PSALTer results panel $S = \frac{1}{2} \int \int \int (\mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \tau(\Delta + \mathcal{K})_{\alpha\beta} - \frac{1}{2} \alpha_{0} (\mathcal{A}_{\alpha\chi\beta} \mathcal{A}^{\alpha\beta\chi} + \mathcal{A}^{\alpha\beta}_{\alpha} \mathcal{A}^{\chi}_{\beta} + 2 f^{\alpha\beta} \partial_{\beta} \mathcal{A}^{\chi}_{\alpha} - 2 \partial_{\beta} \mathcal{A}^{\alpha\beta}_{\alpha} - 2 f^{\alpha\beta} \partial_{\chi} \mathcal{A}^{\chi}_{\alpha\beta} + 2 f^{\alpha}_{\alpha} \partial_{\chi} \mathcal{A}^{\beta\chi}_{\beta}) + \beta_{1} (2 \mathcal{A}^{\alpha\beta}_{\alpha} \mathcal{A}^{\chi}_{\beta} - 4 \mathcal{A}^{\chi}_{\alpha\chi} \partial_{\beta} f^{\alpha\beta} + 4 \mathcal{A}^{\chi}_{\alpha\chi} \partial_{\beta} f^{\alpha\beta} - 2 \partial_{\beta} f^{\alpha\beta}_{\alpha} - 2 \partial_{\beta} f^{\alpha\beta}_{\alpha} - 2 \partial_{\beta} f^{\alpha\beta}_{\alpha} \partial_{\chi} f^{\chi}_{\alpha} + 4 \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\chi} f^{\chi}_{\beta} - 2 \partial_{\alpha} f_{\beta\chi} \partial^{\chi} f^{\alpha\beta} - \partial_{\alpha} f_{\chi\beta} \partial^{\chi} f^{\alpha\beta} + \partial_{\beta} f_{\alpha\chi} \partial^{\chi} f^{\alpha\beta} + \partial_{\chi} f_{\alpha\beta} \partial^{\chi} f^{\alpha\beta} + \partial_{\chi} f_{\alpha\beta} \partial^{\chi} f^{\alpha\beta} + 2 \partial^{\chi} f^{\alpha\beta})) + \frac{1}{3} \alpha_{1} (4 \partial_{\beta} \mathcal{A}_{\alpha\chi\delta} - 2 \partial_{\beta} \mathcal{A}_{\alpha\delta\chi} + 2 \partial_{\beta} \mathcal{A}_{\chi\delta\alpha} - \partial_{\chi} \mathcal{A}_{\alpha\beta\delta} + \partial_{\delta} \mathcal{A}_{\alpha\beta\chi} - 2 \partial_{\delta} \mathcal{A}_{\alpha\chi\beta}) \partial^{\delta} \mathcal{A}^{\alpha\beta\chi})[t, x, y, z] dz dy dx dt$

Wave operator

Saturated propagator

	$^{0\overset{+}{.}}\sigma^{\parallel}$	0.+ _T ∥	$0.^+\tau^{\perp}$	$0^{-}\sigma^{\parallel}$										
^{0,+} σ [∥] †	0 0 1	$-\frac{i\sqrt{2}}{a.k\atop 0}$	0	0										
0. ⁺ τ †	$\frac{i\sqrt{2}}{a.k\atop 0}$	$-\frac{1}{\alpha \cdot k^2}$	0	0										
$0.^{+}\tau^{\perp}$ †	0	0	0	0										
⁰⁻ σ †	0	0	0	$\frac{2}{\alpha4 \beta.+2 \alpha. k^{2}\atop 0}$	$\overset{1^+}{\cdot}\sigma^{\parallel}{}_{\alpha\beta}$	$\overset{1}{\cdot}^{+}\sigma^{{}^{\perp}}{}_{\alpha\beta}$	$1.^{+}\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}{}_{lpha}$	$\overset{1}{\cdot}\sigma^{\iota}{}_{\alpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	$1 \tau_{\alpha}$			
				$\overset{1}{\cdot}$ σ^{\parallel} $\dagger^{\alpha\beta}$	0	$\frac{2\sqrt{2}}{(\alpha4\beta.)(1+k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha4 \beta.) (1+k^2)}$	0	0	0	0			
				$\overset{1^+}{\cdot}\sigma^{\scriptscriptstyle\perp} {\dagger}^{^{lphaeta}}$	$\frac{2 \sqrt{2}}{(\alpha4 \beta.) (1+k^2)}$	$-\frac{2}{\binom{\alpha4\beta.}{0}(1+k^2)^2}$	$-\frac{2 i k}{(\alpha4 \beta.) (1+k^2)^2}$	0	0	0	0			
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{2 i \sqrt{2} k}{(\alpha4 \beta.) (1+k^2)}$	$\frac{2 i k}{(\alpha4 \beta.) (1+k^2)^2}$	$-\frac{2 k^2}{(\alpha4 \beta.) (1+k^2)^2}$	0	0	0	0			
				$^{1}\sigma^{\parallel}\uparrow^{lpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha4\beta.)(1+2k^2)}$	0	$-\frac{4 i k}{(\alpha4 \beta_1) (1+2 k^2)}$			
				$\dot{\sigma}^{\perp} \dot{\sigma}^{\perp} \dot{\sigma}^{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha4\beta.)(1+2k^2)}$	$-\frac{2}{(\alpha4\beta.)(1+2k^2)^2}$	0	$-\frac{2 i \sqrt{2} k}{(\alpha4 \beta.) (1+2 k^2)^2}$			
				$\frac{1}{2} \tau^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}\tau^{\perp} + \frac{1}{2}$	0	0	0	$\frac{4 i k}{(\alpha4 \beta.) (1+2 k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha4 \beta.) (1+2 k^2)^2}$	0	$-\frac{4 k^2}{(\alpha4 \beta.) (1+2 k^2)^2}$	$2^+_{\cdot}\sigma^{\parallel}_{\alpha\beta}$ 2.		$\mathcal{E}\sigma^{\parallel}_{\alpha\beta\chi}$
											$\overset{2^{+}}{\cdot}\sigma^{\parallel} \stackrel{\alpha\beta}{\dagger}$	$-\frac{16\beta_1}{\alpha_1^2-4\alpha_1\beta_1} \frac{2}{\alpha_1^2}$	$\frac{2 i \sqrt{2}}{\alpha. k}$	0
											$^{2^{+}}_{\cdot}\tau^{\parallel}\uparrow^{lphaeta}$	$-\frac{2i\sqrt{2}}{\alpha.k\atop 0}$	$\frac{2}{\alpha_{\cdot}k^2}$	0
														1

Source constraints

Spin-parity form	Covariant form	Multiplicities	
$0.^{+}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1	
$\frac{2 i k 1 \sigma^{\perp}^{\alpha} + 1 \tau^{\perp}^{\alpha} == 0}{2 i k 1 \sigma^{\perp}^{\alpha} + 1 \tau^{\perp}^{\alpha} == 0}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
$1^{-}\tau^{\parallel^{\alpha}}=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3	
$i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3	
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$		
Total expected gauge generators:			

 $2^{-}\sigma^{\parallel} + \alpha \beta \chi$

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{\alpha_{\cdot}} > 0$		
Square mass:	$-\frac{\frac{\alpha4\beta.}{0}}{\frac{2\alpha.}{3}} > 0$		
Spin:	0		
Parity:	Odd		

Massless spectrum

Massless particle

Pole residue:	$\left \frac{p^2}{\alpha_0}\right > 0$
Polarisations:	2

Unitarity conditions

 $\alpha_0 > 0 \&\& \alpha_1 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}$