http://www.abiturloesung.de/

Abitur 2022 Mathematik Infinitesimalrechnung II

Gegeben ist die Funktion $g: x \mapsto \frac{2x^2}{x^2-9}$ mit maximaler Definitionsmenge D_g .

Teilaufgabe Teil A 1a (2 BE)

Geben Sie D_q sowie eine Gleichung der waagrechten Asymptote des Graphen von g an.

Teilaufgabe Teil A 1b (3 BE)

Zeigen Sie, dass der Graph von q in genau einem Punkt eine waagrechte Tangente besitzt.

Betrachtet werden die in $\mathbb R$ definierten Funktionen f und F, wobei F eine Stammfunktion von f ist. Abbildung 1 zeigt den Graphen G_F von F.

Teilaufgabe Teil A 2a (2 BE)

Bestimmen Sie den Wert des Integrals $\int_{1}^{7} f(x) dx$.

Teilaufgabe Teil A 2b (3 BE)

Bestimmen Sie den Funktionswert von fan der Stelle 1; veranschaulichen Sie Ihr Vorgehen in Abbildung 1.

Teilaufgabe Teil A 3a (2 BE)

Gegeben ist die Funktion $h: x \mapsto \ln(2x-3)$ mit Definitionsmenge $D_h = \left]\frac{3}{2}; +\infty\right[$. Geber Sie die Nullstelle von h sowie einen Term der ersten Ableitungsfunktion von h an.

Teilaufgabe Teil A 3b (3 BE)

Die in $\mathbb R$ definierte Funktion f besitzt die Nullstelle x=2, außerdem gilt f'(x)>0 für alle $x\in\mathbb R$. Abbildung 2 zeigt den Graphen G_f von f.

Betrachtet wird die Funktion $g: x \mapsto \ln(f(x))$ mit maximaler Definitionsmenge D_g . Geben Sie D_g an und ermitteln Sie mithilfe von Abbildung 2 diejenige Stelle x, für die g'(x) = f'(x) gilt.

Gegeben sind die in \mathbb{R} definierten Funktionen f_a mit $f_a(x) = a \cdot e^{-x} + 3$ und $a \in \mathbb{R} \setminus \{0\}$.

Teilaufgabe Teil A 4a (1 BE)

Zeigen Sie, dass $f'_a(0) = -a$ gilt.

Teilaufgabe Teil A 4b (4 BE)

Betrachtet wird die Tangente an den Graphen von f_a im Punkt $(0|f_a(0))$. Bestimmen Sie diejenigen Werte von a, für die diese Tangente eine positive Steigung hat und zudem die x-Achse in einem Punkt schneidet, dessen x-Koordinate größer als $\frac{1}{2}$ ist.

Seite 4

Gegeben ist die in \mathbb{R} definierte Funktion f mit $f(x) = x \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}}$. Die Abbildung 1 zeigt den Graphen von f ohne das zugrunde liegende Koordinatensystem.

Teilaufgabe Teil B 1a (4 BE)

Zeigen Sie anhand des Funktionsterms von f, dass der Graph von f symmetrisch bezüglich des Koordinatenursprungs ist. Begründen Sie, dass f genau eine Nullstelle hat, und geben Sie den Grenzwert von f für $x \to +\infty$.

Teilaufgabe Teil B 1b (2 BE)

Bestimmen Sie einen Term der ersten Ableitungsfunktion f' von f.

(zur Kontrolle:
$$f'(x) = (1 - x^2) \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}}$$
)

Teilaufgabe Teil B 1c (5 BE)

Untersuchen Sie rechnerisch das Monotonieverhalten von f. Ergänzen Sie in der Abbildung 1 die Koordinatenachsen und skalieren Sie diese passend.

Teilaufgabe Teil B 1d (3 BE)

Ist g' die erste Ableitungsfunktion einer in $\mathbb R$ definierten Funktion g, so gilt bekanntlich $\int\limits_u^v g'(x) \cdot e^{g(x)} \, \mathrm{d} \mathbf x = \left[e^{g(x)} \right]_u^v.$ Berechnen Sie damit den Wert des Terms $\int\limits_0^1 f(x) \, \mathrm{d} \mathbf x$.

Teilaufgabe Teil B 1e (3 BE)

Interpretieren Sie den folgenden Sachverhalt geometrisch:

Für jede Stammfunktion F von f und für jede reelle Zahl
$$w > 2022$$
 gilt $F(w) - F(0) \approx \int_{0}^{2022} f(x) dx$.

Betrachtet wird nun die Schar der in $\mathbb R$ definierten Funktionen $f_a: x\mapsto x\cdot e^{-\frac{1}{2}a\cdot x^2+\frac{1}{2}}$ mit $a\in\mathbb R$.

Teilaufgabe Teil B 2a (3 BE)

Zeigen Sie, dass genau ein Graph der Schar den Punkt (1|1) enthält, und geben Sie den zugehörigen Wert von a an.

Teilaufgabe Teil B 2b (2 BE)

Der Graph der Funktion f_0 ist eine Gerade. Geben Sie die Steigung dieser Gerade und die Koordinaten ihres Schnittpunkts mit der y-Achse an.

Teilaufgabe Teil B 2c (3 BE)

Die folgenden Aussagen gelten für alle reellen Zahlen a, a_1 und a_2 :

$$-f_a(0) = 0$$

$$-f'_a(0) = f'_0(0)$$

$$-f_{a_1}(x) = f_{a_2}(x) \iff a_1 = a_2 \text{ oder } x = 0$$

Geben Sie an, was sich aus diesen Aussagen hinsichtlich des Verlaufs der Graphen der Schar folgern lässt.

Teilaufgabe Teil B 2d (3 BE)

Zeigen Sie, dass die folgende Aussage für jeden Wert von a richtig ist:

Wird der Graph von f_a mit dem gleichen Faktor k>0 sowohl in x-Richtung als auch in y-Richtung gestreckt, so stellt der dadurch entstehende Graph ebenfalls eine Funktion der Schar dar.

Die Graphen der Schar lassen sich in die beiden folgenden Gruppen I und II einteilen:

- I Der Graph hat genau zwei Extrempunkte.
- II Der Graph hat keine Extrempunkte.

Die Abbildung 2 zeigt einen Graphen der Gruppe I, die Abbildung 3 einen Graphen der Gruppe II.

Die Extremstellen von f_a stimmen mit den Lösungen der Gleichung $a \cdot x^2 = 1$ überein.

Teilaufgabe Teil B 2e (3 BE)

Geben Sie zu jeder der beiden Gruppen I und II alle zugehörigen Werte von a an und begründen Sie Ihre Angabe.

Teilaufgabe Teil B 2f (3 BE)

Alle Extrempunkte der Graphen der Schar liegen auf einer Gerade. Begründen Sie, dass es sich dabei um die Gerade mit der Gleichung y=x handelt.

Teilaufgabe Teil B 2g (6 BE)

Für jeden positiven Wert von a bilden der Hochpunkt $(v|f_a(v))$ des Graphen von f_a , der Punkt $\left(0|\frac{2}{v}\right)$, der Koordinatenursprung und der Punkt (v|0) die Eckpunkte eines Vierecks. Bestimmen Sie ausgehend von einer geeigneten Skizze denjenigen Wert von a, für den das Viereck den Flächeninhalt 49 hat.

Lösung

Teilaufgabe Teil A 1a (2 BE)

Gegeben ist die Funktion $g: x \mapsto \frac{2x^2}{x^2-9}$ mit maximaler Definitionsmenge D_g .

Geben Sie D_q sowie eine Gleichung der waagrechten Asymptote des Graphen von g an.

Lösung zu Teilaufgabe Teil A 1a

$Definitions bereich\ bestimmen$

$$g(x) = \frac{2x^2}{x^2 - 9}$$

Erläuterung: Nullstellen der Nennerfunktion

f(x) besteht aus einem Bruch. Die Nennerfunktion x^2-9 darf den Wert Null nicht annehmen. Es werden also die Nullstellen der Nennerfunktion gesucht und aus dem Definitionsbereich ausgeschlossen.

$$x^{2} - 9 = 0$$

$$x^{2} = 9 \qquad | \sqrt{}$$

$$x_{1,2} = \pm 3$$

$$\Rightarrow D_{g} = \mathbb{R} \setminus \{\pm 3\}$$

Asymptoten bestimmen

$$\lim_{x\to\pm\infty}g(x)=\lim_{x\to\pm\infty}\underbrace{\frac{\overbrace{2x^2}^2}{2x^2}}_{\to\infty}=\lim_{x\to\pm\infty}\frac{2x^2}{x^2\cdot\left(1-\frac{9}{x^2}\right)}=\lim_{x\to\pm\infty}\frac{2}{1-\underbrace{\frac{9}{x^2}}_{\to0}}=2$$

 \Rightarrow y=2 waagerechte Asymptote

Teilaufgabe Teil A 1b (3 BE)

Zeigen Sie, dass der Graph von q in genau einem Punkt eine waagrechte Tangente besitzt.

Lösung zu Teilaufgabe Teil A 1b

Erste Ableitung einer Funktion ermittlen

Erste Ableitung bilden: g'(x)

Erläuterung: Quotientenregel der Differenzialrechnung

Quotientenregel:

$$f(x) = \frac{u(x)}{v(x)}$$
 \Rightarrow $f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x)]^2}$

Hier ist $u(x) = 2x^2$ und $v(x) = x^2 - 9$. Dann ist u'(x) = 4x und v'(x) = 2x.

$$g'(x) = \frac{4x \cdot (x^2 - 9) - 2x^2 \cdot 2x}{(x^2 - 9)^2} = \frac{4x^3 - 36x - 4x^3}{(x^2 - 9)^2} = \frac{-36x}{(x^2 - 9)^2}$$

Waagerechte Tangenten

Erste Ableitung gleich Null setzen: g'(x) = 0

Erläuterung: Waagerechte Tangente

Die Steigung einer waagerechten Tangente ist gleich Null.

$$\frac{-36x}{(x^2 - 9)^2} = 0$$

-36x = 0

x = 0

⇒ es gibt nur einen Punkt

Teilaufgabe Teil A 2a (2 BE)

Betrachtet werden die in \mathbb{R} definierten Funktionen f und F, wobei F eine Stammfunktion von f ist. Abbildung 1 zeigt den Graphen G_F von F.

Bestimmen Sie den Wert des Integrals $\int_{1}^{7} f(x) dx$.

Lösung zu Teilaufgabe Teil A 2a

Bestimmtes Integral

$$\int_{1}^{7} f(x) \, dx = [F(x)]_{1}^{7} = F(7) - F(1) \approx 5 - 1 = 4$$

Erläuterung: Hauptsatz der Differential- und Integralrechnung

Ist F eine Stammfunktion von f, dann ist F' = f und es gilt:

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Die Funktionswerte F(1) und F(7) können am Graphen von F in Abb. 1 abgelesen werden.

Teilaufgabe Teil A 2b (3 BE)

Bestimmen Sie den Funktionswert von f an der Stelle 1; veranschaulichen Sie Ihr Vorgehen in Abbildung 1.

Lösung zu Teilaufgabe Teil A 2b

Stammfunktion

Erläuterung: Stammfunktion

Ist F eine Stammfunktion von f, dann gilt: F' = f

Der Wert von F'(1) entspricht der Steigung des Graphen von F an der Stelle x=1. In Abbildung 1 wird ein Steigungsdreieck eingezeichnet und der Wert abgelesen.

$$f(1) = F'(1) \approx 4$$

Teilaufgabe Teil A 3a (2 BE)

Gegeben ist die Funktion $h: x \mapsto \ln(2x-3)$ mit Definitionsmenge $D_h = \left]\frac{3}{2}; +\infty\right[$. Geben Sie die Nullstelle von h sowie einen Term der ersten Ableitungsfunktion von h an.

Lösung zu Teilaufgabe Teil A 3a

Nullstellen einer Funktion

$$h(x) = \ln(2x - 3)$$

$$ln(2x - 3) = 0 \qquad |e^x|$$

$$2x - 3 = 1$$

$$2x = 4$$

$$\Rightarrow x^N = 2$$

Erste Ableitung einer Funktion ermittlen

$$h'(x) = \frac{1}{2x - 3} \cdot 2 = \frac{2}{2x - 3}$$

Erläuterung: Kettenregel der Differenzialrechnung

Kettenregel:

$$f(x) = u(v(x))$$
 \Rightarrow $f'(x) = u'(v(x)) \cdot v'(x)$

Kettenregel für Logarithmusfunktionen:

$$g(x) = \ln(h(x))$$
 \Rightarrow $g'(x) = \frac{1}{h(x)} \cdot h'(x)$

Hier ist h(x) = 2x - 3. Dann ist h'(x) = 2.

Teilaufgabe Teil A 3b (3 BE)

Die in \mathbb{R} definierte Funktion f besitzt die Nullstelle x=2, außerdem gilt f'(x)>0 für alle $x\in\mathbb{R}$. Abbildung 2 zeigt den Graphen G_f von f.

Betrachtet wird die Funktion $g: x \mapsto \ln(f(x))$ mit maximaler Definitionsmenge D_g . Geben Sie D_g an und ermitteln Sie mithilfe von Abbildung 2 diejenige Stelle x, für die g'(x) = f'(x) gilt.

Lösung zu Teilaufgabe Teil A 3b

Definitionsbereich bestimmen

$$g(x) = \ln (f(x))$$

Erläuterung: Definitionsbereich der Logarithmusfunktion

q(x) ist eine Logarithmusfunktion des Typs $\ln(f(x))$.

Die l
n-Funktion ist nur für positive Werte in ihrem Argument definiert. Somit gilt für die Argument
funktion: $f(x)>0\,.$

$$f(x) > 0$$
 für $x \in]2; +\infty[$

$$\Rightarrow$$
 $D_g =]2; +\infty[$

Erste Ableitung einer Funktion ermittlen

$$g'(x) = \frac{1}{f(x)} \cdot f'(x) = \frac{f'(x)}{f(x)}$$

Erläuterung: Kettenregel der Differenzialrechnung

Kettenregel:

$$h(x) = u(v(x))$$
 \Rightarrow $h'(x) = u'(v(x)) \cdot v'(x)$

Kettenregel für Logarithmusfunktionen:

$$g(x) = \ln(f(x))$$
 \Rightarrow $g'(x) = \frac{1}{f(x)} \cdot f'(x)$

$$g'(x) = f'(x)$$

$$\frac{f'(x)}{f(x)} = f'(x)$$
 \iff $f(x) = 1$ \iff $x = 4$

Teilaufgabe Teil A 4a (1 BE)

Gegeben sind die in \mathbb{R} definierten Funktionen f_a mit $f_a(x) = a \cdot e^{-x} + 3$ und $a \in \mathbb{R} \setminus \{0\}$.

Zeigen Sie, dass $f'_a(0) = -a$ gilt.

Lösung zu Teilaufgabe Teil A 4a

Erste Ableitung einer Funktion ermittlen

$$f_a(x) = a \cdot e^{-x} + 3$$

Erläuterung: Kettenregel der Differenzialrechnung

Kettenregel für Exponentialfunktionen:

$$f(x) = e^{g(x)}$$
 \Rightarrow $f'(x) = e^{g(x)} \cdot q'(x)$

In diesem Fall ist g(x) = -x und g'(x) = -1.

$$f_a'(x) = a \cdot e^{-x} \cdot (-1) = -a \cdot e^{-x}$$

$$f_a'(0) = -a \cdot \underbrace{e^0}_{1} = -a$$

Teilaufgabe Teil A 4b (4 BE)

Betrachtet wird die Tangente an den Graphen von f_a im Punkt $(0|f_a(0))$. Bestimmen Sie diejenigen Werte von a, für die diese Tangente eine positive Steigung hat und zudem die x-Achse in einem Punkt schneidet, dessen x-Koordinate größer als $\frac{1}{2}$ ist.

Lösung zu Teilaufgabe Teil A 4b

Tangentengleichung ermitteln

$$f_a(x) = a \cdot e^{-x} + 3$$

$$f_a'(x) = -a \cdot e^{-x}$$

$$f_a(0) = a + 3$$

$$f_a'(0) = -a$$

Erläuterung: Gleichung der Tangente

Formel für die Tangentengleichung:

$$t(x) = (x - x_0) \cdot f'(x_0) + f(x_0)$$

Hier ist $x_0 = 0$.

 $t: y = (x - 0) \cdot f_a'(0) + f_a(0)$

$$t: y = -ax + a + 3$$

Erläuterung: Tangentensteigung

Die Tangentensteigung soll positiv sein.

$$-a > 0 \Rightarrow a < 0$$

Erläuterung: Schnittpunkt mit der x-Achse

Schnittpunkt mit der x-Achse bedeutet: y = 0

$$-ax + a + 3 = 0$$

$$-a x = -a - 3$$
 | : $(-a)$ | $(a \neq 0)$

$$x = \frac{a+3}{a} = 1 + \frac{3}{a}$$

Erläuterung:

Die x-Koordinate des Schnittpunkts soll größer sein als $\frac{1}{2}$.

$$1 + \frac{3}{a} > \frac{1}{2}$$
 | -1

$$\frac{3}{a} > -\frac{1}{2} \qquad |\cdot a \qquad (a < 0)$$

(da die Ungleichung mit einer negative Zahl multipliziert wird, ändert sich das Relationszeichen)

$$3 < -\frac{1}{2}a \qquad |\cdot(-2)|$$

$$-6 > a$$

$$a < -6$$

Teilaufgabe Teil B 1a (4 BE)

Gegeben ist die in $\mathbb R$ definierte Funktion f mit $f(x)=x\cdot e^{-\frac{1}{2}x^2+\frac{1}{2}}$. Die Abbildung 1 zeigt den Graphen von f ohne das zugrunde liegende Koordinatensystem.

Abb. 1

Zeigen Sie anhand des Funktionsterms von f, dass der Graph von f symmetrisch bezüglich des Koordinatenursprungs ist. Begründen Sie, dass f genau eine Nullstelle hat, und geben Sie den Grenzwert von f für $x \to +\infty$.

Lösung zu Teilaufgabe Teil B 1a

Symmetrieverhalten einer Funktion

$$f(x) = x \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}}$$

Erläuterung: Symmetrieverhalten

 G_f ist punktsymmetrisch zum Ursprung, wenn gilt: f(-x) = -f(x)

$$f(-x) = -x \cdot e^{-\frac{1}{2}(-x)^2 + \frac{1}{2}} = -x \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}} = -f(x)$$

Nullstellen einer Funktion

Ansatz: f(x) = 0

Erläuterung: Nullstellen

Der Ansatz, um die Nullstellen (die Schnittpunkte einer Funktion f mit der x-Achse) zu bestimmen, lautet stets:

$$f(x) = 0$$

Die Gleichung muss anschließend nach x aufgelöst werden.

$$0 = x \cdot \underbrace{e^{-\frac{1}{2}x^2 + \frac{1}{2}}}_{>0}$$

Erläuterung: Wertebereich der Exponentialfunktion

Die Exponentialfunktion e^x ist auf ganz \mathbb{R} stets positiv.

$$\Rightarrow x = 0$$

$Grenzwert\ bestimmen$

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \underbrace{x}_{\to +\infty} \cdot \underbrace{e^{-\frac{1}{2}x^2 + \frac{1}{2}}}_{\to 0} = 0$$

Erläuterung: Exponentialfunktion

Graph der Exponentialfunktion e^x :

Für $x \to +\infty$ geht die Funktion $-\frac{1}{2}x^2 + \frac{1}{2}$ (Graph ist eine nach unten geöffnete Parabel) gegen $-\infty$.

Die Exponentialfunktion wiederum geht gegen 0 für $x \to -\infty$.

Teilaufgabe Teil B 1b (2 BE)

Bestimmen Sie einen Term der ersten Ableitungsfunktion f' von f.

(zur Kontrolle:
$$f'(x) = (1 - x^2) \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}}$$
)

Lösung zu Teilaufgabe Teil B 1b

Erste Ableitung einer Funktion ermittlen

$$f(x) = x \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}}$$

Erläuterung: Produktregel der Differenzialrechnung, Kettenregel der Differenzialrechnung

Produktregel:

$$f(x) = u(x) \cdot v(x) \Rightarrow f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

In diesem Fall ist
$$u(x) = x$$
 und $v(x) = e^{-\frac{1}{2}x^2 + \frac{1}{2}}$.

Kettenregel für Exponentialfunktionen:

$$f(x) = e^{g(x)}$$
 \Rightarrow $f'(x) = e^{g(x)} \cdot g'(x)$

In diesem Fall ist
$$g(x) = -\frac{1}{2}x^2 + \frac{1}{2}$$
.

$$f'(x) = 1 \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}} + x \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}} \cdot (-x)$$

$$f'(x) = e^{-\frac{1}{2}x^2 + \frac{1}{2}} - x^2 \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}}$$

Erläuterung: Ausklammern

Der Term $e^{-\frac{1}{2}x^2+\frac{1}{2}}$ wird ausgeklammert.

$$f'(x) = (1 - x^2) \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}}$$

Teilaufgabe Teil B 1c (5 BE)

Untersuchen Sie rechnerisch das Monotonieverhalten von f. Ergänzen Sie in der Abbildung 1 die Koordinatenachsen und skalieren Sie diese passend.

Lösung zu Teilaufgabe Teil B 1c

Monotonieverhalten einer Funktion

$$f(x) = x \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}}$$

Seite 20

Erläuterung: Wertebereich der Exponentialfunktion

Die Exponentialfunktion e^x ist auf ganz \mathbb{R} stets positiv.

$$f'(x) = (1 - x^2) \cdot \underbrace{e^{-\frac{1}{2}x^2 + \frac{1}{2}}}_{>0} > 0$$
 (s. Teilaufgabe Teil B 1b)

Vorzeichen der ersten Ableitung f'(x) untersuchen:

Erläuterung: Parabel

Der Graph der Funktion $1-x^2$ entspricht einer nach unten geöffneten Parabel mit Nullstellen -1 und 1. Zwischen den Nullstellen nimmt die Parabel nur positive Werte ein.

$$f'(x) = \underbrace{(1-x^2)}_{>0} \cdot \underbrace{e^{-\frac{1}{2}x^2 + \frac{1}{2}}}_{>0} > 0 \quad \text{für } x \in]-1;1[$$

$$f'(x) = \underbrace{(1-x^2)}_{<0} \cdot \underbrace{e^{-\frac{1}{2}x^2 + \frac{1}{2}}}_{>0} < 0 \quad \text{für } x \in]-\infty;-1[\cup]1;+\infty[$$

Erläuterung: Monotonieverhalten einer Funktion

Für stetige Funktionen besteht eine Beziehung zwischen Monotonie und Ableitung, da die Ableitung die Steigung der Funktion angibt.

Es gilt:

Ist f'(x) > 0 in einem Intervall]a;b[, so ist G_f für $x \in [a;b]$ streng monoton steigend.

Ist f'(x) < 0 in einem Intervall]a;b[, so ist G_f für $x \in [a;b]$ streng monoton falland

- \Rightarrow G_f ist für $x \in [-1; 1]$ streng monoton steigend
- \Rightarrow G_f ist für $x \in]-\infty;-1] \cup [1;+\infty[$ streng monoton fallend

Skizze

$$f(1) = 1 \cdot e^{-\frac{1}{2} + \frac{1}{2}} = 1 \cdot e^0 = 1 \cdot 1 = 1$$

Teilaufgabe Teil B 1d (3 BE)

Ist g' die erste Ableitungsfunktion einer in $\mathbb R$ definierten Funktion g, so gilt bekanntlich $\int\limits_{u}^{v}g'(x)\cdot e^{g(x)}\ \mathrm{d}x = \left[e^{g(x)}\right]_{u}^{v}.$ Berechnen Sie damit den Wert des Terms $\int\limits_{0}^{1}f(x)\ \mathrm{d}x.$

Lösung zu Teilaufgabe Teil B 1d

$Bestimmtes\ Integral$

$$\int_{0}^{1} f(x) \, dx = \int_{0}^{1} x \cdot e^{-\frac{1}{2}x^{2} + \frac{1}{2}} \, dx$$

Erläuterung: Rechenregeln für Integrale

$$g(x) = -\frac{1}{2}x^2 + \frac{1}{2} \quad \Rightarrow \quad g'(x) = -x$$

Damit der Integrand $x \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}}$ die Form $g'(x) \cdot e^{g(x)}$ besitzt, muss dieser noch mit der Zahl -1 multipliziert werden. Damit die Funktion dadurch aber nicht verändert wird, multipliziert man zwei Mal mit der Zahl -1, da $(-1) \cdot (-1) = 1$.

$$\int\limits_0^1 x \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}} \ \mathrm{d} \mathbf{x} = \int\limits_0^1 (-1) \cdot (-1) \cdot x \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}} \ \ \mathrm{d} \mathbf{x}$$

Eine -1 wird aus dem Integral herausgezogen, die anderen bleibt im Integranden:

$$\int_{0}^{1} x \cdot e^{-\frac{1}{2}x^{2} + \frac{1}{2}} dx = (-1) \cdot \int_{0}^{1} (-1) \cdot x \cdot e^{-\frac{1}{2}x^{2} + \frac{1}{2}} dx$$

Dadurch hat nun der Integrand die gewünschte Form und die Integral-Regel aus der Angabe kann angewendet werden.

$$\int_{0}^{1} f(x) \, dx = -\int_{0}^{1} (-x) \cdot e^{-\frac{1}{2}x^{2} + \frac{1}{2}} \, dx$$

$$\int_{0}^{1} f(x) \, dx = -\left[e^{-\frac{1}{2}x^{2} + \frac{1}{2}}\right]_{0}^{1}$$

Erläuterung: Hauptsatz der Differential- und Integralrechnung

Ist F eine Stammfunktion von f, dann ist F' = f und es gilt:

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

$$\int_{0}^{1} f(x) dx = -e^{-\frac{1}{2} + \frac{1}{2}} + e^{\frac{1}{2}} = -e^{0} + e^{\frac{1}{2}} = -1 + e^{\frac{1}{2}}$$

Teilaufgabe Teil B 1e (3 BE)

Interpretieren Sie den folgenden Sachverhalt geometrisch:

Für jede Stammfunktion F von f und für jede reelle Zahl w > 2022 gilt $F(w) - F(0) \approx \int_{0}^{2022} f(x) dx$.

Lösung zu Teilaufgabe Teil B 1e

Bestimmtes Integral

$$F(w) - F(0) = \int_{0}^{w} f(x) dx$$

Erläuterung: Hauptsatz der Differential- und Integralrechnung

Ist F eine Stammfunktion von f, dann ist F' = f und es gilt:

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Für jede reelle Zahl w > 2022 schließen der Graph von f, die x-Achse und die Gerade mit der Gleichung x = w ein Flächenstück ein, dessen Inhalt ungefähr mit dem der Fläche übereinstimmt, die der Graph von f, die x-Achse und die Gerade mit der Gleichung x = 2022.

Erläuterung: Bestimmtes Integral

Die Fläche die G_f mit der x-Achse zwischen 0 und w, ist gegeben durch das bestimmte Integral:

$$\int_{0}^{w} f(x) \, \mathrm{dx}$$

Teilaufgabe Teil B 2a (3 BE)

Betrachtet wird nun die Schar der in $\mathbb R$ definierten Funktionen $f_a: x \mapsto x \cdot e^{-\frac{1}{2}a \cdot x^2 + \frac{1}{2}}$ mit $a \in \mathbb R$.

http://www.abiturloesung.de/

Zeigen Sie, dass genau ein Graph der Schar den Punkt (1|1) enthält, und geben Sie den zugehörigen Wert von a an.

Lösung zu Teilaufgabe Teil B 2a

$Parameterwerte\ ermitteln$

$$f_a(x) = x \cdot e^{-\frac{1}{2}a x^2 + \frac{1}{2}}$$

Erläuterung: Punktkoordinaten

Verläuft der Graph einer Funktion d durch einen Punkt P, so erfüllen seine Koordinaten die Funktionsgleichung.

Es soll gelten: $f_a(1) = 1$

$$1 \cdot e^{-\frac{1}{2}a \cdot 1^2 + \frac{1}{2}} = 1$$

$$e^{-\frac{1}{2}a+\frac{1}{2}} = 1$$

Erläuterung: Logarithmieren

Der Logarithmus wird auf beiden Seiten der Gleichung $e^{-\frac{1}{2}a+\frac{1}{2}}=1$ angewendet.

$$\ln\left(e^{-\frac{1}{2}a+\frac{1}{2}}\right) = \ln 1$$

Da der Logarithmus die Umkehrfunktion der Exponentialfunktion ist, gilt:

$$\ln e^{f(x)} = f(x)$$
 für beliebige Funktion $f(x)$

Somit vereinfacht sich die Gleichung zu:

$$-\frac{1}{2}a + \frac{1}{2} = 0$$

$$-\frac{1}{2}a + \frac{1}{2} = 0$$

$$\Rightarrow a = 1$$

Teilaufgabe Teil B 2b (2 BE)

Der Graph der Funktion f_0 ist eine Gerade. Geben Sie die Steigung dieser Gerade und die Koordinaten ihres Schnittpunkts mit der y-Achse an.

Lösung zu Teilaufgabe Teil B 2b

Steigung einer linearen Funktion

$$f_a(x) = x \cdot e^{-\frac{1}{2}a x^2 + \frac{1}{2}}$$

$$f_0(x) = x \cdot e^{-\frac{1}{2} \cdot 0 \cdot x^2 + \frac{1}{2}} = x \cdot e^{\frac{1}{2}} = \sqrt{e} \cdot x$$

$$m = \sqrt{e}$$

Schnittpunkte mit den Koordinatenachsen

$$f_0(0) = 0 \quad \Rightarrow \quad (0|0)$$

Teilaufgabe Teil B 2c (3 BE)

Die folgenden Aussagen gelten für alle reellen Zahlen a, a_1 und a_2 :

- $-f_a(0) = 0$
- $-f'_a(0) = f'_0(0)$
- $-f_{a_1}(x) = f_{a_2}(x) \qquad \Longleftrightarrow \qquad a_1 = a_2 \text{ oder } x = 0$

Geben Sie an, was sich aus diesen Aussagen hinsichtlich des Verlaufs der Graphen der Schar folgern lässt.

Lösung zu Teilaufgabe Teil B 2c

Eigenschaften einer Funktion

 $f_a(0) = 0$: alle Graphen der Schar verlaufen durch den Ursprung

 $f_a'(0) = f_0'(0)$: alle Graphen der Schar haben im Ursprung dieselbe Steigung (\sqrt{e} , s. Teilaufgabe Teil B 2b)

 $f_{a_1}(x)=f_{a_2}(x)\iff a_1=a_2$ oder x=0: Die Graphen der Funktionen der Schar haben nur den Ursprung als gemeinsamen Punkt.

Erläuterung:

Die mathematische Aussage liest sich folgendermaßen:

 $f_{a_1}(x)$ ist gleich $f_{a_2}(x)$ genau dann, wenn entweder a_1 gleich a_2 oder x=0.

 a_1 ist nur gleich a_2 , wenn die beiden Parameter den gleichen Wert haben. Also haben zwei Funktion f_{a_1} und f_{a_2} nur dann gleiche Funktionswerte, wenn es sich um die eine und dieselbe Funktion handelt oder wenn x = 0 ist.

Anders ausgedrückt: Die Graphen der Funktionen der Schar haben nur den Ursprung als gemeinsamen Punkt.

Teilaufgabe Teil B 2d (3 BE)

Zeigen Sie, dass die folgende Aussage für jeden Wert von a richtig ist:

Wird der Graph von f_a mit dem gleichen Faktor k > 0 sowohl in x-Richtung als auch in y-Richtung gestreckt, so stellt der dadurch entstehende Graph ebenfalls eine Funktion der Schar dar.

Lösung zu Teilaufgabe Teil B 2d

Verschiebung von Funktionsgraphen

$$k \cdot f_a\left(\frac{x}{k}\right) = k \cdot \frac{x}{k} \cdot e^{-\frac{1}{2} \cdot a \cdot \left(\frac{x}{k}\right)^2 + \frac{1}{2}} = x \cdot e^{-\frac{1}{2} \cdot \frac{a}{k^2} \cdot x^2 + \frac{1}{2}} = f_{\frac{a}{k^2}}(x)$$

Erläuterung: Verschiebung von Funktionsgraphen

Streckung in y-Richtung um den Faktor k:

$$f(x) \rightarrow k \cdot f(x)$$

Streckung in x-Richtung um den Faktor k:

$$f(x) \longrightarrow f\left(\frac{1}{k} \cdot x\right)$$

Teilaufgabe Teil B 2e (3 BE)

Die Graphen der Schar lassen sich in die beiden folgenden Gruppen I und II einteilen:

- I Der Graph hat genau zwei Extrempunkte.
- II Der Graph hat keine Extrempunkte.

Die Abbildung 2 zeigt einen Graphen der Gruppe I, die Abbildung 3 einen Graphen der Gruppe II.

Die Extremstellen von f_a stimmen mit den Lösungen der Gleichung $a \cdot x^2 = 1$ überein.

Geben Sie zu jeder der beiden Gruppen I und II alle zugehörigen Werte von a an und begründen Sie Ihre Angabe.

Lösung zu Teilaufgabe Teil B 2e

Quadratische Gleichung

$$a x^2 = 1$$

$$x^2 = \frac{1}{a}$$

$$x_{1,2} = \pm \sqrt{\frac{1}{a}} = \pm \frac{1}{\sqrt{a}}$$

Für a > 0 hat die quadratische Gleichung genau zwei Lösungen, für $a \le 0$ keine Lösung.

Gruppe I: a > 0Grippe II: a < 0

Teilaufgabe Teil B 2f (3 BE)

Alle Extrempunkte der Graphen der Schar liegen auf einer Gerade. Begründen Sie, dass es sich dabei um die Gerade mit der Gleichung y=x handelt.

Lösung zu Teilaufgabe Teil B 2f

An wendung szusammenhang

Die Funktion f_1 der Schar ist die Funktion f aus Teilaufgabe Teil B 1a. Der Graph von f ist symmetrisch bezüglich des Koordinatenursprungs und hat den Hochpunkt (1|1).

Teilaufgabe Teil B 2g (6 BE)

Für jeden positiven Wert von a bilden der Hochpunkt $(v|f_a(v))$ des Graphen von f_a , der Punkt $\left(0|\frac{2}{v}\right)$, der Koordinatenursprung und der Punkt (v|0) die Eckpunkte eines Vierecks. Bestimmen Sie ausgehend von einer geeigneten Skizze denjenigen Wert von a, für den das Viereck den Flächeninhalt 49 hat.

Lösung zu Teilaufgabe Teil B 2g

$Fl\"{a}chenberechnung$

Für v > 0 gilt:

Erläuterung: Flächeninhalt eines Trapezes

Ein Trapez mit den Grundseiten a und b und der Höhe h hat einen Flächeninhalt von:

$$A = \frac{1}{2} \cdot (a+b) \cdot h$$

$$\frac{1}{2} \cdot \left(v + \frac{2}{v}\right) \cdot v = 49$$

$$\frac{1}{2}v^2 + 1 = 49$$

Erläuterung:

 $v^2 = 96$

Aus der Angabe zur Teilaufgabe Teil B 2
e wissen wir, dass die Extremstellen von f_a mit den Lösungen der Gleichung
 $a\,x^2=1$ übereinstimmen.

Es gilt: $a \cdot v^2 = 1$ $a \cdot 96 = 1$

$$a = \frac{1}{96}$$