W4. Lecture Notes — By Junyi

SUMMARY

- ▼ creating KG from structured data → data integration problem
- ▼ how the data elements from a new data source should be added to the knowledge graph
- → schema mapping problem
 - labor intensive! though bootstrapping is possible
- ▼ Recognizing if two instances refer to the same object in the real-world → record linkage problem
 - · key: efficiency
 - · toe-step approach with blocking and matching
 - leverage random forests and active learning

Knowledge graph by integrating external and internal data

- · Schema design
 - Relating the schema of sources to the knowledge graph schema
- · Record linkage
 - Recognizing if two instances refer to the same object in the real-world

Schema Mapping

- ▼ Practical challenges
 - hard to understand schema
 - large tables, unhelpful names
 - Mappings are not always one-to-one → apply business logic

- Training data (for schema mapping) nor available
- **▼** Example of schema mapping

knowledge graph			
subject	predicate	object	
c01	tуре	skillet	
c01	price	50	
c01	has_supplier	vendor_1	
c02	type	saucepan	
c02	price	40	
c02	has_supplier	vendor_1	
c03	type	skillet	
c03	price	30	
c03	has_supplier	vendor_1	
c04	type	saucepan	
c04	price	20	
c04	has_supplier	vendor_1	
m01	type	skillet	
m01	price	60	
m01	has_supplier	vendor_2	
m02	type	skillet	
m02	price	50	
m02	has_supplier	vendor_2	
m03	type	saucepan	
m03	price	40	
m03	has_supplier	vendor_2	
m04	type	saucepan	
m04	price	20	
m04	has_supplier	vendor_2	

Example Schema Mapping

cookware			
name	type	material	price
c01	skillet	cast iron	50
c02	saucepan	steel	40
c03	skillet	steel	30
c04	saucepan	aluminium	20

kind		
value		
skillet		
skillet		
saucepan		
saucepan		

price		
id value		
m01	60	
m02	50	
m03	40	
m04	20	

knowledge_graph(ID,type,Type) :- cookware(ID,TYPE,MATERIAL,PRICE)
knowledge_graph(ID,price,PRICE) :- cookware(ID,TYPE,MATERIAL,PRICE)
knowledge_graph(ID,has_supplier,vendor_1) :- cookware(ID,TYPE,MATERIAL,PRICE)

knowledge_graph(ID,type,Type) :- kind(ID,TYPE)
knowledge_graph(ID,price,PRICE) :- price(ID,PRICE)
knowledge_graph(ID,has_supplier,vendor_2) :- kind(ID,TYPE)

- **▼** Specifying schema mapping
- **▼** Bootstrapping schema mapping
 - ▼ linguistic mapping
 - leverage the name
 - use IRIs and sameAs links
 - stemming, synonym, hypernym
 - Cname and customer name
 - automobile and vehicle
 - book and publication
 - common substrings/pronunciation

- amount received/amount received
- bell vs belle
- leverage documentation string
 - extract keywords, and check semantic similarity
- **▼** mapping based on instances
 - examine the data
 - recognize pattern: phone number, zip code, ISBN, SSN, Date → which attributes can match
- ▼ mapping based on constrains
 - leverage the constraints
 - features
 - bootstrapping results
 - are inexact
 - need human verification
 - save some effort
 - lead to a better story

Record Linkage

▼ Example

	Table A		
	Company	City	State
a ₁	AB Corporation	New York	NY
a ₂	Broadway Associates	Washington	WA
a ₃	Prolific Consulting Inc.	California	CA

	Table B		
	Company	City	State
b ₁	ABC	New York	NY
b ₂	Prolific Consulting	California	CA

a1=b1

Inexact Inference

In practice, millions of records

· Blocking Followed by Matching

	Table A		
	Company	City	State
a ₁	AB Corporation	New York	NY
a ₂	Broadway Associates	Washington	AW
a ₃	Prolific Consulting Inc.	California	CA

	Table B		
	Company	City	State
b ₁	ABC	New York	NY
b ₂	Prolific Consulting	California	CA

Blocking <a1,b1> <a3,b2>

- ▼ An approach to record linkage
 - ▼ blocking followed by matching
 - random forests
 - · active learning
 - rule application
 - Algorithm
 - **▼** Overview
 - express the blocking/matching rules as random forest
 - use active learning to build the random forest
 - efficient application of rules through indexing
 - Techniques
 - **▼** random forest
 - consist of a set of set of rules
 - each rule selects records based on (inexpensive) similarity functions
 - similarity functions
 - edit distance
 - overlap similarity
 - cosine similarity
 - others
 - general principles for selecting similarity functions
 - numeric-valued attributes → exact match, absolute difference, relative difference, and Levenstein distance

• String-valued attributes → edit distance, cosine similarity, Jaccard similarity, and TF/IDF functions

illustration

▼ Active learning

▼ algorithm

- Randomly select pairs from the two data sets → ask the users to label them
- use similarity functions to obtain features
- learn random forest
- apply the learned rules to new selected pairs → evaluate the rules
- iterate
- once the learning algorithm converges, present the rules to the user
- · Retain the rules validated by the user

illustration

• Source 1: (a,b,c) Source 2: (d,e)

Seeds
$$|\text{Iteration 1} \qquad \stackrel{\text{(a, d)}}{\underset{\text{(c, d)}}{\text{(a, d)}}} \rightarrow \stackrel{\text{(0.2, ..., 0.5)}}{\underset{\text{(0.3, ..., 0.7)}}{\text{(o.3, ..., 0.7)}}} \rightarrow \text{ F1} \rightarrow \stackrel{\text{(a, e)}}{\underset{\text{(b, d)}}{\text{(b, d)}}} \rightarrow \text{ (b, d)} \rightarrow \text{ User labels (b, d)} + \\ |\text{Iteration 2} \qquad \stackrel{\text{(a, d)}}{\underset{\text{(c, d)}}{\text{(a, d)}}} \rightarrow \stackrel{\text{(0.2, ..., 0.5)}}{\underset{\text{(b, d)}}{\text{(b, c)}}} \rightarrow \text{ F2} \rightarrow \stackrel{\text{(a, e)}}{\underset{\text{(b, e)}}{\text{(b, e)}}} \rightarrow \text{ User labels (b, e)} - \\ |\text{(b, d)} \rightarrow \text{ (b, e)} - \\ |\text{(b, e)} \rightarrow \text{ (b, e)} \rightarrow$$

- Rule application
- **▼** Blocking vs Matching
 - same algorithmic outline is used except
 - matching rules are more exact/price
 - matching is usually verified through human intervention