Data Analytics CS301 Chap 2, Intro to R

Week 3 Fall 2018 Oliver Bonham-Carter

- Google Analytics is a tool allowing for convenient analysis of web sites
- The code was written by developers for this purpose.
- What if you need tools and there are no current developers to create them?

Develop Your Own Tools!!

We will be using the Book

- Note the chapters between the book and the website are not numbered identically!
- Book:
 - Chap 1: Data Visualization with ggplot
 - Chap 2: Workflow; Basics
- On the web site:
 - http://r4ds.had.co.nz/
 - Chap 3: Data Visualization
 - Chap 4: Workflow; Basics

The R Programming Language

- https://www.r-project.org/
- What is the R language?
 - An open source, well-developed programming platform for work in statistics, mathematics and data analytics
 - Built-in libraries to simplify programming
 - Language includes conditionals, loops, userdefined recursive functions and input and output facilities.
- Community Blogs:
 - https://www.r-bloggers.com/
 - https://twitter.com/rstudiotips

R: The Most Popular Data Mining Tool

R is Exploding in Growth

http://blog.revolutionanalytics.com/2013/10/r-usage-skyrocketing-rexer-poll.html

Most users are satisfied with R

http://blog.revolutionanalytics.com/2013/10/r-usage-skyrocketing-rexer-poll.html

Ranking To Others: IEEE 2017

Language Rank Types		Types	Spectrum Ranking
1.	Python		100.0
2.	С	🗓 🖵 🐞	99.7
3.	Java	\bigoplus \square \neg	99.4
4.	C++	🗓 🖵 🐞	97.2
5.	C#	\bigoplus \square \neg	88.6
6.	R	—	88.1
7.	JavaScript		85.5
8.	PHP		81.4
9.	Go	\bigoplus \Box	76.1
10.	Swift		75.3

Find more amazing studies about R: http://blog.revolutionanalytics.com/2018/06/pypl-programming-language-trends.html

Let's Try It Out!

Wait! R or Rstudio?

To run: Find its icon or type *rstudio at terminal*

Type "R" at terminal

Failing that: R by Jdoodle

https://www.jdoodle.com/execute-r-online

```
Your Code ...
   1 x <- 10
   2 y <- 25
   3 z \leftarrow sum(x,y)
   5 cat("x + y = ", z)
Interactive mode : OFF
Stdin Inputs...
  Execute
             Save
                     My Projects
                                   Recent
                                             Collaborate
                                                           Others -
                                                                       Goto Another Language/DB▼
Result...
executed in 0.957 second(s)
```


Getting Help in R

- Online help: place a "?" in front of a keyword
 - Ex: ?print

Variable Names

- Variable Names:
 - Begin with a letter, and can only include letters, numbers, periods and hyphens.
 - Hyphens: "-"
 - Periods: "."
- SnakeCase (recommended by book)
 - val of height,
 - val_of_length,
 - val_of_width

- CamalCase:
 - valOfHeight,
 - valOfLength,
 - valOfWidth
- Period.Case
 - Val.of.height,
 - Val.of.length,
 - Val.of.width

- What-EVER.Case
 - Val.ofHEIGHT,
 - Val.Of_Length,Val.oF.Width

Basic Math

Mathematics

- Addition: 1+1

- Subtraction: 1-1

- Multiplication: 3*7

- Division: 0.25

- More complicated math, var assignments:
 - 4*(7+3)/10+1 Note: watch the order of operations!
 - Parameter of circle (C = 2 * pi * r)
 - R <- 4, Note the "<-" means equal in R.
 - C <- 2 * pi * R = 2 * 3.1415 * 4
 - C is 25.13274

Variables and Assignments

- X <- 10.
- You could also use "X=10" but this is not traditional programming in R...
- Hypotenuse = $c = sqrt(a^2 + b^2)$
- A <- 3
- B <- 4
- $C <- sqrt(A^2 + B^2)$
- C is ??

Logical Operations

• Booleans: Returning True or False:

$$2 + 4 == 6$$
,

$$2 + 3 == 4 + 1$$

$$3 + 4 != 5$$

$$3 + 4 == 7$$

Try some of These in R!

- Logical AND (&&)
 - F && F: F
 - F && T: F
 - T && F: F
 - T && T: T
- Logical **OR** (||)
 - F || F: F
 - F || T: T
 - T || F: T
 - T || T: T
- Logical **NOT** (!)
 - !F: T
 - !T: F

Simple Steps

- Strings
 - "Hello World"
- Concatenation of strings
 - H <- "Hello"
 - W <- "world"
 - paste(H,W, sep = " ")
 - What is the result here??

- You try: print your full name!
 - name <- first-name,
 - Lastname <- last-name

Built-in Functions

- R has a large collection of built-in functions:
 - function_name(arg1 = val1, arg2 = val2, ...)
- Try calling this function:
 - Seq(0,10)
 - Gives a sequence, $S = \{0, ..., 10\}$
 - What happens when you press TAB after typing, "seq"?
- Use the sum() function to add two numbers.
- Sum() to add three numbers?
- Sum() to add a whole lot of numbers?

Simple Plots

- x<- seq(1,100) # assign x to the sequence 1 to 100
- plot(x) # plot this sequence
- plot(sin(x)) or plot(x,sin(x)) # left plot
- plot(sin(x)) or plot(x,sin(x), type = "l") # right plot

Now, You Try

- Use R to write a command that...
 - Find the **sum** of all numbers, 0 through 100
 - Find the **sum** of all numbers, 0 through 10000 (now, set a variable equal to the sequence first)
 - Use the plot function, plot(x,y,type = "l") to plot a line of the function, $f(x) = \sin(x)$ for x in $\{0, ..., 30\}$
 - Plots the function, f(x) = cos(x) for x in $\{0, ..., 30\}$
 - Plots the function, f(x) = tan(x) for x in $\{0, ..., 30\}$

Exiting R: q()

Explore the Data Of Your World

"Data exploration is the art of looking at your data, rapidly generating hypotheses, testing them, then repeating again and again..."

Program

Import: Bringing in the raw data to work on it

Tidy: Cleaning it up so that numbers are numbers and etc.

Transform: Converting the data into something more convenient to use

Visualize: Finding general trends in data

Model: Testing phases, learning how to predict from the data.

Communicate: Publish and change the world!

The steps of the Tidyverse canonical data science workflow, as well as, the individual packages that the steps involve.

Data and Plotting

The Tidyverse library in R: a coherent system of packages for data manipulation, exploration and visualization

- library(tidyverse)
 - If you need to install it: Install.packages(tidyverse)

ALLEGHENY COLLEGE

- Sunspots –
 magnetic
 disturbances
 on the sun that
 can be
 observed from
 Earth
- Spots cycles are noted to repeatedly increase and then decrease over time

Articulating the Research Question

- Is there something predictable about the sunspot data?
- Can we collect come evidence of a pattern in the data?
- Could we use this pattern to predict?
- What does a pattern look like in the data?

Load and Plot Sunspot Data

Load library

library(tidyverse)

find your sandbox file

sunData <- read.table(file.choose(), header = TRUE, sep = ",")

- View(sunData) # view the data
- Plot the data
- ggplot(data = sunData) + geom_point(mapping = aes(x = fracOfYear, y = sunspotNum))
- Save a file to the Desktop/ (or wherever) if you want...
- ggsave("~/Desktop/myplot.png")

Code for a Simple GGPlot

- ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy))
- Establish the canvas (where the plot is shown)
- Ggplot()
- Link to the data (set is called, 'mpg')
 - ggplot(data = mpg)
- Compute the geometery of point placement on canvas
 - geom_point(mapping = ...)
- Compute the aesthetics of the plot (titles, color, point type, etc)
 - -aes(x = displ, y = hwy)