Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Activations (Basic Properties)

Outline

- What are activations
- Reasoning behind non-linear differential activations

Activations

$$z_i^{[l]} = \sum_{i=0}^{l} W_i^{[l]} a_i^{[l-1]}$$

$$a_i^{[l]} = \boxed{g^{[l]}} (z_i^{[l]}) \begin{array}{c} \text{Differentiable} \\ \text{non-linear} \\ \text{function} \end{array}$$

Activations

$$a_i^{[l]} = \boxed{g^{[l]}} (z_i^{[l]}) \begin{array}{c} \text{Differentiable} \\ \text{non-linear} \\ \text{function} \end{array}$$

- 1. Differentiable for backpropagation
- 2. Non-linear to compute complex features, if not:

Summary

- Activation functions are non-linear and differentiable
- Differentiable for backpropagation
- Non-linear to approximate complex functions

Common Activation Functions

Outline

- Common activations and their structure
 - ReLU
 - Leaky ReLU
 - Sigmoid
 - Tanh

Activations: ReLU

Activations: Leaky ReLU

Activations: Sigmoid

Values between 0 and 1

Vanishing gradient and saturation problems

Activations: Tanh

Summary

- ReLU activations suffer from dying ReLU
- Leaky ReLU solve the dying ReLu problem
- Sigmoid and Tanh have vanishing gradient and saturation problems

Batch Normalization (Explained)

Outline

- How normalization helps models
- Internal covariate shift
- Batch normalization

Different Distributions

Normalization and Its Effects

Around mean at 0 and std. at 1

Training data uses batch stats

Test data uses training stats

Normalization and Its Effects

Internal Covariate Shift

Batch Normalization

Summary

- Batch normalization smooths the cost function
- Batch normalization reduces the internal covariate shift
- Batch normalization speeds up learning!

Batch Normalization (Procedure)

Outline

- Batch norm for training
- Batch norm for testing

Batch Normalization: Training

$$z_i^{[l]} = \sum_{i=0}^{l} W_i^{[l]} a_i^{[l-1]}$$

 $\hat{z}_{i}^{[l]} = \frac{z_{i}^{[l]} - \mu_{z_{i}^{[l]}}}{\sqrt{\sigma_{z_{i}^{[l]}}^{2} + \epsilon}}$

For every example in the batch

Batch mean of $z_i^{\lfloor l \rfloor}$ Batch std of $z_i^{\lceil l \rceil}$

Shift factor

Scale Factor

Learnable parameters to get the optimal dist.

Batch Normalization: Test

$$\hat{z}_i^{[l]} = \frac{z_i^{[l]} - \mathbf{E}(z_i^{[l]})}{\sqrt{\operatorname{Var}(z_i^{[l]}) + \epsilon}}$$

Running mean and running std from training

Frameworks like
Tensorflow and Pytorch
keep track of them

Summary

- Batch norm introduces learnable shift and scale factors
- During test, the running statistics from training are used
- Frameworks take care of the whole process

Review of Convolutions

Outline

- What convolutions are
- How they work

What is a convolution?

What is a convolution? Eye Filter

What is a convolution? Eye Filter Nose filter

What is a convolution? Eye Filter Nose filter Ear filter

What is a convolution?

50	50	0	0	O
50	50	0	0	0
50	50	0	0	0
50	50	0	0	0
50	50	0	0	0

Grayscale image

50	50	0	0	0			Filter	
50	50	0	0	0		1	0	-1
50	50	0	0	0	*	1	0	-1
50	50	0	0	0		1	0	-1
50	50	0	0	О				

Grayscale image

Grayscale image

Convolution

Grayscale image

Convolution

Summary

- Convolutions are useful layers for processing images
- They scan the image to detect useful features
- Just element-wise products and sums!

Padding and Stride

Outline

- Padding and stride
- The intuition behind padding

50	50	0	0	0			Filter	•
50	50	0	0	0		1	0	-1
50	50	0	0	0	*	1	0	-1
50	50	0	0	0		1	0	-1
50	50	0	0	0				

Grayscale image

→ 1 Pixel to the right

50	50*1	0*0	0*-1	0
50	50*1	0*0	0*-1	0
50	50*1	0*0	0*-1	0
50	50	0	0	0
50	50	0	0	0

Result

150

150

Filter

→ 1 Pixel to the right

50	50	0*1	0*0	0*-1	
50	50	0*1	0*0	0*-1	
50	50	0*1	0*0	0*-1	>
50	50	0	0	0	
50	50	0	0	0	

 1
 0
 -1

 1
 0
 -1

 1
 0
 -1

Filter

Result 150 150 0

Grayscale image

→ 1 Pixel to the right

1 0 -1 1 -1 0 0 -1

Filter

150 150 0 150 150 0 150 150 0

Result

Grayscale image

→ 2 Pixels to the right

2 Pixels down <	50	50	0	0	O
	50	50	0	0	0
	50	50	0	0	0
	50	50	0	0	0
	50	50	0	0	0

0 -1 1 0 -1 1

Filter

Result

Grayscale image

→ 2 Pixels to the right

Pixels down -	50*1	50*0	0*-1	0	O
	50*1	50*0	0*-1	0	O
	50*1	50*0	O*-1	0	O
	50	50	0	0	O
2 Pi	50	50	0	0	0

1 0 -1 1 0 -1 1 0 -1

Filter

150

Result

Grayscale image

→ 2 Pixels to the right

1 0 -1 1 -1 0 0 -1

Filter

150 0

Result

Grayscale image

1	0	-1
1	0	-1
1	0	-1

Filter

Result

150	0
150	

Grayscale image

Filter

1	0	-1
1	0	-1
1	0	-1

Result

150	0
150	0

Grayscale image

→ 2 Pixels to the right

2 Pixels down <	50	50	0	0	O
	50	50	0	0	0
	50	50	0	0	0
	50	50	0	0	0
	50	50	0	0	0

0 -1 1 -1 0

Filter

150 0

Result

150 0

Grayscale image

Padding

Center gets visited four times Filter Corners get visited only once Stride=1

Padding

Summary

- Stride determines how the filter scans the image
- Padding is like a frame on the image
- Padding gives similar importance to the edges and the center

Pooling and Upsampling

Outline

- Pooling
- Upsampling and its relation to pooling

Pooling

4x4 input to 2x2 output

4x4 input to 2x2 output

4x4 input to 2x2 output

4x4 input to 2x2 output

Max Pooling

4x4 input to 2x2 output

Max Pooling

4x4 input to 2x2 output

Max Pooling

4x4 input to 2x2 output

Upsampling

20	20	45	45
20	20	45	45
10	10	43	43
10	10	43	43

2x2 input to 4x4 output

20	20	45	45
10	10	43	43
10	10	43	43

20

45

45

Other types include:

- 1. Linear interpolation
- 2. Bi-linear interpolation

Summary

- Pooling reduces the size of the input
- Upsampling increases the size of the input
- No learnable parameters!

Transposed Convolutions

Outline

- Transposed convolutions as an upsampling technique
- Issues with transposed convolutions

Transposed Convolution

Transposed Convolution

The Problems with Transposed Convolution

Checkerboard Pattern

Available from: http://doi.org/10.23915/distill.00003

Summary

- Transposed convolutions upsample
- They have learnable parameters
- Problem: results have a checkerboard pattern

