BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer

Introduction

- 이전에 좋은 성능을 보였던 시퀀셜 추천시스템의 경우 유저의 이전 행동 패턴만들 고려한 단방향 추천모델들을 주로 사용했다
- 이 경우 유저가 과거에 구매했던 아이템의 정보만으로 학습하므로 성능에 제약이 존재 한다
- 유저의 행동패턴을 단방향으로만 학습하지 않고 양방향으로 학습하는 모델인 BERT4Rec을 제안한다.

BERT4Rec Model

(b) BERT4Rec model architecture.

BERT4Rec 모델은 embedding layer, transformer layer, output layer로 구성되어 있다. 모델을 양방향으로 학습하기 위해 BERT의 학습 방법처럼 유저의 행동시퀀스에 대해 [mask]토큰을 사용하여 앞 뒤 정보로부터 [mask]의 정보를 파악할 수 있도록 했다

• 모델이 양방향으로 학습하면서 target 아이템의 정보를 직접 보게되는 information leakage가 발생할 수 있기 때문이다

또한 기존의 단방향 모델은 n크기만큼의 시퀀스 길이가 있다고 가정할 때, 모델 학습 시 시 퀀스마다 마지막 아이템을 맞추는 방식으로 학습샘플을 n개 구할 수 있다

반면 BERT4Rec 모델은 랜덤하게 마스킹을 처리하는 k개 역시 학습샘플로 설정하여 기존 보다 많은 샘플을 학습에 사용할 수 있다

모델의 세부 구조는 다음과 같다:

- Embedding layer의 경우 아이템의 정보와 아이템의 위치정보를 더해 [mask]와 함께 transformer 모델의 입력으로 들어가게 된다.
- 이때 유저의 시퀀스 길이가 전체 시퀀스 길이인 하이퍼파라미터 N보다 크면 잘라내고, 작으면 0패딩을 한다
- Transformer layer의 경우 기존 transformer와 동일하게 multihead attention, pointwise feed forward를 사용하여 레이어의 수 만큼 반복연산을 수행한다.

$$H^l = Trm(H^{l-1}), \forall i \in [1, \dots, L]$$
 (4)

$$\mathsf{Trm}(\boldsymbol{H}^{l-1}) = \mathsf{LN}\Big(\boldsymbol{A}^{l-1} + \mathsf{Dropout}\big(\mathsf{PFFN}(\boldsymbol{A}^{l-1})\big)\Big) \tag{5}$$

$$\boldsymbol{A}^{l-1} = \text{LN} \Big(\boldsymbol{H}^{l-1} + \text{Dropout} \big(\text{MH}(\boldsymbol{H}^{l-1}) \big) \Big) \tag{6}$$

- output layer는 transformer 모델로부터 받은 final output HL로부터 softmax를 통해 [mask]토큰의 확률값을 구하게된다. 이때 아이템에 대한 임베딩 매트릭스는 공유된 임베딩 매트릭스를 사용하여 모델의 사이즈를 줄일 수 있도록 했다.
- 정리하면, 모델의 입력에 유저의 시퀀스 중 p의 확률 만큼 [mask]를 수행하여 들어가게 되며, 출력으로는 [mask]된 아이템의 확률값이 나오게 된다.
- 이때 mask의 비율 p의 경우 데이터셋마다 다르지만 너무 큰 값으로 설정할 경우 오히려 성능은 악화된다.
- 모델의 loss의 경우 negative log-likelihood를 사용하여 [mask]가 반영된 유저의 행동 시퀀스가 주어졌을 때 [mask]아이템과 실제[mask]의 아이템을 비교하여 낮은 확률을 가질수록 weight를 더 많이 업데이트하는 방식으로 학습이 진행된다.

$$\mathcal{L} = \frac{1}{|\mathcal{S}_u^m|} \sum_{v_m \in \mathcal{S}_u^m} -\log P(v_m = v_m^* | \mathcal{S}_u')$$

Experiments

- 전체적인 모델의 성능 비교 결과를 보게 되면 저자가 제안한 모세 ㄷㄹ이 모든 데이터셋 에서 좋은 성능을 보인다.
- 성능표를 보면, 단방향으로 모델을 학습하는 것 보다 양방향으로 유저의 행동패턴을 학습하는 것이 더 좋은 추천성능을 나타내고 있음을 알 수 있다

Conclusion

- 기존 단방향 추천모델의 한계를 극복하기 위해 유저의 행통 시퀀스에 [mask]를 반영한 양방향 학습모델인 BERT4Rec모델을 제안했다.
- NLP 분야에서 BERT는 문장들의 representation을 학습하기 위해 pre-training의 목적으로 주로 사용되며 next sentence loss, segment embeddings도 같이 사용되는 특징

이 있다

• 하지만 BERT4Rec은 유저의 행동패턴만을 바탕으로 시퀀셜 추천을 위한 end-to-end 방식의 추천모델로 차별점이 있다