Importing the Dependencies

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
from sklearn import metrics

Data Collection and Processing

loading the data from csv file to Pandas DataFrame big_mart_data = pd.read_csv('/content/Train.csv')

first 5 rows of the dataframe
big_mart_data.head()

₹	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	

number of data points & number of features
big_mart_data.shape

→ (8523, 12)

getting some information about thye dataset big_mart_data.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	<pre>Item_Identifier</pre>	8523 non-null	object
1	Item_Weight	7060 non-null	float64
2	Item_Fat_Content	8523 non-null	object
3	<pre>Item_Visibility</pre>	8523 non-null	float64
4	Item_Type	8523 non-null	object
5	Item_MRP	8523 non-null	float64

```
6
   Outlet_Identifier
                              8523 non-null
                                              object
   Outlet_Establishment_Year 8523 non-null
7
                                              int64
   Outlet_Size
                              6113 non-null
                                              object
   Outlet_Location_Type
                             8523 non-null
9
                                              object
10 Outlet_Type
                              8523 non-null
                                              object
11 Item_Outlet_Sales
                              8523 non-null
                                              float64
```

dtypes: float64(4), int64(1), object(7)

memory usage: 799.2+ KB

Categorical Features:

- Item_Identifier
- Item_Fat_Content
- Item_Type
- Outlet_Identifier
- Outlet_Size
- Outlet_Location_Type
- Outlet_Type

checking for missing values big_mart_data.isnull().sum()

\rightarrow	<pre>Item_Identifier</pre>	0
_	Item_Weight	1463
	Item_Fat_Content	0
	<pre>Item_Visibility</pre>	0
	Item_Type	0
	Item_MRP	0
	Outlet_Identifier	0
	Outlet_Establishment_Year	0
	Outlet_Size	2410
	Outlet_Location_Type	0
	Outlet_Type	0
	Item_Outlet_Sales	0
	dtype: int64	

Handling Missing Values

Mean --> average

Mode --> more repeated value

```
# mean value of "Item_Weight" column
big_mart_data['Item_Weight'].mean()
```

12.857645184136183

```
# filling the missing values in "Item weight column" with "Mean" value
big_mart_data['Item_Weight'].fillna(big_mart_data['Item_Weight'].mean(), inplace=True)
```

```
# mode of "Outlet_Size" column
big_mart_data['Outlet_Size'].mode()
```

Medium dtype: object

```
# filling the missing values in "Outlet_Size" column with Mode
mode_of_Outlet_size = big_mart_data.pivot_table(values='Outlet_Size', columns='Outlet_Type', aggfu
print(mode_of_Outlet_size)
Outlet_Type Grocery Store Supermarket Type1 Supermarket Type2 Supermarket Type3
    Outlet Size
                         Small
                                           Small
                                                             Medium
                                                                               Medium
miss_values = big_mart_data['Outlet_Size'].isnull()
print(miss_values)
    0
             False
→
             False
    1
    2
             False
    3
             True
    4
             False
    8518
             False
    8519
             True
             False
    8520
             False
    8521
    8522
             False
    Name: Outlet_Size, Length: 8523, dtype: bool
big_mart_data.loc[miss_values, 'Outlet_Size'] = big_mart_data.loc[miss_values, 'Outlet_Type'].apply
# checking for missing values
big_mart_data.isnull().sum()
→ Item_Identifier
                                  0
    Item Weight
                                  0
    Item_Fat_Content
                                  0
    Item_Visibility
                                  0
                                  0
    Item_Type
    Item MRP
                                  0
    Outlet_Identifier
                                  0
    Outlet_Establishment_Year
                                  0
    Outlet_Size
                                  0
    Outlet_Location_Type
                                  0
                                  0
    Outlet_Type
    Item_Outlet_Sales
                                  0
    dtype: int64
Data Analysis
big_mart_data.describe()
```

-	-	_
	4	•
	_	ď

	Item_Weight	<pre>Item_Visibility</pre>	Item_MRP	Outlet_Establishment_Year	<pre>Item_Outlet_Sales</pre>
count	8523.000000	8523.000000	8523.000000	8523.000000	8523.000000
mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
std	4.226124	0.051598	62.275067	8.371760	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	9.310000	0.026989	93.826500	1987.000000	834.247400
50%	12.857645	0.053931	143.012800	1999.000000	1794.331000
75%	16.000000	0.094585	185.643700	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

Numerical Features

sns.set()

```
# Item_Weight distribution
plt.figure(figsize=(6,6))
sns.distplot(big_mart_data['Item_Weight'])
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `distplot warnings.warn(msg, FutureWarning)


```
# Item Visibility distribution
plt.figure(figsize=(6,6))
sns.distplot(big_mart_data['Item_Visibility'])
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `distplot warnings.warn(msg, FutureWarning)


```
# Item MRP distribution
plt.figure(figsize=(6,6))
sns.distplot(big_mart_data['Item_MRP'])
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `distplot warnings.warn(msg, FutureWarning)


```
# Item_Outlet_Sales distribution
plt.figure(figsize=(6,6))
sns.distplot(big_mart_data['Item_Outlet_Sales'])
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `distplot warnings.warn(msg, FutureWarning)

Outlet_Establishment_Year column
plt.figure(figsize=(6,6))
sns.countplot(x='Outlet_Establishment_Year', data=big_mart_data)
plt.show()


```
# Item_Fat_Content column
plt.figure(figsize=(6,6))
sns.countplot(x='Item_Fat_Content', data=big_mart_data)
plt.show()
```



```
# Item_Type column
plt.figure(figsize=(30,6))
sns.countplot(x='Item_Type', data=big_mart_data)
plt.show()
```



```
# Outlet_Size column
plt.figure(figsize=(6,6))
sns.countplot(x='Outlet_Size', data=big_mart_data)
plt.show()
```


Data Pre-Processing

big_mart_data.head()

→	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_
0	FDA15	9.30	Low Fat	0.016047	Dairy	249.8092	
1	DRC01	5.92	Regular	0.019278	Soft Drinks	48.2692	
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	

big_mart_data['Item_Fat_Content'].value_counts()

Low Fat 5089
Regular 2889
LF 316
reg 117
low fat 112

Name: Item_Fat_Content, dtype: int64

big_mart_data.replace({'Item_Fat_Content': {'low fat':'Low Fat','LF':'Low Fat', 'reg':'Regular'}},

big_mart_data['Item_Fat_Content'].value_counts()

Low Fat 5517 Regular 3006 Name: Item_Fat_Content, dtype: int64

Label Encoding

```
encoder = LabelEncoder()
```

```
big_mart_data['Item_Identifier'] = encoder.fit_transform(big_mart_data['Item_Identifier'])
big_mart_data['Item_Fat_Content'] = encoder.fit_transform(big_mart_data['Item_Fat_Content'])
big_mart_data['Item_Type'] = encoder.fit_transform(big_mart_data['Item_Type'])
big_mart_data['Outlet_Identifier'] = encoder.fit_transform(big_mart_data['Outlet_Identifier'])
big_mart_data['Outlet_Size'] = encoder.fit_transform(big_mart_data['Outlet_Size'])
big_mart_data['Outlet_Location_Type'] = encoder.fit_transform(big_mart_data['Outlet_Location_Type'])
```

big_mart_data.head()

→	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_
C	156	9.30	0	0.016047	4	249.8092	
1	8	5.92	1	0.019278	14	48.2692	
2	2 662	17.50	0	0.016760	10	141.6180	
3	1121	19.20	1	0.000000	6	182.0950	
4	1297	8.93	0	0.000000	9	53.8614	

Splitting features and Target

```
X = big_mart_data.drop(columns='Item_Outlet_Sales', axis=1)
Y = big_mart_data['Item_Outlet_Sales']
```

print(X)

→	0	Item_Identifier 156 8	Item_Weight 9.300 5.920	 Outlet_Location_Type 0 2	Outlet_Type 1 2
	2	662	17.500	 0	1
	3	1121	19.200	 2	0
	4	1297	8.930	 2	1
	8518 8519 8520 8521	370 897 1357 681	6.865 8.380 10.600 7.210	 2 1 1 2	1 1 1 2
	8522	50	14.800	 0	1

[8523 rows x 11 columns]

```
print(Y)
\rightarrow
    0
             3735.1380
             443.4228
    2
             2097.2700
    3
              732.3800
     4
              994.7052
               . . .
     8518
             2778.3834
     8519
             549.2850
    8520
             1193.1136
     8521
             1845.5976
     8522
              765.6700
     Name: Item_Outlet_Sales, Length: 8523, dtype: float64
Splitting the data into Training data & Testing Data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
→ (8523, 11) (6818, 11) (1705, 11)
Machine Learning Model Training
XGBoost Regressor
regressor = XGBRegressor()
regressor.fit(X_train, Y_train)
    [02:56:53] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecate
\rightarrow
     XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                  colsample bynode=1, colsample bytree=1, gamma=0,
                  importance_type='gain', learning_rate=0.1, max_delta_step=0,
                  max_depth=3, min_child_weight=1, missing=None, n_estimators=100,
                  n_jobs=1, nthread=None, objective='reg:linear', random_state=0,
                  reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
                  silent=None, subsample=1, verbosity=1)
Evaluation
# prediction on training data
training_data_prediction = regressor.predict(X_train)
# R squared Value
r2_train = metrics.r2_score(Y_train, training_data_prediction)
print('R Squared value = ', r2_train)
R Squared value = 0.6364457030941357
```

```
# prediction on test data
test_data_prediction = regressor.predict(X_test)

# R squared Value
r2_test = metrics.r2_score(Y_test, test_data_prediction)

print('R Squared value = ', r2_test)

R Squared value = 0.5867640914432671
```