Reinforcement Learning

Dr. Demetrios Glinos University of Central Florida

CAP4630 – Artificial Intelligence

Topics

- Motivation
- Reinforcement Learning Context
- Direct Utility Estimation
- Model-Based Learning
- Q-Learning
- Exploration
- Generalization

Consider Two One-Armed Bandits

Left: Pays \$1 every time

Right: Pays either \$2 or \$0

- Game Assumptions:
 - Costs nothing to play either machine
 - Game ends after 100 turns
 - Goal: to maximize expected return

Game as an MDP

Actions: Play left, Play right

States: Won, Lost Start state: either

Solving the MDP

- Can be solved offline
 - as a simulation, just like planning
 - need to know details of MDP
 - you don't actually play the game

Policy	Expected payoff after 100 turns
Play left	100
Play right	150

In-Game Experience

Left: Pays \$1 every time

Right: Pays either \$2 or \$0

- Assume solved MDP per previous slide
- Based on solution, choose policy: Always play right
- Suppose we get these results: \$0 \$2 \$0 \$2 \$0 \$0 \$0 \$0 \$2

What we now know

- Win chance for "Play right" is different from what we expected
- But we don't know what it is

- We cannot solve this offline
- But sooner or later we will stop always playing right

Huh? What Happened?

- We learned from experience!
 - this was reinforcement learning
 - there is an MDP, but we don't know enough to solve it
 - so, we must use experience to infer the details

Right: Pays either \$2 or \$0

- We touched on these aspects of reinforcement learning
 - Exploration need to try things out to find out what happens
 - Exploitation using what you know so far
 - Regret making mistakes
 - Sampling how much is enough
 - Difficulty learning can be much harder than offline analysis

Topics

- Motivation
- Reinforcement Learning Context
- Direct Utility Estimation
- Model-Based Learning
- Q-Learning
- Exploration
- Generalization

The RL Problem

- Imagine playing a new game whose rules you do not know
 - After a large number of turns, opponent declares that you have lost
 - Making sense of this is reinforcement learning
- RL can sometimes be
 - the only way (supervised learning infeasible)
 - the best way

- Examples:
 - TD-Gammon
 - Program to fly a drone

RL Paradigm

Basic idea:

- Feedback is in the form of rewards
- Unknown reward function determines the utilities
- Agent must learn how to act to maximize expected rewards
- All learning based on observed samples of outcomes

Assumption: There is an underlying MDP

- The universe is not random
- What is going on is still an MDP
 - A set of states s ∈ S
 - A set of actions a∈ A
 - A transition model P(s' | s, a)
 - A reward function R(s)

What We Know About the MDP

- We don't know everything
- What we know of the MDP
 - A set of states $s \in S$
 - A set of actions a∈ A
 - A start state s₀

- We don't know
 - The transition model P(s' | s, a)
 - The reward function R(s)
- We still want to find an optimal policy π (s)
- But we can't figure it out by analysis (offline)
- We must take action and see what happens (online)

How we Can Use Experience

- Direct Utility Estimation
 - A simplified RL task
 - Follow a given policy and experience rewards to determine state values
- Model-Based Learning
 - Follow an initial policy
 - Take actions and develop an approximate model
 - Use Value Iteration to evaluate the model and determine state values
- Q-Learning
 - This is active RL
 - Take actions, experience rewards, and develop q-values
 - Must explore, as well as exploit

Topics

- Motivation
- Reinforcement Learning Context
- Direct Utility Estimation
- Model-Based Learning
- Q-Learning
- Exploration
- Generalization

Direct Utility Estimation

- **Direct Utility Estimation aka Direct Evaluation**
- Goal: Compute values for each state, for a *given* policy π
- Simple procedure:
 - Act strictly according to π
 - Record sum of discounted rewards for each state visited (all the way to end)
 - Average the samples collected
- Use the "reward-to-go" definition of the utility of a state:
 - i.e., the expected total reward from that state onward

3

2

source: Fig 17.3

Example: Direct Utility Estimation

Input Policy π

assume y = 1

Q: How do we get V(C) = +4?

Trial episodes

B, right, C, -1 C, right, D, -1 D, exit, _, +10

B, right, C, -1 C, right, D, -1 D, exit, _, +10

E, up, C, -1 C, right, D, -1 D, exit, _, +10

E, up, C, -1 C, right, A, -1 A, exit, _, -10

Output values

- → This approach misses learning opportunities
- utilities are not independent
- convergence often slow

Topics

- Motivation
- Reinforcement Learning Context
- Direct Utility Estimation
- Model-Based Learning
- Q-Learning
- Exploration
- Generalization

Model-Based Learning

• Basic idea:

- Learn an approximate model from observations
 - follow some initial policy
- Once learned, assume the model is correct
- Use the model offline to solve for values
- Revised values give us a better policy

Learning the approximate model

- count outcomes s' for each (s,a)
- normalize to estimate $\hat{P}(s'|s,a)$
- Discover $\hat{R}(s')$ when s' occurs

Solving the learned MDP

Use value iteration (or policy iteration)

Example:

Suppose in state s and choose action a 10 times, and 6 of those times end up in state s', then

$$\hat{P}(s'|s,a) = 6/10 = 0.60$$

Example: Model-Based Learning

Same game as before:

What we know:

- board configuration
- A and D are terminal states
- Actions: up, down, left, right
- start in State B

We are given:

- the input policy $\pi(s)$ (shown by triangles)
- we also assume γ = 1

Example: Model-Based Learning (cont'd)

Input Policy π

Trial observations

B, right, C, -1 C, right, D, -1 D, exit, _, +10

B, right, C, -1 C, right, D, -1 D, exit, _, +10

E, up, C, -1 C, right, D, -1 D, exit, _, +10

E, up, C, -1 C, right, A, -1 A, exit, _, -10

Learned model

P(C|B, right) = 1.00 P(D|C, right) = 0.75 P(A|C, right) = 0.25 P(_|D, exit) = 1.0 P(_|A, exit) = 1.0

Given the approximate learned model, we can use value iteration to compute the values, from which we can obtain a better policy

Topics

- Motivation
- Reinforcement Learning Context
- Direct Utility Estimation
- Model-Based Learning
- Q-Learning
- Exploration
- Generalization

Active Reinforcement Learning

- This is full reinforcement learning
 - still don't know transition function
 - still don't know reward function
 - this time, policy $\pi(s)$ is NOT fixed
 - agent actively chooses actions

- Goal: learn an optimal policy / values
- How this works
 - Agent makes choices and gains experience
 - Must try different things ("Nothing ventured, nothing gained")
 - Balance exploration v. exploitation
 - This is NOT offline planning

Q-Value Iteration

- Recall: Value Iteration
 - Start with zero vector: $V_0(s) = 0$, for all s
 - Iterate:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s' \mid s, a) [R(s') + \gamma V_k(s')]$$

Big idea: drop down a half level and do expectimax from the chance node instead

- Start with zero vector: $Q_0(s,a) = 0$, for all (s,a)
- Iterate:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a)[R(s') + \gamma \max_{a'} Q_k(s',a')]$$

Q: Why would this be more useful?

Q-Learning

Q-Learning is sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a) [R(s') + \gamma \max_{a'} Q_k(s',a')]$$

- Get trial observations: (s,a,s',r)
- Start with old estimate: Q(s,a)
- Interpret sample:

Note: max_aQ (s',a') is just the approximate $V^*(s')$

sample =
$$R(s') + \gamma \max_{a'} Q(s',a')$$

• Fold new sample into running average Q-value using learning rate α :

$$Q_{new}(s,a) \leftarrow$$
 (1 – α) $Q_{old}(s,a)$ + (α) (sample)

Q-Learning Demo


```
From [ 0, 2 ] try NORTH do NORTH end [ 0, 1 ] reward -0.04
From [ 0, 1 ] try EAST do EAST end [ 0, 1 ] reward -0.04
From [ 0, 1 ] try NORTH do WEST end [ 0, 1 ] reward -0.04
From [ 0, 0 ] try NORTH do NORTH end [ 0, 0 ] reward -0.04
From [ 0, 0 ] try EAST do NORTH end [ 0, 0 ] reward -0.04
From [ 0, 0 ] try EAST do EAST end [ 1, 0 ] reward -0.04
From [ 1, 0 ] try EAST do EAST end [ 2, 0 ] reward -0.04
From [ 2, 0 ] try EAST do SOUTH end [ 2, 1 ] reward -0.04
From [ 2, 1 ] try NORTH do WEST end [ 2, 0 ] reward -0.04
From [ 2, 1 ] try NORTH do NORTH end [ 2, 0 ] reward -0.04
From [ 2, 0 ] try EAST do EAST end [ 3, 0 ] reward -0.04
EXIT from [ 0, 2 ] reward 1.00
```

demo: GridSim

Using Q-values

- Once the Q-values are learned, the state values are easily computed
 - just take the max of the Q-values over all actions from the state
- The optimal policy is to choose the action that produces the highest Q-value for the state

Q-Learning Convergence

- Q-Learning converges to optimal policy
 - even if not acting optimally
 - this is called "off-policy learning"
- Requirements
 - Must explore enough
 - Must eventually lower the learning rate sufficiently to stop learning
- Bottom line:
 - How you select actions while you learn does not really matter in the limit
 - OK to start with zero values

Topics

- Motivation
- Reinforcement Learning Context
- Direct Utility Estimation
- Model-Based Learning
- Q-Learning
- Exploration
- Generalization

Exploration – Exploitation Tradeoff

- Greedy agent that follows currently recommended (presumed optimal)
 action at each step
- Converges to a suboptimal policy
- **Exploitation** is about maximizing reward
- Exploration is about maximizing long-term well-being

How to Explore

- Must be GLIE Greedy in the Limit of Infinite Exploration
 - must try each action an infinite number of times to avoid having a finite probability
 of missing an optimal action due to a really bad series of outcomes
 - will learn the optimal model
 - must also eventually become greedy
 - must eventually stop exploring and follow the learned (optimal) model to avoid thrashing once done learning
- Simplest GLIE scheme: "ε-greedy"
 - choose a random action 1/t of the time and follow current policy otherwise
 - can be extremely slow
- Improving exploration
 - we can lower exploration threshold over time (to avoid thrashing)
 - we can use exploration functions that assign higher utility estimate to relatively unexplored state-action pairs

Q-Learning Example

This model uses an exponential decay exploration function

demo: crawl

Topics

- Motivation
- Reinforcement Learning Context
- Direct Utility Estimation
- Model-Based Learning
- Q-Learning
- Exploration
- Generalization

Practical Limits

- Basic Q-Learning keeps track of all Q-values
 - conceptually, as a table
- This is not possible in realistic situations
 - Too many states to store them all in memory
 - Too many states to visit in training
- Instead, we need to generalize
 - Learn what we can from experience
 - Generalize what we learned to new, but similar situations

Book of Every Chess Position

Generalization

 If we learn through experience that this state is bad

- Then we know nothing about this one, unless:
 - we learn it separately
 - or, we generalize from the state above

Feature-Based Representation

- **Features** are functions over states to real numbers
 - distance to closest ghost for Pac-Man
 - 1 / (distance to dot)²
 - is Pac-Man in a tunnel, etc.

Note: the feature functions themselves can encode nonlinear conditions

• We can write state values as linear combinations of feature values

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$$

We can also express q-state values as linear combinations of feature values
 e.g., the action moves Pac-Man closer to food, power, or ghost

$$Q(s,a) = w_1f_1(s,a) + w_2f_2(s,a) + ... + w_nf_n(s,a)$$

- Advantages: features give us a compact representation of value
- Disadvantages: states with similar features may have very different values

Approximate Q-Learning

Compute Q-values using feature function

$$Q(s,a) = w_1f_1(s,a) + w_2f_2(s,a) + ... + w_nf_n(s,a)$$

- Q-learning with linear Q-functions:
 - experience a transition: (s,a,r,s')
 - compute difference = [immediate reward + discounted future] Q(s,a)
 - for exact Q-learner, just update table entry: $Q(s,a) = Q(s,a) + \alpha$ [difference]
 - for approximate Q-learner, update weights: $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s,a)$
- → The learning algorithm finds the values of the weights that maximize our expected utility, so we don't need to hunt around manually to find them

Approximate Q-Learning Demo

This implementation uses only 2 features and wins about 60% of the time

demo: qlearn2