

Deckblatt: Übung zur Vorlesung Informatik 2

Fakultät für Angewandte Informatik

Lehrprofessur für Informatik

Übungsblatt

PROF. DR. LORENZ, MARIUS BRENDLE, JOHANNES METZGER

Hinweis: Es sind alle Felder auszufüllen! Abgabe der Übungsblätter immer mittwochs (Ausnahme wenn Feiertag: donnerstags) bis spätestens 12:00 Uhr in die entsprechend gekennzeichneten Briefkästen der Veranstaltung im Erdgeschoss des Instituts für Informatik (Gebäude N). Zuwiderhandlung wird mit Strafe geahndet! (Punktabzug)

(hier die Nummer des bearbeiteten Übungsblatts eintragen)		
Übung 01 (1057 N) Montag 08:15 - 09:45 Uhr (Isabell Rücker)	
Übung 02 (1056 N) Montag 14:00 - 15:30 Uhr (Henning Cui)	
Übung 03 (1057 N) Montag 15:45 - 17:15 Uhr (Josef Kircher)	
Übung 04 ($1054~\mathrm{N})$ Montag 17:30 - 19:00 Uhr (Mosaab Slimani)	
Übung 05 ($1057~\mathrm{N})$ Montag 17:30 - 19:00 Uhr (David Hacker)	
Übung 06 (1055 N) Dienstag 12:15 - 13:45 Uhr (André Schweiger)	
X Übung 07 (1054 N) Dienstag 17:30 - 19:00 Uhr (Benjamin Sertolli)	
Übung 08 ($1057~\mathrm{N})$ Dienstag 17:30 - 19:00 Uhr (Dat Le Thanh)	
Übung 09 (1054 N) Mittwoch 08:15 - 09:45 Uhr (Erik Pallas)	
Übung 10 (1055 N) Mittwoch 08:15 - 09:45 Uhr (Moritz Feldmann)	
Übung 11 (1054 N) Mittwoch 10:00 - 11:30 Uhr (Denise Böhm)	
Übung 12 (1056 N) Donnerstag 08:15 - 09:45 Uhr (Florian Magg)	
Übung 13 (1054 N) Donnerstag 15:45 - 17:15 Uhr (Marvin Drexelius)	
Übung 14 (1054 N) Donnerstag 17:30 - 19:00 Uhr (Patrick Eckert)	
Übung 15 (1057 N) Donnerstag 17:30 - 19:00 Uhr (Alexander Szöke)	
Übung 16 (1057 N) Freitag 08:15 - 09:45 Uhr (Philipp Braml)	
Übung 17 ($1054~\mathrm{N})$ Freitag $10:00$ - $11:30~\mathrm{Uhr}$ (Elisabeth Korndörfer)	
Übung 18 ($1054~\mathrm{N})$ Freitag $12{:}15$ - $13{:}45~\mathrm{Uhr}$ (Philipp Häusele)	
Übung 19 (1056 N) Freitag 12:15 - 13:45 Uhr (Maximilian Demmler)	
Übung 20 (1054 N) Freitag 14:00 - 15:30 Uhr (Florian Straßer)	
(hier die eingeteilte Übungsgruppe ankreuzen)		

Teamnummer	6
(hier die Nummer des einge	eteilten Teams eintragen

(hier die Nummer des eingeteilten Teams eintragen)

Tarik Selimovic	
Anton Lydike	
Dominic Cesnak	

(hier die Vor- und Nachnamen aller Teammitglieder eintragen)

Aufgabe	
Aufgabe	
Aufgabe	
Aufgabe	
Gesamt	(vom Tutor auszufülle

Übungsblatt 7

25)

History)

```
package aufgabe25;
import java.awt.*;
import java.awt.event.*;
public class History extends Dialog {
    private static final long serialVersionUID = 1L;
    public History (Frame f, java.util.ArrayList<Double> list) {
        super(f, "History", true);
        GridLayout gl = new GridLayout(list.size(), 1);
        this.setLayout(gl);
        for (int i = list.size(); i > 0; i--) {
            this.add(new Label(String.valueOf(list.get(i-1))));
        }
        this.addWindowListener(new WindowAdapter() {
            public void windowClosing(WindowEvent we) {
                dispose();
        });
        this.pack();
        this.setVisible(true);
    }
}
```

Window)

```
package aufgabe25;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class Window extends Frame implements ActionListener {
    private static final long serialVersionUID = 1L;
    private java.util.ArrayList<Double> history = new ArrayList<Double>();
   private Button btn_rn = new Button("random");
    private Button btn_hs = new Button("history");
   private TextField tf = new TextField();
    public Window() {
       super("Aufgabe25");
        FlowLayout fl = new FlowLayout();
        this.add(btn_rn);
        this.add(tf);
        this.add(btn_hs);
        btn_rn.addActionListener(this);
       btn_hs.addActionListener(this);
        tf.setPreferredSize(new Dimension(150, 16));
        this.setLayout(fl);
        this.addWindowListener(new WindowAdapter() {
            public void windowClosing(WindowEvent we) {
                dispose();
            }
       });
        this.pack();
        this.setVisible(true);
    public static void main(String[] args) {
        new Window();
    }
    @Override
    public void actionPerformed(ActionEvent e) {
        if (e.getSource().equals(this.btn_rn)) {
            generateRandom();
            System.out.println("Generating random");
        } else if (e.getSource().equals(this.btn_hs)) {
            showHistory();
        }
    }
    private void generateRandom() {
       double r = Math.random();
        this.history.add(r);
        this.tf.setText(String.valueOf(r));
    }
    private void showHistory() {
       new aufgabe25.History(this, this.history);
    }
}
```

26)

a)

```
CREATE TABLE Patient (
 id INTEGER NOT NULL,
 PRIMARY KEY(id)
);
CREATE TABLE Arzt (
 id INTEGER NOT NULL,
 PRIMARY KEY(id)
);
CREATE TABLE Behandlung (
 id INTEGER NOT NULL,
  diagnose VARCHAR(200) NOT NULL,
 arztID INTEGER NOT NULL,
  patientID INTEGER NOT NULL,
  FOREIGN KEY (arztID) REFERENCES Arzt(id),
 FOREIGN KEY (patientID) REFERENCES Patient(id),
 PRIMARY KEY (id)
);
```

b)

```
CREATE TABLE Arzt (
isbn CHAR(10) NOT NULL UNIQUE,
jahr INT,
autor VARCHAR(20),
PRIMARY KEY(isbn)
);
```

27)

a)

```
CREATE TABLE Point (
 x FLOAT NOT NULL,
 y FLOAT NOT NULL,
 id INTEGER NOT NULL AUTO_INCREMENT,
 PRIMARY KEY(id)
);
CREATE TABLE GeometricObject (
  position INTEGER NOT NULL,
  type ENUM('circle', 'rectangle') NOT NULL,
  -- circle
  radius FLOAT,
  check (
   type = 'circle' AND
    radius IS NOT NULL AND
    radius > 0
  ),
  -- rectangle
  length FLOAT,
  width FLOAT,
  check (
    type = 'rectangle' AND
   length IS NOT NULL AND
   width IS NOT NULL AND
   length > 0 AND
   width > 0
 ),
 FOREIGN KEY (position) REFERENCES Point(id)
);
-- PRO: Erweitern der Oberklasse GeometricObject ist einfach
-- CON: Unterscheidung zwischen objekttypen ist schwer, besonders wenn
     eine andere Klasse nur referenzen auf Kreise zulassen möchte
-- CON: Wenn eine weitere Klasse von GeometricObject erbt, können backups nicht
       mehr eingelesen werden, da GeometricObjects struktur geändert wurde
-- CON: Die Constraints werden schnell unübersichtlich
```

b)

```
CREATE TABLE Point (
 x FLOAT NOT NULL,
 y FLOAT NOT NULL
CREATE TABLE Circle (
  position Point not null,
 radius FLOAT NOT NULL,
 check (radius > 0)
CREATE TABLE Rectangle (
 position Point not null,
 length FLOAT NOT NULL,
 width FLOAT NOT NULL,
 CHECK ( length > 0 ),
 CHECK ( width > 0 )
)
-- PRO: Operationen auf der Datenbank sind recht einfach
-- CON: Erweitern der oberklasse GeometricObject wird komplex wenn mehr
-- unterklassen hinzugefügt werden.
```

28)

a)

```
INSERT INTO Point VALUES (5, 0, 0);
UPDATE Circle SET position = 5 WHERE id = 7;
```

b)

```
-- insert placeholder customer (do this only once)

INSERT INTO Kunde (id) VALUES (-1);

-- make sure the cutsomer isn't mentioned in a foreign key

UPDATE Ausleihe SET kundeID = -1 WHERE kundeID = 123;

-- delete customer

DELETE FROM Kunde WHERE id = 123;

-- SELECT DISTINCT kundeID FROM Ausleihe WHERE begin = '2017-12-20';
```