Zener Diode Problems

Lecture 10

Course No: CSE 251

Course Title: Electronic Devices and Circuits

Course instructor:

Aroni Ghosh (AGS) Lecturer, CSE, Brac University

The Zener diode is specified as $V_{Z0}=3V$, $r_Z=0\Omega$, $I_{ZK}=1$ mA. The load current can vary from 0mA to 50mA. The source has a nominal value of 5V and can vary $\pm 10\%$.

a) Find Vs(min), Vs(max), I_L (min), I_L (max)

So: 10% of 5V = 0.5V Vs (min)= 5-0.5= 4.5V Vs (max) = 5+0.5=5.5V $I_L(min) = 0 \text{ mA}$ $I_L(max)=50\text{mA}$

b) What is the worst case I_L, I_Z and Vs?

Sol: In worst case, I_{ZK} will flow through the zener diode. [If the current falls below this, the regulation will not be maintained)

$$KCL => I_Z = I_S - I_L$$

and $I_S = (Vs - V_L)/Rs$

So, I_Z is minimum when I_L is maximum. and Vs is minimum.

Worst case =>
$$I_L=I_L(max)=50mA$$

 $I_Z=I_Z(min)=I_{ZK}=1 mA$
 $Vs=Vs(min)=4.5V$

c) For worst case, what is the value of Is?

Sol: Is =
$$I_Z + I_L = 1 + 50 = 51 \text{mA}$$

d) For worst case, what is the value of V_R ?

Sol: In worst case scenario, the zener diode will barely maintain its voltage.

So,
$$V_L = V_Z = V_{Z0} + I_Z r_Z = 3V$$

 $V_R = Vs - V_L = 4.5 - 3 = 1.5V$

e) Find the value of Rs, for which the Zener diode maintains regulation in worst case scenario.

Sol: Rs=
$$V_R/I_S$$
= 1.5V/51mA= 30 Ω

The Zener diode is specified as $V_{Z0}=3V$, $r_Z=0\Omega$, $I_{ZK}=1$ mA. $Rs = 100\Omega = 0.1k\Omega$, $R_L = 10k\Omega$. V_R

Find the minimum value of Vs for which the Zener diode maintains regulation.

In worst case, $I_z = I_{zk} = 1$ mA

$$I_L = V_L / R_L = 3V / 10k\Omega = 0.3mA$$

$$KCL \rightarrow Is = I_Z + I_L = 1 + 0.3 = 1.3 \text{ mA}$$

$$I_s = (V_s - V_L)/R_s$$

$$=> 1.3 \text{mA} = (\text{Vs-3})/0.1 \text{k}\Omega$$

The Zener diode is specified as $V_{Z0}=3V$, $r_Z=0\Omega$, $I_{ZK}=1$ mA. Rs= $100\Omega=0.1$ k Ω . The source has a nominal value of 5V and can vary $\pm 10\%$.

Find the minimum value of R_L for which the Zener diode maintains regulation.

In worst case,
$$I_Z=I_{ZK}=1$$
mA
 $V_L=V_Z=V_{Z0}+I_Z$ r_Z=3V

10% of 5V = 0.5V
In worst case, Vs=Vs (min)= 5-0.5= 4.5V

$$I_S$$
=(Vs-V_L)/Rs = (4.5-3)/0.1k Ω = 15 mA
 I_L = I_S - I_Z = 15-01 = 14mA
 R_L = V_L/ I_L = 3V/14mA= 214 Ω
 R_L (max)= 214 Ω

In the circuit, the input voltage $V_{\rm in}$ has a nominal voltage of 10 V with a fluctuation of $\pm 10\%$. The Zener diode in the circuit is specified with parameter $V_z=5.75$ V at $I_z=5$ mA, $r_z=0.05$ k Ω , and $I_{\rm zk}=0.3$ mA.

- (a) Compute the Zener diode parameter V_{z_0} . [2]
- (b) Identify the worst-case conditions and calculate the Zener current (I_z) , Zener voltage (V_z) , and the input voltage in this worst-case scenario. [1+1+1+1]
- (c) Calculate the load current I_L and the source current I_s in the worst-case conditions. [2]
- (d) Design the circuit, i.e., find the value of R_s, such that even in the worst-case scenario voltage regulation is maintained.
 [2]

Given,
$$P_2 = 100\Omega$$
, $I_{2K} = 1.2 \text{ mA}$
 $V_{20} = 3.3 \text{ V}$

- Vzo = 3.3 V

 (Q1): Find the maximum value of R so that the zener diode stays in knee-voltage condition
- (Q2): Find the operating region of the Mosfet M1 using the value of R in (Q1).

 $K_{n} = 1 \, \text{mA/V}^{2}$ $V_{T} = 0.2 \, \text{V}$

Thank You