

Problem Statement

Currently, unmanned supermarkets/ convenience stores are gaining traction in China. Given the current pandemic situation, such a business model is ideal, as it minimizes human contact, and reduces queues.

Can we create a food classifier to facilitate self checkouts, so as to help retail and F&B businesses save on manpower and productivity costs?

METHODOLOGY

EDA	Experiment	Modelling and Evaluation	Analysis on misclassified images	Testing on unseen data
Exploring files and folders in dataset	Created 5 class Japanese food classifier	Created 10 class desserts dataset	Created confusion matrix	Test on googled images
Visualise images Check for imbalanced	Transfer Learning on VGG16	Trained dataset on: Custom CNN VGG16	Visualised misclassified images	Created webapp (not deployed yet)
classes	Val accuracy 84.8%	EfficientNetB0	Most commonly misclassified classes:	
		Tuned models for retraining	Tiramisu Carrot Cake Cheesecake	
		Best model: Tuned EfficientNetB0 (Val accuracy: 77.6%)		

EDA

DATASET EXPLORATION

Food-101 dataset from Kaggle

Reformatted data in Keras HDF5 Matrix format, e.g. foodc101n1000_r384x384x3.h5 (101 categories, 1000 images, 384 x 384 x 3 (RGB, uint8))

INSIDE THE IMAGE FOLDERS

cheesecake

creme brulee

tiramisu

carrot cake

cup cakes

red velvet cake

bread pudding

creme brulee

strawberry shortcake

INSIDE THE IMAGE FOLDERS

Experiment

Transfer learning with 5 classes of Japanese Food

JAPANESE FOOD CLASSIFIER (5 CLASSES)

- Transfer learning with VGG16
- VGG16: pretrained convolutional network model (achieved 92.7% test accuracy in ImageNet)
- ❖ 5 classes: Edamame, Ramen, Sushi, Sashimi, Miso Soup
- Freeze all convolutional layers, remove top dense/prediction layers
- Rebuilt top layers with: Global Average Pooling, Dense, Dropout and Prediction

VGG-16

JAPANESE FOOD CLASSIFIER: 84.8% Validation Accuracy

- Can predict classes with reasonable accuracy
- Might sometimes misclassify sushi with sashimi and vice versa

model accuracy: 0.8487499952316284

JAPANESE FOOD CLASSIFIER: Predicting Online Images

sushi

edamame

```
result= np.argmax(pred)
if result==0:
    print("edamame")
elif result==1:
    print("ramen")
elif result==2:
    print("sushi")
elif result==3:
    print("sashimi")
elif result==4:
    print("miso soup")
```


Modelling

10 class dessert classifier

CUSTOM CNN

Rescaling
Conv2D
Max Pooling

Batch Norm
Conv2D
Max Pooling

Batch Norm
Conv2D
Max Pooling

Global Avg Pooling

Dense

Dropout

Dropout

Dropout

Dense

- Retained dimensions for first layer
- Tuned and re-trained using best hyperparameters from Keras Tuner (optimal units in dense layer: 64, optimal learning rate: 0.0001)
- Regularization techniques: Batch Normalization, Dropout, Early Stopping

VGG16

- Rebuilt top layers with Global Average Pooling, Batch Normalisation, Dropout, and Dense layers
- Tuned and re-trained by unfreezing block 5
- Regularization techniques: Batch Normalization, Dropout, Early Stopping, lowering learning rate

EfficientNetB0

Stage	Operator	Resolution	#Channels	#Layers
i	$\hat{\mathcal{F}}_i$	$\hat{H}_i imes \hat{W}_i$	\hat{C}_i	\hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7 × 7	1280	1

- Rebuilt top layers with Global Average Pooling, Batch Normalisation, Dropout, and Dense layers
- Augmented images before training
- Tuned and re-trained by unfreezing block 7a (BatchNormalization layers remain frozen)
- Regularization techniques: Batch Normalization, Dropout, Early Stopping, lowering learning rate

MODEL EVALUATION

Model	Val Accuracy (before tuning)	Val Accuracy (after tuning)
Custom CNN	46.3%	56.7%
VGG 16	59%	75.6%
EfficientNetB0	73.2%	77.6%

Tuned EfficientNetB0 is our best model, achieving a validation accuracy score of around 77.6%.

Misclassified Images

10 class dessert classifier

CONFUSION MATRIX

MISCLASSIFIED IMAGES

- Misclassification seems reasonable
- Lighting and presence of toppings/other ingredients on food might have caused misclassification

Model Testing

10 class dessert classifier

WEBAPP DEMO

10 Class Desserts Classifier

This is a simple image classification webapp to predict 10 classes of desserts: baklava, bread pudding, carrot cake, cheese cake, cupcakes, chocolate cake, tiramisu, red velvet cake, strawberry shortcake and creme brulee. The model was trained on EfficientNetB0 and has achieved 77% validation accuracy.

Do note that the classifier is not 100% accurate and may tend to misclassify certain images like carrot cake with cheesecake etc.

Please upload an image file

Drag and drop file here
Limit 200MB per file • JPG, PNG

Browse files

carrotcake.jpg 95.5KB

It is carrot cake!

Conclusion

10 class dessert classifier

CONCLUSION

- Managed to build 10 class desserts classifier with val accuracy around 77.6%
- Room for improvement, as there are still misclassifications

Next Steps/Room for improvement

- Train model with more data of food at different angles and height
- Train model with more classes of food
- Try out ensemble models or CutMix to improve accuracy
- Create object detection model to count items detected

LEARNINGS

- Retain image dimensions in your first layer, as the machine is learning the edges and features of your data
- Batch Normalization helps improve your accuracy score and allows your model to converge in lesser epochs. It also provides some regularization and reduces generalization error
- Always push your model's (and your own) limits. Keep training, fine tuning and experimenting to improve val accuracy and minimise val loss

THANK YOU