Anmerkungen und Lösungen zu

Einführung in die Algebra

Blatt 8

Jendrik Stelzner

Letzte Änderung: 13. Dezember 2017

Aufgabe 4

(a)

Die Idee hinter der Aussage ist, dass $\phi(1)=1$ gelten, und sich alle Elemente des Primkörpers durch iteratives Anwenden den Körperoperationen (Addition, Subtraktion, Multiplikation, Division) aus 1 ergeben. Da ϕ mit diesen Operationen verträglich ist, sollte somit bereits $\phi(x)=x$ für alle $x\in P$ gelten.

Um diese Anschauung zu formalisieren, zeigen wir, dass die Menge

$$K^{\phi} = \{x \in K \mid \phi(x) = x\}$$

ein Unterkörper von K ist. Dann gilt $P\subseteq K$, da P in jedem Unterkörper von K enthalten ist.

Es gelten $\phi(0) = 0$ und $\phi(1) = 1$ und somit $0, 1 \in K$. Für alle $x, y \in K$ gelten auch

$$\phi(x+y) = \phi(x) + \phi(y) = x+y$$
 und $\phi(xy) = \phi(x)\phi(y) = xy$,

und somit $x + y, xy \in K$. Für jedes $x \in K$ gilt

$$\phi(-x) = -\phi(x) = -x$$

und somit $-x \in K$, und falls zusätzlich $x \neq 0$ gilt, dann gilt auch

$$\phi(x^{-1}) = \phi(x)^{-1} = x^{-1},$$

und somit $x^{-1} \in K$. Ingesamt zeigt dies, dass K^{ϕ} ein Unterkörper von K ist.

(b)

Die Abbildung $\phi\colon K\to K$ ist per Annahme bijektiv und additiv. Für alle $\lambda\in P,$ $x\in K$ gilt nach dem vorherigen Sinne, dass

$$\phi(\lambda x) = \phi(\lambda)\phi(x) = \lambda\phi(x).$$

Dies zeigt insgesamt, dass ϕ ein K-Vektorraum-Automorphismusist.