Two-Sum

Khanh Nguyen

August 28, 2025

1 Preliminaries

Let first define some data structures

Denote $[a, b] = \{a, a+1, a+2, ..., b-1, b\}$ for $a < b \in \mathbb{N}$ be the set of all natural numbers between a and b (inclusive)

Definition 1 (finite length array) An array of length n of element from S is defined as a function $f:[1,n]\to S$

The set all all arrays of length n from S is $S^{[1,n]}$. The set of all arrays from S is $\bigcap_{n=0}^{\infty} S^{\mathbb{N} \cap [1,n]}$ or S^* for short.

Definition 2 (sub-array) Let $a \leq b \in \mathbb{N} \cap [1, n]$, the sub-array of f with respect to bounds (a, b) denoted as $f_{(a,b)} : \mathbb{N} \cap [1, b-a+1] \to S$ is defined by $f_{(a,b)}(i) = f(a+i-1) \forall i \in \mathbb{N} \cap [1, b-a+1]$

Note that $f_{(1,n)} = f$

Definition 3 (increasing array) An array $f : \mathbb{N} \cap [1, n] \to \mathbb{N}$ is increasing if and only if $\forall i < j \in \mathbb{N} \cap [1, n], f(i) \leq f(j)$

Definition 4 (array membership) If $\exists i \in \mathbb{N}, x = f(i)$, we write $x \in f$

Definition 5 (array length) The function len: $S^* \to \mathbb{N}$ returns the length of an array

2 Two-Sum

Given an increasing array f of length n and a number s, if there exists two numbers $a, b \in f$ such as a+b=s, define a function $ts: \mathbb{N} \times \mathbb{N}^* \to \mathbb{N} \times \mathbb{N}$ as ts(s,f)=(a,b) where $a \leq b \in f$ and a+b=s. One possible definition of ts is as follow:

$$ts(s,f) = \begin{cases} (f(1), f(n)) & \text{if } f(1) + f(n) = s \\ ts(s, f_{(2,n)}) & \text{if } f(1) + f(n) < s \\ ts(s, f_{(1,n-1)}) & \text{if } s < f(1) + f(n) \end{cases}$$
(1)