

EXPERIMENTO 7

CIRCUITO RC – RESPOSTA EM FREQUÊNCIA

TURMA: <u>D</u>DATA: <u>21/05/2014</u>

NOME	RA
Karina Drews Bernardi Ferreira	556068
Marcelo Aparecido do Lago	559903
Marcos Vinicius Torsani Pires	387673

RESUMO:

Primeiramente, montou-se o circuito e estabeleceu-se no gerador de áudio uma voltagem de V_0 = 4V de pico a pico. Um multímetro foi conectado à fonte, para que medisse a freqüência. Utilizou-se uma resistência de 1,5 k Ω e capacitor de 22nF. Mediu-se os valores das freqüências com o multímetro ligado à fonte e os valores de tensões pico a pico do resistor utilizando o osciloscópio. Dessa forma, obteve-se as tabelas $V_R x$ f e $\Phi_R x$ f.

Mudou-se a posição do capacitor com o resistor e obteve-se as tabelas Vcxfe Φcxf . Com base nesses dados, construiu-se os gráficos VRe Vcem função da freqüência (com f na escala logarítmica).

Obteve-se a freqüência de corte pelas duas curvas f x VR e f x VC interceptando-se. Também construiu-se o gráfico de f x ΦR e f x ΦC (em escala mono-log).

MATERIAL UTILIZADO (MARCA/MODELO quando for o caso): Votimetros: Victor VC 9804 A⁺; Politerm VC 9802A⁺

DADOS EXPERIMENTAIS

DADOS EXPERIIVIENTAIS	
A.1) Tabela V _R ^{pp} versus f.	A.2) Tabela V _C ^{pp} versus f.
A.3) Tabela diferença de fase ϕ_R versus f.	A.4) Tabela diferença de fase ϕ_C versus f
B.1) Gráfico de V _R ^{pp} e V _C ^{pp} versus f.	B.2) Gráficos de ϕ_R e ϕ_C versus f.
ANÁLISE DOS RESULTADOS	
C.1) Freqüência de corte do circuito	
COMPONENTES UTILIZADOS R±u(R): (1500±75)Ω	e C±u(C): <u>(22±0,5)</u> nF
Teórica f _c ±u(f _c): (4883±6)Hz	Experimental $f_c \pm u(f_c)$:
Comparação:	

C.2) Medidas de V_R^{pp} e V_C^{pp}

	f=0,5f _c	f=f _C	f=2f _C
$V_R^{pp}\pm u(V_R^{pp})$			
$V_C^{pp}\pm u(V_C^{pp})$			
Soma algébrica			

C.3) Lei de Kirchhof:

Explicação:

C.4) Diagrama de Fasores:

C.5) Soma fasorial entre $V_R e V_C$:

Explicação:

D) QUESTÕES ADICIONAIS

D.1) Com base nos resultados desta experiência, porque o circuito RC em CA é chamado de "filtro"?

D.2) O que é um filtro RC passa-alta? Dê exemplos de aplicações.

Filtro passa-alta é o nome comum dado a um circuito Eletrônico que permite a passagem de altas frequências sem atenuar a tensão de entrada e saída.

Tal tipo de filtro poderia ser utilizado para direcionar as altas frequências a um tweeter enquanto bloqueia os sinais mais graves que poderiam interferir ou danificar o alto-falante. Um filtro passa-baixas poderia ser utilizado simultaneamente para direcionar as baixas frequências ao woofer.

D.3) O que é um **filtro RC passa-baixa**? Dê exemplos de aplicações.

Filtro passa-baixa é o nome comum dado a um circuito Eletrônico que permite a passagem de baixas frequências sem atenuar a tensão de entrada e saída.

Uma barreira sólida atua como um filtro passa-baixas para as ondas do som. Quando se está em um quarto e a música passa através de uma parede, as notas mais baixas (graves) são ouvidas com mais facilidade do que as notas mais altas (agudas), que são largamente filtradas. Similarmente, uma música muito alta ouvida em um carro é ouvida apenas como alguns ruídos pelos ocupantes dos outros veículos, pois os veículos fechados (e a barreira de ar) atuam como um filtro passa-baixas muito seletivo, atenuando os tons mais agudos.

Os filtros passa-baixas eletrônicos são utilizados para controlar subwoofers e outros tipos de altofalantes, para bloquear os picos mais agudos que não seriam transmitidos eficientemente.

Os transmissores de rádio utilizam filtros passa-baixas para filtrar as emissões harmônicas que podem causar interferência com outras comunicações.

O DSL splitters utilizam filtros passa-baixas e passa-altas para separar os sinais de DSL e o POTS compartilhando o mesmo par de fios.

Os filtros passa-baixa também possuem um papel importante no trabalho dos sons em música eletrônica quando esta é criada por sintetizadores analógicos, como o TB-303, criado pela Roland corporation.

Conclusões

Apêndice

A.1) Tabela V_R^{pp} versus f.

$V_R^{PP}(V)$	f(Hz)	
0,4	444	
0,57	660	
0,74	858	
0,91	1085	
1,08	1290	
1,25	1560	
1,42	1880	
1,59	2060	
1,76	2340	
1,93	2650	
2,1	2920	
2,27	3240	
2,44	3740	
2,61	4150	
2,78	4740	
2,95	5300	
3,12	6120	
3,29	6910	
3,46	8600	
3,63	10760	
3,8	20100	

A.2) Tabela Vc^{pp} versus f.

f(Hz)
56600
38000
28940
22920
18220
15360
13390
11630
10290
9130
8200
7210
6490
5920
5180
4590
4100
3700
2990
2440
1930

A.3) Tabela diferença de fase ϕ_R versus f.

Φ_{R}	f(Hz)
84,3	444
81,8	660
79,3	858
76,9	1085
74,3	1290
71,8	1560
69,2	1880
66,6	2060
63,9	2340
61,2	2650
58,3	2920
55,4	3240
52,4	3740
49,3	4150
46,0	4740
42,5	5300
38,7	6120
34,7	6910
30,1	8600
24,8	10760
18,2	20100

A.4) Tabela diferença de fase ϕ_C versus f.

	0 (77.)
фс	fc(Hz)
-84,3	56600
-81,8	38000
-79,3	28940
-76,9	22920
-74,3	18220
-71,8	15360
-69,2	13390
-66,6	11630
-63,9	10290
-61,2	9130
-58,3	8200
-55,4	7210
-52,4	6490
-49,3	5920
-46,0	5180
-42,5	4590
-38,7	4100
-34,7	3700
-30,1	2990
-24,8	2440
-18,2	1930