PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-294907

(43)Date of publication of application: 09.11.1993

(51)Int.CI.

C07C229/22 C07C233/47 C07C251/38 C07C251/40 // A61K 31/195

(21)Application number: 04-339118

(71)Applicant: YOSHITOMI PHARMACEUT IND LTD

TAITO KK

(22)Date of filing:

18.12.1992

(72)Inventor: FUJITA TETSUROU

SASAKI SHIGEO **CHIBA KENJI**

(30)Priority

Priority number: 03356906

Priority date: 24.12.1991 Priority country: JP

(54) 2-AMINOBUTANOIC ACID COMPOUND

(57)Abstract:

PURPOSE: To obtain new 2-aminobutanoic acid compounds, having excellent immunosuppressive action and useful as an immunosuppressant with hardly any side effects.

CONSTITUTION: The objective 2-aminobutanoic acid compound of formula I (R is alkyl or alkenyl which may be substituted with OH, oxo, hydroxyimino, alkoxyimino, amino or acylamino), its salt, compound protected with a protecting group or isomer thereof, e.g. a compound of formula II. This compound of formula II is obtained by culturing a microorganism of the genus Myriococcum, etc., belonging to ascomycetes or the genus Isaria, etc., belonging to imperfect fungi (e.g. Myriococcum.albomyces ATCC-16425 or Isaria.sinclairii ATCC-24400) capable of producing the compound of formula II which is a starting substance for the other compounds of formula I preferably by an aerobic IDCE. submerged culture method and collecting the compound of formula II from the resultant culture.

LEGAL STATUS

[Date of request for examination]

19.05.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

3155099

02.02.2001

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-294907

(43)公開日 平成5年(1993)11月9日

(51)Int.Cl. ⁵ C 0 7 C 229/22 233/47 251/38 251/40	識別記号	庁内整理番号 8930-4H 7106-4H 9160-4H 9160-4H	FI	技術表示箇所		
// A 6 1 K 31/195	ABC	8413-4C				
•			·	審査請求 未請求 請求項の数1(全 10 頁)		
(21)出願番号	特顯平4-339118		(71)出願人	000006725 吉富製薬株式会社		
(22)出願日	平成4年(1992)12月18日		(71)出願人	大阪府大阪市中央区平野町2丁目6番9号 000204354		
(31)優先権主張番号		·		台糖株式会社		
(32)優先日	平 3 (1991)12月24	平3(1991)12月24日 東京都中央区日本橋大伝馬町7番5号				
(33)優先権主張国	日本(JP)		(72)発明者	藝多 哲朗 京都府向日市寬冠井町大極殿40番地23		
••••••••••••••••••••••••••••••••••••••			(72)発明者	佐々木 重夫 兵庫県神戸市長田区東尻池新町1番26号 台糖株式会社研究所内		
			(74)代理人			
er e	~ .			最終頁に続く		

(54)【発明の名称】 2-アミノブタン酸化合物

(57)【要約】

【構成】 一般式(I)

【化1】

化合物(I)

(式中、各記号は明細書に定義されている通りである。)により表される2-アミノブタン酸化合物、その塩、またはその保護基により保護された化合物、あるいはそれらの異性体。

【効果】 本発明の2-アミノブタン酸化合物類は優れ

た免疫抑制作用を示し、ヒト、ウシ、ウマ、イヌ、マウス、ラット等の哺乳動物に対して、例えば臓器や骨髄移植の際の拒絶反応の抑制剤や、自己免疫疾患等における予防または治療剤として、あるいは医学、薬学における試薬として用いることができる。

【化1】

している。

[0004]

【化2】

【特許請求の範囲】

【請求項1】 一般式(I)

NH2 OH

| | | |

HOCH2 — C — CH

HO2C CH2 — R

化合物([)

移植の際に生ずる拒否反応を抑制するためにシクロスポ リンが使用されている。開発中の化合物も含めて、いわ

ゆる免疫抑制剤は、さらに関節リウマチ等の治療薬としても期待されてきている。しかしながら、前記シクロス

ポリンは腎障害等の副作用を生起するという問題点を有

【0003】一方、特開平1-104087号公報に

は、冬虫夏草菌(Isaria sinclairii)の液体培養物から

免疫抑制物質が採取されることが記載され、当該物質は

米国特許第3928572号明細書に開示された式

〔式中、Rは水酸基、オキソ、ヒドロキシイミノ、アルコキシイミノ、アミノもしくはアシルアミノにより置換されていてもよいアルキルまたはアルケニルを示す。〕 により表される2-アミノブタン酸化合物、その塩、またはその保護基により保護された化合物、あるいはそれらの異性体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、医薬、特に免疫抑制剤 として有用な2-アミノブタン酸化合物類に関する。

[0002]

【従来技術・発明が解決しようとする課題】近年、臓器

【0005】により表される(2S, 3R, 4R) -(E) -2-Tミノ-3, $4-\mathcal{Y}$ ヒドロキシ-2-ヒドロキシメチル-14-オキソイコサ-6-エン酸であることが確認されている。さらに、特開-128347号公報には同系統の化合物が免疫抑制作用を有することが記載されている。

【0006】本発明の目的は、優れた免疫抑制作用を示

【0009】〔式中、Rは水酸基、オキソ、ヒドロキシイミノ、アルコキシイミノ、アミノもしくはアシルアミノにより置換されていてもよいアルキルまたはアルケニルを示す。〕により表される2-アミノブタン酸化合物(以下、化合物(I)と称する)、その塩、またはその保護基により保護された化合物、あるいはそれらの異性体に関する。

【0010】本明細書中のRで表される基について以下に説明する。アルキルとしてはメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、第3級ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、オクチル、2-エチルヘキシル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、イコシル、ドコシル等の炭素数1~30個、好ましくは炭素

し、かつ副作用の少ない新規な2-アミノブタン酸化合 物類を提供することである。

[0007]

【課題を解決するための手段】本発明は一般式(I)

[0008]

【化3】

化合物(I)

数1~22個の直鎖または分枝鎖状のアルキルが例示される。

【0011】アルケニルとしては、ビニル、アリル、プロペニル、イソプロペニル、ブテニル、ペンテニル、ヘキセニル、オクテニル、2-エチルヘキセニル等の炭素数2~30個、好ましくは炭素数2~22個の直鎖または分枝鎖状のアルケニルが例示される。

【0012】 置換基としてのアルコキシイミノとはメトキシイミノ、エトキシイミノ、プロポキシイミノ、イソプロポキシイミノ、ブトキシイミノ、ヘキシルオキシイミノ等の炭素数1~6個のアルコキシイミノが例示される。

【0013】 置換基としてのアシルアミノとはアセチルアミノ、プロピオニルアミノ、ブチリルアミノ、ピバロ

3

イルアミノ、ベンゾイルアミノ、ニトロベンゾイルアミ ノ等が例示される。

【0014】また、一般式(I)の化合物において、保護基により保護された化合物の保護基とは、カルボキシル基、水酸基またはアミノ基に対し、有機化学上広く用いられるものであって、エステル形成残基(メチルエステル、エチルエステル、ベンジルエステル等);アセチル、クロロアセチル、トリフルオロアセチル、ベンゾイル等のアシル;第3級ブトキシカルボニル、ベンジルオキシカルボニル等のオキシカルボニル;テトラヒドロピラニル、トリメチルシリル、第3級ブチルジメチルシリル等が挙げられる。

【0015】一般式(I)の化合物の塩としては、ナト

リウム塩、カリウム塩、カルシウム塩、亜鉛塩、アルミニウム塩等の金属塩、トリエチルアミン等のアミンとの塩、リジン、オルニチン等のアミノ酸との塩等の薬理学的に許容される塩が挙げられる。また、水和物またはその他の溶媒和物も包含され、さらに個々の光学異性体、ジアステレオ異性体、ラセミ体、シス・トランスの異性体もしくはその混合物も包含される。

【0016】本発明の化合物(I)の好ましい化合物は次の通りである。

o ①化合物 (a)

[0017]

【化4】

【0018】②化合物(b)

[0019]

[125]

化合物(b)

【0020】③化合物(c)

[0021]

化合物(c)

【0022】④化合物(d)

[0023]

【0024】⑤化合物(e)

40 【化8】

【化7】.

[0025]

化合物(e)

【0026】本発明の化合物(I)は発酵法またはそれにより製造される上記化合物(a)を出発物質として用いることにより製造されうる。化合物(a)を生産しうる微生物としては子のう菌類や不完全菌類に属するも

の、具体的には、不完全菌に属するイザリア属、マイセリア属、子のう菌に属するマイリオコッカム属(チエラビア属)等が挙げられ、それぞれアメリカン・タイプ・カルチュア・コレクション(American Type Culture Col

5

lection) にイザリア・シンクレイリー(Isaria sinclair ii) ATCC No. 24400、マイリオコッカム・アルボマイセス(Myriococcum albomyces) ATCC No. 16425、マイセリア・ステリリア(Mycelia sterilia) ATCC No. 20349として寄託されている。また、マイリオコッカム・アルボマイセス ATCC No. 16425 は(財)発酵研究所(大阪)にIF032292 として寄託されている。

【0027】化合物(a)は上記菌株を、たとえば常用される紫外線、高周波放射線、薬品等による人工変異手段で変更した変異株にて製造することもできる。化合物(a)生産菌は、通常のかび用栄養源を含む種々の培養基で培養されうる。たとえば、炭素源としてグルコース、澱粉、グリセリン、糖水あめ、デキストリン、糖蜜、マルトース、キシロース等、および窒素源としてコーンスティープリカー、ペプトン、イーストエキス、ジャガイモ煎汁、肉汁、大豆粉、小麦胚芽、硝酸カリウム、硝酸ナトリウム、硫酸アンモニウム、カゼイン、グルテンミール、綿実粉、羽毛粉等の無機または有機の窒素化合物が挙げられ、その他通常の無機塩および菌の発育を助け、化合物(a)の生産を促進する有機および無20機物や消泡剤等の培養に常用される添加剤を適当に加えることができる。

【0028】培養法は特に限定されるものではないが、 好気的な深部培養法が適している。培養に適当な温度は イザリア属に属する菌の場合には20~35℃、好適に は25~30℃であり、マイリオコッカム属またはマイ セリア属に属する菌の場合には $30\sim50$ \mathbb{C} 、好適には $35\sim45$ \mathbb{C} である。

【0029】培養物中に生産された化合物(a)は抽 出、吸着等常用される操作を必要に応じて適宜組み合わ せ、培養物中より取り出される。たとえば、イザリア・ シンクレイリー等のイザリア属に属する菌の場合は培養 液から菌体等の不溶物を濾過、遠心分離等の方法で分離 し、培養濾液をアンバーライトXAD-2に通液させ、 化合物(a)を吸着させることによって取り出される。 かくして得られた化合物 (a) をさらに、たとえばメタ ノールで溶出させ、溶出部をさらに逆相クロマトグラフ ィーにかけて分画することによって化合物(a)の高度 精製物が得られる。また、マイリオコッカム・アルボマ イセス、マイセリア・ステリリア等のマイリオコッカム 属またはマイセリア属に属する菌の場合は、培養液から 菌体を濾過、遠心分離等の方法で分離し、培養濾液はイ ザリア属と同様に操作する。一方、分離した菌体から は、メタノールを用いて化合物(a)を抽出し、抽出液 を濾液と同様にアンバーライトXAD-2で処理し、ク ロマトグラフィーや再結晶により精製し、化合物(a)

【0030】化合物(b)は化合物(a)の保護基により保護された化合物、すなわち一般式(II)

[0031] 【化9】

【0032】(式中、Acはアセチル基を示す。) により表される化合物(以下、化合物(II)という) に亜鉛の存在下、塩化水素を反応させて、一般式(III)

【0033】 【化10】

ACOCH₂—
$$\stackrel{|}{C}$$
 — $\stackrel{|}{C}$ — $\stackrel{|}{C}$

化合物(III)

【0034】(式中、Acはアセチル基を示す。)によ 40 り表される化合物(以下、化合物(III) という)を得、 次いで脱保護反応に付すことにより製造される。

【0035】化合物(c) は化合物(III) を、たとえばパラジウム炭素の存在下に水素添加させることにより得られ、次いで脱保護に付すことにより製造される。

【0036】化合物(d)は化合物(a)にヒドロキシルアミンを反応させることにより製造される。なお、化合物(d)に対応するアルコキシム体は、化合物(a)に〇ーアルキルヒドロキシルアミンを反応させるか、化合物(d)のヒドロキシム体にジアルキル硫酸、ヨウ化50

アルキル等を反応させることによっても得られる。また、ヒドロキシム体は常法によりアミン化合物に導くことができる。このアミン化合物にアシル化剤を反応させることにより、対応するアシルアミノ体とすることができる。化合物(d)または対応するアルコキシム体にはアンチー、シンーの幾何異性体が存在するが、本発明はこれら個々の異性体およびそれらの混合物も包含する。【0037】化合物(e)は化合物(II)をオゾン分解反応に付すか、または酸化オスミウムによる1、2ージ

反応に付すか、または酸化オスミウムによる1, 2 - ジオール形成反応、次いで過ヨウ素酸ナトリウムと反応させ、次いで水素化ホウ素ナトリウム等を用いて還元する

ことにより得られる。

【0038】本発明の一般式(I)の化合物、即ちカルボン酸化合物については、常法により上述した塩とすることができる。また、各種異性体については、ラセミ体、ジアステレオ異性体を光学分割するか、光学活性な原料を用いることによって製造することもできる。

【0039】これらの化合物類は担体、賦形剤、希釈剤等と混合して散剤、カプセル剤、錠剤、注射剤等に製剤化して患者に投与することができる。また自体既知手段にて凍結乾燥製剤としてもよい。これらの化合物類の投与量は疾患、症状、体重、性別、年令等によって変わりうるが、たとえば腎移植における拒絶反応の抑制には、通常成人1日当たり0.01~10mg(力価)を1日1~数回に分けて投与される。

[0040]

【実験例・実施例】以下に実験例および実施例を挙げて、本発明の作用・効果をさらに詳細に説明する。なお、免疫抑制の活性測定は下記の方法で行なった。

【0041】当該活性測定法としては、マウス、ラット あるいはヒトのリンパ球を用いた種々の免疫反応を用い 20 ることができるが、たとえば免疫抑制活性は、マウス、ラット、ヒトの同種リンパ球混合反応(同種MLR)を 用いることにより感度よく測定できる。

【0042】同種MLRとは、同種でしかも主要組織適合性抗原が異なる2個体由来のリンパ球、たとえば脾細胞、リンパ節細胞、末梢血リンパ球の幼若化反応である。また、同種MLRは、リンパ球の供与者間の主要組織適合性抗原の違いを反映し誘導される現象であり、たとえば一卵性双生児のリンパ球の混合培養によるリンパ球の幼若化現象は認められない。そこで同種MLRは、たとえば臓器移植における供与者一受容者の選択に広く用いられている方法である。

【0043】通常、同種MLRを行なう場合には、一方のリンパ球をX線照射あるいはマイトマイシンC処理等を行なうことによって、分裂増殖を阻止した状態で刺激細胞として用い、他方のリンパ球(反応細胞)の幼若化反応を測定する方法(one way-MLR)を用いることができる。

【0044】さらに免疫抑制活性は、同種MLRの際に 誘導される主要組織適合性抗原拘束性を有する細胞障害 性T細胞の誘導を抑制する活性としても測定することが できる。

【0045】また、免疫抑制活性は、同種MLRの他に、種々のマイトージェン(コンカナバリンA、フィトへムアグルチニン、ポークウィードマイトージェン等)の刺激により誘導されるリンパ球の幼若化反応を抑制する活性、またはT細胞、B細胞等のリンパ球の分裂増殖を増強もしくは分化を促進する活性を有するようなサイトカイン(インターロイキン1、2、3、4、5、6

等)により誘導されるリンパ球の分裂増殖反応、または機能の発現を抑制する活性としても評価することができる。さらに、これらサイトカインのT細胞、マクロファージ等からの産生を抑制する活性としても評価することが可能である。

【0046】さらに化合物をマウス等に腹腔内、経口、静脈内、皮内、皮下または筋肉内投与をすることによって、たとえば同種細胞等であらかじめ免疫されたマウスの脾細胞中に誘導される同種細胞特異的細胞障害性T細胞の誘導を抑制する活性、ならびに同種細胞等で免疫したマウスの血清中に産生される同種細胞特異抗体の産生を抑制する活性、または同種マウスの臓器移植の際の拒絶反応、あるいは移植片対宿主反応、あるいは遅延型アレルギー、アジュバント関節炎等を抑制する活性としても評価することができる。

【0047】また、自己免疫疾患のモデル動物であるMRL/1prマウス、NZB/WFrマウス、BXSBマウス、NODマウス等に化合物を投与することによる、たとえば抗DNA抗体の産生、リウマチ因子の産生、腎炎、リンパ球の増殖異常、尿タンパク等の抑制活性あるいは延命効果としても評価することができる。

【0048】実験例1(マウス同種リンパ球混合反応に対する抑制作用)

マウス同種リンパ球混合反応(以下、マウス同種MLRと称する。)は、反応細胞としてBALB/cマウスの脾細胞を、刺激細胞としてC57BL/6マウスの脾細胞をマイトマイシンC処理したものを用い、両者を等比で混合培養することによって行なった。

【0049】反応細胞の調製法としては、以下の方法で行なった。 $5\sim6$ 週齢のBALB/cマウスより脾臓を摘出し、熱不活化牛胎児血清(以下、FCSと称する。)を5%添加したRPMI1640培地(硫酸カナマイシン 60μ g/ml、ペニシリンGカリウム100単位/ml、N-2-ヒドロキシエチルピペラジン-N'-2-エタンスルホネート10mM、0.1%炭酸水素ナトリウム、L-グルタミン2mM合有)を用いて、脾細胞の単細胞浮遊液を得た。溶血処理後、 10^4 M2-メルカプトエタノールおよび10%FCSを含むRPMI1640倍地を用いて、 10^7 個/mlに調製し、反応細胞浮遊液として用いた。

【0050】刺激細胞は以下の方法で調製した。 $5\sim6$ 週齢のC57BL/6マウスより脾臓を摘出し、RPMI1640培地を用いて脾細胞の単細胞浮遊液を得た。 溶血処理後、 40μ g/mlマイトマイシンCで37%、 $60分間の処理を行なった。3回洗浄後、<math>10^{-4}M2$ ーメルカプトエタノールおよび10%FCSを含む RPMI1640培地を用いて、 10^{7} 個/mlに調製し、刺激細胞浮遊液として用いた。

【0051】上述した方法により調製した反応細胞浮遊液50μ1と刺激細胞浮遊液50μ1および10%FC

10 .

Sを含むRPMI1640培地を用いて調製した被検体 100μ 1とを、96穴平底マイクロテストプレートに 加え、37℃で5%炭酸ガス95%空気の条件下で4日間培養を行なった。

【0052】マウス同種MLRにおけるリンパ球の幼若化反応の測定法としては、³Hーチミジンの取り込みを指標とする方法を用いた。即ち、培養終了後に³Hーチョジン18 5 FR 2 CP T N を 2 TO A B B B B B

後、セルハーベスターにて細胞を収集し、細胞内に取り込まれた放射活性を液体シンチレーションカウンターにて測定し、マウス同種MLRのリンパ球幼若化の指標とした。マウス同種MLRの抑制活性は、数1の式により抑制率を算出し評価した。また、その結果を表1に示した。

 東部率
 1 - (%)
 (数6体未添加の) - (反応細胞のみ) の c p m
 ×100

 (数6体未添加の) (放ん未添加の) (MLRのcpm) (MLRのcpm) (Dに細胞のみ) の c p m
 - (反応細胞のみ) の c p m

[0053]

[0054]

			【表 1	.]	
反応細胞	刺激細胞	被検体	用量 (nM)	³ H- チミジン 取り込み(cpm)	抑制率 (%)
BALB/c			·	851 ± 291	
-,	C57BL/6		_	27 ± 22	l
BALB/c	C57BL/6	· · · · · ·	_	41069 ± 10567	ļ.
BALB/c	C57BL/6	化合物(a)	1	45187 ± 9197	0
BALB/c	C57BL/6	化合物(a)	3	30986 ± 11143	25. 1
BALB/c	C57BL/6	化合物(a)	10	9615 ± 597	78. 2
BALB/c	C57BL/6	化合物(a)	.30	2467 ± 286 ~	96: 0
BALB/c	C57BL/6	化合物(a)	100	1293 ± 112	98.9

【0055】化合物(a)について、1nMから100nMの範囲の最終濃度でマウス同種MLRにおけるリンパ球幼若化反応活性を測定した結果、表1に示すように、マウス同種MLRに対し抑制作用を示し、50%抑制する濃度は5.6nMであった。一方、この化合物は、 10μ Mの濃度でもマウスL929細胞に対する細胞毒性は認められなかった。

【0056】実験例2(インターロイキン2(IL-2)により誘導されるIL-2依存性マウスT細胞株CTLL-2の増殖に対する抑制作用)

IL-2依存性マウスT細胞株CTLL-2を10%F CSを含むRPMI1640培地にて2×10⁵ 個/ml に調製した。この細胞浮遊液50μ1と、リコンピナン 50

いて 570 n mにおける吸光度を測定し、IL-2 依存性の CTLL-2 細胞の増殖の指標とした。IL-2 依存性増殖の抑制率(%)は数2の式により算出した。ま

た、その結果を表2に示した。 【0057】 【数2】

[0058]

【表2】								
I L – 2	被検体	用量 (nM)	吸光度 (0D ₅₇₀)	抑制率(%)				
_		— .	0.002 ± 0.005					
+		_	0.876 ± 0.100	 .				
+	化合物(a)	10	0.715 ± 0.058	18. 4				
+	化合物(a)	30	0.479 ± 0.038	45. 4				
+ .	化合物(a)	100	0.135 ± 0.002	84. 8				
+	化合物(a)	300	0.084 ± 0.002	90.6				
		l	1	1				

【0059】表2から明らかなように、化合物(a)は IL-2により誘導されるCTLL-2細胞の増殖を濃 度依存的に抑制した。

【0060】実施例1

(1) 発酵

グルコース (3%)、酵母エキス(0.45%)、K 2 HPO 4 (0.075%)、KI 2 PO 4 (0.075%)、MgSO 4 ・7H 2 0(0.05%) を含有する培地(120ml) (pH6.0 に調整)を各々500ml 容頸長振盪フラスコ 2 0本に入れ、1 2 1 ℃で 2 0分間滅菌した。マイセリア・ステリリアATCC No.20349のポテトデキストロース寒天培地上に成育した菌糸体約1cm²を各培地に接種し、往復振盪機上、40℃で4日間培養した。得られた培養液を予め、1 2 1 ℃で30分間滅菌した200リットルのジャーファーメンターに入れた上記培地組成のものに消泡剤(0.02%)(ダウコーニング社製、商品名「F18」)を添加した培地(150リットル)に接種し、40℃、通気(150リットル/min)、撹拌(200rpm)下にて7日間培養した。

【0061】(2)化合物(a)の単離および精製 このようにして得られた培養液を濾過して分離した湿菌 体をメタノール25リットルで2回抽出し抽出液50リットルを得た。このメタノール抽出液を等量の水で希釈

した後、非イオン性吸着樹脂「ダイアイオン HP-2 0 (商品名)」(三菱化成社製) (10リットル)のカ ラムに通し、70%水性メタノール10リットルで洗浄 した後、メタノール(20リットル)で溶出した。溶出 液を減圧濃縮し、粉末2.6gを得た。この粉末を、予 め50%水性メタノールで充填した「Chromatorex-ODS (商品名)」(富士デビソン社製)(2リットル)を用 いたカラムクロマトグラフィーに付した。60%水性メ タノール(2リットル)、70%水性メタノール(2リ ットル)を通液した後、80%水性メタノール(2リッ トル)で目的化合物を溶出し、減圧濃縮して白色粉末 1. 5 gを得た。さらにこの粉末 6 5 0 m g を、予め 6 5%水性メタノールで平衡化した高速液体クロマトグラ フィー (HPLC) 用カラム (YMC製、ODS-AM 20 φ ×250mm、流速8ml/min) へ通し、前記平衡液で溶出し た。このクロマトグラフィーは、UV検出器で波長21 0 nmにてモニターし、化合物 (a) の検出ピークを分 取した。この画分を減圧濃縮し、化合物(a) 39mg を白色粉末として得た。

[0 0 6 2] m.p. $162.0 \sim 167.0 ^{\circ}$ IR v_{max} (KBr) cm⁻¹ : 3375,3275(sh),3100,2900,28 50,1710,1625,1580(sh),1465,1100,1050,970

14

07(d,7-C),130.63(d,6-C),71.01(d,3-C),64.71(t,21-

C),64.71(s,2-C),43.53(t,13- and 15-C),33.63(t,8-C),32.83,32.70,30.60,30.28,30.22,30.08,30.03,24.92

(each t,4-,5-,9-,10-,11-,12-,16-,17- and 18-C),23.

[0066] IR ν_{max} (KBr) cm⁻¹ : 3400,2910,2800 -

 1 H-NMR (300MHz,in CDCl $_{3}$) δ :6.74(1H,br.s),5.5

O(1H,t,J=6.5Hz),5.46-5.26(2H,m),4.91(1H,d,J=11.5H)

z), 4.56(1H, d, J=11.5Hz), 2.40(4H, t, J=7.9Hz), 2.10(3H,

【0063】実施例2 化合物(b)の合成

60(t,19-C),14.39(q,20-C) FAB-MS m/z:386,340,75,57,45,31

(1) 化合物 (IV) の合成

[0064]

【化11】

 1 H-NMR (600MHz,in CD $_3$ OD) $\delta_{\rm H}$:5.46(1H,br.dt.,J=15.4,6.2Hz,7-H),5.41(1H,br.dt.,J=15.4,5.9Hz,6-H), 3.99(1H,d.,J=11.2Hz,21-H),3.84(1H,t.,J=6.8Hz,3-H), 3.82(1H,d.,J=11.2Hz,21-H),2.44 and 2.43(each 2H,t.,J=7.2Hz,13- and15-Hz), 2.24(1H,br.dtd.,J=14.2,6.7,5.9Hz,5-H),2.01(1H,br.dtd.,J=14.2,7.1,5.9Hz,5-H),1.97(2H,br.q.,J=6.2Hz,8-Hz),1.54 and 1.53(each 2H,qui.,J=7.2Hz,12- and 16-Hz),1.53(2H,m.,4-Hz),1.38-1.24(12H,m.,9-,10-,11-,17-,18- and 19-Hz),0.90(3H,t.,J=7.1Hz,20-Hz)

 13 C-NMR (75MHz,in CD $_3$ OD) $\delta\,c$:214.44(s,14-C),132.

【0065】化合物(a)20.1mgに無水ピリジン0.5mlを加え、室温で激しく撹拌しながら無水酢酸0.5mlを加えた。化合物(a)が完全に溶解するまで約1時間撹拌を続けた後、撹拌を止め、一夜放置した。反応液に氷水を加え、酢酸エチルで抽出した。抽出液を1N塩酸、飽和炭酸水素ナトリウム水溶液、飽和塩化ナトリウム水溶液で順次洗浄し、乾燥した後、減圧濃縮した。ここで得た残渣19mgを酢酸エチルーへキサンー蟻酸(7:3:0.1)を展開溶媒とした分取薄層クロマトグラフィーで精製し、化合物(IV)16.2mgを白色粉末として得た。

s),2.05(3H,s),2.04(3H,s),1.96(4H,m),1.74(2H,m),1.56(4H,m),1.28(12H,m),0.88(3H,t,J=6.6Hz)

Positive FAB-MS m/z: 512(M+1)*
【0067】(2) 化合物(II) の合成
【0068】

-2550, 1740, 1705, 1690, 1380, 1220, 970

【化13】

【0069】化合物(IV)16.3 mgをエーテル2 mlに 溶解し、溶液の色が黄色になるまで、氷冷下ジアゾメタンを加えた。30分後、溶媒を留去し、シロップ状残渣を得た。これを酢酸エチルーヘキサン(1:1)を展開 溶媒とした分取薄膜クロマトグラフィーで精製し、化合物(II)15.0 mgをシロップとして得た。

[OO70] IR v_{max} (CHC1 3) cm $^{-1}$: 3400,2950, 2850,1750,1730,1680,1540,1380,1240,1050

H-NMR (200MHz,in CDC1 3) δ :6.47(1H, br.s),5.4

ACOCH₂—
$$CH$$
— CH — CH 2)₂— CH = CH — CH 2)₁₂— CH 3
$$CO_2CH_3$$

【0073】化合物(II)30mgを、氷冷下でゆっくり と撹拌しながら、塩化水素ガスを飽和させた無水酢酸1 m1に溶解し、次いで活性化した亜鉛末140mgを少量づ つ2時間にわたり注意深く加えた。亜鉛末を濾別し、さ 50 z),3.77(3H,s),2.39(4H,t,J=7.3Hz),2.08(3H,s),2.04(3 H,s),2.02(3H,s),1.97(4H,m),1.66(2H,m),1.55(4H,m), 1.27(12H,m),0.88(3H,t,J=6.5Hz) Positive FAB-MS m/z: 526(M+1)* 【0071】(3)化合物(III)の合成 【0072】

7-5.22(3H,m), 4.99(1H,d,J=11.5Hz), 4.51(1H,d,11.5Hz)

化合物(III)

らに酢酸エチルで洗浄した。 滅液と洗液を合わせ、氷水を加えた後、有機層を分離した。 水層はさらに酢酸エチルで抽出した。 有機層を合わせ、飽和炭酸水素ナトリウム、飽和食塩水で順次洗浄し、乾燥した。 減圧下溶媒を

留去して得た残渣を酢酸エチルーへキサン (7:3)を 展開溶媒とした分取薄層クロマトグラフィーで精製し、 化合物(III) 23.5 mgをシロップ状物質として得た。 【0074】IR v max (CHCl3) cm⁻¹:3400,2910,17 40,1690,1500,1370,1220,970

 1 H-NMR (200MHz,in CDC1 $_3$) δ :6.47(1H,br.s),5.47 -5.30(3H,m),4.98(1H,d,J=11.5Hz),4.52(1H,d,J=11.5Hz),3.77(3H,s),2.08(3H,s),2.03(3H,s),2.02(3H,s),2.0 1(4H,m),1.67(2H,q,J=3.6Hz),1.26(22H,br.s),0.88(3H,t,J=6.5Hz)

Positive FAB-MS m/z: 512(M+1)+

【0075】(4)化合物(III)→化合物(b) 化合物(III) 19.7mg(0.05 mmol)をメタノール 2.0mlに溶解し、1N水酸化ナトリウム溶液0:35 mlを加えた後、窒素下、一夜加熱還流した。反応液を1

【0079】化合物(III) 19.9 mgをメタノール4 ml に溶解し、5% Pd-C 20 mgを加えた後、水素下撹拌した。水素の吸収が止まった後、触媒を濾取し、さらにメタノールで洗浄した。濾液と洗液を合わせ、減圧濃縮し、化合物 (V) 18.0 mgをシロップ状物質として得た。

[0080] IR ν_{max} (CHCl 3) cm⁻¹ : 3375,2910, 2850,1740,1730,1675,1380,1240,1040

¹ H-NMR (200MHz,in CDC1 ³) δ :6.42(1H,br.s),5.50 -5.38(1H,m),4.99(1H,d,J=11.2Hz),4.52(1H,d,J=11.2Hz),3.77(3H,s),2.09(3H,s),2.03(3H,s),2.02(3H,s),1.2 5(32H,br.s),0.88(3H,t,J=6.4Hz)

Positive FAB-MS m/z: 514(M+1)+

【0081】(2) 化合物(V)→化合物(C) 化合物(V) 16.7 mgを,メタノール2.0 mlに溶解 し、1 N水酸化ナトリウム溶液 0.3 2 mlを加えた後、 窒素下、一夜加熱還流した。反応液を1 N塩酸で中和 し、析出した沈澱を濾取した。これをメタノール、次い で水で洗浄し、化合物(C) 7.8 mgを得た。

[0082] IR v_{max} (KBr) cm⁻¹ : 3380,3200,291 0,2850-2500,1630,1460,1100

 1 H-NMR (300MHz,in CD $_3$ OD) δ :3.82(3H,m),1.56-1.26(32H,m),0.88(3H,deformed t,J=6.8Hz)

【0087】化合物(II)35.1 mgをピリジン2.1 mlに溶解し、室温で撹拌しながら四酸化オスミウム2

N塩酸で中和し、析出した沈澱を濾過した。これをメタ ノール、次いで水で洗浄し、化合物(b) 1 0. 1 mgを 得た。

[OO76] IR v_{max} (KBr) cm⁻¹ : 3400,3200,291 0,1660,1550,1525,1465,1360,1260,970

 1 H-NMR (200MHz,in CD 3 0D) δ :5.47(1H,br.dt,J=1 5.4 and 6.3 Hz),5.40(1H,br.dt,J=15.4 and 6.2Hz),3. 95(1H,d,J=11.3Hz),3.86(1H,d,J=11.3Hz),3.72(1H,m), 2.27(1H,m),2.05(1H,m),1.98(2H,br.q,J=6.3Hz),1.70(1 H,m),1.40-1.20(17H,m),0.92(3H,deformed t,J=7.0Hz)

Positive FAB-MS m/z: 372(M+1)* 【0077】実施例3 化合物(C)の合成

(1) 化合物 (V) の合成

[0078]

【化14】

化合物(V)

Positive FAB-MS m/z: 374(M+1)+

【0083】実施例4 化合物(d)の合成 炭酸ナトリウム3.0mgを水0.2mlに溶かし、NH2 OH・HC13.5mgとエタノール0.3mlを加え、70℃ に加温した。この混合液に化合物(a)19.3mgを加え、同温度で撹拌した。化合物(a)が溶解した後、同 温度で6時間放置した。反応液を減圧濃縮し、得られた 残渣に水を加え、沈澱を濾取した。この沈澱をメタノー ルに加温しながら溶かし、室温で放置し、未反応物を回 収した。母液より化合物(d)8.2mgを白色粉末とし て得た。

[0084] IR ν_{max} (KBr) cm⁻¹ : 3250,2950,287 0,1600,1470,1410,1050,970

 1 H-NMR (200MHz,in CD $_3$ OD) δ :5.48-5.42(2H,m),3. 94(1H,d,J=11.2Hz),3.83(1H,m),3.80(1H,d,J=11.2Hz), 2.32(2H,t,J=7.7Hz),2.15(2H,t,J=7.6Hz),1.99(4H,m), 1.53-1.41(4H,m),1.31(12H,m),0.90(3H, deformed t,J=6.5Hz)

Positive FAB-MS m/z: 401(M+1)+

【0085】実施例5 化合物(e)の合成

(1) 化合物 (VI) の合成

[0086]

【化15】

0. 4mgをピリジン0. 2mlに溶解した溶液を加えた 後、室温で1時間撹拌を続けた。反応液に亜硫酸水素ナ トリウム 4 1. 8 mgを水 1. 4 mlに溶解した溶液を加え、室温で 3 0 分間撹拌した。反応液を水 1 4 mlに懸濁し、酢酸エチルで抽出した。抽出液を 1 N塩酸、飽和塩化ナトリウム水溶液で洗浄し乾燥した後、減圧濃縮した。この残渣をクロロホルムーメタノール(1 0:1)を展開溶媒とした分取薄層クロマトグラフィーで精製し、化合物(VI) 3 4. 5 mgをシロップとして得た。【0 0 8 8】IR v mex (CHC1 3) cm -1 :3600-3200,3400,2910,1740,1700,1500,1370,1220,1020

【0091】化合物(VI)30.5mgをジオキサン5.3mlに溶解し、0.2M過ヨウ素酸ナトリウム水溶液0.38mlを加えた後、室温で1時間撹拌した。反応液を濾過し、不溶物を除去した後、濾液を濃縮した。この残渣に水を加え、酢酸エチルで抽出し、その抽出液を濃縮してアルデヒド体をシロップ状残渣として得た。この20濃縮残渣をジオキサン2.5mlに溶解し、さらに水0.

フロントページの続き

(72)発明者 千葉 健治

埼玉県入間市小谷田3丁目7番25号 吉富 製薬株式会社東京研究所内 ¹ H-NMR (200MHz,in CDC1 3) δ :6.29(1H,br.s),5.30 (1H,t,J=6.6Hz),4.53(2H,s),3.78(3H,s),3.72(1H,m),3.40(1H,m),2.39(4H,t,J=7.4Hz),2.11(3H,s),2.06(3H,s),2.02(3H,s),1.56(4H,m),1.50-1.23(18H,m),0.88(3H,t,J=6.5Hz)

18

Positive FAB-MS m/z: 560(M+1)*
【0089】 (2) 化合物(VII) の合成 【0090】 【化16】

化合物(VII)

9mlを加え室温で撹拌しながらドライアイス小片を数個加えた。固体が消失したところで水素化ホウ素ナトリウム6.2mgを加えた。30分後、反応液を1N塩酸で酸性(pH<2)とし、さらに10分後、1N水酸化ナトリウムで中性にして、減圧下濃縮乾固した。この残渣をクロロホルムーメタノール(9:1)を展開浴媒とした分取