Proof

9) Generally:

If $T \in \mathcal{K}(\mathbb{R}^3, \mathbb{R}^2)$, then the dual map of T is the linear map $T' \in \mathcal{K}(\mathbb{R}^2', \mathbb{R}^3')$ defined by $T'(\psi) = \psi \circ T$ for $\psi \in \mathbb{R}^2$

Specifically, for any (x,y,z) [P3

T'(4,1(x,4,2) = 4,0T(x,4,2) = 4,(4x+5y+6z,7x+6y+92)
- 4x+5y+62

 $T'(V)(x,y,z) = V_0T(x,y,z) = V_2(4x+5y+6z,7x+6y+9z)$ $T'(V)(x,y,z) = V_0T(x,y,z) = V_2(4x+5y+6z,7x+6y+9z)$