```
In [1]: # Essentials
    import numpy as np
    import pandas as pd

# Plots
    import matplotlib.pyplot as plt

# Models Classification
    from xgboost import XGBClassifier
    from sklearn.ensemble import RandomForestClassifier

# Misc
    from sklearn.pipeline import Pipeline
    from sklearn.base import BaseEstimator, TransformerMixin

import warnings
warnings.filterwarnings("ignore")
```

Utils

```
In [2]: # Calculate information value
        def calculateIV(df, feature, target, return table=False):
                Function aiming to analyze the variables and calculate the 'Informat
                Args:
                    df: Pandas dataframe containing the variables and target.
                    feature: String with the name of the variable to be analyzed.
                    target: String with the name of the column representing the targ
                    return table: Boolean to return the table or Information Value.
            lst = []
            for i in range(df[feature].nunique()):
                val = list(df[feature].unique())[i]
                lst.append([feature, val, df[df[feature] == val].count()[feature], d
            data = pd.DataFrame(lst, columns=['Variable', 'Value', 'All', 'Bad'])
            data['Share'] = data['All'] / data['All'].sum()
            data['Bad Rate'] = data['Bad'] / data['All']
            data['Distribution Good'] = (data['All'] - data['Bad']) / (data['All'].s
            data['Distribution Bad'] = data['Bad'] / data['Bad'].sum()
            for idx in range(len(data['Distribution Good'])):
                if data['Distribution Good'].iloc[idx] == 0 or data['Distribution Ba
                    data['Distribution Bad'].iloc[idx] += 0.5
                    data['Distribution Good'].iloc[idx] += 0.5
            data['WoE'] = np.log(data['Distribution Good'] / data['Distribution Bad'
            data['IV'] = (data['WoE'] * (data['Distribution Good'] - data['Distribut
```

```
data = data.sort_values(by=['Variable', 'Value'], ascending=True)

if return_table:
    return data

return data['IV'][0]
```

1.0 - Carregamento do Dataset de Treino

```
In [3]: xTrain = pd.read_csv('train_clear.csv')
```

2.0 - Importância das Variáveis

Iremos analisar a importância das features para os modelos RandomForest e XGBoost

2.1 - Random Forest

```
In [4]: model = RandomForestClassifier()
model.fit(xTrain.drop(labels=['TARGET'], axis = 1), xTrain.TARGET)

# ### Get importance
importance = model.feature_importances_

# ### Plot
sorted_idx = importance.argsort()[-30:]
plt.barh(xTrain.columns[sorted_idx], importance[sorted_idx])
plt.xlabel("Random Forest Feature Importance")
```

Out[4]: Text(0.5, 0, 'Random Forest Feature Importance')

2.2 - XGBoost

```
In [5]: model = XGBClassifier()
model.fit(xTrain.drop(labels=['TARGET'], axis = 1), xTrain.TARGET)

# ### Get importance
feat_importance = model.feature_importances_

# ### Plot
sorted_idx = feat_importance.argsort()[-30:]
plt.barh(xTrain.columns[sorted_idx], feat_importance[sorted_idx])
plt.xlabel("XGBoost Feature Importance")
```

Out[5]: Text(0.5, 0, 'XGBoost Feature Importance')

2.0 - Análise Bivariada

Nessa etapa iremos realizar uma análise bivariada com a ideia de entender o comportamento de cada variável selecionada até o momento com o target e calcular o Information Value de cada variável. O objetivo dessa análise é obter insumos para realizar a construção de novas variáveis para virem a ser usadas no modelo, além de nos possibilitar fazer tratamentos nas variáveis. Apenas a primeira análise irá presentar a table acom as informações, as seguintes irão apresentar apenas o valor do Informatio Value, com o objetivo de diminuir o tamanho do pdf a ser gerado.

```
In [6]: # ### Get variables name
cols = xTrain.columns
```

2.1 - var3

```
In [7]: calculateIV(xTrain, cols[0], 'TARGET', True).style
```

Out[7]:

	Variable	Value	All	Bad	Share	Bad Rate	Distribution Good	Distribu
1	var3	-999999	83	2	0.001462	0.024096	0.001483	0.000
13	var3	0	57	3	0.001004	0.052632	0.000989	0.001
5	var3	1	79	8	0.001392	0.101266	0.001300	E00.0
0	var3	2	55277	2100	0.973924	0.037990	0.973742	0.978
8	var3	3	81	1	0.001427	0.012346	0.001465	0.000
24	var3	4	63	3	0.001110	0.047619	0.001099	0.001
16	var3	5	54	2	0.000951	0.037037	0.000952	0.000
11	var3	6	67	2	0.001180	0.029851	0.001190	0.000
4	var3	7	85	3	0.001498	0.035294	0.001502	0.001
10	var3	8	111	4	0.001956	0.036036	0.001959	0.001
2	var3	9	88	4	0.001550	0.045455	0.001538	0.001
15	var3	10	62	2	0.001092	0.032258	0.001099	0.000
35	var3	11	56	1	0.000987	0.017857	0.001007	0.000
3	var3	12	69	2	0.001216	0.028986	0.001227	0.000
9	var3	13	77	1	0.001357	0.012987	0.001392	0.000
28	var3	14	48	3	0.000846	0.062500	0.000824	0.001
22	var3	15	29	2	0.000511	0.068966	0.000494	0.000
30	var3	16	8	0	0.000141	0.000000	0.500146	0.500
50	var3	17	7	0	0.000123	0.000000	0.500128	0.500
38	var3	18	7	0	0.000123	0.000000	0.500128	0.500
17	var3	19	3	0	0.000053	0.000000	0.500055	0.500
53	var3	20	4	0	0.000070	0.000000	0.500073	0.500
78	var3	21	4	0	0.000070	0.000000	0.500073	0.500
20	var3	22	4	0	0.000070	0.000000	0.500073	0.500
107	var3	23	5	0	0.000088	0.000000	0.500092	0.500
45	var3	24	4	0	0.000070	0.000000	0.500073	0.500
65	var3	25	2	0	0.000035	0.000000	0.500037	0.500
145	var3	26	3	0	0.000053	0.000000	0.500055	0.500
81	var3	27	3	0	0.000053	0.000000	0.500055	0.500
89	var3	28	3	0	0.000053	0.000000	0.500055	0.500
70	var3	29	3	0	0.000053	0.000000	0.500055	0.500
131	var3	30	5	0	0.000088	0.000000	0.500092	0.500

	Variable	Value	All	Bad	Share	Bad Rate	Distribution Good	Distribu
56	var3	31	3	0	0.000053	0.000000	0.500055	0.500
93	var3	32	1	0	0.000018	0.000000	0.500018	0.500
48	var3	33	3	0	0.000053	0.000000	0.500055	0.500
159	var3	34	1	0	0.000018	0.000000	0.500018	0.500
100	var3	35	2	0	0.000035	0.000000	0.500037	0.500
113	var3	36	2	0	0.000035	0.000000	0.500037	0.500
62	var3	38	5	0	0.000088	0.000000	0.500092	0.500
176	var3	41	1	0	0.000018	0.000000	0.500018	0.500
177	var3	42	1	0	0.000018	0.000000	0.500018	0.500
143	var3	44	1	0	0.000018	0.000000	0.500018	0.500
164	var3	45	2	0	0.000035	0.000000	0.500037	0.500
83	var3	46	4	0	0.000070	0.000000	0.500073	0.500
108	var3	47	2	0	0.000035	0.000000	0.500037	0.500
110	var3	48	4	0	0.000070	0.000000	0.500073	0.500
91	var3	49	2	0	0.000035	0.000000	0.500037	0.500
109	var3	50	1	0	0.000018	0.000000	0.500018	0.500
137	var3	51	2	0	0.000035	0.000000	0.500037	0.500
96	var3	52	2	0	0.000035	0.000000	0.500037	0.500
99	var3	53	3	0	0.000053	0.000000	0.500055	0.500
121	var3	54	2	0	0.000035	0.000000	0.500037	0.500
101	var3	55	1	0	0.000018	0.000000	0.500018	0.500
36	var3	56	1	0	0.000018	0.000000	0.500018	0.500
128	var3	57	1	0	0.000018	0.000000	0.500018	0.500
120	var3	58	1	0	0.000018	0.000000	0.500018	0.500
187	var3	59	1	0	0.000018	0.000000	0.500018	0.500
132	var3	60	2	0	0.000035	0.000000	0.500037	0.500
33	var3	61	2	0	0.000035	0.000000	0.500037	0.500
57	var3	64	2	0	0.000035	0.000000	0.500037	0.500
94	var3	66	1	0	0.000018	0.000000	0.500018	0.500
54	var3	69	2	0	0.000035	0.000000	0.500037	0.500
167	var3	71	1	0	0.000018	0.000000	0.500018	0.500
144	var3	72	1	0	0.000018	0.000000	0.500018	0.500

	Variable	Value	All	Bad	Share	Bad Rate	Distribution Good	Distribu
149	var3	73	2	0	0.000035	0.000000	0.500037	0.500
153	var3	74	2	0	0.000035	0.000000	0.500037	0.500
66	var3	77	1	0	0.000018	0.000000	0.500018	0.500
136	var3	78	2	0	0.000035	0.000000	0.500037	0.500
180	var3	79	1	0	0.000018	0.000000	0.500018	0.500
52	var3	81	2	0	0.000035	0.000000	0.500037	0.500
156	var3	82	2	0	0.000035	0.000000	0.500037	0.500
186	var3	84	1	0	0.000018	0.000000	0.500018	0.500
39	var3	85	1	0	0.000018	0.000000	0.500018	0.500
103	var3	86	3	0	0.000053	0.000000	0.500055	0.500
97	var3	87	1	0	0.000018	0.000000	0.500018	0.500
26	var3	88	2	0	0.000035	0.000000	0.500037	0.500
183	var3	89	1	0	0.000018	0.000000	0.500018	0.500
46	var3	90	2	0	0.000035	0.000000	0.500037	0.500
86	var3	91	4	0	0.000070	0.000000	0.500073	0.500
174	var3	93	1	0	0.000018	0.000000	0.500018	0.500
19	var3	94	2	0	0.000035	0.000000	0.500037	0.500
32	var3	95	2	0	0.000035	0.000000	0.500037	0.500
135	var3	97	1	0	0.000018	0.000000	0.500018	0.500
148	var3	98	1	0	0.000018	0.000000	0.500018	0.500
102	var3	99	2	0	0.000035	0.000000	0.500037	0.500
119	var3	100	3	0	0.000053	0.000000	0.500055	0.500
195	var3	101	1	0	0.000018	0.000000	0.500018	0.500
40	var3	102	3	0	0.000053	0.000000	0.500055	0.500
152	var3	103	3	0	0.000053	0.000000	0.500055	0.500
31	var3	104	2	0	0.000035	0.000000	0.500037	0.500
44	var3	105	1	0	0.000018	0.000000	0.500018	0.500
77	var3	106	1	0	0.000018	0.000000	0.500018	0.500
168	var3	107	2	0	0.000035	0.000000	0.500037	0.500
189	var3	108	1	0	0.000018	0.000000	0.500018	0.500
60	var3	110	4	0	0.000070	0.000000	0.500073	0.500
165	var3	111	1	0	0.000018	0.000000	0.500018	0.500

	Variable	Value	All	Bad	Share	Bad Rate	Distribution Good	Distribu
63	var3	112	1	0	0.000018	0.000000	0.500018	0.500
92	var3	114	3	1	0.000053	0.333333	0.000037	0.000
23	var3	115	2	0	0.000035	0.000000	0.500037	0.500
127	var3	116	2	1	0.000035	0.500000	0.000018	0.000
87	var3	117	3	0	0.000053	0.000000	0.500055	0.500
41	var3	118	3	0	0.000053	0.000000	0.500055	0.500
114	var3	119	1	0	0.000018	0.000000	0.500018	0.500
139	var3	120	2	0	0.000035	0.000000	0.500037	0.500
115	var3	121	2	0	0.000035	0.000000	0.500037	0.500
58	var3	122	2	0	0.000035	0.000000	0.500037	0.500
173	var3	124	1	0	0.000018	0.000000	0.500018	0.500
105	var3	125	2	0	0.000035	0.000000	0.500037	0.500
150	var3	126	1	0	0.000018	0.000000	0.500018	0.500
147	var3	127	2	0	0.000035	0.000000	0.500037	0.500
141	var3	128	1	0	0.000018	0.000000	0.500018	0.500
181	var3	129	3	0	0.000053	0.000000	0.500055	0.500
125	var3	130	1	0	0.000018	0.000000	0.500018	0.500
169	var3	132	1	0	0.000018	0.000000	0.500018	0.500
74	var3	133	4	0	0.000070	0.000000	0.500073	0.500
129	var3	134	1	0	0.000018	0.000000	0.500018	0.500
155	var3	136	1	0	0.000018	0.000000	0.500018	0.500
160	var3	137	2	0	0.000035	0.000000	0.500037	0.500
98	var3	138	4	0	0.000070	0.000000	0.500073	0.500
138	var3	139	1	0	0.000018	0.000000	0.500018	0.500
184	var3	141	1	0	0.000018	0.000000	0.500018	0.500
75	var3	142	5	1	0.000088	0.200000	0.000073	0.000
106	var3	143	2	0	0.000035	0.000000	0.500037	0.500
123	var3	144	2	0	0.000035	0.000000	0.500037	0.500
124	var3	145	2	0	0.000035	0.000000	0.500037	0.500
90	var3	146	2	0	0.000035	0.000000	0.500037	0.500
47	var3	147	3	0	0.000053	0.000000	0.500055	0.500
191	var3	148	1	0	0.000018	0.000000	0.500018	0.500

	Variable	Value	All	Bad	Share	Bad Rate	Distribution Good	Distribu
79	var3	149	4	0	0.000070	0.000000	0.500073	0.500
84	var3	150	2	0	0.000035	0.000000	0.500037	0.500
122	var3	152	2	0	0.000035	0.000000	0.500037	0.500
64	var3	153	5	0	0.000088	0.000000	0.500092	0.500
71	var3	154	6	0	0.000106	0.000000	0.500110	0.500
7	var3	156	3	0	0.000053	0.000000	0.500055	0.500
68	var3	157	2	0	0.000035	0.000000	0.500037	0.500
162	var3	158	3	0	0.000053	0.000000	0.500055	0.500
175	var3	159	1	0	0.000018	0.000000	0.500018	0.500
49	var3	161	3	0	0.000053	0.000000	0.500055	0.500
37	var3	162	3	0	0.000053	0.000000	0.500055	0.500
61	var3	163	2	0	0.000035	0.000000	0.500037	0.500
43	var3	164	2	0	0.000035	0.000000	0.500037	0.500
192	var3	165	1	0	0.000018	0.000000	0.500018	0.500
116	var3	166	2	0	0.000035	0.000000	0.500037	0.500
166	var3	167	1	0	0.000018	0.000000	0.500018	0.500
163	var3	168	1	0	0.000018	0.000000	0.500018	0.500
172	var3	169	1	0	0.000018	0.000000	0.500018	0.500
55	var3	170	2	0	0.000035	0.000000	0.500037	0.500
146	var3	171	2	0	0.000035	0.000000	0.500037	0.500
118	var3	172	3	0	0.000053	0.000000	0.500055	0.500
72	var3	173	2	0	0.000035	0.000000	0.500037	0.500
112	var3	174	3	0	0.000053	0.000000	0.500055	0.500
42	var3	175	3	0	0.000053	0.000000	0.500055	0.500
51	var3	176	2	0	0.000035	0.000000	0.500037	0.500
88	var3	177	1	0	0.000018	0.000000	0.500018	0.500
18	var3	178	1	0	0.000018	0.000000	0.500018	0.500
133	var3	181	1	0	0.000018	0.000000	0.500018	0.500
59	var3	182	1	0	0.000018	0.000000	0.500018	0.500
12	var3	183	4	0	0.000070	0.000000	0.500073	0.500
182	var3	184	1	0	0.000018	0.000000	0.500018	0.500
73	var3	185	2	0	0.000035	0.000000	0.500037	0.500

	Variable	Value	All	Bad	Share	Bad Rate	Distribution Good	Distribu
126	var3	186	1	0	0.000018	0.000000	0.500018	0.500
76	var3	187	2	0	0.000035	0.000000	0.500037	0.500
117	var3	188	1	0	0.000018	0.000000	0.500018	0.500
34	var3	189	2	0	0.000035	0.000000	0.500037	0.500
104	var3	190	1	0	0.000018	0.000000	0.500018	0.500
67	var3	191	1	0	0.000018	0.000000	0.500018	0.500
140	var3	192	3	0	0.000053	0.000000	0.500055	0.500
142	var3	193	1	0	0.000018	0.000000	0.500018	0.500
179	var3	194	1	0	0.000018	0.000000	0.500018	0.500
29	var3	195	3	0	0.000053	0.000000	0.500055	0.500
151	var3	196	1	0	0.000018	0.000000	0.500018	0.500
27	var3	197	2	0	0.000035	0.000000	0.500037	0.500
85	var3	198	2	0	0.000035	0.000000	0.500037	0.500
80	var3	200	1	0	0.000018	0.000000	0.500018	0.500
95	var3	201	2	0	0.000035	0.000000	0.500037	0.500
185	var3	204	1	0	0.000018	0.000000	0.500018	0.500
154	var3	205	1	0	0.000018	0.000000	0.500018	0.500
69	var3	207	2	0	0.000035	0.000000	0.500037	0.500
25	var3	208	2	0	0.000035	0.000000	0.500037	0.500
6	var3	209	3	0	0.000053	0.000000	0.500055	0.500
134	var3	210	1	0	0.000018	0.000000	0.500018	0.500
188	var3	211	1	0	0.000018	0.000000	0.500018	0.500
21	var3	213	1	0	0.000018	0.000000	0.500018	0.500
178	var3	215	1	0	0.000018	0.000000	0.500018	0.500
82	var3	216	3	0	0.000053	0.000000	0.500055	0.500
14	var3	217	2	0	0.000035	0.000000	0.500037	0.500
190	var3	218	1	0	0.000018	0.000000	0.500018	0.500
194	var3	219	1	0	0.000018	0.000000	0.500018	0.500
158	var3	220	1	0	0.000018	0.000000	0.500018	0.500
193	var3	223	1	0	0.000018	0.000000	0.500018	0.500
161	var3	225	1	0	0.000018	0.000000	0.500018	0.500
111	var3	228	1	0	0.000018	0.000000	0.500018	0.500

	Variable	Value	All	Bad	Share	Bad Rate	Distribution Good	Distribu
170	var3	229	1	0	0.000018	0.000000	0.500018	0.500
157	var3	231	1	0	0.000018	0.000000	0.500018	0.500
130	var3	235	1	0	0.000018	0.000000	0.500018	0.500
171	var3	238	1	0	0.000018	0.000000	0.500018	0.500

2.2 - var15

```
In [8]: iv = calculateIV(xTrain, cols[1], 'TARGET')
print(f"Information Value {cols[1]} = {iv:.6f}")
```

Information Value var15 = 0.724916

```
In [9]: # ### Update variable
    xTrain.var15[xTrain.var15 < 23] = 22
    xTrain.var15[xTrain.var15 > 102] = 103
```

```
In [10]: iv = calculateIV(xTrain, cols[1], 'TARGET')
print(f"New Information Value {cols[1]} = {iv:.6f}")
```

New Information Value var15 = 0.725134

2.3 - imp_ent_var16_ult1

```
In [11]: iv = calculateIV(xTrain, cols[2], 'TARGET')
    print(f"Information Value {cols[2]} = {iv:.6f}")

Information Value imp_ent_var16_ult1 = 0.032395

In [12]: sum(xTrain.imp_ent_var16_ult1 < 0)

Out[12]: 0

In [13]: sum(xTrain.imp_ent_var16_ult1 > 51003)

Out[13]: 9

In [14]: ### Update variable
    xTrain.imp_ent_var16_ult1[xTrain.imp_ent_var16_ult1 > 51003] = 51004

In [15]: iv = calculateIV(xTrain, cols[2], 'TARGET')
    print(f"New Information Value {cols[2]} = {iv:.6f}")
```

2.4 - imp_op_var39_comer_ult1

New Information Value imp ent var16 ult1 = 0.032395

```
In [16]: iv = calculateIV(xTrain, cols[3], 'TARGET')
         print(f"Information Value {cols[3]} = {iv:.6f}")
        Information Value imp op var39 comer ult1 = 0.075214
In [17]: sum(xTrain.imp op var39 comer ult1 < 0)</pre>
Out[17]: 0
In [18]: sum(xTrain.imp op var39 comer ult1 > 12888.030000)
Out[18]: 0
         2.5 - imp_op_var40_comer_ult3
In [19]: iv = calculateIV(xTrain, cols[4], 'TARGET')
         print(f"Information Value {cols[4]} = {iv:.6f}")
        Information Value imp op var40 comer ult3 = 0.000007
In [20]: sum(xTrain.imp op var40 comer ult3 < 0)</pre>
Out[20]: 0
In [21]: sum(xTrain.imp op var40 comer ult3 > 3639.87)
Out[21]: 29
In [22]: # ### Update Variable
         xTrain.imp op var40 comer ult3[xTrain.imp op var40 comer ult3 > 3639.87] = 3
In [23]: iv = calculateIV(xTrain, cols[4], 'TARGET')
         print(f"New Information Value {cols[4]} = {iv:.6f}")
        New Information Value imp op var40 comer ult3 = 0.000007
         2.6 - imp_op_var41_efect_ult1
In [24]: iv = calculateIV(xTrain, cols[5], 'TARGET')
         print(f"Information Value {cols[5]} = {iv:.6f}")
        Information Value imp op var41 efect ult1 = 0.070221
In [25]: sum(xTrain.imp op var41 efect ult1 < 0)</pre>
Out[25]: 0
In [26]: sum(xTrain.imp op var41 efect ult1 > 13110)
Out[26]: 10
```

```
In [27]: # ### Update variable
         xTrain.imp op var41 efect ult1[xTrain.imp_op_var41_efect_ult1 > 13110] = 131
In [28]: iv = calculateIV(xTrain, cols[5], 'TARGET')
         print(f"New Information Value {cols[5]} = {iv:.6f}")
        New Information Value imp op var41 efect ult1 = 0.070221
         2.7 - ind var1 0
In [29]: iv = calculateIV(xTrain, cols[6], 'TARGET')
         print(f"Information Value {cols[6]} = {iv:.6f}")
        Information Value ind var1 0 = 0.000393
         2.8 - ind var5 0
In [30]: iv = calculateIV(xTrain, cols[7], 'TARGET')
         print(f"Information Value {cols[7]} = {iv:.6f}")
        Information Value ind var5 0 = 0.023591
         2.9 - ind var5
In [31]: iv = calculateIV(xTrain, cols[8], 'TARGET')
         print(f"Information Value {cols[8]} = {iv:.6f}")
        Information Value ind var5 = 0.388268
         2.10 - ind var12 0
In [32]: iv = calculateIV(xTrain, cols[9], 'TARGET')
         print(f"Information Value {cols[9]} = {iv:.6f}")
        Information Value ind var12 0 = 0.058933
         2.11 - ind_var13_0
In [33]: iv = calculateIV(xTrain, cols[10], 'TARGET')
         print(f"Information Value {cols[10]} = {iv:.6f}")
        Information Value ind var13 0 = 0.085021
```

2.12 - ind_var13_largo_0

```
In [34]: iv = calculateIV(xTrain, cols[11], 'TARGET')
print(f"Information Value {cols[11]} = {iv:.6f}")
```

Information Value ind var13 largo 0 = 0.025659

2.13 - ind var14 0

```
In [35]: iv = calculateIV(xTrain, cols[12], 'TARGET')
         print(f"Information Value {cols[12]} = {iv:.6f}")
        Information Value ind var14 0 = 0.015491
         2.14 - ind_var24_0
In [36]: iv = calculateIV(xTrain, cols[13], 'TARGET')
         print(f"Information Value {cols[13]} = {iv:.6f}")
        Information Value ind var24 0 = 0.036701
```

2.15 - ind_var25_cte

```
In [37]: iv = calculateIV(xTrain, cols[14], 'TARGET')
         print(f"Information Value {cols[14]} = {iv:.6f}")
```

Information Value ind var25 cte = 0.013608

2.16 - ind var37 cte

```
In [38]: iv = calculateIV(xTrain, cols[15], 'TARGET')
         print(f"Information Value {cols[15]} = {iv:.6f}")
```

Information Value ind var37 cte = 0.000922

2.17 - ind var39 0

```
In [39]: | iv = calculateIV(xTrain, cols[16], 'TARGET')
         print(f"Information Value {cols[16]} = {iv:.6f}")
```

Information Value ind var39 0 = 0.026272

2.18 - num var4

```
In [40]: iv = calculateIV(xTrain, cols[17], 'TARGET')
         print(f"Information Value {cols[17]} = {iv:.6f}")
        Information Value num var4 = 0.486303
In [41]: sum(xTrain.num var4 < 0)</pre>
Out[41]: 0
In [42]: sum(xTrain.num var4 > 5)
```

```
Out[42]: 31
In [43]: # ### Update Variable
         xTrain.num var4[xTrain.num var4 > 5] = 6
In [44]: iv = calculateIV(xTrain, cols[17], 'TARGET')
         print(f"New Information Value {cols[17]} = {iv:.6f}")
       New Information Value num var4 = 0.486303
         2.19 - num var14 0
In [45]: iv = calculateIV(xTrain, cols[18], 'TARGET')
         print(f"Information Value {cols[18]} = {iv:.6f}")
        Information Value num var14 0 = 0.016585
         2.20 - num_var14
In [46]: iv = calculateIV(xTrain, cols[19], 'TARGET')
         print(f"Information Value {cols[19]} = {iv:.6f}")
        Information Value num var14 = 0.002830
         2.21 - num op var41_hace2
In [47]: iv = calculateIV(xTrain, cols[20], 'TARGET')
         print(f"Information Value {cols[20]} = {iv:.6f}")
        Information Value num op var41 hace2 = 0.012525
In [48]: sum(xTrain.num op var41 hace2 < 0)</pre>
Out[48]: 0
In [49]: sum(xTrain.num op var41 hace2 > 129)
Out[49]: 6
In [50]: # ### Update variable
         xTrain.num var4[xTrain.num var4 > 129] = 130
In [51]: iv = calculateIV(xTrain, cols[20], 'TARGET')
         print(f"New Information Value {cols[20]} = {iv:.6f}")
       New Information Value num op var41 hace2 = 0.012525
```

2.22 - num op var41 hace3

```
In [52]: iv = calculateIV(xTrain, cols[21], 'TARGET')
         print(f"Information Value {cols[21]} = {iv:.6f}")
        Information Value num op var41 hace3 = 0.005157
In [53]: sum(xTrain.num op var41 hace3 < 0)</pre>
Out[53]: 0
In [54]: sum(xTrain.num op var41 hace3 > 30)
Out[54]: 17
In [55]: # ### Update variable
         xTrain.num op var41 hace3[xTrain.num op var41 hace3 > 30] = 31
In [56]: iv = calculateIV(xTrain, cols[21], 'TARGET')
         print(f"New Information Value {cols[21]} = {iv:.6f}")
        New Information Value num op var41 hace3 = 0.005157
         2.22 - num op var41 ult1
In [57]: iv = calculateIV(xTrain, cols[22], 'TARGET')
         print(f"Information Value {cols[22]} = {iv:.6f}")
        Information Value num op var41 ult1 = 0.027777
In [58]: sum(xTrain.num op var41 ult1 < 0)</pre>
Out[58]: 0
In [59]: sum(xTrain.num op var41 ult1 > 174)
Out[59]: 12
In [60]: # ### Update variable
         xTrain.num op var41 ult1[xTrain.num op var41 ult1 > 174] = 175
In [61]: iv = calculateIV(xTrain, cols[22], 'TARGET')
         print(f"New Information Value {cols[22]} = {iv:.6f}")
        New Information Value num op var41 ult1 = 0.027777
         2.24 - num_var30_0
In [62]: iv = calculateIV(xTrain, cols[23], 'TARGET')
         print(f"Information Value {cols[23]} = {iv:.6f}")
        Information Value num var30 0 = 0.081388
In [63]: sum(xTrain.num var30 0 < 0)
```

```
Out[63]: 0
In [64]: sum(xTrain.num var30 0 > 114)
Out[64]: 0
         2.25 - num_var30
In [65]: iv = calculateIV(xTrain, cols[24], 'TARGET')
         print(f"Information Value {cols[24]} = {iv:.6f}")
        Information Value num var30 = 0.456831
In [66]: sum(xTrain.num var30 < 0)</pre>
Out[66]: 0
In [67]: sum(xTrain.num var30 > 9)
Out[67]: 30
In [68]: # ### Update variable
         xTrain.num var30[xTrain.num var30 > 9] = 10
In [69]: iv = calculateIV(xTrain, cols[24], 'TARGET')
         print(f"New Information Value {cols[24]} = {iv:.6f}")
        New Information Value num var30 = 0.456831
         2.26 - num_var37_med_ult2
In [70]: iv = calculateIV(xTrain, cols[25], 'TARGET')
         print(f"Information Value {cols[25]} = {iv:.6f}")
        Information Value num var37 med ult2 = 0.002973
In [71]: sum(xTrain.num_var37_med_ult2 < 0)</pre>
Out[71]: 0
In [72]: sum(xTrain.num var37 med ult2 > 39)
Out[72]: 7
In [73]: # ### Update variable
         xTrain.num var37 med ult2[xTrain.num var37 med ult2 > 39] = 40
In [74]: iv = calculateIV(xTrain, cols[25], 'TARGET')
         print(f"New Information Value {cols[25]} = {iv:.6f}")
        New Information Value num var37 med ult2 = 0.002973
```

2.27 - saldo var5

```
In [75]: iv = calculateIV(xTrain, cols[26], 'TARGET')
         print(f"Information Value {cols[26]} = {iv:.6f}")
        Information Value saldo var5 = 0.624786
In [76]: | sum(xTrain.saldo var5 > 137614.62)
Out[76]: 76
In [77]: # ### Update variable
         xTrain.saldo var5[xTrain.saldo var5 > 137614.62] = 137615.00
In [78]: iv = calculateIV(xTrain, cols[26], 'TARGET')
         print(f"New Information Value {cols[26]} = {iv:.6f}")
        New Information Value saldo var5 = 0.624790
         2.28 - saldo var8
In [79]: iv = calculateIV(xTrain, cols[27], 'TARGET')
         print(f"Information Value {cols[27]} = {iv:.6f}")
        Information Value saldo var8 = 0.019079
In [80]: sum(xTrain.saldo var8 > 60098.49)
Out[80]: 15
In [81]: # ### Update variable
         xTrain.saldo_var8[xTrain.saldo_var8 > 60098.49] = 60099.00
In [82]: iv = calculateIV(xTrain, cols[27], 'TARGET')
         print(f"New Information Value {cols[27]} = {iv:.6f}")
        New Information Value saldo var8 = 0.019079
         2.29 - saldo_var12
In [83]: iv = calculateIV(xTrain, cols[28], 'TARGET')
         print(f"Information Value {cols[28]} = {iv:.6f}")
        Information Value saldo var12 = 0.006059
In [84]: sum(xTrain.saldo var12 < 0)</pre>
Out[84]: 0
In [85]: sum(xTrain.saldo var12 > 506413.14)
```

```
Out[85]: 90
In [86]: # ### Update variable
         xTrain.saldo var12[xTrain.saldo var12 > 506413.14] = 506414.00
In [87]: iv = calculateIV(xTrain, cols[28], 'TARGET')
         print(f"New Information Value {cols[28]} = {iv:.6f}")
        New Information Value saldo var12 = 0.006064
         2.30 - saldo var13 corto
In [88]: iv = calculateIV(xTrain, cols[29], 'TARGET')
         print(f"Information Value {cols[29]} = {iv:.6f}")
        Information Value saldo var13 corto = 0.012509
In [89]: sum(xTrain.saldo var13 corto < 0)</pre>
Out[89]: 0
In [90]: sum(xTrain.saldo var13 corto > 309000)
Out[90]: 143
In [91]: # ### Update variable
         xTrain.saldo var13 corto[xTrain.saldo var13 corto > 309000] = 309001
In [92]: iv = calculateIV(xTrain, cols[29], 'TARGET')
         print(f"New Information Value {cols[29]} = {iv:.6f}")
        New Information Value saldo var13 corto = 0.012519
         2.31 - saldo_var13_largo
In [93]: iv = calculateIV(xTrain, cols[30], 'TARGET')
         print(f"Information Value {cols[30]} = {iv:.6f}")
        Information Value saldo var13 largo = 0.000340
         2.32 - saldo_var14
In [94]: iv = calculateIV(xTrain, cols[31], 'TARGET')
         print(f"Information Value {cols[31]} = {iv:.6f}")
        Information Value saldo var14 = 0.002340
```

2.32 - saldo var26

```
In [95]: iv = calculateIV(xTrain, cols[32], 'TARGET')
         print(f"Information Value {cols[32]} = {iv:.6f}")
        Information Value saldo var26 = 0.019929
In [96]: sum(xTrain.saldo var26 < 0)</pre>
Out[96]: 0
In [97]: sum(xTrain.saldo var26 > 10381.29)
Out[97]: 35
In [98]: # ### Update variable
         xTrain.saldo var26[xTrain.saldo var26 > 10381.29] = 10382.00
In [99]: iv = calculateIV(xTrain, cols[32], 'TARGET')
         print(f"Information Value {cols[32]} = {iv:.6f}")
        Information Value saldo var26 = 0.019930
         2.34 - saldo var30
In [100... iv = calculateIV(xTrain, cols[33], 'TARGET')
         print(f"Information Value {cols[33]} = {iv:.6f}")
        Information Value saldo var30 = 0.731987
In [101... sum(xTrain.saldo var30 < -1842)</pre>
Out[101... 1
In [102... sum(xTrain.saldo var30 > 506443.14)
Out[102... 116
In [103... | # ### Update variable
         xTrain.saldo var30[xTrain.saldo var30 > 506443.14] = 506444.00
In [104... iv = calculateIV(xTrain, cols[33], 'TARGET')
         print(f"INew nformation Value {cols[33]} = {iv:.6f}")
        INew nformation Value saldo var30 = 0.731996
         2.35 - saldo_var37
In [105... iv = calculateIV(xTrain, cols[34], 'TARGET')
         print(f"Information Value {cols[34]} = {iv:.6f}")
        Information Value saldo var37 = 0.047156
In [106...] sum(xTrain.saldo var37 < 0)
```

```
Out[106... 0
In [107...] sum(xTrain.saldo_var37 > 21261.09)
Out[107... 5
In [108... # ### Update variable
         xTrain.saldo var37[xTrain.saldo var37 > 21261.09] = 21262.00
In [109... iv = calculateIV(xTrain, cols[34], 'TARGET')
         print(f"New Information Value {cols[34]} = {iv:.6f}")
        New Information Value saldo var37 = 0.047156
         2.36 - var36
In [110... iv = calculateIV(xTrain, cols[35], 'TARGET')
         print(f"Information Value {cols[35]} = {iv:.6f}")
        Information Value var36 = 0.273300
In [111...] sum(xTrain.var36 < 0)
Out[111... 0
In [112...] sum(xTrain.var36 > 99)
Out[112... 0
         2.37 - delta_imp_aport_var13_1y3
In [113... iv = calculateIV(xTrain, cols[36], 'TARGET')
         print(f"Information Value {cols[36]} = {iv:.6f}")
        Information Value delta imp aport var13 1y3 = 0.068473
In [114...] sum(xTrain.var36 < -1)
Out[114... 0
In [115...] sum(xTrain.var36 > 9999999999)
Out[115... 0
         2.38 - imp aport var13 hace3
In [116... iv = calculateIV(xTrain, cols[37], 'TARGET')
         print(f"Information Value {cols[37]} = {iv:.6f}")
        Information Value imp aport var13 hace3 = 0.001126
```

```
In [117... sum(xTrain.imp aport var13 hace3 < 0)</pre>
Out[117... 0
In [118... sum(xTrain.imp aport var13 hace3 > 120000)
Out[118... 528
In [119... # ### Update variable
         xTrain.imp aport var13 hace3[xTrain.imp aport var13 hace3 > 120000] = 120001
In [120... iv = calculateIV(xTrain, cols[37], 'TARGET')
         print(f"New Information Value {cols[37]} = {iv:.6f}")
        New Information Value imp aport var13 hace3 = 0.001302
         2.39 - imp aport var13 ult1
In [121... iv = calculateIV(xTrain, cols[38], 'TARGET')
         print(f"Information Value {cols[38]} = {iv:.6f}")
        Information Value imp aport var13 ult1 = 0.001730
In [122... sum(xTrain.imp aport var13 ult1 < 0)</pre>
Out[122... 0
In [123... sum(xTrain.imp aport var13 ult1 > 51006)
Out[123... 210
In [124... # ### Update variable
         xTrain.imp aport var13 ult1[xTrain.imp aport var13 ult1 > 51006] = 51007
In [125... iv = calculateIV(xTrain, cols[38], 'TARGET')
         print(f"New Information Value {cols[38]} = {iv:.6f}")
        New Information Value imp aport var13 ult1 = 0.001758
         2.40 - imp var43 emit ult1
In [126... iv = calculateIV(xTrain, cols[39], 'TARGET')
         print(f"Information Value {cols[39]} = {iv:.6f}")
        Information Value imp var43 emit ult1 = 0.031154
In [127... sum(xTrain.imp var43 emit ult1 < 0)</pre>
Out[127... 0
In [128... sum(xTrain.imp var43 emit ult1 > 540000)
```

```
In [129... # ### Update variable
         xTrain.imp var43 emit ult1[xTrain.imp var43 emit ult1 > 540000] = 540001.00
In [130... iv = calculateIV(xTrain, cols[39], 'TARGET')
         print(f"New Information Value {cols[39]} = {iv:.6f}")
        New Information Value imp var43 emit ult1 = 0.031154
         2.41 - imp trans var37 ult1
In [131... iv = calculateIV(xTrain, cols[40], 'TARGET')
         print(f"Information Value {cols[40]} = {iv:.6f}")
        Information Value imp trans var37 ult1 = 0.075117
In [132... sum(xTrain.imp trans var37 ult1 < 0)</pre>
Out[132... 0
In [133... sum(xTrain.imp trans var37 ult1 > 483003)
Out[133... 30
In [134... | # ### Update variable
         xTrain.imp trans var37 ult1[xTrain.imp trans var37 ult1 > 483003] = 483004
In [135... iv = calculateIV(xTrain, cols[40], 'TARGET')
         print(f"New Information Value {cols[40]} = {iv:.6f}")
        New Information Value imp trans var37 ult1 = 0.075117
         2.42 - ind var43 emit ult1
In [136... iv = calculateIV(xTrain, cols[41], 'TARGET')
         print(f"Information Value {cols[41]} = {iv:.6f}")
        Information Value ind var43 emit ult1 = 0.001066
         2.43 - ind var43 recib ult1
In [137... iv = calculateIV(xTrain, cols[42], 'TARGET')
         print(f"Information Value {cols[42]} = {iv:.6f}")
        Information Value ind var43 recib ult1 = 0.008613
```

Out[128... 10

2.44 - var21

```
In [138... iv = calculateIV(xTrain, cols[43], 'TARGET')
         print(f"Information Value {cols[43]} = {iv:.6f}")
        Information Value var21 = 0.005521
In [139...] sum(xTrain.var21 < 0)
Out[139... 0
In [140... sum(xTrain.var21 > 7200)
Out[140... 17
In [141... | # ### Update variable
         xTrain.var21[xTrain.var21 > 7200] = 7201
In [142... iv = calculateIV(xTrain, cols[43], 'TARGET')
         print(f"New Information Value {cols[43]} = {iv:.6f}")
        New Information Value var21 = 0.005521
         2.45 - num aport var13 hace3
In [143... iv = calculateIV(xTrain, cols[44], 'TARGET')
         print(f"Information Value {cols[44]} = {iv:.6f}")
        Information Value num aport var13 hace3 = 0.058514
In [144... sum(xTrain.num aport var13 hace3 < 0)</pre>
Out[144... 0
In [145... sum(xTrain.num aport var13 hace3 > 6)
Out[145... 33
In [146... | # ### Update variable
         xTrain.num aport varl3 hace3[xTrain.num aport varl3 hace3 > 6] = 7
In [147... iv = calculateIV(xTrain, cols[44], 'TARGET')
         print(f"New Information Value {cols[44]} = {iv:.6f}")
        New Information Value num aport var13 hace3 = 0.058514
         2.46 - num_ent_var16_ult1
In [148... iv = calculateIV(xTrain, cols[45], 'TARGET')
         print(f"Information Value {cols[45]} = {iv:.6f}")
        Information Value num ent var16 ult1 = 0.005197
In [149... sum(xTrain.num ent var16 ult1 < 0)
```

```
Out[149... 0
In [150... sum(xTrain.num ent var16 ult1 > 15)
Out[150... 15
In [151... # ### Update variable
         xTrain.num ent var16 ult1[xTrain.num ent var16 ult1 > 15] = 16
In [152... iv = calculateIV(xTrain, cols[45], 'TARGET')
         print(f"New Information Value {cols[45]} = {iv:.6f}")
        New Information Value num ent var16 ult1 = 0.005197
         2.47 - num var22 hace2
In [153... iv = calculateIV(xTrain, cols[46], 'TARGET')
         print(f"Information Value {cols[46]} = {iv:.6f}")
        Information Value num var22 hace2 = 0.011273
In [154... sum(xTrain.num var22 hace2 < 0)</pre>
Out[154... 0
In [155...] sum(xTrain.num var22 hace2 > 42)
Out[155... 13
In [156... # ### Update variable
         xTrain.num var22 hace2[xTrain.num var22 hace2 > 42] = 43
In [157... iv = calculateIV(xTrain, cols[46], 'TARGET')
         print(f"New Information Value {cols[46]} = {iv:.6f}")
        New Information Value num var22 hace2 = 0.011273
         2.48 - num_var22_hace3
In [158... iv = calculateIV(xTrain, cols[47], 'TARGET')
         print(f"Information Value {cols[47]} = {iv:.6f}")
        Information Value num_var22_hace3 = 0.006558
In [159... sum(xTrain.num var22 hace3 < 0)</pre>
Out[159... 0
In [160... \text{sum}(\text{xTrain.num var22 hace3} > 33)
Out[160... 19
```

```
In [161... # ### Update variale
         xTrain.num var22 hace3[xTrain.num_var22_hace3 > 33] = 34
In [162... iv = calculateIV(xTrain, cols[47], 'TARGET')
         print(f"New Information Value {cols[47]} = {iv:.6f}")
        New Information Value num var22 hace3 = 0.006558
         2.49 - num var22 ult1
In [163... iv = calculateIV(xTrain, cols[48], 'TARGET')
         print(f"Information Value {cols[48]} = {iv:.6f}")
        Information Value num var22 ult1 = 0.022700
In [164... sum(xTrain.num var22 ult1 < 0)</pre>
Out[164... 0
In [165... sum(xTrain.num var22 ult1 > 42)
Out[165... 4
In [166... # ### Update variable
         xTrain.num var22 ult1[xTrain.num var22 ult1 > 42] = 43
In [167... iv = calculateIV(xTrain, cols[48], 'TARGET')
         print(f"New Information Value {cols[48]} = {iv:.6f}")
        New Information Value num var22 ult1 = 0.022700
         2.50 - num var22 ult3
In [168... iv = calculateIV(xTrain, cols[49], 'TARGET')
         print(f"Information Value {cols[49]} = {iv:.6f}")
        Information Value num var22 ult3 = 0.019781
In [169... sum(xTrain.num var22 ult3 < 0)</pre>
Out[169... 0
In [170... sum(xTrain.num var22 ult3 > 93)
Out[170... 5
xTrain.num var22 ult3[xTrain.num var22 ult3 > 93] = 94
In [172... iv = calculateIV(xTrain, cols[49], 'TARGET')
         print(f"New Information Value {cols[49]} = {iv:.6f}")
```

2.51 - num_med_var45_ult3

Out[181... 0

In [182... sum(xTrain.num op var40 comer ult3 > 48)

```
In [173... iv = calculateIV(xTrain, cols[50], 'TARGET')
         print(f"Information Value {cols[50]} = {iv:.6f}")
        Information Value num med var45 ult3 = 0.031808
In [174... sum(xTrain.num med var45 ult3 < 0)</pre>
Out[174... 0
In [175... sum(xTrain.num med var45 ult3 > 213)
Out[175... 7
In [176... # ### Update variale
         xTrain.num_med_var45_ult3[xTrain.num_med var45 ult3 > 213] = 214
In [177... iv = calculateIV(xTrain, cols[50], 'TARGET')
         print(f"New Information Value {cols[50]} = {iv:.6f}")
        New Information Value num med var45 ult3 = 0.031808
         2.52 - num meses var8 ult3
In [178... iv = calculateIV(xTrain, cols[51], 'TARGET')
         print(f"Information Value {cols[51]} = {iv:.6f}")
        Information Value num meses var8 ult3 = 0.021439
         2.53 - num_meses var39 vig ult3
In [179... iv = calculateIV(xTrain, cols[52], 'TARGET')
         print(f"Information Value {cols[52]} = {iv:.6f}")
        Information Value num meses var39 vig ult3 = 0.065318
         2.54 - num op var40 comer ult3
In [180... iv = calculateIV(xTrain, cols[53], 'TARGET')
         print(f"Information Value {cols[53]} = {iv:.6f}")
        Information Value num op var40 comer ult3 = 0.004942
In [181... sum(xTrain.num op var40 comer ult3 < 0)</pre>
```

```
In [183... # ### Update variale
         xTrain.num op var40 comer ult3[xTrain.num op var40 comer ult3 > 48] = 49
In [184... iv = calculateIV(xTrain, cols[53], 'TARGET')
         print(f"New Information Value {cols[53]} = {iv:.6f}")
        New Information Value num op var40 comer ult3 = 0.004944
         2.55 - num op var41 efect ult1
In [185... iv = calculateIV(xTrain, cols[54], 'TARGET')
         print(f"Information Value {cols[54]} = {iv:.6f}")
        Information Value num op var41 efect ult1 = 0.020994
In [186... sum(xTrain.num op var41 efect ult1 < 0)</pre>
Out[186... 0
In [187... sum(xTrain.num op var41 efect ult1 > 57)
Out[187... 10
In [188... | # ### Update variable
         xTrain.num op var41 efect ult1[xTrain.num op var41 efect ult1 > 57] = 58
In [189... iv = calculateIV(xTrain, cols[54], 'TARGET')
         print(f"New Information Value {cols[54]} = {iv:.6f}")
        New Information Value num op var41 efect ult1 = 0.020994
         2.56 - num var43 emit ult1
In [190... iv = calculateIV(xTrain, cols[55], 'TARGET')
         print(f"Information Value {cols[55]} = {iv:.6f}")
        Information Value num var43 emit ult1 = 0.004909
In [191... sum(xTrain.num var43 emit ult1 < 0)</pre>
Out[191... 0
In [192... sum(xTrain.num var43 emit ult1 > 24)
Out[192... 68
In [193... # ### Update variable
         xTrain.num var43 emit ult1[xTrain.num var43 emit ult1 > 24] = 25
```

Out[182... 46

```
In [194... iv = calculateIV(xTrain, cols[55], 'TARGET')
         print(f"New Information Value {cols[55]} = {iv:.6f}")
        New Information Value num var43 emit ult1 = 0.004912
         2.57 - num var43 recib ult1
In [195... iv = calculateIV(xTrain, cols[56], 'TARGET')
         print(f"Information Value {cols[56]} = {iv:.6f}")
        Information Value num var43 recib ult1 = 0.010229
In [196... sum(xTrain.num var43 recib ult1 < 0)</pre>
Out[196... 0
In [197... sum(xTrain.num var43 recib ult1 > 30)
Out[197... 116
In [198... # ### Update variale
         xTrain.num var43 recib ult1[xTrain.num var43 recib ult1 > 30] = 31
In [199... iv = calculateIV(xTrain, cols[56], 'TARGET')
         print(f"New Information Value {cols[56]} = {iv:.6f}")
        New Information Value num var43 recib ult1 = 0.010237
         2.58 - num trasp var11 ult1
In [200... iv = calculateIV(xTrain, cols[57], 'TARGET')
         print(f"Information Value {cols[57]} = {iv:.6f}")
        Information Value num trasp var11 ult1 = 0.004968
In [201... sum(xTrain.num trasp var11 ult1 < 0)</pre>
Out[201... 0
In [202... sum(xTrain.num trasp var11 ult1 > 18)
Out[202... 38
In [203... | # ### Update variable
         xTrain.num_trasp_var11_ult1[xTrain.num_trasp_var11_ult1 > 18] = 19
In [204... iv = calculateIV(xTrain, cols[57], 'TARGET')
         print(f"New Information Value {cols[57]} = {iv:.6f}")
        New Information Value num trasp var11 ult1 = 0.004969
```

2.59 - num var45 hace3

```
In [205... iv = calculateIV(xTrain, cols[58], 'TARGET')
         print(f"Information Value {cols[58]} = {iv:.6f}")
        Information Value num var45 hace3 = 0.026794
In [206... sum(xTrain.num var45 hace3 < 0)</pre>
Out[206... 0
In [207... sum(xTrain.num var45 hace3 > 330)
Out[207... 2
In [208... # ### Update variable
         xTrain.num var45 hace3[xTrain.num var45 hace3 > 330] = 331
In [209... iv = calculateIV(xTrain, cols[58], 'TARGET')
         print(f"New Information Value {cols[58]} = {iv:.6f}")
        New Information Value num var45 hace3 = 0.026794
         2.60 - saldo medio var5 hace2
In [210... iv = calculateIV(xTrain, cols[59], 'TARGET')
         print(f"Information Value {cols[59]} = {iv:.6f}")
        Information Value saldo medio var5 hace2 = 0.774489
In [211... sum(xTrain.saldo medio var5 hace2 < -47.13)</pre>
Out[211... 1
In [212... sum(xTrain.saldo medio var5 hace2 > 165500.01)
Out[212... 63
In [213... # ### Update variable
         xTrain.saldo medio var5 hace2[xTrain.saldo medio var5 hace2 < -47.13] = -48
         xTrain.saldo medio var5 hace2[xTrain.saldo medio var5 hace2 > 165500.01] = 1
In [214... iv = calculateIV(xTrain, cols[59], 'TARGET')
         print(f"New Information Value {cols[59]} = {iv:.6f}")
        New Information Value saldo medio var5 hace2 = 0.774492
         2.61 - saldo_medio_var5_hace3
In [215... iv = calculateIV(xTrain, cols[60], 'TARGET')
         print(f"Information Value {cols[60]} = {iv:.6f}")
```

Information Value saldo medio var5 hace3 = 0.534761

```
In [216... sum(xTrain.saldo medio var5 hace3 < -8.04)
Out[216... 0
In [217... sum(xTrain.saldo medio var5 hace3 > 16935.48)
Out[217... 815
In [218... # ### Update variable
         xTrain.saldo medio var5 hace3[xTrain.saldo medio var5 hace3 > 16935.48] = 16
In [219... iv = calculateIV(xTrain, cols[60], 'TARGET')
         print(f"New Information Value {cols[60]} = {iv:.6f}")
        New Information Value saldo medio var5 hace3 = 0.535199
         2.62 - saldo medio var5 ult3
In [220... iv = calculateIV(xTrain, cols[61], 'TARGET')
         print(f"Information Value {cols[61]} = {iv:.6f}")
        Information Value saldo medio var5 ult3 = 0.724707
In [221... sum(xTrain.saldo medio var5 ult3 > 108250.020000)
Out[221... 51
In [222... xTrain.saldo medio var5 ult3[xTrain.saldo medio var5 ult3 > 108250.02] = 108
In [223... iv = calculateIV(xTrain, cols[61], 'TARGET')
         print(f"New Information Value {cols[61]} = {iv:.6f}")
        New Information Value saldo medio var5 ult3 = 0.724708
         2.63 - saldo medio var8 hace2
In [224... iv = calculateIV(xTrain, cols[62], 'TARGET')
         print(f"Information Value {cols[62]} = {iv:.6f}")
        Information Value saldo medio var8 hace2 = 0.006799
In [225... sum(xTrain.saldo medio var8 hace2 > 6570.360000)
Out [225... 121
In [226... | # ### Update variable
         xTrain.saldo medio var8 hace2[xTrain.saldo medio var8 hace2 > 6570.36] = 657
In [227... iv = calculateIV(xTrain, cols[62], 'TARGET')
         print(f"New Information Value {cols[62]} = {iv:.6f}")
        New Information Value saldo medio var8 hace2 = 0.006809
```

2.64 - saldo medio var8 hace3

```
In [228... iv = calculateIV(xTrain, cols[63], 'TARGET')
         print(f"Information Value {cols[63]} = {iv:.6f}")
        Information Value saldo medio var8 hace3 = 0.008360
In [229... sum(xTrain.saldo_medio_var8_hace3 > 1414.350000 )
Out[229... 47
In [230... xTrain.saldo medio var8 hace3[xTrain.saldo medio var8 hace3 > 1414.35] = 141
In [231... iv = calculateIV(xTrain, cols[63], 'TARGET')
         print(f"New Information Value {cols[63]} = {iv:.6f}")
        New Information Value saldo medio var8 hace3 = 0.008361
         2.65 - saldo_medio_var12_hace3
In [232... iv = calculateIV(xTrain, cols[64], 'TARGET')
         print(f"Information Value {cols[64]} = {iv:.6f}")
        Information Value saldo medio var12 hace3 = 0.001611
In [233... sum(xTrain.saldo medio var12 hace3 > 95815.950000
Out[233... 115
In [234... xTrain.saldo medio var12_hace3[xTrain.saldo_medio_var12_hace3 > 95815.95] =
In [235... | iv = calculateIV(xTrain, cols[64], 'TARGET')
         print(f"New Information Value {cols[64]} = {iv:.6f}")
        New Information Value saldo medio var12 hace3 = 0.001619
         2.66 - saldo medio var13 corto hace3
In [236... iv = calculateIV(xTrain, cols[65], 'TARGET')
         print(f"Information Value {cols[65]} = {iv:.6f}")
        Information Value saldo medio var13 corto hace3 = 0.003245
In [237... | sum(xTrain.saldo medio var13 corto hace3 > 12413.790000)
Out[237... 568
In [238... # ### Update variable
         xTrain.saldo medio var13 corto hace3[xTrain.saldo medio var13 corto hace3 >
```

```
print(f"New Information Value {cols[65]} = {iv:.6f}")
        New Information Value saldo medio var13 corto hace3 = 0.003458
         2.67 - saldo medio var13 largo hace2
In [240... iv = calculateIV(xTrain, cols[66], 'TARGET')
         print(f"Information Value {cols[66]} = {iv:.6f}")
        Information Value saldo medio var13 largo hace2 = 0.000051
In [241... sum(xTrain.saldo medio var13 largo hace2 > 0
Out[241... 383
In [242... # ### Update variable
         xTrain.saldo medio var13 largo hace2[xTrain.saldo medio var13 largo hace2 >
In [243... iv = calculateIV(xTrain, cols[66], 'TARGET')
         print(f"New Information Value {cols[66]} = {iv:.6f}")
        New Information Value saldo medio var13 largo hace2 = 0.000147
         2.68 - var38
In [244... iv = calculateIV(xTrain, cols[67], 'TARGET')
         print(f"Information Value {cols[67]} = {iv:.6f}")
        Information Value var38 = 0.167440
In [245...] sum(xTrain.var38 < 11136.63)
Out[245... 10
In [246...] sum(xTrain.var38 > 3988595.1)
Out[246... 17
In [247... # ### Update variable
         xTrain.var38[xTrain.var38 < 11136.63] = 11135.00
         xTrain.var38[xTrain.var38 > 3988595.1] = 3988596.00
In [248... iv = calculateIV(xTrain, cols[67], 'TARGET')
         print(f"New Information Value {cols[67]} = {iv:.6f}")
        New Information Value var38 = 0.167441
```

In [239... iv = calculateIV(xTrain, cols[65], 'TARGET')

3.0 - Insights

Missing/garbage value treatment

Iremos ajustar os valores da variável var3, para isso vamos fazer a substituição dos valores -99999 para o valor que mais se repete na variável

```
In [249... df = xTrain.copy()
    df.var3 = df.var3.replace(-999999,2)
```

Iremos criar o pipeline para fazer o tratamento dessa variável

```
In [250... class gabargaValueTreatment(BaseEstimator, TransformerMixin):
    def fit(self,df, y=None):
        return self
    def transform(self,df, y=None):
        df.var3 = df.var3.replace(-999999,2)
        return df
In [251... steps = []
```

```
In [251... steps = []
steps.append(('GarbageTreatment', gabargaValueTreatment()))
```

4.0 - Feature Engineering

Iremos adicionar ao pipeline o tratmento dos valores das variáveis e criação de novas variáveis.

```
In [252... class FeatureEngineering(BaseEstimator, TransformerMixin):
             def fit(self,df, y=None):
                 return self
             def transform(self, df, y=None):
                 df['num zeros'] = (df == 0).sum(axis=1)
                 df['num nonzeros'] = (df != 0).sum(axis=1)
                 # ### Feature tratament
                 df.var15[df.var15 < 23] = 22
                 df.var15[df.var15 > 102] = 103
                 df.imp ent var16 ult1[df.imp ent var16 ult1 > 51003] = 51004
                 df.imp op var40 comer ult3[df.imp op var40 comer ult3 > 3639.87] = 3
                 df.imp_op_var41_efect_ult1[df.imp_op_var41_efect_ult1 > 13110] = 131
                 df.num var4[df.num var4 > 5] = 6
                 df.num_var4[df.num_var4 > 129] = 130
                 df.num op var41 hace3[df.num op var41 hace3 > 30] = 31
                 df.num op var41 ult1[df.num op var41 ult1 > 174] = 175
                 df.num var30[df.num var30 > 9] = 10
```

```
df.num var37 med ult2[df.num var37 med ult2 > 39] = 40
                  df.saldo var5[df.saldo var5 > 137614.62] = 137615.00
                  df.saldo var8[df.saldo var8 > 60098.49] = 60099.00
                  df.saldo var12[df.saldo var12 > 506413.14] = 506414.00
                  df.saldo var13 corto[df.saldo var13 corto > 309000] = 309001
                  df.saldo var26[df.saldo var26 > 10381.29] = 10382.00
                  df.saldo var30[df.saldo var30 > 506443.14] = 506444.00
                  df.saldo var37[df.saldo var37 > 21261.09] = 21262.00
                  df.imp aport var13 hace3[df.imp aport var13 hace3 > 120000] = 120001
                  df.imp aport var13 ult1[df.imp aport var13 ult1 > 51006] = 51007
                  df.imp var43 emit ult1[df.imp var43 emit ult1 > 540000] = 540001.00
                  df.imp trans var37 ult1[df.imp trans var37 ult1 > 483003] = 483004
                  df.var21[df.var21 > 7200] = 7201
                  df.num aport var13 hace3[df.num aport var13 hace3 > 6] = 7
                  df.num ent var16 ult1[df.num ent var16 ult1 > 15] = 16
                  df.num var22 hace2[df.num var22 hace2 > 42] = 43
                  df.num var22 hace3[df.num var22 hace3 > 33] = 34
                  df.num \ var22 \ ult1[df.num \ var22 \ ult1 > 42] = 43
                  df.num \ var22 \ ult3[df.num \ var22 \ ult3 > 93] = 94
                  df.num med var45 ult3[df.num med var45 ult3 > 213] = 214
                  df.num op var40 comer ult3[df.num op var40 comer ult3 > 48] = 49
                  df.num op var41 efect ult1[df.num op var41 efect ult1 > 57] = 58
                  df.num var43 emit ult1[df.num var43 emit ult1 > 24] = 25
                  df.num var43 recib ult1[df.num var43 recib ult1 > 30] = 31
                  df.num trasp varl1 ult1[df.num trasp varl1 ult1 > 18] = 19
                  df.num var45 hace3[df.num var45 hace3 > 330] = 331
                  df.saldo medio var5 hace2[df.saldo medio var5 hace2 < -47.13] = -48
                  df.saldo medio var5 hace2[df.saldo medio var5 hace2 > 165500.01] = 1
                  df.saldo medio var5 hace3[df.saldo medio var5 hace3 > 16935.48] = 16
                  df.saldo medio var5 ult3[df.saldo medio var5 ult3 > 108250.02] = 108
                  df.saldo medio var8 hace2[df.saldo medio var8 hace2 > 6570.36] = 657
                  df.saldo medio var8 hace3[df.saldo medio var8 hace3 > 1414.35] = 141
                  df.saldo medio var12 hace3[df.saldo medio var12 hace3 > 95815.95] =
                  df.saldo medio varl3 corto hace3[df.saldo medio varl3 corto hace3 >
                  df.var38[df.var38 < 11136.63] = 11135.00
                  df.var38[df.var38 > 3988595.1] = 3988596.00
                  return df
In [253... | steps.append(('FeatureEngineering', FeatureEngineering()))
In [254... steps
Out[254... [('GarbageTreatment', gabargaValueTreatment()),
           ('FeatureEngineering', FeatureEngineering())]
In [255... pipe preprocessor = Pipeline(steps)
         pipe preprocessor
```

5.0 - Aplicando o pipeline no dataset

```
In [256... dfTrain = pd.read_csv('train_clear.csv')
   yTrain = dfTrain.TARGET
   dfTrain = dfTrain.drop(labels=['TARGET'], axis=1)

   dfVal = pd.read_csv('val_clear.csv')
   yVal = dfVal.TARGET
   dfVal = dfVal.drop(labels=['TARGET'], axis=1)

   dfTest = pd.read_csv('teste_clear.csv')

In [257... dfTrain = pipe_preprocessor.transform(dfTrain)
   dfVal = pipe_preprocessor.transform(dfVal)
   dfTest = pipe_preprocessor.transform(dfTest)
In [258... dfTrain['TARGET'] = yTrain
   dfVal['TARGET'] = yVal
```

5.1 - Checando a importância das variáveis

```
In [259... model = RandomForestClassifier()
    model.fit(dfTrain.drop(labels=['TARGET'], axis = 1), dfTrain.TARGET)

# Get importance
importance = model.feature_importances_

# ### Plot
sorted_idx = importance.argsort()[-30:]
plt.barh(dfTrain.drop(labels=['TARGET'], axis = 1).columns[sorted_idx], importance]

Out[259... Text(0.5, 0, 'Random Forest Feature Importance')
```



```
In [260... model = XGBClassifier()
model.fit(dfTrain.drop(labels=['TARGET'], axis = 1), dfTrain.TARGET)

# ### Get importance
importance = model.feature_importances_

# ### Plot
sorted_idx = importance.argsort()[-30:]
plt.barh(dfTrain.drop(labels=['TARGET'], axis = 1).columns[sorted_idx], importance]
plt.xlabel("Random Forest Feature Importance")
```

Out[260... Text(0.5, 0, 'Random Forest Feature Importance')


```
In [261... # ### Save new data
    dfTrain.to_csv('train_feeng.csv', encoding='utf-8', index=False)
    dfVal.to_csv('val_feeng.csv', encoding='utf-8', index=False)
    dfTest.to_csv('test_feeng.csv', encoding='utf-8', index=False)
In []:
```