Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. І. Сікорського»

Кафедра інженерії програмного забезпечення в енергетиці

Практична робота № 6 з курсу: «Основи Веб-програмування»

Виконав:

студентка 2-го курсу, групи ТВ-31 Ященко Анастасія Антонівна Посилання на GitHub репозиторій: https://github.com/Yashchen/PW6TB-31_Yashchenko_Anastasiia_Antonivna

Перевірив:

Недашківський О.Л.

Київ 2024/2025

Практична робота № 6

1. Короткий теоретичний матеріал

Електропостачальні системи (ЕПС) ϵ ключовою складовою будь-якої енергетичної інфраструктури, яка відповіда ϵ за передачу та розподіл електроенергії до споживачів. Вони включають різноманітні електротехнічні пристрої, об'єднані у мережу для забезпечення безперебійного електропостачання. Точний розрахунок навантажень в таких мережах ϵ необхідним для оптимізації роботи обладнання, зменшення енергетичних втрат і підвищення надійності всі ϵ ї системи.

Класифікація електроприймачів

Електроприймачі — це пристрої, які перетворюють електричну енергію у різні форми енергії (механічну, світлову, теплову тощо). Їх поділяють за кількома ознаками:

- За напругою: низьковольтні (до 1000 В) і високовольтні (понад 1000 В).
- За типом струму: трифазні або однофазні, а також на пристрої змінної чи постійної частоти.
- За режимом роботи: тривалий (безперервна робота без перегріву), короткочасний (короткі періоди роботи), та повторно-короткочасний (циклічна робота з перервами).
- За призначенням: електродвигуни, освітлювальні прилади, технологічне обладнання тощо.
- За категорією надійності: споживачі поділяються на три категорії, де перша категорія вимагає безперебійного електропостачання.

Графіки електричних навантажень

Навантаження електричних мереж змінюється в залежності від часу доби, сезону та інших факторів, що впливає на їх ефективність. Для аналізу навантажень використовують різні типи графіків:

- Добові графіки: показують зміну навантаження протягом доби.
- Річні графіки: базуються на статистичних даних про річне споживання електроенергії.

• Графіки за тривалістю (впорядковані діаграми): навантаження впорядковуються у порядку спадання, що дозволяє оцінити максимальні і середні навантаження.

Основні електричні показники

Для опису електричних навантажень застосовують такі величини:

- **Активна потужність (Р):** потужність, що реально споживається для виконання корисної роботи.
- **Реактивна потужність (Q):** потужність, яка створює електромагнітні поля в обладнанні.
- **Повна потужність (S):** загальна споживана потужність, що ϵ векторною сумою активної та реактивної.
- Струм (I): величина потоку електричного заряду у проводах.

Основні параметри графіків навантажень включають:

- Середнє навантаження: усереднене значення потужності за певний період.
- Ефективне навантаження: показник, який враховує енергетичні втрати.
- Максимальне навантаження: найбільше навантаження, зафіксоване за вибраний час.

Розрахункове навантаження

Розрахункове навантаження – це уявне постійне навантаження, яке за тепловими параметрами еквівалентне змінному навантаженню в реальних умовах. Існує кілька способів його визначення:

- 1. Розрахунок середнього значення навантаження.
- 2. Оцінка максимуму середнього навантаження за певний період.
- 3. Використання методу впорядкованих діаграм (УД), який базується на статистичному аналізі і враховує ймовірнісні характеристики навантаження.

Метод впорядкованих діаграм, запропонований Г.М. Каяловим, передбачає моделювання навантажень як випадкових величин із застосуванням коефіцієнтів максимального навантаження, коефіцієнтів використання і форми навантаження.

Практичне застосування

При проектуванні електропостачальних систем враховують:

- Коефіцієнт використання: співвідношення фактичного споживання до номінальної потужності.
- **Ефективну кількість електроприймачів:** умовна кількість обладнання, що відповідає фактичному навантаженню.
- Розрахунковий коефіцієнт активної потужності: використовується для визначення максимальних навантажень.

Розрахунок навантажень цехових мереж проводиться поетапно, з урахуванням індивідуальних характеристик окремих електроприймачів і групових показників, а також із застосуванням статистичних коефіцієнтів для прогнозування енергоспоживання.

2. Опис програмної реалізації з необхідними поясненнями та скріншотами програмного коду;

2.1 Завдання 1

Текст

Створіть Веб калькулятор для розрахунку електричних навантажень об'єктів з використанням методу впорядкованих діаграм. Цехова мережа складається з трьох типових цехів які під'єднується до трьох різних розподільчих шин (ШР1-ШР3) та кількох крупних електроприймачів (ЕП). Для спрощення приймемо що склад, номенклатура і характеристики ЕП всіх трьох цехів однакові. На основі складу ЕП та їх характеристик необхідно розрахувати силове навантаження цехової мережі.

2.2 Опис реалізії

Для введення даних використовується HTML-сторінка, на якій розміщені поля вводу. Кожне поле має унікальний ідентифікатор (id), за допомогою якого можна отримати введені користувачем значення. Результати обчислень відображаються в окремому блоці (контейнері) на сторінці. Всі стилі оформлення розміщені у зовнішньому файлі style.css.

```
(DOCTYPE html)
<html lang="uk">
   <meta charset="UTF-8" />
     <meta name="viewport" content="width=device-width, initial-scale=1" />
   <title>Розрахунок електричних навантажень</title>
   <div class="app-container">
                 <h1>Електричний Калькулятор Навантажень</h1>
                 <р>Введіть параметри електроприймача для розрахунку силового навантаження
                 <div class="form-group">
                          <input type="text" id="ep-name" placeholder="Наприклад, Шліфувальний станок" required />
                        <div class="form-group">
                                <label for="efficiency">KKД (η)</label>
<input type="number" id="efficiency" min="0" max="1" step="0.01" required />
                          <div class="form-group">
                             <label for="power-factor">cos otto del for="power-factor">cos otto del factor fac
                                <input type="number" id="power-factor" min="0" max="1" step="0.01" required />
                    <div class="form-row">
                         <div class="form-group">
                               <label for="voltage">Hanpyra, kB</label>
<input type="number" id="voltage" min="0" step="0.01" required />
                          <div class="form-group">
```

```
| clabel for="quantity">Кількість EП</label>
| cinput type="number" id="quantity" min="1" required />
| cydiv> cydiv> cydiv> cydiv class="form-row">
| clabel for="nominal-power">Номінальна потужність, кВт</label> cinput type="number" id="nominal-power" min="0" step="0.01" required />
| cydiv> cydiv class="form-group">
| clabel for="nominal-power" min="0" step="0.01" required />
| cydiv> cyform> cyfor
```

Рисунок 2.1.1 - Код сторінки калькулятора

Після натискання кнопки «Обчислити» відбувається умовна відправка форми — подія перехоплюється, дані проходять перевірку на коректність, а потім виконуються необхідні обчислення на основі введених значень.

```
document.addEventListener('DOMContentLoaded', () => {
 const form = document.getElementById('loadCalcForm');
 const results = document.getElementById('calculation-results');
 form.addEventListener('submit', e => {
   e.preventDefault();
   const efficiency = parseFloat(form.efficiency.value);
   const cosPhi = parseFloat(form['power-factor'].value);
   const voltage = parseFloat(form.voltage.value);
   const quantity = parseInt(form.quantity.value, 10);
   const nominalPower = parseFloat(form['nominal-power'].value);
   const utilization = parseFloat(form.utilization.value);
   const reactiveFactor = parseFloat(form['reactive-factor'].value);
    efficiency <= 0 || efficiency > 1 ||
    cosPhi <= 0 || cosPhi > 1 ||
     voltage <= 0 || quantity <= 0 ||
     nominalPower <= 0 || utilization <= 0 || utilization > 1 ||
     reactiveFactor <= 0
     results.innerHTML = `Будь ласка, введіть коректні значення Д всі поля.;
```

Рисунок 2.1.2 - Функція для обрахунку результатів

Функція відслідковує подію надсилання форми, проводить перевірку введених даних на правильність і заповненість, а потім оновлює вміст блоку з результатами розрахунків.

2.3 Результат виконання 1 варіант

Електричний Калькулятор Навантажень

Введіть параметри електроприймача для розрахунку силового навантаження

ΚΚД (η)0.920.9	
0.92	
Напруга, кВ Кількість ЕП	
0.38	
Номінальна потужність, кВт Коеф. використан	іня (Кв)
20 0.21	
Соеф. реактивної потужності (tg φ)	
1.55	

Рисунок 2.1.3 - Дані для обрахунку

Результати Загальна номінальна потужність: 80.00 кВт Активна потужність: 16.80 кВт Реактивна потужність: 26.04 квар Повна потужність (кВ-А): 30.99 Розрахунковий струм (А): 49122.81

Рисунок 2.1.4 - Результати обрахунку

3.Висновок

Під час виконання цієї практичної роботи я значно поглибила знання про роботу електропостачальних систем. Зокрема, я ознайомилась із підходами до аналізу навантажень, серед яких особливо корисним виявився метод упорядкованих діаграм. Я навчилася застосовувати формули для обчислення активної, реактивної та повної потужності, а також аналізувати споживання енергії за допомогою групових коефіцієнтів і характеристик пікових навантажень. Крім того, я отримала практичний досвід у програмній реалізації складних розрахункових алгоритмів шляхом створення вебкалькулятора. Це дозволило мені поєднати теоретичні знання з реальними прикладними задачами в галузі енергетики.