Recommendation Engine Design

Design of Recommendation involves –

Data Overview

- Data Source: Retail data from Kaggle
- Train.csv
 - o 10 columns & 550,068 rows
- Test.csv
 - o 9 columns & 233,000 rows (no Purchase_Amount column)
- Fields
 - User ID
 - Gender
 - Age

- Occupation
- City Category
- Stay in Current City (years)

- Marital Status
- Product Category
- Purchase Amount

Preprocessing

- No Missing Values
- Added Transaction_ID
- Purchase Amount → Total_Purchase (<u>Response variable</u>)
- Data Slicing

User_ID*	Gender [‡]	Age [‡]	Occupation	$City_Categor\hat{\bar{y}}$	Stay_In_Current_City_Years	Marital_Status	Total_Purchase
1000001	F	0-17	10	Α	2	0	Low
1000002	М	55+	16	С	4+	0	Low
1000003	М	26-35	15	Α	3	0	Low
1000004	М	46-50	7	В	2	1	Low
1000005	М	26-35	20	Α	1	1	Low

Product Validation Results

- Since we cannot use the ideal method of experimental and control groups, we opted to see how often our recommended purchases were made by those in each cluster
 - This way, we can test whether people in the clusters are likely to want to buy our recommended products to begin with
 - o Recommended 10 products out of 20

Proposed Solution Deployment

The solution deployed at checkout counters will -

- Cluster and Segment customers based on their profiles
- Recommend products based on the items in their cart

Improvements

- Perform an experiment for our recommendations
 - o Create a control and experimental group
- Adjust recommendations based on:
 - Marginal profit
 - Item availability

Appendix

Model selection: best.model_p

- Used caret to tune each model(multi-processing)
- Displayed the confusion matrix for each model

<u>SVM</u>	Decision tree	Random forest	<u>GBM</u>
Predicted	Predicted	Predicted	Predicted
Actual High Low	Actual High Low	Actual High Low	Actual High Low
High 82 480	High 215 347	High 170 392	High 223 339
Low 75 1131	Low 183 1023	Low 154 1052	Low 175 1031

Selected the best.model p

```
"OE_svm" "0.313914027149321"

"OE_dt" "0.299773755656109"(Fastest)

"OE_rf" "0.308823529411765"

"OE_gbm" "0.290723981900453"
```

Model selection: best.model_g

- Classification on group#
- Try decision tree first and it perform pretty well:

```
Predicted
Actual 1 2 3 4 5 6
1 29 0 0 0 1 0
2 1 180 0 0 1 0
3 14 0 87 0 12 5
4 0 0 1 103 3 0
5 0 0 0 0 67 0
6 4 0 0 0 0 77
```

Overall Error Rate: 0.07179487

Best k

- Try k =2:10
- Use bootstrap (B=100)
- Trade-off between withinss and betweenss
- Consider the business practice

