Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method for the production of a plurality of optoelectronic semiconductor chips each having a plurality of structural elements with each structural element comprising at least one semiconductor layer, comprising the steps of:

providing a chip composite base having a substrate and a growth surface;

forming a mask material layer on the growth surface[[,]] a mask material layer with a multiplicity of windows, most of which have an average extent of less than or equal to 1 μm, wherein a mask material is chosen in such a way that a semiconductor material of the semiconductor layer that is to be grown in a later method step essentially cannot grow on said mask material or can grow in a substantially worse manner in comparison with the growth surface;

essentially simultaneously growing semiconductor layers to form the structural elements on regions of the growth surface that lie within the windows; and

singulating the chip composite base with applied material to form semiconductor chips each having a plurality of structural elements.

2. (Currently Amended) The method as claimed in claim 1, in which wherein the chip composite base has at least one semiconductor layer grown epitaxially onto the substrate and the growth surface is a surface on that side of the epitaxially grown semiconductor layer which is remote from the substrate.

- 3. (Currently Amended) The method as claimed in claim 1, in which wherein the chip composite base has a semiconductor layer sequence grown epitaxially onto the substrate with an active zone that emits electromagnetic radiation, and the growth surface is a surface on that side of the semiconductor layer sequence which is remote from the substrate.
- 4. (Currently Amended) The method as claimed in claim 1, in which wherein the structural elements respectively have an epitaxially grown semiconductor layer sequence with an active zone that emits electromagnetic radiation.
- 5. (Currently Amended) The method as claimed in claim 1, in which wherein the mask material has SiO_2 , Si_xN_y or Al_2O_3 .
- 6. (Currently Amended) The method as claimed in claim [[1]] 3, in which wherein, after the growth of the semiconductor layers, a layer made of electrically conductive contact material that is transmissive to an electromagnetic radiation emitted by the active zone is applied to the semiconductor layers, so that semiconductor layers of a plurality of structural elements are electrically conductively connected to one another by the contact material.

- 7. (Currently Amended) The method as claimed in claim 1, in which wherein the average thickness of the mask material layer is less than the cumulated thickness of the semiconductor layers of a structural element.
- 8. (Currently Amended) The method as claimed in claim 1, in which wherein the mask material layer is at least partly removed after the growth of the semiconductor layers.
- 9. (Currently Amended) The method as claimed in claim 1, in which wherein, after the growth of the semiconductor layers layer sequences, a planarization layer is applied over the growth surface.
- 10. (Currently Amended) The method as claimed in claim 9, in which wherein a material whose refractive index is lower than that of the semiconductor layers is chosen for the planarization layer.
- 11. (Currently Amended) The method as claimed in claim 9, in which wherein a dielectric material which has dielectric properties is chosen for the planarization layer.
- 12. (Currently Amended) The method as claimed in claim 1, in which wherein the growth conditions for the growth of the semiconductor layers are at least one of set and/or and varied during growth in such a way that semiconductor layers of the structural elements form a lenslike, a truncated conelike lens-shaped form, a truncated cone-shaped form, or a polyhedral form.

- 13. (Currently Amended) The method as claimed in claim 1, in which wherein the semiconductor layers are grown by means of metal organic vapor phase epitaxy.
- 14. (Currently Amended) An optoelectronic semiconductor chip, characterized in that it is produced according to a method as claimed in claim 1.
- 15. (New) The method as claimed in claim 4, wherein, after the growth of the semiconductor layers, a layer made of electrically conductive contact material that is transmissive to an electromagnetic radiation emitted by the active zone is applied to the semiconductor layers, so that semiconductor layers of a plurality of structural elements are electrically conductively connected to one another by the contact material.