2a. Avaliação de Lógica Matemática (LMA) - Joinville, 7 de outubro de 2012

Aluno(a): _____

1. Verificar a validade por dedução natural os argumentos que se seguem (escolha duas para fazer das 3 abaixo):

(a)
$$\{p \to \sim q, \sim p \to (r \to \sim q), (\sim s \lor \sim r) \to \sim \sim q, \sim s \} \vdash \sim r$$

(b)
$$\{(\sim p \lor q) \to r, (r \lor s) \to \sim t, t\} \vdash \sim q$$

(c)
$$\{(\sim p \lor q) \to r, (r \lor s) \to \sim t, t\} \vdash \sim q$$

(c) $\{p \to \sim q, \sim q \to \sim s, (p \to \sim s) \to \sim t, r \to t\} \vdash \sim r$

2. Utilizando o método de transformação indireta, demonstre a validade das consequências abaixo:

(a)
$$\begin{array}{c} 1 & \sim p \to \sim q \\ 2 & \sim p \vee r \\ 3 & \to \sim s \\ \hline \vdash & \text{Esta sequência deduz (}\vdash, \text{ consiste de um teorema) } q \to \sim s \\ \end{array}$$

3. Demonstrar que o conjunto das proposições abaixo geram uma contradição, ou demonstração por absurdo, (isto é, derivam uma inconsistência do tipo: $\square \Leftrightarrow (\sim x \land x)$) Escolha duas provas para fazer das 3 abaixo:

(a)
$$\begin{array}{ccc}
1 & \sim (p \wedge q) \\
2 & \sim r \vee q \\
3 & p \to r \\
\vdash & \sim p
\end{array}$$

1.
$$p \rightarrow q$$

$$2. \quad q \to r$$

(b) 3.
$$r \rightarrow p$$

(b) 3.
$$r \to p$$

$$\begin{array}{ccc}
4. & p \to \sim r \\
\hline
\vdash & \sim p \land \sim r
\end{array}$$

1.
$$\sim p \rightarrow \sim q$$

$$2. \quad r \to s$$

(c) 3.
$$(\sim p \land t) \lor (r \lor u)$$

$$4. \quad q$$

$$\vdash \quad s$$

Equivalências Notáveis:

Idempotência (ID): $P \Leftrightarrow P \land P \text{ ou } P \Leftrightarrow P \lor P$

Comutação (COM): $P \wedge Q \Leftrightarrow Q \wedge P$ ou $P \vee Q \Leftrightarrow Q \vee P$

Associação (ASSOC): $P \wedge (Q \wedge R) \Leftrightarrow (P \wedge Q) \wedge R$ ou $P \vee (Q \vee R) \Leftrightarrow (P \vee Q) \vee R$

Distribuição (DIST): $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$ ou $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

Dupla Negação (DN): $P \Leftrightarrow \sim \sim P$

De Morgan (DM): $\sim (P \land Q) \Leftrightarrow \sim P \lor \sim Q \text{ ou } \sim (P \lor Q) \Leftrightarrow \sim P \land \sim Q$

Equivalência da Condicional (COND): $P \to Q \Leftrightarrow \sim P \lor Q$

Bicondicional (BICOND): $P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$

Contraposição (CP): $P \rightarrow Q \Leftrightarrow \sim Q \rightarrow \sim P$

Exportação-Importação (EI): $P \wedge Q \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$

Tautologia: $P \land \sim P \Leftrightarrow \square$ Contradição: $P \lor \sim P \Leftrightarrow \blacksquare$

Regras Inferencias Válidas (Teoremas):

Adição (AD): $P \vdash P \lor Q$ ou $P \vdash Q \lor P$

Simplificação (SIMP): $P \wedge Q \vdash P$ ou $P \wedge Q \vdash Q$

Conjunção (CONJ) $P, Q \vdash P \land Q \text{ ou } P, Q \vdash Q \land P$

Absorção (ABS): $P \rightarrow Q \vdash P \rightarrow (P \land Q)$

Modus Ponens (MP): $P \rightarrow Q, P \vdash Q$

Modus Tollens (MT): $P \rightarrow Q, \sim Q \vdash \sim P$

Silogismo Disjuntivo (SD): $P \vee Q$, $\sim P \vdash Q$ ou $P \vee Q$, $\sim Q \vdash P$

Silogismo Hipotético (SH): $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Dilema Construtivo (DC): $P \rightarrow Q, R \rightarrow S, P \lor R \vdash Q \lor S$

Dilema Destrutivo (DD): $P \to Q, R \to S, \sim Q \lor \sim S \vdash \sim P \lor \sim R$

Observações:

- 1. Qualquer dúvida, desenvolva a questão e deixe tudo explicado, detalhadamente, que avaliaremos o seu conhecimentos sobre o assunto;
- 2. Clareza e legibilidade;