



TASK 3 :- PROVIDING INSIGHTS ON DIABETES PREDICTION DATA USING SQL



# **ABOUT DATA**

- Dataset consists of 1,00,000 patients diabetes records with 10 columns.
- Where, 3 categorical columns such as Employee name, patient id, smoking history and
- 7 Numerical columns such as age, hypertension, heart disease, bmi, HbAlc level, blood glucose level and diabetes



Retrieve the Patient\_id and ages of all patients.

### **MYSQL CODE**

SELECT Patient\_Id,age FROM diabetes\_pred\_data;

## **OUTPUT**

| Patient_Id | age |
|------------|-----|
| PT102      | 54  |
| PT103      | 28  |
| PT104      | 36  |
| PT106      | 20  |
| PT107      | 44  |
| PT108      | 79  |
| PT109      | 42  |
| PT110      | 32  |
| PT111      | 53  |
| PT112      | 54  |
| PT113      | 78  |

2. Select all female patients who are older than 40

## **MYSQL CODE**

SELECT \* FROM diabetes\_pred\_data WHERE gender="Female" and age>40;

## **OUTPUT**



3 04:05:59 SELECT \* FROM diabetes\_pred\_data WHERE gender="Female" and age>40 29627 row(s) returned
0.016 sec / 0.125 sec



# 3. Calculate the average BMI of patients.

### **MYSQL CODE**

SELECT ROUND(avg(bmi),2) as Diabetes\_Patients from diabetes\_pred\_data WHERE diabetes=1;

## **OUTPUT**

**Average for only Diabetes patients** 



**Average For ALL patients** 



4. List patients in descending order of blood glucose levels.

### **MYSQL CODE**

SELECT \* FROM diabetes\_pred\_data ORDER BY blood\_glucose\_level DESC;

## **OUTPUT**





# 5. Find patients who have hypertension and diabetes

## **MYSQL CODE**

SELECT \* FROM diabetes\_pred\_data WHERE hypertension =1 and diabetes =1;

# **OUTPUT**





6. Determine the number of patients with heart disease.

## **MYSQL CODE**

SELECT COUNT(\*) AS HEART\_DISEASES\_PATIENTS FROM diabetes\_pred\_data WHERE heart\_disease =1;

### **OUTPUT**

HEART\_DISEASES\_PATIENTS 3942



| EmployeeName        | Patient_id | gender | age  | hypertension | heart_disease | smoking_history | bmi   | HbA1c_level | blood_glucose_level | diabetes |
|---------------------|------------|--------|------|--------------|---------------|-----------------|-------|-------------|---------------------|----------|
| NATHANIEL<br>FORD   | PT101      | Female | 80.0 | 0            | 1             | never           | 25.19 | 6.6         | 140                 | 0        |
| PATRICK<br>GARDNER  | PT105      | Male   | 76.0 | 1            | 1             | current         | 20.14 | 4.8         | 155                 | 0        |
| VICTOR<br>WYRSCH    | PT124      | Female | 72.0 | 0            | 1             | former          | 27.94 | 6.5         | 130                 | 0        |
| JOHN HANLEY         | PT127      | Male   | 67.0 | 0            | 1             | not current     | 27.32 | 6.5         | 200                 | 1        |
| THOMAS<br>SIRAGUSA  | PT143      | Female | 77.0 | 1            | 1             | never           | 32.02 | 5.0         | 159                 | 0        |
|                     |            |        |      |              |               |                 |       |             |                     |          |
| Clyde L Woods       | PT99927    | Male   | 63.0 | 0            | 1             | No Info         | 27.32 | 6.6         | 300                 | 1        |
| Erlinda Andres      | PT99949    | Male   | 80.0 | 1            | 1             | former          | 28.79 | 5.8         | 90                  | 0        |
| Estelle Yancey      | PT100013   | Male   | 80.0 | 0            | 1             | former          | 27.32 | 5.0         | 140                 | 0        |
| Stephanie<br>Chang  | PT100036   | Female | 65.0 | 1            | 1             | never           | 33.55 | 8.2         | 140                 | 1        |
| Marquis D<br>Walker | PT100039   | Male   | 55.0 | 0            | 1             | former          | 30.42 | 6.2         | 300                 | 1        |

7. Group patients by smoking history and count how many smokers and nonsmokers there are.

# **MYSQL CODE 1**

SELECT smoking\_history,COUNT(Patient\_id) AS Total\_Count FROM diabetes\_pred\_data GROUP BY smoking\_history;

## **MYSQL CODE 2**

SELECT COUNT(Patient\_Id) AS NON\_SMOKERS,(SELECT COUNT(Patient\_Id) as SMOKER FROM diabetes\_pred\_data

WHERE smoking\_history IN("ever","Ex-smoker","former","current","not current")) AS SMOKERS,

(SELECT count(Patient\_Id) AS NO\_NFO FROM diabetes\_pred\_data WHERE smoking\_history IN ("No Info")) AS NO\_INFO

FROM diabetes\_pred\_data

WHERE smoking\_history IN ("never");







8. Retrieve the Patient\_ids of patients who have a BMI greater than the average BMI.

# **MYSQL CODE**

SELECT Patient\_Id,Employee\_Name,bmi
FROM diabetes\_pred\_data
WHERE bmi> (SELECT avg(bmi) as Average\_BMI FROM diabetes\_pred\_data);

# OUTPUT

| Patient_Id | Employee_Name      | bmi   |
|------------|--------------------|-------|
| PT102      | GARY JIMENEZ       | 27.32 |
| PT103      | ALBERT PARDINI     | 27.32 |
| PT106      | DAVID SULLIVAN     | 27.32 |
| PT109      | MICHAEL MORRIS     | 33.64 |
| PT110      | JOANNE HAYES-WHITE | 27.32 |
| PT111      | ARTHUR KENNEY      | 27.32 |
| PT112      | PATRICIA JACKSON   | 54.7  |
| PT113      | EDWARD HARRINGTON  | 36.05 |
| PT115      | DAVID FRANKLIN     | 27.32 |
| PT116      | RICHARD CORRIEA    | 27.32 |
| PT117      | AMY HART           | 30.36 |

24 04-28:12 SELECT Patient\_Id.Employee\_Name.bmi FROM diabetes\_pred\_data ... 56903 row(s) returned 0.109 sec / 0.157 sec



9. Find the patient with the highest HbA1c level and the patient with the lowest HbA1clevel.

## **MYSQL CODE**

**SELECT** 

\* FROM diabetes\_pred\_data
WHERE HbA1c\_level = (SELECT Min(HbA1c\_level) as Min\_Max\_level
FROM diabetes\_pred\_data)
OR
HbA1c\_level = (SELECT Max(HbA1c\_level) as Min\_Max\_level FROM

diabetes\_pred\_data);

# OUTPUT



② 25 04:30:09 SELECT \* FROM diabetes\_pred\_data WHERE HbA1c\_level =... 8007 row(s) returned 0.140 sec / 0.141 sec

10. Calculate the age of patients in years (assuming the current date as of now).

#### **MYSQL CODE**

SELECT Employee\_Name,Patient\_Id,age,YEAR(current\_date())-age AS DOB from diabetes\_pred\_data;



| Employee_Name      | Patient_Id | age | DOB  |
|--------------------|------------|-----|------|
| GARY JIMENEZ       | PT102      | 54  | 1969 |
| ALBERT PARDINI     | PT103      | 28  | 1995 |
| CHRISTOPHER CHONG  | PT104      | 36  | 1987 |
| DAVID SULLIVAN     | PT106      | 20  | 2003 |
| ALSON LEE          | PT107      | 44  | 1979 |
| DAVID KUSHNER      | PT108      | 79  | 1944 |
| MICHAEL MORRIS     | PT109      | 42  | 1981 |
| JOANNE HAYES-WHITE | PT110      | 32  | 1991 |
| ARTHUR KENNEY      | PT111      | 53  | 1970 |
| PATRICIA JACKSON   | PT112      | 54  | 1969 |
| EDWARD HARRINGTON  | PT113      | 78  | 1945 |
|                    |            |     |      |

# 11. Rank patients by blood glucose level within each gender group.

# **MYSQL CODE**

SELECT \*,

row\_number() over(partition by gender order by blood\_glucose\_level) AS Row\_Number\_Ranking,

dense\_rank() over(partition by gender order by blood\_glucose\_level) AS Dense\_Ranking FROM diabetes\_pred\_data;



# **Ranking order of Female**

| Employee_Name   | Patient_Id | gender | age | hyper | hear | smoking_h | bmi   | HbA1c_le | blood_glucose_level | diabet | Row_Number_Rankin | Dense_Rank |
|-----------------|------------|--------|-----|-------|------|-----------|-------|----------|---------------------|--------|-------------------|------------|
| Eve Bekker      | PT100      | Female | 30  | 0     | 0    | never     | 22.88 | 4.5      | 80                  | 0      | 1                 | 1          |
| Jacqueline C Ro | PT99894    | Female | 72  | 1     | 0    | Ex-smo    | 50.85 | 3.5      | 80                  | 0      | 2                 | 1          |
| Aisha M Malone  | PT100      | Female | 0   | 0     | 0    | No Info   | 18.37 | 3.5      | 80                  | 0      | 3                 | 1          |
| James E Nelson  | PT100      | Female | 31  | 0     | 0    | current   | 20.23 | 6        | 80                  | 0      | 4                 | 1          |
| Joshua R Mcdo   | PT100      | Female | 47  | 1     | 0    | current   | 25.48 | 4.5      | 80                  | 0      | 5                 | 1          |
| Edward A Ang    | PT100      | Female | 21  | 0     | 0    | No Info   | 23.04 | 6.5      | 80                  | 0      | 6                 | 1          |
| Jensa Woo       | PT100      | Female | 54  | 0     | 0    | Ex-smo    | 27.32 | 6.5      | 80                  | 0      | 7                 | 1          |
| Sharon S Young  | PT100      | Female | 57  | 0     | 0    | Ex-smo    | 33.64 | 6.2      | 80                  | 0      | 8                 | 1          |
| Judi Soto       | PT99994    | Female | 20  | 0     | 0    | current   | 28.06 | 6        | 80                  | 0      | 9                 | 1          |
| Benny M Choi    | PT99774    | Female | 57  | 0     | 0    | Ex-smo    | 29.56 | 4        | 80                  | 0      | 10                | 1          |
| John E Long     | PT99842    | Female | 19  | 0     | 0    | never     | 27.32 | 6.1      | 80                  | 0      | 11                | 1          |
| Michael T Feist | PT99910    | Female | 34  | 0     | 0    | No Info   | 27.32 | 4.5      | 80                  | 0      | 12                | 1          |
|                 | 0700075    | e I-   | 00  | ^     | ^    |           | 27.22 |          | 00                  | ^      |                   |            |



## Ranking order of Male



12.Update the smoking history of patients who are older than 50 to "Exsmoker."

#### **MYSQL CODE**

UPDATE diabetes\_pred\_data SET smoking\_history = 'Ex-smoker' WHERE age > 50;

## **OUTPUT**





13.Insert a new patient into the database with sample data.

## **MYSQL CODE**

INSERT INTO diabetes\_pred\_data VALUES("HEROSAKI","PT001","Male",25,0,0,"never",33.55,6.3,145,0);

## **OUTPUT**



14.Delete all patients with heart disease from the database.

# **MYSQL CODE**

DELETE FROM diabetes\_pred\_data WHERE heart\_disease=1;

## OUTPUT

## After Deleting the Record





# 15. Find patients who have hypertension but not diabetes

# **MYSQL CODE**

SELECT \* FROM diabetes\_pred\_data where hypertension =1 AND diabetes =0;

# **OUTPUT**

| 1                |            |        |     |              |               |                 |       |          |                     |          |
|------------------|------------|--------|-----|--------------|---------------|-----------------|-------|----------|---------------------|----------|
| Employee_Name    | Patient_Id | gender | age | hypertension | heart_disease | smoking_history | bmi   | HbA1c_le | blood_glucose_level | diabetes |
| DENISE SCHMITT   | PT129      | Male   | 45  | 1            | 0             | never           | 26.47 | 4        | 158                 | 0        |
| RAY CRAWFORD     | PT155      | Female | 45  | 1            | 0             | never           | 23.05 | 4.8      | 130                 | 0        |
| KENNETH SMITH    | PT161      | Male   | 44  | 1            | 0             | current         | 27.86 | 6.6      | 145                 | 0        |
| CHARLES SCOTT    | PT215      | Female | 55  | 1            | 0             | Ex-smoker       | 34.2  | 5.7      | 140                 | 0        |
| SHANNON SAK      | PT227      | Male   | 79  | 1            | 0             | Ex-smoker       | 28.73 | 6.6      | 160                 | 0        |
| MARISA MORET     | PT241      | Female | 80  | 1            | 0             | Ex-smoker       | 44.06 | 6.5      | 160                 | 0        |
| STEPHEN TACC     | PT326      | Female | 48  | 1            | 0             | never           | 36.73 | 6.6      | 126                 | 0        |
| ANDREW LOGAN     | PT339      | Male   | 59  | 1            | 0             | Ex-smoker       | 25.31 | 6        | 130                 | 0        |
| HAGOP HAJIAN     | PT357      | Female | 52  | 1            | 0             | Ex-smoker       | 21.46 | 4        | 80                  | 0        |
| PERRY LEONG      | PT377      | Female | 48  | 1            | 0             | No Info         | 24.29 | 3.5      | 90                  | 0        |
| MELISSA LERMA    | PT379      | Female | 59  | 1            | 0             | Ex-smoker       | 27.4  | 5.7      | 140                 | 0        |
| petes_pred_data3 | 1 ×        |        |     |              |               |                 |       |          |                     |          |

34 17:57:31 SELECT \* FROM diabetes\_pred\_data where hypertension = 1 AND diabet...
 5397 row(s) returned
 0.015 sec / 0.110 sec

16. Define a unique constraint on the "patient\_id" column to ensure its values are unique.

# **MYSQL CODE**

Alter table diabetes\_pred\_data
ADD CONSTRAINT uniq\_patient\_id UNIQUE(Patient\_id);







17. Create a view that displays the Patient\_ids, ages, and BMI of patients

**MYSQL CODE** 

SELECT \* FROM diabetes\_data.patient\_id\_age\_bmi\_view;







# 18. Suggest improvements in the database schema to reduce data redundancy and improve data integrity.

 Normalization: Break down large tables into smaller ones to eliminate duplicate data. This involves organizing tables to minimize redundancy and dependency.



- Primary Keys and Foreign Keys: Ensure each table has a primary key
   (unique identifier) and use foreign keys to create relationships
   between tables. This maintains data integrity and prevents
   orphaned records.
- Constraint Enforcement: Implement constraints such as NOT NULL, UNIQUE, and CHECK constraints to maintain data integrity.
- 4. **Regular Maintenance:** Perform regular data cleaning, remove duplicate records, and update outdated information.
- 19. Explain how you can optimize the performance of SQL queries on this dataset.

**Limit SELECT :** Instead of retrieving all columns, specify only the required columns to reduce data transfer and processing time

**Review Query Execution Plan :** Analyze the query execution plan to identify bottlenecks and optimize accordingly.