IN THE CLAIMS

(currently amended): A compound of formula I,

$$R^3$$
 R^4
 R^5
 Z
 R_1

wherein X represents an optionally substituted anyl-or heteroaryl-group or an optionally substituted amide, amine or sulfonamide group, which latter three groups are connected to the indole ring through their nitrogen atom;

Y represents a carboxylic acid, a carboxylic acid ester, a carboxylic acid amide, a hydroxamic acid, a hydroxamic acid ester or hydroxymethyl;

Z represents a spacer group comprises a C₁₋₈ alkylene or a C₂₋₈ heteroalkylene chain;

R¹ represents an optionally substituted aryl or heteroaryl group; one of the groups R², R³, R⁴ and R⁵ represents an optionally substituted aryl or heteroaryl group and the other groups R², R³, R⁴ and R⁵ are independently selected from hydrogen, G¹, an aryl group, a heteroaryl group (which latter two groups are optionally substituted by one or more substituents selected from A), C₁, 8 alkyl, C₂, 10 cycloalkyl, C₂, 8 lkenyl. C₂, 8 lkynyl or C₂, 8 heterocycloalkyl (which latter five groups are optionally substituted by one or more substituents selected from G¹ and/or Q¹; and/or

b) any two other groups which are adjacent to each other are optionally linked to form, along with two atoms of the essential benzene ring in the compound of formula I, a 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R*, -OR* and =O;

A represents:

an aryl group or a heteroaryl group, both of which are optionally substituted by
one or more substituents selected from B;

- a C_{1.6} alkyl, C_{3.10} cycloalkyl, C_{2.6} alkenyl, C_{2.6} alkynyl or C_{3.6} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G¹ and/or Q¹; or
 - a G¹ group; or
- IV) two adjacent A substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two A substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

G¹ represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A¹-R¹0;

wherein A^1 represents a single bond or a spacer group selected from $-C(Q^2)A^2$, $-S(O)_nA^3$, $-N(R^{11})A^4$, $-OA^5$, and -S-, in which:

A2 represents A6 or -S-;

A3 represents A6;

 A^4 represents A^7 , $-C(Q^2)N(A^{11})C(Q^2)N(R^{11})$ -, $-C(Q^2)N(A^{11})C(Q^2)O$ -,

 $\frac{C(Q^2)N(A^{11})S(O)_0N(R^{11})_-, -C(Q^2)S_-, -S(O)_0N(R^{11})C(Q^2)N(R^{11})_-, -S(O)_0N(R^{11})C(Q^2)O_-, -S(O)_0N(R^{11})S(O)_0N(R^{11}) - or -S(O)nO_-;$

A⁵ represents A⁷ or -S(O)_nO-;

A⁶ represents a single bond, -N(R¹¹)- or O-;

 A^{T} represents a single bond, $-C(Q^{2})$ -, $-C(Q^{2})N(R^{11})$ -, $-C(Q^{2})O$ -, $-S(O)_{0}$ - or $-S(O)_{0}N(R^{11})$;

Q¹ and Q² independently represent, on each occasion when mentioned above, =O, =S, =NR¹0, =NN(R¹0)(R¹1), =NOR¹0, =NS(O)·N(R¹0)(R¹1), =NCN, =C(H)NO₂ or =C(R¹0)(R¹1);

R⁶ and R⁷ independently represent, on each occasion when mentioned above:

- hvdrogen:
- <u>ii)</u> an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B; or
- III) a $C_{1:6}$ alkyl, $C_{2:6}$ alkenyl, $C_{2:6}$ alkenyl, $C_{2:6}$ alkynyl or $C_{3:6}$ heterocycloalkyl group, all of which groups are optionally substituted by one or more substituents selected from G^2 and/or Q^3 ; or

 A^6 and R^7 may be linked together to form along with the N atom and -E- group to which A^6 and A^7 are respectively attached, a 5- to a-membered ring, optionally containing 1 to 3

heteroatoms and/or 1 to 3 unsaturations, which ring is optionally substituted by one or more substituents selected from G² and/or Q³.

B represents:

- I) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G² and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R³, -OR⁸ and =O;
- a C₁₋₆ alkyl, C₂₋₁₀ cycloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl or C₃₋₆ heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G² and/or Q³; or
 - iii) a G² group; or
- IV) two adjacent B substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two B substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O:
- G² represents, on each occasion when mentioned above, halo, cyano, -N_{3₁} -NO_{2₁} -ONO₂ or -A⁸-R¹²;
- wherein A⁸ represents a single bond or a spacer group selected from –C(Q⁴)A⁹-, -S(O)₁A¹⁰-, -N(R¹³)A¹¹-, -OA¹²- and –S-, in which;

A9 represents A13 or -S-;

A¹⁰ represents A¹³;

 $\begin{array}{lll} & A^{11} \ represents \ A^{14}, \ -C(Q^4)N(R^{13})C(Q^4)N(R^{13})_{-}, \ -C(Q^4)N(R^{13})C(Q^4)Q_{-}, \\ & -C(Q^4)N(R^{13})S(Q)_nN(R^{13})_{-}, \ -C(Q^4)S_{-}, \ -S(Q)_nN(R^{13})C(Q^4)N(R^{13})_{-}, \ -S(Q)_nN(R^{13})C(Q^4)Q_{-}, \\ & -S(Q)_nN(R^{13})S(Q)_nN(R^{13})_{-} \ or \ -S(Q)_nQ_{-}. \end{array}$

A¹² represents A¹⁴ or -S(O),O-;

A¹³ represents a single bond, -N(R¹³)- or -O-;

 \underline{A}^{14} represents a single bond, $-C(Q^4)$ -, $-C(Q^4)N(R^{13})$ -, $-C(Q^4)O$ -, -S(O), or -S(O), $N(R^{13})$;

 Q^3 and Q^4 independently represent, on each occasion when mentioned above, =0, =S, =NR¹², =NN(R¹²)(R¹³), =NOR¹², =NS(O)₂N(R¹²)(R¹³), =NCN, =C(H)NO₂ or =C(R¹²)(R¹³):

R8, R9, R10, R11, R12 and R13 are independently selected from:

hydrogen;

- ii) an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G³ and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms, which ring is itself optionally substituted by one or more substituents selected from halo, -R¹⁴, -OR¹⁴ and =O; or
- $\label{eq:continuous} \begin{array}{ll} \underline{\text{iii}}) & \underline{a \ C_{1:6} \ \text{alkyl}, \ C_{3:0} \ \text{cycloalkyl}, \ C_{2:6} \ \text{alkenyl}, \ C_{2:6} \ \text{alkynly or } C_{3:6} \ \text{heterocycloalkyl}} \\ \underline{\text{qroup, all of which are optionally substituted by one or more substituents selected from } G^3 \\ \underline{\text{and/or}} \ W^1; \ \text{or} \end{array}$

any pair of R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 8-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G³ and/or W¹;

 $\label{eq:G3} \textbf{G}^3 \ \text{represents, on each occasion when mentioned above, halo, cyano, -N_3, -NO_2, -ONO_2} \\ \text{or } -A^{15} \cdot R^{15},$

wherein A¹⁵ represents a single bond or a spacer group selected from -C(W²)A¹⁶, -S(O)₂A¹⁷-, -N(R¹⁶)A¹⁸-, -OA¹⁹- and -S-, in which:

A¹⁶ represents A²⁰ or -S-;

A¹⁷ represents A²⁰;

A¹⁸ represents A²¹, -C(W²)N(R¹⁶)C(W²)N(R¹⁶)-, -C(W²)N(R¹⁶)C(W²)O,

 $\underline{-C(W^2)N(R^{16})S(O)_{\underline{n}}N(R^{16})}, \underline{-C(W^2)S}, \underline{-S(O)_{\underline{n}}N(R^{16})C(W^2)N(R^{16})}, \underline{-S(O)_{\underline{n}}N(R^{16})C(W^2)O},$

 $-S(O)_nN(R^{16})S(O)_nN(R^{16})$ - or $-S(O)_nO$ -;

A¹⁹ represents A²¹ or -S(O)₀O-;

A²⁰ represents a single bond, -N(R¹⁶)- or -O-;

 $\underline{A^{21} \text{ represents a single bond, -C(W^2)-, -C(W^2)N(R^{16})-, -C(W^2)Q-, -S(Q)_n- or -S(Q)_nN(R^{16}); }$

R¹⁴, R¹⁵ and R¹⁶ are independently selected from:

hydrogen;

an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G⁴, methylenedioxy, difluoromethylenedioxy and/or dimethylmethylenedioxy; or

 $\label{eq:controller} \begin{array}{ll} &\text{iii}) & \text{a $C_{1:8}$ alkyl, $C_{3:10}$ cycloalkyl, $C_{2:6}$ alkenyl, $C_{2:6}$ alkynyl or $C_{3:8}$ heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^4 and/or J; or <math display="block"> &\text{and/or J}; \text{ or } \\ \end{array}$

any pair of R¹⁴, R¹⁵ and R¹⁶ may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 7-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G⁴ and J;

 G^4 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A²²-R¹⁷;

wherein A²² represents a single bond or a spacer group selected from -C(O)A²³-,

-S(O),A24-, -N(R18)A25-, -OA26- and -S-, in which:

A²³ represents A²⁷ or -S-;

A24 represents A27:

A²⁵ represents A²⁸, -C(O)N(R¹⁸)C(O)N(R¹⁸)-, -C(O)N(R¹⁸)C(O)O-,

 $-C(O)N(R^{18})S(O)_{\underline{n}}N(R^{18})-, -C(O)S-, -S(O)_{\underline{n}}N(R^{18})C(O)N(R^{18})-, -S(O)_{\underline{n}}N(R^{18})C(O)O-, -S(O)_{\underline{n}}N(R^{1$

 $-S(O)_nN(R^{18})S(O)_nN(R^{18})$ - or $-S(O)_nO$ -;

A²⁶ represents A28 or -S(O)_nO-;

A²⁷ represents a single bond, -N(R¹⁸)- or -O-;

 $\frac{A^{28}}{A^{28}}$ represents a single bond, -C(O)-, -C(O)N(R¹⁸)-, -C(O)O-, -S(O)₀- or -S(O)₀N(R¹⁸); J represents, on each occasion when mentioned above, =O, =S, =NR¹⁷, =NN(R¹⁷)(R¹⁸),

 $=NOR^{17}$, $=NS(O)_2N(R^{17})(R^{18})$, =NCN, $=C(H)NO_2$ or $=C(R^{17})(R^{18})$;

R¹⁷ and R¹⁸ are independently selected from hydrogen and C'-6 alkyl, which latter group is optionally substituted by one or more substituents selected from halo, -NH₂, -N(H)Me,

-N(H)Et, -N(H):-Pr, -NMe₂, -N(Me)Et, -N(Me)-Pr, -NEt₂, -OH, -OMe, -OEt, -Oi-, Pr and =O; and n represents, on each occasion when mentioned above, 1 or 2,

or a pharmaceutically-acceptable salt thereof.

(currently amended): A compound as claimed in Claim 1, wherein:

- an aryl group or a heteroaryl group, both of which groups are optionally
- substituted by one or more substituents selected from A: or
 - -N(R6)-E-R7:

X represents:

E represents a single bond. -CG(O)- or -S(O)-:

Y represents -CH2OH, -C(O)N(H)R8, -C(O)N(H)OR8 or -C(O)OR8;

- Z represents a C_{1.8} alkylene or a C_{2.8} heteroalkylene chain, both of which:
- optionally contain one or more unsaturations:
- are optionally substituted by one or more substituents selected from halo, -R8, (ii) -N(R8)(R9), -OR8 and =O; and/or
- may form part of an additional 3- to a-membered ring formed between any one or more members of the C1-S alkylene or C2-S heteroalkylene chain, which ring optionally contains 1 to 3 heteroatoms and/or 1 to 3 unsaturations and which ring is itself optionally substituted by one or more substituents selected from halo, -R8, -N(R8)(R9), -OR8 and =O:

R¹ represents an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from A:

one of the groups R2, R3, R4 and R5 represents an arvi group or a heteroarvi group (both of which are optionally substituted by one or more substituents selected from A) and:

- the other groups are independently selected from hydrogen, G1, an aryl group, a heteroaryl group (which latter two groups are optionally substituted by one or more substituents selected from A), C₁₋₆ alkyl, C₃₋₁₀ cycloalkyl, C₂₋₆ alkenyl. C₂₋₆ alkynyl or C₃₋₈ heterocycloalkyl (which latter five groups are optionally substituted by one or more substituents selected from G1 and/or Q1); and/or
- b) any two other groups which are adjacent to each other are optionally linked to form, along with two atoms of the essential benzene ring in the compound of formula I, a 5- to 6membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R8, -OR8 and =O-

A represents, on each occasion when mentioned above:

an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B;

- II) a $C_{1.6}$ alkyl, $C_{3.10}$ cycloalkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl or $C_{3.6}$ heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^1 and/or Q^1 ; or
 - III) a G¹ group; or
- IV) two adjacent A substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two A substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo. -R*. -OR* and =O:
- \mbox{G}^{1} represents, on each occasion when mentioned above, halo, cyano, -N3, -N02, -ONO2 or -A\$^-R\$^{10};

wherein A¹ represents a single bond or a spacer group selected from -C(Q²)A²-, -S(O),A³-, -N(R¹¹)A⁴-, -OA⁵- and -S-, in which:

A2 represents A6 or -S-:

A3 represents A6:

 $A^4 \text{ represents } A^7, -C(Q^2)N(A^{11})C(Q^2)N(R^{11}), -C(Q^2)N(A^{11})C(Q^2)O_-, \\ C(Q^2)N(A^{11})S(O),N(R^{11}), -C(Q^2)S_-, -S(O),N(R^{11})C(Q^2)N(R^{11}), -S(O),N(R^{11})C(Q^2)O_-, \\ -S(O),N(R^{11})S(O),N(R^{11}) - or -S(O),nO_-; \\ \end{aligned}$

A⁵ represents A⁷ or -S(O)_oO-:

A⁶ represents a single bond, -N(R¹¹)- or O-;

 $A^7 \ \text{represents a single bond, -C(Q^2)-, -C(Q^2)N(R^{11})-, -C(Q^2)O-, -S(O)_n- \text{ or -S(O)}_nN(R^{11});}$

 $\label{eq:Q1} Q^1 \mbox{ and } Q^2 \mbox{ independently represent, on each occasion when mentioned above, =0, =S, \\ =NR^{10}, =NN(R^{10})(R^{11}), =NOR^{10}, =NS(O)_2N(R^{10})(R^{11}), =NCN, =C(H)NO_2 \mbox{ or } =C(R^{10})(R^{11});$

R⁶ and R⁷ independently represent, on each occasion when mentioned above:

- hvdrogen:
- II) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B; or
- III) a $C_{1:6}$ alkyl, $C_{3:0}$ cycloalkyl, $C_{2:6}$ alkenyl, $C_{2:6}$ alkynyl or $C_{3:6}$ heterocycloalkyl group, all of which groups are optionally substituted by one or more substituents selected from G^2 and/or O^3 or

 A^6 and R^7 may be linked together to form along with the N atom and -E- group to which A^6 and A^7 are respectively attached, a 5- to a-membered ring, optionally containing 1 to 3

heteroatoms and/or 1 to 3 unsaturations, which ring is optionally substituted by one or more substituted from G² and/or O³:

B represents, on each occasion when mentioned above:

- I) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G² and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;
- II) a $C_{1:6}$ alkyl, $C_{3:10}$ cycloalkyl, $C_{2:6}$ alkenyl, $C_{2:6}$ alkynyl or $C_{3:6}$ heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^2 and/or Q^3 : or
 - III) a G2 group; or
- IV) two adjacent B substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two B substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;
- G^2 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A^8-R^{12}:
- wherein A^8 represents a single bond or a spacer group selected from $-C(Q^4)A^9$ -, $-S(Q)_0A^{10}$ -, $-N(R^{13})A^{11}$ -, $-OA^{12}$ and -S-, in which:

A⁹ represents A¹³ or -S-;

A¹⁰ represents A¹³;

 $A^{11} \ \text{represents} \ A^{14}, -C(Q^4)N(R^{13})C(Q^4)N(R^{13})_{-}, -C(Q^4)N(R^{13})C(Q^4)O_{-}, \\ -C(Q^4)N(R^{13})S(O)_nN(R^{13})_{-}, -C(Q^4)S_{-}, -S(O)_nN(R^{13})C(Q^4)N(R^{13})_{-}, -S(O)_nN(R^{13})C(Q^4)O_{-}, \\ -S(O)_nN(R^{13})S(O)_nN(R^{13}) - \text{ or } -S(O)_nO_{-}; \\ \end{pmatrix}$

 A^{12} represents A^{14} or $-S(O)_nO$ -;

A¹³ represents a single bond, -N(R¹³)- or -O-;

 $A^{14} \ \text{represents a single bond, } -C(Q^4)\text{-, } -C(Q^4)N(R^{13})\text{-, } -C(Q^4)O\text{-, } -S(O)_n \ \text{or } -S(O)_nN(R^{13});$

 Q^3 and Q^4 independently represent, on each occasion when mentioned above, =0, =S, =NR¹², =NN(R¹²)(R¹³), =NOR¹², =NS(O)₂N(R¹²)(R¹³), =NON, =C(H)NO₂ or =C(R¹²)(R¹³);

R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are independently selected from:

i) hydrogen;

- ii) an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G³ and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms, which ring is itself optionally substituted by one or more substituents selected from halo, -R¹⁴, -OR¹⁴ and =O; or
- iii) a $C_{1.6}$ alkyl, $C_{3.10}$ cycloalkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl or $C_{3.6}$ heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^3 and/or W^1 : or

any pair of R^8 , R^9 , R^{10} , R^{11} , R^{12} and R^{13} may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 8-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G^3 and/or W^1 ;

 G^3 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A¹⁵-R¹⁵:

wherein A^{15} represents a single bond or a spacer group selected from -C(W²) A^{16}_- , -S(O)_n A^{17}_- , -N(R¹⁶) A^{18}_- , -OA¹⁸- and -S-, in which:

A¹⁶ represents A²⁰ or -S-;

A¹⁷ represents A²⁰:

A¹⁸ represents A²¹, -C(W²)N(R¹⁶)C(W²)N(R¹⁶)-, -C(W²)N(R¹⁶)C(W²)O_,

 $-C(W^2)N(R^{16})S(0)_nN(R^{16})-, -C(W^2)S-, -S(0)_nN(R^{16})C(W^2)N(R^{16})-, -S(0)_nN(R^{16})C(W^2)0-, -S(0)_nN(R^{16})C(W^2)N(R^{16})-, -S(0)_nN(R^{16})C(W^2)-, -S($

 $-S(O)_nN(R^{16})S(O)_nN(R^{16})$ - or $-S(O)_nO$ -;

 A^{19} represents A^{21} or $-S(O)_nO$ -;

A²⁰ represents a single bond, -N(R¹⁶)- or -O-;

 $A^{21} \text{ represents a single bond, } -C(W^2)-, -C(W^2)N(R^{16})-, -C(W^2)O-, -S(O)_n- \text{ or } -S(O)_nN(R^{16});$

 $W^1 \text{ and } W^2 \text{ independently represent, on each occasion when mentioned above, =0, =S, } \\ =NR^{15}, =NN(R^{16}), R^{16}), =NOR^{15}, =NS(O)_2N(R^{15})(R^{16}), =NCN, =C(H)NO_2 \text{ or } =C(R^{15})(R^{16}); \\ =NCN, =C(H)NO_2 \text{ or } =C$

R¹⁴, R¹⁵ and R¹⁶ are independently selected from:

hydrogen;

 $ii) \qquad \text{an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from <math>G^4$, methylenedioxy, difluoromethylenedioxy and/or dimethylmethylenedioxy; or

iii) a $C_{1:6}$ alkyl, $C_{3:10}$ cycloalkyl, $C_{2:6}$ alkenyl, $C_{2:6}$ alkynyl or $C_{3:6}$ heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^4 and/or J: or

any pair of R¹⁴, R¹⁵ and R¹⁶ may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 7-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G⁴ and J:

G⁴ represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A²²-R¹⁷:

wherein A²² represents a single bond or a spacer group selected from -C(O)A²³-, -S(O).A²⁴-, -N(R¹⁸)A²⁵-, -OA²⁶- and -S-, in which:

A²³ represents A²⁷ or -S-;

A24 represents A27;

A²⁵ represents A²⁸, -C(O)N(R¹⁸)C(O)N(R¹⁸)-, -C(O)N(R¹⁸)C(O)O-,

 $-C(O)N(R^{18})S(O)_{n}N(R^{18})\text{-, }-C(O)S\text{-, }-S(O)_{n}N(R^{18})C(O)N(R^{18})\text{-, }-S(O)_{n}N(R^{18})C(O)O\text{-,}\\$

 $-S(O)_nN(R^{18})S(O)_nN(R^{18})$ - or $-S(O)_nO$ -;

A²⁶ represents A28 or -S(O)_nO-;

A²⁷ represents a single bond, -N(R¹⁸)- or -O-;

 A^{28} represents a single bond, -C(O)-, $-C(O)N(R^{18})$ -, -C(O)O-, -S(O)_n- or -S(O)_n $N(R^{18})$;

J represents, on each occasion when mentioned above, =0, =S, =NR¹⁷, =NN(R¹⁷)(R¹⁸), =NOR¹⁷, =NS(O)₂N(R¹⁷)(R¹⁸), =NCN, =C(H)NO₂ or =C(R¹⁷)(R¹⁸);

R¹⁷ and R¹⁸ are independently selected from hydrogen and C'-6 alkyl, which latter group is optionally substituted by one or more substituents selected from halo, -NH₂, -N(H)Me,

-N(H)Et, -N(H)i-Pr, -NMe₂, -N(Me)Et, -N(Me)i-Pr, -NEt₂, -OH, -OMe, -OEt, -Oi-, Pr and =O; and n represents, on each occasion when mentioned above, 1 or 2,

represents, on each occasion when mentioned above, it

or a pharmaceutically-acceptable salt thereof.

- 3. (original): A compound as claimed in Claim 2, wherein n represents 2.
- (previously presented): A compound as claimed in Claim 2, wherein A represents
 G¹ or any two adjacent A substituents may be linked by a methylenedioxy group.
- 5. (previously presented): A compound as claimed in claim 2, wherein G' represents halo, cvano, -NO₂ or -A¹-R¹⁰.
- 6. (previously presented): A compound as claimed in claim 2, wherein ${\sf A}^2$ represents ${\sf A}^6$.
- 7. (previously presented): A compound as claimed in claim 2, wherein ${\sf A}^3$ and ${\sf A}^5$ independently represent a single bond.
- 8. (previously presented): A compound as claimed in claim 2, wherein A^4 represents a single bond, $-C(Q^2)$ or $-S(Q)_2$ -.
- 9. (previously presented): A compound as claimed in claim 2, wherein Q^2 represents =0.
- 10. (previously presented): A compound as claimed in claim 2, wherein B represents ${\sf G}^2.$
- 11. (previously presented): A compound as claimed in claim 2, wherein G^2 represents halo, cyano, -NO₂- or -A 8 -R 12 .
- 12. (previously presented): A compound as claimed in claim 2, wherein A^8 represents a single bond, $-N(R^{13})A^{11}$ or $-OA^{12}$ -.
- (previously presented): A compound as claimed in claim 2, wherein A¹¹ and A¹² independently represent a single bond.

- 14. (previously presented): A compound as claimed in claim 1, wherein Z represents C₁₋₆ alkylene, in which one of the carbon atoms in the chain may be replaced with oxygen.
- (previously presented): A compound as claimed in claim 1, wherein Y represents CH₂OH, -C(O)NHR⁸ or -C(O)OR⁸.
- 16. (previously presented): A compound as claimed in claim 1, wherein R¹ represents optionally substituted fluorenyl, phenyl or pyridyl.
- 17. (previously presented): A compound as claimed in claim 1, wherein (when X represents an optionally substituted aryl or heteroaryl group) X represents an optionally substituted phenyl, thienyl, pyridyl, pyrazolyl, pyrazolyl, pyrazinyl or quinolinyl group.
- 18. (previously presented): A compound as claimed in claim 1, (when they represent an optionally substituted aryl or heteroaryl group) R², R³, R⁴, and R⁵ represent optionally substituted phenyl, pyridyl or naphthyl.
- 19. (currently amended): A compound as claimed in Claim 28 2, wherein the other substituents on the benzene ring of the indole represent hydrogen or G¹.
- 20. (previously presented): A compound as claimed in claim 2, wherein R⁶ represents hydrogen or C_{1:3} alkyl group (which latter group is optionally substituted by G²).
- 21. (previously presented): A compound as claimed in claim 2, wherein R^7 represents phenyl or pyridyl (which groups are optionally substituted by one or more substituents selected from B), or $C_{1:4}$ alkyl, $C_{2:4}$ alkenyl or $C_{5:10}$ cycloalkyl (which latter three groups are optionally substituted by one or more substituents selected from G^2).
- 22. (previously presented): A compound as claimed in claim 2, wherein R^6 and R^7 are linked to form a 5- or 6-membered ring optionally substituted by =0.
- (previously presented): A compound as claimed in Claim 2, wherein R⁸ and R¹³ independently represent C_{1:3} alkyl or hydrogen.

Application No. 10/563,464 Attorney Docket No. 059490-5048-US

- 24. (previously presented): A compound as claimed in claim 2, wherein R¹⁰ represents hydrogen, phenyl, tetrazolyl, C₁₋₄ alkyl, C₂₋₄ alkenyl or C₅₋₆ cycloalkyl, which latter five groups are optionally substituted by one or more substituents selected from G³.
- 25. (previously presented): A compound as claimed in claim 2, wherein R¹² represents hydrogen, phenyl, pyrrolyl, C₁₋₄ alkyl or C₅₋₁₀ cycloalkyl, which latter four groups are optionally substituted by one or more substituents selected from G³.
- 26. (previously presented): A compound as claimed in claim 2, wherein R^{11} represents hydrogen or $C_{2:4}$ alkenyl.
- 27. (previously presented): A compound as claimed in claim 2, wherein G³ represents halo. -R¹5 or -OR¹6.
- 28. (previously presented): A compound as claimed in claim 2, wherein R^{16} represents hydrogen, $C_{1:3}$ alkyl or phenyl.
- 29. (previously presented): A compound as claimed in claim 16, wherein the optional substituents are selected from halo, -NO₂, cyano, methylenedioxy, C_{1-6} alkyl (which alkyl group is optionally substituted by one or more substituents selected from a halo group, a phenyl groups and OR^{19}), C_{2-6} alkenyl, C_{3-10} cycloalkyl (which cycloalkyl group is optionally substituted with OR^{19}), a heteroaryl group selected from tetrazolyl and pyrrolyl (which groups are optionally substituted by one or more C_{1-6} alkyl groups), methylsthio, methylsulfonyl, methylsulfonyl, OR^{19} , OR^{19} ,
- 30. (previously presented): A compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, for use as a phramaceutical.

Application No. 10/563,464 Attorney Docket No. 059490-5048-US

31. (previously presented): A pharmaceutical formulation including a compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier.

- 32. (currently amended): A method for the treatment of a disease in which inhibition of the activity of microsomal prostaglandin E synthase-1 is desired and/or required which comprises administering to a host in need of such treatment inhibition an effective amount of a compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof.
- 33. (currently amended): A method as claimed in Claim 32, wherein the disease-is inhibition is directed towards inflammation.
 - 34. (canceled)
- 35. (currently amended): A method of-freatment of a disease in-which for inhibition of the activity of mPGES-1 is desired and/or-required, which method comprises administration of a therapeutically an effective amount of a compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, to a patient suffering from, or susceptible to, such a condition host requiring such inhibition.
 - 36. (previously presented): A combination product comprising:
- (A) a compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, and
- (B) another therapeutic agent that is useful in the treatment of inflammation, wherein each of components (A) and (B) is formulated in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier.
- 37. (currently amended): A combination product as claimed in Claim 36 which comprises a pharmaceutical formulation including a compound as defined above in Claim 1, or a pharmaceutically-acceptable salt thereof, another therapeutic agent that is useful in the treatment of inflammation, and a pharmaceutically-acceptable adjuvant, diluent or carrier.

- 38. (currently amended): A combination product as claimed in Claim 36 which comprises a kit of parts comprising components:
- (a) a pharmaceutical formulation including a compound as defined abeve in Claim 1,
 or a pharmaceutically-acceptable salt thereof, in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier; and
- (b) a pharmaceutical formulation including another therapeutic agent that is useful in the treatment of inflammation in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier.

which components (a) and (b) are each provided in a form that is suitable for administration in conjunction with the other.

adjuvant, diluent or carrier,

which components (a) and (b) are each provided in a form that is suitable for administration in conjunction with the other.

- 39. (original): A process for the preparation of a compound as defined in Claim 2, which comprises:
 - (i) reaction of a compound of formula II,

wherein X Y, R2, R3, R4 and R5 are as defined in Claim 2, with a compound of formula III,

wherein L^1 represents a suitable leaving group and R^1 and Z are as defined in Claim 2;

(ii) reaction of a compound of formula IV,

wherein L⁴ represents L² or L³, in which L² and L³ represent appropriate leaving groups and L⁴ is attached to one or more of the carbon atoms of the benzenoid ring of the indole, and the remaining positions of the benzenoid ring are substituted with 1 to 3 (depending on the number of L⁴ substituents) substituents R² to R⁵ as appropriate, and Z. X, Y, R¹, R², R³; R⁴ and R⁵ are as defined in Claim 2, with a compound of formula V,

wherein R²² represents R², R³, R⁴ or R⁵ (as appropriate), and L⁵ represents L² (when L⁴ is L³) or I³ (when L⁴ is L⁵) as defined above;

(iii) for compounds of formula I in which X represents an optionally substituted aryl or heteroaryl group, reaction of a compound of formula VI,

wherein L^2 is as defined above and Z, Y, R^1 , R^2 , R^3 , R^4 and R^5 are as defined in Claim 2, with a compound of formula VII,

wherein L³ is as defined above and Xª represents an aryl or heteroaryl group, optionally substituted as defined in Claim 2;

(iv) for compounds of formula I in which X represents –N(R⁵)-E-R⁷, reaction of a compound of formula VI as defined above, with a compound of formula VIII,

wherein E, R⁶ and R⁷ are as defined in Claim 2;

(v) for compounds of formula I in which X represents -N(R⁶)-E-R⁷, reaction of a compound of formula IX,

$$\mathbb{R}^3$$
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5

wherein Z, Y, R^1 , R^2 , R^3 , R^4 , R^5 and R^6 are as defined in Claim 2, with a compound of formula X.

wherein L1 is as defined above and E and R+ are as defined in Claim 2;

- (vi) for compounds of formula I in which E represents a single bond and R^7 is a $C_{1.6}$ alkyl group, $C_{3.6}$ alkenyl or a $C_{3.6}$ alkenyl or a $C_{3.6}$ alkynyl group, reduction of a compound of formula I, wherein X represents -C(O)- and R^7 represents H, a $C_{1.6}$, alkyl group, a $C_{2.5}$ alkenyl or a $C_{2.5}$ alkynyl group.
 - 40. (currently amended): A compound of formula I,

wherein X represents an optionally substituted amide, amine or sulfonamide group, wherein said groups are connected to the indole ring through their nitrogen atom;

Y represents a carboxylic acid, a carboxylic acid ester, a carboxylic acid amide, a hydroxamic acid, a hydroxamic acid ester or hydroxymethyl;

Z represente a spacer group comprises a $C_{1,8}$ alkylene or a $C_{2,9}$ heteroalkylene group; R^1 represents an optionally substituted aryl or heteroaryl group;

one of the groups R^2 , R^3 , R^4 and R^5 represents an optionally substituted aryl or heteroaryl group and the other groups R^2 , R^3 , R^4 and R^5 are independently selected from hydrogen, G^1 , an aryl group, a heteroaryl group (which latter two groups are optionally substituted by one or more substituents selected from A), $C_{1:6}$ alkyl, $C_{2:10}$ cycloalkyl, $C_{2:6}$ alkenyl. $C_{2:6}$ alkynyl or $C_{2:6}$ heterocycloalkyl (which latter five groups are optionally substituted by one or more substituents selected from G^1 and/or Q^1); and/or

b) any two other groups which are adjacent to each other are optionally linked to form, along with two atoms of the essential benzene ring in the compound of formula I, a 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R*, -OR* and =O;

A represents:

- an anyl group or a heteroaryl group, both of which are optionally substituted by
 one or more substituents selected from B;
- a C_{1.6} alkyl, C_{2.10} cycloalkyl, C_{2.6} alkenyl, C_{2.6} alkynyl or C_{3.6} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G¹ and/or Q¹, or
 - III) a G1 group; or
- IV) two adjacent A substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two A substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R*, -OR* and =O;

 $\underline{G^1}$ represents, on each occasion when mentioned above, halo, cyano, -N3, -N02, -ON02 or -A^1-R^{10},

wherein A¹ represents a single bond or a spacer group selected from $-C(Q^2)A^2$, $-S(Q)_*A^3$, $-N(R^{11})A^4$, $-OA^5$ - and -S-, in which:

A2 represents A6 or -S-;

A3 represents A6;

 $\frac{A^4 \text{ represents } A^7_- - C(Q^2)N(A^{11})C(Q^2)N(R^{11})_- - C(Q^2)N(A^{11})C(Q^2)O_-, }{C(Q^2)N(A^{11})S(Q)_aN(R^{11})_- - C(Q^2)S_-, -S(Q)_aN(R^{11})C(Q^2)N(R^{11})_- - S(Q)_aN(R^{11})C(Q^2)O_-, }{(A^2)^2(Q^2)^2(Q^2)^2(Q^2)}$

-S(O),N(R¹¹)S(O),N(R¹¹)- or -S(O)nO-;

A⁵ represents A⁷ or -S(O),O-;

A⁶ represents a single bond, -N(R¹¹)- or O-;

 A^7 represents a single bond, $-C(Q^2)$ -, $-C(Q^2)N(R^{11})$ -, $-C(Q^2)O$ -, -S(O)- or -S(O)- $N(R^{11})$;

Q¹ and Q² independently represent, on each occasion when mentioned above, =0, =S, =NR¹ 10 , =NN(R¹ 10), (R¹ 11), =NOR¹ 10 , =NS(O) $_2$ N(R¹ 10), (R¹ 11), =NCN, =C(H)NO $_2$ or =C(R¹ 10)(R¹ 11);

R⁶ and R⁷ independently represent, on each occasion when mentioned above:

- hydrogen;
- II) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B; or
- $\label{eq:continuous} \begin{array}{ll} \underline{III}) & \underline{a} \ \underline{C}_{16} \ \underline{alkyl}, \ \underline{C}_{2:6} \ \underline{alkenyl}, \ \underline{C}_{2:6} \ \underline{alkynyl} \ \underline{or} \ \underline{C}_{2:8} \ \underline{alkynyl} \ \underline{or} \ \underline{C}_{2:8} \ \underline{alkenyl}, \ \underline{c}_{2:6} \ \underline{alkynyl} \ \underline{or} \ \underline{C}_{2:8} \ \underline{alkenyl}, \ \underline{c}_{2:6} \ \underline{alkynyl} \ \underline{or} \ \underline{C}_{2:8} \ \underline{alkenyl}, \ \underline{c}_{2:6} \ \underline{alkynyl} \ \underline{or} \ \underline{c}_{2:8} \ \underline$

 A^6 and R^7 may be linked together to form along with the N atom and -E- group to which A^6 and A^7 are respectively attached, a 5- to a-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is optionally substituted by one or more substituents selected from G^2 and/or Q^3 ;

B represents:

- I) an anyl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G² and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R³, -OR³ and =O;
- $\label{eq:condition} \begin{array}{ll} \underline{\text{II}}\rangle & \underline{\text{a }}C_{1.9}\text{ alkyl, }C_{2.0}\text{ alkeyl, }C_{2.6}\text{ alkenyl, }C_{2.6}\text{ alkynvl or }C_{2.9}\text{ heterocycloalkyl}\\ \underline{\text{qroup, all of which are optionally substituted by one or more substituents selected from }G^2\text{ and/or }Q^2\text{; or } \end{array}$
 - a G² group; or
- IV) two adjacent B substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two B substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;
- G² represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A²-R¹²;

wherein A^8 represents a single bond or a spacer group selected from $-C(Q^4)A^9$. $-S(O)_1A^{10}$. $-N(R^{13})A^{11}$. $-OA^{12}$ - and -S-, in which:

A9 represents A13 or -S-;

A¹⁰ represents A¹³;

A¹² represents A¹⁴ or -S(O)_nO-;

A¹³ represents a single bond, -N(R¹³)- or -O-;

 $\underline{A^{14} \ represents \ a \ single \ bond, \ -C(Q^4)-, \ -C(Q^4)N(R^{13})-, \ -C(Q^4)O-, \ -S(O)_{?} \ or \ -S(O)_{?}N(R^{13});}$

Q³ and Q⁴ independently represent, on each occasion when mentioned above, =0, =S, =NR¹², =NN(R¹²)(R¹³), =NOR¹², =NS(O)₂N(R¹²)(R¹³), =NCN, =C(H)NO₂ or =C(R¹²)(R¹³);

R8, R9, R10, R11, R12 and R13 are independently selected from:

- hydrogen;
- ii) an anyl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G³ and/or wherein any two adjacent atoms of the anyl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms, which ring is itself optionally substituted by one or more substituents selected from halo, -R¹⁴, -OR¹⁴ and =O; or
- $\label{eq:condition} \frac{\text{iii})}{\text{a }C_{1.6} \text{ alkyl, }C_{3.10} \text{ cycloalkyl, }C_{2.6} \text{ alkenyl, }C_{3.6} \text{ alkynyl or }C_{3.6} \text{ heterocycloalkyl}}\\ \frac{\text{group, all of which are optionally substituted by one or more substituents selected from }G^3$ and/or W^1; or$

any pair of R^8 , R^9 , R^{10} , R^{11} , R^{12} and R^{13} may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 8-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G^3 and/or W^1 ;

 $\underline{G^3 \ represents, on \ each \ occasion \ when \ mentioned \ above, \ halo, \ cyano, \ -N_3, \ -NQ_2, \ -ONQ_2} \\ \underline{or} \ -A^{15} -R^{15},$

wherein A^{15} represents a single bond or a spacer group selected from -C(W²) A^{16} , -S(O); A^{17} , -N(R¹⁶) A^{18} , -QA¹⁹- and -S-, in which:

A¹⁶ represents A²⁰ or -S-;

A17 represents A20;

 A^{18} represents A^{21} , $-C(W^2)N(R^{16})C(W^2)N(R^{16})$ -, $-C(W^2)N(R^{16})C(W^2)O$

 $-C(W^2)N(R^{16})S(O)_{c}N(R^{16})-, -C(W^2)S-, -S(O)_{c}N(R^{16})C(W^2)N(R^{16})-, -S(O)_{c}N(R^{16})C(W^2)O-,$

 $-S(O)_nN(R^{16})S(O)_nN(R^{16})$ - or $-S(O)_nO$ -;

A¹⁹ represents A²¹ or -S(O)_nO-;

A²⁰ represents a single bond, -N(R¹⁶)- or -O-;

 $\underline{A^{21}} \ represents \ a \ single \ bond, \ -C(W^2)-, \ -C(W^2)N(R^{16})-, \ -C(W^2)O-, \ -S(O)_n-or \ -S(O)_nN(R^{16});$

 $\frac{W^1 \text{ and } W^2 \text{ independently represent, on each occasion when mentioned above, } = O, = S_\lambda \\ = NR^{15}, = NN(R^{16}), R^{16}), = NOR^{16}, = NS(O)_0N(R^{15}), R^{16}), = NCN, = C(H)NO_2 \text{ or } = C(R^{15})(R^{16});$

R¹⁴, R¹⁵ and R¹⁶ are independently selected from:

hydrogen;

- an aryl or a heteroaryl group, both of which are optionally substituted by one or ii) more substituents selected from G4, methylenedioxy, difluoromethylenedioxy and/or dimethylmethylenedioxy: or
- a C₁₋₆ alkyl, C₃₋₁₀ cycloaikyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl or C₃₋₈ heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G4 and/or J; or

any pair of R14, R15 and R16 may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 7membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G4 and J;

G4 represents, on each occasion when mentioned above, halo, cvano, -N₃, -NO₂, -ONO₂ or -A²²-R¹⁷:

wherein A²² represents a single bond or a spacer group selected from -C(O)A²³-. -S(O),A24-, -N(R18)A25-, -OA26- and -S-, in which:

A²³ represents A²⁷ or -S-;

A²⁴ represents A²⁷:

A²⁵ represents A²⁸, -C(O)N(R¹⁸)C(O)N(R¹⁸)-, -C(O)N(R¹⁸)C(O)O-,

 $-C(O)N(R^{18})S(O)_aN(R^{18})_{-}$, $-C(O)S_{-}$, $-S(O)_aN(R^{18})C(O)N(R^{18})_{-}$, $-S(O)_aN(R^{18})C(O)O_{-}$ -S(O),N(R18)S(O),N(R18)- or -S(O),O-;

A²⁶ represents A28 or -S(O)₀O-:

A²⁷ represents a single bond, -N(R¹⁸)- or -O-;

 A^{28} represents a single bond, -C(O)-, $-C(O)N(R^{18})$ -, -C(O)O-, -S(O)_n- or -S(O)_n $N(R^{18})$:

J represents, on each occasion when mentioned above, =O, =S, =NR¹⁷, =NN(R¹⁷)(R¹⁸). $=NOR^{17}$, $=NS(O)_2N(R^{17})(R^{18})$, =NCN, $=C(H)NO_2$ or $=C(R^{17})(R^{18})$;

R¹⁷ and R¹⁸ are independently selected from hydrogen and C'-6 alkyl, which latter group is optionally substituted by one or more substituents selected from halo, -NH2, -N(H)Me,

-N(H)Et, -N(H)i-Pr, -NMe₂, -N(Me)Et, -N(Me)i-, Pr, -NEt₃, -OH, -OMe, -OEt, -Oi-, Pr and =O; and n represents, on each occasion when mentioned above, 1 or 2,

or a pharmaceutically-acceptable salt thereof.

41. (currently amended): A compound according to claim 40 wherein

X is a substituted benzoylamino group;

Y is a carboxylic acid or carboxylic acid ester group;

Z is alkylene represents an optionally substituted $C_{1:8}$ alkylene or a $C_{2:9}$ heteroalkylene group;

R1 is an optionally substituted aryl group;

one of R², R³, R⁴ and R⁵ is optionally substituted aryl and the others are hydrogen.

42. (previously presented): A compound according to claim 41 which is 6-(4-butylphenyl)-1-(3-chlorobenzyl)-3-(4-isopropoxybenzoylamino)-indole-2-carboxylic acid.