概要

最適化2 (第1回)

番原睦則 (banbara@i.nagoya-u.ac.jp)

名古屋大学情報学研究科

最適化2の概要

目的

- 数理計画のいくつかの基本的な問題とその解法アルゴリズム について学ぶ。
- 最適化1の続き
- 教科書
 - 新版 数理計画入門 福島雅夫 著 (朝倉書店)
- 成績評価
 - 演習課題 30 %, 期末試験 70 %
 - 100 点満点で60 点以上を合格とする.
- 担当教員
 - 。 番原陸則
 - http://kaminari.cspsat.css.i.nagoya-u.ac.jp/ banbara-jp.html

分枝限定法の計算手順 (再掲)

- ① 適当な方法で元の問題 \mathcal{P}_0 の近似解を求め、それを暫定解とする。その目的関数値を暫定値 z^* とする。 \mathcal{P}_0 からいくつかの部分問題 $\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_m$ を生成し、 $\mathcal{A} := \{\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_m\}$ とおく
- ⑤ 集合 A から部分問題 ₱; を一つ選ぶ。
 - ⓐ P_i が実行可能解をもたなければ、直ちに P_i を終端. $A := A \setminus \{P_i\}$ としてステップ (3) へ.
 - **⑤** P_i の最適解が得られ,その目的関数値 z_i が $z_i \le z^*$ ならば, 直ちに P_i を終端. $z_i > z^*$ ならば, $z^* := z_i$ とおき,暫定解を 更新して P_i を終端. $A := A \setminus \{P_i\}$ としてステップ (3) へ.
 - © P_i の上界値 $\overline{z_i}$ が得られ, $\overline{z_i} \le z^*$ ならば,直ちに P_i を終端。 $A := A \setminus \{P_i\}$ としてステップ (3) へ. $\overline{z_i} > z^*$ ならば,ステップ (2) へ.
- ② \mathcal{P}_i からいくつかの部分問題 $\mathcal{P}_j, \dots, \mathcal{P}_k$ を生成し, $\mathcal{A} := \mathcal{A} \cup \{\mathcal{P}_i, \dots, \mathcal{P}_k\} \setminus \{\mathcal{P}_i\}$ とおく. ステップ (1) へ戻る.
- ③ $A = \emptyset$ ならば計算終了. このとき、暫定解は元の問題 \mathcal{P}_0 の最適解. $A \neq \emptyset$ ならば、ステップ (1) へ戻る.

深さ優先探索法を用いた分枝限定法の計算例

元の問題: $\mathcal{P}(\emptyset,\emptyset)$

目的: $7x_1 + 8x_2 + x_3 + 2x_4 \longrightarrow$ 最大

制約: $4x_1 + 5x_2 + x_3 + 3x_4 \le 6$

 $x_i = 0, 1 (i = 1, 2, 3, 4)$

[反復 0]

- $\mathcal{P}(\emptyset,\emptyset)$ の実数最適解 $\mathbf{x}_0 = (1,\frac{2}{5},0,0)^T$ を修正して得られる 近似解 $\mathbf{x} = (1,0,1,0)^T$ を暫定解とする.
- 目的関数値8を暫定値z*とする。
- 自由変数 x_1 を選んで, $\mathcal{P}(\emptyset,\emptyset)$ に分枝操作を施し,部分問題 $\mathcal{P}(\{1\},\emptyset)$ と $\mathcal{P}(\emptyset,\{1\})$ を生成する.
- $A = \{ P(\{1\}, \emptyset), P(\emptyset, \{1\}) \}$ とおく.

反復 1: 部分問題 $\mathcal{P}(\{1\},\emptyset)$ を選ぶ.

部分問題 $\mathcal{P}(\{1\},\emptyset)$

вв

目的: $0 + 8x_2 + x_3 + 2x_4 \longrightarrow$ 最大

制約: $0+5x_2+x_3+3x_4 \leq 6$

$$x_i = 0, 1 (i = 2, 3, 4)$$

- $\mathcal{P}(\{1\},\emptyset)$ の実数最適解は $(x_2, x_3, x_4)^T = (1,1,0)^T$
- この解は 0-1 条件を満たすので、ア({1},∅) は終端できる.
- 目的関数値9は暫定値8より大きいので、以下のように更新
 - 暫定解: $\mathbf{x} = (0, 1, 1, 0)^T$
 - 暫定値・z* = 9
- A = {P(∅, {1})} に更新

反復 2: 部分集合 $\mathcal{P}(\emptyset,\{1\})$ を選ぶ.

部分集合 $\mathcal{P}(\emptyset, \{1\})$

目的: $7 + 8x_2 + x_3 + 2x_4 \longrightarrow$ 最大

制約: $4+5x_2+x_3+3x_4 \leq 6$

 $x_i = 0, 1 (i = 2, 3, 4)$

- $\mathcal{P}(\emptyset, \{1\})$ の実数最適解は $(x_2, x_3, x_4)^T = (\frac{2}{5}, 0, 0)^T$
- 目的関数値は $7 + \frac{16}{5} = 10.2$ なので、この部分問題の上界値 は10となる
- $10 > z^* = 9$ (暫定値) なので、 $\mathcal{P}(\emptyset, \{1\})$ は終端できない.
- 𝑃(∅, {1}) から、部分問題 𝑃({2}, {1}) と 𝑃(∅, {1, 2}) を生成 する.
- $\mathcal{A} = \{\mathcal{P}(\{2\}, \{1\}), \mathcal{P}(\emptyset, \{1,2\})\}$ に更新

部分問題 $\mathcal{P}(\{2\},\{1\})$

目的: $7 + 0 + x_3 + 2x_4 \longrightarrow$ 最大

制約: $4+0+x_3+3x_4 < 6$

$$x_i = 0, 1 (i = 3, 4)$$

- $\mathcal{P}(\{2\},\{1\})$ の実数最適解は $(x_3,x_4)^T=(1,\frac{1}{2})^T$
- 目的関数値は $7+1+\frac{2}{3} \cong 8.7$ なので、この部分問題の上界値 は8となる.
- 可能性はない、この部分問題は終端できる.
- A = {P(∅, {1,2})} に更新

部分問題 $\mathcal{P}(\emptyset, \{1, 2\})$

вв

概要

目的: $7 + 8 + x_3 + 2x_4 \longrightarrow$ 最大

制約: $4+5+x_3+3x_4 \le 6$

$$x_i = 0, 1 (i = 3, 4)$$

- この部分問題は明らかに実行可能解をもたないので、直ちに 終端できる
- A = ∅ に更新

вв

- A = 0 となったので、計算終了。
- 現時点の暫定解が最適解である。
 - 最適解: $\mathbf{x} = (0, 1, 1, 0)^T$
 - 最適値: z* = 9

今回の例では、全部で16個ある部分問題のうち、4個を解くこと で元の問題の最適解を得ている.

分枝限定法の探索木

概要

- ◎: 実行可能解が得られ、暫定解を更新した部分問題
- □: 上界値が暫定値以下だったため終端した部分問題
- △: 実行可能解をもたないため終端した部分問題

分枝限定法のまとめ

- 組合せ最適化問題に対する厳密解法の一つ。
- 様々な問題に対して用いることができる一般的な計算原理。

分枝限定法の基本操作

- ① **分枝操作**: 変数の値を固定するなどして場合分けを行い、部 分問題を生成する.
- ② 限定操作: 部分問題に対して, (元の問題の) 最適解を与える 可能性があるか調べ、ないと判定された場合は、その部分問 題を解くことを止める。
 - 実際に分枝限定法を適用する場合、対象とする問題に応じ て、効果的な上界値の計算法や活性部分問題の探索法を工 大することが重要

BB 計算例

演習1

概要

以下の0-1ナップサック問題を分枝限定法を用いて解け、

目的: $28x_1 + 33x_2 + 10x_3 + 45x_4 + 32x_5 \longrightarrow$ 最大

制約: $2x_1 + 3x_2 + x_3 + 5x_4 + 4x_5 \le 7$

$$x_i = 0, 1 (i = 1, 2, 3, 4, 5)$$

概要

以下の0-1ナップサック問題を分枝限定法を用いて解け、

目的:
$$3x_1 + 4x_2 + x_3 + 2x_4 \longrightarrow$$
 最大

制約:
$$2x_1 + 3x_2 + x_3 + 3x_4 \le 4$$

$$x_i = 0, 1 (i = 1, 2, 3, 4)$$

ナンバーリンク †

問題例

ナンバーリンクのルール (ニコリによる)

- 1 同じ数字どうしを線でつなげます.
- ② 線はタテヨコに引き、マスの中央を通ります.
- ③ 線は1マスに1本だけ通過できます。線をワクの外に出したり、交差や枝分かれさせてはいけません。また、線は数字が入っているマスを通過してもいけません。

[†]ナンバーリンクはニコリ社の登録商標. 回路の配線問題と親和性が高い.

ナンバーリンク†

ナンバーリンクのルール (ニコリによる)

- 1 同じ数字どうしを線でつなげます.
- ② 線はタテヨコに引き、マスの中央を通ります.
- ③ 線は1マスに1本だけ通過できます.線をワクの外に出したり、交差や枝分かれさせてはいけません。また、線は数字が入っているマスを通過してもいけません。

[†]ナンバーリンクはニコリ社の登録商標. 回路の配線問題と親和性が高い.

вв

問題

概要

- 1 ナンバーリンクに対する欲張り法について議論せよ
- ② ナンバーリンクを組合せ問題として定式化せよ.
 - 。目的関数は無視して考えよ[‡]
 - 論理積 (∧), 論理和 (∨) などの論理演算を使ってもよい.
 - 等号否定 (≠) などの算術演算を使ってもよい.

[‡]実際には、曲がる回数最小化など色々ある

$\mathcal{P}(\emptyset,\emptyset)$

目的: $28x_1 + 33x_2 + 10x_3 + 45x_4 + 32x_5 \longrightarrow$ 最大

制約: $2x_1 + 3x_2 + x_3 + 5x_4 + 4x_5 \le 7$

$$x_i = 0, 1 (i = 1, 2, 3, 4, 5)$$

- $\mathcal{P}(\emptyset,\emptyset)$ の実数最適解 $\mathbf{x}_0 = (1,1,1,\frac{1}{5},0)^T$ を修正して得られる近似解 $\mathbf{x} = (1,1,1,0,0)^T$ を暫定解とする.
- 目的関数値 71 を暫定値 z* とする。
- 自由変数 x_4 を選んで *, $\mathcal{P}(\emptyset,\emptyset)$ に分枝操作を施し、部分問題 $\mathcal{P}(\{4\},\emptyset)$ と $\mathcal{P}(\emptyset,\{4\})$ を生成する.
- $A = \{ P(\{4\}, \emptyset), P(\emptyset, \{4\}) \}$ とおく.

^{*}実数最適解において、0-1条件を満たさない変数を選択

$\mathcal{P}(\{4\},\emptyset)$

目的: $28x_1 + 33x_2 + 10x_3 + 0 + 32x_5 \longrightarrow$ 最大

制約: $2x_1 + 3x_2 + x_3 + 0 + 4x_5 \le 7$

 $x_i = 0, 1 (i = 1, 2, 3, 5)$

- 実数最適解は $(x_1, x_2, x_3, x_5)^T = (1, 1, 1, \frac{1}{4})^T$
- 目的関数値は79 (この部分問題の上界値)
- $\mathcal{P}(\{4\},\emptyset)$ から、部分問題 $\mathcal{P}(\{4,5\},\emptyset)$ と $\mathcal{P}(\{4\},\{5\})$ を生成
- $\mathcal{A} = \{ \mathcal{P}(\{4,5\},\emptyset), \mathcal{P}(\{4\},\{5\}), \mathcal{P}(\emptyset,\{4\}) \}$ に更新

$\overline{\mathcal{P}(\{4,5\},\emptyset)}$

目的: $28x_1 + 33x_2 + 10x_3 + 0 + 0 \longrightarrow$ 最大

制約: $2x_1 + 3x_2 + x_3 + 0 + 0 \le 7$

 $x_i = 0, 1 (i = 1, 2, 3)$

- 実数最適解は $(x_1, x_2, x_3)^T = (1, 1, 1)^T$
- 目的関数値は71
- この解は 0-1 条件を満たすので終端できる。
- 71 ≤ z* = 71 なので、暫定値・暫定解の更新はなし
- A = {P({4}, {5}), P(∅, {4})} に更新

$\mathcal{P}(\{4\}, \{5\})$

目的: $28x_1 + 33x_2 + 10x_3 + 0 + 32 \longrightarrow$ 最大

制約: $2x_1 + 3x_2 + x_3 + 0 + 4 \le 7$

$$x_i = 0, 1 (i = 1, 2, 3)$$

- 実数最適解は $(x_1, x_2, x_3)^T = (1, \frac{1}{3}, 0)^T$
- 目的関数値は 71 (この部分問題の上界値)
- $71 < z^* = 71$ (暫定値) なので終端できる.
- A = {P(∅, {4})} に更新

$\mathcal{P}(\emptyset, \{4\})$

目的: $28x_1 + 33x_2 + 10x_3 + 45 + 32x_5 \longrightarrow$ 最大

制約: $2x_1 + 3x_2 + x_3 + 5 + 4x_5 \le 7$

 $x_i = 0, 1 (i = 1, 2, 3, 5)$

- 実数最適解は $(x_1, x_2, x_3, x_5)^T = (1, 0, 0, 0)^T$
- 目的関数値は73
- この解は 0-1 条件を満たすので終端できる.
- 73 > z* = 71 なので、暫定値・暫定解を更新
 - 暫定解: $\mathbf{x} = (1,0,0,1,0)^T$
 - 暫定値: z* = 73
- A = ∅ に更新

- $A = \emptyset$ となったので、計算終了.
- 現時点の暫定解が最適解である.
 - 最適解: $\mathbf{x} = (1,0,0,1,0)^T$
 - 最適値: z* = 73

この問題では、全部で32個ある部分問題のうち、4個を解くことで元の問題の最適解を得ている。

解答例: ナンバーリンク (1/2)

線を結ぶ条件

• 各マス (i,j) から下のマスへの線の有無を変数 s_{ij} で、右のマスへの線の有無を変数 e_{ij} で表す *.

$$s_{ij}, e_{ij} \in \{0,1\}$$

○ 数が記入されている数字マスからは1本だけ線が出る.

$$s_{(i-1)j} + e_{i(j-1)} + s_{ij} + e_{ij} = 1$$

● 空白の白マスからは2本または0本の線が出る.

$$s_{(i-1)j} + e_{i(j-1)} + s_{ij} + e_{ij} \le 2$$

 $s_{(i-1)j} + e_{i(j-1)} + s_{ij} + e_{ij} \ne 1$

^{*}盤外への辺は 0 と考える

解答例: ナンバーリンク (2/2)

同じ数字同士を線を結ぶ条件

• 各マスがどの数字と結ばれているかを変数 xii で表す.

$$x_{ij} \in \{1, 2, \dots, m\}$$
 (m は最大の数字)

o 数字マスの場合は、記入されている値 a に等しい.

$$x_{ij} = a$$

• 線で結ばれているマス同士は同じ値を取る.

$$(s_{ij}=1)\Rightarrow (x_{ij}=x_{(i+1)j})$$

 $(e_{ii}=1)\Rightarrow (x_{ij}=x_{i(i+1)})$