

Вербальный анализ решений Шкала Нормализованных Упорядоченных Различий (ШНУР)

Студент гр. № 3540203/90101

Зимин Юрий Геннадьевич

Постановка задачи

 $K = \{K_1, K_2, ... K_n\}$ – множество критериев оценки альтернатив.

 $K = K^{\uparrow} \cup K^{\downarrow}$, где K^{\uparrow} - подмножество критериев, оценку по которым нужно максимизировать, K^{\downarrow} - подмножество критериев, оценку по которым нужно минимизировать.

ЛПР – лицо, принимающее решение (эксперт осуществляющий выбор лучшего варианта по заданному алгоритму).

 $X_q = \{x_q^k\}$ – множество оценок q-го критерия.

 $A = \{A_1, A_2, ... A_3\}$ – множество реальных объектов.

 $V = V(A_i)$ – ценность альтернативы A_i для ЛПР.

Постановка задачи

Необходимо на основе предпочтений ЛПР выделить из множества А лучший объект, соответствующий наибольшему значению априорно неизвестной функции ценности $V(A_i)$.

Сравнивая две альтернативы A_1 и A_2 ЛПР может дать один из трех возможных ответов:

- Альтернатива A_1 предпочтительнее альтернативы A_2
- Альтернатива A_2 предпочтительнее альтернативы A_1
- Альтернативы A_1 и A_2 одинаково предпочтительны

Алгоритм поиска лучшей альтернативы

- Объединение близких оценок по критериям.
- Исключение альтернатив с низкими некомпенсируемыми оценками.
- Парные сравнения альтернатив На данном шаге для каждой пары строится шкала нормализованных упорядоченных различий ЛПР предлагается сравнивать достоинства начиная с предположительно больших достоинств и недостатков, т.е. двигаясь от концов шкалы по направлению к ее центру. Если одного достоинства не хватает для компенсации достоинства, то добавляется следующее достоинство с меньшим значением.

Пример: выбор места для постройки магазина

Критерий	Направление	A1	A2	A3	A4
Количество мест для	max	400	300	250	150
парковки автомашин					
Ка Наличие поблизости	min	1	5	3	5
конкурентов					
КЗ Плотность населения в	max	200	4500	6000	7000
радиусе 1км.					
К4 Стоимость участка	min	6	16	12	20
К5 Поток общественного	max	1	3	5	7
транспорта					
Кб Видимость магазина с	max	5	5	3	1
главной улицы					
К≀ Инфраструктура связей	max	3	3	5	7

1 Объединение близких по критериям:

$$a_1^2 = (a_1^2 + a_1^3)/2$$

2. Исключить альтернативу М, так как она имеет низкую некомпенсируемую оценку?

Пример: выбор места для постройки магазина

Крите рий	Направление	A1	A2	a1	a2	d
K 1:	max	400	300	1.14	0.86	0.29
K 2:	min	1	5	1.67	0.33	1.34
K 3	max	200	4500	0.09	1.91	-1.83
K 4	min	6	16	1.45	0.55	0.9
K 5	max	1	3	0.50	1.5	-1
K 6	max	5	5	1	1	0
K 7	max	3	3	1	1	0

Выполняется нормализация:

$$a_{i(j)}^q = \left\{ egin{array}{ll} a_{i}^q/a_{(ij)}^q & \text{для } K_q \in K^\uparrow, \\ 2 - (a_i^q/a_{(ij)}^q) & \text{для } K_q \in K^\downarrow, \end{array}
ight.$$
 $a_{j(i)}^q = \left\{ egin{array}{ll} a_{j}^q/a_{(ij)}^q & \text{для } K_q \in K^\uparrow, \\ 2 - (a_j^q/a_{(ij)}^q) & \text{для } K_q \in K^\downarrow, \end{array}
ight.$

Расчет нормализованных оценок

$$d_{ij}^q = a_{i(j)}^q - a_{j(i)}^q$$

Пример: выбор места для постройки магазина

Критерии	Разность
Κ Ί	0.29
K 2:	1.34
K 3	-1.83
K 4	0.9
K 5	-1
K 6	0
K 7	0

Псевдокод

Алгоритм 1 Main 1: M := (K, A)2: n := len(A)3: k := 14: for each in n do for each b in (k, n) do if a then Not b 6: Pairs := createPairs(a, b, Pairs)7: end if end for 10: end for 11: **for** each pair in Pairs **do** M := Normalisation(pair. A1, pair.A2, K, M) 12: M := Sort(M)13: W = FindWinner(pair.A1, pair.A2, M, K, W) 14:15: end for

Алгоритм 2 function Normalisation(A1, A2, K, M)

```
1: for each k in K do
      a12 := (A1[k] + A2[k]) / 24
 2:
       if k.direction is max then then
 3:
          a1 := A1[k]/a12
4:
          a2 := A2[k]/a12
5:
      else
6:
         a1 := 2 - (A1[k]/a12)
7:
         a2 := 2 - (A2[k]/a12)
8:
      end if
9:
       M.append(a1 - a2)
10:
11: end for
12: return M
```

- В методе используются достаточно простые процедуры выявлений предпочтений ЛПР. Диалог ведется на понятном для ЛПР языке, причем рассматриваются как качественные, так и количественные оценки альтернатив по критериям.
- Метод позволяет сравнить большое число альтернатив при минимальном числе вопросов к ЛПР
- Метод позволяет приспособится к конкретной задаче (набору альтернатив) и выделить лучшую или предположительно лучшую альтернативу.
- Метод позволяет ЛПР получить объяснения сделанному выбору путем предъявления тех ответов, которые привели к полученному результату.

Особенности метода