Traitements linéaires et non linéaires du signal

Niveau: L2

Prérequis : - Représentation temporelle et spectrale des signaux

- Filtrage linéaire : filtres passifs et filtres actifs
- Echantillonnage : critère de Shannon et repliement

Exemple de signaux physiques obtenus à l'aide de capteurs

Transmission du signal radio de France Inter

Emission d'un signal de fréquences sonores [20 Hz; 20 kHz]

Réception d'un signal de fréquences sonores [20 Hz ; 20 kHz]

Nécessité de la modulation

Un signal sonore ne peut pas être transmis par voie hertzienne après avoir été converti en ondes électromagnétiques pour plusieurs raisons :

- Les signaux se mélangeraient
- Perturbations par les signaux industriels (50 Hz par exemple)
- Distorsions dues aux grandes variations relatives de fréquences $\frac{\Delta f}{f_{centrale}}$
- Forte atténuation au cours de la propagation
- Les antennes rectilignes doivent faire 10 000 km de long!!!

Modulation

Différents types de modulation

Sous modulation et sur modulation

Modulation d'un signal radio

Modulation d'amplitude : translation du spectre

Critère de Shanon

Exemple du filtre passe-bas du 1^{er} ordre

Fonction de transfert :

$$\underline{H}(j\omega) = \frac{1}{1 + jRC\omega}$$