Math 217 – Final Exam Solutions

Question:	1	2	3	4	5	6	7	8	Total
Points:	12	16	12	13	12	12	11	12	100
Score:									

- 1. (12 points) Write complete, precise definitions for, or precise mathematical characterizations of, each of the following (italicized) terms.
 - (a) The image of the linear transformation $T:V\to W$ from the vector space V to the vector space W

Solution: The *image* of the linear transformation $T: V \to W$ from the vector space V to the vector space W is the subset $\{T(\vec{v}): \vec{v} \in V\}$ of W.

(b) The vector \vec{v} in the vector space V is an eigenvector of the linear transformation $T:V\to V$

Solution: The vector \vec{v} in the vector space V is an eigenvector of the linear transformation $T: V \to V$ if $\vec{v} \neq \vec{0}$ and $T(\vec{v}) = \lambda \vec{v}$ for some $\lambda \in \mathbb{R}$.

(c) The geometric multiplicity gemu(λ) of the eigenvalue λ of the linear transformation $T: V \to V$, where V is a finite-dimensional vector space

Solution: The *geometric multiplicity* gemu(λ) of λ is the dimension of the λ -eigenspace $E_{\lambda} = \{\vec{v} \in V : T(\vec{v}) = \lambda \vec{v}\}.$

(d) The function $f: X \to Y$ is injective

Solution: The function $f: X \to Y$ is *injective* if for all $x_1, x_2 \in X$, we have $f(x_1) \neq f(\vec{x}_2)$ whenever $x_1 \neq x_2$.

Solution: The function $f: X \to Y$ is *injective* if for all $x_1, x_2 \in X$, we have $x_1 = x_2$ whenever $f(x_1) = f(x_2)$.

- 2. State whether each statement is True or False and provide a short proof of your claim. For each part, indicate your answer by clearly writing "T" or "F" in the box on the left.
 - (a) (4 points) For all matrices $A \in \mathbb{R}^{n \times n}$, $\det(A) = 0$ if and only if A is not diagonalizable.

Solution: FALSE. For instance, $\det \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$ but $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is diagonalizable since it is already diagonal. (This works for any square zero matrix, or indeed any diagonal matrix with a zero entry somewhere on the diagonal.)

(b) (4 points) For all matrices $A \in \mathbb{R}^{n \times m}$ and vectors $\vec{v}, \vec{w} \in \mathbb{R}^n$, if $AA^{\top}\vec{v} = \lambda_1 \vec{v}$ and $AA^{\top}\vec{w} = \lambda_2 \vec{w}$ where $\lambda_1 \neq \lambda_2$, then $\vec{v} \cdot \vec{w} = 0$.

Solution: TRUE. Let $A \in \mathbb{R}^{n \times m}$ and $\vec{v}, \vec{w} \in \mathbb{R}^n$, and suppose $AA^{\top}\vec{v} = \lambda_1 \vec{v}$ and $AA^{\top}\vec{w} = \lambda_2 \vec{w}$ where $\lambda_1 \neq \lambda_2$. Then

$$\lambda_1(\vec{v} \cdot \vec{w}) = (\lambda_1 \vec{v}) \cdot \vec{w} = (AA^\top \vec{v}) \cdot \vec{w} = \vec{v}^\top (AA^\top)^\top \vec{w}$$
$$= \vec{v}^\top AA^\top \vec{w} = \vec{v}^\top \lambda_2 \vec{w} = \vec{v} \cdot (\lambda_2 \vec{w}) = \lambda_2 (\vec{v} \cdot \vec{w}),$$

which implies $\vec{v} \cdot \vec{w} = 0$ since $\lambda_1 \neq \lambda_2$.

Solution: TRUE. Assume the hypotheses. Since $(AA^{\top})^{\top} = A^{\top}(A^{\top})^{\top} = AA^{\top}$, we know that AA^{\top} is orthogonally diagonalizable by the Spectral Theorem. This means there is an orthonormal eigenbasis of \mathbb{R}^n for AA^{\top} , which means distinct eigenspaces of AA^{\top} are orthogonal to each other. Thus if $\lambda_1 \neq \lambda_2$ then \vec{v} and \vec{w} are eigenvectors of AA^{\top} belonging to distinct eigenspaces, which means \vec{v} and \vec{w} are orthogonal as desired.

(c) (4 points) For every symmetric matrix $A \in \mathbb{R}^{n \times n}$, the equation $\langle \vec{x}, \vec{y} \rangle = \vec{x}^{\top} A \vec{y}$ defines an inner product on \mathbb{R}^n .

Solution: FALSE. For instance, let $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ be the 2×2 zero matrix, so A is symmetric. Then the assignment $\langle \vec{x}, \vec{y} \rangle = \vec{x}^{\top} A \vec{y}$ is symmetric and bilinear but not postive-definite, since for instance $\vec{e_1}^{\top} A \vec{e_1} = 0$ even though $\vec{e_1} \neq \vec{0}$.

(d) (4 points) For every $n \times n$ matrix A, $\det A = 0$ if and only if $\det(\operatorname{rref}(A)) = 0$.

Solution: TRUE. Let A be an $n \times n$ matrix, and write R = rref(A). If $\det(A) \neq 0$ then A is invertible which means $R = I_n$, so $\det(R) = 1 \neq 0$. Conversely, if $\det(A) = 0$ then A is *not* invertible, which means $R \neq I_n$ and therefore the last

row of R is a zero row, so det(R) = 0.

Solution: TRUE. Let A be an $n \times n$ matrix, and write R = rref(A). We know there is an invertible matrix P such that PA = R (namely, let P be the product of the elementary matrices corresponding to the elementary row operations that transform A into R). Then det $R = \det(PA) = (\det P)(\det A)$ where det $P \neq 0$, which implies det A = 0 if and only if det R = 0.

3. Consider the 3×3 matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & a & 0 \\ 0 & b & 3 \end{bmatrix}$, where $a, b \in \mathbb{R}$. In parts (a) and (b) below,

find all values of a and b in \mathbb{R} for which the given condition holds, or else write "none" if there are no such values. Justify your answers.

(a) (4 points) A is invertible.

Solution: Using the fact that A is invertible iff $det(A) \neq 0$, we compute, using a Laplace expansion along the third column,

$$\det A = 3 \det \begin{bmatrix} 2 & 1 \\ 1 & a \end{bmatrix} = 3(2a - 1) = 6a - 3.$$

Thus A is invertible iff $a \neq \frac{1}{2}$. (b can be any real number.)

(b) (3 points) There exists an orthonormal basis of \mathbb{R}^3 consisting of eigenvectors of A.

Solution: There exists an orthonormal basis of \mathbb{R}^3 consisting of eigenvectors of A if and only if A is orthogonally diagonalizable, which by the Spectral Theorem happens if and only if A is symmetric. Thus a can be any real number, but we must have b=0.

(c) (5 points) Assuming a = 2, find all $b \in \mathbb{R}$ for which A is diagonalizable (over \mathbb{R}).

Solution: Letting a = 2, we calculate the characteristic polynomial of A:

$$\det\begin{bmatrix} 2-x & 1 & 0\\ 1 & 2-x & 0\\ 0 & b & 3-x \end{bmatrix} = (3-x)[(2-x)^2-1] = (3-x)(3-4x+x^2)$$
$$= (3-x)(x-3)(x-1) = -(x-3)^2(x-1).$$

Thus the eigenvalues of A are 3 and 1, with almu(3) = 2 and almu(1) = 1. So A will be diagonalizable iff gemu(3) = 2. But

$$A - 3I_3 = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & b & 0 \end{bmatrix},$$

which has rank 1 (and thus gemu(3) = dim $\ker(A-3I_3)=2$) iff b=0. It follows that A is diagonalizable iff b=0.

4. Let $\mathbb{R}^{2\times 2}$ be the vector space of 2×2 real matrices, and let \mathcal{E} be the ordered basis of $\mathbb{R}^{2\times 2}$ given by

$$\mathcal{E} = (E_{11}, E_{12}, E_{21}, E_{22}) = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

Let $M = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$, and let $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ be the linear transformation defined by

$$T(A) = MA - A^{\top}$$

for every $A \in \mathbb{R}^{2\times 2}$. (You do not need to prove T is linear, or that \mathcal{E} is a basis of $\mathbb{R}^{2\times 2}$.)

(a) (3 points) Find the \mathcal{E} -matrix $[T]_{\mathcal{E}}$ of T.

Solution: For all $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2}$, we have

$$T(A) = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 4c & b+4d-c \\ c-b & 0 \end{bmatrix}.$$

From this we see that

$$T(E_{11}) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \ T(E_{12}) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \ T(E_{21}) = \begin{bmatrix} 4 & -1 \\ 1 & 0 \end{bmatrix}, \ T(E_{22}) = \begin{bmatrix} 0 & 4 \\ 0 & 0 \end{bmatrix},$$

so

$$[T]_{\mathcal{E}} = \begin{bmatrix} 0 & 0 & 4 & 0 \\ 0 & 1 & -1 & 4 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(b) (3 points) Find the characteristic polynomial of T.

Solution: The characteristic polynomial of T is

$$\det (xI_4 - [T]_{\mathcal{E}}) = \det \begin{bmatrix} x & 0 & -4 & 0 \\ 0 & x - 1 & 1 & -4 \\ 0 & 1 & x - 1 & 0 \\ 0 & 0 & 0 & x \end{bmatrix}$$
$$= x^2 \Big((x - 1)^2 - 1 \Big) = x^2 (x^2 - 2x + 1 - x) = x^3 (x - 2).$$

(Problem 4, Continued).

(c) (4 points) For each eigenvalue of T, find a basis of the corresponding eigenspace. Clearly indicate your eigenvalues and which basis goes with which eigenvalue.

Solution: For the eigenvalue $\lambda = 0$, we first find a basis of ker $([T]_{\mathcal{E}})$, which by inspection is (\vec{e}_1) . Thus, transferring back to $\mathbb{R}^{2\times 2}$,

a basis of the eigenspace
$$E_0$$
 is: $\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$.

For the eigenvalue $\lambda = 2$, we first find a basis of

$$\ker\left([T]_{\mathcal{E}} - 2I_4\right) = \ker\begin{bmatrix} -2 & 0 & 4 & 0\\ 0 & -1 & -1 & 4\\ 0 & -1 & -1 & 0\\ 0 & 0 & 0 & -2 \end{bmatrix},$$

and we obtain $\begin{bmatrix} 2 & -1 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$. It follows that

a basis of the eigenspace
$$E_2$$
 is: $\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$.

(d) (3 points) Is T diagonalizable? Briefly explain your answer.

Solution: No, T is not diagonalizable since 1 = gemu(0) < almu(0) = 3, so there are not enough eigenvectors to form an eigenbasis of $\mathbb{R}^{2\times 2}$ for T.

5. (12 points) In each part, find the smallest positive integer n such that there is a matrix $A \in \mathbb{R}^{n \times n}$ with the indicated property.

No justification is required for this problem. In particular, you do <u>not</u> have to provide an example matrix; just say what n is, and write your answer clearly in the box.

(a) A has at least 5 distinct eigenvalues.

Solution: n = 5

(b) A has no real eigenvalues.

Solution: n=2

(c) A has at least 3 distinct real eigenvalues and is not diagonalizable (over \mathbb{R}).

Solution: n=4

(d) The complex numbers i, 1+i, 1-i, 2+i, and 7 are some of the complex eigenvalues of A.

Solution: n = 7

(e) A has at least one real eigenvalue and is diagonalizable over \mathbb{C} but not over \mathbb{R} .

Solution: n = 3

(f) A is not invertible and ± 1 are eigenvalues of A with

gemu(1) < gemu(-1) < almu(1).

Solution: n = 6

- 6. Let $V = C^{\infty}([-1,1])$ be the inner product space of smooth functions from [-1,1] to \mathbb{R} with inner product $\langle f,g\rangle = \int_{-1}^{1} f(t)g(t)dt$, and let W be the subspace of V given by $W = \operatorname{Span}(1,t)$.
 - (a) (4 points) Find an orthonormal basis \mathcal{U} of the subspace W.

Solution: Note that

$$\langle 1, t \rangle = \int_{-1}^{1} t \, dt = 0,$$

so 1 and t are already orthogonal and therefore $\left(\frac{1}{\|1\|}, \frac{t}{\|t\|}\right)$ is an orthonormal basis of W. Since

$$\langle 1, 1 \rangle = \int_{-1}^{1} 1 \, dt = 2 \text{ and } \langle t, t \rangle = \int_{-1}^{1} t^2 = \frac{t^3}{3} \Big]_{-1}^{1} = \frac{2}{3},$$

we have that $\mathcal{U} = \left(\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} t\right)$ is an orthonormal basis of W.

(b) (4 points) Find the orthogonal projection of t^2 onto W^{\perp} ; that is, find $\operatorname{proj}_{W^{\perp}}(t^2)$.

Solution: Let $\mathcal{U} = (u_1, u_2)$ be our orthonormal basis from (a), so for any $v \in V$ we have $\operatorname{proj}_W(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2$. Using the fact that $t^2 = \operatorname{proj}_W(t^2) + \operatorname{proj}_{W^{\perp}}(t^2)$, we have

$$\operatorname{proj}_{W^{\perp}}(t^2) = t^2 - \operatorname{proj}_{W}(t^2) = t^2 - \langle t^2, u_1 \rangle u_1 - \langle t^2, u_2 \rangle u_2.$$

Since t^2 is an even function and u_2 is odd, their product is odd, so $\langle t^2, u_2 \rangle = \int_{-1}^1 \sqrt{\frac{3}{2}} t^3 dt = 0$. Thus

$$\operatorname{proj}_{W^{\perp}}(t^{2}) = t^{2} - \langle t^{2}, u_{1} \rangle u_{1} = t^{2} - \frac{1}{\sqrt{2}} \int_{-1}^{1} \frac{t^{2}}{\sqrt{2}} dt = t^{2} - \frac{1}{2} \int_{-1}^{1} t^{2} dt = t^{2} - \frac{1}{3}.$$

(c) (4 points) Let g be the cosine function on [-1,1], so $g(t) = \cos t$ for all $t \in [-1,1]$. Find the function p in W that is *closest* to the cosine function in V, in the sense that $||p-g|| \le ||q-g||$ for all $q \in W$.

Solution: The function p in W that is closest to g is

$$p = \operatorname{proj}_W(g) = \langle g, u_1 \rangle u_1 + \langle g, u_2 \rangle u_2.$$

Since g is a even and u_2 is odd, their product is odd, so $\langle g, u_2 \rangle = 0$ and thus

$$p = \langle g, u_1 \rangle u_1 = \frac{1}{\sqrt{2}} \int_{-1}^1 \frac{\cos t}{\sqrt{2}} dt = \frac{1}{2} \sin t \bigg]_{-1}^1 = \frac{1}{2} (\sin 1 - \sin(-1)) = \sin 1.$$

So p is the constant function on [-1,1] with constant value $\sin 1$.

- 7. Let U and A be $n \times n$ matrices with real entries, and suppose U is upper-triangular and A is invertible with QR-factorization A = QR.
 - (a) (3 points) Prove that all the complex eigenvalues of U are real.

Solution: Since U is upper-triangular, the eigenvalues of U are just the diagonal entries of U, so the fact that U has real entries guarantees that all the eigenvalues of U are real.

(b) (3 points) Prove that if U is orthogonally diagonalizable, then U is already diagonal.

Solution: Suppose U is orthogonally diagonalizable. Then U is symmetric by the Spectral Theorem, but upper-triangular matrices that are symmetric must be diagonal.

(c) (5 points) Prove or disprove the following statement: A is orthogonally diagonalizable if and only if R is orthogonally diagonalizable.

Solution: The statement is false. To show that the forward implication fails, consider the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, which has QR-factorization $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Note that A is orthogonally diagonalizable by the Spectral Theorem, since A is symmetric, but $R = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not orthogonally diagonalizable since it is not symmetric.

Solution: The statement is false. To show that the backward implication fails, consider the matrix $A = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$, which has QR-factorization $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

Note that $R = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ is orthogonally diagonalizable by the Spectral Theorem, since R is symmetric, but A is not orthogonally diagonalizable since it is not symmetric.

- 8. Suppose $(V, \langle \cdot, \cdot \rangle_V)$ and $(W, \langle \cdot, \cdot \rangle_W)$ are finite-dimensional inner product spaces.
 - (a) (7 points) Prove that if dim $V \leq \dim W$, then there exists a linear transformation $T: V \to W$ such that $\langle x, y \rangle_V = \langle T(x), T(y) \rangle_W$ for all $x, y \in V$.

Solution: Suppose dim $V \leq \dim W$, and let $\mathcal{B} = (v_1, \dots, v_n)$ and $\mathcal{C} = (w_1, \dots, w_m)$ be orthonormal bases of V and W, respectively, so $n \leq m$. Given $x \in V$, let

$$T(x) = \sum_{i=1}^{n} c_i w_i$$
 where $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = [x]_{\mathcal{B}}.$

This defines a map $T: V \to W$, and we show that T is as desired. Let $x, y \in V$ and $k \in \mathbb{R}$, with $x = \sum_{i=1}^{n} c_i v_i$ and $y = \sum_{i=1}^{n} d_i v_i$. Then $[x+y]_{\mathcal{B}} = [x]_{\mathcal{B}} + [y]_{\mathcal{B}}$ and $[kx]_{\mathcal{B}} = k[x]_{\mathcal{B}}$, so

$$T(x+y) = \sum_{i=1}^{n} (c_i + d_i)w_i = \sum_{i=1}^{n} c_i v_i + \sum_{i=1}^{n} d_i v_i = T(x) + T(y)$$

and

$$T(kx) = \sum_{i=1}^{n} kc_i w_i = k \sum_{i=1}^{n} c_i w_i = kT(x).$$

This shows T is linear. Finally, we have

$$\langle T(x), T(y) \rangle_{W} = \langle T(\sum c_{i}v_{i}), T(\sum d_{i}v_{i}) \rangle_{W}$$

$$= \langle \sum c_{i}w_{i}, \sum d_{i}w_{i} \rangle_{W}$$

$$= \sum_{i} \sum_{j} c_{i}d_{j} \langle w_{i}, w_{j} \rangle_{W}$$

$$= \sum_{i} \sum_{j} c_{i}d_{j} \langle v_{i}, v_{j} \rangle_{V}$$

$$= \langle \sum c_{i}v_{i}, \sum d_{j}v_{j} \rangle_{V} = \langle x, y \rangle_{V}.$$

(b) (5 points) Prove that if dim $V > \dim W$, then there does *not* exist a linear transformation $T: V \to W$ such that $\langle x, y \rangle_V = \langle T(x), T(y) \rangle_W$ for all $x, y \in V$.

Solution: We prove the contrapositive. Suppose there *does* exist a linear transformation $T: V \to W$ such that $\langle x, y \rangle_V = \langle T(x), T(y) \rangle_W$ for all $x, y \in V$, and let T be such a map. Let $v \in \ker(T)$. Then

$$\langle v, v \rangle_V = \langle T(v), T(v) \rangle_W = \langle \vec{0}_W, \vec{0}_W \rangle_W = 0,$$

which implies $v = \vec{0}_V$ by positive-definiteness of $\langle \cdot, \cdot \rangle_V$. Thus $\ker(T) = \{\vec{0}_V\}$, so $\dim \ker(T) = 0$. But then $\dim \operatorname{im}(T) = \dim V$ by Rank-Nullity, and since $\operatorname{im}(T) \subseteq W$ this implies $\dim V \leq \dim W$.