Program 1: Fun with Python

Imports

```
In [52]: | import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
   import math
```

Number 1 Code

Number 1

```
In [3]: # create function for equation
def myNumbersEq(x):
    y = 0.5 * x ** 2 + 7
    return y

# 
# write y values to myNumbers.txt

# creates new file where 'w' overwrites contents if file already exists
numFile = open('myNumbers.txt', 'w')

# writes a list of the returned y values from the myNumbersEq function on a new line
numFile.write('\n'.join([str(myNumbersEq(x)) for x in range(-5,6)]))

# close numFile
numFile.close()
```

Number 1 Output to File


```
File Edit View Language

1 19.5
2 15.0
3 11.5
4 9.0
5 7.5
6 7.0
7 7.5
8 9.0
9 11.5
10 15.0
11 19.5
```

Program 1: Fun with Python

Number 2 Code & Output

Number 2

```
In [4]: N readNumFile = open('myNumbers.txt') #opens myNumbers.txt
print(readNumFile.read()) # reads the file and prints

19.5
15.0
11.5
9.0
7.5
7.0
7.5
9.0
11.5
15.0
19.5
```

Number 3 Code & Output

Number 3

```
In [5]: N readNumFile.seek(0) # sets cursor to top of file

# reads each number "splitting" on new line char and then converts to float from string
nums = [float(num) for num in list(readNumFile.read().split('\n'))]

plt.plot(range(-5,6), nums) # plots nums(y) on corresponding x-axis[-5,5]
plt.xlabel('x')
plt.ylabel('y')
plt.show()

# close readNumFile
readNumFile.close()
```


Program 1: Fun with Python

Number 4 Code

Number 4

Number 4 Output

1

0		myData	a_a∨g:	1.83591	5678742	121e-
0	0.000000	•	a_var:	0.50139		
1	0.017452	•	a_std: a_med:	0.70809 6.12323		
2	0.034899	myData 0	_ a_mode: -0.9998	8/18		
3	0.052336	_	-0.9993			
4	0.069756	_	-0.99863 -0.99619			
		4	-0.99452	22		
355	-0.087156	62	0.99619	95		
356	-0.069756	63	0.9975			
357	-0.052336	64 65	0.99863			
358	-0.034899	66	0.99984	48		
359	-0.017452	Name:	1, Len	gth: 67,	dtype:	floa

Average Distance Between Points: 1.0000759360017168

360 rows × 1 columns

Program 1: Fun with Python

Number 5 Code & Plot

```
Number 5

In [59]: 

# myData plotted
plt.plot(myData) # plots myData
plt.xlabel('x')
plt.ylabel('y')
plt.title('myData')
plt.show()

myData
```


Number 6 Code

Number 6

Program 1: Fun with Python

Number 6 Output

	1
0	
0	0.000000
1	0.017452
2	0.034899
3	0.052336
4	0.069756
355	-0.087156
356	-0.069756
357	-0.052336
358	-0.034899
359	-0.017452

myButtyData_avg: -0.005317259895480828 myNuttyData_var: 0.5182959575313083 myNuttyData_std: 0.7199277446600515 myNuttyData_med: -0.00872620321864175 myNuttyData_mode:

-0.999848 0 1 -0.999391 -0.998630 2 3 -0.996195 4 -0.994522 61 0.996195 62 0.997564 0.998630 63 64 0.999391

0.999848

65

Name: 1, Length: 66, dtype: float64

Average Distance Between Points: 1.0120274520715555

360 rows × 1 columns

