Unfoldings of 4D-Hypercube Unfoldings that tile \mathbb{R}^2

Trun V. Ramteke¹

Abstract

We prove that every face-unfolding of the 4D hypercube has an edge-unfolding that tiles the plane. Hence the hypercube is a "complete dimension-descending tiler". We also illustrate the algorithm used to manifest this result.

1 Introduction

It is a well-known fact that the cube has 11 distinct (incongruent) edge-unfoldings each of which tiles \mathbb{R}^2 . So the cube has the delightful property that it itself tiles \mathbb{R}^3 , and all of its unfoldings tile \mathbb{R}^2 . The cube is therefore a "complete dimension-descending tiler" (see section 2).

We consider this property in a higher dimensional cube: the 4D cube (which we also refer to as the *hypercube*). The 4D cube tiles \mathbb{R}^4 and admits 261 distinct face-unfoldings to order-8 polycubes [1]. A natural question would then be, do all of these unfoldings tile 3D space.

In 2015, G. Diaz and J. O' Rourke [2] explored this very question; and 4 (of the 261) face-unfoldings of the hypercube were shown to tile \mathbb{R}^3 . Later in 2021, whuts.org [3], M. Firsching [4], and G. Papoutsis [5] independently showed that in fact all 261 unfoldings tile \mathbb{R}^3 .

Interestingly, G. Diaz and J. O' Rourke [2] also proved that one of the face-unfoldings had an edge-unfolding that then tiled \mathbb{R}^2 . Likewise, S. Langerman and A. Winslow [6] proved that another face-unfolding, the *dali-cross*, also admits an edge-unfolding that tiles \mathbb{R}^2 .

¹ Private International English School, Abu Dhabi trunvishal.ramteke@gmail.com

As far as we are aware, *only* 2 face-unfoldings of the hypercube were known to have an edge-unfolding that tiles the plane. Therefore, we consider the following question posed by S. Langerman [7]:

Question 1 Does every face-unfolding of the hypercube have an edge-unfolding that tiles space?

We answer this positively in Section 3 and illustrate the algorithm adopted in the brute-force search to prove this. We, in a way, complete the journey initiated in 2015.

2 Definitions

Dual Graph. The *dual graph* of a polycube has a vertex for each *square face* and edges between edge-adjacent squares.

Complete Dimension-descending Tiler (c-DDT).

A polytope that monohedrally tiles \mathbb{R}^d is a c-DDT if all of its facet-unfoldings tile \mathbb{R}^{d-1} , and every \mathbb{R}^{d-1} polytope has a facet-unfolding that tiles \mathbb{R}^{d-2} . The \mathbb{R}^{d-2} polytope must then have a facet-unfolding that tiles \mathbb{R}^{d-3} and so on till an edge-unfolding that tiles \mathbb{R}^2 .

Linear Unfolding [8] Let T be a hamiltonian path on the dual graph of the polycube. The unfolding corresponding to T is linear if direction x is used and direction –x is not.

3 Results

We briefly describe the exhaustive search algorithm used to prove Theorem 3.1 and then demonstrate this in Example 3.2 on the *Dali-cross* unfolding of the hypercube.

Previous approaches that attempted unfolding the face-unfoldings relied on finding spanning trees, on their *dual graphs*, to generate edge-unfoldings [2]. The algorithm we employ generates hamiltonian paths to enumerate unfoldings and then filters *linear edge-unfoldings*. Any linear unfolding tiles the plane. Jelmer Firet [8] proved that every linear unfolding will tile space (and used a similar algorithm to show that linear *face-unfoldings* of the hypercube tile 3D space).

Theorem 3.1 Every face-unfolding of the hypercube has an edge-unfolding that tiles \mathbb{R}^2 .

Example 3.2 Consider the Dali-cross face-unfolding of the hypercube (see Figure 1 (a)). A hamiltonian path (blue) on its dual graph (black) is shown in Figure 1 (b). The corresponding unfolding happens to be linear and is therefore a monohedral tile. (see Figure 2).

Figure 1: (a) *Dali-cross* unfolding of the hypercube (the numbers correspond to those in Figure 2). (b) A hamiltonian path on the polycube's dual tree *mapping* to the unfolding in Figure 2.

Figure 2: *Linear unfolding* of the *dali-cross* tiling space. Faces are numbered according to position in the unfolding and correspond to Figure 1 (a).

Acknowledgements

We greatly appreciate S. Langerman for motivating this research and commenting on this article.

References

- [1] P. Turney. Unfolding the tesseract. *Journal of Recreational Mathematics*, Vol. 17(1), 1984-85
- [2] G. Diaz and J. O' Rourke. Hypercube unfoldings that tile \mathbb{R}^3 and \mathbb{R}^2 . Technical report, *arXiv*, 2015. http://arxiv.org/abs/1512.02086.
- [3] Whuts: Which Hypercube Unfoldings Tile Space, 2021. https://whuts.org
- [4] M. Firsching. Which unfoldings of the hypercube tile 3-space: How to check for isometric space-fillers? *MathOverflow*, 2021.

https://mathoverflow.net/q/392828

[5] G. Papoutsis. Smallest non-space-filling polycube? *Math Stack Exchange*, 2021.

https://math.stackexchange.com/q/4150301

- [6] S. Langerman and A. Winslow. Polycube Unfoldings Satisfying Conway's Criterion, 2016. https://andrewwinslow.com/papers/polyunfold-jcd cggg16.pdf
- [7] S. Langerman, personal communication.
- [8] J. Firet. Which Unfoldings of the d-dimensional hypercube tile (d-1) dimensional space? *Math Overflow*, 2021. https://mathoverflow.net/q/393006

The following repository contains edge-unfolding to every face-unfolding of the hypercube:

T. Ramteke. HyperCube Unfoldings Data, 2022. https://github.com/TrunInGitHub/HyperCube_Unfoldings_Data.