Write your questions and thoughts here!

Calculator required for part of this lesson!

If we have the graph, it is easy to see the value of $\lim_{x\to 3} f(x) =$

Without the graph, we could use a table of values.

x	2.9	2.99	3.01	3.1
f(x)	3.9	3.99	4.01	4.1

1. According to the table, what is the value of $\lim_{x \to -4} f(x)$?

х	-4.4	-4.001	-3.999	-3.5
f(x)	2.43	2.499	2.501	2.68

2. If $f(x) = \frac{x^3 - 4x^2 - 7x + 10}{x + 2}$, create your own table of values to help you evaluate $\lim_{x \to -2} f(x)$.

	х			
Ī	f(x)			

$$\lim_{x \to -2} f(x) =$$

Several ways to find values of a function on a calculator. Here are two:

- Table values (not as accurate, but fast)
- Function Notation

3. The function f is continuous and increasing for $x \ge 1$. The table gives values of f at selected values of x. Approximate the value of $\lim_{x\to 2} \cos(f(x))$.

x	1.99	1.999	2.001	2.01
f(x)	4.85	4.999	5.001	5.15

$$\lim_{x\to 2}\cos(f(x)) =$$

1.4 Finding Limits from Tables

Use the table for each problem to evaluate the limit.

$$1. \lim_{x \to 9} f(x) =$$

x	8.7	8.999	9.001	9.8
f(x)	-5.8	-5.001	-4.999	-4

2.
$$\lim_{x \to -7} f(x) =$$

 $\overline{4. \lim_{x \to 11} f(x)} =$

х	-7.5	-7.001	-6.999	-6.5
f(x)	3.8	3.501	3.499	3.2

$$3. \lim_{x \to -2} f(x) =$$

x	-2.1	-2.001	-1.999	-1.9
f(x)	-8.7	-8.999	-9.001	-9.4

х	10.7	10.99	11.01	11.3
f(x)	10.3	10.001	9.999	9.6

For each function, create your own table of values to evaluate the limit.

5.
$$f(x) = \frac{x^2 - 2x - 35}{x + 5}$$

x			
f(x)			

$$\lim_{x \to -5} f(x) =$$

6.
$$f(x) = \frac{x^2 + 5x + 6}{x + 2}$$

$$\lim_{x \to -2} f(x) =$$

7.
$$f(x) = \frac{x^2 + 4x - 12}{x - 2}$$

x			
f(x)			

$$\lim_{x\to 2} f(x) =$$

8.
$$f(x) = \frac{5x^3 + 2x^2 - 13x + 6}{x - 1}$$

x			
f(x)			

$$\lim_{x \to 1} f(x) =$$

Use the information given for each problem to evaluate the limit. Always round (or truncate) answers to three decimal places!

9. The function f is continuous and increasing $x \ge 0$. The table gives values of f at selected values of x.

x	6.9	6.999	7.001	7.1
f(x)	3.7	3.999	4.001	4.16

- Approximate the value of $\lim_{x\to 7} 2\cos(f(x))$.
- 10. The function f is continuous and decreasing for $x \ge 3$. The table gives values of f at selected values of x.

x	4.9	4.999	5.001	5.1	
f(x)	2.2	2.001	1.999	1.75	

Approximate the value of $\lim_{x\to 5} e^{3f(x)}$.

11. The function f is continuous and decreasing for $x \ge -5$. The table gives values of f at selected values of x.

х	-3.1	-3.01	-2.99	-2.8	
f(x)	-3.4	-3.499	-3.501	-3.8	

Approximate the value of $\lim_{x\to -3} \ln(-f(x))$.

12. The function f is continuous and increasing for $x \ge -7$. The table gives values of f at selected values of x.

X	-5.1	-5.001	-4.999	-4.8
f(x)	3.7	3.999	4.001	4.2

Approximate the value of $\lim_{x \to -5} \sqrt[5]{f(x)}$.

1.4 Finding Limits from Tables

Test Prep

13. The table below shows values of the function f at selected values of x. Which of the following is true based on the data from the table?

х	8.9	8.99	8.999	9.001	9.01	9.1
f(x)	0.7	8.0	0.999	2.001	2.01	2.3

(A) $\lim_{x \to 9} f(x) = 1$

- (B) $\lim_{x \to 9} f(x) = 2$
- (C) $\lim_{x\to 9^-} f(x) = 2$ and $\lim_{x\to 9^+} f(x) = 1$
- (D) $\lim_{x \to 9^{-}} f(x) = 1$ and $\lim_{x \to 9^{+}} f(x) = 2$
- 14. The graph of the function f is shown to the right. The value of $\lim_{x\to 4} 2\cos(f(x))$ is

- (B) -1.307
- (C) -1.979
- (D) Does not exist

- 15. If [x] represents the greatest integer that is less than or equal to x, then $\lim_{x\to 0^-} \frac{2}{[x]} =$
 - (A) -2
- (B) -1
- (C) 0
- (D) 2
- (E) the limit does not exist