

Tristate outputs

all 3 are valid

logic 0, logic 1, high impedence (Hi-Z)

neither 1 or 0, acts like an open
circuit (when both transistors are off)

when a device is enabled, O/P is Logic D or 1.
when disabled, O/P is HI-Z

eg tristate buffer, tristate inverter

Tristate Inverter

	Advantages of logic devices with tristate outputs
	2/t oir can be connected together BUT only 1 can be enabled
	else bus contention takes place which results in a wrong off
•	when olps are connected together, they share the same data bus
	nontristate output is essentially enabled and cannot be connected to a tristate output

Open-couertor / drawn output

open-drain can drive LED

L11 practice problems

- 1. Two different logic circuits have the characteristics shown below.
 - (a) Which circuit has better DC noise margin?
 - (b) Which circuit has better DC fan-out?
 - (c) Which circuit can operate at a higher frequency?
 - (d) Are the two circuits able to drive each other?

		Circuit A	Circuit B
	Vcc (V)	5	5
	VIH(min) (V)	1.6	1.8
	VIL(max) (V)	0.9	√≯ 0.7
	VOH(min) (V)	2.2 √ 🗸	2.5
	VOL(max) (V)	0.4	0.3
far [IIH(max) (mA)	1.0	_ 1.5
famout s	IIL(max) (mA)	1.0	/ _ 1.5
4	IOH(max) (mA)	ي 🗸 20	27
1/1	IOL(max) (mA)	25 🇸 🛩	30
tanout	tPLH (ns)	10	18
	tPHL (ns)	8	14
	PD (mW)	16	10

(Adapted from Tocci, Widmer and Moss, ed. 10)

2. The figure below shows how two tristate buffers can be used to construct a bidirectional transceiver that allows digital data to be transmitted from A to B, or from B to A. Describe the circuit operation.

(Tocci, Widmer & Moss, ed. 10)

Page 1 ©2021 NTU

3. Describe the operation and hence obtain the Boolean expression for this CMOS circuit.

(Wakerly Ex. 3.59)

Page 2 ©2021 NTU