```
# Importing Libraries Used.
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import PowerTransformer
from sklearn.cluster import KMeans
import seaborn as sns
from sklearn.manifold import TSNE

# Importing the data PCA
dataset = pd.read_csv('https://www.ee.iitb.ac.in/~asethi/Dump/DataClustering.csv')
```

display(dataset)

	x1	x2	х3	x4	
0	0.832354	1.389428	0.962226	0.993671	
1	1.256087	1.500487	0.904118	0.738035	
2	0.976953	1.058524	1.217530	1.357238	
3	1.014365	1.122684	1.195847	0.984144	
4	1.041386	1.219014	0.864819	1.720825	
346	0.203877	0.195724	2.766999	1.826532	
347	0.229380	0.131514	0.704255	2.762919	
348	0.095878	0.107426	0.946789	3.434620	
349	0.111690	0.130970	1.098922	2.295701	
350	0.113965	0.283822	1.318260	1.494283	

351 rows × 4 columns

```
# Checking Correlation between features.
corr = dataset.corr()
sns.set(rc = {'figure.figsize':(10,10)})
sns.heatmap(corr)
```


Log Transformation

transformer = FunctionTransformer(np.log1p)
log_data =transformer.transform(dataset)
print(log_data)

0 1	x1 0.605602 0.813632	x2 0.871054 0.916485	x3 0.674080 0.644019	x4 0.689978 0.552755
2	0.681557	0.721989	0.796394	0.857491
3	0.700304	0.752681	0.786568	0.685188
4	0.713629	0.797063	0.623164	1.000935
346 347 348 349	0.185547 0.206510 0.091556 0.105881	0.178752 0.123557 0.102039 0.123075	1.326279 0.533128 0.666181 0.741424	1.039051 1.325195 1.489442 1.192619
350	0.107925	0.249842	0.840817	0.914001

Power Transformation

[351 rows x 4 columns]

```
pt = PowerTransformer() # yeo-johnson method (default)
power_data = pt.fit_transform(dataset)
print(power_data)
print(pt.lambdas_)

[[ 1.89289283    1.52485355 -0.34007498 -0.41407712]
       [ 1.98737654    1.56223077 -0.47399533 -1.03977999]
       [ 1.94153709    1.36253967    0.13915026    0.21840941]
       ...
       [-0.94716647 -0.87513322 -0.37459819    1.70555679]
       [-0.70003814 -0.71928565 -0.0638882    1.14947884]
       [-0.66648912    0.04746441    0.28985554    0.40376835]]
       [-6.06020316 -2.81395054 -1.7083417    -1.24217325]
```

Elbow Method for Finding optimal K value

For power transformed data--

```
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 10):
    kmeans = KMeans(n_clusters = i, init = 'k-means++')
    kmeans.fit(power_data)
    wcss.append(kmeans.inertia_)
plt.plot(range(1, 10), wcss)
plt.title('Elbow Method')
plt.xlabel('No. of clusters')
plt.ylabel('wcss')
plt.show()
```

Elbow Method

For log Transformed data---

```
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++')
    kmeans.fit(log_data)
    wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('No. of clusters')
plt.ylabel('wcss')
plt.show()
```


140

Observations

We can see optimal value of K comes out be K=4 when we apply Log transformation.

Training Kmeans

```
k_means = KMeans(n_clusters = 4, init = 'k-means++')
y_k_means = k_means.fit_predict(log_data)
```

Visulazise clusters

```
tsne = TSNE(n_components=2, verbose=1, random_state=123)
tsne_data = tsne.fit_transform(log_data)
sns.scatterplot(x= tsne_data[:,0], y= tsne_data[:, 1])
```

/usr/local/lib/python3.7/dist-packages/sklearn/manifold/_t_sne.py:783: FutureWarning
FutureWarning,

/usr/local/lib/python3.7/dist-packages/sklearn/manifold/_t_sne.py:793: FutureWarning
FutureWarning,

[t-SNE] Computing 91 nearest neighbors...

[t-SNE] Indexed 351 samples in 0.001s...

[t-SNE] Computed neighbors for 351 samples in 0.012s...

[t-SNE] Computed conditional probabilities for sample 351 / 351

[t-SNE] Mean sigma: 0.170476

[t-SNE] KL divergence after 250 iterations with early exaggeration: 56.775246

[t-SNE] KL divergence after 1000 iterations: 0.316018

<matplotlib.axes._subplots.AxesSubplot at 0x7f82f2a34f10>

X

EE769 Assignment 3 Part 3, (PCA)

```
# Importing Libraries Used.
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.metrics import mean_squared_error

# Importing the data PCA
dataset = pd.read_csv('https://www.ee.iitb.ac.in/~asethi/Dump/DataPCA.csv')
display(dataset)
```

	x1	x2	х3	х4	x 5	х6	x7
0	0.840261	-1.088160	4.861744	4.273055	4.312457	-0.137834	0.076453
1	1.320591	-1.174113	5.247360	3.295027	4.283410	-0.363759	-0.170605
2	1.537909	-1.175882	5.556251	3.394183	3.971574	-0.888398	0.080617
3	0.363552	-1.130608	4.329890	5.547488	4.539732	0.342330	0.251953
4	1.567938	-1.114719	5.542104	2.493071	4.156157	-0.609694	-0.291367
185	0.894296	-1.270097	4.618647	4.005702	4.634847	0.156118	-0.215169
186	0.926559	-1.203508	4.766199	3.907673	4.538084	0.073321	-0.197924
187	1.678706	-1.227245	5.613809	2.864530	4.046335	-0.906304	-0.099063
188	1.693254	-1.323340	5.470576	3.023584	4.208331	-0.693895	-0.189082
189	1.806170	-1.347104	5.541666	2.818543	4.240505	-0.690840	-0.222595

190 rows × 7 columns

Visuilizing Data

```
# Checking Correlation between features.
corr = dataset.corr()
sns.set(rc = {'figure.figsize':(10,10)})
sns.heatmap(corr)
```


Feature Scaling applied to given data before implementing PCA.
from sklearn.preprocessing import StandardScaler
sc= StandardScaler()
features = sc.fit_transform(dataset)

```
print(features)
print(features.size)
```

Implementing PCA

from sklearn.decomposition import PCA

```
pca = PCA(n components = None)
features_new = pca.fit_transform(features)
print(features_new)
print(features_new.shape)
     [[-1.59702425e+00 8.26765877e-01 -1.68860477e-01 ... -3.81497945e-04
       -1.25234401e-02 9.67038931e-04]
      [-4.47094849e-02 -3.26854584e-01 5.90225928e-02 ... 9.35536010e-03
        1.51737615e-02 -1.46186620e-02]
      [ 1.05989206e+00 7.42774576e-01 -1.10013535e+00 ... 4.22191049e-02
        4.61237385e-04 -6.96580057e-03]
      [ 1.49069416e+00 -1.00477599e-01 -7.51700799e-01 ... 1.70219952e-02
        1.24586688e-02 2.34403848e-04]
      [ 9.32145740e-01 -8.09761124e-01 -6.65205848e-01 ... 5.32175046e-02
       -5.65380029e-03 8.28166020e-04]
      [ 1.15386944e+00 -1.08824752e+00 -6.24044099e-01 ... -6.16341540e-02
       -4.32827044e-03 -7.63587531e-03]]
     (190, 7)
variance ratio = pca.explained variance ratio
print(variance_ratio)
     [6.09270567e-01 3.19460967e-01 6.49562011e-02 6.07238580e-03
      2.16027661e-04 1.98460843e-05 4.00494511e-06]
```

Observations

```
PC1= 60.92%, PC2 = 31.946%, PC3 = 6.495%, PC4 = 0.6072%, PC5 = 0.02160%, PC6 = 1.984e-03%, PC7 = 4.004e-04%

# Variance Explained explained_variance = pca.explained_variance_print(explained_variance)

[4.28745955e+00 2.24805866e+00 4.57099193e-01 4.27316037e-02 1.52019465e-03 1.39657631e-04 2.81829470e-05]
```

Plotting Variance explained vs PCA dimensions.

```
# Plotting Variance explained vs PCA dimensions.
PCA_axis =['PC1' , 'PC2' , 'PC3' , 'PC4', 'PC5' , 'PC6' , 'PC7']
plt.scatter(PCA_axis , explained_variance)
plt.xlabel("PCA's")
plt.ylabel("Variance")
plt.show
```

<function matplotlib.pyplot.show>

Observations

1. We can see that PC1, PC2, PC3 consists of 99.361%. So we will use just PC1, PC2 and PC3 for reconstruction.

Reconstructing the data with 3 PCA dimensions

Using only 3 PCA dimensions

```
pca = PCA(n_components = 3)
features_new_dim_red = pca.fit_transform(features)
print(features_new_dim_red)

[[-1.59702425e+00  8.26765877e-01 -1.68860477e-01]
       [-4.47094849e-02 -3.26854584e-01  5.90225928e-02]
       [ 1.05989206e+00  7.42774576e-01 -1.10013535e+00]
```

```
[-3.88950822e+00 1.21477957e+00 -4.30487010e-01]
[ 1.26840455e+00 -5.23475258e-01 4.06015894e-01]
[ 3.77951767e+00 -1.90569443e-01 4.54098211e-01]
[-3.00701913e+00 -1.33502875e+00 -8.94411173e-01]
[-2.62335510e+00 -1.87596181e+00 1.01301160e+00]
[ 2.82029180e-01 2.88133953e-01 -1.06697563e-01]
[-3.33413162e-01 3.38759789e-02 -4.29663720e-01]
[ 4.83092767e+00 -6.12540389e-01 -5.48718159e-01]
 3.84008060e+00 5.54928931e-01 5.46026892e-01]
[-2.53557460e+00 5.59603395e-01 6.54030041e-01]
[ 3.48050273e+00 -7.93793650e-01 6.10516003e-01]
[-2.20708361e+00 -2.46790988e-01 -1.30506506e+00]
[-2.70175173e+00 1.90107275e-01 -4.14335816e-01]
[ 4.15230351e-02 1.06500780e+00 -6.26336039e-01]
[ 1.45834397e+00 -2.21829034e+00 -6.82418245e-02]
[-4.83915879e-01 1.07920891e+00 9.77570078e-01]
[-5.52503929e-01 -1.54533457e+00 3.41383106e-01]
[-3.28637532e-01 -1.39366315e+00 1.09743949e-01]
[ 2.38109312e+00 2.06548265e-01 -1.04785253e+00]
[ 3.74543219e-01 1.45074615e-01 -1.21231325e+00]
[-1.74522526e+00 -4.08957271e-02 9.96817256e-01]
[-3.92685339e+00 -1.74380018e+00 1.41733331e+00]
[-3.26075740e+00 -5.02107042e-01 2.17478661e-01]
[ 8.83896926e-02 -2.51641426e-01 -5.20828844e-01]
[ 5.93690909e+00 1.32610199e+00 -8.63972982e-01]
[-2.98656926e+00 3.15860077e+00 2.88172474e-01]
[ 1.65798237e+00 3.94840887e-01 -1.16373751e-01]
 8.99905812e-02 2.05347761e-01 -1.48081174e-01]
[ 1.17320524e+00 -2.07006948e-01 -4.92490358e-01]
[-6.36551376e-01 1.79942980e+00 -4.37044738e-01]
[ 8.22130885e-02 5.20647789e-01 -3.66578561e-01]
[-2.09233969e+00 -1.06004323e+00 -2.09818004e-01]
[ 4.79486393e-01 -7.71327072e-01 2.26165789e-01]
 3.67531864e-01 -8.25482855e-01 -1.04829219e+00]
[ 1.73442765e+00 -8.21205868e-01 -7.65461012e-01]
[ 2.99493094e+00 1.25918585e-01 6.45633466e-02]
[ 2.16781914e+00 -9.21758451e-01 5.14049707e-01]
[-4.69447557e-02 3.22546162e+00 1.17281739e+00]
[ 9.83230627e-01 3.31319458e+00 9.00355670e-01]
[-1.47218621e+00 -1.09558961e+00 -8.35252843e-01]
[ 1.57366263e+00 8.16089713e-02 3.83217107e-01]
[ 2.39544781e+00 6.75791173e-01 5.93868604e-01]
[-1.20588191e+00 -3.15791221e-01 6.37876790e-02]
[-9.30731801e-02 -4.42671964e-01 -9.81564039e-01]
[-1.01969437e+00 -7.17408344e-01 -5.88358042e-02]
[-3.77115238e+00 7.86163172e-01 -3.39465081e-01]
[-6.94551949e-01 4.68951868e-01 -1.10941295e-01]
[ 2.10917283e+00 9.79980376e-01 -3.32946511e-02]
[ 1.41014686e+00 1.99097934e+00 -2.60972881e-01]
[-2.14215569e+00 1.75873234e+00 -2.82243436e-01]
[ 1.88302180e+00 -6.95305795e-01 -6.31996135e-03]
[ 1.46822079e+00 1.05898358e+00 -1.39354635e+00]
[-7.92818715e-01 2.79644855e-01 -2.19742148e-01]
[-3.81218991e-01 -2.26552253e+00 4.03825369e-01]
[-3.07572353e-01 4.40281870e+00 -1.20597780e-01]
```

transformed_original_data = pca.inverse_transform(features_new_dim_red)
transformed original data std = sc.inverse transform(transformed original data)

```
print(transformed_original_data_std)
```

Calculating Mean Square Error

```
mse = (np.sum((transformed_original_data-features)**2)) / transformed_original_data_std.si
#mse1 = mean_squared_error(features, transformed_original_data ,squared=True)
print(mse)
#print(mse1)

0.006312264485441588
```

MSE values for various number of PCA's Dimensions used.

```
for i in range(1,8):
  pca = PCA(n\_components = i)
  features_new_dim_red = pca.fit_transform(features)
  #print(features_new_dim_red)
  transformed_original_data = pca.inverse_transform(features_new_dim_red )
  transformed_original_data_std = sc.inverse_transform(transformed_original_data)
  #print(transformed original data std)
  mse = (np.sum((transformed_original_data-features)**2)) / transformed_original_data.size
  print(mse)
     0.39072943283022843
     0.07126846555354302
     0.006312264485441588
     0.00023987869019137428
     2.3851029452934055e-05
     4.004945107075588e-06
     9.911601657016492e-31
```

Observations

- 1. The mean square error between the original data and the data obtained by inverse transformation of 1 PCA componets is 0.390.
- 2. The mean square error between the original data and the data obtained by inverse transformation of 2 PCA componets is 0.071.
- 3. The mean square error between the original data and the data obtained by inverse transformation of 3 PCA componets is 0.00631.
- 4. The mean square error between the original data and the data obtained by inverse transformation of 4 PCA componets is 0.0002398.
- 5. The mean square error between the original data and the data obtained by inverse transformation of 5 PCA componets is 2.3851e-05.
- 6. The mean square error between the original data and the data obtained by inverse transformation of 6 PCA componets is 4.0049e-06.
- 7. The mean square error between the original data and the data obtained by inverse transformation of 7 PCA componets is 9.91160e-31.

X

sns.heatmap(corr)

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns

# Importing the data PCA
dataset = pd.read_csv('https://www.ee.iitb.ac.in/~asethi/Dump/DataKPCA.csv')

# Checking Correlation between features.
corr = dataset.corr()
sns.set(rc = {'figure.figsize':(10,10)})
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0d911c710>

Feature Scaling applied to given data before implementing PCA.
from sklearn.preprocessing import StandardScaler
sc= StandardScaler()
features = sc.fit_transform(dataset)

```
print(features)
features.shape
     [[-0.89353091  0.21422802  0.66042339  ... -0.1801732  0.26302041
        0.75031082]
      [-0.04301419 -0.15508087 -0.10846747 ... -0.08927182 -0.26849909
       -0.33491828]
      [ 0.40630971 -0.16271138 -0.63691522 ... 0.82338803 -0.88452044
        0.77101109]
      [ 0.71887615 -0.38479911 -0.72678584 ... 0.61512483 -0.8902921
       -0.04960267]
      [ 0.75213495 -0.80302959 -0.49813955 ... 0.14103532 -0.75695819
       -0.40477201]
      [ 1.01639752 -0.90700998 -0.61371353 ... 0.04316081 -0.75400694
       -0.52745531]]
     (190, 7)
# Implementing KPCA
from sklearn.decomposition import KernelPCA
kpca = KernelPCA(kernel='rbf', n_components= None)
features1 = kpca.fit_transform(features)
print(features1)
print(features1.shape)
     [[-5.11020702e-01 2.23517756e-01 -1.97079133e-01 ... -2.55600247e-05
        2.11452755e-05 4.69027574e-07]
      [ 5.38125267e-03 -2.35126045e-01 -4.85854890e-01 ... -1.06651680e-04
        2.06436705e-05 -4.08931280e-05]
      [ 2.55309779e-01 1.97993115e-01 -3.38920048e-01 ... -1.00005527e-05
       -1.47164996e-05 -9.99370393e-06]
      [ 4.88125969e-01 -1.04044323e-01 -2.34559167e-01 ... 7.95875487e-05
        1.08474576e-05 3.85601208e-05]
      [ 3.56596771e-01 -3.57040072e-01 -2.33242369e-01 ... 7.63076705e-05
       1.74041438e-05 -1.22113066e-04]
```

Calculation of Varinace

(190, 189)

-2.71487234e-05 2.77918209e-05]]

```
eigen_values = kpca.eigenvalues_
print(eigen_values)

[2.81350179e+01 2.01993011e+01 1.89193362e+01 8.70164712e+00 8.10980162e+00 6.51442556e+00 5.53496135e+00 3.88807189e+00 3.15337111e+00 2.72547267e+00 2.61678160e+00 2.30269553e+00 2.00235830e+00 1.67500575e+00 1.47385909e+00 1.20272465e+00 1.14534882e+00 9.57227423e-01 8.41495328e-01 7.66123203e-01 7.29514608e-01 6.89916661e-01 6.24477105e-01 6.14626408e-01 5.87489028e-01 4.57013363e-01 4.15499045e-01 3.76033025e-01 3.45300338e-01 3.14633798e-01 2.74594879e-01 2.61967648e-01 2.41535510e-01 2.12102700e-01 1.96125944e-01 1.89868476e-01
```

[4.20115979e-01 -3.93452796e-01 -1.06936366e-01 ... 3.10693424e-05

```
1.75414567e-01 1.68382580e-01 1.58029646e-01 1.36311669e-01
1.27258988e-01 1.23356493e-01 1.10171137e-01 1.01088155e-01
9.41703383e-02 8.71359336e-02 8.08498068e-02 7.27737466e-02
6.92917601e-02 6.56270812e-02 5.89121825e-02 5.68698015e-02
5.40117666e-02 4.95978651e-02 4.84960599e-02 4.57033276e-02
4.28721664e-02 3.80672372e-02 3.68922891e-02 3.15981637e-02
3.11592228e-02 2.96456557e-02 2.78825746e-02 2.48852016e-02
2.32687022e-02 2.21642300e-02 2.03821843e-02 1.89597746e-02
1.73823022e-02 1.60490456e-02 1.57897224e-02 1.50966864e-02
1.32688343e-02 1.26178960e-02 1.13339090e-02 1.07541458e-02
1.02074462e-02 9.78797111e-03 8.70180548e-03 8.36568077e-03
7.65546011e-03 7.15712992e-03 6.99731811e-03 6.43102679e-03
6.02639884e-03 5.36356290e-03 4.98694571e-03 4.65718732e-03
4.54301228e-03 4.42622238e-03 4.32121005e-03 3.87947031e-03
3.59384291e-03 3.48499390e-03 3.26940253e-03 3.16787640e-03
2.87181830e-03 2.85661089e-03 2.58401084e-03 2.42790168e-03
2.26595027e-03 2.05070909e-03 1.98191066e-03 1.90835703e-03
1.86725434e-03 1.70275036e-03 1.59351746e-03 1.47268838e-03
1.41225051e-03 1.27845170e-03 1.22585032e-03 1.15882395e-03
1.11861455e-03 1.06882420e-03 9.96134673e-04 9.75017681e-04
9.30410456e-04 8.05641669e-04 7.96043095e-04 7.12284285e-04
6.68695595e-04 6.14707903e-04 5.66925966e-04 5.48005653e-04
5.21117356e-04 4.91293876e-04 4.58357631e-04 4.35927184e-04
4.05151822e-04 3.72790602e-04 3.25781471e-04 3.09523433e-04
3.02032552e-04 2.78462053e-04 2.66759763e-04 2.53306359e-04
2.31835209e-04 2.26628542e-04 2.09128933e-04 1.82349523e-04
1.79223969e-04 1.65628763e-04 1.57625237e-04 1.48303827e-04
1.31306623e-04 1.22637607e-04 1.12678212e-04 1.05336856e-04
1.00475272e-04 9.39319509e-05 8.93933919e-05 8.21826301e-05
7.74882841e-05 7.57386174e-05 6.78973414e-05 6.25569113e-05
5.71453338e-05 5.64136292e-05 5.29866018e-05 4.74850019e-05
4.23326412e-05 4.08495147e-05 3.59056492e-05 3.21320882e-05
3.02343500e-05 2.64280748e-05 2.50306333e-05 2.20133519e-05
2.06557030e-05 1.99846699e-05 1.85986845e-05 1.52526327e-05
1.25776366e-05 1.23140093e-05 1.06050255e-05 1.03940765e-05
8.21565158e-06 7.15194197e-06 6.73373928e-06 6.06323324e-06
5.20049557e-06 4.17288389e-06 3.55859357e-06 2.51356171e-06
2.49662589e-06 2.02910774e-06 1.55907365e-06 1.04347408e-06
7.64583978e-071
```

var = eigen_values/sum(eigen_values)
print(var)

```
[2.16582460e-01 1.55493568e-01 1.45640440e-01 6.69849988e-02
6.24289913e-02 5.01478379e-02 4.26079540e-02 2.99302520e-02
2.42745491e-02 2.09806007e-02 2.01439004e-02 1.77260759e-02
1.54140896e-02 1.28941402e-02 1.13457197e-02 9.25853554e-03
8.81685830e-03 7.36870582e-03 6.47780389e-03 5.89759170e-03
5.61577992e-03 5.31095621e-03 4.80720461e-03 4.73137426e-03
4.52247159e-03 3.51807413e-03 3.19849825e-03 2.89469010e-03
2.65811087e-03 2.42204083e-03 2.11382252e-03 2.01661851e-03
1.85933257e-03 1.63275974e-03 1.50977119e-03 1.46160140e-03
1.35033568e-03 1.29620367e-03 1.21650712e-03 1.04932283e-03
9.79635588e-04 9.49594305e-04 8.48093859e-04 7.78173356e-04
7.24920227e-04 6.70769606e-04 6.22379205e-04 5.60209954e-04
5.33405735e-04 5.05195154e-04 4.53504081e-04 4.37781897e-04
4.15780837e-04 3.81802766e-04 3.73321104e-04 3.51822742e-04
3.30028554e-04 2.93040364e-04 2.83995651e-04 2.43241645e-04
2.39862692e-04 2.28211301e-04 2.14639160e-04 1.91565479e-04
```

```
1.79121719e-04 1.70619528e-04 1.56901397e-04 1.45951733e-04
1.33808402e-04 1.23545035e-04 1.21548774e-04 1.16213805e-04
1.02143058e-04 9.71321567e-05 8.72480660e-05 8.27850673e-05
7.85765916e-05 7.53474859e-05 6.69862179e-05 6.43987407e-05
5.89314850e-05 5.50953553e-05 5.38651291e-05 4.95058368e-05
4.63910239e-05 4.12885342e-05 3.83893472e-05 3.58508778e-05
3.49719620e-05 3.40729171e-05 3.32645356e-05 2.98640373e-05
2.76652868e-05 2.68273706e-05 2.51677553e-05 2.43862103e-05
2.21071647e-05 2.19900985e-05 1.98916321e-05 1.86899088e-05
1.74432121e-05 1.57862924e-05 1.52566843e-05 1.46904708e-05
1.43740637e-05 1.31077173e-05 1.22668460e-05 1.13367076e-05
1.08714589e-05 9.84147999e-06 9.43655624e-06 8.92058938e-06
8.61105875e-06 8.22777421e-06 7.66821258e-06 7.50565466e-06
7.16226968e-06 6.20180358e-06 6.12791407e-06 5.48314145e-06
5.14759712e-06 4.73200161e-06 4.36417780e-06 4.21852984e-06
4.01154460e-06 3.78196441e-06 3.52842226e-06 3.35575340e-06
3.11884565e-06 2.86973003e-06 2.50785526e-06 2.38270140e-06
2.32503684e-06 2.14359190e-06 2.05350805e-06 1.94994418e-06
1.78465996e-06 1.74457920e-06 1.60986778e-06 1.40372075e-06
1.37966033e-06 1.27500488e-06 1.21339399e-06 1.14163807e-06
1.01079415e-06 9.44060339e-07 8.67393244e-07 8.10879717e-07
7.73455404e-07 7.23085128e-07 6.88147448e-07 6.32639235e-07
5.96502311e-07 5.83033433e-07 5.22671544e-07 4.81561085e-07
4.39902937e-07 4.34270298e-07 4.07889152e-07 3.65538013e-07
3.25875306e-07 3.14458246e-07 2.76400529e-07 2.47351778e-07
2.32743051e-07 2.03442467e-07 1.92685008e-07 1.69458073e-07
1.59006935e-07 1.53841344e-07 1.43172073e-07 1.17414275e-07
9.68222407e-08 9.47928466e-08 8.16371446e-08 8.00132657e-08
6.32438208e-08 5.50554186e-08 5.18361078e-08 4.66745739e-08
4.00332471e-08 3.21227256e-08 2.73939385e-08 1.93493170e-08
1.92189456e-08 1.56200060e-08 1.20016986e-08 8.03262981e-09
5.88574280e-09]
```

Now we have to plot for up to 10 dimensions.

Observations

The explained variances are calculated above, they are coming out to be 21.65%, 15.54%, 14.56%, 6.66%, 6.24%, 5.01%, 4.26%, 2.99%, 2.427%, 2.098% respectively.

```
PCA_axis =['KPC1' , 'KPC2' , 'KPC3' , 'KPC4', 'KPC5' , 'KPC6' , 'KPC7' , 'KPC8', 'KPC9', 'KPC
plt.scatter(PCA_axis , var_10)
plt.xlabel("KPCA's")
plt.ylabel("Variance")
plt.show
```


Plot is shown in between variance explained versus KPCA dimensions for up to 10 dimensions.

×

213070024 <u>Home Logout IITB Website</u>

Roll no 213070024 Name Abhishek Verma

Performance Summary

Graduation Requirements

Personal Information

Forms/Requests

Payment

Academic Performance Summary

Yea	ar Sem	SPI	СРІ	Sem Credits Used for SPI	Completed Semester Credits	Cumulative Credits Used for CPI	Completed Cumulative Credits
202	L Spring	8.36	8.19	28.0	28.0	52.0	52.0
202	l Autumn	8.0	8.0	24.0	24.0	24.0	24.0

Semester-wise Details

*This registration is subject to approval(s) from faculty advisor/Course Instructor/Academic office.

Year/Semester: 2022-23/Autumn

Course Code	Course Name	Credits	Tag	Grade Credit/Audit
SC 649	Embedded Control & Robotics	6.0	Department elective	Not C allotted

Year/Semester: 2022-23/Project

Course Code		Course Name	Credit	s Tag Grade Credit/Audit
EE 797	l Stage Project		42.0	Core Not C

Year/Semester: 2021-22/Spring

Course Code	Course Name	Credits	Tag	Grade	Credit/Audit
EE 613	Nonlinear Dynamical Systems	6.0	Core course	AB	С
EE 622	Optimal Control Systems	6.0	Core course	ВВ	С
EE 636	Matrix Computations	6.0	Core course	ВВ	С
EE 694	Seminar	4.0	Core course	AB	С
EE 769	Introduction to Machine Learning	6.0	Department elective	ВВ	С

https://portal.iitb.ac.in/asc/Login

GC 101 Gender in the workplace 0.0 Core course PP N

Year/Semester: 2021-22/Autumn

Course Code	Course Name	Credits	Tag	Grade	Credit/Audit
EE 601	Statistical Signal Analysis	6.0	Core course	ВВ	С
EE 615	Control and Computational Laboratory	6.0	Core course	АВ	С
EE 635	Applied Linear Algebra	6.0	Core course	ВС	С
EE 640	Multivariable Control Systems	6.0	Core course	ВВ	С
EE 899	Communication Skills	6.0	Core course	PP	N