

TEKNOFEST 2020 ROKET YARIŞMASI NEBULA ROKET TAKIMI YÜKSEK İRTİFA Atışa Hazırlık Raporu (AHR)

Takım Yapısı

KTR'den Değişimler

SIRA NO	KONU	DEĞİŞİM	NEDENİ?
1	Ana Kanat üretim	Ana kanat üretim metodu olarak belirlenen lazer kesim yerine su jeti ile plakadan kesim yapılmıştır.	Lazer kesimde oluşabilecek pürüz, erime ve kesim ücretinin fazla olmasından dolayı, uygun bir fiyata anlaştığımız firma ile su jeti ile kesim yapılmıştır.
2	10 mm kalınlığında olan iç merkezleme halkaları ve bulheadler üretim	10 mm kalınlığında olan diskler torna ile üretilmesi yerine 10 mm'lik plakadan su jeti ile kesilmesidir. Not: Parçaların yanal delikleri henüz açılmamıştır. Cnc-torna ile yapılacaktır. Bayram sonrası işlemi yapacak firma ile anlaşma yapılmıştır. 10mm'lik parçalar hariç diğer parçalar torna ile üretilmiştir.	Pandemi ve bayram telaşından dolayı ağır bir yoğunluk ve telaşa girmiş sanayi ve fabrikalarda üretimin yavaş ve ya yapılamamasıdır. Daha hızlı olacak şekilde düz parçalar su jeti ile üretilmiştir.
3	Ana Paraşüt renk	Kırmızı olarak belirtilen paraşütümüz pembe renk kullanılarak yapılmıştır.	Paraşütlerimiz, yedek yamaç paraşütü alınarak ve onları kesip tekrar birleştirilerek yapılması sebebi ile renklerinde değişiklik olmuştur. Yamaç paraşütlerinin bütçemize göre olanlarını alabildiğimiz için renkler değişmiştir.
4	Faydalı Yük Paraşütü renk	Turuncu olarak belirtilen paraşütümüz turuncu yoğunlukla turuncu ve beyaz renkli gore'lar kullanılarak yapılmıştır	Paraşütlerimiz, yedek yamaç paraşütü alınarak ve onları kesip tekrar birleştirilerek yapılması sebebi ile renklerinde değişiklik olmuştur. Yamaç paraşütlerinin bütçemize göre olanlarını alabildiğimiz için renkler değişmiştir.
5	Şok Paraşütü renk	Mor olarak belirtilen paraşütümüz beyaz yoğunlukla turuncu ve beyaz renkli gore'lar kullanılarak yapılmıştır	Paraşütlerimiz, yedek yamaç paraşütü alınarak ve onları kesip tekrar birleştirilerek yapılması sebebi ile renklerinde değişiklik olmuştur. Yamaç paraşütlerinin bütçemize göre olanlarını alabildiğimiz için renkler değişmiştir.

Roket Alt Sistemleri

PARÇA	TEDARİK	ÜRETİM	Üretim Tarihi
BURUN	Kalıpların, ham maddelerin tedariği tamamlanmıştır.	Karbon fiber burun ve alüminyum burun ucunun üretimi tamamlanmıştır.	Üretim bitmiştir.
GÖVDELER / ENTEGRASYON / MOTOR YATAĞI	Gövde parçalarının, entegrasyonların ve motor yatağının kalıp üretimi tamamlanıp tedariği yapılmıştır. Üretimi yapacak firmada fiberglass ve karbon fiber bulunmaktadır.	Kompozit boru üretimleri pandemi sebebi ile anlaştığımız ve alternatif olarak anlaştığımız firmaların ertelemesi sebebi ile ertelenmiştir. Net üretim tarihi için anlaşılmıştır.	Üretim 07.08.2020 tarihinde başlayacak ve 15.07.2020 tarihinde üretim tamamlanacak. Parçaların üzerinde ki işlemeler 1 hafta içerisinde tamamlanacaktır.
AVİYONİK SİSTEM	Aviyonik sistem malzmelerinin tedariği yapılmıştır. Yurtdışından tedarik edilen yedek aviyonik PCB'si gümrükten geçmiş bulunmaktadır. Bayramdan sonra adrese teslim edilecektir.	Ana – yedek aviyonik donanım, yazılım tamamen tamamlanmıştır. Yalnızca yedek aviyonik PCB'si elimize geçtiğinde, hali hazırda yapılmış olan yedek aviyonik, PCB' ye yerleştirilecektir.	Üretim bitmiştir. Son paket işlemi kalmıştır.
AYRILMA SİSTEMİ	Ayrılma sistemi ham malzemeleri tedarik edilmiştir.	Ayrılma sistemi malzemeleri üretilmiştir. Yalnızca bulkheadlerin yanal delikleri açılacak ve üst barut yataklarına diş açılacaktır.	11.07.2020 tarihinde üretim sonlanacaktır.
KURTARMA SİSTEMİ	Kurtarma sistemlerinde bulunan parçaların tamamı tedarik edilmiştir.	Paraşütlerin kesimi, dikimi tamamlanmıştır. Üretim bitmiştir.	Üretim bitmiştir.

OpenRocket / Roket Tasarımı Genel Görünüm

OpenRocket / Roket Tasarımı Genel Görünüm

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

Burun ve Faydalı Yük Mekanik Görünüm

Burun – Detay

- Gökdoğan-2 roketi burnu 2 parçadan oluşmaktadır. Bu parçalar burun ucu ve burun konisidir.
- Burun ucu Alüminyum'un Cnc-torna ile işlenmesiyle üretilmiştir.
- Burun konisi için negatif kalıp üretilmiştir. Burun konisi negatif kalıp kullanılarak pre-preg yöntemi ile karbon fiberden yapılmıştır. Pürüzler zımparalanmış ve yüzeyine ince siyah boya sıkılmıştır.
- Burun shoulder içerisinde bulunan bulkheadine yanal delikleri bayramdan sonraki ilk hafta cnc ile açılacaktır.

Faydalı Yük ve Faydalı Yük Bölümü – Detay

- Faydalı yük ham malzemeleri tedarik edilmiştir. Diğer işlerin tamamlanmaya çalışılması ve Bayram sebebi ile faydalı yük üretimi gecikmiştir.
- Faydalı yük 1 içi dolu disk ve 1 mil parçasından işlenecektir. 1 iş günü içerisinde bitirilecektir.
- Faydalı yük üretimi 12 ağustosta tamamlanacaktır.

Kurtarma Sistemi Mekanik Görünüm

1. Faydalı Yük Paraşütü

2. Şok Paraşütü

3. Ana Paraşüt

Bitmeyen işler; Yanmaz kumaşlarımızın şok kordonu üzerine sabitlenmesi (3-9 Temmuz arası tamamlanacaktır.)

Ayrılma Sistemi – Detay

☐ Üretilmiş ayrılma sistemimizin aviyonik haznesi, bulkheadler ve alt barut yatağı son montaj paketlemesi tamamlanmış ve üretim-montaj bitmiştir.

☐ Yalnızca üst barut yatağı içerisinde yer alan dişler henüz açılmamıştır. 3 adet işlenmiş üst barut yatağına yalnızca diş açma işlemi uygulanacaktır. 1 iş günü içerisinde tamamlanması öngörülmektedir. 9 Ağustos işlenecektir.

Paraşütler – Detay

Ana Paraşüt

260 cm çapa, 32,5 cm kubbe deliği çapına sahiptir. 12 parçadan ve 12 adet paraşüt ipinden oluşmaktadır. Rengi kırmızı yerine pembe olarak değiştirilmiştir.

Şok Paraşütü

140 cm çapa, 17,5 cm kubbe deliği çapına sahiptir. 8 parçadan ve 8 adet paraşüt ipinden oluşmaktadır. Rengi mor yerine beyaz ve turuncu olarak değiştirilmiştir.(Beyaz çoğunlukta)

Faydalı Yük Paraşütü

125 cm çapa, 15,62 cm kubbe deliği çapına sahiptir. 8 parçadan ve 8 adet paraşüt ipinden oluşmaktadır. Rengi turuncu yerine beyaz ve turuncu olarak değiştirilmiştir. (Turuncu çoğunlukta)

https://www.youtube.com/watch?v=npMBKraaHfg&feature=youtu.be

https://www.youtube.com/watch?v=LVxwDqZ8Gl8&feature=youtu.be

Paraşütlerimizin kumaşları (6) ve paraşüt ipleri (3) için yedek yamaç paraşütleri satın aldık ve aldıklarımızdan kendi paraşütlerimizi oluşturduk.

Paraşüt parçalarını birbirine birleştirirken ilk önce iki parçanın kenarlarını dikiş paylarını dikkate alarak ve üst üste koyarak diktik, daha sonrasında kalan payı ikiye katlayıp bir kere daha diktik. Kubbe deliği çevresi ve paraşütlerin dış çevrelerinde ise kenarlara dayanıklı şerit kurdele (2) ekleyerek biye yöntemi denilen yöntemi uyguladık. (Kenarları şeritlerin etrafına iki kere sarıp çift dikiş atıldı.)

Paraşüt iplerini de daha sağlam olmasını istediğimiz için yine dayanıklı kurdele şeritler yardımı ile paraşütlerimize sabitledik.

Şok kordonları(4) için 3 cm genişliğinde cam elyaf şeritler kullandık.

Fırdöndülerimiz için ise 5mm'lik krom fırdöndüler(5) tercih ettik.

Alev almaz kumaşlarımızı (1) barut nedeniyle paraşütlerimizin zarar görmemesi için kullanacağız.

Aviyonik Sistem Mekanik Görünüm

Ana Aviyonik Devre Kartı

Yedek Aviyonik Devre Kartı

Aviyonik Sistem – Detay

☐ Aviyonik sistem hakkında detay bilgilendirme yapılmalıdır.

Aviyonik sistemlerin komponentleri yurtiçinden temin edilmiştir. Ana aviyonik sistem, ekip tarafından tasarlanan ve ürettirilen PCB üzerine kurulmuştur. Yedek aviyonik sistem PCB'si yurtdışında ürettirilmiş, gümrük işlemleri tamamlanmış ve kargonun ulaşması beklenmektedir. Bu sebeple yedek aviyonik prototip olarak kurulumu gerçekleştirilmiştir.

Aviyonik sistemler, kolay yerleşim ve sağlamlık göz önünde bulundurularak tasarlanmış olan aviyonik haznesi üzerine vidalama yöntemi ile sabitlenecek ve roketin içine sürülecektir. Kurtarma aktive eden ark jenaratörleri ve sistemlerin elektriksel olarak beslenmesini sağlayan Li-Po piller ise cırtcırt vasıtasıyla aviyonik haznesi montajlanacaktır.

Sistemleri aktif edilmesi; Barut yatakları yerleştirildikten sonra, barut yatakları klemens vasıtasıyla ark jenaratörlerine bağlanacak ve ardından konnektör yardımı ile ark jenaratörlerinin ana aviyonik ve yedek aviyoniğe bağlanması ile kurtarma sistemlerinin elektronik bağlantıları tamamlanacaktır. Kurtarma sistemlerinin bağlantılarının yapılmasının ardından, aviyonik sistemler ana ve yedek aviyonikler için birbirinden bağımsız olarak birer anahtar vasıtasıyla aktifleştirilecek ve sistemler çalışır duruma getirilecektir.

https://www.youtube.com/watch?v=dAVc4GkU15U&feature=youtu.be

Kanatçıklar Mekanik Görünüm

Alt (Ana) Kanatçık CAD

Üst Kanatçık CAD

Alt (Ana) Kanatçık Üretilmiş

Alt (Ana) Kanatçık Üretilmiş

Kanatçıklar – Detay

• Alt (Ana) Kanatçık https://www.youtube.com/watch?v=aWO-oLC9-MY&feature=youtu.be

Ana Kanatçıklar 4mm plaka üzerinden su jeti ile kesilmiştir. Üretimi tamamlanıp montajı yapılmıştır.

Üst Kanatçık

Üst (ön) kanatçıklar Cnc ile işlenerek üretilmiştir. Gövdelerimiz henüz üretilmediği için montajı yapılamamıştır.

Tüm kanatçıklarımız üretilmiştir.

Roket Genel Montaji

Roket Genel Montaji

Genel Montaj Videosu: https://www.youtube.com/watch?v=qeXBLMGZuuk&feature=youtu.be

Ayrılma sistemi montajı ve detayı: https://www.youtube.com/watch?v=XOioA3tz-2k&feature=youtu.be

Tüm montaj bittikten sonra, barut yataklarına barut doldurulup, roketin kapağı açılarak rokete takılır.

Roket Motoru Montaji

1

Tüm roket montajı biter kanatçıklar dahil.

2

Motor, motor yatağına sürülür.

3

Motor tutucu 3 adet olan m8 saplamaya takılır ve kilit somunla sabitlenir.

▶ Temsili motor

NOT: görseldeki boru temsili gösterilmiştir.

https://www.youtube.com/watch?v=WkqvpMAtbDQ&feature=youtu.be

Atış Hazırlık Videosu

LINK: https://www.youtube.com/watch?v=AP4FCT6-Zko&feature=youtu.be

Testler

Testler	Test Yöntemi	Test Düzeneği	Sonuçlar
Motor Tutucu statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,012278
Alt Bulkhead statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,02297
Aviyonik Üst Bulkhead statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,016051
Aviyonik Alt Bulkhead statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,008138
Burun shoulder Bulkhead statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,0028199
Faydalı Yük statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,0027471
Motor Bloğu statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,059437
Motor Yatağı statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,0049465
Üst (Ön) Kanatçık statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,17038
Alt (Ana) Kanatçık statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,027859
Alt Gövde statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,37758
Entegrasyon gövdesi statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,84029
Sabit Vidalı Entegrasyon Gövdesi statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,12857
Orta Gövde statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 1,9469
Üst Gövde statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 1,1606
Genel Roket statik testi	Bilgisayar otamında statik testi	Ansys	Max Deformasyon(mm)= 0,040291
Roket Tam Montaj Akış Analizi	Bilgisayar otamında akış analizi	Ansys	Başarlı kriterler içeresindedir
Kanatçık Akış Analizi	Bilgisayar otamında akış analizi	Ansys	Başarlı kriterler içeresindedir
Kanat Akış Analizi	Bilgisayar otamında akış analizi	Ansys	Başarlı kriterler içeresindedir

Testler

Testler	Test Yöntemi	Test Düzeneği	Sonuçlar
Yanmaz Kumaş ve Yanmaz Şok kordonu testi	Alev üstüne konulan kumaş ve şok kordonun alev alıp almadağı denendi	Mumun üstünde şok kordonu ve yanmaz kumaş bekletildi	Başarlı kriterler içeresindedir
Kullanılan Malzemelerin Çekme testi	Çekme deney cihazı	Sabitlenen parçalar cihaza yerleştirilip çekildi	Tüm mazlemeler başarlı kriterler içeresindedir
Gökdoğan 2 3D baskı montaj uyum testi	3D yazıcı	3D yazıcıdan çıkan parçalar montajlanmıştır	Başarlı kriterler içeresindedir
Paraşüt sistemi testi		Ağırlık bağlanmış paraşüt sistemini çatıdan aşağıya attık	Başarlı kriterler içeresindedir
Aviyonik Telekominikasyon : Ana Aviyonik&Faydalı Yük Haberleşme Modül Testleri		Ana aviyonik, Faydalı yük, yer istasyonu ve Lo-Ra haberleşme modülleri	Başarlı kriterler içeresindedir
Aviyonik Telekominikasyon : Haberleşme Menzil Testi	Aviyonik sistemlerden araç içerisinde ilerlerken sabit bir konumda bulunan yer istasyonuna veri	Ana aviyonik, Faydalı yük, yer istasyonu ve Lo-Ra haberleşme modülleri	Başarlı kriterler içeresindedir
Aviyonik Telekominikasyon : Ana Aviyonik & Faydalı Yük GPS Okuma Testleri	Kapalı ortamda aviyonik sistemlerin GPS uyduları ile bağlantı kurulumu ve konum doğrulukları test edildi	Ana aviyonik, faydalı yük, GPS	Başarlı kriterler içeresindedir
Aviyonik Donanım : Ana Aviyonik Tanıtım & Sensör Okumalar	Ana aviyonik sisteme ait 10 DOF IMU üzerinden basınç ve ivme verilerinin okunması test edildi	Ana aviyonik, 10 DOF IMU Sensör	Başarlı kriterler içeresindedir
Aviyonik Donanım : Ana Aviyonik Basınç Ortam ve Serbest Düşüş Testleri	Ana aviyonik sisteme ait 10 DOF IMU üzerinde yer alan basınç sensörü basınçlı ortam altında, ivme sensörü ise paraşüt ile serbest düşüş altında test edildi	Ana aviyonik, 10 DOF IMU Sensör	Başarlı kriterler içeresindedir
Aviyonik Donanım : Ana Aviyonik Ateşleme ve Güç testleri	Ana aviyonik sistem üzerinde ark jeneratörlerinin ateşlenmesi ve Li-Po pil ile tam kurulu haldeki sistemin çalışma süresi test edildi	Ana aviyonik, ark jenaratörleri, Li-Po pil ve DC	Başarlı kriterler içeresindedir

Testler

Testler	Test Yöntemi	Test Düzeneği	Sonuçlar
Aviyonik Donanım : Yedek Aviyonik Ateşleme ve Güç Testleri	Yedek aviyonik sistem üzerinde ark jeneratörlerinin ateşlenmesi ve Li-Po pil ile tam kurulu haldeki sistemin çalışma süresi test edildi	Ana aviyonik, ark jenaratörleri, Li-Po pil ve DC Voltaj düşürücü	Başarlı kriterler içeresindedir
Aviyonik Donanım : Yedek Aviyonik Tanıtım & Sensör Okuma ve Basınç Ortam Testleri	Yedek aviyonik sistem üzerinde yer alan basınç sensörünün okunması ve basınç ortam altındaki tepkilerinin ölçülmesi test edildi	Yedek aviyonik, Basınç sensörü	Başarlı kriterler içeresindedir
Aviyonik Donanım : Ana Aviyonik & Yedek Aviyonik SPI Haberleşme Testi	Ana aviyoniğin, oluşabilecek bir hata durumunda yedek aviyoniği bilgilendireceği ve yedek aviyoniğin kontrolü ele alacağı SPI haberleşme test edildi Ana aviyonik sisteme ait 10 DOF IMU üzerinde yer	Ana aviyonik, yedek aviyonik	Başarlı kriterler içeresindedir
Aviyonik Donanım : Ana Aviyonik Basınç Ortam ve Serbest Düşüş Testleri	alan basınç sensörü basınçlı ortam altında, ivme sensörü ise paraşüt ile serbest düşüş altında test edildi	Ana aviyonik, 10 DOF IMU Sensör	Başarlı kriterler içeresindedir
Aviyonik Donanım : Ana Aviyonik Ateşleme ve Güç testleri	Ana aviyonik sistem üzerinde ark jeneratörlerinin ateşlenmesi ve Li-Po pil ile tam kurulu haldeki sistemin çalışma süresi test edildi	Ana aviyonik, ark jenaratörleri, Li-Po pil ve DC Voltaj düşürücü	Başarlı kriterler içeresindedir
Aviyonik Donanım : Yedek Aviyonik Ateşleme ve Güç Testleri	Yedek aviyonik sistem üzerinde ark jeneratörlerinin ateşlenmesi ve Li-Po pil ile tam kurulu haldeki sistemin çalışma süresi test edildi	Ana aviyonik, ark jenaratörleri, Li-Po pil ve DC Voltaj düşürücü	Başarlı kriterler içeresindedir
Aviyonik Donanım : Yedek Aviyonik Tanıtım & Sensör Okuma ve Basınç Ortam Testleri	Yedek aviyonik sistem üzerinde yer alan basınç sensörünün okunması ve basınç ortam altındaki tepkilerinin ölçülmesi test edildi	Yedek aviyonik, Basınç sensörü	Başarlı kriterler içeresindedir
Aviyonik Donanım : Ana Aviyonik & Yedek Aviyonik SPI Haberleşme Testi	Ana aviyoniğin, oluşabilecek bir hata durumunda yedek aviyoniği bilgilendireceği ve yedek aviyoniğin kontrolü ele alacağı SPI haberleşme test edildi	Ana aviyonik, yedek aviyonik	Başarlı kriterler içeresindedir

Yarışma Alanı Planlaması

Yarışma Alanı Planlaması

Acil durum ey	ا lem	planı:	https://	/drive.g	google.	.com/fil	e/d/1	BKRZLo	lm//8Wb	MLAd5	MNXd	lhADu	ulHJPb	bIF/	view	Pusp	=sha	arir	۹(
---------------	-------	--------	----------	----------	---------	----------	-------	--------	---------	-------	------	-------	--------	------	------	------	------	------	----

Riskler

Riskler	Çözüm
Barut yataklarının iç kısmına diş açılamaması	Diş açılamadığı taktirde barut yatağı mili ve kendisi ayrı olarak üretilecektir daha sonra barut yatağına girecek mile ve mil deliğine paso açılacaktır ve alttan sağlamlığı arttırmak için alüminyum kaynak atılacaktır
Fiberglass parçaların (entegrasyon gövdesi ve gövdeler) ve karbonfiber motor yatağı parçasının üretiminin gecikmesi	Parçaların üretimi geciktiği takdirde delik işlemleri için zaman kalmadığını varsaydığımız için İzmir Menderes Sanayide bulunan Feray makinede 5 eksen cnc de delik işlemlerimizi gerçekleştirmek için anlaştık.