β -Diversity: Basics

Useful Reference

 GUide to STatistical Analysis in Microbial Ecology (GUSTA ME)!: https://mb3is.megx.net/gustame

Visualizing Samples

Beta Diversity: How different are sites?

More than 3 Taxa?

- http://www.webpages.uidaho.edu/veg_measure/Modules/Lessons/Module%209(Composition&Diversity)/9_2_Biodiversity.htm
- Tree diversity analysis, Kindt and Coe < http://www.worldagroforestry.org/downloads/Publications/PDFS/b13695.pdf>

How different are samples?

Species Differences

A vs B 8

B vs C 6

A vs C 10

How different are samples?

Species Differences

A vs B 8

B vs C 6

A vs C 10

More Than 3 samples?

Species
Differences

A vs B 8

B vs C 6

A vs C 10

β-Diversity: Ordination

Dimensionality reduction

Dimensionality reduction

 NMDS (Nonmetric Multidimensional Scaling): attempts to maintain pairwise dissimilarity

 PCoA (Principal coordinates analysis): Determines axes along which variance is maximized

PCoA and NMDS

Figures Josh Hates: 3D PCoA Plots

Beta Diversity Metrics

Species Differences

A vs B 8

B vs C 6

A vs C 10

Beta Diversity Metrics

- Number of Taxa
- Bray-Curtis Dissimilarity
- UniFrac
- etc

Number of Taxa

How different are samples?

Bray-Curtis Dissimilarity

$$D_{BC} = 1 - 2 \frac{\sum_{i=1}^{S} min(a_i, b_i)}{\sum_{i=1}^{S} a_i + b_i}$$

	Species						
	1	2	3				
Α	1	1	0				
В	5	5	0				
С	0	0	1				

Where x_i is the abundance of species i in sample X

Bray-Curtis Dissimilarity

```
> y
 housing foodstuffs alcohol other services
     640
                     147
                          169
              328
                                  196
2
    1800
             484 515 2291
                                 912
     640
            328 147 169
                                  196
           3280
    6400
                    1470 1690
                                 1960
```

Phylogenetic Trees

 The phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction of the branch length of the tree that leads to descendants from either one environment or the other, but not both.

- 1. Label branches leading to taxa from both samples "shared"
- 2. Label branches leading to taxa which appears only in one sample "unshared".
- 3. Unifrac is the fraction of total branch length which is unshared. Alternatively, (the sum of "unshared" branch lengths)/(the sum of all tree branch lengths

- Label branches leading to taxa from both samples "shared"
- 2. Label branches leading to taxa which appears only in one sample "unshared".
- Unifrac is the fraction of total branch length which is unshared. Alternatively, (the sum of "unshared" branch lengths)/ (the sum of all tree branch lengths)

Weighted UniFrac

UniFrac: Unweighted vs Weighted

- Unweighted UniFrac
 - Qualitative
 - Sensitive to differences in overall community structure
 - Strongly influenced by differences in rare (low abundance) taxa
- Weighted UniFrac
 - Quantitative
 - Sensitive to differences in high abundance taxa

Generalized UniFrac

- Sensitive to differences in moderately abundant taxa
- Maintains ability to detect differences in high and low abundance taxa

Beta Diversity Metrics

Species Differences

A vs B 8

B vs C 6

A vs C 10

β-Diversity: Comparisons

Non-Parametric Multivariate Tests

PERMANOVA

PERMANOVA Caveat

Biomarker Discovery

Question: Which OTUs*
have different abundance
between Site A and Site
B

* or higher level taxonomic groups,

Biomarker Discovery

- LEfSe
- MetaBoot
- Metastats
- LIBSVM
- mRMR
- Regularized Low Rank-Sparse Decomposition (RegLRSD)

P >> N

	OTU 1	OTU 2	 Meta 1	Meta 2	
Sample 1					
Sample 2					
Sample N					

Machine Learning

- Random Forests
- Support Vector Machines
- Kernel Ridge Regression
- Regularized Logistic Regression
- Bayesian Logistic Regression
- K-Nearest Neighbors
- Probabilistic Neural Networks
- etc