4-§. Eyler funksiyasi

Eyler funksiyasi — m dan katta bo'lmagan va m bilan o'zaro tub sonlar sonini bildiradi va $\varphi(m)$ orqali belgilanadi. Agar m=p-1 tub son bo'lsa, u holda ta'rifdan $\varphi(p)=p-1$ ekanligi va agar $m=p^{\alpha}$ bo'lsa, $\varphi(p^{\alpha})=p^{\alpha}-p^{\alpha-1}=p^{\alpha}\left(1-\frac{1}{p}\right);$ umuman agar $m=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_n^{\alpha_n}$ bo'lsa, u holda

$$\begin{split} \varphi(m) &= p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n} \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_n} \right) \\ &= m \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_n} \right) \end{split}$$

ekanligi kelib chiqadi. Eyler funksiyasi multiplikativ funksiyadir, ya'ni u aynan nolga teng emas hamda (m, n) = 1 shartni qanoatlantiruvchi m, n lar uchun $\varphi(mn) = \varphi(m)\varphi(n)$ bajariladi.

- 131. $y = \varphi(x)$ funksiya`ning o'zgarishini grafik shaklda tasvirlang. Bu yerda x-natural son, $\varphi(x)$ Eyler funksiyasi .
 - **132.**Hisoblang: 1) $\varphi(125)$, 2) $\varphi(1000)$, 3) $\varphi(180)$, 4) $\varphi(360)$, 5) $\varphi(1440)$,
- 6) $\varphi(1890)$, $7)\varphi(11^3)$, $8)\varphi(23^2)$, $8)\varphi(12\cdot19)$, $10)\varphi(24\cdot28\cdot45)$.
 - **133.** Maxraji *m* ga teng qisqarmas musbat to'g'ri kasrlarning soni nechta.
- **134.** 1 dan 120 gacha natural sonlar orasida 30 bilan o'zaro tub bo'lmagan sonlar soni nechta.
- **135.** Quyidagi formulalarning o'rinli ekanligini ko'rsating: a) $\varphi(2^{\alpha}) = 2^{\alpha-1}$; b) $\varphi(p^{\alpha}) = p^{\alpha-1}\varphi(p)$; c) $\varphi(m^{\alpha}) = m^{\alpha-1}\varphi(m)$ (m, α lar natural sonlar, p esa tub son).
- 136. $\varphi(2m)$ ning qiymati $\varphi(m)$ yoki $2\varphi(m)$ bo'lishi mumkinligini isbotlang. Bu hollarning har biri uchun o'rinli kriteriya`ni toping.
 - **137.** Quyidagi tengliklarni o'rinli ekanligini isbotlang:

a)
$$\varphi(4n+2) = \varphi(2n+1)$$
; b) $\varphi(4n) = \begin{cases} 2\varphi(n), \operatorname{agar}(n,2) = 1 \text{ bo'lsa}; \\ 2\varphi(2n), \operatorname{agar}(n,2) = 2 \text{ bo'lsa}. \end{cases}$

- **138.** Tenglamani yeching: $a) \varphi(5^x) = 100$; $b) \varphi(7^x) = 294$; $c) \varphi(p^x) = p^{x-1}$; $d) \varphi(3^x \cdot 5^x) = 600$, bunda x va y natural sonlar.
 - **139**. Agar $m \ge 3$ bo'lsa $\varphi(m)$ ning qiymati juft son ekanligini isbotlang.
- **140**. Agar $\varphi(x) = a$ tenglamaning x = m ildizi bo'lsa, u holda x = 2m ham ildiz bo'lishini isbotlang. Bu yerda (m, 2) = 1.
 - **141**. Agar (m, n) > 1 bo'lsa, $\varphi(m \cdot n)$ va $\varphi(m) \cdot \varphi(n)$ sonlarini taqqoslang.
 - **142**. $\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n) \cdot \frac{d}{\varphi(d)}$ ekanligini isbotlang. Bu yerda (m, n) = d.
- **143**. Agar $\delta = (m, n)$ va $\mu = [m, n]$ bo'lsa, $\varphi(m \cdot n) = \varphi(\delta) \cdot \varphi(\mu)$ ekanligini isbotlang.
 - **144.** $\varphi(1) + \varphi(p) + \varphi(p^2) + ... + \varphi(p^{\alpha})$ yig'indini toping. Bunda α-natural son.
- **145**. Gauss ayniyatini isbotlang: $\varphi(d_1) + \varphi(d_2) + \ldots + \varphi(d_k) = m$, $(\sum_{d \mid m} \varphi(d) = m)$, bunda $d_i m$ ning natural bo'luvchilari.
- **146**. *m* bilan o'zaro tub va *m*dan kichik natural sonlar yig'indisi $\left(S = \sum_{\substack{x \le m, \\ (x,m)=1}} 1\right)$ uchun formula chiqaring.
- **147**. p bilan o'zaro tub va p dan katta bo'lmagan natural sonlar yig'indisi p^2 bilan o'zaro tub va p^2 dan katta bo'lmagan natural sonlar sonidan ikki marta kam bo'lishini isbotlang.
 - **148**. Tenglamani yeching:

1)
$$\varphi(x) = p - 1$$
, 2) $\varphi(x) = 14$, 3) $\varphi(x) = 8$, 4) $\varphi(x) = 12$.

- **149**. Tenglamani yeching: a) $\varphi(x) = 2^{\alpha}$; b) $\varphi(p^x) = 6 \cdot p^{x-2}$.
- **150**. Tenglamani yeching: $\varphi(m) = 3600$, bu yerda $m = 3^{\alpha} \cdot 5^{\beta} \cdot 7^{\gamma}$.

- **151**. Tenglamani yeching: $\varphi(x) = 120$, bu yerda $x = p_1 \cdot p_2 \text{va } p_1 p_2 = 2$.
- **152**. Tenglamani yeching: $\varphi(m) = 11424$, bu yerda $m = p_1^2 \cdot p_2^2$.
- **153**. Tenglamani tekshiring: a) $\varphi(x) = \varphi(px)$; b) $\varphi(px) = p\varphi(x)$;
- c) $\varphi(p_1x) = \varphi(p_2x)$; p_1 , p_2 turli tub sonlar.
 - 154. Tenglamani yeching:

a)
$$\varphi(x) = \frac{x}{2}$$
; b) $\varphi(x) = \frac{x}{3}$; c) $\varphi(x) = \frac{x}{4}$.

- **155**. Tenglamani tekshiring: $\varphi(p^x) = a$.
- **156**. Eyler funksiyasi xossalaridan foydalanib, barcha tub sonlar to'plami cheksiz ekanligini isbotlang.
- **157**. Maxraji 2 dan n gacha bo'lgan barcha musbatto'g'ri, qisqarmas kasrlar sonini aniqlang.
- **158**. 300 dan kichik va u bilan EKUBi 20 ga teng bo'lgan natural sonlarning sonini aniqlang.