Given Dataset

t	7 7 7	L	11
[(rF1	F2	F3
	1	5	3
1	- 4	2	. G
	1	4	3
	4	4	2100

Mean= Sum of the terms
total numbers (n)

$$n=4$$
, $F_1=2.5$, $F_2=3.75$, $F_3=3.25$

$$F_1 = 1.73$$
, $F_2 = 1.25$, $F_3 = 2.06$

Standardization: $z = \frac{x - mean}{SD}$

	11 11	
F1	F2	F3
-0.87	100	1-0.12
0.87	-1.4	1.33
-0.87	0.2	-0.12
0.87	0.20	-1.090 =

Covariance

enter already
Standardization

बावा जरे (त्रः, स्र) धर्मार
mian=0 राष

-		F1	F2	F3
	F1	M.O VAR(F1)	-0.696 COY(FLF2)	0·139 (F ₁) F ₃)
	F2	-0.696 (F2.F1)	10	-0.741 (F2 F3)
	F3	0·139 (F ₃ , F ₁)	VAR(F2) -0.741 (F3, F2)	9 9≈ 1 VAR(F3)

$$\sqrt{n-1}=4-1=3$$

Feature Vector : (Eigenvalue & Eigenvectors)

CV-AV=0

$$\Rightarrow (C-\lambda) \lor = 0$$

$$\Rightarrow (C-\lambda I) v = 0$$

$$\Rightarrow C - \lambda I = 0$$
 [I = Adentity Matrix)

$$C - \lambda \mathbf{I} = C - \lambda \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= \begin{array}{c|cccc} & \lambda & 0 & 0 \\ \hline & 0 & \lambda & 0 \\ \hline & 0 & 0 & \lambda \end{array}$$

$$= \begin{vmatrix} 1-\lambda & -0.696 & 0.139 \\ -0.696 & 1-\lambda & -0.741 \\ 0.139 & -0.741 & 1-\lambda \end{vmatrix}$$

$$\begin{array}{c|c} (a) & (a) & (b) & (c) & (c)$$

for eigenvalue

6.451 0.451

Eigen values arce:

F. 31 8.11

+0.516 -1.948

$$\lambda_1 = 0.05$$

λ2 = 2.0 8 × 6 81.0 + ex 202.0 - 1 200

(1) - - - 6 - 9x 66.0 + TxTUL-0 - NEEL-C

Eigen Vectors:

For,
$$M = 0.05$$
 $0.05 - 0.696$
 0.139
 $0.139 - 0.741$
 $0.95 - 0.696$
 $0.95 - 0.696$
 $0.95 - 0.696$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$
 $0.95 - 0.741$

Using Creammere's rule:

wsing equation of & () () equation use and)

$$\frac{V_1}{|-0.696|} = \frac{V_2}{|-0.696|} = \frac{V_3}{|-0.696|}$$

$$\frac{|-0.696|}{|-0.696|} = \frac{|-0.696|}{|-0.696|}$$

$$\Rightarrow \frac{v_1}{0.383} = \frac{v_2}{(-0.607)} = \frac{v_3}{0.418}$$

$$\Rightarrow \frac{v_1}{0.383} = \frac{v_2}{0.607} = \frac{v_3}{0.418}$$

$$E_1 = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0.383 \\ 0.607 \\ 0.418 \end{bmatrix}$$

FOR
$$\lambda_2 = 2.09$$

For
$$\lambda_3 = 0.86$$
,

using egation 0 & 11),

$$\begin{vmatrix} v_{1} & -v_{2} & v_{3} \\ -0.696 & 0.139 \end{vmatrix} = \begin{vmatrix} 0.14 & 0.139 \\ -0.696 & -0.741 \end{vmatrix} \begin{vmatrix} 0.14 & -0.696 \\ -0.696 & -0.741 \end{vmatrix} \begin{vmatrix} -0.696 & 0.14 \end{vmatrix}$$

$$\Rightarrow \frac{v_{1}}{0.496} = \frac{-v_{2}}{-0.0069} = \frac{v_{3}}{-0.465}$$

$$-1.094 - 0.6964 + 0.1394 = 0 - 0$$

$$-0.6964 - 1.094 - 0.7414 = 0 - 0$$

$$0.1394 - 0.7414 - 1094 = 0 - 0$$

$$0.1394 - 0.7414 - 1094 = 0$$

$$0.1394 - 0.7414 - 1094 = 0$$

$$0.139 - 0.7414 - 0.796 - 0.7414 - 0.796 - 0.796$$

$$-0.696 - 0.7414 - 0.796 - 0.7414 - 0.796$$

$$0.667 - 0.904 - 0.703$$

$$0.703 - 0.703$$

$$\begin{bmatrix} E_{3} = \begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \end{bmatrix} = \begin{bmatrix} 0.496 \\ 0.0069 \\ -0.465 \end{bmatrix}$$

E1	E_2	E ₃
0.383	0.667	0.496
0.607	-0.904	0.006
0.418	0.703	-0.465

As the eigenvectors with the highest eigenvalues represent the direct with the highest variance. So, the top 2 (highest) eigenvalues are λ_2 & λ_3 for eigenvectors v_2 & v_3 (E28E3)

[17]

So the principle components:

E	E ₃
0.667	0.496
-0.904	0.006
0.703	-0.465

Noω, Final data Set = Standardized Original data Set X Feature Vector

Fi	F ₂	F ₃
-0.87	1	-0.15
48.0	- I·4	1.33
-0.87	0.2	-0.12
0.87	0.2	-1.09

E_2	E3
0.667	0.496
-0.904	0.006
0.703	-0.465

F2 (E2)	F3[E3]
-1.569	-0.369
2.780	-0.195
-0.845	=0.375
-0.367	0.939

Ans.