

Точные решения > Обыкновенные дифференциальные уравнения > Нелинейные обыкновенные дифференциальные уравнения второго порядка

3. Нелинейные обыкновенные дифференциальные уравнения второго порядка

3.1. Обыкновенные дифференциальные уравнения вида $y_{xx}^{\prime\prime}\!=\!f(x,y)$

- 1. $y_{xx}'' = f(y)$. Автономное уравнение.
- 2. $y_{xx}^{"}=Ax^ny^m$. Уравнение Эмдена-Фаулера.
- 3. $y_{xx}'' + f(x)y = ay^{-3}$. Уравнение Ермакова.
- 4. $y''_{xx} = f(ay + bx + c)$.
- 5. $y''_{xx} = f(y + ax^2 + bx + c)$.
- 6. $y''_{xx} = x^{-1}f(yx^{-1})$. Однородное уравнение.
- 7. $y_{xx}'' = x^{-3}f(yx^{-1})$.
- 8. $y''_{xx} = x^{-3/2} f(yx^{-1/2})$.
- 9. $y''_{xx} = x^{k-2} f(x^{-k}y)$. Обобщенно-однородное уравнение.
- 10. $y_{xx}'' = yx^{-2}f(x^ny^m)$. Обобщенно-однородное уравнение.

11.
$$y''_{xx} = y^{-3} f\left(\frac{y}{\sqrt{ax^2 + bx + c}}\right)$$
.

- 12. $y''_{xx} = e^{-ax} f(e^{ax} y)$.
- 13. $y''_{xx} = yf(e^{ax}y^m)$.
- 14. $y''_{xx} = x^{-2} f(x^n e^{ay})$.
- 15. $y_{xx}^{\prime\prime}=rac{\psi_{xx}^{\prime\prime}}{\psi}y+\psi^{-3}f\Big(rac{y}{\psi}\Big), \quad \psi=\psi(x).$

3.2. Обыкновенные дифференциальные уравнения вида

$$f(x,y)y_{xx}^{\prime\prime}=g(x,y,y_x^{\prime})$$

- 16. $y''_{xx} y'_x = f(y)$. Автономное уравнение.
- 17. $y_{xx}'' + f(y)y_x' + g(y) = 0$. Уравнение Льенарда.
- 18. $y_{xx}'' + [ay + f(x)]y_x' + f_x'(x)y = 0.$
- 19. $y_{xx}'' + [2ay + f(x)]y_x' + af(x)y^2 = g(x)$.
- 20. $y''_{xx} = ay'_x + e^{2ax}f(y)$.

21.
$$y_{xx}'' = f(y)y_x'$$
.

22.
$$y_{xx}^{\prime\prime} = \left[e^{\alpha x}f(y) + \alpha\right]y_x^{\prime}$$
.

23.
$$xy_{xx}^{"} = ny_x^{'} + x^{2n+1}f(y)$$
.

24.
$$xy_{xx}'' = f(y)y_x'$$
.

25.
$$xy_{xx}'' = [x^k f(y) + k - 1]y_x'$$

26.
$$x^2y''_{xx} + xy'_x = f(y)$$
.

27.
$$(ax^2 + b)y_{xx}'' + axy_x' + f(y) = 0$$
.

28.
$$y''_{xx} = f(y)y'_x + g(x)$$
.

29.
$$xy_{xx}'' + (n+1)y_x' = x^{n-1}f(yx^n)$$
.

30.
$$gy''_{xx} + \frac{1}{2}g'_{x}y'_{x} = f(y), \quad g = g(x).$$

31.
$$y_{xx}^{"} = -ay_x' + e^{ax}f(ye^{ax}).$$

32.
$$xy_{xx}^{"}=f(x^ne^{ay})y_x^{'}$$
.

33.
$$x^2y_{xx}'' + xy_x' = f(x^ne^{ay})$$
.

34.
$$yy_{xx}'' + (y_x')^2 + f(x)yy_x' + g(x) = 0.$$

35.
$$yy_{xx}'' - (y_x')^2 + f(x)yy_x' + g(x)y^2 = 0$$
.

36.
$$yy_{xx}'' - n(y_x')^2 + f(x)y^2 + ay^{4n-2} = 0$$
.

37.
$$yy_{xx}'' - n(y_x')^2 + f(x)y^2 + g(x)y^{n+1} = 0$$
.

38.
$$yy''_{xx} + a(y'_x)^2 + f(x)yy'_x + g(x)y^2 = 0$$
.

39.
$$yy''_{xx} = f(x)(y'_x)^2$$
.

40.
$$y_{xx}'' - a(y_x')^2 + f(x)e^{ay} + g(x) = 0$$
.

41.
$$y_{xx}'' - a(y_x')^2 + be^{4ay} + f(x) = 0$$
.

42.
$$y''_{xx} + a(y'_x)^2 - \frac{1}{2}y'_x = e^x f(y)$$
.

43.
$$y_{xx}'' + \alpha (y_x')^2 = [e^{\beta x} f(y) + \beta] y_x'$$

44.
$$y''_{xx} + f(y)(y'_x)^2 + g(y) = 0$$
.

45.
$$y''_{xx} + f(y)(y'_x)^2 - \frac{1}{2}y'_x = e^x g(y)$$
.

46.
$$y''_{xx} = xf(y)(y'_x)^3$$
.

47.
$$y_{xx}'' = f(y)(y_x')^2 + g(x)y_x'$$

48.
$$y''_{xx} = f(x)g(xy'_x - y)$$
.

49.
$$y''_{xx} = \frac{y}{x^2} f\left(\frac{xy'_x}{y}\right)$$
.

50.
$$gy_{xx}'' + \frac{1}{2}g_x'y_x' = f(y)h(y_x'\sqrt{g}), \quad g = g(x).$$

51.
$$y_{xx}'' = f(y_x'^2 + ay)$$
.

Веб-сайт EqWorld содержит обширную информацию о решениях различных классов обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, интегральных уравнений, функциональных уравнений и других математических уравнений.

© 2004–2005 А. Д. Полянин