# Eksponentna funkcija

## Bor Bregant

# 1 Funkcija $f(x) = a^x$ , kjer je a > 0 in a = 1.

Primeri:

- $\bullet \ f(x) = 2^x$
- $x \mapsto 4^x$
- $f(x) = \left(\frac{\sqrt{3}}{10}\right)^x$

## 1.1 Družina funkcija $f(x) = a^x; a > 1$

Oglejmo si primer a=2, torej  $f(x)=2^x$ . Tabelirajmo vrednosti in narišimo graf.





Lastnosti funkcij  $f(x) = a^x; a > 1$ 

- $D_f = \mathbb{R}$
- $Z_f = (0, \infty)$
- začetna vrednost f(0) = 1

- značilne točke  $(0,1),(1,a),(-1,\frac{1}{a})$
- naraščajoča
- navzdol omejene z 0, navzgor neomejene
- $\bullet$  graf se proti $-\infty$  asimptotsko približuje abscisni osi
- so bijektivne
- so konveksne.

Pomembna je tudi funkcija  $e^x$ , kjer je  $e=1+\frac{1}{1}+\frac{1}{1\cdot 2}+\frac{1}{1\cdot 2\cdot 3}+\cdots\approx 2,72$  iracionalno eulerjevo število.

## 1.2 Družina funkcija $f(x) = a^x$ ; 0 < a < 1

Oglejmo si  $f(x)=\left(\frac{1}{2}\right)^x$ . Ker je  $\left(\frac{1}{2}\right)^x=2^{-x}$ , lahko ta graf dobimo z zrcaljenjem grafa  $y=2^x$  čez ordinatno osjo.





Lastnosti funkcij  $f(x) = a^x; a > 1$ 

- $D_f = \mathbb{R}$
- $Z_f = (0, \infty)$
- začetna vrednost f(0) = 1
- značilne točke  $(0,1), (-1,a), \left(1,\frac{1}{a}\right)$
- padajoča
- navzdol omejene z 0, navzgor neomejene

- $\bullet$  graf se proti $\infty$  asimptotsko približuje abscisni osi
- so bijektivne
- so konveksne.

• Določimo eksponentno funkcijo f, katere graf poteka skozi A(2,9). Nato v isti koordnatni sistem narišimo f(x), f(x+1), f(x+1)-1, f(-x),|f(x) - 3|.

**Naloga 1.** Poišči predpis za eksponentno funkcijo  $f(x)=a^x$ , za katero je: (a)  $f\left(\frac{1}{2}\right)=2$  (b)  $f\left(-\frac{3}{2}\right)=\frac{27}{125}$  (c)  $f(-2)=\frac{9}{4}$ 

Naloga 2. V isti koordinatni sistem nariši grafe funkcij (a)  $f(x) = 3^x, g(x) = 3^x - 2, h : x \mapsto 3^{x-2}$  (b)  $f(x) = 2^{-x}, g(x) = \frac{3}{2}2^{-x}$ 

**Naloga 3.** Zapiši tri čim lepše točke grafa  $f(x) = 2^{x-2} - 1$ . Nato nariši grafe f(x), g(x) = |f(x)| in h(x) = f(|x|).

**Naloga 4.** Za funkcijo  $f(x) = -2^x + 2$  zapiši začetno vrednost, ničle, enačbo vodoravne asimptote in nariši njen graf. Poišči še predpis funkcije g, ki je dobljena tako, da graf f premaknemo za vektor (1, -1).

#### 1.3 Eksponentna enačba

Tri skupine eksponentnih enačb in postopek reševanja:

| Vrsta enačbe          | Postopek reševanja | Primer                        |
|-----------------------|--------------------|-------------------------------|
| $a^{f(x)} = a^{g(x)}$ | f(x) = g(x)        | $3^{x-1} = 3^{2x+2}$          |
| $a^{f(x)} = b^{f(x)}$ | f(x) = 0           | $5^{2x} = (\frac{1}{2})^{2x}$ |
| $a^{f(x)} = b$        | Logaritmiranje     | $2^{x-3} = 16$                |

**Zgled.** Rešimo enačbo  $9^{x-3} = 3\sqrt{3}$ . (naloga z mature)

**Zgled.** Rešimo enačbo  $4 \cdot 2^{2x+1} = \frac{1}{8}$ .

**Zgled.** Rešimo enačbo  $5^{x+1} + 5^{x+2} = 6$ .

**Zgled.** Rešimo enačbo  $2 \cdot 7^x - 11 = 21 \cdot 7^{-x}$ .

**Zgled.** Rešimo neenačbo  $3^{x-1} > 3$ .

Naloga 5. Reši enačbe:

(a) 
$$5^x = 125$$
 (b)  $4^{x-1} = 16$ 

(c) 
$$2^{x-3} = 4^3$$

(d) 
$$5^{x-1} = \frac{1}{25}$$

Naloga 5. Resi enache:  
(a) 
$$5^x = 125$$
 (b)  $4^{x-1} = 16$  (c)  $2^{x-3} = 4^3$  (d)  $5^{x-1} = \frac{1}{25}$   
(e)  $\left(\frac{8}{27}\right)^x = \frac{3}{2}$  (f)  $4^x = -8$  (g)  $\sqrt{27}$ ) $9^{1-x}$  (h)  $5^{3x} = 5^{7x-2}$   
(i)  $4^{t^2} = 4^{6-t}$ 

(c) 
$$\sqrt{27}$$
)9<sup>1-</sup>

(h) 
$$5^{3x} = 5^{7x-2}$$

Naloga 6. Reši enačbe:

(a) 
$$5^x = 7^x$$

(a) 
$$5^x = 7^x$$
 (b)  $4^{x-4} = 6^{4-x}$  (c)  $2^{x^2-x-6} = 1$ 

(c) 
$$2^{x^2-x-6} =$$

Naloga 7. Reši enačbe:

(a) 
$$3^{x+2} + 3^x = 90$$
 (b)  $2^{2x-1} + 3 \cdot 2^{2x} - 2^{2x+2} + 1 = 0$  (c)  $3^{2x} + 3^x = 12$ 

(d) 
$$4^x + 1 = 17 \cdot 2^{x-2}$$

Naloga 8. Reši neenačbe (pomagaj si z grafom): (a)  $3^{x+2}-1>0$  (b)  $5^{x+1}\leq \frac{1}{5}$  (c)  $2^x>1-x$ .

(a) 
$$3^{x+2} - 1 > 0$$

(b) 
$$5^{x+1} \le \frac{1}{5}$$

(c) 
$$2^x > 1 - x$$

**Naloga 9.** V isti koordinatni sistem nariši grafa funkcij  $f(x) = e^{-x-2}$  in  $g(x) = e^x$  in izračunaj njuno presečišče.

#### $\mathbf{2}$ Logaritem

Defincija:  $\log_a x = y \iff a^y = x$ , kjer  $x > 0, a > 0, a \neq 1$ . Število aimenujemo osnova logaritma, x pa logaritmand.

Posebej označimo  $\log x = \log_{10} x$  (desetiški logaritem) in  $\ln x = \log_e x$  (naravni logaritem).

•  $\log_2 16 = 4$ , saj je  $2^4 = 16$ Zgled.

• 
$$\log_2 \frac{1}{4} = -2$$
, saj je  $2^{-2} = \frac{1}{4}$ 

• 
$$\log_{\frac{1}{5}} 1 = 0$$

• 
$$\log_5(-10)$$
 ne obstaja, saj je logaritmand negativen

• 
$$\ln e = 1$$

**Zgled.** Izrazimo in določimo x, če je  $\log_8 x = -\frac{2}{3}$ . Izrazimo in določimo x, če je  $0.7^x = 0.49$ .

Pravili:

$$a^{\log_a x} = x$$
 in  $\log_a a^x = x$ 

**Zgled.** Izračunajmo  $\log_3 3^{0.4}$  in  $4^{\log_4 8}$ 

Naloga 1. Izračunaj brez kalukatorja in nato preveri s kalkulatorjem:

(a) 
$$\log_2 32$$

(b) 
$$\log_{\frac{1}{2}} 16$$

(c) 
$$\log 0.001$$
.

Naloga 2. Določi x, če je:

(a) 
$$2^x = 16$$

(b) 
$$\log 16 - 4$$

(b) 
$$\log_x 16 = 4$$
 (c)  $\log_x 64 = 3$ 

Naloga 3. Izračunaj:

(a) 
$$2^{\log_2 4}$$

(b) 
$$7^{\log_7 0.6}$$

Naloga 4. Med katerima zaporednima celima številoma leži število:

(b) 
$$ln(8.9 \cdot 10^9)$$
 (pomagaj si s kalkulatorjem)

Naloga 5. S kalkulatorjem izračunaj na dve decimalki natančno:

(a) 
$$2 \log 6 - 13 \ln 2 + \log_3 5$$

#### 2.1Pravila za računanje logaritmov

- $\bullet \log_a(x_1 \cdot x_2) = \log_a x_1 + \log_a x_2$
- $\bullet \ \log_a \frac{x_1}{x_2} = \log_a x_1 \log_a x_2$
- $\log_a x^r = r \cdot \log_a x$
- $\log_b x = \frac{\log_a x}{\log_a b}$

**Zgled.** Uporabi pravila logaritmov:

$$\log_5 x + \log_5 \frac{1}{x} \\ \log_a 10 - \log_a 2 \\ \log_2 (x+1)^2$$

$$\log_a 10 - \log_a 2$$

$$\log_2(x+1)$$

$$\log_3 x + 6\log_3(x+1)$$

 $Z\ novo\ osnovo\ izračunaj\ \log_5 2 \cdot \log_2 5\ in\ \log_{\frac{1}{2}} 5 \cdot \log_5 4.$ 

#### 2.2 Logaritemska funkcija

Loagritemska funkcija  $f(x) = \log_a x (a > 0)$ je inverzna funkcija eksponentni funkciji  $f(x) = a^x$ .

**Zgled.** Poiščimo inverzno funkcijo funkciji  $f(x) = 3^{\frac{x}{2}-1}$ .

#### 2.2.1Družina funkcij $f(x) = \log_a x, a > 1$



Lastnosti funkcij  $f(x) = \log_a x, a > 1$ 

- $D_f = (0, \infty)$
- $Z_f = \mathbb{R}$
- $\bullet \,$ ničla x=1

- značilne točke  $(1,0), (a,1), (\frac{1}{a},-1)$
- naraščajoče
- navpična asimptota x=0
- neomejene navzgor in navzdol
- bijektivne
- konkavne

**Naloga 6.** Ob grafu funkcije  $f(x) = \log_{\frac{1}{2}} x$  napiši lastnosti družine funkcij  $f(x) = \log_a x, 0 < a < 1.$ 



**Zgled.** Izračunajmo ničlo, narišimo graf in zapišimo definicijsko območje funk $cije f(x) = 2\log_3(x+3)$ 

Določi predpis funkcije  $f(x) = \log_a x$ , za katero velja f(8) = 3. Nato tej funkciji poišči njen inverz. Funkcijo f tudi nariši.

#### 2.3 Logaritemska enačba

Pri teh enačbah je pomembno napraviti preizkus!

**Zgled.** Rešimo naslednje enačbe:

- (a)  $\log_{\frac{1}{2}}(3x-2) = -2$  (naloga z mature)
- (b)  $\log(x-1) \log x = \log(x+3) \log(x-4)$
- (c)  $\log_2(x+1) + \log_2 x = 1$
- (d)  $2\log^2 x 5\log x = 3$ (e)  $x^{\log x} = 10$

 Naloga 8. Kje graf funkcije  $f(x) = 1 + \log_5(x+2)$  seka premico y=2 in kje abscisno os.

## Naloga 9. Reši enačbe:

- (b)  $\log_2 \sqrt{2x+1} = 0.5$  $(a) \log(3x+1) = 2$
- (c)  $\log x + \log(x+1) = \log 6$  (d)  $\log_3(x+4) \log_3 x = 2$
- (e)  $\ln(1-4x) \ln x = 1$  (f)  $(\log x)(\log x + 1) = 2$
- (g)  $\log_3(1 + \log_2(x+3)) = 1$ (h)  $x^{1+\log x} = 10^2$

## Naloga 10. Reši neenačbe:

(a)  $\log_3 x > 0$ (b)  $0 < \log_2(x+1) < 3$ 

## Naloga 11. Reši enačbe:

- (a)  $\log_3 x + \log_9 x = 3$  (b)  $2\log_7 x + \log_x 49 = 4$  (c)  $2^{\frac{x}{2}} = 16$  (d)  $2^x = 3^{x+2}$