制御工学における安定判別問題

長野高専 電気電子工学科 5 年 XX 番 氏名 2025 年 7 月 17 日

1 はじめに

本稿では、高周波領域における誘電体材料の物理的基礎、損失メカニズム、および株式会社 TOTOKU の RUOTA 技術を中心とした先進的な同軸ケーブル応用について、理論と実践の両面から 詳細に分析する.

2 高周波信号伝送の理論的基礎

高周波信号伝送では、伝送路材料の物理的挙動が信号品質を大きく左右する.特に誘電体の分極現象、高周波領域でのエネルギー損失、導体の表皮効果が重要である^[1,2].

2.1 誘電体材料と分極の性質

誘電体は外部電場印加時に内部で分極を生じ、エネルギーを蓄える。分極には電子分極、イオン分極、双極子分極があり、それぞれ応答速度や機構が異なる $^{[2]}$. 分極のしやすさは誘電率 (ϵ) で表され、工学的には真空の誘電率 ϵ_0 に対する比 $(\epsilon_{\rm r})$ で議論される。高周波伝送では、低 $\epsilon_{\rm r}$ 材料が信号遅延や減衰抑制の観点から求められる $^{[3]}$.

2.2 誘電体におけるエネルギー損失

高周波交流電場下では、分極の遅れ(誘電緩和)により電場と分極の間に位相差が生じ、エネルギーの一部が熱として散逸する(誘電損失) $^{[1,4]}$. この損失は複素誘電率 $\epsilon^* = \epsilon' - i\epsilon''$ で表され、 ϵ' は蓄積能力、 ϵ'' は損失度合いを示す.損失特性は誘電正接 $\tan\delta = \epsilon''/\epsilon'$ で評価され、 $\tan\delta$ が小さいほど低損失である $^{[4]}$. ϵ' 、 $\tan\delta$ は周波数依存性(誘電分散)を示すため、広帯域で安定した低値が重要である $^{[5]}$.

2.3 導体の表皮効果

高周波電流は導体表面に集中し(表皮効果),有効断面積が減少することで交流抵抗が増大し,導体損失が増加する^[1].表面粗さも損失に影響するため,導体設計も重要である.

2.4 伝送損失の統一的視点

伝送損失は主に誘電損失 $\alpha_{\rm d}$ ($\propto f\sqrt{\varepsilon_{\rm r}}\tan\delta$), 導体損失 $\alpha_{\rm c}$ ($\propto \sqrt{f}$), 散乱損失の和で表される ^[5]. 高周波化に伴い誘電・導体損失が急増するため、材料と構造の最適化が不可欠である.

3 低損失ケーブルのための材料および構造工学

3.1 誘電体材料の選定と製造

高周波損失低減には、双極子分極の緩和が小さいフッ素樹脂(PTFE、FEP、PFA等)が有効である $^{[6,7]}$. これらは分子構造の対称性により永久双極子モーメントが小さく、 $\epsilon_{\rm r}\approx 2.1$ 、 $\tan\delta\approx 0.0002$ と極めて低損失である $^{[6]}$. 押出成形によりケーブル絶縁体として加工される.

3.2 構造誘電体と中空構造技術

固体材料の限界を超えるため、空気($\epsilon_{\rm r}\approx 1.0$)を構造体に取り込む中空構造が開発された $^{[7,9]}$. TOTOKU の RUOTA はフッ素樹脂絶縁体内部に均一な空気層を設け、実効比誘電率を大幅に低減する。この構造は低損失化、細径化、位相安定性向上など多くの利点をもたらす。

材料名	比誘電率(D _k)	誘電正接(D_{f})	最高使用温度	特徴
PTFE	2.1	2.0×10^{-4}	260 °C	最低損失
FEP	2.1	7.0×10^{-4}	200 °C	成形容易
PFA	2.1	5.0×10^{-4}	260 °C	高性能
低損失ポリイミド	2.6-3.3	$(2.0-2.5) \times 10^{-3}$	300 °C	柔軟
FR-4	4.2–4.8	$(1.5-2.5) \times 10^{-2}$	130 °C	一般基板

表 1 主要高周波誘電体材料の特性比較(代表値:10 GHz) [5]

4 応用分析:株式会社 TOTOKU による高周波ソリューション

4.1 企業・技術プロファイル

株式会社 TOTOKU は「細く、軽く、小さく」を理念に、独自の中空構造技術を核とした高周波・高速伝送ケーブルを展開している.

4.2 高性能同軸ケーブル「RUOTA」の応用事例

4.2.1 5G 通信

RUOTA は 5G 基地局の Massive MIMO やビームフォーミング用途で、位相安定性・低損失・細径 化により高品質通信を支える.

4.2.2 半導体テスト装置

THPC シリーズは厳格なインピーダンス管理と細径性で高密度実装・正確な信号伝送を実現する.

4.2.3 医療機器・産業用途

TCA シリーズは柔軟・細径・低損失特性により、医療機器や産業機器の高信頼配線に貢献する.

5 比較分析と業界動向

TOTOKU は RUOTA (同軸), Wavemolle (アセンブリ), Leafconn (フラットケーブル) など多様な製品で高周波・高速伝送市場をリードしている。競合他社もフッ素樹脂や FPC 等で低損失化を図るが,中空構造技術による差別化が際立つ。

6 結論

高周波誘電体材料の進化は、物理学的理解、材料・構造工学、精密製造技術の三位一体で進展している。TOTOKUのRUOTAは中空構造技術により、低損失・細径・高位相安定性を同時に実現し、5G、半導体検査、医療など多分野の基盤技術となっている。

7 オームの法則実験データ

表2に、オームの法則実験のデータを示す.

表 2 オームの法則実験データ

印加電圧 [V]	理論電流 [A]	計測電流 [A]	備考
0.5	0.200	0.198	[ここに備考]
1.0	0.400	0.400	[ここに備考]
1.5	0.600	0.595	[ここに備考]
2.0	0.800	0.805	[ここに備考]
2.5	1.000	1.010	[ここに備考]

図 1 オームの法則実験データのグラフ

図 2 サイクロイド曲線 $x = r(t - \sin t)$, $y = r(1 - \cos t)$

図3 正弦関数と余弦関数の周期特性

図4 電気回路のイメージ (出典: Pngtree)

- 8 サイクロイドのグラフ
- 9 サインとコサインのグラフ
- 10 回路図イメージ

参考文献

- [1] 精電舎電子工業「高周波誘電加熱とは」https://www.sedeco.co.jp/technology/list/hfw/
- [2] 東亞合成「高分子の誘電特性」https://www.toagosei.co.jp/develop/item/no21_02.pdf
- [3] 東京工業大学「ポリイミドの 6G 周波数域における誘電特性を解明」https://www.titech.ac.jp/news/2024/069742
- [4] crowdchem.net「誘電正接とは?」https://crowdchem.net/column/985/
- [5] Resonac「伝送損失・誘電損失・誘電正接とは?」https://www.resonac.com/jp/solution/tech/transmission-loss.html
- [6] 株式会社 TOTOKU「高周波ケーブルとは?」 https://www.totoku.co.jp/special-contents/column/coaxial_13/
- [7] TOTOKU RUOTA Equipment Lead Cable https://en.totoku.co.jp/product/

coaxial-lead/

- [8] Shibata Co., Ltd. 「High Performance Coaxial Cable (RUOTA)」 https://www.shibata.co.jp/english/products/ruota
- [9] TOTOKU 「High performance Coaxial Cable」 https://www.totoku.co.jp/wp/wp-content/themes/totoku/assets/doc/en-RUOTA.pdf