Automotive Door Control System Design

"Dynamic Design"

I. ECU 1

1-State Machine for each component:

2-State Machine for ECU operation:

3-ECU1 Sequence Diagram:

4-CPU Load:

Task	Deadline	How much it takes during Hyperperiod
Door State	10ms	2
Light Switch	20ms	1
Speed State	5ms	4

Utilization = Total Execution Time During Hyperperiod / Hyperperiod

$$U = [(1m*2)+(1m*1)+(1m*4)/20m] \times 100\% = 35\%$$

There for CPU load shall never exceed 35%

II. ECU 2

1-State Machine for each component:

2-State Machine for ECU operation:

4-CPU Load:

Task	Deadline	How much it takes during Hyperperiod
Door State	10ms	2
Light Switch	20ms	1
Speed State	5ms	4

Utilization = Total Execution Time During Hyperperiod / Hyperperiod $U = [(1m*2) + (1m*1) + (1m*4)/20m] \times 100\% = 35\%$

There for CPU load shall never exceed 35%

3-ECU2 Sequence Diagram

Dynamic Design Analysis