CECS 451

Hssignment 13

- 1. Consider the following data set comprised of three binary input attributes (A_1, A_2, A_3) A_3) and one binary output:
 - (a) (2 points) Compute $Gain(A_1)$.
 - (b) (2 points) Compute $Gain(A_2)$.
 - (c) (2 points) Compute $Gain(A_3)$.

Example	A_1	A_2	A_3	Output y
\mathbf{x}_1	1	0	0	0
\mathbf{x}_2	1	0	1	0
\mathbf{x}_3	0	1	0	0
\mathbf{x}_4	1	1	1	1
\mathbf{x}_5	1	1	0	1

Figure 1: Example data set

Gain (A) =
$$\theta\left(\frac{p}{p+n}\right)$$
 - $\left(\frac{p}{p+n}\right)$ - $\left(\frac{p}$

a. Gain (A₁)
$$= b(y) - \left[\frac{p_{true} + n_{true}}{p + n} b\left(\frac{p_{true} + n_{true}}{p_{true} + n_{true}} \right) + \frac{p_{salse} + n_{salse}}{p + n} b\left(\frac{p_{salse} + n_{salse}}{p_{salse} + n_{salse}} \right) \right]$$

$$= b\left(\frac{2}{5}\right) - \left[\frac{4}{5} b\left(\frac{2}{4}\right) + \frac{1}{5} b\left(\frac{9}{1}\right) \right]$$

$$= -\left(\frac{2}{5} \log_2 \frac{2}{5} + \frac{3}{5} \log_2 \frac{3}{5}\right) - \left[\frac{4}{5} \cdot \left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2}\right) + \frac{1}{5} \cdot \left(0 \log_2 0 + 1 \log_2 1\right) \right]$$

$$= 0.97095 - \frac{4}{5} \qquad (lecture notes)$$

= 0.17095

b. Grain
$$(A_z)$$

$$= b(\frac{2}{5}) - \left[\frac{3}{5} b(\frac{2}{3}) + \frac{2}{5} b(\frac{0}{2}) \right]$$

$$= b(\frac{2}{5}) - \left[\frac{3}{5} - \left(\frac{2}{3} \log_2 \frac{2}{3} + \frac{1}{3} \log_2 \frac{1}{3} \right) \right]$$

$$= 0.97095 - 0.55098$$

= 041997

c. Gain (A₃)
$$= \frac{1}{5} \left(\frac{2}{5}\right) - \left[\frac{2}{5} \frac{8}{5} \left(\frac{1}{2}\right) + \frac{3}{5} \frac{8}{5} \left(\frac{1}{3}\right)\right]$$

$$= \frac{8}{5} \left(\frac{2}{5}\right) - \left[\frac{2}{5} + \frac{3}{5} \cdot - \left(\frac{1}{3} \log_2 \frac{1}{3} + \frac{2}{3} \log_2 \frac{2}{3}\right)\right]$$

$$= 0.97095 - \left[\frac{2}{5} + 0.55098\right]$$

$$= 0.97095 - 0.95097$$

$$= 0.01997$$

2. (6 points) Consider the XOR function of three binary input attributes $(A_1, A_2, \text{ and } A_3)$, which produces the value 1 if and only if an odd number of the three input attributes has value 1. Draw a minimal-sized decision tree for the three-input XOR function.

A,	A ₂	A ₃	XOR
١	١	1	1
١,	1	٥	٥
١	٥	1	٥
ι	0	0	1
0	1	1	٥
0	ı	٥	ı
٥	٥	١	1
0	0	٥	0

