1. Consider the following training set, in which each example has two tertiary attributes (0, 1, or 2) and one of two possible classes (*X* or *Y*).

Example	A_1	A_2	Class
1	0	1	X
2	2	1	X
3	1	1	X
4	0	2	X
5	1	2	Y
6	2	0	Y

- 1) What feature would be chosen for the split at the root of a decision tree using the information gain criterion? Show the details. (Note: we split attributes at each value of the attributes, for example, A_1 =0, A_1 =1, A_1 =2)
- 2) What would the Naïve Bayes algorithm predict for the class of the following new example? Show the details of the solution.

Example	A_1	A_2	Class
7	2	2	?

 Draw the decision boundaries for the nearest neighbor algorithm assuming that we are using standard Euclidean distance to compute the nearest neighbors.

- 4) Which of these classifiers will be the least likely to classify the following data points correctly? Please explain the reason.
 - a. ID3.
 - b. Naïve Bayes
 - c. Logistic Regression
 - d. KNN

$$H(D) = -\frac{4}{6}\log\frac{4}{6} - \frac{1}{6}\log\frac{7}{6}$$

$$= 0.918$$

$$H(D|A_1 > 0) = 0$$

$$H(D|A_1 > 1) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2}$$

$$= 1$$

$$H(D|A_1 > 2) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2}$$

$$= 1$$

$$\Rightarrow IG(D|A_1) = 0.251$$

2. 榕A.分.

1:0.585 > 0.以1 1:2号海择 A2 HD) = 0.918 HID | Az=0) = 0 HID | Az=1) = 0 HID | Az=2) = $-\frac{1}{2}\log \frac{1}{2} - \frac{1}{2}\log \frac{1}{2}$ = 1 = 1G(D|Az) = 0.918 - ($\frac{1}{6}\times 0 + \frac{2}{6}\times 0 + \frac{2}{6}\times 0 + \frac{2}{6}\times 1$) = 0.585

2) $C_{NB} = arg max P_{(C)} T_{i=1}^{d} P_{(X_{i}|C)}$ $P(X_{i}) = \frac{1}{2} P_{(A_{i}=2|X)} = \frac{1}{4} P_{(A_{i}=2|Y)} = \frac{1}{2}$ $P(Y_{i}) = \frac{1}{3} P_{(A_{i}=2|X)} = \frac{1}{4} P_{(A_{i}=2|Y)} = \frac{1}{2}$ $P(X_{i}) P_{(A_{i}=2|X)} P_{(A_{i}=2|Y)} P_{(A_{i}=2|Y)} = \frac{1}{2} \times 4 \times 4 = \frac{1}{24}$ $P(Y_{i}) P_{(A_{i}=2|Y)} P_{(A_{i}=2|Y)} = \frac{1}{3} \times \frac{1}{2} \times \frac{1}{2}$

> 朴素只叶斯积测治果为了

4· C. 此敬据补偿性可分价数据且数据量过为使用逻辑回回 易过批告. 2. You have trained a logistic classifier y=sigmoid($w_0+w_1x_1+w_2x_2$). Suppose w_0 =6, w_1 =-1, and w_2 =0. Which of the following figures represents the decision boundary found by your classifier?

3. Suppose we are given a dataset $D=\{(x^{(1)},r^{(1)}),...,(x^{(N)},r^{(N)})\}$ and aim to learn some patterns using the following algorithms. Match the update rule for each algorithm.

Algorithms:

Update Rules:

