Assignment 2

Austin Chau

HW: POS Tagging

John saw the saw and decided to take it to the table.

NNP VBD DT NN CC VBD TO VB PRP IN DT NN

Intro: Data

- Part of the Penn Treebank POS data set
 - Collection of sentences pretagged with POS
- ☐ Read the README file
- ☐ ./train hmm.py ptb.2-21.tgs ptb.2-21.txt > my.hmm
- \Box ptb.2-21.tgs \rightarrow all the POS tags
- \Box ptb.2-21.txt \rightarrow all the sentences
- \Box train_hmm.py \rightarrow zip the two files together

Intro: Train_hmm

- \square Either perl or python is fine \rightarrow they do the same thing
- ☐ Zip the POS and sentences together
- Generates my.hmm
 - List of emissions and transitions
 - Emissions → token and tag pair, and the probability assigned to it
 - float(emissions[tag][token]) / emissionsTotal[tag]
 - □ Transitions → previous token and current token pair, and the probability assigned to it
 - transitions[prevtag][tag]) / transitionsTotal[prevtag]

- Train the model on subsets of the training data of different sizes
 - Divide the dataset into several subsets (based on index or randomly)
 - Get different performance by increasing the number of subsets
 - ☐ Plot the performance
- Resizing can be done in train_hmm.py, where you don't use all the pairs taken from the tagFile and tokenFile

Plot

pip install matplotlib

```
# importing the required module
import matplotlib.pyplot as plt
# x axis values
x = [1, 2, 3]
# corresponding y axis values
y = [2, 4, 1]
# plotting the points
plt.plot(x, y)
# naming the x axis
plt.xlabel('x - axis')
# naming the y axis
plt.ylabel('y - axis')
# giving a title to my graph
plt.title('My first graph!')
# function to show the plot
plt.show()
```


Plot

Learning curve

- Generate a learning curve
- Give your thoughts about getting more POS-tagged data and and how it would affect your system?

- ☐ Implement bigram viterbi.py
- The same as the provided perl script, but implemented in Python
- You can consult the given code and the algorithm from class
- This is a good practice for the following task

Come up with a way to improve the model

- Build a replacement for the train_hmm.{py,pl} script (using HMM)
- Write your own Viterbi algorithm in Python (recommended)

Implement a trigram HMM

- Learn from train_hmm.py
- ☐ Keep the observations for each state
- Add two initial states before the first token
- Update previous two states in training

Viterbi for trigram

Viterbi for trigram

Input: a sentence $x_1 \dots x_n$, parameters q(s|u,v) and e(x|s).

Definitions: Define \mathcal{K} to be the set of possible tags. Define $\mathcal{K}_{-1} = \mathcal{K}_0 = \{*\}$, and

 $C_k = \mathcal{K} \text{ for } k = 1 \dots n.$

Initialization: Set $\pi(0, *, *) = 1$.

Algorithm:

• For
$$k = 1 ... n$$
,

- For
$$u \in \mathcal{K}_{k-1}$$
, $v \in \mathcal{K}_k$,

$$\pi(k, u, v) = \max_{w \in \mathcal{K}_{k-2}} \left(\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v) \right)$$

$$bp(k, u, v) = \arg\max_{w \in \mathcal{K}_{k-2}} \left(\pi(k-1, w, u) \times q(v|w, u) \times e(x_k|v) \right)$$

- Set $(y_{n-1}, y_n) = \arg\max_{u \in \mathcal{K}_{n-1}, v \in \mathcal{K}_n} (\pi(n, u, v) \times q(\text{STOP}|u, v))$
- For $k = (n-2) \dots 1$,

$$y_k = bp(k+2, y_{k+1}, y_{k+2})$$

• **Return** the tag sequence $y_1 \dots y_n$

Implement a trigram HMM

- Use log
 - Initialization
 - Observations out of vocabulary
 - Overflow
- Use dictionaries in Python

Smooth the probability estimates

☐ To solve data sparsity

$$P(t_i|t_{i-1}t_{i-2})$$

- Replace every tag by its first letter only, the tags would still be meaningful, only more coarse
- Estimate the probability by combining more robust but weaker estimators

$$P(t_i|t_{i-1}t_{i-2}) = \lambda_3 \hat{P}(t_i|t_{i-1}t_{i-2}) + \lambda_2 \hat{P}(t_i|t_{i-1}) + \lambda_1 \hat{P}(t_i)$$

How to choose λ ?

```
function DELETED-INTERPOLATION(corpus) returns \lambda_1, \lambda_2, \lambda_3
   \lambda_1 \leftarrow 0
   \lambda_2 \leftarrow 0
   \lambda_3 \leftarrow 0
   foreach trigram t_1, t_2, t_3 with C(t_1, t_2, t_3) > 0
       depending on the maximum of the following three values
           case \frac{C(t_1,t_2,t_3)-1}{C(t_1,t_2)-1}: increment \lambda_3 by C(t_1,t_2,t_3)
           case \frac{C(t_2,t_3)-1}{C(t_2)-1}: increment \lambda_2 by C(t_1,t_2,t_3)
           case \frac{C(t_3)-1}{N-1}: increment \lambda_1 by C(t_1,t_2,t_3)
       end
   end
   normalize \lambda_1, \lambda_2, \lambda_3
   return \lambda_1, \lambda_2, \lambda_3
```

- ☐ Describe your approach clearly
- Provide the performance of your model on ptb.22.*
- Run your tagger on ptb.23.txt (the test data) and turn in the code and output
- ☐ Do not search ptb23.tag

Task 4: Different Languages

- Run the baseline model and your model from Task 2 on Japanese and Bulgarian
- Report and explain the results
 - Why are the baseline model and your model performing better/worse on Japanese and/or Bulgarian?

- Current:
 - We have only been reporting #errors compared to the test data in terms of words and sentence.
- Are there better metrics you can do to evaluate the difference between your model and the baseline?
 - What model can you use instead of just tallying up mismatch with the test set?

- ☐ In your answer
 - ☐ Your modified script
 - Your results in the PDF
 - ☐ Your explanation:
 - ☐ Why you get this results
 - ☐ Why your metric is better