Structured Denoising Diffusion Models in Discrete State-Spaces

윤세환

목차

- diffusion 간단 복습
- 사전지식
 - Markov Transition Matrix
- introduction
- Diffusion models for discrete state spaces
- 손실 함수
- 실험결과

diffusion 간단 복습

Markov Transition Matrix

- 현재 상태에서 다른 상태로 전이할 확률을 행렬 형태로 표현한 것

각 i번째 행은 i 상태에서 다른 상태로 전이할 확률을, 각 j번째 열은 이전 상태에서 j상태로 전이할 확률을 의미

1행 2열 -> 1번째 상태에서 2번째 상태로 전이할 확률

Introduction

- diffusion 모델은 이산형과 연속형 데이터 처리를 수행하기 위해 제안되었지만, 당시 연구들은 모두 연속형 데이터에 초점이 맞추어져 있었음 (real-value 이미지 및 신호 데이터같은 waveform 데이터)
- 또한 이산형 데이터 분야에 있어서는, diffusion model이 텍스트 및 이미지 segmentation에 적용되었으나, 아직 대규모 텍스트나 이미지 생성 분야에서는 아직 입증되지 않음

Introduction

- 본 논문에서는 markov transition matrix를 사용한 보다 구조화된 diffusion process를 통해 diffusion 모델을 이산형 데이터 영역까지 발전시키고, 확장시키고자 함
- 기존 각 데이터에 random noise를 더해가는 과정 대신, transition matrix를 정의하고 이를 각 diffusion step마다 데이터를 나타내는 벡터에 곱해주는 방식

Introduction

- K개의 카테고리가 있는 스칼라 이산 확률 변수의 경우, forward transition 확률은 markov transition matrix 의 행렬로 표현할 수 있다.

$$[\mathbf{Q}_t]_{ij} = q(x_t = j | x_{t-1} = i)$$

- 또한, K개의 카테고리를 가질 수 있는 x를 one-hot 행 백터로 표현할 경우, forward process 수식은 아래와 같이 표현할 수 있다.

$$q(\boldsymbol{x}_t|\boldsymbol{x}_{t-1}) = \operatorname{Cat}(\boldsymbol{x}_t; \boldsymbol{p} = \boldsymbol{x}_{t-1}\boldsymbol{Q}_t)$$

$$q(oldsymbol{x}_t | oldsymbol{x}_0) = \operatorname{Cat}\left(oldsymbol{x}_t; oldsymbol{p} = oldsymbol{x}_0 \overline{oldsymbol{Q}}_t\right), \quad ext{with} \quad \overline{oldsymbol{Q}}_t = oldsymbol{Q}_1 oldsymbol{Q}_2 \dots oldsymbol{Q}_t$$
 $q(oldsymbol{x}_{t-1} | oldsymbol{x}_t, oldsymbol{x}_0) = \frac{q(oldsymbol{x}_t | oldsymbol{x}_{t-1}, oldsymbol{x}_0) q(oldsymbol{x}_{t-1} | oldsymbol{x}_0)}{q(oldsymbol{x}_t | oldsymbol{x}_0)} = \operatorname{Cat}\left(oldsymbol{x}_{t-1}; oldsymbol{p} = rac{oldsymbol{x}_t oldsymbol{Q}_t^{ op} \odot oldsymbol{x}_0 \overline{oldsymbol{Q}}_{t-1}}{oldsymbol{x}_0 \overline{oldsymbol{Q}}_t oldsymbol{x}_t^{ op}}
ight)$

- Markov transition matrix 선택
 - 본 방식의 장점은, Qt를 선택함으로써 forward/reverse process를 제어할 수 있다는 점
 - Qt는 각 행의 합이 1이어야 하고, t가 점점 커짐에 따라 station하게 수렴해야 한다는 조건이 존재
- 본 논문에서 이미지 및 텍스트 데이터셋 실험을 위해 탐색할 transition 행렬들은 아래과 같음
 - Uniform
 - Absorbing state
 - Discretized gaussian
 - Token embedding distance

uniform

$$\left[\mathbf{Q}_t \right]_{ij} = egin{cases} 1 - rac{K-1}{K} eta_t & ext{if} & i = j \ rac{1}{K} eta_t & ext{if} & i
eq j \end{cases},$$

Absorbing state

$$[\mathbf{Q}_t]_{ij} = \begin{cases} 1 & \text{if} \quad i = j = m \\ 1 - \beta_t & \text{if} \quad i = j \neq m \\ \beta_t & \text{if} \quad j = m, i \neq m \end{cases}$$

손실 함수

Nichol, Dhariwal의 hybrid loss 연구에 영감을 받아
reverse process에서의 x0-parameterization를 위한 보조 denosining 목적
함수를 도입하여 이를 negative variational lower bound Lvb와 결합

$$L_{\lambda} = L_{\text{vb}} + \lambda \mathbb{E}_{q(\boldsymbol{x}_0)} \mathbb{E}_{q(\boldsymbol{x}_t|\boldsymbol{x}_0)} [-\log \widetilde{p}_{\theta}(\boldsymbol{x}_0|\boldsymbol{x}_t)].$$

기존 텍스트 확률 모델과의 연관성

- Bert 모델의 경우, one-step diffusion model이다
 - 10%의 확률로 [MASK] 토큰으로 전환되고 5%의 확률로 랜덤하게 변화된다.
 - 따라서, absorbing state와 uniform markov transition matrix를 결합한 형태가 된다.
- Masked Language Models (MLMs)는 diffusion model이다.
 - [MASK] 토큰들로부터 단어를 생성하는 모델
 - x0문장을 샘플링한 후, 스케쥴 기법에 따라 k 개의 토큰을 마스킹한다. 이후 해당 마스킹된 토큰을 예측한다.
 - 이는 absorbing state를 사용한 d3pm 방식이다.

실험 결과

- text8에서 문자 레벨 텍스트 생성

Model	Model steps	NLL (bits/char) (↓)	Sample time (s) (\downarrow)
Discrete Flow [49] (8 × 3 layers) Argmax Coupling Flow [20] IAF / SCF [57] [‡] Multinomial Diffusion (D3PM uniform) [20]	- - - 1000	1.23 1.80 1.88 ≤ 1.72	0.16 0.40 ± 0.03 0.04 ± 0.0004 26.6 ± 2.2
D3PM uniform [20] (ours) D3PM NN ($L_{\rm vb}$) (ours) D3PM mask ($L_{\lambda=0.01}$) (ours)	1000 1000 1000	$\leq 1.61 \pm 0.02$ $\leq 1.59 \pm 0.03$ $\leq 1.45 \pm 0.02$	3.6 ± 0.4 3.1474 ± 0.0002 3.4 ± 0.3
D3PM uniform [20] (ours) D3PM NN (L_{vb}) (ours) D3PM absorbing ($L_{\lambda=0.01}$) (ours) Transformer decoder (ours) Transformer decoder [1] Transformer XL [10] [†]	256 256 256 256 256 256	$\leq 1.68 \pm 0.01$ $\leq 1.64 \pm 0.02$ $\leq 1.47 \pm 0.03$ 1.23 1.18 1.08	0.5801 ± 0.0001 0.813 ± 0.002 0.598 ± 0.002 0.3570 ± 0.0002
D3PM uniform [20] (ours) D3PM NN ($L_{\rm vb}$) (ours) D3PM absorbing ($L_{\lambda=0.01}$) (ours)	20 20 20	$\leq 1.79 \pm 0.03$ $\leq 1.75 \pm 0.02$ $\leq 1.56 \pm 0.04$	0.0771 ± 0.0005 0.1110 ± 0.0001 0.0785 ± 0.0003

실험 결과

- CIFAR-10 (inception score, Frechet Inception Distance, Negative Log Likelihood)

Model	IS (†)	FID (↓)	NLL (↓)
Sparse Transformer [9] NCSN [45] NCSNv2 [46] StyleGAN2 + ADA [22]	8.87 ± 0.12 8.40 ± 0.07 9.74 ± 0.05	25.32 10.87 3.26	2.80
Diffusion (original), $L_{\rm vb}$ [43] DDPM $L_{\rm vb}$ [19] DDPM $L_{\rm simple}$ [19] Improved DDPM $L_{\rm vb}$ [30] Improved DDPM $L_{\rm simple}$ [30] DDPM++ cont [47] NCSN++ cont. [47]	7.67 ± 0.13 9.46 ± 0.11 9.89		$ \leq 5.40 \leq 3.70 \leq 3.75 \leq 2.94 \leq 3.37 2.99 $
D3PM uniform L_{vb} D3PM absorbing L_{vb} D3PM absorbing $L_{\lambda=0.001}$ D3PM Gauss L_{vb} D3PM Gauss $L_{\lambda=0.001}$ D3PM Gauss + logistic $L_{\lambda=0.001}$	$\begin{array}{c} 5.99 \pm 0.14 \\ 6.26 \pm 0.10 \\ 6.78 \pm 0.08 \\ 7.75 \pm 0.13 \\ 8.54 \pm 0.12 \\ 8.56 \pm 0.10 \end{array}$	41.28 ± 0.65 30.97 ± 0.64 15.30 ± 0.55 8.34 ± 0.10	$\leq 5.08 \pm 0.02$ $\leq 4.83 \pm 0.02$ $\leq 4.40 \pm 0.02$ $\leq 3.966 \pm 0.005$ $\leq 3.975 \pm 0.006$ $\leq 3.435 \pm 0.007$