高等代数II测验题

学号	姓名	得分
7 7	7	

- 1. 试求出多项式 $f(x) = x^4 + px^2 + q$, $g(x) = x^2 + mx + 1$ 的最大公因式. 试问系数满足什么条件时有 $g(x) \mid f(x)$?
- 2. 设 P[x] 是数域 P 上的关于文字 x 的全体多项式所成的环, α , β 为两个互异复数。令 $W_1 = \big\{ f(x) \in P[x] \mid f(\alpha) = 0 \big\}, W_2 = \big\{ f(x) \in P[x] \mid f(\beta) = 0 \big\},$

则 W_1,W_2 均为P[x]的子空间.试写出 W_1+W_2 中的元素的表达式.

- 3. 设V是某数域上的有限维线性空间, σ 是V上的线性变换,试问V=Ker σ \oplus Im σ 是 否成立,若是,则请给出详尽的解答.若不是,则请给出使得它成立的条件(能给出充要条件吗?).
- 4. 设V 是某数域上的有限维线性空间, σ 是V 上的线性变换且

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_s$$
,

这里 $\sigma(V_i)$ $\subset V_i$ $, i=1,2,\cdots,s$. 若 $\sigma|_{V_i}$ 的特征多项式是 $f_i(x), i=1,2,\cdots,s$, 试证明 σ 的 特征多项式是 $f(x)=f_i(x)f_2(x)\cdots f_i(x)$.

- 5. 试证明复数域上的方阵必可分解为两个对称矩阵的乘积.
- 6. 设V 是某数域上的n 维线性空间,f 是定义在V 上的双线性非退化函数.取V 上的n 个 向量 $\alpha_1,\alpha_2,\cdots,\alpha_n$,若已知矩阵 $\left(f(\alpha_l,\alpha_l)\right)_n$ 可逆,试问 $\alpha_l,\alpha_2,\cdots,\alpha_n$ 是否能构成V 的基? 无论您觉得结论如何,请给出尽可能详尽的理由。
- 7. 假设数域P上的反对称矩阵已知,试问您可以依据什么方法求出P上的矩阵C使得

$$C^{T}AC = \begin{pmatrix} B_{1} & & & & \\ & \ddots & & & \\ & & B_{m} & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix},$$

这里
$$B_1 = \cdots = B_m = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
,并依此方法求 C 使得
$$C^T \begin{pmatrix} 0 & 2 & -1 & 3 \\ -2 & 0 & 4 & -2 \\ 1 & -4 & 0 & 1 \\ -3 & 2 & -1 & 0 \end{pmatrix} C = \begin{pmatrix} 0 & 1 & & \\ -1 & 0 & & \\ & & 0 & 1 \\ & & & -1 & 0 \end{pmatrix}.$$

8.
$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
可看成为 R^2 上的正交变换,试将它写成为镜面反射变换的乘积.