Các tính chất của tích vô hướng chi tiết nhất

I. Lí thuyết tổng hợp.

- Với các vecto \vec{a} , \vec{b} , \vec{c} khác vecto $\vec{0}$ và số thực k tùy ý ta có: Các tính chất của tích vô hướng:

 $\vec{a}.\vec{b} = \vec{b}.\vec{a}$ (tính chất giao hoán)

 $\vec{a}(\vec{b} + \vec{c}) = \vec{a}.\vec{b} + \vec{a}.\vec{c}$ (tính chất phân phối)

$$(k\vec{a}).\vec{b} = k(\vec{a}.\vec{b}) = (k\vec{b}).\vec{a}$$

$$\vec{a}^2 \ge 0$$
; $\vec{a}^2 = 0 \Leftrightarrow \vec{a} = \vec{0}$

- Từ các tính chất trên, ta có:

$$(\vec{a} + \vec{b})^2 = \vec{a}^2 + 2\vec{a}.\vec{b} + \vec{b}^2$$

$$\left(\vec{a} - \vec{b}\right)^2 = \vec{a}^2 - 2\vec{a}.\vec{b} + \vec{b}^2$$

$$(\overrightarrow{a} + \overrightarrow{b})(\overrightarrow{a} - \overrightarrow{b}) = \overrightarrow{a}^2 - \overrightarrow{b}^2$$

II. Các công thức.

- Với các vecto $\vec{a}, \vec{b}, \vec{c}$ khác vecto $\vec{0}$ và số thực k tùy ý ta có:

$$\vec{a}.\vec{b} = \vec{b}.\vec{a}$$

$$\vec{a}(\vec{b} + \vec{c}) = \vec{a}.\vec{b} + \vec{a}.\vec{c}$$

$$(k\vec{a}).\vec{b} = k(\vec{a}.\vec{b}) = (k\vec{b}).\vec{a}$$

$$\vec{a}^2 \ge 0$$
; $\vec{a}^2 = 0 \Leftrightarrow \vec{a} = \vec{0}$

$$(\vec{a} + \vec{b})^2 = \vec{a}^2 + 2\vec{a}.\vec{b} + \vec{b}^2$$

$$\left(\vec{a} - \vec{b}\right)^2 = \vec{a}^2 - 2\vec{a}.\vec{b} + \vec{b}^2$$

$$(\vec{a} + \vec{b})(\vec{a} - \vec{b}) = \vec{a}^2 - \vec{b}^2$$

III. Ví dụ minh họa.

Bài 1: Cho tam giác ABC và M là điểm bất kì khác A, B, C. Chứng minh rằng:

$$\overrightarrow{MA}.\overrightarrow{BC} + \overrightarrow{MB}.\overrightarrow{CA} + \overrightarrow{MC}.\overrightarrow{AB} = 0$$

Lời giải:

$$VT = \overrightarrow{MA}.\overrightarrow{BC} + \overrightarrow{MB}.\overrightarrow{CA} + \overrightarrow{MC}.\overrightarrow{AB}$$

$$= \overrightarrow{MA}(\overrightarrow{MC} - \overrightarrow{MB}) + \overrightarrow{MB}(\overrightarrow{MA} - \overrightarrow{MC}) + \overrightarrow{MC}(\overrightarrow{MB} - \overrightarrow{MA})$$

$$= \overrightarrow{MA}.\overrightarrow{MC} - \overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MB}.\overrightarrow{MA} - \overrightarrow{MB}.\overrightarrow{MC} + \overrightarrow{MC}.\overrightarrow{MB} - \overrightarrow{MC}.\overrightarrow{MA}$$

$$= \overrightarrow{MA}.\overrightarrow{MC} - \overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MA}.\overrightarrow{MB} - \overrightarrow{MB}.\overrightarrow{MC} + \overrightarrow{MB}.\overrightarrow{MC} - \overrightarrow{MA}.\overrightarrow{MC}$$

$$= (\overrightarrow{MA}.\overrightarrow{MC} - \overrightarrow{MA}.\overrightarrow{MC}) + (-\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MA}.\overrightarrow{MB}) + (-\overrightarrow{MB}.\overrightarrow{MC} + \overrightarrow{MB}.\overrightarrow{MC})$$

$$= 0 + 0 + 0 = 0 = VP$$

$$\Rightarrow \overrightarrow{MA}.\overrightarrow{BC} + \overrightarrow{MB}.\overrightarrow{CA} + \overrightarrow{MC}.\overrightarrow{AB} = 0$$
 (điều cần phải chứng minh)

Bài 2: Cho hình vuông ABCD tâm O, cạnh a. Tính giá trị biểu thức P biết rằng: $P = AB^2 + BC^2 + 2\overrightarrow{DC}.\overrightarrow{BC}$.

Lời giải:

Xét tam giác ABC vuông cân tại B (do ABCD là hình vuông):

Áp dụng định lí Py-ta-go ta có:

$$AC^2 = AB^2 + BC^2 = a^2 + a^2 = 2a^2$$

$$\Rightarrow$$
 AC = $\sqrt{2a^2}$ = $a\sqrt{2}$

Ta có ABCD là hình vuông nên ta có AB // DC và AB = DC $\Longrightarrow \overrightarrow{AB} = \overrightarrow{DC}$

$$\Rightarrow$$
 P = AB² + BC² + 2 \overrightarrow{DC} . \overrightarrow{BC} = \overrightarrow{AB} ² + \overrightarrow{BC} ² + 2 \overrightarrow{AB} . \overrightarrow{BC}

$$=(\overrightarrow{AB}+\overrightarrow{BC})^2=\overrightarrow{AC}^2=AC^2=(a\sqrt{2})^2=2a^2$$

$$\Rightarrow$$
 P = 2a².

Bài 3: Cho hình thoi ABCD cạnh a. Chứng minh rằng $(\overrightarrow{AD} - \overrightarrow{DC})(\overrightarrow{AD} - \overrightarrow{BA}) = 0$.

Lời giải:

Do ABCD là hình thoi nên ta có:

$$AB // DC$$
 và $AB = DC \implies \overrightarrow{AB} = \overrightarrow{DC}$

Xét đẳng thức:
$$(\overrightarrow{AD} - \overrightarrow{DC})(\overrightarrow{AD} - \overrightarrow{BA}) = 0$$

$$VT = (\overrightarrow{AD} - \overrightarrow{DC})(\overrightarrow{AD} - \overrightarrow{BA}) = (\overrightarrow{AD} - \overrightarrow{AB})(\overrightarrow{AD} + \overrightarrow{AB}) = \overrightarrow{AD}^2 - \overrightarrow{AB}^2$$

$$\Rightarrow$$
 VT = AD² - AB² = a² - a² = 0 = VP

$$\Rightarrow$$
 $(\overrightarrow{AD} - \overrightarrow{DC})(\overrightarrow{AD} - \overrightarrow{BA}) = 0$ (điều cần phải chứng minh).