24 Connected Subspaces of the Real Line

Exercise 24.1. (a) Show that no two of the spaces (0,1), (0,1], [0,1] are homeomorphic.

- (b) Suppose that there exists imbeddings $f: X \to Y$ and $g: Y \to X$. Show by means of an example that X and Y need not be homeomorphic.
- (c) Show \mathbb{R}^n and \mathbb{R} are not homeomorphic if n > 1.

Solution. (a) Following the hint, consider what happens when you remove a point from each space.

- $(0,1) \setminus \{x\}$ is always disconnected.
- $(0,1] \setminus \{x\}$ is connected if and only if x = 1.
- $[0,1] \setminus \{x\}$ is connected if and only if x = 0 or x = 1.

The number of points which yield a connected space once removed is invariant under homeomorphic spaces, thus all three intervals are nonhomeomorphic.

- (b) The example they are heavily implying is that any two of the intervals in (a) can be imbedded in one another.
- (c) As was shown in the examples, removing a single point from \mathbb{R}^n yields a connected space for n > 1. This is not true for n = 1.

Exercise 24.2. Let $f: S^1 \to \mathbb{R}$ be continuous. Show that there exists a point x of S^1 such that f(x) = f(-x).

Solution. Fix any a such that $f(a) \leq f(-a)$. Then we have $f(a) - f(-a) \leq 0$ and $f(-a) - f(a) \geq 0$. Since S^1 is connected, by the intermediate value theorem there is some x such that f(x) - f(-x) = 0, or f(x) = f(-x).

Exercise 24.3. Let $f: X \to X$ be continuous. Show that if X = [0, 1], there is a point x such that f(x) = x. The point x is called a fixed point of f. What happens if X is [0, 1) or (0, 1)?

Solution. We have g(x) = x - f(x) is continuous, and $g(0) \le 0$ and $g(1) \ge 0$, thus there is some point $x \in [0,1]$ such that g(x) = 0, which is the same as f(x) = x.

If X = [0,1), the function $f(x) = \frac{x+1}{2}$ has no fixed point (the fixed point would be 1). The same applies with X = (0,1).

Exercise 24.4. Let X be an ordered set in the order topology. Show that if X is connected, then X is a linear continuum.

Solution. If there were points x < y with no point between them, then the open intervals $(-\infty, y)$ and (x, ∞) form a separation of X.

Suppose that some bounded set S has no least upper bound, then let B be the nonempty set of upper bounds. If $x \in B$, there is some y < x such that $y \in B$, so the ray (y, ∞) is a neighborhood of x contained in B. This shows B is open.

If $x \in X \setminus B$, then x is not an upper bound of S, thus there is some $s \in S$ greater than x. We have $s \in X \setminus B$ as well, for if s was an upper bound, it would be the least upper bound. Therefore, $x \in (-\infty, s) \subseteq X \setminus B$, so $X \setminus B$ is also open.

Now B and $X \setminus B$ form a separation of X. Therefore, if X is connected, it must be a linear continuum. \Box

Exercise 24.5. Consider the following sets in the dictionary order. Which are linear continua?

- (a) $\mathbb{Z}_+ \times [0,1)$
- (b) $[0,1) \times \mathbb{Z}_+$
- (c) $[0,1) \times [0,1]$
- (d) $[0,1] \times [0,1)$

Solution. (a) This is a linear continuum by Exercise 6 because \mathbb{Z}_+ is well ordered.

- (b) There are no points between 0×1 and 0×2 , so this is not a linear continuum.
- (c) Clearly every pair of points has a point between them. Now let S be a nonempty bounded set. Let x be the least upper bound of $\pi_1(S)$. If $x \in \pi_1(S)$, then let

$$y = \sup \pi_2(\pi_1^{-1}\{x\} \cap S).$$

Then (x, y) is the least upper bound of S.

If on the other hand $x \notin \pi_1(S)$, then the point (x,0) is the least upper bound of S.

(d) The set $\{0\} \times [0,1)$ has no least upper bound.

Exercise 24.6. If X is a well ordered set, show that $X \times [0,1)$ is a linear continuum.

Solution. Clearly there is a point between any two distinct points. Now let S be a nonempty bounded set. Because X is well ordered, the point $x = \sup \pi_1(S)$

If $x \notin \pi_1(S)$, then we have $\sup S = (x \times 0)$.

If $x \in \pi_1(S)$, then let $A = \pi_2(\pi_1^{-1}\{x\} \cap S)$ be the subset of points $a \in [0,1)$ such that $(x \times a) \in S$.

- If $\sup A < 1$, then $\sup S = (x \times a)$.
- If $\sup A = 1$, then $\sup S = (x' \times 0)$, where x' is the immediate successor of x. If no such successor existed, then S would not be bounded.

- **Exercise 24.7.** (a) Let X and Y be ordered sets in the order topology. Show that if $f: X \to Y$ is order preserving and surjective, then f is a homeomorphism.
- (b) Let $X = Y = \overline{\mathbb{R}}_+$. Given a positive integer n, show that the function $f(x) = x^n$ is order preserving and surjective. Conclude that it's inverse, the n^{th} root function, is continuous.
- (c) Let X be the subspace $(-\infty, -1) \cup [0, \infty)$ of \mathbb{R} . Show that the function $f: X \to \mathbb{R}$ defined by setting f(x) = x + 1 if x < -1, and f(x) = x if $x \ge 0$, is order preserving and surjective. Is f a homeomorphism?

Solution. (a) f is bijective by the order preserving property. We have f((x,y)) = (f(x), f(y)), showing that f^{-1} is continuous. A similar argument shows that f is continuous, and thus f is a homeomorphism.

- (b) A simple inductive argument shows that f is order preserving. Since f(0) = 0 and f(x) > x for all x > 1, the intermediate value theorem shows that f is surjective.
- (c) f is order preserving and surjective by casework, or intuition. However, f is not a homeomorphism. This is because X doesn't have the order topology as a subspace of \mathbb{R} .

Exercise 24.8. (a) Is the product of path-connected spaces necessarily path connected?

- (b) If $A \subseteq X$ and A is path connected, is \bar{A} necessarily path connected?
- (c) If $f: X \to Y$ is continuous and X is path connected, is f(X) necessarily path connected?
- (d) If A_{α} is a collection of path connected subspaces of X and if $\bigcap A_{\alpha} \neq \emptyset$, is $\bigcup A_{\alpha}$ necessarily path connected?

Solution. (a) Let $a=(a_{\alpha})$ and $b=(b_{\alpha})$ be two points in $X=\prod X_{\alpha}$. For each α , let $p_{\alpha}:[0,1]\to X_{\alpha}$ be a path from a_{α} to b_{α} . Define

$$p(t) = (p_{\alpha}(t))_{\alpha \in J}.$$

If $U = \pi_{\alpha}^{-1}(U_{\alpha})$ is a subbasis element of the product space, then

$$p^{-1}(U) = (\pi_{\alpha} \times p)^{-1}(U) = p_{\alpha}^{-1}(U),$$

which is open. This shows that the path p is continuous, thus X is path connected.

- (b) No, the topologist's sine curve is a counterexample.
- (c) Let $f(a), f(b) \in f(X)$; let $g : [0,1] \to X$ be a path from a to b. Then $f \circ g$ is a path from f(a) to f(b). Therefore, f(X) is path connected.
- (d) Let a be any point in $\bigcap A_{\alpha}$; choose $x \in A_{\alpha}$ and $y \in A_{\beta}$. Then we can define paths

$$f:[0,1]\to A_{\alpha}, \qquad g:[1,2]\to A_{\beta}$$

such that f(0) = x, f(1) = g(1) = a, and g(2) = y. Then the path h formed by combining the domains of f and g is continuous by the pasting lemma. This shows that $\bigcup A_{\alpha}$ is path connected.

Exercise 24.9. Assume that \mathbb{R} is uncountable. Show that if $A \subseteq \mathbb{R}^2$ is countable, then $\mathbb{R}^2 - A$ is path connected.

Solution. Choose $x, y \in \mathbb{R}^2 - A$. Following the hint, there are uncountably many lines through x which don't intersect A; choose one of them. There are also uncountably many lines through y which don't intersect A; choose one of them which intersects the first line. This forms our path.

Exercise 24.10. Show that if U is an open connected subspace of \mathbb{R}^2 , then U is path connected.

Solution. There is a general way to determine whether a property P(x) holds for all points in a connected set C. It has a similar feel to induction.

- Find an initial point $x_0 \in C$ which satisfies P.
- Show that $\{x \in C \mid P(x)\}$ is both open and closed in C.

Since C is connected, this would show that every x satisfies the property.

Let U be an open and connected subspace of \mathbb{R}^2 . We can assume that U is nonempty, since the empty set is path connected. Let $x_0 \in U$. We will show that the set A containing all points which can be connected to x_0 with a path is open and closed in U, and therefore A = U.

Let $x \in A$. Since U is open, we can choose some $B(x, \epsilon)$ contained in U, which is path connected. Therefore, $B(x, \epsilon)$ is contained in A, and so A is open.

Now let $x \notin A$. Again, we can choose a path connected ball $B(x, \epsilon)$ contained in U - A. If the open ball intersected A, this would mean $x \in A$, which is a contradiction. This shows that A is closed.

Since C is connected and $A \subseteq C$ is nonempty, open, and closed, we have A = C. This shows that C is path connected.

Exercise 24.11. If A is a connected subspace of X, does it follow that Int(A) and Bd(A) are connected? Does the converse hold?

Solution. If A is connected, neither the interior nor the boundary need to be connected. For an informal example, let $A \subseteq \mathbb{R}^2$ be two balls connected by a line, where the interior removes the connecting line. Also, $\mathrm{Bd}((0,1)) = \{0,1\}$ is clearly not connected.

The converse also doesn't hold! For example, let $A=\mathbb{Q}$, where $\mathrm{Int}(A)=\emptyset$ and $\mathrm{Bd}(A)=\mathbb{R}$ are both connected. \square