

UNTAR untuk INDONESIA

DATABASE SYSTEMS TK13021

TEKNIK INFORMATIKA UNIVERSITAS TARUMANAGARA

Course Schedule

- 1. Introduction to Databases
- 2. Database Environment
- 3. The Relational Model
- 4. Relational Algebra
- 5. Relational Calculus
- 6. Database Planning, Design, and Administration

- 7 9 Entity-Relationship Modelling
- 10-12 Normalization
- 13. Conceptual Database Design
- 14. Logical Database Design

Step 2 Build and Validate Logical Data Model

- Step 2.1 Derive relations for logical data model
- Step 2.2 Validate relations using normalization
- Step 2.3 Validate relations against user transactions
- Step 2.4 Check integrity constraints
- Step 2.5 Review logical data model with user
- Step 2.6 Merge logical data models into global model (optional step)
- Step 2.7 Check for future growth

Normalisasi

- Normalisasi merupakan sebuah teknik dalam logical desain sebuah basis data yang mengelompokkan atribut dari suatu relasi sehingga membentuk struktur relasi yang baik (tanpa redudansi).
- Normalisasi adalah proses pembentukan struktur basis data sehingga sebagian besar ambiguity bisa dihilangkan.

Tujuan Normalisasi

- Untuk menghilang kerangkapan data
- Untuk mengurangi kompleksitas
- Untuk mempermudah pemodifikasian data

Proses Normalisasi

- Data diuraikan dalam bentuk tabel, selanjutnya dianalisis berdasarkan persyaratan tertentu ke beberapa tingkat.
- Apabila tabel yang diuji belum memenuhi persyaratan tertentu, maka tabel tersebut perlu dipecah menjadi beberapa tabel yang lebih sederhana sampai memenuhi bentuk yang optimal.

Tahapan Normalisasi

- Tahap Normalisasi dimulai dari tahap paling ringan (1NF) hingga paling ketat (5NF)
- Biasanya hanya sampai pada tingkat 3NF atau BCNF karena sudah cukup memadai untuk menghasilkan tabel-tabel yang berkualitas baik.
- Urutan: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF

Bentuk Tidak Normal Menghilangkan perulangan group Bentuk Normal Pertama (1 NF) Menghilangkan Ketergantungan parsial Bentuk Normal Kedua (2NF) Menghilangkan Ketergantungan Transitif Bentuk Normal Ketiga (3NF) Menghilangkan anomali-anomali hasil dari ketergantungan fungsional Bentuk Normal Boyce-Codd (BCNF) Menghilangkan ketergantungan Multivalue Bentuk Normal Keempat (4NF) Menghilangkan anomali-anomali yang tersisa

Bentuk Normal Kelima

Normalisasi

Sebuah tabel dikatakan baik (efisien) atau normal jika memenuhi 3 kriteria sbb:

- 1. Jika ada dekomposisi (penguraian) tabel, maka dekomposisinya harus dijamin aman (*Lossless-Join Decomposition*). Artinya, setelah tabel tersebut diuraikan / didekomposisi menjadi tabel-tabel baru, tabel-tabel baru tersebut bisa menghasilkan tabel semula dengan sama persis.
- 2. Terpeliharanya ketergantungan fungsional pada saat perubahan data (Dependency Preservation).
- Tidak melanggar Boyce-Codd Normal Form (BCNF) (-akan dijelaskan kemudian-)

Normalisasi

Jika kriteria ketiga (BCNF) tidak dapat terpenuhi, maka paling tidak tabel tersebut tidak melanggar Bentuk Normal tahap ketiga (3rd Normal Form / 3NF).

Contoh 2

relasi tidak normal (Tabel Personil)

ID_Personil	Tanggal Lahir	Karakteristik
I102	17 Januari 1970	Tinggi 162
		Berat 50
		Rambut hitam
A212	12 Desember 1966	Tinggi 170
		Berat 64
		Rambut hitam

Relasi Normal (Tabel Personil)

ID Personil	Tanggal lahir	Tinggi	Berat	Warna Rambut
I102	17 Januari 1970	162	50	Hitam
A212	12 Desember 1966	170	64	Hitam

Tabel Universal

Tabel Universal (*Universal / Star Table*) → sebuah tabel yang merangkum semua kelompok data yang saling berhubungan, bukan merupakan tabel yang baik.

Misalnya:

Tabel Universal

No-Mhs	Nm-Mhs	Jurusan	Kd-MK	Nama-MK	Kd-Dosen	Nm_Dosen	Nilai
2683	Welli	MI	MI350 MI465	Manajemen Basis Data Analisis Prc. Sistem	B104 B317	Ati Dita	A B
5432	Bakri	AK		Manajemen Basis Data Akuntansi Keuangan Dasar Pemasaran	B104 D310 B212	Ati Lia Lola	C B A

Functional Dependency

Notasi: A → B
 adalah atribut dari sebuah tabel. Berarti secara fungsional A menentukan B atau B tergantung pada A, jika dan hanya jika ada 2 baris data dengan nilai A yang sama, maka nilai B juga sama

Notasi: A → B atau A x→ B
Adalah kebalikan dari notasi sebelumnya.

Functional Dependency

Contoh tabel nilai

Namakul	Nrp	namaMhs	NiHuruf
Struktur Data	980001	Ali Akbar	Α
Struktur Data	980004	Indah Susanti	В
Basis Data	980001	Ali Akbar	
Basis Data	980002	Budi Haryanto	
Basis Data	980004	Indah Susanti	
Bahasa Indonesia	980001	Ali Akbar	В
Matematika I	980002	Budi Haryanto	С

Functional Dependency

Functional Dependency dari tabel nilai

- Nrp → namaMhs
 Karena untuk setiap nilai nrp yang sama, maka nilai namaMhs juga sama.
- ➤ {Namakul, nrp} → NiHuruf
 Karena attribut Nihuruf tergantung pada Namakul dan nrp secara bersama-sama. Dalam arti lain untuk Namakul dan nrp yang sama, maka NiHuruf juga sama, karena Namakul dan nrp merupakan key (bersifat unik).
- NamaKul nrp
- Nrp * NiHuruf

Contoh FD 1

- Andaikan ada tabel:
 NILAI (NIM, Nm-mk, Semester, Nilai)
- Atribut kunci: NIM, Nm-mk, Semester
- Maka Functional Dependency:
 NIM, Nm-mk, Semester -> Nilai

Bentuk-bentuk Normal

- Bentuk Normal Tahap Pertama (1st Normal Form / 1NF)
- Bentuk Normal Tahap Kedua (2nd Normal Form / 2NF)
- 3. Bentuk Normal Tahap (3rd Normal Form / 3NF)
- 4. Boyce-Code Normal Form (BCNF)
- 5. Bentuk Normal Tahap (4th Normal Form / 4NF)
- 6. Bentuk Normal Tahap (5th Normal Form / 5NF)

Normal Pertama (1st Normal Form)

- Aturan :
- ✓ Tidak adanya atribut multi-value, atribut komposit atau kombinasinya.
- ✓ Mendefinisikan atribut kunci.
- ✓ Setiap atribut dalam tabel tersebut harus bernilai *atomic* (tidak dapat dibagi-bagi lagi)

Contoh 1 (atribut multi-value)

Misal data mahasiswa sbb:

Nrp	nama	Hobi
12020001	Heri Susanto	Sepakbola, membaca komik, berenang
12020013	Siti Zulaiha	Memasak,mrogram komputer
12020015	Dini Susanti	Menjahit,membuat roti

Atau:

Nrp	nama	hobi1	hobi2	Hobi3
12020001	Heri Susanto	Sepak Bola	Membaca komik	berenang
12020013	Siti Zulaiha	Memasak	mrogram komputer	
12020015	Dini Susanti	Menjahit	membuat kue	

Contoh 1 (samb...)

Didekomposisi menjadi:

Tabel Mahasiswa

Nrp	Nama
12020001	Heri Susanto
12020013	Siti Zulaiha
12020015	Dini Susanti

Tabel Hobi

Nrp	Hobi
12020001	Sepakbola
12020001	membaca komik
12020001	Berenang
12020013	Memasak
12020013	mrogram komputer
12020015	Menjahit
12020015	membuat roti

Contoh 2 (composite)

JadwalKuliah

Kodekul NamaKu	I Dosen	Kelas Jadwal	
----------------	---------	--------------	--

- Dimana nilai pada atribut jadwal berisi gabungan antara Hari dan Jam.
- Jika asumsi hari dan jam memegang peranan penting dalam sistem basis data, maka atribut Jadwal perlu dipisah sehingga menjadi JadwalHari dan JadwalJam sbb:

JadwalKuliah

Normalisasi Kedua (2nd Normal Form)

- Aturan:
- ✓ Sudah memenuhi dalam bentuk normal kesatu (1NF)
- ✓ Semua atribut bukan kunci hanya boleh tergantung (functional dependency) pada atribut kunci
- ✓ Jika ada **ketergantungan parsial** maka atribut tersebut harus dipisah pada tabel yang lain
- ✓ Perlu ada tabel penghubung ataupun kehadiran foreign key bagi atribut-atribut yang telah dipisah tadi

Contoh

Tabel berikut memenuhi 1NF tapi tidak termasuk 2NF:

Tidak memenuhi 2NF, karena {Mhs_nrp, mk_kode} yang dianggap sebagai primary key sedangkan:

```
{Mhs_nrp, mk_kode} 

→ nihuruf
```

Tabel di atas perlu didekomposisi menjadi beberapa tabel yang memenuhi syarat 2N UNTAR untuk INDONESIA

Contoh (samb...)

Functional dependency-nya sbb:

```
{Mhs_nrp, mk_kode} → nihuruf (fd1)
Mhs_nrp → {mhs_nama, mhs_alamat} (fd2)
Mk_kode → {mk_nama, mk_sks} (fd3)
```

```
fd1 (<u>mhs_nrp</u>, <u>mk_kode</u>, nihuruf) → Tabel Nilai
fd2 (<u>Mhs_nrp</u>, mhs_nama, mhs_alamat) → Tabel Mahasiswa
fd3 (<u>mk_kode</u>, mk_nama, mk_sks) → Tabel MataKuliah
```


Normalisasi Ketiga (3rd Normal Form)

• Aturan:

- ✓ Sudah berada dalam bentuk normal kedua (2NF)
- ✓ Tidak ada ketergantungan transitif (dimana atribut bukan kunci tergantung pada atribut bukan kunci lainnya).

Contoh

Tabel berikut memenuhi 2NF, tapi tidak memenuhi 3NF:

Mahasiswa

Nim	Nama	Alm_Jalan	Alm_Kota	Alm_Provinsi	Alm_K	Codepos	
			<u></u>	Î		Transitiv	re Dep

karena masih terdapat atribut non primary key (yakni alm_kota dan alm_Provinsi) yang memiliki ketergantungan terhadap atribut non primary key yang lain (yakni alm_kodepos):

alm_kodepos → {alm_Provinsi, alm_kota}

Sehingga tabel tersebut perlu didekomposisi menjadi:

Mahasiswa (Nim, nama, alm_jalan, alm_kodepos) Kodepos (alm_kodepos, alm_provinsi, alm_kota)

Tabel-tabel yang memenuhi kriteria normalisasi ketiga, sudah siap diimplementasikan. Sebenarnya masih ada lagi bentuk normalisasi yang lain; Normalisasi Boyce-Codd, 4NF, 5NF, hanya saja jarang dipakai. Pada kebanyakan kasus, normalisasi hanya sampai ketiga.

Boyce-Codd Normal Form (BCNF)

- Bentuk BCNF terpenuhi dalam sebuah tabel, jika untuk setiap functional dependency terhadap setiap atribut atau gabungan atribut dalam bentuk: X → Y maka X adalah super key
- tabel tersebut harus di-dekomposisi berdasarkan functional dependency yang ada, sehingga X menjadi super key dari tabel-tabel hasil dekomposisi
- Setiap tabel dalam BCNF merupakan 3NF. Akan tetapi setiap 3NF belum tentu termasuk BCNF. Perbedaannya, untuk functional dependency X → A, BCNF tidak membolehkan A sebagai bagian dari primary key.

Bentuk Normal Tahap Keempat (4th Normal Form /4NF)

- Bentuk normal 4NF terpenuhi dalam sebuah tabel jika telah memenuhi bentuk BCNF, dan tabel tersebut tidak boleh memiliki lebih dari sebuah multivalued atribute
- Untuk setiap multivalued dependencies (MVD) juga harus merupakan functional dependencies

Contoh

Misal, tabel berikut tidak memenuhi 4NF:

Employee	Project	Skill	
Jim	11	Program	
Mary	5	Design	
Mary	NULL	Analysis	

Setiap employee dapat bekerja di lebih dari project dan dapat memiliki lebih dari satu skill. Untuk kasus seperti ini tabel tersebut harus di-dekomposisi menjadi:

(Employee, Project) (Employee, Skill)

Bentuk Normal Tahap Keempat (5th Normal Form /5NF)

- Bentuk normal 5NF terpenuhi jika tidak dapat memiliki sebuah lossless decomposition menjadi tabel-tabel yg lebih kecil.
- Jika 4 bentuk normal sebelumnya dibentuk berdasarkan functional dependency, 5NF dibentuk berdasarkan konsep join dependence. Yakni apabila sebuah tabel telah di-dekomposisi menjadi tabeltabel lebih kecil, harus bisa digabungkan lagi (join) untuk membentuk tabel semula

Studi Kasus Normalisasi Data

NoProyek	NamaProyek	NoPegawai	NamaPegawai	Golongan	BesarGaji
NP001	BRR	Peg01	Anton	A	1.000.000
		Peg02	Paula	В	900.000
		Peg06	Koko	С	750.000
NP002	PEMDA	Peg01	Anton	A	1.000.000
		Peg12	Sita	В	900.000
		Peg14	Yusni	В	900,000

Untuk mendapatkan hasil yang paling normal, maka proses normalisasi dimulai dari normal pertama.

Field-field tabel di atas yang merupakan group berulang :

NoPegawai, NamaPegawai, Golongan, BesarGaji.

Normalisasi pertama

Solusinya hilangkan duplikasi dengan mencari ketergantungan parsial. menjadikan field-field menjadi tergantung pada satu atau beberapa field. Karena yang dapat dijadikan kunci adalah NoProyek dan NoPegawai, maka langkah kemudian dicari field-field mana yang tergantung pada NoProyek dan mana yang tergantung pada NoPegawai.

Noproyek	NamaProyek	Nopegawai	NamaPegawai	Golongan	BesarGaji
NP001	BRR	Peg01	Anton	A	1.000.000
NP001	BRR	Peg02	Paula	В	900.000
NP001	BRR	Peg06	Koko	C	750.000
NP002	PEMDA	Peg01	Anton	A	1.000.000
NP002	PEMDA	Peg12	Sita	В	900.000
NP002	PEMDA	Peg14	Yusni	В	900.000

Normalisasi Kedua

• Field-field yang tergantung pada satu field haruslah dipisah dengan tepat, misalnya NoProyek menjelaskan NamaProyek dan NoPegawai menjelaskan NamaPegawai, Golongan dan BesarGaji.

Normalisasi Kedua

TABEL PROYEK

Noproyek	NamaProyek
NP001	BRR
NP002	PEMDA

TABEL PEGAWAI

Nopegawai	NamaPegawai	Golongan	BesarGaji
Peg01	Anton	A	1.000.000
Peg02	Paula	В	900.000
Peg06	Koko	C	750.000
Peg12	Sita	В	900.000
Peg14	Yusni	В	900.000

Untuk membuat hubungan antara dua tabel, dibuat suatu tabel yang berisi key-key dari tabel yang lain.

TABEL PROYEKPEGAWAI

Noproyek	NoPegawai
NP001	Peg01
NP001	Peg02
NP001	Peg06
NP002	Peg01
NP002	Peg12
NP002	Peg14

Normalisasi Ketiga

Pada tabel diatas masih terdapat masalah, bahwa BesarGaji tergantung kepada Golongan nya. Padahal disini Golongan bukan merupakan field kunci.

Artinya kita harus memisahkan field non-kunci *Golongan* dan *BesarGaji* yang tadinya tergantung secara parsial kepada field kunci *NoPegawai*, untuk menghilangkan ketergantungan transitif.

TABEL PROYEK

Noproyek	NamaProyek
NP001	BRR
NP002	PEMDA

TABEL PROYEKPEGAWAI

Noproyek	NoPegawai
NP001	Peg01
NP001	Peg02
NP001	Peg06
NP002	Peg01
NP002	Peg12
NP002	Peg14

TABEL PEGAWAI

Nopegawai	NamaPegawai	Golongan
Peg01	Anton	A
Peg02	Paula	В
Peg06	Koko	C
Peg12	Sita	В
Peg14	Yusni	В

TABEL GOLONGAN

Golongan	BesarGaji
A	1.000.000
В	900.000
C	750.000

Studi Kasus Normalisasi

No-Mhs	Nm-Mhs	Jurusan	Kd-MK	Nama-MK	Kd-Dosen	Nm_Dosen	Nilai
2683	Welli	MI	MI350 MI465	Manajemen Basis Data Analisis Prc. Sistem	B104 B317	Ati Dita	A B
5432	Bakri	AK		Manajemen Basis Data Akuntansi Keuangan Dasar Pemasaran	B104 D310 B212	Ati Lia Lola	C B A

1NF

No-Mhs	Nm-Mhs	Jurusan	Kd-MK	Nama-MK	Kd-Dosen	Nm_Dosen	Nilai
2683	Welli	MI	MI350	Manajemen Basis Data	B104	Ati	A
2683	Welli	MI	MI465	Analisis Prc. Sistem	B317	Dita	B
5432	Bakri	AK	MI350	Manajemen Basis Data	B104	Ati	C
5432	Bakri	AK	AKN201	Akuntansi Keuangan	D310	Lia	B
5432	Bakri	AK	MKT300	Dasar Pemasaran	B212	Lola	A

2NF

No-Mhs	Nama-Mhs	Jurusan
2683	Welli	MI
5432	Bakri	AK

Tabel Mahasiswa

Kode-MK	Nama-MK	Kode-Dosen	Nama-Dosen
MI350	Manajemen Basis Data	B104	Ati
MI465	Analisis Prc. Sistem	B317	Dita
AKN201	Akuntansi Keuangan	D310	Lia
MKT300	Dasar Pemasaran	B212	Lola

Tabel Kuliah

No-Mhs	Kode MK	Nilai
2683	MI350	A
2683	MI465	В
5432	MI350	C
5432	AKN201	В
5432	MKT300	A

3NF

Kode-MK	Nama-MK	Kode-Dosen
MI350	Manajemen Basis Data	B104
MI465	Analisis Prc. Sistem	B317
AKN201	Akuntansi Keuangan	D310
MKT300	Dasar Pemasaran	B212

Tabel Mata Kuliah

Kode-Dosen	Nama-Dosen
B104	Ati
B317	Dita
D310	Lia
B212	Lola

Tabel Dosen

Thank You

Reference: Database Systems A Practical Approach to Design, Implementation, and Management Fourth Edition.

Thomas M. Connolly and Carolyn E. Begg

