Lecture 4 (E-Learning)
Boolean Logic & Logic Gates

BOOLEAN LOGIC

Boolean Logic

- Boolean logic forms the basis of digital logic
- A boolean logic statement (or signal) is either
 - True (1)
 - False (0)
- Boolean operators act on these statements to form other statements
- Examples of boolean operators:

NOT	-
AND	NAND
OR	NOR
XOR	XNOR

 In digital electronics, boolean operators are implemented as logic gates

Logic Gates

• Below are some common boolean operators and their logic gate symbols. The next few slides will give more details about each boolean operator.

Boolean Operator	Logic Gate Symbol
AND	
OR	D
XOR	
NOT	
NAND	-D-
NOR	10-
XNOR	

Logic Gates: AND

- The output (Q) of an AND gate is True (1) only if ALL its inputs are True (1)
 - In the following diagram, Q is True (1) only if A
 AND B are True (1)

Logic Gates: OR

- The output (Q) of an OR gate is True (1) if ANY of its inputs are True (1)
 - Q is True (1) if either A OR B are True (1)

Logic Gates: XOR

- XOR is an abbreviation of eXclusive OR
- The output (Q) of an XOR gate is True (1) only if its inputs are different
 - Q is True (1) only if A AND B are different [one is True (1) and one is False (0)]

Logic Gates: NOT

- The output (Q) of a **NOT** gate inverts its input
 (A)
 - True (1) becomes False (0)
 - False (0) becomes True (1)

Logic Gates: NAND

 A NAND gate combines an AND gate with a NOT gate

 The output (Q) of a NAND gate is simply the inversion of an AND gate

Logic Gates: NOR

A NOR gate combines an OR gate with a NOT gate

 The output (Q) of a NOR gate is simply the inversion of an OR gate

Logic Gates: XNOR

 A XNOR gate combines an XOR gate with a NOT gate

 The output (Q) of a XNOR gate is simply the inversion of an XOR gate

Example - Logic Gates on a Chip

Example on the Use of Boolean Logic

 Any problem can be split up into small pieces represented by Boolean Logic

Vending machines operate using Boolean logic. They exist in one of two states: either the full amount of change for a soda has been deposited (paid), or it has not been met (unpaid).

Another way Boolean logic is used: Whether the coin box is full, how many cans remaining, is there a change to be given?

Example on the Use of Boolean Logic

Vending Machine example:

 Let's design our vending machine so that a drink is only dispensed if both input A and input B are True (1)

Inputs Full amount of coins is deposited (Input A) Drink is selected (Input B)

 We can use the boolean operator AND to form the required logic to dispense the drink

Outputs	Boolean Logic
Dispense drink (Output Q)	Input A AND Input B

Boolean Logic in Games

- Games are complex combinations of multiple Boolean conditions
 - if (HP > 0) state = alive;
 - if (HP == 0) state = KO;

Lecture 5
Boolean Logic & Logic Gates

BITWISE OPERATIONS

Boolean Symbols

Boolean Operator	Logic Gate Symbol	Bitwise Operator Symbols
AND		&
OR		
XOR		^
NOT		~

Bitwise Operations

- Bitwise operations act on individual bits in a binary number.
- Follow rules of logic gates

Bitwise Operations

Individual bits in the same position are AND'd with each other

0101 & 0011 = 0001

Individual bits in the same position are XOR'd with each other

0101 ^ 0011 = 0110

Lecture 5
Boolean Logic & Logic Gates

COMBINATIONAL LOGIC

Remember These Logic Gates?

- These gates can be combined into any order and in any amount to create more complex functions
- For example:

NAND Gate

- NAND gate is special
 - Functionally complete
 - Able to construct any other type of gates by just combining NAND gates

- Ability is very useful in digital logic designs
 - Saves on cost
 - Saves on complexity
- More on this in future

Boolean Symbols

Boolean Operator	Logic Gate Symbol	Logic Symbols
AND		∧ or .
OR	Ð	V or +

Example: Automobile Warning

Buzzer will activate if headlights are on AND driver's door is open, OR if key in ignition AND door is opened.

- Example: Automobile Warning
 - B: Buzzer, H: Headlights, D: Door, K: Key
 - Boolean Equation: B = K AND D OR H AND D

B = KD + HD
B is TRUE if K and D are TRUE, or if H
and D are TRUE

- Example: Automobile Warning
 - Logic Circuit

- Example: Automobile Warning
 - Another (alternative) way of stating the criteria

Buzzer is activated whenever door is opened AND either key is in ignition OR headlights are on.

$$B = K.D + H.D$$

$$B = D.(K + H)$$

- Example: Automobile Warning
 - Logic Circuit

- Another example: Burglar Alarm
 - Write out the Boolean equation and draw out the reduced logic circuit for this scenario:

Burglar alarm (A) is activated if it is switched on (S) AND front door is open (F), OR if it is switched on (S) AND back door is open (B), OR if it is switched on (S) AND a window is open (W).

- Example: Burglar Alarm
 - Write out the Boolean equation and simplify

- Example: Burglar Alarm
 - Reduced logic circuit

