LAPORAN PEMROGRAMAN KOMPUTER AIDED PRAKTIKUM

Penyelesaian Persamaan Non Linier Metode Newton Raphson

Disusun Oleh:

Thariq Abdul Ilah

4210161018

PROGRAM STUDI TEKNOLOGI GAME DEPARTEMEN TEKNOLOGI MULTIMEDIA KREATIF POLITEKNIK ELEKTRONIKA NEGERI SURABAYA SURABAYA 2018

Dasar Teori

Metode newton raphson adalah metode pendekatan yang menggunakan satu titik awal dan mendekatinya dengan memperhatikan slope atau gradien pada titik tersebut. Titik pendekatan ke n+1 dituliskan dengan :

$$X_{n+1} = X_n + \frac{F(x_n)}{F^1(x_n)}$$

Algoritma

- (1) Defisikan fungsi f(x) dan f'(x)
- (2) Tentukan toleransi error (e) dan iterasi maksimum (n)
- (3) Tentukan nilai pendekatan awal xo
- (4) Hitung $f(x_0)$ dan $f'(x_0)$
- (5) Untuk iterasi I = 1 s/d n atau $|f(x_i)| \ge \Box e$

$$x_{i+1} = x_i - \frac{f(x_i)}{f^1(x_i)}$$

Hitung f(xi) dan f'(xi)

(6) Akar persamaan adalah nilai xi yang terakhir diperoleh.

Flowchart

Listing Program

```
cin>>x0;
     fx = -pow(1/2.718, x0) + x0;
     fdx = -(-pow(1/2.719, x0)) + 1;
     if(fx == 0){
           cout<<"Masukkan nilai kembali\n";</pre>
}
cout<<"Masukkan toleransi galat : ";</pre>
cin>>error;
cout<<"Masukkan iterasi maksimal : ";</pre>
cin>>iterasi;
cout<<"Iterasi\t
               x\t\t\x
     <<"----\n";
for(i = 1; i<= iterasi, abs(fx)>=error; i++){
     cout<<i<<"\t"<<x0<<"\t\t"<<fdx<<"\t\t"<<fdx<<"\n";
     x0 = x0-(fx/fdx);
     fx = -pow(1/2.718, x0) + x0;
     fdx = -(-pow(1/2.719, x0)) + 1;
cout<<"-----"
     <<"----\n"
     <<"Akarnya = "<<x0<<"\n";
     system("PAUSE");
     return 0;
```

Hasil Output

}

Pengamatan awal

a. Gambar kurva fungsi dengan Gnu Plot

b. Perkiraan nilai x0

X0	
0	
0.25	
0.55	
0.75	

Hasil Percobaan

1) Tabel hasil iterasi, xi, f(xi)

Iterasi	x	f(x)	f'(x)
0	1.0000000000000000	-0.801359446372008	0.491995113722046
1	2.628795538861260	0.566016797799346	1.027432001976020
2	2.077891151309820	0.017171773221860	0.951423550138314
3	2.059842645763200	0.000035255147925	0.947422078478384
4	2.059805434103560	-0.00000001250600	0.947413712915499
5	2.059805435423570	0.0000000000000000000000000000000000000	0.947413713212260
6	2.059805435423520	0.000000000000000	0.947413713212248
7	2.059805435423520	0.0000000000000000	0.947413713212248
8	2.059805435423520	0.0000000000000000	0.947413713212248
9	2.059805435423520	0.0000000000000000	0.947413713212248
10	2.059805435423520	0.000000000000000	0.947413713212248
11	2.059805435423520	0.000000000000000	0.947413713212248
12	2.059805435423520	0.000000000000000	0.947413713212248
13	2.059805435423520	0.000000000000000	0.947413713212248

2) Pengamatan terhadap parameter

a. Toleransi error(e) terhadap jumlah iterasi (N)

Toleransi Error (e)	Jumlah Iterasi (N)	
0,1	2	
0,01	2	
0,001	3	
0,0001	3	

b. Pengubahan nilai awal x0 terhadap iterasi (N)

X0	Iterasi
0	3
0.25	3
0.75	2
0.55	1

Dengan metode Newton Rhapson dapat diperoleh akar yang lebih presisi.