计算物理A第一次作业

王铠泽 PB18020766

1 作业题目

• 用Schrage方法编写随机数子程序,用连续两个随机数作为点的坐标值绘出若干点的平面分布图。再用 $\langle x_k \rangle$ 测试均匀性。(取不同量级的N值,讨论偏差与N的关系)、C(l) 测试其2维独立性。(总点数 $N > 10^7$)。

2 实现方法

• Lehmer线性同余随机数产生器

$$I_{n+1} = (aI_n + b) \mod m$$
$$x_n = I_n/m$$

在本次实验中,主要采用的是16807产生器(最低标准产生器),即 $a=16807,b=0,m=2^{31}-1$

• Schrage方法

为了在计算过程中中间数据不溢出,使用Shrage方法来求取余数。

$$az \, mod \, m = \left\{ \begin{array}{ll} a(z \, mod \, q) - r[z/q] & a(z \, mod \, q) - r[z/q] \geq 0 \\ a(z \, mod \, q) - r[z/q] + m & otherwise \end{array} \right.$$

• 独立性检验

本次实验中,通过随机变量x的各阶矩和关联函数,以及检验统计量 χ^2 来验证独立性。理想情况下,

$$\langle x^n \rangle = \frac{1}{n+1}$$

$$C(l) = \frac{\langle x_n \rangle \langle x_{n+l} \rangle - \langle x_n \rangle^2}{\langle x_n^2 \rangle - \langle x_n \rangle^2} = 0$$

3 程式说明

• Schrage.c

该程式是使用基于16807产生器生成指定数目(N)随机数并计算各阶矩和关联系数的程式。包含以下函数:

int shrage (int a, int m, int In)

返回值是 $aI_n \, mod \, m$

int initial (int n)

n=0 为默认种子 $I_0=1$, n=1 为时间种子生成 I_0

int main()

main函数分为三个模块,分别是生成随机数,计算各阶矩(1-4阶)和关联函数[C(0)-C(20)]。

- time_seed.txt
 该文本文件显示的是最后一次调用时间种子时对应的原始数据。

4 计算结果

在调用时间种子情况下,得到如下结果。

4.1 散点分布情况

图 1: 不同N下的散点分布情况

当点数达到10000量级以后,可以认为是均匀铺满二维平面,说明16807产生器生成随机数比较理想。

4.2 不同抽样点数 N 下各阶矩和理想情况的比较

\overline{k}	x^k	$x^k - \frac{1}{k+1}$	$\frac{1}{\sqrt{N}}$
1	0.511107	0.011107	0.100000
2	0.352723	0.019389	0.100000
3	0.268752	0.018752	0.100000
4	0.215926	0.015926	0.100000

表 1: N=100的 $\langle x^k \rangle$ 平均值和误差

\overline{k}	x^k	$x^k - \frac{1}{k+1}$	$\frac{1}{\sqrt{N}}$
1	0.496715	-0.003285	0.010000
2	0.331324	-0.002009	0.010000
3	0.248791	-0.001209	0.010000
4	0.199217	-0.000783	0.010000

表 2: N=1000的 $\langle x^k \rangle$ 和误差

\overline{k}	x^k	$x^k - \frac{1}{k+1}$	$\frac{1}{\sqrt{N}}$
1	0.499714	-0.000286	0.010000
2	0.334310	0.000976	0.010000
3	0.251595	0.001595	0.010000
4	0.201846	0.001846	0.010000

表 3: N=10000的 $\langle x^k \rangle$ 和误差

\overline{k}	x^k	$x^k - \frac{1}{k+1}$	$\frac{1}{\sqrt{N}}$
1	0.499963	-0.000037	0.0003162
2	0.333304	-0.000029	0.0003162
3	0.249988	-0.000012	0.0003162
4	0.200005	0.000005	0.0003162

表 4: N=100000000的 $\langle x^k \rangle$ 和误差

通过上述分析可得到产生随机数的矩和理想值之误差满足 $\delta x = O(\frac{1}{\sqrt{N}})$,甚至还略小一两个数量级。

4.3 用 C(l) 测试其独立性

 $\frac{1}{\sqrt{N}} = 0.0003162$

k	C(k)	k	C(k)
0	1.000000	1	0.000280
2	0.000218	3	-0.000389
4	-0.000154	5	-0.000148
6	-0.000488	7	-0.000273
8	-0.000010	9	0.000426
10	0.000516	11	-0.000012
12	-0.000010	13	0.000028
14	-0.000522	15	0.001037
16	0.000134	17	0.000220
18	0.000200	19	0.000340
20	0.000354		

表 5: N = 10000000时关联函数C(k)的取值

N比较大 $(N\geq 10^7)$ 的情况下,关联很弱,基本上都在 $O(\frac{1}{\sqrt{N}})$ 量级。但是关联系数大小变化没有明显规律。

4.4 χ^2 检验

对于默认种子 $I_0 = 1$,生成 10^7 个随机数。将二维平面上 $[0,1] \times [0,1]$ 区域分成 $5 \times 5 = 25$ 个小正方形,进行自由度为24的 χ^2 检验。得到的 $\chi^2 = 16.732340$ 。查阅资料得知:

$$\chi_{24}(0.995) = 9.886, \chi_{24}(0.99) = 10.856, \chi_{24}(0.975) = 12.401, \chi_{24}(0.95) = 12.848, \chi_{24}(0.90) = 15.659$$

0

选用不同时间种子统计出的 χ^2 也并不相同,有时能达到13.9000这样的数值。比较可得知,虽然在其他检验中16807产生器还是算比较良好,但是在 χ^2 检验下,其只有大约90%的置信概率。

5 其他

选择好的线性同余器参数尤为重要,一组好的参数能大大提高重复周期。一般而言,不恰当的 a, b 取值会导致二维分布是在几条分立线上,而非几乎铺满整个平面。下面给出的是a=7,b=2的结果。

图 2: a = 7, b = 2, N = 10000

但是值得一提的是,这组随机数的各阶矩和关联系数都体现出较为良好的特征。

$\frac{k}{2}$	x^k	$\frac{1}{k+1} - x^k$	$\frac{1}{\sqrt{N}}$
1	0.498572	0.001428	0.010000
2	0.331881	0.001452	0.010000
3	0.248678	0.001322	0.010000
4	0.198830	0.001170	0.010000

表 6: a = 7, b = 2, N = 10000时的矩

k	C(k)	k	C(k)
0	1.000000	1	0.160635
2	0.034297	3	0.014033
4	0.001413	5	0.009139
6	0.008559	7	-0.007316
8	-0.000741	9	-0.016261
10	-0.004097	11	-0.013075
12	-0.000324	13	-0.007607
14	-0.013594	15	-0.016038
16	0.017166	17	-0.002381
18	-0.005216	19	-0.022513
20	-0.003828		

表 7: N = 10000时关联函数C(k)的取值

在l比较下时C(l)确实还可见偏大,l较大时关联变弱。

在进行 χ^2 检验时, $\chi^2 = 735.540000$,明显这不是一组独立随机数。

6 总结

- 16807产生器生成的随机数序列随即独立性比较良好,在置信概率大约90%下可以认为其是独立的。
- 各种独立性检验都不能非常完美地刻画一组随机数的性质良好与否,上面所举的就是一个很好的反例。