Linear algebra 3 Matrices and Linear Transformations

Martin Russell

School of Computer Science, University of Birmingham

January 23, 2020

Overview

- Matrices
 - Introduction to matrices
 - Matrix multiplication
- 2 Linear transformations
 - Definition
 - Any matrix implements an linear transform
 - A linear transformation is defined by what it does to a basis
 - Every linear transformation is defined by a matrix
- Change of basis
 - Change of basis
 - Orthogonal matrices
- Summary

Matrices

A matrix A is just a rectangular grid of numbers:

$$A = \begin{bmatrix} a_{11} & a_{12}, & \cdots & a_{1j}, & \cdots, & a_{1N} \\ a_{21} & a_{22}, & \cdots & a_{2j}, & \cdots, & a_{2N} \\ \vdots & \vdots & \cdots & \vdots, & \vdots, & \vdots \\ a_{i1} & a_{i2}, & \cdots & a_{ij}, & \cdots, & a_{iN} \\ \vdots & \vdots & \cdots & \vdots, & \vdots, & \vdots \\ a_{M1} & a_{M2}, & \cdots & a_{Mj}, & \cdots, & a_{MN} \end{bmatrix}$$
 (1)

A is an M (number of rows) $\times N$ (number of columns) matrix. In this course the matrix entries are **real** numbers, $a_{ij} \in \mathbb{R}$

Matrix multiplication

• Given an $M \times N$ matrix A and a $P \times Q$ matrix B, the matrix **product** AB exists if and only if N = P. In this case C = ABis the $M \times Q$ matrix whose $(i, j)^{th}$ entry is:

$$c_{ij} = ab_{ij} = \sum_{k=1}^{P} a_{ik}b_{kj} = a_{i*} \cdot b_{*j}$$
 (2)

where a_{i*} is the i^{th} row of A and b_{*i} is the j^{th} column of B

$$\begin{bmatrix} a_{11} & \cdots & a_{ik}, & \cdots, & a_{1P} \\ \vdots & \cdots & \vdots, & \vdots, & \vdots \\ a_{i1} & \cdots & a_{ik}, & \cdots, & a_{iP} \\ \vdots & \cdots & \vdots, & \vdots, & \vdots \\ a_{M1} & \cdots & a_{ik}, & \cdots, & a_{MP} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & \cdots & a_{ik}, & \cdots, & a_{1P} \\ \vdots & \cdots & \vdots, & \vdots, & \vdots \\ a_{i1} & \cdots & a_{ik}, & \cdots, & a_{iP} \\ \vdots & \cdots & \vdots, & \vdots, & \vdots \\ a_{M1} & \cdots & a_{ik}, & \cdots, & a_{MP} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b1j, & \vdots, & b1N \\ \vdots & \cdots & \vdots, & \vdots, & \vdots \\ \vdots & \cdots & bkj, & \vdots, & \vdots \\ \vdots & \cdots & \vdots, & \vdots, & \vdots \\ b_{P11} & \cdots & bPj, & \vdots, & bPN \end{bmatrix}$$
(3)

Example

Suppose

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{bmatrix}, B = \begin{bmatrix} -7 & 8 \\ 9 & 10 \\ -11 & 12 \end{bmatrix}$$

Then, for example

$$ab_{12} = a_{1*} \cdot b_{*2} = 1 \times 8 + (-2) \times 10 + 3 \times 12 = 24$$
 (4)

and

$$AB = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{bmatrix} \begin{bmatrix} -7 & 8 \\ 9 & 10 \\ -11 & 12 \end{bmatrix} = \begin{bmatrix} -58 & 24 \\ 83 & 10 \end{bmatrix}$$
 (5)

Matrix multiplication

- Matrix multiplication is **not commutative**. In other words, even if AB and BA both exist it is not generally true that AB = BA
- The $N \times N$ identity matrix is the matrix

$$I = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

• If A is $N \times N$ then AI = IA = A

Matrices as transformations

If A is an $N \times N$ matrix and $\vec{v} \in \mathbb{R}^N$ is a real N-dimensional vector, then $A\vec{v}$ exists and

$$\vec{w} = A\vec{v} \in \mathbb{R}^N$$

In other words, \vec{w} is an *N*-dimensional vector and *A* defines a **transformation** T_A from \mathbb{R}^N to itself:

$$T_A: \mathbb{R}^N \to \mathbb{R}^N, T_A(\vec{v}) = A\vec{v}$$

Definition

- ullet Let ${\mathbb V}$ and ${\mathbb W}$ be vector spaces
- Let $T: \mathbb{V} \to \mathbb{W}$ be a transformation.
- So, T is a rule that associates each $\vec{v} \in \mathbb{V}$ with $T(\vec{v}) \in \mathbb{W}$
- T is a *linear* transformation if for $\vec{v_1}, \vec{v_2} \in \mathbb{V}$ and any scalar λ :

$$T(\vec{v_1} + \vec{v_2}) = T(\vec{v_1}) + T(\vec{v_2})$$
 (6)

$$T(\lambda \vec{v_1}) = \lambda T(\vec{v_1}) \tag{7}$$

Alternatively

$$T(\lambda \vec{v_1} + \vec{v_2}) = \lambda T(\vec{v_1}) + T(\vec{v_2}) \tag{8}$$

Example: rotations in \mathbb{R}^2

• In \mathbb{R}^2 , rotation anti-clockwise through an angle θ is realized by multiplication by the rotation matrix

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos\theta \end{bmatrix} \tag{9}$$

ullet Define a linear transformation $T_{ heta}:\mathbb{R}^2 o\mathbb{R}^2$ by

$$T_{\theta}(\vec{v}) = R_{\theta}\vec{v} \tag{10}$$

Then T_{θ} is a linear transformation.

This follows from properties of matrix multiplication, i.e.

$$T_{\theta}(\lambda \vec{v_1} + \vec{v_2}) = R_{\theta}(\lambda \vec{v_1} + \vec{v_2}) = \lambda R_{\theta} \vec{v_1} + R_{\theta} \vec{v_2} = \lambda T_{\theta}(\vec{v_1}) + T_{\theta}(\vec{v_2})$$

Any matrix defines a linear transformation

• In fact, any $M \times N$ matrix A defines a linear transformation

$$T_A: \mathbb{R}^N \to \mathbb{R}^M \tag{11}$$

by:
$$T_A(\vec{v}) = A\vec{v}, (\vec{v} \in \mathbb{R}^N)$$
 (12)

- So, are there linear transforms $T_A : \mathbb{R}^N \to \mathbb{R}^M$ that are **not** defined by a matrix in this way?
- The answer is "no". *Every* linear transformation is defined by a matrix. Hence there is a 1-to-1 correspondence between linear transformations $T : \mathbb{R}^N \to \mathbb{R}^M$ and $M \times N$ matrices

- Let $T: \mathbb{R}^N \to \mathbb{R}^M$ be a linear transformation
- Let $\{\vec{e_1}, \vec{e_2}, \cdots, \vec{e_N}\}$ be any basis for \mathbb{R}^N ,
- Let $\vec{v} \in \mathbb{R}^N$. Then $\vec{v} = v_1 \vec{e_1} + v_2 \vec{e_2} + \cdots + v_N \vec{e_N}$, for some scalars v_1, \cdots, v_N
- Since *T* is linear, $T(\vec{v}) = v_1 T(\vec{e_1}) + v_2 T(\vec{e_2}) + \cdots + v_N T(\vec{e_N})$
- T is *completely* defined by what it does to $\{\vec{e_1}, \vec{e_2}, \cdots, \vec{e_N}\}$
- This holds for any basis $\{\vec{e_1}, \vec{e_2}, \cdots, \vec{e_N}\}$

- Let $T: \mathbb{R}^N \to \mathbb{R}^M$ be a linear transformation
- Now let $\{\vec{e_1}, \vec{e_2}, \cdots, \vec{e_N}\}$ be the <u>standard</u> basis for \mathbb{R}^N , i.e

$$\vec{e_1} = \begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix}, \vec{e_2} = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, \cdots, \vec{e_N} = \begin{bmatrix} 0\\0\\\vdots\\0\\1 \end{bmatrix} \text{ and let } \vec{v} = \begin{bmatrix} v_1\\v_2\\\vdots\\v_{N-1}\\v_N \end{bmatrix}$$

$$(13)$$

- Let E be the $M \times N$ matrix whose n^{th} column is $T(\vec{e_n})$
- Then,

$$T(\vec{v}) = E\vec{v}, (\vec{v} \in \mathbb{V}) \tag{14}$$

• The linear transformation T is matrix multiplication by E

Proof

$$E = \begin{bmatrix} T(\vec{e_1})_1 & T(\vec{e_2})_1 & \cdots & T(\vec{e_n})_1 & \cdots & T(\vec{e_N})_1 \\ T(\vec{e_1})_2 & T(\vec{e_2})_2 & \cdots & T(\vec{e_n})_2 & \cdots & T(\vec{e_N})_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ T(\vec{e_1})_n & T(\vec{e_2})_n & \cdots & T(\vec{e_n})_n & \cdots & T(\vec{e_N})_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ T(\vec{e_1})_M & T(\vec{e_2})_M & \cdots & T(\vec{e_n})_M & \cdots & T(\vec{e_N})_M \end{bmatrix}$$
(15)

Proof (continued)

$$Ev = \begin{bmatrix} T(\vec{e_1})_1 & T(\vec{e_2})_1 & \cdots & T(\vec{e_n})_1 & \cdots & T(\vec{e_N})_1 \\ T(\vec{e_1})_2 & T(\vec{e_2})_2 & \cdots & T(\vec{e_n})_2 & \cdots & T(\vec{e_N})_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ T(\vec{e_1})_n & T(\vec{e_2})_n & \cdots & T(\vec{e_n})_n & \cdots & T(\vec{e_N})_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ T(\vec{e_1})_M & T(\vec{e_2})_M & \cdots & T(\vec{e_n})_M & \cdots & T(\vec{e_N})_M \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \\ \vdots \\ v_n \end{bmatrix}$$

$$= \begin{bmatrix} T(\vec{e_1})_1 v_1 + T(\vec{e_2})_1 v_2 + \cdots + T(\vec{e_N})_1 v_N \\ T(\vec{e_1})_2 v_1 + T(\vec{e_2})_2 v_2 + \cdots + T(\vec{e_N})_2 v_N \\ \vdots \\ T(\vec{e_1})_n v_1 + T(\vec{e_2})_n v_2 + \cdots + T(\vec{e_N})_n v_N \end{bmatrix} = T(\vec{v}) (16)$$

Example 1: Rotations in \mathbb{R}^2

• Suppose that the linear transformation T corresponds to rotation anti-clockwise through an angle θ

•
$$T(\vec{e_1}) = \begin{bmatrix} cos(\theta) \\ sin(\theta) \end{bmatrix}, T(\vec{e_2}) = \begin{bmatrix} -sin(\theta) \\ cos(\theta) \end{bmatrix}$$

• Hence T is implemented by
$$\begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$

Example 2: Reflections in \mathbb{R}^2

• The transformation T corresponds to a reflection through a line through the origin at angle θ to the horizontal axis

•
$$T(\vec{e_1}) = \begin{bmatrix} cos(2\theta) \\ sin(2\theta) \end{bmatrix}, T(\vec{e_2}) = \begin{bmatrix} cos(\frac{\pi}{2} - 2\theta) \\ -sin(\frac{\pi}{2} - 2\theta) \end{bmatrix} = \begin{bmatrix} sin(2\theta) \\ -cos(2\theta) \end{bmatrix}$$

• Hence T is implemented by
$$\begin{bmatrix} cos(2\theta) & sin(2\theta) \\ sin(2\theta) & -cos(2\theta) \end{bmatrix}$$

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$

Summary so far

- There is a 1-to-1 correspondence between:
 - Linear transformations $T: \mathbb{R}^N \to \mathbb{R}^M$, and
 - $N \times M$ real matrices
- If
- $T: \mathbb{R}^N \to \mathbb{R}^M$,
- $\vec{e_1}, \vec{e_2}, \cdots, \vec{e_N}$ is the standard basis for \mathbb{R}^N , and
- E is the $M \times N$ matrix whose n^{th} column is $T(\vec{e_n})$, then

$$T(\vec{v}) = E\vec{v}, (\vec{v} \in \mathbb{R}^N)$$
 (17)

Change of basis

- Let $e = \vec{e_1}, \vec{e_2}, \cdots, \vec{e_N}$ be the standard basis for \mathbb{R}^N
- Let $u = \vec{u_1}, \vec{u_2}, \cdots, \vec{u_N}$ be another basis for \mathbb{R}^N
- Suppose that we want to transform \mathbb{R}^N so that vectors are represented with respect to u
- The required transformation would satisfy $T(\vec{e_n}) = \vec{u_n}, (n = 1, \dots, N)$
- This transformation is implemented by the $N \times N$ matrix U whose n^{th} column is $\vec{u_n}$

Orthogonal matrices

• Let U be the $N \times N$ matrix whose n^{th} column is $\vec{u_n}$, then

$$U^T U = I_N = U U^T. (18)$$

because the i, j^{th} entry of $U^T U$ is $\vec{u_i} \cdot \vec{u_j}$ and $\vec{u_1}, \dots, \vec{u_N}$ is a basis. where I_N is the $N \times N$ identity matrix.

- An N × N real matrix that satisfies equation (18) is called an orthogonal matrix
- An orthogonal matrix U implements a **change of basis** transformation in \mathbb{R}^N :
 - U transforms the standard basis $\vec{e_1}, \cdots, \vec{e_N}$ into the new basis $\vec{u_1}, \cdots, \vec{u_N}$
 - For any $\vec{v} \in \mathbb{R}^N$, $U\vec{v}$ is the vector of coordinates of \vec{v} with respect to $\vec{u_1}, \dots, \vec{u_N}$

Summary

- Definition of a linear transformation
- A linear transformation is defined by what it does to a basis
- There is a one-to-one correspondence between
 - Linear transformations $T: \mathbb{R}^N \to \mathbb{R}^M$ and
 - M × N matrices
- Definition of an orthogonal matrix
- Orthogonal matrices correspond to change-of-basis transformations