UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE FÍSICA

LABORATORIO DE FÍSICA BÁSICA I PRACTICA No. 3

GRÁFICAS Y ECUACIONES

Estudiante:

Caballero Burgoa, Carlos Eduardo.

Docente:

Msc. Guzmán Saavedra, Rocio.

Grupo: N5.

Fecha de realización: 19 de Octubre del 2020. Fecha de entrega: 20 de Octubre del 2020.

1. Objetivo

Desarrollar la destreza de los alumnos en la graficación de datos y la obtención por métodos gráficos de la relación entre las variables.

2. Marco teórico

En física experimental es común trabajar con dos variables, una llamada variable independiente (X_i) que puede ser controlada, y la otra llamada variable dependiente (Y_i) . Ante los cambios de X_i , el sistema revela el comportamiento a través de los cambios de sufre la variable Y_i .

Un gráfico es una adecuada representación gráfica de los datos experimentales en un sistema de ejes perpendiculares, esta relación visual puede describirse a través de una ecuación conocida como relación funcional entre ambas variables.

Por convención la variable independiente es la magnitud cuyo valor se escoge cada vez, se representa en el eje horizontal, y la variable dependiente es el valor que se determina, se representa en el eje vertical.

Existen dos tipos de escalas: las escalas lineales son aquellas en las que distancias iguales representan cantidades iguales; las escalas no lineales son aquellas que se construyen en base a un patrón de comportamiento que hace que distancias iguales no representen cantidades iguales.

2.1. Relación lineal

En una gráfica lineal la linea que representa este comportamiento se trazara de modo que pase por la mayoría de los puntos, o de tal forma que estos estén distribuidos a ambos lados de la recta.

El modelo matemático para un comportamiento lineal es la ecuación de la linea recta y la forma general es:

$$y = A + Bx \tag{1}$$

Donde A es la ordenada al origen y representa el valor de y cuando x = 0, su valor se lee en el punto de intersección de la recta con el eje de coordenadas.

B es la pendiente de la recta y se calcula mediante el cociente $\Delta y/\Delta x$, donde Δy es la diferencia de ordenadas y Δx es la diferencia de abscisas, de dos puntos cualesquiera que estén sobre la recta y representa el valor de la rapidez con que cambia y respecto a x.

2.2. Relación no lineal

Cuando en la representación de datos experimentales en coordenadas rectangulares no se obtienen lineas rectas, no es posible determinar directamente la relación funcional entre las variables que interactúan, entonces se busca un método (linealización) mediante el cual la relación entre los datos se convierta en una relación lineal, de la cual es fácil determinar su ecuación y partir de la misma obtener la relación funcional entre las variables originales (ecuación de la curva).

Este método consiste básicamente en asumir un modelo para el comportamiento de los datos, realizando un cambio de variable o aplicando logaritmos al modelo, la nueva gráfica sera lineal si el modelo es el adecuado, caso contrario la gráfica no sera lineal.

3. Materiales

- Luxómetro.
- Flexometro.
- Simulador «bajo presión 1.1.18».
- Simulador «Lab de Péndulo».

4. Procedimiento

A continuación se describen los procedimientos experimentales que se llevarán a cabo.

4.1. Intensidad lumínica

- 1. Armar un trípode para establecer una posición fija para la medición.
- 2. Establecer una fuente lumínica con intensidad moderada.
- 3. Medir la intensidad lumínica lo mas próximo a la fuente como sea posible.
- 4. Repetir la medición para diferentes distancias de la fuente hasta 20 veces.

4.2. Presión vs profundidad

- 1. Iniciar el simulador de presión.
- 2. Llenar el tanque de agua.
- 3. Posicionar una regla para la medición de profundidad.
- 4. Con el sensor de presión, medir la presión a 0 metros de profundidad.
- 5. Repetir la medición por cada unidad mínima de la regla hasta 15 veces.

4.3. Resistencia vs temperatura

1. A partir de los datos provistos en la tabla, realizar la graficación, y el calculo de la ecuación de su gráfica.

4.4. Péndulo

- 1. Iniciar el simulador de péndulo simple.
- 2. Fijar un cronometro en el simulador.
- 3. Establecer una masa fija para el experimento.
- 4. Para cada variación de la longitud del péndulo, medir el tiempo de una oscilación que no exceda los 10° de inclinación inicial.
- 5. Repetir la medición anterior hasta 30 veces.

5. Tablas de datos y resultados

5.1. Intensidad lumínica

Instrumento utilizado: Luxómetro.

Precisión del instrumento: 1[lx]

Instrumento utilizado: Flexometro.

Precisión del instrumento: 0.01[m]

5.1.1. Datos obtenidos

i	$x_i[m]$	$I_i[lux]$
1	0.00	300
2	0.20	287
3	0.30	230
4	0.42	182
5	0.45	167
6	0.54	132
7	0.64	110
8	0.73	93
9	0.80	81
10	0.88	71
11	0.94	64
12	0.98	60
13	1.06	53
14	1.11	50
15	1.18	45
16	1.24	42
17	1.31	39
18	1.39	37
19	1.44	34
20	1.57	32

5.2. Presión vs profundidad

Instrumento utilizado: Regla.

Precisión del instrumento: 0.2[m]

Instrumento utilizado: Medidor de presión.

Precisión del instrumento: 1[kPa]

5.2.1. Datos obtenidos

i	$h_i[m]$	$P_i[kPa]$
1	0.0	101
2	0.2	103
3	0.4	105
4	0.6	107
5	0.8	109
6	1.0	111
7	1.2	113
8	1.4	115
9	1.6	117
10	1.8	119
11	2.0	121
12	2.2	123
13	2.4	125
14	2.6	127
15	2.8	129

5.3. Resistencia vs temperatura

5.3.1. Datos obtenidos

i	$T_i[^{\circ}C]$	$R_i[\Omega]$
1	30	109.82
2	35	111.71
3	40	113.60
4	45	115.49
5	50	117.38
6	55	119.27
7	60	121.16
8	65	123.05
9	70	124.94
10	75	126.83
11	80	128.72
12	85	130.61
13	90	132.50

5.4. Péndulo

Instrumento utilizado: Cronometro.

Precisión del instrumento: 0.01[s]

i	$L_i[m]$	$T_i[s]$
1	0.12	0.70
2	0.15	0.77
3	0.18	0.84
4	0.21	0.91
5	0.24	0.98
6	0.27	1.04
7	0.30	1.10
8	0.33	1.15
9	0.36	1.20
10	0.39	1.26
11	0.42	1.30
12	0.45	1.34
13	0.48	1.39
14	0.51	1.43
15	0.54	1.47
16	0.57	1.51
17	0.60	1.56
18	0.63	1.59
19	0.66	1.63
20	0.69	1.66
21	0.72	1.70
22	0.75	1.75
23	0.78	1.77
24	0.81	1.80
25	0.84	1.84
26	0.87	1.87
27	0.90	1.90
28	0.93	1.94
29	0.96	1.97
30	0.99	2.00

6. Gráficas

6.1. Intensidad lumínica

La figura 1 sugiere un modelo no lineal, así que se aplicara el método de logaritmos. La función tiene la forma general:

Figura 1: Gráfica de intensidad lumínica

$$y = ax^b (2)$$

Aplicando logaritmos a ambos lados de la ecuación, obtenemos:

$$\log y = \log a + b \log x$$

Haciendo los siguientes cambios de variables:

$$Y' = \log y$$
$$A = \log a$$
$$B = b$$
$$X' = \log x$$

Se obtiene:

$$Y' = A + BX'$$

i	$\log(x_i)$	$\log(I_i)$
1	-	-
2	-1.6094	5.6595
3	-1.2040	5.4381
4	-0.8675	5.2040
5	-0.7985	5.1180
6	-0.6162	4.8828
7	-0.4463	4.7005
8	-0.3147	4.5326
9	-0.2231	4.3944
10	-0.1278	4.2627
11	-0.0619	4.1589
12	-0.0202	4.0943
13	0.0583	3.9703
14	0.1044	3.9120
15	0.1655	3.8067
16	0.2151	3.7377
17	0.2700	3.6636
18	0.3293	3.6109
19	0.3646	3.5264
20	0.4511	3.4657

La gráfica de los datos con el cambio de variable logarítmica pueden verse en la figura 2. La ecuación de la recta es:

$$Y = 4.05 - 1.18x \tag{3}$$

A partir de los parámetros de recta A y B, calculamos los parámetros a y b, de la curva potencial original:

$$a = antilog(A) = antilog(4.05) = 11220.18$$

$$b = B = -1.18$$

La ecuación de la curva resultante es:

$$y = 11220.18x^{-1.18} (4)$$

6.1.1. Memoria de calculo

% leer datos previamente formateados
table = readtable('../csv/3.1.csv')

% cambio de variable

Figura 2: Gráfica linealizada por el método de logaritmos

```
X = log(table.Var1(2:end))
Y = log(table.Var2(2:end))
% calcular la ecuacion de la recta
p = polyfit(X, Y, 1)
v = polyval(p, X)
% personalizar grafica
title('Cambio de variable logaritmico')
xlabel('log(x)')
ylabel('log(I)')
% texto y grafica de ecuacion
caption = sprintf('y = (\%.2f) + (\%.2f) x', p(2), p(1))
dim = [.18.35 \ 0.3]
a = annotation('textbox',dim,'String',caption,'FitBoxToText','on')
a.Color = 'red'
a.FontSize = 10
% graficar puntos y lineas
hold on
plot(X, Y, 'o')
plot(X, v, 'LineWidth', 2)
hold off
```

Considerando que el exponente de la ecuación final resultó ser: -1.18, se calculará la ecuación por el método del cambio de variable hiperbólico.

La función tiene la forma general:

$$y = ax^{-1} (5)$$

Haciendo el siguiente cambio de variable:

$$Z = x^{-1}$$

i	x_i^{-1}	I_i
1	-	-
2	5.0000	287
3	3.3333	230
4	2.3810	182
5	2.2222	167
6	1.8519	132
7	1.5625	110
8	1.3699	93
9	1.2500	81
10	1.1364	71
11	1.0638	64
12	1.0204	60
13	0.9434	53
14	0.9009	50
15	0.8475	45
16	0.8065	42
17	0.7634	39
18	0.7194	37
19	0.6944	34
20	0.6369	32

La gráfica de los datos con el cambio de variable hiperbólica pueden verse en la figura 3. La ecuación de la recta es:

$$Y = -2.19 + 64.92Z \tag{6}$$

La ecuación de la curva resultante es:

$$y = -2.19 + \frac{64.92}{x} \tag{7}$$

Figura 3: Gráfica linealizada por el método de cambio de variable

6.1.2. Memoria de calculo

```
% leer datos previamente formateados
table = readtable('../csv/3.2.csv')
% calcular la ecuacion de la recta
p = polyfit(table.Var1, table.Var2, 1)
v = polyval(p, table.Var1)
% personalizar grafica
title('Presion en funcion de la profundidad')
xlabel('Profundidad [m]')
ylabel('Presion [kPa]')
% texto y grafica de ecuacion
caption = sprintf('y = (\%.2f) + (\%.2f) x', p(2), p(1))
dim = [.18.35 0.3]
a = annotation('textbox',dim,'String',caption,'FitBoxToText','on')
a.Color = 'red'
a.FontSize = 10
% graficar puntos y lineas
hold on
plot(table.Var1, table.Var2, 'o')
```

plot(table.Var1, v, 'LineWidth', 2)
hold off

6.2. Presión vs profundidad

Figura 4: Gráfica de presión vs profundidad

La figura 4 sugiere un modelo lineal, así que se calculará la ecuación de la recta. La función tiene la forma general:

$$y = A + Bx \tag{8}$$

La ecuación de la recta es:

$$y = 101 + 10x (9)$$

6.2.1. Memoria de calculo

% leer datos previamente formateados
table = readtable('../csv/3.3.csv')

Figura 5: Ecuación de presión vs profundidad

```
% calcular la ecuacion de la recta
p = polyfit(table.Var1, table.Var2, 1)
v = polyval(p, table.Var1)
% personalizar grafica
title('Resistencia electrica en funcion de la temperatura')
xlabel('Temperatura [
degree C]')
ylabel('Resistencia [
Omega]')
% texto y grafica de ecuacion
caption = sprintf('y = (\%.2f) + (\%.2f) x', p(2), p(1))
dim = [.18 .35 0 .3]
a = annotation('textbox',dim,'String',caption,'FitBoxToText','on')
a.Color = 'red'
a.FontSize = 10
% graficar puntos y lineas
hold on
plot(table.Var1, table.Var2, 'o')
plot(table.Var1, v, 'LineWidth', 2)
hold off
```

6.3. Resistencia vs temperatura

Figura 6: Gráfica de resistencia vs temperatura

La figura 6 sugiere un modelo lineal, así que se calculará la ecuación de la recta. La función tiene la forma general:

$$y = A + Bx \tag{10}$$

La ecuación de la recta es:

$$y = 98.48 + 0.38x \tag{11}$$

```
% leer datos previamente formateados
table = readtable('./practica33.csv')

% calcular la ecuacion de la recta
p = polyfit(table.Var1, table.Var2, 1)
v = polyval(p, table.Var1)

% personalizar grafica
title('Resistencia eléctrica en función de la temperatura')
xlabel('Temperatura [°C]')
```


Figura 7: Ecuación de la resistencia vs temperatura

```
ylabel('Resistencia [\Omega]')
% texto y grafica de ecuacion
caption = sprintf('y = (%.2f) + (%.2f) x', p(2), p(1))
dim = [.18 .35 0 .3]
a = annotation('textbox',dim,'String',caption,'FitBoxToText','on')
a.Color = 'red'
a.FontSize = 10
% graficar puntos y lineas
hold on
plot(table.Var1, table.Var2, 'o')
plot(table.Var1, v, 'LineWidth', 2)
hold off
```

6.4. Péndulo

La figura 8 sugiere un modelo no lineal, así que se aplicara el método de logaritmos. La función tiene la forma general:

$$y = ax^b (12)$$

Aplicando logaritmos a ambos lados de la ecuación, obtenemos:

Figura 8: Gráfica del péndulo

$$\log y = \log a + b \log x$$

Haciendo los siguientes cambios de variables:

$$Y' = \log y$$
$$A = \log a$$
$$B = b$$
$$X' = \log x$$

Se obtiene:

$$Y' = A + BX'$$

i	$\log(L_i)$	$\log(T_i)$
1	-	-
2	-1.8971	-0.2614
3	-1.7148	-0.1744
4	-1.5606	-0.0943
5	-1.4271	-0.0202
6	-1.3093	0.0392
7	-1.2040	0.0953
8	-1.1087	0.1398
9	-1.0217	0.1823
10	-0.9416	0.2311
11	-0.8675	0.2624
12	-0.7985	0.2927
13	-0.7340	0.3293
14	-0.6733	0.3577
15	-0.6162	0.3853
16	-0.5621	0.4121
17	-0.5108	0.4447
18	-0.4620	0.4637
19	-0.4155	0.4886
20	-0.3711	0.5068
21	-0.3285	0.5306
22	-0.2877	0.5596
23	-0.2485	0.5710
24	-0.2107	0.5878
25	-0.1744	0.6098
26	-0.1393	0.6259
27	-0.1054	0.6419
28	-0.0726	0.6627
29	-0.0408	0.6780
30	-0.0101	0.6931

La gráfica de los datos con el cambio de variable logarítmica pueden verse en la figura 9. La ecuación de la recta es:

$$Y = 0.70 + 0.50x \tag{13}$$

A partir de los parámetros de recta A y B, calculamos los parámetros a y b, de la curva potencial original:

$$a = antilog(A) = antilog(0.70) = 5.0119$$

Figura 9: Gráfica linealizada por el método de logaritmos

$$b = B = 0.50$$

La ecuación de la curva resultante es:

$$y = 5.0119\sqrt{x} \tag{14}$$

6.4.1. Memoria de calculo

```
% leer datos previamente formateados
table = readtable('../csv/3.4.csv')

% cambio de variable
X = log(table.Var1(2:end))
Y = log(table.Var2(2:end))

% calcular la ecuacion de la recta
p = polyfit(X, Y, 1)
v = polyval(p, X)

% personalizar grafica
title('Cambio de variable logaritmico')
xlabel('log(x)')
ylabel('log(y)')
```

```
% texto y grafica de ecuacion
caption = sprintf('y = (%.2f) + (%.2f) x', p(2), p(1))
dim = [.18 .35 0 .3]
a = annotation('textbox',dim,'String',caption,'FitBoxToText','on')
a.Color = 'red'
a.FontSize = 10

% graficar puntos y lineas
hold on
plot(X, Y, 'o')
plot(X, v, 'LineWidth', 2)
hold off
```

Considerando que el exponente de la ecuación final resultó ser: 0.5, se calculará la ecuación por el método del cambio de variable.

La función tiene la forma general:

$$y = a\sqrt{x} \tag{15}$$

Haciendo el siguiente cambio de variable:

$$Z = \sqrt{x}$$

i	$\sqrt{T_i}$	L_i
1	-	-
2	0.3873	0.7700
3	0.4243	0.8400
4	0.4583	0.9100
5	0.4899	0.9800
6	0.5196	1.0400
7	0.5477	1.1000
8	0.5745	1.1500
9	0.6000	1.2000
10	0.6245	1.2600
11	0.6481	1.3000
12	0.6708	1.3400
13	0.6928	1.3900
14	0.7141	1.4300
15	0.7348	1.4700
16	0.7550	1.5100
17	0.7746	1.5600
18	0.7937	1.5900
19	0.8124	1.6300
20	0.8307	1.6600
21	0.8485	1.7000
22	0.8660	1.7500
23	0.8832	1.7700
24	0.9000	1.8000
25	0.9165	1.8400
26	0.9327	1.8700
27	0.9487	1.9000
28	0.9644	1.9400
29	0.9798	1.9700
30	0.9950	2.0000

La gráfica de los datos con el cambio de variable puede verse en la figura 10. La ecuación de la recta es:

$$y = -0.01 + 2.02Z \tag{16}$$

La ecuación de la curva resultante es:

$$y = -0.01 + 2.02\sqrt{x} \tag{17}$$

Figura 10: Gráfica linealizada por el método de cambio de variable

```
% leer datos previamente formateados
table = readtable('./practica34.csv')
% cambio de variable
X = table.Var1(2:end).^(0.5)
Y = table.Var2(2:end)
% calcular la ecuacion de la recta
p = polyfit(X, Y, 1)
v = polyval(p, X)
% personalizar grafica
title('Cambio de variable parabólico')
xlabel('$\sqrt{x}$','interpreter','latex')
ylabel('y')
% texto y grafica de ecuacion
caption = sprintf('y = (\%.2f) + (\%.2f) x', p(2), p(1))
dim = [.18 .35 0 .3]
a = annotation('textbox',dim,'String',caption,'FitBoxToText','on')
a.Color = 'red'
a.FontSize = 10
% graficar puntos y lineas
```

```
hold on
plot(X, Y, 'o')
plot(X, v, 'LineWidth', 2)
hold off
```

7. Conclusiones

Se aprendió a graficar diferentes relaciones entre variables sean lineales o no lineales, como también calcular la ecuación que rige su comportamiento.

7.1. Resultados obtenidos

Intensidad lumínica	
$y = 11220.18x^{-1.18}$	
$y = -2.19 + 64.92x^{-1}$	
Presión vs profundidad	
y = 101 + 10x	
Resistencia vs temperatura	
y = 98.48 + 0.38x	
Péndulo	
$y = 5.0119\sqrt{x}$	
$y = -0.01 + 2.02\sqrt{x}$	