INDIAN INSTITUTE OF TECHNOLOGY

Department of Chemical Engineering Subject Name: Industrial Pollution Control

Subject No.: CH 62007

End Autumn Semester Examination, 2010

	Time: 3 Hrs Full Marks: 50	
	No. of Students:84	
	structions: Answer <u>all</u> questions. (Make reasonable assumptions wherever plicable)	
	•	
1.	a).Discuss and explain discreet and flocculent settling in a sedimentation t	ank.[2]
	b) List the important steps for Hazardous waste management.	[2]
	c)Draw an outline diagram of a spray tower. What are the advantages of v collector over the dry ones?	vet [2]
	d)Describe why sludge quality consideration is essential for good perform the activated sludge process. What kind of sludge commonly generates in flow system using complex organic wastewater.	ance of a plug [2]
	e)Draw and label of a typical Baghouse as used in Air pollution control	[2]
	f)Describe briefly anaerobic decomposition for treating industrial wastewn How this is different from the aerobic process.	ater. [2]
	g) List the design parameters to be considered for a Neutralization system wastewater processing.	in [2]
	h)List the typical constituents one can expect in a Pulp and Paper mill was also suggest the treatment processes for their treatment and removal.	ste water [2]
	i)Name an industrial effluent that often requires combine Anaerobic-Aero treatment. What are the extra benefit for such system ?	bic [2]
	j) What is facultative lagoon? Describe with a diagram	[2]
2.	a) Describe and compare an attached growth and suspended growth system biological treatment of wastewater. Outline with a sequence of operations	ns of for [5]
	sludge treatment for ultimate disposal	r_ 1

b) Calculate the hydraulic retention time and the sludge age of the following. The influent and the effluent BOD are 700mg/l and 40 mg/l respectively. The volatile suspended solid concentration is 3000 mg/l. The yield coefficient and endogenous coefficient are 0.4 and 0.1 respectively. K is 10 day⁻¹

[5]

- 3. a) Describe with an outline diagram the three stages of Methane formation in an anaerobic process. Also describe the factors affecting the process operation. [4]
 - b) Describe with examples how adsorption process can be utilized in combating air pollution. Draw an outline diagram of a fixed bed adsorber.

31

- c) Describe with diagram the particle capture mechanisms as the dust laden gas passes through the packed filters. [3]
- 4. a)Describe with a diagram the operating principle of a reverse flow Cyclone separator as a air pollution control device [3]
 - b) A reverse flow cyclone handles 3.5 cu.m/sec of dust laden air with a density of 1800 kg/m^3 . Considering the effective number of turns a gas makes in traversing the cyclone as 6 and the diameter of the cyclone as 1.2 m, determine the collection efficiency of the cyclone using the correlation given as follows. (d_{pc} is the cut size i.e size of particles collected with 50 % efficiency) μ_g : 1.8 x 10^{-5} kg/m.s. The entrance height and the width of the cyclone are 0.5m and 0.25m respectively.

d _p /d _{pc} (particle size ratio)	collection efficiency	
0.4	15%	
0.5	22%	
0.6	30%-	
0.7	37%	
0.8	41%	
1.0	50%	[5]

c) Describe the reason why steam injection around a flare tip is beneficial for waste gas treatment. [2]