

SIGMA ALGEBRAS

Why

For general measure theory, we need an algebra of sets closed under countable unions; we define such an object (TODO).

Definition

A countably summable subset algebra is a subset space for which (1) the base set is distinguished (2) the complement of a distinguished set is distinguished (3) the union of a sequence of distinguished sets is distinguished.

The name is justified, as each countably summable subset algebra is a subset algebra, because the union of A_1, \ldots, A_n coincides with the union of $A_1, \ldots, A_n, A_n, A_n, \ldots$

We say that the set of distinguished sets a *sigma algebra* on the base set; we justify this langauge, as for an algebra, by the closure properties under standard set operations.

Notation

The notation follows that of a subset space. Let (A, \mathcal{A}) be a countably summable subset algebra. We also say "let \mathcal{A} be an sigma algebra on A." Moreover, since the largest element of the sigma algebra is the base set, we can say without ambiguity: "let \mathcal{A} be a sigma algebra."

Examples

Example 1. For any set A, 2^A is a sigma algebra.

Example 2. For any set A, $\{A, \emptyset\}$ is a sigma algebra.

Example 3. Let A be an infinite set. Let A the collection of finite subsets of A. A is not a sigma algebra.

Example 4. Let A be an infinite set. Let A be the collection subsets of A such that the set or its complement is finite. A is not a sigma algebra.

Proposition 5. The intersection of a family of sigma algebras is a sigma algebra.

Example 6. For any infinite set A, let A be the set

$$\{B \subset A \mid |B| \leq \aleph_0 \vee |C_A(B)| \leq \aleph_0\}.$$

 ${\cal A}$ is an algebra; the countable/co-countable algebra.

TOOD: clean up examples

