Übung 3: Geoidberechnung nach Stokes

Ausgabe: 20. Januar 2021 Abgabe: 3. Februar 2021, 17 Uhr

Aufgabe 1: Stokes'sche Randbedingung, Formel von Bruns, Höhendatum

Bei der Formulierung des Stokes-Problems muss der Potentialwert W_0 des Geoids in der Regel als unbekannt betrachtet werden. Aus diesem Grund kann der (0,0)-Term der Kugelfunktionsentwicklung des Störpotentials T durch die Lösung des Stokes-Problems nicht bestimmt werden. Es sind daher zusätzliche Informationen notwendig, um den (0,0)-Term der Geoidundulation $N_{0,0}$, sowie den Potentialwert des Geoids festzulegen.

Durch die Lösung des Stokes-Problems sei das Störpotential im Außenraum der Erde

$$T = T_{0,0}\left(\frac{R}{r}\right) + T_{\text{Rest}} \qquad \text{mit} \quad T_{\text{Rest}}(\lambda, \varphi, r) = \sum_{l=2}^{\infty} \left(\frac{R}{r}\right)^{l+1} \sum_{m=-l}^{l} T_{l,m} \bar{Y}_{l,m}(\lambda, \varphi)$$

bis auf eine Konstante $T_{0,0}$ bekannt. Für ein Land sei nun auch die Äquipotentialfläche des Schwerepotentials durch eine Pegelstation P_0 als Höhenbezugsfläche festgelegt. Für P_0 und einen weiteren Punkt P_1 auf der Höhenbezugsfläche wurde durch die Lösung des Stokes-Problems das Störpotential T ab dem Grad 2 der Kugelfunktionsentwicklung bestimmt. Weiterhin ist der (0,0)-Term der Schwereanomalie $\Delta g_{0,0}$ im Land und die ellipsoidische Höhe der Pegelstation $h_{\rm Ell}(P_0)$ gegeben.

- a) Bestimmen Sie die Potentialanomalie $\Delta W = W(P_0) U_0$ der Höhenbezugsfläche und die Konstante $T_{0,0}$.
- b) Bestimmen Sie den Abstand zwischen Ellipsoid und Höhenbezugsfläche im Punkt P_1 .

Numerische Werte

$$T_{\text{Rest}}(P_0) = 357.9 \,\text{m}^2/\text{s}^2$$

 $T_{\text{Rest}}(P_1) = 355.3 \,\text{m}^2/\text{s}^2$
 $h_{\text{Ell}}(P_0) = 36.63 \,\text{m}$
 $\Delta g_{0,0} = 2.72 \cdot 10^{-6} \,\text{m/s}^2$
 $\gamma = 9.81 \,\text{m/s}^2$
 $R = 6371000 \,\text{m}$

Hinweise:

• Entwickeln Sie die Stokes'sche Randbedingung

$$\Delta g - \frac{2\Delta W}{R} = -\left. \frac{\partial T}{\partial r} \right|_{r=R} - \left. \frac{2}{R} T \right|_{r=R}$$

nach Kugelfunktionen. Benötigt wird im Folgenden nur der (0,0)-Term.

• Stellen Sie die Formel von Bruns für den Punkt P_0 auf. Beachten Sie dabei, dass P_0 auf der Höhenbezugsfläche liegt. In sphärischer Approximation darf $r(P_0) = R$ gesetzt werden.

Aufgabe 2: Geoidberechnung mit der Stokes-Funktion

a) Implementieren und visualisieren Sie die sphärische Stokes-Funktion

$$St(\psi) = \frac{1}{\sin\frac{\psi}{2}} - 6\sin\frac{\psi}{2} + 1 - 5\cos\psi - 3\cos\psi \cdot \ln\left(\sin\frac{\psi}{2} + \sin^2\frac{\psi}{2}\right).$$

Bestimmen Sie deren Nullstellen im Intervall $\psi \in [0,\pi]$ – also die Regionen, die keinen Beitrag zur späteren Geoidbestimmung im Berechnungspunkt liefern können – mit dem Newton-Verfahren auf mindestens 6 gültige Ziffern. Rechnen Sie die Ergebnisse auch in Grad, Minuten und (ganze) Sekunden um.

b) Berechnen Sie die Geoidhöhen der drei Punkte

$$\begin{array}{c|cccc} & \varphi & \lambda \\ \hline P_1 & 48.40067893^\circ & 9.97228199^\circ \\ P_2 & 48.70311236^\circ & 9.65402314^\circ \\ P_2 & 48.80556353^\circ & 9.21339955^\circ \\ \end{array}$$

durch eine numerische Approximation der Integralformel von Stokes:

$$N = \frac{R}{4\pi\gamma} \iint_{\sigma} St(\psi(\lambda_P, \varphi_P, \lambda_Q, \varphi_Q)) \Delta g(\lambda_Q, \varphi_Q) d\sigma_Q$$

- σ : Oberfläche der Einheitskugel
- $\psi(\lambda_P, \varphi_P, \lambda_O, \varphi_O)$: sphärischer Abstand zwischen Quellpunkt **Q** und Berechnungspunkt **P**
- $\Delta g(\lambda_O, \varphi_O)$: Schwereanomalien im Quellpunkt

Für die Berechnung finden Sie in der Datei *gravity_anomalies.txt* einen globalen Satz an Schwereanomalien Δg . Die Informationen sind folgendermaßen angeordnet:

$arphi_{min}[^{\circ}]$	$arphi_{max}[^{\circ}]$	$\lambda_{max}[^{\circ}]$	$\lambda_{min}[^{\circ}]$	Δg [mGal]
90.00000	85.00000	120.00000	0.00000	3.75050
90.00000	85.00000	240.00000	120.00000	1.52228
90.00000	85.00000	360.00000	240.00000	11.65207
85.00000	80.00000	40.00000	0.00000	11.12240
85.00000	80.00000	80.00000	40.00000	20.97380
:				:

Die Schwereanomalien werden als Blockmittelwerte repräsentiert, d.h. in jedem $(\lambda \times \varphi)$ -Block können die Werte als konstant angenommen werden. Evaluieren Sie die Stokes-Funktion jeweils im sphärischen Abstand zwischen Berechnungspunkt und Blockmittelpunkt.

c) Diskutieren Sie, weshalb die Berechnung in Aufgabe 2b) nicht für moderne Geoidmodelle verwendet wird.