Perceptrón Simple

Sistemas de Inteligencia Artificial

Primer Cuatrimestre 2023

Rodrigo Ramele Eugenia Piñeiro Alan Pierri Santiago Reyes Marina Fuster Luciano Bianchi

RESUMEN DE LA CLASE ANTERIOR

- McCulloch y Pitts sientan las bases del modelo de neurona que se utiliza en el área de redes neuronales.
 Este modelo se denomina Perceptrón.
- El modelo de McCulloch y Pitts permite resolver problemas linealmente separables.
- Rosenblatt provee el mecanismo que permite obtener los pesos del perceptrón de manera iterativa
- No es lo mismo aprendizaje que generalización

Salary based on years of experience 20 15 Salary (* 10.000) 10 5 0 -10 Years of Experience

salary(years_of_experience):
 return a * years_of_experience + b

salary(years_of_experience):
 return a * years_of_experience + b

salary(x1): return w₁ * x₁ - w₀

salary(x_1, x_2): return $w_1 * x_1 + w_2 * x_2 - w_0$

salary(x_1, x_2): return $w_1 * x_1 + w_2 * x_2 - w_0$

¿CÓMO RESUELVO EL PROBLEMA?

Necesito encontrar los valores de **w** que me permitan encontrar un hiperplano que ajuste lo mejor posible al conjunto de datos

$$salario = \sum_{i=1}^{n} x_i \cdot w_i - w_0$$

ADALINE: ADAptive LINear Element (o perceptrón simple *lineal*)

Cambiamos la función de activación por la identidad:

$$O(x) = \sum_{i=1}^{n} x_i \cdot w_i - w_0$$

La salida del perceptrón ya no está confinada a ser binaria: toma valores en los reales

¿CÓMO RESUELVO EL PROBLEMA?

Necesito encontrar los valores de **w** que me permitan encontrar un hiperplano que ajuste lo mejor posible al conjunto de datos

$$O(x) = \sum_{i=1}^{n} x_i w_i - w_0$$

APRENDIZAJE PARA EL PERCEPTRÓN LINEAL

$$O(x) = \sum_{i=1}^{n} x_i \cdot w_i - w_0$$

Rosenblatt: Cada vez que la neurona recibe un estímulo, los pesos sinápticos pueden actualizarse (proceso iterativo):

$$w^{nuevo} = w^{anterior} + \Delta w$$

APRENDIZAJE PARA EL PERCEPTRÓN LINEAL

$$O(x) = \sum_{i=1}^{n} x_i \cdot w_i - w_0$$

Rosenblatt: Cada vez que la neurona recibe un estímulo, los pesos sinápticos pueden actualizarse (proceso iterativo):

$$w^{nuevo} = w^{anterior} + \Delta w$$
?

¿CÓMO DEFINIMOS QUE EL PERCEPTRÓN SE EQUIVOCA?

¿CÓMO DEFINIMOS QUE EL PERCEPTRÓN SE EQUIVOCA?

Podemos usar la siguiente función de error o costo:

$$E(0) = \frac{1}{2}(\zeta^{\mu} - 0^{\mu})^{2}$$

La salida del perceptrón depende, a su vez, de los pesos sinápticos.

$$E(w) = \frac{1}{2} (\zeta^{\mu} - \sum_{i=0}^{n} x_{i}^{\mu}.w_{i})^{2}$$

¿QUÉ FORMA TIENE LA FUNCIÓN DE COSTO?

¿QUÉ FORMA TIENE LA FUNCIÓN DE COSTO?

¿CÓMO "APRENDE" EL PERCEPTRÓN CON ESTA FUNCIÓN DE COSTO?

$$E(w) = \frac{1}{2} (\zeta^{\mu} - \sum_{i=0}^{n} x_{i}^{\mu}.w_{i})^{2}$$

Fórmula de actualización de los pesos al evaluar un dato de entrada:

$$w^{nuevo} = w^{anterior} + \Delta w$$

$$\Delta w = - \eta \frac{\partial E}{\partial w}$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial (\frac{1}{2}(\zeta - \theta(\sum_{i=0}^n x_i . w_i))^2)}{\partial w_i}$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial \left(\frac{1}{2}(\zeta - \theta(\sum_{i=0}^n x_i . w_i)\right))}{\partial w_i} = (\zeta - \theta(\sum_{i=0}^n x_i . w_i))(-1)\theta'(\sum_{i=0}^n x_i . w_i)x_i$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial (\frac{1}{2}(\zeta - \theta(\sum_{i=0}^{n} x_i \cdot w_i)))}{\partial w_i} = \frac{\partial (\frac{1}{2}(\zeta - \theta(\sum_{i=0}^{n} x_i \cdot w_i)))}{\partial w_i} = \frac{\partial (\sum_{i=0}^{n} x_i \cdot w_i)}{\partial x_i} = \frac{\partial (\sum_{i=0}^{n} x_i$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial \left(\frac{1}{2}(\zeta - \theta(\sum_{i=0}^n x_i . w_i))\right)}{\partial w_i} = (\zeta - \theta(\sum_{i=0}^n x_i . w_i))(-1)\theta'(\sum_{i=0}^n x_i . w_i)x_i$$

$$= (\zeta - 0)(-1)\theta'(h)x_i = -(\zeta - 0)\theta'(h)x_i$$

$$\frac{\partial E}{\partial w_{i}} = \frac{\partial(\frac{1}{2}(\zeta - \theta(\sum_{i=0}^{n} x_{i}.w_{i})))}{\partial w_{i}} = (\zeta - \theta(\sum_{i=0}^{n} x_{i}.w_{i}))(-1)\theta'(\sum_{i=0}^{n} x_{i}.w_{i})x_{i}$$

$$= (\zeta - 0)(-1)\theta'(h)x_{i} = -(\zeta - 0)\theta'(h)x_{i}$$

Para el perceptrón lineal, θ es la identidad (la derivada es 1)

$$\Delta w = - \eta \frac{\partial E}{\partial w} = \eta (\zeta^{\mu} - O^{\mu}) x^{\mu}$$

¿CÓMO "APRENDE" EL PERCEPTRÓN LINEAL?

$$E(w) = \frac{1}{2} (\zeta^{\mu} - \sum_{i=0}^{n} x_{i}^{\mu}.w_{i})^{i}$$

Fórmula de actualización de los pesos al evaluar un dato de entrada para el perceptrón lineal:

$$w^{nuevo} = w^{anterior} + \Delta w$$

$$\Delta w = - \eta \frac{\partial E}{\partial w} = \eta (\zeta^{\mu} - O^{\mu}) x^{\mu}$$

EL ALGORITMO PARA ADALINE ES IGUAL AL ANTERIOR

- Inicializar los pesos sinápticos en valores aleatorios pequeños o cero $w = (w_0, w_1, \dots w_n)$
- Definir: tasa de aprendizaje, épocas.
- Para cada elemento del conjunto de datos 3.
 - a. Calcular la salida de la neurona $0 = \theta(\sum_{i=1}^{\infty} x_i \cdot w_i w_0)$
 - Actualizar los pesos sinápticos $\Delta w = -\eta \frac{\partial E}{\partial w}$

$$\Delta w = - \eta \frac{\partial E}{\partial w}$$

Calcular el error del perceptrón para verificar si se alcanzó convergencia Si el perceptrón alcanzó convergencia, finalizar.

$$MSE = \frac{1}{p} \sum_{\mu=0}^{p-1} (\zeta^{\mu} - O^{\mu})^{2}$$

Repetir 3 y 4 hasta alcanzar convergencia o hasta finalizar la cantidad de épocas

PERCEPTRÓN SIMPLE NO LINEAL

Cambiamos la función de activación por una sigmoidea, tanh o logística

$$O = \Theta(\sum_{i=0}^{n} x_i \cdot w_i)$$

$$\Theta(x) = \tanh(\beta x) \quad Im = (-1, 1)$$

$$\Theta(x) = \frac{1}{1 + exp^{-2\beta x}} \quad Im = (0, 1)$$

La fórmula de error se mantiene igual al perceptrón lineal:

$$E(0) = \frac{1}{2}(\zeta^{\mu} - 0^{\mu})^{2}$$

¿Cómo "aprende"? ¡Igual que el anterior!

Cambiamos la función de activación por una sigmoidea, tanh o logística

$$O = \Theta(\sum_{i=0}^{n} x_i . w_i)$$

Fórmula de actualización de los pesos al evaluar un dato de entrada:

$$w^{nuevo} = w^{anterior} + \Delta w$$

$$\Delta w = - \eta \frac{\partial E}{\partial w} = \eta (\zeta^{\mu} - O^{\mu}) \theta'(h) x^{\mu}$$

Funciones sigmoideas

Tangente Hiperbólica

Parámetro *beta* que cambia la forma:

$$\theta(h) = tanh(\beta h)$$

$$\theta'(h) = \beta(1 - \theta^2(h))$$

Función Logística

Parámetro *beta* que cambia la forma:

$$\theta(h) = \frac{1}{1 + exp^{-2\beta h}}$$

$$\theta'(h) = 2\beta\theta(h)(1 - g(h))$$

Variación de tanh de acuerdo a beta

OBSERVACIÓN: LA IMPORTANCIA DE $\,\eta\,$

¿EXISTEN OTROS MÉTODOS PARA RESOLVER ESTOS PROBLEMAS?

- Regresión Lineal (Least Mean Squares)
- Regresión Logística
- SVM
- ...

RESUMEN

- Los perceptrones simples lineal y no lineal extienden la utilidad del perceptrón simple escalón
- Si las funciones de activación son derivables, encontramos cómo actualizar los pesos usando el algoritmo de gradiente descendente.
- El ajuste del parámetro tasa de aprendizaje impacta fuertemente en la convergencia hacia los pesos que deseamos (aquellos que minimizan la función de costo)

ALGUNAS VARIACIONES POSIBLES

Variable	Posibles Valores
Función de activación (Θ)	Escalón, <mark>Identidad</mark> , <mark>Sigmoidea</mark>
Tasa de aprendizaje (η)	~0.1
Actualización de los pesos	Batch/Online
Error del perceptrón (función de costo)	Accuracy, suma valores absolutos, MSE
Épocas	
Método de optimización	Gradiente Descendente
Parámetros de función de activación	□ de tanh o de log
Técnica para separar en entrenamiento y testeo	Ejemplo: 80%-20%

