Jack Lanchantin

December 1, 2015

Reinforcement Learning

2 Markov Decision Processes

Reinforcement Learning

2 Markov Decision Processes

- Framing of the problem of learning from interaction to achieve a goal.
- Agent: learner and decision maker
- **Environment**: what the learner interacts with (everything outside the agent)
- Agent selects actions and the environment responds to those actions and presents new situations

- At each time step t, the agent receives the environment state $S_t \in S$, and the agent then selects an action $A_t \in A(S_t)$
 - ullet ${\mathcal S}$ is the set of possible states (whatever information is available to the agent).
 - $A(S_t)$ is set of actions available in state S_t
- One time step later, the agent receives a **reward**, $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$, and ends up in a new state S_{t+1}

At each step t,

- The agent:
 - Receives state S_t
 - Receives scalar reward R_t
 - Executes action A_t
- The environment:
 - Receives action A_t
 - Emits state S_t
 - Emits scalar reward R_t

Reinforcement Learning Objective

- If the sequence of rewards after time step t is $R_{t+1}, R_{t+2}, R_{t+3}, ...$, then we want to maximize the return G_t
- The agent chooses A_t to maximize the discounted return:

$$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$$

where γ is the discount rate and $0 \le \gamma \le 1$. The closer γ is to 1, the more the agent accounts for future rewards

 \bullet Learn a mapping of S \to A which maximises future reward

Reinforcement Learning

2 Markov Decision Processes

Markov Decision Processes

- A reinforcement learning task that satisfies the Markov property is called a Markov Decision Process (MDP)
- Given any state s and action a, the probability of each possible pair of next state and reward (s', r), is denoted

$$p(s', r|s, a) = Pr\{S_{t+1} = s', R_{t+1} = r|S_t = s, A_t = a\}$$

We assume that the current state tells us everything we need to know for future (e.g. current state of checker board)

• From this probability representation, we can compute anything else we might need to know about the environment...

Markov Decision Processes

State-transition probabilities:

$$p(s'|s,a) = Pr\{S_{t+1} = s'|S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

Expected rewards for state—action pairs:

$$r(s,a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r|s, a)$$

Expected rewards for state—action—next-state triples:

$$r(s, a, s') = \mathbb{E}[R_{t+1}|S_t = s, A_t = a, S_{t+1} = s'] = \frac{\sum_{r \in \mathcal{R}} r * p(s', r|s, a)}{p(s'|s, a)}$$

MDP Example

 At each tilmestep t, a can-collecting robot decides whether it should (1) actively search for a can, (2) remain in place and wait for someone to bring it a can, or (3) go back to charging station to recharge its battery

Reinforcement Learning

2 Markov Decision Processes

Policies

- At each time step, the agent implements a mapping π from states to probabilities of selecting each possible action, where π is called a **policy**
 - $\pi_t(a|s) = \text{probability that } A_t = a \text{ if } S_t = s$

Reinforcement Learning Objective

The agent's goal is to maximize the total amount of reward it receives over the long run by changing its policy as a result of its experience

- Almost all RL algorithms involve estimating value functions
- Value Functions: functions of states (or state—action pairs) that estimate how good it is for the agent to be in a certain state (or to perform an action in a given state).
 - "How good" is defined in terms of future rewards that can be expected (i.e. expected return)

State-Value Function for policy π

- Recall that a policy π maps a state s and action a to the probability $\pi(a|s)$ of doing a when in s
- The value of a state s under policy π , denoted $v_{\pi}(s)$, is the **expected** return when starting in state s and following π thereafter:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}\left[\left.\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}\right| S_t = s\right]$$

 $\mathbb{E}_{\pi}[\cdot]$ is the expected value of a r.v. given the agent follows policy π

Action-Value Function for policy π

• The value of taking action a in state s under a policy π , denoted $q_{\pi}(s,a)$, is the expected return starting from s, taking the action a, and following policy π thereafter:

$$q_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a\right]$$

Computing Value Functions

- \bullet Key idea of reinforcement learning is to use value functions to search for a good policy π
- Can use dynamic programming techniques to compute optimal value functions, and thus find optimal policies

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s] \\ &= \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s\right] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')] \end{aligned}$$

Optimal Value Functions

- Solving a reinforcement learning task means finding a policy that achieves a high reward over the long run
- A policy π is better than π' if its expected return is \geq to that of π' for all states
 - I.e. $\pi \geq \pi'$ iff $v_{\pi}(s) \geq v_{\pi}'(s)$ for all $s \in \mathbb{S}$

Optimal Value Functions

- The *optimal* policies are denoted π_*
- The optimal state-value functions are denoted v_* and defined:

$$v_*(s) = \max_{\pi} v_{\pi}(s) \text{ for all } s \in S$$

• The optimal action-value functions are denoted q_* and defined:

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a) \text{ for all } s \in S \text{ and } a \in A$$

= $\mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = a, A_t = a]$

Value Iteration

ullet Method for approximating v_*