Análise Matricial de Estruturas

Um Sistema Computacional Orientado ao Ensino e Projetos Práticos

Caíque Roder Corcioli

Orientador: Professor Doutor Marco Antônio Rahal Sacoman

Sumário

- 1. Introdução
- 2. Objetivo
- 3. Justificativa
- 4. Metodologia
- 5. Fundamentação Teórica
- 6. Sistema Computacional
- 7. Conclusão

1.Introdução

Engenharia Estrutural

- Projeto Estrutural
 - Projeto preliminar da estrutura.

- Cálculo Estrutural
 - Dimensionamento.

- Análise Estrutural
 - Esforços.
 - Deformações.

Histórico

- No passado
 - Ensino e aprendizado eram baseados em Métodos Aproximados.

- Métodos Exatos
 - Cálculos complexos e exaustivos.

- A partir década de 1950
 - Utilização do computador.

Métodos Aproximados x Métodos Exatos

- Métodos Aproximados
 - Tratam a estrutura como uma coleção de elementos que se interagem de acordo com as leis físicas.
- Métodos Exatos
 - Tratam a estrutura de forma global considerando todos seus elementos de uma só vez, de forma mais eficiente.

Exemplos: Método da Flexibilidade e Método da Rigidez. Independente do método utilizado, o resultado da análise deve ser o mesmo.

2.Objetivos

Objetivos do Trabalho

Desenvolver um sistema computacional que:

- Utilize os métodos da Flexibilidade ou da Rigidez para Análise Estrutural, de forma matricial.
- Calcule os esforços e deslocamentos de seis diferentes tipos de estruturas reticuladas.
- Permita que docentes e alunos executem problemas práticos e verifiquem resultados obtidos de forma didática.

3. Justificativa

Justificativas do Trabalho

Advento da computação: utilização de métodos exatos.

- Programas existentes no mercado:
 - Cálculo e dimensionamento da estrutura.
 - Não apresentam os dados de análise estrutural.
 - Raros os que destinam-se ao ensino.
 - Preços altamente elevados.

 Estruturas reticuladas: tratar problemas estruturais de forma exata.

4. Metodologia

Metodologia Utilizada

 Estudo dos métodos de Análise Matricial de Estruturas.

 Desenvolvimento de algoritmos para a solução destes problemas.

Desenvolvimento do sistema computacional.

Realização de testes.

Ferramentas Utilizadas

Ambiente de desenvolvimento integrado Delphi.

HTML Help Workshop para arquivos de ajuda.

 Componente QuickReport para o gerenciamento de relatórios.

5. Fundamentação Teórica

 Determinação de forças internas, de ligações e deslocamentos de uma estrutura.

Principal etapa de cálculo de um projeto estrutural.

 Análise do comportamento de uma estrutura através da construção de um modelo matemático idealizado com a imposição de carregamentos.

 Uma estrutura é criada para servir um propósito definido.

- Objetivos de projetos estruturais:
 - Segurança.
 - Durabilidade.
 - Desempenho.
 - Conforto dos usuários.
 - Estética.

Fonte: Engiobra (2013).

 Deformações (deslocamentos e giros) e fissuras devem ser limitadas ao ponto de não serem notadas e não comprometerem a utilização.

 Satisfação dos critérios e requisitos de utilização: uma ampla Análise Estrutural.

Idealização Estrutural

 Formulação de um modelo matemático de elementos discretos equivalente à estrutura real contínua.

 Modelo é necessário para se obter um sistema (discreto) com um número finito de variáveis (graus de liberdade) para a realização de operações de álgebra matricial.

Nós

"Nós de uma estrutura reticulada são pontos de interseção dos membros, assim como os pontos de apoio e extremidades livres." (GERE; WEAVER, 1987).

Tipos de nós:

- Nó livre e apoio.

Tipos de apoio:

- Móvel.
- Fixo.
- Engaste.

Nós

A: nó livre, permite deslocamento nas direções 1 e 3 e rotação no plano 1-3.

B: apoio móvel, permite deslocamento na direção 1 e rotação no plano 1-3.

C: apoio fixo, permite rotação no plano 1-3.

D: engaste, não permite deslocamentos e rotações.

Estruturas Reticuladas

• Sistemas constituídos por elementos lineares ligados entre si por nós e ligados ao exterior através de apoios.

 Elemento linear é aquele em que o comprimento longitudinal supera em pelo menos três vezes a maior dimensão da seção transversal, sendo também denominado barra (NBR 6118, 14.4.1.1).

Estruturas Reticuladas

Estruturas reticuladas abordadas no trabalho:

- a) Viga contínua.
- b) Treliça plana.
- c) Pórtico plano.
- d) Grelha.
- e) Treliça espacial.
- f) Pórtico espacial.

Grelha

Fonte: Revista Téchne (2014).

Treliça Espacial

Fonte: Revista Finestra (2016).

Pórtico Espacial

Vista frontal MASP

Fonte: Museu de Arte de São Paulo (2016).

Métodos de Análise Estrutural

Método da Flexibilidade

Método das Forças.

 Calcula-se diretamente os esforços e indiretamente os deslocamentos.

Utilizado para calcular qualquer estrutura estaticamente indeterminada.

Método da Flexibilidade

• A estrutura hiperestática é modificada por meio de cortes tornando-a isostática.

 Incógnitas são os esforços (ações redundantes) nos cortes.

Número de incógnitas = Número de graus de liberdade.

 O sistema de equações que resolve o problema é chamado de equações de compatibilidade de deslocamentos (deformações).

Método da Flexibilidade

Algoritmo:

- 1. Enunciado do problema.
- 2. Seleção da estrutura livre.
- 3. Análise da estrutura livre sob o efeito de cargas.
- 4. Análise da estrutura livre para valores unitários das ações redundantes.
- 5. Determinação das ações redundantes.
- 6. Determinação de outros deslocamentos e ações.

Método da Rigidez

Método dos Deslocamentos.

 Calcula-se diretamente os deslocamentos e indiretamente os esforços.

Utilizado para calcular qualquer estrutura estaticamente indeterminada.

Método da Rigidez

 A estrutura hiperestática é modificada por meio de fixações tornando-a cinematicamente determinada (isostática).

Incógnitas são os deslocamentos dos nós.

Número de incógnitas = Número de graus de liberdade.

 O sistema de equações que resolve o problema é constituído por equações de equilíbrio de forças em torno destas fixações.

Método da Rigidez

Algoritmo:

- 1. Enunciado do problema.
- 2. Seleção da estrutura fixa.
- 3. Análise da estrutura fixa sob o efeito de cargas.
- 4. Análise da estrutura fixa para valores unitários dos deslocamentos.
- 5. Determinação dos deslocamentos.
- 6. Determinação de ações de extremo e reações.

Comparação entre os Métodos

• Semelhantes em sua formulação matemática.

 Ambos necessitam do princípio da superposição para obter-se as equações fundamentais.

 No Método da Flexibilidade a seleção de redundantes tem um efeito significativo na quantidade de trabalho de cálculo necessário. Possui uma infinidade de sistemas principais.

Comparação entre os Métodos

 No Método da Rigidez nunca existe dúvida sobre a seleção da estrutura fixa, pois só existe uma possibilidade. Possui um único sistema principal.

- Para a programação computacional, o Método da Rigidez é mais apropriado:
 - Determinação automática da estrutura fixa.
 - Todos efeitos estão localizados.

6. Sistema Computacional

Informações sobre o Sistema

Seleção do tipo de versão: aprendizado ou profissional.

Seleção do tipo de estrutura: viga contínua, treliça plana, pórtico plano, grelha, treliça espacial e pórtico espacial.

Seção mostrar esquema.

Informações sobre o Sistema

Entrada de dados (versão de aprendizado): viga contínua, treliça plana, pórtico plano, grelha, treliça espacial e pórtico espacial.

Entrada de dados (versão profissional): viga contínua.

Seção solução: viga contínua (versão de aprendizado e profissional).

Informações sobre o Sistema

Seção ajuda.

Módulos auxiliares: calculadora, DOS, Explorer, entre outros.

Fôrma Principal

Seleção do Tipo de Estrutura Reticulada

Mostrar Esquema

Entrada de Dados 1 - Aprendizado

Entrada de Dados 1 - Profissional

Entrada de Dados 2 - Aprendizado

Entrada de Dados 2 - Profissional

Apresentação de Resultados 1

Apresentação de Resultados 2

Solução - Relatório

Solução - Relatório Ampliado

Ajuda

7.Conclusão

Conclusão do Trabalho

 Resultados numéricos corretos e verificados com exemplos de livros de análise estrutural.

 Criação de um sistema computacional que pode ser utilizado no ensino e aprendizado de Análise Estrutural.

 Proporcionou o estudo de novas áreas e ferramentas contribuindo para a formação do autor.

Trabalhos Futuros

 Inclusão de nova entrada de dados, relacionada a projetos práticos, para os demais tipos de estruturas.

 Inclusão de relatórios para os demais tipos de estruturas.

Novos perfis de viga.

Referências

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6.118**: Projeto de estruturas de concreto: procedimento. Rio de Janeiro, 2003.

GERE, J. M.; WEAVER, W. Jr. **Análise de Estruturas Reticuladas**. Tradução: Carlos M. P. Ferreira Pinto. Rio de Janeiro: Guanabara Dois, 1987. 443p.

MUSEU DE ARTE DE SÃO PAULO. **Sobre o MASP**. Disponível em: http://masp.art.br. Acesso em: 20 dez. 2016.

NAKAMURA, J. Estabilidade dimensional e resistência mecânica determinaram a madeira laminada colada na reforma da Biblioteca Paulo Freire, em Itaipu. São Paulo: Revista Téchne, Editora Pini. v.208, 2014.

PORTO, S. Treliças metálicas e amplos painéis de vidro na fachada. São Paulo: Revista Finestra, Editora Arco. v. 97, 2016.

Referências

ENGIOBRA. Resistência à Flexão de uma Viga de Concreto Armado. Disponível em: < http://engiobra.com >. Acesso em: 2 fev. 2016.

SACOMAN, M. A. R. **Otimização de Projetos**. Energia na Agricultura (UNESP. Botucatu. Impresso), Botucatu-SP, v. 13, n.3, p. 66-76, 1998.

SACOMAN, M. A. R. Otimização de Projetos utilizando GRG, Solver e Excel. In: XL Congresso Brasileiro de Educação em Engenharia - Cobenge, 2012, Belém. XL COBENGE. Belém: 2012. v. 1.V.

SACOMAN, M. A. R. **Análise Matricial de Estruturas**. Relatório Técnico, Bauru: Unesp, 2012. 14p.

SORIANO, H. L. **Análise de Estruturas**: Formulação Matricial e Implementação Computacional. Rio de Janeiro: Ciência Moderna, 2005. 346p.

FIM