- Theorem: Let R be a commutative ring with identity $1r \neq 0r$. Then is a prime ideal iff R/P is an integral donain.
- Definition: A prime ideal P of a commutative ring R with identity $1_R \neq 0_R$ is a proper ideal of R such that if $ab \in P$, then either $a \in P$ or $b \in P$.
- Proof: (=)) Assume that $P \triangleleft R$ is a prime ideal and that for a be R (a+P)(b+P) = $O_R + P$. We want to show that R/P has no zero divisors. Indeed,
 - $(a+p)(b+p) = ab+p = Op+P \implies ab+P \implies agP \text{ or } beP$ $\Rightarrow a+P=Op \text{ or } b+P=Op \implies R/P \text{ has no Zero divisors and}$ So R/P is an integral domain.
- (\Leftarrow) . Assume that R/P is an integral domain. We want to show that $P \triangleleft R$. Let $a,b \in R$ such that $ab \in P$. Then
- $ab+P=(a+P)(b+P)=0+P. \Rightarrow a+P=0+P \text{ or } b+P=0+P$ bec. R/P has no zero divisors. So aeP or beP, and thus,
 PAR is a prime ideal.

Maximal Ideals

- Definition: A maximal ideal of a commutative ring is a proper ideal of R such that $\exists I \triangleleft R$ satisfying the property that if $M \subset I \subset R$, then I = M or I = R.
- Example: If $R = \mathbb{Z}[x]$, then $\langle x \rangle \neq \langle x, 2 \rangle \neq \mathbb{Z}[x]$, so $\langle x \rangle$ is not the maximal ideal of $\mathbb{Z}[x]$

Example: If R = Q[x], then is $\langle x \rangle$ the maximal ideal of Q[x]?

Note that $2 \in \langle x, 2 \rangle$ and so $\frac{1}{2} \cdot 2 \in \langle x \rangle \Rightarrow p(x) \cdot 1 \in \langle x, 2 \rangle$ $\forall p(x) \in Q[x] \Rightarrow \langle x, 2 \rangle = Q[x]$.

Suppose I 4 Q[x] satisfying $\langle x \rangle \subset I \subset Q[x]$. Assume otherwise that $\langle x \rangle \subsetneq I$. We want to show that I = Q[x]. Bec. $\langle x \rangle \subsetneq I$, I contains a polynomial with nonzero constant term $p(x) = \sum_{i=1}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_o. \in I$

 $\frac{-a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x}{a_{v}}\in\langle x\rangle c_{T}$

QEI =) $a^{-1}a \in I$ =) $f(x) \cdot 1 \in I$ =) $I = Q(x) + f(x) \in Q(x)$. Since $a_0 \neq 0$ =) $\frac{1}{a_0} \in Q(x)$ =) $\frac{1}{a_0} \cdot a_0 = 1 \in I$ =) $p(x) \cdot 1 \in I$. $\forall p(x) \in Q(x)$ =) I = Q(x). Therefore, $\langle x \rangle$ is the maximal ideal of Q(x).

Theorem: Let R be a commutative ring with identity and MAR.

Then M is a maximal ideal of R iff R/M is a field.

Examples:

- $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ is a field iff n is prime, then $n\mathbb{Z}$ is a maximal ideal of \mathbb{Z} iff n is prime.
- (x^2+1) is a maximal ideal of R[x]. Indeed, we want to show that $R[x] / (x^2+1)$ is a field. Let $\Phi: R[x] \to C$ given by $\Phi(f(x)) = f(i)$. Then Φ is a ring homomorphism. Liverify)

Now by the First Isomorphism Theorem, f(i) = 0 if and only if

 X^2+1 | f(x) if and only if $f(x) \in \langle x^2+1 \rangle$. Thus $ker(\phi) = \langle x^2+1 \rangle$. Now we show that $\phi(R[x]) = C$. Let $a+ib \in C$ where $a,b \in R$. Then $\phi(a+bx) = a+ib$. By the First Isomorphism Theorem, $R[x]/\langle x^2+1 \rangle \cong C$. By a known theorem (16.35), $\langle x^2+1 \rangle$ is a maximal ideal of R[x]