-.1. 解: $\overline{A \cup B}$ 表示选到二、三、四年级的女生, 其概率为 7/40.

2.
$$\mathbb{M}$$
: (1) $1 - C_{n-m}^4 / C_n^4$, (2) m/n .

3.
$$\#: (1)$$
 $X_4 \sim P(2), P(X_4 \ge 1) = 1 - P(X_4 = 0) = 1 - e^{-2}, (2)$ $\frac{P(X_2 = 0)P(Y_2 \ge 1)}{P(X_4 \ge 1)} = \frac{1}{1 + e}.$

4.
$$M: P(X+Y < 1.5) = 3/4, F(1.5, 0.5) = 1/4.$$

5.
$$\mathbb{M}$$
: (1) $\overline{X} \sim N(0, \sigma^2/4), P(|\overline{X}| > \sigma) = 2(1 - \Phi(2)) = 0.046$,

(2)
$$\frac{X_1}{\sigma} \sim N(0,1), \frac{X_2^2 + X_3^2 + X_4^2}{\sigma^2} \sim \chi^2(3)$$
, 且相互独立, $\frac{\sqrt{3}X_1}{\sqrt{X_2^2 + X_3^2 + X_4^2}} \sim t(3), \Rightarrow c = \sqrt{3}$.

二. 解:
$$X$$
的分布函数 $F(x) = \begin{cases} 1 - e^{-\frac{x}{2}}, x > 0, & y$ 的分布律 $P(Y=0)=0.6, P(Y=1)=0.4. \\ 0, & x \le 0. \end{cases}$

$$F_U(u) = P(U \le u) = P(\frac{1}{2}e^{-\frac{X}{2}} \le u)$$
, $\le u < 0$ $\exists u > 1/2$ $\exists u > 1/2$ $\exists u > 1/2$ $\exists u > 1/2$

$$\exists F_{U}(u) = P(\frac{1}{2}e^{-\frac{X}{2}} \le u) = P(X \ge -2\ln(2u)) = 2u \cdot \exists F_{U}(u) = \begin{cases} 0, & u < 0, \\ 2u, 0 \le u < \frac{1}{2}, \\ 1, & u \ge \frac{1}{2}. \end{cases}$$

根据全概率公式, $F_V(v) = P(X+Y \le v) = P(Y=0)P(X \le v) + P(Y=1)P(X \le v-1)$

$$= \begin{cases} 0, & v < 0, \\ 0.6(1 - e^{-\frac{v}{2}}), & 0 \le v < 1, \\ 1 - 0.6e^{-\frac{v}{2}} - 0.4e^{-\frac{v-1}{2}}, & v \ge 1. \end{cases}$$

所以,
$$\sum_{i=1}^{60} X_i$$
与 $\sum_{i=41}^{100} X_i$ 的相关系数为 $\frac{Cov(\sum_{i=1}^{60} X_i, \sum_{i=41}^{100} X_i)}{\sqrt{Var(\sum_{i=1}^{60} X_i)Var(\sum_{i=41}^{100} X_i)}} = \frac{1}{3}$;

(2)
$$P(X < 0.5) = \int_0^{0.5} 6x(1-x)dx = 0.5$$
, $Y \sim B(100, 0.5)$, 根据中心极限定理, $Y \sim N(50, 25)$,

$$P(Y > 45) \approx 1 - \Phi(-1) = \Phi(1) = 0.841$$
;

(3)
$$E(X) = \int_0^1 6x^2 (1-x) dx = 0.5, E(X^2) = \int_0^1 6x^3 (1-x) dx = 0.3, Var(X) = 0.05$$

根据中心极限定理
$$Z = X_1 + ... + X_{100}$$
 $\sim N(50, 5)$. 12分

四. 解: (1)
$$P(X+Y>1) = \int_{0.5}^{1} dy \int_{1-y}^{y} \frac{3y}{2} dx = \frac{5}{16}$$
,

(2) Y 的边际密度函数
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{-y}^{y} \frac{3y}{2} dx = 3y^2, 0 < y < 1, \\ 0, 其他. \end{cases}$$

当
$$0 < y < 1$$
 时, $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{2y}, -y < x < y, \\ 0, 其他. \end{cases}$ 为均匀分布密度函数,

所以
$$P(X > 0.2|Y = 0.5) = 0.3$$
;

(3) 计算得,
$$E(X)=0$$
, $E(XY)=0$,所以 $Cov(X,Y)=0$,因此 X 与 Y 不相关. 12分

五. 解: $X \sim N(5.25, 0.64)$, $Y \sim N(2.53, 0.25)$, $\rho = 0$.

(1)
$$X+Y \sim N(7.78, 0.89), \quad P(X+Y>7.5) = \Phi(0.2968);$$
 5 \implies

(2)
$$X-2Y \sim N(0.19, 1.64), P(X>2Y)=P(X-2Y>0)=\Phi(0.1484).$$
 10 $\%$

六. 解:(1)
$$f(x;3,\beta) = \begin{cases} 3x^2/\beta^3, & 0 < x < \beta, \\ 0, & 其他. \end{cases}$$
 $\mu_1 = E(X) = \int_0^\beta x \, 3x^2/\beta^3 \, dx = \frac{3\beta}{4}, \qquad \hat{\mu}_1 = \overline{X},$

所以, β 的矩估计量 $\hat{\beta} = \frac{4\overline{X}}{3}$; $E(\hat{\beta}) = \frac{4E(\overline{X})}{3} = \beta$, $\hat{\beta}$ 是 β 的无偏估计量;

7分

(2)
$$f(x;\alpha,3) = \begin{cases} \alpha x^{\alpha-1}/3^{\alpha}, & 0 < x < 3, \\ 0, & \text{ 其他.} \end{cases}$$

似然函数
$$L(\alpha) = \prod_{i=1}^{n} f(x_i; \alpha, 3) = \frac{\alpha^n (x_1 ... x_n)^{\alpha - 1}}{3^{n\alpha}}$$

对数似然函数 $l(\alpha) = n \ln \alpha + (\alpha - 1)(\ln x_1 + ... + \ln x_n) - n\alpha \ln 3$

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}l(\alpha) = \frac{n}{\alpha} + \ln x_1 + \dots + \ln x_n - n\ln 3 = 0$$

所以,
$$\alpha$$
的最大似然估计量 $\hat{\alpha} = \frac{-n}{\ln X_1 + ... + \ln X_n - n \ln 3} = \frac{-1}{\frac{1}{n} (\ln X_1 + ... + \ln X_n) - \ln 3}$;

根据辛钦大数定律, 当 $n \to +\infty$ 时, $\frac{1}{n}(\ln X_1 + ... + \ln X_n) \stackrel{P}{\to} E(\ln X)$,

$$E(\ln X) = \int_0^3 \ln x \, \alpha x^{\alpha - 1} / 3^{\alpha} \, dx = \int_{-\infty}^{t = \ln x} \alpha t e^{\alpha t} / 3^{\alpha} \, dt = \ln 3 - \frac{1}{\alpha},$$

所以
$$\hat{\alpha} = \frac{-1}{\frac{1}{n}(\ln X_1 + ... + \ln X_n) - \ln 3} \xrightarrow{P} \alpha$$
, $\hat{\alpha}$ 是 α 的相合(一致)估计量.

七. 解:根据题意,差值数据来自正态总体 $Z\sim N(\mu,\sigma^2)$,

要检验 $H_0: \mu \ge 1, H_1: \mu < 1$,

该检验的拒绝域为 $t = \frac{\overline{Z} - 1}{S_z / \sqrt{9}} \le -t_{0.05}(8)$,

计算得 $t = -1.98 < -t_{0.05}(8) = -1.86$,

落在拒绝域内, 所以拒绝原假设, 即认为培训后平均成绩提高不到1米.

10分