

NHD-0216K1Z-FS(RGB)FBW-REV1

Character Liquid Crystal Display Module

NHD- Newhaven Display
0216- 2 Lines x 16 Characters

K1Z- Model

FS- Transflective

RGB- RED, GREEN, BLUE Edge LED Backlight

F- FSTN Positive
B- 6:00 Optimal View
W- Wide Temperature

REV1- Revision 1

RoHS Compliant

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

Document Revision History

Revision	Date	Description	Changed by
0	1/23/2006	Initial Release	-
1	6/4/2009	User Guide Reformat	-
2	9/16/2009	Backlight Revision	BE
3	10/23/2009	Block Diagram/Initialization/electrical Revision	BE
4	1/7/2010	Optical revised	BE
5	1/6/2011	Alternate controller information updated	AK
6	5/3/2011	Electrical characteristics updated	AK
7	11/29/2011	Mechanical drawing updated	TJ
8	9/28/16	Mechanical Drawing, Electrical & Optical Char. Updated	SB

Functions and Features

- 2 lines x 16 characters
- Built-in controller (ST7066U)
- Red, Green and Blue Backlights
- +5.0V power supply
- 1/16 duty, 1/5 bias
- RoHS Compliant

Mechanical Drawing

Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	Vss	Power Supply	Ground
2	V _{DD}	Power Supply	Supply Voltage for logic (+5.0V)
3	Vo	Adj. Power Supply	Supply Voltage for contrast (approx. 0.5V)
4	RS	MPU	Register Select signal RS=1: DATA RS=0: COMMAND
5	R/W	MPU	Read/Write select signal RW=1: READ RW=0: WRITE
6	E	MPU	Operation Enable signal Falling Edge Triggered
7-10	DB0 – DB3	MPU	Four low order bi-directional three-state data bus lines.
			These four are not used during 4-bit operation
11-14	DB4 – DB7	MPU	Four high order bi-directional three-state data bus lines.
15	LED-	Power Supply	Backlight Cathode (Ground)
16	LED-RED	Power Supply	Backlight Anode Red (2.0V)
17	LED-GREEN	Power Supply	Backlight Anode Green (3.0V)
18	LED-BLUE	Power Supply	Backlight Anode Blue (3.0V)

Recommended LCD connector: 2.54mm pitch 1x18 pin header **Backlight connector:** Pins 15-18 of LCD connector **Mates with:** -

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-20	1	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	ı	+80	°C
Supply Voltage	V_{DD}	•	4.7	5.0	5.3	V
Supply Current	I _{DD}	$V_{DD} = 5.0V$	1.0	1.5	2.5	mA
Supply for LCD (contrast)	V_{LCD}	$T_{OP} = 25^{\circ}C$	4.3	4.5	4.7	V
"H" Level input	V _{IH}	-	0.7*V _{DD}	-	V_{DD}	V
"L" Level input	V _{IL}	-	V_{SS}	-	0.6	V
"H" Level output	V _{OH}	-	3.9	-	V_{DD}	V
"L" Level output	V _{OL}	-	V_{SS}	-	0.4	V
Backlight Supply Voltage – RED	V_{LED}	-	1.8	2.0	2.2	V
Backlight Supply Current – RED	I _{LED}	$V_{LED} = 2.0V$	5	10	15	mA
Backlight Supply Voltage – GREEN	V_{LED}	-	2.8	3.0	3.2	V
Backlight Supply Current – GREEN	I _{LED}	$V_{LED} = 3.0V$	10	20	30	mA
Backlight Supply Voltage – BLUE	V_{LED}	-	2.8	3.0	3.2	V
Backlight Supply Current – BLUE	I _{LED}	$V_{LED} = 3.0V$	10	20	30	mA

Optical Characteristics

	lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit
Outimal	Тор		φΥ+		•	40	ı	0
Optimal	Bott	tom	φΥ-	CD > 2	-	60	1	0
Viewing Angles	Left		θХ-	CR ≥ 2	-	60	-	0
Aligies	Righ	nt	θХ+		-	60	-	0
Contrast Rat	io		CR	-	2	5	-	-
Dosnonso T	'ina a	Rise	T_R	T - 25°C	-	150	250	ms
Response T	ime	Fall	T _F	T _{OP} = 25°C	-	200	300	ms

Controller Information

Built-in ST7066 Controller.

Please download specification at http://www.newhavendisplay.com/app_notes/ST7066U.pdf

DDRAM Address

1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
00	0	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
40)	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

Table of Commands

				Ins	tructi	ion co	ode					Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (f _{osc} = 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.52ms
Return Home	0	0	0	0	0	0	0	0	1	1	Set DDRAM Address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Sets cursor move direction and specifies display shift. These parameters are performed during data write and read.	37μs
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	D=1: Entire display on C=1: Cursor on B=1: Blinking cursor on	37µs
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	,	Sets cursor moving and display shift control bit, and the direction without changing DDRAM data.	37µs
Function set	0	0	0	0	1	DL	N	F	-		DL: Interface data is 8/4 bits N: Number of lines is 2/1 F: Font size is 5x11/5x8	37µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	37µs
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0s
Write data To Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	37µs
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	37µs

Timing Characteristics

Writing data from MPU to ST7066U

	Write Mode (Writing data from MPU to ST7066U)								
T _C	Enable Cycle Time	Pin E	1200	•	ı	ns			
T _{PW}	Enable Pulse Width	Pin E	140	•	ı	ns			
T_R, T_F	Enable Rise/Fall Time	Pin E	•	•	25	ns			
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	•	ı	ns			
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	•	1	ns			
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	40	ı	1	ns			
T _H	Data Hold Time	Pins: DB0 - DB7	10	ı	1	ns			

Reading data from ST7066U to MPU

	Read Mode (Reading Data from ST7066U to MPU)									
Tc	Enable Cycle Time	Pin E	1200	ı	ı	ns				
T _{PW}	Enable Pulse Width	Pin E	140	1	ı	ns				
T_R,T_F	Enable Rise/Fall Time	Pin E	•	ı	25	ns				
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	ı	ı	ns				
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	ı	ı	ns				
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	1	•	100	ns				
T _H	Data Hold Time	Pins: DB0 - DB7	10	•	-	ns				

Built-in Font Table

b7-b4	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	(7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(6)															
1110	(7)															
1111	(8)															

Example Initialization Program

```
8-bit Initialization:
/************************
void command(char i)
     P1 = i;
                                  //put data on output Port
     D_I = 0;
                                  //D/I=LOW : send instruction
     R_W = 0;
                                  //R/W=LOW : Write
     E = 1;
                                  //enable pulse width >= 300ns
     Delay(1);
      E = 0;
                                  //Clock enable: falling edge
void write(char i)
     P1 = i;
                                  //put data on output Port
     DI = 1;
                                 //D/I=HIGH : send data
     RW=0;
                                 //R/W=LOW : Write
     E = 1;
     Delay(1);
                                 //enable pulse width >= 300ns
     E = 0;
                                  //Clock enable: falling edge
void init()
     E = 0;
                                  //Wait >40 msec after power is applied
     Delay(100);
     command(0x30);
                                  //command 0x30 = Wake up
                               //must wait 5ms, busy flag not available
//command 0x30 = Wake up #2
//must wait 160us, busy flag not available
//command 0x30 = Wake up #3
//must wait 160us, busy flag not available
//Function set: 8-bit/2-line
//Set cursor
//Display 0x1 6
                                 //must wait 5ms, busy flag not available
     Delay(30);
     command(0x30);
     Delay(10);
     command(0x30);
     Delay(10);
     command(0x38);
     command(0x10);
                                 //Display ON; Cursor ON
     command(0x0c);
     command(0x06);
                                 //Entry mode set
```

```
4-bit Initialization:
void command(char i)
     P1 = i;
                              //put data on output Port
                              //D/I=LOW : send instruction
     DI = 0;
                              //R/W=LOW : Write
     R_W = 0;
                              //Send lower 4 bits
    Nybble();
     i = i << 4;
                              //Shift over by 4 bits
     P1 = i;
                              //put data on output Port
     Nybble();
                              //Send upper 4 bits
void write(char i)
     P1 = i;
                              //put data on output Port
    D_I = 1;
                              //D/I=HIGH : send data
    R_W = 0;
                             //R/W=LOW : Write
    Nybble();
                             //Clock lower 4 bits
     i = i << 4;
                              //Shift over by 4 bits
    P1 = i;
                              //put data on output Port
    Nybble();
                              //Clock upper 4 bits
/**********************
void Nybble()
     E = 1;
    Delay(1);
                             //enable pulse width >= 300ns
    E = 0;
                              //Clock enable: falling edge
void init()
{
     P1 = 0;
     P3 = 0;
     Delay(100);
                              //Wait >40 msec after power is applied
     P1 = 0x30;
                              //put 0x30 on the output port
     Delay(30);
                              //must wait 5ms, busy flag not available
     Nybble();
                              //command 0x30 = Wake up
     Delay(10);
                              //must wait 160us, busy flag not available
                              //command 0x30 = Wake up #2
     Nybble();
                              //must wait 160us, busy flag not available
     Delay(10);
                              //command 0x30 = Wake up #3
     Nybble();
                              //can check busy flag now instead of delay
     Delay(10);
     P1 = 0x20;
                             //put 0x20 on the output port
    Nybble();
                             //Function set: 4-bit interface
     command(0x28);
                             //Function set: 4-bit/2-line
     command(0x10);
                              //Set cursor
     command(0x0F);
                              //Display ON; Blinking cursor
     command(0x06);
                              //Entry Mode set
            *************
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+80°C , 48hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C , 48hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+70°C 48hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-20°C , 48hrs	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+40°C, 90% RH, 48hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	0°C,30min -> +25°C,5min -> +50°C,30min = 1 cycle 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-55Hz , 15mm amplitude. 60 sec in each of 3 directions X,Y,Z For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	VS=800V, RS=1.5k Ω , CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms