

Recommender Systems

Introduction

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

information overload

Every minute of the day

Instagram users post 347k stories

Facebook users share 297k posts

YouTube users upload 500 video hours

Netflix users stream 404k video hours

Spotify users stream 750k songs

LinkedIn users apply for 69k jobs

Amazon ships 6.6k packages

Information overload

Global online content consumption is soaring in 2020, a new study of 10,000+ people in five countries says. The previous normal was just over 3h [...] Average daily time spent consuming content is now ~7h, which includes phone, TV, and other forms of digital media.

Koetsier, Forbes 2020

The paradox of choice

Which digital camera should I buy? Which **destination** is the best for my holiday? Which **investment** will support my children? Which movie should I watch with my friends? Which **book** should I buy for my next vacation? Which **college degree** is best for my future?

Search vs. recommendation

Search is what you do when you're looking for something. Discovery is when something wonderful that you didn't know existed, or didn't know how to ask for, finds you.

O'Brien, Fortune 2006

The Netflix case

We think that the combined effect of personalization and recommendations save us more than \$1B per year.

Gomes-Uribe & Hunt, TMIS 2015

Value for producers: revenue

Netflix: 66% of movies watched

Google News: 38% of news clicked

Amazon: 35% of products sold

The long tail

Concentration

Selling a lot of a few items

Dissipation

Selling less of lots of items

CHRIS ANDERSON

WHY THE FUTURE OF BUSINESS IS SELLING LESS OF MORE

The long tail

Justin Bieber

Adele

Metallica

Your professors' band

Value for consumers: personalization

Recommendations tailored to individual needs

The Amazon case

If we have 4.5 million customers, we shouldn't have one store, we should have 4.5 million stores.

Jeff Bezos, Washington Post 1998

How did we get here?

Ancient days

Systems exploration

Rapid commercialization

Research explosion

Back to reality

Ancient days

Manual recommendations

- Public knowledge: "certain snakes are venomous"
- Word of mouth: "the new restaurant has good price"
- Friends' advice: "the new 'Star Wars' is great"
- Expert critics: "merlots pair well with steak"

Systems exploration

Xerox PARC's Tapestry [Goldberg et al., CACM 1992]

Introduced the idea of collaborative filtering

UMN's GroupLens [Resnick et al., CSCW 1994]

Automated collaborative filtering for news

Systems exploration

MIT's Ringo [Shardanand and Maes, CHI 1995]

Automated collaborative filtering for music

BellCore's MovieRecommender [Hill et al., CHI 1995]

Automated collaborative filtering for movies

Rapid commercialization

Scale and value became key challenges

- New algorithms to reduce computation time
 - e.g., item-based correlations, dimensionality reduction
- New evaluation approaches to better model users
 - e.g., ranking-based evaluation, online evaluation

Research explosion

Multidisciplinary fields

- Artificial intelligence
- Information retrieval
- Data mining
- Security and privacy
- Business and marketing

Research explosion

Further fueled by the Netflix Prize (2006)

- Baseline (Cinematch) RMSE = 0.9525
- USD 1M prize for 10% improvement
- 51K contestants, 41K teams, 186 countries
- 44K submissions by 5K teams
- Grand prize winner RMSE = 0.8567 (2009)

Home

Rules

Leaderboard

Update

Leaderboard

Showing Test Score. Click here to show quiz score

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09

Back to reality

[...] **improved predictions** of just how much a user would dislike a set of bad movies **did not help** the user or Netflix

 Konstan, Recommender Systems: An Introduction (2011) HOME RECSYS 2020

PAST CONFERENCES

HONORS

BLOG

CONTACT

search...

Recommender systems

Recommender systems are software applications that aim to support users in their decision-making while interacting with large information spaces. They recommend items of interest to **users** based on **preferences** they have expressed, either explicitly or implicitly.

ACM RecSys

The recommendation problem

The recommendation problem

The recommendation problem

What to recommend?

news≥

Personalized recommendation

Course scope

Focus on algorithms

- Collaborative
- Content-based
- Knowledge-based
- Hybrid

Course scope

Focus on evaluation

Methodology and metrics

A taste of advanced topics

- Diversity and novelty
- Context-awareness
- Machine-learned models

Out-of-scope

We have dedicated courses for:

- Information retrieval
- Machine learning
- Data mining

Course goals

At the end, you should be able to:

- Identify potential application domains
- Implement basic recommender systems
- Critique a design to identify potential strengths and weaknesses and to compare alternatives

Textbooks

Recommender Systems: An Introduction

Jannach, Zanker, Felfernig, Friedrich (2011)

Recommender Systems Handbook (2nd edition)

Ricci, Rokach, Shapira (2015)

Recommender Systems: The Textbook

Aggarwal (2016)

Other relevant material

General background

- Algorithms and data structures
- Basic statistics
- Basic linear algebra

Advanced readings

Google Scholar is your friend

Course grading

Assignments

Programming: 30

Writing: 10

Exams: 30

Course project: 30

Course project

Research-oriented project

- In pairs for undergrad students
- Individual for grad and external students

Assessment criteria

Relevance, novelty, technical soundness

Project deliverables

Proposal

• Theme + members

Mid-term seminar

- Literature review
- Dataset characterization

Project deliverables

Final seminar + short paper

- Introduction
- Related work
- Proposed solution
- Evaluation

Writing assignment #0

Fill in a short questionnaire describing your past experience and interests related to recommender systems. It will take **10min** of your time.