# Potential Factors of Decreasing Birth Rates in the US since the Great Recession and Beyond\*

Reproduction of 'The Puzzle of Falling US Birth Rates since the Great Recession' (Kearney, Levine & Pardue, 2022)

Chay Park

February 8, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

- 1 Introduction
- 2 Data
- 2.1 Source

```
# Load necessary libraries
library(ggplot2)
library(gridExtra)
```

Attaching package: 'gridExtra'

The following object is masked from 'package:dplyr':

combine

<sup>\*</sup>Code and data are available at: https://github.com/Chay-HyunminPark/Social-Science-Study.



Birth Rates collected from CDC Vital Statistics Births Reports for 2015, 2019, and 2020.

Figure 1: Trend in US Birth Rates

```
# Set seed for reproducibility
set.seed(123)
# Read the data from CSV file
data <- read.csv(file = here::here("outputs/data/figs_2a_2b.csv"))</pre>
# Plotting the first line graph (Graph A)
graph_A \leftarrow ggplot(data, aes(x = year)) +
  geom_line(aes(y = brate_1519, color = "Age 15-19"), size = 1.2) +
  geom_line(aes(y = brate_2024, color = "Age 20-24"), size = 1.2) +
  geom_line(aes(y = brate_2529, color = "Age 25-29"), size = 1.2) +
  geom_line(aes(y = brate_3034, color = "Age 30-34"), size = 1.2) +
  geom\_line(aes(y = brate\_3539, color = "Age 35-39"), size = 1.2) +
  geom_line(aes(y = brate_4044, color = "Age 40-44"), size = 1.2) +
  scale_color_manual(values = c("Age 15-19" = "blue", "Age 20-24" = "orange", "Age 25-29"
                                  "Age 30-34" = "yellow", "Age 35-39" = "cyan", "Age 40-44"
                     labels = c("Age 15-19", "Age 20-24", "Age 25-29", "Age 30-34", "Age 3
                     name = "Age Group") +
  geom_vline(xintercept = 2007, linetype = "dotted") +
  geom hline(yintercept = seq(0, 140, by = 20), color = "lightgrey") +
```

```
scale_x_continuous(limits = c(1980, 2020), breaks = seq(1980, 2020, by = 5)) +
scale_y_continuous(limits = c(0, 140), breaks = seq(0, 140, by = 20)) +
labs(x = "Year", y = "Births per 1,000 women in relevant population subgroup",
    title = "Trend in US Birth Rates by Age Group",
    caption = "Birth Rates collected from CDC Vital Statistics Births Reports for 2015,
theme_classic()
```

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.

```
# Plotting the second line graph (Graph B)
graph_B \leftarrow ggplot(data, aes(x = year)) +
  geom_line(aes(y = brate_hisp, color = "Hispanic"), size = 1.2) +
  geom_line(aes(y = brate_blacknh, color = "Black, non-Hispanic"), size = 1.2) +
  geom_line(aes(y = brate_whitenh, color = "White, non-Hispanic"), size = 1.2) +
  scale_color_manual(values = c("Hispanic" = "grey", "Black, non-Hispanic" = "orange", "Wh
                     labels = c("Hispanic", "Black, non-Hispanic", "White, non-Hispanic"),
                     name = "Race/Ethnicity") +
  geom_vline(xintercept = 2007, linetype = "dotted") +
  geom_hline(yintercept = seq(0, 140, by = 20), color = "lightgrey") +
  scale_x_{ontinuous}(limits = c(1990, 2020), breaks = seq(1990, 2020, by = 5)) +
  scale_y_continuous(limits = c(0, 140), breaks = seq(0, 140, by = 20)) +
  labs(x = "Year", y = "Births per 1,000 women in relevant population subgroup",
       title = "Trend in US Birth Rates by Race/Ethnicity",
       caption = "Birth Rates collected from CDC Vital Statistics Births Reports for 2015,
  theme_classic()
# Arrange both graphs side by side
grid.arrange(graph_A, graph_B, nrow = 1)
```

Warning: Removed 10 rows containing missing values (`geom\_line()`).

Warning: Removed 10 rows containing missing values (`geom\_line()`). Removed 10 rows containing missing values (`geom\_line()`).



```
# Load necessary libraries
library(ggplot2)
library(gridExtra)
# Set seed for reproducibility
set.seed(123)
# Read the data from CSV file
data <- read.csv(file = here::here("outputs/data/figs_2a_2b.csv"))</pre>
# Plotting the first line graph (Graph A)
graph_A \leftarrow ggplot(data, aes(x = year)) +
          geom_line(aes(y = brate_1519, color = "Age 15-19"), size = 1.2) +
          geom_line(aes(y = brate_2024, color = "Age 20-24"), size = 1.2) +
         geom_line(aes(y = brate_2529, color = "Age 25-29"), size = 1.2) +
         geom_line(aes(y = brate_3034, color = "Age 30-34"), size = 1.2) +
          geom_line(aes(y = brate_3539, color = "Age 35-39"), size = 1.2) +
         geom_line(aes(y = brate_4044, color = "Age 40-44"), size = 1.2) +
          geom_text(aes(label = "Age 15-19", x = 2020, y = brate_1519), hjust = 0, vjust = -0.5, column 
         geom_text(aes(label = "Age 20-24", x = 2020, y = brate_2024), hjust = 0, vjust = -0.5, constant = 0.5, const
          geom_text(aes(label = "Age 25-29", x = 2020, y = brate_2529), hjust = 0, vjust = -0.5, c
          geom_text(aes(label = "Age 30-34", x = 2020, y = brate_3034), hjust = 0, vjust = -0.5, c
```

```
geom_text(aes(label = "Age 35-39", x = 2020, y = brate_3539), hjust = 0, vjust = -0.5, of the context of the 
         geom_text(aes(label = "Age 40-44", x = 2020, y = brate_4044), hjust = 0, vjust = -0.5, c
         geom_vline(xintercept = 2007, linetype = "dotted") +
         geom_hline(yintercept = seq(0, 140, by = 20), color = "lightgrey") +
         scale x continuous(limits = c(1980, 2020), breaks = seq(1980, 2020, by = 5), labels = fu
         scale_y_continuous(limits = c(0, 140), breaks = seq(0, 140, by = 20)) +
         labs(y = "Births per 1,000 women in relevant population subgroup",
                  title = "A: Five-year age group",
                   caption = "Note: Birth rates by age group, race and ethnicity, and marital status a
         theme classic() +
         theme(axis.text.x = element_text(angle = 45, hjust = 1, family = "Times"))
     # Plotting the second line graph (Graph B)
     graph_B \leftarrow ggplot(data, aes(x = year)) +
         geom_line(aes(y = brate_hisp, color = "Hispanic"), size = 1.2) +
         geom_line(aes(y = brate_blacknh, color = "Black, non-Hispanic"), size = 1.2) +
         geom_line(aes(y = brate_whitenh, color = "White, non-Hispanic"), size = 1.2) +
         geom_text(aes(label = "Hispanic", x = 2020, y = brate_hisp), hjust = 0, vjust = -0.5, co
         geom_text(aes(label = "Black, non-Hispanic", x = 2020, y = brate_blacknh), hjust = 0, vj
         geom_text(aes(label = "White, non-Hispanic", x = 2020, y = brate_whitenh), hjust = 0, vj
         geom_vline(xintercept = 2007, linetype = "dotted") +
         geom_hline(yintercept = seq(0, 140, by = 20), color = "lightgrey") +
         scale_x_{ontinuous}(limits = c(1990, 2020), breaks = seq(1990, 2020, by = 5), labels = fu
         scale_y continuous(limits = c(0, 140), breaks = seq(0, 140, by = 20)) +
         labs(title = "B: Race and ethnicity (ages 15-44)") +
         theme_classic()
     # Arrange both graphs side by side
     grid.arrange(graph_A, graph_B, nrow = 1)
Warning: Removed 10 rows containing missing values (`geom_line()`).
Removed 10 rows containing missing values (`geom_line()`).
Removed 10 rows containing missing values (`geom_line()`).
Warning: Removed 9 rows containing missing values ('geom_text()').
Removed 9 rows containing missing values (`geom_text()`).
```

Removed 9 rows containing missing values (`geom\_text()`).



#### 2.2 Methodology

- 2.3 Features
- 2.3.1 Data Cleaning
- 2.3.2 Data Modification
- 2.3.3 Data Visualization

#### 3 Results

The results section should convey findings. ## Table, graph, table, graph

#### 4 Discussion

In the discussion section, and any other relevant section, please be sure to discuss ethics and bias, with reference to relevant literature.

### 4.1 Findings

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

- 4.2 Ethical Implication
- 4.3 Accounting for bias
- 4.4 Limitation
- 4.5 Future Research

## 5 References