班号自动化与时 学号 190320517 姓名 首加 **实验日期** 9.15 组号 B4 教师签字 预习成绩 总成绩

实验(十一) 惠斯通电桥测电阻

· 实验目的

1.了解惠斯通电桥的构造和测量原理。

2. 熟悉电桥平衡的操作步马来

二、实验原理接线路,熟悉电阻箱、检流计等基本电学仪器的使用方法

明 Rx = Yx RJ Rx = Yx R

孝 Yx/Yx=N则 Rx=N·R, 通常取比值N为10的整数次方

2. N值的选取

Rx 的有效位数由N和R的有效位数来决定。如果 Yx 和 Xx 的精度是 够高. 使比值N具有足够的有效位数,则可视为常量。从测量 精度和电桥灵敏度考虑,一般取火的风相同或相近数量级。 桥臂R-般采用一个位数有限的电阻箱。例如具有×1000,×100, x/0, x)等四档。

3. 电桥灵敏度

S= an/贵 式中以一在电桥平衡后比较臂电阻尺的微小增减量

On一相应的检流计偏转格数 电桥灵敏度5的单位是格"。5趟大,在尺基础上增减0尺能引

起的检流计偏容格数越多,电桥越灵敏,测量误差越小。

南 S还可以多成 S= on = ola R

4. 仪器误差

自组电桥的仪器误差主要是由电阻箱的误差引起的。箱式 电桥是厂家生产的产品,它的仪器候差有国家标准 △仪=N(a% R+OR)式中N一电桥比例臂地值 a一电桥准确 度等级

R一比较質亦值 OR一比较質的最小步进值

三. 数据处理

小判断使用内接还是外接

内接时 Rin = RA+Rx E = Rin - Rx = RA
Rx

外接时 R测 =
$$\frac{1}{|R_v| + |R_v|}$$
 $\frac{1}{|R_v|} = \frac{1}{|R_v|} - \frac{1}{|R_v|}$ $\frac{1}{|R_v|} = \frac{1}{|R_v|} - \frac{1}{|R_v|}$ $\frac{1}{|R_v|} = \frac{|R_v|}{|R_v|} - \frac{|R_v|}{|R_v|}$ $\frac{1}{|R_v|} = \frac{|R_v|}{|R_v|} - \frac{|R_v|}{|R_v|}$

所以当尽 >> Ra时,内接法误差较小,当Rx << Rv 时, 外接法误差较小 直表得知 20 mA 电流表 内阻为10 s. 巨 最一位 = 后 二极管正向导通, 智阻较小, 所以 Rx << Ru, 应用外接法 2. 惠斯通电桥灵敏度计算.

四. 实验结论及现象分析

结论: ① 二极管在电压较小时保持开路, 电流为O, 当电压增大, 二极管的电流成指数式增长。

②调节电阻箱电阻,最终使灵敏电流计在灵敏度最大时也能保持偏轻小于一格,此时电桥平衡;。

五. 讨论问题

- 1、电桥测电阻为什么不能测量小于1个的电阻? 对于小于1人的电阻,电阻箱最小步进阻值为 0.1 几,则事待测电阻在实际上分测量阻值存 在0~0.0°的误差,即最高于达到9%的误差,并 且普遍存在1%~6%的误差,误差较大,不宜 用于测量小于1.几的电阻。
- 2. 用什么方法保护电流计,不至于因电流过大而损坏?

首先要将灵敏度调到最小,然后电源接通后采取"点按接通"的方式,防止电流计过度偏轻而损坏。

3、 当电桥平衡方后, 若互换电源和检流计位置, 电桥是否仍然平衡了, 并证明

公互换位置电桥依然平衡

1. 二极管的正向伏安特性曲线测定

1	2	3	4	+
U(v) 0.0912	0.1936	0.3176	0.4037	0.5067
1(mA) 0	0	0	0.017	0.211
6	7	8	9	10
U(v) 0.5906	0.6051	0.6539	0.6896	0.7220
1(mA) 1.192	1.603	4.377	9.340	18.986

2. 惠斯迪电桥测电阻

电阻(阻值)	N	Rs(s)	Rx(s)	oRs(e)	on(格)	5(格)
1 ks	0.1	9867.0	986.7	0.8		12336.25
lo ks	1	9926.5	9926.5	7		14180.71

3. 分析电析是敏度变化

N	Rs (sc)	R*(s)	ORs (se)	on(格)	5(格)
1	986.9	986.9	0.4	12	29604
0.1	9867.0	986.7	10	9	8709.3

学生 姓名 学号 日期 教师签字签字 高旭 190320517 9.15 正国 强