Main Board Installation Instructions

- 1. Solder all the SMD components to the Main on both sides.
- 2. Add the trimmers. Put them in the mid position.
- 3. Add all the terminal blocks.
- 4. Add the transformer filter capacitors, C1 and C2, C3, C4, C5 and C8.
- 5. Add all the test point, although you could leave out a few marked GND on the edge of the board.
- 6. Add all the .1 connector strips.
- 7. Add a jumper to P1-En
- 8. Add a jumper to J50, the Z-pulse direction. Set it to the left position.
- 9. Add the main voltage selector switch. With the switch showing the 230V marker, the 230 indicator should be on the side pointing to the J1 connector block. The new pn in the BOM has not markings on it anymore. This avoids a wrong placement and or confusion.

10. Select the right main switch voltage.

- 11. Check with a DMM in the Ohms position if there are no shorts between ISO and plusStep, ISO and minStep, GND and plusTri, GND and minTri, GND and xyPlus and GND and 7.5V.
- 12. Add T10, the supply rail transformer.

- 13. On the back plate, install the C8 receptacle with the filter. Install the main switch and add the three BNC connectors with the ground lugs.
- 14. Connect the main switch to the C8 receptacle with a wire and isolate the connections with shrink wrap tubing.
- 15. Put the Back plate in the bottom of the enclosure. This is the side with the low flanks.
- 16. Position the Main board in the enclosure but don't screw it down yet.
- 17. Connect one side of the switch and one side of the filter with wires to J2 on the Main board.
- 18. Connect a DMM between an ISO test point and minusStep.
- 19. Add a mains power cable and connect it to mains. **Be careful not to touch the mains related** parts from now on.
- 20. Turn on the instrument and verify that you have -15V.
- 21. Connect the DMM between ISO and plusStep and verify that you have +15V.
- 22. Connect the DMM between GND and plusTri and verify that you have about 10V.
- 23. Connect the DMM between GND and minusTri and verify that you have -5V.
- 24. Connect the DMM between GND and xyPlus and verify that you have at least 24V.
- 25. Connect the DMM between GND and 7.5V and verify that you have 7.5V.
- 26. Turn off the power.
- 27. Use a scope and connect one channel with the GND lead to a GND test point and the probe tip to the Tri test point.
- 28. Turn on power and verify that you have a triangle waveform.
- 29. Turn trimmer Pot52, marked Freq and verify that you can change the frequency of the triangle. Set it to about 160Hz.
- 30. Turn trimmer Pot51, marked 0V Adjust and verify that you can adjust the bottom of the triangle waveform a little above and below the GND level. Adjust it at about the GND level.
- 31. Connect the probe tip to the Rect test point and verify that you have a rectangular waveform.
- 32. Switch off the main power and remove the power lead.
- 33. Disconnect the Scope probe and disconnect the mains wires going to J3 so we can remove the Main board.
- 34. Add the two relays, K1 and K2.
- 35. Add the bridge D4.
- 36. Add C6, the main capacitor.
- 37. Prepare the main transformer. You need to separate the two secondary windings so we can switch them in parallel and in series. Both windings are connected to a single post in the middle of the transformer. By heating that connection, you can carefully! separate the two wires. Use an Ohm meter to make sure you have the correct two windings identified and solder one of the two middle windings back to the post. Solder a wire to the other lead and insulate that with shrink tubing.
- 38. The transformer can be mounted to the bottom of the enclosure, but you'll have to be very careful that the nuts and bolts don't touch the bottom of the Main board. You can also mount the transformer to the Back plate, by putting it on it's back, lying on the bottom of the enclosure. If you do that, make sure that the Back plate can be fully inserted into the bottom of the enclosure. Drill holes that are a little larger than the bolts you will use. I used 4mm bolts and

- drilled 5mm holes. Because the iron of the transformer is not aligned with the frame, I used two rings on each bolt to create some space between the transformer and the back plate. I used anti-slippage rings to secure the nuts.
- 39. Connect the primary windings to the Main board through J1. If you only use the 230V mains supply, you can solder a short wire between the two primary windings by bridging the two middle soldering posts and don't need to go all the way to J1. Make sure that all 4 connections are well insulated with shrink tubing.
- 40. Connect the secondary leads to the Main board through J2. The two winding pairs are indicated on the silk screen. I used the outside connections from the transformer lugs to the outside of J2, and the appropriate middle connections to the middle of J2.
- 41. Once everything is mounted and the connections are verified, add the mains lead to the Back panel.
- 42. Connect a DMM in DC mode between TransP and TransM, they are the raw DC voltage test points.
- 43. Add a jumper lead between J4-2 and J4-1, the 3-way switch connector. This will set the AC supply voltage to the 35V range, switching the two secondary windings in parallel.
- 44. Turn on the main power and verify that you have about 40V DC.
- 45. Switch the power off.
- 46. Connect J4-2 with J4-4, which is the 70V range, by switching the secondary windings in series.
- 47. Turn on the main power and verify that you have about 80V DC.
- 48. Switch off the power and remove the mains lead.
- 49. Install T1, the high voltage transformer. You may have to disconnect the wire connections to the Main board to get access to the bottom of the Main board.
- 50. Re-connect all wires again, and add the main power lead.
- 51. Reconnect the DMM in DC mode between TransP and TransM again.
- 52. Connect J4-2 with J4-6, which is the 200V range.
- 53. Turn on power and verify that you have more than 230V DC.
- 54. Turn off the power.
- 55. Disconnect all wires going to the Main board so we can mount the MOSFET's and the Current Source.
- 56. Use nuts and bolts and some heat paste to loosely mount the MOSFET's to the heatsinks. Use the second hole from the top such that the leads are in line with the heatsink mounting pins. Do not tighten the nuts and bolts yet.
- 57. Solder both MOSFET's/Heatsinks to the Main board. When they are in place, you can tighten the nuts and bolts.
- 58. Watch out that test point Vcur is not touching the heatsink of Q105. You can bend it a little to create a few mm spacing.
- 59. Mount the Current Source transistor Q91 to the heatsink HS90 and solder them to the Main
- 60. Install the Main board back into the enclosure and re-connect all leads again.
- 61. In order to make the DUT supply functional without the Front board, we need to add a jumper between the two pins of J54, which connects the Triangle waveform to the DUT supply.

- 62. We also need to connect the 100K Volt potmeter between J102 called Vset so we have an output, and we can set the level. Set the potmeter to about mid-range
- 63. Connect the jumper lead between J4-2 and J4-1 to select the 35V range. Do not select the other ranges with all these flying leads to prevent you from touching dangerous voltages.
- 64. Add a scope probe with the GND clip to a GND test pin, and the probe tip to pin 1 of J6, which is indicated with CS-.
- 65. Verify that you have made all connections and they are correct before we do the final and acid
- 66. Add the main power lead.
- 67. Turn on the power and verify that you have a negative going triangle waveform and that you can change the amplitude with the 100K potmeter. If you do, we have a working Main board.
- 68. If not, quickly remove power and you need to trouble shoot the DUT supply.
- 69. If you did, congratulations!