

SEQUENCE LISTING

<110> University of Kentucky Research Foundation
Daunert, Sylvia
Rowe, Laura
Dikici, Emre
Deo, Sapna Kamalakar

<120> AEQUORIN AND OBELIN MUTANTS WITH DIFFERING WAVELENGTHS AND BIOLUMINESCENCE

<130> 050229-0421

<140> 10/811,138
<141> 2004-03-29

<160> 6

<170> PatentIn version 3.2

<210> 1
<211> 861
<212> DNA
<213> Aequorea victoria

<400> 1

aatgcaattc atctttgcat caaagaatta catcaaatct ctagttgatc aactaaattg	60
tctcgacaac aacaagcaaa catgacaaggc aaacaatact cagtcaagct tacatcagac	120
ttcgacaacc caagatggat tggacgacac aagcatatgt tcaatttcct tgatgtcaac	180
cacaatggaa aaatctctct tgacgagatg gtctacaagg catctgatat tgtcatcaat	240
aaccttggag caacacctga gcaagccaaa cgacacaaag atgctgtaga agccttcttc	300
ggaggagctg gaatgaaata tggtgaa actgattggc ctgcataatat tgaaggatgg	360
aaaaaattgg ctactgatga attggagaaa tacgccaaaa acgaaccaac gctcatccgt	420
atatgggtg atgctttgtt tgatatcggt gacaaagatc aaaatggagc cattacactg	480
gatgaatgga aagcatacac caaagctgct ggtatcatcc aatcatcaga agattgcgag	540
gaaacattca gagtgcgatattgaa agtggacaac tcgatgtga tgagatgaca	600
agacaacatt taggattttg gtacaccatg gatcctgctt gcgaaaagct ctacggtgaa	660
gctgtccct aagaagctct acgggtgtga tgcaccctgg gaagatgtatg tgattttgaa	720
taaaaacactg atgaattcaa tcaaaatttt ccaaattttt gaacgatttc aatcggttgt	780
gttgattttt gtaatttagga acagattaaa tcgaatgatt agttgtttt ttaatcaaca	840
gaacttacaa atcgaaaaag t	861

<210> 2
<211> 189
<212> PRT
<213> Aequorea victoria

<400> 2

Val Lys Leu Thr Ser Asp Phe Asp Asn Pro Arg Trp Ile Gly Arg His
1 5 10 15

Lys His Met Phe Asn Phe Leu Asp Val Asn His Asn Gly Lys Ile Ser
20 25 30

Leu Asp Glu Met Val Tyr Lys Ala Ser Asp Ile Val Ile Asn Asn Leu
35 40 45

Gly Ala Thr Pro Glu Gln Ala Lys Arg His Lys Asp Ala Val Glu Ala
50 55 60

Phe Phe Gly Gly Ala Gly Met Lys Tyr Gly Val Glu Thr Asp Trp Pro
65 70 75 80

Ala Tyr Ile Glu Gly Trp Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys
85 90 95

Tyr Ala Lys Asn Glu Pro Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu
100 105 110

Phe Asp Ile Val Asp Lys Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu
115 120 125

Trp Lys Ala Tyr Thr Lys Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp
130 135 140

Cys Glu Glu Thr Phe Arg Val Cys Asp Ile Asp Glu Ser Gly Gln Leu
145 150 155 160

Asp Val Asp Glu Met Thr Arg Gln His Leu Gly Phe Trp Tyr Thr Met
165 170 175

Asp Pro Ala Cys Glu Lys Leu Tyr Gly Gly Ala Val Pro
180 185

<210> 3
<211> 861

<212> DNA

<213> Aequorea victoria

<400> 3

aatcaattc atctttgcat caaagaatta catcaaatct ctagttgatc aactaaattg	60
tctcgacaac aacaagcaaa catgacaaggc aaacaatact cagtcaagct tacatcagac	120
ttcgacaacc caagatggat tggacgacac aagcatatgt tcaatttcct ttagtgcac	180
cacaatggaa aaatctctct tgacgagatg gtctacaagg catctgatat tgtcatcaat	240
aaccttggag caacacctga gcaagccaaa cgacacaaag atgctgtaga agccttc	300
ggaggagctg gaatgaaata tggtgtggaa actgattggc ctgcataatat tgaaggatgg	360
aaaaaattgg ctactgatga attggagaaa tacgcacaaa acgaaccaac gctcatccgt	420
atatgggtg atgctttgtt tgatatcggtt gacaaagatc aaaatggagc cattacactg	480
gatgaatgga aagcatacac caaagctgct ggtatcatcc aatcatcaga agatagcgag	540
gaaacattca gagtgagcga tattgatgaa agtggacaac tcgatgttga tgagatgaca	600
agacaacatt taggattttg gtacaccatg gatcctgcta gcgaaaagct ctacggtgga	660
gctgtcccct aagaagctct acgggtggta tgcaccctgg gaagatgttg tgattttgaa	720
taaaacactg atgaattcaa tcaaaatttt ccaaattttt gaacgatttc aatcgttgt	780
gttgattttt gtaatttagga acagattaaa tcgaatgatt agttgtttt ttaatcaaca	840
gaacttacaa atcgaaaaag t	861

<210> 4

<211> 189

<212> PRT

<213> Aequorea victoria

<400> 4

Val Lys Leu Thr Ser Asp Phe Asp Asn Pro Arg Trp Ile Gly Arg His			
1	5	10	15

Lys His Met Phe Asn Phe Leu Asp Val Asn His Asn Gly Lys Ile Ser		
20	25	30

Leu Asp Glu Met Val Tyr Lys Ala Ser Asp Ile Val Ile Asn Asn Leu		
35	40	45

Gly Ala Thr Pro Glu Gln Ala Lys Arg His Lys Asp Ala Val Glu Ala		
50	55	60

Phe Phe Gly Gly Ala Gly Met Lys Tyr Gly Val Glu Thr Asp Trp Pro
65 70 75 80

Ala Tyr Ile Glu Gly Trp Lys Lys Leu Ala Thr Asp Glu Leu Glu Lys
85 90 95

Tyr Ala Lys Asn Glu Pro Thr Leu Ile Arg Ile Trp Gly Asp Ala Leu
100 105 110

Phe Asp Ile Val Asp Lys Asp Gln Asn Gly Ala Ile Thr Leu Asp Glu
115 120 125

Trp Lys Ala Tyr Thr Lys Ala Ala Gly Ile Ile Gln Ser Ser Glu Asp
130 135 140

Ser Glu Glu Thr Phe Arg Val Ser Asp Ile Asp Glu Ser Gly Gln Leu
145 150 155 160

Asp Val Asp Glu Met Thr Arg Gln His Leu Gly Phe Trp Tyr Thr Met
165 170 175

Asp Pro Ala Ser Glu Lys Leu Tyr Gly Gly Ala Val Pro
180 185

<210> 5

<211> 662

<212> DNA

<213> *Obelia longissima*

<400> 5
acgatcgaac caaacaactc agctcacagc tactgaacaa ctcttgttgt gtacaatcaa 60
aatgtcttca aaatacgcag ttaaactcaa gactgacttt gataatccac gatggatcaa 120
aagacacaaag cacatgtttg atttcctcga catcaatgga aatggaaaaa tcaccctcga 180
tgaaatttgt tccaaggcat ctgatgacat atgtgccaag ctcgaagcca caccagaaca 240
aacaaaacgc catcaagttt gtgttgaagc tttctttaga ggatgtggaa tggaatatgg 300
taaagaaaatt gccttcccac aattcctcga tggatggaaa caattggcga cttcagaact 360
caagaaaatgg gcaagaaaacg aacctactct cattcgtgaa tggggagatg ctgtctttga 420
tattttcgac aaagatggaa gtggtacaat cactttggac gaatggaaag cttatggaaa 480
aatctctggc atctctccat cacaagaaga ttgtgaagcg acatttcgac attgcgattt 540

ggacaacagt ggtgacccttg atgttgacga gatgacaaga caacatcttg gattctggta 600
cactttggac ccagaagctg atggtctcta tggcaacgga gttccctaag cttttttcg 660
aa 662

<210> 6
<211> 195
<212> PRT
<213> Obelia longissima

<400> 6

Met Ser Ser Lys Tyr Ala Val Lys Leu Lys Thr Asp Phe Asp Asn Pro
1 5 10 15

Arg Trp Ile Lys Arg His Lys His Met Phe Asp Phe Leu Asp Ile Asn
20 25 30

Gly Asn Gly Lys Ile Thr Leu Asp Glu Ile Val Ser Lys Ala Ser Asp
35 40 45

Asp Ile Cys Ala Lys Leu Glu Ala Thr Pro Glu Gln Thr Lys Arg His
50 55 60

Gln Val Cys Val Glu Ala Phe Phe Arg Gly Cys Gly Met Glu Tyr Gly
65 70 . 75 80

Lys Glu Ile Ala Phe Pro Gln Phe Leu Asp Gly Trp Lys Gln Leu Ala
85 90 95

Thr Ser Glu Leu Lys Trp Ala Arg Asn Glu Pro Thr Leu Ile Arg
100 105 110

Glu Trp Gly Asp Ala Val Phe Asp Ile Phe Asp Lys Asp Gly Ser Gly
115 120 125

Thr Ile Thr Leu Asp Glu Trp Lys Ala Tyr Gly Lys Ile Ser Gly Ile
130 135 140

Ser Pro Ser Gln Glu Asp Cys Glu Ala Thr Phe Arg His Cys Asp Leu
145 150 155 160

Asp Asn Ser Gly Asp Leu Asp Val Asp Glu Met Thr Arg Gln His Leu
165 170 175

Gly Phe Trp Tyr Thr Leu Asp Pro Glu Ala Asp Gly Leu Tyr Gly Asn
180 185 190

Gly Val Pro
195