

Figure 1: JFET Types (a) N-channel FET (b) P-channel FET

Form: jfetp: $\langle instance name \rangle n_1 n_2 n_3 \langle parameter list \rangle$

 n_1 is the drain node, n_2 is the gate node, n_3 is the source node,

ng is the source

Parameters:

Parameter	Type	Default value	Required?
af: Flicker noise exponent	DOUBLE	1	no
area: Device area (m ²)	DOUBLE	1	no
beta: Transconductance parameter (A/V^2)	DOUBLE	0.0001	no
cgs: Zero bias gate source junction capacitance (F)	DOUBLE	0	no
cgd: Zero bias gate drain junction capacitance (F)	DOUBLE	0	no
eg: Barrier height at 0 K (eV)	DOUBLE	0.8	no
fc: Coefficient for forward bias depletion capacitance	DOUBLE	0.5	no
is: Gate junction saturation current (A)	DOUBLE	1×10^{-14}	no
kf: Flicker noise coefficient	DOUBLE	0	no
pb: Gate junction potential (1/V)	DOUBLE	0	no
rd: Drain ohmic resistance (ω)	DOUBLE	0	no
rs: Source ohmic resistance (ω)	DOUBLE	0	no
vt0: Threshold voltage (V)	DOUBLE	-2	no
m: Gate p-n grading coefficient	DOUBLE	0.5	no
vt0tc: Temperature coefficient for vt0 (V/K)	DOUBLE	0.0	no
tnom: Nominal temperature (K)	DOUBLE	300	no
b: Doping tail parameter	DOUBLE	1	no
t: Device temperature (K)	DOUBLE	300	no
lambda: Channel length modulation parameter $(1/V)$	DOUBLE	0	no

Example:

jfetp:j1 3 4 2 beta=0.0001

Description:

 $fREEDA^{TM}$ has the PJFET model based on the PJF model in SPICE.

DC Calculations:

Constants used are:

$$q = 1.6021918 \times 10^{-19} (As) \tag{1}$$

$$k = 1.3806226 \times 10^{-23} (J/K) \tag{2}$$

All parameters used are indicated in this font. The equations for the P-channel FET are identical to the N-channel except that the signs on the voltages and the output are reversed.

The current/voltage characteristics are evaluated after first determining the mode (normal: $V_{SD} \ge 0$ or inverted: $V_{SD} < 0$) and the region (cutoff, linear or saturation) of the current (V_{SD}, V_{SG}) operating point.

Normal Mode: $(V_{SD} \ge 0)$

Regions of operation:

$$V_{SG} - V_{T0} \le 0$$
 Cutoff Region $0 \le V_{SD} < V_{SG} - V_{T0}$ Linear Region $0 < V_{SG} - V_{T0} \le V_{SD}$ Saturation Region

Then

$$I_{D} = \begin{cases} 0 & \text{cutoff region} \\ \text{AREA} \times \text{BETA} \left(1 + \text{LAMBDA} \, V_{SD} \right) V_{SD} \left[2 \left(V_{SG} - \text{VTO} \right) - V_{SD} \right] & \text{linear region} \\ \text{AREA} \times \text{BETA} \left(1 + \text{LAMBDA} \, V_{SD} \right) \left(V_{SG} - \text{VTO} \right)^{2} & \text{saturation region} \end{cases}$$
(3)

Inverted Mode: $(V_{SD} < 0)$

Regions of operation:

$$V_{DG} - V_{T0} \le 0$$
 Cutoff Region $0 \le -V_{SD} < V_{DG} - V_{T0}$ Linear Region $0 < V_{DG} - V_{T0} \le -V_{SD}$ Saturation Region

$$I_{D} = \begin{cases} 0 & \text{cutoff region} \\ AREA \times BETA \left(1 - LAMBDAV_{SD}\right) V_{SD} \left[2 \left(V_{DG} - VT0\right) + V_{SD}\right] & \text{linear region} \\ AREA \times \left(-BETA\right) \left(1 - LAMBDAV_{SD}\right) \left(V_{DG} - VT0\right)^{2} & \text{saturation region} \end{cases}$$

$$(4)$$

Leakage Currents

Current flows across the normally reverse biased source-bulk and drain-bulk junctions. The gate-source leakage current

$$I_{GS} = \text{AREA} \times I_S \, e^{(V_{SG}/\text{VTO} - 1)} \tag{5}$$

and the gate-source leakage current

$$I_{GD} = \text{AREA} \times I_S \, e^{(V_{DG}/\text{VTO} - 1)} \tag{6}$$

Capacitances

The drain-source capacitance

$$C_{DS} = AREA \times CDS$$
 (7)

The gate-source capacitance

$$C_{GS} = \begin{cases} \text{AREA} \times \text{CGS} \left(1 - \frac{V_{SG}}{\text{PB}}\right)^{-\text{M}} & V_{SG} \leq \text{FC} \times \text{PB} \\ \text{AREA} \times \text{CGS} \left(1 - \text{FC}\right)^{-(1+\text{M})} \left[1 - \text{FC}(1+\text{M}) + \text{M} \frac{V_{SG}}{\text{PB}}\right]^{-\text{M}} & V_{SG} > \text{FC} \times \text{PB} \end{cases}$$
(8)

models charge storage at the gate-source depletion layer. The gate-drain capacitance

$$C_{GD} = \begin{cases} \operatorname{AREA} \times \operatorname{CGD} \left(1 - \frac{V_{DG}}{\operatorname{PB}} \right)^{-\operatorname{M}} & V_{DG} \leq \operatorname{FC} \times \operatorname{PB} \\ \operatorname{AREA} \times \operatorname{CGD} \left(1 - \operatorname{FC} \right)^{-(1+\operatorname{M})} \left[1 - \operatorname{FC} (1+\operatorname{M}) + \operatorname{M} \frac{V_{DG}}{\operatorname{PB}} \right]^{-\operatorname{M}} & V_{DG} > \operatorname{FC} \times \operatorname{PB} \end{cases}$$
(9)

models charge storage at the gate-drain depletion layer.

Notes:

This is the J element in the SPICE compatible netlist.

 $\begin{array}{c} Version:\\ 2001.05.15\end{array}$

Credits:

Name Affiliation Date Links

Nikhil Kriplani NC State University May 2001 NC STATE UNIVERSITY nmkripla@unity.ncsu.edu www.ncsu.edu