# Intro to Neural Networks

Forward Propagation

David Yerrington





# **Input Layer**



Each observation is sent as the input of the first layer in our network.



Each neuron is connected to other neurons via weights, **w**n.

n = feature index

# Activity (3 mins)

With a partner, identify:

- Input layer
- Hidden layer(s)
- Output layer
- # of nodes
- # of weights



Each neuron is connected to other neurons via weights.



Data, that is sent from one layer to neurons in the next. We will represent with the vector **a.**which the vector **a.**Every output from one layer to the next; **a.** has a corresponding weight **w.**This is very similar to linear regression betas (theres also a bias term that is like the intercept!).



# Activation





$$\mathbf{a}_{1}^{0} = \begin{bmatrix} \mathbf{a}_{1}^{0} \\ \mathbf{a}_{2}^{0} \\ \mathbf{a}_{3}^{0} \\ \mathbf{a}_{4}^{0} \\ \mathbf{a}_{5}^{0} \end{bmatrix}$$





### Activation



### Activation



### Activation

 $\sigma \left( \sum_{k} w_{jk}^{i} a_{k}^{i-1} + b_{j}^{i} \right)$ 

The output of the **k**th neuron in the previous layer

 $j = the weight of the neuron connecting to kth neuron <math>a^{i-1}$ 





### **Activation Review**



### Common Activation Functions





#### **Sigmoid**

$$f(x) = \frac{1}{1 + e^{-x}}$$



#### **Softmax**

$$S(y_i) = \frac{e^{y_i}}{\sum e^{-y_i}}$$

# Common Output Functions

### Regression

#### **Linear Function**

$$f(x) = x$$

### Classification



#### **Sigmoid**

$$f(x) = \frac{1}{1 + e^{-x}}$$



#### **Softmax**

$$S(y_i) = \frac{e^{y_i}}{\sum e^{-y_i}}$$

# Let's code this example:

