Condensed Matter Emulation

Condensed Matter

- Disordered
- Unknown/Complex interactions
- Little control

Cold Atoms

- Tuneable dispersion
- Tuneable interactions
- "Perfect" control
- Clean or controlled disorder
- Engineered Hamiltonians

Andy Martin University of Melbourne

These 4 Lectures

- Lecture 1:
 - Introduction analogies
 - The integer/fractional quantum Hall effect (solid state)
- Lecture 2:
 - Integer/fractional quantum Hall effect (ultra-cold atoms)
- Lecture 3:
 - Coupled Atom Cavity (CAC) systems
 - Bose-Hubbard (ultra-cold gases and CAC systems, fractional quantum Hall physics)
- Lecture 4:
 - Dipolar interactions, the basics, stability and super-solids.
 - Unconventional superfluidity (fermions), He-McKellar-Wilkens?

Reference Material

- Condensed matter-emulation
 - Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen and U. Sen, Advances in Physics 56, 243 (2007)
 - Many-body physics with ultracold gases, I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)
- Integer/Fractional Quantum Hall effect
 - *Introduction to the fractional quantum Hall effect*, S. M. Girvin, http://www.bourbaphy.fr/girvin.ps

Equivalence of Physical Systems

Driven damped oscillator

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F\cos(\omega t)$$

RLC circuit

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}x = \varepsilon\cos(\omega t)$$

ANALOGOUS MECHANICAL & ELECTRICAL QUANTITIES

	Mechanical	Electrical		
x	Displacement	q	Charge	
х (v)	Velocity	ġ (I)	Current	
m	Mass	L	Inductance	
b	Friction	R	Resistance	
1/k	Mechanical Compliance	С	Capacitance	
F	Amplitude of impressed force	ε	Amplitude of impressed emf	

Equivalence of Physical Systems

YBCO superconductor

Optical Lattice

$$H = -t_{e(a)} \sum_{\langle i,j \rangle, \sigma} \left(c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.} \right) + U_{C(s)} \sum_{i} n_{i,+1} n_{i,-1}$$

ANALOGOUS CONDENSED MATTER AND OPTICAL LATTICE QUANTITIES

Condensed Matter			Atom-Optical
Carriers	Electron/Holes		Fermionic atoms
e.e.	Coulomb charge coupling	s	S-wave scattering length
m _e	Electron mass	m _a	Atomic mass
U _e	Coulomb Interaction	Us	S-wave Interaction
t _e	Electronic tunneling energy	t _a	Atomic tunneling energy
Lattice	Atomic ions		Optical standing waves
a, b, c	Lattice Constants	$(\lambda_x, \lambda_y, \lambda_z)/2$	Optical wavelength
V _{ion}	Binding energy	V _{lat}	Lattice depth

The Quantum Hall Effect

The Hall Effect

$$\mathbf{J} = -ne\mathbf{v}$$

Force on carrier

$$\mathbf{F} = -e\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right) = \mathbf{F_E} + \mathbf{F_M}$$

Equilibrium

$$\mathbf{F_E} = -\mathbf{F_M}$$

y-component

$$F_y = ev_x B_z - eE_y = 0$$

$$E_y = -\frac{J_x B_z}{ne}$$

Hall coefficient

$$R_H = \frac{E_y}{J_x B_z} = -\frac{1}{ne}$$

Experimental Setup (QHE)

Experimental Observation (IQHE) TCMP

$$\frac{1}{\rho_{xy}} = \sigma_{xy} = \nu \frac{e^2}{h}, \quad \nu = 1, 2, 3... \quad \text{(Integer)}$$

Electron in Magnetic Field

Cyclotron frequency

$$\omega_c = \left| \frac{eB}{m} \right|$$

Cyclotron radius

$$R_c = \frac{v}{\omega_c} = \frac{\sqrt{2mE}}{|eB|}$$

Harmonic oscillator analogy

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

Quantum Treatment

Schrodinger Equation

$$\left[\frac{1}{2m} \left(i\hbar\nabla - q\mathbf{A}(\mathbf{r},t)\right)^2 + q\phi(\mathbf{r},t)\right] \psi(\mathbf{r},t) = i\hbar \frac{d}{dt}\psi(\mathbf{r},t)$$

$$\mathbf{B} = \nabla \times \mathbf{A} = B_z \hat{k}$$

Choice of gauge

$$\mathbf{A} = \hat{j}B_z x$$
 (Landau gauge)

$$\mathbf{A} = -\hat{i}B_z y/2 + \hat{j}B_z x/2 \quad \text{(Symmetric gauge)}$$

Physical results independent of gauge We choose Landau gauge

Landau Gauge

Schrodinger Equation (Landau gauge)

$$\left[-\frac{\hbar^2}{2m} \nabla^2 - \frac{ie\hbar B_z}{m} \frac{\partial}{\partial y} + \frac{(eB_z x)^2}{2m} + V(z) \right] \psi(\mathbf{r}) = E\psi(\mathbf{r})$$

Drop z-dependence (2DEG)

Vector potential independent of y

1D Schrodinger Equation

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{1}{2} m \omega_c^2 \left(x + \frac{\hbar k}{eB} \right)^2 \right] u(x) = \epsilon u(x)$$

Schrodinger Equation for 1D harmonic oscillator

Vertex of parabolic potential displaced by $-\hbar k/eB$

Energy eigenvalues

$$\epsilon_{nk} = (n - 1/2)\hbar\omega_c$$
, where $n = 1, 2, 3, ...$

Wavefunction

$$\psi_{nk}(x,y) \propto H_{n-1}\left(\frac{x-x_k}{l_b}\right) e^{-\frac{(x-x_k)^2}{2l_b^2}} e^{iky}, \text{ where } l_b = \sqrt{\hbar/|eB_z|}$$

The eigenvalues (Landau levels) depend on *n* but not *k*

Landau Levels DOS

B=0: 2D electron DOS is a constant

|B|>0: 2D electron DOS is a series of delta functions

Landau Levels (LLs)

Number of states in each LL per unit area

IQHE

Landau Levels: Transport

Number of occupied LLs

$$\nu = \frac{n_{2D}}{n_B} = 2\pi l_b^2 n_{2D}$$

Between LLs (*n* integer)

$$B_n = \frac{hn_{2D}}{en}$$

Fermi energy between LLs: low DOS (incompressible)

Within LL high DOS (compressible)

Confinement

LLs: confined geometry

Hall bar schematic

Fermi energy between LLs

Edge state transport

$$I = -\frac{Ne^2}{h}V$$

$$\rho_{xy} = \frac{V_5 - V_3}{I} = -\frac{V_1}{I} = \frac{h}{Ne^2}$$

Assumptions: No disorder

- Scattering between edge states in the same edge
 - Is forward hence no effect (exception high currents)
- Scattering between opposing edges
 - Very very weak if Fermi energy is between Landau levels
- Surely Fermi energy adjusts to always be in a LL: Why are plateaus wide?
 - Disorder important: localized states between LLs in bulk
 - Finite DOS between LLs
 - Do not contribute to electrical properties (localized)

The Surprise (FQHE)

Magnetic field (T)

Theoretical Model of FQHE

- Controlled by Coulomb repulsion between electrons
 - Ignore disorder
 - Discover the nature of the *special* many-body correlated state
- Consider symmetric gauge (remember results are gauge independent)

$$\mathbf{A} = -\frac{1}{2}\mathbf{r} \times \mathbf{B}$$

- Preserves rotational symmetry
- Consider only Lowest Landau Level (LLL): No interactions

$$\phi_m = \frac{1}{\sqrt{2\pi l_b^2 2^m m!}} z^m e^{-\frac{1}{4}|z|^2}, \text{ where } z = (x+iy)/l_b$$

• All the states are degenerate: can have any linear combination

$$\Psi(x,y) = f(z)e^{-\frac{1}{4}|z|^2} \qquad f(z) = \prod_{j=1}^{N} (z - Z_j)$$

The LLL Many-Body State

$$\psi[z] = f[z]e^{-\frac{1}{4}\sum_{j}|z_{j}|^{2}}$$

f is a polynomial representing the Slater determinant with all states occupied

2 particles

$$f[z] = \begin{vmatrix} (z_1)^0 & (z_2)^0 \\ (z_1)^1 & (z_2)^1 \end{vmatrix} = (z_1)^0 (z_2)^1 - (z_2)^0 (z_1)^1 = (z_2 - z_1)$$

3 particles

$$f[z] = \begin{vmatrix} (z_1)^0 & (z_2)^0 & (z_3)^0 \\ (z_1)^1 & (z_2)^1 & (z_3)^1 \\ (z_1)^2 & (z_2)^2 & (z_3)^2 \end{vmatrix} = -\prod_{i < j} (z_i - z_j)$$

N particles

$$f_N[z] = \prod_{i < j} (z_i - z_j)$$

Lauglin Variational Ansatz

$$f_N^m[z] = \prod_{i < j}^N (z_i - z_j)^m \qquad \nu = 1/m$$

To be analytic *m* must be an integer

To preserve antisymmetry *m* must be odd

$$\nu = \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$$

In the plasma analogy the electron density is

$$n = \frac{1}{m} \frac{1}{2\pi l_b^2}$$

Other wave-functions developed to describe more general states in the hierarchy of rational filling factors at which quantized Hall plateaus were observed

Plasma Analogy (I)

$$|\Psi[z]|^2 = \prod_{i < j}^N |z_i - z_j|^{2m} e^{-\frac{1}{2} \sum_{j=1}^N |z_j|^2} = e^{-\beta U}$$

$$\beta = \frac{2}{m}$$

$$U = m^2 \sum_{i < j} \left(-\ln|z_i - z_j| \right) + \frac{m}{4} \sum_k |z_k|^2$$

Significant progress (Laughlin):

U is the potential energy of a classical plasma of particles of charge m in a uniform neutralising background

• Potential energy among a group of objects with charge m is

$$U_0 = m^2 \sum_{i < j} (\ln |z_i - z_j|)$$

• Second term in U (Poissons Equation)

$$-\nabla^2 \frac{1}{4} |z|^2 = -\frac{1}{l_b^2} = 2\pi \rho_B$$

Plasma Analogy (II)

$$U = m^{2} \sum_{i < j} (-\ln|z_{i} - z_{j}|) + \frac{m}{4} \sum_{k} |z_{k}|^{2}$$

Potential energy of interaction among a group of objects with charge *m*

Energy of charge *m* objects interacting with negative background

$$2\pi l_b^2 \longrightarrow$$
Area containing one flux quantum

Background charge density B/ϕ_0

Neutrality
$$\longrightarrow nm + \rho_B = 0 \longrightarrow n = \frac{1}{m} \frac{1}{2\pi l_b^2}$$

For a filled LL, with m = 1, this is the correct answer for the density, since every single-particle state is occupied and there is one state per flux quantum

Excitation Gap?

- Every pair of particles has a relative angular momentum greater than or equal to *m*
- Because the relative angular momentum of a pair can change only in discrete (even integer) units it turns out that a hard core, repulsion, model has an excitation gap
- For example for m = 3, any excitation out of the Laughlin ground state weakens the nearly ideal correlations by forcing at least one pair of particles to have relative angular momentum 1 instead of 3.
- This costs energy: hence a gap

Importance

- Two Nobel Prizes
- IQHE 1985 (Klaus von Klitzing);
- FQHE 1998 (Robert Laughlin, Horst Stormer and Daniel Tsui)
- The value of the resistance at the plateaus only depends on fundamental *constants* of physics: electric charge (e) and Planck's constant (h)
- It is accurate to 1 part in 100000000
- The IQHE is used as the primary resistance standard (although 1 klitzing (h/e^2) is 25,813 Ohms)
- Next Lecture we will examine how to emulate the fractional regime in BECs. Think about WHY?