

- O termo mínimo é empregado para designar um autômato finito que tenha o número mínimo possível de estados
- Existe um algoritmo que é capaz de transformar qualquer autômato finito em uma versão equivalente mínima
- O autômato finito mínimo é único para cada linguagem Analise Lexica AFND - AFD -> AFDmin regular

1 reg => AFD

Exemplo

Uma rápida inspeção visual permite concluir que:

```
- L(q 0) = (a | b)c*(a | b)
```

$$- L(q 1) = c*(a | b)$$

$$- L(q 2) = c*(a | b)$$

$$- L(q 3) = \epsilon$$

$$- L(q 4) = \varepsilon$$

 Portanto, como L(q1) = L(q2) e L(q3) = L(q4), então q1 ≡ q2 e q3 ≡ q4, e a versão mínima corresponde a:

2 passos:

→ AFND→ AFND - Eliminam-se do autômato as transições em vazio, os não-determinismos e os estados inacessíveis

 Criam-se classes de equivalência com base no critério da coincidência do conjunto de entradas aceitas pelos possíveis pares de estados considerados

 O algoritmo é baseado na análise exaustiva de todos os possíveis pares de estados

Representar os pares na forma de uma matriz

	q_1	q_2	 q_{n-1}	q_n
q_0	(q_0,q_1)	(q_0,q_2)	 (q_0,q_{n-1})	(q_0,q_n)
q_1		(q_1,q_2)	 (q_1, q_{n-1})	(q_1,q_n)
q_{n-2}			(q_{n-2},q_{n-1})	(q_{n-2},q_n)
q_{n-1}				(q_{n-1},q_n)

Exemplo

	δ	(a)	(b)
\rightarrow	q_0	q_1	q_6
	q_1	q_2	q_3
←	q_2	q_2	q_3
	q_3	q_4	q_2
←	q_4	q_2	q_3
←	q_5	q_4	q_5
	q_6	q_4	$\mid q_4 \mid$

• Estados finais 1.7 pa 45-2

	q_1	q_2	q_3	q_4	q_5	q_6
q_0	X	X		X	X	X
q_1	-	X	X	X	X	X
q_2	ı	ı	X		X	X
q_3	-	ı	ı	X	X	
q_4	-	ı	ı	1	X	X
q_5	-	-	-	-	-	X

Equivalências

A notação (qi , qj) ^σ (qm , qn) é usada para indicar que as duas seguintes condições são simultaneamente verificadas

$$\left(\begin{array}{ccc}
9 & 9 \\
9 & 9
\end{array}\right)$$

$$\left(\begin{array}{c}
9 & 9 \\
9 & 9
\end{array}\right)$$

$$\left(\begin{array}{c}
9 & 9 \\
9 & 9
\end{array}\right)$$

$$(\widehat{q_0,q_1}) \stackrel{\widehat{a}}{\hookrightarrow} (\widehat{q_1,q_2}) \not\equiv$$

Como q_1 e q_2 não são equivalentes (ver Tabela 42), marca-se o par (q_0, q_1) como " \neq " e torna-se desnecessária a análise das transições desses estados com a entrada b.

$$(q_0,q_3) \stackrel{a}{\rightarrow} (q_1,q_4) \not\equiv$$

Similar ao item acima. O par (q_0, q_3) é marcado como " $\not\equiv$ ".

$$(q_1,q_3) \xrightarrow{a} (q_2,q_4) ?$$

 $(q_1,q_3) \xrightarrow{b} (q_3,q_2) \not\equiv$

Apesar de ainda não se dispor de nenhuma informação sobre o par (q_2, q_4) , o par (q_3, q_2) já foi determinado como sendo não-equivalente (ver tabela 42). Logo, marca-se o par (q_1, q_3) como " $\not\equiv$ ".

$$(q_0,q_6) \stackrel{a}{\rightarrow} (q_1,q_4) \not\equiv$$

Como q_1 e q_4 não são equivalentes (ver tabela 42), marca-se o par (q_0, q_6) como " \neq " e torna-se desnecessária a análise das transições desses estados com a entrada b.

$$(q_1,q_6) \xrightarrow{a} (q_2,q_4)$$
?
 $(q_1,q_6) \xrightarrow{b} (q_3,q_4) \not\equiv$

Apesar de ainda não se dispor de nenhuma informação sobre o par (q_2, q_4) , o par (q_3, q_4) já foi determinado como sendo não-equivalente (ver tabela 42). Logo, marca-se o par (q_1, q_6) como " $\not\equiv$ ".

$$(q_3,q_6) \xrightarrow{a} (q_4,q_4) \equiv$$

 $(q_3,q_6) \xrightarrow{b} (q_2,q_4) ?$

Neste caso, q_3 e q_6 transitam para o mesmo estado q_4 com a entrada a. Por outro lado, ainda não se dispõe de nenhuma informação sobre o par (q_2, q_4) . Assim, a equivalência do par (q_3, q_6) fica condicionada à verificação da equivalência do par (q_2, q_4) . O par (q_3, q_6) não recebe nenhuma marcação neste momento.

$$(q_2,q_4) \xrightarrow{a} (q_2,q_2) \equiv$$

 $(q_2,q_4) \xrightarrow{b} (q_3,q_3) \equiv$

Os estados q_2 e q_4 transitam com as mesmas entradas para estados idênticos (com a entrada a para q_2 e com a entrada b para q_3). Logo, esses estados são equivalentes e o par recebe a marcação " \equiv " na tabela. Além disso, conclui-se que o par (q_3, q_6) (ver item acima) é equivalente, e o mesmo deve ser marcado como " \equiv ".

$$(q_2,q_5) \stackrel{a}{\rightarrow} (q_2,q_4) \equiv$$

 $(q_2,q_5) \stackrel{b}{\rightarrow} (q_3,q_5) \not\equiv$

Apesar de o par (q_2, q_4) ser equivalente (ver os dois itens anteriores), o par (q_3, q_5) já foi determinado como sendo não-equivalente (ver Tabela 42). Logo, marca-se o par (q_2, q_5) como " $\not\equiv$ ".

$$(q_4,q_5) \xrightarrow{a} (q_2,q_4) \equiv$$

 $(q_4,q_5) \xrightarrow{b} (q_3,q_5) \not\equiv$

Similar ao item acima. O par (q_4, q_5) é marcado como " \neq ".

• Resultado

	q_1	q_2	q_3	q_4	q_5	q_6
q_0	\neq	\neq	\neq	#	\neq	\neq
q_1	-	\neq	\neq	#	\neq	#
q_2	-	-	#		#	#
q_3	-	-	-	#	#	
q_4	-	-	-	-	#	#
q_5	-	-	-	-	-	#

 As classes de equivalência desse autômato são: {q0}, {q1}, {q2, q4}, {q3, q6} e {q5}

	δ'	a	b
\rightarrow	$[q_0]$	$[q_1]$	$[q_3,q_6]$
	$[q_1]$	$[q_2,q_4]$	$[q_3,q_6]$
\leftarrow	$[q_2,q_4]$	$[q_2,q_4]$	$[q_3,q_6]$
	$[q_3,q_6]$	$[q_2,q_4]$	$[q_2,q_4]$
←	$[q_5]$	$[q_2,q_4]$	$[q_5]$

Exercícios

 Obter o autômato finito mínimo equivalente aos seguintes autômatos:

Exercícios

