Raisonner sur les Langages Logiques: les Preuves

Déduction Naturelle

Définition Wikipedia:

Une preuve est un fait ou un raisonnement propre à établir solidement la vérité.

Philosophie : c'est un discours présentant un raisonnement juste.

Philosophie : c'est un discours présentant un raisonnement juste.

Droit : elle est utilisée pour établir la vérité lors de procès.

Droit : elle est utilisée pour établir la vérité lors de procès. Plusieurs degré de confiance :

- Preuve parfaite : présomption irréfragable.
- Preuve imparfaite : présomption simple.
- Présomption : faisceau d'éléments ou d'indices.

Déduction Naturelle

Philosophie : c'est un discours présentant un raisonnement juste.

Droit : elle est utilisée pour établir la vérité lors de procès. Plusieurs degré de confiance :

- Preuve parfaite : présomption irréfragable.
- Preuve imparfaite : présomption simple.
- Présomption : faisceau d'éléments ou d'indices.

Déduction Naturelle

Informatique: on prouve la correction d'un programme, i.e. qu'il termine et soit juste. On étudie également la fiabilité et la sûreté des systèmes.

Philosophie : c'est un discours présentant un raisonnement juste.

Droit : elle est utilisée pour établir la vérité lors de procès. Plusieurs degré de confiance :

- Preuve parfaite : présomption irréfragable.
- Preuve imparfaite : présomption simple.
- Présomption : faisceau d'éléments ou d'indices.

Déduction Naturelle

Informatique: on prouve la correction d'un programme, i.e. qu'il termine et soit juste. On étudie également la fiabilité et la sûreté des systèmes.

Mathématiques : une preuve est une rédaction argumentée qui établit la véracité d'un énoncé mathématique.

Droit : elle est utilisée pour établir la vérité lors de procès. Plusieurs degré de confiance :

- Preuve parfaite : présomption irréfragable.
- Preuve imparfaite : présomption simple.
- Présomption : faisceau d'éléments ou d'indices.

Déduction Naturelle

Informatique: on prouve la correction d'un programme, i.e. qu'il termine et soit juste. On étudie également la fiabilité et la sûreté des systèmes.

Mathématiques : une preuve est une rédaction argumentée qui établit la véracité d'un énoncé mathématique. Composée par

- des hypothèses;
- des énoncés basiques, appelés axiomes;
- des énoncés précédemment démontrés;
- des règles de déduction qui combinent des énoncés.

Philosophie : c'est un discours présentant un raisonnement juste.

Droit : elle est utilisée pour établir la vérité lors de procès. Plusieurs degré de confiance :

- Preuve parfaite : présomption irréfragable.
- Preuve imparfaite : présomption simple.
- Présomption : faisceau d'éléments ou d'indices.

Informatique : on prouve la correction d'un programme, i.e. qu'il termine et soit juste. On étudie également la fiabilité et la sûreté des systèmes.

Mathématiques : une preuve est une rédaction argumentée qui établit la véracité d'un énoncé mathématique. Composée par

- des hypothèses;
- des énoncés basiques, appelés axiomes;
- des énoncés précédemment démontrés;
- des règles de déduction qui combinent des énoncés.

Relire une preuve en mathématique est un processus mécanique qui peut être automatisé.

•000000

Le problème :

Quand il neige, il fait froid. Quand il y a du verglas, il fait froid. Aujourd'hui, il neige et il y a du verglas. De plus, en été, il ne fait pas froid. Donc, ce n'est pas l'été.

Le problème :

Quand il neige, il fait froid. Quand il y a du verglas, il fait froid. Aujourd'hui, il neige et il y a du verglas. De plus, en été, il ne fait pas froid. Donc, ce n'est pas l'été.

Hypothèses :

- A neige \Rightarrow froid,
- B verglas \Rightarrow froid,
- C neige ∧ verglas,
- D été $\Rightarrow \neg$ froid,

Le problème :

Quand il neige, il fait froid. Quand il y a du verglas, il fait froid. Aujourd'hui, il neige et il y a du verglas. De plus, en été, il ne fait pas froid. Donc, ce n'est pas l'été.

Hypothèses:

Règles de déduction naïves :

A neige \Rightarrow froid,

1 si $P \wedge Q$ se produisent alors P se produit,

Déduction Naturelle

B verglas \Rightarrow froid,

2 si $P \Rightarrow Q$ et que P se produit alors Q se produit,

C neige ∧ verglas,

3 si $P \Rightarrow Q$ et que Q ne se produit pas alors P ne se produit pas.

D été $\Rightarrow \neg$ froid.

Un raisonnement humain:

Le problème :

Quand il neige, il fait froid. Quand il y a du verglas, il fait froid. Aujourd'hui, il neige et il y a du verglas. De plus, en été, il ne fait pas froid. Donc, ce n'est pas l'été.

Hypothèses:

Règles de déduction naïves :

A neige \Rightarrow froid,

1 si $P \wedge Q$ se produisent alors P se produit,

Déduction Naturelle

B verglas \Rightarrow froid,

2 si $P \Rightarrow Q$ et que P se produit alors Q se produit,

C neige ∧ verglas,

3 si $P \Rightarrow Q$ et que Q ne se produit pas alors P ne se produit pas.

D été $\Rightarrow \neg$ froid.

Un raisonnement humain:

hypothèse C et régle 1 : il neige,

Le problème :

Quand il neige, il fait froid. Quand il y a du verglas, il fait froid. Aujourd'hui, il neige et il y a du verglas. De plus, en été, il ne fait pas froid. Donc, ce n'est pas l'été.

Hypothèses:

Règles de déduction naïves :

A neige \Rightarrow froid,

1 si $P \wedge Q$ se produisent alors P se produit,

B verglas \Rightarrow froid,

2 si $P \Rightarrow Q$ et que P se produit alors Q se produit,

C neige \land verglas, D été $\Rightarrow \neg$ froid, 3 si $P \Rightarrow Q$ et que Q ne se produit pas alors P ne se produit pas.

Un raisonnement humain :

- hypothèse C et régle 1 : il neige,
- énoncé précédent, hypothése A et règle 2 : il fait froid,

Le problème :

Quand il neige, il fait froid. Quand il y a du verglas, il fait froid. Aujourd'hui, il neige et il y a du verglas. De plus, en été, il ne fait pas froid. Donc, ce n'est pas l'été.

Hypothèses:

Règles de déduction naïves :

A neige \Rightarrow froid,

1 si $P \wedge Q$ se produisent alors P se produit,

Déduction Naturelle

B verglas \Rightarrow froid,

2 si $P \Rightarrow Q$ et que P se produit alors Q se produit,

C neige ∧ verglas,

3 si $P \Rightarrow Q$ et que Q ne se produit pas alors P ne se produit pas.

D été $\Rightarrow \neg$ froid.

Un raisonnement humain:

- hypothèse C et régle 1 : il neige,
- énoncé précédent, hypothése A et règle 2 : il fait froid,
- énoncé précédent, hypothése D et règle 3 : ce n'est pas l'été.

Déduction Naturelle

Même Problème, Autre Méthode

Hypothèses :

- A neige \Rightarrow froid,
- B verglas \Rightarrow froid,
- C neige ∧ verglas,
- D été $\Rightarrow \neg$ froid,

Hypothèses:

- A neige \Rightarrow froid,
- B verglas \Rightarrow froid,
- C neige ∧ verglas,
- D été $\Rightarrow \neg$ froid.

Règles de déduction naïves :

1 si $P \wedge Q$ se produisent alors P se produit,

Déduction Naturelle

2 si $P \Rightarrow Q$ et que P se produit alors Q se produit,

Hypothèses:

- A neige \Rightarrow froid,
- B verglas \Rightarrow froid.
- C neige ∧ verglas,
- D été $\Rightarrow \neg$ froid.

Règles de déduction naïves :

1 si $P \wedge Q$ se produisent alors P se produit,

Déduction Naturelle

2 si $P \Rightarrow Q$ et que P se produit alors Q se produit.

Principe du raisonnement par l'absurde :

Ajouter l'inverse de la conclusion aux hypothèses et aboutir à un problème.

Hypothèses:

A neige \Rightarrow froid,

B verglas \Rightarrow froid,

C neige ∧ verglas,

D été $\Rightarrow \neg$ froid,

Règles de déduction naïves :

1 si $P \wedge Q$ se produisent alors P se produit,

Déduction Naturelle

2 si $P \Rightarrow Q$ et que P se produit alors Q se produit,

Principe du raisonnement par l'absurde :

Ajouter l'inverse de la conclusion aux hypothèses et aboutir à un problème.

Un raisonnement par l'absurde :

• E c'est l'été (en plus de A,B,C et D),

Hypothèses:

A neige \Rightarrow froid,

B verglas \Rightarrow froid,

C neige ∧ verglas,

D été $\Rightarrow \neg$ froid,

Règles de déduction naïves :

1 si $P \wedge Q$ se produisent alors P se produit,

Déduction Naturelle

2 si $P \Rightarrow Q$ et que P se produit alors Q se produit,

Principe du raisonnement par l'absurde :

Ajouter l'inverse de la conclusion aux hypothèses et aboutir à un problème.

- E c'est l'été (en plus de A,B,C et D),
- hypothése E, hypothése D et règle 2 : il ne fait pas froid.

Hypothèses:

- A neige \Rightarrow froid,
- B verglas \Rightarrow froid,
- C neige ∧ verglas,
- D été $\Rightarrow \neg$ froid,

Règles de déduction naïves :

1 si $P \wedge Q$ se produisent alors P se produit,

Déduction Naturelle

2 si $P \Rightarrow Q$ et que P se produit alors Q se produit,

Principe du raisonnement par l'absurde :

Ajouter l'inverse de la conclusion aux hypothèses et aboutir à un problème.

- E c'est l'été (en plus de A,B,C et D),
- hypothése E, hypothése D et règle 2 : il ne fait pas froid.
- hypothèse C et régle 1 : il neige,

Hypothèses:

- A neige \Rightarrow froid,
- B verglas \Rightarrow froid,
- C neige ∧ verglas,
- D été $\Rightarrow \neg$ froid,

Règles de déduction naïves :

1 si $P \wedge Q$ se produisent alors P se produit,

Déduction Naturelle

2 si $P \Rightarrow Q$ et que P se produit alors Q se produit,

Principe du raisonnement par l'absurde :

Ajouter l'inverse de la conclusion aux hypothèses et aboutir à un problème.

- E c'est l'été (en plus de A,B,C et D),
- hypothése E, hypothése D et règle 2 : il ne fait pas froid.
- hypothèse C et régle 1 : il neige,
- énoncé précédent, hypothése A et règle 2 : il fait froid,

Hypothèses :

A neige \Rightarrow froid,

B verglas \Rightarrow froid,

C neige ∧ verglas,

D été $\Rightarrow \neg$ froid,

Règles de déduction naïves :

- 1 si $P \wedge Q$ se produisent alors P se produit,
- 2 si $P \Rightarrow Q$ et que P se produit alors Q se produit.

Déduction Naturelle

Principe du raisonnement par l'absurde :

Ajouter l'inverse de la conclusion aux hypothèses et aboutir à un problème.

- E c'est l'été (en plus de A,B,C et D),
- hypothése E, hypothése D et règle 2 : il ne fait pas froid.
- hypothèse C et régle 1 : il neige,
- énoncé précédent, hypothése A et règle 2 : il fait froid,
- il y a une contradiction entre la première déduction et la troisième.

Structure d'une Preuve

En mathématique on se place dans un systéme avec un certain nombre de règles de déduction.

Definition

une preuve se compose d'un nombre fini d'hypothèses, de l'application de règles de déduction en nombre fini puis d'une conclusion.

Structure d'une Preuve

En mathématique on se place dans un système avec un certain nombre de règles de déduction.

Definition

une preuve se compose d'un nombre fini d'hypothèses, de l'application de règles de déduction en nombre fini puis d'une conclusion.

Les preuves sont des objets mathématiques à part entière sur lesquels ont peut raisonner et dont on peut étudier les propriété.

Structure d'une Preuve

En mathématique on se place dans un systéme avec un certain nombre de règles de déduction.

Definition

une preuve se compose d'un nombre fini d'hypothèses, de l'application de règles de déduction en nombre fini puis d'une conclusion.

Les preuves sont des objets mathématiques à part entière sur lesquels ont peut raisonner et dont on peut étudier les propriété.

La correction d'une preuve peut être vérifier mécaniquement :

- vérifier la bonne formation des formules.
- vérifier la bonne application des règles de déduction.

C'est une tâche purement syntaxique qui ne demande pas de compréhension de ce qui est prouvé.

Emboîtements

Idée : présenter les preuves sous forme de boites imbriquées :

- une boîte pour une règle avec
 - des hypothèses (ou non),
 - une conclusion à montrer,
- les résultats intermédiaires correspondent à des sous-boîtes,
- les hypothèses introduites dans une boite ne sont accessibles que dans celle-ci et ses sous-boîtes (pareil pour les nouveaux noms de variables).

Déduction Naturelle

Des Règles

- Une régle dite axiome :
 qui signifie qu'une chose connue en hypothèse est considérée
 comme prouvée.
 - Une règle axiome correspond à une sous-boîte la plus imbriquée, car aucun sous résultat n'est nécessaire pour l'utiliser.

Des Règles

- Une régle dite axiome :
 qui signifie qu'une chose connue en hypothèse est considérée
 comme prouvée.
 - Une règle axiome correspond à une sous-boîte la plus imbriquée, car aucun sous résultat n'est nécessaire pour l'utiliser.
- Pour (presque) chaque connecteur nous aurons deux types de règles :
 - règles d'introduction : un connecteur qui n'était pas présent dans les conclusions des sous-boîtes apparaît dans la conclusion de la boîte.
 - règles d'élimination : la conclusion est obtenue en enlevant le connecteur principal de la conclusion de la sous boîte.

Des Règles

 Une régle dite axiome : qui signifie qu'une chose connue en hypothèse est considérée comme prouvée.

Déduction Naturelle

- Une règle axiome correspond à une sous-boîte la plus imbriquée, car aucun sous résultat n'est nécessaire pour l'utiliser.
- Pour (presque) chaque connecteur nous aurons deux types de règles :
 - règles d'introduction : un connecteur qui n'était pas présent dans les conclusions des sous-boîtes apparaît dans la conclusion de la boîte.
 - règles d'élimination : la conclusion est obtenue en enlevant le connecteur principal de la conclusion de la sous boîte.
- Pour ⊤ juste une règle d'introduction.
- Pour ⊥ juste une règle d'élimination.

000000

Faisons la preuve de l'associativité du \wedge : si on suppose $(P \land Q) \land C$ on peut prouver $P \land (Q \land C)$ (et inversement).

Déduction Naturelle

Exercice

Définir similairement au cas du ∧ des règles pour le ∨.

Séquent et Preuve Formelle

Déduction Naturelle

Séquent

Définition

Un séquent est un couple de la forme $\Gamma \vdash \varphi$, où φ est une formule de la logique propositionnelle et Γ est un multi-ensemble de formules.

Séquent

Définition

Un séquent est un couple de la forme $\Gamma \vdash \varphi$, où φ est une formule de la logique propositionnelle et Γ est un multi-ensemble de formules.

Déduction Naturelle

Exemples:

$$P, Q \vdash P$$

 $P \vdash P \lor Q$

$$P \vdash P \land Q$$

$$P \lor Q \vdash (P \land Q) \lor \neg P$$

A un séquent

$$\varphi_1,\ldots,\varphi_n\vdash\psi$$

Déduction Naturelle

on associe la formule

$$\varphi_1 \wedge \cdots \wedge \varphi_n \Rightarrow \psi.$$

la conjonction vide est \top , et s'il n'y a pas de ψ on considère \bot .

Validité

A un séquent

$$\varphi_1,\ldots,\varphi_n\vdash\psi$$

Déduction Naturelle

on associe la formule

$$\varphi_1 \wedge \cdots \wedge \varphi_n \Rightarrow \psi.$$

la conjonction vide est \top , et s'il n'y a pas de ψ on considère \bot .

Remarque : $\varphi \vdash \psi$ et $\vdash \varphi \Rightarrow \psi$ ont la même formule associée.

Validité

A un séquent

$$\varphi_1,\ldots,\varphi_n\vdash\psi$$

Déduction Naturelle

on associe la formule

$$\varphi_1 \wedge \cdots \wedge \varphi_n \Rightarrow \psi.$$

la conjonction vide est \top , et s'il n'y a pas de ψ on considère \bot .

Remarque : $\varphi \vdash \psi$ et $\vdash \varphi \Rightarrow \psi$ ont la même formule associée.

Définition

Un séguent est valide si sa formule associée est valide.

Validité

A un séquent

$$\varphi_1,\ldots,\varphi_n\vdash\psi$$

Déduction Naturelle

on associe la formule

$$\varphi_1 \wedge \cdots \wedge \varphi_n \Rightarrow \psi$$
.

la conjonction vide est \top , et s'il n'y a pas de ψ on considère \bot .

Remarque : $\varphi \vdash \psi$ et $\vdash \varphi \Rightarrow \psi$ ont la même formule associée.

Définition

Un séguent est valide si sa formule associée est valide.

Rappel: la conséquence sémantique se note $\varphi_1 \wedge \cdots \wedge \varphi_n \models \psi$.

Remarque : $\varphi_1 \wedge \cdots \wedge \varphi_n \Rightarrow \psi$ est valide ssi $\varphi_1 \wedge \cdots \wedge \varphi_n \models \psi$.

Par extension on notera $\Gamma \models \varphi$ si le séquent $\Gamma \vdash \varphi$ est valide.

Exemples

Séquent	Formule	Validité
$P,Q \vdash P$	$(P \wedge Q) \Rightarrow P$	✓
$P \vdash P \lor Q$	$P\Rightarrow (P\lor Q)$	✓
$P \vdash$	$P\Rightarrow oldsymbol{\perp}$	×
$P \vdash P \land Q$	$P\Rightarrow (P\wedge Q)$	×
$P \lor Q \vdash (P \land Q) \lor \neg P$	$(P \lor Q) \Rightarrow ((P \land Q) \lor \neg P)$	×
F	$\top\Rightarrow\bot$	×

Système de Déduction

Pour définir un système de déduction ${\mathcal S}$ on se donne un ensemble de règles d'inférence de la forme :

$$\frac{\Gamma_1 \vdash \varphi_1 \quad \dots \quad \Gamma_n \vdash \varphi_n}{\Gamma \vdash \varphi}$$

Système de Déduction

Pour définir un système de déduction ${\cal S}$ on se donne un ensemble de règles d'inférence de la forme :

$$\frac{\Gamma_1 \vdash \varphi_1 \quad \dots \quad \Gamma_n \vdash \varphi_n}{\Gamma \vdash \varphi}$$

On va les combiner pour former des arbres :

Définition

La preuve du séquent $\Gamma \vdash \varphi$ dans un système $\mathcal S$ est un arbre fini de séquents tel que :

Définition

La preuve du séquent $\Gamma \vdash \varphi$ dans un système $\mathcal S$ est un arbre fini de séquents tel que :

• chaque feuille est la conclusion d'un axiome.

Définition

La preuve du séquent $\Gamma \vdash \varphi$ dans un système S est un arbre fini de séquents tel que :

Déduction Naturelle

- chaque feuille est la conclusion d'un axiome.
- si $\Gamma' \vdash \varphi'$ est le père de $n \geq 0$ séquents $\Gamma'_1 \vdash \varphi'_1, \ldots, \Gamma'_n \vdash \varphi'_n$ alors $\Gamma' \vdash \varphi'$, est obtenu par l'application d'une règle d'inférence sur les séquents $\Gamma'_1 \vdash \varphi'_1$, et ..., et $\Gamma'_n \vdash \varphi'_n$.

Définition

La preuve du séquent $\Gamma \vdash \varphi$ dans un système S est un arbre fini de séquents tel que :

Déduction Naturelle

- chaque feuille est la conclusion d'un axiome.
- si $\Gamma' \vdash \varphi'$ est le père de $n \geq 0$ séquents $\Gamma'_1 \vdash \varphi'_1, \ldots, \Gamma'_n \vdash \varphi'_n$ alors $\Gamma' \vdash \varphi'$, est obtenu par l'application d'une règle d'inférence sur les séquents $\Gamma_1' \vdash \varphi_1'$, et ..., et $\Gamma_n' \vdash \varphi_n'$.
- la racine de l'arbre est le séquent $\Gamma \vdash \varphi$.

Définition

La preuve du séquent $\Gamma \vdash \varphi$ dans un système S est un arbre fini de séquents tel que :

Déduction Naturelle

- chaque feuille est la conclusion d'un axiome.
- si $\Gamma' \vdash \varphi'$ est le père de $n \geq 0$ séquents $\Gamma'_1 \vdash \varphi'_1, \ldots, \Gamma'_n \vdash \varphi'_n$ alors $\Gamma' \vdash \varphi'$, est obtenu par l'application d'une règle d'inférence sur les séquents $\Gamma'_1 \vdash \varphi'_1$, et ..., et $\Gamma'_n \vdash \varphi'_n$.
- la racine de l'arbre est le séquent $\Gamma \vdash \varphi$.

On écrit $\Gamma \vdash_{\mathcal{S}} \varphi$ pour dire que le séquent $\Gamma \vdash \varphi$ est dérivable dans le système S.

Une Preuve Formelle

Définition

La preuve du séquent $\Gamma \vdash \varphi$ dans un système $\mathcal S$ est un arbre fini de séquents tel que :

- chaque feuille est la conclusion d'un axiome.
- si $\Gamma' \vdash \varphi'$ est le père de $n \geq 0$ séquents $\Gamma'_1 \vdash \varphi'_1, \ldots, \Gamma'_n \vdash \varphi'_n$, alors $\Gamma' \vdash \varphi'$, est obtenu par l'application d'une règle d'inférence sur les séquents $\Gamma'_1 \vdash \varphi'_1$, et ..., et $\Gamma'_n \vdash \varphi'_n$.
- la racine de l'arbre est le séquent $\Gamma \vdash \varphi$.

On écrit $\Gamma \vdash_{\mathcal{S}} \varphi$ pour dire que le séquent $\Gamma \vdash \varphi$ est dérivable dans le système \mathcal{S} .

<u>Définition</u>: Soit S un système avec séquents, un théorème de S est un séquent de la forme $\vdash \varphi$ ayant une preuve dans S.

Déduction Naturelle

•00000000000000

Un système de déduction où :

- un seul axiome existe,
- les autres régles sont de deux types :
 - règles d'introduction : un connecteur qui n'était pas présent dans les prémisses apparaît dans la proposition conséquence.
 - règles d'élimination : la proposition conséquence est construite en enlevant le connecteur principal d'un des séquents en prémisse.

Axiome

$$\overline{\Gamma, \varphi \vdash \varphi}$$
 (Ax)

Déduction Naturelle

Constantes

 $\frac{}{\Gamma \vdash \top} (\top_{I})$ Introduction du \top :

Déduction Naturelle

Constantes

Introduction du
$$\top$$
: $\overline{\Gamma \vdash \top}$ (\top_I)

Déduction Naturelle

Élimination du
$$\bot$$
 :
$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} (\bot_{\mathcal{E}})$$

Et

$$\frac{\Gamma \vdash \varphi_1 \quad \Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \land \varphi_2} \ (\land_I)$$

Déduction Naturelle

<u>Et</u>

Introduction :
$$\frac{\Gamma \vdash \varphi_1 \quad \Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \land \varphi_2} \ (\land_I)$$

gauche

droite

$$\frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_1} \left(\land_{E_g} \right) \qquad \frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_2} \left(\land_{E_d} \right)$$

Déduction Naturelle

Ou

gauche

Déduction Naturelle

000000000000000

droite

Introduction:

$$\frac{\Gamma \vdash \varphi_1}{\Gamma \vdash \varphi_1 \lor \varphi_2} \left(\lor_{I_g} \right) \qquad \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \lor \varphi_2} \left(\lor_{I_d} \right)$$

$$\frac{\Gamma \vdash \varphi_2}{\vdash \varphi_1 \lor \varphi_2} \ (\lor_{I_d})$$

Logique Propositionnelle Intuitionniste \mathcal{J}

Ou

gauche

droite

Introduction:

$$\frac{\mathsf{I} \vdash \varphi_1}{\mathsf{\Gamma} \vdash \varphi_1 \lor \varphi_2} \left(\lor_{I_g} \right) \qquad \frac{\mathsf{I} \vdash \varphi_2}{\mathsf{\Gamma} \vdash \varphi_1 \lor \varphi_2} \left(\lor_{I_d} \right)$$

$$\frac{\Gamma \vdash \varphi_2}{\vdash \varphi_1 \lor \varphi_2} \ (\lor_{I_d}$$

$$\frac{\Gamma \vdash \varphi_1 \lor \varphi_2 \quad \Gamma, \varphi_1 \vdash \varphi \quad \Gamma, \varphi_2 \vdash \varphi}{\Gamma \vdash \varphi} \ (\lor_E)$$

Implication

$$\frac{\Gamma, \varphi_1 \vdash \varphi_2}{\Gamma \vdash \varphi_1 \Rightarrow \varphi_2} \ (\Rightarrow_I)$$

Déduction Naturelle

Implication

Introduction:
$$\frac{\Gamma, \varphi_1 \vdash \varphi_2}{\Gamma \vdash \varphi_1 \Rightarrow \varphi_2} \ (\Rightarrow_I)$$

Déduction Naturelle 000000000000000

Élimination :
$$\frac{\Gamma \vdash \varphi_1 \Rightarrow \varphi_2 \quad \Gamma \vdash \varphi_1}{\Gamma \vdash \varphi_2} \ (\Rightarrow_E)$$

Négation

Introduction:

$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \ (\neg_{I})$$

Déduction Naturelle

Négation

Introduction :
$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} (\neg_{I})$$

Déduction Naturelle

Élimination :
$$\frac{\Gamma \vdash \neg \varphi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \ (\neg_E)$$

$$\frac{\Gamma, \varphi \vdash \varphi}{\Gamma, \varphi \vdash \varphi} (Ax) \qquad \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} (\bot_{I}) \qquad \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} (\bot_{E})$$

$$\frac{\Gamma \vdash \varphi_{1} \quad \Gamma \vdash \varphi_{2}}{\Gamma \vdash \varphi_{1} \land \varphi_{2}} (\land_{I}) \qquad \frac{\Gamma \vdash \varphi_{1} \land \varphi_{2}}{\Gamma \vdash \varphi_{1}} (\land_{E_{g}}) \qquad \frac{\Gamma \vdash \varphi_{1} \land \varphi_{2}}{\Gamma \vdash \varphi_{2}} (\land_{E_{d}})$$

$$\frac{\Gamma \vdash \varphi_{1}}{\Gamma \vdash \varphi_{1} \lor \varphi_{2}} (\lor_{I_{g}}) \qquad \frac{\Gamma \vdash \varphi_{2}}{\Gamma \vdash \varphi_{1} \lor \varphi_{2}} (\lor_{I_{d}}) \qquad \frac{\Gamma \vdash \varphi_{1} \lor \varphi_{2}}{\Gamma \vdash \varphi} (\to_{E})$$

$$\frac{\Gamma, \varphi_{1} \vdash \varphi_{2}}{\Gamma \vdash \varphi_{1} \Rightarrow \varphi_{2}} (\Rightarrow_{I}) \qquad \frac{\Gamma \vdash \varphi_{1} \Rightarrow \varphi_{2} \quad \Gamma \vdash \varphi_{1}}{\Gamma \vdash \varphi_{2}} (\Rightarrow_{E})$$

$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} (\neg_{I}) \qquad \frac{\Gamma \vdash \neg \varphi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} (\neg_{E})$$

Exemples:

Faire les preuves de :

$$(P \land Q) \land R \vdash P \land (Q \land R)$$
 (l'associativité du et)
 $P \land (Q \lor R) \vdash (P \land Q) \lor (P \land R)$ (distributivité et sur ou)

Définition

$$\Gamma_1 \vdash \varphi_1 \quad \dots \quad \Gamma_n \vdash \varphi_n$$

Une règle d'inférence $\Gamma \vdash \varphi$ est valide si

$$\vdash \varphi$$
 est valide s

Déduction Naturelle 0000000000000000

 $\Gamma_1 \models \varphi_1, \dots, \Gamma_n \models \varphi_n$ entraine $\Gamma \models \varphi$.

Définition

Une règle d'inférence
$$\frac{\Gamma_1 \vdash \varphi_1 \quad \dots \quad \Gamma_n \vdash \varphi_n}{\Gamma \vdash \varphi} \quad \text{est valide si}$$

$$\Gamma_1 \models \varphi_1, \dots, \Gamma_n \models \varphi_n \text{ entraine } \Gamma \models \varphi.$$

Déduction Naturelle

000000000000000

Lemma : chaque règle d'inférence de \mathcal{J} est valide.

Définition

Une règle d'inférence
$$\frac{\Gamma_1 \vdash \varphi_1 \quad \dots \quad \Gamma_n \vdash \varphi_n}{\Gamma \vdash \varphi} \quad \text{est valide si}$$
$$\Gamma_1 \models \varphi_1, \dots, \Gamma_n \models \varphi_n \text{ entraine } \Gamma \models \varphi.$$

Déduction Naturelle

000000000000000

Lemma : chaque règle d'inférence de $\mathcal J$ est valide.

Théorème de correction

Si
$$\Gamma \vdash_{\mathcal{J}} \varphi$$
, alors $\Gamma \models \varphi$.

Définition

$$\Gamma_1 \vdash \varphi_1 \quad \dots \quad \Gamma_n \vdash \varphi_n$$

Déduction Naturelle

000000000000000

Une règle d'inférence $\Gamma \vdash \varphi$ est valide si $\Gamma_1 \models \varphi_1, \dots, \Gamma_n \models \varphi_n$ entraine $\Gamma \models \varphi$.

Lemma : chaque règle d'inférence de \mathcal{J} est valide.

Théorème de correction

Si
$$\Gamma \vdash_{\mathcal{J}} \varphi$$
, alors $\Gamma \models \varphi$.

Théorème de consistance

On ne peut pas prouver $\vdash \bot$.

Non complétude

Il existe des séquents tels que $\Gamma \models \varphi$ mais sans $\Gamma \vdash_{\mathcal{J}} \varphi$.

Déduction Naturelle

Non complétude

Il existe des séquents tels que $\Gamma \models \varphi$ mais sans $\Gamma \vdash_{\mathcal{J}} \varphi$.

Déduction Naturelle

000000000000000

Exemple du tiers exclu : $\vdash \varphi \lor \neg \varphi$

$$\begin{array}{ccccc} \top \Rightarrow \varphi \vee \neg \varphi & \equiv & \bot \vee \varphi \vee \neg \varphi \\ & \equiv & \varphi \vee \neg \varphi \\ & \equiv & \top & & \frac{?}{\vdash \varphi} \\ & \vdash \varphi \vee \neg \varphi & (\vee_{I_g}) \end{array}$$

Logique Propositionnelle Classique \mathcal{K}

Definition

Les mêmes régles que la logique intuitionniste plus la règle dite "par l'absurde" :

$$\frac{\Gamma,\neg\varphi\vdash\bot}{\Gamma\vdash\varphi}\;(\mathit{abs})$$

Déduction Naturelle

Logique Propositionnelle Classique \mathcal{K}

Definition

Les mêmes régles que la logique intuitionniste plus la règle dite "par l'absurde" :

$$\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi}$$
 (abs)

Déduction Naturelle

0000000000000000

Attention à ne pas la confondre avec

$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \ (\neg_{I})$$

Logique Propositionnelle Classique \mathcal{K}

Definition

Les mêmes régles que la logique intuitionniste plus la règle dite "par l'absurde" :

$$\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi} \ (abs)$$

Déduction Naturelle

Attention à ne pas la confondre avec

$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \ (\neg_I)$$

Cette règle est plus forte que la règle

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \; (\bot_{\mathcal{E}})$$

Compréhension

Le sens de la règle (abs) est d'obtenir les preuves de :

- le tiers exclu : $\vdash \varphi \lor \neg \varphi$,
- le raisonnement par l'absurde : $\neg\neg\varphi \vdash \varphi$,
- la contraposition : $(\neg \psi \Rightarrow \neg \varphi) \vdash (\varphi \Rightarrow \psi)$,
- l'implication matérielle : $(\varphi \Rightarrow \psi) \vdash (\neg \varphi \lor \psi)$.

Ce sont des types de raisonnements que l'on utilise couramment en mathématiques.

Déduction Naturelle 0000000000000000

Logique Propositionnelle Classique ${\mathcal K}$:

$$\frac{\Gamma, \varphi \vdash \varphi}{\Gamma, \varphi \vdash \varphi} (Ax) \qquad \frac{\Gamma \vdash \bot}{\Gamma \vdash \neg} (\top_{I}) \qquad \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} (\bot_{E}) \qquad \frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi} (abs)$$

$$\frac{\Gamma \vdash \varphi_{1} \quad \Gamma \vdash \varphi_{2}}{\Gamma \vdash \varphi_{1} \land \varphi_{2}} (\land_{I}) \qquad \frac{\Gamma \vdash \varphi_{1} \land \varphi_{2}}{\Gamma \vdash \varphi_{1}} (\land_{E_{g}}) \qquad \frac{\Gamma \vdash \varphi_{1} \land \varphi_{2}}{\Gamma \vdash \varphi_{2}} (\land_{E_{d}})$$

$$\frac{\Gamma \vdash \varphi_{1}}{\Gamma \vdash \varphi_{1} \lor \varphi_{2}} (\lor_{I_{g}}) \qquad \frac{\Gamma \vdash \varphi_{1}}{\Gamma \vdash \varphi_{1} \lor \varphi_{2}} (\lor_{I_{d}}) \qquad \frac{\Gamma \vdash \varphi_{1} \lor \varphi_{2}}{\Gamma \vdash \varphi} (\lor_{E})$$

$$\frac{\Gamma, \varphi_{1} \vdash \varphi_{2}}{\Gamma \vdash \varphi_{1} \Rightarrow \varphi_{2}} (\Rightarrow_{I}) \qquad \frac{\Gamma \vdash \varphi_{1} \Rightarrow \varphi_{2} \quad \Gamma \vdash \varphi_{1}}{\Gamma \vdash \varphi_{2}} (\Rightarrow_{E})$$

$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} (\neg_{I}) \qquad \frac{\Gamma \vdash \neg \varphi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} (\neg_{E})$$

Exemples:

Une preuve du tiers exclu : $P \vee \neg P$.

Une preuve de la loi de Pierce : $\vdash ((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$.

Théorèmes

Lien entre ${\mathcal J}$ et ${\mathcal K}$

Si
$$\Gamma \vdash_{\mathcal{J}} \varphi$$
, alors $\Gamma \vdash_{\mathcal{K}} \varphi$.

Déduction Naturelle 0000000000000000

Théorèmes

Lien entre $\mathcal J$ et $\mathcal K$

Si
$$\Gamma \vdash_{\mathcal{J}} \varphi$$
, alors $\Gamma \vdash_{\mathcal{K}} \varphi$.

Déduction Naturelle

0000000000000000

Lemma : chaque règle d'inférence de ${\mathcal K}$ est valide.

Lien entre $\mathcal J$ et $\mathcal K$

Si
$$\Gamma \vdash_{\mathcal{J}} \varphi$$
, alors $\Gamma \vdash_{\mathcal{K}} \varphi$.

Déduction Naturelle

0000000000000000

Lemma : chaque règle d'inférence de ${\mathcal K}$ est valide.

Théorème de correction

Si
$$\Gamma \vdash_{\mathcal{K}} \varphi$$
, alors $\Gamma \models \varphi$.

Lien entre
$${\mathcal J}$$
 et ${\mathcal K}$

Si
$$\Gamma \vdash_{\mathcal{J}} \varphi$$
, alors $\Gamma \vdash_{\mathcal{K}} \varphi$.

0000000000000000

Lemma : chaque règle d'inférence de ${\mathcal K}$ est valide.

Théorème de correction

Si
$$\Gamma \vdash_{\mathcal{K}} \varphi$$
, alors $\Gamma \models \varphi$.

Théorème de consistance

On ne peut pas prouver $\vdash \bot$.

0000000000000000

Théorèmes

Lien entre ${\cal J}$ et ${\cal K}$

Si
$$\Gamma \vdash_{\mathcal{J}} \varphi$$
, alors $\Gamma \vdash_{\mathcal{K}} \varphi$.

Lemma : chaque règle d'inférence de $\mathcal K$ est valide.

Théorème de correction

Si
$$\Gamma \vdash_{\mathcal{K}} \varphi$$
, alors $\Gamma \models \varphi$.

Théorème de consistance

On ne peut pas prouver $\vdash \bot$.

Théorème de complétude

Si
$$\Gamma \models \varphi$$
, alors $\Gamma \vdash_{\mathcal{K}} \varphi$.

Pourquoi la logique intuitionniste refuse-t-elle le tiers exclu?

Idée :

un énoncé mathématique affirmant l'existence d'un certain objet ne devrait pas être considéré comme prouvé si la preuve n'indique pas comment construire cet objet.

Problème du raisonnement par l'absurde :

une façon de prouver qu'un objet existe, en logique classique, est de supposer qu'il n'existe pas, et d'aboutir à une contradiction. Alors, puisqu'il ne peut pas ne pas exister, c'est donc qu'il existe! Mais on n'est pas plus avancé s'il s'agit de le trouver.

Exemple

Problème

A deux choses égales à une troisième sont égales entre elles;

Déduction Naturelle

- B j'ai un triangle ou deux des côtés sont égaux au troisième;
- C ces deux cotés sont égaux entre eux.

Je veux déduire C à partir de A et B.

Mathématiquement on représente ça par :

$$A = \forall x, \forall y, \forall z, ((eq(x, z) \land eq(y, z)) \Rightarrow eq(x, y))$$

$$\mathsf{B} = eq(\mathsf{a},\mathsf{c}) \wedge eq(\mathsf{b},\mathsf{c})$$

$$C = eq(a, b)$$

avec eq(x, y) signifiant l'égalité entre x et y et a, b, c étant les côtés de mon triangle.

Résolution

Il faut **instancier** A avec B, pour rabaisser la formule universelle à un cas particulier. Cela correspond à une substitution.

Déduction Naturelle

Puis utiliser une règle qui s'appelle le modus ponens qui dit que si $F_1 \Rightarrow F_2$ et F_1 on peut déduire F_2 .

On obtient la démonstration suivante :

- supposons $A = \forall x, \forall y, \forall z, ((eq(x, z) \land eq(y, z)) \Rightarrow eq(x, y));$
- supposons $B = eq(a, c) \land eq(b, c)$;
- par instanciation de A avec a, b, c (les côtés de mon triangle) on a $D = (eq(a, c) \land eq(b, c)) \Rightarrow eq(a, b)$;
- par modus ponens avec D et B on a C = eq(a, b);
- donc C = eq(a, b).

Rappel Prédicats

Grammaire pour les formules du 1er ordre

$$\varphi, \psi \triangleq P(t_1, \ldots, t_n) \mid \neg \varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \varphi \Rightarrow \psi \mid \forall x . \varphi \mid \exists x . \varphi$$

Variables libres:

$$\begin{array}{lll} \mathcal{V}_{libre}(P(t_{1},\ldots,t_{n})) & \triangleq & \mathcal{V}_{libre}(t_{1}) \cup \ldots \cup \mathcal{V}_{libre}(t_{n}) \\ \mathcal{V}_{libre}(\varphi \wedge \psi) & \triangleq & \mathcal{V}_{libre}(\varphi) \cup \mathcal{V}_{libre}(\psi) \\ \mathcal{V}_{libre}(\neg \varphi) & \triangleq & \mathcal{V}_{libre}(\varphi) \\ \mathcal{V}_{libre}(\varphi \vee \psi) & \triangleq & \mathcal{V}_{libre}(\varphi) \cup \mathcal{V}_{libre}(\psi) \\ \mathcal{V}_{libre}(\varphi \Rightarrow \psi) & \triangleq & \mathcal{V}_{libre}(\varphi) \cup \mathcal{V}_{libre}(\psi) \\ \mathcal{V}_{libre}(\forall x.\varphi) & \triangleq & \mathcal{V}_{libre}(\varphi) \backslash \{x\} \\ \mathcal{V}_{libre}(\exists x.\varphi) & \triangleq & \mathcal{V}_{libre}(\varphi) \backslash \{x\} \end{array}$$

Pour tout

$$\frac{\Gamma \vdash \varphi \quad x \notin \mathcal{V}_{libre}(\Gamma)}{\Gamma \vdash \forall x. \varphi} \ \forall_{I}$$

Déduction Naturelle

Introduction:

Premier Ordre

Pour tout

$$\frac{\Gamma \vdash \varphi \quad x \notin \mathcal{V}_{libre}(\Gamma)}{\Gamma \vdash \forall x. \varphi} \ \forall_{I}$$

Déduction Naturelle

 $\frac{\Gamma \vdash \forall x. \varphi}{\Gamma \vdash \varphi[t/x]} \ \forall_E$ Élimination :

Premier Ordre

Pour tout

$$\frac{\Gamma \vdash \varphi \quad x \notin \mathcal{V}_{libre}(\Gamma)}{\Gamma \vdash \forall x. \varphi} \ \forall_{I}$$

Déduction Naturelle

Introduction:

$$\frac{\Gamma \vdash \forall x. \varphi}{\Gamma \vdash \varphi[t/x]} \ \forall_E$$

Élimination:

II existe

$$\frac{\Gamma \vdash \varphi[t/x]}{\Gamma \vdash \exists x.\varphi} \; \exists_I$$

Premier Ordre

Pour tout

$$\frac{\Gamma \vdash \varphi \quad x \notin \mathcal{V}_{libre}(\Gamma)}{\Gamma \vdash \forall x. \varphi} \ \forall_{I}$$

Introduction:

$$\frac{\Gamma \vdash \forall x. \varphi}{\Gamma \vdash \varphi[t/x]} \ \forall_E$$

'Elimination:

Il existe

Introduction :

Élimination :

$$\frac{\Gamma \vdash \varphi[t/x]}{\Gamma \vdash \exists x.\varphi} \; \exists_I$$

$$\frac{\Gamma \vdash \exists x. \psi \quad \Gamma, \psi \vdash \varphi \quad x \notin \mathcal{V}_{\mathit{libre}}(\Gamma) \cup \mathcal{V}_{\mathit{libre}}(\varphi)}{\Gamma \vdash \varphi} \ \exists_{\mathit{E}}$$

Exemple précédent :

$$\forall x, \forall y, \forall z, ((eq(x,z) \land eq(y,z)) \Rightarrow eq(x,y)), eq(a,c) \land eq(b,c) \vdash eq(a,b)$$

	Intuitioniste	Classique
Correction	1	√

	Intuitioniste	Classique
Correction	✓	√
Consistance	✓	✓

	Intuitioniste	Classique
Correction	✓	√
Consistance	✓	✓
Complétude	X	✓

	Intuitioniste	Classique
Correction	√	✓
Consistance	✓	✓
Complétude	X	✓

Les propriétés des logiques restent les mêmes que dans le cas propositionnel.