MATH2001 (Basic Analysis)

Memo of Quiz 3.1 September 2020

Question 1.1: [2 marks]

Which one of the following statements is true?

- A. The series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$ converges.
- B. The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ diverges.
- C. Every convergent series is absolutely convergent.
- D. The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- E. None of these.

Answer: D.

Question 1.2: [2 marks]

Which one of the following statements is true?

- A. The series $\sum_{n=1}^{\infty} n \sin\left(\frac{1}{n}\right)$ converges.
- B. The series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges.
- C. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is absolutely convergent.
- D. If $\lim_{n\to\infty} \sum_{k=1}^n a_k \neq 0$, then the series $\sum_{n=1}^\infty a_n$ diverges.
- E. None of these.

Answer: E.

Question 1.3: [2 marks]

Which one of the following statements is true?

- A. If $a_n \to 0$ as $n \to \infty$, then the series $\sum_{n=1}^{\infty} a_n$ converges.
- B. The series $\sum_{n=1}^{\infty} \frac{n^2 1}{n 50n^2}$ is absolutely convergent.
- C. The series $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges.
- D. The series $\sum_{n=1}^{\infty} (-1)^{n+1}$ converges.
- E. None of these.

Answer: C.

Question 1.4: [2 marks]

Which one of the following statements is true?

- A. The series $\sum_{n=1}^{\infty} n^2$ converges.
- B. If the series $\sum_{n=1}^{\infty} a_n$ diverges, then $a_n \not\to 0$ as $n \to \infty$.
- C. The series $\sum_{n=1}^{\infty} (-1)^n$ converges.
- D. The series $\sum_{n=1}^{\infty} \frac{-n}{2n+5}$ is absolutely convergent.
- E. None of these.

Answer: E.

Question 2.1:

[2 marks]

 $1 + \frac{3}{100} + \frac{9}{100^2} + \frac{27}{100^3} + \dots =$

- A. $\frac{100}{97}$.
- B. $\frac{97}{100}$.
- C. $\frac{3}{97}$.
- D. $\frac{97}{3}$.

E. None of these.

Answer: A. $1 + \frac{3}{100} + \frac{9}{100^2} + \frac{27}{100^3} + \dots = \sum_{n=0}^{\infty} \left(\frac{3}{100}\right)^n = \frac{1}{1 - \left(\frac{3}{100}\right)} = \frac{100}{97}$.

Question 2.2: [2 marks]

$$1 + \frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \dots =$$

- A. $\frac{3}{2}$.
- B. $\frac{2}{3}$.
- C. $\frac{3}{5}$.
- D. $\frac{5}{3}$.

E. None of these.

Answer: D. $1 + \frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \dots = \sum_{n=0}^{\infty} \left(\frac{2}{5}\right)^n = \frac{1}{1 - \left(\frac{2}{5}\right)} = \frac{5}{3}.$

Question 3.1: [2 marks]

Which one of the statements A - D is false? If none, choose E.

- A. The series $\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}n}{3n-2} \right)^{2n}$ converges.
- B. The series $\sum_{n=1}^{\infty} \frac{(n+1)^n}{(n!)^2}$ converges.
- C. The series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$ converges.
- D. The series $\sum_{n=1}^{\infty} \frac{2^n + 1}{3^n}$ converges.
- E. None of these.

Answer: C. $\lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right)^n = e^{-1} \neq 0 \implies \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n \text{ diverges }.$

Question 3.2: [2 marks]

Which one of the statements A - D is false? If none, choose E.

- A. The series $\sum_{n=1}^{\infty} (-1)^{n+1} \left(e^2 \left(1 + \frac{2}{n} \right)^n \right)$ converges.
- B. The series $\sum_{n=1}^{\infty} \frac{(n+1)!3^n}{(2n)!}$ converges.
- C. The series $\sum_{n=1}^{\infty} \left(\frac{n+1}{n} \right)^n$ diverges.
- D. The series $\sum_{n=1}^{\infty} \frac{3^n 1}{4^n}$ diverges.
- E. None of these.

Answer: D. $\sum_{n=1}^{\infty} \frac{3^n - 1}{4^n} = \sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n - \sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^n$, a combination of two convergent series.

Question 4.1: [4 marks]

The radius *R* and the interval of convergence *I* of the series $\sum_{n=1}^{\infty} \frac{(3x+1)^{n+1}}{2n+2}$ are:

A.
$$R = \frac{1}{3} \text{ and } I = \left(-\frac{2}{3}, 0\right)$$
.

B.
$$R = \frac{1}{3} \text{ and } I = \left(-\frac{2}{3}, 0\right].$$

C.
$$R = \frac{1}{3} \text{ and } I = \left[-\frac{2}{3}, 0 \right].$$

D.
$$R = \frac{1}{3} \text{ and } I = \left[-\frac{2}{3}, 0 \right).$$

E. None of these.

Answer: D.
$$\frac{(3x+1)^{n+1}}{2n+2} = \frac{3^{n+1}\left(x+\frac{1}{3}\right)^{n+1}}{2n+2} \implies a_n = \frac{3^{n+1}}{2n+2}.$$

$$R = \lim_{n \to \infty} \frac{3^{n+1}}{2n+2} \cdot \frac{2n+4}{3^{n+2}} = \lim_{n \to \infty} \frac{2n+4}{3(2n+2)} = \frac{1}{3}$$
 is the radius of convergence.

The series converges over $-\frac{1}{3} < x + \frac{1}{3} < \frac{1}{3}$, that is, $-\frac{2}{3} < x < 0$.

For x = 0, the series is the harmonic series $\sum_{n=1}^{\infty} \frac{1}{2n+2}$, which diverges, and for $x = -\frac{2}{3}$, the series is the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+2}$, which converges. Hence the interval of convergence is $I = \left[-\frac{2}{3}, 0 \right]$.

Question 4.2: [4 marks]

The radius *R* and the interval of convergence *I* of the series $\sum_{n=1}^{\infty} \frac{(5x+3)^{n+1}}{2n+1}$ are:

A.
$$R = \frac{1}{5}$$
 and $I = \left(-\frac{4}{5}, -\frac{2}{5}\right)$.

B.
$$R = \frac{1}{5}$$
 and $I = \left[-\frac{4}{5}, -\frac{2}{5} \right]$.

C.
$$R = \frac{1}{5}$$
 and $I = \left(-\frac{4}{5}, -\frac{2}{5}\right]$.

D.
$$R = \frac{1}{5} \text{ and } I = \left[-\frac{4}{5}, -\frac{2}{5} \right].$$

E. None of these.

Answer: B.
$$\frac{(5x+3)^{n+1}}{2n+1} = \frac{5^{n+1}\left(x+\frac{3}{5}\right)^{n+1}}{2n+1} \implies a_n = \frac{5^{n+1}}{2n+1}$$
.

$$R = \lim_{n \to \infty} \frac{5^{n+1}}{2n+1} \cdot \frac{2n+3}{5^{n+2}} = \lim_{n \to \infty} \frac{2n+3}{5(2n+1)} = \frac{1}{5}$$
 is the radius of convergence.

The series converges over
$$-\frac{1}{5} < x + \frac{3}{5} < \frac{1}{5}$$
, that is, $-\frac{4}{5} < x < -\frac{2}{5}$.

For $x = -\frac{4}{5}$, the series is the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1}$, which converges,

and for $x = -\frac{2}{5}$, the series is the harmonic series $\sum_{n=1}^{\infty} \frac{1}{2n+1}$, which diverges. Hence the

interval of convergence is $I = \left[-\frac{4}{5}, -\frac{2}{5} \right]$.

Total: 10 marks