вариант	ф. номер	група	поток	курс	специалност
Вариант 1					
Име:			•	•	

Примерен изпит по СЕП февруари 2022 г.

Зад. 1. Разгледайте непрекъснатото изображение $\Gamma \in [\mathbb{N}^2_\perp \stackrel{\text{\tiny H}}{\to} \mathbb{N}_\perp]$, където

$$\Gamma(f)(x,y) = \begin{cases} f(x,y+1)+1, & \text{ако } x \neq y, x,y \in \mathbb{N} \\ 0, & \text{ако } x=y, x,y \in \mathbb{N} \\ \bot, & \text{иначе.} \end{cases}$$

- а) Намерете най-малката неподвижна точка на Г.
- б) Има ли Г други неподвижни точки?

Зад. 2. Докажете, че $[\mathbb{N}^n_{\perp} \stackrel{\text{м}}{\to} \mathbb{N}_{\perp}] = [\mathbb{N}^n_{\perp} \stackrel{\text{н}}{\to} \mathbb{N}_{\perp}].$

Зад. 3. За всеки тип **a** дефинираме релацията $\triangleleft_a \subseteq \llbracket a \rrbracket \times \mathsf{PCF}_a$ по следния начин:

• Нека a = nat. Тогава

$$n \triangleleft_{\mathtt{nat}} \tau \overset{\mathtt{peo}}{\Longleftrightarrow} (n \neq \bot^{[\![\mathtt{nat}]\!]} \Longrightarrow \tau \Downarrow_{\mathtt{nat}} n).$$

• Нека $a = b \rightarrow c$. Тогава

$$f \triangleleft_{b \to c} \tau \stackrel{\text{qe}}{\iff} (\forall e \in [b]) (\forall \mu \in PCF_b) [e \triangleleft_b \mu \implies f(e) \triangleleft_c \tau(\mu)].$$

За произволен тип а и произволен терм τ : а да разгледаме множеството $D \stackrel{\text{деф}}{=} \{d \in [\![\mathbf{a}]\!] \mid d \triangleleft_{\mathbf{a}} \tau \}$. Докажете, че за всяка верига $(d_i)_{i=0}^{\infty}$ от елементи на D, то $\bigsqcup_i d_i$ също е елемент на D.

вариант	ф. номер	група	поток	курс	специалност
Вариант 2					
Име:					

Примерен изпит по СЕП февруари 2022 г.

Зад. 1. Намерете най-малкото решение на системата

$$X_0 = a \cdot X_1 + b \cdot X_0 + \varepsilon$$
$$X_1 = a \cdot X_2 + b \cdot X_0$$
$$X_2 = a \cdot X_2 + b \cdot X_2.$$

Зад. 2. Нека \mathcal{A} е област на Скот. Докажете, че ако $f \in [\mathcal{A} \xrightarrow{\mathrm{H}} \mathcal{A}]$, то f притежава най-малка неподвижна точка.

Зад. 3. За затворени термове τ_1 и τ_2 на езика РСF, дефинираме $\tau_1 \leq_{ctx} \tau_2$: **a**, ако

- $\emptyset \vdash \tau_1 : \mathbf{a}$ и $\emptyset \vdash \tau_2 : \mathbf{a}$;
- За всички контексти $\mathcal{C}[-]$, за които $\emptyset \vdash \mathcal{C}[\tau_1]$: nat и $\emptyset \vdash \mathcal{C}[\tau_2]$: nat, то

$$(\forall \mathbf{n})[\ \mathcal{C}[\tau_1] \Downarrow_{\mathtt{nat}} \mathbf{n} \implies \mathcal{C}[\tau_2] \Downarrow_{\mathtt{nat}} \mathbf{n} \].$$

Докажете, че е изпълнена импликацията:

$$\tau_1 \leq_{ctx} \tau_2 : \mathtt{nat} \to \mathtt{nat} \implies \llbracket \tau_1 \rrbracket \sqsubseteq \llbracket \tau_2 \rrbracket.$$

вариант	ф. номер	група	поток	курс	специалност
Вариант 3					
Име:					

Примерен изпит по СЕП февруари 2022 г.

Зад. 1. Да разгледаме програмата на езика FUN:

$$\begin{array}{lll} h(x) &=& f(x,\ 1,\ 1) \\ f(x,\ y,\ z) &=& \textbf{if}\ x == 0\ \textbf{then}\ z \\ &=& \textbf{else}\ f(x-1,\ 2*y,\ g(y,z)) \\ g(y,\ z) &=& \textbf{if}\ z == 0\ \textbf{then}\ 0 \\ &=& \textbf{else}\ g(y,\ z-1) \,+\, y \end{array}$$

Намерете $[\![h]\!]$.

Зад. 2. Нека $\mathcal D$ и $\mathcal E$ са области на Скот. Дефинираме изображението eval : $[\mathcal D \overset{^{\mathrm{H}}}{\to} \mathcal E] \times \mathcal D \to \mathcal E$ по следния начин:

$$\operatorname{eval}(f,d) \stackrel{\text{ded}}{=} f(d).$$

Докажете, че eval е непрекъснато изображение.

Зад. 3. Нека $\tau[\mathbf{x}_1,\dots,\mathbf{x}_n,\mathbf{f}_1,\dots,\mathbf{f}_k]$ е произволен терм на езика FUN. Да разгледаме произволна верига $(\overline{\varphi}_r)_{r=0}^{\infty}$ от елементи на областта на Скот $[\mathbb{N}_{\perp}^{m_1} \stackrel{\mathrm{H}}{\to} \mathbb{N}_{\perp}] \times \cdots \times [\mathbb{N}_{\perp}^{m_k} \stackrel{\mathrm{H}}{\to} \mathbb{N}_{\perp}]$. Докажете, че тогава $[\![\tau]\!]$ е непрекъснато изображение, т.е.

$$\llbracket \tau \rrbracket (\bigsqcup_r \overline{\varphi}_r) = \bigsqcup_r \llbracket \tau \rrbracket (\overline{\varphi}_r).$$

вариант	ф. номер	група	поток	курс	специалност
Вариант 4					
Име:					

Примерен изпит по СЕП февруари 2022 г.

Зад. 1. Да разгледаме програмата на езика FUN:

Намерете $[\![h]\!]$.

Зад. 2. Докажете, че изображението

$$\mathtt{comp}: [\mathcal{B} \ \stackrel{^{\mathrm{H}}}{\to} \ \mathcal{C}] \times [\mathcal{A} \ \stackrel{^{\mathrm{H}}}{\to} \ \mathcal{B}] \to [\mathcal{A} \ \stackrel{^{\mathrm{H}}}{\to} \ \mathcal{C}]$$

е непрекъснато, където $comp(f, g) = f \circ g$.

Зад. 3. Докажете, че типизиращата релация е съвместима с операцията субституция за термове на езика РСF. С други думи, докажете, че ако имаме $\Gamma \vdash \rho$: **a**, $\mathbf{x} \in \text{dom}(\Gamma)$ и $\Gamma, \mathbf{x} : \mathbf{a} \vdash \tau$, то можем да заключим, че $\Gamma \vdash \tau[\mathbf{x}/\rho]$.