## **Analysis of Algorithms**

**Graph Algorithms** 

#### More Definitions

Tree: A subgraph is a tree if it is connected and removal of any one edge disconnects some pairs of vertices, i.e it is minimal connected graph.

Forest: A set of disjoint trees is called a forest.

#### **Breadth-First Tree**

- For a graph G = (V, E) with source s, the *predecessor* subgraph of G is  $G_p = (V_p, E_p)$  where
  - $V_{D} = \{ v \in V : \pi[v] \stackrel{?}{N}IL \} U\{s\}$
  - $E_p = \{ (\pi[v], v) \in E : v \in V_p \{s\} \}$
- The predecessor subgraph  $G_p$  is a *breadth-first tree* if:
  - $V_{D}$  consists of the vertices reachable from s and
  - for all  $v \in V_p$ , there is a unique simple path from s to v in  $G_p$  that is also a shortest path from s to v in G.
- The edges in  $E_p$  are called *tree edges*.  $|E_p| = |V_p| 1$

#### Intuition: Breadth-First Tree

- The predecessor pointers of the BFS define an inverted tree (an acyclic directed graph in which the source is the root, and every other node has a unique path to the root). If we make these edges bidirectional we get a rooted unordered tree called a BFS tree for G.
- There are potentially many BFS trees for a given graph, depending on where the search starts. These edges of G are called tree edges and the remaining edges of G are called cross edges.

#### **Shortest Paths**

- Shortest-Path distance d(s, v) from s to v is the minimum number of edges in any path from vertex s to vertex v, or else  $\infty$  if there is no path from s to v.
- A path of length d(s, v) from s to v is said to be a *shortest path* from s to v.

#### Lemmas

- Let G = (V, E) be a directed or undirected graph, and let  $s \in V$  be an arbitrary vertex. Then, for any edge  $(u,v) \in E$ ,  $d(s, v) \le d(s, u) + 1$ .
- Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex  $s \in V$ . Then upon termination, for each vertex  $v \in V$ , the value d[v] computed by BFS satisfies  $d[v] \ge d(s, v)$ .
- Suppose that during the execution of BFS on a graph G, the queue Q contains vertices  $(v_1, ..., v_r)$ , where  $v_1$  is the head of Q and  $v_r$  is the tail. Then,  $d[v_r] \le d[v_1] + 1$  and  $d[v_i] \le d[v_{i+1}]$  for i = 1, 2, ..., r-1.

### Depth-First-Search (DFS)

- Explore edges out of the most recently discovered vertex v
- When all edges of v have been explored, backtrack to explore edges leaving the vertex from which v was discovered (its predecessor)
- "Search as deep as possible first"
- Whenever a vertex v is discovered during a scan of the adjacency list of an already discovered vertex u,
  DFS records this event by setting predecessor π[v] to u.

### **Depth-First Trees**

- Coloring scheme is the same as BFS. The predecessor subgraph of DFS is  $G_p = (V, E_p)$  where  $E_p = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \ ^1 \text{ NIL}\}$ . The predecessor subgraph  $G_p$  forms a *depth-first forest* composed of several *depth-first trees*. The edges in  $E_p$  are called *tree edges*.
- Each vertex u has 2 *timestamps*: d[u] records when u is first discovered (grayed) and f[u] records when the search finishes (blackens). For every vertex u, d[u] < f[u].

## DFS(G)

- 1. for each vertex  $u \hat{I} V[G]$
- 2. do  $color[u] \leftarrow WHITE$
- 3.  $\pi[u] \leftarrow \text{NIL}$
- 4.  $time \leftarrow 0$
- 5. for each vertex  $u \hat{I} V[G]$
- 6. do if color[u] = WHITE
- 7. then DFS-Visit(u)

# DFS-Visit(u)

- 1.  $color[u] \leftarrow GRAY$  $\nabla$  White vertex u has been discovered
- 2.  $d[u] \leftarrow ++time$
- 3. for each vertex  $v \in Adj[u]$
- 4. do if color[v] = WHITE
- 5. then  $\pi[v] \leftarrow u$
- 6. DFS-Visit(v)
- 7. *color*[*u*] ← BLACK ∇ Blacken *u*; it is finished.
- 8.  $f[u] \leftarrow ++ time$

### **DFS** Example



**DFS** Example



**DFS** Example



**DFS** Example



**DFS** Example



**DFS** Example



1/20/2

# **DFS** Example



## **DFS** Example



## **DFS** Example



# **DFS** Example



# **DFS** Example



# **DFS** Example



## **DFS** Example



# **DFS** Example



1/20

### **DFS Example**



### **DFS** Example



DFS Example



Operations of DFS



### Analysis of DFS

- Loops on lines 1-2 & 5-7 take  $\Theta(V)$  time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex  $v \in V$  when it's painted gray the first time. Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is  $\sum_{v \in V} |Adj[v]| = \Theta(E)$
- Total running time of DFS is  $\Theta(V+E)$ .

Properties of DFS

- Predecessor subgraph  $G_p$  forms a forest of trees (the structure of a depth-first tree mirrors the structure of DFS-Visit)
- The discovery and finishing time have *parenthesis structure*, i.e. the parentheses are properly nested. (See the figures and next theorem)



#### **DFS & Parenthesis Lemma**



1/20/2003

#### Parenthesis Theorem

In any DFS of a graph G = (V, E), for any two vertices u and v, exactly one of the followings holds:

- the interval [d[u], f[u]] and [d[v], f[v]] are entirely disjoint
- the interval [d[u], f[u]] is contained entirely within the interval [d[v], f[v]], and u is a descendant of v in the depth-first tree, or
- the interval [d[v], f[v]] is contained entirely within the interval [d[u], f[u]], and v is a descendant of u in the depth-first tree

### Nesting of Descendent' Intervals

 Vertex v is a proper descendant of vertex u in the depth-first forest for a (direct or undirected) graph G if and only if d[u] < d[v] < f[v] < f[u]</li>

1/2

### DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
  - *Tree edge*: encounter new (white) vertex
  - *Back edge*: from descendent to ancestor
    - o Encounter a grey vertex (grey to grey)

1/2

## **DFS Example**



Tree edges Back edges

#### DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
  - *Tree edge*: encounter new (white) vertex
  - *Back edge*: from descendent to ancestor
  - Forward edge: from ancestor to descendent
    - o Not a tree edge, though
    - o From grey node to black node

**DFS** Example



Tree edges Back edges Forward edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
  - *Tree edge*: encounter new (white) vertex
  - Back edge: from descendent to ancestor
  - Forward edge: from ancestor to descendent
  - Cross edge: between a tree or subtrees
    - o From a grey node to a black node

**DFS** Example

source vertex d f 1 12 8 11 13 16 9 10 13 16

Tree edges Back edges Forward edges Cross edges

40 1/20

### DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
  - *Tree edge*: encounter new (white) vertex
  - *Back edge*: from descendent to ancestor
  - Forward edge: from ancestor to descendent
  - Cross edge: between a tree or subtrees
- Note: tree & back edges are important; most algorithms don't distinguish forward & cross

1/20/2003

### DFS: Kinds Of Edges

- Thm 23.9: If G is undirected, a DFS produces only tree and back edges
- Proof by contradiction:
  - Assume there's a forward edge
    - But F? edge must actually be a back edge (*why?*)



1/2

### **DFS: Kinds Of Edges**

- Thm 23.9: If G is undirected, a DFS produces only tree and back edges
- Proof by contradiction:
  - Assume there's a cross edge
    - o But C? edge cannot be cross:
    - must be explored from one of the vertices it connects, becoming a tree vertex, before other vertex is explored
    - So in fact the picture is wrong...both lower tree edges cannot in fact be tree edges



1/20/2003

### **DFS And Graph Cycles**

- Thm: An undirected graph is acyclic iff a DFS yields no back edges
  - If acyclic, no back edges (because a back edge implies a cycle
  - If no back edges, acyclic
    - No back edges implies only tree edges (Why?)
    - o Only tree edges implies we have a tree or a forest
    - Which by definition is acyclic
- Thus, can run DFS to find whether a graph has a cycle