Part I Syllabus

Lecture	Date	Subject
1	10/08/2016	Introduction
2	10/08/2016	Layered network architecture & Physical resilience
3	17/08/2016	Data link layer – flow control
4	17/08/2016	Data link layer – error control
5	24/08/2016	Data link layer – HDLC
6	24/08/2016	Local area network – introduction
7	31/08/2016	Local area network – MAC
8	31/08/2016	Local area network – Ethernet
9	07/09/2016	Local area network – WLAN
10	07/09/2016	Packet switch network - Introduction
11	14/09/2016	Packet switch network – queue analysis
12	14/09/2016	Review and examples

CE3002 Computer Networks

Lecture 12 Review and Examples

Contents

Part I - Review

- Physical layer resilience
- Data link layer
- Local area network
- Packet switched network
- Queuing theory

Part I - Examples

- CRACK framework
- Examples

Part I: Review

Data Link Layer

		Protocol Description	Link Utilization: Percentage of the time during which the link transmits useful information.	Bits for	Max Windo	SN Range	Note
				SN	w Size		
Flow Control	Stop-and- Wait	Source transmits frame Destination receives frame and replies with ACK Source waits for ACK before sending next frame Destination can stop flow by not sending ACK	$U = \frac{1}{1+2a}$	1	W = 1		$a = rac{T_{prop}}{T_{frame}}$ $T_{prop} = rac{Distance}{c}$ $T_{frame} = rac{Length}{Bit\ Rate}$
	Sliding Window	Sender can send up to W frames without receiving ACK ACK includes number of next frame expected	$U = \begin{cases} 1, & W \ge 1 + 2a \\ \frac{W}{1 + 2a}, & W < 1 + 2a \end{cases}$	k	2 ^k	$[0, 2^k - 1]$	Note: • convert bytes to bits
ARQ	Stop-and- Wait	Destination sends an ACK if frame received correctly Source transmits next frame if ACK is received; otherwise, if no ACK is received within timeout, resource retransmits the frame	$U = \frac{1 - P}{1 + 2a}$	1	1		in calculation • unify all the units in calculation $U = \frac{T_{frame}}{T_{cycle}}$
	Go-Back-N	Source transmits frames sequentially based on sliding window Destination sends ACK normally for errorfree frames; otherwise, it sends NAK Source retransmits that frame with all subsequent frames if NAK is received	$U = \begin{cases} \frac{1 - P}{1 + 2aP}, & W \ge 1 + 2a\\ \frac{W(1 - P)}{(1 + 2a)(1 - P + WP)}, & W < 1 + 2a \end{cases}$	k	$2^{k} - 1$	$[0, 2^k - 1]$	U = \frac{7}{R} Note: • U is normalized throughput • R is transmission rate
	Selective- Reject	Receiver informs transmitter of rejected frame n by sending 'SREJ n' After receiving an erroneous frame, subsequent frames are accepted by receiver and buffered	$U = \begin{cases} 1 - P, & W \ge 1 + 2a \\ \frac{W(1 - P)}{(1 + 2a)}, & W < 1 + 2a \end{cases}$	k	2^{k-1}	$[0, 2^k - 1]$	• r is throughput

Local Area Network

MAC Protocols		Transmission Protocol			Throughput/	Note		
		Carrier Sensing Frame Transmission		Collision Detection	Utilization			
Aloha	Slotted	• None	Each transmits in a slot immediately with probability <i>p</i>	When a collision is detected, the colliding frames are	$S = Np(1-p)^{(N-1)}$ = Ge^{-G} $S = Np(1-p)^{2(N-1)}$	Number of Stations: N Probability of Attempt: p Attempt Rate: $G = Np$		
	Pure		Each transmits immediately with probability p	transmitted up to their last bits.	$S = Np(1-p)^{2G}$ $= Ge^{-2G}$			
CSMA	Non- Persistent	Must sense channel before transmission	When a busy channel is sensed, a station defers for a random period of time before next sense					
	P- Persistent		• When a busy channel is sensed, a station continues to sense until the channel turns idle. Then, with probability p , it transmits, and with probability $1-p$, it defers to next time slot.					
	1- Persistent		A special case of P-Persistent where p = 1					
CSMA/C (Etherne		Must sense channel before transmission transmissions are		$S = \frac{1}{1 + 6.44a}$ $a = \frac{T_{Prop}}{T_{frame}}$	Minimum Frame S • $T_{frame} \ge 2\tau$ Binary Exponential • In i-th retransmi is chosen from a distributed rand R , in the range of where $K = \min$	I Backoff ission, the slot uniformly lom variable of $[0, 2^K - 1]$,		
CSMA/CA (802.11)		Must sense channel before transmission If sense channel idle for DIFS, then transmit entire frame (no CD). If sense channel busy, then start random backoff time. Transmits when timer expires. If no ACK, increase random backoff interval Receiver:		No collision detection due to hidden terminal	Multi-Access Reservation • Use random-access with mini-frame (v unit of time) to reserve the channel • If reservation successful, transmit u unit of data frame $ \frac{u}{u+v/S_r} \frac{u}{(u-v)+\frac{v}{S_r}} \frac{u+v}{u+v/S_r} $ Total data $ u \qquad u+v $ length			
			If frame received OK, return ACK after SIFS		Data bit in No mini-frame	Yes	Yes	

Queuing Theory and MISC

Queue	Кеу	Diagram	Input Parameter	Statistics	Note
Model	Components				
M/M/1	M/M/1/∞/FCFS	λ queue service	λ : mean packet arrival rate (packet/sec) μ : mean packet service rate (packet/sec) Note: $\lambda < \mu$	Queue Statistics: $\rho = \frac{\lambda}{\mu} \text{: system utilization}$ $T = \frac{1}{\mu - \lambda} \text{: average delay}$ $N = \frac{\rho}{1 - \rho} \text{: average queue occupancy}$ $T_q = \frac{\rho}{\mu - \lambda} \text{: average queuing delay}$ Delay Components for Packet: • Average residual service time: ρ/μ • Average waiting time for early arrival: $(N - \rho)/\mu$ • Average service time: $1/\mu$ • Total delay: $T = \frac{\rho}{\mu} + \frac{N - \rho}{\mu} + \frac{1}{\mu}$	 Splitting Poisson Process: Merging Poisson Processes M/M/1 departure process: Poisson process with rate λ Queue with feedback

Network Design Patterns	HDLC Frame Exchange Sequence	Network Reliability	Packet Transmission Delay in Pipeline		
Communication Module	High-Level Strategy	Link failure probability: b	Assumptions		
 Communication tunnel Flow control & error control 	One side first The other next	• Link success probability: $r = 1 - b$	N bits, m packetsHeader: Lbits/packet		
Layering Structure	• The other next	Links in series	Transmission rate: R bps		
Four interfaces		$r = \prod_{i=1}^{n} (1 - b_i)$	• # of hops: h		
NEWS Separation of Mechanism and Policy		 Links in parallel 	End-to-End Delay: no queuing N, , N, ,		
Policy: when to do		$b = \prod^{n} b_{i}$	$T = m \times \frac{\frac{N}{m} + L}{R} + (h - 1) \times \frac{\frac{N}{m} + L}{R}$		
 Mechanism: how to do 		$\mathbf{I} \mathbf{I}_{i=1}$	K K		

Examples

2011-2012 Semester 1: Question 1

Consider an experimental local area network using a multiaccess reservation protocol for data transmission. The protocol consists of two phases. In phase 1, it adopts some MAC protocol for transmission stations to reserve the channel. In phase 2, when one station reserves the channel, it transmits one frame. The length of reservation frame is 5ms, and the length of the data frame is 1s.

Phase 1: Reservation

2011-2012 Semester 1: Question 1(a)

(a) If the MAC protocol used in phase 1 has a utilization of 0.5, what is the throughput of the multi-access reservation protocol?

Solution:

Step 1: It is a MARP problem

Step 2: the throughput of MARP is S=1/(1+v/S_r)

Step 3: v=5ms, S_r=0.5

Step 4: S = 1/(1+0.005/0.5)=1/1.01=0.99

Step 5: S<=1

Five-Step Problem-Solving Framework: CRACK

- Step 1: Context
 - What is the context of the problem? List all the given info.
- Step 2: Framework/Strategy
 - What is the framework to tackle it (formula, diagrams, etc)?
- Step 3: Application
 - Apply all the context info into the framework?
- Step 4: Calculation
 - Calculate the results
- Step 5: Check
 - Sanity Check/verification/comment

2011-2012 Semester 1: Question 1(b)

(b) If the slotted Aloha is used in the reservation phase, what is the maximum throughput of the multi-access reservation protocol? Note that the throughput of the slotted Aloha is Ge^(-G), where *G*=*np* is the offer load.

Solution:

Step 5: S<=1

```
Step 1: It is a MARP + Slotted Aloha problem

Step 2: the throughput of MARP is S=1/(1+v/S_r) and S_r=Ge^(-G).

Step 3: To maximize the throughput of Aloha, we have

dS_r/dG=e^(-G)-Ge^(-G)=0

=> G=1 and S_{r, max}=1/e

Step 4: S_{max} = 1/(1+v/S_{r,max})=1/(1+2.71*0.005)=0.9866
```

2011-2012 Semester 1: Question 1(c)

(c) Let us assume that a modified CSMA/CD protocol is used in phase 1, which uses the binary exponential backoff scheme to resolve collisions for reservation packets. Moreover, each station is allowed to choose it transmission probability in its retrial. In the case of two stations (A and B) involved in a collision A will retransmit with probability p in slot 0 on window 1 and B will retransmit with probability q in slot 0. What is the probability of a collision occurring in the first retry? How would you choose p and q to minimize the collision probability?

Solution:

```
Step 1: It is a BEP problem
```

Step 2: Collision = both stations retransmit in the same slot

Step 3:
$$Pr(Collision) = Pr(A&B in slot 0) + Pr(A&B in slot 1)$$

= $pq + (1-p)(1-q)$

Step 4: To minimize Pr(Collision), we set p=1, q=0 or p=0, q=1.

Step 5: 0 <=p,q<=1

2011-2012 Semester 1: Question 2

A communication link exists between two nodes A and B. The transmission rate on the link is 2.4 Mbps. The distance between A and B is 50 km and the propagation delay is 2 μ s per km. Moreover, there is an admission control module in node A, called traffic shaping, which makes a random decision for each frame admission. The frame length is 300 bytes.

R= 2.b Mbps H=50km τ =2x50=100 μ s L=300 bytes =2400bits

2011-2012 Semester 1: Question 2(a)

(a) We use a sliding window flow control mechanism between A and B. What will be the window size that can maximize the throughput between A and B?

```
Solution:
Step 1: It is a flow control with sliding window problem
Step 2: the throughput is S= min{1, W/(1+2a)}
Step 3: T_prop = 100\mu s;
       T {frame}=L/R= 2400bits/2.4Mbps=1000μs
        a=T_{prop}/T_{frame}=100/1000=0.1
Step 4: to maximize the throughput, we have
        1 \le W/(1+2a) \implies W >= 1+2a=1.2
        =>W_{min} =2.
Step 5: S=1
```

2011-2012 Semester 1: Question 2(b)

(b) What is the throughput between A and B? Assume the presence of frame transmission errors (the error probability is 10^{-3}) and a stop-and-wait ARQ mechanism between A and B

2011-2012 Semester 1: Question 2(c)

(c) An IP router is connected to the link of Node A. When the external frame arrival rate is 1500 frames per second, will the queue in the router be stable for the cases of Q2(a) and Q2(b)? When the external frame arrival rate is 500 frames per second, what is the average frame delay in the case of Q2(b)? [Note that an M/M/1 queue is used in the router to process frame arrival.]

Solution:

Step 1: It is an M/M/1 problem

Step 2: $\lambda < \mu$; T=1/(μ - λ)

Step 3: service rate: μ = 2.4Mbps/2400bits = 1000 frame/sec

Step 4:

- (i) If $\lambda = 1500$ frames/sec, queue is not stable
- (ii) If $\lambda = 500$ frames/sec, $\lambda' = \lambda + \lambda' P => \lambda' = \lambda/(1-P)$ $T = 1/(\mu - \lambda') = 1/(1000 - 500/0.999) = 2.002$ ms

Step 5: ARQ can be modeled as a queue with feedback

