In [52]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as py
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression

In [53]: df=pd.read_csv(r"D:\New folder\madrid_2003.csv")
 df

Out[53]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM
0	2003- 03-01 01:00:00	NaN	1.72	NaN	NaN	NaN	73.900002	316.299988	NaN	10.550000	55.2099
1	2003- 03-01 01:00:00	NaN	1.45	NaN	NaN	0.26	72.110001	250.000000	0.73	6.720000	52.3899
2	2003- 03-01 01:00:00	NaN	1.57	NaN	NaN	NaN	80.559998	224.199997	NaN	21.049999	63.2400
3	2003- 03-01 01:00:00	NaN	2.45	NaN	NaN	NaN	78.370003	450.399994	NaN	4.220000	67.8399
4	2003- 03-01 01:00:00	NaN	3.26	NaN	NaN	NaN	96.250000	479.100006	NaN	8.460000	95.7799
								•••			
243979	2003- 10-01 00:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999	7.3800
243980	2003- 10-01 00:00:00	0.32	0.08	0.36	0.72	NaN	10.450000	14.760000	1.00	34.610001	7.4000
243981	2003- 10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	34.639999	50.810001	NaN	32.160000	16.8300
243982	2003- 10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	32.580002	41.020000	NaN	NaN	13.5700
243983	2003- 10-01 00:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000	12.3500

243984 rows × 16 columns

In [3]: | df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 243984 entries, 0 to 243983
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	243984 non-null	object
1	BEN	69745 non-null	float64
2	CO	225340 non-null	float64
3	EBE	61244 non-null	float64
4	MXY	42045 non-null	float64
5	NMHC	111951 non-null	float64
6	NO_2	242625 non-null	float64
7	NOx	242629 non-null	float64
8	OXY	42072 non-null	float64
9	0_3	234131 non-null	float64
10	PM10	240896 non-null	float64
11	PXY	42063 non-null	float64
12	S0_2	242729 non-null	float64
13	TCH	111991 non-null	float64
14	TOL	69439 non-null	float64
15	station	243984 non-null	int64
dtvn	as. float	64(14) int64(1)	object(1)

dtypes: float64(14), int64(1), object(1)

memory usage: 29.8+ MB

In [4]: df1=df.fillna(value=0)
 df1

Out[4]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM
0	2003- 03-01 01:00:00	0.00	1.72	0.00	0.00	0.00	73.900002	316.299988	0.00	10.550000	55.2099
1	2003- 03-01 01:00:00	0.00	1.45	0.00	0.00	0.26	72.110001	250.000000	0.73	6.720000	52.3899
2	2003- 03-01 01:00:00	0.00	1.57	0.00	0.00	0.00	80.559998	224.199997	0.00	21.049999	63.2400
3	2003- 03-01 01:00:00	0.00	2.45	0.00	0.00	0.00	78.370003	450.399994	0.00	4.220000	67.8399
4	2003- 03-01 01:00:00	0.00	3.26	0.00	0.00	0.00	96.250000	479.100006	0.00	8.460000	95.7799
243979	2003- 10-01 00:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999	7.3800
243980	2003- 10-01 00:00:00	0.32	0.08	0.36	0.72	0.00	10.450000	14.760000	1.00	34.610001	7.4000
243981	2003- 10-01 00:00:00	0.00	0.00	0.00	0.00	0.07	34.639999	50.810001	0.00	32.160000	16.8300
243982	2003- 10-01 00:00:00	0.00	0.00	0.00	0.00	0.07	32.580002	41.020000	0.00	0.000000	13.5700
243983	2003- 10-01 00:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000	12.3500

243984 rows × 16 columns

```
In [5]: df1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 243984 entries, 0 to 243983
        Data columns (total 16 columns):
             Column
                      Non-Null Count
                                       Dtype
         0
                      243984 non-null object
             date
             BEN
         1
                      243984 non-null float64
         2
             CO
                      243984 non-null float64
         3
             EBE
                      243984 non-null
                                      float64
                                      float64
         4
                      243984 non-null
             MXY
         5
             NMHC
                      243984 non-null
                                      float64
         6
             NO_2
                      243984 non-null float64
         7
             NOx
                      243984 non-null float64
         8
             OXY
                      243984 non-null
                                      float64
         9
             0_3
                      243984 non-null float64
         10 PM10
                      243984 non-null float64
         11 PXY
                      243984 non-null float64
         12 SO_2
                      243984 non-null
                                      float64
         13 TCH
                      243984 non-null
                                      float64
         14 TOL
                      243984 non-null float64
         15 station 243984 non-null int64
        dtypes: float64(14), int64(1), object(1)
        memory usage: 29.8+ MB
In [6]: df1.columns
Out[6]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
        3',
               'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
              dtype='object')
```

Out[7]:

		BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PX
•	0	0.00	1.72	0.00	0.00	0.00	73.900002	316.299988	0.00	10.550000	55.209999	0.0
	1	0.00	1.45	0.00	0.00	0.26	72.110001	250.000000	0.73	6.720000	52.389999	0.0
	2	0.00	1.57	0.00	0.00	0.00	80.559998	224.199997	0.00	21.049999	63.240002	0.0
	3	0.00	2.45	0.00	0.00	0.00	78.370003	450.399994	0.00	4.220000	67.839996	0.0
	4	0.00	3.26	0.00	0.00	0.00	96.250000	479.100006	0.00	8.460000	95.779999	0.0
	243979	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999	7.380000	1.2
	243980	0.32	0.08	0.36	0.72	0.00	10.450000	14.760000	1.00	34.610001	7.400000	0.5
	243981	0.00	0.00	0.00	0.00	0.07	34.639999	50.810001	0.00	32.160000	16.830000	0.0
	243982	0.00	0.00	0.00	0.00	0.07	32.580002	41.020000	0.00	0.000000	13.570000	0.0
	243983	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000	12.350000	2.4

In [8]: sns.pairplot(df2)

Out[8]: <seaborn.axisgrid.PairGrid at 0x26b0892beb0>


```
In [9]: sns.distplot(df2['station'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [11]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)

linear

```
In [12]: from sklearn.linear_model import LinearRegression
```

```
In [13]: lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[13]: LinearRegression()

```
In [14]: coeff =pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
coeff
```

Out[14]:

	Co-efficient
BEN	1.329314
СО	0.078055
EBE	-1.103965
MXY	0.395101
NMHC	0.744723
NO_2	-0.079070
NOx	-0.008685
O_3	-0.019030
PM10	0.043117
PXY	2.733720
SO_2	-0.156103
тсн	4.654519
TOL	-0.231877
OXY	0.262578

```
In [15]: print(lr.intercept_)
```

28079024.492372576

```
In [16]: prediction =lr.predict(x_test)
    py.scatter(y_test,prediction)
```

Out[16]: <matplotlib.collections.PathCollection at 0x26b318a5280>


```
In [17]: |print(lr.score(x_test,y_test))
         0.12427344825624764
In [18]: print(lr.score(x_train,y_train))
         0.11829138820457574
         Ridge
In [19]: from sklearn.linear_model import Ridge,Lasso
In [20]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[20]: Ridge(alpha=10)
In [21]: rr.score(x_test,y_test)
Out[21]: 0.1242719430594611
         Lasso
In [22]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[22]: Lasso(alpha=10)
In [23]: la.score(x_test,y_test)
Out[23]: 0.040051613031118816
         elasticnet
In [24]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[24]: ElasticNet()
In [25]: print(en.coef_)
         [ 0.13012942 -0.
                                  -0.
                                               0.89170003 0.
                                                                      -0.07099582
          -0.00816406 -0.01816097 0.04245185 0.56079423 -0.17328773 1.78537876
                       0.17031933]
```

```
In [26]: |print(en.intercept_)
         28079025.995923337
In [27]:
         print(en.predict(x_test))
         [28079027.46757036 28079021.1167562 28079022.89446069 ...
          28079025.9103636 28079025.96325697 28079027.48770221]
In [28]: | print(en.score(x_test,y_test))
         0.10087740966978953
         logistic
In [29]: | feature_matrix=df2.iloc[:,0:14]
         target_vector=df2.iloc[:,-1]
In [30]: feature_matrix=df2[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'O_3', 'PN
         y=df2['station']
In [31]: feature_matrix.shape
Out[31]: (243984, 14)
In [32]: target vector.shape
Out[32]: (243984,)
In [33]: from sklearn.preprocessing import StandardScaler
In [34]: | fs=StandardScaler().fit transform(feature matrix)
In [35]: logr =LogisticRegression()
         logr.fit(fs,target_vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-regr
         ession)
           n_iter_i = _check_optimize_result(
Out[35]: LogisticRegression()
```

```
In [36]: observation=[[1.4,2.3,5.0,11,12,13,14,15,4,5,7,6,7,13]]
In [37]: prediction=logr.predict(observation)
         print(prediction)
         [28079099]
In [38]: logr.classes_
Out[38]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
                28079024, 28079025, 28079026, 28079027, 28079035, 28079036,
                28079038, 28079039, 28079040, 28079099], dtype=int64)
In [39]: logr.score(fs,target_vector)
Out[39]: 0.9353441209259623
In [40]: logr.predict_proba(observation)[0][0]
Out[40]: 0.0
In [41]: logr.predict proba(observation)[0][1]
Out[41]: 0.0
         random forest
In [42]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.tree import plot tree
In [43]: | x=df2.drop('station',axis=1)
         y=df2['station']
In [44]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.70)
In [45]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[45]: RandomForestClassifier()
In [46]: parameters = {'max_depth':[1,2,3,4,5],
                       'min_samples_leaf':[5,10,15,20,25],
                       'n estimators':[10,20,30,40,50]}
In [47]: from sklearn.model_selection import GridSearchCV
```

```
In [48]: grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring='ad
         grid_search.fit(x_train,y_train)
Out[48]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [49]: |grid_search.best_score_
Out[49]: 0.48788852882546796
In [50]: | rfc_best =grid_search.best_estimator_
In [51]:
         py.figure(figsize=(80,50))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,filled=True)
Out[51]: [Text(1985.1923076923076, 2491.5, 'TCH <= 0.44\ngini = 0.964\nsamples = 463
         66\nvalue = [2648, 2630, 2721, 2473, 2671, 2621, 2667, 2643, 2630\n2476, 26
         63, 2622, 2598, 2642, 2588, 2604, 2765, 2565\n2608, 2524, 2684, 2434, 2668,
         2494, 2678, 2617, 2641\n2620]'),
          Text(815.5384615384614, 2038.5, 'BEN <= 0.1\ngini = 0.934\nsamples = 25103
         \nvalue = [2648, 2630, 2721, 41, 16, 6, 2667, 1, 2630, 2476\n25, 2622, 259
         8, 5, 2588, 2604, 2765, 14, 32, 2524\n17, 19, 5, 2494, 2678, 2617, 24,
         4]'),
          Text(257.53846153846155, 1585.5, 'CO <= 0.665 \setminus ngini = 0.924 \setminus nsamples = 217
         88\nvalue = [2648, 2630, 2721, 37, 16, 1, 2667, 1, 2630, 2476\n9, 2622, 259
         8, 5, 2588, 2604, 78, 9, 17, 19, 17\n19, 3, 2494, 2678, 2617, 24, 4]'),
          Text(171.69230769230768, 1132.5, 'gini = 0.919\nsamples = 13298\nvalue =
         [619, 1694, 1820, 37, 16, 0, 717, 1, 1526, 1270, 9\n2120, 1909, 2, 1681, 19
         68, 47, 9, 17, 18, 17, 19\n3, 1865, 1585, 1939, 15, 4]'),
          Text(343.38461538461536, 1132.5, 'PM10 <= 0.855\ngini = 0.908\nsamples = 8
         490\nvalue = [2029, 936, 901, 0, 0, 1, 1950, 0, 1104, 1206, 0\n502, 689, 3,
         907, 636, 31, 0, 0, 1, 0, 0, 0\n629, 1093, 678, 9, 0]'),
          Text(171.69230769230768, 679.5, 'NO_2 <= 88.885\ngini = 0.137\nsamples = 1
         51\nvalue = [5, 2, 0, 0, 0, 0, 4, 0, 0, 3, 0, 0, 1, 1\n0, 0, 0, 0, 0, 0, 0,
```

conclusion ¶

The bestfit model is Logistic Regression with score of 0.9353441209259623

In []: