

& Vollständige Industrion 2.2: Filo alla new gill A(n). Induktion an wooline: A (n) eit water für ein ne M Industions devit : A (n+1) int water (unte IA) Widesprudisbeweis: 22. A ist waler. Analime: "A nit waler und folger darum eine Widesprach, etwa B17B Par eine Hurrage B.

1.4 Abbildungen

Vorstellung

M, N Mengen

Abbildung (oder Funktion) von M nach N:

"Vorschrift" (z.B. "Formel"), die jedem $x \in M$ genau ein $y \in N$ "zuordnet".

Definition

- ► Abbildung (oder Funktion) von M nach N: besteht aus
 - ► M Menge
 - ► N Menge
 - $ightharpoonup f \subset M \times N$

(x,y)ef und

so, dass: für jedes $x \in M$ ex. genau ein $y \in N$ mit $(x, y) \in f$

=) y=y'

Missbrauch von Notation: notiere Abbildung wieder als f

► Terminologien und Notationen:

f Abbildungsvoischaft

- ► M heißt Definitionsbereich von f.
- ► N heißt Zielbereich oder Wertebereich von f.
- ▶ Bild von $x \in M$ unter f: das $y \in N$ mit $(x, y) \in f$ f(x) Notation:

▶ Urbild von $y \in N$ unter f: **ein** $x \in M$ mit y = f(x)

(x,y) ef und (x,y) ef mit x =x'

Notation

Es seien M, N Mengen.

- ► Menge der Abbildungen von M nach N: Abb(M, N) oder N^M .
- ▶ Notationen für $f \in Abb(M, N)$:
 - ▶ $f: M \rightarrow N$
 - ▶ $f: M \to N, x \mapsto f(x)$
 - $\blacktriangleright M \xrightarrow{f} N$

Beispiele

- ▶ Abb(\mathbb{R}, \mathbb{R}) = $\mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\} =$ Menge aller reellen Funktionen.
- \blacktriangleright Abb($\{1,2\},\{3,4,5\}$)

Abb(
$$\{1,2\}, \{3,4,5\}$$
)
= $\{(1 \mapsto 3, 2 \mapsto 3), (1 \mapsto 3, 2 \mapsto 4), (1 \mapsto 3, 2 \mapsto 5), (1 \mapsto 4, 2 \mapsto 3), (1 \mapsto 4, 2 \mapsto 4), (1 \mapsto 4, 2 \mapsto 5), (1 \mapsto 5, 2 \mapsto 3), (1 \mapsto 5, 2 \mapsto 4), (1 \mapsto 5, 2 \mapsto 5)\}$

$$M = \{1,2\}, N = \{3,4,5\}, |N^M| = |N|$$

Beispiele

- ▶ $\{1,2,3\} \rightarrow \{4,5,6\}$, $1 \mapsto 4$, $2 \mapsto 5$, $3 \mapsto 4$ ist Abbildung.
- ▶ $\mathbb{Z} \to \mathbb{Q}$, $x \mapsto 2x^2$ ist Abbildung. $f: \mathbb{Z} \to \mathbb{Q}$, $f(x) = 2x^2$.
- ► Es gibt keine Abbildung $f: \mathbb{N} \to \mathbb{N}$ mit $f(x) = \sqrt{x}$ für $x \in \mathbb{N}$. $f: \mathbb{N} \to \mathbb{R}$, $x \mapsto \sqrt{x}$.
- ► Es gibt keine Abbildung $f: \{-2, 3, \sqrt{61}\} \rightarrow \mathbb{Q}$ mit f(3) = -5 und f(3) = 2/7. $(3, 2/7) \in \{$
- ▶ $\{(x, \frac{1}{x}) \mid x \in \mathbb{R} \setminus \{0\}\} \subseteq \mathbb{R} \times \mathbb{R}$ liefert keine Abbildung $\mathbb{R} \to \mathbb{R}$. $O \mapsto ??$
- ▶ $f: \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x) = \begin{cases} \frac{1}{x} & \text{für } x \in \mathbb{R} \setminus \{0\} \\ 0 & \text{für } x = 0 \end{cases}$$

ist Abbildung.

nive' gleich €) M=M'

Abbildungen (Forts.)

idungen (Forts.)

Beispiele

$$N = N'$$

$$f = f' \quad [f(\alpha) = f'(\alpha) \quad \forall \times \in M]$$

►
$$f: \{1,2,3\} \to \mathbb{N}, x \mapsto x + 2$$

 $g: \{1,2,3\} \to \mathbb{N}, 1 \mapsto 3, 2 \mapsto 4, 3 \mapsto 5$ } $f = g$

 $ightharpoonup f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} \frac{1}{x+1} & \text{für } x \in \mathbb{R} \setminus \{-1\} \\ 0 & \text{für } x = -1 \end{cases}$$

$$g(x) = \begin{cases} \frac{1}{x+1} & \text{für } x \in \mathbb{R} \setminus \{-1\} \\ -1 & \text{für } x = -1 \end{cases}$$

$$f \neq g$$

$$f(-1) = 0 \neq -1 = g(-1)$$

$$f: \mathbb{N} \to \mathbb{N}, x \mapsto x^2$$

$$g: \mathbb{Z} \to \mathbb{N}, x \mapsto x^2$$

•
$$f: \mathbb{N} \to \underline{\mathbb{N}} \ x \mapsto x+1$$

 $g: \mathbb{N} \to \mathbb{Z}, \ x \mapsto x+1$

$$f \neq g$$

Beispiele

► Briefpostversand der Aachener Post:

► Nachrichtenverschlüsselung:

Nachrichtenentschlüsselung:

$$X, X' \in \mathbb{Z}, \quad X = X'$$
 $Y \in \mathbb{Z}$

$$=) \quad \times + Y = + (x_1 Y) = + (x_1' Y) = x_1' + Y.$$

$$(x_1 Y) = (x_1' Y)$$

Beispiele

► Addition in Z ist die Abbildung

$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (x, y) \mapsto x + y. \qquad + (x_1 y)$$

► M Menge von Glasperlen , F Menge aller Farben.

 $f : M \to F, x \mapsto \text{Farbe von } x.$

► *A* Menge von Personen.

 $J: A \to \mathbb{Z}, p \mapsto \text{Geburtsjahr von } p.$

► Zu jeder Menge M gibt es die Identitätsabbildung

$$\mathrm{id}_M:M\to M, x\mapsto x.$$
 id $\mathbb{R}:\mathbb{R}\to\mathbb{R}$, $\mathrm{id}_\mathbb{R}(x)=x$

- ▶ N Menge. Dann existiert genau eine Abbildung $\emptyset \to N$. $\phi \times V = \phi$, $f = \phi$
- ▶ M nicht-leere Menge. Dann existiert keine Abbildung $M \to \emptyset$. When $M \times \emptyset = \emptyset$

Folgen

Es sei N eine Menge.

Definition

Eine Abbildung $f : \mathbb{N} \to N$ wird auch *Folge in N* genannt.

Schreibweisen

▶ Die Folge $f : \mathbb{N} \to N$ in N wird auch geschrieben als

 a_1, a_2, a_3, \dots

a: Folger glieder

oder

 $(a_i)_{i\in\mathbb{N}}$.

Hier ist $a_i := f(i)$ für $i \in \mathbb{N}$.

► Menge aller Folgen in N: Abb(\mathbb{N} , N) oder $N^{\mathbb{N}}$.

Folgen (Forts.)

Beispiele

▶ $f: \mathbb{N} \to \mathbb{R}$, $i \mapsto i^2$ wird auch geschrieben als

$$1, 4, 9, 16, \dots$$

oder

$$(i^2)_{i\in\mathbb{N}}$$
.

- $ightharpoonup \{0,1\}^{\mathbb{N}}$ Menge der Binärfolgen. (Manchmal auch $2^{\mathbb{N}}$.)
- $ightharpoonup \mathbb{R}^{\mathbb{N}}$ Menge der reellen Folgen.

Definition durch Rekursion

Folgen auf einer Menge können rekursiv definiert werden.

Beispiele

 $a_1 = 1_1$ $a_2 = 1 + \frac{1}{1} = 1 + 1 = 2$

▶ Auf $\mathbb{R}_{>0}$ existiert genau eine Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_3 = 1 + \frac{1}{2}, a_4 = 1 + \frac{1}{1 + \frac{1}{2}} \dots$$

$$a_1 := 1 \text{ und } a_{n+1} := 1 + \frac{1}{a_n} \text{ für } n \ge 1.$$

▶ Es sei $a \in \mathbb{R}$. Es gibt genau eine Folge $x = (x_n)_{n \in \mathbb{N}}$ in \mathbb{R} mit

$$x_1 = a \text{ und } x_{n+1} = a \cdot x_n \text{ für } n \ge 1.$$
 $a_1 = a_1 \cdot a_2 = a \cdot a_1 \cdot a_2 = a \cdot a_1 = a \cdot a_2 = a \cdot a_2$

Wir schreiben: $a^n := x_n$ für das n-te Glied dieser Folge. Sprechweise oft: Wir definieren die *Potenzen* a^n für $n \in \mathbb{N}$ rekursiv durch:

$$a^1 := a$$
 und $a^{n+1} := a \cdot a^n$ für $n \ge 1$.

Definition durch Rekursion (Forts.)

Die Definition durch Rekursion beruht auf dem folgenden Satz.

Proposition

Es sei N eine Menge, $f: N \to N$ Abbildung und $a \in N$.

Dann gibt es genau eine Folge $(a_n)_{n\in\mathbb{N}}$ in N mit:

- ► $a_1 = a$
- ▶ $a_{n+1} = f(a_n)$ für $n \in \mathbb{N}$.

Dieser Rekursionssatz von Dedekind kann durch vollständige Induktion bewiesen werden.

Definition durch Rekursion (Forts.)

Beispiele

In obigen Beispielen können wir nehmen:

$$ightharpoonup f: \mathbb{R}_{>0} o \mathbb{R}_{>0}$$
, $x \mapsto 1 + 1/x$.

▶
$$f : \mathbb{R} \to \mathbb{R}$$
, $x \mapsto ax$.

Tupel

Es sei $n \in \mathbb{N}$. Erinnerung: $\underline{n} = \{1, 2, \dots, n\} \subseteq \mathbb{N}$.

Definition

Eine Abbildung $f : \underline{n} \to N$ wird auch n-Tupel in N genannt.

Schreibweisen

▶ Das n-Tupel $f : \underline{n} \to N$ in N wird auch geschrieben als

$$(a_{1}, a_{2}, \dots, a_{n}) \qquad n = 1$$

$$(a_{i})_{i \in \underline{n}}. \qquad (A_{i})_{i \in \underline{n}}. \qquad (A_{i})$$

Tupel (Forts.)

Beispiele

- ▶ Das 5-Tupel (1, -3, 0, 0, 27) in \mathbb{Z} ist die Abbildung $t : \underline{5} \to \mathbb{Z}$ mit t(1) = 1, t(2) = -3, t(3) = t(4) = 0, t(5) = 27.
- $\{0,1\}^3 = \{(1,1,1),(1,1,0),(1,0,1),(1,0,0),\\ (0,1,1),(0,1,0),(0,0,1),(0,0,0)\}.$
- Für jede Menge N kann N^2 mit $N \times N$ identifiziert werden. (Hier wird das 2-**Tupel** $(x,y) \in N^2$, d.h. die Abbildung $\{1,2\} \to N$, $1 \mapsto x$, $2 \mapsto y$, identifiziert mit dem **geordneten Paar** $(x,y) \in N \times N$.)

Tupel (Forts.)

ABC | (A v (7B-)C)) A A

1 1 0

1 0 1

Beispiel

 $n \in \mathbb{N}$, A_1, \ldots, A_n Variablen für Aussagen (bzw. deren Wahrheitswert):

- ► Belegung von A_1, \ldots, A_n :
 modelliert als Element von
- ▶ potentielle Wahrheitstafel für A_1, \ldots, A_n :