TOTIMERSØVING NR 4 TEP 4105 FLUIDMEKANIKK

Høst 2014

Utført av: (alle i gruppa)

Oppgave 1

What assumptions must be made in order to use

$$\frac{p_1}{\rho} + \frac{v_1^2}{2} + gz_1 = \frac{p_2}{\rho} + \frac{v_2^2}{2} + gz_2 \tag{1}$$

$$\int_{1}^{2} \frac{\partial v}{\partial t} ds + \int_{1}^{2} \frac{dp}{\rho} + \frac{1}{2} \left(v_{2}^{2} - v_{1}^{2} \right) + g \left(z_{2} - z_{1} \right) = 0$$
 (2)

$$\frac{p_1}{\rho g} + \alpha_1 \frac{v_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \alpha_2 \frac{v_2^2}{2g} + z_2 + h_f$$
 (3)

Oppgave 2

Use the Bernoulli equation (1) to determine the velocity at the outlet, $v_{\rm ut}$.

Oppgave 3

The pressure in a rotating basin is given by

$$p(r,z) = p_0 + \rho g(z_0 - z) + \frac{1}{2}\rho \Omega^2 r^2$$
 (4)

What is $v_{\rm ut}$ in this case?

Oppgave 4

The surface of the rotating basin in oppgave 3 is given as

$$z = z_0 + \frac{\Omega^2 r^2}{2g}$$
 (5).

(Obtained by requiring $p(r, z) = p_0$ in equation (4).) Use Bernoullis equation from $(r = 0, z = z_0)$ to an arbitrary point on the surface. Why does the z we obtain from this approach differ from (5)? What is wrong?

Oppgave 5

Given a stationary and incompressible flow parallel to a wall at y = 0. The velocity $\vec{v} = (u,0)$ is dependent only on y. Show that the acceleration of a fluid particle is zero.

Oppgave 6

A liquid film with thickness h flows parallel to a vertical wall. Friction between the fluid and the surrounding air is negligible. Sketch the resulting velocity profile.

Use force-conservation to determine the viscous shear $\, au_{\mathrm{w}} \,$ on the wall.

Oppgave 7

A high speed gas moves along the surface resulting in a constant shear τ_0 on the surface.

Sketch some possible velocity profiles. What is $\tau_{\rm w}$ in this case?

