Lawrence Berkeley National Laboratory

Recent Work

Title

Single Cell Genome Reconstruction of Two Uncultured, Proteorhodopsin-containing Flavobacteria

Permalink

https://escholarship.org/uc/item/4z42283c

Authors

Woyke, Tanja Copeland, Alex Xie, Gary et al.

Publication Date

2008-05-22

Single cell genome reconstruction of two uncultured, proteorhodopsin-containing Flavobacteria

Tanja Woyke¹, Alex Copeland¹, Gary Xie³, Cliff Han³, Jan-Fang Cheng¹, Hajnalka Kiss³, Jimmy Saw³, Pavel Senin³, Michael E. Sieracki² & Ramunas Stepanauskas²

¹ DOE Joint Genome Institute, Walnut Creek, California, ² Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, ³ Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract

Determining the genetic makeup of predominant microbial taxa with specific metabolic capabilities remains one the major challenges in microbial ecology and bioprospecting, due to the limitations of current cell culturing and metagenomic methods. The complexity of microbial communities and intraspecies variations hinders the assembly of individual genomes from metagenomic shotgun libraries. Here we report the use of single cell genomics to access the genome of two proteorhodopsin-encoding flavobacteria from Gulf of Maine bacterioplankton. We use high throughput fluorescence-activated sorting of single cells, whole genome amplification via multiple displacement amplification, PCR-screening and subsequent shotgun sequencing of these single amplified genomes (SAGs), allowing the genomic analysis of their novel photometabolic system and the sequence comparison to environmental marine sequence data.

Background & Methods

Sequence assemblies

	MS024-2A	MS024-3C
Assembly statistics		
Assembly size [bp]	1,905,484	1,515,248
Estimated genome size [bp]	2,156,286 - 3,004,105	2,307,484 - 3,726,020
Number of contigs	17	21
Largest contig [bp]	684,032	549,383
GC content [%]	36	39
Mean read depth (± sd)	56 (± 63)	83 (± 110)
454 reads	47	68
Sanger reads	9	14.3
Gene predictions		
Total genes	1,824	1,426
Protein coding genes	1,785	1,400
with function prediction	1,205	960
w/o function prediction	580	440
Number of rRNA operons	2	1
Number of tRNA genes	33	24

The sequence data of the SAGs was Phrap assembled, followed by primer walking on shotgun clones, and PCR/adapter PCR on the diluted MDA products.

Data QC

GC contents histogram of the unassembled and assembled Sanger and pyrosequence reads for the two SAG exhibits a tight uni-modal distribution.

Taxonomic assignment analysis. The taxonomic contents of the blastx output for the unassembled reads of the Flavobacteria sp. MS024-2A was estimated and visualized using the Metagenome Analyzer (MEGAN) (Huson, Genome Res 2007).

The MDA bias

MDA bias as evaluated by sequence depth distribution. The contigs for the SAG are aligned by length and contig breaks are indicated by the tic marks along the top. The mean sequence depth is 56 (± 63) for MS024-2A and 83 (±110) for MS024-3C.

Genome coverage as function of the genome sequencing effort for the flavobacterial SAG. The curve displays near-saturation indicating that additional sequencing would mostly result in repeated sampling of the over-amplified genomic regions, not targeting the yet missing part of the genome.

Chimeras

	MS024-2A		MS024-3C	
	chimeric reads/ clones (%)	overall chimerism	chimeric reads/ clones (%)	overall chimerism
Read-based chimerism				
3Kb Strary reads (untreated MDA DNA)	1.9	1 chimeri 28 Kbp	NA.	NA.
3Kb library reads (\$1 treated MDA DNA)	2.0	1 chimeri 25 Kbp	1.9	1 chimer/33 Kbp
8Kb Strary reads (\$1 treated MDA DNA)	2.1	1 chimed 30 Kbp	1.6	1 chimer/ 40 Kbp
454 reads (\$1 treated MDA DNA)		1 chimed 19 Kbp		1 chimer/ 2592p
Average (all reads)		1 chimer/ 21 Kbp		1 chimer/ 27Kbp
Clone-based chimerism				
3Kb clones (untreated MDA DNA)	14.5	1 chimer/20 Kbp	NA.	NA NA
paired reads facing into the same direction	8.6			
paired reads facing away from insert	3.6			
paired reads outside the insert size range	0.2			
paired reads in different contigs	0.8			
paired reads contained in each other	1.1			
3Kb clones (\$1 treated MDA DNA)	16.8	1 chimer/ 15 Kbp	16.4	1 chimes 20 Kbp
paired reads facing into the same direction	7.8		2.5	
paired reads facing away from insert	3.0		0.9	
paired reads outside the insert size range	3.2		45	
paired reads in different contigs.	2.0		0.5	
paired reads contained in each other	0.8		0.6	
BKb clones (S1 treated MDA DNA)	36.4	1 chimes/ 1790pp	29.5	1 chimer/ 2792p
paired reads facing into the same direction	22.6		17.4	
paired reads facing away from insert	2.5		2.7	
paired reads outside the insert size range	7.4		3.9	
paired reads in different contigs	3.3		3.6	
paired reads contained in each other	0.6		1.8	
Average (all clones)		1 chimed 17Kbp		1 chimer/ 23Kbp

Fragment recruitment

Global Ocean Sampling (GOS) (Rusch, PLoS Biol 2007) metagenome fragment recruitment by the SAGs MS024-2A and MS024-3C, the currently sequenced marine Flavobacteria isolate genomes, the non-marine F. johnsoniae, and the three best GOS fragment recruiters Pelagibacter, Prochlorococcus and Synechocuccus.

Geographic distribution of the GOS (Rusch, PLoS Biol 2007) metagenome fragments with >95% nucleotide identity to MS024-2A and MS024-3C.

Conclusion

Using the single cell approach, we demonstrate how a combination of single cell FACS and amplification via MDA can be used to access the genomes of uncultured environmental microorganisms, representative of their given environment.

Acknowledgements

We would like to thank PGF for the sequencing efforts and Lynne Goodwin (Los Alamos National Laboratory) for the coordination of the efforts involved in this project. We also thank H. Tu and M. Zhang for their help with the chimera detection analysis.