

 Consommation  
et Corporations Canada  
Bureau des brevets  
Ottawa, Canada  
K1A 0C9

Consumer and  
Corporate Affairs Canada  
Patent Office

(11) (C) **1,293,465**  
(21) 558,097  
(22) 1988/02/04  
(45) 1991/12/24  
(52) 196-21

SECTION B CORRECTION  
SEE CERTIFICATE  
CORRECTION - ARTICLE B  
VOIR CERTIFICAT

(51) INTL.CL. <sup>5</sup> B03B-9/02

(19)(CA) **CANADIAN PATENT (12)**

(54) Purification Process for Bitumen Froth

(72) Shelfantook, William E. , Canada  
Hyndman, Alexander W. , Canada  
Hackman, Larry P. , Canada  
  
(73) Alberta Energy Company Ltd. , Canada  
Canadian Occidental Petroleum Ltd. , Canada  
Esso Resources Canada Limited , Canada  
Gulf Canada Resources Limited , Canada  
Majesty (Her) the Queen in right of the Province of  
Alberta, as represented by the Minister of Energy and  
Natural Resources , Canada  
HBOG-Oil Sands Limited Partnership , Canada  
PanCanadian Petroleum Limited , Canada  
Petro-Canada Inc. , Canada

(57) 2 Claims

(60) Supplementary Disclosure Filed 1989/11/03

Canada

CCA 3254 (10 89) 41



Bureau canadien  
des brevets  
*Certificat de correction*

Canadian Patent  
Office  
*Certificate of Correction*

Canadian Patent No. 1,293,465  
Granted: December 24, 1991

Les corrections suivantes sont faites en  
raison de l'article 8 de la *Loi sur les  
brevets* et le document doit être lu tel  
que corrigé.

In the Patent file and Patent grant:

1.

The following lines have been added to the top  
of page two of the claims:

"mixing the first underflow stream from the first settler  
in the second mixer with a second recycled overflow  
stream from the third settler, said second overflow  
stream being"

The following corrections are made  
pursuant to section 8 of the *Patent Act*  
and the document should read as  
corrected.

  
Agent certificateur / Certifying Officer

November 29, 1999

Date



Industrie  
Canada

(CIPO 25)

Canada

558097

"PURIFICATION PROCESS FOR BITUMEN FROTH"

ABSTRACT OF THE DISCLOSURE

Bitumen froth is treated in a circuit comprising a plurality of serially connected mixer and inclined plate settler units. A light hydrocarbon diluent moves countercurrently through the circuit. Thus, as the bitumen content of the stream being settled diminishes, the concentration of diluent in that stream increases.

1                   FIELD OF THE INVENTION

2                   This invention relates to a process for purifying  
3                   bitumen froth, to thereby obtain a diluted bitumen stream of good  
4                   enough quality to be fed to a downstream upgrading facility. By  
5                   'purifying' is meant that water and solids present in the froth  
6                   are separated from the bitumen.

7                   BACKGROUND OF THE INVENTION

8                   The oil sands of the Fort McMurray region of Alberta  
9                   are presently being exploited by two large commercial operations.  
10                  The process practised in these operations involves four broad  
11                  steps, namely:

- 12                  - mining the oil sand;
- 13                  - extracting the bitumen from the mined oil sand  
14                   using a process known as the 'hot water process',  
15                   to produce bitumen in the form of a froth  
16                   contaminated with water and solids;
- 17                  - purifying the froth to separate the water and  
18                   solids from the bitumen; and
- 19                  - upgrading the purified bitumen in a coking  
20                   facility to produce products which are suitable  
21                   for a conventional refinery.

22                  The present invention has to do with the purifying  
23                  step. However, in order to understand the problems solved by  
24                  the invention, it is first necessary to review the steps of the  
25                  hot water process and the conventional froth purification  
26                  process.

27                  As a beginning point, it needs to be understood that  
28                  oil sands comprises relatively large quartz sand grains,  
29                  each grain being encapsulated in a thin sheath of connate  
30                  water. The water contains minute clay particles (referred to



1       as 'fines'). The bitumen is positioned in the interstices  
2       between the water-sheathed grains of sand.

3           In the first step of the hot water process, the  
4       mined oil sand is mixed in a rotating horizontal cylindrical  
5       drum (or 'tumbler') with hot water (80°C) and a small amount  
6       of NaOH (referred to as 'process aid'). Steam is sparged  
7       into the slurry at intervals along the length of the drum, to  
8       ensure that the exit temperature of the resultant slurry is  
9       about 80°C.

10          The drum is slightly inclined along its length, so  
11       that the mixture moves steadily therethrough. The retention  
12       time is about 4 minutes.

13          This tumbling step is referred to as  
14       'conditioning'. It involves heating of the bitumen and  
15       displacement, by water addition, of the bitumen away from the  
16       sand grains. Many of the released bitumen globules become  
17       aerated by forming films around air bubbles entrained in the  
18       tumbler slurry. Conditioning also involves reaction between  
19       the NaOH and bitumen to produce surfactants which facilitate  
20       the bitumen-release and subsequent flotation/settling steps.

21          On leaving the tumbler, the conditioned slurry is  
22       screened, to remove oversize rocks and lumps, and diluted  
23       with additional hot water. The resulting water/bitumen ratio  
24       is about 6:1.

25          The diluted slurry is then introduced into a large  
26       thickener-like vessel having a cylindrical upper portion and  
27       a conical lower portion. The vessel is referred to as the  
28       'primary separation vessel' or 'PSV'. Here the diluted  
29       slurry is retained for about 45 minutes under quiescent  
30       conditions. Under the influence of gravity, the sand grains  
31       sink, are concentrated in the conical portion and are

1 discharged as 'primary tailings' through a valve and line  
2 connected to the lower apex of the vessel. The bitumen  
3 globules, rendered buoyant by air attachment, rise to the  
4 surface of the PSV and form a froth. This froth is called  
5 'primary froth' and typically comprises:

6       66.4% by wt. bitumen

7       24.7% by wt. water

8       8.9% by wt. solids

9 The primary froth is skimmed off and recovered in a launder.  
10 In between the layer of sand tailings in the base of the  
11 vessel and the layer of froth at the top, there exists a  
12 watery slurry referred to as 'middlings'. The middlings  
13 contain fines and globules of bitumen which are  
14 insufficiently buoyant to reach the froth layer.

15 A stream of middlings is continuously withdrawn  
16 from the PSV. These middlings are treated in a series of  
17 sub-aerated flotation cells. In these cells, the middlings  
18 are vigorously aerated and agitated, with the result that  
19 contained bitumen is forced to float and form a dirty froth  
20 referred to as 'secondary froth'. This secondary froth  
21 typically comprises:

22       23.8% by wt. bitumen

23       58.7% by wt. water

24       17.5% by wt. solids.

25 To reduce the concentration of water and solids in  
26 the secondary froth, it may be retained in a settling tank to  
27 allow some of the contaminants to settle out. The 'cleaned'  
28 secondary froth typically comprises:

29       41.4% by wt. bitumen

30       46.2% by wt. water

31       12.4% by wt. solids.

1           The primary and secondary froths are then combined  
2           to provide the product of the hot water extraction process.  
3           The 'combined froth' typically comprises:

4           57.3% by wt. bitumen  
5           34.2% by wt. water  
6           8.4% by wt. solids.

7           This stream is too contaminated to be used as feed  
8           to the downstream upgrading circuit. This latter circuit  
9           requires a feed typically comprising:

10          99.0% by wt. bitumen  
11          - % by wt. water  
12          1.0% by wt. solids.

13          So the combined froth product requires purification  
14          (or water and solids removal) before it can be fed to the  
15          upgrading circuit. Heretofore, this purification has been  
16          obtained by using what is referred to as 'two stage dilution  
17          centrifuging'. This operation involves:

- 18          1. Diluting the combined froth with naphtha.  
19          This is done to reduce hydrocarbon phase  
20          viscosity and increase the density  
21          difference between the hydrocarbon phase  
22          (bitumen dissolved in naphtha) and the  
23          water and solids phase (referred to jointly  
24          as 'sludge');
- 25          2. Passing the diluted froth through a low-  
26          speed scroll centrifuge, to remove the  
27          coarse solids and some of the water as a  
28          cake, which is discarded; and

1           3. Passing the scroll centrifuge product  
2           through a high-speed disc centrifuge to  
3           remove fine solids and most of the balance  
4           of the water. The disc centrifuge product  
5           typically analyzes at:

6           59.4% by wt. bitumen  
7           37.5% by wt. naphtha  
8           4.5% by wt. water  
9           0.4% by wt. solids

10          The naphtha diluent and any contained water is then  
11          distilled out of the disc centrifuge product to produce the  
12          purified bitumen product for advancing to the upgrading  
13          process.

14          The described dilution centrifuging process has  
15          been used because it is capable of producing a bitumen  
16          product of the desired quality. But it is an operation that  
17          is exceedingly expensive to maintain and operate due to the  
18          erosive nature of the feed and the rotating character of the  
19          centrifuges. For example, in use, the flights of the scroll  
20          centrifuges wear badly, even though they are formed of  
21          ceramic, and the brittle ceramic flights commonly break and  
22          put the machine out of balance. In the case of the disc  
23          centrifuges, their sludge discharge nozzles are subject to  
24          rapid wear and the separation interface between product and  
25          reject in the stack of discs can easily be 'lost', with the  
26          result that a significant amount of bitumen is lost with the  
27          tailings. In addition, a large number of the machines must  
28          be used, with attendant consumption of very large amounts of  
29          electrical energy.

1           Thus, there has long been a need for a viable  
2       alternative to the dilution centrifuging circuit for  
3       purifying bitumen froth.

4 The present invention involves a circuit of  
5 interconnected known devices, namely mixers and inclined  
6 plate settlers ('IPS').

An inclined plate settler comprises a stack of parallel, spaced apart, solid plates, inclined downwardly from the horizontal and mounted within a containing vessel. Each space between a pair of plates forms a discrete settling zone. The feed mixture to be separated is distributed into the spaces, at a point between their longitudinal ends. The light components of the mixture rise to the underside surface of the upper plate. These light components then travel up said underside surface and are collected and recovered at the upper ends of the plates. The heavy components of the mixture sink towards the uppermost surface of the lower plate and follow it downwardly, to be collected and recovered at the lower ends of the plates.

20                   A mixer can take any of various forms - the present  
21                   work involved simply a cylindrical container having a  
22                   submerged driven impellor positioned therein.

## SUMMARY OF THE INVENTION

26 - That bitumen froth is amenable to high quality  
27 separation in a first IPS, but in that first  
28 stage of separation only part of the bitumen  
29 in the feed reports as overhead product;

- 1        - That the underflow from the first IPS, containing
- 2              a significant proportion of the bitumen in the
- 3              original feed, is not amenable to high quality
- 4              separation in a second IPS. It appears that the
- 5              first stage underflow contains stable emulsions
- 6              that will not readily resolve in the second IPS
- 7              or that much of the hydrocarbons that did not
- 8              report to the overflow in the first stage will
- 9              also not report to the overflow in the second
- 10             stage; and
- 11        - That if light hydrocarbon diluent (e.g. naphtha)
- 12              is mixed with the first stage underflow, then
- 13              this mixture is amenable to good quality
- 14              separation in the second IPS.

15       Having conceived and tried the underlying  
16       experimental work that resulted in these observations,  
17       applicants conceived a purification circuit for bitumen froth  
18       that would incorporate the following features:

- 19             - the use of a plurality of serially connected
- 20              inclined plate settlers, with a subsequent
- 21              settler being fed the underflow from a
- 22              preceding settler;
- 23             - the addition of light hydrocarbon
- 24              diluent or solvent, in a progressively
- 25              richer concentration, to the bitumen-
- 26              containing stream moving through the
- 27              series of settlers, said bitumen-containing
- 28              stream becoming progressively leaner in
- 29              bitumen as it moves through the circuit; and

1           - the use of mixers before each settler to mix  
2           the added diluent with the bitumen.

3       A circuit or line consisting of three pairs of alternating mixers  
4       and settlers was tested. The overflow stream from the first  
5       settler provided the only bitumen product stream produced from  
6       the circuit. The bitumen/diluent overflow stream from the second  
7       settler was recycled to the first mixer to be combined with the  
8       froth feed. The low-bitumen/high-diluent overflow stream from  
9       the third settler was recycled to the second mixer. Thus more  
10      diluent was supplied to the relatively bitumen-lean underflow  
11      stream being supplied to the second mixer. And finally, fresh  
12      diluent was supplied to the third mixer to dissolve the small  
13      amount of bitumen in the underflow stream of the second settler.

14       When applied to typical combined bitumen froth this  
15      circuit demonstrated:

16           - that the bitumen product stream from the first  
17       IPS was of the same order of purity as that  
18       derived from a conventional dilution centrifuging  
19       circuit; and  
20           - that the recovery of bitumen by the test circuit  
21       was of the same order as that obtained by  
22       dilution centrifuging.

23       Stated otherwise, we have made the surprising discovery  
24      that a process using three mixing/IPS separation steps in  
25      series, combined with a counter flow of solvent, gives product  
26      of as good quality as that obtained from the centrifuge process  
27      (said quality being referred to as "upgrading quality"),  
28      together with comparable hydrocarbon recovery and a sludge  
29      tailings that is substantially hydrocarbon-free. And the

1 components of the present circuit are without moving parts  
2 (except for the pumps and impellors) and thus are  
3 characterized by comparatively low maintenance costs.

4 DESCRIPTION OF THE DRAWINGS

5 Figure 1 is a block diagram showing the steps of  
6 the process in accordance with the preferred embodiment; and

7 Figure 2 is a schematic showing the circuit of  
8 processing components or units and their pipe  
9 interconnections.

10 DESCRIPTION OF THE PREFERRED EMBODIMENT

11 The test work underlying the present invention was  
12 carried out in 3-stage mixer/IPS circuit. The invention will  
13 now be described with respect to that circuit, although it  
14 could also be conducted in 2, 4 or even more stages.

15 More particularly, combined bitumen froth was fed  
16 to a circuit A comprising: a first mixer 1; a first IPS 2; a  
17 second mixer 3; a second IPS 4; a third mixer 5; a third IPS  
18 6; and appropriate connecting lines.

19 The combined froth was introduced into and mixed in  
20 the first mixer 1 with a first recycled overhead stream from  
21 the second IPS 4. This first recycled overhead stream was  
22 depleted in bitumen but enriched in naphtha, relative to the  
23 combined froth feed.

24 The first mixer 1 comprised a cylindrical body 1a  
25 having a flat bottom 1b. An impellor 1c was positioned to  
26 stir the contents of the mixer.

1           The mixture from the first mixer 1 was fed to the  
 2        inlet of the first IPS 2. The first IPS 2 was simply a box  
 3        2a having an inlet 2b, an overhead outlet 2c, and an  
 4        underflow outlet 2d. The box contained a pair of inclined  
 5        spaced-apart plates 2e.

6           The dimensions of the mixer and IPS units used are  
 7        set forth in Table 1. The several mixers and IPS's in the  
 8        circuit were identical to the described units.

9           TABLE I

|    |                          |                      |
|----|--------------------------|----------------------|
| 10 | Length of IPS -          | 5'                   |
| 11 | Spacing between plates - | 1-1/2"               |
| 12 | Dimensions of plates -   | 5' x 1'              |
| 13 | Mixer vessel -           | 12" diameter         |
| 14 |                          | 12" to 16" of liquid |
| 15 |                          | in the vessel during |
| 16 |                          | operation            |
| 17 | Type of impellor -       | 6" diameter marine   |
| 18 |                          | propeller            |
| 19 | Impellor rpm -           | 220 - 680            |

20           Separation of the bitumen, water, and solids,  
 21        present in the mixture fed from the first mixer 1, took place  
 22        in the first IPS 2. A first overhead product stream, which  
 23        was the only bitumen-rich product from the circuit, was  
 24        obtained. This stream was enriched in bitumen relative to  
 25        the original froth feed. (The compositions of these streams  
 26        are set forth in Table II below.)

27           The underflow stream from the first IPS 2 was fed  
 28        to the second mixer 3. Here it was mixed with a second  
 29        recycled stream from the third IPS 6. This second recycled  
 30        stream was very depleted in bitumen but relatively rich in  
 31        naphtha.

1293465

1       The mixture from the second mixer 3 was fed to the  
2       inlet of the second IPS 4. Separation occurred therein and  
3       overflow and underflow streams were produced. The overflow  
4       stream was the stream recycled to the first mixer, as  
5       previously stated.

6       The second underflow stream, produced by the second  
7       IPS 4, was fed to the third mixer 6. This second underflow  
8       stream was quite lean in bitumen - more particularly, it was  
9       depleted in bitumen relative to the first underflow stream.

10      In the third mixer 6, the second underflow stream  
11      was mixed with fresh pure naphtha. The mixture was fed to the  
12      inlet of the third IPS 6 and underwent separation therein.  
13      The overflow stream from the third IPS 6 was recycled to the  
14      second mixer 3, as previously stated. The underflow stream,  
15      virtually free of bitumen, was discarded as tails.

16      The stream compositions and separation results are  
17      set forth in Table II.

1293465

TABLE II

COMPOSITION (% BY WT.)

|    | STREAM                                  | BITUMEN | WATER | SOLIDS | NAPHTHA | RATE<br>kg/min |
|----|-----------------------------------------|---------|-------|--------|---------|----------------|
| 5  | Combined froth feed                     | 57.3    | 34.2  | 8.5    | -       | 1.96           |
| 7  | First recycled overflow (from 2nd. IPS) | 19.7    | 14.1  | 1.9    | 63.4    | 1.59           |
| 10 | Overflow product (from 1st IPS)         | 55.7    | 4.7   | 0.7    | 39.0    | 2.02           |
| 12 | 1st IPS underflow                       | 20.7    | 52.7  | 12.1   | 14.5    | 1.52           |
| 14 | Second recycled overflow (from 3rd IPS) | 2.80    | 53.8  | 8.3    | 35.1    | 3.01           |
| 17 | 2nd IPS underflow                       | 2.9     | 13.7  | 74.6   | 9.3     | 2.95           |
| 19 | Fresh diluent                           |         |       |        | 99.5    | 0.81           |
| 20 | 3rd IPS underflow                       | 0.20    | 77.3  | 20.3   | 2.4     | 0.75           |

1      SUPPLEMENTARY DISCLOSURE

2      This supplementary disclosure relates to a  
3      variation of the circuit described in the principal  
4      disclosure.

5      It can be advantageous to operate the separation  
6      process at elevated temperature because the viscosity of the  
7      hydrocarbon is thereby reduced. This allows the solid  
8      particles to settle more rapidly. In addition, at higher  
9      temperature the water droplets coalesce more readily, which  
10     facilitates their separation from the hydrocarbon. A high  
11     purity product is thereby produced at lower residence time,  
12     with the consequence that the capacity of the equipment is,  
13     in effect, increased.

14     At such higher temperatures, fractions of the  
15     diluent can approach or exceed their atmospheric boiling  
16     point. To prevent flashing of the diluent, and to contain  
17     the pressures generated, it is necessary to surround the  
18     functioning units of the equipment with pressure-retaining  
19     housings.

20     This may be effected in conventional fashion by  
21     closing in the components of the circuit, as indicated  
22     diagrammatically in Figure 3, and operating the process at  
23     elevated temperature and pressure.

1293465

1        THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE  
2        PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

3            1. A process for purifying bitumen froth from the hot  
4        water process for extracting bitumen from oil sand, said froth  
5        comprising bitumen, water and solids, said process being carried  
6        out in a circuit comprising first, second and third inclined  
7        plate settlers and first, second and third mixers, each settler  
8        having an inlet, an overflow outlet and an underflow outlet, each  
9        mixer having an inlet and outlet, each mixer being positioned  
10      before the corresponding settler, the outlet of each mixer being  
11      connected with the inlet of the immediately downstream settler,  
12      the inlet of the first mixer being connected with a source of  
13      bitumen froth, the inlet of the second mixer being connected with  
14      the underflow outlet of the first settler, the inlet of the third  
15      mixer being connected with the underflow outlet of the second  
16      settler, the overflow outlet of the first settler providing the  
17      diluted bitumen product from the circuit, the overflow outlet of  
18      the second settler being connected with the first mixer, the  
19      overflow outlet of the third settler being connected with the  
20      second mixer, the third mixer being connected with a source of  
21      light hydrocarbon diluent, said process comprising:

22            mixing the bitumen froth in the first mixer with a  
23        first recycled overflow stream from the second settler, said  
24        overflow stream being depleted in bitumen and enriched in diluent  
25        relative to the froth;

26            treating the mixture produced from the first mixer in  
27        the first settler to produce a first product overflow stream  
28        which is sufficiently enriched in bitumen relative to the froth  
29        to be of upgrading quality and a first underflow stream which is  
30        depleted in bitumen relative to the froth;

SECTION 8 CORRECTION  
SEE CERTIFICATE  
CORRECTION - ARTICLE 8  
VCH CERTIFICATE

1293465

- 1        depleted in bitumen and enriched in diluent relative to the first
- 2        overflow stream;
- 3                treating the mixture produced from the second mixer in
- 4        the second settler to produce the first recycled overflow stream
- 5        and a second underflow stream which is depleted in bitumen
- 6        relative to the first underflow stream;
- 7                mixing the second underflow stream from the second
- 8        settler in the third mixer with a stream of light hydrocarbon
- 9        diluent from said source of light hydrocarbon diluent;
- 10          treating the mixture produced from the third mixer in
- 11        the third settler to produce the second recycled overflow stream
- 12        and a third underflow stream which is depleted in bitumen
- 13        relative to the second underflow stream.

**1293465**

1      CLAIM SUPPORTED BY THE SUPPLEMENTARY DISCLOSURE

2            2. The process as set forth in claim 1 wherein:  
3                the process is conducted at elevated temperature and  
4                pressure and the circuit is pressure-retaining.

\*

Fig. 1.

Patent agent:

*E.P. Johnson*

1293465

3 - 2



FIG. 2.

Patent agent:  
E P Johnson



Fig. 3