

Pontifícia Universidade Católica de Minas Gerais Avaliação 01 de Cálculo Aplicado III Professor Vitor Luiz de Almeida

1ª Questão: (7,0 pontos) Utilize o Teorema de Fubini para calcular a integral dupla

Nome:

	$\iint\limits_R 6xy^2\ dA,$	
em que $R = [2, 4] \times [1, 2]$.		
Resolução:		

 ${f 2^a}$ Questão: (7,0 pontos) Seja D a região do plano limitada pela curva $x=\sqrt[3]{y}$ e pelas retas x=2 e y=0, conforme ilustra a figura a seguir.

Use a figura anterior para reverter a ordem de integração e calcular a integral iterada $\int_0^8 \int_{\sqrt[3]{y}}^2 \sqrt{x^4+1} \ dx \ dy$.

Resolução:	

 ${f 3^a}$ Questão: (7,0 pontos) Para determinarmos o volume da região sólida que está abaixo do gráfico da função $z=x^2+y^2$ e acima do disco $x^2+y^2\leq a^2$, podemos usar o conceito de integrais duplas e calcular

$$\iint\limits_{D} (x^2 + y^2) \ dA,$$

em que D é o disco mencionado. Usando coordenadas polares, calcule a integral anterior.

Resolução:	

 ${\bf 4^a}$ Questão: (7,0 pontos) Seja Ea peça sólida representada na figura abaixo.

Sabendo que a função $\rho(x,y,z)=y$ indica como a massa se distribui na peça, calcule $\iiint_E y\ dV$ para determinar a sua massa.

Resolução:	

esolução:		
-		

 ${f 5^a}$ Questão: (7,0 pontos) A equação cartesiana de uma superfície esférica de centro na origem e raio R é $x^2+y^2+z^2=R^2$. Utilize integrais triplas (no sistema de coordenadas de sua preferência)