Formale Sprachen und Komplexitätstheorie

WS 2019/20

Robert Elsässer

Von Berechenbarkeit zu Komplexität

- Berechenbarkeit in Bezug auf Entscheidbarkeit und Aufzählbarkeit betrachtet nur prinzipielle Lösbarkeit von Problemen mit Hilfe von Computern
- Prinzipiell lösbare Probleme können praktisch nicht lösbar sein, weil jeder Algorithmus zur Lösung des Problems zu viel Zeit (und/oder Platz) benötigt.
- Komplexitätstheorie versucht Probleme gemäß des Zeitund Platzbedarfs des besten Algorithmus zu ihrer Lösung zu klassifizieren.
- Konzentrieren uns auf Zeitbedarf und die Klassen P und NP

Laufzeit einer DTM

Definition

DTM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{n-1}, q_n)$ halte bei jeder Eingabe.

- Für w aus Σ^* ist $T_M(w)$ die Anzahl der Rechenschritte von M bei Eingabe w.
- Für eine natürliche Zahl n ist $T_M(n) := \max\{T_M(w) \mid w \text{ aus } \Sigma^{\leq n}\}.$
- Die Funktion T_M heißt Zeitkomplexität oder Laufzeit der DTM M.
- DTM M hat Laufzeit O(f(n)), wenn $T_M(n) = O(f(n))$.

Satz

Sei t eine monoton wachsende Funktion mit $t(n) \ge n$. Jede Mehrband-DTM mit Laufzeit t(n) kann durch eine 1-Band-DTM mit Laufzeit $O(t(n)^2)$ simuliert werden.

Rucksackproblem und Verifizierbarkeit

Gegeben:

- n Gegenstände mit
- Gewichten $G = \{g_1, g_2, \dots, g_n\}$ und
- Werten $W = \{w_1, w_2, ..., w_n\},\$
- sowie zulässiges Gesamtgewicht g.

Gesucht:

Teilmenge S aus $\{1,2,...,n\}$ mit $\Sigma_S w_i$ maximal unter der Bedingung $\Sigma_S g_i \leq g$.

Rucksackproblem und Verifizierbarkeit

Gegeben:

- n Gegenstände mit
- Gewichten $G = \{g_1, g_2, ..., g_n\}$ und
- Werten $W = \{w_1, w_2, ..., w_n\},\$
- sowie zulässiges Gesamtgewicht g.

Gesucht:

Teilmenge S aus $\{1,2,...,n\}$ mit $\Sigma_S w_i$ maximal unter der Bedingung $\Sigma_S g_i \leq g$.

$$RS_{ent} \coloneqq \begin{cases} \langle G, W, g, w \rangle \mid \text{ es existiert eine Teilmenge } S \text{ aus } \{1, 2, ..., n\} \} \\ \text{mit } \Sigma_S g_i \leq g \text{ und } \Sigma_S w_i \geq w \end{cases}$$

Rucksackproblem

Beispiel:

Gewicht: 5 Wert: 11

Gewicht: 4 Wert: 9 Gewicht: 2 Wert: 5

Gewicht: 7 Wert: 14 Gewicht: 3 Wert: 8

Gewicht: 1 Wert: 2

Kapazität: 6

Gesamtwert: 13

Rucksackproblem

Beispiel:

Gewicht: 5 Wert: 11

Gewicht: 4 Wert: 9 Gewicht: 2 Wert: 5

Gewicht: 7 Wert: 14 Gewicht: 3 Wert: 8

Gewicht: 1 Wert: 2

Kapazität: 6

Gesamtwert: 15

Rucksackproblem und Verifizierbarkeit

- Liegt RS_{ent} in P?
- Algorithmus mit Laufzeit $O(n \ W)$ aus Algodat ist kein polynomieller Algorithmus!
- Kennen weder Polynomialzeit DTM für RS_{ent} , noch können wir beweisen, dass eine solche existiert.
- RS_{ent} teilt diese Eigenschaften mit vielen anderen Problemen.

Verifizierer

Definition

Sei L eine Sprache. DTM V heißt Verifizierer für L, falls

 $L = \{w \mid \text{es gibt ein } c, \text{ so dass } V \langle w, c \rangle \text{ akzeptiert} \}$

c: Zertifikat oder Zeuge

V heißt polynomieller Verifizierer, falls eine natürliche Zahl k existiert mit

 $L = \{w \mid \text{es gibt ein } c \text{ mit } |c| \leq |w|^k, \text{sodass } V \langle w, c \rangle \text{ akzeptiert} \}$

und die Laufzeit von V bei Eingabe $\langle w, c \rangle$ polynomiell in |w| ist.

L heißt dann polynomiell verifizierbar.

Klasse NP

Definition

NP ist die Klasse der Sprachen, die polynomiell verifizierbar sind.

 RS_{ent} , TSP_{ent} sind in NP.

Satz

P ist eine Teilmenge von NP.

Millenium-Problem

Ist P = NP? (Clay Mathematics Institute)

Nichtdeterministische Turingmaschinen

- Liefern alternative Beschreibung von NP.
- Erlaubt uns, die schwierigsten Probleme in NP zu identifizieren.
 - NP-Vollständigkeit
- Geben der Turingmaschine die Möglichkeit, einen von mehreren möglichen Rechenschritten auszuwählen.
 - Nichtdeterminismus
- Realisierung: $\delta(q, a)$ ist Menge von Tripeln der Form (q', b, D)
- NTMs nicht realistisch, aber sehr nützlich für das Verständnis der Komplexität von Problemen

Definition

Eine nichtdeterministische 1-Band-Turingmascihne (NTM) ist ein 7-Tupel $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, wobei Q, Σ, Γ endliche Menge sind.

Weiter gilt:

- 1. Q ist die Zustandsmenge mit q_0 , q_{accept} , q_{reject} Elemente dieser Menge und $q_{accept} \neq q_{reject}$
- 2. Σ ist das Eingabealphabet
- 3. Γ ist das Bandalphabet
- 4. $\delta: Q \setminus \{q_{accept}, q_{reject}\} \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$ ist die Übergangsfunktion. $\mathcal{P}(M)$ bezeichnet hier die Potenzmenge von M.
- 5. Rechenschritt: einmalige Anwendung der Übergangsfunktion.

NTM = $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$. Berechnung bei Eingabe w.

- 1. Startet im Zustand q_0 , mit Bandinhalt w und Lesekopf auf dem ersten Zeichen von w.
- 2. wendet in jedem Rechenschritt Übergangsfunktion δ an,
- 3. bis Zustand q_{accept} oder q_{reject} erreicht wird,
- 4. falls einer dieser Zustände erreicht wird, sonst Endlosschleife.

NTM = $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ ist in Konfiguration $K = \alpha q \beta$, wenn gilt:

- 1. auf dem Band von N steht $\alpha\beta$, gefolgt von Blanks,
- 2. N befindet sich im Zustand q,
- 3. der Lesekopf von N steht auf dem ersten Symbol von β .

NTM – Rechenschritt

- 1. NTM *N* in Konfiguration $K = \alpha q \alpha \beta$.
- 2. $\delta(q, a) = \{(q_1, b_1, D_1), \dots, (q_l, b_l, D_l)\}.$
- 3. *N* kann jeden durch ein Tripel (q_i, b_i, D_i) aus $\delta(q, a)$ beschriebenen Rechenschritt ausführen.

Berechnungen und Konfiguration

- 1. Ist die Eingabe für N w, so heißt q_0w Startkonfiguration.
- 2. $K = \alpha q \beta$ heißt akzeptierende Konfiguration, falls $q = q_{accept}$.
- 3. $K = \alpha q \beta$ heißt ablehnende Konfiguration, falls $q = q_{reject}$.
- 4. Berechnung von N bei Eingabe w führt zu Folge $K_1, K_2, ...$ von Konfigurationen.
- 5. Es gibt mehrere Berechnungen von N bei Eingabe w, abhängig von den ausgewählten Rechenschritten.
- 6. Darstellung möglicher Berechnungen im sogenannten Berechnungsbaum.

δ	0	1	Ш
q_0	$\{(q_0, 0, R), (q_3, 0, R)\}$	$\{(q_1,1,R)\}$	$\{(q_3,\sqcup,R)\}$
q_1	$\{(q_0,0,R),(q_3,0,R)\}$	$\{(q_2,1,L)\}$	$\{(q_3,\sqcup,R)\}$

Akzeptieren und Entscheiden

Definition

Sei N eine NTM. N akzeptiert w, wenn es mindestens eine akzeptierende Berechnung von N bei Eingabe w gibt.

NTM N hält bei Eingabe w, wenn alle Berechnungspfade von N bei Eingabe w endlich sind.

Definition

Die von einer NTM N akzeptierte Sprache L(N) ist definiert als

$$L(N) \coloneqq \{w \mid N \text{ akzeptiert } w\}$$

NTM N akzeptiert die Sprache L, falls L = L(N). N entscheidet die von ihr akzeptierte Sprache L(N), wenn N immer hält.

Laufzeit einer NTM

Definition

Sei N eine NTM, die immer hält.

- Für w ist $T_N(w)$ die maximale Anzahl von Rechenschritten in einer Berechnung von N bei Eingabe w.
- Für eine natürliche Zahl n ist $T_N(n) := \max\{T_N(w) \mid w \text{ aus } \Sigma^{\leq n}\}.$
- Die Funktion T_N heißt Zeitkomplexität oder Laufzeit der NTM N.
- N haut Laufzeit O(f(n)), wenn $T_N(n) = O(f(n))$.

Akzeptieren und Entscheiden

Definition

Sei t eine monoton wachsende Funktion. Die Klasse NTIME(t(n)) ist dann definiert als

$$NTIME(t(n)) \coloneqq \begin{cases} L \mid L \text{ ist eine Sprache, die von einer NTM} \\ \text{mit Laufzeit } O(t(n)) \text{ entschieden wird.} \end{cases}$$

Satz

NP ist die Klasse der Sprachen, die von einer nichtdeterministischen Turingmaschine mit polynomieller Laufzeit entschieden werden, d.h.,

$$NP = \bigcup_{k} NTIME(n^k)$$

Simulation einer NTM durch eine DTM

Satz

Sei t eine monoton wachsende Funktion mit $t(n) \ge n$ für alle natürlichen Zahlen n. Für jede NTM mit Laufzeit t(n) gibt es eine DTM mit Laufzeit $2^{O(t(n))}$, die dieselbe Sprache entscheidet.