

Auto Encoder Decoder-Based Anomaly Detection with the Lakehouse Paradigm

Yinxi Zhang

Sr. Data Scientist, Databricks

Who am I?

Yinxi Zhang

- Sr Data Scientist @ Databricks
- ML Development and Deployment

We are going to talk about

- Challenges in Anomaly Detection
- The Autoencoder Approach
- Train Autoencoders Distributedly
- Deploy the Models

Brief on Anomaly Detection

Anomaly Detection

Use Cases

Predictive Maintenance

Fraud Detection

Medical Image Diagnose

Surveillance Image Monitor

Anomaly Detection

Challenges

- Anomaly labels are subjective and expensive to acquire
- Even when labels are available, anomalies are rare
- Boundaries between normal and abnormal data are unclear

Extremely imbalanced data + High dimensional features

→ non-linear, unsupervised model is preferable

Encoder + Decoder Hourglass Architecture

Encoder

It translates the original high-dimension input into the latent low-dimensional code.

Non-linear Dimension Reduction

Decoder

The decoder network mirrors the encoder architecture recovers the data from the input.

Anomaly Detection Modeling Steps

- 1. Train AE on normal data only
- 2. Compute reconstructed error distribution of normal data
- 3. Choose reconstructed error threshold
- 4. Test the model and threshold, reconstructed error of anomalies need to be higher than chosen threshold

Encoder + Decoder Hourglass Architecture

Flexible Architecture

- Dense
- CNN
- LSTM
- Custom

Latent Space

- Lower dimensional
- Non-linear data representation
- Suitable for downstream tasks, e.g. cluster failure types

Limitations and variants

AE limitations

- Mapping between latent space and data space is deterministic
- Interpolating/Extrapola ting latent space is challenging

Extensions

- Variational Autoencoder (generative model)
 - Encoder maps inputs to parametric latent distribution
 - Minimize KL divergence between parametric posterior and true posterior
 - keras implementation
- Conditional Variational Autoencoder
 - Condition data and latent variables with label information
 - Improve control over generated results

Pitfalls when implementing AE?

Develop model

Build, train, and evaluate model

- 1. Which network type should I use? Dense, CNN or LSTM?
- 2. How to select reconstructed error threshold?

Develop model

Build model

- 1. Which network type should I use? Dense, CNN or LSTM?
 - Time series
 - Dense (Engineer time series features)
 - b. LSTM (N_samples_per_window x N_features)
 - Image
 - a. CNN
 - Concatenate frames or CNN LSTM

Data insights is the key

- Appropriate window size
- Extract key features from window aggregations or rolling statistics

Choose AE model Architecture

Data Centric - Wind Speed Example (Time series)

Wind Speed of a month

Develop model

Build, train, and evaluate model

- 1. Which network type should I use? Dense, CNN or LSTM?
 - a. Data insights are more important than network choices
- 2. How to select reconstructed error threshold?
 - Aggregate prediction outputs (rolling stats)
 - b. Use both normal and abnormal data
 - c. Use multiple metrics
 - i. Duration metrics: Mean absolute percentage error (on normal periods), precision/recall (on anomaly duration time)
 - ii. Instance metrics: precision/recall (on occurrence of alerts are sent)

Devop model

Choose reconstructed error threshold

more realistic decision boundary with both healthy and anomaly data

Duration Metrics Example:

Instance Metrics Example:

num of alerts sent in healthy period/total num of alerts sent	3/20
num of failure instances detected by model/total num of failures	6/7

Scale AE Training and Deployment

Scale model training

Train an individual model per group instance

1. Naive approach

- a. use a for loop, iterate through data of each group instance
- a. manage training experiments per instance manually
- b. slow process and cumbersome codes

2. Pandas Function API

- Write users defined python functions (train, pred, eval)
- b. <u>groupby.applyInPandas()</u> maps each group of the current DataFrame and execute the user defined pandas udf function in parallel

Scale model training

Grouped map Pandas UDF

```
def train(self, df):
        schema = <return-schema>
        def train_udf(df_pandas: pd.DataFrame) -> pd.DataFrame:
            '''Trains an Autoencoder model on grouped instances'''
            device_id = df_pandas['device_id'].iloc[0] # Pull metadata
            # Train the model
            X = df_pandas[features]
            ae_model = build_auto_encoder_decoder(df_pandas)
            ae_model.fit(X, X, **model_fit_kwargs)
           artifact_uri = f"{self.train_model_path}{device_id}.pickle"
            cloudpickle.dump(ae_model, open(artifact_uri, 'wb'))
            returnDF = pd.DataFrame([[device_id, artifact_uri]],
                        columns=["device_id", "model_path"])
            return returnDF
        return df.groupby("device_id").applyInPandas(train_udf, schema)
```

Deploy Model

Featurization

- Within the model or prior to model training?

	Pros	Cons
Prior to Model Training	Compute once and reuseLeverages full dataset	Increases production footprintSlower to iterate
Within the Model	Easier to iterateSmaller production footprint	 Model latency depends upon transformation overheads Data visibility

Time Series
Sensor
Measurements

Historical Anomaly Records

Deploy model

with MLflow and Pandas UDFs

1. Batch Inference

- a. groupby.applyInPandas(pred_udf)
- b. can be used in DLT pipelines

2. Custom MLflow model

- a. feature engineering + post-processing encapsulated in the model
- b. multi-model ensemble
- c. serving as a REST endpoint

Demo

Questions?

