Neuronové sítě

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky

Matematicko-fyzikální fakulta

Univerzity Karlovy v Praze

Neuronové sítě

Učení bez učitele –

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Učení bez učitele

Učení bez učitele:

Samoorganizace a shlukování

Motivace:

 Síť sama rozhodne, která odezva je pro daný vzor nejlepší a podle toho nastaví své váhy

Problém:

Určit počet a rozložení shluků v příznakovém prostoru

Učení bez učitele (2)

NEVEDET, ZE JE NA NASI STRANE PRAYDA, TAK BYCH SE DOCELA BAL.

Učení bez učitele (3)

DÍVČÍ VÁLKA VLASTNÉ NIKDY NEBYLA. ROZMĚLNILA SE IHNED V DROBNÉ ŠARVATKY.

Učení bez učitele (4)

Kompetiční učení:

- Boj o "právo reprezentovat předložený vzor"
- → "Potlačování soupeřů" → INHIBICE
- Pravidlo "<u>vítěz bere vše</u>"
 (WTA Winner_takes_all)

Posilované učení (reinforcement):

Důraz na co nejlepší reprodukci vstupů

Kompetiční učení bez učitele

- *n* rozměrný vstupní vzor je zpracováván pomocí takového počtu neuronů, který odpovídá (předpokládanému) počtu shluků
- Neurony v tomto případě počítají
 (Euklidovskou) vzdálenost mezi
 předloženým vzorem a svým váhovým
 vektorem

Kompetiční učení bez učitele (2)

- V kompetici "vítězí"
 neuron, který ke
 nejblíže předloženému
 vzoru
- Vítězný neuron bude nejaktivnější a bude potlačovat – inhibovat – aktivitu ostatních neuronů

Kompetiční učení bez učitele (2a)

• Inhibice pomocí "laterálních spojů"

==> laterální inhibice

- Pro rozhodnutí, zda bude neuron aktivní nebo ne, je nutná globální informace o stavu všech neuronů v síti
- Aktivita neuronu signalizuje příslušnost předloženého vstupu ke shluku vektorů reprezentovaných tímto neuronem

Kompetiční učení bez učitele (3)

 Vítězný neuron zadaptuje své váhy směrem k předloženému vzoru:

$$\Delta \vec{w} = \alpha \cdot (\vec{x} - \vec{w})$$

plasticita sítě (během učení pomalu klesá)

Cíl:

- Umístit neurony do středu shluků vzorů
- Zachovat již vytvořenou strukturu sítě

Kompetiční učení bez učitele (4)

Urychlení procesu učení:

- Vhodná inicializace vah
- Např. podle náhodně vybraných vzorů

Problémy:

- Mrtvé (nevyužité) neurony
 - Mřížka v Kohonenově vrstvě
 - Topologické okolí neuronu
 - Řízená kompetice a mechanismus svědomí

Kompetiční učení bez učitele (5)

- Během učení by se měly váhy jednotlivých neuronů nastavit tak, aby odpovídaly "těžišti příslušného shluku"
- Energetická funkce množiny n– rozměrných normovaných vstupních vzorů $X = \{\vec{x}_1, ..., \vec{x}_m\}; (n \ge 2)$ je pro I neuron s váhovým vektorem \vec{w} dána pomocí:

$$E_X(\vec{w}) = \sum_{i=1}^m ||\vec{x}_i - \vec{w}||^2; \quad \vec{w} \in \mathbb{R}^n$$

Kompetiční učení bez učitele (6)

==> lze ukázat, že v optimálním případě je vektor vah umístěn v těžišti shluku vstupních vzorů

$$E_{X}(\vec{w}) = \sum_{i=1}^{m} \|\vec{x}_{i} - \vec{w}\|^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - w_{j})^{2} =$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij}^{2} - 2x_{ij}w_{j} + w_{j}^{2}) =$$

$$= m \left(\sum_{j=1}^{n} w_{j}^{2} - \frac{2}{m} \sum_{j=1}^{n} w_{j} \left(\sum_{i=1}^{m} x_{ij} \right) \right) + \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^{2} =$$

Kompetiční učení bez učitele (7)

$$E_{X}(\vec{w}) = m \sum_{j=1}^{n} \left(w_{j}^{2} - \frac{2}{m} w_{j} \left(\sum_{i=1}^{m} x_{ij} \right) + \frac{1}{m^{2}} \left(\sum_{i=1}^{m} x_{ij} \right) \left(\sum_{i=1}^{m} x_{ij} \right) \right) - \frac{1}{m} \sum_{j=1}^{n} \left(\sum_{i=1}^{m} x_{ij} \right) \left(\sum_{i=1}^{m} x_{ij} \right) + \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^{2} = \frac{1}{m} \left(\sum_{j=1}^{n} \left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{j} - \frac{1}{m} \sum_{i=1}^{m} x_{ij} \right)^{2} \right) + K = \frac{1}{m} \left(\left(w_{$$

Kompetiční učení bez učitele (8)

- \rightarrow vektor \vec{x}^* představuje centroid shluku $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ a K je konstanta
- \rightarrow energetická funkce má globální minimum v \vec{x}^*

Kompetiční učení bez učitele (9)

Klastrovací metody pro empirická vícerozměrná data:

- dva základní přístupy:
 - k nejbližších sousedů
 - algoritmus k středů
- k nejbližších sousedů (učení s učitelem)
 - Vzory z trénovací množiny jsou uloženy a klasifikovány do jedné z *l* různých tříd
 - Neznámý vstupní vektor je zařazen do té třídy, ke které patří většina z k nejbližších vektorů z uložené množiny

Kompetiční učení bez učitele (10)

- algoritmus k středů (k-means clustering)
 - Učení bez učitele
 - Vstupní vektory jsou klasifikovány do k různých shluků
 (na začátku učení obsahuje každý shluk právě 1 vektor)
 - Nový vektor \vec{x} je zařazen k tomu shluku k, jehož centroid \vec{c}_k je nejblíže tomuto vzoru

Kompetiční učení bez učitele (11)

- algoritmus k středů (pokračování)
 - Centroid \vec{c}_k je pak aktualizován pomocí:

$$\vec{c}_k(new) = \vec{c}_k(old) + \frac{1}{n_k}(\vec{x} - \vec{c}_k(old))$$

 n_k Počet vektorů již přiřazených shluku k

- Tato procedura se iterativně opakuje pro celou množinu dat (jejich strukturu pak vystihují "váhové vektory" \vec{c}_i ; i = 1, ..., k)
 - → Vektorová kvantizace

Problém shlukování

- Dvě množiny vektorů:
 - *P* a *N*
- Obtížná "separace" shluků pomocí jednoduchého perceptronu tak, aby:

$$\vec{w} \cdot \vec{p} \ge 0 \quad \forall$$

$$\vec{w} \cdot \vec{p} \ge 0 \quad \forall \vec{p} \in P \quad \land \quad \vec{w} \cdot \vec{n} < 0 \quad \forall \vec{n} \in N$$

$$\forall \vec{n} \in N$$

Problém shlukování (2)

 Tři váhové vektory pro tři shluky

SHLUK

Problém shlukování (3)

- Každý z těchto tří vektorů je "relativně blízko" ke každému vektoru z příslušného shluku
- Každý váhový vektor odpovídá jednomu bezprahovému neuronu, který je aktivní pouze v případě, že je vstupní vektor dostatečně blízko tomuto váhovému vektoru

==> Jak určit počet a rozložení shluků?

Kompetiční učení - algoritmus

- Nechť $X = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_l\}$ je množina normovaných vstupních vektorů v \boldsymbol{n} rozměrném prostoru, které chceme zařadit do \boldsymbol{k} různých shluků
- Neuronová síť se skládá z k neuronů, z nichž každý má n vstupů a nulový práh

Inicializace:

• Normované váhové vektory $\vec{w}_1, \dots, \vec{w}_k$ jsou generovány náhodně

Kompetiční učení – algoritmus (2)

Test:

- Náhodně vyber vektor $\vec{x}_i \in X$
- Spočítej $\vec{w}_i \cdot \vec{x}_j$ pro i = 1, ..., k
- Vyber \vec{w}_m takový, že $\vec{w}_m \cdot \vec{x}_j \ge \vec{w}_i \cdot \vec{x}_j$ $(\forall i = 1, ..., k)$
- Proved' Aktualizaci

Aktualizace:

- Nahrad' $\vec{w}_m(new)$ vektorem $\vec{w}_m(old) + \vec{x}_j$ a znormuj
- Pokračuj v Testu

Kompetiční učení – algoritmus (3)

- Po provedení předem určeného počtu kroků lze algoritmus ukončit
- Váhové vektory *k* neuronů jsou ,,přitahovány" směrem k centru jednotlivých shluků ve vstupním prostoru
- Algoritmus je založen na principu "vítěz bere vše" (~ WINNER-TAKES-ALL)

Kompetiční učení – algoritmus (4)

- Použití normovaných vektorů zabraňuje tomu, aby byl některý z váhových vektorů příliš velký, takže by "vyhrával" kompetici příliš často
 - Ostatní neurony by se pak nikdy neaktualizovaly a zůstaly by nevyužité → "mrtvé neurony"
- Protože jsou vstupní i váhové vektory normované, je skalární součin $\vec{w}_i \cdot \vec{x}_j$ váhového a vstupního vektoru roven kosinu úhlu mezi těmito dvěma vektory

Kompetiční učení – algoritmus (5)

- Algoritmus učení zaručuje, že bude aktualizován ten vektor \vec{w}_m , který leží nejblíž k předloženému vstupnímu vzoru
- Při aktualizaci je váhový vektor \vec{w}_m otočen směrem k \vec{x}_j

Různá pravidla učení:

Aktualizace pomocí parametru učení

$$\Delta \vec{w}_m = \eta \vec{x}_j$$
; $\eta \in (0,1)$ pomalu klesá v čase

→ plasticita sítě

Kompetiční učení – algoritmus (6)

Různá pravidla učení (pokračování):

Diferenční aktualizace

$$\Delta \vec{w}_m = \eta \left(\vec{x}_j - \vec{w}_m \right)$$

- "oprava" odpovídá rozdílu mezi oběma vektory
- Dávková aktualizace
 - "korekce" vah pro jednotlivé vzory se kumuluje
 - Váhy se změní po několika iteracích nejednou
 - → stabilnější proces učení

Kompetiční učení – algoritmus (7)

Stabilita řešení

- Nutnost vhodné míry pro "dobré shlukování"
 - → nejjednodušší řešení: určit vzdálenost mezi shluky
- Dva shluky vektorů a dva vektory "reprezentativních vah":
 - Oba vektory "reprezentantů" leží blízko vektorů, které leží v jejich odpovídajícím shluku

Kompetiční učení – algoritmus (8)

Stabilita řešení (pokračování):

- \vec{w}_1 leží uvnitř "svazku" definovaného vektory svého shluku
- \vec{w}_2 leží vně "svazku" příslušejícího \vec{w}_1
- Vektor \vec{w}_1 v dalších iteracích už "neopustí" svůj "svazek"
- Vektor \vec{w}_2 se v některé z dalších iterací dostane do svého svazku a dál v něm už zůstane
- → takové řešení bude stabilní

Kompetiční učení – algoritmus (9)

Řešení ve stabilním rovnovážném stavu:

- Intuitivní představa:
 - stabilní rovnovážný stav vyžaduje jasně ohraničené shluky
- Pokud se jednotlivé shluky navzájem překrývají nebo jsou příliš rozsáhlé, nemusí být stabilní řešení nalezeno
 - ==> nestabilní rovnovážný stav

Stabilita řešení - analýza

Definice:

Nechť P je množina $\{\vec{p}_1,\ldots,\vec{p}_m\}$ n – rozměrných ($n \ge 2$) vektorů ležících ve stejném poloprostoru (~ formální omezení velikosti shluku).

Svazek K definovaný pomocí P je množina všech vektorů \vec{x} tvaru $\vec{x} = \alpha_1 \vec{p}_1 + ... + \alpha_m \vec{p}_m$, kde $\alpha_1, ..., \alpha_m$ jsou kladná reálná čísla.

- Svazek shluku obsahuje všechny vektory "uvnitř" shluku
- Průměr svazku definovaného normovanými vektory odpovídá největšímu možnému úhlu mezi vektory ve shluku

Stabilita řešení – analýza (2)

Definice:

(Úhlový) průměr φ svazku K definovaného normovanými vektory $\{\vec{p}_1, \dots, \vec{p}_m\}$ odpovídá: $\varphi = \sup \left\{ \arccos\left(\vec{a} \cdot \vec{b}\right) \middle| \forall \vec{a}, \vec{b} \in K; ||\vec{a}|| = ||\vec{b}|| = 1 \right\}$ kde $0 \le \arccos\left(\vec{a} \cdot \vec{b}\right) \le \pi$

 Postačující podmínkou pro stabilní řešení je, aby byl úhlový průměr svazků menší než jejich vzájemná vzdálenost

Stabilita řešení – analýza (3)

Definice:

Nechť $P = \{\vec{p}_1, \dots, \vec{p}_m\}$ a $N = \{\vec{n}_1, \dots, \vec{n}_k\}$ jsou dvě neprázdné množiny normovaných vektorů v n-rozměrném prostoru ($n \ge 2$), které definují svazky K_P a K_N

• Jestlliže je průnik těchto dvou svazků prázdný, je (úhlová) vzdálenost mezi K_N a K_P dána pomocí:

$$\psi = \inf \left\{ \arccos(\vec{p} \cdot \vec{n}); \ \vec{p} \in K_P, \ \vec{n} \in K_N \ \text{a} \ \|\vec{p}\| = \|\vec{n}\| = 1 \right\}$$

kde $0 \le \arccos(\vec{p} \cdot \vec{n}) \le \pi$

• Jestliže se K_P a K_N prolinaji, je $\psi_{P,N} = 0$

Stabilita řešení – analýza (4)

- Jestliže je úhlová vzdálenost mezi shluky větší než úhlový průměr svazků, potom existuje stabilní řešení
 - Váhové vektory budou ležet ve svazku jim příslušejícího shluku
 - Jestliže se váhový vektor už "dostal" dovnitř příslušného svazku, zůstane tam i nadále

Kontrola kvality shlukování:

- Výhodnější je menší počet "kompaktnějších" shluků
- Ohodnocovací funkce pro penalizaci příliš vysokého počtu shluků

PCA – Principal Component Analysis

- ~ redukce dimenzionality vstupních dat
 - → použít méně příznaků bez ztráty podstatné informace
 - → výběr nejdůležitějších příznaků
- \sim dána množina m n rozměrných vektorů:

$$\{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m\}$$

~ prvním "nejdůležitějším" příznakem pro tuto množinu vektorů je vektor \vec{w} , který maximalizuje výraz $\frac{1}{m} \sum_{i=1}^{m} \| \vec{w} \cdot \vec{x}_i \|^2$

PCA – Principal Component Analysis (2)

- Rozložení vstupních dat:
 - 1. PC: největší rozptyl
 - 2. PC: kolmá k 1. PC a největší rozptyl (\sim odečíst od \vec{x} jeho ortogonální projekci na 1. PC)

PCA – Principal Component Analysis (3)

Použitý model:

- Lineární asociátor
 - jako výsledek počítá pouze vážený součet vstupů
- Posilované učení Ojův algoritmus učení

Výpočet nejdůležitějších příznaků pomocí umělých neuronových sítí

Ojův algoritmus učení (E. Oja, 1982) (pro výpočet prvního nejdůležitějšího příznaku)

Předpoklad:

Těžiště vstupních dat je vycentrováno v počátku

Start:

- Necht' X je množina n rozměrných vektorů
- Vektor \vec{w} je inicializován náhodně ($\vec{w} \neq 0$)
- Je zvolen parametr učení γ ($0 < \gamma \le 1$)

Výpočet nejdůležitějších příznaků pomocí umělých neuronových sítí (2)

Ojův algoritmus učení (pokračování):

Adaptace:

- ullet z množiny X je náhodně vybrán vektor \vec{x}
- Spočítá se skalární součin $\Phi = \vec{x} \cdot \vec{w}$
- Nový váhový vektor je $\vec{w} + \gamma \Phi (\vec{x} \Phi \vec{w})$
- Zmenši γ a přejdi k "Adaptaci"

Podmínka pro ukončení adaptace

- např. počet provedených iterací

Výpočet nejdůležitějších příznaků pomocí umělých neuronových sítí (3)

Parametr učení γ

- Parametr učení je třeba zvolit dostatečně malý, aby bylav zaručena adekvátní adaptace vah (omezení velkých oscilací)
- "Automatická normalizace" váhového vektoru
 - Odpadá nutnost znát globální informaci o všech vzorech
 - Postačí lokální informace o aktualizované váze, vstupu a skalárním součinu asociátoru
- První nejdůležitější příznak odpovídá směru nejdelšího vlastního vektoru korelační matice uvažovaných vstupních vektorů

Konvergence Ojova algoritmu učení

Pokud existuje jednoznačné řešení, bude Ojův algoritmus učení konvergovat:

Idea důkazu:

Adaptace \vec{w} směrem k \vec{x}

- -) začne-li Ojův algoritmus učení s váhovým vektorem uvnitř svazku, bude v něm oscilovat, ale neopustí ho
- -) pro $\|\vec{w}\| = 1$ odpovídá skalární součin $\Phi = \vec{x} \cdot \vec{w}$ délce projekce \vec{x} na \vec{w}

Konvergence Ojova algoritmu učení (2)

Idea důkazu (pokračování):

- -) vektor $\vec{x} \Phi \vec{w}$ je kolmý na \vec{w}
-) iterace Ojova algoritmu učení přitahují \vec{w} k vektorům ze shluku X
-) pokud zůstane délka \vec{w} rovna I (anebo blízko I), umístí se \vec{w} v procesu učení v centru shluku
- -) dále je ještě třeba ukázat, že vektor \vec{w} je Ojovým algoritmem automaticky normován:
 - <u>Idea:</u> a) délka vektoru \vec{w} je větší než 1
 - b) délka vektoru \vec{w} je menší než 1

Konvergence Ojova algoritmu učení (3)

- a) délka vektoru \vec{w} je větší než 1
 - Délka vektoru $(\vec{x} \cdot \vec{w})\vec{w}$ je větší než délka ortogonální projekce \vec{x} na \vec{w}
 - Dále předpokládejme, že $\vec{x} \cdot \vec{w} > 0$, tj. že vektory \vec{x} a \vec{w} nejsou navzájem příliš vzdálené
 - Vektor $\vec{x} (\vec{x} \cdot \vec{w}) \vec{w}$ má zápornou projekci na \vec{w} , protože

$$(\vec{x} - (\vec{x} \cdot \vec{w})\vec{w}) \cdot \vec{w} =$$

$$= \vec{x} \cdot \vec{w} - ||\vec{w}||^2 \vec{x} \cdot \vec{w} < 0$$

Konvergence Ojova algoritmu učení (4)

- Výsledek po větším počtu iterací:
 - (vektor $\vec{x} (\vec{x} \cdot \vec{w}) \vec{w}$ má jednu složku kolmou na \vec{w} a druhou složku, která směruje opačným směrem než \vec{w})
 - \vec{w} přejde do centra shluku vektorů (kolmá složka v průměru vymizí)
 - \vec{w} se bude s rostoucím počtem iterací tohoto typu zmenšovat (!pozor na nebezpečí změny orientace \vec{w} v jedné iteraci)

Konvergence Ojova algoritmu učení (5)

- Vhodná volba parametru učení γ a normalizace vektorů z trénovací množiny před začátkem učení:
 - jestliže má vektor \vec{x} pozitivní skalární součin Φ s \vec{w} , měl by mít i nový váhový vektor pozitivní skalární součin s \vec{x} :
 - mělo by tedy platit: $\vec{x} \cdot (\vec{w} + \gamma \Phi (\vec{x} \Phi \vec{w})) > 0$

$$\Phi + \gamma \Phi \|\vec{x}\|^2 - \gamma \Phi \Phi^2 > 0$$

$$\Phi \quad \left(1 + \gamma \left(\left\|\vec{x}\right\|^2 - \Phi^2\right)\right) > 0$$

$$> 0 \Rightarrow \gamma \left(\left\| x^2 \right\| - \Phi^2 \right) > -1$$

• Pro dostatečně malé kladné γ platí vždy

Konvergence Ojova algoritmu učení (6)

a) délka vektoru \vec{w} je menší než 1

(analogicky k a))

- \rightarrow vektor $\vec{x} (\vec{x} \cdot \vec{w}) \vec{w}$ má pozitivní projekci na \vec{w}
- \rightarrow zvětšování \vec{w}
- Mombinace a) a b) $\Rightarrow \vec{w}$ se dostane do centra shluku a délka bude oscilovat kolem 1 (pro dostatečně malé γ)
- problémy:
 "řídké" shluky

Ojův algoritmus učení: problémy a zobecnění

Problémy: -) "řídké" shluky

-) příliš velké rozdíly v délce vstupních vektorů

Výpočet většího počtu nejdůležitejších příznaků:

