Análise Matemática I Funções reais de variável real

Luísa Morgado

1º Ciclo Enga Informática

Funções reais de variável real

Uma **função** f, definida num certo conjunto D e com valores num conjunto E, é uma regra que faz corresponder a cada elemento x de D um único elemento f(x) de E.

O conjunto D é chamado **domínio** de f e o conjunto C de E formado por todos os elementos f(x) com $x \in D$, é o **contradomínio** de f.

Diz-se que f é uma **função real** se todos os valores que assume são números reais, i.e., se $C \subset \mathbb{R}$ (qualquer que seja o conjunto D); diz-se que f é **uma função de variável real** de $D \subset \mathbb{R}$ (qualquer que seja C).

Naturalmente, uma função real de variável real (f.r.v.r) é uma qualquer função cujo domínio e contradomínio sejam subconjuntos do conjunto dos números reais.

Gráfico de uma função

Fixado, no plano, um referencial cartesiano de eixos ortogonais, orientados do modo habitual e com a mesma unidade de medida, define-se o gráfico da função f como sendo o conjunto dos dos pontos do plano correspondentes a pares (x, f(x)), com x no domínio de f, i.e.,

$$Graf(f) = \{(x, f(x)) : x \in D\}$$

Exemplo

O gráfico da função identidade, I(x) = x para qualquer $x \in \mathbb{R}$ é a bissectriz dos quadrantes ímpares;

O gráfico da função módulo f(x) = |x| qualquer que seja $x \in \mathbb{R}$ é a reunião das bissectrizes do 1º e 2º quadrantes.

Funções injectivas, sobrejectivas e bijectivas

Uma função $f: A \rightarrow B$ diz-se **injectiva** sse a quaisquer objectos diferentes corresponderem imagens diferentes, i.e.,

$$\forall x_1, x_2 \in A, \quad x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

ou equivalentemente

$$\forall x_1, x_2 \in A, f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$$

Exemplo

1 A função $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = 2x + 1 é injectiva, pois $\forall x_1, x_2 \in \mathbb{R}$:

$$f(x_1) = f(x_2) \Leftrightarrow 2x_1 + 1 = 2x_2 + 1 \Leftrightarrow x_1 = x_2;$$

2 A função $g: \mathbb{R} \to \mathbb{R}$ definida por $g(x) = x^2$ não é injectiva pois, por exemplo, g(1) = g(-1) = 1 e no entanto $1 \neq -1$.

Uma função $f: A \rightarrow B$ diz-se **sobrejectiva** sse o seu contradomínio coincidir com o conjunto de chegada, i.e.,

$$\forall y \in B, \exists x \in A: y = f(x).$$

Exemplo

A função : $\mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^4$ não é sobrejectiva pois não existe nenhum $x \in \mathbb{R}$ tal que f(x) = -1 (por exemplo).

Neste caso, o contradomínio de f são os reais não negativos, $D_f'=\mathbb{R}_0^+$, e o conjunto de chegada é \mathbb{R} .

Uma função $f: A \rightarrow B$ diz-se **bijectiva** sse for simultaneamente injectiva e sobrejectiva.

$$\forall y \in B, \exists x \in A: y = f(x).$$

Sejam $f: A \rightarrow B$ e $g: C \rightarrow D$ duas f.r.v.r. Chama-se

ullet soma de f e g, e designa-se por f+g, à função definida em $D_f\cap D_g$ pela fórmula

$$(f+g)(x)=f(x)+g(x);$$

• diferença de f e g, e designa-se por f-g, à função definida em $D_f \cap D_g$ pela fórmula

$$(f-g)(x)=f(x)-g(x);$$

• **produto** de f por g, e designa-se por fg, à função definida em $D_f \cap D_g$ pela fórmula

$$(fg)(x)=f(x)g(x);$$

• quociente de f por g, e designa-se por $\frac{f}{g}$, à função definida em $D_f \cap D_g \cap \{x \in D_g : g(x) \neq 0\}$ pela fórmula

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)};$$

• composta de f com g, e designa-se por $f \circ g$, à função definida em $D_{f \circ g} = \{x \in \mathbb{R} : x \in D_g \land g(x) \in D_f\}$ pela fórmula

$$(f\circ g)(x)=f[g(x)].$$

Exemplo

$$f(x) = \sqrt{x-1}, \quad g(x) = \frac{1}{x}$$

$$D_f = \{x \in \mathbb{R} : x - 1 \ge 0\} = \{x \in \mathbb{R} : x \ge 1\}$$

$$D_g = \{x \in \mathbb{R} : x \ne 0\}$$

$$D_{f \circ g} = \{ x \in \mathbb{R} : x \in D_g \land g(x) \in D_f \} = \left\{ x \in \mathbb{R} : x \neq 0 \land \frac{1}{x} \ge 1 \right\}$$
$$= \{ x \in \mathbb{R} : x \neq 0 \land x \le 1 \} =] -\infty, 1[\cup]0, 1],$$

$$\forall x \in D_{f \circ g}: \quad (f \circ g)(x) = f[g(x)] = f\left(\frac{1}{x}\right) = \sqrt{\frac{1}{x}} - 1$$

$$D_{g \circ f} = \{x \in \mathbb{R}: x \in D_f \land f(x) \in D_g\} = \{x \in \mathbb{R}: x \ge 1 \land \sqrt{x - 1} \ne 0\}$$

$$= \{x \in \mathbb{R}: x \ge 1 \land x \ne 1\} =]1, +\infty[$$

$$\forall x \in D_{g \circ f}: \quad (g \circ f)(x) = g[f(x)] = g\left(\sqrt{x - 1}\right) = \sqrt{\frac{1}{\sqrt{x - 1}}}$$

Tal como este exemplo ilustra, geralmente, $f \circ g \neq g \circ f$.

Uma função diz-se **polinomial** sse for definida em $\mathbb R$ por uma expressão do tipo:

$$f(x) = a_0 x^p + a_1 x^{p-1} + \ldots + a_{p-1} x + a_p,$$

com $p \in \mathbb{N}$ e $a_0, a_1, \ldots, a_p \in \mathbb{R}$.

No caso particular em que $f(x) = a_0$, f diz-se uma função constante.

Uma função diz-se **racional** sse for definida pelo quociente de duas funções polinomiais.

Exemplo

A f.r.v.r $f(x) = \frac{1}{x^2 - 1}$ é uma função racional.

Uma função **algébrica** é uma função que resulta de somas, diferenças, produtos, quocientes ou raízes de funções polinomiais.

Uma função que não é algébrica, diz-se transcendente.

Exemplos de funções transcendentes

Função Seno:

$$f: \mathbb{R} \to [-1, 1]$$
$$x \mapsto \sin x$$

Função Coseno:

$$f: \mathbb{R} \to [-1, 1]$$

 $X \mapsto \cos X$

Função Tangente:

$$f: \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\} \to \mathbb{R}$$

$$x \mapsto \tan x$$

$$\tan x = \frac{\sin x}{\cos x}$$

Função Cotangente:

$$f: \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\} \to \mathbb{R}$$

$$x \mapsto \cot x$$

$$\cot x = \frac{\cos x}{\sin x}$$

Função exponencial de base a:

$$f: \mathbb{R} \to \mathbb{R}$$

 $\mathbf{x} \mapsto \mathbf{a}^{\mathbf{x}}, \quad \mathbf{a} \in \mathbb{R}^+$

Uma função $f:\mathbb{R}\to\mathbb{R}$ diz-se **periódica** sse existe um número real $\alpha\neq 0$ tal que $\forall x\in\mathbb{R}$

$$f(x + \alpha) = f(x).$$

Ao número real α dá-se o nome de período da função.

Uma função $f:\mathbb{R} \to \mathbb{R}$ diz-se **par** sse

$$f(-x) = f(x), \quad \forall x \in \mathbb{R},$$

e diz-se ímpar sse

$$f(-x) = -f(x), \quad \forall x \in \mathbb{R},$$

A função $\sin x$ e $\cos x$ são funções periódicas de período 2π . A função $\sin x$ é impar e a função $\cos x$ é par.

Nota: A paridade ou imparidade de uma função traduz-se no seu gráfico de forma evidente:

as funções pares têm gráficos simétricos em relação ao eixo das ordenadas e as funções ímpares apresentam gráficos simétricos em relação à origem do referencial.

Seja $f:A\to B$ uma função *injectiva*. Define-se a **inversa** de f como sendo a função $g:D_f'\to D_f$ tal que

$$(g \circ f) = (f \circ g) = I$$
, (*I* é a função identidade)

i.e., as igualdades y = f(x) e x = g(y) são equivalentes. É costume representar-se a inversa de uma função por f^{-1} (Nunca confundir com $\frac{1}{f}$!)

Nota:Para obter o gráfico de f^{-1} basta efectuar sobre o gráfico de f uma simetria em relação à bissectriz dos quadrantes ímpares.

Exemplo

Seja $f(x) = \frac{2}{x-3}$ uma f.r.v.r.

$$\begin{array}{lcl} D_f & = & \{x \in \mathbb{R} : x - 3 \neq 0\} = \mathbb{R} \backslash \{3\} \\ D_f' & = & \mathbb{R} \backslash \{0\} \end{array}$$

f é uma função injectiva (verifique-o) e como tal admite inversa, neste caso $f^{-1}: \mathbb{R} \to \mathbb{R} \setminus \{3\}$.

Determinemos a expressão de f^{-1} :

De $y = \frac{2}{x-3}$ vem

$$y(x-3)=2 \Leftrightarrow x=\frac{2+3y}{y}$$

pelo que

$$f^{-1}: \mathbb{R} \setminus \{0\} \quad \to \quad \mathbb{R} \setminus \{3\}$$
$$x \quad \mapsto \quad \frac{2+3x}{x}$$

Uma f.r.v.r f diz-se **limitada** sse existir um número real L>0 tal que

$$|f(x)| \leq L$$

para qualquer $x \in D_f$.

Uma f.r.v.r f diz-se **crescente** sse para quaisquer $x_1, x_2 \in D_f$

$$x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2);$$

No caso da desigualdade ser estrita, a função diz-se **estritamente crescente**;

Uma f.r.v.r f diz-se **decrescente** sse para quaisquer $x_1, x_2 \in D_f$

$$x_1 \leq x_2 \Rightarrow f(x_1) \geq f(x_2);$$

No caso da desigualdade ser estrita, a função diz-se **estritamente decrescente**.

Funções circulares inversas

As funções trigonométricas, $\sin x$, $\cos x$, $\tan x$ e $\cot x$ não são injectivas no seu domínio. Como tal, aí não admitem inversa. No entanto, podemos fazer uma restrição ao seu domínio, à qual chamaremos **restrição principal**, na qual elas são injectivas. Considerando as restrições principais:

- para a função $\sin x$: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$;
- para a função $\cos x$: $[0, \pi]$;
- para a função tan x: $]-\frac{\pi}{2}, \frac{\pi}{2}[$;
- para a função cot x:]0, π[;

podemos aí definir as respectivas funções inversas.

A função arcsin x

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$$

 $X \mapsto \sin X$

$$f^{-1}: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $x \mapsto \arcsin x$

A função arccos x

$$f: [0,\pi] \to [-1,1]$$
$$x \mapsto \cos x$$

$$f^{-1}: [-1,1] \rightarrow [0,\pi]$$

 $x \mapsto \arccos x$

A função arctan x

$$f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$$

 $x \mapsto \tan x$

$$f^{-1}: \mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

 $x \mapsto \arctan x$

A função arcotx

$$f:]0, \pi[\to \mathbb{R}$$

 $x \mapsto \cot x$

$$f^{-1}: \mathbb{R} \to]0, \pi[$$

 $x \mapsto arcotx$

Função logarítmica

Lembremos que a função exponencial de base a, $f(x) = a^x$, é uma bijecção de $\mathbb R$ sobre $\mathbb R^+$ sse $a \neq 1$. À inversa da função

$$g: \mathbb{R} \to \mathbb{R}^+$$

 $x \mapsto a^x, \quad a \in \mathbb{R}^+ \setminus \{1\}$

dá-se o nome de função logarítmica de base a:

$$g^{-1}: \mathbb{R}^+ \to \mathbb{R}$$
$$x \mapsto \log_a x, \quad a \in \mathbb{R}^+ \setminus \{1\}.$$

Propriedades da função logaritmo

$$\forall x, y \in \mathbb{R}^+, \quad \forall a, b \in \mathbb{R}^+ \setminus \{1\}, \quad \forall p \in \mathbb{R}:$$

- $\bullet \log_a\left(\frac{x}{y}\right) = \log_a x \log_a y;$
- $\log_b x = \log_a x \log_b a$.

Um caso particularmente importante da função exponencial e da função logarítmica é dado quando a=e (número de Nepper).

Neste caso, $\log_e x$ ou $\log x$ ou ainda $\ln x$ é o chamado logaritmo nepperiano.

Outras funções a estudar

- $\sec x = \frac{1}{\cos x}$
- $\csc x = \frac{1}{\sin x}$
- $\sinh x = \frac{e^x e^{-x}}{2}$
- $\cosh x = \frac{e^x + e^{-x}}{2}$

: