Teil 3: Gewöhnliche Differentialgleichungen

an16: Differentialgleichungen ind Richtungsfelder

Stichworte: DGL, gewöhnliche DGL, Lösungsfunktion, Fragestellungen, Richtungsfelder

Literatur: [Hoffmann], Kapitel 7.1

- **16.1.** Einleitung: Wir geben die Definition einer Differentialgleichung als Funktionalglg. zwischen gesuchten Fkt. y=y(x), der VAriablen x und Ableitungen con y.
- **16.2.** <u>Motivation:</u> Gleichungen mit einer Funktion y und ihrer Ableitungen y',y",... nennt man <u>Differentialgleichungen</u>, Wir möchten solche nach y "auflösen", also Methoden zum Auffinden der Lösungsfunktion für y erarbeiten. Darin soll y in nur einer rellen Variablen x erklärt sein. Wir schreiben kurz <u>GDL</u> für "differentialgleichung".
- **16.3.** Def.: Sei $k \in \mathbb{N}, \emptyset \neq D \subseteq \mathbb{R} \times \mathbb{C}^{k+1}, F : D \to \mathbb{C}$.

Dann heißt eine Glg. der Form

* $F(x, y, y', y'', ..., y^{(k)}) = 0$

eine gewöhnliche Differentialgleichung. (Identifiziere \mathbb{C} mit \mathbb{R}^2)

16.4. Gesucht: ein $IVj \subseteq \mathbb{R}, y: j \to \mathbb{C}$ k-mal diff'bar

mit: $\forall x \in j : (x, y(x), y'(x), ..., y^{(k)}(x)) \in D$ und $\forall x \in f : (*)$

- **16.5.** <u>Bez.:</u> (1) y heißt dann eine <u>Lösung</u> von * (in j), Kurz: <u>Lsg.</u> man sagt, y "erfüllt die" DGL oder "genügt der" DGL.
- (2) Kann (*) speziell ind der Form $y^k = \phi(x, y, y', ..., y^{k-1})$ geschrieben werden, dann heißt die DGL explizit,

und k heißt die Ordnung der DGL.

16.6. Bsp.: y'=10y ist explizit von 1. Ordnung, eine Lsg $\neq 0$ ist $y(x) = 163e^{10x}$.

16.7. Fragen:

- 1. Existiert eine Lsg.? Existiert eine "lokale" Lsg.?
- 2. Falls ja: Wie gewinnt man eine Lsg.?
- 3. Falls ja: Eindeutigkeit?(mehrere Lösungen)
- 4. Maximale Lsg? (bzgl. Fortsetzung der Def. menge j)
- 5. Abhängigkeit der Lsgn. von Parametern?
- 6. Charakterisierung der Lsgn.?

Zu 1./2.: Bsp unlösbare DGL: $(y')^2 + 1 = 0$

Bsp. lösbare DGL: $y' = \phi(x) \Rightarrow y(x) = \int_{-\infty}^{x} \phi(x) dx$ Stammfkt. von ϕ , nicht immer leicht!

<u>Zu 3.:</u> Eindeutigkeit ist i.a. sinnvoll bei Vorgabe von Anfangswerten, man spricht von <u>Anfangswerteaufgaben (AWA)</u>,

Auch: von Anfangswertproblemen (AWP).

- •y'=10y kann unter Vorgabe von y(0)=163 eindeutig gelöst werden, diese ist dann $y(x) = 163e^{10x}$.
- Bsp.: $y' = \sqrt{y}$ ($y \ge 0$) hat unter Vorgabe von y(0)=0(lokal)unendlich viele Lsgn., vgl. Bsp. 17.10.

Man zeigt weitreichende Existenz- und Eindeutigkeitssätze, etwa den Existenz- und Eindeutigkeitssatz

von Picard-Lindelöf (davon gibt es eine globale und eine lokale Version).

<u>Zu 4.:</u> Die Aufgabenstellung fragt nicht nach "Größe" von j. Interessant sind Lösungen auf möglichst große Intervall j.

Bsp.: $y' = y^2, y(0)c > 0$, hier kann die Existenz nur "lokal" gesucht werden, vgl. Bsp. 17.12.

Zu 5.: Die Abhängigkeit der Lösungen von Eingabedaten ist relevant.

Zu 6.: Man sucht nach strukturellen Eigenshaften der Lösungsmenge.

Veranschaulichungen durch <u>Richtungsfelder</u> (für explizite DGL 1. Ordnung):

Vereinbarung: Betr. die DGL $(y)'\phi(x,y)$.

Interpretation: ϕ ordner jedem Punkt $(x, y) \in D$, wo $\phi : D \to \mathbb{R}$, eine Steigung/Richtung zu.

Graphisch: Zeichne in (x,y) ein kleines Geradenstück dieser Richtung ein ("Linienelemente")

Das Ergebnis im Koordinatensystem ist ein Richungsfeld.

 \rightarrow Kurven, die in jedem (x,y) das dortige (vorgegebene) Linienelement als Tangent haben, entsprechen Lösungen der DGL.

Bsp.: $y' = y - x^2$, Bild s. [Hoffmann, S. 236 in §7.1]

Bsp.: $y' = \frac{1}{2}y$ (die r.S. ϕ hängt nur von y ab)

 $\underline{\text{Bsp:}}\ y' = -\frac{x}{y}, y(a) = b > 0, \text{ hat als L\"osung } \underline{\text{Halbkreise}}\ y(x) = \sqrt{r^2 - k^2}, -r < x < r, \text{ wo } r = \sqrt{a^2 + b^2}.$

 $\underline{\text{Bsp.:}}\ y'=\tfrac{x}{y},x>0, y(a)=b, \text{ wo }a>0, \text{ hat als L\"osung }\underline{\text{Halbgeraden}}\ y(x)=\tfrac{b}{a}x,x>0.$

