Determinants Group 12

Catterwell, A. Smith, M. Wang, R. Watson, K.

University of Edinburgh

March 31, 2019

Overview

- Why calculate determinants?
 - Invertibility of matrices
 - Cramers Rule
 - Eigenvalues and Eigenvectors
- Using LU decomposition to compute determinants
 - What is LU decomposition?
 - Is there always an LU decomposition?
 - PLU decomposition
 - How it helps us compute determinants
 - Runtime analysis
- 3 Other algorithms for computing determinants
 - Leibniz formula
 - Laplace expansion
 - Gaussian elimination
 - Bareiss algorithm
 - Bird's algorithm
- 4 Epilogue

Invertbililty of matrices

Theorem

An $n \times n$ square matrix A is invertible if and only if

$$\det(A) \neq 0$$

j++i

Eigenvalues and Eigenvectors

Definition

The Eigenvalues of a matrix A are the roots of the characteristic polynomial as defined

$$\chi_A = \det(A - \lambda I) = \mathbf{0}$$

What is LU decomposition?

Definition

An LU decomposition of an invertible matrix A is a factorization

$$A = LU$$

where L and U are lower and upper triangular matrices, respectively.

Example

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

This matrix is invertible but has no LU decomposition.

What can we do?

PLU decomposition

Partial pivoting.

We can pivot the matrix into the correct form by multiplication with an orthogonal, permutation matrix P (representing a permutation σ_P) which gives us the PLU decomposition:

$$\sigma_P(A) = PA = LU$$

This technique works on any invertible matrix.

How it helps us compute determinants

Now that we have PA = LU, it follows that

$$A = P^{-1}LU$$
$$= P^{T}LU$$

since $P^{-1} = P^T$ by the definition of orthogonal matrices.

How it helps us compute determinants (cont.)

Now that we have $A = P^T L U$, it follows that

$$det(A) = det(P^T L U)$$

$$= det(P^T) \cdot det(L) \cdot det(U)$$
 (Thm. 4.4.1)
$$= det(P) \cdot det(L) \cdot det(U)$$
 (Lem. 4.4.4)

Given that

- the determinant of a triangular matrix is the product of its diagonal elements
- the determinant of a permutation matrix (P) is the parity of the permutation it represents (σ_P)

it follows that

$$\det(A) = \operatorname{sgn}(\sigma_P) \cdot \left(\prod_{i=1}^n l_{i,i}\right) \left(\prod_{i=1}^n u_{i,i}\right)$$

- The PLU decomposition can be computed in $\mathcal{O}(n^3)$ time.
- The determinants of the triangular matrices computed in $\mathcal{O}(n)$ time.
- The parity of the permutation matrix in $\mathcal{O}(n^2)$ time.

Therefore the total runtime for computing the determinant using the method is

$$\mathcal{O}(n^3) + \mathcal{O}(n^2) + \mathcal{O}(n) = \mathcal{O}(n^3)$$

What are some other methods to compute determinants?

Leibniz formula

Definition

The Leibniz formula defines the determinant of $A \in \mathbb{M}(n)$ as

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \left(\operatorname{sgn}(\sigma) \cdot \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

where \mathfrak{S}_n is the set of permutations length n.

Computing the determinant using this method is slow with runtime $\mathcal{O}((n+1)!)$.

$\mathsf{Theorem}$

The formula for the (1st row) Laplace expansion of $A \in \mathbb{M}(n)$ is given as:

$$\det(A) = \sum_{j=1}^n \mathsf{a}_{1,j} \; \mathsf{C}_{1,j}$$

where $C_{i,j}$ is the (i,j) cofactor of A.

Its runtime complexity of $\mathcal{O}(n!)$ is poor.

Laplace expansion vs Leibniz formula

Runtimes are similar — both run in exponential time.

Laplace expansion vs LU decomposition

The difference between the exponential and polynomial-time function is clear.

 Any invertible square matrix can be transformed into echelon form by performing Gaussian elimination, which takes $\mathcal{O}(n^3)$ time.

So how does it compare to LU decomposition?

Gaussian elimination vs LU decomposition

The difference in runtimes is small (a constant factor).

Gaussian elimination (cont.)

Conventional Gaussian elimination requires division. This has two problems:

- Over $\mathbb{M}(n; \mathbb{R})$ solutions maybe inexact, so precision is lost.
- Division is not a ring operation, so would not necessarily work on matrices over a ring.

This is can be addressed by using...

Bareiss algorithm

- Addresses the issue of precision-loss by performing integer-preserving Gaussian elimination on integer matrices.
- The runtime complexity is $\mathcal{O}(n^3)$ which is the same as conventional Gaussian Elimination, whilst preserving exactness.

Bird's algorithm

Define $\mu: \mathbb{M}(n) \to \mathbb{M}(n)$:

$$\mu(X) = \begin{pmatrix} \mu_{2,2} - x_{2,2} & x_{1,2} & \cdots & x_{1,n-1} & x_{1,n} \\ 0 & \mu_{3,3} - x_{3,3} & \cdots & x_{2,n-1} & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \mu_{n,n} - x_{n,n} & x_{n-1,n} \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

and
$$F_A: \mathbb{M}(n) \to \mathbb{M}(n)$$
, with $A \in \mathbb{M}(n)$

$$F_A(X) = \mu(X) \cdot A$$

$$F_A^2(X) = \mu(F_A(X)) \cdot A$$

$$F_A^n(X) = \mu(F_A^{n-1}(X)) \cdot A$$

Bird's Theorem

$$\begin{pmatrix} d & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{pmatrix} \qquad \begin{pmatrix} \det(A) & \operatorname{odd} n \end{pmatrix}$$

$$F_A^{n-1}(A) = \begin{pmatrix} d & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ with } d = \begin{cases} \det(A) & \text{odd } n \\ -\det(A) & \text{even } n \end{cases}$$

- Enables the *division-free* computation of determinants in $\mathcal{O}(n \cdot M(n))$ where M(n) is the runtime complexity of the matrix multiplication algorithm used.
- If the conventional $\mathcal{O}(n^3)$ matrix multiplication algorithm is used, then Bird's algorithm will run in $\mathcal{O}(n^4)$ time.
- But this can be reduced to $\mathcal{O}(n^{3.8})$ by using the *Strassen* algorithm for matrix multiplication.

Bird's runtimes increase noticeably more rapidly than LU decomposition, but it's still polynomial.

Summary of determinant algorithms

Algorithm	Runtime	Exact?
Leibniz formula	$\mathcal{O}((n+1)!)$	Yes
Laplace expansion	$\mathcal{O}(n!)$	Yes
LU decomposition	$\mathcal{O}(n^3)$	No
Gaussian elimination	$\mathcal{O}(n^3)$	No
Bareiss algorithm	$\mathcal{O}(n^3)$	Yes
Bird's algorithm	$\mathcal{O}(n^{3.8})$	Yes

How fast is Maple's built-in determinant function?

Very. Maple's optimisation means a fair comparison cannot be made.

Thanks!