

Pattern Recognition Homework 3 announcement

TA: 楊証琨 Jimmy

Ph.D. student at National Taiwan Universitiy

d08922002@csie.ntu.edu.tw

Homework 3

- Deadline: May. 4, 23:59
 - 1. Code assignment (80%): Implementing decision tree, adaboost and random forest by only **NumPy**
 - 2. Short answer questions (20%)
- Submit your code (.py/.ipynb) and reports (.pdf) on <u>E3</u>
 - Sample Code
 - HW3 questions
- Please follow the file naming rules <STUDENT ID>_HW3.pdf,
 otherwise, you will get penalty of your scores

Decision tree algorithm

• Whether to approve the loan for a customer?

Decision tree algorithm

- How to find the feature to make the decisions?
- Find the feature to split data that the class at the resulting nodes are as pure as possible

How to measure "pure"?

- 1. Entropy: the smaller, the purer
- 2. Gini-index: the smaller, the purer

$Entropy = -\sum_{j} p_{j} \log_{2} p_{j}$

- ullet If all classes are the same in one node $entropy = -1\log_2 1 = 0$
- ullet If the classes are half-and-half $entropy = -0.5 \log_2 0.5 0.5 \log_2 0.5 = 1$

How to find best split?

Suppose there are two ways (A and B) to split the data into smaller subset.

Decision tree pseudo code

- Until stopped
 - a. Select a node
 - b. loop all values of all features
 - partition the node and calculate the purity of data
 - find the value of feature can yield lowest value of gini or entropy
 - c. Split the node using the feature value found in step b.
 - d. Go to next node and repeat step a to c.
- Stopping criteria
 - The data in each leaf-node belongs to the same class
 - ☐ Depth of the tree is equal to some pre-specified limit

Overfitting

 Decision tree can find a unique path for each data if we don't pre-specified any limits, such as the depth of the node

Ensemble method of decision trees: Bagging

 Bagging (Bootstrap aggregating): Fit many deep trees to bootstrap-resampled versions of the training data, and classify data by majority voting
 Random Forest Simplified

> Instance Random Forest Tree-n Tree-2 Tree-1 Class-B Class-B Class-A Majority-Voting Final-Class

Random forest: Where is the "randomness"?

- Bootstraped dataset
- Each tree in the forest may grow with different data and features
- Which features or data to be used are randomly sampled to grow the tree

Ensemble method: Boosting

 Boosting: Iteratively fit many shallow trees and get the results by weighting those classifiers

Coding

- Make sure to comment your code!
 - □ Document each step of your model
- PEP8 online checker

Late policy

- We will deduct a late penalty of 20 points per additional late day
- For example, If you get 90 points of HW but delay for two days, your will get only 90- $(20 \times 2) = 50$ points!

Notice

- All of the model should get the accuracy over 0.9
- Submit your homework on <u>E3-system</u>
- Check your email regularly, we will mail you if there are any updates or problems of the homework
- If you have any questions or comments for the homework, please mail me and cc Prof. Lin
 - ☐ Prof. Lin, <u>lin@cs.nctu.edu.tw</u>
 - ☐ TA Jimmy, <u>d08922002@csie.ntu.edu.tw</u>
 - □ TA 晨軒, <u>derekt.cs06@nctu.edu.tw</u>
 - □ TA 政儒, ace52751208@gmail.com

Have fun!

