ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и кибербезопасности

Отчет о прохождении учебной (научно-исследовательская работа (получение первичных навыков научно-исследовательской работы)) практики

Киричек Мария Романовна			
(Ф.И.О. обучающегося)			
1 курс, 5130203/40001			
(номер курса обучения и учебной группы)			
02.03.03 Математическое обеспечение и администрирование информационных систем			
(направление подготовки (код и наименование))			
Место прохождения практики: ФГАОУ ВО «СПбПУ», ИКНиК, ВШТИИ,			
(указывается наименование профильной организации или наименование структурного подразделения			
г. Санкт-Петербург, ул. Обручевых, д. 1, лит. В			
$\Phi \Gamma AOV\ BO\ «СПбПУ»,\ фактический\ адрес)$			
Сроки практики: с <u>20.06.2025 по 17.07.2025</u>			
Руководитель практической подготовки от ФГАОУ ВО «СПбПУ»: Пак Вадим Геннадьевич, к.фм.н., доцент ВШТИИ			
(Ф.И.О., уч. степень, должность)			
Консультант практической подготовки от ФГАОУ ВО «СПбПУ»: нет			
(Ф.И.О., уч. степень, должность)			
Руководитель практической подготовки от профильной организации: нет			
Оценка:			
Руководитель практической подготовки			
от ФГАОУ ВО «СПбПУ»: /Пак В.Г./			
Обучающийся: /Киричек М. Р./			
Дата: 17.07.25			

СОДЕРЖАНИЕ

Введение	3
1 Исследование предметной области	4
1.1 Изучение литературы по истории, современным достижениям и актуальным задачам методов оптимизации градиентного спуска	4
1.2 Выводы	5
2 Теоретическая часть	5
2.1 Изучение математических основ методов градиентного спуска	5
2.1.1 Градиентный спуск	5
2.1.2 Методы оптимизации градиентного спуска (SGD, Adam)	7
2.1.3 Градиентный бустинг	9
2.1.4 Преимущества и ограничения методов	11
2.2 Пример кода Adam, AdaBoost, SGD на языке Python	13
2.2.1 SGD (стохастический градиентный спуск)	13
2.2.2 Adam (адаптивный метод оптимизации)	13
2.2.3 AdaBoost (адаптивный бустинг)	14
2.3 Используемые инструменты и библиотеки для построения моделей ИНС	14
2.4 Данные для обучения моделей	14
2.4.1 Синтетические данные	14
2.4.2 Датасет Language Identification Dataset	17
2.5 Выводы	18
3 Практическая часть	19
3.1 Постановка эксперимента на реальных данных	19
3.1.1 Обучение моделей	19
3.2 Постановка эксперимента на синтетических данных	24
3.2.1 функция Растригина	24
3.2.2 Функция Экли	25
3.2.3 Функция Розенброка	27
3.3 Сравнительный анализ методов	28
3.4 Выводы	29
Заключение	30
Список использованных источников	31
Приложение 1 Листинг программного кода	32

ВВЕДЕНИЕ

Методы градиентного спуска лежат в основе обучения искуственных нейронных сетей (ИНС, далее - нейросетей), позволяя минимизировать функцию потерь и находить оптимальные параметры моделей. Их адаптивные варианты (SGD, Adam, AdaBoost и др.) критически важны для повышения эффективности и точности обучения в условиях больших данных.

Актуальность исследования — градиентные методы (Adam, SGD, AdaBoost и др.) — основа современного машинного обучения. Их оптимизация критически важна для ускорения обучения ИНС и повышения точности моделей, особенно при работе с большими данными. Исследование этих методов позволяет создавать более эффективные алгоритмы для задач ИИ.

Объект исследования — методы градиентного спуска (SGD, Adam) и градиентный бустинг (AdaBoost).

Предмет исследования — математические и алгоритмические особенности, эффективность.

Цель исследования — провести сравнительный анализ эффективности методов (SGD, Adam, AdaBoost и др.) при обучении ИНС. В соответствии с целью исследования, определяются следующие **задачи работы**:

- 1. Изучить литературу по методам градиентного спуска.
- 2. Проанализировать математические основы Adam, SGD и AdaBoost.
- 3. Разработать критерии сравнения эффективности.
- 4. Реализовать методы с использованием PyTorch.
- 5. Провести эксперимент и анализ результатов.

1 ИССЛЕДОВАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ

1.1 Изучение литературы по истории, современным достижениям и актуальным задачам методов оптимизации градиентного спуска

Методы градиентного спуска являются основой обучения нейросетей [7]. Их развитие прошло три ключевых этапа. Изначально метод был теоретически обоснован Огюстеном Коши в XIX веке, но его применение ограничивалось малыми задачами из-за необходимости полного расчёта градиента[6]. С середины XX века началась стохастическая революция: Роббинс предложил SGD (1951), Поляк ввёл momentum, Нестеров разработал ускоренную сходимость. В 1995 году Фройнд предложил AdaBoost — адаптивный бустинг, повлиявший на подходы к оптимизации.

С ростом глубокого обучения появились адаптивные методы, в первую очередь Adam (2014), который автоматически регулирует шаг обучения для каждого параметра. Поздние модификации (AdamW, AMSGrad) устранили проблемы со сходимостью и стабильностью.[1]

Современные алгоритмы существенно ускоряют обучение. Adam позволяет на 15–30% быстрее достигать нужной точности. Для распределённых систем, таких как федеративное обучение, применяются методы вроде FedAvg, обеспечивающие обучение без передачи персональных данных. В условиях ограниченных вычислительных ресурсов (например, на устройствах IoT) используются методы сжатия градиентов, такие как Deep Gradient Compression, сокращающие объём передаваемой информации до 0.1%. Автоматизация подбора гиперпараметров с помощью инструментов вроде Optuna позволяет значительно ускорить настройку моделей.

Актуальные задачи включают повышение устойчивости оптимизаторов на сложных функциях потерь, эффективную работу в распределённых и энергоограниченных системах, создание «лёгких» версий алгоритмов (например, TinyAdam). Ведутся исследования по объединению сильных сторон различных подходов (гибридные методы), интеграции с квантовыми вычислениями и адаптации алгоритмов под новые типы аппаратуры, включая нейроморфные чипы.

Таким образом, современная оптимизация стала более гибкой, автоматизированной и масштабируемой, а дальнейшее развитие связано с адаптацией к новым вычислительным условиям и аппаратным платформам.

1.2 Выводы

В первой главе описано, как методы градиентного спуска стали адаптивными, быстрыми и удобными в применении. Они успешно работают в распределённых и ограниченных по ресурсам системах. Дальнейшее развитие связано с автоматизацией, гибридными подходами и поддержкой новых вычислительных платформ.

2 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

2.1 Изучение математических основ методов градиентного спуска

Данная глава посвящена анализу математических основ ключевых алгоритмов оптимизации. В разделе исследуются фундаментальные методы: классический градиентный спуск, современные оптимизаторы (SGD, Adam) и градиентный бустинг. Раздел 2.1.4 содержит сравнительный анализ их преимуществ и ограничений.

2.1.1 Градиентный спуск

Градиентный спуск — итерационный метод оптимизации функций, широко используемый в машинном обучении [5]. Основная идея заключается в движении в направлении *антиградиента* функции потерь для нахождения её локального минимума.

2.1.1.1 Математические основы

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — дифференцируемая функция, которую необходимо минимизировать. Градиент функции в точке **х** определяется как:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)^T, \tag{2.1}$$

где

f — функция, которую минимизируем,

 $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$ — вектор параметров,

 $\frac{\partial f}{\partial x_i}$ — частная производная по x_i .

Направление наискорейшего убывания функции в точке **x** задаётся антиградиентом $-\nabla f(\mathbf{x})$. Обновление параметров на шаге *t* выполняется по правилу:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \nabla f(\mathbf{x}^{(t)}), \tag{2.2}$$

где

 $\mathbf{x}^{(t)}$ — вектор параметров на шаге t,

 $\eta > 0$ — скорость обучения (learning rate).

2.1.1.2 Алгоритм градиентного спуска

- 1. Инициализировать начальный вектор параметров $\mathbf{x}^{(0)}$;
- 2. Повторять до сходимости:
 - 2.1. Вычислить градиент $\nabla f(\mathbf{x}^{(t)})$;
 - 2.2. Обновить параметры: $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} \eta \nabla f(\mathbf{x}^{(t)});$
 - 2.3. Проверить критерий остановки (малое изменение функции или ограничение итераций).

Рис.2.1. Визуализация работы градиентного спуска.

2.1.1.3 Пример оптимизации

Рассмотрим функцию $f(x) = x^2$. Градиент: $\nabla f(x) = 2x$. Процесс продолжается до приближения к минимуму x = 0. Обновление параметра:

$$x^{(0)} = 3, \quad \eta = 0.1;$$

 $x^{(1)} = 3 - 0.1 \cdot 6 = 2.4;$
 $x^{(2)} = 2.4 - 0.1 \cdot 4.8 = 1.92;$
 $x^{(3)} = 1.92 - 0.1 \cdot 3.84 = 1.536.$ (2.3)

где

 $x^{(t)}$ — значение параметра на шаге t,

η — скорость обучения,

числовые значения — вычисления по формуле обновления.

2.1.1.4 Критические параметры

1. Скорость обучения η:

- 1.1. Слишком большое значение: расходимость;
- 1.2. Слишком малое: медленная сходимость.

2. Критерии остановки:

- 2.1. Норма градиента $\|\nabla f\| < \varepsilon$;
- 2.2. Максимальное число итераций;
- 2.3. Стагнация значения функции.

Примечание: Для невыпуклых функций метод может сходиться к локальным минимумам.

2.1.2 Методы оптимизации градиентного спуска (SGD, Adam)

В машинном обучении широко применяются итеративные методы оптимизации первого порядка, среди которых наиболее популярны:

2.1.2.1 Стохастический градиентный спуск (SGD)

Классический метод градиентного спуска минимизирует функцию потерь $J(\theta)$ по параметрам θ по следующему правилу:

$$\theta_{t+1} = \theta_t - \eta \cdot \nabla_{\theta} J(\theta_t), \tag{2.4}$$

где

 θ_t — параметры модели на шаге t,

η — скорость обучения,

 $abla_{ heta}J(heta_{t})$ — градиент функции потерь.

В стохастическом варианте (SGD) градиент вычисляется не по всем данным, а по мини-батчу размера m:

$$\theta_{t+1} = \theta_t - \eta \cdot \frac{1}{m} \sum_{i=1}^m \nabla_{\theta} J(\theta_t; x_i, y_i), \qquad (2.5)$$

где

 (x_i, y_i) — элементы мини-батча,

остальные обозначения как выше.

2.1.2.2 *Memo∂ Adam*

Adam (Adaptive Moment Estimation) сочетает идеи RMSProp и Momentum. Метод вычисляет адаптивные оценки первых и вторых моментов градиентов:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \tag{2.6}$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2, \tag{2.7}$$

где

 m_t — экспоненциальное скользящее среднее градиента (первый момент), v_t — экспоненциальное скользящее среднее квадратов градиентов (второй момент), $g_t = \nabla_{\theta} J(\theta_t)$ — градиент на шаге t,

 $\beta_1, \beta_2 \in [0,1)$ — гиперпараметры (по умолчанию $\beta_1 = 0.9, \beta_2 = 0.999$).

После коррекции смещения:

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t},\tag{2.8}$$

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t},\tag{2.9}$$

где

 \hat{m}_t , \hat{v}_t — скорректированные оценки моментов.

Обновление параметров:

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \varepsilon} \hat{m}_t, \tag{2.10}$$

где

 ε — малая константа для численной стабильности.

2.1.3 Градиентный бустинг

Градиентный бустинг (Gradient Boosting) — метод машинного обучения, строящий композицию базовых алгоритмов через последовательную оптимизацию дифференцируемой функции потерь. Рассмотрим математические основы метода.

Постановка задачи

Пусть задана обучающая выборка $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, где $\mathbf{x}_i \in \mathcal{X} \subseteq \mathbb{R}^d$, $y_i \in \mathcal{Y}$. Требуется построить модель $F(\mathbf{x}): \mathcal{X} \to \mathcal{Y}$, минимизирующую эмпирический риск:

$$\mathcal{R}(F) = \sum_{i=1}^{n} L(y_i, F(\mathbf{x}_i)) \to \min_{F}, \tag{2.11}$$

где

 $L: \mathscr{Y} \times \mathbb{R} \to \mathbb{R}^+$ — дифференцируемая функция потерь (например, квадратичная $L(y,\hat{y}) = (y-\hat{y})^2$ или логистическая).

Аддитивное построение модели

$$F_M(\mathbf{x}) = F_0(\mathbf{x}) + \sum_{m=1}^M \beta_m h_m(\mathbf{x}), \qquad (2.12)$$

где

 $F_0(\mathbf{x})$ — начальное приближение,

 $h_m(\mathbf{x}) \in \mathcal{H}$ — базовые алгоритмы (слабые предсказатели),

 β_m — весовые коэффициенты.

Алгоритм градиентного бустинга

1)
$$F_0(\mathbf{x}) = \arg\min_{\gamma} \sum_{i=1}^n L(y_i, \gamma), \qquad (2.13)$$

гле

γ — константное начальное приближение модели.

2)
$$r_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)}\right]_{F=F_{m-1}}, \quad i = 1, \dots, n, \tag{2.14}$$

где

 r_{im} — остатки (отклики) на шаге m для объекта i,

L — функция потерь,

 F_{m-1} — модель на предыдущем шаге.

3)

$$h_m = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n (r_{im} - h(\mathbf{x}_i))^2,$$
 (2.15)

где

 h_m — базовый алгоритм (слабый предсказатель) на шаге m,

 ${\mathcal H}$ — пространство базовых моделей.

4)

$$\beta_m = \arg\min_{\beta} \sum_{i=1}^n L(y_i, F_{m-1}(\mathbf{x}_i) + \beta h_m(\mathbf{x}_i)),$$
 (2.16)

где

 β_m — коэффициент обновления для базового алгоритма h_m .

5)

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \mathbf{v} \cdot \mathbf{\beta}_m h_m(\mathbf{x}), \tag{2.17}$$

гле

 $\nu \in (0,1]$ — темп обучения (shrinkage).

Пример: квадратичная функция потерь

$$r_{im} = y_i - F_{m-1}(\mathbf{x}_i), (2.18)$$

где

 y_i — истинное значение отклика,

 $F_{m-1}(\mathbf{x}_i)$ — прогноз модели на шаге m-1.

$$\beta_m = \arg\min_{\beta} \sum_{i=1}^{n} \left[(y_i - F_{m-1}(\mathbf{x}_i)) - \beta h_m(\mathbf{x}_i) \right]^2, \tag{2.19}$$

где

минимизация по скалярному параметру β.

$$\beta_m = \frac{\sum h_m(\mathbf{x}_i) r_{im}}{\sum h_m^2(\mathbf{x}_i)}.$$
 (2.20)

Оптимизация через спуск в пространстве функций

$$F_m = F_{m-1} - \nu \nabla_F \mathcal{R}(F_{m-1}), \tag{2.21}$$

где

 $\nabla_F \mathscr{R}$ — градиент эмпирического риска по модели F, ν — темп обучения.

$$\nabla_F \mathcal{R} = \left[\frac{\partial \mathcal{R}}{\partial F(\mathbf{x}_1)}, \dots, \frac{\partial \mathcal{R}}{\partial F(\mathbf{x}_n)} \right]^T. \tag{2.22}$$

где

вектор градиентов по предсказаниям модели для всех объектов выборки.

2.1.4 Преимущества и ограничения методов

2.1.4.1 Градиентный спуск и его вариации

1. Преимущества:

- 1. Универсальность: применим к широкому классу функций, где существует градиент $f: \mathbb{R}^d \to \mathbb{R}, \nabla f$ существует;
- 2. Простота реализации: базовый алгоритм требует лишь вычисления градиента;
- 3. Масштабируемость: стохастические варианты (SGD) работают с большими данными и позволяют итеративную обработку обучающей выборки.

2. Ограничения:

- Чувствительность к выбору гиперпараметров, особенно скорости обучения η;
- 2. Возможность сходимости к локальным минимумам, особенно при оптимизации невыпуклых функций;
- 3. Замедленная сходимость или колебания на плато и в "оврагах" функции, что требует использования адаптивных методов, таких как Adam или RMSProp.

2.1.4.2 Методы оптимизации (SGD, Adam)

1. Преимущества:

1. Adam обеспечивает адаптивное масштабирование градиентов:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \quad v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2;$$

- 2. Устойчивость к разреженным и шумным градиентам;
- 3. Быстрая сходимость на невыпуклых функциях, особенно в задачах глубокого обучения.

2. Ограничения:

- 1. Наличие дополнительных гиперпараметров β_1 , β_2 , ϵ , чувствительных к выбору;
- 2. Требование дополнительной памяти: Adam использует O(2d) памяти против O(d) у SGD;
- 3. Возможность расходимости при плохой настройке параметров, особенно на нестабильных ландшафтах функции потерь.

2.1.4.3 Градиентный бустинг

1. Преимущества:

1. Высокая точность моделей, особенно при увеличении количества итераций M, что снижает смещение:

Bias
$$\downarrow$$
 при $M \uparrow$;

2. Гибкость: возможность выбора различных функций потерь, например:

$$L(y, F) \in \{MSE, LogLoss, Huber, ...\};$$

3. Регуляризация через параметр shrinkage ν , что повышает обобщающую способность модели.

2. Ограничения:

- 1. Высокая вычислительная сложность $O(M \cdot T(n,d))$, где T(n,d) сложность построения одного базового алгоритма;
- 2. Риск переобучения при избыточном числе итераций M;
- 3. Чувствительность к шуму в обучающих данных;
- 4. Снижение интерпретируемости по сравнению с линейными моделями.

2.2 Пример кода Adam, AdaBoost, SGD на языке Python

2.2.1 SGD (стохастический градиентный спуск)

SGD — это итеративный метод оптимизации, в котором на каждом шаге градиент функции потерь вычисляется не по всей выборке, а по одному (или небольшому мини-батчу) случайно выбранному примеру. В каждом обновлении параметры сдвигаются вдоль антиградиента одного случайного объекта.

```
def sgd (grad_func, theta_init, data, alpha=0.01, epochs=1000):
    theta = theta_init
    for _ in range(epochs):
        x_i, y_i = random.choice(data)
        g = grad_func(theta, x_i, y_i)
        theta = theta - alpha * g

return theta
```

Рис.2.2. код алгоритма SGD на языке Python

2.2.2 Adam (адаптивный метод оптимизации)

Аdam — это стохастический алгоритм оптимизации, который адаптивно подбирает темп обучения для каждого параметра по оценкам первого (m) и второго (v) моментов градиента. На каждом шаге он обновляет скользящие средние градиента и квадрата градиента, а затем корректирует их смещение и обновляет параметры.

Рис.2.3. код алгоритма Adam на языке Python

2.2.3 AdaBoost (адаптивный бустинг)

AdaBoost — это метод бустинга, который последовательно строит ансамбль слабых классификаторов, фокусируясь на ошибочно классифицированных объектах предыдущими моделями (в рамках adaboost.py - $\Pi1.1$). Сначала всем примерам присваиваются одинаковые веса, затем на каждом шаге обучается новый слабый классификатор на выборке с этими весами, рассчитывается его взвешенная ошибка, вычисляется коэффициент α и пересчитываются веса примеров.

2.3 Используемые инструменты и библиотеки для построения моделей ИНС

В практической части для реализации и тестирования моделей использовались следующие библиотеки: PyTorch, TorchText, NumPy, pandas, matplotlib, scikit-learn. Средой выполнения выступала платформа Google Colab, обеспечивающая доступ к GPU и необходимым вычислительным ресурсам. Данный выбор объясняется удобством работы с нейросетевыми моделями и наличием готовых средств визуализации.

2.4 Данные для обучения моделей

2.4.1 Синтетические данные

2.4.1.1 Функция Растригина

Характеризуется наличием большого количества локальных минимумов, что делает ее сложной для поиска глобального оптимума.

$$f(\mathbf{x}) = An + \sum_{i=1}^{n} \left[x_i^2 - A\cos(2\pi x_i) \right],$$
 (2.23)

где:

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$ — вектор входных значений;

A — параметр функции, обычно A = 10;

n — размерность пространства.

Рис.2.4. График функции Растригина

2.4.1.2 Функция Экли

Представляет собой невыпуклую задачу, которая также имеет множество локальных минимумов, создавая риск "застревания" для алгоритмов.

$$f(\mathbf{x}) = -a \exp\left(-b\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^{n}\cos(cx_{i})\right) + a + \exp(1), \tag{2.24}$$

где:

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$ — вектор входных значений;

a — параметр функции, обычно a = 20;

b — параметр функции, обычно b=0.2;

c — параметр функции, обычно $c=2\pi$;

n — размерность пространства.

Рис.2.5. График функции Экли

2.4.1.3 Функция Розенброка

Имеет один глобальный минимум, который находится в узкой, параболической "долине". Алгоритмам легко найти саму долину, но крайне сложно сойтись к глобальному минимуму.

$$f(\mathbf{x}) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2 \right],$$
 (2.25)

где:

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$ — вектор входных значений; n — размерность пространства.

Рис.2.6. График функции Розенброка

2.4.2 Aamacem Language Identification Dataset

2.4.2.1 Основные характеристики:

1. Объём данных:

- 1. 21859 уникальных текстовых примеров (столбец Element method14);
- 2. 22 уникальных языка.
- 2. Языковое разнообразие: Включает 22 языка, что покрывает широкий спектр мультиязычных сценариев. Пример метки: "Estonian".

3. Формат данных:

- 1. Тексты хранятся в столбце Element method14;
- 2. Соответствующие метки языков представлены в отдельном столбие.
- 4. **Источник:** Датасет загружен с платформы Kaggle через kagglehub, что обеспечивает его стандартизированное хранение и доступность.

2.5 Выводы

Во второй главе подробно рассмотрены алгоритмы стохастического градиентного спуска (SGD), адаптивной оптимизации (Adam) и бустинга (AdaBoost). Для каждого из них приведены математические формулы, описывающие процесс обновления весов, а также выделены ключевые параметры, влияющие на эффективность обучения. Также приведены данные для дальнейшего обучения моделей.

- SGD очень простой и широко используемый метод оптимизации. Он требует минимальных вычислительных ресурсов для реализации, так как на каждом шаге обновляет параметры по одному примеру. Благодаря своей простоте отлично подходит для базовых задач оптимизации и легко реализуется в коде.
- Adam сочетает в себе техники моментов и адаптивного масштаба шага.
 Его алгоритм более громоздкий (две скользящие усреднённые статистики), но благодаря этому он сходится быстрее и устойчивее. Для реализации нужны дополнительные массивы (*m*, *v*) и формулы коррекции смещения, однако в современных библиотеках это встроено и требует нескольких строчек кода.
- AdaBoost метод бустинга, базирующийся на создании ансамбля слабых классификаторов. Его реализация наиболее трудоёмка: надо циклически обучать модели с учётом весов примеров и корректировать эти веса для фокусировки на ошибках предыдущих классификаторов. Как правило, AdaBoost используют через готовые функции (например, AdaBoostClassifier), иначе придётся самостоятельно реализовывать слабую модель и процедуру взвешивания, что существенно сложнее.

3 ПРАКТИЧЕСКАЯ ЧАСТЬ

3.1 Постановка эксперимента на реальных данных

3.1.1 Обучение моделей

3.1.1.1 SGD

Линейная модель (в рамках language_indent_SGD.py - П1.2) была реализована с использованием стохастического градиентного спуска (SGD), встроенного в библиотеку torch.optim.

Модель показала следующие результаты:

```
[Epoch 1] Loss: 4967.0681, Accuracy: 0.5038
[Epoch 2] Loss: 3715.7890, Accuracy: 0.7795
[Epoch 3] Loss: 3040.6394, Accuracy: 0.8428
[Epoch 4] Loss: 2628.5060, Accuracy: 0.8698
[Epoch 5] Loss: 2346.7280, Accuracy: 0.8879
[Epoch 6] Loss: 2135.6013, Accuracy: 0.8926
[Epoch 7] Loss: 1968.6788, Accuracy: 0.9024
[Epoch 8] Loss: 1831.6089, Accuracy: 0.9052
[Epoch 9] Loss: 1714.7190, Accuracy: 0.9084
[Epoch 10] Loss: 1613.1574, Accuracy: 0.9106
Finished Training
```

Рис.3.1. Метрики loss и ассигасу на тренировочных данных

Test Accuracy: 0.9173

Рис.3.2. Метрика ассuracy на тестовых данных

Модель обучилась значительно быстро, визуализация обучения включает построение графиков функции потерь по эпохам и итерациям, с отображением направлений шагов градиентного спуска:

Рис.3.3. Функция потерь и путь градиентного спуска по эпохам

Рис. 3.4. Функция потерь и путь градиентного спуска по итерациям

3.1.1.2 Adam

Линейная модель (в рамках language_indent_Adam.py - П1.3) была реализована с использованием адаптивного метода оптимизации Adam, встроенного в библиотеку torch.optim.

Модель показала следующие результаты:

```
[Epoch 1] Loss: 2383.7023, Accuracy: 0.7852

[Epoch 2] Loss: 765.2097, Accuracy: 0.9455

[Epoch 3] Loss: 468.0436, Accuracy: 0.9579

[Epoch 4] Loss: 365.5217, Accuracy: 0.9637

[Epoch 5] Loss: 317.0232, Accuracy: 0.9657

[Epoch 6] Loss: 289.4503, Accuracy: 0.9679

[Epoch 7] Loss: 272.2493, Accuracy: 0.9693

[Epoch 8] Loss: 259.3417, Accuracy: 0.9697

[Epoch 9] Loss: 249.9034, Accuracy: 0.9706

[Epoch 10] Loss: 242.6293, Accuracy: 0.9716

Finished Training
```

Рис.3.5. Метрики loss и ассигасу на тренировочных данных

```
Test Accuracy: 0.9692
```

Рис.3.6. Метрика ассuracy на тестовых данных

У этой модели показатели метрики ассигасу выше, чем у модели с SGD. Визуализация обучения включает построение графиков функции потерь по эпохам и итерациям, с отображением направлений шагов градиентного спуска:

Рис. 3.7. Функция потерь и путь градиентного спуска по эпохам

Рис. 3.8. Функция потерь и путь градиентного спуска по итерациям

3.1.1.3 AdaBoost

Модель ИНС (в рамках language_indent_adaboost.py — П1.4) была реализована на базе простой нейронной сети с одним скрытым слоем, использующей слой эмбеддинга (nn.EmbeddingBag) для представления входных символов в виде плотных векторов. В качестве функции активации применялась ReLU, а выходной слой соответствовал количеству языковых классов.

Обучение модели происходило в составе ансамбля по методу AdaBoost, где каждая базовая нейросеть обучалась на взвешенной выборке, сформированной с учетом ошибок предыдущих моделей. Оптимизация параметров сети выполнялась с использованием адаптивного градиентного оптимизатора Adam (torch.optim.Adam), а в качестве функции потерь применялась взвешенная CrossEntropyLoss, учитывающая важность каждого обучающего примера.

Итоговая модель агрегировала предсказания всех нейросетей ансамбля с помощью взвешенного голосования по их уверенностям (softmax-прогнозам), масштабированным коэффициентами доверия (альфами AdaBoost).

Модель показала следующие результаты:

```
Estimator 1/10 — Loss: 0.1616 Train Acc: 0.9674 Test Acc: 0.9655 Estimator 2/10 — Loss: 0.3881 Train Acc: 0.9647 Test Acc: 0.9650 Estimator 3/10 — Loss: 0.5296 Train Acc: 0.9599 Test Acc: 0.9655 Estimator 4/10 — Loss: 0.5942 Train Acc: 0.9601 Test Acc: 0.9656 Estimator 5/10 — Loss: 0.6097 Train Acc: 0.9601 Test Acc: 0.9665 Estimator 6/10 — Loss: 0.6204 Train Acc: 0.9626 Test Acc: 0.9665 Estimator 7/10 — Loss: 0.6267 Train Acc: 0.9607 Test Acc: 0.9665 Estimator 8/10 — Loss: 0.6375 Train Acc: 0.9619 Test Acc: 0.9665 Estimator 9/10 — Loss: 0.6378 Train Acc: 0.9606 Test Acc: 0.9665 Estimator 10/10 — Loss: 0.6388 Train Acc: 0.9612 Test Acc: 0.9665
```

Рис.3.9. Метрики loss и ассигасу на тренировочных и тестовых данных

Итоговая точность AdaBoost: 0.9665

Рис.3.10. Метрика ассигасу на тестовых данных

Визуализация обучения включает построение графиков:

Рис.3.11. Функция потерь и шаги AdaBoost

Рис.3.12. Функция потерь и шаги AdaBoost

3.2 Постановка эксперимента на синтетических данных

3.2.1 функция Растригина

Нелинейная функция Растригина (в рамках sint1.py — П1.5) была исследована с использованием трёх различных методов оптимизации: стохастического градиентного спуска (SGD), адаптивного метода Adam и ансамблевого подхода AdaBoost[3].

Градиентные методы реализованы через torch.optim с многократными перезапусками из случайных точек для выхода из локальных минимумов.

AdaBoost использован через sklearn.ensemble.AdaBoostRegressor, обученный на синтетических данных, с предсказанием минимума по сетке параметров.

Визуализация включала трёхмерную поверхность функции и траектории оптимизаторов для наглядного сравнения эффективности:

Рис.3.13. Функция Растригина

Насколько близко оптимизаторы подошли к глобальному минимуму:

```
SGD final:

w1 = -0.9139, w2 = 1.9024, loss = 7.3906

Adam final:

w1 = -0.9952, w2 = 1.9898, loss = 4.9748

AdaBoost final:

w1 = -0.0700, w2 = -0.0200, loss = 19.3667
```

Рис.3.14. Результат работы оптимизаторов

3.2.2 Функция Экли

Нелинейная функция Экли (в рамках sint2.py — П1.6) была исследована с использованием трёх различных методов оптимизации: стохастического градиентного спуска (SGD), адаптивного метода Adam и ансамблевого подхода AdaBoost[2].

Градиентные методы реализованы через torch.optim с многократными перезапусками из случайных точек для выхода из локальных минимумов.

AdaBoost использован через sklearn.ensemble.AdaBoostRegressor, обученный на синтетических данных, с предсказанием минимума по сетке параметров.

Визуализация включала трёхмерную поверхность функции и траектории оптимизаторов для наглядного сравнения эффективности:

Рис.3.15. Функция Экли

Насколько близко оптимизаторы подошли к глобальному минимуму:

```
SGD final:

w1 = -0.0116, w2 = 0.0150, loss = 0.0748

Adam final:

w1 = 0.0001, w2 = 0.9522, loss = 2.5799

AdaBoost final:

w1 = 0.0000, w2 = -0.0500, loss = 1.6645
```

Рис.3.16. Результат работы оптимизаторов

3.2.3 Функция Розенброка

Нелинейная функция Розенброка (в рамках sint3.py — П1.7) была исследована с использованием трёх различных методов оптимизации: стохастического градиентного спуска (SGD), адаптивного метода Adam и ансамблевого подхода AdaBoost[4].

Градиентные методы реализованы через torch. optim с многократными перезапусками из случайных точек для выхода из локальных минимумов.

AdaBoost использован через sklearn.ensemble.AdaBoostRegressor, обученный на синтетических данных, с предсказанием минимума по сетке параметров.

Визуализация включала трёхмерную поверхность функции и траектории оптимизаторов для наглядного сравнения эффективности:

Рис.3.17. Функция Розенброка

Насколько близко оптимизаторы подошли к глобальному минимуму:

```
SGD final:

w1 = 0.9999, w2 = 0.9999, loss = 0.0000

Adam final:

w1 = 1.2259, w2 = 1.5036, loss = 0.0511

AdaBoost final:

w1 = 1.7000, w2 = 2.9000, loss = 69.4799
```

Рис.3.18. Результат работы оптимизаторов

3.3 Сравнительный анализ методов

Таблица 3.1

Результаты тестирования моделей

Использованный метод	Значение ассигасу на тестовых данных
SGD	0.9173
Adam	0.9692
AdaBoost	0.9665

Анализ:

- 1) Оптимизатор Adam показывает наилучший результат по точности: 0.9692, немного обгоняя AdaBoost (0.9665).
- 2) Метод SGD значительно уступает по качеству классификации 0.9173.

Вывод: Для данной задачи классификации адаптивные методы (Adam, AdaBoost) явно превосходят по качеству простой стохастический градиентный спуск (SGD).

Таблица 3.2

Сравнение оптимизаторов на различных функциях

Функция	Оптимизатор	Параметры (w1, w2)	Значение функции (loss)
Растригина	SGD	-0.9139, 1.9024	7.3906
Растригина	Adam	-0.9952, 1.9898	4.9748
Растригина	AdaBoost	-0.0700, -0.0200	19.3667
Экли	SGD	-0.0116, 0.0150	0.0748
Экли	Adam	0.0001, 0.9522	2.5799
Экли	AdaBoost	0.0000, -0.0500	1.6645
Розенброка	SGD	0.9999, 0.9999	0.0000
Розенброка	Adam	1.2259, 1.5036	0.0511
Розенброка	AdaBoost	1.7000, 2.9000	69.4799

- 1. Функция Растригина (сложная, с множеством локальных минимумов):
 - 1. Adam лучшее качество (наименьший loss: 4.9748).
 - 2. SGD хуже (7.3906), но лучше, чем AdaBoost (19.3667).

Вывод: Adam наиболее стабилен на этой функции.

- 2. Функция Экли (Ackley):
 - 1. SGD дал наилучший результат: 0.0748.
 - 2. AdaBoost 1.6645.
 - 3. Adam 2.5799.

Вывод: Здесь SGD оказался эффективнее.

- 3. Функция Розенброка (узкая долина, сложна для оптимизации):
 - 1. SGD почти попал в идеальный минимум.
 - 2. Adam также близок к оптимуму: 0.0511.
 - 3. AdaBoost провал: 69.4799.

Вывод: SGD оказался лучшим, AdaBoost — неэффективен.

3.4 Выводы

Таблица 3.3

Сравнительный анализ оптимизаторов

Метод	Преимущества	Недостатки
SGD	Отлично работает на функции Экли; попал в глобальный минимум функции Розенброка	Худший результат классифи- кации; уступает на функции Растригина
Adam	Лучшая точность классификации; лучший результат на функции Растригина; близок к минимуму функции Розенброка	Уступает SGD на функции Экли; не достиг глобального минимума на Розенброке
AdaBoost	Высокая точность классифи- кации (на уровне Adam)	Худшие значения функции потерь на всех задачах оптимизации; особенно неэффективен на функции Розенброка

ЗАКЛЮЧЕНИЕ

В ходе выполнения научно-исследовательской работы была достигнута поставленная цель — проведён сравнительный анализ эффективности методов градиентного спуска (SGD, Adam) и градиентного бустинга (AdaBoost) при обучении искусственных нейронных сетей. Результаты работы подтверждают успешное решение всех поставленных задач:

- 1. Проведено детальное изучение литературы по методам градиентного спуска, включая их историю, современные достижения и актуальные задачи. Анализ показал, что современные методы оптимизации стали более адаптивными, автоматизированными и масштабируемыми, что позволяет эффективно решать задачи машинного обучения даже в условиях ограниченных ресурсов.
- 2. Исследованы математические основы методов SGD, Adam и AdaBoost. Для каждого алгоритма были рассмотрены ключевые формулы, преимущества и ограничения, что позволило глубже понять их работу и области применения.
- 3. Разработаны критерии сравнения эффективности методов, включая точность классификации и скорость сходимости на различных типах данных. Это позволило объективно оценить результаты экспериментов.
- 4. Практически реализованы методы с использованием библиотеки PyTorch. Код для каждого алгоритма был адаптирован под конкретные задачи, что обеспечило воспроизводимость экспериментов.
- 5. Проведены эксперименты на реальных и синтетических данных, включая датасет *Language Identification Dataset* и тестовые функции (Растригина, Экли, Розенброка). Результаты показали, что:
 - Adam демонстрирует наилучшую точность (0.9692) на реальных данных и стабильность на сложных функциях (например, Растригина).
 - SGD эффективен на функциях с узкими "долинами" (например, Розенброка) и простых задачах, но уступает в точности на реальных данных.
 - AdaBoost показывает высокую точность классификации (0.9665),
 но менее эффективен для оптимизации сложных функций.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Прикладная практика оптимизации и немного истории. URL: https://habr.com/ru/articles/250855/ (дата обращения: 16.07.2025).
- 2. *Wikipedia contributors*. Ackley function. 2024. (Accessed: 2025-07-17). https://en.wikipedia.org/wiki/Ackley_function.
- 3. *Wikipedia contributors*. Rastrigin function. 2024. (Accessed: 2025-07-17). https://en.wikipedia.org/wiki/Rastrigin_function.
- 4. *Wikipedia contributors*. Rosenbrock function. 2024. (Accessed: 2025-07-17). https://en.wikipedia.org/wiki/Rosenbrock_function.
- 5. Википедия. Градиентный спуск Википедия. 2023. (Версия статьи от 17.07.2025). https://ru.wikipedia.org/wiki/PYCГРөР χ Р χ Р, СЪР, СКР ε СҒлюСҒРә.
- 6. Gradient Descent / Wikipedia. URL: https://en.wikipedia.org/wiki/Gradient_descent (visited on 16.07.2025).
- 7. Recent Advances in Optimization Methods for Machine Learning // Mathematics. 2025. Vol. 13, no. 13. P. 2210. URL: https://doi.org/10.3390/math13132210.

Приложение 1

Листинг программного кода

Листинг П1.1

adaboost.py

```
from sklearn.tree import DecisionTreeClassifier
  import numpy as np
5 def adaboost(X, y, T=50):
      N = len(y)
      D = np.ones(N) / N
      classifiers = []
      alphas = []
10
      for t in range(T):
           clf = DecisionTreeClassifier(max_depth=1)
           clf.fit(X, y, sample_weight=D)
           pred = clf.predict(X)
15
           error = np.sum(D * (pred != y))
           if error \geq = 0.5:
               break
      alpha = 0.5 * np.log((1 - error) / (error + 1e-10))
20
      D = D * np.exp(-alpha * y * pred)
      D = D / np.sum(D)
      classifiers.append(clf)
25
      alphas.append(alpha)
      def final_model(x):
          result = sum(alpha * clf.predict(x.reshape(1, -1))[0]
             for alpha, clf in zip(alphas, classifiers))
           return np.sign(result)
30
      return final_model
```

Листинг П1.2

language_indent_SGD.py

import torch

```
device = torch.device("cuda" if torch.cuda.is_available() else
      "cpu")
  # Загрузка датасета
  import kagglehub
  path = kagglehub.dataset_download("zarajamshaid/language-
     identification - datasst")
  print("Path to dataset files:", path)
10
  # Чтение CSV
  import pandas as pd
  data = pd.read_csv(path + "/dataset.csv", sep=',')
  print("Пропущенные значения:", data.columns[data.isna().any()
     ].tolist())
15
  # Кодируем языки
  data["language"] = data["language"].astype('category').cat.
     codes
  language_count = data["language"].nunique()
20 # 1. collections.Counter
  from collections import Counter
  def yield_tokens(data_train):
      for text in data train:
          yield list(text)
  all_tokens = [token for tokens in yield_tokens(data["Text"])
     for token in tokens]
  counter = Counter(all_tokens)
  specials = ["<unk>"]
30 vocab = {token: idx for idx, token in enumerate(specials +
     list(counter.keys()))}
  default_index = vocab["<unk>"]
  # Разделение данных
  from sklearn.model_selection import train_test_split
35
  y = data["language"]
  X = data["Text"]
  X_train, X_test, y_train, y_test = train_test_split(X, y,
     test_size=0.3, random_state=42)
40 # Kласс Dataset
  import torch
```

```
from torch.utils.data import Dataset
  class TextDataset(Dataset):
      def __init__(self, data_text, labels):
45
          self.data = data_text.reset_index(drop=True)
          self.labels = labels.reset_index(drop=True)
      def __len__(self):
          return len(self.data)
50
      def __getitem__(self, idx):
          token_indices = tokens_to_indices(list(self.data[idx])
          text_tensor = torch.tensor(token_indices, dtype=torch.
             int64)
55
          label_tensor = torch.tensor(self.labels[idx], dtype=
             torch.int64)
          return text_tensor, label_tensor
  trainset = TextDataset(X_train, y_train)
  testset = TextDataset(X_test, y_test)
  # Collate-функция
  def collate_batch(batch):
      label_list, text_list, offsets = [], [], [0]
      for text, label in batch:
          label_list.append(label)
65
          text_list.append(text)
          offsets.append(text.size(0))
      offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
      text_list = torch.cat(text_list)
70
      label_list = torch.tensor(label_list, dtype=torch.int64)
      return label_list, text_list, offsets
  # DataLoader
  from torch.utils.data import DataLoader
75
  trainloader = DataLoader(trainset, batch_size=8, shuffle=True,
      collate_fn=collate_batch)
  testloader = DataLoader(testset, batch_size=8, shuffle=False,
     collate_fn=collate_batch)
  # Модель
80 import torch.nn as nn
```

```
vocab_size = len(vocab)
   num_class = language_count
85 class TextClassificationModel(nn.Module):
       def __init__(self):
           super().__init__()
           self.embedding = nn.EmbeddingBag(vocab_size, 64,
              sparse=True)
           self.fc = nn.Linear(64, num_class)
90
       def forward(self, text, offsets):
           embedded = self.embedding(text, offsets)
           return self.fc(embedded)
95 net = TextClassificationModel()
   def tokens_to_indices(tokens):
       return [vocab.get(token, default_index) for token in
          tokensl
100 # Обучение модели
   import torch.optim as optim
   import matplotlib.pyplot as plt
   from mpl_toolkits.mplot3d import Axes3D
   import numpy as np
105
   criterion = nn.CrossEntropyLoss()
   optimizer = optim.SGD(net.parameters(), lr=0.01)
   losses = []
110 all_losses = [] # (iteration, epoch, loss)
   net.train()
   iteration = 0
115 for epoch in range(10): # или 50
       running_loss = 0.0
       running_corrects = 0
       total = 0
120
       for labels, inputs, offsets in trainloader:
           optimizer.zero_grad()
           outputs = net(inputs, offsets)
           loss = criterion(outputs, labels)
           loss.backward()
```

```
125
           optimizer.step()
           # фиксируем loss на каждой итерации
           all_losses.append((iteration, epoch, loss.item()))
           iteration += 1
130
           _, preds = torch.max(outputs, 1)
           running_loss += loss.item()
           running_corrects += (preds == labels).sum().item()
           total += labels.size(0)
135
       print(f"[Epoch {epoch + 1}] Loss: {running_loss:.4f},
          Accuracy: {running_corrects / total:.4f}")
       losses.append(running_loss)
   print("Finished Training")
140
   # Тестирование
   net.eval()
   running_correct = 0
   num_of_tests = 0
145
   with torch.no_grad():
       for labels, inputs, offsets in testloader:
           outputs = net(inputs, offsets)
           _, predicted = torch.max(outputs, 1)
150
           running_correct += (predicted == labels).sum().item()
           num_of_tests += labels.size(0)
   print(f"Test Accuracy: {running_correct / num_of_tests:.4f}")
155 # Первый график
   import matplotlib.pyplot as plt
   import numpy as np
|160| epochs = np.arange(1, len(losses) + 1)
   loss_values = np.array(losses)
   plt.figure(figsize=(10, 6))
165 # Основная линия это функция потерь
   plt.plot(epochs, loss_values, color='blue', linestyle='-',
      label='Loss')
```

```
# Точки градиентного спуска
   plt.scatter(epochs, loss_values, color='red', zorder=5, label
      = 'SGD')
170
   # Стрелки (градиентный спуск)
   for i in range(1, len(epochs)):
       plt.annotate('',
                     xy=(epochs[i], loss_values[i]),
175
                     xytext=(epochs[i-1], loss_values[i-1]),
                     arrowprops=dict(arrowstyle=',->', color='gray
                       ', 1w = 1.5))
   # Настройки графика
   plt.title("Функция потерь и путь градиентного спуска")
180 plt. xlabel ("Эпоха")
   plt.ylabel("Loss")
   plt.grid(True)
   plt.legend()
   plt.tight_layout()
185 plt.show()
   # Второй график
   import matplotlib.pyplot as plt
190 import numpy as np
   # Извлекаем значения
   iterations, epochs_list, loss_values = zip(*all_losses)
   iterations = np.array(iterations)
195 loss_values = np.array(loss_values)
   plt.figure(figsize=(12, 6))
   # Линия лосса
200 plt.plot(iterations, loss_values, color='blue', linestyle='-',
       label='Функция потерь (Loss)')
   # Точки шагов SGD
   plt.scatter(iterations, loss_values, color='red', s=20, label
      ='Шаги SGD (итерации)')
205 # Стрелки градиентного спуска (опционально)
   for i in range(1, len(iterations)):
       plt.annotate('',
                     xy=(iterations[i], loss_values[i]),
```

```
xytext=(iterations[i - 1], loss_values[i -
1]),
arrowprops=dict(arrowstyle='-->', color='gray
', lw=1),
annotation_clip=False)

# Оформление
plt.title("График функции потерь и шагов градиентного спуска (
по итерациям)")

215 plt.xlabel("Итерация")
plt.ylabel("Loss")
plt.legend()
plt.grid(True)
plt.tight_layout()

220 plt.show()
```

Листинг П1.3

language_indent_Adam.py

```
import torch
  device = torch.device("cuda" if torch.cuda.is_available() else
      "cpu")
  # Загрузка датасета
  import kagglehub
  path = kagglehub.dataset_download("zarajamshaid/language-
     identification - datasst")
  print("Path to dataset files:", path)
  # Чтение CSV
  import pandas as pd
  data = pd.read_csv(path + "/dataset.csv", sep=',')
  print("Пропущенные значения:", data.columns[data.isna().any()
     1.tolist())
15
  # Кодируем языки
  data["language"] = data["language"].astype('category').cat.
     codes
  language_count = data["language"].nunique()
20 # 1. collections.Counter
  from collections import Counter
  def yield_tokens(data_train):
```

```
for text in data_train:
25
          yield list(text)
  all_tokens = [token for tokens in yield_tokens(data["Text"])
     for token in tokens]
  counter = Counter(all_tokens)
  specials = ["<unk>"]
30 vocab = {token: idx for idx, token in enumerate(specials +
     list(counter.keys()))}
  default_index = vocab["<unk>"]
  # Разделение данных
  from sklearn.model_selection import train_test_split
35
  y = data["language"]
  X = data["Text"]
  X_train, X_test, y_train, y_test = train_test_split(X, y,
     test_size=0.3, random_state=42)
40 # Kласс Dataset
  import torch
  from torch.utils.data import Dataset
  class TextDataset(Dataset):
      def __init__(self, data_text, labels):
45
          self.data = data_text.reset_index(drop=True)
          self.labels = labels.reset_index(drop=True)
      def __len__(self):
          return len(self.data)
      def __getitem__(self, idx):
          token_indices = tokens_to_indices(list(self.data[idx])
          text_tensor = torch.tensor(token_indices, dtype=torch.
             int64)
55
          label_tensor = torch.tensor(self.labels[idx], dtype=
             torch.int64)
          return text_tensor, label_tensor
  trainset = TextDataset(X_train, y_train)
  testset = TextDataset(X_test, y_test)
  # Collate-функция
  def collate_batch(batch):
```

```
label_list, text_list, offsets = [], [], [0]
       for text, label in batch:
65
           label_list.append(label)
           text_list.append(text)
           offsets.append(text.size(0))
       offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
       text_list = torch.cat(text_list)
70
       label_list = torch.tensor(label_list, dtype=torch.int64)
       return label_list, text_list, offsets
   # DataLoader
   from torch.utils.data import DataLoader
   trainloader = DataLoader(trainset, batch_size=8, shuffle=True,
       collate_fn=collate_batch)
   testloader = DataLoader(testset, batch_size=8, shuffle=False,
     collate_fn=collate_batch)
   # Модель
80 import torch.nn as nn
   vocab_size = len(vocab)
   num_class = language_count
85 class TextClassificationModel(nn.Module):
       def __init__(self):
           super().__init__()
           self.embedding = nn.EmbeddingBag(vocab_size, 64) # 6e
              з sparse=True
           self.fc = nn.Linear(64, num_class)
90
       def forward(self, text, offsets):
           embedded = self.embedding(text, offsets)
           return self.fc(embedded)
95 net = TextClassificationModel()
   def tokens_to_indices(tokens):
       return [vocab.get(token, default_index) for token in
          tokens
100 # Обучение модели
   import torch.optim as optim
   import matplotlib.pyplot as plt
   from mpl_toolkits.mplot3d import Axes3D
```

```
import numpy as np
105
   criterion = nn.CrossEntropyLoss()
   optimizer = optim.Adam(net.parameters(), lr=0.001) # Обычно д
      ля Adam берут меньший lr
   losses = []
110 all_losses = [] # (iteration, epoch, loss)
   net.train()
   iteration = 0
115 for epoch in range(10): # или 50
       running_loss = 0.0
       running_corrects = 0
       total = 0
120
       for labels, inputs, offsets in trainloader:
           optimizer.zero_grad()
           outputs = net(inputs, offsets)
           loss = criterion(outputs, labels)
           loss.backward()
125
           optimizer.step()
           # фиксируем loss на каждой итерации
           all_losses.append((iteration, epoch, loss.item()))
           iteration += 1
130
           _, preds = torch.max(outputs, 1)
           running_loss += loss.item()
           running_corrects += (preds == labels).sum().item()
           total += labels.size(0)
135
       print(f"[Epoch {epoch + 1}] Loss: {running_loss:.4f},
          Accuracy: {running_corrects / total:.4f}")
       losses.append(running_loss)
   print("Finished Training")
140
   # Тестирование
   net.eval()
   running_correct = 0
   num_of_tests = 0
145
   with torch.no_grad():
```

```
for labels, inputs, offsets in testloader:
           outputs = net(inputs, offsets)
           _, predicted = torch.max(outputs, 1)
           running_correct += (predicted == labels).sum().item()
150
           num_of_tests += labels.size(0)
   print(f"Test Accuracy: {running_correct / num_of_tests:.4f}")
155 # Первый график
   import matplotlib.pyplot as plt
   import numpy as np
160 epochs = np.arange(1, len(losses) + 1)
   loss_values = np.array(losses)
   plt.figure(figsize=(10, 6))
165 # Основная линия функция потерь
   plt.plot(epochs, loss_values, color='blue', linestyle='-',
      label='Loss')
   # Точки градиентного спуска
   plt.scatter(epochs, loss_values, color='red', zorder=5, label
      = ' Adam')
170
   # Стрелки (градиентный спуск)
   for i in range(1, len(epochs)):
       plt.annotate('',
                     xy=(epochs[i], loss_values[i]),
                     xytext=(epochs[i-1], loss_values[i-1]),
175
                     arrowprops=dict(arrowstyle='->', color='gray
                       ', lw=1.5))
   # Настройки графика
   plt.title("Функция потерь и путь градиентного спуска")
180 plt. xlabel ("Эпоха")
   plt.ylabel("Loss")
   plt.grid(True)
   plt.legend()
   plt.tight_layout()
185 plt.show()
   # Второй график
```

```
import matplotlib.pyplot as plt
190 import numpy as np
   # Извлекаем значения
   iterations, epochs_list, loss_values = zip(*all_losses)
   iterations = np.array(iterations)
195 loss_values = np.array(loss_values)
   plt.figure(figsize=(12, 6))
   # Линия лосса
200 plt.plot(iterations, loss_values, color='blue', linestyle='-',
       label='Функция потерь (Loss)')
   # Точки шагов SGD
   plt.scatter(iterations, loss_values, color='red', s=20, label
      ='Шаги Adam (итерации)')
205 # Стрелки градиентного спуска (опционально)
   for i in range(1, len(iterations)):
       plt.annotate('',
                     xy=(iterations[i], loss_values[i]),
                     xytext=(iterations[i - 1], loss_values[i -
210
                     arrowprops=dict(arrowstyle=',->', color='gray
                        ', lw=1),
                     annotation_clip=False)
   # Оформление
   plt.title("График функции потерь и шагов градиентного спуска (
      по итерациям)")
215 plt.xlabel("Итерация")
   plt.ylabel("Loss")
   plt.legend()
   plt.grid(True)
   plt.tight_layout()
220 plt.show()
                                                         Листинг П1.4
```

language_indent_adaboost.py

```
import torch
 import torch.nn as nn
 import torch.optim as optim
5 import numpy as np
```

```
import matplotlib.pyplot as plt
  from torch.utils.data import Dataset, DataLoader
  from collections import Counter
  from sklearn.model_selection import train_test_split
10 import pandas as pd
  import kagglehub
  device = torch.device("cuda" if torch.cuda.is_available() else
      "cpu")
15 # --- Загрузка датасета ---
  path = kagglehub.dataset_download("zarajamshaid/language-
     identification - datasst")
  print("Path to dataset files:", path)
  data = pd.read_csv(path + "/dataset.csv", sep=',')
20 print("Пропущенные значения:", data.columns[data.isna().any()
     1.tolist())
  # Кодируем языки
  data["language"] = data["language"].astype('category').cat.
     codes
  language_count = data["language"].nunique()
25
  # Создание словаря и индексов
  def yield_tokens(data_train):
      for text in data train:
          yield list(text)
30
  all_tokens = [token for tokens in yield_tokens(data["Text"])
     for token in tokens]
  counter = Counter(all_tokens)
  specials = ["<unk>"]
  vocab = {token: idx for idx, token in enumerate(specials +
     list(counter.keys()))}
35 default_index = vocab["<unk>"]
  def tokens_to_indices(tokens):
      return [vocab.get(token, default_index) for token in
         tokensl
40 # Разделение данных
  y = data["language"]
  X = data["Text"]
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
     test_size=0.3, random_state=42)
45 # Класс Dataset
  class TextDataset(Dataset):
      def __init__(self, data_text, labels):
          self.data = data_text.reset_index(drop=True)
          self.labels = labels.reset_index(drop=True)
50
      def __len__(self):
          return len(self.data)
      def __getitem__(self, idx):
          token_indices = tokens_to_indices(list(self.data[idx])
             )
          text_tensor = torch.tensor(token_indices, dtype=torch.
             int64)
          label_tensor = torch.tensor(self.labels[idx], dtype=
             torch.int64)
          return text_tensor, label_tensor
60 trainset = TextDataset(X_train, y_train)
  testset = TextDataset(X_test, y_test)
  # Collate-функция
  def collate_batch(batch):
      label_list, text_list, offsets = [], [], [0]
      for text, label in batch:
          label_list.append(label)
          text_list.append(text)
          offsets.append(text.size(0))
      offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
70
      text_list = torch.cat(text_list)
      label_list = torch.tensor(label_list, dtype=torch.int64)
      return label_list, text_list, offsets
75 # DataLoader (shuffle=False для train, важный момент для весов
      AdaBoost)
  trainloader = DataLoader(trainset, batch_size=8, shuffle=False
     , collate_fn=collate_batch)
  testloader = DataLoader(testset, batch_size=8, shuffle=False,
     collate_fn=collate_batch)
  # Модель
80 vocab_size = len(vocab)
```

```
num_class = language_count
   class TextClassificationModel(nn.Module):
       def __init__(self, vocab_size, num_class):
85
           super().__init__()
           self.embedding = nn.EmbeddingBag(vocab_size, 64,
              sparse=False) # sparse=False здесь
           self.fc = nn.Linear(64, num_class)
       def forward(self, text, offsets):
90
           embedded = self.embedding(text, offsets)
           return self.fc(embedded)
   class AdaBoostNN:
       def __init__(self, n_estimators, vocab_size, num_class,
          device):
95
           self.n_estimators = n_estimators
           self.models = []
           self.alphas = []
           self.vocab_size = vocab_size
           self.num_class = num_class
           self.device = device
100
       def fit(self, trainloader, testloader):
           n_samples = len(trainloader.dataset)
           sample_weights = torch.ones(n_samples) / n_samples
105
           criterion = nn.CrossEntropyLoss(reduction='none')
           num_epochs_per_estimator = 5
           train_losses, train_accuracies, test_accuracies = [],
              [], []
110
           for m in range(self.n_estimators):
               net = TextClassificationModel(self.vocab_size,
                  self.num_class).to(self.device)
               optimizer = optim.Adam(net.parameters(), lr=0.001)
115
               for epoch in range(num_epochs_per_estimator):
                   net.train()
                    idx_sample = 0
                    running_loss = 0
                    running_correct = 0
120
                    total_samples = 0
```

```
for labels, inputs, offsets in trainloader:
                        optimizer.zero_grad()
                        labels = labels.to(self.device)
125
                        inputs = inputs.to(self.device)
                        offsets = offsets.to(self.device)
                        outputs = net(inputs, offsets)
                        losses = criterion(outputs, labels)
130
                        batch_weights = sample_weights[idx_sample:
                            idx_sample + labels.size(0)].to(self.
                          device)
                        batch_weights = batch_weights /
                          batch_weights.sum() # нормализуем внут
                          ри батча
                        loss = (losses * batch_weights).sum()
135
                        loss.backward()
                        optimizer.step()
                        running_loss += loss.item() * labels.size
                           (0)
                        _, preds = torch.max(outputs, 1)
140
                        running_correct += (preds == labels).sum()
                           .item()
                        total_samples += labels.size(0)
                        idx_sample += labels.size(0)
               train_loss = running_loss / total_samples
145
               train_acc = running_correct / total_samples
               # Подсчёт ошибок для обновления весов
               net.eval()
               incorrect_mask = torch.zeros(n_samples, dtype=
                  torch.bool)
150
               with torch.no_grad():
                   idx_sample = 0
                   for labels, inputs, offsets in trainloader:
                        labels = labels.to(self.device)
                        inputs = inputs.to(self.device)
155
                        offsets = offsets.to(self.device)
                        outputs = net(inputs, offsets)
                        preds = torch.argmax(outputs, dim=1)
```

```
160
                        batch_size = labels.size(0)
                        incorrect_mask[idx_sample:idx_sample +
                          batch_size] = (preds.cpu() != labels.
                          cpu())
                        idx_sample += batch_size
               err_m = torch.sum(sample_weights * incorrect_mask.
                  float()) / torch.sum(sample_weights)
165
               alpha_m = 0.5 * torch.log((1 - err_m) / (err_m + 1))
                  e-10))
               sample_weights = sample_weights * torch.exp(
                  alpha_m * incorrect_mask.float())
               sample_weights = sample_weights / torch.sum(
                  sample_weights)
170
               self.models.append(net)
               self.alphas.append(alpha_m.item())
               test_acc = self.evaluate(testloader)
               train_losses.append(train_loss)
175
               train_accuracies.append(train_acc)
               test_accuracies.append(test_acc)
               print(f"Estimator {m + 1}/{self.n_estimators} Loss
                  : {train_loss:.4f} Train Acc: {train_acc:.4f}
                  Test Acc: {test_acc:.4f}")
180
           return train_losses, train_accuracies, test_accuracies
       def evaluate(self, dataloader):
           correct = 0
           total = 0
185
           for labels, inputs, offsets in dataloader:
               labels = labels.to(self.device)
               inputs = inputs.to(self.device)
               offsets = offsets.to(self.device)
               preds = self.predict_single_batch(inputs, offsets)
190
               correct += (preds == labels).sum().item()
               total += labels.size(0)
           return correct / total
       def predict_single_batch(self, inputs, offsets):
195
           total_preds = None
           with torch.no_grad():
```

```
for alpha, model in zip(self.alphas, self.models):
                    outputs = model(inputs, offsets)
                    probs = torch.softmax(outputs, dim=1)
200
                    weighted_probs = probs * alpha
                    if total_preds is None:
                        total_preds = weighted_probs
                    else:
                        total_preds += weighted_probs
           return torch.argmax(total_preds, dim=1)
205
       def predict(self, dataloader):
           all_preds = []
           with torch.no_grad():
210
               for labels, inputs, offsets in dataloader:
                    inputs = inputs.to(self.device)
                    offsets = offsets.to(self.device)
                   preds = self.predict_single_batch(inputs,
                      offsets)
                    all_preds.append(preds.cpu())
215
           return torch.cat(all_preds)
    # --- Запуск обучения AdaBoost с нейросетью ---
220 ada = AdaBoostNN(n_estimators=10, vocab_size=vocab_size,
      num_class=num_class, device=device)
   train_losses, train_accs, test_accs = ada.fit(trainloader,
      testloader)
   # Итоговая точность на тесте
225 preds = ada.predict(testloader)
   labels = torch.cat([labels for labels, _, _ in testloader])
   accuracy = (preds == labels).float().mean().item()
   print(f"Итоговая точность AdaBoost: {accuracy:.4f}")
230 import matplotlib.pyplot as plt
   import numpy as np
   epochs = np.arange(1, len(train_losses) + 1)
   loss_values = np.array(train_losses)
235
   plt.figure(figsize=(10, 6))
   # Основная линия функция потерь
```

```
plt.plot(epochs, loss_values, color='blue', linestyle='-',
      label='Loss')
240
   # Точки (итерации AdaBoost)
   plt.scatter(epochs, loss_values, color='red', zorder=5, label
      = 'AdaBoost Step')
   # Стрелки движение loss
245 for i in range(1, len(epochs)):
       plt.annotate('',
                     xy=(epochs[i], loss_values[i]),
                     xytext=(epochs[i - 1], loss_values[i - 1]),
                     arrowprops=dict(arrowstyle='->', color='gray
                        ', lw=1.5))
250
   # Оформление графика
   plt.title("Функция потерь и шаги AdaBoost")
   plt.xlabel("Итерация (число базовых моделей)")
   plt.ylabel("Loss")
255 plt.grid(True)
   plt.legend()
   plt.tight_layout()
   plt.show()
260
   epochs = np.arange(1, len(train_accs) + 1)
   train_vals = np.array(train_accs)
   test_vals = np.array(test_accs)
265 plt.figure(figsize=(10, 6))
   # Линии точности
   plt.plot(epochs, train_vals, color='green', linestyle='-',
      label='Train Accuracy')
   plt.plot(epochs, test_vals, color='orange', linestyle='-',
      label='Test Accuracy')
270
   # Точки
   plt.scatter(epochs, train_vals, color='green', s=30, zorder=5)
   plt.scatter(epochs, test_vals, color='orange', s=30, zorder=5)
275 # Стрелки на тестовой метрике
   for i in range(1, len(epochs)):
       plt.annotate('', ', ')
                     xy=(epochs[i], test_vals[i]),
```

```
xytext=(epochs[i - 1], test_vals[i - 1]),
280
                     arrowprops=dict(arrowstyle='->', color='gray
                       ', lw=1.5))
   # Оформление графика
   plt.title("Динамика Accuracy по шагам AdaBoost")
   plt.xlabel("Итерация (число базовых моделей)")
285 plt.ylabel("Accuracy")
   plt.grid(True)
   plt.legend()
   plt.tight_layout()
   plt.show()
                                                        Листинг П1.5
                               sint1.py
   import numpy as np
   import matplotlib.pyplot as plt
   from mpl_toolkits.mplot3d import Axes3D
 5 import torch
   from torch.optim import Adam, SGD
   from sklearn.ensemble import AdaBoostRegressor
   from sklearn.tree import DecisionTreeRegressor
10 # Функция Растригина
   def rastrigin(X, Y, A=10):
       return A * 2 + (X**2 - A * np.cos(2 * np.pi * X)) + (Y**2
          - A * np.cos(2 * np.pi * Y))
   # Генерация ландшафта
15 w1_range = np.linspace(-5.12, 5.12, 200)
   w2\_range = np.linspace(-5.12, 5.12, 200)
   W1, W2 = np.meshgrid(w1_range, w2_range)
   loss = rastrigin(W1, W2)
20 # Модель
   class OptimizationModel(torch.nn.Module):
       def __init__(self, init_w1, init_w2):
           super().__init__()
           self.w1 = torch.nn.Parameter(torch.tensor([init_w1]))
           self.w2 = torch.nn.Parameter(torch.tensor([init w2]))
25
       def forward(self):
```

A = 10

```
return A * 2 + (self.w1**2 - A * torch.cos(2 * np.pi *
              self.w1)) + \
30
                  (self.w2**2 - A * torch.cos(2 * np.pi * self.w2)
                     ))
  # Градиентные методы с рестартами
  def optimize_with_restarts(optimizer_type='sgd', restarts=5,
     lr = 0.01, n_steps = 100):
      best_result = None
35
      for _ in range(restarts):
           init_w1 = np.random.uniform(-5.12, 5.12)
           init_w2 = np.random.uniform(-5.12, 5.12)
           model = OptimizationModel(init_w1, init_w2)
40
           if optimizer_type == 'sgd':
               optimizer = SGD(model.parameters(), lr=lr,
                 momentum=0.9)
           elif optimizer_type == 'adam':
               optimizer = Adam(model.parameters(), lr=lr)
           history = {'w1': [], 'w2': [], 'loss': []}
45
           for _ in range(n_steps):
               loss val = model()
               optimizer.zero_grad()
               loss_val.backward()
               optimizer.step()
50
               history['w1'].append(model.w1.item())
               history['w2'].append(model.w2.item())
               history['loss'].append(loss_val.item())
55
           if best_result is None or history['loss'][-1] <
             best_result['loss'][-1]:
               best_result = history
      return best_result
  # AdaBoost
60 def optimize_adaboost(n_estimators=100):
      X = np.random.uniform(-5.12, 5.12, (5000, 2))
      y = rastrigin(X[:, 0], X[:, 1])
      model = AdaBoostRegressor(
           DecisionTreeRegressor(max_depth=5),
65
           n_estimators=n_estimators,
          learning_rate=0.3
      )
```

```
model.fit(X, y)
70
       grid = np.mgrid[-5.12:5.12:0.05, -5.12:5.12:0.05].reshape
          (2, -1).T
       preds = model.predict(grid)
       best_idx = np.argmin(preds)
       best_w1, best_w2 = grid[best_idx]
75
       return {'w1': [best_w1], 'w2': [best_w2], 'loss': [preds[
          best_idx]]}
   # Оптимизация
   hist_sgd = optimize_with_restarts('sgd', restarts=10, lr=0.01,
      n_steps=150)
80 hist_adam = optimize_with_restarts('adam', restarts=10, lr
     =0.01, n_steps=150)
   hist_adaboost = optimize_adaboost()
   # Визуализация
   fig = plt.figure(figsize=(15, 10))
85 ax = fig.add_subplot(111, projection='3d')
   # Возвращаем нормальную поверхность
   ax.plot_surface(W1, W2, loss, cmap='viridis', alpha=0.2,
     antialiased=True)
90 # Функция отрисовки траектории
   def plot_trajectory(ax, hist, color, label, final_marker='o',
     marker_size=80):
       ax.plot(hist['w1'], hist['w2'], hist['loss'],
               color=color, linewidth=3.0, alpha=0.95, label=
                  label)
95
       ax.scatter(hist['w1'][-1], hist['w2'][-1], hist['loss
          '][-1],
                  c=color, marker=final_marker, s=marker_size,
                     edgecolor='black')
   # Траектории
   plot_trajectory(ax, hist_sgd, 'red', 'SGD (best restart)', 'o
100 plot_trajectory(ax, hist_adam, 'blue', 'Adam (best restart)',
   plot_trajectory(ax, hist_adaboost, 'green', 'AdaBoost', '*',
     120)
```

```
# Подписи
   ax.set_xlabel('Weight 1 (w1)', fontsize=14)
105 ax.set_ylabel('Weight 2 (w2)', fontsize=14)
   ax.set_zlabel('Loss', fontsize=14)
   ax.legend(fontsize=14)
   plt.title('Оптимизация функции Растригина: SGD, Adam и
     AdaBoost', fontsize=16)
   plt.tight_layout()
110 plt.show()
   # === Проверка, куда попали оптимизаторы ===
   print("SGD final:")
   print(f" w1 = {hist_sgd['w1'][-1]:.4f}, w2 = {hist_sgd['w2
      '][-1]:.4f}, loss = {hist_sgd['loss'][-1]:.4f}")
115
   print("Adam final:")
   print(f" w1 = {hist_adam['w1'][-1]:.4f}, w2 = {hist_adam['w2
      '][-1]:.4f}, loss = {hist_adam['loss'][-1]:.4f}")
   print("AdaBoost final:")
|120| print(f" w1 = {hist_adaboost['w1'][0]:.4f}, w2 = {
     hist_adaboost['w2'][0]:.4f}, loss = {hist_adaboost['loss
      '][0]:.4f}")
```

Листинг П1.6

sint2.py

```
import numpy as np
  import matplotlib.pyplot as plt
  from mpl_toolkits.mplot3d import Axes3D
5 import torch
  from torch.optim import Adam, SGD
  from sklearn.ensemble import AdaBoostRegressor
  from sklearn.tree import DecisionTreeRegressor
10 # Функция Экли (Ackley function)
  def ackley(X, Y, a=20, b=0.2, c=2 * np.pi):
      term1 = -a * np.exp(-b * np.sqrt(0.5 * (X**2 + Y**2)))
      term2 = -np.exp(0.5 * (np.cos(c * X) + np.cos(c * Y)))
      return term1 + term2 + a + np.exp(1)
15
  # Генерация ландшафта
  w1\_range = np.linspace(-5, 5, 200)
  w2\_range = np.linspace(-5, 5, 200)
```

```
W1, W2 = np.meshgrid(w1_range, w2_range)
20 \mid loss = ackley(W1, W2)
  # Модель
  class OptimizationModel(torch.nn.Module):
      def __init__(self, init_w1, init_w2):
          super().__init__()
25
           self.w1 = torch.nn.Parameter(torch.tensor([init_w1],
             dtype=torch.float32))
           self.w2 = torch.nn.Parameter(torch.tensor([init_w2],
             dtype=torch.float32))
      def forward(self):
          a = 20
30
          b = 0.2
           c = 2 * np.pi
           term1 = -a * torch.exp(-b * torch.sqrt(0.5 * (self.w1))
             **2 + self.w2**2)))
           term2 = -torch.exp(0.5 * (torch.cos(c * self.w1) +
             torch.cos(c * self.w2)))
35
          return term1 + term2 + a + np.exp(1)
  # Градиентные методы с рестартами
  def optimize_with_restarts(optimizer_type='sgd', restarts=5,
     lr=0.01, n_steps=100):
      best_result = None
40
      for _ in range(restarts):
           init_w1 = np.random.uniform(-5, 5)
           init_w2 = np.random.uniform(-5, 5)
           model = OptimizationModel(init_w1, init_w2)
45
           if optimizer_type == 'sgd':
               optimizer = SGD(model.parameters(), lr=lr,
                 momentum=0.9)
           elif optimizer_type == 'adam':
               optimizer = Adam(model.parameters(), lr=lr)
           history = {'w1': [], 'w2': [], 'loss': []}
50
           for _ in range(n_steps):
               loss val = model()
               optimizer.zero_grad()
               loss_val.backward()
55
               optimizer.step()
               history['w1'].append(model.w1.item())
               history['w2'].append(model.w2.item())
```

```
history['loss'].append(loss_val.item())
60
          if best_result is None or history['loss'][-1] <
             best result['loss'][-1]:
               best_result = history
      return best_result
  # AdaBoost
65 def optimize_adaboost(n_estimators=100):
      X = np.random.uniform(-5, 5, (5000, 2))
      y = ackley(X[:, 0], X[:, 1])
      model = AdaBoostRegressor(
70
          DecisionTreeRegressor(max_depth=5),
          n_estimators=n_estimators,
          learning_rate=0.3
      )
      model.fit(X, y)
75
      grid = np.mgrid[-5:5:0.05, -5:5:0.05].reshape(2, -1).T
      preds = model.predict(grid)
      best_idx = np.argmin(preds)
      best_w1, best_w2 = grid[best_idx]
80
      return {'w1': [best_w1], 'w2': [best_w2], 'loss': [preds[
         best idx]]}
  # Оптимизация
  hist_sgd = optimize_with_restarts('sgd', restarts=10, lr=0.01,
      n_steps=150)
85 hist_adam = optimize_with_restarts('adam', restarts=10, lr
     =0.01, n_steps=150)
  hist_adaboost = optimize_adaboost()
  # Визуализация
  fig = plt.figure(figsize=(15, 10))
90 ax = fig.add_subplot(111, projection='3d')
  # Поверхность функции
  ax.plot_surface(W1, W2, loss, cmap='viridis', alpha=0.2,
     antialiased=True)
95 # Функция отрисовки траектории
  def plot_trajectory(ax, hist, color, label, final_marker='o',
     marker_size=80):
```

```
ax.plot(hist['w1'], hist['w2'], hist['loss'],
               color=color, linewidth=3.0, alpha=0.95, label=
                  label)
       ax.scatter(hist['w1'][-1], hist['w2'][-1], hist['loss
100
          '][-1],
                  c=color, marker=final_marker, s=marker_size,
                     edgecolor='black')
   # Траектории
   plot_trajectory(ax, hist_sgd, 'red', 'SGD (best restart)', 'o
105 plot_trajectory(ax, hist_adam, 'blue', 'Adam (best restart)',
      'o', 80)
   plot_trajectory(ax, hist_adaboost, 'green', 'AdaBoost', '*',
      120)
   # Подписи
   ax.set_xlabel('Weight 1 (w1)', fontsize=14)
110 ax.set_ylabel('Weight 2 (w2)', fontsize=14)
   ax.set_zlabel('Loss', fontsize=14)
   ax.legend(fontsize=14)
   plt.title('Оптимизация функции Экли: SGD, Adam и AdaBoost',
      fontsize=16)
   plt.tight_layout()
115 plt.show()
   # === Проверка, куда попали оптимизаторы ===
   print("SGD final:")
   print(f'' w1 = \{hist\_sgd['w1'][-1]:.4f\}, w2 = \{hist\_sgd['w2']\}
      '][-1]:.4f}, loss = {hist_sgd['loss'][-1]:.4f}")
120
   print("Adam final:")
   print(f" w1 = {hist_adam['w1'][-1]:.4f}, w2 = {hist_adam['w2
      '][-1]:.4f}, loss = {hist_adam['loss'][-1]:.4f}")
   print("AdaBoost final:")
125 print(f"
            w1 = \{hist\_adaboost['w1'][0]:.4f\}, w2 = \{
      hist_adaboost['w2'][0]:.4f}, loss = {hist_adaboost['loss
      '][0]:.4f}")
```

Листинг П1.7

sint3.py

```
import matplotlib.pyplot as plt
  from mpl_toolkits.mplot3d import Axes3D
5 import torch
  from torch.optim import Adam, SGD
  from sklearn.ensemble import AdaBoostRegressor
  from sklearn.tree import DecisionTreeRegressor
10 # Функция Розенброка
  def rosenbrock(X, Y, a=1, b=100):
      return (a - X)**2 + b * (Y - X**2)**2
  # Генерация ландшафта
15 \mid w1\_range = np.linspace(-2, 2, 200)
  w2\_range = np.linspace(-1, 3, 200)
  W1, W2 = np.meshgrid(w1_range, w2_range)
  loss = rosenbrock(W1, W2)
20 # Модель
  class OptimizationModel(torch.nn.Module):
      def __init__(self, init_w1, init_w2):
          super().__init__()
          self.w1 = torch.nn.Parameter(torch.tensor([init_w1],
             dtype=torch.float32))
          self.w2 = torch.nn.Parameter(torch.tensor([init_w2],
25
             dtype=torch.float32))
      def forward(self):
          a = 1
          b = 100
          return (a - self.w1)**2 + b * (self.w2 - self.w1**2)
  # Градиентные методы с рестартами
  def optimize_with_restarts(optimizer_type='sgd', restarts=5,
     lr=0.001, n_steps=2000):
      best_result = None
35
      for _ in range(restarts):
          init_w1 = np.random.uniform(-2, 2)
          init_w2 = np.random.uniform(-1, 3)
          model = OptimizationModel(init_w1, init_w2)
40
          if optimizer_type == 'sgd':
               optimizer = SGD(model.parameters(), lr=lr,
                 momentum=0.9)
           elif optimizer_type == 'adam':
```

```
optimizer = Adam(model.parameters(), lr=lr)
45
          history = {'w1': [], 'w2': [], 'loss': []}
          for _ in range(n_steps):
               loss_val = model()
               optimizer.zero_grad()
               loss_val.backward()
50
               optimizer.step()
               history['w1'].append(model.w1.item())
               history['w2'].append(model.w2.item())
               history['loss'].append(loss_val.item())
          if best_result is None or history['loss'][-1] <
55
             best_result['loss'][-1]:
               best_result = history
      return best_result
  # AdaBoost
60 def optimize_adaboost(n_estimators=100):
      X = np.random.uniform(low=[-2, -1], high=[2, 3], size
         =(5000, 2)
      y = rosenbrock(X[:, 0], X[:, 1])
      model = AdaBoostRegressor(
65
          DecisionTreeRegressor(max_depth=5),
          n_estimators=n_estimators,
          learning_rate=0.3
      )
      model.fit(X, y)
70
      grid_x, grid_y = np.mgrid[-2:2:0.05, -1:3:0.05]
      grid = np.vstack([grid_x.ravel(), grid_y.ravel()]).T
      preds = model.predict(grid)
      best_idx = np.argmin(preds)
      best_w1, best_w2 = grid[best_idx]
75
      return {'w1': [best_w1], 'w2': [best_w2], 'loss': [preds[
         best_idx]]}
  # Оптимизация
80 hist_sgd = optimize_with_restarts('sgd', restarts=10, lr
     =0.001, n_steps=2000)
  hist_adam = optimize_with_restarts('adam', restarts=10, lr
     =0.001, n_steps=2000)
  hist_adaboost = optimize_adaboost()
```

```
# Визуализация
85 fig = plt.figure(figsize=(15, 10))
   ax = fig.add_subplot(111, projection='3d')
   # Поверхность функции
   ax.plot_surface(W1, W2, loss, cmap='viridis', alpha=0.2,
     antialiased=True)
90
   # Функция отрисовки траектории
   def plot_trajectory(ax, hist, color, label, final_marker='o',
     marker_size=80):
       ax.plot(hist['w1'], hist['w2'], hist['loss'],
               color=color, linewidth=3.0, alpha=0.95, label=
                  label)
95
       ax.scatter(hist['w1'][-1], hist['w2'][-1], hist['loss
          '][-1],
                  c=color, marker=final_marker, s=marker_size,
                     edgecolor='black')
   # Траектории
100 plot_trajectory(ax, hist_sgd, 'red', 'SGD (best restart)', 'o
   plot_trajectory(ax, hist_adam, 'blue', 'Adam (best restart)',
     'o', 80)
   plot_trajectory(ax, hist_adaboost, 'green', 'AdaBoost', '*',
     120)
   # Подписи
105 ax.set_xlabel('Weight 1 (w1)', fontsize=14)
   ax.set_ylabel('Weight 2 (w2)', fontsize=14)
   ax.set_zlabel('Loss', fontsize=14)
   ax.legend(fontsize=14)
   plt.title('Оптимизация функции Розенброка: SGD, Adam и
     AdaBoost', fontsize=16)
110 plt.tight_layout()
   plt.show()
   # === Проверка, куда попали оптимизаторы ===
   print("SGD final:")
115 print(f" w1 = {hist_sgd['w1'][-1]:.4f}, w2 = {hist_sgd['w2
      '][-1]:.4f}, loss = {hist_sgd['loss'][-1]:.4f}")
   print("Adam final:")
```

```
print(f" w1 = {hist_adam['w1'][-1]:.4f}, w2 = {hist_adam['w2
    '][-1]:.4f}, loss = {hist_adam['loss'][-1]:.4f}")

print("AdaBoost final:")
print(f" w1 = {hist_adaboost['w1'][0]:.4f}, w2 = {
    hist_adaboost['w2'][0]:.4f}, loss = {hist_adaboost['loss
    '][0]:.4f}")
```