Machine Learning com Python

APRENDIZAGEM BASEADA EM INSTÂNCIAS (KNN)

Algoritmo de classificação em aprendizagem supervisionada.

KNN é a sigla de K Nearest Neighbors (K vizinhos mais próximos).

O KNN realiza classificação de instâncias (dados) em classes (grupos de dados semelhantes).

Não possui um modelo matemático, apenas classifica uma instância através de cálculos de distâncias.

Em problemas de classificação é recomendado utilizar número de classes ímpares para evitar empates durante o processo.

https://www.researchgate.net/figure/A-k-nearest-neighbor-KNN-classifier-KNN-is-explained-as-follows fig1 318096864

Metrics intended for real-valued vector spaces:

identifier	class name	args	distance function
"euclidean"	EuclideanDistance	•	$sqrt(sum((x - y)^2))$
"manhattan"	ManhattanDistance	•	sum(x - y)
"chebyshev"	ChebyshevDistance	•	max(x - y)
"minkowski"	MinkowskiDistance	p, w	$sum(w * x - y ^p)^(1/p)$
"wminkowski"	WMinkowskiDistance	p, w	$sum(w * (x - y) ^p)^(1/p)$
"seuclidean"	SEuclideanDistance	V	$sqrt(sum((x - y)^2 / V))$

"mahalanobis" MahalanobisDistance V or VI sqrt((x - y)' V^-1 (x - y))

Vantagens

Fácil implementação.

Fácil entendimento.

Excelente desempenho em situações de dados com características complexas.

Poucos parâmetros para ajustar.

Desvantagens

Alto custo computacional.

Parâmetro k é ajustado na tentativa e erro.

Necessita transformar dados categóricos em numéricos.