	Siddharth Wilakhe
	MA 641 HW 5 1
	2, 6 /10/
94	Given > {X}=> stationary ARCI)
7~	Yt= Xt + Nt
	To find > a) Autocorrelation for
	ARIMA model for 24+3
a	Var (4t) = Var (Xt) + Var (Nt)
	$=$ $\epsilon_{\infty}^2 + \epsilon_{N}^2$
	NOW COV
	CONCYE, Yt-K) = CON(X+N+, X+x+N+-K)
	TK = pkg.
	Corr (Yt Yt-K) ould be 9
	1+62 4/6N
6	Now we know $\theta = 1$ $1+6x/6n$
	1+6x/62
	Here we can see that the given autocorrelation of It is in the form of ARMA(1) model we know it can be ARMA(1) model
	of It is in the form opk
	: cle know it can be ARMA(1) model
82)	Vivien - $n = 100$ $\gamma_2 = 0.31$ $\gamma_4 = 0.11$ $\gamma_1 = -0.49$ $\gamma_5 = -0.21$ $\gamma_6 < 0.09$ for $k > 4$
7 ~	7=-0.99 7=-0.21 / JK 20.01 Par K/
	To find :- ARIMA models
	To find: ARIMA module
	Jn 10

:. 17:1>0.2 when i= 1,2,3 17:160.2 i>3 Hence are can use it can be either MA (2) Or MA(3) For MA(2) are can see that Var (73)= [1+2(-0.49)] (2(0.31)2) = 0.0167 1.15 12 5 11 106 12 130 0. $\frac{73}{\text{vor}} = -1.62$... are can say MA(2)

for is not rejected

(or the left = 121) $\frac{1}{911} = 0.8$ $\frac{1}{922} = -0.6$ $\frac{1}{933} = 0.08$ Threeshold $\frac{3}{2} = 0.181$ | $\frac{1}{9}$ ii | $\frac{1}{2}$ 0.181 | $\frac{2}{9}$ ori $\frac{1}{2}$ 2 | $\frac{1}{9}$ ii | $\frac{1}{2}$ 0.181 | $\frac{1}{2}$ 2 | Hence are can say it is AR(2) model 817 Threeshold => 2 = 0.2 From the given are see only tag 1 of the above the threeshold we got
Mence for MA(1,1) model Var $(7_2) = (1+2(-0.927) = 0.0135$ 82/ Mar = 1.55 Hence wall to reject MA2 For DY & heries

(3) If = Xt + et

(7) It here follows a random walk

with noise

where Xt = Xt - 1 + Nt is the random walk

et is the observational noise

Here we consider Nt 4 et are independent

gaussian white noise series with a

zero mean 4 voz = 1.

Parens > Mean of Nt = 0, Mean of et = 0

Variance of both 1

A.

j 13 8 m

4