加密芯片

1芯片特性

1.1 用户区为 EEPROM

- 有4个用户分区
- 多种写入模式:单个 Byte、多个 Byte 和 Page 写入模式
- 每个分区都设有访问权限

1.2 配置区 2K-bit

- 客户可以定义 8-Byte 唯一 ID
- 可以定义访问权限、认证密钥种子、用户区读写密码

1.3 高安全性

- 有 64-bit 动态相互认证种子
- 有 8 组 24-bit 读写密码
- 认证和加密都有 4 组密钥种子
- 滚动加密

1.4 应用特征

- 电压范围: 2.7V-5.5V
- 采用 2 线非标准 I2C 接口
- 通信频率最高可达 1.0 MHz
- 标准的 SOP8 封装

1.5 高可靠性

- 写操作可达 10 万次
- 数据保持可达 10 年

2 芯片封装和管脚定义

管脚定义如下所示:

Pad	Description
CS	Control signal
GND	Ground
SCL	Serial Clock Input
SDA	Serial Data Input/Output

3 配置区介绍

	\$0	\$1	\$2	\$3	\$4	\$5	\$6	\$7	
\$00				Rese	rved]
\$08	Fab Code MTZ		ſΖ		Rese	rved		Fabrication	
\$10				ID (Code				
\$18	DCR			R	eserve	d			
\$20	ARO	PR0	AR1	PR1	AR2	PR2	AR3	PR3	
\$28									Access
\$30									Control
\$38				Rese	rved				
\$40									
\$48									
\$50	AACO				Ci0				1
\$58				SI					1
\$60	AAC1				Ci1				1
\$68				SI					Crypto
\$70	AAC2				Ci2				
\$78				SI					1
\$80	AAC3				Ci3				
\$88				SI					
\$90					Seed G				1
\$98					Seed G				Secret
\$A0					Seed G				1
\$A8				ecret	Seed G	3			
\$B0	PAC		Write0		PAC		Read0		_
\$B8	PAC		Write1		PAC		Read1		1
\$CO	PAC Write2 PAC Read2							1	
\$C8	PAC Write3 PAC Read3							Passwords	
\$D0	PAC Write4 PAC Read4							1 332 2 11 31 31 31	
\$D8	PAC Write5 PAC Read5								1
\$E0	PAC Write6 PAC Read6							1	
\$E8	PAC		Write7		PAC		Read7		

\$F0	Dogonyrod	System
\$F8	Keserved	System

3.1 Fab Code

16-bit 寄存器,出厂值为:"10 10",客户不能修改。

3.2 MTZ

存储器测试区共有 16-bit, 是为了测试通信而定义的,任何时候都有权限读写 MTZ。

3.3 ID Code

可以定义 8-Byte 唯一 ID, 出厂后只能读,不能修改。

3. 4 DCR

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		UAT	ETA	CS3	CS2	CS1	CS0

UAT: 如果使能(UAT="0"),允许无数次错误认证,AAC无效。

ETA: 如果使能 (EAT="0"), 有 8 次错误认证或者校验的机会。如果 EAT="1", AAC 和 PAC 都只有 4 次错误机会。

CS0-CS3: 芯片都能响应默认片选地址\$B(1011),也能相应 CS0-CS3 对应的地址 值。

3.5 访问寄存器 AR

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PM1	PMO	AM1	AMO	ER			

PM(1:0)-密码模式

PM1	PMO	权限			
1	1	不需要密码校验			
1	0	需要写密码校验			
0	1	读写密码都需要校验			
0	0	以 与 雷 码 即 而 安 仪 独			

当 PM="11"时,访问用户区不需要密码校验

当 PM="10"时,写用户区需要校验写密码,读用户区不需要校验读密码

当 PM="01"或者"00"时,读和写用户区需要校验写密码,只读用户区需要校验读密码。

AM(1:0)-密码模式

AM1	AMO	权限
1	1	不需要认证
1	0	写需要认证
1	0	读写都需要认证
0	1	

当 AM="11"时,访问用户区不需要认证

当 AM="10"时,写用户区需要认证,读用户区不需要认证

当 AM="01"时,读和写用户区都需要认证

ER-encryption required

当 ER="0",如果要正确地读写用户区,主机需要启动加密模式。

当 ER="1", 主机可以启动加密模式, 如果不启动, 也可以访问用户区, 但通信

是不加密的。

3.6 密码寄存器 PR

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
AK1	AKO				PW2	PW1	PWO

AK(1:0)-认证 Key, 这 2 位定义 4 组加密种子 G0-G3 的一组, 这个加密种子在认证加密过程被使用。

PW(2:0)-密码设定,这3位定义8组密码中的一组作为用户区的密码。

3.7 安全密码 (secure code)

安全密码对应的是 write7 密码,只有正确校验了安全密码,才能修改配置区

3.8 Ci和SK

加密认证时,存储对应的 Cix 和 SKx,不必理会。

3.9 **G0-G3**

加密认证种子, 要和软件的认证种子一致。

3. 10 Passwords

密码可以用来保护用户区的读和写,这里有8组密码,可以通过PR寄存器选择一组来保护相应的用户区。如果校验了写密码,那么读和写都可以,如果只校验读密码,那么只可以读。

4 通信模式

4.1 标准模式

芯片默认就是标准模式,任何类型的数据都没有加密,通信的数据是明文。

4.2 认证模式

通过访问寄存器 AR/PR 来设定。在这种模式,配置区的密码是加密的,如果 发送命令验证读写密码,那么都是以密文形式进行。对于用户区,芯片必须 成功认证之后,才能访问用户区,通信是明文。认证过程如下所示:

4.3 加密模式

通过访问寄存器 AR 来设定,在这种模式下,配置区的密码和用户区的通信都是加密的,以密文形式进行。加密模式启动过程是在认证模式启动的基础上,把 CGx 改成计算出的 SKx 再认证一次,如果认证成功,加密模式就启动了。

5 保险丝

该加密芯片共有 4 个保险丝, "fuse byte"给出了保险丝的状态, "0"表示已熔断。Bits 4 到 7 是预留位

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
				SEC	PER	CMA	FAB

为了锁住 ID Code B, SEC 出厂时已被熔断, 默认的 ID Code B 全为"FF"。要熔断 fuses,必须要按照下面的次序:

FAB - 锁住 Fab Code

CMA - 锁住 ID Code A

PER- 锁住剩余的配置区

如果不按照这个次序熔断 fuses,那肯定是错误的。

Fuse 访问权限表如下所示:

Zono	OP		Fu	se		
Zone	UP	SEC=0	FAB=0	CMA=0	PER=0	
Fab Code	R	Free	Free	Free	Free	
rab Code	W	Secure Code	Forbidden	Forbidden	Forbidden	
MTZ	R	Free	Free	Free	Free	
WIIZ	W	rree	rree	rree	rree	
ID Code	R	Free	Free	Free	Free	
A	W	Secure Code	Secure Code	Forbidden	Forbidden	
ID Code	R	Free	Free	Free	Free	
В	W	Forbidden	Forbidden	Forbidden	Forbidden	
Access	R	Free	Free	Free	Free	
Control	W	Secure Code	Secure Code	Secure Code	Secure Code	
AACx	R	Free	Free	Free	Free	
Cix	W	Secure Code	Secure Code	Secure Code	Forbidden	
SKx	R	Secure Code	Secure Code	Secure Code	Forbidden	
SIX	W	Secure code	Secure code	Secure code	rorpraden	
Secret	R	Secure Code	Secure Code	Secure Code	Forbidden	
secret	W	Secure code	Secure code	Secure code	rorbraden	
PW	R	Secure Code	Secure Code	Secure Code	Write PW	
ΓW	W	Secure code	Secure Code	secure code	write rw	
PAC	R	Free	Free	Free	Free	
FAC	W	Secure Code	Secure Code	Secure Code	Write PW	
User	R	AR	AR	AR	AR	

Zones	W		

说明:芯片默认是 SEC=0 对应的权限,如果 FAB 熔断,那么 FAB=0 对应的权限起效,如果 CMA 熔断,那么 CMA=0 对应的权限起效,如果 PER 熔断,那么 PER=0 对应的权限起效。

6 该芯片采用 2 线非标准 I2C 通信协议,操作命令如下所示:

Item	INS	P1	P2	Р3	Data(N)
Write user zone	\$B0	\$00	Addr	N<\$10	N bytes
Read user zone	\$B2	\$00	Addr	N	
Write conf zone	\$B4	\$00	Addr	N<\$10	N bytes
Write fuses	\$B4	\$01	FusesID	\$00	
Send checksum	\$B4	\$02	\$00	\$02	2 bytes
Set user zone	\$B4	\$03	Zone	\$00	
Read conf zone	\$B6	\$00	Addr	N	
Read fuses	\$B6	\$01	\$00	\$01	
Read checksum	\$B6	\$02	\$00	\$02	
verify auth	\$B8	\$OX	\$00	\$10	Q0+Q1(16bytes)
verify Encry	\$B8	\$1X	\$00	\$10	Q0+Q1(16bytes)
Verify W-PW	\$BA	\$OX	\$00	\$03	3 bytes pw
Verify R-PW	\$BA	\$1X	\$00	\$03	3 bytes pw

说明: 1、写操作之后要延时 10ms,verfiy auth 和 verify Encry 要延时 20ms。

- 2、Q0 为 8 个 byte 的随机数, Q1 是 F1 算法计算出来的 8 个 byte 数据。
- 3、W-PW 表示写密码, R-PW 表示读密码。

7 封装尺寸

1) SOP8

注尺寸	最小(mm)	最大(mm.)	标注 尺寸	最小(mm)	最大(mm)	
A	4.80	5.00	C3	0.05	0.20	
A1	0.356	0.456	C4	0.203	0.233	
A2	1.27	TYP	D	1.05TYP		
A3	0.345TYP		D1	0.40	0.80	
В	3. 80	4.00	R1	0.20TYP		
B1	5. 80	6.20	R2	0.20TYP		
B2	5.00TYP		θ1	17° TYP4		
С	1.30	1.60	θ2	13° TYP4		
C1	0.55	0.65	θ3	0° ~ 8°		
C2	0.55	0.65	θ4	4°	~ 12°	

2) DFN8

根注 尺寸	最小(mm)	标准(mm)	最大(mm)	标注	最小(mm)	标准(mm)	最大(mm)
A	0.70	0.75	0. 80	Е	2.90	3. 00	3. 10
A1		-	0.05	D2	1. 40	1.50	1.60
A3	0. 203 REF			E2	2. 20	2. 30	2.40
b	0.23	0.28	0. 33	e	0. 65 TYP		
D	2.90	3.00	3. 10	L	0. 25	0.30	0.35

