Databázové systémy

Normalizácia

Vraciame sa k dátovému modelovaniu

- vieme, že existuje viacero riešení
- niektoré sú oveľa lepšie ako iné
- už poznáme databázy, takže to budeme vedieť zhodnotiť

existuje k tomu pekná teória :)

Príklad

- Obedy v reštauráciách
 - meno a rodné číslo študenta
 - kde býval
 - reštaurácie v ktorých obedoval
 - lokalita reštaurácie
 - záľuby študenta
 - Obedy
 (r.č, štud_meno, bydlisko, reš_meno, reš_lokalita,
 záľuba)

- Obedy
 (r.č, štud_meno, bydlisko, reš_meno, reš_lokalita, záľuba)
- Ferko s rodným číslom 123, ktorý býval v Ružomberku a Bratislave, jedol v hornej, dolnej a na prifuku, rád fotí a chodí na túry
- 123, Ferko, Ružomberok, horna, intraky, fotí
- 123, Ferko, Ružomberok, dolna, intraky, fotí
- 123, Ferko, Ružomberok, dolná, intraky, túry
- ..., ..., Bratislava, ...
- ...

- Redundancia
 - koľkokrát zachytíme rovnakú informáciu
 - že Ferko má r.č. 123
 - že rád fotí
 - že býval v Ružomberku
 - že horná je na intrákoch

- Redundancia
 - koľkokrát zachytíme rovnakú informáciu
- Anomália aktualizácie
 - aktualizujem iba polovicu záznamov
 - aktualizujem ich rôzne
 - chodí na túry → chodí do baru

- Redundancia
 - koľkokrát zachytíme rovnakú informáciu
- Anomália aktualizácie
 - aktualizujem iba polovicu záznamov
 - aktualizujem ich rôzne
- Anomália pri vymazaní
 - neúmyselné vymazanie záznamu
 - ak nechcem záznamy o obedoch tých, ktorí radi chodia do baru, tak si vymažem komplet záznam o študentoch, ktorí majú chodenie do baru ako jediné hobby

- Redundancia
 - koľkokrát zachytíme rovnakú informáciu
- Anomália aktualizácie
 - aktualizujem iba polovicu záznamov
 - aktualizujem ich rôzne
- Anomália pri vymazaní
 - neúmyselné vymazanie záznamu
- Anomália pri vložení
 - ak chcem vložiť záznam o študentovi, musím vložiť aj atribúty o obede, ktoré nechcem/nepoznám

- Študenti(štud_meno, r.č.)
- Obedy(r.č., reš_meno)
- Záľuby(r.č., záľuba_meno)
- Lokality(reš_meno, mesto_meno)
- Pobyty(r.č., mesto_meno)

- Študenti(štud_meno, r.č.)
- Obedy(r.č., reš_meno) → meno nie je UNIQUE
- Záľuby(r.č., záľuba_meno)
- Lokality(reš_meno, mesto_meno)
- Pobyty(r.č., mesto_meno)

- Študenti(štud_meno, r.č.)
- Obedy(r.č., reš_meno) → meno nie je UNIQUE
- Záľuby(r.č., záľuba_meno)
- Lokality(reš_meno, mesto_meno)
- Pobyty(r.č., mesto_meno)

- Študenti(štud_meno, r.č.)
- Obedy(r.č., reš_meno) → meno not UNIQUE
- Záľuby(r.č., záľuba_meno)
- Lokality(reš_meno, mesto_meno)
- Pobyty(r.č., mesto_meno)

Návrh pomocou dekompozície

- Začni jednou mega reláciou, ktorá obsahuje všetko, čo potrebujeme
- rozbi ju do menších relácií, ktoré nesú rovnakú informáciu

- dá sa to robiť automaticky
 - dekompozícia na základe vlastností dát
 - výsledok je v normálnej forme

Návrh pomocou dekompozície

- Začni jednou mega reláciou, ktorá obsahuje všetko, čo potrebujeme
- rozbi ju do menších relácií, ktoré nesú rovnakú informáciu

- dá sa to robiť automaticky
 - dekompozícia na základe(vlastností dát)
 - výsledok je v normálnej forme

Vlastnosti a normálne formy

- Funkčné závislosti
 - 3NF, Boyce-Codd normálna forma (BCNF)
- Viachodnotové závislosti
 - Štvrtá normálna forma, 4NF

Vlastnosti a normálne formy

- Funkčné závislosti
 - 3NF a Boyce-Codd normálna forma
- Viachodnotové závislosti
 - Štvrtá normálna forma

Ostatné NF

 1. NF – dáta v reláciach (tabuľkách) s atomickými hodnotami v každej bunke

Ostatné NF

 1. NF – dáta v reláciach (tabuľkách) s atomickými hodnotami v každej bunke

 2. NF – každý údaj, ktorý nie je v kandidátoch PK je závislý na celom PK alebo na inom údaji,

ktorý nie je kandidátom PK

Ostatné NF

 1. NF – dáta v reláciach (tabuľkách) s atomickými hodnotami v každej bunke

 2. NF – každý údaj, ktorý nie je v kandidátoch PK je závislý na celom PK alebo na inom údaji, ktorý nie je kandidátom PK

 3. NF – každý údaj je závislý na PK

- Obedy(r.č., štud_meno, reš_meno)
 - máme redundanciu
 - ukladáme si r.č. štud_meno pre každú reštauráciu, kde jedol
- Funkčná závislosť r.č. → štud_meno
 - rovnaké r.č. má vždy rovnaké štud_meno
 - r.č. funkčne podmieňuje štud_meno
 - naopak to nemusí platiť

- Obedy(r.č., štud_meno, reš_meno)
 - máme redundanciu
 - ukladáme si r.č. štud_meno pre každú reštauráciu, kde jedol
- Funkčná závislosť r.č. → štud_meno
 - rovnaké r.č. má vždy rovnaké štud_meno
 - r.č. funkčne podmieňuje štud_meno
 - naopak to nemusí platiť
 - mali by byť teda uložené samostatne
- BCNF hovorí, že ak
 - $A \rightarrow B$, tak A je kľúč (teda musí byť unique)

- Obedy(r.č., štud_meno, reš_meno)
 - máme redundanciu
 - ukladáme si r.č. štud meno pre každú reštauráciu, kde jedol
- Funkčná závislosť r.č. → štud_meno
 - rovnaké r.č. má vždy rovnaké štud_meno
 - r.č. funkčne podmieňuje štud_meno
 - naopak to nemusí platiť
 - mali by byť teda uložené samostatne
- BCNF hovorí, že ak
 - A → B, tak A je kľúč, teda unique

- Obedy(r.č., štud_meno, reš_meno) Nie je BCNF
 - máme redundanciu
 - ukladáme si r.č. štud meno pre každú reštauráciu, kde jedol
- Funkčná závislosť r.č. → štud_meno
 - rovnaké r.č. má vždy rovnaké štud_meno
 - r.č. funkčne podmieňuje štud_meno
 - naopak to nemusí platiť
 - mali by byť teda uložené samostatne
- BCNF hovorí, že ak
 - A → B, tak A je kľúč, teda unique

- Obedy(r.č., štud_meno, r_meno)
- Nie je BCNF

- máme redundanciu
- ukladáme si r.č. štud_meno pre každú reštauráciu, kde jedol
- Funkčná závislosť r.č. → štud_meno
 - rovnaké r.č. má vždy rovnaké štud_meno
 - r.č. funkčne podmieňuje štud_meno
 - naopak to nemusí platiť
 - mali by byť teda uložené samostatne
- BCNF hovorí, že ak
 - $A \rightarrow B$, tak A je kľúč
- Dekompozícia:
 Študent(r.č., štud_meno), Obedy(r.č., reš_meno)

Toto nie je 3. NF (wikipedia)

<u>Tournament</u>	<u>Year</u>	Winner	Winner BDAY
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975
Indiana Invitational	1999	Chip Masterson	14 March 1977

Viachodnotové závislosti

- Obedy(r.č, reš_name, štud_mesto_meno)
- Viachodnotová závislosť
 - r.č. -->> štud_mesto_meno
 - r.č. -->> reš_name
 - r.č. má všetky kombinácie štud_mesto_meno a reš_name
 - napriek tomu, že tie atribúty sú nezávislé
 - každé reš_name a štud_mesto_meno by mali byť uložené iba raz

Viachodnotové závislosti

- Obedy(r.č, reš_name, štud_mesto_meno)
 - študent, ktorý jedol v hornej to bude mať zaznamenané pre každé mesto v ktorom býval
 - ak jedol v N jedálňach a býval v M mestách, tak máme N * M záznamov namiesto N + M
 - napriek tomu táto relácia je v BCNF
 - nemá žiadne funkčné závislosti
 - žiadne r.č. nie je asociované práve s jedným štud_mesto_meno (sťahoval sa často)

Viachodnotové závislosti

- Obedy(r.č, reš_name, štud_mesto_meno)
 - študent, ktorý jedol v hornej to bude mať zaznamenané pre každé mesto v ktorom býval
 - ak jedol v N jedálňach a býval v M mestách, tak máme N * M záznamov namiesto N + M
 - napriek tomu táto relácia je v BCNF
 - nemá žiadne funkčné závislosti
 - žiadne r.č. nie je asociované práve s jedným štud_mesto_meno (sťahoval sa často)
 - 4NF hovorí, že ak
 - A -->> B, tak A je kľúč

Nevýhody BCNF a 4NF

- Prihláška(r.č., škola, dátum, odbor)
 - môžem sa prihlásiť na každú školu raz na jeden odbor
 - školy majú neprekrývajúce sa dátumy prihlášok
 - FD: r.č., škola ==> dátum, odbor; dátum ==> škola
 - Key: r.č., škola
 - Nie je BCNF
 - A1(dátum, škola)
 - A2(r.č, dátum, odbor)
 - ale teraz potrebujem JOIN

Zhrnutie

- Existujú formalizované kritéria databázového návrhu
 - Normálne formy
- Existuje algoritmus ako sa z jednej mega relácie dostať do BCNF, resp. 4NF
- …ale lepšie je rozmýšľať, aby ste nedostali príliš dekomponovaný model