

Attention is All You Need Summary

지윤 파트

1. Introduction

- RNN, 특히 LSTM과 GRU가 sequence modeling과 transduction 문제에서 SOTA 로 확립됨
 - o 예: language modeling, machine translation

• RNN의 주요 한계:

- 계산이 input과 output sequences의 symbol positions를 따라 순차적으로 이루어짐
- 。 이로 인해 parallelization이 어려워 긴 sequences에서 효율성 저하
- 메모리 제약으로 인해 batching across examples도 제한됨

• 최근 연구들:

- Factorization tricks과 conditional computation으로 computational efficiency 개선
- 그러나 sequential computation의 근본적 제약은 여전히 존재

Attention mechanisms:

- 。 Sequence modeling과 transduction 모델의 중요한 부분이 됨
- Input/output sequences 내 거리에 관계없이 dependencies 모델링 가능
- ∘ 대부분의 경우 recurrent network와 함께 사용됨

• Transformer 모델:

- Recurrence를 사용하지 않고 전적으로 attention mechanism에 의존
- o Input과 output 간 global dependencies를 모델링

- 높은 수준의 parallelization 가능
- 。 8개의 P100 GPUs로 12시간 훈련 후 translation에서 new SOTA 달성

1줄 요약: Transformer 모델은 RNN의 한계를 극복하고 병렬 처리를 가능하게 하는 새로운 attention 기반 아키텍처임.

2. Background

- sequential computation 감소를 위한 다른 모델들:
 - Extended Neural GPU, ByteNet, ConvS2S
 - 。 공통점: convolutional neural networks를 기본 구성 요소로 사용
- 이전 모델들의 한계:
 - 。 입출력 위치 간 관계를 계산하는 데 필요한 연산 수가 거리에 따라 증가
 - ConvS2S: 선형적 증가
 - ByteNet: 로그적 증가
 - 。 먼 위치 간 dependencies 학습이 어려움
- Transformer의 장점:
 - 위치 간 관계 계산에 필요한 연산 수가 상수로 고정
 - Multi-Head Attention으로 attention-weighted positions의 평균화 (averaging)로 인한 해상도 감소 문제 해결
- Self-attention (intra-attention):
 - 단일 sequence 내 다른 위치들을 연관시켜 representation 계산
 - 。 다양한 태스크에서 성공적으로 사용됨
 - 예: reading comprehension, abstractive summarization, textual entailment, task-independent sentence representations 학습
- End-to-end memory networks:
 - Sequence-aligned recurrence 대신 recurrent attention mechanism 사용
 - Simple-language question answering과 language modeling 태스크에서 좋
 은 성능 보임
- Transformer의 독창성:
 - Sequence-aligned RNNs나 convolution 없이 전적으로 self-attention에 의존 하는 최초의 transduction 모델

。 Input과 output의 representations를 계산하는 데 self-attention만 사용

1줄 요약: Sequential computation 감소를 위한 다양한 접근법들이 있었으나 self-attention으로 해결

3. Model Architecture: Encoder-Decoder 구조에 self-attention

Figure 1: The Transformer - model architecture.

• 기본 구조:

- 인코더-디코더 구조 채택 (대부분의 competitive한 neural sequence transduction 모델과 유사)
- 。 인코더: symbol 표현((x1, ..., xn)의 입력 시퀀스를 연속적인 표현(z1, ..., zn)으로 매핑
- 디코더: 인코더의 출력을 바탕으로 한 번에 하나의 element의 symbol 출력 시퀀스 생성

• Transformer의 특징:

- 인코더와 디코더 모두 각각 stacked self-attention과 point-wise, fully connected layers 사용
- Auto-regressive 특성: 이전에 생성된 심볼들을 다음 심볼 생성 시 추가 입력으로
 사용

▼ 아키텍처 구성 (Figure 1):

1. 입력 처리:

- Input Embedding
- Positional Encoding 추가

2. 인코더 (왼쪽):

- N개의 동일한 레이어 반복
- 각 레이어: Multi-Head Attention → Add & Norm → Feed Forward → Add & Norm

3. 디코더 (오른쪽):

- N개의 동일한 레이어 반복
- 각 레이어: Masked Multi-Head Attention → Add & Norm → Multi-Head Attention → Add & Norm → Feed Forward → Add & Norm

4. 출력 생성:

- Linear 레이어
- Softmax 함수를 통한 출력 확률 계산

• 주요 Innovation:

- 。 RNN이나 CNN 없이 전적으로 attention 메커니즘에 의존
- Positional Encoding을 통해 시퀀스의 순서 정보 유지

- Multi-Head Attention으로 다양한 관점에서의 정보 추출 가능
- 병렬 처리에 최적화되어 있으며, 장거리 의존성을 효과적으로 학습할 수 있는 구조

3.1 Encoder and Decoder Stacks

- Encoder:
 - 구성: 6개의 동일한 레이어로 구성 (N = 6)
 - 각 레이어의 구조:
 - 1. Multi-head self-attention 메커니즘
 - 2. Position-wise fully connected feed-forward network
 - 특징:
 - 。 각 sub-layer 주변에 residual connection 사용
 - Layer normalization 적용
 - 출력 계산: LayerNorm(x + Sublayer(x))
 - ullet 차원: 모든 sub-layer와 임베딩 레이어의 출력 차원은 d_{model} = 512
- · Decoder:
 - 구성: Encoder와 마찬가지로 6개의 동일한 레이어 (N = 6)
 - 각 레이어의 구조:
 - 1. Masked multi-head self-attention
 - 2. Multi-head attention (인코더 출력에 대해)
 - 3. Position-wise fully connected feed-forward network
 - 특징:
 - 。 인코더와 같이 residual connection과 layer normalization 사용
 - Self-attention sub-layer에 마스킹 적용
 - 목적: 현재 위치가 이후 위치의 정보를 참조하지 못하게 함
 - 。 출력 임베딩을 한 위치씩 오프셋
 - 효과: 위치 i의 예측이 i보다 작은 위치의 알려진 출력에만 의존하도록 보장

Encoder와 Decoder의 주요 차이점:

- Decoder는 Encoder 출력에 대한 추가적인 multi-head attention layer를 포함하고 있음.
- 2. Decoder의 self-attention에는 마스킹 적용 (미래 정보 참조 방지)
- 즉, Transformer가 병렬 처리를 효과적으로 수행하면서도 시퀀스의 순서 정보를 유지하고, 장거리 의존성을 학습할 수 있게 함.

3.2. Attention (Scaled Dot-Product Attention과 Multi-Head Attention)

Scaled Dot-Product Attention

- 1. Scaled Dot-Product Attention (왼쪽 그림):
 - 입력: Query (Q), Key (K), Value (V) 벡터
 - 과정:
 - a. Q와 K의 내적(dot product) 계산: MatMul(Q, K)
 - b. 스케일링: Scaling facotr, (일반적으로 $rac{1}{\sqrt{d_k}}$ d_k 는 key의 차원)
 - c. 마스킹 (선택적): Mask (optional)
 - d. Softmax 적용
 - e. V와의 행렬 곱: MatMul(Softmax 결과, V)
 - 수식:

$$Attention(Q,K,V) = softmax(rac{QK^T}{\sqrt{d_k}})V$$

- 2. Multi-Head Attention (오른쪽 그림):
 - 여러 개의 attention 레이어를 병렬로 실행
 - 과정:
 - a. Q, K, V를 각각 linear 변환
 - b. 각 변환된 Q, K, V에 대해 Scaled Dot-Product Attention 수행
 - c. 여러 attention의 결과를 연결(Concat)
 - d. 최종 linear 변환 적용
 - 특징:
 - h개의 병렬 attention 레이어 (그림에서는 h개의 화살표로 표시)
 - 각 attention이 다른 표현 부분공간에 집중할 수 있게 함
- 3. Attention의 일반적 개념:
 - Query와 Key-Value 쌍들을 입력으로 받아 출력 생성
 - 출력: Value들의 가중합
 - 가중치: Query와 해당 Key의 호환성(compatibility)에 따라 결정
- 결론: 이 구조를 통해 Transformer는 입력 시퀀스의 다양한 부분에 동시에 주목할 수 있으며, 이는 모델의 성능을 크게 향상시킴 → 즉, Multi-Head Attention은 여러 관점에서 정보를 추출할 수 있게 하여 모델의 표현력을 높임.

3.2.1 Scaled Dot-Product Attention

Scaled Dot-Product Attention:

- 입력:
 - \circ Queries (Q), Keys (K): 차원 d_k
 - \circ Values (V): 차원 d_n
 - 。 계산 과정:
 - 1. Q와 K의 내적 계산
 - 2. 결과를 $\sqrt{d_k}$ 로 나누어 스케일링
 - 3. Softmax 함수 적용
 - 4. 결과를 V와 곱함
- 실제 구현:
 - Q, K, V를 행렬로 패킹하여 동시에 여러 쿼리에 대해 계산
 - 최적화된 행렬 곱셈 코드로 구현 가능 → 빠르고 공간 효율적

다른 Attention mechanism과의 비교:

- 1. Additive Attention:
 - 호환성 함수로 단일 은닉층을 가진 FeedForward 네트워크 사용
 - 이론적 복잡도는 비슷하지만 실제로는 더 느리고 공간 비효율적
- 2. Dot-Product Attention:
 - Scaled Dot-Product Attention과 거의 동일
 - 차이점: scaling factor $\frac{1}{\sqrt{d_k}}$ 없음

성능 차이:

•

 d_k 가 작을 때: 두 메커니즘의 성능 유사

•

 d_k 가 클 때: 스케일링 없는 dot-product attention의 성능 저하

- 원인: 큰 d_k 값에서 내적 결과의 크기가 커져 softmax 함수가 매우 작은 기울기를 가지는 영역으로 pushed 됨
- 해결책: $\frac{1}{\sqrt{d_k}}$ 로 스케일링하여 이 효과를 상쇄

Scaled Dot-Product Attention의 장점:

- 1. 구현의 간단함
- 2. 계산 효율성
- 3. 큰 차원에서도 안정적인 성능

3.2.2 Multi-Head Attention

Multi-Head Attention 구조:

• 기본 개념: single attention 함수 대신 여러 개의 병렬 attention 함수 사용

(Single Attention 보다 각 query, key, value에 대해 서로 다르게 학습해 linear projection 하는 것이 더 나음. 이유: 서로 다른 위치에서 서로 다르게 나타나는 representation 정보를 반영 가능하기 때문)

- Multi-Head Attention의 핵심 아이디어: 모델이 입력의 다양한 측면에 동시에 집중할수 있게 하는 것→모델의 표현력을 향상 (특히 복잡한 언어 이해 Task에서 효과적)
- 각 head가 서로 다른 특성에 집중함으로써, 모델은 입력의 다양한 linguistic 및 semantic 특성을 포착할 수 있게 됨

- 과정:
- 1. Q, K, V를 h번 서로 다른 학습된 선형 투영으로 변환 (*project된 query, key, value 에 대해 나눠 주는 개념: 여러 개의 가중치로 선형 결합 계산을 해 쪼개지는 것)
 - Q \rightarrow d_k 차원
 - $K \rightarrow d_k$ 차원
 - V → *d_v* 차원
- 2. 각 투영된 버전에 대해 병렬로 Scaled Dot-Product Attention 수행
- 3. 결과 (d_v 차원) 연결 (concatenate)
- 4. 최종 선형 투영 적용 (project(가중치와 선형 결합)를 통해 최종 출력 값 산출)

파라미터 행렬:

$$W_i^Q \in \mathbb{R}^{d_{\mathrm{model}} imes d_k}$$

$$W_i^K \in \mathbb{R}^{d_{\mathrm{model}} imes d_k}$$

$$W_i^V \in \mathbb{R}^{d_{ ext{model}} imes d_v}$$

$$W^O \in \mathbb{R}^{hd_v imes d_{ ext{model}}}$$

수식: $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ $where \ head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

이번 연구의 구현 세부 사항:

- 병렬 attention 레이어 (heads) 수: h = 8
- 각 head의 차원:

$$d_k = d_v = rac{d_{
m model}}{h} = 64$$

- 총 계산 비용: 전체 차원의 single head attention과 유사
- → 각 head의 차원이 감소해 multi로 계산됨에도 불구하고 single attention과 계산 비용은 비슷

장점:

1. 다양한 표현 부분공간의 정보를 동시에 처리

- 2. 서로 다른 위치의 정보를 결합
- 3. 단일 head의 평균화 효과 방지 (multi-head attention에서는 모델이 서로 다른 위치에서 서로 다른 표현 하위 공간의 정보를 공동으로 attention할 수 있게 해주는데, single head에서는 averaging이 방해)

1줄요약: Multi-head attention은 다양한 표현 공간에서의 정보 추출을 single head와 비슷한 계산 비용으로 효율적으로 하게 했다.

준희 파트

3.2.3 Applications of Attention in our Model

Transformer에서는 multi-head attention을 세 방법으로 사용

- "Encoder-Decoder Attention"
 - o Decoder의 결과 query 와 Encoder의 결과 key, value를 매핑
- "Self-attention layers of the Encoder"
- "Self-attention layers of the Decoder"
 - Masked된 layer 존재

3.3 Position-wise Feed-Forward Networks

Encoder, Decoder에 포함된 모든 layer들에는 Feed-Forward Network을 적용

- Linear Transformation ReLU Linear Transformation으로 구성
- 각 단계에서는 모두 다른 parameter를 적용

3.4 Embeddings and Softmax

Encoder와 Decoder에 문장 입력 과정에서 Embedding 진행

Encoder, Decoder에서 같은 weight matrix 사용

Decoder에서 output 문장을 다음 단어 확률(예측 확률)로 convert하는 과정에서 Liner Transformation & Softmax 활용

• Linear Transformation에서도 같은 weight matrix 사용

3.5 Positional Encoding

문장을 행렬로 Embedding하여 입력하기 때문에 맥락과 순서가 리셋되는 문제 발생

→ Embedding 결과에 Positional Encoding을 더하여 문장 순서 명시

Positional Encoding은 sine, cosine 함수를 이용해 산출

- 장점 1) 쉬우며 모든 input을 표현할 수 있음
- 장점 2) training 과정에서 만나지 못한 문장 길이에도 대응 가능함!

4 Why Self-Attention

Recurrent and Convolutional Layer에 비해 Self-Attention Layer는 네 가지 기준에서 장점을 가짐

- 1. Total Complextity
- 2. 병렬 구조의 Computation Amount
- 3. 긴 문장 학습 시의 Path Length
- 4. 결과의 Interpretability

진우 파트

5.1 Training Data and Batching

- Training Data
 - WMT 2014 English-German dataset(450만 문장)과 English-French dataset(3600만 문장) 사용
 - 문장은 byte-pair encoding 적용
- Batching
 - 。 문장 길이에 따라 비슷한 길이의 문장 쌍을 하나의 batch로 구성

5.2 Hardware and Schedule

- Hardware
 - 。 8 NVIDIA P100 GPU 활용
- Schedule
 - 각 training step은 0.4초 소요
 - base model은 12시간, big model은 3.5일 동안 훈련

5.3 Optimizer

- Adam optimizer 사용
- β1=0.9, β2=0.98, ε=10^-9의 파라미터로 설정

5.4 Regularization

- Residual Dropout
 - ∘ 각 sublayer의 출력에 dropout 적용
 - Pdrop = 0.1.
- Label Smoothing
 - 。 모델 perplexity는 증가시켰지만 accuracy와 BLEU score 향상
 - \circ ϵ ls = 0.1

6.1 Machine Translation

- English-German: Big Transformer model BLEU 점수 28.4 기록하여 기존 모델을 뛰어넘는 성능
- English-French: Big Transformer model BLEU 점수 41.0 기록
- 두 경우 모두 기존 모델 대비 적은 cost로 뛰어난 output을 산출

6.2 Model Variations

- number of attention heads, attention key, value dimensions 조정하여 성능 변화 측정
- single-head 및 지나치게 많은 head 사용시 성능 저하
- attention key를 줄였을 때 성능 저하
- 큰 모델일수록 성능 개선되었으며 dropout은 overfitting 방지

6.3 English Constituency Parsing

- WSJ dataset: WSJ dataset(40,000개 문장)으로 훈련한 경우 좋은 성능 기록 (F1:91.3)
- Semi-supervised setting: 1700만개 문장으로 훈련한 semi-supervised setting 에서도 좋은 성능 기록(F1:92.7)

7. Conclusion

• 본 연구에서는 attention만을 사용한 transformer 모델 제시

- Transformer는 번역 과제에 있어 기존 모델들에 비해 좋은 성능을 가짐
- Translation task에서 RNN과 CNN에 비해 빠른 훈련속도 및 뛰어난 성능을 확인
- 향후 연구에서는 텍스트 외 이미지, 오디오, 비디오 등 다른 입력 및 출력 모달리티에 transformer 적용 예정