THERMODYNAMICS: HEAT AND TEMPERATURE

1. Introduction to Thermodynamics

- * Thermodynamics is a fundamental branch of physics concerned with heat and its relation to other forms of energy and work.
- * It shifts focus from the mechanics of individual particles to the macroscopic properties of systems, particularly those involving energy transfer as heat.
- * Key concepts include temperature, heat, energy, and entropy.

2. Thermal Equilibrium

- * **Definition:** A system is in thermal equilibrium when its macroscopic properties, such as temperature, pressure, and volume, cease to change over time, provided the system is isolated from its surroundings.
- * **Macroscopic vs. Microscopic:**
- * At the macroscopic level, a system in equilibrium appears static, with constant measurable properties.
- * At the microscopic level, constituent atoms and molecules are always in motion, possessing well-defined positions and velocities. Thermal equilibrium refers to the average, observable behavior, not the instantaneous state of every particle.
- * **Examples:**
- * An isolated cup of hot water or cold water, given sufficient time, will reach a state of thermal equilibrium, maintaining a constant temperature.
- * When hot and cold water are mixed, the system is initially not in equilibrium, as different parts have different temperatures. After a period of transition and mixing, the mixture will reach a new, uniform temperature, signifying equilibrium.
- * A gas in a piston with constant weights is in equilibrium. If weights are suddenly removed, the piston moves, and the gas becomes turbulent (not in equilibrium). After settling, it reaches a new equilibrium state at a different volume and pressure.

3. Defining Temperature

- * **Intuitive Notion:** Temperature is intuitively understood as the degree of hotness or coldness of an object.
- * **Need for Precision:** Physics requires a quantitative and universally reproducible

definition of temperature.

- * **The Zeroth Law of Thermodynamics:**
- * **Statement:** If two systems (A and B) are each in thermal equilibrium with a third system (C), then they are in thermal equilibrium with each other (A and B are at the same temperature).
- * **Significance:** This law establishes temperature as a transitive property, allowing for the consistent measurement and comparison of temperatures between systems that are not in direct contact. It underpins the use of thermometers, where the thermometer (C) establishes a common temperature for two other systems (A and B).
- 4. Quantitative Temperature Measurement and Scales
- * **Early Attempts: Thermal Expansion:**
- * Many materials expand predictably when heated. This property can be used to define a temperature scale.
- * **Linear Expansion:** The change in length (ΔL) of a rod is proportional to its original length (L_0) and the change in temperature (ΔT): $\Delta L = \alpha L_0 \Delta T$, where α is the coefficient of linear expansion (material-dependent).
- * **Volume Expansion:** The change in volume (ΔV) of a substance is proportional to its original volume (V_0) and the change in temperature (ΔT): $\Delta V = \beta V_0 \Delta T$, where β is the coefficient of volume expansion (material-dependent).
- * **Liquid-in-Glass Thermometers:** These utilize the volume expansion of a liquid (e.g., mercury, alcohol) in a thin capillary tube to magnify the change in volume into a visible change in height.
- * **Standardization of Temperature Scales:**
- * To create a reproducible scale, two fixed and easily achievable reference points are required, with the interval between them divided into equal steps.
- * **Celsius (Centigrade) Scale:**
- * Freezing/Melting Point of Water (at standard atmospheric pressure): Defined as 0 °C.
- Boiling Point of Water (at standard atmospheric pressure): Defined as 100 °C.
- * The interval between these points is divided into 100 equal degrees.
- * **Limitations of Liquid Thermometers:** Different liquids expand at slightly different non-linear rates, meaning two thermometers calibrated at 0 °C and 100 °C might not agree on intermediate temperatures (e.g., 50 °C). This necessitates choosing a standard substance.

* **Limitations of Water's Fixed Points:** The boiling point of water varies with atmospheric pressure (e.g., lower at high altitudes), making it an unreliable universal standard without specifying pressure.

5. The Gas Thermometer and Absolute Zero

- * **Principle:** Dilute gases exhibit a nearly linear relationship between the product of pressure (P) and volume (V) and temperature. Importantly, for very dilute gases, this relationship is universal, meaning all dilute gases behave similarly.
- * **Universality:** When calibrated at 0 °C and 100 °C, dilute gas thermometers agree on intermediate temperatures, overcoming the limitation of liquid thermometers.
- * **Absolute Zero:** Extrapolating the PV vs. Temperature relationship for a dilute gas reveals that PV approaches zero at a specific temperature, approximately -273.15 °C. This point, where the pressure (and thus molecular motion) theoretically ceases, is defined as the absolute zero of temperature.
- * **Significance of Absolute Zero:**
- * It is the theoretical lowest possible temperature, a universal and fundamental constant of nature, independent of any specific substance like water.
- * It implies a minimum energy state for matter, where molecular motion is minimized (though quantum mechanics indicates residual zero-point energy).
- * **Kelvin (Absolute) Temperature Scale:**
- * **Definition:** The Kelvin scale is an absolute thermodynamic temperature scale where 0 K corresponds to absolute zero.
- * **Reference Point:** The triple point of water (the unique temperature and pressure at which water, ice, and water vapor coexist in equilibrium) is defined as 273.16 K. This allows for a single, highly reproducible reference point for calibration.
- * **Relationship to Celsius:** $T(K) = T(^{\circ}C) + 273.15$. A 1 K change is equivalent to a 1 $^{\circ}C$ change.
- * **Nomenclature:** Temperatures on the Kelvin scale are referred to as "Kelvin" (e.g., 273 K), not "degrees Kelvin."

6. Heat (Q)

- * **Definition:** Heat is the transfer of thermal energy between systems due to a temperature difference. It is energy in transit.
- * **Historical Concept (Caloric Theory):** Early theories proposed heat as an invisible

fluid called "caloric" that flowed from hotter to colder bodies.

- * **The Calorie:**
- * **Definition:** Historically, one calorie (cal) was defined as the amount of heat required to raise the temperature of 1 gram of water by 1 degree Celsius (from 14.5 °C to 15.5 °C).
- * **Kilocalorie (kcal or Calorie):** 1 kilocalorie = 1000 calories, often used in nutrition.
- * **Specific Heat (c):**
- * **Definition:** The specific heat of a substance is the amount of heat energy required to raise the temperature of a unit mass of that substance by one degree Celsius (or Kelvin). It is a material-dependent property.
- * **Formula:** $Q = mc\Delta T$, where Q is the heat transferred, m is the mass, c is the specific heat, and ΔT is the change in temperature.
- * **Water's Specific Heat:** Approximately 1 cal/(g·°C) or 4184 J/(kg·K).
- * **Limitations:** Specific heat is not truly constant; it can vary with temperature and pressure, especially over wide ranges.
- * **Calorimetry: Conservation of Heat:**
- * **Principle:** In an isolated system where heat is exchanged between substances, the total heat lost by hotter bodies equals the total heat gained by colder bodies. Mathematically, the sum of all heat changes (ΣQ) in an isolated system is zero.
- * **Application:** Used to determine the specific heat of unknown materials or to calculate final equilibrium temperatures in mixtures.

7. Phase Changes

- * **Definition:** A phase change is a transition of a substance from one state of matter (e.g., solid, liquid, gas) to another. These changes occur at specific temperatures and pressures.
- * **Latent Heat (L):**
- * **Definition:** The energy absorbed or released during a phase change without a change in temperature. This energy is used to rearrange the molecular structure rather than increase kinetic energy.
- * **Formula:** Q = mL, where m is the mass of the substance undergoing a phase change and L is the latent heat for that specific transition.
- * **Latent Heat of Fusion (L_f):** Heat required to change a substance from solid to liquid (or vice versa). For water, L f \approx 80 cal/g.

- * **Latent Heat of Vaporization (L_v):** Heat required to change a substance from liquid to gas (or vice versa). For water, L v \approx 540 cal/g.
- * **Temperature Plateaus:** During a phase change, even as heat is continuously added or removed, the temperature of the substance remains constant until the entire sample has completed the transition.
- * **Complex Calorimetry Problems:** Problems involving phase changes require considering the heat absorbed/released during temperature changes (mcΔT) and during phase changes (mL). The final state of the mixture (e.g., all liquid, all solid, or a mix of phases) depends on the total energy balance.

8. Mechanisms of Heat Transfer

- * **1. Radiation:**
- * **Mechanism:** Transfer of thermal energy via electromagnetic waves (e.g., infrared radiation).
- * **Medium Requirement:** Does not require a medium; can occur through a vacuum.
- * **Example:** Heat from the sun reaching Earth, heat felt from a glowing space heater.
- * **2. Convection:**
- * **Mechanism:** Transfer of heat through the bulk movement of fluids (liquids or gases). Hotter, less dense fluid rises, and colder, denser fluid sinks, creating convection currents.
- * **Medium Requirement:** Requires a fluid medium.
- * **Example:** Boiling water in a pot, atmospheric weather patterns (warm air rising).
- * **3. Conduction:**
- * **Mechanism:** Transfer of heat through direct contact between particles, without macroscopic movement of the material itself. Energy is transferred via collisions between atoms or molecules.
- * **Medium Requirement:** Requires direct physical contact between materials.
- * **Example:** Heat traveling along a metal spoon placed in hot soup, heat transfer through a pan on a stove.
- * **Rate of Heat Conduction (Fourier's Law):**
- * The rate of heat flow (Q/ Δ t) through a material is proportional to the cross-sectional area (A), the temperature difference (Δ T) across the material, and inversely proportional to the thickness/length (Δ x) through which the heat travels.

- * $Q/\Delta t = \kappa A(\Delta T/\Delta x)$, where κ (kappa) is the thermal conductivity of the material.
- * **Thermal Conductivity (κ):** A material-dependent property that quantifies how well a substance conducts heat. Metals typically have high thermal conductivity, while insulators (like wood or air) have low thermal conductivity.
- * **Reservoir:** A large body whose temperature remains constant despite heat transfer into or out of it, often idealized for practical problems (e.g., the ocean, a large room).
- 9. Heat as a Form of Energy: The First Law of Thermodynamics (Introduction)
- * **Observation:** In many physical processes, mechanical energy (kinetic, potential) appears to be "lost," yet the system's temperature increases (e.g., inelastic collisions, drilling, friction).
- * **Joule's Experiment:**
- * **Setup:** A falling weight drives a paddle wheel that churns water in an insulated container.
- * **Observation:** The mechanical potential energy of the falling weight is converted into internal energy (heat) of the water, causing its temperature to rise.
- * **Conclusion:** There is a direct proportionality between the amount of mechanical energy "lost" (measured in Joules) and the amount of heat "gained" (measured in calories).
- * **Mechanical Equivalent of Heat:** Approximately 1 calorie = 4.184 Joules (often rounded to 4.2 J/cal).
- * **Implication:** Heat is not a separate substance but another form of energy. The principle of conservation of energy can be extended to include heat.
- * **Microscopic View:** Heat represents the disordered, random kinetic energy of the atoms and molecules within a substance. Macroscopic kinetic energy (e.g., a moving car) is the ordered motion of the entire system, while heat is the random internal motion. When macroscopic motion is lost (e.g., in a collision), it is transformed into this random molecular motion, causing a temperature increase.