Prezentacja na CORE: co i jak?

Julia Bazińska

Koło Naukowe Uczenia Maszynowego UW 5 listopada 2020

Agenda

- 1. Wybór tematu
- 2. Jak czytać paper?
- 3. Struktura prezentacji
- 4. Garść różnych rad

Jaki wybrać temat?

- Twój projekt na studia / w pracy
- Coś, co zawsze chciałaś_eś
 zrozumieć, ale brakło motywacji
- Można zapytać się kogoś z
 Zarządu albo na grupie członków

Jak czytać paper?

slido

Jakie byłoby przyzwoite tłumaczenie słowa "paper"?

(i) Start presenting to display the poll results on this slide.

Jak czytać paper?

Zadaj sobie pytania:

- jakie zadanie jest rozwiązywane?
 - Klasyfikacja obrazu, rozpoznawanie mowy, model języka, ...
- co jest główną innowacją w paperze?
- co znaczą metryki?
- w czym nowa metoda jest lepsza?
- ...a w czym jest gorsza?

Struktura prezentacji

Przykładowy plan prezentacji

Motywacja
 Plan prezentacji
 Related work
 Nowa metoda wprowadzona w paperze
 Przeprowadzone eksperymenty
 Wyniki + użyte metryki
 Główne wnioski (key takeaways)

Zakończenie

Przykładowy plan prezentacji

...ale to oczywiście zależy, o czym mówicie!

Przykładowy plan -- motywacja

- Cel: zainteresować słuchaczy
- Trochę backgroundu
 - "Przez długi czas do rozpoznawania mowy używano złożonych modeli..."
- Trochę o paperze
 - "Ale okazuje się że można do tego użyć sieci neuronowych, co jest wygodniejsze, bo…"
- Na tyle, żeby słuchacze zrozumieli ogólną ideę

- 1) Motywacja
- 2) Plan prezentacji
- 3) Related work
- 4) Nowa metoda wprowadzona w paperze
- 5) Przeprowadzone eksperymenty
- 6) Wyniki + użyte metryki
- 7) Główne wnioski (key takeaways)

Przykładowy plan -- plan prezentacji

- Cel: żeby słuchacze lepiej się orientowali
- Jak ktoś na chwilę się rozproszy, to łatwiej mu będzie wrócić!
- Zaznaczenie przejść do nowych sekcji

- 1) Motywacja
- 2) Plan prezentacji
- 3) Related work
- 4) Nowa metoda wprowadzona w paperze
- 5) Przeprowadzone eksperymenty
- 6) Wyniki + użyte metryki
- 7) Główne wnioski (key takeaways)

Przykładowy plan -- related work

- Cel: by było wiadomo do czego porównujemy
- jakie jest SOTA? jakie są osiągnięcia w tym zadaniu dotychczas?
 - "W SGD był taki a taki problem, został rozwiązany przez Adagrad, ale..."
 - "Istnieją narzędzia nieoparte o ML, które to robią."
- może być bardzo krótko
- można w ogóle pominąć jeśli się pokrywa z motywacją

- 1) Motywacja
- 2) Plan prezentacji
- 3) Related work
- 4) Nowa metoda wprowadzona w paperze
- 5) Przeprowadzone eksperymenty
- 6) Wyniki + użyte metryki
- 7) Główne wnioski (key takeaways)

SOTA -- state of the art, tzn. model z najlepszym wynikiem w danym zadaniu

Przykładowy plan -- opis innowacji

- Cel: wyjaśnić dokładnie, co jest głównym celem papera
- bardzo zależy od kontentu
 - "nowa warstwa, która działa tak..."
 - "porównanie różnych modeli rekurencyjnych"
 - "nowa metoda augmentacji danych głosowych"

- 1) Motywacja
- 2) Plan prezentacji
- 3) Related work
- 4) Nowa metoda wprowadzona w paperze
- 5) Przeprowadzone eksperymenty
- 6) Wyniki + użyte metryki
- 7) Główne wnioski (key takeaways)

Przykładowy plan -- eksperymenty

- Cel: wyjaśnić, jak mierzono jakość modelu i jakie ma wyniki
 - "użyto datasetu X, funkcją straty było Z, wynik był taki a taki"
- te dwie sekcje mogą się łączyć
- warto wyjaśnić dobrze metryki!

- 1) Motywacja
- 2) Plan prezentacji
- 3) Related work
- 4) Nowa metoda wprowadzona w paperze
- 5) Przeprowadzone eksperymenty
- 6) Wyniki + użyte metryki
- 7) Główne wnioski (key takeaways)

Przykładowy plan -- wnioski

- Cel: podsumowanie!
 - "Zatem mamy metodę X, która przyspiesza uczenie, ale nie pogarsza wyników"
 - "Wyniki są dobre, ale jeszcze daleko od tego, by zastosować ten model w rzeczywistości"
- Powtórzyć parę najważniejszych elementów (dla zagubionych)

- 1) Motywacja
- 2) Plan prezentacji
- 3) Related work
- 4) Nowa metoda wprowadzona w paperze
- 5) Przeprowadzone eksperymenty
- 6) Wyniki + użyte metryki
- 7) Wnioski (key takeaways)

Garść różnych rad

Zaangażuj słuchaczy!

- "jak myślicie, jakie mogą być wady tego podejścia? a jakie mogą być zalety?"
- może być trudne do wplecienia w prezentację
- narzędzia takie jak mentimeter / slido
- dyskusja -> oznacza zrozumienie i zainteresowanie

Wzory matematyczne

```
P(X) = \int P(X|z;\theta)P(z)dz.
X - data we're modeling
                         (like images)
z - latent variable
                         (like which number to draw)
\theta - model parameters
                         (network weights)
```

- opisy oznaczeń!
- skomplikowane przekształcenia nie są istotne
- jeśli wzór ma nazwę, to warto ją podać

Ładny przykład dobrze opisanego wzoru.

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	<u>u</u>	10.41	8.81	35.68	39_8	2.35
All-CNN [32]	-	-	9.08	7.25	170	33.71	-
Deeply Supervised Net [20]	- 4	Ψ.	9.69	7.97	320	34.57	1.92
Highway Network [34]			-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	, q <u>-</u>	6.61	-	(20)	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	7.0		0.70
Wide ResNet [42]	16	11.0M	92	4.81	(2)	22.07	520
	28	36.5M	-	4.17		20.50	
with Dropout	16	2.7M	-	· · · · ·	-	8 4 8	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	(57)
	1001	10.2M	10.56*	4.62	33.47*	22.71	1 - 1
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	1	<u>u</u>	10.41	8.81	35.68	323	2.35
All-CNN [32]	-	=	9.08	7.25	17.	33.71	-
Deeply Supervised Net [20]	- 2	2	9.69	7.97	(2)	34.57	1.92
Highway Network [34]	1.5		-	7.72	151	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61		20	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
The second stage is a second control of the	1202	10.2M	-	4.91	17.0	375	0.70
Wide ResNet [42]	16	11.0M	12	4.81	(2)	22.07	S40
	28	36.5M	-	4.17	575	20.50	
with Dropout	16	2.7M	-	111 21	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	((7)
	1001	10.2M	10.56*	4.62	33.47*	22.71	3-3
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	<u>u</u>	10.41	8.81	35.68	34.0	2.35
All-CNN [32]	-	-	9.08	7.25	170	33.71	-
Deeply Supervised Net [20]		Ψ.	9.69	7.97	320	34.57	1.92
Highway Network [34]	-		-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	, q <u>-</u>	6.61	-	20	100
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	7.0	-	0.70
Wide ResNet [42]	16	11.0M	92	4.81	(2)	22.07	947
	28	36.5M	-	4.17		20.50	
with Dropout	16	2.7M	-	111 2	-	(4)	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	(5)
	1001	10.2M	10.56*	4.62	33.47*	22.71	
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	

- co znaczą te liczby? np. tutaj:
 - Error rate klasyfikacji
- opis skrótów, np. tutaj:
 - o C10 -- CIFAR-10
 - C10+ -- CIFAR-10 z augmentacją
 - 0 ...
- podświetlenie wyników papera
- można wybrać najpierw tylko jeden dataset jak tabelka jest za duża

Method	Depth	Params	C10	C10+
Network in Network [22]	-	<u>u</u>	10.41	8.81
All-CNN [32]	-	-	9.08	7.25
Deeply Supervised Net [20]		2	9.69	7.97
Highway Network [34]	-	-	-	7.72
FractalNet [17]	21	38.6M	10.18	5.22
with Dropout/Drop-path	21	38.6M	7.33	4.60
ResNet [11]	110	1.7M	-	6.61
ResNet (reported by [13])	110	1.7M	13.63	6.41
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23
The second regime and the control of the second sec	1202	10.2M	27	4.91
Wide ResNet [42]	16	11.0M	(4	4.81
	28	36.5M	-	4.17
with Dropout	16	2.7M	-	<u> </u>
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46
	1001	10.2M	10.56*	4.62
DenseNet $(k = 12)$	40	1.0M	7.00	5.24
DenseNet $(k = 12)$	100	7.0M	5.77	4.10
DenseNet $(k = 24)$	100	27.2M	5.83	3.74
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46

- co znaczą te liczby? np. tutaj:
 - Error rate klasyfikacji
- opis skrótów, np. tutaj:
 - C10 -- CIFAR-10
 - C10+ -- CIFAR-10 z augmentacją
 - 0 ...
- podświetlenie wyników papera
- można wybrać najpierw tylko jeden dataset jak tabelka jest za duża
- wnioski obok tabelki!

Method	Depth	Params	C10	C10+
Network in Network [22]	-	<u>u</u>	10.41	8.81
All-CNN [32]	-	=	9.08	7.25
Deeply Supervised Net [20]	2	2	9.69	7.97
Highway Network [34]	-		-	7.72
FractalNet [17]	21	38.6M	10.18	5.22
with Dropout/Drop-path	21	38.6M	7.33	4.60
ResNet [11]	110	1.7M	-	6.61
ResNet (reported by [13])	110	1.7M	13.63	6.41
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23
	1202	10.2M		4.91
Wide ResNet [42]	16	11.0M	12	4.81
	28	36.5M	-	4.17
with Dropout	16	2.7M	-	40
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46
	1001	10.2M	10.56*	4.62
DenseNet $(k = 12)$	40	1.0M	7.00	5.24
DenseNet $(k = 12)$	100	7.0M	5.77	4.10
DenseNet $(k = 24)$	100	27.2M	5.83	3.74
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46

- lepsze wyniki na datasetach o różnych trudnościach
- DenseNet osiąga error rate nawet
 40% mniejszy niż inne rozwiązania
 na CIFAR-10
- Przy tej samej liczbie parametrów,
 DenseNet osiąga lepsze wyniki

Skup się na rzeczach istotnych

- Pomiń nieistotne szczegóły!
- ...ale przygotuj się na ewentualne pytania

Skup się na rzeczach istotnych

- Pomiń nieistotne szczegóły!
- ...ale przygotuj się na ewentualne pytania

Źródło: He et al, Deep Residual Learning for Image Recognition (2015)

Podawaj źródła!

- Źródła grafik / tabel / danych
- w podpisie na slajdzie
- albo na końcu w bibliografii
- albo jak używacie tylko jednego papera to jakoś na początku
- Oczywiście do zdjęć także warto dawać źródła!

Podsumowując

- skup się na przekazaniu głównej idei, a nie szczegółów
- słuchacze mają ograniczony attention span
- słuchaj tych rad tylko jeśli mają sens w Twoim przypadku

Dzięki!

