Geschwindigkeitsoptimierter Ansatz zur Analyse der ärztlichen Versorgungsqualität

Daniel Karla

Klaus Böhm, Franka Ginter

Vorstellung

- Daniel Karla
- · Kontakt: daniel.karla@web.de
- · Master-Student an der Hochschule Mainz
- · Amt für Bodenmanagement (Hessen)

Gliederung

- Hintergrund
- Ansatz
- Analyse
- · Problemlösung
- · Fazit

Hintergrund Bedarf

- Untersuchung der ärztlichen Verfügbarkeit in Hessen
- Nachwuchsmangel
- Demografischer Wandel
- Geringere Verfügbarkeit in ländlicheren Gebieten
- · Maximale Akzeptanz der räumlichen Entfernung [1]

Zielgenaue Bestimmung des lokalen Bedarfes

Hintergrund

Versorgungsgradberechnung

- Kassenärztliche Vereinigung Hessen gewährleistet und organisiert die ärztliche Versorgung
- · Bisherige Versorgungsgradberechnung
 - Verhältnis aus Bevölkerung und Ärzte im Planungsbereich
 - · 1 Hausarzt pro 1671 Einwohner [2]

für

Darmstadt = 104,56% [2]

Hintergrund

Versorgungsgradberechnung

- · Problem:
 - Versorgungsberechnung über Gesamtbevölkerung [2]
 - Versorgungsgrad berücksichtigt keine geografischen Entfernungen
 - · Somit gilt Versorgungsgrad für alle → Stadtbewohner mit vielen Ärzten, wie Dorfbewohner wenig Ärzten
- Lösung: Berechnung eines repräsentativeren Versorgungsgrades
- · Unter Berücksichtigung von
 - · Arztgruppen (Hausärzte, Internisten),
 - · Zeitbeschränkung zum Arzt,
 - · Verkehrsmittel zum Arzt

Methodischer Aufbau

Grafische Darstellung der Berechnungsvorschrift [Quelle: eigene Darstellung]

Komponenten der Webanwendung

Schematische Kommunikationsdarstellung [Quelle: eigene Darstellung]

Implementierung

Ablaufschema der Versorgungsberechnung [Quelle: eigene Darstellung]

Ergebnis

Versorgungsberechnung [OpenStreetMap contributors, Leaflet]

Analyse des Prototypen

- Strukturierte Präsentation der Ergebnisse
- Präsentation der erreichbaren Bevölkerung
- Berechnung eines repräsentativeren Versorgungsgrades
- nicht vertretbare Wartezeiten für Live-Anwendung
- im mehrstelligen Sekundenbereich

Analyse Problemsuche

- Vorgehen
 - Einführen von Zeitstempeln in der Serverlog-Datei
 - Detektion der zeitintensiven Vorgänge
 - Ermittlung von Optimierungsmöglichkeiten
- Thematischer Auszug aus der Serverlog-Datei
 - Start Senden der Parameter an Server
 - Empfang Parameter empfangen
 - Isochronen Arztpraxen selektiert und Isochronen berechnet
 - Verschneidungen Berechnung durchgeführt
 - Datenausgabe Erstellen des GeoJSON

Analyse Problemanalyse

- Problem *API (Isochronen)*
 - · Resonanz der API
 - · Abhängig der Parameter zur Isochronenberechnung
 - Geringes Verbesserungspotenzial, da extern
- Problem räumliche Operationen
 - · Räumliche Abfragen der hessenweiten Daten sehr zeitintensiv
 - 1600km² Bebauungsgebiete und hessenweite Geometrien sind geometrisch abzugleichen
 - Hohes Verbesserungspotenzial Datenhaltung kann optimiert werden

Flexible Datenhaltung

- Nahe Rohdatenbestand
- Viele Informationen
- Rechenintensive Prozesse nötig
- Leichte Datenaktualisierung

Performance

- Vorprozesszierung
- Anwendungsspezifische Datenaufbereitung nötig
- Datenaktualisierung schwieriger
- Möglicher Performancegewinn bei statischen Daten

Analyse Problemlösung

 Welche r\u00e4umliche Operationen m\u00fcssen nicht in Echtzeit berechnet werden?

- · Veredelung der geometrischen Daten
 - Ermittlung der Bebauungsgebieten im Planungsgebiet
 - Verschneidung der Planungsgebiete mit den Bebauungsgebieten
 - · Aufbereitung der Bebauungsgebiete

Fazit

- > Erheblicher Performancegewinn (Faktor 10)
- > Entspricht einer modernen Webanwendung
 - > Durchschnittlich 20 Sekunden auf 3 Sekunden

Ziel und Ausblick

- Lösung der Fragestellung → Berechnung eines repräsentativeren Versorgungsgrades
- Lösung der Schwachstellen
- Entstand eine Webanwendung für das Gesundheitswesen

- Zahl der erreichten Bevölkerung unter Annahme gleicher Einwohnerdichte
- ☑ Isochronenberechnung auch auf Grundlage des Öffentlichen Personennahverkehrs

Danksagung

 Peter Karich von GraphHopper für die Bereitstellung der Isochronen API

Zeit für Ihre Fragen...

Versorgungsberechnung [OpenStreetMap contributors, Leaflet]

Quellenverzeichnis

- [1] FÜLÖP, G., THOMAS, K., & SCHÖPE, P. (2017). Einzugsbereiche von Arztpraxen und die Rolle der räumlichen Distanz für die Arztwahl der Patienten. Aberfuen am 28. JUNI 2017 von WWW2.VWL.UNI-MANNHEIM.DE/FILEADMIN/USER_UPLOAD/PIGORSCH/PDF/ EIN-ZUGSBEREICHE _VON_ARZTPRAXEN_BETA_KOPETSCH.PDF
- [2] KASSENÄRZTLICHE VEREINIGUNG HESSEN (14. Oktober 2014). Bedarfsplanung. Abgerufen am 15. Juli 2017 von https://www.kvhessen.de/fileadmin/media/documents/Bedarfsplan_2015 _Teil3.pdf

Umsetzung

Implementierung - Versorgungsgradberechnung

Sequenzdiagramm der Versorgungsgradberechnung [Quelle: eigene Darstellung]