UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS BACHARELADO EM MATEMÁTICA

LABORATÓRIO DE FÍSICA I RELATÓRIO V

Fabrício Yuri Costa da Silva - 21454545 Gabriel Bezerra de M. Armelin - 21550325 Jonas Miranda Cascais Júnior - 21553844 Laise Alves Pimentel - 21202395 Mario Alves Pardo Junior - 21553964

Professor: José Pedro Cordeiro

Sumário

1	Introdução	3
2	Procedimento Experimental	4
3	Análise de Dados	5
	Dados do experimento	5
	Cálculo da velocidade instântanea	5
	Espaço x Tempo	6
	Velocidade x Tempo	6
	Cálculo das energias potencial, translacional e de rotação	7
	Energia potencial x Tempo	7
	Energia translacional x Tempo	7
	Energia rotacional x Tempo	7
4	Conclusão	8
R	eferências	9

1. Introdução

2. Procedimento Experimental

- 1. Usando o disco de Maxwell desenrolado, fixe o centro do mesmo com o ponto final.
- 2. Fixe o outro ponto em 200 mm, anote esta distância e obtenha o tempo que o disco percorre a mesma. Repita esta medida 3 vezes e tire uma média.
- 3. Em seguida para o cálculo da velocidade instantânea, obtenha o tempo de passagem do cilindro vermelho do disco no ponto final. Repita esta medida 3 vezes e tire uma média.
- 4. Repita este procedimento para as alturas de 300, 400 e 500 mm.

3. Análise de Dados

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

Dados do experimento

Esta seção apresenta os dados coletados durante o experimento e os cálculos de médias para esses dados.

Tabela 3.1: Dados coletados do experimento. Deslocamento em metro e tempo em segundo.

iM (s)
IIVI(S)
.34767
.24500
.19200
.16767
١.

Cálculo da velocidade instântanea

Para o cálculo da velocidade instântanea, utilizamos a seguinte fórmula:

$$v \approx \frac{2r_v}{T_{iM}} \tag{3.1}$$

Onde:

v: é a velocidade instântanea que desejamos obter;

 2^*r_v : espaço ΔS que fica na escuridão. r_v é o raio do cilindro que mede 10.35 mm.

 T_{iM} : tempo instântaneo médio que foi calculado e apresentado na seção anterior.

A tabela seguinte mostra o valor da velocidade instantânea:

Tabela 3.2: Velocidade instantanea

$\Delta s \text{ (m)}$	T1 (s)	T2 (s)	T3 (s)	TM (s)	Ti1 (s)	Ti2 (s)	Ti3 (s)	TiM (s)	Vi (m/s)
0.2	2.3845	2.3779	2.3724	2.37827	0.350	0.356	0.337	0.34767	0.05954
0.3	3.5435	3.7292	3.5699	3.61420	0.248	0.249	0.238	0.24500	0.08449

$\Delta s \text{ (m)}$	T1 (s)	T2 (s)	T3 (s)	TM (s)	Ti1 (s)	Ti2 (s)	Ti3 (s)	TiM (s)	Vi (m/s)
0.4	4.6040	4.5620	4.6861	4.61737	0.190	0.193	0.193	0.19200	0.10781
0.5	5.4345	5.5350	5.4445	5.47133	0.168	0.167	0.168	0.16767	0.12346

Espaço x Tempo

O próximo gráfico mostra o relacionamento do deslocamento (Δs) e o tempo instantâneo médio (TiM) mostrados na tabela anterior.

Utilizando regressão linear, obtemos a seguinte função para estimar o espaço em função do tempo:

$$s = 9.29956 * T_{iM}^2 - 6.39974 * T_{iM} + 1.30204$$
(3.2)

A linha azul do gráfico acima foi generada utilizando esta fórmula. Observe que ela aproximou muito bem os dados do experimento.

Velocidade x Tempo

O próximo gráfico mostra o relacionamento da velocidade (V_i) e o tempo instantâneo médio (TiM) mostrados na tabela anterior.

Utilizando regressão linear, obtemos o seguinte função para estimar a velocidade em função do tempo:

$$v = -0.34240 * T_{iM} + 0.17534 (3.3)$$

A linha azul do gráfico acima foi generada utilizando esta fórmula. Observe que ela aproximou muito bem os dados do experimento.

Cálculo das energias potencial, translacional e de rotação

Energia potencial x Tempo

Energia translacional x Tempo

Energia rotacional x Tempo

4. Conclusão

Referências

Halliday, R.; Krane, D.; Resnick. 1996. Física. Vol. 1. Livros Técnicos e Científicos Editora. Nussenzveig, H.M. 1997. Curso de Física Básica. Vol. 1. Edgard Bucher Ltda. Tipler, G., P.A. e MOSCA. 2005. Física. Vol. 1. McGraw-Hill.