

GODDARD
GRANT
N-63-CR

238800-2-T (Vol. I)

VOL. I

64274 p. 80

RoMPS CONCEPT REVIEW AUTOMATIC CONTROL OF SPACE ROBOT

M.E. DOBBS

OCTOBER 1991

Prepared for:
NASA Goddard Space Flight Center
Space Technology Division
Greenbelt, MD 20771

Contract No. NAG 5-1517

(NASA-CR-189796) RoMPS CONCEPT REVIEW
AUTOMATIC CONTROL OF SPACE ROBOT, VOLUME 2
(ERIM) 80 p CSCL 098

N92-18300

Unclassified
G3/63 0064274

RoMPS Electrical & Software Systems Drawing Index
Rev: 5/14/91

Page	No.	Date	Title
0.1			Drawing Index, 1/n
0.2			Drawing Index, 2/n
0.3			Drawing Index, 3/n
1.0			RoMPS Concept
1.1			Carrier Options
1.2			System Block Diagram
1.3.1			AEMS Software Block Diagram
1.3.2			Zymate Software Block Diagram
1.4.1			Schedule Examples 1/6
1.4.2			Schedule Examples 2/6
1.4.3			Schedule Examples 3/6
1.4.4			Schedule Examples 4/6
1.4.5			Schedule Examples 5/6
1.4.6			Schedule Examples 6/6
1.5.1			Experiment Examples 1/3
1.5.2			Experiment Examples 2/3
1.5.3			Experiment Examples 3/3
2.0			Hitchhiker Interface Requirements Summary
2.1			Operations Timeline
2.2.1			Telemetry Formats 1/3
2.2.1			Telemetry Formats 2/3
2.2.1			Telemetry Formats 3/3
2.3			Command Format
2.4			Power Budget
2.5			Weight Budget
3.0			Robot Mechanism Axis Block Diagram
3.1.1			PMC Inc. Motion Controller System
3.1.2			PMC Inc. Command Summary
3.1.3			PMC Inc. MC200 Servo Controller Block Diagram
3.1.4			NEC uPD7831xA 16-bit microcontroller
3.2.1			LM628629 Motion Controller IC (MC100 system)
3.2.2			LM628 Spec Summary
3.2.3			LM628 Analog Application
3.2.4			LM629 PWM Application
3.3			LM621 Brushless Motor Drive IC
3.4			AMC Inc. Servo Amplifier

RoMPS Electrical & Software Systems Drawing Index
Rev: 5/14/91

<u>Page</u>	<u>No.</u>	<u>Date</u>	<u>Title</u>
4.0			Theta Axis
5.0			Z Axis
6.0			Radial Axis
7.0			Grip Axis
8.0			Force Sensing Block Diagram
8.0.1			Specification
8.0.2			Interface Summary
8.1			Force Sensing Amplifier - Typical
9.0			Autonomous Experiment System Manager Block Diagram
9.0.1			Specification
9.0.2			Interface Summary
10.0			Autonomous Experiment System Manager Data Flow Diagrams
10.1			Top Level
10.1.0			Level 0
10.1.2			Process Command Packet
10.1.4			Process System Directive
10.1.6			Format Telemetry Packet
10.1.10			Get Experiment Data
10.1.11			Process Experiment Directive
10.2			
10.3			EasyLab Command Structure
10.4			EasyLab Implementation Options
10.9.1			VRTX Multi-Tasking Real-Time System
10.9.2			VRTX Multi-Tasking Real-Time Kernel
11.0			Zymate Robot Controller Block Diagram
11.0.1			Specification
11.0.2			Interface Summary
12.0			Zymate Robot Controller Data Flow Diagrams
12.1			Top Level
12.1.0			Level 0
12.2.0			Main Control
12.2.1			Peripheral Control
13.0			SC-4 Spacecraft Computer
13.1			Specification
13.2			Block Diagram

RoMPS Electrical & Software Systems Drawing Index
Rev: 5/14/91

Page	No.	Date	Title
14.0			Pyrometer Block Diagram
14.0.1			Specification
14.0.2			Interface Summary
15.0			Oven Control Block Diagram
15.0.1			Specification
15.0.2			Interface Summary Typical Approach PWM Controller Interface
16.0			Signal Conditioning Block Diagram
16.0.1			Specification
16.0.2			Interface Summary
16.1			Robot Thermistor Location YSI Linearized Calibration Curve
17.0			Power Distribution Block Diagram
17.0.1			Specification
17.0.2			Interface Summary
17.1			Grounding Diagram DC Current Monitor
18.0			Survival Heaters Block Diagram
15.0.1			Specification
15.0.2			Interface Summary Typical Circuit
19.0			Harness Block Diagram
20.0			SPRL Electronics Packaging Baseplate Assembly Stack Assembly Electronics Module Frame Stitchwire Board 2 Sided PCB
21.0			Performance Assurance Program
21.1			Verification Plan
21.2			Component Qualification Plan

System Concept

GAS CAN CONCEPT LAYOUT

CARRIER OPTIONS

HITCHHIKER-M

HITCHHIKER-G

PEI921121989

GAS Canister

Support Electronics Assembly

Hitchhiker Avionics

AUTONOMOUS EXPERIMENT MANAGEMENT SYSTEM

ZY-MATE CONTROLLER

ROMPS INITIAL CONFIGURATION

SHUTTLE PROBLEM CAUSE POSTPONEMENT OF OCT-12 EXPERIMENT

EXPERIMENTERS DISCOVER ANOMALIES BETWEEN IDENTICAL SAMPLES PROCESSED IN OVEN A AND OVEN B:
WANT LAST TWO PROCESS RUNS WITH NEW METHOD

SINGLE STEP IMMEDIATE COMMAND MODE

May 12 19:48 1991 process_method_a.zy Page 1

- EasyLabsyLab program PROCESS_METHOD_A
- This procedure processes a samples START.SAMPLE to END.SAMPLE,
- using annealing oven a and the processing parameters contained in ANNEALER.TEMPS and ANNEALER.TIMES.

- NOTE : WORKING.SAMPLE IS A LOCAL TYPE VARIABLE
- THE START.SAMPLE IS ASSUMED TO BE SET BY THE CALLING
- MODULE, THIS METHOD OF PARAMETER PASSING IS USED
- THROUGHOUT THIS PROGRAM

WORKING.SAMPLE = START.SAMPLE

- Get the sample to be processed
- NOTE SAMPLE.RACK.1.INDEX IS USED BY THE ROBOT MODULE
- TO DETERMINE THE SAMPLE WITHIN A RACK TO GET

SAMPLE.RACK.1.INDEX = WORKING.SAMPLE

GET.FROM.SAMPLE.RACK.1

- put the sample in the annealer

PUT.INTO.ANNEALER.A

- Set the temperature and time for the oven
- and anneal the sample

ANNEALER.A.TEMPERATURE = ANNEALER.TEMPS(WORKING.SAMPLE)

ANNEALER.A.TIME = ANNEALER.TIMES(WORKING.SAMPLE)

ANNEALER.A.TIMED.RUN

- Get the sample from the annealer

GET.FROM.ANNEALER.A

- Put the sample into the inspection station

PUT.INTO.INSPECTER

- Measure the sample

OBTAIN.SAMPLE.PROPERTIES

- Put Sample back into rack

PUT.INTO.SAMPLE.RACK.1

- Determine if we have processed all the samples

WORKING.SAMPLE = WORKING.SAMPLE.1

IF WORKING.SAMPLE <= END.SAMPLE THEN 10

May 12 19:48 1991 process_method_b.zy Page 1

- EasyLabsyLab program PROCESS_METHOD_A
- This procedure processes a samples START.SAMPLE to END.SAMPLE,
- using annealing oven b and the processing parameters contained in
- ANNEALER.TEMPS and ANNEALER.TIMES.

WORKING.SAMPLE = START.SAMPLE

- Get the sample to be processed

SAMPLE.RACK.1.INDEX = WORKING.SAMPLE
GET.FROM.SAMPLE.RACK.1

- put the sample in the annealer

PUT.INTO.ANNEALER.B

- Set the temperature and time for the oven
- and anneal the sample

ANNEALER.B.TEMPERATURE = ANNEALER.TEMPS(WORKING.SAMPLE)

ANNEALER.B.TIME = ANNEALER.TIMES(WORKING.SAMPLE)

ANNEALER.B.TIMED.RUN

- Get the sample from the annealer

GET.FROM.ANNEALER.B

- Put the sample into the inspection station

PUT.INTO.INSPECTER

- Measure the sample

OBTAIN.SAMPLE.PROPERTIES

- Put Sample back into rack

PUT.INTO.SAMPLE.RACK.1

- Determine if we have processed all the samples

WORKING.SAMPLE = WORKING.SAMPLE.1

IF WORKING.SAMPLE <= END.SAMPLE THEN 10

May 12 19:43 1991 process_method_c.zy Page 1

- EasyLabsyLab program PROCESS_METHOD_C
- This procedure processes a samples START.SAMPLE to END.SAMPLE,
- using annealing oven a and the processing parameters contained in
- ANNEALER.TEMPS and ANNEALER.TIMES. It processes the sample a second
- time using the same processing parameters but using oven b.

- This start the processing at the desired sample
WORKING.SAMPLE = START.SAMPLE

- Get the sample to be processed
SAMPLE.RACK.1.INDEX = WORKING.SAMPLE
GET.FROM.SAMPLE.RACK.1

- put the sample in the annealer
PUT.INTO.ANNEALER.A

- Set the temperature and time for the oven
- and anneal the sample
ANNEALER.A.TEMPERATURE = ANNEALER.TEMPS(WORKING.SAMPLE)
ANNEALER.A.TIME = ANNEALER.TIMES(WORKING.SAMPLE)
ANNEALER.A.TIMED.RUN

- Get the sample from the annealer
GET.FROM.ANNEALER.A

- Put the sample into the inspection station
PUT.INTO.INSPECTER

- Measure the sample
OBTAIN.SAMPLE.PROPERTIES

- put the sample in the annealer
PUT.INTO.ANNEALER.B

- Set the temperature and time for the oven
- and anneal the sample
ANNEALER.B.TEMPERATURE = ANNEALER.TEMPS(WORKING.SAMPLE)
ANNEALER.B.TIME = ANNEALER.TIMES(WORKING.SAMPLE)
ANNEALER.B.TIMED.RUN

May 12 19:43 1991 process_method_c.zy Page 2

```
- Get the sample from the annealer
GET.FROM.ANNEALER.B

- Put the sample into the inspection station
PUT.INTO.INSPECTER

- Measure the sample
OBTAIN.SAMPLE.PROPERTIES

- Put Sample back into rack
PUT.INTO.SAMPLE.RACK.1

- Determine if we have processed all the samples
WORKING.SAMPLE = WORKING.SAMPLE.1
IF WORKING.SAMPLE <= END.SAMPLE THEN 10
```

Hitchhiker Interface Requirements

Hitchiker Avionics Interface Requirements Summary

Bilevel Commands (+28V)

- bus A/B select
- oven enable
- processor restart
- system halt

Serial Command

- NONE

Asynchronous Uplink (RD)

- 1200 baud (1 start, 8 data, no parity, 1 stop)
- customer message - basic functions
- operating system commands
- experiment commands
- volume
- TBD Bytes/Hour

mission elapsed time (asynchronous or synchronous)

Asynchronous Downlink (SD)

- 1200 baud (1 start, 8 data, no parity, 1 stop)
- customer data - basic content
- operating system status
- experiment status
- volume
- TBD Bytes/Hour

Medium Rate Downlink

- NONE

PCM Telemetry

- NONE

Analog Data

- Experiment Total Current

Temperature Data

- SEA Baseplate
- GAS Structure
- GAS Heatsink

IRIG-B MET

- None

1 Minute Pulse

- None

Hitchiker Avionics Interface Requirements
Telemetry Format
1 Second Frame

Mnemonic	Description	Type	Len	Range
SYNC	sync	byte	8	
SYNC	sync	byte	8	
SYNC	sync	byte	8	
ID	frame identification	byte	8	
SEC	sec	byte	8	0-59
MIN	min	byte	8	0-59
HOUR	hour	byte	8	0-11
UDAY	1's day	byte	8	0-9
TDAY	10's day	byte	8	0-3
Manufacturing Control				
SLINE	schedule line number	byte	8	0-255
EXPID	experiment id	byte	8	0-255
ELINE	experiment line number	byte	8	0-255
SAMP	sample number	byte	8	0-255
Manufacturing Process				
	pyrometer output	intg	16	
	sample temp	real	16	
	lamp intensity	real	16	
	lamp current	real	16	
	lamp voltage	real	16	
Manufacturing Data				
	characterization output 1	real	16	
	characterization output 2	real	16	
	characterization output 3	real	16	
	characterization output 4	real	16	
Robot Status				
	Z position	intg	16	
	Theta position	intg	16	
	Radial position	intg	16	
	Gripper position	intg	16	
	Radial force	real	16	
	Gripper force	real	16	

Total Bytes

Hitchiker Avionics Interface Requirements
 Telemetry Format
 1 Minute Frame

Mnemonic	Description	Type	Len	Range
SYNC	sync	byte	8	
SYNC	sync	byte	8	
SYNC	sync	byte	8	
ID	frame identification	byte	8	
	Manufacturing Calibration			
	pyrometer calibration	intg	16	
	pyrometer calibration	intg	16	
	pyrometer calibration	intg	16	
	pyrometer calibration	intg	16	
	Operating System			
OPSTAT	processor status	byte	16	
OSSTAT	software status	byte	16	
	Robot Controller			
CPSTAT	processor status	byte	16	
CSSTAT	software status	byte	16	
	Current Monitors			
ZMIMON	Z motor	real	8	0-tbd amp
TMIMON	Theta motor	real	8	0-tbd
RMIMON	Radial motor	real	8	0-tbd
GMIMON	Gripper motor	real	8	0-tbd
CPU1IMON	processor 1	real	8	0-1
CPU2IMON	processor 2	real	8	0-1
	Temperature Monitors - Support Electronics Assembly			
PWRTMP	power distribution	real	8	-20 +60 °C
CPU1TMP	processor 1	real	8	-20 +60
CPU2TMP	processor 2	real	8	-20 +60
	Temperature Monitors - Get Away Special Container			
BPTMP	baseplate	real	8	-20 +60
RADTMP	radiator	real	8	-20 +60
OV1TMP	lamp 1	real	8	-20 +60
OV2TMP	lamp 2	real	8	-20 +60
ROBTMP	robot	real	8	-20 +60

Total Bytes

Hitchiker Avionics Interface Requirements
Telemetry Format
Alternate 1 Second Frame

Mnemonic	Description	Type	Len	Range
SYNC	sync	byte	8	
SYNC	sync	byte	8	
SYNC	sync	byte	8	
ID	frame identification	byte	8	
OPSTAT	Operating System			
	processor status	byte	16	
OSSTAT	software status	byte	16	
CPSTAT	Robot Controller			
	processor status	byte	16	
CSSTAT	software status	byte	16	
Data Field		byte	16	
<hr/>				
Total Bytes				

Hitchiker Avionics Interface Requirements

Asynchronous Command RD

Customer Message

- RoMPS payload command blocks will require one or more customer message packets.

Embedded within the HH specified customer message format will be a customer specified, generated and on-orbit processed command block protocol.

- Contents of customer data in customer messages:

customer protocol bytes
ASCII Strings (high level experiment language) or Binary Data (processor load)
terminator

PRELIMINARY

- User Interface Examples:

The schedule might look like this

DAY	GMT	EXP
-----	-----	-----

1	1300	01
1	1320	02
1	1900	05
2	2000	04

The contents of Experiment 01 might look like this:

```
WHILE N>10 .and. N<=20
DO MOVE.SAMPLE.N.OVEN
   PROCESS.N.OVEN.NORMAL
END
ENDWHILE
```

However, for engineering purposes the language supports the following:

MOVE.AXIS.name.position
STEP.axis.dir.distance.rate

Robot Axis Control Concepts

Servo Amplifier

Typical Robot Axis Mechanism

ENGINEER I. M. Tomko

DRAFTSMAN X. X. XXXXXX

XX/XX/XX

SPACE AUTOMATION & ROBOTICS CENTER
ENVIRONMENTAL RESEARCH INSTITUTE of MI
ANN ARBOR, MI

Robot Mechanism Axis Block Diagram
RoMPS
XXXXXXXXXXXX

XX/XX/XX
XX/XX/XX
05/14/91
DATE

ENGINEER	M.F.Dodds	DRAFTSMAN	X X XXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER		PMC Inc. Motion Controller	XX/XX/XX	
ENVIRONMENTAL RESEARCH INSTITUTE of MI		Robot Mechanism Axis Block Diagram	XX/XX/XX	
ANN ARBOR, MI		RoMPS	05/14/91	
			XXXXXXXXXXXX	DATE

COMMAND SET SUMMARYParameter Setup Commands

DH Define Home
 DI DIrection
 DS Deceleration Set
 FF Fall switch off
 FN Fall switch oN
 FR set derivatlve sampling period
 IL set Integration limit
 JA Jog Acceleration
 JF Jog swtich off
 JN Jog switch oN
 JV Jog Velocity
 LF Limit switch off
 LM Limit Mode
 LN Limit switch oN
 PH Set servo output PHase
 RC Reset Counter
 RT Reset seT
 SA Set Acceleration
 SD Set Derivative gain
 SG Set prop. Gain of motor
 SI Set Integral galn of DC servo or
 Set Initial pulse rate of stepper
 SQ Set torQue
 SV Set Velocity
 VG Set Velocity Gain

Motion Commands

AB ABort
 FE Find Edge
 FI Find Index
 GH Go Home
 GM Gain Mode
 OO OO
 HO HOMe
 MA Move Absolute
 MF Motor off
 MN Motor oN
 MR Move Relative
 PM Position Mode
 QM TorQue Mode
 SE Stop on Error
 SM Set Master
 ST STop
 VM Velocity Mode

Sequence Commands

IP Interrupt on absolute Position
 IR Interrupt on Relative position
 RP RePeat
 WA Wait (time)
 WE Wait for Edge
 WP Wait for absolute Position
 WR Wait for Relative position
 WS Wait for Stop

Register Command

AA Accumulator Add
 AC Accumulator Complement, blt wise
 AE Accumulator logical Exclusive or with n , bit wise
 AI Accumulator load Indirect
 AL Accumulator Load with constant n
 AN Accumulator logical aNd with n , bit wise
 AO Accumulator logical Or with n , bit wise
 AR copy Accumulator to Register n
 AS Accumulator Subtract
 RB Read Byte
 RL Read Long at absolute memory location n into accumulator
 RW Read Word at absolute memory location n into accumulator
 SL Shift Left -accumulator n bits
 SR Shlft Right accumulator n bits
 TR Tell contents of Register n
 Tell contents of accumulator (register 0)
 WB Write accumulator low Byte to absolute memory location n
 WL Write accumulator Long to absolute memory location n
 WW Write accumulator low Word to absolute memory location n

Learn Mode Commands

AP Adjust Position
 LI Learn position Incrementing
 LP Learn Position
 LT Learn Target
 MI Move to point, Incrementing
 MP Move to Point

Reporting Commands

CC Current Count
 CS Check Sum
 HE HElp
 TA Tell Analog to digital converter
 TD Tell Derivative gain
 TF Tell Following error
 TG Tell position Gain
 TI Tell Integral gain of DC servo or
 Tell Initial pulse rate of stepper
 TL Tell Integration Limit
 TP Tell Position
 TS Tell Status
 TT Tell Target
 TV Tell Velocity
 VE Tell VErsion

Contouring Mode Commands

CM Contouring Mode

Miscellaneous Commands

BK	Break
DM	Decimal Mode
HM	Hexidecimal Mode
NO	No Operation
SB	Select Bank

Macro Commands

EM Execute Macro
 MC Macro Command
 MD Macro Definition
 RM Reset Macros
 TM Tell Macros

PRECEDING PAGE BLANK NOT FILMED

NEC μPD7831xA 16-Bit Single-chip Microcomputer for Real-Time Control

Features

- Complete single-chip microcomputer
 - 16-bit ALU
 - 8K ROM (μPD78312A only)
 - 256 bytes RAM
 - 1-bit and 8-bit logic
- Instruction prefetch queue
- 16-bit unsigned multiply and divide
- String instructions
- Memory expansion
 - 8085A bus-compatible
 - Total 64K address space
- Large I/O capacity: up to 32 I/O port lines
- Extensive timer/counter system
 - Two 16-bit up/down counters
 - Quadrature counting
 - Two 16-bit timers
 - Free-running counter with two 16-bit capture registers
 - Pulse-width modulated outputs
 - Timebase counter
- Four-channel 8-bit A/D converter
- Two 4-bit real-time output ports
- Two nonmaskable interrupts
- Eight hardware priority interrupt levels
- Macroservice facility for interrupts gives the effect of eight DMA channels
- Bidirectional serial port
 - Either UART or interface mode
 - Dedicated baud rate generator
- Watchdog timer
- Refresh output for pseudostatic RAM
- Programmable HALT and STOP modes
- One-byte call instruction
- On-chip clock generator
- CMOS silicon gate technology
- +5-volt power supply

Block Diagram

ENGINEER	M.F.Dobbs	DRAFTSMAN	X X XXXXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER	NEC μPD7831xA 16-bit microcontroller		XX/XX/XX	
ENVIRONMENTAL RESEARCH INSTITUTE OF MI	Robot Mechanism Axis Block Diagram		XX/XX/XX	
ANN ARBOR, MI	ROMPS		05/14/91	DATE

FIGURE 1. Typical System Block Diagram

TL/H/9219-1

Features

- 32-bit position, velocity, and acceleration registers
- Programmable digital PID filter with 16-bit coefficients
- Programmable derivative sampling interval
- 8- or 12-bit DAC output data (LM628)
- 8-bit sign-magnitude PWM output data (LM629)
- Internal trapezoidal velocity profile generator
- Velocity, target position, and filter parameters may be changed during motion
- Position and velocity modes of operation
- Real-time programmable host interrupts
- 8-bit parallel asynchronous host interface
- Quadrature incremental encoder interface with index pulse input

ENGINEER M.F.Dodds	DRAFTSMAN X. X. XXXXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER ENVIRONMENTAL RESEARCH INSTITUTE of MI ANN ARBOR, MI	LM628629 Motion Controller IC (PC100 system; Robot Mechanism Axis Block Diagram RoMPS XXXXXXXXXXXX	XX/XX/XX XX/XX/XX 05/14/91
		DATE

TABLE I. System Specifications Summary

Position Range	-1,073,741,824 to 1,073,741,823 counts
Velocity Range	0 to $1,073,741,823/2^{16}$ counts/sample; ie, 0 to 16,383 counts/sample, with a resolution of $1/2^{16}$ counts/sample
Acceleration Range	0 to $1,073,741,823/2^{16}$ counts/sample/sample; ie, 0 to 16,383 counts/sample/sample, with a resolution of $1/2^{16}$ counts/sample/sample
Motor Drive Output	LM628: 8-bit parallel output to DAC, or 12-bit multiplexed output to DAC LM629: 8-bit PWM sign/magnitude signals
Operating Modes	Position and Velocity
Feedback Device	Incremental Encoder (quadrature signals; support for index pulse)
Control Algorithm	Proportional Integral Derivative (PID) (plus programmable integration limit)
Sample Intervals	Derivative Term: Programmable from $2048/f_{CLK}$ to $(2048 \cdot 256)/f_{CLK}$ in steps of $2048/f_{CLK}$ (256 to 65,536 μs for an 8.0 MHz clock). Proportional and Integral: $2048/f_{CLK}$

ENGINEER M.F.Dobbs	DRAFTSMAN X. X. XXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER	LM628 Spec Summary	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE of MI	Robot Mechanism Axis Block Diagram	XX/XX/XX
ANN ARBOR, MI	RoMPS	05/14/91
	XXXXXXXXXXXX	DATE

*DAC offset must be adjusted to minimize DAC linearity and monotonicity errors. See text.

FIGURE 14. Interfacing a 12-Bit DAC and LM628

TL/H/9219-16

ENGINEER	M.F.Dobbs	DRAFTSMAN	X. X. XXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER	LM628 Analog Application		XX/XX/XX	
ENVIRONMENTAL RESEARCH INSTITUTE of MI	Robot Mechanism Axis Block Diagram		XX/XX/XX	
ANN ARBOR, MI	RoMPS		05/14/91	
	XXXXXXXXXXXX			DATE

FIGURE 17. PWM Drive for Brushless Motors

TL/H/9219-19

ENGINEER	M.F.Dobbs	DRAFTSMAN	X.X.XXXXXXX	XX/XX/XX
		LM629 PWM Application		XX/XX/XX
		Robot Mechanism Axis Block Diagram		XX/XX/XX
		ROMPS		05/14/91
			XXXXXXXXXXXX	DATE

SPACE AUTOMATION & ROBOTICS CENTER
ENVIRONMENTAL RESEARCH INSTITUTE of MI
ANN ARBOR, MI

Connection Diagram

TL/H/8879-1

Order Number LM621N
See NS Package Number N18A

ENGINEER M.F.Dodds	DRAFTSMAN X.X.XXXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER	LM621 Brushless Motor Drive IC	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE of MI	Robot Mechanism Axis Block Diagram	XX/XX/XX
ANN ARBOR, MI	RoMPS	05/14/91
	XXXXXXXXXXXX	DATE

I	SW9	SW8	SW7	SW6	SW5	SW4
CURRENT MODE	ON	ON	OFF	OFF	OFF	ON
VELOCITY MODE	OFF	OFF	ON	ON	OFF	*
OPEN LOOP CONTR	ON	ON	OFF	OFF	ON	*

LED: GREEN - NORMAL OPERATION
RED - FAULT

SW1: ON - POT1 TEST INPUT
OFF - POT1 OFFSET ADJUSTMENT

SW10: ON - 120 DEGREE PHASING
OFF - 60 DEGREE PHASING

ENGINEER M.F.Dodds	DRAFTSMAN X.X. XXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER	AMC Inc. Servo Amplifier	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE OF MI	Robot Mechanism Axis Block Diagram	XX/XX/XX
ANN ARBOR, MI	ROMPS	05/14/91
	XXXXXXXXXXXX	DATE

Strain
Gauge
Location

ENGINEER L.M.Tomko	DRAFTSMAN X X XXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER	Force Sense Block Diagram	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE of MI	ROMPS	XX/XX/XX
ANN ARBOR, MI	XXXXXXXXXXXX	05/14/91
		DATE

Typical Robot Axis Strain Gauge Amplifier

Very Linear, low noise strain gauge circuit.

The four strain gauge elements (R) and the amplifiers A1 and A2 form a bridge network. The differential connection between the bridge network and amplifier A3 virtually eliminates the offset errors in A1 and A2. Positive feedback through Rx makes the effective input impedance of A3 greater than 1MΩ. The high impedance is used to reduce amplifier loading effects on the bridge circuit. The effects of both input offset and positive feedback resistance are described by the formulas below.

$$\text{Effect of } Rx: V_o = \frac{1}{2} \times R_2/R_1 \times \Delta R/R \times V_{ref}(1 - R_a/2R_1)^{-1}, \quad R_a = \begin{cases} -R & \text{Without } Rx \\ \Delta R & \text{Using } Rx = R_2 \end{cases}$$

$$\text{Effect of } V_{io}: V_o = \frac{1}{2} \times R_2/R_1 \times \Delta R/R \times [V_{ref} + V_{io(A1)} + V_{io(A2)}] - [1 + R_2/R_1] V_{io(A3)}$$

ENGINEER L.M.Tomko	DRAFTSMAN X.X XXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER	Force Sensing Amplifier-Typical	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE of MI	Force Sensing Block Diagram	XX/XX/XX
ANN ARBOR, MI	RoMPS	05/14/91
	XXXXXXXXXXXX	DATE

Autonomous Experiment Management System

Zymate Robot Controller

Southwest SC-4 Computer

AUTONOMOUS CONTROLLER

ENGINEER M.F.Dobbs	DRAFTSMAN X.X.XXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER ENVIRONMENTAL RESEARCH INSTITUTE of MI ANN ARBOR, MI	Autonomous Experiment System Manager Block Diagram RoPMS	XX/XX/XX 05/14/91
	XXXXXXXXXXXX	DATE

romps: level top

romps: level 0

romps: level 2

Format Telemetry Packet

SPARC
Space Automation
& Robotics Center

romps: level 4

Get Experiment Data

romps: level 6

Process Experiment Data

SPARC
Space Automation
& Robotics Center

romps: level 10

Process System Directives

romps: level 11

EasyLab™ Command Structure

SPARC
Space Automation & Robotics Center

*Not supported in SC-4 port.

IMPLEMENTATION OPTIONS FOR THE ROBOT MOVEMENT

EasyLab™ Language Interface.

PUT.INTO.ANNEALER

```
MOVE.IN.SAFE  
MOVE.ANNEALER  
MOVE.BELOW.ANNEALER  
MOVE.UP.INTO.ANNEALER
```

```
S:ALL.SPEED = 1.0  
S:THETA= SAFE.RADIAL  
S:RADIAL = ANNEALER.RADIAL  
S:Z= ANNEALER.HEIGHT  
S:THETA = S:THETA +  
         ANNEALER.THETA  
S:HEIGHT = UP.TO.ALLEALER
```

```
S:ALL.SPEED = 1.0  
S:THETA= SAFE  
MOVE.THETA  
S:RADIAL = ANNEALER.RADIAL  
S:Z= ANNEALER.HEIGHT  
MOVE.ALL  
S:THETA = S:THETA +  
         ANNEALER.THETA  
MOVE.THETA  
S:HEIGHT = UP.TO.ANNEALER  
MOVE.HEIGHT
```

```
MOVE "THETA", ALL.SPEED,  
      SAFE.THETA  
MOVE "RADIAL", ALL.SPEED,  
      ANNEALER.RADIAL  
MOVE "Z", ALL.SPEED,  
      ANNEALER.HEIGHT  
MOVE.REL "THETA", ALL.SPEED  
      BELOW.ANNEALER  
MOVE.REL "THETA", ALL.SPEED,  
      UP.ANNEALER
```

This implementation uses a set of "learned" absolute and relative positions. This method is supported and available in the current EasyLab™.
NOTE : As these positions are stored in the system data dictionary their values can be modified.

This implementation uses EasyLab™ Command Variables. Assignment to these variables causes the variable state to change and an action to occur. Again, this is still a method used and supported by EasyLab™.

This implementation uses command variables in a different manner than the current EasyLab™ robot movement language. Command variables do not cause the robot movement to occur. Instead, movement is initiated by a simple command which uses the previously set variable states as its inputs. This implementation would be easy to accomplish with the current EasyLab™ interpreter.

This implementation uses a currently unavailable zymate interpreter ability, parameter passing. There are no plans for this to be implemented in the port to the SC-4 system.

APPLICATION

RUN-TIME LIBRARY

VRTX32

IFX

INTERRUPT SERVICE ROUTINES AND DEVICE DRIVERS

HARDWARE

ENGINEER M.F.Dobbs	DRAFTSMAN X.X.XXXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER ENVIRONMENTAL RESEARCH INSTITUTE of MI ANN ARBOR, MI	VRTX Multi-Tasking Real-Time System AESM Data Flow Diagrams RoMPS	XX/XX/XX 05/14/91 XXXXXXXXXX
		DATE

Software

Hardware

VRTX32

User Supplied

Optional

ENGINEER M.F.Dobbs	DRAFTSMAN X.X.XXXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER ENVIRONMENTAL RESEARCH INSTITUTE of MI ANN ARBOR, MI	VRTX Multi-Tasking Real-Time Kernel AESM Data Flow Diagrams RoMPs	XX/XX/XX 05/14/91
	XXXXXXXXXXXX	DATE

ROBOT CONTROLLER

ENGINEER X.X.XXXXXXX	DRAFTSMAN X.X.XXXXXXX	XX/XX/XX XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER ENVIRONMENTAL RESEARCH INSTITUTE of MI ANN ARBOR, MI	Zymate Robot Controller Block Diagram RoMPS	XX/XX/XX 05/14/91 XXXXXXXXXXXX

zymate: level top

PRECEDING PAGE BLANK NOT FILMED

zymate: level 0

ZYMATE MAIN CONTROL
PROGRAM

ZYMATE PERIPHERAL CONTROL PROGRAM

**Preliminary Specification
SC-4 Single Board Spacecraft Computer**

Central Processor	80C186/80C187 16 Bit
Clock Frequency	10 MHz
Operating System	MS-DOS and VRTX Compatible
Onboard Memory	
RAM	512K Bytes w/EDC
EEPROM	256K Bytes
UVPROM	64K Bytes
Hardware Vectored Interrupts	16 User Configurable
Timer/Event Counters	6, Software Configurable, 120 ns Granularity
Input/Output Capability	
Parallel I/O	16 Input, 16 Output
Analog Input	32 Differential Channels, 12-bit Resolution,
Analog Output	4 Channels
RS-422 Serial I/O	2 Channels
SCSI Interface	1 Port
Mass Storage	24M Bytes, Read/Write Non-volatile
Expansion	Internal Daughterboard Connector
Size	7 X 12 X 2.25 in
Weight	5 Lb (Approximate)
Power	28v @ 5w (Approximate)

SC-4
SINGLE BOARD
SPACECRAFT COMPUTER
BLOCK DIAGRAM

Oven Control

Housekeeping Data

ENGINEER J. STEVENS SPACE PHYSICS RESEARCH LABORATORY COLLEGE OF ENGINEERING UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN	DRAFTER EGJ REK IF THERMAL CONTROLLER BLOCK DIAGRAM HRDI UARS PSE
	4/9/87 2/1/89 7/15/88
B-E8033	CONTROLLED

NOTE:
R43 TO R60 ARE
PRELIMINARY AND
VALUES ON 54.4.1

(R21, R22 NOT USED)

(B31 B32 NOT USED)

ENGINEER J STEVENS D.BOPRIE
SPACE PHYSICS RESEARCH LABORATORY
COLLEGE OF ENGINEERING
UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN

DRAFTSMAN M.F.
PSE INTERFACE
HTC
MRDI UARS PSE
B-F8353

54.3.2

GAS CAN CONCEPT LAYOUT

RESISTANCE VERSUS TEMPERATURE — 40° to +100°				
TEMP°C RES	TEMP°C RES	TEMP°C RES	TEMP°C RES	TEMP°C RES
-40 88.6K	-10 138.0K	+20 37.7K	+50 10.97K	+80 2.94K
30 780.8K	0 142.0K	20 34.7K	50 10.14K	80 2.60K
31 733.9K	1 135.2K	21 32.1K	51 9.60K	81 2.45K
32 700.2K	2 129.1K	22 29.7K	52 9.10K	82 2.37K
33 670.4K	3 123.0K	23 27.5K	53 8.60K	83 2.30K
34 641.0K	4 118.0K	24 25.4K	54 8.10K	84 2.22K
35 615.2K	5 113.0K	25 23.4K	55 7.60K	85 2.15K
36 591.4K	6 108.0K	26 21.5K	56 7.10K	86 2.07K
37 569.4K	7 103.0K	27 19.7K	57 6.60K	87 1.99K
38 549.2K	8 98.0K	28 18.0K	58 6.10K	88 1.91K
39 529.8K	9 93.0K	29 16.4K	59 5.60K	89 1.83K
40 511.4K	10 88.0K	30 14.9K	60 5.10K	90 1.75K
41 494.0K	11 83.0K	31 13.5K	61 4.60K	91 1.67K
42 477.7K	12 78.0K	32 12.2K	62 4.10K	92 1.60K
43 462.3K	13 73.0K	33 11.0K	63 3.60K	93 1.52K
44 447.8K	14 68.0K	34 9.9K	64 3.10K	94 1.44K
45 433.3K	15 63.0K	35 8.8K	65 2.60K	95 1.36K
46 419.8K	16 58.0K	36 7.7K	66 2.10K	96 1.28K
47 406.3K	17 53.0K	37 6.6K	67 1.60K	97 1.20K
48 393.8K	18 48.0K	38 5.5K	68 1.10K	98 1.12K
49 381.3K	19 43.0K	39 4.4K	69 5545	99 2151
50 369.8K	20 38.75K	40 3.3K	70 5359	+100 2049
51 358.3K	21 34.0K	41 2.2K	71 5180	
52 347.8K	22 29.3K	42 1.9K	72 5007	
53 337.3K	23 24.6K	43 1.6K	73 4832	
54 327.8K	24 19.9K	44 1.3K	74 4657	
55 318.3K	25 15.2K	45 1.0K	75 4482	
56 309.8K	26 10.5K	46 0.7K	76 4307	
57 301.3K	27 6.8K	47 0.4K	77 4132	
58 293.8K	28 3.1K	48 0.1K	78 3957	
59 286.3K	29 38.99K	49 11.39K	79 3780	
60 280.0K				

ENGINEER M.DOBBS	DRAFTSMAN M.F	6/10/87
SPACE PHYSICS RESEARCH LABORATORY	TEMPERATURE ALGORITHMS 2 OF 2	
COLLEGE OF ENGINEERING	INTERFEROMETER HOUSEKEEPING	
UNIVERSITY OF MICHIGAN	HRDI UARS	
ANN ARBOR, MICHIGAN	B-E8154	CONTROLLED
		DATE

YSI44032 - 30Kohm Thermistor

ENGINEER M00885	DRAFTSMAN WF	6/30/87	
SPACE PHYSICS RESEARCH LABORATORY COLLEGE OF ENGINEERING UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN	TEMPERATURE CALIBRATION CURVE INTERFEROMETER HOUSEKEEPING HRDI UARS		
		8/10/87	
		DATE	
B-E 8204	CONTROLLED		

* 1 %, 25 ppm TEMP COEFFICIENT

TYPICAL BIAS CIRCUIT

ENGINEER C.D.LEONARD
SPACE PHYSICS RESEARCH LABORATORY
COLLEGE OF ENGINEERING
UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN

DRAFTSMAN J.B. 4/24/85
TEMP MONITORS
INTERFEROMETER HOUSEKEEPING
HROI UARS
DATE
8/21/86
1/6/86
B-E7439 CONTROLLED

Power Distribution

SUPPORT ELECTRONICS ASSEMBLY

ENGINEER M. E. Dobbs	DRAFTSMAN X. X. XXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER		XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE of MI	Power Distribution Block Diagram	XX/XX/XX
ANN ARBOR, MI	ROMPS	05/14/91
	XXXXXXXXXXXX	DATE

ENGINEER L. M. Tomko	DRAFTSMAN X X XXXXXX	XX/XX/XX
SPACE AUTOMATION & ROBOTICS CENTER	Grounding Diagram	XX/XX/XX
ENVIRONMENTAL RESEARCH INSTITUTE of MI	Power Distribution Block Diagram	XX/XX/XX
ANN ARBOR, MI	RoMPS	05/14/91
	XXXXXXXXXXXX	DATE

NOTE:

- 1) NE556 VCCQ 10-6.2=3.8
GNDQ -12+6.2=5.8

 9.6 TOTAL

ENGINEER J. STEVENS D.BOPRIE	DRAFTSMAN R.K.	6/15/88
SPACE PHYSICS RESEARCH LABORATORY COLLEGE OF ENGINEERING UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN	IMON HTC HRDI UARS	2/1/89 7/15/88
	B-E8376 CONTROLLED	DATE

Space Physics Research Laboratory

Packaging Conventions

UNIT	110 TYPE	FUNCTION
INSTRUMENT ELECTRONICS ASSEMBLIES - INTERFACE	103100M-30P1-N0 DIV	
	103100M-373-18030 DIV	
BRACKET	103100M-373-18030 DIV	
	103100M-373-18017 DIV	

NOTE:
DISTRIBUTION OF
THIS CONFIDENTIAL
OPENING DOCUMENT
IS RESTRICTED TO
U.S. GOVERNMENT USE

8.6