

MT-102 Differential Equations and Linear Algebra I

Pre-Requisite: MT-101 Calculus I Instructors: Dr. Sheharyar Pervez Email: sheharyar@giki.edu.pk

Office hours: Monday to Friday, 10:30 am to 11:30 am (G-27, FES)

Course Introduction

This course presents basic concepts of matrix algebra, methods of solving systems of linear equations, basic concepts of vector spaces, and methods of computing determinants, eigenvalues and eigenvectors. Students should be able to classify and identify different types of linear differential equations, explicitly solve several important classes of ordinary differential equations and apply ideas from linear algebra in order to solve linear ordinary differential equations. They should model certain physical phenomena using differential equations and reinterpret their solutions physically. Use analytic techniques to compute solutions to various differential equations.

Course Contents

- Matrix Algebra
- System of linear Equations and their solutions
- Determinants
- Introduction to Complex Numbers
- Eigenvalues and Eigenvectors
- Differential Equations: definitions and terminology
- First order differential equations and their applications
- Second and higher differential equations
- Series solution for differential equations

beries solution for differential equations						
Mapping of Class Learning Outcome (CLOs) to Program Learning Outcomes (PLOs)						
S. No	CLOs		PLOs	Bloom		
				Taxonomy		
Upon cor	mpletion of this co	urse, students will be able to:		·		
CLO1	Solve different pr	oblems concerning the theory	of PLO1	C3 (Applying)		
	basic linear algeb	ra.				
CLO2	Apply different so	olution techniques to first orde	er PLO1	C3 (Applying)		
	differential equati	ons and system of differentia	l			
	equations arising	in various applied problems.				
CLO3	Apply various tec	hniques to solve second and	PLO1	C3 (Applying)		
	higher order linea	r differential equations.				
Direct Assessment tools based on CLOs						
Assessment Tools		CLO-1	CLO-2	CLO-3		
Quizzes		20%	25%	25%		
Assignments		10%	5%	5%		
Midterm Exams		45%	45%	0%		
Final Exam		25%	25%	70%		

Grading Policy				
Assessment Items		% Marks		
1.	Assignment	10%		
2.	Quizzes	20%		
3.	Mid-Term Exam	30%		
4.	Final Exams	40%		

Text and Reference Books

Textbooks:

- 1. A First Course in Differential Equations with Modeling Applications by Dennis G. Zill, Brooks Cole USA (10th edition 2013).
- 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley USA (10thEdition 2011).

Reference books:

- 1. Elementary Differential Equations and Boundary-Value Problems by William E. Boyce, Richard C. DiPrima, Wiley USA (10th Edition 2015).
- 2. Differential Equations for Engineers and Scientists by Yunus A. Cengel et.al., McGraw-Hill USA (1st Edition 2013).

Administrative Instruction

- Student Attendance is expected to be 100%, and minimum 80% (mandatory) attendance that is required to sit in the final exams.
- Student must pay the attention for reading the text books chapter for course assessment rather than lecture slides
- All the direct assessment tools i.e., Quizzes, Assignment, Midterms and final Exams must be attempted. Failure to attempt in any of the assessment tools without any medical reasons may results to fail in that particular assessment.
- For any queries, please contact the instructors during his office hours.

Tor any queries, prease contact the instructors during ins office nours.				
Lecture Breakdown				
MATRIX ALGEBRA. Notion of a matrix, matrix addition, scalar multiplication,				
matrix multiplication and its motivation,				
Algebraic properties of matrix operators, transpose of a matrix				
Linear system of equations. Gauss elimination method. Elementary row operations.				
Continue to lecture # 3				
Continue to lecture # 3				
Linear independence and dependence of vectors. Rank of matrix.				
General properties of solutions of the linear systems. Homogeneous and non-				
Homogeneous linear systems				
Determinants and their properties				
Expansion by Cofactors				
Cramer's rule				
Gauss-Jordan elimination method.				
Invertible matrices and computation of an inverse matrix				

Lecture#13	Complex Numbers: Complex numbers; Polar form; DeMoivre's theorem; nth roots of a	
Lecture#15	complex numbers. Complex exponentials and Euler's formula.	
Lecture#14	Complex Numbers: Continue	
Lecture#15	Eigenvalues and eigenvectors	
Lecture#16	Continue to lecture # 13	
Lecture#17	DIFFERENTIAL EQUATIONS. Definitions and terminology.	
Lecture#18	First order differential equations. Separable, Homogeneous, Exact, Linear and	
Lecturemio	Bernoulli equations. Applications	
Lecture#19	Continue to lecture # 16	
Lecture#20	Continue to lecture # 16	
Lecture#21	Continue to lecture # 16	
Lecture#22	Second-order differential equations, which reducible to first-order differential equations.	
Lecture#23	Continue to lecture # 22	
Lecture#24	Linear differential equations of higher order. Initial and boundary - value problems	
Lecture#25	Linear independence and dependents of the solutions	
Lecture#26	Wronskian and general solution	
Lecture#27	Construction of second solution from a known solution	
Lecture#28	Annihilator operator method.	
Lecture#29	Continue to lecture # 28	
Lecture#30	Homogeneous and non-homogeneous differential equations with constant coefficients	
	and their solution	
Lecture#31	Continue to lecture # 30	
Lecture#32	Undetermined coefficients.	
Lecture#33	Variation of parameters.	
Lecture#34	Cauchy -Euler equation	
Lecture#35	Series solution of differential equations about arbitrary points and regular singular	
	points	
Lecture#36	Continue to lecture # 35	
Lecture#37	Series solution of Legendre differential equations	
Lecture#38	Method of Frobenius	
Lecture#39	Continue to lecture # 38	
Lecture#40	Continue to lecture # 38	
Lecture#41	Series solution of Bessel's differential equations	
Lecture#42	Matrix system of linear first order differential equations. Homogeneous system with:	
	(i) distinct	
- "	real eigenvalues, (ii) complex eigenvalues, and (iii) repeated eigenvalues	
Lecture#43	Continue to lecture # 42	
Lecture#44	Continue to lecture # 42	
Lecture#45	Continue to lecture # 42	

