

Table of contents

Insights

Historical trends and occurrences of WNV

Recommendations

Applications of ML tool and a benefit and cost analysis of the use of pesticides

Insights

Historical trends and occurrences of WNV

Recommendations

Applications of ML tool and a benefit and cost analysis of the use of pesticides

Chicago's comprehensive surveillance and control programs kept the number of cases at the state-level down

Chicago's annual mosquito surveillance & control efforts:

Treating catch basins with larvicides

Placement of mosquito traps for testing of samples

Aerial sprays of pesticides

Efficient resource allocation towards virus prevention by way of targeted sprays

1.	Machine Learning Solution to Predict incidence of WNV for targeted sprays					
•	Use past data for prediction	High ROC/AUC score				
•	Identify virus when it is present	High recall and precision scores				
•	Precise positive prediction of virus presence	(however, both scores tend to be inversely correlated)				

2. Deep dive into the net benefits of past sprays

Visualise the effect of spray efforts in 2011 & 2013 on virus

Analyse benefits and costs of spraying

Datasets

- 14,294 spray observations
- Across 2011 & 2013
- 3 features (Location and Date attributes)
- 10,505 observations
- Across 2007, 2009, 2011 & 2013
- 10 features (Location, Date, NumMosquitos attributes)
- Target variable: WnvPresent
- Daily weather data collected from 2 weather stations on 1 May to 31 Oct in 2007 to 2014
- 21 features (Station, Date, Weather, e.g. temp, attributes)
- 116,293 observations
- Across 2008, 2010, 2012 & 2014
- 9 features (Location, Date attributes; missing NumMosquitos)
- Id variable

Workflow to develop ML solution

Data Cleaning & EDA

Engg

Feature

Model Prep & Choice

Model Optimisation & Evaluation

- Removal of outliers
- Impute missing values
- Merge data

- Lag Variables
- DummyVariables
- New features (e.g. Relative Humidity)

- SMOTE
- Standard Scaling
- Choose model based on ROC AUC CV, recall and precision score

- GridSearchCv
- ConfusionMatrix, ROCCurve

EDA: Time

Peak season for the West Nile Virus falls between July and September

EDA: Temperature

The higher the temperature, the higher the occurence of virus

EDA: Humidity

Similarly, the higher the dew point, the higher the occurrence of the virus

Dew point: The temperature to which air must be cooled to become saturated with water vapor. The measurement of the dew point is related to humidity. A higher dew point means there is more moisture in the air.

EDA: Species

In Chicago, the virus seems to only be carried by 2 species: Culex Restuans & Culex Pipiens

EDA: Location

Occurence of West Nile Virus varies greatly by location

Model Preparation - Preprocessing steps

Undersampling | Oversampling | SMOTE

Selection - SMOTE

Model Selection & the Trade-off between Recall and Precision

Method Used: No sampling -----
Class Balance BEFORE

0 0.947087
1 0.052913

Name: WnvPresent, dtype: float64

Number of rows: 7295

Class Balance AFTER

0 0.947087
1 0.052913

Name: WnvPresent, dtype: float64

Number of rows: 7295

	model	train_auc_cv	f1	recall	precision	train_auc	test_auc	auc_diff
0	rf	0.767563	0.107143	0.072727	0.20339	0.943761	0.749228	0.194533
1	dt	0.734981	0.104265	0.066667	0.23913	0.944540	0.710449	0.234092
2	et	0.734896	0.102804	0.066667	0.22449	0.944540	0.708432	0.236108
3	lr	0.832778	0.000000	0.000000	0.00000	0.843867	0.813177	0.030690
4	gb	0.855704	0.000000	0.000000	0.00000	0.902317	0.848950	0.053367
5	ada	0.850752	0.000000	0.000000	0.00000	0.879293	0.839028	0.040265
6	SVC	0.755371	0.000000	0.000000	0.00000	0.840362	0.747608	0.092754

Model Selection Justification

 model
 train_auc_cv
 f1
 recall
 precision
 train_auc
 test_auc
 auc_diff

 0
 gb
 0.976043
 0.309609
 0.527273
 0.219144
 0.978288
 0.837721
 0.140567

 1
 ada
 0.962699
 0.307220
 0.606061
 0.205761
 0.963814
 0.837294
 0.126520

 2
 svc
 0.955815
 0.285714
 0.636364
 0.184211
 0.962178
 0.828141
 0.134037

Although the Gradient Boosting model has the strongest ROC AUC score, its recall score (0.527) pales in comparison to that of Adaboost (0.606).

This means that we are likely to have **fewer False Negatives using Adaboost**.

Support Vector Classification is also a possible consideration, but it fared worse in terms of the ROC AUC score and precision score compared to Adaboost.

AdaBoost seems like the best model for this use case as it is important to ensure a relatively high recall score that does not compromise the ROC AUC and/or precision score.

Model Evaluation

Cost Benefit Analysis - Spraying

- The Chicago Department of Public Health (CDPH) has been combatting WNV since 1999 through 2020.
- They use an insecticide called Zenivex E4.

	Price (gallon)	Pounds Al/gallon	Price per Pound	Application Rate/Acre	Cost/Acre	Annual Acres Treated	Annual Cost
275 gal Zenivex [®] E20	\$282.00°	1.48	\$190.54	.0035	\$0.67	20,000	\$13,338
275 gal Zenivex® E4	\$78.85*	.3	\$262.83	.0035	\$0.92	20,000	\$18,398
2.5 gal Zenivex* E20	\$296.00°	1.48	\$200.00	.0035	\$0.70	20,000	\$14,000
2.5 gal Zenivex® E4	\$80.75*	.3	\$269.17	.0035	\$0.94	20,000	\$18,842

Cost Benefit Analysis - Spraying

Total land area size in Chicago = 145,545 acres

Cost of Zenivex per acre = \$0.92

Cost of spraying the entirety of Chicago in a year:

\$0.92 x 145,545 acres x 12 months = \$1,606,816.80

Cost Benefit Analysis -Hospitalization & Lost Productivity

From 1999 through 2012, health care expenses and lost productivity in the US totalled up to \$800 million. 4% died and 49% of the total cases were hospitalized. In Chicago, the worst year in 2002 reported 225 cases.

4	99.9	tio l	cos	
				12.3

	Fever $N = 18$	Meningitis $N = 19$	Encephalitis $N = 16$	AFP N = 27
Total inpatient hosp	pital costs			
Median (Range)	\$4,467 (419–23,374)	\$7,261 (337–13,633)	\$15,136 (3,734–207,303)	\$20,774 (5,066-264,176)
Mean (SD) \$6,955 (6,282)		\$6,961 (3,300)	\$27,020 (49,012)	\$70,186 (80,133)
Total lost productiv	ity*†			
Median (range)	\$328 (92-2,729)	\$682 (68-1,592)	\$1,380 (113-307,871)	\$2,136 (232-145,750)
Mean (SD)	\$546 (659)	\$684 (376)	\$53,234 (97,583)	\$12,357 (33,089)
Total initial costs [*]				
Median (range)	\$4,617 (538–24,010)	\$7,942 (1,057–14,569)	\$20,105 (3,965–324,167)	\$25,117 (5,385-283,381)
Mean (SD)	\$7,501 (6,762)	\$7,644 (3,495)	\$80,254 (104,785)	\$82,542 (94,388)
				100

Cost Benefit Analysis Hospitalization & Lost Productivity

Estimated yearly hospitalization costs:

\$7,500 x 225 = \$1,687,500

Through our model, we are confident to predict 60% of the WNV cases (recall = 0.6), and thus we would be able to save ~\$1,000,000.

The final selected model was AdaBoost, with a test AUC of 0.837 and recall score of 0.606.

Conclusion

Our model was able to achieve significant costsavings. However, the WNV prediction rate could be better. More data points would be helpful.

The cost analysis was over-simplified and not performed on a macro level. Further efforts beyond spraying and trapping could be explored. For instance, we can investigate if a neighborhood's proximity to nearby water bodies (e.g. ponds) can affect the incidence of West Nile Virus.