## SCMA 322 Homework 2

## August 26, 2021

1. กำหนดให้  $A \neq \emptyset$  เป็นสับเชตของจำนวนจริงที่มีขอบเขตล่าง นิยามเซต  $-A = \{-a \mid a \in A\}$  จงแสดงว่า

 $\operatorname{Ardim} \operatorname{Ju} \operatorname{Marie} - \operatorname{sup}(-A)$ 

- 2. กำหนดให้  $\mathbb{I}=\mathbb{R}\setminus\mathbb{Q}$  เป็นเชตของจำนวนอตรรกยะ จงพิสูจน์ว่า สำหรับจำนวนจริงใด ๆ a< b จะมี  $x\in\mathbb{I}$  โดยที่ a< x< b Hint: แสดงว่า  $\{r+\sqrt{2}\mid r\in\mathbb{Q}\}\subset\mathbb{I}$
- 3. จงแสดงว่า Complex field ไม่สามารถเป็น ordered field ได้
- 4. สำหรับ  $x=(x_1,x_2)\in\mathbb{R}^2$  นิยาม  $\|x\|_1=|x_1|+|x_2|$  จงแสดงว่า  $\|\cdot\|_1$  เป็น norm (ซึ่งเรียกว่า  $l_1$ -norm)
- 5. (Optional) การพิสูจน์ Cauchy-Schwarz inequality

$$|x \cdot y| \le ||x|| \cdot ||y||$$

โดยใช้ฟังก์ชันกำลังสองดังนี้ สำหรับ  $x,y\in\mathbb{R}^k$  พิจารณาฟังก์ชัน  $f(t)=\|x+ty\|^2$  ของจำนวนจริง t เขียน f(t) ในรูป ของ  $at^2+bt+c$  เมื่อ  $a,b,c\in\mathbb{R}$  และพิสูจน์บางอย่างเกี่ยวกับ  $b^2-4ac$  หากทราบว่า f(t) ไม่เป็นลบเสมอ

ส่งภายในวันที่ 5 กันยายน 23:59 น.



| 2. f    | ท้าหนดให้ $\widehat{\mathbb{T}} = \mathbb{R} \setminus \mathbb{Q}$                                                                 | เป็นเซตของจำนวนอ             | <u>ตรรกยะ</u> จงพิสูจน์ว่า        | สำหรับจำนวนจริงใด                             | ๆ $a < b$ จะมี $x \in$ | I            |
|---------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------|-----------------------------------------------|------------------------|--------------|
|         | โดยที่ $a < x < b$                                                                                                                 |                              |                                   |                                               |                        |              |
| Proof ( | In red                                                                                                                             | ส่วนใน r=                    | k, lav Vk.                        | , kz e sinunum                                | โม                     |              |
|         |                                                                                                                                    |                              | K2                                |                                               |                        |              |
|         | הלאעעה                                                                                                                             | r+12 & I                     |                                   |                                               |                        |              |
|         | แรดเว่า                                                                                                                            | Y + 12 =                     | m ;                               | Vm,n & Snun                                   | าเนก                   |              |
|         |                                                                                                                                    |                              |                                   |                                               |                        |              |
|         |                                                                                                                                    | <u>k</u> <sub>1</sub> + [2 = | <u>m</u>                          |                                               |                        |              |
|         |                                                                                                                                    | <b>№</b> 2                   | A                                 |                                               |                        |              |
|         |                                                                                                                                    | 6 =                          | m _ k1                            |                                               |                        |              |
|         |                                                                                                                                    |                              | $\frac{M-k_1}{N}$                 |                                               |                        |              |
|         |                                                                                                                                    |                              |                                   |                                               |                        |              |
|         |                                                                                                                                    | 12 =                         | mk <sub>2</sub> - nk <sub>1</sub> |                                               |                        |              |
|         |                                                                                                                                    |                              | เป็นล้าแานห                       | 155071                                        | iga lo la 11 42        |              |
|         |                                                                                                                                    |                              |                                   |                                               |                        |              |
| 2       | rofi cI                                                                                                                            | -0                           |                                   |                                               |                        |              |
| ก้านแด  | lvi √a, b eR                                                                                                                       | for a <                      |                                   |                                               |                        |              |
|         |                                                                                                                                    |                              |                                   |                                               | •                      |              |
| 9= din  | a <r 6<="" <="" th=""><th>(mans)</th><th>อ โปนจำนาน ขางา</th><th>1 24 1120 4</th><th>วี จำนวน พรรคชา</th><th>4 to ace (b)</th></r> | (mans)                       | อ โปนจำนาน ขางา                   | 1 24 1120 4                                   | วี จำนวน พรรคชา        | 4 to ace (b) |
| Gri .   | x = r+12                                                                                                                           |                              |                                   | <b>V</b>                                      |                        |              |
|         |                                                                                                                                    |                              | T                                 | $-\mathbf{r}_1 = \mathbf{r}_2 - \mathbf{r}_1$ |                        |              |
| พี่งารณ | n atte L                                                                                                                           | 1+12 4 6+12                  |                                   | 1                                             |                        |              |
| ړ       | 3 a L a + \( \frac{1}{2}                                                                                                           | \( \chi + \f2 \)             | 6 < 6+12                          |                                               |                        |              |
| mh      | itan ac                                                                                                                            | r+12 < b                     |                                   |                                               |                        |              |
|         | :. a< x                                                                                                                            | 46                           |                                   |                                               |                        |              |

| 3. จงแสดงว่า ( | Complex field ไม่สามารถเป็            | ็น ordered field ได้ |               |                       |  |
|----------------|---------------------------------------|----------------------|---------------|-----------------------|--|
| proof: 52      | with complex f                        | ield idu ordered     | d field       |                       |  |
|                | i eed lav                             |                      |               |                       |  |
| Yı Yı          | i eel lav                             | C = -1               |               |                       |  |
| n              | n del of ordered                      | field Ausum          | n t≠o Não C   | . พื่อ - ฮ่ สอเป็นบาก |  |
|                |                                       |                      |               |                       |  |
| 1 k 6m         | ć is positive                         |                      | ניים לי איין  | Alamald . )           |  |
|                | i.i > 0. t                            |                      |               |                       |  |
|                | -1 7 o 18                             | rtupialni            |               |                       |  |
| 05-{-}         |                                       |                      |               |                       |  |
| MmM Z          | é is negative<br>é (o                 | •                    |               |                       |  |
|                | - i >0                                |                      |               |                       |  |
|                | - (· (· i) > o (- i)                  | 2 . 2                |               |                       |  |
|                | -1 >0                                 | igalolan1            |               |                       |  |
| :              | Complex field                         | 1 denouble           | ordered field | 7ar                   |  |
|                | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                      |               |                       |  |
|                |                                       |                      |               |                       |  |
|                |                                       |                      |               |                       |  |
|                |                                       |                      |               |                       |  |
|                |                                       |                      |               |                       |  |
|                |                                       |                      |               |                       |  |
|                |                                       |                      |               |                       |  |
|                |                                       |                      |               |                       |  |
|                |                                       |                      |               |                       |  |
|                |                                       |                      |               |                       |  |
|                |                                       |                      |               |                       |  |
|                |                                       |                      |               |                       |  |



| 5. | (Op  | tional   | .) การเ  | พิสูจน์    | Cauch     | ny-Sch    | nwarz      | inequ            | ıality        |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|----|------|----------|----------|------------|-----------|-----------|------------|------------------|---------------|---------------|--------------|-----------|-------|----------|----------|---------|-----------|---------|--------|-----|--|--|--|--|
|    |      |          |          |            |           |           |            |                  | $ x \cdot y $ | $ y  \le  y $ | x  .         | $\ y\ $   |       |          |          |         |           |         |        |     |  |  |  |  |
|    | โดยใ | ใช้ฟังก์ | ์ชันกำลั | า้งสอง     | ดังนี้ สำ | าหรับ     | $x, y \in$ | $\mathbb{R}^{k}$ | พิจารถ        | นาฟังก์       | ชัน $f($     | (t) =     | x +   | $ty  ^2$ | ของจำ    | นวนจ'   | ริง t เข็ | เยน $f$ | (t) ใน | รูป |  |  |  |  |
|    | ของ  | $at^2$ - | + bt +   | - $c$ เมื่ | a, b      | $c \in I$ | R และ      | พิสูจน์          | บางอย         | บ่างเกี่ย     | วกับ $\it t$ | $p^2 - 4$ | .ac и | ากทรา    | บว่า $f$ | (t) ไม่ | ็เป็นลง   | ปเสมอ   |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |
|    |      |          |          |            |           |           |            |                  |               |               |              |           |       |          |          |         |           |         |        |     |  |  |  |  |