Resumen de teoremas para el final de Lógica

Agustín Curto, agucurto
95@gmail.com 2017

Contents

1	Estructuras algebráicas ordenadas	2
2	Términos y fórmulas	16

Nota: Este resumen se corresponde con la materia dictada en el año 2017. El autor no se responsabiliza de posibles cambios que pudiesen realizarse en los temas dictados en la misma, así como tampoco de errores involuntarios que pudiesen existir en dicho resumen.

1 Estructuras algebráicas ordenadas

Lemma 1. Sean (P, \leq) y (P', \leq') posets. Supongamos que F es un isomorfismo de (P, \leq) en (P', \leq') , entonces:

- a) Para cada $S \subseteq P$ y cada $a \in P$, se tiene que a es **cota superior** (resp. **inferior**) de S si y solo si F(a) es **cota superior** (resp. **inferior**) de F(S).
- b) Para cada $S \subseteq P$, se tiene que existe $\sup(S)$ si y solo si existe $\sup(F(S))$ y en el caso de que existan tales elementos se tiene que $F(\sup(S)) = \sup(F(S))$.
- c) P tiene 1 (resp. 0) si y solo si P' tiene 1 (resp. 0) y en tal caso tales elementos están conectados por F.
- d) Para cada $m \in P$, m es **maximal** (resp. **minimal**) si y solo si F(m) es **maximal** (resp. **minimal**).
- e) Para $a, b \in P$, tenemos que $a \prec b$ si y solo si $F(a) \prec' F(b)$.

Proof. a) Probaremos solo el caso de la **cota superior**.

 \Rightarrow Supongamos que a es **cota superior** de S, veamos entonces que F(a) es **cota superior** de F(S). Sean:

- $x \in F(S)$
- $s \in S$ tal que x = F(s).

Ya que $s \le a$, tenemos que $x = F(s) \le' F(a)$. Luego, F(a) es **cota superior**.

 \Leftarrow Supongamos ahora que F(a) es **cota superior** de F(S) y veamos entonces que a es cota superior de S.

Sea $s \in S$, ya que $F(s) \le' F(a)$, tenemos que $s = F^{-1}(F(s)) \le' F^{-1}(F(a)) = a$. Por lo tanto, a es **cota superior**.

b) \implies Supongamos existe $\sup(S)$. Veamos que $F(\sup(S))$ es el supremo de F(S). Por el iniciso (a) $F(\sup(S))$ es cota superior de F(S). Veamos que es la menor de las cotas superiores. Supongamos b' cota superior de F(S), entonces $F^{-1}(b')$ es cota superior de S, es decir, $\sup(S) \leq F^{-1}(b')$, produciendo $F(\sup(S)) \leq b'$. Por lo tanto, $F(\sup(S))$ es el supremo de F(S).

- c) Se desprende del inciso (b) tomando S = P.
- d) Probaremos solo el caso maximal.

 \Rightarrow Supongamos que m es maximal de (P, \leq) . Veamos que F(m) es maximal de (P', \leq') . Supongamos que F(m) no es maximal de (P', \leq') , es decir, $\exists b' \in P'$ F(m) <' b'. Dado que F es isomorfismo:

$$F^{-1}(F(m)) < F^{-1}(b')$$

 $m < F^{-1}(b')$

Lo cual es un absurdo, dado que m es maximal de (P, \leq) . Por lo tanto, F(m) es maximal de (P', \leq') .

 \leftarrow Supongamos que F(m) es maximal de (P', \leq') . Veamos que m es maximal de (P, \leq) . Supongamos que m no es maximal de (P, \leq) , es decir, $\exists b \in P \ m < b$. Dado que F es isomorfismo:

Lo cual es un absurdo, dado que F(m) es maximal de (P', \leq') . Por lo tanto, m es maximal de (P, \leq) .

- e) \implies Supongamos $a \prec b$, veamos que $F(a) \prec' F(b)$. Debemos ver:
 - (1) F(a) <' F(b)
 - (2) $\nexists z'$ tal que F(a) < z' < F(b)

Ya que $a \prec b$, por definición tenemos: $a < b \ y \not\exists z \text{ tal que } a < z < b \ (\star)$

Dado que la función F es un isomorfismo, se cumple (1). Veamos que se cumple (2), supongamos que $\exists z'$ tal que F(a) < z' < F(b). Luego, nuevamente utilizando que F es isomorfismo, tenemos:

$$F^{-1}(F(a)) < F^{-1}(z') < F^{-1}(F(b))$$

 $a < F^{-1}(z') < b$

Lo cual, contradice (\star) , el absurdo vino de suponer que $\exists z'$ tal que F(a) < z' < F(b), por lo tanto $\nexists z'$ tal que F(a) < z' < F(b).

Finalmente, dado que se cumplen los puntos (1) y (2), se cumple también $F(a) \prec' F(b)$.

 \leftarrow Supongamos $F(a) \prec' F(b)$, veamos que $a \prec b$.

Ya que $F^{-1}:(P',\leq')\to(P,\leq)$ es isomorfismo, por lo ya visto tenemos:

$$F^{-1}(F(a)) \prec F^{-1}(F(b))$$

$$a \prec b$$

Lemma 2. Dado un reticulado (L, \leq) y elementos $x, y, z, w \in L$, se cumplen las siguientes propiedades:

(1)
$$x \leq x \circ y$$

(8)
$$x i (x s y) = x$$

(2)
$$x i y \leq x$$

(9)
$$(x s y) s z = x s (y s z)$$

(3)
$$x \cdot s \cdot x = x \cdot i \cdot x = x$$

(10)
$$(x \mid y) \mid z = x \mid (y \mid z)$$

(4) $x \circ y = y \circ x$

(11) Si
$$x \le z$$
 e $y \le w$ entonces:

(5)
$$x i y = y i x$$

•
$$x s y < z s w$$

(6) $x \le y \Leftrightarrow x \text{ s } y = y \Leftrightarrow x \text{ i } y = x$

•
$$x \mid y \leq z \mid w$$

(7)
$$x s (x i y) = x$$

(12)
$$(x i y) s (x i z) < x i (y s z)$$

Proof. Dado que las propiedades (1), (2), (3), (4), (5), (6), son consecuencia inmediata de las definiciones de s e i, probaremos solo las restantes.

$$(7) (8)$$

$$x ext{ i } y \le x$$
 Por (2) $x \le x ext{ s } y$ Por (1)
 $(x ext{ i } y) ext{ s } x = x$ Por (6) $x ext{ i } (x ext{ s } y) = x$ Por (6)
 $x ext{ s } (x ext{ i } y) = x$ Por (4) $x ext{ i } (y ext{ s } x) = x$

- (9) Para probar la igualdad probaremos las siguientes desigualdades:
 - $(x s y) s z \le x s (y s z)$ Notese que x s (y s z) es cota superior de $\{x, y, z\}$ ya que:

$$\begin{array}{rcl} x & \leq & x \mathrel{s} (y \mathrel{s} z) \\ y & \leq & (y \mathrel{s} z) \leq x \mathrel{s} (y \mathrel{s} z) \\ z & \leq & (y \mathrel{s} z) \leq x \mathrel{s} (y \mathrel{s} z) \end{array}$$

Por otro lado, $x \le (y \le z)$ es cota superior de $\{x,y\}$, tenemos que $x \le y \le x \le (y \le z)$, por lo cual $x \le (y \le z)$ es cota superior del conjunto $\{x \le y, z\}$, lo cual dice que $(x \le y) \le z \le x \le (y \le z)$.

• $(x s y) s z \ge x s (y s z)$ Notese que (x s y) s z es cota superior de $\{x, y, z\}$ ya que:

$$x \leq x \operatorname{s} y \leq (x \operatorname{s} y) \operatorname{s} z$$

$$y \leq x \operatorname{s} y \leq (x \operatorname{s} y) \operatorname{s} z$$

$$z \leq (x \operatorname{s} y) \operatorname{s} z$$

Por otro lado, $(x exttt{s} y) exttt{s} z$ es cota superior de $\{y, z\}$, tenemos que $y exttt{s} z \leq (x exttt{s} y) exttt{s} z$, por lo cual $(x exttt{s} y) exttt{s} z$ es cota superior del conjunto $\{x, y exttt{s} z\}$, lo cual dice que $(x exttt{s} y) exttt{s} z \geq x exttt{s} (y exttt{s} z)$.

Por lo tanto, (x s y) s z = x s (y s z)

- (10) Para probar la igualdad probaremos las siguientes desigualdades:
 - $(x i y) i z \le x i (y i z)$ Notese que (x i y) i z es cota inferior de $\{x, y, z\}$ ya que:

Por otro lado, (x i y) i z es cota inferior de $\{y,z\}$, tenemos que (x i y) i $z \le y$ i z, por lo cual (x i y) i z es cota inferior del conjunto $\{x,y i z\}$, lo cual dice que (x i y) i $z \le x$ i (y i z).

• $(x \mid y) \mid z \ge x \mid (y \mid z)$

Notese que x i (y i z) es cota inferior de $\{x,y,z\}$ ya que:

$$x i (y i z) \leq x$$

$$x i (y i z) \leq (y i z) \leq y$$

$$x i (y i z) \leq (y i z) \leq z$$

Por otro lado, x i (y i z) es cota inferior de $\{x, y\}$, tenemos que $x i (y i z) \le x i y$, por lo cual x i (y i z) es cota inferior del conjunto $\{x i y, z\}$, lo cual dice que $(x i y) i z \ge x i (y i z)$.

Por lo tanto, (x i y) i z = x i (y i z)

Luego, z s w es cota superior de $\{x,y\}$ y x i y es cota inferior de $\{z,w\}$, por lo tanto, x s $y \le z$ s w y x i $y \le z$ i w.

$$(12)$$

$$(x i y), (x i z) \leq x$$

$$(x i y), (x i z) \leq y s z$$

$$\Rightarrow (x i y), (x i z) \leq x i (y s z)$$

$$\therefore (x i y) s (x i z) \leq x i (y s z)$$

Lemma 3. Sea (L, \leq) un reticulado, dados elementos $x_1, \ldots, x_n \in L$, con $n \geq 2$, se tiene

$$(\dots(x_1 \mathsf{s} x_2) \mathsf{s} \dots) \mathsf{s} x_n = \sup(\{x_1, \dots, x_n\})$$

 $(\dots(x_1 \mathsf{i} x_2) \mathsf{i} \dots) \mathsf{i} x_n = \inf(\{x_1, \dots, x_n\})$

Proof. Probaremos por inducción en n.

Caso Base:
$$n=2$$

$$x_1 ext{ s } x_2 = \sup(\{x_1, x_2\})$$

 $x_1 ext{ i } x_2 = \inf(\{x_1, x_2\})$

Lo cual vale, dado que es la definición.

Caso Inductivo: n > 2

Supongamos ahora que vale para n y veamos entonces que vale para n+1. Sean $x_1, \ldots, x_{n+1} \in L$, por hipótesis inductiva tenemos que:

$$(\dots(x_1 \mathsf{s} x_2) \mathsf{s} \dots) \mathsf{s} x_n = \sup(\{x_1, \dots, x_n\}) (\star_1)$$

 $(\dots(x_1 \mathsf{i} x_2) \mathsf{i} \dots) \mathsf{i} x_n = \inf(\{x_1, \dots, x_n\}) (\star_2)$

Veamos entonces que vale:

$$((\dots(x_1 \mathsf{s} x_2) \mathsf{s} \dots) \mathsf{s} x_n) \mathsf{s} x_{n+1} = \sup(\{x_1, \dots, x_{n+1}\}) \ (\dagger_1)$$
$$((\dots(x_1 \mathsf{i} x_2) \mathsf{i} \dots) \mathsf{i} x_n) \mathsf{i} x_{n+1} = \inf(\{x_1, \dots, x_{n+1}\}) \ (\dagger_2)$$

Para ello debemos ver $((\dots(x_1 \ \mathsf{s} \ x_2) \ \mathsf{s} \ \dots) \ \mathsf{s} \ x_n) \ \mathsf{s} \ x_{n+1}$ es cota superior de $\{x_1,\dots,x_{n+1}\}$ y que es la menor de las cotas superiores. Además, que $((\dots(x_1 \ \mathsf{i} \ x_2) \ \mathsf{i} \ \dots) \ \mathsf{i} \ x_n) \ \mathsf{i} \ x_{n+1}$ es cota inferior de $\{x_1,\dots,x_{n+1}\}$ y que es la mayor de las cotas inferiores.

Es fácil ver que $((\dots(x_1 \mathsf{s} x_2) \mathsf{s} \dots) \mathsf{s} x_n) \mathsf{s} x_{n+1}$ es cota superior de $\{x_1, \dots, x_{n+1}\}$. Supongamos que z es otra cota superior de $\{x_1, \dots, x_{n+1}\}$. Ya que z es también cota superior del conjunto $\{x_1, \dots, x_n\}$, por (\star_1) tenemos que:

$$(\ldots(x_1 \mathsf{s} x_2) \mathsf{s} \ldots) \mathsf{s} x_n \leq z$$

Además, dado que $x_{n+1} \leq z$, tenemos que:

$$((\ldots(x_1 \mathsf{s} x_2) \mathsf{s} \ldots) \mathsf{s} x_n) \mathsf{s} x_{n+1} \leq z$$

Por lo tanto, vale (\dagger_1) .

Nuevamente, es fácil ver que $((\ldots(x_1 i x_2) i \ldots) i x_n) i x_{n+1}$ es cota inferior de $\{x_1, \ldots, x_{n+1}\}$. Supongamos que z' es otra cota inferior de $\{x_1, \ldots, x_{n+1}\}$. Ya que z' es también cota inferior del conjunto $\{x_1, \ldots, x_n\}$, por (\star_2) tenemos que:

$$z' \leq (\dots(x_1 i x_2) i \dots) i x_n$$

Además, dado que $z' \leq x_{n+1}$, tenemos que:

$$z' \leq ((\dots(x_1 | x_2) | \dots) | x_n) | x_{n+1}$$

Por lo tanto, vale (\dagger_2) .

Theorem 4. Sea (L, s, i) un reticulado, la relación binaria definida por:

$$x \le y \Leftrightarrow x \text{ s } y = y$$

es un orden parcial sobre L para el cual se cumple:

$$\sup(\{x,y\}) = x s y$$
$$\inf(\{x,y\}) = x i y$$

Proof.

• Reflexiva: Sea $x \in L$ un elemento cualquiera. Luego,

$$\left. \begin{array}{l} x \ \mathsf{s} \ x = x \\ x \ \mathsf{i} \ x = x \end{array} \right\} \Rightarrow x \le x$$

• Antisimétrica: Sean $x, y \in L$ elementos cualquieras. Supongamos que $x \leq y$ e $y \leq x$, entonces:

$$\left. \begin{array}{l} x \leq y \Rightarrow x \text{ s } y = y \\ y \leq x \Rightarrow x \text{ s } y = x \end{array} \right\} \Rightarrow x = y$$

• Transitiva: Supongamos que $x \le y$ e $y \le z$, es decir, $x \in y = y$ y $y \in z = z$ entonces:

$$x ext{ s } z = x ext{ s } (y ext{ s } z) = (x ext{ s } y) ext{ s } z = y ext{ s } z = z$$

por lo cual $x \leq z$.

Veamos ahora que $\sup(\{x,y\}) = x$ s y. Es claro que x s y es una cota superior del conjunto $\{x,y\}$, veamos que es la menor. Supongamos $x,y \leq z$, entonces:

$$(x s y) s z = x s (y s z) = x s z = z$$

por lo que $x \le y \le z$, es decir, $x \le y$ es la menor cota superior.

Resta probar que $\inf(\{x,y\}) = x$ i y. Nuevamente, es claro que x i y es una cota inferior del conjunto $\{x,y\}$, veamos que es la mayor. Supongamos $z \leq x, y$, entonces:

$$(x \mid y) \mid z = x \mid (y \mid z) = x \mid z = z$$

por lo que $z \le x$ i y, es decir, x i y es la mayor cota inferior.

Lemma 5. Si $F:(L,s,i) \to (L',s',i')$ es un homomorfismo biyectivo, entonces F es un isomorfismo.

Proof. Debemos probar que F^{-1} es un homomorfismo. Sean F(x), F(y) dos elementos cualesquiera de L', tenemos que:

Luego, F^{-1} es homomorfismo y por lo tanto F es isomorfismo.

Lemma 6. Sean (L, s, i) y(L', s', i') reticulados y sea $F : (L, s, i) \rightarrow (L', s', i')$ un homomorfismo, entonces I_F es un subuniverso de (L', s', i').

Proof. Para probar que I_F es un subuniverso de (L', s', i'), debemos ver:

- $I_F \neq \emptyset$: Ya que $L \neq \emptyset$, tenemos que $I_F \neq \emptyset$.
- I_F es cerrado bajo la operaciones s' e i': Sean $a, b \in I_F$, $x, y \in L$ tales que F(x) = a y F(y) = b. Se tiene que:

$$a ext{ s' } b = F(x) ext{ s' } F(y) = F(x ext{ s } y) \in I_F$$

 $a ext{ i' } b = F(x) ext{ i' } F(y) = F(x ext{ i } y) \in I_F$

por lo cual I_F es cerrada bajo s' e i'.

Lemma 7. Sean (L, s, i) y (L', s', i') reticulados y sean (L, \leq) y (L', \leq') los posets asociados. Sea $F: L \to L'$ una función, entonces F es un isomorfismo de (L, s, i) en (L', s', i') si y solo si F es un isomorfismo de (L, \leq) en (L', \leq') .

Proof. \Longrightarrow Supongamos que F es un isomorfismo de (L, s, i) en (L', s', i'). Para F: Sean $x, y \in L$ tales que $x \leq y$. Tenemos:

$$y = x s y$$

$$F(y) = F(x s y)$$

$$= F(x) s' F(y)$$

$$\therefore F(x) \leq' F(y)$$

Para F^{-1} : Sean $x', y' \in L'$ tales que $x' \leq y'$. Tenemos:

$$y' = x' s' y'$$

$$F^{-1}(y') = F^{-1}(x' s' y')$$

$$= F^{-1}(x') s F^{-1}(y')$$

$$\therefore F^{-1}(x') \leq F^{-1}(y')$$

Por lo tanto, F es un isomorfismo de (L, \leq) en (L', \leq') .

 \leftarrow Supongamos ahora que F es un isomorfismo de (L, \leq) en (L', \leq') , entonces el **Lemma 1** nos dice que F y F^{-1} respetan la operaciones de supremo e ínfimo, por lo cual F es un isomorfismo de (L, s, i) y (L', s', i').

Lemma 8. Sea $(L/\theta, \tilde{s}, \tilde{i})$ un reticulado. El orden parcial $\tilde{\leq}$ asociado a este reticulado cumple:

$$x/\theta \leq y/\theta \Leftrightarrow y \theta (x s y)$$

Proof. Veamos que $(L/\theta, \tilde{s}, \tilde{i})$ satisface las 7 identidades de la definición de reticulado. Sean $x/\theta, y/\theta, z/\theta$ elementos cualesquiera de L/θ .

(I2)
$$\begin{array}{ccc} x/\theta \ \tilde{\mathbf{s}} \ y/\theta = y/\theta \ \tilde{\mathbf{s}} \ x/\theta \\ & x/\theta \ \tilde{\mathbf{s}} \ y/\theta \ = \ (x \ \mathbf{s} \ y)/\theta \\ & = \ (y \ \mathbf{s} \ x)/\theta \\ & = \ y/\theta \ \tilde{\mathbf{s}} \ y/\theta \\ \end{array}$$

$$(x/\theta \ \S \ y/\theta) \ \S \ z/\theta = (x \ \S \ y)/\theta \ \S \ z/\theta$$

$$= ((x \ \S \ y) \ \S \ z)/\theta$$

$$= (x \ \S \ (y \ \S \ z))/\theta$$

$$= x/\theta \ \S \ (y \ \S \ z)/\theta$$

$$= x/\theta \ \S \ (y/\theta \ \S \ z/\theta)$$

(I4) $(x/\theta \ \tilde{s} \ y/\theta) \ \tilde{s} \ z/\theta = x/\theta \ \tilde{s} \ (y/\theta \ \tilde{s} \ z/\theta)$

(I5)
$$(x/\theta \ \tilde{\imath} \ y/\theta) \ \tilde{\imath} \ z/\theta = x/\theta \ \tilde{\imath} \ (y/\theta \ \tilde{\imath} \ z/\theta)$$

$$(x/\theta \tilde{\imath} y/\theta) \tilde{\imath} z/\theta = (x i y)/\theta \tilde{\imath} z/\theta$$

$$= ((x i y) i z)/\theta$$

$$= (x i (y i z))/\theta$$

$$= x/\theta \tilde{\imath} (y i z)/\theta$$

$$= x/\theta \tilde{\imath} (y/\theta \tilde{\imath} z/\theta)$$

(I6)
$$x/\theta \tilde{s} (x/\theta \tilde{\imath} y/\theta) = x/\theta$$

$$x/\theta \ \tilde{\mathbf{s}} \ (x/\theta \ \tilde{\imath} \ y/\theta) = x/\theta \ \tilde{\mathbf{s}} \ (x \ \mathbf{i} \ y)/\theta$$

= $(x \ \mathbf{s} \ (x \ \mathbf{i} \ y))/\theta$
= x/θ

Por definición, $x/\theta \leq y/\theta \Leftrightarrow y/\theta = x/\theta$ § y/θ , por lo cual $x/\theta \leq y/\theta \Leftrightarrow y/\theta = (x \text{ s } y)/\theta$ y por lo tanto $y\theta(x \text{ s } y)$.

Corollary 9. Sea (L, s, i) un reticulado en el cual hay un elemento máximo 1 (resp. mínimo 0), entonces si θ es una congruencia sobre $(L, s, i), 1/\theta$ (resp. $0/\theta$) es un elemento máximo (resp. mínimo) de $(L/\theta, \tilde{s}, \tilde{i})$.

Proof. Ya que 1 = x s 1 para cada $x \in L$ tenemos que $1/\theta = x/\theta$ s̃ $1/\theta$, es decir, $1/\theta = (x$ s $1)/\theta$ para cada $x \in L$. Utilizando el **Lemma 8** tenemos que $x/\theta \le 1/\theta$, para cada $x \in L$.

Lemma 10. Si $F:(L,s,i) \to (L',s',i')$ es un homomorfismo de reticulados, entonces ker F es una congruencia sobre (L,s,i).

Proof. Veamos primero que ker F es una relación de equivalencia.

- Reflexiva: $(x, x) \in \ker F$. Trivial pues F(x) = F(x).
- Simétrica: Si $(x,y) \in \ker F \Rightarrow (y,x) \in \ker F$. Si $(x,y) \in \ker F \Rightarrow F(x) = F(y)$. Luego, vale también F(y) = F(x).
- Transitiva: Si $(x, y), (y, z) \in \ker F \Rightarrow (x, z) \in \ker F$.

$$(x,y) \in \ker F \Rightarrow F(x) = F(y)$$

 $(y,z) \in \ker F \Rightarrow F(y) = F(z)$ $\} \Rightarrow F(x) = F(y) = F(z)$

Por lo tanto, $(x, z) \in \ker F$.

Veamos ahora que, si $x \ker F x'$ y $y \ker F y'$ entonces $(x \mathsf{s} y) \ker F (x' \mathsf{s} y')$ y $(x \mathsf{i} y) \ker F (x' \mathsf{i} y')$, es decir, $F(x \mathsf{s} y) = F(x' \mathsf{s} y')$ y $F(x \mathsf{i} y) = F(x' \mathsf{i} y')$.

Supongamos $x \ker F x' y y \ker F y'$, entonces:

$$F(x s y) = F(x) s' F(y) = F(x') s' F(y') = F(x' s y')$$

 $F(x i y) = F(x) i' F(y) = F(x') i' F(y') = F(x' i y')$

Lemma 11. Sea (L, s, i) un reticulado y sea θ una congruencia sobre (L, s, i), entonces π_{θ} es un homomorfismo de (L, s, i) en $(L/\theta, \tilde{s}, \tilde{\imath})$. Además $\ker \pi_{\theta} = \theta$.

Proof. Sean $x, y \in L$ elementos cualquiera. Tenemos que:

$$\pi_{\theta}(x \mathsf{s} y) = (x \mathsf{s} y)/\theta = x/\theta \mathsf{\tilde{s}} y/\theta = \pi_{\theta}(x) \mathsf{\tilde{s}} \pi_{\theta}(y)$$
$$\pi_{\theta}(x \mathsf{i} y) = (x \mathsf{i} y)/\theta = x/\theta \mathsf{\tilde{i}} y/\theta = \pi_{\theta}(x) \mathsf{\tilde{i}} \pi_{\theta}(y)$$

por lo cual π_{θ} preserva las operaciones de supremo e ínfimo, es decir, es un homomorfismo. \square

Lemma 12. Si $F:(L,s,i,0,1) \to (L',s',i',0',1')$ un homomorfismo biyectivo, entonces F es un isomorfismo.

Proof. Debemos probar que F^{-1} es un homomorfismo. Sean F(x), F(y) dos elementos cualesquiera de L', tenemos que:

$$F^{-1}(F(1)) = F^{-1}(1')$$
 $F^{-1}(F(0)) = F^{-1}(0')$ $F^{-1}(0') = 0$

Luego, F^{-1} es homomorfismo y por lo tanto F es isomorfismo.

Lemma 13. Si $F:(L,s,i,0,1) \to (L',s',i',0',1')$ es un homomorfismo, entonces I_F es un subuniverso de (L',s',i',0',1').

Proof. Para probar que I_F es un subuniverso de (L', s', i', 0', 1'), debemos ver:

- $I_F \neq \emptyset$: Ya que $L \neq \emptyset$, tenemos que $I_F \neq \emptyset$.
- Preserva 0 y 1: $0, 1 \in I_F$
- I_F es cerrado bajo la operaciones s' e i': Sean $a, b \in I_F$, $x, y \in L$ tales que F(x) = a y F(y) = b. Se tiene que:

$$a ext{ s' } b = F(x) ext{ s' } F(y) = F(x ext{ s } y) \in I_F$$

 $a ext{ i' } b = F(x) ext{ i' } F(y) = F(x ext{ i } y) \in I_F$

por lo cual I_F es cerrada bajo s' e i'.

Lemma 14. Si $F:(L,s,i,0,1) \to (L',s',i',0',1')$ es un homomorfismo de reticulados acotados, entonces ker F es una congruencia sobre (L,s,i,0,1).

Proof. Dado que F es un homomorfismo de (L, s, i) en (L', s', i') utilizando el **Lemma 10** tenemos que ker F es una congruencia sobre (L, s, i) lo cual por definición, nos dice que ker F es una congruencia sobre (L, s, i, 0, 1).

Lemma 15. Sea (L, s, i, 0, 1) un reticulado acotado y θ una congruencia sobre (L, s, i, 0, 1), entonces:

- a) $(L/\theta, \tilde{s}, \tilde{\imath}, 0/\theta, 1/\theta)$ es un reticulado acotado.
- b) π_{θ} es un homomorfismo de $(L, \mathsf{s}, \mathsf{i}, 0, 1)$ en $(L/\theta, \tilde{\mathsf{s}}, \tilde{\imath}, 0/\theta, 1/\theta)$ cuyo núcleo es θ . Proof.
- a) Sabemos por el **Lemma 11** que $(L/\theta, \tilde{s}, \tilde{\imath})$ es un reticulado. Además, por el **Lemma ??** se tiene que $(L/\theta, \tilde{s}, \tilde{\imath}, 0/\theta, 1/\theta)$ es un reticulado acotado.
- b) Por el **Lemma 11** se tiene que π_{θ} es un homomorfismo de (L, s, i) en $(L/\theta, \tilde{s}, \tilde{\imath})$. Además, dado que $\pi_{\theta}(1) = 1/\theta$ y $\pi_{\theta}(0) = 0/\theta$, tenemos que π_{θ} es homomorfismo de (L, s, i, 0, 1) en $(L/\theta, \tilde{s}, \tilde{\imath}, 0/\theta, 1/\theta)$.

Lemma 16. Si $F:(L,s,i,^c,0,1)\to (L',s',i',^{c'}0',1')$ un homomorfismo biyectivo, entonces F es un isomorfismo.

Proof. Debemos probar que F^{-1} es un homomorfismo. Sean F(x), F(y) dos elementos cualesquiera de L', tenemos que:

Por lo tanto, de (\star_1) y (\star_2) obtenemos:

$$F^{-1}(F(x)^c) = x^c = F^{-1}(F(x))^c$$

Luego, F^{-1} es homomorfismo y por lo tanto F es isomorfismo.

Lemma 17. Si $F:(L,s,i,^c,0,1) \to (L',s',i',^{c'}0',1')$ es un homomorfismo, entonces I_F es un subuniverso de $(L',s',i',^{c'}0',1')$.

Proof. Para probar que I_F es un subuniverso de (L', s', i', c', 0', 1'), debemos ver:

- $I_F \neq \emptyset$: Ya que $L \neq \emptyset$, tenemos que $I_F \neq \emptyset$.
- Preserva 0 y 1: $0, 1 \in I_F$
- I_F es cerrado bajo la operaciones s', i' y c': Sean $a, b \in I_F$, $x, y \in L$ tales que F(x) = a y F(y) = b. Se tiene que:

$$a \, \mathsf{s'} \, b = F(x) \, \mathsf{s'} \, F(y) = F(x \, \mathsf{s} \, y) \in I_F$$

 $a \, \mathsf{i'} \, b = F(x) \, \mathsf{i'} \, F(y) = F(x \, \mathsf{i} \, y) \in I_F$
 $a^{c'} = F(x)^{c'} = F(x^c) \in I_F$

por lo cual I_F es cerrada bajo s',i' y $^{c'}$:

Lemma 18. Si $F:(L,s,i,^c,0,1) \to (L',s',i',^{c'}0',1')$ es un homomorfismo de reticulados complementados, entonces ker F es una congruencia sobre $(L,s,i,^c,0,1)$.

Proof. Ya que F es un homomorfismo de (L, s, i, c, 0, 1) en (L', s', i', c', 0', 1'), tenemos por **Lemma 14** que kerF es una congruencia sobre (L, s, i, c, 0, 1), es decir, solo falta probar que para todos $x, y \in L$ se tiene que x/kerF = y/kerF implica $x^c/kerF = y^c/kerF$, veamos esto. Supongamos x/kerF = y/kerF, es decir, por definición tenemos que F(x) = F(y), luego:

$$F(x) = F(y) \Leftrightarrow F(x)^c = F(y)^c$$

 $\Leftrightarrow F(x^c) = F(y^c)$

Por lo tanto, $x^c/kerF = y^c/kerF$.

Lemma 19. Sea (L, s, i, c, 0, 1) un reticulado complementado y sea θ una congruencia sobre (L, s, i, c, 0, 1).

- a) $(L/\theta, \tilde{s}, \tilde{i}, c/\theta, 0/\theta, 1/\theta)$ es un reticulado complementado.
- b) π_{θ} es un homomorfismo de (L, s, i, c, 0, 1) en $(L/\theta, \tilde{s}, \tilde{\imath}, c/\theta, 0/\theta, 1/\theta)$ cuyo núcleo es θ . Proof.
- a) Sabemos por el **Lemma 11** que $(L/\theta, \tilde{s}, \tilde{\imath}, 0/\theta, 1/\theta)$ es un reticulado acotado, es decir, solo nos falta ver que $(L/\theta, \tilde{s}, \tilde{\imath}, c/\theta, 0/\theta, 1/\theta)$ satisface:
 - $x/\theta \ \tilde{s} \ (x/\theta)^{\tilde{c}} = 1/\theta$ para cada $x/\theta \in L/\theta$: Sea x/θ un elemento cualquiera de L/θ . Ya que (L, s, i, c, 0, 1) satisface (I10), tenemos que $x \ s \ x^c = 1$. Osea que:

$$\begin{array}{lll} x \ \mathrm{s} \ x^c = 1 & \Leftrightarrow & (x \ \mathrm{s} \ x^c)/\theta = 1/\theta \\ & \Leftrightarrow & x/\theta \ \tilde{\mathrm{s}} \ x^c/\theta = 1/\theta \\ & \Leftrightarrow & x/\theta \ \tilde{\mathrm{s}} \ (x/\theta)^{\tilde{c}} = 1/\theta \end{array}$$

• $x/\theta \ \tilde{\imath} \ (x/\theta)^{\tilde{c}} = 0/\theta$ para cada $x/\theta \in L/\theta$: Sea x/θ un elemento cualquiera de L/θ . Ya que $(L, \mathsf{s}, \mathsf{i}, {}^c, 0, 1)$ satisface (I11), tenemos que x i $x^c = 0$. Osea que:

$$x i x^c = 0 \Leftrightarrow (x i x^c)/\theta = 0/\theta$$

 $\Leftrightarrow x/\theta \tilde{\imath} x^c/\theta = 0/\theta$
 $\Leftrightarrow x/\theta \tilde{\imath} (x/\theta)^{\tilde{c}} = 0/\theta$

b) Por el Lema **Lemma 15** tenemos que π_{θ} es un homomorfismo de (L, s, i, 0, 1) en $(L/\theta, \tilde{s}, \tilde{\imath}, 0/\theta, 1/\theta)$, cuyo núcleo es θ . Notar que por definición de \tilde{c} tenemos que $x^c/\theta = (x/\theta)\tilde{c}$, es decir, $\pi_{\theta}(x^c) = (\pi_{\theta}(x))\tilde{c}$, cualquiera sea $x \in L$.

Lemma 20. Sea (L, s, i) un reticulado. Son equivalentes:

- (1) x i (y s z) = (x i y) s (x i z), cualesquiera sean $x, y, z \in L$
- (2) x s (y i z) = (x s y) i (x s z), cualesquiera sean $x, y, z \in L$.

Proof. $(1) \Rightarrow (2)$ Notar que:

$$(x s y) i (x s z) = ((x s y) i x) s ((x s y) i z)$$

$$= x s ((x s y) i z)$$

$$= x s (z i (x s y))$$

$$= x s ((z i x) s (z i y))$$

$$= (x s (z i x)) s (z i y)$$

$$= x s (z i y)$$

$$= x s (z i z)$$

 $(2) \Rightarrow (1)$ Notar que:

$$(x i y) s (x i z) = ((x i y) s x) i ((x i y) s z)$$

$$= x i ((x i y) s z)$$

$$= x i (z s (x i y))$$

$$= x i ((z s x) i (z s y))$$

$$= (x i (z s x)) i (z s y)$$

$$= x i (z s y)$$

$$= x i (z s y)$$

$$= x i (y s z)$$

Lemma 21. Si (L, s, i, 0, 1) un reticulado acotado y distributivo, entonces todo elemento tiene a lo sumo un complemento.

Proof. Supongamos $x \in L$ tiene complementos y, z. Se tiene $y \le x = 1 = x \le z$ y $y \bowtie x = 0 = x \bowtie z$. Luego:

$$y = y s 0$$

$$= y s (x i z)$$

$$= (y s x) i (y s z)$$

$$= 1 i (y s z)$$

$$= (x s z) i (y s z)$$

$$= (x i y) s z$$

$$= 0 s z$$

$$= z$$

Lemma 22. Si $S \neq \emptyset$, entonces [S] es un filtro. Más aún si F es un filtro y $F \supseteq S$, entonces $F \supseteq [S]$, es decir, [S] es el menor filtro que contiene a S.

Proof. Recordemos:

$$[S) = \{ y \in L : y \ge s_1 \text{ i } \dots \text{ i } s_n, \text{ para algunos } s_1, \dots, s_n \in S, n \ge 1 \}$$

- 1. $[S] \neq \emptyset$: Ya que $S \subseteq [S]$, tenemos que $[S] \neq \emptyset$.
- 2. $x, y \in [S) \Rightarrow x \text{ i } y \in [S)$: Sean x, y tales que:

$$x \ge s_1 i s_2 i \dots i s_n$$
, i.e, $x \in [S)$
 $y \ge t_1 i t_2 i \dots i t_m$, i.e, $y \in [S)$

con $s_1, s_2, \ldots, s_n, t_1, t_2, \ldots, t_m \in S$, entonces:

$$x \mid y \geq s_1 \mid s_2 \mid \dots \mid s_n \mid t_1 \mid t_2 \mid \dots \mid t_m$$

3. $x \in [S]$ y $x \le y \Rightarrow y \in [S]$: Por construcción, claramente [S] cumple esta propiedad.

Lemma 23. (**Zorn**) Sea (P, \leq) un poset y supongamos que cada cadena de (P, \leq) tiene una cota superior, entonces existe un elemento maximal en (P, \leq) .

Theorem 24. (Teorema del Filtro Primo) Sea (L, s, i) un reticulado distributivo y F un filtro. Supongamos $x_0 \in L - F$, entonces hay un filtro primo P tal que $x_0 \notin P$ $y F \subseteq P$.

Proof. Sea:

$$\mathcal{F} = \{F_1 : F_1 \text{ es un filtro}, x_0 \notin F_1 \text{ y } F \subseteq F_1\}$$

Notar que $\mathcal{F} \neq \emptyset$, por lo cual (\mathcal{F}, \subseteq) es un poset.

Veamos que cada cadena en (\mathcal{F}, \subseteq) tiene una cota superior. Sea C una cadena.

- Si $C = \emptyset$, entonces cualquier elemento de \mathcal{F} es cota de C.
- Si $C \neq \emptyset$. Sea:

$$G = \{x \in L : x \in F_1, \text{ para algún } F_1 \in C\}$$

Veamos que G es un filtro.

- 1. Es claro que $G \neq \emptyset$.
- 2. Supongamos que $x, y \in G$. Sean $F_1, F_2 \in \mathcal{F}$ tales que $x \in F_1$ y $y \in F_2$.
 - Si $F_1 \subseteq F_2$, entonces ya que F_2 es un filtro tenemos que x i $y \in F_2 \subseteq G$.
 - Si $F_2 \subseteq F_1$, entonces tenemos que x i $y \in F_1 \subseteq G$.

Ya que C es una cadena, tenemos que siempre x i $y \in G$.

3. En forma analoga se prueba la propiedad restante ...

Por lo tanto, tenemos que G es un filtro. Además $x_0 \notin G$, por lo que $G \in \mathcal{F}$ es cota superior de C. Por el **Lemma 23**, (\mathcal{F}, \subseteq) tiene un elemento maximal P. Veamos que P es un filtro primo.

Supongamos $x \in P$ y $x, y \notin P$, entonces ya que P es maximal tenemos que:

$$x_0 \in [P \cup \{x\}) \cap [P \cup \{y\})$$

Ya que $x_0 \in [P \cup \{x\})$, tenemos que hay elementos $p_1, \ldots, p_n \in P$, tales que:

$$x_0 \geq p_1$$
 i ... i p_n i x

Ya que $x_0 \in [P \cup \{y\})$, tenemos que hay elementos $q_1, \ldots, q_m \in P$, tales que:

$$x_0 > q_1$$
 i ... i q_m i y

Denotemos:

$$p = p_1 \mathsf{i} \ldots \mathsf{i} p_n \mathsf{i} q_1 \mathsf{i} \ldots \mathsf{i} q_m$$

tenemos que:

$$\begin{array}{rcl} x_0 & \geq & p \ \mathrm{i} \ x \\ x_0 & > & p \ \mathrm{i} \ y \end{array}$$

Se tiene que $x_0 \ge (p \mid x)$ s $(p \mid y) = p \mid (x \mid x) \in P$, lo cual es absurdo ya que $x_0 \notin P$.

Corollary 25. Sea (L, s, i, 0, 1) un reticulado acotado distributivo. Si $\emptyset \neq S \subseteq L$ es tal que s_1 i s_2 i ... i $s_n \neq 0$, para cada $s_1, \ldots, s_n \in S$, entonces hay un filtro primo que contiene a S.

Proof. Dado que $[S) \neq L$, se puede aplicar el **Theorem 24** (Teorema del filtro primo).

Lemma 26. Sea (B, s, i, c, 0, 1) un algebra de Boole, entonces para un filtro $F \subseteq B$ las siguientes son equivalentes:

- (1) F es primo
- (2) $x \in F$ ó $x^c \in F$, para cada $x \in B$.

Proof. $(1) \Rightarrow (2)$ Ya que $1 \in F$ por definición de filtro, y 1 = x s x^c entonces x s $x^c \in F$. Finalmente, por definición de filtro primo se cumple que $x \in F$ ó $x^c \in F$.

 $(2) \Rightarrow (1)$ Supongamos que $x \in F$ y que $x \notin F$, entonces por $(2), x^c \in F$ y por lo tanto tenemos que:

$$y \ge x^c \, \mathrm{i} \, y = 0 \, \mathrm{s} \, (x^c \, \mathrm{i} \, y) = (x^c \, \mathrm{i} \, x) \, \mathrm{s} \, (x^c \, \mathrm{i} \, y) = x^c \, \mathrm{i} \, (x \, \mathrm{s} \, y) \in F$$

lo cual dice que $y \in F$.

Lemma 27. Sea (B, s, i, c, 0, 1) un álgebra de Boole. Supongamos que $b \neq 0$ y $a = \inf A$, con $A \subseteq B$, entonces si b i a = 0 existe un $e \in A$ tal que b i $e^c \neq 0$.

Proof. Supongamos que para cada $e \in A$, tengamos que b i $e^c = 0$, entonces tenemos que para cada $e \in A$,

$$b = b i (e s e^c) = (b i e) s (b i e^c) = b i e$$

es decir, $b \le e \ \forall e \in A$, lo cual nos dice que b es cota inferior de A. Pero si $b \le a$, entonces b = b i a = 0, es decir, b = 0, lo cual es un absurdo dado que por hipótesis sabíamos que $b \ne 0$.

Theorem 28. (Rasiova y Sikorski) Sea (B, s, i, c, 0, 1) un álgebra de Boole. Sea $x \in B$, tal que $x \neq 0$. Supongamos que A_1, A_2, \ldots son subconjuntos de B tales que existe $\inf(A_j)$, para cada $j = 1, 2, \ldots$, entonces hay un filtro primo P el cual cumple:

- $a) \ x \in P$
- b) $A_j \subseteq P \Rightarrow \inf(A_j) \in P$, para cada $j = 1, 2, \ldots$

Proof. Sea $a_j = \inf(A_j)$, para $j = 1, 2, \ldots$ construiremos inductivamente una sucesión b_0, b_1, \ldots de elementos de B tal que:

- $b_0 = x$
- b_0 i ... i $b_n \neq 0$, para cada $n \geq 0$
- $b_j = a_j$ ó $b_i^c \in A_j$, para cada $j \ge 1$
- (1) Definamos $b_0 = x$
- (2) Supongamos ya definimos b_0, \ldots, b_n , veamos como definir b_{n+1} .
 - Si $(b_0 i \ldots i b_n)$ i $a_{n+1} \neq 0$, entonces definamos $b_{n+1} = a_{n+1}$.
 - Si $(b_0 i \dots i b_n)$ i $a_{n+1} = 0$, entonces por el **Lemma 27**, tenemos que hay un $e \in A_{n+1}$ tal que $(b_0 i \dots i b_n)$ i $e^c \neq 0$, lo cual nos permite definir $b_{n+1} = e^c$.

Dado que el conjunto $S = \{b_0, b_1, \dots\}$ satisface la hipótesis del **Corollary 25**, por lo tanto hay un filtro primo P tal que $\{b_0, b_1, \dots\} \subseteq P$, el cual satisface las propiedades (a) y (b) dado que así lo construimos.

2 Términos y fórmulas

Lemma 29. Supongamos $t \in T_k^{\tau}$, con $k \geq 1$, entonces ya sea $t \in Var \cup \mathcal{C}$ ó $t = f(t_1, \ldots, t_n)$, con $f \in \mathcal{F}_n, n \geq 1, t_1, \ldots, t_n \in T_{k-1}^{\tau}$.

Proof. Probaremos este lema por inducción en k.

<u>Caso Base:</u> k = 1 Es directo, ya que por definición:

$$T_1^{\tau} = Var \cup \mathcal{C} \cup \{f(t_1, t_2, \dots t_n) : f \in \mathcal{F}_n, n \ge 1, t_1, t_2, \dots t_n \in T_0^{\tau}\}$$

<u>Caso Inductivo</u>: $k \Rightarrow k+1$ Sea $t \in T_{k+1}^{\tau}$. Por definición de T_{k+1}^{τ} tenemos que:

- $t \in T_k^{\tau}$ ó
- $t = f(t_1, \ldots, t_n)$ con $f \in \mathcal{F}_n, n \ge 1$ y $t_1, \ldots, t_n \in T_k^{\tau}$.

Si se da que $t \in T_k^{\tau}$, entonces podemos aplicar hipótesis inductiva y usar que $T_{k-1}^{\tau} \subseteq T_k^{\tau}$. \square

Lemma 30. Este lema no se evalua.

Lemma 31. Este lema no se evalua.

Lemma 32. Este lema no se evalua.

Lemma 33. Este lema no se evalua.

Theorem 34. (Lectura única de terminos). Dado $t \in T^{\tau}$ se da una de las siguientes:

- (1) $t \in Var \cup C$
- (2) Hay únicos $n \geq 1$, $f \in \mathcal{F}_n$, $t_1, \ldots, t_n \in T^{\tau}$ tales que $t = f(t_1, \ldots, t_n)$.

Lemma 35. Sean $r, s, t \in T^{\tau}$.

- (a) Si $s \neq t = f(t_1, ..., t_n)$ y s ocurre en t, entonces dicha ocurrencia sucede dentro de algún $t_j, j = 1, ..., n$.
- (b) Si r, s ocurren en t, entonces dichas ocurrencias son disjuntas o una ocurre dentro de otra. En particular, las distintas ocurrencias de r en t son disjuntas.
- (c) Si t' es el resultado de reemplazar una ocurrencia de s en t por r, entonces $t' \in T^{\tau}$.

Lemma 36. Supongamos $\varphi \in F_k^{\tau}$, con $k \geq 1$, entonces φ es de alguna de las siguientes formas:

- $\varphi = (t \equiv s), \ con \ t, s \in T^{\tau}.$
- $\varphi = r(t_1, \ldots, t_n), \ con \ r \in \mathcal{R}_n, t_1, \ldots, t_n \in T^{\tau}.$
- $\varphi = (\varphi_1 \eta \varphi_2), \ con \ \eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \ \varphi_1, \varphi_2 \in F_{k-1}^{\tau}.$
- $\varphi = \neg \varphi_1, \ con \ \varphi_1 \in F_{k-1}^{\tau}.$
- $\varphi = Qv\varphi_1$, $con\ Q \in \{\forall, \exists\},\ v \in Var\ y\ \varphi_1 \in F_{k-1}^{\tau}$.

Llamaremos (\star) a la lista anterior.

Proof. Probaremos este teorema por inducción en k, utilizando la definición del conjunto F^{τ} .

Caso Base:

$$\varphi \in \{(t \equiv s) : t, s \in T^{\tau}\} \cup \{r(t_1, \dots, t_n) : r \in \mathcal{R}_n, n \ge 1, t_1, \dots, t_n \in T^{\tau}\}$$

por lo que φ es de alguna de las siguientes formas:

- $\varphi = (t \equiv s)$, con $t, s \in T^{\tau}$.
- $\varphi = r(t_1, \dots, t_n)$, con $r \in \mathcal{R}_n, t_1, \dots, t_n \in T^{\tau}$.

<u>Caso Inductivo</u>: Supongamos que si $\varphi \in F_{k-1}^{\tau}$ entonces φ es de alguna de las formas de (\star) . Probaremos que si $\varphi \in F_k^{\tau}$ entonces φ también es de alguna de las formas de la lista (\star) .

$$\varphi \in F_{k-1}^{\tau} \cup \{ \neg \varphi : \varphi \in F_{k-1}^{\tau} \} \cup \{ (\varphi \eta \psi) : \varphi, \psi \in F_{k-1}^{\tau}, \eta \in \{ \lor, \land, \rightarrow, \leftrightarrow \} \}$$

$$\cup \{ Qv\varphi : \varphi \in F_{k-1}^{\tau}, v \in Var, Q \in \{ \forall, \exists \} \}$$

Luego, si $\varphi \in F_{k-1}^{\tau}$ aplicando HI y el hecho de que $F_{k-2}^{\tau} \subseteq F_{k-1}^{\tau}$, obtenemos que φ es de alguna de las formas de la lista anterior. Caso contrario, se dá alguna de las siguientes:

- $\varphi = (\varphi_1 \eta \varphi_2)$, con $\varphi_1, \varphi_2 \in F_{k-1}^{\tau}, \eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.
- $\varphi = \neg \varphi_1$, con $\varphi_1 \in F_{k-1}^{\tau}$.
- $\varphi = Qv\varphi_1$, con $Q \in \{\forall, \exists\}, v \in Var \ y \ \varphi_1 \in F_{k-1}^{\tau}$.

Lemma 37. Este lema no se evalua.

Lemma 38. Este lema no se evalua.

Lemma 39. Este lema no se evalua.

Proposition 40. Este proposición no se evalua.

Theorem 41. (Lectura única de fórmulas) Dada $\varphi \in F^{\tau}$ se da una y solo una de las siguientes:

- (1) $\varphi = (t \equiv s), con t, s \in T^{\tau}$
- (2) $\varphi = r(t_1, \dots, t_n), \text{ con } r \in \mathcal{R}_n, t_1, \dots, t_n \in T^{\tau}$
- (3) $\varphi = (\varphi_1 \eta \varphi_2), \text{ con } \eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \ \varphi_1, \varphi_2 \in F^{\tau}$
- (4) $\varphi = \neg \varphi_1, \ con \ \varphi_1 \in F^{\tau}$
- (5) $\varphi = Qv\varphi_1$, con $Q \in \{\forall, \exists\}, \ \varphi_1 \in F^\tau \ y \ v \in Var$.

Más aún, en todos los puntos tales descomposiciones son únicas.

Lemma 42. Sea τ un tipo.

- (a) Las fórmulas atómicas no tienen subfórmulas propias.
- (b) Si φ ocurre propiamente en $(\psi \eta \varphi)$, entonces tal ocurrencia es en ψ ó en φ .
- (c) Si φ ocurre propiamente en $\neg \psi$, entonces tal ocurrencia es en ψ .
- (d) Si φ ocurre propiamente en $Qx_k\psi$, entonces tal ocurrencia es en ψ .
- (e) $Si \varphi_1, \varphi_2$ ocurren en φ , entonces dichas ocurrencias son disjuntas o una contiene a la otra.
- (f) Si λ' es el resultado de reemplazar alguna ocurrencia de φ en λ por ψ , entonces $\lambda' \in F^{\tau}$.