Trigonométrie

Analyse - Cours

I Lecture sur le cercle trigonométrique

I. 1 Le cercle trigonométrique

Définition:

Dans un repère or honormé (O,I,J), le cercle trigonométrique de centre O est le cercle qui a pour rayon 1 et qui est muni d'un sens direct, le sens trigonométrique.

I. 2 Longueur d'un arc et radian

1. Propriété:

Sur un cercle trigonométrique, la longueur de l'arc de cercle \widehat{IM} (exprimé dans l'unité de longueur du repère), est proportionnelle à la mesure de l'angle \widehat{OIM} exprimé en degrés.

En effet, le périmètre du cercle est $P = 2\pi R = 2\pi$.

	2π	360°	
	\widehat{IM}	\widehat{IOM}	$\frac{\cos 1M}{360} = \frac{360}{100} = \frac{100}{180} = \frac{100}{100}$

Définition:

Soit U le point du cercle trigonométrique tel que l'arc \widehat{IU} ait pour longueur 1 (exprimé dans l'unité de la longueur du repère).

On définit un radian, noté 1 rad, comme étant la mesure de l'angle \widehat{IOU} .

Exemple:

Mesure de l'angle \widehat{IOM} en degrés	360	180	90	270	30	45	60	1	$\frac{180}{\pi}$
Longueur de l'arc \widehat{IM}	2π	π	$\frac{\pi}{2}$	$\frac{3\pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{180}$	1
Mesure de l'angle \widehat{IOM} en radians	2π	π	$\frac{\pi}{2}$	$\frac{3\pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{180}$	1

II Enroulement de la droite des réels sur le cercle trigonométrique

Sur le cercle trigonométrique, on choisit un point comme origine et on enroule la droite des réels sur le cercle.

2. Propriété:

- En enroulant la droite des réels sur le cercle trigonométrique, on associe à tout réel x un unique point M sur le cercle.
 - On dit alors que M est l'image de x sur le cercle C.
- Réciproquement, à tout point M du cercle trigonométrique correspondent une infinité de valeurs qui peuvent être considérés comme les abscisses des points de la droite.
 - Si x est l'un d'entre eux, les autres abscisses sont $x+2\pi, x+4\pi, x-2\pi, x-4\pi...$

Schéma d'un cercle trigonométrique avec des valeurs remarquables :

III Cosinus et sinus d'un nombre réel

III. 1 **Définitions**

Définition:

C est le cercle trigonométrique de centre O et (O, I, J) un repère orhonormé direct. x est un nombre réel et M est le points image du réel x sur le cercle trigonométrique.

- Le cosinus de x, noté $\cos x$, est l'abscisse de M dans le repère (O, I, J).
- Le sinus de x, noté sin x, est l'ordonnée de M dans le repère (O, I, J).

3. Propriété:

Pour tout réel x et tout entier relatif k, on a :

- $-\cos^2 x + \sin^2 x = 1$
- $-\cos(x+2k\pi) = \cos x$
- $-1 \le \cos x \le 1$
- $---1 \le \sin x \le 1$

III. 2 Valeurs remarquables du cosinus et du sinus

x	0	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$
$\cos x$	1	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\sin x$	0	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$

Lien avec le cosinus et sinus dans un triangle rectangle

On considère le cercle trigonométrique et la tangente D au

Soit $x \in]0; \frac{\pi}{2}[$ et M son point image.

Soit H le projeté orhogonal de M sur (OI).

Soit H' le projeté orhogonal de M sur (OJ).

On a alors:

$$-\sin(\widehat{IOM}) = \frac{\text{côtés opposé}}{\text{hypoténuse}} = \frac{HM}{OM} = \frac{HM}{1} = OH' = \sin x$$

La notion de cosinus et de sinus d'un réel de l'intervalle $[0; \frac{\pi}{2}]$ coïncident avec les notions de cosinus et sinus d'angle aigu vues aux collège.

IVFonctions cosinus et sinus

Définition:

- On appelle fonction cosinus la fonction notée cos définie sur \mathbb{R} par cos : $x \mapsto \cos x$.
- On appelle fonction sinus la fonction notée sin définie sur \mathbb{R} par $\sin : x \mapsto \sin x$.

4. Propriété:

Pour tout réel x, $\cos(-x) = \cos x$ et $\sin(-x) = -\sin x$.

Ainsi, la fonction cosinus est paire et la fonction sinus est impaire.

Conséquences graphique:

- La courbe représentative de la fonction cos est symétrique par rapport à l'axe des ordonnées.
- La courbe représentative de la fonction sin est symétrique par rapport à l'origine du repère.

5. Propriété:

Pour tout réel x, $\cos x = \cos(x + 2\pi)$ et $\sin x = \sin(x + 2\pi)$.

On dit que les fonctions cosinus et sinus sont des fonction périodiques de période 2π .

Conséquence graphique:

Les courbes représentatives de la fonction cosinus et sinus se reproduisent identiques à elles-mêmes sur un intervalle de longueur 2π .

6. Propriété (variations des fonctions cosinus et sinus) :

Les deux propriétés précédentes nous permettent de réduire l'intervalle d'étude des deux fonctions

La fontion tangente

Définition:

On appelle fonction tangente la fonction notée tan définie sur \mathbb{R} par tan : $x \mapsto \tan x = \frac{\sin x}{\cos x}$ avec $\cos x \neq 0$. On note D son ensemble de définition tel que $D = \mathbb{R} - \left\{ k \in \mathbb{R}; \frac{\pi}{2} + k \right\}$.