

Model Building & Scoring for Prediction

Institute for Advanced Analytics MSA Class of 2022

Model Building

- Linear regression is a great initial approach to model building, but it isn't the only form of regression.
- Linear regression is the best linear unbiased estimator (BLUE).

• What does it mean to be unbiased?

$$\hat{\beta}_j \sim N\left(\beta_j, s_{\widehat{\beta}_j}\right)$$

• What does it mean to be unbiased?

On average, coefficients from all samples are centered around the true coefficient.

What does it mean to be unbiased?

$$\hat{\beta}_j \sim N\left(\beta_j, s_{\widehat{\beta}_j}\right)$$

- What does it mean to be **best**?
 - IF assumptions hold, $s_{\widehat{\beta}_j}$ is the minimum variance of all the unbiased estimators.

What does it mean to be unbiased?

$$\hat{\beta}_j \sim N\left(\beta_j, s_{\widehat{\beta}_j}\right)$$

- What does it mean to be best?
 - IF assumptions hold, $s_{\widehat{\beta}_j}$ is the minimum variance of all the unbiased estimators.

What if assumptions don't hold?

What does it mean to be unbiased?

$$\hat{\beta}_j \sim N\left(\beta_j, s_{\widehat{\beta}_j}\right)$$

- What does it mean to be best?
 - IF assumptions hold, $s_{\widehat{\beta}_j}$ is the minimum variance of all the unbiased estimators.

What if biased estimators had smaller variance?

What if assumptions don't hold?

Regularized Regression

Potential Problems

- As the number of variables increases, more problems tend to arise.
 - Assumptions start to fail.
 - Multicollinearity concerns.
- Multicollinearity problems

 coefficients vary widely.
 - Variations lead to overfitting (only predicting the training data well, but not generalizing to the test dataset).
 - Higher variance than desired.
- More variables than observations (genetic modeling).

Regularized Regression

• **Regularized regression** (or penalized / shrinkage regression) puts constraints on the estimated coefficients in our model and *shrink* these estimates to 0.

 Coefficients become biased, but potentially improve variance of the model.

Unbiased but not precise

Unbiased but not precise

Biased but precise

Unbiased but not precise

Biased but precise

Regularized Regression

• **Regularized regression** (or penalized / shrinkage regression) puts constraints on the estimated coefficients in our model and *shrink* these estimates to 0.

 Coefficients become biased, but potentially improve variance of the model.

• 3 Common Approaches – Ridge, LASSO, Elastic Net

Penalties in Models

OLS regression minimizes the sum of squared errors:

$$\min\left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2\right) = \min(SSE)$$

Penalties in Models

OLS regression minimizes the sum of squared errors:

$$\min\left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2\right) = \min(SSE)$$

Regularized regression introduces a penalty term to the minimization:

$$\min\left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + Penalty\right) = \min(SSE + Penalty)$$

Regularized Regression

RIDGE REGRESSION

Penalties in Models

• Ridge regression introduces an " L_2 " penalty term to the minimization:

$$\min\left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \hat{\beta}_j^2\right) = \min\left(SSE + \lambda \sum_{j=1}^{p} \hat{\beta}_j^2\right)$$

Penalties in Models

• Ridge regression introduces an " L_2 " penalty term to the minimization:

$$\min\left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \hat{\beta}_j^2\right) = \min\left(SSE + \lambda \sum_{j=1}^{p} \hat{\beta}_j^2\right)$$

- Penalty is controlled by **tuning parameter**, λ .
 - If $\lambda = 0$, then OLS.
 - As $\lambda \to \infty$, coefficients shrink to 0.

```
train reg <- train %>%
               dplyr::select(Sale_Price, Lot_Area, Street,
                              Bldg Type, House Style, Overall Qual,
                              Roof Style, Central Air, First Flr SF,
                              Second Flr SF, Full Bath, Half Bath,
                              Fireplaces, Garage Area, Gr Liv Area,
                              TotRms AbvGrd) %>%
               replace(is.na(.), 0)
train_x <- model.matrix(Sale_Price ~ ., data = train_reg)[, -1]</pre>
train y <- train reg$Sale Price
```

```
train reg <- train %>%
               dplyr::select(Sale_Price, Lot_Area, Street,
                              Bldg Type, House Style, Overall Qual,
                              Roof Style, Central Air, First Flr SF,
                              Second Flr SF, Full Bath, Half Bath,
                              Fireplaces, Garage Area, Gr Liv Area,
                              TotRms_AbvGrd) %>%
               replace(is.na(.), 0)
train_x <- model.matrix(Sale_Price ~ ., data = train_reg)[, -1]</pre>
train y <- train reg$Sale Price
```

```
test reg <- test %>%
              dplyr::select(Sale_Price, Lot_Area, Street,
                             Bldg Type, House Style, Overall Qual,
                             Roof Style, Central Air, First Flr SF,
                             Second Flr SF, Full Bath, Half Bath,
                             Fireplaces, Garage Area, Gr Liv Area,
                             TotRms_AbvGrd) %>%
              replace(is.na(.), 0)
test_x <- model.matrix(Sale_Price ~ ., data = test_reg)[, -1]</pre>
test y <- test reg$Sale Price
```

```
library(glmnet)
ames_ridge <- glmnet(x = train_x, y = train_y, alpha = 0)
plot(ames_ridge, xvar = "lambda")</pre>
```


Regularized Regression

LASSO REGRESSION

Penalties in Models

• Least absolute shrinkage and selection operator (LASSO) regression introduces an " L_1 " penalty term to the minimization:

$$\min\left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} |\hat{\beta}_j|\right) = \min\left(SSE + \lambda \sum_{j=1}^{p} |\hat{\beta}_j|\right)$$

Penalties in Models

• Least absolute shrinkage and selection operator (LASSO) regression introduces an " L_1 " penalty term to the minimization:

$$\min\left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} |\hat{\beta}_j|\right) = \min\left(SSE + \lambda \sum_{j=1}^{p} |\hat{\beta}_j|\right)$$

- Penalty is controlled by **tuning parameter**, λ .
 - If $\lambda = 0$, then OLS.
 - As $\lambda \to \infty$, coefficients shrink to 0.

- Penalty is controlled by **tuning parameter**, λ .
 - If $\lambda = 0$, then OLS.
 - As $\lambda \to \infty$, coefficients shrink to 0.

Ridge regression approaches 0 asymptotically.

LASSO can have coefficients equal to 0 (variable removed from model).

- Penalty is controlled by **tuning parameter**, λ .
 - If $\lambda = 0$, then OLS.
 - As $\lambda \to \infty$, coefficients shrink to 0.

Differences in effects are due to differences in penalty.

When solving the system of equations for the different penalties we get the following:

$$\hat{\beta}_{OLS} = (X^T X)^{-1} X^T Y \qquad \hat{\beta}_R = (X^T X + \lambda I)^{-1} X^T Y \qquad \hat{\beta}_L = (X^T X)^{-1} (X^T Y - \lambda I)$$

- Penalty is controlled by **tuning parameter**, λ .
 - If $\lambda = 0$, then OLS.
 - As $\lambda \to \infty$, coefficients shrink to 0.

Differences in effects are due to differences in penalty.

When solving the system of equations for the different penalties we get the following:

$$\hat{\beta}_{OLS} = (X^T X)^{-1} X^T Y \qquad \hat{\beta}_R = (X^T X + \lambda I)^{-1} X^T Y \qquad \hat{\beta}_L = (X^T X)^{-1} (X^T Y - \lambda I)$$

As $\lambda \to \infty$, $\hat{\beta}_R$ gets infinitely close to 0

- Penalty is controlled by **tuning parameter**, λ .
 - If $\lambda = 0$, then OLS.
 - As $\lambda \to \infty$, coefficients shrink to 0.

Differences in effects are due to differences in penalty.

When solving the system of equations for the different penalties we get the following:

$$\hat{\beta}_{OLS} = (X^T X)^{-1} X^T Y \qquad \hat{\beta}_R = (X^T X + \lambda I)^{-1} X^T Y \qquad \hat{\beta}_L = (X^T X)^{-1} (X^T Y - \lambda I)$$

If $\lambda = X^T Y$, $\hat{\beta}_L$ can actually equal 0

LASSO Regression

```
library(glmnet)
ames_lasso <- glmnet(x = train_x, y = train_y, alpha = 1)
plot(ames_lasso, xvar = "lambda")</pre>
```

LASSO Regression

Regularized Regression

ELASTIC NET REGRESSION

Penalties in Models

- Both ridge and LASSO have advantages and disadvantages.
 - LASSO does variable selection.
 - Ridge keeps all variables (LASSO drops arbitrarily)

• Elastic net regression combines both penalty terms in the minimization:

$$\min \left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda_1 \sum_{j=1}^{p} |\hat{\beta}_j| + \lambda_2 \sum_{j=1}^{p} \hat{\beta}_j^2 \right)$$

Penalties in Models

• The glmnet function in R takes slightly different approach:

$$\min \left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \left[\alpha \sum_{j=1}^{p} |\hat{\beta}_j| + (1 - \alpha) \sum_{j=1}^{p} \hat{\beta}_j^2 \right] \right)$$

Penalties in Models

• The glmnet function in R takes slightly different approach:

$$\min \left(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \left[\alpha \sum_{j=1}^{p} |\hat{\beta}_j| + (1 - \alpha) \sum_{j=1}^{p} \hat{\beta}_j^2 \right] \right)$$

Why R has the "alpha = " option.

 Any value of alpha between 0 and 1 gives a combination of both penalties (elastic net).

Elastic Net Regression

```
library(glmnet)
ames_en <- glmnet(x = train_x, y = train_y, alpha = 0.5)
plot(ames_en, xvar = "lambda")</pre>
```

Elastic Net Regression

Elastic Net Regression

Optimizing Penalties

Fear of Overfitting

- Need to select λ for any of the regularized regression approaches.
- Don't want to minimize variance to the point of overfitting our model to the training data.

Cross-Validation

- **Cross-validation** (CV) is common approach to prevent overfitting when tuning a parameter.
- Concept:
 - Split training data into multiple pieces
 - Build model on majority of pieces
 - Evaluate on remaining piece
 - Repeat process with switching out pieces for building and evaluation

k-fold Cross-Validation


```
ames_lasso_cv <- cv.glmnet(x = train_x, y = train_y, alpha = 1)
plot(ames_lasso_cv)</pre>
```



```
plot(ames_lasso, xvar = "lambda")
abline(v = log(ames_lasso_cv$lambda.1se), col = "red", lty = "dashed")
abline(v = log(ames_lasso_cv$lambda.min), col = "black", lty = "dashed")
```


Important Variables

```
coef(ames_lasso, s = ames_lasso_cv$lambda.1se) %>%
  broom::tidy() %>%
  filter(row != "(Intercept)") %>%
  ggplot(aes(value, reorder(row, value))) +
    geom_point() +
    ggtitle("Influential Variables") +
    xlab("Coefficient") +
    ylab(NULL)
```

Important Variables

Model Comparisons

Comparing Models

- The model results in a formula or rules.
- The data require modifications:
 - Derived inputs
 - Transformations
 - Missing value imputation

- To score/compare, you do not rerun the algorithm!
- Apply score code (equations) obtained from the final model to the test data for comparing.

Comparing Models

- Test dataset is for comparing final models and reporting final metrics.
- DO NOT GO BACK AFTER TO REBUILD MODEL!
- DO NOT JUST BUILD 1000's OF MODELS TO COMPARE IN THE TEST SET!
- We do not want to fit to the test dataset as it is our honest assessment of how good our models can do.

Model Metrics

• Root MSE (RMSE):

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Mean Absolute Error (MAE):

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Mean Absolute Percentage Error (MAPE):

$$MAPE = 100 \times \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

Model Metrics

• Root MSE (RMSE):

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
 Problems:
• Not easily interpretable

Mean Absolute Error (MAE):

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
 Problems:

Not scale invariant

Mean Absolute Percentage Error (MAPE):

• Not symmetric

$$MAPE = 100 \times \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

Predictions

```
test$pred_lm <- predict(ames_lm, newdata = test)</pre>
head(test$pred_lm)
##
## 142107.3 142107.3 228909.6 142107.3 142107.3 142107.3
test_reg$pred_lasso <- predict(ames_lasso, s = ames_lasso_cv$lambda.1se, newx = test_x)</pre>
head(test_reg$pred_lasso)
##
## 156677.8 172432.5 239922.1 105713.6 200908.8 124913.5
```

Predictions – MAPE

```
test %>%
 mutate(lm_APE = 100*abs((Sale_Price - pred_lm)/Sale_Price)) %>%
 dplyr::summarise(MAPE_lm = mean(lm_APE))
##
    MAPE lm
   <dbl>
##
## 1 23.2
test_reg %>%
 mutate(lasso_APE = 100*abs((Sale_Price - pred_lasso)/Sale_Price)) %>%
  dplyr::summarise(MAPE_lasso = mean(lasso_APE))
    MAPE lasso
##
         <dbl>
##
          13.4
## 1
```

