Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients

Symbolid regression describes the problem of capturing the underlying mathematical expressions representing a dataset. Deep learning methods remain underexplored in this area. The work proposes a Deep Symbolic Regression (DSR) framework which uses a large model to search the space of small models. DSR utilizes a Recurrent Neural Network (RNN) to emit distributions over tractable mathematical expressions. The framework is trained using a novel risk-seeking policy gradient objective, motivated by reinforcement learning, which provisions the generation of best-fitting expressions. DSR demonstrates improved performance in comparison to prior state-of-the-art methods and suitable optimization of best-case performance.

Mathematical expressions may be constructed as symbolic regression trees such as a pre-order traversal tree. The work leverages this insight to construct a pre-order traversal tree based on the expressions sampled from a large model which spans the space of many smaller models. An RNN infers the input as parent and sibling tokens from the expression library and outputs a categorical distribution over expressions. The token sampled from the distribution acts as the parent token in the next timestep. Autoregressive sampling of tokens up till a fixed terminal timestep gives rise to an expression tree representing the final expression. The RNN is trained to maximize the likelihood of best-fitting expressions using a novel risk-seeking policy gradient objective. The reward function, which is inversely proportional to the normalized root-mean-square error (NMSE), evaluates the pre-order traversal sampled by the categorical distribution. Tokens in the traversal can be seen as actions sampled from a policy distribution to maximize long-term rewards as in the RL setting. Towards this insight, DSR utilizes risk-seeking policy gradients which provide a lower bound constraint on the reward maximization process. Intuitively, the framework aims to maximize best-case performance as opposed to maximizing expected performance in the standard RL setting.

DSR presents improved success rates for retrieving expressions, in some cases exactly, when compared to state-of-the-art commercial methods such as Eureqa. The framework aptly maximizes best case performance and presents significant improvement over the standard policy gradient method. A thorough ablation study of DSR depicts the suitability of its components and its robustness to dataset and reward noise. On the other hand, DSR struggles at realizing complex higher-order polynomial expressions with dual variables and fractions $(x^4 - x^3 + 0.5y^2 - y)$. One of the reasons for this shortcoming could be the potentially large space of tokens which is akin to a high-dimensional action space in the RL setting. Thus, addressing complex expressions still remains an open question as a result of their wide applications in the scientific community.

Tackling symbolic regression utilizing an RL-motivated framework presents two novel directions of future research. Firstly, DSR can be extended to complex expression spaces which are often the most utilized in involved scientific computations. And secondly, DSR can be extended towards alternative novel training objectives which demonstrate data-efficiency and faster training.

THe work introduced DSR, a deep learning framework to address symbolic regression. DSR utilizes an RNN to output categorical distributions whose samples denote the pre-order traversal representing a mathematical expression. DSR is trained using a novel risk-seeking policy gradient objective which maximizes the best-case performance by maximizing expression likelihoods. The framework presents improved success rates and robust performance in identifying expressions when compared to prior state-of-the-art and policy gradient methods.