Plan for TissueFBA

John Whitman August 24, 2024

Purpose: Establish the idea of the PCA cloud.

Math

We have a matrix, \mathbf{D} , with dimension $m \times n$, where m is the number of observations of data, and n is the number of features collected per sample. We define the PCA function as taking in a matrix of some dimension, and returning a matrix \mathbf{B} of dimension $o \times n$ where o is the desired, reduced number of dimensions of the operation. Given a data vector \vec{d} (a row from \mathbf{D}) which is dimension $1 \times n$ by definition, we can transform the point into the target space by:

$$\vec{d'} = \vec{d} \times \mathbf{B}^T \tag{1}$$

yielding a new vector of $1 \times o$ dimension.

Our goal is to measure the variability in dimensional reduction as a function of subsampling the data population. To do this, we first generate an eigenbasis using the full dataset, \mathbf{D} . We define this eigenbasis as \mathbf{B}_0 . We also generate the transformed datapoints in the eigenbasis: $\{\vec{d}_{i0}' = \vec{d}_i \times \mathbf{B}_0^T : i \in \{1, \dots, m\}, \ d_i \in \mathbf{D}\}$. For absolute clarity, \vec{d}_{i0}' is the transformed datapoint relating to row i of the original datamatrix, in the reduced dimensionality eigenbasis generated by the PCA of the full dataset.

Now, we generate a new datamatrix through subsampling out the population; this datamatrix is of size $l \times n$ where $l \leq m$ is the size of the subsample. Running PCA on this datamatrix (keeping sure to maintain the same target rank of the output dimensional reduction) generates a new eigenbasis \mathbf{B}' , with which we may generate new transformed datapoints: $\{\vec{e}_j = e_j^{\prime} \times \mathbf{B}'^T : j \in \{1, \dots, l\}, \ e_j \in \mathbf{D}'\}$.

At this point, we have up to three representations of any particular data point i: the original generation in full feature space $(\vec{d_i})$, the dimensional reduced point in \mathbf{B} $(\vec{d_i})$, and, if the data point was in the subsampled population of \mathbf{D}' , another dimensionally reduced point $(\vec{e_i})$. We note that we can project $\vec{e_i}$ into the space of \mathbf{B} , since both \mathbf{B} and \mathbf{B}' will be orthogonal eigenbases. In plain terms, this projection provides an abstract measure of the variation in the original PCA as a function of changing the subpopulation of the projection.

We quickly calculate the transformation by moving \vec{e}'_i back into feature space and then into **B**.

$$\vec{e}_i = \vec{\hat{e}}_i \times \left(\mathbf{B}^{\prime T}\right)^{-1}$$

$$\vec{e}_i' = \vec{\hat{e}}_i \times \left(\mathbf{B}^{\prime T}\right)^{-1} \times B^T$$
(2)

where we imply, since \mathbf{B}' is generally non-square, that \mathbf{B}'^{-1} is the Monroe-Penrose psuedo-inverse. Interestingly, since \mathbf{B}' is, by construction, an orthogonal matrix, the matrix inverse is just the transpose. So this matrix multiplication reduces to just $\mathbf{B}' \times B^T$. As a gut check, if $\mathbf{B}' = \mathbf{B}$, this would be the identity matrix and there would be no transformation.