Step:1

you can create an IAM user named redfine_user with administrative permissions in both the AWS Management Console (UI) and programmatically (using AWS CLI)

Step:2

To create a key pair in AWS, named redfine_keypair_amazon_linux

Step:3

Login to IAM User

```
Step:4
```

Step:5

Step:6

```
To create EMR
Namd redfine_emr_cluster
Application bundle

{
Spark 3.5.0
Hadoop 3.3.6
Hive 3.1.3
JupyterEnterpriseGateway 2.6.0
JupyterHub 1.5.0
Zeppelin 0.10.1
}
```

Cluster configuration:

Uniform instance groups

Networking - required:

My VPC and Subnet

Amazon EMR service role:

```
Namd AmazonEMR-ServiceRole-20240708T142236
```

Permissions policie {

AdministratorAccess

AmazonEC2FullAccess

AmazonEMRFullAccessPolicy_v2

AmazonEMRServicePolicy_v2

AmazonS3FullAccess

<u>IAMFullAccess</u>

}

EC2 instance profile for Amazon EMR:

Namd AmazonEMR-InstanceProfile-20240708T142217

Permissions policie {

<u>AmazonEMR-InstanceProfile-Policy-20240708</u> <u>T142217</u>

}

Case:1

Step:9

To create cloud9 IDE

Named: EMR_Masterclass_Cloud9

Environment type:New EC2 instance

New EC2 instance:

Instance type:t2.micro (1 GiB RAM + 1 vCPU)

Platform: Amazon Linux 2

Timeout:30

Connection: Secure Shell (SSH)

Amazon Virtual Private Cloud (VPC) my vpc

Step:10

Upload keypair on Cloud9 IDE

Step:11

chmod 400:This command sets file permissions so that only the owner can read the file, ensuring sensitive data remains protected.

chmod 400 path/to/your/private-key.pem

Step:12

Go To the instance page and select to the EC2 Cloud9 and pick up the private IP Then Go the master node of the EMR and Security Tab and add the connection

- 1. SSH =>privater IP/32
- 2. Customer TCP =>9443 ->any IPV4

commands.py connection

ssh -i [key-pair] hadoop@[emr-master-public-dns-address]

nano spark-etl.py

Write the custom code

Spark-submit commands:

spark-submit spark-etl.py s3://<YOUR-BUCKET>/input/ s3://<YOUR-BUCKET>/output/spark

spark-submit s3://<bucketname>/files/spark-etl.py s3://<bucketname>/input s3://<bucketname>/output

Case:2

Step:9

To create some additional folder

Then upload the python code file in script_file folder

Step:10

Go To the EMR Cluster and add the steps

Type: Custom Jar

Named: Masterclass_step_spark

Location: command-runner.jar

Argument:

```
{
Spark-submit s3://<bucketname>/files/spark-etl.py s3://<bucketname>/input
s3://<bucketname>/output
}

like:
{
spark-submit s3://redfine-data-zone-7266/emr_masterclss_code_with_yu/file/spark-etl.py
s3://redfine-data-zone-7266/emr_masterclss_code_with_yu/input/tripdata.csv
s3://redfine-data-zone-7266/emr_masterclss_code_with_yu/output/steps/spark/
}
```

Jar location	Permissions	Main class
command-runner.jar	-	-
Action on failure Continue	Argument spark-submit s3://redfine-data-zone-7266/emr_marclss_code_with_yu/file/spark-etl.py s3://redfine-data-e-7266/emr_masterclss_code_with_yu/input/tripdata.s3://redfine-data-zone-7266/emr_masterclss_code_wityu/output/steps/spark/	zon csv