

Please amend the following claims:

1. (Once Amended) A compound of Formula (I):

wherein

Y is selected from the group consisting of a bond, -C(O)-, -C(O)O-, -C(O)NH- and -SO₂-;

R₁ is selected from the group consisting of R₇ and R₈;

R₂, R₃, R₄ and R₅ are independently selected from the group consisting of a bond, hydrogen and C₁₋₈alkyl; wherein C₁₋₈alkyl is optionally substituted with one to three substituents independently selected from R₉, provided that R₂, R₃, R₄ or R₅ can only be a bond when forming a monocyclic ring wherein the following monocyclic rings may be formed from R₂, R₃, R₄ and R₅:

when R₂ and R₃ comprise a bond and C₁₋₈alkyl or optionally when both R₂ and R₃ are C₁₋₈alkyl, R₂ and R₃ together with the atoms to which each is attached will form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when R₃ and R₄ comprise a bond and C₁₋₈alkyl or optionally when both R₃ and R₄ are C₁₋₈alkyl, R₃ and R₄ together with the atoms to which each is attached will form a five to seven membered monocyclic ring optionally containing one

to two additional heteroatoms independently selected from the group consisting of N, O and S;

when R₃ and R₅ comprise a bond and C₁₋₈alkyl or optionally when both R₃ and R₅ are C₁₋₈alkyl, R₃ and R₅ together with the atoms to which each is attached will form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

*M
Catt*

when R₄ and R₅ comprise a bond and C₁₋₈alkyl, or optionally when both R₄ and R₅ are C₁₋₈alkyl, R₄ and R₅ together with the atoms to which each is attached will form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

R₆ is optionally present and is one to three substituents independently selected from the group consisting of halogen, C₁₋₈alkoxy, R₁₀, R₁₂, -N(R₁₁)C(O)-R₁₀, -N(R₁₁)C(O)-R₁₂, -N(R₁₁)SO₂-R₁₀, -N(R₁₁)SO₂-R₁₂, -N(R₁₁)C(O)-N(R₁₁, R₁₀), -N(R₁₁)C(O)-N(R₁₁, R₁₂), -N(R₁₁)C(O)-N(R₁₂, R₁₇), -C(O)-N(R₁₁, R₁₀), -C(O)-N(R₁₁, R₁₂), -C(O)-N(R₁₂, R₁₇), -OC(O)-N(R₁₁, R₁₀), -OC(O)-N(R₁₁, R₁₂), -OC(O)-N(R₁₂, R₁₇), -OC(O)-R₁₀, -OC(O)-R₁₂, -O-R₁₀ and R₁₀-(C₁₋₈)alkoxy;

R₇, R₉, R₁₀ and R₁₄ are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, C₁₋₈alkoxy, C₁₋₈alkylcarbonyl, C₁₋₈alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino, N-(C₁₋₈alkyl)amino, N,N-(C₁₋₈dialkyl)amino, -CF₃ and -OCF₃; wherein cycloalkyl and heterocyclyl are optionally substituted with one to three oxo substituents; and, wherein the aryl and heteroaryl substituents and the aryl portion of the arylcarbonyl substituent are optionally substituted with one to five substituents independently selected from the group consisting of halogen, C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, C₁₋₈alkoxy, carboxyl, amino, N-(C₁₋₈alkyl)amino, N,N-(C₁₋₈dialkyl)amino, -CF₃ and -OCF₃;

R₈, R₁₂, R₁₃ and R₁₇ are independently selected from the group consisting of C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, and (halo)₁₋₃(C₁₋₈)alkyl; wherein C₁₋₈alkyl, C₂₋₈alkenyl and C₂₋₈alkynyl are optionally substituted on a terminal carbon with one to three substituents independently selected from R₁₄;

R₁₁ is selected from the group consisting of hydrogen and C₁₋₈alkyl;

A is C₁₋₄alkylene optionally substituted with one to two substituents independently selected from R₁₃;

when R₃ is C₁₋₈alkyl, optionally A and R₃ together with the atoms to which each is attached may form a five to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when R₄ is C₁₋₈alkyl, optionally A and R₄ together with the atoms which each is attached may form a five to seven membered monocyclic ring optionally containing one additional heteroatom selected from the group consisting of N, O and S;

when R₅ is C₁₋₈alkyl, optionally A and R₅ together with the atoms which each is attached may form a three to seven membered monocyclic ring optionally containing one to two heteroatoms independently selected from the group consisting of N, O and S; and,

B₁ and B₂ are independently selected from the group consisting of C₁₋₂alkylene and C₂alkenylene optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C₁₋₈)alkyl, hydroxy(C₁₋₈)alkoxy, C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, C₁₋₈alkoxy, carboxyl, amino, N-(C₁₋₈alkyl)amino, N,N-(C₁₋₈dialkyl)amino, -CF₃ and -OCF₃;

and pharmaceutically acceptable salts, racemic mixtures, diastereomers and enantiomers thereof.

24
25. (Once Amended) A compound having Formula (II):

Selby C 2
T 1 0872

R. M. Clark

wherein
 Y is selected from the group consisting of $-C(O)-$ and $-SO_2-$;

R_1 is selected from the group consisting of R_7 and R_8 ;
 R_2 , R_3 , R_4 and R_5 are independently selected from the group consisting of a bond, hydrogen and C_{1-8} alkyl; wherein C_{1-8} alkyl is optionally substituted with one to three substituents independently selected from R_9 ; provided that R_2 , R_3 , R_4 and R_5 can only be a bond when forming a monocyclic ring wherein the following monocyclic rings may be formed from R_2 , R_3 , R_4 and R_5 :

when R_2 and R_3 comprise a bond and C_{1-8} alkyl or optionally when both R_2 and R_3 are C_{1-8} alkyl, R_2 and R_3 together with the atoms to which each are attached form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when R_3 and R_4 comprise a bond and C_{1-8} alkyl or optionally when both R_3 and R_4 are C_{1-8} alkyl, R_3 and R_4 together with the atoms to which each are attached form a five to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when R_3 and R_5 comprise a bond and C_{1-8} alkyl or optionally when both R_3 and R_5 are C_{1-8} alkyl, R_3 and R_5 together with the atoms to which each are attached form a four to seven

membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

Sub C2
Sub C3

when R₄ and R₅ comprise a bond and C₁₋₈alkyl or optionally when both R₄ and R₅ are C₁₋₈alkyl, R₄ and R₅ together with the atoms to which each are attached form a four to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

R₆ is optionally present and is one to three substituents independently selected from the group consisting of halogen, C₁₋₈alkoxy, R₁₀, R₁₂, -N(R₁₁)C(O)-R₁₀, -N(R₁₁)C(O)-R₁₂, -N(R₁₁)SO₂-R₁₀, -N(R₁₁)SO₂-R₁₂, -N(R₁₁)C(O)-N(R₁₁, R₁₀), -N(R₁₁)C(O)-N(R₁₁, R₁₂), -N(R₁₁)C(O)-N(R₁₂, R₁₇), -C(O)-N(R₁₁, R₁₀), -C(O)-N(R₁₁, R₁₂), -C(O)-N(R₁₂, R₁₇), -OC(O)-N(R₁₁, R₁₀), -OC(O)-N(R₁₁, R₁₂), -OC(O)-N(R₁₂, R₁₇), -OC(O)-R₁₀, -OC(O)-R₁₂, -O-R₁₀ and R₁₀-(C₁₋₈)alkoxy;

R₇, R₉, R₁₀ and R₁₄ are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, C₁₋₈alkoxy, C₁₋₈alkylcarbonyl, C₁₋₈alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino, N-(C₁₋₈alkyl)amino, N,N-(C₁₋₈dialkyl)amino, -CF₃ and -OCF₃; wherein cycloalkyl and heterocyclyl are optionally substituted with one to three oxo substituents; and, wherein the aryl and heteroaryl substituents and the aryl portion of the arylcarbonyl substituent are optionally substituted with one to five substituents independently selected from the group consisting of halogen, C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, C₁₋₈alkoxy, carboxyl, amino, N-(C₁₋₈alkyl)amino, N,N-(C₁₋₈dialkyl)amino, -CF₃ and -OCF₃;

R₈, R₁₂, R₁₃ and R₁₇ are independently selected from the group consisting of C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, and (halo)₁₋₃(C₁₋₈)alkyl; wherein C₁₋₈alkyl, C₂₋₈alkenyl and C₂₋₈alkynyl are optionally substituted on a terminal carbon with one to three substituents independently selected from R₁₄;

R₁₁ is selected from the group consisting of hydrogen and C₁₋₈alkyl;

A is C₁₋₄alkylene optionally substituted with one to two substituents independently selected from R₁₃;

when R₃ is C₁₋₈alkyl, optionally A and R₃ together with the atoms to which each is attached form a five to seven membered monocyclic ring optionally containing one to two additional heteroatoms independently selected from the group consisting of N, O and S;

when R₄ is C₁₋₈alkyl, optionally A and R₄ together with the atoms to which each is attached form a five to seven membered monocyclic ring optionally containing one additional heteroatom selected from the group consisting of N, O and S;

PATENT
when R₅ is C₁₋₈alkyl, optionally A and R₃ together with the atoms to which each is attached form a three to seven membered monocyclic ring optionally containing one to two heteroatoms independently selected from the group consisting of N, O and S;

B is selected from the group consisting of C₁₋₂alkylene and C₂alkenylene optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C₁₋₈)alkyl, hydroxy(C₁₋₈)alkoxy, C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, C₁₋₈alkoxy, carboxyl, amino, N-(C₁₋₈alkyl)amino, N,N-(C₁₋₈dialkyl)amino, -CF₃ and -OCF₃; and,

n is an integer from 1 to 2;

and pharmaceutically acceptable salts, racemic mixtures, diastereomers and enantiomers thereof.

25
26. (Once Amended) A process for preparing a compound of Formula (III) :

SAC 2

T10901

wherein

R_1 is selected from the group consisting of R_7 and R_8 ;

R_7 , R_{10} , and R_{14} are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl optionally substituted with one to five substituents independently selected from the group consisting of halogen, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1-8} alkoxy, C_{1-8} alkylcarbonyl, C_{1-8} alkoxycarbonyl, carboxyl, aryl, heteroaryl, arylcarbonyl, heteroarylcarbonyl, arylsulfonyl, amino, $N-(C_{1-8}$ alkyl)amino, $N,N-(C_{1-8}$ dialkyl)amino, $-CF_3$ and $-OCF_3$; wherein cycloalkyl and heterocyclyl are optionally substituted with one to three oxo substituents; and, wherein the aryl and heteroaryl substituents and the aryl portion of the arylcarbonyl substituent are optionally substituted with one to five substituents independently selected from the group consisting of halogen, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1-8} alkoxy, carboxyl, amino, $N-(C_{1-8}$ alkyl)amino, $N,N-(C_{1-8}$ dialkyl)amino, $-CF_3$ and $-OCF_3$;

R_8 , R_{12} and R_{17} are independently selected from the group consisting of C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, and (halo) $_{1-3}(C_{1-8})$ alkyl; wherein C_{1-8} alkyl, C_{2-8} alkenyl and C_{2-8} alkynyl are optionally substituted on a terminal carbon with one to three substituents independently selected from R_{14} ;

R_{150} is selected from the group consisting of hydroxy, amino, NO_2 and R_6 ;

R₆ is optionally present and is one to three substituents independently selected from the group consisting of halogen, C₁₋₈alkoxy, R₁₀, R₁₂, -N(R₁₁)C(O)-R₁₀, -N(R₁₁)C(O)-R₁₂, -N(R₁₁)SO₂-R₁₀, -N(R₁₁)SO₂-R₁₂, -N(R₁₁)C(O)-N(R₁₁, R₁₀), -N(R₁₁)C(O)-N(R₁₁, R₁₂), -N(R₁₁)C(O)-N(R₁₂, R₁₇), -C(O)-N(R₁₁, R₁₀), -C(O)-N(R₁₂, R₁₇), -C(O)-N(R₁₁, R₁₂), -OC(O)-N(R₁₁, R₁₀), -OC(O)-N(R₁₁, R₁₂), -OC(O)-N(R₁₂, R₁₇), -OC(O)-R₁₀, -OC(O)-R₁₂, -O-R₁₀ and R₁₀-(C₁₋₈)alkoxy;

R₁₁ is selected from the group consisting of hydrogen and C₁₋₈alkyl; and,

*RN X
and*
B₁ and B₂ are independently selected from the group consisting of C₁₋₂alkylene and C₂alkenylene optionally substituted with one to two substituents independently selected from the group consisting of halogen, hydroxy, hydroxy(C₁₋₈)alkyl, hydroxy(C₁₋₈)alkoxy, C₁₋₈alkyl, C₂₋₈alkenyl, C₂₋₈alkynyl, C₁₋₈alkoxy, carboxyl amino, N-(C₁₋₈alkyl)amino, N,N-(C₁₋₈dialkyl)amino, -CF₃ and -OCF₃;

and pharmaceutically acceptable salts, racemic mixtures, diastereomers and enantiomers thereof;

comprising reacting a compound of Formula (IV)

wherein

R₁₆ is selected from the group consisting of halogen, mixed anhydride and hydroxy;

with a compound of Formula (V)

*MX
cont
SACD
T 1 8921*

in the presence of appropriate coupling agents, bases and solvents to form the compound of Formula (II).

AJ 37 45 (Once Amended) A method of making a pharmaceutical composition comprising mixing a compound of claim 1 and a pharmaceutically acceptable carrier.

AJ 39 48. (Once Amended) The method of claim *46* ³⁸ wherein the $\alpha 4$ integrin receptor is selected from the group consisting of the $\alpha 4\beta 1$ and $\alpha 4\beta 7$ integrin receptor.

AJ 41 50. (Once Amended) The method of claim *46* ³⁸ wherein the integrin mediated disorder is a inflammatory disorders.

AJ 42 51. (Once Amended) The method of claim *46* ³⁸ wherein the integrin mediated disorder is autoimmunity disorders.

AJ 43 52. (Once Amended) The method of claim *46* ³⁸ wherein the integrin mediated disorder is selected from the group consisting of asthma, bronchoconstriction, restenosis, atherosclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, irritable bowel disease, irritable bowel syndrome, transplant rejection and multiple sclerosis.

AJ 44 53. (Once Amended) The method of claim *46* ³⁸ wherein the integrin mediated disorder is selected from the group consisting of asthma, bronchoconstriction, restenosis, atherosclerosis, irritable bowel syndrome and multiple sclerosis.

AJ 46 55. (Once Amended) The method of claim *46* ³⁸ further comprising administering to a subject in need thereof a therapeutically effective amount of the pharmaceutical composition of claim *46* ³⁸ combined with a pharmaceutically acceptable carrier.

AJ 47 56. (Once Amended) The method of claim *55* ⁴⁶ wherein the therapeutically effective amount of the pharmaceutical