Применение методов компьютерного зрения в задачах вычислительной литографии

Подготовил: Московцев Андрей

Литографический процесс

Рис. 1: (a) Технологические этапы процесса литографии; (b) схема проекционной установки

Коэффициент

преломления

среды

 $NA = n \sin \theta_{max}$

 $/\theta_{max}$

Ограничения

- При уменьшении характерных размеров элементов ниже половины длины волны света начинают сильно проявляться дифракционные эффекты, вызывая размытие и искажение печатаемого изображения (например, скругление углов на краях линий);
- В результате получаемая топология на пластине может значительно отличаться от исходного дизайна проектирования, что может привести к снижению выхода годных и производственным дефектам;
- При современных проектных нормах элементы на ФШ располагаются более плотно друг к другу. Эта близость увеличивает интерференцию между соседними элементами во время экспонирования, вызывая нежелательное взаимодействие;
- Оптические эффекты близости могут привести к нежелательному слиянию или разрыву линий, а также к изменению ширины элементов топологии. В результате на пластине образуются элементы неправильного размера или формы

$$CD = k_1 \frac{\lambda}{NA} = k_1 \frac{\lambda}{n \sin \Theta}$$

$$k_{1min}^{theory} = 0.25$$

$$k_{1min}^{practice} = 0.3 - 0.6$$

$$\lambda_{\text{DUV}} = 193$$
нм

ML-методы для задач вычислительной литографии

Литографическое моделирование

Идея подхода для литографического моделирования

[1]Воздушное изображение I может быть аппроксимировано в виде линейной комбинации свёрток маски M с оптическими ядрами H в соответствии моделью дифракции Хопкинса (оптическая модель):

Полученное воздушное изображение (по сути распределение интенсивности на пластине) подаётся на вход фоторезистивной модели, преобразующей его в изображение на пластине Z. Порог I_{th} определяет уровень экспозиции:

$$Z(x,y) = \sigma_Z(I(x,y)) = \frac{1}{1 + e^{(-\alpha(I(x,y) - I_{th}))}}$$

1. Zheng S., Yu B., Wong M. OpenILT: An open source inverse lithography technique framework //2023 IEEE 15th International Conference on ASIC (ASICON). – IEEE, 2023. – C. 1-4.

Коррекция эффектов оптической близости

Коррекция эффектов оптической близости на основе моделирования (МВОРС)

Идея GAN-подхода для OPC(1/2)

Рис.2[1]: применение GAN для OPC

Рис.3[1]: (а)обучение GAN (генератор + дискриминатор); (b) предварительное обучение генератора с использованием литографического моделирования

1. H. Yang, S. Li, Y. Ma, B. Yu and E. F. Y. Young - "GAN-OPC: Mask Optimization with Lithography-guided Generative Adversarial Nets," 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 2018, pp. 1-6, doi: 10.1109/DAC.2018.8465816.

Идея GAN-подхода для OPC(2/2)

Генератор и дискриминатор обучаются совместно, играя в т.н. «минимакс» игру:

Дискриминатор D_{θ_d} стремится максимизировать целевую функцию, чтобы $D_{\theta_d}(x,y)$ было близко к 1 (истинный объект), а $D_{\theta_d}(x,G_{\theta_d}(x))$ было близко к 0 (сгенерированный объект):

$$\max_{\theta_d} \left[E_{x,y} \log D_{\theta_d}(x,y) + E_x \log(1 - D_{\theta_d}(x, G_{\theta_g}(x))) \right]$$

Генератор G_{θ_g} стремится минимизировать целевую функцию таким образом, чтобы $D_{\theta_d}(x, G_{\theta_g}(x))$ был близок к 1 (дискриминатор обманут, полагая, что сгенерированный объект является реальным):

$$\min_{\theta_g} \left[E_{x,z} \log(1 - D_{\theta_d}(x, G_{\theta_g}(x))) \right]$$

На практике вместо минимизации целевой функции у генератора $\log(1-D(x,G(x)))$ максимизируют $\log(D(x,G(x)))$: $\max_{\theta_g} \left[E_x \log(D_{\theta_d}(x,G_{\theta_g}(x))) \right]$

Метрики

- PixelAccuracy (попиксельная точность) метрика,
 представляющая собой отношение числа верно
 предсказанных значений пикселей у сгенерированной
 маски к общему числу пикселей на изображении.
- IoU (Intersection Over Union) метрика,
 представляющая собой отношение площади
 пересечения предсказанной и целевой коррекции к
 площади их объединения.
- □ t_{gen} среднее время генерации изображения

 откорректированной топологический структуры, с

длина x ширина
$$PixelAccuracy = \frac{\sum_{i=0}^{N\times N} \mathbb{I}[target_i = prediction_i]}{N\times N}$$

$$IoU = \frac{\sum_{i=0}^{NxN} target_i * prediciton_i}{\left[\sum_{i=0}^{NxN} target_i + prediciton_i\right] - \left[\sum_{i=0}^{NxN} target_i * prediciton_i\right]}$$

Функции потерь

• Binary Cross Entropy (бинарная кроссэнтропия) — минимизация расхождения между предсказанием и истинным значением на основе вероятностного распределения

• IoU Loss – максимизация площади пересечения между истинным объектом и предсказанием

$$L_{IoU} = 1 - IoU = 1 - \frac{1}{B} \frac{\sum_{i=1}^{B} \sum_{j=0}^{NxN} target_{ij} * prediciton_{ij}}{\left[\sum_{i=1}^{B} \sum_{i=0}^{NxN} target_{ij} + prediciton_{ij}\right] - \left[\sum_{i=1}^{B} \sum_{j=0}^{NxN} target_{ij} * prediciton_{ij}\right]}$$

Иллюстрация подхода

Рис. 2: Архитектура генератора DAMO[1], использованная в качестве baseline

1. Zheng, S., Yang, H., Zhu, B., Yu, B., & Wong, M. (2023). Lithobench: Benchmarking ai computational lithography for semiconductor manufacturing. *Advances in Neural Information Processing Systems*, *36*, 30243-30254.

Анализ SEM-изображений

Задача детекции в общем виде

Выход модели

Размер выходного тензора: $B \times (5 + K)$

К – число классов,

В – число ограничивающих рамок

$$5 = |x_c, y_c, w, h, p_c|$$

 ${\bf x_c}\,,\,{\bf y_c}$ — нормированные координаты центров ограничивающих рамок

w, h — ширина и высота ограничивающей рамки

 $\mathbf{p_c}$ — вероятность обнаружить объект внутри рамки

 $\mathbf{P_1}$ - вероятность обнаружить объект класса 1

 P_2 – вероятность обнаружить объекта класса 2

Р₃ – вероятность обнаружить объекта класса 3

Intersection over Union (IoU)

$$J\big(B_p,B_{gt}\big) = IoU = \frac{area(B_p \cap B_{gt})}{area(B_p \cup B_{gt})}$$

 B_{at} - истинная рамка

 B_p - предсказанная рамка

$$\alpha$$
 — порог $IoU > \alpha \rightarrow$ верно $IoU < \alpha \rightarrow$ неверно

False Negative(FN)

(c)

- True positive(TP): верное предсказание истинного расположения рамки объекта;
- False positive(FP): детектирование несуществующего объекта или неверное детектирование существующего объекта;
- False Negative(FN): алгоритм не смог обнаружить истинное расположение рамки объекта

В контексте задач детекции **True Negative(TN)** не используется, поскольку существует бесконечное количество ограничивающих рамок, предсказывающих фон изображения, которые не нужно детектировать.

Оценка точности алгоритмов детекции

Image 4

0.6 Diegra

$$AP_{all} = \sum_{n} (R_{n+1} - R_n) P_{interp}(R_{n+1})$$

$$P_{interp}(R_{n+1}) = \max_{\tilde{R}: \, \tilde{R} \geq R_{n+1}} P(R)$$

$$P = \frac{TP}{TP + FP} = \frac{TP}{all\ detections}$$

$$R = \frac{TP}{TP + FN} = \frac{TP}{all \ ground \ truths}$$

$$mAP = \frac{1}{N} \sum_{i=1}^{N} AP_i$$

 $AP_i \rightarrow i$ — ый класс

_	recall	precision	Acc FP	Acc TP	FP	TP	confidence	Detection
-	0.066	1	0	1	0	1	95%	R
	0.066	0.5	1	1	1	0	95%	Y
	0.133	0.666	1	2	0	1	91%	J
	0.133	0.5	2	2	1	0	88%	A
	0.133	0.4	3	2	1	0	84%	U
	0.133	0.333	4	2	1	0	80%	C
	0.133	0.286	5	2	1	0	78%	M
	0.133	0.25	6	2	1	0	74%	F
	0.133	0.222	7	2	1	0	71%	D
	0.2	0.3	7	2 3	0	1	70%	В
	0.2	0.273	8	3	1	0	67%	Н
	0.266	0.333	8	4	0	1	62%	P
	0.33	0.385	8	5	0	1	54%	E
	0.4	0.423	8	6	0	1	48%	X
	0.4	0.4	9	6	1	0	45%	N
	0.4	0.375	10	6	1	0	45%	T
	0.4	0.353	11	6	1	0	44%	K
	0.4	0.333	12	6	1	0	44%	Q
	0.4	0.316	13	6	1	0	43%	v
	0.4	0.3	14	6	1	0	38%	I
	0.4	0.286	15	6	1	0	35%	L
	0.4	0.273	16	6	1	0	23%	S
-	0.467	0.304	16	7	0	1	18%	G
	0.467	0.292	17	7	1	0	14%	O

Image 5

Q:44%

Image 6

V:43%

Image 7

Оценка точности алгоритмов детекции

$$AP_{all} = \sum_{n} (R_{n+1} - R_n) P_{interp}(R_{n+1})$$

$$P_{interp}(R_{n+1}) = \max_{\tilde{R}: \, \tilde{R} \geq R_{n+1}} P(R)$$

$$P = \frac{TP}{TP + FP} = \frac{TP}{all\ detections}$$

$$R = \frac{TP}{TP + FN} = \frac{TP}{all \ ground \ truths}$$

$$mAP = \frac{1}{N} \sum_{i=1}^{N} AP_i$$

$$AP_i
ightarrow i$$
 — ый класс

Значение mAP@50	Качество детекции	
50% - 60%	низкое	
60%-70%	умеренное	
70%-80%	хорошее	
Выше 80%	высокое	

Значение	Качество		
mAP@50:95	детекции		
20% - 30%	низкое		
30%-40%	умеренное		
40%-50%	хорошее		
Выше 50%	высокое		

$$AP_{0.5} - mAP_{0.5} AP_{0.5:0.95} - mAP_{0.5:0.95}$$

Архитектура 1-го детектора Yolo

[paper]
[blog]

Выход модели

Размер выходного тензора: $S \times S \times ((5 + K) \times B)$

S x S – размер сетки для исходного изображения

К – число классов,

В – число ограничивающих рамок на каждую ячейку сетки

 $5 = |x, y, w, h, p_{obj}|$

х,у – смещение от начала координат **(0,0)** ячейки до центра объекта внутри ограничивающей рамки

w, h — ширина и высота ограничивающей рамки

 $\mathbf{P_{obj}}$ – вероятность обнаружить объект внутри рамки

 $\mathbf{P_{sraf}}$ - вероятность обнаружить объект класса "sraf"

 $\mathbf{P_{gap}}$ – вероятность обнаружить объекта класса "gap"

Функция потерь

Дублирующиеся предсказания удаляются алгоритмом NMS (non-maximum suppression – подавление немаксимумов)

Принцип работы на примере 1-го детектора Yolo

- Разбиваем изображения на SxS блоков:
- Для каждого блока предсказываем В прямоугольников
- Для каждого прямоугольника:
 - Координаты
 - Вероятность наличия объекта
 - Вероятность каждого класса при условии наличия объекта

NMS

- Модель выдаёт для класса дефект#1 список прямоугольников с различными confidence score
- Выбираем прямоугольник с максимальным confidence score, убираем его из общего списка
- Сортируем оставшиеся прямоугольники в порядке убывания confidence score
- Удаляем каждый последующий прямоугольник, имеющий IoU с первым > 0.5

Рис.: Визуализация алгоритма NMS.

(а) Показан промежуточный результат предсказания модели детекции; (б) Результат постобработки после применения алгоритма NMS

Чем пользуются сейчас?

Backbone: извлечение признаков входного изображения

Neck: агрегация карт признаков разного масштаба (комбинирование карт признаков с различных слоёв backbone)

Head: предсказания для объектов 3-ёх уровней масштаба (малые, большие, средние)

Поиск горячих точек

Идея подхода для поиска горячих точек (1/3)

Рис. 10[4]: Пример генерации признаков из топологии (n=12). Область топологии (1200x1200 нм) делится на 12x12 блоков. Каждый блок переводится в изображение размером 100x100рх, представляющий область 100x100 нм² на исходной топологии. Данные для обучения получаются путём применение дискретного косинусного преобразования ко всем блокам. От каждого блока берутся только первые k-коэффициентов

4. Yang H. et al. Layout hotspot detection with feature tensor generation and deep biased learning //Proceedings of the 54th Annual Design Automation Conference 2017. – 2017. – C. 1-6.

Идея подхода для поиска горячих точек(2/3)

Шаг 1: разбить топологию на $n \times n$ блоков с целью генерации признаков для каждого региона

Шаг 2: перевести каждый регион $I_{i,j}$, (i,j=0,1,...,n-1) в пространство частот

$$D_{i,j}(m,n) = \sum_{x=0}^{B} \sum_{y=0}^{B} I_{i,j}(x,y) \cos \left[\frac{\pi}{B} \left(x + \frac{1}{2} \right) m \right] \times \cos \left[\frac{\pi}{B} \left(y + \frac{1}{2} \right) n \right]$$

где (x, y) – индексы положения региона на топологии, (m, n) – индексы в пространстве частот, B – размер региона

Шаг 3: преобразовать множество $D_{i,j}$ в векторы, расположив в порядке убывания низкочастотных компонент: $C_{i,j}^* = [D_{i,j}(0,0), D_{i,j}(0,1), D_{i,j}(1,0), \dots, D_{i,j}(B,B)]$

Шаг 4: взять первые $k \le BxB$ элементов от каждого $C_{i,j}^*$. Собрать их в матрицу признаков $F \in \mathbb{R}^{n \times n \times k}$, сохранив их пространственное расположение

$$\begin{bmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \vdots & \vdots \\ c_{n1} & \dots & c_{nn} \end{bmatrix}$$

Идея подхода для поиска горячих точек(3/3)

Рис. 11[4]: схема свёрточной нейронной сети для задачи бинарной классификации областей топологии (hotspot – non hotspot)

Layer	Kernel Size	Stride	Output Node #	
conv1-1	3	1	$12 \times 12 \times 16$	
conv1-2	3	1	$12 \times 12 \times 16$	
maxpooling1	2	2	$6 \times 6 \times 16$	
conv2-1	3	1	$6 \times 6 \times 32$	
conv2-2	3	1	$6 \times 6 \times 32$	
maxpooling2	2	2	$3 \times 3 \times 32$	
fc1	9 <u>4</u> 9	2	250	
fc2	1 - 0	-	2	

Таблица: 1 предлагаемая архитектура свёрточной нейронной сети

4. Yang H. et al. Layout hotspot detection with feature tensor generation and deep biased learning //Proceedings of the 54th Annual Design Automation Conference 2017. – 2017. – C. 1-6.