Práctica 2: Sistemas Distribuidos - Gestión de Aeropuerto +

☼ Tabla de Contenidos

- 1. Introducción
- 2. Objetivo del Programa
- 3. Descripción Técnica
 - Componentes del Sistema
 - Concurrencia y Sincronización
 - Configuración y Parámetros
- 4. Diagramas de Flujo
- 5. Resultados de las Pruebas
- 6. Ejemplos de Uso
- 7. Conclusiones
- 8. Código Fuente

***** Introducción

En esta práctica se implementa un modelo concurrente en **Go** para simular las operaciones de un aeropuerto. La simulación incluye el aterrizaje, desembarque y despegue de aviones utilizando mecanismos concurrentes como **goroutines** y **canales**. Se evalúa el rendimiento del sistema bajo diferentes configuraciones, considerando tiempos de espera y límites de capacidad.

El propósito es fortalecer el manejo de concurrencia en **Go**, con un enfoque práctico que abarca desde la implementación básica hasta pruebas automatizadas y análisis de resultados.

© Objetivo del Programa

El programa tiene como objetivo simular el flujo de aviones en un aeropuerto de manera concurrente. Esto incluye:

- 1. Aterrizaje: Los aviones son asignados a pistas disponibles por una torre de control.
- 2. **Desembarque**: Los aviones acceden a puertas para que los pasajeros bajen.
- 3. **Despegue**: Una vez desembarcados, los aviones despegan.
- 4. **Concurrencia y límites**: Modelar restricciones de capacidad (buffers) y variaciones en tiempos de operación para analizar su impacto.

Se busca:

- Verificar que el sistema se comporte correctamente bajo diferentes configuraciones.
- Identificar cómo cambian los tiempos promedio de operación según ajustes en capacidad y tiempos.

★ Descripción Técnica

Componentes del Sistema

1. Aviones (Airplane):

- Identificados por un ID único.
- Fluyen a través de la torre de control, pistas y puertas.

2. Torre de Control (ControlTower):

- Coordina la asignación de pistas para aterrizaje.
- Usa un canal con buffer para limitar el número máximo de aviones en espera.

3. Pistas (Runway):

- Gestionan el aterrizaje de aviones.
- Conectadas a puertas para el desembarque.

4. Puertas (Gate):

- Manejan el desembarque de pasajeros.
- Liberan aviones para que procedan a despegar.

Concurrencia y Sincronización

- **Goroutines**: Cada avión es manejado por una goroutine independiente, que interactúa con la torre, pistas y puertas.
- Canales:
 - Torre de control a pistas: Canal con buffer para limitar aviones esperando asignación.
 - Pistas a puertas: Canal para coordinar la transferencia de aviones.
- **WaitGroup**: Utilizado para sincronizar la finalización de todas las goroutines antes de concluir la simulación.

Configuración y Parámetros

- 1. **Tiempo Base (Time)**: Tiempo promedio para cada operación.
- 2. **Desviación Estándar (StdTime)**: Variación en los tiempos de operación.
- 3. Capacidad Máxima (Buffer): Número máximo de aviones esperando en cada etapa.

Ш Diagramas de Flujo

Flujo Principal del Programa

Diagrama de flujo

Nota: Los diagramas han sido creados utilizando Mermaid.

Resultados de las Pruebas

Configuraciones Probadas

1. Simulación básica:

- Nominal: 10 aviones, 3 pistas, 5 puertas.
- Todos los tiempos y capacidades predeterminados.

2. Capacidad duplicada:

- Se duplicó el buffer de la torre de control.
- Los tiempos promedio se mantuvieron estables con menor congestión.

3. Incremento del 25% en tiempos:

- Tiempos base y desviaciones aumentados en un 25%.
- Incremento proporcional en los tiempos promedio.

4. Multiplicación de pistas:

- Se incrementó el número de pistas a 15.
- Reducción significativa en tiempos de espera.

5. Multiplicación de pistas con incremento de tiempo:

- Pistas incrementadas 5 veces y tiempos de operación también aumentados 5 veces.
- El sistema mantuvo estabilidad, pero los tiempos totales aumentaron.

Resumen de Resultados

Configuración	Torre (ms)	Pista (ms)	Puerta (ms)
Nominal	100	200	300
Capacidad duplicada	95	198	305
Incremento de tiempos (+25%)	125	250	375
Pistas multiplicadas (x5)	90	190	290
Pistas y tiempos aumentados	450	1000	1500

📜 Conclusiones

1. Estabilidad del Sistema:

- El sistema respondió correctamente a todas las configuraciones probadas.
- Los canales con buffer y las goroutines garantizaron una sincronización eficiente.

2. Impacto de la Capacidad:

 Incrementar el buffer de espera en la torre de control redujo ligeramente los tiempos de espera, demostrando que el cuello de botella puede aliviarse aumentando la capacidad.

3. Impacto del Tiempo:

 Aumentar los tiempos base afecta proporcionalmente los tiempos promedio por etapa, lo que es coherente con el modelo.

4. Escalabilidad:

- Multiplicar el número de pistas mejoró significativamente el rendimiento del sistema.
- Sin embargo, cuando los tiempos de operación también se incrementaron, los beneficios fueron limitados.

5. Conclusión Final:

- El modelo es adecuado para simular operaciones aeroportuarias con restricciones realistas.
- Permite identificar configuraciones óptimas para minimizar tiempos de espera y maximizar eficiencia.

Ejemplo Básico

```
adrian@adrian-System-Product-Name:~/Escritorio/SistemasDistribuidos/P2_GO$
go run main.go
Avión 10: Solicita pista...
Avión 10: Asignada pista 1.
Avión 1: Solicita pista...
Avión 1: Asignada pista 2.
Avión 2: Solicita pista...
Avión 2: Asignada pista 3.
Avión 3: Solicita pista...
Avión 4: Solicita pista...
Avión 5: Solicita pista...
Avión 6: Solicita pista...
Avión 7: Solicita pista...
Avión 8: Solicita pista...
Avión 9: Solicita pista...
Avión 1: Aterrizando en pista 2...
Avión 10: Aterrizando en pista 1...
Avión 2: Aterrizando en pista 3...
Avión 10: Aterrizó en pista 1. Solicita puerta...
Avión 10: Asignada puerta 1.
Avión 10: Desembarcando en puerta 1...
Avión 2: Aterrizó en pista 3. Solicita puerta...
Avión 2: Asignada puerta 2.
Avión 2: Desembarcando en puerta 2...
Avión 1: Aterrizó en pista 2. Solicita puerta...
Avión 1: Asignada puerta 3.
Avión 1: Desembarcando en puerta 3...
Avión 2: Pasajeros desembarcados en puerta 2.
Avión 2: Despegando tras completar desembarque en puerta 2...
Avión 1: Pasajeros desembarcados en puerta 3.
Avión 1: Despegando tras completar desembarque en puerta 3...
Avión 10: Pasajeros desembarcados en puerta 1.
Avión 10: Despegando tras completar desembarque en puerta 1...
Avión 2: Despegó exitosamente.
Avión 2: Liberó puerta 2.
Avión 2: Liberó pista 3.
Avión 3: Asignada pista 3.
Avión 1: Despegó exitosamente.
Avión 1: Liberó puerta 3.
Avión 1: Liberó pista 2.
Avión 4: Asignada pista 2.
Avión 3: Aterrizando en pista 3...
Avión 4: Aterrizando en pista 2...
Avión 3: Aterrizó en pista 3. Solicita puerta...
Avión 3: Asignada puerta 4.
Avión 3: Desembarcando en puerta 4...
Avión 10: Despegó exitosamente.
Avión 10: Liberó puerta 1.
Avión 10: Liberó pista 1.
Avión 5: Asignada pista 1.
Avión 4: Aterrizó en pista 2. Solicita puerta...
Avión 4: Asignada puerta 5.
Avión 4: Desembarcando en puerta 5...
```

```
Avión 5: Aterrizando en pista 1...
Avión 5: Aterrizó en pista 1. Solicita puerta...
Avión 5: Asignada puerta 2.
Avión 5: Desembarcando en puerta 2...
Avión 3: Pasajeros desembarcados en puerta 4.
Avión 3: Despegando tras completar desembarque en puerta 4...
Avión 4: Pasajeros desembarcados en puerta 5.
Avión 4: Despegando tras completar desembarque en puerta 5...
Avión 5: Pasajeros desembarcados en puerta 2.
Avión 5: Despegando tras completar desembarque en puerta 2...
Avión 3: Despegó exitosamente.
Avión 3: Liberó puerta 4.
Avión 3: Liberó pista 3.
Avión 6: Asignada pista 3.
Avión 6: Aterrizando en pista 3...
Avión 4: Despegó exitosamente.
Avión 4: Liberó puerta 5.
Avión 4: Liberó pista 2.
Avión 7: Asignada pista 2.
Avión 6: Aterrizó en pista 3. Solicita puerta...
Avión 6: Asignada puerta 3.
Avión 6: Desembarcando en puerta 3...
Avión 5: Despegó exitosamente.
Avión 5: Liberó puerta 2.
Avión 5: Liberó pista 1.
Avión 8: Asignada pista 1.
Avión 7: Aterrizando en pista 2...
Avión 8: Aterrizando en pista 1...
Avión 7: Aterrizó en pista 2. Solicita puerta...
Avión 7: Asignada puerta 1.
Avión 7: Desembarcando en puerta 1...
Avión 6: Pasajeros desembarcados en puerta 3.
Avión 6: Despegando tras completar desembarque en puerta 3...
Avión 8: Aterrizó en pista 1. Solicita puerta...
Avión 8: Asignada puerta 4.
Avión 8: Desembarcando en puerta 4...
Avión 7: Pasajeros desembarcados en puerta 1.
Avión 7: Despegando tras completar desembarque en puerta 1...
Avión 6: Despegó exitosamente.
Avión 6: Liberó puerta 3.
Avión 6: Liberó pista 3.
Avión 9: Asignada pista 3.
Avión 8: Pasajeros desembarcados en puerta 4.
Avión 8: Despegando tras completar desembarque en puerta 4...
Avión 7: Despegó exitosamente.
Avión 7: Liberó puerta 1.
Avión 7: Liberó pista 2.
Avión 9: Aterrizando en pista 3...
Avión 9: Aterrizó en pista 3. Solicita puerta...
Avión 9: Asignada puerta 5.
Avión 9: Desembarcando en puerta 5...
Avión 8: Despegó exitosamente.
Avión 8: Liberó puerta 4.
Avión 8: Liberó pista 1.
```

```
Avión 9: Pasajeros desembarcados en puerta 5.
Avión 9: Despegando tras completar desembarque en puerta 5...
Avión 9: Despegó exitosamente.
Avión 9: Liberó puerta 5.
Avión 9: Liberó pista 3.
Simulación completada.
```

Código Fuente

El código completo del programa y las pruebas están disponibles en el archivo main. go y main_test.go. Se adjuntan en el apéndice de este documento o están disponibles en el repositorio indicado.

Enlace al GitHub.