05-1 gpio via mmap()

ppio via sysfs

- So far we've been access the gpio pins via sysfs
- You can turn a USR LED on with

beagle\$ cd /sys/class/leds/beaglebone\:green\:usr3

beagle\$ echo none > trigger
beagle\$ echo 1 > brightness

- sysf is portable, but can be slow
- What if speed is needed?

gpio via mmap()

- All the IO on the am335x is memory mapped
- You can look them up on the am335x Technical Reference Manual (TRM)

USR3 LED

beagle\$ cd ~/exercises/gpio
beagle\$./findGPIO.js USR3

```
{ name: 'USR3', gpio: 56, led: 'usr3', mux: 'gpmc_a8', key: 'USR3', muxRegOffset: '0x060', options: [ 'gpmc_a8', 'gmii2_rxd3', 'rgmii2_rd3', 'mmc2_dat6', 'gpmc_a24', 'pr1_mii1_rxd0', 'mcasp0_aclkx', 'gpio1_24' ] } USR3 (gpio 56) mode: 7 (gpio1_24) 0x060 pullup pin 24 (44e10860): (MUX UNCLAIMED) (GPIO UNCLAIMED
```

From Table 2-3 of TRM

	UXTUUT_0000	UATOUT_8111	TIND	LT IIIIEIWIIIEW
DMTIMER7	0x4804_A000	0x4804_AFFF	4KB	DMTimer7 Registers
	0x4804_B000	0x4804_BFFF	4KB	Reserved
GPIO1	0x4804_C000	0x4804_CFFF	4KB	GPIO1 Registers
	0x4804_D000	0x4804_DFFF	4KB	Reserved
Reserved	0x4804 E000	0x4804 FFFF	8KB	Reserved

SPRUH73H-October 2011-Revised April 2013 Submit Documentation Feedback Memory Map 159

Copyright © 2011–2013, Texas Instruments Incorporated

- Base address is **0x4804_C000.**
- Click on GPIO1

Offset	Acronym	Register Name	Section
0h	GPIO_REVISION		Section 25.4.1.1
10h	GPIO_SYSCONFIG		Section 25.4.1.2
20h	GPIO_EOI		Section 25.4.1.3
24h	GPIO_IRQSTATUS_RAW_0		Section 25.4.1.4
28h	GPIO_IRQSTATUS_RAW_1		Section 25.4.1.5
2Ch	GPIO_IRQSTATUS_0		Section 25.4.1.6
30h	GPIO_IRQSTATUS_1		Section 25.4.1.7
34h	GPIO_IRQSTATUS_SET_0		Section 25.4.1.8
38h	GPIO_IRQSTATUS_SET_1		Section 25.4.1.9
3Ch	GPIO_IRQSTATUS_CLR_0		Section 25.4.1.10
40h	GPIO_IRQSTATUS_CLR_1		Section 25.4.1.11
44h	GPIO_IRQWAKEN_0		Section 25.4.1.12
48h	GPIO_IRQWAKEN_1		Section 25.4.1.13
114h	GPIO_SYSSTATUS		Section 25.4.1.14
130h	GPIO_CTRL		Section 25.4.1.15
10111	GPIO_UE	0x4804 c000 + 13c =	Section 25.4.1.16
138h	GPIO_DATAIN	0x4804_c13c Address for GPIO_DATAOUT	Section 25.4.1.17
13Ch	GPIO_DATAOUT		Section 25.4.1.18
1401	GRIO_I EVELUETECTO		Section 25.4.1.19
144h	GPIO_LEVELDETECT1		Section 25.4.1.20
148h	GPIO_RISINGDETECT		Section 25.4.1.21
14Ch	GPIO_FALLINGDETECT		Section 25.4.1.22
150h	GPIO_DEBOUNCENABLE		Section 25.4.1.23
154h	GPIO_DEBOUNCINGTIME		Section 25.4.1.24
190h	GPIO_CLEARDATAOUT		Section 25.4.1.25
194h	GPIO_SETDATAOUT		Section 25.4.1.26

Toggle the LED - PIC

- The PIC way
 - Read register
 - XOR with (1<<24)
 - Write register
- 3 operations

Toggle the LED

• Use GPIO_SETDATAOUT and GPIO_CLEARDATAOUT

154h GPIO_DEBOUNCINGTIME 190h GPIO_CLEARDATAOUT 194h GPIO_SETDATAOUT Section 25.4.1.25 Section 25.4.1.25 Section 25.4.1.25 Section 25.4.1.26

- Write to **GPIO_SETDATAOUT** a value with 1's for the pins to be set to 1
- Write to **GPIO_CLEARDATAOUT** a value with 1's for the pins to be cleared to 0
- Use 0x190 to Clear

Turn LED off then on

Off

beagle\$ devmem2 0x4804c190 w 0x01000000 /dev/mem opened.

Memory mapped at address 0xb6f53000.

Read at address 0x4804C190 (0xb6f53190): 0x01800000 Write at address 0x4804C190 (0xb6f53190): 0x01000000, readback 0x01000000

• On

beagle\$ devmem2 0x4804c194 w 0x01000000

/dev/mem opened.

Memory mapped at address 0xb6f9f000.

Read at address 0x4804C194 (0xb6f9f194): 0x00800000 Write at address 0x4804C194 (0xb6f9f194): 0x01800000, readback 0x01800000

mmap()

- The same can be done more quickly from a C program using mmap()
- mmap() is a way of mapping a physical address space into a user-space program

Exercise gpio via mmap

- Homework 5 has you work through some examples
- **gpioThru.c** copies an input pin to an output

