矩阵论习题

1.在 R^4 中,求向量x在基 $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$ 下的坐标。设

$$\boldsymbol{\alpha}_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$$
 , $\boldsymbol{\alpha}_2 = \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}^T$, $\boldsymbol{\alpha}_3 = \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}^T$,

$$\alpha_4 = [1 \quad -1 \quad -1 \quad 1]^T; \quad x = [1 \quad 2 \quad 1 \quad 1]^T.$$

2.已知 R³ 中的两个基:

$$B_1 = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad B_2 = \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

- (1).求 B_1 到 B_2 的基变换矩阵;
- (2).求在 B_1 , B_2 下有相同坐标的所有向量。

3.设
$$R^4$$
中的向量 $x_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$, $x_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $x_3 = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix}$, $x_4 = \begin{pmatrix} -1 \\ -1 \\ 3 \\ 7 \end{pmatrix}$ 分别张成子

空间 $w_1 = span\{x_1, x_2\}$ 和 $w_2 = span\{x_3, x_4\}$ 。求 $w_1 + w_2$ 及 $w_1 \cap w_2$ 的基和维数。

- 4. 设 V_1 和 V_2 分别是齐次方程组 $x_1 + x_2 + \dots + x_n = 0$ 和 $x_1 = x_2 = \dots = x_n$ 的解空间,证明: $R^n = V_1 \oplus V_2$ 。
- 5. 设 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 是 R^4 的 个 基 , $V_1 = span\{2\alpha_1 + \alpha_2, \alpha_1\}$, $V_2 = span\{\alpha_3 \alpha_4, \alpha_1 + \alpha_4\}$,证明: $R^4 = V_1 \oplus V_2$.
- 6. 设 T_1 是 V^n 到 V^m 的线性变换, T_2 是 V^m 到 V^r 的线性变换,定义 V^n 到 V^r

的变换 $T_2 \bullet T_1$ 为

$$(T_2 \bullet T_1)\alpha = T_2(T_1\alpha), \forall \alpha \in V^n \circ$$

证明, $T_2 \bullet T_1$ 是线性变换。

7.已知 R3 的线性变换 T 在基

$$B_{1} = \left\{ \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

下的矩阵是

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix},$$

求T在基

$$\boldsymbol{B}_2 = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \right\}$$

下的矩阵。

- 8.V 的变换T 称为可逆的,如果存在V 的变换S,使 $T \bullet S = S \bullet T = I$ 。这时S 称为T 的逆变换,记为 T^{-1} ,证明
 - (1) 若线性变换T是可逆的,则 T^{-1} 也是线性变换;
 - (2) T的特征值一定不为零;

又若T在基B下的矩阵是A,那么 T^{-1} 在B下的矩阵是什么?

9.设T是复数域上线性空间V的线性变换,已知V的基B和T在B下的矩阵A如下,求T的特征值和特征向量:

(1)
$$B = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}$$
, $A = \begin{pmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & 2 & 2 \end{pmatrix}$;

$$(2) \quad B = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \quad A = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix}.$$

10.求下列方阵的最小多项式:

$$\begin{pmatrix} 3 & 1 & & & \\ & 3 & 1 & & \\ & & & 3 \end{pmatrix}, \qquad \begin{pmatrix} 3 & 1 & & & \\ & -4 & -1 & & \\ & & & 2 & 1 \\ & & & -1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 3 & 1 & 1 & 1 \\ -4 & -1 & -1 & 1 \\ & & & 2 & 1 \\ & & & -1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 2 & 2 & & \\ 1 & 3 & & \\ & & & 4 & 1 \\ & & & & 4 \end{pmatrix}.$$

- 11.满足下述条件的方阵 A 是否可对角化?
- (1) A是幂零矩阵;
- (2) $A^k = I(k \ge 2)$;
- (3) $A^2 + A = 2I$.

12.
$$\Box$$
 $\exists A = \begin{pmatrix} 2 & -1 & -2 \\ -1 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$, $\vec{\mathcal{R}} g(A) = A^8 - 9A^6 + A^4 - 3A^3 + 4A^2 + I$.

13. 下述的 $f(\lambda)$, $m(\lambda)$ 分别表示矩阵 A 的特征多项式和最小多项式,

确定 A 的可能的 Jordan 标准形:

(1).
$$f(\lambda) = (\lambda - 2)^4 (\lambda - 3)^2$$
, $m(\lambda) = (\lambda - 2)^2 (\lambda - 3)^2$

(2).
$$f(\lambda) = (\lambda - 3)^3 (\lambda + 2)^3$$
, $m(\lambda) = (\lambda - 3)^2 (\lambda + 2)$

14. 求可逆矩阵 *P* , 使 *P* ⁻¹ *AP* 为 *Jordan* 矩阵, 其中:

$$A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix} \circ$$

15. 设 V^4 是由函数 e^x , xe^x , x^2e^x , e^{2x} 张成的线性空间,求 V^4 的线性变换 $D = \frac{d}{dx}$ 的Jordan标准形。