

Caleb Stephenson, Data Scientist

Presentation Outline

01.

The Problem

Why is this useful?

02.

The Data

Where does the data come from?

03.

The Models

How does this work?

04.

Conclusions

Where are we now?

<u>Problem</u> — Data — Models — Conclusions

The current state of recommender systems for movies

Collaborative

Recommend movies based on watch list / history and other users.

Drawbacks: Inflexible, may not reflect momentary desires well.

Feature-Based

User manually selects features such as genre, runtime, actors, or a list of predefined keywords.

Drawbacks: Limited scope, time-consuming

Conceptual output. Not actual results.

Problem — <u>Data</u> —	Models ———	Conclusions
-------------------------	------------	-------------

Database

What this data looks like on the internet:

Request:	Suggestion:
"Cheesy old school kung fu movies"	"Snake in Eagle's Shadow, Fearless Hyena, Master with Cracked Fingers, old school Jackie Chan could keep you occupied forever!"
Posted by: iam4r33	Posted by: StinkyBrittches

Problem — <u>Data</u> — Models — Conclusions

Data Exploration

Models and Evaluation

The data was split into training (80%) and testing (20%) data sets.

Model design was influenced by information retrieval systems.

- In these systems, a query is given, and documents matching the query are returned.
- This involves selecting a subset of data and returning ranked results.

Model performance was evaluated as the accuracy of a multi label classification when predicting from test data.

Baseline accuracy was measured by comparing the ten most recommended movies to the top ten suggestions for each request -- this was about 3.4%

What accuracy is achievable?

Humans are random and unpredictable.

This represents the accuracy and similarity scores when comparing each set of training document + labels with the most similar document in the training corpus.

The average "accuracy" is just under 5%, trending towards 20% for perfectly similar documents.

What accuracy is achievable?

Humans are random and unpredictable.

This represents the accuracy and similarity scores when comparing each set of training document + labels with the most similar document in the training corpus.

The average "accuracy" is just under 5%, trending towards 20% for perfectly similar documents.

TFIDF Vectorization and Cosine Similarity

Each request text is vectorized by TFIDF.

Titles are turned into documents by aggregating the vectors of the requests associated with that title.

A subset of the data is selected by choosing rows that have features in common with the vectorized queries.

This subset is ranked by cosine similarity to the query.

Average accuracy: 3.5%

Results of our Query:

"I want to watch an exciting action movie with a unique plot and amazing actors"

Watch These:

Kafka Thriller/Mystery

https://www.imdb.com/title/tt0102181/

No One Lives
Thriller/Horror

https://www.imdb.com/title/tt1763264/

True Lies
Action/Comedy

https://www.imdb.com/title/tt0111503/

Problem — Data — <u>Models</u> — Conclusions

Accuracy scores of different approaches:

TFIDF document similarity	Feedforward Neural Network	spaCy document similarity
3.5%	1.0%	0.0%

Problem — Data — <u>Models</u> — Conclusions

Accuracy scores of different approaches:

With a model trained on a wide range of topics, document similarity did not perform well. This data requires models trained on the corpus. TFIDF works okay but can we do better?

Results of our Query:

"I want to watch an exciting action movie with a unique plot and amazing actors"

Watch These:

House of 9 Horror/Mystery

https://www.imdb.com/title/tt0395585/

Failan Drama/Romance

https://www.imdb.com/title/tt0289181/

Fur Drama/Romance

https://www.imdb.com/title/tt0422295/

Problem — Data — <u>Models</u> — Conclusions

····· Accuracy vs Baseline ·····

At just under 1%, LDA model currently performs worse than baseline accuracy, but what exactly is the baseline predicting?

···· Accuracy vs Baseline ·····

At just under 1%, LDA model currently performs worse than baseline accuracy, but what exactly is the baseline predicting?

TOP TEN MOVIES:

- 1. *Up*
- 2. Star Trek Into Darkness
- 3. Love
- 4. Them!
- 5. Life
- 6. Her
- 7. 2012
- 8. Toy Story 3
- 9. *After*
- 10. In Time

····· Accuracy vs Baseline ·····

At just under 1%, LDA model currently performs worse than baseline accuracy, but what exactly is the baseline predicting?

TOP TEN MOVIES:

In Time

10.

Up
 Star Trek Into Darkness
 Love
 Them!
 Life
 Her
 2012
 Toy Story 3
 After

- Common words dominate this list
- These are mostly false positives
- The baseline is artificially high
- However, this does not result in these movies being recommended by the system.

Conclusions

- The data is unsurprisingly problematic. Much more cleaning and munging is needed.
- However, results are promising and sometimes provide interesting and relevant recommendations.
- There may not be enough data for neural networks.
- LDA, if performance improves, could be used for transfer learning with other models.

Thank you!

Questions?

Resources:

Slides: <u>www.slidesgo.com</u> <u>www.freepik.com</u>

Data: <u>www.reddit.com</u> <u>www.imdb.com</u>

Movie Posters: <u>www.imdb.com</u>

Document Retrieval

A.k.a. Information Retrieval

– <u>Appendix</u> -

Evaluation

Accuracy for Multi-Label Classification

True Labels:

Predictions:

Accurate?

Accuracy = 0.33

- = Human-suggested Titles
- = System-suggested Titles

For development of the system, this metric is *informative*, but not *definitive*

LDA Topic Examples

Each topic is a collection of words with varying weights.

```
0.034*"sci_fi" + 0.015*"plot" + 0.013*"space" + 0.013*"ex" + 0.012*"men" + 0.012*"human" + 0.011*"protagonist" + 0.011*"examples" + 0.011*"interstellar" + 0.010*"death"
```

```
'0.019*"https_tt" + 0.012*"actors" + 0.011*"soundtrack" + 0.010*"series" + 0.009*"plot" + 0.008*"visually" + 0.008*"three" + 0.007*"make" + 0.007*"great" + 0.007*"rich"
```

'0.046*"war" + 0.027*"american" + 0.016*"country" + 0.013*"history" + 0.013*"us" + 0.012*"directors" + 0.011*"detective" + 0.010*"man" + 0.010*"small" + 0.009*"women"),

May benefit from more topics (more granularity) and/or better stopwords