UNIT 4

Suppositories

Definition

A suppository is a solid dosage form intended for insertion into body orifices such as the rectum, vagina, or urethra, where it melts, softens, or dissolves to exert local or systemic effects. It is usually composed of one or more active drugs dispersed or dissolved in a suitable base.

Types of Suppositories (Based on Site of Application)

Туре	Site of Use	Shape and Size	Examples
Rectal suppository	Rectum	Cylindrical or conical, 1–2 g	Paracetamol, bisacodyl
Vaginal suppository (Pessary)	Vagina	Oval, globular, or cone- shaped, 3–5 g	Clotrimazole, metronidazole
Urethral suppository (Bougie)	Urethra	Pencil-shaped, 2–4 mm diameter (male), 60 mm long	Antibacterials (e.g., for gonorrhea)
Nasal and ear cones	Nasal cavity or ear	Small cone-shaped	Rare; generally replaced by drops/sprays

Advantages of Suppositories

- Useful for patients unable to take oral medications (e.g., vomiting, unconscious)
- Provides **local action** (e.g., hemorrhoids, vaginal infections)
- Avoids first-pass metabolism when used rectally
- Less gastric irritation compared to oral NSAIDs
- Suitable for **pediatric and geriatric** patients

Disadvantages of Suppositories

- Patient discomfort or reluctance
- Irritation at site of application in sensitive individuals
- Variable absorption due to rectal content, pH, and circulation
- **Storage issues** (some bases melt at room temperature)
- Short shelf-life in humid conditions

Types of Bases Used in Suppositories

A suitable base should be **non-toxic**, **non-irritant**, **compatible with drugs**, **stable**, and **able to melt or dissolve** at body temperature.

1. Fatty (Oleaginous) Bases

- Cocoa butter (Theobroma oil) most common natural base
- Synthetic substitutes: Witepsol, Fattibase, Hard fat

Properties:

- Melts at body temperature (~30–36°C)
- Provides smooth texture and release of drug
- Must be stored in a cool place
- Incompatible with some drugs that lower its melting point

Advantages:

- Good patient acceptability
- Non-irritant, emollient effect

Disadvantages:

- Polymorphism (melting point variation)
- Rancidity and microbial growth possible
- Incompatible with water-soluble drugs

2. Water-Soluble and Water-Miscible Bases

- Glycerinated gelatin
- Polyethylene glycols (PEG)

Properties:

- **Do not melt** but **dissolve slowly** in body fluids
- Longer drug release time
- Hygroscopic can absorb moisture from atmosphere

Glycerinated Gelatin:

- Used for vaginal and urethral suppositories
- Composed of **gelatin + glycerin + water**
- Needs preservatives and airtight storage

Polyethylene Glycol (PEG):

- Synthetic polymer with various molecular weights
- Non-greasy and no refrigeration required
- May cause irritation to mucosa

Advantages:

- Stable at room temperature
- Compatible with many drugs
- Non-leaky (suitable for heat-prone environments)

Disadvantages:

- Hygroscopic nature
- May cause mucosal irritation
- Slower drug release than fatty bases

3. Emulsifying Bases

- Macrogol + emulsifying wax
- PEG-based blends

Properties:

- Can accommodate both hydrophilic and lipophilic drugs
- Provide controlled release
- Common in modern industrial formulations

Selection Criteria for Base

Factor	Preferred Base
Drug is lipophilic	Use water-soluble base (e.g., PEG) for better release
Drug is hydrophilic	Use fatty base (e.g., cocoa butter)
For fast drug release	Use fatty base
For sustained release	Use PEG base
For vaginal application	Use glycerinated gelatin
For humid climate	Avoid glycerinated gelatin, prefer PEG base

Methods of Preparation of Suppositories

The preparation of suppositories involves incorporating **medicaments into a suitable base**, molding or shaping them for **rectal**, **vaginal**, **or urethral** use. The chosen method depends on the **type of base**, **nature of drug**, **dose uniformity**, and **scale of manufacturing**.

The **main goals** in preparation are:

- · Uniform distribution of drug
- Proper melting/dissolution behavior
- Smooth finish and stability

Common Methods of Suppository Preparation

Method	Suitable For	Key Features
1. Molding (Fusion) method	All types of suppositories and bases	Most widely used in both small and large scale
2. Compression method	Heat-sensitive drugs, industrial batches	Avoids heat; suitable for drug-brittle formulations
3. Hand rolling and shaping	Extemporaneous, low-tech preparations	Used in pharmacies; not for modern large-scale manufacturing

1. Molding (Fusion) Method

Principle:

The drug is dispersed or dissolved in a **molten suppository base**, poured into molds, and allowed to **cool and solidify**.

Steps:

- 1. **Preparation of Mold**: Cleaned, lubricated with thin film of oil or liquid paraffin (if required).
- 2. **Melting the Base**: Fatty bases (e.g., cocoa butter) are melted using a **water bath**, not directly on flame.

3. Incorporation of Drug:

- Drug is either dissolved (if soluble) or finely powdered and levigated with a portion of molten base (if insoluble).
- 4. **Mixing**: The drug is thoroughly mixed with the rest of the base.
- 5. **Pouring into Molds**: Warm molds are filled just above the cavity level to allow contraction.

- 6. **Cooling and Solidification**: Molds are left to set at room temperature or in a refrigerator.
- 7. **Finishing**: Excess material is trimmed and suppositories are removed, wrapped, and packed.

Suitable For:

- Cocoa butter
- Glycerinated gelatin
- PEG bases

Advantages:

- Uniform drug distribution
- Good finish and shape
- Widely adaptable for many drug types

Precaution:

• Avoid overheating cocoa butter (above 36°C) to prevent polymorphic transition

2. Compression Method

Principle:

Involves compressing the base and drug mixture into molds under pressure without heating. Suitable for **heat-sensitive** and **volatile drugs**.

Steps:

- 1. Base and medicament are powdered and sieved
- 2. Thorough **mixing** to ensure uniformity
- The mixture is compressed using a hand-operated or mechanical compression mold press
- 4. Suppositories are ejected and polished if needed

Advantages:

- · No heating required
- Suitable for thermolabile drugs
- Minimal risk of drug degradation or evaporation

Disadvantages:

• Requires specialized equipment

May produce brittle suppositories

3. Hand Rolling and Shaping Method

Principle:

A traditional manual technique used when molds or machines are unavailable.

Steps:

- 1. A plastic mass is prepared by triturating drug with softened base
- 2. The mixture is **rolled by hand** into cylindrical rods
- 3. These rods are cut and shaped into the desired suppository form

Advantages:

- No equipment required
- Useful for extemporaneous preparations

Disadvantages:

- Poor dose uniformity
- Time-consuming and not suitable for mass production

Displacement Value and Its Calculations

In suppository preparation using the **molding (fusion) method**, the **volume of the mold remains constant** whether it's filled with only base or with **base + drug**. However, the **drug** displaces a **certain amount of the base**, and this must be calculated accurately to ensure **uniformity of drug content** in each suppository.

This is where the **Displacement Value (DV)** becomes essential.

Definition of Displacement Value

Displacement Value is defined as:

The number of parts by weight of the drug that displaces one part by weight of the base.

In simpler terms:

• It tells you how much of the base is replaced (displaced) by a given amount of drug in the suppository mold.

Why Displacement Value is Important

- Prevents overfilling or underfilling of molds
- Ensures accurate dosing of the medicament
- Essential in calculation of quantity of base required per batch

Formula

To calculate the amount of base required for medicated suppositories:

Amount of base required=[Weight of one blank suppository×Number of suppositories]–(
Total weight of drug/ Displacement Value)

Another useful version for one suppository:

Base per suppository=Weight of blank suppository-(Drug per suppository/DV)

Worked Example 1:

Problem:

Prepare 6 suppositories, each weighing 2 g (blank weight), containing 300 mg of a drug. The displacement value of the drug is 3.

Find the **amount of base** required.

Solution:

- Total drug = $300 \text{ mg} \times 6 = 1800 \text{ mg} = 1.8 \text{ g}$
- **Base displaced** = $1.8 \text{ g} \div 3 = 0.6 \text{ g}$
- Total weight of suppositories = 6 × 2 g = 12 g
- Amount of base required = 12 g 0.6 g = 11.4 g

You'll need 11.4 g of base and 1.8 g of drug.

Worked Example 2 (Per Suppository):

Given:

- Weight of blank suppository = 2 g
- Drug per suppository = 400 mg
- Displacement value = 2.5

Calculation:

Base required=2-(0.4/2.5)=2-0.16=1.84 g

Each suppository requires 1.84 g of base and 400 mg of drug

General Guidelines

- Displacement values are drug and base specific
- Common bases: Cocoa butter, PEG, glycerinated gelatin
- Use accurate weighing and calibration of molds in real practice

Evaluation of Suppositories

After preparing suppositories, it is essential to evaluate their quality, stability, and performance using pharmaceutical tests. These tests ensure that suppositories meet the required physical standards, uniformity, drug content, and release characteristics, leading to effective therapeutic action and patient acceptability.

Evaluation is done using both official (pharmacopoeial) and non-official methods.

1. Physical Evaluation

Parameter	Purpose	Standard / Description
Appearance	Check for uniformity, smooth surface, absence of cracks	Suppositories should be shiny , smooth , and free from air bubbles
Weight variation	Ensure uniformity in each unit	Weight difference should be within ±5% for <2g, ±3% for ≥2g suppositories
Hardness (Mechanical strength)	Test breakage resistance	Should withstand light pressure without crumbling
Melting / Softening point	Ensure it melts at body temperature	Ideal range: 30–36°C for fatty bases, or dissolves for PEG base
Liquefaction time	Time taken to melt at body temperature	Should liquefy within 10–15 minutes in rectal conditions
Disintegration test	Measures time for complete disintegration in fluid	Performed at 37°C using disintegration apparatus

2. Chemical Evaluation

Parameter	Purpose	Method / Standard
Drug content uniformity	Ensure uniform drug distribution in each unit	Each suppository should contain 85–115% of label claim
Assay of active ingredient	Confirms actual drug amount present	By suitable analytical method (e.g., UV, HPLC)
pH of aqueous extract	Important for vaginal/urethral suppositories	Measured after dissolving in water

3. In-vitro Drug Release Studies

Test	Purpose	Remarks
Dissolution test	Measures the rate and extent of	Performed using modified
	drug release	dissolution apparatus
Diffusion studies	Drug diffusion through	Simulates rectal/vaginal
	semipermeable membrane	mucosal absorption
In vitro-in vivo	To predict therapeutic efficacy	Helps in bioequivalence testing
correlation	from release data	

4. Stability Testing

- Physical stability: Evaluate for melting, discoloration, brittleness over time
- Chemical stability: Check for degradation using assay methods
- **Microbial stability**: Especially for **glycerinated gelatin** bases (which support microbial growth)

Conditions:

- Store at 2–8°C or below 25°C, depending on base
- Use light-resistant, moisture-proof packaging

Pharmaceutical Incompatibilities

I. Definition

Pharmaceutical incompatibility refers to the **undesirable interaction** between **two or more ingredients** (either active or inactive), when they are combined in a prescription or formulation, leading to an unacceptable **physical**, **chemical**, **or therapeutic outcome**.

Such incompatibilities can result in:

- Change in appearance (color, odor, consistency)
- Loss of therapeutic activity
- Formation of toxic compounds
- Reduced patient compliance

II. Classification of Pharmaceutical Incompatibilities

Pharmaceutical incompatibilities are classified into:

1. Physical Incompatibility

- 2. Chemical Incompatibility
- 3. Therapeutic Incompatibility

III. Types of Incompatibilities

1. Physical Incompatibility

Definition

It occurs when **two or more substances are mixed** and produce **undesirable physical changes** without involving a chemical reaction.

These changes include:

- Precipitation
- Liquefaction
- Color or odor change
- Immiscibility

Causes:

- Insolubility of ingredients
- Inappropriate solvent systems
- Formation of eutectic mixtures
- Volatilization

Examples:

Туре	Example
Precipitation	Sodium salicylate + Quinine sulphate → precipitation
Immiscibility	Oil and water without an emulsifier → phase separation
Liquefaction	Camphor + Menthol → eutectic mixture liquefies
Volatilization	Menthol and camphor stored in open container \rightarrow loss due to evaporation

Remedies:

- Use of suitable emulsifiers or solubilizers
- Order of mixing should be properly followed
- Use of alternative compatible ingredients
- Labeling: e.g., "Shake well before use"

2. Chemical Incompatibility

Definition

Occurs when a **chemical reaction** takes place between the ingredients in a prescription or formulation, leading to **decomposition**, **inactivation**, **or formation of harmful substances**.

Types of Chemical Reactions:

- Oxidation-reduction
- Hydrolysis
- Neutralization
- Double decomposition
- Acid-base reactions

Consequences:

- Loss of active drug
- Formation of toxic or inactive byproducts
- Color/odor changes
- Effervescence or gas formation

Examples:

Reactants	Type of Reaction	Effect
Tannic acid + Ferric salts	Double	Forms black ferric tannate
	decomposition	precipitate
Sodium bicarbonate + Citric	Acid-base reaction	Produces carbon dioxide
acid		(effervescence)
Morphine hydrochloride +	Precipitation of free	Loss of solubility and
Sodium hydroxide	base	therapeutic effect
Potassium permanganate +	Oxidation-reduction	Risk of explosion
Glycerin	(violent)	
Aspirin + Sodium hydroxide	Hydrolysis	Produces salicylic acid (irritant) and acetic acid

Remedies:

- Modify prescription with stable substitutes
- Separate incompatible ingredients (label: "Do not mix")
- Use buffering agents, antioxidants, or preservatives

Dispense freshly in divided doses if short shelf life

3. Therapeutic Incompatibility

Definition

Occurs when the **combined effect** of two or more drugs administered together results in **undesirable pharmacological outcomes** such as:

- Toxicity
- Reduced efficacy
- Antagonistic or synergistic effects

This is not visible physically but impacts clinical outcomes.

Types:

• Synergism (enhanced effect): May cause toxicity

• Antagonism (opposite effects): Reduces drug action

• **Duplication** (same class): Overdose risk

Examples:

Drugs Involved	Effect
Tetracycline + Calcium salts (milk/antacids)	Chelation → Poor absorption of tetracycline
Chloramphenicol + Penicillin	Antagonism (bacteriostatic vs. bactericidal) → Reduced efficacy
Aspirin + Warfarin	Increased bleeding risk due to additive anticoagulant effects
Diuretics + Digoxin	Electrolyte loss → Enhances digoxin toxicity
Metronidazole + Alcohol	Disulfiram-like reaction → Severe nausea and vomiting

Remedies:

- Check drug-drug interaction references
- Monitor therapy with therapeutic drug monitoring (TDM)
- Avoid combining incompatible drugs
- Adjust dose, frequency, or route of administration