Долни граници

Тодор Дуков

Какво са долни граници?

Дойде времето за по-депресиращите резултати в курса. До сега единственото, което правихме, беше да показваме, че за задача $\mathbf X$ може да се напише алгоритъм със времева сложност O(f) или $\Theta(f)$ за някое $f \in \mathcal F$. Доста естествено изниква следния въпрос:

Bъзможно ли e да съществува по-бърз алгоритъм, който решава задачата ${\bf X}$?

Ясно е, че е неприемлив отговор от сорта на

Не мога да измисля такъв алгоритъм, следователно такъв алгоритъм не съществува.

В тази тема ще се опитаме да отговорим в някакъв смисъл положително на въпроси от този тип. Преди това нека въведем няколко дефиниции.

Изчислителна задача ще наричаме всяко множество от наредени двойки ${\bf X}$, като:

- Dom(X) ще наричаме **вход**;
- $\operatorname{Rng}(\mathbf{X})$ ще наричаме **изход**.

За пример можем да вземем изчислителната задача за сортиране:

Вход: Целочислен масив $A[1 \dots n]$.

Изход: Пермутация $A'[1\dots n]$ на $A[1\dots n]$, за която $A'[1] \leq A'[2] \leq \dots \leq A'[n]$.

Ще казваме, че алгоритъм AlgX решава задачата X, ако за всяко $x \in \text{Dom}(\mathbf{X})$ е изпълнено $\langle x, \mathbf{AlgX}(x) \rangle \in \mathbf{X}$. Нека X е изчислителна задача и нека $f \in F$. Тогава:

- Казваме, че f е долна граница за X, ако всеки алгоритъм, който решава X, работи за време (или брой операции от конкретен вид) поне f^* .
- Казваме, че $\Omega(f)$ е **долна граница** за **X**, ако всеки алгоритъм, който решава **X**, работи за време (или брой операции от конкретен вид) $\Omega(f)$.

Техники за изследване на долни граници

Най-често се използват следните техники, които показват че задача ${\bf X}$ има долна граница за време f (или $\Omega(f)$):

- директни разсъждения за конкретния пример тази техника обикновено се използва в малки задачи, където човек за сравнително малко време може да направи пълен анализ. Разбира се, тази техника се използва и при по-обобщените примери, но не толкова често.
- дърво на взимане на решения тази техника се използва в задачи, където за решаването им се изисква задаването на редица въпроси, чиите отговор ни дава все повече и повече информация. Можем да си мислим за запитванията заедно с информацията, която носят, като едно дърво. Всеки въпрос ще разклонява дървото, докато накрая имаме цялата ни нужна информация в листата, и не трябва да задаваме повече въпроси. Тогава долната граница ще бъде височината на дървото.
- аргументация чрез противник тази техника е трудна да се обясни без да се даде пример. Идеята е, че играем срещу противник, като нашата цел е да разкрием някаква информация, която уж е била предварително фиксирана. Противника обаче си измисля информацията на момента, като целта му е да ни накара да зададем колкото се може повече въпроси и в отговорите му на въпросите да няма противоречия.
- чрез редукция † ако знаем, че можем алгоритмично да сведем задача \mathbf{Y} до задача \mathbf{X} за време по-малко f и \mathbf{Y} има долна граница за време f (или $\Omega(f)$), то тогава второто е изпълнено и за задача \mathbf{X} . В някакъв смисъл тази редукция казва, че задачата \mathbf{X} е поне толкова трудна, колкото задачата \mathbf{Y} .

^{*}Тук се има предвид, че ако T(n) е броят на стъпки (или операции от конкретен вид), за който алгоритъма завършва при вход с големина n, то $f(n) \leq T(n)$.

[†]Това е може би най-приложимата техника от всички. Тя се използва не само в контекста на сложност. Оказва се, че е много удобно човек да може да говори за това дали една задача е "no-mpyдна" от друга в контекста на разрешимост.

Техниките в действие

Ще започнем със пример за аргументация с противник. Решаваме задачата за максимален елемент – даден ни е като вход целочислен масив $A[1\dots n]$ и искаме да получим като изход $\max\{A[i]\mid 1\leq i\leq n\}$. Твърдим, че всеки алгоритъм, който решава задачата, използва поне n-1 сравнения. За целта ще покажем, че във всеки такъв алгоритъм всяко число A[i] участва в някое сравнение. Да допуснем, че има алгоритъм \mathbf{AlgMax} , за който A[i] не участва в сравнения за някое $1\leq i\leq n$.

- Ако **AlgMax** връща A[i], то тогава ако сменим A[i] със A[i] 1, **AlgMax** няма да различи по никакъв начин двата входа и ще върне същия резулат, което е абсурд, защото вече трябва да върне нещо друго.
- Ако **AlgMax** връща A[j] за някое $j \neq i$, то тогава ако сменим A[i] със A[j] + 1, **AlgMax** няма да различи по никакъв начин двата входа и ще върне същия резултат, което е абсурд, защото вече трябва да върне A[i].

Тогава първия елемент ще участва в поне едно сравнение с някой друг, откъдето сме отметнали 2 елемента с 1 сравнение. Останалите също участват в поне едно сравнение (може и с някой от предните два), откъдето за останалите n-2 елемента използваме още поне n-2 сравнения. Общо стават n-2+1=n-1 сравнения. Човек лесно може да напише алгоритъм, който използва точно n-1 сравнения.

Нека сега дадем пример за дърво на вземане на решения. Разглеждаме задачата за сортиране. Ще покажем, че всеки сортиращ алгоритъм, който работи на базата на директни сравнения, работи за време $\Omega(n \log(n))$. Нека фиксираме $n \in \mathbb{N}$ и някакъв символ a. Нека \mathcal{T}_n е множеството от всички дървета, за които е изпълнено, че:

- върховете са от вида $(a_i < a_j, P)$, където $1 \le i, j \le n, P \subseteq S_n^{\ddagger}$ и $|P| \ge 2$, или са от вида $\sigma \in S_n$;
- коренът е $(a_i < a_j, P)$ за някои $1 \le i, j \le n$;
- за всеки връх от вида $(a_i < a_j, P)$, има $1 \le k_1, k_2, m_1, m_2 \le n$, за които:
 - лявото му дете е $(a_{k_1} < a_{m_1}, \{ \sigma \in P \mid \sigma(i) < \sigma(j) \})$, и
 - дясното му дете е $(a_{k_2} < a_{m_2}, \{ \sigma \in P \mid \sigma(i) \not< \sigma(j) \});$
- \bullet всеки връх от вида $\sigma \in S_n$ е листо.

Тогава ако вземем произволен алгоритъм за сортиране \mathbf{AlgX} , който е базиран на сравнение, при пресмятането на $\mathbf{AlgX}(A[1\dots n])$, можем да забележим, че траверсираме някое дърво $T\in\mathcal{T}_n$ от корен до листо. В корена се намира първото запитване $a_i < a_j$ (т.е. можем да си мислим, че питаме дали A[i] < A[j]), и спрямо отговора на дадено запитване ние се движим наляво или надясно в дървото. Накрая се намираме в листо $\sigma \in S_n$, която задава сортирана пермутация $A'[1\dots n]$ на $A[1\dots n]$ така $-A'[i] = A[\sigma(i)]$. Това означава, че за всяко сравнение по време на работа на $\mathbf{AlgX}(A[1\dots n])$ можем да си мислим, че минаваме през едно ребро в T. В най-лошия случай входа $A[1\dots n]$ би бил такъв, че да трябва да изминем максимален път от корен до листо т.е. път с дължина h(T). Но T е двоично дърво с n! листа и разклоненост 2, следователно $h(T) \geq \log_2(n!)$. Така в този случай извикването $\mathbf{AlgX}(A[1\dots n])$ ще използва поне $\log(n!)$ сравнения. Тъй като $\log(n!) \asymp n \log(n)$, получаваме че всеки сортиращ алгоритъм, базиран на сравнения, прави $\Omega(n\log(n))$ сравнения.

Нека сега покажем един пример с редукция. Разглеждаме изчислителната задача Матрьошки:

Вход: Масив $T[1 \dots n]$ със елементи от вида (l, w, h) – дължините, широчините, височините на n играчки с форма на правоъгълен паралелепипед, които могат да се вложат една в друга.

Изход: Ред на влагане на играчките, като вътрешната играчка е първа.

Оказва се, че тази задача се решава (на базата на директни сравнения) за време $\Omega(n\log(n))$. Ще покажем това като сведем задачата за сортиране към **Матрьошки**. Нека **AlgM** е алгоритъм, който решава задачата **Матрьошки** със сложност по време f(n). Тогава следният алгоритъм очевидно сортира масива A[1...n]:

- 1. Декларираме нов масив T[1...n].
- 2. За всяко $1 \le i \le n$ инициализираме T[i] със (A[i], A[i], A[i]).
- 3. Извикваме $\mathbf{AlgM}(T[1...n])$ с резултат T'[1...n].
- 4. Декларираме нов масив $A'[1 \dots n]$
- 5. За всяко $1 \le i \le n$ инициализираме A'[i] със $\operatorname{fst}(T'[i])$, където $\operatorname{fst}((a,b,c)) = a$.
- 6. Връщаме $A'[1 \dots n]$.

Сложността на алгоритъма е $\Theta(n + f(n))$. Ако $f(n) = o(n \log(n))$, щяхме да получим сортиращ алгоритъм, който работи за време $o(n \log(n))$, което е абсурд.

 $^{^{\}ddagger}S_n$ е симетричната група за $\{1,\ldots,n\}$.