Harmonic Measure TD7

2025年05月11日 aytony

Exercise 1: Let $\Omega \subset \mathbb{R}^d$ be an open set and $f: \Omega \to \overline{\mathbb{R}}$. Show that

- 1. f is continuous iff it is use and lsc.
- 2. f is lsc iff for all $x \in \Omega$ and all $\varepsilon > 0$, there exists $\eta > 0$ such that

$$||x - y|| < \eta \Longrightarrow f(x) - f(y) < \varepsilon.$$

3. f is use iff for all $x \in \Omega$ and all $\varepsilon > 0$, there exists $\eta > 0$ such that

$$\|x-y\|<\eta\Longrightarrow f(x)-f(y)>-\varepsilon.$$

- 4. f is lsc iff the epigraph $\{(x,t) \mid t \geqslant f(x)\}$ is closed in $\Omega \times \mathbb{R}$.
- 5. f is use iff the hypograph $\{(x,t) \mid t \leqslant f(x)\}$ is closed in $\Omega \times \mathbb{R}$.
- 6. If f is lsc on a compact set, then there exists an increasing sequence of continuous functions (φ_i) converging to f.
- 7. If f is use on a compact set, then there exists a decreasing sequence of continuous functions (φ_i) converging to f.

Proof:

$$f(x) = \lim_{y \to x} f(y) \Longleftrightarrow f(x) \leqslant \liminf_{y \to x} f(y) \leqslant \limsup_{y \to x} f(y) \leqslant f(x).$$

- 2. Just apply the definition of $\liminf_{y\to x} f(y)$.
- 3 Omit
- 4. Pick a sequence $\{(x_n,t_n)\} \to (x,t)$ such that $t_n \geqslant f(x_n)$ holds for all n, we need to prove $t \geqslant f(x)$. It is because $t = \lim t_n \geqslant \liminf f(x_n) \geqslant f(x)$.
- 5. Omit.

$$\liminf_{y\to x} f(y)\geqslant \liminf_{y\to x} \varphi_j(y)=\lim_{y\to x} \varphi_j(y)=\varphi_j(x)$$

holds for all $j \in \mathbb{N}^+$, hence $\liminf_{y \to x} f(y) \geqslant f(x)$.

7. Omit.

Exercise 2: Show that the collection of usc and the collection of lsc functions on an open set Ω are stable by addition and by multiplication by a positive scalar.

Proof: Suppose u, v are lsc on domain Ω . Then

$$\liminf_{y \to x} (u(y) + v(y)) \geqslant \liminf_{y \to x} u(y) + \liminf_{y \to x} v(y) \geqslant u(x) + v(x).$$

Let c > 0 and

$$\liminf_{y\to x} cu(y) = c \liminf_{y\to x} u(y) \geqslant cu(x).$$

Cases of usc are similar.

Exercise 3: Let $A \subset \mathbb{R}^d$ and $\mathbb{1}_A$ its characteristic function.

- 1. $\mathbb{1}_A$ is lsc if and only if A is open.
- 2. $\mathbb{1}_A$ is usc if and only if A is closed.

Proof: Only prove 1.

$$\forall x \in A, 1 \geqslant \liminf_{y \to x} \mathbb{1}_A(y) \geqslant \mathbb{1}_A(x) = 1 \Longleftrightarrow y \in A, \forall y \in B(x, \delta). \qquad \Box$$

Exercise 4: Let μ be a non-negative regular positive measure on \mathbb{R}^d and $f \in L^1(\mu)$. Then

$$\int_{\partial\Omega} f \, \mathrm{d}\mu = \inf \left\{ \int_{\partial\Omega} h \, \mathrm{d}\mu \, \Big| \, h \text{ lsc on } \partial\Omega, f \leqslant h \right\}$$

and

$$\int_{\partial\Omega} f \,\mathrm{d}\mu = \sup \left\{ \int_{\partial\Omega} h \,\mathrm{d}\mu \, \Big| \, h \text{ usc on } \partial\Omega, f \geqslant h \right\}.$$

Exercise 5: If u and v are superharmonic in the domain $\Omega \subset \mathbb{R}^d$ and u(x) = v(x) for almost every $x \in \Omega$, then u and v are identically equal in Ω . Same if u, v are subharmonic.

Proof: Suppose not, and we omit the cases that functions reach $\pm \infty$. Pick $x_0 \in \Omega$ s.t. $u(x_0) \neq v(x_0)$. Without lost of generality, we can assume that $u(x_0) > v(x_0)$. Set m such that $v(x_0) < m < u(x_0)$. Since u, v are lsc and u = v a.e., $A = \{x \mid u(x) \geqslant m\}, B = \{x \mid v(x) \geqslant m\}$ are closed, and $\lambda(A\Delta B) = 0$. Observed that $x_0 \in A$, we can deduce that there exists $\{x_n \in A \cap B\}$ s.t. $x_n \to x_0$, then $x_0 \in B$, which causes a contradiction.

Exercise 6: Suppose that u is lower-semicontinuous in the domain $\Omega \subset \mathbb{R}^d$. Then the following are equivalent:

- 1. u is superharmonic in Ω .
- 2. For every $B(x_0, r) \subset \Omega$ and every v harmonic in $B(x_0, r)$,

$$\lim_{B(x_0,r)\ni y\to x} (u(y)-v(y))\geqslant 0 \quad \forall x\in \partial B(x_0,r)\Longrightarrow u\geqslant v \ \ \text{in} \ \ B(x_0,r).$$

Give the analogous assertion for subharmonic functions.

Proof: $1 \Longrightarrow 2$. Suppose u superharmonic. Set $B(x_0,r) \subset \Omega$ and v harmonic in $B(x_0,r)$, then u-v is superharmonic in $B(x_0,r)$. Thus $u-v\geqslant 0$ can be deduced according to the Maximum Principle of superharmonic function.

 $2\Longrightarrow 1.$ Set $B(x,r)\subset \Omega,$ our goal is to prove $u(x)\geqslant f_{\partial B(x,r)}u(y)\,\mathrm{d}y.$ Since u is lsc, there exists a sequence of continuous function defined on ∂B such that $f_n\uparrow u|_{\partial B}.$ Thus

$$v_n = \operatorname{PI}(f_n,B) \uparrow \operatorname{PI}(u|_{\partial B},B) = v \quad \text{for all } n,$$

where PI stands for Possion Integral. Since v_n are harmonic for all n, v is either harmonic or explicitly $+\infty$. u, v_n suit the condition, and $u \geqslant v_n$ in B(x,r) holds for all n. So $u \geqslant v$ in B(x,r). Hence

$$u(x) \geqslant v(x) = \int_{\partial B(x,r)} v(y) \, \mathrm{d}y = \int_{\partial B(x,r)} u(y) \, \mathrm{d}y$$

and the result follows.

Exercise 7: Prove the equality

$$\oint_{B(x,r)} f(y) \, \mathrm{d}y = \frac{d}{r^d} \int_0^r \left(\oint_{\partial B(x,s)} f(\zeta) \, \mathrm{d}\sigma(\zeta) \right) s^{d-1} \, \mathrm{d}s,$$

for f measurable and positive in \mathbb{R}^d .

Proof: Set $y = \zeta s$, where $s \in (0, r)$ and $\zeta \in \partial B(x, s)$. Then $dy = s^{d-1} d\sigma(\zeta) ds$. Then

$$\begin{split} & \oint_{B(x,r)} f(y) \, \mathrm{d}y \\ & = \frac{d}{\kappa_d r^d} \int_{B(x,r)} f(y) \, \mathrm{d}y \\ & = \frac{d}{\kappa_d r^d} \int_0^r \Biggl(\int_{\partial B(x,s)} f(\zeta) \, \mathrm{d}\sigma(\zeta) \Biggr) s^{d-1} \, \mathrm{d}s \\ & = \frac{d}{r^d} \int_0^r \Biggl(\oint_{\partial B(x,s)} f(\zeta) \, \mathrm{d}\sigma(\zeta) \Biggr) s^{d-1} \, \mathrm{d}s, \end{split}$$

where κ_d stands for the measure of surface of unit ball in \mathbb{R}^d .

Exercise 8: Suppose that u is lower-semicontinuous in the domain $\Omega \subset \mathbb{R}^d$. Then u is superharmonic in Ω if and only if, for every $x \in \Omega$ and all $r < d(x, \partial\Omega)$,

$$\oint_{\partial B(x,r)} u(\zeta) \, \mathrm{d}\sigma(\zeta) \leqslant u(x).$$

Proof: First prove sufficiency, i.e. to prove u is superharmonic. It is relatively trivial since

$$\begin{split} & \oint_{B(x,r)} u(\zeta) \, \mathrm{d}\sigma(\zeta) \\ &= \frac{d}{r^d} \int_0^r \left(\oint_{\partial B(x,s)} f(\zeta) \, \mathrm{d}\sigma(\zeta) \right) s^{d-1} \, \mathrm{d}s \\ &\leqslant u(x) \cdot \frac{d}{r^d} \int_0^r s^{d-1} \, \mathrm{d}s \\ &= u(x). \end{split}$$

Second prove necessity. Assume u be superharmonic. Suppose not, i.e. there exists $x_0 \in \Omega$ and $B(x_0, r_0) \subset \Omega$ such that

$$\int_{\partial B(x_0,r_0)} u(\zeta) \,\mathrm{d}\sigma(\zeta) > u(x_0).$$

Set function

$$v(x) = \begin{cases} \operatorname{PI}(u, B(x_0, r_0))(x), & x \in B(x_0, r_0) \\ u(x), & \text{otherwise in } \Omega \end{cases}$$

where $\operatorname{PI}(u,B(x_0,r_0))(x)$ stands for Possion Integral of u over $B(x_0,r_0)$. Hence v is a harmonic lift of u, and is superharmonic in Ω , and harmonic in $B(x_0,r_0)$. Thus

$$\begin{split} v(x_0) &= \int_{B(x_0,r_0)} v(\zeta) \,\mathrm{d}\zeta \leqslant \int_{B(x_0,r_0)} u(\zeta) \,\mathrm{d}\zeta \leqslant u(x_0) < \int_{\partial B(x_0,r_0)} u(\zeta) \,\mathrm{d}\sigma(\zeta) \\ &= \int_{\partial B(x_0,r_0)} v(\zeta) \,\mathrm{d}\sigma(\zeta), \end{split}$$

For all $r > r_0$, we have

$$\begin{split} v(x_0) \geqslant & \int_{B(x_0,r)} v(\zeta) \,\mathrm{d}\zeta \\ &= \frac{d}{r^d} \int_0^r s^{d-1} \left(\int_{\partial B(x_0,s)} v(\zeta) \,\mathrm{d}\sigma(\zeta) \right) \,\mathrm{d}s \\ &= \frac{d}{r^d} \int_{r_0}^r s^{d-1} \left(\int_{\partial B(x_0,s)} v(\zeta) \,\mathrm{d}\sigma(\zeta) \right) \,\mathrm{d}s \quad \text{(since v is harmonic in $B(x_0,r_0)$)}. \end{split}$$

Let

$$\varphi(r) = \frac{d}{r^d} \int_{r_0}^r s^{d-1} \left(\oint_{\partial B(x_0,s)} v(\zeta) \, \mathrm{d}\sigma(\zeta) \right) \mathrm{d}s,$$

and it is easy to observe that $\varphi(r)$ is continuous, and $\varphi(r_0)=0, \varphi'(r_0)<0$. Hence there exists r, which is very near to r_0 , such that $\varphi(r_0)<0$, and

$$v(x_0) > \frac{d}{r^d} \int_{r_0}^r s^{d-1} v(x_0) \, \mathrm{d} s = v(x_0),$$

which causes contradiction.