

Claims

1. A mass spectrometer comprising:
an ion mobility separator for separating ions
5 according to their ion mobility, said ion mobility separator comprising a plurality of electrodes wherein in use one or more transient DC voltages or one or more transient DC voltage waveforms are progressively applied to said electrodes so that at least some ions having a first ion mobility are separated from other ions having a second different ion mobility.
2. A mass spectrometer as claimed in claim 1, wherein said one or more transient DC voltages or one or more transient DC voltage waveforms is such that at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of said ions having said first ion mobility are substantially moved along said ion mobility separator by said one or more transient DC voltages or said one or more transient DC voltage waveforms as said one or more transient DC voltages or said one or more transient DC voltage waveforms are progressively applied to said electrodes.
20
- 25 3. A mass spectrometer as claimed in claim 1, wherein said one or more transient DC voltages or said one or more transient DC voltage waveforms are such that at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of said ions having said second ion mobility are moved along said ion mobility separator by said applied DC voltage to a lesser degree than said ions having said first ion mobility as said one or more transient DC

voltages or said one or more transient DC voltage waveforms are progressively applied to said electrodes.

4. A mass spectrometer as claimed in claim 1, wherein
5 said one or more transient DC voltages or said one or
more transient DC voltage waveforms are such that at
least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95%
of said ions having said first ion mobility are moved
along said ion mobility separator with a higher velocity
10 than said ions having said second ion mobility.

5. A mass spectrometer comprising:

an ion mobility separator for separating ions
according to their ion mobility, said ion mobility
15 separator comprising a plurality of electrodes wherein
in use one or more transient DC voltages or one or more
transient DC voltage waveforms are progressively applied
to said electrodes so that ions are moved towards a
region of the ion mobility separator wherein at least
20 one electrode has a potential such that at least some
ions having a first ion mobility will pass across said
potential whereas other ions having a second different
ion mobility will not pass across said potential.

25 6. A mass spectrometer as claimed in claim 5, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms are such that at
least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95%
of said ions having said first ion mobility pass across
30 said potential.

7. A mass spectrometer as claimed in claim 5, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms are such that at
least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95%
5 of said ions having said second ion mobility will not
pass across said potential.

8. A mass spectrometer as claimed in claim 5, wherein
said at least one electrode is provided with a voltage
10 such that a potential hill or valley is provided.

9. A mass spectrometer as claimed in claim 5, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms are such that at
15 least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95%
of said ions having said first ion mobility exit said
ion mobility separator substantially before ions having
said second ion mobility.

20 10. A mass spectrometer as claimed in claim 5, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms are such that at
least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95%
of said ions having said second ion mobility exit said
25 ion mobility separator substantially after ions having
said first ion mobility.

11. A mass spectrometer as claimed in claim 5, wherein
a majority of said ions having said first ion mobility
30 exit said ion mobility separator a time t before a
majority of said ions having said second ion mobility
exit said ion mobility separator, wherein t falls within
a range selected from the group consisting of: (i) < 1

μs; (ii) 1-10 μs; (iii) 10-50 μs; (iv) 50-100 μs; (v) 100-200 μs; (vi) 200-300 μs; (vii) 300-400 μs; (viii) 400-500 μs; (ix) 500-600 μs; (x) 600-700 μs; (xi) 700-800 μs; (xii) 800-900 μs; (xiii) 900-1000 μs; (xiv) 1.0-
5 1.1 ms (xv) 1.1-1.2 ms; (xvi) 1.2-1.3 ms; (xvii) 1.3-1.4 ms; (xviii) 1.4-1.5 ms; (xix) 1.5-1.6 ms; (xx) 1.6-1.7 ms; (xxi) 1.7-1.8 ms; (xxii) 1.8-1.9 ms; (xxiii) 1.9-2.0 ms; (xxiv) 2.0-2.5 ms; (xxv) 2.5-3.0 ms; (xxvi) 3.0-3.5 ms; (xxvii) 3.5-4.0 ms; (xxviii) 4.0-4.5 ms; (xxix) 4.5-
10 5.0 ms; (xxx) 5-10 ms; (xxxi) 10-15 ms; (xxxii) 15-20 ms; (xxxiii) 20-25 ms; and (xxxiv) 25-30 ms.

12. A mass spectrometer comprising:

15 an ion mobility separator for separating ions according to their ion mobility, said ion mobility separator comprising a plurality of electrodes wherein in use one or more transient DC voltages or one or more transient DC voltage waveforms are progressively applied to said electrodes so that:

20 (i) ions are moved towards a region of the ion mobility separator wherein at least one electrode has a first potential such that at least some ions having first and second different ion mobilities will pass across said first potential whereas other ions having a third different ion mobility will not pass across said first potential; and then
25

30 (ii) ions having said first and second ion mobilities are moved towards a region of the ion mobility separator wherein at least one electrode has a second potential such that at least some ions having said first ion mobility will pass across said second potential whereas other ions having said second

different ion mobility will not pass across said second potential.

13. A mass spectrometer as claimed in claim 12, wherein
5 said one or more transient DC voltages or said one or
more transient DC voltage waveforms and said first
potential are such that at least 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90% or 95% of said ions having said
first ion mobility pass across said first potential.

10

14. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms and said first
potential are such that at least 10%, 20%, 30%, 40%,
15 50%, 60%, 70%, 80%, 90% or 95% of said ions having said
second ion mobility pass across said first potential.

20
20

15. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms and said first
potential are such that at least 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90% or 95% of said ions having said
third ion mobility do not pass across said first
potential.

25

16. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms and said second
potential are such that at least 10%, 20%, 30%, 40%,
30 50%, 60%, 70%, 80%, 90% or 95% of said ions having said
first ion mobility pass across said second potential.

17. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms and said second
potential are such that at least 10%, 20%, 30%, 40%,
5 50%, 60%, 70%, 80%, 90% or 95% of said ions having said
second ion mobility do not pass across said second
potential.

18. A mass spectrometer as claimed in claim 12, wherein
10 said one or more transient DC voltages or said one or
more transient DC voltage waveforms are such that at
least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95%
of said ions having said second ion mobility exit said
ion mobility separator substantially before ions having
15 said first and third ion mobilities.

19. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms are such that at
20 least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95%
of said ions having said first and third ion mobilities
exit said ion mobility separator substantially after
ions having said second ion mobility.

25 20. A mass spectrometer as claimed in claim 12, wherein
a majority of said ions having said second ion mobility
exit said ion mobility separator a time t before a
majority of said ions having said first and third ion
mobilities exit said ion mobility separator, wherein t
30 falls within a range selected from the group consisting
of: (i) < 1 μ s; (ii) 1-10 μ s; (iii) 10-50 μ s; (iv) 50-
100 μ s; (v) 100-200 μ s; (vi) 200-300 μ s; (vii) 300-400
 μ s; (viii) 400-500 μ s; (ix) 500-600 μ s; (x) 600-700 μ s;

(xi) 700-800 μ s; (xii) 800-900 μ s; (xiii) 900-1000 μ s;
(xiv) 1.0-1.1 ms (xv) 1.1-1.2 ms; (xvi) 1.2-1.3 ms;
(xvii) 1.3-1.4 ms; (xviii) 1.4-1.5 ms; (xix) 1.5-1.6 ms;
(xx) 1.6-1.7 ms; (xxi) 1.7-1.8 ms; (xxii) 1.8-1.9 ms;
5 (xxiii) 1.9-2.0 ms; (xxiv) 2.0-2.5 ms; (xxv) 2.5-3.0 ms;
(xxvi) 3.0-3.5 ms; (xxvii) 3.5-4.0 ms; (xxviii) 4.0-4.5
ms; (xxix) 4.5-5.0 ms; (xxx) 5-10 ms; (xxxi) 10-15 ms;
(xxxii) 15-20 ms; (xxxiii) 20-25 ms; and (xxxiv) 25-30
ms.

10

21. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltages create: (i) a
potential hill or barrier; (ii) a potential well; (iii)
a combination of a potential hill or barrier and a
15 (iv) multiple potential hills or
barriers; (v) multiple potential wells; or (vi) a
combination of multiple potential hills or barriers and
multiple potential wells.

20

22. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltage waveforms comprise
a repeating waveform.

25

23. A mass spectrometer as claimed in claim 22, wherein
said one or more transient DC voltage waveforms comprise
a square wave.

30

24. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltage waveforms create a
plurality of potential peaks or wells separated by
intermediate regions.

25. A mass spectrometer as claimed in claim 24, wherein
the DC voltage gradient in said intermediate regions is
non-zero.
- 5 26. A mass spectrometer as claimed in claim 25, wherein
said DC voltage gradient is positive or negative in said
intermediate regions.
- 10 27. A mass spectrometer as claimed in claim 25, wherein
the DC voltage gradient in said intermediate regions is
linear.
- 15 28. A mass spectrometer as claimed in claim 25, wherein
the DC voltage gradient in said intermediate regions is
non-linear.
- 20 29. A mass spectrometer as claimed in claim 28, wherein
said DC voltage gradient in said intermediate regions
increases or decreases exponentially.
- 25 30. A mass spectrometer as claimed in claim 24, wherein
the amplitude of said potential peaks or wells remains
substantially constant.
- 30 31. A mass spectrometer as claimed in claim 24, wherein
the amplitude of said potential peaks or wells becomes
progressively larger or smaller.
- 35 32. A mass spectrometer as claimed in claim 31, wherein
the amplitude of said potential peaks or wells increases
or decreases either linearly or non-linearly.

33. A mass spectrometer as claimed in claim 12, wherein
in use an axial DC voltage gradient is maintained along
at least a portion of the length of said ion mobility
separator and wherein said axial voltage gradient varies
5 with time.

34. A mass spectrometer as claimed in claim 12, wherein
said ion mobility separator comprises a first electrode
held at a first reference potential, a second electrode
10 held at a second reference potential, and a third
electrode held at a third reference potential, wherein:

15 at a first time t_1 a first DC voltage is supplied
to said first electrode so that said first electrode is
held at a first potential above or below said first
reference potential;

20 at a second later time t_2 , a second DC voltage is
supplied to said second electrode so that said second
electrode is held at a second potential above or below
said second reference potential; and

25 at a third later time t_3 , a third DC voltage is
supplied to said third electrode so that said third
electrode is held at a third potential above or below
said third reference potential.

35. A mass spectrometer as claimed in claim 34,
wherein:

30 at said first time t_1 said second electrode is at
said second reference potential and said third electrode
is at said third reference potential;

35 at said second time t_2 , said first electrode is at
said first potential and said third electrode is at said
third reference potential; and

at said third time t_3 , said first electrode is at said first potential and said second electrode is at said second potential.

- 5 36. A mass spectrometer as claimed in claim 34, wherein:

at said first time t_1 said second electrode is at said second reference potential and said third electrode is at said third reference potential;

- 10 at said second time t_2 , said first electrode is no longer supplied with said first DC voltage so that said first electrode is returned to said first reference potential and said third electrode is at said third reference potential; and

- 15 at said third time t_3 said first electrode is at said first reference potential said second electrode is no longer supplied with said second DC voltage so that said second electrode is returned to said second reference potential.

- 20 37. A mass spectrometer as claimed in claim 34, wherein said first, second and third reference potentials are substantially the same.

- 25 38. A mass spectrometer as claimed in claim 34, wherein said first, second and third DC voltages are substantially the same.

- 30 39. A mass spectrometer as claimed in claim 34, wherein said first, second and third potentials are substantially the same.

40. A mass spectrometer as claimed in claim 12, wherein said ion mobility separator comprises 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or >30 segments, wherein each segment comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or >30 electrodes and wherein the electrodes in a segment are maintained at substantially the same DC potential.

10

41. A mass spectrometer as claimed in claim 40, wherein a plurality of segments are maintained at substantially the same DC potential.

15

42. A mass spectrometer as claimed in claim 40, wherein each segment is maintained at substantially the same DC potential as the subsequent nth segment wherein n is 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or >30.

20

43. A mass spectrometer as claimed in claim 12, wherein ions are confined radially within said ion mobility separator by an AC or RF electric field.

25

44. A mass spectrometer as claimed in claim 12, wherein ions are radially confined within said ion mobility separator in a pseudo-potential well and are moved axially by a real potential barrier or well.

30

45. A mass spectrometer as claimed in claim 12, wherein
in use one or more AC or RF voltage waveforms are
applied to at least some of said electrodes so that ions
are urged along at least a portion of the length of said
5 ion mobility separator.

46. A mass spectrometer as claimed in claim 12, wherein
the transit time of ions through said ion mobility
separator is selected from the group consisting of: (i)
10 less than or equal to 20 ms; (ii) less than or equal to
10 ms; (iii) less than or equal to 5 ms; (iv) less than
or equal to 1 ms; and (v) less than or equal to 0.5 ms.

47. A mass spectrometer as claimed in claim 12, wherein
15 said ion mobility separator is maintained in use at a
pressure selected from the group consisting of: (i)
greater than or equal to 0.0001 mbar; (ii) greater than
or equal to 0.0005 mbar; (iii) greater than or equal to
0.001 mbar; (iv) greater than or equal to 0.005 mbar;
20 (v) greater than or equal to 0.01 mbar; (vi) greater
than or equal to 0.05 mbar; (vii) greater than or equal
to 0.1 mbar; (viii) greater than or equal to 0.5 mbar;
(ix) greater than or equal to 1 mbar; (x) greater than
or equal to 5 mbar; and (xi) greater than or equal to 10
25 mbar.

48. A mass spectrometer as claimed in claim 12, wherein
said ion mobility separator is maintained in use at a
pressure selected from the group consisting of: (i) less
30 than or equal to 10 mbar; (ii) less than or equal to 5
mbar; (iii) less than or equal to 1 mbar; (iv) less than
or equal to 0.5 mbar; (v) less than or equal to 0.1
mbar; (vi) less than or equal to 0.05 mbar; (vii) less

than or equal to 0.01 mbar; (viii) less than or equal to 0.005 mbar; (ix) less than or equal to 0.001 mbar; (x) less than or equal to 0.0005 mbar; and (xi) less than or equal to 0.0001 mbar.

5

49. A mass spectrometer as claimed in claim 12, wherein said ion mobility separator is maintained, in use, at a pressure selected from the group consisting of: (i) between 0.0001 and 10 mbar; (ii) between 0.0001 and 1 mbar; (iii) between 0.0001 and 0.1 mbar; (iv) between 0.0001 and 0.01 mbar; (v) between 0.0001 and 0.001 mbar; (vi) between 0.001 and 10 mbar; (vii) between 0.001 and 1 mbar; (viii) between 0.001 and 0.1 mbar; (ix) between 0.001 and 0.01 mbar; (x) between 0.01 and 10 mbar; (xi) between 0.01 and 1 mbar; (xii) between 0.01 and 0.1 mbar; (xiii) between 0.1 and 10 mbar; (xiv) between 0.1 and 1 mbar; and (xv) between 1 and 10 mbar.

50. A mass spectrometer as claimed in claim 12, wherein said ion mobility separator is maintained, in use, at a pressure such that a viscous drag is imposed upon ions passing through said ion mobility separator.

51. A mass spectrometer as claimed in claim 12, wherein in use said one or more transient DC voltages or said one or more transient DC voltage waveforms are initially provided at a first axial position and are then subsequently provided at second, then third different axial positions along said ion mobility separator.

30

52. A mass spectrometer as claimed in claim 12, wherein said one or more transient DC voltages or said one or more transient DC voltage waveforms move from one end of

said ion mobility separator to another end of said ion mobility separator so that at least some ions are urged along said ion mobility separator.

5 53. A mass spectrometer as claimed in claim 12, wherein said one or more transient DC voltages or said one or more transient DC voltage waveforms have at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 different amplitudes.

10 54. A mass spectrometer as claimed in claim 12, wherein the amplitude of said one or more transient DC voltages or said one or more transient DC voltage waveforms remains substantially constant with time.

15 55. A mass spectrometer as claimed in claim 12, wherein the amplitude of said one or more transient DC voltages or said one or more transient DC voltage waveforms varies with time.

20 56. A mass spectrometer as claimed in claim 54, wherein the amplitude of said one or more transient DC voltages or said one or more transient DC voltage waveforms either: (i) increases with time; (ii) increases then decreases with time; (iii) decreases with time; or (iv) decreases then increases with time.

25 57. A mass spectrometer as claimed in claim 55, wherein said ion mobility separator comprises an upstream entrance region, a downstream exit region and an intermediate region, wherein:

30 in said entrance region the amplitude of said one or more transient DC voltages or said one or more transient DC voltage waveforms has a first amplitude;

in said intermediate region the amplitude of said one or more transient DC voltages or said one or more transient DC voltage waveforms has a second amplitude; and

5 in said exit region the amplitude of said one or more transient DC voltages or said one or more transient DC voltage waveforms has a third amplitude.

10 58. A mass spectrometer as claimed in claim 57, wherein the entrance and/or exit region comprise a proportion of the total axial length of said ion mobility separator selected from the group consisting of: (i) < 5%; (ii) 5-10%; (iii) 10-15%; (iv) 15-20%; (v) 20-25%; (vi) 25-30%; (vii) 30-35%; (viii) 35-40%; and (ix) 40-45%.

15 59. A mass spectrometer as claimed in claim 57, wherein said first and/or third amplitudes are substantially zero and said second amplitude is substantially non-zero.

20 60. A mass spectrometer as claimed in claim 57, wherein said second amplitude is larger than said first amplitude and/or said second amplitude is larger than said third amplitude.

25 61. A mass spectrometer as claimed in claim 12, wherein said one or more transient DC voltages or said one or more transient DC voltage waveforms pass in use along said ion mobility separator with a first velocity.

30 62. A mass spectrometer as claimed in claim 61, wherein said first velocity: (i) remains substantially constant; (ii) varies; (iii) increases; (iv) increases then

decreases; (v) decreases; (vi) decreases then increases; (vii) reduces to substantially zero; (viii) reverses direction; or (ix) reduces to substantially zero and then reverses direction.

5

63. A mass spectrometer as claimed in claim 61, wherein said one or more transient DC voltages or said one or more transient DC voltage waveforms causes some ions within said ion mobility separator to pass along said ion mobility separator with a second different velocity.

10 64. A mass spectrometer as claimed in claim 61, wherein said one or more transient DC voltages or said one or more transient DC voltage waveforms causes some ions within said ion mobility separator to pass along said ion mobility separator with a third different velocity.

15 65. A mass spectrometer as claimed in claim 61, wherein said one or more transient DC voltages or said one or more transient DC voltage waveforms causes some ions within said ion mobility separator to pass along said ion mobility separator with a fourth different velocity.

20 66. A mass spectrometer as claimed in claim 61, wherein said one or more transient DC voltages or said one or more transient DC voltage waveforms causes some ions within said ion mobility separator to pass along said ion mobility separator with a fifth different velocity.

25 67. A mass spectrometer as claimed in claim 61, wherein the difference between said first velocity and said second and/or said third and/or said fourth and/or said fifth velocities is selected from the group consisting

of: (i) less than or equal to 50 m/s; (ii) less than or equal to 40 m/s; (iii) less than or equal to 30 m/s; (iv) less than or equal to 20 m/s; (v) less than or equal to 10 m/s; (vi) less than or equal to 5 m/s; and
5 (vii) less than or equal to 1 m/s;

68. A mass spectrometer as claimed in claim 61, wherein said first velocity is selected from the group consisting of: (i) 10-250 m/s; (ii) 250-500 m/s; (iii) 10 500-750 m/s; (iv) 750-1000 m/s; (v) 1000-1250 m/s; (vi) 1250-1500 m/s; (vii) 1500-1750 m/s; (viii) 1750-2000 m/s; (ix) 2000-2250 m/s; (x) 2250-2500 m/s; (xi) 2500-2750 m/s; and (xii) 2750-3000 m/s.

15 69. A mass spectrometer as claimed in claim 61, wherein said second and/or said third and/or said fourth and/or said fifth velocity is selected from the group consisting of: (i) 10-250 m/s; (ii) 250-500 m/s; (iii) 500-750 m/s; (iv) 750-1000 m/s; (v) 1000-1250 m/s; (vi) 1250-1500 m/s; (vii) 1500-1750 m/s; (viii) 1750-2000 20 m/s; (ix) 2000-2250 m/s; (x) 2250-2500 m/s; (xi) 2500-2750 m/s; and (xii) 2750-3000 m/s.

25 70. A mass spectrometer as claimed in claim 12, wherein said one or more transient DC voltages or said one or more transient DC voltage waveforms has a frequency, and wherein said frequency: (i) remains substantially constant; (ii) varies; (iii) increases; (iv) increases then decreases; (v) decreases; or (vi) decreases then 30 increases.

71. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms has a wavelength,
and wherein said wavelength: (i) remains substantially
5 constant; (ii) varies; (iii) increases; (iv) increases
then decreases; (v) decreases; or (vi) decreases then
increases.

72. A mass spectrometer as claimed in claim 12, wherein
10 two or more transient DC voltages or two or more
transient DC voltage waveforms pass simultaneously along
said ion mobility separator.

73. A mass spectrometer as claimed in claim 72, wherein
15 said two or more transient DC voltages or said two or
more transient DC voltage waveforms are arranged to
move: (i) in the same direction; (ii) in opposite
directions; (iii) towards each other; or (iv) away from
each other.

20 74. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms passes along said
ion mobility separator and at least one substantially
25 stationary transient DC potential voltage or voltage
waveform is provided at a position along said ion
mobility separator.

30 75. A mass spectrometer as claimed in claim 12, wherein
said one or more transient DC voltages or said one or
more transient DC voltage waveforms are repeatedly
generated and passed in use along said ion mobility
separator, and wherein the frequency of generating said

one or more transient DC voltages or said one or more transient DC voltage waveforms: (i) remains substantially constant; (ii) varies; (iii) increases; (iv) increases then decreases; (v) decreases; or (vi) 5 decreases then increases.

76. A mass spectrometer as claimed in claim 12, wherein in use a continuous beam of ions is received at an entrance to said ion mobility separator.

10

77. A mass spectrometer as claimed in claim 12, wherein in use packets of ions are received at an entrance to said ion mobility separator.

15

78. A mass spectrometer as claimed in claim 12, wherein in use pulses of ions emerge from an exit of said ion mobility separator.

20

79. A mass spectrometer as claimed in claim 78, further comprising an ion detector, said ion detector being arranged to be substantially phase locked in use with the pulses of ions emerging from the exit of the ion mobility separator.

25
30

80. A mass spectrometer as claimed in claim 78, further comprising a Time of Flight mass analyser comprising an electrode for injecting ions into a drift region, said electrode being arranged to be energised in use in a substantially synchronised manner with the pulses of ions emerging from the exit of the ion mobility separator.

81. A mass spectrometer as claimed in claim 12, wherein
said ion mobility separator is selected from the group
consisting of: (i) an ion funnel comprising a plurality
of electrodes having apertures therein through which
ions are transmitted, wherein the diameter of said
apertures becomes progressively smaller or larger; (ii)
an ion tunnel comprising a plurality of electrodes
having apertures therein through which ions are
transmitted, wherein the diameter of said apertures
remains substantially constant; and (iii) a stack of
plate, ring or wire loop electrodes.

82. A mass spectrometer as claimed in claim 12, wherein
said ion mobility separator comprises a plurality of
electrodes, each electrode having an aperture through
which ions are transmitted in use.

83. A mass spectrometer as claimed in claim 12, wherein
each electrode has a substantially circular aperture.

84. A mass spectrometer as claimed in claim 12, wherein
each electrode has a single aperture through which ions
are transmitted in use.

85. A mass spectrometer as claimed in claim 82, wherein
the diameter of the apertures of at least 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90% or 95% of the electrodes
forming said ion mobility separator is selected from the
group consisting of: (i) less than or equal to 10 mm;
(ii) less than or equal to 9 mm; (iii) less than or
equal to 8 mm; (iv) less than or equal to 7 mm; (v) less
than or equal to 6 mm; (vi) less than or equal to 5 mm;
(vii) less than or equal to 4 mm; (viii) less than or

equal to 3 mm; (ix) less than or equal to 2 mm; and (x) less than or equal to 1 mm.

5 86. A mass spectrometer as claimed in claim 12, wherein at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of the electrodes forming the ion mobility separator have apertures which are substantially the same size or area.

10 87. A mass spectrometer as claimed in claim 12, wherein said ion mobility separator comprises a segmented rod set.

15 88. A mass spectrometer as claimed in claim 12, wherein said ion mobility separator consists of: (i) 10-20 electrodes; (ii) 20-30 electrodes; (iii) 30-40 electrodes; (iv) 40-50 electrodes; (v) 50-60 electrodes; (vi) 60-70 electrodes; (vii) 70-80 electrodes; (viii) 80-90 electrodes; (ix) 90-100 electrodes; (x) 100-110 electrodes; (xi) 110-120 electrodes; (xii) 120-130 electrodes; (xiii) 130-140 electrodes; (xiv) 140-150 electrodes; or (xv) more than 150 electrodes.

25 89. A mass spectrometer as claimed in claim 12, wherein the thickness of at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of said electrodes is selected from the group consisting of: (i) less than or equal to 3 mm; (ii) less than or equal to 2.5 mm; (iii) less than or equal to 2.0 mm; (iv) less than or equal to 1.5 mm; (v) less than or equal to 1.0 mm; and (vi) less than or equal to 0.5 mm.

90. A mass spectrometer as claimed in claim 12, wherein
said ion mobility separator has a length selected from
the group consisting of: (i) less than 5 cm; (ii) 5-10
cm; (iii) 10-15 cm; (iv) 15-20 cm; (v) 20-25 cm; (vi)
5 25-30 cm; and (vii) greater than 30 cm.

91. A mass spectrometer as claimed in claim 12, wherein
at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or
10 95% of said electrodes are connected to both a DC and an
AC or RF voltage supply.

92. A mass spectrometer as claimed in claim 12, wherein
axially adjacent electrodes are supplied with AC or RF
voltages having a phase difference of 180°.

15 93. A mass spectrometer as claimed in claim 12, further
comprising an ion source selected from the group
consisting of: (i) Electrospray ("ESI") ion source; (ii)
Atmospheric Pressure Chemical Ionisation ("APCI") ion
20 source; (iii) Atmospheric Pressure Photo Ionisation
("APPI") ion source; (iv) Matrix Assisted Laser
Desorption Ionisation ("MALDI") ion source; (v) Laser
Desorption Ionisation ("LDI") ion source; (vi)
Inductively Coupled Plasma ("ICP") ion source; (vii)
25 Electron Impact ("EI") ion source; (viii) Chemical
Ionisation ("CI") ion source; (ix) a Fast Atom
Bombardment ("FAB") ion source; and (x) a Liquid
Secondary Ions Mass Spectrometry ("LSIMS") ion source.

30 94. A mass spectrometer as claimed in claim 12, further
comprising a continuous ion source.

95. A mass spectrometer as claimed in claim 12, further comprising a pulsed ion source.

96. An ion mobility separator for separating ions
5 according to their ion mobility, said ion mobility
separator comprising a plurality of electrodes wherein
in use one or more transient DC voltages or one or more
transient DC voltage waveforms are progressively applied
to said electrodes so that at least some ions having a
10 first ion mobility are separated from other ions having
a second different ion mobility.

97. An ion mobility separator for separating ions
according to their ion mobility, said ion mobility
15 separator comprising a plurality of electrodes wherein
in use one or more transient DC voltages or one or more
transient DC voltage waveforms are progressively applied
to said electrodes so that ions are moved towards a
region of the ion mobility separator wherein at least
20 one electrode has a potential such that at least some
ions having a first ion mobility will pass across said
potential whereas other ions having a second different
ion mobility will not pass across said potential.

25 98. An ion mobility separator for separating ions
according to their ion mobility, said ion mobility
separator comprising a plurality of electrodes wherein
in use one or more transient DC voltages or one or more
transient DC voltage waveforms are progressively applied
30 to said electrodes so that:

(i) ions are moved towards a region of the ion
mobility separator wherein at least one electrode has a
first potential such that at least some ions having

first and second different ion mobilities will pass across said first potential whereas other ions having a third different ion mobility will not pass across said first potential; and then

5 (ii) ions having said first and second ion mobilities are moved towards a region of the ion mobility separator wherein at least one electrode has a second potential such that at least some ions having said first ion mobility will pass across said second potential whereas other ions having said second different ion mobility will not pass across said second potential.

99. A method of mass spectrometry comprising:
15 receiving ions in an ion mobility separator comprising a plurality of electrodes; and
 progressively applying to said electrodes one or more transient DC voltages or one or more transient DC voltage waveforms so that at least some ions having a first ion mobility are separated from other ions having a second different ion mobility.

100. A method of mass spectrometry comprising:
25 receiving ions in an ion mobility separator comprising a plurality of electrodes; and
 progressively applying to said electrodes one or more transient DC voltages or one or more transient DC voltage waveforms so that ions are moved towards a region of the ion mobility separator wherein at least one electrode has a potential such that at least some ions having a first ion mobility will pass across said potential whereas other ions having a second different ion mobility will not pass across said potential.

101. A method of mass spectrometry comprising:

receiving ions in an ion mobility separator
comprising a plurality of electrodes;

5 progressively applying to said electrodes one or
more transient DC voltages or one or more transient DC
voltage waveforms so that ions are moved towards a
region of the ion mobility separator wherein at least
one electrode has a first potential such that at least
some ions having a first and second different ion
10 mobilities will pass across said first potential whereas
other ions having a third different ion mobility will
not pass across said first potential; and then

15 progressively applying to said electrodes one or
more transient DC voltages or one or more transient DC
voltage waveforms so that ions having said first and
second ion mobilities are moved towards a region of the
ion mobility separator wherein at least one electrode
has a second potential such that at least some ions
having said first ion mobility will pass across said
20 second potential whereas other ions having said second
different ion mobility will not pass across said second
potential.

102. A method of ion mobility separation comprising:

25 receiving ions in an ion mobility separator
comprising a plurality of electrodes; and

30 progressively applying to said electrodes one or
more transient DC voltages or one or more transient DC
voltage waveforms so that at least some ions having a
first ion mobility are separated from other ions having
a second different ion mobility.

103. A method of ion mobility separation comprising:

receiving ions in an ion mobility separator
comprising a plurality of electrodes; and
progressively applying to said electrodes one or
5 more transient DC voltages or one or more transient DC
voltage waveforms so that ions are moved towards a
region of the ion mobility separator wherein at least
one electrode has a potential such that at least some
ions having a first ion mobility will pass across said
10 potential whereas other ions having a second different
ion mobility will not pass across said potential.

104. A method of ion mobility separation comprising:

receiving ions in an ion mobility separator
15 comprising a plurality of electrodes;
progressively applying to said electrodes one or
more transient DC voltages or one or more transient DC
voltage waveforms so that ions are moved towards a
region of the ion mobility separator wherein at least
one electrode has a first potential such that at least
20 some ions having a first and second different ion
mobilities will pass across said first potential whereas
other ions having a third different ion mobility will
not pass across said first potential; and then
25 progressively applying to said electrodes one or
more transient DC voltages or one or more transient DC
voltage waveforms so that ions having said first and
second ion mobilities are moved towards a region of the
ion mobility separator wherein at least one electrode
30 has a second potential such that at least some ions
having said first ion mobility will pass across said
second potential whereas other ions having said second

different ion mobility will not pass across said second potential.

105. An ion mobility separator wherein ions separate
5 within said ion mobility separator according to their
ion mobility and assume different essentially static or
equilibrium axial positions along the length of said ion
mobility separator.
- 10 106. An ion mobility separator as claimed in claim 105,
wherein said ion mobility separator comprises a
plurality of electrodes and wherein one or more
transient DC voltages or one or more transient DC
voltage waveforms are progressively applied to said
15 electrodes so as to urge at least some ions in a first
direction and wherein a DC voltage gradient acts to urge
at least some ions in a second direction, said second
direction being opposed to said first direction.
- 20 107. An ion mobility separator as claimed in claim 106,
wherein the peak amplitude of said one or more transient
DC voltages or said one or more transient DC voltage
waveforms remains substantially constant or reduces
along the length of the ion mobility separator.
- 25 108. An ion mobility separator as claimed in claim 106,
wherein said DC voltage gradient progressively increases
along the length of the ion mobility separator.
- 30 109. An ion mobility separator as claimed in claim 105,
wherein once ions have assumed essentially static or
equilibrium axial positions along the length of said ion
mobility separator at least some of said ions are then

arranged to be moved towards an exit of said ion mobility separator.

110. An ion mobility separator as claimed in claim 109,
5 wherein at least some of said ions are arranged to be moved towards an exit of said ion mobility separator by:
(i) reducing or increasing an axial DC voltage gradient;
(ii) reducing or increasing the peak amplitude of said one or more transient DC voltages or said one or more
10 transient DC voltage waveforms; (iii) reducing or increasing the velocity of said one or more transient DC voltages or said one or more transient DC voltage waveforms; or (iv) reducing or increasing the pressure within said ion mobility separator.

15

111. A mass spectrometer comprising an ion mobility separator as claimed in claim 105.

20

112. A method of ion mobility separation comprising causing ions to separate within an ion mobility separator and assume different essentially static or equilibrium axial positions along the length of the ion mobility separator.

25
30

113. A method of ion mobility separation as claimed in claim 112, wherein said ion mobility separator comprises a plurality of electrodes and wherein one or more transient DC voltages or one or more transient DC voltage waveforms are progressively applied to said electrodes so as to urge at least some ions in a first direction and wherein a DC voltage gradient acts to urge at least some ions in a second direction, said second direction being opposed to said first direction.

114. A method of ion mobility separation as claimed in
claim 113, wherein the peak amplitude of said one or
more transient DC voltages or said one or more transient
DC voltage waveforms remains substantially constant or
5 reduces along the length of the ion mobility separator.

115. A method of ion mobility separation as claimed in
claim 113, wherein said DC voltage gradient
progressively increases along the length of the ion
10 mobility separator.

116. A method of ion mobility separation as claimed in
claim 112, wherein once ions have assumed essentially
static or equilibrium axial positions along the length
15 of said ion mobility separator at least some of said
ions are then arranged to be moved towards an exit of
said ion mobility separator.

117. A method of ion mobility separation as claimed in
20 claim 116, wherein at least some of said ions are
arranged to be moved towards an exit of said ion
mobility separator by: (i) reducing or increasing an
axial DC voltage gradient; (ii) reducing or increasing
the peak amplitude of said one or more transient DC
25 voltages or said one or more transient DC voltage
waveforms; (iii) reducing or increasing the velocity of
said one or more transient DC voltages or said one or
more transient DC voltage waveforms; or (iv) reducing or
increasing the pressure within said ion mobility
30 separator.

118. A method of mass spectrometry comprising the method
of ion mobility separation as claimed in claim 112.

119. A method of mass spectrometry comprising:

providing an ion mobility separator for separating ions according to their ion mobility, said ion mobility separator comprising a plurality of electrodes wherein
5 in use one or more transient DC voltages or one or more transient DC voltage waveforms are progressively applied to said electrodes so that at least some ions having a first ion mobility are separated from other ions having a second different ion mobility;
10 separating ions according to their ion mobility in said ion mobility separator;
providing a quadrupole mass filter downstream of said ion mobility separator; and
scanning said quadrupole mass filter in a stepped
15 manner in synchronisation with said ion mobility separator so as to onwardly transmit ions having a desired charge state.

120. A mass spectrometer comprising:

20 an ion mobility separator for separating ions according to their ion mobility, said ion mobility separator comprising a plurality of electrodes wherein in use one or more transient DC voltages or one or more transient DC voltage waveforms are progressively applied to said electrodes so that at least some ions having a first ion mobility are separated from other ions having a second different ion mobility; and
25 a quadrupole mass filter downstream of said ion mobility separator;
30 wherein said quadrupole mass filter is scanned in use in a stepped manner in synchronisation with said ion mobility separator so as to onwardly transmit ions having a desired charge state.