VT16 - EP2200

Project I - Error Control in Relay Networks Alexandros Filotheou 871108-5590, alefil@kth.se

Theoretic Analysis

1 AF relaying with end-to-end ARQ

For this queueing network, the different arrival rates for each relay station are:

$$\lambda_{2} = \lambda_{1}(1 - p_{e,1})$$

$$\lambda_{3} = \lambda_{2}(1 - p_{e,2}) = \lambda_{1}(1 - p_{e,1})(1 - p_{e,2})$$
...
$$\lambda_{r+1} = \lambda_{r}(1 - p_{e,r}) = \lambda_{1} \prod_{k=1}^{r} (1 - p_{e,k}), \text{ and, hence}$$

$$\lambda_{0} = \lambda_{1} \prod_{k=1}^{r+1} (1 - p_{e,k})$$

The success rate, or end-to-end probability of successful receipt of packets at the mobile station is hence

$$p_{s,e2e} = \prod_{k=1}^{r+1} (1 - p_{e,k})$$

and the end-to-end error probability is then

$$p_{e,e2e} = 1 - p_{s,e2e} = 1 - \prod_{k=1}^{r+1} (1 - p_{e,k})$$

Then, at the first relay station, the packet arrival rate is

$$\lambda_1 = \lambda + \lambda_0 = \lambda + \lambda_1 p_{e,e2e}$$

$$\lambda_1 (1 - p_{e,e2e}) = \lambda$$

$$\lambda_1 = \frac{\lambda}{1 - p_{e,e2e}}$$

$$\lambda_1 = \frac{\lambda}{1 - (1 - \prod_{k=1}^{r+1} (1 - p_{e,k}))}$$

$$\lambda_1 = \frac{\lambda}{\prod_{k=1}^{r+1} (1 - p_{e,k})}$$

Since there is no blocking of erroneous packets made in this queueing network, the arrival rate at every relay station and at the mobile station will be equal to $\lambda_i = \lambda_1$. The offered load at each relay station i and at the mobile station is then given by equations 1 and 2 respectively.

$$\rho_i^{AF} = \lambda_i \overline{x}_{AF} = \frac{\lambda_1}{\mu_{AF}} = \frac{\lambda}{\mu_{AF}} \prod_{k=1}^{r+1} (1 - p_{e,k})$$

$$\tag{1}$$

$$\rho^{MS} = \lambda_{r+1} \overline{x}_{MS} = \frac{\lambda_1}{\mu_{MS}} = \frac{\lambda}{\mu_{MS} \prod_{k=1}^{r+1} (1 - p_{e,k})}$$
(2)

With these pieces of information, we can derive the average number of packets in each queue, the average number of packets being serviced, and then, from Little's theorem, the average queueing delay.

The average number of packets in a queue of a M/M/1 system is $N_q = \frac{\rho^2}{1-\rho}$, hence the average number of packets in the queues of a relay station i and in the mobile station is given by equations 3 and 4 respectively.

$$N_{i,q}^{AF} = \frac{\lambda^2}{\mu_{AF} \prod_{k=1}^{r+1} (1 - p_{e,k}) \left(\mu_{AF} \prod_{k=1}^{r+1} (1 - p_{e,k}) - \lambda\right)}$$
(3)

$$N_q^{MS} = \frac{\lambda^2}{\mu_{MS} \prod_{k=1}^{r+1} (1 - p_{e,k}) \left(\mu_{MS} \prod_{k=1}^{r+1} (1 - p_{e,k}) - \lambda\right)}$$
(4)

The average number of packets under service at a relay station i and at the mobile station is given by equations 1 and 2 respectively.

From Little's theorem, the average queueing delay is $W = \frac{N_q}{\lambda}$. Equations 5 and 6 give the average queueing delay at a relay station i and at the mobile station respectively.

$$W_i^{AF} = \frac{\lambda}{\mu_{AF} \prod_{k=1}^{r+1} (1 - p_{e,k}) \left(\mu_{AF} \prod_{k=1}^{r+1} (1 - p_{e,k}) - \lambda\right)}$$
(5)

$$W^{MS} = \frac{\lambda}{\mu_{MS} \prod_{k=1}^{r+1} (1 - p_{e,k}) \left(\mu_{MS} \prod_{k=1}^{r+1} (1 - p_{e,k}) - \lambda\right)}$$
(6)

The average delay at a relay station i and at the mobile station is then the sum of the waiting time and the service time at that station:

$$T_i^{AF} = W_i^{AF} + \frac{1}{\mu_{AF}} = \frac{\prod_{k=1}^{r+1} (1 - p_{e,k})}{\mu_{AF} \prod_{k=1}^{r+1} (1 - p_{e,k}) - \lambda}$$
(7)

$$T^{MS} = W^{MS} + \frac{1}{\mu_{MS}} = \frac{\prod_{k=1}^{r+1} (1 - p_{e,k})}{\mu_{MS} \prod_{k=1}^{r+1} (1 - p_{e,k}) - \lambda}$$
(8)

The average end-to-end delay T is then the sum of all waiting and serving times, over r relay stations and at the mobile station.

$$T = r \cdot T_i^{AF} + T^{MS} = \frac{r \cdot \prod_{k=1}^{r+1} (1 - p_{e,k})}{\mu_{AF} \prod_{k=1}^{r+1} (1 - p_{e,k}) - \lambda} + \frac{\prod_{k=1}^{r+1} (1 - p_{e,k})}{\mu_{MS} \prod_{k=1}^{r+1} (1 - p_{e,k}) - \lambda}$$
(9)

- 2 DF relaying with end-to-end ARQ
- 3 DF relaying with hop-by-hop ARQ

Numerical Evaluation