Modelo de almacenamiento conjunto

 Cuando varios items son almacenados juntos se tienen costos compartidos como puede ser el capital y el espacio requerido en el almacen.

$$\min \quad CT_i = c_i D + k_i \cdot \frac{D_i}{q_i} + \frac{q_i}{2} \cdot h_i \qquad i = 1, 2$$

 $nota: h_i = p_i c_i$

Sujeto a:

$$\sum_{i=1}^{n} a_i q_i \le b$$

Resolviendo problema empleando EOQ:

$$q_i = \sqrt{\frac{2k_i d_i}{p_i c_i}} \qquad i = 1, \dots, n$$

Modelo de almacenamiento conjunto

 Si la restricción de capacidad es lineal y los porcentajes en el costo de almacenamiento son iguales para todos los productos se puede usar la heurística: Incrementando δ al porcentaje p:

$$q_i(\delta) = \sqrt{\frac{2k_i d_i}{(p_i + \delta)c_i}}$$
 $i = 1, \dots, n$

Determinar el valor δ^* , satisfaciendo la restricción :

$$\sum_{i=1}^n a_i q_i(\delta^*) = b$$

Reemplazando $q_i(\delta)$:

$$\sum_{i=1}^{n} a_i \sqrt{\frac{2k_i d_i}{\left(p_i + \delta^*\right)c_i}} = b$$

Despejando δ^* :

$$\delta^* = \left(\frac{1}{b} \sum_{i=1}^n \left(a_i \sqrt{\frac{2k_i d_i}{c_i}}\right)\right)^2 - p$$

Ejemplo

• Nueva Frontera distribuye mochilas y maletines en la mayor parte del país. Los modelos más exitosos son la mochila Preppi y el maletin Ejecutivo. La mochila tiene una demanda annual de 15000 unidades a un valor de \$ 30 y un costo de mantenimiento de 20 % del valor del inventario El maletin tiene una demanda de 10000 unidades/año, con un costo de \$45 y un costo de mantenimiento de 20% de su valor. En ambos casos el costo de ordenar es de 250 \$. Para optimizar el uso del capital de trabajo la empresa que la inversion en inventarios no exceda \$75000. Encontrar las cantidades a pedir que cumplan con la política de Nueva Frontera

	Preppi	Ejecutivo
Demanda	15000	10000
Costo producto a(i)	30	45
% mantenimiento	0,2	0,2
Costo ordenar	250	250
capital trabajo (b)	20000	
phi	66,54927	
EOQ	623,2196	473,4091
a*eoq/2	9348,295	10651,71
Restriccion	20000	
n=D/EOQ	24,06856	21,12338
días	15,16501	17,27943

Modelo de tamaño de pedido con múltiples pedidos

Opciones de política de pedidos

- Si cada supervisor de area ordena por su cuenta la EOQ de acuerdo a sus cálculos,
- Los supervisores piden en conjunto y ordenan todos los productos en cada orden.
- Los supervisores piden en conjunto pero no todas las órdenes tienen todos los productos, sino que contienen grupos de productos

Pedidos conjuntos

$$CT_i = c_i D + k_i \cdot \frac{D_i}{q_i} + \frac{q_i}{2} \cdot h_i \cdot c_i$$

La función de costo de mantener y pedir sería:

$$CM_{i} = k_{i} \cdot \frac{D_{i}}{Q_{i}} + \frac{Q_{i}}{2} \cdot h_{i} \cdot c_{i}$$

Se sabe que:

$$D_i = n \cdot Q_i$$

de donde:

$$Q_i = \frac{D_i}{n}$$

reemplazando Q en CM

$$CM_{i} = k_{i} \cdot n + \frac{D_{i}}{2n} \cdot h_{i} \cdot c_{i}$$

Para varios productos

$$k = K + \sum_{i=1}^{p} k_{i}$$

Reemplazando en CM:

$$CM = \left(K + \sum_{i=1}^{p} k_{i}\right) \cdot n + \frac{1}{2n} \sum_{i=1}^{p} D_{i} \cdot h_{i} \cdot c_{i}$$

Derivando respecto a n y optimizando:

$$\left(K + \sum_{i=1}^{p} k_{i}\right) - \frac{1}{2n^{2}} \sum_{i=1}^{p} D_{i} \cdot h_{i} \cdot c_{i} = 0$$

$$n = \sqrt{\frac{\sum_{i=1}^{p} D_{i} \cdot h_{i} \cdot c_{i}}{2\left(K + \sum_{i=1}^{p} k_{i}\right)}}$$

Ejemplo

• Best Buy vende tres tipos de computadoras : Litepro, Medpro, Heavypro. La demanda anual para estos tres productos es $D_L = 12,000\,$ para el modelo Litepro, $D_M = 1,200\,$ units para la PC Medpro y $D_H = 120\,$ units para la Heavypro. A Best Buy cada modelo le cuesta $500\,$ \$us.

Un costo fijo de transporte de 4,000 \$us, es generado cada vez que se entrega una orden. Un costo adicional de 1000 \$us es generado por la recepción del material. Los costos de mantener el inventario son el 20 % del valor del inventario. Evalue la política de colocar pedidos individualmente y sus costo y comparela con la política de hacer pedidos en conjunto.

Resolviendo el problema con pedidos individuales para cada producto

	LITEPRO	MEDPRO	HEAVYPRO
DEMANDA (unid)	12000	1200	120
COSTO RECEPCIÓN/ALMACENAMIENTO (\$us/pedido)	1000	1000	1000
COSTO PRODUCTO (\$us/unid)	500	500	500
COSTO TRANSPORTE (\$us/pedido), común para todos los prod	4000	4000	4000
PORCENTAJE COSTO MANTENIMIENTO	0,2	0,2	0,2
EOQ (unid)	1095,4451	346,4102	109,54451
NUMERO DE ORDENES/AÑO	10,954451	3,464102	1,0954451
TIEMPO PROMEDIO DE FLUJO (semanas)	2,3734644	7,505553	23,734644
INVENTARIO PROMEDIO (unid)	548	173	55
COSTO ANUAL DE MANTENER INVENTARIO (\$us)	54800	17300	5500
COSTO ANUAL DE PEDIR (\$us)	54772,256	17320,51	5477,2256
COSTO ANUAL MANTENER Y PEDIR CADA PRODUCTO	109572,26	34620,51	10977,226
COSTO TOTAL ANUAL MANTENER Y PEDIR CADA PRODUCTO			155169,99

$$n = \sqrt{\frac{12000 \times 0.2 \times 500 + 1200 \times 0.2 \times 500 + 120 \times 0.2 \times 500}{2(4000 + 1000 + 1000 + 1000)}}$$

$$n = 9.75 \approx 10$$

$$CM = 7000 \times 10 + \frac{12000 \times 0.2 \times 500 + 1200 \times 0.2 \times 500 + 120 \times 0.2 \times 500}{2 \times 10}$$

$$CM = 136600.0$$
\$ us

