AMENDMENTS TO THE CLAIMS

1. (Original): The compound of the general formula (1):

wherein

W. Z and one of X and Y are N and the other one of X and Y is CR8:

R⁸ is H, halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio or halo(C₁₋₄)alkyl;

R and R² are independently H, halo, C₁₋₈ alkyl, C₁₋₈ alkoxy, C₁₋₈ alkylthio, C₂₋₈ alkenyl, C₂₋₈ al

 R^1 is halo, $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{3.8}$ cycloalkyl, $C_{1.8}$ alkyl, $C_{1.8}$ alkoxy, $C_{1.8}$ alkylthio, aryl, aryloxy, arylthio, heteroaryl, heteroaryloxy, heteroarylthio, aryl($C_{1.4}$)alkoxy, heteroaryl($C_{1.4}$)alkoxy, heteroaryl($C_{1.4}$)alkoxy, aryl($C_{1.4}$)alkyl, heteroaryl($C_{1.4}$)alkoxy, aryl($C_{1.4}$)alkylthio, morpholino, piperidino or pyrrolidino;

 R^3 and R^4 are independently H, $C_{1:6}$ alkyl, $C_{2:6}$ alkenyl, $C_{2:6}$ alkynyl, aryl, aryl($C_{1:6}$)alkyl, $C_{3:6}$ cycloalkyl, $C_{3:6}$ cycloalkyl, $C_{3:6}$ cycloalkyl, $C_{3:6}$ cycloalkyl, $C_{1:6}$)alkyl, heteroaryl($C_{1:6}$)alkyl, NR^5R^6 , provided that not both R^3 and R^4 are H or NR^5R^6 , or

 R^3 and R^4 together form a $C_{3.7}$ alkylene or $C_{3.7}$ alkenylene chain optionally substituted with one or more $C_{1.4}$ alkyl or $C_{1.4}$ alkoxy groups, or,

together with the nitrogen atom to which they are attached, R³ and R⁴ form a morpholine, thiomorpholine, thiomorpholine S-oxide or thiomorpholine S-dioxide ring or a piperazine or piperazine N-(C₁₋₄)alkyl (especially N-methyl) ring; and

 $R^{5} \ \text{and} \ R^{6} \ \text{are independently H, } C_{1:\theta} \ \text{alkyl}, \ C_{2:\theta} \ \text{alkenyl}, \ C_{2:\theta} \ \text{alkynyl}, \ \text{aryl}, \ \text{aryl}(C_{1:\theta}) \ \text{alkyl}, \ C_{3:\theta} \ \text{cycloalkyl}, \ C_{3:\theta} \ \text{cycloal$

any of the foregoing alkyl, alkenyl, alkynyl or cycloalkyl groups or moieties (other than for R^8) being optionally substituted with halogen, cyano, $C_{1:6}$ alkoxy, $C_{1:6}$ alkylcarbonyl, $C_{1:6}$ alkoxycarbonyl, $C_{1:6}$ haloalkoxy, $C_{1:6}$ alkylthio, tri($C_{1:4}$)alkylsilyl, $C_{1:6}$ alkylamino or $C_{1:6}$ dialkylamino,

any of the foregoing morpholine, thiomorpholine, piperidine, piperazine and pyrrolidine rings being optionally substituted with C_{1-4} alkyl (especially methyl), and any of the foregoing aryl or heteroaryl groups or moieties being optionally substituted with one or more substituents selected from halo, hydroxy, mercapto, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} a

alkynyloxy, halo(C_{1-6})alkyl, halo(C_{1-6})alkoxy, C_{1-6} alkylthio, halo(C_{1-6})alkyl, c₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl, phenoxy, benzyloxy, benzyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR"R"", -NHCOR", -NHCONR"R"", -CONR""R"", -SO₂R", -COR", -CR"", -NR"R"" or -N=CR"R"", in which R" and R"" are independently hydrogen, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkoxy, halo(C_{1-4})alkyl, C_{1-6} alkyl, phenyl or benzyl, the phenyl and benzyl groups being optionally substituted with halogen, C_{1-4} alkyl or C_{1-4} alkoxy.

- 2. (Original): A compound according to claim 1 wherein W, Z and one of X and Y are N and the other one of X and Y is CH.
- (Previously presented) A compound according to claim 1 wherein R² is NR³R⁴.
- 4. (Original) A compound according to claim 3 wherein R is halo.
- 5. (Previously presented) A compound according to claim 1 wherein

 R^3 is $\mathsf{C}_{1.8}$ alkyl, halo($\mathsf{C}_{1.8}$)alkyl, hydroxy($\mathsf{C}_{1.8}$)alkyl, $\mathsf{C}_{1.4}$ alkoxy($\mathsf{C}_{1.8}$)alkyl, $\mathsf{C}_{1.4}$ alkoxyhalo($\mathsf{C}_{1.8}$)alkyl, tri($\mathsf{C}_{1.4}$)alkylsilyl($\mathsf{C}_{1.6}$)alkyl, $\mathsf{C}_{1.4}$ alkylcarbonyl($\mathsf{C}_{1.8}$)alkyl, $\mathsf{C}_{1.4}$ alkylcarbonylhalo($\mathsf{C}_{1.8}$)alkyl, phenyl($_{1.4}$)alkyl, $\mathsf{C}_{2.8}$ alkenyl, halo($\mathsf{C}_{2.8}$)alkenyl, $\mathsf{C}_{2.8}$ alkynyl, $\mathsf{C}_{3.8}$ cycloalkyl optionally substituted with chloro, fluoro or methyl, $\mathsf{C}_{3.8}$ cycloalkyl($\mathsf{C}_{1.4}$)alkyl, phenylamino, piperidino or morpholino, the phenyl ring of phenylalkyl or phenylamino being optionally substituted with one, two or three substituents selected from halo, $\mathsf{C}_{1.4}$ alkyl, halo($\mathsf{C}_{1.4}$)alkyl, $\mathsf{C}_{1.4}$ alkoxy and halo($\mathsf{C}_{1.4}$)alkoxy; and

R4 is H, C14 alkyl, halo(C14)alkyl or amino, or

 ${\sf R}^3$ and ${\sf R}^4$ together form a ${\sf C}_{3\text{-}7}$ alkylene or alkenylene chain optionally substituted with methyl, or,

together with the nitrogen atom to which they are attached, R³ and R⁴ form a morpholine, thiomorpholine, thiomorpholine S-oxide or thiomorpholine S-dioxide ring or a piperazine or piperazine N-(C₁₋₄)alkyl (especially N-methyl) ring, in which the morpholine or piperazine rings are optionally substituted with methyl.

6. (Previously presented) A compound according to claim 1 wherein

 R^1 is phenyl optionally substituted with from one to five halogen atoms or with from one to three substituents selected from halo, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkoxy or halo(C_{1-4})alkoxy, pyridyl optionally substituted with from one to four halogen atoms or with from one to three substituents selected from halo, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkoxy or halo(C_{1-4})alkoxy, 2- or 3-thienyl optionally substituted with from one to three halogen atoms or with from one to three substituents selected from halo, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkoxy or halo(C_{1-4})alkoxy, or piperidino or morpholino both optionally substituted with one or two methyl groups.

- (Original) A compound according to claim 6 wherein R¹ is 2,6-diffluorophenyl, 2-fluoro-6chlorophenyl, 2,5,6-trifluorophenyl, 2,4,6-trifluorophenyl, 2,6-difluoro-4-methoxyphenyl or pentafluorophenyl.
- (Original): A compound according to claim 1 wherein
 W, Z and one of X and Y are N and the other one of X and Y is CR⁸;
 R⁸ is H, halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio or halo(C₁₋₄)alkyl;
 one of R and R² (preferably R²) is NR³R⁴ and the other is halo;

 R^1 is halo, $C_{1:8}$ alkyl, $C_{2:8}$ alkenyl, $C_{2:8}$ alkynyl, $C_{3:8}$ cycloalkyl, $C_{3:8}$ cycloalkyl, $(C_{1:8})$ alkoxy, $C_{1:8}$ alkylthio, aryl, aryloxy, arylthio, heteroaryl, heteroaryloxy, heteroarylthio, aryl($C_{1:4}$)alkoxy, heteroaryl($C_{1:4}$)alkylthio, morpholino, piperidino or pyrrolidino;

 R^3 and R^4 are independently H, $C_{1:8}$ alkyl, $C_{2:8}$ alkenyl, $C_{2:8}$ alkynyl, aryl, $aryl(C_{1:8})$ alkyl, $C_{3:8}$ cycloalkyl, $C_{3:8}$ cycloalkyl, $C_{3:8}$ cycloalkyl, $C_{1:8}$)alkyl, heteroaryl($C_{1:8}$)alkyl, NR^5R^8 , provided that not both R^3 and R^4 are H or NR^5R^8 , or

 R^3 and R^4 together form a $C_{3.7}$ alkylene or $C_{3.7}$ alkenylene chain optionally substituted with one or more $C_{1.4}$ alkyl or $C_{1.4}$ alkoxy groups, or together with the nitrogen atom to which they are attached, R^3 and R^4 form a morpholine, thiomorpholine, thiomorpholine S-oxide or thiomorpholine S-dioxide ring or a piperazine or piperazine N- $(C_{1.4})$ alkyl (especially N-methyl) ring; and

 R^5 and R^6 are independently H, $C_{1:8}$ alkyl, $C_{2:8}$ alkenyl, $C_{2:8}$ alkynyl, aryl, aryl($C_{1:8}$)alkyl, $C_{3:8}$ cycloalkyl, $C_{3:8}$ cycloalkyl, $C_{3:8}$ cycloalkyl, $C_{3:8}$ cycloalkyl, $C_{3:8}$ cycloalkyl, $C_{3:8}$ alkyl, heteroaryl or heteroaryl $C_{1:8}$)alkyl;

any of the foregoing alkyl, alkenyl, alkynyl or cycloalkyl groups or moieties (other than for R^8) being optionally substituted with halogen, cyano, $C_{1:6}$ alkoxy, $C_{1:6}$ alkylcarbonyl, $C_{1:6}$ alkoxycarbonyl, $C_{1:6}$ haloalkoxy, $C_{1:6}$ alkylthio, tri $(C_{1:4})$ alkylsiiyl, $C_{1:6}$ alkylamino or $C_{1:6}$ dialkylamino,

any of the foregoing morpholine, thiomorpholine, piperidine, piperazine and pyrrolidine rings being optionally substituted with C_{1-4} alkyl (especially methyl), and

any of the aryl, heteroaryl, aryloxy or heteroaryl groups being optionally substituted with one or more substituents selected from halo, hydroxy, mercapto, $C_{1.6}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkenyloxy, $C_{2.6}$ alkylthio, halo($C_{1.6}$)alkylthio, hydroxy($C_{1.6}$)alkyl, $C_{1.4}$ alkoxy($C_{1.6}$)alkyl, $C_{3.6}$ cycloalkyl, $C_{3.6}$ cycloalkyl, $C_{1.6}$ alkyl, phenoxy, benzyloxy, benzyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR"R"", -NHCOR", -NHCONR"R"", -CONR"R"", -SO₂R", -OSO₂R", -COR", -CR"=NR"" or -N=CR"R"", in which R" and R"" are independently hydrogen, $C_{1.4}$ alkyl, halo($C_{1.4}$)alkyl, $C_{1.4}$

alkoxy, halo(C_{14})alkoxy, C_{14} alkylthio, C_{36} cycloalkyl, C_{36} cycloalkyl (C_{14})alkyl, phenyl or benzyl, the phenyl and benzyl groups being optionally substituted with halogen, C_{14} alkyl or C_{14} alkoxy.

9. (Original): A compound according to claim 1 wherein

W. Z and one of X and Y are N and the other one of X and Y is CR8:

 $R^8 \text{ is H, halo, C}_{1\text{-}4} \text{ alkyl, C}_{1\text{-}4} \text{ alkoxy, C}_{1\text{-}4} \text{ alkylthio or halo(C}_{1\text{-}4}) \text{alkyl;}$

one of R and R² (preferably R²) is NR³R⁴ and the other is halo;

 R^1 is halo, $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{3.8}$ cycloalkyl, $C_{1.8}$)alkyl, $C_{1.8}$ alkyl, $C_{1.8}$ alkylthio, aryl, aryloxy, arylthio, heteroaryl, heteroaryloxy, heteroarylthio, aryl($C_{1.4}$)alkyl, aryl($C_{1.4}$)alkoxy, heteroaryl($C_{1.4}$)alkoxy, heteroaryl($C_{1.4}$)alkyl, heteroaryl($C_{1.4}$)alkoxy, aryl($C_{1.4}$)alkylthio, morpholino, piperidino or pyrrolidino;

 R^3 is C_{14} alkyl, halo(C_{14})alkyl, C_{24} alkenyl, C_{36} cycloalkyl, C_{36} cycloalkyl(C_{14})alkyl or phenylamino in which the phenyl ring is optionally substituted with one, two or three substituents selected from halo, C_{14} alkyl, halo(C_{14})alkyl, C_{14} alkoxy and halo(C_{14})alkoxy; and R^4 is H, C_{14} alkyl or amino, or

R³ and R⁴ together form a C₄₋₆ alkylene chain optionally substituted with C₁₋₄ alkyl or C₁₋₄ alkoxy, or, together with the nitrogen atom to which they are attached, R³ and R⁴ form a morpholine, thiomorpholine, thiomorpholine S-oxide or thiomorpholine S-dioxide ring or a piperazine or piperazine *N*-(C₁₋₄)alkyl (especially *N*-methyl) ring;

any of the alkyl, alkenyl, alkynyl or cycloalkyl groups or moieties (other than for R^8) being optionally substituted with halogen, cyano, $C_{1.6}$ alkoyy, $C_{1.6}$ alkylcarbonyl, $C_{1.6}$ alkoyycarbonyl, $C_{1.6}$ haloalkoxy, $C_{1.6}$ alkylthio, tri($C_{1.4}$)alkylsilyl, $C_{1.6}$ alkylamino or $C_{1.6}$ dialkylamino,

any of the foregoing morpholine, thiomorpholine, piperidine, piperazine and pyrrolidine rings being optionally substituted with C_{14} alkyl (especially methyl), and

any of the aryl or heteroaryl groups or moieties being optionally substituted with one or more substituents selected from halo, hydroxy, mercapto, C_{16} alkyl, C_{26} alkenyl, C_{26} alkynyl, C_{16} alkoxy, C_{26} alkenyloxy, C_{26} alkynyloxy, halo(C_{16})alkyl, halo(C_{16})alkvyl, C_{36} cycloalkyl, C_{36} alkylthio, halo(C_{16})alkyl, C_{36} cycloalkyl, C_{36} cycloalkyl(C_{14})alkyl, phenoxy, benzyloxy, benzoyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR"R"'', -NHCOR"', -NHCONR"R''', -CONR"R''', -SO₂R'', -OSO₂R'', -COR'', -CR'''=NR''' or -N=CR'''R''', in which R''' and R''' are independently hydrogen, C_{14} alkyl, halo(C_{14})alkyl, C_{14} alkoxy, halo(C_{14})alkoxy, C_{14} alkylthio, C_{36} cycloalkyl, C_{36} cycloalkyl(C_{14}) alkyl, phenyl or benzyl, the phenyl and benzyl groups being optionally substituted with halogen, C_{14} alkyl or C_{14} alkoxy.

10. (Original) A compound according to claim 1 wherein

W. Z and one of X and Y are N and the other one of X and Y is CR8:

R⁸ is H, halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio or halo(C₁₋₄)alkyl;

R and R² are independently H, halo, C₁₋₈ alkyl, C₁₋₈ alkoyt, C₁₋₈ alkylthio, C₂₋₈ alkenyl, C₂₋₈ alkynyl, cyano or NR³R⁴, provided that at least one of R and R² (preferably R²) is NR³R⁴;

R¹ is optionally substituted phenyl;

 R^3 and R^4 are independently H, $C_{1:8}$ alkyl, $C_{2:8}$ alkenyl, $C_{2:8}$ alkynyl, aryl, $aryl(C_{1:8})$ alkyl, $C_{3:8}$ cycloalkyl, $C_{3:8}$ c

 R^3 and R^4 together form a $C_{3.7}$ alkylene or $C_{3.7}$ alkenylene chain optionally substituted with one or more $C_{1.4}$ alkyl or $C_{1.4}$ alkoxy groups, or, together with the nitrogen atom to which they are attached, R^3 and R^4 form a morpholine, thiomorpholine, thiomorpholine S-oxide or thiomorpholine S-dioxide ring or a piperazine or piperazine N- $(C_{1.4})$ alkyl (especially N-methyl) ring; and

 $R^{5} \ and \ R^{6} \ are independently \ H, \ C_{1:8} \ alkyl, \ C_{2:8} \ alkenyl, \ C_{2:8} \ alkynyl, \ aryl, \ aryl(C_{1:8})alkyl, \ C_{3:8} \ cycloalkyl, \ C_{3:8} \ cycloalkyl, \ C_{3:8} \ alkyl;$

any of the alkyl, alkenyl, alkynyl or cycloalkyl groups or moieties (other than for R^8) being optionally substituted with halogen, cyano, $C_{1.6}$ alkoyy, $C_{1.6}$ alkylcarbonyl, $C_{1.6}$ alkoyycarbonyl, $C_{1.6}$ haloalkoxy, $C_{1.6}$ alkylthio, tri($C_{1.4}$)alkylsilyl, $C_{1.6}$ alkylamino or $C_{1.6}$ dialkylamino,

any of the foregoing morpholine, thiomorpholine, piperidine, piperazine and pyrrolidine rings being optionally substituted with C_{1-4} alkyl (especially methyl), and

any of the aryl or heteroaryl groups or moieties, including the phenyl group of R^1 , being optionally substituted with one or more substituents selected from halo, hydroxy, mercapto, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkenyloxy, C_{2-6} alkenyloxy, C_{2-6} alkenyloxy, halo (C_{1-6}) alkyl, halo (C_{1-6}) alkylthio, hydroxy (C_{1-6}) alkyl, C_{1-6} alkylthio, hydroxy (C_{1-6}) alkyl, C_{1-6} alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl, phenoxy, benzyloxy, benzyloxy, cyano, isocyano, thiocyanato, sothiocyanato, nitro, -NR"R"", -NHCOR", -NHCONR"R"", -CONR"R"", -SO $_2$ R", -COR", -CR"=NR"" or -N=CR"R"", in which R" and R" are independently hydrogen, C_{1-6} alkyl, halo (C_{1-4}) alkyl, C_{1-6} alkoxy, halo (C_{1-4}) alkyl, C_{3-6} cycloalkyl, C_{3-6}

11. (Original) A compound according to claim 1 wherein

W, Z and one of X and Y are N and the other one of X and Y is CR8;

R⁸ is H, halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio or halo(C₁₋₄)alkyl;

R is H, halo, C₁₋₄ alkyl), C₁₋₄ alkoxy or cyano;

 R^1 is phenyl optionally substituted with from one to five halogen atoms or with from one to three substituents selected from halo, $C_{1\!-\!4}$ alkyl, halo($C_{1\!-\!4}$)alkyl, $C_{1\!-\!4}$ alkoxy or halo($C_{1\!-\!4}$)alkoxy, pyridyl optionally substituted with from one to four halogen atoms or with from one to three substituents selected from halo, $C_{1\!-\!4}$ alkyl, halo($C_{1\!-\!4}$)alkyl, $C_{1\!-\!4}$ alkoxy or halo($C_{1\!-\!4}$)alkoxy, 2- or 3-thienyl optionally substituted with from one to three halogen atoms or with from one to three substituents selected from halo, $C_{1\!-\!4}$ alkyl, halo($C_{1\!-\!4}$)alkyl, $C_{1\!-\!4}$ alkoxy or halo($C_{1\!-\!4}$)alkoxy, or piperidino or morpholino both optionally substituted with one or two methyl groups;

R2 is NR3R4:

 R^3 is $C_{1.8}$ alkyl, $halo(C_{1.8})$ alkyl, $hydroxy(C_{1.8})$ alkyl, $C_{1.4}$ alkoxy($C_{1.8})$ alkyl, $C_{1.4}$ alkoxyhalo($C_{1.8}$)alkyl, $tri(C_{1.4})$ alkylsilyl($C_{1.6}$)alkyl, $C_{1.4}$ alkylcarbonyl($C_{1.8}$)alkyl, $C_{1.4}$ alkylcarbonylhalo($C_{1.8}$)alkyl, $C_{1.4}$ alkylcarbonylhalo($C_{1.8}$)alkyl, $C_{1.4}$ alkylcarbonylhalo($C_{1.8}$)alkyl, $C_{1.4}$ alkylcarbonylhalo($C_{1.8}$)alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkynyl, $C_{3.8}$ cycloalkyl optionally substituted with chloro, fluoro or methyl, $C_{3.8}$ cycloalkyl($C_{1.4}$)alkyl, phenylamino, piperidino or morpholino, the phenyl ring of phenylalkyl or phenylamino being optionally substituted with one, two or three substituents selected from halo, $C_{1.4}$ alkyl, halo($C_{1.4}$)alkyl, $C_{1.4}$ alkyl, alo($C_{1.4}$)alkyl, alo($C_{1.4}$)alkyl, $C_{1.4}$ alkyl, alo($C_{1.4}$)alkyl, alo

R4 is H. C14 alkyl, halo(C14)alkyl or amino, or

 R^3 and R^4 together form a $C_{3\cdot7}$ alkylene or $C_{3\cdot7}$ alkenylene chain optionally substituted with methyl, or,

together with the nitrogen atom to which they are attached, R³ and R⁴ form a morpholine, thiomorpholine, thiomorpholine S-oxide or thiomorpholine S-dioxide ring or a piperazine or piperazine N-(C₁₋₄)alkyl (especially N-methyl) ring, in which the morpholine or piperazine rings are optionally substituted with methyl.

12. (Original) A compound according to claim 1 wherein

W. Z and one of X and Y are N and the other one of X and Y is CR8:

R⁸ is H. halo, C_{1,4} alkyl, C_{1,4} alkoxy or halo(C_{1,4})alkyl;

R is halo;

 R^1 is phenyl optionally substituted with from one to five halogen atoms or with from one to three substituents selected from halo, C_{1-4} alkyl, halo(C_{1-4})alkyl, C_{1-4} alkoxy or halo(C_{1-4})alkoxy;

R2 is NR3R4:

 R^3 is $C_{1.4}$ alkyl, halo($C_{1.4}$)alkyl, $C_{2.4}$ alkenyl, $C_{3.6}$ cycloalkyl, $C_{3.6}$ cycloalkyl($C_{1.4}$)alkyl or phenylamino in which the phenyl ring is optionally substituted with one, two or three substituents selected from halo, $C_{1.4}$ alkyl, halo($C_{1.4}$)alkyl, $C_{1.4}$ alkoxy and halo($C_{1.4}$)alkoxy; and

R⁴ is H, C₁₋₄ alkyl or amino, or R³ and R⁴ together form a C₄₋₆ alkylene chain optionally substituted with methyl, or, together with the nitrogen atom to which they are attached, R³ and R⁴ form a morpholine ring.

13. (Original) A process for preparing a compound of the general formula (1) according to claim 1 wherein one of R and R² is chloro or fluoro and the other is NR³R⁴ and W, X, Y, Z, R¹, R³ and R⁴ are as defined in claim 1, which comprises reacting an amine of the general formula NR³R⁴ with a compound of the general formula (6) or (13):

14. (Withdrawn) The intermediate chemicals having the general formulae (4), (5), (6) and (13):

wherein W, X, Y, Z and R^1 are as defined in claim1 and R^7 is $C_{1.4}$ alkyl.

- 15. (Original) A plant fungicidal composition comprising a fungicidally effective amount of a compound as defined in claim 1 and a suitable carrier or diluent therefor.
- 16. (Previously presented) A method of combating or controlling phytopathogenic fungi which comprises applying to a plant, to a seed of a plant, to the locus of the plant or seed or to soil or to any other plant growth medium, a fungicidally effective amount of a compound according to claim 1.
- 17. (New) A compound according to claim 1 having the formula:

wherein:

R is H, halo, C₁₋₈ alkyl, C₁₋₈ alkoxy, C₁₋₈ alkylthio, C₂₋₈ alkenyl, C₂₋₈ alkynyl, cyano or NR³R⁴;

 R^3 and R^4 are independently H, $C_{1:8}$ alkyl, $C_{2:8}$ alkenyl, $C_{2:8}$ alkynyl, aryl, $C_{1:8}$ alkyl, heteroaryl, heteroaryl, $C_{1:8}$ lalkyl, NR^5R^6 , provided that not both R^3 and R^4 are H or NR^5R^6 , or

 R^3 and R^4 together form a $C_{3\cdot7}$ alkylene or $C_{3\cdot7}$ alkenylene chain optionally substituted with one or more $C_{1\cdot4}$ alkyl or $C_{1\cdot4}$ alkoxy groups, or,

together with the nitrogen atom to which they are attached, R³ and R⁴ form a morpholine, thiomorpholine, thiomorpholine S-oxide or thiomorpholine S-dioxide ring or a piperazine or piperazine N-(C₁₋₄)alkyl (especially N-methyl) ring; and

 R^5 and R^6 are independently H, $C_{1:8}$ alkyl, $C_{2:8}$ alkenyl, $C_{2:8}$ alkynyl, aryl, aryl($C_{1:8}$)alkyl, $C_{3:8}$ cycloalkyl, $C_{3:8}$ c