GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Estructura de Datos (B.D-Alimentos)

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS	
Segundo semestre		80	
	ANTECEDENTE	TIPO	
	Programación Estructurada	Teórica-Práctica	

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA:

Proporcionar a estudiante, los fundamentos teóricos y prácticos para el análisis, diseño, consulta e implementación de bases de datos relacionales.

		CARGA POR UNIDAD EN HORAS			v ·
	UNIDADES	TEORIA	PRACTICA	TOTAL	OBJETIVOS POR UNIDAD
1.	Introducción a las bases de datos	5	10	15	Conocer la importancia de las bases y modelos de datos en los sistemas de información
2.	El modelo relacional	15	0	15	Conocer el fundamento matemático del modelo relacional y la importancia del diseño relacional teniendo como base el modelo E-R.
3.	Algebra relacional	5	15	20	Aplicar el algebra relacional como lenguaje formal de consultas.
4.	El lenguaje de consulta (SQL)	10	20	30	Aplicar el lenguaje de consulta para bases de datos relacionales.

TEMAS Y SUBTEMAS	TAXONOMIA
1.Introducción a las bases de datos. 1.1.Introducción 1.2.Modelos E-R (MER) 1.3.Modelo Relacional (MR) 1.4.Conversión de MER a MR	Aplicación
2.El modelo relacional 2.1.Definición matemática 2.2.Arquitectura 2.3.Importancia del diseño 2.4.Anomalías de las B.D. relacionales	Aplicación
3.Algebra relacional 3.1.Operaciones fundamentales 3.2.Otras operaciones 3.3.Funciones de agregación	Aplicación
4.El lenguaje de consulta (SQL) 4.1.Cláusula básica: select-from-where 4.2.Cláusulas usuales 4.3.Funciones de agregación 4.4.Sub consultas 4.5.Manipulación de datos 4.6.SQL y el SGBD 4.7.Optimización de consultas por heurísticas	Aplicación

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor en las que presente los conceptos y resuelva ejercicios. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, cañón y pizarrón.

Asimismo el alumno realizara revisión bibliográfica del tema y aplicará el conocimiento para implementar una base de datos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Para aprobar el curso se realizaran tres evaluaciones parciales (50 %) y una evaluación final (50%) Para cada evaluación se realizará un examen teórico y se evaluarán tareas y proyectos. El examen tendrá un valor mínimo de 50% y las tareas y proyectos un valor máximo de 50%.

TEXTO BASICO:

Fundamentos de Base de Datos Silberschatz, McGraw Hill,

TEXTOS DE CONSULTA:

- Introducción a los sistemas de bases de datos , Date; Pearson Education, 2007, QA76.9 D3 D3
- Sistemas de bases de datos: Conceptos fundamentales, Elmasri; Addison-Wesley, 2000, QA76.9 D3 E44
- Gestión de bases de datos. SQL, MySQL y Access, Borja, Altaria
- Diseño de Bases de Datos Relacionales, Piattini, Alfa-Omega y Ra-ma

PERFIL PROFESIONAL DEL DOCENTE Maestría en Computación o Maestría a fin.

