TD11 M1S2 Probabilité, Martingale et chaîne de Markov

11.1 Une chaîne de Markov sur les graphes

Soit $N \geq 2$ un entier. On rappelle qu'un graphe sur $\{1, \ldots, N\}$ est la donnée d'un ensemble d'arêtes, qui sont des éléments de $\{\{x,y\} \mid x,y \in \{1,\ldots,N\}, x \neq y\}; \{x,y\}$ est l'arête qui relie x à y. On note \mathcal{G}_N l'ensemble de tous les graphes sur $\{1,\ldots,N\}$, et K_N le graphe complet $\{\{x,y\} \mid x,y \in \{1,\ldots,N\}, x \neq y\}$, dans lequel toutes les arêtes possibles sont présentes. On considère la chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ définie sur \mathcal{G}_N de la manière suivante : à chaque temps $n \in \mathbb{N}$, on choisit une arête possible (c'est-à-dire $x,y \in \{1,\ldots,N\}$ avec $x \neq y$), et on définit X_{n+1} comme étant X_n à part que l'arête $\{x,y\}$ est présente dans X_{n+1} avec probabilité 1/2, et absente avec probabilité 1/2.

- 1. Déterminer le noyau de transition de $(X_n)_{n\in\mathbb{N}}$.
- 2. Déterminer si $(X_n)_{n\in\mathbb{N}}$ est irréductible, puis les classes ou la classe de récurrence.
- 3. Montrer que la mesure uniforme sur \mathcal{G}_N est invariante pour $(X_n)_{n\in\mathbb{N}}$.
- 4. On suppose pour cette question que $X_0 = K_N$ presque-sûrement, et on note $T_1 = \inf\{n > 0 \mid X_n = K_N\}$ le premier temps de retour en K_N .
 - (a) Déterminer $\mathbb{E}(T_1)$
 - (b) Si $T_2 = \inf\{n > T_1 \mid X_n = K_N\}$ est le deuxième temps de retour en K_N , déterminer $\mathbb{E}(T_2)$. On pourra éventuellement l'écrire en fonction de $\mathbb{E}(T_1)$.
- 5. Pour tout $n \in \mathbb{N}^*$, on note $P_n = \frac{1}{n+1} \sum_{k=0}^n \mathbb{1}_{\{X_k = K_N\}}$ la proportion du temps passée en K_N . Étudier la convergence de $(P_n)_{n \in \mathbb{N}^*}$.
- 6. Montrer que $(\mathbb{P}(X_n = K_N))_{n \in \mathbb{N}}$ converge et déterminer sa limite.

11.2 Chaîne p-périodique

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov sur E, irréductible de période p. Définissons $Y_n = X_{np}$, pour tout $n \in \mathbb{N}$. Montrer qu'il existe une partition de E en p ensembles disjoints tels que la chaîne de Markov $(Y_n)_{n\in\mathbb{N}}$ est incapable de passer de l'un à l'autre, c'est-à-dire tels que si x et y appartiennent à deux ensembles différents, alors $\mathbb{P}_x[Y_1 = y] = 0$. Montrer ensuite que $(Y_n)_{n\in\mathbb{N}}$ est irréductible apériodique sur chacun de ces ensembles.