Package 'multiscale'

July 14, 2020

Type Package
Title Multiscale Inference for Nonparametric Regression(s) with Time Series Errors
Version 0.99
Date 2020-05-04
Description This package performs a multiscale analysis of a nonparametric regression or nonparametric regressions with time series errors. In case of one regression, it is possible to detect where the trend function is increasing or decressing. In case of multiple regression, the test identifies regions where the trend functions are different from each other. See Khismatullina and Vogt (2019) for more information and theory.
License GPL (>= 2)
Imports Rcpp (>= 1.0.4)
LinkingTo Rcpp
RoxygenNote 7.1.0
Encoding UTF-8
R topics documented:
multiscale-package
compute_minimal_intervals
compute_multiple_statistics
compute_quantiles
compute_statistics
construct_grid
construct_weekly_grid
estimate_lrv
multiscale_test
plot_sizer_map
select_order
simulate_gaussian
Index 12

multiscale-package multiscale-package: Multiscale Inference for Nonparametric Regression(s) with Time Series Errors

Description

This package performs a multiscale analysis of a nonparametric regression or nonparametric regressions with time series errors.

In case of a single non-parametric regression, the multiscale method to test qualitative hypotheses about the nonparametric time trend m in the model $Y_t = m(t/T) + \epsilon_t$ with time series errors ϵ_t is provided. The method was first proposed in Khismatullina and Vogt (2019). It allows to test for shape properties (areas of monotonic decrease or increase) of the trend m.

In case of multiple non-parametric regressions, the multiscale method to test qualitative hypotheses about the nonparametric time trends m_i in the model $Y_{i,t} = m_i(t/T) + \epsilon_{i,t}$ with time series errors $\epsilon_{i,t}$ is provided. The method was first proposed in Khismatullina and Vogt (??). It allows to test for comparison of the trend m_i and further to cluster the regressions based on the estiamted difference between the trends.

All these methods require an estimator of the long-run error variance $\sigma^2 = \sum_{l=-\infty}^{\infty} Cov(\epsilon_0, \epsilon_l)$. Hence, the package also provides the difference-based estimator for the case that the errors belong to the class of $AR(\infty)$ processes. The estimator was first proposed in Khismatullina and Vogt (2019).

Details

This package performs a multiscale analysis of a nonparametric regression or nonparametric regressions with time series errors.

References

Khismatullina M., Vogt M. Multiscale inference and long-run variance estimation in non-parametric regression with time series errors //Journal of the Royal Statistical Society: Series B (Statistical Methodology). - 2019.

See Also

https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12347

compute_minimal_intervals

Compute the set of minimal intervals as described in Duembgen (2002)

Description

The result of our multiscale test is the set of all intervals that have a corresponding test statistic bigger than the respective critical value. In order to make understandable statistic statements about these intervals, we need to find so-called minimal intervals: for a given set of intervals K, all intervals J such that K does not contain a proper subset of J are called minimal. Given K, this function computes the set of minimal intervals. Procedure is described in Duembgen (2002).

Usage

```
compute_minimal_intervals(dataset)
```

Arguments

dataset Set of all intervals that have a corresponding test statistic bigger than the respec-

tive critical value.

Value

```
p_t_set Set of minimal intervals
```

```
compute_multiple_statistics
```

Calculates the statistics (pairwise and overall) in case of multiple time series

Description

Calculates the statistics (pairwise and overall) in case of multiple time series

Usage

```
compute_multiple_statistics(
   t_len,
   n_ts,
   data,
   gset,
   ijset,
   sigma_vec,
   epidem = FALSE
)
```

Arguments

t_len	Integer. Length of time series for analysis.
n_ts	Integer. Number of time series.
data	Double matrix t_len x n_ts. Each column consists of one time series.
gset	A double vector of location-bandwidth points (u_1,, u_n, h_1,h_n).
ijset	An integer vector of indices of the countries for the comparison (i_1, i_2,, j_n_comparisons).
sigma_vec	A double vector of length n_ts of the sqrt of long-run variances.
epidem	Boolean. Equal to true in cases we are fitting epiemic model. Default is false.

Value

stat A double matrix of pairwise multiscale statistics Psi_ij.

vals_cor Matrix with n rows and n_ts * (n_ts - 1) / 2 columns where each column contains values of the normalised Kernel averages in order to be able to perform the test on every separate interval.

4 compute_quantiles

compute_quantiles

Computes quantiles of the gaussian multiscale statistics.

Description

Quantiles from this distribution are used to approximate the quantiles for the multiscale test.

Usage

```
compute_quantiles(
  t_len,
  grid = NULL,
  n_ts = 1,
  ijset = NULL,
  sigma_vector = NULL,
  deriv_order = 0,
  sim_runs = 1000,
  probs = seq(0.5, 0.995, by = 0.005),
  epidem = FALSE
)
```

Arguments

t_len	An integer. Sample size.
grid	Grid of location-bandwidth points as produced by the function <code>construct_grid</code> , list with the elements 'gset', 'bws', 'gtype'. If not provided, then the defalt grid is produced and used.
n_ts	An integer. Number of time series analyzed. Default is 1
ijset	Matrix of all pairs of indices (i, j) that we want to compare.
sigma_vector	A numeric vector of estimated $sqrt(long-run\ variance)$ for each time series. If not given, then the default is a vector of ones of length $n_t (1,, 1)$.
deriv_order	An integer. Order of the derivative of the trend that is being investigated. Default is 0.
sim_runs	Number of simulation runs to produce quantiles. Default is 1000.
probs	A numeric vector of probability levels (1-alpha) for which the quantiles are computed. Default is probs=seq(0.5,0.995,by=0.005).
epidem	A logical parameter. True if we are investigating epidemiological model. Default is FALSE.

Value

quant Matrix with 2 rows where the first row contains the vector of probabilities and the second contains corresponding quantile of the gaussian statistics distribution.

Examples

```
compute_quantiles(100)
```

compute_statistics 5

Calculates statistics in case of one time series

Description

Calculates statistics in case of one time series

Usage

```
compute_statistics(t_len, data, gset, sigma, deriv_order)
```

Arguments

deriv_order

t_len	Integer. Length of time series for analysis.
data	Double vector of length t_len that consists the time series for analysis.
gset	A double vector of location-bandwidth points $(u_1,,u_n,h_1,h_n)$.
sigma	Double. Equal to the sqrt of the long-run variance.

Integer. Order of the derivative of the trend that is investigated. Default is $0 \Rightarrow$ we analyse whether the trend itself \Rightarrow than 0.

Value

```
stat A double matrix of pairwise multiscale statistics Psi_ij.
```

vals A double vector of length n of kernel averages (sign included).

vals_cor A double vector of absolute value of normalized kernel averages with correction $(abs(\phi(u_1, h_1)/sigmahat) - \lambda(h_1), ..., abs(\phi(u_n, h_n)/sigmahat) - \lambda(h_n))$

stat Double. Our multiscale statistics calculated as max(vals_cor).

construct_grid

Computes the location-bandwidth grid for the multiscale test.

Description

Computes the location-bandwidth grid for the multiscale test.

Usage

```
construct_grid(t, u_grid = NULL, h_grid = NULL, deletions = NULL)
```

Arguments

t	Sample size.
u_grid	Vector of location points in the unit interval [0,1]. If u.grid=NULL, a default

grid is used.

h_grid Vector of bandwidths, each bandwidth is supposed to lie in (0,0.5). If h.grid=NULL,

a default grid is used.

deletions Logical vector of the length len(u.grid) * len(h.grid). Each element is either

TRUE, which means that the corresponding location-bandwidth point (u, h) is NOT deleted from the grid, or FALSE, which means that the corresponding location-bandwidth point (u, h) IS deleted from the grid. Default is deletions =

NULL in which case nothing is deleted. See vignette for the use.

Value

gset Matrix of location-bandwidth points (u,h) that remains after deletions, the i-th row gset[i,] corresponds to the i-th point (u,h).

bws Vector of bandwidths (after deletions).

lens Vector of length=length(bws), lens[i] gives the number of locations in the grid for the i-th bandwidth level.

gtype Type of grid that is used, either 'default' or 'non-default'.

gset_full Matrix of all location-bandwidth pairs (u,h) including deleted ones.

pos_full Logical vector indicating which points (u,h) have been deleted.

Examples

```
construct_grid(100) construct_grid(100, u_grid = seq(from = 0.05, to = 1, by = 0.05), h\_grid = c(0.1, \ 0.2, \ 0.3, \ 0.4))
```

construct_weekly_grid Computes the location-bandwidth weekly grid for the multiscale test.

Description

Computes the location-bandwidth weekly grid for the multiscale test.

Usage

```
construct_weekly_grid(t, min_len = 7, nmbr_of_wks = 4)
```

Arguments

t Sample size.

min_len Integer, equal to the minimal length of the interval considered. Defaul is 7, i.e.

a week.

nmbr_of_wks Integer, equal to the numbers of wks considered as maximal interval possible.

Default is 4

estimate_lrv 7

Value

gset Matrix of location-bandwidth points (u, h), the i-th row gset[i,] corresponds to the i-th point (u, h).

bws Vector of bandwidths.

lens Vector of length=length(bws), lens[i] gives the number of locations in the grid for the i-th bandwidth level.

gtype Type of grid that is used, either 'default' or 'non-default'.

gset_full Matrix of all possible location-bandwidth pairs (u,h).

pos_full Logical vector indicating which points (u,h) have been deleted.

Examples

```
construct_weekly_grid(100)
construct_weekly_grid(100, min_len = 7, nmbr_of_wks = 2)
```

estimate_lrv

Computes estimator of the long-run variance of the error terms.

Description

A difference based estimator for the coefficients and long-run variance in case of a nonparametric regression model $Y(t) = m(t/T) + \epsilon(t)$ where the errors are AR(p). The procedure was first introduced in Khismatullina and Vogt (2019).

Usage

```
estimate_lrv(data, q, r_bar, p)
```

Arguments

data A vector of Y(1), Y(2), ... Y(T).

q, r_bar Integers, tuning parameters.

p AR order of the error terms.

Value

lrv Estimator of the long run variance of the error terms.

ahat Vector of length p of estimated AR coefficients.

vareta Estimator of the variance of the innovation term

8 multiscale_test

Description

Carries out the multiscale test given that the values the estimatates of long-run variance have already been computed.

Usage

```
multiscale_test(
  data,
  sigma_vec,
  n_ts = 1,
  grid = NULL,
  ijset = NULL,
  alpha = 0.05,
  sim_runs = 1000,
  deriv_order = 0,
  epidem = FALSE
)
```

Arguments

data	Vector (in case of $n_t = 1$) or matrix (in case of $n_t > 1$) that contains (a number of) time series that needs to be analyzed.
sigma_vec	Vector of estimated long-run variances. Length must be equal to n_ts.
n_ts	Number of time series analysed. Default is 1.
grid	Grid of location-bandwidth points as produced by the function construct_grid.
ijset	Matrix of all pairs of indices (i, j) that we want to compare.
alpha	Significance level. Default is 0.05.
sim_runs	Number of simulation runs to produce quantiles. Default is 1000.
deriv_order	An integer. Order of the derivative of the trend that is being investigated. Default is 0.
epidem	Logical. If TRUE, then we are looking at an epidemic model. Default is FALSE.

Value

quant Quantile that wasused for testing calculated from the gaussian distribution.

statistics Value of the multiscale statistics.

test_matrix Return in case of n_ts = 1. Matrix of test results for the multiscale test defined in Khismatullina and Vogt (2019). test_matrix[i,j] = -1: test rejects the null for the j-th location u and the i-th bandwidth h and indicates a decrease in the trend test_matrix[i,j] = 0: test does not reject the null for the j-th location u and the i-th bandwidth h test_matrix[i,j] = 1: test rejects the null for the j-th location u and the i-th bandwidth h and indicates an increase in the trend test_matrix[i,j] = 2: no test is carried out at j-th location u and i-th bandwidth h (because the point (u, h) is excluded from the grid as specified by the 'deletions' option in the function construct_grid)

plot_sizer_map 9

test_matrices Return in case of n_ts > 1. List of matrices, each matrix contains test results for the pairwise comparison between time series. Each matrix is coded exactly as in case of n_ts = 1. gset_with_vals Either a matrix (in case of n_ts = 1) or a list of matrices (in case of n_ts > 1) that contains test results together with location-bandwidth points.

plot_sizer_map Plots SiZer map from the test results of the multiscale testing procedure.

Description

Plots SiZer map from the test results of the multiscale testing procedure.

Usage

```
plot_sizer_map(
  u_grid,
  h_grid,
  test_results,
  plot_title = NA,
  greyscale = FALSE,
  ...
)
```

Arguments

u_grid	Vector of location points in the unit interval [0,1].
h_grid	Vector of bandwidths from (0,0.5).
test_results	Matrix of test results created by multiscale_test.
plot_title	Title of the plot. Default is NA and no title is written.
greyscale	Whether SiZer map is plotted in grey scale. Default is FALSE.
	Any further options to be passed to the image function.

select_order Calculates different information criterions for the number of time series based on the long-run variance estimator (defined in Khismatullina and Vogt (2019)) for a range of tuning parameters.

Description

Tries to fit AR(1), ... AR(9) models for all given time series and calculates different information criterions (fpe, aic, aic, sic, hq) for each of this fits.

Usage

```
select\_order(data, q = NULL, r = 5:15)
```

simulate_gaussian

Arguments

data	One or a number of time series in a matrix. Column names of the matrix should be reasonable
q	A vector of integers that consisits of different tuning parameters to analyse. If not supplied, q is taken to be $[2\log T]:([2\sqrt{T}]+1)$.
r	A vector of integers that consisits of different tuning parameters r_bar to analyse. If not supplied, $r = 5.15$.

Value

A list with a number of elements. orders A vector of chosen orders of length equal to the number of time series. For each time series the order is calculated as $\max(which.min(fpe),...which.min(hq))$ The rest of the elements of the list are matrices that contain selected orders (among 1, ..., 9) for each information criterion. One matrix for each time series.

simulate_gaussian

Simulates distribution of the gaussian statistics

Description

Simulates distribution of the gaussian statistics

Usage

```
simulate_gaussian(
   t_len,
   n_ts,
   sim_runs,
   gset,
   ijset,
   sigma_vec,
   deriv_order = 0L,
   epidem = FALSE
)
```

Arguments

t_len	Integer. Length of time series for analysis.
n_ts	Integer. Number of time series.
sim_runs	Integer. Number of simulations needed to produce the quantiles.
gset	A double vector of location-bandwidth points (u_1,,u_n,h_1,h_n).
ijset	An integer vector of indices of the countries for the comparison (i_1, i_2,, j_n_comparisons).
sigma_vec	A double vector of the sqrt of long-run variances.
deriv_order	Integer. Order of the derivative of the trend that is investigated. Default is $0 \Rightarrow$ we analyse whether the trend itself \Rightarrow than 0 .
epidem	Boolean. Equal to true in cases we are fitting epiemic model. Default is false.

simulate_gaussian 11

Value

Phi_vec A double vector of length sim_runs that consists of the calculated Gaussian statistic for each simulation run

Index

```
compute_minimal_intervals, 2
compute_multiple_statistics, 3
compute_quantiles, 4
compute_statistics, 5
construct_grid, 4, 5, 8
construct_weekly_grid, 6
estimate_lrv, 7
multiscale (multiscale-package), 2
multiscale-package, 2
multiscale_test, 8, 9
plot_sizer_map, 9
select_order, 9
simulate_gaussian, 10
```