What is Claimed Is:

1. A method of treating or preventing an autoimmune disease and/or one or more symptoms associated therewith, comprising the step of administering to a subject suffering from an autoimmune disease or at risk of developing an autoimmune disease an effective amount of a 2,4-pyrimidinediamine compound according to structural formula (I):

and salts, hydrates, solvates and N-oxides thereof, wherein:

 L^1 and L^2 are each, independently of one another, selected from the group consisting of a direct bond and a linker;

R² is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups;

R⁴ is selected from the group consisting of hydrogen, (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15

membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups;

R⁵ is selected from the group consisting of R⁶, (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C1-C4) alkanyl optionally substituted with one or more of the same or different R⁸ groups, (C2-C4) alkenyl optionally substituted with one or more of the same or different R⁸ groups and (C2-C4) alkynyl optionally substituted with one or more of the same or different R⁸ groups;

each R⁶ is independently selected from the group consisting of hydrogen, an electronegative group, -OR^d, -SR^d, (C1-C3) haloalkyloxy, (C1-C3) perhaloalkyloxy, -NR^cR^c, halogen, (C1-C3) haloalkyl, (C1-C3) perhaloalkyl, -CF₃, -CH₂CF₃, -CF₂CF₃, -CN, -NC, -OCN, -SCN, -NO, -NO₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c; -S(O)₂NR^cR^c, -OS(O)R^d, -OS(O)₂R^d, -OS(O)₂OR^d, -OS(O)NR^cR^c, -OS(O)₂NR^cR^c, -C(O)R^d, -C(O)OR^d, -C(O)NR^cR^c, -C(NH)NR^cR^c, -OC(O)R^d, -OC(O)OR^d, -SC(O)OR^d, -OC(O)NR^cR^c, -SC(O)NR^cR^c, -OC(NH)NR^cR^c, -SC(NH)NR^cR^c, -[NHC(O)]_nR^d, -[NHC(O)]_nOR^d, -[NHC(O)]_nNR^cR^c and -[NHC(NH)]_nNR^cR^c, (C5-C10) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups, 5-10 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups and 6-16 membered heteroarylalkyl optionally substituted with one or more of the same or different R⁸ groups and 6-16 membered heteroarylalkyl optionally substituted with one or more of the same or different R⁸ groups;

 R^8 is selected from the group consisting of R^a , R^b , R^a substituted with one or more of the same or different R^a or R^b , $-OR^a$ substituted with one or more of the same or different R^a or R^b , $-B(OR^a)_2$, $-B(NR^cR^c)_2$, $-(CH_2)_m-R^b$, $-(CHR^a)_m-R^b$, $-O-(CH_2)_m-R^b$, $-S-(CH_2)_m-R^b$, $-O-CHR^aR^b$, $-O-CR^a(R^b)_2$, $-O-(CHR^a)_m-R^b$, $-O-(CH_2)_m-CH[(CH_2)_mR^b]R^b$, $-S-(CHR^a)_m-R^b$, $-C(O)NH-(CH_2)_m-R^b$, $-O-(CH_2)_m-C(O)NH-(CH_2)_m-R^b$, $-S-(CH_2)_m-C(O)NH-(CH_2)_m-R^b$, $-O-(CHR^a)_m-C(O)NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$, and $-NH-(CH_2)_m-C(O)-NH-(CH_2)_m-R^b$;

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16)

arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, -OR^d, (C1-C3) haloalkyloxy, =S, -SR^d, =NR^d, =NOR^d, -NR^cR^c, halogen, -CF₃, -CN, -NC, -OCN, -SCN, -NO, -NO₂, =N₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c, -S(O)₂NR^cR^c, -OS(O)₂R^d, -OS(O)₂OR^d, -OS(O)₂NR^cR^c, -C(O)R^d, -C(O)OR^d, -C(O)NR^cR^c, -C(NH)NR^cR^c, -C(NR^a)NR^cR^c, -C(NOH)R^a, -C(NOH)NR^cR^c, -OC(O)R^d, -OC(O)OR^d, -OC(O)NR^cR^c, -OC(NR^a)NR^cR^c, -INHC(O)]_nR^d, -[NR^aC(O)]_nR^d, -[NHC(O)]_nNR^cR^c, -[NHC(O)]_nNR

each R^c is independently a protecting group or R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently an R^a ; each m is independently an integer from 1 to 3; and each n is independently an integer from 0 to 3, with the provisos that:

- (1) when L¹ is a direct bond and R⁶ is hydrogen, then R² is not 3,4,5-tri (C1-C6) alkoxyphenyl;
- (2) when L¹ and L² are each a direct bond, R² is a substituted phenyl and R⁶ is hydrogen, then R⁵ is other than cyano or -C(O)NHR, where R is hydrogen or (C1-C6) alkyl;
- (3) when L^1 and L^2 are each a direct bond and R^2 and R^4 are each independently a substituted or unsubstituted pyrrole or indole, then the R^2 and R^4 are attached to the remainder of the molecule *via* a ring carbon atom; and
 - (4) the compound is not a compound according to the formula:

wherein: R^e is (C1-C6) alkyl; R^f and R^g are each, independently of one another, a straight-chain or branched (C1-C6) alkyl which is optionally substituted with one or more of the same or different R^g groups; and R^g is as defined above.

2. The method of Claim 1 in which L^1 and L^2 are each, independently of one another, selected from the group consisting of a direct bond, (C1-C3) alkyldiyl optionally substituted with one or more of the same or different R^9 groups and 1-3 membered heteroalkyldiyl optionally substituted with one or more of the same or different R^9 groups, wherein:

R⁹ is selected from the group consisting of (C1-C3) alkyl, -OR^a, -C(O)OR^a, (C5-C10) aryl optionally substituted with one or more of the same or different halogens, phenyl optionally substituted with one or more of the same or different halogens, 5-10 membered heteroaryl optionally substituted with one or more of the same or different halogens and 6 membered heteroaryl optionally substituted with one or more of the same or different halogens; and

Ra is as defined in Claim 1.

- 3. The method of Claim 2 in which L^1 and L^2 are each, independently of one another, selected from the group consisting of methano, ethano and propano, each of which may be optionally monosubstituted with an R^9 group.
- 4. The method of Claim 3 in which the R⁹ group is selected from the group consisting of -OR^a, -C(O)OR^a, halophenyl and 4-halophenyl, wherein R^a is as defined in Claim 1.
 - 5. The method of Claim 1 in which R⁶ is hydrogen.

- 6. The method of Claim 1 or 5 in which R⁵ is selected from the group consisting of an electronegative group, halo, -F, -CN, -NO₂, -C(O)R^a, -C(O)OR^a, -C(O)CF₃, -C(O)OCF₃, (C1-C3) haloalkyl, (C1-C3) perhaloalkyl (C1-C3) haloalkoxy, (C1-C3) perhaloalkoxy, -OCF₃ and -CF₃.
 - 7. The method of Claim 1 in which at least one of L^1 or L^2 is a direct bond.
- 8. The method of Claim 1 in which the 2,4-pyrimidinediamine compound is a compound according to the structure (Ia):

$$R^5$$
 R^4
 N
 N
 N
 R^2

and salts, hydrates and solvates thereof, wherein R^2 , R^4 , R^5 and R^6 are as defined in Claim 1.

9. The method of Claim 8 in which R² is selected from the group consisting of phenyl, naphthyl, 5-10 membered heteroaryl, benzodioxanyl, 1,4-benzodioxan-(5 or 6)-yl, benzodioxolyl, 1,3-benzodioxol-(4 or 5)-yl, benzoxazinyl, 1,4-benzoxazin-(5,6,7 or 8)-yl, benzoxazolyl, 1,3-benzoxazol-(4,5,6 or 7)-yl, benzopyranyl, benzopyran-(5,6,7 or 8)-yl, benzotriazolyl, benzotrazol-(4,5,6 or 7)-yl, 1,4-benzoxazinyl-2-one, 1,4-benzoxazin-(5,6,7 or 8)-yl-3-one, 2H-1,4-benzoxazinyl-3(4H)-one, 2H-1,4-benzoxazin-(5,6,7 or 8)-yl-3(4H)-one, 2H-1,3-benzoxazinyl-2,4(3H)-dione, 2H-1,3-benzoxazin-(5,6,7 or 8)-yl-2,4(3H)-dione, benzoxazolyl-2-one, benzoxazol-(4,5,6 or 7)-yl-2-one, dihydrocoumarinyl, dihydrocoumarin-(5,6,7 or 8)-yl, 1,2-benzopyronyl, 1,2-benzopyron-(5,6,7 or 8)-yl, benzofuranyl, benzofuran-(4,5,6 or 7)-yl, benzo[b]furanyl, benzo[b]furan-(4,5,6 or 7)-yl, indolyl, indol-(4,5,6 or 7)-yl, pyrrolyl and pyrrol-(1 or 2)-yl, each of which may be optionally substituted with one or more of the same or different R⁸ groups, where R⁸ is as defined in Claim 1.

10. The method of Claim 8 in which R^2 and/or R^4 are each, independently of one another, an optionally substituted heteroaryl selected from the group consisting of:

wherein:

p is an integer from one to three;

each - - - independently represents a single bond or a double bond;

R³⁵ is hydrogen or R⁸, where R⁸ is as previously defined in Claim 1;

X is selected from the group consisting of CH, N and N-O;

each Y is independently selected from the group consisting of O, S and NH;

each Y¹ is independently selected from the group consisting of O, S, SO, SO₂,

SONR³⁶, NH and NR³⁷;

each Υ^2 is independently selected from the group consisting of CH, CH₂, O, S, N, NH and NR³⁷;

R³⁶ is hydrogen or alkyl;

R³⁷ is selected from the group consisting of hydrogen and a progroup, preferably hydrogen or a progroup selected from the group consisting of aryl, arylalkyl, heteroaryl, R^a, R^b-CR^aR^b-O-C(O)R⁸, -CR^aR^b-O-PO(OR⁸)₂, -CH₂-O-PO(OR⁸)₂, -CH₂-PO(OR⁸)₂, -C(O)-CR^aR^b-N(CH₃)₂, -C(O)CF₃ and -C(O)-NR⁸-C(O)R⁸:

R³⁸ is selected from the group consisting of alkyl and aryl;

A is selected from the group consisting of O, NH and NR³⁸;

 R^9 , R^{10} , R^{11} and R^{12} are each, independently of one another, selected from the group consisting of alkyl, alkoxy, halogen, haloalkoxy, aminoalkyl and hydroxyalkyl, or, alternatively, R^9 and R^{10} and/or R^{11} and R^{12} are taken together form a ketal;

each Z is selected from the group consisting of hydroxyl, alkoxy, aryloxy, ester, carbamate and sulfonyl;

Q is selected from the group consisting of –OH, OR^8 , – NR^cR^c , - NHR^{39} -C(O) R^8 , - NHR^{39} -C(O) OR^8 , - NR^{39} -CHR⁴⁰-R^b, - NR^{39} -(CH₂)_m-R^b and – NR^{39} -C(O)-CHR⁴⁰- NR^cR^c ;

R³⁹ and R⁴⁰ are each, independently of one another, selected from the group consisting of hydrogen, alkyl, aryl, alkylaryl;arylalkyl and NHR⁸; and

R^a, R^b and R^c are as previously defined in Claim 1.

- 11. The method of Claim 10 in which R² and R⁴ are the same.
- 12. The method of Claim 10 or 11 in which each R^{35} is independently selected from the group consisting of hydrogen, R^d , $-NR^cR^c$, $-(CH_2)_m-NR^cR^c$, $-C(O)NR^cR^c$, $-(CH_2)_m-C(O)NR^cR^c$, $-C(O)OR^d$, $-(CH_2)_m-C(O)OR^d$ and $-(CH_2)_m-OR^d$, where m, R^c and R^d are as defined in Claim 1.
 - 13. The method of Claim 12 in which each m is one.
- 14. The method of Claim 8 in which R² is an optionally substituted heteroaryl which is attached to the remainder of the molecule *via* a ring carbon atom.
- 15. The method of Claim 8 in which R⁴ is an optionally substituted heteroaryl which is attached to the remainder of the molecule *via* a ring carbon atom.

- 16. The method of Claim 8 in which R² and/or R⁴ are each, independently of one another, a phenyl optimally substituted with one, two or three R⁸ groups, where R⁸ is as defined in Claim 1.
- 17. The method of Claim 16 in which R² and R⁴ are each the same or different optionally substituted phenyl.
- 18. The method of Claim 16 or 17 in which the optionally substituted phenyl is *mono* substituted.
- 19. The method of Claim 18 in which the R⁸ substituent is at the *ortho, meta* or *para* position.
- 20. The method of Claim 19 in which R^8 is selected from the group consisting of (C1-C10) alkyl, (C1-C10) branched alkyl, $-OR^d$, $-O-(CH_2)_m-NR^cR^c$, $-O-C(O)NR^cR^c$, $-O-(CH_2)_m-C(O)NR^cR^c$, $-O-(CH_2)_m-C(O)OR^a$, $-O-C(NH)NR^cR^c$, $-O-(CH_2)_m-C(NH)NR^cR^c$, $-NH-(CH_2)_m-NR^cR^c$, $-NH-C(O)NR^cR^c$ and $-NH-(CH_2)_m-C(O)NR^cR^c$, where m, R^a , R^c and R^d are as defined in Claim 1.
- 21. The method of Claim 16 or 17 in which the optionally substituted phenyl is a disubstituted phenyl.
- 22. The method of Claim 21 in which the R⁸ substituents are positioned 2,3-; 2,4-; 2,5-; 2,6-; 3,4-; or 3,5-.
- 23. The method of Claim 21 in which each R^8 is independently selected from the group consisting of (C1-C10) alkyl, (C1-C10) branched alkyl, -OR^a optionally substituted with one or more of the same or different R^a or R^b groups, -O-(CH₂)_m-NR^cR^c, -O-C(O)NR^cR^c, -O-(CH₂)_m-C(O)NR^cR^c, -O-C(O)OR^a, -O-C(O)OR^a, -O-C(NH)NR^cR^c, -O-(CH₂)_m-C(NH)NR^cR^c, -NH-(CH₂)_m-NR^cR^c, -NH-C(O)NR^cR^c and -NH-(CH₂)_m-C(O)NR^cR^c, where m, R^a , R^b and R^c are as defined in Claim 1.

- 24. The method of Claim 16 or 17 in which the optionally substituted phenyl is trisubstituted.
- 25. The method of Claim 24 in which the R⁸ substituents are positioned 2,3,4; 2,3,5; 2,3,6; 2,4,5; 2,4,6; 2,5,6; or 3,4,5.
- 26. The method of Claim 25 which each R^8 is independently selected from the group consisting of (C1-C10) alkyl, (C1-C10) branched alkyl, -OR^a optionally substituted with one or more of the same or different R^a or R^b groups, -O-(CH₂)_m-NR^cR^c, -O-C(O)NR^cR^c, -O-(CH₂)_m-C(O)NR^cR^c, -O-(CH₂)_m-C(O)OR^a, -O-(CH₂)_m-C(O)OR^a, -O-(CH₂)_m-C(O)NR^cR^c, -NH-(CH₂)_m-NR^cR^c, -NH-C(O)NR^cR^c and -NH-(CH₂)_m-C(O)NR^cR^c, where m, R^a , R^b and R^c are as defined in Claim 1.
 - 27. The method of Claim 24 in which the trisubstituted phenyl has the formula:

$$R^{31}$$
 OR^{32}

wherein: R^{31} is methyl or (C1-C6) alkyl; R^{32} is hydrogen, methyl or (C1-C6) alkyl; and R^{33} is a halo group.

- 28. The method of Claim 17 in which R² and R⁴ are the same.
- 29. The method of Claim 8 according to structural formula (Ib):

and salts, hydrates, solvates and N-oxides thereof, wherein R^{11} , R^{12} , R^{13} and R^{14} are each, independently of one another, selected from the group consisting of hydrogen, hydroxy, (C1-C6) alkoxy and $-NR^cR^c$; and R^5 , R^6 and R^c are as defined in Claim 1.

- 30. The method of Claim 29 in which R¹¹, R¹², R¹³ and R¹⁴ are each hydrogen.
- 31. The method of Claim 29 in which R¹² and R¹³ are each hydrogen.
- 32. The method of Claim 8 in which the 2,4-pyrimidinediamine compound is a compound according to structural formula (Ic):

and salts, hydrates, solvates and N-oxides thereof, wherein:

 R^4 is phenyl optionally substituted with from 1 to 3 of the same or different R^8 groups or 5-14 membered heteroaryl optionally substituted with from 1 to 4 of the same or different R^8 groups;

 R^5 is an electronegative group, F or CF_3 ; and R^{18} is $-O(CH_2)_m$ - R^b , where m and R^b are as defined in Claim 1.

33. The method of Claim 32 in which R⁴ is an optionally substituted heteroaryl.

- 34. The method of Claim 32 in which R⁸ is -O-CH₂-C(O)-NHCH₃.
- 35. A method according to Claim 1 in which the 2,4-pyrimidinediamine compound is a compound according to structural formula (Id):

$$R^{15}$$
 N
 N
 R^4
 N
 N
 N
 R^2

and salts, hydrates, solvates and N-oxides thereof, wherein:

R² and R⁴ are as defined in Claim 1; and

R¹⁵ is an electronegative group,

with the provisos that:

- (1) when R^2 is 3,4,5-tri (C1-C6) alkoxyphenyl and R^{15} is halogen, then R^4 is not 3,4,5-tri (C1-C6) alkoxyphenyl; and
- (2) when R² is a substituted phenyl group, then R¹⁵ is other than cyano or -C(O)NHR, where R is hydrogen or (C1-C6) alkyl.
- 36. The method of Claim 37 in which when R^{15} is halogen or nitro, then R^2 is not 3,4,5-tri (C1-C6) alkoxyphenyl.
- 37. The method of Claim 38 in which R¹⁵ is selected from the group consisting of -CN, -NC, -NO₂, halogen, -F, (C1-C3) haloalkyl, (C1-C3) perhaloalkyl, (C1-C3) fluoroalkyl, (C1-C3) perfluoroalkyl, -CF₃, (C1-C3) haloalkoxy, (C1-C3) perhaloalkoxy, (C1-C3) fluoroalkoxy, (C1-C3) perfluoroalkoxy and -OCF₃.
- 38. The method of Claim 39 in which R¹⁵ is selected from the group consisting of halo, Br, F, -CF₃ and -NO₂.
- 39. The method of Claim 1 in which the 2,4-pyrimidinediamine compound is selected from the group consisting of compounds R921302, R926891, R940323, R940347 and R921303.

- 40. The method of any one of Claims 1-39 in which the compound is administered in the form of a pharmaceutical composition comprising the compound and a pharmaceutically acceptable carrier, diluent or excipient.
 - 41. The method of any one of Claims 1-39 which is practiced therapeutically.
 - 42. The method of any one of Claims 1-39 in which the subject is a human.
- 43. The method of any one of Claims 1-39 in which the autoimmune disease is selected from the group consisting autoimmune diseases that are frequently designated as single organ or single cell-type autoimmune disorders and autoimmune disease that are frequently designated as involving systemic autoimmune disorder.
- 44. The method of Claim 43 in which the autoimmune disease is selected from the group consisting of Hashimoto's thyroiditis, autoimmune hemolytic anemia, autoimmune atrophic gastritis of pernicious anemia, autoimmune encephalomyelitis, autoimmune orchitis, Goodpasture's disease, autoimmune thrombocytopenia, sympathetic ophthalmia, myasthenia gravis, Graves' disease, primary biliary cirrhosis, chronic aggressive hepatitis, ulcerative colitis and membranous glomerulopathy.
- 45. The method of Claim 43 in which the autoimmune disease is selected from the group consisting of systemic lupus erythematosis, rheumatoid arthritis, Sjogren's syndrome, Reiter's syndrome, polymyositis-dermatomyositis, systemic sclerosis, polyarteritis nodosa, multiple sclerosis and bullous pemphigoid.
- 46. The method of Claim 45 in which the autoimmune disease is systemic lupus erythematosis.
 - 47. The method of Claim 45 in which the autoimmune disease is rheumatoid arthritis.
 - 48. The method of Claim 45 in which the autoimmune disease is multiple sclerosis.