De facto and de iure: how costly moving out makes for more stable couples.

Fabio I. Martinenghi

University of Milan

MOTIVATION

Introduction •00000

> ▶ Forming and dissolving a household are some the biggest choices we are ever faced with

- ► They influence every aspect of our life: investments, fertility, consumption,...
- Both have changed dramatically: \uparrow cohabitations, \downarrow marriages, \uparrow divorces
- ▶ However, the lack of relevant exogenous shocks has made applied research hard

MOTIVATION

- ► Since Becker (1993) debate has been focusing on unilateral divorce
- ▶ While the diverse legislative responses of governments to the wave of cohabitations have been mostly ignored
- ▶ However, understanding cohabitation might be the key to understand more in general how the law can influence relationships
- ► And it can help understanding why do people get married

QUESTION(S)

- ▶ What would happen if terminating a cohabitation was the same as getting divorced?
- ▶ In other words, what if the **exist costs** were the **same**?
- ▶ Would it affect the stability of cohabitations? and the probability for cohabitors to get married? Why?
- ► Would this policy affect:
 - i. the **composition** (quality) of the **new** relationships? \rightarrow **selection** channel
 - ii. the **behaviour** of the **existing** relationships? \rightarrow incentive channel

THEORY

- ▶ No consensus has been reached on how to model marriage
- ▶ Matouscheck & Rasul (2008) models marriage as (i) commitment device, (ii) signalling device and (iii) as social benefit
- ▶ Modelling marriage as (ii) or (iii) implies that \uparrow divorce cost $\Rightarrow \uparrow$ mean match quality in new couples
- Generalising to cohabitations, \(\gamma \) exit costs lead to better unions
- ▶ Union \equiv cohabiting \vee married \vee both in part
- ▶ The predicted period-specific effects on existing couples are more ambiguous

- This paper is first in studying:
 - 1. the effect of equalling exit costs of cohabitation and marriage
 - ▶ Via the 2008's Amendment to the Family Law Act (Australia)
 - This exogenous change in law over time is the source of identification
 - 2. how changes in cohabitation legislation affect marriage through premarital cohabitation
- ▶ It also improves on the identification of the **incentive** and **selection** channels (M&R, 2008)

WHAT I FIND

Introduction 000000

- 1. New unions are more stable & more likely to transition into marriage
 - \rightarrow in line with signalling and social benefit models of marriage
- 2. Higher share of married, lower share of cohabitors

3. Existing cohabitors "surprised" by the reform in year 3 are more likely to split

2008'S AMENDMENT TO THE FAMILY LAW ACT

- ► Family Law Act 1975 until No 115, 2008
- Extended the NSW De Facto Relationship Act (1984) to the rest of AUS
- ▶ De facto ≡ "a couple living together on a genuine domestic basis"
- ► Criteria include duration, existence of a sexual relationship, offspring and shared ownership
- ▶ The more a cohabitation lasts, the more likely to be a de facto
- ▶ The reform applies to those cohabitations ending after it is enacted

- ▶ Household, Income and Labour Dynamics in Australia
- ▶ following lives of more than 17,000 Australians each year
- ▶ 17 years (2001-2017), 17 waves
- ► Sample representative of the country's population
- ▶ Variables on economics, psychology and family dynamics
- ▶ NSW dropped as already having identical legislation & SUTVA not credible

DESCRIPTIVES

	Mean	S.D.
Unions	0.59	0.49
Ever-partnered who are married	0.77	0.42
Ever-married with premarital cohabitation	0.46	0.50
Covariates		
Birth cohort	1962.70	12.42
Remoteness of area	0.50	0.78
Relative disadvantage	5.79	2.79
Highest education	5.31	2.64
Parents divorced	.13	.34
No. unions	4,534	
No. individuals	7,321	

- ▶ Compare unions formed just before the reform with unions formed just after
- ► The two groups form under different legal regimes but continue under the same one (the new one)
- ► Equivalently, they only differ in their starting conditions

 \Rightarrow any Δ in their Pr(Separation) can be attributed to a Δ in their match quality

- ► Individuals are forward-looking
- ► In the baseline, moving in is not a big deal
- ▶ In the new regime, moving in will lead to de facto marriage (and "divorce" risk)
- ► Knowing this, the lower quality couples will not move in
- ► They might re-match instead

 \Rightarrow average match quality increases

SELECTION: SAMPLE CONSTRUCTION

SELECTION: SAMPLE CONSTRUCTION

SELECTION: SAMPLE CONSTRUCTION

SELECTION: SAMPLE CONSTRUCTION: RESTRICTING THE SAMPLE

SELECTION CHANNEL: EMPIRICAL MODEL

logit
$$Pr[S_{i+1} = 1 | S_i = 0, \mathbf{X}] = \alpha_0(j) + \alpha_1(j)D + \beta \mathbf{X}$$
 (1)

- \triangleright S = 1 if the union ended in a separation at time i
- ► Flexible specification: $\alpha_i(j) \equiv \gamma_{0i} + \gamma_{1i}j + \gamma_{2i}j^2 + \gamma_{3i}j^3$
- \triangleright D = 1 if the union started after 2008, 0 otherwise
- ► S.e. clustered at union level
- **X** is a vector of birth cohort dummies (one per decade)
- ► The sample includes cohabitations which turn into marriage & excludes couples getting married directly

DIFFERENCE BETWEEN HAZARD CURVES (2006-2011)

HAZARD CURVES WITH COVARIATES

The following categorical covariates are included:

- ► Remoteness of Area (ASGS 2011)
- ► Country of birth (brief)
- Decile of Index of relative socio-economic disadvantage (SEIFA 2001)
- ► Highest education level achieved
- Parents divorced

DIFFERENCE BETWEEN HAZARD CURVES WITH COVARIATES

ESTIMATES FOR COUPLES MARRIED STRAIGHT • MORE ROBUSTNESS

IS THE COMPOSITION OF UNIONS AFFECTED?

IT SEEMS TO BE THE CASE

$$Y_{u,t} = \theta_0 + \theta_1 T_t + \theta_2 D_t + \theta_3 (D_t \times T_t) + \theta_4 X_{u,t} + \epsilon_{u,t}$$

$$\tag{2}$$

- $ightharpoonup Y := \{married, defacto, union\} \rightarrow \text{binary variables}$
- \triangleright $Y_u = 1$ if individual u's marital status is married/defacto/union at time t, 0 otherwise
- ► Sample of of individuals 18-60 years old
- ► S.e. clustered at union level

DeFacto

Probability of being in a cohabiting relationship

Selection channel

T	0.003*** (0.001)
D	-0.003 (0.006)
$\tilde{D}\times\mathrm{T}$	-0.005**
	(0.002)
Birth cohort	0.005*** (0.000)
Constant	-9.125*** (0.439)
No. of Obs.	138329

*** p<0.01; ** p<0.05; * p<0.10.

ъ г

Probability of being in a marital relationship

	Married			
Т	0.005*** (0.001)			
D	0.011** (0.005)			
$\tilde{D}\times \mathbf{T}$	(0.005**)			
Birth cohort	-0.014*** (0.000)			
Constant	27.879*** (0.558)			
No. of Obs.	138329			
t-statistics in parentheses				

*** p<0.01; ** p<0.05; * p<0.10.

THESE EFFECTS CANCEL OUT

IDENTIFICATION STRATEGIES: INCENTIVE

- ▶ Imagine an experiment on cohabiting couples
 - 1. All couples start cohabiting under a low-exit-cost regime (baseline)
 - 2. After j years, a random group (treatment) is assigned to a high-exit-cost regime
- ightharpoonup In other words, the incentive structure changes during the cohabitation period
- ▶ This means that couples treated in **their** j^{th} year are compared with those not treated in **their** j^{th} year

 \Rightarrow any Δ in their Pr(Separation) can be attributed to a response to the regime change

INCENTIVE: SAMPLE CONSTRUCTION

	2	3	4	5	6	duration
$\boldsymbol{2001}$	2003	2004	2005	2006	2007	
$\boldsymbol{2002}$	2004	2005	2006	2007	2008	
2003	2005	2006	2007	2008	2009	
2004	2006	2007	2008	2009	2010	
$\boldsymbol{2005}$	2007	2008	2009	2010	2011	
2006	2008	2009	2010	2011	2012	
2007	2009	2010	2011	2012	2013	
2008	2010	2011	2012	2013	2014	
2009	2011	2012	2013	2014	2015	
2010	2012	2013	2014	2015	2016	

year of start

INCENTIVE CHANNEL: EMPIRICAL MODEL

$$logit Pr[S_{j+1} = 1 | S_j = 0, \mathbf{X}] = \beta_0 + \beta_1 \mathbf{J} + \beta_2 D + \delta D \cdot \mathbf{J} + \beta_3 \mathbf{X}$$
(3)

- \triangleright S = 1 if the union ended in a separation at time i
- ▶ **J** is a vector of duration-specific dummies (j = 1, 2, 3, ..., 8)
- \triangleright D = 1 if the union started after 2008, 0 otherwise
- δ is the vector of duration-specific treatment effects
- ► X is a vector of birth cohort dummies (one per decade)
- ► 2- & 3-vears rolling window
- ► S.e. clustered at union level

INCENTIVE EFFECT: 2-YEARS ROLLING WINDOW • MORE ROBUSTNESS

INCENTIVE EFFECT: RESULTS

- ▶ It's hard to fit this result in the theoretical literature
- ► It is probably a product of this particular reform
- ▶ Not knowing exactly when one is considered de facto, year 3 might have been seen as the threshold year
- Anecdotal evidence points to year 2 (link to ABC article) as threshold
- ► This is possible since data do not give the exact date of start of the relationship

Conclusion

► Economists do not agree over a single model of marriage, let alone of cohabitation

▶ This paper provides evidence in support of theories of marriage as a signal and as providing social benefits

▶ It suggests that policies increasing the cost of terminating a cohabitation increase the quality of new unions

SELECTION: LEAST PARAMETRIC SPECIFICATION GO BACK

$$Pr[S_{i+1} = 1 | S_i = 0, X] = \beta_0 + \beta_1 \mathbf{J} + \beta_2 D + \delta D \cdot \mathbf{J} + \beta_3 X$$

$$\tag{4}$$

- ightharpoonup S = 1 if the union ended in a separation at time j
- ▶ **J** is a vector of duration-specific dummies (j = 1, 2, 3, ..., 8)
- ightharpoonup D = 1 if the union started after 2008, 0 otherwise
- \triangleright δ is the vector of duration-specific treatment effects
- ightharpoonup X includes birth cohort dummies (one per decade) only
- ► S.e. clustered at union level

LPM 3-YEAR WINDOW GO BACK

LPM 2-YEAR WINDOW GO BACK

LOGIT 3-YEAR WINDOW GO BACK

PLACEBO POLICIES

- ▶ I use the years prior to the reform (2003, 2004, 2005, 2006) as placebo policies
- ▶ The regression specification is identical to the main one
- ▶ A failure to find a statistically significant policy effect for the placebo policies is interpretable as evidence supporting the main results
- ▶ It is evidence that the results do not simply capture some noise or a trend not related to the policy of interest

LOGIT PLACEBO 2003 3-YEARS WINDOW GO BACK

LOGIT PLACEBO 2004 3-YEARS WINDOW GO BACK

LOGIT PLACEBO 2005 3-YEARS WINDOW GO BACK

LOGIT PLACEBO 2006 3-YEARS WINDOW GO BACK

SELECTION EFFECT: NUMEROUSNESS GO BACK

	j										
$window\ size$	1	2	3	4	5	6	7	8			
2	-	1,585	1,447	1,326	1,238	1,133	1,060	724			
3	-	-	2,097	1,919	1,783	1,635	$1,\!311$	956			

PLACEBOS GO BACK

The following are placebos and robustness checks for the incentive effect

LPM MARRIAGES 3-YEARS ROLLING WINDOW GO BACK

LPM MARRIAGES 2-YEARS ROLLING WINDOW GO BACK

LOGIT MARRIAGES 3-YEARS ROLLING WINDOW GO BACK

LOGIT MARRIAGES 2-YEARS ROLLING WINDOW GO BACK

INCENTIVE EFFECT: NUMEROUSNESS GO BACK

	j									
$window\ size$	1	2	3	4	5	6	7	8		
2	-	585	448	345	287	236	-	-		
3	-	-	674	498	427	-	-	-		