Analiza 2a

Ruslan Urazbakhtin

1. september 2025

KAZALO 2

Kazalo

1	Fun	kcije več spremenljivk	3
	1.1	Prostor \mathbb{R}^n	3
		1.1.1 Zaporedja v \mathbb{R}^n	3
	1.2	Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m	4
	1.3	Parcialni odvodi in diferenciabilnost	6
		1.3.1 Parcialni odvod	6
		1.3.2 Diferenciabilnost	6
		1.3.3 Višji parcialni odvodi	7
		1.3.4 Diferenciabilnost preslikav	8
	1.4	Izrek o implicitni funkciji	9
		1.4.1 Izrek o inverzni preslikavi	9
		1.4.2 Osnovna verzija izreka o implicitni funkciji	11
		1.4.3 Izrek o implicitni preslikavi	12
		1.4.4 Rang preslikave	13
	1.5	Podmnogoterosti v \mathbb{R}^n	14
	1.6	Eksplicitno podajanje mnogoterosti	15
	1.7	Parametrično podajanje mnogoterosti	15
	1.8	Podajanje krivulj in ploskev v \mathbb{R}^3	15
	1.9	Tangentni prostor	16
	1.10	Taylorjeva formula	18
	1.11	Ekstremi funkcij več spremenljivk	20
		1.11.1 Potrebni in zadostni pogoji na 2. odvodi, da je kritična točka lokalni	
		ekstrem	20
		1.11.2 Vezani ekstremi	22
2	Inte	egrali s parametri	23
_	2.1	Odvajanje integralov s parametri	23
	2.2	Integral integrals s parametrom	$\frac{20}{24}$
	2.3	Posplošeni integrali s parametri	
	$\frac{2.5}{2.4}$	Eulerjeva funkcija gama	
	2.5	Eulerjeva funkcija beta	
	2.0	Daterjeva ramona besa	20
3		mannov integral v \mathbb{R}^n	3 0
	3.1	Riemannov integral	32
	3.2	Osnovne lastnosti Riemannova integrala po kvadrih	32
	3.3	Fubinijev izrek	34
	3.4	Riemannov integral na omejenih množicah	34
		3.4.1 Prostornina omejene množice	35
	3.5	Lastnosti omejenih množic s prostornino 0	35
4	Dod	latek	36
*		Ranaghovo glyžitvono nažolo	36 36

1 Funkcije več spremenljivk

1.1 Prostor \mathbb{R}^n

Definicija 1.1. Prostor \mathbb{R}^n je kartezični produkt $\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_n$. Na njem definiramo sešte-

vanje in množenje s skalarjem po komponentah. S tema operacijama je $(\mathbb{R}, +, \cdot)$ vektorski prostor nad \mathbb{R} . Posebej definiramo še skalarni produkt

$$x \cdot y = \sum_{i=1}^{n} x_i y_i,$$

ki nam da normo $||x||=\sqrt{x\cdot x}$ in metriko d(x,y)=||x-y||. (\mathbb{R}^n,d) je tako metrični prostor.

Definicija 1.2. Naj bosta $a, b \in \mathbb{R}^n$ vektorja, za katera je $a_i \leq b_i$ za vse $i \in \{1, \dots, n\}$. **Zaprt kvader**, ki ga določata a in b, je množica

$$[a, b] = \{x \in \mathbb{R}^n \mid \forall i \in \{1, \dots, n\} : a_i \le x_i \le b_i\}.$$

Podobno definiramo odprt kvader kot

$$(a,b) = \{x \in \mathbb{R}^n \mid \forall i \in \{1,\ldots,n\} : a_i < x_i < b_i\}.$$

Opomba 1.3. Odprte množice v normah $||x||_{\infty}$ in $||x||_2$ so iste.

Izrek 1.4. Množica $K \subseteq \mathbb{R}^n$ je kompaktna natanko tedaj, ko je zaprta in omejena.

1.1.1 Zaporedja v \mathbb{R}^n

Definicija 1.5. Zaporedje v \mathbb{R}^n je preslikava $a : \mathbb{N} \to \mathbb{R}^n$. Namesto a(m) pišemo a_m , kjer $a_m = (a_1^m, \dots, a_n^m)$.

Opomba 1.6. Zaporedje v \mathbb{R}^n porodi n zaporedij v \mathbb{R} .

Trditev 1.7. Naj bo $(a_m)_m$ zaporedje $v \mathbb{R}^n$, $a_m = (a_1^m, \dots, a_n^m)$. Velja:

 $Zaporedje\ (a_m)_m\ konvergia\ \Longleftrightarrow\ konvergira\ zaporedja\ (a_1^m)_m,\ldots,(a_n^m)_m.$

V primeru konvergence velja:

$$\lim_{m \to \infty} a_m = (\lim_{m \to \infty} a_1^m, \dots, \lim_{m \to \infty} a_n^m).$$

Dokaz. Definicija limite.

1.2 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Definicija 1.8. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Naj bo $a\in D$. **Preslikava** f je zvezna v točki a, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x \in D . ||x - a|| < \delta \implies ||f(x) - f(a)|| < \epsilon.$$

Preslikava f je **zvezna na** D, če je zvezna v vsaki točki $a \in D$.

Trditev 1.9. Naj bo $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ preslikava. Naj bo $a \in D$. Preslikava f je zvezna v točki a natanko tedaj, ko za vsako zaporedje $(x_n)_n$, $x_n \in D$, ki konvergira proti a, zaporedje $(f(x_n))_n$, $f(x_n) \in \mathbb{R}^m$ konvergira proti f(a).

Definicija 1.10. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Preslikava fje **enakomerno zvezna na** D, če

$$\forall \epsilon > 0. \exists \delta > 0. \forall x, x' \in D. ||x - x'|| < \delta \implies ||f(x) - f(x')|| < \epsilon.$$

Trditev 1.11. Zvezna preslikava na kompaktne množice je enakomerno zvezna.

Trditev 1.12. Naj bo $f: K^{komp} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ zvezna preslikava. Potem je $f_*(K)$ kompaktna.

Definicija 1.13. Preslikava $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ je C-lipschitzova, če

$$\exists C \in \mathbb{R} . \forall x, x' \in D . ||f(x) - f(x')|| \le C||x - x'||.$$

Trditev 1.14. Za preslikavo $f: D \to X'$ velja:

f je C-lipschitzova $\implies f$ je enakomerno zvezna $\implies f$ je zvezna.

Trditev 1.15. Naj bosta $f, g: D \subset \mathbb{R}^n \to \mathbb{R}$ zvezni funkciji $v \ a \in D$. Naj bo $\lambda \in \mathbb{R}$. Tedaj so $v \ a$ zvezni tudi funkcije:

$$f + g$$
, $f - g$, λf , fg .

Če za vsak $x \in D$, $g(x) \neq 0$, tedaj so v a zvezna tudi funkcija:

$$\frac{f}{g}$$
.

Trditev 1.16. Kompozitum zveznih preslikav je zvezna preslikava.

Dokaz. Z zaporedji kot pri analizi 1.

Zgled 1.17. Nekaj primerov zveznih preslikav.

- Preslikava $\pi_i(x_1,\ldots,x_n)=x_i$ je zvezna na \mathbb{R}^n za vsak $j=1,\ldots,n$.
- Vse polinomi v n-spremenljivkah so zvezne funkcije na \mathbb{R}^n .
- Vse racionalne funkcije so zvezne povsod, razen tam, kjer je imenovalec enak 0.

Definicija 1.18. Preslikava $f:D\subset\mathbb{R}^n\to\mathbb{R}$ je funkcija n-spremenljivk.

Opomba 1.19. Naj bo (M,d) metrični prostor in $N \subset M$. Naj bo $f: M \to \mathbb{R}$ zvezna funkcija na M. Potem $f|_N$ je tudi zvezna funkcija na N.

Trditev 1.20. Naj bosta $D \subseteq \mathbb{R}^n$ in $D_j = \pi_j(D)$. Naj bo $a \in D$, $a = (a_1, \ldots, a_n)$ in $f: D \to \mathbb{R}^m$ zvezna v a. Tedaj za vsak $j = 1, \ldots, n$ preslikava $\varphi_j: D_j \to \mathbb{R}^m$ s predpisom $\varphi_j(t) = f(a_1, \ldots, a_{j-1}, t, a_{j+1}, \ldots, a_n)$ zvezna v a_j .

Dokaz. Definicija zveznosti v točki.

Opomba 1.21. Če je funkcija več spremenljivk zvezna v neki točki $a \in \mathbb{R}^n$, je zvezna tudi kot funkcija posameznih spremenljivk.

Zgled 1.22. Naj bo $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna kot funkcija vsake spremenljivke posebej? Ali je f zvezna na \mathbb{R}^2 ?

Zgled 1.23. Naj bo $f(x,y) = \begin{cases} \frac{2x^2y}{x^4+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna kot funkcija vsake spremenljivke posebej? Ali je zvezna na vsaki premici? Ali je f zvezna na \mathbb{R}^2 ?

Opomba 1.24. Zgleda pokažeta, da obrat v prejšnji trditvi ne velja.

Naj bo $D \subseteq \mathbb{R}^n$ in $F: D \to \mathbb{R}^m$ preslikava. Naj bo $x \in D$, potem je $F(x) \in \mathbb{R}^m$, kjer je $F(x) = (y_1, \dots, y_m)$. Lahko pišemo $F(x) = (f_1(x), \dots, f_m(x))$. Torej F določa m funkcij n-spremenljivk.

Trditev 1.25. Naj bo $a \in D \subseteq \mathbb{R}^n$. Naj bo $F = (f_1, \dots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Preslikava F je zvezna v a $\iff f_1, \ldots, f_m$ so zvezne v a.

Dokaz. Definicija zveznosti v točki.

Zgled 1.26 (Omejenost linearnih preslikav). Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava, potem

$$\exists M \in \mathbb{R} . M > 0 . \forall x \in \mathbb{R}^n . x \neq 0 . \frac{||\mathcal{A}x||}{||x||} \leq M \text{ (oz. } ||\mathcal{A}x|| \leq M||x||).$$

Trditev 1.27. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Velja:

 \mathcal{A} je zvezna $\iff \mathcal{A}$ je zvezna v točki $0 \iff \mathcal{A}$ je omejena.

Dokaz. Definicija zveznosti in omejenosti.

Trditev 1.28. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Tedaj \mathcal{A} je zvezna.

Dokaz. Na linearno preslikavo lahko gledamo kot na množenje s matriko.

Opomba 1.29. Ker so linearne preslikave omejene, obstaja supremum, ki nam da matrično normo

$$\sup_{x\in\mathbb{R}^n\backslash\{0\}}\frac{||\mathcal{A}x||}{||x||}=\sup_{||x||=1}||\mathcal{A}x||=||\mathcal{A}||.$$

Definicija 1.30. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Preslikavo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ s predpisom $x \mapsto \mathcal{A}x + b, \ b \in \mathbb{R}^m$ imenujemo **afina preslikava**.

1.3 Parcialni odvodi in diferenciabilnost

1.3.1 Parcialni odvod

Definicija 1.31. Naj bo $f: D \subset \mathbb{R}^n \to \mathbb{R}$ funkcija. Naj bo $a = (a_1, \dots, a_n) \in D$ notranja točka. Funkcija f je **parcialno odvedljiva po spremenljivki** x_j **v točki** a, če obstaja limita

$$\lim_{h \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + h, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_n)}{h},$$

oz. če je funkcija

$$x_j \mapsto f(a_1, \dots, a_{j-1}, x_j, a_{j+1}, \dots, a_n)$$

odvedliva v točki a_i .

Če je ta limita obstaja, je to **parcialni odvod** funkcije f po spremenljivki x_j v točki a. Oznaki: $\frac{\partial f}{\partial x_j}(a)$, $f_{x_j}(a)$, $(D_j f)(a)$.

Opomba 1.32. Vse elementarne funkcije so parcialno odvedljive po vseh spremenljivkah tam, kjer so definirane.

Zgled 1.33. Naj bo $f(x, y, z) = e^{x+2y} + \cos(xz^2)$. Izračunaj $f_x(x, y, z), f_y(x, y, z), f_z(x, y, z)$.

1.3.2 Diferenciabilnost

Definicija 1.34. Naj bo $f: D \subset \mathbb{R}^n \to \mathbb{R}$ funkcija. Naj bo $a = (a_1, \dots, a_n) \in D$ notranja točka. Funkcija f je **diferenciabilna v točki** a, če obstaja tak linearen funkcional $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$, da velja:

$$f(a+h) = f(a) + \mathcal{L}(h) + o(h),$$

kjer $\lim_{h\to 0} \frac{||o(h)||}{||h||} = 0.$

Opomba 1.35. Če je tak \mathcal{L} obstaja, je enolično določen.

Dokaz. Pokažemo, da iz
$$\mathcal{L}(h) = (\mathcal{L}_1 - \mathcal{L}_2)(h) = (o_2 - o_1)(h) = o(h)$$
 sledi, da je $L = 0$. \square

Definicija 1.36. Če je f diferenciabilna v a je \mathcal{L} natanko določen in ga imenujemo **diferencial** funkcije f v točki a. Oznaka: $\mathcal{L} = df_a$. Linearen funkcional \mathcal{L} imenujemo tudi **odvod** funkcije f v točki a. Oznaka: (Df)(a).

Opomba 1.37. Recimo, da je funkcija f diferenciabilna v točki a. Preslikava s predpisom $h \mapsto f(a) + (df_a)(h)$ je najboljša afina aproksimacija funkcije $h \mapsto f(a+h)$.

Trditev 1.38. Naj bo $f: D \subset \mathbb{R}^n \to \mathbb{R}$ diferenciabilna v notranji točki $a \in D$. Tedaj je f v točki a parcialno odvedljiva po vseh spremenljivkah. Poleg tega je zvezna v točki a. Pri tem za $h = (h_1, \ldots, h_n)$ velja:

$$(df_a)(h) = \frac{\partial f}{\partial x_1}(a) \cdot h_1 + \ldots + \frac{\partial f}{\partial x_n}(a) \cdot h_n = f_{x_1}(a) \cdot h_1 + \ldots + f_{x_n}(a) \cdot h_n$$

Opomba 1.39. Naj bo $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$ linearen funkcional, $x \in \mathbb{R}^n$, potem lahko zapišemo

$$\mathcal{L}(x) = l_1 x_1 + \ldots + l_n x_n = \begin{bmatrix} l_1 & \ldots & l_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \text{ kjer } \begin{bmatrix} l_1 & \ldots & l_n \end{bmatrix} \text{ matrika linearnega}$$

funkcionala glede na standardne baze.

Dokaz. Zveznost pokažemo z limito. Za parcialno odvedljivost poglejmo kaj se dogaja za $h=(h_1,0,\ldots,0)$.

Opomba 1.40. Trditev pove, da je $df_a = \begin{bmatrix} \frac{\partial f}{\partial x_1}(a) & \dots & \frac{\partial f}{\partial x_n}(a) \end{bmatrix} = (\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)).$ Zapis: $(\vec{\nabla}f)(a) = (\operatorname{grad} f)(a) = (\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)).$

Vektor (grad f)(a) imenujemo **gradient funkcije** f v točki a. Operator $\vec{\nabla} = (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n})$ je **operator nabla**.

Zgled 1.41. Naj bo $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f diferenciabilna?

Zgled 1.42. Naj bo $f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna? Ali je f parcialno odvedljiva? Ali je f diferenciabilna?

Opomba 1.43. Zgleda pokažeta, da obrat v prejšnji trditvi ne velja

Izrek 1.44. Naj bo $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija in naj bo $a \in D$ notranja točka. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah v točki a in so parcialni odvodi zvezni v točki a. Tedaj je f diferenciabilna v točki a.

Dokaz. Za n=2. Definicija diferenciabilnosti + 2-krat Lagrangeev izrek.

1.3.3 Višji parcialni odvodi

Naj bo $f: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah na $D: f_{x_1}, \ldots, f_{x_n}$. To so tudi funkcije n-spremenljivk in morda so tudi te parcialno odvedljive po vseh oz. nekatarih spremenljivkah.

Trditev 1.45. Naj bo $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija, $a \in \text{Int}(D)$. Naj bosta $i, j \in \{1, 2, ..., n\}$. Denimo, da v točki a obstajata $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_j}$ in tudi druga odvoda $\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)$, $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j}\right)$. Če sta $\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)$, $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j}\right)$ zvezni v točki a, potem sta enaki v točki a:

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (a) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (a).$$

Dokaz. Dovolj za n=2.

Definiramo funkcijo J(h,k)=f(a+h,b+k)-f(a+h,b)-f(a,b+k)+f(a,b) ter funkciji $\varphi(x)=f(x,b+k)-f(x,b)$ in $\psi(y)=f(a+h,y)-f(a,y)$. Zapišemo J prvič s pomočjo funkcije φ , drugič pa s pomočjo funkcije ψ ter uporabimo 2-krat Lagrangeev izrek in upoštevamo zveznost.

Opomba 1.46. Pravimo, da parcialni odvodi komutirajo in pišemo $\frac{\partial^2 f}{\partial x_i \partial x_i}$.

Definicija 1.47. Naj bo $D^{\text{odp}} \subseteq \mathbb{R}^n$. Pravimo, da je funkcija $f: D \to \mathbb{R}$ razreda C^k na D, če obstajajo vse parcialne odvodi funkcije f do reda k in so vse ti parcialni odvodi zvezni na D.

Definicija 1.48. Naj bo $D^{\text{odp}} \subseteq \mathbb{R}^n$. Množico vseh k-krat zvezno parcialno odvedljivih funkcij označimo z $C^k(D)$. Množica gladkih funkcij je $C^{\infty}(D) = \bigcap_{k=1}^{\infty} C^k(D)$. Množica zveznih funkcij na D je C(D).

Opomba 1.49. Množica $C^k(D)$ z operacijama seštevanja, množenja s skalarji in komponiranja preslikav je algebra nad \mathbb{R} .

Diferenciabilnost preslikav 1.3.4

Definicija 1.50. Naj bo $F:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava, $a\in D$ notranja točka. Preslikava F je **diferenciabilna** v točki a, če obstaja taka linearna preslikava $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$, da velja:

$$F(a+h) = F(a) + \mathcal{L}(h) + o(h),$$

kjer je $\lim_{h\to 0}\frac{|o(h)|_m}{|h|_n}$. Preslikavo $\mathcal L$ imenujemo **diferencial** F v točki a. Oznaka: dF_a . Imenujemo ga tudi **odvod** F v točki a. Oznaka: (DF)(a).

Opomba 1.51. Kot pri funkcijah, če je tak \mathcal{L} obstaja, je enolično določen.

Zgled 1.52. Obravnavaj diferenciabilnost preslikav:

- $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna, $F(x) = \mathcal{A}x$.
- $F: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $F(X) = X^2$. Namig: S pomočjo CSB neenakosti pokažimo, da je $|H^2| < |H|^2$.

Izrek 1.53. Naj bo $a \in D$ notranja točka. Naj bo $F = (f_1, \ldots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Preslikava F je diferenciabilna $v \ a \in D \iff so \ f_1, \ldots, f_m \ diferenciabilne \ v \ a.$

Tedaj

$$(DF)(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{bmatrix}$$

Matrika linearne preslikave (DF)(a), ki je zapisana v standardnih bazah, se imenuje Jacobijeva matrika.

 $Dokaz. \ (\Longrightarrow)$ Zapišemo enakost $F(a+h) = F(a) + dF_a(h) + o(h)$ po komponentah. (⇐) Definicija diferenciabilnosti.

Posledica 1.54. Naj bo $a \in D$ notranja točka. Naj bo $F = (f_1, \ldots, f_m) : D \to \mathbb{R}^m$ preslikava. Tedaj velja: Če so vse funkcije f_1, \ldots, f_m v točki a parcialno odvedlivi po vseh spremenljivkah in so ti vse odvodi zvezni v točki a, potem je F diferenciabilna v točki a.

Zgled 1.55. Naj bo $F(x,y,z) = (x^2 + 2y + e^z, xy + z^2), f: \mathbb{R}^3 \to \mathbb{R}^2$. Določi (DF)(1,0,1).

Definicija 1.56. Preslikava $F: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ je razreda $C^k(D)$, če so vse koordinatne funkcije $f_1, \ldots, f_m \in C^k(D)$.

Izrek 1.57 (Verižno pravilo). Naj bo $a \in D \subseteq \mathbb{R}^n$ notranja točka. Naj bo $b \in \Omega \subseteq \mathbb{R}^m$ notranja točka. Naj bo $F: D \to \Omega$ diferenciabilna v točki a in velja F(a) = b. Naj bo $G: \Omega \to \mathbb{R}^k$ diferenciabilna v točki b. Tedaj $G \circ F$ diferenciabilna v točki a in velja:

$$D(G \circ F)(a) = (DG)(b) \circ (DF)(a) = (DG)(F(a)) \circ (DF)(a).$$

Označimo

$$F(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$$

in

$$G(y_1, \ldots, y_m) = (g_1(y_1, \ldots, y_m), \ldots, g_k(y_1, \ldots, y_m)).$$

Potem

$$D(G \circ F)(a) = \begin{bmatrix} \frac{\partial g_1}{\partial y_1} & \cdots & \frac{\partial g_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial g_k}{\partial y_1} & \cdots & \frac{\partial g_k}{\partial y_m} \end{bmatrix} (b) \cdot \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} (a)$$

Dokaz. Definicija diferenciabilnosti.

Posledica 1.58 (k = 1, G = g funkcija). Naj bo

$$\Phi(x_1, ..., x_n) = g(f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n)).$$

Potem

$$\frac{\partial \Phi}{\partial x_j}(a) = \frac{\partial g}{\partial y_1}(b) \cdot \frac{\partial f_1}{\partial x_j}(a) + \frac{\partial g}{\partial y_2}(b) \cdot \frac{\partial f_2}{\partial x_j}(a) + \ldots + \frac{\partial g}{\partial y_m}(b) \cdot \frac{\partial f_m}{\partial x_j}(a)$$

Zgled 1.59. Naj bo $F(x,y)=(x^2+y,xy),\ g(u,v)=uv+v^2.$ Naj bo $\Phi=g\circ F.$ Izračunaj odvod $(D\Phi)(x,y)$ na dva načina.

1.4 Izrek o implicitni funkciji

1.4.1 Izrek o inverzni preslikavi

Naj bo $\Phi: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^n$ preslikava, $\Phi \in C^1(D)$. Kakšne so zadostni pogoji za (lokalno) obrnljivost preslikave Φ ?

Definicija 1.60. Naj bosta $D, \Omega \subseteq \mathbb{R}^n$ odprti. Preslikava $\Phi: D \to \Omega$ je C^1 -difeomorfizem, če

- 1. Φ je bijekcija,
- 2. $\Phi \in C^1(D)$,
- 3. $\Phi^{-1} \in C^1(\Omega)$.

Podobno definiramo C^k -difeomorfizem za $k \in \mathbb{N} \cup \{\infty\}$.

Zgled 1.61. Ali je $f(x) = x^3$, $f: \mathbb{R} \to \mathbb{R}$ difeomorfizem?

Trditev 1.62. Naj bosta D, $\Omega \subseteq \mathbb{R}^n$ odprti. Naj bo $\Phi : D \to \Omega$ C^1 -difeomorfizem. Tedaj je $\det(D\Phi) \neq 0$ na D.

Dokaz. Pogledamo $\Phi^{-1} \circ \Phi = \mathrm{id}_D$ (verižno pravilo 1.57).

Posledica 1.63. $(D\Phi^{-1})(y) = ((D\Phi)(x))^{-1}$, kjer $y = \Phi(x)$.

Zgled 1.64. Ali velja obrat trditve? Naj bo $\Phi(x,y) = (e^x \cos y, e^x \sin y), \ \Phi : \mathbb{R}^2 \to \mathbb{R}^2$. Ali je Φ difeomorfizem?

Lema 1.65 (Lagrangeev izrek za funkcijo več spremenljivk). Naj bo $D \subseteq \mathbb{R}^n$ odprta množica, točki $a, b \in D$ sta taki, da za vsak $t \in [0,1]$ daljica (1-t)a+tb leži v D, funkcija $f: D \to \mathbb{R}$ razreda C^1 . Tedaj obstaja taka točka ξ iz daljice med a in b, da je

$$f(b) - f(a) = (Df)(\xi)(b - a).$$

Dokaz. Lagrangeev izrek za funkcijo $\varphi(t) = f((1-t)a + tb)$.

Posledica 1.66. Naj bo $D \subseteq \mathbb{R}^n$, $a, b \in D$ ter funkcija f kot prej. Naj obstaja tak $M \in \mathbb{R}$, da za vsak j = 1, ..., n in vsak $x \in D$ velja: $\left| \frac{\partial f}{\partial x_j}(x) \right| \leq M$. Tedaj

$$|f(b) - f(a)| \le M\sqrt{n}||b - a||.$$

Dokaz. Uporabimo trditev 1.65 in CSB neenakost.

Posledica 1.67. Naj bo $D \subseteq \mathbb{R}^n$, $a, b \in D$ kot prej. Naj bo $F : D \subseteq \mathbb{R}^n \to \mathbb{R}^m$, kjer $F = (f_1, \ldots, f_m)$, preslikava razreda C^1 . Naj obstaja tak $M \in \mathbb{R}$, da za vsak $j = 1, \ldots, n$, vsak $i = 1, \ldots, m$ in vsak $x \in D$ velja: $\left| \frac{\partial f_i}{\partial x_j}(x) \right| \leq M$.

$$||F(b) - F(a)|| \le M\sqrt{mn}||b - a||.$$

Dokaz. Zapišemo po komponentah ter uporabimo posledico 1.66.

Lema 1.68. Naj bo

- $mno\check{z}ica\ D\subseteq \mathbb{R}^n\ odprta;$
- $preslikava F: D \rightarrow \mathbb{R}^n razreda C^1 ter$
- DF(0) = I.

Definiramo H(x) := F(x) - x. Tedaj

$$\exists r > 0 . \forall x_1, x_2 \in \overline{K(0,r)} . ||H(x_1) - H(x_2)|| \le \frac{1}{2} ||x_1 - x_2||.$$

Opomba 1.69. Izrek o inverzni preslikavi in izrek o implicitni funkciji sta invariantna glede na linearne premike in raztezke. Recimo, da imamo preslikavo $\Phi:D\subseteq\mathbb{R}^n\to\mathbb{R}^n$, za katero velja $\det(D\Phi(x))\neq 0$ za vse $x\in D$, in naj bo $\Phi(a)=b$. Definirajmo novo preslikavo

$$F(x) := (D\Phi(a))^{-1}(\Phi(a+x) - \Phi(a)),$$

ki zadošča F(0) = 0 in DF(0) = I. Če izrek dokažemo za preslikavo F, ga dokažemo za

$$\Phi(x) = D\Phi(a)F(x-a) + \Phi(a),$$

saj

$$\Phi^{-1}(y) = F^{-1}[(D\Phi(a))^{-1}(y - \Phi(a))] + a.$$

Izrek 1.70 (Izrek o inverzni preslikavi). Naj bo

- $mno\check{z}ica\ D\subseteq\mathbb{R}^n\ odprta;$
- preslikava $F: D \to \mathbb{R}^n$ razreda C^1 na D ter
- $a \in D$ in b = F(a).

Recimo, da $\det(DF)(a) \neq 0$, tedaj obstajata okolici $a \in U \subseteq \mathbb{R}^m$ in $b \in V \subseteq \mathbb{R}^n$, da je preslikava $F: U \to V$ C^1 -difeomorfizem.

Dokaz. BŠS (opomba 1.69) a = b = 0 ter DF(0) = I.

Definiramo H(x) := F(x) - x. Za to preslikavo velja pomožna trditev 1.68, dobimo r > 0.

- 1. F je injektivna na $\overline{K(0,r)}$.
- 2. $F: \overline{K(0,r)} \to F_*(\overline{K(0,r)})$ je bijekcija in inverz je zvezen.
- 3. Slika je dovolj velika, tj. $\overline{K(0,r/2)} \subseteq F_*(\overline{K(0,r)})$. Torej

$$\forall y \in \overline{K(0,r/2)}$$
. $\exists x \in \overline{K(0,r)}$. $F(x) = y$.

S pomočjo Banachova skrčitvenega načela 4.2 poiščemo negibno točko preslikave

$$T_u(x) := -H(x) + y.$$

Lahko sklepamo tudi, da $K(0, r/2) \subseteq F_*(K(0, r))$. Izberimo okolici V = K(0, r/2) in $K(0, r) \cap F^*(V)$.

4. Pokažemo, da je preslikava $F^{-1}: V \to U$ razreda C^1 .

Definicija 1.71. Če je $F:D\to\Omega$ preslikava med odprtimi množicami v \mathbb{R}^n in je $\det(DF)(x)\neq 0$ za vse $x\in D$, pravimo, da je F lokalni difeomorfizem.

Posledica 1.72. Če je F razreda C^k D za $k \in \mathbb{N} \cup \{\infty\}$, je F lokalni C^k -difeomorfizem.

Dokaz. Verižno pravilo 1.57 in indukcija.

Opomba 1.73. Če je n=1, potem $f:I\subseteq\mathbb{R}\to\mathbb{R}$. Naj bo $a\in I,\ f\in C^1(I),\ f'(a)\neq 0$. Potem $f'(x)\neq 0$ v okolici a, torej f ima lokalni C^1 inverz.

Zgled 1.74. Naj bo $F: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $F(X) = X^2$. Ali je F v okolici točke $I \in \mathbb{R}^{n \times n}$ lokalni difeomorfizem? Kaj to pomeni?

1.4.2 Osnovna verzija izreka o implicitni funkciji

Radi bi poiskali zadostni pogoji na funkcijo $f: \mathbb{R}^2 \to \mathbb{R}$, da bi enačba f(x,y) = 0 lokalno v okolici točki (a,b), za katero velja f(a,b) = 0, predstavljala graf funkcije $y = \varphi(x)$.

Izrek 1.75 (Osnovna verzija izreka o implicitni funkciji). Naj bo

- $mno\check{z}ica\ D\subseteq\mathbb{R}^2\ odprta,\ (a,b)\in D;$
- funkcija $f: D^{odp} \to \mathbb{R}$ razreda C^1 na D ter
- f(a,b) = 0 in $f_u(a,b) \neq 0$.

Tedaj obstajata $\delta > 0$ in $\epsilon > 0$, da velja: $I \times J \subseteq D$, kjer je $I = (a - \delta, a + \delta)$, $J = (b - \epsilon, b + \epsilon)$ in enolično določena funkcija $\varphi : I \to J$ razreda C^1 na I, za katero velja:

- 1. $\varphi(a) = b$.
- 2. $\forall (x,y) \in I \times J$. $f(x,y) = 0 \iff y = \varphi(x)$ (rešitve enačbe f(x,y) = 0 so natanko graf funkcije φ).

3.
$$\varphi'(x) = -\frac{f_x(x,\varphi(x))}{f_y(x,\varphi(x))}$$
 za vsak $x \in I$.

Dokaz.

- 1. Konstruiramo funkcijo φ s pomočjo izreka o bisekciji z upoštevanjem stroge monotonosti funkciji $y \mapsto f(x,y)$.
- 2. Pokažemo zveznost φ s pomočjo izraza $f(x + \Delta x, y + \Delta y) f(x, y)$ z uporabo Lagrangeeva izreka ter upoštevanja, da smo skoraj na kompaktu.
- 3. Odvedljivost in zveznost odvoda sledi iz obstoja limite $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$

Posledica 1.76. Če je funkcija f razreda C^k , potem je tudi funkcija φ razreda C^k .

Dokaz. Uporabimo formulo za odvod in indukcijo.

Zgled 1.77. Kaj če pogoji niso izpolnjeni?

- 1. $f(x,y)=(x-y)^2$, f(x,y)=0 v okolici točke (0,0) (pogoji ni potrebni).

- 2. $f(x,y) = y^3 x$, f(x,y) = 0 v okolici točke (0,0) (odvedljivost φ). 3. $f(x,y) = y^2 x^2 x^4$, f(x,y) = 0 v okolici točke (0,0) (enoličnost φ). 4. $f(x,y) = y^2 + x^2 + x^4$, f(x,y) = 0 v okolici točke (0,0) (množica rešitev).

Izrek o implicitni preslikavi 1.4.3

Imamo n+m spremenljivk: (x,y), kjer $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots,y_m)$ in m enačb. Pričakujemo, da bomo lahko m spremenljivk izrazili kot funkcijo ostalih, tj. najdemo preslikavo $\Phi: D \subset \mathbb{R}^n \to \mathbb{R}^m$, da velja $y = \Phi(x)$.

Primer 1.78 (Linearen primer). Naj bosta $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$, $\mathcal{B}: \mathbb{R}^m \to \mathbb{R}^m$ linearni, $b \in \mathbb{R}^m$. Naj rešujemo enačbo Ax + By = b. Kdaj lahko za vsak $b \in \mathbb{R}^m$ iz te enačbe y razrešimo kot funkcijo x? Če je n=0, potem rešujemo enačbo By=b. Kdaj lahko to enačbo enolično rešimo za vsak $b \in \mathbb{R}^m$?

Naj bo $F: D^{\text{odp}} \subseteq \mathbb{R}^n_x \times \mathbb{R}^m_y \to \mathbb{R}^m, \ F = (f_1, \dots, f_m)$ preslikava razreda C^1 . Za vsak $y \in \mathbb{R}^m$ naj bo $\frac{\partial F}{\partial x}$ diferencial preslikave $x \mapsto F(x, y)$. Imenujemo ga **parcialni** diferenical na prvo spremenljivko.

Za vsak
$$x \in \mathbb{R}^n$$
 naj bo $\frac{\partial F}{\partial y}$ diferencial preslikave $y \mapsto F(x,y)$. Imenujemo ga **parcialni** diferenical na drugo spremenljivko.

Velja: $\frac{\partial F}{\partial x}(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x,y) & \dots & \frac{\partial f_1}{\partial x_n}(x,y) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x,y) & \dots & \frac{\partial f_m}{\partial x_n}(x,y) \end{bmatrix}$ in $\frac{\partial F}{\partial y}(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial y_1}(x,y) & \dots & \frac{\partial f_1}{\partial y_m}(x,y) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x,y) & \dots & \frac{\partial f_m}{\partial y_m}(x,y) \end{bmatrix}$.

Diferencial preslikave F je potem enak $(DF)(x,y) = \begin{bmatrix} \frac{\partial F}{\partial x}(x,y) & \frac{\partial F}{\partial y}(x,y) \end{bmatrix}$ (bločni zapis)

Opomba 1.79. Za vektor
$$\begin{bmatrix} h \\ k \end{bmatrix}$$
, kjer je $h \in \mathbb{R}^n, \ k \in \mathbb{R}^m$ velja: $(DF)(x,y) \begin{bmatrix} h \\ k \end{bmatrix} = \frac{\partial F}{\partial x}(x,y)h + \frac{\partial F}{\partial y}(x,y)k \in \mathbb{R}^m$.

Izrek 1.80 (Izrek o implicitni preslikavi). Naj bo $D \subseteq \mathbb{R}^n_x \times \mathbb{R}^m_y$ odprta množica, $(a, b) \in D$, $F: D \to \mathbb{R}^m$ preslikava razreda C^1 . Naj velja:

- 1. F(a,b) = 0,
- 2. $\det(\frac{\partial F}{\partial u}(a,b)) \neq 0$.

Tedaj obstaja okolica $U \subseteq \mathbb{R}^n$ točke a in okolica $V \subseteq \mathbb{R}^m$ točke b in taka enolično določena preslikava $\varphi: U \to V$ razreda C^1 , da velja:

- 1. $\varphi(a) = b$.
- 2. $\forall (x,y) \in U \times V$. $F(x,y) = 0 \iff y = \varphi(x)$ (rešitve te enačbe je isto kot graf φ znotraj $U \times V$).
- 3. $(D\varphi)(x) = -\left(\frac{\partial F}{\partial y}(x,y)\right)^{-1} \frac{\partial F}{\partial x}(x,y), \ y = \varphi(x) \ za \ vsak \ x \in U.$

Dokaz. Uporabimo izrek o inverzni preslikavi 1.70.

- 1. Definiramo preslikavo $\Phi: D \subseteq \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \times \mathbb{R}^m, \ \Phi(x,y) = (x,F(x,y)).$
- 2. Preverimo zahteve izreka o inverzni preslikavi za preslikavo Φ .
- 3. Kandidata za preslikavo φ najdemo v oblike inverza Φ^{-1} .
- 4. Preverimo lastnosti.

Posledica 1.81. Če je preslikava F razreda C^k , je tudi preslikava φ razreda C^k .

Dokaz. Z indukcijo.

Zgled 1.82. Naj bo $x, y \in \mathbb{R}$, $F(x, y) = x^2 + y^2 - 1$. S pomočjo izreka o implicitni preslikavi pokaži, da v okolici točke (0,1) rešitve enačbe F(x,y)=0 je graf neke preslikave φ . Določi tudi preslikavo φ .

Zgled 1.83. Naj bo $F(x, y, z) = (y + xy + xz^2, z + zy + x^2), F = (f, g)$ in naj rešujemo enačbo F(x,y,z)=0. Preveri zahteve izreka v okolici točke (0,0,0) in zapiši spremenljivki y in z kot funkciji spremenljivke x. Določi tudi prvi in drugi odvod funkcij f in g po spremenljivke x. Kaj je rezultat?

1.4.4 Rang preslikave

Zgled 1.84. Naj bo $F:\mathbb{R}^3\to\mathbb{R}$ in naj rešujemo enačbo F(x,y,z)=0. Recimo, da F(a,b,c)=0. Kakšna povezava med zadostnimi pogoji in rangom (DF)(a,b,c)? Kaj če gledamo preslikavo $F: \mathbb{R}^3 \to \mathbb{R}^2$?

Definicija 1.85. Naj bo $D^{\text{odp}} \subseteq \mathbb{R}^n$ in $F: D \to \mathbb{R}^m$ preslikava razreda C^1 , $a \in D$.

- 1. Rang preslikave F v točki a je rang $_a F := \operatorname{rang}(DF)(a)$.
- 2. Če je rang $_a F$ konstanten na D, je F tega ranga na D, tj. rang $F = \operatorname{rang}_a F$.
- 3. Preslikava F je **maksimalnega ranga v točki** a, če je rang $_a F = \min\{m, n\}$.

Opomba 1.86. Ta pogoj je lokalno stabilen, tj. če je rang_a $F = \min\{n, m\}$, potem obstaja okolica od a, kjer rang F maksimalen.

Posledica 1.87. Naj bo

- preslikava $F: D^{odp} \subset \mathbb{R}^n \to \mathbb{R}^m$ razreda C^k , $k \in \mathbb{N}$ in naj velja m < n, $a \in D$;
- preslikava F je maksimalnega ranga v točki a;
- F(a) = 0.

Tedaj obstajajo indeksi $i_1 < i_2 < \ldots < i_{n-m}, j_1 < j_2 < \ldots < j_m, i_k \neq j_l$ za vse k in lin take funkcije $\varphi_1, \ldots, \varphi_m$ razreda C^k definirane v okolici točke $(a_{i_1}, \ldots, a_{i_{n-m}})$, da je v neki okolici U točke a enačba F(x) = 0 ekvivalentna sistemu enačb:

$$x_{j_1} = \varphi_1(x_{i_1}, \dots, x_{i_{n-m}})$$

$$\vdots$$

$$x_{j_m} = \varphi_m(x_{i_1}, \dots, x_{i_{n-m}})$$

Ekvivalentno: Obstaja permutacija $\sigma \in S_n$, da v okolici točke a velja:

$$F(x) = 0 \iff (x_{\sigma(1)}, \dots, x_{\sigma(n)}) = (\underbrace{x_{\sigma(1)}, \dots, x_{\sigma(n-m)}}_{x'_{\sigma}}, \varphi(x'_{\sigma})),$$

 $kjer \varphi = (\varphi_1, \ldots, \varphi_m).$

Dokaz. Poiščemo obrnljivo $m \times m$ podmatriko ter permutiramo koordinate.

Primer 1.88. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna, $m \leq n$, rang $\mathcal{A} = m$ (\mathcal{A} je surjektivna). Rešujemo enačbo Ax = b. Prostor rešitev je n - m dimenzialen.

Posledica 1.89. Naj bo

- preslikava $F: D^{odp} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ preslikava razreda C^1 , $m \le n$ in $a \in D$;
- $\operatorname{rang}_a F = m$.

Tedaj obstaja okolica V točke F(a) = b in okolica U točke a, da je $F: U \to V$ surjektivna.

Dokaz. Oglejmo si preslikavo $\Phi: \mathbb{R}^{n+m} \to \mathbb{R}^m, \ \Phi(x,y) = F(x) - y$. Uporabimo posledico 1.87.

1.5 Podmnogoterosti v \mathbb{R}^n

Podmnogoterost je posplošitev pojmov "krivulja" in "ploskev".

Definicija 1.90. Naj bo $M \subseteq \mathbb{R}^{n+m}$, $M \neq \emptyset$. Množica M je gladka (vsaj razreda C^1) **podmnogoterost** dimenzije n in kodimenzije m prostora \mathbb{R}^{n+m} , če za vsako točko $a \in M$ obstaja okolica U v \mathbb{R}^{n+m} in take C^1 funkcije $F_1, \ldots, F_m : U \to \mathbb{R}$, da velja:

- 1. $M \cap U = \{x \in U \mid F_1(x) = \ldots = F_m(x) = 0\} = F^*(\{0\}).$
- 2. $rang(F_1, ..., F_m) = m \text{ na } U.$

Opomba 1.91. Funkcije F_1, \ldots, F_m imenujemo lokalne definicijske funkcije za $M \cap U$.

Opomba 1.92. Če je m=0, potem je M odprta množica.

Zgled 1.93. Naj bo $M \subseteq \mathbb{R}^3$ ter $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3$ linearne funkcije.

- Če $A_1(x, y, z) = 0, A_1 \not\equiv 0$, potem dobimo ravnino dimenzije 2 in kodimenzije 1.
- Ce $A_{1,2}(x,y,z) = 0, A_{1,2} \not\equiv 0$, potem dobimo premico dimenzije 1 in kodimenzije 2.

V splošnem, če je dim M=1, govorimo o krivuljah, če je dim M=2, govorimo o ploskvah. • Če $A_{1,2,3}(x,y,z) = 0, A_{1,2,3} \not\equiv 0$ ter funkcije linearno neodvisni, potem dobimo točko

dimenzije 0 in kodimenzije 3.

Zgled 1.94. Ugotovi ali so naslednje množice mnogoterosti in če so, določi tudi njihovo dimenzijo.

- $\begin{array}{l} \bullet \quad \stackrel{\smile}{M} = \{(x,y,z) \in \mathbb{R}^3 \, | \, x^2 + y^2 + z^2 = 1 \}. \\ \bullet \quad \stackrel{\smile}{M} = \{(x,y,z) \in \mathbb{R}^3 \, | \, x^2 + y^2 + z^2 = 1, \, \, x + y + z = 0 \}. \end{array}$
- $M = (\{0\} \times \mathbb{R}) \cup (\mathbb{R} \times \{0\}).$
- $\operatorname{GL}_n(\mathbb{R}) = \{ A \in \mathbb{R}^{n \times n} \mid \det A \neq 0 \}.$
- $\operatorname{SL}_n(\mathbb{R}) = \{ A \in \mathbb{R}^{n \times n} \mid \det A = 1 \}.$

Definicija 1.95. Če mnogoterost M v okolici U točke $a \in M$ podana kot

$$M \cap U = \{x \in U \mid F_1(x) = \dots = F_m(x) = 0\}, \text{ rang } F = m,$$

rečemo, da je **mnogoterost podana implicitno**.

1.6 Eksplicitno podajanje mnogoterosti

Trditev 1.96. Neprazna podmnožica $M \subseteq \mathbb{R}^{n+m}$ je podmnogoterost dimenzije n natanko tedaj, ko za vsako točko $a \in M$ obstaja odprta okolica $U \subseteq \mathbb{R}^{n+m}$ točke a in taka permutacija koordinat σ :

$$(x_1,\ldots,x_{n+m})\mapsto (x_{\sigma(1)},\ldots,x_{\sigma(n+m)}),$$

da je $M \cap U$ graf neke C^1 preslikave $\varphi : D^{odp} \subseteq \mathbb{R}^n \to \mathbb{R}^m$, tj.

$$M \cap U = \{x \in U \mid (x_1, \dots, x_{n+m}) = (x_{\sigma(1)}, \dots, x_{\sigma(n)}, \varphi(x_1, \dots, x_{\sigma(n)}))\}.$$

Dokaz. TODO:

Definicija 1.97. Če mnogoterost podajamo kot graf, rečemo, da je mnogoterost podana eksplicitno.

Zgled 1.98. Ali je $M = \{(x, x^2) \mid x \in \mathbb{R}\}$ mnogoterost?

1.7 Parametrično podajanje mnogoterosti

Zgled 1.99. Ali je parametrizacija $\varphi \mapsto (a\cos\varphi, a\sin\varphi), \ a>0, \ \varphi\in [0,2\pi)$ določa podmnogoterost?

Trditev 1.100.

1. Naj bo $M \subseteq \mathbb{R}^{n+m}$ podmnogoterost dimenzije n. Potem za vsako točko $a \in M$ obstaja taka okolica $U \subseteq \mathbb{R}^{n+m}$ točke a in taka C^1 preslikava

$$\Phi: D^{odp} \subset \mathbb{R}^n \to \mathbb{R}^{n+m}$$

ranga n, da je

$$\Phi(D) = M \cap U.$$

2. Naj bo $D^{odp} \subseteq \mathbb{R}^n$ in $\Phi : D \subseteq \mathbb{R}^n \to \mathbb{R}^{n+m}$ C^1 preslikava ranga n. Potem za vsako točko $t_0 \in D$ obstaja okolica $V \subseteq D$ točke t_0 , da je $\Phi_*(V)$ podmnogoterost dimenzije n v \mathbb{R}^{n+m} .

1.8 Podajanje krivulj in ploskev v \mathbb{R}^3

Krivuljo lahko podamo parametrično z preslikavo $\Phi:[a,b]\to\mathbb{R}^3$:

$$\Phi(t) = (x(t), y(t), z(t)).$$

Pri čemer mora biti preslikava Φ maksimalnega ranga:

$$\forall t \in [a, b]$$
. rang $D\Phi(t) = 1$.

Kar lahko tudi karakteriziramo na naslednji način:

$$\forall t \in [a, b]$$
. rang $D\Phi(t) = 1 \iff \forall t \in [a, b]$. $\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \neq 0$.

Parametrizaciji Φ rečemo **regularna parametrizacija**.

Ploskev lahko podamo parametrično z preslikavo $\Phi:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$:

$$\Phi(t,s) = (x(t,s), y(t,s), z(t,s)).$$

Pri čemer mora biti preslikava Φ maksimalnega ranga, kar lahko karakteriziramo na naslednji način:

$$\forall t \in [a, b]$$
. rang $D\Phi(t) = 2 \iff (X_t, Y_t, Z_t) \times (X_s, Y_s, Z_s) \neq \vec{0}$.

Trditev 1.101. Naj bo $M \subseteq \mathbb{R}^{n+m}$ podmnogoterost dimenzije n. Za vsako točko $a \in M$ obstaja taka okolica $U \subseteq \mathbb{R}^{n+m}$ točke a in tak C^1 difeomorfizem $\Phi: U \to W \subseteq \mathbb{R}^{n+m}$, da je

$$\Phi(M \cap U) = D \times \{0\}^n,$$

kjer je D neka odprta množica $v \mathbb{R}^n$.

Opomba 1.102. Rečemo, da lahko podmnogoterost lokalno izravnavamo.

Opomba 1.103. TODO:

1.9 Tangentni prostor

Naj bo $\gamma:(\alpha,\beta)\subseteq\mathbb{R}\to\mathbb{R}^n,\ \gamma(t)=(x_1(t),\ldots,x_n(t))$ preslikava razreda C^1 na (α,β) . Označimo z $\dot{\gamma}(t)=(\dot{x_1}(t),\ldots,\dot{x_n}(t))$.

Definicija 1.104. Naj bo $M \subseteq \mathbb{R}^n$ podmnogoterost in $a \in M$. **Tangentni prostor** na M v točki a je

$$T_a M = {\dot{\gamma}(t_0) \mid \gamma : (\alpha, \beta) \subseteq \mathbb{R} \to M, \ \gamma \in C^1(\alpha, \beta), \ \gamma(t_0) = a}.$$

Opomba 1.105. Tangentni prostor dobimo tako, da vzemimo vse možne krivulje, ki gredo skozi točko a in tvorimo množico tangentnih vektorjev na M v točki a.

Trditev 1.106. Naj bo $M \subseteq \mathbb{R}^n$ podmnogoterost in $a \in M$. Potem je T_aM vektorski podprostor dimenzije enake kot mnogoterost M, tj.

$$\forall a \in M . \dim T_a M = \dim M.$$

Zdaj navedemo kako lahko določimo tangentni prostor, če je mnogoterost podana eksplicitno, implicitno ali parametrično.

Trditev 1.107. Naj bo mnogoterost M lokalno v okolici U točke a podana kot graf, tj.

$$M \cap U = \{(x', \varphi(x')) \mid x' \in D^{odp} \subseteq \mathbb{R}^d, \ \varphi : D \to \mathbb{R}^{n-d}, \ \varphi \in C^1(D)\}.$$

Naj bo $a = (a', \varphi(a')) \in M$. Tedaj

$$T_a M = \operatorname{im} \begin{bmatrix} I \\ D\varphi(a') \end{bmatrix}.$$

Opomba 1.108. T_aM je graf odvoda $D\varphi(a')$.

Trditev 1.109. Naj bo mnogoterost M lokalno v okolici U točke a podana implicitno, tj.

$$M \cap U = \{x \in U \mid F_1(x) = \dots F_{n-d}(x) = 0, \operatorname{rang}(F_1, \dots, F_{n-d}) = n - d\}.$$

Tedaj

$$T_a M = \ker DF(a).$$

Trditev 1.110. Naj bo $M \subseteq \mathbb{R}^n$ podmnogoterost dimenzije d. Naj bo $a \in M$ in naj bo $\Phi: D^{odp} \subseteq \mathbb{R}^d \to \mathbb{R}^n$ C^1 preslikava ranga d taka, da

- 1. $\Phi(t_0) = a, \ t_0 \in D;$
- 2. $\Phi(D) = M \cap U$ za neko okolico $U \subseteq \mathbb{R}^n$ točke a. Tedaj

$$T_a M = \operatorname{im} D\Phi(t_0).$$

1.10 Taylorjeva formula

Naj bo $f: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija, $a \in D$. Funkcijo f bi radi v okolici točke a aproksimirali s polinomi.

Izrek 1.111. Recimo, da velja

- 1. Množica $D \subseteq \mathbb{R}^n$ odprta, $a \in D$.
- 2. $f: D^{odp} \to \mathbb{R}$ funkcija razreda $C^{k+1}(D)$.
- 3. Vektor $h \in \mathbb{R}^n$ tak, da daljica med a in a + h leži v D.

Tedaj obstaja tak $\vartheta \in (0,1)$, da je

$$f(a+h) = f(a) + (D_h f)(a) + \frac{1}{2!} (D_h^2 f)(a) + \dots + \frac{1}{k!} (D_h^k f)(a) + R_k (*),$$

kjer je $D_h = h_1D_1 + h_2D_2 + \ldots + h_nD_n$ odvod v smeri h in $R_k = \frac{1}{(k+1)!}(D_h^{k+1}f)(a+\vartheta h)$ ostanek.

Izraz (*) je **Taylorjeva formula** za funkcijo več spremenljivk.

$$Dokaz.$$
 TODO

Opomba 1.112. Pokaži, da velja

- 1. $(D_h f)(a) = \sum_{j=1}^n h_j \frac{\partial f}{\partial x_j}(a)$.
- 2. $(D_h^2 f)(a) = \sum_{k=1}^n \sum_{j=1}^n h_k h_j \frac{\partial^2 f}{\partial x_k \partial x_j}(a)$.

Primer 1.113. Pokaži, da za n=2 velja $D_{(h,k)}^m = \sum_{j=0}^m {m \choose j} h^j k^{m-j} \frac{\partial^m}{\partial x^j \partial y^{m-j}}$.

Opomba 1.114. $h \mapsto f(a) + (D_h f)(a) + \frac{1}{2!}(D_h^2 f)(a) + \ldots + \frac{1}{k!}(D_h^k f)(a)$ je polinom stopnje največ k v spremenljivkah h_1, h_2, \ldots, h_n .

Opomba 1.115. Če je funkcija f razreda $C^{\infty}(D)$ lahko tvorimo **Taylorjevo vrsto**:

$$\sum_{i=1}^{\infty} \frac{1}{j!} (D_h^j f)(a).$$

- Vrsta sigurno konvergira za h = 0.
- Tudi, če vrsta konvergira za nek $h \neq 0$, ne konvergira nujno k f(a+h).

Definicija 1.116. Če Taylorjeva vrsta konvergira k f(a+h) za vse vse $||h|| \le \delta$ za nek $\delta > 0$, tj.

$$f(a+h) = \sum_{j=1}^{\infty} \frac{1}{j!} (D_h^j f)(a),$$

potem rečemo, da je funkcija f v okolici točke a (realno) analitična.

Zgled 1.117. Razvij funkcijo $f(x,y) = e^{xy}$ v Taylorjevo vrsto v okolici točke (0,0).

Posledica 1.118. Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^n$ odprta, $a \in D$.
- 2. $f: D^{odp} \to \mathbb{R}$ funkcija razreda $C^{k+1}(D)$.
- 3. Vektor $h \in \mathbb{R}^n$ tak, da daljica med a in a + h leži v D.

Potem je

- 1. $R_k = o(||h||^k)$ za $h \to 0$. 2. $R_k = O(||h||^{k+1})$ za $h \to 0$.

- $\begin{array}{c} \textbf{Opomba 1.119. Velja:} \\ 1. \ R_k = o(||h||^k) \iff \lim_{h \to 0} \frac{|R_k|}{||h||^k} = 0 \text{ (izraz je majhen).} \\ 2. \ R_k = O(||h||^{k+1}) \iff \exists M \in \mathbb{R} \,. \frac{|R_k|}{||h||^{k+1}} \leq M, \text{ ko gre } h \text{ proti } 0 \text{ (velikostni red).} \end{array}$

Dokaz. TODO

Opomba 1.120. Naj bo $f: \mathbb{R}^2 \to \mathbb{R}$ funkcija razreda C^{∞} v okolici točke (0,0), h = (x,y). Pokaži, da za koeficient a_{nm} pred x^ny^m velja: $(\frac{\partial^{n+m}}{\partial x^n\partial y^m}f)(0,0) = a_{nm}n!m!$.

1.11 Ekstremi funkcij več spremenljivk

Definicija 1.121. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ funkcija, $a\in D$.

1. Funkcija f ima v točki a lokalni maksimum, če

$$\exists r > 0 . \forall x \in D \cap K(a, r) . f(a) \ge f(x).$$

Funkcija f ima v točki a strogi lokalni maksimum, če

$$\exists r > 0 \, . \, \forall x \in D \cap K(a, r) \, . \, f(a) > f(x).$$

2. Funkcija f ima v točki a (globalni) maksimum na D, če

$$\forall x \in D . f(a) \ge f(x).$$

- 3. Podobno definiramo: lokalni minimum, (globalni) minimum.
- 4. Lokalni ekstrem (oz. globalni ekstrem) je skupno ime za lokalni (oz. globalni) minumum in maksimum.

Opomba 1.122. Če je $K^{\text{komp}} \subseteq \mathbb{R}^n$ in $f: K \to \mathbb{R}$ zvezna funkcija, potem ima f na K maksimum in minimum.

Definicija 1.123. Naj bo $D^{\text{odp}} \subseteq \mathbb{R}^n$ in $f: D \to \mathbb{R}$ funkcija razreda C^1 (dovolj, da je diferenciabilna).

Rečemo, da je točka $a \in D$ stacionarna (oz. kritična) točka funkcije f, če

$$(Df)(a) = 0$$
, tj. $\frac{\partial f}{\partial x_1}(a) = \frac{\partial f}{\partial x_2}(a) = \dots = \frac{\partial f}{\partial x_n}(a) = 0$.

Trditev 1.124. Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^n$ odprta, $a \in D$.
- 2. $f: D \to \mathbb{R}$ funkcija razreda C^1 .

Tedaj, če ima funkcija f v točki a lokalni ekstrem, je a kritična točka za f.

$$Dokaz.$$
 TODO

Zgled 1.125. Naj bo $K = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 3\}, \ f(x,y) = x^2 - xy + y^2 - 3x + 4.$ Poišči minimum in maksimum funkcije f na K.

1.11.1 Potrebni in zadostni pogoji na 2. odvodi, da je kritična točka lokalni

Naj bo $D \subseteq \mathbb{R}^n$ odprta, $f: D \to R$ funkcija razreda C^2 . Definiramo **Hessejevo matriko** 2. odvodov:

$$(Hf)(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & & & \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \vdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

Opomba 1.126. Če je $f \in C^2(D)$, potem mešani odvodi so enaki, tj. $(Hf)^T = Hf$. Torej Hessejeva matrika je simetrična, torej ima v vsaki točki realne lastne vrednosti.

 $\langle (Hf)h,h\rangle$ je **Hessejeva forma** (kvadratna forma, ki pripada matrike (Hf)(a)).

Definicija 1.127. Hessejeva matrika Hf je

- pozitivno semidefinitna (pišemo $Hf \ge 0$), če $\forall v \in D . \langle (Hf)v, v \rangle \ge 0 \iff$ vse lastne vrednosti so nenagitvne;
- pozitivno definitna (pišemo Hf > 0), če $\forall v \in D . v \neq 0 \implies \langle (Hf)v, v \rangle > 0 \iff$ vse lastne vrednosti so pozitivne;
- negativno semidefinitna (pišemo $Hf \leq 0$), če $\forall v \in D . \langle (Hf)v, v \rangle \leq 0 \iff$ vse lastne vrednosti so nepozitivne;
- negativno definitna (pišemo Hf < 0), če $\forall v \in D . v \neq 0 \implies \langle (Hf)v, v \rangle < 0 \iff$ vse lastne vrednosti so negativne.

Trditev 1.128 (Potrebni pogoji). Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^n$ odprta, $a \in D$.
- 2. Funkcija $f: D \to \mathbb{R}$ razreda C^2 .

Tedaj

- Če ima f v točki a lokalni maksimum, potem
 - 1. (Df)(a) = 0,
 - 2. $Hf(a) \leq 0$.
- Če ima f v točki a lokalni minimum, potem
 - 1. (Df)(a) = 0,
 - 2. $(Hf)(a) \ge 0$.

Dokaz. TODO

Izrek 1.129 (Zadostni pogoji). Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^n$ odprta, $a \in D$.
- 2. Funkcija $f: D \to \mathbb{R}$ razreda C^2 .
- 3. $a \in D$ stacionarna točka funkcije f.

Tedaj

- Če je (Hf)(a) > 0, potem ima funkcija f v točki a (strogi) lokalni minimum.
- Če je (Hf)(a) < 0, potem ima funkcija f v točki a (strogi) lokalni maksimum.
- Če ima (Hf)(a) tako pozitivne, kot negativne lastne vrednosti, potem funkcija f v točki a nima lokalnega ekstrema.

Zgled 1.130. Določi $(Hf_i)(0,0)$ za $f_1(x,y) = \frac{1}{2}(x^2+y^2), f_2(x,y) = \frac{1}{2}(-x^2-y^2), f_3(x,y) = \frac{1}{2}(x^2-y^2).$

Posledica 1.131 (Zadostni pogoji, n = 2). Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^2$ odprta, $(a,b) \in D$.
- 2. Funkcija $f: D \to \mathbb{R}$ razreda C^2 .
- 3. $(a,b) \in D$ stacionarna točka funkcije f.

Tedaj

- Če je $f_{xx}f_{yy} f_{xy}^2(a,b) > 0$, potem ima funkcija f v točki (a,b).
 - Če je $f_{xx}(a,b) > 0$, potem ima funkcija f v točki (a,b) lokalni minimum.
 - Če je $f_{xx}(a,b) < 0$, potem ima funkcija f v točki (a,b) lokalni maksimum.
- Če je $f_{xx}f_{yy} f_{xy}^2(a,b) < 0$, potem funkcija f v točki (a,b) nima lokalnega ekstrema.

Dokaz. TODO

Zgled 1.132. Naj bo $f(x, y, z) = x^2 + y^2 + z^2 + 2xyz$. Klasificiraj vse stacionarne točke funkcije f.

1.11.2 Vezani ekstremi

Izrek 1.133. Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^n$ odprta.
- 2. Funkciji f, g_1, \ldots, g_m razreda $C^1(D), m < n$.
- 3. Preslikava $G = (g_1, \ldots, g_m) : D \to \mathbb{R}^m$ maksimalnega ranga.
- 4. $M = G^{-1}(\{0\}) \neq \emptyset$, tj. $M = \{x \in D \mid g_1(x) = 0, \dots, g_m(x) = 0\}$ podmnogoterost v
- 5. Funkcija $f: M \to \mathbb{R}$ ima v točki $a \in M$ lokalni ekstrem (kot funkcija iz M v \mathbb{R}). Tedaj obstajajo take realne konstante $\lambda_1, \ldots, \lambda_m$, da je

$$(Df)(a) = \lambda_1(Dg_1)(a) + \ldots + \lambda_m(Dg_m)(a) = \sum_{j=1}^m \lambda_j(Dg_j)(a).$$

Dokaz. TODO

Opomba 1.134. Lagrangeeva metoda za iskanja vezanih ekstremov

- 1. Tvorimo funkcijo $F(\underbrace{x_1,\ldots,x_n}_x,\lambda_1,\ldots,\lambda_m)=f(x)-\sum_{j=1}^m\lambda_jg_j(x).$ 2. Iščemo stacionarne točke F:
- - $D_x F = (Df)(x) \sum_{j=1}^m \lambda_j (Dg_j)(x) = 0$ (*n* enačb). $D_{\lambda_j} F = -g_j(x) = 0$ za $j = 1, \dots, m$ (*m* enačb).

Konstante $\lambda_1, \ldots, \lambda_m$ so Lagrangeevi multiplikatorji.

Zgled 1.135. Določi stacionarne točke funkcije f(x,y,z)=z na $M=\{(x,y,z)\in\mathbb{R}^3\,|\,x^2+$ $y^2 + z^2 = 1$; x + y + z = 0.

Zgled 1.136. Določi stacionarne točke funkcije $f(x,y,z) = x^2 - xy + y^2 - 3x + 4$ na robu $x^2 + y^2 = 9.$

Integrali s parametri

Naj bo $f:[a,b]_x\times[c,d]_y\to\mathbb{R}$ funkcija. Gledamo funkcijo $F(y)=\int_0^b f(x,y)\,dx$, kjer $y \in [c,d]$ je parameter.

Zanima nas v kakšni so povezavi lastnosti funkcije f in funkcije F.

Zgled 2.1. Izračunaj
$$F(y) = \int_0^{\pi} \sin(xy) dx$$
. Ali je $F(y)$ zvezna? Kaj je D_F ?

Zgled 2.2. Eulerjeva funkcija gama je $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$.

- Določi D_{Γ} .
- Kakšen predznak ima Γ na D_{Γ} ?
- Določi osnovno rekurzivno relacijo za Γ .
- Kakšna povezava med fakulteto in Γ ?
- Kako bi lahko definirali Γ za negativne vrednosti? Za katere lahko?

Definicija 2.3. Podmnožica $D \subseteq \mathbb{R}^n$ je lokalno kompaktna, če

$$\forall a \in D \,.\, \exists r \in \mathbb{R} \,.\, r > 0 \,.\, D \cap \overline{K(a,r)}$$
 kompaktna množica.

Zgled 2.4. Primeri lokalno kompaktnih množic.

- Vsaka zaprta in vsaka odprta množica v \mathbb{R}^n je lokalno kompaktna.
- $D \subseteq \mathbb{R}^2$, $D = K(0,1) \cup \{(1,0)\}$ ni lokalno kompaktna.

Trditev 2.5. Recimo, da velja

- 1. $D \subseteq \mathbb{R}^n$ lokalno kompaktna podmnožica;
- 2. I zaprt interval na \mathbb{R} ;
- 3. $funkcija\ f: I_x \times D_y\ zvezna.$

Tedaj je funkcija $F(u,v,y) = \int_{u}^{v} f(x,y) dx$, kjer so $(u,v,y) \in I \times I \times D$, zvezna na $I \times I \times D$.

Dokaz. Dokazujemo zveznost v točki $(u_0, v_0, y_0) \in I \times I \times D$. Ocenimo razliko |F(u, v, y) - V(u, v, y)| $F(u_0, v_0, y_0)$.

• Kaj vemo o funkciji f na nekem kompaktu?

Posledica 2.6. Recimo, da velja

- 1. $D \subseteq \mathbb{R}^n$ lokalno kompaktna podmnožica;
- 2. I = [a, b];
- 3. funkcija $f: I_x \times D_y$ zvezna.

Tedaj je funkcija $F(y) = \int_a^b f(x, y) dx$, zvezna na D.

Odvajanje integralov s parametri 2.1

Trditev 2.7. Recimo, da velja

- 1. $funkcija\ f: [a,b]_x \times (c,d)_y \to \mathbb{R}\ zvezna;$
- 2. $\forall (x,y) \in [a,b] \times (c,d)$. f parcialno odvedljiva po y; 3. $funkcija \frac{\partial f}{\partial y}(x,y)$ zvezna na $[a,b] \times (c,d)$.

Tedaj je

1. $F(y) = \int_{-\infty}^{b} f(x, y) dx$ odvedljiva funkcija na (c, d).

2.
$$F'(y) = \frac{dF}{dy}(y) = \frac{d}{dy} \int_a^b f(x,y) dx = \int_a^b \frac{\partial f}{\partial y}(x,y) dx$$
, tj. lahko zamenjamo vrstni red odvajanja.

Dokaz. Dokazujemo, da je F odvedljiva v točki $y \in (c,d)$. Ocenimo razliko

$$\left| \frac{F(y+h) - F(y)}{h} - \int_a^b \frac{\partial f}{\partial y}(x,y) \, dx \right|$$

- Lagrangeev izrek.
- Ustrezni kompakti.

Posledica 2.8. Recimo, da velja

- 1. $funkcija\ f: [a,b]_x \times (c,d)_y \to \mathbb{R}\ zvezna;$
- 2. $\forall (x,y) \in [a,b] \times (c,d)$. f parcialno odvedljiva po y; 3. $funkcija \frac{\partial f}{\partial y}(x,y)$ zvezna na $[a,b] \times (c,d)$. 4. $funkciji \alpha, \beta : (c,d) \rightarrow [a,b]$ zvezno odvedljivi.

$$Tedaj \ F'(y) = \frac{d}{dy} \int_{\alpha(y)}^{\beta(y)} f(x,y) \ dx = \int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial y}(x,y) \ dx + \beta'(y) f(\beta(y),y) - \alpha'(y) f(\alpha(y),y).$$

 $\label{eq:definition} \textit{Dokaz. } F(u,v,y) = \int_u^v f(x,y) \, dx \implies \int_{\alpha(y)}^{\beta(y)} f(x,y) \, dx = F(\alpha(y),\beta(y),y). \text{ Torej treba}$ izračunati odvod funkcije treh spremenljivk.

• Osnovni izrek analize.

Posledica 2.9. Recimo, da velja

- 1. podmnožica $D \subseteq \mathbb{R}^n$ odprta;
- 2. funkcija $f:[a,b]_x \times D_y \to \mathbb{R}$ zvezna; 3. $\forall (x,y) \in [a,b] \times D \cdot \forall j \in [n]$ f parcialno odvedljiva po y_j ;
- 4. $\forall j \in [n]$. $\frac{\partial f}{\partial y_j}(x,y)$ so zvezne funkcije na $[a,b] \times D$.

Tedaj je

1. $F(y) = \int_{-\infty}^{b} f(x, y) dx$ funkcija razreda C^{1} na D.

2.
$$\frac{\partial F}{\partial y_j}(y) = \int_a^b \frac{\partial f}{\partial y_j}(x, y) dx$$
.

Zgled 2.10. S pomočjo integrala s parametrom $F(a) = \int_0^1 \frac{x^a - 1}{\ln x} dx$ izračunaj $\int_0^1 \frac{x - 1}{\ln x} dx$.

2.2Integral integral as parametrom

Izrek 2.11. Recimo, da velja

1. $funkcija\ f:[a,b]\times[c,d]\to\mathbb{R}\ zvezna.$ Tedaj je

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Definicija 2.12. Integrali tipa $\int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy$ imenujemo dvakratni integrali.

Dokaz. Definiramo $\Psi(y) = \int_{c}^{y} \left(\int_{a}^{b} f(x,s) \, dx \right) ds$ in $\Phi(y) = \int_{a}^{b} \left(\int_{c}^{y} f(x,s) \, ds \right) dx$. Dololj, da dokažemo:

- Ψ in Φ se ujemata v eni točki.
- $\Psi' = \Phi'$.

Pomagamo si s osnovnim izrekom analize.

Zgled 2.13. Izračunaj $\int_0^1 \left(\int_0^2 (x+y^2) dx \right) dy$ na dva načina.

2.3 Posplošeni integrali s parametri

Naj bo Y neka množica, $a \in \mathbb{R}, \ f: [a, \infty)_x \times Y_y \to \mathbb{R}$ funkcija. Standardni predpostavki:

• Funkcija f za vsak $y \in Y$ zvezna, tj. $x \mapsto f(x, y)$ zvezna na $[a, \infty)$ za vsak $y \in Y$.

- Za vsak $y \in Y$ obstaja integral $F(y) = \int_{c}^{\infty} f(x, y) dx$

Opomba 2.14. Integral $F(y) = \int_a^\infty f(x,y) dx$ obstaja po definiciji, če obstaja $\lim_{b\to\infty} \int_a^b f(x,y) dx$.

Ta limita obstaja natanko tedaj, ko $\lim_{b\to\infty}\int_b^\infty f(x,y)\,dx=0$, kar je ravno konvergenca po točkah.?

Definicija 2.15. Integral $F(y) = \int_{0}^{\infty} f(x,y) dx$ konvergira enakomerno na Y, če

$$\forall \epsilon > 0 . \exists b_0 \ge a . \forall b \ge b_0 . \forall y \in Y . \left| \int_b^\infty f(x, y) dx \right| < \epsilon.$$

Zgled 2.16. Izračunaj $F(y)=\int_0^\infty ye^{-xy}\,dx$ za $y\in[0,\infty)$. Ali je konvergenca enakomerna na $[c, \infty)$, c > 0? Ali je konvergenca enakomerna na $(0, \infty)$?

Opomba 2.17. Recimo, da $F(y) = \int_a^\infty f(x,y) dx$ konvergira enakomerno. Kaj to pomeni? Naj bo $F_b(y) = \int_a^\infty f(x,y) dx$. Potem funkcijsko zaporedje $F_b(y)$ konvergira enakomerno proti F(y) na Y.

Trditev 2.18. Recimo, da velja

- $podmno\check{z}ica\ Y \subseteq \mathbb{R}^n\ lokalno\ kompaktna;$
- $funkcija\ f:[a,\infty)\times Y\to\mathbb{R}\ zvezna;$
- integral s parametri $F(y) = \int_{0}^{\infty} f(x,y) dx$ konvergira enakomerno na Y.

Tedaj je F zvezna na Y.

Dokaz. Enakomerna limita zveznih funkcij.

Opomba 2.19. Zveznost (in odvedljivost) sta lokalni lastnosti (zvezna (oz. odvedljiva) v vsaki točki), tj. f je zvezna na Y, če je zvezna v vsaki točki $y \in Y$ (tudi, če je zvezna v okolici vsake točke $y \in Y$). Zato v prejšnji trditvi je za zveznost F na Y dovolj zahtevati, da je integral lokalno enakomerno konvergira, tj

 $\forall y \in Y . \exists r > 0 . F$ enakomerno konvergira na $Y \cap K(y, r)$.

Trditev 2.20 (Test enakomerne konvergence). Recimo, da velja

- 1. $funkcija\ f:[a,\infty)\times Y\to\mathbb{R}\ zvezna\ za\ vsak\ y\in Y;$
- 2. obstaja taka zvezna funkcija $g:[a,\infty)\to\mathbb{R}$, da za vsak $(x,y)\in[a,\infty)\times Y$ velja $|f(x,y)| \leq g(x);$
- 3. obstaja integral $\int_{-\infty}^{\infty} g(x) dx$.

Tedaj integral $F(y) = \int_{a}^{\infty} f(x,y) dx$ konvergira enakomerno na Y.

Dokaz. Cauchyjev kriterij za konvergenco integralov.

Zgled 2.21. Obravnavaj lokalno enakomerno konvergenco funkcij

•
$$s \mapsto \int_{1}^{\infty} x^{s-1} e^{-x} dx$$
.

•
$$s \mapsto \int_0^1 x^{s-1} e^{-x} dx$$
.

Vpeljava nove spremenljivke $x = t^N$?

Trditev 2.22. Recimo, da velja

- 1. funkcija $f:[a,\infty)_x \times [c,d]_y \to \mathbb{R}$ zvezna; 2. integral $F(y) = \int_a^\infty f(x,y) dx$ konvergira enakomerno na [c,d].

Tedai

$$\int_{c}^{d} \left(\int_{a}^{\infty} f(x, y) \, dx \right) \, dy = \int_{a}^{\infty} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx.$$

Dokaz. Račun.

Kadar je
$$\int_{c}^{\infty} \left(\int_{a}^{\infty} f(x,y) \, dx \right) \, dy = \int_{a}^{\infty} \left(\int_{c}^{\infty} f(x,y) \, dy \right) \, dx$$
?

Opomba 2.23. Podobno vprašanje: Kadar je $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$?

Trditev 2.24. Recimo, da velja

- 1. funkcija $f:[a,\infty)_x\times[c,\infty)_y\to[0,\infty)$ nenegativna in zvezna; 2. integral $F(y)=\int_{-c}^{\infty}f(x,y)\,dx$ konvergira lokalno enakomerno na $[c,\infty)$ in integral $G(x) = \int_{0}^{\infty} f(x,y) dy$ konvergira lokalno enakomerno na $[a,\infty)$ (imamo

Tedaj

$$\int_{c}^{\infty} \left(\int_{a}^{\infty} f(x, y) \, dx \right) \, dy = \int_{a}^{\infty} \left(\int_{c}^{\infty} f(x, y) \, dy \right) \, dx.$$

Torej ali sta oba enaka ∞, ali pa sta oba končna in enaka.

Dokaz. Ocenimo navzgor
$$\int_a^b G(x) dx$$
 in $\int_c^d F(y) dy$.

Trditev 2.25. Recimo, da velja

- 1. funckija $f:[a,\infty)\times[c,\infty)\to\mathbb{R}$ zvezna;
- 2. integral $F(y) = \int_{-\infty}^{\infty} |f(x,y)| dx$ konvergira lokalno enakomerno na $[c,\infty)$ in integral $G(x) = \int_{-\infty}^{\infty} |f(x,y)| dy$ konvergira lokalno enakomerno na $[a,\infty)$;

3. Ali
$$\int_{c}^{\infty} \left(\int_{a}^{\infty} |f(x,y)| \, dx \right) \, dy \, končen \, ali \int_{a}^{\infty} \left(\int_{c}^{\infty} |f(x,y)| \, dy \right) \, dx \, končen.$$
Tedaj je
$$\int_{c}^{\infty} \left(\int_{a}^{\infty} |f(x,y)| \, dx \right) \, dy = \int_{c}^{\infty} \left(\int_{a}^{\infty} |f(x,y)| \, dy \right) \, dx.$$

Trditev 2.26 (Odvod posplošenega integrala s parametri). Recimo, da velja

- 1. funkcija $f:[a,\infty)\times(c,d)\to\mathbb{R}$ zvezna; 2. integral $F(y)=\int_a^\infty f(x,y)\,dx$ konvergira na (c,d);
- 3. $\forall (x,y) \in [a,b] \times (c,d)$. f parcialno odvedljiva po y; 4. $funkcija \frac{\partial f}{\partial y}(x,y)$ zvezna na $[a,b] \times (c,d)$;
- 5. integral $y \mapsto \int_{-\infty}^{\infty} \frac{\partial f}{\partial y}(x,y) dx$ konvergira lokalno enakomerno na (c,d).

Tedaj je

1.
$$F(y) = \int_{a}^{\infty} f(x, y) dx$$
 zvezno odvedljiva funkcija na (c, d) ;

2.
$$F'(y) = \frac{d}{dy} f(y) = \frac{d}{dy} \int_a^\infty f(x,y) dx = \int_a^\infty \frac{\partial f}{\partial y}(x,y) dx$$
.

Dokaz. TODO

Zgled 2.27. Naj bo
$$0 < c < d$$
. Izračunaj $\int_0^\infty \frac{e^{-cx} - e^{-dx}}{x}$.

Trditev 2.28. Recimo, da velja

- 1. podmnožica $D \subseteq \mathbb{R}^n$ odprta;
- 2. $funkcija \ f: [a, \infty) \times D \to \mathbb{R} \ zvezna;$ 3. $za \ vsak \ (z, y) \in [a, \infty) \times \ obstajajo \ \frac{\partial f}{\partial y_j} \ in \ so \ zvezni;$
- 4. za vsak $y \in D$ obstaja $F(y) = \int_{a}^{\infty} f(x, y) dx$;
- 5. za vsak $j \in \{1, ..., n\}$ integral $F(y) = \int_{a}^{\infty} \frac{\partial f}{\partial u_{i}} dx$ konvergira lokalno enakomerno

Tedaj je

1.
$$F(y) = \int_{0}^{\infty} f(x, y) dx$$
 zvezno odvedljiva funkcija na D ;

2.
$$F'(y) = \frac{\partial}{\partial y_j} F'(y) = \frac{\partial}{\partial y_j} \int_a^\infty f(x,y) \, dx = \int_a^\infty \frac{\partial f}{\partial y_j} F'(x,y) \, dx \text{ is a vse } j \in \{1,\dots,n\}.$$

Zgled 2.29. Opazujemo integral $\int_0^\infty \frac{\sin x}{x} dx$. Velja:

- $\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin(ax)}{x} dx = \operatorname{sgn}(a).$
- $\frac{\sin x}{x}$ je nihanje z padajočo amplitudo, kar je podobno alternirajoče harmonične vrste.
- Integral $\int_0^\infty \frac{|\sin x|}{x} dx$ ne obstaja.
- $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$. Dokaz TODO

Eulerjeva funkcija gama

Definicija 2.30. Funkcija $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$ je *Eulerjeva funkcija gama*.

Trditev 2.31. Lastnosti Eulerjeve funkcije gama:

- $D_{\Gamma}=(0,\infty)$.
- $\Gamma(s+1) = s\Gamma(s)$. Če je $n \in \mathbb{N}$, potem $\Gamma(n+1) = n!$.
- $\Gamma(1) = 1$.
- $\Gamma \in C((0,\infty))$.
- $\Gamma(s) = \frac{\Gamma(s+1)}{s}$, s > 0. Če je $s \approx 0$, potem $\Gamma(s) \approx \frac{1}{s}$.
- $\Gamma \in C^{\infty}((0,\infty))$.
- $\Gamma(s) > 0$.
- Γ je konveksna funkcija na $(0,\infty)$. Tudi $\ln \Gamma$ konveksna funkcija na $(0,\infty)$.

Dokaz. TODO

Opomba 2.32. O konveksnosti. TODO

Zgled 2.33. Naj bo a > 0. S pomočjo Eulerjeve funkcije gama izračunaj $\int_{a}^{\infty} e^{-ax^2} dx$.

Zgled 2.34. Naj bo $a \in \mathbb{R}$, $\sigma > 0$. S pomočjo prejšnjega zgleda izračunaj $\int_{-\infty}^{\infty} \exp\left(\frac{-(x-a)^2}{2\sigma^2}\right) dx$.

Izrek 2.35. Eulerjeva funkcija Γ je natanko določena z lastnostmi:

- 1. $\Gamma(1) = 1$;
- 2. $\Gamma(s+1) = s\Gamma(s)$;
- 3. $\Gamma(s) > 0$ in Γ je zvezna na $(0, \infty)$;
- 4. $\ln \Gamma$ je konveksna.

Eulerjeva funkcija beta

Definicija 2.36. Funkcija $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$ je Eulerjeva funkcija beta.

Trditev 2.37. Lastnosti Eulerjeve funkcije beta:

- $D_B = (0, \infty) \times (0, \infty)$.
- B(p,q) = B(q,p). $\frac{1}{2}B(\frac{\alpha+1}{2}, \frac{\beta+1}{2}) = \int_0^{\frac{\pi}{2}} \sin^{\alpha}t \cos^{\beta}t \, dt \, za \, \alpha, \beta > -1$.

Trditev 2.38. $B(p,q) = \int_0^\infty \frac{t^{p-1}}{(1+t)^{p+q}} dt$.

Dokaz. V B(p,q) vpeljamo $t = \frac{x}{1-x}$.

Posledica 2.39. $B(p, 1-p) \int_0^\infty \frac{t^{p-1}}{1+t} dt \ za \ 0$

Posledica 2.40. $B(\frac{1}{2}, \frac{1}{2}) = \pi$.

Dokaz. Račun.

Opomba 2.41. Za $p \in (0,1)$ velja:

$$B(p, 1-p) = \frac{\pi}{\sin(p\pi)}.$$

Izrek 2.42 (Osnovna povezava med B in Γ).

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

Dokaz. TODO

Posledica 2.43. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Dokaz. Račun z pomočjo osnovne povezave med B in Γ .

Primer 2.44. Izračunaj $\Gamma(\frac{7}{2})$.

Primer 2.45. S pomočjo Eulerjeve funkcije beta izračunaj $\int_0^{\frac{\pi}{2}} \sin^8 x \cos^6 x \, dx$.

Izrek 2.46 (Stirlingova formula).

$$\lim_{s \to \infty} \frac{\Gamma(s+1)}{s^s e^{-s} \sqrt{2\pi s}} = 1.$$

Dokaz. TODO □

Posledica 2.47. $\lim_{n \to \infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1$, tj. $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$.

Primer 2.48. Izračunaj $\lim_{n\to\infty}\frac{(2n)!}{n!\,n^n\,2^n}.$

3 Riemannov integral v \mathbb{R}^n

Definicija 3.1. Kvader [a, b] je množica $[a, b] = \{x = (x_1, ..., x_n) | a_j \le x_j \le b_j, j = 1, ..., n\}$ za $a \le b$.

Prostornina kvadra je $V([a,b]) = \prod_{j=1}^{n} (b_j - a_j)$.

Definicija 3.2. Delitev D kvadra K = [a, b] dobimo z delitvami robov kvadra K:

$$\forall j \in \{1, \dots, n\} . a_j = x_o^j < x_1^j < \dots < x_{m_j}^j = b_j.$$

Opomba 3.3. Delitev D je dana z delitvami robov. Lahko rečemo, da je delitev D sestavljena iz manjših kvadrov, ki jo delitev robov porodi in pišemo $\sum_{Q \in D}$, tj. gremo po vseh kvadrih delitve D.

Definicija 3.4. Delitev D' kvadra K je finejša od delitve D, če vsebuje vse delilne točke delitve D.

Opomba 3.5.

- Če je D delitev K, potem $\sum_{Q \in D} V(Q) = V(K)$.
- Če je D' finejša od D, potem
 - Vsak kvader iz D' leži v enem od kvadrov iz D.
 - Vsak kvader iz D je unija kvadrov iz D'.

Naj bo $f:K=[a,b]\subseteq\mathbb{R}^n\to\mathbb{R}$ omejena funkcija. Definiramo

$$m = m(f) = m(f, K) = m(K) = \inf_{K} f(x)$$

 $M = M(f) = M(f, K) = M(K) = \sup_{K} f(x)$

Naj bo D delitev kvadra K. Naj bo $Q \in D$ (nek manjši kvader). Definiramo

$$m(f,Q) = m(Q) = \inf_{Q} f(x)$$
$$M(f,Q) = M(Q) = \sup_{Q} f(x)$$

Definicija 3.6. Spodnja Darbouxoeva vsota funkcije f pri delitvni D je

$$s(f,D) = s(D) = \sum_{Q \in D} m(Q) V(Q).$$

 $Zgornja\ Darbouxoeva\ vsota$ funkcije f pri delitvni D je

$$S(f,D) = S(D) = \sum_{Q \in D} M(Q)V(Q).$$

Opomba 3.7. Velja: $m(K)V(Q) \le s(f, D) \le S(f, D) \le M(K)V(K)$.

Lema 3.8. Naj bo delitev D' finejša od delitve D. Tedaj

$$s(f, D) < s(f, D') < S(f, D') < S(f, D).$$

Posledica 3.9. Naj bosta D_1, D_2 delitvi kvadra K. Tedaj

$$s(f, D) \le S(f, D).$$

Ker za poljubni delitvi D_1,D_2 velja $s(f,D) \leq S(f,D).$ Lahko Definiramo

$$s(f) = \sup_{D} s(f, D)$$

$$S(f) = \inf_{D} S(f, d)$$

Velja: $s(f) \leq S(f)$.

Definicija 3.10. Funkcija f je na kvadru K integrabilna po Darbouxju, če

$$s(f) = S(f).$$

Opomba 3.11. Če velja enakost, to vrednost trenutno iznačimo z I_D . Sicer to označimo $\int_K f(x)\,dx = \int_K f(x)\,dV(K)$.

Primer 3.12.

 $n=2:\int\int_K f(x,y)dxdy$ je dvojni integral. $n=3:\int\int\int_K f(x,y,z)dxdydz$ je trojni integral.

3.1 Riemannov integral

Definicija 3.13. Naj bo K = [a, b] kvader, D delitev, $f : K \to \mathbb{R}$ funkcija. Za vsak $Q \in D$ izberimo neko točko $\eta_Q \in Q$. Riemannova vsota funkcije f pri delitvi D in izboru točk $\eta = \{\eta_Q \in Q\}$ je

$$R(f, D, \eta) = \sum_{Q \in D} f(\eta_Q) V(Q).$$

Označimo z $\Delta(D)$ maksimum vseh dolžin vseh tobov kvadrov delitve D.

Definicija 3.14. Funkcija f je integrabilna po Riemannu na kvadru K, če obstaja limita njenih Riemannovih vsot, tj.

$$\lim_{\Delta(D)\to 0} R(f, D, \eta) = I_R.$$

Opomba 3.15. To pomeni, da

$$\forall \epsilon > 0 \, . \, \exists \delta > 0 \, . \, \forall D^{\text{delitev}} \, . \, \Delta(D) < \delta \implies \forall \eta^{\text{izbor točk}} \, . \, |R(f,D,\eta)| < \epsilon.$$

Zgled 3.16. TODO

Opomba 3.17. Če ima funkcija $f: K \to \mathbb{R}$ limito Riemannovih vsot, je f omejena.

Lema 3.18. Naj bo D_0 delitev kvadra K. Naj bo $\epsilon > 0$. Potem obstaja tak $\delta > 0$, da za vsako delitev D, za katero je $\Delta(D) < \delta$, velja, da je vsota prostornin kvadrov delitve D, ki niso vsebovani v kakšnem od kvadrov delitve D_0 manja od ϵ .

Izrek 3.19. Naj bo $f: K \to \mathbb{R}$ omejena funkcija. NTSE:

- 1. f je na K integrabilna po Darbouxju.
- 2. f je na K integrabilna po Riemannu.
- 3. $\forall \epsilon > 0$. $\exists D^{delitev}$. $S(f, D) s(f, D) < \epsilon$.

Dodatek. V tem primeru je $I_D = I_R$.

$$Dokaz.$$
 TODO:

Trditev 3.20. Naj bo $f: K \to \mathbb{R}$ zvezna, potem je f na K integrabilna.

$$Dokaz.$$
 TODO:

3.2 Osnovne lastnosti Riemannova integrala po kvadrih

Naj bo $K \subseteq \mathbb{R}^n$ kvader, funkciji f, g integrabilni na K.

1. Naj bosta $\lambda, \mu \in \mathbb{R}$. Tedaj je tudi

$$\lambda f + \mu g$$

integrabilna na K in

$$\int_K (\lambda f + \mu g)(x) dx = \lambda \int_K f(x) dx + \mu \int_K g(x) dx.$$

Torej množica integrabilnih funkcij na K je vektorski prostor nad $\mathbb R$ in integral je linearen funkcional na tem prostoru.

Dokaz. TODO: □

2. Če je $f(x) \leq g(x)$ za vse $x \in K,$ je

$$\int_K f(x) \, dx \le \int_K g(x) \, dx.$$

Dokaz. TODO: □

3. Funkcija |f| je integrabilna in

$$\left| \int_{K} f(x) \, dx \right| \le \int_{K} |f(x)| \, dx.$$

Dokaz. TODO:

3.3 Fubinijev izrek

I. Naj bo $A\subseteq\mathbb{R}^n$ kvader in $B\subseteq\mathbb{R}^m$ kvader. Naj bo $f:A\times B\subseteq\mathbb{R}^{n+m}\to\mathbb{R}$ integrabilna. Naj bo za vsak $x\in A$ funkcija $y\mapsto f(x,y)$ integrabilna na B. Potem je funkcija

$$x \mapsto \int_B f(x, y) \, dy$$

integrabilna na A in velja:

$$\int \int_{A \times B} f(x, y) \, dx dy = \int_{A} \left(\int_{B} f(x, y) \, dy \right) \, dx.$$

II. Naj bo $A\subseteq\mathbb{R}^n$ kvader in $B\subseteq\mathbb{R}^m$ kvader. Naj bo $f:A\times B\subseteq\mathbb{R}^{n+m}\to\mathbb{R}$ integrabilna. Naj bo za vsak $y\in B$ funkcija $x\mapsto f(x,y)$ integrabilna na A. Potem je funkcija

$$y \mapsto \int_A f(x,y) \, dy$$

integrabilna na B in velja:

$$\int \int_{A \times B} f(x, y) \, dx dy = \int_{B} \left(\int_{A} f(x, y) \, dx \right) \, dy.$$

Posledica 3.21. Če je f zvezna na $A \times B$, potem

$$\int \int_{A \times B} f(x, y) \, dx dy = \int_{A} \left(\int_{B} f(x, y) \, dy \right) \, dx = \int_{B} \left(\int_{A} f(x, y) \, dx \right) \, dy.$$

Posledica 3.22. Naj bo $f:[a,b]\times [c,d]\to \mathbb{R}$ zvezna. Tedaj

$$\int \int_{[a,b]\times[c,d]} f(x,y) \, dx dy = \int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy.$$

Posledica 3.23. Naj bo $f: K = [a,b] \times [c,d] \times [g,h] \rightarrow \mathbb{R}$ zvezna. Tedaj

$$\int \int \int_K f(x,y) \, dx dy = \int_g^h \left(\int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy \right) \, dz = \check{s}e \, \, 5 \, \, drugih \, \, vrstnih \, \, redov.$$

Zgled 3.24. TODO:

3.4 Riemannov integral na omejenih množicah

Naj bo podmnožica $A\subseteq\mathbb{R}^n$ omejena, $f:A\to\mathbb{R}$ omejena funkcija. Kako bi lahko definirali $\int_A f(x)\,dx$? Kaj bi bila prostornina V(A) množice A?

Ker je A omejena obstaja kvader K, da je $A \subseteq K$. Definiramo funkcijo $\widetilde{f}(x) = \begin{cases} f(x); & x \in A \\ 0; & x \notin A \end{cases}$.

Definicija 3.25. Omejena funkcija f na A je integrabilna na omejeni množici A, če je \widetilde{f} integrabilna na kvadru K, kjer je $A\subseteq K$. Tedaj

$$\int_{A} f(x) \, dx = \int_{K} \widetilde{f}(x) \, dx.$$

Opomba 3.26. Dobra definiranost. TODO:

Opomba 3.27. Kaj če je K že kvader? TODO:

Zgled 3.28. TODO:

Trditev 3.29. Naj bo $A \subseteq \mathbb{R}^n$ omejena podmnožica. Naj bosta $f, g : A \to \mathbb{R}$ integrabilni na A in naj bosta $\lambda, \mu \in \mathbb{R}$. Teda je

$$\lambda f + \mu q$$

integrabilna na A in

$$\int_A (\lambda f + \mu g)(x) dx = \lambda \int_A f(x) dx + \mu \int_A g(x) dx.$$

Dokaz. TODO:

Opomba 3.30. Množica integrabilnih na A funkcij tvori vektroski prostor nad R in integral je linearen funkcional na tem prostoru.

3.4.1 Prostornina omejene množice

Definiramo karakteristično funkcijo množice A:

$$\chi_A(x) = \begin{cases} 1; & x \in A \\ 0; & x \notin A \end{cases}.$$

Definicija 3.31. Omejena množica $A\subseteq\mathbb{R}^n$ ima prostornino, če je funkcija $x\mapsto 1$ integrabilna na A. Tedaj

$$V(A) = \int_A 1 dx.$$

Opomba 3.32. To je Jordanova prostornina množice.

Opomba 3.33.
$$V(A) = \int_A 1 \, dx = \int_K \chi_A(x) \, dx.$$

Opomba 3.34. Če ima A prostornino, so vse konstantne funkcije integrabilne na A:

$$\int_{A} \lambda \, dx = \lambda V(A).$$

Zgled 3.35. Ali $A = [0,1]^2 \cap \mathbb{Q}$ ima prostornino?

Trditev 3.36. Omejena množica $Q \subseteq \mathbb{R}^n$ ima prostornino natanko tedaj, ko $V(\partial A) = 0$.

3.5 Lastnosti omejenih množic s prostornino 0

4 Dodatek 36

4 Dodatek

4.1 Banachovo skrčitveno načelo

Definicija 4.1. Naj bo(M,d)metrični prostor. Preslikava $f:M\to M$ je **skrčitev**, če

$$\exists q \in [0,1) . \forall x,y \in M . d(f(x),f(y)) \leq qd(x,y)$$

Izrek 4.2 (Banachovo skrčitveno načelo). Naj bo

- prostor (M, d) je poln metrični prostor;
- $preslikava\ f: M \to M \ je\ skrčitev.$

Tedaj ima preslikava f natanko eno negibno točko, tj.

$$\exists ! a \in M . f(a) = a$$

 $ter\ za\ vsak\ x\in M\ zaporedje$

$$x, f(x), f(f(x)), \dots$$

konvergira proti točki a.