Computer Networks

Transmission Control Protocol

Jianping Pan Fall 2022

TCP

- Transmission control protocol [RFC793]
- Services provided by TCP
 - connection-oriented, point-to-point, bi-directional
 - reliable, in-sequence, stream-like
- Services provided by IP
 - packets: duplicated, lost, reordered, corrupted
- TCP protocol mechanisms
 - connection management
 - flow, error and congestion control

2

TCP packet header

Port number

- TCP port number (16-bit)
 - source, destination port numbers
 - addressing and multiplexing
- Port number allocation (ref: iana.org)
 - well-known port numbers (0~1023, privileged)
 - e.g., 80: http; 443: https
 - registered port numbers (/etc/services)
 - http-alt 8080/tcp
 - dynamically allocated port numbers

4

TCP connection ID

- TCP connections
 - connection: initiator, responder connect(), accept()
 - (initiator IP, initiator port, responder IP, responder port)
- One connection: one flow in each direction
 - for each flow: source, destination send(), recv()
 - (source IP, source port, destination IP, destination port)
 - 5-tuple (or 4-tuple when protocol ID is implied)
 - (src IP, src port, protocol ID, dst IP, dst port)
- Socket, connection, flow

10/5/22

listen()

Sequence number

- TCP sequence number (32-bit)
 - byte sequence for the *first* byte in payload
 - exception: SYN/FIN sequence number
 - random initial sequence number
 - exchanged during 3-way handshake
 - sequence number rollover
- Acknowledgment number (32-bit)
 - byte sequence for the *next* byte to expect

Sequence vs acknowledgment

CSc 361 10/5/22 Q: byte vs packet sequence?

Header length/Data offset

- Variable-length header due to TCP options
- TCP header length/data offset (4-bit)
 - number of 32-bit words!
 - at least 5 for fixed TCP header fields *
 - maximum: 15
 - i.e., 40 bytes in total for TCP options
- TCP design feature: bit-alignment
 - fields of x-bit length at offset n*x (n: an integer)
 - 32-bit word

10/5/22

CSc 361

Control flags

- URG: urgent pointer meaningful
- ACK: acknowledgment number meaningful
- PSH: logic message boundary
- RST: connection reset
- SYN: synchronization (conn. establishment)
- FIN: finish (graceful connection release)
 - stay tuned: "TCP connection management"

Window size

- TCP window size (16-bit)
 - stay tuned: "TCP flow control"

10

Checksum

- TCP checksum (16-bit)
 - "one's complement of one's complement sum"
 - stay tuned: "TCP error control"
 - cover
 - TCP header (including options, if any)
 - TCP payload
 - TCP pseudo header
 - source and destination IP address
 - protocol ID
 - TCP segment size

Q: why TCP pseudo header?

10/5/22

Urgent pointer

- TCP urgent pointer (16-bit)
 - offset of the LAST byte for urgent data
 - not (LAST+1) per RFC 1122: Host requirements
 - from the current sequence number!
 - for out-of-band (OOB) control information*
 - e.g., interrupt an ongoing file transfer
 - Socket interface
 - send(s, buf, len, MSG_OOB);
 - receiver should process the urgent data immediately

10/5/22

* can be overridden by MSG OOBINLINE

Q: URG vs PSH?

• TLV-like options TCP options

- option-kind: 1-byte
- option-length: 1-byte, for the entire option
- option-data:variable length
- E.g., Maximum Segment Size (MSS)
 - exchanged during connection establishment
 - default: 536 bytes
- E.g., Selective Acknowledgment (SACK)
 - stay tuned: "TCP congestion control"
- Zero-padding to keep 32-bit alignment

10/5/22

Q: big vs small segment?

TCP packet header (again)

10/5/22 CSc 361

This lecture

• TCP

RIP, Sally!

- services provided by TCP
 - protocol mechanisms to support TCP services
- TCP header fields
 - control information exchanged to support TCP
- Explore further
 - Qs on previous slides
 - the limitation of TCP and proposed changes
 - http://www.icir.org/floyd/tcp_small.html

Next lecture

- This Friday, Oct 7, 9:30am: M1
- Next week: TCP connection management
 - read KR4: Computer Networking
 - Chapter 3 (all sections required this month)

Midterm 1 (M1)

- Friday, October 7, 2022, 9:30am Victoria Time (GMT-7)
 - In ECS116 (sorry, the time/space has been determined with CAL already)
 - Let see how it goes, and whether we shall make adjustments for future ones

Coverage

- All lectures, tutorials and labs, and their corresponding text materials, slides, assignments, etc
- From the beginning of the term to Wednesday, October 5, 2022, all inclusive

Type of questions

- Concepts questions: describe and compare related concepts
- Role-playing questions: If I am the computer (network), what shall I do?
- Play-a-role questions: If I was given the (real) problem to solve, what shall I do?

Format of the exam

- Friday 9:30am to 10:20am, Victoria time, ECS116
 - If you have CAL accommodation, the time duration (50 minutes) will be prorated at CAL
- Exams are closed book/notes/Internet, and have to be done by yourself alone