## HACKATHON: PRACTICAL WORK

## Problem Formulation and Recommendations

Prof. Dr. habil. Vadim Azhmyakov

DOCET TI and National Research University Higher School of Economics Moscow, Russia

> Moscow, December 2021



## **Outline**

- Problem Formulation
- Some Recommendations
- Presentation of the Obtained Results

#### input of the Problem

As a Problem input consider a simplified (kinematic) model of a Racing Car (RC) introduced in Lecture. One can be presented as

$$\begin{aligned} & \text{math.cos}(x[2]) \times v[0], \\ & \text{math.sin}(x[2]) \times v[0], \\ & (v[0]/I) \times \text{math.tan}(\phi) \end{aligned} \tag{1}$$

The Control of the car is:  $u := (\phi, v)^T$ , namely, the orientation angle  $\phi$  and the velocity magnitude v. The given reference trajectory g(x,y) = 0 constitutes a closed curve, where x and y are Euclidean coordinates of a stationary system coordinates.

#### **Problem Formulation**

Using the Reinforcement Learning approach define the optimal RC control  $u^{opt} := (\phi^{opt}, v^{opt})^T$  such that:

- the integral deviation (or integral quadratic deviation) of the corresponding optimal trajectory of the RC and a given reference trajectory g(x, y) = 0 is minimal;
- the racing time  $t_f$  is minimal.

For the computer oriented solution of the above Problem use the Python ML resources and generate the corresponding Python - code.

#### output of the Problem

As a computational output of then Problem consider:

- the dynamic relation  $\phi^{opt}(t)$  on the obtained optimal trajectory;
- the dynamic relation  $v^{opt}(t)$  on the obtained optimal trajectory;
- the average speed of the RC;
- the obtained optimal (minimal) time  $t_f^{opt}$  of the racing.

One can also present some additional Problem outputs: the maximal quadratic deviation of the optimal pair  $(\phi(t), v^{opt}(t))$  from the given reference point (the medium line of the lane).

#### output of the Problem

As a code-related output of then Problem consider: the complete Python-code including the following parts

- model and data simulation part;
- the data-driven model training (learning);
- optimal car steering = optimal tracking control;
- model validation and computational results;
- visualization of the racing.

## Some Recommendations

### recommended Python ML packages

"pip install tensorflow" (TensorFlow), "pip install –user tf-agents[reverb]" (TensorFlow Agents), installation of the usual Python packages.

#### recommended Python libraries

One also can use "keras" (Python Deep Learning API), "PyTorch" (Python ML library), and the packages mentioned in Lecture.

## Presentation of the Obtained Results

- presentation of the computational results;
- presentation of the Python codes.

# THANKS!