Examenul de bacalaureat national 2020 Proba E. d) **INFORMATICĂ** Limbajul Pascal

MODEL

Filieră teoretică, profil real, specializare științe ale naturii

- Toate subjectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.
- Identificatorii utilizați în rezolvări trebuie să respecte precizările din enunț (bold), iar în lipsa unor precizări explicite, notațiile trebuie să corespundă cu semnificațiile asociate acestora (eventual în formă prescurtată). Datele de intrare se consideră corecte, validarea lor nefiind necesară.
- În grafurile din cerinte oricare arc/muchie are extremităti distincte și oricare două arce/muchii diferă prin cel putin una dintre extremităti.

SUBIECTUL I (20 de puncte)

Pentru fiecare dintre itemii de la 1 la 5, scrieti pe foaia de examen litera corespunzătoare răspunsului corect. Fiecare răspuns corect se notează cu 4 puncte.

- Variabilele x, y și z sunt de tip întreg și memorează numere naturale din intervalul [1,10³]. Indicați o expresie Pascal care are valoarea true dacă si numai dacă valoarea variabilei x este strict mai mică decât valoarea oricăreia dintre variabilele y și z.
 - a. (z+x<x+y) and (x+z>z+y)

b. (z+x< x+y) and (z+y>y+x)

c. (x+z<z+y) and (z+y>y+x)

- d. (x+y<y+z) and (x+z>z+y)
- 2. În secvențele notate cu s1, s2 și s3, definite mai jos, toate variabilele sunt întregi.

Dacă valoarea inițială a variabilei n este 12, se obține aceeași valoare pentru variabila p în urma executării, independent, a secvențelor:

- a. s1 și s2
- b. s1 §i s3
- C. s2 Si s3
- d. s1, s2 și s3
- Variabilele x şi y sunt de tip real. O transcriere în limbajul Pascal a expresiei alăturate este:
 - a. sqr(x*(sqrt(x)-y))

b. sqrt(x*(sqr(x)-y))

c. sqr(x*x*x-y)

- d. sqrt(x*x*x-y)
- Elementele unui tablou unidimensional sunt, în această ordine, (2,5,6,12,55,57,79). Pentru a verifica dacă în tablou există elementul cu valoarea x=56, se aplică metoda căutării binare. Succesiunea de elemente cu care se compară valoarea x pe parcursul aplicării metodei indicate este:
 - a. 12, 57, 55
- **b.** 12, 55, 57
- c. 2, 6, 12, 57
- d. 79, 57, 55
- În urma interclasării în ordine descrescătoare a tablourilor unidimensionale A și B se obtine tabloul (45,29,17,16,12,12,10,7,3,2). Elementele tablourilor, în ordinea în care apar în acesta, pot fi:
 - a. A=(4,2,1,1,1,1,1)B=(5,9,7,6,2,2,0,7,3,2)

- b. A=(45,29,17,16,12)B=(10,7,3,2)
- c. A=(22,14,8,8,6,6,5,3,1,1)B=(23,15,9,8,6,6,5,4,2,1)
- d. A=(45,29,17,12,10,3)B=(16,12,7,2)

SUBIECTUL al II-lea (40 de puncte)

Algoritmul alăturat este reprezentat în pseudocod.
 S-a notat cu a%b restul împărțirii numărului natural a la numărul natural nenul b.

- a. Scrieţi valoarea afişată în urma executării algoritmului dacă se citesc, în această ordine, numerele 21, 38 şi
 4. (6p.)
- b. Dacă pentru m şi x se citesc numerele 20, respectiv 2020, scrieţi cea mai mică şi cea mai mare valoare care pot fi citite pentru variabila n, astfel încât, în urma executării algoritmului, pentru fiecare dintre acestea, să se afişeze 2020. (6p.)
- c. Scrieți programul Pascal corespunzător algoritmului dat. (10p.)
- d. Scrieți în pseudocod un algoritm, echivalent cu cel dat, înlocuind structura repetă...până când cu o structură de alt tip. (6p.)

```
citeşte m,n,x
  (numere naturale nenule, m≤n)
s←0; pm←1; pn←1
repetă
| repetă
| rdacă m%x=0 atunci
| s←s+m; pm←x
| l
| rdacă n%x=0 și m≠n atunci
| s←s+n; pn←x
| l
| m←m+pm; n←n-pn
lpână când m>n
scrie s
```

- Variabila id memorează identificatorul unei zone de parcare dintr-un oraș (o literă a alfabetului englez), iar variabilele întregi numar și pret memorează numărul de locuri închiriate în această zonă pe parcursul lunii curente, respectiv prețul practicat pentru închirierea unui loc pentru o lună. Declarați corespunzător variabila id și scrieți o instrucțiune Pascal care să afișeze pe ecran suma obținută în urma închirierii pe parcursul lunii curente a tuturor locurilor de parcare din zona precizată. (6p.)
- 3. În secvența alăturată toate variabilele sunt de tip întreg. Scrieți secvența înlocuind punctele de suspensie astfel încât, în urma executării secvenței obținute, valoarea variabilei p să fie numărul de ordine al ultimului număr 2020 citit, sau 0, dacă nu există astfel de numere.

```
p:=....;
for i:=1 to 10 do
begin read(x);
end;
```

Exemplu: dacă se citesc, în această ordine, numerele 20, 19, 2020, 15, 2020, 6, 7, 21, 24, 36, în urma executării secvenței, p are valoarea 5. (6p.)

SUBIECTUL al III-lea (30 de puncte)

1. Se citește un număr natural, n (n≥1), și se cere să se scrie numărul obținut prin duplicarea fiecărei cifre impare a lui n sau -1 dacă acesta nu are nicio cifră impară.

Scrieți, în pseudocod, algoritmul de rezolvare pentru problema enunțată.

```
Exemplu: dacă n=2019, se scrie 201199.
```

(10p.)

2. Scrieți un program Pascal care citește de la tastatură numere naturale din intervalul [0,10°], în această ordine: numerele n și x, apoi cele n elemente ale unui tablou unidimensional. Programul modifică ordinea valorilor din tablou, astfel încât primele poziții să fie ocupate de mulțimea formată de cele care sunt mai mari sau egale cu x, iar următoarele poziții, în continuarea acestora, să fie ocupate de mulțimea celorlalte numere. Valorile din aceeași mulțime sunt memorate într-o ordine oarecare. Elementele tabloului obținut sunt afișate pe ecran, separate prin câte un spațiu, iar dacă una dintre cele două mulțimi este vidă, se afișează pe ecran doar mesajul nu exista.

```
Exemplu: pentru n=9, x=19 și tabloul (\underline{20}, \underline{19}, \underline{20}, 5, \underline{20}, 18, 7, \underline{75}, 3) unul dintre tablourile obținute poate fi: (\underline{20}, \underline{19}, \underline{20}, \underline{20}, \underline{75}, 5, 18, 7, 3). (10p.)
```

3. Fișierul numere.in conține un șir de numere naturale din intervalul [1,10°]. Numerele din șir sunt ordonate strict descrescător și sunt separate prin câte un spațiu. Se cere să se determine numărul valorilor naturale distincte din intervalul închis delimitat de prima și ultima valoare din șir care NU se găsesc în șirul menționat mai sus. Numărul determinat se afișează pe ecran. Proiectați un algoritm eficient din punctul de vedere al spațiului de memorie și al timpului de executare.

Exemplu: dacă fișierul conține numerele

8 5 3 2

se afisează pe ecran 3 (în sir nu se găsesc valorile 7 6 4).

a. Descrieți în limbaj natural algoritmul proiectat, justificând eficiența acestuia. (2p.)

b. Scrieți programul Pascal corespunzător algoritmului proiectat.

(8p.)