MATEMÁTICA DISCRETA

Septiembre 2006

Normas generales:

- 1. No se permite el uso de libros, apuntes, **calculadoras** ni cualquier tipo de dispositivo electrónico
- 2. Es necesario justificar todas las afirmaciones

Problema 1 (2 puntos)

Encontrar el número de soluciones enteras de la ecuación

$$x_1 + x_2 + x_3 + x_4 = 25$$

con las condiciones $x_1, x_2 \ge 2$ y $x_3, x_4 \ge 1$.

Solución.

Es conveniente definir variables $u_i \ge 0$. Luego, defino

$$u_1 = x_1 - 2$$

$$u_2 = x_2 - 2$$

$$u_3 = x_3 - 1$$

$$u_4 = x_4 - 1$$

con lo que la ecuación se reduce a

$$u_1 + u_2 + u_3 + u_4 = 25 - 6 = 19, \quad u_i \in \mathbb{Z}_+$$

La solución es simplemente

$$N = \binom{19+3}{3} = \binom{22}{3} = 1540$$

ya que consiste en colocar 4-1=3 barras iguales en 19+4-1=22 posiciones posibles.

Problema 2 (2 puntos)

Sea el conjunto $A = \{2, 3, 4, 6, 12, 15, 24, 90, 180, 360\}$ y la relación de divisibilidad

$$a\mathcal{R}b \iff a \mid b$$

- (a) Encontrar el diagrama de Hasse del conjunto ordenado (A, |).
- (b) Encontrar (si existen) los elementos maximales, minimales, máximo y mínimo de A.
- (c) Dado el subconjunto $B = \{2, 3, 4, 6, 12\}$, encontrar (si existen) los conjuntos mayorante y minorante y el supremo e ínfimo de B.

Solución.

El diagrama de Hasse es

donde hemos señalado el subconjunto B del apartado (c). El elemento maximal de A es 360, luego máx(A) = 360. Los elementos minimales de A son $\{2,3\}$ y por tanto no existe mín(A).

El conjunto mayorante de B es mayor $(B) = \{12, 24, 180, 360\}$, luego $\sup(B) = 12$. El conjunto minorante de B es minor $(B) = \emptyset$, luego no existe $\inf(B)$.

Problema 3 (2 puntos)

Un profesor reparte equitativamente los libros de su biblioteca entre sus 17 alumnos y sobra un libro. Uno de sus alumnos se queja del número de libros recibido y decide excluirse del reparto. Al volver a repartir sus libros equitativamente entre los alumnos restantes, sigue sobrando un libro. ¿Cuál es el mínimo número de libros que reparte el profesor?

Solución.

El enunciado nos dice que debemos resolver el siguiente sistema de congruencias lineales:

$$N \equiv 1 \pmod{17}$$

$$N \equiv 1 \pmod{16}$$

donde N es el número de libros a repartir. Como 17 y 16 son primos relativos, el teorema chino del resto nos garantiza la existencia de una única solución módulo $m=17\cdot 16=272$.

Como $c_1 = 16$ y $c_2 = 17$, entonces la solución es del tipo

$$N = 16 \cdot d_1 + 17 \cdot d_2 \pmod{272}$$

donde d_1 y d_2 satisfacen

$$16 \cdot d_1 \equiv 1 \pmod{17}$$

$$17 \cdot d_2 \equiv 1 \pmod{16}$$

La solución de la primera congruencia es sencilla: como $1=17-16,\,d_1\equiv -1\pmod{17}$. La solución de la segunda congruencia también es sencilla: como 1=17-16, en este caso $d_2\equiv 1\pmod{16}$. Luego

$$N \equiv -16 + 17 \pmod{272} \equiv 1 \pmod{272}$$

y por tanto el número de libros será

$$N = 1 + 272k$$
, $\operatorname{con} k \in \mathbb{Z}$

El número mínimo de libros corresponderá a k=1 (para k=0 tendríamos un sólo libro y del enunciado se deduce que hay al menos dos libros) y

$$N_{\rm min} = 273 \, {\rm libros}$$

Problema 4 (2 puntos)

Considérese el grafo G siguiente:

- (a) ¿Es G un grafo simple? ¿Es plano? ¿Es bipartito? ¿Es completo? ¿Es regular? ¿Es conexo?
- (b) Hallar el número de regiones, vértices y aristas del grafo dual G*.
- (c) ¿Cuántas coloraciones (propias y no propias) se pueden hacer con 3 colores?
- (d) ¿Es G Euleriano? Hallar un camino o circuito euleriano si es posible.
- (e) Hallar el árbol A generador mínimo de G y el peso total de dicho árbol.

Solución.

No es un grafo simple, porque hay tres aristas entre los vértices h y g. Es plano, ya que su representación gráfica no tiene aristas que se crucen. No es bipartito porque tiene ciclos de longitud tres (por ejemplo, f-g-b-f). No es completo porque no todos los vértices están conectados entre sí (por ejemplo, los vértices a y f no son adyacentes). No es regular porque no todos los vértices tiene el mismo grado (por ejemplo, el grado de a es 2 y el de d, 4). Es conexo, porque dado cualquier par de vértices, existe un camino elemental que los une.

Al ser G plano, podemos definir su dual G^* . El número de vértices, aristas y regiones del grafo original es

$$|V| \ = \ 10 \, , \quad |E| \ = \ 21 \, , \quad R \ = \ 13 \,$$

Estas cantidades satisfacen la ecuación de Euler: |V| - |E| + R = 10 - 21 + 13 = 2. Luego, las correspondientes cantidades para el grafo dual son

$$|V^{\star}| = R = 13, \quad |E^{\star}| = |E| = 21, \quad R^{\star} = |V| = 10$$

Al ser coloraciones propias y no propias, cada vértice se puede colorear con q=3 colores independientemente del resto. Luego, el número de coloraciones pedido es $q^{|V|}=3^{10}$.

No es euleriano porque hay vértices de grado impar $(g \ y \ h)$. Sin embargo, es semieuleriano ya que sólo hay dos vértices con grado impar. Luego admite un camino euleriano
que comienza por ejemplo en g y acaba en h. Este camino de puede obtener mediante la
modificación del algoritmo de Fleury: $g \to c \xrightarrow{2} d \xrightarrow{4} c \to b \to g \xrightarrow{4\uparrow} f \to b \to a \to e \to d \to$ $h \to e \to i \xrightarrow{6\uparrow} h \xrightarrow{6\downarrow} i \to j \to f \xrightarrow{4\downarrow} g \xrightarrow{2\downarrow} h \xrightarrow{2\uparrow} g \xrightarrow{6} h$, donde $h \xrightarrow{p} i$ significa la arista de peso p que une h con i. Cuando hay dos aristas entre los mismos vértices y con el mismo peso p,
escribimos $h \xrightarrow{p\uparrow} i$ para denotar la que está encima y $h \xrightarrow{p\downarrow} i$ la que está debajo.

El árbol de peso mínimo lo obtenemos por ejemplo usando el algoritmo de Kruskal. El resultado A = (V, F) lo podemos escribir dando el conjunto F de las aristas del árbol

$$F = \{\{a,b\}, \{e,h\}, \{f,j\}, \{b,g\}, \{c,d\}, \{g,h\}, \{b,c\}, \{f,g\}, \{i,j\}\}\}$$

Hay |F| = 9 aristas, como es de esperar (|F| = |V| - 1). El peso total de este árbol es

$$\omega \ = \ \sum_{i \in F} \omega_i \ = \ 3 \cdot 1 + 3 \cdot 2 + 2 \cdot 4 + 1 \cdot 5 \ = \ 22$$

Problema 5 (2 puntos)

Determinar el número de subconjuntos de un conjunto de 10 elementos que

- (a) tengan menos de 5 elementos
- (b) tengan más de 7 elementos
- (a) tengan un número impar de elementos

Solución.

La manera más rápida de solucionar este problema es aprovechar la biyección entre el número de subconjuntos de un conjunto de n elementos y el de las cadenas binarias de longitud n, de manera que si un elemento pertenece a un subconjunto dado, el bit correspondiente es 1 (y 0 en caso contrario).

El apartado (a) nos pide el número de cadenas de bits de longitud 10 con menos de 5 unos. El número de cadenas de bits de longitud 10 con k unos es simplemente

$$N_k = \begin{pmatrix} 10 \\ k \end{pmatrix}, \qquad 0 \le k \le 10$$

Luego, la solución de (a) es

$$N_{k<5} = \sum_{k=0}^{4} N_k = \sum_{k=0}^{4} {10 \choose k} = 1 + 10 + \frac{90}{2} + \frac{720}{3!} = 386$$

El apartado (b) consiste en calcular el número de cadenas de bits de longitud 10 con más de 7 unos. Luego,

$$N_{k>5} = \sum_{k=8}^{10} N_k = \sum_{k=8}^{10} {10 \choose k} = \frac{90}{2} + 10 + 1 = 56$$

El apartado (c) consiste en calcular el número de cadenas de bits de longitud 10 con un número impar de unos. Luego,

$$N_{k \text{ impar}} = \sum_{p=0}^{4} N_{2p+1}$$

$$= \sum_{p=0}^{4} {10 \choose 2p+1}$$

$$= 2 \left[{10 \choose 1} + {10 \choose 3} \right] + {10 \choose 5}$$

$$= 2(10+120) + 252 = \boxed{512}$$

El resultado es lógico ya que el número total de cadenas de bits de longitud 10 es $2^{10} = 1024$ y aquellas con un número impar de unos serán por simetría la mitad (i.e., 512). \square