

Managing Complexity

Vikram Padman

Agenda

Reading List

/ tbsti actio

Discipline

PC

Activity

Managing Complexity

CS6133 - Computer Architecture I

Vikram Padman

Polytechnic Institute of New York University

vikram.padman@nyu.edu

Agenda

Managing Complexit

Padma

Agenda

Reading Lis

Abstraction

Dissiplie

Discipiiii

YYI

Abstraction

- Oiscipline
- The Three -Y's
- General Purpose Computing System (PC)
- Week 2 Activity 1

Reading List Week 2

Managing Complexit

Vikran Padma

/ tgenda

Reading List

Abstractio

Discipline

YY

PC

• "The First Draft Report on the EDVAC", Chapter 1 and 2

- ² "Digital Design and Computer Architecture", Chapter 1
- Bigital Besign and compater Architecture, enapter
- "Computer Organization And Design", Chapter 1
- "Computer Architecture A Quantitative Approach", Chapter 1, section 1.4 and 1.5

Abstraction

Managing Complexity

Padmai

/ Igenida

Reading Lis

Abstraction

Discipline

YY'

PC

Activity

• **Abstraction** is a *technique* used to manage complexity by hiding details when they are not relevant.

Discipline

Complexit

Padma

Agenda

Reading Lis

Discipiiii

YY

PC

Abstractio

 Restricting design choices to promote Abstraction and design hierarchy

- Digital Discipline : Discrete voltages instead of continuous
 - Simpler to design than analog systems and can be more sophisticated than analog systems
 - Digital systems are replacing analog predecessors: HDTV, cameras, phones, audio players ...etc

The Three -Y's

Complexit

Vikrar Padma

Agend

Reading Lis

Discipline

YYY

PC . . .

 Hierarchy: A system divided into modules and sub-modules

Modularity: Having well-defined functions and interfaces

Regularity: Encouraging uniformity, so modules can be easily reused

Managing Complexity

Vikran Padma

Agenda

Reading Lis

Abstractio

Disciplin

YYY

PC

Managing Complexit

Vikran Padma

Agenda

Reading Lis

Abstractio

Disciplin

YYY

PC

Managing Complexity

Vikran Padma

Agenda

Reading Lis

Abstractio

Disciplin

~~~

PC

Managing Complexit

Vikran Padma

Agenda

Reading Lis

Abstractio

Disciplin

YYY

PC

Managing Complexit

Vikran Padma

Agenda

Reading Lis

Abstractio

Disciplin

~~~

PC

Managing Complexit

Vikran Padma

Agenda

Reading Lis

Abstractio

Disciplin

\/\/

PC

Managing Complexit

Vikram

Agenda

Reading Lis

Abstractio

Discipling

PC

Managing Complexit

Vikran Padma

Agenda

Reading Lis

Abstracti

Discipline

\\\\\

PC

Managing Complexit

Vikran Padma

Agenda

Reading Lis

, abstracti

Discipline

YYY

PC

Week 2 Activity 1

Managing Complexit

Vikrar Padma

Agenda

Reading Lis

Abstractio

У**У**У

PC

Activity

Read Chapter 1 and 2 in "The First Draft Report on the EDVAC" by John von Neumann and answer the following questions:

- State and describe in you own words the partitions, modules or subdivisions of a digital computer described by Dr. Neumann.
- In section 2.9 Dr. Neumann compares M, R and he explains why they are needed. Technology has advanced a lot since 1945, do we still need M and R? Justify you answer with details.
- Could modern computers solve mathematical equations using methods other than numerical method? or is it still restricted to numerical methods? Support your answer with details