NOTION DE DERIVEE

Soit T la sécante à C_f aux points M_1 et M_2 .

Le taux de variation de la fonction f entre les points M_1 et M_2 est le coefficient directeur de la droite $T: \frac{f(x)-f(a)}{x-a} = \frac{f(a+h)-f(a)}{h}$ en posant h=x-a

Lorsque M_2 se rapprochetrès près de M_1 , on voit graphiquement que la sécante T tends vers la tangente à C_f en M_1 et $h \to 0$

Le nombredérivé de f en a est la limite du taux de variation de la fonction lors que $x \to a$ ou $h \to 0$. On écrit donc $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$ On dit que f est dérivable en a si et seulement si cette limite est finie $(\neq \pm \infty)$

En résumé:

La dérivée représente la variation relative instantanée de la fonction (taux). Graphiquement, la dérivée d'une fonction f en un point d'abscissea, f'(a) (ou nombre dérivée de f en a) est la pente de la tangente à la courbeen ce point (coefficient directeur).