Suppose that Σ is a set of sentences such that at least one sentence from Σ is true in each \mathcal{L} -structure.

Required: Show that there exists finitely many $\sigma_1, ..., \sigma_n \in \Sigma$ such that the sentence $\sigma_1 \vee ... \vee \sigma_n$ is valid.

Proof. Assume for sake of contradiction that every finitely many $\sigma_1, ..., \sigma_n \in \Sigma$ is such that the corresponding sentence $\sigma_1 \vee ... \vee \sigma_n$ is not valid.

i.e. For every finite set of sentences $\sigma_1, ..., \sigma_n \in \Sigma$, there exists an \mathcal{L} -structure \mathfrak{A} such that $\mathfrak{A} \not\models (\sigma_1 \vee ... \vee \sigma_n)$.

Let $\sigma_1, ..., \sigma_n \in \Sigma$ be arbitrary, and let \mathfrak{A} be the corresponding structure such that $\mathfrak{A} \not\models (\sigma_1 \vee ... \vee \sigma_n)$.

It follows that,

$$\mathfrak{A} \not\models (\sigma_1 \lor \dots \lor \sigma_n) \Rightarrow \mathfrak{A} \models \neg(\sigma_1 \lor \dots \lor \sigma_n)$$
$$\Rightarrow \mathfrak{A} \models (\neg \sigma_1 \land \dots \land \neg \sigma_n)$$
$$\Rightarrow \mathfrak{A} \models \neg \sigma_1 \quad \text{and...and} \quad \mathfrak{A} \models \neg \sigma_n$$

Let $\Gamma_n = \{ \neg \sigma_1, ... \neg \sigma_n \}$. Clearly we have that $\mathfrak{A} \models \Gamma_n$ from the lines above.

Now, let $\Gamma = \{ \neg \sigma : \sigma \in \Sigma \}$. We have that $\forall n \in \mathbb{N}, \Gamma_n \subseteq \Gamma$ where Γ_n is a set containing any n sentences from Γ .

From the work above, we have shown that every Γ_n has some corresponding model \mathfrak{A} . Thus, every finite subset $\Gamma_n \subseteq \Gamma$ has a model. By the Compactness Theorem, this implies that Γ has a model.

i.e. there exists an \mathcal{L} -structure \mathfrak{B} such that $\mathfrak{B} \models \Gamma$.

But, this implies that $\mathfrak{B} \models \neg \sigma$ for each $\neg \sigma \in \Gamma$.

And this implies that $\mathfrak{B} \not\models \sigma$ for each $\sigma \in \Sigma$.

But, we supposed that there was at least one sentence in Σ that is true in each \mathcal{L} -structure.

But, there is no sentence in Σ that is true in \mathfrak{B} which is a contradiction.

This completes the proof, as required.

 \mathbf{a}

Required: Show that if α or β is a sentence, then the implication $\mathfrak{A} \models \alpha \vee \beta \Rightarrow (\mathfrak{A} \models \alpha)$ or $\mathfrak{A} \models \beta$ holds for all structures \mathfrak{A} .

Proof. Without loss of generality, assume that α is a sentence. The case when β is a sentence, and the case when both α , β are sentences are similar.

Fix a structure \mathfrak{A} . Let A be the universe of \mathfrak{A} .

If $\mathfrak{A} \not\models \alpha \vee \beta$, then we're done. So, assume that $\mathfrak{A} \models \alpha \vee \beta$.

Required to Prove: $(\mathfrak{A} \models \alpha \text{ or } \mathfrak{A} \models \beta)$

From assumption, we have that, $\mathfrak{A} \models \alpha \vee \beta[s]$, for all $s: Vars \to A$.

By definition, this implies that $\mathfrak{A} \models \alpha[s]$ or $\mathfrak{A} \models \beta[s]$, for all $s: Vars \to A$.

Since α is a sentence, there are no free variables in α , which means that $\alpha[s] \equiv \alpha[t]$, for all $s, t: Vars \to A$.

Thus, we have that $\mathfrak{A} \models \alpha[t]$ for all t or $\mathfrak{A} \models \beta[s]$ for all s.

Finally, by definition, we have that $(\mathfrak{A} \models \alpha \text{ or } \mathfrak{A} \models \beta)$, completing the proof, as required. \square

Note, the case where β is a sentence has the exact same proof as above, with the role of α and β reversed.

The case where both α and β are sentences is similar to the first two cases. However, since there are no free variables in α, β , we have that $\alpha[s] \equiv \alpha[t]$ and $\beta[s] \equiv \beta[u]$, for all $s, t, u : Vars \to A$.

b)

Required: Write down an example of formulas α and β such that $\mathfrak{A} \models \alpha \lor \beta \not\Rightarrow (\mathfrak{A} \models \alpha \text{ or } \mathfrak{A} \models \beta)$.

For simplicity, consider the language \mathcal{L} with a single 1-ary relation symbol P.

Consider the structure $\mathfrak{A} = (A, P)$ where $A = \{0, 1\}$ and $P^{\mathfrak{A}} = \{0\}$. i.e. only the element 0 stands in relation to P.

Define $\alpha :\equiv P(x)$ and $\beta :\equiv \neg P(x)$.

We will show that for our α, β , the hypothesis of the implication holds, but the conclusion does not.

We must show that for any variable assignment function $s: Vars \to A$, that $\mathfrak{A} \models \alpha \vee \beta[s]$ holds. i.e. that $(\mathfrak{A} \models \alpha[s] \text{ or } \mathfrak{A} \models \beta[s])$ holds.

There are only two possible variable assignment functions s. Either s(x) = 0 or s(x) = 1.

If s(x) = 0, then we have that $\mathfrak{A} \models \alpha[s]$ holds, which implies that $(\mathfrak{A} \models \alpha[s])$ or $\mathfrak{A} \models \beta[s]$ holds, which implies that $\mathfrak{A} \models \alpha \vee \beta[s]$ holds.

If s(x) = 1, then we have that $\mathfrak{A} \models \beta[s]$ holds, which implies that $(\mathfrak{A} \models \alpha[s])$ or $\mathfrak{A} \models \beta[s]$ holds, which implies that $\mathfrak{A} \models \alpha \vee \beta[s]$ holds.

However, we will show that the conclusion $(\mathfrak{A} \models \alpha \text{ or } \mathfrak{A} \models \beta)$ does not hold.

i.e. We will show that $(\mathfrak{A} \models \alpha[s_1] \text{ or } \mathfrak{A} \models \beta[s_2])$ does not hold for all $s_1, s_2 : Vars \to A$.

i.e. We will show that there exists $s_1, s_2 : Vars \to A$ such that $(\mathfrak{A} \not\models \alpha[s_1]$ and $\mathfrak{A} \not\models \beta[s_2])$.

If $s_1(x) = 1$, then $\mathfrak{A} \not\models \alpha[s_1]$.

If $s_2(x) = 0$, then $\mathfrak{A} \not\models \beta[s_2]$.

So there exists s_1, s_2 such that $(\mathfrak{A} \not\models \alpha[s_1]$ and $\mathfrak{A} \not\models \beta[s_2])$.

So we have shown that $(\mathfrak{A} \models \alpha \text{ or } \mathfrak{A} \models \beta)$ does not hold.

Therefore, we have proven that $\mathfrak{A} \models \alpha \lor \beta \not\Rightarrow (\mathfrak{A} \models \alpha \text{ or } \mathfrak{A} \models \beta)$ for our α and β .

a)

Required: Define an isomorphism i other than the identity map i(q) = q to show that $(\mathbb{Q}, 0, 1, <) \cong (\mathbb{Q}, 0, 1, <)$.

Let $i: \mathbb{Q} \to \mathbb{Q}$ be defined as

$$i(q) = \begin{cases} q & \text{if } q \ge 0\\ \frac{1}{2}q & \text{if } q < 0 \end{cases}$$

We will first show that i is injective and surjective, and thus bijective.

Injectivity: Assume i(q) = i(r), where $q, r \in \mathbb{Q}$. We have 2 cases.

Case 1: $q, r \ge 0$

$$i(q) = i(r)$$
$$q = q$$

Therefore, i is injective in case 1.

Case 2: q, r < 0

$$i(q) = i(r)$$
$$\frac{1}{2}q = \frac{1}{2}r$$
$$q = r$$

Therefore, i is injective in case 2.

Surjectivity: Let $r \in \mathbb{Q}$. We will show that always exists a $q \in \mathbb{Q}$ such that i(q) = r.

Case 1: For $r \ge 0$, let q = r. Clearly i(q) = i(r) = r.

Case 2: For r < 0, let q = 2r. Clearly $i(q) = i(2r) = \frac{1}{2}(2r) = r$.

Therefore, i is surjective.

Since i is injective and surjective, i is bijective.

Now, we will show that $(\mathbb{Q}, 0, 1, <) \cong (\mathbb{Q}, 0, 1, <)$ with isomorphism i.

For notation, call $\mathfrak{A} = (\mathbb{Q}, 0, 1, <)$. So we will show that $\mathfrak{A} \cong \mathfrak{A}$ with isomorphism i.

Constants 0 and 1

Clearly $i(0^{\mathfrak{A}}) = 0^{\mathfrak{A}}$ and $i(1^{\mathfrak{A}}) = 1^{\mathfrak{A}}$.

Relation <

We must now show that for all $x, y \in \mathbb{Q}$, we have $x <^{\mathfrak{A}} y$ if and only if $i(x) <^{\mathfrak{A}} i(y)$.

We will consider 3 cases, and for brevity, we will write < instead of $<^{\mathfrak{A}}$.

Case 1: $x, y \ge 0$

We have that x < y if and only if i(x) = x < y = i(y) is trivial as i is identity on this interval.

Case 2: x, y < 0

Clearly, x < y if and only if $i(x) = \frac{1}{2}x < \frac{1}{2}y = i(y)$ is trivial, as multiplying or dividing by 2, which is positive, does not affect linear ordering. So both directions hold.

Case 3: x < 0 and $y \ge 0$

Clearly, x < y always holds, and i(x) = x < 2y = i(y) trivially holds, since the value of a positive y is simply multiplied by a positive 2 when applying i, and thus linear order is still preserved.

We have checked all conditions of isomorphism.

Therefore, we have that $(\mathbb{Q}, 0, 1, <) \cong (\mathbb{Q}, 0, 1, <)$ with isomorphism i.

b)

There DOES NOT exist an isomorphism from $(\mathbb{Z}, 0, 1, <)$ to $(\mathbb{Q}, 0, 1, <)$ because there is no bijective function $i : \mathbb{Z} \to \mathbb{Q}$ that preserves order.

Assume for contradiction that there was an isomorphism i from $(\mathbb{Z}, 0, 1, <)$ to $(\mathbb{Q}, 0, 1, <)$.

For notation, call $\mathfrak{A} = (\mathbb{Z}, 0, 1, <)$ and $\mathfrak{B} = (\mathbb{Q}, 0, 1, <)$. Consider the < relation.

We must have that $0 < \mathfrak{A}$ 1 if and only if $i(0) < \mathfrak{B}$ i(1).

However, if $i(0) \in \mathbb{Q}$ and $i(1) \in \mathbb{Q}$, then clearly $\frac{i(0)+i(1)}{2} \in \mathbb{Q}$ since the rationals are dense.

And clearly $i(0) <^{\mathfrak{B}} \frac{i(0)+i(1)}{2} <^{\mathfrak{B}} i(1)$.

So there must be a $z \in \mathbb{Z}$ such that, $0 < \mathfrak{A} z < \mathfrak{A}$ 1 and $i(z) = \frac{i(0)+i(1)}{2}$.

But clearly there is no $z \in \mathbb{Z}$ such that $0 < ^{\mathfrak{A}} z < ^{\mathfrak{A}} 1$ since 0 and 1 are successive integers and the integers are not dense.

This is a contradiction.

Therefore, there is no isomorphism i from $(\mathbb{Z}, 0, 1, <)$ to $(\mathbb{Q}, 0, 1, <)$.

$\mathbf{c})$

There DOES NOT exist an isomorphism from $(\mathbb{Q}, 0, 1, <)$ to $(\mathbb{R}, 0, 1, <)$ because there is no bijective function $i : \mathbb{Q} \to \mathbb{R}$.

We know that for sets A and B, we have that |A| = |B| if and only if there exists a bijection $f: A \to B$.

But we know that $\aleph_0 = |\mathbb{Q}| < |\mathbb{R}| = c$ from basic results about cardinality of infinite sets.

So there is no bijective function $i: \mathbb{Q} \to \mathbb{R}$.

Therefore, there is no isomorphism from $(\mathbb{Q}, 0, 1, <)$ to $(\mathbb{R}, 0, 1, <)$.

Let \mathfrak{B} be any model of N.

Required: Show that \mathfrak{B} contains a substructure isomorphic to the natural numbers $\mathfrak{N} = (\mathbb{N}, 0, S, +, \cdot, E, <)$.

Let B be the universe of the model \mathfrak{B} .

Notation: $\bar{a} = \underbrace{SSS...S}_{aS's} 0$

By Lemma 2.8.4 part 2, we know that if $a \neq b$, then $N \vdash \bar{a} \neq \bar{b}$.

By Soundness Theorem, we have for $a \neq b, N \models \bar{a} \neq \bar{b}$. Since $\mathfrak{B} \models N$, we have for $a \neq b, \mathfrak{B} \models \bar{a} \neq \bar{b}$.

This implies that the universe B must contain infinitely many distinct elements such that,

 $\{0^{\mathfrak{B}}, S^{\mathfrak{B}}0^{\mathfrak{B}}, S^{\mathfrak{B}}S^{\mathfrak{B}}0^{\mathfrak{B}}, \ldots\} \subseteq B \text{ since } \neq \text{ is transitive.}$

Define $A = \{0^{\mathfrak{B}}, S^{\mathfrak{B}}0^{\mathfrak{B}}, S^{\mathfrak{B}}S^{\mathfrak{B}}0^{\mathfrak{B}}, ...\} \subseteq B$.

Define $\mathfrak{A} = (A, 0, S, +, \cdot, E, <)$ such that,

 $0^{\mathfrak{A}}=0^{\mathfrak{B}}$

 $S^{\mathfrak{A}} = S^{\mathfrak{B}}|_{A}$

 $+^{\mathfrak{A}} = +^{\mathfrak{B}}|_{A^2}$

 $\cdot^{\mathfrak{A}} = \cdot^{\mathfrak{B}}|_{A^2}$

 $E^{\mathfrak{A}} = E^{\mathfrak{B}}|_{A^2}$

 $<^{\mathfrak{A}} = <^{\mathfrak{B}} \cap A^2$

 ${\mathfrak A}$ is a substructure of ${\mathfrak B}$ by definition. i.e. ${\mathfrak A}\subseteq {\mathfrak B}$

We will now show that \mathfrak{A} is isomorphic to the natural numbers $\mathfrak{N} = (\mathbb{N}, 0, S, +, \cdot, E, <)$.

Define a bijective function $i: A \to \mathbb{N}$ by i(a) = n, where n is the number of $S^{\mathfrak{B}'}s$ in a.

For example, $S^{\mathfrak{B}}S^{\mathfrak{B}}0^{\mathfrak{B}} \mapsto 2$

We will show that i is surjective and injective, and thus, bijective.

Surjectivity: For each $n \in \mathbb{N}$, we can always choose $a = \underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{nS^{\mathfrak{B}}'s}0^{\mathfrak{B}}$ such that i(a) = n. Therefore, i is surjective.

Injectivity: Assume that i(a)=i(b). This implies that i(a)=i(b)=n, for some $n\in\mathbb{N}$. This implies that a and b both have n many $S^{\mathfrak{B}'}s$. Therefore, $a=b=\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{nS^{\mathfrak{B}'}s}0^{\mathfrak{B}}$.

Therefore i is injective.

Since i is surjective and injective, we have that i is bijective.

Now we have to check the remaining conditions for isomorphism between structures.

Constants 0

 $i(0^{\mathfrak{A}})=i(0^{\mathfrak{B}})=0^{\mathbb{N}}$. This completes the constant condition for isomorphism.

Let
$$\bar{x}, \bar{y} \in A$$
 be arbitrary, where $\bar{x} = \underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{xS^{\mathfrak{B}'s}}0^{\mathfrak{B}}$ and $\bar{y} = \underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{yS^{\mathfrak{B}'s}}0^{\mathfrak{B}}$ be arbitrary.

Note, for each of the below functions we will occasionally write $f^{\mathfrak{B}}|_{A}$ and $f^{\mathfrak{B}}|_{A^{2}}$ as simply $f^{\mathfrak{B}}$ for brevity. We will also implicitly be using axioms $N_{1} - N_{11}$.

Function S

$$i(S^{\mathfrak{A}}(\bar{x})) = i(S^{\mathfrak{B}}(\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{xS^{\mathfrak{B}'s}}0^{\mathfrak{B}})) = i(\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{(x+1)S^{\mathfrak{B}'s}}0^{\mathfrak{B}}) = (x+1)^{\mathbb{N}}$$

Also,

$$S^{\mathbb{N}}(i(\bar{x})) = S^{\mathbb{N}}(i(\underline{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{xS^{\mathfrak{B}}/s}0^{\mathfrak{B}})) = S^{\mathbb{N}}(x^{\mathbb{N}}) = (x+1)^{\mathbb{N}}$$

Function +

We will explicitly use Lemma 2.8.4 part 5, $N \vdash \bar{a} + \bar{b} = \overline{a+b}$ for $a,b \in \mathbb{N}$ in our structures with soundness.

$$i(\bar{x} + ^{\mathfrak{A}} \bar{y}) = i(\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{xS^{\mathfrak{B}'s}} 0^{\mathfrak{B}} + ^{\mathfrak{A}} \underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{yS^{\mathfrak{B}'s}} 0^{\mathfrak{B}})$$

$$= i(\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{xS^{\mathfrak{B}'s}} 0^{\mathfrak{B}} + ^{\mathfrak{B}} \underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{yS^{\mathfrak{B}'s}} 0^{\mathfrak{B}})$$

$$= i(\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{(x+y)S^{\mathfrak{B}'s}} 0^{\mathfrak{B}})$$

$$= (x+y)^{\mathbb{N}}$$

Also,

$$i(\bar{x}) +^{\mathbb{N}} i(\bar{y}) = i(\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{xS^{\mathfrak{B}'s}}0^{\mathfrak{B}}) +^{\mathbb{N}} i(\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{yS^{\mathfrak{B}'s}}0^{\mathfrak{B}})$$
$$= x^{\mathbb{N}} +^{\mathbb{N}} y^{\mathbb{N}}$$
$$= (x+y)^{\mathbb{N}}$$

Function ·

We will explicitly use Lemma 2.8.4 part 6, $N \vdash \bar{a} \cdot \bar{b} = \overline{a \cdot b}$ for $a, b \in \mathbb{N}$ in our structures with soundness.

$$i(\bar{x} \cdot^{\mathfrak{A}} \bar{y}) = i(\overline{x \cdot y})$$

$$= i(\underbrace{S^{\mathfrak{B}} ... S^{\mathfrak{B}}}_{x \cdot y S^{\mathfrak{B}'} s} 0^{\mathfrak{B}})$$

$$= (x \cdot y)^{\mathbb{N}}$$

Also,

$$i(\bar{x}) \cdot^{\mathbb{N}} i(\bar{y}) = i(\underbrace{S^{\mathfrak{B}} ... S^{\mathfrak{B}}}_{xS^{\mathfrak{B}'s}} 0^{\mathfrak{B}}) \cdot^{\mathbb{N}} i(\underbrace{S^{\mathfrak{B}} ... S^{\mathfrak{B}}}_{yS^{\mathfrak{B}'s}} 0^{\mathfrak{B}})$$
$$= x^{\mathbb{N}} \cdot^{\mathbb{N}} y^{\mathbb{N}}$$
$$= (x \cdot y)^{\mathbb{N}}$$

Function E

We will explicitly use Lemma 2.8.4 part 4, $N \vdash \bar{a}E\bar{b} = \overline{a^b}$ for $a,b \in \mathbb{N}$ in our structures with soundness.

$$i(\bar{x}E^{\mathfrak{A}}\bar{y}) = i(\bar{x}^{\bar{y}})$$

$$= i(\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{x^{y}S^{\mathfrak{B}'s}}0^{\mathfrak{B}})$$

$$= (x^{y})^{\mathbb{N}}$$

Also,

$$i(\bar{x})E^{\mathbb{N}}i(\bar{y}) = i(\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{xS^{\mathfrak{B}'s}}0^{\mathfrak{B}})E^{\mathbb{N}}(\underbrace{S^{\mathfrak{B}}...S^{\mathfrak{B}}}_{yS^{\mathfrak{B}'s}}0^{\mathfrak{B}})$$
$$= x^{\mathbb{N}}E^{\mathbb{N}}y^{\mathbb{N}}$$
$$= (x^{y})^{\mathbb{N}}$$

Relation <

We must have that $\bar{x} <^{\mathfrak{A}} \bar{y}$ if and only if $i(\bar{x}) <^{\mathbb{N}} i(\bar{y})$.

We will explicitly use Lemma 2.8.4 part 3, if a < b, then $N \vdash \bar{a} < \bar{b}$ in our structures with soundness.

- (\Rightarrow) This trivially holds since by definition, i outputs the number of $S^{\mathfrak{B}}$ in \bar{x} and \bar{y} , so linear order in $<^{\mathfrak{A}}$ is preserved in $<^{\mathbb{N}}$ when applying i.
- (\Leftarrow) Similarly, the reverse holds since if numbers a, b are such that $a^{\mathbb{N}} <^{\mathbb{N}} b^{\mathbb{N}}$, then clearly, the corresponding \bar{a}, \bar{b} such that $i(\bar{a}) = a$ and $i(\bar{b}) = b$ has $\bar{a} <^{\mathfrak{A}} \bar{b}$ by Lemma 2.8.4 since the number of $S^{\mathfrak{B}}$'s in \bar{a} is less than the number of $S^{\mathfrak{B}}$'s in \bar{b} .

Therefore, we have shown that i is indeed an isomorphism from the substructure $\mathfrak{A} \subseteq \mathfrak{B}$ to the natural numbers \mathfrak{N} , as required.

Therefore, we have shown that for any structure \mathfrak{B} of N, there exists a substructure $\mathfrak{A} \subseteq \mathfrak{B}$ that is isomorphic to \mathfrak{N} .

Required: Infinite Ramsey Theorem ⇒ Finite Ramsey Theorem

Proof. We will prove the contrapositive. Assume the negation of the Finite Ramsey Theorem.

Negation of Finite Ramsey Theorem: There exists $k \in \mathbb{N}$, such that for all $n \in \mathbb{N}$, every graph with at least n vertices, does not have a clique and does not have a co-clique of size k.

We will prove that this implies the negation of the Infinite Ramsey Theorem.

Negation of Infinite Ramsey Theorem: There exists an infinite graph with no infinite clique and no infinite co-clique.

Consider the language \mathcal{L} with a symmetric, anti-reflexive binary relation A that describes adjacency between vertices.

Symmetric: $(\forall x)(\forall y)(A(x,y) \to A(y,x))$ Anti-Reflexive: $(\forall x)(\neg A(x,x))$

Consider the following set of sentences Σ which contains 3 sentence schemas.

$$\Sigma = \begin{cases} (\exists x_1)...(\exists x_n)(\bigwedge_{1 \le i < j \le n} (x_i \ne x_j) & \text{for all } n \in \mathbb{N} \\ (\forall x_1)...(\forall x_n)(\bigvee_{1 \le i < j \le n} A(x_i, x_j)) & \text{for all } n \in \mathbb{N} \\ (\forall x_1)...(\forall x_n)(\bigvee_{1 \le i < j \le n} \neg A(x_i, x_j)) & \text{for all } n \in \mathbb{N} \end{cases}$$

The first sentence schema is to assert that there are infinitely many distinct vertices. Note, that \neq is symmetric. The second and third sentence schemas are to assert that there are no infinite co-cliques and no infinite cliques.

The set Σ is describes an infinite graph with no infinite cliques and no infinite co-cliques.

Consider any finite subset $\Sigma_0 \subseteq \Sigma$.

If Σ_0 contains sentences from the first sentence schema, then we can clearly construct a model with a sufficient number of finitely many distinct elements.

Since we assumed the negation of the Finite Ramsey Theorem, if Σ_0 contains sentences from the second or third sentence schemas, we know there is a finite model with sufficient number of elements, i.e. a graph with a sufficient number of finite vertices with no cliques or co-cliques that models the sentences in Σ_0 .

By the Compactness Theorem, since every finite $\Sigma_0 \subseteq \Sigma$ has a model, this implies that Σ also has a model, i.e. a graph that characterizes the sentences in Σ . Therefore there exists an infinite graph with no infinite clique and no infinite co-clique.