

Laguna State Polytechnic University Province of Laguna

Machine Problem No. 3					
Topic:	Module 2.0: Feature Extraction and Object	Week No.	6-7		
	Detection				
Course Code:	CSST106	Term:	1st		
			Semester		
Course Title:	Perception and Computer Vision	Academic Year:	2024-2025		
Student Name		Section			
Due date		Points			

Machine Problem No. 3: Feature Extraction and Object Detection

Objective:

The objective of this machine problem is to implement and compare the three feature extraction methods (SIFT, SURF, and ORB) in a single task. You will use these methods for feature matching between two images, then perform image alignment using **homography** to warp one image onto the other.

Problem Description:

You are tasked with loading two images and performing the following steps:

- 1. Extract keypoints and descriptors from both images using **SIFT**, **SURF**, and **ORB**.
- Perform feature matching between the two images using both Brute-Force Matcher and FLANN Matcher.
- 3. Use the matched keypoints to calculate a **homography matrix** and align the two images.
- 4. Compare the performance of SIFT, SURF, and ORB in terms of feature matching accuracy and speed.

You will submit your code, processed images, and a short report comparing the results.

Task Breakdown:

Step 1: Load Images

• Load two images of your choice that depict the same scene or object but from different angles.

Step 2: Extract Keypoints and Descriptors Using SIFT, SURF, and ORB (30 points)

- Apply the **SIFT** algorithm to detect keypoints and compute descriptors for both images.
- Apply the **SURF** algorithm to do the same.
- Finally, apply **ORB** to extract keypoints and descriptors.

Laguna State Polytechnic University

Submission:

- Python code (feature extraction.py)
- Processed images showing keypoints for SIFT, SURF, and ORB (e.g., sift_keypoints.jpg, surf_keypoints.jpg, orb_keypoints.jpg).

Step 3: Feature Matching with Brute-Force and FLANN (30 points)

- Match the descriptors between the two images using **Brute-Force Matcher**.
- Repeat the process using the FLANN Matcher.
- For each matching method, display the matches with lines connecting corresponding keypoints between the two images.

Submission:

- Python code (feature_matching.py)
- Processed images showing matches for Brute-Force and FLANN for each algorithm (e.g., sift_bf_match.jpg, sift_flann_match.jpg).

Step 4: Image Alignment Using Homography (20 points)

- Use the matched keypoints from SIFT (or any other method) to compute a homography matrix.
- Use this matrix to warp one image onto the other.
- Display and save the aligned and warped images.

Submission:

- Python code (image_alignment.py)
- Aligned and warped images (e.g., aligned_image.jpg, warped_image.jpg).

Step 5: Performance Analysis (20 points)

1. Compare the Results:

- o Analyze the performance of SIFT, SURF, and ORB in terms of keypoint detection accuracy, number of keypoints detected, and speed.
- o Comment on the effectiveness of Brute-Force Matcher versus FLANN Matcher for feature matching.

2. Write a Short Report:

 Include your observations and conclusions on the best feature extraction and matching technique for the given images.

Laguna State Polytechnic University Province of Laguna

Submission:

• A PDF or markdown document (performance_analysis.pdf or performance_analysis.md).

Submission Guidelines:

• GitHub Repository:

- Create a folder in your CSST106-Perception and Computer Vision repository named Feature-Extraction-Machine-Problem.
- o Upload all code, images, and reports to this folder.
- File Naming Format: [SECTION-LASTNAME-MP3] 4D-LASTNAME-MP3
 - o 4D-BERNARDINO-SIFT.py
 - o 4D-BERNARDINO-Matching.jpg

Additional Penalties:

- Incorrect Filename Format: -5 points
- Late Submission: -5 points per day
- Cheating/Plagiarism: Zero points for the entire task

Laguna State Polytechnic University

Province of Laguna

Rubric for Feature Extraction and Object Detection Machine Problem

Criteria	Excellent (90-100%)	Good (75-89%)	·	Needs Improvement (0-59%)
Step 2: Feature Extraction (SIFT, SURF, ORB)	All feature extraction methods (SIFT, SURF, ORB) are implemented correctly. The extracted keypoints are clearly visualized and well explained. The code is well-commented and outputs are saved properly.	Feature extraction is implemented correctly, but there may be minor visualization issues or explanations lacking depth.	are implemented correctly, with basic explanations and some issues with visualization	Feature extraction methods are incomplete, implemented incorrectly, or not explained well. Poor or no visualization provided.
Step 3: Feature Matching (Brute-Force and FLANN)	Both Brute-Force and FLANN matchers are implemented correctly, and keypoint matches are clearly visualized with detailed explanations. The matching performance for each method is analyzed.	Both matchers are implemented correctly, but there may be minor issues with the visualization or the explanation lacks depth.	At least one matcher is implemented correctly, with basic explanations and minimal analysis of matching performance.	Feature matching methods are incomplete, implemented incorrectly, or poorly explained. Matches are not visualized or results are unclear.
Step 4: Image Alignment Using Homography	The homography matrix is computed correctly using matched keypoints, and the image is aligned and warped successfully. The output is visually accurate, and the process is well explained.	The homography matrix is computed correctly, but the alignment has minor issues, or the explanation lacks depth.	The homography matrix is computed, but there are significant alignment issues, or the explanation is basic	Homography computation is incorrect or incomplete. Image alignment does not work as expected, or no explanation is provided.
Step 5: Performance Analysis	The performance analysis is thorough, comparing the accuracy and speed of SIFT, SURF, and ORB, and evaluating the effectiveness of Brute-Force and FLANN. The conclusion is insightful and well-supported.	The performance analysis is good, but lacks some depth in comparing the methods or has minor gaps in the evaluation of the matchers.	minimal comparison or weak conclusions. Some methods or matchers	The performance analysis is incomplete or missing. Little to no comparison or evaluation of methods and matchers is provided.