Лекция 16

Вычисление дискретного преобразования Фурье и время работы алгоритма Шёнхаге-Штрассена

(Конспект: М. Кузнецов)

16.1 Анализ алгоритма Шёнхаге-Штрассена

Хочется оценить время работы алгоритма.

Лемма 16.1. ДП Φ можно вычислить за время $O(bl\log b)$.

Мы докажем эту лемму во второй части лекции.

Итак, рекуррентное соотношение на время работы алгоритма Шёнхаге-Штрассена:

$$T(n) \leqslant bT(2l)$$
 (рекурсивные вызовы)+
$$O(bl\log b) \text{ (время на } Д\Pi\Phi)+$$
 дешевые операции (сложение, битовые сдвиги)+
$$O((3b\log b)^{\log_2 3}) \text{ (это время работы «простого» алгоритма,}$$
 но оно спрячется в $O(bl\log b)$).

 $T(n) \leqslant bT(2l) + cbl \log b = bT(2l) + cn \log n.$

Положим T'(n) = T(n)/n. Тогда

$$T'(n) \leqslant 2T'(4\sqrt{n}) + c\log n.$$

Итого,

Докажем, что $T'(n) = O(\log n \log \log n)$ (т.е. $T(n) = O(n \log n \log \log n)$ — почти линейное время).

Доказываем по индукции; пусть для маленьких n выполняется $T'(n) \le c' \log n \log \log n$. Индукционный переход происходит от $4\sqrt{n}$ к n:

$$T'(n) \le 2c'(2 + \log n/2)\log(2 + \log n/2) + c\log n \le c\log n + 4c'\log(2/3) + 4c'\log\log n + c'\log(2/3)\log n + c'\log n\log\log n.$$

За счет увеличения c' по сравнению с c можно добиться, чтобы слагаемое $c'\log(2/3)\log n$ (отрицательное) стало по абсолютной величине больше, чем три первые (положительные) слагаемые; а оставшееся слагаемое — это то, чем мы оцениваем.

16.2 Вычисление ДПФ

Научимся вычислять ДПФ (вычисление обратного преобразования производится аналогично — упражнение). Нам нужно вычислять некоторый многочлен p(x) во многих точках вида w^k , где w — степень двойки (именно, $2^{4l/b}$), а вычисление ведется по модулю $2^{2l} + 1$.

Для того, чтобы вычислить значение в точке x_0 , достаточно поделить на $x-x_0$ с остатком:

$$p(x) = q(x)(x - x_0) + r(x),$$
 $r(x) = \text{const}$ (это и есть $p(x_0)$.

Пусть
$$p(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$$
. Тогда

$$(F(a))_i = \sum_{j=0}^{n-1} (w^i)^j a_j = p(w^i).$$

Значит, надо рассмотреть $p \mod (x - w^i)$.

Заметим, что если $r = p \mod q$ и q'|q, то $p \mod q' = r \mod q'$. Поэтому остатки $\mod x - w^i$ можно вычислять так: сначала вычислить остатки \mod произведений таких $x - w^i$ для разных i, потом остатки этих остатков \mod меньших произведений, и т. д.:

Будем разбивать не на $i \leq n/2$, i > n/2, а аккуратно: так, чтобы произведения получались красивыми.

Лемма 16.2 (к лемме 16.1). Можно сгруппировать так, чтобы все произведения $\prod (x - w^i)$ в дереве имели вид $x^t - w^s$.

Задача 16.1. Доказать лемму 16.1.

Указание. Пусть $n=2^k$. Определим $\operatorname{rev}(j)=d_{k-1}\dots d_0$, где $d_0\dots d_{k-1}$ — битовое представление числа j. Тогда можно доказать, что

$$\prod_{j=l}^{l+2^m-1} (x - w^{\text{rev}(j)}) = x^{2^m} - w^{\text{rev}(l/2^m)}.$$

(3десь m — номер уровня в дереве.)

Итак, какие же вычисления надо производить?

$$\sum_{i=0}^{2t-1} a_i x^i \mod (x^t - w^s) = \sum_{j=0}^{t-1} (a_j + w^s a_{j+t}) x^j$$

(первая часть, $0 \leqslant j \leqslant t-1$, — без изменений, а во второй вместо x^t заменили на w^s). Все, что здесь надо делать — сложение и умножение на степень двойки.

Теперь можно доказать и лемму 16.1, подсчитав количество операций, выполняемых в этом дереве: на каждом уровне дерева — O(b) операций, каждая из которых занимает время O(l); количество уровней — $\log b$.