# A general Datalog-based framework for tractable query answering over ontologies

Cali, Gottlob and Lukasiewicz

Main Ideas of the paper

December 2014

#### Goal

## Since datalog is not as expressive as Description Logic (DL) ...:

- What are the main modifications of datalog, required for ontological query-answering?
- Are there versions of datalog that encompass the DL-Lite family and that share the favourable data complexity bounds for query-answering with DL-Lite?

# **Guarded Datalog**<sup>±</sup>

#### Extension

Existentially qualified variables in rule heads. Expressive enough to model ontologies

### Tuple generating dependencies (TGD)

• Given a relational database schema  $\mathcal{R}$ , a TGD  $\sigma$  is a first-order formula of the form

$$\forall X \forall Y \ \phi(X, Y) \rightarrow \exists Z \ \psi(X, Z)$$

where  $\phi(\mathbf{X}, \mathbf{Y})$  and  $\psi(\mathbf{X}, \mathbf{Z})$  are conjunctions of atoms over  $\mathcal{R}$  (without nulls).

- $\sigma$  is satisfied in a database D for  $\mathcal R$  iff whenever there exists a homomorphism h that maps the atoms of  $\phi(\mathbf X,\mathbf Y)$  to atoms of D, there exists an extension h' of h that maps the atoms of  $\psi(\mathbf X,\mathbf Z)$  to atoms of D.
- We usually omit the universal quantifiers. All sets of TGD are finite here.

# **Example**

#### Database D

employee(jo), manager(jo), directs(jo,finance), supervises(jo,ada), employee(ada), works\_in(ada,finance)

#### Some constraints encoded as TGD

- $\bigcirc$  manager(M)  $\rightarrow$  employee(M) Every manager is an employee
- 2  $manager(M) \rightarrow \exists P \ directs(M, P)$  Every manager directs at least one department
  - 3 employee(E), directs(E, P) → ∃E' manager(E), supervises(E, E'), works\_in(E', P) Every employee who directs a department is a manger, and supervises at least another employee who works in the same department
- 4 employee(E), supervises(E, E'), manager(E') → manager(E) Every employee supervising a manager is a manager

#### Satisfaction

Above TGD satisfy D but do not satisfy  $D' = D \cup \{manager(ada)\}\ (2nd\ TGD)$ 

# Query answering under TGD

Let D be a db for  $\mathcal{R}$  and let  $\Sigma$  be a set of TGD on  $\mathcal{R}$ .

#### Models

 $mods(D, \Sigma)$  (the set of models of D and  $\Sigma$ ) is the set of all (possibly infinite) databases B s.t.:



otin every otin ∈ Σ is satisfied in otin

#### Evaluation of CQ (conjunctive queries)

 $ans(Q, D, \Sigma)$  (the set of answers for a CQ Q to D and  $\Sigma$ ) is the set of all tuples **a** s.t. **a**  $\in$  Q(B) for all  $B \in mods(D, \Sigma)$ 

#### Evaluation of BCQ (boolean conjunctive queries)

The answer of a BCQ Q to D and  $\Sigma$  is YES (i.e,  $D \cup \Sigma \models Q$ ) iff  $ans(Q, D, \Sigma) \neq \emptyset$ 

#### Complexity

Query answering under general TGD is undecidable

#### **Guarded TGD**

- We should restrict rule syntax for achieving decidability
- Rule bodies of TGD are guarded: in each rule body of a TGD there
  must exist an atom, called guard, in which all non-existentially quantified
  variables of the rule occur as argument.

$$P(X), R(X, Y), Q(Y) \rightarrow \exists Z \ R(Y, Z)$$

### Expression power

More expressive than DL-Lite, and so we are going to make more restrictions...

#### **TGD Chase**

#### Definition

Procedure for repairing a db relative to a set of dependencies, so that the result of the chase satisfies the dependencies.

#### TGD Chase rule

We consider:

- A db D over a relation schema R.
- A TGD  $\sigma$  on  $\mathcal{R}$  of the form  $\forall \mathbf{Y} \phi(\mathbf{X}, \mathbf{Y}) \rightarrow \exists \mathbf{Z} \psi(\mathbf{X}, \mathbf{Z})$

Then  $\sigma$  is applicable to D if there exists a homomorphism h that maps the atoms of  $\phi(\mathbf{X}, \mathbf{Y})$  to atoms of D.

Let  $\sigma$  be applicable to D, and  $h_1$  be a homomorphism that extends h as follows : for each  $X_i \in \mathbf{X}$ ,  $h_1(X_i) = h(X_i)$ ;

for each  $Z_j \in \mathbf{Z}$ ,  $h_1(Z_j') = z_j$ , where  $z_j$  is a *fresh* null, i.e.,  $z_j \in \Delta_N$ ,  $z_j$  does not occur in D, and  $z_j$  lexicographically follows all other nulls already introduced.

The application of  $\sigma$  on D adds to D the atom  $h_1((X, Z))$  if not already in D (which is possible when Z is empty).

#### Chase algorithm

An exhaustive application of the TGD chase rule in a breadth-first (level-saturating) fashion, which leads as result to a (possibly infinite) chase for D and  $\Sigma$ .

# **Equality-generating dependencies (EGD)**

#### EGD $\sigma$

A first-order formula of the form

$$\forall X \ \phi(X) \rightarrow X_i = X_i$$

where the body  $\phi(\mathbf{X})$  is a (not necessarily guarded) conjunction of atoms (without nulls), and  $X_i$  and  $X_i$  are variables from  $\mathbf{X}$ .

- The head  $X_i = X_j$  is satisfied in a database D for  $\mathcal{R}$  iff, whenever there exists a homomorphism h such that  $\phi(\mathbf{X}) \subseteq D$ , it holds that  $h(X_i) = h(X_j)$ .
- We usually omit the universal quantifiers in EGDs, and all sets of EGDs are finite here.

# **Example**

# Datalog<sub>0</sub><sup>±</sup>

# Datalog $_0^{\pm}$ can be called a DL

- Strictly more expressive than any of the DL-Lite family
- Linear TGD alone can express relationships such as manager(X) → manages(X, X) that are not expressible in any DL of DL-Lite family.

#### Characteristics

- Linear TGD
- Negative constraints
- Non-conflicting keys

# **Characteristics (1)**

#### Linear TGD

Only singleton body atom

$$\forall X \forall Y \phi(XY) \rightarrow \exists Z \psi(X,Z)$$

#### Negative constraints

Body is a conjunction of atoms (without nulls) not necessarily guarded

$$\forall \mathbf{X} \ \phi(\mathbf{X}) \rightarrow \bot$$

Also written as

$$\forall \mathbf{X} \phi'(\mathbf{X}) \rightarrow \neg \mathbf{p}(\mathbf{X})$$

where  $\phi'$  is obtained from  $\phi$  by removing the atom  $p(\mathbf{X})$ .

# **Characteristics (2)**

# Non conflicting keys

Let K be a key. Let  $\sigma$  be a TGD  $\forall \mathbf{X} \forall \mathbf{Y} \phi(\mathbf{XY}) \rightarrow \exists \mathbf{Z} \ \mathbf{r}(\mathbf{X}, \mathbf{Z})$ K is non conflicting with  $\sigma$  iff either:

- the relational predicate on which K is defined is different from r, or
- the position of K in r are not a proper subset of the X-position in r in the head of σ and
- ullet every variable in **Z** appears only once in the head of  $\sigma$

### Example

```
Four keys K_1, K_2, K_3, K_4 defined by the key attribute set K_1 = \{r[1], r[2]\}, K_2 = \{r[1], r[3]\}, K_3 = \{r[3]\} and K_4 = \{r[1]\}\}.
```

 $\mathsf{TGD}\ \sigma = p(X,Y) \to \exists Z\ r(X,Y,Z)$ 

Then, the head predicate of  $\sigma$  is r and the set of positions in r with universally quantified variables is  $\mathbf{H} = \{r[1], r[2]\}$ .

All keys but  $K_4$  are NC with  $\sigma$ , since only  $K_4 \subseteq \mathbf{H}$ 

Every atom added in a chase by applying  $\sigma$  would have a fresh null in some position in  $K_1$ ,  $K_2$ , and  $K_3$  and thus never firing the keys  $k_1$ ,  $k_2$ ,  $k_3$ 

#### **DL-LITE**

# Elementary ingredients

Let  $A \in \mathbf{C}$  be an atomic concept name,  $P \in \mathbf{C}$  be an atomic role and  $P^-$  the inverse of P. In the abstract syntax :

$$B ::= A \mid \exists R$$
  $R ::= P \mid P^-$   
 $C ::= B \mid \neg B$   $E ::= R \mid \neg R$ 

B denotes a *basic concept*, *i.e.*, an atomic concept or a concept of the form  $\exists R$  and R denotes a *basic role*, *i.e.*, a role that is either an atomic role or the inverse of an atomic role. Finally, C denotes a (general) concept, which can be a basic concept or its negation, whereas E denotes a (*general*) role, which can be a basic role or its negation.

A knowledge base  $(\mathcal{K}=(\mathcal{T},\mathcal{A}))$  has two components : a TBox  $\mathcal{T}$ , used to represent intentional knowledge, and a ABox  $\mathcal{A}$ , used to represent extensional knowledge.

## **DL-Lite Family**

### **DL-Lite Family**

- DL-LITE<sub>F</sub>: no role inclusion
- DL-LITE $_{\mathcal{R}}$ : no functionality constraints
- DL-LITE $_{\mathcal{A}}$ : no functionality constraints on roles involved in role inclusions

http://webdam.inria.fr/Jorge/files/slquery-onto.pdf

# Reduction to datalog<sub>0</sub><sup>±</sup>

### **Elementary Ingredients**

- Data value
- Data type
- Atomic concept
- Abstract role
- Attribute
- Individual
- Role attribute

# Translation of elementary ingredients

- Every data value v has a constant  $\tau(v) = c \in \Delta$  s.t. the  $\tau(V_d)$ 's for all datatypes  $d \in D$  are pairwise disjoint.
- Every data type  $d \in \mathbf{D}$  has under  $\tau$  a predicate  $\tau(d) = p_d$  along with the constraint  $p_d(X) \land p'_d(X) \to \bot$  for all pairwise distinct  $d, d' \in \mathbf{D}$ .
- Every atomic concept  $A \in \mathbf{A}$  has a unary predicate  $\tau(A) = p_A \in \mathcal{R}$ .
- Every abstract role  $P \in \mathbf{R}_{\mathbf{A}}$  has a binary predicate  $\tau(P) = p_p \in \mathcal{R}$ .
- Every attribute  $U \in \mathbf{R}_{\mathbf{D}}$  has a binary predicate  $\tau(U) = p_U \in \mathcal{R}$ .
- Every individual  $i \in I$  has a constant  $\tau(i) = c_i \in \Delta \setminus \bigcup_{d \in D} \tau(V_d)$ .  $\leftarrow$  distinction between data values and individuals!!! necessary?

# Translation of axioms (concept inclusion)

Every concept inclusion axiom  $B \sqsubseteq C$  is translated to the TGD or constraint  $\tau(B \sqsubseteq C) = \tau'(B) \to \tau''(C)$  where

 $\bullet$   $\tau'(B)$  is defined as

```
p_A(X) if B is of the form A, p_P(X,Y) if B is of the form \exists P, p_P(Y,X) if B is of the form \exists P^-, p_U(X,Y) if B is of the form \delta(U), \Leftarrow concept attribute p_{U_R}(X,Y,Y') if B is of the form \exists \delta(U_R), \Leftarrow role attribute p_{U_R}(Y,X,Y') if B is of the form \exists \delta(U_R)^-, \Leftarrow role attribute
```

 $\bullet$   $\tau''(C)$  is defined as

```
\begin{array}{c} 1 \quad p_A(X) \text{ if } C \text{ is of the form } A, \\ 2 \quad \exists Z \ p_P(X,Z) \text{ if } C \text{ is of the form } \exists P, \\ 3 \quad \exists Z \ p_P(X,Z) \text{ if } C \text{ is of the form } \exists P, \\ 4 \quad \exists Z \ p_U(X,Z) \text{ if } C \text{ is of the form } \exists P, \\ 5 \quad \neg p_A(X) \text{ if } C \text{ is of the form } \neg \delta(U), \\ 5 \quad \neg p_A(X) \text{ if } C \text{ is of the form } \neg A, \\ 6 \quad \neg p(X,Y') \text{ if } C \text{ is of the form } \neg \exists P, \\ 7 \quad \neg p(Y',X) \text{ if } C \text{ is of the form } \neg \exists P, \\ 7 \quad \neg p(X,Y') \text{ if } C \text{ is of the form } \neg B, \\ 8 \quad \neg p_U(X,Y') \text{ if } C \text{ is of the form } \neg B, \\ 9 \quad \exists Z \ p_P(X,X) \land p_A(Z) \text{ if } C \text{ is of the form } \exists P, A, \Leftarrow \text{ See } ! \\ 9 \quad \exists Z \ p_P(Z,X) \land p_A(Z) \text{ if } C \text{ is of the form } \exists B, A, \Leftarrow \text{ See } ! \\ 1 \quad \exists Z,Z' \ p_{U_R}(X,Z,Z') \text{ if } C \text{ is of the form } \exists \delta(U_R), \Leftarrow \text{ role attribute} \\ 1 \quad \exists Z,Z' \ p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \exists \delta(U_R), \Leftarrow \text{ role attribute} \\ 2 \quad \neg p_{U_R}(X,Z,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftrightarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftrightarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftrightarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftrightarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftrightarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \delta(U_R), \Leftrightarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{ is of the form } \neg \exists \Delta(U_R), \Leftrightarrow \text{ role attribute} \\ 4 \quad \neg p_{U_R}(Z,X,Z') \text{ if } C \text{
```

# **Translation of axioms (functionality)**

### Functionality axioms

- Axiom (func P) is translated to the EGD  $p_P(X, Y) \wedge p_P(X, Y') \rightarrow Y = Y'$
- Axiom (func P<sup>-</sup>) is translated to the EGD  $p_P(X, Y) \land p_P(X', Y) \rightarrow X = X'$
- Axiom (func U) is translated to the EGD  $p_U(X, Y) \land p_U(X, Y') \rightarrow Y = Y'$
- Axiom (func  $U_R$ ) is translated to the EGD  $p_{U_R}(X, Y, Z) \wedge p_{U_R}(X, Y, Z') \rightarrow Z = Z' \leftarrow \text{role attribute}$

# Translation of axioms (membership)

### Membership axioms

- Concept membership A(a) is translated to  $p_A(c_a)$ ,
- Role membership P(a, b) is translated to  $p_P(c_a, c_b)$ ,
- Attribute membership U(a, v) is translated to  $p_U(c_a, c_v)$ ,
- Role attribute membership  $U_R(a, b, c)$  is translated to  $p_{U_R}(c_a, c_b, c_c)$ .

# Translation of axioms (role inclusion)

#### Role inclusion

Every role inclusion axiom  $Q \sqsubseteq R$  is translated to the TGD or constraint  $\tau(Q \sqsubseteq R) = \tau'(Q) \rightarrow \tau''(R)$  where

- $\tau'(Q)$  is defined as :
  - $\bullet$   $p_P(X, Y)$  if Q is of the form P,
  - $p_P(Y, X)$  if Q is of the form  $P^-$ ,
  - $p_{U_R}(X, Y, Y')$  if Q is of the form  $\delta(U_R)$ ,  $\Leftarrow$  role attribute
  - $p_{U_R}(Y, X, Y')$  if Q is of the form  $\delta(U_R)^- \leftarrow$  role attribute
- $\tau''(R)$  is defined as :
  - $\bullet$   $p_P(X, Y)$  if R is of the form P,

  - $\neg p_P(X, Y)$  if R is of the form  $\neg P$ ,

  - $\neg p_P(Y, X)$  if P is of the form  $\neg P^-$ ,
  - $\exists Z p_{U_R}(X, Y, Y')$  if R is of the form  $\delta(U_R)$ ,  $\Leftarrow$  role attribute
  - $\exists Z p_{U_R}(Y, X, Y')$  if R is of the form  $\delta(U_R)^- \Leftarrow \text{role attribute}$
  - $\neg \exists Z p_{U_P}(X, Y, Y')$  if R is of the form  $\neg \delta(U_R)$ ,  $\leftarrow$  role attribute
  - $\neg \exists Z p_{U_P}(Y, X, Y')$  if R is of the form  $\neg \delta(U_R)^- \Leftarrow \text{role attribute}$

# Translation of axioms (attribute inclusion)

#### Attribute inclusion axiom

- $U \sqsubseteq U'$  is translated to the TGD  $p_U(X, Y) \rightarrow p_{U'}(X, Y)$ ,
- $U \sqsubseteq \neg U'$  is translated to the TGD  $p_{IJ}(X, Y) \rightarrow \neg p_{IJ'}(X, Y)$
- $\bullet \quad \textit{$U_R \sqsubseteq U_R'$ is translated to the TGD $\rho_{U_R}(X,\,Y) \to \rho_{U_D'}(X,\,Y),$}$
- $\bullet \quad U_R \sqsubseteq \neg U_R' \text{ is translated to the TGD } \rho_{U_R}(X,Y) \to \neg \rho_{U_R'}(X,Y)$

# Translation of axioms (datatype inclusion)

# Datatype inclusion axiom

- Every datatype inclusion axiom  $\rho(U) \sqsubseteq d$  is translated to the TGD  $p_U(X, Y) \to p_d(X, Y)$ ,
- datatype  $p_{II}(X, Y) \sqsubseteq \top_D$  can be safely ignored.
- Every datatype inclusion axiom  $E \sqsubseteq F$  is translated to  $\tau'(E) \to \tau''(F)$  where
  - τ'(E) is defined as
    - $p_d(X)$  if E is of the form d,  $p_{U_R}(Y, Y', X)$  if E is of the form  $\rho(U_R)$
  - and  $\tau'(F)$  is defined as
    - $p_d(X)$  if E is of the form d,  $p_{U_R}(Z,Z',X)$  if E is of the form  $\rho(U_R)$ ,
      - - $\neg p_d(X)$  if E is of the form  $\neg d$ ,  $\neg p_{U_D}(Z, Z', X)$  if E is of the form  $\neg \rho(U_R)$ ,