Εθνικό Μετσόβιο Πολυτεχνείο Σχολή ΗΜ&ΜΥ Αλγόριθμοι και Πολυπλοκότητα 7° εξάμηνο, Ροή Λ Ακαδημαϊκή περίοδος: 2010-2011

1η Σειρά Γραπτών Ασκήσεων

Γερακάρης Βασίλης Α.Μ.: 03108092

1 Ασυμπτωτικός συμβολισμός, Αναδρομικές Σχέσεις

- i) Ταξινόμηση
 - (1) $\log n^3$
 - (2) $\sqrt{n} * \log^{50} n$
 - (3) $\frac{n}{\log \log n}$
 - (4) $\log n!$
 - (5) $n * \log^{10} n$
 - (6) $n^{1.01}$
 - (7) $5^{\log_2 n}$
 - (8) $\sum_{k=1}^{n} k^5 = k^6$
 - (9) $\log^{\log n} n = n^{\log \log n}$
 - (10) $2^{\log_2^4 n}$
 - (11) $\log^{\sqrt{n}} n$
 - (12) $e^{\frac{n}{\ln n}}$
 - (13) $n * 3^n$
 - (14) 2^{2*n}
 - (15) $\sqrt{n!}$
- ii) Τάξη Μεγέθους
 - (1) $T(n) = 5T(n/7) + n \log(n)$, (a = 5, b = 7) $\Rightarrow n^{\log_7 5} = n^{0.827} \Rightarrow n^{0.827} < n < n \log n$ $\Rightarrow T(n) \in \Theta(n \log n)$
 - (2) $T(n) = 4T(n/5) + n/\log^2 n$, (a = 5, b = 5) $\Rightarrow n^{\log_5 4} = n^{0.861} \Rightarrow n^{0.861} < n/\log^2 n$ $\Rightarrow T(n) \in \Theta(n/\log^2 n)$
 - (3) T(n) = T(n/3) + 3T(n/7) + n $\Rightarrow T(n) \in \Theta(n)$
 - (4) T(n) = 6T(n/6) + n $\Rightarrow n^{\log_6 6} = n$ $\Rightarrow T(n) \in \Theta(n \log n)$
 - (5) T(n) = T(n/3) + T(2n/3) + n $\Rightarrow T(n) \in \Theta(n \log n)$
 - (6) $T(n) = 16T(n/4) + n^3 * \log^2 n$ $\Rightarrow n^{\log_4 16} = n^2 \Rightarrow n^2 < n^3 \log^2 n$ $\Rightarrow T(n) \in \Theta(n^3 \log^2 n)$
 - (7) $T(n) = T(\sqrt(n)) + \Theta(\log\log n)$ $(\Theta \acute{\epsilon} \tau \omega \ k = \log n, f(k) = T(n))$ $\Rightarrow T(\sqrt{n}) = f(\sqrt{k}) = f(\log \sqrt{n}) = f(\frac{1}{2} * \log n) = f(\frac{k}{2})$ $\Rightarrow f(k) = f(\frac{k}{2}) + \Theta(\log k)$ $\Rightarrow \Theta(n)$
 - (8) $T(n) = T(n-3) + \log n$ $\Rightarrow T(n) \in \Theta(n * log n)$

2 Ταξινόμιση σε Πίνακα με Πολλά Ίδια Στοιχεία

3 Δυαδική Αναζήτηση

i) Ξεκινάμε (για i=1) συγκρίνοντας το A[i] με το x. Όσο το x είναι μεγαλύτερος από αυτό, κρατάμε την τιμή του (i+1) σε μια άλλη μεταβλητή k και διπλασιάζουμε το i. Μόλις φτάσουμε σε μεγαλύτερο αριθμό από τον x, εφαρμόζω ένα έλεγχο. Αν το στοιχείο A[i] είναι διάφορο του ∞ , τότε εφαρμόζω δυαδική αναζήτηση για το στοιχείο x στο τμήμα [k..i] του πίνακα και έχω το αποτέλεσμα για πιθανή ύπαρξη & θέση του στοιχείου. Αν το στοιχείο A[i] είναι ίσο με ∞ , τότε ελέγχω το A[k]. Αν είναι διάφορο του ∞ , εφαρμόζω αναδρομικά τον αλγόριθμο με αρχική θέση k. Αν και το A[k] είναι ∞ , σημαίνει ότι το x είναι μεγαλύτερο από το τελευταίο (και μέγιστο) στοιχείο του A, επομένως δεν υπάρχει.

Μέγιστος αριθμός επαναλήψεων είναι $O(\log n)$.

ii) Παίρνω τα k πρώτα στοιχεία από κάθε πίνακα. Τα χωρίζω στη μέση και συγκρίνω τα A[k/2] με B[k/2+1] και A[k/2+1] με B[k/2]. Αν A[k/2] < B[k/2+1] και B[k/2] < A[k/2+1] τοτε το k-οστό στοιχείο είναι το $\max\{A[k/2],B[k/2]\}$. Αν A[k/2] < B[k/2+1] και B[k/2] > A[k/2+1] τότε επαναλαμβάνω χρησιμοποιώντας τα στοιχεία [A[k/2+1]..A[k]] και [B[1]..B[k/2]].

4 Συλλογή Comics

Ζητάμε πρώτα το MSB για όλα τα τεύχη. Έτσι τα χωρίζουμε σε $\frac{n}{2}$ και $\frac{n}{2}-1$. Προφανώς αυτό που λείπει είναι στα λιγότερα. Εφαρμόζουμε πάλι κάνοντας $\frac{n}{2}$ ερωτήσεις και κρατάμε πάλι το υποσύνολο με το μικρότερο πλήθος. Αναδρομικά θα καταλήξουμε στο τεύχος που λείπει από τη συλλογή έχοντας ρωτήσει $n+\frac{n}{2}+\frac{n}{4}+..+1=2*n*(1-\frac{1}{2n})<2*n$ φορές.

5 Πολυκατοικίες χωρίς Θέα

Ξεκινάμε με τον από τον A[1] θέτοντας το B[1]=0 εφόσον δεν υπάρχει κάποιος δυτικότερα από αυτόν. Προχωράμε στον επόμενο A[2] και συγκρίνουμε το ύψος του με τον A[1]. Αν A[2]< A[1] τότε θέτουμε B[2]=1 αλλιώς συγκρίνουμε το ύψος A[2] με το ύψος του στόχου του A[1]. Αν πάλι δεν βρούμε ψηλότερο τρέχουμε πάλι για το στόχο του στόχου αναδρομικά μέχρι να φτάσουμε σε 0 ή σε κάποιον ψηλότερο του A[2] και τον θέτουμε ως στόχο στο πεδίο B[2]. Επαναλαμβάνουμε μέχρι n. Μέγιστος αριθμός συγκρίσεων είναι 2n.