

Author

• Laurent d'Orazio, Univ Rennes, CNRS, IRISA

1 Exercise

Soit la table test_df suivante :

```
+--+--+--+--+
| A | B | C | D |
+---+--+--+
| a1| b1| c1| d1|
| a2| b1| c2| d2|
| a3| b2| c1| d3|
| a4| b2| c1| d3|
| a5| b2| c2| d4|
+---+--+--+
```

Les dépendances fonctionnelles suivantes sont données :

```
A \rightarrow B ; A \rightarrow C ; A \rightarrow D ; B, C \rightarrow D;
```

Ecrire le script SQL permettant de créer la table test_df.

Ecrire la requête permettant pour chaque valeur de C de compter le nombre de valeurs de D.

SELECT c, count(d) FROM $test_dfgroupbyc$;

Ecrire une requête SQL permettant de vérifier que $A \to B$. Un indice, il ne peut y avoir plus d'une valeur différente de B par valeur de A.

Soit la table test_df suivante :

```
+--+--+--+--+
| A | B | C | D |
+---+--+--+
| a1| b1| c1| d1|
| a2| b1| c2| d2|
| a3| b2| c1| d3|
| a4| b2| c1| d5|
| a5| b2| c2| d4|
+---+--+--+
```

Ecrire le script SQL permettant de créer la table test_df.

Ecrire une requête permettant de lister les violations de la dépendance fonctionnelle B, $C \to D$.

Ecrire une requête permettant de compter le nombre d'enregistrements concernés par la violation de la dépendance fonctionnelle B, $C \to D$ est violée.

2 Exercice

Considérons une base de données sur les Pokémon avec la relation suivante : Pokémon (NumPokémon, Nom, Type, Niveau, Attaque, PV, Dresseur)

Pokemon				
NumPokr	mon Nom	Type	Niv	eau Attaque PV Dresseur
			-	
001	Bulbasaur	Grass	10	Tackle 45 Ash Ketchum
002	Charmander	Fire	8	Ember 39 Gary Oak
003	Squirtle	Water	9	Water Gun 44 Misty

1. Identifier des dépendances fonctionnelles dans la relation "Pokémon".

- 2. Montrer à l'aide de plusieurs requêtes SQL que NumPokemon est une clé.
- 3. Proposer une décomposition en plusieurs relations supprimant les anomalies de conception.

3 Exercice

Considérons une base de données sur les Pokémon :

1	Name		<i>J</i> 1			-	Move Po		-		-		1
			Electric		-		Thunder Shock			•			
Ι,	Jigglypu	ff	Normal	1	15	I	Sing	50	l	Misty	1	Mt. Moon	1
(eodude	-	Rock		10	I	Rock Throw	30	l	Brock	1	Mt. Moon	1
1	/ulpix	-	Fire		8	l	Ember	35	l	Gary Oak	1	Cerulean City	1
1	ſachop	-	Fighting	;	14	I	Karate Chop	45	l	Bruno	1	Victory Road	1
1	bra	-	Psychic	1	5	l	Teleport	20	l	Sabrina	1	Saffron City	1
5	andshre	W	Ground	1	11	I	Scratch	40	١	Lt. Surge	-	Digletts Cave	1
(ddish	-	Grass		9	1	Absorb	35	١	Erika	-	Celadon City	1
(Clefairy	-	Fairy		13	I	Metronome	48	l	Cynthia	1	Cerulean Cave	1
1	Iidoran	-	Poison		7	l	Poison Sting	25	l	Brock	1	Pewter City	1

• Lister les dépendances fonctionnelles et en déduire une décomposition BCNF.

4 References

 $\bullet \ \, \textbf{Lecture} \colon \ \, \texttt{https://perso.univ-rennes1.fr/laurent.dorazio/data/teachings/r4.03/bd_r4.03_df.pdf} \\$