

SYNTAX DIRECTED TRANSLATION

SYNTAX DIRECTED TRANSLATION ASSOCIATES INFORMATION WITH A GRAMMAR BY ATTACHING ATTRIBUTES TO THE GRAMMAR SYMBOLS AND VALUES FOR ATTRIBUTE ARE COMPUTED BY SEMANTIC RULES ASSOCIATED WITH THE GRAMMAR PRODUCTION.

THERE ARE TWO WAYS FOR ASSOCIATING INFORMATION TO THE PRODUCTIONS OF A GRAMMAR

- 1) SYNTAX DIRECTED DEFINITION (SDD)
- 2) SYNTAX DIRECTED TRANSLATION SCHEME (SDT)

Syntax Directed Definition

IT IS AN AUGMENTED CONTEXT FREE GRAMMAR IN WHICH EACH GRAMMAR SYMBOL HAS AN ASSOCIATED SET OF ATTRIBUTES CALLED SYNTHESIZED ATTRIBUTES & INHERITED ATTRIBUTES AND SEMANTIC RULES FOR COMPUTING THE VALUES OF THE ATTRIBUTES ASSOCIATED WITH THE SYMBOLS APPEARING IN THE PRODUCTIONS.

A PARSE TREE SHOWING THE ATTRIBUTE VALUES AT EACH NODE IS CALLED AN ANNOTATED PARSE TREE.

SDD for a Simple Calculator

Productions & Semantic Rules

an initiative of RV EDUCATIONAL INSTITUTIONS

SDD for a Simple Calculator

Productions & Semantic Rules

F.v4=5

RV

ERSITY

ige the world

NAL INSTITUTIONS

E->E+T	E.val = E.val + T.val
E⇒T	E.val = T.val
T→T*F	T.val = T.val * F.val
T→F	T.val = F.val
F → (E)	F.vd = E.val
F → digit	F.val = digit

Production	ns & Semantic Rules	<u>SDD</u>
S→x×W	Printf("1")	
ly	Printf ("2")	
W>Sz	Printl("3")	

0/P= 231

SDD

Productions & Semantic Rules

INPUT: XXXXY 33

S-xxW	Printf("1")	JS
ly	Printf ("2")	(x) W
W>Sz	Printl("3")	3
		(2) W
		2 W 3
		(5) (3) 1 y

an initiative of KV EDUCATIONAL INSTITUTION

S	n	ח	
_	_	\boldsymbol{L}	

Productions & Semantic Rules

INPUT: 2#385#684

E→E#T	E.val = E.val * T.val	
 T	E.val = T.val	
T>T&F	T.va = T.va + F.va	
F	T.v.1 = F.v.1	
F→num	F.val = num. Ivalue	

RV

e the world

SDD

INPUT: (2 # 3 & 5) # (6 & 4)

	Producti	ions &	Semai	ntic Rul	les
--	----------	--------	-------	----------	-----

E→E#T	E.val = E.val * T.val
\T	E.val = T.val
T>T&F	T.va = T.val + F.val
lF	T.v. = F.v.

SDD

Productions & Semantic Rules

INPUT: ((2+3)==8)

Productio	ns & Semantic Rules	INPUT:	(2+3)	==8)	
E → E, + E,	if ((E.type==E.type)&&(E.type==int)) then E.type=int else ERROR				
	if ((E.type == E.type) kk (E.type == int/bool))				
E,==E,	then E.type=bool else ERROR				
(E,)	E.type = E.type				
Inum	E.type = int				. 1
ITrue	E-type = bool				
False	E.type = bool				

SDD

ge the world

NAL INSTITUTIONS

		1011
N⇒L	N.count = L.count	N.comt = 3
→ L→LB	L. count = L. count + B.count	L. count=3
В	L. count = B. count	Lycont = 2 B. comt = 1
Β⇒ ο	B. count = 0	Lant Bigue =
1.	B. count =1	Brown = 0
		B. wet = 1

SDD ·

S→id=E	GEN (id.name = E.place)	
E->E,+T	E.place = NEW Tempe) GEN (E.place"="E.place + T.place)	
1-	E. place = T. place	
T→T*F	T. place = NEW Temp() GEN(T. place"="T. place* F. place)	
F	T. place = F. place	
F→id	F. place = id.name	

L INSTITUTIONS

SDD

	100
E->E,+ T	E. nptr = MKNADE (E. nptr, "+", T-nptr)
IT	E. nptx = T-vnptx
T ->.T, * F	T-nptr = MkNODE(T-nptr**, F-nptr)
lF	Tinptr = Finptr
F>id	F.nptr = / MKNODE = (NULL, id. Lvalue, NULL)

E-noty = 1000 1000 2000 3000 1000
(d) (a)

SDD

Productions & Semantic Rules

INPUT: (2+3) == 8

		1000: (213) = - 8
E → E, + E,	if ((E.type==E.type)&&(E.type==int)) then E.type=int else ERROR	E. type= bool
2		
	if ((E.type == E.type) Kk (E.type ==	E - Brezint
E,==E,	then E-type=bool else ERROR	
(E,)	E.type = E.type	Num (8)
num	E.type = int	E type = int
ITrue	E-type = bool	Num num
False	E.type = bool	

RSITY

the world

SDD FOR GENERATING THREE ADDRESS CODE

INPUT:	X =	at	6*	٥,	0
		_		\sim	

S→ id = E	GEN (id.name"=E.place)
E->E,+T	E.place = NEW Tempe) GEN (E.place"="E.place"+"T.place)
1	E. place = T. place
T→T*F	T. place = NEW Temp() GEN(T. place"="T. place"*"F. place)
1F	T. place = F. place
F→id	F. place = id.name

<u>Productio</u>	ns & Semantic Rules	INPUT: 9-5+2	OUTPUT = 95-2+
E → E, + T	E.code=E.code T.code +1		
E->E,-T	E.code = E.code T.code -'		
E->T	E.code=T.code		
T→0	T. code = 0'		
T→(T. code = 1		
T → 9	T. code = 9'		

SDD FOR CONVERTING ENFIX TO POST FIX

Productions & Semantic Rules

INPUT: 9-5+2

OUTPUT =	95-	2+
----------	-----	----

RY

e the world

L INSTITUTIONS

¥ E→E,+T	E.code=E.code T.code +1
E->E,-T	E.code = E.code T.code -
E→T	E.code=T.code
T→o	T. code = 0
T→1	T. code = 1 1
· →9	T. code = 9'

Syntax Directed Translation Scheme

IT IS A CONTEXT FREE GRAMMAR IN WHICH SEMANTIC ACTIONS(PROGRAM FRAGMENTS) ARE ENCLOSED BETWEEN BRACES OR INSERTED WITHIN THE RHS OF A PRODUCTION.

TRANSLATION SCHEME IS LIKE A SYNTAX DIRECTED DEFINITION EXCEPT THAT THE ORDER OF EVALUATION OF SEMANTIC RULES IS EXPLICITLY SHOWN.

A TRANSLATION SCHEME GENERATES AN OUTPUT FOR EACH SENTENCE OF THE GRAMMAR BY EXECUTING THE ACTIONS IN THE ORDER THEY APPEAR DURING A DEPTH FIRST TRAVERSAL(FROM LEFT TO RIGHT) OF A PARSE TREE.

Productions and Semantic Action

OUTPUT = 95-2+ INPUT: 9-5+2 E → E + T{Printf("+")} E → E - T{Printf("-")} E->T $T \rightarrow 0 \left\{ Printf("o") \right\}$ $T \rightarrow \left\{ Printf("i") \right\}$ $T \rightarrow 9 \left\{ Printf("q") \right\}$

NAL INSTITUTION

SDT FOR CONVERTING ENFLY TO POST FLX

ERSITY

Productions & Semantic Rules

INPUT: 9-5+2

OUTPUT = 95-2+

$$T \rightarrow \{\{Printf("1")\}\}$$

$$T \rightarrow \{\{Printf("1")\}\}$$

$$T \rightarrow 9\{Printf("9")\}$$

16

$$T \rightarrow O\{Print"o"\}$$

$$T \rightarrow I\{Print"i"\}$$

$$T \rightarrow q\{Print"q"\}$$

SDT

ERSITY ge the world

NAL INSTITUTIONS

Produc	ctions &	Semantic	Ryles
--------	----------	----------	-------

INPUT: 3+5-4

$$R \rightarrow + T \{Print" +"\}R$$

$$T \rightarrow O\{Print"o"\}$$

$$T \rightarrow I\{Print"I"\}$$

$$T \rightarrow q\{Print"q"\}$$

SYNTHESIZED ATTRIBUTES

AN ATTRIBUTE IS SAID TO BE SYNTHESIZED IF ITS VALUE AT A PARSE TREE NODE IS DETERMINED FROM ATTRIBUTE VALUES OF THE CHILDREN OF THAT NODE.

SYNTHESIZED ATTRIBUTES HAVE THE PROPERTY THAT THEY CAN BE EVALUATED DURING A BOTTOM UP TRAVERSAL OF THE PARSE TREE.

A SYNTAX DIRECTED DEFINITION THAT USES SYNTHESIZED ATTRIBUTES EXCLUSIVELY IS SAID TO BE AN S-ATTRIBUTED GRAMMAR/DEFINITION.

INHERITED ATTRIBUTES

AN ATTRIBUTE IS SAID TO BE INHERITED IF ITS VALUE AT A PARSE TREE NODE IS DETERMINED FROM THE ATTRIBUTE VALUES AT A PARENT AND/OR SIBLINGS OF THAT NODE.

A SYNTAX DIRECTED DEFINITION THAT USES SYNTHESIZED ATTRIBUTES AND/OR INHERITED ATTRIBUTES (RESTRICTED TO INHERIT EITHER FROM PARENT OR LEFT SIBLING ONLY) IS CALLED L-ATTRIBUTED GRAMMAR/DEFINITION.

Difference Between S-Attributed and L-Attributed SDT S-Attributed SDT L-Attributed SDT

o, change the world

USES ONLY SYNTHESIZED ATTRIBUTES	USES BOTH SYNTHESIZED & INHERITED ATTRIBUTES EACH INHERITED ATTRIBUTE IS RESTRICTED TO INHERIT EITHER FROM PARENT OR LEFT SIBLING ONLY
SEMANTIC ACTIONS ARE PLACED AT RIGHT END OF PRODUCTION	SEMANTIC ACTIONS PARE PLACED ANYWHERE IN RHS
ATTRIBUTES ARE EVALUATED DURING BOTTOM UP PARSING	ATTRIBUTES ARE EVALUATED BY TRAVERSING PARSE TREE, DEPTH FIRST LEFT TO RIGHT

EVALUATE THE SYNTHESIZED ATTRIBUTE WHEN YOU LAST VISIT EVALUATE THE INHERITED ATTRIBUTE WHEN YOU FIRST VISIT

INTERMEDIATE CODE GENERATION

REPRESENTING A SOURCE PROGRAM IN THE INTERMEDIATE FORM HAS THE FOLLOWING TWO ADVANTAGE

- 1) IT CAN BE TARGETED TO ANY MACHINE
- 2) MACHINE INDEPENDENT OPTIMIZATION CAN BE PERFORMED

Forms of Intermediate Code

Types of 3-Address Code

Representations of 3-Address Code (QUADRAPLES)

RY
IN INSTITUTIONS

RY

INSTITUTIONS

$$t_1 = a + b$$

$$t_2 = -t_1$$

$$t_3 = c + d$$

$$t_4 = t_2 * t_3$$

$$t_5 = a + b$$

$$t_6 = t_5 + c$$

$$t_7 = t_4 + t_6$$

Representations of 3-Address Code (QUADRAPLES)

		PERATOR	OPERADA	OPERANDA	1108001	
t, = a+b	0	+	a	Ь	t,	
t2 = -t1	(_	ŧ,	NUL	Ł ₂	
t3 = c+d	2	+	c	d	ts	
t4 = t2 * t3	3	*	لح	t ₃	_ل ې	
t== a+b	ц	+	a	ط	ts-	
t6=t5+c	5	+	ts	C	t ₆	
t2 = 64+ t6	6	+	Łų	to	t ₂	

Representations of 3-Address Code (INDIRECT TRIPLE) INSIGHT TRIPLE) RV INSIGHT TRIPLE Inge the world

IONAL INSTITUTIONS

-(a+b) *(c+d)+(a+b+c))	OPERATOR	OPERANDI	OPERAND2	INSTRUCTION	POINTERS
t,= a+b	0	+	a	Ь	35	0
t2=-t1	1		(0)	NULL	36	1
t3 = c+d	2	+	С	d	37	2
t4 = t2 * t3	3	*	(1)	(2)	38	3
t== a+b	4	+	a	Ь	39	4
t6=t5+c	5	+	(4)	c	40	5
t7 = 64+ t6	6	+	(3)	(5)	50	6

1 Backpatching and Conversion to 3-Address Code

if
$$(a < b)$$
 then $t = 1$ else $t = 0$

[2] Backpatching and Conversion to 3-Address Code


```
100: if (a < b) goto -
101: t,=0
102: goto ___
103: t = 1
104: if (cca) goto -
105: t2=0
106: goto ___
107: t2=1
108: if (exf) goto -
109: +3=0
110: goto ___
112: E4 = E, AND E2
113: E5 = E4 OR E3
```


[3] Backpatching and Conversion to 3-Address Code

ONAL INSTITUTIONS

[4] Backpatching and Conversion to 3-Address Code

of RV EDUCATIONAL INSTITUTIO.

[5] Backpatching and Conversion to 3-Address Code

hange the world