

SoQ 23-24 Москва, 2024

IR Derivatives Final Project TONIA (Tenge OverNight Index Average)

Команда:

Вячеслав Бучков

СОДЕРЖАНИЕ

Обзор выбранной кривой	4.	Предложенные модели	11.
Методология и конвенции	5.	Результаты	16.
Почему безрисковая?	6.	Симуляции будущей ставки	21.
Историческое поведение	7.	Дальнейшее исследование	25.

O53OP TONIA

ДАННЫЕ ОБ ИНДЕКСЕ

TONIA — Tenge OverNight Index Average

- Ставка овернайт размещений РЕПО с обеспечением государственными облигациями Казахстана
- **Безрисковая* ставка в тенге** (KZT) национальной валюте Казахстана
- Публикуется ежедневно с 2014 года
- Рассчитывается за период T-1 (сегодня видим данные за вчера)

^{*} Безрисковость обсуждается на слайде 5

МЕТОДОЛОГИЯ РАСЧЁТА

Средневзвешанное РЕПО

- Используются сделки на рынке
 РЕПО. В РФ и СНГ это один из
 наиболее развитых и ликвидных
 money market инструментов
- Для расчёта берутся ставки в сделках РЕПО за предыдущий день и взвешиваются по объёму

Отсечение выбросов

- Для расчёта используются сделки
 с объёмом свыше KZT 100
 миллионов
- Начиная с 28 декабря 2020
 года, из расчёты исключаются
 выбросы верхнего и нижнего
 5%-квантиля по ставке сделки

Конвенции

- Котируется в % годовых (как и сами сделки РЕПО)
- Срок овернайт, праздничные дни учитываются согласно торговому календарю биржи
- Конвенция АСТ/365, перевод
 в дневные % без накопления

ПОЧЕМУ СТАВКА БЕЗРИСКОВАЯ?

В процессе экспериментов мы работал с ML и DL классификаторами

Центральный Контрагент

- Если контрагент не рассчитается по
 2-ой ноге, участник рынка теряет
 номинал и проценты
- Сделки заключаются через ЦК,
 биржа сама контролирует кредитный риск
- Участник несёт кредитный риск на саму биржу, 50% которой принадлежит ЦБ Казахстана

Какой уровень риска?

- Используются сделки РЕПО
- По данным сделкам существует кредитный риск контрагента
- Однако риск дополнительно митигируется бумагами в обеспечении
- **ИТОГО:** риск крайне близок к суверенному

Обеспеченные сделки

- Более того, сделки РЕПО являются обеспеченными, так как агент покупает ценные бумаги с автоматической продажей позднее
- Так как для расчёта берутся только сделки с госбондами Казахастана, обеспечение соответствует уровню безрискового в КZT

ИСТОРИЧЕСКАЯ ДИНАМИКА

ИСТОРИЧЕСКАЯ ДИНАМИКА

До 2017 наблюдались спайки — неэффективная методология

ИСТОРИЧЕСКАЯ ДИНАМИКА

ПРЕДЛОЖЕННЫЕ МОДЕЛИ

ПРОЦЕСС МОДЕЛИРОВАНИЯ

- Было определено 3 группы моделей для экспериментов
 — Vasicek, Hull-White и нейронные сети
- Каждая модель обучалась и бэктестировалась на данных
 1, 3 и 4 года назад
- Финальная модель
 обучается на всей
 выборке и симулирует
 ТОNIА на заданный
 промежуток времени в
 будущее

Только исторические данные

VasicekModel — моделируем AR(1)-процесс только на основе исторического движения

HullWhiteModel — моделируем **AR(1)-процесс** на основе истории, однако **калибруем модель** к текущей кривой КZT доходности так, чтобы она **возвращала цены бондов, равные рыночным**

NeuralRateModel — используем **рекуррентные нейронные сети**, чтобы проносить информацию о прошлом движении больше, чем на 1 шаг назад

КАЛИБРОВКА ПО NSS КРИВОЙ

Instantaneous Fwd Rate взята из NSS кривой госбондов в KZT

ЗАЧЕМ НЕЙРОННЫЕ СЕТИ?

Более длинная "память"

- Так как мы предполагаем, что у ставки есть исторический паттерн, выбираем модель, которая будет учитывать всю историю
- В отличие от AR(1) процесса, модель будет соотносить всю историю с каким-то затухающим, но ненулевым весом
- При симуляции ожидается увидеть **более логичную форму кривой**, проистекающую из
 исторической динамики

Возможность учитывать другие факторы

- Также обогащение фреймворком нейронных сетей для моделирования ставок поможет уточнять модельный прогноз за счёт включения других фичей
- Можно создать **универсальный симулятор ставок**, в который аналитики могли бы добавлять кажущиеся им релевантные факторы
- Потенциальные идеи для фичей эмбеддинг макро данных, sentiment новостей, стаканы на рынке ПФИ и т.п.

ПОЛУЧАЕМ ГОТОВЫЙ ПАЙПЛАЙН ДЛЯ ЭКСПЕРИМЕНТОВ

КАК БЫЛА ПОСТРОЕНА НЕЙРОНКА?

Важные детали, отличающие модель для процентных ставок

Две полносвязные головы в модели

- Выход модели состоит из двух голов
- Вместо скалярного выхода из последнего линейного слоя модель отдаёт предсказанную среднюю ставку и коэффициент возврата к среднему

Используем знания о доменной области

Процесс Орнштейна-Уланбека

- Ставка генерируется по процессу как в модели Васечка и Халл-Вайта
- Таким образом добиваемся соответствия классическому процессу движения ставки, однако с более точным и непостоянным прогнозом параметров

Сравнимый с базовыми моделями результат

Учёт изменения формы кривой

- Модель умеет принимать на вход спотовую кривую процентных ставок для учёта текущих ожиданий рынка
- Вместо использования калибровки к ценам бондов ввиду отсутствия аналитического решения просто рассматриваем кривую как фичу

Учёт ожиданий рынка

Принимает кривую, а не параметры NSS

- Для получения общей модели вместо передачи параметров NSS используется обработка всей кривой, дискретезированной до ставок на разные сроки
- Кривая также обрабатывается рекуррентно

Используем RNN/LSTM

РЕЗУЛЬТАТЫ

РЕЗУЛЬТАТЫ БЭКТЕСТА

- Используем RMSE как несмещённый показатель ошибки в размерности процентной ставки
- RMSE показывает: "на сколько % (в годовом выражении) мы промахиваемся в прогнозе"

• Однако незначительное преимущество у нейронных сетей появляется на более длинном бэктесте, однако магнитуда разницы достаточно небольшая

БЭКТЕСТ 2023-2024: VASICEK

БЭКТЕСТ 2023-2024: HULL-WHITE

БЭКТЕСТ 2023-2024: LSTM

LSTM прогнозировала более быстрое убывание к среднему

СИМУЛЯЦИЯ БУДУЩЕГО

СИМУЛЯЦИЯ: VASICEK

Vasicek предполагает ставку на приблизительно том же уровне

СИМУЛЯЦИЯ: HULL-WHITE

Прогноз Hull-White снова сходится с прогнозом Vasicek

СИМУЛЯЦИЯ: LSTM

LSTM предполагает более резкий рост ставки в будущем

ДАЛЬНЕЙШИЕ ШАГИ

ДАЛЬНЕЙШЕЕ ИССЛЕДОВАНИЕ

Что можно учесть, чтобы сделать прогноз лучше?

Добавить фичи в нейронную сеть

Чтобы улучшить прогноз, мы можем использовать LSTM не только на историческом поведении ставки, но и добавить дополнительные факторы

Почему калибровка не помогла?

Так как мы моделируем ставку овернайтного РЕПО, на него влияет не ожидаемая ставка ЦБ, а реализованная, потому что участники выбирают между альтернативой аукциона ЦБ и размещения РЕПО => ожидания не влияют на данную ставку

Предобучение нейронной сети на других ставках

Преполагается, что все ставки двигаются по схожим паттернам, имеет смысл предобучить модель на ставках других стран, а затем сбросить скрытое состояние и обучить на нашу задачу

Quantile Regression

Если мы преследуем цели управления рисками, то нам важно не среднее или медиана, а VaR, то есть хвосты распределения => имеет смысл переформулировать задачу машинного обучения в термины квантильной регрессии

СПАСИБО ЗА ВНИМАНИЕ!