Basic Number Theory

Agenda

- Divisors
- Primality
- Fundamental Theorem of Arithmetic
- Division Algorithm
- Greatest common divisors/least common multiples
- Relative Primality
- Modular arithmetic
- Caesar's Cipher

Importance of Number Theory

Before the dawn of computers, many viewed number theory as last bastion of "pure math" which could not be useful and must be enjoyed only for its aesthetic beauty.

No longer the case. Number theory is crucial for encryption algorithms. Of utmost importance to everyone from Bill Gates, to the CIA, to Osama Bin Laden.

E.G., of great importance in COMS 4180 "Network Security".

Importance of Number Theory

The encryption algorithms depend heavily on modular arithmetic. We need to develop various machinery (notations and techniques) for manipulating numbers before can describe algorithms in a natural fashion.

First we start with divisors.

Divisors

DEF: Let a, b and c be integers such that $a = b \cdot c$.

Then b and c are said to **divide** (or are **factors**) of a, while a is said to be a **multiple** of b (as well as of c). The pipe symbol "|" denotes "divides" so the situation is summarized by:

 $b \mid a \wedge c \mid a$.

NOTE: Students find notation confusing, and think of "|" in the reverse fashion, perhaps confuse pipe with forward slash "/"

Divisors. Examples

Q: Which of the following is true?

- 1. 77 | 7
- 2.7 | 77
- 3. 24 | 24
- 4. 0 | 24
- 5. 24 | 0

Divisors. Examples

A:

- 1. 77 | 7: false bigger number can't divide smaller positive number
- 2. 7 | 77: true because $77 = 7 \cdot 11$
- 3. 24 | 24: true because $24 = 24 \cdot 1$
- 4. 0 | 24: false, only 0 is divisible by 0
- 5. 24 | 0: true, 0 is divisible by every number $(0 = 24 \cdot 0)$

Formula for Number of Multiples up to given *n*

Q: How many positive multiples of 15 are less than 100?

Formula for Number of Multiples up to given *n*

A: Just list them:

15, 30, 45, 60, 75, 80, 95.

Therefore the answer is 6.

Q: How many positive multiples of 15 are less than 1,000,000?

Formula for Number of Multiples up to Given *n*

A: Listing is too much of a hassle. Since 1 out of 15 numbers is a multiple of 15, if 1,000,000 were were divisible by 15, answer would be exactly 1,000,000/15. However, since 1,000,000 isn't divisible by 15, need to round down to the highest multiple of 15 less than 1,000,000 so answer is 1,000,000/15.

In general: The number of *d*-multiples less than *N* is given by:

 $|\{m \in \mathbf{Z}^+ \mid d \mid m \text{ and } m \leq N\}|$

Divisor Theorem

THM: Let a, b, and c be integers. Then:

- 1. $a|b \wedge a|c \rightarrow a|(b+c)$
- 2. $a|b \rightarrow a|bc$
- 3. $a|b \wedge b|c \rightarrow a|c$

EG:

- 1. $17|34 \land 17|170 \rightarrow 17|204$
- 2. $17|34 \rightarrow 17|340$
- 3. $6|12 \land 12|144 \rightarrow 6 \mid 144$

Divisor Theorem. Proof of no. 2

In general, such statements are proved by starting from the definitions and manipulating to get the desired results.

EG. Proof of no. 2 $(a|b \rightarrow a|bc)$:

Suppose a|b. By definition, there is a number m such that b = am. Multiply both sides by c to get bc = amc = a (mc). Consequently, bc has been expressed as a times the integer mc so by definition of "|", a|bc \square

Prime Numbers

DEF: A number $n \ge 2$ **prime** if it is only divisible by 1 and itself. A number $n \ge 2$ which isn't prime is called **composite**.

Q: Which of the following are prime? 0,1,2,3,4,5,6,7,8,9,10

Prime Numbers

- A: 0, and 1 not prime since not positive and greater or equal to 2
 - 2 is prime as 1 and 2 are only factors
 - 3 is prime as 1 and 3 are only factors.
 - 4,6,8,10 not prime as *non-trivially* divisible by 2.
 - 5, 7 prime.
 - $9 = 3 \cdot 3$ not prime.
- Last example shows that not all odd numbers are prime.

Fundamental Theorem of Arithmetic

THM: Any number $n \ge 2$ is expressible as as a unique product of 1 or more prime numbers.

Note: prime numbers are considered to be "products" of 1 prime.

We'll need induction and some more number theory tools to prove this.

Q: Express each of the following number as a product of primes: 22, 100, 12, 17

Fundamental Theorem of Arithmetic

A: 22 = 2.11, 100 = 2.2.5.5, 12 = 2.2.3, 17 = 17

Convention: Want 1 to also be expressible as a product of primes. To do this we define 1 to be the "empty product". Just as the sum of nothing is by convention 0, the product of nothing is by convention 1.

→Unique factorization of 1 is the factorization that uses no prime numbers at all.


```
Prime numbers are very important in
  encryption schemes. Essential to be
  able to verify if a number is prime or
  not. It turns out that this is quite a
  difficult problem. First try:
boolean isPrime(integer n)
  if (n < 2) return false
 for(i = 2 to n - 1)
    if( i | n ) // "divides"! not
  disjunction
      return false
  return true
```

A: Assuming divisibility testing is a basic operation -so O(1) (this is an invalid assumption) – then above primality testing algorithm is O(n).

Q: What is the running time in terms of the input size *k* ?

A: Consider n = 1,000,000. The input size is k = 7 because n was described using only 7 digits. In general we have

 $n = O(10^k)$. Therefore, running time is $O(10^k)$. REALLY HORRIBLE!

Q: Can we improve algorithm?

A:

- Don't try number bigger than n/2
- After trying 2, don't try any other even numbers, because know n is odd by this point.
- In general, try only smaller prime numbers

LEMMA: If *n* is a composite, then its smallest prime factor is Proof (by contradiction). Suppose the smallest prime factor is >. Then by the fundamental theorem of arithmetic we can decompose n = p q x where p and q are primes > $and/x is/some_{nx}$ integer. Therefore implying that n>n, which is impossible showing that the

Primality Testing. Example

EG: Test if 139 and 143 are prime.

List all primes up $t\phi n$ and check if they divide the numbers.

2: Neither is even

3: Sum of digits trick: 1+3+9=13, 1+4+3=8 so neither divisible by 3

5: Don't end in 0 or 5

7: 140 divisible by 7 so neither div. by 7

11: Alternating sum trick: 1-3+9=7 so 139 not div. By 11. 1-4+3=0 so 143 is divisible by 11.

STOP! Next $\sqrt[n]{n}$ ime 13 need not be examined since bigger than .

Conclude: 139 is prime, 143 is composite:

Division

Remember long division?

Division

THM: Let a be an integer, and d be a positive integer. There are unique integers q, r with $r \in \{0,1,2,...,d-1\}$ satisfying

$$a = dq + r$$

The proof is a simple application of long-division. The theorem is called the *division algorithm* though really, it's long division that's the algorithm, not the theorem.

- DEF Let a,b be integers, not both zero. The **greatest common divisor** of a and b (or gcd(a,b)) is the biggest number d which divides both a and b.
- Equivalently: gcd(a,b) is smallest number which divisibly by any x dividing both a and b.
- DEF: a and b are said to be **relatively prime** if gcd(a,b) = 1, so no prime common divisors.

- Q: Find the following gcd's:
- 1. gcd(11,77)
- $2. \gcd(33,77)$
- $3. \gcd(24,36)$
- 4. gcd(24,25)

A:

- 1. gcd(11,77) = 11
- 2. gcd(33,77) = 11
- 3. gcd(24,36) = 12
- 4. gcd(24,25) = 1. Therefore 24 and 25 are relatively prime.

NOTE: A prime number are relatively prime to all other numbers which it doesn't divide.

EG: More realistic. Find gcd(98,420).

Find prime decomposition of each number and find all the common factors:

$$98 = 2.49 = 2.7.7$$

 $420 = 2.210 = 2.2.105 = 2.2.3.35$
 $= 2.2.3.5.7$

Underline common factors: $2 \cdot 7 \cdot 7$, $2 \cdot 2 \cdot 3 \cdot 5 \cdot 7$

Therefore, gcd(98,420) = 14

Pairwise relatively prime: the numbers a, b, c, d, ... are said to be pairwise relatively prime if any two distinct numbers in the list are relatively prime.

Q: Find a maximal pairwise relatively prime subset of

{ 44, 28, 21, 15, 169, 17 }


```
A: A maximal pairwise relatively prime subset of {44, 28, 21, 15, 169, 17}:{17, 169, 28, 15} is one answer.{17, 169, 44, 15} is another answer.
```


Least Common Multiple

DEF: The *least common multiple* of a, and b (lcm(a,b)) is the smallest number m which is divisible by both a and b.

Equivalently: lcm(a,b) is biggest number which divides any x divisible by both a and b

Q: Find the lcm's:

- 1. lcm(10,100)
- 2. lcm(7,5)
- 3. lcm(9,21)

Least Common Multiple

A:

- 1. lcm(10,100) = 100
- 2. lcm(7,5) = 35
- 3. lcm(9,21) = 63

THM: lcm(a,b) = ab / gcd(a,b)

lcm in terms of gcd Proof

THM: lcm(a,b) = ab / gcd(a,b)

Proof. Let g = gcd(a,b).

Icm in terms of gcd Proof

THM: lcm(a,b) = ab / gcd(a,b)

Proof. Let $g = \gcd(a,b)$. Factor a and b using g: a = gx, b = gy where x and y are relatively prime.

Icm in terms of gcd Proof

THM: lcm(a,b) = ab / gcd(a,b)

Proof. Let $g = \gcd(a,b)$. Factor aand b using g: a = gx, b = gywhere x and y are relatively prime. Therefore, ab/gcd(a,b) =gxgy/g = gxy. Notice that a and b both divide gxy. On the other hand, let m be divisible by both a and b.

Icm in terms of gcd Proof

THM: lcm(a,b) = ab / gcd(a,b)

Proof. (continued) On the other hand, let m be divisible by both a and b: So m/q is divisible by both x and y. As x and y have no common prime factors, the fundamental theorem of arithmetic implies that *m/q* must be divisible by xy.

Icm in terms of gcd Proof

THM: lcm(a,b) = ab / gcd(a,b)

Proof. (continued) ...m/g must be
 divisible by xy. Therefore, m
 must be divisible by gxy. This
 shows that any multiple of a and
 b is bigger than gxy so by
 definition, gxy = ab/gcd(a,b) is
 the lcm.

Modular Arithmetic

There are two types of "mod" (confusing):

- the mod function
 - Inputs a number a and a base b
 - Outputs a mod b a number between 0 and b −1 inclusive
 - This is the remainder of a÷b
 - Similar to Java's % operator.
- the (mod) congruence
 - Relates two numbers a, a' to each other relative some base b
 - $-a \equiv a' \pmod{b}$ means that a and a' have the same remainder when dividing by b

- Similar to Java's "%" operator except that answer is always positive. E.G.
- -10 mod 3 = 2, but in Java -10%3 = -1.
- Q: Compute
- 1. 113 **mod** 24
- 2. -29 **mod** 7

A: Compute

1. 113 mod 24:

A: Compute

1. 113 mod 24:

A: Compute

1. 113 mod 24:

A: Compute

1. 113 mod 24:

(mod) congruence Formal Definition

DEF: Let a,a' be integers and b be a positive integer. We say that a is congruent to a' modulo b (denoted by $a \equiv a'$ (mod b)) iff $b \mid (a - a')$.

Equivalently: $a \mod b = a' \mod b$

Q: Which of the following are true?

- 1. $3 \equiv 3 \pmod{17}$
- 2. $3 \equiv -3 \pmod{17}$
- 3. $172 \equiv 177 \pmod{5}$
- 4. $-13 \equiv 13 \pmod{26}$

(mod) congruence

A:

- 1. $3 \equiv 3 \pmod{17}$ True. any number is congruent to itself (3-3 = 0, divisible by all)
- 2. $3 \equiv -3 \pmod{17}$ False. $(3-(-3)) = 6 \operatorname{isn't}$ divisible by 17.
- 3. $172 \equiv 177 \pmod{5}$ True. 172-177 = -5 is a multiple of 5
- 4. $-13 \equiv 13 \pmod{26}$ True: -13-13 = -26 divisible by 26.

(mod) congruence Identities

The (mod) congruence is useful for manipulating expressions involving the **mod** function. It lets us view modular arithmetic relative a fixed base, as creating a number system inside of which all the calculations can be carried out.

- $a \mod b \equiv a \pmod b$
- Suppose $a \equiv a' \pmod{b}$ and $c \equiv c' \pmod{b}$ Then:
 - $-a+c \equiv (a'+c') \pmod{b}$
 - $-ac \equiv a'c' \pmod{b}$
 - $-a^k \equiv a'^k \pmod{b}$

Q: Compute the following.

- 1. 307¹⁰⁰¹ mod 102
- 2. (-45 · 77) **mod** 17

3.
$$\left(\sum_{i=4}^{23} 10^i\right) \mod 11$$

- A: Use the previous identities to help simplify:
- Using multiplication rules, before multiplying (or exponentiating) can reduce modulo 102:

```
307^{1001} \, \text{mod} \, 102 \equiv 307^{1001} \, (\text{mod} \, 102)
```

 $\equiv 1^{1001} \text{ (mod 102)} \equiv 1 \text{ (mod 102)}.$ Therefore, $307^{1001} \text{ mod } 102 = 1.$

- A: Use the previous identities to help simplify:
- 2. Repeatedly reduce after each multiplication:

```
(-45.77) mod 17 \equiv (-45.77) (mod 17) \equiv (6.9) (mod 17) \equiv 54 (mod 17) \equiv 3 (mod 17). Therefore (-45.77) mod 17 = 3.
```


- A: Use the previous identities to help simplify:
- 3. Similarly, before taking sum can

$$\left(\sum_{i=4}^{2} \frac{10^{i}}{10^{i}}\right) \frac{1}{10^{i}} = \left(\sum_{i=4}^{23} \frac{10^{i}}{10^{i}}\right) = \left(\sum_{i=4}^{23} (-1)^{i}\right) \pmod{11}$$

$$\equiv (1-1+1-1+...+1-1) \pmod{11} \equiv 0 \pmod{11}$$

Therefore, the answer is 0.

Proving Modular Identities

We first need:

```
THM: a \equiv a' \pmod{b} \leftarrow \exists k \ a = a' + kb
```

- *Proof.* \leftarrow direction: If a = a' + kb, then (a-a') = kb so that $b \mid (a-a')$ which by definition means that $a \equiv a' \pmod{b}$
- \rightarrow direction: If $a \equiv a' \pmod{b}$, by definition
- $b \mid (a-a')$ so for some k we have (a-a')= kb which becomes a = a' + kb
- This is a handy little theorem as we'll see next:

Proving Modular Identities

```
Prove the identity
a \equiv a' \pmod{b} \land c \equiv c' \pmod{b}
                       \rightarrow ac \equiv a'c' \pmod{a}
  b)
Proof. By the previous, we can assume
  that there are k and l such that
  a = a' + bk and c = c' + bl
Thus ac = (a' + bk)(c' + bl)
= a'c' + b(kc' + la' + bkl). Therefore
(ac-a'c') = b(kc'+la'+bkl) is divisible by b
  and hence by definition, ac \equiv a'c'
```

Simple Encryption

Variations on the following have been used to encrypt messages for thousands of years.

- 1. Convert a message to capitals.
- 2. Think of each letter as a number between 1 and 26.
- 3. Apply an invertible modular function to each number.
- 4. Convert back to letters (0 becomes 26).

Letter ←→ Number Conversion Table

Α												
1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3

N	0	Р	Q	R	S	T	U	V	W	X	Υ	Z
1												
4	5	6	7	8	9	0	1	2	3	4	5	6

Encryption example

Let the encryption function be

$$f(a) = (3a + 9) \mod 26$$

Encrypt "Stop Thief"

- 1. STOP THIEF (capitals)
- 2. 19,20,15,16 20,8,9,5,6
- 3. 14,17,2,5 17,7,10,24,1
- 4. NQBE QGJXA

Decryption example

Decryption works the same, except that you apply the inverse function.

EG: Find the inverse of

$$f(a) = (3a + 9) \mod 26$$

If we didn't have to deal with **mod** 26, inverse would be

$$g(a) = 3^{-1}(a - 9)$$

We'll see that since gcd(3,26) = 1, the inverse of 3 is actually well defined modulo 26 and is the number 9. This gives:

$$g(a) = 9(a - 9) \mod 26 = (9a - 3) \mod 4$$

Caesar's Cipher

$$f(a) = (a+3) \mod 26$$

Blackboard Exercise

Prove that there are infinitely many prime numbers. (Discovered by Euclid).

Importance of Number Theory

Before the dawn of computers, many viewed number theory as last bastion of "pure math" which could not be useful and must be enjoyed only for its aesthetic beauty.

No longer the case. Number theory is crucial for encryption algorithms. Of utmost importance to everyone from Bill Gates, to the CIA, to Osama Bin Laden.