Lecture – 38-39 Dynamic Programming Approaches

- Knapsack problem
 (A dynamic programming algorithm for 0/1 knapsack)
- ✓ LCS (HW)

Example: Fibonacci numbers

$$F(n) = F(n-1) + F(n-2)$$

 $F(0) = 0$
 $F(1) = 1$

Computing the n^{th} Fibonacci number recursively (top-down):

$$F(n)$$

$$F(n-1) + F(n-2)$$

$$F(n-2) + F(n-3) + F(n-4)$$

Selection criteria: Maximum beneficial item.

Counter Example:

$$S = \{ (item_1, 5, \$70), (item_2, 10, \$90), (item_3, 25, \$140) \}$$

Selection criteria: Minimum weight item Counter Example:

$$S = \{ (item_1, 5, $150), (item_2, 10, $60), (item_3, 20, $140) \}$$

The 0/1 Knapsack problem

- Given a knapsack with weight W > 0.
- A set S of n items with weights w_i >0 and benefits b_i > 0 for i = 1,...,n.
- $S = \{ (item_1, w_1, b_1), (item_2, w_2, b_2), \dots, (item_n, w_n, b_n) \}$
- Find a subset of the items which does not exceed the weight W of the knapsack and maximizes the benefit.

0/I Knapsack problem

Determine a subset A of $\{1, 2, ..., n\}$ that satisfies the following:

$$\max \sum_{i \in A} b_i$$
 where $\sum_{i \in A} w_i \leq W$

In 0/1 knapsack a specific item is either selected or not

Knapsack Problem by DP

Given *n* items of

integer weights: $w_1 \ w_2 \ \dots \ w_n$

values/benefits/profit: $v_1 v_2 \dots v_n$

A knapsack of integer capacity W

Find most valuable subset of the items that fit into the knapsack Consider instance defined by first i items and capacity j ($j \le W$). Let V[i,j] be optimal value of such an instance. Then

$$V[i,j] = \begin{cases} \max \{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j - w_i \ge 0 \\ V[i-1,j] & \text{if } j - w_i < 0 \end{cases}$$

Initial conditions: V[0,j] = 0 and V[i,0] = 0

//If any cell value is not define leave it

Knapsack Problem by DP (pseudocode)

```
Algorithm DPKnapsack(w[1..n], v[1..n], W)
  var V[0..n,0..W], P[1..n,1..W]: int
  for i := 0 to W do
      V[0,i] := 0
   for i := 0 to n do
                                        Running time and space:
         V[i,0] := 0
                                               O(nW).
   for i := 1 to n do
      for i := 1 to W do
              if w[i] \le i and v[i] + V[i-l,j-w[i]] > V[i-l,j] then
                     V[i,j] := v[i] + V[i-I,j-w[i]]; P[i,j] := j-w[i]
              else
                     V[i,i] := V[i-I,i]; P[i,i] := i
  return V[n,W] and the optimal subset by backtracing
```


Weights: 2 3 4 5

			0	1	2	3	4	5	6	7	8
V	W	0	0	0	0	0	0	0	0	0	0
1	2	1	0								
2	3	2	0								
5	4	3	0								
6	5	4	0								

Integer Weights: 2 3 4 5 Values: 1 2 5 6

			0	1	2	3	4	5	6	7	8
V	W	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1
2	3	2	0								
5	4	3	0								
6	5	4	0								

Integer Weights: 2 3 4 5

			U	1	2	3	4	5	6	1	8
V	W	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1
2	3	2	0	0	1	2					
5	4	3	0								
6	5	4	0								

Integer Weights: 2 3 4 5

			0	1	2	3	4	5	6	7	8
V	W	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1
2	3	2	0	0	1	2		3			
5	4	3	0								
6	5	4	0								

Weights: 2 3 4 5

			0	1	2	3	4	5	6	7	8
V	W	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1
2	3	2	0	0	1	2	2	3	3	3	3
5	4	3	0								
6	5	4	0								

Weights: 2 3 4 5

			0	1	2	3	4	5	6	7	8
V	W	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1
2	3	2	0	0	1	2	2	3	3	3	3
5	4	3	0	0	1	2	5				
6	5	4	0								

Weights: 2 3 4 5 Values: 1 2 5 6

V W 0 0 0 0 0 0 0 0	0
1 2 1 0 0 1 1 1 1 1 1 1	1
2 3 2 0 0 1 2 2 3 3 3	3
5 4 3 0 0 1 2 5 6	
6 5 4 0	

Weights: 2 3 4 5

				0	1	2	3	4	5	6	7	8
V	W	0	T	0	0	0	0	0	0	0	0	0
1	2	1		0	0	1	1	1	1	1	1	1
2	3	2		0	0	1	2	2	3	3	3	3
5	4	3		0	0	1	2	5		6	7	
6	5	4		0								

Weights: 2 3 4 5 Values: 1 2 5 6

			0	1	2	3	4	5	6	7	8
V	W	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1
2	3	2	0	0	1	2	2	3	3	3	3
5	4	3	0	0	1	2	5	5	6	7	7
6	5	4	0								
											- 1

Weights: 2 3 4 5

			0	1	2	3	4	5	6	7	8
V	W	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1
2	3	2	0	0	1	2	2	3	3	3	3
5	4	3	0	0	1	2	5	5	6	7	7
6	5	4	0	0	1	2	5	6			

Weights: 2 3 4 5

			0	1	2	3	4	5	6	7	8
V	W	0	$\boxed{0}$	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1
2	3	2	0	0	1	2	2	3	3	3	3
5	4	3	0	0	1	2	5	6	6	7	7
6	5	4	0	0	1	2	5	6			8

Weights: 2 3 4 5

			0	1	2	3	4	5	6	7	8
V	W	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1
2	3	2	0	0	1	2	2	3	3	3	3
5	4	3	0	0	1	2	5	6	6	7	7
6	5	4	0	0	1	2	5	6	6	7	8

		0	1	2	3	4	5	6	7	8
W	0	$\overline{\mid 0 \mid}$	0	0	0	0	0	0	0	0
2	1	0	0	1	1	1	1	1	1	1
3	2	0	0	1	2	2	3	3	3	3
4	3	0	0	1	2	5	6	6	7	7
5	4	0	0	1	2	5	6	6	7	8

			0	1	2	3	4	5	6	7	8
V	W	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1
2	3	2	0	0	1	2	2	3	3	3	3
5	4	3	0	0	1	2	5	6	6	7	7
6	5	4	0	0	1	2	5	6	6	7	8

Assignment

Example: Knapsack of capacity W = 5 and 9 item weight value

tem	weignt	vaiue
ı	2	\$12
2	1	\$10
3	3	\$20
4	2	\$15

Soln

Knapsack Problem by DP (example)

Example: Knapsack of capacity W = 5

ĺ	em	<u>weight</u>	val	<u>ue</u>					
	I	2	\$	12					
	2	1	\$	10					
	3	3	\$2	20					
	4	2	\$	15	C	apa	city	′ j	
					0	ĺ	2	3	4
				0	0	0	0		
		$w_1 = 2, v_1 =$	12		0	0	12		
		$w_2 = 1, v_2 =$	10	2	0	10	12	22	2
		$w_3 = 3, v_3 =$		3	0	10	12	22	3
		$w_4 = 2, v_4 =$	15	4	0	10	15	25	3

Backtracing finds the actual optimal subset, i.e. solution.

• A subsequence of a sequence/string S is obtained by deleting zero or more symbols from S. For example, the following are some subsequences of "president": pred, sdn, predent. In other words, the letters of a subsequence of S appear in order in S, but they are not required to be consecutive.

 The longest common subsequence problem is to find a maximum length common subsequence between two sequences.

For instance,

Sequence I: president

Sequence 2: providence

Its LCS is priden.

Another example:

Sequence I: algorithm

Sequence 2: alignment

One of its LCS is algm.

How to compute LCS?

- Let $A = a_1 a_2 ... a_m$ and $B = b_1 b_2 ... b_n$.
- len(i, j): the length of an LCS between $a_1 a_2 ... a_i$ and $b_1 b_2 ... b_i$
- With proper initializations, len(i, j) can be computed as follows.

Running time and memory: O(mn) and O(mn).

i		j	0		1	2	3	4	5	6	7	8	9	10
					p	r	0	v	i	d	e	n	c	e
0			0		0	0	0	0	0	0	0	0	0	0
1	p		0	X	1	← 1	← 1	← 1	← 1	← 1	← 1	← 1	← 1	← 1
2	r		0	<u> </u>	1	2	4 2	4 2	← 2	4 2	← 2	← 2	← 2	← 2
3	e		0		1	1 2	2	2	2	1 2	3	← 3	← 3	3
4	S		0	<u> </u>	1	\uparrow 2	2	2	<u> 2</u>	1 2	1 3	3	3	3
5	i		0	<u> </u>	1	1 2	<u>2</u>	1 2	3	← 3	1 3	1 3	1 3	1 3
6	d		0		1	1 2	1 2	2	3	4	← 4	← 4	← 4	← 4
7	e		0	<u> </u>	1	1 2	1 2	2	3	4	5	← 5	← 5	X 5
8	n		0	<u> </u>	1	1 2	1 2	2	3	<u>4</u>	5	6	← 6	← 6
9	t		0	<u> </u>	1	\uparrow 2	2	2	3	1 4	1 5	f 6	1 6	f 6

Output: priden