Security Lab

Assignment

Square-and-Multiply Method for Modular Exponentiation with example

Algorithm Repeated square-and-multiply algorithm for exponentiation in \mathbb{Z}_n

INPUT: $a \in \mathbb{Z}_n$, and integer $0 \le k < n$ whose binary representation is $k = \sum_{i=0}^t k_i 2^i$. OUTPUT: $a^k \mod n$.

- 1. Set $b \leftarrow 1$. If k = 0 then return(b).
- 2. Set $A \leftarrow a$.
- 3. If $k_0 = 1$ then set $b \leftarrow a$.
- 4. For i from 1 to t do the following:
 - 4.1 Set $A \leftarrow A^2 \mod n$.
 - 4.2 If $k_i = 1$ then set $b \leftarrow A \cdot b \mod n$.
- 5. Return(*b*).

Example (modular exponentiation) Table 2.4 shows the steps involved in the computation of $5^{596} \mod 1234 = 1013$.

i	0	1	2	3	4	5	6	7	8	9
k_i	0	0	1	0	1	0	1	0	0	1
A	5	25	625	681	1011	369	421	779	947	925
b	1	1	625	625	67	67	1059	1059	1059	1013