KU LEUVEN

Secure boot, trusted boot and remote attestation for ARM TrustZone-based IoT Nodes

Zhen Ling, Huaiyu Yan, Xinhui Shao, Junzhou Luo, Yiling Xu, Bryan Pearson, Xinwen Fu Journal of Systems Architecture 119 (2021)

Oberon Swings

[Lin+21]

KU Leuven March 30, 2022

Introduction

Hybrid booting

Process integrity measurement

Evaluation & security analysis

Introduction

Hybrid booting

Process integrity measurement

Evaluation & security analysis

Relevance for thesis

2/19

Goals

- IoT devices
- ARM (TrustZone)
- Assure integrity
- Defend against
 - Hardware attacks
 - OS/Firmware attacks
 - Software attacks

Solutions

- Hybrid booting
 - Secure boot
 - Trusted boot
- Process integrity measurement
 - Pagebased attestation

image: [Lin+21]

bas

Introduction

Hybrid booting

Process integrity measurement

Evaluation & security analysis

Secure boot

- Offline phase
 - Measure image
 - Hash
 - Sign
- Secure boot phase
 - First-stage bootloader trusted base
 - Locate next
 - Verify

image: [Lin+21]

Trusted boot

- Offline phase
 - Calculate hash
 - Encrypt with symmetric key
 - Store
- Trusted boot phase
 - 1. TLS connection nonce
 - 2. Encrypt nonce & hash
 - Respond
 - Hash verification (integrity) Nonce verification (replay)

images: [Lin+21]

Trusted boot encryption

- Symmetric key
- Safe at server
- Storage in IoT device
 - Generate blob key (RNG)
 - Encrypt and MAC
 - Derive BKEK using MK
 - Concatenate parts
 - SNVS for Master Key

image: [Lin+21]

Introduction

Hybrid booting

Process integrity measurement

Evaluation & security analysis

Idea

- Secure boot base
- Runtime integrity
- Measure code pages
- Measurement TA
- Remote Attestation Server

Process integrity measurement

- 1. Map address of init_task
- 2. Obtain physical address
- Transform to virtual address
- 4. Calculate page boundaries
- 5. Measure each page

image: [Lin+21]

bas

Process integrity attestation

- Request nonce
- 2. Calculate measurement
- 3. Encrypt attestation info
- Send cyphertext and repeat 2 or continue
- 5. Send cyphertext to verifier
- 6. Verify (new, modified)

image: [Lin+21]

Introduction

Hybrid booting

Process integrity measurement

Evaluation & security analysis

Results

Performance

- Secure boot doubles secure OS boot-time
- Trusted boot adds little overhead (0.5%)
- Measurement TA and attestation CA overhead (-0.5% ≈ +0.5%)

Security

- Secure boot gives secure base
- Measurement method relies on NW

Introduction

Hybrid booting

Process integrity measurement

Evaluation & security analysis

Focus shift

- Secure boot (engineering)
- Attestation
 - Informing user
 - Securing NW
- Reproduction
 - Process measurement
 - Process attestation
- Adjustments
 - Remote server
 - Reliance on NW OS

Differences

Paper

- Secure boot
- Trusted boot
- Remote attestation
- IoT devices

Thesis

- Secure boot assumed
- No Trusted boot
- SW attests NW
- Secure Open platform

Questions?

Question_376876

bas

References

Zhen Ling et al. "Secure boot, trusted boot and remote attestation for ARM TrustZone-based IoT Nodes". In: <u>Journal of Systems Architecture</u> 119 (July 2021), p. 102240. DOI: 10.1016/j.sysarc.2021.102240.