Introduction to ChIP-seq

Outline

- Basic concepts of ChIP
- The importance of controls and QC
- Experimental design considerations
- ChIP-seq analysis workflow

What is ChIP-seq

- Assay genome wide binding of protein to DNA
- Uses a combination of chromatin immunoprecipitation and sequencing
- Identifies how transcription factors and chromatin-associated proteins interact with DNA in vivo
- Complements DNA accessibility studies and gene expression profiling
- Gain a more precise picture of gene regulation

Transcriptional regulation is complex

Simplified model of gene regulation

Library Preparation

Crosslink proteins to DNA

Fragment

Protein specific antibody

Immunoprecipitate

Reverse crosslink and purify DNA

Identify bound regions

Types of signals

Adapted from Park (2009). Nature Reviews Genetics.

Profiling histone modifications

- Active promoters: H3K4me3, H3K9Ac
- Active enhancers: H3K27Ac, H3K4me1
- Repressors: H3K9me3, H3K27me3
- Transcribed gene bodies: H3K36me3

Why controls are necessary

- Allows us to compare with the same region in a matched control
- Artefacts can generate false positive peaks:
 - Open chromatin regions fragment more easily
 - Repetitive sequences might seem to be enriched
 - Uneven distribution of sequence tags across the genome
 - Hyper-ChIPable regions

ChIP-seq controls

Biological samples/Library preparation Crosslink proteins to DNA Specific antibody (ChIP enrichment) Shear DNA (sonication) No IP (Input DNA) Immunoprecipitation Non-specific antibody (IgG "mock IP") Reverse crosslink Size selection and PCR

Control vs. ChIP signals

Parameters for a successful ChIP-seq

- Efficient and specific antibody!
- Amount of starting material
- Chromatin fragmentation
- Stringency of washes
- Controls

Fragments too big:

Reduced signal to noise ratio in ChIP-seq

Oversonication:

Fragmentation biased towards promoter regions causes ChIP-seq enrichments at promoters in both, ChIP AND control (input) sample

ChIP-seq workflow

Experimental design considerations

- Read length (25- to 150-bp)
- Longer reads and paired-end reads improve mappability
 - Only necessary for allele-specific chromatin events, investigations of transposable elements
- Balance cost with value of more informative reads
- Avoid batches or distribute evenly over batches
- Sequencing depth (5-10M minimum; 20-40M as standard for TFs; higher for broad profiles)
- Input controls should be sequenced to equal or greater depths than IP samples

Impact of sequencing depth

H3K4me3

Adapted from Jung et al (2014). NAR.

Impact of sequencing depth

H3K27me3

Replicates and reproducibility

- Biological replicates are essential to understand variation and for differential binding analysis
- More replicates is often preferable to greater depth
- Better to sequence highquality sample at lower depth than low-quality sample to higher depth

ChIP-seq workflow

Quality Checks: Raw Data

All NGS analyses require that the **quality of the raw data** is assessed prior to any downstream analysis.

The quality checks at this stage in the workflow include:

- 1. Checking the quality of the base calls to ensure that there were no issues during sequencing
- 2. Examining the reads to ensure their quality metrics adhere to our expectations for our experiment
- 3. Exploring reads for contamination

ChIP-seq workflow


```
= binding site= size selected DNA fragment
```


ChIP-seq fragments are sequenced from the 5' end

Alignment generates a **bimodal pattern** on the plus and minus strands around binding sites

Peak calling algorithms use this pattern to estimate the relative strand shift

Modeling noise to detect real peaks

- How much signal we have is dependent on:
 - the number of active binding sites
 - the number of starting genomes (or cells)
 - the efficiency of the IP

Peak detection

- Most algorithms model the number of reads from a genomic region/window using a Poisson distribution
- Often more variance in real data than assumed by the Poisson (overdispersion)
- MACS (model-based analysis of ChIP-Seq) uses multiple Poisson distributions to model the local background noise within each region from the input data

http://en.wikipedia.org/wiki/Poisson distribution

Peak callers

- Variability in number of peaks called
- Tend to agree on the strongest signals

How to choose one

- Widely used
- Actively maintained and updated
- Default settings are a good start but know your parameters for your peak caller
- Be critical! Visually inspect your data (IGV)

Quality Checks

Evaluating the **quality of the aligned data and peak calls** can give important information about the quality of the library. The quality checks at this stage in the workflow include:

- 1. Checking the percent of reads aligning to the genome
- 2. Removing blacklisted regions
- 3.Exploring duplication rates, cross correlation scores and fraction of reads in peaks (FRiP)

Software: ChiPQC, Homer, ChiLin, DiffBind

At strand shift of zero, the Pearson correlation between the two vectors is **0.539**

Cross correlation profiles

- Red vertical line shows the dominant peak at the true peak shift
- Blue vertical line is at read-length

Metrics based on cross correlation

- Normalized strand cross-correlation coefficient (NSC): CC at fragment length peak / minimum CC value. Higher values indicate more enrichment.
 - Minimum value: 1
 - Critical threshold: 1.1
- Relative strand cross-correlation coefficient (RSC): (CC at fragment-length peak - min CC) / (CC at read-length peak - min CC).
 - Minimum value: 0
 - Critical threshold: 1
- Low scores indicate low signal to noise
 - Failed ChIP, poor sequence quality (leading to mismapping), inadequate sequencing depth
 - OR factor only binds a few sites

- Detecting differential enrichment across samples
 - Steinhauser et al, Brief Bioinform. (2016)

- Annotation of peaks distance from TSS
 - <u>ChIPseeker</u>, Homer, ChiLin

- Annotation of peaks genomic context
 - <u>ChIPseeker</u>, Homer, ChiLin

- Functional enrichment analysis
 - ChiPseeker, GREAT, Homer, ChiLin

- Motif discovery
 - MEME suite, ChiLin, Homer

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme.nbcr.net.

If you use DREME in your research please cite the following paper:

Timothy L. Bailey, "DREME: Motif discovery in transcription factor ChIP-seq data", Bioinformatics, 27(12):1653-1659, 2011. [full text]

DISCOVERED MOTIFS | INPUTS & SETTINGS | PROGRAM INFORMATION

DISCOVERED MOTIFS

Summary

- Basics of the ChIP protocol
- Better understanding of how to design a ChIP experiment
- How to analyze the data
- What to look for in a good ChIP data set