FIG.1

Demand (kW)

10010sca feat

FIG.2

FIG.3

ime zone

FIG.4

FIG.5

6/11

Electricity consumption (kWh/h)

Time zone

FIG.7

Electricity consumption (kWh/h)

FIG.8

System flow from setting up to storage system operation of electric energy

Demand (kW)

 $0\sim$ 1 o,clock 23~24 o'clock 22~23 o'clock 21~22 o'clock $50\sim51$ o,cjock $19\sim 20$ o'clock $18\sim19$ o,cjock $17\sim18$ o'clock $19 \sim 11$ o,clock $12\sim16$ o'clock 14~12 o,cjock $13\sim14$ o,cjock $15\sim13$ o,clock $11\sim12$ o,cjock $10\sim11$ o,cjock $9\sim10$ o,cjock 8~9 o,cjock $7\sim8$ o'clock e^{-1} o'clock $2\sim$ 6 o'clock $\tau \sim 2$ 0,cjock 3~₹ 0,сјоск $2\sim3$ o'clock $J \sim S \circ C J \circ C K$

FIG.9

FIG.10

ime zone

FIG.11 summer) electricity consumption (weekday in Before introducing NAS After introducing NAS of the maximum Discharge on the day 1600kW Reduction to 900kW Running Pattern Present demand 0 400 200 009 800 1600 1400 1200 1000 1800

Demand (kW)

 $0\sim1$ o,cjock 23~24 o'clock 22~23 o'clock $51\sim55$ o,cjock S0~S1 o,clock 19~20 o'clock $18\sim19$ o,cjock $11\sim18$ o,cjock $19 \sim 11$ o, clock $12\sim16$ o'clock 14 \sim 12 o,clock $13\sim14$ o,clock $15\sim13$ o,cjock $11\sim12$ o'clock $10\sim11$ o,cjock $9\sim10$ o,cjock 8~9 o,cjock $7\sim8$ o'clock $6\sim$ 7 o'clock $2\sim6$ o'clock **₹~2** 0,cjocjk 3~₹ 0,0000к $5\sim3$ o, Googk $1\sim$ S o'clock

Time zone