"Efekty świetlne"

Sprawozdanie wykonania projektu

Piotr Kucharski, Dominik Zabłotny

Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Informatyka, II rok - 2017/2018

Grupa: środa, 11:00

1. Schemat połączeń płytki i dodatkowych modułów

W celu poprawnego zestawienia połączenia elementów z płytką Arduino Uno należy podłączyć linijkę cyfrowych diod RGB oraz enkoder z przyciskiem za pomocą kabli według schematu przedstawionego w tabeli:

Urządzenie	Piny na urządzeniu	Piny Arduino Uno
Linijka diod RGB	GND	GND
	DIN	A0
	4-7VDC	5V
	GND	GND
Enkoder z przyciskiem	CLK	5
	DT	6
	SW	7
	+	3.3V
	GND	GND

2. Opis algorytmu

Projekt opiera się na głównej, nieskończonej pętli, której akcje są sterowane poprzez sprawdzanie oraz ustawianie odpowiednich flag wykonania programu. W zależności od tych zmiennych ustawiany jest odpowiedni program świetlny oraz włączany jest tryb edytowania ilości poziomów jasności.

Program rozpoczyna pracę od standardowych wartości zmiennych sterujących zadeklarowanych w stałych preprocesorowych o nazwie "EFFECT", "INIT_K" oraz

"INITIAL_U3_DELAY". Domyślnie, program uruchamia się na zerowym efekcie świetlnym z ilością poziomów świetlnych ustawionym na 2² oraz ze standardową szybkością zmiany świecącej diody w programie "U3".

Wykonany projekt oferuje wyświetlanie dziewięciu programów świetlnych w następującej kolejności:

- R wszystkie diody ustawione na kolor czerwony,
- *G* wszystkie diody ustawione na kolor zielony,
- B wszystkie diody ustawione na kolor niebieski,
- RG wszystkie diody ustawione na kolor żółty,
- RB wszystkie diody ustawione na kolor różowy,
- GB wszystkie diody ustawione na kolor cyjankowy,
- *U1* na przemian migające diody o kolorze niebieskim i czerwonym,
- U2 pasek świecący wszystkimi diodami przechodzący przez całą gamę kolorów,
- U3 niebieski punkt przechodzący przez cały pasek, "odbijający" się od końców paska ledowego zmieniający świecącą diodę o czas ustawiany poprzez obrót enkodera z możliwością zatrzymania punktu na wybranej diodzie poprzez kliknięcie enkodera.

Przejście pomiędzy programami odbywa się poprzez krótkie naciśnięcie przycisku enkodera. Dłuższe jego przytrzymanie spowoduje wejście w tryb edycji parametru K stanowiącego ilość poziomów świetlnych możliwych do wyświetlenia dla danej diody. Ilość poziomów oblicza się wzorem $n=2^K$ gdzie $K\in\{2,3,4,5,6\}$. W trybie edycji tego współczynnika kolejne wartości są wyświetlane poprzez zapalenie się odpowiedniej ilości białych diod, które reguluje się poprzez przekręcanie enkodera. Krótkie naciśnięcie przycisku w trybie edycji K spowoduje odrzucenie zmian, zaś dłuższe przytrzymanie zatwierdzi zmiany.

Wyżej opisany sposób działania obsługi enkodera działa dla wszystkich programów, oprócz *U3*. Wówczas, krótkie wciśnięcie przycisku enkodera zatrzyma poruszanie się niebieskiego punktu po linijce diod a dłuższe naciśnięcie spowoduje przejście do następnego programu (w tym przypadku do pierwszego programu: *R*).

3. Opis działania programów użytkownika

Zgodnie z wytycznymi płytka oferuje wyświetlanie trzech autorskich programów:

- U1 program wyświetlający na przemian niebieskie i czerwone diody, w czasie rzeczywistym sprawdzający czy za pomocą enkodera została zmieniona jasność.
- U2 program wyświetlający efekt 'tęczy', czyli stopniową zmianę kolorów.
 Korzystając z pętli 'for' uzyskujemy płynny efekt przejścia po kolorach. W trakcie trwania programu w czasie rzeczywistym sprawdzane jest czy za pomocą enkodera została zmieniona jasność.
- U3 program wyświetlający 'odbijającą' się od krawędzi paska ledowego niebieską diodę, której ruch wykorzystując enkoder może być zatrzymywany i wznawiany przez użytkownika. Korzystając z dwóch pętli 'for' uzyskujemy efekt płynnego przejścia niebieskiej diody od jednej krawędzi paska ledowego do drugiej. Program wykorzystuje zmienioną funkcję przycisku enkodera.

4. Ważne sekcje kodu programu oraz wykorzystane biblioteki

W programie zostały użyte dwie biblioteki: *Adafruit_NeoPixel.h* dla obsługi paska ledów RGB, oraz *RotaryEncoder.h* w celu łatwego odczytywania przekręcenia pokrętła enkodera. Biblioteki można pobrać bezpośrednio z poziomu Arduino IDE za pomocą "Menedżera bibliotek".

Program opiera się na flagach kontrolujących przepływ wykonania programu. W celu zmniejszenia zużycia pamięci wszystkie 6 flag zostało zapisanych w jednej zmiennej jednobajtowej bez znaku: *unsigned char flags*. Kolejność flag wraz z opisem od najbardziej znaczącego bitu:

- 0 → *null* nie używany bit
- 1 → WAS_CHANGE flaga odnotowuje czy użytkownik wykonał jakąkolwiek operację sterowania. Jest wykorzystywana do zapobiegania niepotrzebnego dalszego wykonywania pętli próbkującej odczyt wejścia.
- 2 → IS_UP flaga określa kierunek podróżowania niebieskiego punktu w programie U3
- 3 → LIGHT określa czy niebieski punkt powinien się świecić czy nie
- 4 → *U*3 flaga oznacza, że program U3 jest odtwarzany.
- 5 → *U*2 flaga oznacza, że program U2 jest odtwarzany.
- 6 → *U1* flaga oznacza, że program U1 jest odtwarzany.
- 7 → IS_CHANGING_K flaga determinuje, czy program jest w trybie ustawiania parametru K.

Odczytywanie tych flag odbywa się za pomocą funkcji *bitRead*, ustawianie oraz zerowanie flag ustawiane jest za pomocą odpowiednio *bitSet* oraz *bitClear*.

Wspomniana wcześniej pętla próbkowania wejścia użytkownika działa na zasadzie odczytywania obrotu enkodera oraz przycisku w pętli z próbkowaniem określonym stałą preprocesora **SAMPLING_RATE**. Zostało to wprowadzone w celu zwiększenia czasu procesora przeznaczonego na odczytywanie wejścia.

Bieżący program jest określony za pomocą zmiennej globalnej *unsigned char led_program*, które zwiększa się za każdą zmianą programu oraz poddawana jest działaniu modulo 9, aby nigdy nie przekroczyła tej wartości. Później funkcja *set_program* uruchamia odpowiednią procedurę bazując na tej zmiennej.

Referencja do paska ledowego jest umieszczona w globalnej zmiennej **Adafruit_NeoPixel strip**, zaś enkoder jest odczytywany z poziomu zmiennej **RotaryEncoder encoder**.

Odróżnianie krótkiego przyciśnięcia przycisku od długiego polega na każdorazowym dodaniu 0.5 lub 0.1 do zmiennej **button_down_counter**. Różnica którą wartość dodać wynika z różnego obciążenia procesora podczas wykonywania poszczególnych programów - dla programu U3 z racji wykonywania dużej ilości pętli należy dodać większą wartość w celu mniejszego czasu wciskania przycisku aby zmienić program (długie przytrzymanie).

5. Uruchomienie projektu oraz pozostałe informacje

Kompilacja oraz uruchomienie programu nie odbiega od standardowej kompilacji. Należy do przygotowanej płytki Arduino podłączyć komputer za pomocą kabla USB oraz z poziomu Arduino IDE, po uprzednim skonfigurowaniu portu i rodzaju płytki, skompilować i wgrać program do urządzenia. Projekt jest łatwy do rozszerzenia o kolejne programy świetlne poprzez napisanie odpowiedniej funkcji sterującej paskiem ledowym oraz rozszerzenie ciała polecenia switch w funkcji void set_program() oraz powiększeniem stalej preprocesora N_PROGRAMS.

Kolejne wersje projektu powstawały w oparciu o naukę programowania w środowisku Arduino. Po uprzednim podzieleniu obowiązków w zespole, każdy członek skupił się na swoim zadaniu tworząc swoje małe projekty, sprawdzając ich działanie. Następnie małe projekty zostały scalone w jeden duży projekt finalny, dopasowany do specyfikacji.

Do sprawozdania zostaje dołączony plik "src_KucharskiZablotny.ino" zawierający kod źródłowy projektu.