Computer Vision Exercise 2

Spatial Intersection and Resection

Yi Wang 3371561 (resubmit)

I. Processing Steps

1. Compute projection matrix & pixel coordinates

Compute projection matrix:

Compute pixel coordinates:

$$\mathbf{x} = \mathbf{P} \cdot \mathbf{X}$$

2. Measure one object

3. Spatial intersection

For unknown object coordinate X at least two pixel measures x and x' from two cameras with known projection matrix P and P' are available:

$$\mathbf{x} = \mathbf{P} \cdot \mathbf{X} \qquad \qquad \mathbf{x}' = \mathbf{P}' \cdot \mathbf{X}$$

From which we can build identity equation:

$$\mathbf{x} \times (\mathbf{P}\mathbf{X}) = \mathbf{0}$$
 $\mathbf{x}' \times (\mathbf{P}'\mathbf{X}) = \mathbf{0}$

With

$$\mathbf{P} = \mathbf{K} \begin{bmatrix} \mathbf{R} \mid \mathbf{t} \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \end{bmatrix}$$

Then we get

$$x(\mathbf{p}^{3T}\mathbf{X}) - (\mathbf{p}^{1T}\mathbf{X}) = 0$$
 $x'(\mathbf{p}'^{3T}\mathbf{X}) - (\mathbf{p}'^{1T}\mathbf{X}) = 0$
 $y(\mathbf{p}^{3T}\mathbf{X}) - (\mathbf{p}^{2T}\mathbf{X}) = 0$ $y'(\mathbf{p}'^{3T}\mathbf{X}) - (\mathbf{p}'^{2T}\mathbf{X}) = 0$
 $x(\mathbf{p}^{2T}\mathbf{X}) - y(\mathbf{p}^{1T}\mathbf{X}) = 0$ $x'(\mathbf{p}'^{2T}\mathbf{X}) - y'(\mathbf{p}'^{1T}\mathbf{X}) = 0$

For both x and x', the third equation is linearly dependent on the other two, therefore we eliminate it and get:

$$AX = 0$$

where

$$\mathbf{A} = egin{pmatrix} x\mathbf{p}^{3\mathrm{T}} - \mathbf{p}^{\mathrm{IT}} \ y\mathbf{p}^{3\mathrm{T}} - \mathbf{p}^{2\mathrm{T}} \ x'\mathbf{p}'^{3\mathrm{T}} - \mathbf{p}'^{\mathrm{T}} \ y'\mathbf{p}'^{3\mathrm{T}} - \mathbf{p}'^{2\mathrm{T}} \end{pmatrix} = egin{pmatrix} x\mathbf{p}(3;\mathrm{i}) - \mathbf{p}(1,:) \ y\mathbf{p}(3,:) - \mathbf{p}(2,:) \ x'\mathbf{p}'(3,\mathrm{i}) - \mathbf{p}'(1;) \ y'\mathbf{p}'(3,:) - \mathbf{p}'(2,\mathrm{i}) \end{pmatrix}$$

And

$$\mathbf{X} = \begin{pmatrix} X & Y & Z & W \end{pmatrix}^T$$

Solve this equation using singular vector decomposition, we can get the final object coordinates.

4. Back transformation and errors

We apply back transformation with

$$\mathbf{x} = \mathbf{P} \cdot \mathbf{X} \qquad \qquad \mathbf{x}' = \mathbf{P}' \cdot \mathbf{X}$$

And calculate the error with

$$\mathbf{v'v} = \sum (\mathbf{x}_{meas} - \mathbf{x}_{trafo})^2$$
 $\sigma_0 = \sqrt{\frac{\mathbf{v'v}}{2 \cdot n_{images} - 3}}$

5. Direct Linear Transformation

For the direct linear transformation we use the following equation, where P matrix is what we need.

$$\mathbf{x}_{i} \times \mathbf{P} \cdot \mathbf{X}_{i} = \begin{pmatrix} y_{i} \mathbf{p}^{3T} \mathbf{X}_{i} - w_{i} \mathbf{p}^{2T} \mathbf{X}_{i} \\ w_{i} \mathbf{p}^{1T} \mathbf{X}_{i} - x_{i} \mathbf{p}^{3T} \mathbf{X}_{i} \\ x_{i} \mathbf{p}^{3T} \mathbf{X}_{i} - y_{i} \mathbf{p}^{2T} \mathbf{X}_{i} \end{pmatrix} = 0$$

This can be rewritten into

$$\begin{pmatrix} \mathbf{0}^T & -w_i \mathbf{X}_i^T & y_i \mathbf{X}_i^T \\ w_i \mathbf{X}_i^T & \mathbf{0}^T & -x_i \mathbf{X}_i^T \\ -y_i \mathbf{X}_i^T & x_i \mathbf{X}_i^T & \mathbf{0}^T \end{pmatrix} \begin{pmatrix} \mathbf{p}^1 \\ \mathbf{p}^2 \\ \mathbf{p}^3 \end{pmatrix} = 0$$

The third row is linear dependent on the first two rows, therefore we can eliminate it:

$$egin{pmatrix} \mathbf{0}^T & -w_i\mathbf{X}_i^T & y_i\mathbf{X}_i^T \ w_i\mathbf{X}_i^T & \mathbf{0}^T & -x_i\mathbf{X}_i^T \end{pmatrix} egin{pmatrix} \mathbf{p}^1 \ \mathbf{p}^2 \ \mathbf{p}^3 \end{pmatrix} = A_i\mathbf{p} = 0$$

To solve this equation we need more than 6 pairs of points:

$$\mathbf{A}_{2n\times 12} \cdot \mathbf{p} = 0$$

Similar to before, we use singular vector decomposition to calculate the P matrix.

$$[\cup, D, V] = \text{svd}(A, 0)$$

% Extract homography $P = \text{reshape } (V(:, 12), 4, 3)'$

6. Re-mapping and comparison

Similar to task 1, $\mathbf{x} = \mathbf{P} \cdot \mathbf{X}$ is used to re-compute the mapping

7. Reconstruct the camera parameters

a) translation vector X0

X0 can be computed from Singular Value Decomposition (SVD) of P:

$$[U, D, V] = svd(P, 0)$$

Where X0 is the last column of V

b) camera matrix K and rotation matrix R

$$P = K[R \mid t] = K[R \mid -R\tilde{X}_{\theta}] = KR[I_{3} \mid -\tilde{X}_{\theta}] = M[I_{3} \mid -\tilde{X}_{\theta}]$$

Where $\mathbf{M} = \mathbf{K}\mathbf{R}$ is the left 3x3-Sub-Matrix of P, With $M^{-1} = R^T K^{-1}$ matrix \mathbf{M} can be decomposed into QR decomposition:

$$[q,r] = qr(M^{-1})$$

And

$$R = q^{-1}$$

$$K = r^{-1}$$

PS: we have to normalize the K and X0 by the scale factor.

II. Results

1. Fundamental matrix & Pixel coordinates

Table 1. Fundamental matrix P

3497.48715935772	2083.00231625386	1869.39205798182	-13101021647.8206
2323.73516206219	-3332.09572565785	997.544343618571	16893075551.3581
0.113062965097000	-0.0513027902360000	0.992262460056000	219946.269494256

Table2. Pixel coordinates

ID	15	24	25	32	37	98	99
X (pix)	3182.8948	735.9314	626.0374	3883.0065	4277.4454	1950.6201	1831.1469
Y (pix)	2309.9545	2663.2930	236.2401	2654.6698	235.6924	533.9252	502.6307

Fig1. Object points in image

2. Measure an object

3. Object Coordinates

Table3. Calculated object coordinates

X (m)	512997.1910
Y (m)	5427680.3764
Z (m)	326.5378

4. Back transformation errors

Table4. Differences between pixel coordinates of origin points and back transformed points

Photo_ID	20813	20814	20815	20816	20849	20850	20851	20852
Diff_X	2.8041	0.9643	-6.1380	1.6560	-5.6518	2.7380	2.8864	-0.4562
(pix)								
Diff_Y	1.0683	0.5424	-0.2438	-0.8561	0.1675	-2.2750	2.8403	-0.3507
(pix)								

Table5. total transformation error

σ_{χ} (pix)	2.7342
σ_y (pix)	1.0962

5. Direct Linear Transformation

Table6. P DLT (without centralization)

0	0	0	-0.6128	
0	0	0	0.7902	
0	0	0	0	

Table 7. P_DLT (after centralization)

0.0052	0.0031	0.0028	-0.8836
0.0035	-0.0050	0.0015	-0.4681
0	0	0	-0.0003

6. Remapping Difference & Error

Table8. Remapping differences

ID	15	24	25	32	37	98	99
X (pix)	3.15e-08	-1.32e-08	-1.64e-08	1.13e-07	1.05e-07	-5.16e-08	-4.64e-08
Y (pix)	1.39e-08	-4.08e-08	-6.92e-09	8.10e-08	5.60e-09	-8.54e-09	-1.85e-08

Table9. Remapping error

σ_{x} (pix)	5.23e-08
σ_{y} (pix)	2.85e-08

7. Reconstruct Camera Parameters

a) reconstructed camera parameters

X0=

$$\begin{pmatrix} 512980.9951 \\ 5427701.5267 \\ 514.7943 \end{pmatrix}$$

K=

$$\begin{pmatrix} -3933.3636 & 1.29e - 08 & 2143.5000 \\ 0 & 3933.3636 & 1423.5000 \\ 0 & 0 & 1 \end{pmatrix}$$

R=

$$\begin{pmatrix} -0.827570749775 & -0.557530411593 & 0.065471324026 \\ 0.549857636162 & -0.828569770063 & -0.105492730048 \\ 0.113062965097 & -0.051302790236 & 0.992262460056 \end{pmatrix}$$

b) Differences

X0 difference=

$$\begin{pmatrix} 1.59e - 08\\ 1.86e - 09\\ -3.23e - 08 \end{pmatrix}$$

K difference=

$$\begin{pmatrix}
5.15e - 07 & 1.29e - 08 & -3.60e - 07 \\
0 & -5.33e - 07 & -2.07e - 07 \\
0 & 0 & 0
\end{pmatrix}$$

R difference=

$$\begin{pmatrix} -1.58e - 12 & 4.85e - 13 & -2.06e - 11 \\ 2.02e - 12 & 5.89e - 13 & 7.57e - 12 \\ -2.07e - 11 & -5.34e - 12 & 2.63e - 12 \end{pmatrix}$$

III. re-submit remark

The large differences (my first submission) between origin and remap coordinates and camera parameters in task 5,6 and 7 results from the round error of MATLAB, which moreover comes from the large scale difference between object horizon and vertical coordinates (XY has a scale of 10⁶ but Z only 10³, this leads to a round error when calculating P matrix). To solve this problem, we could simply centralize the object coordinates at the very beginning by subtracting the mean value (see code file also: four more lines in task 5).

```
X_20851_m = repmat(mean(X_20851'),7,1)';

X_20851_m(4,:) = 0;

X_20851_c = X_20851-X_20851_m; % Centralization
```