Приложение: теоремы об универсальных моделях

Потанин М. С., Вайсер К. О., Жолобов В. А., Стрижов В. В.

1 Теоремы об универсальных моделях

Теоремы 1, 2, 3 изложены соответственно в [1–3] и приведены ниже в обозначениях, принятых в данной работе.

Теорема 1. Каждая непрерывная функция $f(\mathbf{x})$, заданная на единичном кубе d-мерного пространства, представима в виде

$$f(\mathbf{x}) = \sum_{i=1}^{2d+1} \sigma_i \left(\sum_{j=1}^d g_{ij}(x_j) \right), \ \partial e \ \mathbf{x} = [x_1, \dots, x_d]^\mathsf{T}.$$

Функции $\sigma_i(\cdot)$, $g_{ij}(\cdot)$ непрерывны, причем $g_{ij}(\cdot)$ не зависят от выбора f.

Теорема 2. Пусть φ — любая непрерывная сигмоидная функция, например, $\varphi(\xi) = 1/(1+e^{-\xi})$. Тогда, если дана любая непрерывная функция действительных переменных f на $[0,1]^n$ (или любое другое компактное подмножество \mathbb{R}^n) и $\varepsilon > 0$, то существуют векторы $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_N, \boldsymbol{\alpha}$ и $\boldsymbol{\theta}$ и параметризованная функция $g(\cdot, \mathbf{W}, \boldsymbol{\alpha}, \boldsymbol{\theta})$: $[0,1]^n \to \mathbb{R}$ такая, что

$$|g(\mathbf{x}, \mathbf{W}, \alpha, \theta) - f(\mathbf{x})| < |\varepsilon|, \quad \mathbf{x} \in [0, 1]^n,$$

где

$$g(\mathbf{x}, \mathbf{W}, \alpha, \theta) = \sum_{i=1}^{N} \alpha_i \varphi(\mathbf{w}_i^\mathsf{T} \mathbf{x} + \theta_i))$$

u

$$\mathbf{w}_i \in \mathbb{R}^n$$
, $\alpha_i, \theta_i \in \mathbb{R}$, $\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots \mathbf{w}_N)$, $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_N)$,

u

$$\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_N).$$

Для следующей теоремы введем обозначения. В дальнейшем используется только функция активации ReLU для любого $n \ge 1$:

$$\sigma = \text{ReLU}(x_1, \dots, x_n) = (\max\{0, x_1\}, \dots, \max\{0, x_n\}).$$
 (1)

Для $n \ge 1$ и непрерывной функции $f: [0,1]^n \to \mathbb{R}$ вводится норма

$$||f||_{C_0} := \sup_{\mathbf{x} \in [0,1]^n} |f(\mathbf{x})|.$$

Введем модуль непрерывности

$$\omega_f(\varepsilon) := \sup\{|f(\mathbf{x}) - f(\mathbf{y})| : |\mathbf{x} - \mathbf{y}| \le \varepsilon\}.$$

Обозначим множеством D_1 множество всех возможных нейронных сетей с входным слоем размером n и размером скрытых слоев s, которые достаточно точно аппроксимируют любую положительную непрерывную функцию на $[0,1]^n$. Добавим обозначение минимальной размерности скрытых слоев нейронной сети с входным размером n из D_1 как

$$\omega_{\min}(n) := \min_{s \in D_1} \{s\}.$$

Также обозначим множеством D_2 множество всех возможных нейронных сетей с входным слоем размером n и размером скрытых слоев s, которые достаточно точно аппроксимируют любую положительную выпуклую функцию на $[0,1]^n$. Добавим обзначение минимальной размерности скрытых слоев нейронной сети с входным размером n из D_2 как

$$\omega_{\min}^{\text{conv}}(n) := \min_{s \in D_2} \{s\}.$$

Теорема 3. Пусть $n \ge 1$ и $f: [0,1]^n \to \mathbb{R}_+$ — положительная функция с нормой $||f||_{C_0} = 1$. Тогда:

1. Если f — непрерывная, то существует последовательность нейронных сетей прямого распространения \mathcal{N}_k с функциями активации (1), размер входного слоя — n, скрытого — n+2, выходного слоя — 1 такие, что

$$\lim_{k \to \infty} ||f - f_{\mathcal{N}_k}||_{C^0} = 0. \tag{2}$$

В частности, $\omega_{\min}(n) \leq n+2$ Кроме того, если зафиксировать $\varepsilon > 0$ и взять модуль непрерывности функции $f \ \omega_f(\varepsilon)$, то найдется нейронная сеть прямого распространения $\mathcal{N}_{\varepsilon}$ с функциями активации $ReLu\ (1)$, размерами входного слоя n, скрытого слоя -n+3, выходного слоя -1, u

$$\operatorname{depth}(\mathcal{N}_{\varepsilon}) = \frac{2 \cdot n!}{\omega_f(\varepsilon)^n}.$$

такая, что

$$||f - f_{\mathcal{N}_{\varepsilon}}||_{C_0} \leq \varepsilon.$$

2. Если f — выпуклая, то существует последовательность нейронных сетей прямого распространения \mathcal{N}_m с функциями активации ReLU (1), размерами входного слоя — n, скрытого слоя — n+1, и выходного слоя — 1, такие, что

$$\lim_{m \to \infty} ||f - f_{\mathcal{N}_m}||_{C_0} = 0.$$
 (3)

В частности, верна такая оценка $\omega_{\min}^{\text{conv}}(n) \leq n+1$. Более того, найдется C>0 такая, что если f одновременно и выпуклая, и липшицева c константой

Липшица L, тогда нейронные сети \mathcal{N}_m в (3) могут быть выбраны такими, что они удовлетворяют

$$\operatorname{depth}(\mathcal{N}_m) = m, \ ||f - f_{\mathcal{N}_m}||_{C_0} \le C L n^{\frac{3}{2}} m^{-\frac{2}{n}}.$$

3. Если f — гладкая, то найдутся константа K, зависящая только от n и константа B, зависящая только от максимума первых K производных от f такие, что для каждого $m \geq 3$ нейронные сети \mathcal{N}_m с размерностью n+2 в (2) могут быть выбраны такими что

$$\operatorname{depth}(\mathcal{N}_m) = m, \ ||f - f_{\mathcal{N}_m}||_{C_0} \le B(m-2)^{-\frac{1}{n}}.$$

Список литературы

- [1] Kolmogorov A. On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables// Proceedings of the USSR Academy of Sciences, 108 (1956), pp. 179–182; English translation: Amer. Math. Soc. Transl., 17 (1961), pp. 369–373.
- [2] Cybenko, G. V. Approximation by Superpositions of a Sigmoidal function // Mathematics of Control Signals and Systems. -1989. T. 2, \mathbb{N}^{2} 4. C. 303—314.
- [3] Hanin B. Universal function approximation by deep neural nets with bounded width and relu activations //arXiv preprint arXiv:1708.02691. 2017.