Econ 7710 Assignment 5

Tanya Sethi

The due date	e for this assignment is Friday, October 27th.
1. Find cha	racteristic function of a uniformly distributed random variable on [0, 1]
	idterm problem) X_1, X_2, \ldots are Bernoulli random variables with parameter using the method of characteristic functions find the distribution of random $Y = \sum_{k=1}^{\infty} \frac{X_k}{2^k}.$
	$k=1$ 2^{-k}
	idterm problem) Under which conditions imposed on random variable X , variables X and $\sin(X)$ are independent?
random	variables A and sm(A) are independent:

1	. Find characteristic function of a uniformly distributed random variable on [0, 1]
l)	Characteristic for of a uniformly distributed or.?- $\phi(t) = \frac{1}{it(b-a)}(e^{itb} - e^{ita})$
	Evaluating on [0, 1]
	$Q(t) = \underbrace{(e^{it} - e^{o})}_{it}$
	$\varphi(t) = \underbrace{e^{it} - 1}_{it}$
	Rationaliting the denominator!
6 (6)	$= -i \left(e^{it} - 1\right) \text{if } t \neq 0$
Ψ ()	t
\$\\phi(t)	= 1 4 t=0
	J

2. (past midterm problem)
$$X_1, X_2, \dots$$
 are Bernoulli random variables with parameter $p = \frac{1}{2}$. Using the method of characteristic functions find the distribution of random variable
$$Y = \sum_{k=1}^{\infty} \frac{X_k}{2^k}.$$

$$X_1, X_2, \dots$$
 are Bernoulli $r.v.$ with $p = 1/2$.
$$Y = \sum_{k=1}^{\infty} \frac{X_k}{2^k}.$$

$$X_1 = \sum_{k=1}^{\infty} \frac{X_k}{2^k}.$$

$$X_2 = \sum_{k=1}^{\infty} \frac{X_k}{2^k}.$$

$$X_1 = \sum_{k=1}^{\infty} \frac{X_k}{2^k$$

$$= \frac{1}{2^{n}} \left(\frac{1}{2^{k}} \right) \left(\frac{1}{2^{k}} \right)$$

$$= \frac{1}{2^{n}} \frac{1}{k^{-1}} \left(e^{it/2^{k}} + 1 \right)$$

Multiplying both sides by $\left(e^{it/2^{n}} - 1 \right)$

$$= \frac{1}{2^{n}} \frac{1}{k^{-1}} \left(e^{it/2^{k}} + 1 \right) \cdot \left(e^{it/2^{n}} - 1 \right)$$

$$= \frac{1}{2^{n}} \frac{1}{k^{-1}} \left(e^{it/2^{k}} + 1 \right) \left(e^{it/2^{n}} + 1 \right) \left(e^{it/2^{n}} - 1 \right)$$

$$= \frac{1}{2^{n}} \frac{1}{k^{-1}} \left(e^{it/2^{k}} + 1 \right) \left(e^{it/2^{n}} + 1 \right) \left(e^{it/2^{n}} - 1 \right)$$

$$= \frac{1}{2^{n}} \frac{1}{k^{-1}} \left(e^{it/2^{k}} + 1 \right) \left(e^{it/2^{n}} - 1 \right)$$

$$= \frac{e^{it} - 1}{2^{n}}$$

$$= \frac{e^{it} - 1}{2^{n}}$$

$$= \frac{e^{it} - 1}{2^{n}} \left(e^{it/2^{n}} - 1 \right)$$
Now find $\lim_{n \to \infty} \phi_{1n}(t) = \lim_{n \to \infty} \left(e^{it/2^{n}} - 1 \right)$

$$\lim_{n \to \infty} \phi_{1n}(t) = \lim_{n \to \infty} \left(e^{it/2^{n}} - 1 \right)$$

3	3. (past midterm problem) Under which conditions imposed on random variable X , random variables X and $\sin(X)$ are independent?
	x and f(x) are independent if f(x) is a constant.
	In the case of 'X and f(X), this is
()	X vis a degenerate distribution, or
2)	As sin(X) is periodic, then any dictibution of x that gives the same value of sin X. Example, x=0, 180°, 360°, 540°, 720°
	$f(x)$ 1 0 -360° 720°
	$\sin x = c$ where c is a constant $x = \operatorname{arccos}(c)$
•	Jurhur, since sin & has a periodicity at 360, x = cf n 260 for n = 0, 12, month have the same constant value for sin x.