Сборка и настройка звуковой карты NeoGS (NeoGS revision C)

(версия от 08.10.2012) www.nedopc.com

Сборка и настройка звуковой карты NeoGS

Оглавление

1 Введение	3
2 Порядок сборки	
3 Настройка	
3.1 Прошивка CPLD EPM3064ATC100	
3.2 Прошивка ROM 29F040	6
4 Приложение 1. Маркировка деталей	
4.1 SMD резисторы	
4.2 SMD конденсаторы	
4.3 Танталовые SMD конденсаторы	
4.4 Выводные конденсаторы	
4.5 Транзисторы	
4.6 Стабилизаторы	
5 Приложение 2. Список деталей	
6 Приложение 3. Замена SD держателя карты	
7 Приложение 4. Схема программатора ByteBlasterMV	

1 Введение

Для сборки звуковой карты NeoGS необходимы навыки пайки SMD компонентов и микросхем в корпусе QFP и TSOP.

Для загрузки конфигурации в EPM3064ATC100 достаточно иметь программатор Altera ByteBlaterMV или подобный.

Звкуовая карта NeoGS построена на основе программируемой матрицы ALTERA ACEX и поэтому ее схема зависит от загруженной в матрицу конфигурации. Загрузкой конфигурации управляет процессор Z80 с помощью CPLD EPM3064ATC100 в которой реализован дешифратор портов для загрузки программируемой матрицы ALTERA EP1K30TC144. Для первоначальной загрузки используется конфигурация прописанная в ROM звуковой карты.

Перед сборкой необходимо распечатать монтажную схему. На ней отмечены все номиналы используемых элементов.

Рекомендуется прочитать это описание полностью до начала сборки, чтобы уяснить некоторые непонятные моменты и представлять как и в каком порядке осуществлять сборку.

Несколько обычных советов, собирающим звуковую карту самостоятельно:

- Пожалуйста соблюдайте порядок сборки, некоторые элементы сложно установить если порядок сборки нарушен;
- Не спешите и старайтесь сверять с монтажной схемой каждую устанавливаемую деталь. Выпаивать деталь припаянную неверно гораздо сложнее, чем лишний раз сверить соответствие с монтажной схемой;
- Соблюдайте полярность элементов, элементы установленные неправильно в большинстве случаев могут привести не только к сбою самого элемента, но и выгоранию других элементов;
- Помните, что аккуратная сборка гарантирует быстрый запуск и наладку компьютера;
- Не смешивайте разные элементы в кучу, некоторые элементы не имеют маркировки (например, SMD конденсаторы) и найти нужный будет проблематично.

В приложениях к описанию приведены примеры маркировки деталей и описан состав деталей поставляемых в комплекте, пожалуйста ознакомитесь с этими пунктами до сборки.

2 Порядок сборки

1. Напайка микросхем в QFP корпусах (D3, D6, D8 и D9).

ЗАМЕЧАНИЯ:

- 1. Обязательно устанавливать корпус согласно ключу, отмечающему первый вывод микросхемы;
- 2. Зафиксируйте микросхему так, чтобы выводы попадали точно на контактные площадки и проведите аккуратно пайку (описания метода пайки не входит в рамки документа, автор использует метод волны т.е. сперва покрывает контакты обильно флюсом и потом проводит паяльником, сразу припаивая одну сторону микросхемы);
- 3. В случае, если не удалось припаять микросхему аккуратно, снимать припой нужно повторно, смочив контакты микросхемы флюсом и проводя аккуратно очищенным паяльником. Не пытайтесь снимать припой механическим путем с помощью иголок или других приспособлений, так можно погнуть выводы микросхемы.
- 2. Пайка микросхем в TSOP (RAM1, RAM2) корпусах. Пайку производить рекомендуется таким же способом как и QFP микросхем, соответственно придерживаться тех же замечаний.
 - **ВНИМАНИЕ:**При пайке TSOP микросхем (RAM1,RAM2) следите за тем, чтобы выводы микросхемы точно совпадали с контактными площадками. При смещении вывода за пределы контактной площадки, возможно замыкание на поля, находящиеся между площадок (изза не высокой точности производства плат возможно смещение маски).
- 3. Пайка SMD резисторов, конденсаторов и транзистора. При пайке танталовых конденсаторов следует обращать внимание на полярность (плюсовой вывод танталовых конденсаторов отмечен чертой или скосом корпуса). ВНИМАНИЕ: При пайке блокировочных конденсаторов (0.1mkF) следите за тем, чтобы контакт конденсатора не попадал на зазор между контактной площадкой и полем GND (изза не высокой точности производства плат возможно смещение маски). Это может привести к замыканию напряжения питания на GND.
- 4. Пайка микросхем в SOIC корпусах.
 - **ВНИМАНИЕ:**При пайке SOIC микросхем следите за тем, чтобы выводы микросхемы точно совпадали с контактными площадками. При смещении вывода за пределы контактной площадки, возможно замыкание на поля, находящиеся между площадок (изза не высокой точности производства плат возможно смещение маски).
- 5. Пайка SMD компонентов, имеющих большой размер (дроссели, кварцевые генераторы, стабилизаторы).

ЗАМЕЧАНИЯ:

- Рекомендуется убедиться на отсутствие замыканий цепей питания на GND перед установкой стабилизаторов. Если есть замыкания, то устранить их.
- 6. Пайка разъема держателя SD карты (XSD1).
- 7. Пайка DIP (если используется DA6 в DIP корпусе), TO92 (DA4) и PLCC панельки, а также выводных компонентов (электролитических конденсаторов, кварца, светодиода).

ЗАМЕЧАНИЯ:

• Устанавливать микросхемы/панельки обязательно согласно ключу.

• При пайке надо учитывать, что маска может не закрывать окружающее вывод пространство. Поэтому во избежание короткого замыкания нужно паяльник отрывать вверх от припаиваемого контакта (тоже касается пайки всех выводных элементов).

ВНИМАНИЕ: Зазор между контактными площадками выводных элементов и полем GND слишком мал. Изза небольшого смещения маски (дефект производства), края поля GND рядом с контактной площадкой оголены. Изза этого, при неаккуратной пайке, возможны замыкания контакта на GND.

8. Пайка штыревых разъемов.

ВНИМАНИЕ: Зазор между контактными площадками выводных элементов и полем GND слишком мал. Изза небольшого смещения маски (дефект производства), края поля GND рядом с контактной площадкой оголены. Изза этого, при неаккуратной пайке, возможны замыкания контакта на GND.

9. Пайка остальных разъемов и кнопки.

Действия после сборки платы:

- Желательно промыть плату спиртом для очистки от флюса. Рекомендуется промывать плату на определенных этапах, например после пайки всех SMD компонентов и перед пайкой разъёмов. При промывке следите, что бы растворённый флюс не попадал на рабочую поверхность контактов разъемов. Удалить его впоследствии будет сложно или невозможно.
- Обязательно тестером (или прозвонкой) проверить на замыкание с GND все рабочие напряжения питания платы (плата должна быть отключена от источников питания). Причем проверять не только на разъеме питания, но и на выходах стабилизаторов. В случае обнаружения замыкания обяазтельно устранить причину (см. «ВНИМАНИЕ» п.2, п.3, п.4).
- Рекомендуется тестером (или прозвонкой) проверить на замыкание с GND все контакты выводных элементов (неподсоединенных схемно к GND). В случае обнаружения замыкания обяазтельно устранить причину (см. «ВНИМАНИЕ» п7, п8).

3 Настройка

Звуковая карта не требует подстройки каких либо элементов и при использовании исправных деталей и правильной, аккуратной сборке должна работать. Платы, изготовляемые по заказу от NedoPC проходят электротест и не должны содержать дефектов (в случае использования плат из других источников — спрашивать у соответствующих поставщиков).

Запуск и проверка работоспособности звуковой карты состоит из следующих этапов:

- Прошивка EPM3064ATC100, используя программатор ByteBlasterMV через разъем X1 (к звуковой карте необходимо подвести питание +5в).
- Установка предварительно прошитой ROM 29F040 в панельку D5 (ROM поставляемые в комплекте конструктора от NedoPC предварительно прошиты).
- Проверка корректной загрузки рабочей конфигурации в программируемую матрицу EP1K30TC144 (светодиод мигает при загрузке матрицы и должен гореть после загрузки).
- Проверка работоспособности различных блоков звуковой карты (MP3 плеер, MOD плеер).

Для проверки различных блоков звуковой карты ее необходимо установить в компьютер оснащенный ZXBUS слотом.

3.1 Прошивка CPLD EPM3064ATC100

Прошивка доступна на сайте <u>www.nedopc.com</u>. Скачайте файл, он должен иметь расширение **pof** (обычно GS cpld.pof).

Для прошивки возможно использовать очень простой программатор ByteBlasterMV или любой другой с подобыми возможностями.

Прошить возможно например из бесплатной программы Altera Quartus WEB edition доступной на www.altera.com или любой другой программы поддерживающую данную возможность.

3.2 Прошивка ROM 29F040.

Если Вы самостоятельно собираете звуковую карту и не обладаете прошитой ROM. Перед запуском карты необходимо прошить ROM на специализированном программаторе (при приобретении комплекта от NedoPC — микросхема ROM поставляется прошитой).

Файл с содержимом ROM доступен с сайта www.nedopc.com.

Рекомендуется использовать микросхемы следующих производителей:

- M29F040В от ST;
- AM29F040B or Spansion (ex AMD).

Если используются микросхемы вышеуказанных производителей, то возможен программный

Сборка и настройка звуковой карты NeoGS

апгрейд прошивок.

4 Приложение 1. Маркировка деталей

4.1 SMD резисторы

Для сборки можно использовать SMD резисторы типоразмеров 1206 или 0805 (контактные площадки поддерживают оба размера).

SMD резисторы маркируются следующим образом:

XYZ где XY – значение, Z — количество нулей, т.е значение равно $XY*10^{\wedge}Z$ ом.

Например:

```
102 = 10*10^2 = 1000 ом (или 1 ком); 510 = 51*10^0 = 51ом.
```

SMD резисторы сопротивлением меньше десяти ом обозначаются следующим образом:

XRY где X - значение единиц ом, Y — значение десятых ома.

Например:

```
1R0 = 1,0 = 1 \text{ om};

2R2 = 2,2 = 2,2 \text{ om}.
```

4.2 SMD конденсаторы

Для сборки можно использовать SMD конденсаторы типоразмеров 1206 или 0805 (контактные площадки поддерживают оба размера).

Обычные SMD конденсаторы никак не маркируются.

4.3 Танталовые SMD конденсаторы

Танталовые конденсаторы бывают типоразмеров Туре A, Туре B, Туре C, Туре D. Во избежания несоответствия используйте конденсаторы того размера, который указан в перечне деталей.

Маркировка танталовых конденсаторов сильно зависит от производителя, но практически всегда используются следующие правила:

- Плюсовой вывод маркируется жирной линией или скошенным углом корпуса;
- Емкость считается по правилу XYZ для резисторов, но измеряется в пф.

Например:

```
105 = 10*10^5 = 10000000πΦ = 1мκΦ

476 = 47*10^6 = 47000000πΦ = 47мκΦ
```

4.4 Выводные конденсаторы

На выводных конденсаторах, как правило, пишут полностью емкость и максимальное напряжение в нормальном виде — например 100mkF x 16v.

Минусовой вывод отмечен жирной чертой на корпусе конденсатора, как правило минусовой

вывод более длинный.

4.5 Транзисторы

Транзистор VT1 можно использовать любые серий BC846-BC850 в корпусе SOT-23.

- 1. База
- 2. Эмиттер
- 3. Коллектор

Транзисторы производства Fairchild маркируются надписью на корпусе, как приведено ниже в таблице:

Туре	BC846		BC846 BC847		BC848		BC849			BC850					
	A	В	C	Α	В	C	Α	В	C	A	В	С	A	В	C
Marl	8AA	8AB	8AC	8BA	8BB	8BC	8CA	8CB	8CC	8DA	8DB	8DC	8EA	8EB	8EC

Транзисторы производства Philips маркируются надписью на корпусе, как приведено ниже в таблице:

Type	BC846 BC847		BC848		BC849			BC850							
	A	В	C	A	В	C	A	В	C	Α	В	C	Α	В	C
Mark	1A*	1B*	1D*	1E*	1F*	1G*	1J*	1K*	1L*		2B*	2C*		2F*	2G*

Где * может принимать значение 'p' (made in HK), 'm' (made in Malaysia), 'W' (made in China). Маркировка у других производителей может отличаться, сверяйте с datasheet.

4.6 Стабилизаторы

Стабилизаторы DA1-DA3 можно использовать любые, совместимые с серией LM1117 в корпусе TO-252 (DPACK).

- 1. Общий
- 2. Выход
- 3. Вход

Маркировку лучше смотреть в datasheet производителя. Укажу несколько маркировок, которые встречаются чаще всего:

Part	Uout	LM1117	K1254	IL1117	SPX1117
DA1, DA2	3.3V	LM1117DT-3.3V	К1254ЕН3АТ	IL1117-3.3D0T	SPX1117R-3.3
DA3	2.5V	LM1117DT-2.5V	K1254EH2AT	IL1117-2.5D0T	SPX1117R-2.5

5 Приложение 2. Список деталей

		chips		
position	name	pattern	number	alternate
D1	74ACT04	SO14	1	74F04
D2	74HCT245	SO20 wide	1	74ACT245, 74AHCT245
D3	EP1K30TC144	TQFP144	1	
D4	74HCT125	SO14	1	74ACT125, 74AHCT125
D5	M29F040B	PLCC32	1	AM29F040B
D6	Z84C0020FEC	QFP44	1	
D7	74LCX245	SO20 wide	1	74LVC245
D8	MA8201A	LQFP44	1	MA8201A-U
D9	EPM3064ATC100	TQFP100	1	
RAM1,RAM2	TC55V8200FT	TSOP54	2	,
DA1,DA2	LM1117DT3.3	DPAC	2	K1254EH3AT,
				IL11173.3D0T,
				SPX1117R3.3
DA3	LM1117DT2.5	DPAC	1	K1254EH2AT,
				IL11172.5D0T,
				SPX1117R2.5
DA4	KR1171SP42	TO92	1	
DA5	NE5532	SO8	1	
DA6	TDA1543	SO16, DIP8	1	TDA1543T
	S	emiconductors		
position	name	pattern	number	alternate
VD1	LED	3.5mm, 805	1	
VT1	BC847	SOT23	1	BC846, BC848
		quartz's		
position	name	pattern	number	alternate
QZ1	Quartz Gen 20MHz	OSC7X5	1	
QZ2	Quartz Gen 24MHz	OSC7X5	1	
Z1	Quartz 14MHz	HC49, HC49U	1	
		ferrits		
position	name	pattern	number	alternate
L1	220, 270 mkG	CDR64B	1	any resistance < 1 Ohm
L2	2R2, 1R0	chip 1206, 805	1	any resistance < 1 Ohm
		capasitors		
position	name	pattern	number	alternate
C48,C49	33pF	chip 1206, 805	2	
C38,C41	22nF	chip 1206, 805	2	
C1,C2,C5-C9,C11,	0,1mkF	chip 1206, 805	35	
C12,C14,C16,				
C18-C25,C27-				
C34,C40, C42-				
C47,C50				

Сборка и настройка звуковой карты NeoGS

C3,C4,C10,C13,C		type A	9
15,C17,C26,C36,C			
39			
C35,C37	100mkF	type B, 3.5mm	2
		resistors	
position	name	pattern	number alternate
R39	1 Ohm	chip 1206, 805	1
R1-R6,R44	51 Ohm	chip 1206, 805	7
R17,R45,R49	100 Ohm	chip 1206, 805	
R48,R51	390 Ohm	chip 1206, 805	
R8,R10,R13,R19-	1 K	chip 1206, 805	11
R21,R25,R29,R41,			
R42,R47			
R50	3.3 K	chip 1206, 805	1
R7,R9,R11,R12,	6.8 K	chip 1206, 805	27
R14-			
R16,R18,R22-			
R24,R26-			
R28,R30-			
R38,R40,R43,R46,			
R53			
R52	1 M	chip 1206, 805	1
		others	
position	name	pattern	number alternate
J1	board reset enable	PLS-2	1
S1	reset button	PKN	1
X1	JTAG	IDC10	1
X2	sound 3.5mm jack	ST-214C	1
X3	sound	PLS-4	1
XSD1	SD card holder	SDC09W4	1
D1*	PLCC32 holder	PCC32-DIP	1

6 Приложение 3. Замена SD держателя карты

В настоящее время SD держатель SDC09W4 снят с производства. Поэтому в наборе для самостоятельной сборки может идти держатель другого типа (например SDC-W25PB-09).

Рассмотрим порядок установки другого держателя. Для SDC-W25PB-09 контакты отвечающую за работу с SD картой совпадают, не совпадают только контакты детектирующей группы.

Порядок установки карты следующий (на примере SDC-W25PB-09):

- 1. Спилить напильником юстирующие пазы на держателе карты, чтобы она садилась на посадочное место предусмотренное на плате;
- 2. Припаять проводки на детектирующие выводы SDC-W25PB-09 (10 и 12 вывод). В общем случае, припаять проводки к тем выводам которые не совпадают по назначению с пинами. После пайки выводы изолировать (например термоусадкой или кембриком);
- 3. Припаять проводки с детектирующих выводов на соответствующие места платы;
- 4. Приклеить держатель к плате (например клеем «Момент»);
- 5. Припаять остальные выводы, которые совпадают по месту на плате.

7 Приложение 4. Схема программатора ByteBlasterMV

Приводится по оригинальной схеме из документации Altera "ByteBlasterMV Parallel Port Download Cable Data Sheet".

ЗАМЕЧАНИЯ:

- Подключение программатора к РС компьютеру производится через принтерный разъем.
- При изготовлении программатора необходимо учесть, чтобы длина кабеля соединяющего программатор с 10-гнездовым разъемом была не более 10..15см.