CHEMISTRY IMPORTANTS

The 2-mark answers Unit-One questions:

1) What is an ionic bond? Give example.

An **ionic bond** is a chemical bond formed by the **transfer of electrons** from a metal to a non-metal.

Example: NaCl (Sodium Chloride) – Na⁺ and Cl⁻ ions.

2) Define covalent bond. Give example H_2 , O_2 .

A covalent bond is formed when two atoms share one or more pairs of electrons. Examples:

- H₂: H–H (single bond)
- O₂: O=O (double bond)

3) Define hybridization. Give example.

Hybridization is the process of **mixing atomic orbitals** to form new hybrid orbitals of equal energy for bonding.

Example: In CH₄ (methane), carbon undergoes **sp**³ **hybridization**.

4) Define lattice energy.

Lattice energy is the energy **released** when one mole of an **ionic compound** is formed from its **gaseous ions**.

It is a measure of the strength of the ionic bond.

5) Write Fajans' rules.

Fajans' rules predict covalent character in ionic compounds:

- Smaller cation size
- Larger anion size
- Higher cation charge
 These increase covalent character.

6) Write the resonance structures of CO₂, SO₂, SO₃, NO, NO₂.

CO₂:

O=C=O (linear)

↔ O⁻-C≡O⁺ and O⁺≡C-O⁻

SO₂:

 $O=S-O \leftrightarrow O-S=O$ (with lone pairs and formal charges)

SO₃:

 $O=S(=O)-O \leftrightarrow resonance among all 3 oxygen atoms$

NO:

N=O ↔ N⁺≡O⁻

NO₂:

 $O=N-O \leftrightarrow O-N=O$ (bent structure with resonance)

7) Write the isomers of butane, hexane, heptane.

- Butane (C₄H₁₀):
 - 1. n-Butane
 - 2. iso-Butane (2-methylpropane)
- Hexane (C₆H₁₄): 5 isomers
 - 1. n-Hexane
 - 2. 2-Methylpentane
 - 3. 3-Methylpentane
 - 4. 2,3-Dimethylbutane
 - 5. 2,2-Dimethylbutane
- **Heptane (C₇H₁₆):** 9 isomers (names not required for 2 marks; just mention the count)

8) Write the oxidation of alkenes with KMnO₄.

Cold, dilute KMnO₄: Alkenes form glycols (diols).

Example: $CH_2=CH_2+[O] \rightarrow HO-CH_2-CH_2-OH$

Hot, concentrated KMnO₄: Cleaves double bond into carboxylic acids or ketones.

2-mark answers for Unit 2 questions:

1) What are dienes? Give classification.

Dienes are hydrocarbons containing **two double bonds**.

Classification:

- Conjugated dienes: Double bonds separated by one single bond (e.g., 1,3butadiene)
- Cumulated dienes: Double bonds are adjacent (e.g., allene)
- Isolated dienes: Double bonds separated by two or more single bonds

2) Write the hybridization of alkane.

In alkanes, all carbon atoms are sp³ hybridized.

Each carbon forms four sigma bonds with bond angle of 109.5°.

3) Write the hybridization of alkene.

In alkenes, the double bonded carbon atoms are sp² hybridized.

They form one sigma and one pi bond with bond angle of 120°.

4) Write the hybridization of alkynes.

In alkynes, the triple bonded carbon atoms are sp hybridized.

They form one sigma and two pi bonds, with bond angle 180°.

5) Write a note on acidity of alkynes.

Terminal alkynes are acidic due to the **sp-hybridized carbon** having high **s-character** (50%) which attracts electrons more.

Example: HC≡CH can release H⁺ to form acetylide ion (strong base).

6) Define activating and deactivating substances. Give example.

Activating groups increase the reactivity of benzene towards electrophiles.
 Example: -OH, -NH₂

Deactivating groups decrease the reactivity.

Example: -NO₂, -COOH

7) Write the resonance structure of Naphthalene and Anthracene.

Naphthalene: Two fused benzene rings with alternating double bonds (5 resonance structures)

Anthracene: Three linearly fused benzene rings showing resonance over the entire system.

(You can draw the structures if needed for exams.)

8) Write Huckel's rule of aromaticity.

A compound is **aromatic** if it is:

- Cyclic, planar, conjugated, and
- Has $(4n + 2) \pi$ electrons, where n = 0, 1, 2, ...

Example: Benzene (6 π electrons, n=1) is aromatic.

2-mark answers for Unit 3 questions:

1) What is rate of a reaction? Mention its unit.

The **rate of a reaction** is the change in concentration of a reactant or product per unit time.

Unit: $mol \cdot L^{-1} \cdot s^{-1}$

2) Write the relationship between half-life period and order of reaction.

- For first-order reactions:
 t1/2=0.693kt_{1/2} = {0.693}{k} (independent of concentration)
- For **zero or second order**, t1/2t_{1/2} depends on initial concentration.

3) What are surface reactions? Give its characteristics.

Surface reactions occur on the surface of solids, especially catalysts. **Characteristics:**

- Occur at solid-gas or solid-liquid interfaces
- Highly influenced by surface area and nature of the surface

4) What are different types of liquid mixtures?

- 1. **Ideal mixtures** follow Raoult's law (no heat change)
- 2. Non-ideal mixtures show deviation (positive or negative) from Raoult's law
- 3. **Azeotropic mixtures** constant boiling mixtures that can't be separated by distillation

5) Define positive and negative adsorption.

- **Positive adsorption:** Solute accumulates on the surface (e.g., gas on charcoal)
- Negative adsorption: Solute concentration decreases on the surface (surface repels solute)
- 6) Write Gibbs adsorption equation. Mention the terms.

Gibbs adsorption equation: $\Gamma = -1/RT$ (d $\gamma \cdot /d \ln c$)

Where:

- T\Gamma = surface excess
- γ\gamma = surface tension
- CC = concentration
- RR = gas constantD
- TT = temperature

7) What is the effect of dissolved substance on surface tension of solvent?

• If solute increases surface tension, it is non-surface active.

 If solute decreases surface tension, it is surface-active (like soaps, detergents).

8) What are adsorption indicators?

Adsorption indicators are dyes used in **precipitation titrations** which get adsorbed on the precipitate and change color at the equivalence point.

Example: Fluorescein in silver nitrate titration.

9) Define physisorption and chemisorption.

- Physisorption: Weak van der Waals forces, low heat of adsorption, reversible.
- **Chemisorption:** Strong chemical bond, high heat of adsorption, often irreversible.

2-mark answers for Unit 4 questions:

1) Define Normality and Molarity

- Normality (N): Number of gram-equivalents of solute per litre of solution.
 N=gram equivalents volume in litres N
- Molarity (M): Number of moles of solute per litre of solution.
 M=moles of solute volume in litres M

2) Give the classification of titrimetric analysis. Give example for each.

- 1. Acid-base titration (e.g., HCl vs NaOH)
- 2. **Redox titration** (e.g., KMnO₄ vs FeSO₄)
- 3. Complexometric titration (e.g., EDTA vs Ca²⁺)
- 4. **Precipitation titration** (e.g., AgNO₃ vs NaCl)

3) Indicator used for EDTA titration

The most common indicator is Eriochrome Black T (EBT).

It forms a colored complex with metal ions and changes color at the end point.

4) Write a note on metal ion indicators

Metal ion indicators are organic dyes that form colored complexes with metal ions. At endpoint, metal ions form a complex with EDTA, releasing the indicator and causing a **color change**.

5) Write the mechanism of precipitation

Precipitation occurs when the product of ion concentrations exceeds the **solubility product (Ksp)**, forming an insoluble solid.

Steps:

- 1. Supersaturation
- 2. Nucleation
- 3. Crystal growth

6) Define co-precipitation and post-precipitation

- **Co-precipitation:** Unwanted substances get precipitated along with desired precipitate.
- Post-precipitation: Impurities form after the main precipitate is formed and settle on it.

7) Write the factors influencing precipitation

- 1. Concentration of ions
- 2. Temperature
- 3. pH of solution
- 4. Rate of mixing
- 5. Presence of common ions or impurities

8) Write the structure of Oxine and DMG

• Oxine (8-hydroxyquinoline):

A quinoline ring with –OH at position 8

• DMG (Dimethylglyoxime):

A dioxime compound with two $-CH_3$ groups