

Continuity

Calculus & Analytical Geometry MATH- 101

Instructor: Dr. Naila Amir (SEECS, NUST)

Continuity

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Chapter: 2

• Sections: 2.6

Objectives

Determine continuity at a point and continuity on open and closed intervals.

Use properties of continuity.

Understand and use the Intermediate Value Theorem.

Continuity

- The idea of continuity is a direct consequence of the concept of limit.
- CONTINUOUS MOTION is motion that continues without a break.
- Calculus wants to describe that motion mathematically, both the distance traveled and the speed at any given time, particularly when the speed is not constant.
- In any real problem of continuous motion, the distance traveled will be represented by a "continuous function" of the time traveled because we always treat time as continuous.
- Therefore, we must investigate what we mean by a continuous function.

Continuity

- In mathematics, the term continuous has much the same meaning as it has in everyday usage.
- Informally, to say that a function f is continuous at x = c means that there is no interruption in the graph of f(x) at c.
- That is, its graph is unbroken at c and there are no holes, jumps, or gaps.

Most of the techniques of calculus require that functions are continuous.

A function is continuous if we can draw it in one motion without picking up pencil.

DEFINITION Continuous at a Point

Interior point: A function y = f(x) is continuous at an interior point c of its

domain if $\lim_{x \to c} f(x) = f(c)$.

Endpoint: A function y = f(x) is continuous at a left endpoint a or is continuous at a right endpoint b of its domain if

$$\lim_{x \to a^+} f(x) = f(a) \qquad \text{or} \qquad \lim_{x \to b^-} f(x) = f(b), \quad \text{respectively}.$$

Continuity at points a, b, and c.

Continuity Test

A function f(x) is continuous at x = c if and only if it meets the following three conditions.

(c lies in the domain of f)

2. $\lim_{x\to c} f(x)$ exists

 $(f \text{ has a limit as } x \rightarrow c)$

 $3. \quad \lim_{x\to c} f(x) = f(c)$

(the limit equals the function value)

Show that $g(x) = x^2 + 1$ is continuous at x = 1.

Solution:

$$1)g(1) = 2.$$

2)
$$\lim_{x \to 1} g(x) = 2$$
.

3)
$$\lim_{x \to 1} g(x) = g(1) = 2$$
.

Since all conditions are satisfied so we conclude that g(x) is continuous at x = 1.

Is the function $f(x) = \begin{cases} x+1; & x < 2 \\ 2x-1; & x \ge 2 \end{cases}$ continuous at x = 2? **Solution:**

1)
$$f(2) = 3$$
.

$$2) \lim_{x \to 2^{-}} f(x) = 3,$$

$$\lim_{x\to 2^+} f(x) = 3,$$

$$\therefore \lim_{x \to 2} f(x) \text{ exists and } \lim_{x \to 2} f(x) = 3.$$

3)
$$\lim_{x\to 2} f(x) = f(2) = 3$$
.

Since all conditions are satisfied so we conclude that f(x) is continuous at x=2.

Is the function
$$f(x) = \begin{cases} x+1; & x < 2 \\ 2x-1; & x > 2 \end{cases}$$
 continuous at $x = 2$?

Solution:

Since f(2) is not defined therefore the given function is not continuous at x = 2.

Is the function
$$f(x) = \begin{cases} x+1 & x < 2 \\ x^2 & x = 2 \\ 2x-1 & x > 2 \end{cases}$$
 continuous at $x = 2$?

Solution:

$$1)f(2) = 4.$$

2)
$$\lim_{x \to 2^{-}} f(x) = 3$$
, $\lim_{x \to 2^{+}} f(x) = 3$,

- 2) $\lim_{x \to 2^{-}} f(x) = 3$, $\lim_{x \to 2^{+}} f(x) = 3$, $\therefore \lim_{x \to 2} f(x)$ exists and $\lim_{x \to 2} f(x) = 3$.
- 3) $\lim_{x \to 2} f(x) \neq f(2)$.

Since third condition fails to exist so we conclude that f(x) is not continuous (or discontinuous) at x=2.

Discontinuity

Following figure identifies three values of x at which the graph of f(x) is not continuous. At all other points in the interval (a, b), the graph of f(x) is uninterrupted and **continuous**.

Three conditions exist for which the graph of f is not continuous at x = c.

Discontinuity

In previous figure, it appears that continuity at x = c can be destroyed by any one of the following conditions.

- **1.** The function is not defined at x = c.
- **2.** The limit of f(x) does not exist at x = c.
- **3.** The limit of f(x) exists at x = c, but it is not equal to f(c).

If *none* of the three conditions above is true, the function f(x) is called **continuous at** c.

Types of Discontinuities

- Consider an open interval I that contains a real number c.
- If a function f(x) is defined on I (except possibly at c), and f(x) is not continuous at c, then f is said to have a **discontinuity** at c.
- Discontinuities fall into two categories: removable and nonremovable.
- A discontinuity at c is called removable if f(x) can be made continuous by appropriately defining (or redefining f(c)).

Types of Discontinuities

For instance, the functions shown in figures (a) and (c) have removable discontinuities at c and the function shown in (b) has a non-removable discontinuity at c.

Removable Discontinuities:

(We can fill the hole.)

Nonremovable Discontinuities:

Types of Discontinuities

The function in (a) is continuous at x = 0; the functions in (b) through (f) are not.

Places to test for continuity

- Rational Expression
 - Values that make denominator = 0
- Piecewise Functions
 - Changes in interval
- Absolute Value Functions
 - Use piecewise definition and test changes in interval
- Step Functions
 - Test jumps from 1 step to next.

Discuss the continuity of each function.

a.
$$f(x) = \frac{x^2 - 1}{x - 1}$$
b.
$$g(x) = \frac{1}{x}$$

$$b. \quad g(x) = \frac{1}{x}$$

c.
$$h(x) = \begin{cases} x+1, & x \le 2 \\ x^2+1, & x > 2 \end{cases}$$

d.
$$i(x) = \begin{cases} x+1, x \le 0 \\ x^2+1, x > 0 \end{cases}$$

Solution (a)

There is a removable discontinuity at x = 1 because f(1) is not defined.

Solution (b)

The function has a non-removable discontinuity at x = 0 because

 $\lim_{x\to 0} g(x)$ does not exist

Solution (c)

The limit from the right of x = 2 does not equal the limit from the left.

Therefore, the limit as x approaches 2 does not exist.

Function has a discontinuity at x = 2 because $\lim_{x\to 0} g(x)$ does not exist

Solution (d)

Continuity on an open interval

A function is continuous on **an open interval** (a, b) if it is continuous on each point in the interval. A function that is continuous on the entire real line **is every where continuous**.

Example:

f(x) is continuous on (-3,2).

Continuity on a closed interval

The concept of a one-sided limit allows us to extend the definition of continuity to closed intervals. A function f(x) is continuous on the closed interval [a,b] if it is continuous on the open interval (a,b) and

$$\lim_{x \to a^{+}} f(x) = f(a) \text{ and } \lim_{x \to b^{-}} f(x) = f(b),$$

i.e., the function is continuous from the right at a and continuous from the left at b.

Example:

f(x) is continuous on [-3,2].

The domain of the function $y = \sin x$ is the set of all real numbers. f(x) is continuous on its entire domain, as shown in figure.

Discuss the continuity of $f(x) = \sqrt{1 - x^2}$.

Solution:

The domain of f(x) is the closed interval [-1,1]. At all points in the open interval (-1,1), the given function is continuous. Moreover,

$$\lim_{x \to -1^+} \sqrt{1 - x^2} = 0 = f(-1)$$

Continuous from the right

and

$$\lim_{x \to 1^{-}} \sqrt{1 - x^2} = 0 = f(1)$$

Continuous from the left

This implies that f(x) is continuous on the closed interval [-1,1].

f is continuous on [-1, 1].

Practice

Q#1: Discuss the continuity of the following functions:

1.
$$f(x) = \begin{cases} \frac{x-4}{\sqrt{x}-2}; & x \ge 0 \text{ and } x \ne 4 \\ 4; & x = 4 \end{cases}$$
 at $x = 4$.

2.
$$f(x) = \begin{cases} \frac{x^2 - a^2}{x - a}; & 0 \le x < a \\ a; & x = a \\ 2a; & x > a \end{cases}$$
 at $x = a$.

3.
$$f(x) = 2^{1/x}$$
 at $x = 0$.

4.
$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}; & x \neq 0 \\ 0; & x = 0 \end{cases}$$
 at $x = 0$.

Practice

Q#1: Discuss the continuity of the following functions:

5.
$$f(x) = \begin{cases} \frac{\sin 3x}{\sin 2x}; & x \neq 0 \\ 2/3; & x = 0 \end{cases}$$
 at $x = 0$.

6.
$$f(x) = x - |x|$$
 at $x = 1$.

7.
$$f(x) = \begin{cases} (1+x)^{1/x}; & x \neq 0 \\ 1; & x = 0 \end{cases}$$
 at $x = 0$.

Q#2: Find the constant "c", provided the function $f(x) = \begin{cases} \frac{1-\sqrt{x}}{x-1}; & 0 \le x < 1 \\ c; & x = 1 \end{cases}$

is continuous for all $x \in [0,1]$.