

CSCI 4850/5850 - Neural Networks

Contrastive Learning

TRADITIONAL SUPERVISED LEARNING PROBLEMS

- Traditional approaches were the norm until about 2015
- The 2000-2015 deep learning models showed significant improvements because of data availability (storage, access, crowd-sourcing)

Typical structure was direct 1:1 correspondence between items.

<u>Task</u>: Image Recognition/Processing

Performance Measure: Accuracy, F1-

score (Gold Standard: Human Performance +)

Calculus can be used to make a small change: Next time "Airplane" is more likely to be the prediction than before [Training, Testing]

bank

TRADITIONAL UNSUPERVISED LEARNING PROBLEMS

- Traditional approaches were the norm until about 2017
- Traditional methods selected some training procedure operating on the current data.
- From 2017-2022 deep learning models showed significant improvements due to generative training methods: don't just use the current data, learn to "make up" or "fill-in" data as part of the training process.
- <u>Vaswani et al., 2017</u> **Transformer** architecture
- <u>Devlin et al., 2018</u> BERT Bidirectional Encoder Representations from Transfomers

Better contextualized meaning from these models

Transformer: Self-Attention

GPT (GENERATIVE PRETRAINED TRANSFORMER)

Dosovitskiy et al., 2020

- Vaswani et al., 2017 Transformer architecture
- Radford et al., 2018 and Brown et al., 2020
- Simple generative training and testing procedure, perfectly suited for the transformer architecture.
- Very large model, very large data set
- 1. The
- 2. Cat
- 3. Ran
- 4. Fast
- $\begin{bmatrix}
 \begin{bmatrix}
 \varepsilon \\ \times & \varepsilon^2 \\ \times & \varepsilon^2 \\ \times & \varepsilon^3 \end{bmatrix}$ $\begin{bmatrix}
 \varepsilon \\ \times & \varepsilon^2 \\ \times & \varepsilon^2 \\ \times & \varepsilon^3 \end{bmatrix}$ $\begin{bmatrix}
 \varepsilon \\ \times & \varepsilon^2 \\ \times & \varepsilon^2 \\ \times & \varepsilon^3 \end{bmatrix}$ $\begin{bmatrix}
 \varepsilon \\ \times & \varepsilon^2 \\ \times & \varepsilon^2 \\ \times & \varepsilon^3 \end{bmatrix}$ $\begin{bmatrix}
 \varepsilon \\ \times & \varepsilon^2 \\ \times & \varepsilon^2 \\ \times & \varepsilon^3 \end{bmatrix}$ $\begin{bmatrix}
 \varepsilon \\ \times & \varepsilon^2 \\ \times & \varepsilon^2 \\ \times & \varepsilon^3 \end{bmatrix}$ $\begin{bmatrix}
 \varepsilon \\ \times & \varepsilon^2 \\ \times & \varepsilon^2 \\ \times & \varepsilon^3 \end{bmatrix}$ $\begin{bmatrix}
 \varepsilon \\ \times & \varepsilon^2 \\ \times & \varepsilon^2 \\ \times & \varepsilon^3 \end{bmatrix}$ $\begin{bmatrix}
 \varepsilon \\ \times & \varepsilon^2 \\ \times & \varepsilon^2 \\ \times & \varepsilon^3 \\ \times & \varepsilon^3 \end{bmatrix}$ $\begin{bmatrix}
 \varepsilon \\ \times & \varepsilon^2 \\ \times & \varepsilon^2 \\ \times & \varepsilon^3 \\ \times & \varepsilon$
- 1. Cat
- 2. Ran
- 3. Fast
- 4. <STOP>

The [P(duck), P(cat), P(fast), P(no), ...]

The cat [P(duck), P(cat), P(ran), ...]

The cat ran [P(fast), P(quickly), P(slowly, P(no) ...]

GPT-3 (Brown et al. 2020)

[To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:]

One day when I was playing tag with my little sister, she got really excited and she started doing these crazy farduddles.

[A "yalubalu" is a type of vegetable that looks like a big pumpkin.

An example of a sentence that uses the word yalubalu is:]
I was on a trip to Africa and I tried this yalubalu vegetable that was grown in a garden there. It was delicious.

CONTRASTIVE LEARNING

- Chen et al., 2020 "A Simple Framework for Contrastive Learning of Visual Representations"
- Technically, the process is *unsupervised* (more on that in a moment) because no targets are needed during the *training* process.
- A small sample of labeled images are needed during testing of the model (and deployment) making it semi-supervised
- Before 2020 we needed lots of *labeled* data: now we don't.

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluatio	n:											
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned:												
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

CONTRASTIVE LEARNING: ALIGNMENT ACROSS DOMAINS

- Radford et al., 2021
- Contrastive learning can be done to align the learned information from one domain to another related domain
- Image to text
- Text to image
- Doesn't have to just be these domains...
- Zero-shot prediction is possible, no additional training required for proper correct classification...

(1) Contrastive pre-training

(2) Create dataset classifier from label text

DIFFUSION MODELS

- Ho et al., 2020
- Denoising Diffusion Probabilistic Models (DDPM)
- An elegant solution to the mode collaspe issue with generative modeling tasks
- Sometimes called Stable Diffusion due to the correction of the mode collapse issue

CONDITIONAL GENERATION WITH CONTRASTIVE EMBEDDINGS: DALL-E

- Ramesh et al., 2022
- Reverse diffusion process can be trained while including a contrastive embedding
- The text encoder can generate a similar contrastive embedding
- The diffusion model can use the text's contrastive embedding to extract a similar image
- Natural variation in the DDPM model and the large variation in training data allows for creative, generative modeling

vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

Conditioned Diffusion Model (2) Create dataset classifier from label text plane A photo of Text Encoder (3) Use for zero-shot prediction Image Encoder A photo of a dog. CLIP objective "a corgi playing a flame throwing trumpet"

decoder