LIGADURAS

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. Máquina de Atwood simple

Una cuerda de longitud ℓ pasa sobre una polea de radio R_p y masa m_p . Calcule la aceleración de las pesas que cuelgan de sus extremos.

- (a) La cuerda es inextensible, por lo que establece una relación entre y_1 e y_2 . Escriba esta función de vínculo.
- (b) Si la cuerda desliza sin rozamiento sobre la polea, esta última no se mueve. Calcule la ecuación de Euler-Lagrange para y_1 usando el vínculo del punto anterior y escriba la aceleración de las pesas.
- (c) Lo usual es que la cuerda no deslice y gire solidaria a la polea. Esto vincula θ al desplazamiento de la cuerda. Con tal vínculo exprese en función de \dot{y}_1 la energía cinética de rotación de la polea, que modelada como un cilindro homogéneo que en torno a su eje presenta un momento de inercia $(m/2)R^2$.
- (d) Use la ecuación de Euler-Lagrange para y_1 para escribir la aceleración de las pesas en este caso.

2. Péndulo de pesas deslizantes y acopladas

Dos pesas de masa m_1 y m_2 están unidas por una barra rígida inextensible de longitud ℓ y masa despreciable frente a las anteriores. La de m_1 puede deslizar sin rozamiento sobre un eje horizontal y la de m_2 en uno vertical. La barra establece un vínculo entre las respectivas coordenadas que definen sus posiciones, $x \in y$.

- (a) Use la función de vínculo para expresar las posiciones solo en función de y.
- (b) Calcule la aceleración de la pesa de m_2 . Resultado: $\ddot{y} = \frac{-\ell^2 m_1 y \dot{y}^2 + g m_2 (\ell^2 y^2)^2}{\ell^4 m_2 + \ell^2 m_1 y^2 2\ell^2 m_2 y^2 m_1 y^4 + m_2 y^4}$

3. Aro y polea

Una pesa de masa m_{pesa} pende de sección de cuerda que sobresale a la derecha de una polea de radio R_{polea} y masa m_{polea} . Tal cuerda, que gira solidaria con la polea, tiene una longitud total ℓ y su masa es despreciable. Su otro extremo se ata con un nudo de masa m a un aro de masa m_{aro} , enrollándose en un arco θ en torno a éste. El centro de la polea está a una altura h_{polea} por sobre el del aro de radio R_{aro} que como puede rotar libremente presenta un momento de inercia $m_{aro}R_{aro}^2$.

Quedan el apartamiento con la horizontal de la pesa, y_{pesa} , y la extensión del arco enrollado, θ , como las coordenadas generalizadas que estarán ligadas por la cuerda de longitud ℓ .

- (a) Escriba la posición de las partículas con masa en función de las coordenadas generalizas variables que un sistema de referencia con origen en el centro del aro.
- (b) Describa la función de ligadura y utilícela para expresar las posiciones en función de θ . Verifique su solución revisando que una variación de θ "hacia su cero" implique que la pesa "baja".
- (c) Obtenga la ecuación de Euler-Lagrange para la dinámica sin olvidar los momentos involucrados. $\text{Resultado: } R_{aro}^2 m \ddot{\theta} + R_{aro}^2 m_{aro} \ddot{\theta} + R_{aro} g m \cos \left(\theta\right) + R_{polea}^2 m_{pesa} \ddot{\theta} + \frac{R_{polea}^2 m_{polea} \ddot{\theta}}{2} - R_{polea} g m_{pesa} = 0$

Computational Analytical Mechanics

4. Maquina de Atwood compuesta [Marion (english) ex. 7.8]

(b) Modele las ligaduras que proveen las dos cuerdas en sendas funciones.

(c) Use las funciones de ligadura para expresar todas las posiciones en función de y_1 e y_2 .

(d) Las cuerdas no deslizan sobre las poleas, por lo que la longitud de cuerda que se desplaza en una polea es igual a la que se desplaza en la otra. Este es otro vínculo que debe modelar la relación entre las y_i y las θ_i .

(e) Calcule energías potenciales y cinéticas contemplando los momentos de inercia de las poleas. Recuerde la relación entre el perímetro (circunferencia) de un círculo y su radio para escribir la velocidad angular en función del \dot{y}_i correspondiente.

(f) Obtenga las dos ecuaciones de Euler-Lagrange. Resultados:

$$-gm_1 + gm_2 + gm_3 + gm_p + m_1\ddot{y}_1 + m_2\ddot{y}_1 - m_2\ddot{y}_2 + m_3\ddot{y}_1 + m_3\ddot{y}_2 + \frac{3m_p\ddot{y}_1}{2} = 0$$

$$-gm_2 + gm_3 - m_2\ddot{y}_1 + m_2\ddot{y}_2 + m_3\ddot{y}_1 + m_3\ddot{y}_2 + \frac{m_p\ddot{y}_2}{2} = 0$$

(g) De este sistema de ecuaciones, despeje las aceleraciones generalizadas. Resultados:

$$\ddot{y}_1 = \frac{2g(2m_1m_2 + 2m_1m_3 + m_1m_p - 8m_2m_3 - 3m_2m_p - 3m_3m_p - m_p^2)}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

$$\ddot{y}_2 = \frac{2g(4m_1 + m_p)(m_2 - m_3)}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

(h) Exprese las aceleraciones de las tres pesas. Resultados:

$$\ddot{\vec{r}}_{1} = \ddot{y}_{1}(-\hat{e}_{y})$$

$$\ddot{\vec{r}}_{2} = -\frac{2g(2m_{1}m_{2} - 6m_{1}m_{3} - m_{1}m_{p} + 8m_{2}m_{3} + 4m_{2}m_{p} + 2m_{3}m_{p} + m_{p}^{2})}{4m_{1}m_{2} + 4m_{1}m_{3} + 2m_{1}m_{p} + 16m_{2}m_{3} + 8m_{2}m_{p} + 8m_{3}m_{p} + 3m_{p}^{2})} \hat{\mathbf{e}}_{y}$$

$$\ddot{\vec{r}}_{3} = -\frac{2g(-6m_{1}m_{2} + 2m_{1}m_{3} - m_{1}m_{p} + 8m_{2}m_{3} + 2m_{2}m_{p} + 4m_{3}m_{p} + m_{p}^{2})}{4m_{1}m_{2} + 4m_{1}m_{3} + 2m_{1}m_{p} + 16m_{2}m_{3} + 8m_{2}m_{p} + 8m_{3}m_{p} + 3m_{p}^{2}} \hat{\mathbf{e}}_{y}$$