TD: Analyse

Limites 1

Exercice 1: Calculer les limites des fonctions suivantes quand $x \to +\infty$

a:
$$x \to \frac{x+7}{4x+3}$$
 b: $x \to \frac{x^2+5}{x^3-1}$ c: $x \to \cos(x^2)e^{-x}$ d: $x \to x^4e^{-x}$

b:
$$x \to \frac{x^2 + 5}{x^3 - 1}$$

c:
$$x \to cos(x^2)e^{-x}$$

d:
$$x \to x^4 e^{-x}$$

e:
$$x \to \frac{\ln(\ln(x))}{\ln(x)}$$

Exercice 2: Calculer les limites des fonctions suivantes quand $x \to 0$

a:
$$x \to \sqrt{x} \ln(x)$$

b:
$$x \to \frac{1 - \cos(x)}{x^2}$$

Exercice 3: On considère la parabole représentant la fonction $f(x) = x^2 \quad \forall x \in [0,1]$ et dont on désire calculer la surface sous la courbe \mathcal{S}_n par la méthode des rectangles.

Figure 1 – Methode des rectangles

- 1. Montrer que $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- 2. Montrer que $S_n = \frac{(n-1)n(2n-1)}{6n^3}$
- 3. Conclure

Exercice 4: Quel est le comportement en $+\infty$ de la suite (V_n) définie sur \mathbb{N}^* par :

$$V_n = n\sin(\frac{1}{n})$$

2 Dérivation

Exercice 5: Pour $n \in \mathbb{N}$, montrer que

$$\forall x \in \mathbb{R}, \quad \cos^{(n)}(x) = \cos(x + \frac{n\pi}{2})$$

Exercice 6 : Soit f la fonction de \mathbb{R}^* dans \mathbb{R} définie par

$$\forall x \in \mathbb{R}^*, \quad f(x) = \frac{1}{x}$$

Donner une expression simple de $f^{(n)}(x)$

Exercice 7 : Soient a un nombre réel non nul, x_1 et x_2 deux nombres réels tels que $x_1 < x_2$, soit f la fonction :

$$x \in \mathbb{R} \to ax^2$$

Montrer que la tangente au graphe de f au point d'abscisse $\frac{x_1 + x_2}{2}$ est parallèle à la droite joignant les points du graphe de f d'abscisse x_1 et x_2

Exercice 8: Soit p un nombre réel.

- 1. Montrer que $x^4 1 = (x 1)(x + 1)(x^2 + 1)$
- 2. Quel est le nombre de solutions réelles de l'équation

$$(E_p) \quad x^5 - 5x = p$$

3 Equations différentielles

Exercice 9: Résoudre l'équation différentielle :

$$3y' - 5y = 0$$

Exercice 10 : Résoudre l'équation différentielle :

$$3x^2y' - 6y = 0$$

Exercice 11 : Résoudre l'équation différentielle

$$y' + y = e^x + 1$$

Exercice 12: (CAPLP 2023)

On considère l'équation différentielle 4y'' - 12y' + 9y = 1. Est il vrai qu'il existe une solution à cette équation différentielle strictement négative ?

4 CAPLP (Extraits)

Exercice 3

Dans cet exercice, on considère les fonctions f_n définies sur ${\bf R}$ pour n entier naturel par :

$$\forall x \in \mathbf{R}, \quad f_n(x) = x^n \exp(-\frac{x^2}{2}).$$

Partie B : étude du cas particulier de la fonction f_0

On considère la fonction f_0 définie sur **R** par : $\forall x \in \mathbf{R}$, $f_0(x) = \exp(-\frac{x^2}{2})$.

- 1. Étudier la parité de la fonction f_0 .
- 2. Construire, en le justifiant, le tableau de variations de f_0 .
- 3. Exprimer $f_0(x)$ en fonction de $\varphi(x)$ et en déduire la valeur de $\int_0^{+\infty} f_0(t) dt$.

Partie C : étude du cas particulier de la fonction f_1

- 1. Étude de la fonction f_1 . Dans cette partie, on note \mathcal{C}_1 la courbe représentative de la fonction f_1 dans un repère orthonormé du plan.
 - (a) Étudier la parité de la fonction f_1 .
 - (b) Établir le tableau des variations de la fonction f_1 sur $[0; +\infty[$.
 - (c) Montrer que la courbe \mathcal{C}_1 admet une asymptote horizontale et préciser la position de \mathcal{C}_1 par rapport à cette asymptote.
 - (d) Déterminer une équation de la tangente T_0 à la courbe \mathcal{C}_1 au point d'abscisse 0.
 - (e) Justifier que f_1 est de classe 2 sur **R**. Étudier la convexité de f_1 et déterminer les éventuels points d'inflexion.

Partie D: étude du cas général

- 1. Étude de la fonction f_n pour $n \in \mathbb{N}^*$. On rappelle que la fonction f_n est définie sur \mathbb{R} par $f_n(x) = x^n \exp(-\frac{x^2}{2})$.
 - (a) Étudier la parité de f_n en fonction de n.
 - (b) Donner le sens de variation de f_n sur \mathbf{R}_+ .