网络信息论 1

- ① 分布式信源编码和码率区域
- ② 多址接入信道及其容量区域

点对点信道编码和信源编码

注: 无损信源编码: $\hat{X} = X$, 即, R = H(X).

- 目前为止,只考虑了单发单收的情况
- 问题: 多个信号源? 多个接收端?

分布式信源编码和多址接入信道

● 分布式信源编码:

多址接入信道编码:

网络信息论 1

- ① 分布式信源编码和码率区域
- ② 多址接入信道及其容量区域

分布式信源编码

• 联合译码器能正确恢复 (X_1, X_2) 的最小码率 (R_1, R_2) 是多少?

● **简单方案**: 忽略 X₁ 和 X₂ 的相关性,点对点 (P2P) 信源编码:

$$R_1 \ge H(X_1)$$
$$R_2 \ge H(X_2)$$

分布式信源编码

- 分布式信源编码 (distributed source coding, DSC) 的关键是什么?
 - 信源的相关性有助于降低信源速率
 - 信源独立编码
- 如何利用相关性, 最小化信源速率?

联合编码

联合编码的可达速率区域:

$$R_1 \ge H(X_1|X_2)$$

$$R_2 \ge H(X_2|X_1)$$

$$R_3 \ge H(X_2|X_2)$$

$$R_1 + R_2 \ge H(X_1, X_2)$$

利用相关性,进一步降低码率

- R_1 最小为 X_2 条件下 X_1 的熵, 其中 X_2 减少了 X_1 的不确定性
- R₂ 最小为 X₁ 条件下 X₂ 的熵, 其中 X₁ 减少了 X₂ 的不确定性
- R₁ + R₂ 最小为联合熵 H(X₁, X₂), 将 (X₁, X₂) 视为单变量

分布式信源编码

Slepian-Wolf 定理: 可达码率区域 (R_1, R_2) 满足以下不等式:

$$R_1 \ge H(X_1|X_2)$$

$$R_2 \ge H(X_2|X_1)$$

$$R_1 + R_2 \ge H(X_1, X_2)$$

- 下界: 联合编码 (不可能比它更好)
- 可达性: 典型集随机编码 (Omitted)

分布式信源编码的可达码率区域与联合编码相同!!!

分布式信源编码

举例——Slepian-Wolf 定理

考虑信源编码:

- $X_1, X_2 \in [0,1]^3$ (均匀分布), 即, $H(X_1) = H(X_2) = 3$;
- X_1 和 X_2 最多有一位不同: $d_H(X_1, X_2) \le 1$, 即,

$$X_1 \oplus X_2 = \{000, 100, 010, 001\}.$$

举例——Slepian-Wolf 定理

考虑信源编码:

- 1. $X_1, X_2 \in [0,1]^3$ (均匀分布), 即, $H(X_1) = H(X_2) = 3$;
- 2. X_1 和 X_2 最多有一位不同: $d_H(X_1, X_2) \le 1$, 即,

$$X_1 \oplus X_2 = \{000, 100, 010, 001\}.$$

- 独立编码: 忽略 X_1 和 X_2 的相关性, $R_1 = R_2 = 3$, 共 6 比特
- **联合编码**: 3 比特编码 **X**₁, 2 比特编码 X₂ 和 X₁ 的不同, 共 5 比特

Slepian-Wolf 编码

分布式信源编码:

- 3 比特编码 X₁, R₁ = 3 比特
- 2 比特编码 X_2 作为 **E**集索引, $R_2 = 2$ 比特。每个 E集中的最小汉明距离为 $d = 2d_H(X_1, X_2) + 1 = 3$

例: $x_1 = 001, x_2 = 101 \Rightarrow \{c_1 = 001, c_2 = 10\}$

只需 3+2=5 比特. 与联合编码相同!

Slepian-Wolf 编码

编码:
$$x_1 = 001, x_2 = 101 \Rightarrow \{c_1 = 001, c_2 = 10\}$$

码字

译码:

- 先译码 X_1 ; ($x_1 = c_1 = 001$)
- 在 x2 的陪集中找离 x1 最近的码字。
 - $c_2 = 10 \Rightarrow \text{ Eage } \{010, 101\}$
 - $x_2 = 101$ 因为它离 $X_1 = 001$ 最近

Slepian-Wolf 编码

- 如上,码率区域 A 点可达
- 类似, 可达 B 点:
 - 3 比特编码 X₂
 - 2 比特编码 X1 陪集索引
- A 和 B 时分复用达到 AB 线段

注: 可达码率区域由 AB 线段决定, 如果 AB 可达, 所围区域可达

时分复用(也称码率分割)

• 若 $A = (R_1^1, R_2^1)$ 、 $B = (R_1^2, R_2^2)$ 可达,则 A、B 时分复用也可达

$$(R_1, R_2) = \alpha A + (1 - \alpha)B$$

其中 $0 \le \alpha \le 1$, 即 α 比例使用 A, $1 - \alpha$ 比例使用 B

● 这也表明可达码率区域是凸的

一般情况

信源编码:

- $X_1, X_2 \in [0,1]^n$ (均匀分布), 即, $H(X_1) = H(X_2) = n$
- X_1 和 X_2 最多有 d 位不同: $d_H(X_1, X_2) \leq d$

Slepian-wolf 编码:

- 1. 使用 n 比特编码 X_1 , $R_1 = n$
- 2. 使用 m 比特编码 X_2 作为陪集索引, $R_2 = m$
 - ⇒ 每个陪集中码字的最小距离为 2d+1
- 注: 令 C 为最小码距为 $d_{\min} = 2d+1$ 、校验矩阵为 H 的线性码,那么 X_2 可以通过校验矩阵编码:

$$c_2 = s_2 = Hx_2$$

也就是 x2 的陪集索引

三个用户分布式信源编码的码率区域

三个用户信源编码的码率区域:

$$R_1 \ge H(X_1|X_2, X_3),$$

$$R_2 \ge H(X_2|X_1, X_3),$$

$$R_3 \ge H(X_3|X_1, X_2),$$

$$R_1 + R_2 \ge H(X_1, X_2|X_3),$$

$$R_1 + R_3 \ge H(X_1, X_3|X_2),$$

$$R_2 + R_3 \ge H(X_2, X_3|X_1),$$

$$R_1 + R_2 + R_3 \ge H(X_1, X_2, X_3).$$

多源编码的码率区域

M 源码率区域:

$$R_{\mathcal{S}} \geq H(X_{\mathcal{S}}; Y|X_{\mathcal{S}^c}), \quad \forall \mathcal{S} \subseteq \mathcal{M}, \ \mathcal{S}^c = \mathcal{K}/\mathcal{S},$$

其中
$$\mathcal{M} = \{1, 2, ..., M\}.$$

网络信息论 1

- 分布式信源编码和码率区域
- ② 多址接入信道及其容量区域

多址接入信道

定义(多址接入信道): 离散无记忆多址接入信道由字母表 $\mathcal{X}_1,\mathcal{X}_2$ 与 \mathcal{Y} ,及概率转移矩阵 $p(y|x_1,x_2)$ 刻画

- 两个(或更多)发送器向一个接收器发送消息
- 噪声 + 信号干扰

多址接入信道的容量区域

定理(多址接入信道的容量区域): 多址接入信道 $(\mathcal{X}_1 \times \mathcal{X}_2, p(y|x_1, x_2), \mathcal{Y})$ 的容量区域为满足下列条件的 (R_1, R_2) 所成的凸闭包:

$$R_1 < I(X_1; Y|X_2)$$

 $R_2 < I(X_2; Y|X_1)$

上界显然, 可达方案(串行干扰消除):

- B: 先译 X₂; 已知 X₂, 再译 X₁
- C: 先译 X1; 已知 X1, 再译 X2
- B-C: B 和 C 时分复用

举例: 独立二元对称信道

独立二元对称信道

独立 BSC 的容量区域

$$I(X_1; Y|X_2) = I(X_1; Y) = 1 - h(p_1)$$

$$I(X_2; Y|X_1) = I(X_2; Y) = 1 - h(p_2)$$

$$I(X_1, X_2; Y) = I(X_1; Y) + I(X_2; Y) = 2 - h(p_1) - h(p_2)$$

举例: 二元乘法信道

二元乘法信道:

$$Y = X_1 X_2$$

则:

•
$$I(X_1; Y|X_2) = H(X_1) \le 1$$

•
$$I(X_2; Y|X_1) = H(X_2) \le 1$$

•
$$I(X_1, X_2; Y) \leq H(Y) \leq 1$$

可达方案: 只发一路信号 + 时分复用

二元乘法信道的容量区域

举例: 高斯多址接入信道

• 数学模型: $Y = X_1 + X_2 + Z$, 其中 $Z \sim \mathcal{N}(0, N)$.

高斯多址接入信道的容量区域

•
$$I(X_1; Y|X_2) = I(X_1; X_1 + Z) = \frac{1}{2} \log(1 + \frac{P_1}{N})$$

•
$$I(X_2; Y|X_1) = I(X_2; X_2 + Z) = \frac{1}{2} \log(1 + \frac{P_2}{N})$$

•
$$I(X_1, X_2; Y) = I(X_1, X_2; X_1 + X_2 + Z) = \frac{1}{2} \log(1 + \frac{P_1 + P_2}{N})$$

多址技术对比

时分多扯接入(TDMA):

$$\begin{split} R_{\text{TDMA}} &= \alpha I(X_1; X_1 + N) + (1 - \alpha) I(X_2; X_2 + N) \\ &= \frac{\alpha}{2} \log \left(1 + \frac{P_1}{N} \right) + \frac{1 - \alpha}{2} \log \left(1 + \frac{P_2}{N} \right) \end{split}$$

功率分配 TDMA:

$$R_{\mathrm{TDMA}}^{\mathrm{PA}} = \frac{\alpha}{2} \log \left(1 + \frac{P_1/\alpha}{N}\right) + \frac{1-\alpha}{2} \log \left(1 + \frac{P_2/(1-\alpha)}{N}\right)$$

时分多址接入(TDMA)+功率分配

频分多扯接入 (FDMA): N₀ W = N

$$\begin{split} R_{\mathrm{FDMA}} &= \frac{\alpha}{2} \log \left(1 + \frac{P_1}{N_0 \alpha W} \right) + \frac{1 - \alpha}{2} \log \left(1 + \frac{P_2}{N_0 (1 - \alpha) W} \right) \\ &= \frac{\alpha}{2} \log \left(1 + \frac{P_1}{N \alpha} \right) + \frac{1 - \alpha}{2} \log \left(1 + \frac{P_2}{N (1 - \alpha)} \right) \end{split}$$

最优 α 时,功率分配 TDMA 和 FDMA 可达速率 = 和容量

多址技术对比

高斯多址接入信道中各种多址技术的容量曲线

最优 α* 可达到和容量(切点)

总结

- 网络信息论: 多发多收
- 优于单发单收方案
- 分布式信源编码: Slepian-Wolf 编码
 - 分布式信源编码与联合编码码率相同
 - Slepian-Wolf 编码/陪集编码
- 多址接入信道
 - 独立用户具有与联合编码相同的码率
 - 优于 TDMA/FDMA, 关键在于干扰消除