Noname manuscript No.

(will be inserted by the editor)

My Example Computed Manuscript Created in Rmarkdown

Jeffrey M. Perkel ·

Received: date / Accepted: date

Abstract A mock computed manuscript created in RStudio using {Rmarkdown}. The {Bookdown} and {Rticles} packages were used to output the text in Springer Nature's desired manuscript format.

Keywords

1 Introduction

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

Here we'll add some references from Zotero (Perkel 2020): (Fisch et al. 2015; Argelaguet et al. 2021; Lê Cao et al. 2021).

Markdown documents can include inline equations written in \LaTeX , such as F = ma. Here is an equation on its own line:

$$a^2 + b^2 = c^2$$

2 Results

2.1 Inline computation

One 'killer feature' of computed manuscripts is the ability to compute and insert values into the text rather than requiring authors to input them man-

Jeffrey M. Perkel

Springer Nature, 1 New York Plaza, New York, NY

E-mail: jeffrey.perkel@nature.com

2 Jeffrey M. Perkel,

Table 1 Original subject data

ID	class	wt		ID	class	wt	_	ID	class	wt
1	GRP_{-3}	175		34	GRP_{-2}	115		67	GRP_{-1}	214
2	GRP_3	125	_	35	GRP_2	121	_	68	GRP_3	251
3	GRP_3	120		36	GRP_{-1}	131	_	69	GRP_3	227
4	GRP_{-3}	255		37	GRP_3	112	_	70	GRP_{-1}	277
5	GRP_{-2}	287		38	GRP_{-1}	115	_	71	GRP_3	210
6	GRP_1	184		39	GRP_3	82	_	72	GRP_2	142
7	GRP_{-2}	209		40	GRP_{-2}	248	_	73	GRP_{-3}	153
8	GRP_{-1}	227		41	GRP_3	91	_	74	GRP_{-1}	275
9	GRP_{-2}	272		42	GRP_{-1}	136	_	75	GRP_2	123
10	GRP_2	204	_	43	GRP_3	229	_	76	GRP_2	295
11	GRP_1	109	_	44	GRP_3	96	_	77	GRP_1	256
12	GRP_{-3}	295		45	GRP_2	274	_	78	GRP_1	259
13	GRP_2	80		46	GRP_{-1}	260	_	79	GRP_2	199
14	GRP_{-2}	157		47	GRP_{-2}	94	_	80	GRP_{-3}	161
15	GRP_3	159	—	48	GRP_{-1}	269	_	81	GRP_3	80
16	GRP_{-1}	180		49	GRP_{-2}	113	_	82	GRP_{-1}	131
17	GRP_{-2}	297		50	GRP_{-2}	104	_	83	GRP_{-3}	189
18	GRP_{-1}	258		51	GRP_{-1}	190	_	84	GRP_{-1}	126
19	GRP_2	105		52	GRP_{-1}	131	_	85	GRP_1	170
20	$\mathrm{GRP}\text{-}1$	207	—	53	GRP_{-1}	182	_	86	$\mathrm{GRP}\text{-}1$	108
21	GRP_{-1}	187	_	54	GRP_1	85	_	87	GRP_{-1}	279
22	GRP_1	88	_	55	GRP_3	239	_	88	GRP_1	147
23	GRP_{-3}	236		56	GRP_{-2}	205	_	89	GRP_{-3}	187
24	GRP_{-2}	293	_	57	GRP_{-1}	157	_	90	GRP_{-2}	93
25	GRP_{-1}	121		58	GRP_3	262	_	91	GRP_2	182
26	GRP_3	97	_	59	GRP_{-2}	227	_	92	GRP -1	91
27	GRP_{-2}	192	_	60	GRP_{-2}	255	_	93	GRP_{-2}	95
28	GRP_{-2}	204		61	GRP_{-2}	110	_	94	GRP_3	288
29	GRP_1	287		62	GRP_{-2}	130	_	95	GRP_{-3}	191
30	GRP_{-2}	270	_	63	GRP_{-1}	238	_	96	$\mathrm{GRP} \text{-} 1$	116
31	GRP_3	179	_	64	GRP_2	245	_	97	GRP_3	196
32	GRP_{-3}	121		65	$GRP_{-}1$	123	_	98	GRP_2	187
33	GRP_3	237		66	GRP_{-1}	152	_	99	GRP_{-1}	289

ually. That circumvents the possibility that the author will enter an incorrect number, or forget to update them should new data arise.

For instance, imagine we are analyzing data from a clinical trial. We have grouped subjects in three bins and measured their weights.

Rather than analyzing those data programmatically and then copying them into our manuscript, we can use the programming language R to do that in the manuscript itself. For instance, to calculate the circumference and area of a circle with radius r=10, you could write "A = `r pi * r^2`" and "C = `r 2 * pi * r`. Those give A = 314.159 and C = 62.832.

We have **99** subjects in our study (Table 1). The average weight is **183.08** (range: **80-297**). We have **37** subjects in Group 1, **33** subjects in Group 2, and **29** in Group 3. (The numbers in **bold face type** are computed values.)

 ${\bf Table~2}~{\rm New~subject~data}$

ID	class	wt	_	ID	class	wt	_	ID	class	wt
1	GRP_3	250	_	21	GRP_1	254	_	41	GRP_2	93
2	GRP_{-1}	108	_	22	GRP_{-1}	205	_	42	GRP_{-1}	122
3	GRP_{-1}	121		23	GRP_{-1}	197	_	43	GRP_3	207
4	GRP_{-3}	284	_	24	GRP_{-3}	90	_	44	GRP_3	256
5	GRP_2	243	_	25	GRP_3	154	_	45	GRP_{-2}	292
6	GRP_1	260	_	26	GRP_2	254	_	46	GRP_1	120
7	GRP_{-2}	297		27	GRP_{-3}	251	_	47	GRP_{-1}	144
8	GRP_{-1}	293		28	GRP_2	191	_	48	GRP_2	190
9	GRP_3	146		29	GRP_3	182	_	49	GRP_{-3}	156
10	GRP_3	244		30	GRP_3	103	_	50	GRP_2	114
11	GRP_3	246		31	GRP_3	221	_	51	GRP_3	87
12	GRP_{-2}	163		32	GRP_3	236	_	52	GRP_{-1}	99
13	GRP_3	101		33	GRP_3	210	_	53	GRP_3	288
14	GRP_{-1}	168		34	GRP_{-1}	143	_	54	GRP_{-2}	85
15	GRP_2	289	_	35	GRP_2	176	_	55	GRP_{-1}	124
16	GRP_{-2}	166	_	36	GRP_{-2}	243	_	56	GRP_{-2}	89
17	GRP_{-2}	81	_	37	GRP_{-3}	256	_	57	GRP_{-1}	124
18	GRP_{-3}	239	_	38	GRP_{-2}	276	_	58	GRP_{-1}	241
19	GRP_{-2}	149	_	39	GRP_{-3}	155	_	59	GRP_2	221
20	GRP_3	252	_	40	GRP ₋ 1	173	_	60	GRP ₋₂	104

Now suppose we get another tranche of data:

There are 60 subjects in this new dataset (Table 2). Their average weight is 187.1 (range: 81-297).

Combining the two datasets, we have a total of **159** subjects. The revised average weight is **184.6** (range: **80-297**). We now have **54** subjects in Group 1, **53** subjects in Group 2, and **52** in Group 3.

2.2 Plotting the data

As Rmarkdown documents can do anything R can do, we can also create and include figures. Here we plot boxplots of our clinical trial data. The data are shown in Figure 1. Note that this figure number (as well as the table numbers above) are automatically generated.

3 Methods

The following code was used in section 2.1 to create the original clinical trial data:

```
# create a mock dataset
n_subjs <- 99
subjID <- 1:n_subjs</pre>
```

4 Jeffrey M. Perkel,

Fig. 1 Weight distribution of clinical trial subjects

```
# generate 99 random #s between 1 and 10
tmp <- floor(runif(n_subjs, min = 1, max = 10))</pre>
# assign those numbers to any of 3 subject groups
fn <- function(x) {</pre>
  if (x >= 7) 'GRP_1'
  else if (x >= 4) 'GRP_2'
  else 'GRP_3'
subj_class <- sapply(tmp, fn)</pre>
# pick random weights between 75 and 300
wts <- floor(runif(n_subjs, min = 75, max = 300))
# combine the data into a table
df <- data.frame(ID = subjID, class = subj_class, wt = wts)</pre>
# display the table, splitting the 99 rows into 3 cols wide
tmp < - cbind(df[1:33,], rep('|', 33),
             df[34:66,], rep('|', 33),
             df[67:99,])
names(tmp) <- c('ID', 'class', 'wt', '|', 'ID', 'class', 'wt',
                '|', 'ID', 'class', 'wt')
knitr::kable(tmp, format = 'latex', booktabs = TRUE,
             caption = "Original subject data")
```

The following code was used in section 2.2 to plot the data:

References

- Argelaguet, Ricard, Anna S. E. Cuomo, Oliver Stegle, and John C. Marioni. 2021. "Computational Principles and Challenges in Single-Cell Data Integration." *Nature Biotechnology*, May, 1–14. https://doi.org/10.1038/s41587-021-00895-7.
- Fisch, K. M., T. Meissner, L. Gioia, J.-C. Ducom, T. M. Carland, S. Loguercio, and A. I. Su. 2015. "Omics Pipe: A Community-Based Framework for Reproducible Multi-Omics Data Analysis." *Bioinformatics* 31 (11): 1724–28. https://doi.org/10.1093/bioinformatics/btv061.
- Lê Cao, Kim-Anh, Al J. Abadi, Emily F. Davis-Marcisak, Lauren Hsu, Arshi Arora, Alexis Coullomb, Atul Deshpande, et al. 2021. "Community-Wide Hackathons to Identify Central Themes in Single-Cell Multi-Omics." Genome Biology 22 (1): 220. https://doi.org/10.1186/s13059-021-02433-9.
- Perkel, Jeffrey M. 2020. "Streamline Your Writing and Collaborations with These Reference Managers." *Nature* 585 (7823): 149–50. https://doi.org/10.1038/d41586-020-02491-2.