This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) SU (11) 1282051 A 1

(5D 4 G 02 B 27/30, 3/00

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3867883/24-10
- (22) 09,01.85
- (46) 07.01.87. Бюл. № 1
- (71) Латвийский государственный университет им. П.Стучки
- (72) Я.А.Спигулис
- (53) 535.885 (088.8)
- (56) Панов В.А., Андреев Л.Н. Оптика микроскопов. Л.: Машиностроение, 1976, с.334.

Патент EIIB № 0117606, кл. G 02 B 7/26, опублик. 1984.

(54) КОЛЛИМАТОР

(57) Изобретение относится к устройствам преобразования лучистой энергии источников расходящегося излучения в виде пучка параллельных лучей без применения зеркальных покрытий. Коллиматор представляет собой тело вращения из однородно прозрачного материала с заданным показателем пре-

ломпения. Профиль поверхности образован вращением линии, составленной из четверти окружности 1, в центре которой располагается источник, отрезка прямой 2, участка параболы 3, отрезка прямой 4 и участка эллипса 5. Наклон оси параболы 3 под углом $Q \leq \arcsin (1-2/n^2)$ относительно оси симметрии обеспечивает полное внутреннее отложение лучей от параболы к поверхности, образованной вращением отрезка прямой 4, расположенного вдоль радиуса окружности 1 под определенным углом, обуславливающим параллельность с осью симметрии преломленных этой поверхностью лучей. Коллиматор отличается повышенной эффективностью образования хода лучей. уменьшенным искажением профиля выходного пучка, свободного от сферических аберраций, и уменьшенными габаритами. 1 ил.

as SU as 1282051

10

50

Изобретение относится к оптике, а точнее к устройствам преобразования лучистой энергии источников расходяшегося излучения (светодиодов, газоразрядных ламп, ламп накаливания и др.) в виде пучка параллельных лучей.

Цель изобретения - уменьшение искажения профиля пучка, упрощение конструкции и экономия материала.

На чертеже изображена верхняя часть коллиматора, аксиальное сечение.

Коллиматор выполнен из прозрачного однородного материала в виде тела вращения, содержащего полусферическую входную поверхность, образованную вращением четверти окружности 1 относительно оси симметрии Х, поверхности, образованной вращением отрезка 2 прямой относительно оси Х, о сопрягающей входную поверхность с боковой поверхностью полного внутреннего отражения, образованную вращением участка параболы 3, причем ось параболы Х наклонена под углом $\theta \leq \arcsin (1 - 2/n^2)$ относительно оси симметрии, и выходную поверхность, образованную вращением отрезка 4 прямой и участка эллипса 5. Причем отрезок 4 прямой расположен вдоль радиуса сферической входной поверхности и наклонен относительно оси симметрии X на угол Ф, определяемый из соотношения

arctg
$$\frac{2\sqrt{n^2-1}-n}{n^2-2} \le \frac{4}{n} < \arccos \frac{1}{n}$$

при условиях

$$n \cos (\Psi_0 + \Theta) = \cos \Psi_0 u n > 1,656,$$

где n - относительный показатель преломления материала.

Образованная вращением отрезка 4 прямой, коническая поверхность со-прягает боковую параболическую и элиптическую поверхности.

Коллиматор работает следующим образом.

Радиальные лучи, имеющие разные углы наклона у относительно оси симметрии X, испускаются источником S в полусфере с телесным углом 2T. При У С у лучи направляются через сферическую поверхность 1 на эллиптическую поверхность 5 коллиматора, где подвергаются преломлению и далее следуют параллельно оси X.Уравнение для линии вращения 5 имеет вид

$$f_5(y) = R \cdot \exp S \frac{\operatorname{tg} y \operatorname{d} y}{1-n \sqrt{1-\operatorname{tg}^2 y}},$$
 (1)

где n - относительный показатель преломления материала кол- лиматора.

После преобразований получают

$$\beta_{s}(\varphi) = \frac{R_{o}(n-1)}{n-\cos\varphi} \tag{2}$$

или

где $\rho_{5}(\psi_{0})$ - значение функции при граничном угле $\psi=\psi_{0}$.

Так как угол преломленного луча с касательной эллиптической поверхности 5 не превышает $\frac{9}{2}$, условие для угла φ следующее:

$$\varphi \arccos \frac{1}{n}$$
 (4)

Для преобразования периферийных лучей, испускаемых под углами $\Psi > \varphi$ в коллиматоре использовано полное внутреннее отражение от поверхности 30 3, которая образована вращением вокруг оси X участка параболы с осью X. Отраженные лучи параллельны оси X' и образуют с осью X угол Θ , выбранный с учетом условия полного внутреннего 35 отражения:

$$i\theta \in \frac{\pi}{2} = 2\arcsin\frac{1}{n} = \arcsin\left(1 - \frac{2}{n^2}\right)$$
.

40 Кривая 3 аналитически описывается выражением

$$\beta_{3}(\varphi) = \frac{R(1+\sin\theta)}{1-\cos(\varphi+\theta)}$$

$$\pi p \mu \ \varphi_{o} \le \varphi < \frac{\pi}{2}, \qquad (6)$$

где $R > \frac{r}{\cos \theta}$ (условие прохождения луча, испущенного при $\psi = \frac{\tilde{u}}{2}$); r = radaputhum pasmep (радитус) источника.

Отраженные от поверхности 3 лучи преломляются поверхностью 4, которая образована вращением радиальной прямой с углом наклона Ψ_{o} . Параллельность преломпенных лучей с осью симметрии X обеспечивает условие $\omega + \theta = \beta$. С учетом закона преломпения

 $n \sin d = \sin \beta$ данное условие можно преобразовать в виде

$$θ + ψ_o = -\frac{π}{2} - \arcsin \frac{\cos ψ_o}{π}$$

UNIN

 $π \cdot \cos (ψ_o + θ) = \cos ψ_o$. (7)

Выражение (7) определяет взаимную связь параметров n, φ , Θ в предлагае— 10 мом решении. Кроме того, имеет место ограничение на величину показателя преломления: n \geqslant n, где значение n, согласно выражениям (4), (5) и (7), удовлетворяет равенству

3 arcsin
$$\frac{1}{n_o} = -\frac{\pi}{2} + \arcsin \frac{1}{n_o^2}$$
 (8)

откуда п = 1,656.

Точка пересечения линий 4 и 5 ,за- 20 дана ходом луча с $\varphi = \frac{\Im}{2}$:

$$\rho_{\xi}(\cdot\varphi) = \frac{R\cos\theta}{\sin(\varphi+\Theta)}.$$
 (9)

Следовательно, выражение для отрезка прямой 4 следующее:

$$\frac{R \cdot \cos \Theta}{\sin(\Psi_0 + \Theta)} \leq \rho_4 (\Psi_0) < \rho_3 (\Psi_0)$$
 (10)

Сопоставляя выражения (5) и (6) можно определить нижний предел значения φ

$$\Psi_0 > \arctan \frac{2\sqrt{n^2-1}-n}{n^2-2}$$
 (11)

Формупа изобретения

Коллиматор из прозрачного однородного материала, содержащий полусферическую входную поверхность, боковую поверхность полного внутреннего отражения, образованную вращением участка параболы, сопрягающую их плоскую кольцеобразную поверхность и выходную поверхность, образованную вращением отрезк: прямой и участка эллипса относительно оси симметрии, отличающийся тем, что, с целью уменьшения искажения профи-15 ля пучка, упрощения конструкции и экономии материала, ось параболы наклонена под углом $\theta \in \arcsin \left(1 - \frac{\pi}{n^2} - \right)$ относительно оси симметрии, а отрезок прямой, вращением которого образована часть выходной поверхности, расположен вдоль радиуса сферической входной поверхности и образует с

осью симметрии угол ч, определяе-

$$\arctan \frac{2\sqrt{n^2-1}-n}{n^2-2} - \frac{n}{2} \le \psi_0 \le \frac{1}{n}$$

мый из соотношения

при условиях: $n \cdot \cos (\psi + \theta) = \cos \psi$, и n > 1,656, где n - относительный показатель преломления материала.

Составитель Г. Татарникова

Редактор М.Бланар

Техред И.Попович

Корректор А.Тяско

3akas 7263/44

Тираж 522

Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д.4/5

Производственно-полиграфическое предприятие, г.Ужгород, ул.Проектная,4