Organisation industrielle Chapitre : Introduction au management de la qualité

BTS ATI

TD Coût d'obtention de la qualité et Coût de Non Qualité

Exercice 1:

- a) Calculer le coût total de dysfonctionnements pour Avril 2020 et Avril 2021 (salaire en k€).
- b) Que pensez-vous du programme qualité de cette entreprise ?

Catégorie	Avril 2020	Avril 2021
Salaire des inspecteurs	12	14
Planification qualité	4	8
Inspection à la réception	2	3
Rebus et retouches	88	51
Test final du produit	110	103
Re-test et analyse de problème	39	19
Coût de garantie suite aux Non Conformités	205	188
Evaluation de demandes spéciales	6	5
Formation du personnel	0	42
Audit qualité	0	47

Exercice 2:

Une société de fabrication de pneus réserve un Coût annuel d'Obtention de la Qualité COQ = 891 454 euros, réparti comme suit :

Coût des pannes internes		Coûts d'évaluation (Dé	Coûts de prévention		
Stocks endommagés	3 276	Inspection réception	32 655	Usine	7 848
Réparations	73 229	Inspection 1	32 582	Siège social	30 000
Collecte rebuts	2 288	Inspection 2	25 200	/	/
Produits rebutés	187 428	Inspection sporadique	65 910	/	/
Ajustements clients	408 200	/	/	/	/
Produits rétrogradés	22 838	/	/	/	/
Total	697 259	Total	156 347		37 848

Représenter l'information avec un diagramme de Pareto et en déduire quels sont les coûts prioritaires à réduire par cette entreprise ?

Exercice 3:

Mise en contexte:

Vous effectuez votre alternance en tant qu'assistant du responsable qualité au sein d'une entreprise de produits chimiques, Vous intervenez sur l'unité de production de l'acide phosphorique.

En vue d'obtenir une certification future, la démarche de détermination du Cout d'obtention de la qualité (COQ) a été appliquée.

Voici les données recueillies :

1. Description du processus global

L'unité a pour but de concentrer l'acide phosphorique de 30 % à 54 % en poids de P_2 O_5 par évaporation d'eau sous vide. La circulation de l'acide s'effectue à travers un échangeur qui assure l'échange thermique indirect par l'utilisation de la vapeur.

Après une semaine de fonctionnement, l'unité doit subir un lavage à l'eau chaude pour éviter l'encrassement de l'échangeur et par conséquent une réduction de la cadence de production.

2. Identification des sous processus

L'analyse de l'activité de l'unité a permis de décomposer le processus global en cinq sous processus : lavage, remplissage en acide phosphorique, chauffage et démarrage, production, arrêt et vidange.

3. Indicateurs de performance de chaque sous processus

- -Processus lavage : durée de lavage, nombre de tubes de l'échangeur bouchés par le gypse
- -Processus remplissage : durée de remplissage
- -Processus chauffage et démarrage : durée de chauffage
- -Processus de production : durée de marche entre deux lavages, productivité, consommation spécifique de vapeur, taux de disponibilité, nombre d'arrêts maintenance
- -Processus arrêt et vidange : durée d'arrêt et de vidange de l'unité

4. Evaluation des coûts de non qualité

La comparaison de la valeur normal de l'indicateur avec la valeur réalisée pendant un mois a permis de calculer pour chaque sous processus le coût de non qualité correspondant.

Sous processus	Indicateur	Performance attendue	Performance réalisée	Coût de non qualité
Production	Productivité (t/h)	6.5	4.56	2 150 000
	Taux de disponibilité (%)	> 92	76.4	2 450 000
	Consommation spécifique de vapeur	2.35	3.28	1 400 000
Lavage	Nombre de tubes bouchés par le gypse	45	711	1 400 000
Remplissage	Durée (h)	0.45	1	-
Chauffage et démarrage	Durée (h)	0.5	0.5	-
Arrêt et vidange	Durée (h)	1	1.5	-

Question:

Quels sont les sous-processus sur lesquels ils convient d'agir ? Quel sous-processus coûte le plus cher en non qualité ? Quel est le processus dont la performance est la plus éloignée des attendus ?

5. Identification des opportunités d'amélioration

A travers l'analyse des défaillances des deux processus critiques, des solutions ont été apportées et 16 actions ont été retenues, dont nous citons :

Prolongation de la durée de lavage à 10 h au lieu de 8 h,

Installation de débitmètres sur les circuits d'acide produit,

Débouchage des tubes bouchés par le gypse,

Amélioration de la disponibilité des pompes de circulation et de condensats.

6. Planification et mise en œuvre

La planification des actions retenues et leur mise en œuvre ont été réalisées par une équipe multidisciplinaire (production, mécanique, instrumentation, électricité, génie civil industriel).

7. Suivi et évaluation

Le tableau suivant récapitule l'évolution des indicateurs en 6 mois:

Sous processus	Indicateur	Performance attendue	Janvier	Février	Mars	Avril	Mai	Juin	Juillet
Production	Productivité	6.5	4.56	4.52	4.83	4.62	5.18	5.21	5.52
	Taux de disponibilité	> 92	76.5	66.7	84.2	81.2	83.2	83.1	91.1
	Consommation spécifique de vapeur	2.35	3.28	3.24	2.96	2.95	2.71	2.76	2.64
	Nombre d'arrêts enregistrés maintenance	0	130	67	97	78	83	68	53
Lavage	Nombre de tubes bouchés par le gypse	45	711	705	410	443	451	375	237

Questions:

A partir des deux tableaux ci-dessus	s :
--------------------------------------	-----

a)	Quel est le CNQ total avant la mise en place des améliorations ?
b)	Est-ce que les améliorations apportées ont donné des résultats intéressants ?

- c) Présentez l'évolution des indicateurs ci-dessous sous forme de graphique sur Excel :
 - Productivité
 - Taux de disponibilité
 - Consommation de vapeur
 - Nombre d'arrêts
 - Nombre de tubes bouchés

Remarque : n'oubliez pas de rappeler l'objectif à atteindre pour chaque indicateur sous forme de ligne horizontale

d) Pour les sous-processus dont vous avez les CNQ, donnez le pourcentage de réduction des coûts de non qualité entre janvier et juillet, puis présentez cela sous forme d'histogramme.

Remarque : On considère que les CNQ sont strictement proportionnels aux écarts de performances réalisées.