Thes: Discussion/quiz

Rotational Energy

While rotational dynamics can describe the rotational motion of any object in principle, in practise it can be difficult to implement. One example that illustrates this is a pivoting rod/tree/chimney

Demo: Falling chimney page (Physics Central + video links)

Consider a pivoting rod. The net torque is entirely due to gravity. Thus

But
$$T_g = \Gamma f_g \sin \phi$$
 -implies

That = $mg \frac{L}{s} \sin (90^c + 6)$

So the angular acceleration changes as the rod pivots. Ordinary constant angular acceleration kinematics is insufficient here.

But we can get limited information by using energy

Rotational kinetic energy.

Any moving mass has non-zero kinetic energy. Consider a disk that rotates about its center. The illustrated shaded section, with mass m has kinetic energy

But V=Wr implies.

$$K = \frac{1}{2}M(\omega r)^2 = \frac{1}{2}(Mr^2)\omega^2$$

Then Mr^2 is just the moment of inertia of the shaded section. Adding the contributions for all shaded sections (angular velocity is the same) gives $K = \frac{1}{2} I w^2$. This is an example of a general rule:

A rotating object has rotational kinetic energy

$$K_{rot} = \frac{1}{2} I \omega^2$$

where I is the moment of inertia of the object about the axis of rotation and w is the angular velocity about that point.

Worm Up 1

Quiz1 90% } 90%

Energy Conservation.

Consider an object that

ongular velocity about P undergoes rotational and translational motion. We can track one particular point, say P. Then the total kinetic energy can be divided into two parts:

- translational kinetic energy associated with motion of P

$$(K trans = \frac{1}{2} M V^2)$$
total mass

- rotational kinetic energy about P

moment of inertia

The total kinetic energy is

K=Ktrons + Krot

and

If non-conservative forces do zero work, then the energy E = K + Ug + Usp + ... Lo K + rans + Krotis construct (conserved)

Warn Up2

Example: A 2.0m long 0.200kg rod is held at rest as illustrated:

The rod pivots about one end and is released. Determine:

- a) the angular velocity as the tip reaches the grand
- b) " speed of the tip as it reaches the ground.
- c) Il speed of a ball dropped from the same height, as it reaches the ground

Answe:

a) Energy is conserved =D Ef=Ei

where I is the moment of inertia of the rod about one end:

$$I = \frac{1}{3} M L^2$$

where L is the length of the rod.

Thus:

$$\frac{1}{2} \left(\frac{1}{3} \text{ mL}^2 \right) \omega f^2 = \text{mgyi}$$

$$\frac{1}{6} \text{ ML}^2 \omega f^2 = \text{mgyi}$$

$$\omega f^2 = 699i / L^2 = \omega f = \sqrt{699i}$$

In this case:

$$y: (L/z) = \sin 30^{\circ} = D$$
 $y: = \frac{1}{2} \sin 30^{\circ} = 0.50 \text{ m}$
 $y: = \frac{1.0 \text{ m} \sin 30^{\circ} = 0.50 \text{ m}}{1.0 \text{ m} \sin 30^{\circ} = 0.50 \text{ m}}$
Thus $wf = \frac{\sqrt{6} \times 9.8 \text{ m/s}^2 \times 0.50 \text{ m}}{(2.0 \text{ m})} = D$ $wf = 2.7 \text{ rad/s}$.

- b) Use $V_F = \Gamma W_F$ and here Γ is the distance from P to the tip. So, $V_f = V_f = V_f = \sqrt{6gy_i}$ Here $V_f = \sqrt{6x9.8m/s^2 \times 0.50m}$ $V_f = V_f = \sqrt{6x9.8m/s^2 \times 0.50m}$
 - For the ball energy conservation implies $|\mathcal{E}_f| = |\mathcal{G}_g|^2$ $= 0 \pm |\mathcal{G}_g| = |\mathcal{G}_g| = |\mathcal{G}_g| = 0$ of ball $= \sqrt{2ghi}$ But $h_i = 2y_i$ by geometry. So $|\mathcal{G}_g| = \sqrt{4gy_i}$ The ball drops more slowly.

Deno: U Jowa Falling Chimney.

- Challenge: 1) Show that there is one point on the rod
 that hits the ground at the same speed as
 the a freely falling ball dropped from the same
 point.
 Show it is 7/3 L from the pivot.
 - 2) Show that when the rod is at angle Θ , the acceleration of the tip is $Q_t = \frac{3}{2}g\cos\Theta.$