FAULT DIAGNOSIS IN ORBITAL REFUELING OPERATIONS¹

Guy A. Boy²
ONERA-CERT-DERA³
2, avenue Edouard Belin
31055 Toulouse Cedex
France

Abstract

Usually, operation manuals are provided for helping astronauts during space operations. These manuals include normal and malfunction procedures. Transferring operation manual knowledge into a computerized form is not a trivial task. This knowledge is generally written by designers or operation engineers, and is often quite different from the user logic. The latter is usually a "compiled" version of the former. Experiments are in progress to assess the user logic. HORSES (Human - Orbital Refueling System - Expert System) is an attempt to include both of these logics in the same tool. It is designed to assist astronauts during monitoring and diagnosis tasks. Basically, HORSES includes a situation recognition level coupled to an analytical diagnoser, and a meta-level working on both of the previous levels. HORSES is a good tool for modeling task models and is also more broadly useful for knowledge design.

Keywords: On-Line Expert System, Man-Machine Interactions, Process Control, Diagnosis System, Knowledge Design, Task Models, Situation Recognition.

¹ This paper will be presented at the Space Station Human Factors Research Review, NASA Ames Research Center, December 3 to December 6, 1985.

² This work was completed when the author was a Research Associate at NASA-Ames Research Center, Aero-Space Human Factors Research Division, Mail Stop 239-3, Moffett Field, CA 94035, U.S.A..

³ ONERA: Office National d'Etudes et de Recherches Aerospatiales ; CERT: Centre d'Etudes et de Recherches de Toulouse ; DERA: Departement d'Etudes et de Recherches en Automatique.

Fault Diagnosis In Orbital Refueling Operations

Guy A. Boy

Space Station Human Factors Research Review NASA Ames Research Center December 6, 1986

1. Problem Definition

Human-Machine Interactions in Normal and Abnormal Situations

- ☐ Understanding the HMI Logic
 - △ Human Operator Model
 - △ System Logic vs. User Logic
- □ Need for, and Limitations of Al Tools in System Operations
 - Δ An Example: The ORS
- ☐ Building A User's Guide Expert System
 - △ Operation Manual
 - Δ An Al Tool, why? (modularity,

flexibility, ...)

- △ Human vs. Automatic Diagnosis
- △ Human-Expert-System Interactions

LANDSAT-D REFUELING

Landsat-D will utilize the ORS equipment and procedures for propellant replenishment.

ORS PROTOTYPE FLOW SCHEMATIC

SITUATIONAL AND ANALYTICAL PROCESSES

EXPERT

2. Building a User's Guide Expert System

☐ Goals

- △ Optimal Level of Automation
- Δ Explanation
- △ Easy-to-Use Interface

☐ Methods

- △ Modelling Approach
- △ Human Factors Studies
- △ Triangular Interactions

□ Tasks

- △ Buiding an Expert System
- △ Experiments
- △ Theoretical Studies

□ Product.

- △ Tool to Design Procedures
- △ Diagnosis Aid

Human - ORS - Expert System

```
☐ Processor
  △ Situation Recognition (Monitoring)
  △ Diagnosis Inference Engine (2 levels)
☐ Knowledge Base
  △ Context Rules
  △ Regular Rules
  Δ Meta Rules
  △ Predicates
  △ Tolerance Functions
  △ Objects
□ Interfaces
  Δ User Interface (Question-Answer, Menus)
  Δ ORS Interface (Fact Filter, Fuzzy Models)
```

HORSES BACKGROUND

MESSAGE

(ONERA / Airbus Industrie) (Certification, Workload & Performance Analyses)

SEAGOS

(ONERA / Matra) (Satellite Malfunction Procedures)

HORSES
(NASA / ONERA)
(ORS Malfunction Procedures)

HORSES Current Version

- ☐ Working in Lisp on MASSCOMP
- ☐ Connected to an ORS Fortran Simulation
- ☐ Graphic Interface (Windows, Color)

THE WINDOWS

STANDARD
SHITCH
PANEL

Further Studies

```
☐ Experiments on Man-Machine Interactions
  △ Level O (Paper Manual)
  △ Level 1 (Expert System Guides and Advises)
  Δ Level 2 ( Automatic Diagnosis, Explanation )
☐ Situation Recognition
   △ Experiments on Qualitative Models
   Δ Fuzzy Sets Approach
□ Explanation
    △ Information on Time and
     at the Appropriate Level of Detail
    △ Graphic Displays
☐ Knowledge Editor
   △ Consistency
   △ Graphic Displays
```

Operator Assistant

- COMPUTERIZED OPERATION MANUAL
 - SITUATION RECOGNITION SYSTEM
 - COOPERATIVE DIAGNOSIS ADVISOR
- DIFFERENT LEVELS OF AUTOMATION
 - DYNAMIC AND INTERACTIVE
 - EASY-TO-USE

Tool for Implementing Task Models

- KNOWLEDGE DESIGN
- KNOWLEDGE PROCESSING
 - VISUAL THINKING
 - GRAPHICAL INTERFACE