Homework 1 - IND2627

Daniel L Santos

2025-03-23

Exercise 1

```
#Necessary packages for this exercise
library(tidyverse)
library(MASS)
```

The Boston dataset is a dataset derived from information collected by the U.S Census Service concerning housing in the area of Boston Mass. It is composed by

The Table 1 shows the first six observations from the dataset.

Table 1: Boston dataset

crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	lstat	medy
0.00632	18	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
0.02985	0	2.18	0	0.458	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7

Fitting the multiple linear regression

```
boston_regression_model <- lm(medv ~ lstat + age, Boston)
boston_regression_model</pre>
```

Call:

lm(formula = medv ~ lstat + age, data = Boston)

Coefficients:

(Intercept) lstat age 33.22276 -1.03207 0.03454

As we can observe, the estimated model function $\hat{Y} = \hat{f}(X)$ is:

$$\hat{\text{med}v} = -1.03207 * lstat + 0.03454 * age + 33.22276.$$

The estimated coefficients are $\hat{\beta}_0 = 33.22276$, $\hat{\beta}_1 = -1.03207$ and $\hat{\beta}_2 = 0.03454$. Notice that the coefficient $\hat{\beta}_1$ is negative, which means that, for a fixed value of age, a one-unit increase in lstat leads to a decrease in medv by 1.03207 units. On the other hand, for a fixed value of lstat, a one-unit increase in age leads to an increase in medv by 0.03454 units. Finally, when both age and lstat are zero, the average value of medv will be $\hat{\beta}_0 = 33.22276$.

summary(boston_regression_model)

Call:

lm(formula = medv ~ lstat + age, data = Boston)

Residuals:

Min 1Q Median 3Q Max -15.981 -3.978 -1.283 1.968 23.158

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.173 on 503 degrees of freedom Multiple R-squared: 0.5513, Adjusted R-squared: 0.5495 F-statistic: 309 on 2 and 503 DF, p-value: < 2.2e-16

confint(boston_regression_model)

2.5 % 97.5 % (Intercept) 31.78687150 34.65864956 lstat -1.12674848 -0.93738865 age 0.01052507 0.05856361