Obliczenia inżynierskie w środowisku MATLAB

Numeryczne rozwiązywanie równań różniczkowych – podstawy

Paweł Wachel

Rozważania zawęzimy do klasy równań różniczkowych zwyczajnych, w szczególności do tzw. zagadnienia początkowego (Cauchy'ego), tj. do równania różniczkowego z warunkiem początkowym $x(0) = x_0$

$$\begin{cases}
\frac{dx}{dt} &= f(x(t), t) \\
x(0) &= x_0
\end{cases}$$
(1)

gdzie f () jest znaną funkcją ciągłą. Przyjmiemy dodatkowo (chwilowo), że interesuje nas problem skalarny, tj. $x \in \mathbb{R}^1$. Zadanie polega na (numerycznym) rozwiązaniu równania, tj. na numerycznym przybliżeniu funkcji x (t) spełniającej warunki (1). Wychodząc od definicji pochodnej (granica ilorazu różnicowego) zauważamy, że

$$\frac{dx}{dt} \approx \frac{x(t+h) - x(t)}{h},\tag{2}$$

gdzie h > 0 jest pewną stałą. Wstawiając (2) do (1) otrzymujemy

$$\frac{x(t+h)-x(t)}{h} \approx f(x(t),t) \Rightarrow x(t+h) \approx x(t) + hf(x(t),t).$$
 (3)

Zgodnie z powyższą zależnością, numeryczny schemat rozwiązywania równania (1) polega na sekwencyjnym wyznaczaniu przybliżeń $x(h), x(2h), \dots$ przy założeniu, że znana jest wartość x(0). Schmemat ten jest jedną z technik znanych pod nazwą Metoda Eulera.

Zadania do wykonania:

1. Dane jest równanie

$$\frac{dx}{dt} = ax$$

z warunkiem początkowym x(0) = 1, którego rozwiązaniem jest $x(t) = e^{at}$. Przyjąć arbitralnie wartość h i zaimplementować numeryczny algorytm oparty na zależności (3). Wykreślić rozwiązanie numeryczne (oznaczane dalej jako x_{num}) oraz rozwiązanie analityczne (x_{an}) na wspólnym wykresie. Wykreślić przebieg błędu $x_{num} - x_{an}$ i przedyskutować jego charakter dla różnych wartości h. Co wpływa na charakter uzyskanego błędu (pomijając błędy w implementacji oczywiście)?

2. Rozpatrzymy następnie problem dwuwymiarowy

$$\frac{d^2x}{dt^2} = -ax. (4)$$

Dokonując podstawienia $v_1=x$ oraz $v_2=\frac{dx}{dt},$ równanie (4) przepiszemy w postaci

$$\frac{dv_1}{dt} = v_2 \tag{5}$$

$$\frac{dv_2}{dt} = -av_1. (6)$$

- Przyjmujemy warunek początkowy $x(0) = c_1$ oraz $x'(0) = c_2$, gdzie c_1, c_2 to dowolnie wybrane stałe oraz a > 0. Posługując się omawianym schematem numerycznym zaimplementować algorytm przybliżający rozwiązanie równania (5)–(6).
- 3. Dla układu (5)-(6) wyznaczyć rozwiązanie analityczne $v_1(t)$ i $v_2(t)$. Wykreślić na osobnych wykresach analityczne przebiegi $v_1(t)$ oraz $v_2(t)$ i nanieść na nie rozwiązania numeryczne. Przedyskutować uzyskane rezultaty w kontekście uzyskiwanych błędów numerycznych. Czy błędy rozwiązania dla v_1 wpływają na rozwiązanie v_2 (lub odwrotnie)?