Kirloskar Engine TV 1 Specifications

Type: Four Stroke, Single Cylinder Vertical Water Cooled Diesel Engine

Rated power - 5.2 kW

Rated Speed - 1500rpm

Bore Dia (D) - 87.5 mm

Stroke (L) - 110 mm is swood bedeat

Compression ratio - 17.5:1

C.V. of Fuel for diesel 42,000kJ/kg

Density of Diesel - 830 kg/m³

EDDY CURRENT DYNAMOMETER

Make: Techno Mech

Model: TMEC-10

 $kW = \frac{Nm \times RPM}{9549305}$

Max: kW= 7.5

RPM: 1500-6000

Dynamometer arm length --- (Rm) 185 mm

Combustion graphs	Select columns		
pressure bar vs crank angle deg F	A,B insert scatter		
Rate of pressure rise bar/deg F	A,C insert scatter		
Net heat release J/deg -50-+50	A,J insert scatter		
cumulative heat release KU -50-+50	A,K insert scatter		
mass fraction burned % S E	A,O insert scatter		
mean gas temp deg C ₋₅₀₋₊₅₀	A,P insert scatter		
pressure bar- volume cc F	D,B insert scatter		
Log pressure bar-log volume cc F	F,E insert scatter		
sheet 1 0% load - She	et 5 100 % load		

AVL DI GAS 444 N (Five gas analyzer)

Measurement data	Resolution
Co – 0-15% Vol	0.0001% Vol
HC- 0-20000 ppm Vol	1ppm/10ppm
CO ₂ – 0-20% Vol	0.1% Vol
O ₂ – 0-25% Vol	0.01%Vol
NOx 0-6000 ppm Vol	1 ppm Vol

AVL 437C SMOKE METER

Measurement data	Resolution	
Opacity - 0-100%	0.1%	
Absorbtion(K Value)	0-99-99m ⁻¹ 0.01m ⁻¹	

Model calculations

Maximum Load calculation

Maximum load (W) =
$$\frac{BP \times 60 \times 1000}{2 \pi N R_m}$$
 = _____ kgf

BP = Rated power in kW

= Rated speed = 1500 rpm N

= Radius of the Dynamometer arm length in m R

$2 \pi N (W \times 9.81) Rm$

60 x 1000

= Speed of the engine in 'rpm' N

(W) = Applied load in 'N'

R m = Radius of the dynamometer arm length M'

2 Indicated Powers (IP) IMEP value is on performance report page no 3, 10.

60000

IMEP = indicated mean effective pressure in bar

L= Stroke length in m

D= Cylinder diameter in m

A= Cylinder area in m²

$$\pi D^2$$

$$A = ---- = m2$$

3. Total fuel consumption (TFC) =
$$q \times Density \text{ of diesel} = ----kg = kg$$

F

 $q = Volume of fuel consumed = 10 x 10^{-6} m^3$

t = Time taken for 10 g of fuel consumption in's'

4. Specific Fuel consumption (SFC) =
$$\frac{TFC}{BP}$$
 = kg/kWh

TFC = Total fuel consumption in kg/h

BP = Brake Power in kW

5. Mechanical Efficiency
$$(\eta_{\rm M}) = \frac{BP}{IP} \times 100 =$$
______%

6. Brake Thermal efficiency (
$$\eta_{BT}$$
) = $\frac{BP}{TFC \times CV} \times 100 = _____$ %

TFC = Total fuel consumption in kg/s

CV = Calorific value of fuel = 42,500 kJ/kg

BP = Brake power in kW

7. Indicated Thermal efficiency (
$$\eta_{IT}$$
) = $\frac{IP}{TFC \times CV} \times 100 =$ _____%

TFC = Total fuel consumption in kg/s CV = Calorific value of fuel = 42,500 kJ/kg IP = Brake power in kW

Temperature	Water Flow Liter per hour
Engine cooling water Inlet T1	Fuel line F1
Engine cooling water Outlet T2	Air inlet F2
Calorimeter water Inlet T3	Engine cooling water 200 lph F3
Calorimeter water Outlet T4	Calorimeter water 100 lph F4
Calorimeter Exhaust gas In T5	Pressure transmitter PT
Calorimeter Exhaust gas Out T6	Crank angle Encoder N
HBP heat brake power, HJW heat	water jacket, HGas heat exhaust gas

Tabulation of Results

Load	%		
load	€	kgf	in for 10 g of find consumption in 8 $\frac{TFC}{RP} = kg kW h$
consumption	TFC	kg/s	of fact consumption on by/a e Power or b.W
consumption	SFC	kg/kWh	iciancy $\langle \eta_{(3)} \rangle = \frac{BP}{IP} \times 100 = -\frac{66}{4}$
power	8P	kW	at fusi consumption in Lass. The return of fusi = 42,500 kd.log
power	٦	kW	et Qui v Qui = (mr) specialité tens
Efficiency	ЛМ	%	ni fuzi consumpuon in kys CV – Calomio value of fusi – 42,500 kJ ny power in b.W
thermal efficiency	ηвт	%	Temperature Water flow Liver par hour flow cooling water injet T1 Fire! line £1
thermal efficiency	ημ	%	eme cooling water Outlet 12 Arrichet F2 enimeter water Inlet T3 Engine-cooling water 200 left F3 orimeter water Outlet T4 Calonimeter viater 200 lon F4 orimeter Exhaust gas In T5 Pressure Liener PT orimeter Exhaust gas In T5 Pressure Liener PT

Result

were drawn. BP vs SFC, BP vs $\eta_{M}, \; BP$ vs $\eta_{BT}, \; BP$ vs η_{IT} The performance test on the given four stroke engine has been conducted and the following graphs