$ and $(s \lambda_k) = r_k e^{i\beta_k}$
- What can we say about |G| and ϕ ?

Frequency Response

Magnitude and phase of transfer function

$$|G| = \frac{\prod_{k=1}^{m} \rho_k}{\prod_{k=1}^{n} r_k}$$

$$\phi = \sum_{1}^{m} \alpha_k - \sum_{1}^{n} \beta_k$$

- What are the effects of varying frequency when singularity is close to the axis?
- Sharp change in magnitude and about 180° change in phase
- What if there is pole or zero is in LHP?
- What if there is a zero in RHP?

Frequency Response

Consider a system with transfer function

$$G(s) = \frac{1}{s + 1/T}$$

- What is the value of K? $K = \lim_{s \to 0} G(s) = T$
- On substituting $s = i\omega$ in G(s)

$$G(i\omega) = KMe^{i\phi} = rac{T}{1+i\omega\,T} \implies Me^{i\phi} = rac{1-i\omega\,T}{1+\omega^2\,T^2}$$

Amplitude and phase of transfer function

$$M = \frac{1}{\sqrt{1 + \omega^2 T^2}}, \quad \phi = -\tan^{-1} \omega T$$

• At $\omega = 0$, M = 1, $\phi = 0$.

Curve is applicable for all first order systems, with f as input frequency.

Consider a second order system with transfer function

$$G(s) = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- What is the value of M and ϕ ?
- On substituting $s = i\omega$ in G(s)

$$Me^{i\phi} = \frac{\omega_n^2}{(\omega_n^2 - \omega^2) + 2i\zeta\omega_n\omega}$$

$$\boxed{M = \frac{1}{\sqrt{[1-(\omega/\omega_n)^2]^2 + 4\zeta^2\omega^2/\omega_n^2}}, \quad \phi = -\tan^{-1}\frac{2\zeta\omega/\omega_n}{1-(\omega/\omega_n)^2}}$$

• At $\omega = 0$, M = 1, $\phi = 0$.

Frequency-Response Curves: Second-Order System

- What is the difference between representation of first and second order systems?
- A single pair of curves serves to define the frequency response of all first-order systems
- Two families of curves, with the damping ratio as parameter, to display the characteristics of all second-order systems.
- Damping is very important in second order system.
- Damping controls magnitude of the resonance peak which occurs near unity frequency ratio.
- At natural frequency, the phase lag is independent of ζ , as all the curves pass through $\phi = -90^{\circ}$. Why is it so?
- For all ζ , $M \to 1$, $\phi \to 0$ as $\omega/\omega_n \to 0$. What does it mean?

- Frequency Response of Higher Order System
 - How to obtain frequency response of higher order system?
 - Phase changes are additive.
 - Overall amplitude ratio: multiplication of individual ones of all elements.
 - Assume that the system is given by

$$G(s) = G_1(s)G_2(s)\cdots G_n(s)$$

In frequency domain,

$$G(i\omega) = G_1(i\omega)G_2(i\omega)\cdots G_n(i\omega)$$

$$= (K_1M_1K_2M_2\cdots K_nM_n)e^{\phi_1+\phi_2+\cdots+\phi_n}$$

$$= KMe^{i\phi}$$

• Amplitude and phase: $KM = \prod_{r=1}^{n} K_r M_r$, $\phi = \sum_{r=1}^{n} \phi_r$

References

- Bernard Etkin and Llyod Duff Reid, Dynamics of Flight Stability and Control, John Wiley and Sons, Third Edition, 1996.
- Watsuhiko Ogata, Modern Control Engineering, third edition, Prentice Hall, Upper Saddle River, New Jersey 07458.
- Nagrath I. J., and M. Gopal, Control Systems Engineering, second edition, New Delhi: Wiley Eastern, 1982.

Thank you for your attention !!!