DoSA Use Manual

Linear Vibrator (VCM function) example

2017-11-18

http://OpenActuator.org (zgitae@gmail.com)

Program Composition

Program Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Experiment

✓ Force : Magnetic force estimation for driving part

✓ Stroke : Magnetic force estimation for each stroke

✓ Current : Magnetic force estimation for each current

Analysis Model Explanation

1. Shape Model

2. Product Specifications

가. Coil

• Coil Turns : 126 turns

• Coil Resistance: 15.75 Ohm

나. Magnet

• Material : NdFeB 52

• Magnetization Direction: 90 (UP)

다. Power

• Voltage: 2.5V

(Example File: DoSA Install directory > Samples > LV)

Design Creation

1. Toolbar > Click New button

- 2. Design Name: "LV"
- 3. Click OK

Coil Creation

1. Toolbar > Click Coil button

- 2. Coil Name: "coil"
- 3. Input the coil shape Input
 - ✓ Coil Location: Base_X 1.5, Base_Y -0.67
 - ✓ Left-down point : X 0, Y 0

(Relative coordinates)

✓ Right-Up Point : X 0.365, Y 1.18

(Relative coordinates)

- 4. Screen Adjustment : Use Fit All button
- 5. Click OK button
- 6. Check shape (FEMM Window)

Coil Design

- 1. Input the coil instrumental specifications
 - ✓ Part Material : Select Copper
 - ✓ Current Direction : Select IN (Inner direction)
 - ✓ Moving Parts : Select FIXED (Fixed Components)
 - ✓ Coil Wire Grade : Bonded IEC Grade 1B Selection
 - ✓ Copper Diameter: 0.045 mm selection
 - ✓ Horizontal Coefficient: 0.95 Selection
 - ✓ Vertical Coefficient : 1.13 Selection
 - ✓ Resistance Coefficient : 1.1 Selection
- 2. Coil specification calculation
 - ✓ Click Design Coil Button

1		
Δ	△ Common Fields	
	Node Name	coil
Δ	Specification Fields	
	Part Material	Copper
	Curent Direction	IN
	Moving Parts	FIXED
Δ	Calculated Fields	
	Coil Turns	126
	Coil Resistance [Ω]	15, 74769
	Coil Layers	6
	Turns of One Layer	21
4	Design Fields (optional)	
	Coil Wire Grade	Bonded_IEC_Grade_1B
	Inner Diameter [mm]	3
	Outer Diameter [mm]	3,73
	Coil Height [mm]	1, 18
	Copper Diameter [mm]	
	Wire Diameter [mm]	0,04953
	Coil Temperature [°C]	
	Horizontal Coefficient	0,95
	Vertical Coefficient	1,13
	Resistance Coefficient	1.1

Magnet Creation

1. Toolbar > Click Magnet button

2. Magnet Name: "magnet"

3. Magnet Shape Selection

✓ Magnet location : Base_X 0, Base_Y 0.4

✓ Left-down Point : X 0, Y 0

(Relative Coordinates)

✓ Right-Up point : X 1.35, Y 1

(Relative Coordinates)

4. Screen Adjustment : Use Fit All button

5. Click OK button

6. Confirm Shape (FEMM window)

Magnet Settings

1. Magnet Settings

✓ Part Material : NdFeB 52 MGOe Selection

✓ Direction : UP

✓ Moving Parts: Moving Selection (Moving parts)

■ Common Fields Node Name magnet Specification Fields Part Material NdFeB 52 MGOe Direction UP Moving Parts MOVING

Plate Creation

1. Toolbar > Click Steel Button

- 2. Steel Name: "plate"
- 3. Face Type: RECTANGLE Selection
- 4. Plate Shape Selection
 - ✓ 자석 위치 : Base_X 0, Base_Y 0.2
 - ✓ Left-down point : X 0, Y 0

(Relative Coordinates)

✓ Right-Up point : X 1.35, Y 0.2

(Relative Coordinates)

- 5. Screen Adjustment : Use Fit All button
- 6. Click OK button
- 7. Shape confirm (FEMM window)

Yoke Creation

1. Toolbar > Click Steel Button

- 2. Steel Name: "yoke"
- 3. Coordinate addition (total 8) :Click 'A'
- 4. Yoke Shape Selection
 - ✓ Yoke location : Base_X 0, Base_Y 0.2
 - ✓ 1 Point : X 0, Y 1.4
 - ✓ 2 Point : X 0, Y 1.2
 - √ 3 Point : X 1.9, Y 1.2 (Arc, Dir check)
 - ✓ 4 Point : X 2.05, Y 1.05
 - ✓ 5 Point: X 2.05, Y 0
 - ✓ 6 Point: X 2.25, Y 0
 - ✓ 7 Point : X 2.25, Y 1.05 (Arc check)
 - ✓ 8 Point : X 1.9, Y 1.4
- 5. Screen Adjustment: Use Fit All button
- 6. Click OK button

Creating Yoke

7. Shape confirmation (FEMM window)

Plate, Yoke settings

1. Plate, Yoke settings

✓ Part Material : 430 Stainless Steel Selection

✓ Moving Parts : Moving Selection (Moving Parts)

[BH curve]

■ Common Fields Node Name plate ■ Specification Fields 430 Stainless Steel Part Material Moving Parts MOVING

Magnetic force Experiment

1. Toolbar > Click Force Button

- 2. Force Experiment Name: "force"
- 3. Click OK button
- 4. Magnetic force experiment settings
 - ✓ Voltage: 2.5 V
- 5. Run Magnetic force experiment

Magnetic Force Experiment Results

1. Force: -0.05428 N

Displacement-Magnetic Force Experiment

1. Toolbar > Click Stroke button

2. Stroke Experiment Name: "stroke"

3. Click OK button

4. Magnetic force-Current experiment settings

✓ Voltage: 2.5 V

✓ Initial Stroke : -0.5 mm

✓ Final Stroke: 0.5 mm

✓ Step Count: 5

Displacement-Magnetic Force Experiment Results

1. Information View / Click Stroke Test button

Current-Magnetic force experiment

1. Toolbar > Click Current button

2. Current Experiment Name: "current"

3. Click OK button

4. Magnetic force-Current experiment settings

✓ Initial Current : 0.0 A

✓ Final Current: 0.1 A

✓ Step Count: 5

Current-Magnetic Force experiment results

1. Information View / Click Current Test button

- Thank You -