CSE 102

Homework Assignment 2

2. Let T(n) be defined by the recurrence

 $T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + n^2 & \text{if } n \ge 2 \end{cases}$

Use substitution method to Show that $\forall n \geq 1$: $T(n) \leq (4/3)n^2$, and hence $T(n) = O(n^2)$.

3. Recall the n^{th} harmonic number was defined to be $H_n = \sum_{k=1}^n \left(\frac{1}{k}\right) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} + \frac{1}{n}$. Use induction to prove that

$$\sum_{k=1}^{n} kH_k = \frac{1}{2}n(n+1)H_n - \frac{1}{4}n(n-1)$$

for all $n \ge 1$. (Hint: Use the fact that $H_n = H_{n-1} + \frac{1}{n}$.)

4. Define T(n) by the recurrence

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n-1) + n & \text{if } n \ge 2 \end{cases}$$

Use the iteration method to find the exact solution to this recurrence, then determine an asymptotic solution.

5. Define T(n) by the recurrence

$$T(n) = \begin{cases} 9 & \text{if } 1 \le n < 15 \\ T(\lfloor n/2 \rfloor) + 6 & \text{if } n \ge 15 \end{cases}$$

Use the iteration method to find the exact solution to this recurrence, then determine an asymptotic solution.

- 6. Use the Master Theorem to find tight asymptotic bounds on the following recurrences.
 - a. $T(n) = 3T(2n/3) + n^3$
 - b. $T(n) = 2T(n/3) + \sqrt{n}$
 - c. $T(n) = 5T(n/4) + n^{\lg \sqrt{5}}$

 - d. $T(n) = 3T(2n/5) + n \log n$ e. $S(n) = aS(n/4) + n^2$ (your answer will depend on the parameter a.)