Solutions: Homework 6

J. Scott

March 6, 2019

1. (2.7.1 (a)) We will start with a few observations that should be familiar from Calc II.

Observation 1: (s_{2n+1}) forms a decreasing sequence, since $s_{2n+3} = s_{2n+1} - (a_{2n+2} - a_{2n+3})$ and $a_{2n+3} \le a_{2n+2}$.

Observation 2: (s_{2n}) forms an increasing sequence, since $s_{2n+2} = s_{2n} + (a_{2n+1} - a_{2n+2})$ and $a_{2n+2} \le a_{2n+1}$.

Observation 3: For all m and n, $s_{2m} \leq s_{2n+1}$. (You may have seen this as $s_{\text{even}} \leq s_{\text{odd}}$.) Indeed, if $m \leq n$, then

$$s_{2m} \le s_{2n} \le s_{2n} + a_{2n+1} = s_{2n+1},$$

while if $m \geq n$, then

$$s_{2m} \le s_{2m} + a_{2m+1} = s_{2m+1} \le s_{2n+1}$$
.

The above uses Observations 1 and 2.

Observation 4: Putting the three previous Observations together, we see that if m is even, then $s_m \leq s_n$ for all $n \geq m$. If m is odd, then $s_m \geq s_n$ for all $n \geq m$.

Now we are ready to prove the Hint from class, namely, that if n > m, then $|s_n - s_m| \le a_{m+1}$. If m is even, then $s_n - s_m \ge 0$ (Obs. 4), and

$$s_n - s_m = (s_n - s_{m+1}) + (s_{m+1} - s_m) \le a_{m+1}$$

since $s_n - s_{m+1} \le 0$ by Obs. 4 and $s_{m+1} - s_m = a_{m+1}$.

If m is odd, then $s_m - s_n \ge 0$ (Obs. 4), and

$$s_m - s_n = (s_m - s_{m+1}) + (s_{m+1} - s_n) \le a_{m+1}$$

since $s_{m+1} - s_n \le 0$ by Obs. 4 and $s_m - s_{m+1} = a_{m+1}$.

Okay, we can finally show that (s_n) is a Cauchy sequence. Let $\varepsilon > 0$. Since $\lim a_n = 0$, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies that $a_n < \varepsilon$. Therefore if $n > m \geq N$, we have

$$|s_n - s_m| \le a_{m+1} < \varepsilon.$$

2. (2.7.2)

- (a) Since $2^n + n > 2^n$ and $\sum_{n=1}^{\infty} (1/2)^n$ is a convergent geometric series, the given series converges by the Comparison Test.
- (b) Since $|\sin(n)| \le 1$ for all n, the series converges absolutely by Comparison with the convergent p-series $\sum_{n=1}^{\infty} 1/n^2$. Since the series converges absolutely, it converges.
- (c) The given series is

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+1}{2n}.$$

The sequence $((-1)^{n+1}(n+1)/2n)$ diverges since the even terms converge to -1/2 while the odd terms converge to 1/2. By Theorem 2.7.3, the series diverges.

- (d) Write the series as $\sum_{n=1}^{\infty} a_n$. Notice that the negative terms "add up" to $-\frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n}$. That is, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n} \frac{2}{3} \sum_{n=1}^{\infty} \frac{1}{n}$, and so diverges.
- (e) Suppose the series $\sum_{n=1}^{\infty} a_n$ converges. Then

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{2n-1} - \sum_{n=1}^{\infty} \frac{1}{(2n)^2}.$$

The second series converges since it equals $\frac{1}{4}\sum_{n=1}^{\infty}\frac{1}{n^2}$. The first series, however, diverges by comparison to $\frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n}$. Since the sum of a convergent and a divergent series is divergent, the original series could not have been convergent to begin with.

3. (2.7.9)

(a) Let $\varepsilon = r' - r$. There exists $N \in \mathbb{N}$ such that $n \geq N$ implies that

$$\left| \left| \frac{a_{n+1}}{a_n} \right| - r \right| < \varepsilon$$

or equivalently,

$$-\varepsilon < \left| \frac{a_{n+1}}{a_n} \right| - r < \varepsilon.$$

Adding r and then multiplying by $|a_n|$ throughout, we obtain

$$|a_n|(r-\varepsilon) < |a_{n+1}| < |a_n|(r+\varepsilon)$$

Since $r + \varepsilon = r'$, we are done.

- (b) Since $0 \le r < r' < 1$, the series shown is a convergent geometric series.
- (c) We will prove by induction that $|a_{N+k}| < |a_N|(r')^k$ for $k \ge 1$. The case k = 1 was part (a) above. Suppose true for k. Then by (a) and the inductive hypothesis,

$$|a_{N+k+1}| < |a_{N+k}|r' < (|a_N|(r')^k)r' = |a_N|(r')^{k+1}.$$

This completes the inductive step and establishes our claim.

By the Comparison Test and part (b), we now have that $\sum_{n=N}^{\infty} |a_n|$ converges. Since $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{N-1} |a_n| + \sum_{n=N}^{\infty} |a_n|$, the series $\sum_{n=1}^{\infty} |a_n|$ converges. By the Absolute Convergence Test, $\sum_{n=1}^{\infty} a_n$ converges.

- 4. (3.2.2)
 - (a) For A: The set A is the disjoint union of $A' = \{1 + \frac{2}{2n} : n = 1, 2, 3, ...\}$ and $A'' = \{-1 + \frac{2}{2n-1} : n = 1, 2, 3, ...\}$. For A', notice that

$$1 + \frac{1}{n} = \frac{n+1}{n} \to 1$$

so 1 is the only limit point of A'.

For A'', we have

$$-1 + \frac{2}{2n-1} = \frac{3-2n}{2n-1} \to -1$$

so -1 is the only limit point of A''. In conclusion, the limit points for A are 1 and -1.

For B, as discussed in class, density of \mathbf{Q} implies that the limit points for B are all of the real numbers in [0,1].

(b) It is worth writing out the first few terms of A:

$$1, 2, -\frac{1}{3}, \frac{3}{2}, -\frac{3}{5}, \frac{4}{3}, -\frac{5}{7}, \dots$$

Let us pick $2 \in A$. Then A consists of one sequence (2, 3/2, 4/3, 5/4, ...) decreasing to 1 and another, (1, -1/3, -3/5, -5/7, ...) decreasing to -1. Thus the nearest point in A to 2, other than 2 itself, is 3/2. So $V_{1/2}(2)$ is not contained in A, so A is not open. While A contains the limit point 1, it does not contain -1, so it is not closed.

B is not open because of density. Since it does not contain all of its limit points, it is not closed.

- (d) From the above, $\overline{A} = A \cup \{-1\}$ and $\overline{B} = [0, 1]$.
- 5. (3.2.3)
 - (a) **Q** is neither open nor closed. For example, no neighborhood of 0 is contained in **Q**, by density. And $\sqrt{2} \notin \mathbf{Q}$ but $\sqrt{2}$ is a limit point.
 - (b) **N** is closed since its complement is the union of open intervals; it is not open since no $V_{\varepsilon}(1) \subseteq \mathbf{N}$.
 - (c) The given set is open since its complement consists of a single point, which is closed. It is not closed because (1/n) is a sequence in the set that converges to 0.
 - (d) Not open, because all elements other than n=1 are $\geq 1+\frac{1}{4}$, so $V_{1/4}(1)$ is not contained in the set. Not closed, because we know the elements can be ordered into a sequence of partial sums for the convergent series $\sum (1/n^2)$, and so that limit point $(\pi^2/6)$ is not in the set (it is strictly greater than every element of the set).
 - (e) Not open since $V_{1/2}(1)$ is not contained. Closed because there are no limit points!