Sistem Temu Kembali Informasi

"Model Sistem Temu Kembali Informasi (Vector Space Model)"

Course Outline

1. Pengantar Information Retrieval

2. Dokumen Preprocessing

3. Model Information Retrieval

4. Term Weighting

Course Outline

5. Search Engine Concepts 6. Index Ranking 7. Document Classification 8. Document Clustering

Course Outline

Buku Penunjang

Boolean Model

- Setiap 'term' hanya disimbolkan dengan
 - 1 : Muncul dalam dokumen
 - 0 : Tidak muncul dalam dokumen
- •Belum merepresentasikan informasi tentang frekuensi kemunculan kata, lokasi kata, atau urutan kemunculan kata.

	а	aardvark	abacus	abba	able	 zoom
doc_I	- 1	0	0	0	0	 1
doc_I doc_2	0	0	0	0	1	 1
::	::	::	::	::	::	 0
doc_m	0	0	1	1	0	 0

Vector Space Model

- Memodelkan 'term' kedalam ruang vektor.
- Setiap titik memiliki jarak dan arah di dalam ruang vektor

- Setiap kata (term) merupakan satu dimensi dalam ruang vektor.
- Setiap titik merupakan satu dokumen.
- Nilai vektor merepresentasikan jumlah kemunculan kata tertentu dalam dokumen tersebut

doc2: "man bite dog"
[0,1,1]

| doc1: "man bite dog"
[1,1,1]
| dog
| doc3: "dog bite"
[1,0,1]

Similarity

- Kemiripan dua vektor bisa dihitung dari seberapa dekat dua titik tersebut dalam ruang vektor.
- Salah satunya dengan menghitung jarak dengan euclidean distance.

$$sim(doc1, doc3)$$

= $-\sqrt{2^2 + 2^2 + 2^2}$
= $-\sqrt{12}$

• Memiliki kelemahan karena hanya menghitung kemiripan dari jumlah kemunculan kata.

Point	tea	me	two
doc1	2	0	2
doc2	2	1	0
doc3	0	2	0
doc4	5	0	7

Angular Similarity

Contoh penghitungan kemiripan lain adalah berdasarkan sudut diantara 2 vektor.

Point	tea	two
doc1	2	2
doc2	2	0
doc4	5	7

• Contoh perhitungn kemiripan dengan menghitung nilai cos dari sudut diantara dua vektor.

Similarity

$$\cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

$$\vec{x} = (1, 1, 1, 3, 0) \qquad \vec{y} = (0, 0, 0, 1, 1)$$

$$\vec{x} \cdot \vec{y} = 0 + 0 + 0 + 3 + 0 = 3$$

$$|\vec{x}| = \sqrt{1 + 1 + 1 + 9 + 0} = \sqrt{12}$$

$$|\vec{y}| = \sqrt{0 + 0 + 0 + 1 + 1} = \sqrt{2}$$

$$\cos(\vec{x}, \vec{y}) = \frac{3}{\sqrt{12} \times \sqrt{2}} = \frac{3}{\sqrt{24}} = 0.61$$

Document Ranking

- Misalkan q sebagai vector dari query dan (D1, D2,..., Dn) sebagai dokumen yang akan dibandingkan.
- Hitung nilai kemiripan kosinus q dengan setiap dokumen (D1, D2, ..., Dn)
- Urutkan dokumen berdasarkan nilai kemiripan yang dihasilkan.

Pengertian Vector Space Model (VSM) - (1)

- Vector Space Model (VSM) adalah model Information Retrieval yang berbasis token untuk memungkinkan partial matching dan pemeringkatan dokumen (pengindexan).
- •Atau model yang digunakan untuk mengukur kemiripan antara suatu dokumen dengan suatu query.
- Dengan prinsip dasar mengubah suatu dokumen menjadi kumpulan token-token.
- Query menjadi vector token yang berfungsi untuk mencari token yang berhubungan dengan melihat kesamaan vector dokumen dan query berdasarkan jarak vector.

Pengertian Vector Space Model (VSM) - (2)

- Query dan dokumen dianggap sebagai vector-vector pada ruang n-dimensi $d_i = (t_{i,1}, t_{i,2}, \ldots, t_{i,k})$, dimana t adalah jumlah dari seluruh term yang ada dalam leksikon.
- Leksikon adalah daftar semua term yang ada dalam indeks.
- •Untuk setiap term tidak hanya dilihat ada atau tidak ada dalam dokumen namun diberi bobot menggunakan scheme TF atau TF-IDF.
- TF-IDF merupakan skema pembobotan yang sering digunakan dalam Vector Space Model (VSM) bersama dengan cosine similarity untuk menentukan kesamaan antara dua buah dokumen.

Pembobotan Kata (TF-IDF) – (1)

- •TF –IDF mempertimbangakan frekuensi kata-kata yang berbeda dalam semua dokumen dan mampu membedakan dokumen. Dalam Vector Space Model (VSM), setipa vector disusun oleh term dan bobot yang mewakili dokumen.
- •Kesamaan dokumen dapat dinyatakan dengan sudut atau jarak antara vector, semakin kecil sudut atau jarak berarti semakin mirip dua dokumen tersebut.

Pembobotan Kata (TF-IDF) - (2)

- TF (Term Frequency) merupakan frekuensi kemunculan term (t) pada dokumen (d).
- OF (Document Frequency) merupakan banyaknya dokumen dimana suatu term (t) muncul. Atau sebuah dokumen yang mengandung term (t).
- IDF (Inverse Document Frequency)

Pembobotan Kata (TF-IDF) – (3)

• Rumus dari TF-IDF adalah sebagai berikut :

$$W_{t,d} = TF_{t,d} * IDF_t \tag{1}$$

Keterangan:

 $W_{t,d}$ = bobot dari t (term) dalam satu dokumen

 $TF_{t,d}$ = frekuensi kemunculan t (term) dalam dokumen d

 $IDF_t = Inverse document frequency, dimana$

$$IDF_t = \log\left(\frac{N}{n_t}\right) \tag{2}$$

Keterangan:

N = jumlah semua dokumen

 n_t = jumlah dokumen yang mengandung term t

Perankingan

- Prangkingan dilakukan untuk mengukur kemiripan antara vector query dan vector document yang akan dibandingkan.
- Salah satu metode yang biasa digunakan dalam perhitungan kemiripan adalah pengukuran cosine, yang menentukan sudut antara vector document dan vector query yang didefinisikan sebagai :

Similarity
$$(\vec{d}_{j}, \vec{q}) = \frac{\vec{d}_{j} \cdot \vec{q}}{|\vec{d}_{j}| \cdot |\vec{q}|} = \frac{\sum_{i=1}^{t} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^{t} w^{2}_{ij} \cdot \sum_{i=1}^{t} w^{2}_{iq}}}$$
 (3)

- \odot Dimana, $w_{q,t}$ adalah bobot dari *term (t)*, penyebut dalam persamaan ini disebut faktor normalisasi yang berfungsi untuk menghilangkan pengaruh panjang dokumen.
- Panjang dokumen cenderung memiliki nilai yang lebih besar karena memiliki frekuensi kemunculan kata yang besar pula.

Cosine Similarity – (1)

- Fungsi similarity adalah fungsi yang menerima dua buah objek dan mengembalikan nilai kemiripan (similarity) antara kedua objek tersebut berupa bilangan riil.
- •Umumnya, nilai yang dihasilkan oleh fungsi similarity berkisar pada interval [0...1]. Namun, ada juga yang menghasilkan nilai yang berada diluar interval tersebut. Maka untuk memetakannya dapat dilakukan normalisasi.
- Cosine similarity adalah perhitungan kesamaan antara dua vector n dimensi dengan mencari kosinus dari sudut diantara keduanya dan sering digunakan untuk membandingkan dokumen dalam text mining.

Cosine Similarity – (2)

• Berikut rumus Cosine Similarity :

Similarity
$$(x, y) = \cos(\theta) = \frac{x \cdot y}{\|x\| \|y\|}$$
 (4)

Dimana:

x.y : vector dot product dari x dan y, dihitung dengan $\sum_{k=1}^{n} x_k y_k$ (5)

||x|| : panjang vektor x, dihitung dengan $\sum_{k=1}^{n} x_k^2$ (6)

)

||y||: panjang vektor y, dihitung dengan $\sum_{k=1}^{n} y_k^2$ (7)

Cosine Similarity – (3)

- Semakin besar hasil fungsi similarity, maka kedua objek yang dievaluasi dianggap semakin mirip. Sebaliknya, jika semakin kecil hasil fungsi similarity, maka kedua objek tersebut dianggap semakin berbeda.
- Pada fungsi yang menghasilkan nilai pada jangkauan [0...1], nilai 1 melambangkan kedua objek persis sama, sedangkan nilai 0 melambangkan kedua objek sama sekali berbeda.

Contoh Perhitungan - (1)

Data yang digunakan dalam penelitian ini terdiri dari 12 hama dan 11 penyakit tanaman padi dengan total jumlah gejala sebanyak 48 dalam 3 fase tanam. Untuk proses identifikasi *input*, 48 gejala yang ada akan melalui tahap *preprocessing* untuk dihitung kemiripan dengan *query*. Gejala yang ada direpresentasikan sebagai dokumen dengan kode G1, G2, ..., Gn dan *query user* juga akan dianggap sebagai dokumen pembanding dengan kode Q. Kemudian dilakukan tahap *preprocessing* sebagai berikut :

Menghapus format dan *markup* dalam gejala, kemudian dari tiap gejala dilakukan tokenisasi, yaitu memisahkan tiap kata dalam kalimat, selanjutnya dilakukan *filtering* untuk menghilangkan kata-kata sambung seperti "di", "atau", "seperti" dan lain-lain. Lalu tiap kata akan di*stemming* dimana akan dihilangkan semua imbuhan yang melekat pada kata, seperti awalan dan akhiran.

Contoh:

G1: Daun berwarna kuning

G2: Daun berwarna putih

G3: Batang berwarna kuning

Q: Daun kuning

Menjadi:

Daun, hijau, kuning, putih, dan batang.

Setelah didapatkan daftar *term*, kemudian dilakukan pembobotan dengan menghitung jumlah frekuensi

kemunculan (tf) dan idf dengan rumus $IDF_t = \log\left(\frac{N}{d_f}\right)$,

dimana N adalah jumlah keseluruhan gejala dan *query* dan df adalah jumlah gejala dan *query* yang memiliki *term* t.

Contoh Perhitungan – (2)

Tabel 1. Perhitungan tf dan idf

Term	Q	G1	G2	G3	$IDF\left(\log\frac{N}{df}\right)$
Batang	0	0	0	1	$\log\left(\frac{4}{1}\right) = 0.60$ 206
Daun	1	1	1	0	$\log\left(\frac{4}{3}\right) = 0.12$ 494
Kuning	1	1	0	1	$\log\left(\frac{4}{3}\right) = 0.12$ 494
Putih	0	0	1	0	$\log\left(\frac{4}{1}\right) = 0.60$ 206
Warna	0	1	1	1	$\log\left(\frac{4}{3}\right) = 0.12$ 494

Kemudian dihitung bobotnya menggunakan rumus TFxIDF:

Tabel 2. Perhitungan pembobotan

Term	Q	G1	G2	G3
Batang	0	0	0	0.60206
Daun	0.12494	0.12494	0.12494	0
Kuning	0.12494	0.12494	0	0.12494
Putih	0	0	0.60206	0
Warna	0	0.12494	0.12494	0.12494

Contoh Perhitungan – (3)

Kemudian dilakukan normalisasi sebagai berikut :

- Menghitung perkalian skalar antar bobot hitung dengan rumus $\sum_{t=1}^{v} w_{q,t} * w_{i,t}$ dan panjang vektor $\sqrt{\sum_{t=1}^{v} w_{q,t}^2}$

Tabel 3. Hasil perhitungan panjang vektor

Term	Q	G1	G2	G3
Batang	0	0	0	0.362476
Daun	0.01561	0.01561	0.01561	0
Kuning	0.01561	0.01561	0	0.01561
Putih	0	0	0.362476	0
Warna	0	0.01561	0.01561	0.01561
Jumlah	0.03122	0.04683	0.393696	0.393696
Akar	0.176692	0.216402	0.627452	0.627452

Hasil cosine
$$(\overrightarrow{G}_{\iota}, \overrightarrow{q}) = \frac{\overrightarrow{G}_{\iota}.\overrightarrow{q}}{|\overrightarrow{G}_{\iota}|.|\overrightarrow{q}|} = \frac{\sum_{i=1}^{t} (w_{ij}.w_{iq})}{\sqrt{\sum_{i=1}^{t} w^{2}_{ij}.\sum_{i=1}^{t} w^{2}_{iq}}}$$

$$G1 = \frac{0.03122}{0.176692 \times 0.216402} = \frac{0.03122}{0.038237} = 0,816497$$

$$G2 = \frac{0.01561}{0.176692 * 0.627452} = \frac{0.01561}{0.110866} = 0,14080$$

$$G3 = \frac{0.01561}{0.176692*0.627452} = \frac{0.01561}{0.110866} = 0.14080$$

Dari hasil ini didapatkan bahwa gejala yang paling mewakili maksud dari *input user* yang berupa gejala daun kuning adalah G1 yaitu gejala daun berwarna kuning dengan nilai kemiripan sebesar 0,816497.

Contoh Perhitungan – (4)

Hasil akhir perhitungan kemiripan antar *query* dan gejala akan dianggap sebagai *feedback*. Berikut ini adalah tahap-tahap identifikasi penyakit :

 Melakukan transformasi biner, hasil perankingan dan penyakit yang ada ditransformasikan menjadi biner, dimana tiap gejala yang berupa hasil identifikasi input sebelumnya akan diberi nilai 1 dan yang lain diberi nilai biner 0.

Tabel 5. Contoh transformasi biner untuk *feedback* serta hama wereng coklat dan hama putih palsu

	Gejala				
Hama atau penyakit	Daun warna kuning	Daun berwarna putih	Daun berwarna hijau tua	Batang berwarna kuning	
Hama wereng coklat	Ada	Tidak	Tidak	Ada	
Hama wereng coklat (t)	1	0	0	1	
Hama putih palsu	Tidak	Ada	Tidak	Tidak	
Hama putih palsu (t)	0	1	0	0	
Feedback	Ya	Tidak	Ya	Ya	
Feedback (t)	1	0	1	1	

Ket: (t) merupakan hasil tranformasi biner.

Contoh Perhitungan – (5)

Menghitung nilai cosine similarity untuk deteksi penyakit.

Contoh:

X = 1,0,0,1 (hasil transformasi biner untuk hama wereng coklat)

Y = 1,0,1,1 (hasil transformasi biner *feedback*)

$$X.Y = (1 * 1) + (0 * 0) + (0 * 1) + (1 * 1)$$

= 1 + 0 + 0 + 1 = 2

$$||x|| = \sqrt{1^2 + 0^2 + 0^2 + 1^2} = \sqrt{2} = 1,41421$$

$$||y|| = \sqrt{1^2 + 0^2 + 1^2 + 1^2} = \sqrt{3} = 1,73205$$

$$cos(x,y) = \frac{x.y}{\|x\|.\|y\|} = \frac{2}{1,41421.1,73205}$$
$$= \frac{2}{2,44729} = 0,816499$$

Sehingga didapat hasil *similarity* antara hama wereng coklat dan *feedback* adalah sebesar 0,816499.

Kelebihan & Kekurangan Vector Space Model (VSM)

Kelebihan

- Adanya peringkat pengambilan informasi
- Menampilkan referensi yang sesuai kebutuhan
- Penyocokan secara partial

Kekurangan

- Menganggap informasi adalah independen
- Bobot permasalahan (istilah) tidak lagi diperlukan

Thanks!

Any questions?