2. 分析

3. 制御

4. 設計(1)

4. 設計(2)

しんよこ

Rコースをクリアするための要素技術を検討し、制御戦略を立てた

3-1. 自己位置推定機能 要素技術

3-3. 座標指定移動 要素技術

走行体の現在位置 $\overrightarrow{P_0} = \begin{pmatrix} P_{0x} \\ P_{0x} \end{pmatrix}$ での速度および向き $\overrightarrow{v_0} = \begin{pmatrix} v_{0x} \\ v_{0x} \end{pmatrix}$

目標点 $\overrightarrow{P_1} = \begin{pmatrix} P_{1x} \\ P_{2x} \end{pmatrix}$ での速度および向き $\overrightarrow{v_1} = \begin{pmatrix} v_{1x} \\ v_{1x} \end{pmatrix}$

3次スプライン曲線 $\overrightarrow{P(s)} = \overrightarrow{a_0} + \overrightarrow{a_1}s + \overrightarrow{a_2}s^2 + \overrightarrow{a_3}s^3 \ (0 \le s \le 1)$ の係数は、

 $\overrightarrow{a_0} = \overrightarrow{P_0}$ $\overrightarrow{a_1} = \overrightarrow{P_1}$ $\overrightarrow{a_2} = 3\overrightarrow{P_1} - 3\overrightarrow{P_0} - 2\overrightarrow{v_0} - \overrightarrow{v_1}$ $\overrightarrow{a_3} = -2\overrightarrow{P_1} + 2\overrightarrow{P_0} + \overrightarrow{v_0} + \overrightarrow{v_1}$

曲率半径 $R(s) = |\overrightarrow{P(s)'}|^3 / (\overrightarrow{P(s)'} \times \overrightarrow{P(s)''})$ 左右モーターの回転速度の比 = $(R(s) - L_T)$: $(R(s) + L_T)$ $(L_T : トレッド長)$

現在の右車輪の回転速度から、左車輪の回転速度の目標値を決定し、負のフィードバック制御を行う。

3-2. 自己位置補正

要素技術 自己位置推定では走行時の摩擦等によって誤差が生じる

要素技術

3-4. 向き補正走行

入力[power]値が高い場合、左右モーターへの入力[power]値が同じであっても、

左右タイヤの進む距離には下グラフのように差が生じる。

3-6. 走行 制御戦略

要素技術3-1 ~ 3-4によって、安定した座標指定移動が可能となるの で、Rコース上での走行は全て座標指定移動で行う。

さらに、走行速度をコースの形状に従って設定する(下図参照)ことで、 走行の安定性を向上させる。

3-5.色認識・アーム制御

接触しない位置まで後退する。

5色(緑、黄、赤、青、黒)以外の色と判定された

場合は、接近して再度色認識を試みる。

ブロックの色を認識する。

色認識、アーム制御、車輪制御を用いて、次の手順に よってブロックをアームに収めることを実現する。

走行中、カラーセン サーがサークルの色を 認識する。

初期状態

アームを上げる(このとき のアームの角度は右表か

要素技術

- 人角度ごとのブロックの色判定結果

 $\overrightarrow{v_0}$

R(s)

	角度ごとのフロックの色判定				
アーム角度 [度]	対象ブロックの色				
	緑	黄	Ħ	赤	黑
40	BLACK	BLACK	BLACK	BLACK	BLACK
41	BLACK	BLACK	BLACK	BLACK	BLACK
42	BLACK	BLACK	BLACK	BLACK	NONE
43	BLACK	BROWN	BLACK	RED	NONE
44	BLACK	BROWN	BLACK	RED	NONE
45	BLACK	BROWN	BLACK	RED	NONE
46	BLACK	BROWN	BLACK	RED	NONE
47	BLACK	BROWN	BLACK	RED	NONE
48	BLACK	BROWN	BLUE	RED	NONE
49	BLACK	BROWN	BLUE	RED	NONE
50	BLACK	BROWN	BLUE	RED	NONE
51	BLACK	BROWN	BLUE	RED	NONE
52	GREEN	BROWN	BLUE	RED	NONE
53	GREEN	BROWN	BLUE	RED	NONE
54	GREEN	BROWN	BLUE	RED	NONE
55	GREEN	YELLOW	BLUE	RED	NONE
56	GREEN	YELLOW	BLUE	RED	NONE
57	GREEN	YELLOW	BLUE	RED	NONE
58	GREEN	YELLOW	BLUE	RED	NONE
59	GREEN	YELLOW	BLUE	RED	NONE
60	GREEN	YELLOW	BLUE	RED	NONE
61	GREEN	YELLOW	BLUE	RED	NONE
62	GREEN	YELLOW	BLUE	RED	NONE
05	DEACK	TELLOW	BEUE	KED	NONE
64	BLACK	YELLOW	BLUE	RED	NONE
65	BLACK	YELLOW	BLUE	RED	BLACK
66	BLACK	YELLOW	BLUE	RED	BLACK
67	BLACK	YELLOW	BLUE	RED	BLACK
68	BLACK	YELLOW	BLUE	RED	NONE
69	BLACK	YELLOW	BLUE	RED	NONE
70	BLACK	BROWN	BLUE	BLACK	NONE

アーム角度58度周辺で 色が確実に区別できる ことがわかった。 (このとき、NONEは BLACKとみなす)

3-7. ゲーム 制御戦略

抽象マップ上で決定された移動経路は直線的な軌跡だが、これを現実の 走行体の動きに変換する際には、要素技術3-3.を用いて、経由点を滑ら かに結ぶ3次スプライン曲線に変換する。

これによって、滑らかで迅速に移動する。

─── 抽象マップ上の走行体の移動経路

現実での走行体の移動経路