# Curved Yang-Mills gauge theories and their recent applications

Simon-Raphael Fischer



國家理論科學研究中心 National Center for Theoretical Sciences (National Taiwan University)





Motivation

# Infinitesimal curved Yang-Mills-Higgs gauge theory



Motivation

# Motivation 1 by Thomas Strobl and Alexei Kotov

| Classical formalism                                   | CYMH GT                           |
|-------------------------------------------------------|-----------------------------------|
| Lie algebra $\mathfrak{g}$ as $L \times \mathfrak{g}$ | Lie algebroid $E 	o N$            |
| ${\mathfrak g}	ext{-action }\gamma$                   | Anchor $\rho$ of $E$              |
|                                                       | & E-connections                   |
| Canonical flat connection $ abla^0$                   | General connection $ abla$ on $E$ |
| on $L 	imes \mathfrak{g}$                             |                                   |

# Motivation 1 by Thomas Strobl and Alexei Kotov

| Classical formalism                                | CYMH GT                           |
|----------------------------------------------------|-----------------------------------|
| Lie algebra $\mathfrak g$ as $L 	imes \mathfrak g$ | Lie algebroid $E 	o N$            |
| ${\mathfrak g}	ext{-action }\gamma$                | Anchor $\rho$ of $E$              |
|                                                    | & E-connections                   |
| Canonical flat connection $ abla^0$                | General connection $ abla$ on $E$ |
| on $L \times \mathfrak{g}$                         |                                   |

### Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 $\leadsto$  We will use a general connection  $\nabla$  instead of  $\nabla^0$ , and  $\nabla$  may not be flat.

# Motivation 2 by S.-R. F.

Consider a semisimple Lie group G and a principal G-bundle  $P \rightarrow L$ :

$$(P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{A} \mathsf{T}L$$

### Gedankenexperiment

- **1** Adjoint connection  $\leftrightarrow$  Ehresmann connection on P.
- 2 Adjoint connection:

$$\nabla_X \nu := [A(X), \nu]_{\mathsf{T}P/G}$$

for all  $X \in \mathfrak{X}(L)$  and  $\nu \in \Gamma((P \times \mathfrak{g})/G)$ .

Motivation

# Motivation 2 by S.-R. F.

Consider a semisimple Lie group G and a principal G-bundle  $P \rightarrow L$ :

$$(P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{A} \mathsf{T}L$$

### Gedankenexperiment

- **4** Adjoint connection  $\leftrightarrow$  Ehresmann connection on P.
- Adjoint connection:

$$\nabla_X \nu \coloneqq [A(X), \nu]_{\mathsf{T}P/G}$$

for all  $X \in \mathfrak{X}(L)$  and  $\nu \in \Gamma((P \times \mathfrak{g})/G)$ .

# Motivation 2 by S.-R. F.

Consider a semisimple Lie group G and a principal G-bundle  $P \rightarrow L$ :

$$(P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{A} \mathsf{T}L$$

#### Gedankenexperiment

- **1** Adjoint connection  $\leftrightarrow$  Ehresmann connection on P.
- As parallel transport:

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^{P}_{\gamma}(p),v\right]$$

for all  $[p, v] \in (P \times \mathfrak{g})/G$ .

Motivation

# Motivation 2 by S.-R. F.

Consider a semisimple Lie group G and a principal G-bundle  $P \rightarrow L$ :

$$(P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{A} \mathsf{T}L$$

#### Gedankenexperiment

- **1** Adjoint connection  $\leftrightarrow$  Ehresmann connection on P.
- As parallel transport:

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \Big[\mathsf{PT}^{P}_{\gamma}(p), \mathsf{PT}^{0}_{\gamma}(v)\Big],$$

Lie algebra  $\mathfrak g$  as trivial bundle w/ canonical flat connection

#### Motivation

# Motivation 2 by S.-R. F.

Consider a semisimple Lie group G and a principal G-bundle  $P \rightarrow L$ :

$$(P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{A} \mathsf{T}L$$

### Gedankenexperiment

- **1** Adjoint connection  $\leftrightarrow$  Ehresmann connection on P.
- As parallel transport:

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \Big[\mathsf{PT}^P_{\gamma}(p) \cdot \kappa_{\gamma}, \kappa_{\gamma}^{-1} \cdot \mathsf{PT}^0_{\gamma}(v)\Big],$$

Lie algebra  ${\mathfrak g}$  as trivial bundle w/ canonical flat connection,  $\kappa_\gamma$  values in G & "suitable"

### Theorem (Field Redefinitions S.-R. F.)

This leads to an equivalence relation of gauge theories, preserving dynamics and kinematics.

But: In the curved sense! Curvature terms appear.

### Motivation (S.-R. F.)

- How to formulate gauge theory such that it is invariant under field redefinitions?
- ② Are there curved theories which are **not** equivalent to classical ones?

### Theorem (Field Redefinitions S.-R. F.)

This leads to an equivalence relation of gauge theories, preserving dynamics and kinematics.

But: In the curved sense! Curvature terms appear.

### Motivation (S.-R. F.)

- How to formulate gauge theory such that it is invariant under field redefinitions?
- ② Are there curved theories which are **not** equivalent to classical ones?

### We will only focus on Yang-Mills theories:

|               | Classical                   | Curved             |
|---------------|-----------------------------|--------------------|
| Infinitesimal | Lie algebra ${\mathfrak g}$ |                    |
| Integrated    | Lie group <i>G</i>          | LGB <sup>2</sup> 𝒯 |



 $<sup>^{1}</sup>LAB = Lie algebra bundle$ 

<sup>&</sup>lt;sup>2</sup>LGB = Lie group bundle

Principal bundle

### Definition (LGB actions, simplified)

$$\mathscr{S} \stackrel{\pi}{\longrightarrow} \overset{\mathcal{G}}{L}$$

 $\mathscr{P} \stackrel{\pi}{\to} L$  a fibre bundle. A **right-action of**  $\mathscr{G}$  **on**  $\mathscr{P}$  is a smooth map  $\mathscr{P} * \mathscr{G} := \pi^* \mathscr{G} = \mathscr{P} \times_L \mathscr{G} \to \mathscr{P}$ ,  $(p,g) \mapsto p \cdot g$ , satisfying the following properties:

$$\pi(p \cdot g) = \pi(p), \tag{1}$$

$$(p \cdot g) \cdot h = p \cdot (gh), \tag{2}$$

$$p \cdot e_{\pi(p)} = p \tag{3}$$

for all  $p \in \mathscr{P}$  and  $g, h \in \mathscr{G}_{\pi(p)}$ , where  $e_{\pi(p)}$  is the neutral element of  $\mathscr{G}_{\pi(p)}$ .

Principal bundle

### Definition (Principal bundle)

Still a fibre bundle

$$egin{array}{c} G & \longrightarrow \mathscr{P} & & \downarrow_\pi \ & \downarrow_L & & \downarrow_L \end{array}$$

but with  $\mathscr{G}$ -action

$$egin{array}{ccc} \mathscr{P} imes \mathscr{G} & o \mathscr{P} \ \mathscr{P} st \mathscr{G} & \end{array}$$

simply transitive on fibres of  $\mathcal{P}$ , and "suitable" atlas.

### Connection on $\mathcal{P}$ : Idea



But:

$$r_g:\mathscr{P}_{\mathsf{X}} o\mathscr{P}_{\mathsf{X}}$$
  $\mathrm{D}_{\mathsf{P}}r_g$  only defined on vertical structure

### Connection on $\mathcal{P}$ : Idea



But:

$$r_g: \mathscr{P}_{\mathsf{X}} o \mathscr{P}_{\mathsf{X}}$$
  $\Rightarrow$   $\mathrm{D}_p r_g$  only defined on vertical structure

### Connection on $\mathcal{P}$ : Idea



Use 
$$\sigma \in \Gamma(\mathcal{G})$$
:  $r_{\sigma}(p) := p \cdot \sigma_{x}$ 

### Connection on $\mathcal{P}$ : Revisiting the classical setup

If  $\mathscr{P}$  a typical principal bundle ( $\mathscr{G}$  trivial,  $\sigma \equiv g$  constant), and H a connection:



## Connection on $\mathcal{P}$ : Revisiting the classical setup

If  $\mathcal{P}$  a typical principal bundle ( $\mathcal{G}$  trivial,  $\sigma \equiv g$  constant), and H a connection:



### Remarks (Integrated case)

Parallel transport  $\mathsf{PT}^{\mathscr{P}}_{\gamma}$  in  $\mathscr{P}$ :

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p\cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p)\cdot g$$

where  $\gamma: \textit{I} \rightarrow \textit{L}$  is a base path

# Connection on $\mathcal{P}$ : General case

### Remarks (Integrated case)

Ansatz: Introduce connection on  $\mathcal{G}$ ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g).$$

#### Back to the roots

- $\mathfrak{G}\cong\mathsf{L}\times\mathsf{G}$
- 2 Equip \$\mathcal{G}\$ with canonical flat connection

### Connection on $\mathcal{P}$ : General case

### Remarks (Integrated case)

Ansatz: Introduce connection on  $\mathcal{G}$ ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g).$$

#### Back to the roots

- 2 Equip  $\mathscr{G}$  with canonical flat connection

### Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.])

A surjective submersion  $\pi_{\mathcal{T}}\colon \mathcal{T}\to L$  so that one has a commuting diagram



Ehresmann connection:

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(t \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{T}}(t) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g)$$

Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(t) = t \cdot \mathsf{g}_{\gamma_0}$$

for some  $g_{\gamma_0} \in \mathcal{G}_{\pi_{\mathcal{T}}(t)}$ , where  $\gamma_0$  is a contractible loop.

### Definition (Multiplicative YM connection, [S.-R. F.])

On  ${\mathscr G}$  there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

#### Remarks

There is a simplicial differential  $\delta$  on  $\mathscr{G} \stackrel{\pi_\mathscr{C}}{\to} L$  with Lie algebra bundle  $\mathscr{Q}$ 

$$\delta: \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k \text{ times}}; \pi_{\mathscr{C}}^{*}g) \to \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k+1 \text{ times}}; \pi_{\mathscr{C}}^{*}g)$$

such that the definition of the multiplicative Yang-Mills connection is equivalent to the **compatibility conditions** 

- Connection closed
- Curvature exact ([S.-R. F.])

#### Remarks

On the Lie algebra bundle g we have a connection  $\nabla$  with

$$\nabla ([\mu, \nu]_{g}) = [\nabla \mu, \nu]_{g} + [\mu, \nabla \nu]_{g},$$

$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

#### Example

Given a short exact sequence of algebroids

$$g \longrightarrow E \longrightarrow TL$$

with splitting  $\chi \colon \mathrm{T} L \to E$ , then

$$\nabla_{X}\nu = [\chi(X), \nu]_{E},$$
  
$$\zeta(X, X') = [\chi(X), \chi(X')]_{E} - \chi([X, X']).$$

#### Remarks

On the Lie algebra bundle g we have a connection  $\nabla$  with

$$\nabla ([\mu, \nu]_{g}) = [\nabla \mu, \nu]_{g} + [\mu, \nabla \nu]_{g},$$

$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

### Example

Given a short exact sequence of algebroids

$$g \longrightarrow E \longrightarrow TL$$

with splitting  $\chi \colon \mathrm{T} L \to E$ , then

$$\nabla_{X}\nu = [\chi(X), \nu]_{E},$$
  
$$\zeta(X, X') = [\chi(X), \chi(X')]_{E} - \chi([X, X']).$$

Field strength

### Integrating Alexei Kotov's and Thomas Strobl's idea

### Definition (Principal bundle connection, [S.-R. F.])

- ullet On  $\mathcal{G}$ : Multiplicative Yang-Mills connection
- On  $\mathcal{P}$ : Ehresmann connection

### Definition (Generalized curvature/field strength F of A, [S.-R. F.])

We define

$$F := \mathrm{d}^{\pi^* \nabla} A + \frac{1}{2} [A \stackrel{\wedge}{,} A]_{\pi^* \mathscr{Q}} + \pi^! \zeta.$$

### Integrating Alexei Kotov's and Thomas Strobl's idea

### Definition (Principal bundle connection, [S.-R. F.])

- On  $\mathcal{G}$ : Multiplicative Yang-Mills connection
- On  $\mathscr{P}$ : Ehresmann connection

### Definition (Generalized curvature/field strength F of A, [S.-R. F.])

We define

$$F := \mathrm{d}^{\pi^* \nabla} A + \frac{1}{2} [A \stackrel{\wedge}{,} A]_{\pi^* \mathscr{Q}} + \pi^! \zeta.$$

### Theorem (Lagrangian, [S.-R. F.])

- ullet  $\kappa$  be an  $\operatorname{Ad}$ -invariant fibre metric on g,
- L a spacetime, and \* its Hodge star operator,
- $(U_i)_i$  open covering of L with subordinate gauges  $s_i \in \Gamma(\mathscr{P}|_{U_i})$ .

Then the Lagrangian  $\mathfrak{L}_{\mathrm{CYM}}[A]$ , defined locally by

$$(\mathfrak{L}_{\mathrm{CYM}}[A])\big|_{U_i} := -\frac{1}{2}\kappa(F_{s_i} \stackrel{\wedge}{,} *F_{s_i}),$$

is well-defined, and

$$\mathfrak{L}_{\mathrm{CYM}}[K^!A] = \mathfrak{L}_{\mathrm{CYM}}[A]$$

for all principal bundle automorphisms K.

Classical theory

### Back to the roots

- $\textbf{ @ Equip } \mathcal{G} \text{ with canonical flat connection }$

Example

# Example (Hopf fibration $\mathbb{S}^7 o \mathbb{S}^4$ , [S.-R. F.])

Let P be the Hopf bundle

$$\mathrm{SU}(2)\cong \mathbb{S}^3\longrightarrow \mathbb{S}^7$$
  $\downarrow$   $\mathbb{S}^4$ 

Define  $\mathscr{P} := \mathscr{G}$  as the inner group bundle of P,

$$\mathscr{G} := c_{\mathrm{SU}(2)}(P) := (P \times \mathrm{SU}(2)) / \mathrm{SU}(2).$$

This principal  $c_{\mathrm{SU}(2)}(P)$ -bundle admits the structure as curved Yang-Mills gauge theory; there is no description as classical gauge theory.

Applications: Classifying singular foliations (joint work w/ Camille Laurent-Gengoux)

Why foliations?



Why foliations?

### **Singular Foliations:**

- Gauge Theory (Ex.: Singular foliation ↔ Symmetry breaking → Higgs mechanism)
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
- . . .

#### Definition (Smooth singular foliation)

A smooth singular foliation  $\mathcal{F}$  on a smooth manifold is a subspace of  $\mathfrak{X}_c(M)$  so that

- it is involutive,
- it is stable under  $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

#### Definition (Smooth singular foliation)

A smooth singular foliation  $\mathcal{F}$  on a smooth manifold is a subspace of  $\mathfrak{X}_c(M)$  so that

- it is **involutive**, *i.e.*  $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$ ,
- it is stable under  $C^{\infty}(M)$ -multiplication,
- it is **locally finitely generated**.

#### Definition (Smooth singular foliation)

A smooth singular foliation  $\mathscr{F}$  on a smooth manifold is a subspace of  $\mathfrak{X}_c(M)$  so that

- it is **involutive**, *i.e.*  $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$ ,
- it is stable under  $C^{\infty}(M)$ -multiplication, i.e.  $fX \in \mathcal{F}$  for all  $f \in C^{\infty}(M)$  and  $X \in \mathcal{F}$ ,
- it is **locally finitely generated**.

## Definition (Smooth singular foliation)

A smooth singular foliation  $\mathscr{F}$  on a smooth manifold is a subspace of  $\mathfrak{X}_c(M)$  so that

- it is **involutive**, *i.e.*  $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$ ,
- it is stable under  $C^{\infty}(M)$ -multiplication, i.e.  $fX \in \mathcal{F}$  for all  $f \in C^{\infty}(M)$  and  $X \in \mathcal{F}$ ,
- it is **locally finitely generated**, i.e. around each  $p \in M$  there is an open neighbourhood U and a finite family  $(X^i)_i^r$   $(X^i \in \mathcal{F})$  such that for all  $X \in \mathcal{F}$  there are  $f_i \in C^{\infty}(M)$  satisfying on U.

$$X=\sum_i f_i X^i.$$

## Remarks (Leaves)

Following the flows in  $\mathcal{F}$ , this gives rise to a partition of connected immersed submanifolds in M.







#### Theorem $(\mathscr{F} ext{-connections})$

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport  $PT_{\gamma}$  has values in  $Sym(\tau_{I}, \tau_{I'})$ .
- For a contractible loop  $\gamma_0$  at I:  $PT_{\gamma_0}$  values in  $Inner(\tau_I)$ .

# Example of a transverse foliation $\tau$ :



#### Remarks

- Inner( $\tau_l$ ) maps each circle to itself
- Sym $(\tau_I)$  allows to exchange circles
- Both preserve  $\tau_I$  and fix the origin

## Idea



#### Idea

Generators of  $\mathcal{F}$  given by  $\mathcal{F}_{projectable}$ :

$$\mathbb{H}(X) + \overline{\nu}$$
,

where  $X \in \mathfrak{X}(L)$ ,  $\mathbb{H}(X)$  its projectable horizontal lift,  $\nu \in \Gamma(\operatorname{inner}(\tau))$  and  $\overline{\nu}$  its fundamental vector field.



#### Idea

Fix I and given  $\tau_I$ : Reconstruct  $\mathscr{F}$ .

$$[\mathbb{H}(X) + \overline{\nu}, \mathbb{H}(X') + \overline{\mu}] = \mathbb{H}([X, X']) + \overline{\dots}$$

$$= \underbrace{[\mathbb{H}(X), \mathbb{H}(X')]}_{\text{$\sim$ curvature}}$$

$$+ \underbrace{[\mathbb{H}(X), \overline{\mu}] - [\mathbb{H}(X'), \overline{\nu}]}_{\text{$\sim$ connection}} + \overline{[\nu, \mu]}$$

# Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on  $\mathcal G$  and a Yang-Mills connection  $\mathbb H$  on  $\mathcal T$ , then there is a natural foliation on  $\mathcal T$  generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where  $X \in \mathfrak{X}(L)$  and  $\nu \in \Gamma(g)$ .

#### Proof

We have

$$[\mathbb{H}(X), \overline{\nu}] = \overline{\nabla_X \nu},$$
$$[\mathbb{H}(X), \mathbb{H}(X')] = \mathbb{H}([X, X']) + \overline{\zeta(X, X')},$$

where  $\zeta \in \Omega^2(L; q)$ .

# Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on  $\mathcal G$  and a Yang-Mills connection  $\mathbb H$  on  $\mathcal T$ , then there is a natural foliation on  $\mathcal T$  generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where  $X \in \mathfrak{X}(L)$  and  $\nu \in \Gamma(g)$ .

#### Proof.

We have

$$\begin{split} [\mathbb{H}(X), \overline{\nu}] &= \overline{\nabla_X \nu}, \\ [\mathbb{H}(X), \mathbb{H}(X')] &= \mathbb{H}([X, X']) + \overline{\zeta(X, X')}, \end{split}$$

where  $\zeta \in \Omega^2(L; \mathcal{Q})$ .

Fix a point  $l \in L$  with transverse model  $(\mathbb{R}^d, \tau_l)$ :

- ② P a principal G-bundle, equipped with an ordinary connection

Fix a point  $l \in L$  with transverse model  $(\mathbb{R}^d, \tau_l)$ :

- $oldsymbol{Q}$  P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{G} := (P \times G)/G$ , the inner group bundle

Fix a point  $l \in L$  with transverse model  $(\mathbb{R}^d, \tau_l)$ :

- 2 P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$
- $\mathfrak{T} := \left(P \times \mathbb{R}^d\right) / G$ , the normal bundle

Fix a point  $l \in L$  with transverse model  $(\mathbb{R}^d, \tau_l)$ :

- 2 P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$
- $\mathscr{T} := (P \times \mathbb{R}^d) / G$ , the normal bundle

#### Remarks

- ullet Think of the induced connection on  ${\mathcal T}$  as the  ${\mathcal F}$ -connection.
- $\mathcal{G}$  acts on  $\mathcal{T}$  (canonically from the left).

Reconstructing Foliations

## Idea (Leaf L simply connected)

Fix a point  $l \in L$  with transverse model  $(\mathbb{R}^d, \tau_l)$ :

- 2 P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$

#### Remarks

- $\bullet$  Think of the induced connection on  ${\mathcal T}$  as the  ${\mathcal F}\text{-connection}.$
- $\mathscr G$  acts on  $\mathscr T$  (canonically from the left).

## Proposition ([C. L.-G., S.-R. F.])

The associated connection on  $\mathcal G$  is a multiplicative Yang-Mills connection and the one on  $\mathcal T$  is a corresponding Yang-Mills connection.

#### Remarks

Thus, we have a singular foliation on  $\mathcal{T}$ , which, by construction, admits L as a leaf and  $\tau_I$  as transverse data.

#### 0000000000000000000

# Proposition ([C. L.-G., S.-R. F.])

The reconstructed foliation is independent of the choice of connection on P.



# Proposition ([C. L.-G., S.-R. F.])

The reconstructed foliation is independent of the choice of connection on *P*.



# Summary

## Remarks ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model  $\left(\mathbb{R}^d, au_I
  ight)$
- Principal Inner( $\tau_I$ )-bundles over L

## Remarks (Classification of curved Yang-Mills gauge theories)

If  $\mathscr G$  acts faithfully on  $\mathscr T$ , preserving L, then a curved Yang-Mills gauge theory can be flattened if and only if P is flat.

| Curved YM Gauge Theory           | Singular Foliations ${\mathscr F}$  |
|----------------------------------|-------------------------------------|
| Multiplicative Yang-Mills con-   | ${\mathcal F}$ -connection          |
| nection                          |                                     |
| Flat gauge theory                | Flat singular foliation             |
| Field redefinition of connection | Different choice of $\mathscr{F}$ - |
| on ${\mathscr G}$                | connection                          |

# Thank you!