Architettura dei calcolatori

Architettura dei calcolatori

Un **computer** (calcolatore o elaboratore) è un sistema composto dai seguenti quattro componenti:

- CPU
- Memoria principale (RAM)
- Periferiche di Input/Output
 - Periferiche di input: tastiera, mouse, scanner, fotocamera
 - Perferiche di output: monitor, stampante
 - Perferiche di input/output: memoria di massa (hard disk, disco SSD), monitor touch-screen, scheda di rete, unità CD/DVD
- Bus = canale di comunicazione che permette lo scambio di informazioni fra componenti (CPU,memoria,periferiche)

Architettura logica di un computer

Architettura dei calcolatori

- La CPU è il "cervello" del computer: esegue tutte le operazioni richieste dai programmi (non solo operazioni aritmetiche, ma anche operazioni logiche, confronti, spostamento di dati da/verso la memoria o le periferiche)
- La memoria principale (RAM) è una memoria **volatile** (perde il contenuto quando non è alimentata)
- La RAM è una **memoria di lavoro**: il suo scopo è contenere i programmi e i dati utilizzati in un particolare istante, in modo che siano rapidamente accessibili da parte della CPU
- La CPU può eseguire un programma solo se questo è caricato in RAM (non può leggere un programma direttamente da disco)
- La memoria di massa (hard disk o disco SSD) è una memoria permanente (il contenuto permane anche a computer spento)

Uno sguardo all'interno di un PC

La memoria principale

 La memoria principale può essere pensata come una sequenza di celle (o locazioni) di memoria, ognuna in grado di contenere 8 bit

- Ad ogni cella è identiificata da un numero progressivo, detto indirizzo di memoria della cella
- Esempio: computer con 8 GB di RAM
 poichè 8 GB = 8 * 2³⁰ byte = 8.589.934.592 byte
 la prima cella avrà indirizzo 0 e l'ultima avrà indirizzo 8.589.934.591

Un modulo di memoria RAM

Comunicare con la memoria

- La CPU può richiedere alla memoria due tipi di operazioni (Lettura o Scrittura di una cella di memoria)
- La memoria principale comunica con il resto del sistema attraverso una serie di **pin** (piedini) o **linee**
- Attraverso questi pin la memoria può inviare o ricevere segnali binari di tensione (0=tensione bassa, 1=tensione bassa)
- Alcuni pin sono usati solo come pin di input: qualche componente esterno imposta (scrive) livello di tensione sul pin, e la memoria rileva (legge) il valore di tensione impostato
- Altri pin sono usati come pin di output: la memoria scrive un valore sul pin, e un componente esterno ne legge il valore
- Alcuni pin possono fungere sia da input che da output in momenti diversi

Linee per dati, indirizzi e controllo

I pin di una memoria si possono suddividere in:

- Pin (o linee) di controllo (input)
- Pin (o linee) di indirizzo (input)
- Pin (o linee) dati (input/output a seconda dell'operazione)
- Le linee di controllo servono a indicare il tipo di operazione (lettura o scrittura) che vogliamo effettuare sulla memoria.
 Esempio (usando un solo pin di controllo):
 - **0** = **Lettura** del contenuto di una cella di memoria
 - 1 = Scrittura del contenuto di una cella di memoria

Linee dati, indirizzi e controllo

- Le linee di indirizzo servono a comunicare alla memoria qual è l'indirizzo (in binario!) della cella interessata dall'operazione di lettura o scrittura
- Le linee di dati servono per:
 - restituire al mondo esterno il contenuto della cella, se è stata richiesta un'operazione di lettura (in questo caso le linee dati sono utilizzate dalla memoria come linee di output)
 - **ricevere** dall'esterno il nuovo contenuto della cella, <u>se è</u> <u>stata richiesta un'operazione di scrittura</u> (in questo caso le linee dati sono utilizzate dalla memoria come linee di **input**)

Esempio: operazione di lettura

 Supponiamo che la CPU voglia conoscere (cioè leggere) il contenuto della locazione di indirizzo 5 della RAM

Esempio: operazione di scrittura

 Supponiamo che la CPU voglia conoscere (cioè leggere) il contenuto della locazione di indirizzo 5 della RAM

La CPU

- CPU = Central Processing Unit (unità centrale di elaborazione)
- Fisicamente, la CPU è un chip di silicio su cui vengono realizzati milioni di componenti elettronici detti transistor

■ Il transistor è il componente fondamentale dell'elettronica digitale (è il "mattone di base" con cui costruire porte logiche e quindi memorie, unità aritmetiche, e infine CPU)

Intel Pentium 4

Intel Core i-7

Legge di Moore

- La **legge di Moore** è una legge empirica che afferma che, con il progredire della tecnologia, il numero di transitor memorizzabili in un chip raddoppia ogni circa due anni circa (secondo alcuni, ogni 18 mesi)
- Se si produce un grafico in cui si dispongono sull'asse x le data di introduzione sul mercato di vari processori, e sull'asse y le quantità di transistor in essi contenuti, si nota che il numero di transistor aumenta in modo esponenziale

Legge di Moore

- La **legge di Moore** è una legge empirica che afferma che, con il progredire della tecnologia, il numero di transitor memorizzabili in un chip raddoppia ogni circa due anni circa (secondo alcuni, ogni 18 mesi)
- Se si produce un grafico in cui si dispongono sull'asse x le data di introduzione sul mercato di vari processori, e sull'asse y le quantità di transistor in essi contenuti, si nota che il numero di transistor aumenta in modo esponenziale

Legge di Moore

- La legge afferma che la densità dei transistor (numero di transistor per cm²) aumenta quindi in modo esponenziale
- Ciò significa che, a parità di dimensioni del chip, ogni anno l'evoluzione delle tecnologie costruttive consente di realizzare su quel chip processori più complessi o memorie più capienti
- Problema: la dimensione minima dei transistor deve sottostare a limiti fisici (dimensioni degli atomi, surriscaldamento del chip, temperature di fusione...)
- La legge di Moore sta quindi perdendo di validità

Piedinatura della CPU

■ Il chip della CPU è inserito in **package** (contenitore) e comunica con il resto del sistema attraverso un insieme di **pin**

Intel Core i7

Pin di input e output

- Attraverso i pin la CPU può inviare o ricevere segnali binari di tensione (0=tensione bassa, 1=tensione bassa)
- Alcuni pin sono usati solo come pin di input: qualche componente esterno imposta un livello di tensione sul pin, e la CPU rileva il valore di tensione impostato
- In questo caso il componente esterno scrive un valore binario sul pin, e la CPU legge il valore di quel pin
- Altri pin sono usati come pin di output: la CPU scrive un valore sul pin, e un componente esterno ne legge il valore

Funzione e prestazioni della CPU

- La CPU è il componente che esegue le istruzioni di cui sono composti i programmi
- Le istruzioni eseguibili dalla CPU sono dette istruzioni macchina
- La velocità di una CPU può essere misurata in MIPS (Million Instruction Per Second)
- A volte si usa <u>scorrettamente</u> la frequenza di clock per confrontare la velocità di CPU diverse... (vedi slide successive)

Frequenza di clock

- Per eseguire le istruzioni, la CPU deve attraversare numerosi stati (si può modellare la CPU come un automa a stati finiti molto complesso!)
- La frequenza con cui la CPU è in grado di cambiare stato è detta frequenza di clock e si misura in Hertz (Hz)
- 1 Hz = 1 volta al secondo
- Frequenze tipiche delle CPU attuali: 2-3 GHz

2 GHz = 2 miliardi di volte al secondo

Segnale di clock

 La frequenza di clock della CPU è stabilita da un circuito esterno (oscillatore) che genera un segnale periodico (segnale che si ripete "uguale a sè stesso" periodicamente nel tempo)

- La frequenza con cui il segnale si ripete è la frequenza di clock
- Questo segnale arriva alla CPU attraverso un apposito pin di input, e detta il "ritmo" di funzionamento della CPU
- la CPU può cambiare stato ad ogni fronte di salita del segnale

Clock e prestazioni della CPU

- Confrontare la velocità di due CPU diverse basandosi solo sulla frequenza di clock è <u>SBAGLIATO</u> perchè:
 - Per eseguire un'istruzione, una CPU deve attraversare un certo numero di stati, e quindi "utilizza" un certo numero di cicli di clock
 - Per eseguire la stessa istruzione, CPU diverse utilizzano in generale un numero diverso di cicli di clock

Cicli di clock e prestazioni

Problema

La CPU1 ha un clock a 3 GHz, e utilizza 3 cicli di clock per istruzione

La CPU2 ha un clock a 2.5 GHz, e utilizza 2 cicli di clock per istruzione

Quale CPU è più veloce (esegue più istruzioni al secondo)?

Soluzione

- CPU1: 3 GHz / 3 = 1 miliardo di istruzioni al secondo
- CPU2: 2.5 Ghz / 2 = 1.25 miliardi di istruzioni al secondo

Struttura interna della CPU

Bus interno: consente, ad esempio, di portare il contenuto dei registri alla ALU

CPU

Componenti interni della CPU

Ogni CPU contiene i seguenti componenti fondamentali:

- Registri
- Unità aritmetico logico (A.L.U)
- Unità di controllo (C.U)
- Bus interno che collega i componenti precedenti

Struttura interna della CPU

- Ogni CPU contiene un certo numero di registri
- Ogni registro è una memoria in grado di memorizzare un numero fisso di bit (valori tipici: 8, 16, 32 o 64 bit)
- Il numero di bit memorizzabili in un singolo registro è detto **parallelismo del processore** e determina l'architettura del processore (architettura a 32 bit, architettura a 64 bit, ecc..)
- Esempio: "CPU a 64 bit" significa "CPU con registri interni a 64 bit"

ALU

- ALU = Arithmetic and Logic Unit
- La ALU è la componente della CPU in grado di eseguire le operazioni **aritmetiche** (somme, sottrazioni, moltiplicazioni, divisioni, ...) e **logiche** (NOT, AND, OR, XOR, ...)
- La ALU è una **rete logica combinatoria** (cioè un circuito "senza memoria" o "senza stato") che riceve in input:
 - le due sequenze di bit da elaborare (operandi)
 - l'operazione da eseguire sulle sequenze (somma, AND, ecc..)
 - e fornisce in output il risultato dell'operazione
- Poichè la ALU è una rete combinatoria, l'output corrente dipende esclusivamente dall'input corrente

ALU

 Nota: per convenzione una freccia barrata indica che essa rappresenta un certo numero di linee (e non una sola linea)

Numero di linee di controllo della ALU

- il numero di linee di controllo della ALU dipende dal numero di operazioni supportate dalla ALU
- Con N linee di controllo è possibile codificare 2^N operazioni (Motivo: N bit danno luogo a 2^N configurazioni diverse)
- Esempio: per gestire 5 operazioni (SOMMA, SOTTRAZIONE, AND, OR, NOT) servono 3 linee di controllo

```
000 = SOMMA 001 = SOTTRAZIONE 010 = AND
```

011 = OR 100 = NOT

110 = non usata **111** = non usata

101 = non usata

Esempio: ALU a 8 bit con 4 operazioni

- "ALU a 8 bit" significa che gli operandi sono di 8 bit ciascuno
- Per gestire 4 operazioni occorrono almeno 2 linee di controllo

Unità di controllo

- L'unità di controllo è il componente della CPU che si occupa di generare tutti i segnali di controllo necessari a prelevare le istruzioni dalla memoria principale ed eseguirle
- Esempio: se la CPU deve eseguire una sottrazione tra il registro R1 e il registro R2, è l'unità di controllo a generare i segnali necessari affinchè i contenuti dei due registri arrivino agli ingressi della ALU, e affinchè la ALU esegua una sottrazione