Interpolacja wielomianowa - projekt

Natalia Wojtania i Grzegorz Chojnacki 17 listopada 2020

1 Zadanie

1.1 Tytuł

Tytuł zadania to "Dwutlenek węgla".

1.2 Treść

Program, który oszacuje tempo przyrostu dwutlenku węgla w atmosferze Ziemi. Węzły mają przedstawiać ilość wyemitowanego do atmosfery CO_2 w ciągu roku lub w innym przedziale czasowym.

1.3 Metoda

W programie należy wykorzystać metodę Newtona.

1.3.1 Opis metody

Mając zadany układ punktów $\{(x_j,y_j),j=0,1,2,3...,n\}$, gdzie $x_0,x_1,x_2,...,x_n$ są węzłami interpolacyjnymi, a $y_0,y_1,...,y_n$ wartościami, poszukujemy wielomianu interpolacyjnego $P\in \sqcap_n$ spełniającego warunki $P(x_i)=y_i,i=0,1,2,...,n$ w postaci :

$$P(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0) \cdot \dots \cdot (x - x_{n-1}).$$

Z wyżej wymienionych warunków otrzymamy układ z niewiadomymi $b_0, b_1, ..., b_n$. Z pierwszego równania $P(x_0) = y_0 = b_0$, następnie $P(x_1) = y_1 = b_0 + b_1(x - x_0)$, stąd $b_1 = \frac{y_1 - y_0}{x_1 - x_0}$ itd.

1.3.2 Przykład

$$\begin{array}{c|c|c|c} x_i & 0 & 2 & 3 \\ \hline y_i & 1 & 11 & 19 \end{array}$$
 $P(x) = b_0 + b_1(x-0) + b_2(x-0)(x-2)$

Z warunku P(0) = 1 mamy $b_0 = 1$, z P(2) = 11 mamy $b_1 = 5$, z P(3) = 19 mamy $b_2 = 1$.

Stad
$$P(x) = 1 + 5(x - 0) + 1(x - 0)(x - 2) = x^2 + 3x + 1.$$

2 Opis implementacji algorytmu

Implementacja realizująca metodę Newtona.

2.1 Dane wejściowe

Na wejściu program pobiera od użytkownika wartości punktów $P_j(x,y), j=0,1,2,...,n$, gdzie 'Rok pomiarów' to x, a 'Przyrost CO_2 [t]' to y. Realizacja wprowadzenia danych możliwa jest na dwa sposoby. Poprzez bezpośrednie wpisanie wartości lub zaimportowanie danych z pliku JSON.

2.2 Struktury danych

Każdy wielomian to lista współczynników, gdzie poszczególny indeks odpowiada potędze x przy danym współczynniku. Zerowy element obrazuje $x^0(x$ do potęgi zerowej), pierwszy element odpowiada x^1 itd.

PRZYKŁAD :
$$[2,-1,2,-2]$$
 oznacza $-2x^3 + 2x^2 - x + 2$.

Program korzysta ze struktury klasy Polynomial, która wspiera operacje:

 Dodawanie: Przewidziane dla wyrazów wolnych jak i wielomianów. Odpowiednie elementy list obu wielomianów są dodawane.

PRZYKŁAD:
$$[0, 0, 3] + [1, 2, 0, 4] = [1, 2, 3, 4]$$

oznacza $3x^2 + 4x^3 + 2x + 1 = 4x^3 + 3x^2 + 2x + 1$

• Mnożenie: Podczas mnożenia razy x^n (x do potęgi n-tej) każdy wykładnik jest podnoszony o potęgę n, a lista przesuwa się o n miejsc. W przypadku mnożenia wielomianu razy wielomian, drugi wielomian mnożymy przez każdy składnik pierwszego i sumujemy.

PRZYKŁAD :
$$[3, 3] \cdot [-3, 3] = [-9,0,9]$$

oznacza $(3x + 3)(3x - 3) = 9x^2 - 9$

• Wyliczanie wartości w punkcie: Za pomocą metody Hornera.

2.3 Funkcje pomocnicze

W programie wykorzystywane są takie funkcje jak:

- 1. map: transformacja każdego elementu danej listy
- 2. reduce: sprowadzenie listy do pojedynczej wartośći, przy pomocy funkcji działającej na kolejnych elementach danej listy
- 3. filter: filtrowanie danych w liście, spełniających określony warunek

2.4 Przebieg działania

Program wyświetla komunikat: 'Wprowadź listę punktów poniżej'. Jeśli zostały wprowadzone prawidłowe dane, to na bieżąco wyświetlany jest odpowiedni wielomian. Próba ręcznego wprowadzenia nieprawidłowych danych, które weryfikowane są w programie poprzez funkcję getPoints() skutkuje brakiem wyświetlenia wielomianu. Podobnie dzieje się w sytuacji pozostawienia pustego pola. NADPISYWANIE X??????

Dane dostarczone z pliku JSON program sprawdza poprzez funkcję parsePoints() oraz wyświetla komunikat "Błąd wczytywania pliku" w przypadku niepowodzenia.

Następnie funkcja recalculate() zajmuje się przekazaniem punktów, w celu dalszego rachunku, a także wyświetleniem wyniku.

Funkcja getPolynomial() klasy NewtonEvaluator zwraca wielomian, licząc wcześniej niewiadome b0, b1...; mając tylko jeden punkt zwracana jest od razu wartość y. W przeciwnym wypadku zwracany jest wyliczany wielomian. Tworzona jest tablica z niewiadomymi b0,b1,...,bn Później liczona jest grupa

W najbardziej kluczowych przypadkach wykorzystywane jest programowanie dynamiczne.

Wynikiem działania programu jest wielomian interpolacyjny obrazujący oszacowanie tempa przyrostu dwutlenku węgla.