Tarzan of The Apes

Input file: standard input
Output file: standard output
Time limit: 0.25 seconds
Memory limit: 4 megabytes

Tarzan is moving through trees in a forest when he hears a cry from his friend Ape in a distant tree. He wants to reach him as quickly as possible while avoiding the ground. Trusting in his skills, Tarzan is able to perform the following move:

• swing from a tree to any other tree within a distance equal to the height of the **current** tree.

Help him determine a sequence of moves that minimizes the Euclidean distance required to travel from the starting tree to Ape's.

Input

The first line of the input contains a single integer, t ($1 \le t \le 1000$) — the number of test cases.

The first line of each test case contains a single integer, $n \ (2 \le n \le 5000)$ — the number of trees in the forest.

Then follow n lines of each test case, each with three integers, x_i , y_i and h_i ($-10^9 \le x_i, y_i \le 10^9$, $1 \le h_i \le 10^9$) — the coordinates of the i-th tree and its height. The first of these lines denotes Tarzan's starting tree, while the last one denotes Ape's.

Output

For each test case, first output a single integer, m — the number of moves made by Tarzan on his way to Ape; or 0 if it's impossible.

Then, on the next line, output m integers — the indices of the trees visited by Tarzan on his way to Ape's (inclusive). If there are many possible sequences, output any of them.

Example

standard input	standard output
4	0
2	2
0 0 1	4 5
1 1 1	5
5	4 6 5 7 8
0 1 2	2
0 3 4	5 10
1 0 1	
2 1 2	
3 2 1	
8	
1 1 2	
0 2 4	
2 2 6	
1 2 2	
1 5 1	
1 4 1	
1 6 1	
1 7 1	
10	
0 0 3	
0 1 3	
0 2 3	
1 0 3	
1 1 3	
1 2 3	
2 0 3	
2 1 3	
2 2 3	
3 3 3	

Note

In the first test case, there is no path connecting Tarzan's tree to Ape's.

In the second test case, Tarzan can move through trees 4 and 5 to reach Ape in $2 + \sqrt{2}$ units of distance. That is the best he can do.

In the fourth test case, Tarzan can use many different paths leading to Ape in the minimum total distance of $3\sqrt{2}$.