Recap: Robust MPC

Robust MPC solvers the following Optimal Control problem as follows:

$$J_0(\bar{x}_0) = \min_{X,\,U,\,Z} \quad \hat{J}_N(\bar{x}_N) + \sum_{i=0}^{N-1} \underbrace{x_i^\top Q \bar{x}_i} + u_i^\top R u_i \\ \text{s.t.} \quad \bar{x}_{i+1} = A \bar{x}_i + B u_i, \quad \forall i \in \{0,1,2,\ldots\} \\ \underbrace{\bar{x}_i \in \mathcal{X} \ominus \mathcal{R}_i, \quad \forall i \in \{1,2,\ldots\}}_{\substack{U_i = K \bar{x}_i + z_i, \\ U_i \in \mathcal{U} \ominus (K \circ \mathcal{R}_k), \quad \forall i \in \{0,1,2,\ldots\}}_{\substack{U_i \in \{0,1,2,\ldots\}\\ X_0 = \bar{x}_0\\ \hline x_N \in \mathcal{X}_f \ominus \mathcal{R}_N \\ } \quad \text{Robust Invariant Set}$$

Adding Learning to Robust MPC

- We will now add a "learning-based" component to our model:
 - (1) The goal is to "reduce" the conservativeness of our robust formulation
 - (2) We can use Machine Learning to improve our dynamics model

Let's restart by recalling the linear dynamics:

$$x_{k+1} = Ax_k + Bu_k + w_k$$

- We will add some non-linear function approximation $h(x_k, u_k)$ in order to approximate w_k
 - That way we can try to "predict" the effect of uncertainty before it is manifested
- Then the dynamics would then become:

$$x_{k+1} = Ax_k + Bu_k + h(x_k, u_k)$$

Learning Dynamics

• Another interpretation for $h(x_k, u_k)$ is to capture the "complex" components of the system dynamics:

$$x_{k+1} - Ax_k + Bu_k = w_k$$
 (linear) model mismatch

- So $h(x_k, u_k)$ is an approximation of this mismatch.
- In this case, we say, the linear model is the **nominal model**:

$$\bar{x}_{k+1} = A\bar{x}_k + Bu_k$$

• In many applications the function $h(x_k, u_k)$ is also called the **Oracle Function**.

• As always, the LBMPC solves a N-step lookahead in a receding horizon fashion:

$$J_{0}(\bar{x}_{0}) = \min_{X,U,Z} \quad \hat{J}_{N}(\tilde{x}_{N}) + \sum_{i=0}^{N-1} \tilde{x}_{i}^{\top} Q \tilde{x}_{i} + u_{i}^{\top} R u_{i}$$
s.t.
$$\tilde{x}_{i+1} = A \tilde{x}_{i} + B u_{i} + h(\tilde{x}_{i}, u_{i}), \quad \forall i \in \{0, 1, 2, ...\}$$

$$\bar{x}_{i+1} = A \bar{x}_{i} + B u_{i}, \quad \forall i \in \{0, 1, 2, ...\}$$

$$u_{i} = K \bar{x}_{i} + z_{i}, \quad \forall i \in \{0, 1, 2, ...\}$$

$$\bar{x}_{i} \in \mathcal{X} \ominus \mathcal{R}_{i}, u_{i} \in \mathcal{U} \ominus (K \circ \mathcal{R}_{k}), \quad \forall i \in \{0, 1, 2, ...\}$$

$$x_{0} = \bar{x}_{0}$$

$$\bar{x}_{N} \in \mathcal{X}_{f} \ominus \mathcal{R}_{N}$$

Note that the key distinction here is that we keep two models:

Nominal Model

$$\bar{x}_{k+1} = A\bar{x}_k + Bu_k$$

- Enforce robust constraints.
- So, for any possible mismatch, the true system remains feasible:

$$x_{k+1} = A\bar{x}_k + Bu_k + w_k \in \mathcal{X}$$

Learned Model

$$\tilde{x}_{k+1} = A\tilde{x}_k + Bu_k + h(\tilde{x}_k, u_k)$$

- No constraints enforced on the learned model.
- The objective function is based on the learned model: $_{N=1}$

$$\hat{J}_N(\tilde{x}_N) + \sum_{i=0}^{N-1} \tilde{x}_i^\top Q \tilde{x}_i + u_i^\top R u_i$$

LBMPC Properties

- It turns out that we can still ensure the two main properties, even with the Oracle:
 - (1) Recursive Feasibility
 - (2) (Robust) Asymptotic Stability

- We need that \mathcal{X}_f to be a robust control invariant set, associated with the LQR control law.
- Our terminal cost function approximation will be given as before:

$$\hat{J}_N(\bar{x}_N) = \bar{x}_N^\top P \bar{x}_N$$

• Lastly the function $h_k(x_k, u_k)$ needs to be continuous and we needs to satisfy:

$$h(x_k,u_k)\in\mathcal{W}$$
 So the approximation needs to bounded and be contained into the uncertainty polytope

LBMPC Properties

- The proofs follow the lines we covered last lecture:
 - Check the paper: "Provably Safe and Robust Learning-Based Model Predictive Control, Aswani et al. 2012" for the full proofs.

- Instead, we will focus our analyzes to designing an appropriate oracle function.
- For the MPC results to hold the function $h(x_k, u_k)$ needs to be:
 - (1) Continuous
 - (2) Bounded
- We will add (3) differentiable to the requirements (although it is not needed for the proofs)
- The reason to add differentiable is to allow numerical solvers to take gradients in order to solve the optimal control problem.

Parametric Oracles

- The first type of Oracles are the typical parametric functions:
 - The function $h(x_k, u_k)$ is defined by a parameter vector θ_k
- Suppose we were able to run the system in a simulator, applying some control sequence and obtaining the following trajectory:

$$(x_0, u_0, x_1, u_1, ..., x_{N-1}, u_{N-1}, x_N)$$

• Then we obtaining our oracle function, by solving the typical Regression Problem:

$$\theta^* \in \arg\min_{\theta} \left\{ \sum_{i=0}^{N-1} (Y_i - h(x_i, u_i; \theta))^2 \right\}$$

Where:

$$Y_i = x_{i+1} - (Ax_i + Bu_i)$$

Example: Linear Oracles

The oracle function can be itself a linear function:

$$h(x_k, u_k; \theta_k) = F_k x_k + G_k u_k$$

• In this case, the oracle has a nice interpretation as being a correction to the dynamics

The learned model then becomes:

$$\tilde{x}_{k+1} = (A + F_k)\tilde{x}_k + (B + G_k)u_k$$

• Where $\theta_k = (F_k, G_k)$. So we can see that oracle corrects the linear nominal model by essentially "updating" the matrices A and B.

Example: DNN's

• The oracle function can be given by a Deep Neural Network (DNN):

- And the DNN would be training in a similar fashion as we saw for model-free methods.
- Hence, LBMPC algorithm would alternate between two steps:
 - (1) Prediction step: updating the oracle
 - (2) Feedback step: Solving the optimal control problem

Non-Parametric Oracles

• The second type of Oracles are the ones that do not rely on parameters.

One of such oracles is a kernel-based oracle called the Nadararya-Watson Oracle:

$$h(x_k, u_k) = \frac{\sum_{i=0}^{N-1} (x_{i+1} - Ax_i - Bu_i) \quad \mathcal{K}\left(h^{-2} \left\| \begin{bmatrix} x_k \\ u_k \end{bmatrix} - \begin{bmatrix} x_i \\ u_i \end{bmatrix} \right\|^2\right)}{\lambda + \sum_{i=0}^{N-1} \mathcal{K}\left(h^{-2} \left\| \begin{bmatrix} x_k \\ u_k \end{bmatrix} - \begin{bmatrix} x_i \\ u_i \end{bmatrix} \right\|^2\right)}$$

• Where $\mathcal{K}(\cdot)$ is a kernel function, and λ is some regularization hyper-parameter

Example: Kernel-based Oracles

• The idea of using kernels in LBMPC is very nice, because it does not assuming any prior form for the un-modelled dynamics.

So the oracle essentially computes an withed average based on the kernels:

$$h(x_k, u_k) = \frac{\sum_{i=0}^{N-1} Y_i \mathcal{K}(z_i)}{\lambda + \sum_{i=0}^{N-1} \mathcal{K}(z_i)}$$

Where

$$Y_i = x_{i+1} - (Ax_i + Bu_i) \qquad \mathcal{K}(z_i) = \mathcal{K}\left(h^{-2} \left\| \begin{bmatrix} x_k \\ u_k \end{bmatrix} - \begin{bmatrix} x_i \\ u_i \end{bmatrix} \right\|^2\right)$$

Example: Kernel-based Oracles

• For example we can use Gaussian Kernels:

$$\mathcal{K}(z_i) = \frac{1}{\sqrt{2\pi}} \exp\left(-\left\| \begin{bmatrix} x_k \\ u_k \end{bmatrix} - \begin{bmatrix} x_i \\ u_i \end{bmatrix} \right\|^2\right)$$

• We can represent this weighted-average by a figure:

We can represent the LBMPC in the following scheme:

Example of LBMPC: Quadrotor Flight Control

• We illustrate an application of LBMPC with a Ball-Catching experiment by a quadrotor:

- The quadrotor drone can be modelled a linear system where the states are 3D-positition, their time-derivatives, the rotation angles and their derivatives.
 - (x_N, x_E, x_D) are the positions
 - (ψ, θ, ϕ) are the rotation angles (yaw-pitch-roll).
 - The rotation ψ angle is held fix, for reference.
- It is common to work with two sets of reference frames:
 - (1) body-fixed frame
 - (2) inertial frame

- For ease of presentation, let's abstract the reference frames and just focus on the resulting linear system.
 - For a full description of the underlying physics we refer to: "Learning-Based Model Predictive Control on a Quadrotor: Onboard Implementation and Experimental Results. Bouffard et al."

• The linear dynamics are obtained by discretization of the continuous system, with steps $\Delta t = 0.025s$. And are given as follows, each horizontal axis:

$$x_{k+1} = Ax_k + Bu_k = \begin{bmatrix} 1 & 0.025 & 0.003 & 0 \\ 0 & 1 & 0.245 & 0 \\ 0 & 0 & 0.797 & 0.023 \\ 0 & 0 & -1.798 & 0.977 \end{bmatrix} x_k + \begin{bmatrix} 0 \\ 0 \\ 0.01 \\ 0.9921 \end{bmatrix} u_k$$

• For the vertical axis there is the effect the effect of gravity which changes the system matrices. For that component the linear dynamic is given by:

$$x_{k+1} = Ax_k + Bu_k = \begin{bmatrix} 1 & 0.025 \\ 0 & 1 \end{bmatrix} x_k + c_T \begin{bmatrix} 0.0003 \\ 0.025 \end{bmatrix} u_k + b_z$$

• The full system is defined by the concatenation of the three axis:

$$A = \text{blkdiag}(A, A, A_z) \in \mathbb{R}^{10 \times 10}$$

$$B = \text{blkdiag}(B, B, B_z) \in \mathbb{R}^{10 \times 3}$$

$$b = \begin{bmatrix} 0 & 0 & b_z \end{bmatrix}^{\top}$$

• And the **nominal system** evolves as:

$$\bar{x}_{k+1} = A\bar{x}_k + Bu_k + b$$

• The control inputs u_k are the thrust executed along each axis.

• Since we are using a linear model to approximate the flight dynamics we will add a linear oracle. The oracle will be time-varying in order to correct for mismatches in the linear model:

$$h(x_k, u_k) = Fx_k + Gu_k + v$$

• We can interpret this as (A, B) being the linearization (e.g.: derivate) information along some reference pair (x,u). And (F,G) are correction when we move from (x,u) to (x_k,u_k) .

Then the learned model becomes:

$$\tilde{x}_{k+1} = (A+F)\tilde{x}_k + (B+G)u_k + b + v$$

Ball in free flight model

- The ball model is taken to represent the dynamics of ball being thrown in the air by a human.
- The ball falls dues to gravity and spins, due to the human throwing it.

• We consider a linear model as well that incorporates air drag suffered by the ball while it is flight:

$$x_{k+1} = \text{blkdiag}(A_b, A_b, A_b)x_k + b_F$$

- Where b_F is an empirical offset vector that is dependent on air resistance
- And A_b is a double integrator, discretized for each axis: $A_b = \begin{vmatrix} 1 & 0.025 \\ 0 & 1 \end{vmatrix}$

Training the Oracle

• In the practical experiments, the authors used onboard sensors to estimate the quadrotor and the ball positions.

- That means that the state x_k is not fully observed.
- In particular, the sensors are only able to estimate the actual positions and angles, with the associate derivatives not being observable.

So we can write the sensor information as:

$$y_k = Cx_k + \epsilon$$

• Where ϵ is some white noise vector.

Training the Oracle

• In a practical situation such as this. We need to resort to system identification techniques in order to infer the state values from the observations.

- One such technique is the Extended Kalman Filter (EKF).
 - The reference paper implements this in their practical experiments.

- We have not covered this topic in the course. So for this presentation let's suppose we do have the full system state observation.
 - That is, we are able to fully compute the nominal state \bar{x}_k .

• Then in this case, we can estimate the oracle parameters via the typical regression step:

Training the Oracle

• The regression step is then as follows:

$$\theta^* \in \arg\min_{\theta} \left\{ \sum_{i=0}^{N-1} (Y_i - h(x_i, u_i; \theta))^2 \right\}$$

• Where $\theta = (F, G, v)$ and:

$$Y_i = x_{i+1} - (Ax_i + Bu_i)$$

- Note that as the system progress we keep adding more and more "data points" to this regression problem.
 - We can let the quadrotor fly in many simulation runs in order to collect a sizeable data set of transitions (x_i, u_i, x_{i+1}) .

LBMPC for the quadrotor

The LBMPC problem for the quadrotor is as follows:

$$J_{0}(\bar{x}_{0}, \theta_{0}) = \min_{X, U, Z} (\tilde{x}_{N} - x_{s})^{\top} P(\tilde{x}_{N} - x_{s}) + \sum_{i=0}^{N-1} (\tilde{x}_{i} - x_{s})^{\top} Q(\tilde{x}_{i} - x_{s}) + (u_{i} - u_{s})^{\top} R(u_{i} - u_{s})$$
s.t. $\tilde{x}_{i+1} = (A + F_{0})\tilde{x}_{i} + (B + G_{0})u_{i} + b + v_{0}, \quad \forall i \in \{0, 1, 2, ...\}$

$$\bar{x}_{i+1} = A\bar{x}_{i} + Bu_{i}, \quad \forall i \in \{0, 1, 2, ...\}$$

$$u_{i} = K\bar{x}_{i} + z_{i}, \quad \forall i \in \{0, 1, 2, ...\}$$

$$\bar{x}_{i} \in \mathcal{X} \ominus \mathcal{R}_{i}, u_{i} \in \mathcal{U} \ominus (K \circ \mathcal{R}_{k}), \quad \forall i \in \{0, 1, 2, ...\}$$

$$x_{0} = \bar{x}_{0}$$

$$\bar{x}_{N} \in \mathcal{X}_{f} \ominus \mathcal{R}_{N}$$

• Where as usual, \mathcal{X}_f is a robust control-invariant set associated with the LQR version of the problem. And the constraints are polyhedral sets

LBMPC for the quadrotor

- The state-control pair (x_s, u_s) used as a reference trajectory are the desired set-point of the quadrotor:
 - x_s is the predicted landing location for the ball.
 - u_s is the control that keeps the quadrotor stationary at x_s

• We can compute u_s by solving the following system of equations:

$$x_s = (A + F)x_s + (B + G)u_s + b + v_k$$

- Note that u_s may not be a feasible control. It does not need to be, it is only taken as a reference.
- We use the learned model in order to obtain the set-point reference.

Experiments with LBMPC

- The authors implemented the LBMPC algorithm in an onboard computer:
 - 1.6GHz Intel Atom N260 CPU
 - 1 GB of Ram
 - WiFi communications to Vicon MX motion capture system to estimate vehicle and ball positions
- The planning horizon for the MPC is N = 15.
- Commands are issued at the rate of 40Hz.

• The optimal control problem faced by the LBMPC at every planning stage is a Quadratic Program (so quadratic objective, linear constraints).

Experiments with LBMPC

- There were two main sets of experiments:
 - (1) Flight close to the ground
 - (2) Flight to an alternating set-point reference

- The first experiment is interesting because it is designed to show how the oracle can "learn" the aerodynamical effect that ground has on the quadrotor:
 - If the vehicle hover very close to the ground, it subject to additional lift due to the air being "reflected" back to the vehicle.
 - It is very important effect when considering "soft landing":
 - Landing smoothly without turning off the engines.

Ground effects experiment

• The results can be summarized as:

(Change in one of the oracle components)

(smoother stabilizing controller)

(figure taken from Bouffard, et al)

Experiments with LBMPC

- The second experiment involves ball catching.
- The (ping-pong sized) ball is thrown high in the air.

• The quadrotor need to catch it, slightly above ground (50cm).

• This is a challenging task, since the quadrotor has about 1 second to predict where the ball is going to land and to make the control decisions.

• The quadrotor continually updates the set point reference of the predicted landing point

Ball-catching experiment

• The following illustrate one instance of this experiment:

(figure taken from Bouffard, et al)

 And the results are also available in vide: (https://www.youtube.com/watch?v=dl ZFSvLXIU)

- There is a technical detail about the LBMPC problem that is worth mentioning.
- Let's restate the problem again:

$$J_{0}(\bar{x}_{0}, \theta^{(0)}) = \min_{X,U,Z} \quad \hat{J}_{N}(\tilde{x}_{N}) + \sum_{i=0}^{N-1} \tilde{x}_{i}^{\top} Q \tilde{x}_{i} + u_{i}^{\top} R u_{i}$$
s.t. $\tilde{x}_{i+1} = A \tilde{x}_{i} + B u_{i} + h(\tilde{x}_{i}, u_{i}; \theta^{(0)}), \quad \forall i \in \{0, 1, 2, ...\}$

$$\bar{x}_{i+1} = A \bar{x}_{i} + B u_{i}, \quad \forall i \in \{0, 1, 2, ...\}$$

$$u_{i} = K \bar{x}_{i} + z_{i}, \quad \forall i \in \{0, 1, 2, ...\}$$

$$\bar{x}_{i} \in \mathcal{X} \ominus \mathcal{R}_{i}, u_{i} \in \mathcal{U} \ominus (K \circ \mathcal{R}_{k}), \quad \forall i \in \{0, 1, 2, ...\}$$

$$x_{0} = \bar{x}_{0}$$

$$\bar{x}_{N} \in \mathcal{X}_{f} \ominus \mathcal{R}_{N}$$

• Note that the optimization problem depends not only on the initial state \bar{x}_0 but also on the oracle parameter vector θ_0 .

• In an abstract representation, we can write that problem as follows:

$$J_0(\bar{x}_0, \theta^{(0)}) = \min_{X, U, Z} F(X, U, Z)$$

s.t. $(X, U, Z) \in G(\theta_0, \bar{x}_0)$

• Where we highlight that the feasible region depends on θ_0 .

• This is something we have encountered before, but never really addressed.

• Since our MPC algorithm is a **model-based** algorithm, one question to ask is whether we are able to learn in fact the true dynamics, if we use a "rich" enough oracle function.

• Namely suppose there exist a function $h^*(x, u)$ such that:

$$x_{i+1} = Ax_i + Bu_i + h^*(x_i, u_i)$$

• And let $J^*(\bar{x})$ be the Optimal value function if we solved the Optimal Control problem with h^* and starting from \bar{x} . Is it true that $J(\bar{x}, \theta^{(t)}) \to J^*(\bar{x})$, as $t \to \infty$?

Convergence of Approximate Optimization

Recall the simple least squares problem where we wish to solve the following problem:

$$\theta^* = \arg\min_{\theta} \mathbb{E}[(y - x^{\top}\theta)^2]$$

We typically cannot solve this problem due to the expectation. And we resort to solve, instead, a Sample Average Approximation (SAA):

$$\hat{\theta}_N = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} (y_i - x_i^{\top} \theta)^2$$

- We are concerned if $\hat{\theta}_N \to \theta^*$.
- For this least-squares problem, this is true due to the Uniform Law of Large Numbers.

Convergence of Approximate Optimization

- But in our LBMPC, we are solving a constrained optimization problem that changes over time, due to both initial condition and parameter vector.
- So it is not trivial that the Law of Large Numbers would hold in this case.
- Let $F_n(x)$ be some function at stage n, with parameter vector θ_n .

• We say that a function F_n epi-converges to another function F if and only if, at each point x:

$$\lim \inf_{n} F_n(x_n) \ge f(x), \forall x_n \to x$$
$$\lim \sup_{n} F_n(x_n) \le f(x), \exists x_n \to x$$

Convergence of Approximate Optimization

- This definition may be not intuitive. An intuitive explanation is say that F_n epi-converges to F if the epigraph of F_n converges to F.
- In addition if we minimize both functions over a bounded non-empty set X, it follows that:

$$V_n \to V$$

$$V_n = \min_{x \in X} \{F_n(x)\} \qquad V = \min_{x \in X} \{F(x)\}$$

- And each approximated problem: $V_n = \min_{x \in X} \{F_n(x)\}$
- Is feasible and form a bounded sequence where the set of optimal solutions will also converge. In the sense that:

$$\limsup(\arg\min F_n(x)) \subseteq \arg\min f(x)$$

Convergence of LBMPC: Overview

- It turns out that we can apply this notion of epi-convergence to the LBMPC and prove that
- Using certain types of oracles such as:
 - Linear Oracles
 - Nadaraya-Watson (kernel-based) oracles
- We will converge, in the sense that the oracle will estimate accurately the model mismatches between reality and the nominal model.

• These proofs are a very technical and require a lot of groundwork.

• We present this very high-level view just to highlight the theoretical guarantees that LBMPC enjoy when employing function approximations.