Homework 7

Mark Petersen

Sections 12 and 13

12. SET PROOFS IN LOGIC

Exercise 12.1. For each natural number n, define the set $S_n = \{x \in \mathbb{Z} : x^2 = n\}$. Prove the following statement: If n = 4, then $S_n = \{2, -2\}$.

Proof: We assume directly that n=4, then $S_4=\{2,-2\}$. Hence $S_4\subseteq$ $\{2, -2\}$ and $S_4 \supseteq \{2, -2\}$.

Exercise 12.2. Give a complete proof for Proposition 12.4, using the sketched

Prop: Given sets S and T, we have $S \subseteq T$ if and only if $S = S \cap T$.

Proof: This is a biconditional compound statement so we must show both ways.

- (\Longrightarrow) : Assume that $S\subseteq T$. Therefore if $x\in S$, then $x\in T$.
- (\subseteq) : Assume that $x \in S$, then $x \in T$ since $S \subseteq T$. Therefore $x \in S$ and $x \in T$. In other words $x \in S \cap T$. Hence $S \subseteq S \cap T$.
- (\supseteq) : Assume that $x \in S \cap T$, then $x \in S$ and $x \in T$. Since $x \in S$, $S \subseteq S \cap T$.

Thus we have shown that if $S \subseteq T$, then $S = S \cap T$.

- (\Leftarrow) : Assume that $S = S \cap T$. We show that $S \subseteq T$.
- (\subseteq) : Assume $z \in S$, then $z \in S \cap T$. Therefore $z \in S$ and $z \in T$. Since every element of S is an element of T, $S \subseteq T$.

Exercise 12.3. Consider the statement:

Let S and T be sets. Then $S \subseteq T$ if and only if $T = S \cup T$. Outline a proof of the statement.

Proof Outline:

- (\Longrightarrow) : Assume $S\subseteq T$.
 - (\subseteq) : We first show $T \subseteq S \cup T$.

Assume $x \in T$.

Conclude that $x \in S \cup T$.

Conclude that $T \subseteq S \cup T$.

 (\supseteq) : We next show $T \supseteq S \cup T$

Assume $z \in S \cup T$.

Conclude that $x \in T$.

Conclude that $T \supseteq S \cup T$.

 (\Leftarrow) : Assume $T = S \cup T$.

 (\subseteq) : We finally show $S \subseteq T$.

Assume $x \in S$.

Conclude that $x \in T$.

Conclude that $S \subseteq T$.

Exercise 12.4. Let S and T be sets. Prove the following.

- a) If $S \cap T = T \cup S$, then S = T
 - *Proof:* We suppose directly that $S \cap T = T \cup S$. This means that if $x \in S$ or $x \in T$, then $x \in S$ and $x \in T$.
 - (\subseteq) : We first show that $S \subseteq T$. We assume that $x \in S$; therefore, $x \in S \cap T$ since $S \cap T = T \cup S$. Because $x \in S \cap T$, $x \in S$ and $x \in T$. Hence $S \subseteq T$.
 - (⊇) :We next show that $T \subseteq S$. We assume that $x \in T$; therefore, $x \in S \cap T$ since $S \cap T = T \cup S$. Because $x \in S \cap T$, $x \in S$ and $x \in T$. Hence $T \subseteq S$. Thus if $S \cap T = T \cup S$, then S = T.
- b) If $S \times T = T \times S$ and both S and T are nonempty, then S = T. Proof: We suppose directly that $S \times T = T \times S$ and that both $S \neq \emptyset$ and $T \neq \emptyset$.
 - (\subseteq) : We first show that $S\subseteq T$. We assume that $s\in S$, then for some $x=(s,t)\in S\times T$ with $t\in T,\ x\in T\times S$. In other words $(s,t)\in T\times S$. Hence $s\in T$. Therefore $S\subseteq T$.
 - (\supseteq) : We next show that $T\subseteq S$. We assume that $t\in T$, then for some $x=(t,s)\in T\times S$ with $s\in S,\,x\in S\times T$. In other words $(t,s)\in S\times T$. Hence $t\in S$. Therefore $T\subseteq S$.

Thus if $S \times T = T \times S$ and both S and T are nonempty, then S = T.

Exercise 12.5. Let S and T be sets. Prove that S=T if and only if S-T=T-S.

Proof: This is a biconditional compound statement, we will show both ways.

- (\Longrightarrow) : We assume directly that S=T.
- (\subseteq) : We first show that $S-T\subseteq T-S$. Let $x\in S-T$, then $x\in S$ and $x\not\in T$. This is a contradiction to the assumption that S=T, since x must be an element of S and T. Therefore S-T has no elements and is the empty set. Hence $S-T\subseteq T-S$ since the empty set is a subset of every set.
 - (\supseteq) : We can similarly show that $T S \subseteq S T$.
 - (\Leftarrow) : We assume directly that S-T=T-S.
- (\subseteq) : We first show that $S\subseteq T$. We assume that $x\in S$. This means that either $x\in S-T$ or $x\not\in S-T$.

We show that if $x \in S$, then $x \notin S - T$. Assume by contradiction that $x \in S$ and $x \in S - T$, then $x \notin T$. If $x \in S - T$ then $x \in T - S$ since S - T = T - S. This means that $x \in T$ and $x \notin S$. Which is a contradiction. Hence if $x \in S$ then $x \notin S - T$. Therefore $x \notin T - S$. For this to be true, x must be an element of T since $x \in S$. Hence $S \subseteq T$.

 (\supseteq) : We can similarly show that $T \subseteq S$.

Exercise 12.6. Let S and T be sets. Prove or disprove: S = T if and only if $S - T \subseteq T$.

Proof: This is a biconditional compound statement, we will show both ways.

- (\Longrightarrow) : We assume directly that S=T; therefore $x\in S, x\in T$ and $S-T=\emptyset$. Since the empty set is a subset of every set, $S-T\subseteq T$. Hence, if S=T, then $S-T\subseteq T$.
 - (\Leftarrow) : We assume directly that $S T \subseteq T$.
- (\subseteq) : We first show that $S\subseteq T$. Let $x\in S-T$, then $x\in S$ and $x\not\in T$, but since $S-T\subseteq T,\ x\in T$. This is a contradiction. Therefore, there are no elements in S-T. This means that $\forall x\in S, x\in T$. Hence $S\subseteq T$.
- (\supseteq) : We next show that $T \subseteq S$. Let $x \in S T$, then $x \in S$ and $x \notin T$, but since $S T \subseteq T$, $x \in T$. This is a contradiction. Therefore, there are no elements in S T. This means that $\forall x \in T, x \in S$. Hence $T \subseteq S$.

Exercise 12.7. Let S be a set. Prove that $\emptyset \times S = \emptyset$.

Proof: We assume by contradiction that $\emptyset \times S \neq \emptyset$ so that $x = (a, b) \in \emptyset \times S$. Which means that $a \in \emptyset$ and $b \in S$. This is a contradiction since there can't be an element a in the empty set. Hence $\emptyset \times S = \emptyset$.

Exercise 12.8. For sets S and T, show that $S \times T = \emptyset$ if and only if $S = \emptyset$ or $T = \emptyset$.

Proof: This is a biconditional compound statement, we will show both ways.

 (\Longrightarrow) : We assume by contradiction that $S\times T=\emptyset$, $S\neq\emptyset$, and $T\neq\emptyset$. Therefore there is an $s\in S$ and $t\in T$ such that $x=(s,t)\in S\times T$ which is a contradiction since $S\times T=\emptyset$. Hence if $S\times T=\emptyset$, then $S=\emptyset$ or $T=\emptyset$.

(\Leftarrow): Without loss in generality we assume that $S=\emptyset$ or $T=\emptyset$, then as shown in exercise 12.7, $S\times T=\emptyset$.

Thus $S \times T = \emptyset$ if and only if $S = \emptyset$ or $T = \emptyset$.

Exercise 12.9. Consider the statement: Given sets A, B, C if $A \times B \subseteq B \times C$ and $B \neq \emptyset$, then $A \subseteq C$.

Proof: We assume directly that $A \times B \subseteq B \times C$ and $B \neq \emptyset$. Let $x = (a,b) \in A \times B$ where $a \in A$ and $b \in B$. Since $A \times B \subseteq B \times C$, $x \in B \times C$. Thus $a \in B$ and $b \in C$. This shows that $A \subseteq B$ and $B \subseteq C$. Hence $A \subseteq C$. Thus given sets A, B, C if $A \times B \subseteq B \times C$ and $B \neq \emptyset$, then $A \subseteq C$.

Exercise 12.10. Prove or disprove the converse of Theorem 12.7.

Thm: Given four sets A, B, C, D, if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$. **Converse:** Given four sets A, B, C, D, if $A \times B \subseteq C \times D$, then $A \subseteq C$ and $B \subseteq D$.

Proof: We assume directly that $A \times B \subseteq C \times D$. Let $x = (a,b) \in A \times B$ where $a \in A$ and $b \in B$. Since $A \times B \subseteq C \times D$, then $x \in C \times D$. Thus $a \in C$ and $b \in D$. This shows that $A \subseteq C$ and $B \subseteq D$. Thus if $A \times B \subseteq C \times D$, then $A \subseteq C$ and $B \subseteq D$.

13. MATHEMATICAL INDUCTION

Exercise 13.1. Prove that for each $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} (2i - 1) = n^2.$$

Proof: We prove this by induction on $n \in \mathbb{N}$. Let $P\left(n\right)$ be the open sentence. $P\left(n\right):\sum_{i=1}^{n}\left(2i-1\right)=n^{2}.$

Base Case: We verify that P(1) is true. $2 \cdot 1 - 1 = 1$.

Inductive Step: Let $k \in \mathbb{N}$. We assume P(k).

$$\sum_{i=1}^{k+1} (2i - 1) = \sum_{i}^{k} (2i - 1) + 2(k+1) - 1$$
$$= k^{2} + 2k + 1$$
$$= (k+1)^{2},$$

hence $P(k) \implies P(k+1)$. Thus $\sum_{i=1}^{n} (2i-1) = n^2$.

Exercise 13.2. Prove that for each $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}.$$

Proof: We prove this by induction on $n \in \mathbb{N}$.

Let $P\left(n\right)$ be the open sentence. $P\left(n\right):\sum_{i=1}^{n}\frac{1}{(2i-1)(2i+1)}=\frac{n}{2n+1}.$ **Base Case:** We verify that $P\left(1\right)$ is true. $\frac{1}{(2\cdot 1-1)(2\cdot 1+1)}=\frac{1}{3}=\frac{1}{2\cdot 1+1}.$ **Induction Step**: Let $k\in\mathbb{N}$. We assume $P\left(k\right)$. It follows that

$$\sum_{i=1}^{k+1} \frac{1}{(2i-1)(2i+1)} = \sum_{i=1}^{k} \frac{1}{(2i-1)(2i+1)} + \frac{1}{(2(k+1)-1)(2(k+1)+1)}$$

$$= \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$$

$$= \frac{k(2k+3)+1}{(2k+1)(2k+3)}$$

$$= \frac{(2k+1)(k+1)}{(2k+1)(2k+3)}$$

$$= \frac{(k+1)}{2(k+1)+1},$$

hence if P(k), then P(k+1). Thus $\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}$.

Exercise 13.3. Prove that for each $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Proof: We prove this by induction on $n \in \mathbb{N}$. Let $P\left(n\right)$ be the open sentence; $P\left(n\right):\sum_{i=1}^{n}i^{2}=\frac{n(n+1)(2n+1)}{6}$.

Base Case: We verify that P(1) is true.

$$1^{2} = \frac{1(1+1)(2\cdot 1+1)}{6}$$

$$1 = 1.$$

Induction Step: Let $k \in \mathbb{N}$. We assume P(k). It follows that

$$\begin{split} \sum_{i=1}^{k+1} i^2 &= \sum_{i=1}^k i^2 + (k+1)^2 \\ &= \frac{k \left(k+1\right) \left(2k+1\right)}{6} + \frac{6}{6} \left(k+1\right)^2 \\ &= \frac{k \left(k+1\right) \left(2k+1\right) + 6 \left(k+1\right)^2}{6} \\ &= \frac{\left(k+1\right) \left(k \left(2k+1\right) + 6 \left(k+1\right)\right)}{6} \\ &= \frac{\left(k+1\right) \left(2k^2 + k + 6k + 6\right)}{6} \\ &= \frac{\left(k+1\right) \left(k+2\right) \left(2k+3\right)}{6} \\ &= \frac{\left(k+1\right) \left(\left(k+1\right) + 1\right) \left(2 \left(k+1\right) + 1\right)}{6}, \end{split}$$

hence if P(k) is true, then P(k+1) is true. Thus $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Exercise 13.4. This has two parts.

a) Prove that for each $n, k \in \mathbb{N}$,

$$n < 3^{n}$$
.

Proof: We prove this by induction.

Let P(n) be the open sentence; $P(n): n < 3^n$.

Base Case: We will show that P(1) is true. P(1): $1 < 3^1$ which is true. **Induction Step:** We assume P(k). It follows that $3^{k+1} = 3^k + 3^k + 3^k$. We assume $3^k > k$, thus $3^k + 3^k + k < 3^{k+1}$. Since $1 < 3^k + 3^k$, then $k+1 < 3^{k+1}$. Hence P(n) is true.

b) Prove that for each $n \in \mathbb{Z}$, $n < 3^n$.

Proof: We prove by splitting up the domain of n, and ensure that $n < 3^n$ for each subset of \mathbb{Z} .

- Case 1. We assume that $n \in \mathbb{N}$, then $n < 3^n$. We proved this in the first part of this exercise.
- Case 2. We assume that n = 0, then $0 < 3^{\circ}$.
- Case 3. We assume that $-n \in \mathbb{N}$. Under this condition, $3^n > 0$ for all n. Since $n < 0 < 3^n$, $n < 3^n$. Therefore if $-n \in \mathbb{N}$, then $n < 3^n$.

Thus we have shown that for each $n \in \mathbb{Z}$, $n < 3^n$.

Exercise 13.5. Let $x \in \mathbb{R} - \{1\}$. Prove that for each $n \in \mathbb{N}$,

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}.$$

Proof: We prove this by induction.

Let P(n) be the open sentence; $P(n): \sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x}$.

Base Case: We will show that P(1) is true.

$$x^{1} + 1 = \frac{1 - x^{2}}{1 - x}$$

$$= \frac{(1 - x)(1 + x)}{1 - x}$$

$$= 1 + x,$$

which is true.

Induction Step: Let $k \in \mathbb{N}$. We assume P(k). It follows that

$$\begin{split} \sum_{i=0}^{k+1} x^i &= \sum_{i=0}^k x^i + x^{k+1} \\ &= \frac{1 - x^{k+1}}{1 - x} + x^{k+1} \\ &= \frac{1 - x^{k+1}}{1 - x} + \frac{(1 - x)(x^{k+1})}{1 - x} \\ &= \frac{1 - x^{k+1}}{1 - x} + \frac{x^{k+1} - x^{k+2}}{1 - x} \\ &= \frac{1 - x^{(k+1)+1}}{1 - x}, \end{split}$$

thus if P(k) is true, then P(k+1) is true. Hence $\sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x}$.

Exercise 13.6. Let $x \in \mathbb{R}$ and assume x > -1. Prove that for each $n \in \mathbb{N}$,

$$(1+x)^n \ge 1 + nx.$$

Proof: We prove this by induction and assume that $x \in \mathbb{R}, \ x > -1$, and $n \in \mathbb{N}$

Let P(n) be the open sentence $P(n): (1+x)^n \ge 1 + nx$.

Base Case: We will show that P(1) is true.

$$(1+x)^1 \ge 1+1 \cdot x$$

 $1+x \ge 1+x$.

which is true.

Induction Step: Let $k \in \mathbb{N}$. We assume P(k). It follows

$$(1+x)^{k+1} = (1+x)^k (1+x).$$

Using the assumption that $(1+x)^k \ge 1 + kx$, we get

$$(1+x)^{k+1} \ge (1+x)(1+kx)$$

$$\ge 1+kx+x+kx^2$$

$$\ge 1+x(k+1)+kx^2$$

$$\ge 1+x(k+1),$$

using the fact that $kx^2 \ge 0$. Thus if P(k) is true then P(k+1) is true. Therefore, P(n) is true.

Exercise 13.7. Let S be any nonempty set of natural numbers. Prove that S has a least element.

Proof: We suppose directly that S is any nonempty subset of \mathbb{N} . Since \mathbb{N} is a finite set, any of it's subsets other than the empty set is finite. Therefore S is a finite set. In addition, since $\mathbb{N} \subseteq \mathbb{R}$, S is a nonempty finite subset of \mathbb{R} . According to proposition A.1, S must have a least element.

Exercise 13.8. Prove the following variation of the pigeonhole principle.

Let $m \in \mathbb{N} \cup \{0\}$, let $n \in \mathbb{N}$, and assume m < n. If we suppose m objects are placed in n bins, conclude that some bin does not contain any object.

Proof: We prove this by induction and assume that $m \in \mathbb{N} \cup \{0\}$, $n \in \mathbb{N}$, and m < n.

Let P(n) be the open sentence; P(n): If m objects are placed in n bins, than some bin does not contain any object.

Base Case: We will show that P(1) is true. We assume directly that n=1, then m=0 since m< n and $m\in \mathbb{N}\cup\{0\}$. This means that we have no objects to place in one bin. Therefore the bin is empty.

Induction Step: Let $k \in \mathbb{N}$. We assume P(k), and suppose we have k+1 bins and m < k+1 objects to place in the bins. Let S denote the set of object such that |S| = m, and let x be one of those objects, i.e. $x \in S$. Let $T = S - \{x\}$ such that $|T| = m-1 = \ell$, then $\ell < k$. We know that if the ℓ objects are placed in k bins, at least one of the bins is empty. Since we have k+1 bins, if the ℓ objects are placed in k+1 bins, then at least two of the bins are empty. By placing the object x in the k+1 bins, two things can happen:

- Case 1. We place x into a bin that already has an object, and then at least two of the bins are empty.
- Case 2. We place x into a bin that doesn't have an object, and then at least one bin is empty.

Regardless of the case, a bin remains empty. Hence if $P\left(k\right)$ is true, then $P\left(k+1\right)$ is true. Thus the open sentence $P\left(n\right)$ is true.

Exercise 13.9.

APPENDIX

Proposition A.1. Let A be a finite nonempty set of real numbers. Then A has a least element.

Proof: The proof is shown in the book. See proposition 13.11.