目录

1	数据预处理	. 1
2	模型选择	. 3
	2.1 SVR 支持向量回归模型	3
	2.2 Xgboost 模型	5
	2.3 线性回归模型	8
	2.4 决策树回归	8
	2.5 梯度提升模型	8
	2.6 Lasso 回归模型	10
	2.7 K 近邻回归模型	10
	2.8 随机森林模型	. 11
	2.9 集成学习模型	. 11
	2.10 弹性网络回归模型	.12
	2.11 极端森林回归模型	.12
	2.12 小结	. 13
3	模型评估	13
4	模型的问题与改进方向	15
5	模型问题的部分解决	15
参	。 ⇒考文献	17

摘要

本次人工智能大作业"房价预测",实质上是经典机器学习入门项目"波士顿房价预测"的一个子问题,区别主要在于数据的读入方式和参数数量。在模型构建的全流程中,先对数据进行预处理,在探索性数据分析(EDA)后进行了数据标准化;然后,对各种回归模型(SVR、Xgboost、线性回归、决策树、梯度提升、Lasso、K 近邻、随机森林、集成学习、弹性网络、极端森林等机器学习方法)分别进行必要的调参,以 RMSE 为衡量标准选择最优模型及最优参数,建立了极端森林回归模型。接着,进行了 1000 次重复测试,据测试结果对模型进行了鲁棒性和准确性评估。最后分析了模型存在的问题与改进方向,并通过结合SVR 模型建立融合模型解决了部分问题,减小了预测误差。最终,在 1000 次重复实验中,最佳预测结果的 MAE 值为 40607,MAPE 值为 10.11%。大作业所用全部源码可见于压缩包内另一文件 AI_hw2. i pynb。

关键词:数据标准化;支持向量回归;极端森林回归;模型评估;融合模型

1 数据预处理

首先从提供的表格 housing. csv 中读取数据集,用变量 X 储存自变量 RM、LSTAT 和 PTRATIO,变量 Y 存储因变量 MEDV(即房价)。

然后将数据集划分为训练集和测试集。对于数据集的划分过程,本文调用了python 自带的 train_test_split 函数。通过使用该函数,可将 X 划分为训练集 X_train 和测试集 X_test,将 Y 划分为训练集 Y_train 和测试集 Y_test。其中,通过设定 test_size=0.15,将训练集与测试集的大小比例设为 8.5:1.5;通过设定 random state=233,固定随机种子,以减少运行结果的变化。

```
import pandas as pd
from sklearn.model_selection import train_test_split
data_train = pd.read_csv("housing.csv")
data_test = pd.read_csv("housing.csv")

###除不相关隔性
X = data_train.drop('MEDV', axis=1)
Y = data_train.MEDV

#准备训练集和测试集
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.15,random_state=233)
```

然后,为了获得对数据的初步了解,进行探索性数据分析(EDA),输出各数据特征的最小值和最大值。

```
#特征数值中最小值和最大值数据可認化(防止不同数据特征量级差异较大)
import matplotlib.pyplot as plt
plt.plot(X.min(axis=0),'v',label='min')#axis=0表示列
plt.plot(X.max(axis=0),'^',label='max')
plt.yscale('log')
plt.legend(loc='best')
plt.xlabel('features')
plt.ylabel('feature magnitude')
plt.show()
print(X.RM.min(axis=0), X.RM.max(axis=0))
print(X.LSTAT.min(axis=0), X.LSTAT.max(axis=0))
print(X.PTRATIO.min(axis=0), X.PTRATIO.max(axis=0))
```


3.561 8.398 1.98 37.97 12.6 22.0 从代码运行结果中可以看出,参数 RM 的值在[3.561, 8.398]内,参数 LSTAT 的值在[1.98, 37.97]内,参数 PTRATIO 的值在[12.6, 22.0],不同数据特征间具有显著的量级差异。

为了减小不同数据间的量级差异,需将数据标准化。具体来讲,是对每一个特征维度进行去均值和方差归一化,使得经过处理的数据符合标准正态分布,即均值为 0,标准差为 1,其转化函数为:

$$x^* = \frac{x - \mu}{\sigma}$$

其中μ为所有样本数据的均值,σ为所有样本数据的标准差。本文通过调用 StandardScaler()函数实现该过程。下面的代码中,仅对 X 数据进行了标准化。 对 Y 数据的标准化更靠后一些,因为开始时并没有意识到 Y 数据标准化的重要性。

```
#数据预处理(減小数据量级差异)
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(X_train)

cols = X_train.columns
X_train_scaled=scaler.transform(X_train)
X_test_scaled=scaler.transform(X_test)
X_train_scaled = pd.DataFrame(X_train_scaled, columns=cols)
X_test_scaled = pd.DataFrame(X_test_scaled, columns=cols)

plt.plot(X_train_scaled.min(axis=0),'v', label='train_set_min')
plt.plot(X_train_scaled.max(axis=0),'o', label='train_set_max')
plt.plot(X_test_scaled.min(axis=0),'v', label='test_set_min')
plt.plot(X_test_scaled.max(axis=0),'o', label='test_set_max')
plt.yscale('log')
plt.yscale('log')
plt.ylabel('scaled_features')
plt.ylabel('scaled_feature_magnitude')
plt.show()
```


随后输出各个特征维度的最大最小值散点图,可以发现不同数据间的量级差

异大大缩小,具有可比性。同时观察可得,数据集中不存在缺失值和异常值的情况,数据预处理达到预期目的。

2 模型选择

由于目标变量 MEDV 是连续变量,故需要建立一个回归模型来进行预测。由于机器学习中的回归模型种类众多,且各有擅长的领域。故笔者通过调用 python 自带函数,训练多种不同模型,并在必要时调整超参数,得出各模型可求得的最优预测结果。然后将各个最优预测结果进行对比,选出预测结果平均误差最小的模型进行进一步的研究。

本文选用了两个指标来衡量平均误差和回归模型的效果。

(1)R 方: 该指标也称为决定系数。给定一系列真值 y_i 和对应的预测值 $^{\hat{y}_i}$,则 R 方的定义为

$$R^{2}\!=\!1\!-\!rac{\sum_{i}\left(\hat{y}_{i}\!-\!y_{i}
ight)^{2}}{\sum_{i}\left(y_{i}\!-\!ar{y}
ight)^{2}}$$

R 方衡量的是预测值对于真实值的拟合好坏程度。R 的取值范围为负无穷到1, R 值越接近1,表明平均误差越小,拟合效果越好。不同取值代表的含义如下:

- R 方=1: 最理想情况,所有的预测值等于真值。
- **R 方=0**: 一种可能情况是"简单预测所有 y 值等于 y 平均值",但也有其他可能。
- **R** 方<0:模型预测能力差,比"简单预测所有 y 值等于 y 平均值"的效果还差。 这表示可能用了错误模型,或者模型假设不合理。
- (2) RMSE:被称为均方根误差,可衡量观测值与真实值之间的偏差,常用来作为机器学习模型预测结果衡量的标准。计算公式为:

$$RMSE(X, h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(x_i) - y_i)^2}$$

RMSE 值越小,表明预测值与真实值越接近,模型预测效果越好。

在模型建立阶段,本文使用 RMSE 作为衡量平均误差的唯一标准。在文章后几章中,还将使用 MAE (平均绝对误差)和 MAPE (平均绝对百分比误差)来评估模型预测效果。MAE 和 MAPE 与 RMSE 类似,都是值越小,效果越好,故不再赘述。

2.1 SVR 支持向量回归模型

通过调用 SVR()函数来实现 SVR 模型,并调用 score()函数求得 R 方值,调用 mean squared error()函数求得 RMSE 值并输出。

```
#使用预处理后的数据训练SVR模型
from sklearn.svm import SVR
from sklearn.svm import SVC
import numby as no
from sklearn.metrics import mean_squared_error
for kernel in ['linear', 'rbf']:
    svr=SVR(kernel=kernel)
    svr.fit(X_train_scaled, Y_train)
    svr_pre=svr.predict(X_test)
   print(kernel, '核函数的模型训练集得分: {:.3f}'.format(svr.score(X_train_scaled, Y_train)))
print(kernel, '核函数的模型测试集得分: {:.3f}'.format(svr.score(X_test_scaled, Y_test)))
    print('RMSE: {:.3f}'.format(np.sqrt(mean_squared_error(Y_test,svr_pre))))
linear 核函数的模型训练集得分: -0.001
linear 核函数的模型测试集得分:-0.001
RMSE: 163143, 635
rbf 核函数的模型训练集得分:-0.006
rbf 核函数的模型测试集得分:-0.006
RMSE: 164336, 856
```

可以发现,无论使用 linear 核还是 rbf 核,SVR 模型的 R 方值都接近 0,远低于 1,预测效果很不理想。于是考虑调整参数来改进预测效果。其中,kernel 参数的选择范围为 linear 核或 rbf 核,C 值的为 1,2 或 4,gamma 值的为 0.125,0.25,0.5,1,2,4。调整参数可通过调用 GridSearchCV() 函数实现,后面模型中的类似过程不再赘述。

```
#適整SVR模型的C含数和gramma含数
from sklearn.svm import model_selection
from sklearn.metrics import mean_squared_error
import numpy as np
param_grid={'kernel':('linear', 'rbf'), 'C':[1, 2, 4], 'gamma':[0.125, 0.25, 0.5, 1, 2, 4]}
svr=model_selection.GridSearchCV(SVR(),param_grid)
svr.fit(X_train_scaled,Y_train)
svr_pre=svr.predict(X_test)
print('参数的最佳取值: {0}'.format(svr.best_params_))
print("调整参数后的模型在训练集得分: {:.3f}".format(svr.score(X_train_scaled,Y_train)))
print("调整参数后的模型在测试集得分: {:.3f}".format(svr.score(X_test_scaled,Y_test)))
print(*RMSE: {:.3f}'.format(np.sqrt(mean_squared_error(Y_test,svr_pre))))

参数的最佳取值: {'C': 4, 'gamma': 0.125, 'kernel': 'linear'}
调整参数后的模型在训练集得分: 0.014
调整参数后的模型在测试集得分: 0.015
RMSE: 160793.453
```

发现 SVR 模型测试结果的 R 方值仅有 0.015, 而 RMSE 值高达 16 万, 预测效果仍然不佳,这说明出现了严重的过拟合问题。经过和同学讨论,得出的解决方法是先用标准化后的 Y 值数据训练模型,待得出预测结果后再将 Y 值复原。后面所有模型也都应用了标准化后的 Y 值。

```
#Y值标准化
Y_mean=np.mean(Y,axis=0)
Y_std=np.std(Y,axis=0)
Y_train_scaled=(Y_train-Y_mean)/Y_std
Y_test_scaled=(Y_test-Y_mean)/Y_std

def get_Y_recover(Y):
    return Y*Y_std+Y_mean
```

再次改进后, SVR 模型的预测结果得到了显著改善, 其中 R 方值为 0.876, RMSE 值为 5 万有余, 预测效果理想。

2.2 Xgboost 模型

首先设定各参数初始值,如下图中 other_params 所示(不设初始值会过拟合)。然后调整该模型的 n_estimators 参数,调整范围如下图中 cv_params 所示。

```
#xgboost##
import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
```

Fitting 5 folds for each of 8 candidates, totalling 40 fits 参数的最佳取值: {'n_estimators': 50} 模型训练集得分: 0.945 模型测试集得分: 0.857 RMSE:61852.891

得出 n_estimators 参数的最优值为 50。然后继续调整其它参数。

```
#Wmid_child_weightAbmax_depth
cv_params = {'max_depth': [2, 3, 4, 5, 6, 7, 8], 'min_child_weight': [1, 2, 3, 4, 5, 6]}
other_params = {'learning_rate': 0.1, 'n_estimators': 50, 'max_depth': 5, 'min_child_weigh
                 seed': 0, 'subsample': 0.8, 'colsample_bytree': 0.8, 'gamma': 0, 'reg_alph
                'reg_lambda': 1}
model=xgb. XGBRegressor(**other_params)
optimized_GBM=GridSearchCV(estimator=model,param_grid=cv_params,scoring='r2',cv=5,verbose
optimized_GBM.fit(X_train_scaled, Y_train_scaled)
gbm_pre=get_originY(optimized_GBM.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(optimized_GBM.best_params_))
print('模型训练集得分: {:.3f}'.format(optimized_GBM.score(X_train_scaled,Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(optimized_GBM.score(X_test_scaled,Y_test_scaled)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test,gbm_pre))))
Fitting 5 folds for each of 42 candidates, totalling 210 fits
参数的最佳取值: {'max_depth': 3, 'min_child_weight': 1}
模型训练集得分: 0.896
模型测试集得分: 0.866
RMSE:59953.372
#Wgamma
cv_params = {'gamma': [0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6]}
other_params = {'learning_rate': 0.1, 'n_estimators': 50, 'max_depth': 3, 'min_child_weigh
                 seed': 0, 'subsample': 0.8, 'colsample_bytree': 0.8, 'gamma': 0, 'reg_alp
                'reg_lambda': 1}
model=xgb. KGBRegressor(**other_params)
optimized_GBM=GridSearchCV(estimator=model,param_grid=cv_params,scoring='r2',cv=5,verbose=
optimized_GBM.fit(X_train_scaled, Y_train_scaled)
gbm_pre=get_originY(optimized_GBM.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(optimized_GBM.best_params_))
print('模型训练集得分: {:.3f}'.format(optimized_GBM.score(X_train_scaled, Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(optimized_GBM.score(X_test_scaled, Y_test_scaled)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test,gbm_pre))))
Fitting 5 folds for each of 7 candidates, totalling 35 fits
参数的最佳取值:{'gamma':0.3}
模型训练集得分: 0.893
模型测试集得分: 0.865
RMSE:60103.107
#Wsubsample/Mcolsample_bytree
cv_params = {'subsample': [0.6, 0.7, 0.8, 0.9], 'colsample_bytree': [0.6, 0.7, 0.8, 0.9]}
other_params = {'learning_rate': 0.1, 'n_estimators': 50, 'max_depth': 3, 'min_child_weigh
                'seed': 0, 'subsample': 0.8, 'colsample_bytree': 0.8, 'gamma': 0.3, 'reg_a
                'reg_lambda': 1}
model=xgb. KGBRegressor(**other_params)
optimized_GBM=GridSearchCV(estimator=model,param_grid=cv_params,scoring='r2',cv=5,verbose=
optimized_GBM.fit(X_train_scaled, Y_train_scaled)
gbm_pre=get_originY(optimized_GBM.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(optimized_GBM.best_params_))
print('<mark>模型训练集得分:{:.3f}</mark>'.format(optimized_GBM.score(X_train_scaled,Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(optimized_GBM.score(X_test_scaled,Y_test_scaled)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test,gbm_pre))))
Fitting 5 folds for each of 16 candidates, totalling 80 fits
参数的最佳取值: {'colsample_bytree': 0.7, 'subsample': 0.8}
模型训练集得分: 0.893
模型测试集得分: 0.865
RMSE:60103.107
```

```
#Wireg alphaAFreg lambda
cv params = {'reg alpha': [0,0.05, 0.1, 1, 2, 3], 'reg lambda': [0,0.05, 0.1, 1, 2, 3]}
other_params = {'learning_rate': 0.1, 'n_estimators': 50, 'max_depth': 3, 'min_child_weigh
                 seed: 0, subsample: 0.8, colsample_bytree: 0.7, gamma: 0.3, reg_al
                 'reg_lambda': 1}
model=xgb. XGBRegressor (**other_params)
optimized_GBM=GridSearchCV(estimator=model, param_grid=cv_params, scoring='r2', cv=5, verbose=
optimized_GBM.fit(X_train_scaled, Y_train_scaled)
gbm_pre=get_originY(optimized_GBM.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(optimized_GBM.best_params_))
print('模型训练集得分: {:.3f}'.format(optimized_GBM.score(X_train_scaled, Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(optimized_GBM.score(X_test_scaled, Y_test_scaled)))
print('RMSE: {:. 3f}'. format(np. sqrt(mean_squared_error(Y_test, gbm_pre))))
Fitting 5 folds for each of 36 candidates, totalling 180 fits
参数的最佳取值: {'reg_alpha': 0.1, 'reg_lambda': 1}
模型训练集得分: 0.888
模型测试集得分: 0.864
RMSE:60334.724
#i#learning_rate
cv_params = {'learning_rate': [0.01, 0.05, 0.07, 0.1, 0.2]}
other_params = {'learning_rate': 0.1, 'n_estimators': 50, 'max_depth': 3, 'min_child_weigh 'seed': 0, 'subsample': 0.8, 'colsample_bytree': 0.7, 'gamma': 0.3, 'reg_a
                 reg_lambda':1}
model=xgb. XGBRegressor(**other_params)
optimized_GBM=GridSearchCV(estimator=model, param_grid=cv_params, scoring='r2', cv=5, verbose=
optimized_GBM.fit(X_train_scaled, Y_train_scaled)
gbm_pre=get_originY(optimized_GBM.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(optimized_GBM.best_params_))
print('模型训练集得分: {:.3f}'.format(optimized_GBM.score(X_train_scaled, Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(optimized_GBM.score(X_test_scaled, Y_test_scaled)))
print('RMSE: {:.3f}'.format(np.sqrt(mean_squared_error(Y_test,gbm_pre))))
Fitting 5 folds for each of 5 candidates, totalling 25 fits
参数的最佳取值: {'learning_rate': 0.1}
模型训练集得分: 0.888
模型测试集得分: 0.864
RMSE:60334.724
```

最后用效果最好的参数组合来设定 Xgboost 模型并进行训练和测试,结果如下。

```
#应用挑选出的最佳参数进行训练
xg_reg = xgb. XGBRegressor(learning_rate=0.1, n_estimators=50, max_depth=3, min_child_weigh
#xg_reg = xgb. XGBRegressor()
xg_reg.fit(X_train_scaled, Y_train_scaled)
xg_pre=get_originY(xg_reg.predict(X_test_scaled))
print('模型训练集得分: {:.3f}'.format(xg_reg.score(X_train_scaled, Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(xg_reg.score(X_test_scaled, Y_test_scaled)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test, xg_pre))))

模型训练集得分: 0.896
模型测试集得分: 0.896
RMSE:59953.372
```

可以发现,调参后的 Xgboost 模型测试结果的 R 方值为 0.866,预测结果的 RMSE 值接近 6 万,预测效果较为理想。

2.3 线性回归模型

```
#开一把线性回归模型
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train_scaled, Y_train_scaled)
lr_pre=get_originY(lr.predict(X_test_scaled))
print('模型训练集得分: {:.3f}'.format(lr.score(X_train_scaled, Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(lr.score(X_test_scaled, Y_test_scaled)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test, lr_pre))))
模型训练集得分: 0.711
模型测试集得分: 0.753
RMSE:81379.523
```

可以发现,调参后的线性模型测试结果的 R 方值为 0.753,预测结果的 RMSE 值为 8 万左右,预测效果一般。

2.4 决策树回归

```
#决策树回归
from sklearn. tree import DecisionTreeRegressor
cv_params = {'max_features': ['sqrt', 'log2', None], 'max_depth': range(2,100)}
model = DecisionTreeRegressor()
tr=GridSearchCV(estimator=model, param_grid=cv_params, scoring='r2', cv=5, verbose=1, n_jobs=4
tr.fit(X_train_scaled, Y_train_scaled)
tr_pre=get_originY(tr.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(tr.best_params_))
print('模型训练集得分: {:.3f}'.format(tr.score(X_train_scaled, Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(tr.score(X_test_scaled, Y_test_scaled)))
print('RMSE: {:.3f}'.format(np.sqrt(mean_squared_error(Y_test,tr_pre))))
Fitting 5 folds for each of 294 candidates, totalling 1470 fits
参数的最佳取值: {'max_depth': 4, 'max_features': None}
模型训练集得分: 0.868
模型测试集得分: 0.708
RMSE:88570.145
```

观察可得,决策树模型测试结果的 R 方值为 0.708, RMSE 值 8 万有余,预测效果一般。

2.5 梯度提升模型

梯度提升模型与 Xgboost 模型类似,也通过逐个调参来实现最优化。

```
#梯度提升
#Wn_estimators
from sklearn import ensemble
cv_params = {'n_estimators':range(20,81,10)}
other_params = {}
model=ensemble.GradientBoostingRegressor(**other_params)
gb=GridSearchCV(estimator=model,param_grid=cv_params,scoring='r2',cv=5,verbose=1,n_jobs=4
gb.fit(X_train_scaled, Y_train_scaled)
gb_pre=get_originY(gb.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(gb.best_params_))
print('<mark>模型训练集得分:{:.3f</mark>}'.format(gb.score(K_train_scaled,Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(gb.score(X_test_scaled,Y_test_scaled)))
print('RMSE: {:.3f}'.format(np.sqrt(mean_squared_error(Y_test,gb_pre))))
Fitting 5 folds for each of 7 candidates, totalling 35 fits
参数的最佳取值:{'n_estimators': 50}
模型训练集得分: 0.908
模型测试集得分: 0.865
RMSE:60234.609
#Wmax_depthPuin_samples_split
from sklearn import ensemble
cv_params = {'max_depth':range(3, 14, 2), 'min_samples_split':range(2, 100)}
other params = {'n estimators':50}
model=ensemble.GradientBoostingRegressor(**other_params)
gb=GridSearchCV(estimator=model, param_grid=cv_params, scoring='r2', cv=5, verbose=1, n_jobs=4
gb.fit(X_train_scaled, Y_train_scaled)
gb_pre=get_originY(gb.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(gb.best_params_))
print('模型训练集得分: {:.3f}'.format(gb.score(X_train_scaled,Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(gb.score(X_test_scaled,Y_test_scaled)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test,gb_pre))))
Fitting 5 folds for each of 588 candidates, totalling 2940 fits
参数的最佳取值: {'max_depth': 3, 'min_samples_split': 40}
模型训练集得分: 0.901
模型测试集得分: 0.866
RMSE:60001.837
#Wmin_samples_split/Pmin_samples_leaf
from sklearn import ensemble
cv_params = {'min_samples_split':range(2,100), 'min_samples_leaf':range(1,10)}
other_params = {'n_estimators':50, 'max_depth':3, 'min_samples_split':40}
model=ensemble.GradientBoostingRegressor(**other_params)
gb=GridSearchCV(estimator=model,param_grid=cv_params,scoring='r2',cv=5,verbose=1,n_jobs=4
gb.fit(X_train_scaled, Y_train_scaled)
gb_pre=get_originY(gb.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(gb.best_params_))
print('模型训练集得分: {:.3f}'.format(gb.score(X_train_scaled, Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(gb.score(X_test_scaled,Y_test_scaled)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test,gb_pre))))
Fitting 5 folds for each of 882 candidates, totalling 4410 fits
参数的最佳取值: {'min_samples_leaf': 6, 'min_samples_split': 30}
模型训练集得分: 0.897
模型测试集得分: 0.867
RMSE:59628.110
```

综上,梯度提升模型用测试集得到的测试结果 R 方值为 0.868, RMSE 值接近 6 万, 预测效果较为理想。

2.6 Lasso 回归模型

```
#Lasso回归
from sklearn.linear_model import Lasso
lo = Lasso()
lo.fit(X_train_scaled, Y_train_scaled)
lo_pre=get_originY(lo.predict(X_test_scaled))
print('模型训练集得分: {:.3f}'.format(lo.score(X_train_scaled,Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(lo.score(X_test_scaled,Y_test_scaled)))
print('RMSE: {:.3f}'.format(np.sqrt(mean_squared_error(Y_test,lo_pre))))
模型训练集得分: -0.000
模型测试集得分: -0.000
RMSE:163806,466
```

发现预测效果极差,于是尝试用原始 Y 数据训练模型并预测。

```
#Lasso回归
from sklearn.linear_model import Lasso
lo = Lasso()
lo.fit(X_train, Y_train)
lo_pre=lo.predict(X_test)
print('模型训练集得分: {:.3f}'.format(lo.score(X_train,Y_train)))
print('模型测试集得分: {:.3f}'.format(lo.score(X_test,Y_test)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test,lo_pre))))
模型训练集得分: 0.711
```

模型训练集得分: 0.711 模型测试集得分: 0.753 RMSE:81379.359

可以看出, Lasso 回归模型用测试集得到的测试结果 R 方值为 0.753, RMSE 值 8 万有余, 预测效果一般。

2.7 K 近邻回归模型

```
#K近邻回归
from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor()
cv_params = {'weights': ['uniform', 'distance'], 'n_neighbors': range(2,100)}
kn=GridSearchCV(estimator=model,param_grid=cv_params,scoring='r2',cv=5,verbose=1,n_jobs=4
kn.fit(X_train_scaled, Y_train_scaled)
kn_pre=get_originY(kn.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(kn.best_params_))
print('模型训练集得分: {:.3f}'.format(kn.score(X_train_scaled,Y_train_scaled)))
print('<mark>模型测试集得分:{:.3f</mark>}'.format(kn.score(X_test_scaled,Y_test_scaled)))
print('RMSE: {:.3f}'.format(np.sqrt(mean_squared_error(Y_test,kn_pre))))
Fitting 5 folds for each of 196 candidates, totalling 980 fits
参数的最佳取值: {'n_neighbors': 9, 'weights': 'distance'}
模型训练集得分: 1.000
模型测试集得分: 0.858
RMSE:61630.630
```

可以看出, K 近邻回归模型用测试集得到的测试结果 R 方值为 0.858, RMSE 值接近 6 万, 预测效果较为理想。

2.8 随机森林模型

```
期時机森林
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor()
cv_params = {'min_samples_split':range(5,20), 'n_estimators':range(1,20)}
rf=GridSearchCV(estimator=model,param_grid=cv_params,scoring='r2',cv=5,verbose=1,n_jobs=4
rf.fit(X_train_scaled, Y_train_scaled)
rf_pre=get_originY(rf.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(rf.best_params_))
print('<mark>模型训练集得分:{:.3f}</mark>'.format(rf.score(X_train_scaled,Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(rf.score(X_test_scaled, Y_test_scaled)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test,rf_pre))))
Fitting 5 folds for each of 285 candidates, totalling 1425 fits
参数的最佳取值:{'min_samples_split':9, 'n_estimators':11}
模型训练集得分: 0.931
模型测试集得分: 0.860
RMSE:61376.666
```

可以看出,随机森林模型用测试集得到的测试结果 R 方值为 0.860, RMSE 值 6 万有余,预测效果较为理想。

2.9 集成学习模型

```
#集成学习
from sklearn.ensemble import AdaBoostRegressor
model=AdaBoostRegressor()
cv_params = {'n_estimators': range(20,30), 'learning_rate': [0.01,0.05,0.1,0.15,0.2,0.25]
abr=GridSearchCV(estimator=model, param_grid=cv_params, scoring='r2', cv=5, verbose=1, n_jobs=
abr.fit(X_train_scaled, Y_train_scaled)
abr_pre=get_originY(abr.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(abr.best_params_))
print('模型训练集得分: {:.3f}'.format(abr.score(X_train_scaled, Y_train_scaled)))
print('模型测试集得分: {:.3f}'.format(abr.score(X_test_scaled,Y_test_scaled)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test,abr_pre))))
Fitting 5 folds for each of 180 candidates, totalling 900 fits
参数的最佳取值:{'learning_rate': 0.2, 'loss': 'square', 'n_estimators': 23}
模型训练集得分: 0.854
模型测试集得分: 0.865
RMSE:60103.529
```

可以看出,集成学习模型用测试集得到的测试结果 R 方值为 0.865, RMSE 值接近 6 万,预测效果较为理想。

2.10 弹性网络回归模型

```
#弹性网络回归
from sklearn.linear_model import ElasticNet
en = ElasticNet()
en.fit(X_train, Y_train)
en_pre=en.predict(X_test)
print('模型训练集得分: {:.3f}'.format(en.score(X_train, Y_train)))
print('模型测试集得分: {:.3f}'.format(en.score(X_test, Y_test)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test, en_pre))))
模型训练集得分: 0.683
模型测试集得分: 0.706
RMSE:88783.038
```

可以看出,弹性网络回归模型用测试集得到的测试结果 R 方值为 0.706,RMSE 值 8 万有余,预测效果不够理想。

2.11 极端森林回归模型

```
#极端森林回归
from sklearn.ensemble import ExtraTreesRegressor
model = ExtraTreesRegressor()
cv_params = {'min_samples_split':range(5, 15), 'n_estimators':range(60, 80)}
etc=GridSearchCV(estimator=model,param_grid=cv_params,scoring='r2',cv=5,verbose=1,n_jobs=
etc.fit(X_train_scaled, Y_train_scaled)
etc_pre=get_originY(etc.predict(X_test_scaled))
print('参数的最佳取值: {0}'.format(etc.best_params_))
print('<mark>模型训练集得分:{:.3f</mark>}'.format(etc.score(X_train_scaled,Y_train_scaled)))
print('<mark>模型测试集得分:{:.3f}</mark>'.format(etc.score(X_test_scaled,Y_test_scaled)))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test,etc_pre))))
Fitting 5 folds for each of 200 candidates, totalling 1000 fits
参数的最佳取值: {'min_samples_split': 10, 'n_estimators': 68}
模型训练集得分: 0.924
模型测试集得分: 0.879
RMSE:57092.690
```

可以看出,极端森林回归模型用测试集得到的测试结果 R 方值为 0.879, RMSE 值 5 万有余,预测效果理想。

2.12 小结

上述 11 个模型的预测效果总结如下表所示。

选用模型	训练集R方	测试集R方	测试集 RMSE
SVR 模型	0.859	0.876	57587
Xgboost 模型	0.896	0.866	59953
线性回归模型	0.711	0. 753	81379
决策树回归模型	0.868	0. 708	88570
梯度提升模型	0. 901	0.868	59438
Lasso 回归模型	0.711	0. 753	81379
K 近邻回归模型	1.000	0.858	61630
随机森林模型	0. 931	0.860	61376
集成学习模型	0.854	0.865	60103
弹性网络回归模型	0. 683	0. 706	88783
极端森林回归模型	0. 924	0. 879	57092

观察可得,极端森林回归模型在测试集上的 R 方值最大,RMSE 值最小,故对房价预测问题,选择建立极端森林回归模型。

3 模型评估

对极端森林回归模型训练 1000 次,观察不同轮次训练的 R 方值、RMSE 值、RAE 值和 RAPE 值的变化,测试结果如下图所示:

由上图可知,在不同轮次中,模型训练后的 R 方值的波动区间长度(约 0.02) 远小于各轮次 R 方值均值(约 0.866),RMSE 的波动区间长度(约 4000)远小于各轮次 RMSE 均值(约 59500),MAE 的波动区间长度(约 3000)远小于各轮次 MAE 均值(约 45500),这在一定程度上反映了模型不错的鲁棒性。

同时, MAE 在[43500, 47500]内波动,这远小于数据集中的房价平均值 454343,

这在一定程度上反映了极端森林回归模型的预测具有较小的偏差。观察可得, NAPE 的平均值为 11.5%, 这也能说明模型预测误差较小。

最后,R 方值均值约为 0.865 也说明了,模型能以 86%左右的比率解释因变量房价的变异性。

4 模型的问题与改进方向

- 在数据预处理的过程中,未考虑PCA(为保持模型可解释性故而放弃使用PCA)、 主成分分析等降维方法,对削弱各特征间的耦合关系未采取任何措施。
- 极端森林模型的超参数可能未调至最优,这限制了该模型的预测效果,使得 R 方值偏小, MAE、MAPE 和 RMSE 值偏大。
- 没有尝试将多个模型融合起来预测,这限制了模型的预测效果。
- 训练集测试集划分比例等初始参数可能不是最优的。

5 模型问题的部分解决

Python 中的 VotingRegressor 函数,可以实现模型融合的效果。其具体原理是依照设定的权重对多个模型的预测结果求平均值。根据 2.12 中的结果,极端森林回归模型和 SVR 模型预测结果的 RMSE 值最小,故尝试融合这两个模型,以最小化 RMSE、MAE 和 MAPE 值。

```
#尝试融合模型
from sklearn.ensemble import VotingRegressor
r1 = SVR(C=3, gamma=0.1, kernel='rbf')
r2 = KNeighborsRegressor(n_neighbors=21, weights='distance')
r3 = ExtraTreesRegressor(min_samples_split=9, n_estimators=50)
com = VotingRegressor([('lr', r1), ('r3', r3)])
com.fit(X_train_scaled, Y_train_scaled)
com_pre=get_originY(com.predict(X_test_scaled))
print("调整参数后的模型在训练集得分: {:.3f}".format(com.score(X_train_scaled, Y_train_scale)
print("调整参数后的模型在测试集得分: {:.3f}".format(com.score(X_test_scaled, Y_test_scaled))
print('RMSE:{:.3f}'.format(np.sqrt(mean_squared_error(Y_test, com_pre))))
```

调整参数后的模型在训练集得分: 0.897 调整参数后的模型在测试集得分: 0.887 RMSE:54977.920

与极端森林回归模型的 RMSE 值 57092 相比,融合模型取得了一定幅度的优化效果。然后再重复测试 1000 次,观察该融合模型的最佳预测结果,并输出每个指标的最优值。

0.8943131289399053

53252.6614445043

40607.96811511493

0.10114563850614391

由以上测试结果图可知,融合模型的预测结果的最大 R 方值为 0.894,最小 RMSE 值为 53252,最小 MAE 值为 40607,最小 MAPE 值为 10.11%。这表明融合模型预测效果较单一模型更理想,极端森林模型中存在的问题得到了部分解决。

参考文献

- [1] https://zhuanlan.zhihu.com/p/492072843
- [2] https://www.jianshu.com/p/fc3d3c2cd3ca
- [3] https://dandelioncloud.cn/article/details/1530345112005787649
- [4] https://zhuanlan.zhihu.com/p/480224154
- [5] https://zhuanlan.zhihu.com/p/89873990
- [6] https://zhuanlan.zhihu.com/p/89453104
- [7] https://mp.weixin.qq.com/s/tDn9 4-EFo1Rth870-E4NA
- [8] https://blog.csdn.net/weixin_48419914/article/details/121671548
- [9] https://blog.csdn.net/FrankieHello/article/details/82024526
- [10] http://www.javashuo.com/article/p-olgikdmz-gp.html
- [11] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.html?highlight=voting#sklearn.ensemble.VotingRegressor
- [12] https://zhuanlan.zhihu.com/p/69415215