Probing phase transitions of DNA-protein condensates using single molecule localization microscopy

Clayton W. Seitz

June 22, 2023

Introduction and Approach

Genome organization in eukaryotes

- ▶ The eukaryotic genome has hierarchical structure
- ▶ This structure is highly variable and often abberrant in disease

Finn et al., Science 365, 998 (2019)

A phase separation model for transcriptional control

- ► Liquid-liquid phase separation (LLPS) is a major organizer of cellular biochemistry
- ► Recent work highlights the importance of CTCF-dependent transcriptional condensates in determining cell fates

Int. J. Mol. Sci. 2022, 23(14), 8039;

Formulate the basic research question and introduce the approach using major results from section 3

Widefield/HILO fluorescence microscope

Direct stochastic optical reconstruction microscopy

Direct stochastic optical reconstruction microscopy

Direct stochastic optical reconstruction microscopy

Point spread function engineering for three-dimensional imaging

Generative models and inference for SMLM

Readout noise of sCMOS cameras

Hamamatsu ORCA v3 CMOS, air cooled to -10C

Measured signal: $H_k = S_k + \xi_k$, $S_k \sim \text{Poisson}(\mu_k), \xi_k \sim \mathcal{N}(o_k, \sigma_k^2)$

Maximum likelihood localization of an isolated fluorescent emitter

Localization:
$$\theta^* = \operatorname*{argmax}_{\theta} \prod_k P(H_k | \theta) = \operatorname*{argmin}_{\theta} - \sum_k \log P(H_k | \theta)$$

$$\mu_k = g_k \frac{\eta}{N_0} \Delta \int_{\text{pixel}} G(x, y) dA$$

 η – quantum efficiency

 N_0 – emission rate

 Δ – exposure time

$$P(H_k|\theta) = A \sum_{r=0}^{\infty} \frac{1}{q!} e^{-\mu_k} \mu_k^q \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{(H_k - g_k q - o_k)}{2\sigma_k^2}}$$

 $P(H_k|\theta)$ can be approximated as Poisson at high signal-to-noise (SNR)

Quality of the Poisson approximation depends on SNR

$$P(H_k|\theta) \approx \text{Poisson}(\mu_k + \sigma_k^2)$$
 for $N_0 > 500$ asssuming $\Delta = 100$ ms

Using the approximation we can write

$$\ell(\vec{H}|\theta) = -\log \prod_{k} \frac{e^{-\left(\mu_{k}^{\prime}\right)} \left(\mu_{k}^{\prime}\right)^{n_{k}}}{n_{k}!} = \sum_{k} \log n_{k}! + \mu_{k}^{\prime} - n_{k} \log \left(\mu_{k}^{\prime}\right)$$

Estimator precision sets the resolution limit in localization microscopy

- ▶ MLE can approach the CRLB on simulated isolated emitter data
- MLE does not generalize well to dense time-series

Estimating uncertainty with gradient-based MCMC

Stochastic gradient langevin dynamics (SGLD):

$$dw = -\nabla \ell(\theta) dt + \epsilon \sqrt{\eta dt}, \quad \epsilon \sim \mathcal{N}(0, \sigma^2), \eta \propto dt$$

The diffusion samples from the posterior $P(\theta|\vec{H})$ as $t \to \infty$

Estimating uncertainty with gradient-based MCMC

Uncertainty as a function of incident photon count - or is this the same as estimator precision?

A deep learning framework for localization microscopy

Precise localization in dense regimes is intractable

A deep learning framework for localization microscopy

Deep learning enables ultra-dense imaging for fast reconstruction

A Bayesian clustering algorithm on high density

Number of clusters is unknown apriori - Bayesian nonparametrics

Bayesian clustering algorithms on high density data

Nucleosome organization in MED1-BRD4 transcriptional condensates

Inducing GBP5 gene expression with Inteferon- $\!\gamma$

Colocalization of nascent GBP5 mRNA with phase separation markers

Colocalization of nascent GBP5 mRNA with phase separation markers

Costaining of H2B/BRD4/MED1 in interphase Hela cells

Cluster analysis of H2B at putative transcriptional condensates

Physical cluster analysis of H2B at putative transcriptional condensates