Логические сети

Логическая сеть

абстрактная графическая модель одной из возможных реализаций определенной логической функции (или нескольких функций)

Логическая сеть

абстрактная графическая модель одной из возможных реализаций определенной логической функции (или нескольких функций)

«ГОСТ 2.743-91. Межгосударственный стандарт. Единая система конструкторской документации. Обозначения условные графические в схемах. Элементы цифровой техники» (утв. Постановлением Госстандарта СССР от 23.12.1991 N 2375)

Логическая сеть

абстрактная графическая модель одной из возможных реализаций определенной логической функции (или нескольких функций)

«ГОСТ 2.743-91. Межгосударственный стандарт. Единая система конструкторской документации. Обозначения условные графические в схемах. Элементы цифровой техники» (утв. Постановлением Госстандарта СССР от 23.12.1991 N 2375)

Примеры УГО

запрет

И-НЕ (штрих Шеффера)

импликатор

ИЛИ-НЕ (стрелка Пирса)

Пример элемента с парафазным выходом

«Сложные» элементы

Неправильные логические сети

При
$$x=0$$
:

$$y = \overline{0 \lor y} = \overline{y}$$

Неправильные логические сети

Анализ КЛС

Синтез КЛС

выбор варианта по минимуму критериев:

- $\Sigma_{\rm cr}$ число ступеней,
- $\Sigma_{\rm эл}$ число элементов,
- $\Sigma_{\rm BX}$ число входов.

Задача:

синтезировать двухразрядный двоичный компаратор

$$f(A,B)=1,ecnu\ A>B$$

$$A = a_1 a_0 \qquad B = b_1 b_0$$

$a_1 a_0$ $b_1 b_0$	00	01	11	10
00		1	1	1
01			1	1
11				
10			1	

$$f(a_1a_0b_1b_0) = a_1\bar{b}_1 \vee a_0\bar{b}_1\bar{b}_0 \vee a_1a_0\bar{b}_0$$

$$\Sigma_{\rm cr} = 2$$
; $\Sigma_{\rm sn} = 4$; $\Sigma_{\rm Bx} = 11$

$$f(a_1a_0b_1b_0) = a_1\overline{b_1} \vee a_0\overline{b_1}\overline{b_0} \vee a_1a_0\overline{b_0} =$$

$$f(a_{1}a_{0}b_{1}b_{0}) = a_{1}\overline{b_{1}} \vee a_{0}\overline{b_{1}}\overline{b_{0}} \vee a_{1}a_{0}\overline{b_{0}} =$$

$$= \overline{a_{1}\overline{b_{1}} \vee a_{0}\overline{b_{1}}\overline{b_{0}} \vee a_{1}a_{0}\overline{b_{0}}} =$$

$$f(a_{1}a_{0}b_{1}b_{0}) = a_{1}\overline{b_{1}} \vee a_{0}\overline{b_{1}}\overline{b_{0}} \vee a_{1}a_{0}\overline{b_{0}} =$$

$$= \overline{a_{1}}\overline{b_{1}} \vee a_{0}\overline{b_{1}}\overline{b_{0}} \vee a_{1}a_{0}\overline{b_{0}} =$$

$$= \overline{a_{1}}\overline{b_{1}} \otimes \overline{a_{0}}\overline{b_{1}}\overline{b_{0}} \otimes \overline{a_{1}}\overline{a_{0}}\overline{b_{0}} =$$

$$= \overline{a_{1}}\overline{b_{1}} \otimes \overline{a_{0}}\overline{b_{1}}\overline{b_{0}} \otimes \overline{a_{1}}\overline{a_{0}}\overline{b_{0}}$$

$$f(a_1 a_0 b_1 b_0) = \overline{a_1 \overline{b_1}} \& \overline{a_0 \overline{b_1} \overline{b_0}} \& \overline{a_1 a_0 \overline{b_0}}$$

$$\bar{f}(a_1a_0b_1b_0) = \bar{a}_1\bar{a}_0 \vee b_1b_0 \vee \bar{a}_1b_1 \vee \bar{a}_1b_0 \vee \bar{a}_0b_1$$

$$\bar{f}(a_1a_0b_1b_0) = \bar{a}_1\bar{a}_0 \vee b_1b_0 \vee \bar{a}_1b_1 \vee \bar{a}_1b_0 \vee \bar{a}_0b_1$$

$$f(a_1a_0b_1b_0) = \overline{\overline{a_1}\overline{a_0} \vee b_1b_0 \vee \overline{a_1}b_1 \vee \overline{a_1}b_0 \vee \overline{a_0}b_1}$$

$$\frac{\bar{f}(a_1a_0b_1b_0)}{\bar{f}(a_1a_0b_1b_0)} = \overline{a_1}\overline{a_0} \vee b_1b_0 \vee \overline{a_1}b_1 \vee \overline{a_1}b_0 \vee \overline{a_0}b_1$$

$$f(a_1a_0b_1b_0) = \overline{a_1}\overline{a_0} \vee b_1b_0 \vee \overline{a_1}b_1 \vee \overline{a_1}b_0 \vee \overline{a_0}b_1 =$$

$$= \overline{\overline{a_1}\overline{a_0}} \vee \overline{\overline{b_1}\overline{b_0}} \vee \overline{\overline{a_1}\overline{b_1}} \vee \overline{\overline{a_1}\overline{b_0}} \vee \overline{\overline{a_0}\overline{b_1}} =$$

$$\frac{f(a_1 a_0 b_1 b_0)}{f(a_1 a_0 b_1 b_0)} = \overline{a_1} \overline{a_0} \vee b_1 b_0 \vee \overline{a_1} b_1 \vee \overline{a_1} b_0 \vee \overline{a_0} b_1
f(a_1 a_0 b_1 b_0) = \overline{a_1} \overline{a_0} \vee b_1 b_0 \vee \overline{a_1} b_1 \vee \overline{a_1} b_0 \vee \overline{a_0} b_1 =
= \overline{\overline{a_1}} \overline{\overline{a_0}} \vee \overline{\overline{b_1}} \overline{b_0} \vee \overline{\overline{a_1}} \overline{b_1} \vee \overline{\overline{a_1}} \overline{b_0} \vee \overline{\overline{a_0}} \overline{b_1} =
= \overline{a_1} \vee \overline{a_0} \vee \overline{\overline{b_1}} \vee \overline{\overline{b_0}} \vee \overline{\overline{a_1}} \vee \overline{\overline{b_1}} \vee \overline{\overline{a_1}} \vee \overline{\overline{b_1}} \vee \overline{\overline{a_1}} \vee \overline{\overline{b_0}} \vee \overline{\overline{a_0}} \vee \overline{\overline{b_1}} =$$

$$f(a_1a_0b_1b_0) = \overline{\overline{a_1 \vee a_0} \vee \overline{\overline{b_1} \vee \overline{b_0}} \vee \overline{a_1 \vee \overline{b_1}} \vee \overline{a_1 \vee \overline{b_0}} \vee \overline{a_1 \vee \overline{b_0}} \vee \overline{a_0 \vee \overline{b_1}}$$

$$\Sigma_{\rm cr}$$
 = 2; $\Sigma_{\rm sr}$ = 6; $\Sigma_{\rm Bx}$ = 15

Пример синтеза каскадной КЛС

$$f(a_1 a_0 b_1 b_0) = a_1 \overline{b_1} \vee a_0 \overline{b_1} \overline{b_0} \vee a_1 a_0 \overline{b_0}$$
$$= a_1 \overline{b_1} \vee a_0 \overline{b_0} (\overline{b_1} \vee a_1)$$

Пример синтеза каскадной КЛС

$$f(a_1 a_0 b_1 b_0) = a_1 \overline{b_1} \vee a_0 \overline{b_1} \overline{b_0} \vee a_1 a_0 \overline{b_0}$$
$$= a_1 \overline{b_1} \vee a_0 \overline{b_0} (\overline{b_1} \vee a_1)$$

$$\Sigma_{\rm cr}$$
=3; $\Sigma_{\rm эл}$ =5 и $\Sigma_{\rm BX}$ =10

Двухвходовый одноразрядный сумматор

$$S = a\overline{b} \vee \overline{a}b$$

$$P = ab$$

Полусумматор, как две одновыходные КЛС в классическом базисе

$$\Sigma_{\rm ct}$$
 = 2; $\Sigma_{\rm gn}$ = 4; $\Sigma_{\rm Bx}$ = 8

Двухвходовый одноразрядный сумматор

Расходящаяся двухвыходная сеть

b	0	0
0	0	1
1	1	0

$$S = a\overline{b} \vee \overline{a}b$$

$$S = \overline{P}(a \vee b)$$

$$P = ab$$

Расходящаяся двухвыходная сеть

ba	0	0
0	0	1
1	1	0

$$S = a\overline{b} \vee \overline{a}b$$

$$S = \overline{P}(a \vee b)$$

$$P = ab$$

 \overline{P}

Полусумматор в базисе И-НЕ

$$\overline{P} = \overline{ab}$$

$$\overline{S} = \overline{\overline{P}(a \vee b)} = \overline{\overline{P}(\overline{a \vee b})} = \overline{\overline{P}(\overline{a})} = \overline{\overline{P}(\overline{a})}$$

p ab	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$$S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$$

p ab	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$$S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$$

ab				
p	00	01	11	10
0	0	0	1	0
1	0	1	1	1

ab				
p	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$$S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$$

$$P = bp \lor ap \lor ab$$

$$S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$$

$$P = bp \lor ap \lor ab$$

$$\Sigma_{\rm ct} = 2$$
; $\Sigma_{\rm эл} = 9$ и $\Sigma_{\rm Bx} = 25$

Вариант с использованием общих единиц функций

ab				
p	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$$S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$$

ab				
p	00	01	11	10
0	0	0	1	0
1	0	1	1	1

Вариант с использованием общих единиц функций

ab				
p	00	01	11	10
0	0	1	0	1
1	1	0	1	0

ab				
p	00	01	11	10
0	1	1	0	1
1	1	0	0	0
		7	_	

ab p	00	01	11	10
0	0	0	1	0
1	0	1	1	1

Вариант с использованием общих единиц функций

	ab				
p		00	01	11	10
	0	0	1	0	1
	1	(1)	0	1	0

$$S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$$

Вариант с использованием общих единиц функций

 $S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$

Вариант с использованием общих единиц функций

 $S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$

Вариант с использованием общих единиц функций

 $S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$

Вариант расходящейся КЛС с выражением одной функции через другую, минимизированную

ab				
p	00	01	11	10
0	1	1	0	1
1	1	0	0	0

 \overline{P}

ab				
p	00	01	11	10
0	1	1	0	1
1	1	0	0	0

$$\overline{P} = \overline{a}\overline{p}$$

ab					
p	00	01	11	10	
0	1	1	0	1	
1	1	0	0	0	

$$\overline{P} = \overline{ap} \vee \overline{b}\overline{p}$$

ab				
p	00	01	11	10
0	1	1	0	1
1	1	0	0	0

$$\overline{P} = \overline{ap} \vee \overline{b} \, \overline{p} \vee \overline{a} \overline{b}$$

ab				
p	00	01	11	10
0	1	1	0	1
1	1	0	0	0

$$\overline{P} = \overline{ap} \vee \overline{b} \, \overline{p} \vee \overline{a} \, \overline{b} = \overline{\overline{ap}} \cdot \overline{\overline{b}} \, \overline{p} \cdot \overline{\overline{a}} \, \overline{\overline{b}}$$

ab				
p	00	01	11	10
0	1	1	0	1
1	1	0	0	0
$\overline{P} = i$	$\overline{an} \vee i$	$\overline{b}\overline{n}\vee$	$\overline{a}\overline{b} =$	$=\frac{1}{an}$

$$\overline{P} = \overline{a}\overline{p} \vee \overline{b}\overline{p} \vee \overline{a}\overline{b} = \overline{\overline{a}\overline{p}} \cdot \overline{\overline{b}}\overline{p} \cdot \overline{\overline{a}\overline{b}}$$

$$0 \quad 0 \quad 1 \quad 1 \quad 10$$

$$1 \quad 1 \quad 0 \quad 1$$

$$S =$$

Вариант расходящейся КЛС с выражением одной функции через другую, минимизированную

\ c	db				
p		00	01	11	10
	0	1	1	0	1
	1	1	0	0	0

 $S = \overline{P}(a \lor b \lor p)$

	ab				
p		00	01	11	10
	0	1	1	0	1
	1	1	0	0	0
		-			

$$\overline{P} = \overline{a}\overline{p} \vee \overline{b}\overline{p} \vee \overline{a}\overline{b} = \overline{\overline{a}\overline{p}} \cdot \overline{\overline{b}}\overline{p} \cdot \overline{\overline{a}\overline{b}}$$

$$0 \quad 0 \quad 1 \quad 1 \quad 10$$

$$1 \quad 1 \quad 0 \quad 1$$

$$S = \overline{P}(a \lor b \lor p) \lor abp$$

ab				
p	00	01	11	10
0	1	1	0	1
1	1	0	0	0

$$S = \overline{P}(a \lor b \lor p) \lor abp = \overline{\overline{P} \cdot \overline{a}\overline{b}\overline{p}} \cdot \overline{abp}$$

$$S = \overline{P}(a \lor b \lor p) \lor abp = \overline{\overline{P} \cdot \overline{a} \overline{b} \overline{p}} \cdot \overline{abp}$$

Вариант соединения двух полусумматоров

p ab	00	01	11	10
0	0	0	1	0
1	0	1	1	1

$$P = bp \lor ap \lor ab$$

$$S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$$

$$S_1 = b\overline{p} \vee \overline{b}p$$
 $P_1 = bp$ $S_2 = S_1\overline{a} \vee \overline{S}_1a$ $P_2 = S_1a$

Вариант соединения двух полусумматоров

$$P = bp \lor ap \lor ab$$

$$S = \overline{a}\overline{b}p \vee \overline{a}b\overline{p} \vee abp \vee a\overline{b}\overline{p}$$

$$\Sigma_{\rm ct} = 8; \, \Sigma_{\rm gh} = 14; \, \Sigma_{\rm bx} = 20$$

$$S_1 = b\overline{p} \vee \overline{b}p$$
 $P_1 = bp$

$$S_2 = S_1 \overline{a} \vee \overline{S}_1 a$$
 $P_2 = S_1 a$

Шифратор

	D2	D1	D0
A0	0	0	0
A1	0	0	1
A2	0	1	0
A3	0	1	1
A4	1	0	0
A5	1	0	1
A6	1	1	0
A7	1	1	1

Шифратор

	D2	D1	D0
A0	0	0	0
A1	0	0	1
A2	0	1	0
А3	0	1	1
A4	1	0	0
A5	1	0	1
A6	1	1	0
A7	1	1	1

Шифратор

Дешифратор

A_2	0	0	0	0	1	1	1	1
A_1	0	0	1	1	0	0	1	1
A_0	0	1	0	1	0	1	0	1
f_0	1	0	0	0	0	0	0	0
f_{I}	0	1	0	0	0	0	0	0
f_2	0	0	1	0	0	0	0	0
f_3	0	0	0	1	0	0	0	0
f_4	0	0	0	0	1	0	0	0
f_5	0	0	0	0	0	1	0	0
f_6	0	0	0	0	0	0	1	0
f_7	0	0	0	0	0	0	0	1

&

A1

A0

 f_7

$$\Sigma_{\rm cr}$$
 = 1; $\Sigma_{\rm sn}$ = 2ⁿ; $\Sigma_{\rm BX}$ = n 2ⁿ

Мультиплексор

Демультиплексор

