Gender Disparity on Transit Commuting Patterns: A Story of Austin, a Fast-Growing City in the Texas Triangle

Ziqi Liu, Ph.D. candidate in Community and Regional Planning, School of Architecture, the University of Texas at Austin

Background

- Urban public transportation systems have multiple goals, but a major one is to serve people with less access to public facilities, such as those who cannot drive or afford automobiles (Lewis & Williams, 2019; Lyons & Ewing, 2021; Sanchez et al., 2004).
- Many studies have shown that women generally have less mobility than men; low-income, carless women are the most disadvantaged group in most urban areas (Metro, 2019).
- Studies have also found that women have travel patterns distinguishable from men; women generate more multi-purpose trips using multiple modes, and their trips are more dispersed geographically and temporally (Daisy et al., 2018).
- Some theories explain the gender disparity in commuting pattern, for example, the household hypothesis, labor market structure hypothesis, and commuting preference hypothesis (Clark et al., 2003; Cao, et al., 2009; Fan, 2017; Reuschke and Houston, 2020).

Research Questions

- Do women have extra commuting burden compared to men, revealed in the commuting distance by public transit?
- Do women have more chained trip on their way to/from work?
- Does it vary across other factors such as age, income, car ownership and travel time of a day?

Methods and Data

Structural Equation Model (Full Model)

Table 1: summary statistics of the endogenous and exogenous variables

Data structure | Description/Measurement

variables	Data Structu	re Description/ivieasurement	Iviean	var.	
Endogenous variables	5				
Commuting distance	Numerical	Log of the Euclidean distance between reported origin	10.034	1.246	
by transit		and destination of this trip			
Multi-purposes of a	Categorical	Reference group: Home to work (single purpose)		0	
commuting trip		Factor 1: Home to work to school (trip-chain)	0.023	0.022	
		Factor 2: Home to work to recreation (trip-chain)	0.085	0.078	
Accessibility	Numerical	Formula (1)/10	4.523	0.566	
Land use entropy	Numerical	Formula (2)	0.573	0.121	
Exogenous variables-individual/trip attributes					
Age	Numerical	Log of the age of the respondent	3.469	0.121	
Gender	Categorical	0: Men; 1: Women	0.40		
Race	Categorical	Reference group (0): White/Angelo	-	-	
		Factor 1: African American; Factor 2: Asian			
		Factor 3: Hispanic; Factor 4: All other			
Income	Ordinal	Monthly income earned by respondent	1.16		
		0: \$0-\$2000; 1: \$2000-\$4000; 2: \$4000-\$6000; 3: >\$6000			
Household size	Ordinal	Number of people in the household	0.21		
		0: one person; 1: more than one person in the household			
Car ownership	Ordinal	Number of cars in the household	0.47		
		0: zero car; 1: at least one car per household			
Time period	Categorical	Time of the day for this trip. Reference group: Midday	0	0	
		Factor 1: AM hours	0.221	0.172	
		Factor 2: PM hours	0.302	0.211	
		Factor 3: late evening and night	0.138	0.119	

Mean Var.

Results

Reduced Model and the coefficients (after model comparison)

Table 2: Model Results of the Path Analysis

Overall model performance							
Model Test User Model:		Comparative Fit Index (CFI)	0.99				
Test statistic	16.778	Akaike (AIC)	6103.15				
Degrees of freedom	14	Bayesian (BIC)	6223.698				
P-value (Chi-square)	0.268	Root Mean Square Error of A	pproximation:				
Model Test Baseline Model:		RMSEA	0.013				
Test statistic	309.916	P-value RMSEA <= 0.05	1				
Degrees of freedom	34						
P-value	0	SRMR	0.012				

Conclusions

- Gender has more indirect effects on commuting patterns by transit depending on the accessibility of the neighborhood they live. Better accessibility is associated with short commuting distances by transit and more school-chained trips.
- Before controlling the accessibility of the neighborhood, women, on average, commute shorter by transit. However, with the residential self-selection effect, the gender disparity becomes less significant in transit commuting distance.
- Both gender and income are strong residential self-selection factors on transit commuting patterns. Women, who took transit to commuting, live in less accessible regions than men. Higher-income transit users live in less accessible regions than lower-income users, which can be interpreted as a "choice rider" behavior.
- Most trip-chain by transit are in the midday compared to the AM, PM rush hours, and night. Women do not have a significant difference in recreational-chained commuting trips by transit but have significantly fewer school-chained commuting trips.