

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

ACH2026 Redes de Computadores

Capítulo 4 – Camada de Rede 4.1 a 4.3

> Profa. Dra. Cíntia B. Margi Outubro/2009

Objetivos do Capítulo 4 – Camada de Rede

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

∀ Entender os princípios dos serviços da

- camada de rede:
 - o roteamento (seleção de caminho);
 - escalabilidade;
 - como funciona um roteador;
 - O tópicos avançados:
 - IPv6;
 - mobilidade.
- ✓ Instanciação e implementação na
 Internet.

 ACH2026 2009

Escola de Artes, Ciências e Humanidades A Camada de Rede

da Universidade de São Paulo

- ∀ Transporta segmentos do hospedeiro transmissor para o receptor.
- ∀ No lado transmissor. encapsula os segmentos em datagramas.
- ∀ No lado receptor, entrega os segmentos à camada de transporte.
- ∀ Protocolos da camada de rede em *cada* hospedeiro e roteador.
- ∀ Roteador examina campos de cabeçalho em todos os datagramas IP que passam por ele.

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Funções

- ∀ Encaminhamento (repasse ou comutação ou forwarding):
 - mover pacotes da entrada do roteador para a saída apropriada do roteador.
- ∀ Roteamento:
 - determinar a rota a ser seguida pelos pacotes desde a origem até o destino;
 - a rota é calculada por algoritmos de roteamento.

Roteamento & Encaminhamento

5

Estabelecimento de Conexão

- ∀ 3ª função importante em *algumas* arquiteturas de rede:
 - ATM, frame-relay, X.25
 - Odiferente da Internet!
- ∀ Antes do fluxo de datagramas, dois hospedeiros e os devidos roteadores estabelecem uma conexão virtual.
- ∀ Serviço de conexão da camada de rede e de transporte:
 - O Rede: entre dois hospedeiros.
 - Transporte: entre dois processos.

Modelo (abstrato) de Serviços de Rede

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

∀ Datagramas individuais:

- o entrega garantida;
- o entrega garantida com atraso limitado.
- ∀ Fluxo de datagramas:
 - o entrega de datagramas em ordem;
 - largura de banda mínima garantida;
 - o jitter (variação do atraso) máximo garantido.

Modelos de Serviço de Rede

Arquitetura de rede	Modelo de serviço	Garantia de Banda	Garantia contra perda	Entrega em Ordem	Temporizaçã o	Indicação de Congestionamento
	melhor					
Internet	esforço	não	não	não	Não mantida	nenhuma
		taxa				não ocorre
ATM	CBR	constante	sim	sim	Mantida	congestionamento
		mínima				não ocorre
ATM	ABR	garantida	não	sim	Não mantida	congestionamento

- Novos serviços na Internet: IntServ, DiffServ, ...
- Serão discutidos no Capítulo 7.

Camada de Rede: Escola de Artes, Ciências e Humanidas e Fruiços com e sem

da Universidade de São Paulo

conexão

- ∀ Redes de datagrama: serviços semconexão na camada de rede.
- ∀ Redes de circuito virtual: serviços orientados a conexão na camada de rede.
- ∀ Análogo aos serviços da camada de transporte, mas:
 - serviço: hospedeiro-a-hospedeiro;
 - o sem escolha: a rede provê ou um ou outro;
 - o implementação: no núcleo da rede.

Circuitos Virtuais

- ∀ Estabelecimento da conexão pela rede antes do envio de dados.
- ∀ Liberação da conexão após envio de dados.
- ∀ Cada pacote transporta um identificador do CV.
- ∀ Cada roteador na rota mantém informação de estado para conexão que passa por ele.
- ∀ O link e os recursos do roteador (banda, buffers) podem ser alocados por CV.

Escola de Artes, Ciências e Humalidades plementação de CV

∀ Consiste de:

- 1. Caminho da origem até o destino
- 2.Números de VC, um número para cada link ao longo do caminho
- 3.Entradas em tabelas de comutação em roteadores ao longo do caminho
- ∀ Pacotes pertencentes a um CV carregam um número de CV.
- ∀ O número de CV deve ser trocado em cada enlace de acordo com a tabela de comutação.

 ACH2026 2009

Tabela de Comutação de

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo R1

Interface de entrada	VC # de entrada	Interface de saída	VC # de saída
1	12	2	22
2	63	1 1	18
3	7	2	17
1	97	3	87
•••			***
	I		

Roteadores mantêm informações de estado de conexão.

CVs: Protocolos de Sinalização

- ∀ Usado para estabelecer, manter e encerrar circuitos virtuais.
- ∀ Usados em ATM, frame-relay e X-25.
- ∀ Não é usado na Internet atualmente.

da Universidade de São Paulo

Escola de Artes, Ciências e Humanidades de Sacra Datagrama

∀ Não existe estabelecimento de conexão na camada de rede.

∀ Pacotes são encaminhados pelo endereço do hospedeiro de destino.

Tabela de Encaminhamento

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Endereços de 32 bits, então mais de 4 bilhões de entradas possíveis!!

Faixa de Endereços de Destino	Interface de Enlace
11001000 00010111 00010000 00000000	
até	0
11001000 00010111 00010111 11111111	
11001000 00010111 00011000 00000000	
até	1
11001000 00010111 00011000 11111111	
11001000 00010111 00011001 00000000	
até	2
11001000 00010111 00011111 11111111	
senão ACH2026 - 2009	3

Escola de Artes, Ciências e Humanidades Utilizando Prefixos

da Universidade de São Paulo

Prefixo do Endereço	Interface de Enlace
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
senão	3

Exemplos:

- •Destino: 11001000 00010111 00010110 10100001
 - Qual a Interface?
- •Destino: 11001000 00010111 00011000 10101010
 - Qual a Interface?

Redes de Datagrama &

\ /
V

	Internet	ATM
Sistemas Finais	inteligentes: podem adaptar-se, realizar controle e recuperação de erros; a rede é simples; a complexidade fica nas pontas.	"burros": telefones; complexidade dentro da rede.
Serviço	Dados trocados entre computadores: serviço elástico, requisitos de atraso não críticos.	Originário da telefonia. Conversação humana: tempos estritos, exigências de confiabilidade; necessário para serviço garantido
Tipos de enlaces / rede de transmissão	Muitos tipos de enlaces: características diferentes; difícil obter um serviço uniforme.	Padroniza camadas de enlace e rede. Utiliza fibra óptica como meio de transmissão.

O que há dentro de um roteador?

Arquitetura de um Roteador

- Duas funções-chave do roteador:
 - Oroteamento;
 - Ocomutação de datagramas.

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Porta de Entrada

Camada física: recepção de bits

Camada de enlace:

ex.: Ethernet

Comutação descentralizada:

- √ Dado o destino do datagrama, procura a porta de saída usando a tabela de comutação na memória da porta de entrada.
- ∀ Problema: como encontrar endereço?
- ∀ Objetivo: completar o processamento da porta de entrada na 'velocidade da linha'.
- ∀ Fila: se os datagramas chegam mais rápido do que a taxa de comutação para o switch.

Três tipos de Estrutura de Comutação

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Memória

Crossbar

Barramento

Legenda:

Escola de Artes, Ciências e Camutação por memória da Universidade de São Paulo

Primeira geração de roteadores:

- ∀ Computadores tradicionais com comutação sob controle direto da CPU.
- ∀ Pacote copiado para a memória do sistema.
- ∀ Velocidade limitada pela largura de banda (2 bus cruzados por datagrama).
- ∀ Similar a SMPs.
- ∀ Ex.: Catalyst 8500

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Comutação por barramento

- ∀ Transferência de datagrama da memória da porta de entrada para a memória da porta de saída através de um barramento compartilhado.
- ∀ Contenção do barramento: velocidade de comutação limitada pela largura de banda do barramento.
- ∀ Barramento de 1 Gbps, Cisco 1900: velocidade suficiente para roteadores de acesso e de empresas (não para roteadores regionais ou de backbone).

EACH Comutação por uma Escola de Artes, Ciências e Humanidades de São Paulo rede de interconexão

- ∀ Supera as limitações de largura de banda do barramento.
- ∀ Utiliza redes de interconexão inicialmente desenvolvidas para conectar sistemas com multiprocessadores.
- ∀ Tendência: fragmentar datagramas em células de tamanho fixo, comutar as células através do switch.
- ∀ Cisco 12000: comuta até 60Gbps através da rede de interconexão.

Portas de Saída

- ∀ Armazenamento necessário quando datagramas chegam do switch mais rápido do que a taxa de transmissão da linha.
- ∀ Implementa protocolos de enlace e terminação da linha.

Formação de filas na porta de saída

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

∀ Escalonamento de pacotes:

- ○Ex.: FIFO, WFQ
- Necessário para garantir qualidade de serviço (QoS).
- ∀ Gerenciamento de fila:
 - oque pacote descartar?
 - Oúltimo a chegar
 - ORED

One packet time later

Figure 4.10 ◆ Output port queuing

ACH2026 - 2009

Formação de filas na porta de entrada

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

∀Comutação mais lenta que as portas de entrada combinadas -> pode ocorrer filas na entrada.

∀Bloqueio Head-ofthe-Line (HOL): datagrama na frente da fila impede outros atrás de se moverem adiante.

∀Atraso e perda na fila devido ao overflow no buffer de entrada!

Output port contention at time *t*—one dark packet can be transferred

igure 4.11 → HOL blocking at an input queued switch

Dúvidas?

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

ACH2026 - 2009