ModuGrip

Final Demonstration
Allyn McKenna Patterson

ModuGrip is a 3-DOF robotic arm with a modular end-effector system.

How it works

Web App

The user interacts with my NextJS web app to control the robot

2

Ubidots

Topic values are published to Ubidots

3

ESP32

Subscribes to
Ubidots topics
and updates
actuators

Project Architecture

Technologies Used

Software

NextJS

React Three Fiber

Java Spring Boot

MongoDB

Hardware

ESP32

3x High Torque Servos

2x Low Torque Servos

1x Electromagnet

1x Unipolar Stepper Motor

1x Geared DC Motor

Tools

Fusion 360

Sovol SV06 Plus

Sovol3D Cura

AWS EC2

Vercel

Ubidots

Organisation

Daily Logs

I filled in my log template to set my intention and keep track of problems

Jira Kanban

Dynamically switch between tasks.
I always know what the next step is.

Interesting Areas

Inverse Kinematics

Maths to convert coordinates to joint angles.

R3F Virtual Model

Rendering and animating the virtual robot.

UI Design Choices

Floating buttons, script timeline, virtual model.

End Effectors

Quick release mechanism, circuit design.

Torque Problems

How did I ensure the shoulder joint was strong enough?

Disasters

3D printer malfunction, dropping robot, current limiter.

