# Classificação de Imagens com Redes Neurais Artificiais\*

Tiago C A Amorim (RA: 100675)<sup>a</sup>, Taylon L C Martins (RA: 177379)<sup>b</sup>

Keywords: Classificação, Redes Neurais Artificiais, Rede Neurais Convolucionais, ResNet

# 1. Introdução

Este relatório apresenta as principais atividades realizadas no desenvolvimento das atividades propostas na Lista 03 da disciplina IA048: Aprendizado de Máquina, primeiro semestre de 2024. O foco deste exercício é de construir e avaliar o desempenho de redes neurais artificiais – MLP (densa de uma camada intermediária) e CNN (convolucionais rasa e profunda) – na classificação de imagens de células sanguíneas periféricas.

### 2. Tarefa Proposta

Nesta atividade, vamos abordar o problema de reconhecimento de células sanguíneas periféricas utilizando a base de dados BloodMNIST [1, 2, 3] (https://medmnist.com/), a qual possui 17.092 imagens microscópicas coloridas (3 canais de cor). O mapeamento entre os identificadores das classes e os rótulos está indicado na Tabela 1.

| $\operatorname{Id}$ | Rótulo                |
|---------------------|-----------------------|
| 0                   | Basófilos             |
| 1                   | Eosinófilos           |
| 2                   | Eritroblastos         |
| 3                   | Granulócitos imaturos |
| 4                   | Linfócitos            |
| 5                   | Monócitos             |
| 6                   | Neutrófilos           |
| 7                   | Plaquetas             |

Tabela 1: Correspondência entre os identificadores numéricos das classes e os tipos de células sanguíneas.

(a) Aplique uma rede MLP com uma camada intermediária e analise (1) a acurácia e (2) a matriz de confusão para os dados de teste obtidas pela melhor versão desta rede. Descreva a metodologia e a arquitetura empregada, bem como todas as escolhas feitas.

- (b) Monte uma CNN simples contendo:
  - Uma camada convolucional com função de ativacão não-linear.
  - Uma camada de pooling.
  - Uma camada de saída do tipo softmax.

Avalie a progressão da acurácia junto aos dados de validação em função:

- Da quantidade de *kernels* utilizados na camada convolucional;
- Do tamanho do kernel de convolução.
- (c) Escolhendo, então, a melhor configuração para a CNN simples, refaça o treinamento do modelo e apresente:
  - A matriz de confusão para os dados de teste;
  - A acurácia global;
  - Cinco padrões de teste que foram classificados incorretamente, indicando a classe esperada e as probabilidades estimadas pela rede.

Discuta os resultados obtidos.

(d) Explore, agora, uma CNN um pouco mais profunda. Descreva a arquitetura utilizada e apresente os mesmos resultados solicitados no item (c) para o conjunto de teste. Por fim, faça uma breve comparação entre os modelos estudados neste exercício.

# 3. Aplicação

A tarefa proposta foi desenvolvida em três notebooks Jupyter, em Python. Foi gerado um notebook para cada uma das arquiteturas de rede neural utilizadas: Rede MLP, Rede Convolucional Simples e Rede Convolucional Profunda. Foi feito o uso das bibliotecas TensorFlow [4] para montar as redes neurais e Scikit-learn [5] para realizar a otimização dos hiperparâmetros.

O código pode ser encontrado em https://github.com/ TiagoCAAmorim/machine\_learning.

<sup>&</sup>lt;sup>a</sup> Doutorando no Departamento de Engenharia de Petróleo da Faculdade de Engenharia Mecânica, UNICAMP, Campinas, SP, Brasil

<sup>b</sup> Aluno especial, UNICAMP, Campinas, SP, Brasil

<sup>\*</sup>Relatório número 03 como parte dos requisitos da disciplina IA048: Aprendizado de Máquina.

### 3.1. Base de Dados

A base *BloodMNIST* foi construída com imagens de diferentes resoluções. Para este exercício foi escolhida a base de menor resolução: (28, 28). As imagens são classificadas em 8 classes (Figura 1). A base de dados é composta por 17092 amostras, divididas em treino (11959), validação (1712) e teste (3421).

# Train Dataset Samples 0: basophil 1: eosinophil 2: erythroblast 3: im.granulocytes 4: lymphocyte 5: monocyte 6: neutrophil 7: platelet

Figura 1: Exemplos de imagens por classe.

Os conjuntos de dados de treino e validação não são uniformemente distribuídos entre as classes (Figura 2). Algumas classes tem mais que o dobro de imagens que outras. Prevendo um possível efeito negativo no treinamento, foi proposto utilizar pesos por classe. A proposta foi definir os pesos proporcionais ao inverso do número de classes (Figura 3). O impacto do uso de pesos por classe será avaliado para cada classificador.

# 3.2. Rede MLP

O primeiro classificador construído é uma rede neural de uma camada intermediária ( $\mathbf{MLP}$ ). A rede é composta por uma camada de entrada, uma camada intermediária (com função de ativação não-linear) e uma camada de saída (com função de ativação softmax).

Apesar de ser uma rede simples, diferentes hiperparâmetros foram avaliados para tentar encontrar um classificador mais eficiente. A avaliação dos hiperparâmetros foi feita com busca em grade (*GridSearch*). Como o número de possíveis combinações é alto, a busca em grade foi feita por subconjuntos de hiperparâmetros.



Figura 2: Número de imagens por classe.



Figura 3: Pesos por classe.

Um conjunto de hiperparâmetros *ótimos* é inicialmente imposto. A partir deste conjunto *ótimo* é feita uma busca em grande com um subconjunto dos hiperparâmetros. Ao final desta busca os valores do conjunto de hiperparâmetros *ótimo* é atualizado com os valores encontrados que maximizam a acurácia do conjunto de validação. O processo é repetido para cada subconjunto de hiperparâmetros.

A Tabela 2 mostra os subconjuntos de hiperparâmetros (separados por linhas horizontais). A ordem dos subconjuntos na tabela coincide com a ordem de otimização dos hiperparâmetros.

A etapa de data augmentation testada consistiu de espelhamento (vertical e/ou horizontal) e rotação aleatórios. A descrição da base de dados cita que as imagens estão centradas, de forma que assumiu-se, para este exercício, não ser necessário aplicar a translação aleatória das imagens.

O ajuste de cada classificador foi feito por até 50 épocas, com parada antecipada (early stopping) caso a acurácia dos dados de validação não melhore após 10 épocas (com um mínimo de 20 épocas). O classificador ajustado utiliza os pesos que deram a maior acurácia com os dados de validação durante o processo de ajuste.

<sup>&</sup>lt;sup>1</sup>Como existe certo desbalanceamento entre as classes, a acurácia balanceada possivelmente seria uma métrica melhor, mas esta opção não está facilmente disponível no *TensorFlow*.

| Hiperparâmetro         | Opções                          |
|------------------------|---------------------------------|
| Usar data augmentation | Sim, Não                        |
| Usar pesos por classe  | Sim, <u>Não</u>                 |
| Número de neurônios    | 64, <u>128</u> , 256, 512, 1024 |
| Otimizador             | SGD, RMSprop, Adam              |
| Função de ativação     | relu, tanh                      |
| Tamanho do batch       | 16, 32, 64, 128                 |

Tabela 2: Hiperparâmetros da rede MLP (parâmetros ótimos sublinhados).

Na busca em grade foi aplicada validação cruzada estratificada em 3 pastas (StratifiedKFold) com os dados de treino, com entropia cruzada como função objetivo. A métrica de definição do melhor classificador é a média da acurácia com os dados de validação. Para adequar o custo computacional ao hardware disponível, a busca em grade foi limitada a 40% dos dados de treino e validação.

A Figura 4 mostra o impacto do número de neurônios da camada intermediária na acurácia média com os dados de validação. Existe inicialmente um impacto positivo significativo em aumentar o número de neurônios (underfitting). O contínuo incremento leva a uma redução gradativa na qualidade do classificador (overfitting).

A otimização dos hiperparâmetros não foi exaustiva. Outros valores para os hiperparâmetros avaliados, além de outros hiperparâmetros, poderiam ter sido testados, possivelmente encontrando classificadores melhores. Avaliou-se que a otimização feita atende os objetivos do exercício.



Figura 4: Efeito médio do número de neurônios da camada intermediária na acurácia da rede MLP (barras de erro são iguais a duas vezes o desvio padrão estimado com validação cruzada).

Uma nova rede MLP foi treinada com os hiperparâmetros ótimos (Figura A.15)², com um limite 200 épocas. É feita uma parada antecipada se a acurácia dos dados de validação não melhorar após 20 épocas. A Figura 5 mostra que a rede foi ajustada até a  $71^{\rm a}$  época. Esta rede tem  $302\,216$  parâmetros treináveis.

A acurácia da rede MLP com os dados de teste ficou em 0.7992. A matriz de confusão (Figura 6) e os resultados por classe (Tabela 3) mostram que a distinção de algumas classes foi mais fácil (e.g.: Plaquetas), enquanto que a classificação de outras classes teve desempenho pior (e.g.: Monócitos).



Figura 5: Histórico de ajuste da rede MLP.



Figura 6: Matrix de confusão da rede MLP.

A Figura B.19 exemplifica alguns dos erros de classificação cometidos pelo modelo MLP. Na maioria das classificações errôneas a ordem associada à classe verdadeira é  $2 \text{ (Figura 7)}^3$ .

### 3.3. Rede Convolucional Simples

O segundo classificador construído é uma rede neural com uma camada convolucional ( $\mathbf{CNN}$ ). A rede é composta por uma camada de entrada, uma camada convolucional (com função de ativação não-linear), uma camada de pooling e uma camada de saída (com função de ativação softmax).

Os critérios (função objetivo, métricas, parada antecipada etc.) e o processo de otimização dos hiperparâmetros

 $<sup>^2\</sup>mathrm{As}$  figuras maiores foram concentradas no apêndice para facilitar a leitura.

<sup>&</sup>lt;sup>3</sup>Cálculo da frequência relativa inclui as classificações corretas (ordem=1), que não é apresentada no gráfico por ter valor muito superior às demais barras.

| Classe                | Acurácia |
|-----------------------|----------|
| Todas                 | 0.7992   |
| Basófilos             | 0.5205   |
| Eosinófilos           | 0.9247   |
| Eritroblastos         | 0.7878   |
| Granulócitos imaturos | 0.6615   |
| Linfócitos            | 0.6749   |
| Monócitos             | 0.5599   |
| Neutrófilos           | 0.9204   |
| Plaquetas             | 0.9915   |

Tabela 3: Resultados da rede MLP com os dados de teste.



Figura 7: Histograma da ordem associada à classe verdadeira para as classificações errôneas com a rede MLP.

e de treinamento da rede CNN foi igual ao aplicado para a rede MLP. A Tabela 4 mostra os hiperparâmetros avaliados, os agrupamentos feitos e os valores ótimos.

| Hiperparâmetro                                       | Opções                                                                                  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Usar data augmentation<br>Usar pesos por classe      | Sim, Não<br>Sim, <u>Não</u>                                                             |
| Tamanho dos filtros<br>Número de filtros             | 3x3, 5x5, 7x7<br>8, 16, 32, 64, <u>128</u>                                              |
| Tamanho do pooling<br>Tipo do pooling                | $\underline{2}$ , 3, 4, 5, toda figura <sup>4</sup> $\underline{\text{máximo}}$ , média |
| Otimizador<br>Função de ativação<br>Tamanho do batch | SGD, RMSprop, <u>Adam</u> <u>relu</u> , tanh <u>16</u> , 32, 64, 128                    |

Tabela 4: Hiperparâmetros da rede CNN (parâmetros ótimos sublinhados).

A Figura 8 mostra o impacto do tamanho dos filtros (kernel) e do número de filtros da camada convolucional na acurácia média com os dados de validação. Observa-se que o comportamento não é linear, com o tamanho ótimo do filtro mudando em função do número de filtros.



Figura 8: Efeito médio do tamanho dos filtros e do número de filtros da camada convolucional na acurácia da rede CNN.

A rede CNN com hiperparâmetros otimizados tem um total de 176 648 parâmetros treináveis (Figura A.16). A rede foi ajustada por 70 épocas (Figura 5), seguindo a mesma parametrização utilizada para a rede MLP com hiperparâmetros otimizados.

A acurácia do rede CNN com os dados de teste ficou em 0.9073. A acurácia teve um significativo incremento comparado com a rede MLP, apesar da rede CNN ter menos parâmetros. A classe Plaquetas teve apenas uma imagem incorretamente classificada (Figura 10). Em comparação com a rede MLP, a rede CNN tem melhor acurácia para todas as classes (Tabela 5).



Figura 9: Histórico de ajuste da rede CNN.

| Classe                | Acurácia |
|-----------------------|----------|
| Todas                 | 0.9073   |
| Basófilos             | 0.7992   |
| Eosinófilos           | 0.9792   |
| Eritroblastos         | 0.9293   |
| Granulócitos imaturos | 0.8238   |
| Linfócitos            | 0.8848   |
| Monócitos             | 0.7923   |
| Neutrófilos           | 0.9339   |
| Plaquetas             | 1.0000   |

Tabela 5: Resultados da rede CNN com os dados de teste.

Além de ter um número menor de classificações errôneas, o histograma da ordem associada à classe verdadeira

 $<sup>^4</sup>$ Equivale a usar as camadas GlobalMax e GlobalAverage do Keras/Tensorflow.



Figura 10: Matrix de confusão da rede CNN.

dos dados de teste para a rede CNN (Figura 11) se mostra um pouco mais concentrado nos valores menores que o histograma construído com a rede MLP.



Figura 11: Histograma da ordem associada à classe verdadeira para as classificações errôneas com a rede CNN.

### 3.4. Rede Convolucional Profunda

A rede convolucional Profunda construída se baseou na arquitetura ResNet [6]. A resolução das imagens utilizadas nesta avaliação (28x28) é menor que a das imagens de entrada utilizadas na proposta original das ResNet (224x224). Em função desta diferença no tamanho das imagens, e para evitar uma explosão no número de parâmetros, foi construída uma versão simplificada dos blocos propostos para a ResNet-18.

Dado o alto custo computacional de treinar a rede neural proposta, não foi feita uma otimização dos hiperparâmetros. Os hiperparâmetros foram definidos de forma a limitar o número de parâmetros treináveis. A rede *ResNet* construída consiste de (hiperparâmetros utilizados entre parênteses):

1. Camada convolucional inicial (64 filtros 3x3).

- Camada de max pooling com janela 3x3 (opção não utilizada).
- 3. Blocos residuais (2 blocos):
  - (a) Duplica o número de filtros.
  - (b) Camada convolucional inicial com *stride* igual a 2 (3x3).
  - (c) Camadas convolucionais (2 camadas 3x3).
  - (d) Camada convolucional 1x1 com *stride* igual a 2 aplicada no dado de entrada do bloco residual (*skip connection*).
  - (e) Soma das saídas das camadas 3x3 com as saídas da camada 1x1.
  - (f) Aplicada função de ativação (relu).
- 4. Camada de Global Average Pooling.
- 5. Camada densa (ativação relu).
- 6. Camada densa de saída.

Todas as camadas convolucionais e de *pooling* utilizam padding para buscar manter o tamanho das figuras. Onde não é explícito, foi utilizado stride igual a 1. Em todas as camadas a função de ativação é relu, exceto na camada de saída, que utiliza softmax. Ao final de cada camada convolucional é feito batch normalization antes de aplicar a função de ativação.

No início de cada bloco residual é duplicado o número de filtros, e o tamanho da figura é reduzido pela metade (stride 2 na primeira camada do bloco). Devido à mudança no tamanho da figura, a skip connection não utiliza a matriz identidade. É aplicada uma camada convolucional com filtro 1x1 e stride 2 para que as saídas tenham mesma dimensão e possam ser somadas.

Em face dos resultados anteriores, foi utilizado data augmentation nesta rede, e não foram utilizados pesos por classe. A rede é apresentada visualmente nas Figuras A.17 e A.18.

A rede tem 1957 768 parâmetros treináveis. Foram utilizados os mesmos critérios de ajuste e parada antecipada das redes anteriores. A rede foi ajustada por 102 épocas (Figura 12).

A curva da acurácia com o conjunto de validação tem um comportamento mais *errático* que o observado nos gráficos das demais redes. Este comportamento indica que o critério de parada prematura não é adequado para esta rede mais complexa, e que possivelmente um número maior de épocas levaria a um resultado melhor.

A acurácia do rede *ResNet* com os dados de teste ficou em 0.9608. A acurácia teve um novo incremento significativo comparado com as demais redes. Apenas a acurácia da classe Plaquetas não melhorou com relação à rede CNN(Figura 13 e Tabela 6).

O histograma da ordem associada à classe verdadeira com os dados de teste (Figura 14) está mais concentrado nos valores 2 e 3 que os histogramas das demais redes. Este resultado indica que esta rede tem potencial para gerar melhores resultados com uma otimização dos hiperparâmetros e/ou um número maior de épocas no processo de ajuste.



Figura 12: Histórico de ajuste da rede ResNet.



Figura 13: Matrix de confusão da rede ResNet.



Figura 14: Histograma da ordem associada à classe verdadeira para as classificações errôneas com a rede ResNet.

# 4. Conclusão

A Tabela 7 resume os resultados principais. Fica claro que, para o problema proposto, é eficiente o uso de camadas convolucionais e de redes residuais profundas. A rede *ResNet* construída não passou por um processo de otimização dos hiperparâmetros ou fez uso de um grande número de camadas, mas a sua acurácia ficou comparável às reportadas para redes mais profundas.

| Classe                | Acurácia |
|-----------------------|----------|
| Todas                 | 0.9608   |
| Basófilos             | 0.9426   |
| Eosinófilos           | 0.9968   |
| Eritroblastos         | 0.9582   |
| Granulócitos imaturos | 0.9378   |
| Linfócitos            | 0.8889   |
| Monócitos             | 0.9155   |
| Neutrófilos           | 0.9760   |
| Plaquetas             | 0.9957   |

Tabela 6: Resultados da rede ResNet com os dados de teste.

| Rede                 | Acurácia |
|----------------------|----------|
| ResNet-18 (28)       | 0.958    |
| ResNet-18 (224)      | 0.963    |
| ResNet-50 $(28)$     | 0.956    |
| ResNet-50 (224)      | 0.950    |
| auto-sklearn         | 0.878    |
| AutoKeras            | 0.961    |
| Google AutoML Vision | 0.966    |
| MLP                  | 0.799    |
| CNN                  | 0.907    |
| ResNet               | 0.961    |

Tabela 7: Resultados reportados na publicação original [2] em comparação com as redes construídas nesta atividade.

# Apêndice A. Redes Neurais Construídas



Figura A.15: Rede MLP.



Figura A.16: Rede CNN.



Figura A.17: Início e primeiro bloco residual da rede  ${\it ResNet}.$ 



Figura A.18: Segundo bloco residual e final da rede ResNet.

# Apêndice B. Exemplos de Classificações Errôneas

À esquerda é apresentada uma figura do conjunto de testes, junto com a sua classificação correta. À direita de cada imagem é apresentada a saída do classificador (probabilidades associadas a cada classe), com a indicação da ordem (rank) associada à classe verdadeira.



Figura B.19: Exemplos de classificações errôneas com a rede MLP.



Figura B.21: Exemplos de classificações errôneas com a rede ResNet.

### Referências

- J. Yang, R. Shi, B. Ni, Medmnist classification decathlon: A lightweight automl benchmark for medical image analysis, in: IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, pp. 191–195.
- [2] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, B. Ni, Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification, Scientific Data 10 (1) (2023) 41.
- [3] A. Acevedo, A. Merino González, E. S. Alférez Baquero, Á. Molina Borrás, L. Boldú Nebot, J. Rodellar Benedé, A dataset of microscopic peripheral blood cell images for development of automatic recognition systems, Data in brief 30 (article 105474) (2020).
- [4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, software available from tensorflow.org (2015).

### URL https://www.tensorflow.org/

- 5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830.
- [6] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. corr abs/1512.03385 (2015) (2015).