応用計量分析2(第6,7,8回)

混合分布モデルとEMアルゴリズム

担当教員: 梶野 洸(かじの ひろし)

概要

混合分布モデル

- 混合分布モデルの導入(混合ガウスモデル)
- EM アルゴリズムの導出

混合分布モデル

複数の分布を混合したモデル

$$p(X) = \sum_{z \in \mathcal{Z}} p(X \mid Z = z) p(Z = z)$$

- $p(X \mid Z)$: 複数の分布($Z \in \mathcal{Z}$ ごとに異なる分布)
- *p*(*Z*): 混合割合
- p(X): 最終的に得られる分布

有限個のガウス分布を混合したモデル

$$p(X) = \sum_{k=1}^{K} p(X \mid Z = k) p(Z = k)$$

where

$$p(X \mid Z = k) = \mathcal{N}(X; \mu_k, \Sigma_k) \, (\mu_k \in \mathbb{R}^D, \Sigma_k \in \mathbb{S}^D_+)$$
 $p(Z = k) = \pi_k \, (k = 1, \ldots, K)$ ここで $\sum_{k=1}^K \pi_k = 1$ が成り立つとする。

有限個のガウス分布を混合したモデル

$$p(X) = \sum_{k=1}^{K} \pi_k \mathcal{N}(X; \mu_k, \Sigma_k)$$

と書くことが多い。

混合ガウスモデルは K+1 個の確率分布で構成される

- Categorical(π), $\pi \in \Delta^K$
 - カテゴリカル分布(*K*面サイコロ)
 - 各面 k が出る確率が π_k
- $\mathcal{N}(\mu_k, \Sigma_k)$ (k = 1, ..., K): K個の異なる正規分布
 - 平均 μ_k , 分散共分散行列 Σ_k

2つの正規分布からなる GMM

生成モデルとしての説明

確率変数 X を生成する過程としても解釈できる

- K 面サイコロで k の目が出る確率: p(Z = k)
- k の目が出た条件のもとで確率変数 X が従う確率分布: $p(X \mid Z = k)$
- (Z, X) の従う確率分布: $p(X, Z) = p(X \mid Z)p(Z)$
- X の従う確率分布だけ見ると $p(x) = \sum_{k=1}^{K} p(x \mid Z = k) p(Z = k)$

分布 p(X | Z = k) を使って データ X を生成

K面さいころを振って Z = k を得る

生成モデルとしての説明

数式では以下のように書く

$$Z \sim \text{Categorical}(\pi)$$

 $X \sim \mathcal{N}(\pi_Z, \Sigma_Z)$

- ullet 一行目でK面サイコロを振ってZの実現値(kとする)を得る
- 二行目で Z=k に対応する正規分布から X の実現値を得る

混合モデルを考える理由

- 既知の確率分布を組み合わせて複雑な確率分布を表現できる
 - 正規分布単体では単峰の分布しか表現できない
 - 正規分布を重ね合わせると複数の山を表現できる
- 潜在変数 Z からの知識発見
 - 事後分布 $p(Z \mid X = x)$ は、データ x がどの分布から出てきたのかを表す
 - クラスタリングのような効果

\star のデータ X は Z=1 から生成されたっぽい

ここまでのまとめ

- 混合分布モデルを使うと複雑な確率分布も表現できる
- 正規分布を有限個混合したモデルとして、混合ガウスモデルがある
- データが生成される過程として書くことができる
- クラスタリングのような使い方ができる

演習

次のGMMに従う確率変数Xを生成し、ヒストグラムを書け

- 混合数K = 2,次元D = 1
- p(Z=0)

$$= p(Z)$$

$$= 1) = 1$$

/2

- $p(X \mid Z)$
 - = 0
 - $=\mathcal{N}(X;$
 - -5, 1)
- $p(X \mid Z)$
 - = 1
 - $= \mathcal{N}(X;$
 - 5, 1)

```
In [2]: import numpy as np
import matplotlib.pyplot as plt

np.random.seed(0)

def gmm_sampling(sample_size):
    z_sample = np.random.binomial(n=1, p=0.5, size=(sample_size,))
    x_sample = np.random.randn(sample_size)
    return x_sample + 10.0 * z_sample - 5.0

sample = gmm_sampling(10000)
    plt.hist(sample, bins=100)
    plt.show()
```


混合ガウスモデルの推定

- ここまでは確率モデルが与えられたときにそれをどう解釈するかを議論していた
- データセット $\mathcal{D} = \{x_1, \dots, x_N\}$ が与えられた時、そのデータセットが従う GMM を推定するにはどうしたら良いか?

混合ガウスモデルの自由度

- K個の正規分布の平均ベクトル、共分散行列
- ullet どの正規分布を選ぶか決める確率分布 $\pi_k = p(Z=k)$ $(k=1,\ldots,K)$
- 混合数*K*

最尤推定で求まるもの

混合数は求まらない

- K個の正規分布の平均ベクトル、共分散行列
- ullet どの正規分布を選ぶか決める確率分布 $\pi_k = p(Z=k)$ $(k=1,\ldots,K)$

最尤推定

$$\theta^* = \arg\max_{\theta \in \Theta} p(\mathcal{D}; \theta)$$

をパラメタの推定値とする

各データの独立同分布性を仮定すると

$$\log p(\mathcal{D}; \theta) = \sum_{n=1}^{N} \log p(x_n; \theta)$$

モデルの仮定では、 $p(x;\theta) = \sum_{z=1}^{K} p(x \mid z;\theta) p(z;\theta)$ だったので、上式は、

$$\sum_{n=1}^{N} \log \left(\sum_{z_n=1}^{K} p(x_n \mid z_n; \theta) p(z_n; \theta) \right)$$
 (1)

となる。

最尤推定量は式(1)を最大化することで求まる。

最大化の手法は二種類

- 1. 勾配法で式(1)を直接最大化する
- 2. EMアルゴリズムで最大化する(今回はこっち!)

Expectation-maximization (EM) アルゴリズム

隠れ変数があるモデルの最尤推定量を求めるアルゴリズム

- 現状は各データの隠れ変数 z_n もパラメタ θ もわからない
 - $1. z_n$ が1つに決まれば θ がわかる
 - $2.\theta$ が1つに決まれば z_n がわかる
- とりあえずどちらかを初期化して、1,2を繰り返せばいい感じの z_n,θ が求まりそう
 - 局所最適解が求まることが示せる
 - (大域的最適解を求めるのはそもそも難しいので諦めている)

EM アルゴリズムの利点

- EステップとMステップが解析的に書ける
 - 毎ステップで尤度が下がらないことが保証される
 - 勾配法だと、ステップサイズによって尤度が下がることもある
- より難しいモデルの推定にも同じようなアイデアが適用できる

演習

- 1. X_n の実現値だけでなく Z_n の実現値も得られていた場合の最尤推定量 θ^\star を計算せよ
 - (x_n, z_n) が $p(x, z; \theta) = \pi_z \mathcal{N}(x; \mu_z, \Sigma_z)$ という同時分布に従っている
 - $-\sum_{n=1}^{N} \log p(x_n, z_n; \theta)$ を θ について最小化する
- 2. X_n の実現値だけでなく、パラメタ θ^* の値もわかっている場合の隠れ変数の事後分布を計算せよ
 - $p(Z_n \mid X_n = x_n; \theta^*)$ を計算する

答え

1.
$$\{(x_n, z_n)\}_{n=1}^N$$
 が得られていた場合、 x_n, z_n の同時分布は、
$$p(x_n, z_n; \theta) = \pi_{z_n} \mathcal{N}(x_n; \mu_{z_n}, \Sigma_{z_n})$$

$$-\sum_{n=1}^N \log p(x_n, z_n; \theta)$$

$$= -\sum_{n=1}^N \sum_{k=1}^K \mathbb{1}[z_n = k] \left(\log \pi_k + \log \mathcal{N}(x_n; \mu_k, \Sigma_k)\right)$$

$$= \sum_{n=1}^N \sum_{k=1}^K \mathbb{1}[z_n = k] \left(-\log \pi_k + \frac{1}{2}(x_n - \mu_k)^T \Sigma_k^{-1}(x_n - \mu_k) + \frac{D}{2}\log 2\pi + \frac{1}{2}\log \det \Sigma_k\right)$$
(2)

μ_k についての最大化

式(2)を μ_k で微分すると

$$\sum_{n=1}^{N} \mathbb{1}[z_n = k] \Sigma_k^{-1} (x_n - \mu_k)$$

なので、 μ_k の最尤推定量は

$$\mu_k^{\star} = \frac{\sum_{n=1}^{N} \mathbb{1}[z_n = k] x_n}{\sum_{n=1}^{N} \mathbb{1}[z_n = k]}$$

となる。

Σ_k についての最大化

式(2)を Σ_k で微分すると

$$\frac{1}{2} \sum_{n=1}^{N} \mathbb{1}[z_n = k] \left(-\Sigma_k^{-1} (x_n - \mu_k) (x_n - \mu_k)^{\mathsf{T}} \Sigma_k^{-1} + \Sigma_k^{-1} \right)$$

なので、 Σ_k の最尤推定量は

$$\Sigma_k^{\star} = \frac{\sum_{n=1}^N \mathbb{1}[z_n = k](x_n - \mu_k^{\star})(x_n - \mu_k^{\star})^{\top}}{\sum_{n=1}^N \mathbb{1}[z_n = k]}$$

となる

π_k についての最大化

 π_k は $\sum_{k=1}^K \pi_k = 1$ を満たす必要があるため、式(2)に $\lambda\left(\sum_{k=1}^K \pi_k - 1\right)$ を足したものを π_k で微分して

$$\sum_{n=1}^{N} \mathbb{1}[z_n = k] \left(-\frac{1}{\pi_k^{\star}} \right) + \lambda = 0$$

を解けば良い。

$$\lambda \pi_k^{\star} = \sum_{n=1}^N \mathbb{1}[z_n = k]$$

 $\delta k = 1, \dots, K$ で足すと

よって、

$$\lambda = N$$
.

$$\pi_k^* = \frac{\sum_{n=1}^N 1[z_n = k]}{N}$$

(2) $p(Z \mid X; \theta) \propto p(X \mid Z; \theta) p(Z; \theta)$ なので、

$$p(Z_n \mid X_n = x_n; \theta^*) = \frac{\pi_{Z_n}^* \mathcal{N}(x_n; \mu_{Z_n}^*, \Sigma_{Z_n}^*)}{\sum_{k=1}^K \pi_k^* \mathcal{N}(x_n; \mu_k^*, \Sigma_k^*)}$$

演習まとめ

 z_n が1つに決まっていると、

$$\sum_{n=1}^{N} \log \left(\sum_{z_n=1}^{K} p(x_n \mid z_n; \theta) p(z_n; \theta) \right)$$

の log のなかの足し算がなくなって、

$$\sum_{n=1}^{N} (\log p(x_n \mid z_n; \theta) + \log p(z_n; \theta))$$

の最大化となるため、解析的に解ける。

EM アルゴリズムの導出

任意の分布 q(z) について

$$\log\left(\sum_{z} p(x \mid z; \theta) p(z; \theta)\right)$$

$$=\log\left(\sum_{z} p(x \mid z; \theta) \frac{p(z; \theta)}{q(z)} q(z)\right)$$

$$\geq \sum_{z} q(z) \log\left(p(x \mid z; \theta) \frac{p(z; \theta)}{q(z)}\right)$$

$$= \sum_{z} q(z) (\log p(x, z; \theta) - \log q(z))$$

が成り立つことを利用する。

証明(演習)

- $f: \mathbb{R}^D \to \mathbb{R}$: 任意の凸関数
- \bullet $x_1, \ldots, x_N \in \mathbb{R}^D$: f の定義域の任意のN点
- w_1, \dots, w_N s.t. $\sum_{n=1}^N w_n = 1$: 任意の重み $\in [0,1]$

とする。

$$f\left(\sum_{n=1}^{N} w_n x_n\right) \le \sum_{n=1}^{N} w_n f\left(x_n\right)$$

を示せ (Jensenの不等式)。

ヒント

 $f: \mathbb{R}^D \to \mathbb{R}$ が凸関数 \Longleftrightarrow 任意の $x_1, x_2 \in \mathbb{R}^D, w_1, w_2 \in [0, 1]$ s.t. $w_1 + w_2 = 1$ について

$$f(w_1x_1 + w_2x_2) \le w_1f(x_1) + w_2f(x_2)$$

N の時に成り立っているとして、N+1の時にも成り立つことを示す。

$$f\left(\sum_{n=1}^{N+1} w_n x_n\right)$$

$$= f\left(w_{N+1} x_{N+1} + \sum_{n=1}^{N} w_n x_n\right)$$

$$= f\left(w_{N+1} x_{N+1} + (1 - w_{N+1}) \sum_{n=1}^{N} w_n \frac{x_n}{1 - w_{N+1}}\right)$$

$$\leq w_{N+1} f(x_{N+1}) + (1 - w_{N+1}) f\left(\sum_{n=1}^{N} \frac{w_n}{1 - w_{N+1}} x_n\right)$$

$$\leq w_{N+1} f(x_{N+1}) + (1 - w_{N+1})$$

$$\sum_{n=1}^{N} \frac{w_n}{1 - w_{N+1}} f(x_n) \left(\text{note that } \sum_{n=1}^{N} \frac{w_n}{1 - w_{N+1}} = 1 \right)$$

$$= \sum_{n=1}^{N+1} w_n f(x_n)$$

再掲

 $\log x$ は凹関数なので、任意の分布 q(z) について

$$\log\left(\sum_{z} p(x \mid z; \theta) p(z; \theta)\right)$$

$$=\log\left(\sum_{z} p(x \mid z; \theta) \frac{p(z; \theta)}{q(z)} q(z)\right)$$

$$\geq \sum_{z} q(z) \log\left(p(x \mid z; \theta) \frac{p(z; \theta)}{q(z)}\right)$$

$$= \sum_{z} q(z) (\log p(x, z; \theta) - \log q(z)) \tag{3}$$

が成り立つ。

EMアルゴリズムの導出

尤度(式(3)の左側)を最大化する代わりに尤度の下界(式(3)の右側)を最大化する:

$$\sum_{n=1}^{N} \sum_{z_n} q(z_n) (\log p(x_n, z_n; \theta) - \log q(z_n))$$

- *q*に関する最大化
- \bullet θ に関する最大化

q を固定して θ に関して最大化

$$p(x_n, z_n; \theta) = \pi_{z_n} \mathcal{N}(x_n; \mu_{z_n}, \Sigma_{z_n})$$

$$- \sum_{n=1}^{N} \sum_{k=1}^{K} q(z_n = k) \log p(x_n, z_n = k; \theta)$$

$$= - \sum_{n=1}^{N} \sum_{k=1}^{K} q(z_n = k) \left(\log \pi_k + \log \mathcal{N}(x_n; \mu_k, \Sigma_k) \right)$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} q(z_n = k) \left(-\log \pi_k + \frac{1}{2} (x_n - \mu_k)^{\mathsf{T}} \Sigma_k^{-1} (x_n - \mu_k) + \frac{D}{2} \log 2\pi + \frac{1}{2} \log \det \Sigma_k \right)$$

式(2)で $\mathbb{1}[z_n = k]$ を $q(z_n = k)$ に変えたやつだ!

よって

$$\mu_{k}^{\star} = \frac{\sum_{n=1}^{N} q(z_{n} = k)x_{n}}{\sum_{n=1}^{N} q(z_{n} = k)}$$

$$\Sigma_{k}^{\star} = \frac{\sum_{n=1}^{N} q(z_{n} = k)(x_{n} - \mu_{k}^{\star})(x_{n} - \mu_{k}^{\star})^{\top}}{\sum_{n=1}^{N} q(z_{n} = k)}$$

$$\pi_{k}^{\star} = \frac{\sum_{n=1}^{N} q(z_{n} = k)}{N}$$

θ を固定して q に関して最大化

qは $\sum_{k=1}^{K} q(z_n = k) = 1$ (n = 1, ..., N)を満たす $N \times K$ 個の実数からなる。

$$\frac{\partial}{\partial q(z_n = k)} \left(\sum_{n=1}^N \sum_{k=1}^K q(z_n = k) \right)$$

$$\times (\log p(x_n, z_n = k; \theta) - \log q(z_n = k))$$

$$+ \sum_{n=1}^N \lambda_n \left(\sum_{k=1}^K q(z_n = k) - 1 \right)$$

$$= \log p(x_n, z_n = k; \theta) - \log q(z_n = k) - 1 + \lambda_n = 0$$

を解くと

$$q(z_n = k) = \frac{p(x_n, z_n = k; \theta)}{\sum_{k=1}^K p(x_n, z_n = k; \theta)}$$
$$= \frac{\pi_k \mathcal{N}(x_n; \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_n; \mu_k, \Sigma_k)}$$

EM アルゴリズム

- $\mu_k, \Sigma_k, \pi_k \ (k = 1, ..., K)$ を適当に初期化
- 以下を繰り返す:
 - E-step: for each n = 1, ..., N, k = 1, ..., K, $q(z_n = k) \leftarrow \frac{\pi_k \mathcal{N}(x_n; \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_n; \mu_k, \Sigma_k)}$
 - M-step: for each k = 1, ..., K,

$$\mu_{k} \leftarrow \frac{\sum_{n=1}^{N} q(z_{n} = k)x_{n}}{\sum_{n=1}^{N} q(z_{n} = k)}$$

$$\Sigma_{k} \leftarrow \frac{\sum_{n=1}^{N} q(z_{n} = k)(x_{n} - \mu_{k})(x_{n} - \mu_{k})^{\top}}{\sum_{n=1}^{N} q(z_{n} = k)}$$

$$\pi_k \leftarrow \frac{\sum_{n=1}^N q(z_n = k)}{N}$$

適当な終了条件で繰り返しをやめる

- 尤度の増分が一定以下になった
- パラメタの変化幅が一定以下になった

EMアルゴリズムまとめ

- 変分法を用いて尤度の下界を求めた
 - $= \sum_{n=1}^{N} \sum_{z_n} q(z_n) \log p(x_n, z_n; \theta)$ みたいな形を出したかった
 - $\blacksquare q \land \theta$ を交互に最適化するとそれぞれ解析的に解ける

EMアルゴリズムの実装

演習

混合ガウスモデルの場合、

- 内部状態
- 欲しい命令

は何か?

一つの答え

- 内部状態
 - 正規分布の平均、分散共分散行列×K個
 - 重み $\pi = \begin{bmatrix} \pi_1 & \dots & \pi_K \end{bmatrix}$
- 命令
- データを入力して、パラメタを最尤推定する
- データを入力して、各データの潜在変数を推定する(現状の内部状態を 使って)

他の答え

補助的なものを持っていてもよい

- 内部状態
 - 正規分布の平均、分散共分散行列×K個
 - \blacksquare 重み $\pi = \begin{bmatrix} \pi_1 & \dots & \pi_K \end{bmatrix}$
 - 混合数 *K* を陽に持っておくと何かと便利
- 命令
- データを入力して、パラメタを最尤推定する
 - E ステップを実行する
 - M ステップを実行する
 - 尤度を計算する
- データを入力して、各データの潜在変数を推定する(現状の内部状態を 使って)

他の答え2

内部状態として他のクラスのオブジェクトを持っていてもよい

- 正規分布クラス
 - 内部状態
 - o 平均
 - 分散共分散行列
 - 命令
- データを入力して、パラメタを最尤推定する
- データを入力して、尤度を計算する
- GMM クラス
 - 内部状態
 - 正規分布オブジェクト × K個
 - \circ 重み $\pi = \begin{bmatrix} \pi_1 & \dots & \pi_K \end{bmatrix}$
 - 混合数 K を陽に持っておくと何かと便利
 - 命令
- o データを入力して、パラメタを最尤推定する
 - E ステップを実行する
 - M ステップを実行する
 - 尤度を計算する
- データを入力して、各データの潜在変数を推定する(現状の内部状態を使って)

Python での実装

まずは正規分布クラスを実装してみよう

正規分布クラスを実装せよ(以前の資料からコピペでOK)

```
In [3]:
       import numpy as np
        class Gaussian:
           def init (self, dim):
               オブジェクトを作るときに初めに実行される。
               内部状態の初期化に使う
               self.dim = dim
               . . .
               self = オブジェクトを指す。 <math>self.dim は、オブジェクトの dim という変数を指す。
               上の命令は、 self.dim に dim の値を代入することを表す
               . . .
               self.set mean(np.random.randn(dim)) # オブジェクトの mean という変数をランダムに
        初期化
               self.set cov(np.identity(dim))
           def log pdf(self, X):
               ''' 確率密度関数の対数を返す
               Parameters
               X : numpy.array, shape (sample size, dim)
               Returns
               log pdf : array, shape (sample size,)
               if X.shape[1] != self.dim: # 入力の形をチェックしています
                  raise ValueError('X.shape must be (sample size, dim)')
               return -0.5 * np.sum((X - self.mean) * (np.linalg.solve(self.cov, (X - sel
       f.mean).T).T), axis=1) \setminus
                  -0.5 * self.dim * np.log(2.0 * np.pi) - 0.5 * np.linalg.slogdet(self.c
       ov)[1]
           def fit(self, X):
               ''' X を使って最尤推定をする
               Parameters
```

● GMM クラスの __init__ を書いてみよう

```
In [4]:
    class GMM:
        def __init__(self, dim, num_components):
            self.dim = dim
            self.num_components = num_components
            self.weight = np.ones(self.num_components) / self.num_components
            self.gaussian_list = []
            for _ in range(self.num_components):
                 self.gaussian_list.append(Gaussian(dim))
```

```
In [5]: # gmm のオブジェクトができた
gmm = GMM(2, 10)
for each_gaussian in gmm.gaussian_list:
    print(each_gaussian.mean)
print(gmm.weight)
```

以降、EMアルゴリズムでパラメタ推定をする fit を書きたい

- log pdf: 現在のパラメタを用いてサンプルの対数尤度を計算するメソッド
- e_step: Eステップを実行するメソッド
- m_step: Mステップを実行するメソッド

の3つを実装し、これらを組み合わせて fit を書く

- サンプルの対数尤度を計算するメソッド log_pdf を GMM に実装せよ
 - 引数: x: サンプルサイズ×次元の行列
 - 返り値: $\left[\log p(x_1;\theta) \dots \log p(x_N;\theta)\right]$ (θ は現在の内部状態を用いる)

$$p(x_n; \theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n; \mu_k, \Sigma_k)$$

```
In [6]:
       class GMM:
           def init (self, dim, num components):
               self. dim = dim
               self.num components = num_components
               self.gaussian list = []
               self.weight = np.ones(self.num components) / self.num components
               for in range(self.num components):
                  self.gaussian list.append(Gaussian(dim))
           def log pdf(self, X):
               sample size = X.shape[0]
               likelihood = np.zeros(sample size) # 各データの尤度を計算する
               111
               ここで現在の内部状態での likelihood を計算する
               ** ヒント **
               self.gaussian list の各要素は Gaussian クラスのオブジェクト
               各データの対数尤度を計算する log pdf という命令が実装してあった
               return np.log(likelihood) # 対数尤度が欲しいので対数をとる
```

ヒント

- self.gaussian_list[0].log_pdf(X) はサンプル X のデータそれぞれに対する対数尤度を計算する
 - Xがsample_size X dim とすると、返り値は長さ sample_size の配列
- self.weight[0]は $p(z=0;\theta)$ に対応する
- self.weight[0] * np.exp(self.gaussian_list[0].log_pdf(X)) は np.exp(self.gaussian_list[0].log_pdf(X)) の各要素に self.weight[0]を掛けた値を返す
 - スカラー * 配列 と書くと、配列の各要素にスカラーを掛けてくれる (numpy の記法)

```
In [7]:
        class GMM:
            def init (self, dim, num components):
                self. dim = dim
                self.num components = num components
                self.gaussian list = []
                self.weight = np.ones(self.num components) / self.num components
                for in range(self.num components):
                    self.gaussian list.append(Gaussian(dim))
            def log pdf(self, X):
                sample size = X.shape[0]
                likelihood = np.zeros(sample size) # 各データの尤度を計算する
                for each component in range(self.num components):
                    likelihood = likelihood + self.weight[each component] * np.exp(self.ga
        ussian list[each component].log pdf(X))
                return np.log(likelihood)
```

```
In [16]:
         qmm = GMM(2, 10)
          gmm.log pdf(np.random.randn(100, 2)) # とりあえず何か計算はできている
          array([-3.12648963, -3.86705701, -2.57161702, -3.06551493, -2.65614086,
Out[16]:
                 -3.0071172 , -4.62457074 , -2.88583395 , -2.95423388 , -2.93725819 ,
                 -2.66778609, -2.91656884, -3.43291286, -2.61947626, -3.44059698,
                 -3.25383126, -2.84392495, -2.79003912, -2.66291126, -2.99469256,
                 -4.03689065, -2.83441528, -2.75630803, -2.67636738, -3.75517664,
                 -2.64458188, -2.79363847, -2.87221519, -3.10244486, -2.69670577,
                 -3.02748979, -2.64780433, -2.63585142, -3.09722914, -2.58475377,
                 -2.73534958, -3.05715522, -2.72387022, -4.5341286, -3.08127239,
                 -3.21928694, -3.54947664, -3.14211745, -2.74879231, -3.44220236,
                 -3.49531004, -4.53836991, -3.18854928, -3.53895284, -2.55987735,
                 -3.11221332, -2.57703954, -3.19613213, -3.35386561, -2.7605182,
                 -3.27197597, -2.80149132, -3.1221321, -4.38693956, -3.09966228,
                 -4.89665286, -2.68778129, -3.14177503, -2.7074782, -3.16332312,
                 -2.66797893, -2.89198018, -3.92306412, -3.82068393, -3.72077715,
                 -3.35130862, -2.74938948, -3.1884004, -3.23102166, -3.44943404,
                 -2.59168975, -2.55253307, -3.3592686, -4.24582831, -3.83563231,
                 -3.23305835, -3.40850046, -3.27423081, -2.89178352, -3.01971239,
                 -2.66453107, -2.55463812, -2.71222266, -3.1569365, -2.73207968,
                 -3.70887009, -3.55214124, -3.24868335, -2.5982095, -3.72506253,
```

-2.99258731, -3.05604243, -3.21803488, -3.46556688, -2.615411351)

- Eステップを実行するメソッド e_step を実装せよ
 - 引数: データ X: sample_size X dim の配列
 - 出力: *q*(*z_n*)
 - どのような形式で出力すべきか?
- $q(z_n)$ は K 面サイコロだったので、K面サイコロの確率分布をデータの数だけ出力すれば良さそう
 - K = n_components
- posterior: sample_size×n_componentsの配列として出力
- posterior[n, k] = $q(z_n = k)$

E-step: for each
$$n=1,\ldots,N, k=1,\ldots,K,$$

$$q(z_n=k) \leftarrow \frac{\pi_k \mathcal{N}(x_n;\mu_k,\Sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_n;\mu_k,\Sigma_k)}$$

```
In [9]: class GMM:
            def init (self, dim, num components):
                self.dim = dim
                self.num components = num components
                self.gaussian list = []
                self.weight = np.ones(self.num components) / self.num components
                for in range(self.num components):
                    self.gaussian list.append(Gaussian(dim))
            def log pdf(self, X):
                sample size = X.shape[0]
                likelihood = np.zeros(sample size) # 各データの尤度を計算する
                for each component in range(self.num components):
                    likelihood = likelihood + self.weight[each component] * np.exp(self.ga
        ussian list[each component].log pdf(X))
                return np.log(likelihood)
            def e step(self, X):
                sample size = X.shape[0]
                posterior = np.zeros((sample size, self.num components))
                ここを埋める
                ** L>L **
                各 n について、分母は共通
                1. 分子を先に計算して posterior に入れてしまう
                2. posterior[n,:].sum() は分母と等しくなる
                3. posterior[n, :] = posterior[n, :] / posterior[n, :].sum() とすれば良さそ
        う
                111
                return posterior
```

```
In [17]: | class GMM:
             def init (self, dim, num components):
                 self.dim = dim
                 self.num components = num components
                 self.gaussian list = []
                 self.weight = np.ones(self.num components) / self.num components
                 for in range(self.num components):
                     self.gaussian list.append(Gaussian(dim))
             def log pdf(self, X):
                 sample size = X.shape[0]
                 likelihood = np.zeros(sample size) # 各データの尤度を計算する
                 for each component in range(self.num components):
                     likelihood = likelihood + self.weight[each component] * np.exp(self.ga
         ussian list[each component].log pdf(X))
                 return np.log(likelihood)
             def e step(self, X):
                 sample size = X.shape[0]
                 posterior = np.zeros((sample size, self.num components))
                 # 各コンポーネントで対数尤度が計算できるので、それを利用
                 for each component in range(self.num components):
                     posterior[:, each component] \
                       = self.weight[each_component] * np.exp(self.gaussian_list[each_comp
         onent].log pdf(X))
                 # まとめて正規化しているが、 for 文でやってもOK (遅くなるけど)
                 posterior = posterior / posterior.sum(axis=1).reshape(-1, 1)
                 return posterior
```

```
In [18]: # q はデータがどちらのコンポーネントに近いかを表しているので、
# そんな感じの結果になって欲しい
gmm = GMM(2, 2)
X = gmm.gaussian_list[0].mean.reshape(1, 2)
print(gmm.e_step(X))
X = gmm.gaussian_list[1].mean.reshape(1, 2)
print(gmm.e_step(X))
```

```
[[0.86539486 0.13460514]]
[[0.13460514 0.86539486]]
```

- Mステップを実行するメソッド m_step を実装せよ
 - 引数:
- データ X: sample_size X dim の配列
- $oq(z_n = k)$:sample_size \times n_components
- 出力:なし

```
In [19]:
         class GMM:
              def init (self, dim, num components):
                  self.dim = dim
                  self.num components = num components
                  self.gaussian list = []
                  self.weight = np.ones(self.num components) / self.num components
                  for in range(self.num components):
                      self.gaussian list.append(Gaussian(dim))
              def fit(self, X, eps=1e-8):
                  sample size = X.shape[0]
                  converge = False
                  old ll = -np.inf
                  new ll = -np.inf
                  while not converge:
                      posterior = self.e step(X)
                      self.m step(X, posterior)
                      new ll = self.log pdf(X).sum()
                      if new ll < old ll:</pre>
                          raise ValueError('likelihood decreases!')
                      if np.abs(old ll - new ll) / np.abs(new_ll) < eps:</pre>
                          converge = True
                      old ll = new ll
                  return posterior
              def e step(self, X):
                  posterior = np.zeros((X.shape[0], self.num_components))
                  for each component in range(self.num components):
                      posterior[:, each component] \
                         = self.weight[each component] * np.exp(self.gaussian_list[each_comp
          onent].log pdf(X))
                  posterior = posterior / posterior.sum(axis=1).reshape(-1, 1)
                  return posterior
              def m step(self, X, posterior):
                  self.weight = posterior.sum(axis=0)
                  for each component in range(self.num components):
                      self.gaussian list[each component].set mean(posterior[:, each componen
          t] @ X / self.weight[each component])
```

```
In [20]: X = np.vstack((np.random.randn(100, 3), np.random.randn(100, 3) + 3))
    gmm = GMM(3, 2)
    posterior = gmm.fit(X)

In [14]: print(gmm.gaussian_list[0].mean)
    print(gmm.gaussian_list[1].mean)

[-0.15634628    0.0826993    0.04664785]
[2.99283013    3.03949123    2.96590465]
```

```
In [15]:
          posterior
          array([[9.99999972e-01, 2.80218650e-08],
Out[15]:
                 [9.97371053e-01, 2.62894687e-03],
                 [9.99999983e-01, 1.65791801e-08],
                 [9.99999198e-01, 8.01597957e-071,
                 [9.97733881e-01, 2.26611868e-03],
                 [9.99476715e-01, 5.23284529e-04],
                 [1.00000000e+00, 5.67816857e-11],
                 [9.99999944e-01, 5.63259856e-08],
                 [9.99999202e-01, 7.98373347e-07],
                 [9.99999991e-01, 8.98339412e-09],
                 [9.99999993e-01, 7.14412263e-09],
                 [9.9999999e-01, 7.20960106e-10],
                 [9.99999990e-01, 9.79199031e-09],
                 [9.99999938e-01, 6.21605991e-08],
                 [9.99999869e-01, 1.30754432e-07],
                 [9.9999999e-01, 7.47173169e-10],
                 [9.99985013e-01, 1.49867177e-05],
                 [9.99999998e-01, 1.76905802e-09],
                 [9.99999962e-01, 3.82747890e-08],
                 [1.00000000e+00, 6.07185145e-13],
                 [9.99999127e-01, 8.72579183e-07],
                 [9.99913754e-01, 8.62462203e-05],
                 [9.99999913e-01, 8.65319842e-08],
                 [9.99999983e-01, 1.73070999e-08],
                 [9.99999986e-01, 1.39271511e-08],
                 [9.99999892e-01, 1.07590678e-07],
                 [9.88421571e-01, 1.15784293e-02],
                 [9.99999964e-01, 3.59867788e-08],
                 [9.99999663e-01, 3.37265939e-07],
                 [9.99999985e-01, 1.49309649e-08],
                 [9.99999572e-01, 4.27887629e-07],
                 [9.59783355e-01, 4.02166454e-02],
                 [9.97050613e-01, 2.94938667e-03],
                 [9.99999961e-01, 3.91009276e-08],
                 [1.00000000e+00, 9.10492798e-13],
                 [9.99999878e-01, 1.22356081e-07],
                 [9.99965215e-01, 3.47851055e-05],
```

In []:	