VORTRAGSÜBUNG TECHNISCHE STRÖMUNGSLEHRE

Tobias Rentschler

AUFGABE 1

AUFGABE 1A)

- Berechnen Sie die auf den Würfel wirkende Auftriebskraft und dessen Dichte ρ_w .
- ullet Berechnen der Auftriebskraft $F_{Auftrieb}$ auf den Würfel.
 - Die Dichte ρ_w entspricht der Dichte ρ damit der Würfel in Öl schweben kann.
- Die Auftriebskraft entspricht der Gewichtskraft des verdrängten Volumens

$$ullet$$
 $F_{Auftrieb}=rac{
ho g H^3}{8}$

AUFGABE 1B)

- ullet Berechnen Sie den Betrag der resultierenden Druckkraft F_p auf die Klappe.
- Berechnung über den Druck im Flächenschwerpunkt, multipliziert mit der Fläche der Klappe
 - Druckverlauf mit $p(y) = \rho gy$:
 - Flächenschwerpunkt bei: $y=\frac{3}{2}H$
- $ullet F_p = p_G A = rac{3}{2}
 ho g H^2 b$

AUFGABE 1C)

Berechnen Sie das von der Druckkraft ${\cal F}_p$ erzeugte Moment um den Drehpunkt M.

• Hebelarm:

$$lacksquare l_p = rac{H}{2} + rac{
ho g}{p_G A} I_{ ilde{x} ilde{x}}$$

$$lackbox{1}{\bullet} l_p = rac{H}{2} + rac{
ho g}{
ho g rac{3H}{2} H b} rac{1}{12} H^3 b$$

$$lacksquare l_p = rac{5}{9}H$$

• Resultierendes Moment:

$$lacksquare M_p = F_p l_p$$

$$ullet M_p=rac{3}{2}
ho g H^2 b rac{5}{9} H$$

$$M_p = \frac{5}{6} \rho g H^3 b$$

Nun wirke die Kraft $F_1
eq 0$. Die Positionen der Kolben und des Würfels bleiben gleich.

Wie verändern sich die auf die Ober- und Unterseite des Würfels wirkenden Druckkräfte und die Auftriebskraft?

ullet F_o und F_u erhöhen sich um den Betrag $rac{F_1}{A}$

AUFGABE 1E)

Skizzieren Sie den Druckverlauf über die linke und rechte Seite der Klappe und geben Sie die charakteristischen Werte an.

AUFGABE 1F)

Berechnen Sie die Kraft F_2 in Abhängigkeit von F_1 , damit das System im Ruhezustand ist.

$$ullet p_0 + rac{F_1}{A} = p_0 + rac{F_2}{4A}$$

•
$$F_2 = 4F_1$$

AUFGABE 1G)

Bestimmen Sie die Kraft F_1 , bei der sich die Klappe öffnet.

• Druckkraft:

$$lacksquare F_p = p_G A = \left(rac{F_1}{A} + rac{3}{2}
ho g H
ight) H b$$

• Hebelarm:

$$lacksquare l_p = rac{H}{2} + rac{
ho g}{p_G A} I_{ ilde{x} ilde{x}}$$

$$lackbox{\color{red} \bullet} l_p = rac{H}{2} + rac{
ho g}{\left(rac{F_1}{A} + rac{3}{2}
ho g H
ight) H b} rac{1}{12} H^3 b$$

• Klappe öffnet ab einem kritischen Moment M_{krit} :

$$lacksquare \left(rac{F_1}{A}+rac{3}{2}
ho g H
ight)Hb\left(rac{H}{2}+rac{
ho g}{\left(rac{F_1}{A}+rac{3}{2}
ho g H
ight)Hb}rac{1}{12}H^3b
ight)\stackrel{!}{=}M_{krit}$$

$$ullet \left(rac{F_1}{A}+rac{3}{2}
ho gH
ight)rac{H^2b}{2}+rac{
ho gH^3b}{12}=M_{krit}$$

$$lacksquare F_1 = rac{2AM_{krit}}{H^2 b} - rac{5}{3}
ho g H A$$

Bestimmen Sie die Strömungsgeschwindigkeit v sowie die Rohrreibungszahl λ unter Verwendung des beiliegenden Moody-Diagramms.

• Die Strömungsgeschwindigkeit berechnet sich über den Volumenstrom und dem Querschnitt:

•
$$v = \frac{Q}{A} = 2 \frac{\mathrm{m}}{\mathrm{s}}$$

ullet Für die Bestimmung von λ werden die Reynolds-Zahl und das Verhältnis von Wandrauhigkeit k zu Rohrdurchmesser D benötigt.

$$Re = \frac{vD}{\nu} = \frac{2\frac{m}{s} * 2m}{10^{-6} \frac{m^2}{s}} = 4 * 10^6$$

$$\frac{k}{D} = \frac{10 \text{ mm}}{2000 \text{ mm}} = 0,005$$

• =>
$$\lambda = 0.03$$

Bestimmen Sie die notwendige Förderhöhe h_P um den Volumenstrom von Speicher 1 nach Speicher 2 zu pumpen und die dafür nötige Wellenleistung P_P der Pumpe.

Energiegleichung von Speicher 1 nach Speicher 2:

$$lacksquare rac{p_0}{
ho g} + H_1 = rac{p_0}{
ho g} + H_2 + \lambda rac{L_1}{D} rac{v^2}{2g} + \lambda rac{L_2}{D} rac{v^2}{2g} + rac{v^2}{2g} - h_P$$

- Bedeutung der einzelnen Verlustterme:
 - $\circ \; \lambda rac{L_1}{D} rac{v^2}{2g}$ Reibungsverluste in Rohrabschnitt 1
 - $\circ \; \lambda rac{L_2}{D} rac{v^2}{2q}$ Reibungsverluste in Rohrabschnitt 2
 - $\circ \; rac{v^2}{2g}$ Örtliche Verluste (z.B. Einlauf, Auslauf, Carnot)
 - $\circ h_P$ Pumpenhöhe (Energiezufuhr, daher negatives Vorzeichen)

$$lacksquare rac{p_0}{
ho g} + H_1 = rac{p_0}{
ho g} + H_2 + \left(\lambda\left(rac{L_1 + L_2}{D}
ight) + 1
ight)rac{v^2}{2g} - h_P$$

- $h_P = 117, 18 \,\mathrm{m}$
- $lacksquare P_P = rac{
 ho g Q h_P}{\eta_P} = 8,5\,\mathrm{MW}$

Damit der Dampfdruck auf dem Berg nicht unterschritten wird ($p_B>p_{vap}$), muss das Druckniveau erhöht werden. Zur Energierückgewinnung wird eine Turbine unmittelbar vor dem Speicher 2 eingebaut. Der Volumenstrom kann für c), d) und e) als konstant angenommen werden.

- Ziel: Pumpe muss so dimensioniert werden, dass am höchsten Punkt (Berg) der Druck nicht unter den Dampfdruck fällt.
- Randbedingung: $p_B = p_{vap}$ (kritischer Fall)
- Energiegleichung von Speicher 1 bis zum Berg aufstellen

$$rac{p_0}{
ho g} + H_1 = rac{p_B}{
ho g} + H_B + rac{v^2}{2g} + \lambda rac{L_1}{D} rac{v^2}{2g} - h_P$$

• Kritische Bedingung: $p_B = p_{vap}$

$$rac{p_0}{2} + H_1 = rac{p_{vap}}{2} + H_B + rac{v^2}{2} + \lambda rac{L_1}{2} rac{v^2}{2} - h_B$$

Nach Pumpenhöhe auflösen

$$h_P = rac{p_0 - p_{vap}}{
ho g} + \left(H_1 - H_B
ight) - \left(1 + \lambda rac{L_1}{D}
ight)rac{v^2}{2g}.$$

- Gegebene Werte einsetzen
 - $p_0 = 1 \times 10^5 \, \text{Pa}$
 - $p_{vap} = 2300 \, \text{Pa}$
 - $\rho = 1000 \, \text{kg/m}^3$
 - $g = 9.81 \,\mathrm{m/s^2}$
 - $v=2\,\mathrm{m/s}$ (aus Teilaufgabe a)
 - $\lambda = 0.03$ (aus Teilaufgabe a)
- => $h_P = 151.4 \,\mathrm{m}$

Wellenleistung berechnen

$$P_P = rac{
ho g Q h_P}{\eta_P}$$

$$\circ~Q=2\pi\,\mathrm{m}^3/\mathrm{s}$$

$$\circ$$
 $\eta_P=0.85$

$$\circ~h_P=151,4\,\mathrm{m}$$

$$P_P = rac{1000 imes 9.81 imes 2\pi imes 151.4}{0.85} = 11 \, ext{MW}$$

- Notwendige Förderhöhe: $h_{P,neu}=151,4~\mathrm{m}$
- ullet Wellenleistung: $P_{P,neu}=11\,\mathrm{MW}$
- Interpretation: Die Pumpe muss eine höhere Förderhöhe als in Teilaufgabe b) aufbringen, um den Dampfdruck am Berg nicht zu unterschreiten.

Bestimmen Sie die Wellenleistung P_T , die mit der Turbine gewonnen werden könnte, unter der Bedingung von Aufgabenteil c).

- Ziel:Bestimmung der Turbinenleistung zwischen Berg und Speicher 2
- Ausgangssituation:
 - Turbine wird unmittelbar vor Speicher 2 eingebaut
 - ullet Bedingung aus Teil c): $p_B=p_{vap}$ am Berg
 - Energierückgewinnung durch Höhenunterschied und Druckdifferenz

• Energiegleichung aufstellen: Von Berg nach Speicher 2:

$$rac{p_B}{
ho g} + rac{v^2}{2g} + H_B = rac{p_0}{
ho g} + H_2 + \left(\lambda rac{L_2}{D} + 1
ight)rac{v^2}{2g} + h_T$$

- $\frac{p_B}{\rho g}$: Druckhöhe am Berg
- $\frac{v^2}{2q}$: Geschwindigkeitshöhe am Berg
- H_B : Höhe des Berges
- $\frac{p_0}{\rho g}$: Druckhöhe am Speicher 2
- H_2 : Höhe des Wasserspiegels in Speicher 2

- $\lambda \frac{L_2}{D} \frac{v^2}{2g}$: Reibungsverluste vom Berg bis Speicher 2
- $rac{v^2}{2g}$: Carnot-Verlust $\zeta_{Carnot}lpharac{v^2}{2g}$ mit $\zeta_{Carnot}:=1$ & lpha=1 turbulent
- h_T : Turbinenhöhe (Energieentnahme)
- ullet Randbedingung $p_B=p_{vap}$

•

$$rac{p_{vap}}{\rho a} + rac{v^2}{2a} + H_B = rac{p_0}{
ho a} + H_2 + \left(\lambda rac{L_2}{D} + 1
ight) rac{v^2}{2a} + h_T$$

Nach Turbinenhöhe auflösen

$$lacksquare h_T = rac{p_{vap}}{
ho g} + rac{v^2}{2g} + H_B - rac{p_0}{
ho g} - H_2 - \left(\lambda rac{L_2}{D} + 1
ight) rac{v^2}{2g}$$

• Umformen zu:

$$h_T = rac{p_{vap} - p_0}{
ho g} + (H_B - H_2) - \lambda rac{L_2}{D} rac{v^2}{2g}$$

ullet Werte einsetzen $p_{vap}=2300\,\mathrm{Pa}$

$$p_0=1 imes 10^5\,\mathrm{Pa}$$
 $ho=1000\,\mathrm{kg/m^3}$ $g=9.81\,\mathrm{m/s^2}$ $v=2\,\mathrm{m/s}$ (aus Teilaufgabe a) $\lambda=0.03$ (aus Teilaufgabe a)

• => $h_T = 34, 2 \,\mathrm{m}$

Wellenleistung der Turbine berechnen

$$P_T = \eta_T
ho g Q h_T$$

- Bei der Turbine wird Energie entnommen (Energiewandlung)
- Wirkungsgrad η_T berücksichtigt Verluste bei der Energieumwandlung

$$\circ$$
 $\eta_T=0,9$

$$\circ~Q=2\pi\,\mathrm{m}^3/\mathrm{s}$$

$$\circ h_T=34,2\,\mathrm{m}$$

$$P_T = 0.9 imes 1000 imes 9.81 imes 2\pi imes 34.2 = 1.9 \, ext{MW}$$

- Turbinenhöhe: $h_T=34.2~\mathrm{m}$
- Wellenleistung der Turbine: $P_T=1.9\,\mathrm{MW}$

Bestimmen Sie die sich einstellende Höhe der Fontäne.

• Anwendung der Energiegleichung:

- Von Berg (Punkt B) über Leckage zur Oberseite der Fontäne
- Berücksichtigung aller Energieterme und Verluste

• Energiegleichung aufstellen:

$$rac{p_B}{
ho g}+rac{v^2}{2g}+H_B=rac{p_0}{
ho g}+H_F+\lambdarac{L_2}{D}rac{v^2}{2g}+\Delta h$$

• Erläuterung der Terme:

- $\frac{p_B}{\rho g}$: Druckhöhe am Berg
- $\frac{v^2}{2g}$: Geschwindigkeitshöhe
- H_B : Geodätische Höhe am Berg
- $\frac{p_0}{\rho g}$: Atmosphärendruck an der Fontäne
- H_F : Fontänenhöhe (gesucht)
- $\lambda \frac{L_2}{D} \frac{v^2}{2g}$: Reibungsverluste in der Leitung
- Δh : Verlust Leckage

Bestimmen Sie die sich einstellende Höhe der Fontäne.

• Umstellung nach Fontänenhöhe:

$$H_F = rac{p_B}{
ho g} + rac{v^2}{2g} + H_B - rac{p_0}{
ho g} - \lambda rac{L_2}{D} rac{v^2}{2g} - \Delta h$$

- Ergebnis:
 - Absolute Höhe (bezogen auf NN): $H_F=264,4\,\mathrm{m}$
 - Relative Höhe (bezogen auf Leckstelle): $H_F'=14,4\,\mathrm{m}$

AUFGABE 3

AUFGBAE 3A)

- Berechnen Sie die Geschwindigkeit v_3 an der Stelle (3).
- Energiebilanz von (1) nach (3):
- $ullet p_0 + rac{
 ho}{2} v_1^2 = p_0 + rac{
 ho}{2} v_3^2$
- $v_3 = v_1$

AUFGABE 3B)

- Berechnen Sie das Geschwindigkeitsprofil $v_2(h)$ in Abhängigkeit der unbekannten Strahlhöhe h_2 und der maximalen Geschwindigkeit $v_{2,max}$.
- Lineare Gleichung: $v_2(h) = mh + c$
- Randbedingungen:
 - $v_2(0) = 0$
 - $v_2(h_2) = v_{2,max}$
- Damit ergibt sich für das lineare Geschwindigkeitsprofil:
 - $\mathbf{v}_2(h) = v_{2,max} \frac{h}{h_2}$

AUFGABE 3C)

- Konti:
 - $Q_1 = Q_2 + Q_3$
 - $lacksquare h_1^2 v_1 = rac{v_{2,max}}{2} h_1 h_2 + h_1 h_3 v_1$
- Daraus erhält man die Strahlhöhe h_2 :
 - $lackbox{ } h_2 = rac{2v_1(h_1 h_3)}{v_{2,max}}$

Im Folgenden wird die Umlenkschaufel fixiert, wodurch sich die Strahlhöhe h_2 einstellt. Die Größen h_2 , h_3 und $v_{2,max}$ gelten als gegeben, die Reibung zwischen Umlenkvorrichtung und Strahl wird vernachlässigt. Das Geschwindigkeitsprofil $v_2(h)$ bleibt dabei linear.

$$ullet \ \underline{v}_1 = v_1 \left(egin{matrix} 1 \ 0 \end{matrix}
ight)$$

$$ullet \ \underline{v}_2(h) = v_{2,max} rac{h}{h_2} igg(-\cos lpha \ \sin lpha igg)$$

•
$$\underline{v}_3 = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

AUFGABE 3E)

Berechnen Sie mit einer Impulsbilanz am eingezeichneten Kontrollvolumen den Vektor der Stützkraft \underline{F}_S in Abhängigkeit von der Druckkraft auf die freien Oberflächen \underline{F}_A .

• Impulsbilanz am Kontrollvolumen:

- lacksquare Allgemeine Form: $\sum \dot{m}\underline{v} = \sum \underline{F}$
- Mit Impulsstromdichte: $\rho \underline{v}(\underline{v} \cdot \underline{n}) \, dA$

• Impulsströme der drei Teilstrahlen:

- Strahl (1): $\rho h_1^2 \underline{v}_1 (\underline{v}_1 \cdot \underline{n}_1)$
- Strahl (2): $\rho h_1 \int_0^{h_2} \underline{v}_2 (\underline{v}_2 \cdot \underline{n}_2) \, dh$
- Strahl (3): $\rho h_1 h_3 \underline{v}_3 (\underline{v}_3 \cdot \underline{n}_3)$

• Einsetzen der Richtungsvektoren:

- Strahl (1): $ho h_1^2 v_1^2 \left(egin{array}{c} -1 \\ 0 \end{array}
 ight)$
- Strahl (3): $\rho h_1 h_3 v_3^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

AUFGABE 3E)

Berechnen Sie mit einer Impulsbilanz am eingezeichneten Kontrollvolumen den Vektor der Stützkraft \underline{F}_S in Abhängigkeit von der Druckkraft auf die freien Oberflächen \underline{F}_A .

• Impulsbilanz aufstellen:

$$ho h_1^2 v_1^2 \left(egin{array}{c} -1 \ 0 \end{array}
ight) +
ho h_1 rac{h_2}{3} v_{2,max}^2 \left(egin{array}{c} -\coslpha \ \sinlpha \end{array}
ight) +
ho h_1 h_3 v_3^2 \left(egin{array}{c} 1 \ 0 \end{array}
ight) = \underline{F}_S + \underline{F}_A$$

Auflösung nach Stützkraft:

$$\underline{F}_S = -\underline{F}_A +
ho h_1^2 v_1^2 \left(egin{array}{c} -1 \ 0 \end{array}
ight) +
ho h_1 rac{h_2}{3} v_{2,max}^2 \left(egin{array}{c} -\coslpha \ \sinlpha \end{array}
ight) +
ho h_1 h_3 v_1^2 \left(egin{array}{c} 1 \ 0 \end{array}
ight)$$

AUFGABE 3F)

Bestimmen Sie mithilfe eines Kräftegleichgewichts an der Umlenkschaufel den Kraftvektor F_{IJ} , der von der Befestigung der Umlenkschaufel aufgebracht werden muss.

- Kräftegleichgewicht an der Umlenkschaufel:
 - Alle Kräfte an der Schaufel müssen im Gleichgewicht stehen

$$\bullet \underline{F}_K + \underline{F}_P + \underline{F}_G + \underline{F}_U = \underline{0}$$

- Identifikation der Kräfte:
 - \underline{F}_K : Kontaktkraft vom Fluid auf die Schaufel
 - F_P : Druckkraft auf die Schaufel
 - F_G : Gewichtskraft der Schaufel
 - F_U : Befestigungskraft (gesucht)
- Anwendung des 3. Newtonschen Gesetzes:
 - $\underline{F}_K = -\underline{F}_S$ (Reaktionskraft zur Stützkraft)
 - $\underline{F}_P = -\underline{F}_A$ (Reaktionskraft zur Druckkraft)
- ullet Umstellung nach gesuchter Kraft: $\underline{F}_U = -\underline{F}_K \underline{F}_P \underline{F}_G \, \underline{F}_U = \underline{F}_S + \underline{F}_A \underline{F}_G$
- ullet Gewichtskraft der Umlenkschaufel: $\underline{F}_G = \begin{pmatrix} 0 \\ -mg \end{pmatrix}$
- Einsetzen der bekannten Ausdrücke:

$$\underline{F}_U =
ho h_1^2 v_1^2 \left(egin{array}{c} -1 \ 0 \end{array}
ight) +
ho h_1 h_3 v_1^2 \left(egin{array}{c} 1 \ 0 \end{array}
ight) +
ho h_1 rac{h_2}{3} v_{2,max}^2 \left(egin{array}{c} -\coslpha \ \sinlpha \end{array}
ight) + \left(egin{array}{c} 0 \ mg \end{array}
ight)$$

AUFGABE 3G)

Bestimmen Sie den Umlenkwinkel lpha, sodass $F_{U,y}=2mg$ gilt.

- Gegebene Bedingung:
 - ullet Die y-Komponente der Befestigungskraft soll: $F_{U,y}=2mg$
- y-Komponente von \underline{F}_U aus Aufgabe f):
 - Aus der vorherigen Lösung:

$$F_{U,y} =
ho h_1 rac{h_2}{3} v_{2,max}^2 \sinlpha + mg$$

• Gleichsetzen mit der Bedingung:

$$F_{U,y}\stackrel{!}{=}2mg \ 2mg =
ho h_1 rac{h_2}{3} v_{2,max}^2 \sin lpha + mg$$

• Umformen zur Bestimmung von $\sin \alpha$:

$$2ma - ma = oh_1 \frac{h_2}{m} v_2^2 \qquad \sin \alpha$$

AUFGABE 3G)

Bestimmen Sie den Umlenkwinkel lpha, sodass $F_{U,y}=2mg$ gilt.

• Auflösung nach $\sin \alpha$:

$$\sin lpha = rac{mg}{
ho h_1 rac{h_2}{3} v_{2,max}^2} = rac{3mg}{
ho h_1 h_2 v_{2,max}^2} \, .$$

• Bestimmung des Winkels:

$$lpha=\sin^{-1}\!\left(rac{3mg}{
ho h_1 h_2 v_{2,max}^2}
ight)$$

AUFGABE 4

AUFGABE 4A)

Geben Sie die entsprechend vereinfachte Impulsgleichung in y-Richtung an.

• Ausgangspunkt - Vollständige Impulsgleichung in y-Richtung:

$$rac{\partial (
ho v)}{\partial t} + rac{\partial (
ho u v)}{\partial x} + rac{\partial (
ho v v)}{\partial y} =
ho g_y - rac{\partial p}{\partial y} + \mu \left(rac{\partial^2 v}{\partial x^2} + rac{\partial^2 v}{\partial y^2}
ight)$$

- Vereinfachung Stationäre Strömung:
 - ullet $\frac{\partial (
 ho v)}{\partial t}=0$ (zeitunabhängig)
- Vereinfachung Voll ausgebildete Strömung:
 - ullet $\frac{\partial (
 ho uv)}{\partial x}=0$ (keine Änderung in Strömungsrichtung)
- Vereinfachung Laminar:
 - ullet $\frac{\partial (
 ho vv)}{\partial y}=0$ (keine Querströmung)
 - $\frac{\partial^2 v}{\partial u^2} = 0$ (kein Gradient in Strömungsrichtung)
- Vereinfachung Vernachlässigung der Schwerkraft:
 - $\rho g_y = 0$ (gegeben)
- Vereinfachte Impulsgleichung:

$$rac{\partial p}{\partial u} = \mu rac{\partial^2 v}{\partial x^2}$$

AUFGABE 4B)

Geben Sie die Randbedingung für die Spaltwände an.

- Haftbedingung:
 - Flüssigkeit haftet vollständig an den festen Wänden
 - Geschwindigkeit an der Wand entspricht der Wandgeschwindigkeit
- Spaltwände sind fixiert: Wandgeschwindigkeit ist null
- Randbedingungen:
 - An der oberen Spaltwand: v(x=h)=0
 - An der unteren Spaltwand: v(x=-h)=0
- Physikalische Bedeutung:
 - Maximum der Geschwindigkeit in der Spaltmitte
 - Symmetrisches Geschwindigkeitsprofil

AUFGABE 4C)

Bestimmen Sie die Geschwindigkeitsverteilung v(x) in Abhängigkeit von x,h,μ und dem unbekannten Druckgradient $\frac{\partial p}{\partial y}$.

Ausgangspunkt - Vereinfachte Impulsgleichung:

$$\frac{\partial p}{\partial y} = \mu \frac{\partial^2 v}{\partial x^2}$$

• Umstellung für Integration:

$$rac{\partial^2 v}{\partial x^2} = rac{1}{\mu} rac{\partial p}{\partial y}$$

• Erste Integration:

$$rac{\partial v}{\partial x} = rac{1}{\mu} rac{\partial p}{\partial y} x + C_1$$

• Zweite Integration:

$$1 \partial p_{-2}$$

AUFGABE 4C)

Bestimmen Sie die Geschwindigkeitsverteilung v(x) in Abhängigkeit von x,h,μ und dem unbekannten Druckgradient $\frac{\partial p}{\partial y}$.

$$v(x) = rac{1}{2\mu} rac{\partial p}{\partial y} x^2 + C_1 x + C_2$$

• Bestimmung von C_1 :

•
$$v(x = -h) = 0 = v(x = +h)$$

- ullet Umstellen der beiden Gleichungen: $2C_1h=0$
- $\blacksquare = C_1 = 0$
- Bestimmung von C_2 :
 - Einsetzen von $C_1 = 0$ in eine Randbedingung:
 - $lacksquare C_2 = -rac{1}{2\mu}rac{\partial p}{\partial y}h^2$
- Geschwidigkeitsverteilung:

$$v(x) = rac{1}{2\mu} rac{\partial p}{\partial u} (x^2 - h^2)$$

AUFGABE 4D)

Skizzieren Sie die Geschwindigkeits- und Schubspannungsverteilung. Geben Sie die charakteristischen Werte an.

- Schubspannungsverteilung ableiten:
 - Aus dem Newton'schen Reibungsgesetz: $au=\mu rac{\partial v}{\partial x}$
 - $lacksquare \operatorname{\mathsf{Mit}} v(x) = rac{1}{2\mu} rac{\partial p}{\partial y} (x^2 h^2)$
- Ableitung der Geschwindigkeit:

$$\frac{\partial v}{\partial x} = \frac{1}{2\mu} \frac{\partial p}{\partial y} \cdot 2x = \frac{1}{\mu} \frac{\partial p}{\partial y} x$$

• Schubspannungsverteilung:

$$au(x) = \mu rac{\partial v}{\partial x} = rac{\partial p}{\partial y}x$$

AUFGABE 4D)

- Charakteristische Werte der Schubspannung:
 - lacksquare An der oberen Wand: $au(h) = rac{\partial p}{\partial y} h$
 - lacksquare An der unteren Wand: $au(-h) = -rac{\partial p}{\partial y}h$
 - In der Spaltmitte: $\tau(0) = 0$
- Charakteristische Werte der Geschwindigkeit:
 - An den Wänden: $v(\pm h)=0$
 - lacksquare Maximum in der Spaltmitte: $v(0) = -rac{h^2}{2\mu} rac{\partial p}{\partial y}$
- Verlauf der Profile:
 - Geschwindigkeit: Parabolisches Profil mit Maximum in der Mitte
 - Schubspannung: Lineares Profil, null in der Mitte, Maximum an den Wänden
 - Die Schubspannung wechselt das Vorzeichen (obere/untere Wand)

AUFGABE 4E)

Berechnen Sie den Druckgradienten $\frac{\partial p}{\partial y}$ und den sich einstellenden Volumenstrom, damit die Platten in derselben Position bleiben.

• Neue Geschwindigkeitsverteilung mit Schwerkraft:

$$v(x) = rac{1}{2\mu}igg(rac{\partial p}{\partial y} -
ho gigg)\left(x^2 - h^2
ight)$$

• Schubspannungsverteilung ableiten:

$$au(x) = \mu \frac{\partial v}{\partial x} = \left(\frac{\partial p}{\partial y} - \rho g\right) x$$

Reibungskräfte auf die Platten:

$$lacksquare$$
 Rechte Platte (x = h): $F_{ au,r}= au(h)\cdot 2ab\cdot (-1)=-2abh\left(rac{\partial p}{\partial y}-
ho g
ight)$

$$ullet$$
 Linke Platte (x = -h): $F_{ au,l}= au(-h)\cdot 2ab\cdot (1)=-2abh\left(rac{\partial p}{\partial y}-
ho g
ight)$

• Kräftegleichgewicht für beide Platten:

$$ullet$$
 Gesamte Reibungskraft: $F_{ au,r}+F_{ au,l}=-4abh\left(rac{\partial p}{\partial y}-
ho g
ight)$

• Gewichtskraft beider Platten: -2mg

AUFGABE 4E)

• Gleichgewichtsbedingung:

$$-4abh\left(rac{\partial p}{\partial y}-
ho g
ight)=-2mg$$

• Auflösung nach Druckgradient:

$$rac{\partial p}{\partial y} = rac{2mg}{4abh} +
ho g = rac{mg}{2abh} +
ho g$$

• Geschwindigkeitsverteilung einsetzen:

$$v(x)=rac{1}{2\mu}\Big(rac{mg}{2abh}+
ho g-
ho g\Big)\left(x^2-h^2
ight)=rac{mg}{4\mu abh}(x^2-h^2)$$

Volumenstrom berechnen:

$$Q = b \int_{-h}^{+h} v(x) \, dx = b \int_{-h}^{+h} rac{mg}{4 \mu a b h} (x^2 - h^2) \, dx$$

• Integration durchführen:

AUFGABE 4E)

$$Q=brac{mg}{4\mu abh}igg(rac{2h^3}{3}-2h^3igg)$$

Finaler Volumenstrom:

$$Q=-rac{mgh^2}{3\mu a}$$