Machine Learning Overview

Sargur N. Srihari
University at Buffalo, State University of New York
USA

Outline

- 1. Al and the Machine Learning approach
- 2. ML problem types
 - 1. Based on data:

Supervised, Unsupervised, Semi-supervised, Reinforcement

2. Based on output:

Regression, Classification

3. Based on models:

Generative, Discriminative

- 3. Disruption in Software Development
 - Software 1.0 and Software 2.0

History of Al

Greek Mythology

Pygmalion of Cyprus

Sculpts marble Galatea that came to life (falls in love) GBS' Pygmalion: Higgins teaches Eliza to speak Queen's English

Eliza is first Al program (Weizenbaum, MIT)

Indian Mythology

Ganesa (Buddhipriya)
Parvati forms sandalwood Ganesa, whose head is transplanted from an elephant

Today AI is ubiquitous

- Automate routine labor
 - Search

- Understand speech
 - SIRI, Alexa

Autonomous Vehicles

UB, AI and Fruit-fly

- Many handcrafted rules and exceptions
- Better learn from training set
- Handwriting rec cannot be done without ML!

Handwriting is the fruit fly of Al

NYU, Toronto, Montreal, Baidu

Al Paradox

- Hard problems for people are easy for Al
- Easy problems are hard for Al
 - Narrow Intelligence General Intelligence
 People easy tasks:

What tasks require intelligence?

- Reasoning
 - Puzzles, Judgments
- Planning
 - Action sequences
- Learning
 - Improve with data
- Natural language
- Integrating skills
- Abilities to sense, act

Everyday life needs knowledge

- Knowledge is intuitive and subjective
 - Key challenge of AI is how to get this informal knowledge into a computer
- Knowledge-based Approach
 - Hard-code knowledge in a formal language
 - Computer can reason about statements in these languages using inference rules
 - Examples:
 - Expert systems for diagnosis (MYCIN, CADUCEUS)
 - Design (VAX)

Knowledge-Based Al

Disadvantage: Unwieldy process

Time of human experts

People struggle to formalize rules with enough complexity to describe the world

The Machine Learning approach

- Difficulties of hard-coded approach suggests:
 - Allow computers to learn from experience
- First determine what features to use
- Learn to map the features to outputs

Linear classifier

Quadratic classifier

The ML Approach

Data Collection
Samples

Model Selection

Probability distribution to model process

Parameter Estimation

Values/distributions

Generalization
(Training)

Inference

Find responses to queries

Decision (Inference OR Testing)

Learning Problem Definition

- Improving some measure of performance P
 when executing some task T through some type
 of training experience E
- Example: Learning to detect credit card fraud
- Task T
 - Assign label of fraud or not fraud to credit card transaction

- Performance measure P
 - Accuracy of fraud classifier
 With higher penalty when fraud is labeled as not fraud
- Training experience E
 - Historical credit card transactions labeled as fraud or not

ML Problem Types

- Based on Type of Data
 - 1. Supervised, Unsupervised, Semi-supervised
 - 2. Reinforcement Learning
- 2. Based on Type of Output
 - Regression, Classification
- 3. Based on Type of Model
 - Generative, Discriminative

Periodic Table of ML algorithms

We will look at examples first proceeding along the horizontal axis and then along the vertical

Supervised Learning

- Most widely used methods of ML, e.g.,
 - Spam classification of email
 - Face recognizers over images
 - Medical diagnosis systems
- Inputs x are vectors or more complex objects
 - documents, DNA sequences or graphs
- Outputs are binary, multiclass(K),
 - Multi-label (more than one class), ranking,
 - Structured:
 - y is a graph satisfying constraints, e.g., POS tagging
 - Real-valued or mixture of discrete and real-valued

Supervised Classification Example

- Off-shore oil transfer pipelines
 - Non-invasive measurement of proportion of oil, water, gas
 - Called Three-phase Oil/Water/Gas Flow
- Input data: Dual-energy gamma densitometry
 - Beam of gamma rays passed through pipe
 - Attenuation in intensity indicates density of material
 - Single beam insufficient
 - Two degrees of freedom: fraction of oil, fraction of water
 - One beam of Gamma rays of two energies (frequencies)

- Six Beams
- •12 measurements
 •attenuation

Prediction Problems

- 1. Predict Volume Fractions of oil/water/gas
- 2. Predict configuration (one of three)
 - Twelve Features
 - Three classes
 - Two variables, 100 points shown

- exponential growth of cells with dimensionality
- 12 dimensions discretized into 6 gives 3 million cells
- Hardly any points in each cell

Global minimum at x = 0. Since f'(x) = 0, gradient

For x > 0, we have f'(x) > 0,

 $f(x) = \frac{1}{2}x^2$

f'(x) = x

so we can decrease f by

moving leftward.

descent halts here.

Supervised Learning by Gradient

Descent 20

1.0

0.5

0.0

For x < 0, we have $f'(x) \leq 0$

so we can decrease f by

moving rightward.

Loss function f(x),

e.g., sum of squared errors,

given weights x

Ability to Generalize

- ML algorithms need to perform well not just on training data but on new inputs as well
 - 1. Parameter Norm Penalties (L^2 and L^1 regularization)
 - 2. Data Set Augmentation

and	and	and	th	44	th
and	and	and	th	th	th
and	and	and	th	th	th
and	and	and	th	47	th
and	and	and	th	47	th
and	and	and	th	47	th
and	and	and	th	÷μ	th
and	and	and	th	th	th
and	and	and	th	ith	th

- 3. Early Stopping
- 4. Dropout

Unsupervised Learning

- Unlabeled data assuming underlying structure
 - 1. Clustering to find partition of data
 - 2. Identify a low-dimensional manifold
 - PCA, Autoencoder
 - 3. Topic modeling
 - Topics are distributions over words
 - Document: a distribution across topics
 - Methods: SVD, Collaborative Filtering
 - 4. Recommendation Systems
 - Data links between users and items
 - Suggest other items to user
 - Solution: SVD, Collaborative Filtering

How semi-supervised can succeed

- Ex: density over x is a mixture over three components, one per value of $y = \frac{y}{\sqrt{y}}$
- If components well-separated:
 - modeling $p(\mathbf{x})$ reveals where each component is
 - A single labeled example per class enough to learn p(y|x)

In this case $p(\mathbf{y}|\mathbf{x})$ is a univariate Gaussian for \mathbf{y} =1,2,3

Reinforcement Learning

- Training data inbetween supervised/unsupervised
 - Indication of whether action is correct or not
 - Reward signal may refer to entire input sequence
 - Dog is given a reward/punishment for an action
 - Policies: what actions to take in a particular situation
 - Utility estimation: how good is state (→used by policy)
- No supervised output but delayed reward
- Credit assignment
 - what was responsible for outcome
- Applications:
 - Game playing, Robot in a maze, Multiple agents, partial observability, ...

RL: Learning to play ATARI

- Action(a)={left,right}
- Observation(s)=[image frame]
- Reward(r)= -100 if lose, -1 if win
- Policy $(\pi) = P_{\pi}(a|s)$
 - -10,000 states, 2 actions

$$Q_{i+1}(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q_i(s',a')|s,a]$$

• Loss = γ +E[max_a, Q(s', a') - Q_i(s', a')

Regression

Problem data set

Red curve is result of fitting a two-layer neural network by minimizing squared error Corresponding inverse problem by reversing *x* and *t*

Very poor fit to data:
GMMs used here

Regression: Learning to Rank

first section began between the 7th and 6th century BC, and the last ...

Input (x_i) :

(d) Features of Query-URL pair)

- Log frequency of query in anchor text
- Query word in color on page
- # of images on page
- # of (out) links on page
- PageRank of page
- URL length
- URL contains "~"
- Page length

Traditional IR uses TF/IDF

Output (y): Relevance Value

Target Variable

- Point-wise (0,1,2,3)
- Regression returns continuous value Allows fine-grained ranking of URLs

Two paradigms in Al

Shaded boxes indicate components that can learn from data

Designing right set of features

- Simple Machine Learning depends heavily on representation of given data
- For detecting a car in photographs
 - Tire shape difficult in terms of pixel values
 - Shadows, glare, occlusion

Representation Learning

- Solution: use ML to not only learn mapping from representation to output but representation itself
 - Better results than hand-coded representations
- Allows All systems to rapidly adapt to new tasks
 - Designing features can take great human effort
 - Can take decades for a community of researchers
- Does not need programmer to have deep knowledge of the problem domain

Feature Learning for Classification

- Function to map pixels to object identity is complicated
- Series of hidden layers extract increasingly abstract features
- Final decision made by a simple classifier

Deep Learning

- Understand the world as hierarchy of concepts
 - How these concepts are built on top of each other is deep, with many layers
 - Weights learnt by gradient descent

$$|\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \varepsilon \nabla_{\boldsymbol{x}^t} f(\boldsymbol{x}^t)|$$

Summary of Al Models

Shaded boxes indicate components that can learn from data

Al Paradigm Shift

- Physics paradigm shift
 - Newtonian Physics

- Al paradigm shift
 - Knowledge-based systems
 - Cannot perform simple recognition tasks
 - Simple machine learning methods
 - Cannot perform complex recognition tasks
 - Deep Learning methods

ML as a Software Area

1. ML is programming computers for AI:

 Perform tasks that humans perform well but difficult to specify algorithmically

2. ML is principled way to build IT systems

- Probabilistic responses to queries—IR
- Adaptive user interfaces, personalized assistants (information systems)
- Scientific/engineering applications

Disruption in Software Development

- Machine Learning is not just another tool
 - It is a fundamental shift in how software is written
- Software 1.0 (Classical "stack")
 - It is code we write
 - e.g., LAMP(Linux, Apache, MySQL, Python/Perl)
- Software 2.0 (Code written by Optimizer)
 - It is in a user unfriendly language
 - There are millions of weights
 - No human involved in coding

Software 1.0 and 2.0: Fizzbuzz

- Print i=1 to 100, except:
 - if divisible by 3 print fizz,
 - if divisible by 5 print buzz,
 - if divisible by both 3 and 5 print fizzbuzz
- Two approaches:
 - Software 1.0: C++

Software 2.0: Python/Tensorflow

```
1 ##include <iostream>
 2 using namespace std;
    int main()
 4 - {
        for(int i=1;i<=100;i++){
            if((i%3 == 0) \&\& (i%5==0))
                cout << "FizzBuzz\n";
 8
            else if(i%3 == 0)
                cout<<"Fizz\n";
10
            else if(i%5 == 0)
11
                cout<<"Buzz\n";
12
            else
13
                cout<<i<"\n";
14
15
        return 0;
16 }
```

```
\begin{aligned} \text{def model}(X, w_h, w_o): \\ h &= \text{tf.nn.relu}(\text{tf.matmul}(X, w_h)) \\ \text{return tf.matmul}(h, w_o) \end{aligned}
```


Program Space: Software 1.0 vs 2.0

Software 1.0

By writing each line of code, programmer identifies a point in program space with some desirable behavior

Software 2.0

Restrict search space to continuous subset of program space Search is made efficient by using stochastic gradient descent

*A. Karpathy, Tesla

Benefits of Software 2.0

- Computationally homogeneous
 - Sandwich of two operations: matrix multiply, RELU
- Simple to bake into silicon
 - Small instruction set
- Constant run time
 - Every iteration of forward pass has same FLOPS
 - Constant memory use
- Highly portable: sequence of matrix multiplies is easier
- Very agile
 - C++ is hard to speed-up, instead remove half of channels
- Can meld into optimal whole
 - Software often has modules, can jointly optimize
- It is better than you

Srihari Machine Learning

Limitations of Software 2.0 stack

- After training we have large networks that work very well, but hard to tell how
 - 90% accurate model we understand
 - 99% accurate model we don't
- Can fail unintuitively (Adversarial examples)

How ML disrupts CS

Software Developer

- Present: Write and maintain layers of tangled code
- Future: A teacher
 – curate training data & analyze results

Mathematics

- Present: Logic, Discrete mathematics
- Future: Probability Theory, Calculus, Linear Algebra

Programming Environments

- Present: C++, Java
- Future: Tensorflow/Pytorch/Gluon/...
 - In ten years most software jobs won't involve programming

Hardware

- Present: CPUs
- Future: GPUs

The transition

- Conventional software can be replaced with a ML solution with improvement, e.g.*,
 - Upgrading search ranking
 - Data center energy usage
 - Language translation

*Projects at Alphabet:

- Solving GO
- Repositories
 - Github is home for Software 1.0 code
 - Software 2.0 repositories are datasets
 - Commits are additions and edits of the labels

ML Models rely on Probability Theory

Sum Rule for Marginalization

$$p(X=x_{\scriptscriptstyle i}) = \sum_{\scriptscriptstyle j=1}^{\scriptscriptstyle L} p(X=x_{\scriptscriptstyle i},Y=y_{\scriptscriptstyle j})$$

Product Rule: for combining

$$p(X,Y) = \frac{n_{ij}}{N} = p(Y \mid X)p(X)$$

Bayes Rule

$$p(Y \mid X) = \frac{p(X \mid Y)p(Y)}{p(X)}$$

where

$$p(X) = \sum_{Y} p(X | Y) p(Y)$$

Viewed as Posterior α likelihood x prior

- Fully Bayesian approach
 - Conjugate distributions
 - Feasible with increased computational power
 - Intractable posterior handled using either
 - Variational Bayes or
 - Stochastic sampling
 - e.g., Markov Chain Monte Carlo, Gibbs

Generative/Discriminative Models

Generative

- Naïve Bayes
- Mixtures of multinomials
- Mixtures of Gaussians
- Hidden Markov Models (HMM)
- Bayesian networks
- Markov random fields

Discriminative

- Logistic regression
- SVMs
- Traditional neural networks
- Nearest neighbor
- Conditional Random Fields (CRF)

Summary

- Machine Learning as an Al approach
 - Overcomes limitations of knowledge-based systems
- Types of AI tasks
 - Data: Supervised, Unsupervised, Semi-supervised, Reinforcement
 - Output: Classification, Regression, Ranking
 - Model: Generative, Discriminative
- Disruption of computer science
 - Principled approach to develop IT systems
 - Drivers are mobile systems (big data), personalization