

Data Stewardship for Plasma Technology – Atmospheric Pressure Plasma Jets

Markus Becker, Marina Prenzel

Online meeting, 2021-11-26

Overall aim

Research data management in the field of plasma technology in accordance with the FAIR data principles:

To make data and metadata

Findable

Accessible

Interoperable

Reusable

Wilkinson, M., Dumontier, M., Aalbersberg, I. *et al.*The FAIR Guiding Principles for scientific data management and stewardship. *Sci Data* **3**, 160018 (2016). https://doi.org/10.1038/sdata.2016.18

- Since decades: usage of fundamental data for experimental and theoretical analyses, e.g.
 - NIST Atomic Spectra Database
 - Springer Landolt-Börnstein Database

- Since decades: usage of fundamental data for experimental and theoretical analyses, e.g.
 - NIST Atomic Spectra Database
 - Springer Landolt-Börnstein Database
 - Since years: central collection of cross sections, swarm data and transport coefficients, e.g.
 - LXCat
 - Quantemol-DB

- Since decades: usage of fundamental data for experimental and theoretical analyses, e.g.
 - NIST Atomic Spectra Database
 - Springer Landolt-Börnstein Database
 - Since years: central collection of cross sections, swarm data and transport coefficients, e.g.
 - LXCat
 - Quantemol-DB

Recently: data repositories for sharing and preservation of digital datasets

INPTDAT and RDPCIDAT

- Since decades: usage of fundamental data for experimental and theoretical analyses, e.g.
 - NIST Atomic Spectra Database
 - Springer Landolt-Börnstein Database

Since years: central collection of cross sections, swarm data and transport coefficients, e.g.

- LXCat
- Quantemol-DB

Recently: data repositories for sharing and preservation of digital datasets

INPTDAT and RDPCIDAT

Future requirements: standardized data, digital workflows, data-driven research and development

Challenges in plasma technology

- Research is in a wide range characterized by small-scale table-top experiments.
- Variety of plasma sources and applications lead to the situation that setups in the different research groups are unique in almost all cases.
- Not only the processes in the plasma but the manifold interactions with gaseous, liquid and solid surroundings are usually important.
- Scientific results can hardly be compared and validated on a quantitative level without an almost complete documentation of the experiments including the diagnostic tools.

Metadata are required to describe, find and re-use data

General concept for metadata in plasma technology

- Plasma
 - o ... is generated by a plasma source
 - is operated with/in a medium
 - o ... is sometimes used to treat a target
- Diagnostics (experimental and/or computational methods) are used to study the plasma, medium and/or target
- Stored research data (resources) are often useless without information about the whole process
- Specification of the plasma helps to find relevant data sets

Plasma-MDS

- Metadata schema for plasma science
- Standardized description of
 - plasma source

Plasma metadata schema

- plasma medium
- plasma target
- diagnostics / modelling / simulations
- resources (data)
- Research data repositories implementing Plasma-MDS at INP (https://www.inptdat.de) and RUB (https://rdpcidat.rub.de)

filetype datatype

range

quality

name

name

name

name

Aim of the INF project at CRC 1316

- Generation of FAIR data within CRC 1316
- Different measures installed to reach this goal
 - Repository as tool for publication of data from journals
 - Electronic lab book eLabFTW planned as prototype to be hosted at IT.Services
- Cooperations
 - QPTDat to develop meta data schemes and to communicate Plasma-MDS to plasma community
 - IT.Services from RUB for workshops & software support
 - Use case in NFDI4Phys (proposal submitted)

INF project at CRC 1316

- Data stewards as responsible persons from each sub field of the CRC 1316
- Exchange with QPQDat concerning meta data schemes
 - Every third Friday of the month meeting with INP for meta data scheme evolution at 1pm
 - Changing topics to cover all field of plasma science
 - Data stewards requested to contribute to the session, scientists are welcome

Why we are here?

Our practical goal

Further development of terminology and schemas for community ontology

Suggested approach

- 1. Collaborative editing of drafts (now) https://docs.google.com/document/d/1tlWyySpqEV5RHLSesbpS20O5HETylZwybEDqVlk2mRQ/edit#
- 2. Transfer to public Github repository (right after the workshop) https://github.com/plasma-mds/plasma-metadata-schema
- 3. Re-use of the outcome by anyone who is interested
 - E.g. electronic lab notebooks, databases, automated workflows
- 4. Further iterations via Github by anyone who is interested to contribute

Expected benefits

- Uniform documentation of experiments
- Traceability and ensuring comparability of data and devices
- Simplified publication and quality assurance of data and metadata

Ontology based community approach

