NOTES ON THE DIMENSION OF STATIONARY MEASURES

YUXIANG JIAO

CONTENTS

1. Introduction	1
1.1. The philosophy	1
1.2. Hochman's result	2
2. Exact dimensionality of the stationary measure	4
2.1. A baby example	4
2.2. Exact dimensionality of the stationary measure	5
3. An inverse theorem	6
References	9

1. Introduction

1.1. The philosophy.

Recall the celebrated entropy formula proved by Ledrappier-Young in 1985. Let $f: M \to M$ be a C^2 diffeomorphism on a closed Riemannian manifold M. Let m be an f-invariant Borel probability measure on M. Then by Oseledec's Theorem, for m-a.e. points $x \in M$, there exists an f-invariant measurable splitting

$$T_x M = E_1(x) \oplus \cdots \oplus E_{r(x)}(x)$$

and numbers $\lambda_1(x) > \cdots > \lambda_{r(x)}(x)$ (called **Lyapunov exponents**) such that

$$\lim_{n\to\pm\infty}\frac{1}{n}\log\|Df_x^nv\|=\lambda_i(x),\quad\forall v\in E_i(x).$$

Let $E^s(x) = \bigoplus_{\lambda_i(x) < 0} E_i(x)$ and $E^u(x) = \bigoplus_{\lambda_i(x) > 0} E_i(x)$, let

$$W^{s}(x) = \left\{ y \in M : \limsup_{n \to +\infty} \frac{1}{n} \log d(f^{n}x, f^{n}y) < 0 \right\},$$

$$W^{u}(x) = \left\{ y \in M : \limsup_{n \to -\infty} \frac{1}{n} \log d(f^{n}x, f^{n}y) < 0 \right\}.$$

Then $W^s(x)$, $W^u(x)$ are immersed submanifolds tangent to $E^s(x)$, $E^u(x)$, respectively. Which are called the **stable and unstable manifold** of x. Denote the **entropy** f with respect to m by $h_m(f)$.

Theorem 1.1 ([LY85a, Theorem A]). *Then*

$$h_m(f) = \int \sum_i \lambda_i^+(x) \dim E_i(x) \mathrm{d} m(x)$$

if and only if m has absolutely continuous conditional measures on unstable manifolds, where $a^+ = \max\{a,0\}$.

In the second paper published by Lerappier-Young, they give a more precisely formula, which included the dimension of measures. We assume that m is ergodic for convenience. Then the fast unstable direction is integrable as

$$W^{i}(x) = \left\{ y \in M : \limsup_{n \to -\infty} \frac{1}{n} \log d(f^{n}x, f^{n}y) \leqslant -\lambda_{i} \right\},$$

where $W^i(x)$ is tangent to $\bigoplus_{j \leq i} E_j(x)$. We consider the conditional measure of m along W^i , denote by m_x . One can show that

$$\delta_i(x) = \lim_{\varepsilon \to 0^+} \frac{\log m_x B^i(x, \varepsilon)}{\log \varepsilon}$$

exists and is a constant almost every where, where $B^i(x, ε)$ is the ε-ball along $W^i(x)$. We call $δ_i$ the (exact) dimension of m on W^i .

Theorem 1.2 ([LY85b, Theorem C']). Assume m is ergodic. Let $\lambda_1 > \cdots > \lambda_u$ denote the distinct positive Lyapunov exponents of f and let δ_i be the dimension of m on W^i . Write $\gamma_i = \delta_i - \delta_{i-1}$ (where $\delta_0 = 0$), then $0 \le \gamma_i \le \dim E_i$ and

$$h_m(f) = \sum_{i \le u} \lambda_i \gamma_i.$$

These theorems show a philosophy that

 $Entropy = Lyapunov \ Exponent \times Dimension.$

1.2. Hochman's result.

Setting

- $G = SL(2, \mathbb{R})$ acts on \mathbb{R}^2 linearly and induces an action on \mathbb{RP}^1 .
- μ a finitely supported probability measure on G.
- Assume that G_{μ} the semigroup generated by supp μ is not compact and acts strongly irreducible on \mathbb{R}^2 .

Recall the Lyapunov exponents of random product of matrices

$$\chi = \chi(\mu) = \lim_{n \to \infty} \frac{1}{n} \log \|X_n \cdots X_1\|,$$

where X_i are independent identically distributed obeys the distribution μ . Furstenberg's theorem [Fur63] asserts that $\chi > 0$ under the assumptions above. (For notes about Furstenberg's theorem, see here.)

Remark 1.3. We will take the logarithm base 2 for the convenience of later discussion. In fact, we will do some dyadic decomposition on \mathbb{RP}^1 .

Definition 1.4. A probability measure ν on \mathbb{RP}^1 is called μ -stationary if

$$v = \mu . v = \int_C g . v d\mu(g),$$

where $g.\nu$ is the push forward of ν under g.

Under the same assumption (in the case of $SL(2, \mathbb{R})$), it can be shown that μ admits a unique μ -stationary measure ν on \mathbb{RP}^1 .

Definition 1.5. ν is called **exact dimensional** if there exists $\alpha \ge 0$ such that

(1.1)
$$\lim_{r \to 0^+} \frac{\log \nu(B(x,r))}{\log r} = \alpha$$

for ν -a.e. x. At this time, α is called the **dimension** of ν , denote by dim ν .

Remark 1.6. The limit (if exists) in (1.1) is called the **local dimension** of x.

Remark 1.7. Intuitively, ν is of (exact) dimension α means that $\nu(B(x,r)) = r^{\alpha+o(1)}$ for almost every x.

Example 1.8. A Dirac measure is of exact dimension 0.

Example 1.9. The Lebesgue measure on \mathbb{R}^d is of exact dimension d.

Definition 1.10. The random walk entropy of μ is defined as

$$h_{\text{RW}}(\mu) := \lim_{n \to \infty} \frac{1}{n} H(\mu^{*n}),$$

where $H(\mu^{*n})$ is the entropy of the *n*-th convolution of μ .

Example 1.11. Assume $g, h \in SL(2, \mathbb{R})$ generates a free semigroup. Let

$$\mu = \frac{1}{2}\delta_g + \frac{1}{2}\delta_h,$$

then $H(\mu^{*n}) = n$. Hence $h_{RW}(\mu) = 1$.

Example 1.12. Assume $g, h \in SL(2, \mathbb{R})$ generates a free group. Let

$$\mu = \frac{1}{4} \delta_g + \frac{1}{4} \delta_{g^{-1}} + \frac{1}{4} \delta_h + \frac{1}{4} \delta_{h^{-1}}.$$

Then $H(\mu^{*n}) = n \log 3 + o(n)$, hence $h_{RW} = \log 3$.

Fix a left invariant metric $d(\cdot, \cdot)$ on $G = SL(2, \mathbb{R})$. For a subset $A \subset SL(2, \mathbb{R})$, we say A is **Diophantine** if there exists c > 0, such that for every A_1, \dots, A_n and A'_1, \dots, A'_n in A,

$$A_1 \cdots A_n \neq A'_1 \cdots A'_n \implies d(A_1 \cdots A_n, A'_1 \cdots A'_n) > c^n.$$

Assumption. supp μ satisfies the Diophantine condition.

Theorem 1 ([HS17, Theorem 1.1]). *Under the assumptions above, the unique* μ *-stationary measure* ν *is exact dimensional and*

$$\dim \nu = \min \left\{ 1, \frac{h_{\text{RW}}(\mu)}{2\chi} \right\}.$$

Remark 1.13. Why 2χ at the denominator? This is because if we consider g acts on \mathbb{RP}^1 , then derivate at [v] approximates $(\|gv\|/\|v\|)^{-2}$. Or, the compression ratio of g approximates $\|g\|^{-2}$. Then regard the random walk on \mathbb{RP}^1 as a dissipative system, the Lyapunov exponent is -2χ .

Remark 1.14. The additional Diophantine condition is reasonable that h_{RW} does not distinguish two different elements closed enough. But if two elements are very closed, then the actions on \mathbb{RP}^1 are very similar, we need to exclude this case.

2. EXACT DIMENSIONALITY OF THE STATIONARY MEASURE

2.1. A baby example.

In this section, we will show the first key result that a stationary measure is exact dimensional. At first, we give an example of stationary measure on the unit interval [0, 1], which is called the self-similar measure. In this baby case, the dimension can be calculated precisely. It might gives more intuition to the dimension of measures.

Example 2.1. Let $F_0, F_1 : [0,1] \to [0,1]$ given by $F_0(x) = \frac{1}{2}x$ and $F_1(x) = \frac{1}{2}(x+1)$. For $0 \le p \le \frac{1}{2}$, consider the probability measure

$$\mu_p = p\delta_{F_0} + (1-p)\delta_{F_1}.$$

Then there exists a unique probability measure ν_p on [0,1] such that $\nu_p = \mu_p.\nu_p$. For every k>0, for $i=(i_1,i_2,\cdots,i_k)\in\{0,1\}^k$, let $F_i=F_{i_k}\cdots F_{i_1}$. Then F_i maps [0,1) to an interval with length 2^{-k} , denoted by I_i , which consists of numbers with binary expansion beginning with $0.i_1\cdots i_k$. By the explicit expansion

$$v_p = \mu_p.v_p = \mu_p^{\star k}.v_p = \sum_{i \in \{0,1\}^k} p_i F_i.v_p,$$

we have

$$v_p(I_j) = \sum_{i \in \{0,1\}^k} p_i F_i . v_p(I_j) = p_j = p^{n_0} (1-p)^{n_1},$$

where n_0 and n_1 denote the number of times that 0 and 1, respectively, occurs in j. See the following figure, which shows the method of constructing the self-similar measure for $p = \frac{1}{3}$.

By the strong law of large number, we know that for v_p almost every $x \in [0, 1]$, the frequency of 0 occurs in the binary expansion of x at beginning tends to p. For a

such typical x, let $I_k(x)$ be the interval I_i with length 2^{-k} containing x. Then

$$\frac{\log \nu_p(I_k(x))}{\log |I_k(x)|} \to -(p\log p + (1-p)\log(1-p)).$$

Hence dim $v_p = -(p \log p + (1 - p) \log(1 - p))$, which coincides with the entropy of $h_{\rm RW}(\mu_p)$. (Note that the Lyapunov exponent is $\log \frac{1}{2} = -1$.) Besides, there is also an inequality between the dimension of measure and the dimension of the supports

$$\dim \nu_p \leqslant \dim_{\mathbf{H}} \operatorname{supp} \nu_p = 1.$$

For more discussions about basic properties of dimension of measures and fractal geometry, we refer to [Fal97, Chapter 10].

2.2. Exact dimensionality of the stationary measure.

Back to our setting. Let μ be a finitely supported probability measure on G = $SL(2,\mathbb{R})$ satisfying some conditions and ν be the unique μ -stationary measure on \mathbb{RP}^1 .

Definition 2.2. The Furstenberg entropy of ν is defined by

$$h_{\rm F}(\nu) = \int \int \log \frac{\mathrm{d}A.\nu}{\mathrm{d}\nu}(x) \mathrm{d}A.\nu(x) \mathrm{d}\mu(A).$$

Remark 2.3. By Jensen's inequality, the Furstenberg entropy is positive in our setting.

Theorem 2.4 ([HS17, Theorem 3.4]). ν is exact dimensional and the dimension equals to $h_{\rm F}(\nu)/2\chi$.

Let $\Omega = G^{\mathbb{N}}$ and $\mathbf{P} = \mu^{\mathbb{N}}$ be the probability on Ω . Let $\sigma : \Omega \to \Omega$ be the shift map, explicitly write as $\omega = (X_0, X_1, \cdots) \mapsto (X_1, X_2, \cdots)$. Recall the original proof of Furstenberg's theorem, in which he showed that

$$X_0(\omega)X_1(\omega)\cdots X_{n-1}(\omega).\nu \to \delta_{\pi(\omega)}$$

in the weak* topology. Where $\pi(\omega)$ is now known as the **Furstenberg boundary**. It has two properties that

- (i) $X_0(\omega)^{-1}\pi(\omega) = \pi(\sigma\omega)$, (ii) $\int \pi(\omega)d\mathbf{P}(\omega) = \nu$.

For prove the exact dimensionality, it suffices to show that for typical ω , the local dimension of $\pi(\omega)$ equals to $h_{\rm F}(\nu)/2\log \chi$.

Idea of the Proof. Write $x = \pi(\omega)$ for some typical $\omega = (X_0, X_1, \cdots) \in \Omega$. Let $r = 2^{-2\chi N}$ for some N large enough. We want to calculate the measure $\nu(B(x,r))$. Since $X_0X_1\cdots X_n$ contracts the circle to $\pi(\omega)$, which means that $X_n^{-1}\cdots X_1^{-1}X_0^{-1}$ expands a neighborhood of $\pi(\omega)$. The idea is to expand B(x,r) to an interval with a ν -measure bounded from below. We have

$$\nu(B(x,r)) = \left(\prod_{n=0}^{N-1} \frac{\nu((X_0 \cdots X_{n-1})^{-1} B(x,r))}{\nu((X_0 \cdots X_n)^{-1} B(x,r))}\right) \nu((X_0 \cdots X_{N-1})^{-1} B(x,r)).$$

Roughly speaking, we can expect that $X_{n-1}^{-1} \cdots X_0^{-1}$ expands B(x,r) with the rate \approx $2^{2\chi n}$. And the last term has an order of constant. Taking logarithms and multiplying 1/N, we have

$$-\frac{1}{N}\log\nu(B(x,r)) = \frac{1}{N}\sum_{n=0}^{N-1}\log\frac{\nu(X_n^{-1}B_n)}{\nu(B_n)} + O(\frac{1}{N}),$$

where $B_n = (X_0 \cdots X_{n-1})^{-1} B(x, r)$. Note that $\pi(\sigma^n \omega) \in B_n$, then

$$B_n \approx B(\pi(\sigma^n \omega), 2^{-2\chi(N-n)+o(N)}),$$

with length o(1) for most n. Note that

$$\frac{\nu(X^{-1}I)}{\nu(I)} = \frac{X.\nu(I)}{\nu(I)} \to \frac{\mathrm{d}X.\nu}{\mathrm{d}\nu}(x) \quad \nu - \mathrm{a.e.}$$

for $I \ni x$, $|I| \to 0$. By ergodic theorem, we can expect that

$$\frac{1}{N} \sum_{n=0}^{N-1} \log \frac{\nu(X_n^{-1} B_n)}{\nu(B_n)} \to h_{F}(\nu).$$

Then the local dimension of *x* equals to $h_F(\nu)/2\chi$.

3. AN INVERSE THEOREM

Now we know that ν is exact dimensional and dim $\nu = \alpha$ for some $\alpha > 0$. In what follows, we will show the idea to demonstrate

$$\alpha = \min\left\{1, \frac{h_{\text{RW}}(\mu)}{2\chi(\mu)}\right\}$$

under the Diophantine condition. By Jensen's inequality, we can show that

$$h_F(\nu) \leqslant H(\mu)$$
,

hence $h_F(\nu, \mu^{\star n}) \leq H(\mu^{\star n})$. Since $\chi(\mu^{\star n}) = n\chi(\mu)$, it follows that $\alpha \leq h_{\rm RW}(\mu)/2\chi(\mu)$. The key point is that, if $\alpha < \min\{1, h_{\rm RW}(\mu)/2\chi(\mu)\}$, then there are room for growth of ν , which contradicts with the "stationary identity" $\mu.\nu = \nu$. The idea comes from additive combinatorics, we give some examples to show the philosophy.

Example 3.1. Let $A \subset \mathbb{R}$ be a finite subset, let $A + A := \{a + b : a, b \in A\}$. Then

$$\sharp(A+A)\geqslant 2\sharp A-1$$
,

the equality holds iff A is an arithmetic progression. This example shows that if the cardinality does not grow so much under the addition, then A must possess some arithmetic structure.

Example 3.2. Let A, B be finite subsets of $\mathbb{Z}/p\mathbb{Z}$, where p is a prime. If $|A| \leq p-1$ and $|B| \geq 2$, then $|A+B| \geq |A|+1$. (In fact, by a theorem of Cauchy-Davenport, $|A+B| \geq \min\{p, |A|+|B|-1\}$.) Then

$$A + B + B + \cdots + B$$

will eventually cover $\mathbb{Z}/p\mathbb{Z}$.

Example 3.3. Let A, B be finite subsets of \mathbb{R} , if there exists c > 0 such that $|A + B| \le c|A|$. Then $|A_0 + \sum_k B| \le c^k |A_0|$ for some non empty $A_0 \subset A$, for any positive integer k, where $\sum_k B = B + B + \cdots + B$ for k-times. This is a famous result in additive combinatorics called the Plünnecke-Ruzsa inequality.

For a non discrete context (comparing with a finite subset of \mathbb{R} , the measure is a continuous object), we will consider a discretized version. That is, the entropy of ν under a dyadic decomposition. We regard \mathbb{RP}^1 as [0,1) and consider the dyadic decomposition

$$\mathcal{D}_n = \left\{ [k2^{-n}, (k+1)2^{-n}) : 0 \leq k \leq 2^n - 1 \right\}$$

on [0, 1). We consider the entropy $H(\nu, \mathcal{D}_n)$, then

(3.1)
$$H_n(\nu) := \frac{1}{n} H(\nu, \mathcal{D}_n) \to \alpha.$$

Remark 3.4. The entropy of a measure helps us to consider a measure as a discrete object. The dimension (entropy) plays the role of cardinality of a finite set. The following example is a similar result as example 3.3 in a measure theoretical setting.

Example 3.5 ([Hoc14a, Proposition 4.9]). Let θ , η be probability measures on \mathbb{R} and $H_n(\theta)$, $H_n(\eta) < \infty$, then

$$H_n((\theta^{*k})*\eta) \leqslant H_n(\eta) + k(H_n(\theta*\eta) - H_n(\eta)) + O\left(\frac{k}{n}\right),$$

where * is the additive convolution on \mathbb{R} .

Remark 3.6. Combining the philosophy of example 3.2, 3.3, 3.5. Here is a rough idea: for two probability measures θ , η on \mathbb{R} with positive dimension and satisfying some suitable regularity condition. Then the dimension of $(\theta^{*k}) * \eta$ will eventually attain the full dimension. Besides, if dim η < 1, then there must have some dimension (entropy) growth of $\theta * \eta$ comparing with η .

For every $x \in [0,1)$ and n > 0, let $I_n(x)$ be the component in \mathcal{D}_n containing x, let

$$\nu_{x,n} = \frac{1}{\nu(I_n(x))} \nu|_{I_n(x)}$$

be the component measure. Then $\nu = \mathbf{E}_{i=n}\nu_{x,i}$, where $\mathbf{E}_{n_1\leqslant i\leqslant n_2}$ denote taking the expectation for $(x,i)\in [0,1)\times\{n_1,\cdots,n_2\}$, obeys the distribution $(\nu\times \text{uniform})$. Similarly, let $\mathbf{P}_{n_1\leqslant i\leqslant n_2}$ be the probability with respect to the same distribution. Then the conditional entropy

$$H(\nu, \mathcal{D}_{n+m}|\mathcal{D}_n) = \mathbf{E}_{i=n}H(\nu_{x,i}, \mathcal{D}_{i+m}).$$

We decompose the measure into an expectation of component measures is for the sake of regard the measure as a discrete object. Each component measure can be regard as a unit. Comparing with (3.1), the stationary measure has a stronger regularity. Which is called the **porosity**.

Proposition 3.7 ([HS17, Proposition 5.5]). ν is α -porous. That is, for every $\delta > 0$, for every $m > m(\delta)$ and $n > n(\delta, m)$,

$$\mathbf{P}_{0 \leqslant i \leqslant n} \left(\frac{1}{m} H(\nu_{x,i}, \mathcal{D}_{i+m}) \leqslant \alpha + \delta \right) > 1 - \delta.$$

Remark 3.8. The intuition of this proposition is that: for m large enough, for most local parts, when we look down m-levels, the component measure ν represents as a fractal of dimension about α . In particular, the porosity shows a phenomenon that at each level, if we regard the dyadic partition \mathcal{D}_n as $\mathbb{Z}/(2^n\mathbb{Z})$, then ν is regular (not too large) at most levels.

The porosity gives a regularity condition as we mentioned in remark 3.6. This is sufficient to give a growth of entropy (dimension).

Theorem 3.9 (The inverse theorem, [Hoc14a, Theorem 2.8], [HS17, Theorem 5.7]). For every $\varepsilon > 0$, there exists $\delta > 0$ and $n_0 = n_0(\varepsilon, \delta)$. For every probability measures θ, η on [0,1) such that η is $(1-\varepsilon)$ -porous, then for every $n > n_0$,

$$H_n(\theta) > \varepsilon \implies H_n(\theta * \eta) > H_n(\eta) + \delta.$$

Another technique in [HS17] is to linearize the measure μ . Since μ is a probability measure on $G = SL(2, \mathbb{R})$, we should push forward the measure to \mathbb{RP}^1 and consider the additive convolution on $\mathbb{RP}^1 = [0, 1)$.

For $g_0 \in \text{supp } \mu^{\star n}$, such that $\mu^{\star n}$ has some entropy near g_0 . This can be shown by the Diophantine condition and the assumption that $\alpha < \min\{1, h_{\text{RW}}(\mu)/2\chi(\mu)\}$. For $x_0 \in [0, 1)$, we can write the action as

$$g.x = g_0.x_0 + (g - g_0).x_0 + g_0.(x - x_0) + \text{higher order terms}$$

around g_0 and x_0 . By some distortion control and choosing some good positions (with large probability), the action of g_0 around x_0 can be viewed as affine maps. The main terms in the expression above are $(g - g_0).x_0$ and $g_0.(x - x_0)$, which carries the information of μ and ν , respectively. Roughly speaking,

$$\nu_{g_0.x_0,-} \approx (\mu_{g_0,-}).x_0 * g_0.\nu_{x_0,-},$$

where * denotes the additive convolution on [0,1). Since μ has some entropy near g_0 and $\nu_{x_0,-}$ satisfies the porosity assumption. We can expect an entropy near $g_0.x_0$. This argument is valid on a large probability set. But when we sum up these measures, it will contradict with the assumption that $\mu.\nu = \nu$.

REFERENCES

- [Fal97] K. J. Falconer. *Techniques in fractal geometry*. Chichester; New York: Wiley, 1997. ISBN: 9780471957249.
- [Fur63] Harry Furstenberg. "Noncommuting Random Products". In: *Transactions of the American Mathematical Society* 108 (3 1963). ISSN: 00029947. DOI: 10.2307/1993589.
- [Hoc14a] Michael Hochman. "On self-similar sets with overlaps and inverse theorems for entropy". In: *Annals of Mathematics* 180 (2 2014). ISSN: 0003486X. DOI: 10.4007/annals.2014.180.2.7.
- [Hoc14b] Michael Hochman. "Self Similar Sets, Entropy and Additive Combinatorics". In: vol. 88. 2014. DOI: 10.1007/978-()3-()662-()43920-()3_8.
- [Hoc17] Michael Hochman. "Some problems on the boundary of fractal geometry and additive combinatorics". In: *Trends in Mathematics* PartF3 (2017). ISSN: 2297024X. DOI: 10.1007/978-()3-()319-()57805-()7_7.
- [HS17] Michael Hochman and Boris Solomyak. "On the dimension of Furstenberg measure for SL2(R) random matrix products". In: *Inventiones Mathematicae* 210 (3 2017). ISSN: 00209910. DOI: 10.1007/s00222-()017-()0740-()6.
- [LY85a] F. Ledrappier and L.-S. Young. "The Metric Entropy of Diffeomorphisms: Part I: Characterization of Measures Satisfying Pesin's Entropy Formula". In: *The Annals of Mathematics* 122 (3 1985). ISSN: 0003486X. DOI: 10.2307/1971328.
- [LY85b] F. Ledrappier and L.-S. Young. "The Metric Entropy of Diffeomorphisms: Part II: Relations between Entropy, Exponents and Dimension". In: *The Annals of Mathematics* 122 (3 1985). ISSN: 0003486X. DOI: 10.2307/1971329.