Today's topic

• Arc Length and Curvature (Sec 10.8)

Q1. Whats the length of a curve?

Q2. How curved is the curve?

EXAMPLE I Find the length of the arc of the circular helix with vector equation $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}$ from the point (1, 0, 0) to the point $(1, 0, 2\pi)$.

Suppose the curve is described by the formula

$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
 $a \le t \le b$

Length can be evaluated by integrating the speed

length =:
$$L = \int_{a}^{b} \operatorname{speed} dt$$

= $\int_{a}^{b} |\mathbf{r}'(t)| dt$
= $\int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$

Q. Using this formula, verify that formula of circumference of a circle.

Find the length of the curve.

$$\mathbf{r}(t) = \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}, \quad 0 \le t \le 1$$

arc length function s

$$s(t) = \int_{a}^{t} |\mathbf{r}'(u)| du$$
$$\frac{ds}{dt} = |\mathbf{r}'(t)|$$

It is often useful to parametrize a curve with respect to arc length

EXAMPLE 2 Reparametrize the helix $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}$ with respect to arc length measured from (1, 0, 0) in the direction of increasing t.

9. Suppose you start at the point (0, 0, 3) and move 5 units along the curve $x = 3 \sin t$, y = 4t, $z = 3 \cos t$ in the positive direction. Where are you now?

CURVATURE

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$

B DEFINITION The **curvature** of a curve is

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right|$$

where T is the unit tangent vector.

THEOREM The curvature of the curve given by the vector function \mathbf{r} is

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

EXAMPLE 5 Find the curvature of the parabola $y = x^2$ at the points (0, 0), (1, 1), and (2, 4).

THE NORMAL AND BINORMAL VECTORS

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$$

principal unit normal vector

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

binormal vector

The plane determined by the normal and binormal vectors \mathbf{N} and \mathbf{B} at a point P on a curve C is called the **normal plane** of C at P. It consists of all lines that are orthogonal to the tangent vector \mathbf{T} . The plane determined by the vectors \mathbf{T} and \mathbf{N} is called the **osculating plane** of C at P. The name comes from the Latin *osculum*, meaning "kiss."

THE NORMAL AND BINORMAL VECTORS

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$$

principal unit normal vector

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

binormal vector

The circle that lies in the osculating plane of C at P, has the same tangent as C at P, lies on the concave side of C (toward which N points), and has radius $\rho = 1/\kappa$ (the reciprocal of the curvature) is called the **osculating circle** (or the **circle of curvature**)

- **40.** Find equations of the osculating circles of the parabola $y = \frac{1}{2}x^2$ at the points (0, 0) and $(1, \frac{1}{2})$. Graph both osculating circles and the parabola on the same screen.