First we will show that such maps D exist, using an inductive definition that also gives a recursive method for computing determinants. Actually, we will define a family $(\mathcal{D}_n)_{n\geq 1}$ of (finite) sets of maps $D \colon \mathrm{M}_n(K) \to K$. Second we will show that determinants are in fact uniquely defined, that is, we will show that each \mathcal{D}_n consists of a *single map*. This will show the equivalence of the direct definition $\det(A)$ of Lemma 7.4 with the inductive definition D(A). Finally, we will prove some basic properties of determinants, using the uniqueness theorem.

Given a matrix $A \in M_n(K)$, we denote its n columns by A^1, \ldots, A^n . In order to describe the recursive process to define a determinant we need the notion of a minor.

Definition 7.5. Given any $n \times n$ matrix with $n \ge 2$, for any two indices i, j with $1 \le i, j \le n$, let A_{ij} be the $(n-1) \times (n-1)$ matrix obtained by deleting Row i and Column j from A and called a *minor*:

For example, if

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 \end{pmatrix}$$

then

$$A_{23} = \begin{pmatrix} 2 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}.$$

Definition 7.6. For every $n \geq 1$, we define a finite set \mathcal{D}_n of maps $D \colon \mathrm{M}_n(K) \to K$ inductively as follows:

When n = 1, \mathcal{D}_1 consists of the single map D such that, D(A) = a, where A = (a), with $a \in K$.

Assume that \mathcal{D}_{n-1} has been defined, where $n \geq 2$. Then \mathcal{D}_n consists of all the maps D such that, for some $i, 1 \leq i \leq n$,

$$D(A) = (-1)^{i+1} a_{i,1} D(A_{i,1}) + \dots + (-1)^{i+n} a_{i,n} D(A_{i,n}),$$

where for every j, $1 \le j \le n$, $D(A_{ij})$ is the result of applying any D in \mathcal{D}_{n-1} to the minor A_{ij} .