Neural networks

doc. RNDr. Iveta Mrázová, CSc.

Department of Theoretical Computer Science and Mathematical Logic Faculty of Mathematics and Physics Charles University in Prague

Neural networks

Internal knowledge representation –

doc. RNDr. Iveta Mrázová, CSc.

Department of Theoretical Computer Science and Mathematical Logic Faculty of Mathematics and Physics Charles University in Prague

Internal knowledge representation

- the number of neurons and generalization capabilities of the network
 - → pruning and retraining

Internal knowledge representation

Condensed internal representation

• interpret the activity of hidden neurons:

- $1 \longleftrightarrow active \longleftrightarrow YES$
- \bigcirc 0 \longleftrightarrow passive \longleftrightarrow NO
- $\begin{array}{ccc}
 & \frac{1}{2} & \longleftrightarrow & \text{silent} & \longleftrightarrow \\
 & & \longleftrightarrow & \text{,impossible to decide"}
 \end{array}$
 - transparent structure
 - detection of redundant neurons and pruning
 - improved generalization

Condensed internal representation

- **D:** For a BP-network \vec{B} processing an input pattern \vec{x} :
 - A hidden neuron with the weights $(w_1, ..., w_n)$, threshold $\boldsymbol{\vartheta}$, input pattern \vec{z} and transfer function $f[\vec{w}, \boldsymbol{\vartheta}](\vec{z})$ forms a **representation** r: $r = y = f[\vec{w}, \boldsymbol{\vartheta}](\vec{z})$
 - The vector \vec{r} of representations formed by a layer of hidden neurons is called an **internal** representation of \vec{x}

Condensed internal representation

D: For a BP-network B:

- Internal representation $\vec{r} = (r_1, ..., r_m)$ is binary, if $r_i \in \{0,1\}; 1 \le i \le m$
- Internal representation $\vec{r} = (r_1, ..., r_m)$ is **condensed**, if $r_i \in \{0, 0.5, 1\}; 1 \le i \le m$

Requirements on forcing the condensed internal representation

• formulate the "desired properties" in the form of an objective function:

standard error function
$$G = E + c_s F \leftarrow \text{representation error function}$$
amount of influence of F on G

 local minima of the representation error function correspond to active, passive and silent states:

$$F = \sum_{p} \sum_{h} y_{h,p}^{s} (1 - y_{h,p})_{\uparrow}^{s} (y_{h,p} - 0.5)^{2}$$
patterns
hidden neurons
passive state
the shape of F
silent state
active state

The influence of the parameters on condensed internal representation

- slower enforcement of the internal representation and required network function
- stability of the formed internal representation and optimal network architecture
- form of the representation error function, speed and form of the enforced internsl representation
- time complexity of weight adjustment

Error term enforcing the condensed internal representation

Condensed internal representation $(y_i^s (1-y_i)^s (y_i - 0.5)^2)$:

for the output neurons

$$-\left[2(s+1)y_j(1-y_j) - \frac{s}{2}\right] \cdot y_j^s (1-y_j)^s (y_j - 0.5)$$
for neurons from the last hidden layer

$$\left(\sum_{k} \rho_{k} w_{jk}\right) y_{j} (1 - y_{j})$$

for other hidden neurons

The shape of the representation error function $F = y^{s}(1-y)^{s}(y-0.5)^{t}$

Unambiguous internal representation

- Varying outputs should be represented by varying internal representations
- Formulation of the requirements in the form of a modified objective function: G = E + F + H
- The criterion for unambiguity of the IR:

Pruning according to internal representation (1)

- **D:** For a given BP-network B and a set S of input patterns yielding the input vectors: \vec{z}
 - A hidden neuron with the weights $(w_1, ..., w_n)$, the threshold \boldsymbol{g} and a transfer function $f[\vec{w}, \boldsymbol{g}](\vec{z})$ forms a **uniform representation** \boldsymbol{r} , if:

$$r = f[\vec{w}, \theta](\vec{z}) = const$$
 for all input patterns $\vec{x} \in S$

Pruning according to internal representation (2)

- **D:** For a given BP-network B and a set S of input patterns yielding the input vectors \vec{z} :
 - A hidden neuron $i \in N$ with the weights $(w_{i1}, ..., w_{in})$, the threshold \mathcal{G}_i and a transfer function $f_i[\vec{w}_i, \mathcal{G}_i](\vec{z})$ forms a **representation** r_i , **identical to the representation** r_j formed by the hidden neuron $j \in N$ with the weights $(w_{j1}, ..., w_{jn})$, the threshold \mathcal{G}_j and a transfer function $f_j[\vec{w}_j, \mathcal{G}_j](\vec{z})$, if: $f_i[\vec{w}_i, \mathcal{G}_i](\vec{z}) = f_i[\vec{w}_i, \mathcal{G}_i](\vec{z})$ for all input patterns $\vec{x} \in S$

Pruning according to internal representation (3)

- **D:** For a given BP-network B and a set S of input patterns yielding the input vectors \vec{z} :
 - A hidden neuron $i \in N$ with the weights $(w_{i1}, ..., w_{in})$, the threshold $\boldsymbol{\vartheta}_i$ and a transfer function $f_i[\vec{w}_i, \boldsymbol{\vartheta}_i](\vec{z})$ forms a **representation** r_i , **inverse to the representation** r_j formed by the hidden neuron $j \in N$ with the weights $(w_{j1}, ..., w_{jn})$, the threshold $\boldsymbol{\vartheta}_j$ and a transfer function $f_i[\vec{w}_i, \boldsymbol{\vartheta}_i](\vec{z})$, if:
 - $f_i[\vec{w}_i, \theta_i](\vec{z}) = 1 f_i[\vec{w}_i, \theta_i](\vec{z})$ for all input patterns $\vec{x} \in S$

Pruning according to internal representation (4)

- D: For a given BP-network B and a set S of input patterns:
 - a reduced layer is a layer, for which it holds that:
 - no neuron forms a uniform representation,
 - no neuron i forms a representation identical to the representation formed by another neuron j and
 - no neuron i forms a representation inverse to the representation formed by another neuron j.

Internal representation formed by a reduced layer is called **reduced**.

Pruning according to internal representation (5)

- **D:** For a given set of input patterns S:
 - a BP-network **B** is **reduced**, if all its hidden layers are reduced.
 - a BP-network \boldsymbol{B} is **equivalent** to a BP-network \boldsymbol{B}' , if for any input pattern $\vec{x} \in S$, the actual output \vec{y}_B of the network \boldsymbol{B} is equal to the actual output $\vec{y}_{B'}$ of the network \boldsymbol{B}' : $\vec{y}_B = \vec{y}_{B'}$

Pruning according to internal representation (6)

T: To each BP-network B and a set of input patterns S there exists an equivalent reduced BP-network B'.

Proof (idea):

Construction of a reduced BP-network B':

Let B = (N, C, I, O, w, t) is the original BP-network.

1. Sequential elimination of all those neurons j, that form a uniform representation r_j^k and addition of the product $w_{ij} r_j^k$ to all the thresholds θ_j in the following layer.

Pruning according to internal representation (7)

Proof (continue):

- 2. Sequential elimination of all those neurons j, that form a representation r_i^{id} identical to the representation r_k formed by another neuron k and addition of the weights w_{ij} to all the weights w_{ik} , where i denotes the neurons in the following layer.
- 3. Sequential elimination of all those neurons j, that form a representation r_j^{in} inverse to the representation r_k formed by another neuron k and replacement of all the weights w_{ik} , where i denotes the neurons from the following layer, by the difference $w_{ik} w_{ij}$ and addition of the weights w_{ij} to the threshold g_i of each neuron i.

Pruning according to internal representation (8)

Proof (continue):

Then, the actual output $\vec{y}_{B'}$ of the BP-network B' will be equal to the actual output \vec{y}_B of a BP-network B for any input pattern \vec{x} .

The BP-network B' constructed from the BP-network B' in the above-discussed way is reduced and equivalent to B.

QED

Experimental results: binary addition

$$[5(\approx(1,-1,1)) + 3(\approx(-1,1,1)) = 8(\approx(1,-1,-1,-1))]$$

- SCG-with hints (carry to the 2nd output neuron)
 - 'carry' of the first and second output bit – hidden neurons 1 and 3
 - the function of other hidden neurons not clear
- SCGIR-with hints (carry to the 2nd output neuron)
 - 'carry' to higher output bits hidden neurons 1, 3, 5
 - a similar function is apparent for the respective output neurons

Acoustic emission: simulation (with M. Chlada and Z. Převorovsky)

MODELED SIGNAL

Simulated AE-data

(with M. Chlada and Z. Převorovský)

CONVOLUTION WITH THE GREEN FUNCTION

Dependency model

(with M. Chlada and Z. Převorovský)

Overall **network sensitivity** of the s-th output to the r-th input

(over Q patterns):

$$sens_r = 1/Q$$

$$sens_r = 1/Q \sum_{q} \sum_{s} \left| \partial y_{q,s} / \partial y_{q,r} \right|$$

Dependency model

(with M. Chlada and Z. Převorovský)

Factor vs. sensitivity analysis of input parameters

(with M. Chlada and Z. Převorovský)

	1	2	3	4	5	6	7	8	9
14	0.08	0.18	0.95	0.02	0.09	0.04	0.01	0.06	0.02
13	0.04	0.09	0.97	0.00	0.05	0.00	0.00	0.06	0.02
12	0.20	0.07	0.14	0.02	0.93	0.09	0.03	0.23	0.04
11	0.25	0.10	0.12	0.03	0.25	0.11	0.03	0.90	0.05
10	0.93	0.14	0.06	0.08	0.10	0.17	0.06	0.09	0.19
9	0.90	0.15	0.09	0.08	0.15	0.17	0.06	0.21	0.18
8	0.12	0.06	0.01	0.88	0.02	0.02	0.24	0.03	0.36
7	0.29	0.06	0.03	0.27	0.03	0.17	0.16	0.04	0.86
6	0.26	0.00	0.04	0.03	0.08	0.93	0.02	0.10	0.20
5	0.30	0.05	0.04	0.41	0.06	0.49	0.17	0.07	0.66
4	0.13	0.91	0.02	0.03	0.05	0.06	0.04	0.06	0.20
3	0.10	0.96	0.15	0.00	0.03	0.00	0.02	0.05	0.07
2	0.09	0.02	0.01	0.19	0.03	0.03	0.95	0.03	0.16
1	0.04	0.91	0.16	0.10	0.01	0.07	0.06	0.01	0.23

selected factors

- 9 factors selected ("explain"98.4% of variables)
- elimination of linearly dependent input parameters

	SE	ENSITIVITY COEFFICIEN	TS
1	0.173	0.266	0.149 -
2 -	0.093	0.068	0.047 -
3	0.320	0.193	0.184 -
4	0.301	0.178	0.196 -
5	0.564	0.250	0.206 -
6	0.196	0.322	0.158 -
7	0.099	0.063	0.043 -
8 -	0.065	0.015	0.030 -
9 -	0.022	0.014	0.016 -
10	0.053	0.020	0.012 -
11	0.035	0.012	0.032 -
12	0.039	0.050	0.022 -
13 -	0.081	0.134	0.082 -
14	0.260	0.172	0.1,09 -
	1	2 OUTPUTS	3
	2 - 3 - 4 - 5 - 6 - 7 8 - 9 - 11 - 12 - 13 - 13 - 1	1 - 0.173 2 - 0.093 3 - 0.320 4 - 0.301 5 - 0.564 6 - 0.196 7 - 0.099 8 - 0.065 9 - 0.022 10 - 0.053 11 - 0.035 12 - 0.039 13 - 0.081	2 - 0.093

- 7 features selected
- detection of non-linear dependencies among input parameters (1, 3, 4, 5, 6, 13, 14)

Analysis of the World Bank data

WDI-indicators (indicators of world development)

- support developing countries loans / investments
- assess the state of economies and their development
- data origin incomplete and not accurate

used techniques

- regression analysis linear dependencies
- categorization of economies used in developed countries (G. Ip, Wall Street Journal)
- categorization of economies according to GDP (World Bank)
- Kohonen maps (T. Kohonen, S. Kaski, G. Deboeck)

Analysis of the World Bank data: used WDI-indicators

- GDP implicit deflator
- External debt (% GNP)
- Total debt service (% of export of goods and services)
- High-technology exports (% of manufactured exports)
- Military expenditures (% GNP)
- Expenditures for research and development (% GNP)
- Total expenditures on health (% GDP)

- Public expenditure on education (% GNP)
- Male life expectancy at birth
- Fertility rates
- GINI-index (the distribution of income / consumption)
- Internet hosts per 10000 people
- Mobile phones per 1000 people
- Purchasing power parity (PPP)
- GNP per capita (in USD)
- Average annual growth rate of GDP (% per capita)

Analysis of the World Bank data preprocessing

- 99 states with 16 WDI-indicators
- elementwise transformation of patterns to the interval (0,1) by means of:

$$x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}} \quad \text{and} \quad x'' = \frac{1}{1 + e^{-4(x' - 1/2)}}$$

$$\uparrow \qquad \qquad \text{minimum over all patterns}$$
maximum over all patterns

- FCM-clustering: 7 clusters, s = 1.4
- controlled learning and iterative recall:
 - 99 (90+9) states with 14 (13+1) WDI-indicators
 - GREN-net **14-12-1**, BP-net **13-10-1**; **500-600** training cycles

Analysis of the World Bank data: impact of the indicators on the economy

Indicator	Net 1	Net 2
GDP defl.	0.0	0.0
External debt	5.6	10.9
Total debt service	5.5	8.1
High-tech export	12.2	6.6
Military expenditures	5.4	6.1
Expenditures fot R&D.	16.0	12.0
Internet users	11.1	12.4
Mobile phones	8.3	10.0
GINI-index	7.1	3.9
Life expectancy	12.3	7.6
Fertility	4.4	5.0
Expend. on health .	6.1	10.9
Expend. on education	6.1	6.1

Sensitivity of GREN-networks

Sensitivity to input features

(with Z. Reitermanová)

Mutual dependency of parameters

(with Z. Reitermanová)

