Suites et Séries – TD₈ 31 octobre - 1 novembre 2021

Exercice 1. (Nature de séries à termes quelconques)

Donner la nature de la série $\sum u_n$, avec :

$$1. \ u_n = \frac{(-1)^n}{\ln(n)}$$

3.
$$u_n = \sqrt{1 + \frac{(-1)^n}{\sqrt{n}}} - 1$$

3.
$$u_n = \sqrt{1 + \frac{(-1)^n}{\sqrt{n}}} - 1$$
 5. $u_n = \frac{1! - 2! + 3! - \dots + (-1)^{n-1} n!}{(n+1)!}$

2.
$$u_n = \frac{1 + (-1)^n \sqrt{n}}{n}$$

2.
$$u_n = \frac{1 + (-1)^n \sqrt{n}}{n}$$
 4. $u_n = \ln\left(1 + \frac{(-1)^n}{n^\alpha}\right)$ 6. $u_n = \frac{1}{n^s}$ où $s \in \mathbb{C}$

6.
$$u_n = \frac{1}{n^s}$$
 où $s \in \mathbb{C}$

Exercice 2. (Avec calcul de somme)

- 1. Montrer que la série $\sum \frac{(-1)^{n-1}}{n}$ est convergente.
- 2. En utilisant le développement asymptotique de la série harmonique, calculer

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$$

3. Montrer que la série $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ converge et calculer sa somme.

Exercice 3. (Produit de Cauchy)

- 1. Montrer que le produit de Cauchy de $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ par elle-même diverge.
- 2. Pour un nombre complexe z tel que |z| < 1, calculer $\sum_{n=1}^{+\infty} nz^n$ et $\sum_{n=1}^{+\infty} n^2z^n$. (Il faut d'abord justifier l'existence de ces deux sommes)

Exercice 4. (Exercice de synthèse)

On considère la suite définie par :

$$\forall n \in \mathbb{N}^* \setminus \{1\}, \ u_n = \frac{(-1)^{n+1}}{n^{\alpha} + (-1)^n}.$$

- 1. Étudier, suivant la valeur de α , la nature de la série $\sum u_n$.
- 2. Pour $\alpha = 1$, donner un équivalent de $R_n(u)$.

Exercice 5. (Sommation par paquets)

Étudier la nature de la série $\sum_{n} u_n$ avec

$$u_n = \frac{(-1)^n}{\ln(n) + \sin(2n\pi/3)}.$$

Indication: faire une sommation par paquets de longueur 3.

Exercice 6. (Une inégalité célèbre)

1. Soit $n \in \mathbb{N}^*$, $(a_1, \ldots, a_n) \in \mathbb{R}^n$ et $(b_1, \ldots, b_n) \in \mathbb{R}^n$. On a :

$$\left| \sum_{k=1}^n a_k b_k \right| \leqslant \sqrt{\sum_{k=1}^n a_k^2} \sqrt{\sum_{k=1}^n b_k^2}$$

Quel est le nom de cette inégalité?

- 2. Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de réels strictements positifs. Pour $n\in\mathbb{N}^*$, on pose $v_n=\frac{1}{n^2u_n}$. Montrer que si $\sum_n u_n$ converge, alors $\sum_n v_n$ diverge.
- 3. Étudier le cas où $\sum_{n} u_n$ diverge.

Exercice 7. (Famille sommable)

Les trois questions sont indépendantes.

1. Démontrer que la famille suivante n'est pas sommable :

$$(a_{n,p})_{(n,p)\in\mathbb{N}^2}, \ a_{n,p} = \frac{1}{n^2 - p^2} \text{ si } n \neq p \text{ et } a_{n,n} = 0$$

2. Montrer l'existence et calculer la valeur de la somme :

$$\sum_{(p,q)\in\mathbb{N}\times\mathbb{N}^*} \frac{1}{(p+q^2)(p+q^2+1)}$$

3. Montrer que la famille $\left(\frac{1}{x^2}\right)_{x\in\mathbb{Q}\cap[1,+\infty[}$ n'est pas sommable.