1.
$$\mu = \sum_{i=1}^{T} x_i / I$$
2.
$$I \cdot \Sigma = \sum_{i=1}^{T} (x_i - u)(x_i - u)^T$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

$$\Sigma = \sum_{i=1}^{T} (\underbrace{x_i - u})(\underbrace{x_i - u})^T / I$$

o
$$X$$
 face = $\begin{cases} X_1, \dots, X_I \end{cases}$ face $\begin{cases} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_$

Testing 0= [n. E] Given a new testing image X^* , $Pr(Y|X^*) = \frac{Pr(X^*|Y)Pr(Y)}{Pr(X^*)}$ Assume Pr (Y) is writom, Pr(Y/X*)~ Pr (X*/Y) Pr(Y=1/x*) } Pr(Y=0/x*) $\frac{\Pr(X^{*}|Y=1)\Pr(Y=1)}{\Pr(X^{*})} > \frac{\Pr(X^{*}|Y=0)\Pr(Y=0)}{\Pr(X^{*})}$ $Pr\left(X^{*}/Y=1\right) > Pr\left(X^{*}/Y=0\right)$ \Rightarrow Norm x * [Nface, Eface] > Norm x * [N bg, Ebg] $Norm_{\chi}(M, \Xi) = \frac{1}{(2\pi)^{\frac{N}{2}}|\Xi|^{\frac{N}{2}}} C$ X^* : a test image (vector, $X^* \in R^{D \times 1}$) $M: Mean (M \in R^{D \times I})$ Z: variance (Z ER PXD) : determinant of Z (IZIER)

Simplify the expression

$$Pr(x^{*}|y=1) \stackrel{?}{>} Pr(x^{*}|y=0)$$

$$= \frac{1}{(2\pi)^{3/2}} \left(\frac{1}{p_{-1}} (64)_{y=1} \right)^{3/2} \left(\frac{1}{p_{-1}} (64)_{y=1} \right)^{3/2} \right) \stackrel{?}{>} \frac{1}{(2\pi)^{3/2}} \left(\frac{1}{p_{-1}} (64)_{y=0} \right)^{3/2} \left(\frac{1}{p_{-1}} (64)_{y=0} \right)^{3/2} \left(\frac{1}{p_{-1}} (64)_{y=0} \right)^{3/2} \left(\frac{1}{p_{-1}} (64)_{y=0} \right)^{3/2} \right)$$

$$+ dele / ogrithm$$

$$= \frac{1}{p_{-1}} \frac$$

(in my codes)

$$A > B \Rightarrow face$$

$$A < B \Rightarrow background.$$