				0% CS								
Dataset	Objects	Features	Clusters	PCCC-N2-S	PCCC-N5-S	PCCC-N2-S-RD	COPKM	LCC	CSC	DILS	KMEANS	GT
Banana	5,300	2	2	6.10E+03	6.10E+03	6.10E+03	6.10E+03	_	6.12E+03	8.07E+03	6.10E+03	1.06E+04
Letter	20,000	16	26	1.22E + 05	1.22E + 05	1.22E + 05	1.22E + 05	_	_	3.19E + 05	1.22E + 05	2.13E + 05
Shuttle	57,999	9	7	2.03E + 05	2.03E + 05	2.03E+05	2.09E + 05	_	_	-	2.08E + 05	3.69E + 05
CIFAR 10	60,000	3,072	10	1.21E + 08	1.21E + 08	1.21E + 08	_	_	_	_	1.21E + 08	1.73E + 08
CIFAR 100	60,000	3,072	100	9.03E + 07	9.01E + 07	9.02E + 07	_	_	_	-	9.00E + 07	1.62E + 08
MNIST	70,000	784	10	4.29E + 07	4.26E + 07	4.26E+07	$4.34E{+07}$	_	-	-	4.26E + 07	4.45E + 07
Mean				4.24E+07	4.23E+07	4.23E+07	1.09E+07	_	6.12E+03	1.64E+05	4.23E+07	6.32E+07

Table W104: Minimum Inertia values of the versions of the PCCC algorithm and the four state-of-the-art algorithms (COPKM, CSC, DILS, LCC) for the constraint sets of size 0% CS. Lower values indicate more coherent clusters. The lowest values are stated in bold. The column KMEANS reports the minimum inertia value obtained with the k-means algorithm. The hyphen indicates that the respective algorithm returned no solution within the time limit of 3,600 seconds.