北京邮电大学 2010——2011 学年第 1 学期

《通信原理》期末考试试卷(A卷)

老	→ 、	参加考试须带学生证或学院证明。	必须按指定的座位就坐。
^ 7	`	- '9 NH' 7 WUZK HI TE T. NI. 20 TEMUNI. '710	

试 | 二、书本、参考资料、书包等物品一律放到考场指定位置。

注 | 三、不得自行携带草稿纸。试卷最后一页白纸可撕下作为草稿纸。

□ 四、不得使用计算器,手机必须置于关机状态。

五、务必填写姓名、班级、学号、班内序号。

177									
考试 课程	通信原理			考试时间		2011年1月14日			
题号	1	1 1	111]		四	五	六	七	总分
满分	30	14	12	!	9	12	12	11	100
得分									
阅卷教师									

一. 选择填空(每空1分,共30分)

将答案写在本题后面的答题表中,第31、32空是示例

1. 某 16 进制调制系统的平均发送功率是 2 瓦,信息速率是 1Mbps,其符号间隔是 $T_s=(1)$ 微秒,比特间隔是 $T_b=(2)$ 微秒,平均符号能量是 $E_s=(3)$ 微焦耳,平均比特能量是 $E_b=(4)$ 微焦耳。

(1), (2), (3), (4) A. 1	B. 2	C. 4	D. 8
-------------------------	------	------	------

2. 在保持 E_b/N_0 不变的条件下,如果提高进制数M,则MQAM的错误概率(5),频带利用率(6);MFSK的错误概率(7),频带利用率(8)。

(5)、(6)、(7)、(8) A. 增大 B. 减小 C. 不变

3. 考虑用 OOK、2FSK 发送"1"、"0"等概、速率为 R_b 的信息。若接收信号的平均功率相同,则 (9)。若接收信号的峰值功率相同,则 (10)。

	A. 2FSK 的误码率大于 OOK 的误码率
(9)、(10)	B. 2FSK 的误码率小于 OOK 的误码率
	C. 2FSK 的误码率与 OOK 相同

4. 在 M 进制调制中, 星座点数加倍则每符号携带的比特数 (11), 传输速率加倍则进制数变成 (12)。

(11)	A. 不变	B. 增加一倍	C. 增加 2 比特	D. 增加 1 比特
(12)	A. $M+1$	B. 2 <i>M</i>	C. M^2	D. $M + 2$

5. 右图是某系统在接收端无噪声情况下测量出的眼图,图中 ab 是零电平,cd 是设计的最佳采样时刻。从眼图来看,这是一个_(13)传输系统,其系统总体响应_(14) 奈奎斯特准则。如果噪声样值的绝对值小于_(15),判决不会出错。

(13)	A. 单极性二进制	B. 双极性二进制	C. 三进制	D. 四进制
(14)	A. 满足	B. 不满足	C. 可能满足也	可能不满足
(15)	A. <i>X</i>	B. <i>Y</i>	C. <i>X</i> + <i>Y</i>	D. $min(X,Y)$

6. 部分响应系统有意引入了可控的码间干扰,是为了(16)

(16)	A. 便于使用超前-滞后同步器	B. 便于使用科斯塔斯环
(10)	C. 提高信号功率	D. 提高系统频谱利用率

7. 数字通信中采用时域均衡技术的目的是为了 (17) 。

(17)	A. 使相频特性近似为常数	B. 使群时延特性近似为常数
(1/)	C. 减小码间干扰	D. 减小非线性失真

8. 下图是包括平方环在内的 BPSK 解调器框图。图中"?"处应当是<u>(18)</u>。 为了克服其相位模糊问题,发端可在调制之前先对信息进行<u>(19)</u>编码,从而构成 (20) 调制。

9. GSM 手机中的调制方式是 (21) 。

(2	1)	A. GSMK	B. GMSK	C. OQPSK	D. DPSK

10. 令 S 表示 M 进制调制各个可能的发送信号 $\{s_i(t), i=1,2,...,M\}$ 所张成的信号空间, s_i 为 $s_i(t)$ 的向量表示,r 为发送某个 $s_i(t)$,叠加了白高斯噪声后的接收信号 r(t)投影到 S 后的向量表示,则 (22)。用 r 进行判决时,若判决结果始终取条件概率 $Pr(s_i|r)$ 最大者,称为 (23) 准则;若判决结果始终取条件概率密度 $f(r|s_i)$ 最大者,称为 (24) 准则。当各个 s_i (25) 时,这两种准则等价。

(22)	A. r 与 S 正交			B. r 与某一个 s_i , $i=1,,M$ 相等		
(22)	$C. r 与 s_i, i = 1,, M$ 线性无关			D. r 是判决的充分统计量		
(23)、(24)		A. 奈奎斯特	B. MAP		C. ML	D. 最大相关
(25)		A. 线性无关	B. 等能量	<u>I</u>	C. 两两正交	D. 先验等概

11. 若 4 电平序列 $\{a_n\}$ 是平稳序列,基带成形脉冲 g(t)为矩形脉冲,则对应的 4ASK 信号 $s(t) = \sum_{n=0}^{\infty} a_n g(t - nT_s) \cos(2\pi f_c t)$ 是 (26) 过程。

(26) A. 高斯	B. 平稳	C. 循环平稳	D. 限带随机
------------	-------	---------	---------

12. 设 x 是你的班内序号,令 y 为 x 模 4 的余数减 1.5,则 $y=_{(27)}$ 。将 y 送入一个最大幅度为 1.8 的 A 律十三折线编码器,则编码结果的极性码是 (28),段内码是 (30)。

(27)	A. +1.5	B1.5	C. +0.5	D0.5
(28)	A. 1	B. 0		
(29)	A. 111	B. 110	C. 101	D. 100
(30)	A. 0001	B. 0011	C. 0111	D. 1100

【注意: 本题如果(27)答错,则(28)(29)(30)不得分】

13. 令s 表示你的通原成绩。对于任意给定的门限 s_{th} ,当E 为下列事件中的<u>(31)</u>时,条件概率 $\Pr(s \ge s_{th}|E)=1$ 。同时你需要认识到,s 与<u>(32)</u>是统计独立的。

(31)、(32)	A. 平时足够努力	B. 运气足够好				
	C. 老师足够开恩	D. 考场上欧氏距离最近的那个同学足够仗义				

答题表

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	
								A	D	

二. (14 分) 下图示出了某 MQAM 系统的发送框图及发送功率谱。

- (1) 根据发送功率谱确定出该系统的滚降系数 α 、符号速率 $R_{\rm s}$ 、以波特/Hz 为单位的频谱利用率。
- (2) 若已知信息速率是 40Mbps, 试确定出调制进制数 M, 并求相应的以 bps/Hz 为单位的频谱利用率。如欲将信息速率提升至 50Mbps, 同时保持进制数和 占用带宽不变,滚降系数 α 应如何调整?
- (3) 画出对应的接收框图。

三. (12 分) 某 2PSK 系统在 $[0,T_b]$ 时间内等概发送 $s_1(t) = A\cos(2\pi f_c t)$ 或 $s_2(t) = -s_1(t)$ 。接收框图如下所示,图中 $n_w(t)$ 是双边功率谱密度为 $N_0/2$ 的零均值加性白高斯噪声,判决门限为0。假设 f_c 充分大。

- (1) 求发送 $s_1(t)$ 条件下, 判决量 z 的均值、方差及概率密度函数 $f_1(z)$ 。
- (2) 写出判决器的最佳判决规则。

(3) 求发送 $s_1(t)$ 条件下判决出现错误的概率。提示: $\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-t^2} dt$

- 四.(9分)右图是 16QAM 的星座图, $f_1(t)$ 和 $f_2(t)$ 是归一化的正交基函数。各星座点等概出现。
- (1) 求该 16QAM 星座图的平均符号能量 $E_{\rm s}$ 、最小星座点距离 $d_{\rm min}$ 及比值 $\rho=d_{\rm min}^2/E_{\rm s}$ 。
- (2) 若星座点(3,3)对应的二进制比特是 0000,(1,1) 对应的比特是 0101, 试按格雷映射规则写出 (1,3)和(3,1)对应的二进制比特。

五(12分)已知模拟信号的采样值 X 的概率密度如图 所示。将X通过2电平量化器成为Y,量化关系是

$$Y = Q(X) = \begin{cases} 0.5 & 0 \le X < 1 \\ 1.5 & 1 \le X \le 2 \end{cases}$$

 $Y = Q(X) = \begin{cases} 0.5 & 0 \le X < 1 \\ 1.5 & 1 \le X \le 2 \end{cases}$ 求 X 的功率 $S = E[X^2]$, Y 的功率 $S_q = E[Y^2]$, 并求量 化噪声功率 $N_q = \mathsf{E}\Big[\big(Y - X\big)^2\Big]$ 。

六(12 分)有 12 路模拟信号,其最高频率分量均为 f_H 。分别对这 12 路信号按 奈奎斯特速率采样,然后进行 A 律十三折线 PCM 编码,再将 12 路 PCM 输出 数据时分复用为 1 路后通过限带信道传输。假设信道传输采用 M 进制,其基带脉冲成形采用 $\alpha=2/3$ 的根升余弦滚降,接收端采样点无码间干扰。

- (1) 写出信道传输的总数据速率 R_b 与 f_H 的关系式。
- (2) 若信道的频带范围是 0~480kHz, 传输方式为 4PAM, 求最大可允许的 fu。
- (3) 若信道的频带范围是 2000kHz~2480kHz, 传输方式为 8PSK, 求最大可允许的 $f_{\rm H}$ 。

七(11分)下图中的输入是速率为 R_b 、取值于 ± 1 的独立等概二进制序列。

- (1) s_B(t)是何种调制方式?写出其带宽及载波频率。
- (2) 画出 $s_A(t)$ 、 $s_B(t)$ 、 $s_C(t)$ 的功率谱图 (标出主要频率坐标值)。
- (3) 写出 $s_D(t)$ 与 $s_B(t)$ 的关系。