STUDI KELAYAKAN EKONOMI PEMBANGUNAN UNDERPASS PADA SIMPANG JL. GATOT SUBROTO-JL. AHMAD YANI DI KOTA DENPASAR

Lina Sarasdevi Santosa¹, P. Alit Suthanaya², I B. Rai Adnyana²

Abstrak : Berdasarkan data Badan Pusat Statistik (BPS) Provinsi Bali tahun 2013, tingkat kepadatan penduduk di wilayah Metropolitan SARBAGITA (Denpasar-Badung-Gianyar-Tabanan) sebesar 1.057 jiwa/km² dengan luas wilayah sebesar 1.753,63 km² dan jumlah penduduk sebanyak 1.853.017 jiwa. Ketersediaan sarana dan prasarana transportasi yang memadai sangat dibutuhkan, namun nyatanya kinerja ruas jalan di pusat kota kian menurun. Hal tersebut ditandai dengan adanya peningkatan masalah tundaan perjalanan. Permasalahan tundaan lalu lintas di Kota Denpasar yang umum terjadi pada ruas Jl.Gatot Subroto. Untuk meminimalisir permasalahan yang ada maka Pemerintah Kota Denpasar merencanakan pembangunan *underpass* pada simpang Jl. Gatot Subroto-Jl. Ahmad Yani di Kota Denpasar.

Tujuan dari penelitian ini adalah untuk menganalisis manfaat langsung pembangunan *underpass* bagi pemakai jalan, untuk menganalisis besarnya biaya yang diperlukan untuk mewujudkan serta mengoperasikan *underpass* dan untuk menganalisis kelayakan ekonomi investasi pembangunan *underpass*.

Berdasarkan data primer dan data sekunder yang diperoleh dari instansi pemerintah, metode analisis dalam studi ini menggunakan teknik *Net Present Value* (NPV), *Benefit Cost Ratio* (BCR) dan *Internal Rate of Return* (IRR).

Hasil analisis ekonomi yang dilakukan menurut tiga kriteria dengan tiga tingkat suku bunga (12%, 15% dan 18%) menyatakan bahwa Pembangunan *underpass* layak secara ekonomi. Sebagai contoh pada skenario II dimana tingkat suku bunga 15% mendapat hasil analisis berupa nilai NPV, BCR dan IRR berturut-turut adalah Rp. 233.462.340.102,00; 1,948 dan 30,81%.

Saran yang dapat disampaikan dari penelitian ini adalah perlu dipertimbangkannya pengaruh perubahan tata guna lahan di daerah-daerah yang dekat dengan wilayah sekitar *underpass* serta diperlukan adanya kajian lebih lanjut yang memperhitungkan kebutuhan penambahan lajur lalu lintas.

Kata Kunci: Jalan Underpass, Kelayakan Ekonomi

ECONOMIC FEASIBILITY STUDY OF UNDERPASS DEVELOPMENT ON GATOT SUBROTO-AHMAD YANI CROSS-ROADS IN DENPASAR

Abstract: Based on data from the Central Statistics Agency (BPS) of Bali in 2013, the population density in the Metropolitan area SARBAGITA (Denpasar-Badung-Gianyar-Tabanan) was 1.057 inhabitants/km² with an area of 1.753,63 km² and population was 1.853.017 inhabitants. Availability of facilities and adequate transportation infrastructure is needed, but in fact the performance of roads in the city center has declined. It is characterized by an increase in travel delay problem. Traffic delay problems in the City of Denpasar commonly occur on the stretch of Gatot Subroto street. To minimize the existing problems, Denpasar City Government plans to develop an underpass at the intersection of Gatot Subroto street and Ahmad Yani street.

The aim of this study was to analyze the direct benefits of underpass for road users, to analyze the costs necessary to realize and operate the underpass, and to analyze the economic feasibility of the underpass development investment.

Based on primary data and secondary data were obtained from government agencies, the method of analysis in this study used the technique of Net Present Value (NPV), Benefit Cost Ratio (BCR) and Internal Rate of Return (IRR).

Economic analysis conducted in this study used three criteria (NPV, BCR and IRR) with three interest rates (12%, 15% and 18% per year) stating that the construction of an underpass was economically feasible. For example in the second scenario where the interest rate 15% gain on the analysis of value NPV, BCR and IRR respectively is Rp. 233.462.340.102,00; 1,948 and 30,81%.

Suggestions can be submitted from this research is the need to contemplate the effect of changes in land use in areas close to the area around the underpass and needed further study that takes into account the needs of additional traffic lanes.

Keywords: Road Underpass, Economic Feasibility

¹ Mahasiswa Program Magister Teknik Sipil, Program Pascasarjana, Universitas Udayana, Denpasar

² Staf Pengajar Program Magister Teknik Sipil, Program Pascasarjana, Universitas Udayana, Denpasar

PENDAHULUAN

Latar Belakang

Ruas JI. Gatot Subroto tergolong jalan arteri primer tipe 4 lajur 2 arah tak terbagi/ *UnDevided* (4/2 UD). Berdasarkan fungsinya sebagai jalan arteri mengakibatkan JI. Gatot Subroto banyak dilintasi oleh masyarakat dari dalam ataupun luar wilayah kota Denpasar.

Berdasarkan hasil studi yang dilakukan Sandiguna (2013), kinerja simpang eksisting Jl. Gatot Subroto – Jl. Cokroaminoto diperoleh nilai tundaan untuk semua jam puncak > 40 detik/smp sehingga nilai tingkat pelayanan simpang untuk semua jam puncak adalah sangat macet (F).

Bangkitan lalu lintas di wilayah pesatnya dikarenakan makin tersebut pertumbuhan pusat perkantoran di kawasan Lumintang ditambah lagi dengan dibangunnya Pusat Pemerintahan Kota Denpasar. Menurut Mahendra (2013), hasil analisis simpang tak bersinyal Jl. Gatot Subroto - Jl. Mulawarman – Jl. Mataram pada jam puncak tertinggi dengan tingkat pelayanan F dan derajat kejenuhan (DS) sebesar 1,97 serta hasil analisis simpang tak bersinyal jalan Ahmad Yani - jalan Mulawarman pada jam puncak tertinggi dengan tingkat pelayanan F serta nilai DS sebesar 1,48.

Pengelolaan lalu lintas dengan sistem satu arah pada pola jaringan jalan HOS. Cokroaminoto, jalan Gatot Subroto, jalan Mulawarman dan jalan Ahmad Yani untuk mengurangi masalah kemacetan dan tundaan telah dikaji oleh Ariyasa (2013). Dari hasil studi tersebut diperoleh perbandingan kinerja simpang dan ruas untuk kedua kondisi pada jam puncak pagi meningkat sebesar 132,45%, jam puncak siang meningkat sebesar 232,57% dan jam puncak sore meningkat sebesar 246,92%.

Untuk meminimalisir permasalahan yang ada maka Pemerintah Kota Denpasar merasa perlu untuk diadakannya pembangunan underpass pada simpang Jl. Gatot Subroto-Jl. Ahmad Yani. Mengingat besarnya dana yang dibutuhkan dan kas keuangan pemerintah yang terbatas sehingga perlu diadakan suatu kajian kelayakan terlebih dahulu. Pada penelitian ini mengkaji kelayakan dari sisi ekonomi pembangunan underpass pada simpang Jl. Gatot Subroto-Jl. Ahmad Yani berdasarkan trase terpilih.

Rumusan Masalah

1. Berapakah besarnya biaya yang dibutuhkan untuk mewujudkan dan mengoperasikan *underpass*?

- Bagaimanakah manfaat langsung pembangunan underpass bagi pemakai jalan berdasarkan analisis terhadap variabel-variabel penghematan BOK dan nilai waktu?
- 3. Bagaimanakah kelayakan ekonomi pembangunan *underpass* berdasarkan manfaat yang diperoleh dan biaya yang diperlukan untuk mewujudkannya?

Tujuan Penelitian

- 1. Untuk menganalisis besarnya biaya yang dibutuhkan untuk mewujudkan dan mengoperasikan *underpass*.
- 2. Untuk menganalisis manfaat langsung pembangunan *underpass* bagi pemakai jalan berdasarkan analisis terhadap variabel-variabel penghematan BOK dan nilai waktu.
- 3. Untuk menganalisis kelayakan ekonomi pembangunan *underpass* berdasarkan manfaat yang diperoleh dan biaya yang diperlukan untuk mewujudkannya.

KAJIAN PUSTAKA Studi Kelayakan Proyek

Studi kelayakan adalah suatu kegiatan penelitian atau studi yang dilakukan secara komprehensif dari berbagai aspek dalam usaha mengkaji tingkat kelayakan dari suatu proyek (LPM-ITB, 1997).

Tujuan dan Manfaat Studi Kelayakan

Santosa (2011) menyebutkan bahwa suatu studi kelayakan memiliki tujuan, antara lain:

- 1. Menghindari terjadinya keterlanjuran penanaman modal yang tidak menguntungkan.
- 2. Memaksimalkan keuntungan.
- 3. Mengevaluasi aspek-aspek yang mempengaruhi suatu studi.
- 4. Mengidentifikasi faktor-faktor yang menjadi kunci keberhasilan.
- 5. Mengidentifikasi sarana dan prasarana yang dibutuhkan.

Suatu proyek dinilai bermanfaat dari segi finansial jika nilai ekonomis dari proyek menguntungkan tersebut dapat dibandingkan dengan resiko yang ditimbulkan. Manfaat ekonomi yang dimaksudkan adalah proyek tersebut di manfaat tempat pelaksanaannya dan berpengaruh luas terhadap wilayah sekitarnya. Manfaat sosial ialah yang dihasilkan darimana lokasi manfaat proyek tersebut dilaksanakan. Manfaat lingkungan mencakup polusi udara, air, tanah maupun suara yang ditinjau dari tahap pra pelaksanaan sampai pasca proyek. Manfaatmanfaat tersebut berlaku untuk setiap studi kelayakan, baik itu yang bersifat komersil maupun proyek investasi.

Persimpangan Tak Sebidang

Persimpangan merupakan pertemuan antara dua jalan atau lebih, baik sebidang maupun tidak sebidang atau titik jaringan jalan dimana jalan-jalan bertemu dan lintasan jalan saling berpotongan (Morlok, 1991).

Pembangunan simpang tak sebidang atau susun dilakukan untuk memperbesar kapasitas jalan, menambah keamanan dan kenyamanan bagi pemakai jalan. Bentuk simpang tak sebidang dapat berupa jembatan layang (*Flyover*), terowongan (*Underpass*) dan persilangan yang dapat berpindah dari ruas yang satu ke ruas yang lain (*Interchange*).

Biaya Operasional Kendaraan

Menurut pedoman perhitungan BOK yang dikeluarkan oleh Departemen PU, komponen BOK terdiri atas :

✓ Biaya tidak tetap

- a. Pemakaian bahan bakar
- b. Pemakaian minyak pelumas
- c. Pemakaian suku cadang
- d. Upah tenaga pemelihara
- e. Pemakaian ban

✓ Biaya tetap

- a. Biaya penyusutan (Depresiasi)
- b. Bunga modal
- c. Asuransi

Nilai Waktu

Besarnya nilai waktu bagi pengguna jalan merupakan gambaran dari layanan konsumen yang diberikan oleh jalan kepada pengguna jalan tersebut (LPM-ITB, 1997). Dalam studi kelayakan proyek jalan, nilai waktu digunakan untuk menghitung besarnya manfaat yang didapat oleh pengguna jalan akibat adanya penghematan waktu jika melewati jalan baru.

Besarnya penghematan BOK dan nilai waktu dihitung menurut persamaan di bawah:

$$\begin{split} PB &= (BOK_{ek} \, x \, \, D_{ek} - BOK_{alt} \, x \, \, D_{alt}) + \{(D_{ek}/V_{ek} \\ &- D_{alt}/V_{alt}) \, x \, \, Tv\} \, \end{split} \tag{1}$$

Dimana:

PB = Penghematan biaya pengguna (Rp)

 $BOK_{ek} = Biaya$ operasi kendaraan di jalan

eksisting (Rp/km)

 $BOK_{alt} = Biaya$ operasi kendaraan di jalan

alternatif (Rp/km)

 D_{ek} = Panjang jalan eksisting (km)

 D_{alt} = Panjang jalan alternatif (km)

 V_{ek} = Kecepatan di jl. eksisting (km/jam) V_{alt} = Kecepatan di jl. alternatif (km/jam) Tv = Nilai waktu kendaraan (Rp/jam)

Biaya Proyek

Biaya suatu proyek dapat dibagi menjadi dua kelompok yakni biaya modal dan biaya operasional (LPM-ITB, 1997) sebagai berikut:

- Biaya modal adalah biaya-biaya yang dikeluarkan untuk menyiapkan dana proyek, melakukan studi, penyiapan dokumen pembangunan atau pelaksanaan konstruksi, pengawasan pembangunan dan manajemen proyek.
- Biaya operasional adalah biaya yang dikeluarkan untuk kegiatan operasional meliputi: proses menjalankan proyek, pemeliharaan, perbaikan serta pengelolaan selama masa pelayanan.

Pendekatan Kelayakan Investasi

Kriteria dasar untuk mengukur manfaat suatu investasi pada bidang transportasi adalah dengan melakukan perhitungan "dengan" dan "tanpa" ("with" and "without") pembangunan jalan baru sehingga diketahui keuntungan yang timbul karena adanya pembangunan jalan baru tersebut. Kriteria evaluasi dalam analisa ekonomi umumnya adalah Net Present Value (NPV), Benefit Cost Ratio (BCR), Internal Rate of Return (IRR) dan Analisis Sensitivitas.

Net Present Value

Metode NPV adalah metode yang membandingkan semua komponen biaya dan manfaat suatu proyek dengan acuan yang sama agar dapat diperbandingkan satu dengan lainnya (LPM-ITB,1997). Secara matematis persamaannya adalah sebagai berikut:

NPV = PV B - PV C

$$NPV = \sum_{t=0}^{n} \frac{B_{t} - C_{t}}{(1+i)^{t}}$$
 (2)

Dimana:

PV B= Present Value Benefit

PV C= Present Value Cost

Bt = Besaran total dari komponen manfaat

proyek pada tahun t

Ct = Besaran total dari komponen biaya

pada tahun t

i = Tingkat suku bunga (% per tahun)

t = Jumlah tahun

Benefit Cost Ratio

Metode ini membandingkan semua pemasukan (dihitung pada kondisi saat ini) dengan semua pengeluaran (dihitung pada kondisi saat ini). Secara matematis dapat dirumuskan sebagai berikut:

BCR = PV B/PV C

BCR =
$$\frac{\sum_{t=0}^{n} \frac{B_t}{(1+i)^t}}{\sum_{t=0}^{n} \frac{C_t}{(1+i)^t}}....(3)$$

Dimana:

Bt = Besaran total dari komponen manfaat proyek pada tahun t

Ct = Besaran total dari komponen biaya pada tahun t

i = Tingkat suku bunga (% per tahun)

t = Jumlah tahun

Internal Rate of Return

IRR sering juga disebut sebagai laju pengembalian modal. Dalam hal ini laju pengembalian modal dapat dianggap sebagai tingkat keuntungan atas investasi bersih dalam suatu proyek. Jika besarnya laju pengembalian modal ini melebihi nilai *discount rate* maka sudah pasti dapat dikatakan bahwa proyek layak untuk dikerjakan namun jika lebih kecil dari *discount rate* sekalipun nilai BCR-nya >1, kelayakan proyek masih perlu ditinjau ulang.

$$IRR = IR1 - NPV1 \frac{IR2 - IR1}{NPV2 - NPV1}$$
.....(4)

Dimana:

IRR = Internal Rate Of Return

IR1 = Tingkat bunga untuk penetapan ke-1
 IR2 = Tingkat bunga untuk penetapan ke-2

NPV1 = NPV dari hasil IR1 NPV2 = NPV dari hasil IR2

Analisis Sensitivitas

Nilai-nilai parameter dalam studi kelayakan proyek biasanya diestimasikan besarnya maka jelas nilai-nilai tersebut tidak dapat lepas dari kesalahan. Maksudnya dapat saja nilai tersebut lebih besar ataupun lebih kecil dari hasil estimasi yang diperoleh atau berubah pada saat-saat tertentu.

METODELOGI PENELITIAN Tahapan Penelitian

Tahapan dalam penelitian diawali dengan studi untuk mengidentifikasi wilayah suatu lokasi, mengenali wilayah serta permasalahannya sehingga dapat ditetapkan sebagai lokasi studi, mengidentifikasi datadata yang akan diperlukan, mengidentifikasi pustaka dan acuan yang akan digunakan serta mengidentifikasi perangkat lunak yang dapat diacu dalam proses analisis data. Dengan menetapkan tujuan yang menjadi sasaran studi dan identifikasi pustaka, dicoba untuk mendesain formulir survei berupa survei pendahuluan untuk menentukan desain sampel yang sangat dibutuhkan sebelum dilakukan survei secara menyeluruh serta menentukan data-data apa saja yang dibutuhkan. Berdasarkan survei menyeluruh tersebut akan diperoleh data lapangan sebagai data primer dan data sekunder diperoleh dari instansi yang terkait, literatur, jurnal ilmiah, studi terdahulu yang selanjutnya akan diolah dalam rangka penyusunan laporan.

Lokasi dan Waktu Penelitian

Lokasi yang dipilih dalam penelitian ini adalah rencana *underpass* pada simpang Jl. Gatot Subroto-Jl. Ahmad Yani di Kota Denpasar. Adapun alasan yang menjadi pertimbangan dalam pemilihan lokasi penelitian adalah pentingnya dibangun jalan alternatif sebagai usaha untuk mengatasi permasalahan transportasi yang ada pada ruas Jl.Pidada – Jl.Gatot Subroto – Jl.Cokroaminoto – Jl.Mulawarman – Jl. Mataram.

Sumber Data

Data yang dibutuhkan dalam penelitian ini meliputi data primer dan data sekunder yang akan diperoleh secara langsung di lapangan, penelitian sebelumnya serta sumber-sumber informasi lainnya.

1. Data Primer

Data primer dalam penelitian ini melitputi data geometrik jalan, data kecepatan perjalanan, dan data komponen BOK.

2. Data Sekunder

Data sekunder dalam penelitian ini yaitu:

- a. Data volume lalu lintas
- b. Data asal tujuan perjalanan
- c. Data statistik sosial ekonomi
- d. Data biaya pembangunan underpass

Variabel Penelitian

Variabel-variabel dalam penelitian ini adalah sebagai berikut :

- 1. Arus dan komposisi lalu lintas
- 2. Kapasitas ruas jalan
- 3. Derajat kejenuhan ruas jalan
- 4. Kecepatan dan waktu tempuh
- 5. Biaya operasional kendaraan
- 6. Nilai waktu
- 7. Net present value
- 8. Benefit cost ratio
- 9. Internal rate of return

10. Analisis sensitivitas

Analisis Data

Analisis data yang akan dilakukan meliputi :

- 1. Analisis manfaat pembangunan underpass
- 2. Analisis biaya pembangunan dan pemeliharaan *underpass*
- 3. Analisis kelayakan ekonomi pembangunan *underpass*.

Analisis Sensitivitas

Selanjutnya juga dilakukan analisis sensitivitas dengan mengubah nilai suatu variabel dan mengamati pengaruhnya terhadap kelayakan investasi.. Analisis sensitivitas dalam penelitian ini mengasumsikan keadaan-keadaan seperti :

- 1. Biaya naik 20%, manfaat tetap.
- 2. Biaya tetap, manfaat turun 20%.
- 3. Biaya naik 20%, manfaat turun 20%.

HASIL DAN PEMBAHASAN Analisis Nilai Waktu Perjalanan

Dalam studi ini nilai waktu penumpang rata-rata dihitung 50% dari pendapatannya. Jadi berdasarkan PDRB per kapita per jam kerja tahun 2014 sebesar Rp 3.798,79 didapat nilai waktu penumpang menjadi:

- = 50% x Rp 3.798,79
- = Rp 1.899,40 per jam.

Dengan demikian nilai waktu penumpang per jam berdasarkan jenis kendaraan pada tahun 2014 adalah sebagai berikut:

- Sepeda Motor
 - = Rp. 1.899,40 x 1,35
 - = Rp. 2.564,19
- Kendaraan Ringan (Sedan, Utiliti)
 - = Rp. 1.899,40 x 2,70
 - = Rp. 5.128,37
- Bus (Bus Kecil, Besar)
 - = Rp. 1.899,40 x 17,40
 - = Rp. 33.049,50
- Truk (Truk Ringan, Sedang, Besar)
 - = Rp. 1.899,40 x 1,98
 - = Rp. 3.760,81

Tabel 1 adalah prediksi nilai waktu penumpang menurut jenis kendaraan hingga tahun 2035, dengan laju pertumbuhan PDRB sebesar 6,05% per tahun. Pada tahun 2014, nilai waktu penumpang berdasarkan jenis kendaraan memiliki nilai yang bervariasi, dari Rp. 2.564,19/jam sampai dengan Rp. 33.049,50/jam.

Tabel 1 Nilai Waktu Penumpang Menurut Jenis Kendaraan

	Nilai Waktu Per Jam					
Tahun	Sepeda Motor	Kendaraan Ringan	Bus	Truk		
	(Rp/jam)	(Rp/jam)	(Rp/jam)	(Rp/jam)		
2014	2.564,19	5.128,37	33.049,50	3.760,81		
2015	2.719,32	5.438,64	35.048,99	3.988,33		
2016	2.883,84	5.767,67	37.169,46	4.229,63		
2017	3.058,31	6.116,62	39.418,21	4.485,52		
2018	3.243,34	6.486,67	41.803,01	4.756,89		
2019	3.439,56	6.879,12	44.332,09	5.044,69		
2020	3.647,65	7.295,30	47.014,19	5.349,89		
2021	3.868,34	7.736,67	49.858,54	5.673,56		
2022	4.102,37	8.204,74	52.874,99	6.016,81		
2023	4.350,56	8.701,13	56.073,92	6.380,83		
2024	4.613,77	9.227,54	59.466,40	6.766,87		
2025	4.892,91	9.785,81	63.064,11	7.176,26		
2026	5.188,93	10.377,85	66.879,49	7.610,42		
2027	5.502,86	11.005,71	70.925,70	8.070,86		
2028	5.835,78	11.671,56	75.216,71	8.559,14		
2029	6.188,84	12.377,69	79.767,32	9.076,97		
2030	6.563,27	13.126,54	84.593,24	9.626,13		
2031	6.960,35	13.920,69	89.711,13	10.208,51		
2032	7.381,45	14.762,89	95.138,65	10.826,12		
2033	7.828,02	15.656,05	100.894,54	11.481,10		
2034	8.301,62	16.603,24	106.998,66	12.175,71		
2035	8.803,87	17.607,74	113.472,08	12.912,34		

Sumber: Hasil Analisis, 2014

Analisis BOK setelah Underpass

Tabel 2 menampilkan hasil analisis BOK Sp. Jl. Gatot Subroto-Jl. Ahmad Yani ke Sp. Jl. Cokroaminoto-Jl. Maruti setelah pembangunan *Underpass* dari tahun 2016-2035. BOK pada tahun 2016 untuk beberapa jenis kendaraan yang melintasi Sp. Jalan Gatot

Subroto-Jalan Ahmad Yani ke Sp. Jl. Cokroaminoto-Jl. Maruti memiliki nilai yang bervariasi, dari Rp. 50,33/km (sepeda motor) sampai dengan Rp. 20.157,37/km (truk besar). Dengan besar inflasi Kota Denpasar, yaitu 6,11% maka pada tahun 2035 BOK terbesar terjadi pada kendaraan jenis truk besar.

Tabel 2 Analisis BOK Sp. Jalan Gatot Subroto-Jalan Ahmad Yani ke Sp. Jalan Cokroaminoto-Jalan Maruti setelah *Underpass*

	ke Sp. salah Coki cammicto-salah Marati di Setelah Chaci pass							
Tahun				BOK pe	r Km (Rp)			
1 anun	Sedan	Utiliti	Bus Kecil	Bus Besar	Truk Ringan	Truk Sedang	Truk Besar	Sepeda Motor
2016	5.116,82	4.908,64	7.070,17	18.501,91	6.744,12	13.769,50	20.157,37	50,33
2017	5.429,45	5.208,56	7.502,15	19.632,38	7.156,19	14.610,82	21.388,99	53,41
2018	5.761,19	5.526,81	7.960,53	20.831,92	7.593,43	15.503,54	22.695,86	56,67
2019	6.113,20	5.864,49	8.446,92	22.104,75	8.057,39	16.450,81	24.082,57	60,13
2020	6.486,72	6.222,81	8.963,03	23.455,35	8.549,70	17.455,95	25.554,02	63,81
2021	6.883,06	6.603,03	9.510,67	24.888,47	9.072,08	18.522,51	27.115,37	67,71
2022	7.303,61	7.006,47	10.091,77	26.409,15	9.626,39	19.654,23	28.772,12	71,84
2023	7.749,86	7.434,57	10.708,38	28.022,75	10.214,56	20.855,11	30.530,09	76,23
2024	8.223,38	7.888,82	11.362,66	29.734,94	10.838,67	22.129,36	32.395,48	80,89
2025	8.725,83	8.370,83	12.056,92	31.551,75	11.500,91	23.481,46	34.374,85	85,83
2026	9.258,97	8.882,29	12.793,60	33.479,56	12.203,62	24.916,18	36.475,15	91,08
2027	9.824,70	9.424,99	13.575,29	35.525,16	12.949,26	26.438,55	38.703,78	96,64
2028	10.424,99	10.000,86	14.404,74	37.695,75	13.740,46	28.053,95	41.068,58	102,55
2029	11.061,95	10.611,91	15.284,87	39.998,96	14.580,00	29.768,05	43.577,87	108,81
2030	11.737,84	11.260,30	16.218,77	42.442,90	15.470,84	31.586,87	46.240,48	115,46
2031	12.455,02	11.948,31	17.209,74	45.036,16	16.416,11	33.516,83	49.065,77	122,52
2032	13.216,02	12.678,35	18.261,25	47.787,87	17.419,13	35.564,71	52.063,69	130,00
2033	14.023,52	13.452,99	19.377,02	50.707,70	18.483,44	37.737,72	55.244,78	137,94
2034	14.880,36	14.274,97	20.560,95	53.805,94	19.612,78	40.043,49	58.620,24	146,37
2035	15.789.55	15.147.17	21.817.23	57.093.49	20.811.12	42,490,15	62,201,94	155,32

Sumber: Hasil Analisis, 2014

Penghematan Biaya Pemakai Jalan

Nilai komponen PBPJ dapat dilihat pada Tabel 3 dan hasil analisis PBPJ dapat dilihat pada Tabel 4. Perbedaan BOK sebelum dan setelah pembangunan *underpass* untuk sepeda motor, yaitu Rp. 72,22/ km dan Rp. 50,33/ km. Hal ini juga dialami dengan semua jenis kendaraan lainnya.

Tabel 3 Harga Komponen-Komponen PBPJ

No	. Komponen PBPJ	Notasi	Satuan	Sedan	Utiliti	Bus Kecil	Bus Besar	Truk Ringan	Truk Sedang	Truk Besar	Sepeda Notor
1	BOK jalan Eksisting	BOK _{eks}	Rp/km	10.947,68	10.090,20	13.367,57	39.560,89	12.087,56	24.071,30	40.317,24	72,22
2	BOK setelah Underpass	BOK_{und}	Rp/km	5.116,82	4.908,64	7.070,17	18.501,91	6.744,12	13.769,50	20.157,37	50,33
3	Panjang jalan Eksisting	D eks	Km	1,10	1,10	1,10	1,10	1,10	1,10	1,10	1,10
4	Panjang jalan setelah <i>Underpass</i>	D_{und}	Km	1,10	1,10	1,10	1,10	1,10	1,10	1,10	1,10
5	Kecepatan di jalan Eksisting	V_{eks}	Km/jam	15,17	15,17	15,17	15,17	15,17	15,17	15,17	15,17
6	Kecepatan setelah Underpass	V_{und}	Km/jam	42,85	42,85	42,85	42,85	42,85	42,85	42,85	42,85
7	Nilai waktu kendaraan	T_v	Rp/jam	5.767,67	5.767,67	37.169,46	37.169,46	4.229,63	4.229,63	4.229,63	2.883,84

Sumber: Hasil Analisis, 2014

Tabel 4
PBPJ Sp. Jalan Gatot Subroto-Ahmad Yani ke Sp. Cokroaminoto-Maruti

Т-1	Penghematan Biaya Pemakai Jalan (Rp/km)										
Tahun	Sedan	Utiliti	Bus Kecil	Bus Besar	Truk Ringan	Truk Sedang	Truk Berat	Sepeda Motor			
2016	6.684	5.970	8.668	24.906	6.076	11.530	22.374	159			
2017	7.089	6.331	9.193	26.413	6.444	12.228	23.728	169			
2018	7.517	6.714	9.749	28.011	6.833	12.967	25.163	179			
2019	7.972	7.120	10.339	29.706	7.247	13.752	26.686	190			
2020	8.455	7.551	10.964	31.503	7.685	14.584	28.300	201			
2021	8.966	8.008	11.628	33.409	8.150	15.466	30.012	214			
2022	9.508	8.492	12.331	35.430	8.643	16.402	31.828	226			
2023	10.084	9.006	13.077	37.574	9.166	17.394	33.753	240			
2024	10.694	9.551	13.868	39.847	9.721	18.447	35.796	255			
2025	11.341	10.129	14.707	42.257	10.309	19.563	37.961	270			
2026	12.027	10.742	15.597	44.814	10.933	20.746	40.258	286			
2027	12.755	11.392	16.541	47.525	11.594	22.001	42.693	304			
2028	13.526	12.081	17.542	50.401	12.295	23.333	45.276	322			
2029	14.344	12.812	18.603	53.450	13.039	24.744	48.016	342			
2030	15.212	13.587	19.728	56.684	13.828	26.241	50.921	362			
2031	16.133	14.409	20.922	60.113	14.665	27.829	54.001	384			
2032	17.109	15.281	22.188	63.750	15.552	29.512	57.268	407			
2033	18.144	16.205	23.530	67.607	16.493	31.298	60.733	432			
2034	19.241	17.185	24.954	71.697	17.491	33.191	64.407	458			
2035	20.406	18.225	26.463	76.034	18.549	35.200	68.304	486			

Sumber: Hasil Analisis, 2014

Berdasarkan Tabel 4, PBPJ Sp. Jl Gatot Subroto-Jl. Ahmad Yani ke Sp. Jl. Cokroaminoto-Jl. Maruti setelah pembangunan *underpass*, terjadi pada semua jenis kendaraan. Pada tahun 2016, penghematan terbesar terjadi pada kendaraan jenis bus besar.

Berdasarkan Tabel 5 dan 6, pada tahun 2016 jumlah sepeda motor yang melintasi Sp. Jl. Gatot Subroto-Jl. Ahmad Yani ke Sp. Jl. Cokroaminoto-Jl. Maruti adalah 8.101.103 kendaraan. Dengan jumlah PBPJ Rp. 159,00/ km maka diperoleh total PBPJ untuk sepeda motor sebesar Rp. 1.289.527.978,00/tahun. Jadi total PBPJ pada tahun 2016 untuk semua jenis kendaraan yang melintas pada Sp. Jl. Gatot Subroto-Jl. Ahmad Yani ke Sp. Jl. Cokroaminoto-Jl. Maruti adalah sebesar Rp. 9.330.159.847,00.

Tabel 5 Jumlah Kendaraan yang Melewati Sp. Jl. Gatot Subroto-Jl. Ahmad Yani ke Sp. Jl. Cokroaminoto-Jl. Maruti selama Setahun

T-1		Jumlah Kendaraan (Kend/tahun)										
Tahun	Sedan	Utiliti	Bus Kecil	Bus Besar	Truk Ringan	Truk Sedang	Truk Berat	Sepeda Motor				
2016	1.060.285	117.809	3.275	2.183	3.821	5.094	3.821	8.101.103				
2017	1.124.432	124.937	3.473	2.315	4.052	5.403	4.052	8.591.219				
2018	1.192.460	132.496	3.683	2.456	4.297	5.730	4.297	9.110.988				
2019	1.264.604	140.512	3.906	2.604	4.557	6.076	4.557	9.662.203				
2020	1.341.112	149.012	4.142	2.762	4.833	6.444	4.833	10.246.766				
2021	1.422.250	158.028	4.393	2.929	5.125	6.834	5.125	10.866.696				
2022	1.508.296	167.588	4.659	3.106	5.435	7.247	5.435	11.524.131				
2023	1.599.548	177.728	4.941	3.294	5.764	7.686	5.764	12.221.341				
2024	1.696.320	188.480	5.240	3.493	6.113	8.150	6.113	12.960.732				
2025	1.798.948	199.883	5.557	3.704	6.483	8.644	6.483	13.744.856				
2026	1.907.784	211.976	5.893	3.929	6.875	9.167	6.875	14.576.420				
2027	2.023.205	224.801	6.249	4.166	7.291	9.721	7.291	15.458.293				
2028	2.145.609	238.401	6.627	4.418	7.732	10.309	7.732	16.393.520				
2029	2.275.418	252.824	7.028	4.686	8.200	10.933	8.200	17.385.328				
2030	2.413.081	268.120	7.454	4.969	8.696	11.594	8.696	18.437.140				
2031	2.559.072	284.341	7.904	5.270	9.222	12.296	9.222	19.552.587				
2032	2.713.896	301.544	8.383	5.588	9.780	13.040	9.780	20.735.519				
2033	2.878.087	319.787	8.890	5.927	10.371	13.829	10.371	21.990.018				
2034	3.052.211	339.135	9.428	6.285	10.999	14.665	10.999	23.320.414				
2035	3.236.870	359.652	9.998	6.665	11.664	15.553	11.664	24.731.299				

Sumber: Hasil Analisis, 2014

Tabel 6 PBPJ Sp. Jl. Gatot Subroto-Jl. Ahmad Yani ke Sp. Jl. Cokroaminoto-Jl. Maruti selama Setahun

Tahun	Penghematan Biaya Pemakai Jalan (Rp/tahun)									
Tanun	Sedan	Utiliti	Bus Kecil	Bus Besar	Truk Ringan	Truk Sedang	Truk Berat	Sepeda Motor	Jumlah	
2016	7.087.109.406	703.311.835	28.389.293	54.378.699	23.215.199	58.739.807	85.487.631	1.289.527.978	9.330.159.847	
2017	7.515.879.525	745.862.201	30.106.846	57.668.610	24.619.718	62.293.565	90.659.632	1.367.544.421	9.894.634.518	
2018	7.970.590.236	790.986.864	31.928.310	61.157.561	26.109.211	66.062.326	96.144.540	1.450.280.858	10.493.259.906	
2019	8.452.810.945	838.841.569	33.859.972	64.857.593	27.688.818	70.059.097	101.961.285	1.538.022.850	11.128.102.130	
2020	8.964.206.008	889.591.484	35.908.501	68.781.478	29.363.992	74.297.672	108.129.942	1.631.073.232	11.801.352.309	
2021	9.506.540.471	943.411.769	38.080.965	72.942.757	31.140.513	78.792.681	114.671.804	1.729.753.163	12.515.334.124	
2022	10.081.686.170	1.000.488.181	40.384.863	77.355.794	33.024.514	83.559.639	121.609.448	1.834.403.229	13.272.511.838	
2023	10.691.628.183	1.061.017.716	42.828.148	82.035.819	35.022.497	88.614.997	128.966.820	1.945.384.625	14.075.498.805	
2024	11.338.471.688	1.125.209.288	45.419.251	86.998.987	37.141.359	93.976.204	136.769.312	2.063.080.394	14.927.066.482	
2025	12.024.449.225	1.193.284.450	48.167.115	92.262.425	39.388.411	99.661.764	145.043.855	2.187.896.758	15.830.154.004	
2026	12.751.928.403	1.265.478.159	51.081.226	97.844.302	41.771.410	105.691.301	153.819.009	2.320.264.512	16.787.878.322	
2027	13.523.420.072	1.342.039.588	54.171.640	103.763.882	44.298.580	112.085.625	163.125.059	2.460.640.515	17.803.544.960	
2028	14.341.586.986	1.423.232.983	57.449.024	110.041.597	46.978.644	118.866.805	172.994.125	2.609.509.266	18.880.659.430	
2029	15.209.252.999	1.509.338.578	60.924.690	116.699.114	49.820.852	126.058.247	183.460.269	2.767.384.577	20.022.939.326	
2030	16.129.412.805	1.600.653.562	64.610.634	123.759.410	52.835.013	133.684.771	194.559.616	2.934.811.344	21.234.327.155	
2031	17.105.242.280	1.697.493.103	68.519.577	131.246.854	56.031.532	141.772.699	206.330.472	3.112.367.430	22.519.003.948	
2032	18.140.109.438	1.800.191.436	72.665.012	139.187.289	59.421.439	150.349.948	218.813.466	3.300.665.659	23.881.403.687	
2033	19.237.586.059	1.909.103.017	77.061.245	147.608.120	63.016.437	159.446.120	232.051.681	3.500.355.932	25.326.228.610	
2034	20.401.460.015	2.024.603.750	81.723.450	156.538.411	66.828.931	169.092.610	246.090.807	3.712.127.466	26.858.465.441	
2035	21.635.748.346	2.147.092.277	86.667.719	166.008.985	70.872.081	179.322.713	260.979.301	3.936.711.177	28.483.402.600	

Sumber: Hasil Analisis, 2014

ANALISIS EKONOMI

Kelayakan pembangunan *underpass* ini ditentukan menurut nilai NPV, BCR dan IRR. Dalam penelitian ini analisis dilakukan dengan asumsi tiga tingkat suku bunga, yaitu: 12%, 15% dan 18% per tahun.

Komponen Biaya

Biaya pembangunan *underpass* terdiri dari biaya pembebasan lahan, perkiraan biaya konstruksi jalan serta biaya pengelolaan. Besar biaya pembebasan lahan dan biaya konstruksi ditunjukkan pada Tabel.7.

Tabel 7 Biava Pembebasan Lahan dan Biava Konstruksi

No.	Uraian Pekerjaan	Biaya (Rp.)
A	Biaya Pembebasan Lahan	15.050.994.400
\mathbf{B}	Biaya Konstruksi Jalan	
1	Umum	18.123.351.288
2	Drainase	42.651.907.382
3	Pekerjaan Tanah	8.634.890.922
4	Pelebaran Pekerasan Jalan	3.390.970.820
5	Pekerasan Berbutir	7.189.201.604
6	Pekerasan Aspal	11.507.740.421
7	Struktur	66.418.737.018
8	Pengembalian Kondisi dan Pekerjaan Minor	14.532.610.727
9	Pekerjaan Harian	508.873.849
10	Pekerjaan Pemeliharaan Rutin	556.268.804
Tota	l Biaya Investasi	188.565.547.235
PPN	10%	18.856.554.724
Tota	1 Biaya Investasi + PPN 10%	207.422.101.959

Sumber: Hasil Analisis, 2014

KOMPONEN MANFAAT

Manfaat yang diperoleh dari adanya pembangunan *underpass* yang dihitung hanyalah komponen penghematan BOK dan nilai waktu. Besar komponen manfaat yang diperoleh dapat dilihat pada Tabel 6.

Hasil Analisis Kelayakan Ekonomi

Dari analisis kelayakan ekonomi yang dilakukan menurut tiga kriteria analisis (NPV, BCR, danIRR) terhadap tiga tingkat suku bunga (12%, 15%, dan 18% per tahun) didapatkan hasil seperti pada Tabel 8.

Tabel 8 Hasil Analisis Kelayakan Ekonomi

No.	Uraian	NPV (Rp.)	BCR	IRR (%)
1	Skenario I	347.440.337.699,00	2,305	
2	Skenario II	233.462.340.102,00	1,948	30,81
3	Skenario III	152.907.089.867,00	1,664	

Sumber: Hasil Analisis, 2014

Hasil Analisis Sensitivitas

Dari hasil analisis sensitivitas yang dilakukan dengan masing-masing kondisi terburuk maka diperoleh nilai NPV, BCR dan IRR seperti yang ditunjukkan pada Tabel 9. Berdasarkan Tabel 9, terdapat variasi nilai NPV, BCR dan IRR untuk kondisi I (biaya naik 20%, manfaat tetap), kondisi II (biaya tetap, manfaat turun 20%) dan kondisi III (biaya naik 20%, manfaat turun 20%).

Tabel 9 Hasil Analisis Sensitivitas

Kondisi	Uraian	NPV (Rp.)	BCR	IRR (%)
	DR 12%	294.192.656.848,00	1,921	
1	DR 15%	184.221.741.756,00	1,624	-
	DR 18%	106.847.922.937,00	1,387	
	DR 12%	224.704.589.308,00	1,844	
2	DR 15%	137.529.273.735,00	1,559	24,61
	DR 18%	76.266.504.424,00	1,331	
	DR 12%	171.456.908.457,00	1,537	
3	DR 15%	88.288.675.388,00	1,299	-
	DR 18%	30.207.336.954,00	1,109	

Sumber: Hasil Analisis, 2014

SIMPULAN DAN SARAN Simpulan

Berdasarkan analisis dan pembahasan maka diperoleh simpulan sebagai berikut :

- 1. Besar biaya yang diperlukan untuk mewujudkan *underpass* (harga tahun 2014) adalah sebesar Rp. 207.422.101.959,00.
- 2. Manfaat langsung dari pembangunan *underpass* adalah berupa penghematan BOK dan nilai waktu. Dimana jumlah total PBPJ setahun sebesar Rp. 61.547.498.194,00.
- 3. Secara umum proyek pembangunan *underpass* layak secara ekonomi. Dimana dari hasil analisis yang dilakukan dengan asumsi tiga tingkat suku bunga bank yaitu: 12%, 15% dan 18% per tahun didapatkan nilai NPV positif, BCR lebih dari satu dan IRR diatas tingkat suku bunga bank.

Berdasarkan analisis sensitivitas yang dilakukan dengan tiga asumsi tingkat suku bunga bank pada masing-masing kondisi yang ada (kondisi I dengan menaikkan biaya 20% dan manfaat tetap, kondisi II dengan menaikkan biaya 20% dan manfaat tetap, dan kondisi III dengan menaikkan biaya 20% dan menurunkan manfaat 20%) diperoleh hasil bahwa proyek sensitif untuk kondisi I dan III. Namun proyek tidak sensitif untuk asumsi pada kondisi II.

Saran

Beberapa saran yang dapat diusulkan dari penelitian ini yaitu :

- Dalam menganalisis pertumbuhan lalu-lintas yang melewati ruasjalan di sekitar wilayah underpass perlu mempertimbangkan pengaruh perubahan tata guna lahan yang dapat terjadi di sekitar underpass.
- 2. Dalam studi selanjutnya disarankan agar memperhitungkan kebutuhan penambahan lajur lalu lintas.

DAFTAR PUSTAKA

Ariyasa, P. A. 2013. Analisis Kinerja Simpang dan Pembebanan Ruas Jalan Pada Pengelolaan Lalu Lintas Dengan Sistem Satu Arah (Studi Kasus Simpang Jalan Gatot Subroto – Jalan Mulawarman – Jalan Ahmad Yani). (Tugas Akhir yang tidak dipublikasikan, Jurusan Teknik Sipil Fakultas Teknik Universitas Udayana, 2013)

Badan Pusat Statistik Kota Denpasar. 2013. *Denpasar Dalam Angka 2012*. Denpasar

- Badan Pusat Statistik Provinsi Bali. 2013. Produk Dometik Regional Bruto Provinsi Bali 2008–2012. Bali
- Balai Pelaksanaan Jalan Nasional VIII Denpasar. 2013. Rencana *Underpass* dan Pola Sirkulasi Lalu Lintas di Jalan Gatot Subroto Denpasar
- Departemen Pekejaan Umum. 1997.

 Manual Kapasitas Jalan Indonesia
 (MKJI). Direktorat Jenderal Bina
 Marga, Jakarta
- Departemen Pekejaan Umum Provinsi Bali. 2014. Studi Kelayakan Underpass Pada Simpang Jalan Gatot Subroto-Cokroaminoto Denpasar
- Google Maps. 2014. "Pulau Bali, Denpasar". Available from: URL: https://maps.google.com/. Diakses 11 Januari 2014
- Hensher, D, Milthrope F, Smith N and Barnanrd P. 1988. *Urban Tolled Roads and The* Value of Travel Time Savings. Institute of Transport Study Working Paper No. 47. University of Sydney. Australia
- LPM-ITB. 1997. Modul Pelatihan, Studi Kelayakan Proyek Transportasi, Lembaga Pengabdian Masyarakat ITB bekerjasama dengan kelompok Bidang Keahlian Rekayasa Transportasi Jurusan Teknik Sipil ITB. Bandung
- Mahendra, I. P. G. 2013. Analisis Kinerja Simpang Tak Bersinyal dan Ruas Jalan di Kota Denpasar (Studi Kasus Simpang Tak Bersinyal Jalan Gatot Subroto – Jalan Mulawarman – Jalan Mataram). (Tugas Akhir yang tidak dipublikasikan, Jurusan Teknik Sipil Fakultas Teknik Universitas Udayana, 2013)
- Morlok, E. K. 1991. *Pengantar Teknik dan Perencanaan Transportasi*.

 Terjemahan Johan K.Hainim. Penerbit Erlangga. Jakarta
- Moskowitz, K. 1956. California Method of Assigning Diverted Traffic to Proposed Freeways. Highway Reasearch Board, Bulletin No. 130. California

- Parmini, N. P. M. 2006. Pra Studi Kelayakan Jalan Tol (*Studi Kasus Ruas Kuta – Tanah Lot – Soka*). Tugas Akhir yang tidak dipublikasikan, Jurusan Teknik Sipil Fakultas Teknik Universitas Udayana, 2006)
- Peraturan Pemerintah Republik Indonesia, Nomor 32 Tahun 2011. *Tentang* Volume Lalu Lintas
- Santosa, A. 2010. *Studi Kelayakan (Feasibility Study)*. Penerbit PT. Elex Media Komputindo. Jakarta
- Sandiguna, I. G. B. 2013. Analisis Kinerja dan Alternatif Pengaturan Simpang Bersinyal (Studi Kasus Simpang Gatot Subroto – HOS. Cokroaminoto). (Tugas Akhir yang tidak dipublikasikan, Jurusan Teknik Sipil

- Fakultas Teknik Universitas Udayana, 2013)
- Saodang, H. 2004. Buku I Geometrik jalan, *Konstruksi Jalan Raya*. Penerbit Nova. Bandung
- Tamin dan Nahdalina. 1998. "Studi Penentuan Tarif Tol Rencana Ruas Jalan Gempol– Pasuruan–Rojoso oleh Tunggal Suro Budho H" (*Tugas Akhir*, 2003). Malang
- Tamin, O. Z. 2000. Perencanaan dan Pemodelan Transportasi. Penerbit ITB. Bandung
- Transportations Research Board. 1994.

 Highway Capacity Manual Special

 Report 209. National Research

 Council. Washington DC