Discrete Methods in Mathematical Informatics

Kunihiko Sadakane The University of Tokyo

http://researchmap.jp/sada/resources/

Problems in Handling Big Data

- Data size (n) is huge
 - human genome: n = 3G (three billion)
 - Web pages: n > 10G
- Data do not fit in the main memory of computers
 - parallel/distributed algorithms
 - streaming algorithms
 - data compression

Problems in Data Compression

- Conventional data compression algorithms are not suitable for data processing
 - slow partial decompression
 - not searchable

Succinct Data Structures

Examples of Succinct Data Structures

- String index
 - Suffix array of 100GB text: 680GB→22GB
- Genome assembly
 - Human genome: 300GB→2.5GB
- Road networks
 - Positional data of all roads in Japan: 1.7GB→170MB

Succinct data structures = Succinct representation of data

+ Succinct index

- A representation of data whose size (roughly) matches the information-theoretic lower bound
- If the input is taken from L distinct ones, its information-theoretic lower bound is $\lceil \lg L \rceil$ bits
- Example 1: a lower bound for a set $S \subseteq \{1,2,...,n\}$ - $\lg 2^n = n$ bits

$$\emptyset$$
{1} {2} {3} $n = 3$
{1,2} {1,3} {2,3}
{1,2,3}

• Example 2: *n* node ordered tree

$$\lg \frac{1}{2n-1} \binom{2n-1}{n-1} = 2n - \Theta(\lg n) \text{ bits}$$

- Example 3: length-*n* string
 - $-n \lg \sigma$ bits (σ : alphabet size)

- For any data, there exists its succinct representation
 - enumerate all in some order, and assign codes
 - can be represented in $\lceil \lg L \rceil$ bits
 - not clear if it supports efficient queries
- Query time depends on how data are represented
 - necessary to use appropriate representations

$$n = 4 \qquad \left| \lg \frac{1}{2n-1} \binom{2n-1}{n-1} \right| = \left\lceil \lg 5 \right\rceil = 3 \text{ bits}$$

$$000 \qquad 001 \qquad 010 \qquad 011 \qquad 100$$

Succinct Indexes

- Auxiliary data structure to support queries
- Size: $o(\lg L)$ bits
- (Almost) the same time complexity as using conventional data structures
- Computation model: word RAM
 - assume word length $w = \lg \lg L$ (same pointer size as conventional data structures)

word RAM

- word RAM with word length w bits supports
 - reading/writing w bits of memory at arbitrary address in constant time
 - arithmetic/logical operations on two w bits numbers are done in constant time
 - arithmetic ops.: +, –, *, /, lg (most significant bit)
 - logical ops.: and, or, not, shift
- These operations can be done in constant time using $O(w^{\varepsilon})$ bit tables ($\varepsilon > 0$ is an arbitrary constant)

Bit Vectors

- B: 0,1 vector of length n B[0]B[1]...B[n-1]
- lower bound of size = $\lg 2^n = n$ bits
- queries
 - rank(B, x): number of ones in B[0..x]=B[0]B[1]...B[x]
 - select(B, i): position of i-th 1 from the head ($i \ge 1$)
- basics of all succinct data structures
- naïve data structure
 - store all the answers in arrays
 - -2n words (2 n log n bits)
 - O(1) time queries

$$B = 1001010001000000$$

$$n = 16$$

Succinct Index for Rank:1

- Divide B into blocks of length $lg^2 n$
- Store rank(x)'s at block boundaries in array R

$$rank(x) = \sum_{i=1}^{x} B[i] = \sum_{i=1}^{\lfloor x/\lg^2 n \rfloor} B[i] + \sum_{i=\lfloor x/\lg^2 n \rfloor + 1}^{x} B[i]$$

$$R[x/\lg^2 n]$$

• Size of R

$$\frac{n}{\lg^2 n} \cdot \lg n = \frac{n}{\lg n} \quad \text{bits}$$

• rank(x): O(lg² n) time

Succinct Index for Rank:2

- Divide each block into small blocks of length $\frac{1}{2} \lg n$
- Store rank(x)'s at small block boundaries in R_2

$$rank(x) = \sum_{i=1}^{x} B[i] = \sum_{i=1}^{\lfloor x/\lg^2 n \rfloor} B[i] + \sum_{i=\lfloor x/\lg^2 n \rfloor+1}^{\lfloor x/\frac{1}{2}\lg n \rfloor} B[i] + \sum_{i=\lfloor x/\frac{1}{2}\lg n \rfloor+1}^{z} B[i]$$

 $R_1[x/\log^2 n]$ $R_2[x/\log n]$

• Size of
$$R_2$$

$$\frac{n}{\frac{1}{2} \lg n} \cdot \lg \left(\lg^2 n \right) = \frac{4n \lg \lg n}{\lg n}$$
 bits

• rank(x): O(lg n) time

Succinct Index for Rank:3

• Compute answers for all possible queries for small blocks in advance, and store them in a table x

$$\sum_{i=\lfloor x/\frac{1}{2}\lg n\rfloor+1}^{x} B[i]$$

All patterns of $\frac{x/\frac{1}{2} \lg n}{\lg n}$ bits

• Size of table

$$2^{\frac{1}{2}\lg n} \cdot \frac{1}{2}\lg n \cdot \lg\left(\frac{1}{2}\lg n\right)$$

$$= O\left(\sqrt{n} \lg n \lg \lg n\right)$$

$$= o\left(\frac{n \lg \lg n}{\lg n}\right)$$
 bits

	0	1	2
000	0	0	0
001	0	0	1
010	0	1	1
011	0	1	2
100	1	1	1
101	1	1	2
110	1	2	2
111	1	2	133

Theorem: Rank on a bit-vector of length n is computed in constant time on word RAM with word length $\Theta(\lg n)$ bits, using $n + O(n \lg \lg n / \lg n)$ bits.

Note: The size of table for computing rank inside a small block is $O(\sqrt{n} \lg n \lg \lg n)$ bits. This can be ignored theoretically (asymptotically), but not in practice.

Succinct Index for Select

- More difficult than rank
 - Let $i = q (\lg^2 n) + r (\frac{1}{2} \lg n) + s$
 - if i is multiple of $\lg^2 n$, store select(i) in S_1
 - if i is multiple of $\frac{1}{2}$ lg n, store select(i) in S_2
 - elements of S_2 may become $\Theta(n) \to \Theta(\lg n)$ bits are necessary to store them $\to \Theta(n)$ bits for the entire S_2
 - select can be computed by binary search using the index for rank, but it takes O(lg n) time
- Divide *B* into large blocks, each of which contains $\lg^2 n$ ones.
- Use one of two types of data structures for each large block

- If the length of a large block exceeds lg^c n
 - store positions of $\lg^2 n$ ones
 - $\lg^2 n \cdot \lg n = \lg^3 n$ bits for a large block
 - the number of such large blocks is at most $\frac{n}{\lg^c n}$

 - In total $\frac{n}{\lg^c n} \cdot \lg^3 n$ bits By letting c = 4, index size is $\frac{n}{\lg n}$ bits

- If the length m of a large block is at most lg^c n
 - devide it into small blocks of length $\frac{1}{2} \lg n$
 - construct a complete $\sqrt{\lg n}$ -ary tree storing small blocks in their leaves
 - each node of the tree stores the number of ones in the bit vector stored in descendants
 - number of ones in a large block is $lg^2 n$

- The height of the tree is O(c)
- Space for storing values in the nodes for a large block is $O\left(\frac{cm \lg \lg n}{\lg n}\right)$ bits
- Space for the whole vector is $O\left(\frac{cn \lg \lg n}{\lg n}\right)$ bits
- To compute *select*(*i*), search the tree from the root
 - the information about child nodes is represented in $\sqrt{\lg n} \cdot 2 \lg \lg n = O(\lg n)$ bits \rightarrow the child to visit is determined by a table lookup in constant time
- Search time is O(c), i.e., constant

Theorem (Data structure BV): rank and select on a bit-vector of length n is computed in constant time on word RAM with word length $\Theta(\lg n)$ bits, using $n+O(n \lg \lg n / \lg n)$ bits.

Note: *rank* inside a large block is computed using the index for *select* by traversing the tree from a leaf to the root and summing *rank* values.

Extension of Rank/Select (1)

- Queries on 0 bits
 - $rank_c(B, x)$: number of c in B[0..x] = B[0]B[1]...B[x]
 - $-select_c(B, i)$: position of *i*-th *c* in B ($i \ge 1$)
- from $rank_0(B, x) = (x+1) rank_1(B, x)$, $rank_0$ is done in O(1) using no additional index
- $select_0$ is not computed by the index for $select_1$ add a similar index to that for $select_1$

Extension of Rank/Select (2)

- Compression of sparse vectors
 - A 0,1 vector of length n, having m ones
 - lower bound of size $\left[\lg\binom{n}{m}\right] \approx m \lg \frac{n}{m} + (n-m) \lg \frac{n}{n-m}$
 - $-if m \ll n$

$$\left\lceil \lg \binom{n}{m} \right\rceil \approx m \lg \frac{n}{m} + 1.44m < n$$

- Operations to be supported
 - $rank_c(B, x)$: number of c in B[0..x] = B[0]B[1]...B[x]
 - $-select_c(B, i)$: position of *i*-th *c* in B ($i \ge 1$)

Entropy of String

Definition: order-0 entropy H_0 of string S

$$H_0(S) = \sum_{c \in A} p_c \lg \frac{1}{p_c}$$
 (p_c : probability of appearance of letter c)

Definition: order-*k* entropy

- assumption: Pr[S[i] = c] is determined from S[i-k..i-1] (context)

$$nH_k(S) = \sum_{s \in A^k} n_s \sum_{c \in A} p_{s,c} \lg \frac{1}{p_{s,c}}$$

- $-n_s$: the number of letters whose context is s
- $-p_{s,c}$: probability of appearing c in context s

• The information-theoretic lower bound for a sparse vector asymptotically matches the order-0 entropy of the vector

$$\left[\lg\binom{n}{m}\right] \approx m \lg \frac{n}{m} + (n-m) \lg \frac{n}{n-m}$$

$$= n \sum_{i} p_{i} \lg \frac{n}{p_{i}}$$

$$= nH_{0}(B)$$

Compressing Vectors (1)

- Divide vector into small blocks of length $l = \frac{1}{2} \lg n$
- Let m_i denote number of 1's in *i*-th_small_block B_i
 - a small block is represented in $\lg l + \left| \lg \binom{l}{m_i} \right|$ bits

#ones

#possible patterns with speficied #ones

Total space for all blocks is

$$\sum_{i=0}^{n/l} \left(\lg l + \left\lceil \lg \binom{l}{m_i} \right\rceil \right) \le \sum_{i=0}^{n/l} \left(\lg l + \lg \binom{l}{m_i} + 1 \right)$$

$$\le \lg \prod_{i=0}^{n/l} \binom{l}{m_i} + \frac{n}{l} (1 + \lg l)$$

$$\le \lg \binom{n}{m} + O\left(\frac{n \lg \lg n}{\lg n}\right)$$

- indexes for rank, select are the same as those for uncompressed vectors: $O(n \log \log n / \log n)$ bits
- numbers of 1's in small blocks are already stored in the index for *select*
- It is necessary to store pointers to small blocks. We use the following Theorem.

Theorem (Data structure TY): Let $z_1, z_2, ..., z_k$ be an integer sequence s.t. $|z_i| = n^{O(1)}$ and min $\{|z_i|, |z_i - z_{i-1}|\} = \text{polylog}(n)$. Then this sequence can be represented in $O(k \lg \lg n)$ bits and each z_i is obtained in constant time on $\Omega(\lg n)$ -bit word-RAM.

- let p_i denote the pointer to B_i
 - $-0=p_0 < p_1 < ... < p_{n/l} < n$ (less than n because compressed)
 - $-p_i p_{i-1} \le \frac{1}{2} \log n$
- We store p_i 's using the theorem. The space is $O(n/l \cdot \lg \lg n) = O(n \lg \lg n / \lg n)$ bits

Theorem (Data structure FID): A bit-vector of length *n* and *m* ones is stored in $\lg \binom{n}{m} + \Theta \left(\frac{n \lg \lg n}{\lg n} \right)$ bits, and $rank_0$, $rank_1$, $select_0$, $select_1$ are computed in O(1) time on word RAM with word length $\Theta(\lg n)$ bits. The data structure is constructed in O(n) time.

This data structure is called FID (fully indexable dictionary) (Raman, Raman, Rao 2005).

Note: if m << n, it happens $\lg \binom{n}{m} < \Theta \left(\frac{n \lg \lg n}{\lg n} \right)$, and the size of index for *rank/select* cannot be ignored. 27

Sparse Vectors

• Let B be a bit-vector of length n with m ones. The information-theoretic lower bound of the size of B is $\left[\ln \binom{n}{n} \right] \approx m \ln \frac{n}{n} + (n-m) \ln \frac{n}{n}$

of B is
$$\left[\lg \binom{n}{m}\right] \approx m \lg \frac{n}{m} + (n-m) \lg \frac{n}{n-m}$$

 $< m \lg \frac{n}{m} + m \lg e$

• On the other hand, the size of FID is

$$\lg\binom{n}{m} + \Theta\left(\frac{n \lg \lg n}{\lg n}\right)$$

• The second term is much larger than the lower bound if $m = o(n/\lg n)$.

Theorem (Data structure GV): For a bit-vector B of length $u = 2^w$ with n ones, $select_1(B, i)$ is computed in constant time using a data structure of $n(2 + w - \lfloor \lg n \rfloor) + O(\frac{n \lg \lg n}{\lg n})$ bits on $\Omega(\lg u)$ -bit word-RAM.

Proof: Let $0 \le p_1 < p_2 < ... < p_n < u$ be the positions of ones in B. Each p_i is a w-bit integer. Let q_i be its most significant (leftmost) $z = \lfloor \lg n \rfloor$ bits and r_i be the rest.

$$w=4$$
 $n=4$
 $z=2$
 p_i
 p_i

The lower part (r_i) is stored in an integer array L.

$$n(w-z) = n(w - \lfloor \lg n \rfloor)$$
 bits.

The upper part (q_i) is stored using a bit-vector H.

We encode $q_1,q_2-q_1,q_3-q_2,...,q_n-q_{n-1}$ by unary codes.

$$k \ge 0$$
 is represented by $0^k 1$.

It holds $q_i = select_1(H, i) - i$. By storing H using BV, q_i is computed in O(1) time. H has n many ones and at most $q_i \le n$ many zeros. Thus the size is at most $2n + O(n \lg \lg n / \lg n)$ bits.