Robot model scheme

I changed frames assignment using DH parameters:

	a	d	α	θ
1	0	d_1	$\frac{\pi}{2}$	θ_1
2	d_2	0	0	θ_2
3	0	0	$-\frac{\pi}{2}$	$\theta_3 - \frac{\pi}{2}$
4	0	$d_3 + d_4$		$\frac{\theta_3 - \frac{\pi}{2}}{\theta_4 - \frac{\pi}{2}}$
5	0	0	$\frac{\frac{\pi}{2}}{\frac{\pi}{2}}$	θ_5
6	0	d_5	0	θ_6

Derivation of the solution

Jacobian

Since the manipulator consists only of revolute joints, I used formula for revolute joints from geometrical approach:

$$J(q) = \begin{pmatrix} J_{p_i} \\ J_{\omega_i} \end{pmatrix} = \begin{pmatrix} z_{i-1} \times (p_e - p_{i-1}) \\ z_{i-1} \end{pmatrix}$$

Singularity check

To check for singularity I calculated rank of the matrix and checked if it is equal to $6\,$

Cartesian velocity

Vector of velocities in cartesian space (or twist) can be found as

$$\begin{pmatrix} v \\ \omega \end{pmatrix} = J\dot{q}$$