```
import pandas as pd
df=pd.read csv('dataset/cross-validation.csv')
df.head()
    Loan ID Gender Married Dependents
                                             Education Self Employed
   LP001002
               Male
                                              Graduate
0
                          No
                                       0
                                                                    No
1
   LP001003
               Male
                        Yes
                                       1
                                              Graduate
                                                                    No
2
   LP001005
               Male
                         Yes
                                       0
                                              Graduate
                                                                   Yes
3
                                       0
   LP001006
               Male
                                          Not Graduate
                                                                    No
                        Yes
   LP001008
               Male
                          No
                                       0
                                              Graduate
                                                                    No
   ApplicantIncome
                     CoapplicantIncome
                                          LoanAmount
                                                       Loan_Amount_Term
0
                                                                   360.0
               5849
                                    0.0
                                                 NaN
1
                                               128.0
               4583
                                 1508.0
                                                                   360.0
2
               3000
                                    0.0
                                                66.0
                                                                   360.0
3
               2583
                                 2358.0
                                               120.0
                                                                   360.0
4
               6000
                                    0.0
                                               141.0
                                                                   360.0
   Credit History Property Area Loan Status
0
               1.0
                            Urban
1
                            Rural
                                             N
               1.0
2
               1.0
                            Urban
                                             Υ
3
                                             Υ
               1.0
                            Urban
4
               1.0
                            Urban
                                             Υ
df.describe()
       ApplicantIncome
                          CoapplicantIncome
                                              LoanAmount
Loan Amount Term \
count
             614.000000
                                 614.000000
                                              592,000000
600.00000
mean
           5403,459283
                                1621.245798
                                              146.412162
342.00000
std
           6109.041673
                                2926.248369
                                               85.587325
65.12041
                                                9.000000
min
             150.000000
                                   0.000000
12.00000
25%
            2877.500000
                                   0.000000
                                              100.000000
360.00000
50%
           3812.500000
                                1188.500000
                                              128.000000
360.00000
75%
           5795.000000
                                2297.250000
                                              168.000000
360.00000
           81000.000000
                               41667.000000
                                              700.000000
max
480.00000
       Credit History
            564,000000
count
              0.842199
mean
```

```
std
              0.364878
min
              0.000000
25%
              1.000000
50%
              1.000000
75%
              1.000000
              1.000000
max
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
#
     Column
                         Non-Null Count
                                           Dtype
- - -
 0
     Loan ID
                         614 non-null
                                           object
 1
     Gender
                         601 non-null
                                           object
 2
     Married
                         611 non-null
                                           object
 3
     Dependents
                         599 non-null
                                           object
 4
                         614 non-null
     Education
                                           object
 5
     Self Employed
                         582 non-null
                                           object
 6
     ApplicantIncome
                         614 non-null
                                           int64
 7
     CoapplicantIncome
                         614 non-null
                                           float64
 8
     LoanAmount
                         592 non-null
                                           float64
 9
     Loan Amount Term
                         600 non-null
                                           float64
    Credit History
                         564 non-null
                                           float64
 10
 11
     Property Area
                         614 non-null
                                           object
12
     Loan Status
                         614 non-null
                                           object
dtypes: f\overline{loat64}(4), int64(1), object(8)
memory usage: 62.5+ KB
df.isnull().sum()
                       0
Loan ID
Gender
                      13
Married
                       3
                      15
Dependents
Education
                       0
Self Employed
                      32
ApplicantIncome
                       0
CoapplicantIncome
                       0
                      22
LoanAmount
Loan Amount Term
                      14
                      50
Credit_History
Property_Area
                       0
Loan Status
                       0
dtype: int64
df.shape
(614, 13)
```

```
df['Gender'].fillna('Other',inplace=True)
df['Dependents'].fillna(0,inplace=True)
df['Self_Employed'].fillna('Both',inplace=True)
df['Credit_History'].fillna(0,inplace=True)
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(x='Gender',data=df)

<Axes: xlabel='Gender', ylabel='count'>
```



```
sns.countplot(x='Education', hue='Gender', data=df)
<Axes: xlabel='Education', ylabel='count'>
```



```
s=df['Property_Area'].value_counts()/
df['Property_Area'].value_counts().sum()*100
plt.pie(s.values,labels=s.index,autopct='%1.1f%%')
plt.show()
```


sns.lineplot(x='ApplicantIncome',y='LoanAmount',data=df)

<Axes: xlabel='ApplicantIncome', ylabel='LoanAmount'>

sns.lineplot(x='CoapplicantIncome',y='LoanAmount',data=df)

<Axes: xlabel='CoapplicantIncome', ylabel='LoanAmount'>


```
import numpy as np
incomeType=[]
for i in df['ApplicantIncome']:
    if i>6000:
        incomeType.append('High')
    elif i<6000 and i>4000:
        incomeType.append('Medium')
    else:
        incomeType.append('Low')
df['ApplicantIncomeStatus']=pd.Series(incomeType)
df['CoapplicantIncome']=np.where(df['CoapplicantIncome']>0,'Yes','No')
df['ApplicantIncomeStatus'].value counts()
ApplicantIncomeStatus
Low
          340
Medium
          137
          137
High
Name: count, dtype: int64
sns.boxplot(x='ApplicantIncomeStatus',y='LoanAmount',hue='CoapplicantI
ncome',data=df)
<Axes: xlabel='ApplicantIncomeStatus', ylabel='LoanAmount'>
```


sns.boxplot(x='Property_Area',y='LoanAmount',data=df)

<Axes: xlabel='Property_Area', ylabel='LoanAmount'>

	by(['Married', ount'].mean()	'Education','Se	lf_Employed','	Dependents'])
Married No	Education Graduate	Self_Employed Both	Dependents 0 1 2 3+	174.833333 104.000000 120.000000 350.000000
		No	0 0 1 2 3+	104.500000 125.564815 120.545455 128.428571 253.333333
		Yes	0 1	163.764706 128.000000
	Not Graduate	Both	3+ 0 1	292.000000 123.000000 132.000000
		No	0 1 3+	94.137931 91.666667 148.000000
		Yes	0	146.500000 136.666667
Yes	Graduate	Both	0	173.000000

		1 2 3+	170.666667 102.000000 110.000000
	No	0 0 1 2	172.500000 147.948276 167.468085 153.058824
	Yes	3+ 0	216.074074 70.000000 149.916667
		0 1 2 3+	203.692308 223.307692 182.333333
Not Graduate	Both	0 2	125.000000 98.000000
	No	0 0 1	126.666667 128.807692 146.692308
	Yes	2 3+ 0	115.300000 103.111111 138.000000 121.500000
		0 2 3+	142.000000 128.333333

Name: LoanAmount, dtype: float64

df

Sol f	Loan_ID Employed	Gender \	Married	Dependents	Education	
0	LP001002	Male	No	0	Graduate	No
1	LP001003	Male	Yes	1	Graduate	No
2	LP001005	Male	Yes	0	Graduate	Yes
3	LP001006	Male	Yes	0	Not Graduate	No
4	LP001008	Male	No	0	Graduate	No
609	LP002978	Female	No	0	Graduate	No
610	LP002979	Male	Yes	3+	Graduate	No
611	LP002983	Male	Yes	1	Graduate	No
612	LP002984	Male	Yes	2	Graduate	No
613	LP002990	Female	No	0	Graduate	Yes

360.0							
360.0							
360.0							
360.0							
360.0							
360.0							
360.0							
360.0							
180.0							
360.0							
360.0							
360.0							
tatus edium edium Low Low Low							
Low edium High High edium							
[614 rows x 14 columns]							
<pre>df['Gender'] = df['Gender'].map({'Male': 0, 'Female': 1, 'Other':2}) df['Married'] = df['Married'].map({'Yes': 0, 'No': 1}) df['Dependents'] = df['Dependents'].map({'0': 0, '1': 1 ,'2': 2 ,'3+': 3}) df['Education'] = df['Education'].map({'Graduate': 0, 'Not Graduate': 1}) df['Self_Employed'] = df['Self_Employed'].map({'Yes': 0, 'No': 1, 'Both': 2})</pre>							

```
df['Property_Area'] = df['Property Area'].map({'Urban': 0, 'Rural':
1 , 'Semiurban': 2})
df['Loan Status'] = df['Loan Status'].map({'Y': 0, 'N': 1})
df['ApplicantIncomeStatus'] =
df['ApplicantIncomeStatus'].map({'Low':0, 'Medium':1, 'High':2})
df['CoapplicantIncome']=df['CoapplicantIncome'].map({'Yes':0, 'No':1})
df['Loan Amount Term'] =
df['Loan Amount Term'].replace(np.nan,df['Loan Amount Term'].mean())
df['LoanAmount'] =
df['LoanAmount'].replace(np.nan,df['LoanAmount'].mean())
df['Dependents'] = df['Dependents'].replace(np.nan,0)
df['Married'] = df['Married'].replace(np.nan,1)
df.isna().sum()
Loan ID
                         0
Gender
                         0
                         0
Married
Dependents
                         0
Education
                         0
Self Employed
                         0
ApplicantIncome
                         0
CoapplicantIncome
                         0
LoanAmount
                         0
Loan Amount Term
                         0
Credit History
                         0
Property Area
                         0
Loan_Status
                         0
ApplicantIncomeStatus
dtype: int64
columns = df.select dtypes(exclude='int').columns
columns
Index(['Loan ID', 'Married', 'Dependents', 'LoanAmount',
'Loan Amount Term',
       'Credit History'],
      dtype='object')
df=df.drop(['Loan ID'],axis=1)
df=df.drop(['ApplicantIncome'],axis=1)
df['Loan Amount Term']=df['Loan Amount Term'].div(max(df['Loan Amount
Term']))
df['LoanAmount']=df['LoanAmount'].div(max(df['LoanAmount']))
df
```

	Gender Mar licantIncom	ried	Dependents	Education	Self_E	Employed
0	0	1.0	0.0	0		1
1 1	0	0.0	1.0	0		1
0 2	0	0.0	0.0	Θ		0
1	0			1		1
0		0.0	0.0			
4 1	0	1.0	0.0	0		1
609 1	1	1.0	0.0	0		1
610 1	0	0.0	3.0	0		1
611	0	0.0	1.0	0		1
0 612	0	0.0	2.0	0		1
1 613	1	1.0	0.0	0		0
1						
	LoanAmount	Loan	_Amount_Term	Credit_Hi	story	Property_Area
0	Status \ 0.209160		0.750		1.0	0
0 1	0.182857		0.750		1.0	1
1 2	0.094286		0.750		1.0	0
0 3	0.171429		0.750		1.0	0
0						
4 0	0.201429		0.750		1.0	0
609	0.101429		0.750		1.0	1
0 610	0.057143		0.375		1.0	1
0 611	0.361429		0.750		1.0	Θ
0 612	0.267143		0.750		1.0	0
0 613						2
1	0.190000		0.750		0.0	2

```
ApplicantIncomeStatus
0
1
                           1
2
                           0
3
                           0
4
                           0
609
                           0
610
                           1
                           2
611
                           2
612
613
[614 rows x 12 columns]
plt.figure(figsize=[15,8])
sns.heatmap(df.corr(),annot=True)
<Axes: >
```



```
X = df.drop('Loan_Status', axis=1)
Y = df['Loan_Status']
```

```
from sklearn.model selection import train test split
x train , x test , y train , y test = train test split(X, Y ,
test size = 0.2 , random state = 42, stratify=Y)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x test scaled = scaler.transform(x test)
from sklearn.linear model import LogisticRegression
model = LogisticRegression()
model.fit(x train scaled,y train)
y pred = model.predict(x test scaled)
from sklearn.metrics import classification report
print(classification_report(y_test,y_pred))
                           recall f1-score
              precision
                                               support
           0
                   0.80
                             0.85
                                        0.82
                                                    85
           1
                   0.61
                                                    38
                             0.53
                                        0.56
                                        0.75
                                                   123
    accuracy
                   0.70
   macro avq
                             0.69
                                        0.69
                                                   123
weighted avg
                   0.74
                             0.75
                                        0.74
                                                   123
```

K-Fold Validation

```
X=df.drop('Loan Status', axis=1)
Y= df['Loan Status']
nData = int(X.shape[0]/5)
folds=[]
targets=[]
s=0
e=nData
while(e<X.shape[0]):
    fold=X.loc[s:e]
    target=Y.loc[s:e]
    folds.append(fold)
    targets.append(target)
    s=e+1
    e=s+nData
folds.append(X.loc[s:])
targets.append(Y.loc[s:])
train_data=[]
target train=[]
test data=[]
```

```
target test=[]
k=len(folds)
for i in range (0,k):
   test data.append(folds[i])
   target test.append(targets[i])
   data=[]
   target=[]
   for j in range(0,k):
       if(i==j):
           continue
       data.append(folds[j])
       target.append(targets[j])
   train data.append(pd.concat(data))
   target train.append(pd.concat(target))
model1 = LogisticRegression(penalty=None, solver='saga', max iter=300)
for i in range (0,k):
   model1.fit(train data[i],target train[i])
   y pred = model1.predict(test data[i])
   print(f"Trained with Fold {i+1}")
   print(classification report(target_test[i],y_pred))
   print(f"Accuracy: {model1.score(test_data[i], target_test[i])}")
   print("-----")
Trained with Fold 1
             precision recall f1-score
                                           support
                           0.93
          0
                  0.77
                                     0.84
                                                83
          1
                  0.74
                           0.42
                                     0.54
                                                40
                                     0.76
                                               123
   accuracy
  macro avq
                  0.75
                           0.68
                                     0.69
                                               123
weighted avg
                  0.76
                           0.76
                                     0.74
                                               123
Accuracy: 0.7642276422764228
Trained with Fold 2
             precision recall f1-score
                                           support
          0
                  0.76
                           0.88
                                     0.81
                                                84
          1
                  0.60
                           0.38
                                     0.47
                                                39
                                               123
   accuracy
                                     0.72
                  0.68
                           0.63
                                     0.64
                                               123
  macro avg
weighted avg
                 0.71
                           0.72
                                     0.70
                                               123
Accuracy: 0.723577235772
Trained with Fold 3
             precision recall f1-score
                                           support
```

0 1	0.78 0.58	0.87 0.42	0.83 0.48	87 36
accuracy macro avg weighted avg	0.68 0.72	0.65 0.74	0.74 0.65 0.73	123
Accuracy: 0.7				
Trained with				
	precision	recall	f1-score	support
0 1	0.82 0.67		0.85 0.62	85 38
accuracy macro avg weighted avg	0.74 0.77			123
Accuracy: 0.7				
Trained with				
Trained with	precision	recall	f1-score	support
0 1	0.80 0.77	0.93 0.51	0.86 0.62	83 39
accuracy macro avg weighted avg	0.79	0.72	0.80 0.74 0.78	
			U./0	122
Accuracy: 0.7	7950819672131 	L147		