

Probability and Stochastic Processes

Lecture 01: Functions, Cardinality, Countability

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

29 July 2025

Functions

Definition (Function)

Given two sets A, B, a function $f: A \to B$ is a rule that maps each element of A to a unique element of B.

• For every $x \in A$,

$$f: x \mapsto f(x) \in B$$

- A is called the domain of f
- *B* is called the co-domain of *f*

Note

While every element of A is mapped to some element of B, the converse may not always be true.

Range of a Function

Definition (Range)

The range of a function $f: A \to B$, denoted by R(f), is the subset of B defined as

$$R(f) = \Big\{ \gamma \in B : \gamma = f(x) \text{ for some } x \in A \Big\}.$$

- Given $x \in A$, if f(x) = y, then y is called the image of x (under f)
- Given $y \in B$, the set $f^{-1}(y) := \{x \in A : f(x) = y\}$ is called the pre-image of y

Image and Pre-Image

- A function $f:A\to B$ is said to be injective if f is one-one, i.e., each element of R(f) has a unique pre-image
- A function $f: A \rightarrow B$ is said to be surjective if it is *onto*, i.e., range = codomain
- A function $f: A \to B$ is said to be bijective if it is both injective and surjective

Note

- If $f:A\to B$ is bijective, then for each $\gamma\in B$, there exists a unique element $x\in A$ such that $f^{-1}(\gamma)=\{x\}$. In this case, we simply write $f^{-1}(\gamma)=x$.
- Alternatively, if $f:A\to B$ is bijective, we have $f^{-1}:B\to A$.

Cardinality

Definition (Cardinality)

Notation: |A| = cardinality of set A

- Two sets A and B are said to be equicardinal (|A|=|B|) if there exists $f:A\to B$ bijective.
- $|B| \ge |A|$ if there exists $f: A \to B$ injective
- |B| > |A| if there exists $f: A \to B$ injective, and A and B are not equicardinal (i.e., no bijective function mapping A to B exists)

Note

|A| is representative of the number of elements in A.

Countability

- A set A is said to be finite if A is empty or $|A| = |\{1, \dots, n\}| = n$ for some $n \in \mathbb{N}$
- A set A is said to be countably infinite if $|A|=|\mathbb{N}|$, where $\mathbb{N}=\{1,2,\ldots\}$ denotes the set of natural numbers
- A set A is countable if either $|A| < +\infty$ or $|A| = |\mathbb{N}|$

Remark

If *A* is countably infinite, then its elements may be listed as $A = \{a_1, a_2, \ldots\}$.

Examples of Countable Sets

- Set of odd natural numbers, set of even natural numbers
- Set of integers, $\mathbb{Z} = \{0, +1, -1, +2, -2, \ldots\}$
- Set of prime numbers
- Set of rational numbers, $\mathbb Q$

Q is Countable - Proof

Step 1: $\mathbb{Q} \cap [0, 1]$ is countable. Indeed, note that

$$\mathbb{Q}\cap[0,1]=\bigg\{0,1,\frac{1}{2},\frac{1}{3},\frac{2}{3},\frac{1}{4},\frac{3}{4},\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5},\frac{1}{6},\frac{5}{6},\dots\bigg\}.$$

Step 2: "Countable union of countable sets is countable."

Lemma

Let \mathcal{I} be a countable index set, and let $\{A_i : i \in \mathcal{I}\}$ be a countable collection of countable sets. Then, $\bigcup_{i \in \mathcal{I}} A_i$ is countable.

Step 3: Complete the proof using the above lemma.