Machine learning Homework 5

B01902032 江東峻

1. Answer: b

 $\min_{b, \mathbf{w}, \boldsymbol{\xi}} \qquad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\textbf{C}}{\mathbf{C}} \cdot \sum_{n=1}^{N} \xi_n$

the primal formulation is s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$ and $\xi_n \ge 0$ for all n

variable = d + N + 1 (w長度為d, ξ 有N個, C有1個)

2. Answer: c

依y分: {1,2,3} {4,5,6,7}

	z1	z2	у	z1+z2	z1-z2
x1	1	-2	-1	-1	3
x2	4	-5	-1	-1	9
х3	4	-1	-1	3	5
x4	5	-2	+1	3	7
x 5	7	-7	+1	0	14
x 6	7	1	+1	8	6
х7	7	-1	+1	6	8

[a]: 分成{1,2,3,4,5} {6,7} 與y不符

[b]: 分成{1}{2,3,4,5,6,7}與y不符

[c]: 分成{1,2,3} {4,5,6,7} 與y相同

[d]: 分成{1,2,3,4,5,6,7} {} 與y不符

3. Answer: bd

 $a1~a7 = [0.0000 \ 0.7037 \ 0.7037 \ 0.8889 \ 0.2593 \ 0.2593 \ 0.0000]$

max = a4, min = a1 & a7

sum = 2.8148

4. Answer: b

直接代公式:

[a]: 分成 {1,2,3,4,5,6,7} {} 與y不符

[b]: 分成 {1,2,3} {4,5,6,7} 與y相同

[c]: 分成 {1,2,3,4,5,6,7} {} 與y不符

[d]: 分成 {1,2,4,5} {3,6,7} 與y不符

5. Answer: c

兩個是不同的曲線,因為他們用到不同的Z空間,一個是用兩個給定的公式將x轉換成z,

一個是用second-order polynomial transformation,是不同的轉換公式。

6. Answer: d

先將constraint轉成 constraint'≤0的形式,再乘上Lagrange multiplier 後加總,與原本的所

求相加: => L(R, c, λ) = [d]

7. Answer: a c d

KKT Optimality Conditions:

primal feasible: IIx_n -cll² $\leq R^2$ (a)

dual feasible: $\lambda_n \ge 0$ (b)

dual-inner optimal:

(c)
$$\frac{\partial L(R,c,\lambda)}{\partial R} = 2R - 2R \sum_{n=1}^{N} \lambda_n = R \left(1 - \sum_{n=1}^{N} \lambda_n \right) = 0$$
 (d)
$$\frac{\partial L(R,c,\lambda)}{\partial c} = \sum_{n=1}^{N} \lambda_n \left(-x_n + c \right) = 0$$

primal-inner optimal : $\lambda_n(|x_n-c|^2-R^2)=0$ (e)

[a]: by (a), 若 R≠0, 另一項必須為0

[b]: by primal-inner optimal, λ_n = 0, 則另一項沒有限制

[c]: by primal-inner optimal, 這項不為0, 則 $\lambda_n = 0$

[d]: by (b), 若λ_n總和不為0, 移項後可得 c

8. Answer: e

$$L(R, c, \lambda) = R^{2} + \sum_{n=1}^{N} \lambda_{n} (|x_{n} - c|^{2} - R^{2}) = R^{2} + \sum_{n=1}^{N} \lambda_{n} |x_{n} - c|^{2} - R^{2} \sum_{n=1}^{N} \lambda_{n}$$

=> 因為R > 0,
$$\sum_{n=1}^{N} \lambda_n = 1$$
代入消去開頭以及最後R² => $L(R, c, \lambda) = \sum_{n=1}^{N} \lambda_n |x_n - c|^2$

=> 用(d)將c換掉,又R > 0,
$$\sum_{n=1}^{N} \lambda_n = 1$$
得 $c = \sum_{m=1}^{N} \lambda_m x_m$ => $L(R, c, \lambda) = \sum_{n=1}^{N} \lambda_n \left| x_n - \sum_{m=1}^{N} \lambda_m x_m \right|^2 = [a]$

但這是 \max Objective(λ), 要換成 \min 的話需要做其他的動作,而在選項裡都沒有符合的答案 = [e]

9. Answer: e

將8的[a]的平方乘開:

$$= > \sum_{n=1}^{N} \lambda_n \left(x_n^T x_n - 2x_n^T \sum_{m=1}^{N} \lambda_m x_m + \left(\sum_{m=1}^{N} \lambda_m x_m \right)^2 \right)$$

$$= > \sum_{n=1}^{N} \lambda_n x_n^T x_n - 2 \sum_{n=1}^{N} \sum_{m=1}^{N} \lambda_n \lambda_m x_n^T x_m + \sum_{n=1}^{N} \lambda_n \left(\sum_{m=1}^{N} \lambda_m x_m \right)^2 = \sum_{n=1}^{N} \lambda_n x_n^T x_n - 2 \sum_{n=1}^{N} \sum_{m=1}^{N} \lambda_n \lambda_m x_n^T x_m + \left(\sum_{m=1}^{N} \lambda_m x_m \right)^2$$

最後一項由於沒有變數n,可以把其中一個m換成n,並且代入kernel形式

$$= \sum_{n=1}^{N} \lambda_n K(x_n, x_n) - 2 \sum_{n=1}^{N} \sum_{m=1}^{N} \lambda_n \lambda_m K(x_n, x_m) + \left(\sum_{n=1}^{N} \lambda_n x_n\right) \left(\sum_{m=1}^{N} \lambda_m x_m\right)$$

最後一項可以改成 $\sum_{n=1}^{N} \sum_{m=1}^{N} \lambda_n \lambda_m K(x_n, x_m)$

跟中間項形式一樣 => 合併

$$= \sum_{n=1}^{N} \lambda_{n} K(x_{n}, x_{n}) - \sum_{n=1}^{N} \sum_{m=1}^{N} \lambda_{n} \lambda_{m} K(x_{n}, x_{m}) = [c]$$

但這是 \max Objective(λ), 要換成 \min 的話需要做其他的動作,而在選項裡都沒有符合的答案 = [e]

10. Answer: a

by 第8題的(e)式,若
$$\lambda_i > 0$$
, 則 IIx_n -cll² = R²

代入第9題的形式,可得
$$R^2 = \begin{vmatrix} x_i - \sum_{m=1}^{N} \lambda_m x_m \end{vmatrix}^2$$

展開平方式:
$$R^2 = x_i^T x_i - 2\sum_{m=1}^N \lambda_m x_i^T x_m + \left(\sum_{m=1}^N \lambda_m x_m\right)^2 = x_i^T x_i - 2\sum_{m=1}^N \lambda_m x_i^T x_m + \sum_{n=1}^N \sum_{m=1}^N \lambda_n \lambda_m x_n^T x_m$$

代入kernel形式:
$$R^2 = K(x_i, x_i) - 2\sum_{m=1}^N \lambda_m K(x_i, x_m) + \sum_{n=1}^N \sum_{m=1}^N \lambda_n \lambda_m K(x_n, x_m)$$

則
$$R = \sqrt{K(x_i, x_i) - 2\sum_{m=1}^{N} \lambda_m K(x_i, x_m) + \sum_{n=1}^{N} \sum_{m=1}^{N} \lambda_n \lambda_m K(x_n, x_m)} = [a]$$

11. Answer: a

Φw = (w, tξ), t = constant,
$$x_n$$
 = (x_n, v₁, v₂, ..., v_N) H (1) $min_{b,w}$ $\frac{1}{2}w^Tw^T$ subject to $y_n(w^Tx_n^T + b) ≥ 1$

表示 (2)
$$\min_{b,w,\xi} \frac{1}{2} w^T w + C \sum_{n=1}^{N} \xi_n^2$$
 subject to $y_n(w^T x_n + b) \ge 1 - \xi_n$

將(1) 展開得到:
$$\min_{b,w,\xi} \frac{1}{2} w^T w + \frac{1}{2} t^2 \sum_{n=1}^{N} \xi_n^2$$
 subject to $y_n \left(w_n^T x_n + t \sum_{m=1}^{N} \xi_m v_m + b \right) \ge 1$

移項得到(3)
$$\min_{b,w,\xi} \frac{1}{2} w^T w + \frac{1}{2} t^2 \sum_{n=1}^{N} \xi_n^2$$
 subject to $y_n(w_n^T x_n + b) \ge 1 - y_n t \sum_{m=1}^{N} \xi_m v_m$

其中令
$$\frac{1}{2}t^2 = C, t = \sqrt{2C}$$
 $v_m = \frac{1}{\sqrt{2C}}[m=n]$

則(3)可以換成
$$\min_{b,w,\xi} \frac{1}{2} w^T w + C \sum_{n=1}^N \xi_n^2 \text{ subject to } y_n (w_n^T x_n + b) \ge 1 - y_n \xi_n$$

若有ξ = (ξ₁,..., ξ_i,..., ξ_N) 是最佳解,那 ξ' = (-ξ₁,..., -ξ_i,..., -ξ_N) = -ξ 也會是最佳解。 而不等式可以選較寬鬆的範圍。

所以 ξ 的正負不影響取最小值的結果,那可以把 y_n 拿掉,得到 (2)式 mx_n ~ 為[a]的形式。

12. Answer: a c

令A為N*N的矩陣, $A_{ij} = \Phi_1(x_i)^T \Phi_1(x_j)$ 可表示 K_1 B為N*N的矩陣, $B_{ij} = \Phi_2(x_i)^T \Phi_2(x_j)$ 可表示 K_2

[a]: K = K₁+K₂,則 可以做矩陣C = N*N 表示K: C_{ij} = $\Phi_1(x_i)^T\Phi_1(x_j)+\Phi_2(x_i)^T\Phi_2(x_j)=A_{ij}+B_{ij}$ 可知C = A+B。 由於K₁,K₂為valid kernel,有symmetric 和 PSD性質。

 $C_{ij} = A_{ij} + B_{ij} = A_{ij} + B_{ij} = C_{ij}$ (A,B有symmetric性質)

A,B有PSD性質: (XTAX)_{ii}≥0, (XTBX)_{ii}≥0

 $X^TCX = X^T(A+B)X = X^T(AX+BX) = X^TAX+X^TBX$ (矩陣的分配律)

則 (XTCX)_{ij} = (XTAX)_{ij} + (XTBX)_{ij} ≥ 0 , C有PSD性質 => K is valid

[b]: $K = K_1 - K_2$,則 可以做矩陣C = N*N 表示K: $C_{ij} = \Phi_1(x_i)^T\Phi_1(x_j) - \Phi_2(x_i)^T\Phi_2(x_j) = A_{ij} - B_{ij}$ 可知 $C = A-B \circ \diamondsuit A = I$, B = 2I (I, 2I 都是PSD 且symmetric), $C = -I \circ$ 則trace(C) < 0 不是PSD => K 不是valid kernel \circ

[c]:

PSD:

令 $f_i(x_n)$ 為 $\Phi_1(x_n)$ 轉換的第i個係數,令 $g_j(x_m)$ 為 $\Phi_2(x_m)$ 轉換的第j個係數。 則 $K_1(x,x')K_2(x,x') = (\sum_{i=1}^{\infty} f_i(x)f_i(x'))(\sum_{j=1}^{\infty} g_j(x)g_j(x')) = \sum_{i,j} f_i(x)g_j(x)f_i(x')g_j(x')$ 則定義 Φ_3 的feature為 $h_{i,j}(x) = f_i(x)g_j(x)$,for 每一對i,j。 => $K(x,x') = K_1(x,x')K_2(x,x') = \Phi_3(x)^T\Phi_3(x')$

symmetric:

 $K(x',x) = K_1(x',x)K_2(x',x) = K_1(x,x')K_2(x,x') = K(x,x')$ (K₁,K₂有對稱性) => K(x,x') 為新的kernel 。

[d]: 令A = [1 1; 1 1], B = [100 1; 1 100] (皆為PSD 且symmetric)。 C = 2*2矩陣,表示K => C = [0.01 1; 1 0.01] det(C) < 0 => K不是valid kernel。

- 13. Answer: b d
 - [a]: [a]可以拆成1 + K₁(K₁-2)。 取K₁ 的表示矩陣 = I, 那K₁-2的表示矩陣為 [-1 -2; -2 -1],K₁(K₁-2)的表示矩陣是[-1 0; 0 -1],1 + K₁(K₁-2)的表示矩陣為 [0 1; 1 0] => det < 0 不是PSD,則K不是valid kernel。
 - [b]: K₁是valid kernel,那K₁可拆成ZTZ。構造─個Z' = √1126 * Z, 則 Z'TZ = 1126 *ZTZ = 1126 * K₁ = K。
 - [c]: 取K₁的表示矩陣 = 100I,則-K₁的表示矩陣為-100I,exp(-K₁)的表示矩陣為 [e^(-100) 1; 1 e^(-100)] => det <0 不是PSD,K不是valid kernel。

[d]: 因為
$$0 < K_1(x,x') < 1$$
 , $K(x,x') = \frac{1}{1-K_1(x,x')} = \sum_{i=0}^{\infty} (K_1(x,x'))^i$

因為kernel在乘法及加法有封閉性 => K(x,x') 是valid kernel。

14. Answer: c

equivalent g_{SVM} classifer $\Rightarrow w^T z + b = w^{-T} z + b^{-T} z$

$$\sum_{n=1}^{N} \alpha_n y_n K(x_n, x) + y_s - \sum_{n=1}^{N} \alpha_n y_n K(x_n, x_s) = \sum_{n=1}^{N} \alpha_n^{\sim} y_n K^{\sim}(x_n, x) + y_s - \sum_{n=1}^{N} \alpha_n^{\sim} y_n K^{\sim}(x_n, x_s)$$

消去 y_s 並把K~ 用pK+q代入:

$$\sum_{n=1}^{N} \alpha_{n} y_{n} K(x_{n}, x) - \sum_{n=1}^{N} \alpha_{n} y_{n} K(x_{n}, x_{s}) = p \sum_{n=1}^{N} \alpha_{n}^{\sim} y_{n} K(x_{n}, x) + q \sum_{n=1}^{N} \alpha_{n}^{\sim} y_{n} - p \sum_{n=1}^{N} \alpha_{n}^{\sim} y_{n} K(x_{n}, x_{s}) - q \sum_{n=1}^{N} \alpha_{n}^{\sim} y_{n}$$

消去有a的項:

$$\sum_{n=1}^{N} \alpha_{n} y_{n} K(x_{n}, x) - \sum_{n=1}^{N} \alpha_{n} y_{n} K(x_{n}, x_{s}) = p \sum_{n=1}^{N} \alpha_{n}^{\sim} y_{n} K(x_{n}, x) - p \sum_{n=1}^{N} \alpha_{n}^{\sim} y_{n} K(x_{n}, x_{s})$$

得 $\alpha^{-}_{n} = \alpha_{n}/p \implies$ 對於所有 α_{n} , $0 < \alpha_{n} < C$,因為所有 α_{n} 縮小p倍, 所以 bound也縮小p倍, $C^{-} = C/p$

15. Answer: b

w = model.SVs' * model.sv_coef;

16. Answer: e

train self and predict self

17. Answer: d

0.5*w*w-obj

- 18. Answer: a b e
- 19. Answer: b
- 20. Answer: b
- 21. Answer: NO

有可能是C設太小。若所有點都被包含在margin裡面,也是no free SV的狀況。

EX: $x_1 = (-3, 1, 0)$, $x_2 = (-1.5, -1, X)$, $x_3 = (1.5, 1, 0)$, $x_4 = (3, -1, X)$, C = 0.0001

結果是全部都在margin裡面,但這批資料是linear separable: {x₁,x₃}, {x₂,x₄}

22. Answer: YES

因為當SV的 ξn > 1 ,意思是只要是SV都是分錯的,而no free SV的情況,是margin包含所有的點,如果margin包含所有點(所有點都是SV),且SV都是分錯的,那必定有個分法可以將所有SV分對 => 那一開始就應該選分對的狀況(矛盾)。

如果是沒有SV的狀況,那必定可以擴大 $margin \Rightarrow$ 還沒training完(矛盾)。

若所有SV的點是分錯的,那將label互換,使得SV的點是正確的(若是linear separable一定會有一種分法是這樣分,其他只是線的平移跟一點點旋轉在某個區間裡旋轉),但SVM並沒有這樣分,所以在margin外至少有個有一點是label正確的,才會使SV的點都是分錯的=>此時若是linear separable的那條線,那就會發現至少有一點是錯誤的(矛盾)。

=> 不可能linear separable。