240697 3727//

MGS 2-CELL CPV NiH₂ BATTERIES

PRESENTED BY SAL DI STEFANO NASA AEROSPACE BATTERY WOKSHOP MARSHALL SPACE FLIGHT CENTER OCTOBER 27-29 HUNTSVILLE, ALABAMA

-76/-

CONTRIBUTORS:

D. PERRONE, B.V. RATNAKUMAR, T. VALDEZ, L. WHITCANACK - JPL ZERCHER, J. BYERS, S. WALKER - LMA

TOPICS

- BACKGROUND
- MGS BATTERY DESCRIPTION
- TYPICAL PERFORMANCE CHARACTERISTICS
- IN-FLIGHT PERFORMANCE
- OUTLOOK

Earth and in an orbit around Mars with a high point of 11,098 miles (17,861km), a low point of 108.0 miles (173.8 km), and a period of After a mission elapsed time of 659 days from launch, Surveyor is 223.34 million miles (359.43 million kilometers) from the 1.6 hours.

http://mars.jpl.nasa.gov

MARS GLOBAL SURVEYOR(MGS)

Electric Power Subsystem

- Much of the hardware was modified from the Mars Observer Mission Flight
- Direct Energy Transfer System with Boost Regulator
- Regulated to 28 Volts ±2% (+0.56/-0.3 Volts)
- 361 Watt Orbital Average Load (Mapping Phase)
- Hybrid GaAs/Si Solar Array Provides Energy Balance During Mission
- 12 M2 Panel Produces > 664 W at Mapping Aphelion
- NiH2 2-Cell CPV Batteries (2) Provide 20 AH Each
- Linear Battery Charger Controls Battery Recharge
 - Charge Rates of 0.85A, 7.5A, 10.0A and 12.5A
- 8 VT Limits with Capability to Shift All Down for 1 Cell Failure
 - C/100 Trickle Charge Circuit from Regulated Bus
- Boost Regulator Processes up to 24 A With 4 out of 5 Redundancy
- Partial Shunt Assemblies Dump Excess Energy Up to 3.3 A Each
- Fuse Board Assemblies (2) Protect Pwr Bus with Redundant Fuses

MGS 20 AH Cell Design

- **EPI MANTECH**
- 23 mil PRESSURE VESSELS
- COMMON PRESSURE VESSEL
- RABBIT EAR TERMINALS (60° INCLUDED ANGLE)
- 30 mil SLURRY POSITIVES
- 32 ELECTRODE COUPLES (16 PER STACK)
- DOUBLE LAYER ZIRCAR
- ZIRCONIUM WALL WICK
- TEFLON COATED WELD RING (INHIBITS ELECTROLYTE MIGRATION)
- 31% KOH
- NICKEL PRECHARGED
- 800 PSI @ MAXIMUM EXPECTED
- MASS: 1291g MAX / CELL

-587- Advanced Nickel-Hydrogen / Silver-Hydrogen Session

V/T curves

- Developed for charge control of LEO (Low Earth Orbit) satellites using NiCd batteries
- Allows for fast charging of batteries
- minimizes overcharge
- prevents thermal runaway
- Relatively simple to implement in hardware
 Range of V/T curves can be constructed to take battery aging into account

Trend Analysis

- For Each Day The Highest and Lowest Value for Each Telemetry Channel is Recorded
- Pressure (4), Temperature (2 of 4), Voltage (2) Follow
 - Subsequent Readings by the Initial Post-Launch Pressures Have Been Normalized by Dividing Values
- Show a 15% Increase Over Time
- ~4% Due to Trickle Charging for 560 Days
- Overtemperature Cutoff Upon Entering Safe Mode During Cruise ~4% Due to Single Event Overcharge at 7.5 amps to 30°C
- 7% Due to 200 Discharge/Charge Cycles Averaging ~30% DOD, 50% Maximum

---ELECTROCHEMICAL TECHNOLOGIES GROUP

SUMMARY OF PRESSURE TREND DATA

(C/100) & Temperature ($\sim 2^{\circ}$ C) from Beginning of Life to Data Below Reflects Pressures at Constant Charge Rate **Present**

792 psi (6.6%) 812 psi (1.5%), 817 psi (5.4%) and 861 psi MGS Pressure Measurements Saturate at

	Beginn	Beginning of Mission	ssion	Current	Current Values (PSI)	(PSI)	Delta lı	Delta Increases (%)	(%)
	M in	Max	Mean	Min	Max	Mean	Min	Max	Mean
Battery 1									
Temperature:	2.6°/2.	2.6°/2.4° on D97-017	7-017	1.4°/0.5	1.4°/0.5° on D98-124	3-124			
Pressure 1 (E-0108)	621.8	652.9	628.3	705.8 743.1	743.1	712.6	13.5%	13.8%	13.4%
Pressure 2 (E-0109)	656.1	681.5	663.2	745.2	800.7	750.0	13.6%	17.5%	13.1%
Battery 2									
Temperature:	3.2°/1.	3.2°/1.8° on D96-319	5-319	1.6/1.7	1.6/1.7° on D98-124	-124			
Pressure 1 (E-0118)	628.2	663.5	663.5 638.5	734.0	734.0 775.7	738.9	16.8%	16.9%	15.7%
Pressure 2 (E-0119)	6.899	699.3	681.9	790.5	824.3	799.0	18.2%		17.9% 17.2%
AVERAGE							15.5%	16.5%	16.5% 14.9%
AVERAGE								15.6%	

Summary

- Charge control of MGS 2-Cell CPV NiH, Battery appears to be working well - Not recommended using modified NiCd charge control system
- Unexpected increase in pressure observed in flight
- Operations have been modified to further minimize overcharge
- The pressure increase not expected to impact mission

MGS Battery Pressure Data

Mars

ACKNOWLEDGMENT

Institute of Technology, under contract with the National Aeronautics This work was carried out at the Jet Propulsion Laboratory, California and Space Administration and was sponsored by:

NASA Code QT (Office of Safety and Mission Assurance) NASA Code AE (Chief Engineer's Office) and the MGS Project.

MGS Battery

