^第一章 绪论

	畄	TH	14	择	晒
•	平	火	Ľ	归干	咫

1、变量之间的关系可以分为两大类,它们是【 A】

A 函数关系和相关关系 系和非线性相关关系

B 线性相关关

C 正相关关系和负相关关系 系和复杂相关关系 D 简单相关关

2、相关关系是指【 D 】

A 变量间的依存关系

B 变量间的因

果关系

C 变量间的函数关系 出来的随机数学关系 D 变量间表现

3、进行相关分析时,假定相关的两个变量【 A】

A 都是随机变量

B 都不是随机变

量

C 一个是随机变量,一个不是随机变量 D 随机或非随机都可以

4、计量经济研究中的数据主要有两类:一类是时间序列数据,

另一类是【 B 】

A 总量数据

B 横截面数据

C 平均数据

D 相对数据

- 5、横截面数据是指【 A 】
- A 同一时点上不同统计单位相同统计指标组成的数据
- B 同一时点上相同统计单位相同统计指标组成的数据
- C 同一时点上相同统计单位不同统计指标组成的数据
- D 同一时点上不同统计单位不同统计指标组成的数据
- 6、下面属于截面数据的是【 D 】

A 1991-2003 年各年某地区 20 个乡镇的平均工业产值

B 1991-2003 年各年某地区 20 个乡镇的各镇工业产值

- C 某年某地区 20 个乡镇工业产值的合计数
- D 某年某地区 20 个乡镇各镇工业产值
- 7、同一统计指标按时间顺序记录的数据列称为【 B 】
- A 横截面数据 B 时间序列数据 C 修匀

数据 D原始数据

8、经济计量分析的基本步骤是【 A 】 A 设定理论模型→收集样本资料→估计模型参数→检验模型 设定模型→估计参数→检验模型→应用模型 C 个体设计→总体设计→估计模型→应用模型 D 确定模型导向→确定变量及方程式→估计模型→应用模型 9、计量经济模型的基本应用领域有【 A 结构分析 、经济预测、政策评价 B 弹性分析、乘数分析、政策模拟 消费需求分析、生产技术分析、市场均衡分析 D 季度分析、年度分析、中长期分析 10、计量经济模型是指【 C】 投入产出模型 数学规划模型 C 包含随机方程的经济数学模型 D 模糊数学模型 11、设 M 为货币需求量,Y为收入水平,r为利率,流动性偏

11、设 M 为货巾需求量,Y为收入水平,r为利率,流动性偏好函数为:M=a+bY+cr+u,b'和 c'分别为 b、c 的估计值,根据经济理论,有【 A】

A b'应为正值,c'应为负值

B b'应为正值,

c'应为正值

- C b'应为负值,c'应为负值 c'应为正值
- D b'应为负值,
- 12、回归分析中定义【 B 】
- A 解释变量和被解释变量都是随机变量
- B 解释变量为非随机变量,被解释变量为随机变量
- C 解释变量和被解释变量都是非随机变量
- D 解释变量为随机变量,被解释变量为非随机变量
- 13、线性模型的影响因素【 C】
- A 只能是数量因素

B 只能是质量因

素

- C 可以是数量因素,也可以是质量因素 D 只能是随机因素
- 14、下列选项中,哪一项是统计检验基础上的再检验(亦称二级检验)准则【 A 】
 - A. 计量经济学准则

B 经济理论准则

C 统计准则济理论准则

D 统计准则和经

的数		选择变量		В	确定变量之间
估参		收集数据 的期望值		D	拟定模型中待
	16	、计量经济学模型成功的三要素不包	括	В	1
	A	理论	В	应	用
	C	数据	D	方	法
[17 D	、在模型的经济意义检验中,不包 】	9括	金验	下面的哪一项
小	A	参数估计量的符号	В	参	数估计量的大
著性	_	参数估计量的相互关系	D	参	数估计量的显
ľ		、计量经济学模型用于政策评价时, 】	不包	括门	面的那种方法
	A	工具变量法	В	工具	—目标法
	C	政策模拟	D	最优	控制方法

15、理论设计的工作,不包括下面哪个方面【 C 】

	19 、	在经济学的结构分析中,不包	括下面	那一项	[D]
	A	弹性分析	В	乘数分	·
	C	比较静力分析	D	方差分	分析
	=,	多项选择题			
	1,	使用时序数据进行经济计量会	分析时	,要求	指标统计的
	A	BCDE			
	A	对象及范围可比		В	时间可比
C	口径可	可比			
	D	计算方法可比	内容可	可比	
	2 ,	一个模型用于预测前	必须	经过	的检验有
	Α	ABCD]			
	A	经济准则检验		B 统	计准则检验
C	计量	经济学准则检验			
	D	模型预测检验	实践	检验	
	3、	经济计量分析工作的四个步骤是	<u> </u>	BCDI	Ξ]
	A	理论研究		В	设计模型
C	估计	参数			
	D	检验模型		模型	

	4、对计量经济模型的统计准则检验包括(BDE)
C	A 估计标准误差评价 B 拟合优度检验 预测误差程度评价
验	D 总体线性关系显著性检验 E 单个回归系数的显著性检 5 、对计量经济模型的计量经济学准则检验包括
ľ	BCE]
C	A 误差程度检验 B 异方差检验 序列相关检验
	D 超一致性检验 E 多重共线性检验
[6、对经济计量模型的参数估计结果进行评价时,采用的准则有 ABC
C	A 经济理论准则 B 统计准则 经济计量准则
	D 模型识别准则 E 模型简单准则
	7、经济计量模型的应用方向是【 ABD 】
C	A 用于经济预测 B 用于结构分析 仅用于经济政策评价

D 用于经济政策评价 经济结构分析

=	填空题
	炽工咫

1、 计量经济学是经济学的一个分支学科,是以揭示
经济活动中的客观存在的数量关系 为内容的
分支学科。挪威经济学家弗里希将它定义为经济理论、
统计学和数学_三者的结合。
2、数理经济模型揭示经济活动中各个因素之间的理论关系
,用确定性的数学方程加以描述;计量经济学模型揭示
经济活动中各个因素之间的定量关系,用随机性
的数学方程加以描述。
3、 广义计量经济学是利用经济理论、数学及统计学定量研究
经济现象的经济计量方法的统称,包括回归分析方法,_
投入产出分析方法,时间序列分析方法等。狭义的
计量经济学以揭示经济现象中的因果关系为目的,在数学上
主要应用回归分析方法。
4、 计量经济学模型包括单方程模型和联立方程模型两类。单
方程模型的研究对象是
单一经济现象,揭示存在其中的_单项因果关系
。联立方程模型研究的对象是一个经济系统,
揭示存在其中的复杂的因果关系。

5、"经验表明,统计学、经济理论和数学这三者对于真正了
解现代经济生活的数量关系来说,都是必要的,但本身并非是充分
条件。三者结合起来,就是力量,这种结合便构成了计量经济
学。"我们不妨把这种结合称之为定量化的经济学或
经济学的定量化。
6、 建立计量经济学模型的步骤:1理论模型的设计
2样本数据的收集3模型参数的估计
4_模型的检验。
7、 常用的三类样本数据是时间序列数据、截面数
据
8、计量经济学模型的四级检验是经济意义检验、
统计检验、计量经济学检验和_预测检验
9、 计量经济学模型成功的三要素是理论、方法
和数据。
10、计量经济学模型的应用可以概括为四个方面:结构分析
、经济预测、政策评价和检验和发展经
济理论。
** - * - <

第二章 一元线性回归模型

一、单项选择题

1、表示x 与y之间真实线性关系的是【 】

$$A \hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 x_t$$

$$B E(y_i) = \beta_0 + \beta_1 x_i$$

$$C y_i = \beta_0 + \beta_1 x_i + u_i$$

$$D y_t = \beta_0 + \beta_1 x_t$$

2、参数β的估计量 具备有效性是指【 】

A
$$Var(\hat{\beta})=0$$

$$C (\hat{\beta} - \beta) = 0$$

3、对于 $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i$, 以 $\hat{\sigma}$ 表示估计标准误差, \hat{y}_i 表示回归值, 则【 】

A
$$\hat{\sigma}=0$$
 By, $\sum_i (y_i - \hat{y}_i) = 0$

B
$$\hat{\sigma} = 0$$
 时, $\sum (y_i - \hat{y}_i)^2 = 0$

$$C$$
 $\hat{\sigma}=0$ 时, $\sum (y_i - \hat{y}_i)$ 为最小

D
$$\hat{\sigma}=0$$
时, $\sum_{i}(y_{i}-\hat{y}_{i})^{2}$ 为最小

4、设样本回归模型为 $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i$,则普通最小二乘法确定的 $\hat{\beta}_i$ 的公式中,错误的

是【】

$$A \qquad \hat{\beta}_i = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

B
$$\hat{\beta}_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

$$C \quad \hat{\beta}_{i} = \frac{\sum x_{i} y_{i} - n \overline{x} \cdot \overline{y}}{\sum x_{i}^{2} - n (\overline{x})^{2}}$$

$$D \hat{\beta}_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\sigma_x^2}$$

5、对于 $y_i = \hat{\beta}_0 + \hat{\beta}_i x_i + e_i$, 以 $\hat{\sigma}$ 表示估计标准误差,r 表示相关系数,则有【 】

A
$$\hat{\sigma} = 0$$
 N, r=1

B
$$\hat{\sigma}$$
=0 Bf, r=-1

6、产量(x,台)与单位产品成本(y,元/台)之间的回归方程为 $\hat{y}=356-1.5x$,这说明

[]

A 产量每增加一台,单位产品成本增加 356 元

B 产量每增加一台,单位产品成本减少 1.5 元

C 产量每增加一台,单位产品成本平均增加 356 元

D产量每增加一台,单位产品成本平均减少 1.5 元

A 当 x 增加一个单位时, y 增加 β , 个单位

- C 当 y 增加一个单位时, x 增加 β 个单位
- D 当 y 增加一个单位时, x 平均增加 β 个单位

A N $(0, \sigma_i^2)$

B t(n-2)

 $C N (0, \sigma^2)$

D t(n)

9、以 y 表示实际观测值, \hat{y} 表示回归估计值,则普通最小二乘法估计参数的准则是使【 】

- $A \sum (y_i \hat{y}_i) = 0$
- $B \sum_{i} (y_i \hat{y}_i)^2 = 0$
- $C\sum (y_i \hat{y}_i)$ 为最小
- $D \sum (y_i \hat{y}_i)^2$ 为最小

10、设 y 表示实际观测值, ŷ 表示 OLS 回归估计值, 则下列哪项成立【 】

 $A \hat{y} = y$

B $\hat{y} = \overline{y}$

 $C \overline{\hat{y}} = y$

 $D \overline{\hat{y}} = \overline{y}$

11、用普通最小二乘法估计经典线性模型 $y_t = \beta_0 + \beta_1 x_t + u_t$, 则样本回归线通过点【

B (x, ŷ)

 $C(\bar{x}, \hat{y})$

 $D(\overline{x}, \overline{y})$

12、以 y 表示实际观测值, ŷ 表示回归估计值,则用普通最小二乘法得到的样本回归直线

 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \neq \mathbb{I}$

$$A \sum (y_i - \hat{y}_i) = 0$$

$$B \sum (\hat{y}_i - \overline{y})^2 = 0$$

$$C \sum_{i} (y_i - \hat{y}_i)^2 = 0$$

$$D \sum_{i} (y_i - \overline{y})^2 = 0$$

13、用一组有 30 个观测值的样本估计模型 $y_t = \beta_0 + \beta_1 x_t + u_t$, 在 0.05 的显著性水平下对

 β 的显著性作 t 检验,则 β 显著地不等于零的条件是其统计量 t 大于 【 】

A 1005 (30)

- B $t_{0.025}$ (30) C $t_{0.05}$ (28) D $t_{0.025}$ (28)

14、已知某一直线回归方程的判定系数为 0.64 ,则解释变量 与被解释变量间的相关系数为【B 】

0.64 A

В 0.8 C 0.4

D 0.32

15、相关系数 r的取值范围是【 D 】

A r≤ - 1

B r≥1

 $C \quad 0 \leq r \leq$

1

D $-1 \le r \le 1$

16、判定系数 R2 的取值范围是【】

A $R^2 \le -1$ B $R^2 \ge 1$

- C $0 \le R^2 \le 1$ D $-1 \le R^2 \le 1$

17、某一特定的 x 水平上,总体 y分布的离散度越大,即 越 大,则【 A 】

预测区间越宽,精度越低 预测误差越小

预测区间越宽,

预测区间越窄,精度越高 预测误差越大

预测区间越窄,

 $C \quad cov(u_i, u_j) = 0$

- D $u_1 \sim N(0, 1)$
- E x 为非随机变量,且cov(x,u)=0
- 3、以y表示实际观测值, \hat{y} 表示回归估计值,e表示残差,则回归直线满足【
- A 通过样本均值点 (\bar{x}, \bar{y})
- $B \sum y_t = \sum \hat{y}_t$

 $C \operatorname{cov}(x_i, e_i) = 0$

 $D \sum_{i} (y_i - \hat{y}_i)^2 = 0$

- $\sum (\hat{y}_{t} \hat{y})^{2} = 0$
- 4、以带"^"表示估计值, u表示随机误差项,如果y与x为线性相关关系,则下列哪些是

正确的【 1

 $A y_t = \beta_0 + \beta_1 x_t$

 $\mathbf{B} \ \mathbf{y}_1 = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{x}_1 + \boldsymbol{u}_1$

 $C y_t = \hat{\beta}_0 + \hat{\beta}_1 x_t + u_t$

 $D \hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 x_t + u_t$

- $E \hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i}$
- 5、以带"^"表示估计值, u表示随机误差项, c表示残差, 如果 y 与 x 为线性相关关系,

则下列哪些是正确的【

$$A E(y_t) = \beta_0 + \beta_1 x_t$$

 $\mathbf{B} \ \mathbf{y}_t = \hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 \mathbf{x}_t$

 $C y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i$

- D $\hat{y}_{t} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{t} + e_{t}$ E $E(y_{t}) = \hat{\beta}_{0} + \hat{\beta}_{1}x_{t}$
- 6、回归分析中估计回归参数的方法主要有【
- 相关系数法 A

B 方差分析

法

最小二乘估计法

极大似然

法

矩估计法 \mathbf{E}

无偏估计性质,则要求:【]		
$A E(u_i) = 0$	B $Var(u_r) = \sigma^2$ (常数)		
$C \text{cov}(u_i, u_j) = 0$	D u, 服从正态分布		
E x 为非随机变量,且 $cov(x_i,u_i)=0$			
8、假设线性回归模	型满足全部基本假设,	则其参	数估计量具备
[CDE			
A 可靠性		В 1	今理性
C 线性		D 无	偏性
E 有效性			
9、普通最小二乘重	1线具有以下特性【	ABCE]
A 通过点 (\bar{x}, \bar{y})	$\mathbf{B} \overline{\hat{y}} = \overline{y}$		
$\sum e_i = 0$	$\sum e_i^2 = 0$		
$\mathbf{E} \mathbf{cov}(x_i, e_i) = 0$			
10、对于线性回归模型 $y_t = \beta_0 + \beta_1 x_t$	+ u, , 要使普通最小二乘估计量具备线性、	、无偏性和	
有效性,则模型必须满足:【	1		
$A E(u_t) = 0$	B $Var(u_t) = \sigma^2$ (常数)		
$C cov(u_i, u_j) = 0$	$D u_i$ 服从正态分布		
\mathbf{E} x 为非随机变量,且 $\mathbf{cov}(x_i,u_i)=$	0		
11、由回归直线 $\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 x_t$ 估让出	来的 ŷ, 值【		
A 是一组估计值		В	是一组平均

7、用普通最小二乘法估计模型 $y_1 = \beta_0 + \beta_1 x_1 + u_2$,的参数。要使参数估计量具备最佳线性

C 是一个几何级数

D 可能等于实

际值

- E 与实际值y的离差和等于零
- 12、反应回归直线拟合优度的指标有【 ABC
- A 相关系数
- C 样本决定系数

- B 回归系数
 - D 回归方程的

标准误差

E 剩余变差 (或残差平方和)

13、对于样本回归直线 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$,回归平方和可以表示为 $(R^2$ 为决定系数)【 】

$$A \sum_{i} (\hat{y}_{i} - \overline{y})^{2}$$

$$\mathbf{B} \hat{\beta}_{i}^{2} \sum_{i} (x_{i} - \overline{x})^{2}$$

$$C \hat{\beta}_1 \sum (x_t - \overline{x})(y_t - \overline{y})$$

$$D R^2 \sum (y_t - \overline{y})^2$$

$$E \sum (y_t - \bar{y})^2 - \sum (y_t - \hat{y})^2$$

14、对于样本回归直线 $\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 x_t$, $\hat{\sigma}$ 为估计标准差,下列决定系数 R^2 的算式中,正确的有【

$$A \frac{\sum (\hat{y}_t - \overline{y})^2}{\sum (y_t - \overline{y})^2}$$

$$B = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

$$C \frac{\hat{\beta}_1^2 \sum (x_t - \overline{x})^2}{\sum (y_t - \overline{y})^2}$$

D
$$\frac{\hat{\beta_1} \sum (x_t - \overline{x})(y_t - \overline{y})}{\sum (y_t - \overline{y})^2}$$

$$E 1 - \frac{\hat{\sigma}^2(n-2)}{\sum (y_t - \bar{y})^2}$$

15、下列相关系数的算式中,正确的是【

$$A \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sigma_x \sigma_y}$$

$$\frac{\sum (x_{t} - \overline{x})(y_{t} - \overline{y})}{n\sigma_{x}\sigma_{y}}$$

$$C = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y}$$

D
$$\frac{\sum (x_t - \overline{x})(y_t - \overline{y})}{\sqrt{\sum (x_t - \overline{x})^2} \sqrt{\sum (y_t - \overline{y})^2}}$$

$$\frac{\sum x_t y_t - n\overline{x} \cdot \overline{y}}{\sqrt{\sum x_t^2 - n\overline{x}^2} \sqrt{\sum y_t^2 - n\overline{y}^2}}$$

三、判断题

- 1、随机误差项ui与残差项ei是一回事。(×)
- 2、总体回归函数给出了对应于每一个自变量的因变量的值。 (×)
 - 3、线性回归模型意味着因变量是自变量的线性函数。(×)
- 4、在线性回归模型中,解释变量是原因,被解释变量是结果。 (×)
- 5、在实际中,一元回归没什么用,因为因变量的行为不可能仅由一个解释变量来解释。(×)

四、填空题

- 1、在计量经济模型中引入反映___其他随机_____因素影响的 随机扰动项 t
 - μ ,目的在于使模型更符合____经济____活动。

2、样本观测值与回归理论值之间的偏差,称为残差项
,我们用残差估计线性回归模型中的_随机误差项
<u>o</u> _
3、对于随机扰动项我们作了5项基本假定。为了进行区间估计,
我们对随机扰动项作了它服从经典的假定。如果不满足
2-5 项之一,最小二乘估计量就不具有最佳线性无偏性。
4、_总体平方和反映样本观测值总体离差的大小;
回归平方和反映由模型中解释变量所解释的那部分离差的大
小;_残差平方和反映样本观测值与估计值偏离的大小,
也是模型中解释变量未解释的那部分离差的大小。
5、拟合优度(判定系数) $R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$ 。它是由引起的离差占总体离
差的。若拟合优度 R^2 越趋近于,则回归直线拟合越好:反之,若拟合优度 R^2
越趋近于,则回归直线拟合越差。
6、回归方程中的回归系数是自变量对因变量的净影响
。某自变量回归系数β的意义,指的是该自变量变化一个单位
引起因变量平均变化β。
第三章 多元线性回归模型

一、单项选择题

1、决定系数R²是指【 C 】

A 剩余平方和占总离差平方和的比重

- B 总离差平方和占回归平方和的比重
- C 回归平方和占总离差平方和的比重
- D 回归平方和占剩余平方和的比重
- 2、在由 n=30 的一组样本估计的、包含 3 个解释变量的线性回归模型中,计算的

系数为 0.8500 ,则调整后的决定系数为【 D 】

A 0.8603

B 0.8389

C 0.8 655

D 0.8327

3、设 k 为模型中的参数个数,则回归平方和是指【 C 】

$$A \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$\mathbf{B} \ \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

$$C \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

D
$$\sum_{i=1}^{n} (y_i - \overline{y})^2 / (k-1)$$

- 4、下列样本模型中,哪一个模型通常是无效的【】
- A C_i (消费) = 500+0.8 I_i (收入)
- B Q_i^d (商品需求) = 10+0.8 I_i (收入) +0.9 P_i (价格)
- C Q"(商品供给)=20+0.75P,(价格)
- DY, (产出量) =0.65 L, (劳动) K, (资本)
- 5、对于 $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \dots + \hat{\beta}_k x_{ki} + e_i$, 统计量 $\frac{\sum (\hat{y}_i \bar{y})^2 / k}{\sum (y_i \hat{y}_i)^2 / (n k 1)}$ 服从

[]

A t(n-k)

R 1(n-k-1)

C F(k-1,n-k)

D F(k,n-k-1)

6、对于 $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{ii} + \hat{\beta}_2 x_{2i} + \dots + \hat{\beta}_k x_{ki} + e_i$. 检验 H_0 : $\beta_i = 0$ $(i = 0,1,\dots,k)$ 时,所用 的统计量 $t = \frac{\hat{\beta}_i}{\sqrt{\text{var}(\hat{\beta}_i)}}$ 服从【 】

$$Ct(n-k+1)$$

Dt(n-k+2)

7、调整的判定系数 R 与多重判定系数 R 2 之间有如下关系 【 】

$$A \overline{R}^2 = R^2 \frac{n-1}{n-k-1}$$

B
$$\overline{R}^2 = 1 - R^2 \frac{n-1}{n-k-1}$$

$$C \overline{R}^2 = 1 - (1 + R^2) \frac{n-1}{n-k-1}$$

A
$$\overline{R}^2 = R^2 \frac{n-1}{n-k-1}$$

B $\overline{R}^2 = 1 - R^2 \frac{n-1}{n-k-1}$
C $\overline{R}^2 = 1 - (1+R^2) \frac{n-1}{n-k-1}$
D $\overline{R}^2 = 1 - (1-R^2) \frac{n-1}{n-k-1}$

8、用一组有 30 个观测值的样本估计模型 $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i$ 后, 在 0.05 的显著 性水平下对 β ,的显著性作t 检验,则 β ,显著地不等于零的条件是其统计量大于等于【】

A
$$t_{0.05}$$
 (30) B $t_{0.025}$ (28) C $t_{0.025}$ (27) D $F_{0.025}$ (1, 28)

9、如果两个经济变量 x 与 y 间的关系近似地表现为当 x 发生一个绝对量变动 (Δx) 时, y 有一个固定地相对量(Δy/y)变动,则适宜配合地回归模型是【

$$A y_i = \beta_0 + \beta_1 x_i + u_i$$

$$B \ln y_i = \beta_0 + \beta_1 x_i + u_i$$

$$C y_i = \beta_0 + \beta_1 \frac{1}{x_i} + u_i$$

$$D \ln y_i = \beta_0 + \beta_1 \ln x_i + u_i$$

10、对于 $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \dots + \hat{\beta}_k x_{ki} + e_i$, 如果原模型满足线性模型的基本假设,

则在零假设 $\beta_j = 0$ 下,统计量 $\hat{\beta}_j / s(\hat{\beta}_j)$ (其中 $s(\beta_j)$ 是 β_j 的标准误差)服从【

C F (k-1, n-k) D F (k-n-k-1)

11、下列哪个模型为常数弹性模型【

A $\ln y_i = \ln \beta_0 + \beta_1 \ln x_i + u_i$

$$B \ln y_i = \ln \beta_0 + \beta_1 x_i + u_i$$

$$C y_i = \beta_0 + \beta_1 \ln x_i + u_i$$

$$\mathbf{D} \ \mathbf{y}_i = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \frac{1}{x_i} + \boldsymbol{u}_i$$

12、模型 $y_i = \beta_0 + \beta_1 \ln x_i + u_i$ 中, y 关于 x 的弹性为【

- 14、关于经济计量模型进行预测出现误差的原因,正确的说法 是【 C 】
 - C.既有随机因素,又有系统因素
- D.A、B、C 都不对

B.只有系统因素

15、在多元线性回归模型中对样本容量的基本要求是(k 为解 释变量个数):【 C 】

D n≥30

A n≥k+1 B n<k+1

- 16、下列说法中正确的是:【 D 】
- A 如果模型的 2

C n≥30 或 n≥3 (k+1)

A.只有随机因素

- R 很高,我们可以认为此模型的质量较好
- B 如果模型的 2
- R 较低,我们可以认为此模型的质量较差

- C 如果某一参数不能通过显著性检验,我们应该剔除该解释 变量
- D如果某一参数不能通过显著性检验,我们不应该随便剔除该 解释变量
 - 二、多项选择题

1、对模型 $v_{i} = \beta_{i} + \beta_{i} x_{i} + \beta_{i} x_{i} + \mu_{i}$	进行总体显著性检验,如果检验结果总体线性关系
显著,则有【	
$A \beta_1 = \beta_2 = 0$	B $\beta_1 \neq 0$, $\beta_2 = 0$
$C \beta_1 \neq 0, \beta_2 \neq 0$	$D \beta_1 = 0, \beta_2 \neq 0$
$E \beta_1 = \beta_2 \neq 0$	
2、剩余变差(即残差平方和)是指【	1

- A 随机因素影响所引起的被解释变量的变差
- B 解释变量变动所引起的被解释变量的变差
- C 被解释变量的变差中,回归方程不能作出解释的部分
- D 被解释变量的总变差与回归平方和之差
- E 被解释变量的实际值与拟合值的离差平方和
- 3、回归平方和是指【 BCD 】

A被解释变量的实际值 y与平均值 y的离差平方和

B 被解释变量的回归值 与平均值 y ^ y的离差平方和

- C 被解释变量的总变差与剩余变差之差
- D 解释变量变动所引起的被解释变量的变差
- E 随机因素影响所引起的被解释变量的变差
- 4、下列哪些非线性模型可以通过变量替换转化为线性模型

ABC

 $A \quad y_i = \beta_0 + \beta_1 x_i^2 + u_i$

 $\mathbf{B} \ \mathbf{y}_i = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \frac{1}{\mathbf{x}_i} + \boldsymbol{u}_i$

 $C \ln y_i = \beta_0 + \beta_1 \ln x_i + u_i$

D $y_i = \beta_0 + \beta_1^2 x_i + u_i$

 $\mathbf{E} \quad \mathbf{y}_i = \boldsymbol{\beta}_0 + \sqrt{\boldsymbol{\beta}_i \mathbf{x}_i} + \boldsymbol{u}_i$

5、在模型 $\ln y_i = \beta_0 + \beta_1 \ln x_i + u_i$ 中【

1

A y与x 是非线性的

B y与β 是非线性的

C Iny 与 β , 是线性的

D lny与lnx 是线性的

E y与Inx是线性的

三、判断题

观察下列方程并判断其变量是否线性,系数是否线性,或都是或都不是。

(1)
$$y_t = b_0 + b_1 x_t^3 + u_t$$

(2) $y_t = b_0 + b_1 \log x_t + u_t$

,

(3) $\log y_1 = b_0 + b_1 \log x_1 + u_1$

7 3

(4) $y_t = b_0 + b_1 b_2 x_t + u_t$

(

- (5) $y_t = b_0 / (b_1 x_t) + u_t$
- (6) $y_t = 1 + b_0 (1 x_t^{b_t}) + u_t$ ()
- (7) $y_t = b_0 + b_1 x_{1t} + b_2 x_{2t} / 10 + u_t$ (9)

四、填空题

1、在模型古典假定成立的情况下,多元线性回归模型参数的最小二乘估计具

有 线性、无偏性_和 有效性 。

2、在多元线性回归模型中,F统计量与可决系数及修正可决系数之间分别有如下关系:

$$R^2 = 1 - \frac{n - k - 1}{n - k - 1 + kF} \,.$$

$$\overline{R}^2 = 1 - \frac{n-1}{n-k-1+kF}$$

- 3、高斯—马尔可夫定理是指_{——}如果满足五个经典假设,则 最小二乘估计量B²是B的最优线性无偏估计量。
- 4、在总体参数的各种线性无偏估计中,最小二乘估计量具有 ____方差最小___的特性。

第四章 异方差性

- 一、单项选择题
- 1、下列哪种方法不是检验异方差的方法【 D 】

A戈德菲尔特——匡特检验

B怀特检验

C 戈里瑟检验

D方差膨胀因

子检验

- 2、当存在异方差现象时,估计模型参数的适当方法是【 A 】
- A 加权最小二乘法

B 工具变量法

C 广义差分法

D 使用非样本

先验信息

3、加权最小二乘法克服异方差的主要原理是通过赋予不同观测 点以不同的权数,从而提高

估计精度,即【 B 】

- A 重视大误差的作用,轻视小误差的作用
- B 重视小误差的作用,轻视大误差的作用
- C 重视小误差和大误差的作用
- D轻视小误差和大误差的作用

 Ax_i

 $B \frac{1}{x_i^2}$

 $C \frac{1}{x_i}$

 $D \frac{1}{\sqrt{x_i}}$

5、如果戈德菲尔特——匡特检验显著,则认为什么问题是严 重的【 A 】

A 异方差问题

B 序列相关问

题

C 多重共线性问题

D 设定误差问

题

6、容易产生异方差的数据是【 C 】

A 时间序列数据

B 修匀数据

C 横截面数据

D 年度数据

7、若回归模型中的随机误差项存在异方差性,则估计模型参数 应采用【B 】

A 普通最小二乘法

B 加权最小二乘

法

C 广义差分法

D 工具变量法

8、假设回归模型为 $y_i = \alpha + \beta x_i + u_i$,其中 $var(u_i) = \sigma^2 x_i^2$,则使用加权最小二乘法估计模

型时,应将模型变换为【】

$$A \frac{y}{\sqrt{x}} = \frac{\alpha}{\sqrt{x}} + \beta \sqrt{x} + \frac{u}{\sqrt{x}}$$

$$B \frac{y}{\sqrt{x}} = \frac{\alpha}{\sqrt{x}} + \beta + \frac{u}{\sqrt{x}}$$

$$C = \frac{y}{r} = \frac{\alpha}{r} + \beta + \frac{u}{r}$$

$$D \frac{y}{x^2} = \frac{\alpha}{x^2} + \frac{\beta}{x} + \frac{u}{x^2}$$

9、设回归模型为 $y_i = \beta x_i + u_i$, 其中 $var(u_i) = \sigma^2 x_i^2$, 则β的最小二乘估计量为【 】

	3、异方差性将导致【 BCDE 】
	A 普通最小二乘估计量有偏和非一致
	B普通最小二乘估计量非有效
	C 普通最小二乘估计量的方差的估计量有偏
	D 建立在普通最小二乘估计基础上的假设检验失效
	E建立在普通最小二乘估计基础上的预测区间变宽
[4 、下列哪些方法可以用于异方差性的检验 BCDE 】
C 1	A DW 检验法 B 戈德菲尔德——匡特检验 不特检验
	D 戈里瑟检验 E 帕克检验
[5、当模型存在异方差性时,加权最小二乘估计量具备 ABCD
C	A 线性 有效性
	D 一致性 E 精确性
	三、判断说明题

- 1、当异方差出现时,最小二乘估计是有偏的和不具有最小方差特性。 (×)
 - 2、当异方差出现时,常用的 t 检验和 F 检验失效。(√)
- 3、在异方差情况下,通常 OLS估计一定高估了估计量的标准 差。 (√)
- 4、如果 OLS回归的残差表现出系统性,则说明数据中有异方 差性。 (√)
- 5、如果回归模型遗漏一个重要的变量,则 OLS残差必定表现 出明显的趋势。(√)
 - 6、在异方差情况下,通常预测失效。

参考答案:

第一章

一、单项选择题

1 - 5 ADABA 11-15 BBCAC

16-19 BDAD

5-10 DBAAC

二、多项选择题

1 ABCDE

2, ABCD

3, BCDE

- 4, ABDE
 - 5, BCE

6, ABC

7, ABD

- 三、填空题
- 1、 经济学 经济活动 数量关系 经济理论 统计学 数学
 - 2、理论关系 确定性 定量关系 随机性
- 3、回归分析方法 投入产出分析方法 时间序列分析方法 因果关系 回归分析方法
- 4、单一经济现象 单项因果关系 一个经济系统 复杂的因果关系
 - 5、计量经济学 定量化的经济学 经济学的定量化
- 6、理论模型的设计 样本数据的收集 模型参数的估计 模型的检验
 - 7、时间序列数据 截面数据 虚变量数据
 - 8、经济意义检验 统计检验 计量经济学检验 预测检验
 - 9、理论 方法 数据

10、结构分析 经济预测 政策评价 检验和发展经济理 论

第二章

一、单项选择题

1-5 DBDDD 5-10 DBCDD

11 - 15 DADBD

16 - 19 CACB

二、多项选择题

1, ACD 2, ABCE 3, ABC 4,

BE

5, CE 6, CDE 7, ABCDE 8,

CDE

9 ABCE 10 ABCDE 11 ADE 12 A

ABC

13 ABCDE 14 ABCDE 15 ABCDE

三、判断题

1, × 2, × 3, × 4, × 5, ×

四、填空题

- 1、其他随机, 经济
- 2、残差项,随机误差项
- 3、经典,最佳线性无偏性
- 4、总体平方和、回归平方和、残差平方和;
- 5、解释变量、比重、1、0。
- 6、净影响,β

第三章

一、单项选择题

1-5 CDCBD

6-10 ADCB

16 D

二、多项选择题

1, BCD

2, ACDE

3, BCD

4, ABC

5, CD

三、判断题

1、系数线性

2、系数线性

3、系数线性

4、变量线性

- 5、都不是线性 6、都不是线性
- 7、都是线性

四、填空题

1、线性、无偏性、有效性

2. $R^2 = 1 - \frac{n-k-1}{n-k-1+kF}$, $\overline{R}^2 = 1 - \frac{n-1}{n-k-1+kF}$

$$\overline{R}^2 = 1 - \frac{n-1}{n-k-1+kF}$$

3、如果满足五个经典假设,则最小二乘估计量 \hat{B} 是B的最优线性无偏位

第四章

一、单项选择题

1 - 5 DABCA

6 - 9 CBCB

二、多项选择题

- 1, ABD 2, AB
- 3, BCDE 4, BCDE

5, ABCD

三、判断题

 $1, \times 2, \sqrt{}$

3、√

6、√

