Functional Analysis Final, 2004-2005

1. (1): For any $x, y \in H$, we have

$$< Ax, y > = \lim_{n \to \infty} < A_n x, y > = \lim_{n \to \infty} < x, A_n y > = < x, Ay >,$$

which means A is self-adjoint.

- (2): Since $A_n \to A$, so $A_n^* \to A^*$. Then $A^*A = \lim_{n \to \infty} A_n^*A_n = I$. In the same way, $AA^* = I$, which means A is unitary.
- **2:** For any bounded $\{f_n\} \subset C[0,1]$, let $M = \sup_{n \in \mathbb{N}} \|f_n\|_{L_{\infty}[0,1]}$, then we have

$$|(Tf)(x) - (Tf)(y)| = \left| \int_{y}^{x} f(s)ds \right| \le M|x - y|,$$

which means $\{f_n\}$ is equicontinuous. By Ascoli-Arzela Theorem, there exists a convergent subsequence, which means T is compact.

For any λ , let $f \in N(T - \lambda I)$, we have

$$\int_0^t f(s)ds = \lambda f(t), \ \forall t \in [0,1].$$

If $\lambda=0$, then f=0; If not, then $f\in C^1[0,1]$ and take the derivative to have $f=\lambda f'$, which means $f(t)=f(0)e^{t/\lambda}$, where f(0)=0, and so f=0. Anyway, we have $\sigma_p(T)=\emptyset$. Since T is compact, then $\sigma(T)\backslash\{0\}\subset\sigma_p(T)=\emptyset$, which means $\sigma(T)=\{0\}$ since $\sigma(T)\neq\emptyset$. (Actually, $\sigma(T)=\sigma_r(T)=\{0\}$)

Then the spectral radius $R=0=\lim_{n\to\infty}\|T^n\|^{1/n}$, which means $\exists N\in\mathbb{N}$ such that $\|T^n\|^{1/n}<1/2$, $\forall n>N$. So we have $\|T^n\|=(\|T^n\|^{1/n})^n\to 0$ as $n\to\infty$, which means $T^n\to 0$.

3 (1): It's trivial to show $\mathcal{A}' \subset L(H)$ is a subspace.

For any $S, T \in \mathcal{A}'$, $A \in \mathcal{A}$, we have (ST)A = SAT = A(ST), which means $ST \in \mathcal{A}'$:

And also $T^*A = (A^*T)^* = (TA^*)^* = AT^*$, which mean $T^* \in \mathcal{A}'$. So \mathcal{A}' is a *-algebra.

(2): Since $\{B_n x\}$ is weakly convergent, so it's bounded for any $x \in H$, then $\sup_{n \in \mathbb{N}} ||B_n|| \triangleq M < \infty$ by principle of uniform boundedness.

Define linear operator $Bx \triangleq w\text{-}\lim_{n\to\infty} B_n x, \forall x \in H$, then

$$||Bx|| \le \liminf_{n \to \infty} ||B_n x|| \le \liminf_{n \to \infty} ||B_n|| ||x|| \le M ||x||, \ \forall x \in H$$

which means $B \in L(H)$. For any $A \in \mathcal{A}$, we have

 $BAx = w\text{-}\lim_{n\to\infty} B_n(Ax) = w\text{-}\lim_{n\to\infty} AB_nx = A(w\text{-}\lim_{n\to\infty} B_nx) = ABx, \ \forall x\in H, \text{ which means } AB=BA \text{ and so } B\in\mathcal{A}'.$

4: Since A is compact and self-adjoint, then A has at most countably many nonzero eigenvalues $\{\lambda_n\}_{n\in\mathbb{N}}$ (up to multiplicity). Say $\lambda_1 = \max_{n\in\mathbb{N}} \lambda_n$.

Let $\{e_n\}_{n\in\mathbb{N}}\subset H$ be the corresponding orthonormal eigenvectors, then for any $x\in H$, we have

$$< Ax, x> = <\sum_{n=1}^{\infty} \lambda_n < x, e_n > e_n, \sum_{m=1}^{\infty} < x, e_m > e_m > =\sum_{n=1}^{\infty} \lambda_n |< x, e_n > |^2 \le \lambda_1 ||x||^2,$$

which means $\sup_{\|x\|=1} \langle Ax, x \rangle \leq \lambda_1$.

Any $< Ae_1, e_1 > = \lambda_1$, so $\sup_{\|x\|=1} < Ax, x > = \lambda_1$.

5: Claim: A_n is unitary. For any $x, y \in l^2$, we have

$$< A_n^* x, y> = < x, A_n y> = \sum_{i=1}^{\infty} x_i y_{\sigma_n(i)} = \sum_{i=1}^{\infty} x_{\sigma_n^{-1}(i)} y_i = < A_n^{-1} x, y>,$$

which means $A_n^* = A^{-1}$, and so A_n is unitary.

For any $x \in H$, define $R \in L(l^2)$ as the right translation operator, then

$$||A_n - Rx||^2 = \sum_{i=1}^{\infty} |x_{\sigma_n(i)} - x_{i-1}|^2 = |x_n|^2 + \sum_{i=n+1}^{\infty} |x_i - x_{i-1}|^2 \to 0, (n \to \infty)$$

where $x_0 = 0$. So $A_n x \to R x$, $\forall x \in H$. But R is not unitary since it is not surjective.

6 (1): Only need to show $A^{-1}B$ is a closed operator.

Let $x_n \to x$ and $A^{-1}Bx_n \to y$, then $Bx \leftarrow Bx_n \to Ay$, so Bx = Ay and then $A^{-1}Bx = y$, which means $A^{-1}B$ is closed.

(2):
$$B = A(A^{-1}B) \in C(H)$$
.

7: Let $P_E: H \to H$ be the orthogonal projection onto E. Since $E \subset H$ is closed, then $P_E \in L(H)$.

If $N(A) = \{0\}$, then $R(P_E) = E \subset R(A)$, by problem 6, part(2), we know $P_E \in C(H)$, which means $P_E|_E = I_E \in C(E)$, and so dim $E < \infty$.

If $N(A) \neq \{0\}$, consider operator $\tilde{A}[x] \triangleq Ax$, $\forall [x] \in H/N(A)$, then $N(\tilde{A}) = \{[0]\}$ and repeat the case when $N(A) = \{0\}$.