Commitment schemes from isogeny assumptions

by Bruno Sterner

presented by Eduarda Assunção, Valerio Ardizio, Parsa Tasbihgou

École Polytechnique Fédérale de Lausanne, Switzerland

May 5th 2024

- Introduction
- Preliminaries
 - Supersingular Elliptic Curve Isogenies
 - Mixing Constant
 - Commitment Schemes
- 3 A commitment scheme from isogeny assumptions
 - The scheme
 - Hiding property
 - Binding property
- 4 Commitment using the SIDH approach
- Comparison

Introduction

- Post-quantum protocols are still being designed and refined.
- Isogeny-based cryptography has been promising, but still does not have every cryptographic primitive designed.
- Bruno Sterner's paper proposes the first provably secure isogeny-based commitment schemes.

Supersingular Elliptic Curve Isogenies

ullet So what is an isogeny? A function $\phi: E_{start} \longrightarrow E_{end}$

A bit more than that, an isogeny is a **homomorphism**.

 \bullet An $\ell\text{-isogeny}$ is an isogeny where each point has ℓ pre-images

Walking the Isogeny Graph

We can walk the graph. How? Follow the message piece by piece. Let $m=01\ldots$

Walking the Isogeny Graph

We can walk the graph. How? Follow the message piece by piece.

Let $m = 01 \dots$

Consider $m_0 = 0$

Walking the Isogeny Graph

We can walk the graph. How? Follow the message piece by piece.

Let m = 01...

Then consider $m_1 = 1$

Mixing Constant

Mixing Constant

If we finished in V6, where did we come from?

Assume we finished in V6, and we only walked one step. Where did we come from?

Mixing Constant

We define the mixing constant k_G to be the **minimum** amount of steps so that every two vertices are connected.

We can no longer exclude possibilities if we walk k_G steps.

More than that! It is known that isogeny graphs, which are Ramanujan graphs, have **good mixing properties**.

A random walk with k_G steps gives us a distribution of end-points very close to **uniform**.

Information-theoretically hiding!

Commitment Schemes

A commitment scheme consists of three algorithms:

- KeyGen → public parameters
- Commit $(m, pp) \longrightarrow c, r$
- Open $(m, r, c, pp) \longrightarrow 0/1$

And two security notions that have to be met

- **Hiding**: c does not reveal 'anything' about m reveals at most a negligible amount of information
- **Binding**: hard to create $c(m_1, r_1) = c(m_2, r_2)$ where $m_1 \neq m_2$

Commitment Schemes

A commitment scheme consists of three algorithms:

- KeyGen → public parameters
- Commit $(m, pp) \longrightarrow c, r$
- Open $(m, r, c, pp) \longrightarrow 0/1$

And two security notions that have to be met

- Information-Theoretic Hiding: c reveals 'nothing' about m to an adversary with unbounded computational power
- Computational Binding: hard to create $c(m_1, r_1) = c(m_2, r_2)$ where $m_1 \neq m_2$ to an adversary with a probabilistic polynomial-time algorithm

A commitment scheme from isogeny assumptions

- Goals:
 - Achieve information-theoretic hiding.
 - Achieve computational binding.
- The scheme is built on a supersingular 2-isogeny graph.
- Hiding property of the scheme:
 - Supersingular elliptic curve isogeny graphs are instances of Ramanujan graphs which means they mix well.
 - Only non-backtracking random walks.
 - Low mixing constant ⇒ better scheme's performance
- Binding property of the scheme:
 - Finding an endomorphism is hard for a supersingular elliptic curve.

The scheme – **KeyGen**

- Overview of the scheme 3 algorithms:

 - $(c,r) \leftarrow \mathbf{Commit}(m,p,E,\phi_1,\phi_2)$
 - \bullet bool \leftarrow **Open** $(m, c, r, E, \phi_1, \phi_2)$

The scheme - Commit

- Overview of the scheme 3 algorithms:

 - $(c,r) \leftarrow \mathbf{Commit}(m,p,E,\phi_1,\phi_2)$
 - lacktriangledown bool $\leftarrow \mathbf{Open}(m,c,r,E,\phi_1,\phi_2)$

The scheme – **Commit**

- Overview of the scheme 3 algorithms:

 - $(c,r) \leftarrow \mathbf{Commit}(m,p,E,\phi_1,\phi_2)$
 - lacktriangledown bool $\leftarrow \mathbf{Open}(m,c,r,E,\phi_1,\phi_2)$

The scheme – Commit

- Overview of the scheme 3 algorithms:
 - $(p, E, k, \phi_1, \phi_2) \leftarrow \mathsf{KeyGen}(\lambda)$
 - $(c,r) \leftarrow \mathbf{Commit}(m,p,E,\phi_1,\phi_2)$
 - **3** bool \leftarrow **Open** $(m, c, r, E, \phi_1, \phi_2)$

(F) M= 010 (F) (F= 100 (F)

commitment c=j(Ec)

The scheme – **Open**

- Overview of the scheme 3 algorithms:

 - $(c,r) \leftarrow \mathbf{Commit}(m,p,E,\phi_1,\phi_2)$
 - **3** bool \leftarrow **Open** $(m, c, r, E, \phi_1, \phi_2)$

 $(F) \xrightarrow{M = 010} (F_0) \xrightarrow{\Gamma = 100} (F_0)$

$$check: j(E_2) == c$$

Hiding property

Prove that the commitment scheme is *information-theoretically hiding*:

Theorem (Random walks)

Given a prime number p, let j_0 be a supersingular j-invariant in characteristic p, N_p be the number of supersingular j-invariants in characterstic p and $n = \prod_i \ell_i^{e_i}$ be an integer where ℓ_i are small primes. Let \hat{j} be the j-invariant reached by a random walk of degree n starting at j_0 . Then for every j-invariant \hat{j} we have

$$\left| \mathbb{P} \left[\hat{j} = \tilde{j} \right] - \frac{1}{N_{p}} \right| \leq \prod_{i} \left(\frac{2\sqrt{\ell_{i}}}{\ell_{i} + 1} \right)^{e_{i}}$$

Hiding property

Prove that the commitment scheme is information-theoretically hiding:

Theorem (Random walks)

For any random walk of degree n, the probability of ending on any node of the supersingular isogeny graph is close to uniform for a sufficiently long walk.

Hiding property – Conjectured number of steps

We have to walk at least a minimum number of steps to have proper mixing (hiding property).

What is this minimum?

The author conjectures that it is $4 \log(p)$.

Binding property

Problem (Supersingular Endomorphism Problem)

Given a prime p, a supersingular elliptic curve E over \mathbb{F}_{p^2} and a small prime ℓ , it is hard to compute a non-trivial cyclic endomorphism^a of E whose degree is a prime power ℓ^e .

 a An endomorphism is *non-trivial* if it is **not** a multiplication-by-m map, i.e. [m], and cyclic if the endomorphism has a cyclic kernel.

Binding property – Trusted Third Party

- ullet We want the endomorphism ring of E_0 to remain **unknown**
- If endomorphism ring of E_0 is known \implies Break binding property!

Commitment using the SIDH approach

- We want to get the isogeny ϕ_t
- ullet We can speedup the E_t computation using the SIDH framework
- We know we can define an isogeny by its kernel
- We want the kernel of ϕ_t
- How do we get the kernel?
- Let $p = 2^n f 1$ be the characteristic of the field.
- There is a subgroup $E[2^n] \simeq (\mathbb{Z}_{2^n})^2$
- Let $\{P,Q\}$ be a basis for $E[2^n]$ and $t \in \mathbb{Z}_{2^n}$, then $\langle P+tQ \rangle$ is a cyclic subgroup and is the kernel of ϕ_t .

4 steps

Introduction

- The longest isogeny walk that can be specified by its kernel has length n (degree 2^n) and $n \simeq \log(p)$ but as we saw we need a walk of length $k \simeq 4 \log(p)$.
- Solution: repeat the isogeny walk 4 times. $\phi_t(Q)$ has order 2^n but we need another full order point to have a basis and we need to generate this point deterministically so the commitment can be opened.
- Use "Elligator 2" to compute deterministic point $R \in E(\mathbb{F}_{p^2})$ then check R is not divisible by 2. fR is a full order point and $\{\phi_t(Q), fR\}$ is a basis for $E_t(\mathbb{F}_{p^2})$.

SIDH vs. CGL

The SIDH variant is exponentially faster than CGL.

- Evaluation of the CGL hash function takes kn(5.7n + 110) multiplications in \mathbb{F}_{p^2} .
- Evaluation of the SIDH variant takes $kn(13.5 \log(n) + 42.4)$ multiplications in \mathbb{F}_{p^2} .
- The SIDH variant has to compute a new basis 3 times which takes O(n) multiplications so it is not a dominant computation.
- The ratio of computation time of CGL to SIDH is $\frac{5.7n+110}{13.5\log(n)+42.4} \simeq O(\frac{n}{\log(n)})$

Commitment size

Very small commitment size compared to other post-quantum candidates

- Output is a single element in \mathbb{F}_{p^2} . When \mathbb{F}_{p^2} is seen as a 2-dimensional extension of \mathbb{F}_p , output is two elements in \mathbb{F}_p .
- If λ is the security parameter, a prime of size 2λ should be used. The commitment size is 4λ .
- For 128-bit security the commitment size will be
 - 64B in SIDH/CGL
 - 9kB in known lattice-based schemes

Thank you for your attention.

Questions?