

A Convolutional Approach to Time Series Similarity

Divya Shanmugam, Davis Blalock, John Guttag

Motivation

Scalable, accurate methods for measuring similarity between multivariate time series are valuable towards patient similarity, disease classification, and anomaly detection.

Problem Statement

Given multivariate time series dataset D, produce an embedding where Euclidean distance accurately represents similarity between examples.

Solution

We present Jiffy, a method capable of producing a data dependent embedding for multivariate time series.

- Task reframed as representation learning
- Through aggressive maxpooling + downsampling, network remains compact and accurate

Datasets

 6 multivariate time series datasets derived from sign language motion, pen movement, heartbeats, and speech

Table 1: Summary of Multivariate Time Series Datasets.

Dataset	# Variables	# Classes	Length	# Time Series
Libras	2	15	45	360
AUSLAN	22	25	47-95	675
CharacterTrajectories	3	20	109-205	2858
ArabicDigits	13	10	4 - 93	8800
ECG	2	2	39 - 152	200
Wafer	6	2	104 - 198	1194

Results

No benefit to

Jiffy equals or exceeds accuracies of all competing methods

Parameter Stability

Clustering [WIP]

- Problem: Given a set of unlabeled multivariate time series, learn a latent representation that demonstrates high clustering purity
- Approach: Apply convolutional autoencoder to discover patterns important to a latent representation

Preliminary Results

Dataset	Jiffy	LDPS	SPIRAL	Zero-Padding	Upsampling
ArabicDigits	0.849	0.826	0.870	0.887	0.928
AUSLAN	0.990	0.990	0.868	0.982	0.982
CharacterTrajectories	0.965	0.939	0.886	0.965	0.959
ECG	0.586	0.550	0.505	0.581	0.627
Libras	0.883	0.870	0.881	0.885	0.885
Wafer	0.746	0.554	0.448	0.500	0.596
Mean Rank	2.0	3.67	4.5	2.5	1.83

Preliminary Parameter Stability

- Small FC layer size is sufficient
- Aggressive maxpooling maintains accuracy

Current work

- Qualitatively analyze strengths/weaknesses of convolutional autoencoder time series representation
- Operate MV time series embedding approach on ECG signals