

第8章硬件技术

学习任务

本章主要涉及:

- 1 微电子机械系统(MEMS)
- 2 移动设备内置传感器硬件平台
- 3 数字化传感器及网络接口技术

8.1 微电子机械系统(MEMS)

- · 微电子机械系统(Micro Electro Mechanical System)简称MEMS,是集微型机构、微型传感器、微型执行器以及信号处理控制电路、接口、电源等于一体的机械装置。
- 它将自然界各种物理量,如声、光、压力、加速度、温度以及生物、化学物质的浓度信息转化为电信号,并将电信号送入微处理器得到指令,指令被随即发送到微执行器上,对自然界的变化做出相应反应。

并作并并

8.1.1 MEMS简介

- MEMS在美国称为微机电系统,在日本被称为微机械,在欧洲被称为微系统,
- 它是指可批量制作的,集微型机构、微型传感器、 微型执行器以及信号处理和控制电路、直至接口、 通信和电源等于一体的微型器件或系统。

微电子机械系统(MEMS)

8.1.1 MEMS简介

- 微电子机械系统不但能够采集、处理与发送信息 或指令,还能够按照所获取的信息自主地或根据 外部指令采取行动。
- 它用微电子技术和微加工技术(包括硅体微加工、 硅表面微加工、LIGA和晶片键合等技术)相结合 的制造工艺,制造出各种性能优异、价格低廉、 微型化的传感器、执行器、驱动器和微系统。

- 完整的MEMS是由微传感器、微执行器、信号 处理和控制电路、通讯接口和电源等部件组成 的一体化的微型器件系统。
- 其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。

- MEMS第一轮商业化浪潮始于20世纪70年代末80年代初,当时用大型蚀刻硅片结构和背蚀刻膜片制作压力传感器。
- 由于薄硅片振动膜在压力下变形,会影响其表面的压敏电阻曲线,这种变化可以把压力转换成电信号。
- 后来的电路则包括电容感应移动质量加速计,用于触发汽车安全气囊和定位陀螺仪。

- 第二轮商业化出现于20世纪90年代,主要围绕着PC和信息技术的兴起。TI公司根据静电驱动斜微镜阵列推出了投影仪,而热式喷墨打印头现在仍然大行其道。
- 第三轮商业化可以说出现于世纪之交,微光学器件通过全光开关及相关器件而成为光纤通讯的补充。尽管该市场现在萧条,但微光学器件从长期看来将是MEMS一个增长强劲的领域。

- 目前MEMS产业呈现的新趋势是产品应用的扩展,其开始向工业、医疗、测试仪器等新领域扩张。
- 推动第四轮商业化的其它应用包括一些面向射频无源元件、在硅片上制作的音频、生物和神经元探针,以及所谓的'片上实验室'生化药品开发系统和微型药品输送系统的静态和移动器件。

- MEMS用于取代现有仪器或系统中的元器件, 最终发展方向是取代现有大系统的集成微光机 电系统(Micro Optical Electro Mechanical System, MOEMS)。
- MEMS目前主要应用在微机械元器件制造、信息、汽车工业、生物医学工程、航空航天、国防军事等多个领域。

(1) 微机械元器件制造领域

微马达、微镊子、微齿轮、微开关、微电感、微透镜阵列、微射流器件等,它可使现有仪器设备体积更小、重量更轻、能耗更低、可靠性更高。

(2) 信息领域

硬盘、光盘读写头、喷墨打印头,光开关、光衰减器、光滤波器、射频开关、射频移相器、数字微镜器件(digital mirror device, DMD)、蜂窝电话元器件等都已采用MEMS技术制造。

(3) 汽车工业

汽车上用于保护驾驶员安全的安全气囊是最成 熟的MEMS系统。此外,汽车上的压力传感器、 废气传感器、碰撞传感器、电喷控制、空气流量 传感器和陀螺等也应用了MEMS技术。

(4) 生物医学工程

MEMS技术还可用于制造药物输出系统,如微 泵、微阀、药物喷雾器等。同时,血压传感器、 血糖分析传感器、生物芯片、心脏起搏器和植入 式微系统等均在研发中。

(5) 航空航天领域

微陀螺、微加速度计、用于姿态控制的微推进系统、微机械红外非制冷成像系统、微飞行器和微(纳、皮)卫星等仪器中也有所应用。

(6) 国防军事领域

化学武器识别系统、武器安全引爆系统、敌我识别系统、用于地雷探索的磁强传感器,智能炮弹、导弹和微型侦察机等。

MEMS陀螺仪

微电子机械系统技术包含了材料、设计与模拟、 加工制造、封装、测试五个方面。

(1) MEMS的材料

- 包括导体、半导体和绝缘材料几类。根据不同的使用环境,MEMS材料要求耐高温、耐低温、耐腐蚀和耐辐射。
- 在微传感器和微执行器的制造中,MEMS需要使用具有各种功能的材料,如压电材料、压阻材料、磁性材料和形状记忆合金等。

(2) MEMS设计与模拟技术

 MEMS设计与模拟技术包括了专用集成电路 (application specific integrated circuit,

ASIC)设计、机械微结构设计、加工工艺流程设计、掩模板设计,以及微传感器和微执行器结构参数优化与性能模拟等。

(3)MEMS加工技术

- MEMS加工技术主要分为硅微加工技术和非 硅微加工技术两类。
- MEMS硅微加工技术应用了微电子常规工艺, 包括氧化、薄膜制备、光刻、刻蚀、电镀、离 子注入等。

(4)非硅MEMS微加工技术

- 非硅MEMS微加工技术包括LIGA、激光、电 火花等微加工技术。
- · LIGA技术是Lithographie、Galvanoformung 和Abformung三个德语单词的缩写,该技术包含了同步辐射X射线光刻、微电铸和微复制三个工艺步骤,能制备高深宽比聚合物和金属微结构,并能采用微复制工艺进行批量生产。

(5)MEMS封装技术

- MEMS封装技术的目的是建立微传感器和微执行器与专用集成电路的连接,并减少外部环境对微传感器和微执行器工作的影响。
- MEMS封装技术包括倒焊装、重布线、密封封装和真空封装等。
- · 设计MEMS器件的封装往往比设计普通集成电路的封装更加复杂,这是因为要满足工作在严酷环境条件下的需求,例如,冲击、震动、温度变化、潮湿和EMI/RFI等。

并作样件

(6) MEMS测试技术

- MEMS测试技术主要是对微传感器和微执行器的性能,如微结构力学性能、MEMS器件的光学性能、电学性能、以及量程、分辨率、响应频率等进行测试。
- 可靠性测试是MEMS产品进入市场的前提,其 内容包括了高低温、使用环境、振动、疲劳、 使用寿命等方面的测试。

8.1.5 产品应用实例

①苹果iPhone

· iPhone将使用MEMS陀螺仪,比如保龄球、高尔夫等运动游戏。另外,该项技术还可以将 iPhone和桌面PC游戏结合在一起。

②奥林巴斯数码相机 u1050SW

使用者可通过敲击LCD显示屏或机身外壳来改变设置、拍照和查看拍摄的照片。例如,当使用者在滑雪坡道上拍照时,无需脱下手套即可操作相机。

并不详述并

8.1.5 产品应用实例

③ GPS辅助导航

- MEMS压力传感器可以使GPS导航更精确, Sensor Platforms公司和其它供应商都在开发集 成有MEMS航位推算功能的系统,这样你的导航 系统就可以跟随你进入建筑物内(甚至是地铁) 而不迷路。
- 它的开发者在开发把GPS、相机、MEMS传感器 集成在一个平台,这样导航系统不但知道使用者 身处何处,还知道使用者看到些什么,这样屏幕 上的数据交互以确定你寻找的建筑物。

THE FEBRUARY AND A STATE OF THE PARTY OF THE

8.2 移动设备内置传感器硬件平台

- 有许多传感器可供节点平台使用,使用哪种传感器往往由具体的应用需求以及传感器本身的特点决定。
- 需要根据处理器与传感器的交互方式:通过模 拟信号和通过数字信号,选择是否需要外部模 数转换器和额外的校准技术。

8.2.1 内置传感器

厂商	传感器	工作电压(V)	工作能耗	离散采样时间
Taos	可见光传感器	2.7-5.5	1.9mA	330us
Dallas Semiconductor	温度传感器	2.5-5.5	1mA	400ms
Sensirion	湿度传感器	2.4-5.5	550uA	300ms
Intersema	压强传感器	2.2-3.6	1mA	35ms
Honeywell	磁传感器	Any	4mA	30us
Analog Devices	加速度传感器	2.5-3.3	2mA	10ms
Panasonic	声音传感器	2-10	0.5mA	1ms
Motorola	烟传感器	6-12	5uA	-
Melixis	被动式红外传感器	Any	0mA	1ms
Li-Cor	合成光传感器	Any	0mA	1ms
Ech2o	土壤水分传感器	2-5	2mA	10ms

8.2.2 微处理器

- 微处理器是无线传感节点中负责计算的核心,目前的微处理器芯片同时也集成了内存、闪存、模数转化器、数字IO等,这种深度集成的特征使得它们非常适合在无线传感器网络中使用。
- 影响节点工作整体性能的微处理器关键性能包括 功耗特性,唤醒时间(在睡眠/工作状态间快速切 换),供电电压(长时间工作),运算速度和内 存大小。

8.2.2 微处理器

常用微处理器及其关键特性

厂商	设备	发布 年份	字长 (位)	工作 电压 (V)	内存 KB	闪存 KB	工作 能耗 (mA)	睡眠 能耗 (uA)	唤醒 时间 (us)
Atmel	Atmega128L	2002	8	2.7-5.5	4	128	0.95	5	6
	Atmega1281	2005	8	1.8-5.5	8	128	0.9	1	6
	Atmega1561	2005	8	1.8-5.5	8	256	0.9	1	6
Ember	EM250	2006	16	2.1-3.6	5	128	8.5	1.5	>1000
Freescale	HC05	1988	8	3.0-5.5	0.3	0	1	1	>2000
	HC08	1993	8	4.5-5.5	1	32	1	20	4
	HCS08	2003	8	2.7-5.5	4	60	7.4	1	10
Jennic	JN5121	2005	32	2.2-3.6	96	128	4.2	5	>2500
	JN5139	2007	32	2.2-3.6	192	128	3.0	3.3	>2500
TI	Msp430F149	2000	16	1.8-3.6	2	60	0.42	1.6	6
	Msp430F1611	2004	16	1.8-3.6	10	48	0.5	2.6	6
	Msp430F2618	2007	16	1.8-3.6	8	116	0.5	1.1	1
	Msp430F5437	2008	16	1.8-3.6	16	256	0.28	1.7	5
ZiLOG	eZ80F91	2004	16	3.0-3.6	8	256	50	50	3200

8.2.3 通信芯片

- 通信芯片是无线传感节点中重要的组成部分,在 一个无线传感节点的能量消耗中,通信芯片通常 消耗能量最多,在目前常用的节点上,CPU在 工作状态电流仅500uA,而通信芯片在工作状态 电流近20mA。
- 通信芯片的传输距离是选择传感节点的重要指标。
 发射功率越大,接受灵敏度越高,信号传输距离越远。

8.2.3 通信芯片

常用通信芯片:

· CC1000:

可工作在433MHz,868MHz和915MHz;采 用串口通信模式时速率只能达到19.2Kbps

· CC2420:

工作频率2.4GHz,是一款完全符合IEEE 802.15.4协议规范的芯片;传输率250Kbps

8.2.3 通信芯片

常用通信芯片及其关键特性

厂商	传感器	工作电压(V)	工作能耗	离散采样时间
Taos	可见光传感器	2.7-5.5	1.9mA	330us
Dallas Semiconductor	温度传感器	2.5-5.5	1mA	400ms
Sensirion	湿度传感器	2.4-5.5	550uA	300ms
Intersema	压强传感器	2.2-3.6	1mA	35ms
Honeywell	磁传感器	Any	4mA	30us
Analog Devices	加速度传感器	2.5-3.3	2mA	10ms
Panasonic	声音传感器	2-10	0.5mA	1ms
Motorola	烟传感器	6-12	5uA	-
Melixis	被动式红外传感 器	Any	0mA	1ms
Li-Cor	合成光传感器	Any	0mA	1ms
Ech2o	土壤水分传感器	2-5	2mA	10ms

8.3 数字化传感器及网络接口技术

- 随着现代化的发展,传感器的功能已突破传统的功能,其输出不再是单一的模拟信号,而是经过微电脑处理好的数字信号,有的甚至带有控制功能,这就是所说的数字传感器。
- 随着计算机的飞速发展以及单片机的日益普及, 世界进入了数字时代,人们在处理被测信号时首 先想到的是电脑(单片机或计算机),具有输出 信号便于电脑处理的传感器就是数字传感器。

8.3.1 数字传感器

数字传感器的特点是:

- ①数字传感器将模拟信号转换成数字信号输出, 提高了传感器输出信号抗干扰能力,特别适用 于电磁干扰强、信号距离远的工作现场;
- ②软件对传感器线性修正及性能补偿,减少系统误差;
- ③一致性与互换性好。

8.3.1 数字传感器

模拟传感器产生的信号经过放大、转换、线性化及量纲处理后变成纯粹的数字信号,该数字信号可根据要求以各种标准的接口形式(如232、422、485、USB等)与中央处理机相连,可以输出线性无漂移地再现模拟信号,按照给定程序去控制某个对象(如电动机)等。

8.3.2 传感器的网络化

- 传感器网络化的目标是采用标准的网络协议,同时采用模块化结构将传感器和网络技术有机 地结合起来。
- 敏感元件输出的模拟信号经AD转换及数据处理 后,由网络处理装置根据程序的设定和网络协 议(TCP/IP)将其封装成数据帧,并加以目的 地址,通过网络接口传输到网络上。

8.3.2 传感器的网络化

反过来,网络处理器又能接收网络上其它节点传给自己的数据和命令,实现对本节点的操作,这样传感器就成为测控网中的一个独立节点。网络化传感器的基本结构如下图所示。

网络化传感器的基本结构

8.4 未来的物联网硬件技术

需要解决的问题和主要研究内容包括:

- ■ 纳米技术—设备和电路的微型化以及精巧化
- 各种传感器技术—嵌入式传感器技术、嵌入式驱动装置技术
- 衔接纳米和微系统的各种技术解决方案
- 通信技术—天线技术、高效节能的射频(RF)前端技术
- 纳米电子学—纳米电子元器件设备和纳米电子元器件技术,具有自主配置、优化电路体系结构。

8.3.2 传感器的网络化

- 聚合物电子学
- 嵌入式系统——微能源消耗和供给的微型处理器/微型控制器技术、硬件加速技术
- 低成本、高性能的安全识别/认证设备
- 低成本硬件制造技术
- 防篡改、抗干扰技术,在旁侧信息通道上具 有感知能力或者具有警觉性的硬件设计技术

1. 物联网道路照明系统结构结构

- 基于物联网道路照明系统通过在每盏路灯嵌入一个无线通信模块,使它们自组网络,接受控制中心的命令并将路灯的状态反馈给控制中心;
- 采用ZigBee技术与所管辖道路的所有路灯通信, 采用GPRS与控制中心通信,根据控制中心的指令 或时间和日照亮度对每盏路灯发出控制命令(路 灯开启、关闭、照明度(功率大小)等),自动 调节整条道路的功率平衡

无线通信M2M 模块控制道路照 明系统结构

2. 无线采集通信模块

无线采集模块的结构

无线通信模块采用ZigBee技术、IEEE802.15.4协议,通信覆盖半径可达150m,能与在其覆盖范围内的任何路灯节点自组网络和进行通信。

远程无线通信模块

- 3. 通信协议
- 4. 与中央监控的连接
- 5. 控制中心软件设计

• 6. 实际应用

物联网道路照明系统应用 效果对比

时间3个月(91天)	平均点亮时间	耗电总度数	节电 总度数	
左边路灯	25kW* 6	13650	13650	
100* 250W/时	小时 (天)	(91 天)	13030	
右边路灯	25kW* 12	27300	0	
100* 250W/时	小时 (天)	(91 天)	0	

Thank You!

