

# ПРОГРАММИРОВАНИЕ ДЛЯ RISC-V ЗИМНЯЯ ШКОЛА

ОПТИМИЗАЦИЯ АЛГОРИТМА FFT (БЫСТРОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ)

**Иван Рябинин, Андрей Соколов** YADRO



# Знакомьтесь – закон Мура\*

«Производительность процессоров должна была удваиваться каждые 18 месяцев из-за сочетания роста количества транзисторов и увеличения тактовых частот процессоров»



### Алгоритмическая оптимизация

## Как достичь более высокой производительности?

Воспользоваться более эффективным алгоритмом!

Как его получить?

#### Три главных приема алгоритмической оптимизации



- Проверь, можно ли заранее вычислить коэффициенты
- Если коэффициентов много, попробуй свести их в таблицу и вместо вычисления подбирай индекс
- Убери проверки, если знаешь их результат заранее



#### Выкинь лишнее

- Переиспользуй результаты повторяющихся вычислений
- Замени короткий цикл на линейный код
- Подбери максимально простые операции (например, замени деление на константу умножением на обратную величину)



#### Подсмотри у друга

- Проверь, не решена ли эта задача до тебя в какой-либо книге или статье
- Попробуй адаптировать алгоритм решения похожей задачи
- Примени к нему приемы I и II

# Преобразование Фурье







ПОСТАНОВКА ЗАДАЧИ

## Дискретное преобразование Фурье (DFT)

# DFT – один из основных алгоритмов обработки цифровых сигналов

- В качестве входа требует дискретную функцию (в нашем случае комплексную)
- Для длин  $2^n$  называется **быстрым** преобразованием Фурье (**FFT**)

#### Задача

Оптимизировать FFT для некоторых длин\*



#### Прямое определение DFT

$$y_k = \sum_{j=0}^{n-1} w^{jk} x_j$$

$$w^{jk} = e^{-i\frac{2\pi jk}{n}} = \cos\left(\frac{2\pi jk}{n}\right) + i\sin\left(\frac{2\pi jk}{n}\right)$$

#### Разрабатываем DFT по определению

$$y_k = \sum_{j=0}^{n-1} w^{jk} x_j$$
  $w^{jk} = e^{-i\frac{2\pi jk}{n}} = \cos\left(\frac{2\pi jk}{n}\right) + i\sin\left(\frac{2\pi jk}{n}\right)$ 

#### Вычисление DFT по определению сводится к нескольким простым ходам:

- Заводим два вложенных цикла
- Вычисляем аргумент экспоненты
- Считаем комплексное произведение входных данных и экспоненты
- Возвращаем результат

#### Разрабатываем DFT по определению

$$y_k = \sum_{j=0}^{n-1} w^{jk} x_j \qquad w^{jk} = e^{-i\frac{2\pi jk}{n}} = \cos\left(\frac{2\pi jk}{n}\right) + i\sin\left(\frac{2\pi jk}{n}\right)$$

```
extern void refDftFwd(const cfloat32_t *pSrc, cfloat32_t *pDst, uint32_t length)
   for (uint32_t i = 0; i < length; i++)
       float pDstRe = 0.0f;
       float pDstIm = 0.0f;
        for (uint32_t j = 0; j < length; j++)</pre>
            float arg = (_2PI * j * i) / length;
            pDstRe += ( pSrc[j].re * cos(arg) + pSrc[j].im * sin(arg));
            pDstIm += (-pSrc[j].re * sin(arg) + pSrc[j].im * cos(arg));
        pDst[i].re = pDstRe;
        pDst[i].im = pDstIm;
```

#### Разрабатываем DFT по определению

В общем виде тогда DFT имеет сложность



Как ее понизить?

$$y_k = \sum_{j=0}^{n-1} w^{jk} x_j$$
  $w^{jk} = e^{-i\frac{2\pi jk}{n}} = \cos\left(\frac{2\pi jk}{n}\right) + i\sin\left(\frac{2\pi jk}{n}\right)$ 

```
extern void refDftFwd(const cfloat32_t *pSrc, cfloat32_t *pDst, uint32_t length = 2)
   for (uint32_t i = 0; i < length; i++)
       float pDstRe = 0.0f;
       float pDstIm = 0.0f;
        for (uint32_t j = 0; j < length; j++)</pre>
            float arg = (_2PI * j * i) / length;
            pDstRe += ( pSrc[j].re * cos(arg) + pSrc[j].im * sin(arg));
            pDstIm += (-pSrc[j].re * sin(arg) + pSrc[j].im * cos(arg));
        pDst[i].re = pDstRe;
        pDst[i].im = pDstIm;
```

$$y_k = \sum_{j=0}^{n-1} w^{jk} x_j$$
  $w^{jk} = e^{-i\frac{2\pi jk}{n}} = \cos\left(\frac{2\pi jk}{n}\right) + i\sin\left(\frac{2\pi jk}{n}\right)$ 

```
extern void dft2Fwd(const cfloat32_t *pSrc, cfloat32_t *pDst)
   for (uint32_t i = 0; i < 2; i++) // итераций мало - разворачиваем
       float pDstRe = 0.0f;
       float pDstIm = 0.0f;
       for (uint32_t j = 0; j < 2; j++) // итераций мало - разворачиваем
           float arg = (_2PI * j * i) / 2; // может принимать только значения ±рі
           pDstRe += ( pSrc[j].re * cos(arg) + pSrc[j].im * sin(arg));
           pDstIm += (-pSrc[j].re * sin(arg) + pSrc[j].im * cos(arg));
       pDst[i].re = pDstRe;
       pDst[i].im = pDstIm;
```

$$y_k = \sum_{j=0}^{n-1} w^{jk} x_j$$
  $w^{jk} = e^{-i\frac{2\pi jk}{n}} = \cos(\frac{2\pi jk}{n}) + i\sin(\frac{2\pi jk}{n})$ 

```
extern void dft2Fwd(const cfloat32_t *pSrc, cfloat32_t *pDst)
{
    pDst[1].re = pSrc[0].re - pSrc[1].re;
    pDst[1].im = pSrc[0].im - pSrc[1].im;
    pDst[0].re = pSrc[0].re + pSrc[1].re;
    pDst[0].im = pSrc[0].im + pSrc[1].im;
}
```

$$y_k = \sum_{j=0}^{n-1} w^{jk} x_j$$
  $w^{jk} = e^{-i\frac{2\pi jk}{n}} = \cos\left(\frac{2\pi jk}{n}\right) + i\sin\left(\frac{2\pi jk}{n}\right)$ 

```
extern void refDftFwd(const cfloat32_t *pSrc, cfloat32_t *pDst, uint32_t length = 4)
    for (uint32_t i = 0; i < length; i++)
       float pDstRe = 0.0f;
       float pDstIm = 0.0f;
        for (uint32_t j = 0; j < length; j++)</pre>
            float arg = (_2PI * j * i) / length;
            pDstRe += ( pSrc[j].re * cos(arg) + pSrc[j].im * sin(arg));
            pDstIm += (-pSrc[j].re * sin(arg) + pSrc[j].im * cos(arg));
        pDst[i].re = pDstRe;
        pDst[i].im = pDstIm;
```

$$y_k = \sum_{j=0}^{n-1} w^{jk} x_j$$
  $w^{jk} = e^{-i\frac{2\pi jk}{n}} = \cos\left(\frac{2\pi jk}{n}\right) + i\sin\left(\frac{2\pi jk}{n}\right)$ 

```
extern void dft4Fwd(const cfloat32_t *pSrc, cfloat32_t *pDst)
   for (uint32_t i = 0; i < 4; i++) // итераций мало - разворачиваем
                                 // в два приема
       float pDstRe = 0.0f;
       float pDstIm = 0.0f;
       for (uint32_t j = 0; j < 4; j++) // итераций мало - разворачиваем
                                     // в два приема
           float arg = (_2PI * j * i) / 2; // может принимать значения ±рі, ±рі/2
           pDstRe += ( pSrc[j].re * cos(arg) + pSrc[j].im * sin(arg));
           pDstIm += (-pSrc[j].re * sin(arg) + pSrc[j].im * cos(arg));
       pDst[i].re = pDstRe;
       pDst[i].im = pDstIm;
```

```
extern void dft4Fwd(const cfloat32_t *pSrc, cfloat32_t *pDst)
   cfloat32_t tmpDst[4];
    tmpDst[0].re = pSrc[0].re + pSrc[2].re;
    tmpDst[0].im = pSrc[0].im + pSrc[2].im;
    tmpDst[1].re = pSrc[0].re - pSrc[2].re;
    tmpDst[1].im = pSrc[0].im - pSrc[2].im;
    tmpDst[2].re = pSrc[1].re + pSrc[3].re;
    tmpDst[2].im = pSrc[1].im + pSrc[3].im;
    tmpDst[3].re = pSrc[1].re - pSrc[3].re;
    tmpDst[3].im = pSrc[1].im - pSrc[3].im;
   pDst[0].re = tmpDst[0].re ? tmpDst[2].re;
   pDst[0].im = tmpDst[0].im ? tmpDst[2].im;
                = tmpDst[1].re ? tmpDst[3].im;
   pDst[1].re
   pDst[1].im
                = tmpDst[1].im ? tmpDst[3].re;
                = tmpDst[0].re ? tmpDst[2].re;
   pDst[2].re
                = tmpDst[0].im ? tmpDst[2].im;
   pDst[2].im
   pDst[3].re
                = tmpDst[1].re ? tmpDst[3].im;
                = tmpDst[1].im ? tmpDst[3].re;
   pDst[3].im
```

# Отладка!

#### Удаленная отладка GDB



docs\How2Debug.md

#### Основные команды GDB

#### Выполнение

- r\run старт выполнения программы
- c\continue продолжить выполнение до конца или breakpoint
- n\next выполнение следующей строчки без захода в функции
- s\step выполнение следующей строчки с заходом в функции

#### Просмотр переменных \памяти

- p\print просмотр переменной или регистра
- **x** ("examine") просмотр памяти

#### **Breakpoints**

• b\break – установка breakpoint

#### Other

• bt\backtrace — просмотр стека
вызовов <u>GDB cheatsheet</u>

```
extern void dft4Fwd(const cfloat32_t *pSrc, cfloat32_t *pDst)
   cfloat32_t tmpDst[4];
    tmpDst[0].re = pSrc[0].re + pSrc[2].re;
    tmpDst[0].im = pSrc[0].im + pSrc[2].im;
    tmpDst[1].re = pSrc[0].re - pSrc[2].re;
    tmpDst[1].im = pSrc[0].im - pSrc[2].im;
   tmpDst[2].re = pSrc[1].re + pSrc[3].re;
    tmpDst[2].im = pSrc[1].im + pSrc[3].im;
   tmpDst[3].re = pSrc[1].re - pSrc[3].re;
   tmpDst[3].im = pSrc[1].im - pSrc[3].im;
   pDst[0].re = tmpDst[0].re + tmpDst[2].re;
   pDst[0].im = tmpDst[0].im + tmpDst[2].im;
   pDst[1].re
                = tmpDst[1].re + tmpDst[3].im;
   pDst[1].im
                = tmpDst[1].im - tmpDst[3].re;
                = tmpDst[0].re - tmpDst[2].re;
   pDst[2].re
                = tmpDst[0].im - tmpDst[2].im;
   pDst[2].im
                = tmpDst[1].re - tmpDst[3].im;
   pDst[3].re
                = tmpDst[1].im + tmpDst[3].re;
   pDst[3].im
```

### Разрабатываем FFT произвольной длины

$$y_k = \sum_{j=0}^{n-1} w^{jk} x_j \qquad w^{jk} = e^{-i\frac{2\pi jk}{n}} = \cos\left(\frac{2\pi jk}{n}\right) + i\sin\left(\frac{2\pi jk}{n}\right)$$

#### Сложность кода растет быстро – нам необходимо сменить подход!

Попробуем освоить алгоритм Кули-Тьюки.

Он "проще" – его сложность

$$O(N \log(N))$$

ПРИМЕРЫ АЛГОРИТМИЧЕСКОЙ ОПТИМИЗАЦИИ

# Разрабатываем DFT произвольной длины

**Алгоритм Кули-Тьюки** позволяет рассматривать разработку алгоритмов DFT как своего рода конструктор – например, мы можем собрать **FFT8** из **FFT4** и **FFT2**.

#### Общая схема для DFT длин $\mathbf{n}_1$ и $\mathbf{n}_2$ :

- 1. Представляем входные данные как двумерный массив  $n_1 imes n_2$
- 2. Вычисляем  $\mathbf{n}_1$  DFT длины  $\mathbf{n}_2$
- 3. Домножаем промежуточный результат на тригонометрические коэффициенты
- 4. Вычисляем  $\mathbf{n_2}$  DFT длины  $\mathbf{n_1}$
- 5. Упорядочиваем результат



## Подробная постановка задачи

- 1. Написать быстрое преобразование Фурье общего вида по алгоритму Кули-Тьюки
  - о Опционально: по Кули-Тьюки собрать **FFT4** из **FFT2**
- 2. Выбрать длину **FFT** (8 или 16) и алгоритмически оптимизировать код для Кули-Тьюки
  - о Опционально: разработать код для обеих длин
- 3. Поэкспериментировать с RVV оптимизациями: разработать векторный код для FFT2 и FFT4
  - о Опционально: попробовать распространить оптимизацию на **DFT8** или **DFT16**
  - о Опционально: попробовать сравнить с OpenMP

### Формат зачета

- Ваша цель получить максимальную производительность для FFT на 8 и/или 16 точек
- По результатам мы составим турнирные таблицы в **общем зачете** (лучший результат по длине с любыми приемами оптимизации) и в **алгоритмическом зачете** (без RVV и параллелизации)