1. If x, y, z are positive real numbers, which of the following expressions is equal to:

$$3\log_2 x - \log_4 y + \frac{1}{2}\log_2 z$$

- $\mathbf{A.} \quad \log_2 \frac{x^2 \sqrt{z}}{2y}$
- $\mathbf{B.} \quad \log_2 \frac{x^3 z}{2} \log_4 y$
- $C. \quad \frac{3}{2}\log_2(x+z) \log_4 y$
- $\mathbf{D.} \quad \log_2 x^3 \sqrt{z} \log_4 y$
- $\mathbf{E.} \quad \log_2\left(x^3 + \sqrt{z}\right) \log_4 y$
- 2. If $\log_4 3 = a$ and $\log_4 5 = b$, which of the following is equal to 8?
 - **A.** 4^{a+b}
 - **B.** $4^a + 4^b$
 - C. 16^{a+b}
 - D. ab
 - E. a+b
- 3. If $\log_a x = n$ and $\log_a y = m$ then $\log_a \left(\frac{x}{y}\right)^3 = ?$
 - A. 3(n-m)
 - **B.** 3(n+m)
 - C. *n*-*m*
 - **D.** 3(m-n)
 - E. $\frac{n}{m}$
- 4. If $3^{x-1} = 3y$, what is 3^{x+1} in terms of y?
 - **A.** 27 *y*
 - **B.** 3*y*
 - C. 3y + 2
 - **D.** $(3y)^2$
 - E. 91

- 5. If $2^{a+2} = 4b$, which of the following is an expression for b^2 in terms of a?
 - A. $\frac{1}{2^{2a}}$
 - $\mathbf{B.} \quad \mathbf{4}^{a}$
 - C. 2^{a+1}
 - **D.** 2^{a+2}
 - **E.** 2^{2a}
- **6.** If $2^n = 53$, then which of the following must be true?
 - A. 2 < n < 3
 - **B.** 3 < n < 4
 - C. 4 < n < 5
 - **D.** 5 < n < 6
 - E. 6 < n
- 7. Which of the following is a value of x that satisfies $\log_x 27 = 3$?
 - **A.** 3
 - **B.** 6
 - **C.** 9
 - **D.** 24
 - E. 27
- 8. If $16 \cdot 2^{x-4} = 4^{y+3}$ and y = 4, what is the value of x?
 - A. $\frac{1}{2}$
 - B. $\frac{15}{2}$
 - C. 7
 - D. 14
 - E. $\frac{34}{5}$
- 9. If $\log_x 625 = 4$, then x = ?
 - **A.** 5
 - B. 25
 - C. $\frac{625}{4}$
 - D. $\frac{625}{\log 4}$
 - E. 625^4

- 10. In the realm of real numbers, what is the solution of the equation $9^{2x-1} = 3^{1+x}$?
 - **A.** 0
 - **B.** $\frac{2}{3}$
 - **C.** -1
 - **D.** 2
 - **E.** 1
- 11. What is *x* if $\log_6 x = 2$?
 - **A.** 3
 - **B.** $\sqrt{6}$
 - **C.** $\sqrt[6]{2}$
 - **D.** 36
 - **E.** 12
- 12. For all x > 0, which of the following expressions is

equivalent to $\log \left[\left(\frac{3}{x} \right)^{\frac{1}{3}} \right]$?

- A. $\log \frac{1}{x}$
- B. $\log 1 \log \frac{x}{3}$
- C. $\frac{1}{3} \left[\left(\log 3 \right) + \left(\log x \right) \right]$
- $\mathbf{D.} \quad \frac{1}{3} \Big(\log 3 \log x \Big)$
- $E. \quad \log 3 \frac{1}{3} \log x$
- 13. What is the value of $\log_4 64$?
 - **A.** 2
 - **B.** 3
 - **C.** 60
 - D. 4
 - E. 16

- 14. What value of X satisfies the following equation $\log_{16} X = \frac{-3}{4}$?
 - A. $\frac{-16}{3}$
 - **B.** −4
 - C. $\frac{1}{8}$
 - D. $\frac{1}{4}$
 - E. 4
- 15. If a is a positive number such that $\log_a \left(\frac{1}{125} \right) = -3$, then a = ?
 - **A.** 5
 - B. 25
 - C. 128
 - D. $\frac{1}{5}$
 - E. $\frac{3}{25}$
- 16. What is the set of all values of a that satisfy the equation

$$(y^2)^{a^2+10a+25} = 1 \text{ if } y \neq 1?$$

- **A.** $\{0\}$
- **B.** {5}
- **C.** {-10}
- **D.** {-5}
- **E.** $\{-5,5\}$
- 17. What is the real value of a in the equation $\log_3 54 \log_3 6 = \log_6 a$?
 - **A.** 3
 - **B.** 12
 - C. $\frac{1}{3}$
 - **D.** 36
 - E. $\frac{8}{3}$

ANSWERS

1. D 2. B 5. E 6. D 8. D 9. A 10. E 11. D 12. D 3. A 4. A 7. A 13. B 14. C 15. A 16. D 17. D

ANSWER EXPLANATIONS

- 1. **D.** Since $a \log_b x = \log_b x^a$, we can rewrite $3\log_2 x$ as $\log_2 x^3$ and $\frac{1}{2}\log_2 z$ as $\log_2 \sqrt{z}$. Our equation can now be written as $\log_2 x^3 \log_4 y + \log_2 \sqrt{z}$. Combining the two terms with log base 2, we use the property $\log_a x + \log_a y = \log_a xy$ to rewrite the expression: $\log_2 x^3 \log_4 y + \log_2 \sqrt{z} \log_4 y + \log_2 \sqrt{z} \log_4 y + \log_2 \sqrt{z} \log_4 y + \log_2 x^3 \sqrt{z} \log_4 y$.
- 2. **B.** By the definition of a logarithm, $y = b^x$ is equivalent to $log_b(y) = x$. Thus, $log_4(3) = a$ is equivalent to $4^a = 3$, and $log_4(5) = x$ is equivalent to $4^b = 5$. We can then add the two equations.

$$4^{a} = 3$$

$$+ 4^{b} = 5$$

$$4^{a} + 4^{b} = 3 + 5$$

Thus, $8 = 4^a + 4^b$.

- 3. A. Since $a \log_b x = \log_b x^a$, we can write $\log_a \left(\frac{x}{y}\right)^3$ as $3\log_a \left(\frac{x}{y}\right)$. Since $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$, we can write $3\log_a \left(\frac{x}{y}\right)$ as $3(\log_a x \log_a y)$. Now, substituting in $\log_a x = n$ and $\log_a y = m$, we get $3(\log_a x \log_a y) = 3(n m)$.
- **4. A.** $3^{x+1} = 3^{x-1}(3^2)$ so substituting 3y for 3^{x-1} , we get $3^{x+1} = 3y(3^2) = 27y$.
- 5. E. We can write 2^{a+2} as $2^a 2^2$ which simplified becomes $2^a (4)$. Dividing both sides of the equation by 4, we get $2^a = b$. Now, squaring both sides, we get $2^{2a} = b^2$.
- **6. D.** Looking at the powers of 2, we know that $2^5 = 32$ and $2^6 = 64$. Since $2^5 = 32 < 2^n = 53 < 2^6 = 64$, 5 < n < 6.
- 7. A. Raising x to the values on both sides of the equation, we get $x^{(\log_x 27)} = x^3 \rightarrow 27 = x^3$. Taking the cube root of both sides, we get 3 = x.
- 8. **D.** Plugging in y = 4, we get $16(2^{x-4}) = 4^{4+3}$. Since $16 = 2^4$, and $4 = 2^2$, we rewrite this as $2^4(2^{x-4}) = (2^2)^7$. This is equal to $2^x = 2^{14} \rightarrow x = 14$.
- 9. A. By the definition of a logarithm, $\log_x 625 = 4$ is equivalent to $x^4 = 625$. Taking the 4th root of both sides, we get $x = \sqrt[4]{625} \rightarrow x = 5$.
- 10. E. Since $9=3^2$, we can write $\left(3^2\right)^{2x-1}=3^{1+x}$. This is equal to $3^{4x-2}=3^{1+x}$. So, 4x-2=1+x. Adding 2 and subtracting x to both sides, we get $3x=3 \rightarrow x=1$.
- 11. D. By the definition of a logarithm, $\log_6 x = 2$ is equivalent to $6^2 = x$, so x = 36.
- 12. **D.** Since $a\log_b x = \log_b x^a$, we can write $\log\left[\left(\frac{3}{x}\right)^{\frac{1}{3}}\right] = \frac{1}{3}\log\left(\frac{3}{x}\right)$. Since $\log_a\left(\frac{x}{y}\right) = \log_a x \log_a y$, we can write $\frac{1}{3}\log\left(\frac{3}{x}\right) = \frac{1}{3}(\log 3 \log x)$.
- 13. B. We want to find the value that $\log_4 64$ is equal to, which we will call x. By the definition of a logarithm, $\log_4 64 = x$ is equivalent to $4^x = 64$. Since we know that $4^3 = 64$, we know x = 3.

14. C. Because we understand what a logarithm represents, we know that $\log_{16} x = \frac{-3}{4}$ is equivalent to:

$$x = 16^{-\frac{3}{4}} = \frac{1}{16^{\frac{3}{4}}} = \frac{1}{2^3} = \frac{1}{8}$$

- 15. A. Again, because we know the definition of a logarithm, we know that $\log_a \left(\frac{1}{125}\right) = -3$ is equivalent to $a^{-3} = \frac{1}{125}$. This implies that $\frac{1}{a^3} = \frac{1}{125} \rightarrow a^3 = 125 \rightarrow a = 5$.
- 16. D. If $y \ne 1$, then the only way the equation is true is if the exponent equals 0, because $y^0 = 1$. Thus we know that $2(a^2 + 10a + 25) = 0$. Factoring, we get 2(a+5)(a+5) = 0, which means y = -5 only.
- 17. D. Since $\log_a\left(\frac{x}{y}\right) = \log_a x \log_a y$, we can write $\log_3 54 \log_3 6$ as $\log_3\left(\frac{54}{6}\right) = \log_3 9$. So, $\log_3 9 = \log_6 a$. Raising 3 to the values on both sides of the equation gives us $3^{\log_3 9} = 3^{\log_6 a} \rightarrow 9 = 3^{\log_6 a}$. Since $9 = 3^2$, we have $3^2 = 3^{\log_6 a} \rightarrow 2 = \log_6 a$. Raising 6 to the values on both sides of this equation, we get $6^2 = 6^{\log_6 a} \rightarrow 6^2 = a$. So, a = 36.

