In [1]:	<pre>import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge, Lasso from sklearn.model_selection import train_test_split</pre>
	from sklearn.metrics import accuracy_score, f1_score from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA First, we read the data and divide them into training and testing sets.
In [2]:	<pre># Load datasets X_all = pd.read_csv('train_X.csv') y_all = pd.read_csv('train_y.csv') X_all = X_all.set_index('Unnamed: 0')</pre>
In [3]:	<pre>y_all = y_all.set_index('Unnamed: 0') X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=0.2, random_state=42) y_train, y_test, y_all = y_train.values.ravel(), y_test.values.ravel() # Simple Logistic Regression</pre>
	<pre>lr = LogisticRegression(max_iter=1000) lr.fit(X_train, y_train) y_pred = lr.predict(X_test) lr_score = accuracy_score(y_test, y_pred) print(f'Logistic Regression Accuracy: {lr_score:.4f}') Logistic Regression Accuracy: 0.8427</pre>
In [4]:	<pre>models = { 'LogisticRegression, none': LogisticRegression(max_iter=1000, penalty=None), 'LogisticRegression, 11': LogisticRegression(max_iter=1000, penalty='11',solver='liblinear'), 'LogisticRegression, 12': LogisticRegression(max_iter=1000), 'RidgeRegression': Ridge(),</pre>
	<pre>'LassoRegression': Lasso(), 'LinearRegression': LinearRegression() # Train and evaluate models for name, model in models.items(): pipe = Pipeline([('scaler', scaler), ('model', model)]) pipe.fit(X_train, y_train) y_pred = pipe.predict(X_test) if name == 'LinearRegression':</pre>
	<pre>y_pred_binary = y_pred > y_pred.mean() else: y_pred_binary = y_pred > 0.5 print(f'{name} Accuracy: {accuracy_score(y_test, y_pred_binary):.4f}') print(f'{name} F1-score: {f1_score(y_test, y_pred_binary):.4f}\n') LogisticRegression, none Accuracy: 0.8090</pre>
	LogisticRegression, none F1-score: 0.8283 LogisticRegression, 11 Accuracy: 0.7865 LogisticRegression, 12 F1-score: 0.8190 LogisticRegression, 12 Accuracy: 0.8652 LogisticRegression, 12 F1-score: 0.8846 RidgeRegression Accuracy: 0.8427 RidgeRegression F1-score: 0.8600 LassoRegression Accuracy: 0.5955
In [5]:	LinearRegression Accuracy: 0.8090 LinearRegression F1-score: 0.8211 As shown above, logistic regression with L2 regularization is the best model, which gives us 0.8652 accuracy and 0.8846 F1-score. Then, we will change different C, the inverse of regularization strength, and find the best parameter. def run_pipeline(models, parameters):
	<pre>for model in models: for parameter in parameters[model][1]: pipe = Pipeline([('scaler', StandardScaler()), (model, models[model])]) score = eval(</pre>
In [6]:	<pre>models = { 'LogisticRegression_11': LogisticRegression(max_iter=1000, penalty='11',solver='liblinear'), 'LogisticRegression_12': LogisticRegression(max_iter=1000), 'RidgeRegression': Ridge(), 'LassoRegression': Lasso(), } parameters = { 'LogisticRegression_11': ['LogisticRegression_11C', [0.01, 0.1, 1, 10, 100]], 'LogisticRegression_12': ['LogisticRegression_12_C', [0.01, 0.1, 1, 10, 100]], 'RidgeRegression': ['RidgeRegression_alpha', [0.01, 0.1, 1, 10, 100]], 'LassoRegression': ['LassoRegression_alpha', [0.01, 0.1, 1, 10, 100]]</pre>
	<pre>run_pipeline(models, parameters) LogisticRegression_l1, C = 0.01 Accuracy: 0.4045 LogisticRegression_l1, C = 0.1 Accuracy: 0.8090 LogisticRegression_l1, C = 1 Accuracy: 0.7978 LogisticRegression l1, C = 10 Accuracy: 0.8427</pre>
	LogisticRegression_11, C = 100 Accuracy: 0.8202 LogisticRegression_12, C = 0.01 Accuracy: 0.8764 LogisticRegression_12, C = 0.1 Accuracy: 0.8652 LogisticRegression_12, C = 1 Accuracy: 0.8652 LogisticRegression_12, C = 10 Accuracy: 0.8539 LogisticRegression_12, C = 100 Accuracy: 0.8427 RidgeRegression, C = 0.01 Accuracy: 0.4358 RidgeRegression, C = 0.1 Accuracy: 0.4358 RidgeRegression, C = 10 Accuracy: 0.4358 RidgeRegression, C = 10 Accuracy: 0.4360 RidgeRegression, C = 100 Accuracy: 0.4378 LassoRegression, C = 0.01 Accuracy: 0.4258
In [7]:	LassoRegression, C = 0.1 Accuracy: 0.2913 LassoRegression, C = 1 Accuracy: -0.0036 LassoRegression, C = 10 Accuracy: -0.0036 LassoRegression, C = 100 Accuracy: -0.0036 models = {'LogisticRegression_12': LogisticRegression(max_iter=1000),} parameters = {'LogisticRegression_12': ['LogisticRegression_12_C', list(np.arange(0.001, 0.002))+list(np.arange(0.01, 0.1, 0.002))]}
	LogisticRegression_12, C = 0.001 Accuracy: 0.8652 LogisticRegression_12, C = 0.003 Accuracy: 0.8764 LogisticRegression_12, C = 0.005 Accuracy: 0.8764 LogisticRegression_12, C = 0.007 Accuracy: 0.8764 LogisticRegression_12, C = 0.009000000000000001 Accuracy: 0.8764 LogisticRegression_12, C = 0.009000000000000001 Accuracy: 0.8764 LogisticRegression_12, C = 0.01 Accuracy: 0.8764 LogisticRegression_12, C = 0.03 Accuracy: 0.8652 LogisticRegression_12, C = 0.0499999999999999999999999999999999999
In [8]:	<pre>Therefore, logistic regression with C=0.01 and L2 regularization is the best model. # Random Guessing y_pred_random = np.random.choice(y_train, len(X_test)) print(f'Randomized Labels Accuracy: {accuracy_score(y_test, y_pred_random):.4f}') print(f'Randomized Labels F1-score: {f1_score(y_test, y_pred_random):.4f}')</pre>
	Randomized Labels Accuracy: 0.4270 Randomized Labels F1-score: 0.5143 (0.8764 - 0.5618) / 0.8764 0.35896850753080783
In [10]:	The best model accuracy is 35.9% higher than the random guessing accuracy. Now we can discover the most affective genes in our best model. best_model = Pipeline([('scaler', StandardScaler()), ('LogisticRegression_12', LogisticRegression(max_iter=1000, C=0.01))]) best_model.fit(X_train, y_train) coefficients = best_model.named_steps['LogisticRegression_12'].coef_[0]
	Here is the top ten genes that positively correlated to the existance of III+ tumor. genes_with_coef = sorted(list(zip(coefficients, X_test.columns))) genes_with_coef[:-11:-1] [(0.024647265614741384, 'ENSG00000180316'),
Out[11]:	(0.020715829395190233, 'ENSG00000177947'), (0.019678486466877282, 'ENSG00000144290'), (0.017874001913765387, 'ENSG00000004848'), (0.017635169646164676, 'ENSG00000135116'), (0.017508176283146864, 'ENSG0000011201'), (0.017358809801370046, 'ENSG00000121351'), (0.017285261487871108, 'ENSG00000241598'), (0.017278837659291738, 'ENSG0000013559'), (0.016631639709927874, 'ENSG00000115507')] Also, we have the top ten genes that negatively correlated to the existance of III+ tumor.
<pre>In [12]: Out[12]:</pre>	<pre>genes_with_coef[:10] [(-0.023806659599672306, 'ENSG00000198812'), (-0.02232821204054895, 'ENSG00000204928'), (-0.019693255688116012, 'ENSG00000272804'), (-0.019349786939642163, 'ENSG00000212657'), (-0.01886339617463663, 'ENSG00000221813'), (-0.018452432760242596, 'ENSG00000183269'), (-0.018338500447524303, 'ENSG00000134443'),</pre>
T [40]	(-0.01820159842379354, 'ENSG00000244588'), (-0.018034199430935795, 'ENSG00000189280'), (-0.018014501784434967, 'ENSG00000176904')] In the following plot, we visualize the coefficients of each gene in our best model, where a negative value indicate negative correlation, and the absolute value indicates the importance.
In [13]:	<pre>plt.bar(range(len(coefficients)), sorted(coefficients)) plt.xlabel('Gene') plt.ylabel('Coefficient') plt.title('Gene Importance for Classification') plt.show()</pre> Gene Importance for Classification
	0.02 -
	0.00 - 0.
	-0.01 - -0.02 -
	0 2500 5000 7500 10000 12500 15000 17500 Gene
In [14]:	Using PCA, we can reduce the dimensionality to two, and visualize the patients in two colors. First, let's check the distribution of all data. # Apply PCA to reduce to 2 dimensions pca = PCA(n_components=2) X_pca = pca.fit_transform(X_all)
	<pre># Visualize the 2D projection sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=y_all, palette='coolwarm') plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') plt.title('PCA of Gene Expression Data') plt.show()</pre>
	PCA of Gene Expression Data 150 - 100 -
	Daircipal Component 2
	-50 -
	-100100 0 100 200 300 400 Principal Component 1
In [15]:	Then, we plot two graphs to compare the actual labels and our predictions. The result shows that most of our predictions are correct. # Perform PCA on the test data pca = PCA(n components=2)
	<pre>X_pca = pca.fit_transform(X_test) fig, axes = plt.subplots(1, 2, figsize=(14, 6)) # Plot the actual labels sns.scatterplot(ax=axes[0], x=X_pca[:, 0], y=X_pca[:, 1], hue=y_test, palette='coolwarm')</pre>
	<pre>axes[0].set_title('PCA of Gene Expression Data (Actual Labels)') axes[0].set_xlabel('Principal Component 1') axes[0].set_ylabel('Principal Component 2') # Plot the predicted labels y_pred = best_model.predict(X_test) sns.scatterplot(ax=axes[1], x=X_pca[:, 0], y=X_pca[:, 1], hue=y_pred, palette='coolwarm') axes[1].set_title('PCA of Gene Expression Data (Predicted Labels)') axes[1].set_xlabel('Principal Component 1') axes[1].set_ylabel('Principal Component 2')</pre>
	PCA of Gene Expression Data (Actual Labels) PCA of Gene Expression Data (Actual Labels) O O O
	20 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -
	Principal Component 2 Principal Component 2
	-50 - -100 -
	-75 -50 -25 0 25 50 75 100 -75 -50 -25 0 25 50 75 100 Principal Component 1 Principal Component 1
<pre>In [25]: Out[25]:</pre>	<pre># train the model with all data final_model = Pipeline([('scaler', StandardScaler()), ('LogisticRegression_12', LogisticRegression(max_iter=1000, C=0.01))]) final_model.fit(X_all, y_all) Pipeline</pre>
In [26]:	<pre>test_data = pd.read_csv('test_X.csv').set_index('Unnamed: 0') predictions = final_model.predict(test_data) output = pd.DataFrame({ 'ID': test_data.index,</pre>
	<pre>'xml_neoplasm_histologic_grade': predictions }) output.to_csv('predictions.csv', index=False, header=True)</pre>