МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.3.4

Эффект Холла в полупроводниках

Выполнил:

Гисич Арсений

Б03-102

1 Аннотация

В данной работе исследовалась зависимость ЭДС Холла от величины магнитного поля при различных значениях тока через образец для определения константы Холла. Также был определён знак носителей заряда и проводимость материала образца.

2 Теоретические сведения

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 2).

Рис. 1: Образец с током в магнитном поле

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями A и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\scriptscriptstyle A} = -e\vec{E} - e\langle \vec{v}\rangle \times \vec{B},$$

где e — абсолютный заряд электрона, \vec{E} — напряженность электрического поля, \vec{B} — индукция магнитного поля.

В проекции на ось г получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани Б, заряжая ее отрицательно. На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$. В установившемся режиме $F_E = F_B$, поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_{AB} = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Холла.

Замечая, что сила тока

$$I = ne|\langle v_x \rangle| la,$$

найдем ЭДС Холла:

$$\mathscr{E}_X = U_{AB} = \frac{IB}{nea} = R_X \frac{IB}{a}.$$

Константа $R_X = \frac{1}{ne}$ называется постоянной Холла.

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p — концентрации электронов и дырок; b_e, b_p — их подвижности.

3 Методика измерений

Схема экспериментальной установки показана на рис. 2.

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (рис. 2a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 26), подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла \mathcal{E}_X может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Холла:

$$\mathscr{E}_X = U_{34} - U_0.$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathscr{E}_X можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}ah},\tag{1}$$

где L_{35} — расстояние между контактами 3 и 5, a — ширина образца, h — его толщина.

4 Используемое оборудование

- 1. электромагнит с регулируемым источником питания;
- 2. вольтметр;
- 3. амперметр;
- 4. миллиамперметр;
- 5. милливеберметр или миллитесламетр;
- 6. источник питания;
- 7. образцы легированного германия;

5 Результаты измерений и обработка данных

Параметры образца:

$$a = 2, 2 \text{ MM}$$

$$L = 6,0$$
 мм

$$l=7 MM$$

Результаты измерения калибровочной зависимости поля B от тока в электромагните I_M представлены в таб. 1. Калибровочный график зависимости представлен на рис. 3.

I_M, A	δ_{I_M}, A	B, м T л	δ_B , м T л
0,000	0,020	17,7	1,9
0,210	0,021	224,8	12,2
0,500	0,023	521,8	27,1
0,810	0,024	802,7	41,1
1,020	0,025	929,4	47,5
1,220	0,026	1016,2	51,8
1,420	0,027	1072,1	54,6

Таблица 1: Калибровочная зависимость $B(I_M)$

Рис. 3: Калибровочный график

Результаты измерений разности потенциалов U_{34} между точками 3 и 4 в зависимости от поля B при различных значениях тока через образец I и полученные значения ЭДС Холла U_{\perp} представлены в таб. 2–9.

I_M, A	δ_{I_M}, A	U_{34} , м B	U_{\perp} , м B	$\delta_{U_{\perp}},$ м B	U_0 , м B
0,240	0,021	-0,030	0,030	0,001	
0,500	0,023	0,001	0,061	0,001	
0,750	0,024	0,026	0,086	0,001	-0,06
1,030	0,025	0,045	0,105	0,001	-0,00
1,230	0,026	0,054	0,114	0,001	
1,400	0,027	0,059	0,119	0,001	

Таблица 2: Результаты измерения ЭДС Холла при I=0,3 мA

I_M, A	δ_{I_M}, A	U_{34} , м B	U_{\perp} , м B	$\delta_{U_{\perp}},$ м B	U_0 , м B
$0,\!250$	0,021	-0,039	0,042	0,001	
0,510	0,023	0,003	0,084	0,001	
0,750	0,024	0,035	0,116	0,001	-0,081
1,030	0,025	0,059	0,140	0,001	-0,001
1,240	0,026	0,071	0,152	0,001	
1,390	0,027	0,077	0,158	0,001	

Таблица 3: Результаты измерения ЭДС Холла при I=0,4 мA

I_M, A	δ_{I_M}, A	U_{34} , м B	$U_{\perp},$ м B	$\delta_{U_{\perp}},$ м B	U_0 , м B
$0,\!250$	0,021	-0,050	0,052	0,001	
0,500	0,023	0,001	0,103	0,001	
0,750	0,024	$0,\!045$	0,147	0,001	-0,102
1,020	0,025	0,073	0,175	0,001	-0,102
1,250	0,026	0,088	0,190	0,001	
1,380	0,027	0,095	0,197	0,001	

Таблица 4: Результаты измерения ЭДС Холла при I=0,5 мA

I_M, A	δ_{I_M}, A	U_{34} , м B	$U_{\perp},$ м B	$\delta_{U_{\perp}},$ м B	U_0 , м B
$0,\!250$	0,021	-0,060	0,063	0,001	
0,510	0,023	0,004	0,127	0,001	
0,750	0,024	0,050	0,173	0,001	-0,123
1,010	0,025	0,085	0,208	0,001	-0,123
1,240	0,026	0,105	0,228	0,001	
1,370	0,027	0,113	0,236	0,001	

Таблица 5: Результаты измерения ЭДС Холла при I=0,6 ${\it mA}$

I_M, A	δ_{I_M}, A	U_{34} , м B	$U_{\perp},$ м B	$\delta_{U_{\perp}},$ м B	U_0 , м B
$0,\!250$	0,021	-0,070	0,075	0,001	
0,510	0,023	0,001	0,146	0,001	
0,760	0,024	0,061	0,206	0,001	-0,145
1,010	0,025	0,098	0,243	0,001	-0,140
1,250	0,026	0,122	0,267	0,001	
1,360	0,027	0,130	0,275	0,001	

Таблица 6: Результаты измерения ЭДС Холла при I=0,7 мA

I_M, A	δ_{I_M}, A	U_{34} , м B	U_{\perp} , м B	$\delta_{U_{\perp}},$ м B	U_0 , м B
0,250	0,021	-0,083	0,083	0,001	
0,500	0,023	-0,001	0,165	0,001	
0,750	0,024	0,068	0,234	0,001	-0,166
1,020	0,025	0,112	0,278	0,001	-0,100
1,250	0,026	0,138	0,304	0,001	
1,360	0,027	0,147	0,313	0,001	

Таблица 7: Результаты измерения ЭДС Холла при I=0,8 мA

I_M, A	δ_{I_M}, A	U_{34} , м B	U_{\perp} , м B	$\delta_{U_\perp},$ м B	U_0 , м B
0,250	0,021	-0,103	$0,\!106$	0,001	
0,500	0,023	-0,003	0,206	0,001	
0,760	0,024	0,084	0,293	0,001	-0,209
1,030	0,025	$0,\!141$	0,350	0,001	-0,209
1,270	0,026	0,173	0,382	0,001	
1,360	0,027	0,182	0,391	0,001	

Таблица 8: Результаты измерения ЭДС Холла при I=1 мA

I_M, A	δ_{I_M}, A	U_{34} , м B	U_{\perp} , м B	$\delta_{U_{\perp}},$ м B	U_0 , м B
0,260	0,021	-0,332	-0,110	0,001	
0,500	0,023	-0,434	-0,212	0,001	
0,750	0,024	-0,535	-0,313	0,001	-0,222
1,030	0,025	-0,596	-0,374	0,001	-0,222
1,260	0,026	-0,631	-0,409	0,001	
1,340	0,027	-0,639	-0,417	0,001	

Таблица 9: Результаты измерения ЭДС Холла при I=1 мA и противоположном направлении поля

График семейства характеристик $U_{\perp}(B)$ при разных значениях тока I через образец представлен на рис. 4. Значение тока I=-1 M на графике означает противоположное направление поля, ЭДС Холла в данном случае взята с обратным знаком.

Рис. 4: График зависимостей $U_{\perp}(B)$

Знак потенциала соответствует заряду на 3 контакте, значит на нём будут скапливаться дырки. Исходя из геометрии образца, изображённой на рис. 5, получаем, что основными носителями заряда являются дырки, т. е. имеет место дырочная проводимость.

Рис. 5: Направление тока, вектора магнитного поля и отклонение носителей

График зависимости $k=\frac{dU_\perp}{dB}$ от тока I представлен на рис. 6.

Рис. 6: График зависимости k(I)

Получаем угловой коэффициент $\alpha=0,336\pm0,005~\frac{B}{A\cdot Th}$. Тогда постоянная Холла $R_H=\alpha\cdot h=(739\pm35)\cdot 10^{-6}~\frac{M^3}{Kh}$.

Рассчитаем концентрацию носителей заряда по формуле $n=\frac{1}{R_{Hq}}=(8,5\pm0,2)\cdot10^{21}~\frac{1}{^{M^3}}$. При токе I=1 мA разность потенциалов между контактами 3 и 5

 $U_{35} = -1,980 \pm 0,001~B$. Вычислим удельную проводимость по формуле (1):

 $\sigma_0=196,7\pm16,1~OM\cdot M^{-1}$. Тогда удельное сопротивление $\rho_0=1/\sigma_0=0,0050\pm0,0004~OM\cdot M$. Подвижность носителей заряда рассчитывается по формуле $\mu=\frac{\sigma}{en}=1446\pm123~\frac{cM^2}{B\cdot c}$.

6 Обсуждение результатов и выводы

В данной работе была исследована зависимость ЭДС Холла от величины магнитного поля при различных значениях тока через образец. Были определены постоянная Холла, подвижность и концентрация носителей заряда в образце легированного германия. Полученные значения:

$$R_H = (739 \pm 35) \cdot 10^{-6} \frac{M^3}{K_A}, \quad n = (8, 5 \pm 0, 2) \cdot 10^{21} \frac{1}{M^3}, \quad \mu = 1446 \pm 123 \frac{c_M^2}{B \cdot c}$$

Табличное значение собственной концентрации носителей зарядов для германия $n_0 = 2, 4 \cdot 10^{13} \, \frac{1}{M^3}$. Это меньше полученного значения, что говорит о том, что данный образец германия содержит примеси. Основной вклад в погрешность вносит погрешность определения коэффициентов зависимости. Также на ошибку измерений может влиять зависимость концентрации основных носителей заряда от температуры, ярко выраженная в полупроводниках.