DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat (c) 2003 EPO. All rts. reserv.

18398883

Basic Patent (No, Kind, Date): JP 6082711 U2 19941125 <No. of Patents: 001> Patent Family:

Patent No Kind Date Applic No Kind Date

JP 6082711 U2 19941125 JP 93U27420 U 19930428 (BASIC)

Priority Data (No, Kind, Date): JP 93U27420 U 19930428

PATENT FAMILY:

JAPAN (JP)

Patent (No, Kind, Date): JP 6082711 U2 19941125

Priority (No,Kind,Date): JP 93U27420 U 19930428 Applic (No,Kind,Date): JP 93U27420 U 19930428

IPC: * F21V-017/00

Language of Document: Japanese

DIALOG(R) File 347: JAPIO (c) 2003 JPO & JAPIO. All rts. reserv.

04438811 **Image available**
DRIVING DEVICE OF SCANNING MIRROR

PUB. NO.: 06-082711 [J P 6082711 A] PUBLISHED: March 25, 1994 (19940325)

INVENTOR(s): HORI MASAMI

NISHIMURA HIROMI KASANO FUMIHIRO

APPLICANT(s): MATSUSHITA ELECTRIC WORKS LTD [000583] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.: 04-231156 [JP 92231156] FILED: August 31, 1992 (19920831)

INTL CLASS: [5] G02B-026/10; G01B-011/24; G01B-011/30; G01N-021/88

JAPIO CLASS: 29.2 (PRECISION INSTRUMENTS -- Optical Equipment); 46.1

(INSTRUMENTATION -- Measurement); 46.2 (INSTRUMENTATION --

Testing)

JAPIO KEYWORD: R002 (LASERS)

JOURNAL: Section: P, Section No. 1760, Vol. 18, No. 339, Pg. 10, June

27, 1994 (19940627)

ABSTRACT

PURPOSE: To easily drive a large sized scanning mirror by utilizing interference of a laser beam reflected on a mirror face part.

CONSTITUTION: This driving device of a scanning mirror is provided with a magnetism generation part 2 having a coil 2a, and a flat plate shaped scanning mirror 1 which is angularly displaced and driven according to the magnetism of the part 2 generated by electrifying the coil 2a so that the light reflected with a mirror face part 1b is scanned. The scanning mirror 1 is supported with supporting members 1d at both ends capably of being angularly displaced centering around a drive axis le connecting both end parts, one face side is formed into a mirror face part 1b, the other face side is formed into a thin film-like permanent magnet 1c of which both sides of the drive axis le are magnetized into different poles, the part 2 having the winding axis of coil 2a in the direction meeting at right angles with the drive axis le of the mirror 1 is arranged on the other side of the mirror 1 spacedly by a decided distance. Consequently, the mirror 1 is singly driven in the light weighted condition of only forming the thin film-like permanent magnet 1c on the other side, and hence it can be driven by relative small drive force even in case of its large size.

		, , , , , , , , , , , , , , , , , , ,
•		

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-82711

(43)公開日 平成6年(1994)3月25日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FΙ	技術表示箇所
G 0 2 B 26/10	101			
G01B 11/24	D	9108-2F		
11/30	102 B	9108-2F		
G 0 1 N 21/88	Z	8304-2 J		
			:	審査請求 未請求 請求項の数 2 (全 6 頁)
(21) 出願番号	特顧平4-231156		(71)出願人	000005832
. , ,				松下電工株式会社
(22)出願日	平成4年(1992)8月	∄31 🗄		大阪府門真市大字門真1048番地
			(72)発明者	堀 正美
				大阪府門真市大字門真1048番地松下電工株
			İ	式会社内
			(72)発明者	西村 広海
				大阪府門真市大字門真1048番地松下電工株
				式会社内
			(72)発明者	笠野 文宏
				大阪府門真市大字門真1048番地松下電工株
				式会社内
			(74)代理人	弁理士 川瀬 幹夫 (外1名)

(54)【発明の名称】 走査ミラーの駆動装置

(57)【要約】

【目的】 大型の走査ミラーを容易に駆動できるように する。

【構成】 コイル2aを有する磁気発生部2 と、鏡面部1bにより反射された光が走査されるようコイル2aを通電することによって発生する磁気発生部2 の磁気に応じて角変位して駆動される平板状の走査ミラー1 と、を備え、走査ミラー1 は、両端部を結ぶ駆動軸1eを中心として角変位可能なよう支持部材1dで両端支持されるとともに一方面側が鏡面部1bで他方面側が駆動軸1eの両側を異極に着磁した薄膜状の永久磁石1cで形成され、磁気発生部2は、走査ミラー1 の駆動軸1eに直交する方向をコイル2aの巻回軸とするとともに走査ミラー1 の他方面側に所定の距離を隔てて配設されている。従って、走査ミラー1は、単独で、しかも他方面側に薄膜状の永久磁石1cを形成しただけの軽い状態で駆動されるので、走査ミラー1を大型にしたいような場合であっても、比較的小さな駆動力でも容易に駆動できる。

1

【特許請求の範囲】

【請求項1】 コイルを有する磁気発生部と、鏡面部により反射された光が走査されるようコイルを通電することによって発生する磁気発生部の磁気に応じて角変位して駆動される平板状の走査ミラーと、を備えた走査ミラーの駆動装置において、

走査ミラーは、両端部を結ぶ駆動軸を中心として角変位 可能なよう両端支持されるとともに一方面側が鏡面部で 他方面側が駆動軸の両側を異極に着磁した薄膜状の永久 磁石で形成され、磁気発生部は、走査ミラーの駆動軸に 10 直交する方向をコイルの巻回軸とするとともに走査ミラ 一の他方面側に所定の距離を隔てて配設されてなること を特徴とする走査ミラーの駆動装置。

【請求項2】 前配磁気発生部は、平板状の基板の面上 に、箔状のコイルが渦巻き状に巻回して一体形成されて なることを特徴とする請求項1記載の走査ミラーの駆動 装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、コイルを通電すること 20 によって発生する磁気発生部の磁気に応じて走査ミラー が角変位して駆動され、その鏡面部により反射されたレーザ光の干渉を利用して、微細な凹凸や傷を走査検出するレーザ変位センサー等において使用される走査ミラー の駆動装置に関する。

[0002]

【従来の技術】従来、この種の走査ミラーの駆動装置として、図9乃至図11に示す構成のものが存在し、このものは、レーザ変位センサーに使用されるものである。

【0003】Aは磁気発生部で、鉄芯ALとコイルAzとで 30 構成されている。鉄芯ALは、中央片ALIとその中央片A LI の両側に一体に形成された両側片ALIALI とからな り、両側片ALIALI の内側には中央片ALI 側を同極とし た永久磁石ALIALI がそれぞれ固着されている。コイル AZは、コイル線がポンディングして巻回された状態で、 鉄芯ALの中央片ALI に軸方向に移動可能なよう嵌挿され ている。

【0004】B は走査ミラーで、平板状に形成され、長尺状の支持成形体C の一方先端部C₁の片面に張り付けてある。支持成形体C は、長手方向がコイルA₂の軸と直交 40 するよう、中央部C₂をコイルA₂の側面に接着され、鉄芯A₁の両側片A₁₂,A₁₃ にそれぞれ固定された支持ばねC₃,C₄ に固着支持されている。

【0005】次に、動作を説明する。コイルAを通電すると、磁気発生部Aから発生するそのコイル磁束及び永久磁石ALA,ALSの磁束がコイルALを鎖交し、フレミングの左手の法則によって、コイルALは、図10(a)の矢示方向に移動しようとする。しかしながら、支持成形体Cは、支持ばねCs,Caにより鉄芯ALに固着支持されているから、軸方向に平行移動することができずに、図1050

(b) に示すように、支持ばねCa,Ca が撓んで傾斜移動する。従って、支持成形体C の一方先端部Ca の片面に張り付けられている走査ミラーB は、コイルA の通電電流を

付けられている走査ミラーB は、コイルA:の通電電流を変化させると、磁気発生部A から発生する磁気に応じて任意の角度に角変位するよう駆動できるものとなる。

【0006】そして、上記のようにして駆動される走査 ミラーB は、図11 に示すように、レーザ変位センサー に使用される。つまり、発光素子D から投光レンズE を 通って発射されたレーザ光が走査ミラーB の鏡面部によ り反射して検知体の走査始点P1に至った後、その走査始 点P1で再度反射して受光レンズF を通って受光素子Gに 入射する。ここで、前述したように、コイル42を通電し て走査ミラーB が角変位するよう駆動すると、走査ミラ 一B の鏡面部により反射したレーザ光は検知体の走査始 点P1から走査終点P2までの走査ラインを走査しながら反 射して、やはり受光レンズF を通って受光素子G に入射 する。そして、もし、検知体の走査ライン上において凹 凸や傷の変位があると、その部分から反射して来たレー ザ光が干渉するのを利用して、検知体の走査ライン上に 凹凸や傷があることを受光素子Gでもって検出するよう になっている。

[0007]

【発明が解決しようとする課題】上記した従来の走査ミラーの駆動装置を使用した図11に示すレーザ変位センサーにあっては、検知体の走査始点P1から走査終点P2までの走査ライン上で反射したレーザ光は、全て直接、受光レンズPを通って受光素子Gに入射するようになっているから、いま仮に、走査ミラーBが、走査ライン上の任意の位置、例えば走査ミラーBにより反射したレーザ光が走査始点P1に至るよう設定された角度にあるとき、走査ライン上の途中から二点鎖線で示すような外乱光が受光レンズPを通って受光素子Gに入射し得るので、その外乱光により誤動作してしまうことがある。

【0008】そこで、このような場合、走査ミラーBをもっと大きくして、走査ライン上で反射したレーザ光は、必ず再びその設定された角度にある走査ミラーBにより反射して後、受光レンズFを通って受光素子Gに入射するようにしておけば、走査ライン上の途中から入って来た外乱光がその走査ミラーBで反射したとしても受光素子Hに入射することがなくなる。

【0009】しかしながら、この従来の走査ミラーの駆動装置は、走査ミラーBがコイルAに接着された支持成形体Cに張り付けられ、コイルA及び支持成形体Cと共に一体となって走査ミラーB単独よりも重い状態のものが角変位するから、それだけ大きな駆動力が必要となり、従って、さらに、上記したように走査ミラーBを大型化したいような場合、ますます重たいものを駆動することになって、駆動装置自体もさらに大型化せざるを得ないことになる。

0 【0010】本発明は、上記事由に鑑みてなしたもの

で、その目的とするところは、大型の走査ミラーを容易 に駆動できる小型の走査ミラーの駆動装置を提供するこ とにある。

[0011]

【課題を解決するための手段】上記した課題を解決する ために、請求項1記載のものは、コイルを有する磁気発 生部と、鏡面部により反射された光が走査されるようコ イルを通電することによって発生する磁気発生部の磁気 に応じて角変位して駆動される平板状の走査ミラーと、 を備えた走査ミラーの駆動装置において、走査ミラー は、両端部を結ぶ駆動軸を中心として角変位可能なよう 両端支持されるとともに一方面側が鏡面部で他方面側が 駆動軸の両側を異極に着磁した薄膜状の永久磁石で形成 され、磁気発生部は、走査ミラーの駆動軸に直交する方 向をコイルの巻回軸とするとともに走査ミラーの他方面 側に所定の距離を隔てて配設されてなる構成にしてあ る。

【0012】また、請求項2記載のものは、前記磁気発 生部は、平板状の基板の面上に、箔状のコイルが渦巻き 状に巻回して一体形成されてなる構成にしてある。

[0013]

【作用】請求項1記載のものによれば、磁気発生部は、 コイルを通電されると、そのコイルが走査ミラーの駆動 軸に直交する方向を巻回軸とするとともに走査ミラーの 他方面側に所定の距離を隔てて配設されているから、走 査ミラーは、両端部を結ぶ駆動軸の両側を異極に着磁し て他方面側に形成された薄膜状の永久磁石と磁気発生部 との間で働く吸引及び反発力でもって駆動軸を中心とし て角変位することによって、一方面側の鏡面部により反 射された光を走査でき、従って、走査ミラーは、従来例 のようにコイルと一体ではなく、単独で、しかも他方面 側に薄膜状の永久磁石を形成しただけの軽い状態で駆動 されるので、走査ミラーを大型にしたいような場合であ っても、比較的小さな駆動力でも容易に駆動でき、よっ て駆動装置全体も小型にできる。

【0014】また、請求項2記載のものによれば、磁気 発生部が、平板状に形成され、走査ミラーの他方面側に 対面するように配設されているから、全体がフラット状 になって、さらに小型化し易いものとなる。

[0015]

【実施例】本発明の第1実施例を図1乃至図4に基づい て以下に説明する。本走査ミラーの駆動装置は、レーザ 変位センサーに使用されるものである。

【0016】1 は走査ミラーで、長方形の平板状をなし たガラス板1aの一方面にアルミ等を蒸着して光を反射で きる鏡面部1bが形成され、他方面にSmCo(サマリウムコ バルト) 等の希土類系の永久磁石1cがスパッタリング等 により薄膜状に形成されている。そして、ステンレスや ベリリウム銅等の金属製の薄板により短冊状に形成され た支持部材1dが、その一端部を鏡面部1bの長手方向の両 50 型にしたいような場合であっても、従来例のようにコイ

端部中央にそれぞれ固着支持されるとともに、他端部を 装置本体(図示せず)に固着されており、走査ミラー1 は、両支持部材1d,1d がねじられることによってその両 支持部材1d,1dを結ぶ駆動軸1eを中心として角変位可能 なようになっている。また、永久磁石1cは、図2に示す ように、駆動軸1eの両側が異極になるよう着磁されてい る。

【0017】2 は磁気発生部で、コイル2aがコイル枠2b に巻回され、走査ミラー1 の駆動軸1eに直交する方向を コイル2aの巻回軸とするとともに永久磁石1cが形成され た走査ミラー1 の他方面側に所定の距離を隔てて配設さ れている。

【0018】このものの動作は、コイル2aを通電して、 磁気発生部2 から発生する磁気により、図3に示すよう な磁極になるよう励磁すると、永久磁石1cの磁極との間 で吸引及び反発力が働き、走査ミラー1 は支持部材1dが ねじられることによって、図1に示す駆動軸1eを中心と して矢示のように、磁気発生部2 から発生する磁気に応 じて任意の角度に角変位するよう駆動されるものとな 20 S.

【0019】そして、上記のようにして駆動される走査 ミラー1は、図4に示すように、レーザ変位センサーに 使用される。つまり、発光索子3 から投光レンズ4 を通 って出射されたレーザ光が走査ミラー1 の鏡面部1bによ り反射して検知体の走査始点P1 に至り、その走査始点P1 で反射して後再び鏡面部1bにより反射し受光レンズ5を 通って受光素子6 に入射する。ここで、前述したよう に、コイル2aを通電して走査ミラー1 が駆動軸1eを中心 として角変位するよう駆動されると、走査ミラー1 の鏡 面部1bにより反射したレーザ光は検知体の走査始点P1か ら走査終点P2までの走査ラインを走査しながら反射して 後、やはり再び鏡面部1bにより反射し受光レンズ5 を通 って受光素子6 に入射する。つまり、図中、発光素子3 からの出射光と受光素子6 への入射光とがなす角度 a は、走査始点Piから走査終点Piまでの走査ライン上での 反射角bと一致するようになっている。そして、もし、 検知体の走査ライン上において凹凸や傷の変位がある と、その部分から反射して来たレーザ光が干渉するのを 利用して、検知体の走査ライン上に凹凸や傷があること を受光案子6でもって検出するようになっている。

【0020】上記したように、このレーザ変位センサー は、発光素子3からの出射光及び走査ラインからの反射 光が反射できるよう、走査ミラー1 が大きく形成されて いるから、図4に二点鎖線で示すように、検知体の走査 ライン上の途中から走査ミラー1 に対する入射角が異な る外乱光が入って来ても、受光素子6 へは入射せず誤動 作が発生することがない。

【0021】かかる走査ミラーの駆動装置にあっては、 走査ミラー1 は、上記のレーザ変位センサーのように大 5

ルと一体ではなく、単独で、しかも他方面側に薄膜状の 永久磁石1cを形成しただけの軽い状態で駆動されるの で、比較的小さな駆動力でも容易に駆動でき、よって駆 動装置全体も小型にできる。

【0022】次に、第2実施例を図5に基づいて説明す る。このものは、磁気発生部2 が、第1実施例と相違す るだけで、その他の構成は同じである。つまり、第1実 施例の磁気発生部2 は、コイル2aがコイル枠2bに巻回さ れているだけで、鉄芯を用いていない、いわゆる中空コ イルであるのに対し、本実施例の磁気発生部2 は、H字 10 る。 状の鉄芯2cの中央片にコイル2aが直接巻回されている。

【0023】かかる走査ミラーの駆動装置にあっては、 磁気発生部2 は鉄芯2cを用いているので、コイル磁束の 漏れが少なくなって、第1実施例よりもさらに小さな駆 動力で駆動できるものとなる。

【0024】次に、第3実施例を図6及び図7に基づい て説明する。このものは、第1実施例と磁気発生部2の 配設状態が相逢している。つまり、磁気発生部2は、第 1 実施例では永久磁石1cが形成された走査ミラー1 の他 方面側に所定の距離を隔てて配設されているが、本実施 20 例の磁気発生部2 は、走査ミラー1 を外囲するよう所定 の距離を隔ててコイル枠2bに巻回されて配設されてい る。そして、一端部を走査ミラー1 に固着された支持部 材1dが、その他端部をコイル枠2bに一体成形により固着 されている。この場合でも、図7に示すように、磁気発 生部2 の巻回軸の一方側及び他方側は、それぞれ異極に 磁化されるから、永久磁石1cの磁極との間で吸引及び反 発力が働き、第1実施例と同様にして、走査ミラー1 は 支持部材1dがねじられることによって、矢示のように角 変位するよう駆動される。

【0025】かかる走査ミラーの駆動装置にあっては、 磁気発生部2 は、走査ミラー1 と支持部材1dを介して一 体化されているから、第1実施例の効果に加えて、さら に組立てし易いものとなる。

【0026】次に、第4実施例を図8に基づいて説明す る。このものは、磁気発生部2が、第1実施例と相違す るだけで、その他の構成は同じである。つまり、第1実 施例の磁気発生部2 は、断面が円状である通常のコイル 2aがコイル枠2bに巻回されているが、本実施例の磁気発 生部2 は、平板状のガラス基板又はシリコン等の半導体 40 基板2dの面上に、箔状のコイル2aが渦巻き状に巻回して 一体形成され、走査ミラー1 の他方面側に設けた永久磁 石1cに対面するように配設されている。

【0027】かかる走査ミラーの駆動装置にあっては、 磁気発生部2 が、平板状に形成され、走査ミラー1 の他 方面側に対面するように配設されているから、第1実施 例の効果に加えて、全体がフラット状になって、さらに 小型化し易いものとなる。

【0028】なお、第1乃至第4のいずれの実施例の場 合でも、走査ミラー1 の鏡面部1bは、母材であるガラス 50 1c 永久磁石

板1aの一方面にアルミ等を蒸着して形成されているが、 それに代えて、母材として初めから表面が鏡面状に仕上 げられているシリコン等の半導体基板やステンレス板等 を利用してもよく、その場合はアルミ等を蒸着する必要 がない。

【0029】また、上配の実施例では、走査ミラーの駆 動装置は、レーザ変位センサーに使用された場合を示し ているが、これに限ることなく、ある2点間に光を走査 しながら照射したいような用途であれば、勿論使用でき

[0030]

【発明の効果】請求項1記載のものは、磁気発生部は、 コイルを通電されると、そのコイルが走査ミラーの駆動 軸に直交する方向を巻回軸とするとともに走査ミラーの 他方面側に所定の距離を隔てて配設されているから、走 査ミラーは、両端部を結ぶ駆動軸の両側を異極に着磁し て他方面側に形成された薄膜状の永久磁石と磁気発生部 との間で働く吸引及び反発力でもって駆動軸を中心とし て角変位することによって、一方面側の鏡面部により反 射された光を走査でき、従って、走査ミラーは、従来例 のようにコイルと一体ではなく、単独で、しかも他方面 側に薄膜状の永久磁石を形成しただけの軽い状態で駆動 されるので、走査ミラーを大型にしたいような場合であ っても、比較的小さな駆動力でも容易に駆動でき、よっ て駆動装置全体も小型にできる。

【0031】また、請求項2記載のものは、磁気発生部 が、平板状に形成され、走査ミラーの他方面側に対面す るように配設されているから、全体がフラット状になっ て、さらに小型化し易いものとなる。

【図面の簡単な説明】 30

【図1】本発明の第1実施例を示す斜視図である。

【図2】同上の走査ミラーに形成された永久磁石の着磁 状態を示す斜視図である。

【図3】同上の動作状態を示す説明図である。

【図4】同上のものを使用したレーザ変位センサーを示 す斜視図である。

【図5】本発明の第2実施例を示す斜視図である。

【図6】本発明の第3実施例を示す斜視図である。

【図7】同上の動作状態を示す説明図である。

【図8】本発明の第4実施例を示す斜視図である。

【図9】従来例を示す斜視図である。

【図10】同上の矢示側面図であって、動作状態を示す 説明図である。

【図11】同上のものを使用したレーザ変位センサーを 示す斜視図である。

【符号の説明】

2

- 走査ミラー
- 1b 鏡面部

(5)

特開平6-82711

1e 駆動軸

2 磁気発生部

2aコイル2d平板状の基板

 $[\boxtimes 1]$ $[\boxtimes 2]$ $[\boxtimes 3]$ $[\boxtimes 3$

[図9]

сÞэ

[図10]

(a)

