Dual pivot algorithm

- Start from a dual feasible dictionary.
- ► Choose a leaving variable the one with value.
 - If none then the dictionary is feasible, thus both primal and dual feasible. Thus, optimal.
- If the pivot row (the row of the leaving variable) has no positive coefficient, then the dual problem is unbounded, and the primal problem is infeasible.
- Otherwise, compare the ratio for the each nonbasic variable:

the corresponding coefficient of the objective row positive coefficient of the pivot row

Choose the entering variable such that the ratio is the least negative (smallest absolute value).

Dual Pivot: Example

$$x_1$$
 x_2 entering

$$\frac{-1}{3/2}$$
 $\frac{-1}{1/2}$ X_1 X_3 X_1 entering

primal and dual feasible, so optimal!

Lecture 27. Parametric LP

Basic idea for sensitivity analysis How can we find the new optimal solution in the new situation, using the old optimal solution of the problem, without having to solve the new problem from scratch?

- ▶ Changing c̄
 - affects \vec{c}_B , \vec{c}_N (so $[\vec{c}_N^T \vec{c}_B^T B^{-1} N]$),
 - but it does not affect $B, N, \vec{x}_B^* = B^{-1}\vec{b}$.
 - It does not affect feasibility of the primal basic solution.
- ightharpoonup Changing \vec{b}
 - affects $\vec{x}_B^* = B^{-1}\vec{b}$
 - ▶ but it does not affect $B, N, \vec{c}_B, \vec{c}_N, [\vec{c}_N^T \vec{c}_B^T B^{-1} N], \& (\vec{y}^*)^T = \vec{c}_B^T B^{-1}$.
 - It does not affect dual feasibility of the dual basic solution.
- Under the changes, we may recycle unaffected items.

Parametric LP: Example with changing \vec{b} .

Question: Find the optimal basic solution $\vec{x}^*(s)$ and the optimal value $z^*(s)$ for all s.

Step1: s = 0.

Solve it for s=0, that is, for $\vec{b}=(2,2)$. For example, we applied the revised simplex method and in the final iteration, and we got an optimal feasible dictionary with

$$\vec{X}_{B}^{*} = \begin{bmatrix} X_{2}^{*} \\ X_{1}^{*} \end{bmatrix} = \begin{bmatrix} 2/3 \\ 2/3 \end{bmatrix}, \quad N = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix},$$

$$\vec{C}_{N}^{T} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}, \quad \vec{C}_{B}^{T} = \begin{bmatrix} 1 & 1 \end{bmatrix},$$

and $(\vec{y}^*)^T = \vec{c}_B^T B^{-1} = \begin{bmatrix} y_1^* & y_2^* \end{bmatrix} = \begin{bmatrix} 1/3 & 1/3 \end{bmatrix}$ is the optimal dual solution.

Remaining steps for parametric LP with changing \vec{b} :

- ► From s = 0 case, can recycle $B, N, \vec{c}_B, \vec{c}_N, [\vec{c}_N^T \vec{c}_B^T B^{-1} N], & <math>(\vec{y}^*)^T = \vec{c}_B^T B^{-1}.$
- \vec{y}^* is dual feasible, its dual feasibility is not affected by the change of \vec{b} .
- ► Can use $\vec{x}_B^* = B^{-1}\vec{b}$, to get $\vec{x}_B^*(s)$.
- $ightharpoonup ec{x}_B^*(s)$ is optimal for those s with $ec{x}_B^*(s) \geq \vec{0}$.
- Until now the dictionary (B, N, etc) is the result from s = 0 case, except $\vec{x}_B^*(s)$. We have a dictionary with parameter s.
- For the other range of s, this basic solution $\vec{x}^*(s)$ is not feasible.
- For this other range of s, dual pivot on the dictionary. This will change \vec{y}^* but dual feasibility remains valid.
- ▶ Dual pivot will change the dictionary (*B*, *N*, etc).
- ▶ In the new dictionary, will get a range of *s* with optimality.
- For other *s*, dual pivot again, get a range of *s* with optimality.
- Repeat until to cover all s.

Parametric LP with changing \vec{b}

