Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum o	devzdá	ní:		

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Pracovní úkoly

- 1. Experimentálně ověřte platnost vztahu pro časovou závislost středního kvadratického posunutí částice $\overline{s^2}$ při Brownově pohybu.
- 2. Určete aktivitu Brownova pohybu A částic latexu ve vodě za pokojové teploty.
- 3. Vypočtěte Avogadrovu konstantu N_A .

Teoretická část

Budeme mikrosk
pem pozorovat pohyb částic latexu ve vodě. Pokud budeme zaznamenávat pouze průmět polohy částice do roviny, platí pro střední kvadratické posunut
í $\overline{s^2}$ za čas t vztah [1]

$$\overline{s^2} = 2 \cdot A \cdot t \,, \tag{1}$$

kde A je tzv. aktivita Brownova pohybu. Pro kulové částice o poloměru r v prostředí s teplotou T a dynamickou viskozitou η platí [1]

$$A = \frac{RT}{3\pi\eta r N_A} \,, (2)$$

kde $R=~8,314\,\mathrm{J\,mol^{-1}\,K^{-1}}$ je molární plynová konstanta a N_A je Avogadrova konstanta.

Ze vztahu (1) je zřejmé, že když budeme zaznamenávat dráhy částic za čas t, 2t, 3t a 4t bude pro s_t , s_{2t} , s_{3t} a s_{4t} platit

$$\overline{s_t^2} : \overline{s_{2t}^2} : \overline{s_{3t}^2} : \overline{s_{4t}^2} = 1 : 2 : 3 : 4.$$
 (3)

Pokud naměřená data budou splňovat tuto podmínku, použijeme naměřené střední kvadratické posunutí $\overline{s_t^2}$ k výpočtu aktivity A a následně Avogadrovy konstanty N_A úpravou vztahu (2)

$$A = \frac{\overline{s^2}}{2 \cdot t} \tag{4}$$

$$N_A = \frac{2RTt}{3\pi\eta r\overline{s^2}}\tag{5}$$

a odchylku metodou přenosu chyb

$$\sigma_A = A\sqrt{\left(\frac{\sigma_{\overline{s^2}}}{\overline{s^2}}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2} \tag{6}$$

$$\sigma_{N_A} = N_A \sqrt{\left(\frac{\sigma_T}{T}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2 + \left(\frac{\sigma_\eta}{\eta}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{\overline{s^2}}}{\overline{s^2}}\right)^2}.$$
 (7)

Výsledky měření

Teplota vzorku byla $T = 0 \,\mathrm{K}$.

Dynamickou viskozitu vody při této teplotě uvádí [viskozita] $\eta = 0 \,\mathrm{m\,s^{-2}}$.

Poloměr částic latexu jsme určili podle fotografie z elektronového mikroskopu (viz příloha 1) $r=~0\,\mu\mathrm{m}$.

Polohu částic jsme zaznamenávali v pravidelných časových intervalech t = 0 s.

Diskuze

Závěr

Seznam použité literatury

1. Základní fyzikální praktikum [online]. [cit. 2016-04-06]. Dostupný z WWW: http://physics.mff.cuni.cz/vyuka/zfp/start).