¿Qué vimos la última semana?

Definición y construcción de B-splines.

Coordenadas polares.

Algoritmo de de Boor.

Sesión 10

Geometría diferencial aplicada

18 de febrero de 2021

Contenidos

B-splines

2 Nodos múltiples

3 Curvas de Bézier

B-Splines

Recordemos, dados una malla $[a_0,a_1,\ldots,a_m]$, unos puntos de control $c_0,c_1,\ldots c_n$ que un B-spline es una curva que se escribe como una combinación lineal (afín) de una base de polinomios de grado k:

$$c(t) = \sum_{i=0}^{m} c_i N_i^k(t),$$

donde N_i^k es una base del espacio de polinomios de grado menor o igual que k y m=n+k+1.

Las funciones N_i^k tienen soporte finito, esto es, se anulan en toda la recta real salvo en un intervalo finito.

En resumen:

- lacksquare N_i^k es una función polinómica de grado k a trozos.
- $N_i^k(t) = 0 \text{ si } t \notin [a_i, a_{i+1}].$

B-Splines

- Una dificultad añadida de los B-splines es que dependen de la malla y,además, no existe, en general una fórmula analítica para expresarlos.
- Aún así, el algoritmo de de Boor nos permite evaluar la curva para cualquier valor de t evaluando solamente polinomios de primer grado. Para eso es necesario recalcular los puntos de control.
- Existen casos en los que sí es posible obtener una expresión analítica para los polinomios de la base. Por ejemplo, si la malla es [0,1], entonces:

$$N_i^k(t) = B_i^k(t).$$

Donde B_i^k son los polinomios de Bernstein.

lacksquare Si no hay nodos repetidos, entonces el B-spline es derivable k veces con continuidad. Cada nodo repetido resta diferenciabilidad al B-spline.

B-splines con nodos múltiples

Un b-spline que contiene un nodo repetido uno o más veces se puede interpretar como un spline que contiene una curva de longitud cero en un intervalo. La curva en ese punto pierde continuidad.

Figura: Fuente: http://cadg.cs.byu.edu/ .

B-splines con nodos múltiples

Utilidad: introducir discontinuidades.

Figura: . Fuente: http://cadg.cs.byu.edu/ .

B-splines con nodos múltiples

Figura: . Sin nodos repetidos.

Figura: . Con nodos repetidos.

B-Splines cerrados

Se pueden construir B-splines cerrados de forma análoga.

Hay que hacer coincidir los primeros y los últimos nodos y hacer lo mismo con los puntos de control.

Se puede empezar desde cuaquier nodo.

Figura: Fuente: http://cadg.cs.byu.edu/ .

Polinomios de Bernstein

Una base de polinomios usada frecuentemente son los poliomios de Bernstein de grado k, definidos por:

$$B_i^k = \binom{k}{i} t^i (1-t)^{k-i}, \quad \binom{k}{i} = \frac{k!}{i!(k-i)!}.$$

Los polinomios de Bernstein verifican las siguientes propiedades:

- 1. $B_i^k(t) \ge 0$ para $t \in [0, 1]$,
- 2. $B_0^k(0) = 1$ y $B_i^k(0) = 0$ para $i \neq 0$,
- 3. $B_n^k(1) = 1$ y $B_i^k(1) = 0$ para $i \neq 1$,
- 4. si $c:[a,b]\mapsto\mathbb{R}^r$, entonces se puede reducir a una curva definida en el intervalo [0,1] utilizando la reparametrización

$$t' = \frac{t - a}{b - a}.$$

Polinomios de Bernstein

Figura: Polinomios de Benstein de orden 3. Fuente: Bézier and splines in image processing and machine vision, Biswas, S. and Lovell, B.C., Springer 2008.

Curvas de Bézier

Una curva polinomial descrita como combinación lineal de la base de polinomios de Bernstein de grado k se llama curva de Bézier. Si escribimos

$$c(t) = \sum_{i=0}^{m} c_i B_i^k(t), \quad t \in [0, 1].$$

- Los coeficientes c_i se llaman **puntos de control** de la curva o vértices del polígono de control.
- Se cumple $c(0) = c_0$ y $c(1) = c_m$.

Esto es, una curva de Bézier se ancla en el primer y último puntos de control. Sin embargo, esto no sucede con el **resto de puntos de control que, en general, no están dentro de la curva**.

Figura: Curva de Bézier con nodos: (1,2), (1'5,1'75), (1'8,1'5), (1'5,0'75) y (1,1).

Figura: Curva de Bézier con nodos: (1,1), (1'5,1'75), (1'8,1'5), (1'5,0'75) y (1,1) .

