

Epreuve d'optique géométrique Durée : 1h 30min

Exercice

On considère un miroir sphérique convexe Σ de sommet S, de centre C et de rayon de courbure $R = \overline{SC}$ et on place un objet AB de hauteur 5cm à une distance $p = \overline{SA} = -15cm$ du sommet S.

- **1-** Déterminer par rapport à S et en fonction de R, les positions des foyers objet et image F et F' du miroir.
- **2-** Avec $R = \overline{SC} = 5cm$ et dans les conditions de l'approximation de Gauss.
 - **a-** Calculer la position $p' = \overline{SA'}$ de l'image A'B' par rapport au sommet S.
 - **b-** Calculer le grandissement linéaire γ ainsi que la hauteur de l'image A'B'. Conclusion.
 - c- On fait déplacer le long de l'axe optique l'objet AB d'une distance infinitésimale dp, ce qui entraine un déplacement de dp de l'image A'B'. Exprimer alors le grandissement axial g en fonction de γ . De combien elle est déplacée alors l'image et dans quel sens ?
- **3-** On fait maintenant tendre le rayon de courbure R du miroir Σ vers l'infini.
 - a- Quel est le système optique simple ainsi obtenu et que peut-t-on dire de son stigmatisme
 - **b-** Quelles sont alors les nouvelles positions des foyers Fet F'. Qu'appelle-t-on alors ce type de système optique.
 - **c-** Déterminer la nouvelle position de l'image *A'B'*. Conclusion.

Problème

Soit l'association de deux lentilles minces convergentes L_1 et L_2 , respectivement de foyers principaux objet et image (F_1, F'_1) et (F_2, F'_2) , de distances focales objet et image (f_1, f'_1) et (f_2, f'_2) et de centres optiques O_1 et O_2 . L'ensemble de ces deux lentilles est baigné dans l'air d'indice 1 tels que $O_1 O_2 = e = 3cm$, $f'_1 = 3cm$ et $f'_2 = 3cm$

On suppose que l'association de ces deux lentilles L_I et L_2 est équivalent à un système centré de Foyers principaux objet et image F et F', de points principaux objet et image H et H', de points nodaux N et N' et de distances focales objet et image $f = \overline{HF}$ et $f' = \overline{H'F'}$.

- 1)- Exprimer l'intervalle optique $\Delta = \overline{F'_1 F_2}$ en fonction de f'_1 , f_2 et e et calculer sa valeur.
- 2)- On cherche la position de F par rapport à O_1 , exprimer alors $\overline{F_1F}$ en fonction de f_1 , f'_1 et Δ et calculer sa valeur; En déduire l'expression de $\overline{O_1F}$ ainsi que sa valeur.
- 3)- On cherche la position de F' par rapport à O_2 , exprimer alors $\overline{F'_2 F'}$ en fonction de f_2 , f'_2 et Δ et calculer sa valeur; En déduire l'expression de $\overline{O_2 F'}$ ainsi que sa valeur.
- 4)- On note respectivement par V_1 , V_2 et V les vergences des lentilles L_1 et L_2 du système centré équivalent Σ .
 - a- Ecrire la formule de Gullstrand dans ce cas ;
 - b- Exprimer V_1 , V_2 et V en fonction des distances focales objets correspondantes. En déduire la distance focale objet $f=\overline{HF}$ du système centré équivalent Σ en fonction de f_1 , f_2 et Δ et calculer sa valeur.
 - c- Exprimer V_1 , V_2 et V en fonction des distances focales images correspondantes. En déduire la distance focale image $f' = \overline{H'F'}$ du système centré équivalent Σ en fonction de f'_1 , f'_2 et Δ et calculer sa valeur.

Corrigé de l'épreuve de l'optique géométrique

Exercice I

1-
$$\overline{SF} = \frac{R}{2}$$
, $\overline{SF}' = \frac{R}{2}$

2--a-
$$\frac{1}{p} + \frac{1}{p'} = \frac{2}{R} \Rightarrow p' = \frac{R \times p}{2p - R}$$
. $p' = \frac{15}{7} = 2,14cm$

b-
$$\gamma = -\frac{p'}{p} = \frac{1}{7} = 0.143$$
 $\overline{A'B'} = 0.71cm$ $0 \gamma > 0 \Rightarrow$ Image droite

c-
$$g = \frac{dp'}{dp}$$
. En différentiant la relation de conjugaison on a $g = \frac{dp'}{dp} = -\frac{p'^2}{p^2} = -\gamma^2$ \bigcirc \bigcirc \Rightarrow $g < 0$;

Donc l'image se déplace toujours dans le sens contraire de l'objet et d'une distance $dp' = -\gamma^2 \times dp$

a- miroir plan qui présente un stigmatise rigoureux

b- Les foyers objet et image Fet F 'sont rejetés à l'infini le miroir plan est donc un système afocal

c-
$$\frac{1}{p} + \frac{1}{p'} = 0 \Rightarrow p' = -p = 15cm$$
 []. L'image et l'objet sont symétriques par rapport au miroir plan

Problème

A)-

1-a-

1,00 b-On lit:
$$\overline{O_1 A} = -8cm [\overline{O_1 A'} = 24cm \ f_1 = \overline{O_1 F_1} = -6cm \ [f'_1 = \overline{O_1 F'_1} = 6cm$$

a- Le grandissement noté
$$\gamma_I$$
 est $\gamma_1 = \frac{\overline{A'_1 B'_1}}{\overline{AB}} = \frac{\overline{O_1 A'_1}}{\overline{O_1 A}}$

- Si $\gamma_1 < 0$: l'image est renversée par rapport à l'objet. - Si $|\gamma_1 > 1$: l'image est plus grande que l'objet

b- Le grandissement vaut $y_1 = -3$

$$\gamma_{1} = \frac{\overline{O_{1}A'_{1}}}{\overline{O_{1}A}} \Leftrightarrow \frac{\overline{O_{1}A} + \overline{AA'_{1}}}{\overline{O_{1}A}} \Leftrightarrow \gamma_{1} \times \overline{O_{1}A} = \overline{O_{1}A} + \overline{AA'_{1}} \Rightarrow (\gamma_{1} - 1)\overline{O_{1}A} = \overline{AA'_{1}} \Rightarrow \overline{O_{1}A} = \frac{\overline{AA'_{1}}}{(\gamma_{1} - 1)}$$

$$\overline{O_1 A} = -8cm$$

$$\mathbf{c} \cdot \overline{AA'_1} = \overline{AO_1} + \overline{O_1A'_1} = \overline{O_1A'_1} - \overline{O_1A} \Longrightarrow \overline{O_1A'_1} = \overline{AA'_1} + \overline{O_1A} \Longrightarrow \overline{O_1A'_1} = 24cm$$

d-
$$\frac{1}{\overline{O_1 A'_1}} - \frac{1}{\overline{O_1 A}} = \frac{1}{f'_1} \Rightarrow f'_1 = \frac{\overline{O_1 A} \times \overline{O_1 A'_1}}{\overline{O_1 A} - \overline{O_1 A'_1}} = \frac{-8 \times 24}{-8 - 24} = 6cm$$

Les indices des milieux extrêmes sont égaux ce qu implique $f_1 = -f'_1 = -6cm$

e- La vergence de la lentille L_I est $V_1 = \frac{1}{f_1'}$ $V_1 = \frac{1}{6.10^{-2}} = 16,7\delta$

3- les résultats obtenus par les deux méthodes doivent être égaux ; Si jamais il y a des écarts, les sources d'erreur sont : arrondis de calcul, précision des tracés, épaisseur des traits de crayon

1-
$$\Delta = \overline{F'_1 F_2} = \overline{F'_1 O_1} + \overline{O_1 O_2} + \overline{O_2 F_2} = -f'_1 + e + f_2 = -f'_1 + e - f'_2$$

- Pour construire le point focal objet F du doublet, nous considérons le schéma synoptique suivant :

$$F \xrightarrow{L_1} F_2 \xrightarrow{L_2} image à l'infini$$

F est l'objet qui donne, à travers la première lentille, une image au point focal objet F_2 de la seconde lentille. En utilisant la relation de conjugaison de Newton pour les points F_2 et F, conjugués par F_2 :

$$\overline{F_1F} \times \overline{F'_1F_2} = f_1f'_1 = -f'_1^2 \qquad \Rightarrow \overline{F_1F} = \frac{f_1 \times f'_1}{\overline{\Delta}} = \frac{-f'_1^2}{\Delta}$$

$$\overline{F_1F} = \overline{F_1O_1} + \overline{O_1F} = \frac{-f'_1^2}{\Delta} \Rightarrow \overline{O_1F} = -\left(f'_1 + \frac{f'_1^2}{\Delta}\right)$$

3- Pour le point focal image F' du doublet, nous considérons le schéma synoptique suivant :

objet
$$\xrightarrow{L_1}$$
 $F'_1 \xrightarrow{L_2}$ F' à l'infini

F' est l'image à travers la seconde lentille du point focal image F' $_{1}$ de la première lentille. En appliquant la relation de conjugaison de Newton aux points F' $_{1}$ et F', conjugués par L_{2} :

$$\overline{F_{2}F'_{1}} \times \overline{F'_{2}F'} = f_{2} \times f'_{2} = -f'_{2}^{2} \qquad \Rightarrow \overline{F'_{2}F'} = -\frac{f_{2} \times f'_{2}}{\Delta} = \frac{f'_{2}^{2}}{\Delta}$$

$$\overline{F'_{2}F'} = \overline{F'_{2}O_{2}} + \overline{O_{2}F'} = \frac{f'_{2}^{2}}{\Delta} \Rightarrow \overline{O_{2}F'} = f'_{2} + \frac{f'_{2}^{2}}{\Delta}$$

$$\mathbf{4-} \quad f = \frac{f_{1}f_{2}}{\Delta} = \frac{f'_{1}f'_{2}}{\Delta} \quad \text{et} \quad f' = -\frac{f'_{1}f'_{2}}{\Delta} \quad \text{Conclusion} \quad f' = -f$$

$$\mathbf{5-} \quad \overline{F_{1}H} = \overline{F_{1}F} + \overline{FH} = \overline{F_{1}F} - \overline{HF} = \frac{-f'_{1}}{\Delta} - \frac{f'_{1}f'_{2}}{\Delta} = -\frac{f'_{1}}{\Delta} (f'_{1} + f'_{2})$$

$$\overline{F_{1}H} = \overline{F_{1}O_{1}} + \overline{O_{1}H} \quad \Rightarrow \overline{O_{1}H} = \overline{F_{1}H} - F_{1}O_{1} = -\frac{f'_{1}}{\Delta} (f'_{1} + f'_{2}) + f_{1} = -\frac{f'_{1}}{\Delta} (f'_{1} + f'_{2}) - f'_{1}$$

$$\mathbf{6-} \quad \overline{F'_{2}H'} = \overline{F'_{2}F'} + \overline{F'H'} = \frac{f'_{2}^{2}}{\Delta} + \frac{f'_{1}f'_{2}}{\Delta} = \frac{f'_{2}}{\Delta} (f'_{1} + f'_{2})$$

$$\overline{F'_{2}H'} = \overline{F'_{2}O_{2}} + \overline{O_{2}H'} \quad \Rightarrow \overline{O_{2}H'} = \overline{F'_{2}H'} - \overline{F'_{2}O_{2}} = \frac{f'_{2}}{\Delta} (f'_{1} + f'_{2}) + f'_{2}$$

7- Les indices des milieux extrêmes sont identiques $N \equiv H \Rightarrow \overline{O_1 N} = \overline{O_1 H} = -\frac{f'_1}{\Delta} (f'_1 + f'_2) + f'_1$

Les indices des milieux extrêmes sont identiques $N' \equiv H' \Rightarrow \overline{O_2 N'} = \overline{O_2 H'} = \frac{f'_2}{\Delta} (f'_1 + f'_2) + f'_2$

8- a-
$$\Delta = -f'_1 + e + f_2 = -f'_1 + e - f'_2 = -6 + 4 - 6 = -8cm$$

$$\overline{O_1 F} = -\left(f'_1 + \frac{f'_1^2}{\Delta}\right) = -\left(6 + \frac{36}{-8}\right) = -1,5cm$$

$$\overline{O_2 F'} = f'_2 + \frac{f'_2^2}{\Delta} = 6 + \frac{36}{-8} = 1,5cm$$

$$\overline{O_1 H} = -\frac{f'_1}{\Delta} \left(f'_1 + f'_2\right) - f'_1 = \frac{6}{8} \times 12 - 6 = 3cm$$

3 Pr L. BOUIRDEN

$$\overline{0_2 H'} = \frac{f'_2}{\Delta} (f'_1 + f'_2) + f'_2 = -\frac{6}{8} \times 12 + 6 = -3cm$$

h-

$$AB \xrightarrow{L_1} A_1B_1 \xrightarrow{L_2} A_2B_2$$

Nous avons donc calculé :

$$\overline{O_1 A} = -8cm$$
 et $\overline{O_1 A'_1} = 24cm$

Avec $\overline{O_2A'_1} = \overline{O_2O_1} + \overline{O_1A'_1} = -4 + 24 = 20cm$, il vient pour les points A'_1 , A'_2 conjugués à travers L_2 :

$$\frac{1}{O_2 A'_2} - \frac{1}{O_2 A'_1} = \frac{1}{f'_2}$$

Soit:
$$\overline{O_2 A'_2} = \frac{f_2' \times \overline{O_2 A'_1}}{f_2' + \overline{O_2 A'_1}} = \frac{6 \times 20}{6 + 20} = 4,615cm$$

$$\gamma = \frac{\overline{A'_2 B'_2}}{\overline{AB}} = \frac{\overline{O_1 A'_1}}{\overline{O_1 A}} \times \frac{\overline{O_2 A'_2}}{\overline{O_2 A'_1}} = \frac{24 \times 4,615}{(-8) \times 20} = 0,692 \text{ ce qui implique}$$

$$\overline{A'_2 B'_2} = 0,692 \times \overline{AB} = 0,692cm$$

9-

10-

