Formulae

FRL Self Duality

- How many self-dual functions can be made with n variables?
 - \circ Total number of combinations: 2^n
 - \circ Total number of Boolean functions: 2^{2^n}
 - \circ Total number of self-dual functions: $2^{2^{n-1}}$

Gates

Properties of Gates:

- Idempotent: A.A = A
- Commutative: A.B = B.A
- $\bullet \ {\it Associative:} \ (A+B)+C=A+(B+C) \\$

[1/0 = Doesn't have/has property]

Gates	Symbol	Idempotent/Closure	Commutative	Associative
NOT	٦	0	NA	NA
AND		. 1		1
OR	+	1	1	1
NAND	1	0	1	0
NOR	Ţ	0	1	0
XOR	\oplus	0	1	1
XNOR	0	0	1	1

Types of Gates

• Basic Gates: The most basic of all: AND, OR, NOT

Universal Gates: Combination of basic gates, can be used to make any other gate:
 NAND (AND + NOT), NOR (OR + NOT)

• Arithmetic Gates: Used to perform arithmetic operations: XOR, XNOR

Evaluation:

o AND: 1 if both A & B are 1, otherwise 0.

o OR: 1 if either of A or B are 1, otherwise 0.

• NOR: Negation of OR, 1 if A OR B is 0, otherwise 0.

• NAND: Negation or AND, 1 if A AND B is 0, otherwise 0.

∘ XOR: 1 if both A & B are different, otherwise 0.

• XNOR: 1 if both A & B are same, otherwise 0.

Image taken from here

A	В	AND	OR	NOR	NAND	XOR	XNOR
Α	В	A.B	A+B	¬(A.B)	¬(A+B)	A ⊕ B	A⊙B
0	0	0	0	1	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	1	0	0	0	1

Universal Gates: NAND and NOR

• Logic: To implement OR gate, we need 3 NAND gates or 2 NOR gates.

Gates	NAND	NOR
NOT	1	1
AND	2	3
OR	3	2
XOR	4	5
XNOR	5	4

Arithmetic Gates (XOR, XNOR)

XOR Gate

- ullet If 2 inputs are A & B, A \oplus B = $Aar{B}+ar{A}B$
- ullet If both inputs are same, output will be $\,^{\,0}$, otherwise $\,^{\,1}$.
- Truth Table:

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

- Examples:
 - i. $A \oplus A = 0$
 - ii. $A\oplus ar{A}=1$
 - iii. $A \oplus 0 = A$ (Exchange property: In $\,$ (i) , put $\,$ 0 in LHS & $_{
 m A}$ in RHS)
 - iv. $A\oplus 1=\bar{A}$ (Exchange property: In <code>(ii)</code> , put <code>1</code> in LHS & <code>\$\bar A\$</code> in RHS)
 - v. $A \oplus A \oplus A \oplus A \oplus A \oplus A...n \ times$:
 - \circ If n is even (for example n=4), $A\oplus A\oplus A\oplus A=0\oplus 0=0$

- \circ If n is odd (for example n=3), $A\oplus A\oplus A=0\oplus A=A$
- XOR Gate can be used as buffer/inverter: Since $A\oplus 0=A$ & $A\oplus 1=\bar{A}$, we can give an input $_{\mathbb{A}}$ & use the 2nd input as control. If the control is 0, output is same as input, otherwise output is inverted.

XNOR Gate

- Negation (¬) of XOR Gate.
- If 2 inputs are A & B, A \odot B = $AB+\bar{A}\bar{B}$
- If both inputs are same, output will be 1, otherwise 0.
- Truth Table:

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

- Examples:
 - i. $A\odot A=1$
 - ii. $A\odot ar{A}=0$
 - iii. $A\odot 0=ar{A}$ (Exchange property: In $_{(\mbox{\scriptsize i})}$, put $_{0}$ in LHS & $_{\mbox{\scriptsize A}}$ in RHS)
 - iv. $A\odot 1=A$ (Exchange property: In $\,{\mbox{\scriptsize (ii)}}$, put 1 in LHS & $\,{\mbox{\scriptsize 1}}$ in RHS)
 - v. $A \odot A \odot A \odot A \odot A \odot A ... n times$:
 - \circ If ${}_{
 m n}$ is even (for example n=4), $A\odot A\odot A\odot A=1\odot 1=1$
 - \circ If n is odd (for example n=3), $A\odot A\odot A=1\oplus A=A$
- XNOR Gate can be used as buffer/inverter: Since $A\odot 0=\bar{A}$ & $A\odot 1=A$, we can give an input $_{\mathbb{A}}$ & use the 2nd input as control. If the control is 1, output is same as input, otherwise output is inverted.

Sum of Product & Canonical Sum of Product

- SoP need not contain all the literals, but in Canonical form, each product term should contain all literals, be it in complemented or un-complemented form.
- The product terms themselves are called the min-terms.
- ullet Sum of all min-terms for which output f=1, is called Canonical Sum of Product, or disjunctive normal form.
- Truth Table:

X	у	Z	Decimel	f
0	0	0	0	0
0	0	1	1	1
0	1	0	2	0
0	1	1	3	1
1	0	0	4	0
1	0	1	5	1
1	1	0	6	0
1	1	1	7	1

- \circ If x=0, we write $ar{x}$, otherwise we write x.
- \circ So, SoP ie $f(1)=ar{x}ar{y}z+ar{x}yz+xar{y}z+xyz$
- \circ We can also write it as $\sum m(1,3,5,7)$ or $\sum (m_1+m_3+m_5+m_7)$.

Duality Theorem

To get the dual of any boolean expression, replace:

Source	Destination
OR	AND
	+

Source	Destination
NOT	keep as-is
XOR	XNOR
NAND	NOR
0	1
Variable	keep as-is

- Formulae
- **Complement**: Has all properties of the Duality Theorem, and we complement the variables in addition.

$$\circ$$
 A $<->$ $ar{A}$

$$\circ$$
 $ar{A}$ $<->$ A

ullet Example 0: $XOR=ar{A}B+Aar{B}$

$$\circ (ar{A}+B).(A+ar{B})$$

$$\circ ar{A}A + AB + ar{A}ar{B} + Bar{B}$$

$$\circ \; (AB + ar{A}ar{B}) = XNOR \; ext{[Duality]}$$

$$\circ~(ar{A}ar{B}+AB)$$
 [Complement]

ullet Example 1: $(ABar{C})+(ar{A}BC)+(ABC)$

$$\circ~(A+B+ar{C}).(ar{A}+B+C).(A+B+C)$$
 [Duality]

$$\circ~(ar{A}+ar{B}+C).(A+ar{B}+ar{C}).(ar{A}+ar{B}+ar{C})$$
 [Complement]

ullet Example 2: $(XYZ)+(ar{X}Yar{Z})+(ar{Y}Z)=1$

$$(X+Y+Z).(ar{X}+Y+ar{Z}).(ar{Y}+Z)=0$$
 [Duality]

$$(\bar{X} + \bar{Y} + \bar{Z}).(X + \bar{Y} + Z).(Y + \bar{Z}) = 0$$
 [Complement]

ullet Example 3, demonstrating **self-dual equation**: XY+YZ+XZ)

$$(X + Y).(Y + Z).(X + Z)$$

$$\circ \; (XY+XZ+Y+YZ).(X+Z)$$
 # Y.Y can be written as Y

$$\circ (Y[X+1+YZ]+XZ).(X+Z)$$

 $\circ (Y+XZ)(X+Z)$ # 1 added with anything will result in $\ _1$, so $\ _{1+1+yz}$ is resolved to $\ _1$.

$$\circ XY + YZ + XZ + XZ$$
 # xxz=xz & xzz=xz

$$\circ \ XY + YZ + XZ$$
 # xz+xz=xz

- This kind of equation is called a self-dual equation. In other words, the output is the same as input in such an equation.
- Example 4: How many self-dual functions can be made with 1 variable?
 - Total number of combinations: 2, ie A can be either 0 or 1
 - \circ Total number of Boolean functions: 4, ie 0,1,A or $ar{A}$
 - \circ Total number of self-dual functions: 2 (out of $0,A,\bar{A},1,$ only A,\bar{A} are self-dual)

A	f_1	f_2	f_3	f_4
0	0	0	1	1
1	0	1	0	1
Result	0	A	$ar{A}$	1

- Example 5: How many self-dual functions can be made with 2 variables?
 - Total number of combinations: 4, ie A can be either 0 or 1 & B can also be either 0 or 1
 - Total number of Boolean functions: 16.
 - \circ Total number of self-dual functions: **4**, ie only A, \bar{A}, B, \bar{B} are self-dual out of all functions.

A	В	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}
0	0	0	0	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	1	1	0	0	1	1	0	0	1
1	1	0	1	0	1	0	1	0	1	0	1	0

K-Map

• aka Karnaugh Map

- A K-Map is used to graphically represent & minimize boolean expressions.
- For a boolean expression of n variables, number of cells needed in K-Map is 2^n .
- K-Map is based on Grey code (unit distance code). We can't change more than 1 bit in a single step.
- Prime Implicants: Min-terms which have a 1 in them.
- **Essential Prime Implicants**: Min-terms which have a 1 in them, which is also not shared with other pairs.
- There are 3 types of input values, 0, 1, d,x (don't care).
- Steps:
 - i. We generate the K-Map.
 - ii. We find the pairs. They contain 1 mandatorily. We may take d ie don't care if needed, otherwise we ignore them. While pairing elements, we first try to find the biggest pair possible (16 elements in a K-Map of 16 elements). Then, we gradually decrease the pair size.
 - iii. We find the min-terms. Min-terms consist of variables which are same/common for all elements of the pair.
- Example: Generate a K-Map for (A,B,C) & (A,B,C,D)
 - Detailed versions (the cell values denote the decimel representation of the positions):
 - 2 variables, *AB*:

$\downarrow A \mid B \rightarrow$	$ar{B}_{(0)}$	$B_{(1)}$
$ar{A}_{(0)}$	$0_{(00)}$	$1_{(01)}$
$A_{(1)}$	$2_{(10)}$	$3_{(11)}$

■ 3 variables, *ABC*:

$\downarrow A \mid BC \rightarrow$	$ar{B}ar{C}_{(00)}$	$ar{B}C_{(01)}$	$BC_{(11)}$	$Bar{C}_{(10)}$
$ar{A}_{(0)}$	$0_{(000)}$	$1_{(001)}$	$3_{(011)}$	$2_{(010)}$

$\downarrow A \mid BC \rightarrow$	$ar{B}ar{C}_{(00)}$	$ar{B}C_{(01)}$	$BC_{(11)}$	$Bar{C}_{(10)}$
$A_{(1)}$	$4_{(100)}$	$5_{(101)}$	$7_{(111)}$	$6_{(110)}$

lacktriangle 4 variables, ABCD:

$\downarrow AB \mid CD \rightarrow$	$ar{C}ar{D}_{(00)}$	$ar{C}D_{(01)}$	$CD_{(11)}$	$Car{D}_{(10)}$
$ar{A}ar{B}_{(00)}$	$0_{(0000)}$	$1_{(0001)}$	$3_{(0011)}$	$2_{(0010)}$
$ar{A}B_{(01)}$	$4_{(0100)}$	$5_{(0101)}$	$7_{(0111)}$	$6_{(0110)}$
$AB_{(11)}$	$12_{(1100)}$	$13_{(1101)}$	$15_{(1111)}$	14 ₍₁₁₁₀₎
$Aar{B}_{(10)}$	$8_{(1000)}$	$9_{(1001)}$	$11_{(1011)}$	$10_{(1010)}$

o Simplified versions & templates:

lacksquare 2 variables, AB:

$\downarrow A \mid B \rightarrow$	$ar{B}$	B
$ar{A}$	$null_{(0)}$	$null_{(1)}$
A	$null_{(2)}$	$null_{(3)}$

lacksquare 3 variables, ABC:

$\downarrow A \mid BC \rightarrow$	$ar{B}ar{C}$	$ar{B}C$	BC	$Bar{C}$
$ar{A}$	$null_{(0)}$	$null_{(1)}$	$null_{(3)}$	$null_{(2)}$
A	$null_{(4)}$	$null_{(5)}$	$null_{(7)}$	$null_{(6)}$

■ 4 variables, ABCD:

$\downarrow AB \mid CD ightarrow$	$ar{C}ar{D}_{(00)}$	$ar{C}D_{(01)}$	$CD_{(11)}$	$Car{D}_{(10)}$
$ar{A}ar{B}_{(00)}$	$null_{(0)}$	$null_{(1)}$	$null_{(3)}$	$null_{(2)}$
$ar{A}B_{(01)}$	$null_{(4)}$	$null_{(5)}$	$null_{(7)}$	$null_{(6)}$
$AB_{(11)}$	$null_{(12)}$	$null_{(13)}$	$null_{(15)}$	$null_{(14)}$

$\downarrow AB \mid CD \rightarrow$	$ar{C}ar{D}_{(00)}$	$ar{C}D_{(01)}$	$CD_{(11)}$	$Car{D}_{(10)}$
$Aar{B}_{(10)}$	$null_{(8)}$	$null_{(9)}$	$null_{(11)}$	$null_{(10)}$

- ullet Example 1: $f(A,B)=\sum (2,3)$
 - Method 1, by directly solving the equation:

A	В	f
0	0	0
0	1	0
1	0	1
1	1	1

- ullet As per the question, f=1 for index 2 & 3 (within 0-3).
- ullet The resultant equation is: $Aar{B}+AB=A(ar{B}+B)=A.1=A$
- Method 2, using K-Map:

null	$ar{B}$	B
$ar{A}$	$0_{(0)}$	$0_{(1)}$
\boldsymbol{A}	$1_{(2)}$	$1_{(3)}$

- Pair: (2) & (3). Output: *A*
- ullet Example 2: $\sum m(0,2,5,7,9,11) + d(3,8,10,12,14)$

$\downarrow PQ \mid RS ightarrow$	$ar{R}ar{S}_{(00)}$	$ar{R}S_{(01)}$	$RS_{(11)}$	$Rar{S}_{(10)}$
$ar{P}ar{Q}_{(00)}$	$1_{(0)}$	$null_{(1)}$	$d_{(3)}$	$1_{(2)}$
$ar{P}Q_{(01)}$	$null_{(4)}$	$1_{(5)}$	$1_{(7)}$	$null_{(6)}$
$PQ_{(11)}$	$d_{(12)}$	$null_{(13)}$	$null_{(15)}$	$d_{(14)}$
$Par{Q}_{(10)}$	$d_{(8)}$	$1_{(9)}$	1 ₍₁₁₎	$d_{(10)}$

- \circ Pairs: $\{8,9,11,10\}, \{0,2,8,10\}, \{5,7\}$
- \circ Min-Terms: **4** ie $Par{Q}, ar{Q}ar{S}, ar{P}QS, ar{P}ar{Q}ar{S}$

 \circ Essential Prime Implicants: **3** ie $Par{Q}, ar{Q}ar{S}, ar{P}QS$

 \bullet Example 3: $\sum m(5,11,13,14,15)$

$\downarrow AB \mid CD ightarrow$	$ar{C}ar{D}_{(00)}$	$ar{C}D_{(01)}$	$CD_{(11)}$	$Car{D}_{(10)}$
$ar{A}ar{B}_{(00)}$	$null_{(0)}$	$null_{(1)}$	$null_{(3)}$	$null_{(2)}$
$ar{A}B_{(01)}$	$null_{(4)}$	$1_{(5)}$	$null_{(7)}$	$null_{(6)}$
$AB_{(11)}$	$null_{(12)}$	$1_{(13)}$	$1_{(15)}$	1 ₍₁₄₎
$Aar{B}_{(10)}$	$null_{(8)}$	$null_{(9)}$	1 ₍₁₁₎	$null_{(10)}$

 \circ Pairs: $\{5,13\},\{13,15\},\{15,14\},\{15,11\}$

 \circ Prime Implicants: **4** ie $Bar{C}D,ABD,ABC,ACD$

 \circ Essential Prime Implicants: **3** ie $Bar{C}D,ABC,ACD$

Digital Logic Circuits

Half-Adder

Adds 2 bits

• Inputs: 2 | Outputs: 2

 \bullet Sum (Least Significant Bit [LSB]): $x \oplus y$

ullet Carry (Most Significant Bit [MSB]): xy

• Truth Table:

X	Y	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

• Min-terms:

 \circ Sum: $ar{x}y, xar{y} = x \oplus y$

 \circ Carry: xy

• Circuit Diagram:

 \circ Sum: $ar{x}y, xar{y}$ | Carry: xy

 \circ Sum: $x \oplus y$ | Carry: xy

Full-Adder

• Adds 3 bits

• Inputs: 3 | Outputs: 2

• 2 Half-Adders = Full-Adder

 $\bullet \; \operatorname{Sum}: x \oplus y \oplus z$

ullet Carry: $xy+yz+zx=(x\oplus y)z+xy$

• Truth Table:

X	y	z (c_{in})	sum	c_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

• Min-Terms:

 \circ Sum: $\sum \left(m_1,m_2,m_4,m_7
ight)=x\oplus y\oplus z$

$\downarrow A \mid BC \rightarrow$	$ar{B}ar{C}$	$ar{B}C$	BC	$Bar{C}$
$ar{A}$	$null_{(0)}$	$1_{(1)}$	$null_{(3)}$	$1_{(2)}$
A	$1_{(4)}$	$null_{(5)}$	$1_{(7)}$	$null_{(6)}$

No pairs possible

 \circ Carry: $\sum{(m_3,m_5,m_6,m_7)}=xy+yz+xz=(x\oplus y)z+xy$

$\downarrow A \mid BC \rightarrow$	$ar{B}ar{C}$	$ar{B}C$	BC	$Bar{C}$
$ar{A}$	$null_{(0)}$	$null_{(1)}$	$1_{(3)}$	$null_{(2)}$
A	$null_{(4)}$	$1_{(5)}$	$1_{(7)}$	$1_{(6)}$

ullet Pairs: BC,AC,AB=xy+yz+xz

• Circuit Diagram:

 \circ Sum: $x \oplus y \oplus z$ | Carry: $(x \oplus y)z + xy$

