Bachelor of Science in Information Technology (B.Sc.IT)

T.Y.B.Sc IT

1. Principles of Artificial Intelligence

at Semester V

(Implemented during Academic Year 2021-22)

Modules at a Glance

Sr.	Topics	No. of
No.		lectures
1	Problem solving Search Methods	9
2	Data mining	9
3	Machine Learning	9
4	Introduction to Deep Learning Models	9
5	Case study with MNIST database	9
	Total	45

Course Objective:

- To provide the foundations for AI problem solving techniques and knowledge representation formalisms
- To introduce students through some of the latest techniques in deep learning.
- Hands on and the students should be able to design intelligent deep learning systems for solving the problems in the area of their interests

Course Outcome:

- Identify and formulate appropriate AI methods for solving a problem.
- Implement AI algorithms
- Compare different AI algorithms in terms of design issues, computational complexity, and assumptions
- Use appropriate search algorithms for any AI problem
- Provide the apt agent strategy to solve a given problem
- Analyze various applications solved through the use of deep learning models

Detailed Syllabus:

Module	Topics	No. of
		Lectures
1	Problem solving Methods - Search Strategies- Uninformed - Informed -	9
	Heuristics - Local Search Algorithms and Optimization Problems -	
	Searching with Partial Observations - Constraint Satisfaction Problems -	
	Constraint Propagation - Backtracking Search - Game Playing - Optimal	
	Decisions in Games – Alpha - Beta Pruning - Stochastic Games	
2	Data mining: fundamentals – data reduction - Decision tree algorithms -	9
	Association rules,	
	Clustering: K-means, fuzzy c-means, hierarchical, probabilistic clustering	
	methods - Rough set theory: definition – rule induction – feature selection	
	- rough sets in data mining	
3	Machine Learning: Probability basics - Bayes Rule and its Applications -	9
	Bayesian Networks - Exact and Approximate Inference in Bayesian	
	Networks - Hidden Markov Models - Forms of Learning	
	- Supervised Learning - Learning Decision Trees - Regression and	
	Classification with Linear Models - Artificial Neural Networks -	
	Nonparametric Models - Support Vector Machines -	
	Statistical Learning - Learning with Complete Data - Learning with	
	Hidden Variables- The EM Algorithm – Reinforcement Learning	
4	Introduction to Deep Learning Models: Autoencoder, Convolutional	9
	Neural Networks, Recurrent Neural Networks, LSTM, Network	
	Architecture Search (NAS)	
5	Case Study: Introduction to TensorFlow, Experiment: Training a CNN	9
	based hand-written digit recognition model with TensorFlow	
	Dataset: MNIST hand-written digit dataset Lab	
	Handwritten letter recognition Description: learn to recognize handwritten	
	letters with CNN.	

Reference Books

- 1. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 3rd Edition, 2009
- 2. Ethem Alpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning series), The MIT Press; second edition, 2009
- 3. Nils J. Nilsson, the Quest for Artificial Intelligence, Cambridge University Press, 2009.
- 4. A. ZHANG, Z. LIPTON, M. LI, A. SMOLA (2020) Dive into Deep Learning (Release 0.7.1), https://d2l.ai/d2l-en.pdf.

Self-learning Material

- 1. Practical Machine Learning with Tensorflow, NPTEL Course Material, Department Computer Science and Engineering, IIT Madras: https://nptel.ac.in/courses/106106213/
- 2. Stanford CS class (CS231n), Convolutional Neural Networks for Visual Recognition: http://cs231n.github.io/

Practical:

- 1. Implement Search Strategies: Breadth first and Depth First search algorithm , Iterative deepening search , A^* search algorithm
- 2. Implementation of basic neural network model with 4 activation functions on Pima Indians onset of diabetes dataset.
- 3. Performing AND & OR Operations in the Neural Network
- 4. Prediction Algorithm Use of different packages on dataset of Cat and Non-Cat images
- 5. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 6. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
- 7. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
- 8. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 9. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.
- 10. Case Study a CNN based hand-written digit recognition model with TensorFlow.