Unsupervised Learning: Clustering K-means, Mixture models and hierarchical approaches

Nicolas Keriven CNRS, IRISA, Rennes

(material from Florent Chatelain, Olivier Michel)

ENSTA 2023

Outline

Introduction to clustering

Mixture model

Cost-based clustering : K-means

Model based clustering: EM algorithm

Model selection

Alternate dissimilarity measures

Evaluating clustering result

Hierarchical clustering

Table of Contents

Introduction to clustering

Mixture model

Cost-based clustering: K-means

Model based clustering: EM algorithm

Model selection

Alternate dissimilarity measures

Evaluating clustering result

Hierarchical clustering

Unsupervised classification

Assumptions

- $X \in \mathbb{R}^p$, $Y \in \{1, \dots, K\} \leftarrow K$ classes
- ▶ Training set $(x_1, ..., x_n) \leftarrow \text{unknown outputs } y_i$

Exemple (p = 2):

Unsupervised classification: Clustering

Objectives

- ▶ grouping *similar* data in the same cluster ← clustering
- For each x_i , $1 \le i \le n$, predict the class variable $Y_i \in \{1, \dots, K\}$

Example (p = 2):

Clustering limitations

Combinatorics problem

- Number of partitions into K classes : Stirling number of the 2nd kind S(n, K)
- ▶ Number of partitions (unknown K) : Bell number $B_n = \sum_{k=1}^n S(n,k)$

dataset size <i>n</i>	2	5	10	100	200
S(n,2) ($K=2$ classes)	1	15	511	6.3×10^{29}	8.0×10^{59}
S(n,4) $(K=4 classes)$	0	10	34105	6.7×10^{58}	1.1×10^{119}
B_n	2	52	115975	4.8×10^{115}	6.2×10^{275}

- ightharpoonup Remember $\simeq 10^{80}$ atoms in the Universe...
- Exhaustive search (brute-force) not possible in practice
- \square local search around initial solutions/values \rightarrow sub-optimal

Estimation problem and model selection

- ▶ possible parameters of the clustering are unknown ← estimation
- Number of classes K possibly unknown \leftarrow model selection
 - ightharpoonup K = 1: underfitting, K = n: overfitting

Table of Contents

Introduction to clustering

Mixture model

Cost-based clustering: K-means

Model based clustering: EM algorithm

Model selection

Alternate dissimilarity measures

Evaluating clustering result

Hierarchical clustering

Mixture of distributions

- ▶ Data $x_1, ..., x_n$ assumed to be i.i.d. with pdf p
- p is modeled as a mixture of distributions

$$p(x) = \sum_{k=1}^{K} \pi_k \phi(x; \theta_k)$$

 \blacktriangleright π_1, \ldots, π_k are the relative sizes of the classes $(\sum_{k=1}^K \pi_k = 1)$:

$$Pr(Y_i = k) = \pi_k$$

- density ϕ is the parametric shape of a class,
- \bullet $\theta_1, \ldots, \theta_K$ are the centroids/parameters of the classes

Generative Model with latent variable

 $Y \in \{1, \dots, K\}$ indicating the class of the r.v. X

- ▶ $Y \sim \text{discrete distribution s.t. } Pr(Y_i = k) = \pi_k, \quad k = 1, ..., K$
- \blacktriangleright $X|Y=k\sim$ distribution with pdf $\phi(\cdot;\theta_k)$

Gaussian mixture model

- ► Class centroid : $\theta = (\mu \leftarrow \text{mean}, \Sigma \leftarrow \text{covariance matrix})$
- **Density** ϕ of a class : multivariate normal distribution $\mathcal{N}(\mu, \Sigma)$ pdf

$$\phi(x; \mu, \Sigma) = \left(\det\left(2\pi\Sigma\right)\right)^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Example (p = 2, K = 5)

Mixture density f

Table of Contents

Introduction to clustering

Mixture model

Cost-based clustering : K-means

Model based clustering: EM algorithm

Model selection

Alternate dissimilarity measures

Evaluating clustering result

Hierarchical clustering

Cost based approximation : K-means

Log-likelihood:

$$\ell(\theta) = \log p(x|\theta) = \sum_{i} \log p(x_i|\theta) = \sum_{i} \log \left(\sum_{k} \pi_k \phi(x_i; \mu_k, \Sigma_k)\right)$$

- ▶ when K = 1, $\hat{\mu}_1 = \bar{x} = \frac{1}{n} \sum_i x_i$, $\hat{\Sigma}_1 = \frac{1}{n-1} \sum_i (x_i \bar{x})(x_i \bar{x})^{\top}$
- \triangleright no "simple expression" of the parameter estimators when K>1
- several approximations can be conducted to obtain a simpler cost criterion

First approximation: euclidean distance

Replace the Mahalanobis distance in the Gaussian density by the simpler euclidean one

$$(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \to ||x - \mu_k||^2$$
, (i.e. $\Sigma_k = I_p$),

 \square cluster centroid for the kth class reduces to $\theta_k = \mu_k \leftarrow$ mean vector

Cost based approximation : K-means

Log-likelihood:

$$\ell(\theta) = \log p(x|\theta) = \sum_{i} \log p(x_i|\theta) = \sum_{i} \log \left(\sum_{k} \pi_k \phi(x_i; \mu_k, \Sigma_k)\right)$$

- ▶ when K = 1, $\hat{\mu}_1 = \bar{x} = \frac{1}{n} \sum_i x_i$, $\hat{\Sigma}_1 = \frac{1}{n-1} \sum_i (x_i \bar{x}) (x_i \bar{x})^\top$
- lacktriangle no "simple expression" of the parameter estimators when K>1
- several approximations can be conducted to obtain a simpler cost criterion

Second approximation: "hard thresholding"

We keep only the term of the closest centroid:

$$\sum_{k} \alpha_k \phi(x_i; \mu_k) \approx \phi(x_i; \mu_{k_i}) \text{ where } k_i = \arg \min_{1 \le k \le K} \|x_i - \mu_k\|$$

Intuitively : x_i belongs with certainty to the class whose centroid is the closest hard assignment clustering

K-means : cost criterion optimization

Cost criterion : K-means clustering

$$\max_{\theta} \ell(\theta) \Leftrightarrow \min_{\mu} J(\mu) = \sum_{k=1}^{K} \underbrace{\sum_{i|k_i=k} \|x_i - \mu_k\|^2}_{L},$$

 \triangleright J_K is the quadratic error for the kth cluster

Theorem

The optimal μ_k are the empirical means of the communities $k_i = k$

- ▶ If $\mu^* = \arg \min J(\mu)$ and corresponding $k_i^* = \arg \min_{1 \le k \le K} \|x_i \mu_k^*\|$
- ► Then $\mu_k^* = \hat{\mu}_k = \frac{1}{\#\{k_i^* = k\}} \sum_{i \mid k_i^* = k} x_i$

Consequence

K-means is, equivalently, the search for the best μ or the best clusters Y. If

$$J(Y) = \sum_{k} \sum_{i|Y_{i}=k} ||x_{i} - \hat{\mu}_{k}||$$
 where $\hat{\mu}_{k} = \frac{1}{\#\{Y_{i}=k\}} \sum_{i|Y_{i}=k} x_{i}$

Then $J(\mu^*) = J(Y^*)$, $k_i^* = Y_i^*$ and $\mu_k^* = \hat{\mu}_k$.

K-means algorithm (LLoyd's algorithm)

- Initialize μ (see after)
- Alternate between :
 - ▶ finding the "best" Y for fixed $\mu \rightarrow Y_i = k_i$
 - finding the "best" μ for fixed $Y \rightarrow \mu_k = \hat{\mu}_k$

K-means algorithm

- Require : K the number of clusters,
- ▶ Initialization : Set the centroid μ_k , $1 \le k \le K$, to a starting value $\mu_k^{(0)}$,
- lacksquare For $t=1
 ightarrow\ldots$ until convergence (i.e. $\mu_k^{(t)}=\mu_k^{(t-1)}$)
 - 1. Assignment step: assign x_i to the class of the closest center

$$Y_i^{(t)} = \arg\min_{k=1,...,K} \|x_i - \mu_k^{(t-1)}\|^2, \text{ for } i = 1,...,n$$

2. **Update step**: update the centroids μ_k , for k = 1, ..., K

$$\mu_k^{(t)} = \arg\min_{\mu_k} \sum_{i \mid Y_i^{(t)} = k} \|x_i - \mu_k\|^2 = \frac{1}{n_k^{(t)}} \sum_{i \mid Y_i^{(t)} = k} x_i,$$

i.e. $\mu_k^{(t)}$ is the sample mean of the kth cluster

Convergence of K-means algorithm

Convergence

- each step decreases the criterion,
- there is a (huge) finite number of partitions,
- the algorithm converges to a solution (in a finite number of steps)

But no guaranty of the solution optimality (depend on the initialization)...

Stopping criterion

K-means usually very fast for a small/moderate number of clusters K, but

- \triangleright running time increases with the number of clusters K
- in the worst case, can be very slow to converge even for K=2,

Thus, to shorten the computational time, the algorithm can be stopped when the cost criterion does not decrease significantly.

Variants/Improvements of K-means algorithm

Initialization heuristics

- Forgy method
 - pick randomly K observations from the dataset as initial centers,
 - run K-means algorithm with these starting values
 - repeat these 2 steps several times and retain the best (cost sense) clustering
- ▶ lot of variants : Random partitions, k-means++, power init.
 - may lower the computation time of one run
 - can give some guarantees that the solution is close to the optimal one.

Choice of the distance -see also later-

- ▶ Standard K-means based on the squared ℓ_2 (euclidean) distance.
- ▶ Other distance can be considered : e.g. using ℓ_1 distance yields the K-medians algorithm where the cluster centroid becomes the median

K-means initilization

Sensitivity to initialization/data geometry/number of classes

= initial centers

- = final centers
- a) set of points $x_i \in \mathbb{R}^p$ (p=2) to classify, b) and c) two clusterings in K=2 classes with different initial centers, d) clustering in K=3 classes.

K-means

Prediction vs Clustering

- ightharpoonup the points x_1, \ldots, x_n are grouped according to the color of the regions
- ▶ Prediction : performance on *new* data is what matters
- ▶ Clustering : performance on *current* data is what matters

Model based clustering : EM algorithm

Table of Contents

Introduction to clustering

Mixture model

Cost-based clustering : K-means

Model based clustering: EM algorithm

Model selection

Alternate dissimilarity measures

Evaluating clustering result

Hierarchical clustering

EM (Expectation-Maximization) algorithm

- general and important method for finding maximum likelihood (ML) or maximum a posteriori (MAP) estimates, by maximizing iteratively the log-likelihood
- introduction of unobserved latent variables Z to decompose the optimization problem in simpler sub-problems in an iterative way
- EM iteration alternates between performing an expectation (E) step, and a maximization (M) step

Details

- ightharpoonup Z is a latent variable, objective : maximize $\ell(\theta) = \log p(x|\theta)$
- Decompose

$$\ell(\theta) = \sum_{i} \log p(x_i|\theta) = \sum_{i} \log p(x_i, z_i|\theta) - \log p(z_i|x_i, \theta)$$

$$\ell(\theta) = \underbrace{\sum_{i} \mathbb{E}_{Z|X,\theta^{(t)}} \log p(x_{i}, z_{i}|\theta)}_{Q(\theta|\theta^{(t)})} - \underbrace{\sum_{i} \mathbb{E}_{Z|X,\theta^{(t)}} \log p(z_{i}|x_{i}, \theta)}_{Q(\theta|\theta^{(t)})}$$

maximize the first term as a proxy

Clustering

EM (Expectation-Maximization) principle

Sketch of EM algorithm

E step: compute the expectation of the completed log-likelihood function evaluated using the current estimate for the parameter $\theta^{(t)}$

$$Q\left(\theta, \theta^{(t)}\right) = E_{Z|X, \theta^{(t)}} \left[\log p(x, z|\theta)\right],$$
$$= \int \log p(x, z|\theta) p(z|x, \theta^{(t)}) dz$$

ightharpoonup M step : compute parameters $\theta^{(t+1)}$ maximizing the expected log-likelihood

$$\theta^{(t+1)} = \arg \max_{\theta} Q\left(\theta, \theta^{(t)}\right),$$

 \triangleright Repeat until convergence of the $\theta^{(t)}$ sequence

Application of EM to mixture models: E step

Introducing the class latent variables Y_i , or equivalently, the binary variables

$$z_{ik} = \begin{cases} 1 & \text{if } Y_i = k, \\ 0 & \text{otherwise,} \end{cases}$$

the likelihood completed with the r.v. z_{ik} reads

$$p(x, z|\theta) = \prod_{i=1}^{n} p(x_{i}, z_{i}|\theta) = \prod_{i=1}^{n} \pi_{Y_{i}} \phi(x_{i}; \theta_{Y_{i}}) = \prod_{i=1}^{n} \prod_{k=1}^{K} [\pi_{k} \phi(x_{i}; \theta_{k})]^{z_{ik}},$$

$$\log p(x, z|\theta) = \sum_{i=1}^{n} \sum_{k=1}^{K} z_{ik} \log [\pi_{k} \phi(x_{i}; \theta_{k})]$$

$$Q(\theta, \theta^{(t+1)}) = \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{E} [z_{ik}|x_{i}, \theta^{(t)}] \log (\pi_{k} \phi(x_{i}; \theta_{k}))$$

where
$$t_{ik}^{(t)} = \text{Pr}\left(Y_i = k \mid x_i, \theta^{(t)}\right) = \pi_k^{(t)} \phi\left(x_i; \theta_k^{(t)}\right) / \left(\sum_{k=1}^K \pi_k^{(t)} \phi\left(x_i; \theta_k^{(t)}\right)\right)$$

Gaussian mixture models: M step

Find $\theta \equiv \theta^{(t+1)}$ maximizing $Q\left(\theta, \theta^{(t)}\right) = \sum_{i=1}^{n} \sum_{k=1}^{K} t_{ik}^{(t)} \log\left[\pi_k \phi(x_i | \theta_k)\right]$

For any mixture model (i.e. $\forall \phi$) :

$$\pi_k^{(t+1)} = \frac{1}{n} \sum_{i=1}^n t_{ik}^{(t)}$$

► For a Gaussian mixture model $\theta = \{\mu_k, \Sigma_k\}$ and

$$\mu_k^{(t+1)} = \frac{\sum_{i=1}^n t_{ik}^{(t)} x_i}{\sum_{i=1}^n t_{ik}^{(t)}},$$

$$\Sigma_k^{(t+1)} = \frac{\sum_{i=1}^n t_{ik}^{(t)} \left(x_i - \mu_k^{(t+1)}\right) \left(x_i - \mu_k^{(t+1)}\right)^T}{\sum_{i=1}^n t_{ik}^{(t)}},$$

- ightharpoonup empirical averages weighted by the posterior probability $t_{ik}^{(t)}$
- "Similar" to K-means, but with soft-assignment of the communities

EM algorithm for Gaussian mixture models

EM clustering

- ▶ Initialize $\pi_k^{(0)}$, $\mu_k^{(0)}$, $\Sigma_k^{(0)}$, for k = 1, ..., K
- For $t = 1, \dots$ until convergence

(E) for
$$i=1,\ldots,n,\ k=1,\ldots,K$$
, compute $t_{ik}^{(t-1)}\equiv \Pr\left(Y_i=k\,|\,x_i,\theta^{(t-1)}\right)$

(M) for
$$k = 1, ..., K$$
, compute $\pi_k^{(t)}$, $\mu_k^{(t)}$, $\Sigma_k^{(t)}$

Prediction/Correction structure

- ▶ E step \leftrightarrow prediction step (assign communities weights t_{ik})
- M step ↔ update/correction step (compute optimal parameters)

Convergence

- ► EM : convergence toward a local maximum of the log-likelihood
- no guarantee of getting the optimal solution (depend on the initial values)
- For generic GMM, no optimal solution!! Can be "degenerate" around a single sample : $\Sigma_k \to 0 \Rightarrow \ell(\theta) \to +\infty$

Gaussian mixture model and EM algorithm

Prediction vs Clustering

- ightharpoonup the points x_1, \ldots, x_n are grouped according to the color of the regions
- ▶ Prediction : performance on *new* data is what matters
- ▶ Clustering : performance on *current* data is what matters

Gaussian mixture model and EM algorithm

Estimation of the mixture density f

True density of the data points x_1, \ldots, x_n

Estimated density with EM (K = 3 classes)

Comparison K-means vs Algo EM

2 classes with overlapping and very different dispersions (covariances Σ_k)

Data x_1, \ldots, x_n , classes and true 95% confidence regions

Clustering with EM (K = 2) and estimated 95% confidence regions

Comparison K-means vs Algo EM

2 classes with overlapping and very different dispersions (covariances Σ_k)

Data x_1, \ldots, x_n , classes and true 95% confidence regions

Classification with K-means (K = 2)

Table of Contents

Introduction to clustering

Mixture model

Cost-based clustering: K-means

Model based clustering: EM algorithm

Model selection

Alternate dissimilarity measures

Evaluating clustering result

Hierarchical clustering

Model selection : estimation of K

- \triangleright K = 1: underfitting
- K = n: overfitting
 - Solving $\max_{\theta, K} \ell(\theta)$ leads to overfitting

Minimization of a penalized log-likelihood criterion

$$C(K) = -\hat{\ell}(K, x) + \text{pen}(K, n)$$

 $\hat{\ell}(K,x) \equiv \ell(\hat{\theta}_K)$ with $\hat{\theta}_K$ the MLE of the model parameters with K classes (profile log-likelihood w.r.t K)

Trade-off between two terms to minimize

- ▶ $-\hat{\ell}(K,x)$: fidelity to the data (likelihood) \rightarrow tends to increase K
- ▶ pen(K, n): low complexity of the model \rightarrow tends to decrease K

Model selection: BIC criterion

Bayesian Information Criterion (BIC)

Asymptotic $(n \gg m_K)$ criterion for "Bayesian models" (i.e. with a prior on the model parameters)

$$\mathrm{pen}(K,n) = \frac{1}{2} m_K \log(n)$$

- n is the size of the data
- $ightharpoonup m_K$ is the effective number of parameters for the K class model

Equivalent to minimize the following criterion

$$\mathrm{BIC}(K) = -2\hat{\ell}(K, x) + m_K \log(n)$$

Model selection : estimation of K

Example of synthetic data generated according to a mixture of K=3 Gaussians

Model selection : estimation of K

Gaussian mixture :
$$m_K = \underbrace{K-1}_{\pi_1,\dots,\pi_{K-1}} + K \times \underbrace{p}_{\mu_1} + K \times \underbrace{\frac{p(p+1)}{2}}_{2}$$
 BIC criterion w.r.t. K

$$\Rightarrow$$
 $\hat{K} = 2$ or $\hat{K} = 3$ (true value $K = 3$)

Table of Contents

Introduction to clustering

Mixture model

Cost-based clustering : K-means

Model based clustering: EM algorithm

Model selection

Alternate dissimilarity measures

Evaluating clustering result

Hierarchical clustering

Dissimilarity measures

- Dissimilarity measures requires that
 - $d_{ii} = 0$
 - $ightharpoonup d_{ij} \geq 0$
 - $ightharpoonup d_{ij} = d_{ji}$
- ▶ Often $d_{ij} \le d_{ik} + d_{kj}$ is NOT satisfied $\forall (i, j, k) \in [1, ..., N]^3$
- d may be sometimes required to be a true distance
- From similarity s_{ij} to distance or dissimilarity measure d_{ij} : use any decreasing function e.g.

$$d_{ij} = \max(s_{ij}) - s_{ij}$$

$$s_{ij} = \exp(-d_{ij})$$

- Dissimilarity measure examples: Euclidean dist, Hamming dist (for categorical variable), Symmetrized KL
- Similarity measure example : scalar product, spectral angle...

Generalizing K-MEANS for alternate dissimilarity measures

How to generalize μ ? No notion of sum for categorical x_i .

Remark : μ can be defined using only the distances

$$\hat{\mu}_k = \min_{\mu \in \mathbb{R}^p} \sum_{x_i \mid Y_i = k} \|x_i - \mu\|^2$$

Pbm : The d_{ij} are defined only between the x_i, x_i

Def: Medoids for each cluster (of index k):

$$\operatorname{Med}_k = \arg\min_{x_j \mid Y_j = k} \sum_{i \mid Y_i = k} d(x_i, x_j)$$

▶ The assignment step remains the same : $k_i = \arg\min_k d_{i,j_k}$ where $\operatorname{Med}_k = x_{j_k}$

Remark

- ▶ If N is large, the computation of Med_k may become computationally demanding. Although I₂ norm is most popular, it does not apply for categorical data, where medoids must be introduced.
- ► This generalization may be used in order to deal with Kernel trick methods (see Florent's lecture), allowing to deal with non convex clusters.

Kernelized Kmeans -Optional-

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a kernel such that $\exists \mathcal{H}$ an Hilbert space and a mapping $\Phi: \mathcal{X} \to \mathcal{H}$, satisfying

$$\forall (x_i, x_j) \in \mathcal{X} \times \mathcal{X}, k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle_{\mathcal{H}}$$

Expression the centroid in the RKHS

$$c_k = \arg\min_{z \in \mathcal{H}} \sum_{i|Y_i = k} ||\Phi(x_i) - z||^2 = \frac{1}{N_k} \sum_{i|Y_i = k} \Phi(x_i)$$

• Assignment step $k_i^* = \arg\min_i \|\Phi(x_i) - c_k\|^2$ with

$$||\Phi(x) - c_k||^2 = \left\langle \Phi(x) - \frac{1}{N_k} \sum_{i|Y_i = k} \Phi(x_i), \Phi(x) - \frac{1}{N_k} \sum_{i|Y_i = k} \Phi(x_i) \right\rangle_{\mathcal{H}}$$

$$= k(x, x) - \frac{2}{N_k} \sum_{i|Y_i = k} k(x, x_i) + \frac{1}{N_k^2} \sum_{i,j|Y_i, Y_i = k} k(x_i, x_j)$$

- ightharpoonup Assignment does NOT request explicit knowledge of c_k (usually NOT known)
- ► Computationally more demanding : $O(N^2)$ instead of O(NK)

Kernelized Kmeans, cont'd

- Kernel K-means allows to tackle problems with non convex classes
- Kernel K-means has increased sensitivity to initial conditions (random initial labelling)
- ▶ Kernel expression requires some tuning parameter to be set.

Example:

$$\kappa(x,y) = \exp(-\frac{||x-y||^2}{2\sigma^2})$$

Table of Contents

Introduction to clustering

Mixture model

Cost-based clustering : K-means

Model based clustering: EM algorithm

Model selection

Alternate dissimilarity measures

Evaluating clustering result

Hierarchical clustering

Evaluating clustering results

Unsupervised framework

- no ground truth is available, (in general).
- ▶ if a probabilistic model is used (such as EM) : likelihood of the test set ?(does not really assess clustering discovered by the model)
- if Deterministic approach (such as Kmeans):? → how dense (or compact) are the identified clusters, how well separated they are?
 - ▶ For *l*₂ distances, compare within-cluster variance with between-cluster variance (remind that the sum is constant).
 - For general dissimilarity measures, popular quality indices (among others)
 - Davies Bouldin index
 - Silhouette index

Clustering Quality indices examples

Let C_k denote a cluster, $k \in [1, ..., K]$, and $N_k = |C_k|$, Med_k its medoid

Davies Bouldin, DB

► Homogeneity *T* :

$$T_k = \frac{1}{N_k} \sum_{x \in C_k} d(x, \operatorname{Med}_k) \Rightarrow T = \frac{1}{K} \sum_{k=1}^K T_k$$

► Separability *S* :

$$S_{kl} = d(\operatorname{Med}_k, \operatorname{Med}_l) \Rightarrow S = rac{2}{K(K-1)} \sum_{k=1}^K \sum_{l
eq k}^K S_{kl}$$

▶ DBindex (lower is better) :

$$D_k = \max_{k \neq l} \frac{T_k + T_l}{S_{kl}} \Rightarrow DB = \frac{1}{K} \sum_{k=1}^K D_k$$

Clustering Quality indices examples, cont'd

Silhouette index. S

S is relative to each observation point x_i , whose estimated label is $Y_i = k$.

Average distance to other observations from the same cluster

$$a(x_i) = \frac{1}{N_k - 1} \sum\nolimits_{j \neq i, j \mid Y_j = k} d(x_i, x_j)$$

Minimal distance of x_i to the closest cluster

$$b(x_i) = \min_{l \neq y_i} \frac{1}{N_l} \sum_{j|y_j=l} d(x_i, x_j)$$

Silhouette (higher is better)

$$\mathcal{S}(x) = \frac{b(x) - a(x)}{max(a(x), b(x))} \Rightarrow \mathcal{S} = \frac{1}{N} \sum_{i} \mathcal{S}(x_i)$$

- if $N_{y_i} = 1$, set $S(x_i) = 0$ $-1 \le S(x_i) \le 1$
- if $S(x_i) < 0$, x_i would be better labelled as a member of its neighboring cluster. $S(x_i) \simeq 0$ if x_i close to the border between clusters.

Clustering quality measure with expert (prior) knowledge

Assume that some labels are known (ground truth $\{Y_i, i=1...N, \}$, $Y_i \in \{1, ..., R\}$ is available): leads to compare two partitions, i.e. the estimated clustering \hat{Y} with the ground truth partition. Note that labels may take different values for these partitions.

1. RAND index (higher is better)

$$RI = \frac{2}{N(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \delta(\hat{Y}_i = \hat{Y}_j) \delta(Y_i = Y_j) + \delta(\hat{Y}_i \neq \hat{Y}_j) \delta(Y_i \neq Y_j)$$

- ► This is the proportion of observations pairs that are either from the same known class and have identical estimated labels, or belong to different classes and have different estimated labels.
- $ightharpoonup 0 \le RI \le 1$

Clustering quality measure with expert knowledge, cont'd

2. Purity index \mathcal{P} (higher is better)

Let

$$p_{kl} \stackrel{\text{def}}{=} \frac{N_{kl}}{N_k} = \frac{\#(\hat{Y}_i = k) \cap (Y_i = l)}{\#(\hat{Y}_i = k)}$$

and

$$P_k \stackrel{def}{=} \max_{l} p_{kl}$$

$$\mathcal{P} \stackrel{\text{def}}{=} \sum_{n=1}^{K} \frac{N_k}{N} P_k$$

- \triangleright p_{kl} is the proportion of observations whose estimated label is k and true label is l
- ▶ P_k is this latter proportion, for the class $Y_i = I$ which contains the more observations with label $\hat{Y}_i = k \rightarrow$ if the cluster k matches with one true community, then $P_k = 1$

Clustering quality measure with expert knowledge, cont'd

3. (Normalized) Mutual information between two clusterings, (N)IM

Let
$$\mathcal{U} = \{U_1, \dots, U_R\}$$
 and $\mathcal{V} = \{V_1, \dots, V_K\}$
$$p_{\mathcal{U}V}(i,j) \stackrel{def}{=} \mathbb{P}[x \in U_i, x \in V_j] = \frac{|U_i \cap V_j|}{N}$$

$$p_{\mathcal{U}}(i) \stackrel{def}{=} \frac{|U_i|}{N}$$

then

$$IM(U, V) = \sum_{i=1}^{R} \sum_{j=1}^{K} P_{UV}(i, j) \log \frac{P_{UV}(i, j)}{P_{U}(i) P_{V}(j)}$$

or
$$NIM(U, V) = \frac{2IM(U, V)}{H(U) + H(V)}$$
, where $H(U) = -\sum_{i=1}^{R} P_U(i) \log P_U(i)$

Table of Contents

Introduction to clustering

Mixture model

Cost-based clustering : K-means

Model based clustering: EM algorithm

Model selection

Alternate dissimilarity measures

Evaluating clustering result

Hierarchical clustering

Hierarchical clustering

Hierarchical approaches

Motivations

Recursive approach to partition data at all possible scale, using multi-level hierarchical partitioning... Many variants! Application dependent.

- ► Each labeling operation does not rely on a single operation, but on a sequence of conditional tests
- Each operation may use a single or a subset of variables (or characteristics) of the data whereas other methods give the same importance to all variables
- Allow that different variables are used in different locations in the observation space
- ▶ Provide some insights on the relevance of variables for clustering, classification of prediction tasks
- ► A hierarchical (unsupervised) clustering approach does not require the number of clusters K to be known in advance

Hierarchical clustering: Dendogram

A dendogram is a Tree

- whose root contains all observations
- with N leaves containing a single observation
- where two clusters with the same parents are merged at upper level into a single cluster
- where a cluster is split into two children at lower level.
- → Intermediate nodes contain the relevant information
- the length of a branch is proportional to the dissimilarity between the connected clusters
- Thresholding the dendogram at different levels issues different clustering ((1) or (2))

Dendogram Construction

Divisive, or "top-down"

Start from root and divide into two cluster wrt a splitting stategy

- ► Entropy (*)
- Variance
- Davies-Bouldin
- Silhouette
- ... see section on Clustering Quality indices

Entropy estimation is difficult in general and uses pdf estimators. Alternate methods use length of quasi additive graphs...

Agglomerative, or "bottom-up"

- ▶ At each iteration, find the closest cluster to each others and merge them.
- lterate until all observations are in a single cluster.
- ⇒ requires to define closeness measure between clusters

Dendogram Construction, cont'd

Linkage functions: Mostly for agglomerative approaches, measure closeness/distance between clusters

Requires a distance function d(.,.) on $\{\mathcal{X}\}$ is defined.

Single linkage

$$d_{single}(C_k, C_l) = \min_{x \in C_k, x' \in C_l} d(x, x')$$

Complete linkage

$$d_{complete}(C_k, C_l) = \max_{x \in C_k, x' \in C_l} d(x, x')$$

Average linkage

$$d_{average}(\mathcal{C}_k, \mathcal{C}_l) = \frac{1}{|\mathcal{C}_k|} \frac{1}{|\mathcal{C}_l|} \sum_{x \in \mathcal{C}_k} \sum_{x' \in \mathcal{C}_l} d(x, x')$$

Centroidal linkage

$$\textit{d}_{\textit{centroidal}}(\mathcal{C}_k, \mathcal{C}_l) = \textit{d}(\frac{1}{|\mathcal{C}_k|} \sum_{x \in \mathcal{C}_k} x, \frac{1}{|\mathcal{C}_l|} \sum_{x' \in \mathcal{C}_l} x')$$

Dendogram Construction, cont'd

Choosing K

- By setting the height of the line or level in the dendogram
- ▶ By choosing *K* to get e.g. the best silhouette coefficient.

Computational cost

As the all set of pairwise distance (must)(*) be computed, computational cost goes like $\mathcal{O}(pN^2)$ if x has p features.

 \Rightarrow not well adapted to massive data