Faculté de Technologie

Département d'électrotechnique

Electronique de puissance (LET52)

TD N°5: Redressement Triphasé Commandé

Exercice N°1

Pour tout l'exercice le courant dans la charge est considéré comme constant égal à $I_C = 10 A$.

L'angle de retard à l'amorçage est de $\alpha = 30^{\circ}$; V = 120V

Les diodes et thyristors sont considérés comme parfaits.

- a. Par rapport à quel instant de départ est pris cet angle de retard.
- b. Hachurez les instants où chaque interrupteur conduit T_1 , T_2 , T_3 puis T_4 , T_5 , T_6 .
- c. Remplir la ligne $oldsymbol{u}_c$. Tracer $oldsymbol{u}_c$
- d. Quel est le signe de la valeur moyenne de $oldsymbol{u}_c$. Donnez sa valeur.
- e. Remplir la ligne v_{T1} . Tracer v_{T1} .
- f. Compléter les lignes i_{T1} et i_{T4} , en déduire la ligne concernant i_1 .
- g. Quelle est la valeur moyenne de $\langle i_{T1} \rangle$.
- h. Complétez le graphique de i_1 .
- i. Quelle est la valeur efficace de i_1 .
- j. Dans quel sens transite l'énergie ? Justifiez.
- k. Dessinez approximativement le fondamental du courant i_1 .
- I. Donnez l'expression de la puissance réactive absorbée ou fournie par le montage.
- m. Donnez la valeur du déphasage de l'expression précédemment trouvée.
- n. Qu'advient-il de la valeur moyenne de $m{u}_c$ si l'angle de retard à l'amorçage augmente ? Dans quel sens transite l'énergie ?

Exercice N°2

Pour tout l'exercice le courant dans la charge est considéré comme constant égal à $I_C=2$ A. L'angle de retard à l'amorçage est de $\alpha=60^\circ$.

- 1- Par rapport à quel instant de départ est pris cet angle de retard.
- 2- Représenter pour $\alpha = \frac{\pi}{3} = 60^{\circ}$ la tension u_c , v_{T1} et le courant de ligne i_1 , i_2 , i_3 .
- 3- Calculer la valeur moyenne $\langle \pmb{u}_c
 angle$ de \pmb{u}_c et montrer qu'elle s'écrit :

$$\langle u_C \rangle = \frac{3 \cdot \sqrt{6 \cdot V}}{2 \cdot \pi} cos\alpha$$

- 4- Calculer la valeur efficace commune ${\pmb I}_1$ de ${\pmb i}_1$, ${\pmb i}_2$ et ${\pmb i}_3$.
- 5- Calculer la puissance moyenne $\langle p_c \rangle$ mise en jeu dans la charge et conclure en étudiant le signe de cette puissance en fonction de α , sur le fonctionnement générateur ou récepteur du dipôle «charge ».
- 6- Calculer le facteur de puissance :

$$F_p = \frac{\langle p_c \rangle}{S} = \frac{\langle p_c \rangle}{3 \cdot V \cdot I_1}$$

et donner sa valeur maximale.