선형변환

Transformation

- A transformation, function, or mapping, T maps an input x to an output y
 - Mathematical notation: $T: x \mapsto y$
- Domain: Set of all the possible values of x
- Co-domain: Set of all the possible values of y
- Image: a mapped output y, given x
- Range: Set of all the output values mapped by each x in the domain
- Note: the output mapped by a particular
 x is uniquely determined.

Linear Transformation

- **Definition**: A transformation (or mapping) *T* is **linear** if:
 - I. $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T and for all scalars c and d
- Simple example: $T: x \mapsto y, T(x) = y = 3x$

$$4x_{1} + 5x_{2}$$

$$T: x \mapsto 3x$$

$$T (4x_{1} + 5x_{2})$$

$$= T (14) = 42$$

Transformations between Vectors

- $T: \mathbf{x} \in \mathbb{R}^n \mapsto \mathbf{y} \in \mathbb{R}^m$: Mapping n-dim vector to m-dim vector
- Example:

$$T: \mathbf{x} \in \mathbb{R}^3 \mapsto \mathbf{y} \in \mathbb{R}^2 \quad \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3 \quad \mapsto \quad \mathbf{y} = T(\mathbf{x}) = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \in \mathbb{R}^2$$

Matrix of Linear Transformation

• Example: Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\-1\\1\end{bmatrix}$$
 and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\\2\end{bmatrix}$. With no additional information,

find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow T(\mathbf{x}) = T \left(x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = x_1 T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) + x_2 T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

$$= x_1 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Matrix of Linear Transformation

• In general, let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is always written as a matrix-vector multiplication, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^n$

• In fact, the *j*-th column of $A \in \mathbb{R}^{m \times n}$ is equal to the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the *j*-th column of the identity matrix in $\mathbb{R}^{n \times n}$:

$$A = [T(\mathbf{e}_1) \quad \cdots \quad T(\mathbf{e}_n)]$$

• Here, the matrix A is called the **standard matrix** of the linear transformation T

Matrix of Linear Transformation

• Example: Find the standard matrix A of a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 such that

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}, T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}4\\3\end{bmatrix}, \text{ and } T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\6\end{bmatrix}.$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow T(\mathbf{x}) = T \begin{pmatrix} x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} = x_1 T \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 T \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix} + x_3 T \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$
$$= x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 3 \end{bmatrix} + x_3 \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} = A\mathbf{x}$$

Linear Transformation in Neural Networks

Fully-connected layers (linear layer)

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Affine Layer in Neural Networks

- Fully-connected layers usually involve a bias term. That is why we call it an a ffine layer, but not a linear layer.
- Example: Image with 4 pixels and 3 classes (cat/dog/ship)

	0.2	-0.5	0.1	2	56	+	1.1	=	-96.8
	1.5	1.3	2.1	1	231		3.2		439.9
	2	0.3	0.7	-1.3	24		-1.2		71.1
	504000000000000000000000000000000000000		**************************************		2		***************************************	-	100000000000000000000000000000000000000
=56	0.2 +	231	0.5 +	24 0.	1 +2	2	+	11.1	
	1.5		13	2.			•	3.2	
	2	().3	0.	7	-1.	3	-1.2	
=	0.2	-0.5	0.1	2			56		
	1.5	1.3	2.1	1	3.2		231		
	2	0.3	0.7	-1.3	-1.2		24		
		9.0	¥./	1.0	1 : <u>Z</u>		2 9		

• **Definition**: A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto \mathbb{R}^m if each $\mathbf{b} \in \mathbb{R}^m$ is the image of at least one $\mathbf{x} \in \mathbb{R}^n$.

That is, the range is equal to the co-domain.

• **Definition**: A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one if each $\mathbf{b} \in \mathbb{R}^m$ is the image of at most one $\mathbf{x} \in \mathbb{R}^n$.

That is, each output vector in the range is mapped by only one input vector, no more than that.

Neural Network Example

Fully-connected layers

Neural Network Example: ONE-TO-ONE

Will there be many (or unique) people mapped to the same (over_weighted, tall_and_smoking)?

Neural Network Example: ONTO

 Is there any (over_weighted, tall_and_smoking) that does not exist at all?

• Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^n$.

- *T* is one-to-one if and only if the columns of *A* are linearly independent.
- T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .

Example:

Let
$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Is T one-to-one?
- Does T map \mathbb{R}^2 onto \mathbb{R}^3 ?

Example:

Let
$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- Is *T* one-to-one?
- Does T map \mathbb{R}^3 onto \mathbb{R}^2 ?