# $\mathbf{Ymir}$

# Contents

| Morp | Morphisms between complex analytic spaces |   |  |  |  |  |
|------|-------------------------------------------|---|--|--|--|--|
| 1.   | Introduction                              | Ę |  |  |  |  |
| 2.   | Quasi-finite morphisms                    | Ę |  |  |  |  |
| 3.   | Finite morphisms                          | ţ |  |  |  |  |

### Morphisms between complex analytic spaces

### 1. Introduction

### 2. Quasi-finite morphisms

**Definition 2.1.** Let  $f: X \to Y$  be a morphism of complex analytic spaces. We say f is quasi-finite at  $x \in X$  if x is isolated in  $f^{-1}(f(x))$ . We say f is quasi-finite if f is quasi-finite at all  $x \in X$ .

This definition is purely topological. We will show that it is equivalent to an analytic definition.

**Proposition 2.2.** Let  $f: X \to Y$  be a morphism of complex analytic spaces and  $x \in X$ . Then the following are equivalent:

- (1) f is quasi-finite at  $x \in X$ ;
- (2)  $\mathcal{O}_{X,x}$  is quasi-finite over  $\mathcal{O}_{Y,f(x)}$ ;
- (3)  $\mathcal{O}_{X,x}$  is finite over  $\mathcal{O}_{Y,f(x)}$ .

PROOF. (1)  $\Leftrightarrow$  (2): By Corollary 3.13 in Constructions of complex analytic spaces, f is quasi-finite at  $x \in X$  if and only if  $\mathcal{O}_{X_{f(x)},x} = \mathcal{O}_{X,x}/\mathfrak{m}_{f(x)}\mathcal{O}_{X,x}$  is artinian. In other words,  $\mathcal{O}_{X,x}/\mathfrak{m}_{f(x)}\mathcal{O}_{X,x}$  is finite-dimensional over  $\mathbb{C}$ . The latter is equivalent to that  $\mathcal{O}_{X,x}$  is quasi-finite over  $\mathcal{O}_{Y,f(x)}$ .

 $(2) \Leftrightarrow (3)$ : This follows from Theorem 5.4 in Complex analytic local algebras.  $\square$ 

#### 3. Finite morphisms

**Definition 3.1.** A morphism of complex analytic spaces  $f: X \to Y$  is *finite* if its underlying map of topological spaces is topologically finite.

We say a morphism of complex analytic spaces  $f: X \to Y$  is finite at  $x \in X$  if there is an open neighbourhood U of x in X and Y of f(x) in Y such that  $f(U) \subseteq V$  and the restriction  $U \to V$  of f is finite.

Let S be a complex analytic space. A finite analytic space over S is a finite morphism  $f: X \to S$  of complex analytic spaces. A morphism between finite analytic spaces over S is a morphism of complex analytic spaces over S.

**Proposition 3.2.** Let  $f: X \to Y$  be a finite morphism of complex analytic spaces. Then f is quasi-finite.

PROOF. This follows from Proposition 4.5 in Topology and bornology.

**Theorem 3.3.** Let S be a complex analytic space. Then the functor  $\operatorname{Spec}_S^{\operatorname{an}}$  defines an anti-equivalence from the category of finite  $\mathcal{O}_S$ -algebras to the category of finite analytic spaces over S.

PROOF. We first observe that the functor is well-defined. This follows from Corollary 3.5 in Constructions of complex analytic spaces.

The functor is fully faithfull by Proposition 2.10 in Constructions of complex analytic spaces. Suppose that  $f: X \to S$  is a finite morphism of complex analytic spaces. We need to show that X is isomorphic to  $\operatorname{Spec}_S^{\operatorname{an}} \mathcal{A}$  for some finite  $\mathcal{O}_S$ -algebra  $\mathcal{A}$  in  $\mathbb{C}$ - $\operatorname{An}_{/S}$ .

By Proposition 2.8 in Constructions of complex analytic spaces, we necessarily have  $\mathcal{A} \cong f_*\mathcal{O}_X$ . So we need to show that the natural morphism  $\operatorname{Spec}_S^{\operatorname{an}} f_*\mathcal{O}_X \to X$  over S is an isomorphism. The problem is local on S.

Fix  $s \in S$ . Write  $x_1, \ldots, x_n$  for the distinct points in  $f^{-1}(s)$ . Up to shrinking S, we may assume that X is the disjoint union of  $V_1, \ldots, V_n$ , where  $V_i$  is an open neighbourhood of  $x_i$  in X. We need to show that X has the form  $\operatorname{Spec}_S^{\operatorname{an}} \mathcal{B}$  for some  $\mathcal{O}_S$ -algebra  $\mathcal{B}$  in  $\mathbb{C}$ - $\mathcal{A}_{n/S}$ .

It suffices to handle each  $V_i$  separately, so we may assume that  $f^{-1}(s) = \{x\}$  consists of a single point. Then  $\mathcal{O}_{X,x}$  is finite over  $\mathcal{O}_{S,s}$  by Proposition 2.2. Up to shrinking S, we may assume that  $\mathcal{O}_{X,x}$  spreads out to a finite  $\mathcal{O}_{S}$ -algebra  $\mathcal{B}$ . Let  $X' = \operatorname{Spec}_S^{\operatorname{an}} \mathcal{B}$ . There is a unique point x' of X' over s and  $X'_{x'}$  is isomorphic to  $X_x$  over  $S_s$ . By Lemma 4.2 in Topology and bornology, up to shrinking S, we may assume that X is isomorphic to X' over S. We conclude.

**Corollary 3.4.** Let  $f: X \to Y$  be a finite morphism of complex analytic spaces and  $\mathcal{M}$  be a coherent sheaf of  $\mathcal{O}_X$ -modules, then  $f_*\mathcal{M}$  is coherent. Moreover,  $f_*$  is exact from  $Coh(\mathcal{O}_X)$  to  $Coh(\mathcal{O}_Y)$ .

PROOF. This follows from Corollary 2.9 in Constructions of complex analytic spaces and Theorem 3.3.