Projective, Injective, and Flat Modules

Swayam Chube

December 11, 2024

§1 Projective Modules

DEFINITION 1.1. An *A*-module *M* is said to be *projective* if the functor $\operatorname{Hom}_A(M,-)$: $\mathfrak{Mod}_A \to \mathfrak{Mod}_A$ is exact.

§§ Kaplansky's Theorem

THEOREM 1.2. Let (A, \mathfrak{m}, k) be a local ring. If M is a projective A-module, then M is free.

§2 FLAT MODULES

DEFINITION 2.1. An *A*-module *M* is said to be *flat* if the functor $- \otimes_A M : \mathfrak{Mod}_A \to \mathfrak{Mod}_A$ is exact.

DEFINITION 2.2. Let M be an A-module and $\sum_{i=1}^n f_i x_i = 0$ be a relation in M for $f_i \in A$ and $x_i \in M$. We say that the relation is trivial if there exists an integer $m \ge 0$, elements $y_j \in M$ for $1 \le j \le m$ and $a_{ij} \in A$ for $1 \le i \le n$ and $1 \le j \le m$ such that

$$x_i = \sum_{i=1}^m a_{ij} y_j \quad \forall \ 1 \leqslant i \leqslant n \quad \text{and} \quad 0 = \sum_{i=1}^n a_{ij} f_i \quad \forall \ 1 \leqslant j \leqslant m.$$

LEMMA 2.3 (EQUATIONAL CRITERION OF FLATNESS). An *A*-module *M* is flat if and only if every relation in *M* is trivial.

Proof. Suppose M is flat and $\sum_{i=1}^n f_i x_i = 0$ is a relation in M. Let $\mathfrak{a} = (f_1, \ldots, f_n) \subseteq A$ and consider the A-linear surjection $A^n = \bigoplus_{i=1}^n Ae_i \to I$ given by $e_i \mapsto f_i$ whose kernel is $K \subseteq A^n$. That is, $0 \to K \to A^n \to \mathfrak{a} \to 0$. Since M is flat, tensoring with M preserves exactness and we have an exact sequence

$$0 \longrightarrow K \otimes_A M \longrightarrow A^n \otimes_A M \longrightarrow \mathfrak{a} \otimes_A M \longrightarrow 0.$$

Note that the natural map $\mathfrak{a} \otimes_A M \to R \otimes_A M$ is injective due to the flatness of M. Consequently, $\sum_{i=1}^n f_i \otimes x_i$ maps to 0 in $R \otimes_A M$ and hence, must be zero in $\mathfrak{a} \otimes_A M$. The

exactness of the above sequence furnishes an element $\sum_{j=1}^{m} k_j \otimes y_j \in K \otimes_A M$ that maps to 0 in $A^n \otimes_A M$.

Each k_i can be written in the form

$$\sum_{i=1}^n a_{ij}e_i \quad \forall \ 1 \leqslant j \leqslant m,$$

and hence, the image of $\sum_{j=1}^{m} k_j \otimes y_j$ in $A^n \otimes_A M$ is

$$\sum_{j=1}^m \sum_{i=1}^m a_{ij} e_i \otimes y_j = \sum_{i=1}^n e_i \otimes \left(\sum_{j=1}^m a_{ij} y_j\right) = 0,$$

and the conclusion follows.

Conversely, suppose every relation in M is trivial and let $\mathfrak a$ be a finitely generated ideal of A. It suffices to show that $\operatorname{Tor}_1^A(A/\mathfrak a,M)=0$, which is equivalent (from the Tor long exact sequence) to showing that the map $\mathfrak a\otimes_A M\to A\otimes_A M$ is injective.

Suppose $\sum_{i=1}^{n} f_i \otimes x_i \in \mathfrak{a} \otimes_A M$ maps to 0 in $A \otimes_A M$. Then, $\sum_{i=1}^{n} f_i x_i = 0$ in M, consequently, there is an $m \geqslant 0$, $y_j \in M$, $a_{ij} \in M$ for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$ such that

$$x_i = \sum_{j=1}^m a_{ij} y_j \quad \forall \ 1 \leqslant i \leqslant n \quad \text{and} \quad 0 = \sum_{i=1}^n a_{ij} f_i \quad \forall \ 1 \leqslant j \leqslant m.$$

Consequently, in $\mathfrak{a} \otimes_A M$,

$$\sum_{i=1}^n f_i \otimes x_i = \sum_{i=1}^n f_i \otimes \left(\sum_{j=1}^m a_{ij} y_j\right) = \left(\sum_{i=1}^n a_{ij} f_i\right) \otimes y_j = 0.$$

This proves injectivity, thereby completing the proof.

LEMMA 2.4. Let (A, \mathfrak{m}, k) be a local ring and M a flat A-module. If $x_1, \ldots, x_n \in M$ are such that their images $\overline{x}_1, \ldots, \overline{x}_n \in M/\mathfrak{m}M$ are linearly independent over k, then x_1, \ldots, x_n are linearly independent over A.

Proof. We prove this statement by induction on n. If n = 1, then $a \in A$ is such that $ax_1 = 0$ and $\overline{x}_1 \neq 0$. From Lemma 2.3, there are $b_1, \ldots, b_m \in A$ and $y_1, \ldots, y_m \in M$ such that

$$x_1 = \sum_{j=1}^m b_j y_j$$
 and $ab_j = 0 \quad \forall \ 1 \leqslant j \leqslant m$.

Since $x_1 \notin \mathfrak{m}M$, it follows that at least one of the b_i 's must be a unit, whence a = 0.

Now, suppose n > 1 and there is a relation $\sum_{i=1}^{n} a_i x_i = 0$ in M. From Lemma 2.3, there is an $m \ge 0$, $y_i \in M$, and $b_{ij} \in A$ for $1 \le i \le n$ and $1 \le j \le m$ such that

$$x_i = \sum_{j=1}^m b_{ij} y_j \quad \forall \ 1 \leqslant i \leqslant n \quad \text{and} \quad 0 = \sum_{i=1}^n b_{ij} a_i \quad \forall \ 1 \leqslant j \leqslant m.$$

Since $x_n \notin \mathfrak{m}M$, at least one of the b_{nj} 's must be a unit, whence we can write

$$a_n = \sum_{i=1}^{n-1} c_i a_i,$$

for some $c_i \in A$ for $1 \le i \le n-1$. Therefore, we have

$$0 = \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n-1} a_i (x_i + c_i x_n).$$

Since $\overline{x}_1, \dots, \overline{x}_{n-1}$ are k-linearly independent in $M/\mathfrak{m}M$, we see that $\overline{x}_1 + \overline{c}_1\overline{x}_n, \dots, \overline{x}_{n-1} + \overline{c}_{n-1}\overline{x}_n$ must also be k-linearly independent. Due to the induction hypothesis, $a_1 = \dots = a_{n-1} = 0$ and hence, $a_n = 0$. This completes the proof.

THEOREM 2.5. Let (A, \mathfrak{m}, k) be a local ring. If M is a finitely generated flat A-module, then M is free.

Proof. Let $x_1, ..., x_n \in M$ be a minimal generating set, that is, $\overline{x}_1, ..., \overline{x}_n$ are k-linearly independent in $M/\mathfrak{m}M$. Due to the preceding lemma, $x_1, ..., x_n$ are linearly independent over A, and hence, M is a free A-module.

§§ Cartier's Theorem

THEOREM 2.6 (CARTIER). Let M be a finitely generated module over an integral domain A. If for every $\mathfrak{m} \in \operatorname{MaxSpec}(A)$, $M_{\mathfrak{m}}$ is free as an $A_{\mathfrak{m}}$ -module, then M is a projective A-module.

Proof. First show that M is a torsion-free A-module. Suppose am = 0 for some $0 \neq a \in A$ and $m \in M$. Let \mathfrak{a} be the annihilator of m in A and \mathfrak{m} a maximal ideal containing A. Note that $\frac{a}{1}\frac{m}{1} = 0$ in $M_{\mathfrak{m}}$, which is free over $A_{\mathfrak{m}}$, an integral domain, whence, is torsion free. That is, $\frac{m}{1} = 0$, whence, there is some $s \in A \setminus \mathfrak{m}$ such that sm = 0, which is absurd, since $\mathfrak{a} \subseteq \mathfrak{m}$. This shows that M is torsion-free.

Now, choose a set of generators $\{m_i \colon 1 \leq i \leq n\}$ for M over A. Let \mathscr{P} be the collection of A-endomorphisms of M which are of the form

$$m \longmapsto \sum_{i=1}^n f_i(m)m_i,$$

where $f_1, ..., f_n : M \to A$ are A-module homomorphisms. Note that \mathscr{P} is an A-submodule of $\operatorname{End}_A(M)$. We shall show that $\operatorname{\mathbf{id}}_M \in \mathscr{P}$.

Let \mathfrak{m} be a maximal ideal of A. We know that $M_{\mathfrak{m}}$ is free as an $A_{\mathfrak{m}}$ -module and hence, there are $A_{\mathfrak{m}}$ -module homomorphisms $f_i:M_{\mathfrak{m}}\to A_{\mathfrak{m}}$ such that

$$m' = \sum_{i=1}^n f_i'(m') \frac{m_i}{1} \quad \forall m' \in M_{\mathfrak{m}}.$$

To see that this is possible, first consider an $A_{\mathfrak{m}}$ -basis $\{e_i : 1 \leq i \leq N\}$ for $M_{\mathfrak{m}}$. We can write

$$e_i = \sum_{j=1}^n a_{ij} \frac{m_j}{1} \quad \forall \ 1 \leqslant i \leqslant N.$$

Further, there are $A_{\mathfrak{m}}$ -linear maps $f_i: M_{\mathfrak{m}} \to A_{\mathfrak{m}}$ such that

$$m' = \sum_{j=1}^{N} f_j(m')e_j.$$

Set

$$f'_j(m') = \sum_{i=1}^N a_{ij} f_i(m') \quad \forall \ m' \in M_{\mathfrak{m}}.$$

Then,

$$\sum_{j=1}^{n} f'_{j}(m') \frac{m_{j}}{1} = \sum_{i=1}^{N} \sum_{j=1}^{n} a_{ij} f_{i}(m') \frac{m_{j}}{1} = \sum_{i=1}^{N} f_{i}(m') e_{i} = m'.$$

Coming back, since M is torsion-free, the canonical map $M \to M_{\mathfrak{m}}$ is an injective map of A-modules. Further, we can find an $s \in A \setminus \mathfrak{m}$ such that $sf'_i\left(\frac{m_j}{1}\right) \in A$ for $1 \leqslant i,j \leqslant n$.

Note that $m' \mapsto sf_i'(m')$ is $A_{\mathfrak{m}}$ -linear as a map $M_{\mathfrak{m}} \to A_{\mathfrak{m}}$, and hence, is A-linear. The restriction of this map to $M \subseteq M_{\mathfrak{m}}$ takes values in A. Thus, we can identify sf_i' with an A-linear map $M \to A$. Further, for every $m \in M$, we have

$$sm = \sum_{i=1}^{n} sf_i'(m)m_i.$$

That is, $s \cdot \mathbf{id}_M \in \mathscr{P}$. Now, let \mathfrak{a} be the collection of all $a \in A$ such that $a \cdot \mathbf{id}_M \in \mathscr{P}$. Then \mathfrak{a} is an ideal of A. If \mathfrak{a} were a proper ideal, it would be contained in a maximal ideal \mathfrak{m} . But from our preceding conclusion, there is some $s \in A \setminus \mathfrak{m}$ such that $s \cdot \mathbf{id}_M \in \mathscr{P}$, a contradiction. Thus, $\mathfrak{a} = A$, in particular, $\mathbf{id}_M \in \mathscr{P}$.

Finally, we show that M is projective. We have shown that there are A-linear maps $f_i: M \to A$ such that

$$m = \sum_{i=1}^n f_i(m) m_i \quad \forall \ m \in M.$$

Let *F* be the free module $\bigoplus_{i=1}^{n} Ae_i$ and let $g: F \to M$ be given by $e_i \mapsto m_i$ and $f: M \to F$ given by

$$f(m) = \sum_{i=1}^{n} f_i(m)e_i.$$

By our construction, $g \circ f = id_M$, and hence M is a direct summand of F, i.e. M is projective.

COROLLARY. A finitely generated flat module over an integral domain is projective.

Proof. Follows from Theorem 2.6 and Theorem 2.5.

§§ Finitely Presented Modules and Flatness

THEOREM 2.7. Let M be a finitely presented A-module and N be any A-module. If B is a flat A-algebra, then there is a natural isomorphism

$$\operatorname{Hom}_A(M,N) \otimes_A B \cong \operatorname{Hom}_B(M \otimes_A B, N \otimes_A B).$$

Proof. Fixing N and B, there are contravariant functors $\mathscr{F},\mathscr{G}:\mathfrak{Mod}_A^{op}\to\mathfrak{Mod}_B$ given by

$$\mathscr{F}(M) = \operatorname{Hom}_A(M, N) \otimes_A B \qquad \mathscr{G}(M) = \operatorname{Hom}_B(M \otimes_A B, N \otimes_A B).$$

Define the natural transformation $\lambda: \mathscr{F} \implies \mathscr{G}$ given by

$$\lambda_M(f\otimes b)=b\cdot (f\otimes \mathbf{id}_B).$$

We first show that this is natural in M. Indeed, suppose $\varphi : M' \to M$ is A-linear, we wish to show that

$$\mathscr{F}(M) \longrightarrow \mathscr{F}(M')$$
 $\lambda_{M} \downarrow \qquad \qquad \downarrow \lambda_{M'}$
 $\mathscr{G}(M) \longrightarrow \mathscr{G}(M')$

commutes. Consider $f \otimes b \in \mathscr{F}(M)$, which maps to $f \circ \varphi \otimes b \in \mathscr{F}(M')$, which maps to $b \cdot (f \circ \varphi \otimes \mathbf{id}_B) \in \mathscr{G}(M')$. On the other hand, under λ_M , $f \otimes b$ maps to $b \cdot (f \otimes \mathbf{id}_B) \in \mathscr{G}(M)$, which maps to $b \cdot (f \circ \varphi \otimes \mathbf{id}_B)$, which shows commutativity.

Next, suppose $M = A^n$ were free of finite rank. In this case, there is a sequence of isomorphisms

$$\operatorname{Hom}_A(A^n, N) \otimes_A B \cong N^n \otimes_A B \cong (N \otimes_A B)^n \cong \operatorname{Hom}_B(B^n, N \otimes_A B) \cong \operatorname{Hom}_B(A^n \otimes_A B, N \otimes_A B).$$

Under the above isomorphism, $f \otimes b$ first maps to $(f(e_1), \ldots, f(e_n))^{\top} \otimes b$ in $N^n \otimes_A B$. Under the second map, it goes to $(f(e_1) \otimes b, \ldots, f(e_n) \otimes b)^{\top}$ in $(N \otimes_A B)^n$. Under the third map it goes to the unique morpism $g : B^n \to N \otimes_A B$ that sends $e_i \mapsto f(e_i) \otimes b$.

Consider the map $b \cdot (f \otimes id_B) \in \operatorname{Hom}_B(A^n \otimes_A B, N \otimes_A B)$. Under this map, $e_i \in B^n$ is the same as $e_i \otimes 1 \in A^n \otimes B$, which maps to $b \cdot (f(e_i) \otimes 1) = f(e_i) \otimes b \in N \otimes_A B$. It follows that this is the same as the aforementioned g. Thus, λ_M is an isomorphism in this case.

Finally, there is an exact sequence $A^m \to A^n \to M \to 0$ since M is finitely presented. This fits into a commutative diagram

$$0 \longrightarrow \mathscr{F}(M) \longrightarrow \mathscr{F}(A^n) \longrightarrow \mathscr{F}(A^m)$$

$$\downarrow \lambda \qquad \qquad \downarrow \lambda$$

$$0 \longrightarrow \mathscr{G}(M) \longrightarrow \mathscr{G}(A^n) \longrightarrow \mathscr{G}(A^m)$$

where the last two λ 's are isomorphisms. Due to the Five Lemma (after adding another column of zeros to the left), we see that $\lambda_M : \mathscr{F}(M) \to \mathscr{G}(M)$ must be an isomorphism, thereby completing the proof.

COROLLARY. Let M be a finitely presented A-module and N be any A-module. Then for every $\mathfrak{p} \in \operatorname{Spec}(A)$,

$$\operatorname{Hom}_{A}(M,N)_{\mathfrak{p}} \cong \operatorname{Hom}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}).$$

Proof. Note that the localization functor at $\mathfrak{p} \in \operatorname{Spec}(A)$ is naturally isomorphic to $- \otimes_A A_{\mathfrak{p}}$.

THEOREM 2.8. Let M be a finitely presented A-module. Then the following are equivalent

- (a) *M* is projective.
- (b) $M_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec}(A)$.
- (c) $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module for all $\mathfrak{m} \in \operatorname{MaxSpec}(A)$.

Proof. That $(a) \Longrightarrow (b) \Longrightarrow (c)$ is obvious. It suffices to show that $(c) \Longrightarrow (a)$. To this end, we shall show that $\operatorname{Hom}_A(M,-)$ is an exact functor. We know that $\operatorname{Hom}_A(M,-)$ is left exact so let $0 \to N' \to N \to N'' \to 0$ be a short exact sequence. Upon application of the above functor, note that we have an exact sequence

$$0 \longrightarrow \operatorname{Hom}_A(M,N') \longrightarrow \operatorname{Hom}_A(M,N) \longrightarrow \operatorname{Hom}_A(M,N'') \to K \to 0,$$

where K is the cokernel. Localizing the above sequence at a maximal ideal \mathfrak{m} and using the exactness of localization and the preceding result, we have an exact sequence

$$0 \longrightarrow \operatorname{Hom}_{A_{\mathfrak{m}}}(M_{\mathfrak{m}}, N'_{\mathfrak{m}}) \longrightarrow \operatorname{Hom}_{A_{\mathfrak{m}}}(M_{\mathfrak{m}}, N_{\mathfrak{m}}) \longrightarrow \operatorname{Hom}_{A_{\mathfrak{m}}}(M_{\mathfrak{m}}, N''_{\mathfrak{m}}) \rightarrow K_{\mathfrak{m}} \rightarrow 0.$$

But since $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module, the functor $\operatorname{Hom}_{A_{\mathfrak{m}}}(M_{\mathfrak{m}}, -)$ is exact, whence $K_{\mathfrak{m}} = 0$ for every $\mathfrak{m} \in \operatorname{MaxSpec}(A)$. This shows that K = 0, that is, M is projective.

§3 INJECTIVE MODULES

DEFINITION 3.1. An *A*-module *M* is said to be *injective* if the (contravariant) functor $\operatorname{Hom}_A(-,M):\mathfrak{Mod}_A^{op}\to\mathfrak{Mod}_A$ is exact.

§§ Injective Hulls

DEFINITION 3.2. Let $M \le E$ be A-modules. Then E is said to be an *essential extension* of M if every non-zero submodule of E intersects M non-trivially. We denote this by $M \le_e E$.

REMARK 3.3. The above is equivalent to requiring that for every $x \in E \setminus \{0\}$, there is an $a \in A \setminus \{0\}$ such that $ax \in M \setminus \{0\}$.

We note some trivial properties of essential extensions before proceeding.

PROPOSITION 3.4. Let $L \leq M \leq N$ be *A*-modules. Then

$$L \leq_{e} M$$
 and $M \leq_{e} N \iff L \leq_{e} N$.

Proof. Straightforward.

PROPOSITION 3.5. Let $M \leq E$ be A-modules. Consider the set

$$\mathcal{E} = \{ N \leqslant E \colon M \leqslant_{e} N \}.$$

Then \mathcal{E} has a maximal element.

Proof. Standard application of Zorn's lemma.

PROPOSITION 3.6. If $N_1 \leq_{e} M_1$ and $N_2 \leq_{e} M_2$, then $N_1 \oplus N_2 \leq_{e} M_1 \oplus M_2$.

Proof. Trivial.

DEFINITION 3.7. Let $M \le E$ be A-modules. Then E is said to be an *injective hull* of M if E is an injective A-module and $M \le_e E$. It is customary to denote E by $E_A(M)$.

PROPOSITION 3.8. An *A*-module *E* is injective if and only if *E* has no proper essential extensions.

Proof. Suppose E were injective and $E \leq_e M$. Then, there is a submodule N of M such that $M = E \oplus N$. If N were non-trivial, then it would intersect E trivially, thus N must be trivial and E = M.

Conversely, suppose E has no proper essential extensions. There is an injective module I such that $E \hookrightarrow I$. We shall show that E is a direct summand of I. Indeed, consider the collection

$$\Sigma = \{ N \leqslant I \colon E \cap N = 0 \} .$$

A standard application of Zorn's lemma furnishes a maximal element N of Σ . Note that if M is a submodule of I properly containing N, then $E \cap M \neq 0$. The canonical projection $I \to I/N$ restricts to an injective map on E and any submodule of E is injective. Note that $E \to I/N$ is an essential extension. But since E does not admit any proper essential extensions, we must have that the aforementioned map is surjective, that is, E + N = I, whence $E \to I/N = I$ and hence, E is injective.

THEOREM 3.9. Let $M \le E$ be *A*-modules. The following are equivalent:

- (a) E is an injective hull of M.
- (b) E is a minimal injective A-module containing M.
- (c) E is a maximal essential extension of M.

Proof. (a) \Longrightarrow (b) Suppose I is an injective module such that $M \le I \le E$. Since $M \le_e E$, we have that $I \le_e E$. But due to Proposition 3.8, we see that I = E.

 $(b) \implies (c)$ Let $N \le E$ be a maximal element of $\{N \le E \colon M \le_e N\}$. We contend that N has no proper essential extensions. Suppose $f : N \hookrightarrow L$ is an essential extension. Then, there is a map $L \to E$ making

commute. We claim that the map $L \to E$ is injective. Indeed, if $0 \neq x \in L$ maps to 0, then there is an $0 \neq a \in A$ such that $0 \neq ax \in f(N)$. But since $N \hookrightarrow E$, we have that ax = 0, a contradiction. Thus, in E, L = N, since N has no proper essential extensions in E. Consequently, N has no proper essential extensions, that is, N is injective, whence N = E.

 $(c) \implies (a)$ Injectivity follows from the fact that E has no proper essential extensions due to maximality.

THEOREM 3.10. Let M be an A-module. Then there exists an injective hull $M \hookrightarrow E$, which is unique up to isomorphism.

Proof. Let *I* be an injective module such that $M \hookrightarrow I$. Using $(b) \Longrightarrow (c)$ of the proof of Theorem 3.9, we see that a maximal essential extension *E* of *M* contained in *I* is an injective hull.

It remains to establish uniqueness. Suppose $M \hookrightarrow E'$ is another injective hull. Then, there is a commutative diagram

with the induced map $E \to E'$ injective as argued in the preceding proof. The maximality of essentialness and transitivity of essentialness both imply that $E \to E'$ must be an isomorphism.

THEOREM 3.11 (CANTOR-SCHRÖDER-BERNSTEIN). If M and N are injective A-modules with injective A-linear maps $M \hookrightarrow N$ and $N \hookrightarrow M$, then $M \cong N$.

Proof. We may suppose that $N \leq M$, whence there is a submodule P of M such that $M = N \oplus P$ where P is injective too. Let $f : M \to N$ be an injective A-linear map.

Note first that if $x_0 + f(x_1) + \cdots + f^{(n)}(x_n) = 0$ where $x_i \in P$, then all $x_i = 0$. Indeed, $f(x_1) + \cdots + f^{(n)}(x_n) \in \text{im}(f) \subseteq N$ and $x_0 \in P$, whence $x_0 = 0$. Since f is injective, we have $x_1 + \cdots + f^{(n-1)}(x_n) = 0$. Working downwards, we have our conclusion.

Now, set $X = P \oplus f(P) \oplus f^{(2)}(P) \oplus \cdots \subseteq M$ and let $E = E_A(f(X)) \subseteq N$ an injective hull. Write $N = E \oplus Q$. Since $X = P \oplus f(X)$, we have

$$E(X) \cong E(P \oplus f(X)) \cong E(P) \oplus E(f(X)) \cong P \oplus E.$$

On the other hand, since f is injective,

$$E(X) \cong E(f(X)) = E \implies P \oplus E \cong E.$$

Consequently,

$$M = N \oplus P = Q \oplus E \oplus P \cong Q \oplus E \cong N,$$

thereby completing the proof.

§4 UNCATEGORIZED

§§ Eakin-Nagata Theorem

THEOREM 4.1 (FORMANEK). Let A be a ring, and B a finitely generated faithful A-module. Suppose the set of A-submodules $\Sigma = \{\mathfrak{a}B \colon \mathfrak{a} \triangleleft A\}$ has the ascending chain condition, then A is noetherian.

Proof. It suffices to show that *B* is a noetherian *A*-module since it is finitely generated and faithful. Suppose not. Then consider the collection

$$\Gamma = \{ \mathfrak{a}B \colon \mathfrak{a} \leqslant A, B/\mathfrak{a}B \text{ is a non-noetherian } A\text{-module} \},$$

which contains (0) and hence is non-empty. Since Σ has the ascending chain condition, so does Γ , whence, it contains a maximal element $\mathfrak{a}B$.

Replacing B by $B/\mathfrak{a}B$, we see that B is a non-noetherian A-module. This may not be faithful and hence, replace A by $A/\operatorname{Ann}_A(B)$. Then, B is a finite, non-noetherian, faithful A-module such that for every ideal $0 \neq \mathfrak{a} \triangleleft A$, $B/\mathfrak{a}B$ is a noetherian A-module.

Next, set

$$\mathfrak{M} = \{ N \leq B \colon B/N \text{ is a faithful } A\text{-module} \}$$

which is non-empty, since $\{0\} \in \mathfrak{M}$. Suppose B is generated as an A-module by b_1, \ldots, b_n . It is not hard to argue that

$$N \in \mathfrak{M} \iff \forall a \in A \setminus \{0\}, \{ab_1, \ldots, ab_n\} \not\subseteq N.$$

It follows that every chain in \mathfrak{M} has a maximal element and hence Zorn's Lemma applies to furnish a maximal element $N_0 \in \Gamma$.

If B/N_0 is a noetherian A-module, then A is noetherian since B/N_0 is faithful and finite. If not, replace B with B/N_0 , which is still a finite faithful A-module and satisfies:

- (1) *B* is a non-noetherian *A*-module.
- (2) for any ideal $0 \neq \mathfrak{a} \leq A$, $B/\mathfrak{a}B$ is a noetherian A-module.
- (3) for any submodule $0 \neq N$ of B, B/N is not faithful as an A-module.

Now, let N be a non-zero submodule of B. Due to (3), there is a $0 \neq a \in A$ such that $aB \subseteq N$. Due to (2), B/aB is a noetherian A-module with N/aB as a submodule. Thus, N/aB is a noetherian, in particular, a finite A-module. Since aB is also finite as an A-module, we have that N is a finite A-module. Hence, B is a noetherian A-module, which is absurd. This completes the proof.

THEOREM 4.2 (EAKIN-NAGATA). Let $A \subseteq B$ be an extension of rings such that B is a finite A-module. If B is a noetherian ring, then so is A.

Proof. Note that B is a finite, faithful A-module, since $1 \in B$. The conclusion follows from Theorem 4.1.