

Serie 2 (Cinetique)

Exercic1

3% a) Courbe:
$$M_0(All = 2.6^{-1}md = \frac{m}{M} =) M = M_0 M_{R}$$

$$= m = 0.549$$

3) of
$$10 = \frac{dn}{dt}$$
 or : $n(Al^{3t}) = 2n = n = \frac{1}{2}m(Al^{3t})$

Dinte que Coupela Combi aux dats o et te // ō lo lg ā la Combi à t=t3 grophiquement tz = 9 cmin

$$(H_{5}) = \frac{CV - 6\pi}{V} = C - 6\frac{\pi}{V} = C - 3(AC^{37}) = 0.15mol/7$$

V: max: à t=0: our les concentration de unclifs sont

Physique-Chimie

- o on trace une dont de pent (pa) = 1/po)

Exerac 2

19
$$Q$$
 ZT^{-} $f_{1}O_{8}^{t'}$ T_{2} $f_{2}O_{2}^{t'}$ T_{3} f_{2} $f_{3}O_{2}^{t'}$ $f_{3}O_{8}^{t'}$ $f_{4}O_{8}^{t'}$ $f_{5}O_{8}^{t'}$ $f_{5}O$

$$I_{2} + 250^{1}$$

$$O \qquad O \qquad (md)$$

$$\mathcal{H} = \frac{1}{2} \left(C_i V_i - \alpha(\bar{L}) \right)$$

$$\mathcal{N} = \frac{1}{2} \left(C_i V_i - m(\bar{I}) \right) \begin{cases} C_i V_i = M_o(\bar{I}) \\ M(\bar{I}) = \alpha M_o(\bar{I}) = \alpha C_i V_i \end{cases}$$

$$\Rightarrow \mathcal{H} = \frac{1}{2} \left[C_1 V_1 - \alpha C_1 V_1 \right] = \frac{C_1 V_1}{2} (1 - \alpha)$$

$$\frac{\zeta_1 V_1}{2} (1-\alpha)$$

C) Combe a l'élot final
$$\alpha_f = \frac{m_f(\bar{I})}{m_f(\bar{I})} > 0$$

$$\alpha_{\ell} = \frac{m_{\ell}(\bar{x}_{\ell})}{m_{\ell}(\bar{x}_{\ell})} > 0$$

$$\mathcal{H} = \frac{C_1 V_1}{2} (1 - \alpha_f)$$
 avec $\alpha_f = 0.4$ (courbe)

d) Sig2 reacted limitant et reaction totals

$$C_2V_2 - \chi_f = 0$$
 = $C_2 = \frac{2C_f}{V_2} = \frac{2C_f}{3V_1} = 2.65 \text{ mod. } L^{-1}$

2) of Uv(t): derivée par ropput aux leups de l'évoncement volunique y de le réaction

$$V_{\mathcal{D}}(H = \frac{1}{V} \frac{dN}{dF})$$
 avec $V = V_1 + V_L = 4V_1$

$$\alpha \quad \mathcal{N} = \frac{C_1 V_1}{2} \left(1 - \alpha \right) \implies \frac{d \mathcal{N}}{d t} = -\frac{C_1 V_1}{2} \frac{d \alpha}{d t}$$

$$v_{\alpha}(t) = \frac{-1}{4y_1} \cdot \frac{C_1y_1}{2} \cdot \frac{d\lambda}{2t} = -\frac{C_1}{8} \cdot \frac{d\lambda}{dt}$$

b)
$$V_{v}: \max \ a \ t = 5 : V_{v_{max}} = V_{u}(o) = \frac{C_{1}}{8} / pent$$

 $V_{v}(o) = \frac{2 \cdot Lo^{-2}}{8} \frac{1}{10.6} = 2,38.6 \text{ mod.} L^{-1}.min^{-1}$

$$= \frac{\mathcal{R} - \mathcal{M}(\bar{I}_{l})}{2} = \frac{C_{l}V_{l}}{2} (1 - \kappa)$$

$$\begin{aligned}
\left(\overline{I}_{L}\right) &= \frac{m(\overline{I}_{L})}{V_{L}} &= \frac{c_{1}V_{1}}{8V_{1}}\left(1-\alpha\right) &= \frac{c_{1}}{8}\left(1-\alpha\right) \\
\left[\overline{I}_{L}\right] &= \frac{26^{2}}{8} \times 0, 56 &\Longrightarrow \left(\overline{I}_{L}\right) &= 1, 4.65 \text{ mod } L^{-1}
\end{aligned}$$

c) A l'equivalence:
$$M(I_L) = \int M(s_2 o_3^{1-j})$$

 $(I_L) * V_p = \int C V_0 = V_0 = \frac{2(I_L) \cdot V_1}{C}$

Physi	r <mark>sique-Chimie</mark>	Taki Academy www.lakidacademy.com

Physi	que-Chimie	Taki Academy www.taidacademy.com

