	<u>TP3 Pression - Feyrit</u>	Pt		А	в с	D 1	Note
I.	Régulation de pression simple boucle						
1	Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	0,5	Α				0,5
2	Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.	0,5	Α				0,5
3	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	В				2,25 Je veux voir la base de temps.
4	Déterminer un correcteur PI (avec Ti = τ) qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel EASYREG. On donnera la réponse théorique obtenue.	2	А				2
5	Donner pour ce réglage les valeurs théoriques du temps de réponse à ±5%, ainsi que la valeur du premier dépassement.	1,5	D			C),075
6	Déduire de la question 4 les valeurs de Xp, Ti et Td du régulateur mixte.	1	D	П			0,05
7	Comparer les performances théoriques avec les performances réelles.	1	D				0,05
II.	Supervision						
1	commande, la consigne et le mode de fonctionnement par l'intermédiaire d'Intouch. La mesure s'affichera en temps	3	С				1,05
III.	Profil de consigne						
1	Ajouter un bouton "Start" sur la vue du superviseur.	0,5	D			C),025
2	Proposer une solution qui réponde au cahier des charges.	3	D	П			0,15
3	Implémenter votre solution sur le régulateur.	1	D	П			0,05
4	Réaliser des mesures qui permettent la validation de votre solution.	3	D				0,15
			Not	e: 6	,85	/20	

1-Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

Entree

Sortie

2-Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.

3-Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement

Le modèle de Broida:

40% de X=15% 28% de X =7%

K=delta X/delta Y=36/50=0,72

T=2,8(t1-t0)-1,8(t2-t0) T=2,8(54-51)-1,8(55-51) T=1,2s

t=5,5(55-54) =5,5s

4-Déterminer un correcteur PI (avec $Ti = \tau$) qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel <u>EASYREG</u>. On donnera la réponse théorique obtenue

	EASY	REG	
Nouveau fichier	Faire les calculs	Les valeurs	Le graphe
Enregistrer fichier	Aide	du plan de Black	du plan de Black
Fichier de travail	A propos	temporelles	temporel
N(p) = 0.72 $D(p) = 5.5p$ $R = 1.2$ Constante de temps pour le calcu	I (en s) 30		
	Résultats d	es calculs	
	= 1.05		
$\omega_{min} = 0.005$; $\omega_{max} = 0.5$; raison	1 - 1.00		
$\omega_{\text{min}} = 0.005$; $\omega_{\text{max}} = 0.5$; raison Argument _{min} = -123.7340405159		4967453 °	
	7° Argument _{max} = -90.34377		
Argument _{min} = -123.7340405159	7° Argument _{max} = -90.34377 lb Module _{max} = 28.35999608		

5-Donner pour ce réglage les valeurs théoriques du temps de réponse à $\pm 5\%$, ainsi que la valeur du premier dépassement.

6-Déduire de la question 4 les valeurs de Xp, Ti et Td du régulateur mixte.

$$Xp=100/5=20$$

7-Comparer les performances théoriques avec les performances réelles. On peu remarquer une erreur statique similaire et égale a 0 Il y a aussi un dépassement similaire entre le théorique et réelle

II. Supervision

1-Réaliser la programmation du superviseur en respectant le synopsis ci-dessous. On devra pouvoir contrôler la commande, la consigne et le mode de fonctionnement par l'intermédiaire d'Intouch. La mesure s'affichera en temps réel.

III. Profil de consigne

- 1-Je sais pas
- 2-Je sais pas
- 3-Je sais pas
- 4-Je sais pas