Dr. Tushar Sandhan

Introduction

Color of the Universe

Introduction

Introduction

Color of the Universe MICRO-GAMMA INFRA-X-RAYS U-V RADIO T-V RAYS RED WAVES 100 ft .0001 ft ---- .01 ft ULTRAVIOLET VISIBLE SPECTRUM INFRARED 300 400 600 nm 700 1000

Visible light (dispersion)

Spectra of objects

Light source spectra

Spectra of objects

Light source spectra

Reflectance spectra of surfaces

credit: E. Palmer

Human Luminance sensitivity

credit: Efros

Light spectrum is continuous, then why are images RGB?

Light spectrum is continuous, then why are images RGB?

Light spectrum is continuous, then why are images RGB?

▲ Evolutionary cones (6 million)

- Light spectrum is continuous, then why are images RGB?
- ▲ Evolutionary cones (6 million)

- Light spectrum is continuous, then why are images RGB?
- Evolutionary cones (6 million)

- Characterization of cone cells & understanding visual process in the eye.
 - Ragnar Granit, Haldan Keffer Hartline and George Wald
 - Nobel Prize 1967

HVS retina display

HVS retina display

HVS retina display

EE604: IMAGE PROCESSING sandhan@iitk.ac.in

HVS retina display

- Cones (Long:L, Medium:M, Short:S) & Rods:R
- S: blue (most sensitive)
- M, L on chromosome X (some women are tetrachromatic)

- Cones (Long:L, Medium:M, Short:S) & Rods:R
- S: blue (most sensitive)
- M, L on chromosome X (some women are tetrachromatic)

- Cones (Long:L, Medium:M, Short:S) & Rods:R
- S: blue (most sensitive)
- M, L on chromosome X (some women are tetrachromatic)

- Reptiles : 5 types of cones
- Mantis shrimp: 12 types of cones

- Cones (Long:L, Medium:M, Short:S) & Rods:R
- S: blue (most sensitive)
- M, L on chromosome X (some women are tetrachromatic)

- Reptiles : 5 types of cones
- Mantis shrimp: 12 types of cones

What is it?

What is it?

- psychophysical: physiological sequence of sensory processing
- perceptual: cognitive representation of a physical reality

What is it?

- psychophysical: physiological sequence of sensory processing
- perceptual: cognitive representation of a physical reality

> Imagination of the illuminated retina!

Sensing

Sensing

Estimate the color

Representation

- o for graphics & displays
 - CIE chromaticity diagram
 - Commission Internationale de l'éclairage-1931
 - inks, displays, cameras
 - X mix of RGB
 - Y illuminance
 - Z close to blue
- o for computational analysis
 - color spaces
 - processing the color images

Representation

o for graphics & displays

- CIE chromaticity diagram
- Commission Internationale de l'éclairage-1931
- inks, displays, cameras
- X mix of RGB
- Y illuminance
- Z close to blue

o for computational analysis

- color spaces
- processing the color images

Hunt-Pointer-Estevez matrix

- cone responses to XYZ mapping
- LMS: cone responses of human eye
- Z ←→ S
- Y brightness
- X, Z chromaticity

EE604: IMAGE PROCESSING

Representation

- o for graphics & displays
 - CIE chromaticity diagram
 - Commission Internationale de l'éclairage-1931
 - inks, displays, cameras
 - X mix of RGB
 - Y illuminance
 - Z close to blue
- o for computational analysis
 - color spaces
 - processing the color images

Hunt-Pointer-Estevez matrix

- cone responses to XYZ mapping
- LMS: cone responses of human eye
- Z ←→ S
- Y brightness
- X, Z chromaticity

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 1.910\,20 & -1.112\,12 & 0.201\,91 \\ 0.370\,95 & 0.629\,05 & 0 \\ 0 & 0 & 1.000\,00 \end{bmatrix} \begin{bmatrix} L \\ M \\ S \end{bmatrix}_{\text{HPE}}$$

- CIE Chromaticity diagram
 - concept of color for computations
 - brightness (white > grey)
 - chromaticity (white = grey)

- CIE Chromaticity diagram
 - concept of color for computations
 - brightness (white > grey)
 - chromaticity (white = grey)
 - derived parameters for chromaticity
 - x, y
 - normalized function of all tristimulus values
 - Tristimulus: a color is represented by its trichromatic coefficients X, Y, Z

- CIE Chromaticity diagram
 - concept of color for computations
 - brightness (white > grey)
 - chromaticity (white = grey)
 - derived parameters for chromaticity
 - x, y
 - normalized function of all tristimulus values
 - Tristimulus: a color is represented by its trichromatic coefficients X, Y, Z

$$x=rac{X}{X+Y+Z}$$
 $y=rac{Y}{X+Y+Z}$ $z=rac{Z}{X+Y+Z}=1-x-y$

- CIE Chromaticity diagram
 - concept of color for computations
 - brightness (white > grey)
 - chromaticity (white = grey)
 - o derived parameters for chromaticity
 - x, y
 - normalized function of all tristimulus values
 - Tristimulus: a color is represented by its trichromatic coefficients X, Y, Z

$$x=rac{X}{X+Y+Z}$$
 $y=rac{Y}{X+Y+Z}$ $z=rac{Z}{X+Y+Z}=1-x-y$

$$X = rac{Y}{y}x, \ Z = rac{Y}{y}(1-x-y).$$

- CIE Chromaticity diagram
 - concept of color for computations
 - brightness (white > grey)
 - chromaticity (white = grey)
 - o derived parameters for chromaticity
 - x, y
 - normalized function of all tristimulus values
 - Tristimulus: a color is represented by its trichromatic coefficients X, Y, Z
 - specifies how human eye will experience light with a given spectrum

$$x=rac{X}{X+Y+Z}$$
 $y=rac{Y}{X+Y+Z}$ $z=rac{Z}{X+Y+Z}=1-x-y$

$$X=rac{Y}{y}x, \ Z=rac{Y}{y}(1-x-y).$$

- CIE Chromaticity diagram
 - all the colors that human eye can see, represented as color gamut

- CIE Chromaticity diagram
 - all the colors that human eye can see, represented as color gamut

Traffic light specifications

Color spaces: RGB cube

- Normalize to float values (0.0 to 1.0)
- How many possible colors in computer with 3 bytes?
- You can manipulate image inside this cube

Color spaces: RGB cube

- Normalize to float values (0.0 to 1.0)
- How many possible colors in computer with 3 bytes?
- You can manipulate image inside this cube

Color spaces: CMYK

- Printer vs display
- CMY = 1 RGB (vector notation)
- what is C + M + Y = ?
- to compensate muddy black, 'K' is added : CMYK
 K = 1 max(r,g,b)
 find out other components?
- hint: C = (1-r-K)/(1-K)

Color spaces: CMYK

- Printer vs display
- CMY = 1 RGB (vector notation)
- what is C + M + Y = ?
- to compensate muddy black, 'K' is added: CMYK
 K = 1 max(r,g,b)
 find out other components?
 MIXTURES
- hint: C = (1-r-K)/(1-K)

CMY

Color spaces: CMYK

- Printer vs display
- CMY = 1 RGB (vector notation)
- what is C + M + Y = ?
- to compensate muddy black, 'K' is added : CMYK
 K = 1 max(r,g,b)
 find out other components?
- hint: C = (1-r-K)/(1-K)

CMY

CMYK

Color spaces: HSV

• Hue:

- o dominant wavelength in the mixture of light waves
- o dominant color as perceived by us

Saturation:

- o relative purity
- o amount of white light mixed in hue to get a color

Value:

- o also called brightness
- o achromatic notion of intensity

Color spaces: HSV

• Hue:

- o dominant wavelength in the mixture of light waves
- o dominant color as perceived by us
- Saturation:
 - o relative purity
 - o amount of white light mixed in hue to get a color
- Value:
 - o also called brightness
 - o achromatic notion of intensity

Travelling inter-spaces

It's nothing but converting image from one space to another

$$I = \frac{1}{3} (R + G + B)$$

$$S = 1 - \frac{3}{R + G + B} \min(R, G, B)$$

$$H = \begin{cases} \theta & B \le G \\ 360 - \theta & B > G \end{cases}$$

where

$$\cos\theta = \frac{\frac{1}{2}[(R-G)+(R-B)]}{[(R-G)^2+(R-B)(G-B)]^{1/2}}$$

Travelling inter-spaces

It's nothing but converting image from one space to another

$$I = \frac{1}{3} (R + G + B)$$

$$S = 1 - \frac{3}{R + G + B} \min(R, G, B)$$

$$H = \begin{cases} \theta & B \le G \\ 360 - \theta & B > G \end{cases}$$

where

$$\cos\theta = \frac{\frac{1}{2}[(R-G)+(R-B)]}{[(R-G)^2+(R-B)(G-B)]^{1/2}}$$

Online converter
 https://www.rapidtables.com/convert/color/rgb-to-hsv.html

Travelling inter-spaces

It's nothing but converting image from one space to another

$$I = \frac{1}{3} (R + G + B)$$

$$S = 1 - \frac{3}{R + G + B} \min(R, G, B)$$

$$H = \begin{cases} \theta & B \le G \\ 360 - \theta & B > G \end{cases}$$

where

$$\cos \theta = \frac{\frac{1}{2} [(R-G) + (R-B)]}{[(R-G)^2 + (R-B)(G-B)]^{1/2}}$$

Online converter
 https://www.rapidtables.com/convert/color/rgb-to-hsv.html

RGB to HSV color conversion

Enter 6 digits hex code or enter red, green and blue color levels (0..255) and press the Convert button:

Enter RGB hex code (#):	FFFF00
or	
Enter red color (R):	255
Enter green color (G):	255
Enter blue color (B):	0
	Convert Reset
Hue (H):	60 °
Saturation (S):	100.0 %
Value (V):	100.0 %
Color preview:	

Color correction

Acquired image might be in different illumination or in shadow

$$\begin{bmatrix} \tilde{r} \\ \tilde{g} \\ \tilde{b} \end{bmatrix} = \begin{bmatrix} \alpha_r & 0 & 0 \\ 0 & \alpha_g & 0 \\ 0 & 0 & \alpha_b \end{bmatrix} \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

Color correction

Acquired image might be in different illumination or in shadow

$$\begin{bmatrix} \tilde{r} \\ \tilde{g} \\ \tilde{b} \end{bmatrix} = \begin{bmatrix} \alpha_r & 0 & 0 \\ 0 & \alpha_g & 0 \\ 0 & 0 & \alpha_h \end{bmatrix} \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

- White world assumption: brightest pixel should be white
 - divide by max value
- Gray world assumption: average value should look like grey
 - o m = avg over image[(r+g+b)/3]
 - $\tilde{r} = r * avg(r)/m$
- Histogram equalization on color channels

Color constancy

• Interpret object surface in terms of albedo or true color, instead of observed intensity

Contextual phenomenon

• e.g. banana appears yellow even in blue light

Color constancy

• Interpret object surface in terms of albedo or true color, instead of observed intensity

Contextual phenomenon

• e.g. banana appears yellow even in blue light

Color constancy

• Interpret object surface in terms of albedo or true color, instead of observed intensity

Contextual phenomenon

• e.g. banana appears yellow even in blue light

- assign colors to grey values (e.g. via intensity slicing)
- Note: different from image colorization
 (estimate underlying true color for a given grey image)

- assign colors to grey values (e.g. via intensity slicing)
- Note: different from image colorization
 (estimate underlying true color for a given grey image)

satellite

satellite

X-ray

satellite

X-ray

Multi-sensors

Credit: U. Berkeley & NASA

Transformation functions

Input X-ray image

Transformation functions

Input X-ray image

Transformation functions

Input X-ray image

Output?

- Transformation functions
 - o with different transformation functions

Credit: K. Dmitruk et al.

- Transformation functions
 - o with different transformation functions

Credit: K. Dmitruk et al.

- Transformation functions
 - o with different transformation functions

Credit: K. Dmitruk et al.

- Transformation functions
 - o with different transformation functions

Credit: K. Dmitruk et al.

- Color fundamentals
- Color spaces

- Color fundamentals
- Color spaces

- ☐ Light sources
 - Spectra to retina sensing
- Color
 - Cones
 - Color spaces
 - Pseudocolor images

- Color fundamentals
- Color spaces

- ☐ Light sources
 - Spectra to retina sensing
- Color
 - Cones
 - Color spaces
 - Pseudocolor images

- Color fundamentals
- Color spaces

- ☐ Light sources
 - Spectra to retina sensing
- Color
 - Cones
 - Color spaces
 - Pseudocolor images

"Blurring the pseudocolors in friendships, reduces the relational spaces & life becomes Colorful."

-TS

