

STS Project Report

∷ 태그 report

DEMO

GitHub: https://github.com/snaiws/NLP_project

Deploy URL: Model API

Team & Role

- 송민혜
- 엄정호
- 이규호
- 이용욱

과제 목표

- 한국어 문장의 유사도 분석 모델 훈련 및 BEST 모델 API 구현
- 두 개의 한국어 분장을 입력 받아 두 문장의 의미적 유사도를 출력하는 사용자 interface 구현

Contents

- 1. 데이터전처리
- 2. <u>모델 선정</u>
- 3. <u>훈련 및 평가</u>
- 4. <u>실험</u>
- 5. Model API
- 6. <u>한계 및 개선 방안</u>
- 7. Reference

1. 데이터 전처리

- Data Set
 - KLUE-STS (11668 x 6)
 - AIRBNB(리뷰)
 - policy(뉴스)
 - parakQC(스마트홈 쿼리)
- train data에서 중복 제거 (11668 → 11661)
- regex를 사용하여 한글, 숫자만 남기고 문장 전처리
- train, valid data를 9:1로 나누어 실험 진행

DataSet	Size
Train	10494
Valid	1167
Test	519

2. 모델 선정

STS benchmark 에서 좋은 성능을 보였던 pre-trained model들을 비교, 실험하여 선정했습니다.

2-1. KLUE-BERT-base

STS Project Report 1

reference

- 한국어로 사전 학습된 BERT 모델입니다.
- BERT: Bidirectional Encoder Representations from Transformers
 - Transformer 모델의 인코딩 layer에 Masked sentence 두 개를 붙여 입력하고 mask토큰과 다음 문장을 예측하는 사전학습을 한 모델입니다.

Model	Layers	Embedding Size	Hidden Size	# heads
KLUE-BERT-base	12	768	768	12

2-2. KLUE-RoBERTa

<u>reference</u>

- 해당 모델은 RoBERTa를 KLUE dataset을 통해 사전 학습 시킨 모델이다. 사전 학습된 모델의 크기에 따라 small, base, large로 나누어 집니다.
- RoBERTa: A Robustly Optimized BERT Pretraining Approach
 - 。 BERT 모델이 underfit 되어 있다고 판단하여 여러가지 tuning을 진행한 모델입니다.
 - BERT 보다 더 많은 데이터를 긴 시간 동안 큰 batch size와 더 긴 sequence를 이용하여 학습 시킨 모델
 - Dynamic Masking으로 다양성 확보
 - NSP loss제거

Model	Layers	Embedding Size	Hidden Size	# heads
KLUE-RoBERTa-base	12	768	768	12
KLUE-RoBERTa-large	24	1024	1024	16

2-3. KoELECTRA-base-v3-discriminator

<u>reference</u>

- v3의 KoELECTRA는 34G의 한국어 Corpus를 이용하여 사전 학습 시킨 모델입니다.
- fine_tuning 된 모델의 코드를 GitHub에서 발췌 하여 사용하였습니다.
- ELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements Accurately
 - 。 GAN과 비슷한 형태로 generator와 discriminator가 존재합니다.
 - generator는 MLM(Masked Language Model) 로 대표적으로 BERT 등이 있습니다.
 - ∘ Replaced Token Detection(RTD) 방식으로 사전 학습을 진행하여 모든 input token에 대해 학습합니다.
 - RTD : 각 token이 generator에 의해 생성된 token인지, 원래 input token인지 판단합니다.(이진 분류)

Model	Layers	Embedding Size	Hidden Size	# heads
KoELECTRA-base-v3-discriminator	12	768	256	4

2-4. sentence RoBERTa

reference

- 코사인 유사도를 사용하여 비교할 수 있는 의미 있는 문장 임베딩을 도출하기 위해 BERT를 개선하여 Siamese and triplet network 구조를 사용하는 모델 입니다.
- Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
 - 。 sBERT를 학습하는 대표적 방법인 NLI와 STS문제를 푸는 것 중 STS문제를 풀기 위해 사용하였습니다.
 - 문장을 각각 BERT의 입력으로 넣고 mean pooling을 통해 문장 임베딩 벡터를 얻습니다.
 - 두 벡터의 코사인 유사도를 구한 후 레이블 유사도와의 평균제곱오차(MSE)를 최소화하는 방식으로 학습합니다.

2-5. 최종 모델

- 최종 모델: KoELECTRA-base-v3-discriminator (fine-tune ver.)
- 최종 모델 채택 이유: f1 score가 높습니다.
- 실험 결과, 모델 별 가장 높은 성능은 다음 표와 같습니다.

Mode	Pearsons' r	F1_score	Loss	Epoch	BatchSize	Optimizer	Learning Rate
KLUE-BERT- base	0.8264	0.8193	_	25	56	AdamW	3e-5
KLUE- RoBERTa-base	0.9251	0.8512	0.3351	5	58	AdamW	2e-5
KLUE- RoBERTa-large	0.7982	0.8440	_	5/25 (early stopping)	20(고정)	AdamW	2e-5
KoELECTRA- base-v3- discriminator	0.9228	0.8646	0.4084	4/20 (early stopping)	32	AdamW	5e-5
sentence- RoBERTa	0.8853					AdamW	

3. 훈련 및 평가

3-1. Train

- Regression Task
 - o STS Dataset의 "real-label" 값을 이용하여 0≤ target ≤ 5 사이의 값을 예측했습니다.
 - 。 예측된 target값은 의미적 유사도를 의미하며, 0에 가까울 수록 유사하지 않음을 의미합니다.
 - 해당 Task에서 평가 지표는 Pearsons' r coefficient를 사용했으며,
 이는 real-label 과 target 간의 선형 상관 관계를 측정합니다.
- Binary Classification Task
 - Regression Task로 예측된 target값을 중앙값인 3.0을 기준으로 0과 1로 분류했습니다.
 - ∘ 분류된 target값은 0은 두 문장이 유사하지 않음, 1은 두 문장이 유사함을 의미합니다.
 - 해당 Task에서 평가 지표는 F1 score를 사용했으며,
 binary로 분류된 label값 과 target간의 precision과 recall에 관한 조화 평균 값을 측정합니다.

3-2. Hyper-Parameter Tuning

Optuna를 이용하여 최적의 batch size와 learning rate를 찾았습니다. 시간 관계상 loss함수와 optimizer를 고려하진 못했습니다.

- TPE sampler와 hyperband pruner를 사용했습니다.
- TPE sampler
 - 。 베이지안 최적화 기법에 기반한 Optuna의 디폴트 샘플러입니다.
 - 처음엔 랜덤 샘플러처럼 시작하지만 결과를 기록하고 이에 따라 다음 시도할 파라미터를 정합니다.
- hyperband pruner :
 - pruner는 epoch마다 결과를 기록합니다.
 - o pruner는 알고리즘에 따라 epoch를 더 진행할 필요가 없다고 판단되면 trial의 이른 epoch 단계에서 break 하고 다음 trial로 넘어가는 기능입니다.
 - 。 여러 pruner 가운데 공식 문서의 추천에 따라 TPE sampler와 제일 어울린다고 하는 hyperband pruner를 사용했습니다.

4. 실험

STS Project Report 3

4-1. Data Augmentation

Data EDA 결과, Data의 분포가 0 ≤ label≤ 5의 경우, 일정하지 않았습니다.

Train Data의 real-label 분포

Train Data의 binary-label 분포

이를 보완하고 모델의 성능 향상과 과적합을 방지하고자, 데이터 증강에 대한 실험을 진행했습니다.

- EDA(Easy Data Augmentation)기법을 사용하였고, 한국어로 쓸 수 있도록 WordNet부분만 교체한 KorEDA 를 사용했습니다.
 - ∘ SR(Synonym Replacement) : 불용어가 아닌 n개의 단어를 랜덤하게 뽑고 임의로 선택한 동의어와 바꾼다.
 - 。 RI(Random Insertion): 문장 안에 불용어가 아닌 임의의 단어를 선택해 해당 단어의 임의의 동의어를 랜덤한 위치에 삽입한다.(n번 반복)
 - RS(Random Swap) : 문장에서 임의의 두 단어를 선택하고 자리를 바꾼다.(n번 반복)
 - RD(Random Delection) : 문장에서 임의의 단어를 p의 확률로 삭제
- 한계 : WordNet만을 단순히 바꿔서 결과를 내기 때문에 의미가 변형되는 경우가 생김 → 안전하게 데이터를 증강 하기 위해 RD, RS만 사용
 - 。 WordNet으로 KAIST에서 만든 <u>Korean WordNet(KWN)</u>을 사용하였는데 국립국어원(모두의 말뭉치)에서 제공하는 NIKLex를 사용했다 면

KWN의 동의어개수(9714개)보다 훨씬 많은 60000개의 동의어를 가지고있어 더 다양한 증강법을 시도 할 수 있었을 것 같습니다.

	원본 데이터	증강 데이터
Train	11668	62995
Test	519	6353

4-2. Data Collect

프로젝트에 사용된 데이터 셋은 약 1만 개의 문장 쌍 입니다.

다른 STS Task가 30k 이상의 데이터 셋을 이용하기 때문에 이에 비해 확연히 적은 양입니다.

이를 보완하고자, 문장 쌍의 데이터를 추가하여 모델의 성능을 향상 시키고자 실험을 진행했습니다.

KorSTS

Dataset Overview

KorSTS	Total	Train	Dev.	Test
Source	-	STS-B	STS-B	STS-B
Translated by	-	Machine	Human	Human
# Examples	8,628	5,749	1,500	1,379
Avg. # words	7.7	7.5	8.7	7.6

4-3. Visualization

모델의 학습을 Tracking 하고자 Visualization을 시도했습니다.

• Tensorboard를 이용하여 모델 학습 중에 log를 남기고, 동적 시각화를 구현했습니다.

KoELECTRA 적용 예시 Learning Rate

• 학습을 완료한 후, Validation Loss와 Train Loss를 비교하여 좀 더 직관적으로 확인 할 수 있도록 시각화 했습니다.

• 커스텀 모델 아키텍쳐를 시각화하기 위해 torchviz와 hidden layer와 bertviz 라이브러리를 사용했습니다.

5. Model API

Flask를 사용하여 구현했습니다.

6. 한계 및 개선 방안

6-1. 한계

- GPU 용량의 한계로 인해 대용량 모델을 돌리지 못했던 점
- loss 함수와 optimizer를 비교해보지 못한 점

- output layer를 여러 방식으로 시도해보지 못한 점
- 데이터 증강을 적용해보지 못한 점
- 추가 데이터를 활용하지 못한 점
- 모델 아키텍쳐를 코드로 시각화 하지 못한 점
- 추가적인 layer를 시도해보지 못한 점
- 실패한 시도를 포함하여 모든 기록을 세세하기 기록하지 않은 점
- 진행 사항이 옳은지 판단이 안되고 서로의 코드를 검증할 여력이 없음

6-2. 개선 방안

- 알려진 모델의 하이퍼 파라미터 튜닝 시, 논문의 parameter를 참고하여 약간의 후보군에 대해 grid search하는 방안을 제시합니다.
- 데이터에서 pronoun과 noun을 뽑아 category를 만든 후 같은 category에 해당하는 단어들로 치환하여 증강하는 방안을 제시합니다.
- 아래 그래프는 BERT tokenizer를 거친 sentence1 데이터의 토큰 길이 분포입니다.

토큰 길이 기준으로 elbow 지점을 잘라내어 짧은 토큰들로만 학습 후 긴 토큰들을 추가학습하는 방법으로 더 빠른 결과를 얻을 수 있을 것으로 기대됩니다.

- Pytorch nn.Module 클래스의 get_parameters 메소드의 결과를 사용한다면, 직접 시각화를 시도해볼 수 있을 것으로 기대됩니다.
- time 라이브러리를 사용하여 훈련마다 기록을 저장한다면, 더 객관적이고 의미 있는 보고서를 작성할 수 있을 것으로 기대됩니다.
- 모델을 쪼개고 GPU를 직렬로 연결하여 파이프 라인 방식으로 연속으로 처리하는 방법을 사용한다면, 대용량 모델을 처리할 수 있을 것으로 기대됩니다.
- 기획 단계에서 목표와 제한을 뚜렷하게 정하고 Test Driven Development를 통해 프로젝트를 진행하는 방법으로 확신을 가지고 진행할 수 있을 것으로 기대됩니다.
- 국립국어원에서 제공하는 NIKLex를 통해 WordNet을 구축하고 데이터 증강을 시도 했다면 데이터에 적용하고 더 좋은 성능을 보여줄 수 있을 것으로 기대됩니다.

7. Reference

optuna tutorial

<u>optuna 공식문서</u>