

Neville's Method

1. What?

2. Why?

 $oldsymbol{\exists}.$ The lagrange Polynomial of the point x_{m_i} :

- 4. Method to recursively generate Lagrange polynomial:
 - Method:

• Examples:

Generated according to the following Table:

5. Notation and subscripts:

- o Proceeding down the table corresponds to
- o Proceeding to the right corresponds to
- o To avoid the multiple subscripts, we

$$: Q_{i,j} =$$

6. Algorithm:

7. Stopping Criterion:

- o Criterion:
- $\circ \,\,$ If the inequality is true, $Q_{i,i}$ is
- o If the inequality is false,

Divided Differences

1. What?

2. Form of the Polynomial:

- $\circ P_n(x) =$
- \circ Evaluated at x_0 :
- \circ Evaluated at x_1 :
- \circ \Longrightarrow

3. The divided differences:

- The *zeroth* divided difference of the function f with respect to x_i :
 - Denoted:
 - Defined:
 - $f[x_i] =$
- The remaining divided differences are defined:
- The *first* divided difference of f with respect to x_i and x_{i+1} :
 - Denoted:
 - Defined:

- \circ The **second** divided difference of f with respect to x_i , x_{i+1} and x_{i+2} :
 - Denoted:
 - Defined:

- \circ The *Kth* divided difference of f with respect to x_i , $x_{i+1},\ldots,x_{i+k-1},x_{i+k}$:
 - **■** Denoted:
 - Defined:

- The process ends with
- \circ The *nth* divided difference of f with respect to x_i , $x_{i+1},\ldots,x_{i+k-1},x_{i+k}$:
 - Denoted:
 - Defined:

4. The Interpolating Polynomial:

$$P_n(x) =$$

5. Newton's Divided Difference:

$$P_n(x) =$$

The value of $f[x_0,x_1,\ldots,x_k]$ is

6. Generation of Divided Differences:

7. Algorithm:	
Forward Differences	
1. Forward Difference:	
2. The divided differences (with del notation):	
and in general,	
3. Newton Forward-Difference Formula:	

Ahmad Badary

Backward Differences

1. Bac	kward	Diffe	rence
--------	-------	-------	-------

2. The divided differences:

and in general,

Consequently, the Interpolating Polynomial \

If we extend the binomial coefficient notation to

then \

3. Newton Backward-Difference Formula:

Centered Differences

1. What?

2. **Why?**

3. Stirling's Formula:

 \circ If n=2m+1 is odd:

 $\circ \,\,$ If n=2m is even: [we use the same formula but delete the last line]

4. Table of Entries: