

ELECTROTECNIA Resumen teórico

Franco Guardiani, Valentin Franzoi, Daiana Polo

2022

Nomenclatura

-	D	•
R	Resiste	ncia
<i>1</i> 1	HESISIE	ncia

- C Capacitancia
- L Inductancia
- *i* Corriente
- ν Voltaje
- w Energía almacenada
- j Unidad imaginaria
- t Tiempo
- LTK Ley de Kirchhoff para la tensión
- LCK Ley de Kirchhoff para la corriente
 - Z Impedancia
 - X_C Reactancia capacitiva
 - X_L Reactancia inductiva
 - Y Admitancia
 - G Conductancia
 - B Suceptancia
 - au Constante de tiempo
 - α Factor de amortiguamiento
 - ω_0 Frecuencia natural no amortiguada
 - ω_d Frecuencia natural amortiguada

Conceptos

Example:

Corriente eléctrica: es el movimiento ordenado de cargas libres, normalmente de electrones, a través de un material conductor en un circuito eléctrico.

Circuito monofásico: aquel en el que se toma una linea (R,S,T) y un neutro.

Fasor: Un número complejo que representa la amplitud y la fase de una senoide.

Impedancia: de un circuito es la razón entre la tensión fasorial V y la corriente fasorial I, $[\Omega]$

UNIDAD 1

TEORÍA ELEMENTAL DE LOS CIRCUITOS

Ley de Omh
$$I = \frac{V}{R}$$

Fasores $Z = R + j(X_L - X_C)$

Elementos pasivos | Resistor, inductor, capacitor

Elementos activos | Fuente, generador

Unidad 2 RESPUESTA NATURAL

La respuesta natural o transitoria de un circuito se refiere al comportamiento (en términos de tensiones y corrientes) del circuito, sin fuentes externas de excitación. Se extingue con el tiempo

CIRCUITOS DE PRIMER ORDEN

Concepto

Circuito RL sin fuente

LTK
$$0 = iR + L\frac{di}{dt}$$

 $\tau = \frac{L}{R}$

Fción. corriente $i(t) = i(0) \cdot e^{\frac{-t}{\tau}}$

Circuito RC sin fuente

LCK
$$0 = \frac{v}{R} + C\frac{dv}{dt}$$

 $\tau \mid \tau = RC$
Fción. voltaje $v(t) = v(0) \cdot e^{-\frac{t}{\tau}}$

CIRCUITOS DE SEGUNDO ORDEN

"Los circuitos de segundo orden es por la ecuación que los representa, no necesariamente debe haber RLC, puede ser que solo haya un par de C que no puedan resumirse a un solo C equivalente."

Se debe conocer:
$$v(0)$$
, $\frac{dv(0)}{dt}$, $i(0)$, $\frac{di(0)}{dt}$

Circuito en serie, sin fuente:

LTK
$$iR + L\frac{di}{dt} + \frac{1}{C} \int_{-\infty}^{t} i dt = 0$$

$$\forall t = 0 \quad i(0)R + L \cdot \frac{di(0)}{dt} + V_0 = 0$$
corriente en inductor
$$i(0) = I_0$$

$$\frac{di(0)}{dt} = \frac{-1}{L} \cdot (i(0)R + V_0)$$

Ahorrando todo el planteamiento $i_{(t)} = A.e^{s.t}$: raíces $\left| S_{1-2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \right|$ $\alpha = \frac{R}{2.L}$ $\omega_0 = \frac{1}{\sqrt{LC}}$

Si $\alpha > \omega_0$ respuesta sobreamortiguada.

$$i_{(t)} = A_1 \cdot e^{s_1 \cdot t} + A_2 \cdot e^{s_2 \cdot t}$$

Si $\alpha = \omega_0$ respuesta críticamente amortiguada.

$$i_{(t)} = (A_1 + A_2.t)e^{-\alpha.t}$$

Si $\alpha < \omega_0$ respuesta subamortiguada.

$$i_{(t)} = A.e^{-\alpha.t}.\sin(\omega_d + \theta)$$
 $\omega_d = \sqrt{(-1).(\alpha^2 - \omega_0^2)}$

Circuito en paralelo, sin fuente:

$$\operatorname{LCK} \left| \begin{array}{l} \frac{v}{R} + \frac{1}{L} \cdot \int_{-\infty}^{t} v \cdot dt + C \cdot \frac{dv}{dt} = 0 \\ \\ \operatorname{reemplazando t=0} \left| \begin{array}{l} \frac{v_{(0)}}{R} + C \cdot \frac{dv_{(0)}}{dt} + I_0 = 0 \end{array} \right| \\ \operatorname{Tensi\'on en capacitor} \left| \begin{array}{l} v_{(0)} = V_0 \\ \\ \frac{dv_{(0)}}{dt} = \frac{-1}{C} \cdot (\frac{v_{(0)}}{R} + I_0) \end{array} \right|$$

Ahorrando todo el planteamiento $v_{(t)} = A.e^{s.t}$: raíces $S_{1-2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$ $\alpha = \frac{1}{2.RC}$

$$\alpha = \frac{1}{2.RC}$$

$$\omega_0 = \frac{1}{\sqrt{L.C}}$$

Si $\alpha > \omega_0$ respuesta sobreamortiguada.

$$v_{(t)} = A_1 \cdot e^{s_1 \cdot t} + A_2 \cdot e^{s_2 \cdot t}$$

Si $\alpha = \omega_0$ respuesta críticamente amortiguada.

$$v_{(t)} = (A_1 + A_2.t)e^{-\alpha.t}$$

Si $\alpha < \omega_0$ respuesta subamortiguada.

$$v_{(t)} = A.e^{-\alpha.t}.\sin(\omega_d + \theta)$$
 $\omega_d = \sqrt{(-1).(\alpha^2 - \omega_0^2)}$

Unidad 3 RESPUESTA FORZADA

La respuesta forzada o en estado estable es producida cuando se aplica una 'fuerza' externa (una fuente de tensión). Permanece con el tiempo.

Corriente directa a

Corriente alterna "trabajos con fasores por practicidad a la hora del algebra".

Resumen de relaciones v-i

Resultieff de l'étactories v-1				
Elemento	Dom. temporal	Dom. frecuencia		
R	ν =R. i	$V=\mathrm{R.}I$		
L	$v=L.\frac{di}{dt}$	$V=j\omega LI$		
C	$i=C.\frac{dv}{dt}$	$V = \frac{1}{-j\omega C}$		

Impedancia y admitancia

Leyes de Kirchoff en dominio frecuencial

LTK
$$V_1 + V_2 + V_3 + \dots V_n = 0$$

Leyes válida en fasores.
LCK $I_1 + I_2 + I_3 + \dots I_n = 0$

Combinaciones de impedancias

$$V = V_1 + V_2 +V_n = I.(Z_1 + Z_2 +Z_n)$$

 $Z_{eq} = \frac{V}{I} = Z_1 + Z_2 + Z_3 +Z_n$

Divisor de tensión
$$V_1 = \frac{Z_1}{Z_1 + Z_2}.V \quad V_2 = \frac{Z_2}{Z_1 + Z_2}.V \quad V_n = Z_n.I$$

$$I = I_1 + I_2 + \dots + I_n = V \cdot (\frac{1}{Z_1} + \frac{1}{Z_2} + \dots + \frac{1}{Z_n})$$

$$Y_{eq} = \frac{1}{Z_{eq}} = \frac{I}{V} = \frac{1}{Z_1} + \frac{1}{Z_2} + \dots + \frac{1}{Z_n}$$

Divisor de corriente
$$I_1 = \frac{Z_2}{Z_1 + Z_2}.I \quad I_2 = \frac{Z_1}{Z_1 + Z_2}.I \quad V = Z_n.I_n$$

UNIDAD 4 RESPUESTA COMPLETA

Unidad 5 Potencia y Energía en Circuitos Monofásicos

Unidad 6 REDES ELÉCTRICAS

UNIDAD 7 CIRCUITOS POLIFÁSICOS

Unidad 8 CIRCUITOS MAGNÉTICOS Y ACOPLADOS

Unidad 9
BLOQUES Y FUNCIONES DE
TRANSFERENCIA

UNIDAD 10
CIRCUITOS NO LINEALES

UNIDAD 11 COMPONENTES SIMÉTRICAS