Are New Technologies an issue for society?

Clément CAUMES & Mehdi MTALSI-MERIMI

UFR des Sciences Versailles - M1 Informatique

Semestre 2

Issues of resources

Increase of population, demands and productions induce :

- Resource overexploitation
- Extinction of rare animals and plant species

Sustainable development = solution ?

- Development of the economy
- Development of the social aspect
- Preservation of the environment

Introduction
A curb for our planet
An impact for a social perspective
Conclusion

Clément CAUMES & Mehdi MTALSI-MERIMI

Are New Technologies an issue for society?

Introduction
A curb for our planet
An impact for a social perspective
Conclusion

Clément CAUMES & Mehdi MTALSI-MERIMI

Are New Technologies an issue for society?

Demande du client

Réaliser un logiciel de stéganographie permettant à des personnes lambdas de communiquer sans que l'on soupçonne que leurs communications soient en réalité compromettantes.

- Cacher des données dans des fichiers de type image, audio et vidéo.
- Faire l'extraction automatique des données cachées du fichier à analyser.
- Gestion de plusieurs formats et diversité dans les algorithmes proposés.
- Proposition d'une bibliothèque partagée par deux interfaces différentes, une graphique et une en ligne de commande.

Exemple

Alice choisit de cacher message.txt dans un fichier BMP

photo.bmp et veut obtenir le fichier piece_iointe.bmp après la

Clément CAUMES & Mehdi MTALSI-MERIMI

Are New Technologies an issue for society?

Algorithmes de stéganographie

- Least Significant Bit (LSB)
- End Of File (EOF)
- Metadata
- End Of Chunk (EOC)
- Junk Chunk

Besoin

Nécessité d'obtenir les informations de l'insertion pendant l'extraction impose une "signature".

Signature StegX

- Identificateur de la méthode (1 octet).
- Identificateur de l'algorithme (1 octet).
- Taille du fichier caché (4 octets).
- Taille du nom du fichier caché (1 octet).
- Nom du fichier caché (entre 1 et 255 octets).
- Mot de passe (64 octets).

Least Significant Bit

 Modification des bits de poids faible des octets de données de l'hôte.

Avantage

L'utilisation de cet algorithme n'augmente pas la taille du fichier résultat en fonction de la taille du fichier caché.

Inconvénient

Le fichier à cacher doit être assez petit pour pouvoir le cacher intégralement dans le fichier hôte.

End Of File

 Écriture des données à cacher après la fin officielle du fichier hôte.

Avantage

Il n'y a pas de limite de taille pour cacher le fichier.

Inconvénient

Metadata

 Écriture des données à cacher dans des blocs de données spécifiques qui ne modifieront pas les données originales.

Avantage

Il n'y a pas de limite de taille pour cacher le fichier.

Inconvénient

End Of Chunk

 Écriture des données à cacher après les différents chunks interprétables du fichier hôte. Ces données seront non reconnus et donc ignorés.

Avantage

Il n'y a pas de limite de taille pour cacher le fichier.

Inconvénient

Junk Chunk

• Écriture des données à cacher dans un chunk appelé "junk" : les données ne seront pas interprétées

Avantage

Il n'y a pas de limite de taille pour cacher le fichier.

Inconvénient

- Vérification de la compatibilité des fichiers.
- Proposition des algorithmes de stéganographie.
- Insertion des données.
- Détection de l'algorithme de stéganographie.
- Extraction des données.

Exemple

Avec la vérification de la compatibilité des fichiers, il s'agit d'un format BMP non compressé.

- Vérification de la compatibilité des fichiers.
- Proposition des algorithmes de stéganographie.
- Insertion des données.
- Détection de l'algorithme de stéganographie.
- Extraction des données.

Exemple

- Grâce au module Proposition des algorithmes de stéganographie, les spécificités du format de piece_jointe.bmp ont été déduites.
- Les algorithmes EOF, LSB et Metadata sont proposés.
- Alice choisit l'algorithme EOF.

- Vérification de la compatibilité des fichiers.
- Proposition des algorithmes de stéganographie.
- Insertion des données.
- Détection de l'algorithme de stéganographie.
- Extraction des données.

Exemple

Lors de l'insertion de Alice, l'algorithme EOF sera utilisé où les données de l'hôte, la signature StegX suivies des données du fichier à cacher seront écrites dans piece_jointe.bmp.

- Vérification de la compatibilité des fichiers.
- Proposition des algorithmes de stéganographie.
- Insertion des données.
- Détection de l'algorithme de stéganographie.
- Extraction des données.

Exemple

Après que Alice ait fini la dissimulation, Bob va déduire les spécificités du fichier piece_jointe.bmp et déduire les informations sur le fichier caché message.txt.

- Vérification de la compatibilité des fichiers.
- Proposition des algorithmes de stéganographie.
- Insertion des données.
- Détection de l'algorithme de stéganographie.
- Extraction des données.

Exemple

L'algorithme EOF sera utilisé pour extraire les données du fichier caché de message.txt.

Problème

Si Oscar connaît la stéganographie, il peut utiliser un éditeur hexadécimal en voir en clair les données cachées.

Solution

L'utilisation d'une méthode de protection des données est ajoutée :

- Données à cacher XORées avec une suite pseudo-aléatoire générée à partir du mot de passe (chiffrement par substitution polyalphabétique).
- Données à cacher mélangées (chiffrement par transposition).

Lecture et écriture de fichiers : endianness en fonction des formats

- Little endian et big endian selon les formats.
- Travail de recherche poussé pour chaque format et pour chaque algorithme de stéganographie.

Format MP3

- Format compressé utilisant des algorithmes de compression complexes.
- Étude des versions des formats (MPEG 1 Layer III, MPEG 2 Layer III).
- Étude des versions de formats de métadonnée (ID3 version 1, ID3 version 2).

Bilan logiciel

- Faire de la stéganographie sur des fichiers image, audio et vidéo (insertion et extraction). √
- Plusieurs formats sont gérés et une diversité dans les algorithmes sont proposés.
- Réaliser deux interfaces : ligne de commande et graphique. √
- Futures améliorations : nouveaux formats et algorithmes.

Bilan humain

- L'équipe s'est efforcée à travailler de façon professionnelle et ordonnée.
- Projet de grande envergure qui a nécessité de diviser la conception selon les trois types de formats étudiés.

