

Arbeit zur Erlangung des akademischen Grades Bachelor of Science

LATEX-Dokumentenklasse und Vorlage für Abschlussarbeiten an der TU Dortmund

Maximilian Nöthe geboren in Castrop-Rauxel

2014

Lehrstuhl für Experimentelle Physik V Fakultät Physik Technische Universität Dortmund

Erstgutachter: Prof. Dr. Erstgutachter Zweitgutachter: Prof. Dr. Zweitgutachter Abgabedatum: 31. September 2015

Kurzfassung

Hier steht eine Kurzfassung der Arbeit in deutscher Sprache inklusive der Zusammenfassung der Ergebnisse. Zusammen mit der englischen Zusammenfassung muss sie auf diese Seite passen.

Abstract

The abstract is a short summary of the thesis in English, together with the German summary it has to fit on this page.

Contents

1	Intr	Introduction		
2	Single top quark production with a photon in the Standard Model			
	2.1	A brief overview of the standard model	2	
	2.2	The $tq\gamma$ process in the standard model	2	
3	Measurement of $tq\gamma$			
	3.1	The ATLAS Experiment	3	
	3.2	Object Reconstruction at the ATLAS experiment	4	
	3.3	Background contributions from similar processes	5	
4	Monte Carlo samples and event selection			
	4.1	Generation of Monte Carlo samples	6	
	4.2	Event selection	6	
5	The Neural Network used for signal-background classification		7	
	5.1	Short introduction to neural networks	7	
	5.2	The neural network architecture	7	
	5.3	Input features for the neural network	7	
	5.4	Performance and distribution of the NN output	7	
6	Differnetial analysis of the NN output		8	
	6.1	Correlations of input features with the NN output	8	
	6.2	NN output distribution dependence on photon p_T and fjet+photon		
		energy	8	
	6.3	?	8	
7	Con	clusions	9	
Bi	bliog	raphy	10	

1 Introduction

Hier folgt eine kurze Einleitung in die Thematik der Bachelorarbeit. Die Einleitung muss kurz sein, damit die vorgegebene Gesamtlänge der Arbeit von 25 Seiten nicht überschritten wird. Die Beschränkung der Seitenzahl sollte man ernst nehmen, da Überschreitung zu Abzügen in der Note führen kann. Um der Längenbeschränkung zu genügen, darf auch nicht an der Schriftgröße, dem Zeilenabstand oder dem Satzspiegel (bedruckte Fläche der Seite) manipuliert werden.

- 2 Single top quark production with a photon in the Standard Model
- 2.1 A brief overview of the standard model
- 2.2 The $tq\gamma$ process in the standard model

3 Measurement of $tq\gamma$

TO DOS:

- 1. Define pseudorapidity in 3.1
- 2. 3.2.2 and 3.2.1 missing
- 3. Cite anti- k_t algorithm and study of misidentified jets in 3.2.3

3.1 The ATLAS Experiment

The European Organization for Nuclear Research, known as CERN, located in Geneva, has various experiments studying elementary particles through the collision of heavy ions and protons. The Large Hadron Collider (LHC), the particle accelerator of CERN, has a circumference of 27km and can collide particles with an energy of up to 13.6TeV.

The LHC consists of four extensive experiments: the ALICE, the LHCb, the CMS and the ATLAS experiments. The research in this paper is done with the help of the largest of these experiments, the ATLAS experiment. Figure 1 visualizes the structure of the ATLAS detector. The detector is built symmetrically around the particle beam divided into three subdetectors.

The inner detector tracks charged particles just after the collision. It consists of three different systems of sensors in a magnetic field parallel to the beam. These sensors are the pixel detector, the semiconductor tracker that works with silicon strips and a transition radiation tracker to track particles with gas-filled tubes.

In the EM calorimeter, metal layers (tungsten, copper or lead) absorb incoming particles and convert them into lower-energy particles called a shower. The calorimeters detect "showers" produced by electrons, photons and hadrons. Hadrons do not deposit all of their energy into the EM calorimeter; they get absorbed by steel layers in the hadronic calorimeter. Plastic scintillating tiles then produce photons that get converted into an electric current.

The muon spectrometer measure trajectories of muons with the help of a magnetic field. The spectrometer detects muons in the range of $|\eta| = 2.7$. Monitored drift

tubes measure for pseudorapidities up to $\eta=2.0$ and cathode strip chambers fill higher pseudorapidities.

Figure 3.1: Schematic visualisation of the ATLAS Detector [1].

3.2 Object Reconstruction at the ATLAS experiment

3.2.1 Reconstruction of photons

?

3.2.2 Reconstruction of leptons

?

3.2.3 Jets

Jets are clusters of mostly mesons that result from the separation of two quarks. They are reconstructed with the help of the anti- k_t algorithm [anti_k_t] with a radius parameter of R = 0.4. This algorithm reconstructs jets by first identifying the particle source via the jet energy scale. It is then required that the jet has a transverse momentum of $p_T > 25 \text{GeV}$ and $|\eta| < 4.5$.

Detector noise can lead to the misidentification of a jet. The nature of these misidentified jets has been studied thoroughly [70] and a so-called "jet cleaning procedure" is used to tag them. Any event containing at least one "bad" jet is removed.

3.2.4 Missing transverse momentum $E_T^{ m miss}$

If all particle products are considered, there should be no magnitude for the sum of the transverse momentum p_T of all particles. Any measured magnitude is therefore attributed to an unmeasured particle. The missing transverse momentum $E_T^{\rm miss}$ is consequently defined as the negative of this sum and assinged to a neutrino.

3.3 Background contributions from similar processes

These events contribute to the background noise. Any process that has similar decay products as tqGamma are background. The process $t\bar{t}\gamma$ holds the most similar decay product as it's products can be identical to the products of $tq\gamma$. Following processes is the production of a W-boson with jets, a Z-boson with jets and $t\bar{t}$. Table 3.1 lists these and the rest of the processes contributing to the background.

	Process
1	$tq\gamma$
2	$tar{t}\gamma$
3	$W\gamma+jets$
4	$Z\gamma+jets$
5	t ar t
6	schan
7	tW
8	tchan
9	VV
10	W+jets
11	Z + jets

Table 3.1: List of SM processes that contribute to background noise in the measurement of $tq\gamma$.

4 Monte Carlo samples and event selection

- 4.1 Generation of Monte Carlo samples
- 4.2 Event selection

- 5 The Neural Network used for signal-background classification
- 5.1 Short introduction to neural networks
- 5.2 The neural network architecture
- 5.3 Input features for the neural network
- 5.4 Performance and distribution of the NN output

6 Differnetial analysis of the NN output

- 6.1 Correlations of input features with the NN output
- 6.2 NN output distribution dependence on photon p_T and fjet+photon energy
- 6.3 ?

Conclusions

Bibliography

- [1] The ATLAS Collaboration et al. "The ATLAS Experiment at the CERN Large Hadron Collider." In: *Journal of Instrumentation* 3.08 (Aug. 2008), S08003–S08003. DOI: 10.1088/1748-0221/3/08/s08003. URL: https://doi.org/10.1088/1748-0221/3/08/s08003.
- [2] A. M. Sirunyan et al. "Evidence for the Associated Production of a Single Top Quark and a Photon in Proton-Proton Collisions at $\sqrt{s}=13\,$ TeV." In: Phys. Rev. Lett. 121 (22 Nov. 2018), p. 221802. DOI: 10.1103/PhysRevLett. 121.221802. URL: https://link.aps.org/doi/10.1103/PhysRevLett.121. 221802.