Statistical Inference and Machine Learning in Earth Science SIMLES

Module 1

Basics

Lecture2
Random Variables & Distributions

Probability space $(\mathcal{S}, \mathcal{E}, P)$

In order to define a random process and work with probabilities, we need to construct a probability space.

Sample space: (Set of all possible outcomes/rolls)

$$\mathcal{S} = \{ \blacksquare \quad \blacksquare \quad \blacksquare \quad \blacksquare \quad \blacksquare \quad \}$$

Event space: (Set of all subsets of the sample space)

$$\mathscr{E} = \left\{ \{0, \{0, \dots, \{0, \dots,$$

Valid Probability: P

- P > 0, $P(\phi) = 0$, P(S) = 1
- •If E_1, E_2 are mutual exclusive $(E_1 \cap E_2 = \phi)$, the probability of E_1 OR E_2 is:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

Random variable

A random variable X is a function defined on the sample space, that associates a number for outcome and event:

$$X:\mathcal{S}\to\mathbb{R}$$

X: random variable

x: a specific value the random variable takes in the real numbers

Uniform discrete random variable

$$X: \mathcal{S} \to \{1,2,3,4,5,6\}$$

X: value of each die face

Bernoulli Random variable

$$X: \mathcal{S} \to \{0,1\}$$

$$X = 0 \text{ if roll } \leq 3$$

$$= 1 \text{ if roll } > 3$$

$$p = P(X = 1)$$

Same sample space, different RV

Uniform discrete

$$X: \{1,2,3,4,5,6\} \rightarrow \{1,2,3,4,5,6\}$$

Bernoulli

$$X: \{1,2,3,4,5,6\} \rightarrow \{0,1\}$$

Bernoulli Random variable

$$X: \mathcal{S} \to \{0,1\}$$

$$X = 0 \text{ if heads}$$

$$= 1 \text{ if tails}$$

$$p = P(X = 1)$$

$$p = 0.5$$

Bernoulli Random variable

$$X: \mathcal{S} \to \{0,1\}$$

$$X = 0 \text{ if roll } \leq 2$$

$$= 1 \text{ if roll } > 2$$

$$p = P(X = 1)$$

Sum of two dice

$$X: \mathcal{S} \rightarrow \{2, \dots, 12\}$$

	•			
	•		■	
S:				
•				
	.			
		#		##

	•					=
•	2	3	4	5	6	7
	3	4	5	6	7	8
	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
	7	8	9	10	11	12

P = 1/36 for each event in sample space

Random variables are characterized (and defined) by their distribution

$$X: \mathcal{S} \to \{x_i\}$$

Probability mass function (pmf) of X:

$$p(x_i) = P(X = x_i)$$

Uniform discrete: $p(x_i) = 1/6$

Bernoulli: p(0) = 1 - p; p(1) = p

Sum of two dice:

•
$$p(2) = 1/36$$

•
$$p(3) = 2/36$$

•

$$p(12) = 1/36$$

•					
2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

Uniform discrete: $p(x_i) = 1/6$

Bernoulli:
$$p(0) = 1 - p$$
; $p(1) = p$

Sum of two dice:

•
$$p(2) = 1/36$$

•
$$p(3) = 2/36$$

• . . .

•
$$p(12) = 1/36$$

Uniform discrete: $p(x_i) = 1/6$

Bernoulli:
$$p(0) = 1 - p$$
; $p(1) = p$

Sum of two dice:

•
$$p(2) = 1/36$$

•
$$p(3) = 2/36$$

•

•
$$p(12) = 1/36$$

Probability \(\leftarrow\) Statistics

Probability

Process

Distribution $p(x_i) = 1/6$

0.175 0.150-0.125-0.100-0.075-0.050-0.025-

Probability \(\leftarrow\) Statistics

Probability

Statistics

Process

Data

Distribution
$$p(x_i) = 1/6$$

Distribution

Process

An approximate representation of the distribution of a random variable

Definition: the frequency of realizations occurring in certain ranges of values (bins)

An approximate representation of the distribution of a random variable

Definition: the frequency of realizations occurring in certain ranges of values (bins)

Count: the number of realizations occurring in each bin

An approximate representation of the distribution of a random variable

Definition: the frequency of realizations occurring in certain ranges of values (bins)

Frequency: the *relative number* of realizations occurring in each bin (Number in each bin / total number)

Histograms converge to pmfs

$$h_N(x_i) \to p(x_i)$$

Probability \(\leftarrow\) Statistics

Probability

Process

Distribution $p(x_i) = 1/6$

Statistics

 \downarrow

Distribution

 \downarrow

Process

Continuous Random Variables

Reading:

• Emile-Geay: Chapter 3

Continous R.Vs Moments of distribution Sampling

Continuous Random Variables

A random variable X is a function defined on the sample space, that associates a number for outcome and event:

Discrete:

$$X:\mathcal{S}\to\{x_i\}$$

Continuous:

$$X:\mathcal{S}\to\mathbb{R}$$

$$X: \mathcal{S} \to [a,b]$$

$$X: \mathcal{S} \to (a,b]$$

$$X: \mathcal{S} \to [0,\infty)$$

X: uniform discrete distribution over x_i , $i \in \{1,n\}$

Probability Mass Function

$$f(x_i) = P(X = x_i)$$

X: uniform discrete distribution over x_i , $i \in \{1,n\}$

Probability Mass Function $f(x_i) = P(X = x_i)$

Cumulative Distribution Function
$$F(x) = P(X \le x)$$

X: uniform discrete distribution over x_i , $i \in \{1,n\}$

$$PMF$$

$$f(x_i) = P(X = x_i)$$

X: uniform discrete distribution over x_i , $i \in \{1,n\}$

$$PMF$$

$$f(x_i) = P(X = x_i)$$

$$CDF$$

$$F(x) = P(X \le x)$$

$$F(x) = \sum_{i:x_i < x} f(x_i)$$

Distributions: Probability Density Function (pdf)

pmf:

$$f(x_i) = P(X = x_i)$$

Distributions: Probability Density Function (pdf)

pmf:

$$f(x_i) = P(X = x_i)$$

pdf:

$$f(x) = P(X \in [x, x + dx])$$

$$P(x \in [a, b]) = \int_{a}^{b} f(x)dx$$

Distributions: Probability Density Function (pdf)

pmf:

$$f(x_i) = P(X = x_i)$$

pdf:

$$f(x) = P(X \in [x, x + dx])$$

$$P(x \in [a, b]) = \int_{a}^{b} f(x)dx$$

$$F(x) = P(X < x) = \int_{-\infty}^{x} f(u)du$$

Continuous uniform random variable

The uniform distribution is the distribution of a random variable which has equal probability of taking any value within an interval a,b

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{if } x \notin [a,b] \end{cases}$$

Definition: the frequency of realizations occurring in certain ranges of values (bins)

$$F(x) = P(X < x) = \int_{-\infty}^{u} f(u)du$$

$$F(x) = P(X < x) = \sum_{i:x_i < x} f(x_i)$$

Continuous uniform random variable

The uniform distribution is the distribution of a random variable which has equal probability of taking any value within an interval a,b

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{if } x \notin [a,b] \end{cases}$$

Normal/Gaussian Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$

Real World distributions

Multivariate Distributions

Bivariate Gaussian with marginals: distribution

Bivariate Gaussian with marginals: histogram

Real World distributions

Mixed Distributions

Mixed Distributions

Mixed Distributions

