Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Intelligent Data Analysis / Machine Learning

Tobias Scheffer, Shuwen Deng, David Reich, Sasha Roewer April 10, 2024

Organization

- English and German lecture videos in Moodle:
 - Watch them in the privacy of your personal shelter.
 - There is no live lecture, go watch the video!
 - Write down any question that you have!
 - Come up with 3 good questions in any case.
- Q&A: ask all your questions!
 - Every Tuesday, 10:15-11:45, live in 02.70.0.10 and via Zoom (the link is on Moodle).
 - Meeting link and all resources are available on Moodle.
 - You have to watch the lecture video beforehand!
 - This is you weekly opportunity to ask all your questions—there is no email support.

Organization

- Labs and exercises (mandatory):
 - English exercise G2 (Shuwen Deng, David Reich): Tue,
 14:15-15:45 in room 02.70.0.09, starting on 16.04.2024.
 - German exercise G3 (Sasha Roewer): Thursday, 10:15-11:45 in room 02.70.0.08, starting on 11.04.2024.
 - English exercise G1 (Shuwen Deng, David Reich): Thu,
 12:15-13:45 in room 02.70.0.10. Starting on 11.04.2024.
- You have to complete the homework beforehand.
- You have to mark 70% of the homework in Moodle and present your solutions in the exercise.
- Submitting homework by email is not possible.

Modules

- Bachelor Informatik Computational Science
 - Mandatory (Intelligente Datenanalyse)
- Master Cognitive Systems
 - Mandatory
- Master Data Science
 - Mandatory
- Master Computational Science
 - Only if you did not take this lecture within the Bachelor's program
 - Maschinelles Lernen / Maschinelles Lernen II
 - IDA in den Naturwissenschaften

Exams

- For Students of all bachelor programs:
 - Successfully complete labs and exercises
 - Written exam for 1h immediately followed by 15 min oral exam..
- For Students of master programs:
 - Successfully complete labs and exercises
 - Successfully complete semester project
 - 15 minutes presentation of the semester project + 15 minutes oral exam.

Organization

- Moodle page:
 - Slides and lecture videos.
 - Links to video conferences.
 - Introductory mathematics videos and tutorials.
 - Homework to be completes for the next lab.

This Week

- Tutorial on statistics and mathematical foundations is online
 - Recommended for MSc Cognitive Systems.
- Two lectures, "Introduction to Python" and "Models, Data, Learning Algorithms" are online.
 - Skip "Introduction to Python" if you are familiar with Python, numpy, pandas, seaborn.
 - Q&A for Python on 16.04.2023
 - Q&A for Models, Data, ... on 16.04.2023
 - Thu 18. Tue 23.04.: first exercise is due.
- Labs take place from tomorrow.

Literature

- Chris Bishop: Pattern Recognition and Machine Learning.
- 30 Copies available in the library
- Can also be found online.

Literature

- Kevin Murphy: Machine Learning: a probabilistic perspective
- Can also be found online.

Introduction to Python.

Problem analysis, basic concepts.

- Decision trees, random forests.
 - 1. ID3(L)
 - If all data in L have same class y, then return leaf node with class y.
 - 2. Else
 - 1. Choose attribute x_j that separates L into subsets $L_1, ..., L_k$ with most homogenous class distributions.
 - 2. Let $L_i = \{(x,y) \in L: x_i = i\}$.
 - 3. Return test node with attribute x_j and children ID3(L₁,), ..., ID3(L_k).

Linear classification and regression models.


```
RegERM(Data: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))
Set \mathbf{\theta}^0 = \mathbf{0} and t = 0
DO

Compute gradient \nabla L(\mathbf{\theta}^t)
Compute step size \alpha^t
Set \mathbf{\theta}^{t+1} = \mathbf{\theta}^t - \alpha^t \nabla L(\mathbf{\theta}^t)
Set t = t+1
WHILE \|\mathbf{\theta}^t - \mathbf{\theta}^{t+1}\| > \varepsilon
RETURN \mathbf{\theta}^t
```


Kernel methods.

Bayesian learning.

Neural Networks.

Model evaluation.

