Tilastollinen päättely

1. kurssikoe 14.12.2010, klo 12-15, CK112

Tentissä saa olla mukana kirjoitusvälineet ja laskin.

- 1. Tilastollisen mallin parametri on $\boldsymbol{\theta}$, ja estimoitavana on sen reaalinen funktio eli muunnos $g(\boldsymbol{\theta})$. Selosta lyhyesti (mutta kuitenkin täsmällisesti), miten määritellään estimaattorin T a) harhattomuus ja asymptoottinen harhattomuus b) keskineliövirhe c) tehokkuus ja täystehokkuus.
- 2. Olkoon Y_1, \ldots, Y_n riippumattomia ja jokainen Y_i $(i = 1, \ldots, n)$ noudattaa jakaumaa, jonka tiheysfunktio on

$$f(y;\theta) = \frac{1}{2}\theta^{-3}y^2 \exp(-y/\theta), \quad y > 0,$$

ja jossa $\theta > 0$.

- a) Etsi parametrin θ suurimman uskottavuuden estimaattori $\hat{\theta}$.
- b) Osoita, että $\hat{\theta}$ on harhaton θ :n estimaattori ja laske $\hat{\theta}$:n varianssi.
- c) Johda malliin liittyvä Fisherin informaatio $i(\theta)$. Onko $\hat{\theta}$ täystehokas?
- 3. Olkoon Y_1, \ldots, Y_n riippumattomia ja jokainen Y_i $(i=1,\ldots,n)$ noudattaa jakaumaa, jonka tiheysfunktio on

$$f(y;\theta) = \frac{1}{\theta}, \quad 0 \le y \le \theta.$$

- a) Johda parametrin θ suurimman uskottavuuden estimaattori $\hat{\theta}.$
- b) Johda parametrin θ momenttimenetelmään perustuva estimaattori
 $\tilde{\theta}$
- c) Ovatko estima
attorit $\hat{\theta}$ ja $\tilde{\theta}$ harhattomi
a θ :n estima
attoreita?
- 4. Olkoot $Y_1, \ldots, Y_n \sim N(\mu, \sigma^2) \perp \mathbb{L}$. Tarkastellaan parametrin σ^2 estimointia muotoa cV olevilla estimaattoreilla, kun c > 0 on vakio ja $V = \sum_{i=1}^n (Y_i \overline{Y})^2$. Näytä, että estimaattorin cV keskineliövirhe on

$$[(n^2 - 1)c^2 - 2(n - 1)c + 1] \sigma^4$$

ja se saa pienimmän arvonsa (c:n funktiona) täsmälleen pisteessä c = 1/(n+1).

1

Muistin tueksi

 \bullet Satunnaismuuttuja Xnoudattaa gammajakaumaa parametrein κ ja $\lambda,$ jos sen tiheysfunktio on muotoa

$$f_X(x; \kappa, \lambda) = \begin{cases} \frac{\lambda^{\kappa}}{\Gamma(\kappa)} y^{\kappa - 1} e^{-\lambda y}, & \text{kun } x > 0, \\ 0, & \text{muulloin.} \end{cases}$$

Tällöin merkitään $X \sim G(\kappa, \lambda)$, jossa $\kappa > 0$ ja $\lambda > 0$. Gammajakauman odotusarvo on κ/λ ja varianssi κ/λ^2 . Kun $X_1, \ldots, X_k \perp\!\!\!\perp$ ja $X_i \sim G(\kappa_i, \lambda)$, niin $\sum_{i=1}^k X_i \sim G(\sum_{i=1}^k \kappa_i, \lambda)$.

- $E(\chi_p^2) = p$ ja $Var(\chi_p^2) = 2p$