אִינְדּוּקְצִיָּה מתמטית

גיא סידס

2025 במרץ 2025

מבוא ודוגמאות

אינדוקציה מתמטית היא שיטת הוכחה המשמשת להוכחת טענות עבור כל המספרים הטבעיים. הרעיון הוא אינדוקציה מתמטית היא שיטת הוכחה בסיסי ולראות שנכונותו עבור מספר כלשהו n=k גוררת את נכונותו עבור מדוק את נכונות הטענה עבור מקרה של אבני דומינו, שבה נפילה של האבן הראשונה תגרום לכל האבנים ליפול, אם כל אחת מפילה את האבן הבאה אחריה.

שלבי ההוכחה באינדוקציה

- n=1 בודקים שהטענה נכונה עבור מספר טבעי התחלתי מסוים, לרוב n=1.
 - n=k גניח שהטענה נכונה עבור .2
- n=k+1 מעבר / צעד האינדוקציה) מוכיחים שהטענה נכונה גם עבור / step .3 בהתבסס על ההנחה.

. אם שלושת השלבים מתקיימים, ניתן להסיק שהטענה נכונה לכל n טבעי גדול או שווה למספר ההתחלתי

דוגמה 1: סכום המספרים הטבעיים הראשונים

 $S_n=1+2+3+\cdots+n=rac{n(n+1)}{2}$: הנוסחה הנוסחה את הנוסחה וותנת גם כן S=1 . הטענה נכונה עבור S=1 . הנחת האינדוקציה: חייבים לרשום: שלב 2 : הנחת האינדוקציה: חייבים לרשום:

"נניח שהטענה נכונה עבור n=k (כנתון), ונוכיח נכונות עבור n=k+1 כלומר. (שלב k צ"ל:

$$S_{k+1} = 1 + 2 + 3 + \dots + k + (k+1) = \frac{(k+1)(k+2)}{2}$$

n=k+1 שלב 3ב: n=k+1 (צעד האינדוקציה): נוכיח נכונות עבור

k עד עד מחוברים רשימת מה שנתון לפי הנחת האינדוקציה, לתוך הסדרה במקום רשימת המחוברים עד עד

$$S_{k+1} = 1 + 2 + 3 + \dots + k + (k+1)$$

 $1+2+\cdots+k=$ לפי הנחת האינדוקציה

$$S_{k+1} = \dfrac{\widetilde{k(k+1)}}{2} + (k+1) = \dfrac{k(k+1) + 2(k+1)}{2} = \boxed{\dfrac{(k+1)(k+2)}{2}}$$
מ.ש.ל

דוגמה 2: סכום המספרים האי-זוגיים הראשונים

 S_{n וניים האי-זוגיים האי-זוגיים האי-זוגיים האסכום של החסכום של המספרים האי-זוגיים האי-זוגיים של החסכום של החסכום של האי-זוגיים האי-זוגיים האי-זוגיים האי-זוגיים איים של החסכום של החסכום של האי-זוגיים האי-זו

 $n^2=1^2=1$ המספר האי-זוגי הראשון הוא 1, הסכום הוא 1 ולפי הנוסחה n=1 שלב 1: בדיקה עבור n=1

שלב 2 : פשוט מצטטים : "נניח נכונות עבור n=k ונוכיח עבור n=k שלב 2 : פשוט מצטטים : "נניח נכונות עבור $(S_{k})_{n}=k^2$ המשמעות היא שנתון ב k^2

. (מומלץ, זה כדי לעשות לעצמכם סדר). אי זוגיים $S_{(k+1)}$ יי אי זוגיים (k+1) שלב 3א אי צ"ל אי זוגיים (k+1)

:n -שלב :n -הוכחה ווכלל לאיבר ה- שלב :n -שלב הוכחה ביטוי מוכלל איבר ה-

$$S_{n}$$
אי אוגיים $S_{n}=\underbrace{1}_{n=1}+\underbrace{\hat{3}}_{n=1}+\underbrace{\hat{5}}_{n}+\underbrace{\cdots}+\underbrace{(2n-1)}_{n}$ האיבר ה-

נבטא את הסכום במקר של k+1 אי זוגיים, ומיד לאחר מכן נחליף את רישום הסכום המקורי ב- k^2 שנתון לנו :

$$S_{(k+1)}$$
 $S_{(k+1)}$ $=$ $\underbrace{1+3+\cdots+(2k-1)}_{S_{k}}+\underbrace{(2\,(k+1)-1)}_{S_{k}}$ $=$ $\underbrace{k^2}_{n}+\underbrace{(2k-1)}_{n}$ $=$ $\underbrace{k^2}_{n}+\underbrace{(2k-1)}_{n}$

נחשב טרינום

$$S_{(k+1)}$$
מ.ש.ל $= \overline{{(k+1)}^2}$ אי אניים

הגדרות ומיקוד

הגדרה קצת יותר פורמלית

אקסיומת האינדוקציה המתמטית: אם המספר 1 מקיים את התכונה, ומנכונותה עבור n טבעי נובעת גם נכונותה עבור n אז כל המספרים הטבעיים מקיימים את התכונה.

מה במיקוד תשפ"ה (המיסתורין הגדול)

לא במיקוד	במיקוד - עמודים	במיקוד - נושאים
,	גורן- מקרים בהם האיבר	·
נוסחאות בהן נוסף יותר •	:הראשון קבוע	נוסחאות בהן האיבר הראשון •
nמאיבר אחד כש n גדל ב-1	222-226 תרגילים 1-66	קבוע (והסדרה מוגדרת כך
(גורן 231)	226 תרגילים -71	שכאשר n גדל ב- 1 נוסף לסדרה
	227-228 תרגילים 88-96	בדיוק איבר אחד). למשל,
• הוכחת טענות המיוצגות	עמודים 229-230 תרגילים	סכומים (לדוגמא ארכימדס עמ'
באופן ויזואלי (לדוגמא,	1-18	49), חזקות.
שאלה 1ב כאן)	: נוסחאות נסיגה	
אי שוויונות •	244 תרגילים 1-6, 19-20	• נוסחאות נסיגה
	ארכימדס - כל הפרק, לא	נוסחאות עם סימנים מתחלפים •
• תכונות התחלקות (כגון	כולל:	(למשל גורן 229)
חייט 113 תרגיל 2,3), גורן	עמ' 55- ללא 1 עד 4	, , , , , , , , , , , , , , , , , , , ,
235	עמ' 63- ללא 1, 2, 3, 5	• כשלים באינדוקציות, (לדוגמא
• הוכחות תכונות של סדרות	עמ' 64- ללא 7, 12	אלכס חייט תכנית ירושלים עמ'
	עמ' 66- ללא 21א	(117
• התלכדות סדרות	כנראה גם לא כולל 52-42.	זיהוי הוכחות אינדוקטיביות •
	תכנית ירושלים (חייט פרק	(נכונות הוכחות)
• שקילות הצגות שונות של	?) תרגול מומלץ:	(נכונות דוו כו וודג)
סדרות (כגון חייט 115	109-111 תרגיל 1 סעיפים	עצרת - רק במקרה שלא מדובר •
תר' 6)	א-כו, ל-לד,	בהוכחת מכפלות אלא בהוכחת
איבר ראשון מתחלף •	תרגיל 6 סעיפים א, ג-ט	סכומים.
(משתנה)	117 תרגיל 9 סעיפים ב,ג	
	תרגיל 10	
• שילוב עם זהויות	יואל גבע חוברת אינדוקציה	
טריגונומטריות		
מכפלות (למשל גורן 226 •		
71-76		
,1,0		