GPU ACCELERATED COMPUTING & DEEP LEARNING

A PERFORMANCE AND POWER ANALYSIS

By Dipti Chaudhari

AGENDA

- GPUs Past and Present
- What is Deep Learning?
- GPUs and DL
- DL in practice
- Scaling up DL
- Performance Analysis

NVIDIA - INVENTOR OF THE GPU

- NVIDIA Invented the GPU in 1999
- Graphics support
- In 2007, NVIDIA launched the CUDA® programming platform
- Applications Areas

NVIDIA PLATFORM

BEYOND HPC TO BIG DATA ANALYTICS

Yandex

WHAT IS DEEP LEARNING?

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

TRADITIONAL MACHINE LEARNING

DEEP LEARNING APPROACH

ARTIFICIAL NEURAL NETWORK

A collection of simple, trainable mathematical units that collectively learn complex functions

Hidden layers

Output layer

Given sufficient training data an artificial neural network can approximate very complex functions mapping raw data to output decisions

ARTIFICIAL NEURONS

Biological neuron

Vs

Artificial neuron

From Stanford cs231n lecture notes

$$y=F(w_1x_1+w_2x_2+w_3x_3)$$

 $F(x)=max(0,x)$

DEEP NEURAL NETWORK (DNN)

Identify face

Training data

~10-100M images

Network architecture

~10 layers 1B parameter

Learning algorithm

~30 Exaflops~30 GPU day

SCALING DEEP LEARNING

Data Parallelism

Model Parallelism

PERFORMANCE ANALYSIS

- Image Processing
- Caffe Framework
- CuDNN Library
- Intel Deep Learning Framework (IDLF) Intel HW
- Small Power and High Power
- Batching and Non-batching

POWER AND PERFORMANCE ANALYSIS (POWERFUL INFRASTRUCTURE)

Network: AlexNet	Batch Size	Titan X (FP32)	Xeon E5-2698 v3 (FP32)
Inference Performance		405 img/sec	76 img/sec
Power	1	164.0 W	111.7 W
Performance/Watt		2.5 img/sec/W	0.7 img/sec/W
Inference Performance	CONTRACTOR CONTRACTOR	3216 img/sec	476 img/sec
Power	128 (Titan X)	227.0 W	149.0 W
Performance/Watt	48 (Xeon E5)	14.2 img/sec/W	3.2 img/sec/W

POWER AND PERFORMANCE ANALYSIS (LESS POWER INFRASTRUCTURE)

Network: AlexNet	Batch Size	Tegra X1 (FP32)	Tegra X1 (FP16)	Core i7 6700K (FP32)
Inference Performance		47 img/sec	67 img/sec	62 img/sec
Power	1	5.5 W	5.1 W	49.7 W
Performance/Watt		8.6 img/sec/W	13.1 img/sec/W	1.3 img/sec/W
Inference Performance	128 (Tegra X1) 48 (Core i7)	155 img/sec	258 img/sec	242 img/sec
Power		6.0 W	5.7 W	62.5 W
Performance/Watt		25.8 img/sec/W	45.0 img/sec/W	3.9 img/sec/W

THANK YOU FOR LISTENING:)