ML/DL for Everyone with PYTERCH

Lecture 7: Wide & Deep

Call for Comments

Please feel free to add comments directly on these slides.

Other slides: http://bit.ly/PyTorchZeroAll

ML/DL for Everyone with PYTERCH

Lecture 7: Wide & Deep

HKUST PHD Program Application

GPA (a)	Admission?
2.1	0
4.2	1
3.1	0
3.3	1


```
x_{data} = [[2.1], y_{data} = [[0.0], [1.0], [3.1], [0.0], [3.3]]
```

GPA enough? How about experience and others?

GPA (a)	Experience (b)	Admission?
2.1	0.1	0
4.2	0.8	1
3.1	0.9	0
3.3	0.2	1


```
 \begin{array}{lll} x\_data = & & & & & & & & & & & \\ x\_data = & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &
```

Matrix Multiplication

```
[4.2, 0.8],
                                                  [1.0],
[3.1, 0.9],
                                                  [0.0],
[3.3, 0.2]
                                                  [1.0]]
             x \in \mathbb{R}^{N \times 2}
```

 $y_{data} = [[0.0],$

 $x_{data} = [[2.1, 0.1],$

Matrix Multiplication

$$XW = \hat{Y}$$

Matrix Multiplication

```
x_{data} = [[2.1, 0.1],
                                                    y_{data} = [[0.0],
        [4.2, 0.8],
                                                             [1.0],
        [3.1, 0.9]
                                                             [0.0],
        [3.3, 0.2]
                                                             [1.0]]
                       x \in \mathbb{R}^{N \times 2}
                                                                     y \in \mathbb{R}^{N \times 1}
```


$$XW = \hat{Y}$$

```
linear = torch.nn.Linear(2, 1)
y_prd = linear(x_data)
```

Go Wide!

Go Deep!

Go Deep!


```
sigmoid = torch.nn.Sigmoid()

l1 = torch.nn.Linear(2, 4)
l2 = torch.nn.Linear(4, 3)
l3 = torch.nn.Linear(3, 1)

out1 = sigmoid(l1(x_data))
out2 = sigmoid(l2(out1))
y_pred = sigmoid(l3(out2)
```

Sigmoid Activation Functions

Sigmoid: Vanishing Gradient Problem

Activation Functions

Activation Functions

Many Activation Functions

David Sheehan

Data scientist interested in sports, politics and Simpsons references

- Q London via Cork
- ☐ Email
- Github

Select an activation function from the menu below to plot it and its first derivative. Some properties relevant for neural networks are provided in the boxes on the right.

Classifying Diabetes

data-diabetes.csv

\mathbf{x}_1	X_2	\mathbf{x}_3	X_4	X ₅	X ₆	X ₇	X ₈	У
-0.411765	0.165829	0.213115	0	0	-0.23696	-0.894962	-0.7	1
-0.647059	-0.21608	-0.180328	-0.353535	-0.791962	-0.0760059	-0.854825	-0.833333	0
0.176471	0.155779	0	0	0	0.052161	-0.952178	-0.733333	1
-0.764706	0.979899	0.147541	-0.0909091	0.283688	-0.0909091	-0.931682	0.0666667	0
-0.0588235	0.256281	0.57377	0	0	0	-0.868488	0.1	0
-0.529412	0.105528	0.508197	0	0	0.120715	-0.903501	-0.7	1
0.176471	0.688442	0.213115	0	0	0.132638	-0.608027	-0.566667	0
0.176471	0.396985	0.311475	0	0	-0.19225	0.163962	0.2	1

1	이름 🕈		수정됨 ▼
/	ALL DE LA COMPA	diabetes.csv.gz 🌣	2020. 6. 18. 오전 8:01
	APP.	names_test.csv.gz な	2020. 6. 18. 오전 8:01
	Annual Parising	names_train.csv.gz ☆	2020. 6. 18. 오전 8:01
	BROOM	shakespeare.txt.gz 🕏	2020. 6. 18. 오전 8:01

https://www.dropbox.com/sh/zgqixhhcmbquetn/AABOQ YrXK8pGM47N9yjqU4aMa?dl=0 Click

Classifying Diabetes

- Copy the data to your /My Drive/Colab Notebooks/data folder

Classifying Diabetes

- Mount your GooleDrive to Colab
- Enter the verification code

```
[15] from torch import nn, optim, from_numpy
import numpy as np
from google.colab import drive

drive.mount('/content/gdrive')

xy = np.loadtxt('/content/gdrive/My Drive/Colab Notebooks/data/diabetes.csv.gz',
x_data = from_numpy(xy[:, 0:-1])
y_data = from_numpy(xy[:, [-1]])
print(f'XW's shape: {x_data.shape} | YW's shape: {y_data.shape}')
```

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force_remount=True).

X's shape: torch.Size([759, 8]) | Y's shape: torch.Size([759, 1])

Wide & Deep

```
class Model(nn.Module):
    def __init__(self):
        In the constructor we instantiate two nn.Linear module
        super(Model, self).__init__()
        self.l1 = nn.Linear(8, 6)
        self.12 = nn.Linear(6, 4)
        self.13 = nn.Linear(4.1)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):
        In the forward function we accept a Variable of input data and we must return
        a Variable of output data. We can use Modules defined in the constructor as
        well as arbitrary operators on Variables.
        out1 = self.sigmoid(self.l1(x))
        out2 = self.sigmoid(self.l2(out1))
        y_pred = self.sigmoid(self.13(out2))
        return v_pred
model = Model()
```


Wide & Deep

Construct our loss function and an Optimizer. The call to model.parameters()
in the SGD constructor will contain the learnable parameters of the two
nn.Linear modules which are members of the model.
criterion = nn.BCELoss(reduction='mean')
optimizer = optim.SGD(model.parameters(), Ir=0.1)

Wide & Deep


```
# Training loop
for epoch in range(100):
    # Forward pass: Compute predicted y by passing x to the model
    y_pred = model(x_data)
    # Compute and print loss
    loss = criterion(y_pred, y_data)
    print(f'Epoch: {epoch + 1}/100 | Loss: {loss.item():.4f}')
    # Zero gradients, perform a backward pass, and update the weights.
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

```
def __init__(self):
        In the constructor we instantiate two nn.Linear module
        super(Model, self). init ()
        self.l1 = torch.nn.Linear(8, 6)
        self.12 = torch.nn.Linear(6, 4)
        self.13 = torch.nn.Linear(4, 1)
        self.sigmoid = torch.nn.Sigmoid()
    def forward(self, x):
        In the forward function we accept a Variable of input data and we must return
        a Variable of output data. We can use Modules defined in the constructor as
        well as arbitrary operators on Variables.
        out1 = self.sigmoid(self.l1(x))
        out2 = self.sigmoid(self.l2(out1))
        y pred = self.sigmoid(self.13(out2))
        return y pred
# our model
model = Model()
# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters of the two
```

xy = np.loadtxt(data-diabetes.csv , delimiter= , , dtype=np.float32)

x_data = Variable(torch.from_numpy(xy[:, 0:-1])) y data = Variable(torch.from numpy(xy[:, [-1]]))

nn.Linear modules which are members of the model. criterion = torch.nn.BCELoss(size average=True) optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

Training Loop for epoch in range(100):

y pred = model(x data)

optimizer.zero_grad() loss.backward() ontimizon cton()

Compute and print loss

loss = criterion(y pred, y data) print(epoch, loss.data[0])

class Model(torch.nn.Module):

Classifying Diabetes

Design your model using class

Construct loss and optimizer (select from PyTorch API)

Forward pass: Compute predicted y by passing x to the model Training cycle (forward, backward, update) # Zero gradients, perform a backward pass, and update the weights.

Output


```
|Epoch: 1/100 | Loss: 0.7010
Epoch: 2/100 | Loss: 0.6955
Epoch: 3/100 | Loss: 0.6906
Epoch: 4/100 | Loss: 0.6861
Epoch: 5/100 | Loss: 0.6821
Epoch: 6/100 | Loss: 0.6785
Epoch: 7/100 | Loss: 0.6752
Epoch: 8/100 | Loss: 0.6723
Epoch: 9/100 | Loss: 0.6696
Epoch: 10/100 | Loss: 0.6672
Epoch: 11/100 | Loss: 0.6651
Epoch: 12/100 | Loss: 0.6631
Epoch: 13/100 | Loss: 0.6613
Epoch: 14/100 | Loss: 0.6598
Epoch: 15/100 | Loss: 0.6583
```

Epoch: 85/100 | Loss: 0.6445 Epoch: 86/100 | Loss: 0.6445 Epoch: 87/100 | Loss: 0.6445 Epoch: 88/100 | Loss: 0.6445 Epoch: 89/100 | Loss: 0.6445 Epoch: 90/100 | Loss: 0.6445 Epoch: 91/100 | Loss: 0.6445 Epoch: 92/100 | Loss: 0.6445 Epoch: 93/100 | Loss: 0.6445 Epoch: 94/100 | Loss: 0.6445 Epoch: 95/100 | Loss: 0.6445 Epoch: 96/100 | Loss: 0.6445 Epoch: 97/100 | Loss: 0.6445 Epoch: 98/100 | Loss: 0.6445 Epoch: 99/100 | Loss: 0.6445 Epoch: 100/100 | Loss: 0.6445

Exercise 7-1: Try to minimize the loss for Diabets data:

- Classify Diabetes with deep nets
 - More than 10 layers
- Find other classification datasets
 - Try with deep network
- Try different activation functions Sigmoid to something else
- Find out a better model with respect to minimizing the loss

