Laboratório de Controle - Aula 2 - 2022/1

Introdução ao Matlab

Nome:

```
turma=3;
I=1;
datetime('now')

ans = datetime
    19-May-2022 18:46:17

pwd

ans =
'C:\Users\diona\OneDrive\Área de Trabalho\ufes\Laboratorio de Controle Automático\Aula2'
```

Link para documento sobre o Matlab

<u>Importante: nos comandos abaixo, não use ponto e vírgula após comandos que geram resultados que devem aparecer no relatório!</u>

Afinal, é o resultado que mostra se o comando está correto!

Atividade 1: Comandos para manipular variáveis

1.1 Criar um número complexo z = x + jy, com $x \neq 0$, $y \neq 0$ e calcular seu valor absoluto.

```
z = 3 + 4j

z = 3.0000 + 4.0000i

abs(z)

ans = 5
```

1.2 Definir uma matriz A qualquer com dimensão 4x4 e com determinante diferente de zero (Dois comandos, e mostrar a matriz e seu determinante).

```
A=[1 3 5 9;1 3 1 7;4 3 9 7;5 2 0 9]

A = 4×4

1 3 5 9
1 7
1 7
4 3 9 7
5 2 0 9
```

```
det(A)
ans = -376
```

1.3 Definir um vetor b não nulo com dimensão 4x1 e então obter x que satisfaz A*x=b (dois comandos)

```
b = \begin{bmatrix} 2 & 2 & 2 & 2 \end{bmatrix}
b = 1 \times 4
2 = 2 = 2 = 2
x = b/A
x = 1 \times 4
-1.0106 = 1.1170 = 0.6596 = -0.1489
```

1.4 Salvar apenas as variáveis A,x,b em um arquivo (seu nome).mat

```
save Dionatas.mat A x b
```

1.5 Calcular o polinômio característico de A e depois suas raízes (dois comandos e mostrar)

```
p=poly(A)

p = 1×5
    1.0000 -22.0000   71.0000   287.0000 -376.0000

roots(p)

ans = 4×1
    16.8564
    6.9427
    -2.9050
    1.1060
```

1.6 Gerar um vetor z com 100 elementos uniformemente espaçados de -2 a 2. Usar ; após o comando, e mostrar z com o comando plot(z).

```
z=linspace(-2,2,100)

z = 1×100
     -2.0000  -1.9596  -1.9192  -1.8788  -1.8384  -1.7980  -1.7576  -1.7172 ...

plot(z)
```


1.7 Criar uma variável M do tipo struct com os campos (fields) nome, turma, I, data (dia:mês:ano) e atribuir valores aos mesmos

```
M = struct('nome',[],'turma',[],'I',[],'data',[])
M = struct with fields:
    nome: []
    turma: []
       I: []
    data: []
M.nome= 'Dionatas';
M.turma= 3;
M.I= 1;
M.data='11:01:2000';
Μ
M = struct with fields:
    nome: 'Dionatas'
    turma: 3
       I: 1
    data: '11:01:2000'
```

1.8 Criar um vetor y com 150 elementos vindos de uma distribuição normal. Usar ; após o comando. Plotar então o histograma de y para confirmar sua distribuição normal.

y=randn(150,1)

```
y = 150×1
0.9239
2.2231
-1.3019
-0.9090
-0.0775
0.0005
0.1069
-0.3125
1.2196
-0.9096
```

plot(y)

1.9 Usar um comando apenas para contar quantos valores de y são maiores que zero.

find(y>0)

```
12
13
15
18
```

1.10 Com no máximo dois comandos, substituir todos elementos negativos de y por zero, gerando y1. Plote plot([y y1]) para confirmar o sucesso dos comandos.

```
y1=y;
y1(y1<0)=0;
plot([y y1])</pre>
```


Atividade 2: Comandos para plotar dados e respostas de sistemas

Importante: Ao usar comandos para gerar figuras no relatório, comece com o comando figure, que abre uma nova figura, garantindo assim que nada será plotado sobre figuras já existentes.

Sejam as variáveis x,y1,y2,y3.

```
x=linspace(0,6*pi,200); y1=sin(x); y2=sin(5*x); y3=y1+y2;
```

2.1 Dê os comandos para plotar y1,y2,y1+y2 exatamente como na figura mostrada. Ou seja, gere uma figura igual!


```
figure
hold on
title('Grafico de soma de senoides');
plot(y1)
plot(y2)
plot(y3)
legend('y1','y2','y2+y3');
ylabel('f(x)');
xlabel('Angulo');
```


2.2 Dê os comandos para produzir uma figura como a mostrada abaixo (Dica: subplot)


```
figure

subplot(3,1,1)
plot(y1,'b','LineWidth',1);
title('Sinal y1');

subplot(3,1,2)
plot(y2,'r','LineWidth',1);
title('Sinal y2');

subplot(3,1,3)
plot(y3,'g','LineWidth',1);
title('Sinal y3');
xlabel('Tempo');
```


2.3 Dê os comandos para gerar o gráfico de dispersão de y1 versus y2 conforme a figura mostrada (dica: scatter)

figure
scatter(y1,y2)

2.4 Crie uma nova figura e plote y1 e plote em todos os picos deste sinal o caractere 'X', em vermelho. As coordenadas dos picos devem ser obtidas na janela Command Window do Matlab antes de executar este código. Dica: ver ginput.

figure

2.5 Plote a figura abaixo (beijaflor.png) (Dica: imshow)

figure
imshow('beijaflor.png')

2.6 Execute os comandos abaixo e descreva o que cada um deles faz

```
figure;
C=diag([1:10],0);
imagesc(C);
colorbar;
```


Resposta:

C=diag([1:10],0)

Retorna uma matriz diagonal quadrada com os elementos do vetor v na diagonal principal, nesse exemplo é uma matriz 10x10.

imagesc(C)

Exibe os dados de uma matriz (no caso do exemplo 10x10) como uma imagem que usa as cores referente ao mapa de cores do matlab.

Cada elemento de C especifica a core de um pixel da imagem.

colorbar:

O comando é referente a uma barra de cores vertical à direita dos eixos (ou do gráfico atual), essas barras exibem o mapa de cores atual e indicam o mapeamento dos valores de dados no mapa de cores

Nese exemplo:

A matriz possui diferentes elementos na sua diagonal (comando diag), cada cor se refere a um elemento (comando imagesc) e uma barra de cores (comando colobar).

2.7 Analisar o heatmap gerado pelo código abaixo, e comentar o que é mostrado.

Resposta:

O tbl é uma matriz 5x4, contendo os dados do ano de 2015 referente a temperatura em "Fahrenheit".

%tbl = readtable(fullfile(matlabroot,'examples','graphics','TemperatureData.csv'));
load dados_tbl.mat
head(tbl,5)

ans = 5×4 table

	Year	Month	Day	TemperatureF
1	2015	'January'	1	23
2	2015	'January'	2	31
3	2015	'January'	3	25
4	2015	'January'	4	39
5	2015	'January'	5	29

h = heatmap(tbl, 'Month', 'Year', 'ColorVariable', 'TemperatureF');

Resposta:

Nesse heatmap gerado, é mostrado as variações da temperatura nos anos de 2015 e 2016.

Foram obtidos amostras de cada mês e a cor varia em função da temperatura, quanto maior é o valor em "Fahrenheit" da temperatura, mais escuro será o tom do azul. Nos casos onde ocorre a cor preta, significa que não foi coletado dado. (NaN)

2.8 Criar um vetor w com 1000 valores aleatórios vindos de uma distribuição normal e plotar seu histograma com o comando histogram. Observe o histograma e obtenha aproximadamente sua média

mean(w)

ans = 0.0151

Resposta:

A média é obtida pelo comando "mean(w)".

2.9 Criar um vetor y com 10 valores aleatórios vindos de uma distribuição normal (randn) e plotar seus valores com o comando bar e depois com o comando stem

y=randn(10,1)

 $y = 10 \times 1$

-0.7257

1.3399

-1.2787

1.6141

-0.5698

-0.0020 0.9575

0.7378

-0.3414

0.8886

0.000

bar(y)

stem(y)

2.10 Dê os comandos abaixo e verifique se o gráfico de barras gerado permite diferenciar as espécies de flor setosa a versicolor. Ver Fisheriris

```
load fisheriris
bar(meas(46:55,:));
xlabel('Conjuntos');
ylabel('Características');
```


Resposta:

O gráfico de barras não permite diferenciar as espécies de flor setosa a versicolor.

Para diferenciar as espécies deve ser analisado essas informações em gráficos de dispersão, nos quais os será possivel observar agrupamentos relevantes que permitem essa diferenciação.

Atividade 3: Comandos para definir e manipular modelos

3.1 Defina a função de transferência $G = \frac{10}{s^2 + (I/12) * s + 10}$ e obtenha sua sobreelevação e tempo de estabelecimento (Dica: stepinfo).

```
num =[10];
dem= [1 (I/12) 10];
G=tf(num,dem)
```

10 -----s^2 + 0.08333 s + 10

Continuous-time transfer function.

S=stepinfo(G)

S = struct with fields:
 RiseTime: 0.3329
 SettlingTime: 93.4339
 SettlingMin: 0.0795
 SettlingMax: 1.9594
 Overshoot: 95.9447
 Undershoot: 0
 Peak: 1.9594
 PeakTime: 0.9935

3.2 Obtenha os polos e zeros de G.

pole(G)

ans = 2×1 complex -0.0417 + 3.1620i -0.0417 - 3.1620i

zero(G)

ans =

0×1 empty double column vector

3.3 Mostre a resposta de G a um degrau de amplitude I.

step(G)*I

ans = 1300×1 0 0.0488 0.1899 0.4089

```
0.6836
0.9870
1.2891
1.5605
1.7750
1.9123
```

3.4 Obtenha a função de transferência de malha fechada de G

3.5 Crie uma tabela onde cada linha corresponde a um ganho K e nas colunas sejam mostrada a sobreelevação, o tempo de subida e tempo de estabelecimento (ver itens 2.8 e 2.9 de Matlab) para o sistema de malha fechada com estes ganhos, $M(s) = \frac{KG(s)}{1 + KG(s)}$, para G(s) do item 3.1. Dica: table e stepinfo.

```
Swf1 = stepinfo(G* 1);
up1=Swf1.Overshoot;
ts1=Swf1.SettlingTime;
tr1=Swf1.RiseTime;
Swf2 = stepinfo(G* 10);
up2=Swf2.Overshoot;
ts2=Swf2.SettlingTime;
tr2=Swf2.RiseTime;
Swf3 = stepinfo(G* 100);
up3=Swf3.Overshoot;
ts3=Swf3.SettlingTime;
tr3=Swf3.RiseTime;
Swf4 = stepinfo(G* 1000);
up4=Swf4.Overshoot;
ts4=Swf4.SettlingTime;
tr4=Swf4.RiseTime;
Overshoot= [up1;up2;up3;up4];
SettlingTime = [ts1; ts2; ts3; ts4];
```

```
RiseTime = [tr1; tr2; tr3; tr4];
K=[1; 10; 100; 1000];
table(K, Overshoot, SettlingTime, RiseTime)
```

ans = 4×4 table

	K	Overshoot	SettlingTime	RiseTime
1	1	95.9447	93.4339	0.3329
2	10	95.9447	93.4339	0.3329
3	100	95.9447	93.4339	0.3329
4	1000	95.9447	93.4339	0.3329

Troque a figura ao lado por outra de sua preferência.

