5Z,

98. Deutscher Bibliothekartag in Erfurt Ein neuer Blick auf Bibliotheken TK10: Information erschließen und recherchieren Inhalte erschließen – mit neuen Tools

Automatische DDC-Klassifizierung von bibliografischen Titeldatensätzen

Ulrike Reiner Verbundzentrale des Gemeinsamen Bibliotheksverbundes (VZG)

Automatische DDC-Klassifizierung von bibliografischen Titeldatensätzen - Inhalt des Vortrages -

Fundy-National par

ul, 25. Mai 2008

- Inhalte erschließen -
 - Dewey Dezimalklassifikation (DDC)
 - Bibliografische Titeldatensätze

mit neuen Tools

- OCLC classify (an experimental classification web service)
- VZG Colibri/DDC *vc_dcl* (*vzg colibri_ddc classifier*)
- VZG-Colibri/DDC-Wettbewerb
- Klassifizierungskomponente vc_dcl: Modell, Tests, Bewertung, Ergebnisse & Perspektiven

025.47

025.47028

Colibri/DDC - Forschungsfrage *Q1*

Fundy-Nationalpark ul, 25. Mai 2008

Ist es möglich, eine inhaltlich stimmige DDC-Titelklassifikation aller GVK-PLUS¹-Titeldatensätze automatisch zu erzielen?

¹GVK-PLUS: Gemeinsamer Verbundkatalog (GVK) und Online Contents (OLC); ²vzg colibri_ddc classifier

Dewey-Dezimalklassifikation (DDC) DDC-Ausschnitt


```
Ebene
```

- **1. 0**00(Informatik, ...) **1**00 **2**00 ... **9**00
- 2. 000 (Informatik, ...) ... 020 (Bib.- u. Informationswiss.en) ...
- 3. 006 (Spez. Computerverfahren) 025 ...
- **4. 006.3** (Künstliche Intelligenz) ... **[025.0]** ...
- **5. 006.31** (Maschinelles Lernen) ... **025.04** (... Information-

12-stellig Retrieval-Systeme)

(Einsatz von Dateiorganisation und Dateizugriffsverfahren)

DDC-Notationen: 26.715 (Haupttafeln); 9.356 (Hilfstafeln); 13.919 (mit Regeln gebildete)

Verbundzentrale des GBV (VZG)

38. Deutscher Bibliothekartag (ul, 3. Juni 2009, S. 4)

NZG V

DDC-Klassifzierung: ein Thema (Kleidung)mehrere Systemstellen!

"Da die einzelnen Teile der DDC <u>nach Fachgebieten</u> und <u>nicht nach Themen geordnet</u> sind, kann <u>ein Thema mehrere</u>

Systemstellen haben. So kann z. B. das Thema »Kleidung« unter verschiedenen Aspekten aus mehreren Fachgebieten gesehen werden. Die psychologische Wirkung von Kleidung gehört zu 155.95, als Teil des Fachgebiets Psychologie; mit Kleidung verbundene Bräuche gehören als Teil des Fachs Ethnologie zu 391 und Kleidung im Sinn der Modeschöpfung gehört als Teil des Fachgebiets Künste zu 746.92"

Hervorhebungen (Unterstreichungen, farbliche Markierungen) durch Autorin

[DDC 22 Dewey-Dezimalklassifikation und Register (begr. von Melvil Dewey; hrsg. von Joan, S. Mitchell unter Mitwirk. von Julianne Beall; Giles Martin; Winton E. Matthews, Jr.; Gregroy R. New; Mitarbeit: Heidrun Alex; Anne Betz; Winfried Gödert; Magda Heiner-Freiling; Melanie Jackenkroll; Marlene Lambert; Tina Mengel; Michael Preuss; Esther Scheven; Lars G. Svensson). Dt. Ausgabe (hrsg. von Der Deutschen Bibliothek). Band 1, K.G. Saur, München, 2005, S. I]

Verbundzentrale des GBV (VZG)

38. Deutscher Bibliothekartag (ul, 3. Juni 2009, S. 6)

SZA

Intellektuelle DDC-Klassifizierung Der Apfel: 110 (Metaphysik)

[http://cover.deutschesfachbuch.de/books/3938793627/bx.jpg]

× Suchen: zelle

Start

OCLC Classify

(an experimental classification web service)
Der Apfel {372.133}

👃 Abwärts 👚 Aufwärts \wp Hervorheben 🦳 Groß-/Kleinschreibung 📑 Das Seitenende wurde erreicht, Suche vom Seitenanfang fortgesetzt

Intellektuelle DDC-Klassifizierung

Mitt liv, min frihet: {297,...,920.72}

Beispiel aus: [Ingebjørg Rype; Magdalena Svanberg: Dewey in Scandinavia: exploring new translation models of Dewey]. Vortrag auf 3. EDUG-Symposium "Dewey goes Europe - On the Use and Development of the Dewey Decimal Classification (DDC) in European Libraries", Vienna 28 April, 2009.

Projekt Colibri/DDC

OCLC Classify Mein Leben, meine Freiheit: {324.2092}

🦊 Start

OCLC Classify: The caged virgin - an emancipation proclamation for women and Islam {297.082,...,922.97}

Fundy-Nationalpark ul, 25. Mai 2008

🛼 👌 🔁 🔯 🖨 💟 🏴 🗐 🔛 🗞 💹 N 📖 🕒 N 💹 👍 🚱 🖇 17:22

Initiative Colibri/DDC-Wettbewerb (Juni 2009) Ziel: bester automatischer DDC-Klassifizierer für bibliografische Titeldatensätze gesucht

Initiative Colibri/DDC-Wettbewerb (Juni 2009) Ziel: bester automatischer DDC-Klassifizierer für bibliografische Titeldatensätze gesucht

Systemtest¹

- Modell des Systems oder detaillierte Beschreibung des Systems und seiner Komponenten
- Zu testende Hypothesen
- Bewertungskriterien und Maße, die diese Kriterien widerspiegeln
- Methoden, Daten zu ermitteln und zu bewerten

¹[Salton 1983] Gerard Salton; Michael J. McGill, : Introduction to Modern Information Retrieval. McGraw-Hill, New York u.a., 1983. S. 158

Automatische DDC-Klassifizierung (1) Colibri/DDC-Modell (1)

Deskriptor (descr): Pica+/MAB2-Kategorie, deren Werte zur inhaltlichen Charakterisierung beitragen

Pica+: {..., 021A, ..., 044K, ...}; MAB2: {..., 310, ..., 410, ...}

Deskriptorwert (descr_val): Wert eines Deskriptors

{Apfel, Apfelbeere, Aronia}

DDC-Klasse: Menge von Deskriptorwerten

634:= {..., <021A>-aronia, ...}

Titeldatensatz: Menge von Deskriptorwerten

DNB991499077 := {..., <331>-aronia, <902s>-aronia, ...}

DDC-Datenbasis vc_DB: Menge von DDC-Klassen, repräsentiert durch DDC-Notationen (dnos)

{000, 006.31, 025.302855741, 634, ..., 999.23}

Automatische DDC-Klassifizierung (2) Colibri/DDC-Modell (2)

IR¹-Komponente von *vc_dcl*

Vektorprodukt² als Ähnlichkeitsmaß s: $suc = \sum ui ci$

$$Suc = \sum_{i=1}^{l} u_i c_i$$

Bestimmung der Ähnlichkeit zwischen den binären Vektoren u^3 und c^4 mit s: similarity (Ähnlichkeit); i: i-te Gewicht (1: Deskriptorwert vorhanden; 0: Deskriptorwert nicht vorhanden); l: Anzahl der Deskriptorwerte von u.

DDC-Notationskandidat(en) für einen Titeldatensatz

DDC-Notationskandidat: DDC-Klasse mit größtem Ähnlichkeitswert zwischen u und c: $Suc \max$

Menge von DDC-Notationskandidaten (dno_cand_set):

DDC-Klassen mit gleichen Ähnlichkeitswerten

¹IR: Information Retrieval; ²[Salton 1968] Gerard Salton: Automatic Information Organization and Retrieval. McGraw-Hill, New York, 1968, p. 237;

 $^{^3}u$: unclassified (Deskriptorwerte eines nicht klassifizierten Titeldatensatzes);

⁴c: classified (Deskriptorwerte einer DDC-Klasse)

Automatische DDC-Klassifizierung (3) Colibri/DDC-Modell (3)

KI¹-Komponente von vc_dcl (1)

Heuristische Funktion cutoff_val²

Annahme: Deskriptorwerte, die in zu vielen DDC-Klassen auftreten, sind (mit bestimmter Ausnahme) für die automatische DDC-Klassifizierung ungeeignet.

cutoff_val

Obergrenze für Berücksichtigung von Häufigkeitswerten von Deskriptorwerten

cutoff_val_dyn

Wert wird zur Laufzeit durch heuristische Regeln dynamisch bestimmt

cutoff_val_stat

statischer (= konstanter) Wert für Testzwecke

in_descr_val_lim = 6

Anzahl der zu berücksichtigenden Deskriptorwerte (Anfangswert)

¹KI: Künstliche Intelligenz; ²[Reiner 2009], S. 12ff

5ZA

Verbundzentrale des GBV (VZG)

38. Deutscher Bibliothekartag (ul, 3. Juni 2009, S. 16)

Automatische DDC-Klassifizierung (4) Colibri/DDC-Modell (4)

KI-Komponente von vc_dcl (2)

Heuristische Regeln, z. B.¹

H2. Berücksichtigung spezifischer Begriffe

Wenn Differenz zwischen zwei Häufigkeitswerten größer als "200" **dann** *cutoff_val_dyn* := kleinerer Wert der beiden Häufigkeitswerte

H3. Berücksichtigung auch allgemeiner Begriffe

Wenn Summe der 1- bis 3-stelligen Häufigkeiten kleiner als Anzahl der größer als 3-stelligen Häufigkeiten **dann** cutoff_val_dyn := größter Häufigkeitswert (allgemeine Begriffe überwiegen im Titeldatensatz).

¹[Reiner 2009] , S. 12

ZZG

Automatische DDC-Klassifizierung (5) VZG Colibri/DDC-Suchsystem vc_ds

(Aronia, Folie 56)
ohne automatisch
ermittelte
DDC-Notation

615.32373

{600,610,615, 615.3,615.32, 615.323, — 615.32373,583, 583.7,583.73}

615.32373

vc_dcl vzq colibri_ddc classifier

vc_day
vzg colibri_ddc number analyzer

vc_dsy
vzg colibri_ddc number synthesizer

vc_dqa
vzg colibri_ddc question answerer

Antworten

DNB991499077

→ mit DDCNotationskandidat
615.321 (Folie 30)

{600,610,615, 615.3,615.32, → 615.323, 615.32373,583, 583.7,583.73}

→ 615.32373

LCC:
RM300-666

→ (Drugs
and their actions)

Automatische DDC-Klassifizierung (6) Softwaresystem-Architektur DDC-Suchsystem *vc_ds* Fundy-Nationalpark in_DNBul, 25. Mai 2008 vc_cdb2 2007/2009 vc_dcl res_vc_dclset vc_IDB vc_cdb in_GVK-DDC 2004/2008 vc_idb res_dno_set vc_dqa in_dno, in_BK, vc_DB in_LCSH,... res vc_dsy dno_mol_set in_dno_atoms vc_pdb res vc_ckb vc_KB in_DDC-System vc_daygram, vc_day res_ vc_dayset in_dno_mols **GVK: 568.813** Erläuterungen in [Reiner 2009] vc_daygrams (24.3.09)

Verbundzentrale des GBV (VZG)

38. Deutscher Bibliothekartag (ul, 3. Juni 2009, S. 19)

Automatische DDC-Klassifizierung (7) Standard-Testbestände: Information Retrieval

- **Cranfield** (1950)²

1398 Kurzfassungen (Aerodynamik-Zeitschriftenartikel), 225 Anfragen, Relevanzurteile

- TREC (NIST, 1992)²

"Ad Hoc track" für TREC1 – TREC8 (1992-1999), 6 CD's: 1.89 Mio. Dokumente, 450 Anfragen ("topics"), Relevanzurteile, "TREC 6-8": 528.000 Artikel, 150 Anfragen

- GOV2 (2004)¹
27 Mio. WWW-Seiten, 15 KB durchschnittliche Dokumentengröße

- Cross Language Evaluation Forum (CLEF) (2000)³ Europäische Sprachen, sprachübergreifendes Information Retrieval
- **REUTERS** (1996-2004)²

Reuters-21578: 21.578 Artikel von Nachrichtenagenturen RCV1 (Reuters Corpus Volume, 1GB): 806.791 Dokumente (z. B. aus Politik, Wirtschaft, Sport, Wissenschaft)

- 20 NEWSGROUPS²

1000 Artikel von 20 Usenet-Newsgroups

¹[Voorhees/Harman 2005], S. 21-52; ³[CLEF]; ² [Manning/Raghavan/Schütze 2008], S. 153. Online: http://nlp.stanford.edu/IR-book/pdf/08eval.pdf;

Verbundzentrale des GBV (VZG)

38. Deutscher Bibliothekartag (ul, 3. Juni 2009, S. 20)

Automatische DDC-Klassifizierung (8) Colibri/DDC-Systemtest: Testbestände

Fundy-Nationalparl ul, 25. Mai 2008

Basis für die automatische Klassifizierung

DDC-Datenbasis¹

DDC-Wissensbasis¹

vc_DB-2004, vc_DB-2008

vc_KB-2004

DDC-Testbestände (Testdokumente)

in_DNB-2007, in_DNB-2009

Andere Kollektionen als DDC-Testbestände?

100.000 BASE-Titeldatensätze²

426.254 NORBOK-Titeldatensätze³

¹[Reiner 2009]; analog zu DDC-Daten-/Wissensbasis auch Fallbasis/Trainingsdokumente (Maschinelles Lernen); z. B. [Pfeffer 2008]; [Oberhauser 2004]; [Wille 2006]; [Mehler/Waltinger 2009a]; [Mehler/Waltinger 2009b];

²[http://base.ub.uni-bielefeld.de/en/lab_browse_menu.php?menu=5]

³[http://nabo.nb.no/trip?_b=baser&navn=norbok&_h=0]

SZA

Automatische DDC-Klassifizierung (9) Colibri/DDC-Systemtest

Kriterium für Tests / Experimente

Wiederholbarkeit!

Verwendete Hard- und Software (*colibri2.gbv.de*)

HP Proliant DL585 G1, 4xAMD Opteron 275, 2.2 GHz, 16GB Hauptspeicher. SuSE Linux Enterprise 10, gawk-3.1.5.

vc_dcl_srv.awk (Server): 1.222 Zeilen Programmcode; vc_dcl_cli.awk (Client): 27 Zeilen Programmcode.

VZG

Automatische DDC-Klassifizierung (10) Eingabedaten

in_DDC-System

Elektronische Form als XML-Datei (22. Aufl., in Englisch, Januar 2004)

in_GVK-DDC-2004 (Pica+ - Format)

3,0 Mio. Titeldatensätze

in_GVK-DDC-2008¹ (Pica+ - Format)

4,3 Mio. Titeldatensätze²

in_DNB-2007 **bzw.** *in_DNB-2009* (MAB2-Format)

12 DNB-Wochen/Monatslieferungen der Deutschen Nationalbibliografie der Reihen A, B und H mit intellektuell vergebenen DDC-Notationen aus den Jahren 2007 bzw. 2009

- *in_DNB-2007* (25.653 Titeldatensätze, 10,5 Deskriptorwerte im ∅)
- *in_DNB-2009* (30.717 Titeldatensätze, 11,0 Deskriptorwerte im ∅)

Verbundzentrale des GBV (VZG)

38. Deutscher Bibliothekartag (ul, 3. Juni 2009, S. 23)

¹Zum Vergleich: GVK: 28,2 Mio. Titeldatensätze, Nov. 2008; ²LoC: 54,7%; BNB: 23,8%; Quelle nicht rekonstruierbar: 23,5%

Automatische DDC-Klassifizierung (11) Datenkonvertierung (1)

Datenkonvertierung

- Eliminierung: irrelevante Deskriptorwerte, Sonderzeichen
- Deskriptorwerte: Transliterierung, Kleinschreibung

Berücksichtigte MAB2-Felder (vc_cdb2)

```
026 (Regionale Identifikationsnummer); 037 (Sprachencode nach ISO 639); 100 (Name der 1. Person in Ansetzungsform); 310 (Hauptsachtitel in Ansetzungsform); 331 (Hauptsachtitel in Vorlageform oder Mischform); 335 (Zusätze zum Hauptsachtitel); 341 (1. Parallelsachtitel in Vorlageform oder Mischform); 370 (Weitere Sachtitel); 410 (Ort(e) des 1. Verlegers, Druckers usw.); 412 (Name des 1. Verlegers, Druckers usw.); 451 (1. Gesamttitel); 540 (Internationale Standardbuchnummer (ISBN)); 542 (Internat. Standardnr. für fortlauf. Sammelwerke); 700 (Systematik der katalogisierenden Institution); 705 (DDC analytisch); 902/12/22 s/g, 907/17/27 s/g (Sach-/geographisch-ethnographische Schlagworte);
```

Automatische DDC-Klassifizierung (12) Datenkonvertierung (2)

Fundy-Nationalpark ul, 25. Mai 2008

Berücksichtigte Pica+ - Kategorien (vc_cdb)

001A (Kennung der Ersterfassung); **003**@ (Pica production number); 004A (ISBN); 004B (2. und weitere ISBN); 004D (formal falsche ISBN); 005A (ISSN); 006G (DNB-Nummer); 006L (Weitere Verbundidentifikationsnummern); 006Y (Verbundidentifikationsnummer); 007G (Identifikationsnummer der ersterfassenden Institution); 021A (Hauptsachtitel, Verfasser); 022A/01(Einheitssachtitel); 027D (Titel in Bandsätzen); 028A (1. Verfasser); 028B (2. und weitere Verfasser); 028C (Sonstige beteiligte Personen); 028E (Interpreten); 033A (Ort, Verlag); 036C (Gesamtheit und Abteilungen in Vorlageform); 039B (Verknüpfung zur größeren Einheit); 041A (Kettenglied einer RSWK-Kette); 044A (Library of Congress Subject Headings (LCSH)); 044C (Medical Subject Headings (MESH)); 044E (PRECIS); 044F (DNB-Schlagwörter); 044G (British Library Subject Headings (BLSH)); 044K (Einzelschlagwort); 044L (Einzelschlagwort (Projekte)); 045A (Library of Congress Classification (LCC)); 045F (DDC); 045Q (Basisklassifikation); 045U ZDB (Notation bei Zeitschriften); 144Z/244Z (Lokale Schlagwörter); 145Z/245Z (Lokale Notationen);

SZA

Automatische DDC-Klassifizierung (13) Erstellung der DDC-Daten-/Wissensbasis

VC_CKb (vzg colibri_create ddc knowledge base)

Erstellung der DDC-Wissensbasis *vc_KB-2004* aus Daten des DDC-Systems (Januar 2004)

VC_Cdb (vzg colibri_create ddc data base)

Erstellung der DDC-Datenbasis vc_DB aus GVK-DDC-Titeldatensätzen (Pica+ -> vc_DB-Repräsentation)

VC_cdb2 (vzg colibri_create ddc data base2)

Konvertierung der DNB-Titeldatensätze in *vc_DB*-Repräsentation (MAB2 -> *vc_DB*-Repräsentation)

VC_pdb (vzg colibri_prepare ddc data base) und VC_idb (vzg colibri_create
inverted ddc data base)

Erstellung der invertierten DDC-Datenbasis vc_IDB

vc_IDB-2004 (510 MB): ca. 3 Min. Einlesezeit in den Hauptspeichervc_IDB-2008 (712 MB): ca. 5 Min. Einlesezeit in den Hauptspeicher

Intellektuelle DDC-Klassifizierung Der Apfel: 110 (Metaphysik)

[http://cover.deutschesfachbuch.de/books/3938793627/bx.jpg]

Automatische DDC-Klassifizierung (14) Der Apfel: {334.683411, ...,391.0092}

```
Fundy-Nationalpark
number of ddc-classified title:
                                    1197
                                                                   ul, 25. Mai 2008
identifier (dno,schedno):
                                    DNB0984784829 (110,110) DNB DDC
notation (MAB2 field 700): {100}
                                                           Ethik
DDC notation (MAB2 field 705):
                                   {110}
calculated cutoff value:
                                    31
title:
                                    Der Apfel
                                    |2| {<331>-apfel[31],/<540a>-3-938793-
considered descriptor values:
62-7[0]}
matched descriptor values:
                                    |1| {apfel}
max. match value of matched descriptor values: |1|
calculated1 ddc classes (subdiv): |31| {070.924, 170, 300, 334.683411,
338.108, 338.10942, 338.13, 338.17411, 338.174110942, 343.73084, 370,
380.1414110943, 391.0092, 581.12, 634.11, 634.116, 634.117, 634.1193,
634.11943, 635.08, 641.341109748, 791.430233092, 813.54, 822.33,
823.0872909, 823.7, 823.914, 823.92, 833.914, 839.3135, 892.493}
calculated1 ddc classes (sections): |7| {300, 334, 338, 343, 370, 380, 391}
calculated1 ddc classes (main): |1| {300}
calculated2 ddc classes (subdiv): |7| {334.683411[1], 338.108[1],
338.10942[1], 338.13[1], 338.17411[1], 343.73084[1], 391.0092[1]}
calculated2 ddc classes (sections): {338[5]}
calculated2 ddc classes (divisions):{330[6]}
calculated2 ddc classes (main): {300[11]}
correlation(dnb A0745 DNB0984784829#ger#dno i{110}#dno a{M300,D330,S338,s33
4.683411,s338.108,s338.10942,s338.13,s338.17411,s343.73084,s391.0092}#consi
: 2#matched: 1,1{apfel}): 00x.xxx xxx xxx xxx (0)
```

Verbundzentrale des GBV (VZG)

38. Deutscher Bibliothekartag (ul, 3. Juni 2009, S. 28)

Automatische DDC-Klassifizierung (15) ?

Petra Neumayer Birgit Funfack

Gesundheit und Vitalität durch kraftvolle Antioxidanzien

КОНА

[http://picture.yatego.com/images/428b84fecc19b0.4/pid4748589.jpg]

Automatische DDC-Klassifizierung (16) Powerbiostoffe aus der Apfelbeere : {615.321}


```
Fundy-Nationalpark
number of ddc-classified title:
                                    996
                                                                     ul, 25. Mai 2008
                                    DNB0991499077 (615.32373,615.32373)
identifier (dno, schedno):
DNB DDC notation (MAB2 field 700):
                                   {610}
DDC notation (MAB2 field 705):
                                   {615.32373}
calculated cutoff value:
                                    79
title:
                                    Aronia
title (remainder):
                                    Powerbiostoffe aus der Apfelbeere ;
Gesundheit und Vitalitaet durch kraftvolle Antioxidanzien
considered descriptor values: |11| {<100>-petra#neumayer[0], <331>-
aronia[1], <335>-apfelbeere[0], <335>-gesundheit[823], <335>-vitalitaet[79],
<335>-kraftvolle[1], <335>-antioxidanzien[0], <335>-powerbiostoffe[0],
<412@410>-<033A>-koha@burgrain[0], <540a>-978-3-86728-084-6[0],
<902s1>-naturheilmittel[10]}
matched descriptor values:
                                    |2| {naturheilmittel, vitalitaet}
max. match value of matched descriptor values: |2|
calculated1 ddc classes (subdiv): |1| {615.321}
calculated1 ddc classes (sections): |1| {615}
calculated1 ddc classes (main): |1| {600}
calculated2 ddc classes (subdiv): |1| {615.321[1]}
calculated2 ddc classes (sections): {615[1]}
calculated2 ddc classes (divisions):{610[1]}
calculated2 ddc classes (main): {600[1]}
correlation(dnb A0912 DNB0991499077#ger#dno i{615.32373}#dno a{M600,D610,S61,
s615.321}#consi: 11#matched: 2,2{naturheilmittel, vitalitaet}):
111.110 00x xxx xxx (0.625)
```

Verbundzentrale des GBV (VZG)

38. Deutscher Bibliothekartag (ul, 3. Juni 2009, S. 30)

JZZ

Automatische DDC-Klassifizierung (17) Bewertung (1)

Projekt Colibri/DDC¹: Korrelationsmaße C, CP² und CN²

Stellenweiser Ziffernvergleich von links nach rechts zwischen intellektuell vergebener (*dno_i*) und automatisch ermittelter DDC-Notation (*dno_a*). Annahme: *dno_i* ist optimal. *L_i*: Länge von *dno_i*.

<u>C (Correlation)</u>: Anzahl der übereinstimmenden Ziffern in <u>dno_i</u> und <u>dno_a</u>.

<u>CP (Correlation Pattern)</u>: 16-stelliges Muster mit "." (Dewey Punkt) an Stelle 4; "1", wenn dno_i und dno_a an Stelle s übereineinstimmen; "0", wenn sie nicht übereinstimmen; "x" an Stellen größer L_i .

<u>CN (Correlation Number)</u>: auf <u>L_i</u> normiertes Korrelationsmaß $CN = C / L_i$.

 $^{^1}$ Mathematische Definitionen in [Reiner 2009] , S. 13ff; 2 eingeführt in [Reiner 2008], S. 127

Projekt Colibri/DDC

Automatische DDC-Klassifizierung (18) Bewertung (2)

Projekt Colibri/DDC¹

```
dno_{i} = 150
                     (Psychologie)
dno_a = 158.1
                     (Persönliche Weiterentwicklung und Analyse)
```

$$CP = 110.xxx xxx xxx xxx; CN = (1+1+0)/3 = 0.66666$$

 $dno_i = 158.1$ (Persönliche Weiterentwicklung und Analyse) *dno_a* = 158 (Angewandte Psychologie)

$$CP = 111.0xx xxx xxx xxx; CN = (1+1+1+0)/4 = 0.75$$

 $dno_i = 591.513$ (Intelligenz) [Oberklasse: 590 (Tiere)] *dno_a* = 156.39 (Intelligenz bei Tieren--vergleichende Psychologie, ...)

CP = 000.000 xxx xxx xxx; CN = (0+0+0+0+0+0)/6 = 0

SZA

Automatische DDC-Klassifizierung (19) Bewertung (3)

Projekt Scorpion/DDC¹

dno: DDC-Notation; dno_mol: molekulare DDC-Notation (Bsp.: Folie 57);

dno1: DDC-Notation 1; dno2: DDC-Notation 2;

S1: (H) dno1 und dno2: 1. Stelle Übereinstimmung

S2: (T) dno1 und dno2: 1. und 2. Stelle Übereinstimmung

S3: (0) dno1 und dno2: 1.-3. Stelle Übereinstimmung

S4: (G) und (Sp): dno1 (= Sp) ist echter Präfix von dno2 (= G)

S5: (Co) Fachliche/thematische Nähe zwischen dno1 und dno2

S6: (Sy) dno1 (=Sy) zu dno2, falls dno1 eine optionale DDC-

Notation zu dno2 ist

S7: (B) Sei dno1 eine dno_mol, die nicht in den Haupttafeln enthalten ist. Dann ist dno2 (=B) die erste dno, die in den Haupttafeln enthalten ist, wenn dno1 von rechts nach links sukzessive gekürzt wird

S8: (E) dno1 = dno2

S9: Cl ε {G/Sp, Co, Sy, B, E};

S10: R ε {H, T, O, G/Sp, Co, Sy,B, E, Cl}

"Hundreds", "Tens", "Ones",
"More General", "More Specific",
"Correlated", "Synonym",
"Best Possible", "Exact",
"Relevant", und "Close".

mit Colibri/DDC-Terminologie erklärt; Original in [Shafer/Subramanian/Fausey 1999] Keith Shafer; Srividhya Subramanian; Jon Fausey: Measures for Evaluating Automatic Subject Assignment of Electronic Resources. OCLC Online Computer Library Center, Inc. 6565 Frantz Road, Dublin, Ohio, USA.

Automatische DDC-Klassifizierung (20) Bewertung (4)

Projekt Pfeffer/RVK¹

"Bewertung

- Vergleich der automatischen und manuellen Klassifikation
- Suche des nächsten gemeinsamen Vaterknoten im RVK-Baum
- Perfekt: Übereinstimmung
- Gut: Abstand 1-3
- Mäßig: Abstand >3, aber noch gleiches Fach
- Schlecht: anderes Fach"

¹[Pfeffer 2008], S. 10

Automatische DDC-Klassifizierung (21) Bewertung (5)

Fundy-Nationalpark ul, 25. Mai 2008

Colibri/DDC					Scorpion/DDC					Pfeffer/RVK		
Bsp.dno_i	dno_a	СР	C	CN	s1	s2	s3	S4	s8	s9	s10	P
8. 529.326	529.326	111.111	6	1	x	x	x		×	×	x	P1
9. 529	529.3	111	3	1	x	x	x	G		x	x	P2
10. 529.3	529	111.0	3	0.75	x	x	x	Sp		x	x	P2
11. 111	115	110	2	0.66	x	x					x	P2
12. 520	529	110	2	0.66	x	x					x	P2
13. 571.68	571.58	111.00	3	0.60	x	x	x				x	P2
14. 111.8	110	110.0	2	0.50	x	x					x	P2
15. 571.5929	571	111.0000	3	0.43	x	x	x	Sp		x	x	P3
16. 111.85	110	110.00	2	0.40	x	x					x	P2
17. 111.850952	111	111.000000	3	0.33	x	x	x	Sp		x	x	P4
18. 572.6	500	100.0	1	0.25	x						x	P2
19. 111.85	100	100.00	1	0.20	x						x	P3
20. 529.326	500	100.000	1	0.16	x						x	Р3
21. 571.5929	500	100.0000	1	0.14	x						x	P3
22. 100	500	000	0	0								P4
23. 170	570	000	0	0								P4

Abb. 8: Vergleichende Betrachtung mit unterschiedlichen Bewertungsmaßen; Auszug aus [Reiner 2009], S. 18

Automatische DDC-Klassifizierung (22) Bewertung (6)

Klasse K	Mensch urteilt: (korrekte Zuordnung)							
	gehört zu K	gehört nicht zu K						
Maschine ermittelt: gehört zu K	а	b						
Maschine ermittelt: gehört nicht zu K	С	d						

Vierfeldertafel ("contingency table", "utility matrix")¹-³

¹ [Lewis 1991] David D. Lewis: Evaluating Text Categorization. In: Proceedings of Speech and Natural Language Workshop. Association for Computational Linguistics. Morristown, NJ, USA, 1991, p. 313; ² [Moens 2000] p. 105; ³ [Sebastiani 2002] Fabrizio Sebastiani: Machine Learning in Automated Text Categorization. ACM Computing Surveys, Vol. 34, No. 1, March 2002, p. 33

Automatische DDC-Klassifizierung (23) Bewertung (7)

Bewertungsmasse¹ (2)

- Precision
$$P = a / (a+b)$$

- Recall
$$R = a / (a+c)$$

- Fallout
$$F = b / (b+d)$$

- F-Measure =
$$2*P*R / (P+R)$$

http://personalpages.manchester.ac.uk/staff/yutaka.sasaki/F-measure-YS-26Oct07.pdf

¹[Salton 1968]; [Sasaki 2007] Yutaka Sasaki: The truth of the F-measure. School of Computer Science, University of Manchester MIB, 131 Princess Street, Manchester, M1 7DN, October 26, 2007. Online:

DZA

Automatische DDC-Klassifizierung (24) Bewertung (8)

Weitere Bewertungsmasse¹ (3)

- Accuracy = a+d / (a+b+c+d)
- Error = 1 Accuracy
- Percent too specific
- Percent too general
- Average overlap
- Accuracy at level
- Eleven-point average precision
- Precision-recall breakeven point

¹[Oberhauser 2004], S. 21 ff.; ²[Frank/Paynter]: Predicting Library of Congress Classifications From Library of Congress Subject Headings. Journal of the American Society for Information Science and Technology, Vol. 55, No. 3; p. 222

SZA

Automatische DDC-Klassifizierung (25) Bewertung (9)

Fundy-Nationalpark ul, 25. Mai 2008

vzg colibri_ddc classifier; 2 vzg colibri_ddc classification results evaluator

Automatische DDC-Klassifizierung (26) Klassifizierungsergebnisse mit *vc_dcl*

Aus Gründen der Bewertung wird eine automatische Klassifizierung nur durchgeführt, wenn der Titeldatensatz

- eine korrekte DDC-Notation enthält,
- noch nicht klassifiziert wurde (Prüfung: MAB2-Feld 026)
- nicht in der DDC-/Wissensbasis enthalten ist (Prüfung: MAB2-Felder 540a, 540b, 004A mit Pica+ - Kategorien 004A, 004B,004D, 005A)

Name der Ergebnisdatei <i>res</i>	res (Anz.) ¹	tit (Anz.) ²	t ³
res_vc_IDB-2004_in_DNB-2007	16.694	25.653	133
res_vc_IDB-2008_in_DNB-2007	15.365	25.653	136
res_vc_IDB-2004_in_DNB-2009	21.591	30.717	120
res_vc_IDB-2008_in_DNB-2009	21.422	30.717	140

¹Anzahl der Klassifizierungsergebnisse; ²Anzahl der Titeldatensätze; ³Laufzeit der automatischen Klassifizierung in Minuten

Automatische DDC-Klassifizierung (27) Automatisch bewertete Ergebnisse (1)

Hypothesen

- a) Unterschied bei unterschiedlichen Daten-/Wissensbasen ist signifikant
- b) Unterschied bei verschiedenen Testbeständen ist nicht signifikant

```
Daten-/Wissensbasis
Test-
bestand
          vc DB-2004
                    vc DB-2008
                               Differenz
             57.33% | 62.84%
                               +5.51%
in DNB-2007|
             57.26%
                                +6.59%
                       63.85%
in DNB-2009|
Differenz
            -0.07%
                      +1.01%
```

CN-Werte > 0

Übereinstimmung mindestens in der DDC-Hauptklasse

Automatische DDC-Klassifizierung (28) Automatisch bewertete Ergebnisse (2)

res_vc_IDB-2008_in_DNB-2009

Fundy-Nationalpark ul, 25. Mai 2008

----- CN for all dnos ---

```
CN=0: 7743; 36,15%
0<CN<1: 10954; 51,13%
```

CN=1: 2725; 12,72% 63,85%

Übereinstimmung mindestens in der DDC-Hauptklasse

```
C=0 C=1 C=2 C=3 C=4 C=5 C=6 C=7 C=8 C=9
36,15% 13,71% 26,29% 10,27% 6,07% 3,29% 2,81% 0,98% 0,29% 0,13%
```

Verteilung der Übereinstimmungen

Automatische DDC-Klassifizierung (29) Automatisch bewertete Ergebnisse (3)

res_vc_IDB-2008_in_DNB-2009

<u>Hypothese</u>: Es gibt signifikante Unterschiede zwischen den DDC-Klassen

CN (Anzahl pro DDC-Klasse)										
	dno0	dno1	dno2	dno3	dno4	dno5	dno6	dno7	dno8	dno9
CN=0	249	311	252	849	178	1426	3188	639	141	510
0 <cn<1< td=""><td>230</td><td>174</td><td>347</td><td>3015</td><td>142</td><td>1326</td><td>4471</td><td>528</td><td>207</td><td>514</td></cn<1<>	230	174	347	3015	142	1326	4471	528	207	514
CN=1	77	60	73	421	55	290	1136	204	77	332
CN>0	307	234	420	3436	197	1616	5607	732	284	846

Automatische DDC-Klassifizierung (30) Automatisch bewertete Ergebnisse (4)

res_vc_IDB-2008_in_DNB-2009

ul, 25. Mai 2008

Hypothese: Es gibt signifikante Unterschiede zwischen den DDC-Klassen

	a	b	С	d	a+b	a+c F	recision	Recall	Fallout	F-Measure
dno0	307	453	241	20421	760	548	0,404	0,560	0,022	0,469
dno1	234	751	311	20126	985	545	0,238	0,429	0,036	0,306
dno2	420	334	251	20417	754	671	0,557	0,626	0,016	0,589
dno3	3436	3613	842	13531	7049	4278	0,487	0,803	0,211	0,607
dno4	197	174	178	20873	371	375	0,531	0,525	0,008	0,528
dno5	1616	1123	1388	17295	2739	3004	0,590	0,538	0,061	0,563
dno6	5607	1801	3130	10884	7408	8737	0,757	0,642	0,142	0,695
dno7	732	601	630	19459	1333	1362	0,549	0,537	0,030	0,543
dno8	284	1428	141	19569	1712	425	0,166	0,668	0,068	0,266
dno9	846	939	506	19131	1785	1352	0,474	0,626	0,047	0,539

Automatische DDC-Klassifizierung (31) Automatisch bewertete Ergebnisse (5)

res_vc_IDB-2008_in_DNB-2009

<u>Hypothese:</u> Es gibt keinen signifikanten Unterschied zwischen deutschen und englischen Titeldatensätzen

Automatische DDC-Klassifizierung (32) Automatisch bewertete Ergebnisse (6)

<u>Hypothese</u>: Es gibt signifikante Unterschiede zwischen den Reihen A, B und H

Name der Ergebnisdatei <i>res</i>	A	В	Н
res_vc_IDB-2004_in_DNB-2007	62.32%	50.37%	55.24%
res_vc_IDB-2008_in_DNB-2007	67.72%	58.69%	60.92%
res_vc_IDB-2004_in_DNB-2009	59.56%	49.35%	57.10%
res_vc_IDB-2008_in_DNB-2009	67.42%	56.33%	62.96%

CN-Werte > 0 Übereinstimmung mindestens in der DDC-Hauptklasse

Projekt Colibri/DDC

Automatische DDC-Klassifizierung (33)

Automatisch bewertete Ergebnisse (7)

res_vc_IDB-2008_in_DNB-2009

Hypothese: Es gibt signifikante Unterschiede hinsichtlich der Stelligkeit der DDC-Notationen

1-3-digit 4-digit 5-digit 6-digit 7-digit 8-digit 9-digit 5009 4924 1985 764 SUM: 2922 5319 317 CN=0: 35,21% 33,12% 28,27% 37,75% 38,07% 36,94% 37,38% 52,36% 57,98% 0<CN<1: 47,23% 47,77% 52,67% 54,06% 58,68% 24,50% 14,48% 9,26% 10,70% 8,56% 6,81% 8,20% CN=1:71,73% 62,25% 61,93% 63,06% 62,62% 64,79% CN>0: 66,88%

Stand: Automatisches Klassifizierungsverfahren mit der Klassifizierungskomponente vc_dcl

- Ermittlung der DDC-Notationskandidaten:
 Algorithmus verwendet IR¹- und KI²-Verfahren
- IR: einfachstes Ähnlichkeitsmaß (binäre Vektoren, Vektorprodukt); KI: heuristische Regeln
- 2 Klassenaggregationen für Ergebnisausgabe
- keine Volltexte, sondern einzelne ggf. mehrere zusammenhängende - Wörter
- keine linguistischen Verfahren, kein Lexikon

IR: Information Retrieval; ²KI: Künstliche Intelligenz

Perspektiven zur automatischen **DDC-Klassifizierung (1)**

- Vergrößerung der DDC-Daten-/Wissensbasis
- Verbesserung der Sacherschliessung bei unzureichend erschlossenen Titeldatensätzen
- Erweiterung der heuristischen Funktion, Verwendung weiterer (KI/IR)-Algorithmen, Lexikonerstellung
- Eliminierung weiterer irrelevanter Deskriptorwerte
- Andere Methode der (Klassenaggregation zur) Ergebnisausgabe
- Anreiz durch Colibri/DDC-Wettbewerb ©

Perspektiven zur automatischen DDC-Klassifizierung (2)

Fundy-Nationalpark ul, 25. Mai 2008

Zuallererst neue Energie aufnehmen ...

Vielen Dank für Ihr Interesse am VZG-Projekt Colibri/DDC

Für Colibri-Unterstützung und -Diskussionen gilt mein Dank:
Dipl.-Kfm. Reiner Diedrichs, Direktor der Verbundzentrale (VZG) des GBV, Göttingen
Prof. Dr. Erhard Konrad (i.R.), Fakultät Elektrotechnik und Informatik, TU Berlin, Berlin
Dipl.-Inform. (FH) Alfred Vogelbacher, Network Support Engineer Solaris, Sun Microsystems
GmbH, Berlin

Literatur: Information Retrieval & Bewertung (1)

[SALTON 1971] **The SMART Retrieval System – Experiments in Document Processing** (ed. Gerard Salton). Prentice-Hall, Englewood Cliffs, NJ, 1971.

[Jones 1981] Karen Spärck Jones: **Information Retrieval Experiment.** Butterworths, London, 1981.

[Jones 1996] Karen Spärck Jones; Julia R. Galliers: **Evaluating Natural Language Processing Systems. An Analysis and Review.** Lecture Notes in Artificial Intelligence 1083. Springer, Berlin, 1996.

[Voorhees/Harman 2005] **TREC: Experiment and Evaluation in Information Retrieval** (ed. by Ellen M. Voorhees; Donna K. Harman). MIT Press, Cambridge Massachusetts, 2005.

Literatur: **Information Retrieval & Bewertung (2)**

- [Moens 2000] Marie-Francine Moens: Automatic Indexing and **Abstracting of Document Texts.** Kluwer Academic Publishers, London, 2000.
- [Manning/Raghavan/Schütze 2008] Christopher D. Manning; Prabhakar Raghavan; Hinrich Schütze: Introduction to Information Retrieval. Cambridge University Press, Juli 2008. Online: http://www-csli.stanford.edu/~hinrich/informationretrieval-book.html.
- [CLEF] Cross-Language Evaluation Forum (CLEF) . Online: http://www.clef-campaign.org/.

Literatur: Automatische Klassifizierung & Bewertung (1)

[Reiner 2008] Ulrike Reiner: **DDC-based Search in the Data of the German National Bibliography.** In: New Perspectives on Subject Indexing and Classification. Essays in Honour of Magda Heiner-Freiling. Deutsche Nationalbibliothek. Leipzig, Frankfurt am Main, Berlin, 2008, pp. 121-129.

[Reiner 2009] Ulrike Reiner: **Bewertung von automatisch DDC-klassifizierten Titeldatensätzen der Deutschen Nationalbib-liothek (DNB).** VZG-Colibri-Bericht 1/2008. Online: http://taipan.dyndns.org/~ul/colibri05.pdf.

[Oberhauser 2004] Otto Oberhauser: **Automatisches Klassifizieren. Verfahren zur Erschliessung elektronischer Dokumente.** Master's Thesis. Zusatzstudiengang Bibliotheks- und Informationswissenschaft. Fakultät für Informations- und Kommunikationswissenschaften, Fachhochschule Köln, 2004.

Literatur: Automatische Klassifizierung & Bewertung (2)

- [Wille 2006] Jens Wille: Automatisches Klassifizieren bibliographischer Beschreibungsdaten Vorgehensweise und Ergebnisse. Diplomarbeit. Studiengang Bibliothekswesen Fakultät für Informations- und Kommunikationswissenschaften, Fachhochschule Köln, 2006.
- [Pfeffer 2008] Magnus Pfeffer: Automatische Vergabe von RVK-Notationen mittels fallbasiertem Schließen. Vortrag: 97. Deutscher Bibliothekartag. 5. Juni 2008, Mannheim.
- [Mehler/Waltinger 2009a] Alexander Mehler; Ulli Waltinger: **Automatic Enrichment of Metadata**. Vortrag: "9th International Bielefeld Conference". 4. Februar 2009, Bielefeld.
- [Mehler/Waltinger 2009b] Alexander Mehler; Ulli Waltinger: Enhancing Document Modeling by Means of Open Topic Models: Crossing the Frontier of Classification Schemes in Digital Libraries by Example of the DDC. Wird publiziert in: Library Hi Tech, 2009.

Fundy-Nationalpark ul, 25. Mai 2008

DNB-Titeldatensatz zu Aronia

Fundy-Nationalpark ul, 25. Mai 2008

```
001 991499077
002a20081128
003 20090303090118
004 20090310
025a991499077
026 DNB991499077
```

037bger

100 Neumayer, Petra 102a120295911 104aFunfack, Birgit 106a137378009 331 Aronia

335 Powerbiostoffe aus der Apfelbeere ; Gesundheit und Vitalität durch kraftvolle Antioxidanzien

359 Petra Neumayer ; Birgit Funfack

903 213

540aISBN 978-3-86728-084-6 kart. : EUR 7.95 (DE), EUR 8.20 (AT)

700 |610ÎDNB 705a a 615.32373 c 615.32 d 583.73 e DDC22ger 902s 7636533-5 Aronia 902s1 4288415-9 Naturheilmittel 902f11 | Ratgeber intellektuell vergebene DDC-Notation

Bedeutung der DDC-Klasse 615.32373?

Fundy-Nationalpark ul, 25. Mai 2008

SZA

vzg colibri_ddc number analyzer; ²molekulare DDC-Notation (dno_mol): eine – in atomare DDC-Notationen - syntaktisch zerlegbare Zeichenkette

Notationsanalyse der DDC-Klasse 615.32373 (1)

als DDC-Analysediagramm (vc_daygram)

```
615.32373 <gvk 351372 to analyze; length: 9>
6---- Technology <hatzen>
61---- Medicine & health <hatzen>
615---- Pharmacology and therapeutics <hat>
615.3--- Organic drugs <hat>
615.32--- Drugs derived from plants and
         microorganisms <hat>
615.323-- Drugs derived from specific plants
         <hatspan:615.323-615.327:615.323>
615.32373 Cider vinegar--pharmacology <hatien>
---.-3-- Magnoliopsida (Dicotyledons)
         <na1r1span:615.323-615.327:583>
 --.--37- Rosidae <na1r1span:615.323-615.327:583.7>
---.-373 Rosales <na1r1span:615.323-615.327:583.73>
```

Notationsanalyse der DDC-Klasse 615.32373 (2)

Menge von atomaren¹ DDC-Notationen als Klassenbenennungen (vc_dayset_cap)

{technology,medicine & health,pharmacology and
 therapeutics,organic drugs,drugs derived from
 plants and microorganisms, drugs derived from
 specific plants, cider vinegar—pharmacology,
 magnoliopsida (Dicotyledons),rosidae,rosales}

Menge von atomaren¹ DDC-Notationen (vc_dayset_dno)

{600,610,615,615.3,615.32,615.323,615.32373,583, 583.7,583.73}

¹ atomare DDC-Notation (*dno_atom*) ist eine semantisch unzerlegbare Zeichenkette, die eine DDC-Klasse repräsentiert.

Fundy-Nationalpark ul, 25. Mai 2008

ENDE