Unidad V. Álgebra Relacional y el Estándar SQL

M. en C. Euler Hernández Contreras

- 5. 1 Álgebra Relacional.
- 5.1.1 Selección.
- 5.1.2 Proyección.
- 5.1.3 Unión.
- 5.1.4 Diferencia.
- 5.1.5 Intersección
- 5.1.6 Producto Cartesiano.
- 5.1.7 Reunión.
- 5.1.8 División.
- 5.2 Ejercicios.
- 5.2.1 Solución a Ejercicios.

BIBLIOGRAFÍA

[1] Introducción a los Sistemas de Bases de Datos

Séptima Edicion

C.J. Date

Pearson Educación de México, México 2001.

[2] Modern Database Management

Ninth Edition

Jeffrey A. Hoffer, Mary B. Prescott, Heikki Topi

Pearson/Prentice, Estados Unidos 2009

[3] Fundamentos de Sistemas de Bases de Datos

Quinta Edición

Ramez Elmasri, Shamkant B. Navathe

Pearson/Addison Wesley, Madrid España 2007

[4] Fundamentos de Diseño de Bases de Datos

Quinta Edición

Abraham Silberschatz, Henry F. Korth, S. Sudarshan

McGraw-Hill/Interamericana de España, Madrid España 2007

[5] Sistemas de Gestión de Bases de Datos

Tercera Edición

Raghu Ramakrishnan, Johannes Gehrke

McGraw-Hill/Interamericana de España, Madrid España 2007

1.1 Álgebra Relacional

Es una colección de operaciones que son usadas para manipular relaciones completas. El resultado de cada operación es una nueva relación, que a su vez también puede ser manipulada.

Está descrito de la siguiente forma:

(Operador)_(parámetros)(operandos)→(resultado)

Operaciones en el álgebra relacional:

- Selección (σ)
- Proyección (π)
- Unión (∪)
- Diferencia (R S)
- Intersección (∩)
- Producto Cartesiano (R × S)
- Reunión (R⋈S)
- División (R ÷ S)

1.1.1 Selección

Produce un subconjunto horizontal de la relación operando.

Fórmula General:

$$\sigma_F(R) = \{t | t \in R \land F(t) \text{ es verdadero}\}\$$

donde:

R es una relación, *t* es una variable tupla, F es una fórmula consistente de:

- operandos que son constantes o atributos
- Operadores aritméticos de comparación (<, >,=, ≠,≥,≤).
- Operadores lógicos (∧,∨,~).

1.1.2 Proyección

Produce una división vertical de una relación.

Fórmula General:

$$\pi A_1,...,A_n(R) = \{t[A_1,...,A_n] | t \in R\}$$

donde:

R es una relación, t es una variable tupla, $\{A_1, \ldots, A_n\}$ es un subconjunto de los atributos de R, sobre los cuales la proyección será ejecutada.

1.1.3 Unión

Similar a la unión de conjuntos.

Las relaciones tienen que ser compatibles o del mismo rango.

Compatibilidad:

- Mismo grado (el mismo número de Atributos).
- Los atributos correspondientes deben estar definidos sobre el mismo dominio.

Formula General:

$$R \cup S = \{t | t \in R \lor t \in S\}$$

Donde:

R, *S* son relaciones, *t* es una variable tupla.

El resultado contiene tuplas que están en R o en S.

1.1.4 Diferencia

Fórmula General:

$$R - S = \{t | t \in R \land t \not\ni S\}$$

donde:

R, S son relaciones, *t* es una variable tupla.

El resultado contiene tuplas que están en R, pero no en S.

$$R - S \neq S - R$$
.

R, S deben ser compatibles en unión.

1.1.5 Intersección

La intersección obtiene como resultado una relación que contiene las tuplas de *R* que también se encuentran *S*.

Fórmula General:

$$R \cap S = \{t | t \in R \land t \in S\}$$

Donde:

R es una relación, *t* es una variable tupla.

La intersección se puede expresar en términos de diferencias:

$$R \cap S = R - (R - S)$$

1.1.6 Producto Cartesiano

Dadas dos relaciones:

- R de grado n, cardinalidad x
- S de grado m, cardinalidad y

El producto cartesiano se define como:

$$R \times S = \{t[A_1, \dots, A_n, B_1, \dots, B_m] | t[A_1, \dots, A_n] \in R \land t[B_1, \dots, B_m] \in S\}$$

El resultado de $R \times S$ es una relación de grado (m + n) y consiste de todas la $(x \cdot y)$ -tuplas, donde cada tupla es la concatenación de una tupla R con cada una de las tuplas de S.

1.1.7 Reunión

Fórmula General:

 $R \bowtie_{F(R.A_i,S.B_j)} S = \{ t[A_1, \ldots, A_n, B_1, \ldots, B_m] | t[A_1, \ldots, A_n] \in R \land t[B_1, \ldots, B_m] \in S \land F(R.A_i,S.B_j) \text{ sea verdadero} \}$

Donde:

R, S son relaciones, t es una variable tupla y $F(R.A_i,S.B_j)$ es una fórmula definida como una selección.

Es una derivación del producto cartesiano:

$$R\bowtie_{\mathsf{F}} S = \sigma_{\mathsf{F}} (R \times S)$$

Tipos de Reunión:

• θ-Reunión:

La fórmula F usa el operador Θ -Reunión.

• Equi-Reunión:

La fórmula *F* usa el operador de igualdad.

 $R\bowtie_{R.A=S.B}S$

• Reunión Natural:

Equi-reunión de dos relaciones *R* y *S* sobre un atributo (o atributos) comunes a *R* y *S* y proyectando sólo una copia de estos atributos.

$$R\bowtie S = \pi R \cup S \sigma_F (R \times S)$$

1.1.8 División

Dadas las relaciones:

- R de grado m ($R = \{A_1, \ldots, A_m\}$)
- *S* de grado n ($S = \{B_1, ..., B_n\}$)

Sea $A = \{A_1, \ldots, A_m\}$ y $B = \{B_1, \ldots, B_n\}$ y $B \subseteq A$ entonces, $R \div S$ da T de grado m-n [esto es, T(Y), donde Y = A - B] tal que para cada tupla de t deben aparecer en R en combinación con cada tupla en S.

Ejercicios

Considerando las siguientes relaciones. Resolver las siguientes consultas.

Relación Hospital

Kelucion Hospitai				
noHospital	Nombre	NoCamas		
22	Hospital General Balbuena	412		
13	Hospital General Xoco	502		
45 Hospital Regional 1 Octubre (ISSSTE)		845		

Relación Guardia

HOMOTOR GRANT GRANT				
noHospital	noGuardia	nombreServicio	noCamas	
22	6	Diálisis	60	
22	6	Terapia Intensiva	21	
22	2	Maternidad	35	
13	1	Maternidad	25	
13	2	Terapia Intensiva	40	
13	3	Emergencias	50	
45	1	Maternidad	120	

Relación Personal

noHospital	noGuardia	nombrePersonal	cargo
22	6	Claudia Ramírez	Enfermera
13	3	Idalia Maldonado	Enfermera
22	6	Luis Martinez	Jefe Enseñanza
22	2	Francisco García	Residente
45	1	Patricia Contreras	Enfermera
22	1	Juana López	Enfermera

Relación Empleado

Relacion Empleado				
nombreEmpleado	sueldo	codigoDepto	FechaIngreso	
Luis Torres	12,000	A1	01/01/2006	
Diana Soto	5,000	A2	01/01/2005	
Jaime Pérez	3,000	A2	01/10/2005	
Carlos Figueroa	6,000	A1	01/03/2007	
Ruth Salas	15,000	A1	01/01/2004	
Martín Ríos	20,000	A3	01/06/2004	
Jorge Campos	8,000	A2	01/11/2005	
Thania Cruz	6,000	A1	01/06/2005	
Iván Zamora	5,000	A2	01/04/2004	
Gamaliel Arce	20,000	A3	01/10/2003	

Relación Departamento

nombreDepto	códigoDepto	fechaCreación
Sistemas	A1	01/10/2003
Mercadotécnia	A2	01/10/2003
Ventas	A3	01/10/2003
Recursos Humanos	A4	01/10/2003

Relación Médico

noHospital	noGuardia	nombreMédico	especialidad
45	607	Jaime González	Pediatría
18	585	Carlos Pérez	Neurocirugía
22	453	Karla Rodríguez	Psicología
22	398	Laura Ayala	Cardiología
13	301	Mónica Juárez	Pediatría
13	197	Ulises Ruíz	Pediatría

Relación Alumno

Refactori Atumno					
noBoleta	nombreAlumno	carrera	plantel		
2004440202	Brianza Padilla Mario	Ingeniería Biomédica	UPIBI		
2003330568	Hern'andez Aguilar Carlos Alberto	Ingeniería Biomédica	UPIBI		
2003370901	Sánchez Tapia Carlos	Ingeniería Telemática	UPIITA		
2006630314	Vargas Martínez Blanca Elizabeth	Ingeniería Mecatrónica	UPIITA		
2005451203	Guzmán Aviles Edgar Martín	Ingeniería en Informática	UPIICSA		
2005461105	Lozada Rodríguez Aurora	Ingeniería en Informática	UPIICSA		
2003350811	Valdespino Zamora Alberto	Licenciatura en Ciencias de la Informática	UPIICSA		
2006641123	Reséndiz Zamora Carlos Alberto	Licenciatura en Física y Matemáticas	ESFM		
2004441124	Reyes Cruz Julieta	Licenciatura en Física y Matemáticas	ESFM		
2005450512	Merino Menéses Hugo David	Ingeniería en Sistemas Computacionales	ESCOM		
2006620156	Luna Vera Martha	Ingeniería en Sistemas Computacionales	ESCOM		
2006610523	Ostria Vazquez Arturo	Ingeniería en Sistemas Computacionales	ESCOM		
2003350618	Guzmán Rivera Marcela	Ingeniería en Computación	ESIME		
2004421022	Arreguín Herrera Edgar	Ingeniería en Computación	ESIME		
2005460307	Flores Cruz Mariana	Ingeniería en Comunicación y Electrónica	ESIME		

Relación Editor

nombre Chen, P. Yao, L.		nacionalidad	Institución			
		Americana	ER Institute			
		Americana	U.N.Y.			
	Ceri, S	Italiana	Politécnica de Milán			

Relación Autor

nombre	nacionalidad	Institución
Date, C. J.	Americana	Relational Institute
Saltor, F.	Española	U.P.C.
Ceri, S	Italiana	Politécnica de Milán

Relación Socio

códigoSocio	nombreSocio	Dirección
1	Jorge Luis Rodríguez Vera	Av. México, 34
2	Yira Muñoz Sánchez	Av. Universidad, 455

Relación Libro

libro	autor	editorial
Modern Database Management	Mc Fadden, Fred	Addison-Wesley
An Introduction to Database Systems	C. J. Date	Addison-Wesly
Principles of Database Systems	J. D. Ullman	Computer Science Press

- 1. Queremos conocer qué Hospitales tienen más de 600 camas.
- 2. Determinar todas las tuplas de Hospitales, donde el código sea igual a 22.
- 3. Extraer las tuplas correspondientes de Guardias de maternidad o de terapia intensiva, que no son del Hospital 13 y que tengan entre 20 y 40 camas.
- 4. Mostrar una lista de los distintos cargos que existen en los hospitales.
- 5. Hacer una consulta que muestre el código y el nombre del Hospital.
- 6. Mostrar los nombres de los pediatras.
- 7. Mostrar los datos correspondientes del empleado Diana Soto.
- 8. Mostrar los datos de los empleados con sueldo \geq 5,000 que ingresaron en el 2005.
- 9. Obtener los nombres de los distintos departamentos.
- 10. Obtener el monto de los sueldos de los empleados.
- 11. Extraer el nombre de los empleados que ganan más de 10,000.
- 12. Obtener el sueldo y la fecha de ingreso del empleado Ruth Salas.
- 13. Extraer los nombres de los empleados que ganan más de 7,000 o que trabajan en el departamento con código A1.
- 14. Mostrar una lista de todos los nombres de los alumnos, excepto aquellos que estudian Ingeniería en Sistemas Computacionales.
- 15. Visualizar los datos correspondientes de los alumnos, excepto aquellos que estudian en ESCOM.
- 16. Listar el número de hospital y el nombre de todo el personal médico y no médico.
- 17. Mostrar una lista de todos los datos correspondientes de los autores y editores.
- 18. Determinar la diferencia entre Autor y Editor, visualizando la relación resultante.
- 19. Mostrar aquellas tuplas que se encuentras tanto en la relación autor como en editor.

- 20. Determinar el producto cartesiano entre las relaciones socio y libro, visualizando la relación resultante.
- 21. Queremos saber quiénes son los Pediatras que trabajan en el Hospital General Balbuena.
- 22. Establecer la reunión entre Autor y Libro.
- 23. Listar todos los empleados y el nombre del departamento en que trabajan.

1.1.10 Solución a Ejercicios

- 1. Queremos conocer qué Hospitales tienen más de 600 camas. $\sigma_{NoCamas>600}(Hospital)$
- 2. Determinar todas las tuplas de Hospitales, donde el código sea igual a 22. $\sigma_{noHospital=22}(Hospital)$
- 3. Extraer las tuplas correspondientes de Guardias de maternidad o de terapia intensiva, que no son del Hospital 13 y que tengan entre 20 y 40 camas.

 $\sigma_{1\neq13^{\circ}(3="Maternidad"} \vee 3="TerapiaIntensiva")^{(4\geq20^{\circ}4\leq40)} (Guardia)$

Es válido usar el número de columna:

- (a) $1 \rightarrow \text{noHospital}$
- (b) $3 \rightarrow \text{nombreServicio}$
- (c) $4 \rightarrow NoCamas$
- 4. Mostrar una lista de los distintos cargos que existen en los hospitales. $\pi_{\text{Cargo}}(\text{Personal})$
- 5. Hacer una consulta que muestre el código y el nombre del Hospital. $\pi_{noHospital,Nombre}(Hospital)$
- 6. Mostrar los nombres de los pediatras.

 $\pi_{\text{nombreMedico}}(\sigma_{\text{especialidad="Pediatria"}}(\text{Medico}))$

7. Mostrar los datos correspondientes del empleado Diana Soto. σ_{nombreEmpleado="DianaSoto"} (Empleado)

8. Mostrar los datos de los empleados con sueldo \geq 5,000 que ingresaron en el 2005.

 $\sigma_{2 \ge 5000^4_0/01/2005^4 \le 31/12/2005}$ (Empleado)

- 9. Obtener los nombres de los distintos departamentos.
- $\pi_{nombre Depto}(Departamento)$
- 10. Obtener el monto de los sueldos de los empleados.

 $\pi_{sueldo}(Empleado)$

11. Extraer el nombre de los empleados que ganan más de 10,000.

 $\pi_{\text{nombre Empleado}}(\sigma_{\text{sueldo}>10,000}(\text{Empleado}))$

12. Obtener el sueldo y la fecha de ingreso del empleado Ruth Salas.

 $\pi_{\text{sueldo}, \text{FechaIngreso}}(\sigma_{\text{nombre Empleado}} = \text{``RuthSalas''}(Empleado))$

13. Extraer los nombres de los empleados que ganan más de 7,000 o que trabajan en el departamento con código A1.

 $\pi_{\text{nombre Empleado}}(\sigma_{\text{sueldo}} > 7,000(\text{Empleado})) \cup \sigma_{\text{codigo Depto}} = \text{"A1"}(\text{Empleado})$

14. Mostrar una lista de todos los nombres de los alumnos, excepto aquellos que estudian Ingeniería en Sistemas Computacionales.

 $\pi_{\text{nombreAlumno}}(Alumno) - \pi_{\text{nombreAlumno}}(\sigma_{\text{carrera}}) - \pi_{\text{nombreAlumno}}(Alumno))$

15. Visualizar los datos correspondientes de los alumnos, excepto aquellos que estudian en ESCOM.

σ_{Escuela≠}"ESCOM"(Alumno)

16. Listar el número de hospital y el nombre de todo el personal médico y no médico.

 $\pi_{\text{noHospital,nombreMedico}}(\text{Medico}) \cup \pi_{\text{noHospital,nombrePersonal}}(\text{Personal})$

17. Mostrar una lista de todos los datos correspondientes de los autores y editores.

Autor ∪ Editor

18. Determinar la diferencia entre Autor y Editor, visualizando la relación resultante.

Autor - Editor

19. Mostrar aquellas tuplas que se encuentras tanto en la relación autor como en editor.

Autor ∩ Editor

En términos de diferencias queda:

Autor – (Autor – Editor)

20. Determinar el producto cartesiano entre las relaciones socio y libro, visualizando la relación resultante.

Socio × Libro

21. Queremos saber quiénes son los Pediatras que trabajan en el Hospital General Balbuena.

 $\pi_6(\sigma_{1=4^2="HospitalGeneralBalbuena"^7="Pediatria"}(Hospital \times Medico))$

22. Establecer la reunión entre Autor y Libro.

Hospital \bowtie ($\sigma_{Autor.Nombre=Libro.Autor}$)Libro

En términos de Selección queda:

 $\pi_{\text{Autor.Nombre=Libro.Autor}}(\text{Autor} \times \text{Libro})$

23. Listar todos los empleados y el nombre del departamento en que trabajan.

 $\pi \texttt{Empleado.nombreEmpleado,Departamento.nombreDepto} (Empleado \bowtie (\sigma \texttt{Empleado.3=Departamento.2}) \\ Departamento)$

1.2. Operaciones sobre Conjuntos

- a) $R \cup S$, la unión de R y S es el conjunto de elementos que están en R o S o ambos. Un elemento solo aparece una sola vez.
- b) $R \cap S$, el conjunto de elementos que aparecen en ambos $R \setminus S$.
- c) *R S*, la diferencia de *R* y *S*, el conjunto de elementos que están en *R* pero no en *S*. Es importante resaltar que *R S* es diferente a *S R*.

Restricciones:

R y S deben tener esquemas idénticos.

El orden de las columnas debe ser el mismo.

Ejemplos:

Nombre	Dirección	género	Fecha_Nacimiento
Martha López	Av. Constituyentes 23	F	12/08/1995
Juan Juárez	Calle Benito Juárez 33	М	10/03/1996

Nombre	Dirección	género Fecha_Nacimiento	
Luis Rodríguez	Av. Carlos Lazo 44	М	4/04/1999
Martha López	Av. Constituyentes 23	F	12/08/1995

Unión

Nombre	Dirección	género Fecha_Nacimiento	
Martha López	Av. Constituyentes 23	F	12/08/1995
Juan Juárez	Calle Benito Juárez 33	М	10/03/1996
Luis Rodríguez	Av. Carlos Lazo 44	М	4/04/1999

Intersección

Nombre	Dirección	género	Fecha_Nacimiento
Martha López	Av. Constituyentes 23	F	12/08/1995

Resta

Nombre	Dirección	género	Fecha_Nacimiento
Juan Juárez	Calle Benito Juárez 33	М	10/03/1996

1.3. Operaciones de CONCATENACIÓN EXTERNA (OUTER JOIN)

El *outer join* es una extensión del *join* para trabajar con información no existente (valores NULL). Existen 3 tipos: izquierdo, derecho y completo.

Empleado

Nombre_Empleado	email	Estado
Eduardo Díaz	ediaz@gmail.com	Mex
Karla Méndez	mendezk@yahoo.com.mx	Pue
Claudia López	clau@gmail.com	Mor
Raúl González	rulo@hotmail.com	Mex

EmpleadoArea

Nombre_Empleado	Área	Salario
Eduardo Díaz	Ventas	1500
Karla Méndez	Ventas	1300
Josué García	Desarrollo	5300
Raúl González	Desarrollo	1500

Para el caso de la reunión Natural (⋈)

Nombre_ Empleado	email	Estado	Área	Salario
Eduardo Díaz	ediaz@gmail.com	Mex	Ventas	1500
Karla Méndez	mendezk@yahoo.com.mx	Pue	Ventas	1300
Raúl González	rulo@hotmail.com	Mex	Desarrollo	1500

1.3.1 Left Outer Join ()

Regresa todas las tuplas que correspondan las Llaves primarias y foráneas más las tuplas de la relación del lado izquierdo que no correspondan con la relación del lado derecho.

Nombre_ Empleado	email	Estado	Área	Salario
Eduardo Díaz	ediaz@gmail.com	Mex	Ventas	1500
Karla Méndez	mendezk@yahoo.com.mx	Pue	Ventas	1300
Claudia López	clau@gmail.com	Mor	NULL	NULL
Raúl González	rulo@hotmail.com	Mex	Desarrollo	1500

1.3.2 Right Outer Join ()

Regresa todas las tuplas que correspondan las Llaves primarias y foráneas más las tuplas de la relación del lado derecho que no correspondan con la relación del lado izquierdo.

Nombre_ Empleado	email	Estado	Área	Salario
Eduardo Díaz	ediaz@gmail.com	Mex	Ventas	1500
Karla Méndez	mendezk@yahoo.com.mx	Pue	Ventas	1300
Josué García	NULL	NULL	Desarrollo	5300
Raúl González	rulo@hotmail.com	Mex	Desarrollo	1500

1.3.3 Full Outer Join ()

Regresa todas las tuplas que correspondan las Llaves primarias y foráneas más las tuplas de la relación del lado izquierdo que no correspondan con la relación

del lado derecho, más las tuplas de la relación del lado derecho que no correspondan con las tuplas de la relación del lado izquierdo.

Nombre_ Empleado	email	Estado	Área	Salario
Eduardo Díaz	ediaz@gmail.com	Mex	Ventas	1500
Karla Méndez	mendezk@yahoo.com.mx	Pue	Ventas	1300
Claudia López	clau@gmail.com	Mor	NULL	NULL
Josué García	NULL	NULL	Desarrollo	5300
Raúl González	rulo@hotmail.com	Mex	Desarrollo	1500

5.2 Estándar SQL

SQL (*Structured Query Languaje*), es un lenguaje estándar que es usado para trabajar con objetos de una base de datos y los datos que ellos contienen. Al usar SQL podrás definir, alterar y eliminar objetos en la base de datos, tales como, insertar, actualizar, eliminar y extraer información de los datos almacenados en un repositorio de datos.

SQL tiene una sintaxis definida y un conjunto de elementos en su lenguaje. Las sentencias de SQL son categorizadas con base a las funciones que ellos ejecutan; las sentencias de SQL se puede categorizar de la siguiente forma.

- a) Lenguaje de Definición de Datos (*Data Definition Language* DDL). Este permite definir propiedades en los objetos de la base de datos. CREATE, ALTER, DROP
- b) Lenguaje de Manipulación de Datos (*Data Manipulation Language* **DML**). Este es usado para extraer, agregar, editar y eliminar datos. SELECT, INSERT, UPDATE, DELETE
- c) Lenguaje de Control de Datos (*Data Control Language* -DCL). Usado para el control de acceso a la base datos y los objetos definidos en el repositorio. GRANT, REVOKE
- d) Lenguaje de Control de Transacciones (*Transaction Control Language* **TCL**). Grupos de sentencias DML en transacciones, puede aplicarse a una base de datos o deshacer un evento ante un fallo. COMMIT, ROLLBACK, SAVEPOINT