

Multi Protocol Audio Controller (MPAC) User Manual

Ver. 0.2

Rudolf Usselmann <u>rudi@asics.ws</u>

Draft - Subject to change without notice!

Table of Contents

1. Introduction	7
2. Architecture	8
3. Protocols	9
3.1. I2S protocol	9
3.2. TDM Protocol	11
3.3. AC97 Protocol	13
4. Data Packing	14
4.1. Input Stream Data Packing	14
4.1.1. Example data alignment without packing	
4.1.2. Example 16 bit sample packing	14
4.1.3. Example 18 bit sample packing	14
4.1.4. Example 20 bit sample packing	15
4.1.5. Example 24 bit sample packing	15
4.2. Output Data Packing	15
4.2.1. Right Justified samples in a 32 bit frame	16
4.2.2. Left Justified samples in a 32 bit frame	16
5. Operation	17
5.1. Introduction	17
6. Core Registers	18
6.1. Register Address Map	18
6.2. Control and status register (CSR)	19
6.3. Version Register (VER)	19
6.4. Mute Register (MUTE)	20
6.5. Mute Value Register (MVAL)	
6.6. Configuration Register (CFG)	
6.7. In buffer status (IB_STAT)	
6.8. Out buffer status (OB_STAT)	
6.9. Buffer overflow/underflow (BF_OVUN)	

	6.10. Buffer overflow/underflow Interrupt Enable (BO_INT_EN)	24
	6.11. Interrupt mask (INT_MASK)	24
	6.12. Interrupt source (INT_SRC)	25
	6.13. Timer Register (TIMER)	25
7	. Core IOs	26
	7.1. General System Inputs	26
	7.2. AXI Interconnect Signals	26
	7.2.1. AXI Lite Register File Interface	26
	7.2.2. AXI Light Streaming Interface	27
	7.3. I2S Interface	28

Change Log

Revision	Modifications
0.1 March 5, 2018	- Initial Draft

License

Copyright 2018, ASICS World Services, LTD

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistribution of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1. Introduction

This IP Core provide a standard interface to external codecs and other audio devices.

It allows a internal controller to stream one or multiple audio channel from or to the controller with minimal CPU intervention.

Some of the main features are:

- 1. Multiple protocol support: I2S, TDM, AC97
- 2. 16, 18, 20, 24 and 32 bit Sample Size Support
- 3. up to 8 Output Channels
- 4. up to 8 input Channels
- 5. Configurable Internal buffers
- 6. External DMA Engine Support
- 7. AXI Light interface for registers
- 8. AXI Streaming interface for data

2. Architecture

3. Protocols

The Audio Master Controller supports 3 main protocols: I2S (PCM), PDM and AC97.

3.1. I2S protocol

In the I2S mode, only two channels can be transmitted/received at a time. Typically the channels are Right & Left. I2S support a variety of sample sizes: 16, 18, 20, 24 and 32 bit.

Sample Rate (kHz)	Sample Size (bits)	I2S Clock (MHz)
32	16	1.024
44.1	16	1.411
48	16	1.536
96	16	3.072
192	16	6.144
32	18	1.152
44.1	18	1.588
48	18	1.728
96	18	3.456
192	18	6.912
32	20	1.280
44.1	20	1.764
48	20	1.920
96	20	3.840
192	20	7.680
32	24	1.536
44.1	24	2.117
48	24	2.304
96	24	4.608
192	24	9.216
32	32	2.048
44.1	32	2.822
48	32	3.072
96	32	6.144
192	32	12.288

3.2. TDM Protocol

Configure:

- 1) SYNC starts with rising edge OR one clock after rising edge
- 2) Falling edge either one clock cycle, or at the end of first channel, OR 50% duty cycle

Sample Rate (kHz)	Sample Size (bits)	Channels	I2S Clock (MF
32	16	4	2.048
44.1	16	4	2.8224
48	16	4	3.072
96	16	4	6.144
192	16	4	12.288
32	24	4	3.072
44.1	24	4	4.2336
48	24	4	4.608
96	24	4	9.216
192	24	4	18.432
32	32	4	4.096
44.1	32	4	5.6448
48	32	4	6.144
96	32	4	12.288
192	32	4	24.576
32	16	8	4.096
44.1	16	8	5.6448
48	16	8	6.144
96	16	8	12.288
192	16	8	24.576
32	24	8	6.144
44.1	24	8	8.4672
48	24	8	9.216
96	24	8	18.432
192	24	8	36.864
32	32	8	8.192
44.1	32	8	11.2896
48	32	8	12.288
96	32	8	24.576
192	32	8	49.152

3.3. AC97 Protocol

4. Data Packing

4.1. Input Stream Data Packing

The incoming data stream is 32 bits wide. It can however hold various sample sizes in different alignment modes.

4.1.1. Example data alignment without packing

3	3	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0	0 7	0 6	0 5	0 4	0 3	0 2	0	0
16 bit sample 1 16 bit sample 0 UNUSED 18 bit sample															0																
	UNUSED																				18 l	oit s	sam	ıple	9						
				U	NU	JSE	D												2	20 1	oit s	sam	ıple	•							
		U	NU	JSE	D												:	24 l	oit s	san	ıple	•									
								•					;	32 ł	oit s	an	ıple	;													

4.1.2. Example 16 bit sample packing

3	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0 8	0 7	0 6	0 5	0 4	0	0 2	0 1	0
	16 bit sample 1																				1	6 b	it sa	amj	ple	0					
					1	6 b	it sa	amj	ple	3											1	6 b	it sa	amj	ple	2					
					1	6 b	it sa	amj	ple	5											1	6 b	it sa	amj	ple	4					

4.1.3. Example 18 bit sample packing

3	0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0 8	0 7	0 6	0 5	0 4	0 3	0 2	0 1	0
	S1 [13:0]																					S	0								
S3 [9:0]																		S	2										S1 [1	7:14]	

	S5 [5:0]			S4						S3 [17:10]	
S7 [1:0]			S6						S5 [1	17:6]	
		S8 []	5:0]			-		S7 []	7:2]		
	(S10 [11:0]					S9				S8 [17:16]
	S12 [7:	:0]			S11					S10 [17:	12]
S14	[3:0]			S13					S	12 [17:8]	
			S15					S	14 [17:4	4]	

4.1.4. Example 20 bit sample packing

3	3	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0 8	0 7	0 6	0 5	0 4	0	0 2	0 1	0
				S	1 []	11:0)]														S	0									
	S3 [3:0		S2 S1															1 [1	9:1	2]										
						S	55 []	15:0)]													S	3 []	19:4	<u>[</u>]						
		9	S7 [7:0													S	6										S	5 [1	9:10	6]
									S	8														S	57 []	19:8	3]	•			

4.1.5. Example 24 bit sample packing

3	3	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0 8	0 7	0 6	0 5	0 4	0 3	0 2	0 1	0
S1 [7:0] S0																															
						S	2 [15:0)]													S	51 [2	23:8	3]						
											S	3														(S2 [7:0]		

4.2. Output Data Packing

Before the data is sent to the codec, it can be left or right justified, when the transport frame is wider than the sample size.

4.2.1. Right Justified samples in a 32 bit frame

3	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0 8	0 7	0 6	0 5	0 4	0 3	0 2	0	0
UNUSED (all zeros) UNUSED (all zeros)																		16 ł	oit s	sam	ıple	•									
	UNUSED (all zeros)																				18 l	oit s	san	ıple	е						
			UN	US	ED	(all	ze	ros))											20 l	oit s	sam	ıple	9							
	UN	US	ED	(all	zei	ros))										:	24 1	bits	sam	ıple	•									
													;	32 ł	oit s	an	ıple)													

4.2.2. Left Justified samples in a 32 bit frame

3	3	2	2	2	2	2	2	1	2	2	2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
16 bit sample									UNUSED (all zeros)																						
18 bit sample										UNUSED (all zeros)																					
20 bit sample									UNUSED (all zeros)																						
	24 bit sample UNUSED (all zeros))																			
	32 bit sample																														

5. Operation

5.1. Introduction

6. Core Registers

6.1. Register Address Map

All RESERVED and unspecified/missing bits should always be written with zero. Reading RESERVED and unspecified/missing bits will return undefined values. Software should follow this model to be compatible to future releases of this core.

Address Offset	Register Name	Description
0x00	CSR	Control and status register
0x04	VER	Version register
0x08	MUTE	Mute register
0x0C	MVAL	Mute Value
0x10	CFG	Configuration Register
0x14		RESERVED
0x18	IB_STAT	In buffer status
0x1c	OB_STAT	Out buffer status
0x20	BF_OVUN	Buffer overflow/underflow
0x24	BO_INT_EN	Buffer overflow/underflow interrupt enable
0x28	INT_MASK	Interrupt mask register
0x2c	INT_SRC	Interrupt source register
0x30		RESERVED
0x34	TIMER	Timer register
0x38		

6.2. Control and status register (CSR)

TBD

Field	Bit(s)	Access	Description
SRST	31	WO	Soft Reset Writing a '1' to this bits resets the IP Core
RESERVED	30:16	RO	RESERVED
OCH_CNT	15:12	RW	Number of output channels to use (less one)
ICH_CNT	11:8	RW	Number of input channels to use (less one)
RESERVED	7:1	RO	RESERVED
ENABLE	0	RW	Enable IP Core

6.3. Version Register (VER)

This register holds the hardware revision number as well as various hardware configuration options.

Field	Bit(s)	Access	Description
RESERVED	31:25	RO	RESERVED
HAVE_TIMER	24	RO	Indicated whether the timer module is present or not
HW_OCH	23:20	RO	Number of max output channels supported by hardware
HW_ICH	19:16	RO	Number of max input channels supported by hardware
HW_FD	15:12	RO	Buffer FIFOs depth (for each channel)
VER	11:0	RO	Hardware revision MAJ[11:8].MIN[7:0]

6.4. Mute Register (MUTE)

This register the muting of channels.

Field	Bit(s)	Access	Description
RESERVED	31:24	RO	RESERVED
IMUTE	31:16	RW	Mute bits for input channels 15-0 A '1' will force the Mute Value to be written to the corresponding input channel
OMUTE	15:0	RW	Mute bits for output channels 15-0 A '1' will force the Mute Value to be written to the corresponding output channel

6.5. Mute Value Register (MVAL)

This register the muting of channels.

Field	Bit(s)	Access	Description
MAVL	31:0	RW	Mute Value

6.6. Configuration Register (CFG)

This register configures various internal parameters.

Field	Bit(s)	Access	Description
RESERVED	31:27	RO	RESERVED
PROT_SEL	26:24	RW	Protocol Select 0 – I2S (2 channel only) 1 – TDM 2 – AC97 3-7 – Reserved
RESERVED	31:24	RO	RESERVED

Field	Bit(s)	Access	Description
SYS_SS	20:18	RW	System Sample size 0 – 16 bit 1 – 18 bit 2 – 20 bit 3 – 24 bit 4 – 32 bit 5-7 – Reserved
ALIGN	17	RW	Sample alignment 0 – Left (LSB) 1 – Right (MSB)
PACKED	16	RW	Samples are packed 0 – One Sample per DW 1 – Samples are packed
RESERVED	15:11	RO	RESERVED
SL_WI	10:8	RW	Output slot width 0 – 16 bit 1 – 18 bit 2 – 20 bit 3 – 24 bit 4 – 32 bit 5-7 – Reserved
RESERVED	7:5	RO	RESERVED
SYNC_STAR	4:3	RW	Sync start 0 – Aligned with first data bit 1 – One cycle before first data bit
SYNC_WIDTH	2:1	RW	Sync duration 0 – Active one cycle at the beginning 1 – 50% duty cycle 2 – One cycle in-active at the end 3 - Reserved
SYNC_INV	0	RW	Invert Sync 0 – Not inverted (high-low) 1 – Inverted (low-high)

6.7. In buffer status (IB_STAT)

This register provide the fill status of the input buffers. Unused/not implemented buffers should be ignored.

The status encoding is:

Value	Description
0	0-25% empty
1	25-50% empty
2	50-75% empty
3	75-100% empty

Field	Bit(s)	Access	Description
ICH15_STAT	31:30	RO	In channel 15 status
ICH14_STAT	29:28	RO	In channel 14 status
ICH13_STAT	27:26	RO	In channel 13 status
ICH12_STAT	25:24	RO	In channel 12 status
ICH11_STAT	23:22	RO	In channel 11 status
ICH10_STAT	21:20	RO	In channel 10 status
ICH9_STAT	19:18	RO	In channel 9 status
ICH8_STAT	17:16	RO	In channel 8 status
ICH7_STAT	15:14	RO	In channel 7 status
ICH6_STAT	13:12	RO	In channel 6 status
ICH5_STAT	11:10	RO	In channel 5 status
ICH4_STAT	9:8	RO	In channel 4 status
ICH3_STAT	7:6	RO	In channel 3 status
ICH2_STAT	5:4	RO	In channel 2 status
ICH1_STAT	3:2	RO	In channel 1 status
ICH0_STAT	1:0	RO	In channel 0 status

6.8. Out buffer status (OB_STAT)

This register provide the fill status of the output buffers. Unused/not implemented buffers should be ignored.

The status encoding is:

Value	Description
0	0-25% full
1	25-50% full
2	50-75% full
3	75-100% full

Field	Bit(s)	Access	Description
OCH15_STAT	31:30	RO	Out channel 15 status
OCH14_STAT	29:28	RO	Out channel 14 status
OCH13_STAT	27:26	RO	Out channel 13 status
OCH12_STAT	25:24	RO	Out channel 12 status
OCH11_STAT	23:22	RO	Out channel 11 status
OCH10_STAT	21:20	RO	Out channel 10 status
OCH9_STAT	19:18	RO	Out channel 9 status
OCH8_STAT	17:16	RO	Out channel 8 status
OCH7_STAT	15:14	RO	Out channel 7 status
OCH6_STAT	13:12	RO	Out channel 6 status
OCH5_STAT	11:10	RO	Out channel 5 status
OCH4_STAT	9:8	RO	Out channel 4 status
OCH3_STAT	7:6	RO	Out channel 3 status
OCH2_STAT	5:4	RO	Out channel 2 status
OCH1_STAT	3:2	RO	Out channel 1 status
OCH0_STAT	1:0	RO	Out channel 0 status

6.9. Buffer overflow/underflow (BF_OVUN)

This register contains buffer overflow/underflow conditions.

Field	Bit(s)	Access	Description
IN_OVFL	31:16	RW	Indicates a overflow condition on the in channels. This occurs when the FIFOs are full while we try to latch a new sample from the I2S bus. Write a '1' to clear this condition.
OUT_UNFL	15:0	RW	Indicates a underflow condition on the in channels. This occurs when the FIFOs are empty while we try to latch a new sample to the I2S bus serializer. Write a '1' to clear this condition.

6.10. Buffer overflow/underflow Interrupt Enable (BO_INT_EN)

This register contains buffer overflow/underflow interrupt enables.

Field	Bit(s)	Access	Description
IN_OVFL_IE	31:16	RW	Interrupt Enable for input channel overflow conditions. Each bit corresponds to a channel.
OUT_UNFL_IE	15:0	RW	Interrupt Enable for output channel underflow conditions. Each bit corresponds to a channel.

6.11. Interrupt mask (INT_MASK)

This register contains buffer overflow/underflow conditions.

Field	Bit(s)	Access	Description
RESERVED	31:10	RO	RESERVED
IN_OFL_INT	9	RO	In buffer overflow interrupt enable
OUT_UFL_INT	8	RO	Out buffer underflow interrupt enable
RESERVED	7:1	RO	RESERVED
TIMER_INT	0	RW	Timer Interrupt enable

6.12. Interrupt source (INT_SRC)

This register contains buffer overflow/underflow conditions.

Field	Bit(s) Access		Description
RESERVED	31:10	RO	RESERVED
IN_OFL_INT	9	RO	In buffer overflow interrupt occurred
OUT_UFL_INT	8	RO	Out buffer underflow interrupt occurred
RESERVED	7:1	RO	RESERVED
TIMER_INT	0	RW	Timer Interrupt occurred

6.13. Timer Register (TIMER)

The Timer register provides a basic timer implementation. It allows for generation of .

Bit #	Access	Description
31:0	R	Current Timer Value
31	W	Enable Interrupt
29:28	W	Pre-scalar 00 – Timer runs of System Clock (divided by 1) 01 – Timer runs of System Clock divided by 2 10 – Timer runs of System Clock divided by 4 11 – Timer runs of System Clock divided by 8
27:0	W	Timer Interrupt Value

7. Core IOs

This IP Core offers the choice of native WISHBONE or native AXI Light SoC interfaces. The PHY and GPIO interfaces remain unchanged regardless of the SoC interface.

All signals are active high unless noted otherwise. The 'Dir' column illustrates the direction of the signals. 'I' indicates an input to the IP Core, 'O' indicates an output from the IP Core.

7.1. General System Inputs

Name	Width	Dir.	Description
clock_i	1	I	main core clock
reset_i	1	I	system reset

7.2. AXI Interconnect Signals

The AXI interface is compliant to the AXI Lite 4.0 Interface Specification. All AXI Interfaces run at the SoC clock (clock_i) and use SoC reset (reset_i).

7.2.1. AXI Lite Register File Interface

This interface is used to access the register file.

Name	Width	Dir.	Description			
	AXI Light Write Channel					
axl_awaddr_i	32	I	Master Write address (byte address)			
axl_awprot_i	3	I	Master Protection type			
axl_awvalid_i	1	I	Master Write address valid			
axl_awready_o	1	О	Slave Write address ready			
axl_wdata_i	32	I	Master Write data			
axl_wstrb_i	4	I	Master Write strobes			
axl_wvalid_i	1	I	Master Write valid			

Name	Width	Dir.	Description		
axl_wready_o	1	О	Slave Write ready		
axl_bresp_o	2	О	Slave Write response		
axl_bvalid_o	1	О	Slave Write response valid		
axl_bready_i	1	I	Master Response ready		
	AXI Light Read Channel				
axl_araddr_i	32	I	Master Read address (byte address)		
axl_arprot_i	3	I	Master Protection type		
axl_arvalid_i	1	I	Master Read address valid		
axl_arready_o	1	О	Slave Read address ready		
axl_rdata_o	32	О	Slave Read data		
axl_rresp_o	2	О	Slave Read response		
axl_rvalid_o	1	О	Slave Read valid		
axl_rready_i	1	I	Master Read ready		

7.2.2. AXI Light Streaming Interface

This Interface is used for high speed data transfer, from and to the internal data FIFOs.

Name	Width	Dir.	Description		
	AXI Stream Transmit Data Channel				
axs_tx_tid_i	4	I	Transmit data channel ID		
axs_tx_tvalid_o	1	О	Transmit data channel valid		
axs_tx_tready_i	1	I	Transmit data channel ready		
axs_tx_tlast_o	1	О	Transmit data channel last word		
axs_tx_tdata_o	32	О	Transmit data channel data		
	AXI Stream Receive Data Channel				
axs_rx_tid_i	4	I	Receive data channel ID		
axs_rx_tvalid_i	1	I	Receive data channel valid		
axs_rx_tready_o	1	О	Receive data channel ready		
axs_rx_tlast_i	1	I	Receive data channel last word		
axs_rx_tdata_i	32	I	Receive data channel data		

7.3. I2S Interface

This Interface is used for connection to an external Codec.

Name	Width	Dir.	Description
i2s_clk	1	I/O TBD	Bit Clock
i2s_wc	1	О	Word/Frame/LR/Sync Clock
i2s_di	1	I	Serial Data Input
i2s_do	1	О	Serial Data Output
i2s_rst	1	θ	Optional Codec reset