Type of process	Associated formula	Miscellaneous note
Reversible process	$δW = P dV$ $δQ = T dS$ $ΔS = \int δQ/T$	 The total entropy change of the system and its surrounding must be zero However, the entropy of the system <i>by itself</i> can change A reversible process has the minimum possible entropy increase for a given δQ (recall the 2nd law of thermodynamics) The entropy change of a system undergoing a reversible <i>cycle</i> is zero
Quasistatic process	-	 A process that happens infinitely slowly, so that each instant the system is in thermodynamic equilibrium Reversible processes are always quasistatic, but a quasistatic process need not to be reversible in general
Adiabatic process	$\delta Q = 0$	- No heat is exchanging between a system and its surroundings
Isentropic process/ Reversible adiabatic process	PV^{γ} = constant γ = C_P/C_V	 Both idiomatic and reversible ⇔ zero entropy change (entropy change of the system itself is zero, and therefore the entropy change of the surroundings is zero as well) An isentropic process is a process with zero entropy change
Iso-something process	 For isothermal process P = Nk_BT/V ⇒ W = ∫ P dV = Nk_BT ∫ dV/V For isochoric process dV = 0 	 Isothermal ⇒ constant temperature Isobaric ⇒ constant pressure isochoric ⇒constant volume
Free expansion	PV =P'V' ΔU = 0 Q = 0 W = 0	 The temperature does not change during free expansion Is adiabatic, but not reversible The fact that it's reversible means that there is an entropy change even though δQ = 0 (and therefore the previously mentioned formula ΔS = ∫ δQ/T does not hold here) Even thought the gas expands, <i>it does no work</i>