INFORMATION CHIFFRÉE

Résumé

Le calcul avec pourcentages est un outil incontournable au collège. Il permet notamment de représenter une proportion dans une population. Nous nous y intéressons à nouveau pour ré-introduire les taux d'évolution ainsi que les évolutions successives.

1 Proportion

Définition | Proportion

On appelle **proportion** d'une sous-population d'effectif n au sein d'une population d'effectif total n_{total} le rapport p:

$$p = \frac{n}{n_{\text{total}}}.$$

Remarque Ce rapport peut être exprimé par un **nombre décimal** compris entre 0 et 1 ou un **pourcentage** entre 0% et 100%.

Exemple Dans une classe de 35 élèves, 7 élèves aiment la glace au chocolat. La souspopulation des élèves aimant la glace au chocolat a une proportion de $\frac{7}{35} = \frac{1}{5} = 0.2$ ce qui représente 20% de la classe.

Propriété | Proportions successives

Soient une population E et une sous-population A de proportion p_A . Si B est une sous-population de A de proportion p_B dans A, alors sa proportion p dans E est :

$$p = p_A \times p_B$$
.

Démonstration. Notons n_E , n_A et n_B les effectifs respectifs de chaque population.

$$p_A \times p_B = \frac{n_A}{n_E} \times \frac{n_B}{n_A} = \frac{n_B}{n_E} = p.$$

Exemple 45% des élèves d'un lycée sont inscrits à l'association sportive et 25% d'entre eux pratiquent du badminton.

Les joueurs de badminton représentent une proportion globale de $0.45 \times 0.25 = 0.1125$, c'est-à-dire, 11.25% des élèves du lycée.

2 Évolution

Dans toute la suite, une valeur de départ V_d évolue vers une valeur d'arrivée V_a .

Définitions | Variations

Pour quantifier cette évolution, on peut calculer :

- ▶ la variation absolue : le nombre $V_a V_d$;
- ▶ la **variation relative** ou **taux d'évolution** : la proportion $t = \frac{V_a V_d}{V_d}$.

Exemple Un article à $8 \in$ augmente de $4 \in$. Ici, $V_d = 8$ et $V_a = 12$.

La variation absolue est égale à $V_a - V_d = 12 - 8 = 4$ mais le taux d'évolution est égal à :

$$t = \frac{V_a - V_d}{V_d} = \frac{12 - 8}{8} = \frac{4}{8} = 0,50.$$

C'est cohérent, l'évolution est bien une augmentation du prix de 50%.

Propriétés

- ► Augmenter de x% revient à multiplier par le coefficient $CM = 1 + \frac{x}{100}$.
- ▶ Diminuer de *x*% revient à multiplier par le coefficient $CM = 1 \frac{x}{100}$.

Définitions | Évolutions successives

Lors de n évolutions successives à des taux t_1, t_2, \ldots, t_n entre une valeur initiale V_0 et une valeur finale V_n , on appelle **taux d'évolution global** le taux noté t_g , qu'il faut appliquer à la valeur V_0 pour obtenir la valeur V_n . On a, de même, CM_g : le **coefficient multiplicateur global**.

Propriétés

- $CM_g = CM_1 \times CM_2 \times \cdots \times CM_n$
- $t_g = CM_g 1$