Figure 4 RAPseq

Qun Li

2 Sep 2024 (10:40:08)

Contents

0.1	ENV se	ttings	1
0.2	R libra	ies	2
0.3	Color s	ettings	7
0.4	Load d	uta	7
0.5	Figures		7
	0.5.1	Figure 4A	7
	0.5.2	Figure 4B	10
	0.5.3	Figure 4E	14
	0.5.4	Figure 4F	18
	0.5.5	Figure S4A	20
	0.5.6	Figure S4B	22
	0.5.7	Figure S4C	24
	0.5.8	Figure S4D	26
	0.5.9	Figure S4E right	29
	0.5.10	Figure S4F	31
	0.5.11	Figure S4G	33

0.1 ENV settings

```
###
# @Description: Figure4
# @Description: Adapted from https://github.com/IonutAtanasoai1/RAPseq
# @Author: LiQun
# @Email: qun.li@ki.se
# @Date: 2 Sep 2024 ( 10:40:08 )
###
rm(list = ls())
setwd("/Users/liqun/Desktop/Projects/RAPseq/AnalysisQun/")
```

0.2 R libraries

```
library(ChIPpeakAnno)
## Loading required package: IRanges
## Loading required package: BiocGenerics
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
##
      IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
      anyDuplicated, aperm, append, as.data.frame, basename, cbind,
##
      colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
##
      get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
      match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
##
      Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
      table, tapply, union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:utils':
##
## The following objects are masked from 'package:base':
##
      expand.grid, I, unname
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Warning: package 'GenomeInfoDb' was built under R version 4.3.3
library(edgeR)
## Loading required package: limma
## Attaching package: 'limma'
## The following object is masked from 'package:BiocGenerics':
##
      plotMA
library(ggfortify)
## Loading required package: ggplot2
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v lubridate 1.9.3 v tibble
                                 3.2.1
                      v tidyr
## v purrr
            1.0.2
                                  1.3.1
## -- Conflicts ----- tidyverse_conflicts() --
## x lubridate::%within%() masks IRanges::%within%()
## x dplyr::collapse() masks IRanges::collapse()
## x dplyr::filter()
                    masks stats::filter()
```

```
masks S4Vectors::first()
## x dplyr::first()
## x dplyr::lag()
                           masks stats::lag()
                           masks BiocGenerics::Position(), base::Position()
## x ggplot2::Position()
## x purrr::reduce()
                           masks GenomicRanges::reduce(), IRanges::reduce()
                           masks S4Vectors::rename()
## x dplyr::rename()
## x lubridate::second() masks S4Vectors::second()
## x lubridate::second<-() masks S4Vectors::second<-()</pre>
## x dplyr::slice()
                           masks IRanges::slice()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(scales)
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
##
       discard
## The following object is masked from 'package:readr':
##
##
       col_factor
library(ggplot2)
library(dendextend)
##
## -----
## Welcome to dendextend version 1.17.1
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
##
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## You may ask questions at stackoverflow, use the r and dendextend tags:
##
    https://stackoverflow.com/questions/tagged/dendextend
##
## To suppress this message use: suppressPackageStartupMessages(library(dendextend))
##
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:stats':
##
##
       cutree
library(dichromat)
library(reshape2)
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
##
       smiths
library(dplyr)
library(stringr)
```

```
library(GenomicRanges)
library(GenomicFeatures)
## Warning: package 'GenomicFeatures' was built under R version 4.3.3
## Loading required package: AnnotationDbi
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
       'browseVignettes()'. To cite Bioconductor, see
##
##
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
##
## Attaching package: 'AnnotationDbi'
##
## The following object is masked from 'package:dplyr':
##
##
       select
library(gplots)
## Attaching package: 'gplots'
## The following object is masked from 'package: IRanges':
##
##
       space
##
## The following object is masked from 'package:S4Vectors':
##
##
       space
##
## The following object is masked from 'package:stats':
##
##
       lowess
library(clusterProfiler)
## Warning: package 'clusterProfiler' was built under R version 4.3.3
##
## clusterProfiler v4.10.1 For help: https://yulab-smu.top/biomedical-knowledge-mining-book/
##
## If you use clusterProfiler in published research, please cite:
## T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu.
## Attaching package: 'clusterProfiler'
## The following object is masked from 'package: Annotation Dbi':
##
##
       select
##
## The following object is masked from 'package:purrr':
##
##
       simplify
##
## The following object is masked from 'package: IRanges':
##
##
       slice
```

```
## The following object is masked from 'package:S4Vectors':
##
       rename
##
## The following object is masked from 'package:stats':
##
##
       filter
library(org.Hs.eg.db)
library(org.Dr.eg.db)
##
library(tidyr)
library(gtools)
library(ggrepel)
library(ggbeeswarm)
library(ReactomePA)
## ReactomePA v1.46.0 For help: https://yulab-smu.top/biomedical-knowledge-mining-book/
##
## If you use ReactomePA in published research, please cite:
## Guangchuang Yu, Qing-Yu He. ReactomePA: an R/Bioconductor package for reactome pathway analysis and
library(VennDiagram)
## Loading required package: grid
## Loading required package: futile.logger
## Attaching package: 'futile.logger'
##
## The following object is masked from 'package:gtools':
##
##
       scat
##
##
## Attaching package: 'VennDiagram'
## The following object is masked from 'package:dendextend':
##
##
       rotate
library(LSD)
library(gridExtra)
## Attaching package: 'gridExtra'
## The following object is masked from 'package:Biobase':
##
##
       combine
##
## The following object is masked from 'package:dplyr':
##
       combine
## The following object is masked from 'package:BiocGenerics':
##
##
       combine
```

```
library(UpSetR)
library(ggpubr)
##
## Attaching package: 'ggpubr'
##
## The following object is masked from 'package: VennDiagram':
##
##
       rotate
##
## The following object is masked from 'package:dendextend':
##
       rotate
library(GenomicScores)
## Attaching package: 'GenomicScores'
## The following object is masked from 'package:utils':
##
##
       citation
library(phastCons7way.UCSC.hg38)
## Warning: replacing previous import 'utils::findMatches' by
## 'S4Vectors::findMatches' when loading 'phastCons7way.UCSC.hg38'
library(phastCons100way.UCSC.hg38)
## Warning: replacing previous import 'utils::findMatches' by
## 'S4Vectors::findMatches' when loading 'phastCons100way.UCSC.hg38'
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.3.3
## corrplot 0.94 loaded
library(ggforce)
library(idr)
library(GGally)
## Registered S3 method overwritten by 'GGally':
##
    method from
   +.gg ggplot2
library(eulerr)
## Registered S3 method overwritten by 'eulerr':
## method from
   plot.venn gplots
##
## Attaching package: 'eulerr'
## The following object is masked from 'package:gplots':
##
##
       venn
library(ggseqlogo)
library(robustbase)
## Warning: package 'robustbase' was built under R version 4.3.3
## Attaching package: 'robustbase'
## The following object is masked from 'package:Biobase':
##
##
       rowMedians
```

```
library(rrvgo)
## Warning: package 'rrvgo' was built under R version 4.3.3
```

0.3 Color settings

0.4 Load data

0.5 Figures

0.5.1 Figure 4A

```
# HUR
HUR_selected_forPlot <- HUR[,c(1,7,8,4:6)]
HUR_selected_forPlot$Summit_start <- HUR_selected_forPlot$Summit_start - 50
HUR_selected_forPlot$Summit_end <- HUR_selected_forPlot$Summit_end + 50
# PTBP1
PTBP1_selected_forPlot <- PTBP1[,c(1,7,8,4:6)]</pre>
```

```
PTBP1_selected_forPlot$Summit_start <- PTBP1_selected_forPlot$Summit_start - 50
PTBP1_selected_forPlot$Summit_end <- PTBP1_selected_forPlot$Summit_end + 50
HUR GRanges <- makeGRangesFromDataFrame(HUR selected forPlot)</pre>
PTBP1_GRanges <- makeGRangesFromDataFrame(PTBP1_selected_forPlot)</pre>
# uniq and common
HUR GRanges uniq <- unique(HUR[-as.data.frame(findOverlaps(HUR GRanges,PTBP1 GRanges,type = "any"))[,1]
HUR_PTBP1_GRanges_common <- as.character(seq(1,nrow( as.data.frame(findOverlaps(HUR_GRanges,PTBP1_GRang
HUR_GRanges_merge <- c(HUR_GRanges_uniq,HUR_PTBP1_GRanges_common)</pre>
PTBP1_GRanges_uniq <- unique(PTBP1[-as.data.frame(findOverlaps(HUR_GRanges,PTBP1_GRanges,type = "any"))
PTBP1_GRanges_merge <- c(PTBP1_GRanges_uniq, HUR_PTBP1_GRanges_common)
HUR_PTBP1_GRanges_list <- list(HUR_GRanges_merge, PTBP1_GRanges_merge)</pre>
names(HUR_PTBP1_GRanges_list) <- c("HuR", "Ptbp1")</pre>
# plot
HUR_PTBP1_overlaps_forPlot <- euler(HUR_PTBP1_GRanges_list, shape="circle")</pre>
HUR overlaps <- HUR[as.data.frame(</pre>
  findOverlaps(HUR_GRanges, PTBP1_GRanges, type = "any"))[,1],
  "Summit start"]
PTBP1_overlaps <- PTBP1[as.data.frame(</pre>
  findOverlaps(HUR GRanges, PTBP1 GRanges, type = "any"))[,2],
  "Summit start"]
#pdf("./Figure/Figure4/Figure4A_1.pdf", width = 8, height = 5)
plot(HUR_PTBP1_overlaps_forPlot, fills=c("white", "white", "#f6e8c3"),
     quantities=TRUE, edges=T, col=c(acqua_greens[c(3,8)]), lwd=4)
```


bw = 0.15

log10(distance between binding sites)

#dev.off()

0.5.2 Figure 4B

```
# extract 2 replicates
HUR_replicates <- HUR[as.data.frame(findOverlaps(HUR_GRanges, PTBP1_GRanges, type = "any"))[,1],][,c("R</pre>
PTBP1_replicates <- PTBP1[as.data.frame(findOverlaps(HUR_GRanges, PTBP1_GRanges, type = "any"))[,2],][,
HUR_comp <- HUR_replicates[log10(abs(PTBP1_overlaps-HUR_overlaps)+1)<1.492,]</pre>
PTBP1_comp <- PTBP1_replicates[log10(abs(PTBP1_overlaps-HUR_overlaps)+1)<1.492,]
HUR_rep1 <- HUR_comp$Rep1</pre>
HUR_rep2 <- HUR_comp$Rep2</pre>
PTBP1_rep1 <- PTBP1_comp$Rep1
PTBP1_rep2 <- PTBP1_comp$Rep2
# merge two data
HUR_PTBP1_tworeplicates <- data.frame(HUR_rep1, HUR_rep2, PTBP1_rep1, PTBP1_rep2)</pre>
# DEG analysis
group \leftarrow c(1,1,2,2)
DEG_data <- DGEList(counts=HUR_PTBP1_tworeplicates, group = group)</pre>
design <- model.matrix(~group)</pre>
DEG_data <- estimateDisp(DEG_data,design)</pre>
```

```
fit <- glmQLFit(DEG_data, design)</pre>
qlf <- glmQLFTest(fit)</pre>
DEG_data_table <-qlf$table</pre>
DEG_data_table$p.adjust <- -log10(p.adjust(DEG_data_table$PValue, method = "BH"))
DEG_data_table$PValue <- -log10(DEG_data_table$PValue)</pre>
# HUR PTBP1 tworeplicates
HUR_PTBP1_tworeplicates$HuR <- log2((HUR_PTBP1_tworeplicates$HUR_rep1 + HUR_PTBP1_tworeplicates$HUR_rep
HUR_PTBP1_tworeplicates$PTBP1 <- log2((HUR_PTBP1_tworeplicates$PTBP1_rep1 + HUR_PTBP1_tworeplicates$PTB</pre>
HUR_PTBP1_tworeplicates$delta_BS <- abs(HUR_PTBP1_tworeplicates$HuR - HUR_PTBP1_tworeplicates$PTBP1)</pre>
HUR_PTBP1_tworeplicates$FDR <- DEG_data_table$p.adjust</pre>
HUR_PTBP1_tworeplicates$Significant <- HUR_PTBP1_tworeplicates$FDR >= 1.30103
HUR_PTBP1_tworeplicates$logFC <- DEG_data_table$logFC</pre>
HUR_PTBP1_tworeplicates$HuR_won <- HUR_PTBP1_tworeplicates$logFC <= -1 & HUR_PTBP1_tworeplicates$FDR >=
HUR_PTBP1_tworeplicates$PTBP1_won <- HUR_PTBP1_tworeplicates$logFC >= 1 & HUR_PTBP1_tworeplicates$FDR >
HUR_PTBP1_tworeplicates$DiffBind <- paste(HUR_PTBP1_tworeplicates$HuR_won,HUR_PTBP1_tworeplicates$PTBP1
HUR_PTBP1_tworeplicates$DiffBind <- gsub("FALSE_FALSE", "N.S.", HUR_PTBP1_tworeplicates$DiffBind)
HUR_PTBP1_tworeplicates$DiffBind <- gsub("FALSE_TRUE", "PTBP1", HUR_PTBP1_tworeplicates$DiffBind)
HUR_PTBP1_tworeplicates$DiffBind <- gsub("TRUE_FALSE","HUR",HUR_PTBP1_tworeplicates$DiffBind)</pre>
#pdf("./Figure/Figure4/Figure4B.pdf", width = 8, height = 5)
HUR PTBP1 DEGPlot <- ggplot(data=HUR PTBP1 tworeplicates) +</pre>
  geom_point(aes(x=PTBP1,y=HuR,color=DiffBind)) +
  scale_color_manual(values = c("#1f78b4","grey75","#e31a1c")) +
  theme(panel.background = element_blank(),
        panel.grid = element_blank(),
        panel.border = element_rect(size=2,fill=NA,color="black"),
        axis.ticks.length = unit(4,"mm"),
        axis.ticks = element_line(color="black",size=1),
        axis.text = element_text(color="black",size=20)) +
  xlim(2,15) +
  ylim(2,15) +
  xlab("PTBP1 Normalized Counts (log2)") +
 ylab("HUR Normalized Counts (log2)")
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## i Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_rect()` is deprecated as of ggplot2 3.4.0.
## i Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
HUR_PTBP1_DEGPlot + geom_text(aes(x=13,y=3), label = table(HUR_PTBP1_tworeplicates$DiffBind)["PTBP1"],
  geom_text(aes(x=4,y=14), label = table(HUR_PTBP1_tworeplicates$DiffBind)["HUR"], size=15, color="#1f7
## Warning in geom_text(aes(x = 13, y = 3), label = table(HUR_PTBP1_tworeplicates DiffBind)["PTBP1"], :
## i Please consider using `annotate()` or provide this layer with data containing
## a single row.
```

```
## Warning in geom_text(aes(x = 4, y = 14), label = table(HUR_PTBP1_tworeplicates$DiffBind)["HUR"], : A
## i Please consider using `annotate()` or provide this layer with data containing
## a single row.
```



```
#dev.off()

# median sequenced fragment size HUR = 50
# median sequenced fragment size HURPTBP1_coRAP = 51
# median sequenced fragment size PTBP1 = 35

PTBP1_len <- PTBP1$end - PTBP1$start
PTBP1_len_adjust <- PTBP1_len - 35
HUR_len <- HUR$end - HUR$start
HUR_len_adjust <- HUR_len - 50
HUR_PTBP1_len <- HUR_PTBP1$end - HUR_PTBP1$start
HUR_PTBP1_len_adjust <- HUR_PTBP1_len - 51</pre>

HUR_PTBP1_len_list <- list(PTBP1_len, HUR_len, HUR_PTBP1_len)
names(HUR_PTBP1_len_list) <- c("PTBP1", "HUR", "HUR & PTBP1")
HUR_PTBP1_len_adjust_list <- list(PTBP1_len_adjust, HUR_len_adjust, HUR_PTBP1_len_adjust)
names(HUR_PTBP1_len_adjust_list) <- c("PTBP1", "HUR", "HUR & PTBP1")

boxplot(HUR_PTBP1_len_list, outline=F, ylab="Peak width")</pre>
```


boxplot(HUR_PTBP1_len_adjust_list, outline=F, ylab="Peak width normalized by lib size")
abline(h=c(median(PTBP1_len_adjust), median(HUR_len_adjust), median(HUR_PTBP1_len_adjust)))

0.5.3 Figure 4E

```
\# median sequenced fragment size HUR = 50
# median sequenced fragment size HURPTBP1 = 51
\# median sequenced fragment size PTBP1 = 35
# HUR
HUR_selected_forPlot <- HUR[,c(1,7,8,4:6)]</pre>
HUR_selected_forPlot$Summit_start <- HUR_selected_forPlot$Summit_start - 50
HUR_selected_forPlot$Summit_end <- HUR_selected_forPlot$Summit_end + 50</pre>
# PTBP1
PTBP1_selected_forPlot <- PTBP1[,c(1,7,8,4:6)]</pre>
PTBP1_selected_forPlot$Summit_start <- PTBP1_selected_forPlot$Summit_start - 50
PTBP1_selected_forPlot$Summit_end <- PTBP1_selected_forPlot$Summit_end + 50
# HUR_PTBP1
HUR_PTBP1_selected_forPlot <- HUR_PTBP1[,c(1,7,8,4:6)]</pre>
HUR_PTBP1_selected_forPlot$Summit_start <- HUR_PTBP1_selected_forPlot$Summit_start - 50
HUR_PTBP1_selected_forPlot$Summit_end <- HUR_PTBP1_selected_forPlot$Summit_end + 50</pre>
HUR_GRanges <- makeGRangesFromDataFrame(HUR_selected_forPlot)</pre>
PTBP1_GRanges <- makeGRangesFromDataFrame(PTBP1_selected_forPlot)</pre>
HUR_PTBP1_GRanges <- makeGRangesFromDataFrame(HUR_PTBP1_selected_forPlot)</pre>
```

```
# uniq and common
HUR_GRanges_uniq <- unique(HUR[-as.data.frame(findOverlaps(HUR_GRanges,HUR_PTBP1_GRanges,type = "any"))</pre>
HUR_PTBP1_GRanges_uniq <- unique(HUR_PTBP1[as.data.frame(findOverlaps(HUR_GRanges,HUR_PTBP1_GRanges,typ
HUR_PTBP1_GRanges_merge <- c(HUR_GRanges_uniq,HUR_PTBP1_GRanges_uniq)</pre>
coRAP1 <- unique(HUR_PTBP1[-as.data.frame(findOverlaps(HUR_GRanges, HUR_PTBP1_GRanges, type = "any"))[,2]
coRAP1 <- c(coRAP1, HUR_PTBP1_GRanges_uniq)</pre>
HUR_coRAP <- list(HUR_PTBP1_GRanges_merge, coRAP1)</pre>
names(HUR coRAP) <- c("HuR", "coRAP")</pre>
HUR_coRAP_overlaps_forPlot <- euler(HUR_coRAP, shape="circle")</pre>
PTBP1_GRanges_uniq <- unique(PTBP1[-as.data.frame(findOverlaps(PTBP1_GRanges, HUR_PTBP1_GRanges, type = "
PTBP1_HUR_GRanges_uniq <- unique(HUR_PTBP1[as.data.frame(find0verlaps(PTBP1_GRanges,HUR_PTBP1_GRanges,t
PTBP1_HUR_GRanges_merge <- c(PTBP1_GRanges_uniq,PTBP1_HUR_GRanges_uniq)
coRAP2 <- unique(HUR_PTBP1[-as.data.frame(findOverlaps(PTBP1_GRanges, HUR_PTBP1_GRanges, type = "any"))[,
coRAP2 <- c(coRAP2,PTBP1_HUR_GRanges_uniq)</pre>
PTBP1_coRAP <- list(PTBP1_HUR_GRanges_merge, coRAP2)</pre>
names(PTBP1_coRAP) <- c("PTBP1", "coRAP")</pre>
PTBP1_coRAP_overlaps_forPlot <- euler(PTBP1_coRAP, shape="circle")
# plot
#pdf("./Figure/Figure4/Figure4E_Venn_HUR.pdf", width = 6, height = 3)
plot(HUR_coRAP_overlaps_forPlot, fills=c("white", "white", "grey"), quantities=TRUE, edges=T, col=c("#1
```



```
#dev.off()
#pdf("./Figure/Figure4/Figure4E_Venn_PTBP1.pdf", width = 6, height = 3)
plot(PTBP1_coRAP_overlaps_forPlot, fills=c("white", "white", "grey"), quantities=TRUE, edges=T, col=c("state of the color of
```



```
#dev.off()
# overlaps
HUR_PTBP1_HURPTBP1_overlaps <- HUR_PTBP1[as.data.frame(findOverlaps(HUR_GRanges,HUR_PTBP1_GRanges,type=
HUR_PTBP1_PTBP1HUR_overlaps <- HUR_PTBP1[as.data.frame(findOverlaps(PTBP1_GRanges,HUR_PTBP1_GRanges,type="any")
HUR_HURPTBP1_overlaps <- PTBP1[as.data.frame(findOverlaps(PTBP1_GRanges,HUR_PTBP1_GRanges,type="any")
HUR_HURPTBP1_overlaps <- HUR[as.data.frame(findOverlaps(HUR_GRanges,HUR_PTBP1_GRanges,type="any"))[,1],
PTBP1_HURPTBP1_overlaps_adjust <- (PTBP1_HURPTBP1_overlaps$end - PTBP1_HURPTBP1_overlaps$start) - 35
HUR_PTBP1_PTBP1HUR_overlaps_adjust <- (HUR_PTBP1_PTBP1HUR_overlaps$end-HUR_PTBP1_PTBP1HUR_overlaps$star
HUR_HURPTBP1_overlaps_adjust <- (HUR_HURPTBP1_overlaps$end - HUR_HURPTBP1_overlaps$star) - 50
HUR_PTBP1_HURPTBP1_overlaps_adjust <- (HUR_PTBP1_HURPTBP1_overlaps$end-HUR_PTBP1_HURPTBP1_overlaps$star
All_overlaps_adjust_list <- list(HUR_HURPTBP1_overlaps_adjust,HUR_PTBP1_HURPTBP1_overlaps_adjust,NULL_P")
names(All_overlaps_adjust_list) <- c("HUR", "corAP",NA,"PTBP1", "corAP")
##pdf("./Figure/Figure4/Figure4E_boxplot.pdf", width = 6, height = 7)
par(bty="n")
boxplot(All_overlaps_adjust_list, outline=F, ylab="Peak width normalized by lib size", las=2, ylim=c(-5)</pre>
```

```
text(x=1,y=median(HUR_HURPTBP1_overlaps_adjust)+9, label=median(HUR_HURPTBP1_overlaps_adjust), cex=1.5)
text(x=2,y=median(HUR_PTBP1_HURPTBP1_overlaps_adjust)+9, label=median(HUR_PTBP1_HURPTBP1_overlaps_adjust)+9
text(x=4,y=median(PTBP1_HURPTBP1_overlaps_adjust)+9, label=median(PTBP1_HURPTBP1_overlaps_adjust), cex=
text(x=5,y=median(HUR_PTBP1_PTBP1HUR_overlaps_adjust)+9, label=median(HUR_PTBP1_PTBP1HUR_overlaps_adjust)+9
pw <- wilcox.test(PTBP1_HURPTBP1_overlaps_adjust, HUR_PTBP1_PTBP1HUR_overlaps_adjust)
pwp <- pw$p.value
if ( pwp <= 0.001 ) {
 to_add <- "***"
} else if ( btp <= 0.01 ) {</pre>
 to_add <- "**"
} else if ( btp \leftarrow 0.05 ) {
  to add <- "*"
} else {
  to_add <- "n.s."
}
text(1.5,200, labels = to_add, cex=2.5)
pw <- wilcox.test(HUR_HURPTBP1_overlaps_adjust, HUR_PTBP1_HURPTBP1_overlaps_adjust)
pwp <- pw$p.value</pre>
if ( pwp <= 0.001 ) {
 to_add <- "***"
} else if ( btp <= 0.01 ) {</pre>
 to_add <- "**"
} else if ( btp <= 0.05 ) {</pre>
 to_add <- "*"
} else {
  to_add <- "n.s."
text(4.5,200,labels = to_add, cex=2.5)
```


0.5.4 Figure 4F

```
HUR_PTBP1_uniq_4F <- unique(HUR_PTBP1[-as.data.frame(findOverlaps(HUR_GRanges, HUR_PTBP1_GRanges,type = HUR_PTBP1_uniq_4F_select <- HUR_PTBP1_uniq_4F[,c(1,7,8,4:6)]
HUR_PTBP1_uniq_4F_select$Summit_start <- HUR_PTBP1_uniq_4F_select$Summit_start - 50
HUR_PTBP1_uniq_4F_select$Summit_end <- HUR_PTBP1_uniq_4F_select$Summit_end + 50
HUR_PTBP1_uniq_4F_select_adjust <- makeGRangesFromDataFrame(HUR_PTBP1_uniq_4F_select)

HUR_PTBP1_uniq_4F_overlap <- unique(HUR_PTBP1_uniq_4F[-as.data.frame(findOverlaps(PTBP1_GRanges, HUR_PTBP1_uniq_4F_overlap$positive_fa <- str_sub(HUR_PTBP1_uniq_4F_overlap$positive_fa,43,157)

bases <- c("A", "C", "T", "G")
kmers_3 <- unite(as.data.frame(permutations(n=4,r=3,v=bases,repeats.allowed = T)),col = kmers,sep = "")
TTT_kmers_3 <- paste("TTT",kmers_3,"TTT",sep="")
kmers_2 <- unite(as.data.frame(permutations(n=4,r=2,v=bases,repeats.allowed = T)),col = kmers,sep = "")
TTT_kmers_2 <- paste("TTT",kmers_2,"TTT",sep="")
TTT_kmers_2 <- paste("TTT",kmers_2,"TTT",sep="")
TTT_kmers_2 <- paste(TTT_kmers_2,"TTT",sep="")
TTT_kmers_1 <- c("TTTTTTT","TTTGTTT","TTTGTTT","TTTGTTT")
```

```
hur_kmers <- c(TTT_kmers_1, TTT_kmers_2, TTT_kmers_3)</pre>
ptbp1_kmers <- c("TCTCT","TTTCT","CTTCT","TCTCT","CCTCT","GTTCT","GTTCT","GCTCT","GCTCT","GCTCT","GTTCT
for (i in hur kmers){
  HUR_PTBP1_uniq_4F_overlap$positive_fa <- gsub(i, "U", HUR_PTBP1_uniq_4F_overlap$positive_fa)
for (i in ptbp1 kmers){
 HUR_PTBP1_uniq_4F_overlap$positive_fa <- gsub(i,"Y",HUR_PTBP1_uniq_4F_overlap$positive_fa)
}
HUR_PTBP1_uniq_4F_overlap$\forall ys <- str_count(HUR_PTBP1_uniq_4F_overlap$\forall positive_fa,"Y")</pre>
HUR_PTBP1_uniq_4F_overlap$Us <- str_count(HUR_PTBP1_uniq_4F_overlap$positive_fa,"U")</pre>
HUR_PTBP1_uniq_4F_overlap$TTTs <- str_count(HUR_PTBP1_uniq_4F_overlap$positive_fa,"TTT")</pre>
HUR_PTBP1_uniq_4F_overlap_YsUs <- HUR_PTBP1_uniq_4F_overlap[HUR_PTBP1_uniq_4F_overlap$Ys == 1 & HUR_PTB
HUR_PTBP1_uniq_4F_overlap_YsUs$Y_loc <- unlist(str_locate_all(HUR_PTBP1_uniq_4F_overlap_YsUs$positive_f
HUR_PTBP1_uniq_4F_overlap_YsUs$U_loc <- unlist(str_locate_all(HUR_PTBP1_uniq_4F_overlap_YsUs$positive_f
HUR_PTBP1_uniq_4F_overlap_YsUs$distance <- abs(HUR_PTBP1_uniq_4F_overlap_YsUs$Y_loc - HUR_PTBP1_uniq_4F
HUR_PTBP1_uniq_4F_overlap_YsUs_plot <- ggplot2::ggplot(data=HUR_PTBP1_uniq_4F_overlap_YsUs, aes(x=dista
  stat smooth(method="loess", color="black", fill="grey", span=0.6, level=0.95, lwd=2) +
  theme_classic2(base_size = 15) +
  coord_cartesian(xlim=c(0,100), ylim=c(2.4,4.6)) +
  geom_vline(xintercept = c(27), color="black", lty=2, lwd=1) +
  geom_text(aes(x=16,y=4.55), label = 27, size=7.5, col="black") +
  xlab("distance between motifs (nt)") +
  ylab("log2(FC)")
#pdf("./Figure/Figure4/Figure4F.pdf", width = 6, height = 6)
HUR_PTBP1_uniq_4F_overlap_YsUs_plot
## Warning in geom_text(aes(x = 16, y = 4.55), label = 27, size = 7.5, col = "black"): All aesthetics h
## i Please consider using `annotate()` or provide this layer with data containing
     a single row.
## `geom_smooth()` using formula = 'y ~ x'
```


0.5.5 Figure S4A

```
hur_kmers <- c(TTT_kmers_1,TTT_kmers_2,TTT_kmers_3)</pre>
ptbp1_kmers <- c("TCTCT","TTTCT","CTTCT","CTTCT","CCTCT","GTTCT","CTTCT","GCTCT","GCTCT","GCTCT","GTTCT
for (i in hur_kmers){
 HUR_PTBP1_uniq_S4A_overlap$negative_fa <- gsub(i,"U",HUR_PTBP1_uniq_S4A_overlap$negative_fa)
for (i in ptbp1_kmers){
  HUR_PTBP1_uniq_S4A_overlap$negative_fa <- gsub(i, "Y", HUR_PTBP1_uniq_S4A_overlap$negative_fa)
}
HUR PTBP1 uniq S4A overlap$Ys <- str count(HUR PTBP1 uniq S4A overlap$negative fa, "Y")
HUR_PTBP1_uniq_S4A_overlap$Us <- str_count(HUR_PTBP1_uniq_S4A_overlap$negative_fa,"U")</pre>
HUR_PTBP1_uniq_S4A_overlap$TTTs <- str_count(HUR_PTBP1_uniq_S4A_overlap$negative_fa,"TTT")</pre>
HUR_PTBP1_uniq_S4A_overlap_YsUs <- HUR_PTBP1_uniq_S4A_overlap[HUR_PTBP1_uniq_S4A_overlap$Ys == 1 & HUR_
HUR_PTBP1_uniq_S4A_overlap_YsUs$Y_loc <- unlist(str_locate_all(HUR_PTBP1_uniq_S4A_overlap_YsUs$negative
HUR_PTBP1_uniq_S4A_overlap_YsUs$U_loc <- unlist(str_locate_all(HUR_PTBP1_uniq_S4A_overlap_YsUs$negative
HUR_PTBP1_uniq_S4A_overlap_YsUs$distance <- abs(HUR_PTBP1_uniq_S4A_overlap_YsUs$Y_loc - HUR_PTBP1_uniq_s
HUR_PTBP1_uniq_S4A_overlap_YsUs_plot <- ggplot2::ggplot(data=HUR_PTBP1_uniq_S4A_overlap_YsUs, aes(x=dis
  stat smooth(method="loess", color="black", fill="grey", span=0.6, level=0.95, lwd=2) +
  theme classic2(base size = 15) +
  coord_cartesian(xlim=c(0,100), ylim=c(0, 5)) +
  geom_vline(xintercept = c(27), color="black", lty=2, lwd=1) +
  geom_text(aes(x=16,y=4.55), label = 27, size=7.5, col="black") +
  xlab("distance between motifs (nt)") +
  ylab("log2(FC)")
#pdf("./Figure/Figure4/FigureS4A.pdf", width = 6, height = 6)
HUR_PTBP1_uniq_S4A_overlap_YsUs_plot
## Warning in geom_text(aes(x = 16, y = 4.55), label = 27, size = 7.5, col = "black"): All aesthetics h
## i Please consider using `annotate()` or provide this layer with data containing
## a single row.
## `geom_smooth()` using formula = 'y ~ x'
```


0.5.6 Figure S4B

```
HUR_uniq_S4B <- unique(HUR[-as.data.frame(findOverlaps(HUR_GRanges,HUR_PTBP1_GRanges,type = "any"))[,1]

HUR_uniq_S4B_select <- HUR_uniq_S4B[,c(1,7,8,4:6)]

HUR_uniq_S4B_select$Summit_start <- HUR_uniq_S4B_select$Summit_start - 50

HUR_uniq_S4B_select$Summit_end <- HUR_uniq_S4B_select$Summit_end + 50

HUR_uniq_S4B_select_GRanges <- makeGRangesFromDataFrame(HUR_uniq_S4B_select)

HUR_uniq_S4B_overlaps <- unique(HUR_uniq_S4B[-as.data.frame(findOverlaps(PTBP1_GRanges, HUR_uniq_S4B_seluct))

HUR_uniq_S4B_overlaps$positive_fa <- str_sub(HUR_uniq_S4B_overlaps$positive_fa,43,157)

bases <- c("A","C","T","G")

kmers_3 <- unite(as.data.frame(permutations(n=4,r=3,v=bases,repeats.allowed = T)),col = kmers,sep = "")

TTT_kmers_3 <- paste("TTT",kmers_3,"TTT",sep="")

kmers_2 <- unite(as.data.frame(permutations(n=4,r=2,v=bases,repeats.allowed = T)),col = kmers,sep = "")

TTT_kmers_2 <- paste("TTT",kmers_2,sep="")

TTT_kmers_2 <- paste("TTT",kmers_2,sep="")

TTT_kmers_2 <- paste("TTT_kmers_2,"TTT",sep="")
```

```
TTT_kmers_1 <- c("TTTTTTT","TTTATTT","TTTGTTT","TTTCTTT")</pre>
hur_kmers <- c(TTT_kmers_1,TTT_kmers_2,TTT_kmers_3)</pre>
ptbp1_kmers <- c("TCTCT","TTTCT","TTTCT","CTTCT","CCTCT","GTTCT","GTTCT","GCTCT","GCTCT","GCTCT","GCTCT","GTTCT
for (i in hur kmers){
  HUR_uniq_S4B_overlaps$positive_fa <- gsub(i,"U",HUR_uniq_S4B_overlaps$positive_fa)
for (i in ptbp1 kmers){
 HUR_uniq_S4B_overlaps$positive_fa <- gsub(i,"Y",HUR_uniq_S4B_overlaps$positive_fa)
}
HUR_uniq_S4B_overlaps$Ys <- str_count(HUR_uniq_S4B_overlaps$positive_fa,"Y")</pre>
HUR_uniq_S4B_overlaps$Us <- str_count(HUR_uniq_S4B_overlaps$positive_fa,"U")
HUR_uniq_S4B_overlaps$TTTs <- str_count(HUR_uniq_S4B_overlaps$positive_fa,"TTT")</pre>
HUR_uniq_S4B_overlaps_YsUs <- HUR_uniq_S4B_overlaps[HUR_uniq_S4B_overlaps$Ys == 1 & HUR_uniq_S4B_overla
HUR_uniq_S4B_overlaps_YsUs$Y_loc <- unlist(str_locate_all(HUR_uniq_S4B_overlaps_YsUs$positive_fa,"Y"))[
HUR_uniq_S4B_overlaps_YsUs$U_loc <- unlist(str_locate_all(HUR_uniq_S4B_overlaps_YsUs$positive_fa,"U"))[
HUR_uniq_S4B_overlaps_YsUs$distance <- abs(HUR_uniq_S4B_overlaps_YsUs$Y_loc - HUR_uniq_S4B_overlaps_YsU
HUR_uniq_S4B_overlaps_YsUs_plot <- ggplot2::ggplot(data=HUR_uniq_S4B_overlaps_YsUs, aes(x=distance, y=1
  stat_smooth(method="loess", color="black", fill="grey", span=0.6, level=0.95, lwd=2) +
  theme classic2(base size = 15) +
  coord_cartesian(xlim=c(0,100), ylim=c(0,5)) +
  geom_vline(xintercept = c(27), color="black", lty=2, lwd=1) +
  geom_text(aes(x=16,y=4.55), label = 27, size=7.5, col="black") +
  xlab("distance between motifs (nt)") +
  ylab("log2(FC)")
#pdf("./Figure/Figure4/FigureS4B.pdf", width = 6, height = 6)
HUR_uniq_S4B_overlaps_YsUs_plot
## Warning in geom_text(aes(x = 16, y = 4.55), label = 27, size = 7.5, col = "black"): All aesthetics h
## i Please consider using `annotate()` or provide this layer with data containing
## a single row.
## `geom_smooth()` using formula = 'y ~ x'
```


0.5.7 Figure S4C

```
PTBP1_uniq_S4C <- unique(PTBP1[-as.data.frame(findOverlaps(PTBP1_GRanges,HUR_PTBP1_GRanges,type = "any"

PTBP1_uniq_S4C_select <- PTBP1_uniq_S4C[,c(1,7,8,4:6)]

PTBP1_uniq_S4C_select$Summit_start <- PTBP1_uniq_S4C_select$Summit_start - 50

PTBP1_uniq_S4C_select$Summit_end <- PTBP1_uniq_S4C_select$Summit_end + 50

PTBP1_uniq_S4C_select_GRanges <- makeGRangesFromDataFrame(PTBP1_uniq_S4C_select)

PTBP1_uniq_S4C_select_GRanges_overlaps <- unique(PTBP1_uniq_S4C[-as.data.frame(findOverlaps(HUR_GRanges)])

PTBP1_uniq_S4C_select_GRanges_overlaps$positive_fa <- str_sub(PTBP1_uniq_S4C_select_GRanges_overlaps$positive_fa <-
```

```
TTT_kmers_1 <- c("TTTTTTT","TTTATTT","TTTGTTT","TTTCTTT")</pre>
hur_kmers <- c(TTT_kmers_1,TTT_kmers_2,TTT_kmers_3)</pre>
ptbp1_kmers <- c("TCTCT","TTTCT","CTTCT","TCTCT","CCTCT","GTTCT","GTTCT","GCTCT","GCTCT","GCTCT","GTTCT
for (i in hur kmers){
  PTBP1_uniq_S4C_select_GRanges_overlaps$positive_fa <- gsub(i, "U", PTBP1_uniq_S4C_select_GRanges_overla
for (i in ptbp1 kmers){
 PTBP1_uniq_S4C_select_GRanges_overlaps$positive_fa <- gsub(i,"Y",PTBP1_uniq_S4C_select_GRanges_overla
}
PTBP1_uniq_S4C_select_GRanges_overlaps$ys <- str_count(PTBP1_uniq_S4C_select_GRanges_overlaps$positive_
PTBP1_uniq_S4C_select_GRanges_overlaps$Us <- str_count(PTBP1_uniq_S4C_select_GRanges_overlaps$positive_
PTBP1_uniq_S4C_select_GRanges_overlaps$TTTs <- str_count(PTBP1_uniq_S4C_select_GRanges_overlaps$positiv
PTBP1_uniq_S4C_select_GRanges_overlaps_YsUs <- PTBP1_uniq_S4C_select_GRanges_overlaps[PTBP1_uniq_S4C_se
PTBP1_uniq_S4C_select_GRanges_overlaps_YsUs$Y_loc <- unlist(str_locate_all(PTBP1_uniq_S4C_select_GRange
PTBP1_uniq_S4C_select_GRanges_overlaps_YsUs$U_loc <- unlist(str_locate_all(PTBP1_uniq_S4C_select_GRange
PTBP1_uniq_S4C_select_GRanges_overlaps_YsUs$distance <- abs(PTBP1_uniq_S4C_select_GRanges_overlaps_YsUs
PTBP1_uniq_S4C_select_GRanges_overlaps_YsUs_plot <- ggplot2::ggplot(data=PTBP1_uniq_S4C_select_GRanges_
  stat smooth(method="loess", color="black", fill="grey", span=0.6, level=0.95, lwd=2) +
  theme classic2(base size = 15) +
  coord_cartesian(xlim=c(0,100), ylim=c(0,5)) +
  geom_vline(xintercept = c(27), color="black", lty=2, lwd=1) +
  geom_text(aes(x=16,y=5), label = 27, size=7.5, col="black") +
  xlab("distance between motifs (nt)") +
  ylab("log2(FC)")
#pdf("./Figure/Figure4/FigureS4C.pdf", width = 6, height = 6)
PTBP1_uniq_S4C_select_GRanges_overlaps_YsUs_plot
## Warning in geom_text(aes(x = 16, y = 5), label = 27, size = 7.5, col = "black"): All aesthetics have
## i Please consider using `annotate()` or provide this layer with data containing
##
   a single row.
## `geom_smooth()` using formula = 'y ~ x'
```


0.5.8 Figure S4D

```
PTBP1_gene <- unique(PTBP1[,"gene_name"])

HUR_gene <- unique(HUR[,"gene_name"])

coRAP_gene <- unique(HUR_PTBP1[,"gene_name"])

HUR_PTBP1_coRAP_gene <- list(HUR_gene,PTBP1_gene,coRAP_gene)

names(HUR_PTBP1_coRAP_gene) <- c("HUR","PTBP1","coRAP")

HUR_PTBP1_coRAP_gene_overlap <- euler(HUR_PTBP1_coRAP_gene, shape="circle")

#pdf("./Figure/Figure4/Figure84D.pdf", width = 6, height = 6)

plot(HUR_PTBP1_coRAP_gene_overlap, fills=c("white","white","white"), quantities=TRUE, edges=T, col=c("#
```

gene overlaps

#dev.off()

###Figure S4E left

```
# load data
HUR_coRAP_gene <- as.data.frame(intersect(HUR_gene, coRAP_gene))</pre>
colnames(HUR_coRAP_gene) <- "gene_name"</pre>
HUR_coRAP_data <- merge(HUR, HUR_coRAP_gene, by="gene_name")</pre>
HUR_coRAP_data <- HUR_coRAP_data[,c("Rep1","Rep2","gene_name")]</pre>
HUR_coRAP_data_melt <- melt(HUR_coRAP_data) %>% group_by(gene_name,variable) %>% summarise(Gene_Counts =
## Using gene_name as id variables
## `summarise()` has grouped output by 'gene_name'. You can override using the
## `.groups` argument.
HUR_coRAP_data_melt <- as.data.frame(HUR_coRAP_data_melt)</pre>
HUR_coRAP_data <- reshape2::dcast(HUR_coRAP_data_melt, gene_name~variable)</pre>
## Using Gene_Counts as value column: use value.var to override.
colnames(HUR_coRAP_data) <- c("gene_name","HUR_1","HUR_2")</pre>
HURPTBP1_coRAP_data <- merge(HUR_PTBP1,HUR_coRAP_gene,by="gene_name")
HURPTBP1 coRAP data <- HURPTBP1 coRAP data[,c("Rep1","Rep2","gene name")]</pre>
HURPTBP1_coRAP_data_melt <- melt(HURPTBP1_coRAP_data) %>% group_by(gene_name,variable) %>% summarise(Ge
## Using gene_name as id variables
## `summarise()` has grouped output by 'gene_name'. You can override using the `.groups` argument.
HURPTBP1_coRAP_data_melt <- as.data.frame(HURPTBP1_coRAP_data_melt)</pre>
```

```
HURPTBP1_coRAP_data <- reshape2::dcast(HURPTBP1_coRAP_data_melt, gene_name~variable)</pre>
## Using Gene_Counts as value column: use value.var to override.
colnames(HURPTBP1_coRAP_data) <- c("gene_name","coRAP_1","coRAP_2")</pre>
HUR_coRAP_commongenes <- merge(HUR_coRAP_data, HURPTBP1_coRAP_data, by="gene_name")
# DEG analysis
x <- HUR coRAP commongenes[,2:5]
group \leftarrow c(1,1,2,2)
y <- DGEList(counts=x, group = group)</pre>
design <- model.matrix(~group)</pre>
y <- estimateDisp(y,design)
fit <- glmQLFit(y, design)</pre>
qlf <- glmQLFTest(fit)</pre>
DEG_data_table_S4EL <-qlf$table</pre>
DEG_data_table_S4EL$p.adjust <- -log10(p.adjust(DEG_data_table_S4EL$PValue, method = "BH"))
DEG_data_table_S4EL$PValue <- -log10(DEG_data_table_S4EL$PValue)
DEG_data_table_S4EL$HUR_won <- DEG_data_table_S4EL$logFC <= -1 & DEG_data_table_S4EL$p.adjust >= 1.3010
DEG_data_table_S4EL$coRAP_won <- DEG_data_table_S4EL$logFC >= 1 & DEG_data_table_S4EL$p.adjust >= 1.301
DEG_data_table_S4EL$DiffBind <- paste(DEG_data_table_S4EL$HUR_won,DEG_data_table_S4EL$coRAP_won,sep = "
DEG_data_table_S4EL$DiffBind <- gsub("FALSE_FALSE","N.S.",DEG_data_table_S4EL$DiffBind)
DEG_data_table_S4EL$DiffBind <- gsub("FALSE_TRUE", "coRAP", DEG_data_table_S4EL$DiffBind)
DEG_data_table_S4EL$DiffBind <- gsub("TRUE_FALSE", "HUR", DEG_data_table_S4EL$DiffBind)
DEG_data_table_S4EL_plot <- ggplot(data=DEG_data_table_S4EL) +</pre>
  geom_point(aes(x=logFC,y=p.adjust,color=DiffBind), pch=16) +
  geom_hline(yintercept = -log10(0.05), linetype = "dashed", color = "grey") +
  geom_vline(xintercept = c(-1,1), linetype = "dashed", color = "grey") +
  scale_color_manual(values = c("#dfc27d","#1f78b4","grey75")) +
  theme_classic(base_size = 20) +
  ylab("FDR (-log10)") +
  xlab("FC (log2)") +
  ylim(0,25) +
 xlim(-6,6)
DEG_data_table_S4EL_plot <- DEG_data_table_S4EL_plot + geom_text(aes(x=5,y=25), label = table(DEG_data_
  geom_text(aes(x=-5,y=25), label = table(DEG_data_table_S4EL$DiffBind)["HUR"], size=10, color="#1f78b4
#pdf("./Figure/Figure4/FigureS4E_left.pdf", width = 6, height = 6)
DEG_data_table_S4EL_plot
## Warning in geom_text(aes(x = 5, y = 25), label = table(DEG_data_table_S4EL$DiffBind)["coRAP"], : All
## i Please consider using `annotate()` or provide this layer with data containing
## Warning in geom_text(aes(x = -5, y = 25), label = table(DEG_data_table_S4EL$DiffBind)["HUR"], : All
## i Please consider using `annotate()` or provide this layer with data containing
## a single row.
```


0.5.9 Figure S4E right

```
PTBP1 coRAP gene <- as.data.frame(intersect(PTBP1 gene, coRAP gene))
colnames(PTBP1_coRAP_gene) <- "gene_name"</pre>
PTBP1_coRAP_data <- merge(PTBP1,PTBP1_coRAP_gene,by="gene_name")
PTBP1_coRAP_data <- PTBP1_coRAP_data[,c("Rep1","Rep2","gene_name")]</pre>
PTBP1_coRAP_data_melt <- melt(PTBP1_coRAP_data) %>% group_by(gene_name,variable) %>% summarise(Gene_Cou
## Using gene_name as id variables
## `summarise()` has grouped output by 'gene_name'. You can override using the
## `.groups` argument.
PTBP1_coRAP_data_melt <- as.data.frame(PTBP1_coRAP_data_melt)</pre>
PTBP1_coRAP_data <- reshape2::dcast(PTBP1_coRAP_data_melt, gene_name~variable)
## Using Gene_Counts as value column: use value.var to override.
colnames(PTBP1_coRAP_data) <- c("gene_name", "PTBP1_1", "PTBP1_2")</pre>
HURPTBP1_coRAP_data <- merge(HUR_PTBP1,PTBP1_coRAP_gene,by="gene_name")</pre>
HURPTBP1_coRAP_data <- HURPTBP1_coRAP_data[,c("Rep1","Rep2","gene_name")]</pre>
HURPTBP1_coRAP_data_melt <- melt(HURPTBP1_coRAP_data) %>% group_by(gene_name,variable) %>% summarise(Gene_name)
## Using gene_name as id variables
## `summarise()` has grouped output by 'gene_name'. You can override using the `.groups` argument.
HURPTBP1_coRAP_data_melt <- as.data.frame(HURPTBP1_coRAP_data_melt)</pre>
```

```
HURPTBP1_coRAP_data <- reshape2::dcast(HURPTBP1_coRAP_data_melt, gene_name~variable)</pre>
## Using Gene_Counts as value column: use value.var to override.
colnames(HURPTBP1_coRAP_data) <- c("gene_name","coRAP_1","coRAP_2")</pre>
HUR_coRAP_commongenes <- merge(PTBP1_coRAP_data,HURPTBP1_coRAP_data,by="gene_name")</pre>
# DEG analysis
x <- HUR coRAP commongenes[,2:5]
group \leftarrow c(1,1,2,2)
y <- DGEList(counts=x, group = group)</pre>
design <- model.matrix(~group)</pre>
y <- estimateDisp(y,design)
fit <- glmQLFit(y, design)</pre>
qlf <- glmQLFTest(fit)</pre>
DEG_data_table_S4ER <-qlf$table</pre>
DEG_data_table_S4ER$p.adjust <- -log10(p.adjust(DEG_data_table_S4ER$PValue, method = "BH"))
DEG_data_table_S4ER$PValue <- -log10(DEG_data_table_S4ER$PValue)
DEG_data_table_S4ER$HUR_won <- DEG_data_table_S4ER$logFC <= -1 & DEG_data_table_S4ER$p.adjust >= 1.3010
DEG_data_table_S4ER$coRAP_won <- DEG_data_table_S4ER$logFC >= 1 & DEG_data_table_S4ER$p.adjust >= 1.301
DEG_data_table_S4ER$DiffBind <- paste(DEG_data_table_S4ER$HUR_won,DEG_data_table_S4ER$coRAP_won,sep = "
DEG_data_table_S4ER$DiffBind <- gsub("FALSE_FALSE","N.S.",DEG_data_table_S4ER$DiffBind)
DEG_data_table_S4ER$DiffBind <- gsub("FALSE_TRUE", "coRAP", DEG_data_table_S4ER$DiffBind)
DEG_data_table_S4ER$DiffBind <- gsub("TRUE_FALSE", "PTBP1", DEG_data_table_S4ER$DiffBind)
DEG_data_table_S4ER_plot <- ggplot(data=DEG_data_table_S4ER) +</pre>
  geom_point(aes(x=logFC,y=p.adjust,color=DiffBind), pch=16) +
  geom_hline(yintercept = -log10(0.05), linetype = "dashed", color = "grey") +
  geom_vline(xintercept = c(-1,1), linetype = "dashed", color = "grey") +
  scale_color_manual(values = c("#dfc27d", "grey75", "#e31a1c")) +
  theme_classic(base_size = 20) +
  ylab("FDR (-log10)") +
  xlab("FC (log2)") +
 ylim(0,25) +
  xlim(-10,10)
DEG_data_table_S4ER_plot <- DEG_data_table_S4ER_plot + geom_text(aes(x=7.5,y=25), label = table(DEG_dat
  geom_text(aes(x=-7.5,y=25), label = table(DEG_data_table_S4ER$DiffBind)["PTBP1"], size=10, color="#e3
#pdf("./Figure/Figure4/Figure54E_right.pdf", width = 6, height = 6)
DEG data table S4ER plot
## Warning in geom_text(aes(x = 7.5, y = 25), label = table(DEG_data_table_S4ER$DiffBind)["coRAP"], : A
## i Please consider using `annotate()` or provide this layer with data containing
## a single row.
## Warning in geom_text(aes(x = -7.5, y = 25), label = table(DEG_data_table_S4ER$DiffBind)["PTBP1"], :
## i Please consider using `annotate()` or provide this layer with data containing
## a single row.
```


0.5.10 Figure S4F

```
PTBP1_gene <- unique(PTBP1[,"gene_name"])

HUR_gene <- unique(HUR[,"gene_name"])

coRAP_gene <- unique(HUR_PTBP1[,"gene_name"])

coRAP_gene <- unique(HUR_PTBP1[,"gene_name"])

coRAP_only <- setdiff(coRAP_gene, HUR_gene)

coRAP_only <- setdiff(coRAP_only, PTBP1_gene)

HUR_DB <- DEG_data_table_S4EL

coRAP_HU_diffb <- HUR_coRAP_commongenes[HUR_DB$DiffBind == "coRAP", "gene_name"]

PTBP1_DB <- DEG_data_table_S4ER

coRAP_PT_diffb <- HUR_coRAP_commongenes[PTBP1_DB$DiffBind == "coRAP", "gene_name"]

gene_uniq <- unique(c(coRAP_only,coRAP_HU_diffb,coRAP_PT_diffb))

entrez_IDs <- na.omit(as.data.frame(unlist(mapIds(org.Hs.eg.db, gene_uniq, 'ENTREZID', 'SYMBOL')))[,1])

## 'select()' returned 1:1 mapping between keys and columns

all <- unique(c(HUR_PTBP1$gene_name, HUR$gene_name, PTBP1$gene_name))

entrez_IDs_all <- na.omit(as.data.frame(unlist(mapIds(org.Hs.eg.db, all, 'ENTREZID', 'SYMBOL')))[,1])

## 'select()' returned 1:1 mapping between keys and columns
```

```
BPs <- enrichGO(
 gene = entrez_IDs,
 universe = entrez_IDs_all,
             = "ENTREZID",
 keyType
              = org.Hs.eg.db,
 OrgDb
              = "BP",
  ont
 pAdjustMethod = "BH",
 pvalueCutoff = 0.05,
 qvalueCutoff = 0.05,
 minGSSize
              = 10,
              = TRUE
 readable
)
BP <- as.data.frame(BPs)</pre>
BP$Description <- factor(BP$Description, levels = BP$Description)
CCs <- enrichGO(
 gene = entrez_IDs,
 universe = entrez_IDs_all,
              = "ENTREZID",
 keyType
              = org.Hs.eg.db,
 OrgDb
 ont
              = "CC",
 pAdjustMethod = "BH",
 pvalueCutoff = 0.05,
 qvalueCutoff = 0.05,
 minGSSize = 10,
 readable
              = TRUE
)
CC <- as.data.frame(CCs)</pre>
CC$Description <- factor(CC$Description, levels = CC$Description)</pre>
GOs <- rbind(BP,CC)</pre>
GO_plot <- ggplot2::ggplot(data=GOs, aes(x=Description, y=1)) +</pre>
  geom_point(aes(color=p.adjust), size=sqrt(GOs$Count), alpha=0.9) +
  coord flip() +
 theme classic(base size = 17.5) +
 scale_color_gradient(low="#7f0000",high="#fdd49e") +
 ylab(NULL) +
  # CC is NA
 xlab("GO:BP") +
 theme(axis.text.x = element_blank(),
       axis.line = element_blank(),
       axis.ticks.x = element_blank(),
  )
# write.csv(GOs, "./Data/GOs.csv")
#pdf("./Figure/Figure4/FigureS4F.pdf", width = 9, height = 8)
GO_plot
```

regulation of interferon-alpha production - •


```
#dev.off()
```

0.5.11 Figure S4G

```
gene_name <- unique(unlist(str_split(GOs$geneID,"\\/")))
genes <- as.data.frame(gene_name)

features <- HUR_PTBP1[,c("gene_name","feature","BS","Mean_FCI","Mean_FCH")]
features <- merge(genes,features,by="gene_name")
features$feature <- factor(features$feature, levels = c("intron","3UTR", "5UTR", "CDS"))
#pdf("./Figure/Figure4/FigureS4G.pdf", width = 8, height = 5)
par(bty="n",mfrow=c(1,2))
pie1(table(features$feature), percentage=T, col=c("#08306b", "#deebf7", "#9ecae1", "#4292c6"))
boxplot2(data=features,log2(Mean_FCI)~feature, outline=F, col=c("#08306b", "#deebf7", "#9ecae1", "#4292</pre>
```

