1

Versuch 1

1.1 Fragestellung, Messprinzip, Aufbau, Messmittel

1.1.1 Fragestellung

Zuerst sollen wir den Quantisierungsfehler berechnen. Nachfolgend noch die jeweiligen Standartabweichungen des analogen Messgeräts sowie des A/D Wandlers um diese anschließend vergleichen zu können.

1.1.2 Messprinzip

Der A/D Wandler tastet das Eingangssignal in einer festgelegten Abtastfrequenz ab. Das Multimeter PM 2503 von Philips verwendet zur Messung ein Drehspulmesswerk.

1.1.3 Aufbau

Der A/D Wandler ist per USB Kabel mit dem Laborrechner verbunden. Außerdem ist ein Ausgang mit dem Oszilloskop sowie ein Eingang mit einem Netzteil verbunden. Zusätzlich zum A/D Wandler haben wir an das Netzteil noch ein feinmessgerät, das Keithley TRMS 179 sowie ein analoges Multimeter das Philips PM 2503.

1.1.4 Messmittel

Als Messmittel dient die Multifunktionsbox ME-RedLab USB-1208LS welche uns 8 Kanäle zur Verfügung stellt. Außerdem haben wir noch ein Oszilloskop vom Modell TDS 2022B des Herstellers Tektronix.

1.2 Messwerte

Um das Genauigkeitsmaß zu berechnen führen wir mehrere Spannungsmessungen durch. Hierzu stellen wir am Netzteil jeweils die Spannungen von 1 bis 10 Volt in 1 V schritten ein und entnehmen die Werte jeweils vom Feinmessgerät, dem Multimeter als auch dem A/D Wandler. (Messwerte im Anhang)

1.3 Auswertung

Zuerst berechnen wir den Theoretischen Quantisierungsfehler mithilfe der Formel

$$\Delta U = \frac{U_{Max} - U_{Min}}{2^n}$$

dieser beträgt 0,0098 V. Als nächstes berechnen wir noch die Standardabweichung für das analoge Messgerät und den A/D Wandler. Der des analogen Messgeräts beträgt 0,0021 V und der des A/D Wandlers 0,0011 V. Dazu verwenden wir folgende Formel:

1.4 Interpretation