

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

ENTHUSE COURSE

PHASE: MEA,B,C,D,F,G,H,L,M,N,O,P,Q,R,S,U,V

TARGET: PRE-MEDICAL 2025

Test Type: SRG-MAJOR Test Pattern: NEET (UG)

TEST DATE: 04-01-2025

ANSWER KEY																														
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	3	3	1	4	4	3	4	1	2	2	4	1	2	2	4	1	1	3	4	4	3	4	4	3	2	1	1	1	1	1
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	4	4	2	2	4	3	2	2	1	3	2	4	3	2	3	3	4	2	4	2	2	2	1	2	4	4	2	2	2	2
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	3	3	2	1	2	1	2	1	2	3	2	2	2	1	1	1	2	3	3	3	4	1	4	4	2	3	2	3	3	2
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	4	4	4	4	3	1	4	2	3	1	4	1	4	3	2	4	2	3	1	3	2	3	1	4	4	1	2	2	2	3
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	4	4	3	4	4	3	2	2	1	1	1	4	2	2	3	4	3	1	4	3	2	2	3	3	4	4	2	4	4	3
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	4	2	2	4	1	3	3	1	4	1	1	3	2	2	3	3	2	2	2	1	3	1	1	4	1	1	3	4	3	3
Q.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200										
A.	4	2	1	2	3	2	2	2	4	2	1	4	1	1	3	2	3	4	3	3										

HINT - SHEET

SUBJECT: PHYSICS

SECTION - A

1. Ans (3)

$$\Delta \ell_1 = \Delta \ell_2$$

$$\ell_1 \alpha_a t = \ell_2 \alpha_s t$$

$$\ell_2 = \frac{\ell_1 \alpha_a}{\alpha_s}$$

Now,

$$\Rightarrow \ \frac{\ell_1}{\ell_1 + \ell_2} = \frac{\ell_1}{\ell_1 + \frac{\alpha_a}{\alpha_s} \ell_1} = \frac{\alpha_s}{\alpha_a + \alpha_s}$$

2. Ans (3)

The given arrangement of rods can be redrawn as

follows

It is given that $H_1 = H_2$

$$\Rightarrow \frac{KA(\theta_1 - \theta_2)}{2\ell} = \frac{K_3A(\theta_1 - \theta_2)}{\ell}$$

$$\Rightarrow K_3 = \frac{K}{2} = \frac{K_1 K_2}{K_1 + K_2}$$

3. Ans (1)

$$\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$

$$61^{\circ}C \text{ to } 59^{\circ}C \implies \frac{61 - 59}{10} = K \left[\frac{61 + 59}{2} - 30 \right]$$

$$K = \frac{1}{150}$$

$$K = \frac{1}{150}$$

$$51^{\circ}\text{C to }49^{\circ}\text{C} \implies$$

$$\frac{51-49}{t} = \frac{1}{150} \left[\frac{51+49}{2} - 30 \right]$$

4. Ans (4)

(i) T = constantPV = constant

$$:: P \uparrow \Rightarrow V \downarrow \Rightarrow \rho \uparrow$$

- (ii) $P = constant \Rightarrow V \propto T$ $T\uparrow \Rightarrow V\uparrow \Rightarrow \rho\downarrow$
- (iii) $P \propto T \Rightarrow V = constant \Rightarrow \rho = constant$

5. Ans (4)

P-T graph is a straight line passing through origin. Therefore, V = constant.

 \therefore work done on the gas = 0.

Further,
$$\rho = \frac{m}{V} \propto \frac{1}{V}$$

Volume of the gas is constant. Therefore, density of gas is also constant.

$$PV = nRT$$

or
$$P = \left(\frac{nR}{V}\right)T$$

i.e., slope of P-T graph (i.e., line AB) \propto n

6. Ans (3)

$$T = \frac{PV}{nR}$$

$$P^{2}V = const.$$

$$P^2V = const$$

$$PV^{1/2} = const.$$

$$x = \frac{1}{2}$$

$$C = \frac{\frac{3R}{2}}{2} + \frac{R}{1 - \frac{1}{2}} = \frac{3R}{2} + 2R = \frac{7R}{2} = 3.5R$$

7. Ans (4)

FLOT for iaf

$$Q = U_f - U_i + W$$

$$U_f - U_i = Q - W = 80 - 60 = 20$$
 cal

$$U_{i} - U_{f} = -20 \text{ cal}$$

FLOT for fi

$$Q = U_i - U_f + W$$

$$= -20 - 30 = -50$$
 cal

Ans (1)

Average molecular speed, $V \propto \sqrt{T}$

$$T_1 : T_2 : T_3 = P_1V_1 : P_2V_2 : P_3V_3$$

= $P_0V_0 : 4P_0V_0 : 4P_0V_0$

$$= 1:4:4$$

So,
$$V_1 : V_2 : V_3 = \sqrt{T_1} : \sqrt{T_2} : \sqrt{T_3}$$

= $\sqrt{1} : \sqrt{4} : \sqrt{4} = 1 : 2 : 2$

9. Ans (2)

Given: A = 25 cm, T = 3s

Time required to move from position $\frac{-A}{2}$ to $+\frac{A}{2}$ (where, $\frac{A}{2}$ = 12.5 cm) = 0.5 s

10. Ans (2)

$$Mg = Kx_1$$
(1)

$$(M + m)g = Kx_2$$
(2)

substract eqn. (1) from eqn. (2)

$$mg = K(x_2 - x_1) = Kx$$

$$K = \frac{mg}{r}$$

Time period,
$$T = 2\pi \sqrt{\frac{(M+m)}{K}}$$

$$T = 2\pi \sqrt{\frac{(M+m)x}{mg}}$$

11. Ans (4)

$$\frac{f+6}{f-6} = \frac{100}{95}$$

$$95f + 95 \times 6 = 100 \text{ f} - 600$$

$$570 + 600 = 5f$$

$$f = 234 Hz$$

$$y = \frac{4}{3x^2 + 48t^2 + 24xt + 2}$$

$$= \frac{4}{3[x^2 + 16t^2 + 8xt] + 2}$$

$$y = \frac{4}{3[x^2 + 16t^2 + 8xt] + 2}$$

$$= \frac{\text{coefficient of t}}{\text{coefficient of x}} = \frac{4m}{1s} = 4m/s$$

13. Ans (2)

String is vibrating in its 5th harmonic.

No. of nodes = 6

$$k = \frac{2\pi}{\lambda} = 62.8 \Rightarrow \lambda = \frac{6.28}{62.8} = \frac{1}{10} = 0.1 \text{ m}$$

Length of string, $\ell = \frac{5\lambda}{2} = \frac{5 \times 0.1}{2} = 0.25 \text{ m}$

Maximum displacement of mid-point of string = 0.01 m

Fundamental frequency,
$$n = \frac{v}{2\ell}$$

$$\Rightarrow n = \frac{1}{2\ell} \times \frac{\omega}{k} = \frac{1}{2 \times 0.25} \times \frac{628}{62.8}$$
$$\Rightarrow n = 20 \text{ Hz}$$

14. Ans (2)

$$\begin{split} &\rho_{O_2} = 16\rho_{H_2} \\ &\rho_{mix} = \frac{V \, \rho_{O_2} + V \, \rho_{H_2}}{V + V} \\ &= \rho_{H_2} \times \frac{(1 \times 16) + (1 \times 1)}{1 + 1} = \frac{17}{2} \rho_{H_2} \end{split}$$

Now,
$$\frac{v_{mix}}{v_{O_2}} = \sqrt{\frac{\rho_{O_2}}{\rho_{mix}}} = \sqrt{\frac{16}{\frac{17}{2}}} = \sqrt{\frac{32}{17}}.$$

15. Ans (4)

At is dimensionless, so, $[At] = 1 \Rightarrow [A] = [T^{-1}]$.

Also
$$[x] = \left[\frac{A}{B}\right]$$
, so, $[B] = [L^{-1}T^{-1}]$
Therefore, $\left[\frac{A^3}{B}\right] = \left[\frac{T^{-3}}{L^{-1}T^{-1}}\right] = [LT^{-2}]$

16. Ans (1)

In case of projectile motion as at the highest point

 $(v)_{\text{vertical}} = 0$ and $(v)_{\text{horizontal}} = v \cos \theta$,

the initial linear momentum of the system there, will be my $\cos \theta$.

Now, as force of blasting is internal and force of gravity is vertical, so linear momentum of the system along horizontal is conserved, i.e.,

$$p_1 + p_2 = mv \cos \theta \text{ or } m_1v_1 + m_2v_2 = mv \cos \theta$$

But, it is given that $m_1 = m_2 = \frac{m}{2}$ and as one part

retraces its path, $v_1 = -v \cos \theta$

$$\therefore \frac{1}{2} m(-v \cos \theta) + \frac{1}{2} m v_2 = mv \cos \theta$$

Solving, we get; $v_2 = 3v \cos \theta$

17. Ans (1)

L.C. =
$$\frac{\frac{1}{2}$$
mm $}{50} = \frac{1}{100}$ mm

Diameter = 3 mm + 35 (.01 mm) + 0.03 mm = 3.38 mm

18. Ans (3)

$$X = \frac{2k^3 \ell^2}{m\sqrt{n}}$$

$$\Rightarrow \frac{\Delta X}{X} = \frac{3\Delta k}{k} + \frac{2\Delta \ell}{\ell} + \frac{\Delta m}{m} + \frac{1}{2} \frac{\Delta n}{n}$$

$$\Rightarrow \% \text{ Error} = 3(1) + 2(2) + 3 + \frac{1}{2}(4) = 12\%$$

19. Ans (4)

$$T = \frac{2U_y}{g}, H_{max} = \frac{U_y^2}{2g} \Rightarrow same, U_y \Rightarrow same$$

 $T \Rightarrow same$

Range = U_vT

$$R_C > R_B > R_A$$

$$U_{xC} > U_{xB} > U_{xA}$$

$$U = \sqrt{U_x^2 + U_y^2}$$
$$U_C > U_B > U_A$$

$$U_C > U_B > U_A$$

Ans (4) 20.

required vector =
$$\mathbf{A} \cos \theta \, \hat{\mathbf{A}}$$

= $\frac{\vec{\mathbf{A}} \cdot \vec{\mathbf{B}}}{|\vec{\mathbf{B}}|} \frac{\vec{\mathbf{A}}}{|\vec{\mathbf{A}}|} \quad (\theta = \text{angle b/w A \& B})$
= $\frac{(2 - 2 + 6)}{3} \frac{(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}})}{\sqrt{14}}$
= $\frac{2}{\sqrt{14}} (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}})$

21. Ans (3)

Component of velocity perpendicular to line AB must be equal.

$$20 \sin \theta = 20 \sin 30^{\circ}$$

 $\theta = 30^{\circ}$

22. Ans (4)

$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 8\hat{i} + 6\hat{j} N$$

So, $\vec{F}_n = -8\hat{i}$ N (i.e., $|\vec{F}_n| = 8N$) is required for resultant to be along north.

23.

$$v_1 = \frac{v_A}{2}, v_2 = \frac{v_A + v_B}{2}$$

$$v_3 = \frac{v_B}{2} = \frac{2[v_2 - v_1]}{2}$$

24. Ans (3)

Time taken by first stone to reach maximum

height,
$$t = \frac{u}{g} = \frac{50}{10} = 5 \text{ sec.}$$

So velocity of second stone at t = 5 sec,

$$v = u + at = 50 + 10 \times 5$$

= 100 m/s

25. Ans (2)

equation for painter & crate system.

$$2T - 125 g = 125 a \dots (1)$$

equation for painter

$$N_p + T - 100 g = 100 a (N_p = 450 N)$$

$$T - 550 = 100 a \dots (2)$$

from eqation (1) & (2)

 $a = 2 \text{ m/sec}^2$

26. Ans (1)

$$\begin{split} T &= \frac{2m_1m_2}{(m_1 + m_2)}(g + a) = \frac{2m_1m_2(g + g)}{m_1 + m_2} \\ &= \frac{4w_1w_2}{w_1 + w_2} \end{split}$$

27. Ans (1)

$$T = m_1 a = m_2 g$$

$$a = \frac{m_2 g}{m_1} = \frac{F}{(m_1 + m_2 + M)}$$

 $F = (m_1 + m_2 + M) \frac{m_2 g}{m_1}$

28. Ans (1)

Here, limiting frictional force, $f_L = \mu R$

$$= \mu mg \cos \theta$$

$$= 0.7 \times 2 \times 9.8 \cos 30^{\circ}$$

$$= 0.7 \times 2 \times 9.8 \times 0.866$$

= 11.9 N

 $F_R = mgsin30^{\circ}$

$$= 2 \times 9.8 \times 1/2 = 9.8 \text{ N}$$

$$: f_I > F_R$$

: Friction force present will be 9.8 N.

29. Ans (1)

$$P = \frac{dW}{dt} \Rightarrow \int P dt = \int dW$$

$$Pt = \frac{1}{2}mv^{2} ; t = \frac{mv^{2}}{2P}$$

30. Ans (1)

By symmetry, $x_{CM} = \frac{\ell}{2}$ $2m(\frac{\ell}{2}) + m(\ell) + 2m(\frac{3\ell}{2}) + m(2)$

$$y_{cm} = \frac{2m\left(\frac{\ell}{2}\right) + m(\ell) + 2m\left(\frac{3\ell}{2}\right) + m(2\ell)}{6m} = \frac{7\ell}{6}$$

31. Ans (4)

$$\begin{split} W &= \int F_x \, dx + \int F_y \, dy \\ &= \int \int_3^5 6x \, dx + \int \int_8^{-4} 2y \, dy = \left[\frac{6x^2}{2} \right]_3^5 + \left[\frac{2y^2}{2} \right]_8^{-4} \\ &= \left[3(5)^2 - 3(3)^2 \right] + \left[(-4)^2 - (8)^2 \right] \\ &= 75 - 27 + 16 - 64 = 0 \end{split}$$

32. Ans (4)

Tension at mean position, $mg + \frac{mv^2}{\ell} = 3mg$ $v = \sqrt{2g\ell}$ (i)

and if the body displaces by angle θ with the vertical, then $\upsilon = \sqrt{2g\ell(1-\cos\theta)}$...(ii)

Comparing (i) and (ii), $\cos \theta = 0 \Rightarrow \theta = 90^{\circ}$.

33. Ans (2)

 $T \sin \theta = m_A (L \sin \theta)\omega^2$ $T = m_A L \omega^2 = m_B g$ $\omega^2 = \frac{m_B g}{m_A L} = \frac{5 \times 10}{4 \times 2}$

34. Ans (2)

 $\omega = 2.5 \text{ rad/s}$

$$1 = \frac{10 - V_1}{-20 - 10} \Rightarrow V_1 = 40 \text{ m/s}$$

35. Ans (4)

$$F - Mg = Mg \Rightarrow F = 2 Mg$$

$$FR = I\alpha = \frac{MR^2}{2}\alpha \implies F = \frac{M}{2}(R\alpha)$$

$$\Rightarrow \frac{2(2Mg)}{M} = R\alpha \Rightarrow R\alpha = 4g$$

SECTION - B

36. Ans (3)

Moment of inertia of the rod about a perpendicular axis PQ passing through the centre of the mass C,

$$I_{CM} = \frac{ML^2}{12}$$

If K be the radius of gyration, then

$$K = \sqrt{\frac{I'}{M}} = \sqrt{\frac{L^2}{9}} = \frac{L}{3}$$

37. Ans (2)

acceleration of point of contact = $\omega^2 R \neq 0$

38. Ans (2)

Let water equivalent of calorimeter is

$$W = ms$$

From principle of calorimetry

Heat gained by calorimeter water = Heat loss by hot water

$$W(35-30) + 0.2 \times 4200 \times (35 - 30) = 0.1 \times 4200$$

$$(60 - 35)$$

$$\Rightarrow$$
 W (5) + 4200 = 10500 \Rightarrow W = ms = 1260 J/k

39. Ans (1)

$$\frac{\lambda}{4} = \ell_1 + e & \frac{3\lambda}{4} = \ell_2 + e$$

$$\Rightarrow \lambda = 2(\ell_2 - \ell_1)$$
speed of sound = $f\lambda$

$$v = 512 \times 2 \times 34 \times 10^{-2} \approx 348 \text{ m/s}$$

40. Ans (3)

$$mg \ell_2 = 16 g \ell_1 \dots (i)$$

$$mg \ell_1 = 4g \ell_2 \dots (ii)$$

$$\Rightarrow \frac{16}{m} = \frac{m}{4} \Rightarrow m = 8 kg$$

41. Ans (2)

Here $B = 6\pi \eta \rho v$

$$\Rightarrow \frac{4}{3}\pi r^3 \rho g = 6\pi \eta r v \Rightarrow \eta = \frac{2r^2 g \rho}{9V}$$

Put the values and get $\eta = 1.66 \times 10^3$ poise

42. Ans (4)

Both assertion and reason are false as elasticity is proportional to the resistance to determination within the range of Hook's law or elastic limit. Young's modulus in large for steel as it undergoes lesser strain for same load as compared to rubber. Rubber is more stretchable but for less elastic. Term elasticity should not be confused with amount of stretching.

43. Ans (3)

diameter
$$d_1 = 3.0 \times 10^{-3} \text{m}$$
, $d_2 = 6.0 \times 10^{-3} \text{ m}$
In one limb $h_1 = \frac{4T}{d_1 \rho g}$ and in other limb $h_2 = \frac{4T}{d_2 \rho g}$

$$\Delta h = h_1 - h_2 = \frac{4T}{\rho g} \left[\frac{1}{d_1} - \frac{1}{d_2} \right]$$

$$= \frac{(4) \left(72 \times 10^{-3}\right)}{10^3 \times 10} \left[\frac{1}{3} - \frac{1}{6} \right] \times 10^3$$

$$\Delta h = \frac{(4) (72)}{6} \times 10^{-4} \text{m}$$

$$= 4.8 \times 10^{-3} \text{m} = 4.8 \text{mm}$$

44. Ans (2)

45. Ans (3)

By conservation of energy

$$\begin{split} &\frac{-GM_{e}m}{R_{e}} + \frac{1}{2}m(nV_{e})^{2} = \frac{-GM_{e}m}{(Re+h)} \\ &\frac{-GM_{e}m}{R_{e}} + \frac{1}{2}mn^{2}\frac{2GM_{e}}{R_{e}} = \frac{-GM_{e}m}{(R_{e}+h)} \\ &\frac{1}{R_{e}}\left[n^{2}-1\right] = \frac{-1}{R_{e}+h} \\ &R_{e}+h = \frac{-R_{e}}{n^{2}-1} \\ &h = \frac{R_{e}}{1-n^{2}} - R_{e} \; ; \; h = R_{e}\left[\frac{n^{2}}{1-n^{2}}\right] \end{split}$$

Alternate:

$$h = \frac{V^2 R}{V_e^2 - V^2} = \frac{(nV_e)^2 R}{V_e^2 - (nV_e)^2} = \frac{n^2 R}{1 - n^2}$$

46. Ans (3)

$$\begin{split} P_{N_2} &= 6 \text{ atm }; \ P_{O_2} + P_{N_2} = 9 \text{ atm} \\ P_{O_2} &= 3 \text{ atm} \\ PV &= \mu RT \\ V,R,T &= Const. \Rightarrow P \propto \mu \end{split}$$

$$\frac{mvR}{\frac{1}{2}mv^2} \text{ where } v = \sqrt{\frac{GM}{R}}$$

$$\begin{split} \frac{W}{m_0} &= \vec{1} \cdot \vec{dr} \; ; \; \vec{dr} = 5\hat{i} + 4\hat{j} \\ \frac{W}{2} &= 10(\hat{i} + \hat{j}) \cdot (5\hat{i} + 4\hat{j}) \\ W &= 2(50 + 40) \text{ J} \end{split}$$

49. Ans (4)

$$P_A = P_B$$

$$(1.3)g(10) = (0.8)gh + (13.6)g(10-h)$$

$$13 = 0.8h + 136 - 13.6h$$

$$12.8h = 123$$

$$h = \frac{123}{12.8} = 9.6$$
cm

50. Ans (2)

$$\frac{t_1}{t_2} = \frac{\sqrt{H} - \sqrt{\frac{H}{4}}}{\sqrt{\frac{H}{4}} - 0} = 1$$

SUBJECT: CHEMISTRY

SECTION - A

56. Ans (4)

$${\stackrel{0}{\rm N}_2} + 3{\rm H}_2 \rightarrow 2{\rm N}{\rm H}_3$$

60. Ans (2)

Enthalpy of neutralisation is -57.2 kJ eq^{-1} for a strong acid and a strong base.

68. Ans (1)

70. Ans (3)

Stability of free radical
$$\propto +M, +H, +I$$

$$\propto \frac{1}{-M, -H, -I}$$

72. Ans (2)

Rate ∝ Stability of Carbanion

77. Ans (2)

NCERT Pg. No. #87 Part-I

78. Ans (3)

NCERT Pg. No. #86 Part-I

79. Ans (3)

NCERT Pg. No. # 94, Part-I

80. Ans (3)

81. Ans (4)

NCERT Pg. No. # 132, Part-I

82. Ans (1)

NCERT Pg. No. # 112, Part-I

83. Ans (4)

NCERT Pg. No. # 116, 117, Part-I

84. Ans (4)

NCERT Pg. No. # 131, Part-I

85. Ans (2)

NCERT Pg. No. # 131, 132, Part-I

SECTION - B

87. Ans (2)

NCERT Pg. # 187

88. Ans (3)

$$X \rightleftharpoons 2Y$$

$$\therefore \alpha_1^2 = \frac{KP_1}{4P_1}$$

$$\alpha_1 = \sqrt{\frac{KP_1}{4P_1}}$$

$$\alpha_2 = \sqrt{\frac{KP_2}{P_2}}$$

$$\frac{\therefore \alpha_1 = 2\alpha_2}{\sqrt{\frac{KP_1}{4P_1}}} = 2\sqrt{\frac{KP_2}{P_2}} \Rightarrow \frac{KP_1}{4P_1}$$

$$= 4 \times \frac{KP_2}{P_2} \Rightarrow \frac{P_1}{P_2} = \frac{KP_1}{16 \times KP_2}$$

$$= \frac{1}{64}$$

90. Ans (2)

 $\Delta H = (BE)_{reactent} - (B.E)_{product}$

- 96. Ans (1) NCERT Pg. No. # 88 Part-I
- **97. Ans (4)** NCERT Pg. No. # 90 Part-I
- 98. Ans (2) NCERT Pg. No. # 90, Part-I
- **99. Ans (3)** NCERT Pg. No. # 105, Part-I
- **100. Ans (1)** NCERT Pg. No. # 112, Part-I

SUBJECT: BOTANY

SECTION - A

- **101. Ans (4)** NCERT-XI Pg. No. # 127
- **102. Ans (1)** NCERT (XI) Pg # 122
- **103. Ans (4)** NCERT XI Pg. # 126
- **104.** Ans (3) NCERT-XI Pg. No. # 88
- 105. Ans (2) XI-NCERT Page No. # 96
- **106. Ans (4)** NCERT-XI, Pg # 7
- **107. Ans (2)** NCERT-XI, Pg. # 4
- **108. Ans (3)** NCERT-XI Page No. 4,5
- **109. Ans (1)** NCERT XI Pg. No. 21
- 110. Ans (3) XI NCERT Pg. No. # 12
- 111. Ans (2) NCERT-XI Pg. # 27, 28, 135
- 112. Ans (3) NCERT XI Pg. # 13,14

- 113. Ans (1) NCERT XI, Pg. # 17
- 114. Ans (4) NCERT XI, Pg # 27, 31, 32
- 115. Ans (4) NCERT XI, Pg # 29
- **116. Ans (1)** NCERT-XI, Pg. # 14, 29, 33
- **117. Ans (2)** NCERT-XI, Pg. # 12,14,16,21
- 118. Ans (2) NCERT Pg. # 87,88,126
- 119. Ans (2) NCERT-XI, Pg. # 100, 93, 121, 125
- **120. Ans (3)** NCERT, Pg # 121,123,91,94
- **121. Ans (4)** NCERT-XI, Pg. # 117
- 122. Ans (4) NCERT XI Pg # 113, 114
- **123. Ans (3)** NCERT-XI, Pg. # 118
- **124. Ans (4)** NCERT-XI Pg. # 140
- **125. Ans (4)** NCERT-XI, Pg # 141
- **126. Ans (3)** NCERT-XI, Pg # 136
- 127. Ans (2) NCERT XI Pg # 143, 144
- **128. Ans (2)** NCERT-XI, Pg. # 157
- **129. Ans (1)** NCERT-XI Pg. No. # 157
- **130. Ans (1)** NCERT-XI, Pg. # 159
- **131. Ans (1)** NCERT-XI Pg. # 159
- **132. Ans (4)** NCERT-XI Pg. # 176

ALLEN®

- 133. Ans (2) NCERT-XI Pg. # 170
- 134. Ans (2) NCERT-XI, Pg. # 177
- 135. Ans (3) NCERT XI Pg. # 176, 177

SECTION - B

- 136. Ans (4) NCERT-XI, Pg. 94
- **137. Ans (3)** NCERT-XI, Pg. # 99
- 138. Ans (1)
 XI-NCERT Page No. # 95
- 139. Ans (4) NCERT XI Pg. # 98, 99
- **140. Ans (3)** NCERT-XI, Pg. # 5
- **141. Ans (2)** NCERT-XI, Pg. # 32
- 142. Ans (2) NCERT-XI Pg. # 13, 14
- **143. Ans (3)** NCERT-XI Page No. 24
- **144. Ans (3)** NCERT-XI, Pg. # 110
- **145. Ans (4)** NCERT Pg. # 110
- **146. Ans (4)** NCERT XI Pg : 111-112
- **147. Ans (2)** NCERT-XI Pg. # 173
- 148. Ans (4) NCERT-XI Pg. No. # 168
- **149. Ans (4)** NCERT-XI Pg. No. # 169
- 150. Ans (3) NCERT-XI Pg. # 158, 159

SUBJECT: ZOOLOGY

SECTION - A

- **152. Ans (2)** NCERT-XII, Pg. # 50 & 60
- 153. Ans (2) NCERT Page No. # 50
- **162. Ans (3)** NCERT, Pg # 279
- **164. Ans (2)** NCERT-XII, Pg. # 188, 189
- **169. Ans (2)** NCERT Pg.# 211
- **172. Ans (1)** NCERT Pg. # 317 (21.3.1)
- 175. Ans (1) NCERT Pg. # 337
- **176. Ans (1)** NCERT Pg. No. # 333 to 337
- 177. Ans (3) NCERT Pg. # 335
- **182. Ans (2)** NCERT-XI, Pg. # 225, 226
- **183. Ans (1)** NCERT Pg. No. # 302(E), 303(H)

SECTION - B

- **187. Ans (2)** NCERT Pg. No. # 303
- **188. Ans (2)** NCERT, Pg # 46 to 48
- **190. Ans (2)** NCERT Pg. # 101
- **193. Ans (1)** Atherosclerosis affects coronary blood supply.
- **195. Ans (3)** NCERT Pg. # 190
- **196. Ans (2)** NCERT Pg. # 275
- **198. Ans (4)** NCERT Pg. No. # 319