Presentation - Matgeo

Aryansingh Sonaye Al25BTECH11032 EE1030 - Matrix Theory

September 28, 2025

Problem Statement

Problem 8.3.12 Find the equation of the set of all points the sum of whose distances from the points (3,0) and (9,0) is 12.

Description of Variables used

Variable	Value
F ₁	$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$
F_2	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
2 <i>a</i>	12

Table

Step 1: Center and directions

$$\mathbf{c} = \frac{\mathbf{F_1} + \mathbf{F_2}}{2} = \begin{pmatrix} 6 \\ 0 \end{pmatrix} \tag{2.1}$$

$$\mathbf{p_1} = \frac{\mathbf{F_2} - \mathbf{F_1}}{\|\mathbf{F_2} - \mathbf{F_1}\|} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \mathbf{p_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad P = I$$
 (2.2)

Step 2: Semi-minor axis

$$c_f = \frac{\|\mathbf{F_2} - \mathbf{F_1}\|}{2} = 3 \tag{2.3}$$

$$a=6 (2.4)$$

$$b^2 = a^2 - c_f^2 = 36 - 9 = 27 (2.5)$$

Step 3: Standard ellipse form

$$(\mathbf{x} - \mathbf{c})^{\top} D(\mathbf{x} - \mathbf{c}) = 1 \tag{2.6}$$

$$D = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} = \begin{pmatrix} 1/36 & 0 \\ 0 & 1/27 \end{pmatrix}$$
 (2.7)

$$V = PDP^{\top} = D \tag{2.8}$$

Step 4: Convert to general quadratic form

$$(\mathbf{x} - \mathbf{c})^{\top} V(\mathbf{x} - \mathbf{c}) = 1 \tag{2.9}$$

$$\mathbf{x}^{\top}V\mathbf{x} - 2\mathbf{c}^{\top}V\mathbf{x} + \mathbf{c}^{\top}V\mathbf{c} - 1 = 0$$
 (2.10)

Comparing with $\mathbf{x}^{\top}V\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0$:

$$\mathbf{u} = -V\mathbf{c}$$

$$f = \mathbf{c}^{\top} V \mathbf{c} - 1 \tag{2.12}$$

(2.11)

Compute:

$$\mathbf{u} = -\begin{pmatrix} 1/36 & 0\\ 0 & 1/27 \end{pmatrix} \begin{pmatrix} 6\\ 0 \end{pmatrix} = \begin{pmatrix} -1/6\\ 0 \end{pmatrix} \tag{2.13}$$

$$f = \begin{pmatrix} 6 & 0 \end{pmatrix} \begin{pmatrix} 1/36 & 0 \\ 0 & 1/27 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \end{pmatrix} - 1 = 0$$
 (2.14)

Step 5: Clear denominators

$$V = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} \tag{2.15}$$

$$\mathbf{u} = \begin{pmatrix} -18\\0 \end{pmatrix} \tag{2.16}$$

$$f = 0 \tag{2.17}$$

Final Matrix Equation

$$\boxed{\mathbf{x}^{\top}V\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0, \quad V = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} -18 \\ 0 \end{pmatrix}, f = 0} \quad (2.18)$$

Plot

Code - C

```
#include <math.h>
// Compute V (2x2, row-major), u (2), f from foci F1,F2 and sum (=2a)
//c = (F1+F2)/2
// a = sum/2
// c_f = ||F2-F1||/2, b^2 = a^2 - c_f^2
//D = diag(1/a^2, 1/b^2) [axis—aligned for this problem]
//V = D
//u = -Vc
// f = c^T V c - 1
void ellipse_vuf(const double *F1, const double *F2, double sum,
                 double *V, double *u, double *f)
    // center
    double cx = (F1[0] + F2[0]) / 2.0;
    double cy = (F1[1] + F2[1]) / 2.0;
```

Code - C

```
// a, c_f, b
double a = sum / 2.0;
double dx = F2[0] - F1[0]:
double dv = F2[1] - F1[1]:
double cf = sqrt(dx*dx + dy*dy) / 2.0;
double b2 = a*a - cf*cf:
double b = sqrt(b2);
//D = diag(1/a^2, 1/b^2)
double D00 = 1.0/(a*a);
double D11 = 1.0/(b*b);
//V = D (axis—aligned for this question)
V[0] = D00; V[1] = 0.0;
V[2] = 0.0; V[3] = D11;
```

Code - C

```
// u = -V c
u[0] = -(V[0]*cx + V[1]*cy);
u[1] = -(V[2]*cx + V[3]*cy);
// f = c^T V c - 1
*f = cx*(V[0]*cx + V[1]*cy) + cy*(V[2]*cx + V[3]*cy) - 1.0;
}
```

The code to obtain the required plot is

```
import ctypes as ct
import numpy as np
import matplotlib.pyplot as plt
# --- load shared lib ---
lib = ct.CDLL("./libellipse.so")
lib.ellipse_vuf.argtypes = [
    ct.POINTER(ct.c_double), # F1
    ct.POINTER(ct.c_double), # F2
    ct.c_double, # sum (2a)
    ct.POINTER(ct.c_double), # V (len 4, row-major)
    ct.POINTER(ct.c_double), # u (len 2)
    ct.POINTER(ct.c_double), # f (scalar)
lib.ellipse_vuf.restype = None
```

```
# --- problem data ---
F1 = np.array([3.0, 0.0], dtype=np.float64)
F2 = np.array([9.0, 0.0], dtype=np.float64)
sum_dist = 12.0 \# 2a
# --- outputs ---
V = np.zeros(4, dtype=np.float64) \# row-major 2x2
u = np.zeros(2, dtype=np.float64)
f = np.zeros(1, dtype=np.float64)
# call C
lib.ellipse_vuf(
    F1.ctypes.data_as(ct.POINTER(ct.c_double)),
    F2.ctypes.data_as(ct.POINTER(ct.c_double)),
    ct.c_double(sum_dist),
    V.ctypes.data_as(ct.POINTER(ct.c_double)),
    u.ctypes.data_as(ct.POINTER(ct.c_double)),
    f.ctypes.data_as(ct.POINTER(ct.c_double)),
```

```
V2 = V.reshape(2,2)
print("V=\n", V2)
print("u=", u)
print("f=", f[0])
\# --- derive c, f0, a, b from (V,u,f), exactly like theory ---
\# c = -V^{-1} u
c = -np.linalg.solve(V2, u)
# f0 = u^T V^{-1} u - f
f0 = u \otimes np.linalg.solve(V2, u) - f[0]
# eigendecomposition V = P \text{ diag}(Iam) P^T
lam, P = np.linalg.eigh(V2) \# lam[0] <= lam[1]
# axes: a^2 = f0/lam1, b^2 = f0/lam2
a = np.sqrt(f0 / lam[0])
b = np.sqrt(f0 / lam[1])
```

```
print("center-c-=", c)
print("f0=", f0)
print("semi-axes-a,-b-=", a, b)
# --- plot from (V,u,f) ---
t = np.linspace(0, 2*np.pi, 600)
ellipse_local = np.vstack([a*np.cos(t), b*np.sin(t)]) \# (2,N)
ellipse\_global = (P @ ellipse\_local).T + c # rotate+shift
plt.plot(ellipse_global[:,0], ellipse_global[:,1], label="Ellipse")
plt.scatter([F1[0], F2[0]], [F1[1], F2[1]], label="Foci")
plt.scatter([c[0]], [c[1]], label="Center")
```

```
plt.gca().set_aspect("equal", adjustable="box")
plt.legend(loc="upper-left", bbox_to_anchor=(1.05, 1.0))
plt.grid(True)
plt.title("Matrix—form-ellipse-from-C-(.so)-—-Python")
plt.tight_layout()
plt.savefig("ellipse.png")
plt.show()
```

```
import numpy as np
import matplotlib.pyplot as plt
def ellipse_vuf_from_foci(F1, F2, sum_dist):
---Build-(V,-u,-f)-from-foci-and-sum-of-distances-(2a).
----Assumes-axis—aligned-ellipse-when-foci-are-collinear-on-x—-or-y—axis.
    F1 = np.asarray(F1, dtype=float)
    F2 = np.asarray(F2, dtype=float)
    # Center and axes lengths
    c = (F1 + F2) / 2.0 \# center
    a = sum_dist / 2.0 \# semi-major
    cf = np.linalg.norm(F2 - F1) / 2.0 \# half focal distance
    b2 = a * a - cf * cf
```

```
if b2 <= 0:
    raise ValueError("Invalid-inputs:-b^2-<=-0-(no-real-ellipse).")
b = np.sqrt(b2)
\# D = diag(1/a^2, 1/b^2), axis—aligned for this problem => V = D
V = np.diag([1.0 / (a * a), 1.0 / (b * b)])
\# u = -V c, f = c^T V c - 1
\mu = -V \otimes c
f = float(c @ (V @ c) - 1.0)
return V, u, f, c, a, b
```

```
def recover_from_Vuf(V, u, f):
----From-(V,-u,-f),-recover:
----c^--V^{-1}-u
----f0-=-u^T-V^{-1}-u---f
----eigendecomposition-V-=-P-diag(lam)-P^T
----semi—axes-via-theory:-a^2-=-f0-/-lam_min,-b^2-=-f0-/-lam_max
    V = np.asarray(V, dtype=float)
    u = np.asarray(u, dtype=float)
    # center
    c = -np.linalg.solve(V, u)
    \# f0
    Vinv_u = np.linalg.solve(V, u)
    f0 = float(u @ Vinv_u - f)
```

```
# eigen
    lam, P = np.linalg.eigh(V) \# lam sorted ascending, columns of P are
         eigenvectors
    # semi—axes from theory
    if np.any(lam \leq 0):
         raise ValueError("V-must-be-positive-definite-for-an-ellipse.")
    a = np.sqrt(f0 / lam[0])
    b = np.sqrt(f0 / lam[1])
    return c. f0. lam. P. a. b
def sample_ellipse_points(c, P, a, b, num=600):
    11 11 11
----Parametric-ellipse-in-principal-coordinates, then-rotate+shift:
----z(t) = -[a-cos-t;-b-sin-t], --x(t) = -P-z(t) + -c
```

```
t = np.linspace(0.0, 2.0 * np.pi, num)
    ellipse_local = np.vstack([a * np.cos(t), b * np.sin(t)]) \# shape (2, N
    ellipse_global = (P @ ellipse_local).T + c # shape (N, 2)
    return ellipse_global
def main():
    # ----- Problem data -----
    F1 = np.array([3.0, 0.0])
    F2 = np.array([9.0, 0.0])
    sum_dist = 12.0 \# 2a
    # ---- Build V, u, f as per the align-derivation ----
    V, u, f, c_direct, a_direct, b_direct = ellipse_vuf_from_foci(F1, F2,
        sum_dist)
```

```
print("From-direct-construction-(D,-V=D,-u=-Vc,-f=c^T-V-c--1):")
print("V=\n", V)
print("u=", u)
print("f=", f)
print("center-c-(from-foci)-=", c_direct)
print("a-(from-foci,sum)=", a_direct, "--b=", b_direct)
print()
\# ---- Recover via theory from (V, u, f) ----
c, f0, lam, P, a, b = recover_from_Vuf(V, u, f)
print("Recovered-from-(V,u,f)-via-theory:")
print("c=-V^{-1}u=", c)
print("f0=-u^T-V^{-1}-u^--f=", f0)
print("Eigenvalues-lam=", lam)
print("Eigenvectors-P-=\n", P)
print("Semi-axes-from-f0/lam:-a-=", a, "-b-=", b)
print()
```

```
\# ---- Plot using principal—axis parametric form + transform
    pts = sample_ellipse_points(c, P, a, b, num=600)
    plt.plot(pts[:, 0], pts[:, 1], label="Ellipse")
    plt.scatter([F1[0], F2[0]], [F1[1], F2[1]], label="Foci")
    plt.scatter([c[0]], [c[1]], label="Center")
    plt.gca().set_aspect("equal", adjustable="box")
    plt.legend(loc="upper-left", bbox_to_anchor=(1.05, 1.0))
    plt.grid(True)
    plt.title("Ellipse-from-(V,u,f)---theory-consistent-build")
    plt.tight_layout()
    plt.savefig("newellipse.png")
    plt.show()
if __name__ == " __main__":
    main()
```