الجمعورية الجزائرية الحيمتراطية الفعبية

الحيوان الوطني الامتدانات والمسابقات

* دورة جوان 2008 *

امتحان بكالوريا التعليم الثانوي

المدة: 04 ساعات و 30 د

الشعبة: تقني رياضي

وزارة التربية الوطنية

اختبار في مادة التكنولوجيا (هندسة كهربانية)

على المترشح أن يختار أحد الموضوعين التاليين : الموضوع الأول

نظام آلي لصنع آجر الخرسانة Système automatique de fabrication de parpaing

يحتوي الموضوع الأول على: 10 صفحات (من 19/1 إلى 19/10)

- العرض: من الصفحة 19/1 إلى الصفحة 19/7
 - العمل المطلوب الصفحة 19/8.
- وثيقة الإجابة: الصفحتين : 9/9 و 19/10 (ترجع مع أوراق الاختبار)

I - دفتر الشروط المبسط:

1- هدف التألية :

يهدف هذا النظام إلى صناعة الأجر المقولب (بنوعيه : Parpaings et hourdis) باستعمال خليط من الخرسانة

<u>2- الوصف:</u>

يحتوي هذا النظام على 5 مراكز (انظر الشكل5 الصفحة 19/3):

- مركز تقديم الصفائح المعدنية الحاملة.
- مركز القولبة. مركز التكنيس.
- مركز التجفيف.
 مركز الإخلاء

<u>3− التشغيل:</u>

يملا الخزان بالخرسانة مسبقا.

يتم تشغيل كل مركز على حدى بالضغط على زر بداية الدورة المناسب لكل مركز

 $(Dey_1 - Dey_2 - Dey_3 - Dey_4 - Dey_5)$

- أ) مراحل إنجاز أشغولة القولبة:
 - -وجود الحامل تحت الخزان.
- بعد تهيئة النظام و الضغط على الزر (Dcy2) يتم :
 - نزول الجزء السفلى للقالب.
- ملء الحامل بكمية من الخرسانة ثم تفريغه في الجزء السفلي للقالب وتتكرر هذه العملية خمسة (5) مرات للحصول على الكمية المطلوبة للقولية عندها تنطلق عملية الهز للقائب بواسطة المحرك (M) للحصول على خرسانة منسجمة مع هبوط الجزء العلوي للقالب حتى يصل إلى الوضعية الوسطى التي يكشف عنها الملتقط (m) فيستم توقيف عملية الهز يتواصل هبوط الجزء العلوي للقالب للضغط على الخرسانة حتى نهاية الشوط (m) فيسصعد الجزء العلوي للقالب.

الضغط على نهاية الشوط (mo) يؤدي إلى صعود الجزء السفلي للقالب وتنتهي الأشغولة.

ب)- م.ت.م.ن لكل من أشغو لات التقديم والمتجفيف والتكديس مبينة في الشكل2 ، 3 و 4 (ص 19/2).

الصفحة 19/1

II التحليل الوظيفي:

EP −2 : طاقة هوائية. E −3 : تعليمات الاستغلال.

6 – θ : تغير درجة الحرارة

N - 5 : العد.

EE - 1 : طاقة كهربائية

4 - T : المدة الزمنية.

الوظيفة العلمة للنظام:

شكل3:أشغولة التجفيف

الصغحة 19/2

٧-نظام ضبط درجة الحرارة

2 - التصميم المبدئي لدارة التحكم في درجة الحرارة:

3-تشغيل

- تقوم دارة التكييف (Conditionnement) بضبط قيمة النوتر Vs حسب تغير درجة الحرارة داخل المجفف. - عندما تكون درجة الحرارة محصورة في المجال °(95 ≥ θ ≥0) يشتغل النظام المكون من مقاومة
 - عندما تصل درجة الحرارة إلى 100°C يتوقف هذا النظام.
 - يتغير نوتر الخروج Vs ما بين(V0.7V, 10V) حسب قيمة مقاومة المسبار Pt100.

VI-الاختيارات التكنولوجية : 1 - الأجهزة الكهرباتية :

				45.1
. h	الوظيفة في	التحكم	النوع	الآلة
الخصائص	النظام		1 1 1 1 1	Mı
AVIII	اهتزلز الطاولة	ملامس KM ₁ ملام	محرك الاتزامني (~3)	1411
3~ , 220/380V ,3KW	35		بدوار مقصور	
'1435tr/mn ·cosφ=0.79	ล		22.4	M_2
لاع مباشر،انجاه واحد للدوران	تدوير مروحة	ملامس24V~ KM ₂ ملامس	محرك لاتزامني (~3)	1417
3~ , 220/380V ,1.8K.W	النجفيف		بدوار مقصور `	
4 3A 1410tr/mn cosφ=0.8				3.5
إفلاع مباشر ، إنجاه و احد للدي ه.	ندوير البساط الا	ملامين	محرك لاتزامني (~3)	M_3
3~ 380/660V 9K	, 511	KM3-KM _{3Y}	بدوار مقصور `	
1.3 cosm=0.86, 1445tr/n	nn J	KM _{3Δ} 24V~		
ند للدور ان ،إقلاع نحمي مائة	10	KM ₅ , KM ₄ outh	محرك لاتزامني (~3)	M_4
3~ (380/660V '9N	YY 1 11	24V~	بدولر مقصور `	
- Nil cosm=0.86 1445tr/m	in (17)	277		
ي مثلثي انجاهين للدور ان. موري		KM-,KM6, LAN	محرك لاتزامني (~3)	M ₅
, 3~ , 380/660V ,9K	W Coo	24V~	بدوار مقصور	
οςφ=0.86 ، 1445tr/n اقلاع	nn	Z+V~		
ي مثلثي انجاهين للدور ان. مزود 	(MO-DE) انجم			
ح کهربانی ومخفض السرعة	المحنا	N VM N	محرك لانزلمني (~3) م	M_6
3~ 380/660V 18.5K\	سریر بیسط ۱	لاسس24V~ KM ₈	بدوار مقصور	
رة 1450tr/mn ،cosφ=0.	الثاني 87		55	
ده ۱450tt/filli (۱۵۵۵ اِتجاه د الدوران ،اقلاع نجمي مثلثي	A	arth the	مقاومة التسخين	R
220V, 50 Hz , R=1000	تجفيف الأجر	نظام الكتروني	0.	

2-عناصر القيادة والملتقطات

النوع	العنصر
ملتقطات نهايات الشوط للمنفذات	$p_1, p_0, e_1, e_0, a_1, a_0, b_1, b_0, m_2, m_1, m_0, f_1, f_0, s_1, s_0, r_1, r_0$
jauges d'extensionmétrie معيار التمدد	q ₁ : خزان مملوء
	. جزان فارغ q ₂ : خزان فارغ
مسبار حراري sonde de température	θ(Pt100)
خلايا كهر وضوئية	c ₁) c ₁ , c ₂ : خلية داخل غرفة المجفف)
أزرار: النشغيل، الإيقاف،النهيئة و إعادة التمليح	REA , INIT , AR, MA
33 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$cy_1 - Dcy_2 - Dcy_3 - Dcy_4 - Dcy_5$ AU
ملتقط الجوار سيعي	h , b يكشفان عن الوضعية السفلية والعلوية للكماشة
ملتقطات وجود الصفيحة	k3,k2,k1

شبكة النغذية: 380V, 50 Hz + المحايد دارة النحكم في المخارج: ~24V و 15V±

3 - الأجهزة الهوائية :

الخصائص	الوظيفة	التحكم	التوع	الألة
6bar	تقديم اللوحة	موزع كهرو هواني 4/2 نتاني الاستقرار (+P-،P) ~24 v		P
6bar	فتح الخزان	موزع كهروهواني 4/2 ثناني الاستقرار (+E-،E) ~24 v		Е
6bar	دفع المكيال	موزع كهرو هوائي 4/2 ثنائي الاستقرار (+A-،A) ~24 v	ر ذات	Α
6bar	نزول القالب	موزع كهروهوائي 4/2 ثناني الاستقرار (+B-،B) ~24 v	الم الم	В
8bar	القولمبة	موزع كهروهواني 5/3 ثناني الاستقرار (÷M-،M)~v 24		М
6bar	فتح المجفف	موزع كميرو هوائي 4/2 ئٽائي الاستقرار (+F-،F) ~24 v كا	7 7	F
6bar	فتح الكماشة	موزع كهرو هوائي 4/2 ئٽائي الاستقرار (+S-،S) ~24 v	ائ مزدوج	S
6bar	دوران الكماشة	موزع كيروهِواتي 4/2 ثناني الاستقرار (+R،-R) ~v 24 v موزع		R

وثائق الصناع (Documents constructeurs):

1- الدارة المندمجة LM741 :

الخصائص التقنية:

PARAMETER	SYMBOL	TEST CONDITIONS	(ALL TYPES)	UNITS
Input Capacitance	CI		1.4	pF
Offset Voltage Adjustment Range			±15	m//
Output Resistance	Ro		75	Ω
Output Short Circuit Current	1		25	mA
Transient Response Rise Time	· ·	Unity Geen, V ₁ = 20mV, R _L = 2kSt, C _L ≤ 100pF	0.3	μs
Overshoot	0.5.		5.0	%
Slew Rate (Closed Loop)	SR	R _L ≥ 2×Ω	0.5	Vips

2- الدارة المندمجة SN74LS112N:

العمل المطلوب:

- 🌣 النحليل الوظيفي:
- ا- أَنْهُمُ النَّحَلَيْلُ اللَّوظُيفِي النَّتَازَلِي على وثيقة الإجابة صفحة 9/9
 - التحليل الزمني:
 - 2- أوجد م.ت.م.ن لأشغولة القوانية من وجية نظر جزء التحكم .
 - التحليل المادي:
 - انجازات تكنولوجية:
- 3- أنمم المعقب الكهربائي الكامل الأشغولة النجفيف مبينا دارة النحكم على وثيقة الإجامة صفحة 9/9
- 4- أتمم إنجاز العدّاد اللاتزّامني لعد 12 طبقة من الأجر على وثيقة الاجابة (صفحة 19/10) باستعمال الدارة المندمجة SN74LS112N (فنظر الوثيقة المرفقة صفحة 19/7)
 - دراسة النظام الإلكتروني لنتظيم درجة الحرارة دلخل غرفة النجفيف:
 نعتبر خلال الدراسة كل المضخمات العملية و المقاحل مثالية.
 - طابق التكييف :
 - 5- أوجد قيمة المقاومة R₂ للمسبار Pt100 عند درجة الحرارة C 100°C.
 - R_1 أوجد عبارة التوتر V_1 بدلالة التوتر V_1 والمقاومات R_1 ، R_2 ، R_3 ، R_4 و R_5
 - 7- أوجد عبارة النوتر Vs بدلالة Vs و المقاومات النالية R₁₂ ،R₁₃ و R₁₃ .
 - $V_{S2} = 9.4 V$ و $V_{S2} = 10 V$ و $V_{S2} = 9.4 V$ و $V_{S3} = 9.4 V$ و $V_{S2} = 9.4 V$
 - دارة المنظم: Régulateur
 - 9 ما هو دور المضخم A4 ؟
 - $V_{\rm S}=0$ مو دوره $V_{\rm S}=10$ ما هو دوره $V_{\rm S}=10$ ما هو دوره $V_{\rm S}=10$ ما هو دوره $V_{\rm S}=10$
 - دارة المدرج:Gradateur
 - 11− ما هو دور الخلية R₁₇−C₁ ؟
 - دارة المحرك M₂:

اعتمادا على مواصفات المحرك في جنول الاختيارات التكنولوجية (الصفحة 19/5).

- 12- ما هو الإقران المناسب للمحرك؟
 - 13- أحسب عدد أقطابه.
- 14 أحسب الاستطاعة الممتصلة ثم مردود هذا المحرك.

ورقة الإجابة خاصة بالموضوع الأول

وثيقة الإجابة : س1 - التحليل الوظيفي النتازلي:

س3- المعقب الكهربائي الأشغول التجفيف:

الصفحة 9/9

أقلب الصفحة

<u>وثيقة الإجابة :</u> س5- العداد اللانز امني

ورقة الإجابة خاصة بالموضوع الأول

الموضوع الثانى

الموضوع: نظام تقني لمل ء قارورات

يحتوي الموضوع على 9 صفحات (من 19/11 إلى 19/19) ، تعاد الوثيقة 19/19 مع أوراق الإجابة .

· I/ دفتر الشروط:

1/ هدف النظام:

يهدف النظام إلى ملء قارورات و وضعها في صناديق بطريقة شبه آلية ، كل صندوق يحتوي على 9 قارورات.

2 وصف الكيفية:

ملء و سد 3 قارورات و تقديم البساط

يكون ملء القارورات و سدها في نفس الوقت.عند الضغط على الزر Dcyı تتم عملية الملء بفتح الكهروصمام Ev₁ لمدة 2ثا ثم Ev₂ لمدة 3ثا. تكون عملية المسد بتقنيم الرافعة C لمسدادة واحدة أمام الرافعة B ثم نزول هذه الأخيرة إلى b₁ لأخذ السدادة ثم صعودها. عند الضغط على b₀ يدخل نراع C و ينزل نراع B نسد القارورة ثم يصعد عند الضغط على b₂. تقنيم البساط يكون بواسطة الرافعة A حيث يقدم قارورة فارغة أمام المداد. القارورة المسدودة تنزل على مستوى ماثل لتأتي أمام الرافعة D .

* يَقْدِيم 3 قاروراتِ :

عند حضور ثلاث قارورات أمام الرافعة D ثم الضغط على الزر Dcyz و بعد مرور 4 ثا ، يتم دفعها إلى الأمام ثم عودة ذراع الرافعة إلى الخلف .

تحويل 9 قارورات داخل الصندوق :

إذا كان عدد القارورات في مركز الرفع هو 9 والضغط على Dcy3 بيتم نقلها إلى الصندوق بالطريقة التالية: نزول الرافعة G، قبض القارورات بواسطة القابض الكهرومغناطيسي EM و بعد كثا تصعد الرافعة G, عند الضغط على go تتقل القارورات إلى اليسار بواسطة H حتى يضغط الله ثم تتزل G حتى الضغط على g1 و يحرر القابض EM القارورات في الصندوق و بعد 2 ثا تصعد G، عند نهاية الصعود تعود H إلى اليمين. و يحرر صندوق فارغ: عند الضغط على Dcy4 يتم انتقال الصندوق بواسطة المحرك و يتوقف عند حضور صندوق فارغ أمام الخلية Cp.

3/ الاستغلال:

تحتاج العملية إلى 4 عمال:

- عامل لوضع القارورات
- عامل لوضع الصناديق الفارغة
- عامل لسحب الصناديق المملوءة
- تقني لعملية القيادة و المراقبة و الصدانة و يقوم بالتشغيل التحضيري لملء خزان المنتوج و ملء 5 قارورات و تقديمها.

التجليل الزمني

6/ الملتقطات، المنفذات المتصدرة و المنفذات:

.h₁,h₀,g₁,g₀,d₁,d₀,c₁,b₂,b₁,b₀,a₁,a₀: ملتقطات نهاية الشوط.

cp: خلية كهروضوئية.

EV2,EV1: صمامات كهربائية أحادية الاستقرار 220V متناوب.

B,C: رافعات أحادية الاستقرار، النحكم بموزعات كهروهوائية 3/2 , 24V منتاوب.

H,G,D,A: رافعات ثنائية الاستقرار، التحكم بموزعات كهروهوائية 24V , 5/2 منتاوب.

EM: قابض كهرومغناطيسي 220V متناوب. النحكم بملامس 24V Kem منتاوب.

Μ: محرك لاتزامني ثلاثي الأطوار ذو دوار مقصر 380/660V , 50HZ انتجاه واحد للدوران، إقلاع نجمي مثلثي مجهز بمكبح كهربائي بغياب النيار التحكم بملامسات: 24V. KM,KMY,KMΔ متناوب.

T₃,T₂,T₁ : مؤجلات 2، 3 و 4 ثانية على النوالي.

Dcy1: زر انطلاق الدورة لملء و سد القارورات و تقديم البساط.

Dcy2: زر انطلاق الدورة لتقديم 3 قارورات بالرافعة D.

Dcy3: زر انطلاق الدورة لتحميل 9 قارورات داخل الصندوق.

DCya: زر انطلاق الدورة لتقديم صندوق فارغ .

Init:زر تهيئة المراحل الإبتدائية و تخميل المراحل الأخرى.

AU: زر توقيف الإستعجالي.

RAZ: زر ارجاع العدد للصفر بعد عد 9 فارورات.

الفتيار العرابط العراز و F2:

Réglage In	type
913A	LR2-D1316
1218A	LR2-D1321
1725A	LR2-D1322

II/ العمل المطلوب:

1/ اكتب على شكل جدول, معادلات تنشيط و تخميل المراحل التالية: X110, X118, X110, X10, X10, X119, X119, X118, X10 , كمتمن ملء و سد القارورات و تقديم البساط (صفحة 19/13).

2/أنشئ المتمن مستوى2 الموافق لمنقل 9 قارورات.

3/ في دارة عداد القارورات صفحة 19/16 ، ما هو دور القلاب RS ؟

4/ اشرح باختصار تشغيل الخلية الكهروضوئية Cp (صفحة 19/16) للكثف عن وجود صندوق.

5/ لرسم تركيب الدارئين المتوافقيتين المناسبتين لتحقيق الشرط n₁ عندما يصل عدد القارورات 3 أو 6 أو 9 و لمتحقيق الشرط n₂ عندما يصل عددها 9. (صفحة 19/16)

 $u_c=E(1-e^{-t/\zeta})$ احسب قيمة المقاومة R في تركيب المؤجل T₃. تعطى معادلة شحن المكثقة: $\zeta=(R+R_1)C$ علما أن: $\zeta=(R+R_1)C$. (صفحة 19/16)

7/ علما أن عند التشغيل الاسمي للمحول (1)، نسجل هبوط للتونز ΔU₂= 1.2V. احسب التونز وU₂0 و نسبة التحويل m (صفحة 19/15)

8/ في دارة تغذية 5V+ (صفحة 19/15)، أعط باختصار : دور المحول، المقوم، المضخم العملي و النرانزيستور.

9/ للمتمن : ابتيان بصندوق، (صفحة 19/12) نريد إنجاز التركيب باستعمال المعقب الكهربائي و اختيار المرحل الحراري الملائم لحماية المحرك M .

9-1/ على ورقة الإجابة 19/19 أكمل رسم النزكيبات النائية:

أ- دارة تغذية المعقب و المنفذات المتصدرة ،

ب - المعقب الكهربائي،

ج- دارة المنفذات المتصدرة.

د-دارة الاستطاعة للمحرك M مع وضع أجهزة الحماية اللازمة .

9-2/ مستعينا بخصائص المحرك M التالية:(Pu = 5950w , COSφ = 0.8, η= 85%) و جدول الحنيار المرحلات الحرارية (صفحة 19/15) .

أحسب شدة التيار الممتصة من طرف المحرك.

أختر المرحل الحراري المناسب لحماية هذا المحرك؟

الصفحة 19/19

اتتهى

L	ة جوان 8	اضي هندسة كهربائية دور	الشعبة : تقني ريـ	ونجية و سلم التنقيط	الإجابة النمو
ة النقطة	العلاه	ح الموضوع الأول		التصحي	
0,50	2×0,25	:100 $R_{\theta} = R_0(1+a\theta) = 100(1+38.5)$ R4_16k0			ج5- قيمة مق ج6- عبارة ال
1.00		, [$V_{S} = V_{RS} \left(\frac{R4+R4}{R4}\right)$ $V_{RS} = V_{I} \left(\frac{R2}{R1+R4}\right)$	$ \Rightarrow V_{S} = V_{I} \left(\frac{R}{RI + R3} \right) $	22+R3 R4+R5 +R2+R3 R5
1.00			$\begin{cases} \mathbf{V}_{S2} = \mathbf{V}_{\mathbf{R}}_{13} \\ \mathbf{V}_{S2} = \mathbf{V}_{\mathbf{S}} \cdot \left({\mathbf{R}_{11} + } \right) \end{cases}$	$\frac{\mathbf{R}_{13}}{\mathbf{R}_{12} + \mathbf{R}_{13}} \Rightarrow \mathbf{V}\mathbf{s} = \mathbf{V}\mathbf{s}_2.$	7- عبارة VS (<u>R₁۱+R₁2+Rιз</u> (R₁3
0.50		_	نر Vs = 10Vو R11 = 2.67KΩ	ومة R11 إذا كان التون 2.	ج8– قيمة المقا
0.50 1.00	0.50 0.50	ب- Vs=10V المقحل محصور . 	\ المقحل مشبع ، بـ	،A يعمل كمقارن مقحل T1: أ– s=0V يعمل في نظام التبديل	ج 10 – حالة ال
0.50 0.50 1.00		f=pn p=f/n=(5 2p=4	_	ية R17-C1 هو تغيير لمناسب للمحرك M2 ه به هو:4	-
1.50	0.75 0.75	$Pa = \sqrt{3}UI\cos\phi = $ $\eta = \frac{Pu}{Pa} = 0.7758 \implies \eta = $		لاستطاعة الممتصة: لمردود:	ج14- حساب ا حساب ا
-		8/1	الصفحة	16	5

0.5x4

ج4- العداد اللاتزامني لعد 12 طبقة من البلاط باستعمال القلابات 12K74/112:

12×0,25

3

ج

الصفحة 2/8

166

	عا	عصرة	لتنقيط مادة : التكنولوجيا هنا	
المجمو	مجزأة	نثاني	الموضوع اا	
2.00		قديم البساط:	لات لمتمن ملء و سد القارورات و تا	حده ل المعاد
	8	التخميل	التنشيط	المرحلة
	× 00.25	X110. X113	Init+X119.a ₀ .n ₁	X10
		X111	$X10.\text{Dcy}_1 + X119.a_0\overline{n_1}$	X110
		X119	X117.X112	X118
		X10+X110.X113	X118.a ₁	X119
	00.25 الكل استقبالية ولكل مرحلة و أفعالها 17 × 00.25		30 + n ₂ .Dcy ₃ 31 — G+ + g1 32 — KEM T1 - t1/32/2s 33 — KEM G- - g0 34 — KEM H- - h0 35 — KEM G+ - g1	

دور القلاب RS في دارة عداد القارورات: هو إقصاء ارتدادات التماس a	العلامة		الإجابة المحتصرة
00.50 الخلية الكهروضونية Cp : - Cp الكبر من + U مخرج المضخم العملي كمونه معاع الخلية غير مقطوع (لا يوجد صندوق): - U أكبر من + U مخرج المضخم العملي كمونه معاع الخلية مقطوع (وجود صندوق): + U أكبر من - U مخرج المضخم العملي كمونه جب (E) و بالتالي الترانزيستور في حالة تشبع و التماس p يغلق. 00.50 معام الدارتين التوافقيتين في تركيب عداد القارورات:	المجموع	مجزأة	
00.50 معاع الخلية غير مقطوع (لا يوجد صندوق): - لا أكبر من + لا مخرج المضخم العملي كمونه دوم و بالتالي الترانزيستور في حالة حصر و التماس cp مفتوح معاع الخلية مقطوع (وجود صندوق): + لا أكبر من - لا مخرج المضخم العملي كمونه جب (E) و بالتالي الترانزيستور في حالة تشبع و التماس cp يغلق. الدارتين التوافقيتين في تركيب عداد القارورات:	00.50	00.50	3/ دور القلاب RS في دارة عداد القارورات: هو إقصاء ارتدادات التماس al.
20.50 الخلية مقطوع (وجود صندوق): + الكبر من - لا مخرج المضخم العملي كمونه (ع.00 منتوح الخلية مقطوع (وجود صندوق): + الكبر من - لا مخرج المضخم العملي كمونه (ع.00 جب (E)) و بالتالي الترانزيستور في حالة تشبع و التماس pg يغلق. الدارتين التوافقيتين في تركيب عداد القارورات:	01.00		4/ تشغيل الخلية الكهروضوئية Cp :
دوم و بالتالي الترانزيستور في حالة حصر و التماس po مفتوح معاع الخلية مقطوع (وجود صندوق): +1 أكبر من -U مخرج المضخم العملي كمونه جب (E) و بالتالي الترانزيستور في حالة تشبع و التماس po يغلق. الدارتين التوافقيتين في تركيب عداد القارورات:		00.50	- شعاع الخلية غير مقطوع(لا يوجد صندوق): -U أكبر من +U مخرج المضخم العملي كمونه
(E) و بالتالي الترانزيستور في حالة تشبع و التماس p يغلق. (E) و بالتالي الترانزيستور في حالة تشبع و التماس p يغلق. (B) و بالتالي الترانزيستور في حالة تشبع و التماس p يغلق. (B) و بالتالي الترانزيستور في حالة تشبع و التماس p يغلق.		00.20	معدوم و بالتالي الترانزيستور في حالة حصر و التماس cp مفتوح
الدارتين التوافقيتين في تركيب عداد القارورات: مn2 مn1 ×		00.50	ـ شعاع الخلية مقطوع (وجود صندوق): + J أكبر من -U مخرج المضخم العملي كمونه
00.50 × An1			موجب (E) و بالتالي الترانزيستور في حالة تشبع و النماس cp يغلق.
00.50 ×	02.00		5/ الدارتين التوافقيتين في تركيب عداد القارورات:
×		00 50	≜ n2 ▲ n1
4			
		4	

QD

QC

QB

QA

CLR

RAZ

دورة جوان 2008	الشعبة : تقني رياضي	نولوجيا هندسة كهربائية	مادة: التك	تابع الإجابة وسلم التنقيط
	- - -	- 31		-

رمة	العا	الإجابة المختصرة
المجموع	مجزأة	
01.50	00.25	/ حساب المقاومة R في تركيب المؤجل T3: / كساب المقاومة R في تركيب المؤجل Uc=Vz+Vbe=12,6v
	01.00	t_3 =(R+R ₁)C. In (E/(E-Uc)) (R+R ₁)C = t3/ In (E/(E-Uc)) = 5.376 s.
	00.25	R=(5.376 - 20000 .0.0001)/0.0001=33.76 kΩ.
01.00		: \mathbf{m} و \mathbf{U}_{20}
	00.25	$U_{20} = U_2 + \Delta U_2$
		$\Delta U_2=1,2v$
		$U_{20}=24+1,2$
	00.25	U ₂₀ =25,2v
	00.25	$m=U_{20}/U_1=25,2/220$
	00.25	m=0,1145
1.50	00.50	، في دارة تغذية $ au$
	00.50	ر المحول: تخفيض التوتر المتناوب
	00.25	ر المقوم: تحويل التوتر المتناوب إلى توتر أحادي الانجاه.
	00.25	ر المضخم العلي: المقارنة بين توتري مدخليه.
		ر الترانزيستور: تعديل التوتر.
and the second		

دورة جوان 2008	الشعبة :تقني رياضي	مادة : التكنولوجيا هندسة كهربائية	تارو الاحاية وسلم التنقيط

الإجابة المختصرة		الإجابة المختصرة
المجموع	مجزأة	
		-1/ انظر ورقة الاجابة 1/1
02.00		-2/ اختيار المرحل الحراري:
		ختيار المرحل الحراري يجب معرفة شدة التيار In الممتصة من طرف المحرك
	00.25	Pa=Pu/η
	00.25	Pa= 5950/0,85=7000w
i	00.50	In=Pa/√3.U.cosφ
	00.25	In=7000/(660.0,80) In=13,26A
	00.75	بالتالي يقع الاختيار على المرحل الحراري من النوع: <u>LR2 - D1321</u>
		پاللىق ئىلىدار كى دى
	-	

