Theoretische Informatik: Blatt 7

 Abgabe bis 9. Oktober 2015 Assistent: Sacha Krug, CHN D $42\,$

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 19

Aufgabe 20

(a) $e(n) = 2^n$

Wir konstruieren eine 2-Band Turingmaschine M. M bekommt als Eingabe das Wort 0^n auf Band 0. Zu Beginn schreibt M eine 0 auf B and 1. Solange der Lesekopf des Eingabebandes nicht \$ liest:

- 1. Gehe auf Band 1 nach links bis ¢.
- 2. Gehe auf Band 2 nach links bis ¢
- 3. Lies Zeichen auf Band 1. Schreibe für jede gelesene 0 auf Band 1 00 auf Band 2. Für ein _ schreibe ein _.
- 4. Gehe auf Beiden Bändern nach links und kopiere Inhalt von Band 2 auf Band 1 einschließlich bis Zeichen ...
- 5. Rücke mit Lesekopf nach rechts.

Das Ergebnis steht dann auf $Band\ 2$ bis zum ersten $_$.

Auf diese Art generieren wir 2^n 0en. Für n 0en der Eingabe lesen wir pro Schritt 2^i Nullen. Das schreiben geschieht jeweils in $\mathcal{O}(1)$.

$$\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 2 \in \mathcal{O}(2^{n})$$

Folglich ist e(n) zeitkonstruierbar.

(b) $f(n) = fib_n$

Wir konstruieren ein 3-Band Turingmaschine M. M bekommt als Eingabe das Wort 0^n auf Band 0. Wir unterscheiden mehrere Eingaben w.

Fall 1 $w = \lambda$

In diesem Fall ist n = 0. M schreibt 0 auf Band 1 und hält.

Fall 2 w = 0

In diesem Fall ist n = 1. M schreibt 1 auf Band 1 und hält.

Fall 3 $|w| = n, n \ge 2$ Der Lesekopf auf Band 0 liegt auf der dritten 0.

- 1. M schreibt λ auf Band 1 und 0 auf Band 2.
- 2. M löscht B and 3 und schreibt zuerst alle 0en von B and 1 und dann alle 0en von B and 2 auf B and 3.
- 3. Der Lesekopf für $Band \ \theta$ geht nach rechts. Liest er dort \$ ist auf $Band \ 3$ das Ergebnis und M hält. Ansonsten kopiert M den Inhalt von $Band \ 2$ auf $Band \ 1$ und den von $Band \ 3$ auf $Band \ 2$. Dann wird zu Schritt 2. gesprungen.

Aufgabe 21