Fre MeHTHI Mallinithoto Obygehus

Кошечки или собачки

Алгоритм?

Машинное обучение Machine Learning

Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed.^[1]

Wikipedia

Street View House Numbers

32x32 pixels 10 classes ~70000 train ~25000 test

training data

predict

Метод ближайших соседей Nearest neighbor

просто все запомнить

Predict:

найти ближайший и выдать его класс

Точность на тренировочных vs тестовых данных

Train:

просто все запомнить

Predict:

найти ближайший и выдать его класс

Метод k-ближайших соседей K-nearest neighbors

Переобучение и недообучение Overfitting vs underfitting

What is underfitting and overfitting in machine learning and how to deal with it

K=1 train train 1 test train

Как сравнивать?

Бинарная классификация Binary classification

VS

Точность

$$Accuracy = \frac{correct}{total}$$

ubonder

rosphoc chagas pleaming

$$\frac{Precision}{TP + FP} = \frac{TP}{TP + FN}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2}{\frac{1}{precision} + \frac{1}{recall}} = \frac{2 * (precision * recall)}{precision + recall}$$

Как сравнивать?

Бинарная классификация Binary classification

VS

Точность

$$Accuracy = \frac{correct}{total}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

Как сравнивать?

Многоклассовая классификация Multi-class classification

2(

'S

VS

Точность

$$Accuracy = \frac{correct}{total}$$

$$Precision_c = \frac{A_{c,c}}{\sum_{i=1}^{n} A_{c,i}}$$

$$Recall_c = \frac{A_{c,c}}{\sum_{i=1}^{n} A_{i,c}}$$

$$Precision = \frac{\sum_{c=1}^{n} P_c}{n}$$

$$Recall = \frac{\sum_{c=1}^{n} R_c}{n}$$

Stack Overflow

MAKE GIFS AT GIFSOUP.COM

test

Кстати вот он про это подробнее:

Nuts and Bolts of Applying

Deep Learning

Ошибка на train

большая

- Более мощную модель
- Больше ресурсов для тренировки
- Другой подход

overfitting

- большая
- Больше данных
- Больше регуляризации
- **-** Другой подход

маленькая

маленькая

Ошибка на test

Ошибка на val

большая

- Отличаются <u>train</u> и <u>test</u>
- Больше данных, таких как test

В следующий раз уже будет про нейросети

Домашнее задание!

Повторить производную сложной функции (chain rule)

4 Traguest

<u>Link</u>