Top-down parsing

Parsing: Review of the Big Picture (1)

- Context-free grammars (CFGs)
 - Generation: $G \rightarrow L(G)$
 - Recognition: Given w, is $w \in L(G)$?
- Translation
 - Given $w \in L(G)$, create a (G) parse tree for w
 - Given $w \in L(G)$, create an AST for w
 - The AST is passed to the next component of our compiler

Parsing: Review of the Big Picture (2)

- Algorithms
 - CYK
 - Top-down ("recursive-descent") for LL(1) grammars
 - How to parse, given the appropriate parse table for G
 - How to construct the parse table for G
 - Bottom-up for LALR(1) grammars
 - How to parse, given the appropriate parse table for G
 - How to construct the parse table for G

Last time

CYK

- Step 1: get a grammar in Chomsky Normal Form
- Step 2: Build all possible parse trees bottom-up
 - Start with runs of 1 terminal
 - Connect 1-terminal runs into 2-terminal runs
 - Connect 1- and 2- terminal runs into 3-terminal runs
 - Connect 1- and 3- or 2- and 2- terminal runs into 4 terminal runs
 - ...
 - If we can connect the entire tree, rooted at the start symbol, we've found a valid parse

Some Interesting properties of CYK

Very old algorithm

Already well known in early 70s

No problems with ambiguous grammars:

 Gives a solution for all possible parse tree simultaneously

CYK Example

Thinking about Language Design

Balanced considerations

- Powerful enough to be useful
- Simple enough to be parsable

Syntax need not be complex for complex behaviors

— Guy Steele's "Growing a Language"
https://www.youtube.com/watch?v=_ahvzDzKdB0

Restricting the Grammar

By restricting our grammars we can

- Detect ambiguity
- Build linear-time, O(n) parsers

LL(1) languages

- Particularly amenable to parsing
- Parseable by Predictive (top-down) parsers
 - Sometimes called recursive descent

Top-Down Parsers

Start at the **Start** symbol

Repeatedly: "predict" what production to use

- Example: if the current token to be parsed is an id,
 no need to try productions that start with intLiteral
- This might seem simple, but keep in mind that a chain of productions may have to be used to get to the rule that handles, e.g., id

Predictive Parser Sketch

Example

$$S \rightarrow (S) | \{S\} | \epsilon$$

A Snapshot of a Predictive Parser

Algorithm

```
stack.push (eof)
stack.push(Start non-term)
t = scanner.getToken()
Repeat
  if stack.top is a terminal y
    match y with t
    pop y from the stack
    t = scanner.next token()
  if stack.top is a nonterminal X
    get table[X,t]
    pop X from the stack
    push production's RHS (each symbol from Right to Left)
Until one of the following:
                       ____accept
  stack is empty ----
  stack.top is a terminal that doesn't match t
  stack.top is a non-term and parse table entry is empty
     reject
```

Example 2, bad input: You try

$$S \rightarrow (S) | \{S\} | \epsilon$$

```
S (S) \epsilon {S} \epsilon \epsilon
```

This Parser works great!

Given a single token we always knew exactly what production it started

Two Outstanding Issues

- 1. How do we know if the language is LL(1)
 - Easy to imagine a Grammar where a single token is not enough to select a rule

Any Idea?
$$S \rightarrow (S) | \{S\} | ()$$

2. How do we build the selector table?

It turns out that there is one answer to both:

If selector table has <=1 production per cell, then grammar is LL(1)

LL(1) Grammar Transformations

Necessary (but not sufficient) conditions for LL(1) Parsing:

- Free of left recursion
 - No nonterminal loops for a production
 - Why? Need to look past list to know when to cap it
- Left factored
 - No rules with common prefix
 - Why? We'd need to look past the prefix to pick rule

Left-Recursion

Recall, a grammar such that is left recursive A grammar is immediately left recursive if this can happen in one step:

$$A \rightarrow A \alpha \mid \beta$$

Fortunately, it's always possible to change the grammar to remove left-recursion without changing the language it recognizes

Why Left Recursion is a Problem (Blackbox View)

CFG snippet: $XList \rightarrow XList \mathbf{x} \mid \mathbf{x}$

Current parse tree: XList Current token: x

How should we grow the tree top-down?

(OR)

Correct if there are no more xs

Correct if there <u>are</u> more **x**s

Why Left Recursion is a Problem (Whitebox View)

(Stack overflow)

Removing Left-Recursion

(for a single immediately left-recursive rule)

Example

$$A \rightarrow A \alpha \mid \beta$$

$$A \rightarrow A \alpha \mid \beta$$

$$A' \rightarrow \alpha A'$$

$$\mid \epsilon$$

Let's check in on the Parse Tree...

```
Exp → Exp - Factor

| Factor

Factor → intlit | (Exp)
```



```
Exp → Factor Exp'

Exp' → - Factor Exp'

| ε

Factor → intlit | (Exp)
```


... We'll fix that later

General Rule for Removing Immediate Left-Recursion

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid ... \mid \alpha_n \mid A \beta_1 \mid A \beta_2 \mid ... A \beta_m$$

$$\begin{array}{l} A \rightarrow \alpha_1 \ A' \ | \ \alpha_2 \ A' \ | \ ... \ | \ \alpha_n \ A' \\ A' \rightarrow \beta_1 \ A' \ | \ \beta_2 \ A' \ | \ ... \ | \ \beta_m \ A' \ | \ \varepsilon \end{array}$$

Left Factored Grammars

If a nonterminal has two productions whose RHS have common prefix

→ Grammar it is not left factored and not LL(1)

$$Exp \rightarrow (Exp) \mid ()$$

Not left factored

Left Factoring

Given productions of the form

$$A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}$$

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta_{1} \mid \beta_{2}$$

Combined Example

 $Exp \rightarrow (Exp) \mid Exp Exp \mid ()$

Exp'-> (Exp'' Exp''-> Exp) Exp' |) Exp' Exp'-> Exp Exp' | ε

Where are we at?

We've set ourselves up for success in building the selection table

- Two things that prevent a grammar from being LL(1) were identified and avoided
 - Not Left-Factored grammars
 - Left-recursive grammars
- Next time
 - Build two data structures that combine to yield a selector table:
 - FIRST set
 - FOLLOW set