

ch2.7含运算放大器 电路的分析

杨旭强 哈尔滨工业大学电气工程系

要求:了解典型的反相同相放大器、加法器和差动放 熟练掌握含理想运算放大器电路的分析方法。

1. 反相放大器

根据虚断-输入端口电流为零的特性

 $i_{
m l}=i_{
m f}$ 根据<mark>虚短-</mark>差分输入电压为零的特性

$$i_1 = \frac{u_i - 0}{R_1}$$
 $i_f = \frac{0 - u_o}{R_f}$

输入、输出电压关系: $u_o = -\frac{K_f}{R_i}u_i$

当 $R_1 = R_{\rm f}$ 时, $u_0 = -u_{\rm i}$ 电路被称为反相器。

用反相放大器实现电流控制电压源

$$u_{o} = -R_{f}i_{f} = -R_{f}i_{1}$$

$$\mathbf{CCVS}$$

2. 同相放大器

根据虚短和KVL

$$u_{\rm o} = R_{\rm f} i_{\rm f} + u_{\rm i} \quad i_{\rm l} = u_{\rm i} / R_{\rm l}$$

根据虚断 $i_f = i_1$

输出电压与输入电压的关系

$$u_{o} = (1 + \frac{R_{f}}{R_{1}})u_{i}$$
VCVS VCCS???

注:同相放大器是增益大于1的电压控制电压源,输出电压与输入电压极性相同。

若令 $R_1=0$, $R_1=\infty$,此时电路变为电压跟随器。在电路中起隔离作用,同时可以提高输入信号的带负载能力

图中由 R_1 和 R_2 构成的分压电路中,开路电压

$$U_{\text{oc}} = U_2 = \frac{R_2}{R_1 + R_2} U_1$$

接负载电阻 R_L 后 $U_2 < U_{oc}$

$$U_{\rm o} = U_{\rm 2} = \frac{R_{\rm 2}}{R_{\rm 1} + R_{\rm 2}} U_{\rm 1}$$

R. 电压跟随器在实际 电路中起隔离和提 高负载能力的作用

此外电压跟随器在实际电路中还可以起到保护后续电路作用

【例题2.17】所示电路中,已知电阻 R_f 远远大于 R_a , R_f 支路对 R_3 和 R_4 电路的分流作用可忽略不计。求 u_0/u_i 。

$$i_1 = \frac{u_i - 0}{R_1} = \frac{u_i}{R_1}$$
 $i_f = \frac{0 - u_o'}{R_f} = -\frac{u_o'}{R_f}$

整理得
$$u_o' = -\frac{R_f}{R_1}u_i$$

因为忽略 R_f 支路的分流作用 $u'_0 = \frac{R_4}{R_1 + R_2} u_0$

求得
$$\frac{u_o}{u_i} = -\frac{R_f}{R_1} (1 + \frac{R_3}{R_4})$$

3. 加法器

根据虚短特性

$$i_1 = \frac{u_1}{R_1}, \quad i_2 = \frac{u_2}{R_2}, \quad i_3 = \frac{u_3}{R_3}$$

根据虚断特性和KCL $i_f = i = i_1 + i_2 + i_3$

根据欧姆定律和KVL求得输出电压和输入电压的关系

$$u_{o} = -R_{f}i_{f} = -\frac{R_{f}}{R_{1}}u_{1} - \frac{R_{f}}{R_{2}}u_{2} - \frac{R_{f}}{R_{3}}u_{3} = k_{1}u_{1} + k_{2}u_{2} + k_{3}u_{3}$$

若
$$R_1 = R_2 = R_3 = R_f$$
 则 $u_0 = -u_1 - u_2 - u_3$

则
$$u_0 = -u_1 - u_2 - u_3$$

是不是很麻烦,如何一步得到输入输出关系???

【例题2.18】求图示电路输出电压 u_0 与输入电压 u_i 的关系。

解:根据虚断的概念得

$$u^{-} = \frac{R_{1}}{R_{1} + R_{2}} u_{0}$$

$$i_3 = i_4 = \frac{u_i - u^-}{R_3}$$

由**KV**L得 $(R_3 + R_4)i_3 = u_1 - u_2$

联立得
$$u_{\rm o} = \frac{R_1 R_4 + R_2 R_4}{R_1 R_4 - R_2 R_3} u_{\rm i}$$

4. 差分放大器

根据虚短和虚断的性质得:

$$u_{\rm n1} = u_{\rm n2} = \frac{R_4}{R_3 + R_4} u_2$$

进一步求得电流 i, 和 i,

$$i_2 = i_1 = \frac{u_1 - u_{n1}}{R_1} = \frac{u_1 - u_{n2}}{R_1}$$

差分放大器电路

应用KVL求得输出电压与输入电压的关系

$$u_{o} = -R_{2}i_{2} + u_{n2} = \frac{R_{2}}{R_{1}} \frac{(1 + R_{1} / R_{2})}{(1 + R_{3} / R_{4})} u_{2} - \frac{R_{2}}{R_{1}} u_{1}$$

特别的:
$$\frac{R_{2}}{R_{1}} = \frac{R_{4}}{R_{3}} = A$$

输出电压与两输入电压之差成正比 $u_0 = A(u_2 - u_1)$

5. 积分运算电路

根据虚断和虚短 $i = i_C = \frac{u_i}{R}$

$$u_{o} = -u_{C} = -\frac{1}{C} \int i_{C} dt = -\frac{1}{RC} \int u_{i} dt$$

6. 微分运算电路

$$i_{C} = i = C \frac{du_{i}}{dt}$$

$$u_{o} = -Ri = -RC \frac{du_{i}}{dt}$$

【例题2.11】求出图示电路的输入电阻 R_{eq}

【解】端口等效电阻与电压、电流的关系为 $R_{eq} = \frac{u}{i}$

由KVL得端口电压 $u = R_1 i_1 + R_2 i_2 + R i_3$

由运放的虚断特性有 $i = i_1$, $i_2 = i_3$

由运放的虚短特性有 $R_1i_1 + R_2i_2 = 0$

解得
$$u = Ri_3 = Ri_2 = -\frac{R_1}{R_2}Ri_1 = -\frac{R_1}{R_2}Ri$$
即 $R_{eq} = \frac{u}{i} = -\frac{R_1}{R_2}R$

当 $R_1 = R_2$ 时,可得

$$R_{\rm eq} = -R$$

*****i*₁≠*i*₃????

 $10k\Omega$

 $6k\Omega$

【例题2.12】求出图示电路的输出电压 U_o

【解】图示电路共有4个独立节点,其 2V o 中节点④的电压为2V。现对节点①、

②、③列节点方程如下

节点①
$$(\frac{1}{6k\Omega} + \frac{1}{6k\Omega} + \frac{1}{10k\Omega})U_{n1} - \frac{1}{10k\Omega}U_{n3} = \frac{2V}{6k\Omega}$$

节点②
$$\left(\frac{1}{6k\Omega} + \frac{1}{30k\Omega} + \frac{1}{10k\Omega}\right)U_{n2} = \frac{2V}{6k\Omega}$$

补充理想运算放大器输入端口电压方程,即 $U_{\rm n1}$ = $U_{\rm n2}$

解得
$$U_{n1} = U_{n2} = (10/9)V$$
, $U_{n3} = (40/27)V$

简单电路处理方法:利用虚短、虚断特性求解

复杂电路求解方法:采用节点法

要点: 1、不求输出电流时不对输出节点列KCL

2、输入端即便电压已知为零也要列写其KCL

3、必要时补充虚短特性方程

【习题2.28】求出图示电路的输出电流 1。

【习题2.29】求出图示电路的输出电压 U_o

【习题2.30】求出图示电路的电流 /

【习题2.31】求出图示电路的输入电阻 R_{ab}

- 1、1.11和1.18答案有错误,分别应该为-6W和-4W。
- 2、1.19中c图的分析错误比较多,原因应该是对全是代数的电路不熟悉。
- 3、对于功率的正负不熟悉,混淆发出功率和吸收功率的概念,所以计算功率时经常忘写负号或多写负号。

1.11 已知 $I_2 = 1 \text{A}$, $I_7 = 2 \text{A}$, $U_{13} = -3 \text{V}$, $U_{24} = 5 \text{V}$, $U_{34} = 2 \text{V}$ 求支路1发出的功率。

1.18 求图示电路受控源发出的功率。

1.19中c图求端口电压电流关系

补充: 图示电路列节点法和回路法最少各需几个方程

补充二: 若已知某网络的节点法方程, 试构造该网络

节点①:1.6S
$$U_{n1}$$
-0.5S U_{n2} -1S U_{n3} =1A

节点②:
$$-0.5SU_{n1} + 1.6SU_{n2} - 0.1SU_{n3} = 0$$

节点③:
$$-1SU_{n1} - 0.1SU_{n2} + 3.1SU_{n3} = 0$$

节点①:3S
$$U_{n1}$$
-1S U_{n2} -1S U_{n3} =1A

节点②:
$$-1SU_{n1} + 4SU_{n2} - 2SU_{n3} = -1A$$

节点③:
$$-1SU_{n1} - 2SU_{n2} + 5SU_{n3} = -1A$$