Centro Universitário Senac

Gustavo Orlando Araújo Vergani

Jackson Henrique Ferreira

João Victor Farias Teixeira

Lucas da Silva Macedo

Maria Mercedes da Silva Rodrigues

PROJETO INTEGRADOR 2:

MONITORAMENTO DE VARIAÇÃO DE NÍVEL DE ÁGUA

São Paulo

Gustavo Orlando Araújo Vergani

Jackson Henrique Ferreira

João Victor Farias Teixeira

Lucas da Silva Macedo

Maria Mercedes da Silva Rodrigues

PROJETO INTEGRADOR 2:

MONITORAMENTO DE VARIAÇÃO DE NÍVEL DE ÁGUA

Projeto Integrador apresentado ao curso de Análise e Desenvolvimento de Sistemas, do Centro Universitário Senac – Santo Amaro, como requisito para obtenção de aprovação em disciplina.

Orientadores: Alexandre Igosheff e Evandro Teruel.

São Paulo

LISTA DE ILUSTRAÇÕES

FIGURA 1: DIAGRAMA EM BLOCOS	9
Figura 2: Fluxograma	10
FIGURA 3: CIRCUITO ELÉTRICO	11

LISTA DE ABREVIATURAS E SIGLAS

- IoT Internet of Things (Internet das Coisas).
- LED Light Emitting Diode (Diodo Emissor de Luz).
- SQL Structured Query Language (Linguagem de Consulta Estruturada).
- BD Banco de Dados.
- CRUD Create, Read, Update, Delete (Criar, Ler, Atualizar, Deletar).
- WEB World Electronic Base.
- WI-FI Wireless Fidelity.

SUMÁRIO

INTRODUÇÃO	6
SENSORES UTILIZADOS	7
FUNCIONAMENTO DO SISTEMA	7
CRONOGRAMA	8
APLICAÇÕES PARA O SISTEMA	
DIAGRAMA DE MONTAGEM DE CIRCUITO ELÉTRICO	11
CONCLUSÃO	12
REFERÊNCIAS	13

INTRODUÇÃO

Este trabalho tem o objetivo de apresentar o planejamento do projeto de IoT, da disciplina de Projeto Integrador. Nós trabalharemos com um sensor de nível para detectar se um reservatório de qualquer dimensão está com água entre cheio e vazio.

O ESP-8266 foi o microcontrolador escolhido para realizar a automatização do controle hídrico. Ele atuará em conjunto com os componentes definidos pelo grupo. Pela sua capacidade de conexão com o WI-FI, será possível encaminhar as informações obtidas para uma base de dados. Essas informações serão exibidas através de uma aplicação Web.

SENSORES UTILIZADOS

Os dois sensores presentes no projeto são Boias Horizontais CS-C0058. São sensores digitais que monitoram o nível de líquido em um determinado reservatório.

Cada sensor possui uma boia, que se mantém fixas no próprio sensor. É a partir delas que os sensores detectam o nível de água. À medida em que o nível aumenta ou diminui, a boia sobe ou desce no sensor, e ele encaminha a informação para o ESP-8266.

FUNCIONAMENTO DO SISTEMA

Serão utilizados dois sensores, fixos ao reservatório, que enviarão os dados coletados para o ESP8266. Em sequência, a placa encaminha as seguintes informações para o banco de dados SQL:

- O nível de volume de água do reservatório identificado pelos sensores;
- A data e hora em que a informação foi coletada.

A placa também controla os LEDs de acordo com a situação do reservatório:

- Caso o reservatório apresente um nível baixo/vazio, o LED vermelho será aceso;
- Caso ele apresente um nível médio, o LED amarelo será aceso;
- E, por fim, se o reservatório estiver cheio, o LED verde será aceso.

HARDWARE E PROGRAMAÇÃO

Os seguintes equipamentos serão necessários para a construção do sistema:

- Dois sensores Boias Horizontais CS-C0058;
- Um microcontrolador ESP-8266;
- Uma placa Protoboard;
- LEDs nas cores: verde, amarelo e vermelho;
- Resistores;
- Jumpers.

O valor aproximado do investimento totaliza R\$175,00. Esses custos serão divididos entre os integrantes do grupo.

CRONOGRAMA

05/10 – Compra dos Componentes.

10/10 – Primeira Apresentação.

17/10 – Desenvolvimento do Projeto.

24/10 – Testes do Circuito.

31/10 – Segunda Apresentação.

STREAMING DE DADOS

A proposta de streaming de dados é conectar o ESP-8266 diretamente ao Bando de Dados. Para isso, utilizaremos a biblioteca MySQL Connector Arduino.

Todas as informações sobre o BD (endereço do servidor, o nome de usuário e a senha, e o nome do BD) precisam estar declaradas no código fonte. A partir desses dados, a placa, conectada à uma rede WI-FI, consegue se comunicar com o BD.

Implementaremos, também, o CRUD. O arquivo "Java Web", nas linguagens HTML, CSS e Javascript, estará relacionado ao BD. Consequentemente, as informações armazenadas serão exibidas nessa aplicação web.

APLICAÇÕES PARA O SISTEMA

O sistema desempenha as funções de monitoramento e controle hídrico. Ele apresenta inúmeras finalidades, como a prevenção de vazamentos, a automação do mecanismo de encher um reservatório e desligá-lo automaticamente ou a que o reservatório seja preenchido quando estiver vazio.

A verificação de nível de líquidos proposta por esse projeto possibilita as seguintes possíveis aplicações de controle e supervisão:

- Bombas;
- Tigelas de água para animais de estimação;
- Piscinas:
- · Reservatórios;
- Aquários.

DIAGRAMA EM BLOCOS

Representação da arquitetura de IoT do ESP8266.

- De acordo com o volume de água do recipiente, o sensor detectará a situação e enviará a informação para a placa ESP-8266;
- 2. O código fonte interpreta a informação, e ela é representada por LEDs;
- 3. A placa encaminha a informação para o Banco de Dados.

Figura 1: Diagrama em Blocos

FLUXOGRAMA

Representação esquemática do algoritmo em linguagem C.

Figura 2: Fluxograma

DIAGRAMA DE MONTAGEM DE CIRCUITO ELÉTRICO

Proposta de montagem do protótipo com o ESP-8266:

Os interruptores nesse exemplo serão a representação dos sensores Boia Horizontal, devido a falta do sensor correto no simulador encontrado.

Na representação, temos um fio GND conectado no polo negativo da protoboard o qual se conecta aos polos negativos dos LEDs e da Boia, juntamente com seus resistores. Temos os pinos de entrada dos sensores, sendo eles: o pino D1 e o pino D2. Como saída, temos o pino D3, D4 e D5, os quais após receber o estado do sensor, irão acender de acordo com o nível de água presente.

Figura 3: Circuito Elétrico

CONCLUSÃO

Nossas habilidades em IoT estão sendo aprimoradas durante este semestre. É extremamente gratificante realizar um projeto tão significativo quanto esse, onde é possível incluir os conhecimentos de todas as áreas estudadas desde o início do curso, até o momento.

O trabalho apresentou todo o planejamento para a realização desde projeto. Estamos animados em fazer tudo o que está no papel se tornar realidade. Com a orientação de ambos os professores, já conseguimos dar início as atividades. Estamos sempre em busca de evolução, e, durante as próximas fases do projeto, esperamos trazer mudanças e melhorias que irão nos desafiar e complementar o nosso sistema.

REFERÊNCIAS

DAVIS, Stephen. C++ para Leigos. 7° Edição. Editora Alta Books. Publicado em: 10 de junho de 2016.

OLIVEIRA, C; ZANEETI, H; NABARRO, C; GONÇALVES, J. Aprenda Arduino: Uma abordagem prática. 1º Edição. Katzen Editora. Publicado em 2018.

RANGEL, Gabriel. Ebook Internet das Coisas para iniciantes. Eletrônica Ômega. Disponível em: https://blog.arduinoomega.com/ebooks/Eletronica-Omega-Ebook-IoT-Para-Iniciantes.pdf