HOMEWORK 3: WRITTEN EXERCISE PART

1 Multinomial Naïve Bayes [25/2 pts]

Consider the Multinomial Naïve Bayes model. For each point (\mathbf{x}, y) , $y \in \{0, 1\}$, $\mathbf{x} = (x_1, x_2, \dots, x_M)$ where each x_j is an integer from $\{1, 2, \dots, K\}$ for $1 \le j \le M$. Here K and M are two fixed integer. Suppose we have N data points $\{(\mathbf{x}^{(i)}, y^{(i)}) : 1 \le i \le N\}$, generated as follows.

```
\begin{aligned} & \textbf{for } i \in \{1, \dots, N\} \colon \\ & y^{(i)} \sim \text{Bernoulli}(\phi) \\ & \textbf{for } j \in \{1, \dots, M\} \colon \\ & x_j^{(i)} \sim \text{Multinomial}(\theta_{y^{(i)}}, 1] \end{aligned}
```

 $x_j^{(i)} \sim \operatorname{Multinomial}(\theta_{y^{(i)}}, 1)$ Here $\phi \in \mathbb{R}$ and $\theta_k \in \mathbb{R}^K (k \in \{0, 1\})$ are parameters. Note that $\sum_l \theta_{k,l} = 1$ since they are the parameters of a multinomial distribution.

Derive the formula for estimating the parameters ϕ and θ_k , as we have done in the lecture for the Bernoulli Naïve Bayes model. Show the steps.

since $y^{(i)}$ is calculated from the bernoulli distribution.

$$\phi = \frac{\sum_{i=1}^N I(y^{(i)}=1)}{N}$$

it is given that x_j can take values from [1, 2, ..., K] and $y^{(i)}$ can take values $[0,1].\theta$ is dependent on the values taken by x_j according to the bernoulli naive bayes model. Hence we can find θ_{k,x_j} when k=0 and k=1

representing θ_{k,x_j} for the following values of y

when y = 0

$$\theta_{0,x} = \frac{\sum_{i=1}^{N} I(y^{(i)} = 0) \bigwedge x_{1}^{(i)} \in [1,2,...K] \bigwedge x_{2}^{(i)} \in [1,2,...K]... \bigwedge x_{j}^{(i)} \in [1,2,...K])}{\sum_{i=1}^{N} I(y^{(i)} = 0)} \text{ where } j \in [1,2,...,M]$$

using similar reasoning, we can derive formula for when y = 1

$$\theta_{1,x} = \frac{\sum_{i=1}^{N} I(y^{(i)} = 1) \bigwedge x_{1}^{(i)} \in [1,2,...K] \bigwedge x_{2}^{(i)} \in [1,2,...K]... \bigwedge x_{j}^{(i)} \in [1,2,...K])}{\sum_{i=1}^{N} I(y^{(i)} = 1)} \text{ where } j \in [1,2,...,M]$$

2 Logistic Regression [25/2 pts]

Suppose for each class $i \in \{1, ..., K\}$, the class-conditional density $p(\mathbf{x}|y=i)$ is normal with mean $\mu_i \in \mathbb{R}^d$ and identity covariance:

$$p(\mathbf{x}|y=i) = N(\mathbf{x}|\mu_i, \mathbf{I}).$$

Prove that $p(y = i | \mathbf{x})$ is a softmax over a linear transformation of \mathbf{x} . Show the steps. we are given p(x|y = i), which can be represented as

$$p(y = i|x) = \frac{p(x|y = i)p(y = i)}{\sum_{j} p(x|y = i)p(y = i)} = \frac{exp(a_i)}{\sum_{j} exp(a_i)}.$$

We can also represent $a_i = ln[p(x|y=i)p(y=i)]$

given that $p(x|y=i) = N(x|m_i, I)$, $a_i = ln[N(x|m_i, I)p(y=i)]$ and

$$N(x|m_i, I) = \frac{1}{2\pi^{(d/2)}} exp(\frac{-1}{2}||x - m_i||^2)$$

Therefore $a_i = ln[\frac{1}{2\pi^{(d/2)}}exp(\frac{-1}{2}||x-m_i||^2).p(y=i)]$

$$a_i = ln(\frac{1}{2\pi(d/2)}) + ln(exp(\frac{-1}{2}||x - m_i||^2)) + ln(p(y = i))$$

 $ln(exp(\frac{-1}{2}||x-m_i||^2)) \text{ can be expressed as } \frac{-1}{2}||x-m_i||^2 \text{, and this expression can further be expressed as } \frac{-1}{2}||x-m_i||^2 = \frac{-1}{2}(x^Tx+m_i^Tm_i)+m_i^Tx.$

Eliminating $\frac{-1}{2}x^Tx$ from the main expression, a_i can be represented as follows

$$a_i = ln(\frac{1}{2\pi^{(d/2)}}) - \frac{1}{2}m_i^T m_i + m_i^T x + ln(p(y=i))$$

Furthermore, a_i can be represented in the form of $(w^i)^T x + b_i$, wherein $(w^i) = m_i$ and $b_i = ln(\frac{1}{2\pi^{(d/2)}}) - \frac{1}{2}m_i^T m_i + ln(p(y=i))$

Hence, $p(y=i|x) = \frac{exp(a_i)}{\sum_j \exp(a_i)} = \frac{exp((w^i)^T x + b_i)}{\sum_j \exp((w^i)^T x + b_i)}$, which proves that p(y=i|x) is a softmax over linear transformation