Introduction to Machine Learning

Benjamin Peherstorfer Fall 2020

Today

- Last time
 - Least-squares regression
 - Probabilistic view on least-squares regression
 - Logistic regression for classification
- Today
 - Generalized linear models (reading "Part III" of http://cs229.stanford.edu/notes/cs229-notes1.pdf)
 - Multi-class classification
 - Cross validation
 - Finish lab example
- Announcements
 - Homework 1 due on Wed, Sep 30 before class

Feedback

https://docs.google.com/forms/d/e/ 1FAIpQLSc_vxl9s4Y3OZjYWe2dikviHiUc3s8rmDHqJsxnZahlEwpJfw/ viewform?usp=sf_link

Recap: MLE regression with Gaussian noise

- Let's revisit our regression problem
- Inputs and targets are related via the equation

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}, \qquad i = 1,...,N$$

- $m{\cdot}$ Error term $m{\epsilon}^{(i)}$ captures unmodeled effects and noise
- Error terms are independent and identically distributed (iid)

$$\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$$

- Just as we can have different loss functions, we model $m{y}^{(i)}$ with different distributions
- Gaussian noise implies

p(
$$\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta}$$
) = $\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(\mathbf{y}^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)})^2}{2\sigma^2}\right)$

Recap: Logistic regression

- ullet Use principle of maximum likelihood to find $oldsymbol{ heta}^*$
- Probabilistic assumption: Model $h_{\theta}(x)$ gives the probability that y is 1, i.e.,

$$p(y = 1 \mid x; \boldsymbol{\theta}) = h_{\boldsymbol{\theta}}(x)$$

This also means (remember $h_{\theta}(x) \in [0,1]$)

$$p(y = 0 | x; \theta) = 1 - h_{\theta}(x)$$

• Write more compactly as (because $y \in \{0,1\}$)

$$p(y | x; \boldsymbol{\theta}) = (h_{\boldsymbol{\theta}}(x))^{y} (1 - h_{\boldsymbol{\theta}}(x))^{(1-y)}$$

• (Remember that we modeled y with a Gaussian distribution in the earlier regression problem. We now model y with Bernoulli)

Generalized linear models

- Regression example $y \mid x; \theta \sim \mathcal{N}(\mu, \sigma^2)$
- Classification example $y \mid x; \theta \sim \text{Bernoulli}(\phi)$
- Generalized linear models (GLM) generalize the concepts we have seen to the exponential family of distributions

$$p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta))$$

- Natural parameter η
- Sufficient statistics T(y)
- Log partition function $a(\eta)$
- A fixed choice of b, T, a defines a family with parameter η

Examples of distributions in exponential family

Bernoulli distribution is an exponential family distribution

$$p(y = 1; \phi) = \phi$$

 $p(y = 0; \phi) = 1 - \phi$

Transform so that $p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta))$

Examples of distributions in exponential family (cont'd)

$$p(y;\phi) = \phi^{y}(1-\phi)^{1-y}$$

$$= \exp(y\log\phi + (1-y)\log(1-\phi))$$

$$= \exp\left(\left(\log\left(\frac{\phi}{1-\phi}\right)\right)y + \log(1-\phi)\right)$$

Corresponds to $p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta))$ with

$$T(y) = y$$

$$a(\eta) = -\log(1 - \phi) \qquad \eta = \log\left(\frac{\phi}{1 - \phi}\right)$$

$$= \log(1 + e^{\eta})$$

$$b(y) = 1$$

Gaussian distribution is in the exponential family as well

Constructing GLMs

- Would like to predict value y as function of x
- Assumptions
 - 1. $y \mid x; \theta \sim \text{ExpFamily}(\eta)$, i.e., given x, θ the distribution of y follows an exponential family with parameter η
 - 2. Given x the goal is to predict expected value T(y) (sufficient statistics).
 - In most cases we consider T(y) = y and thus

$$h_{\theta}(x) = \mathbb{E}[y \mid x]$$

3. Natural parameter η and inputs x are related linearly $\eta = \theta^T x$

Example: logistic regression as GLM

board

Example: logistic regression as GLM

- Select Bernoulli distribution for $y \mid x, \theta \sim \text{Bernoulli}(\phi)$
- Our GLM then gives $h_{\theta}(x) = \mathbb{E}[T(y) \mid x; \theta] = \mathbb{E}[y \mid x; \theta]$ because T(y) = y for Bernoulli distribution
- Obtain $\mathbb{E}[y | x; \theta] = 0p(y = 0 | x; \theta) + 1p(y = 1 | x; \theta) = p(y = 1 | x; \theta) = \phi$
- Have $\phi=1/(1+\mathrm{e}^{-\eta})$ and $\eta=\theta^Tx$ and thus $h_{\theta}(x)=\mathbb{E}[y\,|\,x;\theta]=\phi=\frac{1}{1+\mathrm{e}^{-\theta^Tx}}$

Softmax regression

Construct a GLM for multi-class response variable

$$y \in \mathcal{Y} = \{1, 2, ..., k\}$$

• Categorical distribution extends Bernoulli distribution to k outcomes

$$p(y = i \mid x; \theta) = \phi_i$$

with

$$\sum_{i=1}^k \phi_i = 1, \qquad \phi_i > 0$$

Derivation of GLM for multi-class classification

Softmax function

Softmax function

$$\sigma(z) = \frac{1}{\sum_{j=1}^{K} e^{z_j}} \begin{bmatrix} e^{z_1} \\ \vdots \\ e^{z_K} \end{bmatrix}$$

- Components of $\sigma(z)$ sum to 1 \Rightarrow interpret as "probability"
- Smooth approximation of arg max
 - arg max(1,2,3) = [0,0,1]
 - $\sigma([1,2,3]) \approx [0.09,0.24,0.66]$

Model selection and cross validation

Second example: Regression

Dataset: 10 (X,Y) points generated from a sin function, with noise

Regression:

$$- f: X \rightarrow Y$$

$$-X=\Re$$

$$-Y=\Re$$

Degree-M Polynomials

How about letting f be a degree M polynomial?

•Which one is best?

Hypo. Space: Degree-N Polynomials

We measure error using a loss function $L(y,\hat{y})$

For regression, a common choice is squared loss:

$$L(y_i, f(x_i)) = (y_i - f(x_i))^2$$
 Squared error

The *empirical loss* of the function *f* applied to the training data is then:

$$\frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

Measure of model complexity

Hypo. Space: Degree-N Polynomials

We measure error using a loss function $L(y,\hat{y})$

For regression, a common choice is squared loss:

$$L(y_i, f(x_i)) = (y_i - f(x_i))^2$$
 Squared error

The *empirical loss* of the function *f* applied to the training data is then:

$$\frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

Learning curve

Measure of model complexity

Train, validation and test data sets

• Train our models (find parameter $heta^*$ of hypothesis) on training set

$$\mathcal{D} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$$

- Cannot assess quality of trained model on training set because might have overfitted model (—> lecture 1)
- Instead, need a test set

$$\mathcal{D}_T = \{(x_{test}^{(1)}, y_{test}^{(1)}), \dots, (x_{test}^{(M)}, y_{test}^{(M)})\}$$

to estimate, e.g., misclassification error, least-squares costs

Test set must be withheld throughout the whole learning process

Validation set

Validation set

$$\mathcal{D}_{V} = \{(x_{val}^{(1)}, y_{val}^{(1)}), \dots, (x_{val}^{(M')}, y_{val}^{(M')})\}$$

is useful if we have to choose between multiple "best" hypothesis $\boldsymbol{\theta}_1^*, ..., \boldsymbol{\theta}_k^*$

- Example 1: Found hypothesis $h_{\pmb{\theta}_1^*}$ with logistic regression and $h_{\pmb{\theta}_2^*}$ with least-squares regression
- Example 2: Had different assumptions on $y \mid x; \theta \sim \mathcal{P}$ in GLM
- Example 3: Typically find θ^* via iterative method and take the θ^* at final iteration. Use early stopping by considering the history $\theta_1, \ldots, \theta_K$ of parameters over all iterations and and select θ^* via validation set
- Critical to have validation set in these examples

Cross validation

- If not enough data to split into train, val, test
- ullet Split of training data ${\mathscr D}$ into k disjoint subsets

$$\mathcal{D} = \mathcal{D}_1 \cup \ldots \cup \mathcal{D}_k$$

- Ensure that statistics of all partitions are about the same, e.g., label proportion
- Train k hypothesis on each $\mathcal{D}\backslash\mathcal{D}_i$ and validate on \mathcal{D}_i
- Take the "best" hypothesis and test on test data

training

validation

test

Cross validation (cont'd)

[scikit-learn documentation]

Finish up lab from last time