Why Pixy2 Camera is Superior for Arduino-Based Color Obstacle Avoidance

CAMERA OPTIONS COMPARISON

Available Cameras for Arduino:

- 1. Pixy2 (CMUcam5) Dedicated color tracking processor
- 2. **OpenMV** Python-programmable vision module
- 3. **ESP32-CAM** WiFi camera with processor
- 4. **OV7670** Basic camera module
- 5. ArduCAM Various models with FIFO buffer
- 6. HuskyLens AI vision sensor

1. COLOR DETECTION CAPABILITIES

Pixy2 Advantages:

- Hardware-accelerated color detection at 60 FPS
- Can track 7 color signatures simultaneously
- Built-in color-connected components (CCC) algorithm
- No Arduino processing required outputs object coordinates directly
- Automatic white balance and exposure adjustment

Other Cameras:

OpenMV: 15-30 FPS color detection (Python overhead)

ESP32-CAM: Requires separate processor, 10-15 FPS to Arduino

OV7670: Raw pixels only - Arduino too slow for processing

ArduCAM: 1-5 FPS with Arduino processing HuskyLens: 20 FPS but limited to preset colors

2. REAL-TIME PERFORMANCE COMPARISON

Camera	Color Detection FPS	Latency	Arduino Load
Pixy2	60 FPS	<20ms	~5% (SPI only)
OpenMV	15-30 FPS	50-100ms	~10% (UART)
ESP32-CAM	10-15 FPS	100-200ms	~20% (Serial)
OV7670	<1 FPS	>1000ms	100% (unusable)
ArduCAM	1-5 FPS	200-500ms	~80%
HuskyLens	20 FPS	50ms	~10% (I2C)

3. COLOR OBSTACLE AVOIDANCE SPECIFIC FEATURES

Pixy2 Unique Advantages:

- 1. **Color Code Detection**: Can identify combinations of colors (e.g., red-green-red pattern)
- 2. **Object Size Filtering**: Reports width/height for distance estimation
- 3. Tracking Algorithm: Maintains object ID between frames
- 4. **Pan/Tilt Support**: Can actively track moving obstacles

4. TECHNICAL SPECIFICATIONS COMPARISON

Feature	Pixy2	OpenMV	ESP32- CAM	OV7670	ArduCA M	HuskyLens
Resolution	316x208	320x240	1600x120 0	640x480	Various	320x240
Processor	NXP LPC4330	STM32H743	ESP32	None	None	Kendryte K210
Color Tracking	Built-in	Programmabl e	Requires coding	Manual	Manual	Pre-trained
Interface	SPI/I2C/U ART	SPI/I2C/UAR T	WiFi/Seri al	Parallel	SPI	I2C/UART

5. COLOR DETECTION ALGORITHMS

Pixy2 Color Connected Components (CCC):

- **HSV color space** processing in hardware
- Automatic region growing algorithm
- Real-time connected component labeling
- Outputs: X, Y, Width, Height, Signature ID

Why Others Struggle:

OV7670/ArduCAM:

- Must transfer raw RGB pixels (307KB/frame)
- Arduino processes each pixel (too slow)
- No hardware acceleration

ESP32-CAM:

- Powerful but separate processor
- Complex integration with Arduino
- WiFi overhead if used

OpenMV:

- Excellent but overkill for simple color tracking
- More expensive than Pixy2
- Python interpreter overhead

6. OBSTACLE AVOIDANCE PERFORMANCE

Critical Metrics for Navigation:

Response Time to New Obstacle:

• Pixy2: 16ms (1 frame at 60 FPS)

• OpenMV: 33-66ms

• ESP32-CAM: 100-200ms

• OV7670: >1000ms (unusable)

Multiple Obstacle Tracking:

• Pixy2: 7 colors/objects simultaneously

• HuskyLens: 1-2 objects

• Others: Depends on Arduino processing power

7. POWER AND RESOURCE EFFICIENCY

Camera	Current Draw	Arduino RAM Used	Arduino Flash Used
Pixy2	140mA	<1KB	~10KB library
OpenMV	140mA	2KB	15KB library
ESP32-CAM	160mA	2KB	20KB library
OV7670	40mA	8KB+ buffer	30KB+ code
ArduCAM	80-120mA	4KB buffer	25KB code

CONCLUSION: Why Pixy2 was our choice

For Arduino-based color obstacle avoidance, Pixy2 is the **optimal choice** because:

- 1. **Dedicated Vision Processor**: Offloads ALL vision processing from Arduino
- 2. Real-time Performance: 60 FPS ensures immediate obstacle detection
- 3. **Proven Reliability**: Used in thousands of robotics projects
- 4. **Simple Integration**: 5 lines of code vs. hundreds
- 5. **Multiple Object Tracking**: Essential for complex environments
- 6. Power Efficiency: Comparable to alternatives despite superior performance

Bottom Line: While ESP32-CAM is cheaper and OpenMV is more flexible, Pixy2's **purpose-built design for color tracking** makes it the superior choice for real-time obstacle avoidance. The hardware acceleration and zero Arduino processing overhead are game-changers for responsive navigation.