TF 502 SIST, Shanghai Tech

# **Linear Equations**

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices

Boris Houska 7-1

## **Contents**

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices

Given a matrix  $A \in \mathbb{R}^{m \times n}$  and a vector  $b \in \mathbb{R}^m$ . We are searching for solutions of the linear equation system

$$Ax = b$$
.

#### Names:

- For m < n: "under-determined linear equation system"
- For m=n: "quadratic linear equation system"
- For m > n: "over-determined linear equation system"

Given a matrix  $A \in \mathbb{R}^{m \times n}$  and a vector  $b \in \mathbb{R}^m$ . We are searching for solutions of the linear equation system

$$Ax = b$$
.

#### Names:

- For m < n: "under-determined linear equation system"
- For m = n: "quadratic linear equation system"
- For m > n: "over-determined linear equation system"

Given a matrix  $A \in \mathbb{R}^{m \times n}$  and a vector  $b \in \mathbb{R}^m$ . We are searching for solutions of the linear equation system

$$Ax = b$$
.

#### Names:

- For m < n: "under-determined linear equation system"
- For m = n: "quadratic linear equation system"
- ullet For m>n: "over-determined linear equation system"

Given a matrix  $A \in \mathbb{R}^{m \times n}$  and a vector  $b \in \mathbb{R}^m$ . We are searching for solutions of the linear equation system

$$Ax = b$$
.

#### Names:

• For m < n: "under-determined linear equation system"

• For m = n: "quadratic linear equation system"

• For m > n: "over-determined linear equation system"

## **Known Results from Linear Algebra**

The equation system Ax = b has a solution if and only if  $\operatorname{rank}(A) = \operatorname{rank}(A,b)$ .

This condition can, e.g., by checked with Gram-Schmidt algorithms.

For the quadratic case n=m, the following statements are equivalent:

- Ax = b has the unique solution x.
- $\circ$  rank(A) = n.
- $\det(A) \neq 0$
- ullet All eigenvalues of A are different from 0.

## **Known Results from Linear Algebra**

The equation system Ax = b has a solution if and only if  $\operatorname{rank}(A) = \operatorname{rank}(A,b)$ .

This condition can, e.g., by checked with Gram-Schmidt algorithms.

For the quadratic case n=m, the following statements are equivalent:

- Ax = b has the unique solution x.
- $\bullet$  rank(A) = n.
- $\bullet$  det(A)  $\neq$  0.
- ullet All eigenvalues of A are different from 0.

## Contents

Problem Formulation

Conditioning of Linear Equation Systems

Gauss Elimination

Linear Equations with Band-Structured Matrix

Linear Equations with Positive Definite Matrices

## **Overview: Perturbation Theory**

Whenever we solve equations of the form Ax = b numerically, we have to take into account two possible sources of errors:

- ullet Errors that are due to working with inexact numerical values for A and b.
- Errors that are due to numerical rounding problems when implementing the algorithm based on finite precision arithmetics.

## **Matrix Norms**

Recall that any vector norm  $\|\cdot\|:\mathbb{R}^n \to \mathbb{R}$  can be generalized for matrices by defining

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} ,$$

for any  $A \in \mathbb{R}^{m \times n}$ .

## Simple examples:

$$\bullet ||A||_1 = \max_j \sum_{i=0}^m |A_{i,j}|.$$

$$||A||_{\infty} = \max_{i} \sum_{j=0}^{n} |A_{i,j}|.$$

## The Spectral Norm

The eigenvalues  $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$  of a square matrix  $A \in \mathbb{R}^{n \times n}$  are the roots of the characteristic polynomial  $p(\lambda) = \det(A - \lambda I)$ .

The matrix 2-norm is given by

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \max \left\{ \sqrt{\lambda} \mid \det(A^T A - \lambda I) = 0 \right\}$$

If A is symmetric this expression for the 2-norm can be simplified

$$||A||_2 = \max\{|\lambda| \mid \det(A - \lambda I) = 0\}$$

## The Spectral Norm

The eigenvalues  $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$  of a square matrix  $A \in \mathbb{R}^{n \times n}$  are the roots of the characteristic polynomial  $p(\lambda) = \det(A - \lambda I)$ .

The matrix 2-norm is given by

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \max \left\{ \sqrt{\lambda} \mid \det(A^T A - \lambda I) = 0 \right\} ,$$

If A is symmetric this expression for the 2-norm can be simplified

$$||A||_2 = \max\{|\lambda| \mid \det(A - \lambda I) = 0\}$$
.

## A Useful Matrix-Norm Inequality

If  $\|\cdot\|$  is a matrix norm (assume  $\|I\|=1$ ) and  $A\in\mathbb{R}^{n\times n}$  a given matrix whose norm satisfies  $\|A\|<1$ , then the matrix I+A is invertible and we have

$$||(I+A)^{-1}|| \le \frac{1}{1-||A||}$$

**Proof:** From the inequality

$$|(I+A)x|| \ge \underbrace{(I-||A||)}_{>0} ||x||$$

we conclude that we have  $(I+A)x \neq 0$  for all vectors  $x \neq 0$ ; that is, I+A is invertible. Moreover, we have

$$1 = \|(I+A)(I+A)^{-1}\| \ge \|(I+A)^{-1}\|(1-\|A\|).$$

which implies the statement

## A Useful Matrix-Norm Inequality

If  $\|\cdot\|$  is a matrix norm (assume  $\|I\|=1$ ) and  $A\in\mathbb{R}^{n\times n}$  a given matrix whose norm satisfies  $\|A\|<1$ , then the matrix I+A is invertible and we have

$$||(I+A)^{-1}|| \le \frac{1}{1-||A||}$$

**Proof:** From the inequality

$$||(I+A)x|| \ge \underbrace{(I-||A||)}_{>0} ||x||$$

we conclude that we have  $(I+A)x \neq 0$  for all vectors  $x \neq 0$ ; that is, I+A is invertible. Moreover, we have

$$1 = \|(I+A)(I+A)^{-1}\| \ge \|(I+A)^{-1}\|(1-\|A\|),$$

which implies the statement.

## **Condition Numbers**

#### Theorem:

Let x denote the solution of the invertible and quadratic linear equation system Ax=b and let  $\delta x$  be such that

$$(A + \delta A)(x + \delta x) = b + \delta b.$$

assuming  $\|\delta A\|<\frac{1}{\|A^{-1}\|}$  and  $\|b\|\neq 0$  as well as  $\|A\|\neq 0$ . Then we have

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1-\operatorname{cond}(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right) \quad \text{with} \quad \operatorname{cond}(A) = \|A\| \cdot \|A^{-1}\| \;.$$

## Interpretation

The condition number  $\operatorname{\mathsf{cond}}(A)$  can be interpreted as an error  $\mathsf{amplification}$  factor,

$$\frac{\|\delta x\|}{\|x\|} \approx \operatorname{cond}(A) \left( \frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|} \right)$$

## **Condition Numbers**

#### Theorem:

Let x denote the solution of the invertible and quadratic linear equation system Ax=b and let  $\delta x$  be such that

$$(A + \delta A)(x + \delta x) = b + \delta b$$
.

assuming  $\|\delta A\|<\frac{1}{\|A^{-1}\|}$  and  $\|b\|\neq 0$  as well as  $\|A\|\neq 0$ . Then we have

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1-\operatorname{cond}(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right) \quad \text{with} \quad \operatorname{cond}(A) = \|A\| \cdot \|A^{-1}\| \;.$$

## Interpretation:

The condition number  $\operatorname{cond}(A)$  can be interpreted as an error amplification factor,

$$\frac{\|\delta x\|}{\|x\|} \approx \operatorname{cond}(A) \left( \frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|} \right) \;.$$

## **Proof**

From Ax = b and the equation

$$(A + \delta A)(x + \delta x) = b + \delta b.$$

we find  $\delta x = (A + \delta A)^{-1}(\delta b - \delta Ax)$  (recall that  $\|\delta A\| \leq \frac{1}{\|A^{-1}\|}$  implies that  $A + \delta A$  is invertible). This yields the estimate

$$\begin{aligned} \|\delta x\| & \leq \|(A + \delta A)^{-1}\| \left( \|\delta b\| + \|\delta A\| \|x\| \right) \\ & \leq \|(I + A^{-1}\delta A)^{-1}\| \|A^{-1}\| \left( \|\delta b\| + \|\delta A\| \|x\| \right) \\ & \leq \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\delta A\|} \left( \|\delta b\| + \|\delta A\| \|x\| \right) \end{aligned}$$

(Last step has used the matrix-norm ineq. from previous slides)

## **Proof** (continued)

Because we have Ax = b, it follows that  $||A|| ||x|| \ge ||b||$  and

$$\|\delta x\| \leq \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\delta A\|} (\|\delta b\| + \|\delta A\| \|x\|)$$
$$\leq \frac{\|A^{-1}\| \|A\| \|x\|}{1 - \|A^{-1}\| \|\delta A\|} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right).$$

In the last step we substitute  $cond(A) = ||A|| \cdot ||A^{-1}||$ :

$$\|\delta x\| \leq \frac{\operatorname{\mathsf{cond}}(A)\|x\|}{1-\operatorname{\mathsf{cond}}(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right) \ .$$

The statement of the theorem follows after dividing by ||x||.

## **Contents**

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices

## **Triangular Matrices**

If the matrix A is triangular, i.e.,

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & \dots & a_{2,n} \\ \vdots & \ddots & \ddots & \\ 0 & \dots & 0 & a_{n,n} \end{pmatrix} ,$$

the system Ax can be solved by a "backwards substitution":

$$x_n = \frac{b_n}{a_{n,n}}$$
 and  $x_j = \frac{1}{a_{j,j}} \left( b_j - \sum_{k=j+1}^n a_{j,k} x_k \right)$ 

for  $j = n - 1, \ldots, 1$ . (Complexity:  $\mathbf{O}(n^2)$ .)

For general matrices A the main idea is to transform the matrix step by step into an upper triangular matrix. For this aim, three types of operations can be applied:

- ullet We may swap (permute) rows of A if necessary.
- We may swap (permute) columns as long as we re-enumerate the unknowns  $x_j$ , too.
- We may multiply one row by a scalar factor and add it to another row.

For general matrices A the main idea is to transform the matrix step by step into an upper triangular matrix. For this aim, three types of operations can be applied:

- ullet We may swap (permute) rows of A if necessary.
- We may swap (permute) columns as long as we re-enumerate the unknowns  $x_j$ , too.
- We may multpily one row by a scalar factor and add it to another row

For general matrices A the main idea is to transform the matrix step by step into an upper triangular matrix. For this aim, three types of operations can be applied:

- ullet We may swap (permute) rows of A if necessary.
- We may swap (permute) columns as long as we re-enumerate the unknowns  $x_j$ , too.
- We may multpily one row by a scalar factor and add it to another row

For general matrices A the main idea is to transform the matrix step by step into an upper triangular matrix. For this aim, three types of operations can be applied:

- ullet We may swap (permute) rows of A if necessary.
- We may swap (permute) columns as long as we re-enumerate the unknowns  $x_i$ , too.
- We may multiply one row by a scalar factor and add it to another row.

In the first step of the Gauss elimination procedure is as follows:

- Permute the rows of A such that  $a_{1,1} \neq 0$ .
- For all row indices  $j=2,\ldots,n$ : substract  $q_j=\frac{a_j}{a_{11}}$  times the first row from the j-th row.
- The result of these operations is a matrix of the form

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ 0 & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & c_{2,n} & \dots & c_{n,n} \end{pmatrix}.$$

In the first step of the Gauss elimination procedure is as follows:

- Permute the rows of A such that  $a_{1,1} \neq 0$ .
- For all row indices  $j=2,\ldots,n$ : substract  $q_j=\frac{a_j}{a_{11}}$  times the first row from the j-th row.
- The result of these operations is a matrix of the form

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ 0 & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & c_{2,n} & \dots & c_{n,n} \end{pmatrix}.$$

In the first step of the Gauss elimination procedure is as follows:

- Permute the rows of A such that  $a_{1,1} \neq 0$ .
- For all row indices  $j=2,\ldots,n$ : substract  $q_j=\frac{a_j}{a_{11}}$  times the first row from the j-th row.
- The result of these operations is a matrix of the form

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ 0 & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & & \vdots \\ 0 & c_{2,n} & \dots & c_{n,n} \end{pmatrix}.$$

The first step of the Gauss elimination procedure can also be summarized in the form:

$$C = G_1 P_1 A \quad \text{and} \quad d = G_1 P_1 b$$

such that the equation system Ax=b is equivalent to the equation system Cx=d. Here,  $P_1$  is a permutation matrix (such that  $P_1^2=I$ ) and  $G_1$  a Frobenius matrix of the form

$$G_1 = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ q_2 & 1 & 0 & \dots & 0 \\ q_3 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ q_n & 0 & \dots & 0 & 1 \end{pmatrix}.$$

In the second step of the Gauss elimination we apply the same transformation strategy to the remaining  $(n-1)\times(n-1)$  dense block such that

$$E = G_2 P_2 G_1 P_1 A \quad \text{and} \quad f = G_2 P_2 G_1 P_1 b$$

such that the equation system Ax=b is equivalent to the equation system Ex=f. Here, E has the form

$$E = \begin{pmatrix} c_{1,1} & c_{1,2} & c_{1,3} & \dots & c_{1,n} \\ 0 & e_{2,2} & e_{2,3} & \dots & e_{2,n} \\ 0 & 0 & e_{3,3} & \dots & e_{3,n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & e_{n,3} & \dots & e_{n,n} \end{pmatrix}.$$

If we keep on applying the same strategy we end up with a triangular matrix

$$R = G_{n-1}P_{n-1}\dots G_1P_1A.$$

and a vector  $s=G_{n-1}P_{n-1}\dots G_1P_1b$  such that the equation system Ax=b is equivalent to the equation system Rx=s. The triangular system can then be solved by backwards substitution. The complexity of computing R is of order  $\mathbb{O}(n^3)$ .

If we keep on applying the same strategy we end up with a triangular matrix

$$R = G_{n-1}P_{n-1}\dots G_1P_1A.$$

and a vector  $s=G_{n-1}P_{n-1}\dots G_1P_1b$  such that the equation system Ax=b is equivalent to the equation system Rx=s. The triangular system can then be solved by backwards substitution. The complexity of computing R is of order  $\mathbf{O}(n^3)$ .

## LR Decomposition

We assume for simplicity that we do not have to permute the rows of  ${\cal A}.$  The matrix

$$L = G_1^{-1} G_2^{-1} \dots G_{n-1}^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{2,1} & 1 & 0 & \dots & 0 \\ l_{3,1} & l_{3,2} & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ l_{n,1} & l_{n,2} & \dots & l_{n,n-1} & 1 \end{pmatrix}$$

is lower triangular and satisfies LR=A by construction.

## **Uniqueness of LR-Decomposition**

The LR-Decomposition is unique: if there were two LR Decompositions

$$A = L_1 R_1 = L_2 R_2$$

we would have

$$L_2^{-1}L_1 = R_2R_1^{-1} = I ,$$

since the matrix  $L_2^{-1}L_1$  is lower triangular (with ones on the diagonal) and R is an upper triangular matrix. Thus, we have  $R_1=R_2$  and  $L_1=L_2$ .

## Application of LR Decomposition in Practice

In practice, we are often in the situation that we want to solve mutiple linear equation systems of the form

$$Ax_i = b_i$$
,  $i = 1, 2, \ldots, N$ 

for changing vectors  $b_i \in \mathbb{R}^m$ . A naive implementation of Gauss elimination would lead the complexity  $\mathbf{O}(N \cdot n^3)$  for computing  $x_1, \dots, x_N$ .

A major speed-up can be obtained by computing if we store the LR-decomposition A=LR of the matrix A and then compute

$$x_1 = R^{-1}L^{-1}b_1$$
,  $x_2 = R^{-1}L^{-2}b_2$ ....

Now, the complexity is  $O(n^3 + N \cdot n^2)$ .

## Application of LR Decomposition in Practice

In practice, we are often in the situation that we want to solve mutiple linear equation systems of the form

$$Ax_i = b_i , \qquad i = 1, 2, \dots, N$$

for changing vectors  $b_i \in \mathbb{R}^m$ . A naive implementation of Gauss elimination would lead the complexity  $\mathbf{O}(N \cdot n^3)$  for computing  $x_1, \dots, x_N$ .

A major speed-up can be obtained by computing if we store the LR-decomposition  ${\cal A}=LR$  of the matrix  ${\cal A}$  and then compute

$$x_1 = R^{-1}L^{-1}b_1$$
,  $x_2 = R^{-1}L^{-2}b_2$ ....

Now, the complexity is  $O(n^3 + N \cdot n^2)$ .

## **Computation of Determinants**

If a LR-decomposition of the matrix  $A \in \mathbb{R}^{n \times n}$  is known, the determinant can be computed from

$$\det(A) = \det(LR) = \det(L)\det(R) = \det(R) = \prod_{i=1}^{n} R_{ii}.$$

### **Contents**

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices

### **Band-Structured Matrices**

A band-structured matrix is a matrix whose components satisfy

$$a_{j,k} = 0$$
 for  $k < j - m_{\text{I}}$  or  $k > j + m_{\text{r}}$ .

Here  $m_{\rm I}$  and  $m_{\rm r}$  are called the widths of the band-matrix A.

### **Examples:**

- For  $m_{\rm l}=0$  and  $m_{\rm r}=n-1$ : upper triangular matrix.
- ullet For  $m_{
  m I}=0$  and  $m_{
  m r}=n-1$ : lower triangular matrix
- ullet For  $m_{
  m l}=1$  and  $m_{
  m r}=1$ : tridiagonal matrix.

### **Band-Structured Matrices**

A band-structured matrix is a matrix whose components satisfy

$$a_{j,k} = 0$$
 for  $k < j - m_l$  or  $k > j + m_r$ .

Here  $m_{\rm I}$  and  $m_{\rm r}$  are called the widths of the band-matrix A.

### **Examples:**

- For  $m_{\rm l}=0$  and  $m_{\rm r}=n-1$ : upper triangular matrix.
- For  $m_{\rm l}=0$  and  $m_{\rm r}=n-1$ : lower triangular matrix.
- For  $m_{\rm I}=1$  and  $m_{\rm r}=1$ : tridiagonal matrix.

### **Gauss Elimination for Band-Structured Matrices**

If we do not have to permute rows, equation systems of the form

$$Ax = b$$

can be solved with Gauss-elimination, too, while exploiting the band-structure. The complexity is in this case

$$\mathbf{O}(nm_{\mathsf{I}}m_{\mathsf{r}}) + \mathbf{O}(n(m_{\mathsf{I}} + m_{\mathsf{r}})) .$$

## **Example: Tridiagonal Matrices**

For the case that A is a tridiagonal matrix of the form

$$A = \begin{pmatrix} a_1 & b_1 & & & \\ c_2 & \ddots & \ddots & & \\ & \ddots & \ddots & b_{n-1} \\ & & c_n & a_n \end{pmatrix}$$

the matrices L and R have the form

$$L = \left( \begin{array}{ccc} 1 & & & \\ \gamma_2 & \ddots & & \\ & \ddots & 1 & \\ & & \gamma_n & 1 \end{array} \right) \quad \text{and} \quad R = \left( \begin{array}{cccc} \alpha_1 & b_1 & & \\ & \ddots & \ddots & \\ & & \alpha_{n-1} & b_{n-1} \\ & & & \alpha_n \end{array} \right) \;.$$

## **Example: Tridiagonal Matrices**

The coefficients  $\alpha_i$  and  $\gamma_i$  can be computed by the recursion

for  $i = 2, \ldots, n$ .

Application: computation of splines (see Lecture 3).

## **Example: Tridiagonal Matrices**

The coefficients  $\alpha_i$  and  $\gamma_i$  can be computed by the recursion

$$\begin{array}{rcl} \alpha_1 &=& a_1 \; , \\ \\ \gamma_i &=& \frac{c_i}{\alpha_{i-1}} \; , & \quad \text{and} & \quad \alpha_i &=& a_i - \gamma_i b_i \end{array}$$

for  $i=2,\ldots,n$ .

Application: computation of splines (see Lecture 3).

#### Contents

- Problem Formulation
- Conditioning of Linear Equation Systems
- Gauss Elimination
- Linear Equations with Band-Structured Matrix
- Linear Equations with Positive Definite Matrices

## **Symmetric Positive Definite Matrices**

A matrix  $A \in \mathbb{R}^{n \times n}$  is called symmetric positive definite if we have  $A = A^T$  and

$$\forall v \in \mathbb{R}^n \setminus \{0\}, \qquad v^T A v > 0.$$

Equation systems of the form Ax = b with A being symmetric positive semi-definite are solved by representing A in the form

$$A = LDL^T ,$$

where  $L \in \mathbb{R}^{n \times n}$  is a lower diagonal matrix with ones on the diagonal and  $D \in \mathbb{R}^{n \times n}$  a diagonal matrix.

## **Symmetric Positive Definite Matrices**

A matrix  $A \in \mathbb{R}^{n \times n}$  is called symmetric positive definite if we have  $A = A^T$  and

$$\forall v \in \mathbb{R}^n \setminus \{0\}, \qquad v^T A v > 0.$$

Equation systems of the form Ax=b with A being symmetric positive semi-definite are solved by representing A in the form

$$A = LDL^T ,$$

where  $L \in \mathbb{R}^{n \times n}$  is a lower diagonal matrix with ones on the diagonal and  $D \in \mathbb{R}^{n \times n}$  a diagonal matrix.

Let us work out the matrix product

We want to determine L and D such that

$$A = \left( \begin{array}{cccc} D_1 & & \text{symmetric} \\ L_{2,1}D_1 & L_{2,1}^2D_1 + D_2 & & \\ L_{3,1}D_2 & L_{3,1}L_{2,1}D_1 + L_{3,2}D_2 & L_{3,1}^2D_1 + L_{3,2}^2D_2 + D_3 \\ \vdots & \vdots & \ddots & \end{array} \right)$$

- We first set  $D_1 = A_{1,1} > 0$  (since A is positive definite)
- We can find  $L_{2,1} = A_{2,1}/D_1$ .
- ullet The diagonal entry  $D_2 = A_{2,2} L_{2,1}^2 D_1 > 0$  must be positive.
- ullet General recursion (for i>j):

$$D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_k \quad \text{and} \quad L_{i,j} = \frac{1}{D_j} \left( A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_k \right)$$

We want to determine L and D such that

$$A = \left( \begin{array}{cccc} D_1 & & \text{symmetric} \\ L_{2,1}D_1 & L_{2,1}^2D_1 + D_2 \\ L_{3,1}D_2 & L_{3,1}L_{2,1}D_1 + L_{3,2}D_2 & L_{3,1}^2D_1 + L_{3,2}^2D_2 + D_3 \\ \vdots & \vdots & \ddots \end{array} \right)$$

- We first set  $D_1 = A_{1,1} > 0$  (since A is positive definite).
- We can find  $L_{2,1} = A_{2,1}/D_1$ .
- ullet The diagonal entry  $D_2=A_{2,2}-L_{2,1}^2D_1>0$  must be positive.
- General recursion (for i > j):

$$D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_k \quad \text{and} \quad L_{i,j} = \frac{1}{D_j} \left( A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_k \right) \; .$$

We want to determine L and D such that

$$A = \left( \begin{array}{cccc} D_1 & & \text{symmetric} \\ L_{2,1}D_1 & L_{2,1}^2D_1 + D_2 \\ L_{3,1}D_2 & L_{3,1}L_{2,1}D_1 + L_{3,2}D_2 & L_{3,1}^2D_1 + L_{3,2}^2D_2 + D_3 \\ \vdots & \vdots & \ddots \end{array} \right)$$

- We first set  $D_1 = A_{1,1} > 0$  (since A is positive definite).
- We can find  $L_{2,1} = A_{2,1}/D_1$ .
- ullet The diagonal entry  $D_2=A_{2,2}-L_{2,1}^2D_1>0$  must be positive.
- General recursion (for i > j):

$$D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_k \quad \text{and} \quad L_{i,j} = \frac{1}{D_j} \left( A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_k \right) \; .$$

We want to determine L and D such that

$$A = \left( \begin{array}{cccc} D_1 & & \text{symmetric} \\ L_{2,1}D_1 & L_{2,1}^2D_1 + D_2 & & \\ L_{3,1}D_2 & L_{3,1}L_{2,1}D_1 + L_{3,2}D_2 & L_{3,1}^2D_1 + L_{3,2}^2D_2 + D_3 \\ \vdots & \vdots & & \ddots \end{array} \right)$$

- We first set  $D_1 = A_{1,1} > 0$  (since A is positive definite).
- We can find  $L_{2,1} = A_{2,1}/D_1$ .
- The diagonal entry  $D_2 = A_{2,2} L_{2,1}^2 D_1 > 0$  must be positive.
- General recursion (for i > j):

$$D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_k \quad \text{and} \quad L_{i,j} = \frac{1}{D_j} \left( A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_k \right) \; .$$

We want to determine L and D such that

$$A = \left( \begin{array}{cccc} D_1 & & \text{symmetric} \\ L_{2,1}D_1 & L_{2,1}^2D_1 + D_2 \\ L_{3,1}D_2 & L_{3,1}L_{2,1}D_1 + L_{3,2}D_2 & L_{3,1}^2D_1 + L_{3,2}^2D_2 + D_3 \\ \vdots & \vdots & \ddots \end{array} \right)$$

- We first set  $D_1 = A_{1,1} > 0$  (since A is positive definite).
- We can find  $L_{2,1} = A_{2,1}/D_1$ .
- The diagonal entry  $D_2 = A_{2,2} L_{2,1}^2 D_1 > 0$  must be positive.
- General recursion (for i > j):

$$D_{j,j} = A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^2 D_k \quad \text{and} \quad L_{i,j} = \frac{1}{D_j} \left( A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} D_k \right) \; .$$