CS5160: Topics in Computing Problem Set 3

Taha Adeel Mohammed

CS20BTECH11052

(Crediting the course)

1. Given a monotone Boolean function $f: \{0,1\}^n \to \{0,1\}$ and an input $x \in \{0,1\}^n$, say that the *i*-th bit x_i of x is "correct" for f if $f(x) = x_i$. Let c(f) denote the expected number of "correct" bits in a uniformly random string x. Show that c(f) = (n + Inf(f))/2. (10 points)

For any $x \in \{0,1\}^n$, we have two cases $\forall i \in [n]$:

Case 1: x_i is a sensitive bit

Claim: $f(x) = x_i$, i.e., x_i is a "correct" bit for f. Proof by contradiction: Assume that $f(x) \neq x_i$.

- 1. If $x_i = 0$, then f(x) = 1 and $f(x^{(i)}) = 0$. But $f(x) > f(x^{(i)})$ while $x \le x^{(i)}$
- 2. If $x_i = 1$, then f(x) = 0 and $f(x^{(i)}) = 1$. But $f(x) < f(x^{(i)})$ while $x \ge x^{(i)}$

In both cases, we get a contradiction, since f is monotone. Hence our claim is true.

Case 2: x_i is not a sensitive bit

Claim: Either $f(x) = x_i$ or $f(x^{(i)}) = x_i^{(i)}$, i.e., *i*-th bit is correct for one of x or $x^{(i)}$. Proof: Since x_i is not a sensitive bit, we have $f(x) = f(x^{(i)})$.

- 1. If $f(x) = f(x^{(i)}) = x_i$, then i is a correct bit for x and not for $x^{(i)}$.
- 2. If $f(x) = f(x^{(i)}) = x_i^{(i)}$, then i is a correct bit for $x^{(i)}$ and not for x.

Hence our claim is true. i.e. $\mathbb{E}[f(x) = x_i | x_i \text{ is not sensitive}] = \frac{1}{2}$.

Now we can write the expected number of correct bits, c(f), as

$$c(f) = \mathbb{E}_{x \sim \{0,1\}^n} \left[\sum_{i=1}^n \mathbb{I}[f(x) = x_i] \right]$$
 (1)

$$= \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \left(s(f,x) + (n-s(f,x)) \cdot \mathbb{E}[f(x_i) = x_i | x_i \text{ is not sensitive}] \right)$$
 (2)

$$= \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \left(s(f,x) + \frac{(n-s(f,x))}{2} \right) \tag{3}$$

$$= \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \frac{n + s(f,x)}{2} \tag{4}$$

$$\implies c(f) = \frac{n + as(f)}{2} = \frac{n + \text{Inf}(f)}{2} \tag{5}$$

2. Let $f: \{-1,1\}^n \to \{-1,1\}$. Give a Fourier formula for the expression

$$\mathbb{E}_{x,y,z\sim\{-1,1\}^n}[f(x)f(y)f(z)f(w)],$$

where x, y, z are chosen uniformly at random from $\{-1, 1\}^n$ and $w = x \oplus y \oplus z$, i.e., $w_i = x_i y_i z_i$ for all $i \in [n]$. (10 points)

Substituting the Fourier representation of f in the given expression, we have

$$\begin{split} & \underset{x,y,z \sim \{-1,1\}^n}{\mathbb{E}} \left[f(x)f(y)f(z)f(w) \right] \\ & = \underset{x,y,z}{\mathbb{E}} \left[\left(\sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x) \right) \left(\sum_{T \subseteq [n]} \hat{f}(T) \chi_T(y) \right) \left(\sum_{U \subseteq [n]} \hat{f}(U) \chi_U(z) \right) \left(\sum_{V \subseteq [n]} \hat{f}(V) \chi_V(w) \right) \right] \\ & = \underset{x,y,z}{\mathbb{E}} \left[\sum_{S,T,U,V} \hat{f}(S) \hat{f}(T) \hat{f}(U) \hat{f}(V) \cdot \prod_{i \in S} x_i \cdot \prod_{i \in T} y_i \cdot \prod_{i \in U} z_i \cdot \prod_{i \in V} (x_i y_i z_i) \right] \\ & = \underset{x,y,z}{\mathbb{E}} \left[\sum_{S,T,U,V} \hat{f}(S) \hat{f}(T) \hat{f}(U) \hat{f}(V) \cdot \prod_{i \in S \Delta V} x_i \cdot \prod_{i \in T \Delta V} y_i \cdot \prod_{i \in U \Delta V} z_i \right] \text{ (wlog, if } i \in S \cap V, x_i^2 = 1) \\ & = \sum_{S,T,U,V} \hat{f}(S) \hat{f}(T) \hat{f}(U) \hat{f}(V) \cdot \underset{i \in S \Delta V}{\mathbb{E}} \left[\prod_{i \in T \Delta V} x_i \cdot \prod_{i \in U \Delta V} z_i \right] \text{ (linearity of expectation)} \\ & = \sum_{S,T,U,V} \hat{f}(S) \hat{f}(T) \hat{f}(U) \hat{f}(V) \prod_{i \in S \Delta V} \mathbb{E} \left[x_i \right] \prod_{i \in T \Delta V} \mathbb{E} \left[z_i \right] \text{ (since } x_i, y_i, z_i \text{ independent)} \\ & = \sum_{S} \hat{f}(S)^4 \qquad \qquad \text{(since } \mathbb{E} \left[x_i \right] = 0 \text{, then if } S \Delta V, T \Delta V, U \Delta V \neq \emptyset) \end{split}$$

Therefore we have

$$\mathbb{E}_{x,y,z\sim\{-1,1\}^n}\left[f(x)f(y)f(z)f(w)\right] = \sum_{S} \hat{f}(S)^4$$

3. Let $\rho \in [-1,1]$ and $x \in \{-1,1\}^n$. Recall we say $y \sim N_{\rho}(x)$ to denote that the random string y is sampled as follows: $y_i = x_i$ with probability $(1+\rho)/2$ and $y_i = -x_i$ with probability $(1-\rho)/2$. For a Boolean function $f: \{-1,1\}^n \to \{-1,1\}$, we define noise stability of f at ρ as follows:

$$\operatorname{Stab}_{
ho}(f) = \mathbb{E}_{x \sim \{-1,1\}^n, y \sim N_{
ho}(x)}[f(x)f(y)].$$

Give a Fourier formula for $\operatorname{Stab}_{\rho}(f)$. (10 points)

Simplifying the given expression for $\operatorname{Stab}_{\rho}(f)$, we have

$$\operatorname{Stab}_{\rho}(f) = \underset{x \sim \{-1,1\}^{n}, y \sim N_{\rho}(x)}{\mathbb{E}} [f(x)f(y)]$$

$$= \underset{x}{\mathbb{E}} \left[f(x) \cdot \underset{y}{\mathbb{E}} [f(y)] \right] \qquad \text{(linearity of expectation)}$$

$$= \underset{x}{\mathbb{E}} \left[f(x) \cdot \underset{y}{\mathbb{E}} \left[\sum_{S \subseteq [n]} \hat{f}(S) \cdot \prod_{i \in S} y_{i} \right] \right] \qquad \text{(Fourier representation of } f)$$

$$= \underset{x}{\mathbb{E}} \left[f(x) \cdot \sum_{S \subseteq [n]} \hat{f}(S) \cdot \underset{y}{\mathbb{E}} \left[\prod_{i \in S} y_{i} \right] \right] \qquad \text{(linearity of expectation)}$$

In class, we have seen that

$$\mathbb{E}_{y \sim N_{\rho}(x)} \left[\prod_{i \in S} y_i \right] = \rho^{|S|} \cdot \chi_s(y)$$

Using this, we can write

$$\operatorname{Stab}_{\rho}(f) = \underset{x}{\mathbb{E}} \left[f(x) \cdot \sum_{S \subseteq [n]} \hat{f}(S) \cdot \rho^{|S|} \cdot \chi_{s}(x) \right]$$

$$= \sum_{S \subseteq [n]} \hat{f}(S) \cdot \rho^{|S|} \cdot \underset{x}{\mathbb{E}} \left[f(x) \cdot \chi_{s}(x) \right] \qquad \text{(linearity of expectation)}$$

$$= \sum_{S \subseteq [n]} \hat{f}(S) \cdot \rho^{|S|} \cdot \hat{f}(S) \qquad (\mathbb{E} \left[\chi_{s} \chi_{t} \right] = 0 \text{ if } S \neq T \text{ and } 1 \text{ otherwise)}$$

$$= \sum_{S \subseteq [n]} \hat{f}(S)^{2} \cdot \rho^{|S|}$$

Therefore we have

$$\operatorname{Stab}_{\rho}(f) = \sum_{S \subseteq [n]} \hat{f}(S)^{2} \cdot \rho^{|S|}$$

- 4. Let $\epsilon > 0$. Prove that for every Boolean function $f : \{-1,1\}^n \to \{-1,1\}$, there exists a Boolean function $g : \{-1,1\}^n \to \{-1,1\}$ depending on at most $2^{O(as(f)/\epsilon)}$ variables such that g differs from f on at most an ϵ fraction of inputs. Recall as(f) denotes the average sensitivity of f. (15 points)
- 5. A tournament is a directed graph obtained by assigning a direction to each edge in an undirected complete graph. (See Figure 1.) We say that a tournament is acyclic if it contains no directed cycles. Note that a tournament can be represented by a string in $\{0,1\}^{\binom{n}{2}}$, where every edge is represented by a bit and its value represents the orientation of the edge. Thus, we can define the following Boolean function $T_{\text{acyclic}}: \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ such that $T_{\text{acyclic}}(x) = 1$ if and only if x defines an acyclic tournament. Prove that $D(T_{\text{acyclic}}) \geq \binom{n}{2} \frac{n}{2}$. Recall D(f) is the deterministic decision tree complexity of f.

Consider an input $x \in \{0,1\}^{\binom{n}{2}}$ such that $T_{\text{acyclic}}(x) = 1$. Since x defines an acyclic tournament, there exists a topological ordering for our given vertices. Let v_1, v_2, \ldots, v_n be the vertices in the topological ordering.

Now consider the following adversial argument for any deterministic decision tree T that computes T_{acyclic} . We iteratively tell that while we have not queried all edges, if the edge (v_i, v_j) is queried, then we set $x_{(v_i, v_j)} = 1$ if i < j and $x_{(v_i, v_j)} = 0$ otherwise.

We state that after querying for $i < \binom{n}{2}$ edges, there exist inputs $x, y \in \{0, 1\}^{\binom{n}{2}}$ such that $T_{\text{acyclic}}(x) \neq T_{\text{acyclic}}(y)$ and T has queried for the same set of edges for both x and y.

- 1. For an unqueried edge (v_i, v_j) , if i < j, and we set $x_{(v_i, v_j)} = 1$, then $T_{\text{acyclic}}(x) = 0$ since we have a cycle (v_j, v_i, v_j) .
- 2. Or else if $x_{(v_i,v_j)} = 0$, then $T_{\text{acyclic}}(x) = 1$ since we have a topological ordering. Therefore we need to query all the edges to get the correct answer. Hence we have

$$D(T_{\text{acyclic}}) = \binom{n}{2}$$

6. Let T be a tournament and v be a vertex of T. We say that v is a source if all edges incident on v are directed away from it. Not every tournament has a source. Therefore we can consider the following Boolean function $SRC: \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ defined as SRC(x) = 1 if and only if the tournament given by x has a source. Show that D(SRC) = O(n).

We propose the following algorithm for querying the edges of the tournament T to find a source:

- 1. We maintain two sets Possible and Rejected containing the vertices that are possible sources and rejected sources respectively. Initially, $Possible = \{1, 2, ..., n\}$ and $Rejected = \emptyset$.
- 2. While |Possible| > 1: Take two vertices $u, v \in Possible$ and query the edge (u, v).
- 3. (Correctness proof) Whatever the direction of the edge (u, v), we can reject one of u or v as a possible source. Hence we remove one of them from Possible and add it to Rejected.
- 4. Therefore, w.l.o.g. if (u, v) is directed from u to v, update $Possible = Possible \setminus \{v\}$ and $Rejected = Rejected \cup \{v\}$.
- 5. Once |Possible| = 1, we query all the edges incident on the vertex in Possible and check if all of them are directed away from it. If so, we have found a source and SRC(T) = 1. Otherwise, SRC(T) = 0.

Analyzing the number of queries made by the algorithm, we have that step 2 does n-1 queries, since in each iteration we remove one vertex from *Possible*. In step 5, we query at most n-1 edges. Hence the total number of queries is 2n-2=O(n).

Hence, since we have that max cost of the algorithm is 2n-2, we have that the Deterministic Decision Tree complexity $\leq 2n-2 = O(n)$. Therefore we have

$$D(SRC) = O(n)$$

7. For $1 \le t \le n$, let Tht : $\{0,1\}^n \to \{0,1\}$ be the threshold function defined as follows:

$$\operatorname{Tht}(x) = egin{cases} 1 & \text{if } \sum_{i=1}^n x_i \geq t \\ 0 & \text{otherwise} \end{cases}$$

Prove that deg(Tht) = n, i.e., any polynomial representing Tht must have full degree n. (15 points)

In class, we have seen that

$$\deg(f) = n \text{ iff } |X^{\text{even}}| \neq |X^{\text{odd}}| \tag{6}$$

where $X^{\text{even}} = \{x | f(x) = 1 \text{ and } |x| \text{ is even}\}$ and $X^{\text{odd}} = \{x | f(x) = 1 \text{ and } |x| \text{ is odd}\}.$

Let Tht_t be the threshold function for $t \in [n]$. We have that

$$\operatorname{Tht}_{t}(x) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} x_{i} \ge t \\ 0 & \text{otherwise} \end{cases}$$
 (7)

This implies that

$$X^{\text{even}} = \{x | \sum_{i=1}^{n} x_i \ge t \text{ and } |x| \text{ is even} \}$$
$$X^{\text{odd}} = \{x | \sum_{i=1}^{n} x_i \ge t \text{ and } |x| \text{ is odd} \}$$

By choosing 2k or 2k+1 bits from n bits and setting them to 1, while the rest are set to 0, we can get all the elements of X^{even} and X^{odd} respectively. Hence we have

$$|X^{\text{even}}| = \sum_{k=\lceil t/2 \rceil}^{\lfloor n/2 \rfloor} \binom{n}{2k}$$
$$|X^{\text{odd}}| = \sum_{k=\lfloor t/2 \rfloor}^{\lfloor (n-1)/2 \rfloor} \binom{n}{2k+1}$$

Therefore we have

$$|X^{\text{even}}| - |X^{\text{odd}}| = \sum_{i=t}^{n} (-1)^{i} \cdot \binom{n}{i}$$

$$\implies |X^{\text{even}}| - |X^{\text{odd}}| = \sum_{i=0}^{n-t} (-1)^{i} \cdot \binom{n}{i} \qquad (\text{using } \binom{n}{i} = \binom{n}{n-i})$$

Hence to prove $X^{\text{even}} \neq X^{\text{odd}}$, we need to show that

$$\sum_{i=0}^{k} (-1)^{i} \cdot \binom{n}{i} \neq 0, \text{ where } k = n - t, \forall \ t \in [n], \text{ i.e. } 0 \le k \le n - 1;$$
 (8)

We can prove this by induction on n.

Base case: For k = 0, it holds trivially.

Induction hypothesis: Assume that it holds for some $k \in [n-2]$. Then for k+1, we have

$$\begin{split} \sum_{i=0}^{k+1} (-1)^i \binom{n}{i} &= (-1)^{k+1} \binom{n}{k+1} + \sum_{i=0}^k (-1)^i \binom{n}{i} \\ &= (-1)^{k+1} \binom{n}{k+1} + (-1)^k \binom{n-1}{k} \\ &= (-1)^{k+1} \left\{ \binom{n}{k+1} - \binom{n-1}{k} \right\} \\ &= (-1)^{k+1} \binom{n-1}{k+1} \end{split}$$

Hence the induction hypothesis holds.

Therefore we have that $|X^{\text{even}}| \neq |X^{\text{odd}}|$ for all $t \in [n]$. Hence deg (Tht_t) = $n \, \forall \, t \in [n]$.