

Arithmetic & Logic Unit

- · Does the calculations
- Everything else in the computer is there to service this unit
- · Handles integers
- · May handle floating point (real) numbers
- May be separate FPU (maths coprocessor)
- · May be on chip separate FPU (486DX +)

Addition and Subtraction

- Normal binary addition
- · Monitor sign bit for overflow
- Take twos compliment of subtrahend and add to minuend
 - i.e. a b = a + (-b)
- So we only need addition and complement circuits

Hardware for Addition and Subtraction

Multiplication

- · Complex
- Work out partial product for each digit
- Take care with place value (column)
- · Add partial products

Multiplication Example

- 1011 Multiplicand (11 dec)
- x 1101 Multiplier (13 dec)
- 1011 Partial products
- · 0000 Note: if multiplier bit is 1 copy
- 1011 multiplicand (place value)
- 1011 otherwise zero
- · 10001111 Product (143 dec)
- · Note: need double length result

Flowchart for Unsigned Binary Multiplication

C 0	A 0000	Q 1101	M 1011	Initial	Values
0	1011 0101	1101 1110	1011 1011	Add }	First Cycle
0	0010	1111	1011	Shift }	Second Cycle
0	1101 0110	1111 1111	1011 1011	Add Shift	Third Cycle
1	0001 1000	1111 1111	1011 1011	Add }	Fourth Cycle

Multiplying Negative Numbers

- · This does not work!
- · Solution 1
 - Convert to positive if required
 - Multiply as above
 - If signs were different, negate answer
- Solution 2
 - Booth's algorithm

Booth's Algorithm

Example of Booth's Algorithm

				1/2
A 0000	Q 0011	Q ₋₁ 0	M 0111	Initial Values
1001 1100	0011 1001	0	0111 0111	$A \leftarrow A - M$ First Shift Cycle
1110	0100	1	0111	Shift } Second Cycle
0101 0010	0100 1010	1 0	0111 0111	$A \leftarrow A + M$ Third Shift Cycle
0001	0101	0	0111	Shift } Fourth Cycle
30				

- · Questions?
- · -5 * -5

