MAII14 21/3/22

Complex Eigenvalues

Tundamental Theorem of Algebra

Then $p(E) = C[E] \in \text{polynomials with } C \text{ coefficients}$ Then $p(E) = \frac{1}{|E|} (E - \lambda_i)$ for some $\lambda_i \in C$

Proof omitted - uses complex analysis and topology

Proposition

If $p(t) \in \mathbb{R}[t]$ (all coefficients recal)

Then for all $z \in \mathbb{C}$ p(z) = 0 $\Rightarrow p(\overline{z}) = 0$ i.e roots come in conjugate pairs

Execuple

$$p(t) = t^{2} + t + 1$$

$$t = \frac{-1}{2} \sqrt{1 - 4^{2}}$$

=) two roots:
$$\frac{-1+J-37}{2}$$
 > $\frac{-1-J-37}{2}$

Proof

$$p(\epsilon) = q_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 \epsilon' + q_0$$
 with $a_i \in \mathbb{R}$

if $z \in \mathbb{C}$ is a root then $p(z) = 0$

=) \(\bar{z}\) is a root.