中华人民共和国国家标准

P

GB 50739 - 2011

复合土钉墙基坑支护技术规范

Technical code for composite soil nailing wall in retaining and protection of excavation

2011 - 09 - 16 发布

2012-05-01 实施

中华人民共和国住房和城乡建设部中华人民共和国国家质量监督检验检疫总局

联合发布

中华人民共和国国家标准

复合土钉墙基坑支护技术规范

Technical code for composite soil nailing wall in retaining and protection of excavation

GB 50739 - 2011

主编部门:山东省住房和城乡建设厅 批准部门:中华人民共和国住房和城乡建设部 施行日期:2 0 1 2 年 5 月 1 日

中国计划出版社

2012 北 京

中华人民共和国住房和城乡建设部公告

第 1159 号

关于发布国家标准 《复合土钉墙基坑支护技术规范》的公告

现批准《复合土钉墙基坑支护技术规范》为国家标准,编号为GB 50739—2011,自 2012 年 5 月 1 日起实施。其中,第 6.1.3 条为强制性条文,必须严格执行。

本规范由我部标准定额研究所组织中国计划出版社出版 发行。

中华人民共和国住房和城乡建设部 二〇一一年九月十六日

前 言

本规范是根据住房和城乡建设部《关于印发〈2009 年工程建设标准规范制订、修订计划(第一批)〉的通知》(建标〔2009〕88 号文)的要求,由济南大学和江苏省第一建筑安装有限公司会同中国京冶工程技术有限公司等 11 个单位共同编制完成。

本规范在编制过程中,编制组调查总结了近年来复合土钉墙基坑支护的实践经验,吸收了国内外相关科技成果,开展了多项专题研究并形成了专题研究报告。本规范的初稿、征求意见稿通过各种方式在全国范围内广泛征求了意见,并经多次编制工作会议讨论、反复修改后,形成送审稿,最后经审查定稿。

本规范共分 7 章和 2 个附录,主要内容包括总则、术语和符号、基本规定、勘察、设计、施工与检测、监测等。

本规范中以黑体字标志的条文为强制性条文,必须严格执行。 本规范由住房和城乡建设部负责管理和对强制性条文的解释,山东省住房和城乡建设厅负责日常管理,济南大学负责具体技术内容的解释。为了提高本规范的质量,请各单位在执行过程中,注意总结经验,积累资料,随时将有关意见和建议反馈给济南大学国家标准《复合土钉墙基坑支护技术规范》管理组(地址:山东省济南市济微路106号,邮政编码:250022),以供今后修订时参考。

本规范主编单位、参编单位、主要起草人和主要审查人:

主编单位:济南大学

江苏省第一建筑安装有限公司

参编单位:中国京冶工程技术有限公司

同济大学

中国科学院武汉岩土力学研究所 昆山市建设工程质量检测中心 济南鼎汇土木工程技术有限公司 武汉市勘测设计研究院 胜利油田胜利工程建设(集团)有限责任公司 济南四建(集团)有限责任公司 山东宁建建设集团有限公司 南通市欣达工程股份有限公司 山东鑫国基础工程有限公司

主要起草人:刘俊岩 杨志银 孔令伟 应惠清 付文光 刘 燕 李象范 史春乐 任 锋 马凤生 王 勇 杨育文 顾浩声 张 军 原玉磊 鞠建中 赵吉刚 杨根才 刘厚纯 刘 俭

王庆军 沈 灏

主要审查人:赵志缙 程良奎 宋二祥 桂业琨 张旷成 高文生 王士川 吴才德 刘小敏 焦安亮

曾剑峰

冯晓腊

殷伯清

目 次

1	总	则	••••••				•••••	•••••	. (1)
2	术	语和符号	ļ		•••••		•••••	•••••	• (2)
	2. 1	术语 …	•••••	• • • • • • • • •			•••••	•••••	• (2)
	2. 2	符号 …	•••••				•••••	•••••	• (3)
3	基	本规定	••••••	• • • • • • • • •			•••••	•••••	• (6)
4	勘	察	•••••	• • • • • • • • •		:	•••••	• • • • • • • • • • • • • • • • • • • •	(8)
5	设	计	•••••				•••••	• • • • • • • • • • • • • • • • • • • •	• (10)
	5.1	一般规定	₹				•••••	•••••	. (10)
	5.2	土钉长度	ま 及杆体制	面确定	••••		•••••	••••••	• (1 2)
	5.3	基坑稳定	を性验算・					•••••	(1 5)
	5.4	构造要求	ζ	• • • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •	• (2 1)
6	施	工与检测	j		• • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	(2 5)
	6.1	一般规定	<u> </u>	• • • • • • • • • •	• • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	(2 5)
	6.2	复合土钉	「墙施工・		••••••		•••••	•••••	(2 6)
	6.3	降排水放	[五]				•••••	•••••	(3 0)
	6.4	基坑开挖	ž		• • • • • • •		•••••	••••••	(3 1)
	6.5	质量检查	£			• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	(3 1)
7	监	测	•••••				•••••	• • • • • • • • • • • • • • • • • • • •	(3 4)
陈	录 A	4 土钉	抗拔基乙	k试验·	• • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	(3 5)
陈	录 E	3 土钉	抗拔验收	び试验・	• • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	(3 7)
本	规范	5用词说	明				•••••	• • • • • • • • • • • • • • • • • • • •	(3 9)
弓	用板	作名录	•••••	• • • • • • •			•••••	•••••	(4 0)
跞	. 条	文说明						• • • • • • • • • • • • • • • • • • • •	(4 1)

Contents

1	Ge	neral provisions	(1	1)
2	Te	rms and symbols ······	(2	2)
	2. 1	Terms	(2	2)
	2. 2	Symbols	(3	3)
3	Bas	sic requirement	((6)
4	Ge	otechnical Investigation'	(8	8)
5	De	sign	(1	0)
	5.1	General requirement	(1	0)
	5.2	Determination of soil nail length and rod section	(1	2)
	5.3	Analysis of excavation stability	(1	5)
	5.4	Detailing requirement	(2	1)
6	Co	nstruction and inspection	(2	5)
	6.1	General requirement	(2	5)
	6.2	Construction of composite soil nailing wall	(2	6)
	6.3	Dewatering and drainage in construction	(3	0)
	6.4	Excavation ·····	(3	1)
	6.5	Quality inspection	(3	1)
7	Mo	onitoring	(3	4)
A	ppen	dix A Basic pull-out test of soil nail	(3	5)
A	ppen	dix B Acceptance pull-out test of soil nail	(3	7)
E	xplar	nation of wording in this code	(3	9)
L	ist of	quoted standards	(4	0)
Α	dditi	on: Explanation of provisions	(4	1)

1 总 则

- 1.0.1 为使复合土钉墙基坑支护工程达到安全适用、技术先进、 经济合理、质量可靠及保护环境的要求,制定本规范。
- **1.0.2** 本规范适用于建筑与市政工程中复合土钉墙基坑支护工程的勘察、设计、施工、检测和监测。
- 1.0.3 复合土钉墙支护工程应综合考虑工程地质与水文地质条件、场地及周边环境限制要求、基坑规模与开挖深度、施工条件等因素的影响,并结合工程经验,合理设计、精心施工、严格检测和监测。
- **1.0.4** 复合土钉墙基坑支护工程除应符合本规范外,尚应符合国家现行有关标准的规定。

2 术语和符号

2.1 术 语

2.1.1 土钉 soil nail

采用成孔置入钢筋或直接钻进、击入钢花管,并沿杆体全长注 浆的方法形成的对原位土体进行加固的细长杆件。

2.1.2 土钉墙 soil nailing wall

由土钉群、被加固的原位土体、钢筋网混凝土面层等构成的基坑支护形式。

2.1.3 预应力锚杆 pre-stressed anchor

能将张拉力传递到稳定的岩土体中的一种受拉杆件,由锚头、 杆体自由段和杆体锚固段组成。

2.1.4 截水帷幕 curtain for cutting off water

沿基坑侧壁连续分布,由水泥土桩相互咬合搭接形成,起隔水、超前支护和提高基坑稳定性作用的壁状结构。

2.1.5 微型桩 mini-sized pile

沿基坑侧壁断续分布,用于控制基坑变形、提高基坑稳定性的 各种小断面竖向构件。

2.1.6 复合土钉墙 composite soil nailing wall

土钉墙与预应力锚杆、截水帷幕、微型桩中的一类或几类结合 而成的基坑支护形式。

2.1.7 截水帷幕复合土钉墙 composite soil nailing wall with curtain for cutting off water

由截水帷幕与土钉墙结合而成的基坑支护形式。

2.1.8 预应力锚杆复合土钉墙 composite soil nailing wall with pre-stressed anchor

由预应力锚杆与土钉墙结合而成的基坑支护形式。

2.1.9 微型桩复合土钉墙 composite soil nailing wall with mini-sized pile

由微型桩与土钉墙结合而成的基坑支护形式。

2.2 符 号

- 2.2.1 土的物理力学指标
 - c-----土的粘聚力:
 - d_s ——坑底土颗粒的相对密度;
 - e----坑底土的孔隙比;
- γ₁、γ₂——分别为地表、坑底至微型桩或截水帷幕底部各土层加权 平均重度;
 - φ——土的内摩擦角。
- 2.2.2 几何参数
 - A——构件的截面面积;
 - d_i 第 j 根土钉直径;
 - H——基坑开挖深度;
 - h_j ——第j 根土钉与基坑底面的距离;
 - h。——承压水层顶面至基坑底面的距离;
 - L_i 一第 i 个土条在滑弧面上的弧长;
 - l,——第 i 根土钉长度;
 - S_{xj} ——第j根土钉与相邻土钉的平均水平间距;
 - S_{zj} —第j根土钉与相邻土钉的平均竖向间距;
 - t——微型桩或截水帷幕在基坑底面以下的深度;
 - α_i 第 j 根土钉与水平面之间的夹角;
 - α_{mj} 第j 根预应力锚杆与水平面之间的夹角;
 - β ——土钉墙坡面与水平面的夹角;
 - θ_i ——第 i 个土条在滑弧面中点处的法线与垂直面的夹角;
 - θ_i 第 i 根土钉或预应力锚杆与滑弧面相交处,滑弧切线与

水平面的夹角。

- 2.2.3 作用、作用效应及承载力
 - E_a ——朗肯主动土压力;
 - f_{vi} 第 i 根土钉杆体材料抗拉强度设计值;
 - h_w ——基坑内外的水头差;
 - i---渗流水力梯度;
 - i。——基坑底面土体的临界水力梯度;
 - k_s ——主动土压力系数;
 - N_{ui} ——第j根土钉在稳定区(即滑移面外)所提供的摩阻力;
 - p——土钉长度中点所处深度位置的土体侧压力;
 - *p*_m──土钉长度中点所处深度位置由土体自重引起的侧压力:
 - *p*_q——土钉长度中点所处深度位置由地表及土体中附加荷载 引起的侧压力;
 - P_{ij} 第j 根预应力锚杆在稳定区(即滑移面外)的极限抗拔力;
 - P_{w} ——承压水水头压力;
 - q_{sik} ——第 i 层土体与土钉的粘结强度标准值;
 - q---地面及土体中附加荷载;
 - T_{ik} ——土钉轴向荷载标准值;
 - T_{vi} 第 j 根土钉验收抗拔力;
 - T_m——土钉极限抗拔力;
 - W.——第*i* 个土条重量,包括作用在该土条上的各种附加 荷载;
 - ζ---坡面倾斜时荷载折减系数;
 - τ_q——假定滑移面处相应龄期截水帷幕的抗剪强度标准值;
 - τy——假定滑移面处微型桩的抗剪强度标准值。
- 2.2.4 计算系数及其他

 K_s ——整体稳定性安全系数;

 K_{s0}, K_{s1}, K_{s2}

K_{s3}、K_{s4}——整体稳定性分项抗力系数,分别为土、土钉、预应力 锚杆、截水帷幕及微型桩产生的抗滑力矩与土体下 滑力矩比;

 K_{l} ---- 坑底抗隆起稳定性安全系数;

 K_{w1} ——抗渗流稳定性安全系数;

 K_{w2} ——抗突涌稳定性安全系数;

 N_{q} 、 N_{c} ——坑底抗隆起验算时的地基承载力系数;

 ψ ——土钉的工作系数;

 η_1, η_2

η₃、η₄——土钉、预应力锚杆、截水帷幕及微型桩组合作用折减系数。

3 基本规定

- **3.0.1** 复合土钉墙基坑支护安全等级的划分应符合现行行业标准《建筑基坑支护技术规程》JGJ 120 的有关规定。
- 3.0.2 复合土钉墙基坑支护可采用下列形式:
 - 1 截水帷幕复合土钉墙。
 - 2 预应力锚杆复合土钉墙。
 - 3 微型桩复合土钉墙。
- 4 土钉墙与截水帷幕、预应力锚杆、微型桩中的两种及两种以上形式的复合。
- 3.0.3 复合土钉墙适用于黏土、粉质黏土、粉土、砂土、碎石土、全风化及强风化岩,夹有局部淤泥质土的地层中也可采用。地下水位高于基坑底时应采取降排水措施或选用具有截水帷幕的复合土钉墙支护。坑底存在软弱地层时应经地基加固或采取其他加强措施后再采用。
- 3.0.4 软土地层中基坑开挖深度不宜大于 6m,其他地层中基坑直立开挖深度不宜大于 13m,可放坡时基坑开挖深度不宜大于 18m。
- 3.0.5 复合土钉墙基坑支护方案应根据工程地质、水文地质条件、环境条件、施工条件以及使用条件等因素,通过工程类比和技术经济比较确定。
- **3.0.6** 复合土钉墙基坑支护工程的使用期不应超过1年,且不应超过设计规定。超过使用期后应重新对基坑进行安全评估。
- 3.0.7 复合土钉墙基坑支护设计和验算采用的岩土性能指标应根据地质勘察报告、基坑降水、固结的情况,按相关参数试验方法并结合邻近场地的工程类比、现场试验、当地经验作出分析判断后

合理取值。侧压力计算时,宜采用直剪快剪指标或三轴固结不排水剪切指标。稳定性验算时,饱和软黏土宜采用三轴不固结不排水剪切、直剪快剪指标或十字板剪切试验指标,粉土、砂性土、碎石土宜采用原位测试取得的有效应力指标,其他土层宜采用三轴固结不排水剪切或直剪固结快剪指标。

- 3.0.8 复合土钉墙应按照承载能力极限状态和正常使用极限状态两种极限状态进行设计。支护结构的构件强度、基坑稳定性、锚杆的抗拔力等应按承载能力极限状态进行验算,支护结构的位移计算、基坑周边环境的变形应按正常使用极限状态进行验算。
- 3.0.9 复合土钉墙用于对变形控制有严格要求的基坑支护时,应根据工程经验采用工程类比法,并结合数值法进行变形分析预测。
- 3.0.10 施工前,施工单位应按照审核通过的基坑工程设计方案,根据工程地质与水文地质条件、施工工艺、作业条件和基坑周边环境限制条件,编制专项施工方案。
- 3.0.11 复合土钉墙基坑支护工程应实施监测。监测单位应编制监测方案,并依据监测方案实施监测。设计和施工单位应及时掌握监测情况,并实施动态设计和信息化施工。

4 勘 察

- **4.0.1** 基坑工程的岩土勘察和周边环境调查应与拟建建筑的岩土工程勘察同时进行。当已有勘察成果不能满足基坑工程设计和施工要求时,应补充基坑工程专项勘察。
- **4.0.2** 基坑工程勘察的范围应根据基坑的复杂程度、设计要求和场地条件综合确定。勘察的平面范围宜超出基坑开挖边界线外开挖深度的2倍,且不宜小于土钉或锚杆估算长度的1.2倍。
- 4.0.3 勘探点宜沿基坑边线布置,基坑每边中间位置、基坑主要转角处、相邻重要建(构)筑物附近应布置勘探点,勘察点间距宜取15m~25m。若地下存在障碍物或软土、饱和粉细砂、暗沟和暗塘等特殊地段以及岩溶地区应适当加密勘探点,查明其分布和工程特性。
- **4.0.4** 勘探孔深度宜为基坑开挖深度的 2.0 倍~3.0 倍;基坑底面以下存在软弱土层或承压含水层时,勘探孔应穿过软弱土层或承压含水层。在勘探深度范围内如遇中等风化及微风化岩石时,可减小勘探孔深度。

钻入基坑底以下的砂土、粉土中的钻探孔应及时进行封堵。

- **4.0.5** 主要土层的取样和原位测试数量应根据基坑安全等级、规模、 土层复杂程度等确定。每一主要土层的原状土试样或原位测试数据 不应少于6个(组), 当土层差异性较大时, 应增加取样或原位测试数量。
- **4.0.6** 土的抗剪强度试验方法应根据复合土钉墙实际工作状况确定,且应与基坑工程设计计算所采用的指标要求相符合。
- **4.0.7** 勘察阶段应查明地下水类型、地下水位、含水层埋深和厚度、相对不透水层埋深和厚度、与外界的水力联系、承压水头以及施工期间地下水变化等情况。必要时应进行现场试验,确定土层渗透系数和影响半径。

- 4.0.8 周边环境调查的内容应包括:
- 1 基坑开挖影响范围内既有建筑的层数、结构形式、基础形式与埋深及建成时间、沉降变形和损坏情况。
- 2 基坑开挖影响范围内的暗沟、暗塘、暗浜、老河道、轨道交通设施、地下人防设施及地下管线等的类型、空间尺寸、埋深及其重要性,贮水、输水等用水设施及其渗漏情况。必要时,可用坑探或工程物探方法查明。
 - 3 场地周围地表水汇流和排泄条件。
 - 4 场地周围道路的类型、位置及宽度、车辆最大荷载情况等。
 - 5 场地周围堆载及其他与基坑工程设计、施工相关的信息。
- 4.0.9 勘察报告应包括下列主要内容:
- 1 对基坑工程影响深度范围内的岩土层埋藏条件、分布和特性作出综合分析评价。
- **2** 阐明地下水的埋藏情况、类型、水位及其变化幅度、与地表 水间的联系以及土层的渗流条件。
- **3** 提供基坑工程影响范围内的各岩土层物理、力学试验指标的统计值和计算参数的建议值。
- 4 阐明填土、暗浜、地下障碍物等浅层不良地质现象分布情况,评价对基坑工程的影响,并对设计、施工提出建议。
- 5 分析评价地下水位变化对周边环境的影响以及施工过程中可能形成的流土、管涌、坑底突涌等现象,并对设计、施工提出建议。
 - 6 对支护方案选型、地下水控制方法、环境保护和监测提出建议。
 - 7 勘察成果文件应附下列图件:
 - 1)勘探点平面布置图;
 - 2)工程地质柱状图;
 - 3)工程地质剖面图;
 - 4)室内土(水)试验成果图表;
 - 5)原位测试成果图表;
 - 6)其他所需的成果图表,如暗浜分布、地下障碍物分布图等。

5 设 计

5.1 一般规定

- 5.1.1 复合土钉墙基坑支护的设计应包括下列内容:
 - 1 支护体系与各构件选型及布置。
 - 2 支护构件设计。
 - 3 基坑稳定性分析验算。
 - 4 各构件及连接件的构造设计。
 - 5 变形控制标准及周边环境保护要求。
 - 6 地下水和地表水处理。
 - 7 十方开挖要求。
 - 8 施工工艺及技术要求。
 - 9 质量检验和监测要求。
 - 10 应急措施要求。

• 10 •

- 5.1.2 设计计算时可取单位长度按平面应变问题分析计算。
- 5.1.3 设计荷载除土压力、水压力外,还应包括邻近建筑、材料、机具、车辆等附加荷载。地面上的附加荷载应按实际作用值计取,实际值如小于 20kPa,官按 20kPa 的均布荷载计取。
- **5.1.4** 设计计算时对邻近基坑侧壁的承台、地梁、集水坑、电梯井等坑中坑,应根据坑中坑的开挖深度确定基坑设计深度。
- 5.1.5 对缺乏类似工程经验的地层及安全等级为一级的基坑,土 钉及预应力锚杆均应先进行基本试验,并根据试验结果对初步设 计参数及施工工艺进行调整。
- **5.1.6** 预应力锚杆抗拔承载力和杆体抗拉承载力验算应按现行行业标准《建筑基坑支护技术规程》JGJ 120 的有关规定执行。
- 5.1.7 土钉与土体界面粘结强度 q_{sk} 宜按照附录 A 的方法通过抗拔

基本试验确定;无试验资料或无类似经验时,可按表 5.1.7 初步取值。

表 5.1.7 土钉与土体之间粘结强度标准值 qsk(kPa)

土的名称	土的状态	土钉
素填土		15~30
淤泥质土	_	10~20
	流塑	15~25
	软塑	20~35
黏性土	可塑	30~50
,	硬塑	45~70
	坚硬	55~80
	稍密	20~40
粉土	中密	35~70
	密实	55~90
	松散	25~50
砂土	稍密	45~90
少工	中密	60~120
	密实	75~150

- 注:1 钻孔注浆土钉采用压力注浆或二次注浆时,表中数值可适当提高。
 - 2 钢管注浆土钉在保证注浆质量及倒刺排距 0.25m m 时,外径 48mm 的钢管,土钉外径可按 60mm~100mm 计算,倒刺较高。可取较大值。
 - 3 对于粉土,密实度相同,湿度越高,取值越低。
 - 4 对于砂土,密实度相同,粉细砂宜取较低值,中砂宜取中值,粗砾砂宜取较高值。
 - 5 土钉位于水位以下时官取较低值。
- **5.1.8** 土钉和锚杆的设置不应对既有建筑、地下管线以及邻近的后续工程造成损害。
- **5.1.9** 季节性冻土地区应根据冻胀及冻融对复合土钉墙的不利影响采取相应的防护措施。
- 5.1.10 基坑需要降水时,应事先分析降水对周边环境产生的不良影响。
- 5.1.11 基坑内设置车道时,应验算车道边坡的稳定性,并采取必要的加固措施。

5.1.12 复合土钉墙除应满足基坑稳定性和承载力的要求外,尚应满足基坑变形的控制要求。当基坑周边环境对变形控制无特殊要求时,可依据地层条件、基坑安全等级按照表 5.1.12 确定复合土钉墙变形控制指标。

5.1.12 复合土钉墙变形控制指标(基坑最大侧向位移累计值)

地层条件	基坑安全等级				
	一级	二级	三级		
黏性土、砂性土为主	0.3%H	0.5% H	0.7%H		
软土为主		0.8%H	1.0%H		

注: H --- 基坑开挖深度。

当基坑周边环境对变形控制有特殊要求时,复合土钉墙变形控制指标应同时满足周边环境对基坑变形的控制要求。

5.2 土钉长度及杆体截面确定

5.2.1 土钉长度及间距可按表 5.2.1 列出的经验值作初步选择,也可按本规范第 5.2.2 条~第 5.2.5 条的规定通过计算初步确定,再根据基坑整体稳定性验算结果最终确定。

表 5.2.1 土钉长度与间距经验值

土的名称	土的状态	水平间距(m)	竖向间距(m)	土钉长度与基坑深度比
素填土		1.0~1.2	1.0~1.2	1.2~2.0
淤泥质土	_	0.8~1.2	0.8~1.2	1.5~3.0
	软塑	1.0~1.2	1.0~1.2	1.5~2.5
黏性土	可塑	1.2~1.5	1.2~1.5	1.0~1.5
和性工	硬塑	1.4~1.8	1.4~1.8	0.8~1.2
	坚硬	1.8~2.0	1.8~2.0	0.5~1.0
粉土	稍密、中密	1.0~1.5	1.0~1.4	1. 2~2. 0
物工	密实	1.2~1.8	1.2~1.5	0.6~1.2
75h _L	稍密、中密	1.2~1.6	1.0~1.5	1.0~2.0
砂土	密实	1.4~1.8	1.4~1.8	0.6~1.0

5.2.2 单根土钉长度 l_i (图 5.2.2)可按下列公式初步确定:

$$l_j = l_{zj} + l_{mj}$$
 (5. 2. 2 - 1)

$$l_{zj} = \frac{h_{j} \sin \frac{\beta - \varphi_{ak}}{2}}{\sin \beta \sin \left(\alpha_{j} + \frac{\beta + \varphi_{ak}}{2}\right)}$$
(5. 2. 2 - 2)

$$l_{mj} = \sum l_{mi,j}$$
 (5. 2. 2 - 3)

$$\pi d_i \sum q_{sik} l_{mi,i} \ge 1.4 T_{ik}$$
 (5.2.2-4)

式中:1, 第 i 根土钉长度;

 l_{zi} — 第 j 根土钉在假定破裂面内长度;

 l_{mi} ——第j 根土钉在假定破裂面外长度;

 h_i ——第j根土钉与基坑底面的距离;

 β ——土钉墙坡面与水平面的夹角;

 φ_{ak} ——基坑底面以上各层土的内摩擦角标准值,可按不同十 层厚度取加权平均值;

 α — 第 i 根土钉与水平面之间的夹角;

 l_{min} ——第 i 根土钉在假定破裂面外第 i 层土体中的长度;

 q_{sik} ——第 i 层土体与土钉的粘结强度标准值:

 d_i 一第 j 根土钉直径;

 T_{α} ——计算土钉长度时第 i 根土钉的轴向荷载标准值,可按 本规范第 5.2.3 条确定。

图 5.2.2 土钉长度计算

H-基坑开挖深度;q-地面及土体中附加分布荷载

5.2.3 计算单根土钉长度时,土钉轴向荷载标准值 T_{jk} (图 5.2.2、图 5.2.3)可按下列公式计算:

$$T_{jk} = \frac{1}{\cos a_j} \zeta p S_{xj} S_{zj}$$
 (5. 2. 3 - 1)

$$p = p_{\rm m} + p_{\rm q} \tag{5.2.3-2}$$

式中: S_{xi} — 第j 根土钉与相邻土钉的平均水平间距;

 S_{ij} ——第j 根土钉与相邻土钉的平均竖向间距;

ζ——坡面倾斜时荷载折减系数,可按本规范第 5.2.5 条 确定;

p——土钉长度中点所处深度位置的土体侧压力;

*p*_m——土钉长度中点所处深度位置由土体自重引起的侧压力,可按图 5. 2. 3(b)求出;

p_q——土钉长度中点所处深度位置由地面及土体中附加荷载引起的侧压力,计算方法按现行行业标准《建筑基坑支护技术规程》JGJ 120 的有关规定执行。

(b) 土体自重引起的侧压力分布

图 5.2.3 土钉轴向荷载标准值计算

5.2.4 土体自重引起的侧压力峰值 $p_{m,max}$ 可按下列公式计算,且不宜小于 $0.2\gamma_m$ H:

$$p_{\text{m,max}} = \frac{8E_{\text{a}}}{7H}$$
 (5. 2. 4 - 1)

$$E_{\rm a} = \frac{k_{\rm a}}{2} \gamma_{\rm ml} H^2 \tag{5. 2. 4 - 2}$$

$$k_{\rm a} = \tan^2\left(45^{\circ} - \frac{\varphi_{\rm ak}}{2}\right)$$
 (5. 2. 4 - 3)

式中:Pm,max——土体自重引起的侧压力峰值;

H——基坑开挖深度;

 E_a ——朗肯主动土压力;

γ_{m1}——基坑底面以上各土层加权平均重度,有地下水作 用时应考虑地下水位变化造成的重度变化;

k_a——主动土压力系数。

5.2.5 坡面倾斜时的荷载折减系数 ζ 可按下列公式计算:

$$\zeta = \tan \frac{\beta - \varphi_{ak}}{2} \left(\frac{1}{\tan \frac{\beta + \varphi_{ak}}{2}} - \frac{1}{\tan \beta} \right) / \tan^2 \left(45^\circ - \frac{\varphi_{ak}}{2} \right)$$
(5. 2. 5)

5.2.6 土钉杆体截面面积 A, 可按下列公式计算:

$$A_j \geqslant 1.15 T_{yj} / f_{yj}$$
 (5. 2. 6 - 1)

$$T_{yj} = \psi_{\pi} d_j \sum q_{sik} l_{i,j}$$
 (5. 2. 6 - 2)

式中: A_i — 第 j 根土钉杆体(钢筋、钢管)截面面积;

 f_{yj} ——第j根土钉杆体材料抗拉强度设计值;

 T_{yj} ——第j根土钉验收抗拔力;

 $l_{i,j}$ 一第 j 根土钉在第 i 层土体中的长度;

 ψ ——土钉的工作系数,取 0.8~1.0。

5.3 基坑稳定性验算

- 5.3.1 复合土钉墙必须进行基坑整体稳定性验算。验算可考虑 截水帷幕、微型桩、预应力锚杆等构件的作用。
- 5.3.2 基坑整体稳定性分析(图 5.3.2)可采用简化圆弧滑移面

条分法,按本条所列公式进行验算。最危险滑裂面应通过试算搜索求得。验算时应考虑开挖过程中各工况,验算公式宜采用分项系数极限状态表达法。

图 5.3.2 复合土钉墙稳定性分析计算

1-土钉;2-预应力锚杆;3-截水帷幕;4-微型桩

q—地面附加分布荷载;R—假定圆弧滑移面半径;b;一第 i 个土条的宽度

$$K_{s0} + \eta_1 K_{s1} + \eta_2 K_{s2} + \eta_3 K_{s3} + \eta_4 K_{s4} \geqslant K_s$$
 (5. 3. 2 - 1)

$$K_{s0} = \frac{\sum c_i L_i + \sum W_i \cos \theta_i \tan \varphi_i}{\sum W_i \sin \theta_i}$$
 (5. 3. 2 - 2)

$$K_{\rm sl} = \frac{\sum N_{\rm uj} \cos(\theta_j + \alpha_j) + \sum N_{\rm uj} \sin(\theta_j + \alpha_j) \tan\varphi_j}{s_{\rm xj} \sum W_i \sin\theta_i}$$

(5, 3, 2-3)

$$K_{s2} = \frac{\sum P_{uj} \cos(\theta_j + \alpha_{mj}) + \sum P_{uj} \sin(\theta_j + \alpha_{mj}) \tan\varphi_j}{s_{2x_i} \sum W_i \sin\theta_i}$$

(5, 3, 2 - 4)

$$k_{s3} = \frac{\tau_{q} A_{3}}{\sum W_{sin} \theta_{s}}$$
 (5. 3. 2 - 5)

$$k_{s4} = \frac{\tau_{y} A_{4}}{s_{4x_{i}} \sum W_{i} \sin \theta_{i}}$$
 (5. 3. 2 - 6)

式中: K。——整体稳定性安全系数,对应于基坑安全等级一、二、 三级分别取 1.4、1.3、1.2; 开挖过程中最不利工况下 可乘以 0.9 的系数;

 K_{s0}, K_{s1}, K_{s2}

- K_{s3}、K_{s4}——整体稳定性分项抗力系数,分别为土、土钉、预应力 锚杆、截水帷幕及微型桩产生的抗滑力矩与土体下 滑力矩比;
 - c_i, φ_i 一第 i 个土条在滑弧面上的粘聚力及内摩擦角;
 - L_i 一第 i 个土条在滑弧面上的弧长;
 - W_i 一第 i 个土条重量,包括作用在该土条上的各种附加 荷载;
 - θ_i 一一第 i 个土条在滑弧面中点处的法线与垂直面的夹角;
 - η、η₂、η₄ —— 土钉、预应力锚杆、截水帷幕及微型桩组合作用折减系数,可按本规范第 5, 3, 3 条取值:
 - s_{xi} ——第j根土钉与相邻土钉的平均水平间距;
- s_{2xi} 、 s_{4xi} 第 i 根预应力锚杆或微型桩的平均水平间距;
 - N_{ij} 第 j 根土钉在稳定区(即滑移面外)所提供的摩阻力,可按本规范第 5.3.4 条取值;
 - P_{uj}——第 j 根预应力锚杆在稳定区(即滑移面外)的极限抗 拔力,按现行行业标准《建筑基坑支护技术规程》 IGI 120的有关规定计算:
 - α_i 第 j 根土钉与水平面之间的夹角;
 - $\alpha_{m,i}$ 第 i 根预应力锚杆与水平面之间的夹角;
 - θ_{j} 第 j 根土钉或预应力锚杆与滑弧面相交处,滑弧切线与水平面的夹角;
 - φ_{j} 一 第 j 根土钉或预应力锚杆与滑弧面交点处土的内摩擦角:
 - τ_q——假定滑移面处相应龄期截水帷幕的抗剪强度标准 值,根据试验结果确定;
 - τ,——假定滑移面处微型桩的抗剪强度标准值,可取桩体

材料的抗剪强度标准值;

 A_3 、 A_4 ——单位计算长度内截水帷幕或单根微型桩的截面积。

- 5.3.3 组合作用折减系数的取值应符合下列规定:
 - 1 η, 宜取 1.0。
- **2** $P_{uj} \le 300$ kN 时, $η_2$ 宜取 0.5 \sim 0.7, 随着锚杆抗力的增加而减小。
- 3 截水帷幕与土钉墙复合作用时, η_3 宜取 $0.3\sim0.5$,水泥土抗剪强度取值较高、水泥土墙厚度较大时, η_3 宜取较小值。
- 4 微型桩与土钉墙复合作用时, η_4 宜取 $0.1\sim0.3$,微型桩桩体材料抗剪强度取值较高、截面积较大时, η_4 宜取较小值。基坑支护计算范围内主要土层均为硬塑状黏性土等较硬土层时, η_4 取值可提高 0.1。
- 5 预应力锚杆、截水帷幕、微型桩三类构件共同复合作用时, 组合作用折减系数不应同时取上限。
- **5.3.4** 第 j 根土钉在稳定区的摩阻力 N_{uj} 应符合下式的规定:

$$N_{uj} = \pi d_j \sum q_{sik} l_{mi,j}$$
 (5.3.4)

5.3.5 K_s 在满足本规范第 5.3.2 条的同时, K_{s0} 、 K_{s1} 、 K_{s2} 的组合应符合下式的规定:

$$K_{s0} + K_{s1} + 0.5K_{s2} \ge 1.0$$
 (5.3.5)

- **5.3.6** 复合土钉墙底部存在软弱黏性土时,应按地基承载力模式进行坑底抗隆起稳定性验算。
- 5.3.7 坑底抗隆起稳定性(图 5.3.7)可按下列公式进行验算:

$$\frac{\gamma_2 t N_q + c N_c}{\gamma_1 (H + t) + q} \geqslant K_t$$
 (5. 3. 7 - 1)

$$N_q = \exp(\pi \tan \varphi) \tan^2(45^\circ + \varphi/2)$$
 (5.3.7-2)

$$N_{\rm c} = (N_{\rm q} - 1)/\tan\varphi$$
 (5. 3. 7 - 3)

式中: γ₁、γ₂——分别为地面、坑底至微型桩或截水帷幕底部各土 层加权平均重度;

t——微型桩或截水帷幕在基坑底面以下的长度;

 N_{\circ}, N_{\circ} 一坑底抗隆起验算时的地基承载力系数;

q----地面及土体中附加荷载;

 c, φ ——支护结构底部土体粘聚力及内摩擦角;

 K_i ——坑底抗隆起稳定安全系数,对应于基坑安全等级二、三级时分别取 1.4、1.2。

图 5.3.7 坑底抗隆起稳定性验算

- 5.3.8 有截水帷幕的复合土钉墙,基坑开挖面以下有砂土或粉土等透水性较强土层且截水帷幕没有穿透该土层时,应进行抗渗流稳定性验算。
- 5.3.9 抗渗流稳定性(图 5.3.9)可按下列公式进行验算:

$$i_c/i \geqslant K_{w1}$$
 (5. 3. 9 - 1)

$$i_c = (d_s - 1)/(e + 1)$$
 (5. 3. 9 - 2)

$$i = h_{\rm w}/(h_{\rm w} + 2t)$$
 (5. 3. 9 - 3)

式中: i。——基坑底面土体的临界水力梯度;

i——渗流水力梯度;

 d_{s} ——坑底土颗粒的相对密度:

e——坑底土的孔隙比;

 h_w ——基坑内外的水头差;

t----截水帷幕在基坑底面以下的长度;

K_{w1}——抗渗流稳定安全系数,对应基坑安全等级一、二、三级时宜分别取 1.50、1.35、1.20。

图 5.3.9 抗渗流稳定性验算

5.3.10 基坑底面以下存在承压水时(图 5.3.10),可按公式 (5.3.10)进行抗突涌稳定性计算。当抗突涌稳定性验算不满足时,宜采取降低承压水等措施。

图 5.3.10 抗突涌稳定性验算

 $\gamma_{m2}h_{\rm c}/P_{\rm w} \gg K_{\rm w2}$

(5.3.10)

式中: γ_{m2} ——不透水土层平均饱和重度;

 h_c ——承压水层顶面至基坑底面的距离;

 P_{w} 一 承压水水头压力;

 K_{w2} ——抗突涌稳定性安全系数,宜取 1.1。

5.4 构造要求

- 5.4.1 土钉墙的设计及构造应符合下列规定:
 - 1 土钉墙墙面宜适当放坡。
- **2** 竖向布置时土钉宜采用中部长上下短或上长下短布置形式。
- **3** 平面布置时应减少阳角,阳角处土钉在相邻两个侧面宜上下错开或角度错开布置。
- 4 面层应沿坡顶向外延伸形成不少于 0.5m 的护肩,在不设置截水帷幕或微型桩时,面层宜在坡脚处向坑内延伸 0.3m ~ 0.5m 形成护脚。
 - 5 土钉排数不宜少于 2 排。
- 5.4.2 土钉的构造应符合下列规定:
- 1 应优先选用成孔注浆土钉。填土、软弱土及砂土等孔壁不易稳定的土层中可选用打入式钢花管注浆土钉。
 - 2 土钉与水平面夹角宜为5°~20°。
- 3 成孔注浆土钉的孔径宜为 $70\text{mm} \sim 130\text{mm}$; 杆体宜选用 HRB335 级或 HRB400 级钢筋,钢筋直径宜为 $16\text{mm} \sim 32\text{mm}$; 全长每隔 $1\text{m} \sim 2\text{m}$ 应设置定位支架。
- 4 钢管土钉杆体宜采用外径不小于 48mm、壁厚不小于 2.5mm 的热轧钢管制作。钢管上应沿杆长每隔 0.25m~1.0m 设置倒刺和出浆孔,孔径宜为 5mm~8mm,管口 2m~3m 范围内不宜设出浆孔。杆体底端头宜制成锥形,杆体接长宜采用帮条焊接,接头承载力不应低于杆体材料承载力。
 - 5 注浆材料宜选用早强水泥或水泥浆中掺入早强剂,注浆体

强度等级不宜低于 20MPa。

- 5.4.3 面层的构造应符合下列规定:
 - 1 应采用钢筋网喷射混凝土面层。
- 2 面层混凝土强度等级不应低于 C20,终凝时间不宜超过4h,厚度宜为 80mm~120mm。
- 3 面层中应配置钢筋网。钢筋网可采用 HPB300 级钢筋, 直径宜为 6mm~10mm,间距宜为 150mm~250mm,搭接长度不 官小于 30 倍钢筋直径。
- **5.4.4** 连接件的构造(图 5.4.4)应符合下列规定:
- 1 土钉之间应设置通长水平加强筋,加强筋宜采用 2 根直径 不小于 12mm 的 HRB335 级或 HRB400 级钢筋。
- 2 喷射混凝土面层与土钉应连接牢固。可在土钉杆端两侧 焊接钉头筋,并与面层内连接相邻土钉的加强筋焊接。

(a) 钻孔注浆钉

(b) 打入式钢花管注浆钉

图 5.4.4 土钉与面层连接构造示意

- 1 喷射混凝土;2 一钢筋网;3 一钻孔;4 一土钉杆体;5 一钉头筋;
 - 6—加强筋;7—钢管;8—出浆孔;9—角钢或钢筋
- 5.4.5 预应力锚杆的设计及构造应符合下列规定:
- 1 锚杆杆体材料可采用钢绞线、HRB335级、HRB400级或 HRB500级钢筋、精轧螺纹钢及无缝钢管。
- 2 竖向布置上预应力锚杆宜布设在基坑的中上部,锚杆间距 不宜小于 1.5 m。

- 3 钻孔直径宜为 110mm~150mm,与水平面夹角宜为 10°~25°。
- 4 锚杆自由段长度宜为 4m~6m,并应设置隔离套管;钻孔 注浆预应力锚杆沿长度方向每隔 1m~2m 设一组定位支架。
- 5 锚杆杆体外露长度应满足锚杆张拉锁定的需要,锚具型号及尺寸、垫板截面刚度应能满足预应力值稳定的要求。
- 6 锚孔注浆宜采用二次高压注浆工艺,注浆体强度等级不宜 低于 20MPa。
- 7 锚杆最大张拉荷载宜为锚杆轴向承载力设计值的 1.1 倍 (单循环验收试验)或 1.2 倍(多循环验收试验),且不应大于杆体抗拉强度标准值的 80%。锁定值宜为锚杆承载力设计值的 60%~90%。
- 5.4.6 围檩的设计及构造应符合下列规定:
- 1 围檩应通长设置。不便于设置围檩时,也可采用钢筋混凝 土承压板。
- 2 围檩宜采用混凝土结构,也可采用型钢结构。围檩应具有足够的强度和刚度。混凝土围檩的截面和配筋应通过设计计算确定,宽度不宜小于 400mm,高度不宜小于 250mm,混凝土强度等级不宜低于 C25。
- 3 承压板宜采用预制钢筋混凝土构件,尺寸和配筋应通过设计计算确定,长度、宽度不宜小于800mm,厚度不宜小于250mm。
 - 4 围檩应与面层可靠连接,承压板安装前宜用水泥砂浆找平。
- 5 采用混凝土承压板时,面层内应配置 4 根~6 根直径16mm~20mm 的 HRB335 级或 HRB400 级变形钢筋作为加强筋。
- 5.4.7 截水帷幕的设计及构造应符合下列规定:
- 1 水泥土桩截水帷幕宜选用早强水泥或在水泥浆中掺入早强剂;单位水泥用量水泥土搅拌桩不宜小于原状土重量的 13%,高压喷射注浆不宜小于 20%;水泥土龄期 28d 的无侧限抗压强度不应小于 0.6MPa。
 - 2 截水帷幕应满足自防渗要求,渗透系数应小于 0.01m/d。

坑底以下插入深度应符合抗渗流稳定性要求,且不应小于1.5m~2m。截水帷幕宜穿过透水层进入弱透水层1m~2m。

- 3 相邻两根桩的地面搭接宽度不宜小于 150mm,且应保证相邻两根桩在桩底面处能够相互咬合。对桩间距、垂直度、桩径及桩位偏差等应提出控制要求。
- 5.4.8 微型桩的设计及构造应符合下列规定:
 - 1 微型桩宜采用小直径混凝土桩、钢管、型钢等。
- 2 小直径混凝土桩、钢管、型钢等微型桩直径或等效直径宜取 100mm ~300mm。
- 3 小直径混凝土桩、钢管、型钢等微型桩间距宜为 0.5m~ 2.0m,嵌固深度不宜小于 2m。桩顶上宜设置通长冠梁。
 - 4 微型桩填充胶结物抗压强度等级不宜低于 20MPa。
- 5.4.9 防排水的构造应符合下列规定:
- 1 基坑应设置由排水沟、集水井等组成的排水系统,防止地 表水下渗。
- 2 未设置截水帷幕的土钉墙应在坡面上设置泄水管,泄水管间距宜为 1.5m~2.5m,坡面渗水处应适当加密。
- 3 泄水管可采用直径 40mm~100mm、壁厚 5mm~10mm 的塑料管制作,插入土体内长度不宜小于 300mm,管身应设置透 水孔,孔径宜为 10mm~20mm,开孔率宜为 10%~20%,宜外裹 1 层~2 层土工布并扎牢。

6 施工与检测

6.1 一般规定

- **6.1.1** 复合土钉墙施工前除应做好常规的人员、技术、材料、设备、场地准备外,尚应做好以下准备工作:
- 1 对照设计图纸认真复核并妥善处理地下、地上管线,设施和障碍物等。
- **2** 明确用地红线、建筑物定位轴线,确定基坑开挖边线、位移观测控制点、监测点等,并妥善保护。
- **3** 掌握基坑工程设计对施工和监测的各项技术要求及有关规范要求,编制专项施工方案,分析关键质量控制点和安全风险源,并提出相应的防治措施。
- 4 做好场区地面硬化和临时排水系统规划,临时排水不得破坏基坑边坡和相邻建筑的地基。检查场区内既有给水、排水管道,发现渗漏和积水应及时处理。雨季作业应加强对施工现场排水系统的检查和维护,保证排水通畅。
 - 5 编制应急预案,做好抢险准备工作。
- **6.1.2** 基坑周围临时设施的搭设以及建筑材料、构件、机具、设备的布置应符合施工现场平面布置图的要求,基坑周边地面堆载、动载严禁超过设计规定。
- 6.1.3 土方开挖应与土钉、锚杆及降水施工密切结合,开挖顺序、方法应与设计工况相一致;复合土钉墙施工必须符合"超前支护,分层分段,逐层施作,限时封闭,严禁超挖"的要求。
- 6.1.4 施工过程中,如发现地质条件、工程条件、场地条件与勘察、设计不符,周边环境出现异常等情况应及时会同设计单位处理;出现危险征兆,应立即启动应急预案。

6.2 复合土钉墙施工

- 6.2.1 复合土钉墙施工宜按以下流程进行:
 - 1 施作截水帷幕和微型桩。
 - 2 截水帷幕、微型桩强度满足后,开挖工作面,修整土壁。
 - 3 施作土钉、预应力锚杆并养护。
 - 4 铺设、固定钢筋网。
 - 5 喷射混凝土面层并养护。
 - 6 施作围檩,张拉和锁定预应力锚杆。
 - 7 进入下一层施工,重复第2款~第6款步骤直至完成。
- 6.2.2 截水帷幕的施工应符合下列规定:
- 1 施工前,应进行成桩试验,工艺性试桩数量不应少于3根。 应通过成桩试验确定注浆流量、搅拌头或喷浆头下沉和提升速度、 注浆压力等技术参数,必要时应根据试桩参数调整水泥浆的配 合比。
- **2** 水泥土桩应采取搭接法施工,相邻桩搭接宽度应符合设计要求。
- 3 桩位偏差不应大于 50mm, 桩机的垂直度偏差不应超过 0.5%。
 - 4 水泥土搅拌桩施工要求:
 - 1) 官采用喷浆法施工, 桩径偏差不应大于设计桩径的 4%。
 - 2)水泥浆液的水灰比宜按照试桩结果确定。
 - 3)应按照试桩确定的搅拌次数和提升速度提升搅拌头。喷 浆速度应与提升速度相协调,应确保喷浆量在桩身长度 范围内分布均匀。
 - 4) 高塑性黏性土、含砂量较大及暗浜土层中,应增加喷浆搅拌次数。
 - 5)施工中如因故停浆,恢复供浆后,应从停浆点返回 0.5m, 重新喷浆搅拌。

- 6)相邻水泥土搅拌桩施工间隔时间不应超过 24h,如超过 24h,应采取补强措施。
- 7) 若桩身插筋, 官在搅拌桩完成后 8h 内进行。
- 5 高压喷射注浆施工要求:
 - 1) 宜采用高压旋喷,高压旋喷可采用单管法、二重管法和三 重管法,设计桩径大于 800mm 时宜用三重管法。
 - 2) 高压喷射水泥浆液水灰比宜按照试桩结果确定。
 - 3)高压喷射注浆的喷射压力、提升速度、旋转速度、注浆流量等工艺参数应按照土层性状、水泥土固结体的设计有效半径等选择。
 - 4)喷浆管分段提升时的搭接长度不应小于 100mm。
 - 5)在高压喷射注浆过程中出现压力陡增或陡降、冒浆量过 大或不冒浆等情况时,应查明原因并及时采取措施。
 - 6)应采取隔孔分序作业方式,相邻孔作业间隔时间不宜小于 24h。
- 6.2.3 微型桩施工应符合下列规定:
 - 1 桩位偏差不应大于 50mm,垂直度偏差不应大于 1.0%。
- 2 成孔类微型桩孔内应充填密实,灌注过程中应防止钢管或 钢筋笼上浮。
 - 3 桩的接头承载力不应小于母材承载力。
- 6.2.4 土钉施工应符合下列规定:
- 1 注浆用水泥浆的水灰比宜为 0.45~0.55,注浆应饱满,注 浆量应满足设计要求。
 - 2 土钉施工中应做好施工记录。
 - 3 钻孔注浆法施工要求:
 - 1)成孔机具的选择要适应施工现场的岩土特点和环境条件,保证钻进和成孔过程中不引起塌孔;在易塌孔土层中,官采用套管跟进成孔。
 - 2)土钉应设置对中架,对中架间距 1000mm~2000mm,支

架的构造不应妨碍注浆。

- 3)钻孔后应进行清孔,清孔后方应及时置入土钉并进行注 浆和孔口封闭。
- 4)注浆宜采用压力注浆。压力注浆时应设置止浆塞,注满 后保持压力 1min ~2min。
- 4 击入法施工要求:
 - 1)击入法施工宜选用气动冲击机械,在易液化土层中宜采 用静力压入法或自钻式土钉施工工艺。
 - 2)钢管注浆土钉应采用压力注浆,注浆压力不宜小于 0.6MPa,并应在管口设置止浆塞,注满后保持压力 1min~2min。若不出现返浆时,在排除窜入地下管道 或冒出地表等情况外,可采用间歇注浆的措施。

6.2.5 预应力锚杆的施工应符合下列规定:

- 1 锚杆成孔设备的选择应考虑岩土层性状、地下水条件及锚杆承载力的设计要求,成孔应保证孔壁的稳定性。当无可靠工程经验时,可按下列要求选择成孔方法:
 - 1)不易塌孔的地层,宜采用长螺旋干作业钻进和清水钻进工艺,不宜采用冲洗液钻进工艺。
 - 2) 地下水位以上的含有石块的较坚硬土层及风化岩地层, 宜采用气动潜孔锤钻进或气动冲击回转钻进工艺。
 - 3)松散的可塑黏性土地层,宜采用回转挤密钻进工艺。
 - 4) 易塌孔的砂土、卵石、粉土、软黏土等地层及地下水丰富的地层,宜采用跟管钻进工艺或采用自钻式锚杆。
- **2** 杆体应按设计要求安放套管、对中架、注浆管和排气管等构件,围檩应平整,垫板承压面应与锚杆轴线垂直。
- 3 锚固段注浆宜采用二次高压注浆法。第一次宜采用水泥砂浆低压注浆或重力注浆,灰砂比宜为1:0.5~1:1、水灰比不宜大于0.6;第二次宜采用水泥浆高压注浆,水灰比宜为0.45~0.55,注浆时间应在第一次灌注的水泥砂浆初凝后即

刻进行,注浆压力宜为 2.5MPa~5.0MPa。注浆管应与锚杆杆体一起插入孔底,管底距离孔底宜为 100mm~200mm。

- 4 锚杆张拉与锁定应符合下列规定:
 - 1)锚固段注浆体及混凝土围檩强度应达到设计强度的75%,目大于15MPa后,再进行锚杆张拉。
 - **2**)锚杆宜采用间隔张拉。正式张拉前,应取 $10\% \sim 20\%$ 的设计张拉荷载预张拉 $1\% \sim 2\%$ 。
 - 3) 锚杆锁定时,宜先张拉至锚杆承载力设计值的 1.1 倍,卸 荷后按设计锁定值进行锁定。
 - 4)变形控制严格的一级基坑,锚杆锁定后 48h 内,锚杆拉力 值低于设计锁定值的 80%时,应进行预应力补偿。
- 6.2.6 混凝土面层施工应符合下列规定:
- 1 钢筋网应随土钉分层施工、逐层设置,钢筋保护层厚度不宜小于 20mm。
- **2** 钢筋的搭接长度不应小于 30 倍钢筋直径;焊接连接可采用单面焊,焊缝长度不应小于 10 倍钢筋直径。
 - 3 面层喷射混凝土配合比宜通过试验确定。
- 4 湿法喷射时,水泥与砂石的质量比宜为 $1:3.5\sim1:4$,水 灰比宜为 $0.42\sim0.50$,砂率宜为 $0.5\sim0.6$,粗骨料的粒径不宜大于 15mm。
- **5** 干法喷射时,水泥与砂石的质量比宜为 1:4~1:4.5,水灰比宜为 0.4~0.45,砂率宜为 0.4~0.5,粗骨料的粒径不宜大于 25mm。

湿法喷射的混合料坍落度宜为 80mm~120mm。干混合料宜随拌随用,存放时间不应超过 2h,掺入速凝剂后不应超过 20min。

- 6 喷射混凝土作业应与挖土协调,分段进行,同一段内喷射顺序应自下而上。
 - 7 当面层厚度超过 100mm 时,混凝土应分层喷射,第一层

厚度不宜小于 40mm,前一层混凝土终凝后方可喷射后一层混凝土。

- 8 喷射混凝土施工缝结合面应清除浮浆层和松散石屑。
- **9** 喷射混凝土施工 24h 后,应喷水养护,养护时间不应少于7d;气温低于+5℃时,不得喷水养护。
- 10 喷射混凝土冬期施工的临界强度,普通硅酸盐水泥配制的混凝土不得小于设计强度的 30%;矿渣水泥配制的混凝土不得小于设计强度的 40%。

6.3 降排水施工

- **6.3.1** 降水井深度、水泵安放位置应与设计要求一致。设有 截水帷幕的基坑工程,应待截水帷幕施工完成后方可坑内 降水。
- **6.3.2** 基坑降水应遵循"按需降水"的原则,水位应降至设计要求深度。
- **6.3.3** 当设计采用降水方法提高坑底土体承载力时,应提前降水,提前时间应符合设计要求。
- 6.3.4 降水井停止使用后应及时进行封堵。
- 6.3.5 基坑内、外的排水系统应满足下列要求:
- 1 宜在基坑场地外侧设置排水沟、集水井等地表水排水系统,有截水帷幕时,排水系统应设置在截水帷幕外侧;排水系统距离基坑或截水帷幕外侧不宜小于 0.5m;排水沟、集水井应具有防渗措施。
- **2** 基坑周边汇水面积较大或位于山地时,尚应考虑地表水的 截排措施。
- 3 基坑内宜随开挖过程逐层设置临时排水系统。开挖至坑底后,宜在坑内设置排水沟、盲沟和集水坑,排水沟、盲沟和集水坑与基坑边距离不宜小于 0.5 m。
 - 4 基坑内、外的排水系统设计应能满足排水流量要求,保证·30·

排水畅通。

6.4 基 坑 开 挖

- **6.4.1** 截水帷幕及微型桩应达到养护龄期和设计规定强度后,再进行基坑开挖。
- **6.4.2** 基坑土方开挖分层厚度应与设计要求相一致,分段长度 软土中不宜大于 15m,其他一般性土不宜大于 30m。基坑面积较 大时,土方开挖宜分块分区、对称进行。
- 6.4.3 上一层土钉注浆完成后的养护时间应满足设计要求,当设计未提出具体要求时,应至少养护 48h后,再进行下层土方开挖。预应力锚杆应在张拉锁定后,再进行下层土方开挖。
- **6.4.4** 土方开挖后应在 24h 内完成土钉及喷射混凝土施工。对自稳能力差的土体宜采用二次喷射,初喷应随挖随喷。
- 6.4.5 基坑侧壁应采用小型机具或铲锨进行切削清坡,挖土机械不得碰撞支护结构、坑壁土体及降排水设施。基坑侧壁的坡率应符合设计规定。
- **6.4.6** 开挖后发现土层特征与提供地质报告不符或有重大地质 隐患时,应立即停止施工并通知有关各方。
- **6.4.7** 基坑开挖至坑底后应尽快浇筑基础垫层,地下结构完成后,应及时回填土方。

6.5 质量检查

6.5.1 复合土钉墙基坑工程可划分为截水帷幕、微型桩、土钉墙、预应力锚杆、降排水、土方开挖等若干分项工程。土钉墙、预应力锚杆的工程质量检验应符合表 6.5.1 的规定,其他各分项工程质量检验标准宜根据检查内容按照现行国家标准《建筑地基基础工程施工质量验收规范》GB 50202 的相关规定执行。

表 6.5.1 土钉墙和锚杆质量检验标准

项	序	检查项目	允许偏差或允许值
	1	土钉或锚杆杆体长度	土钉:±30mm,
主控	1	工行以抽行行件以及	锚杆:杆体长度的 0.5%
项目	2	土钉验收抗拔力或锚	设计要求
		杆抗拔承载力	以归安小
]	1	土钉或锚杆位置	±100mm
	2	土钉或锚杆倾角	±2°
:	3	成孔孔径	±10mm
┃般	4	注浆体强度	设计要求
项目	5	注浆量	大于计算浆量
	6	混凝土面层钢筋网间距	±20mm
İ	7	混凝土面层厚度	平均厚度不小于设计值,最小
	,	化炭工田/云序及	厚度不小于设计值的 80%
	8	混凝土面层抗压强度	设计要求

- 6.5.2 施工前应检查原材料的品种、规格、型号以及相应的检验报告。
- 6.5.3 截水帷幕(水泥土桩)质量检查应符合下列规定,
 - 1 施工前应对机械设备工作性能及计量设备进行检查。
- 2 施工过程应检查施工状况,检查内容应包括桩机垂直度、提升和下沉速度、注浆压力和速度、注浆量、桩长、桩的搭接长度等。
 - 3 水泥土桩的施工质量检验应符合下列规定:
 - 1)桩直径、搭接长度:检查数量为总桩数的2%,且不小于5根;
 - 2)采用钻孔取芯法检验桩体强度和墙身完整性。检查数量 不宜少于总桩数的 1%,且不应少于 3 根。
 - 4 检验点宜布置在以下部位:
 - 1)施工中出现异常情况的桩;
 - 2)地层情况复杂,可能对截水帷幕质量产生影响的桩;
 - 3)其他有代表性的桩。
- 6.5.4 微型桩质量检查应符合下列规定:
- 1 施工过程应检查施工状况,检查内容应包括桩机垂直度、桩截面尺寸、桩长、桩距等。
 - **2** 质量检验应检查桩身完整性,检查数量为总数的 10%,且 · 32 ·

不少于3根。

- 6.5.5 土钉墙质量检查应符合下列规定:
- 1 施工过程中应对土钉位置,成孔直径、深度及角度,土钉长度,注浆配比、压力及注浆量,墙面厚度及强度,土钉与面板的连接情况、钢筋网的保护层厚度等进行检查。
 - 2 土钉墙检测应符合下列规定:
 - 1)土钉应通过抗拔试验检测抗拔承载力。抗拔试验应分为 基本试验及验收试验。验收试验数量不宜少于土钉总数 的 1%,且不应少于 3 根。
 - 2)墙面喷射混凝土厚度应采用钻孔检测,钻孔数宜每200m²墙面积一组,每组不应少于3点。
- 6.5.6 预应力锚杆质量检查应符合下列规定:
- 1 施工过程中应对预应力锚杆位置,钻孔直径、长度及倾角, 自由段与锚固段长度,浆液配合比、注浆压力及注浆量,锚座几何 尺寸,锚杆张拉值和锁定值等进行检查。
- 2 锚杆应采用抗拔验收试验检测抗拔承载力,试验数量不宜少于锚杆总数的 5%,且不应少于 3 根。验收试验时最大试验荷载应取轴向承载力设计值的 1.1 倍(单循环验收试验)或 1.2 倍(多循环验收试验)。
- 6.5.7 降排水工程质量检查应符合下列规定:
- 1 降水系统施工应检查井点(管)的位置、数量、深度、滤料的 填灌情况及排水沟(管)的坡度、抽水状况等。
- **2** 降水系统安装完毕后应进行试抽,检查管路连接质量、泵 组的工作状态、井点的出水状况等。
- 6.5.8 土方开挖质量检查应符合下列规定:
- 1 土方开挖过程中应检查开挖的分层厚度、分段长度、边坡坡度和平整度。
- **2** 土方开挖完成后,应对基坑坑底标高、基坑平面尺寸、边坡坡度、表面平整度、基底土性进行检查。

7 监 测

- 7.0.1 监测方案的编制和实施应符合现行国家标准《建筑基坑工程监测技术规范》GB 50497 的有关规定。
- 7.0.2 现场监测应采用仪器监测与巡视检查相结合的方法,基 坑施工及使用期内应有专人进行巡视检查。
- 7.0.3 监测项目、监测报警值、监测频率应由基坑工程设计方提出。
- 7.0.4 当出现下列情况之一时,必须立即进行危险报警,并通知 有关各方对基坑支护结构和周边环境中的保护对象采取应急 措施。
 - 1 监测项目的内力及变形监测累计值达到报警值。
- **2** 复合土钉墙或周边土体的位移值突然明显增大或基坑出现流土、管涌、降起、陷落或较严重的渗漏等。
 - 3 土钉、锚杆体系出现断裂、松弛或拔出的迹象。
- **4** 周边建筑的结构部分、周边地面出现较严重的突发裂缝或 危害结构的变形裂缝。
 - 5 周边管线变形突然明显增长或出现裂缝、泄漏等。
- 6 根据当地工程经验判断,出现其他必须进行危险报警的情况。
- 7.0.5 监测技术成果应包括当日报表、阶段性报告和总结报告。 技术成果提供的内容应真实、准确、完整。技术成果应按时报送。

附录 A 土钉抗拔基本试验

- A.0.1 基本试验用土钉均应采用非工作钉。
- A.0.2 每一典型土层中基本试验土钉数量不应少于3根。
- **A. 0.3** 基本试验土钉宜设置 $0.5m\sim1.0m$ 的自由段,其他条件 (施工工艺、设计及施工参数等)应与工作土钉相同。
- **A. 0.4** 可按本规范式(5. 2. 6-2)预估土钉极限抗拔力 T_m 。
- **A.0.5** 选取土钉杆体材料时,应保证杆体设计抗拉力不小于 $1.25T_{m.o.}$
- A.0.6 试验应在注浆体无侧限抗压强度达到 10MPa 后进行。
- A. 0.7 加载装置(千斤顶、油泵等)、计量仪表(压力表、测力计、 位移计等)等应在有效率定期内;千斤顶的额定负载宜为最大试验 荷载的 1.2 倍~2.0 倍,计量仪表的量程应与之匹配;压力表精度 不应低于 0.4 级,位移计精度不应低于 0.01mm;试验装置应保证 土钉与千斤顶同轴;反力装置(承压板或支座梁)应有足够的强度 和刚度;位移计应远离千斤顶的反力点,避免受到影响。
- **A.0.8** 荷载应逐级增加,加荷等级与观测时间宜符合表 A.0.8 的规定。每级加荷结束后,下级加荷前及中间时刻宜各测读钉头位移1次。

表 4.0.8	土钉抗拔基本试验加荷等级与观测时间
4X /A. U. U	工打机及基本风湿加门等双弓龙树的闩

加荷等级	0.1T _y	0.3 <i>T</i> _y	0.6T _y	0.8T _y	0.9T _y	1.0T _y		破坏
观测时间(min)	2	5	5	5	10	10	10	

A. 0.9 每级加荷观测时间内如钉头位移增量小于 1.0mm,可施加下一级荷载,否则应延长观测时间 15min;如增量仍大于 1.0mm,应再次延长观测时间 45min,并应分别在 15min、30min、45min、60min 时测读钉头位移。

- **A. 0. 10** 试验荷载超过 T_m 后,宜按每级增量 $0.1T_m$ 继续加荷试验,直至破坏。
- **A. 0.11** 试验完成后,应按每级荷载及对应的钉头位移整理制表,绘制荷载一位移(Q-S)曲线。
- A. 0. 12 出现下述情况之一时可判定土钉破坏并终止试验:
- 1 后一级荷载产生的位移量超过前一级(第一、二级除外)荷载产生的位移量的3倍。
- **2** 钉头位移不稳定(延长观测时间 45min 内位移增量大于 2.0mm)。
 - 3 土钉杆体断裂。
 - 4 土钉被拔出。
- A. 0. 13 单钉极限抗拔力应取破坏荷载的前一级荷载。
- **A. 0. 14** 每组试验值极差不大于 30%时,应取最小值作为极限抗拔力标准值;极差大于 30%时,应增加试验数量,并应按 95%保证概率计算极限抗拔力标准值。
- **A. 0. 15** 根据土钉极限抗拔力标准值反算土钉与土体的粘结强度标准值 q_{ab} 。

附录 B 土钉抗拔验收试验

- **B. 0.1** 验收试验土钉数量应为土钉总数的 1%,且不应少于 3根。
- B. 0.2 试验应在注浆体无侧限抗压强度达到 10MPa 后进行。
- B. 0. 3 加载装置(千斤顶、油泵等)、计量仪表(压力表、测力计、位移计等)等应在有效率定期内;千斤顶的额定负载宜为最大试验荷载的 1. 2 倍~2. 0 倍,计量仪表的量程应与之匹配;压力表精度不应低于 0. 4 级,位移计精度不应低于 0. 01mm;试验装置应保证土钉与千斤顶同轴;反力装置(承压板或支座梁)应有足够的强度和刚度;位移计应远离千斤顶的反力点,避免受到影响。
- B. 0.4 试验土钉应与面层完全脱开,处于独立受力状态。
- **B. 0. 5** 荷载应逐级增加,加荷等级与观测时间宜符合表 B. 0. 5 的规定。每级加荷结束后,下级加荷前及中间时刻宜各测读钉头位移 1 次。

加荷等级	0.1T _y	0.5T _y	0.8T _y	1.0Ty	1.1 <i>T</i> _y	0.1T _y
祖劉明は同(から)	9	5	10	10	10	2

表 B. 0.5 土钉抗拔验收试验加荷等级与观测时间

- B. 0. 6 每级加荷观测时间内如钉头位移增量小于 1. 0mm,可施加下一级荷载,否则应延长观测时间 15min;如增量仍大于 1. 0mm,应再次延长观测时间 45min,并分别在 15min、30min、45min、60min 时测读钉头位移。
- **B. 0.7** 试验完成后,应按每级荷载对应的钉头位移整理制表,绘制荷载一位移(Q-S)曲线。
- B.0.8 出现下述情况之一时可判定土钉破坏:
 - 1 后一级荷载产生的位移量超过前一级(第一级除外)荷载

产生的位移量的 3 倍。

- **2** 钉头位移不稳定(延长观测时间 45min 内位移增量大于 2.0mm)。
 - 3 杆体断裂。
 - 4 土钉被拔出。
- B.0.9 土钉破坏或加载至 1.1T,时位移稳定,应终止试验。
- B. 0. 10 单钉抗拔力应取破坏荷载的前一级荷载,如没有破坏则应取最大试验荷载。
- **B. 0. 11** 验收合格标准:检验批土钉平均抗拔力不应小于 T_y ,且单钉抗拔力不应小于 0. 8 T_y 。不能同时符合这两个条件则应判定为验收不合格。
- **B. 0. 12** 验收不合格时,可抽取不合格数量 2 倍的样本扩大检验。将扩大抽检结果计入总样本后如仍不合格,则应判断该检验批产品不合格,并应对不合格部位采取相应的补救措施。

本规范用词说明

- 1 为便于在执行本规范条文时区别对待,对要求严格程度不同的用词说明如下:
 - 1)表示很严格,非这样做不可的: 正面词采用"必须",反面词采用"严禁";
 - 2)表示严格,在正常情况下均应这样做的: 正面词采用"应",反面词采用"不应"或"不得";
 - 3)表示允许稍有选择,在条件许可时首先应这样做的: 正面词采用"宜",反面词采用"不宜";
 - 4)表示有选择,在一定条件下可以这样做的,采用"可"。
- **2** 条文中指明应按其他有关标准执行的写法为:"应符合……的规定"或"应按……执行"。

引用标准名录

- 《建筑地基基础工程施工质量验收规范》GB 50202
- 《建筑基坑工程监测技术规范》GB 50497
- 《建筑基坑支护技术规程》JGJ 120

中华人民共和国国家标准

复合土钉墙基坑支护技术规范

GB 50739 - 2011

条文说明

制定说明

《复合土钉墙基坑支护技术规范》GB 50739—2011 经住房和城乡建设部 2011 年 9 月 16 日以第 1159 号公告批准发布。

本规范编制过程中,编制组进行了广泛和深入的调查研究,总结了我国复合土钉墙基坑支护的勘察、设计、施工、检查、监测的实践经验,同时参考了国外先进的技术法规、技术标准。

为便于广大设计、施工、科研、学校等单位有关人员在使用本规范时能正确理解和执行条文规定,《复合土钉墙基坑支护技术规范》编制组按章、节、条顺序编制了本规范的条文说明,对条文规定的目的、依据以及执行中需要注意的有关事项进行了说明。但是,本条文说明不具备与规范正文同等的法律效力,仅供使用者作为理解和把握规范规定的参考。

目 次

1	总	则 ·						(10)
1			••••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••	(47)
2	术	语和符号	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••	(48)
	2. 1	术语	•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••	(48)
3	基	本规定 ・		• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••	(49)
4	勘	察・	•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••	(54)
5	设	计·	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••	(56)
	5. 1	一般规定	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		(56)
	5.2	土钉长度	及杆体截面确定	定	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		(58)
	5.3	基坑稳定	性验算	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	• • • •	(59)
	5.4	构造要求	•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • •	(63)
6	施	工与检测	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • •	(66)
	6.1	一般规定	••••••			• • • • • • • • • • • • • • • • • • • •		(66)
	6.2	复合土钉	墙施工	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • •	(67)
	6.3	降排水施	I	• • • • • • • • • • • • • • • • • • • •	•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • •	(68)
	6.4	基坑开挖	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••	(68)
7	监	测 ·	•••••			• • • • • • • • • • • • • • • • • • • •	• • • •	(69)
附	录 A	上钉抗	1拔基本试验		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • •	(70)
附	录 B	土钉抗	拔验收试验					(71)

1 总 则

- **1.0.4** 本条规定除遵守本规范外,复合土钉墙基坑支护工程尚应符合国家现行有关标准的规定。与本规范有关的国家现行规范、规程主要有:
 - 1 《岩土工程勘察规范》GB 50021;
 - 2 《建筑地基基础设计规范》GB 50007;
 - 3 《建筑基坑工程监测技术规范》GB 50497;
 - 4 《建筑地基基础工程施工质量验收规范》GB 50202;
 - 5 《锚杆喷射混凝土支护技术规范》GB 50086;
 - 6 《建筑基坑支护技术规程》JGJ 120;
 - 7 《建筑桩基技术规范》JGJ 94;
 - 8 《建筑地基处理技术规范》JGJ 79;
 - 9 其他未列出的相关标准。

2 术语和符号

2.1 术 语

- **2.1.4** 用作截水帷幕的水泥土桩主要有水泥土搅拌桩和高压喷射水泥土桩。
- 2.1.5 微型桩包括直径 100mm~300mm 的灌注桩(骨架可为钢筋笼、型钢、钢管等,胶结物可为混凝土、水泥砂浆、水泥净浆等)和各种材料及形式的预制构件,如小直径预制桩、木桩、型钢等。本规范考虑了微型桩对基坑整体稳定性的贡献。
- 2.1.6 复合土钉墙中强调以土钉为主要受力构件,整体稳定性主要由土和钉的共同作用提供,同时考虑预应力锚杆、截水帷幕、微型桩对整体稳定性的贡献。

3 基本规定

3.0.1 作为基坑工程的专项技术标准之一,复合土钉墙基坑支护安全等级应与现行行业标准《建筑基坑支护技术规程》JGJ 120 相一致。《建筑基坑支护技术规程》JGJ 120 中规定,应综合考虑基坑周边环境状况、地质条件的复杂程度、基坑深度等因素,根据可能产生的破坏后果的严重程度,按表 1 采用基坑支护的安全等级。对基坑的不同侧壁可采用不同的安全等级。

安全等级	破坏后果
一级	支护结构失效、土体失稳或基坑过大变形对基坑周边环境及主 体结构施工的影响很严重
二级	支护结构失效、土体失稳或基坑过大变形对基坑周边环境及主 体结构施工的影响严重
三级	支护结构失效、土体失稳或基坑过大变形对基坑周边环境及主 体结构施工的影响不严重

表 1 基坑支护安全等级

- 3.0.2 复合土钉墙基坑支护的形式主要有下列七种形式 (图 1):
 - 1 截水帷幕复合土钉墙「图 1(a)]。
 - 2 预应力锚杆复合土钉墙[图 1(b)]。
 - 3 微型桩复合土钉墙「图 1(c)]。
 - 4 截水帷幕一预应力锚杆复合土钉墙[图 1(d)]。
 - 5 截水帷幕一微型桩复合土钉墙[图 1(e)]。
 - 6 微型桩一预应力锚杆复合土钉墙[图 1(f)]。
 - 7 截水帷幕一微型桩-预应力锚杆复合土钉墙[图 1(g)]。

(g)截水帷幕-微型桩-预应力锚杆复合土钉墙 图 1 复合土 钉墙 基坑 支护形式

1一土钉;2一喷射混凝土面层;3一截水帷幕;4一预应力锚杆;5一围檩;6一微型桩

复合土钉墙支护方案的选型应综合考虑土质、地下水、周边环境以及现场作业条件,通过工程类比和技术经济比较后确定。有地下水影响时,宜采用有截水帷幕参与工作的复合土钉墙形式;周边环境对基坑变形有较高控制要求或基坑开挖深度较深时,宜采用有预应力锚杆参与工作的复合土钉墙形式;基坑侧壁土体自立性较差时,宜采用有微型桩参与工作的复合土钉墙形式;当受多种因素影响时,应根据具体情况采取多种组合构件共同参与工作的复合土钉墙形式。

3.0.3 复合土钉墙较一般土钉墙具有更广泛的适用性。截水 帷幕在隔水的同时,对土体也起到了加固作用,增加了坑壁的 自稳能力,因此较一般土钉墙,复合土钉墙更适用于地下水位 浅、土体强度低、自立性差的地层中,在我国诸多软土地区较 浅基坑(一般坑深不超过 5m~7m)中有广泛的工程实践,积累了丰富的经验。但在软土地层中采用复合土钉墙应满足一定的限制条件。许多工程实践表明,当基坑计算范围内存在厚度大于 5m 的流塑状土(当为淤泥和泥炭时厚度大于 2m)或坑底存在泥炭时不宜采用复合土钉墙支护;当坑底为淤泥和淤泥质土时应慎用复合土钉墙支护,如果采用,须对坑底软弱土层进行加固或采取设置强度较大的微型桩等其他加强措施。

在饱和粉土、砂土地层中,尤其要防止出现流砂,没有有效的降水、截水措施则不得采用复合土钉墙支护;而基坑开挖深度范围内如有承压水作用则应采取降水减压措施后再使用。

3.0.4 当场地条件允许时,复合土钉墙支护宜有一定的坡率,放坡开挖较直立开挖的复合土钉墙更有利于保证基坑稳定性,尤其是采用预应力锚杆后,对控制基坑变形更加有利,开挖深度也可以进一步增大。

经工程统计,诸多基坑深度在 13m 以内,将直立开挖的复合 十钉墙基坑深度限定在 13m 更有利于工程应用。

3.0.6 从基坑开挖至地下工程完成、基坑回填为止,基坑支护

工程经历基坑施工期、使用期两个阶段。为控制基坑位移,基坑施工期内应连续施工。本规范基坑工程安全性设计指标基于基坑属于临时性工程,因此基坑工程的使用期不应超过1年。当使用期超过1年或设计规定后,应对基坑安全进行评估,依据基坑工程现状重新评价基坑稳定性、构件的承载能力,并应重新确定环境保护所对应的变形控制指标,以确保基坑及周边环境的安全与正常使用。基坑施工期、使用期内如遇停工,停工时间也应计人使用期内。

3.0.9 复合土钉墙基坑支护的变形与地质条件、周边环境条件、施工工况以及基坑开挖深度、土钉长度、土钉注浆量、基坑单边长度、超前支护刚度等多方面因素有关,由于地质勘察所获得的数据还很难准确代表岩土层的全面情况,对岩土层和复合土钉墙本身所作的计算模型、计算假定等也不能完全准确代表实际状况,而施工过程中复合土钉墙受力又经常发生动态变化,因此目前对复合土钉墙基坑支护的变形进行计算是十分困难的。

复合土钉墙基坑支护的变形可用有限元等数值分析方法作出估算,但成果的可靠性难以评估。目前较成熟的复合土钉墙变形计算研究成果主要是根据监测资料反演取得的。一些重要的、大型基坑工程建立了数值分析模型,将已观测到的成果作为数据输入,据此预测下一步变化,如此反复,得出的预测值与实测较为接近。但是,由于建模的复杂性及早期预测的准确度较低等因素,这类方法目前未能普遍应用。近些年,不少学者致力于建立相对简单的经验公式对变形进行预测,取得了一定成果,但成果都是针对某地层、某地区取得的。

图 2 是上海市工程建设标准《基坑工程技术规范》DG/T J08-61-2010 提出的上海地区估算复合土钉墙位移的经验公式。图中单排超前支护指单排水泥土搅拌桩(宽 0.7m),双排超前支护指双排水泥土搅拌桩(宽 1.2m)。

图 2 土钉支护位移估算

• 53 •

4 勘 察

4.0.1 基坑工程勘察包括岩土勘察和周边环境调查两项工作,应与拟建建筑的岩土工程勘察同时进行。目前岩土工程勘察重点是建筑物轮廓线以内范围,着重基础持力层调查,较少单独进行基坑开挖边界以外范围的勘察,并经常忽略浅部土层的土层划分、取样试验、土性参数,而这些内容正是基坑工程设计、施工的重要依据。当已有勘察成果不能满足基坑工程设计和施工要求时,应补充基坑工程专项勘察。

勘察阶段须同时进行周边环境安全性调查工作。其目的一方面是评估基坑开挖和降水引起的变形对周边环境产生不利影响的可能性以及地下障碍物是否影响到土钉及锚杆施工,另一方面是避免钻探和土钉、锚杆成孔过程中损坏地下管线等设施。本章内容适用于土质岩土工程勘察。

4.0.2 基坑开挖及降水对周边环境的影响范围较广,开挖边界线外开挖深度的 1 倍~5 倍范围内均有可能受到影响,有时甚至更远,因此勘察的范围应根据基坑的复杂程度、设计要求、场地条件、周边环境条件等综合确定,但平面范围不宜小于基坑开挖边界线外开挖深度的 2 倍。考虑到土钉、锚杆的设置要求,平面范围也不宜小于土钉或锚杆估算长度的 1.2 倍。

由于受场地、周边环境的限制,基坑开挖线外的勘察主要以现场踏勘、调查和收集已有资料为主,必要时布置适量的勘探点。

4.0.4 我国发生的滑塌破坏的土钉墙及复合土钉墙实例的统计数据表明,勘察中忽略了软弱土夹层的存在是发生滑塌破坏的原因之一。因此勘察中应将软弱土夹层(特别是坑底附近的)划分出来。

- **4.0.6** 土工试验应为基坑工程设计、施工提供符合实际情况的土性指标。勘察方应根据复合土钉墙设计计算、施工的要求,选择合适的试验方法(包括取样的方法等),提供的土性参数应综合考虑试验方法、工程经验,并与计算模型相匹配。
- **4.0.9** 应明确提供基坑开挖影响范围内各地层的物理力学指标; 有地下水时,应提供各含水层的渗透系数;存在承压水时,应分层 提供水头高度。

5 设 计

5.1 一般规定

- 5.1.2 设计计算时可取单位长度按平面应变问题分析计算,也可按照空间协同作用理论分析计算。当采用空间协同作用理论时,复合土钉墙设计宜考虑时空效应对稳定性的不利影响,不宜考虑边角效应对稳定性的有利影响。
- **5.1.3** 附加荷载包括基坑周边施工材料和机械设备荷载、邻近既有建筑荷载、周边道路车辆荷载等。对基坑周边土方运输车等重型车辆荷载、土方堆置荷载等应做必要的复核或荷载限制。
- **5.1.4** 因为坑中坑设计和处理不当而造成的基坑事故屡有发生,故制定本条规定。坑中坑对复合土钉墙支护的局部稳定存在不利影响,进而可能引发基坑整体性破坏。
- 5.1.7 表 5.1.7 数据是根据大量抗拔试验结果反算出来的,试验时,土钉长度为 6m~12m;钻孔注浆土钉采用一次重力式注浆工艺,成孔直径 70mm~120mm。钢管注浆土钉均设置倒刺,倒刺排距 0.25m~1.0m,数量 2 个/m~4 个/m,注浆压力 0.6MPa~1.0MPa。反算时,假定钢管注浆土钉直径 80mm;钻孔注浆土钉如无明确要求则假定直径 100mm。

备注中的压力注浆指注浆压力大于 0.6MPa,二次注浆系指 第二次采用高压注浆。

表 5. 1. 7 土钉与土体粘结强度标准值 q_{sk} 是以一定工艺为基础的统计值,也参考了相关规范和工程经验,给出的 q_{sk} 值是一个较宽泛的范围值。由于各地区地层特性差异和施工工艺区域性特点明显, q_{sk} 取值原则是在有地区经验情况下,应优先根据地区经验选取。

- 5.1.8 土钉及锚杆施工易造成水土流失,可能对周边环境产生不利影响,土钉及锚杆设置时应予以充分考虑;此外,基坑回填后土钉及锚杆残留在土体中,也可能会影响邻近地块的后续工程,必要时可采用可回收式锚杆及土钉。
- 5.1.9 冻融对季节性冻土影响非常明显,季节性冻土区采用复合土钉基坑支护时,应考虑冻胀后土钉受力增大、基坑位移增加以及融化后土体强度降低等不利影响。有研究表明,在冻胀力作用下土钉所受拉力会比初始拉力大3倍~5倍,土钉拉力分布形式也将发生改变;同时喷射混凝土面层后的土压力增大,基坑位移增加并且解冻后不可恢复。考虑地下水的影响,尤其是在有渗水的情况下,复合土钉墙不宜设置短土钉;考虑冻融深度的影响,该范围内的土体强度和模量以及土钉与土体的界面粘结强度也应适度折减;设计和施工还应确保土钉钉头连接牢固,同时应加强基坑监测。
- 5.1.12 复合土钉墙基坑变形既受荷载作用下土体自身变形的影响,同时还受到周边环境变形控制的约束。受荷作用下土体自身变形的大小主要与荷载、土性、开挖深度等因素有关。复合土钉墙基坑在满足自身稳定的同时,还应考虑变形对周边环境的影响,满足周边环境对变形的控制要求。

变形控制指标是基坑正常变形的一个范围值,反映了基坑仍处于正常状态之中,是基坑变形设计的允许控制指标,超出该指标意味着基坑可能进入安全储备低、变形异常甚至进入危险工作状态。

确定非常准确的基坑变形控制指标是十分困难的。从我国复合土钉墙工程实践和现有的研究水平出发,编制组在对 202 个复合土钉墙基坑工程监测数据的分析基础上,结合工程经验和地方工程建设标准等提出了依据地层条件、基坑安全等级确定复合土钉墙变形控制指标的建议值。

对 202 个复合土钉墙基坑工程监测的统计情况分析结果表

明,复合土钉墙侧向位移范围一般在 $0.1\%H\sim1.5\%H(H)$ 为基坑开挖深度)之间,软土中多数在 $0.3\%H\sim1.5\%H$ 之间,一般土层中多数在 $0.1\%H\sim0.7\%H$ 之间。

5.2 土钉长度及杆体截面确定

- **5.2.1** 表 5.2.1 提供的土钉长度及间距主要是依据工程经验,用于初步选择复合土钉墙中土钉的设计参数。设计时须进行稳定性分析验算,根据验算结果再对土钉初选设计参数进行修改和调整。
- 表 5.2.1 给出的土钉长度与基坑深度比是一个范围值,基坑较浅时可取较大值,有预应力锚杆或截水帷幕时可取较小值。
- **5.2.3** 图 5.2.3(b)是根据工程实测数据并考虑安全条件后简化的结果,通过假定土体侧压力总值等于朗肯主动土压力计算后得出。

假定土钉轴向荷载标准值的主要目的是为了估算土钉的长度 与分布密度。

- **5.2.4** 规定 $p_{m,max}$ 不宜小于 0. $2\gamma_{ml}$ H 的主要目的是避免局部土 钉长度偏短。
- 5.2.5 ζ 是在一定假设条件下得到的半理论半经验系数,该假设条件是土压力水平向分布且作用在面层上。实际上,复合土钉墙的主动土压力并不作用在面层上, ζp 也不是作用在倾斜面上的主动土压力。
- 5.2.6 检验土钉施工质量的最好办法是对土钉进行全长现场抗 拨试验,故应对抗拔力进行设计计算以便于工程检测。土钉验收 抗拔力并非该土钉应承受的荷载,只是设计检验值,与计算单根土 钉长度时假定的土钉轴向荷载标准值没有对应关系。

考虑到土体的变异性、施工水平的波动性及对成品土钉的保护,式(5.2.6-2)中引入了工作系数,其主要目的是防止过高评估土钉验收抗拔力在整体稳定中的作用。

5.3 基坑稳定性验算

5.3.1 一些文献中,把滑移面全部或部分穿过被土钉加固的土体时的破坏模式称为"内部稳定破坏",完全不穿过时称为"外部整体稳定破坏"或"深部稳定破坏"。按本规范推荐的整体稳定性验算模型及公式,程序自动搜索最危险滑移面时,是不分"内外"的,搜索到的最危险滑移面,是土体、土钉及各复合构件提供的安全度之和为最小值的滑移面,如果此时土钉及各构件的贡献值为零,即为"外部整体稳定"模式。但经验与理论分析表明,土钉贡献值为零的情况不会出现,因为最危险滑移面至少要穿过最下一排或最长一排土钉,如图 3 曲线 1 所示。曲线 2 为"外部整体稳定"最危险滑移面,与曲线 1 相比,因位置后移导致滑弧长度增加,土体抗剪强度提供的安全度增加。土钉在滑弧外的长度 l_m 很小时,摩阻力 N_u 很小, N_u 对安全度的贡献,小于曲线 1 后移至曲线 2 时土体抗剪强度提供的安全度增量,故曲线 2 的安全度大于曲线 1,曲线 2 并非最危险滑移面。故本规范不采用"外部整体稳定"及"内部整体稳定"等概念。

图 3 整体稳定性分析比较

整体稳定验算可计取止水帷幕、预应力锚杆及微型桩的作用,这是对大量工程实践统计的结果。如果不计取这些构件的作用,设计将过于保守,不仅与事实不符,且有些情况下(如在软弱土层中)设计计算很难达到一定的安全度,人为地限制了复合土钉墙技

术的应用。当然,也不能过高估算这些复合构件的作用,如果这些复合构件(如微型桩或锚杆)起到了主导性作用,就已经不适用本规范推荐的整体稳定性验算公式了。验算公式中,通过设置组合作用折减系数,限制了这些复合构件的作用程度。

5.3.2 式(5.3.2-1)以在国内广泛使用、直观、易于理解的瑞典条分法作为理论基础,采用极限平衡法作为分析方法,认为截水帷幕、预应力锚杆及微型桩能够与土钉共同工作,计算时考虑这些复合构件的作用。

为便于研究,公式作了如下假定及简化:

- 1 破坏模式为圆弧滑移破坏;
- 2 土钉为最主要受力构件;
- **3** 土钉、预应力锚杆只考虑抗拉作用,截水帷幕及微型桩只 考虑抗剪作用,忽略这些构件的其他作用;
- 4 破坏时土钉与土体能够发挥全部作用,复合构件不能与土 钉同时达到极限平衡状态,即不能发挥最大作用,也不能同时发挥 较大作用,要按一定规则进行强度折减,构件强度越高、类型越多、 组合状态越不利,则折减越大;
- 5 预应力锚杆拉力的法向分力与切向分力可同时达到极限值,但只是计取假定滑移面之后的锚固段提供的抗滑力矩;
 - 6 滑移面穿过截水帷幕或微型桩时,平行于桩的正截面;
 - 7 不考虑地震作用;
 - 8 安全系数定义为滑移面的抗滑力矩与滑动力矩之比。

破裂面的形状不能事先确定,取决于坡面的几何形状、土体的性状、土钉参数及地面附加荷载等许多因素,采用圆弧形主要因为它与一些试验结果及大多数工程实践比较接近,且分析计算相对容易一些。在某些特殊情况下,圆弧滑动并非最佳,需要与其他破坏模式对比。例如,在深厚的软土地层,采用圆弧形可能会过高估计软土的被动土压力,如图 4(a)所示,土钉墙可能会沿着曲线 2破坏而并非圆弧 1,因土质软弱,坑底的滑移面不会扩展到很远的

地方;基坑上半部分为软弱土层、下半部分为坚硬土层,且层面向基坑内顺层倾斜时,可能产生顺层滑动,破裂面为双折线或上曲下直的双线,如图 4(b)所示;土体中存在较薄弱的土层或薄夹层时,可能会产生沿薄弱面的滑动破坏,如图 4(c)所示。

图 4 特殊地质条件下的破坏模式

无试验资料或类似经验时,截水帷幕如采用深层搅拌法形成,可按表 2 取值[喷浆法,单轴,(2~4)喷、4 搅工艺],工艺不同时可参考该表取值。高压喷射注浆法形成的水泥土截水帷幕抗剪强度可参考表 2,按水泥土设计抗压强度标准值的 15%~20%取值,但最大不应超过 800kPa。

抗肝	E强度(MPa)	0.5~1.0	1.0~1.5	1.5~2.0	>2.0
抗身	p强度(kPa)	100~250	150~300	200~400	400

表 2 深层搅拌法水泥土抗剪强度标准值 τ。

5.3.3 式(5.3.2-1)是个半经验半理论公式,其中的组合作用折减系数根据实际工程反算而来。反算时,在国内外已实施的约500个复合土钉墙案例中,挑选了202个有代表性的进行了详细计算。思路为:通过对一些特殊案例(已塌方或变形很大的工程)的定性分析及定量计算,估算出折减系数的大致范围,然后再通过大量的案例(正常使用的工程),验证该范围的合理性。

组合作用折减系数 η 是经验值,根据大量失稳、濒临失稳及正常使用工程的监测数据反算而来。反算时作了如下假设:

- 1 基坑坍塌时支护体系达到了承载能力极限状态,略低于临界稳定,整体稳定安全系数 K,为 0.98~0.99。
- **2** 基坑水平位移很大时,支护体系为正常使用极限状态,接近临界稳定, K_s 为 1.01 \sim 1.03。
- 3 正常使用时,土钉墙的位移量与整体稳定安全系数 K, 之间大致存在着表 3 所示的经验关系。

位移量级	位移量级 很小		一般	较大	很大
位移比(%)	<0.2	0.2~0.4	0.35~0.7	0.6~1.0	>1.0
位移(mm)	10~20	15~40	25~70	40~100	>100
K _s	>1. 40	1.30~1.45	1.15~1.35	1.05~1.20	1.01~1.05

表 3 土钉墙位移与整体稳定安全系数 K,关系

- 4 微型桩与土钉墙结合后整体性不如截水帷幕与土钉墙结合后整体性效果好。
- 5 预应力锚杆的组合作用折减系数取 0.5 时,作用效果与将 其视为土钉相当。而预应力锚杆的作用效果应好于将之完全视为 土钉。

提高截水帷幕及微型桩材料的抗剪强度、增大截面面积等会使复合构件自身抗剪能力得到较大提高,但复合土钉墙整体稳定性依靠地是土、土钉与复合构件的协同作用,复合构件自身抗剪能力提高的程度越大,复合土钉墙整体稳定性提高的程度越小,并不同比增长。

5.3.5 复合土钉墙的整体稳定性首先应由土与土钉的共同作用 提供基本保证,设置复合构件的主要目的是隔水或减小变形、控制 位移,同时对整体稳定性亦有贡献。本条规定保证了土钉是最主 要受力构件,弱化了复合构件的抗力作用,从而保证了工程安全性 及整体稳定性验算公式的适用性。

大量基坑监测数据统计结果表明,如满足以下条件,基坑位移 · 62 ·

不大:

- 1 截水帷幕单独或与微型桩组合作用时, $K_{si} + K_{si} \ge 0.86$ 。
- **2** 微型桩单独作用时, K_{s0} + K_{s1} ≥ 0.97。
- **3** 预应力锚杆单独作用时, K_{s0}+K_{s1}≥0.96。
- **4** 截水帷幕及微型桩分别与预应力锚杆组合或三者一起组合作用时, $K_{s0} + K_{s1} + 0.5K_{s2} \ge 1.0$ 。

本条统一为式(5.3.5),是偏于安全的。

- 5.3.6 常用的基坑抗隆起稳定性分析模式主要有地基承载力模式及圆弧滑动模式。复合土钉墙的刚度及构件强度均较弱,很难形成转动中心,不宜采用圆弧滑动模式。
- **5.3.7** 采用式(5.3.7-1)验算坑底抗隆起稳定性时,注意以下问题:
 - 1 式(5.3.7-1)忽略了土钉及锚杆的抗剪作用。
 - 2 坡面倾斜时可考虑倾斜区土体自重减轻的有利因素。
- 3 以下情况可计取 t:微型桩为直径大于 $200 \,\mathrm{mm}$ 的钻孔混凝土桩、不小于 16 号的工字钢、预制桩或预应力管桩,间距不超过 4 倍桩径;插入不小于 12 号工字钢的水泥土墙;厚度不小于 $1 \,\mathrm{m}$ 的水泥土墙等。
- 4 以下情况不宜计取 t:厚度小于 0.5m 的水泥土墙;超前支护桩为竹桩,直径不大于 48mm 的钢管及直径不大于 50mm 的木桩等。
- 5 坡脚附近有软弱土层的一级基坑,采用复合土钉墙支护很 难满足抗隆起稳定性要求,故没有给出安全等级为一级的基坑抗 隆起稳定安全系数指标。

5.4 构造要求

5.4.1 从利于基坑稳定和控制变形考虑,土钉在竖向布置上不应采用上短下长布置形式。上下等长这种布置形式性价比不好,一

般只在基坑较浅、坡角较大、土质较好及土钉较短时采用。上长下短这种布置形式有利于减小坑顶水平位移,但有时因上排土钉受到周边环境(如地下管线或障碍物)限制可能难以实施。中部长上下短这种布置形式性价比较好,宜优先选用。在这种布置形式中,第一排土钉对减少土钉墙位移有较大帮助,所以也不宜太短。

- **5.4.2** 成孔注浆土钉施工质量容易保证,与土层摩阻力较高,应优先选用。
- **5.4.3、5.4.4** 面层及连接件受力较小,一般按构造设计即可满足安全要求。
- 5.4.5 预应力锚杆间距小于 1.5m 时,为减小群锚效应,相邻锚杆可采用不同倾角、不同长度的布置方式。基坑阳角处两侧的预应力锚杆可斜向设置,使锚杆锚固段远离阳角,位于阳角滑移面之外。

本条还规定,预应力锚杆的自由段长度宜为 4m~6m。控制 预应力锚杆自由段长度是基于如下考虑:土钉对土体变形比预应 力锚杆敏感,即较小的位移即可使土钉承受较大的荷载,为使土钉 与预应力锚杆在相同位移下受力协调,应控制预应力锚杆变形不能太大;复合土钉墙中的预应力锚杆自由段长度 4m~6m 能够满足张拉伸长产生预应力的要求。

复合土钉墙基坑位移往往会引起预应力锚杆应力值增大。锚杆锁定时,应为基坑开挖变形后锚杆预应力的增长留有余地,故锁定值宜取锚杆轴向承载力设计值的 60%~90%。

5.4.6 钢筋混凝土围檩具有刚度大、与桩的结合紧密、锚杆预应力损失小等优点,因此宜优先选用。当采用钢围檩时,一定要保证钢围檩的刚度满足锚杆设计锁定值要求,截面应通过设计计算确定,并应充分考虑缺陷的影响。

围檩可按以锚杆为支点的多跨连续梁设计计算。

预应力锚杆与面层及围檩连接构造可参考图 5。

(a) 预应力锚杆、围擦与面层

(b) 预应力锚杆、承压板与面层

图 5 预应力锚杆与面层及围標连接构造示意 1-锚具;2-钢垫板;3-围檩;4-承压板;5-喷射混凝土;6-钢筋网;7-土体、截水帷幕或微型桩;8-预留孔;9-钻孔;10-杆体;11-围檩主筋; 12-围檩箍筋;13-加强筋;14-水泥砂浆

5.4.8 微型桩宜采用小直径混凝土桩、型钢及钢管等,特殊情况下也可采用木桩、竹桩、管桩等。采用木桩、竹桩时桩间距宜适当减小。

6 施工与检测

6.1 一般规定

6.1.1 位移观测控制点包括基准点和工作基点,基坑工程施工前应布设好位移观测控制点和监测点,并予以妥善保护。

水患是复合土钉墙基坑支护的"大敌"。雨水和施工用水下渗、旧管道渗漏等会使土体下滑力增大,抗剪强度降低,从而引发基坑坍塌事故,因此应做好场区的排水系统规划和地面硬化,地面排水坡度不宜小于 0.3%,并宜设置排水沟。

- 6.1.2 地面超载是复合土钉墙基坑支护的又一"大敌"。土方、材料、构件、机具的超载堆放,大型运输车辆随意改变行车路线等都易导致基坑坍塌事故的发生,因此,本条强调应按照施工现场平面布置图进行材料、构件、机具、设备的布置,而施工现场平面布置图应与基坑工程设计工况相一致。
- **6.1.3** 本条为强制性条文。本条提出了复合土钉墙施工的 20 字方针,即"超前支护,分层分段,逐层施作,限时封闭,严禁超挖",20 字方针是复合土钉墙长期施工经验的总结。

为了控制地下水和限制基坑侧壁位移,保证基坑稳定,截水帷幕、微型桩应提前施工完成,达到规定强度后方可开挖基坑,即所谓"超前支护"。

基坑开挖所产生的地层位移受时空效应的影响,开挖暴露的面积越大,位移也越大,为控制位移,施工应按照设计工况分段、分层开挖,分层厚度应与土钉竖向间距一致。下层土的开挖应等到上层土钉注浆体强度达到设计强度的70%后方可进行。

每层开挖后应及时施作该层土钉并喷护面层,封闭临空面,减少基坑无土钉的暴露时间,即所谓"逐层施作,限时封闭",一般情

况下,应在 1d 内完成土钉安设和喷射混凝土面层;在淤泥质地层和松散地层中开挖基坑时,应在 12h 内完成土钉安设和喷射混凝土面层。

超挖是基坑工程的又一"大敌"。工程中因超挖而造成的基坑坍塌事故屡有发生,即使未造成基坑坍塌事故,基坑开挖期位移过大,也会使基坑使用期的安全度下降。因此,分层开挖时应严格控制每层开挖深度,协调好挖土与土钉施工的进度,严禁多层一起开挖或一挖到底。

6.2 复合土钉墙施工

6.2.1 本条规定的流程为截水帷幕一微型桩一预应力锚杆复合 土钉墙形式的施工流程,其他组合形式的复合土钉墙施工流程应 根据组合构件在此基础上取舍。

复合土钉墙是截水帷幕先施工还是微型桩先施工,应根据不同施工工艺确定,如果微型桩是非挤土桩,可以截水帷幕先施工,微型桩后施工;如果微型桩是挤土桩,则宜微型桩先施工,再施工截水帷幕。

6.2.2 水泥土桩止水帷幕的水泥掺量应符合设计要求,水泥浆液的水灰比宜按照试桩结果确定。一般双轴水泥土搅拌桩水灰比宜取 0.5~0.6,三轴水泥土搅拌桩水灰比宜取 1.0~1.5;高压喷射注浆水灰比宜取 0.9~1.1。

水泥土搅拌桩施工时,双轴搅拌机钻头搅拌下沉速度不宜大于 1.0m/min,喷浆搅拌时钻头的提升速度不宜大于 0.5m/min; 三轴搅拌机钻头的提升速度宜为 1m/min~2m/min,搅拌下沉速度宜为 0.5m/min~1m/min。

高压喷射注浆分高压旋喷、高压摆喷和高压定喷三种形式,因高压旋喷帷幕厚度大,止水和稳定性效果好,是目前复合土钉墙中采用的主要形式。高压喷射注浆可根据工程实际情况采用单管法、二重管法、三重管法。单管法及二重管法的高压液流压力一般大于20MPa,压力范围多为20MPa~30MPa。高压三重管比单管

和二重管喷射直径大,高压水射流的压力可达 40MPa 左右,常用的压力范围为 30MPa~40MPa;低压水泥浆的注浆压力宜大于 1MPa,气流压力不宜小于 0.7MPa,提升速度宜为 50mm/min~200mm/min,旋转速度宜为 10r/min~20r/min。对于较硬的黏性 土层、密实的砂土和碎石土层及较深处土层宜取较小的提升速度、较大的喷射压力。

高压喷射注浆过程中如出现异常情况,应及时查明原因并采取措施。当孔口返浆量大于注浆量的 20%时,宜采取提高喷射压力、加快提升速度等措施。当因浆液渗漏而出现孔口不返浆时,宜在漏浆部位停止提升注浆管并进行补浆,注浆液中宜掺入速凝剂,同时采取从孔口填入中粗砂等措施,直至孔口返浆。

6.2.5 采用二次注浆的方法可以明显提高锚杆锚固力,但要掌握好二次高压注浆的时机。二次注浆的时间宜根据注浆工艺试验确定。

6.3 降排水施工

- **6.3.2** 基坑降水会引起周边地表和建筑沉降,而且过量降水也不符合节约水资源的规定,因此基坑降水应遵循"按需降水"的原则。
- 6.3.5 为了保证排水通畅,防止雨水、施工用水等地表水漫坡流动或倒流回渗基坑,硬化后的场区地面排水坡度不宜小于 0.3%,并宜设置排水沟。基坑内应设置排水沟、集水坑,及时排放积聚在基坑内的渗水和雨水。

6.4 基 坑 开 挖

- **6.4.4** 对自稳能力差的土体,如含水量高的黏性土、淤泥质土及松散砂土等开挖后应立即进行支护,初喷混凝土应随挖随喷。
- 6.4.7 基坑开挖至坑底后应及时浇筑基础垫层,在软土地区及时 浇筑垫层尤其显得重要。根据软土地区淤泥和淤泥质土的特点, 基坑垫层浇筑时间宜控制在 2h 以内,最迟不应超过 4h。

7 监 测

- 7.0.2 巡视检查主要以目测为主,配以简单的工器具,巡视的检查方法速度快、周期短,可以及时弥补仪器监测的不足。基坑工程施工期间的各种变化具有时效性和突发性,加强巡视检查是预防基坑工程事故简便、经济而又有效的方法。通过巡视检查和仪器监测,可以定性、定量相结合,更加全面地分析基坑的工作状态,作出正确的判断。
- 7.0.3 复合土钉墙基坑工程监测是一个系统,系统内的各项目监测有者必然的、内在的联系。某一单项的监测结果往往不能揭示和反映基坑工程的整体情况,必须形成一个有效的、完整的、与设计施工工况相适应的监测系统并跟踪监测,才能通过监测项目之间的内在联系作出准确地分析、判断,因此监测项目的确定要做到重点量测、项目配套。

基坑工程设计方应根据地层特性和周边环境保护要求,对复合土钉墙进行必要的计算与分析后,结合当地的工程经验确定合适的监测报警值。

复合土钉墙基坑工程工作状态一般分为正常、异常和危险三种情况。异常是指监测对象受力或变形呈现出不符合一般规律的状态。危险是指监测对象的受力或变形呈现出低于结构安全储备、可能发生破坏的状态。

附录 A 土钉抗拔基本试验

- 1 基本试验是对试验土钉所采取的现场抗拔试验。目的是通过检测土钉极限抗拔力,从而确定土钉与岩土层之间的粘结强度,同时确定施工工艺、部分设计及施工参数,为设计提供依据。
 - 2 较薄土层中可不进行基本试验。

附录 B 土钉抗拔验收试验

验收试验是对实际工作土钉所采用的现场抗拔试验,目的是通过检测土钉实际抗拔力能否达到验收抗拔力,从而判断土钉长度、注浆质量等施工质量,为工程验收提供依据。