

Máster en Inteligencia Artificial, Reconocimiento de Formas e Imagen Digital Universitat Politècnica de València

Implementaciones básicas

Visión por Computador

Autor: Juan Antonio López Ramírez

Curso 2019-2020

Hemos partido del trabajo realizado en la asignatura de Redes Neuronales Artificiales y, concretamente, del modelo de Red Convolucional para la tarea de CIFAR.

El *Data Augmentation* que se aplica es de un 20 % de altura y de anchura, junto con un rango de rotación de 20 grados y un zoom también del 20 %.

Cada bloque convolucional cuenta con un *Batch Normalization*, un ruido gaussiano del 30 % y una función de activación ReLu.

El *learning rate annealing* está planificado para que el factor de aprendizaje varía en la *epoch* 75 (pasando a valer 0.01) y en la 125 (pasando a valer 0.001).

Finalmente, creamos un método al que llamamos $vgg_model()$ y cuyo parámetro de entrada es el modelo de VGG que se desea utilizar. Por ejemplo, para usar el modelo A (VGG11), es necesario una línea de código similar a la siguiente:

```
model = VGG_model(11)
```

De esta forma, implementamos los modelos A, B, D y E de VGG (véase la figura 1). Debido a que el modelo C es muy similar al D, salvo que algunas convoluciones aplican un *kernel_size* de 1x1 en lugar de 3x3, se ha decidido omitir su implementación.

En nuestro caso, los resultados que se han obtenido han sido los siguientes:

Modelo de VGG	Resultados (%)		
-	90.81		
11	90.87		
13	92.55		
16	92.51		
19	92.75		

La primera fila representa el modelo que se usó en la práctica de CIFAR de la asignatura de Redes Neuronales Artificiales, sin emplear ningún tipo de VGG.

Como se puede apreciar, con cualquier modelo de VGG superamos la precisión del original, obteniendo el mejor resultado con VGG19, que es de **92.75** %.

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2	24 RGB image	e)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
20.0000460		max	pool		x 13142407308
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		E -0.00-000000
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512
2022			pool	en en en en en en en	
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512
90			pool		
			4096		
	·	7,7	4096		
			1000		
		soft	-max		

Figura 1: Modelos de VGG. Se han implementado el A, B, D y E.