Latex Template

Cora

5. Januar 2022

Inhaltsverzeichnis

1	Formelsammlung			
	1.1	Theoreme	:	
	1.2	Mathematische Formeln		

1 Formelsammlung

Einleitung

Die Formelsammlung konkret hier für das Latex-Dokument soll die typischen Vorgaben zeigen, die das Dokument erfüllt, alles was in diesem *Dokument* steht kann / sollte ohne Probleme verwendet werden können.

1.1 Theoreme

Dies sind die typischen mathematischen Theoreme, welche oft in einer Vorlesung vorkommen, dazu zählt folgendes:

Lemma 1.1 (Name des Lemmas)

Ein Lemma ist ein Hilfssatz, dies ist meist eine Schwächere Aussage um Sätze zu beweisen, allerdings wird hier auch ein Beweis benötigt!

Satz 1.1

Ein Satz ist eine starke Aussage in der Mathematik, diese wird meist mit Hilfsätzen bewiesen.

Korollar 1.1

Ein Korollar ist etwas, dass direkt aus den jeweiligen Satz oder Lemma folgt. Meist muss dies nicht bewiesen werden

Bemerkung 1.1

Bemerkungen des Professor oder für einen selbst können hier stehen

Beweis zu 1.1: Jeder Beweis sollte direkt unter dem zu beweisenden stehen oder den passenden Tag erhalten.

Beispiel: Die Beispiele in diesem Abschnitt sollen Sätze oder Definitionen besser erklären

Definition 1.1 (Definition)

Das ist eine Definition

1.2 Mathematische Formeln

Dieser Abschnitt befasst sich mit effizienten Darstellungen von mathematischen Symbolen. Dazu zählen vor allem Formel, die ich derzeit häufig in der Vorlesung benötige.

Example: Zahlenarten $\mathbb{N}, \mathbb{R}, \mathbb{C}, \mathbb{Q}$ oder die leere Menge \emptyset . Auch Zeichen wie: \Rightarrow , \Leftarrow , \Leftrightarrow , \neg sind wichtig

Definition 1.2 (Quantoren)

Allquantor : \forall Existenzquantor : \exists

Example: $\forall_x \exists_y : x \in Y$

Definition 1.3 (Mengensymbole)

M echte Teilmenge von $N:M\subset N$ M Teilmenge von $N:M\subseteq N$ x nicht Element von $Y: x \notin Y$

Weiter gibt es natürlich auch die Möglichkeit die gegenteile zu Bewirken.

Example: A ist Obermenge von $B: A \supset B$

Dabei ist es wichtige, dass auf die jeweilige Schreibweise geachtet werden muss.

Bemerkung 1.2

Vielleicht sollten hier noch andere Kommandos für festgelegt werden

Definition 1.4 (Summenschreibweise)

Für ganze Zahlen $m, nunda_k \in \mathbb{R}$ gilt:

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n$$

Anhand dieser Definition soll nun kurz ein Satz und ein der passende Beweis dazu geliefert werden.

Satz 1.2

$$\forall_{n \in \mathbb{N}} : \sum_{k=1}^{n} (2k-1) = n^2$$

Beweis 1.2: A(n) sei die Aussage im obigen Satz

$$\begin{array}{l} \underline{\text{IA } n=1} \\ 1=1^2 \\ \underline{\text{IS } n \rightarrow n+1} \end{array}$$

Da die die Annahme für alle n gilt, gilt demnach auch: $\sum_{k=1}^{n+1} (2k-1) = (n+1)^2$

Nach Induktionsannahme gilt:
$$\sum_{k=1}^{n+1} = n^2 + (2*(n+1)-1) = n^2 + 2n + 1$$