SIDH/Isogeny Signature Function Contracts

Robert Gorrie - McMaster University - December 5, 2017

1 Key Exchange

1.1 Ephemeral Key Generation – Alice

Key generation for Alice		
Location	Efficient Algo's Appendix A	
Input	$x_{P_B}, x_{P_A}, y_{P_A},$ $SK_{Alice} = m_A \cdot l_A$	
Output	$PK_{Alice} = [x_{\Phi_A}(P_B), x_{\Phi_A}(Q_B), x_{\Phi_A}(Q_B - P_B)]$	

1.2 Ephemeral Key Generation – Bob

Key generation for Bob		
Location	Efficient Algo's Appendix A	
Input	$x_{P_A}, x_{P_B}, y_{P_B},$ $SK_{Bob} = m_B \cdot l_B$	
Output	$PK_{Bob} = [x_{\Phi_B}(P_A), x_{\Phi_B}(Q_A), x_{\Phi_B}(Q_A - P_A)]$	

1.3 Ephemeral Secret Agreement – Alice

Shared secret algorithm for Alice

Location	Efficient Algo's Appendix A	
Input	$PK_{Bob} = [x_{\Phi_B}(P_A), x_{\Phi_B}(Q_A), x_{\Phi_B}(Q_A - P_A)]$ $SK_{Alice} = m_A \cdot l_A$	
Output	A shared secret j-invariant of an elliptic curve	

1.4 Ephemeral Secret Agreement – Bob

Shared secret algorithm for Bob

Location	Efficient Algo's Appendix A
Input	$PK_{Alice} = [x_{\Phi_A}(P_B), x_{\Phi_A}(Q_B), x_{\Phi_A}(Q_B - P_B)]$ $SK_{Bob} = m_B \cdot l_B$
Output	A shared secret j-invariant of an elliptic curve

EphemeralKeyGeneration_A

Location	kex.c	
Input	unsigned char* PrivateKeyA, unsigned char* PublicKeyA, PCurveIsogenyStruct CurveIsogeny invBatch* batch	
Output	publickey_t PublicKeyA, digit_t PrivateKeyA	

$Ephemeral Key Generation_B$

Location	kex.c	
Input	unsigned char* PrivateKeyB, unsigned char* PublicKeyB, PCurveIsogenyStruct CurveIsogeny, invBatch* batch	
Output	publickey_t PublicKeyB, digit_t PrivateKeyB	

$Ephemeral Secret Agreement_A$

Location	kex.c	
Input	const unsigned char* PrivateKeyA, const unsigned char* PublicKeyB, unsigned char* SharedSecretA, PCurveIsogenyStruct CurveIsogeny, invBatch* batch	
Output	f2elm_t SharedSecretA,	

$EphemeralSecretAgreement_B$

Location	kex.c
Input	const unsigned char* PrivateKeyB, const unsigned char* PublicKeyA, unsigned char* SharedSecretB, PCurveIsogenyStruct CurveIsogeny, invBatch* batch
Output	f2elm_t SharedSecretB,

2 Signature Scheme

2.1 Keygen

Keygen		Yoo et. al section 4
	Input	security parameter λ
		sk = S,
		$pk = (E/\langle S \rangle, \Phi(P_B), \Phi(Q_B))$

KeyGeneration_A

Location kex.c

Input unsigned char* PrivateKeyB,
unsigned char* PublicKeyB,
PCurveIsogenyStruct CurveIsogeny,
invBatch* batch

Output publickey_t PublicKeyB,
digit_t PrivateKeyB

Location	KeyGeneration_B kex.c	
Input unsigned char* PrivateKeyA unsigned char* PublicKeyA, PCurveIsogenyStruct CurveI invBatch* batch		
Output	publickey_t PublicKeyA, digit_t PrivateKeyA	

2.2 Sign

Sign		
Location	Yoo et. al section 4	
Input	$sk = S$ with order $\ell_A^{e_A}$,	
	message m	
Output	$\sigma = ((\mathtt{com}_i)_i, (\mathtt{ch}_{i,j})_{i,j}, (h_{i,j})_{i,j}, ((\mathtt{resp})[J_i])$	

	$isogny_sign$	
Location	SIDH_signature.c	
Input PCurveIsogenyStaticData CurveIsoger unsigned char* PrivateKey, unsigned char* PublicKey, struct Signature* sig		
Output	Signature* sig	

2.3 Verify

	Sign
Location	Yoo et. al ection 4
Input	$\begin{aligned} \operatorname{pk} &= (E/\langle S \rangle, \Phi(P_B), \Phi(Q_B)), \\ \operatorname{message} & m, \\ \sigma &= ((\operatorname{com}_i)_i, (\operatorname{ch}_{i,j})_{i,j}, (h_{i,j})_{i,j}, ((\operatorname{resp})[J_i]) \end{aligned}$
Output	true or false

isogny_verify		
Location	SIDH_signature.c	
Input	PCurveIsogenyStaticData CurveIsogenyData, unsigned char* PublicKey, struct Signature* sig	
Output	CRYPTO_STATUS Status	

3 Elliptic Curve Operations

4 Field Operations

5 Type Definitions & Structs

alias	definition
digit_t	uint64_t
$felm_t$	$digit_t[NWORDS_FIELD]$
$f2elm_t$	$felm_t[2]$
$\underline{\text{publickey_t}}$	$f2elm_t[3]$

struct	contents	description
signature	unsigned char* Commitments1[NUM_ROUNDS] unsigned char* Commitments2[NUM_ROUNDS] unsigned char* HashResp unsigned char* Randoms[NUM_RUNDS] point_proj* psiS[NUM_ROUNDS]	
PCurveIsogenyStaticData	CurveIsogeny_ID CurveIsogeny unsigned int pwordbits unsigned int owordbits unsigned int pbits digit_t* prime digit_t* A digit_t* C unsigned int oBbits unsigned int eB digit_t* Border digit_t* Border digit_t* Border digit_t* PA digit_t* PB unsigned int BigMont_A24 digit_t* BigMont_order digit_t* Montgomery_R2 digit_t* Montgomery_pp digit_t* Montgomery_one RandomBytes RandomBytesFunction	