Package 'highOrderPortfolios'

October 20, 2022

```
Title Design of High-Order Portfolios Including Skewness and Kurtosis
Version 0.1.1
Date 2022-10-20
Description The classical Markowitz's mean-variance portfolio formulation ignores
     heavy tails and skewness. High-order portfolios use higher order moments to
     better characterize the return distribution. Different formulations and fast
     algorithms are proposed for high-order portfolios based on the mean, variance,
     skewness, and kurtosis.
     The package is based on the papers:
     R. Zhou and D. P. Palomar (2021). "Solving High-Order Portfolios via
     Successive Convex Approximation Algorithms." <arXiv:2008.00863>.
     X. Wang, R. Zhou, J. Ying, and D. P. Palomar (2022). "Efficient and Scalable
     High-Order Portfolios Design via Parametric Skew-t Distribution." <arXiv:2206.02412>.
Maintainer Daniel P. Palomar <daniel.p.palomar@gmail.com>
URL https://github.com/dppalomar/highOrderPortfolios,
     https://www.danielppalomar.com
BugReports https://github.com/dppalomar/highOrderPortfolios/issues
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Imports ECOSolveR, lpSolveAPI, nloptr, PerformanceAnalytics, quadprog,
     fitHeavyTail (>= 0.1.4), stats, utils
Suggests knitr, ggplot2, rmarkdown, R.rsp, testthat (>= 3.0.0)
VignetteBuilder knitr, rmarkdown, R.rsp
Config/testthat/edition 3
NeedsCompilation yes
Author Daniel P. Palomar [cre, aut],
     Rui Zhou [aut],
     Xiwen Wang [aut]
```

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2022-10-20 11:35:07 UTC

R topics documented:

highOrderPortfolios-package
design_MVSKtilting_portfolio_via_sample_moments
design_MVSK_portfolio_via_sample_moments
design_MVSK_portfolio_via_skew_t
estimate_sample_moments
estimate_skew_t
eval_portfolio_moments
X100 13
X200 13
X50

Index 15

highOrderPortfolios-package

highOrderPortfolios: Design of High-Order Portfolios via Mean, Variance, Skewness, and Kurtosis

Description

The classical Markowitz's mean-variance portfolio formulation ignores heavy tails and skewness. High-order portfolios use higher order moments to better characterize the return distribution. Different formulations and fast algorithms are proposed for high-order portfolios based on the mean, variance, skewness, and kurtosis.

Functions

Help

For a quick help see the README file: GitHub-README.

Author(s)

Rui Zhou, Xiwen Wang, and Daniel P. Palomar

References

R. Zhou and D. P. Palomar, "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," in *IEEE Transactions on Signal Processing*, vol. 69, pp. 892-904, 2021. https://doi.org/10.1109/TSP.2021.305

X. Wang, R. Zhou, J. Ying, and D. P. Palomar, "Efficient and Scalable High-Order Portfolios Design via Parametric Skew-t Distribution," Available in arXiv, 2022. https://arxiv.org/pdf/2206.02412.pdf.

```
design_MVSKtilting_portfolio_via_sample_moments

Design high-order portfolio by tilting a given portfolio to the MVSK efficient frontier
```

Description

Design high-order portfolio by tilting a given portfolio to the MVSK efficient frontier (i.e., mean, variance, skewness, and kurtosis):

```
design_MVSKtilting_portfolio_via_sample_moments(
  d = rep(1, 4),
 X_moments,
 w_init = rep(1/length(X_moments$mu), length(X_moments$mu)),
 w0 = w_{init}
 w0_moments = NULL,
  leverage = 1,
  kappa = 0,
 method = c("Q-MVSKT", "L-MVSKT"),
  tau_w = 1e-05,
  tau_delta = 1e-05,
  gamma = 1,
  zeta = 1e-08,
 maxiter = 100,
  ftol = 1e-05,
 wtol = 1e-05,
  theta = 0.5,
  stopval = -Inf
)
```

Arguments

d Numerical vector of length 4 indicating the weights of first four moments.

X_moments List of moment parameters, see estimate_sample_moments().
w_init Numerical vector indicating the initial value of portfolio weights.

w0 Numerical vector indicating the reference portfolio vector.

w0_moments
 Numerical vector indicating the reference moments.
 leverage
 Number (>= 1) indicating the leverage of portfolio.
 kappa
 Number indicating the maximum tracking error volatility.

method String indicating the algorithm method, must be one of: "Q-MVSK", "MM",

"DC".

tau_w Number (>= 0) guaranteeing the strong convexity of approximating function.
tau_delta Number (>= 0) guaranteeing the strong convexity of approximating function.

gamma Number $(0 < \text{gamma} \le 1)$ indicating the initial value of gamma.

zeta Number (0 < zeta < 1) indicating the diminishing paramater of gamma.

maxiter Positive integer setting the maximum iteration.

Positive number setting the convergence criterion of function objective.

Positive number setting the convergence criterion of portfolio weights.

theta Number (0 < theta < 1) setting the combination coefficient when enlarge feasible

set.

stopval Number setting the stop value of objective.

Value

A list containing the following elements:

w Optimal portfolio vector.

delta Maximum tilting distance of the optimal portfolio.

cpu_time_vs_iterations

Time usage over iterations.

objfun_vs_iterations

Objective function over iterations.

iterations Iterations index.

moments Moments of portfolio return at optimal portfolio weights.

improvement The relative improvement of moments of designed portfolio w.r.t. the reference

portfolio.

Author(s)

Rui Zhou and Daniel P. Palomar

References

R. Zhou and D. P. Palomar, "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," in *IEEE Transactions on Signal Processing*, vol. 69, pp. 892-904, 2021. doi:10.1109/TSP.2021.3051369>.

Examples

```
library(highOrderPortfolios)
data(X50)

# estimate moments
X_moments <- estimate_sample_moments(X50[, 1:10])

# decide problem setting
w0 <- rep(1/10, 10)
w0_moments <- eval_portfolio_moments(w0, X_moments)
d <- abs(w0_moments)
kappa <- 0.3 * sqrt(w0 %*% X_moments$Sgm %*% w0)

# portfolio optimization
sol <- design_MVSKtilting_portfolio_via_sample_moments(d, X_moments, w_init = w0, w0 = w0, w0_moments = w0_moments, kappa = kappa)</pre>
```

```
design_MVSK_portfolio_via_sample_moments
```

Design high-order portfolio based on weighted linear combination of first four moments

Description

Design high-order portfolio based on weighted linear combination of first four moments (i.e., mean, variance, skewness, and kurtosis):

```
minimize - 1md1*(w'*mu) + 1md2*(w'*Sigma*w)
- 1md3*(w'*Phi*w*w) + 1md4*(w'*Psi*w*w*w)
subject to ||w||_1 \le 1 leverage, ||w||_1 \le 1.
```

```
design_MVSK_portfolio_via_sample_moments(
    lmd = rep(1, 4),
    X_moments,
    w_init = rep(1/length(X_moments$mu), length(X_moments$mu)),
    leverage = 1,
    method = c("Q-MVSK", "MM", "DC"),
    tau_w = 0,
    gamma = 1,
    zeta = 1e-08,
    maxiter = 100,
    ftol = 1e-05,
    wtol = 1e-04,
```

```
stopval = -Inf
)
```

Arguments

1md Numerical vector of length 4 indicating the weights of first four moments.

X_momentsList of moment parameters, see estimate_sample_moments().w_initNumerical vector indicating the initial value of portfolio weights.

leverage Number (>= 1) indicating the leverage of portfolio.

method String indicating the algorithm method, must be one of: "Q-MVSK", "MM",

"DC".

tau_w Number (>= 0) guaranteeing the strong convexity of approximating function.

gamma Number (0 < gamma <= 1) indicating the initial value of gamma.

zeta Number (0 < zeta < 1) indicating the diminishing parameter of gamma.

maxiter Positive integer setting the maximum iteration.

Positive number setting the convergence criterion of function objective.

Positive number setting the convergence criterion of portfolio weights.

stopval Number setting the stop value of objective.

Value

A list containing the following elements:

w Optimal portfolio vector.

cpu_time_vs_iterations

Time usage over iterations.

objfun_vs_iterations

Objective function over iterations.

iterations Iterations index.

convergence Boolean flag to indicate whether or not the optimization converged.

moments Moments of portfolio return at optimal portfolio weights.

Author(s)

Rui Zhou and Daniel P. Palomar

References

R. Zhou and D. P. Palomar, "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," in *IEEE Transactions on Signal Processing*, vol. 69, pp. 892-904, 2021. <doi:10.1109/TSP.2021.3051369>.

X. Wang, R. Zhou, J. Ying, and D. P. Palomar, "Efficient and Scalable High-Order Portfolios Design via Parametric Skew-t Distribution," Available in arXiv, 2022. https://arxiv.org/pdf/2206.02412v1.pdf.

Examples

```
library(highOrderPortfolios)
data(X50)

# estimate moments
X_moments <- estimate_sample_moments(X50[, 1:10])

# decide moment weights
xi <- 10
lmd <- c(1, xi/2, xi*(xi+1)/6, xi*(xi+1)*(xi+2)/24)

# portfolio optimization
sol <- design_MVSK_portfolio_via_sample_moments(lmd, X_moments)</pre>
```

design_MVSK_portfolio_via_skew_t

Design MVSK portfolio without shorting based on the parameters of generalized hyperbolic skew-t distribution

Description

Design MVSK portfolio without shorting based on the parameters of generalized hyperbolic skew-t distribution:

```
design_MVSK_portfolio_via_skew_t(
  lambda,
 X_skew_t_params,
 w_init = rep(1/length(X_skew_t_params$mu), length(X_skew_t_params$mu)),
 method = c("L-MVSK", "DC", "Q-MVSK", "SQUAREM", "RFPA", "PGD"),
 gamma = 1,
  zeta = 1e-08,
  tau_w = 0,
 beta = 0.5,
  tau = 1e+05,
  initial_eta = 5,
 maxiter = 1000,
  ftol = 1e-06,
 wtol = 1e-06,
  stopval = -Inf
)
```

Arguments

lambda Numerical vector of length 4 indicating the weights of first four moments.

X_skew_t_params

List of fitted parameters, including location vector, skewness vector, scatter ma-

trix, and the degree of freedom, see estimate_skew_t().

w_init Numerical vector indicating the initial value of portfolio weights.

method String indicating the algorithm method, must be one of: "L-MVSK", "DC", "Q-

MVSK", "SQUAREM", "RFPA", "PGD".

gamma Number $(0 < \text{gamma} \le 1)$ indicating the initial value of gamma for the Q-

MVSK method.

zeta Number (0 < zeta < 1) indicating the diminishing parameter of gamma for the

Q-MVSK method.

tau_w Number (>= 0) guaranteeing the strong convexity of approximating function.

beta Number (0 < beta < 1) decreasing the step size of the projected gradient methods.

tau Number (tau > 0) hyper-parameters for the fixed-point acceleration.

initial_eta Initial eta for projected gradient methods

maxiter Positive integer setting the maximum iteration.

Positive number setting the convergence criterion of function objective.

Positive number setting the convergence criterion of portfolio weights.

stopval Number setting the stop value of objective.

Value

A list containing the following elements:

W Optimal portfolio vector.

cpu_time_vs_iterations

Time usage over iterations.

objfun_vs_iterations

Objective function over iterations.

iterations Iterations index.

convergence Boolean flag to indicate whether or not the optimization converged.

moments Moments of portfolio return at optimal portfolio weights.

Author(s)

Xiwen Wang, Rui Zhou and Daniel P. Palomar

References

X. Wang, R. Zhou, J. Ying, and D. P. Palomar, "Efficient and Scalable High-Order Portfolios Design via Parametric Skew-t Distribution," Available in arXiv, 2022. https://arxiv.org/pdf/2206.02412.pdf.

Examples

```
library(highOrderPortfolios)
data(X50)

# estimate skew t distribution
X_skew_t_params <- estimate_skew_t(X50)

# decide moment weights
xi <- 10
lambda <- c(1, 4, 10, 20)

# portfolio optimization
sol <- design_MVSK_portfolio_via_skew_t(lambda, X_skew_t_params, method = "RFPA", tau = 10)</pre>
```

estimate_sample_moments

Estimate first four moment parameters of multivariate observations

Description

Estimate first four moments of multivariate observations, namely, mean vector, covariance matrix, coskewness matrix, and cokurtosis matrix.

Usage

```
estimate_sample_moments(X, adjust_magnitude = FALSE)
```

Arguments

X Data matrix. adjust_magnitude

Boolean indicating whether to adjust the order of magnitude of parameters.

 $Note: this is specially designed for the function \\ design_MVSKtilting_portfolio_via_sample_moment \\$

Value

A list containing the following elements:

muMean vector.SgmCovariance matrix.Phi_matCo-skewness matrix.Psi_matCo-kurtosis matrix.

Phi Co-skewness matrix in vector form (collecting only the unique elements).

Psi Co-kurtosis matrix in vector form (collecting only the unique elements).

Phi_shred Partition on Phi (see reference).
Psi_shred Partition on Psi (see reference).

10 estimate_skew_t

Author(s)

Rui Zhou and Daniel P. Palomar

References

R. Zhou and D. P. Palomar, "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," in *IEEE Transactions on Signal Processing*, vol. 69, pp. 892-904, 2021. doi:10.1109/TSP.2021.3051369>.

Examples

```
library(highOrderPortfolios)
data(X50)

X_moments <- estimate_sample_moments(X50[, 1:10])</pre>
```

estimate_skew_t

Estimate the parameters of skew-t distribution from multivariate observations

Description

Using the package fitHeavyTail to estimate the parameters of ghMST distribution from multivariate observations, namely, location vector (mu), skewness vector (gamma), scatter matrix (scatter), degree of freedom (nu), parameters a, and the Cholesky decomposition of the scatter matrix (chol_Sigma).

```
estimate_skew_t(
   X,
   initial = NULL,
   nu_lb = 9,
   max_iter = 100,
   ptol = 0.001,
   ftol = Inf,
   PXEM = TRUE,
   return_iterates = FALSE,
   verbose = FALSE
)
```

estimate_skew_t

Arguments

X Data matrix containing the multivariate time series (each column is one time

series).

initial List of initial values of the parameters for the iterative estimation method. Pos-

sible elements include:

• nu: default is 4,

• mu: default is the data sample mean,

• gamma: default is the sample skewness vector,

• scatter: default follows from the scaled sample covariance matrix,

nu_lb Minimum value for the degree of freedom to maintain the existence of high-

order moments (default is 9).

max_iter Integer indicating the maximum number of iterations for the iterative estimation

method (default is 100).

ptol Positive number indicating the relative tolerance for the change of the variables

to determine convergence of the iterative method (default is 1e-3).

ftol Positive number indicating the relative tolerance for the change of the log-

likelihood value to determine convergence of the iterative method (default is Inf, so it is not active). Note that using this argument might have a computational cost as a convergence criterion due to the computation of the log-

likelihood (especially when X is high-dimensional).

PXEM Logical value indicating whether to use the parameter expansion (PX) EM method

to accelerating the convergence.

return_iterates

Logical value indicating whether to record the values of the parameters (and

possibly the log-likelihood if ftol < Inf) at each iteration (default is FALSE).

verbose Logical value indicating whether to allow the function to print messages (default

is FALSE).

Value

A list containing the following elements:

mu Location vector estimate (not the mean).

gamma Skewness vector estimate. scatter Scatter matrix estimate.

nu Degrees of freedom estimate.

chol_Sigma Choleski decomposition of the Scatter matrix estimate.

a A list of coefficients useful for later computation

Author(s)

Xiwen Wang, Rui Zhou, and Daniel P. Palomar

References

Aas, Kjersti and Ingrid Hobæk Haff. "The generalized hyperbolic skew student'st-distribution," Journal of financial econometrics, pp. 275-309, 2006.

Examples

```
library(highOrderPortfolios)
data("X50")
X_skew_t_params <- estimate_skew_t(X50)</pre>
```

eval_portfolio_moments

Evaluate first four moments of a given portfolio

Description

Evaluate first four moments of a given portfolio's return, namely, mean, variance, skewness, and kurtosis.

Usage

```
eval_portfolio_moments(w, X_statistics)
```

Arguments

w Numerical vector with portfolio weights.

X_statistics Argument characterizing the constituents assets. Either the sample parameters

as obtained by function ${\tt estimate_sample_moments}()$ or the multivariate skew

t parameters as obtained by function estimate_skew_t().

Value

Four moments of the given portfolio.

Author(s)

Rui Zhou, Xiwen Wang, and Daniel P. Palomar

References

R. Zhou and D. P. Palomar, "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," in *IEEE Transactions on Signal Processing*, vol. 69, pp. 892-904, 2021. doi:10.1109/TSP.2021.3051369>.

X. Wang, R. Zhou, J. Ying, and D. P. Palomar, "Efficient and Scalable High-Order Portfolios Design via Parametric Skew-t Distribution," Available in arXiv, 2022. https://arxiv.org/pdf/2206.02412v1.pdf.

X100

Examples

```
library(highOrderPortfolios)
data(X50)

# nonparametric case
X_moments <- estimate_sample_moments(X50[, 1:10])
w_moments <- eval_portfolio_moments(w = rep(1/10, 10), X_statistics = X_moments)

# parametric case (based on the multivariate skew t distribution)
X_skew_t_params <- estimate_skew_t(X50[, 1:10])
w_moments <- eval_portfolio_moments(w = rep(1/10, 10), X_statistics = X_skew_t_params)</pre>
```

X100

Synthetic 500x100 matrix dataset

Description

Synthetic 500x100 matrix dataset containing 500 realizations of 100 variables.

Usage

data(X100)

Format

An object of class xts (inherits from zoo) with 500 rows and 100 columns.

X200

Synthetic 1000x200 matrix dataset

Description

Synthetic 1000x200 matrix dataset containing 1000 realizations of 200 variables.

Usage

data(X200)

Format

An object of class xts (inherits from zoo) with 1000 rows and 100 columns.

14 X50

X50

Synthetic 250x50 matrix dataset

Description

Synthetic 250x50 matrix dataset containing 250 realizations of 50 variables.

Usage

data(X50)

Format

An object of class matrix (inherits from array) with 250 rows and 50 columns.

Index

```
* dataset
    X100, 13
    X200, 13
    X50, 14
{\tt design\_MVSK\_portfolio\_via\_sample\_moments},
         2, 5
design_MVSK_portfolio_via_skew_t, 2, 7
{\tt design\_MVSKtilting\_portfolio\_via\_sample\_moments},
         2, 3, 9
estimate\_sample\_moments, 4, 6, 9, 12
estimate_skew_t, 8, 10, 12
eval_portfolio_moments, 12
highOrderPortfolios-package, 2
X100, 13
X200, 13
X50, 14
```