# Máster en Business Analytics y Big Data Edición 2015 - intensiva



Asignatura: ENTORNOS DE DATA SCIENCE en PYTHON Módulo: DATA SCIENCE/HERRAMIENTAS DE ANÁLISIS

Coordinador: Miguel-Angel Sicilia, msicilia@uah.es



#### **OBJETIVOS**

El objetivo general del módulo es el de adquirir las habilidades para utilizar un entorno de data science interactivo. En este módulo se utiliza el lenguaje Python y el entorno IPython (ahora Jupyter).

El énfasis del módulo está en proporcionar habilidades de adquisición, preparación, transformación y manejo de datos que son esenciales para todas las asignaturas del bloque III (data science).

Los objetivos concretos del módulo son los siguientes resultados del aprendizaje:

- 1. Usar IPython (notebooks) como herramienta de trabajo interactiva en data science.
- 2. Cargar datasets y adquirir datos externos en diferentes formatos.
- 3. Dibujar (plotting) con propósitos de análisis
- 4. Ser capaz de transformar, mezclar y limpiar datasets.
- 5. Ser capaz de agrupar y resumir datos.
- 6. Ser capaz de aplicar bibliotecas estadísticas
- 7. Comprender cómo lPython puede utilizarse para computación paralela y trabajo en grupo

# **METODOLOGÍA**

La metodología es completamente práctica, y se utilizará el entorno IPython/Jupyter como herramienta de trabajo. Los contenidos se expondrán mediante ejemplos en sesiones interactivas. Los estudiantes después utilizarán el mismo entorno para realizar ejercicios adicionales y adquirir práctica con el entorno y con las tareas básicas de data science.

Para ello, se facilitará una máquina virtual con una instalación del entorno IPython/Jupyter preparada para su uso.

Es importante resaltar que el módulo <u>no está pensado para formar</u> <u>programadores Python</u>, sino para formar data scientists que pueden utilizar Python de manera eficaz para sus propósitos analíticos.

## **PROGRAMA**





Sesión 1: Computación interactiva con IPython/Jupyter

Actividades: Uso de IPython en consola. Familizarización con el entorno

Notebook. Primer caso integrado simple de data science.

Materiales: IPython/Jupyter

Sesión 2: Manejo de arrays y matrices

Actividades: Uso de las bibliotecas NumPy y Pandas.

Materiales: IPython/Jupyter

Sesión 3: Adquisición de datos externos

Actividades: Uso de diferentes bibliotecas para obtener datos en diferentes

formatos y incorporarlos al uso con SciPy.

Materiales: IPython/Jupyter

Sesión 4: Uso de bibliotecas estadísticas

Actividades: Uso de bibliotecas de statmodels, comparación con otras

bibliotecas en SciPy.

Materiales: IPython/Jupyter

Sesión 5: Paralelización del manejo de matrices.

Actividades: Uso del entorno para paralelizar computaciones básicas, para

comprender la arquitectura distribuida de IPython/Jupyter.

Materiales: IPython/Jupyter

#### **MATERIALES**

#### Texto básico:

 McKinney, W. (2012). Python for Data Analysis. Data Wrangling with Pandas, NumPy, and IPython O'Reilly Media

http://www.oreilly.com/catalog/errata.csp?isbn=0636920023784

## IPython project:

http://ipython.org/

## ScyPy:

http://www.scipy.org/

La distribución ScyPy utilizada es esta:

https://store.continuum.io/cshop/anaconda/

<sup>&</sup>quot;Errata list" del libro:





Para saber más y estar al día: http://pyvideo.org/

# **EVALUACIÓN**

## Niveles de consecución de los objetivos

| Objetivo específico                                                                               | Nivel alto                                                                                          | Nivel medio                                                                                    | Nivel bajo                                                                                  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1 – Usar IPython<br>(notebooks) como<br>herramienta de trabajo en<br>data science.                | Desarrollar análisis<br>con el entorno más<br>allá de los utilizados<br>en clase.                   | Utilizar eficazmente el entorno IPython y saber localizar bibliotecas y funciones nuevas.      | Entender y saber<br>manejar de<br>forma básica<br>IPython para los<br>ejemplos de<br>clase. |
| 2 – Cargar y adquirir datos<br>en varios formatos                                                 | Utilizar partes de<br>bibliotecas de<br>adquisición de datos<br>adicionales.                        | Realizar tareas<br>de adquisición y<br>transformación<br>de datos<br>adicionales               | Ser capaz de<br>reproducir y<br>modificar los<br>ejemplos de<br>clase                       |
| 3 – Dibujar (plotting) con<br>propósitos de análisis                                              | Uso avanzado de las<br>bibliotecas de<br>plotting                                                   | Utilizar<br>representaciones<br>que incluyan<br>elementos no<br>vistos en clase                | Saber hacer<br>representaciones<br>básicas de datos<br>como las vistas<br>en clase.         |
| 4 - Ser capaz de<br>transformar, mezclar y<br>limpiar datasets.                                   | Aplica técnicas de<br>transformación y<br>mezcla de manera<br>sistemática y<br>ordenada.            | Aplica la fusión<br>de datos con<br>eficacia y razona<br>las tareas de<br>limpieza             | Es capaz de<br>reproducir<br>tareas básicas de<br>manejo de<br>datasets                     |
| 5 - Ser capaz de agrupar y resumir datos.                                                         | Es capaz de agrupar<br>datos en varios<br>niveles, manteniendo<br>índices de diferentes<br>tipos.   | Utiliza de manera<br>eficaz la<br>agrupación y<br>resumen en<br>problemas no<br>triviales.     | Es capaz de<br>reproducir<br>tareas básicas de<br>agrupación y<br>resumen.                  |
| 6 - Ser capaz de aplicar<br>bibliotecas estadísticas                                              | Es capaz de diferenciar y aplicar de forma avanzada diferentes bibliotecas de análisis estadístico. | Es capaz de<br>encontrar en las<br>bibliotecas las<br>funciones<br>estadísticas<br>necesarias. | Es capaz de<br>utilizar funciones<br>de bibliotecas<br>estadísticas.                        |
| 7. Comprender cómo<br>IPython puede utilizarse<br>para computación paralela<br>y trabajo en grupo | Es capaz de razonar<br>y diseñar<br>paralelizaciones para<br>problemas reales.                      | Es capaz de hacer ejemplos básicos de paralelizaciones con matrices                            | Comprende la<br>arquitectura<br>paralela de<br>IPython.                                     |





## Modelo de evaluación

La siguiente tabla detalla los pesos de cada una de las actividades de evaluación. Todas las pruebas de evaluación son prácticas, consistentes en desarrollar un análisis con Notebooks.

| Elemento                             | Peso |
|--------------------------------------|------|
| Prueba de evaluación 1 – Uso de      | 35%  |
| NumPy y Pandas                       |      |
| Prueba de evaluación 2 –             | 35%  |
| Adquisición y uso de datos           |      |
| Prueba de evaluación 3 – Análisis de | 30%  |
| datos                                |      |

La tercera Prueba incluye una parte abierta en la que los estudiantes que lo deseen pueden ir más allá de lo visto en clase.

#### **PROFESORADO**

Miguel-Angel Sicilia es Catedrático de Lenguajes y Sistemas Informáticos en la Universidad de Alcalá y co-fundador y socio de Jaratech Social Technologies. Antes de incorporarse a la Universidad, desarrolló su trabajo como arquitecto software para el comercio electrónico, y participó en el diseño de soluciones de Inteligencia Artificial en iSOCO, empresa spinoff del IIA del CSIC. Miguel-Angel ha desarrollado su investigación en diferentes aplicaciones de semántica computacional y aprendizaje automático.

Máster en Business Analytics y Big Data