CALCOLO NUMERICO E MATLAB

Docenti: C. Canuto, S. Falletta, S. Pieraccini

Esercitazione 7

Argomento: Interpolazione, approssimazione nel senso dei minimi quadrati¹

1. Una centralina per il rilevamento della concentrazione di inquinanti nell'aria ha rilevato per il 13/11/2015 le seguenti concentrazioni di Ossido di Azoto nell'aria (NO, microgrammi/metro cubo), a intervalli di un'ora (fonte: Banca Dati regionale della qualità dell'aria della Regione Piemonte, centralina presso Lingotto):

Ora	1	2	3	4	5	6	7	8	9	10
NO	243	209	181	179	180	166	163	157	187	192
Ora	11	12	13	14	15	16	17	18	19	20
NO	138	95	56	32	21	12	11	61	146	186

Si costruisca la matrice di Vandermonde A associata ai nodi per l'eventuale calcolo del polinomio interpolante tramite base monomiale. Si analizzi numericamente la matrice A.

- 2. Scrivere uno script per visualizzare graficamente i polinomi di Lagrange relativi a 5 nodi distinti (a scelta). Si visualizzi nello stesso grafico anche la somma dei polinomi di Lagrange.
- 3. Scrivere uno script per sperimentare il verificarsi del fenomeno di Runge interpolando la funzione

$$f(x) = \log(25x^2 + 1)$$

nell'intervallo [-1,1] usando i comandi polyfit e polyval.

- 4. Scrivere uno script per interpolare i dati dell'esercizio 1 usando i comandi polyfit e polyval.
- 5. Scrivere uno script per interpolare i dati dell'esercizio 1 con una spline cubica *not-a-knot*.
- 6. Scrivere uno script per interpolare i dati dell'esercizio 1 con una spline cubica vincolata, imponendo le condizioni $s_3'(x_0) = 3$ e $s_3'(x_n) = 2$.
- 7. Approssimare i dati dell'esercizio 1 nel senso dei minimi quadrati con le seguenti funzioni modello:

(a)
$$f_m(x) = c_0 + c_1 x$$

(b)
$$f_m(x) = c_0 + c_1 x + c_2 x^2$$

¹Gli script per rispondere ai quesiti si possono trovare sul portale della didattica

(c)
$$f_m(x) = c_0 + c_1 x + c_2 \sin(\frac{2\pi}{20}x) + c_3 \cos(\frac{2\pi}{20}x)$$

rappresentando il grafico sovrapposto ai dati.