DEPARTAMENTO DE COMPUTAÇÃO

UNIVERSIDADE FEDERAL DO CEARA'
CKO215-2019.1-TO1

LABORATÓRIO DE PROGRAMAÇÃO

AUG 14 - 17/04/2019

ALGORITMO KNUTH-MORRIS-PRATT (P. 3)

1. RECAPITULANDO: DADO P[O.m-1], VIE[O.m-1], VIE[O.m-1], VIE[1..i],

CASA(l,i) \Leftarrow > P[0..l-1] = P[i-(l-1)..i].

PREFITO DE SUFIXO DE TAMANHO L

TAMANHO L

TAMANHO L

ALÉM DISSO, $\forall i \in [0..m-1]$, $\pi(i) = \begin{cases} 0 & \text{MAIOR } l \in [1..i] \text{ T.Q. } \text{CASA}(l,i), \\ \text{SE EXISTIR TAL } l; \\ 0, \text{SE NÃO EXISTIR TAR } l. \end{cases}$

CALCULANDO TE ITERATIVAMENTE

2. Início: T(0)=0, Pois \$le[1.0].

3. CALCULAR TO[i] A PARTIR DE TO[i-1]:

	******	e
0	1	1-2 1
":		
_		

- * SEJA l = TC(i-1)
- * Se l=0.

*Sep(0)=P[i]: T(i)=1 *Sep(0) + P(i): T(i)=0.

CK0188

Além DISSO, $\forall i \in [0.m-1]$, $\pi(i) = \begin{cases} 0 & \text{MAIOR } l \in [1.i] \text{ T.Q. } \text{CASA}(l, i), \\ \text{SE EXISTIR TAL } l; \\ 0, \text{SE NÃO EXISTIR TAL } l. \end{cases}$

CALCULANDO TE ITERATIVAMENTE

2. INÍCIO: π[0]=0, POIS \$ le[1.0].

P: A BACABADABACABAC

l: π(i-1)=7

l': π(6)=2

5. ALGORITMO PARA CARCULAR TI (O.m.2):

6. KMP (RECAPITURANDO): 1. CALCUAR. TT P-> m 2. | i := 0, 1 := 0 3. ENQUANTO i (n SE T(i) &P(d) SE &= 0 ENTRO ++i SENÃO 8:=116-27 SE J=m-1 OCORRENCIA EM T[1-2] J := TT[], ++i 11 SENAD 22 ++n,++g

64