

计算方法作业答案

作者: 陈文轩

组织: KFRC

时间: June 15, 2025

版本: 1.0.0.1145

目录

第一章 第一次作业	1
第二章 第二次作业	2
第三章 第三次作业	4
第四章 第四次作业	6
第五章 第五次作业	8
第六章 第六次作业	11
第七章 第七次作业	12
第八章 第八次作业	14
第九章 第九次作业	16
第十章 第十次作业	18
第十一章 第十一次作业	20
第十二章 第十二次作业	22
第十三章 第十三次作业	24

第一章 第一次作业

作业 1.1 (10pts)

对 $a>0, n\in\mathbb{N}_+$, x 很靠近 0, 给出 f(x) 的可靠数值计算方法, 使其尽量达到更好的精度: $f(x)=(a+x)^n-a^n$ 。

$$\mathbf{f}(x) = (a+x)^n - a^n = \sum_{k=1}^n C_n^k x^k a^{n-k} = (\cdots ((x+C_n^1 a)x + C_n^2 a^2)x \cdots + C_n^{n-1} a^{n-1})x$$

作业 1.2 (4pts)

对 a>0, x 很靠近 0, 给出 f(x) 的可靠数值计算方法, 使其尽量达到更好的精度: $f(x)=\cos(a-x)-\cos a$ 。

解

$$f(x) = \cos(a - x) - \cos a = \cos a \cos x + \sin a \sin x - \cos a$$
$$= \cos a(\cos x - 1) + \sin a \sin x \approx -\frac{1}{2}x^2 \cos a + x \sin a$$

作业 1.3 (4pts)

对 $x \gg a$, 给出 f(x) 的可靠数值计算方法,使其尽量达到更好的精度: $f(x) = \sqrt{x^2 + a} - x$ 。

$$\Re f(x) = \sqrt{x^2 + a} - x = \frac{x^2 + a - x^2}{\sqrt{x^2 + a} + x} = \frac{a}{\sqrt{x^2 + a} + x}$$

作业 1.4 (4pts)

设有精确值 $x^* = 2023.0905$,则其近似值 $x_1 = 2023.090$, $x_2 = 2023.0900$ 分别有几位有效数字?

解 x_1 有 7 位有效数字, x_2 有 7 位有效数字。

第二章 第二次作业

作业 2.1 (6pts)

(利用下面的函数值表,作差商表,写出相应的牛顿插值多项式以及插值误差表达式,并计算 f(1.5)和 f(4) 的近似值:

x	1.0	2.0	3.0	4.5
f(x)	2.5	4.0	3.5	2.0

解 先计算各阶差商: $f[x_0] = 2.5$, $f[x_1] = 4$, $f[x_2] = 3.5$, $f[x_3] = 2$;

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = 1.5, f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = -0.5, f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2} = -1;$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = -1, f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1} = -0.2;$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_0, x_1, x_2] - f[x_1, x_2, x_3]}{x_3 - x_0} = \frac{8}{35}.$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_0, x_1, x_2] - f[x_1, x_2, x_3]}{x_3 - x_0} = \frac{8}{35}$$

因此,插值多项式
$$P_3(x) = 2.5 + 1.5(x - 1) - (x - 1)(x - 2) + \frac{8}{35}(x - 1)(x - 2)(x - 3)$$

完全展开可以得到
$$P_3(x) = \frac{8}{35}x^3 - \frac{83}{35}x^2 + \frac{491}{70}x - \frac{83}{35}$$
.

误差项
$$R_3(x) = \frac{f^{(4)}(\xi)}{24}(x-1)(x-2)(x-3)(x-4.5), \xi \in [1,4.5].$$

$$P_3(1.5) = \frac{251}{70}, P_3(4) = \frac{83}{35}.$$

作业 2.2 (6pts)

利用数据 f(0) = 2.0, f(1) = 1.5, f(3) = 0.25, f'(3) = 1 构造出三次插值多项式, 写出其插值余项, 并计算 f(2) 的近似值。

解设插值多项式
$$P_3(x) = a_3 x^3 + a_2 x^2 + a_1 x_1 + a_0$$
, 对应 $P_3'(x) = 3a_3 x^2 + 2a_2 x + a_1$;

则有
$$P_3(0) = a_0 = 2$$
, $P_3(1) = a_3 + a_2 + a_1 + a_0 = 1.5$, $P_3'(3) = 27a_3 + 6a_2 + a_1 = 1$

$$P_3(3) = 27a_3 + 9a_2 + 3a_1 + a_0 = 0.25 \Rightarrow a_3 = \frac{41}{144}, a_2 = -\frac{85}{72}, a_1 = \frac{19}{48}, a_0 = 2$$

所以插值函数为
$$P_3(x) = \frac{41}{144}x_3 - \frac{85}{72}x^2 + \frac{19}{48}x + 2$$
,

余项为
$$R_3(x) = \frac{f^{(4)}(\xi)}{24}x(x-1)(x-3)^2, \xi \in [0,3]; P_3(2) = \frac{25}{72}$$

作业 2.3 (6pts)

设
$$f(x) = 20x^3 - x + 2024$$
, 求 $f[1,2,4]$ 和 $f[1,2,3,4]$;

$$\mathbf{H}[1] = 2043, f[2] = 2182, f[3] = 2561, f[4] = 3300;$$

$$f[1,2] = 139, f[2,3] = 379, f[3,4] = 739, f[2,4] = 559;$$

$$f[1,2,3] = 120, f[2,3,4] = 180, f[1,2,4] = 140;$$

$$f[1, 2, 3, 4] = 20.$$

作业 2.4 (6pts)

设 $\{l_i(x)\}_{i=0}^6$ 是以 $\{x_i=2i\}_{i=0}^6$ 为节点的 6 次 Lagrange 插值基函数,求 $\sum_{i=0}^6 (x_i^3+x_i^2+1)l_i(x)$ 和 $\sum_{i=0}^6 (x_i^3+x_i^2+1)l_i'(x), \ \text{结果需要化简}.$

解 记 $f(x) = x^3 + x^2 + 1$,则 $l_i(x)$ 可以看作对 f(x) 插值时的基函数。由于节点数量为 7, $\deg f(x) = 3, \quad \text{所以} \sum_{i=0}^{6} (x_i^3 + x_i^2 + 1) l_i(x) = f(x) = x^3 + x^2 + 1,$ $\sum_{i=0}^{6} (x_i^3 + x_i^2 + 1) l_i'(x) = f'(x) = 3x^2 + 2x.$

作业 2.5 (6pts)

设 $x_0, x_1, \cdots, x_n (n > 2)$ 为互异的节点, $l_k(x)(k = 0, 1, \cdots, n)$ 为与其对应的 n 次 Lagrange 插值基函数,证明 $\sum_{k=0}^n (x_k - x)^n l_k(x) = 0$ 。

解

$$\sum_{k=0}^{n} (x_k - x)^n l_k(x) = \sum_{k=0}^{n} \sum_{m=0}^{n} \left(\binom{n}{m} x_k^{n-m} (-x)^m \right) l_k(x)$$

$$= \sum_{m=0}^{n} \binom{n}{m} (-x)^m \sum_{k=0}^{n} x_k^{n-m} l_k(x) = \sum_{m=0}^{n} \binom{n}{m} (-x)^m x^{n-m}$$

$$= (x - x)^n \equiv 0$$

第三章 第三次作业

作业 3.1 (6pts)

构造积分 $\bar{I}(f) = \int_{-h}^{2h} f(x) dx$ 的数值积分公式 $I(f) = a_{-1}f(-h) + a_0f(0) + a_1f(2h)$, h > 0;

解 积分对
$$p_0(x) = 1$$
, $p_1(x) = x$, $p_2(x) = x^2$ 无误差,对应方程组
$$\begin{cases} a_{-1} + a_0 + a_1 = 3h \\ -2a_{-1} + 4a_1 = 3h \\ a_{-1} + 4a_1 = 3h \end{cases}$$
 $\Rightarrow a_{-1} = 0$, $a_0 = 2.25h$, $a_1 = 0.75h$, $I(f) = \frac{9}{4}hf(0) + \frac{3}{4}hf(2h)$.

作业 3.2 (6pts)

分别利用梯形公式和 Simpson 公式求如下积分及其误差 (计算结果至少保留小数点后 4 位): $\int_0^2 e^{-x} \sin x \, \mathrm{d}x$

解 准确值:
$$\int_0^2 e^{-x} \sin x \, \mathrm{d}x = -\frac{1}{2} e^{-x} (\sin x + \cos x) \Big|_0^2 \approx 0.46663;$$

$$f(0) = 0, f(1) \approx 0.30956, f(2) \approx 0.12306;$$
 Simpson 公式:
$$I_1 = \frac{b-a}{6} \left(f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right) \approx 0.4538, \ \, 误差约为 \, 0.0128;$$
 梯形公式:
$$I_2 = \frac{b-a}{2} (f(a) + f(b)) \approx 0.12306, \ \, 误差约为 \, 0.3436.$$

作业 3.3 (10pts)

记 $I(f) = \int_{-2}^{2} f(x) dx$,设 S(f(x)) 为其数值积分公式,其中 $I(f) \approx S(f(x)) = Af(-\alpha) + Bf(0) + Cf(\alpha)$.

- 1. 试确定参数 A, B, C, α 使得该数值积分公式具有尽可能高的代数精度,并确定该公式的代数精度(需给出求解过程);
- 2. 设 f(x) 足够光滑 (可微), 求该数值积分公式的误差

解取
$$A = C$$
, 积分对 x^{2k+1} 无误差。积分对 $p_0(x) = 1, p_2(x) = x^2, p_4(x) = x^4$ 无误差,
$$\begin{cases} 2A + B = 4 & A = C = \frac{10}{12} \end{cases}$$

对应方程组
$$\begin{cases} 2A + B = 4 \\ A\alpha^2 = \frac{8}{3} \\ A\alpha^4 = \frac{32}{5} \end{cases} \implies \begin{cases} A = C = \frac{10}{9} \\ B = \frac{16}{9} \\ \alpha = \frac{2}{5}\sqrt{15} \end{cases} , 代数精度为 5 次。$$

误差为
$$E(f) = \frac{E(x^6)}{6!} f^{(6)}(\xi) = \left(\int_{-2}^2 x^6 dx - S(x^6)\right) \frac{f^{(6)}(\xi)}{216} = \frac{64}{7875} f^{(6)}(\xi), \xi \in [-2, 2]$$

作业 3.4 (8pts)

求满足下表数据以及边界条件 S''(-2) = S''(2) = 0(n = 3) 的三次样条插值函数 S(x),并计算 S(0) 的值。注意: n 为小区间个数。

x	-2.00	-1.00	1.00	2.00
f(x)	-4.00	2.00	2.50	1.50

解
$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
, $i = 0, 1, 2$ 满足 $S(x_i) = f(x_i)$, $i = 0, 1, 2, 3$ 记 $M_i = S''(x_i)$, 则 $\frac{h_{i-1}}{6}M_{i-1} + \frac{h_{i-1} + h_i}{3}M_i + \frac{h_i}{6}M_{i+1} = \frac{f[x_i, x_{i+1}] - f[x_{i-1}, x_i]}{h_i}$, $i = 1, 2$ $M_i = 0$, $i = 0, 3$, 其中 $h_i = x_{i+1} - x_i$ 。现在有 12 个方程与 12 个未知数,解方程组得到:
$$\begin{cases} -4 + 6.25(x + 2)^2 - 0.25(x + 2)^3, & x \in [-2, -1] \\ 2 + 1.75(x + 1) - 0.75(x + 1)^2 + 0.09375(x + 1)^3, & x \in [-1, 1] \\ 2.5 - 0.9375(x - 1) - 0.1875(x - 1)^2 + 0.0625(x - 1)^3, & x \in [1, 2] \end{cases}$$
 故 $S(0) = 3.5625 = \frac{57}{16}$

第四章 第四次作业

作业 4.1 (6pts)

给定函数 f(x) 离散值如下:

х	0.00	0.02	0.04	0.06
f(x)	2.5	1.0	2.0	3.5

分别用向前、向后以及中心差商公式计算 f'(0.02) 和 f'(0.04);

解 向前差分:
$$f'(0.02) = \frac{f(0.04) - f(0.02))}{0.02} = 50, f'(0.04) = \frac{f(0.06) - f(0.04)}{0.02} = 75;$$
向后差分: $f'(0.02) = \frac{f(0.02) - f(0.00)}{0.02} = -75, f'(0.04) = \frac{f(0.04) - f(0.02)}{0.02} = 50;$
中心差分: $f'(0.02) = \frac{f(0.04) - f(0.00)}{0.04} = -12.5, f'(0.04) = \frac{f(0.06) - f(0.02)}{0.04} = 62.5.$

作业 4.2 (8pts)

用 3 点的 Gauss-Legendre 数值积分公式求积分 $\int_0^2 e^{-x} \sin(x) dx$ 及其积分误差;

解准确值: 0.4666。 先换元
$$\int_{-1}^{1} e^{-t-1} \sin(t+1) dt$$
,记 $g(t) = e^{-t-1} \sin(t+1)$,
$$I(g) = \frac{5}{9}g\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}g(0) + \frac{5}{9}g\left(\sqrt{\frac{3}{5}}\right) \approx 0.4665,$$

作业 4.3 (8pts)

试推导积分 $\int_0^2 (x-1)^2 f(x) dx$ 的 2 点 Gauss 积分公式, 这里 $(x-1)^2$ 为权重函数;

解 先换元为
$$\int_{-1}^{1} t^2 f(t+1) dt$$
,此时 $\alpha_1 = -\sqrt{\frac{3}{5}}, \alpha_2 = \sqrt{\frac{3}{5}}$,由于对称性,权重相等,代入 $f(t) = 1$ 时无误差,得到 $W_1 = W_2 = \frac{1}{3}$,故 $I(f) = \frac{1}{3} f\left(1 - \sqrt{\frac{3}{5}}\right) + \frac{1}{3} f\left(1 + \sqrt{\frac{3}{5}}\right)$ 。

作业 4.4 (10pts)

设函数 f(x) 充分光滑(可微),试推导如下数值微分公式(即确定常数 A,B,C,D,E),使其截断误差为 $O(h^4)$, $f'(x)=\frac{1}{h}(Af(x-2h)+Bf(x-h)+Cf(x)+Df(x+h)+Ef(x+2h))$ 。

解作 Taylor 展开至 $O(h^5)$, 有:

$$\begin{split} f(x+h) &= f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \frac{1}{6}h^3f'''(x) + \frac{1}{24}h^4f''''(x) + O(h^5) \\ f(x-h) &= f(x) - hf'(x) + \frac{1}{2}h^2f''(x) - \frac{1}{6}h^3f'''(x) + \frac{1}{24}h^4f''''(x) + O(h^5) \end{split}$$

第五章 第五次作业

作业 5.1 (12pts)

设有常微分方程初值问题 $\begin{cases} y'(x) = -y(x), 0 \le x \le 1 \\ y(0) = 1 \end{cases} , ~ 假设求解区间 [0,1] 被 n 等分,令 h =$

$$\frac{1}{n}, x_k = \frac{k}{n} (k = 0, 1, \cdots, n)$$

- 1. 分别写出用向前 Euler 公式,向后 Euler 公式,梯形公式以及改进的 Euler 公式求上述微分方程数值解时的差分格式 (即 y_{k+1} 与 y_k 二者之间的递推关系式);
- 2. 设 $y_0 = y(0)$,分别求这四种公式(方法)下的近似值 y_n 的表达式(注:这里的 y_n 即是 $y(x_n) \equiv y(1)$ 的近似值;
- 3. 当n足够大(即区间长度 $h\to 0$ 时,分别判断四种方法下的近似值 y_n 是否收敛到原问题的真解y(x)在x=1处的值。

解 显然解析解是 $y = e^{-x}$, 对应 $y(1) = e^{-1}$ 。以下 $n = \frac{1}{\nu}$ 。

- 向前 Euler 公式: $y_{k+1} = y_k + h(-y_k) = (1-h)y_k, y_n = (1-h)^n, \lim_{n \to \infty} y_n = e^{-1} = y(1);$
- 向后 Euler 公式: $y_{k+1} = y_k hy_{k+1} = \frac{y_k}{1+h}, y_n = \left(\frac{1}{1+h}\right)^n, \lim_{n \to \infty} y_n = e^{-1} = y(1);$
- 梯形公式: $y_{k+1} = y_k + \frac{h}{2}(-y_k y_{k+1}) = \frac{2-h}{2+h}y_k, y_n = \left(\frac{2-h}{2+h}\right)^n \lim_{n \to \infty} y_n = e^{-1} = y(1);$
- 改进的 Euler 公式: 预测: $y^* = y_k + h(-y_k) = (1-h)y_k$, 校正: $y_{k+1} = y_k + \frac{h}{2}(-y_k y^*) = \left(1 h + \frac{h^2}{2}\right)y_k$, $y_n = \left(1 h + \frac{h^2}{2}\right)^n$, 此时 $\lim_{n \to \infty} y_n = e^{-1} = y(1)$ 。

作业 5.2 (8pts)

试推导 p=1, q=2 显式公式 $y_{n+1}=y_{n-1}+\frac{h}{3}\left(7f(x_n,y_n)-2f(x_{n-1},y_{n-1})+f(x_{n-2},y_{n-2})\right)$ 的局部截断误差,即验证 $T_{n+1}\equiv y(x_{n+1})-y_{n+1}=\frac{1}{3}h^4y^{(4)}(x_{n-1})+O(h^5)$ (提示:将差分格式右端点某些项在某点处同时作 Taylor 展开):

$$y(x_{n+1}) - y_{n+1} = y(x_{n+1}) - \frac{h}{3} \left(7f(x_n, y_n) - 2f(x_{n-1}, y_{n-1}) + f(x_{n-2}) \right)$$

$$= y(x_{n-1}) + 2hy'(x_{n-1}) + 2h^2y''(x_{n-1}) + \frac{4}{3}h^3y'''(x_{n-1}) + \frac{2}{3}h^4y''''(x_{n-1}) + O(h^5) - \frac{h}{3}$$

$$\left(7\left(y'(x_{n-1}) + hy''(x_{n-1}) + \frac{1}{2}h^2y'''(x_{n-1}) + \frac{1}{6}h^3y''''(x_{n-1}) + O(h^4) \right) - 2y'(x_{n-1}) \right)$$

$$\begin{split} & + \left(y'(x_{n-1}) - hy''(x_{n-1}) + \frac{1}{2}h^2y'''(x_{n-1}) - \frac{1}{6}h^3y''''(x_{n-1}) + O(h^4) \right) \bigg) \\ & = \frac{1}{3}h^4y^{(4)}(x_{n-1}) + O(h^5) \\ & \not \bowtie T_{n+1} = \frac{1}{3}h^4y^{(4)}(x_{n-1}) + O(h^5) \, \circ \end{split}$$

作业 5.3 (18pts)

试用线性多步法构造p=1,q=2时的隐式差分格式,求该格式局部截断误差的<mark>误差主项</mark>并判断它的阶、最后为该隐式格式设计一种合适的预估-校正格式。

作业 5.4 (12pts)

试推导如下 Runge-Kutta 公式的局部截断误差及其误差主项,判断该公式/格式的(精度)阶数。

提示: 利用二元函数的 Taylor 展开。

$$\begin{cases} y_{n+1} = y_n + \frac{h}{4}(3k_1 + k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + 2h, y_n + 2hk_1) \end{cases}$$

解 记
$$x = x_n, y = y_n, f = f(x, y), f_x = \frac{\partial f}{\partial x}(x, y), f_y = \frac{\partial f}{\partial y}(x, y),$$
 高阶偏导均在 (x, y) 取值。
$$k_2 = f(x + 2h, y + 2hk_1) = f(x + 2h, y + 2hf)$$

$$= f + 2hf_x + 2hff_y + \frac{1}{2}(f_{xx}(2h)^2 + 2f_{xy}(2h)(2hf) + f_{yy}(2hf)^2) + O(h^3)$$

$$= f + 2hf_x + 2hff_y + 2h^2f_{xx} + 4h^2f_{xy}f + 2h^2f_{yy}f + O(h^3)$$

$$y_{n+1} = y(x) + \frac{h}{4}(3f + f(x + 2h, y + 2hk_1))$$

$$= y(x) + \frac{h}{4}(3f + 2hf_x + 2hff_y + 2h^2f_{xx} + 4h^2f_{xy}f + 2h^2f_{yy}f + O(h^3))$$

$$= y(x) + hf + \frac{h^2}{2}(f_x + f_yf) + \frac{h^3}{2}(f_{xx} + 2f_{xy}f + f_{yy}f^2) + O(h^4)$$

$$y'(x) = f(x, y(x)) \Rightarrow y''(x) = f_x + f_yy' = f_x + f_yf, y''' = f_{xx} + 2f_{xy}f + f_{yy}f^2 + f_yf_x + f_y^2f;$$

$$y(x + h) = y(x) + hy'(x) + \frac{1}{2}h^2y''(x) + \frac{1}{6}h^3y'''(x)$$

$$= y(x) + hf + \frac{h^2}{2}(f_x + ff_y) + \frac{h^3}{6}(f_{xx} + 2f_{xy}f + f_{yy}f^2 + f_yf_x + f_y^2f)$$
此时 $\tau = y(x + h) - y_{n+1} = \frac{h^3}{6}(f_xf_y + f_y^2f - 2f_{xx} - 4f_{xy}f - 2f_{yy}f^2),$ 所数为 2。

第六章 第六次作业

作业 6.1 (6pts)

利用牛顿迭代公式估算 $\ln 2$ 的值(可取 $f(x) = e^x - 2 = 0$),取初值 $x_0 = 0.618$,迭代 5 次,列表计算 $x_i, i = 1, 2, \dots, 5$ 。请估计 x_5 的有效数字位数(计算 x_5 时,请保留尽量多的小数点位数)。

解
$$f(x) = e^x - 2$$
, $f'(x) = e^x$, 迭代公式为 $x_{n+1} = x_n - \frac{e^{x_n} - 2}{e^{x_n}}$ 。
 $x_0 = 0.618$, $x_1 = 0.69600$, $x_2 = 0.693151$, $x_3 = 0.69314718056$, $x_4 = 0.6931471805599453$, $x_5 = 0.69314718055994530941723212145818$ 。实际上, x_5 的误差在 10^{-45} 量级。

作业 6.2 (6pts)

设 n > 1, 给出用牛顿法计算 $\sqrt[q]{a}(a > 0)$ 时的迭代公式, 并用它来计算 $\sqrt[q]{2025}$, 取初值 $x_0 = 5.0$, 求 x_4 。

解
$$f(x) = x^n - a$$
, $f'(x) = nx^{n-1}$, 迭代公式为 $x_{n+1} = x_n - \frac{x^n - a}{nx_n^{n-1}}$
 $x_0 = 5, x_1 = 4.648, x_2 = 4.5858, x_3 = 4.58464, x_4 = 4.58443$ 。

作业 6.3 (10pts)

写出对方程 $x^3 - 4x^2 + 5x - 2 = 0$ 求根时的 Newton 迭代公式 $x_n = \varphi(x_{n-1})$ 。 取初值 $x_0 = 0$,证明: $\lim_{n \to \infty} x_n$ 存在;

解
$$f(x) = x^3 - 4x^2 + 5x - 2$$
, $f'(x) = 3x^2 - 8x + 5$, 迭代公式为 $x_{n+1} = x_n + \frac{x_n^2 - 3x_n + 2}{3x_n - 5}$ 。
$$\varphi(x) = x - \frac{x^2 - 3x + 2}{3x - 5} = \frac{2x^2 - 2x - 2}{3x - 5}, \forall x \in [0, 1), \frac{f(x)}{f'(x)} < 0, 2x^2 - 2x - 2 - (3x - 5) > 0 \Rightarrow \varphi(x) < 1$$
因此从 $x_0 = 0$ 开始的迭代序列是单调递增的,且有上界 1,因此收敛。

作业 6.4 (10pts)

设 f(x) 为 \mathbb{R} 上的光滑实值函数, $r \in \mathbb{R}$ 为 f(x) 的一个 p 重根($p \geq 2$),试推导迭代公式 $x_{k+1} = x_k - p \frac{f(x_k)}{f'(x_k)}$ 在根 r 附近的收敛阶。

解 设
$$f(x) = (x-r)^p g(x), g(r \neq 0), f'(x) = p(x-r)^{r-1} g(x) + (x-r)^p g'(x), 令 e_k = x_k - r,$$
则 r 附近 $f(x_k) = e_k^p g(x_k), f'(x_k) = e_k^{p-1} (pg(x_k) + e_k g'(x_k)), 带入迭代公式,$

$$x_{k+1} = x_k - \frac{e_k^p g(x_k)}{e_k^{p-1} (pg(x_k) + e_k g'(x_k))} = x_k - \frac{e_k g(x_k)}{pg(x_k) + e_k g'(x_k)}, \quad \text{两边同时减去 } r,$$

$$e_{k+1} = e_k - \frac{e_k g(x_k)}{pg(x_k) + e_k g'(x_k)} = e_k (1 - \frac{pg(x_k)}{pg(x_k) + e_k g'(x_k)}) = e_k \cdot \frac{e_k g'(x_k)}{pg(x_k) + e_k g'(x_k)}$$

$$= e_k^2 \cdot \frac{g'(x_k)}{pg(x_k) + e_k g'(x_k)}$$

$$e_k \to 0 \text{ pt} \left\| \frac{g'(x_k)}{pg(x_k) + e_k g'(x_k)} \right\| \psi \otimes , \quad \text{ at } f \perp \mathcal{F} C, \quad \text{ at } \|e_{k+1}\| \leq Ce_k^2, \quad \text{ Bubble College}, \quad \text{Bubble College}$$

第七章 第七次作业

作业 7.1 (10pts)

用 Doolittle 分解法解如下线性方程组(请给出详细的解题过程,包括矩阵分解):

$$\begin{cases} 5x_1 + x_2 + 2x_3 &= 2\\ x_1 + 3x_2 - x_3 &= 4\\ 2x_1 + 2x_2 + 5x_3 &= 10 \end{cases}$$

解 对系数矩阵 A 作行变换:
$$r_2 \leftarrow r_2 - \frac{1}{5}r_1, r_3 \leftarrow r_3 - \frac{2}{5}r_1$$
, 得到 $U^{(1)} = \begin{bmatrix} 5 & 1 & 2 \\ 0 & \frac{14}{5} & -\frac{7}{5} \\ 0 & \frac{8}{5} & \frac{21}{5} \end{bmatrix}, L^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{5} & 1 & 0 \\ \frac{2}{5} & 0 & 1 \end{bmatrix}$,

第二步行变换为
$$r_3 \leftarrow r_3 - \frac{4}{7}r_2$$
,得到 $L^{(2)} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{5} & 1 & 0 \\ \frac{2}{5} & \frac{4}{7} & 1 \end{bmatrix}$, $U^{(2)} = \begin{bmatrix} 5 & 1 & 2 \\ 0 & \frac{14}{5} & -\frac{7}{5} \\ 0 & 0 & 5 \end{bmatrix}$ 。

因此系数矩阵的 LU 分解为
$$\begin{bmatrix} 5 & 1 & 2 \\ 1 & 3 & -1 \\ 2 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{5} & 1 & 0 \\ \frac{2}{5} & \frac{4}{7} & 1 \end{bmatrix} \begin{bmatrix} 5 & 1 & 2 \\ 0 & \frac{14}{5} & -\frac{7}{5} \\ 0 & 0 & 5 \end{bmatrix}$$

求解
$$Ly = b$$
, 得到 $y = \left(2, \frac{18}{5}, \frac{50}{7}\right)^{\mathsf{T}}$; 求解 $Lx = y$, 得到 $x = \left(-\frac{4}{7}, 2, \frac{10}{7}\right)^{\mathsf{T}}$ 。

作业 7.2 (10pts)

求如下三对角阵 A 的 Crout 分解:

$$A = \begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & 4 & -2 & 0 \\ 0 & -1 & 4 & -2 \\ 0 & 0 & -1 & 4 \end{bmatrix}$$

解记
$$A = (a_{ij})_{4\times 4}$$
,假设 Crout 分解是
$$\begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & 4 & -2 & 0 \\ 0 & -1 & 4 & -2 \\ 0 & 0 & -1 & 4 \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{34} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} & u_{14} \\ 0 & 1 & u_{23} & u_{24} \\ 0 & 0 & 1 \end{bmatrix}$$
 则 $l_{11} = a_{11} = 4$, $l_{21} = a_{21} = -1$, $l_{31} = a_{31} = 0$, $l_{41} = a_{41} = 0$, $u_{12} = \frac{a_{12}}{l_{11}} = -\frac{1}{4}$, $u_{13} = \frac{a_{13}}{l_{11}} = 0$,
$$u_{14} = \frac{a_{14}}{l_{11}} = 0$$
, $l_{22} = a_{22} - l_{21}u_{12} = \frac{15}{4}$, $l_{32} = a_{32} - l_{31}u_{12} = -1$, $l_{42} = a_{42} - l_{41}u_{12} = 0$,
$$u_{23} = \frac{a_{23} - l_{21}u_{13}}{l_{22}} = -\frac{8}{15}$$
, $u_{24} = \frac{a_{24} - l_{21}u_{14}}{l_{22}} = 0$, $l_{33} = a_{33} - (l_{31}u_{13} + l_{32}u_{23}) = \frac{52}{15}$,
$$l_{43} = a_{43} - (l_{41}u_{13} + l_{42}u_{23}) = -1$$
, $u_{34} = \frac{a_{34} - (l_{31}u_{14} + l_{32}u_{24})}{l_{33}} = -\frac{15}{26}$

$$b \leftarrow Crout \Rightarrow R \neq \begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & 4 & -2 & 0 \\ 0 & -1 & 4 & -2 \\ 0 & 0 & -1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ -1 & \frac{15}{4} & 0 & 0 \\ 0 & -1 & \frac{52}{15} & 0 \\ 0 & 0 & -1 & \frac{89}{26} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{4} & 0 & 0 \\ 0 & 1 & -\frac{8}{15} & 0 \\ 0 & 0 & 1 & -\frac{15}{26} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

作业 7.3 (6+4pts)

设有线性方程组

$$\begin{cases} 35.26x_1 + 14.96x_2 &= 20.25\\ 187.30x_1 + 79.43x_2 &= 19.75 \end{cases}$$

- 1. 试求该方程组系数矩阵 A 的条件数 $cond_1(A)$ (结果保留 2 位小数);
- 2. 若方程组右端项 $b = (20.25, 19.75)^{\mathsf{T}}$ 有扰动 $\delta b = (-0.01, 0.01)^{\mathsf{T}}$,试给出此时方程组解的相对误差估计(在 $\|\cdot\|_1$ 范数下,结果保留 2 位小数)。

解
$$A = \frac{1}{100}\begin{bmatrix} 3526 & 1496 \\ 18730 & 7943 \end{bmatrix}, \|A\|_1 = \frac{5564}{25}, A^{-1} = \frac{1}{6531}\begin{bmatrix} -397150 & 74800 \\ 936500 & -176300 \end{bmatrix} \approx \begin{bmatrix} -60.81 & 11.45 \\ 143.39 & -26.99 \end{bmatrix},$$

$$\|A^{-1}\|_1 = \frac{444550}{2177} \approx 204.20 \Rightarrow \operatorname{cond}_1(A) = \|A\|_1 \cdot \|A^{-1}\|_1 = \frac{98939048}{2177} \approx 45447.43.$$
 解的相对误差估计为 $\frac{\|\delta x\|_1}{\|x\|_1} \lesssim \operatorname{cond}_1(A) \cdot \frac{\|\delta b\|_1}{\|b\|_1} \approx 22.7237, \ \text{Plank}$ 即相对误差为 2272.37%。

第八章 第八次作业

作业 8.1 (10pts)

设有线性方程组 Ax = b, 其中,

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 4 \end{bmatrix}$$

- 1. 写出 Jacobi 迭代的迭代格式 (分量形式);
- 2. 求 Jacobi 迭代的迭代矩阵;
- 3. 讨论此时 Jacobi 迭代法的收敛性 (请给出理由或证明)。

解 迭代格式为
$$\begin{cases} x_1^{(k+1)} = \frac{1}{2}(2+x_2^{(k)}) \\ x_2^{(k+1)} = \frac{1}{2}(x_1^{(k)}+x_3^{(k)}) \\ x_3^{(k+1)} = \frac{1}{2}(2+x_2^{(k)}+x_4^{(k)}) \\ x_4^{(k+1)} = \frac{1}{2}(4+x_3^{(k)}) \end{cases}, G = -D^{-1}(L+U) = \begin{bmatrix} 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \end{bmatrix}.$$
 G 的特征值为
$$\frac{\pm 1 \pm \sqrt{5}}{4}, \rho(G) = \frac{1+\sqrt{5}}{4} < 1, \text{ 故迭代收敛}.$$

作业 8.2 (10pts)

设有线性方程组

$$\begin{cases} 5x_1 - 3x_2 + 2x_3 &= 10 \\ -3x_1 + 5x_2 + 2x_3 &= 20 \\ 2x_1 + 2x_2 + 5x_3 &= 50 \end{cases}$$

- 1. 分别写出 Gauss-Seidel 迭代和 SOR 迭代的分量形式;
- 2. 求 Gauss-Seidel 迭代的分裂矩阵 (splitting matrix) 及迭代矩阵 (iteration matrix);
- 3. 讨论 Gauss-Seidel 迭代法的收敛性 (请给出理由或证明)。

解 Gauss-Seidel 迭代格式:
$$\begin{cases} x_1^{(k+1)} = \frac{1}{5}(10 + 3x_2^{(k)} - 2x_3^{(k)}) \\ x_2^{(k+1)} = \frac{1}{5}(20 + 3x_1^{(k+1)} - 2x_3^{(k)}) \\ x_1^{(k+1)} = \frac{1}{5}(50 - 2x_1^{(k+1)} - 2x_2^{(k+1)}) \end{cases}$$

SOR 迭代格式:
$$\begin{cases} x_1^{(k+1)} = (1-\omega)x_1^{(k)} + \frac{\omega}{5}(10+3x_2^{(k)}-2x_3^{(k)}) \\ x_2^{(k+1)} = (1-\omega)x_2^{(k)} + \frac{\omega}{5}(20+3x_1^{(k+1)}-2x_3^{(k)}) \\ x_1^{(k+1)} = (1-\omega)x_3^{(k)} + \frac{\omega}{5}(50-x_1^{(k+1)}-2x_2^{(k+1)}) \end{cases}$$
分裂矩阵 $Q = D + L = \begin{bmatrix} 5 & 0 & 0 \\ -3 & 5 & 0 \\ 2 & 2 & 5 \end{bmatrix}, G = -(D+L)^{-1}U = \frac{1}{125}\begin{bmatrix} 0 & 75 & -50 \\ 0 & 45 & -80 \\ 0 & -48 & 52 \end{bmatrix}.$

注意到系数矩阵各阶主子式为 A1 = 5 A2 = A2 = 16. 是正定的。故迭代收敛。

作业 8.3 (10pts)

设有线性方程组 Ax = b, 其中, $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ 。

利用如下迭代公式解此方程

$$x^{(k+1)} = x^{(k)} + \alpha(b - Ax^{(k)}), \quad 0 \neq \alpha \in \mathbb{R}$$

- 1. 写出此迭代法的迭代矩阵;
- 2. 求使该迭代法收敛时参数 α 的最大取值范围;
- 3. 当 α 取何值时, 迭代收敛速度最快。

解 迭代公式可以写为 $x^{(k+1)}=(I-\alpha A)x^{(k)}+\alpha b$,故迭代矩阵为 $I-\alpha A=\begin{bmatrix}1-3\alpha & -2\alpha\\ -\alpha & 1-2\alpha\end{bmatrix}$ 。 特征值为 $1-\alpha,1-4\alpha$,收敛条件为 $|1-\alpha|<1,|1-4\alpha|<1$,即 $0<\alpha<\frac{1}{2}$ 。 当 $\alpha=\frac{2}{5}$ 时,谱半径 $\rho(G)=\max\{|1-\alpha|,|1-4\alpha|\}$ 最小,收敛速度最快。

定理 8.4 (迭代方法的分裂矩阵和迭代矩阵)

迭代方法	分裂矩阵 Q	迭代矩阵 G		
Jacobi D		$I - D^{-1}A$		
Gauss-Seidel	D + L	$-(D+L)^{-1}U$		
SOR	$\frac{1}{\omega}D + L$	$(D + \omega L)^{-1}((1 - \omega)D - \omega U)$		

第九章 第九次作业

作业 9.1 (4pts)

设n阶实方阵A有相异的特征根 $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n| > 0$ 。对给定的实数 $\alpha \neq \lambda_i$ ($i = 1, 2, \cdots, n$),利用规范幂法或规范反幂法,设计一个能计算离 α 距离最近的矩阵A 的特征根的迭代格式(注:不容许对矩阵求逆)。

解 初始化: 选择初始向量 $y_0, x_0 = \frac{y_0}{\|y_0\|};$

迭代格式: 解方程组 $(A - \alpha I)y_{k+1} = x_k, \sigma_k = x_k^{\mathsf{T}} y_{k+1}, \lambda_k = \alpha + \frac{1}{\sigma_k}, x_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|};$

收敛判断: $||x_{k+1} - x_k|| < \epsilon$ 时结束迭代。

作业 9.2 (8pts)

考虑用 Jacobi 方法计算矩阵 $A=\begin{bmatrix}7&1&2\\1&4&0\\2&0&3\end{bmatrix}$ 的特征值。求对 A 作一次 Givens 相似变换时的 Givens

(旋转) 变换矩阵 Q (要求相应的计算效率最高) 以及 Givens 变换后的矩阵 B (其中, $B=Q^{\mathsf{T}}AQ$)。

解 选取模长最大的非对角元 a_{13} 与 a_{31} , 对应 $s = \frac{a_{33} - a_{11}}{2a_{13}} = -1$,

方程
$$t^2 + 2st - 1 = 0$$
 模较小根为 $1 - \sqrt{2} := \tan \varphi \Rightarrow \cos \varphi = \frac{\sqrt{2 + \sqrt{2}}}{2}$, $\sin \varphi = -\frac{\sqrt{2 - \sqrt{2}}}{2}$

对应旋转矩阵
$$Q = \begin{bmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ -\sin \varphi & 0 & \cos \varphi \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2+\sqrt{2}}}{2} & 0 & -\frac{\sqrt{2-\sqrt{2}}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{2-\sqrt{2}}}{2} & 0 & \frac{\sqrt{2+\sqrt{2}}}{2} \end{bmatrix},$$

$$B = Q^{T} A Q = \begin{bmatrix} 5 + 2\sqrt{2} & \frac{\sqrt{2 + \sqrt{2}}}{2} & 0\\ \frac{\sqrt{2 + \sqrt{2}}}{2} & 4 & \frac{\sqrt{2 - \sqrt{2}}}{2}\\ 0 & \frac{\sqrt{2 - \sqrt{2}}}{2} & 5 - 2\sqrt{2} \end{bmatrix}.$$

作业 9.3 (8pts)

设p < q, $Q(p,q,\theta)$ 为n 阶Givens矩阵, θ 为角度。记

$$A = (a_{ij})_{n \times n}, B = (b_{ij})_{n \times n} = Q^{\mathsf{T}}(p, q, \theta) A Q(p, q, \theta),$$

假设 $a_{pq} \neq 0$, 证明: 当 θ 满足 $\cot 2\theta = \frac{a_{qq} - a_{pp}}{2a_{pq}}$ 时, 有

$$\sum_{i=1}^{n} b_{ii}^2 = \sum_{i=1}^{n} a_{ii}^2 + 2a_{pq}^2.$$

提示: 只需证 $b_{pp}^2 + b_{qq}^2 = a_{pp}^2 + a_{qq}^2 + 2a_{pq}^2$ 。

解 以下记
$$t = \tan \theta$$
,由 $\frac{a_{qq} - a_{pp}}{2a_{pq}} = \cot 2\theta = \frac{1}{\tan 2\theta} = \frac{1 - t^2}{2t}$,有 $a_{qq} - a_{pp} = \frac{1 - t^2}{t}a_{pq}$ 。
$$b_{pp}^2 + b_{qq}^2 = (a_{pp} - ta_{pq})^2 + (a_{qq} + ta_{pq})^2 = a_{pp}^2 + a_{qq}^2 + 2t^2a_{pq}^2 - 2ta_{pp}a_{pq} + 2ta_{qq}a_{pq}$$
$$= a_{pp}^2 + a_{qq}^2 + 2t^2a_{pq}^2 + 2ta_{pq}(a_{qq} - a_{pp})$$
$$= a_{pp}^2 + a_{qq}^2 + 2t^2a_{pq}^2 + 2ta_{pq} \cdot \frac{1 - t^2}{t}a_{pq} = a_{pp}^2 + a_{qq}^2 + 2a_{pq}^2$$
由于其他对角线元素不变,故 $\sum_{i=1}^n b_{ii}^2 = \sum_{i=1}^n a_{ii}^2 + 2a_{pq}^2$ 。

作业 9.4 (10pts)

设 $A = \frac{1}{25} \begin{vmatrix} 7 & 7 & 24 \\ 0 & 50 & -25 \\ 24 & 24 & -7 \end{vmatrix}$, 利用 Householder 矩阵, 求 A 的正交分解, 即 A = QR, 其中 $Q \setminus R$ 分

别为 Householder 正交阵和上三角阵。

解 取
$$x = \frac{1}{25}(7,0,24)^{\top}, ||x|| = 1, v = x - ||x||e_1 = \frac{1}{25}(-18,0,24)^{\top}, ||v|| = \frac{6}{5},$$

$$H_1 = I - 2\frac{vv^{\top}}{v^{\top}v} = \frac{1}{25}\begin{bmatrix} 7 & 0 & 24 \\ 0 & 25 & 0 \\ 24 & 0 & -7 \end{bmatrix}, H_1A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 已经是上三角矩阵。
因此 QR 分解是 $Q = H_1 = \frac{1}{25}\begin{bmatrix} 7 & 0 & 24 \\ 0 & 25 & 0 \\ 24 & 0 & -7 \end{bmatrix}, R = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$

第十章 第十次作业

作业 10.1 (6pts)

在最小二乘法原理下求下列矛盾方程组:

$$\begin{cases} x_1 - 2x_2 &= 4 \\ x_1 + 6x_2 &= 14 \\ 3x_1 + x_2 &= 7.5 \\ x_1 + x_2 &= 4.5 \end{cases}$$

解 转化为矩阵形式
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 6 \\ 3 & 1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 14 \\ 7.5 \\ 4.5 \end{bmatrix}, x = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b = \left(\frac{593}{220}, \frac{87}{55}\right)^{\mathsf{T}}$$

作业 10.2 (8pts)

利用最小二乘法构造二次多项式 y = p(x) 去拟合下列数据(这里 x 代表年份,y 为人数),并计算 y(2015),结果精确到小数点后一位。

x	2010	2011	2012	2013	2014
у	134091	134735	135404	136072	136782

解 令
$$t=x-2010$$
,则矩阵形式为 $A=\begin{bmatrix}0&0&1\\1&1&1\\4&2&1\\9&3&1\\16&4&1\end{bmatrix}$, $b=\begin{bmatrix}134091\\134735\\135404\\136072\\136782\end{bmatrix}$ 。

解为 $(A^{T}A)^{-1}A^{T}b \approx (9.3571, 634.4714, 134091.71)^{T}$,对应 x = t + 2010,有 $p(x) = 9.3571(x - 2010)^{2} + 634.4714(x - 2010) + 134091.71, <math>p(2015) \approx 137498.0$ 。

作业 10.3 (6pts)

给出下列数据,用最小二乘法求形如 $y = a\cos x + b\sin x$ 的经验公式。

x_i	0.20	0.25	0.30	0.50
y_i	1.36	1.20	1.02	0.32

$$\mathbb{R} A = \begin{bmatrix} \cos 0.2 & \sin 0.2 \\ \cos 0.25 & \sin 0.25 \\ \cos 0.3 & \sin 0.3 \\ \cos 0.5 & \sin 0.5 \end{bmatrix} \approx \begin{bmatrix} 0.9801 & 0.1987 \\ 0.9689 & 0.2474 \\ 0.9553 & 0.2955 \\ 0.8776 & 0.4794 \end{bmatrix}, y = \begin{bmatrix} 1.36 \\ 1.20 \\ 1.02 \\ 0.32 \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} \approx \begin{bmatrix} 2.00 \\ -3.00 \end{bmatrix}$$

作业 10.4 (12pts)

利用最小二乘法构造一个二次多项式 p(x), 去拟合下列人口数据 (x 代表年份, p(x) 为人数, 单位: 亿), 并分别预测一下2024年末和2034年末的人口数, 计算结果精确到小数点后 3 位。

年份	年末人	出生人	死亡人	出生	死亡	城镇人	乡村人	城镇化
				率/‰	率/‰			率/‰
2018	14.0541	0.1523	0.0993	10.84	7.07	8.6433	5.4108	61.5
2019	14.1008	0.1465	0.0998	10.39	7.08	8.8426	5.2582	62.7
2020	14.1212	0.1202	0.09976	8.51	7.06	9.022	5.0992	63.9
2021	14.1260	0.1062	0.1014	7.52	7.18	9.1425	4.9835	64.7
2022	14.1175	0.0956	0.1041	6.77	7.37	9.2071	4.9104	65.22
2023	14.0967	0.0902	0.1110	6.40	7.87	9.3267	4.7733	66.15

$$m \diamondsuit t = x - 2018$$
,则矩阵形式为 $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \\ 16 & 4 & 1 \\ 25 & 5 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 14.0541 \\ 14.1008 \\ 14.1212 \\ 14.1260 \\ 14.1175 \\ 14.0967 \end{bmatrix}$ 。

解为 $(A^{T}A)^{-1}A^{T}b \approx (-0.00809, 0.0534, 14.058)^{T}$,对应 x = t + 2018,有 $p(x) = -0.00809(x - 2018)^{2} + 0.0534(x - 2018) + 14.058$ $p(2024) \approx 14.087, p(2034) \approx 12.841$ 。

第十一章 第十一次作业

作业 11.1 (5pts)

试利用 Gram-Schmidt 正交化算法, 求 [0,1] 上的三次多项式关于内积

$$\int_0^1 \sqrt{x} f(x) g(x) \, \mathrm{d}x$$

的一组正交基。

解 一组基为
$$\{v_i\}_{i=1}^4 = \{1, x, x^2, x^3\}, e_1 = \frac{v_1}{\|v_1\|} = \frac{\sqrt{6}}{2}, u_2 = v_2 - \frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} \cdot 1 = x - \frac{3}{5},$$

$$\|u_2\|^2 = \frac{8}{175}, e_2 = \frac{u_2}{\|u_2\|} = \frac{\sqrt{14}}{4} (5x - 3), u_3 = v_3 - \frac{\langle x^2, 1 \rangle}{\langle 1, 1 \rangle} \cdot 1 - \frac{\langle x^2, v_2 \rangle}{\langle v_2, v_2 \rangle} \cdot v_2 = x^2 - \frac{10}{9}x + \frac{5}{21},$$

$$\|u_3\|^2 = \frac{128}{43659}, e_3 = \frac{u_3}{\|u_3\|} = \frac{\sqrt{11}}{16} (63x^2 - 70x + 15),$$

$$u_4 = v_4 - \frac{\langle x^3, 1 \rangle}{\langle 1, 1 \rangle} \cdot 1 - \frac{\langle x^3, v_2 \rangle}{\langle v_2, v_2 \rangle} \cdot v_2 - \frac{\langle x^3, v_3 \rangle}{\langle v_3, v_3 \rangle} \cdot v_3 = x^3 - \frac{21}{13}x^2 + \frac{105}{143}x - \frac{35}{429},$$

$$\|u_4\|^2 = \frac{512}{2760615}, e_4 = \frac{u_4}{\|u_4\|} = \frac{\sqrt{30}}{32} (429x^3 - 693x^2 + 315x - 35), \{e_i\}_{i=1}^4 \text{ pr } \text{ pr$$

可以在 Mathematica 利用以下代码验证:

作业 11.2 (5pts)

对下列数据用最小二乘法求形如 $\varphi(x) = \frac{x}{a+bx}$ 的拟合函数。

x_i	2.10	2.50	2.80	3.20
y_i	0.6087	0.6849	0.7368	0.8111

解令 $u_i = \frac{1}{x_i}, v_i = \frac{1}{y_i}$,问题化为 $v_i = au_i + b$,此时数据如下:

u_i	0.4762	0.4000	0.3571	0.3125
v_i	1.6420	1.4603	1.3571	1.2333

拟合得到 $a \approx 2.4867, b \approx 0.4623$ 。

作业 11.3 (5pts)

试确定常数 $c_0, c_1 \in \mathbb{R}$ 使得 $\int_0^1 |e^x - c_0 - c_1 x|^2 dx$ 达到极小,并求出极小值。

解

$$\begin{split} &\int_0^1 |e^x - c_0 - c_1 x|^2 \, \mathrm{d}x = \int_0^1 (e^x - c_0 - c_1 x)^2 \, \mathrm{d}x \\ &= \int_0^1 \left(c_0^2 - 2c_0 e^x + e^{2x} + 2c_0 c_1 x - 2c_1 x e^x + c_1^2 x^2 \right) \mathrm{d}x \\ &= c_0^2 + (2 - 2e)c_0 + c_0 c_1 - \frac{1}{2} - 2c_1 + \frac{1}{3}c_1^2 + \frac{e^2}{2} \coloneqq f(c_0, c_1) \\ &\nabla f = \left(2c_0 + 2 - 2e + c_1, c_0 + \frac{2}{3}c_1 - 2 \right)^\top = 0 \Rightarrow c_0 = 4e - 10, c_1 = 18 - 6e \\ &\text{此时 Hessian 矩阵为} \begin{bmatrix} 2 & 1 \\ 1 & \frac{2}{3} \end{bmatrix} \text{ 正定, } 故是极小值点, \\ &\text{计算得到极小值为} - \frac{7}{2}e^2 + 20e - \frac{57}{2} \end{split}$$

作业 11.4 (5pts)

求函数 $f(x) = \cos x$ 在区间 [0,1] 上关于权函数 $\rho(x) = \sqrt{x}$ 的三次最佳平方逼近多项式。

解 沿用 1 中记号,
$$f(x) = \sum_{i=1}^{4} \langle e_i(x), \cos x \rangle e_i(x) = \sum_{i=1}^{4} \int_0^1 \sqrt{x} e_i(x) \cos(x) \, \mathrm{d}x \cdot e_i(x)$$

 $\approx 0.999046 + 0.0141787x - 0.556365x^2 + 0.0830802x^3$

第十二章 第十二次作业

作业 12.1 (5pts)

设 $f(x) = x^2$, 求 f(x) 在区间 $[-\pi, \pi]$ 上的二次最佳平方逼近三角多项式。

解 即计算 f(x) 的 Fourier 级数,并截断到二次。由于 f(x) 是偶函数,故正弦系数为 0。 余弦系数 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx \, \mathrm{d}x = \frac{4(-1)^n}{n^2}$,常数项 $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \, \mathrm{d}x = \frac{\pi^2}{3}$,故二次最佳平方逼近三角多项式为 $S(x) = \frac{\pi^2}{3} - 4\cos x + \cos 2x$ 。

作业 12.2 (10pts)

设 $f(x) \in C^2[a,b]$,且 f''(x) > 0。设 f(x) 在 [a,b] 上的一次最佳一致逼近多项式为 $p_1^*(x) = c_0 + c_1 x$ 。

- 1. 证明: $\exists c \in [a,b]$, s.t. $c_1 = f'(c) = \frac{f(b) f(a)}{b-a}$, $c_0 = \frac{f(a) + f(c)}{2} \frac{f(b) f(a)}{b-a} \cdot \frac{a+c}{2}$;
- 2. 求 $f(x) = \cos x$ 在 $\left[0, \frac{\pi}{2}\right]$ 上的一次最佳一致逼近多项式。

解 设 $e(x) = f(x) - p_1^*(x)$, 则 e''(x) = f''(x) > 0, 故 e(x) 是凸函数。记 $E = \min_{c_0, c_1} \max_{x \in [a, b]} |e(x)|$, 由 Chebyshev,e(a) = e(b) = -E, e(c) = E, 其中 $c \in (a, b)$ 唯一存在。

此时有
$$\begin{cases} e(a) = f(a) - c_0 - c_1 a = -E \\ e(b) = f(b) - c_0 - c_1 b = -E \end{cases}$$
 , 二者相减即得到 $c_1 = \frac{f(b) - f(a)}{b - a}$ 。

又有 $e(c) = f(c) - c_0 - c_1 c = E$, 代入 e(a) = -E 即有 $c_0 = \frac{f(a) + f(c)}{2} - c_1 \frac{a + c}{2}$,

且由于 e(x) 凸, 故误差最大值点 c 满足 $e'(c) = f'(c) - c_1 = 0$, 即 $c_1 = f'(c)$ 。

由于 $-\cos x$ 在 $\left[0,\frac{\pi}{2}\right]$ 凸,对 $-\cos x$ 使用上述结论,得到其一次最佳一致逼近多项式为

$$\tilde{p}_{1}^{*}(x) = \frac{2}{\pi}x - \frac{1 + \sqrt{1 - \frac{4}{\pi^{2}}}}{2} - \frac{1}{\pi}\arcsin\frac{2}{\pi}, \text{ if } \cos x \text{ if } \cos x$$

$$p_1^*(x) = -\frac{2}{\pi}x + \frac{1 + \sqrt{1 - \frac{4}{\pi^2}}}{2} + \frac{1}{\pi}\arcsin\frac{2}{\pi} \approx -0.6366x + 1.1053$$

作业 12.3 (5pts)

求多项式 $p(x) = 6x^3 + 3x^2 + x + 4$ 在 [-1, 1] 上的二次最佳一致逼近多项式。

解 重写 $f(x) = \frac{3}{2}T_3(x) + 3x^2 + \frac{11}{2}x + 4$, 其中 $T_3(x) = 4x^3 - 3x$ 是 3 次 Chebyshev 多项式。 $T_3(x)$ 在 [-1,1] 上满足等振条件,故 f(x) 的二次最佳一致逼近多项式是 $3x^2 + \frac{11}{2}x + 4$ 。

作业 12.4 (5pts)

求函数 $f(x) = \cos \frac{\pi}{2} x$ 在 [-1,1] 上关于权函数 $\rho(x) = (1-x^2)^{-1/2}$ 的三次最佳平方逼近多项式。

解 Chebyshev 多项式 $\{T_i(x)\}$ 在权函数 $\rho(x)$ 下正交,故所求 $p(x) = \sum_{k=0}^{3} \frac{\langle f(x), T_i(x) \rangle}{\langle T_i(x), T_i(x) \rangle} T_i(x)$ 。 由于 f(x) 和 $\rho(x)$ 均为偶函数,故 $T_1(x), T_3(x)$ 系数为 0。考虑 $T_0(x) = 1, T_2(x) = 2x^2 - 1$,系数为 $\alpha_0 = \frac{\int_{-1}^{1} \frac{\cos \frac{\pi}{2} x}{\sqrt{1-x^2}} \, \mathrm{d}x}{\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x} = J_0\left(\frac{\pi}{2}\right)$ 和 $\alpha_2 = \frac{\int_{-1}^{1} \frac{(2x^2-1)\cos \frac{\pi}{2} x}{\sqrt{1-x^2}} \, \mathrm{d}x}{\int_{-1}^{1} \frac{(2x^2-1)^2}{\sqrt{1-x^2}} \, \mathrm{d}x} = -2J_2\left(\frac{\pi}{2}\right)$ 。 故所求多项式为 $p(x) = -4J_2\left(\frac{\pi}{2}\right)x^2 + 2J_2\left(\frac{\pi}{2}\right) + J_0\left(\frac{\pi}{2}\right) \approx -0.9988x^2 + 0.9714$ 。

第十三章 第十三次作业

作业 13.1 (6pts)

用图解法求解下列线性规划问题,并指出问题是否有唯一最优解、无穷多最优解、无界解还是无可行解?

max
$$z = 2x_1 + 3x_2$$

s. t. $x_1 + 2x_2 \le 8$
 $2x_1 + x_2 \ge 1$
 $x_2 \le 3$
 $x_1, x_2 \ge 0$

解 图像如下图所示:

直线对应约束条件,橙色区域为可行域。可行基解为(0.5,0),(8,0),(2,3),(0,3),(0,1),对应值为1,16,13,9,3,因此最优解为(8,0),对应目标函数值为16,存在唯一最优解。

作业 13.2 (6pts)

将下列线性规划问题化为标准形式,并列出初始单纯形表.

min
$$z = -x_1 + 2x_2 - 3x_3 + 2x_4$$

s. t. $4x_1 - x_2 + 2x_3 - x_4 = -2$
 $x_1 + x_2 - x_3 + 2x_4 \le 14$
 $-2x_1 + 3x_2 + x_3 - x_4 \ge 2$
 $x_1, x_2, x_3 \ge 0, x_4$ 无约束

解令 $x_4 = x_5 - x_6, x_5, x_6 \ge 0$,对后两个不等式约束添加松弛变量 x_7, x_8 ,则标准形式为:

max
$$z = x_1 - 2x_2 + 3x_3 - 2x_5 + 2x_6$$

s. t. $-4x_1 + x_2 - 2x_3 + x_5 - x_6 = 2$
 $x_1 + x_2 - x_3 + 2x_5 - 2x_6 + x_7 = 14$

$$-2x_1 + 3x_2 + x_3 - x_5 + x_6 - x_8 = 2$$
$$x_1, x_2, x_3, x_5, x_6, x_7, x_8 \ge 0$$

容易得到一组初始基可行解为 $(x_1, x_2, x_3, x_5, x_6, x_7, x_8) = (0, 2, 0, 0, 0, 12, 4)$,对应目标函数值为 -4,初始单纯形表如下:

	$c_j \rightarrow$		1	-2	3	-2	2	0	0
c_B	x_B	b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈
-2	x_2	2	-4	1	-2	1	-1	0	0
0	<i>x</i> ₇	12	1	1	-1	2	-2	1	0
0	<i>x</i> ₈	4	-2	3	1	-1	1	0	-1
	σ_{j}		-7	0	-1	0	0	0	0

作业 13.3 (6pts)

求下列线性规划问题中满足约束条件的所有基解,并指出哪些是基可行解,并代入目标函数,确 定哪一个是最优解。

max
$$z = 2x_1 - x_2 + 3x_3 + 2x_4$$

s.t. $2x_1 + 3x_2 - x_3 - 4x_4 = 8$
 $x_1 - 2x_2 + 6x_3 - 7x_4 = -3$
 $x_1, x_2, x_3, x_4 \ge 0$

解有2个等式约束和4个变量,因此需要令除基变量的2个变量为0,以下为结果:

基变量	解向量	是否可行	目标函数值
x_1, x_2	(1, 2, 0, 0)	是	0
x_1, x_3	$(\frac{45}{13}, 0, -\frac{14}{13}, 0)$	否	N/A
x_1, x_4	$(\frac{34}{5}, 0, 0, \frac{7}{5})$	是	<u>82</u> 5
x_2, x_3	$(0, \frac{45}{16}, \frac{7}{16}, 0)$	是	$-\frac{3}{2}$
x_2, x_4	$(0, \frac{68}{29}, 0, -\frac{7}{29})$	否	N/A
x_2, x_3	$(0,0,-\frac{68}{31},-\frac{45}{31})$	否	N/A

作业 13.4 (6pts)

用单纯形方法求解以下线性规划问题:

max
$$z = 3x_1 - 2x_2 + 5x_3$$

s. t. $3x_1 + 2x_3 \le 13$
 $x_2 + 3x_3 \le 17$
 $2x_1 + x_2 + x_3 \le 13$

$$x_1,x_2,x_3\geq 0$$

解 对约束条件添加松弛变量 x_4, x_5, x_6 ,则标准形式为:

max
$$z = 3x_1 - 2x_2 + 5x_3$$

s. t. $3x_1 + 2x_3 + x_4 = 13$
 $x_2 + 3x_3 + x_5 = 17$
 $2x_1 + x_2 + x_3 + x_6 = 13$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

一组初始基可行解为 $(x_1, x_2, x_3, x_4, x_5, x_6) = (0, 0, 0, 13, 17, 13)$, 初始单纯形表如下:

	$c_j \rightarrow$		3	-2	5	0	0	0
c_B	x_B	b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
0	<i>x</i> ₄	13	3	0	2	1	0	0
0	<i>x</i> ₅	17	0	1	3	0	1	0
0	<i>x</i> ₆	13	2	1	1	0	0	1
	σ_{j}	•	3	-2	5	0	0	0

以下进行单纯形表迭代:

	$c_j \rightarrow$		3	-2	5	0	0	0
c_B	x_B	b	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
0	<i>x</i> ₄	<u>5</u> 3	3	$-\frac{2}{3}$	0	1	$-\frac{2}{3}$	0
5	<i>x</i> ₃	<u>17</u>	0	<u>1</u> 3	1	0	1/3	0
0	<i>x</i> ₆	<u>22</u> 3	2	<u>2</u> 3	0	0	$-\frac{1}{3}$	1
	σ_{j}			$-\frac{11}{3}$	0	0	$-\frac{5}{3}$	0

	$c_j \rightarrow$		3	-2	5	0	0	0
c_B	x_B	b	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
3	x_1	<u>5</u>	1	$-\frac{2}{9}$	0	$\frac{1}{3}$	$-\frac{2}{9}$	0
5	<i>x</i> ₃	<u>17</u>	0	<u>1</u> 3	1	0	<u>1</u> 3	0
0	<i>x</i> ₆	<u>56</u> 9	0	<u>10</u> 9	0	$-\frac{2}{3}$	<u>1</u>	1
σ_{j}			0	-3	0	-1	-1	0

因此最优解为 $\left(\frac{5}{9}, 0, \frac{17}{3}, 0, 0, \frac{56}{9}\right)$, 对应目标函数值为 30。

作业 13.5 (6pts)

用大 M 法求解下列线性规划问题:

min
$$z = 3x_1 - x_2$$

s. t. $3x_1 + x_2 \ge 3$
 $2x_1 - 3x_2 \ge 1$
 $x_1, x_2 \ge 0$

解 对约束条件添加松弛变量 x_3, x_4 ,并添加人工变量 x_5, x_6 ,则标准形式为:

max
$$z = -3x_1 + x_2 - Mx_5 - Mx_6$$

s. t. $3x_1 + x_2 - x_3 + x_5 = 3$
 $2x_1 - 3x_2 - x_4 + x_6 = 1$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

初始基可行解为 $(x_1, x_2, x_3, x_4, x_5, x_6) = (0, 0, 0, 0, 3, 1)$, 初始单纯形表如下:

c	$j \rightarrow$		-3	1	0	0	-M	0
c_B	x_B	b	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆
-M	<i>x</i> ₅	3	3	1	-1	0	1	0
-M	<i>x</i> ₆	1	2	-3	0	-1	0	1
σ_j			5M - 3	1-2M	-M	-M	0	0

以下进行单纯形表迭代:

c	$c_j \rightarrow$			1	0	0	-M	0
c_B	x_B	b	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆
-M	<i>x</i> ₅	$\frac{3}{2}$	0	<u>11</u>	-1	$\frac{3}{2}$	1	$-\frac{3}{2}$
-3	x_1	$\frac{1}{2}$	1	$-\frac{3}{2}$	0	$-\frac{1}{2}$	0	1/2
	σ_j		0	<u>11<i>M</i> – 7</u>	-M	3 <u>M</u> 2	0	3-5M 2

	$c_j \rightarrow$			1	0	0	-M	0
c_B	x_B	b	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
1	<i>x</i> ₂	<u>3</u>	0	1	$-\frac{2}{11}$	3 11	<u>2</u> 11	$-\frac{3}{11}$
-3	x_1	10 11	1	0	$-\frac{3}{11}$	$-\frac{1}{11}$	3 11	1 11
	σ_{j}		0	0	$-\frac{7}{11}$	$-\frac{6}{11}$	$\frac{7}{11}-M$	$\frac{6}{11} - M$

因此最优解为 $\left(\frac{10}{11}, \frac{3}{11}, 0, 0, 0, 0\right)$, 对应目标函数值为 $-\frac{27}{11}$ 。

作业 13.6 (6pts)

分别用最速下降法与牛顿法求函数 $f(x) = x_1^2 - x_1x_2 + x_2^2 + x_1x_3 + x_3^2 - 2x_1 + 4x_2 + 2x_3 - 2, x = (x_1, x_2, x_3)^{\mathsf{T}} \in \mathbb{R}^3$ 的极小点, 初始点 $x_0 = (0, 0, 0)^{\mathsf{T}}$,要求:

- 1. 最速下降法进行 2 次迭代, 并验证相邻两步的搜索方向正交;
- 2. 牛顿法进行1次迭代。

解
$$\nabla f = (2x_1 - x_2 + x_3 - 2, -x_1 + 2x_2 + 4, x_1 + 2x_3 + 2)^{\top}, \nabla^2 f = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
 对于最速下降法,初始点为 $x_0 = (0,0,0)^{\top}, d_0 = \nabla f(x_0) = (-2,4,2)^{\top},$ $\alpha_0 = \arg\min_{\alpha} f(x_0 + \alpha d_0) = \arg\min_{\alpha} (28\alpha^2 - 24\alpha - 2) = \frac{3}{7},$ $x_1 = x_0 + \alpha_0 d_0 = \left(\frac{6}{7}, -\frac{12}{7}, -\frac{6}{7}\right)^{\top}, d_1 = \nabla f(x_1) = \left(\frac{4}{7}, -\frac{2}{7}, \frac{8}{7}\right)^{\top}, \langle d_0, d_1 \rangle = 0,$ $\alpha_1 = -\frac{\nabla f(x_1)^{\top} d_1}{d_1^{\top} \nabla^2 f(x_1) d_1} = \frac{21}{62}, x_2 = x_1 + \alpha_1 d_1 = \left(\frac{144}{217}, -\frac{351}{217}, -\frac{270}{217}\right)^{\top},$ 对于牛顿法, $x_1 = x_0 - \nabla^2 f(x_0)^{-1} \nabla f(x_0) = \left(1, -\frac{3}{2}, \frac{3}{2}\right)^{\top},$ 由于 $\nabla^2 f > 0, \nabla f(x) = 0$ 时 $x^* = \left(1, -\frac{3}{2}, \frac{3}{2}\right)^{\top},$ 有 x^* 为全局最优解, $f(x^*) = -\frac{15}{2}$ 。