

Report No.: EED32J00230702 Page 1 of 40

TEST REPORT

Product : E-POS
Trade mark : RONGTA

Model/Type reference : AP02, AP02A, AP02B, RP02, TP02, TP02A, TP02B, SP02, SP02A, SP02B

Serial Number : N/A

Report Number : EED32J00230702

 FCC ID
 : 2AD6G-AP02

 Date of Issue
 : Jan. 26, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

XIAMEN RONGTA TECHNOLOGY CO., LTD. 3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Date:

Tom Groot (Toot 1 Tojoot)

Kevin yang (Reviewer)

Jan. 26, 2018

Mill chen

Mill chen (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:2447672866

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 2 of 40

2 Version

Version No.	Date	Description
00	Jan. 26, 2018	Original

Report No. : EED32J00230702 **3 Test Summary**

Conducted Emissions

RF Conducted Spurious

Emissions

Duty cycle

Radiated Spurious

Emissions

Restricted bands around

fundamental frequency

(Radiated Emission)

Page 3 of 40

KDB 558074 D01v04

ANSI C63.10-2013/

KDB 558074 D01v04

ANSI C63.10-2013

ANSI C63.10-2013

ANSI C63.10-2013

PASS

PASS

PASS

PASS

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS PASS PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013		
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04		
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04		
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Band-edge for RF	47 CFR Part 15Subpart C Section	ANSI C63.10-2013/	PASS	

15.247(d)

47 CFR Part 15Subpart C Section

15.247(d)
47 CFR Part 15 Subpart C Section

15.35(c)

47 CFR Part 15Subpart C Section

15.205/15.209

47 CFR Part 15Subpart C Section

15.205/15.209

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

Model No.:AP02, AP02A, AP02B, RP02, TP02, TP02A, TP02B, SP02, SP02A, SP02B

Only the model AP02 was tested, since their electrical circuit design, layout, components and internal wiring are identical. Only the model name and color are different.

4 Content

4.00	.GE						
3 TEST SUM	MARY	•••••	•••••		••••••		
4 CONTENT.		••••••	••••••	•••••	•••••	•••••	4
5 TEST REQ	UIREMENT	•••••		•••••		•••••	
5.1.1 Fo 5.1.2 Fo 5.1.3 Fo 5.2 TEST E	ETUP or Conducted test or Radiated Emisor or Conducted Emi on NVIRONMENT	setupsions test setu issions test se	ptup				(
6 GENERAL	INFORMATION.		•••••				
6.2 GENER 6.3 PRODU 6.4 DESCR 6.5 TEST F 6.6 DEVIAT 6.7 ABNOR 6.8 OTHER	INFORMATION AL DESCRIPTION OF SPECIFICATION OF SUPPOR ACILITY ION FROM STANDAMALITIES FROM STANDAMALITIES FROM REREMENT UNCERTAME	OF EUT I SUBJECTIVE TO RT UNITS ARDS FANDARD COND QUESTED BY TH	O THIS STANDA	RD.			
	IT LIST			and the first			
	THE LIST CHNICAL REQU						
Append Append Append Append Append Append Append Append Append	ix A): 6dB Occup ix B): Conducted ix C): Band-edge ix D): RF Conductix ix E): Power Spe ix F): Duty Cycle ix G): Antenna R ix H): AC Power ix I): Restricted b ix J): Radiated S	ied Bandwidth Peak Output for RF Conducted Spurious I ctral Density equirement Line Conducte ands around fi purious Emissi	Power cted Emissions Emissions ed Emission undamental fraions	equency (Rad	diated)		
	PHS OF TEST S PHS OF EUT CO						38
PHOTOGRA	PHS OF EUT CC	NSTRUCTIO	NAL DETAILS)	•••••	••••••	40

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Page 5 of 40

Figure 3. Above 1GHz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

Page 6 of 40

5.2 Test Environment

Operating Environment:			/3
Temperature:	23°C	(8.75)	(85)
Humidity:	55% RH		6
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

of onarino.					
Test Mode	Tv	RF Channel			
rest wode	Tx	Low(L)	Middle(M)	High(H)	
OFOK	0400MH - 0400 MH -	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT at Transmit mod	e.			

6 General Information

6.1 Client Information

Applicant:	XIAMEN RONGTA TECHNOLOGY CO., LTD.
Address of Applicant:	3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China
Manufacturer:	XIAMEN RONGTA TECHNOLOGY CO., LTD.
Address of Manufacturer:	3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China
Factory:	XIAMEN RONGTA TECHNOLOGY CO., LTD.
Address of Factory:	4,5F, G Plant, Gaoqi Industrial Zones, Huli District, Xiamen City, China

Page 7 of 40

6.2 General Description of EUT

Product Name:	E-POS			
Mode No.(EUT):	AP02, AP02A, AP02B, RP02, TP02, TP02A, TP02B, SP02, SP02A, SP02B			
Test Mode:	AP02			
Trade Mark:	RONGTA			
BT4.0, BT3.0 2402-2480MHz, EUT Supports Radios application BT4.0, BT3.0 2402-2480MHz, WiFi b/g/n(HT20) 2.4G wifi 2412-2462MHz, GPRS 850/1900 , UMTS (3G) WCDMA Band II/WCDMA Band V				
Hardware version:	C(Manufacturer declare)			
Software version :	1.0.0(Manufacturer declare)			
	DC 5V by Adapter Adapter: Input AC 100-240V,50/60Hz,0.5A. Output DC5V 1A			
Power Supply:	DC 3.7V by Battery Battery: 3.7V, 6000mAh, 22.2Wh			
Sample Received Date:	Oct. 19, 2017			
Sample tested Date:	Oct. 19, 2017 to Jan. 26, 2018			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz				
Bluetooth Version:	4.0				
Modulation Type:	GFSK		/°S		15
Number of Channel:	40		(63)		(62)
Sample Type:	Portable				
Test Power Grade:	N/A				
Test software of EUT	Engineering mode				
Antenna Type:	Integral			(25)	
Antenna Gain:	1.95dBi	(0)			
Test Voltage:	AC 120V, 60Hz				
Tost voltage.	DC 3.7V				

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
(14)	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Facility

Test location

The test site a is located on *Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China.* Test site at Centre Testing International Group Co., Ltd has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC-Designation No.: CN1164

Centre Testing International Group Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The American association for Centre Testing International Group Co., Ltd. EMC laboratory accreditation Designation No.:CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.31dB (30MHz-1GHz)
2	Radiated Spurious emission test	0.57dB (1GHz-18GHz)
2	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction amigaian	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32J00230702 **7 Equipment List**

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2017	01-11-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2018	01-10-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2017	01-11-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(C.)	01-11-2018	01-10-2019
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2018
PC-1	Lenovo	R4960d		04-01-2016	03-31-2018
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-13-2018
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-13-2018
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2018

Conducted disturbance Test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018		
LISN	R&S	ENV216	100098	06-13-2017	06-12-2018		
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017	06-12-2018		
Voltage Probe	R&S	ESH2-Z3	(202)	06-13-2017	06-12-2018		
Current Probe	R&S	EZ17	100106	06-13-2017	06-12-2018		
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018		

Page 10 of 40

Fauinment Manufacturer Mode No Street		3M	Semi/full-anech	oic Chamber		
Accessory Equipment IDK	Equipment	Manufacturer	Mode No.			Cal. Due date (mm-dd-yyyy)
Antenna ETS-LINDGREN 3117 00057410 06-30-2015 06-28-2018		TDK	SAC-3		06-05-2016	06-05-2019
Loop Antenna ETS 6502 00071730 06-22-2017 06-21-2019		SCHWARZBECK	VULB9163	9163-484	05-23-2017	05-22-2018
Receiver R&S FSP40 100416 06-13-2017 06-12-2018	Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Receiver R&S ESCI 100435 06-14-2017 06-13-2018	Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Multi device Controller maturo NCD/070/10711 112 01-12-2017 01-11-2018 Multi device Controller maturo NCD/070/10711 112 01-11-2018 01-10-2019 LISN schwarzbeck NNBM8125 81251547 06-13-2017 06-12-2018 LISN schwarzbeck NNBM8125 81251548 06-13-2017 06-12-2018 Signal Generator Agilent E4438C MY45095744 03-14-2017 03-13-2018 Signal Generator Keysight E8267D MY53401106 03-14-2017 03-13-2018 Temperature/ Humidity Indicator TAYLOR 1451 1905 05-08-2017 05-07-2018 Cable line Fulai(7M) SF106 5219/6A 01-12-2017 01-11-2018 Cable line Fulai(6M) SF106 5216/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5217/6A 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-038-002 01-12-2017 01-11-2018 <td>Spectrum Analyzer</td> <td>R&S</td> <td>FSP40</td> <td>100416</td> <td>06-13-2017</td> <td>06-12-2018</td>	Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018
Multi device Controller maturo 112 01-12-2017 01-11-2018 Multi device Controller maturo NCD/070/10711 1/12 01-11-2018 01-10-2019 LISN schwarzbeck NNBM8125 81251547 06-13-2017 06-12-2018 LISN schwarzbeck NNBM8125 81251548 06-13-2017 06-12-2018 Signal Generator Agilent E4438C MY45095744 03-14-2017 03-13-2018 Signal Generator Keysight E8267D MY53401106 03-14-2017 03-13-2018 Temperature/ Humidity Indicator TAYLOR 1451 1905 05-08-2017 05-07-2018 Cable line Fulai(7M) SF106 5219/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5216/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5217/6A 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-12-2017 01-11-2018	Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018
LISN schwarzbeck NNBM8125 81251547 06-13-2017 06-12-2018	Multi device Controller	maturo		(£)	01-12-2017	01-11-2018
LISN schwarzbeck NNBM8125 81251548 06-13-2017 06-12-2018	Multi device Controller	maturo			01-11-2018	01-10-2019
Signal Generator Agilent E4438C MY45095744 03-14-2017 03-13-2018 Signal Generator Keysight E8257D MY53401106 03-14-2017 03-13-2018 Temperature/ Humidity Indicator TAYLOR 1451 1905 05-08-2017 05-07-2018 Cable line Fulai(7M) SF106 5219/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5220/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5216/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5217/6A 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-12-2017 01-11-2018 High-pass filter MICRO- TRONICS SPA-F-63029-4 01-12-2017 01-11-2018 High-pass filter MICRO- TRONICS SPA-F-63029-4 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-11-2018 01	LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018
Signal Generator Keysight E8257D MY53401106 03-14-2017 03-13-2018 Temperature/ Humidity Indicator TAYLOR 1451 1905 05-08-2017 05-07-2018 Cable line Fulai(7M) SF106 5219/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5220/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5216/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5217/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5217/6A 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-12-2017 01-11-2018 High-pass filter MICRO- TRONICS SPA-F-63029-4 01-11-2018 01-10-2019 High-pass filter MICRO- TRONICS SPA-F-63029-4 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-11-2018 01-10-	LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018
Temperature/ Humidity Indicator	Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018
Cable line	Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Cable line Fulai(6M) SF106 5220/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5216/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5217/6A 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-11-2018 01-10-2019 High-pass filter MICRO-TRONICS SPA-F-63029-4 01-11-2017 01-11-2018 High-pass filter MICRO-TRONICS SPA-F-63029-4 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA09C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0396-00		TAYLOR	1451	1905	05-08-2017	05-07-2018
Cable line Fulai(3M) SF106 5216/6A 01-12-2017 01-11-2018 Cable line Fulai(3M) SF106 5217/6A 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-11-2018 01-10-2019 High-pass filter MICRO-TRONICS SPA-F-63029-4 01-11-2017 01-11-2018 High-pass filter MICRO-TRONICS SPA-F-63029-4 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-11-2018 01-10-2019 band rejection filter Sinoscite <	Cable line	Fulai(7M)	SF106	5219/6A	01-12-2017	01-11-2018
Cable line Fulai(3M) SF106 5217/6A 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-11-2018 01-10-2019 High-pass filter MICRO-TRONICS SPA-F-63029-4 01-12-2017 01-11-2018 High-pass filter MICRO-TRONICS SPA-F-63029-4 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA09C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-11-2018 01-10-2019 band rejection filter <	Cable line	Fulai(6M)	SF106	5220/6A	01-12-2017	01-11-2018
High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-12-2017 01-11-2018 High-pass filter Sinoscite FL3CX03WG18 NM12-0398-002 01-11-2018 01-10-2019 High-pass filter MICRO-TRONICS SPA-F-63029-4 01-12-2017 01-11-2018 High-pass filter MICRO-TRONICS SPA-F-63029-4 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-12-2017 01-11-2018 band reje	Cable line	Fulai(3M)	SF106	5216/6A	01-12-2017	01-11-2018
High-pass filter	Cable line	Fulai(3M)	SF106	5217/6A	01-12-2017	01-11-2018
High-pass filter	High-pass filter	Sinoscite			01-12-2017	01-11-2018
High-pass filter TRONICS SPA-F-03029-4 01-12-2017 01-11-2018 High-pass filter MICRO-TRONICS SPA-F-63029-4 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-12-2017 01-11-2018	High-pass filter	Sinoscite			01-11-2018	01-10-2019
Inign-pass litter TRONICS SPA-F-03029-4	High-pass filter		SPA-F-63029-4		01-12-2017	01-11-2018
band rejection filter Sinoscite L12-0395-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX01CA09C L12-0395-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-11-2018 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-11-2018 01-11-2018 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-12-2017 01-11-2018	High-pass filter		SPA-F-63029-4		01-11-2018	01-10-2019
band rejection filter Sinoscite L12-0395-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-11-2018 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-12-2017 01-11-2018	band rejection filter	Sinoscite		<u> </u>	01-12-2017	01-11-2018
band rejection litter Sinoscite L12-0393-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX01CA08C L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-11-2018 01-10-2019	band rejection filter	Sinoscite			01-11-2018	01-10-2019
band rejection filter Sinoscite L12-0393-001 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-11-2018 01-10-2019	band rejection filter	Sinoscite			01-12-2017	01-11-2018
band rejection filter Sinoscite L12-0396-002 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA04C L12-0396-002 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-12-2017 01-11-2018	band rejection filter	Sinoscite			01-11-2018	01-10-2019
band rejection filter Sinoscite L12-0396-002 01-11-2018 01-10-2019 band rejection filter Sinoscite FL5CX02CA03C L12-0394-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA03C 01-11-2018 01-10-2019	band rejection filter	Sinoscite		CO	01-12-2017	01-11-2018
band rejection filter Sinoscite L12-0394-001 01-12-2017 01-11-2018 band rejection filter Sinoscite FL5CX02CA03C 01.11.2018 01.10.2019	band rejection filter	Sinoscite			01-11-2018	01-10-2019
	band rejection filter	Sinoscite			01-12-2017	01-11-2018
	band rejection filter	Sinoscite			01-11-2018	01-10-2019

Page 11 of 40

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

est Nesulis List.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10/KDB 558074	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10/KDB 558074	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.35 (c)	ANSI 63.10	Duty cycle	PASS	Appendix F)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix G)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix I)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix J)

Page 12 of 40

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6816	1.0341	PASS	Deal
BLE	MCH	0.6850	1.0335	PASS	Peak
BLE	HCH	0.6817	1.0336	PASS	detector

Page 13 of 40

Test Graphs

Page 14 of 40

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-11.718	PASS
BLE	MCH	-10.131	PASS
BLE	НСН	-10.327	PASS

Page 15 of 40

Test Graphs

Report No. : EED32J00230702 Page 16 of 40

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
BLE	LCH	-12.529	-61.330	-32.53	PASS	
BLE	HCH	-11.133	-60.577	-31.13	PASS	

Page 17 of 40

Test Graphs

Page 18 of 40

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-12.714	<limit< th=""><th>PASS</th></limit<>	PASS
BLE	MCH	-11.109	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-11.286	<limit< td=""><td>PASS</td></limit<>	PASS

Hotline: 400-6788-333 www.ctj-cert.com E-mail: info@ctj-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@ctj-cert.com

Page 19 of 40

Test Graphs

Page 20 of 40

Page 21 of 40

Appendix E): Power Spectral Density

Result Ta	ble	(E)	73	
Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-27.178	8	PASS
BLE	MCH	-25.532	8	PASS
BLE	нсн	-25.792	8	PASS

Page 23 of 40

Test Graphs

Report No. : EED32J00230702 **Appendix F): Duty Cycle**

Result Table

Test Mode	Channel	Duty Cycle[%]	Verdict
GFSK	LCH	59.92	PASS
GFSK	MCH	59.92	PASS
GFSK	HCH	59.92	PASS

Page 25 of 40

Appendix G): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.95dBi.

Page 27 of 40

Appendix H): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz		
	1)The mains terminal disturbar 2) The EUT was connected to Stabilization Network) which power cables of all other u which was bonded to the g for the unit being measure multiple power cables to a s exceeded.	AC power source through provides a 50Ω/50μl nits of the EUT were controlled reference plane d. A multiple socket out	ugh a LISN 1 (Lin H + 5Ω linear imponnected to a second the same way a satest strip was use	e Impedance cedance. The cond LISN 2 is the LISN of to connect
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference.	oor-standing arrangeme e plane,	ent, the EUT was p	placed on the
	4) The test was performed wi EUT shall be 0.4 m from th reference plane was bonde 1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	e vertical ground refere ed to the horizontal grou the boundary of the ur or LISNs mounted on etween the closest poir	ence plane. The ve und reference plan hit under test and top of the groun hts of the LISN 1 a	ertical groun ne. The LISI bonded to nd reference and the EUT
	5) In order to find the maximur of the interface cables a conducted measurement.			
_imit:				
	Frequency range (MHz)	Limit (dE		
	0.45.05	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	- (3)
	5-30	60	50	(6,7)
	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is appli	•		e range 0.1
	THO TE : THE lower limit is appli-	odbie di ine iranoidori n	equeries	
	s performed on the live and neutral age measurement were performed a			mission wer

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 28 of 40

No.	Freq.		ding_Le dBu∀)	vel	Correct Factor	M	Measurement (dBuV)				rgin dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	39.09	37.23	24.20	9.77	48.86	47.00	33.97	65.99	55.99	-18.99	-22.02	Р	
2	0.4380	35.99	33.51	25.18	9.73	45.72	43.24	34.91	57.10	47.10	-13.86	-12.19	Р	
3	0.5940	36.59	33.69	19.08	9.75	46.34	43.44	28.83	56.00	46.00	-12.56	-17.17	Р	
4	0.7740	34.89	31.27	22.04	9.74	44.63	41.01	31.78	56.00	46.00	-14.99	-14.22	Р	
5	0.9220	34.90	32.25	21.11	9.74	44.64	41.99	30.85	56.00	46.00	-14.01	-15.15	Р	
6	1.4020	33.55	30.77	17.00	9.72	43.27	40.49	26.72	56.00	46.00	-15.51	-19.28	Р	

Page 29 of 40

No.	Freq.		ding_Le dBuV)	evel	Correct Factor	N	Measurement (dBuV)		Limit (dBuV)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	37.94	35.15	23.84	9.77	47.71	44.92	33.61	65.99	55.99	-21.07	-22.38	Р	
2	0.2420	34.89	32.65	24.54	9.74	44.63	42.39	34.28	62.02	52.02	-19.63	-17.74	Р	
3	0.4340	36.66	34.65	26.53	9.74	46.40	44.39	36.27	57.18	47.18	-12.79	-10.91	Р	
4	0.4900	34.96	32.44	23.41	9.71	44.67	42.15	33.12	56.17	46.17	-14.02	-13.05	Р	
5	0.7260	32.85	30.22	20.43	9.75	42.60	39.97	30.18	56.00	46.00	-16.03	-15.82	Р	
6	1.8700	30.64	28.07	14.79	9.72	40.36	37.79	24.51	56.00	46.00	-18.21	-21.49	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Report No. : EED32J00230702 Page 30 of 40

Appendix I): Restricted bands around fundamental frequency (Radiated)

1 - 45, 74 1	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab a a 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the and d. For each suspected er the antenna was tuned was turned from 0 deg e. The test-receiver system Bandwidth with Maxim f. Place a marker at the frequency to show con bands. Save the spect	on the top of a rot choic camber. The of the highest raceters away from the poof a variable-he varied from one removalue of the fiestenna are set to mission, the EUT of to heights from the tenna are set to Pearl of the restrict of the res	e table wadiation. he interfereight antereight antereid strength make the mas arrand meter to ees to find ak Detect ted band ceasure any	ence-receinna tower. Four meters The Both hore The Both ho	ving antenna, above the grozizontal and veent. worst case and and the rotatal num reading. nd Specified the transmit is in the restrict	which und erticated the ble
imit	for lowest and highest Above 1GHz test proceding. G. Different between about to fully Anechoic Channel 18GHz the distance is horizontal in the left. The radiation measure Transmitting mode, and joint Repeat above procedure.	ure as below: ve is the test site, nber change form 1 meter and table owest channel, the ments are perfor d found the X axi ures until all frequence	table 0.8 is 1.5 me he Highest med in X, is positioning median me	meter to 1 ter). t channel Y, Z axis p ing which i	oositioning for t is worse case complete.	ve
Limit:	Above 1GHz test proceding. g. Different between about to fully Anechoic Channa 18GHz the distance is h. Test the EUT in the lot. The radiation measure Transmitting mode, and j. Repeat above procedure. Frequency	ure as below: ve is the test site, nber change form 1 meter and table owest channel , the ements are perfor id found the X axi ures until all frequ Limit (dBµV/r	table 0.8 is 1.5 med he Highest med in X, is positional tencies med m @3m)	meter to 1 ter). t channel Y, Z axis p ing which i easured wa	ositioning for t is worse case complete.	ve
imit:	g. Different between aborto fully Anechoic Chan 18GHz the distance is h Test the EUT in the loi. The radiation measure Transmitting mode, an j. Repeat above procedu	ure as below: ve is the test site, nber change form 1 meter and table owest channel , the ments are perfor id found the X axi ures until all frequ Limit (dBµV/r	table 0.8 is 1.5 med in Highest med in X, is positioning medical medic	meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	oositioning for t is worse case complete. mark eak Value	ve
imit:	Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal than 18 the EUT in the left. The radiation measure Transmitting mode, and journal temperature in the second s	ure as below: ve is the test site, nber change form 1 meter and table owest channel , the ments are perfort d found the X axi ures until all freque Limit (dBµV/r 40.0 43.5	table 0.8 is 1.5 method in X, is positioning median M, is positioning median (2) m	meter to 1 ter). t channel Y, Z axis p ng which i easured wa Rei Quasi-pe	oositioning for t is worse case complete. mark eak Value	ve
imit:	g. Different between aborto fully Anechoic Chan 18GHz the distance is h. Test the EUT in the loi. The radiation measure Transmitting mode, an j. Repeat above procedure. Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	ure as below: ve is the test site, nber change form 1 meter and table owest channel , the ments are perfor id found the X axi ures until all frequire Limit (dBµV/r 40.0 43.5 46.0	table 0.8 is 1.5 med he Highest med in X, is positionidencies med m @3m)	meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe	oositioning for t is worse case complete. mark eak Value eak Value	ve
Limit:	Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal than 18 the EUT in the left. The radiation measure Transmitting mode, and journal temperature in the second s	ure as below: ve is the test site, nber change form 1 meter and table owest channel , the ments are perfort d found the X axi ures until all freque Limit (dBµV/r 40.0 43.5	table 0.8 is 1.5 med in X, is positioning med in X, is positioning med in X is positioning medias me	meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Quasi-pe	oositioning for t is worse case complete. mark eak Value	ve

Page 31 of 40

Test plot as follows:

Worse case mode: GFSK

Frequency: 2402MHz Test channel: Lowest Polarization: Horizontal Remark: PK

Page 32 of 40

Worse case mode:	GFSK				
Frequency: 2480MHz		Test channel: Highest	Polarization: Horizontal	Remark: PK	

Worse case mode:	GFSK			
Frequency: 2480MHz		Test channel: Highest	Polarization: Vertical	Remark: PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix J): Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
Above 4CU-	Peak	1MHz	3MHz	Peak	
Above 1GHZ	Peak	1MHz	10Hz	Average	
	0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.009MHz-0.090MHz Peak 0.009MHz-0.090MHz Average 0.090MHz-0.110MHz Quasi-peak 0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peak 30MHz-1GHz Quasi-peak Peak Above 1GHz	0.009MHz-0.090MHz Peak 10kHz 0.009MHz-0.090MHz Average 10kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 0.110MHz-0.490MHz Peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz -30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz	0.009MHz-0.090MHz Peak 10kHz 30kHz 0.009MHz-0.090MHz Average 10kHz 30kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 30kHz 0.110MHz-0.490MHz Peak 10kHz 30kHz 0.110MHz-0.490MHz Average 10kHz 30kHz 0.490MHz -30MHz Quasi-peak 10kHz 30kHz 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz	0.009MHz-0.090MHzPeak10kHz30kHzPeak0.009MHz-0.090MHzAverage10kHz30kHzAverage0.090MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzAverage0.490MHz -30MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeak

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

111	111

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	<u></u>	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	70-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 34 of 40

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

Horizontal

			Ant Cable Read Freq Factor Loss Level Level				Pol/Phase	Remark	
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	37.155	13.31	0.06	7.15	20.52	40.00	-19.48	Horizontal	QP
2	59.649	13.15	0.21	6.37	19.73	40.00	-20.27	Horizontal	QP
3	102.719	12.26	0.59	5.30	18.15	43.50	-25.35	Horizontal	QP
4	245.951	12.52	1.32	9.61	23.45	46.00	-22.55	Horizontal	QP
5 рр	334.859	14.11	1.25	18.26	33.62	46.00	-12.38	Horizontal	QP
6	562.662	18.04	1.62	8.59	28.25	46.00	-17.75	Horizontal	QP

Vertical

Page 35 of 40

	Freq					Limit Line		Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	53.882	13.98	0.15	6.99	21.12	40.00	-18.88	Vertical	QP
2	98.833	12.32	0.57	5.43	18.32	43.50	-25.18	Vertical	QP
3	127.665	10.27	0.60	7.25	18.12	43.50	-25.38	Vertical	QP
4	230.907	12.21	1.25	6.61	20.07	46.00	-25.93	Vertical	QP
5	435.590	15.92	1.43	5.96	23.31	46.00	-22.69	Vertical	QP
6 рр	755.387	19.53	2.50	7.09	29.12	46.00	-16.88	Vertical	QP

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test char	nnel:	Lowest				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1238.405	30.32	1.92	44.33	46.29	34.20	74.00	-39.80	Pass	Horizontal	
1581.218	31.02	2.39	43.91	46.28	35.78	74.00	-38.22	Pass	Horizontal	
3776.385	32.96	4.02	44.62	47.12	39.48	74.00	-34.52	Pass	Horizontal	
4804.000	34.69	5.98	44.60	42.73	38.80	74.00	-35.20	Pass	Horizontal	
7206.000	36.42	6.97	44.77	42.92	41.54	74.00	-32.46	Pass	Horizontal	
9608.000	37.88	6.98	45.58	43.13	42.41	74.00	-31.59	Pass	Horizontal	
1207.279	30.24	1.87	44.37	46.93	34.67	74.00	-39.33	Pass	Vertical	
3316.617	33.32	3.65	44.67	47.77	40.07	74.00	-33.93	Pass	Vertical	
4804.000	34.69	5.98	44.60	43.37	39.44	74.00	-34.56	Pass	Vertical	
5865.832	35.80	7.31	44.51	46.23	44.83	74.00	-29.17	Pass	Vertical	
7206.000	36.42	6.97	44.77	43.87	42.49	74.00	-31.51	Pass	Vertical	
9608.000	37.88	6.98	45.58	43.78	43.06	74.00	-30.94	Pass	Vertical	

Worse case	mode:	GFSK		Test chai	Test channel: Midd		Middle		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1374.639	30.62	2.12	44.15	46.77	35.36	74.00	-38.64	Pass	Horizontal
1943.292	31.62	2.78	43.55	46.39	37.24	74.00	-36.76	Pass	Horizontal
3757.208	32.97	4.01	44.62	47.06	39.42	74.00	-34.58	Pass	Horizontal
4880.000	34.85	6.13	44.60	44.13	40.51	74.00	-33.49	Pass	Horizontal
7320.000	36.43	6.85	44.87	43.11	41.52	74.00	-32.48	Pass	Horizontal
9760.000	38.05	7.12	45.55	41.88	41.50	74.00	-32.50	Pass	Horizontal
1135.731	30.07	1.75	44.48	46.60	33.94	74.00	-40.06	Pass	Vertical
1502.732	30.88	2.29	43.99	46.50	35.68	74.00	-38.32	Pass	Vertical
4159.927	33.20	4.57	44.60	45.85	39.02	74.00	-34.98	Pass	Vertical
4880.000	34.85	6.13	44.60	43.44	39.82	74.00	-34.18	Pass	Vertical
7320.000	36.43	6.85	44.87	43.13	41.54	74.00	-32.46	Pass	Vertical
9760.000	38.05	7.12	45.55	42.15	41.77	74.00	-32.23	Pass	Vertical

			_	140
F	Page	37	∩f	40

Worse case	mode:	GFSK		Test ch	nannel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1263.883	30.38	1.96	44.29	47.44	35.49	74.00	-38.51	Pass	Horizontal
1805.005	31.40	2.64	43.68	46.77	37.13	74.00	-36.87	Pass	Horizontal
3728.625	33.00	3.99	44.62	46.61	38.98	74.00	-35.02	Pass	Horizontal
4960.000	35.02	6.29	44.60	42.61	39.32	74.00	-34.68	Pass	Horizontal
7440.000	36.45	6.73	44.97	43.77	41.98	74.00	-32.02	Pass	Horizontal
9920.000	38.22	7.26	45.52	42.18	42.14	74.00	-31.86	Pass	Horizontal
1185.958	30.19	1.84	44.40	45.35	32.98	74.00	-41.02	Pass	Vertical
1642.761	31.13	2.46	43.84	46.61	36.36	74.00	-37.64	Pass	Vertical
3516.592	33.16	3.82	44.64	46.07	38.41	74.00	-35.59	Pass	Vertical
4960.000	35.02	6.29	44.60	43.29	40.00	74.00	-34.00	Pass	Vertical
7440.000	36.45	6.73	44.97	43.36	41.57	74.00	-32.43	Pass	Vertical
9920.000	38.22	7.26	45.52	41.97	41.93	74.00	-32.07	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 38 of 40

PHOTOGRAPHS OF TEST SETUP

Test mode No.: AP02

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1G)

Page 39 of 40

Radiated spurious emission Test Setup-3(Above 1G)

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32J00230701 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

