Calumetry Exercises Cont'd

Sulutions

```
1 M= 18.69g

AT=17 K

0 = 41.87

Q = mc At

C = mot = (18.49)(17) = 0.131/g.K

Steel boll
```

m= 25g

C = 427 j/kg·k

AT = 73 K

0-most

W= (U.U25)(427)(73)

Q= 179.2751 * Heat flows out of steel ball equals heat flows intowater and caluirmeter bygether.

<u>Nater</u>	Calorimeter			
m=50g	Q = 179.275-4185 = 361.2755J			
C = 4.18 J/q K	m=200q			
DT = 2K	C = ?			
(= (50)(4.18)(2)	DT = 2k			
W=418J	$C = \frac{a}{mol} = \frac{361.275}{(200)(2)}$			
	C =0,903 J/g x			
· · !	(= 9035/kg·k			

3. Water

$$0=?$$
 $0=m(AE)$
 $T=5405.65$
 $M=244g$
 $AT=5.3°($
 $C=4185/g.°($
 $C=0.2695/g.K$
 $C=0.2695/g.K$
 $C=0.2695/g.K$

4. 95°C = 368.15L The heat flows from the zinc is equal and opposite to the

2006 - 293.15k heat flow into water and Colorimeter.

:. - (meat) = meat + meat

377 - - (meat) = meat + meat

- [(0.1)(372)(tz-t1)] = 0.06(4180)(tz-11) + (0.1)(419)(tz-t1)

- 37.7(t2-368.15) = 250.8(t2-293.15) + 41.98 t2-293.15)

-37.762 + 13879.255 = 250.862 - 73522.02 +41.962-12282.985

13879.255 + 13522.02 + 1282.985 = 250.862 + 41.962 + 37.742

99684.26 = 330.412

11=30×26 342K

5. Water Glycerine water beaker glycerine Beaker M-1509 m=1009 m= 100g m=2009 C=4.185/4.k C=0.675/4.k C = 2.43J/g·K C=0.675/g·k DT=80K DT=80K 07 = 60k DT = 60K a=most a=most Q=mest 4=most = 83600 J = 5360 J - 291601 = 4020 T

Total = 836N + 5360 = 88960J

in smins the flame gives

839605

88960x = 8(33180)

X = 2.98 mins

Tutal = 331801

.. We need 33180T to heat the system to the required temperature

Calorimetry Exercises Contid

1ce → 0° melt water of -> 35°C For 1 moie: m= 189 189 M=189 c = 2.0q J/g·k melted C=4.187/K.q 07=10k 0=? 81 = 35 K Q=mat Q=mcst -376.21 = 2633.41 Tutal energy required for whole process is 87721 . The amount required for melting 15 8772-376.2 -4633.4 : melling requires 5762.41 . 189 = 5762.4T 19 = x 13x = 5762.4 x=320,13 : It takes 320,13 I to melt 19 of ice at 0°C. 7. Benzuic Acid 1 Mul → 7('s → 849 2 0's → 329 6 H's → <u>log</u> Tutal -) 1229 : 1.229 = 0.01mol : we burned 0.01mol of acid

Calurimeter 0=M(St = (8.364)(3.86) = 32.285.04 kJ 0.01 mv1 → 32.28504 kJ 1 mv1 → x kJ x = 3228.504 kJ : Burning I mvk of acid gives off 3228.5 kJ 3. Jet = 0.0001 mul/s

... 1 mul passes through jet every 10 000 secunds. In that 10 000 sec there has been 20000g of water pass through the cuit (1. 209/5×1000 sec) Each grain 15 raised 3.44k

0-mist

= (2000)(4.18)(3.44)

= 2275 840]

= 1875.84kJ ... I mul of butane releases 2875.84 kJ when burned.

9. Ice DH fus= 5.76kJ/mol The only difference between the two is the Fake AH fus= 1.26kJ/mol lack of hydrogen bunding infakeice

. Hydrogen bunding accounts for 4.5KJ/mul during breaking up.

If the ice were 100% hydrogen builded there would be zuki/mol x zmol = 40ki

2H builds pussible for each mulecule of water

But only 4.5kT are needed to break it bunding.

... 4.5 = 11.25% It bunding.

Hess's Law - Principle of Additivity of Reaction Heats

Solistions

a

u		
a)	2×(1) 2HNO2(a4) + 02(g) -> 2HNO3(a4)	AH = -104.6KJ
	1ev 2) 241N03(04) + 2 NO2(4) -> H20(10) + 2 O20	(9) AH = +97.45KJ
	1ev 3 NOTG) -> NO(g) + + O2(g)	NH = +56.6KI
	2HNO2(aq) -> H2O(10) 1 NO(g) 1 \$ 02(g)	
b)	10×0 +000 (310) + 502191 -> 10+00 (310)	DH = -5874KT
	rev@ 10 POTT3(11) -> P4 010(5) + 6 PTT5(5)	AH = +418KJ
	6x1ev9 (aft 1515) -> tot(s) + 15 tt2(g)	BH = +5352 KT
	Bx 10 40(5) + 15412(g) -> 10P(13(s)	AH = - 6858 KT
	4P(s) + 502(g) -> P4010(s)	DH = -6962KT
		01G) BH=-466KT
	2x1ev(2) 2H2O(U) -> 2H2O(U) + 02ty)	AH = -1966
	2x1ev(3) 2NO2(4) -> N2(9) + 202(9)	BH = -GEKT
+	2x4) 2H20(U) -> 2H20(g)	BH=+88K1
	N2H4(0) 1 ZHZOZ(0) - N2(g) + 4HZO(g)	BH = - 642KT
d)	rev@ k+ig) + = > kig)	AH = -419.1 KT
1	9 F-19, -> Flg, + &	BH= +3333KT
A CALLED COMPANY	6) K(S) + 2 FE(g) -> KF(S)	11/1 = -533 XT
,	rev(1) ktg) -> kts)	AH = - 90 kJ
	rev (3)1.2 F(g) -> 1/2 F2(g)	AH = - 75 35 KT
	Ktigi + Figi -> KFisi	25H = -784.15KT

SCH 4UI Chemistry-Energy and Kinetics Heat of Kxn from Heat of Formation

Answers:

Calculate the Δ Hr for each of the following:

a) NO (g) +
$$1/2O2$$
 (g) NO2 (g)

$$\Delta Hr = 34 - 90.4 = -56.4 \text{KJ/mol of NO}$$

but we have 30g

20g/mol

=1 mol therefore $\Delta Hr = -56.4KJ$

b)
$$\Delta Hr = 2.5 \times [(-297-242.0) - (-814)]$$

= 2.5x ()

$$\Delta$$
Hr = -285.5 + 155 = -130.5KJ/mol of H2O

but we have 54g

18g/mol = 3 mol

therefore $\Delta Hr = -391.5 KJ$

 $\Delta Hr = 2x-46 = -92 \text{ KJ/mol H2}$

H2 is the limiting reagent therefore, -30.7KJ/mol H2

therefore for this reaction -30.7 KJ of energy will be released.

30.7KJ/ 20 KJ/K

=1.53K

e) <u>1.52g</u>

76012g/mol

=0.0200mol

therefore $-21.5 = 0.0200 [2(-297) + (-393.5) - (\Delta Hf CS2)]$

 $-107.5 = -594-393.5-\Delta Hf CS2$

 Δ Hf CS2= 87.5 KJ/mol

11.11g

11.1g/mol

0.10000 mol

$$\Delta$$
Hr=0.1 [-543 +2(-164) - (-795)]

$$= 0.1*-76$$

$$=-7.6KJ$$

Calculating Mass Defect

Isotopic	# of	# of	# of	Total	Mass	Mass	Enorm
Mass (g-	protons	neutrons	electrons	Mass	Defect	Defect	Energy Equiv.
mol)				(g/mol)	(g/mol)	(kg/mol)	(J/mol)
4.00260	2	2	2	4.03298	0.03038	3.0*10 ⁻⁵	2.7*10 ¹²
7.01600	3	4	3	7.05813	0.04214	4.2*10-5	3.8*10 ¹²
9.01218	4	5	4	9.07462	0.06245	6.2*10 ⁻⁵	5.6*10 ¹²
11.00931	5	6	5	11.0911	0.08189	8.1*10 ⁻⁵	$7.4*10^{12}$
12.0000	6	6	6	12.0989	0.0989	9.9*10-5	8.9*10 ¹²
14.00307	7	7	7	14.1154	0.11236	1.1*10-4	1.0*10 ¹³
15.99491	8	8	8	16.1319	0.13701	1.3*10-4	1.2*10 ¹³
18.99840	9	10	9	19.1570	0.15868	1.6*10 ⁻⁴	1.4*10 ¹³
19.99244	10	10	10	20.1649	0.17247	1.7*10-4	1.5*10 ¹³

Radioactive Decay:

Beta emission from magnesium-28
$$\stackrel{28}{12}$$
 Mg $\rightarrow \stackrel{\circ}{_{-1}}$ e + $\stackrel{28}{_{13}}$ Al

Beta emission from potassium-42

$$^{42}_{19}$$
 K \rightarrow $^{\circ}_{-1}$ e + $^{42}_{-10}$ Ca

Alpha emission from californium-251

$$^{251}_{98}$$
Cf \rightarrow $^{4}_{2}$ He + $^{247}_{96}$ Cm

Beta emission by aluminum-30

$$^{30}_{13}$$
 Al \rightarrow $^{\circ}_{-1}$ e + $^{30}_{14}$ Si

Alpha gamma emission by einsteinium-252
SS Es
$$\rightarrow$$
 4 He + 8 y + 378 Bk