# 10-301/601: Introduction to Machine Learning Lecture 2 – Decision Trees

#### Front Matter

- Announcements:
  - HW1 released 5/17 due 5/24 at 1 PM
  - Recitation 1 on 5/19: review of prerequisite material
  - General advice for the summer:
    - Start HWs early!
    - Go to office hours! Starting today, 5/18
- Recommended Readings:
  - Daumé III, <u>Chapter 1: Decision Trees</u>

### Our second Machine Learning Classifier

- A classifier is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

| Family<br>History | Resting Blood<br>Pressure | Cholesterol | Heart<br>Disease? |
|-------------------|---------------------------|-------------|-------------------|
| Yes               | Low                       | Normal      | No                |
| No                | Medium                    | Normal      | No                |
| No                | Low                       | Abnormal    | Yes               |
| Yes               | Medium                    | Normal      | Yes               |
| Yes               | High                      | Abnormal    | Yes               |

#### **Notation**

- Feature space, X
- ullet Label space,  ${\mathcal Y}$
- (Unknown) Target function,  $c^*: \mathcal{X} \to \mathcal{Y}$
- Training dataset:

$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, c^*(\mathbf{x}^{(1)}) = y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}) \dots, (\mathbf{x}^{(N)}, y^{(N)}) \}$$

• Data point:

$$(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}) = (x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}, \mathbf{y}^{(n)})$$

- Classifier,  $h: \mathcal{X} \to \mathcal{Y}$
- Goal: find a classifier, h, that best approximates  $c^*$

#### **Evaluation**

- Loss function,  $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ 
  - Defines how "bad" predictions,  $\hat{y} = h(x)$ , are compared to the true labels,  $y = c^*(x)$
  - Common choices
  - 1. Squared loss (for regression):  $\ell(y, \hat{y}) = (y \hat{y})^2$
  - 2. Binary or 0-1 loss (for classification):

$$\ell(y, \hat{y}) = \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{otherwise} \end{cases}$$

#### **Evaluation**

- Loss function,  $\ell:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$ 
  - Defines how "bad" predictions,  $\hat{y} = h(x)$ , are compared to the true labels,  $y = c^*(x)$
  - Common choices
  - 1. Squared loss (for regression):  $\ell(y, \hat{y}) = (y \hat{y})^2$
  - 2. Binary or 0-1 loss (for classification):

$$\ell(y, \hat{y}) = \mathbb{1}(y \neq \hat{y})$$

• Error rate:

$$err(h,\mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(y^{(n)} \neq \hat{y}^{(n)})$$

### Notation: Example

 Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

|           | $x_1$ Family History | $x_2$ Resting Blood Pressure | $x_3$ Cholesterol | <i>y</i><br>Heart<br>Disease? | $\hat{y}$<br>Predictions |
|-----------|----------------------|------------------------------|-------------------|-------------------------------|--------------------------|
|           | Yes                  | Low                          | Normal            | No                            | No                       |
| $x^{(2)}$ | No                   | Medium                       | Normal            | No                            | No                       |
| '         | No                   | Low                          | Abnormal          | Yes                           | Yes                      |
|           | Yes                  | Medium                       | Normal            | Yes                           | Yes                      |
|           | Yes                  | High                         | Abnormal          | Yes                           | Yes                      |

• 
$$N = 5$$
 and  $D = 3$ 

• 
$$x^{(2)} = (x_1^{(2)} = \text{"No"}, x_2^{(2)} = \text{"Medium"}, x_3^{(2)} = \text{"Normal"})$$

## Our second Machine Learning Classifier

Memorizer:

```
def train(D):
       store \mathcal{D}
def majority_vote(\mathcal{D}):
       return mode(y^{(1)}, y^{(2)}, ..., y^{(N)})
def predict(x'):
       if \exists x^{(n)} \in \mathcal{D} s.t. x' = x^{(n)}:
              return y^{(n)}
       else
               return majority_vote(Ɗ)
```

#### Our third Machine Learning Classifier

Alright, let's actually (try to) extract a pattern from the data

| $x_1$<br>Family<br>History | $x_2$<br>Resting Blood<br>Pressure | $x_3$ Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------------|-------------------|-------------------------------|
| Yes                        | Low                                | Normal            | No                            |
| No                         | Medium                             | Normal            | No                            |
| No                         | Low                                | Abnormal          | Yes                           |
| Yes                        | Medium                             | Normal            | Yes                           |
| Yes                        | High                               | Abnormal          | Yes                           |

• Decision stump: based on a single feature,  $x_d$ , predict the most common label in the training dataset among all data points that have the same value for  $x_d$ 

• Alright, let's actually (try to) extract a pattern from the data

| $x_1$<br>Family<br>History | $x_2$<br>Resting Blood<br>Pressure | $x_3$<br>Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------------|----------------------|-------------------------------|
| Yes                        | Low                                | Normal               | No                            |
| No                         | Medium                             | Normal               | No                            |
| No                         | Low                                | Abnormal             | Yes                           |
| Yes                        | Medium                             | Normal               | Yes                           |
| Yes                        | High                               | Abnormal             | Yes                           |

• Decision stump on  $x_1$ :

$$h(\mathbf{x}') = h(x'_1, ..., x'_D) = \begin{cases} ??? & \text{if } x'_1 = \text{"Yes"} \\ ??? & \text{otherwise} \end{cases}$$

Alright, let's actually (try to) extract a pattern from the data

| $x_1$<br>Family<br>History | $x_2$<br>Resting Blood<br>Pressure | $x_3$ Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------------|-------------------|-------------------------------|
| Yes                        | Low                                | Normal            | No                            |
| No                         | Medium                             | Normal            | No                            |
| No                         | Low                                | Abnormal          | Yes                           |
| Yes                        | Medium                             | Normal            | Yes                           |
| Yes                        | High                               | Abnormal          | Yes                           |

• Decision stump on  $x_1$ :

$$h(x') = h(x'_1, ..., x'_D) = \begin{cases} \text{"Yes" if } x'_1 = \text{"Yes"} \\ \text{??? otherwise} \end{cases}$$

Alright, let's actually (try to) extract a pattern from the data

| $x_1$<br>Family<br>History | $x_2$<br>Resting Blood<br>Pressure | $x_3$ Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------------|-------------------|-------------------------------|
| Yes                        | Low                                | Normal            | No                            |
| No                         | Medium                             | Normal            | No                            |
| No                         | Low                                | Abnormal          | Yes                           |
| Yes                        | Medium                             | Normal            | Yes                           |
| Yes                        | High                               | Abnormal          | Yes                           |

• Decision stump on  $x_1$ :

$$h(\mathbf{x}') = h(x_1', \dots, x_D') = \begin{cases} \text{"Yes" if } x_1' = \text{"Yes"} \\ \text{"No" otherwise} \end{cases}$$

Alright, let's actually (try to) extract a pattern from the data

| $x_1$<br>Family<br>History | $x_2$<br>Resting Blood<br>Pressure | $x_3$<br>Cholesterol | <i>y</i><br>Heart<br>Disease? | $\hat{y}$ Predictions |
|----------------------------|------------------------------------|----------------------|-------------------------------|-----------------------|
| Yes                        | Low                                | Normal               | No                            | Yes                   |
| No                         | Medium                             | Normal               | No                            | No                    |
| No                         | Low                                | Abnormal             | Yes                           | No                    |
| Yes                        | Medium                             | Normal               | Yes                           | Yes                   |
| Yes                        | High                               | Abnormal             | Yes                           | Yes                   |



## Decision Stumps: Pseudocode

```
def train(\mathcal{D}):
    1. pick a feature, x_d
    2. split \mathcal{D} according to x_d
        for v in V(x_d), all possible values of x_d:
               \mathcal{D}_v = \left\{ \left( x^{(i)}, y^{(i)} \right) \in \mathcal{D} \mid x_d^{(i)} = v \right\}
    3. Compute the majority vote for each split
        for v in V(x_d), all possible values of x_d:
               \hat{\mathbf{v}}_{n} = \text{majority vote}(\mathcal{D}_{v})
def predict(x'):
        for v in V(x_d), all possible values of x_d:
               if x' = v: return \hat{y}_v
```

## Decision Stumps: Questions

1. How can we pick which feature to split on?

#### **Lecture 2 Polls**

#### 0 done



## Which feature do you think we should split on for this data set?

| x <sub>1</sub><br>Family<br>History | x <sub>2</sub><br>Resting Blood<br>Pressure | x <sub>3</sub><br>Cholesterol | <i>y</i><br>Heart<br>Disease? |
|-------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| Yes                                 | Low                                         | Normal                        | No                            |
| No                                  | Medium                                      | Normal                        | No                            |
| No                                  | Low                                         | Abnormal                      | Yes                           |
| Yes                                 | Medium                                      | Normal                        | Yes                           |
| Yes                                 | High                                        | Abnormal                      | Yes                           |



### Splitting Criterion

- A splitting criterion is a function that measures how good or useful splitting on a particular feature is for a specified dataset
- Insight: use the feature that optimizes the splitting criterion for our decision stump.

Training error rate as a Splitting Criterion

| $x_1$<br>Family<br>History | $x_2$ Resting Blood Pressure | $x_3$ Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------|-------------------|-------------------------------|
| Yes                        | Low                          | Normal            | No                            |
| No                         | Medium                       | Normal            | No                            |
| No                         | Low                          | Abnormal          | Yes                           |
| Yes                        | Medium                       | Normal            | Yes                           |
| Yes                        | High                         | Abnormal          | Yes                           |

 $\chi_3$ 

Training error

rate: 1/5

"Yes"

"Normal"

"No"



Henry Chai - 5/18/22 19

rate: 2/5

rate: 2/5

## Training error rate as a Splitting Criterion?

| $x_1$ | $x_2$ | у |
|-------|-------|---|
| 1     | 0     | 0 |
| 1     | 0     | 0 |
| 1     | 0     | 1 |
| 1     | 0     | 1 |
| 1     | 1     | 1 |
| 1     | 1     | 1 |
| 1     | 1     | 1 |
| 1     | 1     | 1 |

 Which feature would you split on using training error rate as the splitting criterion?



Training error rate: 2/8

### Splitting Criterion

- A splitting criterion is a function that measures how good or useful splitting on a particular feature is for a specified dataset
- Insight: use the feature that optimizes the splitting criterion for our decision stump.
- Potential splitting criteria:
  - Training error rate (minimize)
  - Gini impurity (minimize) → CART algorithm
  - Mutual information (maximize) → ID3 algorithm

### Splitting Criterion

- A splitting criterion is a function that measures how good or useful splitting on a particular feature is for a specified dataset
- Insight: use the feature that optimizes the splitting criterion for our decision stump.
- Potential splitting criteria:
  - Training error rate (minimize)
  - Gini impurity (minimize) → CART algorithm
  - Mutual information (maximize) → ID3 algorithm

#### Entropy

 Entropy describes the purity or uniformity of a collection of values: the lower the entropy, the more pure

$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2 \left(\frac{|S_v|}{|S|}\right)$$

where *S* is a collection of values,

V(S) is the set of unique values in S

 $S_v$  is the collection of elements in S with value v

If all the elements in S are the same, then

$$H(S) = -1 \log_2(1) = 0$$

#### Entropy

 Entropy describes the purity or uniformity of a collection of values: the lower the entropy, the more pure

$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2 \left(\frac{|S_v|}{|S|}\right)$$

where *S* is a collection of values,

V(S) is the set of unique values in S

 $S_v$  is the collection of elements in S with value v

• If *S* is split fifty-fifty between two values, then

$$H(S) = -\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) = -\log_2\left(\frac{1}{2}\right) = 1$$

24

#### Mutual Information

 Mutual information describes how much information or clarity a particular feature provides about the label

$$I(x_d, Y) = H(Y) - \sum_{v \in V(x_d)} (f_v) \left( H(Y_{x_d=v}) \right)$$

where  $x_d$  is a feature

Y is the collection of all labels

 $V(x_d)$  is the set of unique values of  $x_d$ 

 $f_v$  is the fraction of inputs where  $x_d = v$ 

 $Y_{x_d=v}$  is the collection of labels where  $x_d=v$ 

## Mutual Information: Example

| $x_d$ | y |
|-------|---|
| 1     | 1 |
| 1     | 1 |
| 0     | 0 |
| 0     | 0 |

$$I(x_d, Y) = H(Y) - \sum_{v \in V(x_d)} (f_v) \left( H(Y_{x_d=v}) \right)$$

$$= 1 - \frac{1}{2} H(Y_{x_d=0}) - \frac{1}{2} H(Y_{x_d=1})$$

$$= 1 - \frac{1}{2} (0) - \frac{1}{2} (0) = 1$$

## Mutual Information: Example

| $x_d$ | y |
|-------|---|
| 1     | 1 |
| 0     | 1 |
| 1     | 0 |
| 0     | 0 |

$$I(x_d, Y) = H(Y) - \sum_{v \in V(x_d)} (f_v) \left( H(Y_{x_d=v}) \right)$$

$$= 1 - \frac{1}{2} H(Y_{x_d=0}) - \frac{1}{2} H(Y_{x_d=1})$$

$$= 1 - \frac{1}{2} (1) - \frac{1}{2} (1) = 0$$

## Mutual Information as a Splitting Criterion

| $x_1$ | $x_2$ | У |
|-------|-------|---|
| 1     | 0     | 0 |
| 1     | 0     | 0 |
| 1     | 0     | 1 |
| 1     | 0     | 1 |
| 1     | 1     | 1 |
| 1     | 1     | 1 |
| 1     | 1     | 1 |
| 1     | 1     | 1 |

 Which feature would you split on using mutual information as the splitting criterion?



Mutual Information: 0



Mutual Information: 
$$H(Y) - \frac{1}{2}H(Y_{x_2=0}) - \frac{1}{2}H(Y_{x_2=1})$$

## Mutual Information as a Splitting Criterion

| $x_1$ | $x_2$ | у |
|-------|-------|---|
| 1     | 0     | 0 |
| 1     | 0     | 0 |
| 1     | 0     | 1 |
| 1     | 0     | 1 |
| 1     | 1     | 1 |
| 1     | 1     | 1 |
| 1     | 1     | 1 |
| 1     | 1     | 1 |

 Which feature would you split on using mutual information as the splitting criterion?



Mutual Information: 0



Mutual Information: 
$$-\frac{2}{8}\log_2\frac{2}{8} - \frac{6}{8}\log_2\frac{6}{8} - \frac{1}{2}(1) - \frac{1}{2}(0) \approx 0.31$$

## Decision Stumps: Questions

- 1. How can we pick which feature to split on?
- 2. Why stop at just one feature?

## From Decision Stump

• • •

| $x_1$<br>Family<br>History | $x_2$<br>Resting Blood<br>Pressure | $x_3$ Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------------|-------------------|-------------------------------|
| Yes                        | Low                                | Normal            | No                            |
| No                         | Medium                             | Normal            | No                            |
| No                         | Low                                | Abnormal          | Yes                           |
| Yes                        | Medium                             | Normal            | Yes                           |
| Yes                        | High                               | Abnormal          | Yes                           |



| $x_1$<br>Family<br>History | $x_2$<br>Resting Blood<br>Pressure | $x_3$<br>Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------------|----------------------|-------------------------------|
| Yes                        | Low                                | Normal               | No                            |
| No                         | Medium                             | Normal               | No                            |
| No                         | Low                                | Abnormal             | Yes                           |
| Yes                        | Medium                             | Normal               | Yes                           |
| Yes                        | High                               | Abnormal             | Yes                           |



| $x_1$<br>Family<br>History | $x_2$ Resting Blood Pressure | $x_3$ Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------|-------------------|-------------------------------|
| Yes                        | Low                          | Normal            | No                            |
| No                         | Medium                       | Normal            | No                            |
| No                         | Low                          | Abnormal          | Yes                           |
| Yes                        | Medium                       | Normal            | Yes                           |
| Yes                        | High                         | Abnormal          | Yes                           |
| 103                        | riigii                       | Abhoilliai        | 103                           |

Normal

High

No



Henry Chai - 5/18/22

| $x_1$<br>Family<br>History | $x_2$ Resting Blood Pressure | $x_3$ Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------|-------------------|-------------------------------|
| Yes                        | Low                          | Normal            | No                            |
| No                         | Medium                       | Normal            | No                            |
| No                         | Low                          | Abnormal          | Yes                           |
| Yes                        | Medium                       | Normal            | Yes                           |
| Yes                        | High                         | Abnormal          | Yes                           |
| 103                        | riigii                       | Abhoilliai        | 103                           |

Normal

High

No



Henry Chai - 5/18/22

| $x_1$<br>Family<br>History | $x_2$<br>Resting Blood<br>Pressure | $x_3$<br>Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------------|----------------------|-------------------------------|
| Yes                        | Low                                | Normal               | No                            |
| No                         | Medium                             | Normal               | No                            |
| No                         | Low                                | Abnormal             | Yes                           |
| Yes                        | Medium                             | Normal               | Yes                           |
| Yes                        | High                               | Abnormal             | Yes                           |
|                            |                                    |                      |                               |

Normal

High

No



Henry Chai - 5/18/22

| $x_1$<br>Family<br>History | $x_2$<br>Resting Blood<br>Pressure | $x_3$ Cholesterol | <i>y</i><br>Heart<br>Disease? |
|----------------------------|------------------------------------|-------------------|-------------------------------|
| Yes                        | Low                                | Normal            | No                            |
| No                         | Medium                             | Normal            | No                            |
| No                         | Low                                | Abnormal          | Yes                           |
| Yes                        | Medium                             | Normal            | Yes                           |
| Yes                        | High                               | Abnormal          | Yes                           |
|                            |                                    |                   |                               |

Normal

High

No



Henry Chai - 5/18/22

# Decision<br/>Tree:<br/>Example

Learned from medical records of 1000 women Negative examples are C-sections

```
[833+,167-] .83+ .17-

Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| | Primiparous = 1: [368+,68-] .84+ .16-
| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-

Fetal_Presentation = 2: [3+,29-] .11+ .89-

Fetal_Presentation = 3: [8+,22-] .27+ .73-
```

Henry Chai - 5/18/22 Figure courtesy of Tom Mitchell

# Decision Tree: Pseudocode

```
def predict(x'):
 - walk from root node to a leaf node
   while(true):
     if current node is internal (non-leaf):
           check the associated attribute, x_d
           go down branch according to x'_d
     if current node is a leaf node:
           return label stored at that leaf
```

## Decision Tree: Pseudocode

```
def train(\mathcal{D}):
    store root = tree recurse(\mathcal{D})
def tree_recurse(\mathcal{D}'):
    q = new node()
    base case - if (SOME CONDITION):
    recursion - else:
        find best attribute to split on, x_d
        q.split = x_d
        for v in V(x_d), all possible values of x_d:
               \mathcal{D}_v = \left\{ \left( x^{(i)}, y^{(i)} \right) \in \mathcal{D} \mid x_d^{(i)} = v \right\}
               q.children(v) = tree recurse(\mathcal{D}_v)
```

# Decision Tree: Pseudocode

```
def train(\mathcal{D}):
    store root = tree recurse(\mathcal{D})
def tree recurse(\mathcal{D}'):
    q = new node()
    base case – if (\mathcal{D}') is empty OR
       all labels in \mathcal{D}' are the same OR
       all features in \mathcal{D}' are identical OR
       some other stopping criterion):
       q.label = majority vote(\mathcal{D}')
    recursion - else:
```

Henry Chai - 5/18/22 return q

# Decision Trees: Pros & Cons

- Pros
  - Interpretable
  - Efficient (computational cost and storage)
  - Can be used for classification and regression tasks
  - Compatible with categorical and real-valued features
- Cons
  - Learned greedily: each split only considers the immediate impact on the splitting criterion
    - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
  - Liable to overfit!

Henry Chai - 5/18/22 4:

## Decision Trees: Inductive Bias

- The **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples
- What is the inductive bias of the ID3 algorithm?
  - Try to find the smallest tree that achieves a training error rate of 0 with high mutual information features at the top
- Occam's razor: try to find the "simplest" (e.g., smallest decision tree) classifier that explains the training dataset

#### Overfitting

- Overfitting occurs when the classifier (or model)...
  - is too complex
  - fits noise or "outliers" in the training dataset as opposed to the actual pattern of interest
  - doesn't have enough inductive bias pushing it to generalize
- Underfitting occurs when the classifier (or model)...
  - is too simple
  - can't capture the actual pattern of interest in the training dataset
  - has too much inductive bias

### Overfitting in Decision Trees



Henry Chai - 5/18/22 Figure courtesy of Tom Mitchell

# Combatting Overfitting in Decision Trees

- Heuristics:
  - Do not split leaves past a fixed depth,  $\delta$
  - Do not split leaves with fewer than *c* data points
  - Do not split leaves where the maximal information gain is less than au
  - Take a majority vote in impure leaves

# Combatting Overfitting in Decision Trees

- Pruning:
  - First, learn a decision tree
  - Then, evaluate each split using a "validation" dataset by comparing the validation error rate with and without that split
  - Greedily remove the split that most decreases the validation error rate
  - Stop if no split is removed

### Pruning Decision Trees



Henry Chai - 5/18/22 Figure courtesy of Tom Mitchell

#### Key Takeaways

- Mutual information as a splitting criterion for decision stumps/trees
- Decision tree algorithm via recursion
- Inductive bias of decision trees
- Overfitting vs. Underfitting
- How to combat overfitting in decision trees