Parcial de Análisis Numérico I

19/05/2016

Apellido y nombre:-

Número de Padrón:-

Ejercicio 1: Un trazador cúbico sujeto S de la función f(x) está definido por

$$S(x) = \begin{cases} S_0(x) = 3(x-1) + 2(x-1)^2 - (x-1)^3 & \text{si } 1 \le x \le 2 \\ S_1(x) = a + b(x-2) + c(x-2)^2 + d(x-2)^3 & \text{si } 2 \le x \le 3 \end{cases}$$

$$si \ 2 \le x \le 3$$

Ejercicio 2: Se desea determinar el Volumen V de una esfera y sus errores absoluto relativo porcentual. Para ello se midió el radio y se obtuvo $R = (1.5000 \pm 0.0001)$ cm y se considera π con tres cifras decimales significativas; a) obtener una expresión para el error absoluto de V, b) calcular el volumen V, sus errores absoluto y relativo y expresar el

volumen de la esfera en la forma $V\pm e_V$. El volumen de la esfera es $V=rac{4}{3}\pi\,R^3$.

Ejercicio 3: Se desea hallar la raíz de la ecuación $f(x) = e^{-x} - x$ por el método del punto fijo.

a) Hallar una g(x) tal que en el intervalo I = [0.1; 1] tenga un único punto fijo (y demostrarlo)

b) implementar 3 iteraciones del método y hallar una cota para el error cometido eligiendo un valor k adecuado tal que |g'(x)| < k; $\forall x \in I$, siendo 0 < k < 1

Ejercicio 4: En la siguiente tabla se presentan valores experimentales de la presión P de una masa de gas ideal dada en función del volumen V cuando experimenta una evolución adiabática reversible cuya ley es: $PV^{\gamma}=K$, donde γ y Kson constantes; a) calcular los valores de γ y K usando cuadrados mínimos, b) estimar P cuando V = 100.0 m³.

(2	-	-
	D	2	

		T 1	00.7	1106	194.0
54.3	61.8	72.4	88.7	118.0	194.0
			20.4	10.2	10.1
61.2	49.2	37.6	28.4	19.2	10.1
			27/	37.5	34.5

Enviá tus exámenes a lawikifiuba@gmail.com

Ejercicio 5: Dado el sistema de ecuaciones lineales AX = b, con

$$A = \begin{pmatrix} 0 & -3 & 2 \\ 5 & 2 & 1 \\ -4 & 1 & 6 \end{pmatrix}; \quad b = \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix}; \text{ a) Justificar si las iteraciones por el método de Jacobi convergen a la solución}$$

para cualquier aproximación inicial $X^{(0)}$; b) implementar 2 iteraciones del método tomando $X^{(0)} = (0, 0, 0)^T$ y acotar la norma del error cometido al aproximar la solución por X(2).

El examen se aprueba con 3 (tres) ejercicios correctamente resueltos

Use en todos los cálculos al menos 6 cifras significativas. No exprese resultados finales ni intermedios como fracción.