# Wide Band and Wide Field Imaging - II

Urvashi Rau, NRAO



Sixteenth Synthesis Imaging Workshop 16-23 May 2018













# **Measurement Equation**

The visibility measured by each baseline ij at one frequency and time

$$V_{ij}^{obs}(v,t) = \frac{M_{ij}(v,t)}{S_{ij}(v,t)} \int \int \int \frac{M_{ij}^{s}(l,m,v,t)}{M_{ij}^{s}(l,m,v,t)} I(l,m,v,t) e^{2\pi i(ul+vm+\frac{w(n-1))}{v}} dl dm dn$$

Direction Independent Gains

Eliminated during calibration

**Primary Beams** 

 Power pattern varies with time, frequency and baseline

- PBcor (post-deconvolution)
- A-Projection
- WB-A-Projection
- Mosaics

**Full Beam** 

Sky-brightness varies with frequency (time)

All sources have spectral structure (some vary with time)

- Cube Imaging
- Multi-FrequencySynthesis (MFS)
- Multi-Term-MFS
   ( point source or multi-scale models)

**Wide-Band** 

W-Term

-Non-coplanar baselines

-Sky curvature

- Faceting
- W-Projection
- 3D FT
- W-Stacking

**Wide-Field** 



Wide Band + Full Beam/Wide-field

+ Mosaics

+ Single Dish

Example: Imaging the G55 supernova remnant

Imaging Framework



# Wide-Band Wide-Field Imaging: Primary Beams

**VLA PBs** 







Primary beam scales (or changes) with frequency

Spectral Index of PB



A very wide shelf of sensitivity outside the main lobe



For VLA L-Band (1-2 GHz)

- About -0.4 at the PB=0.8 (6 arcmin from the center)
- About -1.4 at the HPBW (15 arcmin from the center)

$$I_{wf,wb}^{obs} = \sum_{v} \left[ \left( P_{v} \cdot I_{v}^{sky} \right) * PSF_{v} \right]$$

# **Wide-Band Primary Beam Correction**



.5 GHz

### **Cube Imaging**

- -- Sky model represents  $I(\mathbf{v})P(\mathbf{v})$
- -- Divide the output image at each frequency by P(v)

### <u>Multi-Term MFS + Wideband-PBcor</u>





$$\frac{(I_{0,}^{m}I_{1,}^{m}I_{2,...}^{m})}{(P_{0,}P_{1,}P_{2,...})} = (I_{0,}^{sky}I_{1,}^{sky}I_{2}^{sky}...)$$

### Wideband A-Projection



$$A_{ ext{v}}^{-1} \!pprox\! rac{A_{ ext{v}_c}^T}{A_{ ext{v}_c}^T \!st\! A_{ ext{v}}} \quad ext{where} \quad P_{ ext{v}}.P_{ ext{v}_c} \!pprox\! P_{ ext{v}_{mid}}^2$$

-- Output spectral index image represents only the sky





### Wide Band Full Beam imaging – Different algorithms

Basic MFS imaging

(no WB,WF corrections)





MT-MFS wideband imaging

(No WF corrections, PB freq dependence part of sky model)



(PB^2 freq dependence part of sky model)





MT-MFS wideband imaging + WB-A-Proj

(PB freq dependence removed during gridding)



# Wideband VLA imaging of IC10 Dwarf Galaxy

[ Heesen et al, 2011 ]



IC10 Dwarf Galaxy:

Spectral Index across C-Band.

Dynamic-range ~ 2000

MT-MFS: Wide-band PB-correction after multi-term multi-scale MFS.

Cube: Spectral-index map made by cube imaging, smoothing to lowest resolution, and spectral fitting.



19'

18'

171

59°16'

00<sup>h</sup>20<sup>m</sup>35<sup>s</sup>

05<sup>3</sup>

J2000 Right Ascension

00°

J2000 Declination

Wide Band + Full Beam/Wide-field

+ Mosaics

+ Single Dish

Example: Imaging the G55 supernova remnant

**Imaging Framework** 



# **Wide-Band Mosaic Primary Beam**

The mosaic primary beam has an artificial spectral index all over the FOV



#### Algorithms:

- Deconvolve Pointings separately or together (Stitched vs Joint Mosaic)
  - Impacts image fidelity, especially of common sources.
- Deconvolve Channels separately or together ( Cube vs MFS )
  - Impacts imaging fidelity and sensitivity, dynamic range
- Use A-Projection or not ( Accurate vs Approximate PB correction )
  - Impacts dynamic range and spectral index accuracy



Wideband Mosaic Imaging Accuracy [Rau et al, 2016]



| Method<br>Intensity Range | $I/I_{true}$ > $20\mu Jy$ | $I/I_{true}$ $5-20\mu Jy$ | $I/I_{true}$ < $5\mu Jy$ | $\alpha - \alpha_{true}$ > $50\mu Jy$ | $\frac{\alpha - \alpha_{true}}{10 - 50\mu Jy}$ |
|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------------------|------------------------------------------------|
| Cube                      | $0.9 \pm 0.1$             | $0.9 \pm 0.3$             | $0.9 \pm 0.5$            | $-0.5 \pm 0.2$                        | $-0.6 \pm 0.5$                                 |
| Cube + AWP                | $1.0 \pm 0.05$            | $1.0 \pm 0.2$             | $1.0 \pm 0.3$            | $-0.15 \pm 0.1$                       | $-0.1 \pm 0.25$                                |
| MTMFS + WB-AWP            | $1.0 \pm 0.02$            | $1.0 \pm 0.04$            | $1.0 \pm 0.15$           | $-0.05 \pm 0.05$                      | $-0.1 \pm 0.2$                                 |



# Wideband Mosaic of CTB80 (1-2 GHz, VLA-D config)



Mosaic Primary Beam



Intensity-weighted Spectral Index



300GB calibrated dataset, 106 pointings over 1.5x2 deg, imaged with MS-MT-MFS (NT=2) + WB-A-Projection.

=> Mosaic primary beam spectral index of  $\sim$  -1.5 has been removed prior to the wideband sky model fitting.



### Wideband Mosaic + Single Dish data

Example: Combining Interferometer intensity image with Single dish data at reference frequency, using Feathering.

Int WB Mosaic Int WB Mosaic + Single Dish 36' 241 Declination 33° J2000 Declination 12000 36' 24' 121 19h59m 52<sup>m</sup> 51<sup>m</sup> 19<sup>h</sup>59<sup>m</sup> 54<sup>m</sup> 53<sup>m</sup> 52m J2000 Right Ascension J2000 Right Ascension

Joint SD+INT Spectral Index Map => Work in progress

Algorithms needed: Multiscale, Multi-term MFS, with A-Projection, W-Projection, form a Joint Mosaic, and Joint deconvolution with wideband single dish data.

NRAO.

( Must run in finite time → robust parallelization )

Wide Band + Full Beam/Wide-field

+ Mosaics

+ Single Dish

Example: Imaging the G55 supernova remnant

Imaging Framework



# For which scales can we reconstruct the spectrum?





# For which scales can we reconstruct the spectrum?





# For which scales can we reconstruct the spectrum?





# Very large spatial scales: wideband single dish data



Example: Flat spectrum emission at very large scales

Top: Only interferometer data

=> Negative bowl and artificial steep spectrum

No short spacings to constrain the spectra

=> False steep spectrum reconstruction







### Wideband Single Dish + Interferometer Combination

Several Algorithms can be applied to wideband data.

- (1) Feathering: Image SD and INT data separately (in wideband mode)
  Combine outputs using a UV-domain weighted average
  Perform feather per Taylor coefficient map.
  - => Works best when noise levels match, weighting choice is obvious, and no mid-scale artifacts in the INT-only reconstruction.
- (2) Startmodel: Use SD images as a starting model for the INT reconstruction
  - => Works if there is clear overlap in UV-range between SD and INT data.
- (3) Artificial visibilities: Simulate virtual SD visibilities, combine with INT data
  - => Flexible, a true joint reconstruction, relative weights handled externally. Koda et al, 2011
- (4) Merge residual images and PSFs between major and minor cycle:
- => Flexible, a true joint reconstruction, weight functions part of reconstruction framework, compatible with all wide-field, wide-band algorithms.

[ Rau & Naik, 2018 ( in prep ) ]



# Very large spatial scales: wideband single dish data



Example: Flat spectrum emission at very large scales

Top: Only interferometer data => Negative bowl and artificial

steep spectrum

Bottom: Joint wideband reconstruction (4)

=> Recovers more flux and gets accurate spectrum

=> Compatible with wide-field, wideband, mosaics



Wide Band + Full Beam/Wide-field

+ Mosaics

+ Single Dish

Example: Imaging the G55 supernova remnant

Imaging Framework













# Spectral Indices before and after WB-A-Projection

Without PB correction
Outer sources are artificially steep

With PB correction (via WB-AWP)
Outer sources have correct spectra



Intensity-weighted spectral index maps (color = spectral index from -5.0 to +0.2)



# Wide-field sensitivity because of wide-bandwidths

G55.7+3.4 : Field-of-view of 4x4 degrees from one EVLA pointing at 1-2 GHz







Wide Band + Full Beam/Wide-field

+ Mosaics

+ Single Dish

Example: Imaging the G55 supernova remnant

**Imaging Framework** 



# **Measurement Equation**

The visibility measured by each baseline ij at one frequency and time

$$V_{ij}^{obs}(v,t) = \frac{M_{ij}(v,t)}{S_{ij}(v,t)} \int \int \frac{M_{ij}^{s}(l,m,v,t)}{M_{ij}^{s}(l,m,v,t)} I(l,m,v,t) e^{2\pi i(ul+vm+\frac{w(n-1))}{N}} dl dm dn$$

Direction Independent Gains

Eliminated during calibration

**Primary Beams** 

 Power pattern varies with time, frequency and baseline

- PBcor (post-deconvolution)
- A-Projection
- WB-A-Projection
- Mosaics

**Full Beam** 

Sky-brightness varies with frequency (time)

 All sources have spectral structure (some vary with time)

- Cube Imaging
- Multi-FrequencySynthesis (MFS)
- Multi-Term-MFS
   ( point source or multi-scale models)

**Wide-Band** 

W-Term

-Non-coplanar baselines

-Sky curvature

- Faceting
- W-Projection
- 3D FT
- W-Stacking

**Wide-Field** 



# **Imaging Framework - Major and Minor cycles**



Image reconstruction is an iterative model-fitting / optimization problem

Measurement Eqn :  $AI^m = V^{obs}$ 

Iterative solution :  $I_{i+1}^m = I_i^m + g[A^TWA]^+ (A^TW(V^{obs} - AI_i^m))$ 



# **Imaging & Deconvolution**



Instrumental Corrections (applied per visibility during gridding )

Mapping of data to Image Shape/Type Solving for the sky model (non-linear optimization)



# **Algorithm Options**



Standard gridding, W-Proj (WB)-A-Proj, Joint Mosaics, (Parallelization) Cube, MFS, MT-MFS, Faceting, Stokes, Multi-Field, SD+INT Stitched Mosaic

Clean ( Hogbom, Clark, MultiScale, MultiTerm, etc... )



# **Computational Cost**



Runtime and computing resources depend on many factors.

=> Choose algorithms wisely....

- (a) Data Volume, (b) Gridding Algorithm, (c) Joint vs Separate reconstructions,
   (d) Deconvolution algorithm, (e) Sky brightness structure and convergence rate
   (f) Dynamic range, calibration accuracy (g) Iteration Control
  - 16<sup>th</sup> NRAO Synthesis Imaging Workshop, 16-23 May 2018

### **Summary – Lectures 1 & II**

### **Wide Band Imaging**

Sky and instrument change with frequency => Cube vs MFS, wideband/multiscale model, spectral index

#### Wide Field Imaging

non-coplanar baselines and the W-term => W-Projection, W-Stacking, Faceting, 3D FFTs

### **Full Beam Imaging**

antenna primary beamspbcor, A-Projection, beam models

Wide-Band + Primary-Beams + Mosaics + W-term + Single-Dish ( + Full-Pol + Clean/MS-Clean/etc...)

### Major/Minor Cycle Imaging Framework

=> Flexible imaging framework that logically organizes all the pieces

Need to choose algorithms carefully



[[ Algorithm/software development is ongoing to refine all these ideas!]]

**EXTRA SLIDES** 



# **Major Cycle: Data to Image, Model to Data**

Gridding = Convolutional Resampling of visibilities to a regular grid



Convolution in UV-domain (per vis) = Multiplication in Sky domain

=> Handle wide-field imaging effects

Degridding : Model → Data

Standard Imaging : Prolate Spheroidal



W-Projection: FT of a Fresnel kernel





A-Projection:

Baseline aperture illumination functions+ phase gradients for joint mosaics







Combined algorithms : Convolutions of different kernels



# Minor Cycle: Solving for a sky model

#### For Point Sources:

Hogbom Clean

Multi-Scale-Clean

- Clark Clean

#### For Point/Extended Sources:

-or PolityExterided Sources

For Wide-band Sky models

Multi-Term MFS Clean with or without Multi-Scale

(similar algo for time-variability)





Other potential options: Any non-linear image-domain solver E.x. Compressed sensing ideas: Gaussians (ASP), Wavelets (SARA/PURIFY), Bayesian forms (MEM, RESOLVE, etc), wide-band non-parametric models, etc...

# Mapping data to image coordinates/shapes

### **Spectral Cube**



#### Continuum



#### Wideband Continuum



#### **Stokes Planes**



#### Stitched Mosaic



### Joint Mosaic



#### Multi-Field





Different algorithms arise from different mappings of data to images



https://casa.nrao.edu/casadocs/casa-5.1.2/synthesis-imaging/image-definition

# **Computational Costs**

Imaging runtime and compute resources depend on data size, sky signal, and algorithms chosen



Gridding: Convolutional resampling

 $O(N_{data}) \times (nxn) = multiply/add (n=5 - 100) = Compute load : O(N_{data}) * 10^{2-5} flops$ 

Data parallelization, Multi-threading, GPUs, etc...

► ‡ Example : Major cycle : 1hr → 10 days (Diff Algorithms)

Data volume

N\_data =
 N\_ant^2 x
 N\_chan x
 N\_pol x
 N\_time

**Complex** numbers

Lustre I/O

Example: 8hr data 300 GB



Number of iterations: 5 – 10 major cycle loops 10^2 to 10^4 minor cycle steps

Runtime varies by 1-2 orders of magnitude. Depends on data.

Image sizes

 $N_{pix} = Nx \times Ny \times N_{chan} \times N_{pol}$ 

Real / Complex FFTs : O(NlogN) Pixel math: O(N^2)

Mem: ~8 copies

Multi-threading Chan parallelization

 $Nx: 1k \rightarrow 40k$ 

N\_chan : 200 - 16K

Example:

1K x 1K x 256

~1 GB per image



# Wide Band + Full Beam Imaging – Some guidelines

- MFS has better imaging fidelity, resolution and sensitivity than Cube
  - -- For 2:1 bandwidth, the dynamic range limit with standard MFS (no spectral model) is few 100 to 1000 for a spectral index of -1.0
- MT-MFS gives HDR images when the spectral model is appropriate and there is sufficient SNR.
  - -- For point sources, spectral index errors < 0.1 for SNR > 50 ( 2:1 bwr ) for SNR > 10 ( 4:1 bwr )
  - -- For extended emission, spectral index errors < 0.2 for SNR > 100
- → W-Projection is more accurate and faster than Faceting
  - -- For D-config, L-Band, uncorrected W errors are visible outside 1 deg
- → PBcor assumes invariant beams, (WB)-A-Projection handles variability
  - -- Uncorrected VLA beam squint and rotation causes DR < few x 10^4
  - -- For 2:1 bwr, the PB's artificial spectral index at the HPBW is -1.4

