Bayesian Dynamic Models

ESS 575 Models for Ecological Data

N. Thompson Hobbs

April 23, 2019

Roadmap

- Overview
- Model types with examples
 - discrete time
 - single state
 - multiple states
 - continuous time (briefly)
- Forecasting
- Coding tips

Dynamic hierarchical models (aka state space models)

Also called "state space" models

$$[y_t|\boldsymbol{\theta}_d, z_t]$$
$$[z_t|\boldsymbol{\theta}_p, z_{t-1}]$$

The idea is simple. We have a stochastic model of an unobserved, true state (z_t) and a stochastic model that relates our observations (y_t) to the true state.

Time

A broadly applicable approach to modeling dynamic processes in ecology

$$[\mathbf{z}, heta_{process}, heta_{data} | \mathbf{y}] \propto T$$

$$\prod_{t=2}^{I} [y_t | \theta_{data}, z_t] [z_t | \theta_{process}, z_{t-1}] [\theta_{process}, \theta_{data}, z_1]$$

Overview Discrete time models Continuous time models Forecasting Coding tips

Sources of uncertainty in state space models

Process uncertainty

- Failure to perfectly represent process
- Propagates in time
- Decreases with model improvement
- Basis for forecasting

Observation uncertainty

- Failure to perfectly observe process
- Does not propagate
- ► Sampling uncertainty decreases with increased sampling effort.
- Observation (calibration) uncertainly decreases with improved instrumentation, calibration, etc.

Components of observation uncertainty

- ▶ Observation (aka calibration) $[y|h(z,\theta_d),\sigma_o^2]$
- ▶ Sampling $[y|z,\sigma_s^2]$

When can we separate process variance from observation variance?

- ► Replication of the observation for the latent state with sufficient *n*
- Calibration model with properly estimate prediction variance
- Strongly differing "structure" in process and observation models
- We may not need to separate them—sometimes the observed state and the true state are the same.

General joint and posterior distribution for single state model

Deterministic model =
$$g(\boldsymbol{\theta}_{process}, z_{t-1}, \mathbf{x}_{t-1})$$

 $[\mathbf{z}, \boldsymbol{\theta}_{process}, \boldsymbol{\theta}_{data}, \sigma_p^2, \sigma_d^2 | \mathbf{y}] \propto \prod_{t=2}^T [y_t | \boldsymbol{\theta}_{data}, z_t, \sigma_o^2]$
 $\times [z_t | g(\boldsymbol{\theta}_{process}, z_{t-1}, \mathbf{x}_{t-1}), \sigma_p^2]$
 $\times [\boldsymbol{\theta}_{process}, \boldsymbol{\theta}_{data}, \sigma_p^2, \sigma_o^2, z_1]$

verview Discrete time models Continuous time models Forecasting Coding tips

Modeling the Serengeti wildebeest population

- ▶ 48 year time series
- Annual means and standard deviations of population size for 19 years
- Spatially replicated census
- Annual data on dry season rainfall

How does rainfall influence density dependence?

$$q(\boldsymbol{\beta}, z_{t-1}, x_{t-1}) = z_{t-1} e^{(\beta_0 + \beta_1 z_{t-1} + \beta_2 x_{t-1} + \beta_3 z_{t-1} x_{t-1})\Delta t}$$

- $ightharpoonup z_t =$ true population size
- $x_{t-1} = \text{standardized}$, annual dry season rainfall during time t-1 to t.
- $m{\beta}_0 = r_{max} = ext{intrinsic}$, per-capita rate of increase at average rainfall
- $ightharpoonup eta_1 = ext{strength of density dependence}, rac{r}{K}$ at average rainfall.
- β_2 = change in rate of increase per standard deviation change in rainfall
- ho $ho_3 =$ effect of rainfall on strength of density dependence

$$z_t \sim \mathsf{lognormal}\left(\log\left(g\left(oldsymbol{eta}, z_{t-1}, x_{t-1}
ight)
ight), oldsymbol{\sigma}_p^2
ight)$$

- ▶ $\log(q(\boldsymbol{\beta}, z_{t-1}, x_{t-1}))$, the centrality parameter, the mean of z_t on the log scale
- lacktriangledown $oldsymbol{\sigma}_n^2$, the scale parameter, the variance of z_t on the log scale
- What does the deterministic model predict?

Coding tips

$$z_t \sim |\mathsf{lognormal}\left(\log\left(g\left(oldsymbol{eta}, z_{t-1}, x_{t-1}
ight)
ight), oldsymbol{\sigma}_p^2
ight)$$

- ▶ $\log(q(\boldsymbol{\beta}, z_{t-1}, x_{t-1}))$, the centrality parameter, the mean of z_t on the log scale
- lacktriangledown $oldsymbol{\sigma}_n^2$, the scale parameter, the variance of z_t on the log scale
- What does the deterministic model predict?
 - define centrality parameter = α_t

$$z_t \sim |\mathsf{lognormal}\left(\log\left(g\left(oldsymbol{eta}, z_{t-1}, x_{t-1}
ight)
ight), oldsymbol{\sigma}_p^2
ight)$$

- ▶ $\log(q(\boldsymbol{\beta}, z_{t-1}, x_{t-1}))$, the centrality parameter, the mean of z_t on the log scale
- lacktriangledown $oldsymbol{\sigma}_n^2$, the scale parameter, the variance of z_t on the log scale
- What does the deterministic model predict?
 - define centrality parameter = α_t
 - ightharpoonup median $(z_t) = e^{\alpha_t}$

$$z_t \sim \mathsf{lognormal}\left(\mathsf{log}\left(g\left(oldsymbol{\mathcal{G}}, z_{t-1}, x_{t-1}
ight)\right), oldsymbol{\sigma}_p^2
ight)$$

- ▶ $\log(g(\boldsymbol{\beta}, z_{t-1}, x_{t-1}))$, the centrality parameter, the mean of z_t on the log scale
- $lackbox{\sigma}_p^2$, the scale parameter, the variance of z_t on the log scale
- What does the deterministic model predict?
 - define centrality parameter = α_t
 - ightharpoonup median $(z_t) = e^{\alpha_t}$
 - $ightharpoonup lpha_t = \log(\operatorname{median}(z_t))$
 - ▶ median $(z_t) = g(\beta, z_{t-1}, x_{t-1})$

$$z_t \sim \mathsf{lognormal}\left(\mathsf{log}\left(g\left(oldsymbol{\beta}, z_{t-1}, x_{t-1}
ight)\right), oldsymbol{\sigma}_p^2
ight)$$

- ▶ $\log(g(\pmb{\beta}, z_{t-1}, x_{t-1}))$, the centrality parameter, the mean of z_t on the log scale
- lacktriangledown σ_p^2 , the scale parameter, the variance of z_t on the log scale
- What does the deterministic model predict?
 - define centrality parameter $= lpha_t$
 - ightharpoonup median $(z_t) = e^{\alpha_t}$
 - $lackbox{} \alpha_t = \log(\mathsf{median}(z_t))$
 - median $(z_t) = g(\beta, z_{t-1}, x_{t-1})$

- 1. $z_t = g(\boldsymbol{\beta}, z_{t-1}, x_{t-1}) \exp(\varepsilon_t), \ \varepsilon_t \sim \text{normal}(0, \sigma_p^2)$

- 1. $z_t = g(\boldsymbol{\beta}, z_{t-1}, x_{t-1}) \exp(\boldsymbol{\varepsilon}_t), \ \boldsymbol{\varepsilon}_t \sim \text{normal}(0, \boldsymbol{\sigma}_n^2)$
- 2. $\log\left(z_{t}\right) = \log\left(g\left(\pmb{\beta}, z_{t-1}, x_{t-1}\right)\right) + \pmb{\varepsilon}_{t}, \; \pmb{\varepsilon}_{t} \sim \operatorname{normal}\left(0, \pmb{\sigma}_{p}^{2}\right)$

- 1. $z_t = g(\boldsymbol{\beta}, z_{t-1}, x_{t-1}) \exp(\varepsilon_t), \ \varepsilon_t \sim \text{normal}(0, \sigma_n^2)$
- 2. $\log\left(z_{t}\right) = \log\left(g\left(\pmb{\beta}, z_{t-1}, x_{t-1}\right)\right) + \pmb{\varepsilon}_{t}, \; \pmb{\varepsilon}_{t} \sim \operatorname{normal}\left(0, \pmb{\sigma}_{n}^{2}\right)$
- 3. $\log(z_t) \sim \text{normal}\left(\log\left(g\left(\boldsymbol{\beta}, z_{t-1}, x_{t-1}\right)\right), \boldsymbol{\sigma}_p^2\right)$

4.
$$z_t \sim \text{lognormal}\left(\underbrace{\log\left(g\left(\pmb{\beta}, z_{t-1}, x_{t-1}\right)\right)}_{\text{centrality parameter}}, \underbrace{\sigma_p^2}_{\text{scale parameter}}\right)$$

- 1. $z_t = g(\boldsymbol{\beta}, z_{t-1}, x_{t-1}) \exp(\boldsymbol{\varepsilon}_t), \ \boldsymbol{\varepsilon}_t \sim \text{normal}(0, \boldsymbol{\sigma}_n^2)$
- 2. $\log(z_t) = \log(g(\boldsymbol{\beta}, z_{t-1}, x_{t-1})) + \varepsilon_t, \ \varepsilon_t \sim \text{normal}(0, \sigma_n^2)$
- 3. $\log(z_t) \sim \text{normal}\left(\log\left(g\left(\boldsymbol{\beta}, z_{t-1}, x_{t-1}\right)\right), \sigma_n^2\right)$
- 4. $z_t \sim \text{lognormal}\left(\underbrace{\log\left(g\left(\pmb{\beta}, z_{t-1}, x_{t-1}\right)\right)}_{\text{controllity parameter}}, \underbrace{\sigma_p^2}_{\text{controllity parameter}}\right)$

It is also possible to moment match the mean

$$\mu_t = g(\boldsymbol{\beta}, z_{t-1}, x_{t-1}) \tag{1}$$

$$\alpha_t = \log(\mu_t) - \frac{1}{2} \log \left(\frac{\mu_t^2 + \sigma_p^2}{\mu_t^2} \right) \tag{2}$$

$$z_t \sim \mathsf{lognormal}(\alpha_t, \sigma_p^2)$$
 (3)

You should do it this way if you have derived quantities computed as sums of the z_t , for example when modeling a total population from subpopulations in different sites.

Why a continuous distribution for a "discrete state"?

verview Discrete time models Continuous time models Forecasting Coding tips

The data

Fig. 2. The orientation of the base-line and of the random transects in the May 1971 sample count. Shading shows approximate positions of the main wildebeest herds.

Observation model

Overview

$$y_t \sim \mathsf{normal}\left(z_t, y.sd_t\right)$$

- \triangleright y_t is the observed mean number of animals across all transects
- $ightharpoonup y.sd_t$ is the observed standard deviation across transects
- z_t is the unobserved, true state, the mean of the data distribution

We choose a normal distribution for the likelihood because the y_t are the annual mean of means of densities of wildebeest on many transects. For now, we ignore the potential for spatial autocorrelation among transects.

Posterior and joint distributions

Overview

$$\begin{split} \left[\mathbf{z}, \pmb{\beta}, \sigma_p^2 | \mathbf{y}\right] & \propto \underbrace{\prod_{\forall t \in \mathbf{y}.i} \left[y_t \mid z_t, y.sd_t\right]}_{\text{data model}} \\ & \times \underbrace{\prod_{t=2}^{48} \left[z_t | g\left(\pmb{\beta}, z_{t-1}, x_{t-1}\right), \sigma_p^2\right]}_{\text{process model}} \times \underbrace{\left[\beta_0\right] \left[\beta_1\right] \left[\beta_2\right] \left[\beta_3\right] \left[\sigma_p^2\right] \left[z_1\right]}_{\text{parameter models}} \end{split}$$

- ightharpoonup y.i is a vector of years with non-missing census data
- $ightharpoonup y_t \sim \mathsf{normal}(z_t, y.sd_t)$
- $ightharpoonup z_t \sim \mathsf{lognormal}\left(\log\left(g\left(oldsymbol{\beta}, z_{t-1}, x_{t-1}\right)\right), \sigma_p^2\right)$
- $\beta_0 \sim \text{normal}\left(.234,.136^2\right)$ informative prior
- ▶ $\beta_{i \in 1,2,3} \sim \text{normal}(0,1000)$
- $\sigma_p^2 \sim \text{gamma}(.01,.01)$
- $ightharpoonup z_1 \sim \mathsf{normal}(y_1, y.sd_1)$

General joint and posterior distribution for multi-state model

$$\begin{split} \pmb{\mu}_t &= \mathbf{A}\mathbf{z}_t, \text{ process parameters are elements of matrix } \mathbf{A} \\ & \left[\mathbf{z}, \pmb{\theta}_{process}, \pmb{\theta}_{data} \middle| \mathbf{Y} \right] \propto \\ & \prod_{t=2}^T \left[\mathbf{y}_t \middle| \pmb{\theta}_{data}, \mathbf{z}_t \right] \left[\mathbf{z}_t \middle| \pmb{\mu}_t \right] \left[\pmb{\theta}_{process}, \pmb{\theta}_{data}, \mathbf{z}_1 \right] \end{split}$$

Multiple states: Ann Raiho's matrix model¹

- Problem: Evaluate management alternatives for managing overabundant deer in national parks.
- Data
 - Annual census, corrected for uncounted animals using distance sampling
 - Annual classification counts

States

state	definition
n_1	The number of juvenile deer, aged 6 months on their
	first census
n_2	The number of adult female deer, aged 18 months and
	older
n_3	The number of adult male deer, aged 18 months and
	older

Deterministic Model

m

 $\begin{array}{ll} f & \text{number of recruits per female surviving to census} \\ \phi_j & \text{probability that a juvenile (aged 6 months) survives to 18 months} \\ \phi_d & \text{annual survival probability of adult females} \\ \phi_b & \text{annual survival probability of adult males} \end{array}$

proportion of juveniles surviving to adults that are female

$$\mathbf{A} = \begin{pmatrix} 0 & \phi_d^{\frac{1}{2}} f & 0 \\ m \phi_j & \phi_d & 0 \\ (1-m) \phi_j & 0 & \phi_b \end{pmatrix}$$

The posterior and joint distribution

$$\boxed{ \begin{pmatrix} \pmb{\phi}, m, f, \mathbf{N}, & \pmb{\sigma}_p, \pmb{\rho} & | \mathbf{y}^{\mathsf{census.mean}}, \mathbf{y}^{\mathsf{census.sd}}, \mathbf{Y}^{\mathsf{classification}} \end{bmatrix} \propto \\ \underbrace{\prod_{t=2}^{T} \mathsf{multivariate \ normal} \left(\log(\mathbf{n}_t) | \log\left(\mathbf{A}_t \mathbf{n}_{t-1}\right), \mathbf{\Sigma} \right)}_{\mathsf{process \ model}} \\ \times \underbrace{\prod_{t=2}^{T} \mathsf{normal} \left(y_t^{\mathsf{census.mean}} | \sum_{i=1}^{3} n_{i,t}, y_t^{\mathsf{census.sd}} \right)}_{\mathsf{data \ model} \ 1} \\ \times \mathsf{multinomial} \left(\mathbf{y}_t^{\mathsf{classification}} | \left(\sum_{i=1}^{3} y_{i,t}, \frac{n_{1,t}}{\sum_{i=1}^{3} n_{i,t}}, \frac{n_{2,t}}{\sum_{i=1}^{3} n_{i,t}}, \frac{n_{3,t}}{\sum_{i=1}^{3} n_{i,t}} \right)' \right)$$

data model 2

× priors

Systems of differential equations

$$\frac{dz_1}{dt} = k_1 z_1 - k_2 z_1 z_2
\frac{dz_2}{dt} = - k_3 z_1 + \alpha k_2 z_1 z_2
\frac{dz_3}{dt} = \frac{k_4 z_3}{k_5 + z_3}$$

Process model: $\left[\mathbf{z_t} \middle| g\left((\mathbf{k}, \mathbf{z}_{t-1}, x_t), \sigma_p^2\right)\right]$ Implementing the process model usually needs a numerical solver to align the states with the data.

Continuous time models

- Must deterministically update states at discrete intervals to match with data
- To estimate states:
 - Use analytical solutions to ODE system if available.
 - For models without analytical solutions:
 - STAN has superb ODE solver. ²
 - R's Nimble package ³ allows you to embed functions in JAGS. A sturdy ODE solver (Runge-Kutta IV) can be written in 6-8 lines of code.
 - Write your own MCMC sampler with embedded numerical solver (e.g. 1soda() in R). 4

²https://mc-stan.org/events/stancon2017-notebooks/ stancon2017-margossian-gillespie-ode.html

³https://r-nimble.org/

⁴See: Campbell, E. E., W. J. Parton, J. L. Soong, K. Paustian, N. T. Hobbs, and M. F. Cotrufo. 2016. Using litter chemistry controls on microbial processes to partition litter carbon fluxes with the Litter Decomposition and Leaching (LIDEL) model. Soil Biology & Biochemistry 100:160-174.

Roadmap

- Overview
- ► Model types with examples
 - discrete time
 - continuous time (briefly)
- Forecasting
- Coding tips

Bayesian forecasting future states z'

$$[z'_{T+1}|\mathbf{y}]$$
 =

predictive process distribution

$$\int_{\theta_1...\theta_P} \int_{z_1...} \int_{z_T} \left[z'_{T+1} | \mathbf{z}, \boldsymbol{\theta}_{process}, \mathbf{y} \right] \underbrace{\left[\mathbf{z}, \boldsymbol{\theta}_{process}, \boldsymbol{\theta}_{data} | \mathbf{y} \right]}_{\text{posterior distribution}} dz ... dz_t d\theta_1 ... d\theta_P$$

Predictive process distribution

The MCMC output:

```
egin{array}{lll} n & = & {
m number\ of\ iterations} \ T & = & {
m final\ time\ with\ data} \ F & = & {
m number\ of\ forecasts\ beyond\ data} \end{array}
```


Posterior and joint distribution with forecasts

$$\begin{aligned} \boldsymbol{\mu}_t &= g(\boldsymbol{\theta}_{process}, z_{t-1}, \mathbf{x}_{t-1}) \\ & [\mathbf{z}, \boldsymbol{\theta}_{process}, \boldsymbol{\theta}_{data} | \mathbf{y}] \propto \\ & \prod_{t=2}^{T} [y_t | \boldsymbol{\theta}_{data}, z_t] \prod_{t=2}^{T+F} [z_t | \boldsymbol{\mu}_t] [\boldsymbol{\theta}_{process}, \boldsymbol{\theta}_{data}, z_1] \end{aligned}$$

Posterior and joint distribution with missing data

$$\begin{aligned} \boldsymbol{\mu}_t &= g(\boldsymbol{\theta}_{process}, z_{t-1}, \mathbf{x}_{t-1}) \\ & [\mathbf{z}, \boldsymbol{\theta}_{process}, \boldsymbol{\theta}_{data} | \mathbf{y}] \propto \\ & \prod_{\forall t \in \mathbf{y}.i}^T [y_t | \boldsymbol{\theta}_{data}, z_t] \prod_{t=2}^T [z_t | \mu_t] [\boldsymbol{\theta}_{process}, \boldsymbol{\theta}_{data}, z_1] \end{aligned}$$

Can put NA's in data for all missing values or use the indexing trick shown below.

Forecasting

The fundamental problem of management:

What actions can we take today that will allow us to meet goals for the future?

Probability density

Future state z'

Objective: maintain state within acceptable range

Probability density

Future state z'

Future state z'

Action: do nothing

Future state z'

Action: implement managment

Future state of system, z'

Net effect of management

Future state z'

Net effect of management

Probability density

Future state z'

Papers using forecasting relative to goals

- Ketz, A. C., T. L. Johnson, R. J. Monello, and N. T. Hobbs. 2016. Informing management with monitoring data: the value of Bayesian forecasting. Ecosphere 7:e01587-n/a.
- Raiho, A. M., M. B. Hooten, S. Bates, and N. T. Hobbs. 2015. Forecasting the Effects of fertility control on overabundant ungulates: white-tailed deer in the National Capital Region. PLoS ONE 10.
- Hobbs, N. T., C. Geremia, J. Treanor, R. Wallen, P. J. White, M. B. Hooten, and J. C. Rhyan. 2015. State-space modeling to support management of brucellosis in the Yellowstone bison population. Ecological Monographs 85:3-28.

More on forecasting

- M. C. Dietz. Ecological Forecasting. Princeton University Press, Princeton New Jersey, USA, 2017.
- Workshop July 28 August 2 https://ecoforecast.wordpress.com/summer-course/

Overview Discrete time models Continuous time models Forecasting Coding tips

JAGS code for posterior and joint distributions

$$\left[\mathbf{z}, \boldsymbol{\beta}, \sigma_p^2 | \mathbf{y}\right] \propto \underbrace{\prod_{\forall t \in \mathcal{Y}.i} \left[y_t \mid z_t, y.sd_t\right]}_{\text{data model}}$$

$$\times \underbrace{\underbrace{\prod_{t=2}^{48} \left[z_{t} | g\left(\pmb{\beta}, z_{t-1}, x_{t-1}\right), \sigma_{p}^{2} \right]}_{\text{process model}} \times \underbrace{\left[\beta_{0}\right] \left[\beta_{1}\right] \left[\beta_{2}\right] \left[\beta_{3}\right] \left[\sigma_{p}^{2}\right] \left[z_{1}\right]}_{\text{parameter models}}$$

```
model{
#Priors
b[1] ~ dnorm(.234,1/.136^2)
for(i in 2:n.coef){
b[j] ~ dnorm(0,.0001)
tau.p ~ dgamma(.01..01)
sigma.p <- 1/sqrt(tau.p)
      ~ dnorm(N.obs[1],tau.obs[1]) #this must be treated as prior so that you have z[t-
##Process model
for(t in 2:(T+F)){
mu[t] \leftarrow log(z[t-1]*exp(b[1] + b[2]*z[t-1] + b[3]*x[t] + b[4]*x[t]*z[t-1]))
z[t] ~ dlnorm(mu[t], tau.p)
#Data model
for(i in 2:n.obs){
N.obs[j] ~ dnorm(z[index[j]],tau.obs[j]) #index to match z[t] with data
}#end of model
                                                            4 日 5 4 周 5 4 3 5 4 3 5 6
```

Posterior predictive checks for time series data

Test statistic:

$$\frac{1}{T-1} \sum_{t=2}^{T} |y_t - y_{t-1}| \tag{4}$$

Conventional statistics are also used (mean, CV, discrepancy statistic for the y_t .

Reilly, C., A. Gelman, and J. Katz, 2001. Poststratification without Population Level Information 731 on the Poststratifying Variable, with Application to Political Polling. Journal of the American 732 Statistical Association 96:1–11.

Posterior predictive checks and test for autocorrelation

```
#Derived quantities for model evaluation
for(i in 1:n.obs){
     #for autocorrelation test
epsilon.obs[i] <- N.obs[i] - z[index[i]]</pre>
 # simulate new data
         N.new[i] ~ dnorm(z[index[i]],tau.obs[i])
sq[i] \leftarrow (N.obs[i] - z[index[i]])^2
sq.new[i] <-(N.new[i] - z[index[i]])^2
fit <- sum(sq[])</pre>
fit.new <- sum(sq.new[])</pre>
pvalue <-step(fit.new-fit)</pre>
```