02 Force Vectors

Engineering Statics

Updated on: August 20, 2025

Scalars versus Vectors

- Physical quantities in this course are measured using either scalars or vectors.
- A scalar quantity can be fully specified by its magnitude (or size) and units alone.
 Examples are temperature, speed, mass, time,

length, volume, density and energy.

- A vector quantity requires both magnitude and direction - in addition to units - to be fully specified.
 - Examples are displacement, velocity, force and momentum.
- ▶ 110 km/h is a speed. 110 km/h in a north-easterly direction is a vector.
- The vector quantity that is of most interest to us is force.

Graphical Vector Representation

- ➤ To represent a vector on a diagram, we draw a directed line segment – a line with an arrow tip.
- The length of the line segment is proportional to the magnitude of the vector.
- ▶ The direction of the line segment shows the direction of the vector.
- ► The arrow head gives the sense of that direction (up and rightwards in this case).

Graphical Vector Representation

- ➤ To represent a vector on a diagram, we draw a directed line segment – a line with an arrow tip.
- The length of the line segment is proportional to the magnitude of the vector.
- ▶ The direction of the line segment shows the direction of the vector.
- ► The arrow head gives the sense of that direction (up and rightwards in this case).

θ indicates the direction of the line of action of the vector v relative to some reference.

(I.e., the horizontal axis in this case.)

Multiplication of a vector by a scalar

Multiplication of a vector by a scalar affects the magnitude and, if the scalar is negative, the sense of the direction of the vector.

Consider two vectors, \boldsymbol{A} and \boldsymbol{B} :

Consider two vectors, A and B:

A B

To add vectors ${\bf A}$ and ${\bf B}$, written ${\bf A}+{\bf B}$, place the tail of ${\bf B}$ at the tip of ${\bf A}$.

Consider two vectors, A and B:

To add vectors ${\bf A}$ and ${\bf B}$, written ${\bf A}+{\bf B}$, place the tail of ${\bf B}$ at the tip of ${\bf A}$.

The sum, A + B, is obtained by drawing a vector R from the tail of A to the tip of B.

$$A + B = R$$

Consider two vectors, A and B:

To add vectors ${\bf A}$ and ${\bf B}$, written ${\bf A}+{\bf B}$, place the tail of ${\bf B}$ at the tip of ${\bf A}$.

The sum, A + B, is obtained by drawing a vector R from the tail of A to the tip of B.

$$A + B = R$$

Note that the sum of two vectors is itself a vector.