Le transistor bipolaire

Pascal MASSON

(pascal.masson@unice.fr)

Sommaire

- I. Historique
- II. Caractéristiques du transistor
- III. Polarisation du transistor
- IV. Les fonctions logiques
- V. Amplification en classe A
- VI. Multivibrateur astable ABRAHAM BLOCH
- VII. Amplification en classe B
- VIII. Amplificateur opérationnel

I.1. Définition

• Le transistor bipolaire est un composant électronique utilisé comme : interrupteur commandé, amplificateur, stabilisateur de tension, modulateur de signal ...

I.2. Histoire du transistor

• 1947 : John BARDEEN et Walter BRATTAIN inventent le transistor à contact (transistor) au laboratoire de physique de la société BELL (USA). Cette découverte est annoncée en juillet 1948.

Transistor à contact 1948

Transistron 1948

• 1948 : Herbert MATARE et Heinrich WELKER inventent (indépendamment de BELL) aussi le transistor à contact en juin 1948 (en France). Ce transistor sera appelé le Transistron pour le distinguer de celui de BELL.

• 1948 : en janvier William SHOCKLEY invente le transistor à jonction (bipolaire) mais la technique de fabrication ne sera maitrisée qu'en 1951

Transistor à jonction 1948

I.2. Histoire du transistor

• Les transistors remplacent les contacteurs électromécaniques des centraux téléphoniques et les tubes dans les calculateurs.

1953 – calculateur (93 transistors + 550 diodes)

Sonotone 1010

• 1954 : première radio à transistors.

• 1953 : première application portative du transistor entant que sonotone.

Régency TR-1 (4 transistors)

I.3. Histoire des premiers circuits intégrés

• 1958 : Jack KILBY de Texas Instrument présente le premier circuit (oscillateur) entièrement intégré sur une plaque de semiconducteur.

1958 - premier circuit intégré

• 1960 : production de la première mémoire Flip Flop par la société Fairchild Semiconductor.

1960 - Flip Flop en circuit intégré

• 1965 : à partir du nombre de composants par circuit intégré fabriqué depuis 1965, Gordon MOORE (Fairchild Semiconductor) prédit que le nombre de composants intégrés (par unité de surface) doublera tous les 12 mois. Cette loi est toujours vraie !

II.1. Définition d'un transistor bipolaire

- Le transistor bipolaire est créé en juxtaposant trois couches de semiconducteur dopés N⁺, P puis N pour le transistor NPN (courant dû à un flux d'électrons) ou dopés P⁺, N puis P pour le transistor PNP (courant dû à un flux de trous). Le niveau de dopage décroit d'un bout à l'autre de la structure.
- Un faible courant de base, I_B , permet de commander un courant de collecteur, I_C , bien plus important.

II.2. Représentation

- Si la tension V_{BE} est suffisante, la diode BE (base -émetteur) est passante :
 - ✓ Courant de trous de B vers E.
 - ✓ Courant d'électrons de E vers B

$$I = I_{S}. \exp\left(\frac{qV_{BE}}{kT}\right) = \left(I_{St} + I_{Se}\right). \exp\left(\frac{qV_{BE}}{kT}\right)$$

II.3. Fonctionnement du transistor NPN

- Si la tension V_{BE} est suffisante, la diode BE (base –émetteur) est passante :
 - ✓ Courant de trous de B vers E.
 - ✓ Courant d'électrons de E vers B

$$I = I_{S}. \exp\left(\frac{qV_{BE}}{kT}\right) = \underbrace{\left(I_{St} + I_{Se}\right)}_{\bullet} \exp\left(\frac{qV_{BE}}{kT}\right)$$

ullet Si le nombre d'électrons dans l'émetteur et 100 fois plus grand que le nombre de trous dans la base alors $I_{St} << I_{Se}$.

II.3. Fonctionnement du transistor NPN

On positionne à présent le collecteur dopé N

- On positionne à présent le collecteur dopé N
- La jonction BC est polarisée en inverse : augmentation du champs électrique interne.

- On positionne à présent le collecteur dopé N
- La jonction BC est polarisée en inverse : augmentation du champs électrique interne.
- La longueur de la base est très courte et les électrons arrivent tous au niveau de la ZCE Base-collecteur.

- On positionne à présent le collecteur dopé N
- La jonction BC est polarisée en inverse : augmentation du champs électrique interne.
- La longueur de la base est très courte et les électrons arrivent tous au niveau de la ZCE Base-collecteur.
- Les électrons sont propulsés dans le collecteur pas le champ électrique.

II.3. Fonctionnement du transistor NPN

- On positionne à présent le collecteur dopé N
- La jonction BC est polarisée en inverse : augmentation du champs électrique interne.
- La longueur de la base est très courte et les électrons arrivent tous au niveau de la ZCE Base-collecteur.
- Les électrons sont propulsés dans le collecteur pas le champ électrique.
- ullet Si on modifie la tension V_{BC} (dans une certaine limite), le champ électrique est toujours suffisant pour propulser tous les électrons :

Le courant de collecteur ne dépend pas de la tension V_{BC} mais uniquement de V_{BE} .

II.3. Fonctionnement du transistor NPN

- Par convenance on pose : $V_T = \frac{q}{kT} (= 25.6 \text{ mV} \text{ à } 300 \text{K})$
- Les trois courants du transistor bipolaire sont :
 - ✓ I_B : courant de trous de B vers E.

$$I_{B} = I_{St}.exp\left(\frac{V_{BE}}{V_{T}}\right)$$

 \checkmark I_C : courant d'électrons de E vers C

$$I_{C} = I_{Se}. exp \left(\frac{V_{BE}}{V_{T}} \right)$$

✓ I_E : courant de trous de B vers E + courant d'électrons de E vers C

$$I_E = I_S. exp \left(\frac{V_{BE}}{V_T} \right) = I_B + I_C$$

• Le rapport, β , entre les courants I_C et I_B dépend entre autres des niveaux de dopage de l'émetteur et de la base ainsi que de l'épaisseur de la base : $I_C = \beta . I_B$

- Si la tension V_{BC} augmente trop :
 - ✓ Le champ électrique base collecteur diminue

- Si la tension V_{BC} augmente trop :
 - ✓ Le champ électrique base collecteur diminue
 - ✓ Les électrons ne sont plus tous propulsés dans le collecteur mais une partie sort par la base
 - \checkmark Le courant I_C tend à devenir nul
 - ✓ On dit dans ce cas que le transistor est saturé
 - ✓ La tension V_{CE} pour laquelle ce phénomène apparaît est notée V_{CEsat} .

II.3. Caractéristiques I_B(V_{BE}) du transistor NPN

- Pour débloquer (rendre passant) le transistor NPN, il faut que la jonction base-émetteur soit polarisée en direct avec une tension supérieure à la tension de seuil, V_S , de cette diode : $V_{BE} > V_S$.
- La caractéristique $I_B(V_{BE})$ est celle de la diode base-émetteur en ne considérant que le courant de trou.
- Ici le courant de trous est bien plus faible que le courant d'électrons.

II.3. Caractéristiques I_B(V_{BE}) du transistor PNP

- ▶ Pour débloquer (rendre passant) le transistor PNP, il faut que la jonction base-émetteur soit polarisée en direct avec une tension supérieure (en valeur absolue) à la tension de seuil, V_S , de cette diode soit : $V_{BE} < -V_S$.
- La caractéristique $I_B(V_{BE})$ est celle de la diode base-émetteur en ne considérant que le courant des électrons.
- Ici le courant des électrons est bien plus faible que le courant des trous.

II.3. Caractéristiques I_C(V_{CE}) du transistor NPN

- Si la jonction BC est polarisée en inverse, alors le courant d'électrons peut traverser cette jonction.
- Dans ce cas le courant I_C est indépendant de V_{CE} : régime linéaire ($I_C = \beta . I_B$)

II.3. Caractéristiques I_C(V_{CE}) du transistor NPN

- Si la jonction BC est polarisée en inverse, alors le courant d'électrons peut traverser cette jonction.
- Dans ce cas le courant I_C est indépendant de V_{CE} : régime linéaire ($I_C = \beta . I_B$)
- Si $V_{CE} = 0$ alors aucun courant ne circule entre l'émetteur et le collecteur

II.3. Caractéristiques I_C(V_{CE}) du transistor NPN

- Si la jonction BC est polarisée en inverse, alors le courant d'électrons peut traverser cette jonction.
- Dans ce cas le courant I_C est indépendant de V_{CE} : régime linéaire ($I_C = \beta . I_B$)
- Si $V_{CE} = 0$ alors aucun courant ne circule entre l'émetteur et le collecteur
- Le basculement entre ces deux fonctionnements se produit à la tension V_{CEsat} (sat pour saturation) : le courant I_C n'est pas proportionnel à I_B .

III.1. Polarisation simple

☐ Détermination de I_{B0} et I_{C0}

La boucle d'entrée permet de déterminer la valeur de I_B

$$E_{G} = R_{B}.I_{B0} + V_{S} + R_{S}.I_{B0}$$

$$V_{BE0} = V_{S} + R_{S}.I_{B0}$$

$$R_{C}$$

$$I_{B0} = \frac{E_{G} - V_{S}}{R_{B} + R_{S}}$$

$$V_{BE0} = V_{S} + R_{S}.I_{B0}$$

$$V_{DD}$$

$$R_{C}$$

$$V_{DD}$$

$$V_{CE}$$

$$V_{BE}$$

$$V_{BE}$$

$$V_{CE}$$

III.1. Polarisation simple

- ☐ Détermination de I_{B0} et I_{C0}
- On considère que le transistor est en régime linéaire $I_C = \beta I_B$

III.1. Polarisation simple

- ☐ Détermination de I_{B0} et I_{C0}
- On considère que le transistor est en régime linéaire $I_C = \beta I_B$
- On peut donc résumer le transistor à trois éléments :
 - ➤ En entrée : V_S et R_S (donc la diode base-émetteur)
 - ightharpoonup En sortie: un générateur de courant $I_C = \beta . I_B$

III.1. Polarisation simple

☐ Détermination de I_{B0} et I_{C0}

 \blacksquare Il faut à présent vérifier si le transistor est réellement en régime linéaire par le calcul de $V_{\rm CE}$

$$V_{DD} = R_C.I_C + V_{CE}$$

$$V_{CE} = V_{DD} - R_C.I_C$$

• Si V_{CE} > V_{CEsat} alors on confirme le régime linéaire et les calculs sont exacts

III.1. Polarisation simple

☐ Détermination de I_{B0} et I_{C0}

- Si V_{CE} < V_{CEsat} le transistor est en régime saturé et l'utilisation de la droite de charge donne les vraies valeurs de I_{C0} et V_{CE0}
- Si on utilise pas la droite de charge, on impose $V_{CE} = V_{CEsat}$ et on détermine la valeur de I_C avec la boucle de sortie.

III.1. Polarisation simple

☐ Détermination de I_{B0} et I_{C0}

- Il faut aussi re-déterminer la véritable valeur du courant de base.
- Les électrons qui passent de l'émetteur à la base ne sont pas tous propulsés au collecteur et une partie sort par la base.
- Les valeurs de V_S et R_S sont donc différentes

 V_{DD}

III.1. Polarisation simple

- On part d'une valeur de R_B suffisamment grande pour que le transistor soit en régime linéaire
- La droite de charge en sortie ne change pas
- On diminue alors R_B

 V_{DD}

III.1. Polarisation simple

- On part d'une valeur de R_B suffisamment grande pour que le transistor soit en régime linéaire
- La droite de charge en sortie ne change pas
- On diminue alors R_B

 V_{DD}

III.1. Polarisation simple

- On part d'une valeur de R_B suffisamment grande pour que le transistor soit en régime linéaire
- La droite de charge en sortie ne change pas
- On diminue alors R_B

 V_{DD}

 $R_{\rm C}$

III.1. Polarisation simple

- ullet On part d'une valeur de R_B suffisamment grande pour que le transistor soit en régime linéaire
- La droite de charge en sortie ne change pas
- On diminue alors R_B

 V_{DD}

III.1. Polarisation simple

- On part d'une valeur de R_C suffisamment faible pour que le transistor soit en régime linéaire
- La droite de charge en entrée ne change pas
- On augmente alors R_C

 V_{DD}

III.1. Polarisation simple

- On part d'une valeur de R_C suffisamment faible pour que le transistor soit en régime linéaire
- La droite de charge en entrée ne change pas
- lacktriangle On augmente alors R_{C}

 V_{DD}

III.1. Polarisation simple

- On part d'une valeur de R_C suffisamment faible pour que le transistor soit en régime linéaire
- La droite de charge en entrée ne change pas
- lacktriangle On augmente alors R_{C}

 V_{DD}

III.1. Polarisation simple

□ Variation de R_C avec R_B constant

- ullet On part d'une valeur de R_C suffisamment faible pour que le transistor soit en régime linéaire
- La droite de charge en entrée ne change pas
- lacktriangle On augmente alors R_{C}

III.2. Pont de base

- Les résistances R_1 et R_2 forment un pont entre la base et V_{DD} d'où le nom.
- La détermination de I_B passe par celle de I_P.

III.2. Pont de base

☐ Approche simple

- On considère que I_P >>> I_B.
- \blacksquare Dans ce cas un simple pont diviseur de tension permet de connaître la valeur de V_{BE} et par suite la valeur de $I_{B}.$

$$V_{BE} = \frac{R_2}{R_1 + R_2} V_{DD}$$

III.2. Pont de base

☐ Détermination de la valeur de I_B

• On résout un système de deux équations qui correspond à l'écriture de deux mailles en entrée

$$\begin{cases} V_{BE} = R_2.I_P = V_S + R_S.I_B \\ V_{DD} = R_1.(I_P + I_B) + V_{BE} = R_1.I_P + V_S + (R_1 + R_S)I_B \end{cases}$$

On trouve

$$I_{B} = \frac{V_{DD} - \left(\frac{R_{1}}{R_{2}} + 1\right)V_{S}}{R_{1} + R_{S} + R_{S} \cdot \frac{R_{1}}{R_{2}}}$$

III.2. Pont de base

- □ Détermination de la valeur de I_B
- \blacksquare On peut aussi transformer $V_{DD},\,R_1$ et R_2 en générateur de thévenin

III.2. Pont de base

- □ Détermination de la valeur de I_B
- On peut aussi transformer V_{DD}, R₁ et R₂ en générateur de thévenin
- On débranche la base du transistor pour éliminer le courant I_B

III.2. Pont de base

☐ Détermination de la valeur de I_B

- ullet On peut aussi transformer $V_{DD},\,R_1$ et R_2 en générateur de thévenin
- On débranche la base du transistor pour éliminer le courant I_B
- Pour déterminer R_{th} , on éliminer les sources (ici V_{DD} = 0) ce qui donne R_1 // R_2

$$R_{th} = \frac{R_1.R_2}{R_1 + R_2}$$

III.2. Pont de base

☐ Détermination de la valeur de I_B

- On peut aussi transformer V_{DD}, R₁ et R₂ en générateur de thévenin
- On débranche la base du transistor pour éliminer le courant I_B
- Pour déterminer R_{th} , on éliminer les sources (ici V_{DD} = 0) ce qui donne R_1 // R_2

$$R_{th} = \frac{R_1.R_2}{R_1 + R_2}$$

ullet On détermine alors E_{th} avec un pont diviseur de tension

$$E_{th} = \frac{R_2}{R_1 + R_2} V_{DD}$$

III.2. Pont de base

☐ Détermination de la valeur de I_B

- On peut aussi transformer V_{DD}, R₁ et R₂ en générateur de thévenin
- On débranche la base du transistor pour éliminer le courant I_B
- Pour déterminer R_{th} , on éliminer les sources (ici V_{DD} = 0) ce qui donne R_1 // R_2

$$R_{th} = \frac{R_1.R_2}{R_1 + R_2}$$

lacktriangle On détermine alors E_{th} avec un pont diviseur de tension

$$E_{th} = \frac{R_2}{R_1 + R_2} V_{DD}$$

■ D'où I_B:

$$IB = \frac{E_{th} - V_S}{R_{th} + R_S}$$

III.1. Pont de base

☐ Détermination de la valeur de I_B

• On retrouve le théorème de Thévenin à partir des deux mailles en entrée :

$$\begin{cases} V_{BE} = R_2.I_P \\ V_{DD} = R_1.(I_P + I_B) + V_{BE} \end{cases}$$

ullet On extrait I_P de la première équation que l'on reporte dans la deuxième

$$V_{DD} = R_1 \cdot \frac{V_{BE}}{R_2} + R_1 \cdot I_B + V_{BE}$$

ullet Qui s'écrit aussi en regroupant les V_{BE}

$$V_{DD} = R_1.I_B + \left(\frac{R_1 + R_2}{R_2}\right)V_{BE}$$

III.2. Pont de base

☐ Détermination de la valeur de I_B

• On retrouve le théorème de Thévenin à partir des deux mailles en entrée :

$$\begin{cases} V_{BE} = R_2.I_P \\ V_{DD} = R_1.(I_P + I_B) + V_{BE} \end{cases}$$

 On extrait I_P de la première équation que l'on reporte dans la deuxième

$$V_{DD} = R_1 \cdot \frac{V_{BE}}{R_2} + R_1 \cdot I_B + V_{BE}$$

ullet Qui s'écrit aussi en regroupant les V_{BE}

$$\frac{R_{2}}{R_{1} + R_{2}} V_{DD} = \frac{R_{1}.R_{2}}{R_{1} + R_{2}}.I_{B} + V_{BE}$$

$$E_{th}$$

$$R_{th}$$

III.3. Résistance d'émetteur

- ullet Dans la résistance R_E il passe le courant I_E donc les courants I_B et I_C
- La maille en entrée s'écrit :

$$\begin{cases} E_{th} = R_{th}.I_B + V_S + R_S.I_B + R_E.(I_B + I_C) \\ E_{th} = R_{th}.I_B + V_S + R_S.I_B + R_E.(1 + \beta).I_B \end{cases}$$

• On trouve le courant I_R

$$I_{B} = \frac{E_{th} - V_{S}}{R_{th} + R_{S} + (1 + \beta)R_{E}}$$

- Vu de l'entrée, la résistance R_E est multipliée par $(1+\beta)$
- En fonction de la valeur de β on peut écrire :

$$(1+\beta)R_E \approx \beta R_E$$

III.3. Résistance d'émetteur

- La présence de R_E permet une régulation thermique du transistor
- En fonctionnement, le transistor chauffe à cause de la circulation du courant ce qui augmente la valeur du courant qui engendre une augmentation de la température etc ...

• Si la présence de R_E n'est pas suffisante, il faut ajouter un radiateur sur le transistor.

- La loi des mailles dans la boucle de sortie donne : $V_{CE} = V_S = 24 R.I_C$
- On obtient alors la droite de charge : $I_C = \frac{24}{R} \frac{V_{CE}}{R}$

- La loi des mailles dans la boucle de sortie donne : $V_{CE} = V_S = 24 R.I_C$
- On obtient alors la droite de charge : $I_C = \frac{24}{R} \frac{V_{CE}}{R}$
- Si $V_E = 0 V : V_{BE}$ est

- La loi des mailles dans la boucle de sortie donne : $V_{CE} = V_S = 24 R.I_C$
- On obtient alors la droite de charge : $I_C = \frac{24}{R} \frac{V_{CE}}{R}$
- Si $V_E = 0$ V : V_{BE} est négatif (transistor bloqué) et $I_C = 0$ soit $V_S = 24$ V
- Si $V_E = 24 V : V_{BE}$

- La loi des mailles dans la boucle de sortie donne : $V_{CE} = V_S = 24 R.I_C$
- On obtient alors la droite de charge : $I_C = \frac{24}{R} \frac{V_{CE}}{R}$
- Si $V_E = 0$ V : V_{BE} est négatif (transistor bloqué) et $I_C = 0$ soit $V_S = 24$ V
- Si $V_E = 24 \text{ V}: V_{BE} > 0$ (transistor passant) et $I_B = I_{B4}$ donc $V_S \approx V_{CEsat} \approx 0 \text{ V}$

- La loi des mailles dans la boucle de sortie donne : $V_{CE} = V_S = 24 R.I_C$
- On obtient alors la droite de charge : $I_C = \frac{24}{R} \frac{V_{CE}}{R}$
- Si $V_E = 0$ V : V_{BE} est négatif (transistor bloqué) et $I_C = 0$ soit $V_S = 24$ V
- Si $V_E = 24 \text{ V}: V_{BE} > 0$ (transistor passant) et $I_B = I_{B4}$ donc $V_S \approx V_{CEsat} \approx 0 \text{ V}$

- La loi des mailles dans la boucle de sortie donne : $V_{CE} = V_S = 24 R.I_C$
- On obtient alors la droite de charge : $I_C = \frac{24}{R} \frac{V_{CE}}{R}$
- On trace maintenant la caractéristique $V_S(V_E)$ de l'inverseur.

- La loi des mailles dans la boucle de sortie donne : $V_{CE} = V_S = 24 R.I_C$
- On obtient alors la droite de charge : $I_C = \frac{24}{R} \frac{V_{CE}}{R}$
- On trace maintenant la caractéristique $V_S(V_E)$ de l'inverseur.

- La loi des mailles dans la boucle de sortie donne : $V_{CE} = V_S = 24 R.I_C$
- On obtient alors la droite de charge : $I_C = \frac{24}{R} \frac{V_{CE}}{R}$
- On trace maintenant la caractéristique $V_S(V_E)$ de l'inverseur.

- La loi des mailles dans la boucle de sortie donne : $V_{CE} = V_S = 24 R.I_C$
- On obtient alors la droite de charge : $I_C = \frac{24}{R} \frac{V_{CE}}{R}$
- On trace maintenant la caractéristique $V_S(V_E)$ de l'inverseur.

- La loi des mailles dans la boucle de sortie donne : $V_{CE} = V_S = 24 R.I_C$
- On obtient alors la droite de charge : $I_C = \frac{24}{R} \frac{V_{CE}}{R}$
- On trace maintenant la caractéristique $V_S(V_E)$ de l'inverseur.

IV.1. L'inverseur

■ Table de vérité et symbole logique :

E	S
0	1
1	0

• En pratique on définit un gabarit pour l'inverseur

IV.2. La fonction NI (NON-OU, NOR)

• Schéma électrique d'une porte NI:

■ Table de vérité et symbole logique :

$$E_1 \longrightarrow S = \overline{E_1 + E_2}$$

$oxed{E_2}$	\mathbf{E}_1	S
0	0	1
0	1	0
1	0	0
1	1	0

III.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

■ Table de vérité :

Reset	Q	$\overline{\overline{\mathbf{Q}}}$
0	0	1
	Reset	Reset Q 0 0

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

• Table de vérité :

Set	Reset	Q	$\overline{\overline{\mathbf{Q}}}$
0	0	0	1
1	0		

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

• Table de vérité :

Set	Reset	Q	$\overline{\mathbf{Q}}$
0	0	0	1
1	0		0

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

_	\mathbf{m} 11	1	/ • / /	
	Tania	$\Delta \Lambda \Delta$	vérité	•
	\mathbf{I} and	, uc	V CI I UC	•

Set	Reset	Q	$\overline{\mathbf{Q}}$
0	0	0	1
1	0	1	0

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

• Chronogramme:

Set	Reset	Q	$\overline{\mathbf{Q}}$
0	0	0	1
1	0	1	0
0	0		0

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

• Chronogramme:

Set	Reset	Q	$\overline{\mathbb{Q}}$
0	0	0	1
1	0	1	0
0	0	1	0

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

• Chronogramme:

Set	Reset	Q	$\overline{\mathbb{Q}}$
0	0	0	1
1	0	1	0
0	0	1	0
0	1		

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

Tab]	le d	de.	vér	ité	•
I an	\mathbf{c}	λC	A CI	100	

Set	Reset	Q	$\overline{\mathbf{Q}}$
0	0	0	1
1	0	1	0
0	0	1	0
0	1	0	

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

• Table de vérité :

Set	Reset	Q	$\overline{\mathbf{Q}}$
0	0	0	1
1	0	1	0
0	0	1	0
0	1	0	1

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

• Chronogramme :

Set	Reset	Q	$\overline{\mathbf{Q}}$
0	0	0	1
1	0	1	0
0	0	1	0
0	1	0	1

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

_ / 1 1 1	1	/ • / /	
Tahl	$\Delta \Lambda \Delta$	vérité	•
- I abi	c uc	V CI IUC	

Set	Reset	Q	$\overline{\mathbb{Q}}$
0	0	0	1
1	0	1	0
0	0	1	0
0	1	0	1
1	1	0	0

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

• Chronogramme:

■ Table de vérité :

Set	Reset	Q	$\overline{\mathrm{Q}}$
0	0	0	1
1	0	1	0
0	0	1	0
0	1	0	1
1	1	0	0
0	0		

IV.3. La fonction mémoire à deux portes NI

- Le but est de stocker l'information 1 ou 0.
- Schéma logique le la mémoire :

■ Table de vérité :

Set	Reset	Q	$\overline{\mathbf{Q}}$
0	0	0	1
1	0	1	0
0	0	1	0
0	1	0	1
1	1	0	0
0	0	?	?

• Chronogramme:

Etat interdit =>

IV.3. La fonction mémoire à deux portes NI

Schéma électrique de cette mémoire :

• Symbole logique de la mémoire RS (bascule RS) :

- Mémoire de type RAM (Random Acces Memory) qui s'apparente à la SRAM (Static) : l'information disparaît si on éteint l'alimentation.
- ${}^{\bullet}$ Si le pont de base consomme 1 μ A (sous 30 V) et que l'on stocke 10^6 bits alors la mémoire disperse au moins 30 W !

IV.3. La fonction mémoire à deux portes NI

1971: 256-bit TTL RAM (Fairchild)

V.1. Principe de fonctionnement

- L'amplificateur de classe A amplifie tout le signal d'entrée.
- On travaille dans la partie linéaire du transistor qui est polarisé en statique à I_{B0} et I_{C0} .

• Le courant I_B oscille autour de I_{B0} et donc I_C oscille autour de I_{C0} avec $I_C = \beta . I_B$.

 \blacksquare Sans signal d'entrée, l'ampli consomme I_{C0} : mauvais rendement (au mieux 50 %).

V.1. Principe de fonctionnement $R_{\rm C}$

V.1. Principe de fonctionnement $R_{\rm C}$

t↓

V.1. Principe de fonctionnement $R_{\rm C}$

V.1. Principe de fonctionnement R_{C}

V.1. Principe de fonctionnement $R_{\rm C}$

V.2. Rappels: passe haut et passe bas

- \blacksquare Les gains V_C/E_G et V_R/E_G correspondent aux filtres passe bas et pas haut respectivement.
- La fréquence de coupure des deux filtres est : $F_C = 1/(2\pi RC)$.
- La notion de haute et basse fréquences se reporte à la valeur de F_C

V.2. Rappels: passe haut et passe bas

V.2. Rappels: passe haut et passe bas

- En basse fréquence $\Delta V_C = \Delta E_G$ et $\Delta V_R = 0$: la capacité "absorbe" toutes les variations de E_G . Elle a le temps de se charger et de se décharger
- En haute fréquence $\Delta V_R = \Delta E_G$ et $\Delta V_C = 0$: la capacité n'a pas le temps de se charger et de se décharger et donc la tension ne varia pas à ses bornes. Toutes les variations de E_G se reportent aux bornes de la résistance.

V.3. Eléments du montage

lacktriangle Les résistances R_1 et R_2 constituent le pont de base : polarisation de la base

V.3. Eléments du montage

- Les résistances R_1 et R_2 constituent le pont de base : polarisation de la base
- Le condensateur C ne laisse passer que les variations de Ve et non la composante continue : évite de modifier la polarisation de la base.

V.3. Eléments du montage

- Les résistances R_1 et R_2 constituent le pont de base : polarisation de la base
- Le condensateur C ne laisse passer que les variations de Ve et non la composante continue : évite de modifier la polarisation de la base.
- lacktriangle C_L est aussi un condensateur de liaison qui permet à la charge R_L (résistance d'entrée du bloc suivant) de ne pas modifier la polarisation du transistor.

V.4. Point de repos du montage

- Le point de repos correspond aux valeurs des tensions et des courants lorsqu'on ne considère que le régime statique (ne dépend pas du temps).
- C et C_L se comportent comme des interrupteurs ouverts.

V.4. Point de repos du montage

- Le point de repos correspond aux valeurs des tensions et des courants lorsqu'on ne considère que le régime statique (ne dépend pas du temps).
- C et C_L se comportent comme des interrupteurs ouverts.

V.4. Point de repos du montage

- Le point de repos correspond aux valeurs des tensions et des courants lorsqu'on ne considère que le régime statique (ne dépend pas du temps).
- C et C_L se comportent comme des interrupteurs ouverts.
- ullet On calcul I_B (ce qui donne immédiatement I_C) en supposant que le transistor est en régime linéaire
- \bullet On détermine alors la tension V_{CE} qui doit être supérieure à V_{CEsat}

V.5. Schéma en petit signal

- ullet E_G est à présent un signal alternatif d'amplitude suffisamment faible pour ne pas bloquer et/ou saturer le transistor.
- La ou les fréquences du signal E_G sont suffisamment élevées pour ne pas permettre aux capacités C et C_L de se charger ou de se décharger. Elles se comportent comme des interrupteurs fermés.

V.5. Schéma en petit signal

- Les variations de E_G vont se propager le long du circuit, être amplifiée par le transistor puis appliquées à la charge R_L .
- Les paramètres importants d'un amplificateur sont : les résistances d'entrée et de sortie, le gain en tension et les fréquences de coupure haute et basse
- Calculer ces paramètres peut être long et on préfère utiliser le schéma petit signal qui est une simplification mathématique du schéma réel.

 E_{G}

- Pour pouvoir utiliser le schéma petit signal il faut que tous les éléments aient un comportement linéaire.
- Dans ce schéma, c'est le transistor qui est non linéaire et, par exemple, les variations de V_{BE} doivent être suffisamment faibles pour considérer un seul V_{S} et surtout un seul R_{S} .

- Pour construire ce schéma, on ne conserve que les éléments (résistances, tensions, fils ... et on ne conserve que les variations de tension et de courant.
- $E_G(t) = E_{G0} + e_g(t)$ donc on ne conserve que $e_g(t)$
- \blacksquare La variation de V_{DD} est nulle, $v_{dd}(t)$ = 0, et il en va de même pour la masse donc $v_{masse}(t)$ = 0
- Donc d'un point de vu alternatif, les fils V_{DD} et masse sont identiques.
 - Une tension continue est équivalente à un court circuit

$$V_{1}(t) = V_{10} + v_{1}(t)$$

$$V_{2}(t) = V_{20} + v_{2}(t) = V_{1}(t) - V_{2}(t)$$

$$V_{2}(t) = V_{20} + v_{2}(t) = V_{1}(t) - V_{2}(t)$$

$$V_{2}(t) = V_{10} - V_{2}(t)$$

$$V_{2}(t) = V_{1}(t)$$

- Pour construire ce schéma, on ne conserve que les éléments (résistances, tensions, fils ... et on ne conserve que les variations de tension et de courant.
- $E_G(t) = E_{G0} + e_g(t)$ donc on ne conserve que $e_g(t)$
- \blacksquare La variation de V_{DD} est nulle, $v_{dd}(t)$ = 0, et il en va de même pour la masse donc $v_{masse}(t)$ = 0
- Donc d'un point de vu alternatif, les fils V_{DD} et masse sont identiques.
 - Une tension continue est équivalente à un court circuit

$$V_{1}(t) = V_{10} + v_{1}(t)$$

$$V_{2}(t) = V_{20} + v_{2}(t) = V_{1}(t) - V_{S}$$

$$donc \begin{cases} V_{20} = V_{10} - V_{S} \\ v_{2}(t) = v_{1}(t) \end{cases}$$

V.5. Schéma en petit signal

• Il faut aussi ajouter deux éléments parasites donnés par la matrice hybride du transistor.

$$\begin{cases} v_{be} = h_{ie}.i_b + h_{re}.v_{ce} \\ i_c = h_{fe}.i_b + h_{oe}.v_{ce} \end{cases}$$

V.5. Schéma en petit signal

• Il faut aussi ajouter deux éléments parasites donnés par la matrice hybride du transistor.

$$\begin{cases} v_{be} = h_{ie}.i_b + h_{re}.v_{ce} \\ i_c = h_{fe}.i_b + h_{oe}.v_{ce} \end{cases}$$

• Dans ce cours, nous négligerons toujours la tension $h_{re}.v_{ce}$ (par rapport à $h_{ie}.i_b$) et en fonction des cas nous négligerons aussi la résistance $1/h_{oe}$ devant les résistances branchées en parallèle.

V.5. Schéma en petit signal

• Les 4 paramètres sont obtenus à partir du point de polarisation.

Les paramètres h dépendent du point de repos (ou point de polarisation) Détermination de h_{ie}

$$\left.h_{ie} = \frac{\partial v_{be}}{\partial i_b}\right|_{v_{ce} = 0} = \frac{\partial V_{BE}}{\partial I_B}\bigg|_{V_{CE} = V_{CE0}}$$

■ Détermination de h_{fe}

$$h_{fe} = \frac{\partial i_c}{\partial i_b}\Big|_{v_{aa} = 0} = \beta$$

Détermination de h_{oe}

$$h_{oe} = \frac{\partial i_c}{\partial v_{ce}} \bigg|_{i_b = 0}$$

■ Détermination de h_{oe}

$$h_{re} = \frac{\partial v_{be}}{\partial v_{ce}} \Big|_{i_b = 0}$$

■ Impédance d'entrée :
$$R_e = R_B // h_{ie} = \frac{R_B . h_{ie}}{R_B + h_{ie}}$$

■ Impédance d'entrée :
$$R_e = R_B // h_{ie} = \frac{R_B . h_{ie}}{R_B + h_{ie}}$$

V.6. Paramètres : résistances et gains

Thévenin équivalent

- Thévenin équivalent
 - > Pour la résistance on court-circuite e_g donc i_b devient nul ainsi que $h_{fe}.i_b$ et il reste : $R_{gs} = R_C$

- Thévenin équivalent
 - > Pour la résistance on court-circuite e_g donc i_b devient nul ainsi que $h_{fe}.i_b$ et il reste : $R_{gs} = R_C$
 - \triangleright Pour la tension, on exprime v_{ce} donc e_{gs} en fonction de v_{be} ce qui correspond à rechercher le gain à vide du quadripôles transistor :

- Thévenin équivalent
 - > Pour la résistance on court-circuite e_g donc i_b devient nul ainsi que $h_{fe}.i_b$ et il reste : $R_{gs} = R_C$
 - \triangleright Pour la tension, on exprime v_{ce} donc e_{gs} en fonction de v_{be} ce qui correspond à rechercher le gain à vide du quadripôles transistor :

$$A_{V0} = \frac{v_{ce}}{v_{be}} = -\frac{R_C i_c}{h_{ie}.i_b} = -\frac{h_{fe}}{h_{ie}}.R_C$$
 \Rightarrow $e_{gs} = A_{V0}.v_{be}$

■ Gain en tension :
$$v_2 = v_{ce} = \frac{R_L}{R_{gs} + R_L} e_{gs} = \frac{R_L}{R_{gs} + R_L} .A_{V0}.v_1$$

$$A_{V} = \frac{v_{2}}{v_{1}} = \frac{v_{ce}}{v_{be}} = -\frac{R_{L}}{R_{gs} + R_{L}}.A_{V0} = -\frac{h_{fe}}{h_{ie}}.\frac{R_{C}.R_{L}}{R_{C} + R_{L}}$$

• Gain en tension :
$$v_2 = v_{ce} = \frac{R_L}{R_{gs} + R_L} e_{gs} = \frac{R_L}{R_{gs} + R_L} A_{V0}.v_1$$

$$A_{V} = \frac{v_{2}}{v_{1}} = \frac{v_{ce}}{v_{be}} = -\frac{R_{L}}{R_{gs} + R_{L}}.A_{V0} = -\frac{h_{fe}}{h_{ie}}.\frac{R_{C}.R_{L}}{R_{C} + R_{L}}$$

- On retrouve le gain à vide : $A_{V0} = A_V|_{R_L \to \infty} = -\frac{h_{fe}}{h_{ie}}.R_C$
- Gain composite:

$$A_{Vg} = \frac{v_{ce}}{e_g} = A_V \frac{R_e}{R_g + R_e}$$

V.6. Paramètres : résistances et gains

On peut retrouver tous ces résultats à partir de la théorie des quadripôles

$$\begin{cases} v_1 = h_{11}.i_1 + h_{12}.v_2 = h_{ie} // R_B.i_1 + 0.v_2 \\ i_2 = h_{21}.i_1 + h_{22}.v_2 = h_{fe}.\frac{R_B}{R_B + h_{ie}}.i_1 + \frac{1}{R_C}.v_2 \end{cases}$$

$$A_V = \frac{-X.h_{21}}{h_{11} + h_{11}.h_{22}.X - h_{12}.h_{21}.X}$$
 avec $X = R_L$

- La variation de la tension v_{bc} implique une variation de la longueur de la zone de charge d'espace (ZCE) de la diode Base-Collecteur
- La variation de la ZCE correspond à une variation de charge et donc la diode est équivalente à une capacité notée C_{BC} .
- Cette capacité fait un pont entre l'entrée et la sortie ce qui complique le calcul du gain en tension

- Nous considérons la capacité entre la base et le collecteur : C_{BE}
- Elle peut être ramenée en entrée et en sortie du transistor avec le théorème de MILLER:

$$Z_1 = \frac{1}{j.C_{BC1}.\omega} = \frac{1}{j.C_{BC}.\omega} \cdot \frac{1}{1 - A_V}$$

$$C_{BC1} = C_{BC}(1 - A_V) >> C_{BC}$$

$$Z_2 = \frac{1}{j.C_{BC2}.\omega} = \frac{1}{j.C_{BC}.\omega}.\frac{A_V}{1 - A_V}$$

$$C_{BC2} = C_{BC} \frac{1 - A_V}{A_V} \approx C_{BC}$$

• Gain composite:
$$A_{vg} = \frac{v_{ce}}{e_g} = A_V \frac{R_e}{R_g + R_e}$$

■ Gain composite:
$$A_{vg} = \frac{v_{ce}}{e_g} = -\frac{h_{fe}}{h_{ie}} \cdot \left(R_{eq} // C_{BC2} \right) \frac{\left(R_e // C_{BC1} \right)}{R_g + \left(R_e // C_{BC1} \right)}$$

V.7. Paramètres : Fréquences de coupure hautes

■ Gain composite:
$$A_{vg} = \frac{v_{ce}}{e_g} = -\frac{h_{fe}}{h_{ie}} \cdot \left(R_{eq} // C_{BC2}\right) \cdot \frac{\left(R_e // C_{BC1}\right)}{R_g + \left(R_e // C_{BC1}\right)}$$
soit $A_{vg} = \frac{v_{ce}}{e_g} = \left[-\frac{h_{fe}}{h_{ie}} \cdot \frac{R_{eq} \cdot R_e}{R_g + R_e}\right] \cdot \frac{1}{1 + j\omega C_{BC1}\left(R_g // R_e\right)} \cdot \frac{1}{1 + j\omega C_{BC2}R_{eq}}$

Gain aux fréquences moyennes

V.7. Paramètres : Fréquences de coupure hautes

■ Gain composite:
$$A_{vg} = \frac{v_{ce}}{e_g} = -\frac{h_{fe}}{h_{ie}} \cdot \left(R_{eq} // C_{BC2} \right) \frac{\left(R_e // C_{BC1} \right)}{R_g + \left(R_e // C_{BC1} \right)}$$

soit
$$A_{vg} = \frac{v_{ce}}{e_g} = \frac{h_{fe}}{h_{ie}} \cdot \frac{R_{eq} \cdot R_e}{R_g + R_e} = \frac{1}{1 + j\omega C_{BC1} (R_g // R_e)} \cdot \frac{1}{1 + j\omega C_{BC2} R_{eq}}$$

Gain aux fréquences moyennes

• Il existe deux fréquences de coupure hautes avec $F_{HF1} \le F_{HF2}$:

Fréquence de de l'ampli

coupure haute de l'ampli
$$F_{HF1} = \frac{1}{2\pi C_{BE1}(R_g /\!/ R_e)} = F_{HF}$$

IV.7. Fréquences de coupure hautes

■ Gain composite:
$$A_{vg} = \frac{v_{ce}}{e_g} = -\frac{h_{fe}}{h_{ie}} \cdot \left(R_{eq} // C_{BC2}\right) \cdot \frac{\left(R_e // C_{BC1}\right)}{R_g + \left(R_e // C_{BC1}\right)}$$
soit $A_{vg} = \frac{v_{ce}}{e_g} = \left[-\frac{h_{fe}}{h_{ie}} \cdot \frac{R_{eq} \cdot R_e}{R_g + R_e}\right] \cdot \frac{1}{1 + j\omega C_{BC1}\left(R_g // R_e\right)} \cdot \frac{1}{1 + j\omega C_{BC2}R_{eq}}$

Gain aux fréquences moyennes

• Il existe deux fréquences de coupure hautes avec $F_{HF1} \ll F_{HF2}$:

Fréquence de de l'ampli

coupure haute de l'ampli
$$F_{HF1} = \frac{1}{2\pi C_{BE1}(R_g//R_e)} = F_{HF}$$

$$F_{HF2} = \frac{1}{2\pi C_{BE2}R_{eq}}$$

V.7. Paramètres : Fréquences de coupure hautes

Diagramme de bode en amplitude (échelle semi-log) :

V.7. Paramètres : Fréquences de coupure hautes

• Diagramme de bode en phase (échelle semi-log) :

V.8. Paramètres : Fréquences de coupure basses

• On prend en considération les capacités de liaison C et C_L.

V.8. Paramètres : Fréquences de coupure basses

- On prend en considération les capacités de liaison C et C_L.
- Gain composite: $A_{vg} = \frac{v_1}{e_g} = \frac{v_1}{v_{be}} \cdot \frac{v_{be}}{e_g} = \frac{R_L}{R_L + R_S + \frac{1}{j\omega C_L}} \cdot A_{V0} \cdot \frac{R_e}{R_e + R_g + \frac{1}{j\omega C}}$ $A_{vg} = \begin{bmatrix} \frac{h_{fe}}{h_{ie}} \cdot \frac{R_{eq} \cdot R_e}{R_e + R_g} \\ \frac{1}{1 \frac{j}{\omega C_L} (R_L + R_C)} \cdot \frac{1}{1 \frac{j}{\omega C} (R_e + R_g)} \end{bmatrix}$

• Il existe deux fréquences de coupure basses :

V.8. Paramètres : Fréquences de coupure basses

• Diagramme de bode en amplitude (échelle semi-log) :

V.8. Paramètres : Fréquences de coupure basses

Diagramme de bode en phase (échelle semi-log) :

V.9. Résistance d'émetteur

• Si le transistor chauffe il risque de s'emballer et d'être détruit.

V.9. Résistance d'émetteur

- Si le transistor chauffe il risque de s'emballer et d'être détruit.
- La résistance R_E évite l'emballement thermique du transistor :

$$T^{\circ} \nearrow \longrightarrow I_{B} \nearrow \longrightarrow V_{E} \nearrow \longrightarrow V_{BE} \searrow \longrightarrow I_{B} \searrow$$

• On obtient alors la droite de charge :

$$I_{C} = \frac{V_{DD}}{R_{C} + R_{E}} - \frac{V_{CE}}{R_{C} + R_{E}}$$

V.9. Résistance d'émetteur

- Gain en tension à vide : $A_{V0} = \frac{v_1}{v_e} = -\frac{h_{fe}}{h_{ie} + R_E(1 + h_{fe})} R_C$
- Le gain à vide (et donc le gain composite) a été diminué par l'introduction de la résistance $R_{\rm E}$.

V.9. Résistance d'émetteur

- Gain en tension à vide : $A_{V0} = \frac{v_1}{v_e} = -\frac{h_{fe}}{h_{ie} + R_E(1 + h_{fe})}.R_C$
- Le gain à vide (et donc le gain composite) a été diminué par l'introduction de la résistance $R_{\rm E}$.
- ullet On ajoute la capacité de découplage C_E (passe bas) qui permet la suppression de la résistance R_E en régime alternatif : augmentation du gain.

V.9. Résistance d'émetteur

- Gain en tension à vide : $A_{V0} = \frac{v_1}{v_e} = -\frac{h_{fe}}{h_{ie} + R_E(1 + h_{fe})} R_C$
- Le gain à vide (et donc le gain composite) a été diminué par l'introduction de la résistance $R_{\rm E}$.
- ullet On ajoute la capacité de découplage C_E (passe bas) qui permet la suppression de la résistance R_E en régime alternatif : augmentation du gain.
- Droite de charge statique

pente =
$$-\frac{1}{R_C + R_E}$$

V.9. Résistance d'émetteur

- Gain en tension à vide : $A_{V0} = \frac{v_1}{v_e} = -\frac{h_{fe}}{h_{ie} + R_E(1 + h_{fe})} R_C$
- Le gain à vide (et donc le gain composite) a été diminué par l'introduction de la résistance $R_{\rm E}$.
- lacktriangle On ajoute la capacité de découplage C_E (passe bas) qui permet la suppression de la résistance R_E en régime alternatif : augmentation du gain.
- Droite de charge statique

pente =
$$-\frac{1}{R_C + R_E}$$

Droite de charge dynamique

pente =
$$-\frac{1}{R_C}$$

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

• Instant $t < t_0$

 \checkmark T₁ saturé : V_{CE1} = V_{CEsat} = 0

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

• Instant $t < t_0$

- \checkmark T₁ saturé : V_{CE1} = V_{CEsat} = 0
- \checkmark T₂ bloqué : V_{CE2} = V_{DD}
- \checkmark V_{BE2} < 0,6 V
- $V_{C2} = V_{DD} 0.6$

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

- Instant $t = t_0$
 - \checkmark C₁ s'est chargée à travers R₁
 - ✓ V_{BE2} devient égale à 0,6 V

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

• Instant $t = t_0$

- ✓ T_2 devient saturé : $V_{CE2} = 0$
- ✓ La charge de C_2 impose la tension $V_{BE1} = 0.6 V_{DD}$
- \checkmark T₁ se bloque

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

• Instant $t = t_0^+$

 \checkmark C_1 se charge à travers R_{C1} avec une constante de temps très faible

$$\checkmark$$
 $V_{CE1} = V_{DD}$

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

• Instant $t > t_0$

- \checkmark C_2 se charge à travers R_2 avec une constante de temps plus grande que $R_{C_1}.C_1$.
- ✓ La tension V_{BE1} augmente

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

• Instant $t = t_1$

$$V_{BE1} = 0.6 \text{ V}$$

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

- Instant $t = t_1$
 - ✓ T_1 devient saturé : $V_{CE1} = 0$
 - ✓ La charge de C_1 impose la tension $V_{BE2} = 0.6 V_{DD}$
 - \checkmark T₂ se bloque

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

• Instant $t = t_1^+$

 \checkmark C_2 se charge à travers R_{C2} avec une constante de temps très faible

$$\checkmark V_{CE2} = V_{DD}$$

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

- Instant $t > t_1^+$
 - \checkmark C_1 se charge à travers R_1 avec une constante de temps plus grande que $R_{C2}.C_2$.
 - ✓ La tension V_{BE2} augmente

• Circuit dont le schéma s'apparente à celui de la mémoire RS et qui fournit un signal carré.

- ullet Le signal carré est pris sur le collecteur de T_1 ou de T_2
- La période du signal carré dépend des valeurs de R_1 , R_2 , C_1 et C_2
- ullet Il faut aussi $R_{C1} << R_1$ et $R_{C2} << R_2$

VII.1. Définition et principe de fonctionnement

- L'amplificateur de classe B n'amplifie que la moitié du signal d'entrée.
- Il crée beaucoup de distorsion mais a un rendement bien meilleur que le classe A avec en théorie 78.5 %.
- Le point de repos se situe à la limite du blocage du transistor

VII.2. Amplificateur push-pull

- Les deux transistors ont le même gain β .
- Amplificateur de puissance et non de tension
- Si $V_E = 0$, les deux transistors sont bloqués et $V_S = 0$.

VII.2. Amplificateur push-pull

- Les deux transistors ont le même gain β.
- Amplificateur de puissance et non de tension
- Si $V_E = 0$, les deux transistors sont bloqués et $V_S = 0$.
- Si $V_E > 0.6$ V, le transistor NPN est en régime linéaire et le PNP est bloqué :

$$V_{\rm S} = V_{\rm E} - 0.6$$
.

VII.2. Amplificateur push-pull

- Les deux transistors ont le même gain β.
- Amplificateur de puissance et non de tension
- Si $V_E = 0$, les deux transistors sont bloqués et $V_S = 0$.
- Si $V_E > 0.6$ V, le transistor NPN est en régime linéaire et le PNP est bloqué :

$$V_{\rm S} = V_{\rm E} - 0.6$$
.

ullet Si $V_E < -0.6$ V, le transistor PNP est en régime linéaire et le NPN est bloqué.

$$V_S = V_E + 0.6.$$

- \blacksquare Distorsion pour les faibles valeurs de $V_{\rm E}.$
- Saturation de V_S si $|V_E| > V_{DD}$.

VII.2. Amplificateur push-pull

- Les deux transistors ont le même gain β .
- Amplificateur de puissance et non de tension
- Si $V_E = 0$, les deux transistors sont bloqués et $V_S = 0$.
- Si $V_E > 0.6$ V, le transistor NPN est en régime linéaire et le PNP est bloqué :

$$V_{\rm S} = V_{\rm E} - 0.6$$
.

ullet Si $V_E < -0.6$ V, le transistor PNP est en régime linéaire et le NPN est bloqué.

$$V_{\rm S} = V_{\rm E} + 0.6.$$

- Distorsion pour les faibles valeurs de V_E.
- Saturation de V_S si $|V_E| > V_{DD}$.

VII.2. Amplificateur push-pull

- Les deux transistors ont le même gain β.
- Amplificateur de puissance et non de tension
- Si $V_E = 0$, les deux transistors sont bloqués et $V_S = 0$.
- Si $V_E > 0.6$ V, le transistor NPN est en régime linéaire et le PNP est bloqué :

$$V_{\rm S} = V_{\rm E} - 0.6$$
.

• Si $V_E < -0.6$ V, le transistor PNP est en régime linéaire et le NPN est bloqué.

$$V_{\rm S} = V_{\rm E} + 0.6$$
.

- Distorsion pour les faibles valeurs de V_E.
- Saturation de V_S si $|V_E| > V_{DD}$.

VII.2. Amplificateur push-pull

- Afin d'éviter la distorsion du signal, on place un pont de base avec deux diodes polarisées en directe (et passantes).
- L'amplificateur push-pull est utilisé comme étage de sortie des générateurs de fonction et des amplificateurs audio.

VIII.1. Définition

- Les premiers amplis opérationnels (réalisés à l'aide de tubes à vide) étaient destinés aux calculatrices analogiques, d'où leur nom.
- Il se caractérise par deux entrées (une inverseuse, notée –, une non inverseuse, notée +), une sortie et un gain A liés par la relation :

$$V_S = A.(V_1 - V_2) = A.V_d$$

- L'impédance d'entrée très grande ($\geq 500 \text{ k}\Omega$), l'impédance de sortie est presque nulle et la bande passante part du continu.
- Le gain est très grand (≈ 50000) ce qui signifie qu'un amplificateur opérationnel alimenté sous \pm 15 V sature pour V_d = 300 μV !
- Il est constitué de plusieurs montages de base : paire différentielle, miroirs de courant, amplificateur push-pull ...

VIII.2. Schéma électrique globale

 $-\,V_{\rm DD}$

VIII.2. Schéma électrique globale de l'AOP 741

VIII.3. Montage amplificateur: l'inverseur

- Les entrées ± ne consomment pas de courant.
- Loi des mailles appliquée au montage :

$$\begin{cases} V_E = R_1.I - V_d \\ -V_d = R_2.I + V_S \end{cases} \quad avec \quad V_S = A.V_d \label{eq:velocity}$$

• On élimine I en divisant ces deux équations.

$$\frac{R_1}{R_2} = \frac{V_E + \frac{V_S}{A}}{-V_S \left(1 + \frac{1}{A}\right)} = \frac{A + \frac{V_S}{V_E}}{-\frac{V_S}{V_E} (A+1)} = \frac{A+G}{-G(A+1)}$$

avec
$$G = \frac{V_S}{V_E}$$

- On obtient alors l'expression du gain G : $G = \frac{-A}{1 + \frac{R_1}{R_2}(A+1)} \approx -\frac{R_2}{R_1}$
- Hors saturation de la sortie, V_d reste très faible et négligeable devant les autres tensions. On remplace habituellement "- V_d " par ϵ .

VIII.4. Montage amplificateur: l'additionneur

• Somme des courants :

$$I = I_1 + I_2$$

 Application de la loi des nœuds à l'entrée – :

$$\frac{V_2 - \varepsilon}{R_2} + \frac{V_1 - \varepsilon}{R_1} = \frac{\varepsilon - V_S}{R} \quad \text{soit} \quad \frac{V_2}{R_2} + \frac{V_1}{R_1} = -\frac{V_S}{R}$$

• Si
$$R_1 = R_2$$
: $V_S = -\frac{R}{R_1}(V_1 + V_2)$

• Si
$$R_1 = R_2 = R$$
: $V_S = -(V_1 + V_2)$

VIII.5. Montage amplificateur : l'intégrateur

• Rappels:

$$Q = C.V$$
 et $I = \frac{dQ}{dt} = C\frac{dV}{dt}$

• Loi des mailles :

$$V_E = R.I$$
 et $V_S = -V_C$

Expression de V_S:

$$V_{E} = -R.C. \frac{dV_{S}}{dt} \longrightarrow dV_{S} = -\frac{1}{R.C} V_{E} dt$$

$$V_{S} = -V_{C0} - \frac{1}{R.C} \int V_{E} dt$$

V_{C0} est la tension initiale aux bornes du condensateur

VIII.6. Montage amplificateur : le suiveur

• Le courant I est très faible (base du bipolaire) et la valeur de ε est négligeable ce qui donne :

$$V_S = R.I + \varepsilon + V_E \approx V_E$$

ullet L'impédance d'entrée est très grande et celle de sortie très faible. On peut donc prélever la tension V_E sans modifier le circuit.

• En pratique R est égal à l'impédance de sortie du circuit.

VIII.7. Montage comparateur: comparateur simple

- On veut savoir si la tension V_E et plus forte (ou plus faible) qu'une tension de référence notée V_1 .
- L'AOP ne consomme pas de courant dans la borne donc :

$$V_1 = \frac{R_2}{R_1 + R_2} V_{DD}$$

Il n'y a pas de rétroaction entre la sortie et une des entrées donc :

$$V_S = A.V_d$$

• Donc la sortie de l'AOP va saturer pour une valeur très très faible de :

$$V_d = V_E - V_1$$

VIII.7. Montage comparateur: comparateur simple

- Si $V_E < V_1 : V_d < 0$ et V_S sature au niveau le plus bas de l'alimentation de l'AOP.
- Par exemple $V_E = 0$ V, $V_1 = 1$ V et A = 50000. Dans ce cas : $V_S = 1 \times V_d = -50000$ V ce qui n'est pas possible donc $V_S = 0$ V
- Si $V_E > V_1 : V_d > 0$ et V_S sature au niveau le plus haut de l'alimentation de l'AOP.

VIII.7. Montage comparateur: comparateur simple

• Il est évidement possible d'inverser les entrées + et -.

VIII.8. Montage comparateur: CAN Flash

• Le but est de transformer un signal analogique et suite de 0 et de 1.

