

Cognitive Relay: Detecting Spectrum Holes in a **Dynamic Scenario**

Ankit Kaushik, Marcus Müller and Friedrich K. Jondral

{ankit.kaushik, friedrich.jondral}@kit.edu, {marcus.mueller@student.kit.edu}

Introduction and Motivation

Dynamic Spectrum Access (DSA) is one of the many applications of cognitive radio.

Main tasks for a DSA operating as Secondary User (SU):

- Sensing (Learning) and intelligent access (Act)
- Avoid interference to the Primary User (PU)

Purpose of this work:

- Realize the cognitive concepts over the hardware
- Use sophisticated algorithms to reduce the time constraints and computational complexity
- Demonstrate the radio in a real scenario

Scenario

Cognitive Relay (CR) is a network element of the SU system

- · Supports wireless services for devices operating indoor
- Enables dynamic access to increase spectral efficiency

System Model

Cross layer optimization

Receiver model

Y[n] = X[n] + W[n]

 $T(\mathbf{Y}) = \frac{1}{K} \sum_{i=1}^{K-1} |Y[n]|^2 \underset{\mathcal{H}_i}{\overset{\mathcal{H}_0}{\geqslant}} \gamma$

Energy detection

 $T(\mathbf{Y})$ test statistics

number of samples

Y[n]received waveform

transmitted waveform X[n]

W[n]noise waveform

threshold, determined using constant false alarm

Learning

Modelling channel access as discrete time discrete state Markov process

- PU subchannels N
- Multiband sensing through
- State transition probabilities (α, β)
- Utilization probability u

Implementation and User Interactions

Demonstrator Setup

Test scenario	GSM channels at 1800 MHz
Shared Access	Interweave
Hardware	USRP N210
Multiband sensing Software defined architecture	GNU Radio

Analysis

Detection of spectral holes	Time slots
Estimation of model parameters $(\hat{\alpha}, \hat{\beta})$	Maximum likelihood estimation
Channel ranking	$\mathbf{u} = [u^1, u^2,, u^N]$

Conclusion and Future Work

- Cognitive radio implementation in a dynamic scenario
- Potential to sense non-contiguous multiple band simultaneously over low cost hardware
- Capable to learn and interact with its environment
- Considering other scenarios such as Overlay Systems
 - Spatial separation of the PU and SU systems (transmission power control)
- Cooperation with the other CRs