

	N tolin		nital Exclina	classmate Date Page
CUL 8 1 1 1 1 2 1 3 1 4 0 5 0 7 0	B A 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 gall 3 2 1	drich till	
Ly A	Built de Riving Edge Timing Dia	PY	D FlipFlop	Pr Qc Chr

Uk	1		1	1			1		1	1	4
							1				
0.0	1		٥		0	i.	1		0	1	0
AA						v	,				-10
AB C			1		o	·	Ò		1	1	0
45							1.				
96	0		0			0 ⊁ :	1			1	0
			(a)								
	CUR	c	8	A	Decimal						
	0	0	0	0	q						
	1	0	0	1	1						
	2	0	١	0	2				н		_
_	5	0		1	3						
	4	1	0	0	4						
	13	(=:	0	(5			ja za	(
	G	J	1	0	6		×.	X4			
	7	(Ì	1	7	/%	*	-			
		201									
									-2.1		

Q.2 a) Implement following SoP using 8:1 MUX.

 $y = \sum (0, 2, 3, 6, 9, 11, 12, 15)$

	Sa	6	1.0		1.	
-		1.5,	15,	50	4	
_	0	0	0	0	1	
λ	. 0	7 O	,0	Q11	0	* * * * · · · · · · · · · · · · · · · ·
	0	0		0		
	0	0	1	\	Ö	
	0		0	0	0	£ 7
	0	1	0)	1	(
	0		\	0	\	1 1 1 1 1 1 1 1
	0		1		0	
	1	0	0	0	0	e e e e e e e e e e e e e e e e e e e
	1.	0	0	1	1	
		0	1	0	0	
	1	0	1	}	1	,
	1	1.	0	0	1	P
	1	1	0	•	0	<i>t</i>
		1	1	0	0	+
		,	(1	(
		1				

412.50	5a	52	Sı	5.	1 1 Mil 1	ive's Co	6.2-
;	0	Q,	0	0	0.010		
- Alle		0 - 21	, , O		L. A. A.		
)	0	, 0	1 8) 0	0		
	0	0		1	_ \		
	0	1	0	Ø	<u></u>		
1 1	0		Ø	1	0		
	0	1 (0	0		
	0	j. (6)	1	1			
4	l i	0	0	0			
	- , (0	0	l	0		
		0		0	1		
		0	Ì	1	0		
4	ſ	·	0	0	0		
		1	0		1		'
	l		1	0			
	1	1			0		
			,				

D.S. Design MDD to daynchronous up counter using.

D.F.F. Assume falling edge triggered lise full decoding.

Vice

Q.3	b) Design MOD 10 daynchronous up-counter using J-4 aio 6000.
	desume viving edge triggered. Use full decoding.
	Logici viving edge triggered. Use full decoding.
	J 0 J 00 J 00
	A B B B B B B B B B B B B B B B B B B B
	as 7 has a g
	ch ch. dr
	个
	D & BA
9.4	Live extense que increadant de a colt misson la constance
11 da	why are preset and clear reperved cas asynchronous
	inputs in a flip flop.
•	Perset and clear one called asynchronous input
	because they can set or reset the flip flop
	regardless of the status of the clock signal.
•	when the preset input is activated, the flip flop will
	he set (0=1, 0=0) regardless of any of the
	synchronous injust or the clock.
•	When the clear conput is cactivated, the flip glop will
	be reset (0=0, 0=1), regardless of any of the
	synchronous inputs or the clock.
•	Pereset and clear inputs find use when multiple

flip-flops are ganged together to perform a function on a multi-bit binary word, and a single line is needed to set or reset them all at once.

b) Draw and Explain J- k offip flop with touth table.

Touth Table:

Escritation Table:

	material and a second										_
	Clk	7	K	80+1	Qu+1		Qo	anti	J	k	
	0	0	0	Qn	Qo		0	O	O	X	
	Ī	0	0	90	Q		0	1	١	X	
	1	0	Q,	ò	1		1	0	X	1	
	١	1	b		. 0	di a	1	1	×	0	
1	1	1	1	Toad	gle (ân)			To a	II II		•
+	-			9	9	•		4			

Characteristics Table:

				Marie Carlo						
	00	J	k	90+1		1			1	
	0	0	0	Ð		1	1	0	1	
	0	0	1	0			l	1	0	
1	0	1	0	(•				
1	0	1	- (\						
	1	0	0	\						
	1	0	1	0	**					

Q-5	and the same some particular and the same some some some some some some some so
a)	Explain Seven Segment display configuration.
	Explain Seven Segment display configuration. Also explain BCD to seven segment conversion.
•)	Seven Segment display configuration than 7.1ED. lights and I (decimal point) LED.
	lights and I (accurat point) colled a segment.
•	Each of the seven LED's in called a segment. Seven segment displays are used in digital clocks,
	basic «calculators.
•	Segments are named from a to g.
•	According to the output required, we provide
	inputs to the seven segment the successify,
	LED'S light up.
	f 3 6
11.	e set com
	1
-	
$\mathcal{L} = \mathcal{L}$	9 9 9 9
	By BCO to bi
<u> </u>	By Segment d'
	BI de le
	t. E d
	9
	7-Segment

	Bs	Be	В.	Bo	Q.	Ь	0.7	1	6	6	a		
	0	0	0	00		1	1	1	1	10	00		
	0	0	0	01	0	1		0	0	0	0	,	
	0	0.7	M	10	(2. S)		0)	1	0	1	×-1	
	0	0	/1	10	10		01	10	0	0	1		
	0		· 0	00	O n		11	0	0	11	1	Ų.	
	Ð		0	01	0	0	I		0	,	ol -	* (j	
	0	(0)	Ţ	10	\cup	0			1	ĺ	10	O	
	0	()	(1	1		1	DI.	0	0	0	O	<u>.</u> 1	
	1	0	0	Co		. [1	1	1	1	1	()	
	\	0	O	01			١ز		0			Ü	
		O		()			1		,		I F	Ü	
6	Expl	ain	way	60a	chiève	Bi	NO3	ų (to	Exc	449	-3 code.	
	\	0	Ja	1	1			9		()	,	
	Exce	N -3	·	de s	an al	ل مد	æ	Sie	מאנ	ser	tate	d as xs-3	3
					, ,	_					_		

In excess-3 code each digit of decimal number is represented by adding 3 in each decimal digit.

· Following steps to convert the binary number into Excess-3 rode:

1) convert the binary number into edecimal

e) Add 3 in each digit of decimal number 3) Find binary rade of each odigit of me newly

generated number

- Binary to Each B C O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
odai naina daire