☑ فرمول های مشتق گیری ☑

در تماه فرمول های زیر \mathbf{w} و \mathbf{u} و \mathbf{v} فرض شده اند.

تابع	مشتق	مثال
y = a	y'=0	$y = 3 \Rightarrow y' = 0$
y = ax	y' = a	$y = 7x \Rightarrow y' = 7$
$y = ax^n$	$y' = a.nx^{n-1}$	$y = 2x^3 \Rightarrow y' = 2 \times 3 \times x^2$
$y = u \pm v \pm \dots$	$y' = u' \pm v' \pm \dots$	$y = 3x^2 - 5x + 7 \Rightarrow y' = 6x - 5$
y = u.v	y' = u'.v + v'.u	$y = (3x^4)(\sin x) \Rightarrow y' = (12x^3)\sin x + (\cos x).3x^4$
y = au	y' = au'	$y = 5\cos \Rightarrow y' = -5\sin x$
$y = \frac{u}{v}$	$y' = \frac{u'.v - v'.u}{v^2}$	$y = \frac{3x^2}{\tan x} \Rightarrow y' = \frac{6x(\tan x) - (1 + \tan^2 x)3x^2}{\tan^2 x}$
$y = \frac{u}{a}$	$y' = \frac{u'}{a}$	$y = \frac{\cot x}{5} \Rightarrow y' = \frac{-(1+\cot^2 x)}{5}$
$y = \frac{a}{u}$	$y' = \frac{-au'}{u^2}$	$y = \frac{3}{x^5} \Rightarrow y' = \frac{-3(5x^4)}{x^{10}} = \frac{-15}{x^6}$
$y = \frac{au + b}{cu + d}$	$y' = \frac{ad - bc}{\left(cu + d\right)^2}u'$	$y = \frac{3}{x^5} \Rightarrow y' = \frac{-3(5x^4)}{x^{10}} = \frac{-15}{x^6}$ $y = \frac{3x+5}{2x-7} \Rightarrow y' = \frac{21-10}{(2x-7)^2} = \frac{-31}{(2x-7)^2}$
$y = au^m$	$y' = m.a.u'.u^{m-1}$	$y = 5(\sin^2 x) \Rightarrow y' = 4 \times 5 \times \cos x \times \sin^3 x$
$y = \sqrt{u}$	$y' = \frac{u'}{2\sqrt{u}}$	$y = \sqrt{x} \Rightarrow y' = \frac{1}{2\sqrt{x}}$
$y = \sqrt[m]{n^n}$	$y' = \frac{nu'}{m\sqrt[m]{u^{m-n}}}$	$y = \sqrt[5]{x^3} \Rightarrow y' = \frac{3}{5\sqrt[5]{x^2}}$
y = u	$y' = \frac{u'.u}{ u }$	$y = x^2 + x \Rightarrow y' = \frac{(2x+1)(x^2 + x)}{ x^2 + x }$
$y = a \sin u$	$y' = au' \cos u$	$y = -3\sin(2x^3 + 5) \Rightarrow y' = (-3)(6x^2)\cos(2y^3 + 5) = -18x^2\cos(2x^3 + 5)$
$y = a \cos u$	$y' = -au'\sin u$	$y = 3\cos(\sqrt{x}) \Rightarrow y' = -(3)(\frac{1}{2\sqrt{x}}).\sin\sqrt{x}$
$y = a \tan u$	$y' = au'(1 + \tan^2 u)$	$y = 3\tan(\cos) \Rightarrow y' = 3(-\sin x)(1 + \tan^2(\cos x))$
$y = a \cot u$	$y' = -au'(1+\cot^2 u)$	$y = 5\cot x \Rightarrow y' = -5(1+\cot^2 x)$
$y = a \sin^m u$	$y' = mau' \cos u \sin^{m-1} u$	$y = 2\sin^3(x^5) \Rightarrow y' = (2 \times 3)(5x^4)(\cos(x^5))\sin^2(x^5)$
$y = a\cos^m u$	$y' = -mau'\sin u\cos^{m-1}u$	$y = 5\cos^4(\sqrt{x}) \Rightarrow y' = -(4)(5)(\frac{1}{2\sqrt{x}})(\sin\sqrt{x})(\cos^3\sqrt{x})$

, m	y =	7. 5
$y = a \tan^m u$	ř	$y = 7 \tan^5 x \Rightarrow y' = 7 \times 5(1 + \tan^2 x) \tan^4 x$
	$mau'(1+\tan^2 u)\tan^{m-1} u$	
$y = a \cot^m u$	y' =	$y = 2\cot^3 x \Rightarrow y' = -(3)(2)(1+\cot^2 x)\cot^2 u$
y acce u	$-mau'(1+\cot^2 u)\cot^{m-1} u$	$y = 2\cos x \rightarrow y \qquad (3)(2)(1+\cot x)\cot x$
$y = a \sec u$	$y' = au'.\sin u.\sec^2 u$	$y = \sec x \Rightarrow y' = \sin .\sec^2 u$
	-	<u> </u>
$y = a \csc u$	$y' = -au'\cos u\csc^2 u$	$y = \csc(5x) \Rightarrow y' = -5\cos(5x)\csc^2(5x)$
	'	2
y=Arcsiny	$y' = \frac{u}{}$	$y = Arc\sin(3x) \Rightarrow y' = \frac{3}{\sqrt{1 - 9x^2}}$
y=Arcsinu	$\sqrt{1-u^2}$	$\sqrt{1-9x^2}$
$y = Arc \cos u$	-u'	-(6x-5)
$y = III c \cos u$	$y' = \frac{-u'}{\sqrt{1 - u^2}}$	$y = Arc\cos(3x^2 - 5x) \Rightarrow y' = \frac{-(6x - 5)}{\sqrt{1 - (3x^2 - 5x)^2}}$
_		• • • • • • • • • • • • • • • • • • • •
$y = Arc \tan u$	$y' = \frac{u'}{1+u^2}$ $y' = \frac{-u'}{1+u^2}$	$y = Arc \tan x \Rightarrow y' = \frac{1}{1+x^2}$
	$1+u^2$	$1+x^2$
$y = Arc \cot u$	u' = -u'	$y = Aracot(\sin x) \rightarrow y' = -\cos x$
	$y - \frac{1+u^2}{1+u^2}$	$y = Arc \cot(\sin x) \Rightarrow y' = \frac{-\cos x}{1 + \sin^2 x}$
$y = a^u$	$y' = u'a^u Lna$	
y = a	y = u ti Enti	
$y = \sqrt{x}$	1	$\sqrt{2} \rightarrow v'$ 1
<i>y</i> v 30	$y \equiv \frac{1}{2\sqrt{x}}$	$y = \sqrt{2} \Rightarrow y = \frac{1}{2\sqrt{2}}$
	$y' = \frac{1}{2\sqrt{x}}$ $y' = \frac{u'}{2\sqrt{x}}$	$y = \sqrt{2} \Rightarrow y' = \frac{1}{2\sqrt{2}}$ $Lne = 1\checkmark$
y = Lnu	$y' = \frac{u}{u}$	
	u	
$y = \sin x$	$y' = \cos x$	
$y = \cos x$	$y' = -\sin x$	
4	1 1 1 1 2	
$y = \tan x$	$y' = 1 + \tan^2 x$	
$y = \cot x$	$y' = -(1 + \cot^2 x)$	
$y = \cot x$	$y = -(1 + \cot x)$	
y = [u]	. [0	
/ ["]	$y' = \begin{cases} 0 & u \notin z \\ \phi & u \in z \end{cases}$	
	$(\psi \qquad u \in \mathcal{L}$	

$$y = [u] \Rightarrow y' = 0$$

$$y = \left[\sin\frac{3\pi}{2}\right] \frac{\sin\frac{3\pi}{2} = -1 \in z}{\Rightarrow y' = 0}$$
$$y = \left[\sin\frac{\pi}{3}\right] \frac{\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2} \notin z}{\Rightarrow y' = 0}$$

$$y = \left[\sin \pi\right] \frac{\sin \pi = 0 \in z}{\longrightarrow} y' = \phi$$