Some Results on Tile-makers

Stefan Langerman, Andrew Winslow

[Heesch, Kienzle 1963]

[Heesch, Kienzle 1963]

The nine isohedral tiling types

A, B 90-dromes, C palindrome

A, B, C 120-dromes

A a palindrome, B a 60-drome, C a 120-drome

B, C palindromes

A, C palindromes $\Theta^{\circ} - \Phi^{\circ} = \pm 90^{\circ}$

Developments

A <u>development</u> of a surface is a cutting of the surface that folds flat (possibly with overlap).

Tile-makers

A <u>tile-maker</u> is a surface S such that every development of S admits a tiling.

Introduced by [Akiyama 2007].

Akiyama's tile-makers

[Akiyama 2007]: a convex polyhedron or dihedron is a tile-maker if and only if it is one of these.

Developments and tilings

B, C, D, E palindromes

A, B 90-dromes, C palindrome

Akiyama's tile-makers

Isohedral tiling types

C a 120-drome

Akiyama's tile-makers are complete for these types!

Akiyama's tile-makers

Isohedral tiling types

A, B 90-dromes, C palindrome

A, B, C 120-dromes

A a palindrome, B a 60-drome, C a 120-drome

$$B, C$$
 palindromes

A, C palindromes $\Theta^{\circ} - \Phi^{\circ} = \pm 90^{\circ}$

A, B 90-dromes, C palindrome

A. B. C 120-dromes

A a palindrome, B a 60-drome,

B, C palindromes

$$A, C$$
 palindromes $\Theta^{\circ} - \Phi^{\circ} = \pm 90^{\circ}$

Are there other tile-makers?

Are they complete for other 5 isohedral tiling types?

A characterization of tile-makers

Curvature: 360° - material (written "k(p)").

A characterization of tile-makers

Theorem: a surface S is a tile-maker if and only if \forall point $p \in S$, $k(p) \ge 0$ and 360° - k(p) divides 360° .

Theorem: a surface S is a tile-maker if and only if \forall point $p \in S$, $k(p) \ge 0$ and 360° - k(p) divides 360° .

 $k(p) \in \{0^{\circ}, 180^{\circ}\}$

Theorem: a surface S is a tile-maker if and only if \forall point $p \in S$, $k(p) \ge 0$ and 360° - k(p) divides 360° .

Euler characteristic X of a surface S with genus g:

- X = 2 2g for orientable surfaces.
- X = 2 g for non-orientable surfaces.

Gauss-Bonnet Theorem: sum of a surface's curvature is 360° X, where X is Euler characteristic.

Gauss-Bonnet Theorem: sum of a surface's curvature is 360° X, where X is Euler characteristic.

Theorem: a surface S is a tile-maker if and only if \forall point $p \in S$, $k(p) \ge 0$ and 360° - k(p) divides 360° .

Theorem: a surface S is a tile-maker if and only if \forall point $p \in S$, $k(p) \ge 0$ and 360° - k(p) divides 360° .

implies $k(p) \in \{0^{\circ}, 180^{\circ}, 240^{\circ}, 270^{\circ}, ...\}$

720° curvature

360° curvature

$$X = 2$$

$$X = 1$$

0° curvature

All tile-makers

with $p_1, p_2 \in S$, $k(p_1,) k(p_2) = 180^{\circ}$

flat everywhere

$$X = 2$$

720° curvature

$$X = 1$$

360° curvature

$$X = 0$$

0° curvature

New tile-makers

flat everywhere

with $p_1, p_2 \in S$, $k(p_1,) k(p_2) = 180^{\circ}$

flat everywhere

Isohedral tiling types

 $A,\,B$ 90-dromes, C palindrome

A, B, C 120-dromes

A a palindrome, B a 60-drome, C a 120-drome

$$B, C$$
 palindromes

A, C palindromes $\Theta^{\circ} - \Phi^{\circ} = \pm 90^{\circ}$

A, B 90-dromes, C palindrome

A, B, C 120-dromes

A a palindrome, B a 60-drome,

B, C palindromes

A, C palindromes $\Theta^{\circ} - \Phi^{\circ} = \pm 90^{\circ}$

flat everywhere

with $p_1, p_2 \in S$, $k(p_1,) k(p_2) = 180^{\circ}$

B, C palind flat everywhere lindromes

Results

Theorem: the set of all tile-makers is

Theorem: the developments of tile-makers are exactly the set of all isohedral tilings.

Some Results on Tile-makers

Stefan Langerman, Andrew Winslow

