МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ЛАБОРАТОРНАЯ РАБОТА № 5

по дисциплине «Операционные системы»

Тема: Сопряжение стандартного и пользовательского обработчиков прерываний.

Студент гр. 9381	 Матвеев А. Н.
Преподаватель	Ефремов М.А.

Санкт-Петербург

Цель работы.

Исследование возможности встраивания пользовательского обработчика прерываний в стандартный обработчик от клавиатуры. Пользовательский обработчик прерываний получает управление по прерыванию (int 09h) при нажатии клавиши на клавиатуре. Он обрабатывает скан-код и осуществляет определенные действия, если скан-код совпадает с определёнными кодами, которые он должен обрабатывать. Если скан-код не совпадает с этими кодами, то управление передается стандартному прерыванию.

Задание.

- **Шаг 1.** Для выполнения лабораторной работы необходимо написать и отладить программный модуль типа .EXE, который выполняет такие же функции, как в программе ЛР 4, а именно:
- 1) Проверяет, установлено ли пользовательское прерывание с вектором 09h.
- 2) Если прерывание не установлено то, устанавливает резидентную функцию для обработки прерывания и настраивает вектор прерываний. Адрес точки входа в стандартный обработчик прерывания находится в теле пользовательского обработчика. Осуществляется выход по функции 4Ch прерывания int 21h.
- 3) Если прерывание установлено, то выводится соответствующее сообщение и осуществляется выход по функции 4Ch прерывания int 21h.

Выгрузка прерывания по соответствующему значению параметра в командной строке /un. Выгрузка прерывания состоит в восстановлении стандартного вектора прерываний и освобождении памяти, занимаемой резидентом. Затем осуществляется выход по функции 4Ch прерывания int 21h.

Для того чтобы проверить установку прерывания, можно поступить следующим образом. Прочитать адрес, записанный в векторе прерывания. Предположим, что этот адрес указывает на точку входа в установленный

резидент. На определенном, известном смещении в теле резидента располагается сигнатура, некоторый код, который идентифицирует резидент.

Сравнив известное значение сигнатуры с реальным кодом, находящимся в резиденте, можно определить, установлен ли резидент. Если значения совпадают, то резидент установлен. Длина кода сигнатуры должна быть достаточной, чтобы сделать случайное совпадение маловероятным.

Программа должна содержать код устанавливаемого прерывания в виде удаленной процедуры. Этот код будет работать после установки при возникновении прерывания. Он должен выполнять следующие функции:

- 1) Сохранить значения регистров в стеке при входе и восстановить их при выходе.
- 2) При выполнении тела процедуры анализируется скан-код.
- 3) Если этот код совпадает с одним из заданных, то требуемый код записывается в буфер клавиатуры.
- 4) Если этот код не совпадает ни с одним из заданных, то осуществляется передача управления стандартному обработчику прерывания.
- **Шаг 2.** Запустите отлаженную программу и убедитесь, что резидентный обработчик прерывания 09h установлен. Работа прерывания проверяется введением различных символов, обрабатываемых установленным обработчиком и стандартным обработчиком.
 - Шаг 3. Также необходимо проверить размещение прерывания в памяти.

Для этого запустите программу ЛР 3, которая отображает карту памяти в виде списка блоков МСВ. Полученные результаты поместите в отчет.

- **Шаг 4.** Запустите отлаженную программу еще раз и убедитесь, что программа определяет установленный обработчик прерываний. Полученные результаты поместите в отчет.
- **Шаг 5**. Запустите отлаженную программу с ключом выгрузки и убедитесь, что резидентный обработчик прерывания выгружен, то есть сообщения на экран не выводятся, а память, занятая резидентом освобождена.

Для этого также следует запустить программу ЛР 3. Полученные результаты поместите в отчет.

Шаг 6. Ответьте на контрольные вопросы

Последовательность действий программы.

Выполнение работы.

Работа прерывания проверяется введением различных символов, обрабатываемых установленным обработчиком и стандартным обработчиком. Цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 заменяются соответственно на буквы A, B, C, D, E, F, G, H, I.

Результаты работы программы представлены на рис.1 – 6

```
C:\>LR5.EXE
Interrupt handler is installed
```

Рисунок 1 – Результат первого запуска программы

Amount of available memory: 647888 b							
Extended men	mory size: 1	15360 kB					
MSB Adress	MSB Type	PSP Address	Size	SC/SD			
016F	4D	0008	16				
0171	4D	0000	64	DPMILOAD			
0176	4D	0040	256				
0187	4D	0192	144				
0191	4D	0192	848	LR5			
0107	4D	01D2	144				
01D1	5A	01D2	647888	LR3_1			

Рисунок 2 – Результат запуска лр №3 для отображения блоков МСВ

```
C:\>ABCDEFGHISS_
```

Рисунок 3 – Результат введения последовательности "123456789"

```
C:\>LR5.EXE /un
Interrupt handler was unloaded
```

Рисунок 4 – Результат повторного запуска программы с ключом выгрузки

```
:\>LR3_1.COM
Amount of available memory: 648912 b
Extended memory size: 15360 kB
MSB Adress
             MSB Type
                         PSP Address
                                         Size
                                                      SC/SD
016F
             4D
0171
             4D
                         0000
                                             64
0176
             4D
                                            256
             4D
0187
0191
             5A
                                                      LR3_1
```

Рисунок 5 – Повторный запуск лр №3 для проверки освобождения памяти

```
C:\>123456789_
```

Рисунок 6 — Результат повторного введения последовательности "123456789"

Вывод

В результате выполнения лабораторной работы были изучены возможности встраивания пользовательского обработчика прерываний в стандартный обработчик от клавиатуры и разработано пользовательское прерывание от клавиатуры, которое обрабатывает скан-коды, выполняет вывод сообщения результата нажатия и при несовпадении скан-кода передает управление стандартному обработчику.

Результаты исследования проблем:

1. Какого типа прерывания использовались в работе?

Аппаратное прерывание int 09h, генерируемое при каждом нажатии и отпускании клавиши (прерывание функций BIOS).

Прерывание int 21h – предназначено для предоставления программисту различных услуг со стороны DOS (прерывание функций DOS).

Прерывание int 16h – интерфейс прикладного уровня с клавиатурой.

Нажатия клавиш на самом деле обрабатываются асинхронно на заднем плане. когда клавиша получена от клавиатуры, она обрабатывается прерыванием INT 09H и помещается в циклическую очередь. (прерывание функций BIOS).

2. Чем отличается скан код от кода ASCII?

Скан код – код, присвоенный каждой клавише, с помощью которого драйвер клавиатуры распознает, какая клавиша была нажата.

Код ASCII – код, сопоставляемый печатным и непечатным символам.