- Gg. H522

JAN 1 8 2002 SE

00862.022439.

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re A	Application of:)	Eveninan Net Vet	Andonad
YOSH	IIKO IIDA ET AL.)	Examiner: Not Yet	C
Applic	eation No.: 09/987,779	:	Group Art Unit: 26	
• •	November 16, 2001	:		RECEIVED
For:	IMAGE PROCESSING	;		JAN 2 8 2002
roi.	APPARATUS AND METHOD THEREOF	, :)	January 17, 2002	Technology Center 2600
	nissioner for Patents			

CLAIM TO PRIORITY

Sir:

Applicants hereby claim priority under the International Convention and all rights to which they are entitled under 35 U.S.C. § 119 based upon the following Japanese Priority Application:

356144-2000, filed November 22, 2000.

A certified copy of the priority document is enclosed.

RECEIVED

JAN 2 4 2002

Technology Center 2600

Applicants' undersigned attorney may be reached in our New York office by telephone at (212) 218-2100. All correspondence should continue to be directed to our address given below.

Respectfully submitted,

FITZPATRICK, CELLA, HARPER & SCINTO

30 Rockefeller Plaza

New York, New York 10112-3801

Facsimile: (212) 218-2200

NY_MAIN 231858 v 1

(translation of the front page of the priority document of Japanese Patent Application No. 2000-356144)

PATENT OFFICE JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this Office.

RECEIVED

JAN 2 4 2002

Technology Center 2600

Date of Application: November 22, 2000

Application Number: Patent Application 2000-356144

Applicant(s) : Canon Kabushiki Kaisha

December 14, 2001 Commissioner, Patent Office

Kouzo OIKAWA

Certification Number 2001-3108554

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

2000年11月22日

RECEIVED

Date of Application:

JAN 2 4 2002

Application Number:

特願2000-356144

Technology Center 2600

Applicant(s):

キヤノン株式会社

RECEIVED

JAN 2 8 2002

Technology Center 2600

CERTIFIED COPY OF PRIORITY DOCUMENT

2001年12月14日

Japan Patent Office

特2000-356144

【書類名】

特許願

【整理番号】

4278215

【提出日】

平成12年11月22日

【あて先】

特許庁長官殿

【国際特許分類】

G06K 15/00

【発明の名称】

画像処理装置およびその方法

【請求項の数】

20

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

飯田 祥子

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

山田 修

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

蒔田 剛

【特許出願人】

【識別番号】

000001007

【氏名又は名称】

キヤノン株式会社

【代理人】

【識別番号】

100076428

【弁理士】

【氏名又は名称】

大塚 康徳

【電話番号】

03-5276-3241

【選任した代理人】

【識別番号】

100101306

【弁理士】

【氏名又は名称】 丸山 幸雄

【電話番号】

03-5276-3241

【選任した代理人】

【識別番号】 100115071

【弁理士】

【氏名又は名称】 大塚 康弘

【電話番号】

03-5276-3241

【手数料の表示】

【予納台帳番号】

003458

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0001010

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 画像処理装置およびその方法

【特許請求の範囲】

【請求項1】 画像入力手段によって入力された画像信号を画像出力手段によって出力する画像処理装置であって、

前記画像入力手段より入力された画像信号を前記画像出力手段へ出力する際に、該画像入力手段および画像出力手段の両方の特性に基づいて該画像信号の形態 を制御する形態制御手段

を有することを特徴とする画像処理装置。

【請求項2】 前記画像入力手段の特性を取得する入力特性取得手段と、 前記画像出力手段の特性を取得する出力特性取得手段と、を更に有し、

前記形態制御手段は、前記画像入力手段および画像出力手段の両方の特性に基 づいてそれぞれの処理信号形態を特定し、該信号形態に基づいて前記画像出力手 段へ出力する画像信号の形態を制御することを特徴とする請求項1記載の画像処 理装置。

【請求項3】 前記画像入力手段は第1の形態の画像信号を出力し、 前記画像出力手段は第2の形態の画像信号を入力し、

前記形態制御手段は、前記第1の形態の画像信号に基づき前記第2の形態の画 像信号を出力するように制御することを特徴とする請求項2記載の画像処理装置

【請求項4】 前記形態制御手段は、前記第1の形態が前記第2の形態を含む複数種類の形態であれば、該複数種類の形態の画像信号から前記第2の形態の画像信号を選択して出力することを特徴とする請求項3記載の画像処理装置。

【請求項5】 前記形態制御手段は、前記第1の形態の画像信号に基づき前 記第2の形態の画像信号を作成して出力することを特徴とする請求項3記載の画 像処理装置。

【請求項6】 前記形態制御手段は、前記第2の形態の画像信号が作成できなければエラー処理を行うことを特徴とする請求項5記載の画像処理装置

【請求項7】 前記形態制御手段は、前記第1の形態と第2の形態が同一で

あれば、前記画像入力手段から入力された画像信号をそのまま前記画像出力手段 へ出力することを特徴とする請求項3記載の画像処理装置。

【請求項8】 前記第1および第2の形態の画像データはそれぞれ、表色データ、分光分布データ、および表色データと分光分布データ、のいずれかであることを特徴とする請求項3乃至7のいずれかに記載の画像処理装置。

【請求項9】 前記表色データはRGBデータであることを特徴とする請求項8記載の画像処理装置。

【請求項10】 前記画像入力手段は、被写体を撮影することによって画像信号を入力することを特徴とする請求項1記載の画像処理装置。

【請求項11】 前記画像入力手段は着脱可能であることを特徴とする請求項1記載の画像処理装置。

【請求項12】 前記画像出力手段は着脱可能であることを特徴とする請求項1記載の画像処理装置。

【請求項13】 画像入力装置と画像出力装置の間に接続され、該画像入力装置より入力された画像信号を該画像出力装置へ出力する画像処理装置であって

該画像入力装置および画像出力装置の両方の特性に基づいて、前記画像出力装置へ出力する画像信号の形態を制御する形態制御手段 を有することを特徴とする画像処理装置。

【請求項14】 前記画像入力装置の特性を取得する入力特性取得手段と、 前記画像出力装置の特性を取得する出力特性取得手段と、を更に有し、

前記形態制御手段は、前記画像入力装置および画像出力装置の両方の特性に基づいてそれぞれの処理信号形態を特定し、該信号形態に基づいて前記画像出力装置へ出力する画像信号の形態を制御することを特徴とする請求項13記載の画像処理装置。

【請求項15】 前記形態制御手段は、前記画像出力装置へ出力する画像信号の形態が該画像出力装置における処理信号形態となるように制御することを特徴とする請求項14記載の画像処理装置。

【請求項16】 前記画像入力装置は、被写体を撮影した画像信号を出力す

る撮像装置であることを特徴とする画像処理システム。

【請求項17】 画像入力手段によって入力された画像信号を画像出力手段によって出力する画像処理装置における画像処理方法であって、

前記画像入力手段より入力された画像信号を前記画像出力手段へ出力する際に、該画像入力手段および画像出力手段の両方の特性に基づいて該画像信号の形態 を制御する形態制御ステップ

を有することを特徴とする画像処理方法。

【請求項18】 前記形態制御ステップは、

前記画像入力手段の特性を取得する入力特性取得ステップと、

前記画像出力手段の特性を取得する出力特性取得ステップと、

前記画像入力手段および画像出力手段の両方の特性に基づいてそれぞれの処理 信号形態を特定する形態特定ステップと、

該信号形態に基づいて前記画像処理手段へ出力する画像信号の形態を決定する 形態決定ステップと、

前記入力手段によって入力された画像信号を、前記形態決定ステップにおいて 決定された形態に変換する変換ステップと、

を有することを特徴とする請求項17記載の画像処理方法。

【請求項19】 画像入力手段によって入力された画像信号を画像出力手段によって出力する画像処理装置における画像処理手順をコンピュータに実行させるように構成されたプログラムであって、

前記画像入力手段より入力された画像信号を前記画像出力手段へ出力する際に、該画像入力手段および画像出力手段の両方の特性に基づいて該画像信号の形態を制御する形態制御ステップのコード を有することを特徴とするプログラム。

【請求項20】 画像入力手段によって入力された画像信号を画像出力手段によって出力する画像処理装置における画像処理手順をコンピュータに実行させるように構成されたプログラムを記録した記録媒体であって、該プログラムは、

前記画像入力手段より入力された画像信号を前記画像出力手段へ出力する際に 該画像入力手段および画像出力手段の両方の特性に基づいて該画像信号の形態

を制御する形態制御ステップのコード を有することを特徴とする記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、画像信号の入力系と出力系との関係に基づいて最適な画像処理を行う画像処理装置およびその方法に関する。

[0002]

【従来の技術】

近年の画像処理技術の発達に伴い、被写体(以下、オブジェクト)を撮像して その画像信号を入力するデジタルカメラ等の画像入力装置の普及がめざましい。

[0003]

従来の画像入力装置としては、オブジェクトの表色データとしてRGB信号を 処理するタイプと、オブジェクトの分光分布データおよび該オブジェクトを照射 する環境光の分光分布データを用いることによって、照明光によって照射される オブジェクトの表色データを正確に推定してマルチ分光分布データ処理を行うタ イプとに大別される。

[0004]

前者は、処理工程が簡便であるため処理時間が短く、コスト的にも有利である。一方、後者は、処理工程が複雑であるために処理時間およびコスト面では不利であるものの、より正確な色再現性を実現することが可能である。

[0005]

また、入力されたRGB信号に基づいて分光分布データを推定することによって、マルチ分光分布データ処理による正確な色再現性を実現しつつ、処理工程を 簡略化させたRGB/分光分布データ処理を行う装置も知られている。

[0006]

【発明が解決しようとする課題】

上記従来の画像入力装置においては、その内部の信号処理系が、上述したようなRGB信号処理系、マルチ分光分布データ処理系、もしくはRGB/分光分布

[0007]

従って、信号処理系の異なる出力ユニットを同一の画像入力装置に対して接続することはできず、すなわち出力ユニットの互換性はなかった。従って例えば、 RGB信号処理系の装置に対して分光分布データ処理系の出力ユニットを備える ことはできなかった。

[0008]

本発明は上述した問題を解決するためになされたものであり、複数種類の入力 ユニットおよび出力ユニットについて互換性を有する画像処理装置およびその方 法を提供することを目的とする。

[0009]

【課題を解決するための手段】

上記目的を達成するための一手段として、本発明の画像処理装置は以下の構成 を備える。

[0010]

すなわち、画像入力手段によって入力された画像信号を画像出力手段によって 出力する画像処理装置であって、前記画像入力手段より入力された画像信号を前 記画像出力手段へ出力する際に、該画像入力手段および画像出力手段の両方の特 性に基づいて該画像信号の形態を制御する形態制御手段を有することを特徴とす る。

[0011]

更に、前記画像入力手段の特性を取得する入力特性取得手段と、前記画像出力 手段の特性を取得する出力特性取得手段と、を有し、前記形態制御手段は、前記 画像入力手段および画像出力手段の両方の特性に基づいてそれぞれの処理信号形 (*)

態を特定し、該信号形態に基づいて前記画像処理手段へ出力する画像信号の形態 を制御することを特徴とする。

[0012]

例えば、前記画像入力手段は第1の形態の画像信号を出力し、前記画像出力手段は第2の形態の画像信号を入力し、前記形態制御手段は、前記第1の形態の画像信号に基づき前記第2の形態の画像信号を出力するように制御することを特徴とする。

[0013]

また、画像入力装置と画像出力装置の間に接続され、該画像入力装置より入力 された画像信号を該画像出力装置へ出力する画像処理装置であって、該画像入力 装置および画像出力装置の両方の特性に基づいて、前記画像出力装置へ出力する 画像信号の形態を制御する形態制御手段を有することを特徴とする。

[0014]

【発明の実施の形態】

以下、本発明に係る一実施形態について、図面を参照して詳細に説明する。

[0015]

<第1実施形態>

図1は、本実施形態における画像入力装置において、特に本発明の特徴を示す 機能構成を示すブロック図である。

[0016]

201はオブジェクトを撮影して画像データを入力する入力ユニットであり、画素毎の表色データ(本実施形態ではRGBデータ)を入力する表色データ入力部202と、画素毎の分光分布データを入力する分光分布データ入力部203を有する。

[0017]

入力ユニット201において入力された表色データおよび分光分布データは、画像処理ユニット204に入力される。画像処理ユニット204は、入力ユニット201における入力信号形態等、入力系の特性情報を獲得する入力系情報獲得部205と、後段の出力ユニット208における処理信号形態等、出力系の特性情報を獲得する出力系情報獲得部206と、獲得された入力系情報および出力系情報に基づいて出

(華)

カユニット208に渡すべき信号形態を、入力系情報獲得部205において獲得された信号形態のうちから選択する出力信号選択部207と、によって構成される。画像処理ユニット204からの出力画像データは、出力信号選択部207において選択された信号形態によって出力される。

[0018]

画像処理ユニット204から出力された画像データは、出力ユニット208において 適切な画像処理が施された後、外部機器へ出力される。本実施形態においては、 出力ユニット208として、処理信号形態の異なる複数の処理ユニットを使用する ことが可能である。具体的には、表色データのみを入力して処理・出力する表色 処理出力ユニット209、表色データおよび分光分布データの両方を入力して処理 ・出力する表色/分光分布処理出力ユニット210、および分光分布データのみを 入力して処理・出力する分光分布処理出力ユニット211のいずれかが、出力ユニット208として画像処理ユニット204に対して接続可能である。

[0.019]

図2は、図1に示す画像入力装置を構成する各ユニットの接続状態を示すブロック図である。

[0020]

同図において、入力ユニット201は、上述した表色データ入力部202および分光 分布データ入力部203に加えて、入力した各形態の画像データそれぞれに対して AD変換(デジタル信号への変換)やシェーディング補正等の適切な画像処理を 施す画像処理部801と、処理後の画像データを後段の画像処理ユニット204へ送信 するための制御を行う通信インターフェース部802を備える。

[0021]

画像処理ユニット204は、上述した入力系情報獲得部205、出力系情報獲得部206、および出力信号選択部207によって構成される選択処理部805に加えて、選択処理部で選択された信号形態に応じた適切な画像処理を施す画像処理部804と、処理後の画像データの出力ユニット208への送信、および/または入力ユニット201からの画像データの受信を制御する通信インターフェース部803を備える。

[0022]

出力ユニット208は、画像処理ユニット204からの画像データの受信を制御する通信インターフェース部806と、受信した画像データの解析および出力画像データの作成を行う画像処理部807と、作成された出力画像データを不図示の外部機器へ出力する出力部808を備える。

[0023]

図2に示すように、本実施形態の画像入力装置を構成する各ユニット(入力ユニット201, 画像処理ユニット204および出力ユニット208)は、それぞれの通信インターフェース部802, 803および806を介して、画像データおよび各ユニットの特性情報を互いにやり取りすることができる。

[0024]

以下、上述した構成からなる本実施形態の画像入力装置における画像入力処理 について、図3を参照して詳細に説明する。

[0025]

図3は、入力ユニット201において表色データおよび分光分布データを入力し、 出力ユニット208に対して最適な信号形態の画像データを出力する処理を示すフ ローチャートである。

[0026]

まずステップS300において、入力ユニット201によりオブジェクトを撮影した画像データを入力する。尚、本実施形態においては、表色データ入力部202および分光分布データ入力部203の両方によって、それぞれ表色データおよび分光分布データが入力される。

[0027]

そしてステップS301で入力系情報獲得部205において入力ユニット201の特性情報(入力系情報)を獲得し、ステップS302で出力系情報獲得部206において出力ユニット208の特性情報(出力系情報)を獲得する。本実施形態においてはすなわち、入力系情報として入力ユニット201における表色データ入力部202および分光分布データ入力部203のそれぞれの特性情報が獲得され、出力系情報としては、現在接続されている出力ユニット208(表色処理出力ユニット209,表色/分光分布出力ユニット210および分光分布処理出力ユニット211のいずれか1つ)の特

性情報が獲得される。

[0028]

その後、ステップS300で入力した画像データを、本装置の有する出力ユニット 208において最適な形態で処理して出力するために、出力信号選択部207において 以下に示すステップS303~S307に示す処理を実行することにより、出力ユニット 208に対して出力すべき画像データの信号形態を、入力ユニット201において入力 された画像データの信号形態から選択する。以下、出力信号選択部207における 処理について説明する。

[0029]

ステップS303において、ステップS301で獲得した入力系情報に基づき、入力ユニット201において入力された画像データの信号形態(入力系信号形態)に関する情報を獲得する。ここで入力系信号形態とはすなわち、入力ユニット201において入力された信号形態であり、表色データ入力部202による入力に対応する「表色形態」、および分光分布データ入力部203による入力に対応する「分光分布形態」の2種である。

[0030]

次にステップS304において、ステップS302で獲得した出力系情報に基づき、出力ユニット208において処理される画像データの信号形態(出力系信号形態)に関する情報を獲得する。ここで出力系信号形態とはすなわち、現在接続されている出力ユニット208において処理可能な信号形態であり、表色処理出力ユニット209における処理に対応する「表色形態」、表色/分光分布出力ユニット210における処理に対応する「表色/分光分布形態」、および分光分布処理出力ユニット211における処理に対応する「分光分布形態」、の3種のうちのいずれかである

[0031]

そしてステップS305において、ステップS304で獲得した出力系信号形態に関する情報に基づき、画像処理ユニット204から出力ユニット208に対して出力すべき画像信号の形態(出力信号形態)を、ステップS303で獲得した入力系信号形態から選択・決定する。

具体的には、出力ユニット208として表色処理出力ユニット209が接続されていた場合、ステップS305において「表色形態」が選択される。また、表色/分光分布出力ユニット210が接続されていた場合には、ステップS305において「表色形態」および「分光分布形態」の両方が選択される。また、分光分布処理出力ユニット211が接続されていた場合には、ステップS305において「分光分布形態」が選択される。

[0033]

そしてステップS306において、ステップS300で入力した画像データをステップS305で決定した出力信号形態に変換することによって、出力ユニット208へ送出すべき画像データを作成し、ステップS307において該画像データを出力ユニット208へ送出する。

[0034]

以上のステップを経て出力ユニット208へ入力された画像データは、その信号 形態が該出力ユニット208における処理信号形態に一致している。従って出力ユニット208においては、画像処理ユニット204より受け取った出力画像データに基づいて所定の画像処理を行うことによって適切な出力信号を作成し、外部装置へ出力することができる。

[0035]

このように本実施形態においては、接続された出力ユニット208における処理信号形態に応じて、表色処理出力ユニット209に対しては表色データのみが出力され、表色/分光分布出力ユニット210に対しては表色データおよび分光分布データの両方が出力され、分光分布処理出力ユニット211に対しては分光分布データのみが出力される。

[0036]

以上説明したように本実施形態によれば、入力ユニット201における入力画像 データの信号形態のうち、出力ユニット208に対して最適な信号形態を選択する ことが可能となる。これにより、入力ユニット201における入力系信号形態が、 出力ユニット208における出力系信号形態に限定されない画像入力装置を実現す

[0037]

一般に、表色処理出力ユニット209としては例えば単純なRGBデータ処理を 行う装置が想定されるが、表色/分光分布処理出力ユニット210または分光分布 処理出力ユニット211としては、より高精度な色再現を実現するマルチ分光分布 データ処理装置が想定される。従って本実施形態によれば、画像入力装置におい て、安価な通常機器との互換性を保ちつつ、高詳細な色再処理装置をも接続する ことが可能となる。

[0038]

<第2実施形態>

以下、本発明に係る第2実施形態について説明する。

[0039]

上述した第1実施形態においては、入力ユニット201において表色データ入力 部201および分光分布データ入力部203の両方を備える構成について説明したが、 第2実施形態においては、入力ユニットとして分光分布データ入力部203のみを 備え、出力ユニット208の処理信号形態に応じて表色データを作成することを特 徴とする。

[0040]

図4は、第2実施形態における画像入力装置の特徴的な機能構成を示すブロック図である。同図において、上述した第1実施形態の図1と同様の構成には同一番号を付し、説明を省略する。

[0041]

なお、第1実施形態においては、出力信号選択部207は入力ユニット201で入力された信号形態のなかから、出力すべき信号形態を選択するとして説明したが、第2実施形態における出力信号選択部207は、入力ユニット201の信号形態に関わらず、出力ユニット208の処理信号形態のみに基づいて出力すべき信号形態を決

[0042]

第1実施形態と同様に、図4に示す画像処理ユニット402内の出力系情報獲得部406が、現在接続されている出力ユニット208の特性情報(表色処理出力ユニット209,表色/分光分布出力ユニット210および分光分布処理出力ユニット211のいずれか1つの特性情報)を出力系情報として獲得する。なお、第2実施形態においては入力ユニットとして分光分布データ入力部203のみを備えるため、その特性情報を獲得するための入力系情報獲得部を有していないが、もちろん、第1実施形態と同様に入力系情報獲得部を備えても良い。

[0043]

そして出力信号選択部207においては、出力系情報獲得部406で獲得した出力系情報に基づき、画像処理ユニット402から出力ユニット208に対して出力すべき画像信号の形態(出力信号形態)を、予め用意された信号形態から選択・決定する。ここで、予め用意された信号形態とは、「表色形態」、「表色/分光分布形態」および「分光分布形態」の3種である。

[0044]

ここで第2実施形態においては、入力ユニットとして分光分布データ入力部203のみを備えるため、表色データは入力されない。従って、出力信号選択部404において「表色形態」または「表色/分光分布形態」が選択された場合には、表色データ作成部403において、分光分布データ入力部203から入力された分光分布データに基づいて、表色データを作成する。表色データの作成方法の詳細については、後述する。

[0045]

出力信号切り換え部405は、分光分布データ入力部203からの分光分布データと、表色データ作成部403からの表色データが入力され、出力信号選択部207で決定された出力信号形態に基づいて、画像処理ユニット402から出力すべき画像信号を切り換える。具体的には、出力信号形態が「表色形態」であれば表色データのみを出力し、「表色/分光分布形態」であれば表色データと分光分布データの両方を出力し、「分光分布形態」であれば分光分布データのみを出力するように切

り換える。

[0046]

ここで、表色データ作成部403における表色データの作成方法について説明する。

[0047]

第1の方法として、入力された分光分布データをいったんデバイスインディペンデントな表色ベクトルデータに変換した後、ターゲットとなる表色系(例えばRGB)上の表色データに変換する方法がある。

[0048]

すなわち、分光分布データ入力部203より入力された分光分布データは、適宜 選択された表色系での等色関数のコンボリューション演算によって積分すること によって、3値を有する表色ベクトルデータ(3刺激値)に変換することができる 。なお、3値を有する表色ベクトルデータとしては、L*a*b*表色系やXYZ表色 系等の、デバイスインディペンデントな表色系を採用することが一般的である。 図5に、XYZ表色系における等色関数の例を示す。

[0049]

第2の方法として、入力された分光分布データを構成する複数の波長データの から3つを選択し、これを表色データの3値に変換する方法がある。

[0050]

すなわち、ターゲットとなる表色データの分光特性を予め保持しておき、入力された分光分布データから該表色データの分光特性に相当するデータのみを抽出して、表色データに変換する。例えば、表色データがRGB信号であるとすると、RGB信号の分光特性は図6に示す通りであるから、入力された分光分布データからRGB各色のピークを呈する3つの波長データを抽出し、これに基づいてRGB信号値を作成することができる。

[0051]

以上説明したように第2実施形態によれば、必要に応じて、入力されていない 形態の画像データを作成することにより、出力ユニット208に対して最適な形態 の画像データを出力することができる。

[0052]

従って、分光分布データのみを入力する画像入力装置において、出力ユニット208として表色処理出力ユニット209,表色/分光分布出力ユニット210,および分光分布処理出力ユニット211が互換性を有することができ、上述した第1実施形態と同様の効果が得られる。

[0053]

<その他の実施形態>

上述した第1実施形態においては入力ユニット201から表色データと分光分布 データが入力される場合について、また第2実施形態においては分光分布データ のみが入力される場合について説明したが、本発明はこの例に限定されない。

[0054]

図7の表に、本発明における、入力系信号形態と出力系信号形態との関係による、出力ユニットへ送出される画像データの形態の対応例を示す。該表において、入力信号形態が「表色/分光分布形態」である場合の列が上述した第1実施形態に相当し、同じく入力信号形態が「分光分布形態」である場合の列が第2実施形態に相当する。

[0055]

該対応表によれば、入力系信号形態が「表色形態」である場合、すなわち入力 ユニットから表色データのみが入力される場合には、それに基づいて分光分布データを作成することはできないため、出力系信号形態が「表色形態」である場合 のみ、適切な画像データ(表色データ)を出力ユニットに対して送出することが できる。それ以外の場合、すなわち出力系信号形態が「表色/分光分布形態」ま たは「分光分布形態」である場合には、出力ユニットに対して適切な形態の画像 データを送出することが不可能であるため、エラーを報知する。

[0056]

図7に示す対応表は、本発明の画像入力装置内において不図示のメモリに保持されており、たとえば、図3に示したステップS305において、入出力ユニットの信号形態に基づいて出力信号形態を決定する際に参照される。

[0057]

このように、入力系信号形態と出力系信号形態のとりうる全ての組み合わせについて、対応する画像データの形態を予め決定しておくことにより、入力ユニットおよび出力ユニットについて、それぞれ各信号形態の互換性を有することができる。すなわち、出力ユニットのみならず入力ユニットにおいても、表色データのみを入力するタイプと、表色データおよび分光分布データを入力するタイプと、分光分布データのみを入力するタイプの装置において、互換性が得られる。

[0058]

これにより、画像処理ユニットに対して入力ユニットおよび出力ユニットを着脱可能とし、装着された入力ユニットと出力ユニットにおける処理形態が異なっていた場合でも、適切な処理を行うことが可能となる。

[0059]

なお、上述した各実施形態においては、表色データとしてRGBデータを適用 することが最も一般的であることは言うまでもない。

[0060]

なお、本発明は、複数の機器(例えばホストコンピュータ、インターフェイス機器、リーダ、プリンタなど)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機、ファクシミリ装置など)に適用しても良い。

[0061]

また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(またはCPUまたはMPU)が記憶媒体に格納されたプログラムコードを読み出し実行することによっても達成されることは言うまでもない。

[0062]

この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。

[0063]

プログラムコードを供給するための記憶媒体としては、例えば、フロッピーデ

[0064]

また、コンピュータが読み出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

[0065]

さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

[0066]

【発明の効果】

以上説明したように本発明によれば、複数種類の入力ユニットおよび出力ユニットについて互換性を有する画像処理装置およびその方法を提供することができる。

【図面の簡単な説明】

【図1】

本発明に係る一実施形態である画像入力装置の機能構成を示すブロック図である。

【図2】

本実施形態における各ユニットの接続状態を示すブロック図である。

【図3】

本実施形態における画像入力処理を示すフローチャートである。

【図4】

第2 実施形態における画像入力装置の機能構成を示すブロック図である。

【図5】

等色関数の一例を示す図である。

【図6】

RGB分光分布特性の一例を示す図である。

【図7】

本発明における入力系と出力系の関係と信号形態の対応を示す表である。

【符号の説明】

- 201 入力ユニット
- 202 表色データ入力部
- 203 分光分布データ入力部
- 204 画像処理ユニット
- 205 入力系情報獲得部
- 206 出力系情報獲得部
- 207 出力信号選択部
- 208 出力ユニット
- 209 表色処理出力ユニット
- 210 表色/分光分布処理出力ユニット
- 211 分光分布処理出力ユニット
- 402 画像処理ユニット
- 403 表色データ作成部
- 404 出力信号選択部
- 405 出力信号切り替え部
- 406 出力系情報獲得部
- 409 分光分布データ処理出力装置
- 801,804,807 画像処理部
- 802,803,806 通信インターフェース部
- 805 選択処理部
- 808 出力部

【書類名】 図面

【図1】

[図2]

【図3】

【図4】

【図5】

【図6】

【図7】

入力系 信号形態 出力系 信号形態	表色形態	表色 /分光分布形態	分光分布形態
表色形態	表色データ	表色データ	表色テータ (作成)
麦色 /分光分布形態	エラー	表色 /分光分布データ	表色(作成) /分光分布データ
分光分布形態	エラー	分光分布データ	分光分布データ

【書類名】 要約書

【要約】

【課題】 画像入力装置に接続される出力ユニットとしては、信号処理系が異なると互換性がなかった。

【解決手段】 画像処理ユニット204においては、入力系情報獲得部205および出力系情報獲得部206において獲得した入力ユニット201および出力ユニット208の両方の特性に基づき、出力信号選択部207で出力信号の最適な形態を決定する。すなわち、入力ユニット201から入力した表色データおよび分光分布データのうち、出力ユニット208における信号処理形態に応じたデータを出力する。

【選択図】 図1

出願人履歴情報

識別番号

[000001007]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都大田区下丸子3丁目30番2号

氏 名

キヤノン株式会社