Convergence of random variables

Where we're heading

Convergence in probability

Definition: A sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X if, for every $\varepsilon > 0$,

$$\lim_{n o\infty}P(|X_n-X|\geq arepsilon)=0$$

We write $X_n \stackrel{p}{ o} X$.

Example: (Weak law of large numbers)

WLLN

Theorem: Let X_1, X_2, \ldots be iid random variables with $\mathbb{E}[X_i] = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Then

$$\overline{X}_n \stackrel{p}{ o} \mu$$

Working with your neighbor, apply Chebyshev's inequality to prove the WLLN.

Another example

Let
$$U \sim Uniform(0,1)$$
, and let $X_n = \sqrt{n} \ \mathbb{I}\{U \leq 1/n\}$.

Show that $X_n \stackrel{p}{ o} 0.$

Almost sure convergence

Definition: A sequence of random variables X_1, X_2, \ldots converges almost surely to a random variable X if, for every $\varepsilon > 0$,

$$P(\lim_{n o\infty}|X_n-X|$$

We write $X_n \overset{a.s.}{\to} X$.

Example: (Strong law of large numbers)

Convergence in distribution

Definition: A sequence of random variables X_1, X_2, \ldots converges in distribution to a random variable X if

$$\lim_{n o\infty}F_{X_n}(x)=F_X(x)$$

at all points where $F_X(x)$ is continuous. We write $X_n \stackrel{d}{ o} X$.

Example: (Central limit theorem)

Another example

Let
$$X \sim N(0,1)$$
, and let $X_n = -X$ for $n=1,2,3,\ldots$

Show that $X_n \overset{d}{ o} X$, but X_n does *not* converge to X in probability.

Relationships between types of convergence