	Document Number	Document Version	Document Classification			
Envicool	05130010	A/4	Internal Public			
Protocol Name	U3-EC MODBUS					

U3-EC MODBUS MODBUS

Contents

1 Description	1
2 Terminology	1
3 Physical interface	2
3.1 Serial communication interface electrical standard	2
3.2 Information transmission method	2
3.3 Data transfer rate	3
4 Physical layer communication	3
4.1 Basic process	3
5 Application layer command types and formats	3
5.1 Information frame format	3
5.2 CMD	4
5.3 Read command format	4
5.4 Write single register command format	5
5.5 Write multiple register command format	6
5.6 Error code definition	6
5.7 Interval time	8
6 CRC verify algorithm	9
6.1 CRC algorithm	9
7 Register list	11

Air conditioner and Host Computer Modbus Protocol

Description

This protocol describes the protocol for command control and data exchange between the

air conditioner and its dedicated upper computer monitoring module.

The functions stipulated in the protocol mainly include:

1) The host computer obtains the relevant information of the air conditioner by

sending read commands.

The host computer sets relevant parameters and action control by sending write

commands.

During the communication process, the host computer is the master node and exchanges

information through a question and answer method, various information and parameters

in the slave nodes use the target register as the storage address, and the master node

completes the read and write commands by accessing the registers. This protocol

supports the networking of one master node and multiple slave nodes. The slave nodes

are distinguished by addresses. The address setting range is 1-127. Different slave nodes

correspond to different addresses. Slave nodes with the same address cannot hang on

the same communication.

2 Terminology

Master node: background monitoring system.

Slave node: air conditioner controller.

RS485: A serial communication standard that supports half-duplex serial short-range

communication.

Read command: sent from the master node to the slave node, so that the slave node

returns the content of the corresponding register.

Write command: The master node packages related parameters and sends them to the slave node to complete the corresponding parameter settings.

Register address: Each signal and parameter of the slave node corresponds to a 2-byte address. The master node obtains related information or sets related parameters by accessing these registers. This address is called a register.

3 Physical interface

3.1 Serial communication interface electrical standard

The slave node communicates with the master node through the serial port in RS485 mode.

3.2 Information transmission method

Communication transmission adopts asynchronous mode, and the unit is byte frame (data frame). Each data frame passed between the master node and the slave node is an 11-bit serial data stream.

Data frame format:

Start bit	1 bit
Data bit	8 bits (Low position first, high position back)
Parity bit	None: This protocol does not use parity bits
Stop bit	1 bit (l.e., the actual parity bits forced high)

Reference

Timing diagram with parity bit:

Timing diagram without parity bit:

3.3 Data transfer rate

The default baud rate uses 19200bps

4 Physical layer communication

4.1 Basic process

After the slave node is powered on or reset, it can respond to the read and write commands of the master node after stable operation. After receiving the relevant command from the contact, the information required by the master node is returned under normal conditions, and the error code corresponding to the specific error type is returned under abnormal conditions.

5 Application layer command types and formats

When the communication command is sent to the instrument, the device that meets the corresponding address code receives the communication command, reads the information, and if there is no error, executes the corresponding task, and then returns the execution result to the sender. The returned information includes the address code, the function code to perform the action, the data after the action is performed, and the error check code (CRC). If an error occurs, no message is sent.

5.1 Information frame format

START	ADDR	CMD	DATA	CRC	END

Delay (>=3.5 character	1 byte	1 byte	N byte	2 byte	Delay(>=3.5
time)	8 bit	8 bit	N×8 bit	16 bit	character time)

Note 1: The maximum frame length is not greater than 255 bytes

Note2: CRC check code low byte first, high byte last

5.2 CMD

The function code (CMD) is the second data frame in the information frame transmitted with each communication. The communication ModBus protocol defines the function code as $1\sim127(01H\sim7FH)$. This protocol uses some of these function codes. It is sent as a master node request, and the slave node is informed by a function code what action to perform. As a slave node response, the function code sent by the slave node is the same as the function code sent by the master node, and indicates that the slave node has responded to the master node to perform the operation. If the most significant bit of the function code sent from the node is 1(CMD>127), It means that the slave is not responding or has an error.

Command encoding	Meaning	Mark
0x03	Read command	Supports single/multiple register continuous reads
0x10	Write multiple register commands	Support multiple registers to write continuously
0x06	Write single register command	Support single registers to write continuously

5.3 Read command format

Note 3: MSB means high byte, LSB means low byte

Note 4: Each register stores two bytes. for register data of one byte, it is required to be stored in the low byte (LSB).

Master node sends frame format:

No.	0	1	2	3	4	5	6	7
Definition	ADDR	CMD	MSB	LSB	MSB	LSB	LSB	MSB
Explanatio	Controller	Command	Register start		Numl	per of		
n	address	type	address		regist	ters n		CRC verify

Normal response frame format from the slave node:

No.	0	1	2	3	4	5	6		L+1	L+2	L+3	L+4
				М	L	М	L					
Definition	ADDR	CMD	Length	S	S	S	S		MSB	LSB	LSB	MSB
				В	В	В	В					
			Number									
Explanation	Controller	Command	of sent	Firs	t	Sec	cond		The valu	e of the	CDC v	
	address	type	bytes L	regi	register		register		last regis	ster	CRC v	erily
			= n * 2									

Slave node abnormal response format:

No.	0	1	2	3	4
Definition	ADDR	CMD + 128	128 ErrCode LSB		MSB
Explanation	Controller address	Command type +128	Error Code	CRC verify	

5.4 Write single register command format

Master node sends frame format:

No.	0	1	2	3	4	5	6	7
Definition	ADDR	CMD	MSB	LSB	MSB	LSB	LSB	MSB
Evolunation	Controller	Command	Register					
Explanation	address	type	address			ATA	С	RC verify

Normal response frame format from the slave node:

No.	1	2	3	4	5	6	7
Definition	CMD	MSB	LSB	MSB	LSB	LSB	MSB
Explanation	Controller address	Comm	and type	Register address		CRC v	erify

Slave node abnormal response format:

No.	0	1	2	3	4
Definition	ADDR	CMD +128	ErrCode	LSB	MSB
Cyplonation	Controller				
Explanation	address	Command type +128	Error Code	CRC	verify

5.5 Write multiple register command format

Master node sends frame format:

No.	0	1	2	3	4	5	6	7	8	9	10		L+ 5	L+6	L+ 7	L+ 8
Definiti	ADD	СМ	М					М								М
			S	LS	MS	LS		S	LS	MS	LS		MS	LS	LS	s
on	R	D	В	В	В	В	Length	В	В	В	В		В	В	В	В
	Contr	Со	Cto	~ +	Num	ber	Number						The			
Explan	oller	mm	Star		of		of sent	Firs	st	Seco	ond		value	e of	CRC	;
ation	addre	and	regi		regis	ters	bytes L =	reg	ister	regis	ter	•••	the la	ast	verif	y
	SS	type	add	ress	n		n * 2						regis	ter		

Normal response frame format from the slave node:

No.	0	1	2	3	4	5	6	7
Definition	ADDR	CMD	MSB	LSB	MSB	LSB	LSB	MSB
Explanatio n	Controller address	Command type	Start register address		Number of	registers	CRC ver	ify

Slave node abnormal response format:

No.	0	1	2	3	4
Definition	ADDR	CMD +128	ErrCode	LSB	MSB
Explanation	Controller address	Command type +128	Error Code	CRC verify	

Note: The CRC check range is the check of all bytes before the CRC field.

5.6 Error code definition

When the slave device sends a request to the master node device, the slave node

expects a normal response. One of the following four possible events occurs in the query from the master node:

- 1) If the slave device receives a request without communication errors and can process the query normally, the slave device will return a normal response.
- 2) If the slave node does not receive the request due to a communication error, the response cannot be returned. The master node program will eventually process the timeout status of the request.
- 3) If the slave receives the request, but detects a communication error (parity, LRC, CRC, ...), then the response cannot be returned. The master node program will eventually process the timeout status of the request.
- 4) If the slave receives a request without communication errors, but cannot process the request (for example, if the request reads a non-existent output or register), the slave will return an exception response to notify the user of the nature of the error.

The abnormal response message has two fields that are different from the normal response:

Function code field: In normal response, the slave node uses the response function code field to respond to the originally requested function code. The most significant bit (MSB) of all function codes is 0 (their values are all lower than 128). In the abnormal response in the slave node, the MSB of the function code is set to 1. This makes the function code value in the abnormal response higher than the function code value in the normal response by 128.

By setting the MSB of the function code, the application of the master node can identify the abnormal response and can detect the data field of the abnormal code.

Data domain: In the normal response, the slave node can return data or statistics table (any message required in the request) in the data domain. In the exception response, the slave node returns the exception code in the data domain. This defines the occurrence of

an exception Status of the slave node.

MODBUS Error code:

Error code name	Description
01 Illegal Function Code	For the slave node, the function code received in the query is an inadmissible operation. This may be because the function code is only applicable to new equipment and is not achievable in the selected unit. It also indicates that the slave node is in an error state. This kind of request is handled in, for example, because it is unconfigured and requires the return of register values.
02 Illegal data address	For slave nodes, the data address received in the query is an unallowable address. In particular, the combination of the reference number and the transmission length is invalid. For a controller with 100 registers, it has an offset Requests with 96 and length 4 will succeed, and requests with offset 96 and length 5 will generate exception code 02.
03 Illegal data value	For slave nodes, the value included in the query is an unallowable value. This value indicates a fault in the remaining structure of the combined request, for example: the implicit length is incorrect. It does not mean that because the MODBUS protocol does not know anything The significance of any special value of a special register. The data item in the register that is submitted for storage has a value that is not expected by the application.

5.7 Interval time

After sending data and receiving data, the pins may not switch when sending the next frame, so the unified sending and receiving interval is greater than 10ms and the timeout is greater than 500ms.

6 CRC verify algorithm

6.1 CRC algorithm

```
unsigned short count_CRC (unsigned char *addr, int num)
{
    unsigned short CRC = 0xFFFF.
    int i.
    while (num--)
    {
        CRC ^= *addr++.
        for (i = 0. i < 8. i++)
        {
            CRC = (CRC & 0x0001) ? ((CRC >> 1)^0xa001) : (CRC >> 1).
        }
    }
    return CRC.
}
```

7 Register List:

The protocol is normal modbus communication protocol

- **1.** Each register deposit two bytes.
- 2. Data transmission mode: high byte in the front, and the low byte.

NO.	Item	unit	Register Address	Attribute (Read/Write)	Ratio	Remark			
Versio	Version Information								
1	Software version		0x0000	Read Only	x1				
Running Status (0:Stop,1:Running, 2:Invalid)									
1	Unit running status		0x0100	Read Only	x1				
2	Internal fan status		0x0101	Read Only	x1				
3	External fan status		0x0102	Read Only	x1				
4	Compressor status		0x0103	Read Only	x1				
5	Heater status		0x0104	Read Only	x1				
6	Emergency fan status		0x0105	Read Only	x1				
	or Status(The invalid value of nidity is 32767.)	Temp.	is 2000. The invalid	value of humidity	is 120. T	he invalid value			
1	Evaporator Temp.	\mathbb{C}	0x0500	Read Only	x 10				
2	Outdoor Temp.	\mathbb{C}	0x0501	Read Only	x 10				
3	Condenser Temp.	$^{\circ}$	0x0502	Read Only	x 10				
4	Indoor Temp.	$^{\circ}$	0x0503	Read Only	x 10				
5	Humidity	%	0x0504	Read Only	x 1				
6	Discharge Temp.	$^{\circ}$	0x0505	Read Only	x 10				
7	AC running current	Α	0x0506	Read Only	x 1000				
8	AC input voltage	٧	0x0507	Read Only	x 1				
9	DC input voltage	V	0x0508	Read Only	x 10				
Alarm	Status (Normal:0, Fault:1)					'			

1	High Temp. alarm	0x0600	Read Only	x1	Indoor temp is higher than the high temp setting point
2	Low Temp. alarm	0x0601	Read Only	x1	Indoor temp is lower than the low temp setting point
3	High humidity alarm	0x0602	Read Only	x1	NA
4	Low humidity alarm	0x0603	Read Only	x1	NA
5	Coil freeze protection	0x0604	Read Only	x1	The evaporator coil temp is lower than the coil temp setting point (the default setting is 0°C)
6	High exhaust Temp. alarm	0x0605	Read Only	x1	NA
7	Evaporator Temp. sensor failure	0x0606	Read Only	x1	Coil temp sensor failed
8	Outdoor Temp. sensor failure	0x0607	Read Only	x1	NA
9	Condenser Temp. sensor failure	0x0608	Read Only	x1	Condenser Temp. Sensor failed
10	Indoor Temp. sensor failure	0x0609	Read Only	x1	Indoor Temp. sensor failure
11	Exhaust Temp. sensor failure	0x060A	Read Only	x1	NA
12	Humidity sensor failure	0x060B	Read Only	x1	NA
13	Internal fan failure alarm	0x060C	Read Only	x1	NA
14	External fan failure alarm	0x060D	Read Only	x1	NA
15	Compressor failure alarm	0x060E	Read Only	x1	NA
16	Heater failure alarm	0x060F	Read Only	x1	NA
17	Emergency fan failure alarm	0x0610	Read Only	x1	NA
18	HP. alarm	0x0611	Read Only	x1	The refrigeration system pressure is exceeding the set pressure of the system
19	LP. alarm	0x0612	Read Only	x1	NA
20	Water alarm	0x0613	Read Only	x1	NA

21	Fire alarm	0x0614	Read Only	x1	NA
22	Gating alarm	0x0615	Read Only	x1	NA
23	HP. lock	0x0616	Read Only	x1	System high- pressure alarms for more than 5 times will produce high- pressure lockout
24	LP. lock	0x0617	Read Only	x1	NA
25	High exhaust Temp. lock	0x0618	Read Only	x1	NA
26	AC over voltage alarm	0x0619	Read Only	x1	The current detection voltage is higher than the AC voltage point (internal parameters are generally set to 256V)
27	AC under voltage alarm	0x061A	Read Only	х1	The current detection voltage is lower than the AC voltage point (internal parameters are generally set to 187V)

28	AC power supply failure		0x061B	Read Only	x1	The alarm generated after the unit is powered off
29	Lose phase alarm		0x061C	Read Only	x1	NA
30	Freq.fault		0x061D	Read Only	x1	NA
31	Anti phase alarm		0x061E	Read Only	x1	NA
32	DC over voltage alarm		0x061F	Read Only	x1	NA
33	DC under voltage alarm		0x0620	Read Only	x1	NA
Parar	neter Setting					
1	Refrigeration stop point	℃	0x0700	Read/Write	x1	15~50℃
2	Refrigeration band	$^{\circ}$	0x0701	Read/Write	x1	1~10℃
3	Heating stop point	$^{\circ}$	0x0702	Read/Write	x1	-15~15℃
4	Heating band	$^{\circ}$	0x0703	Read/Write	x1	1~10℃
5	Reserve		0x0704			
6	Reserve		0x0705			
7	High Temp.point	°C	0x0706	Read/Write	x1	25~80℃
8	Low Temp. point	°C	0x0707	Read/Write	x1	-20~15℃
9	High humidity point	%	0x0708	Read/Write	x1	0~100%
10	Internal fan stop point	$^{\circ}$	0x070A	Read/Write	x1	-20~50℃
Remo	te Control Parameter					
1	Reserve		0x0800			
2	Remote control		0x0801	Read/Write		1 : Open,
						0 : Close
						0:9600,
3	Baudrate		0x0766	Read/Write		
						1:14400,
						2:19200

For example:

(1) Read the value of a single register-Software

version: Send command: 01 03 00 00 00 01

84 0A

Return instruction: 01 03 02 02 10 B8

E8 Parsing instructions: 01 ADDR

03 CMD 02 Length 02 10 Data B8 E8 CRC

②Read the value of multiple registers-Coil temperature-outdoor temperature-

Condensation temperature:

Send command: 01 03 05 01 00 03 54 C7

Return instruction: 01 03 06 01 1F 01 16 01 12

D4 C3 Parsing instructions:

01 ADDR 03 CMD 06 Length

01 1F Data:Coil temperature,Decimal 287 \to 28.7 $^{\circ}$ C 01 16 Data:outdoor temperature,Decimal 278 \to 27.8 $^{\circ}$ C

01 12 Data: Condensation temperature, Decimal

274→27.4°C D4 C3 CRC

③Write Single Register-Refrigeration point

30°C: Send command: 01 06 07 00 01

2C 88 F3

Return instruction: 01 06 07 00 01 2C

88 F3 Parsing instructions:

01 ADDR 06 CMD

07 00 Register address 01 2C Data : Decimal 300→30°C 88 F3 CRC

④write the value of multiple registers-High Temp set point40 ℃-Low Temp set

point15℃ Send command : 01 10 07 06 00 02 04 01 90 00 96 D4 0A

Return instruction: 01 10 07 06 00 02

A0 BD Parsing instructions:

01 ADDR

10 CMD 07 06 Start register address 00 02 Register number A0 BD CRC