Graph Theory

 ${\rm Jeremy\ Le-UNSW\ MATH}5425\ 25T1$

Contents

1	Intr	roduction	3 	
	1.1	Definitions	3	
	1.2	The Degree of a Vertex	4	
		1.2.1 Some Special Graphs	4	
	1.3	Paths and Cycles	4	
	1.4	Connectivity	5	

Chapter 1

Introduction

1.1 Definitions

A graph G = (V, E) is a set V of vertices and a set E of unordered pairs of distinct vertices, called edges. Write vw or $\{v, w\}$ for the edge joining v and w, and say that v and w are **neighbours** or that they are adjacent.

In these notes, unless otherwise stated, graphs are:

- finite: $|V| \in \mathbb{N}$.
- labelled: vertices are distinguishable, usually $V = [n] := \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.
- undirected: edges are unordered pairs of vertices.
- simple: no loops $\{v, v\}$ or multiple edges (since E is not a multiset).

A graph G with vertex set $\{v_1, \ldots, v_n\}$ has adjacency matrix $A(G) = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } v_i v_j \in E, \\ 0 & \text{otherwise.} \end{cases}$$

A(G) is a **symmetric** $n \times n$ 0-1 matrix with zero diagonal.

The **trivial graph** has at most one vertex. Hence it has no edges.

A **subgraph** of a graph G = (V, E) is a graph H = (W, F) such that $W \subseteq V$ and $F \subseteq E$.

We say that H is an **induced subgraph** if for all $v, w \in W$ if $vw \in E(G)$ then $vw \in E(H)$. Write H = G[W], and say that H is the subgraph of G induced by the vertex set W.

The number of **vertices** of G, written |G| = |V(G)|, is called the *order* of G. The number of **edges** of G, sometimes written |G| = |E(G)|, is called the *size* of G.

Two graphs G = (V, E) and H = (W, F) are **isomorphic** if there exists a bijection $\phi : V \to W$ such that $\phi(v)\phi(w) \in F$ if and only if $vw \in E$. The map ϕ is called a graph isomorphism or isomorphism.

1.2 The Degree of a Vertex

If $v \in e$ where v is a vertex and e is an edge, then we say that e is incident with v. The **degree** $d_G(v)$ of vertex v in a graph G is the number of edges of G which are incident with v. A vertex of degree 0 is an isolated vertex.

Let $N_G(v)$ be the set of all **neighbours** of v in G, then d(v) = |N(v)|.

Lemma 1.2.1 (The Handshaking Lemma). In any graph, G = (V, E),

$$\sum_{v \in V} d(v) = 2|E|.$$

Let $\delta(G) = \min_{v \in V} d(v)$ be the minimum degree in G, and $\Delta(G) = \max_{v \in V} d(v)$ be the maximum degree in G.

1.2.1 Some Special Graphs

A graph is k-partite if there exists a partition of its vertex set

$$V = V_1 \cup V_2 \cup \cdots V_k$$

into k nonempty disjoint subsets (parts) such that there are no edges between vertices in the same part.

The **complete graph** on r vertices, denoted K_r , has all $\binom{r}{2}$ edges present. The **complete bipartite** graph K_r , s has r vertices in one part of the vertex bipartition, s vertices in the other, and all rs present.

A graph is **regular** if every vertex has the same degree. If every vertex of a graph has degree d then we say that the graph is d-regular.

The **complement** of a graph G is the graph $\bar{G} = (V, \bar{E})$ where $vw \in \bar{E}$ if and only if $vw \notin E$. Note that \bar{K}_n is the graph with n vertices and no edges.

If G = (V, E) and $X \subset V$ then G - X denotes the graph obtained from G by deleting all vertices in X and all edges which are incident with vertices in X. If $F \subseteq E$ then G - F denotes the graph (V, E - F) obtained from G by deleting the edges in F.

1.3 Paths and Cycles

A walk in the graph G is a sequence of vertices $v_0v_1v_2\cdots v_k$ such that $v_iv_{i+1}\in E$ for $i=0,1,\ldots,k-1$. The length of this walk is k. The walk is closed if $v_0=v_k$.

An **Euler tour** is a *closed walk* in a graph which uses every edge precisely once. A graph is Eulerian if it has an Euler tour.

Theorem 1.3.1 (Euler, 1736). A connected graph is Eulerian if and only if every vertex has even degree.

A walk is a **path** if it does not visit any vertex more than once. A path is a sequence of *disinct* vertices, with subsequence vertices joined by an edge. A path $v_0v_1...v_k$ with k edges is called a k-path and has length k.

If $k \geq 3$ and $P = v_0 v_1 \cdots v_{k-1}$ is a path of length k-1 then $C = P + v_0 v_{k-1}$ is a **cycle** of length k, also called a k-cycle. It is a closed walk which visits no internal vertex more than once.

An edge which joins two vertices of a cycle C, but which is not an edge of C, is called a **chord**. An **induced cycle** is a cycle which has no chords.

Proposition 1.3.2. Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G) + 1$, if $\delta(G) \geq 2$.

Proof. Let $P = x_0 x_1 \dots x_k$ be the longest path in G. By maximality of P, all neighbours of x_k lie on P. Hence $\delta(G) \leq d(x_k) \leq k = |\{x_0, x_1, \dots, x_{k-1}\}|$, which proves the first statement. Let x_i be the smallest-indexed neighbour of x_k in P. Then $C = x_k x_i x_{i+1} \dots x_{k-1} x_k$ is a cycle of length $\geq \delta(G) + 1$ because C contains $d(x_k) \geq \delta(G)$ neighbours of x_k as well as x_k .

The minimum length of a cycle in G is the **girth** of G, denoted by g(G).

Given $x, y \in V$, let $d_G(x, y)$ be the length of a shortest path from x to y in G, called the **distance** from x to y in G. Set $d_G(x, y) = \inf$ if no such path exists.

We say that G is **connected** if $d_G(x, y)$ is finite for all $x, y \in V$.

Let the **diameter** of G be $diam(G) = \max_{x,y \in V} d_G(x,y)$.

Proposition 1.3.3. Every graph G with contains a cycle satisfies $g(G) \leq 2 \operatorname{diam}(G) + 1$.

Proof. Let C be a shortst cycle in G, so |C| = g(G). For a contradiction, assume $g(G) \ge 2 \operatorname{diam}(G) + 2$.

Choose vertices x, y on C with $d_C(x, y) \ge \operatorname{diam}(G) + 1$. In G the distance $d_G(x, y)$ is strictly smaller, so any shortest path P from x to y in G is not a subgraph of C. But using P together with the shorter arc of C from x to y gives a closed walk of length < |C|. This closed walk contains a shorter cycle than C which is a contradiction.

1.4 Connectivity

A maximal connected subgraph of G is called a **component** (or **connected component**) of G.

Proposition 1.4.1. The vertices of a connected graph can be labelled v_1, v_2, \ldots, v_n such that $G_n = G$ and $G_i = G[v_1, \ldots, v_i]$ is connected for all i.

Proof. Choose v_1 arbitrarily. Now suppose that we have labelled v_1, \ldots, v_i such that $G_j = G[v_1, \ldots, v_j]$ is connected for all $j = 1, \ldots, i$.

If i < n then $G_i \neq G$, so there exists some $v_j \in \{v_1, \ldots, v_i\}$ with a $w \notin \{v_1, \ldots, v_i\}$ in G. (Otherwise $G_i \neq G$ is a component of G, impossible as G is connected.) Let $v_{i+1} = w$, then $G_{i+1} = G[v_1, \ldots, v_i]$ is connected. This completes the proof, by induction.

Let $A, B \subseteq V$ be sets of vertices. An (A, B)-path in G is a path $P = x_0 x_1 \cdots x_k$ such that

$$P \cap A = \{x_0\}, \quad P \cap B = \{x_k\}.$$

Let $A, B \subseteq V$ and let $X \subseteq V \cup E$ be a set of vertices and edges. We say that X separates A and B in G if every (A, B)-path in G contains a vertex or edge from X.

Note that we do not assume that A and B are disjoint and if X separates A and B then $A \cap B \subseteq X$. We say that X separates two vertices a, b if $a, b \notin X$ and X separates the sets $\{a\}, \{b\}$.

More generally, we say that X separates G, and call X a **separating set** for G, if X separates two vertices of G. That is, X separates G if there exist distinct vertices $a, b \notin X$ such that X separates a and b.

If $X = \{x\}$ is a separating set for G, where $x \in V$, then we say that x is a **cut vertex**.

If $e \in E$ and G - e has more components than G then e is a **bridge**.

The unordered pair (A, B) is a **separation** of G if $A \cup B = V$ and G has no edge between A - B and B - A. The second conditions says that $A \cap B$ separates A from B in G. If both A - B and B - A are nonempty then the separation is **proper**. The order of the separation is $|A \cap B|$.

Definition. Let $k \in \mathbb{N}$. The graph G is **k-connected** if |G| > k and G - X is connected for all subsets $X \subseteq V$ with |X| < k.

The **connectivity** $\kappa(G)$ of G is defined by

$$\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}.$$

So, $\kappa(G) = 0$ iff G is trivial or G is disconnected. Also, $\kappa(K_n) = n - 1$ for all positive integers n.

Definition. Let $\ell \in \mathbb{N}$ and let G be a graph with $|G| \geq 2$. If G - F is connected for all $F \subseteq E$ with $|F| < \ell$ then G is ℓ -edge-connected.

The **edge connectivity** $\lambda(G)$ is defined by

$$\lambda(G) = \max\{\ell : G \text{ is } \ell\text{-edge-connected}\}.$$

Proposition 1.4.2. If $|G| \ge 2$ then $\kappa(G) \le \lambda(G) \le \delta(G)$.