Stochastik I

5. Übung

Aufgabe 17 (4 Punkte)

Proposition 2.3.2. Für eine Folge von Maßen $(\mu_n)_{n\in\mathbb{N}}$ auf einem messbaren Raum (Ω, \mathcal{F}) ist $\mu := \sum_{n=1}^{\infty} \mu_n$ gemäß Proposition 1.3.5 wieder ein Maß auf (Ω, \mathcal{F}) . Zeigen Sie, dass $f \in \mathcal{L}(\Omega, \mathcal{F})$ genau dann μ -integrierbar ist, falls $\sum_{n=1}^{\infty} \int |f| d\mu_n < \infty$, und dass in diesem Fall $\int f d\mu = \sum_{n=1}^{\infty} \int f d\mu_n$ gilt.

Aufgabe 18 (4 Punkte)

Die Funktion $f : \mathbb{R} \to \mathbb{R}$ sei gegeben durch $f(x) := \lceil x \rceil$, wobei $\lceil x \rceil$ die kleinste ganze Zahl bezeichnet, die größer als oder gleich x ist.

(i) Zeigen Sie, dass die Funktion $f(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ -messbar ist.

Es bezeichne nun ℓ_f das Bildmaß des Lebesgue-Maßes ℓ auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ bzgl. f.

- (ii) Bestimmen Sie den Wert des Integrals $\int_{(1,\infty)} \frac{1}{x} \ell_f(dx)$.
- (iii) Folgern Sie aus (ii), dass $\int_{(1,\infty)} \frac{1}{x} \ell(dx) = \infty$ gilt.

Hinweis: Betrachten Sie die Funktionen $x \mapsto f_n(x) := \frac{1}{\lceil x \rceil} \mathbb{1}_{(1,n+1]}(x), n \in \mathbb{N}.$

Aufgabe 19 (8 Punkte)

Entscheiden Sie jeweils, ob die Funktion $f \in \mathcal{L}(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ μ -integrierbar ist und bestimmen Sie ggf. das Integral $\int f d\mu$.

(i)
$$\mu := \sum_{k=1}^{\infty} \delta_k$$
 und $f(x) := \infty \mathbb{1}_{\{0\}}(x) + \frac{1}{x} \cos(\pi x) \mathbb{1}_{(0,\infty)}(x)$.

(ii)
$$\mu := \sum_{k=1}^{\infty} \delta_k$$
 und $f(x) := \infty \mathbb{1}_{\{0\}}(x) + \frac{1}{x^2} \cos(\pi x) \mathbb{1}_{(0,\infty)}(x)$.

(iii)
$$\mu := \sum_{k=0}^{\infty} \delta_k$$
 und $f(x) := \infty \mathbb{1}_{\{0\}}(x) + \frac{1}{x^2} \cos(\pi x) \mathbb{1}_{(0,\infty)}(x)$.

(iv) $\mu := \ell$ (Lebesgue-Maß) und

$$f(x) := \begin{cases} |x+1|^{-1/2} &, & x \in (-2, -1) \\ -\infty &, & x = -1 \\ \frac{x}{(1+x)^{1/2}} &, & x \in (-1, 0) \\ \frac{x}{(1-x)^{1/2}} &, & x \in [0, 1) \\ \infty &, & x = 1 \\ (x-1)^{-1/2} &, & x \in (1, 2) \\ 0 &, & \text{sonst} \end{cases}$$

(v)
$$\mu := \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} \delta_k$$
 (für ein $\lambda > 0$) und $f(x) := x$.

(vi)
$$\mu := \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} \delta_k$$
 (für ein $p \in [0,1]$ und ein $n \in \mathbb{N}$) und $f(x) := x$.

Hinweis für (ii): Es gilt $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k^2} = \frac{\pi^2}{12}$.