USB2I2C

中文数据手册

版本: V3.1D

USBIO TECH.

USB总线转接芯片: USB212C

更新日期: 2009.04.30

USB212C实现:

- ✓ USB总线到100KHz标准12C模式;
- ✓ USB总线到400KHz快速12C模式;
- ✓ USB总线到750KHz高速(HS) 12C模式;
- ✓ USB总线到20KHz慢速 12C模式。
- ✓ 采用超小SSOP20封装。

更多内容请参考:

http://www.usb-i2c-spi.com/cn

目录

2.1.	概述	5
2.2.	同步串口	5
3.1.	引脚图	6
3.2.	封装形式	6
4.1.	公共引脚	7
4.2.	I2C 串口的引脚	7
5.1.	功能说明-一般说明	8
5.2.	功能说明-硬件说明	8
5.3.	功能说明-厂商 ID 和产品 ID	8
5.4.	功能说明-2 线制 I2C/IIC/TWI/SMBUS 同步串行总线	8
6.1.	参数-绝对最大值	10
6.2.	参数-电气参数	10
6.3.	参数-基本时序参数	11
7.1.	应用-基本连接	12
7.2.	应用-2 线制 I2C/IIC/TWI/SMBUS 同步串口应用	13
8.1、	关于电容和晶振	15
8.2、	关于中断设置的说明	1 5
8.3、	I2C 接口上拉电阻	15
8.4、	USB2I2C 外围元器件说明	16
8.5、	数据缓冲区是否必须限制 4096	16
8.6、	不能识别 USB 检测	16
9.1、	Windows 系统下的驱动	17

9.2、I	Linux 系统下的驱动	20
10.1.	设备管理 API	21
10.2.	中断处理 API	22
10.3.	I2C 传输 API	23

1、概述

USB212C是一个USB总线的转接芯片。USB212C实现:

- ✓ USB总线到100KHz标准12C模式;
- ✓ USB总线到400KHz快速12C模式;
- ✓ USB总线到750KHz高速(HS) 12C模式;
- ✓ USB总线到20KHz慢速 12C模式。

USB212C提供主12C接口,实现PC上位机和下位控制器之间的直接数据输入输出,而不再需要单片机/DSP/MCU等的监控。在同步串口方式下,USB212C芯片还支持兼容12C(IIC)总线的其它2线制TWI/SMBUS同步串口,提供SCL线和SDA线。PC上位机可以方便地对12C/IIC/TWI/SMBUS接口器件进行读写。

USB212C是一个USB总线的转12C总线的专用接口芯片。通过USB212C芯片用户可以非常方便地实现PC 机USB总线和下位机端各种12C/11C设备之间的通信:

- ◆ ATMEL公司的AT24CXX系列EEPROM;
- ◆ 12C总线8位并行10口扩展芯片PCF8574/JLC1562;
- ◆ I2C接口实时时钟芯片DS1307/PCF8563/SD2000D/M41T80/ME901/ISL1208/;
- ◆ I2C数据采集ADC芯片MCP3221(12bitADC)/ADS1100(16bitADC)/ADS1112(16bitADC)/MAX1238 (12bitADC)/MAX1239(12bitADC);
- ◆ I2C接口数模转换DAC芯片DAC5574(8bitDAC)/DAC6573(10bitDAC)/DAC8571(16bitDAC)/;
- ◆ I2C接口温度传感器TMP101/TMP275/DS1621/MAX6625

USB212C还支持对非标准12C协议的期间进行读写,具体请参考相关的手册。

图 1- USB2I2C 功能结构

2、特点

2.1. 概述

- ✓ 全速USB设备接口,兼容USB V2.0,外围元器件只需要1个12M晶体和2个电容。
- ✓ 低成本,直接转换原120接口的外围设备。
- ✓ 采用小型的SSOP-20封装。
- ✓ 由于是通过USB转换的界面, 所以只能做到应用层兼容, 而无法绝对相同。

2.2. 同步串口

- ✓ 采用FlexWire™技术,通过软件能够实现灵活多样的2线到5线的同步串口。
- ✓ 作为Host/Master主机端,支持2线和4线等常用的同步串行接口。
- ✓ 2线制I2C/IIC/TWI/SMBUS接口,支持20KHz/100KHz/400KHz/750KHz 4种传输速度。

3、封装

3.1. 引脚图

图 2-USB2I2C 引脚图

3.2. 封装形式

封装形式	塑体宽度		引脚	间距	芯片厚度	封装说明	订货型号
SSOP-20	5. 30mm	209mi I	0. 65mm	25mi I	1. 4mm	标准SS0P20封装	USB212C

4、引脚说明

4.1. 公共引脚

引脚号	引脚名称	类型	引脚说明
28	VCC	电源	正电源输入端, 需要外接0. 1uF电源退耦电容
12	GND	电源	公共接地端,直接连到USB总线的地线
9	V3	电源	在3.3V电源电压时连接VCC输入外部电源,
			在5V电源电压时外接容量为0.01uF退耦电容
13	ΧI	输入	晶体振荡的输入端, 需要外接晶体及振荡电容
14	XO	输出	晶体振荡的反相输出端,需要外接晶体及振荡电容
10	UD+	双向三态	直接连到USB总线的D+数据线,内置上拉电阻
11	UD-	双向三态	直接连到USB总线的D-数据线
1	ACT#	输出	USB设备配置,通过2K欧电阻下拉到地
2	RSTI	输入	外部复位输入, 高电平有效, 内置下拉电阻

4.2. I2C 串口的引脚

引脚号	引脚名称	类型	引脚说明				
24	4 SCL 开漏输出		2线串口的时钟输出,内置上拉电阻				
23	23 SDA		2线串口的数据输入输出,内置上拉电阻				
7	INT#	输入	中断请求输入,上升沿有效,内置上拉电阻				

5、功能说明

5.1. 功能说明-一般说明

本手册中的数据, 后缀B为二进制数, 后缀H为十六进制数, 否则为十进制数。

USB212C和PC连接时,只能作为USB Device使用; USB212C转换出来的12C总线,只能作为12C的主设备(Master),而且是12C总线中唯一的一个Master。

5.2. 功能说明-硬件说明

USB212C芯片内置了USB上拉电阻, UD+和UD-引脚应该直接连接到USB总线上。

USB212C芯片正常工作时需要外部向XI引脚提供12MHz的时钟信号。一般情况下,时钟信号由USB212C内置的反相器通过晶体稳频振荡产生。外围电路只需要在XI和XO引脚之间连接一个12MHz的晶体,并且分别为XI和XO引脚对地连接振荡电容。USB212C芯片内置了电源上电复位电路。INT#引脚是中断请求输入引脚,当其检测到上升沿时,计算机端的程序将会收到中断通知。其它引脚都是自定义的通用输入引脚,计算机端的应用程序可以查询其引脚状态。

USB212C芯片所有的引脚类型为三态输出的引脚,都内置了上拉电阻,在芯片复位完成后作为输出引脚,而在芯片复位期间三态输出被禁止,由内置的上拉电阻提供上拉电流。如果必要,外部电路可以在电路中再提供外置的上拉电阻或者下拉电阻,从而设定相关引脚在USB212C芯片复位期间的默认电平,外置上拉电阻或者下拉电阻的阻值通常在2K $\Omega \sim 5K \Omega$ 之间。

USB2120芯片使用5V电源电压时, V3引脚应该外接容量为0.01uF左右的电源退耦电容。

5.3. 功能说明-厂商 ID 和产品 ID

USB212C默认的厂商ID和产品ID为5512H。

5.4. 功能说明-2 线制 I2C/IIC/TWI/SMBUS 同步串行总线

由USB212C转换的2线制同步串口12C/11C/TW1/SMBUS是主动式串口,只能作为12C/11C/TW1/SMBUS总线上的Host或Master主机端,在计算机端的程序控制下,可以直接从外部电路输入输出数据,一般不需要外接单片机/DSP/MCU。

2线制同步串口I2C/IIC/TWI/SMBUS的主要引脚包括SCL引脚、SDA引脚。SCL用于单向输出同步时钟, 开漏输出且内置上拉电阻, SDA用于准双向数据输入输出, 开漏输出及输入且内置上拉电阻。

2线制同步串口I2C/IIC/TWI/SMBUS的基本操作元素包括:起始位、停止位、位输出、位输入。

USBIO 科技发展有限公司 电话:010-83

起始位定义为当SDA为高电平时, SCL输出下降沿(从高电平切换为低电平)。

停止位定义为当SDA为高电平时, SCL输入上升沿(从低电平切换为高电平)。

位输出定义为当SCL为低电平时, SDA输出位数据, 然后SCL输出高电平脉冲。

位输入定义为SCL输出高电平脉冲,在下降沿之前从SDA输入位数据。

字节输出定义为8个位输出及1个位输入用于应答。

字节输入定义为8个位输入及1个位输出用于应答。

120总线的数据输入和输出以字节为单位,每个字节含8个位,高位在前。

USB212C的2线制同步串口支持大部分的标准或兼容12C/IIC/TWI/SMBUS的设备,如:

- ✓ I2C接口EEPROM: 24C01A到24C16、24C32到24C1024等;
- ✓ I2C总线8位并行I0口扩展芯片PCF8574/JLC1562;
- ✓ I2C接口实时时钟芯片DS1307/PCF8563/SD2000D/M41T80/ME901/ISL1208/;
- ✓ I2C数据采集ADC芯片MCP3221(12bitADC)/ADS1100(16bitADC)/ADS1112(16bitADC)/MAX1238 (12bitADC)/MAX1239 (12bitADC);
- ✓ I2C接口数模转换DAC芯片DAC5574 (8bitDAC) /DAC6573 (10bitDAC) /DAC8571 (16bitDAC);
- ✓ I2C接口温度传感器TMP101/TMP275/DS1621/MAX6625,等

6、参数

6.1. 参数-绝对最大值

(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-20	70	$^{\circ}$
TS	储存时的环境温度	-55	125	$^{\circ}$ C
VCC	电源电压(VCC接电源, GND接地)	−0. 5	6. 5	V
VIO	输入或者输出引脚上的电压	-0. 5	VCC+0. 5	V

6.2. 参数-电气参数

(测试条件: TA=25℃, VCC=5V, 不包括连接USB总线的引脚)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压(V3引脚不连VCC引脚)	4. 5	5	5. 3	V
ICC	工作时总电源电流		15	30	mA
ISLP	USB挂起时的总电源电流		0. 5		mA
VIL	低电平输入电压	-0. 5		0. 7	V
VIH	高电平输入电压	2. 0		VCC+0. 5	V
VOL	低电平输出电压(4mA吸入电流)			0. 5	V
VOH	高电平输出电压(4mA输出电流)(芯片 复位期间仅100uA输出电流)	VCC-0. 5			V
IUPs	SCL和SDA引脚的高电平输出电流	100	200	500	uA
IUP	内置上拉电阻的输入端的输入电流	40	80	160	uA

USBIO 科技发展有限公司

IDN	内置下拉电阻的输入端的输入电流		-50		uA
VR	电源上电复位的电压门限	2. 3	2. 6	2. 9	V

6.3. 参数-基本时序参数

(测试条件: TA=25℃, VCC=5V)

名称	参数说明	最小值	典型值	最大值	单位
FSCK	XI引脚的输入时钟信号的频率	11. 98	12. 00	12. 02	MHz
TPR	电源上电的复位时间		20	40	mS
TRI	外部复位输入的有效信号宽度	100			nS
TRD	外部复位输入后的复位延时		30		mS

7、应用

7.1. 应用-基本连接

USB212C的基本连接图如下图所示。P3是USB端口, USB总线包括一对5V电源线和一对数据信号线, 通常, +5V电源线是红色, 接地线是黑色, D+信号线是绿色, D-信号线是白色。USB总线提供的电源电流最大可以达到500mA, 一般情况下, USB212C芯片和低功耗的USB产品可以直接使用USB总线提供的5V电源。如果USB产品通过其它供电方式提供常备电源, 那么USB212C也应该使用该常备电源, 如果需要同时使用USB总线的电源, 那么可以通过阻值约为1-3 Ω 的电阻连接USB总线的5V电源线与USB产品的5V常备电源, 并且两者的接地线直接相连接。

图 3-USB2I2C 基本连接图

C13和C14是独石或高频瓷片电容, C13容量为1000pF到0. 01 μ F, 用于USB212C内部电源节点退耦, C14容量为0. 1 μ F, 用于外部电源退耦。晶体X3、电容C11和C12用于时钟振荡电路。X3的频率是12MHz, C11和C12是容量为15pF的独石或高频瓷片电容。

如果USB产品使用USB总线的电源,并且在VCC与GND之间并联了较大的电容C15,使得电源上电过程较慢并且电源断电后不能及时放电,那么USB212C将不能可靠复位。建议在RST1引脚与VCC之间跨接一个容量为0.47 µ F的电容C26延长复位时间。*R1是配置电阻,ACT引脚必须通过2K欧电阻下拉到地。*

在设计印刷线路板PCB时,需要注意:退耦电容C13和C14尽量靠近USB212C的相连引脚;使D+和D-信号线贴近平行布线,尽量在两侧提供地线或者覆铜,减少来自外界的信号干扰;尽量缩短XI和X0引脚相关信号线的长度,为了减少高频干扰,可以在相关元器件周边环绕地线或者覆铜。

外部24XX系列串行EEPROM配置芯片U3是可选器件,可以方便验证I2C总线操作;当U3被省去时,同样可以正常工作,这是提供SCL和SDA引脚和I2C Device连接。

USB212C也可以工作在3.3V系统中,典型的连接方式如下图所示。和5V系统不同的放在于: V3管脚要和VCC一起链接到3.3V电源上。

USBIO 科技发展有限公司

7.2. 应用-2 线制 I2C/IIC/TWI/SMBUS 同步串口应用

2线制I2C/IIC/TWI/SMBUS同步串口应用连接图如下图所示。I2C总线支持多个设备的地址识别,采用数据流方式读写数据,支持一次读写较大的数据块。USB2I2C的I2C两线串口支持20KHz、100KHz、400KHz、750KHz的速度,与具有硬件两线串口的设备连接时可以选择较高的速度,与软件模拟两线串口的单片机连接时只能选择较低的速度(例如20KHz)。

USB212C芯片只能作为12C通信的主机端(Master),而且USB212C只能作为12C总线中的唯一的一个主机端(Master);也就是说USB212C只能工作在单主通信的12C总线里,而且这个主设备就是USB212C。

5V系统和3. 3V系统是两种常见的120通信系统,两种不同的电压系统进行通信时,必须添加电平转换芯片或者采用MOSFET驱动:

I²C 总线系统中连接两个电压不同的部分的双向电平转换器电路

SPI操作的其它配置请参考USB2I2C驱动文件夹【USB2I2C_DRIVER\LIB_C】下面的USBIOX. H文件里面的相关说明(USBI0_SetStream)。

USBIO SetStream(// 设置串口流模式

ULONG i Index, // 指定USB212C设备序号

USBIO 科技发展有限公司

ULONG i Mode); // 指定模式, 见下行

// 位1-位0: 12C接口速度/SCL频率, 00=低速/20KHz, 01=标准/100KHz(默认值), 10=快速/400KHz, 11=高速/750KHz

// 位2: SPI的I/0数/IO引脚, 0=单入单出(SCK时钟/MOSI出/MISO入)(默认值),

1=双入双出(SCK时钟/MOSI出MSOSI2出/MISO入MISO2入)

// 位7: SPI字节中的位顺序, 0=低位在前, 1=高位在前

// 其它保留,必须为0

其它120操作还包括:

- ✓ USBIO_ReadI2C;
- ✓ USBIO_Write12C;
- ✓ USBIO_ReadEEPROM;
- ✓ USBIO_WriteEEPROM;
- √ USBIO StreamI2C

更详细的说明请参考: http://www.usb-i2c-spi.com/cn/rar/USB2XXX_Mamu.pdf。

图 4-USB2I2C 转换成 I2C 接口

8、USB2I2C常见硬件问题

8.1、关于电容和晶振

USB2I2C可以在XI脚对地加了一个10M的电阻,提高起振的稳定性。

8.2、关于中断设置的说明

不推荐使用中断方式通信,因为USB协议本身的限制,即使采用中断方式对于实时性和 USB传输速率并没有太大的改观。

中断调用方式:先定义一个中断程序,

USBIO_SetIntRoutine(//设定中断服务程序 ULONG iIndex,//指定USB2I2C设备序号

mPUSBIO_INT_ROUTINE iIntRoutine);//指定中断服务程序,为NULL则取消中断服务

说明:设置USB212C的中断服务程序,iIntRoutine是一个符合mPUSB10_INT_ROUTINE格式的子程序,当USB212C的INT#引脚出现上升沿时,USB10X.DLL自动调用iIntRoutine,并向其提供一个引脚状态参数,引脚状态参数中,位为1则说明对应的引脚为高电平,位为0则说明对应的引脚为低电平,位7-位0对应USB212C的D7-D0引脚,位8对应USB212C的ERR#引脚,位9对应USB212C的PEMP引脚,位10对应USB212C的INT#引脚,位11对应USB212C的SLCT引脚。例如:主程序

8.3、I2C接口上拉电阻

I2C接口上拉电阻大小是47K欧。长距离或者高时钟频率I2C通信的时候,建议在I2C总线SCL和SDA上拉4.7K欧到10K欧电阻。必要时采用专用的I2C总线延长芯片。

USBIO 科技发展有限公司

8.4、USB2I2C 外围元器件说明

- ✓ 振荡部分: 一个12MHz的晶体,两个15pF的振荡电容,引线尽量简短;
- ✓ 电源退耦: 一个0.1uF的电源退耦电容104,接于VCC与GND之间,非常必要;
- ✓ 内部电源: 一个0.01uF的电容103,接于V3引脚与GND之间,可选,用于降低EMI;

8.5、数据缓冲区是否必须限制 4096

之所以说所谓的限制 4096 缓冲区是出于这样的考虑:由于 WINDOWS 系统的限制, USB 通信实际上是以每 mS 组织"打包"一次数据传输的。即使你把缓冲区开成 1M 的话,那么传输的速度和 4096 字节的传输速度是一样的,那么就没必要提供更多的缓冲区给我们的动态库,而只需要 4096 字节就可以了。

8.6、不能识别 USB 检测

如果第一次插入设备计算机没有提示发现新硬件,请检查硬件,主要检查以下几个方面:

- ✓ (1)-USB 信号线有没有接错 VCC(红),UD-(白),UD+(绿),GND(黑);
- ✓ (2)-晶振是否起振(如果起振两端的电压应该在 2.5V 左右);
- ✓ (3)-V3 引脚的电容是否为 103 电容;
- ✓ (4)-USB 线是否为屏蔽线,线的长度不能超过 5M。

USB2I2C 只有接到计算机上面正常工作的话, 晶振才是起振的,如果没有连接的话, 芯片处于休眠状态, 晶振不起振的。使用示波器查看晶振有没有起振, 应使用*10 挡探头。

9、USB2I2C驱动

USB2I2C提供Windows和Linux下面的驱动。

9.1、WINDOWS 系统下的驱动

9、1、1. 下载驱动文件

从 USBIO Tech.网站 <u>www.usb-i2c-spi.com/cn</u>的"在线下载"栏里下载最新版本的驱动程序。 连接地址是:<u>http://www.usb-i2c-spi.com/cn/down.htm</u>。下载 USB2I2C "开发大礼包"。解 压缩到本地机器的硬盘里待用。USB2I2C 驱动文件目录如下:

USB2I2C是 USB2ISP的一个子集 是 USB2ISP的功能简化版本。如果同时还需要提供 SPI、GPIO、EPP 或 MEM 等接口,可以使用 USB2ISP,软件不需要做任何更改。

9、1、2. 插入 USB2I2C_DEV 开发板

将 USB2I2C_Demo 测试板(或者自己设计的 USB2XX 板子)插入到电脑主板 USB 接口。当 USB2I2C_Demo 开发板向外部供电时,最好插入 PC 机背部的主板 USB 口。

9、1、3. Windows 提示发现新硬件

Windows发现了新USB硬件设备

USBIO 科技发展有限公司

插入 USB2I2C_DEV 开发板后 Windows 提示发现新硬件。

9、1、4. 提示安装驱动

提示安装驱动

选择【从列表或指定位置安装(高级)】选项,然后单击【下一步】按钮。

9、1、5. 指定驱动文件的路径

此处需要指定驱动文件的路径。驱动文件就是从网站上下载解压缩后的文件。

9、1、6. 复制文件

接下来是系统复制驱动的过程。首次安装可能还会提示"没有通过 Windows 徽标测试",选择【仍然继续】按钮。

微软徽标认证

9、1、7. 安装成功

USBIO 科技发展有限公司

可以通过我的【电脑】→【属性】→【硬件设备管理器】来查看新安装的的设备。也可以打开 USB2I2C_DEMO_VBCN.exe , 此时状态来显示

9.2、LINUX 系统下的驱动

USB2I2C提供Linux 2.6内核下面的驱动,需要开源的Libusb支持。

下载地址: HTTP://WWW. USB-12C-SPI. COM/CN/DOWN. HTM, 文件名【USB2XXXLinuxDriver】

USBIO 科技发展有限公司 电话:

10、上位 PC 机应用软件开发

在计算机端的Windows操作系统下, USB212C的并口驱动程序和动态链接库USB10X. DLL向应用程序提供了应用层接口,包括:设备管理API、并口数据传输API、同步串口数据传输API、中断处理API。有关API参数的说明请参考USB10X. H(一下各节中说明的API,均在USB10X. H有更详细的说明),主要API如下。

有关DLL中各个API的使用VB和VC实例请参考USB212C评估板资料中的各个源程序及例子。

10.1. 设备管理 API

- ✓ USB10_OpenDevice (//打开USB212C设备,返回句柄,出错则无效 ULONG iIndex);//指定USB212C设备序号,0对应第一个设备 说明:将USB10 作为设备,使用前必须先打开,然后才能使用。
- ✓ USBIO_CloseDevice(//关闭USB2I2C设备 ULONG iIndex);//指定USB2I2C设备序号 说明:用完USBIO_后,或者应用程序退出前,应该关闭USB2I2C设备。
- ✓ USBIO_SetDeviceNotify(//设定设备事件通知程序
 ULONG iIndex,//指定USB2I2C设备序号,0对应第一个设备
 PCHARiDeviceID,//可选参数,指向字符串,指定被监控的设备的ID,字符串以\0终止
 mPUSBIO NOTIFY ROUTINEiNotifyRoutine);//指定设备事件回调程序

说明:用于应用程序监控USB212C设备的插拔事件,确保应用程序随时知道USB设备是否存在,防止在USB设备拔出后收发数据,并及时响应USB设备的插入。

✓ USBIO_GetStatus(//通过USB2I2C直接输入数据和状态,类似的API还有USBIO_GetInput ULONG iIndex,//指定USB2I2C设备序号

PULONG iStatus);//指向一个双字单元,用于保存状态数据

说明: 获取的状态数据中: 位7-位0对应USB212C的D7-D0引脚, 位8对应USB212C的ERR#引脚, 位9对应USB212C的PEMP引脚, 位10对应USB212C的INT#引脚, 位11对应USB212C的SLCT引脚, 位13对应USB212C的WAIT#引脚, 位14对应USB212C的DS#引脚, 位15对应USB212C的AS#引脚, 位23对应USB212C的SDA引脚。

USBIO 科技发展有限公司

✓ USBIO_SetOutput (//设置USB2I2C的I/O方向, 并通过USB2I2C直接输出数据

ULONG i Index, //指定USB212C设备序号

ULONG iEnable, //数据有效标志

ULONG iSetDirOut, //设置I/O方向, 位清0则对应引脚为输入, 位置1则对应引脚为输出

ULONG iSetDataOut);//输出数据,如果I/O方向为输出,那么位数据将通过引脚输出

说明:谨慎使用该API,防止修改I/0方向使输入引脚变为输出导致与其它输出引脚之间短路而损坏。上述的I/0方向和输出数据以32位数据表示,其中:位7-位0对应USB2I2C的D7-D0引脚,位8对应USB2I2C的ERR#引脚,位9对应USB2I2C的PEMP引脚,位10对应USB2I2C的INT#引脚,位11对应USB2I2C的SLCT引脚,位13对应USB2I2C的WAIT#引脚,位14对应USB2I2C的DS#/READ#引脚,位15对应USB2I2C的AS#引脚另外,以下引脚只能输出,不考虑I/0方向:位16对应USB2I2C的RESET#引脚,位17对应USB2I2C的WRITE#引脚,位18对应USB2I2C的SCL引脚,位29对应USB2I2C的SDA引脚。

✓ USB10_Set_D5_D0(//设置USB212C的D5-D0引脚的1/0方向,并通过D5-D0引脚直接输出数据

ULONG i Index, //指定USB212C设备序号

ULONG iSetDirOut, //设置D5-D0各引脚的I/O方向, 清0则引脚为输入, 置1则引脚为输出

ULONG iSetDataOut);//设置D5-D0各引脚的输出数据,仅当1/0方向为输出时生效

说明: 谨慎使用该API, 防止修改I/0方向使输入引脚变为输出导致与其它输出引脚之间短路而损坏。

10.2. 中断处理 API

✓ USBIO_SetIntRoutine(//设定中断服务程序

ULONG iIndex, //指定USB212C设备序号

mPUSBIO_INT_ROUTINE iIntRoutine);//指定中断服务程序,为NULL则取消中断服务 说明:设置USB2I2C的中断服务程序,iIntRoutine是一个符合mPUSBIO_INT_ROUTINE格式的子程序,

说明:设置USB2T2C的中断服务程序,IIntRoutine是一个符合mPUSBTO_INT_ROUTINE格式的子程序,当USB212C的INT#引脚出现上升沿时,USBIOX.DLL自动调用iIntRoutine,并向其提供一个引脚状态参数,引脚状态参数中,位为1则说明对应的引脚为高电平,位为0则说明对应的引脚为低电平,位7-位0对应USB2T2C的D7-D0引脚,位8对应USB2T2C的ERR#引脚,位9对应USB2T2C的PEMP引脚,位10对应USB2T2C的INT#引脚,位11对应USB2T2C的SLCT引脚。例如:主程序

```
main {
.....
USBIO_OpenDevice (0); //打开设备, 针对0#设备, 如果有多个, 可以计数
USBIO_SetIntRoutine (0, myInterruptEvent); //设置中断服务程序
......读写数据, 或者在接收到中断服务程序的通知后处理中断
USBIO_CloseDevice (0); //用完后关闭设备
```

中断服务程序, 当USB212C的INT#引脚出现上升沿时, USB10X. DLL会自动调用该子程序,

USBIO 科技发展有限公司


```
Void CALLBACK myInterruptEvent(unsigned long PinStatus) {
    if(PinStatus & mStateBitERR) printf("发生中断时ERR#引脚为高电平");
    else printf("发生中断时ERR#引脚为低电平");
    ......自己处理或者通知主程序处理
}
```

10.3. I2C 同步串口传输 API

✓ USBIO_ReadI2C(//从两线串口读取一个字节数据,仅适用于7位地址的设备

ULONG iIndex, //指定USB212C设备序号 ULONG iDevice, //低7位指定设备地址 ULONG iAddr, //指定数据单元的地址

PULONG oByte);//指向一个字节单元,用于保存读取的字节数据

说明:从两线串口读取一个字节数据。仅适用于7位地址的设备,不支持带从地址的120设备。

✓ USBIO Writel2C(//向两线串口写入一个字节数据,仅适用于7位地址的设备

ULONG iIndex, //指定USB212C设备序号 ULONG iDevice, //低7位指定设备地址 ULONG iAddr, //指定数据单元的地址 ULONG iByte);//待写入的字节数

说明:从两线串口读取一个字节数据。仅适用于7位地址的设备,不支持带从地址的120设备。

✓ USBIO_WriteRead(//执行数据流命令, 先输出再输入

ULONG iIndex, //指定USB212C设备序号

ULONG iWriteLength, //写长度, 准备写出的长度

ULONG iWriteBuffer, //指向一个缓冲区, 放置准备写出的数据

ULONG iReadStep, //准备读取的单个块的长度, 总长度为(iReadStep*iReadTimes)

ULONG iReadTimes. //准备读取的次数

PULONG oReadLength, //指向长度单元, 返回后为实际读取的长度

ULONG oReadBuffer);//指向一个足够大的缓冲区,用于保存读取的数据

说明: 先输出数据再输入数据,执行数据流命令,适用于同步串口等。

✓ USBIO SetStream(//设置同步串口流模式

ULONG iIndex, //指定USB212C设备序号

ULONG i Mode);//指定模式,见下面的说明

说明: IMODE的位1位0: I2C速度/SCL频率, 00=低速20KHZ, 01=标准100KHZ, 10=快速400KHZ, 11=高速750KHZ//位2: SPI的I/0数/I0引脚, 0=单入单出(4线接口), 1=双入双出(5线接口)//位7: SPI字节中的位顺序, 0=低位在前, 1=高位在前//其它保留, 必须为0。

USBIO 科技发展有限公司

✓ USBIO StreamI2C(//处理两线串口的数据流,适用于所有两线串口的设备

ULONG iIndex, //指定USB212C设备序号

ULONG iWriteLength. //准备写出的数据字节数

ULONG iWriteBuffer, //指向缓冲区, 放置准备写出的数据, 首字节是设备地址及读写位

ULONG iReadLength, //准备读取的数据字节数

ULONG oReadBuffer);//指向缓冲区,返回后是读入的数据对两线串口设备进行操作。

例如,从24C256中3200H开始的地址读出256字节的数据:

ULONG OutBuf[5], InBuf[300];//待写数据缓冲区,读出数据缓冲区

OutBuf[0]=0xA1;

OutBuf[1]=0x32;

OutBuf[2]=0x00;//待写数据:设备地址及单元地址

USBIO_StreamI2C(0, 3, OutBuf, 256, InBuf);//针对O#设备处理两线串口的数据流

✓ USBIO ReadEEPROM(//从EEPROM中读取数据块,速度约56K字节

ULONG iIndex. //指定USB212C设备序号

EEPROM TYPE iEepromID, //指定EEPROM型号

ULONG iAddr, //指定数据单元的地址

ULONG iLength, //准备读取的数据字节数

PULONG oBuffer);//指向一个缓冲区,返回后是读入的数据

说明: 读EEPROM的API支持从24C01到24C16和从24C32到24C4096的各种型号的EEPROM存储器。

✓ USBIO_WriteEEPROM(//向EEPROM中写入数据块

ULONG i Index, //指定USB212C设备序号

EEPROM_TYPE iEepromID, //指定EEPROM型号

ULONG iAddr, //指定数据单元的地址

ULONG iLength, //准备写出的数据字节数

PULONG iBuffer);//指向一个缓冲区,放置准备写出的数据

说明:写EEPROM的API支持从24C01到24C16和从24C32到24C4096的各种型号的EEPROM存储器。

11、封装尺寸

USB2I2C采用SSOP20封装(PCB),尺寸如图7和图8。图7以mil为单位,图8以mm为单位。

图 5-USB2I2C SSOP20 PCB 封装图 (MIL)

图 6 USB2I2C SSOP20 PCB 封装图 (MM)

版权

2007年6月版,版权属USBIO科技发展有限公司所有,未经USBIO科技发展有限公司事先的书面允许,本出版物的任何部分不得被翻版、传播。

本手册中所包含的内容发生变更时,恕不另行通知。

USBIO 科技发展有限公司

