

MA3010 CA1 AY22S1 Solution Guide (2)

Thermodynamics & Heat Transfer (Nanyang Technological University)

Scan to open on Studocu

School of Mechanical & Aerospace Engineering MA3010 – Thermodynamics & Heat Transfer AY22S1 – CA 1 Solution Guide

1. A completely reversible refrigerator is removing heat from a 4°C (T_L) refrigerated space at a rate of 5400 kJ/h (Q_L) and rejecting the waste heat to the environment at 27°C (T_H). What is the power consumption of the refrigerator (W_{in})?

$$COP_{R} = \frac{1}{\frac{T_{H}}{T_{L}} - 1}$$

$$W_{in} = \frac{Q_{L}}{COP_{R,\#}}$$

2. What is the power consumed (W) for a reversible and adiabatic compression of 2 kg/s (\dot{m}) of oxygen from 100 kPa (P_I) and 50°C (T_I) to 1.2 MPa (P_2) and 355°C (T_2)? Assume an average temperature of 500 K.

reversible and adiabatic = isentropic, use n = k

$$W = \dot{m} \frac{nRT_1}{n-1} \left[\left(\frac{P_2}{P_1} \right)^{(n-1)/n} - 1 \right]_{\#} = \dot{m} c_{p,avg} (T_2 - T_1)_{\#}$$

3. 250 ml (V) of hot tea ($\rho = 1000 \text{ kg/m3}$, c = 4.18 kJ/kg·K) cools from 80°C (T_1) to 27°C (T_2). What is the entropy change (ΔS) of this process?

$$m = \rho V$$
$$\Delta S = mc \ln \frac{T_2}{T_{1\#}}$$

4. A tank is filled with saturated moist air at 30°C (T) and the total pressure in the tank is 150 kPa (P). If the mass of water vapour in the tank is 800 g (m_v), calculate the mass of dry air (m_a).

saturated moist air, $\phi = 100\%$

$$P_g = P_{sat@T}$$

$$\omega = 0.622 \frac{\phi P_g}{P - \phi P_g} = \frac{m_v}{m_a}$$

$$m_a = \frac{m_v}{\omega_{\#}}$$

5. An ideal gas mixture consists of 2.5 kmol (N_{N2}) of nitrogen and 4.2 kmol (N_{O2}) of oxygen. Determine the specific heat at constant pressure ($c_{p,m}$) of the mixture at a temperature of 350 K.

$$m_{\rm O_2} = N_{\rm O_2} M_{\rm O_2}$$

 $m_{\rm N_2} = N_{\rm N_2} M_{\rm N_2}$

$$\begin{split} \mathrm{mf_{O_2}} &= \frac{m_{O_2}}{m_{O_2} + m_{N_2}} \\ \mathrm{mf_{N_2}} &= 1 - \mathrm{mf_{O_2}} \\ c_{p,m} &= \mathrm{mf_{O_2}} \times c_{p,O_2} + \mathrm{mf_{N_2}} \times c_{p,N_{2\#}} \end{split}$$

Using the mole fraction version to obtain specific heat per kmol is also acceptable but the answer and values used must be in terms of kJ/kmol·K.

$$\begin{split} y_{O_2} &= \frac{N_{O_2}}{N_{O_2} + N_{N_2}} \\ y_{N_2} &= 1 - y_{O_2} \\ \bar{c}_{p,m} &= y_{O_2} \times \bar{c}_{p,O_2} + y_{N_2} \times \bar{c}_{p,N_2\#} \end{split}$$

6. Carbon dioxide is compressed steadily at a rate of 1.5 kg/s (\dot{m}) by an adiabatic compressor from 100 kPa (P_1) and 30°C (T_1) to 500 kPa (P_2). If the compressor consumes 185 kW (W_a) of power during operation, calculate its isentropic efficiency (η_c). Assume an average temperature of 400 K.

$$T_{2s} = T_1 \left(\frac{P_2}{P_1}\right)^{(k-1)/k}$$

$$W_{isen} = -\dot{m} \frac{nRT_1}{n-1} \left[\left(\frac{P_2}{P_1}\right)^{(n-1)/n} - 1 \right], n = k$$

$$\eta_c = \frac{W_{isen}}{W_{a}} = \frac{\dot{m}c_p(T_{2s} - T_1)}{W_{a}}$$

7. An inventor has developed a new heat engine that taps into a geothermal energy source at 150°C (T_H) while rejecting the waste heat to the environment at 10°C (T_L). It is claimed that the engine produces 2 kW (W_{out}) of power with a heat rejection rate of 12000 kJ/h (Q_L). Is this claim valid?

$$\begin{split} \eta_{TH} &= \frac{W_{out}}{Q_H} = \frac{W_{out}}{W_{out} + Q_L} \\ \eta_{TH,\mathsf{Carnot}} &= 1 - \frac{T_L}{T_H} \end{split}$$

if $\eta_{TH} \leq \eta_{TH,Carnot}$, claim is valid, otherwise, claim is invalid

Alternatively, comparisons between power produced and heat rejection rates are acceptable as well.

8. 3.3 kg (*m*) of saturated liquid R134a at 600 kPa (P_1) evaporates into vapour at 100 kPa (P_2) and 30°C (T_2). Calculate the entropy change of R134a (ΔS).

$$s_1 = s_f$$
 at pressure, P_1 (saturated liquid)

 s_2 = properties at T_2 , P_2 (superheated vapour)

$$\Delta S = m(s_2 - s_1)_{\#}$$