

Student Loans for up to **\$40,000 per year***

Defer payments until after graduation.^{**}
Fast preliminary approval, usually in minutes.

Apply Now!

Go to gmacbankfunding.com

Apply online in as little as 15 minutes

- Loans up to \$40,000 per academic year*
- Good for tuition and other educational expenses:
books, fees, a laptop, room and board, travel
home, etc.
- Get a check in as few as 5 business days
- Start payments now or up to six months after
graduation**
- Reduce your interest rate by as much as 0.50%
with automatic payments***

All loans are subject to application and credit approval.

* Undergraduate and graduate borrowers may borrow annually up to the lesser of the cost of attendance or \$30,000 (\$40,000 for certain schools where it has been determined that the annual cost of attendance exceeds \$30,000). Borrowers in the Continuing Education loan program may borrow annually up to \$30,000.

** Undergraduate students may choose to defer repayment until six months after graduation or ceasing to be enrolled at least half time in school. Interest only and immediate repayment options also available.

*** A 0.25% interest rate reduction is available for borrowers who elect to have monthly principal and interest payments transferred electronically from a savings or checking account. The interest rate reduction will begin when automatic principal and interest payments start, and will remain in effect as long as automatic payments continue without interruption. This reduced interest rate will return to contract rate if automatic payments are cancelled, rejected or returned for any reason. Upon request, borrowers are also entitled to an additional 0.25% interest rate reduction if (1) the first 36 payments of principal and interest are paid on time, and (2) at any time prior to the 36th on time payment, the borrower who receives the monthly bill elects to have monthly principal and interest payments transferred electronically from a savings or checking account, and continues to make such automatic payments through the 36th payment. This reduced interest rate will not be returned to contract rate if, after receiving the benefit, the borrower discontinues automatic electronic payment. The lender and servicer reserve the right to modify or discontinue borrower benefit programs (other than the co-signer release benefit) at any time without notice.

GMAC Bank Member FDIC

9

Conic Sections

If a gun is fired upward with an initial velocity of 288 ft/sec, the bullet's height h after t seconds is given by the equation $h = 288t - 16t^2$. Find the maximum height attained by the bullet.

In chapter 7, we graphed first-degree equations in two variables of the form $ax + by = c$, which we called linear equations since the graph was a straight line. In this chapter, we will consider the graphs of second-degree equations in which one or more terms are of second-degree. These graphs result from slicing a cone with a plane, called the cutting plane, as shown in figure 9–1. For that reason, the graphs are called the **conic sections**.

Figure 9–1

9-1 ■ The parabola

If we assign coordinates to the cutting plane, each conic section can be described by a second-degree (quadratic) equation. The graph of the second-degree equation $y = ax^2 + bx + c$ ($a \neq 0$) is a figure called a **parabola**.

Consider the quadratic equation in two variables

$$y = x^2 - 4$$

If we choose the values for x in the set $\{-3, -2, -1, 0, 1, 2, 3\}$ and compute the corresponding values of y , the ordered pairs we obtain are

$$(-3, 5), (-2, 0), (-1, -3), (0, -4), (1, -3), (2, 0), \text{ and } (3, 5)$$

Plotting these ordered pairs and connecting the points with a smooth curve, we obtain the graph, a *parabola*, shown in figure 9-2. This parabola is the graph of the equation $y = x^2 - 4$.

Figure 9-2

Similarly, consider the graph of the equation $y = -x^2 + 1$. Choosing values of x and then finding the corresponding values of y , we get the results shown in this table of related values.

x	-2	-1	0	1	2
y	-3	0	1	0	-3

Plot the points and connect them with a smooth curve to obtain the parabola shown in figure 9-3.

Figure 9-3

As we examine the parabolas with equations of the form $y = ax^2 + bx + c$ in figures 9–2 and 9–3, we observe some of the basic properties of the parabola.

1. For each x , there is a unique value of y .
2. There is a *lowest* point [(0, -4) in figure 9–2] or a *highest* point [(0, 1) in figure 9–3] of each graph. We call this the **vertex** of the parabola.
3. A vertical line through the vertex, in this case the y -axis, divides the parabola into two identical (mirror-image) parts. This line is called the **axis of symmetry**.
4. For each point on the parabola to the right of the axis of symmetry, there is a corresponding point to the left of the axis of symmetry.
5. When the coefficient of the squared term is
 - a. positive, as in $y = x^2 - 4$, the parabola opens upward and the vertex is the lowest point of the graph;
 - b. negative, as in $y = -x^2 + 1$, the parabola opens downward and the vertex is the highest point of the graph.

Equation for a parabola with vertical axis of symmetry

$$y = ax^2 + bx + c$$

where a , b , and c are real numbers, $a \neq 0$.

Now let us consider the graph of the general quadratic equation $y = ax^2 + bx + c$. We could choose a number of values for x and obtain the corresponding values for y as we did before. However the parabola has certain special points (when they exist) that we can use to sketch the graph when we know the general shape of the curve. These points are (1) the vertex and (2) the x - and y -intercepts. These points, together with the previously observed characteristics of the parabola, enable us to obtain a reasonably accurate sketch of the curve.

The vertex

To obtain the coordinates of the vertex, we use the procedure of completing the square that we learned in chapter 6. Completing the square in the right member, we can write the equation $y = ax^2 + bx + c$ in the form

$$y = a(x - h)^2 + k \quad (a \neq 0)$$

where the point (h, k) is the vertex of the parabola and the line $x = h$ is the axis of symmetry. To show this is true, when $a > 0$, then $a(x - h)^2 \geq 0$ and the least value of y occurs when $a(x - h)^2 = 0$, or when $x = h$. If $x = h$, then $y = a(h - h)^2 + k = a \cdot 0 + k = k$. The lowest point (the vertex) is at (h, k) . A similar argument can be made when $a < 0$, where the vertex (h, k) is the highest point.

Note If $a > 0$, the parabola opens upward, and if $a < 0$, the parabola opens downward.

Forms of the equation of a parabola

Given a parabola that opens upward when $a > 0$ and downward when $a < 0$,

1. The *general form* of the equation of the parabola is
 $y = ax^2 + bx + c$.
2. The *standard form* of the equation of the parabola is
 $y = a(x - h)^2 + k$ where the point (h, k) is the vertex of the parabola.

Example 9-1 A

Determine the coordinates of the vertex of the parabola. State whether the parabola opens upward or downward.

1. $y = (x - 2)^2 + 3$

Since $h = 2$ and $k = 3$, the vertex is the point $(2, 3)$ and since $a = 1, a > 0$, the parabola opens upward.

2. $y = -3(x + 4)^2 - 6$

The equation is not exactly in the form $y = a(x - h)^2 + k$, so we rewrite the equation as

$$y = -3[x - (-4)]^2 + (-6)$$

Now $h = -4$ and $k = -6$, so the vertex is the point $(-4, -6)$. Since $a = -3, a < 0$, the parabola opens downward.

3. $y = x^2 + 4x - 12$

Rewrite the equation in the form

$$y = (x^2 + 4x + ?) - 12 - (?)$$

Complete the square inside parentheses as we learned in section 6-2.

$$y = (x^2 + 4x + 4) - 12 - (4)$$

Note To complete the square, we added 4. Thus, we must subtract 4 so that the equation is not changed.

Write the trinomial as a binomial square and combine -12 and -4 .

$$y = (x + 2)^2 - 16$$

$$y = (x - (-2))^2 + (-16) \quad \text{Write in form } (x - h)^2 + k$$

Thus, $h = -2$ and $k = -16$ so the vertex is the point $(-2, -16)$. Since $a = 1, a > 0$, the parabola opens upward.

► **Quick check** Determine the coordinates of the vertex of the parabola $y = x^2 + 2x - 8$.

The x -intercept(s)

There can be two, one, or no x -intercepts on the graph of a quadratic equation $y = ax^2 + bx + c$. The x -intercept(s) (if there are any) are found by replacing y with 0 and solving for x . This is the same as we did with linear equations.

The y-intercept

There will always be *one* y-intercept in the graph of $y = ax^2 + bx + c$. As with linear equations, let $x = 0$ and solve for y . Given

$$\begin{aligned}y &= ax^2 + bx + c \\&= a(0)^2 + b(0) + c \quad \text{Replace } x \text{ with } 0 \\&= c\end{aligned}$$

The y-intercept of the quadratic equation in general form $y = ax^2 + bx + c$ is always the point $(0, c)$.

Example 9-1 B

Find the x- and y-intercepts of the parabola $y = x^2 + 5x - 14$.

1. Let $y = 0$.

$$\begin{array}{lll}(0) &= x^2 + 5x - 14 & \text{Replace } y \text{ with } 0 \\0 &= (x + 7)(x - 2) & \text{Factor the right member} \\x + 7 = 0 & \text{or} & \text{Set each factor equal to } 0 \\x = -7 & & \text{Solve for } x \\x &= 2 &\end{array}$$

The x-intercepts are the points $(-7, 0)$ and $(2, 0)$.

2. Since $c = -14$, the y-intercept is the point $(0, -14)$.

► **Quick check** Find the x- and y-intercepts of the parabola $y = x^2 + 2x - 8$.

We now outline the procedure for graphing a quadratic equation of the form $y = ax^2 + bx + c$.

To graph the quadratic equation $y = ax^2 + bx + c$

- Determine whether the parabola opens upward ($a > 0$) or downward ($a < 0$).
- Find the y-intercept and any x-intercept(s).
- Determine the coordinates of the vertex by completing the square to get the equation in the form $y = (x - h)^2 + k$. The vertex is the point (h, k) .
- Find and plot other points to the right and left of the axis of symmetry, $x = h$, as needed.

Example 9-1 C

Sketch the graphs of the following equations using the vertex and the x- and y-intercepts.

1. $y = x^2 - 4x - 5$

a. Since $a = 1$, which is positive, the parabola opens upward.

b. Let $y = 0$, then

$$\begin{array}{lll}(0) &= x^2 - 4x - 5 & \text{Replace } y \text{ with } 0 \\0 &= (x - 5)(x + 1) & \text{Factor the right member} \\x - 5 = 0 & \text{or} & \text{Set each factor equal to } 0 \\x = 5 & & \\x &= -1 &\end{array}$$

The x-intercepts are $(5, 0)$ and $(-1, 0)$.

c. Since $c = -5$, the y -intercept is $(0, -5)$.

d. Given $y = x^2 - 4x - 5$

$$\begin{aligned} &= (x^2 - 4x + \quad) - 5 - (\quad) \\ &= (x^2 - 4x + 4) - 5 - (4) \\ &= (x - 2)^2 - 9 \\ &= (x - 2)^2 + (-9) \end{aligned}$$

Complete the square

Write binomial square

Write in form $y = a(x - h)^2 + k$

The vertex is the point $(2, -9)$

e. Using the axis of symmetry, $x = 2$, choose point $(4, -5)$ that is symmetric with the y -intercept $(0, -5)$.

2. $y = -x^2 + 2x + 3$

a. Since $a = -1$ (negative), the parabola opens downward.

b. Let $y = 0$.

$$(0) = -x^2 + 2x + 3$$

Replace y with 0.

$$0 = x^2 - 2x - 3$$

Multiply each member by -1 .

$$0 = (x - 3)(x + 1)$$

Factor the right member.

$$x - 3 = 0 \text{ or } x + 1 = 0$$

Set each factor equal to 0.

$$x = 3 \qquad x = -1$$

The x -intercepts are $(3, 0)$ and $(-1, 0)$.

c. Since $c = 3$, the y -intercept is $(0, 3)$.

d. Given $y = -x^2 + 2x + 3$

$$\begin{aligned} &= -1(x^2 - 2x \quad) + 3 - (\quad) \\ &= -1(x^2 - 2x + 1) + 3 - (-1) \\ &= -1(x - 1)^2 + 4 \end{aligned}$$

Factor -1 to obtain x^2 .

Complete the square.

The vertex is the point $(1, 4)$.

e. The point $(2,3)$ is symmetric to the y -intercept $(0,3)$ about the axis of symmetry $x = 1$.

The coordinates of the vertex can also be found this way:

- Let $x = -\frac{b}{2a}$.

- Replace x with this value in the equation and solve for y .

This method is demonstrated in example 3.

- $y = -2x^2 - 4x - 3$

- Since $a = -2$ (negative), the parabola opens downward.

- Let $y = 0$.

$$\begin{aligned} (0) &= -2x^2 - 4x - 3 && \text{Replace } y \text{ with } 0 \\ 0 &= 2x^2 + 4x + 3 && \text{Multiply each member by } -1 \end{aligned}$$

We cannot factor $2x^2 + 4x + 3$, so we use the quadratic formula to solve for x .

$$\begin{aligned} x &= \frac{-b + \sqrt{b^2 - 4ac}}{2a} = \frac{-(4) \pm \sqrt{(4)^2 - 4(2)(3)}}{2(2)} && \text{Replace } a \text{ with } 2, \\ &= \frac{-4 \pm \sqrt{-8}}{4} && \text{b with } 4, \text{ and } c \text{ with } 3 \\ & && \text{Simplify} \end{aligned}$$

Since $\sqrt{-8}$ is not a real number, there are no x -intercepts. The graph does not cross the x -axis because the rectangular coordinate system graphs ordered pairs of *real numbers*.

- Since $c = -3$, the y -intercept is $(0, -3)$.

- Since $a = -2$ and $b = -4$ in the original equation,

$$\begin{aligned} (1) \quad x &= -\frac{b}{2a} = -\frac{(-4)}{2(-2)} = -1 && \text{Replace } a \text{ with } -2 \text{ and } b \text{ with } -4 \\ (2) \quad y &= -2(-1)^2 - 4(-1) - 3 && \text{Replace } x \text{ with } -1 \\ &= -2 + 4 - 3 && \text{Simplify} \\ &= -1 \end{aligned}$$

The vertex is the point $(-1, -1)$.

e. The point $(-2, -3)$ is symmetric to the y -intercept $(0, -3)$ about the axis of symmetry $x = -1$.

► **Quick check** Sketch the graph of $y = x^2 + 4x + 3$.

When considering the quadratic equation $y = ax^2 + bx + c$, we see that the graph has a *low point* (or *minimum value* of y) when $a > 0$ and a *high point* (or *maximum value* of y) when $a < 0$. We can use these values of y to answer questions in a physical situation.

Example 9-1 D

1. A projectile is fired upward from the ground so that its distance s in feet above the ground t seconds after firing is given by $s = -16t^2 + 96t$. Find the maximum height it will reach and the number of seconds it takes to reach that height.

Since $a = -16$, the graph will have a high point, or maximum value of s , that occurs at t . We must find the vertex by completing the square in the right member.

$$\begin{aligned} s &= -16t^2 + 96t \\ &= -16(t^2 - 6t + \quad) - (\quad) && \text{Factor } -16 \text{ from each term} \\ &= -16(t^2 - 6t + 9) - (-144) && \text{Complete the square} \\ &= -16(t - 3)^2 + 144 \end{aligned}$$

The vertex of the parabola is $(3, 144)$ and the projectile will reach the maximum height s of 144 feet in $t = 3$ seconds after firing.

2. Harry has 48 feet of fencing to use to fence off a rectangular area behind his house for his dog Nappy. What are the dimensions of the largest area that he can fence off with his 48 feet of fencing?

Let x = the length of one of the equal sides. Then $48 - 2x$ = the length of the side opposite the house. (Harry has 48 feet of fencing and the other two sides are x in length.)

Using area (A) = length (ℓ) \times width (w), where width (w) = x and length (ℓ) = $48 - 2x$, we have the equation.

$$A = x(48 - 2x) = -2x^2 + 48x$$

Completing the square in the right member,

$$\begin{aligned} A &= -2x^2 + 48x \\ &= -2(x^2 - 24x + \quad) - (\quad) \quad \text{Factor } -2 \text{ from each term} \\ &= -2(x^2 - 24x + 144) - (-288) \quad \text{Complete the square} \\ &= -2(x - 12)^2 + 288 \end{aligned}$$

The vertex is the point $(12, 288)$ and the maximum area is 288 square feet when $x = 12$. Then $48 - 2x = 48 - 2(12) = 24$. The dimensions of the rectangle are 12 feet by 24 feet.

Mastery points

Can you

- Find the x - and y -intercepts of a quadratic equation in two variables?
- Find the coordinates of the vertex of the parabola?
- Sketch the graph of a quadratic equation in two variables?
- Find the maximum and minimum values of a quadratic equation of the form $y = ax^2 + bx + c$, $a \neq 0$?

Exercise 9-1

Find the coordinates of the vertex of the parabola for the graph of each quadratic equation. See example 9-1 A.

Example $y = x^2 + 2x - 8$

Solution Given $y = x^2 + 2x - 8$

$$\begin{aligned} y &= (x^2 + 2x + \quad) - 8 - (\quad) \\ y &= (x^2 + 2x + 1) - 8 - (1) \quad \text{Complete the square} \\ y &= (x + 1)^2 - 9 \quad \text{Write the square of a binomial} \\ y &= [x - (-1)]^2 + (-9) \quad \text{Write in form } y = a(x - h)^2 + k \end{aligned}$$

The vertex is the point $(-1, -9)$.

1. $y = (x - 3)^2 + 4$	2. $y = 3(x + 1)^2 - 7$	3. $y = x^2 - 16$
4. $y = x^2 + 4$	5. $y = (x - 5)^2$	6. $y = (x + 6)^2$
7. $y = x^2 + 4x - 5$	8. $y = x^2 - 6x + 5$	9. $y = -x^2 + 2x + 3$
10. $y = -x^2 + 3x - 2$	11. $y = 2x^2 - 7x + 3$	12. $y = -5x^2 + 6x - 1$

Find the x - and y -intercepts of the following parabolas. See example 9-1 B.

Example $y = x^2 + 2x - 8$

Solution 1. Let $y = 0$.

$$\begin{aligned} (0) &= x^2 + 2x - 8 && \text{Replace } y \text{ with } 0 \\ 0 &= (x + 4)(x - 2) && \text{Factor the right member} \\ x + 4 = 0 \text{ or } x - 2 = 0 & && \text{Set each factor equal to } 0 \\ x = -4 & \quad x = 2 && \end{aligned}$$

The x -intercepts are the points $(-4, 0)$ and $(2, 0)$.

2. Since $c = -8$, the y -intercept is the point $(0, -8)$.

13. $y = (x - 3)^2 + 4$

16. $y = x^2 + 4$

19. $y = x^2 + 4x - 5$

22. $y = -x^2 + 3x - 2$

14. $y = 3(x + 1)^2 - 7$

17. $y = (x - 5)^2$

20. $y = x^2 - 6x + 5$

23. $y = 2x^2 - 7x + 3$

15. $y = x^2 - 16$

18. $y = (x + 6)^2$

21. $y = -x^2 + 2x + 3$

24. $y = -5x^2 - 6x - 1$

Sketch the graph of each given quadratic equation using the intercepts and the coordinates of the vertex where possible. See example 9-1 C.

Example $y = x^2 + 4x + 3$

Solution 1. Since $a = 1$ (positive), the parabola opens upward.

2. Since $c = 3$, the y -intercept is $(0, 3)$.

3. Let $y = 0$.

$$0 = x^2 + 4x + 3$$

Replace y with 0

$$0 = (x + 3)(x + 1)$$

Factor the right member

$$x + 3 = 0 \text{ or } x + 1 = 0$$

Set each factor equal to 0

$$x = -3 \quad x = -1$$

The x -intercepts are $(-3, 0)$ and $(-1, 0)$.

4. Given $y = x^2 + 4x + 3$

$$y = (x^2 + 4x + \underline{\hspace{2cm}}) + 3 - (\underline{\hspace{2cm}})$$

Complete the square

$$y = (x^2 + 4x + 4) + 3 - (4)$$

Write as the square of a binomial

$$y = (x + 2)^2 - 1$$

Write in form $y = (x - h)^2 + k$

$$y = [x - (-2)]^2 + (-1)$$

The vertex is the point $(-2, -1)$.

5. The point $(-4, 3)$ is symmetric to the y -intercept $(0, 3)$ about the axis of symmetry, the vertical line $x = -2$.

25. $y = x^2 - 4$

28. $y = 3x^2 + 2x$

31. $y = x^2 - x - 6$

34. $y = -x^2 + 7x - 6$

37. $y = 2x^2 - x - 3$

40. $y = -4x^2 + 4x + 3$

43. $y = 2x^2 + 4x + 5$

46. $y = -4x^2 + 12x - 9$

26. $y = -x^2 + 9$

29. $y = x^2 - 4x - 5$

32. $y = x^2 + 3x + 4$

35. $y = x^2 - 4x + 4$

38. $y = 3x^2 + 4x + 1$

41. $y = x^2 + 2x + 5$

44. $y = 3x^2 + 6x + 4$

47. $y = -x^2 - 2x - 1$

27. $y = x^2 - 2x$

30. $y = x^2 + 6x + 5$

33. $y = -x^2 - 2x + 3$

36. $y = x^2 + 2x + 1$

39. $y = -2x^2 + 3x - 1$

42. $y = x^2 - 3x + 6$

45. $y = -2x^2 + 4x + 5$

48. $y = x^2 - 6x + 4$

See example 9–1 D–1.

49. The equation $s = 32t - 16t^2$ determines the distance s in feet that an object thrown vertically upward is above the ground in time t seconds. Find the time at which the object reaches its greatest height. Sketch the graph of the equation for $0 \leq t \leq 4$. (Hint: The greatest height is at the vertex.) When will the object hit the ground again? (Hint: When $s = 0$)

50. Given the equation $s = 64t - 8t^2$, do as instructed in exercise 49.

51. An arrow is shot vertically into the air with an initial velocity of 96 feet per second. If the height h in feet of the arrow at any time t seconds is given by

$$h = 96t - 16t^2$$

find the maximum height that the arrow will attain. When will the arrow come back to the ground?

52. A company's profit P when producing x units of a commodity in a given week is given by

$$P = -x^2 + 100x - 1,000$$

How many units must be produced to attain maximum profit?

53. Helen Nance owns a dress shop. She finds the profits from the shop are approximately given by

$$P = -x^2 + 16x + 42$$

where P is the profit when x dresses are sold daily. How many dresses must Helen sell daily to produce the maximum profit?

See example 9–1 D–2.

58. A farmer wishes to fence in a rectangular piece of ground along a river bank for grazing his cattle. If he has 400 feet of fencing, what should be the dimensions of the rectangle to fence in the greatest area, using the river as one side of the rectangle?

59. Find the two numbers whose sum is 56 and whose product is the greatest possible value. (Hint: Let x be one number and $56 - x$ be the other number. Maximize their product.)

60. The sum of the length and the width of a rectangle is 48 inches. Find the length of the rectangle that would yield the greatest area. (Hint: Let x = the length and $48 - x$ = the width. Use the formula $A = \ell w$.)

54. Russell Sanderson owns a pizza shop. From past results, he determines that the cost C of running the shop is given by the equation

$$C = 3n^2 - 36n + 140$$

where n is the number of pizzas sold daily. Find the number of pizzas Russell must sell to produce the lowest cost.

55. Tim Wesner sets up a Kool-Aid stand. He finds that the cost C of operating the stand is given by the equation

$$C = 2x^2 - 20x + 100$$

where x denotes the number of glasses of Kool-Aid sold. How many glasses of Kool-Aid should he sell for his cost to be the lowest?

56. The velocity distribution of natural gas flowing smoothly in a pipeline is given by

$$V = 6x - x^2$$

where V is the velocity in meters per second and x is the distance in meters from the inside wall of the pipe. What is the maximum velocity of the gas? (Hint: We want the second component V of the vertex of the graph of the equation.)

57. The power output P of an automobile alternator that generates 14 volts and has an internal resistance of 0.20 ohms is given by

$$P = 14I - 0.20I^2$$

At what current I does the generator generate maximum power and what is the maximum power?

61. What are the dimensions of the largest rectangular plot of ground that can be enclosed by 42 meters of fence? (Hint: $2\ell + 2w = 42$. Solve for either ℓ or w and substitute in the formula $A = \ell w$. Maximize A .)

62. Find the maximum area of a rectangular plot of ground that can be enclosed with 28 rods of fencing.

63. Given that the difference between two numbers is 8, what is the minimum product of the two numbers? (Hint: Let x be one number and $x - 8$ be the other number.)

64. Find the minimum product of two numbers whose difference is 10.

Learning the hard way?

www.FreeloadPress.com

How will you learn those terms and definitions? Still trying the **hard** way? Memory studies prove that you will forget **80%** of what you learned that way.

Books are a great reference. But when it comes to learning those important terms, why not make it **easy** on yourself with **exciting, multimedia study guides** from Total Recall Learning, where you will truly **remember everything** you learn!

Download the latest Total Recall study guides from www.FreeloadPress.com to ensure your success in school or college. Getting an "**A**" has never been so **easy** and so much **fun**!

Information is broken down into **small**, easy-to-digest **pieces**. You will never want to learn any other way again! And with **Know-it-All Live!** you can even prepare your very own multimedia flashcards! For an even greater selection of courses visit www.TotalRecallLearning.com. Make learning **easy**!

www.TotalRecallLearning.com

Review exercises

Factor the following expressions. See sections 3-5 and 3-6.

1. $9y^2 - 6y + 1$

2. $4x^2 + 4x - 3$

3. $6y^2 - 24x^2$

Perform the indicated operations on rational expressions. See sections 4-2 and 4-3.

4. $\frac{4y}{y^2 - 25} - \frac{y}{y + 5}$

5. $\frac{16x^2}{7y} \div \frac{4x}{21y^2}$

6. Simplify the complex rational expression $\frac{\frac{x}{x+4}}{\frac{x}{x-3}}$. See section 4-4.

9-2 ■ More about parabolas

If we interchange the variables of the quadratic equation $y = ax^2 + bx + c$, $a \neq 0$, we obtain another quadratic equation of the form

$$x = ay^2 + by + c \quad (a \neq 0)$$

The graph of this equation is also a parabola. However, these parabolas

1. open right when $a > 0$ (positive),
2. open left when $a < 0$ (negative).

The vertex will be the point with the least, or greatest, value of x .

We graph this equation in the same way, using the vertex and the intercepts. In this case, to find the coordinates of the vertex, we must write the equation in the form

$$x = a(y - k)^2 + h$$

and the point (h, k) is the vertex of the parabola. The equation of the axis of symmetry is $y = k$.

■ Example 9-2 A

1. Determine the vertex, the x - and y -intercepts, and graph the equation $x = y^2 + 4y - 5$.

- a. Since $a = 1$ (positive), the graph opens right.
- b. The x -intercept is $(-5, 0)$ since $c = -5$.
- c. Let $x = 0$.

(0) = $y^2 + 4y - 5$

Replace x with 0

0 = $(y + 5)(y - 1)$

Factor the right member

$y + 5 = 0$ or $y - 1 = 0$

Set each factor equal to 0

$y = -5 \quad y = 1$

The y -intercepts are the points $(0, -5)$ and $(0, 1)$.

d. Given $x = y^2 + 4y - 5$

$x = (y^2 + 4y \quad) - 5 - (\quad)$

$x = (y^2 + 4y + 4) - 5 - (4)$

Complete the square

$x = (y + 2)^2 - 9$

Write as the square of a binomial

$x = [y - (-2)]^2 + (-9)$

Write in form $x = a(y - k)^2 + h$ The vertex is the point $(-9, -2)$.

e. The point $(-5, -4)$ is symmetric to the x -intercept $(-5, 0)$ about the axis of symmetry, $y = -2$.

2. Graph the quadratic equation $x = -y^2 + 3y + 4$ using completing the square.

a. The graph opens left since $a < 0$.b. Since $c = 4$, the x -intercept is the point $(4, 0)$.c. Let $x = 0$.

$(0) = -y^2 + 3y + 4$

Replace x with 0

$0 = y^2 - 3y - 4$

Multiply by -1

$0 = (y - 4)(y + 1)$

Factor the right member

$y - 4 = 0$ or $y + 1 = 0$

Set each factor equal to 0

$y = 4 \quad y = -1$

The y -intercepts are the points $(0, 4)$ and $(0, -1)$.

d. Given $x = -y^2 + 3y + 4$

$= -1(y^2 - 3y + \quad) + 4 - (\quad)$

$= -1\left(y^2 - 3y + \frac{9}{4}\right) + 4 - \left(-\frac{9}{4}\right)$

Complete the square

$= -1\left(y - \frac{3}{2}\right)^2 + \frac{25}{4}$

Write in form
 $x = a(y - k)^2 + h$ The vertex is the point $\left(\frac{25}{4}, \frac{3}{2}\right)$.

e. The point $(4, 3)$ is symmetric to the x -intercept $(4, 0)$ about the axis of symmetry, $y = \frac{3}{2}$.

► **Quick check** Graph the equation $x = -y^2 - 2y + 3$.

Forms of the equation of a parabola

Given the parabola opens right when $a > 0$ and opens left when $a < 0$,

1. The general form of the equation of the parabola is

$$x = ay^2 + by + c$$

2. The standard form of the equation of the parabola is

$$x = a(y - k)^2 + h$$

Mastery points

Can you

- Graph a parabola of the form $x = ay^2 + by + c$?

Exercise 9-2

Graph the following parabolas. See example 9-2 A.

Example $x = -y^2 - 2y + 3$

Solution 1. Since $a = -1$ (negative), the graph opens to the left.
2. Since $c = 3$, the x -intercept is the point $(3, 0)$.
3. Let $x = 0$.

$$\begin{aligned} (0) &= -y^2 - 2y + 3 && \text{Replace } x \text{ with } 0 \\ 0 &= y^2 + 2y - 3 && \text{Multiply each member by } -1 \\ 0 &= (y + 3)(y - 1) && \text{Factor the right member} \\ y + 3 &= 0 \text{ or } y - 1 = 0 && \text{Set each factor equal to } 0 \\ y &= -3 && \text{Solve for } y \\ y &= 1 \end{aligned}$$

The y -intercepts are the points $(0, -3)$ and $(0, 1)$.

4. Given $x = -y^2 - 2y + 3$

$$\begin{aligned} x &= -1(y^2 + 2y + \quad) + 3 - (\quad) && \text{Factor } -1 \text{ from } -y^2 - 2y \\ x &= -1(y^2 + 2y + 1) + 3 - (-1) && \text{Complete the square} \\ x &= -1(y + 1)^2 + 4 && \text{Write as the square of a binomial} \\ x &= -1[y - (-1)]^2 + 4 && \text{Write in form } x = a(y - k)^2 + h \end{aligned}$$

The vertex is the point $(4, -1)$.

Campfire queen Cycling champion Sentimental geologist*

Learn more about
Marjon Walrod
and tell us more
about you. Visit
pwc.com/bringit.

Your life. You can
bring it with you.

*connectedthinking

PRICEWATERHOUSECOOPERS

5. The point $(3, -2)$ is symmetric to the x -intercept, $(3, 0)$ about the axis of symmetry, $y = -1$.

1. $x = 3(y - 1)^2 + 2$	2. $x = 2(y - 3)^2 + 1$	3. $x = -2(y + 3)^2 - 2$	4. $x = -1(y + 2)^2 - 1$
5. $x = y^2 - 3y + 2$	6. $x = y^2 - 2y - 8$	7. $x = -y^2 + 2y + 3$	8. $x = 3y^2 - y - 6$
9. $x = 5y^2 + 2y - 3$	10. $x = -2y^2 + 5y - 3$	11. $x = y^2 - 2$	12. $x = -y^2 + 4$
13. $x = y^2$	14. $x = -y^2$	15. $x = -5y^2$	16. $x = -9y^2$
17. $x = y^2 - y$	18. $x = -y^2 + 6y$	19. $x = -2y^2 + 3y$	

Review exercises

1. Solve the system of linear equations $4x - y = 2$
See section 8–1.
 $x + 2y = 5$.

Simplify the following expressions. See section 3–3.

2. $(2a^{-2}b^3c^0)^{-3}$

3. $\left[\frac{8x^{-5}}{16x^3} \right]^3$

Find the x - and y -intercepts of the following equations. See section 7–1.

4. $x + 2y = 4$

5. $4x + 4y = 12$

Find the distance between the following sets of points. See section 7–2.

6. $(-3, 2)$ and $(1, 7)$

7. $(6, -5)$ and (x, y)

8. (x, y) and (h, k)

9–3 ■ The circle

In sections 9–1 and 9–2, we discussed second-degree equations having just one second-degree term. Now we will consider second-degree equations that contain two second-degree terms, x^2 and y^2 . The circle is one of the conic sections that contains these terms in the equation.

Definition of a circle

A **circle** is defined to be the set of all points in a plane that are at a fixed distance from a fixed point.

The fixed point is called the *center* of the circle, denoted by C , and the fixed distance from the center to all points on the circle is called the *radius* of the circle, denoted by r . See figure 9-4.

Figure 9-4

Recall the distance formula we discussed in chapter 7.

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = d$$

If we square each member of this equation, we have

$$(x_2 - x_1)^2 + (y_2 - y_1)^2 = d^2$$

Replace the point (x_2, y_2) with the arbitrary point on the circle $P(x, y)$, the point (x_1, y_1) with the center $C(h, k)$, and the distance d with the radius r to obtain the *standard form* of the equation of the circle in figure 9-4.

Equation of the circle

$$(x - h)^2 + (y - k)^2 = r^2$$

where (h, k) is the center of the circle and r is the length of the radius.

We call this the *standard form* of the equation of a circle.

Example 9-3 A

Find the equation for the circle with center at $C(3, 2)$ and radius $r = 4$ units.

We are given $h = 3$, $k = 2$, and $r = 4$.

$$\begin{aligned}(x - h)^2 + (y - k)^2 &= r^2 \\ [x - (3)]^2 + [y - (2)]^2 &= (4)^2 \\ (x - 3)^2 + (y - 2)^2 &= 16\end{aligned}$$

Standard form

Replace h with 3, k with 2, and r with 4

The equation of the circle is $(x - 3)^2 + (y - 2)^2 = 16$.

► **Quick check** Find the equation for the circle with center at $C(4, -3)$ and radius $r = 5$ units.

A special case exists when the center is at the origin. Then

$$(h,k) = (0,0)$$

and the equation of the circle is given by

$$(x - 0)^2 + (y - 0)^2 = r^2 \\ x^2 + y^2 = r^2$$

Equation of a circle with center at origin

The equation of a circle with the center at the origin, $C(0,0)$, and radius r is

$$x^2 + y^2 = r^2.$$

Example 9-3B

Find the equation of a circle with center $C(0,0)$ and radius $r = 5$. Graph the circle.

Using $x^2 + y^2 = r^2$, we substitute to obtain

$$\begin{aligned} x^2 + y^2 &= 5^2 && \text{Replace } r \text{ with } 5 \\ x^2 + y^2 &= 25 && 5^2 = 25 \end{aligned}$$

Often the equation of a circle is stated in the *general form*

$$ax^2 + ay^2 + bx + cy + d = 0$$

The following examples illustrate the procedure for finding the coordinates of the center and finding the length of the radius of a given circle.

Example 9-3C

Determine the coordinates of the center and the length of the radius of the given circle. Sketch the graph.

1. $x^2 + y^2 - 10x - 8y - 23 = 0$

We first rewrite this equation in the form $(x - h)^2 + (y - k)^2 = r^2$ by completing the square in both x and y .

$$(x^2 - 10x) + (y^2 - 8y) - 23 = 0$$

$$(x^2 - 10x + \quad) + (y^2 - 8y + \quad) = 23 + (\quad) + (\quad)$$

Group terms having
same variables:
Add 23 to each
member

Completing the square in both x and y (adding same quantities to both members), we have

$$(x^2 - 10x + 25) + (y^2 - 8y + 16) = 23 + 25 + 16$$

Add 25 to each member
Add 16 to each member

$$(x - 5)^2 + (y - 4)^2 = 64$$

$$(x - 5)^2 + (y - 4)^2 = 8^2$$

Complete the square for each quadratic expression

Write as the square of a binomial; combine

The circle has center $C(5,4)$ and radius $r = 8$.

Plot the center $(5,4)$ and draw a circle that is 8 units in each direction from this point.

2. $3x^2 + 3y^2 - 18x + 12y + 27 = 0$

To complete the square, we must make the coefficients of the squared terms 1. To accomplish this, divide all terms by 3 to obtain

$$\begin{aligned} x^2 + y^2 - 6x + 4y + 9 &= 0 \\ (x^2 - 6x) + (y^2 + 4y) + 9 &= 0 \\ (x^2 - 6x) + (y^2 + 4y) &= -9 \end{aligned}$$

Divide each term by 3
Group terms having same variable
Add -9 to each member

Completing the square and adding the same quantities to each member of the equation,

$$(x^2 - 6x + 9) + (y^2 + 4y + 4) = -9 + 9 + 4$$

Add 9 to each member
Add 4 to each member

$$(x - 3)^2 + (y + 2)^2 = 4$$

$$(x - 3)^2 + (y + 2)^2 = 2^2$$

$$(x - 3)^2 + [y - (-2)]^2 = 2^2$$

Complete the square for each quadratic expression

Write as the square of a binomial; combine

Write in standard form

Therefore the circle has center $C(3, -2)$ and radius $r = 2$.
 Plot the center $(3, -2)$ and draw a circle that is 2 units in each direction from this point.

► **Quick check** Determine the coordinates of the center and the length of the radius for $x^2 + y^2 + 2x - 4y - 4 = 0$.

Mastery points

Can you

- Write the equation of a circle given the coordinates of the center and the radius?
- Find the coordinates of the center and the length of the radius of a circle given the equation?
- Given the general form of the equation of a circle, find the standard form of the equation of the circle?
- Graph the equation of a circle?

Exercise 9-3

Write the equation for each of the following circles. See example 9-3 A.

Example Center at $C(4, -3)$ and radius $r = 5$ units

Solution We are given $h = 4$, $k = -3$, and $r = 5$.
 Using $(x - h)^2 + (y - k)^2 = r^2$,

$$[x - (4)]^2 + [(y - (-3))]^2 = (5)^2 \quad \text{Replace } h \text{ with } 4, k \text{ with } -3, \text{ and } r \text{ with } 5 \\ (x - 4)^2 + (y + 3)^2 = 25$$

1. Center $C(1, 2)$ and radius 2
2. Center $C(-5, 7)$ and radius 4
3. Center $C(4, -3)$ and radius $\sqrt{6}$
4. Center $C(-4, -5)$ and radius $2\sqrt{2}$
5. Center at the origin and radius 3
6. Center at the origin and radius $\sqrt{5}$

Write the equation in the form $x^2 + y^2 + Bx + Cy + D = 0$, where B , C , and D are integers.

7. Center $C(-5, 2)$ and radius 1
8. Center $C(1, -3)$ and radius $\sqrt{10}$
9. Center at the origin and radius 6
10. Center $C(0, 7)$ and radius $\sqrt{7}$

Determine the coordinates of the center and the radius of each of the following circles. See example 9-3 C.

Example $x^2 + y^2 + 2x - 4y - 4 = 0$

Solution We must write the equation in standard form $(x - h)^2 + (y - k)^2 = r^2$.

$$\begin{aligned} (x^2 + 2x) + (y^2 - 4y) - 4 &= 0 && \text{Group terms with same variables.} \\ (x^2 + 2x \quad) + (y^2 - 4y \quad) &= 4 + (\quad) + (\quad) && \text{Add 4 to each member.} \\ (x^2 + 2x + 1) + (y^2 - 4y + 4) &= 4 + 1 + 4 && \text{Add 1 and 4 to each member to complete the square.} \\ (x + 1)^2 + (y - 2)^2 &= 9 && \text{Write as binomial squares and add.} \\ [x - (-1)]^2 + (y - 2)^2 &= 3^2 && \text{Write in form } (x - h)^2 + (y - k)^2 = r^2 \end{aligned}$$

The center is at $C(-1, 2)$ and the radius is 3 units.

11. $(x - 3)^2 + (y - 2)^2 = 49$

13. $(x - 5)^2 + (y + 3)^2 = 8$

15. $(x + 1)^2 + (y + 9)^2 = 25$

17. $x^2 + y^2 = 36$

19. $x^2 + y^2 = 2$

21. $x^2 + y^2 + 4x - 6y - 23 = 0$

23. $x^2 + y^2 + 6x - 8y = 0$

25. $2x^2 + 2y^2 + 8x - 12y = 74$

27. $3x^2 + 3y^2 + 18x - 6y = 45$

12. $(x - 1)^2 + (y - 4)^2 = 16$

14. $(x + 1)^2 + (y - 7)^2 = 11$

16. $(x + 6)^2 + (y + 2)^2 = 24$

18. $x^2 + y^2 = 1$

20. $x^2 + y^2 = 18$

22. $x^2 + y^2 + 4x - 4y - 8 = 0$

24. $x^2 + y^2 - 16x + 30y = 0$

26. $3x^2 + 3y^2 - 24x + 12y - 87 = 0$

28. $2x^2 + 2y^2 - 4x + 4y = 22$

Graph each of the following circles. See examples 9-3 A and B.

29. $x^2 + y^2 = 1$

30. $x^2 + y^2 = 36$

31. $3x^2 + 3y^2 = 12$

32. $4x^2 + 4y^2 = 24$

33. $(x - 4)^2 + (y + 3)^2 = 4$

34. $(x + 2)^2 + (y - 5)^2 = 5$

35. $x^2 + y^2 - 2x = 15$

36. $x^2 + y^2 - 4x = 0$

37. $x^2 + y^2 - 2x + 4y - 20 = 0$

38. $x^2 + y^2 + 6x - 2y - 39 = 0$

39. $2x^2 + 2y^2 - 12x + 4y = -12$

40. $4x^2 + 4y^2 - 16x + 24y = 92$

41. Using the point (h, k) , any point on the circle (x, y) , r for the radius, and the distance formula, derive the equation of the circle $(x - h)^2 + (y - k)^2 = r^2$.

42. Find the equation of the circle passing through the origin with center $C(0, 5)$.

43. Find the equation of the circle passing through the origin with center $C(-2, 0)$.

44. Find the equation of the circle passing through the origin with center $C(3, -2)$.

Extra Credit Rocks

Sign up for a Discover® Student Card today and enjoy:

- 0% Intro APR* on Purchases for 6 Months
- No Annual Fee
- Easiest Online Account Management Options
- Full 5% Cashback Bonus®* on Get More purchases in popular categories all year
- Up to 1% Cashback Bonus®* on all your other purchases
- Unlimited cash rewards that never expire as long as you use your Card

APPLY NOW

DISCOVER®
CARD

*View Discover® Card Rates, Fees, Rewards and Other Important Information.

Identify the figure and graph the following equations.

45. $y = x^2 - x - 2$

46. $3x - 2y = -6$

47. $3x^2 = 12 - 3y^2$

48. $x - y^2 = 4x + 3$

Review exercises

1. Evaluate $\begin{vmatrix} 2 & -1 & 3 \\ 0 & 4 & 1 \\ 2 & 0 & -4 \end{vmatrix}$. See section 8-4.

2. Graph the equation $3x - y = 6$. See section 7-1.

3. Combine $\sqrt{8xy^3} - \sqrt{128xy^3}$ and simplify. See section 5-5.

4. Given $P(x) = 4x^2 - 2x + 8$, find $P(-1)$. See section 1-5.

5. Given the line $2x - 3y = -6$, find the equation of the line through $(2, -1)$ that is perpendicular to the given line. See section 7-3.

9-4 ■ The ellipse and the hyperbola

The ellipse

Two other conics containing x^2 and y^2 terms are the ellipse and the hyperbola. In this book, we shall consider only ellipses and hyperbolas with the center at the origin, $(0,0)$.

Definition

An **ellipse** is the set of all points in a plane such that the sum of the distances from each point on the ellipse to two fixed points in the plane is a positive constant, k .

In figure 9-5, for every point on the ellipse, $d_1 + d_2 = k$ (constant). We call the fixed points the *foci* of the ellipse. Each fixed point is a **focus** of the ellipse, which we denote by F_1 and F_2 . See figure 9-5.

Figure 9-5

Given the x -intercepts of the ellipse at $(a,0)$ and $(-a,0)$ and the y -intercepts at $(0,b)$ and $(0,-b)$ (a and b are both positive), it can be shown that the equation of the ellipse with its center at the origin $(0,0)$ is given as follows:

Equation of the ellipse

The **standard form** of the equation of the ellipse with the center at the origin is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a \neq b$$

where the intercepts are $(a,0)$, $(-a,0)$, $(0,b)$, and $(0,-b)$.

To graph an ellipse with its center at $(0,0)$, plot the four intercepts $(a,0)$, $(-a,0)$, $(0,b)$, $(0,-b)$ and sketch the ellipse through the intercepts. See figure 9-6.

Figure 9-6

■ Example 9-4 A

Find the coordinates of the intercepts of the following ellipses and sketch the graph.

1. $\frac{x^2}{25} + \frac{y^2}{9} = 1$

- a. $a^2 = 25$, so $a = 5$.
- b. $b^2 = 9$, so $b = 3$.

The x -intercepts are $(-5,0)$ and $(5,0)$ while the y -intercepts are $(0,-3)$ and $(0,3)$.

2. $16x^2 + 9y^2 = 144$

To obtain the standard form of the equation, we must divide each member by 144, the constant in the right member, since that constant must be 1.

$$\frac{16x^2}{144} + \frac{9y^2}{144} = \frac{144}{144}$$

$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$

Divide each term by 144
Reduce in each term

a. $a^2 = 9$, so $a = 3$.

b. $b^2 = 16$, so $b = 4$.

The x -intercepts are $(-3, 0)$ and $(3, 0)$ while the y -intercepts are $(0, -4)$ and $(0, 4)$.

► **Quick check** Find the coordinates of the intercepts of $25x^2 + 4y^2 = 100$. Sketch the graph.

The hyperbola

The equation of the last conic section, the hyperbola, is similar to the equation of the ellipse.

Definition of a hyperbola

A **hyperbola** is the set of all points in the plane such that the absolute value of the difference between the distances from each point on the hyperbola to two fixed points is a constant, k .

The fixed points are again called the **foci** of the hyperbola. See figure 9–7.

Figure 9–7

In figure 9–7, for every point on the hyperbola, $|d_1 - d_2| = k$ (constant). Using the above relationship, we can show (but will not do so here) that the standard form of the equation of a hyperbola with center C at the origin is as follows:

Equations of the hyperbola

The **standard form** of the equation of the hyperbola with the center at the origin is given by

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

with x -intercepts a and $-a$ and no y -intercepts (see figure 9–7) or

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

with y -intercepts b and $-b$ and no x -intercepts (see figure 9–8).

Figure 9–8

Solving the equations $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ for y in terms of a , b , and x , we can show that the graph of each of these hyperbolas will approach (get closer and closer to) but not cross the lines whose equations are

$$y = \frac{b}{a}x \quad \text{and} \quad y = -\frac{b}{a}x$$

We call such lines **asymptotes**. They are indicated by dashed lines. These lines are useful for sketching the graph of the hyperbola and are found in the following way:

Asymptotes of a hyperbola

The asymptotes of the hyperbolas $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ are the extended diagonals of the rectangle whose vertices are (a, b) , $(a, -b)$, $(-a, b)$, and $(-a, -b)$.

To illustrate, given the equation

$$\frac{x^2}{4} - \frac{y^2}{25} = 1$$

then, (1) $a^2 = 4$, so $a = 2$

(2) $b^2 = 25$, so $b = 5$.

We can now construct a rectangle with corners $(2, 5)$, $(2, -5)$, $(-2, 5)$, and $(-2, -5)$. To obtain the asymptotes for this hyperbola, draw the diagonals. See figure 9-9.

Figure 9-9

Using the intercepts and the asymptotes, we can sketch the graph of a hyperbola with its center at the origin $(0,0)$. Since $a = 2$, $b = 5$, and the equations of the asymptotes are $y = \pm \frac{b}{a}x$, then

$$y = -\frac{b}{a}x = -\frac{5}{2}x \quad \text{and} \quad y = \frac{b}{a}x = \frac{5}{2}x$$

when we replace a with 2 and b with 5. The graph of the equation is shown in figure 9-10.

Figure 9-10

In summary, to graph a hyperbola of either of the two standard forms, we follow this procedure:

To graph a hyperbola

Step 1 Write the equation in standard form.

Step 2 Locate the intercepts at $(-a, 0)$ and $(a, 0)$ if the coefficient of x^2 is positive and at $(0, -b)$ and $(0, b)$ if the coefficient of y^2 is positive.

Step 3 Draw the rectangle (in dashed lines) with vertices at (a, b) , $(a, -b)$, $(-a, b)$, and $(-a, -b)$.

Step 4 Sketch the asymptotes (in dashed lines) that are extensions of the diagonals of the rectangle.

Step 5 Sketch the hyperbola through the intercepts and approach the lines that are the asymptotes.

Example 9-4 B

Determine the intercepts of the following hyperbolas. Sketch the graphs.

$$1. \frac{x^2}{16} - \frac{y^2}{4} = 1$$

- a. $a^2 = 16$, so $a = 4$.
- b. $b^2 = 4$, so $b = 2$.

The x -intercepts are $(-4, 0)$ and $(4, 0)$ and there are no y -intercepts.

The rectangle is formed by the points $(4, 2)$, $(4, -2)$, $(-4, 2)$, and $(-4, -2)$.

The equations of the asymptotes are

$$y = \frac{2}{4}x = \frac{1}{2}x \text{ and}$$

$$y = -\frac{2}{4}x = -\frac{1}{2}x.$$

$$2. 9y^2 - 4x^2 = 36$$

To get the equation into one of the standard forms, divide each term by 36. Then

$$\frac{y^2}{4} - \frac{x^2}{9} = 1$$

- a. $b^2 = 4$, so $b = 2$.
- b. $a^2 = 9$, so $a = 3$.

The y -intercepts are $(0, -2)$ and $(0, 2)$; there are no x -intercepts.

The rectangle is formed by the points $(3, 2)$, $(3, -2)$, $(-3, 2)$, and $(-3, -2)$.

The equations of the asymptotes are

$$y = \frac{2}{3}x \text{ and } y = -\frac{2}{3}x.$$

► **Quick check** Determine the intercepts and equations of the asymptotes of $9y^2 - 9x^2 = 81$. Sketch the graph.

We now summarize the characteristics of the conic sections.

Equation	Conic section	Characteristics
$y = ax^2 + bx + c$	Parabola	If $a < 0$, opens down If $a > 0$, opens up
$x = ay^2 + by + c$	Parabola	If $a > 0$, opens right If $a < 0$, opens left
$(x - h)^2 + (y - k)^2 = r^2$	Circle	Center at (h,k) and radius r
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a \neq b)$	Ellipse	x -intercepts, $(a,0)$ and $(-a,0)$ y -intercepts, $(0,b)$ and $(0,-b)$
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	Hyperbola	x -intercepts, $(a,0)$ and $(-a,0)$. No y -intercepts
$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$	Hyperbola	y -intercepts, $(0,b)$ and $(0,-b)$. No x -intercepts

■ Example 9–4 C

Identify each equation as a parabola, a circle, an ellipse, or a hyperbola.

1. $x^2 - 2y = 0$

Since the equation contains the second power of x and the first power of y , then y is linear and the graph is a **parabola**.

2. $4x^2 = 12 - 3y^2$

Adding $3y^2$ to each member, we obtain the equation

$$4x^2 + 3y^2 = 12 \quad \text{or} \quad \frac{x^2}{3} + \frac{y^2}{4} = 1$$

The equation of an **ellipse**.

3. $3y^2 = 9 + 3x^2$

Adding $-3x^2$ to each member, we obtain

$$3y^2 - 3x^2 = 9 \quad \text{or} \quad \frac{y^2}{3} - \frac{x^2}{3} = 1$$

The equation of a **hyperbola**.

Mastery points**Can you**

- Find the coordinates of the x - and y -intercepts for an ellipse and a hyperbola?
- Sketch the graphs of ellipses and hyperbolas?
- Find the equations of the asymptotes of a hyperbola and graph them?
- Identify the equation of a parabola, a circle, an ellipse, and a hyperbola and sketch their graphs?

Exercise 9–4

Find the x - and y -intercepts of each given ellipse. Sketch the graph of each equation. See example 9–4 A.

Example $25x^2 + 4y^2 = 100$

Solution To get the equation in standard form, divide each member by 100.

$$\frac{x^2}{4} + \frac{y^2}{25} = 1$$

1. $a^2 = 4$, so $a = 2$.
2. $b^2 = 25$, so $b = 5$.

The x -intercepts are $(-2,0)$ and $(2,0)$, the y -intercepts are $(0,-5)$ and $(0,5)$.

1. $\frac{x^2}{9} + \frac{y^2}{25} = 1$

2. $\frac{x^2}{4} + \frac{y^2}{9} = 1$

3. $\frac{x^2}{49} + \frac{y^2}{25} = 1$

4. $\frac{x^2}{16} + \frac{y^2}{36} = 1$

5. $x^2 + \frac{y^2}{9} = 1$

6. $x^2 + \frac{y^2}{4} = 1$

7. $\frac{x^2}{16} + y^2 = 1$

8. $36x^2 + 9y^2 = 324$

9. $x^2 + 25y^2 = 100$

10. $16x^2 + y^2 = 64$

11. $3x^2 + 4y^2 = 12$

12. $9x^2 + 2y^2 = 18$

13. $8x^2 + y^2 = 16$

14. $x^2 + 3y^2 = 27$

Find the x -intercepts, or y -intercepts, and the equations of the asymptotes of the hyperbola for the given equation. Sketch the graph of the equation. See example 9-4 B.

Example $9y^2 - 9x^2 = 81$

Solution Divide each member by 81 to get the equation in standard form.

$$\frac{9y^2}{81} - \frac{9x^2}{81} = \frac{81}{81}$$

$$\frac{y^2}{9} - \frac{x^2}{9} = 1$$

a. $b^2 = 9$, so $b = 3$.

b. $a^2 = 9$, so $a = 3$.

y -intercepts, $(0, -3)$, $(0, 3)$; no x -intercepts

The rectangle has vertices $(3, 3)$, $(3, -3)$, $(-3, 3)$, and $(-3, -3)$.

The equations of the asymptotes are $y = -x$ and $y = x$.

15. $\frac{x^2}{16} - \frac{y^2}{9} = 1$

16. $\frac{x^2}{4} - \frac{y^2}{25} = 1$

17. $\frac{y^2}{9} - \frac{x^2}{4} = 1$

18. $\frac{y^2}{16} - \frac{x^2}{25} = 1$

19. $y^2 - \frac{x^2}{9} = 1$

20. $y^2 - \frac{x^2}{4} = 1$

21. $x^2 - \frac{y^2}{16} = 1$

22. $9x^2 - y^2 = 36$

23. $y^2 - 25x^2 = 25$

24. $y^2 - 16x^2 = 64$

25. $25y^2 - 16x^2 = 400$

26. $16y^2 - 9x^2 = 144$

27. $25x^2 - 4y^2 = -100$

28. $2y^2 - 3x^2 = -18$

29. $2x^2 - 9y^2 = -36$

30. $6x^2 - 6y^2 = -1$

Write each of the following equations in standard form. Identify as a parabola, a circle, an ellipse, or a hyperbola. See example 9-4 C.

31. $x^2 = 9 - y^2$

32. $9x^2 = 36 + 4y^2$

33. $x^2 + 3 = y$

34. $2x^2 + y^2 = 8$

35. $4y^2 = 25 - 4x^2$

36. $y^2 - x^2 = 25$

37. $y^2 = 121 - x^2$

38. $8y^2 = 24 + 8x^2$

39. $x^2 + y = 8$

40. $18 - 2y^2 = 3x^2$

Review exercises

Perform the indicated operations on the following rational expressions. See sections 4-2 and 4-3.

1. $\frac{2y+1}{y-3} \cdot \frac{y^2-2y-3}{2y^2-5y-3}$

2. $\frac{4z}{3z+2} - \frac{6z}{2z-1}$

3. Simplify the complex rational expression $\frac{\frac{1}{x}-\frac{1}{y}}{\frac{1}{x^2}-\frac{1}{y^2}}$.

See section 4-4.

Need more money for college expenses?

The CLC Private LoanSM can get you up to
\$40,000 a year for college-related expenses.

Here's why the CLC Private LoanSM is a smart choice:

- Approved borrowers are sent a check within four business days
- Get \$1000 - \$40,000 each year
- Interest rates as low as prime + 0% (8.66% APR)
- Quick and easy approval process
- No payments until after graduating or leaving school

CLICK HERE

or call **800.311.9615**.

*We are available 24 hours
a day, 7 days a week.*

Find the solution set of the following quadratic equations. See section 6–1.

4. $4x^2 = 20$

5. $5x^2 - 4x = 0$

Perform the indicated operations. See sections 5–5 and 5–6.

6. $(\sqrt{3} - 2\sqrt{2}) - (3\sqrt{3} + \sqrt{2})$

7. $(2\sqrt{5} + \sqrt{3})(3\sqrt{5} - \sqrt{3})$

9–5 ■ Systems of nonlinear equations

In section 8–1, we discussed the solution(s) of systems of two linear equations. Now we will consider systems of two equations in which at least one of the equations is quadratic. These are called *systems of nonlinear equations*. The methods used to solve systems of linear equations can be used to solve systems involving quadratic equations. The following examples illustrate this kind of system.

■ Example 9–5 A

Find the solution set of the given system of equations.

$$\begin{aligned}y &= x^2 - 2x + 1 & (1) \\x + y &= 3 & (2)\end{aligned}$$

We first solve equation (2) for y to obtain the equivalent system.

$$\begin{aligned}y &= x^2 - 2x + 1 \\y &= 3 - x\end{aligned}$$

Substitute $3 - x$ for y in equation (1) and solve for x .

$$\begin{aligned}(3 - x) &= x^2 - 2x + 1 && \text{Replace } y \text{ with } 3 - x \\0 &= x^2 - x - 2 && \text{Add } x \text{ and } -3 \text{ to each member} \\x^2 - x - 2 &= 0 && \text{Write equation in standard form} \\(x - 2)(x + 1) &= 0 && \text{Factor the left member} \\x - 2 = 0 &\quad \text{or} \quad x + 1 = 0 && \text{Set each factor equal to 0} \\x = 2 & & x = -1 &\end{aligned}$$

Using equation (2), substitute for x and solve for y .

(1) Let $x = 2$.

$$\begin{aligned}x + y &= 3 \\(2) + y &= 3 && \text{Replace } x \text{ with } 2 \\y &= 1\end{aligned}$$

(2) Let $x = -1$.

$$\begin{aligned}x + y &= 3 \\(-1) + y &= 3 && \text{Replace } x \text{ with } -1 \\y &= 4\end{aligned}$$

The solutions are the ordered pairs $(2, 1)$ and $(-1, 4)$. The solution set is $\{(2, 1), (-1, 4)\}$.

Equation (1) is a parabola and equation (2) is a straight line. Graphing equation (1) using the vertex and the intercepts and equation (2) using the intercepts, we see that the two graphs intersect at the points $(-1, 4)$ and $(2, 1)$.

► **Quick check** Find the solution set of the system $x^2 + y^2 = 9$
 $2x - y = 3$.

When both equations making up the system are quadratic equations, we use the method of solution by **elimination**. The result is then a quadratic equation in one variable, and we proceed as in our preceding example.

■ Example 9–5 B

Find the solution set of the system.

$$x^2 + y^2 = 25 \quad (1)$$

$$x^2 + 4y^2 = 52 \quad (2)$$

To eliminate the variable x , we multiply equation (1) by -1 and add to equation (2).

$$\begin{array}{rcl} x^2 + y^2 = 25 & \text{Multiply by } -1 \rightarrow & -x^2 - y^2 = -25 \\ x^2 + 4y^2 = 52 & & \underline{x^2 + 4y^2 = 52} \\ & & 3y^2 = 27 & \text{Add members} \\ & & y^2 = 9 & \text{Divide by 3} \\ & & y = \pm 3 & \text{Extract the roots} \end{array}$$

Substituting 3 and -3 for y in either original equation, say $x^2 + y^2 = 25$, we obtain corresponding values of x .

When $y = 3$,

$$x^2 + (3)^2 = 25$$

$$x^2 + 9 = 25$$

$$x^2 = 16$$

$$x = \pm 4$$

When $y = -3$,

$$x^2 + (-3)^2 = 25$$

$$x^2 + 9 = 25$$

$$x^2 = 16$$

$$x = \pm 4$$

Replace y with 3, -3

Square as indicated

Subtract 9 from each member

Extract the roots

Thus (a) $y = 3, x = 4$; (b) $y = 3, x = -4$; (c) $y = -3, x = 4$; and (d) $y = -3, x = -4$. The solution set is $\{(4, 3), (-4, 3), (4, -3), (-4, -3)\}$.

Equation (1) is a circle and equation (2) is an ellipse with centers at the origin, $(0, 0)$. If we graph both equations using their x - and y -intercepts, we see the graphs intersect at the points $(-4, 3)$, $(-4, -3)$, $(4, 3)$, and $(4, -3)$.

► **Quick check** Find the solution set of the system $x^2 + y^2 = 18$
 $2x^2 - y^2 = -6$. ■

Mastery points

Can you

- Find the solution set of a system of equations that contain one linear and one quadratic equation?
- Find the solution set of a system of equations that contain two quadratic equations?

Exercise 9–5

Find the solution set of each system of equations by substitution. Sketch the graphs of the systems in exercises 1–6. See example 9–5 A.

Example $x^2 + y^2 = 9$ (1)
 $2x - y = 3$ (2)

Solution We first solve equation (2) for y .

$$\begin{aligned} 2x - y &= 3 \\ -y &= -2x + 3 \quad \text{Subtract } 2x \text{ from each member} \\ y &= 2x - 3 \quad \text{Multiply each member by } -1 \end{aligned}$$

We now substitute $2x - 3$ for y in equation (1).

$$\begin{aligned} x^2 + y^2 &= 9 \\ x^2 + (2x - 3)^2 &= 9 \quad \text{Replace } y \text{ with } 2x - 3 \\ x^2 + 4x^2 - 12x + 9 &= 9 \quad \text{Square in left member} \\ 5x^2 - 12x &= 0 \quad \text{Combine like terms and subtract 9 from each member} \\ x(5x - 12) &= 0 \quad \text{Factor in left member} \\ x = 0 \quad \text{or} \quad 5x - 12 &= 0 \quad \text{Set each factor equal to 0} \\ x = 0 \quad \text{or} \quad x &= \frac{12}{5} \end{aligned}$$

Substitute 0 and $\frac{12}{5}$ for x in equation (2) and solve for y .

Let $x = 0$.

$$\begin{aligned} 2(0) - y &= 3 \\ -y &= 3 \\ y &= -3 \end{aligned}$$

Let $x = \frac{12}{5}$.

$$\begin{aligned} 2\left(\frac{12}{5}\right) - y &= 0 && \text{Replace } x \text{ with } 0, \frac{12}{5} \\ \frac{24}{5} - y &= 0 \\ -y &= -\frac{24}{5} \\ y &= \frac{24}{5} \\ y &= \frac{9}{5} \end{aligned}$$

The solutions are $(0, -3)$ and $\left(\frac{12}{5}, \frac{9}{5}\right)$.The solution set is $\left\{(0, -3), \left(\frac{12}{5}, \frac{9}{5}\right)\right\}$.

1. $x^2 + y^2 = 5$
 $x + y = 1$

4. $x^2 - y^2 = 9$
 $x + y = 5$

7. $x^2 + 2y^2 = 12$
 $2x = y + 2$

10. $x^2 - y^2 = 35$
 $xy = 6$

13. $2x^2 + y^2 = 4$
 $y = -1$

2. $x^2 + y^2 = 1$
 $x + 2y = 2$

5. $y = x^2 - 2x + 1$
 $y = 3 - x$

8. $x^2 + 3y^2 = 3$
 $x - 3y = 0$

11. $x^2 + y^2 = 8$
 $xy = 4$

14. $y = x^2 - 6x - 8$
 $y = 10$

3. $x^2 - y^2 = 24$
 $x + 2y = -3$

6. $y = x^2 - 4x + 4$
 $x + y = 2$

9. $x^2 - y^2 = 15$
 $xy = 4$

12. $3x^2 - 4y^2 = 12$
 $x = 4$

Find the solution set of each system of equations by elimination or by a combination of elimination and substitution. See example 9–5 B.

Example $x^2 + y^2 = 18$
 $2x^2 - y^2 = -6$

Solution We can eliminate y by adding members.

$$\begin{array}{rcl} x^2 + y^2 &=& 18 & (1) \\ 2x^2 - y^2 &=& -6 & (2) \\ \hline 3x^2 &=& 12 & \text{Add members} \\ x^2 &=& 4 & \text{Divide each member by 3} \\ x &=& \pm 2 & \text{Extract the roots} \end{array}$$

Substitute 2 and -2 in equation (1) and solve for y .

Let $x = 2$.

$$\begin{aligned}x^2 + y^2 &= 18 \\(2)^2 + y^2 &= 18 \\4 + y^2 &= 18 \\y^2 &= 14 \\y &= \pm\sqrt{14}\end{aligned}$$

Let $x = -2$.

$$\begin{aligned}x^2 + y^2 &= 18 \\(-2)^2 + y^2 &= 18 \\4 + y^2 &= 18 \\y^2 &= 14 \\y &= \pm\sqrt{14}\end{aligned}$$

The solutions are $(2, \sqrt{14})$, $(2, -\sqrt{14})$, $(-2, \sqrt{14})$, and $(-2, -\sqrt{14})$ and the solution set is $\{(2, \sqrt{14}), (2, -\sqrt{14}), (-2, \sqrt{14}), (-2, -\sqrt{14})\}$.

15. $x^2 + y^2 = 9$
 $x^2 - y^2 = 9$

16. $x^2 - y^2 = 24$
 $x^2 + y^2 = 8$

17. $x^2 + 4y^2 = 64$
 $x^2 + y^2 = 25$

18. $x^2 + 2y^2 = 22$
 $2x^2 + y^2 = 17$

19. $x^2 - 2y^2 = -9$
 $x^2 + y^2 = 18$

20. $3x^2 + 4y^2 = 16$
 $x^2 - y^2 = 8$

21. $2x^2 - 9y^2 = 18$
 $4x^2 + 9y^2 = 36$

22. $3x^2 + 4y^2 = 39$
 $5x^2 - 2y^2 = -13$

23. $x^2 + y^2 = 4$
 $2x^2 + 3y^2 = 5$

24. $x^2 + y^2 = 10$
 $x^2 - 3xy + y^2 = 1$

25. $x^2 + y^2 = 6$
 $2x^2 + 3xy + 2y^2 = 21$

26. $x^2 + xy - y^2 = 1$
 $x^2 - y^2 = 3$

For each of the following exercises, translate the verbal statements into a system of equations and solve.

Example Find the dimensions of a rectangular plot of ground if the perimeter is 22 meters and the area is 24 square meters.

Solution We use the formulas perimeter $P = 2l + 2w$ and area $A = lw$, where l is the length and w is the width of the rectangle. Replacing P with 22 and A with 24, we have the system of equations

$$\begin{aligned}2l + 2w &= 22 \\lw &= 24\end{aligned}$$

Solving the equation $lw = 24$ for l , we obtain

$$l = \frac{24}{w}$$

Then, the equation $2l + 2w = 22$ becomes

$$\begin{aligned}2\left(\frac{24}{w}\right) + 2w &= 22 && \text{Replace } l \text{ with } \frac{24}{w} \\ \frac{48}{w} + 2w &= 22 && \text{Multiply in left member} \\ 48 + 2w^2 &= 22w && \text{Multiply each term by } w \\ 2w^2 - 22w + 48 &= 0 && \text{Write equation in standard form} \\ 2(w^2 - 11w + 24) &= 0 && \text{Factor left member} \\ 2(w - 3)(w - 8) &= 0 && \\ w - 3 &= 0 \text{ or } w - 8 = 0 && \text{Set each factor equal to 0} \\ w &= 3 \text{ or } w &= 8 && \text{Solve for } w\end{aligned}$$

Substituting for w in the equation $l = \frac{24}{w}$, when

$$\begin{aligned}w &= 3 && \text{or} && w = 8 \\l &= \frac{24}{3} = 8 && && l = \frac{24}{8} = 3\end{aligned}$$

In either case, the dimensions of the rectangle are 8 meters by 3 meters.

27. Find the dimensions of a rectangle whose area is 120 square inches and whose perimeter is 46 inches.

28. The area of a rectangle is 80 square centimeters and the perimeter is 42 centimeters. What are the dimensions of the rectangle?

29. The sum of two numbers is 16 and the difference between their squares is 32. Find the numbers.

30. The sum of two numbers is 12 and the sum of their squares is 80. Find the numbers.

31. A manufacturer determines that the relationship between the demand (x) and the price (p) for their commodity is $xp = 6$ and the relationship between the supply (x) and price (p) of the same commodity is $4x = 23 - 5p$. The **equilibrium point** is where the supply equals the demand. Solve the system of equations to find the equilibrium point.

32. A piece of cardboard is in the form of a rectangle and has an area of 260 square inches. A square 2 inches on each side is cut out of each corner and an open box is formed by folding up the ends and sides. If the volume of the resulting box is 288 cubic inches, find the length and width of the cardboard. (Hint: $V = lwh$)

Review exercises

Evaluate the following expressions. See section 1–5.

1. $2x - 3y$ when $x = 3$ and $y = 4$
3. Find the solution set of the inequality $3y - 2 \geq 2$.
See section 2–5.

Given $P(x) = 2x - 5$ and $Q(x) = x^2 + x - 3$, find

4. $P(-6)$
5. $Q(2)$
2. $4x^2 + 2y^2$ when $x = -1$ and $y = 2$
6. $P(2) - Q(-1)$

See section 1–5.

7. Find the solution set of the absolute inequality
 $|2x - 5| \leq 3$. See section 2–5.

We help students get math. It's just that simple.

If you are afraid of math, think you cannot do math, go blank on math tests, our 5.0 learning system will help you get math.

Audio/Video Lectures On Every Page – No other learning system is enhanced with audio/video lectures embedded throughout the material. As you are studying, there are video lectures next to the material explaining the concepts, procedures, and examples as they appear. Within the exercise sets and chapter review material, you will find video lectures next to the appropriate problems, which reinforce and solidify the learning experience.

Step-by-step solutions to all problems – Instead of just an answer, every problem has a step-by-step solution, which allows you to verify that you are doing the problems correctly. Should you make an error, there is no wondering, “where did I go wrong”, the step-by-step solution will pinpoint the step in which the error occurred.

GetMath Educational Software is your link to success in mathematics – Wherever you are in the material, you are just a click away from all of the support features of a learning system that has been developed and fine-tuned over the last two decades.

GetMath.com Educational Software has joined forces with Freeload Press in helping liberate the textbook so students from all financial backgrounds can use these important learning tools. GetMath is bringing more than 30 textbooks and ancillaries to the FreeLoad site for free download. Several million students have purchased at least one of our textbooks, but you will now be able to start using those same textbooks along with the resource material for free.

Your path to success is made easy – with video lectures, quick reference examples, notes to the student, quick check problems, concept boxes, trial problems, real-life applications, mastery points, core exercises, procedure boxes, review exercises, explore-to-learn problems, functional use of color as a guide, and over 20 years of in-the-classroom refinements.

Chapter 9 lead-in problem

If a gun is fired upward with an initial velocity of 288 ft/sec, the bullet's height h after t seconds is given by the equation $h = 288t - 16t^2$. Find the maximum height attained by the bullet.

Solution

The path the bullet will follow is a parabola. We want the coordinates (t, h) of the vertex. The first coordinate of the vertex, t , is given by

$$t = -\frac{b}{2a}$$

where $b = 288$ and $a = -16$. Then,

$$\begin{aligned} t &= -\frac{(288)}{2(-16)} \quad \text{Replace } b \text{ with } 288 \text{ and } a \text{ with } -16 \\ &= \frac{288}{32} = 9 \end{aligned}$$

Maximum height is attained at 9 seconds. Now we want h .

$$\begin{aligned} h &= 288t - 16t^2 \\ &= 288(9) - 16(9)^2 \quad \text{Replace } t \text{ with } 9 \\ &= 2,592 - 1,296 \\ &= 1,296 \end{aligned}$$

The maximum height attained by the bullet is 1,296 feet.

Chapter 9 summary

- Conic sections—the parabola, the circle, the ellipse, and the hyperbola—are obtained by slicing a cone with a plane in four different ways.
- The graph of a quadratic equation of the form $y = ax^2 + bx + c$ is a parabola opening upward if $a > 0$ and opening downward if $a < 0$.
- The graph of the quadratic equation of the form $x = ay^2 + by + c$ is a parabola opening right if $a > 0$ and opening left if $a < 0$.
- The equation of the circle with center $C(h, k)$ and having radius r is given by

$$(x - h)^2 + (y - k)^2 = r^2$$

When C is at $(0, 0)$, the equation is given by

$$x^2 + y^2 = r^2$$

- The equation of the ellipse with center $C(0, 0)$ is given by

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

where the x -intercepts are a and $-a$ and the y -intercepts are b and $-b$.

- The equation of the hyperbola with center $C(0, 0)$ and having x -intercepts a and $-a$ is given by

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

and having y -intercepts b and $-b$ is given by

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

- The equations of the asymptotes for the graph of either hyperbola are given by

$$y = \frac{b}{a}x \text{ and } y = -\frac{b}{a}x$$

They are the diagonals of a rectangle whose vertices are (a, b) , $(a, -b)$, $(-a, b)$, and $(-a, -b)$.

Chapter 9 error analysis

1. Graph of the parabola

Example: The graph of $y = -3x^2 + 2x - 1$ opens upward since $a = -3$.

Correct answer: Graph opens downward.

What error was made? (see page 404)

2. Vertex of a parabola

Example: Given $y = (x + 3)^2 - 2$, the vertex is the point $(3, -2)$.

Correct answer: $(-3, -2)$

What error was made? (see page 403)

3. Finding the vertex of a parabola

Example: Given $y = -x^2 + 4x - 3$,

$$\begin{aligned} \text{Then } y &= -1(x^2 - 4x) - 3 \\ &= -1(x^2 - 4x + 4) - 3 - 4 \\ &= -1(x - 2)^2 - 7 \end{aligned}$$

The vertex is the point $(2, -7)$.

Correct answer: $(2, 1)$

What error was made? (see page 403)

4. Finding the intercepts of the parabola

Example: Given $y = 3x^2 - 7x + 2$,

1. Let $y = 0$

$$0 = 3x^2 - 7x + 2$$

$$0 = (3x - 2)(x - 1)$$

$$3x - 2 = 0 \text{ or } x - 1 = 0$$

$$x = \frac{2}{3} \text{ or } x = 1$$

x-intercepts, $\left(\frac{2}{3}, 0\right)$ and $(1, 0)$

2. Let $x = 0$,

$$y = 2$$

y-intercept, $(0, 2)$

Correct answer: x-intercepts, $\left(\frac{1}{3}, 0\right)$, $(2, 0)$

y-intercept, $(0, 2)$

What error was made? (see page 403–4)

5. The vertex of a parabola

Example: The vertex of the parabola whose equation is

$$x = (y + 3)^2 - 5$$

Correct answer: $(-5, -3)$

What error was made? (see page 403)

6. Center and radius of a circle

Example: Find the center and radius of the circle whose equation is

$$x^2 + y^2 - 6x + 8y - 2 = 0$$

$$(x^2 - 6x) + (y^2 + 8y) = 2$$

$$(x^2 - 6x + 9) + (y^2 + 8y + 16) = 2$$

$$(x - 3)^2 + (y + 4)^2 = 2$$

Center at $(3, 4)$ and radius $r = \sqrt{2}$

Correct answers: Center at $(3, -4)$ and radius $r = 3\sqrt{3}$

What errors were made? (see page 416)

7. Intercepts of an ellipse

Example: Find the intercepts of the ellipse whose equation is

$$4x^2 + 8y^2 = 4$$

$$x^2 + 2y^2 = 1$$

The x-intercepts are $(1, 0)$ and $(-1, 0)$ and the

y-intercepts are $(0, 2)$ and $(0, -2)$.

Correct answers: x-intercepts, $(1, 0)$ and $(-1, 0)$

y-intercepts, $\left(0, \frac{\sqrt{2}}{2}\right)$ and $\left(0, -\frac{\sqrt{2}}{2}\right)$

What error was made? (see page 421)

8. Asymptotes of a hyperbola

Example: The equations of the asymptotes of the hyperbola whose equation is $\frac{x^2}{4} - \frac{y^2}{9} = 1$ are

$$y = -\frac{4}{9}x \text{ and } y = \frac{4}{9}x$$

$$\text{Correct answers: } y = \frac{3}{2}x \text{ and } y = -\frac{3}{2}x$$

What errors were made? (see page 423)

9. Identifying conic sections

Example: The equation $3x + 3y^2 = 4$ is the equation of a circle.

Correct answer: parabola

What error was made? (see page 426)

10. Factoring the sum of two cubes

$$Example: 8a^3 + 27b^3 = (2a)^3 + (3b)^3$$

$$= (2a + 3b)(4a^2 - 12ab + 9b^2)$$

$$\text{Correct answer: } (2a + 3b)(4a^2 - 6ab + 9b^2)$$

What error was made? (see page 145)

Chapter 9 critical thinking

Write an algebraic expression for the following relationship.
Will such relationships always be true?

$$\left(\frac{1}{3}\right)^2 + \left(1 - \frac{1}{3}\right)^2 = \left(\frac{1}{3}\right) + \left(1 - \frac{1}{3}\right)^2$$

$$(0.7)^2 + (1 - 0.7)^2 = (0.7) + (1 - 0.7)^2$$

Chapter 9 review**[9–1]**

Determine the vertex, x -intercept(s), and y -intercept of the following parabolas.

1. $y = -3(x + 1)^2 + 0$

2. $y = -x^2 + 4x + 45$

Graph each of the following equations.

3. $y = x^2 - 2$

4. $y = -x^2 - 3x + 4$

5. $y = x^2 + 3x + 1$

[9–2]

6. $x = y^2 - 1$

7. $x = y^2 - 4y - 5$

8. $x = -y^2 + y + 2$

[9–3]

Write the equation for each of the following circles in the (1) form $(x - h)^2 + (y - k)^2 = r^2$ and (2) form $x^2 + y^2 + Bx + Cy + D = 0$, where B , C , and D are integers.

9. Center $C(-2, 5)$ and radius 5

10. Center $C(4, 0)$ and radius $\sqrt{11}$

11. Center at the origin and radius 9

Determine the coordinates of the center and the length of the radius of the following circles.

12. $(x - 5)^2 = 36 - (y + 1)^2$

13. $y^2 = 7 - x^2$

14. $x^2 + y^2 + 6x - 8y + 1 = 0$

15. $x^2 + y^2 - 2x + 4y - 3 = 0$

16. $4x^2 + 4y^2 - 16y + 8x - 20 = 0$

17. $x^2 + y^2 - 4y - 15 = 0$

Graph each of the following circles.

18. $x^2 + y^2 = 2$

19. $5x^2 = 20 - 5y^2$

20. $(x - 3)^2 + (y + 4)^2 = 1$

21. $x^2 + y^2 + 6x = 0$

22. $x^2 - 8y = 6x - y^2$

23. $x^2 + y^2 + 6x - 4y - 3 = 0$

[9–4]

Determine the x - and y -intercepts for each given ellipse. Graph the equation.

24. $\frac{x^2}{16} + \frac{y^2}{100} = 1$

25. $x^2 + \frac{y^2}{25} = 1$

26. $16x^2 + 9y^2 = 144$

27. $4x^2 + 8y^2 = 16$

28. $6x^2 + y^2 = 24$

29. $x^2 + 8y^2 = 8$

Determine the x -intercepts, or y -intercepts, and the equations of the asymptotes for the given hyperbola. Graph the equation.

30. $\frac{x^2}{36} - \frac{y^2}{49} = 1$

31. $\frac{y^2}{25} - \frac{x^2}{9} = 1$

32. $x^2 - \frac{y^2}{36} = 1$

33. $y^2 = 1 + \frac{x^2}{9}$

34. $16x^2 - 25y^2 = 400$

35. $x^2 - 9y^2 = -9$

Identify each equation as a parabola, a circle, an ellipse, or a hyperbola. Graph each equation.

36. $x^2 - 16 = y^2$

37. $y + 4x^2 = 8x - 3$

38. $4x^2 = 100 - 25y^2$

39. $9y^2 = 225 - 9x^2$

40. $y^2 = 8 - 2x^2$

41. $y^2 = x - 2y + 3$

[9–5]

Solve the following systems of nonlinear equations.

42. $x^2 + y^2 = 2$
 $x + y = 2$

43. $x^2 + y^2 = 25$
 $x = 7 - y$

44. $x^2 + y^2 = 5$
 $x = 3$

45. $2x^2 - 3y^2 = 4$
 $y = -2$

46. $x^2 - y^2 = -1$
 $x + y = 3$

Solve each system of equations by elimination or a combination of elimination and substitution.

47. $2x^2 + y^2 = 4$
 $x^2 - y^2 = 8$

48. $x^2 - y^2 = 16$
 $x^2 + 2y^2 = 25$

49. Find the length and the width of a rectangle whose perimeter is 52 inches and whose area is 153 square inches.

Chapter 9 cumulative test

Given $x = 3$, $y = -5$, and $z = -2$, evaluate the following expressions.

[1–5] 1. $2x - 3y + 4z$

[1–5] 2. $4x^2 + 2y - 5$

[1–5] 3. $4x^2 + y^2 - z^2$

[1–5] 4. Given $C = \frac{5}{9}(F - 32)$, find C when $F = 212$.

[1–5] 5. What is the degree of the polynomial $4x^4 - 3x^2 + 7$?

[3–2] 6. From $4x^2 + 6x - 9$ subtract $-2x^2 - x + 5$.

Given $P(x) = x^2 + 3x - 1$, $Q(x) = 4x - 1$, and $R(x) = x^2 + 3$ find

[1–5] 7. $P(x) - Q(x) + R(x)$

[1–5] 8. $P(x) + Q(x) - R(x)$

[1–5] 9. $P(3)$

[1–5] 10. $Q(-4)$

[1–5] 11. $R\left(\frac{1}{4}\right)$

[3–1] 12. Simplify the expression $x^2 + x^{3k-1}$ by performing the indicated multiplication.

Perform the indicated operations.

[3–2] 13. $(2a - 1)(3a^2 + 4a - 1)$

[4–5] 14. $\frac{28a^2b^3c^5 - 35ab^3c^3}{7abc}$

[4–5] 15. $(3x^3 - 4x^2 - 5x - 4) \div (x + 2)$

[4–3] 16. $(2x + 9) - \frac{x+3}{x-5}$

[4–2] 17. $\frac{b^2 - 16}{2b + 1} \div (b + 4)$

[4–2] 18. $\frac{x^2 - x - 6}{x^2 + x - 12} \cdot \frac{x^2 + 3x - 4}{x^2 + 2x - 3}$

[4–4] 19. Simplify the complex rational expression

$$\frac{\frac{1}{y} - \frac{4}{x}}{\frac{2x - 8y}{xy}}$$

Find the solution set of the following equations.

[4–7] 20. $\frac{y}{y-3} + \frac{4}{5} = \frac{3}{y-3}$

[6–3] 21. $3x^2 - 2x + 2 = 0$

[2–4] 22. $|4x - 3| = 7$

[6–6] 23. $x^4 - 3x^2 - 10 = 0$

[6–5] 24. $\sqrt{2x + 1} - 3 = 0$

[7–4] 25. Graph the inequality $3y - 2x \leq 12$.

Find the slope of the given line.

[7–2] 26. Passing through $(-5, 6)$ and $(1, 2)$

[7–2] 27. Whose equation is $3x - 5y = 10$

[7–3] 28. Determine if the lines $2x + 4y = 3$ and $4x - 8y = 6$ are parallel, perpendicular, or neither.

[7–3] 29. Find the equation of the horizontal line passing through the point $(-1, 7)$.

Find the solution set of the following systems of equations.

[8-1] 30. $3x - 4y = 2$
 $2x + y = -1$

[8-4] 32. Evaluate $\begin{vmatrix} -3 & 0 & 1 \\ 2 & 4 & 1 \\ -1 & -1 & 0 \end{vmatrix}$.

[9-1] 34. Find the vertex and intercepts of the parabola $y = 2x^2 - 4x + 3$.

[9-4] 36. Find the intercepts and equations of the asymptotes of the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$.

Identify each equation as a circle, a parabola, an ellipse, or a hyperbola. Sketch the graph.

[9-4] 37. $4x^2 - y = x + 3$

[9-4] 38. $4y^2 = 2x^2 + 8$

[9-4] 39. $3x^2 + 3y^2 = 12$.

Find the solution set of the following systems of nonlinear equations.

[9-5] 40. $y = x^2$
 $y = -2x + 8$

[9-5] 41. $x^2 + y^2 = 7$
 $x^2 - y^2 = 1$

30.

32. $5x + 7y = 28$

33. $x + 4y = 13$ 34.

35. -31 36. $\{(2,0)\}$ 37. $\left\{\left(\frac{9}{5}, -\frac{11}{5}\right)\right\}$

38. $\left\{\left(\frac{3}{17}, -\frac{4}{17}\right)\right\}$ 39. $\left\{\left(-\frac{5}{11}, -\frac{7}{11}\right)\right\}$

40. $\left\{\left(-\frac{1}{6}, -\frac{2}{3}, \frac{1}{6}\right)\right\}$

Chapter 9

Exercise 9–1

Answers to odd-numbered problems

1. $(3,4)$ 3. $(0,-16)$ 5. $(5,0)$ 7. $(-2,-9)$ 9. $(1,4)$
11. $\left(\frac{7}{4}, -\frac{25}{8}\right)$ 13. x -intercepts, none; y -intercept, $(0,13)$
15. x -intercepts, $(-4,0), (4,0)$; y -intercept, $(0,-16)$
17. x -intercept, $(5,0)$; y -intercept, $(0,25)$ 19. x -intercepts, $(-5,0), (1,0)$; y -intercept, $(0,-5)$ 21. x -intercepts, $(3,0), (-1,0)$; y -intercept, $(0,3)$ 23. x -intercepts, $(3,0), \left(\frac{1}{2}, 0\right)$; y -intercept, $(0,3)$
25. $y = x^2 - 4$

31.

27. $y = x^2 - 2x$

29. $y = x^2 - 4x - 5$

31. $y = x^2 - x - 6$

37. $y = 2x^2 - x - 3$

43. $y = 2x^2 + 4x + 5$

49. 1 second; 2 seconds

33. $y = -x^2 - 2x + 3$

35. $y = x^2 - 4x + 4$

39. $y = -2x^2 + 3x - 1$

41. $y = x^2 + 2x + 5$

45. $y = -2x^2 + 4x + 5$

47. $y = -x^2 - 2x - 1$

51. The maximum height is 144 feet; the arrow will reach the ground in 6 seconds. 53. 8 dresses must be sold daily. 55. 5 glasses of Kool-Aid must be sold. 57. Maximum power $P = 245$ when

current $I = 35$. 59. 28 and 28 61. $\ell = w = \frac{21}{2}$ m or $10\frac{1}{2}$ m

63. -16

Solutions to trial exercise problems

3. $y = x^2 - 16$. $y = (x - 0)^2 - 16$. The vertex is at $(0, -16)$ and since $a = 1, a > 0$, the parabola opens up and the vertex is the lowest point.

9. $y = -x^2 + 2x + 3 = -1(x^2 - 2x + 1) + 3 + 1 = -1(x - 1)^2 + 4$, vertex at $(1, 4)$

11. $y = 2x^2 - 7x + 3 = 2\left(x^2 - \frac{7}{2}x\right) + 3$
 $= 2\left(x^2 - \frac{7}{2}x + \frac{49}{16}\right) + 3 - \frac{98}{16}$
 $= 2\left(x - \frac{7}{4}\right)^2 - \frac{25}{8}$

Vertex at $\left(\frac{7}{4}, -\frac{25}{8}\right)$

13. $y = (x - 3)^2 + 4$
(1) Let $x = 0$, then $y = (0 - 3)^2 + 4 = (-3)^2 + 4 = 13$; y-intercept, $(0, 13)$
(2) Let $y = 0$, then $0 = (x - 3)^2 + 4 = x^2 - 6x + 9 + 4 = x^2 - 6x + 13$
Using the quadratic formula,
 $x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(13)}}{2(1)}$
 $= \frac{6 \pm \sqrt{36 - 52}}{2}$
 $= \frac{6 \pm \sqrt{-16}}{2}$

There are no x-intercepts since $\sqrt{-16}$ is not a real number.

18. $y = (x + 6)^2$
(1) Let $x = 0$, then $y = (0 + 6)^2 = 6^2 = 36$; y-intercept, $(0, 36)$
(2) Let $y = 0$, then $0 = (x + 6)^2$ and $x = -6$; x-intercept, $(-6, 0)$

21. $y = -x^2 + 2x + 3$
(1) Let $x = 0$, then $y = 3$; y-intercept, $(0, 3)$
(2) Let $y = 0$, then $0 = -x^2 + 2x + 3$; $0 = x^2 - 2x - 3$
 $0 = (x - 3)(x + 1)$; $x = 3$ or $x = -1$; x-intercepts, $(3, 0)$, $(-1, 0)$.

27. $y = x^2 - 2x$
(1) $a > 0$, parabola opens up
(2) $c = 0$, so y-intercept is $(0, 0)$
(3) Let $y = 0$, $0 = x^2 - 2x$
 $= x(x - 2)$
 $x = 0$ or $x - 2 = 0$
 $x = 2$

The x-intercepts are $(0, 0)$ and $(2, 0)$.

(4) $y = x^2 - 2x$
 $= (x^2 - 2x + 1) - 1$
 $= (x - 1)^2 + (-1)$
The vertex is at $(1, -1)$.

34. $y = -x^2 + 7x - 6$
(1) Since $a < 0$, the parabola opens down.
(2) Since $c = -6$, the y-intercept is $(0, -6)$.
(3) Let $y = 0$, $0 = -x^2 + 7x - 6$
 $= x^2 - 7x + 6$
 $= (x - 6)(x - 1)$

$$x - 6 = 0 \text{ or } x - 1 = 0$$

$$x = 6 \text{ or } x = 1$$

The x-intercepts are $(6, 0)$, $(1, 0)$.

(4) $y = -(x^2 - 7x) - 6$
 $= -\left(x^2 - 7x + \frac{49}{4}\right) - 6 + \frac{49}{4} = -\left(x - \frac{7}{2}\right)^2 + \frac{25}{4}$
The vertex is at $\left(\frac{7}{2}, \frac{25}{4}\right)$.

52. $P = -x^2 + 100x - 1,000$
 $= -1(x^2 - 100x) - 1,000$
 $= -1(x^2 - 100x + 2,500) - 1,000 + 2,500$
 $= -1(x - 50)^2 + 1,500$

Since the vertex is at $(50, 1,500)$, then 50 units must be produced to attain maximum profit.

59. Let x = one number and $56 - x$ = the other number.

Then $y = x(56 - x) = 56x - x^2$
 $= -x^2 + 56x$
 $= -1(x^2 - 56x + 784) + 784$
 $= -1(x - 28)^2 + 784$

The vertex is at $(28, 784)$ and the numbers are 28 and $56 - 28 = 28$.

Review exercises

1. $(3y - 1)^2$
2. $(2x - 1)(2x + 3)$
3. $6(y + 2x)(y - 2x)$
4. $\frac{-y^2 + 9y}{(y + 5)(y - 5)}$
5. $12xy$
6. $\frac{x - 3}{x + 4}$

Exercise 9-2

Answers to odd-numbered problems

1. $x = 3(y - 1)^2 + 2$

3. $x = -2(y + 3)^2 - 2$

9. $x = 5y^2 + 2y - 3$

15. $x = -5y^2$

5. $x = y^2 - 3y + 2$

11. $x = y^2 - 2$

17. $x = y^2 - y$

7. $x = -y^2 + 2y + 3$

13. $x = y^2$

19. $x = -2y^2 + 3y$

Solutions to trial exercise problems

5. $x = y^2 - 3y + 2$

- (1) Since $a > 0$, parabola opens right.
- (2) Since $c = 2$, the x -intercept is $(2, 0)$.
- (3) Let $x = 0$, then $0 = y^2 - 3y + 2$

$$0 = (y - 2)(y - 1)$$

$$y - 2 = 0 \text{ or } y - 1 = 0$$

$$y = 2 \text{ or } y = 1$$

The y -intercepts are $(0, 2)$, $(0, 1)$.

$$(4) x = (y^2 - 3y + 2) + 2 = \left(y^2 - 3y + \frac{9}{4}\right) + 2 - \frac{9}{4} = \left(y - \frac{3}{2}\right)^2 - \frac{1}{4}$$

The vertex is at $\left(-\frac{1}{4}, \frac{3}{2}\right)$

12. $x = -y^2 + 4$

- (1) Since $a < 0$, parabola opens left.
- (2) Since $c = 4$, the x -intercept is $(4, 0)$.
- (3) Let $x = 0$, $0 = -y^2 + 4$

$$0 = y^2 - 4$$

$$0 = (y + 2)(y - 2)$$

$$y + 2 = 0 \text{ or } y - 2 = 0$$

$$y = -2 \text{ or } y = 2$$

The y -intercepts are $(0, -2)$, $(0, 2)$.

$$(4) x = -(y - 0)^2 + 4$$

The vertex is at $(4, 0)$.

Review exercises

1. $\{(1,2)\}$ 2. $\frac{a^6}{8b^9}$ 3. $\frac{1}{8x^{24}}$ 4. x -intercept, $(4,0)$; y -intercept, $(0,2)$ 5. x -intercept, $(3,0)$; y -intercept, $(0,3)$ 6. $\sqrt{41}$
 7. $\sqrt{(x-6)^2 + (y+5)^2}$ 8. $\sqrt{(x-h)^2 + (y-k)^2}$

Exercise 9-3**Answers to odd-numbered problems**

1. $(x-1)^2 + (y-2)^2 = 4$ 3. $(x-4)^2 + (y+3)^2 = 6$
 5. $x^2 + y^2 = 9$ 7. $x^2 + y^2 + 10x - 4y + 28 = 0$
 9. $x^2 + y^2 = 36$ 11. $C(3,2), r = 7$ 13. $C(5,-3), r = 2\sqrt{2}$
 15. $C(-1,-9), r = 5$ 17. $C(0,0); r = 6$ 19. $C(0,0), r = \sqrt{2}$
 21. $C(-2,3), r = 6$ 23. $C(-3,4), r = 5$
 25. $C(-2,3), r = 5\sqrt{2}$ 27. $C(-3,1), r = 5$

29.

31.

33.

35

37.

39.

41. $r = \sqrt{(x-h)^2 + (y-k)^2}$

Square both members.

$$(x-h)^2 + (y-k)^2 = r^2$$

43. $(x+2)^2 + y^2 = 4$

45. parabola opening up

47. circle with center $(0,0)$ and $r = 2$

Solutions to trial exercise problems

7. $(x + 5)^2 + (y - 2)^2 = 1^2$; $(x^2 + 10x + 25) + (y^2 - 4y + 4) = 1$; $x^2 + y^2 + 10x - 4y + 28 = 0$
 21. $x^2 + y^2 + 4x - 6y - 23 = 0$; $(x^2 + 4x + 4) + (y^2 - 6y + 9) = 23 + 4 + 9$; $(x + 2)^2 + (y - 3)^2 = 36$; $[x - (-2)]^2 + (y - 3)^2 = 6^2$; $C(-2, 3)$, $r = 6$
 25. $2x^2 + 2y^2 + 8x - 12y = 74$; $x^2 + y^2 + 4x - 6y = 37$; $(x^2 + 4x + 4) + (y^2 - 6y + 9) = 37 + 4 + 9$; $(x + 2)^2 + (y - 3)^2 = 50$; $C(-2, 3)$, $r = 5\sqrt{2}$
 31. $3x^2 + 3y^2 = 12$; $x^2 + y^2 = 4$; $C(0, 0)$, $r = 2$

39. $2x^2 + 2y^2 - 12x + 4y = -12$; $x^2 + y^2 - 6x + 2y = -6$; $(x^2 - 6x + 9) + (y^2 + 2y + 1) = -6 + 9 + 1$; $(x - 3)^2 + (y + 1)^2 = 4$; $C(3, -1)$, $r = 2$

Review exercises

1. -58

2. $m = 3$; y -intercept, $(0, -6)$

3. $-6y\sqrt{2xy}$

4. $P(-1) = 14$ 5. $3x + 2y = 4$

Exercise 9–4**Answers to odd-numbered problems**

1. $x, (\pm 3, 0); y, (0, \pm 5)$

7. $x, (\pm 4, 0); y, (0, \pm 1)$

13. $x, (\pm \sqrt{2}, 0); y, (0, \pm 4)$

19. $y, (0, \pm 1); \text{asymptotes,}$

$y = \pm \frac{1}{3}x$

3. $x, (\pm 7, 0); y, (0, \pm 5)$

9. $x, (\pm 10, 0); y, (0, \pm 2)$

15. $x, (\pm 4, 0); \text{asymptotes,}$

$y = \pm \frac{3}{4}x$

21. $x, (\pm 1, 0); \text{asymptotes, } y = \pm 4x$

5. $x, (\pm 1, 0); y, (0, \pm 3)$

11. $x, (\pm 2, 0); y, (0, \pm \sqrt{3})$

17. $y, (0, \pm 3); \text{asymptotes,}$

$y = \pm \frac{3}{2}x$

23. $y, (0, \pm 5); \text{asymptotes, } y = \pm 5x$

25. $y, (0, \pm 4)$; asymptotes, $y = \pm \frac{4}{5}x$

31. $x^2 + y^2 = 9$; circle

37. $x^2 + y^2 = 121$; circle

27. $y, (0, \pm 5)$; asymptotes, $y = \pm \frac{5}{2}x$

33. $x^2 + 3 = y$; parabola opening up

39. $y = -x^2 + 8$; parabola opening down

29. $y, (0, \pm 2)$; asymptotes, $y = \pm \frac{\sqrt{2}}{3}x$

35. $x^2 + y^2 = \frac{25}{4}$; circle

Solutions to trial exercise problems

5. $x^2 + \frac{y^2}{9} = 1$; $b^2 = 1$, so $b = 1$; $a^2 = 9$, so $a = 3$;

x -intercepts, $(1, 0), (-1, 0)$; y -intercepts, $(0, 3), (0, -3)$

8. $36x^2 + 9y^2 = 324$; $\frac{x^2}{9} + \frac{y^2}{36} = 1$; $b^2 = 9$, $b = 3$;

$a^2 = 36$, $a = 6$; x -intercepts, $(3, 0), (-3, 0)$; y -intercepts, $(0, 6), (0, -6)$

19. $y^2 - \frac{x^2}{9} = 1$; $a^2 = 9$, $a = 3$; $b^2 = 1$, $b = 1$;
 y -intercepts, $(0,1)$, $(0,-1)$;
asymptotes, $y = \frac{1}{3}x$ and $y = -\frac{1}{3}x$

22. $9x^2 - y^2 = 36$; $\frac{x^2}{4} - \frac{y^2}{36} = 1$; $a^2 = 4$, $a = 2$; $b^2 = 36$,
 $b = 6$; x -intercepts, $(2,0)$, $(-2,0)$;
asymptotes, $y = 3x$ and $y = -3x$

33. Since $x^2 + 3 = y$ has one variable linear and the other squared, it is a parabola.

Review exercises

1. $\frac{y+1}{y-3}$ 2. $\frac{-10z^2 - 16z}{(3z+2)(2z-1)}$ 3. $\frac{xy}{y+x}$ 4. $\{-\sqrt{5}, \sqrt{5}\}$
5. $\left\{0, \frac{4}{5}\right\}$ 6. $-2\sqrt{3} - 3\sqrt{2}$ 7. $27 + \sqrt{15}$

Exercise 9-5

Answers to odd-numbered problems

1. $\{(2,-1), (-1,2)\}$

3. $\{(7,-5), (-5,1)\}$

5. $\{(2,1), (-1,4)\}$

7. $\left\{\left(-\frac{2}{9}, -\frac{22}{9}\right), (2,2)\right\}$ 9. $\{(4,1), (-4,-1), (i,-4i), (-i,4i)\}$
11. $\{(2,2), (-2,-2)\}$ 13. $\left\{\left(\frac{\sqrt{6}}{2}, -1\right), \left(-\frac{\sqrt{6}}{2}, -1\right)\right\}$
15. $\{(3,0), (-3,0)\}$ 17. $\{(2\sqrt{3}, \sqrt{13}), (2\sqrt{3}, -\sqrt{13}), (-2\sqrt{3}, \sqrt{13}), (-2\sqrt{3}, -\sqrt{13})\}$
19. $\{(3,3), (3,-3), (-3,3), (-3,-3)\}$ 21. $\{(3,0), (-3,0)\}$
23. $\{(-\sqrt{7}, -i\sqrt{3}), (-\sqrt{7}, i\sqrt{3}), (\sqrt{7}, -i\sqrt{3}), (\sqrt{7}, i\sqrt{3})\}$
25. $\{(\sqrt{3}, \sqrt{3}), (-\sqrt{3}, -\sqrt{3})\}$ 27. 15 in. by 8 in. 29. 9 and 7
31. $x = 2$ when $p = 3$; $\left(x = \frac{15}{4}$ when $p = \frac{8}{5}$; not logical

Solutions to trial exercise problems

9. $x^2 - y^2 = 15$

$xy = 4$

(1) $y = \frac{4}{x}$ and substituting,

$x^2 - \left(\frac{4}{x}\right)^2 = 15$

$x^2 - \frac{16}{x^2} = 15$

$x^4 - 15x^2 - 16 = 0$

$(x^2 - 16)(x^2 + 1) = 0$

$(x + 4)(x - 4)(x^2 + 1) = 0$

Then $x = 4$ or $x = -4$; $x = \sqrt{-1} = i$ or $x = -\sqrt{-1} = -i$

(2) $y = \frac{4}{x}$, so $y = \frac{4}{4} = 1$ or $y = \frac{4}{-4} = -1$;

or $y = \frac{4}{i} = -4i$ or $y = \frac{4}{-i} = 4i$

The solution set is $\{(4,1), (-4,-1), (i,-4i), (-i, 4i)\}$.

21. $2x^2 - 9y^2 = 18$ (1) When $x = 3$ (2) When $x = -3$

$4x^2 + 9y^2 = 36$ $2(3)^2 - 9y^2 = 18$ $2(-3)^2 - 9y^2 = 18$

$6x^2 = 54$ $18 - 9y^2 = 18$ $18 - 9y^2 = 18$

$x^2 = 9$ $-9y^2 = 0$ $-9y^2 = 0$

$x = \pm 3$ $y = 0$ $y = 0$

The solution set is $\{(3,0), (-3,0)\}$.

24. $x^2 + y^2 = 10$ (times -1) $-x^2 - y^2 = -10$

$x^2 - 3xy + y^2 = 1$ $x^2 - 3xy + y^2 = 1$

$-3xy = -9$

$xy = 3$

$y = \frac{3}{x}$

(2) Substituting in $x^2 + y^2 = 10$

$x^2 + \left(\frac{3}{x}\right)^2 = 10$

$x^2 + \frac{9}{x^2} = 10$

$x^4 + 9 = 10x^2$

$x^4 - 10x^2 + 9 = 0$

$(x^2 - 9)(x^2 - 1) = 0$

So $x^2 - 9 = 0$; $x^2 = 9$; $x = \pm 3$ $x^2 - 1 = 0$; $x^2 = 1$; $x = \pm 1$ 29. Let x = the larger number.Let y = the smaller number.

Then $x + y = 16$

$x^2 - y^2 = 32$

(1) Now $y = 16 - x$, and substituting, $x^2 - (16 - x)^2 = 32$

$x^2 - 256 + 32x - x^2 = 32$

$32x = 288$

$x = 9$

(2) Substituting, $9 + y = 16$, so $y = 7$.

The numbers are 9 and 7.

Review exercises

1. -6 2. 12 3. $\left\{y \mid y \geq \frac{4}{3}\right\} = \left[\frac{4}{3}, \infty\right)$ 4. -17 5. 3 6. 2

7. $\{x \mid 1 \leq x \leq 4\} = [1,4]$

Chapter 9 review

1. vertex, $(-1, 0)$; x -intercept, -1 ; y -intercept, -3
 2. vertex, $(2, 49)$; x -intercept, 9 and -5 ; y -intercept, 45

3.

4.

5.

6.

7.

8.

9. a. $(x + 2)^2 + (y - 5)^2 = 25$ b. $x^2 + y^2 + 4x - 10y + 4 = 0$

10. a. $(x - 4)^2 + y^2 = 11$ b. $x^2 + y^2 - 8x + 5 = 0$

11. a. $x^2 + y^2 = 81$ b. $x^2 + y^2 - 81 = 0$

12. $C(5, -1)$, $r = 6$ 13. $C(0, 0)$, $r = \sqrt{7}$

14. $C(-3, 4)$, $r = 2\sqrt{6}$ 15. $C(1, -2)$; $r = 2\sqrt{2}$

16. $C(-1, 2)$; $r = \sqrt{10}$ 17. $C(0, 2)$, $r = \sqrt{19}$

18.

19.

20.

21.

22.

23.

24. $x, (\pm 4, 0); y, (0, \pm 10)$ 25. $x, (\pm 1, 0); y, (0, \pm 5)$ 26. $x, (\pm 3, 0); y, (0, \pm 4)$ 27. $x, (\pm 2, 0); y, (0, \pm \sqrt{2})$ 28. $x, (\pm 2, 0); y, (0, \pm 2\sqrt{6})$ 29. $x, (\pm 2\sqrt{2}, 0); y, (0, \pm 1)$ 30. $x, (\pm 6, 0); \text{asymptotes, } y = \pm \frac{7}{6}x$ 31. $y, (0, \pm 5); \text{asymptotes, } y = \pm \frac{5}{3}x$ 32. $x, (\pm 1, 0); \text{asymptotes, } y = \pm 6x$ 33. $y, (0, \pm 1); \text{asymptotes, } y = \pm \frac{1}{3}x$ 34. $x, (\pm 5, 0); \text{asymptotes, } y = \pm \frac{4}{5}x$ 35. $y, (0, \pm 1); \text{asymptotes, } y = \pm \frac{1}{3}x$

36. hyperbola

37. parabola opening down

38. ellipse

39. circle

40. circle

41. parabola opening right

42. $\{(1,1)\}$

43. $\{(4,3), (3,4)\}$

44. $\{(3,2i), (3,-2i)\}$

45. $\{(2\sqrt{2}, -2), (-2\sqrt{2}, -2)\}$

46. $\left\{\left(\frac{4}{3}, \frac{5}{3}\right)\right\}$

47. $\{(2,2i), (2,-2i), (-2,2i), (-2,-2i)\}$

48. $\{(\sqrt{19}, \sqrt{3}), (\sqrt{19}, -\sqrt{3}), (-\sqrt{19}, \sqrt{3}), (-\sqrt{19}, -\sqrt{3})\}$

49. 9 in. by 17 in.

Chapter 9 cumulative test

1. 13 2. 21 3. 57 4. $C = 100$ 5. 4th degree

6. $6x^2 + 7x - 14$ 7. $2x^2 - x + 3$ 8. $7x - 5$ 9. 17

10. -17 11. $\frac{49}{16}$ 12. x^{4a+1} 13. $6a^3 + 5a^2 - 6a + 1$

14. $4ab^2c^4 - 5b^2c^2$ 15. $3x^2 - 10x + 15 + \frac{-34}{x+2}$

16. $\frac{2x^2 - 2x - 48}{x - 5}$ 17. $\frac{4 - b}{2b + 1}$ 18. $\frac{x + 2}{x + 3}$ 19. $\frac{1}{2}$

20. \emptyset ; 3 is extraneous 21. $\left\{\frac{1+i\sqrt{5}}{3}, \frac{1-i\sqrt{5}}{3}\right\}$ 22. $\left\{\frac{5}{2}, -1\right\}$

23. $\{\sqrt{5}, -\sqrt{5}, i\sqrt{2}, -i\sqrt{2}\}$ 24. $\{4\}$

25.

26. $m = -\frac{2}{3}$ 27. $m = \frac{3}{5}$ 28. neither 29. $y = 7$

30. $\left\{\left(-\frac{2}{11}, -\frac{7}{11}\right)\right\}$ 31. \emptyset ; inconsistent 32. -1

33. $C(3, -2)$, $r = 4$

34. vertex, $(1, 1)$; y -intercept, $(0, 3)$; no x -intercepts35. x -intercepts, $(2, 0)$ and $(-2, 0)$; y -intercepts, $(0, \sqrt{6})$ and $(0, -\sqrt{6})$ 36. x -intercepts, $(3, 0)$ and $(-3, 0)$; asymptotes, $y = \pm \frac{2}{3}x$

37. parabola opening up

38. hyperbola, $\frac{y^2}{2} - \frac{x^2}{4} = 1$

40. $\{(-4, 16), (2, 4)\}$

41. $\{(-2, -\sqrt{3}), (-2, \sqrt{3}), (2, -\sqrt{3}), (2, \sqrt{3})\}$

39. circle, $x^2 + y^2 = 4$

Chapter 10

Exercise 10-1

Answers to odd-numbered problems

1. domain = $\{8, 5, 9, 6\}$, range = $\{0, 3, 4\}$ 3. domain = $\{-4, 1\}$, range = $\{1, 2, 3, 9\}$ 5. domain = $\{6, 1, 2, 3\}$, range = $\{-1, 1\}$
7. domain = $\{5, 6, 7\}$, range = $\{3, -4\}$ 9. domain = $\{x \mid -2 \leq x \leq 2\}$, range = $\{y \mid -2 \leq y \leq 2\}$ 11. domain = $\{x \mid x \in R\}$, range = $\{y \mid y \leq 3\}$ 13. domain = $\{x \mid x \in R\}$, range = $\{y \mid y \in R\}$ 15. domain = $\{x \mid x \leq -2 \text{ or } x \geq 2\}$, range = $\{y \mid y \in R\}$ 17. function 19. not a function because two of the ordered pairs have the same first component $(2, 3)$ and $(2, -7)$
21. not a function because two of the ordered pairs have the same first component $(-1, 2)$ and $(-1, 6)$ 23. function 25. function
27. function 29. not a function because two of the ordered pairs have the same first component $(4, -2)$ and $(4, 2)$ 31. function
33. not a function since two ordered pairs have the same first component, $(-10, 0)$ and $(-10, 1)$ 35. not a function since two ordered pairs have the same first component, $(3, 1)$ and $(3, 4)$
37. domain = $\{-3, -1, 0, 1, 3\}$ 39. domain = $\{-5, -3, 0, 3, 5\}$
41. domain = $\{-5, -1, 1, 2, 4\}$ 43. domain = $\{x \mid x \in R\}$
45. domain = $\{x \mid x \in R\}$ 47. domain = $\{x \mid x \in R, x \neq 0\}$
49. domain = $\left\{x \mid x \in R, x \neq -\frac{3}{2}\right\}$ 51. domain = $\left\{x \mid x \geq -\frac{4}{3}\right\}$
53. function since any vertical line intersects the graph at only one point 55. function since any vertical line intersects the graph at only one point 57. not a function since at least one vertical line intersects at more than one point on the graph 59. not a function since at least one vertical line intersects at more than one point on the graph

Solutions to trial exercise problems

5. domain is the set of first components = $\{6, 1, 2, 3\}$, range is the set of second components = $\{-1, 1\}$ 9. domain is set of all values of $x = \{x \mid -2 \leq x \leq 2\}$, range is the set of all values of $y = \{y \mid -2 \leq y \leq 2\}$ 22. does define a function since no two ordered pairs have the same first component 31. defines a function—no two ordered pairs have the same first component
46. domain = $\{x \mid x \in R, x \neq 0\}$, since $xy = 2$ becomes $y = \frac{2}{x}$ if we solve for y .

Review exercises

1. $\frac{4x^8}{y^6}$
2. x^6
3. y^4
4. $x^{y+1} \neq x^y \cdot y$ since the bases, x and y , are not the same
5. $2(x + 2y)(x - 2y)$
6. $3\sqrt{6}$ units
7. 60 m by 120 m

Exercise 10-2

Answers to odd-numbered problems

1. $f(0) = -2; (0, -2)$
3. $f\left(\frac{2}{3}\right) = 0; \left(\frac{2}{3}, 0\right)$
5. $g(7) = 58; (7, 58)$
7. $g\left(\frac{1}{2}\right) = -\frac{15}{4}; \left(\frac{1}{2}, -\frac{15}{4}\right)$
9. $f(a + 1) = 3a + 1; (a + 1, 3a + 1)$
11. $f(a^2) = 3a^2 - 2; (a^2, 3a^2 - 2)$
13. 27
15. 16
17. a. $4x^2 + 8hx + 4h^2$
- b. $8hx + 4h^2$
- c. $8x + 4h$
19. a. $2x^2 + 4hx + 2h^2 + 3x + 3h + 2$
- b. $4hx + 2h^2 + 3h$
- c. $4x + 2h + 3$
21. a. $5 - 2x - 2h$
- b. $-2h$
- c. -2
23. $f(-5) = -17, (-5, -17); f(0) = -2, (0, -2); f\left(\frac{2}{3}\right) = 0, \left(\frac{2}{3}, 0\right)$
25. $h\left(-\frac{1}{2}\right) = \frac{11}{4}, \left(-\frac{1}{2}, \frac{11}{4}\right); h(0) = 1, (0, 1); h(3) = 22, (3, 22)$
27. $g(-15) = 10, (-15, 10); g(0) = 10, (0, 10); g\left(\frac{6}{5}\right) = 10, \left(\frac{6}{5}, 10\right)$
29. $48x^2 + 24x - 2$
31. $27x^4 - 90x^2 + 70$
33. 7
35. -6
37. $(14, -10), (32, 0), (212, 100)$
39. $(1, 1), (3, 27), (5, 125)$; domain = $\{s \mid s > 0\}$
41. $(2, 49), (3, 69), (5, 109)$

Solutions to trial exercise problems

9. $f(a + 1) = 3(a + 1) - 2 = 3a + 3 - 2 = 3a + 1; (a + 1, 3a + 1)$
12. $f(5) = 3(5) - 2 = 15 - 2 = 13$ and $f(2) = 3(2) - 2 = 4$. So $f(5) - f(2) = 13 - 4 = 9$.
19. a. $f(x + h) = 2(x + h)^2 + 3(x + h) + 2$
= $2(x^2 + 2xh + h^2) + 3x + 3h + 2$
= $2x^2 + 4xh + 2h^2 + 3x + 3h + 2$
- b. $f(x + h) - f(x) = (2x^2 + 4xh + 2h^2 + 3x + 3h + 2) - (2x^2 + 3x + 2)$
= $2x^2 + 4xh + 2h^2 + 3x + 3h + 2 - 2x^2 - 3x - 2$
= $4xh + 2h^2 + 3h$
- c. $\frac{f(x + h) - f(x)}{h} = \frac{4xh + 2h^2 + 3h}{h} = \frac{h(4x + 2h + 3)}{h}$
= $4x + 2h + 3$ since $h \neq 0$

Love The Taste. Taste The Love.

At Culver's® we can't think of anything better than serving up our creamy frozen custard and delicious classics cooked fresh the minute you order them. Which is why when we bring them to your table, they're always accompanied by a warm smile and a friendly offer to see if there's anything else we can get for you. So come on into your neighborhood Culver's and see for yourself. You might just be in love by the time you leave.

Contents

20 point learning system	xiii
Preface	xix
Study tips	xxv

Chapter 1 ■ Basic Concepts and Properties

1–1 Sets and real numbers	1
1–2 Operations with real numbers	12
1–3 Properties of real numbers	20
1–4 Order of operations	27
1–5 Terminology and evaluation	32
1–6 Sums and differences of polynomials	40
Chapter 1 lead-in problem	46
Chapter 1 summary	46
Chapter 1 error analysis	47
Chapter 1 critical thinking	47
Chapter 1 review	47
Chapter 1 test	49

Chapter 2 ■ First-Degree Equations and Inequalities

2–1 Solving equations	50
2–2 Formulas and literal equations	59
2–3 Word problems	63
2–4 Equations involving absolute value	72
2–5 Linear inequalities	77
2–6 Inequalities involving absolute value	86
Chapter 2 lead-in problem	93
Chapter 2 summary	93
Chapter 2 error analysis	94
Chapter 2 critical thinking	95
Chapter 2 review	95
Chapter 2 cumulative test	96

Chapter 3 ■ Exponents and Polynomials

3–1 Properties of exponents	97
3–2 Products of polynomials	103
3–3 Further properties of exponents	111
3–4 Common factors and factoring by grouping	121
3–5 Factoring trinomials of the form $x^2 + bx + c$ and perfect square trinomials	126
3–6 Factoring trinomials of the form $ax^2 + bx + c$	133
3–7 Other methods of factoring	141
3–8 Factoring: A general strategy	147
Chapter 3 lead-in problem	150
Chapter 3 summary	151
Chapter 3 error analysis	151
Chapter 3 critical thinking	152
Chapter 3 review	152
Chapter 3 cumulative test	153

Chapter 4 ■ Rational Expressions

4–1 Fundamental principle of rational expressions	154
4–2 Multiplication and division of rational expressions	160
4–3 Addition and subtraction of rational expressions	166
4–4 Complex rational expressions	176
4–5 Quotients of polynomials	183
4–6 Synthetic division, the remainder theorem, and the factor theorem	188
4–7 Equations containing rational expressions	198
4–8 Problem solving with rational equations	203
Chapter 4 lead-in problem	209
Chapter 4 summary	210
Chapter 4 error analysis	211
Chapter 4 critical thinking	211
Chapter 4 review	212
Chapter 4 cumulative test	214

Chapter 5 ■ Exponents, Roots, and Radicals

5–1 Roots and rational exponents	215
5–2 Operations with rational exponents	223
5–3 Simplifying radicals—I	226
5–4 Simplifying radicals—II	232
5–5 Sums and differences of radicals	237
5–6 Further operations with radicals	242
5–7 Complex numbers	246
Chapter 5 lead-in problem	254
Chapter 5 summary	254
Chapter 5 error analysis	254
Chapter 5 critical thinking	255
Chapter 5 review	255
Chapter 5 cumulative test	256

Chapter 6 ■ Quadratic Equations and Inequalities

6–1	Solution by factoring and extracting roots	258
6–2	Solution by completing the square	266
6–3	Solution by quadratic formula	271
6–4	Applications of quadratic equations	278
6–5	Equations involving radicals	285
6–6	Equations that are quadratic in form	289
6–7	Quadratic and rational inequalities	293
Chapter 6 lead-in problem		300
Chapter 6 summary		301
Chapter 6 error analysis		301
Chapter 6 critical thinking		302
Chapter 6 review		302
Chapter 6 cumulative test		304

Chapter 7 ■ Linear Equations and Inequalities in Two Variables

7–1	The rectangular coordinate system	305
7–2	The distance formula and the slope of a line	313
7–3	Finding the equation of a line	327
7–4	Graphs of linear inequalities	337
Chapter 7 lead-in problem		343
Chapter 7 summary		343
Chapter 7 error analysis		344
Chapter 7 critical thinking		345
Chapter 7 review		345
Chapter 7 cumulative test		346

Chapter 8 ■ Systems of Linear Equations

8–1	Systems of linear equations in two variables	348
8–2	Applied problems using systems of linear equations	358
8–3	Systems of linear equations in three variables	367
8–4	Determinants	375
8–5	Solutions of systems of linear equations by determinants	380
8–6	Solving systems of linear equations by the augmented matrix method	388
Chapter 8 lead-in problem		394
Chapter 8 summary		395
Chapter 8 error analysis		395
Chapter 8 critical thinking		396
Chapter 8 review		397
Chapter 8 cumulative test		399

Chapter 9 ■ Conic Sections

9–1	The parabola	401
9–2	More about parabolas	411
9–3	The circle	414
9–4	The ellipse and the hyperbola	420
9–5	Systems of nonlinear equations	429
Chapter 9 lead-in problem		435
Chapter 9 summary		435
Chapter 9 error analysis		436
Chapter 9 critical thinking		436
Chapter 9 review		437
Chapter 9 cumulative test		438

Chapter 10 ■ Functions

10–1	Relations and functions	440
10–2	Functional notation	449
10–3	Special functions and their graphs	455
10–4	Inverse functions	460
10–5	Variation	468
Chapter 10 lead-in problem		475
Chapter 10 summary		475
Chapter 10 error analysis		475
Chapter 10 critical thinking		476
Chapter 10 review		476
Chapter 10 cumulative test		477

Chapter 11 ■ Exponential and Logarithmic Functions

11–1	The exponential function	479
11–2	The logarithm	485
11–3	Properties of logarithms	490
11–4	The common logarithms	496
11–5	Logarithms to the base e	500
11–6	Exponential equations	505
Chapter 11 lead-in problem		507
Chapter 11 summary		507
Chapter 11 error analysis		508
Chapter 11 critical thinking		509
Chapter 11 review		509
Chapter 11 cumulative test		511

Chapter 12 ■ Sequences and Series

12–1	Sequences	513
12–2	Series	518
12–3	Arithmetic sequences	523
12–4	Geometric sequences and series	529
12–5	Infinite geometric series	536
12–6	The binomial expansion	541
Chapter 12 lead-in problem		546
Chapter 12 summary		546
Chapter 12 error analysis		547
Chapter 12 critical thinking		547
Chapter 12 review		548
Final examination		550
Appendix Answers and solutions		553
Index		633

Index

A

Abscissa of a point, 307
Absolute value, 9–10
 equation, 72–75
 inequalities, 86–90, 340–41
Addition of complex numbers, 249
Addition of fractions, 166
Addition of rational expressions, 166–68, 171
Addition property of equality, 23, 51
Addition property of inequality, 79
Additive inverse property, 22
Algebraic expression, 32
 term of, 32
Algebraic notation, 36
Antilogarithms, 497
Approximately equal to, 8, 217
Arithmetic sequence, 523–24
 common difference of, 523
 general term of, 523–24
 sum of the terms of, 525
Associative property of addition, 22
Associative property of multiplication, 22
Asymptotes, 423–24, 481
Augmented matrix, 388
Axes, x and y , 306
Axiom, 20
Axis of symmetry, 402

B

Base, 15, 97
 like, 98
Binomial, 33
 expansion of, 541–44
 square of a, 105–6
Braces, 1, 14
Brackets, 14

C

Cantor, Georg, 1
Circle
 center of, 415
 definition of, 414
 equation of a, 415–16
 general form of the equation of a, 416
 radius of a, 415
 standard form of the equation of a, 415
Clearing fractions, 54

Closure property
 of addition, 22
 of multiplication, 22
Coefficient, 32
 numerical, 32
Combining like terms, 41
Common difference, 523
Common factors, 121–24
Common logarithm, 496–97
Common ratio, 530
Commutative property
 of addition, 22
 of multiplication, 22
Completely factored form, 121–23
Completing the square, 266–67
Complex conjugates, 250
Complex numbers, 248
 addition of, 249
 definition of, 248
 division of, 251
 multiplication of, 250
 operations with, 248–51
 standard form of, 248
 subtraction of, 249
Complex rational expressions, 176
 primary denominator of, 176
 primary numerator of, 176
 secondary denominators of, 176
 simplifying a, 176–79
Components, of ordered pairs, 306
Composite number, 121
Composition of functions, 451
Compound inequality, 78
Conditional equation, 50
Conic sections, 400
Conjugate factors, 243
 complex, 250
Consistent and independent system of equations, 350
Constant function, 456
Constant of variation, 468
Contradiction, 55
Coordinate(s), 7
 of a point, 307
Cramer's Rule, 381–84
Critical number, 293
Cubes
 difference of two, 143–44
 sum of two, 144–45

D

Decay formulas, 502
Decrease, 8
Degree, 33
Dependent system of equations, 350
Dependent variable, 441
Determinant, 375
 of a matrix, 375
 minor of, 376
 3×3 , 376
 2×2 , 375
Difference of two cubes, 143–44
Difference of two squares, 107, 141–42
Direct variation, 468
Discriminant, 274–75
Disjoint sets, 4
Distance formula, 315
Distributive property, 22, 103
Division, 16
 of complex numbers, 251
 definition of, 16
 involving zero, 17
 of a polynomial by a monomial, 183
 of a polynomial by a polynomial, 184
 of rational expressions, 162
 of rational numbers, 162
Division property of rational expressions, 162
Domain, 5
 of a function, 444–45
 of a rational expression, 155
 of a relation, 441
Double-negative property, 24

E

Elementary row operations, 388
Element of a set, 1
Elimination, solution by, 350–53
Ellipse
 definition of, 420
 equation of an, 421
Empty set, 3
Equality, 20
Equality properties of real numbers, 21
 addition property, 23, 51
 multiplication property, 24, 52
 reflexive property, 21
 substitution property, 21, 34
 symmetric property, 21
 transitive property, 21

Equation, 50
 absolute value, 72–75
 of a circle, 415, 416
 conditional, 50
 of an ellipse, 421
 equivalent, 51
 exponential, 482, 505
 first-degree condition, 51
 graph of an, 308, 317
 of a hyperbola, 423
 of a line, 328
 linear, 51
 literal, 59
 logarithmic, 487
 nonlinear, 429
 of a parabola, 403, 413
 of quadratic form, 289
 root of an, 50
 solution of an, 50
 solving an, 53
 x -intercept of, 309
 y -intercept of, 309
 Equivalent equations, 51
 Evaluation, 34
 Expanded form, 15
 Exponential decay, 481, 502–3
 Exponential equation, 482, 505
 property of, 482
 Exponential form, 15, 97
 Exponential function, 479–81
 definition of, 479
 graph of, 480–81
 Exponential growth, 481, 502–3
 Exponential notation, 15, 97
 Exponents, 15
 definition, 97
 fraction to a power, 115–16
 group of factors to a power, 100
 negative, 112–13
 power of a power, 99
 product property, 98–99
 quotient property of, 111–12
 rational, 218–21, 223–25
 zero, 114
 Expression, algebraic, 32
 Extended distributive property, 103
 Extracting roots, 261
 Extraneous solutions, 199, 255

F

Factorial notation, 542
 Factoring, 121
 difference of two cubes, 143–44
 difference of two squares, 141–42
 four-term polynomials, 124–25
 a general strategy, 147–49
 greatest common factor, 121–22
 by grouping, 124–25
 by inspection, 136–40
 perfect-square trinomials, 130
 sum of two cubes, 144–45
 trinomials, 126–40

Factors, 14
 common, 121–24
 completely factored form, 121, 123
 conjugate, 242–43
 greatest common, 121–22
 prime factored form, 121
 Factor theorem, 192
 Finite, 4
 First component of an ordered pair, 306
 First-degree conditional equation, 51
 Foil, 104
 Formula, 59
 Function, 443
 composition of, 451
 constant, 456
 definition of, 443
 domain of, 443–45
 exponential, 479–81
 inverse, 460–63
 linear, 455
 logarithmic, 485
 notation, 449
 one-to-one, 461–62
 polynomial, 457
 quadratic, 456
 range of, 443
 square root, 458
 Fundamental principle of rational expressions, 156

G

General term
 of an arithmetic sequence, 523–24
 of a geometric sequence, 530
 of a sequence, 514
 Geometric formulas, Inside front cover
 Geometric sequence, 529
 common ratio of, 530
 sum of the terms of, 532
 Geometry problems, 66
 Graph, 7
 of a circle, 416–18
 of an ellipse, 422, 423
 of an equation, 308–11
 of a hyperbola, 425
 of linear inequalities in two variables, 337–40
 of a parabola, 404–7, 411–13
 Greater than, 8
 or equal to, 9
 Greatest common factor, 121–22
 Grouping symbols, 14, 42
 removing, 42
 Growth formula, 502

H

Horizontal line, slope of a, 320
 Horizontal line test, 462
 Hyperbola, 422
 asymptotes of, 423–24
 definition of, 422
 equation of, 423
 graph of, 425

I
 Identical equation, 50
 Identity, 50
 property of addition, 22
 property of multiplication, 22
 Imaginary numbers, 246–48
 Inconsistent system of equations, 350
 Increase, 8
 Independent variable, 441
 Indeterminate, 17
 Index of summation, 519
 Inequalities
 absolute value, 86–90, 340–41
 addition property of, 79
 compound, 78
 is greater than, 8, 83
 is greater than or equal to, 9, 83
 is less than, 8, 83
 is less than or equal to, 9, 83
 linear, 77
 multiplication property of, 79–80
 order of, 80
 rational, 296
 sense of, 80
 solution set, 77–79
 strict, 8
 weak, 8
 Inequality properties of real numbers, 21
 transitive property, 21
 trichotomy property, 21
 Infinite, 4
 Infinite series, 536
 geometric, 536–38
 Infinity, 79
 Integer, 5
 Interest, simple, 65, 69
 Interest problem, 65, 69
 Intersection of sets, 3
 Interval notation, 78–79
 Inverse of a function, 460–63
 Inverse variation, 470
 Irrational numbers, 6, 217

J

Joint variation, 471

L

Least common denominator, 54
 Least common multiple, 168
 Left member, 50
 Less than, 8
 or equal to, 9
 Like bases, 98
 Like radicals, 237
 Like terms, 41
 Line, slope of a, 316–20
 Linear equation, 51
 systems of, 348
 in two variables, 305
 Linear function, 455
 Linear inequality, 77, 337
 graphs of, 337–40
 in two variables, 337

Line segment, 313
midpoint of a, 316
Listing method for sets, 1
Literal equation, 59
solving a, 60
Logarithm, 485
common, 496–97
definition of, 485
graph of, 485–86
natural, 500
power property of, 492
product property of, 490
quotient property of, 491
Logarithmic
equations, 487
function, 485
function, graph of, 485–86
properties of, 487, 490–93
Lower limit of summation, 519
Lowest terms, reducing to, 156

M

Mathematical statement, 50
Matrix, 375
augmented, 388
columns of, 375
elements of, 375
rows of, 375
square, 375
Member of an equation, 50
Member of a set, 1
Midpoint of a line segment, 316
Minor of a determinant, 376
Mixture problems, 71
Monomial, 33
Multinomial, 33
multiplication of, 103–4, 108
Multiplication, 15
of fractions, 160
of multinomials, 103–4, 108
of rational expressions, 160
of real numbers, 15
Multiplication property of equality, 24, 52
Multiplication property of inequality, 79–80
Multiplication property of rational expressions, 160
Multiplicative inverse property, 22
Multiplicity, 193

N

Natural logarithms, 500
Natural numbers, 4
Negative exponents, 112–13
Negative numbers, 5
Negative reciprocal, 322
 n factorial, 542
Nonlinear equations, systems of, 429–30
 n th power property, 255
 n th root, 215–17
Null set, 3
Number, 8
Number line, 7
Number problems, 64–65
Numerical coefficient, 32

O

One-to-one
function, 462
Opposite of, 9
Order, 8
Ordered pairs of numbers, 306
components of, 306
Ordered triple of real numbers, 367
Order of operations, 27–29
Order relationship, 8, 80
Ordinate of a point, 307
Origin, 7, 306

P

Parabola, 401, 411
definition of, 402
equation of a, 402, 411
vertex of a, 402
Parallel lines, 321
Parentheses, 14
Partial sum of a series, 518
Pascal's triangle, 541–42
Perfect squares, 141
trinomials, 130
Perimeter, 66
Perpendicular lines, 322
Pi, 6, 32
Plane, 400
Point-slope form of a line, 328
Polynomial, 33
degree, 33
division of, 183–85
function, 457
multiplication of, 103–8
notation, 35
sums and differences, 40–43
Positive numbers, 4
Primary
denominator, 176
numerator, 176
Prime, relatively, 218
Prime factor form, 121
Prime numbers, 121
Prime polynomial, 129
Principal n th root, 216
simplifying a, 227
Problem solving, 29
with linear equations, 64–66, 83
with quadratic equations, 278–80
with rational equations, 203–6
with systems of linear equations, 358–60
Product, 14
Product property for radicals, 226
Proof, 23
Properties of a logarithm, 487, 490–93
Properties of real numbers, 22
Pythagorean Theorem, 208, 315

Q

Quadrants, 306
Quadratic equation, 258
applications of, 278–80
in one variable, 258

solution by completing the square, 268–69
solution by extracting roots, 261
solution by factoring, 259
solution by quadratic formula, 272–74
standard form of, 258
Quadratic formula, 272
Quadratic function, 456
Quadratic inequalities, 293–97
critical numbers of, 293
test number of, 294
Quadratic-type equations, 289–91
Quotient property of exponents, 112

R

Radical equations, 255
solution set of, 255–57
Radicals
conjugate factors, 242
differences of, 237
index of a, 216
like, 237
multiplication of, 242
product property, 226
quotient property, 232
simplest form, 235
standard form of, 235
sums of, 237
Radicand, 216
Range
of a function, 444
of a relation, 441
Rational equations, 198
Rational exponents, 218–21, 223–25
Rational expression
definition, 154
domain of a, 155
Rational inequality, 296–97
Rationalizing the denominator, 232–34, 243–44
Rational number, 6
Real number, properties of, 22
additive inverse property of, 22
associative property of addition, 22
associative property of multiplication, 22
closure property of addition, 22
closure property of multiplication, 22
commutative property of addition, 22
commutative property of multiplication, 22
distributive property, 22
identity property of addition, 22
identity property of multiplication, 22
multiplicative inverse property, 22
Real number line, 7
Real numbers, 6
addition of, 12
division of, 16
multiplication of, 14–15
subtraction of, 13
Reciprocal, 22, 52, 162
Rectangular coordinate system, 306
Reducing to lowest terms, 156, 157
Reflexive property of equality, 21
Relation, 440
domain of, 441
range of, 441
Relatively prime, 218
Remainder theorem, 191

Replacement set, 5
 Right member, 50
 Root
 of an equation, 50
 nth, 215–17
 principal nth, 216
 Roster method for sets, 1
 rth term of a binomial expansion, 466

S

Scientific notation, 116–18
 Secondary denominator, 176
 Second component of an ordered pair, 306
 Sense of an inequality, 80
 Sequence, 513
 arithmetic, 523–24
 finite, 513
 infinite, 513
 general term of a, 514–15, 523–24, 530
 geometric, 522–30
 infinite, 513
 Series, 518
 arithmetic, 525
 geometric, 531
 infinite geometric, 536–38

Set, 1
 disjoin, 4
 element of, 1
 empty, 3
 finite, 4
 infinite, 4
 intersection, 3
 member of, 1
 null, 3
 replacement, 5
 solution, 50
 union, 3
 Set-builder notation, 5
 Set of real numbers, 6
 Set symbolism, 1–4
 Sigma notation, 519
 index of, 519
 lower limit of, 519
 upper limit of, 519

Sign, 12
 Sign array, of a determinant, 378
 Slope-intercept form, 329
 Slope of a line, 317–20
 definition of, 317
 horizontal line, 320
 vertical line, 320
 Solution, 50
 by completing the square, 268–69
 by elimination, 350–53
 by extracting the roots, 261–62
 by factoring, 259
 by quadratic formula, 272–73
 of an equation, 50
 of quadratic equations, 274
 of quadratic form equations, 290–91
 of quadratic inequalities, 293–94
 of radical equations, 255–57

of rational equations, 198–99
 of rational inequalities, 293–94
 set, 50
 by substitution, 353, 354
 of systems by determinants, 380–84
 Special products, 105–7
 Square of a binomial, 106
 Square root function, 458
 Square root property, 261
 Squares, difference of two, 107, 141–42
 Standard form of a trinomial, 133
 Standard form of the equation of a line, 328
 Statement, mathematical, 50
 Strict inequality, 8, 303
 Subscripts, 35
 Subset, 2
 Substitution, property of, 21, 34
 Substitution, solution by, 166–68, 171, 353–54
 Subtraction, 13
 Subtraction, definition of, 13
 Subtraction of
 fractions, 166
 rational expressions, 166–67, 171
 real numbers, 13
 Summation notation, 519
 Sum of two cubes, 144–45
 Symbols
 absolute value, 8
 intersect, 3
 is an element of, 2
 is approximately equal to, 8, 217
 is a subset of, 2
 is greater than, 8
 is greater than or equal to, 9
 is less than, 8
 is less than or equal to, 9
 minus sign, 13
 multiplication dot, 14
 negative infinity, 79
 “not”–slash mark, 2
 null set or empty set, 3
 pi, 6, 32
 plus sign, 13
 positive infinity, 79
 principal nth root, 216
 set of integers, 5
 set of irrational numbers, 6
 set of natural numbers, 4
 set of rational numbers, 6
 set of real numbers, 6
 set of whole numbers, 4
 union, 3
 Symmetric property of equality, 21
 Symmetry, 9
 axis of, 402
 Synthetic division, 188–91
 Systems of linear equations, 348
 applications, 358–60
 consistent and independent, 358
 dependent, 350
 graphs of, 350
 inconsistent, 350
 solution by augmented matrix, 388–92
 solution by determinants, 380–84
 solution by elimination, 350–53
 solution by substitution, 353–54
 three equations in three variables, 367
 Systems of nonlinear equations, 429

T

Term, 32
 Term, like, 41
 Test number, 293
 Theorem, 23
 Transitive property of equality, 21
 Transitive property of inequality, 21
 Trichotomy property, 21
 Trinomial, 33
 factoring a, 126–40
 standard form of, 133
 Triple, ordered, 367

U

Undefined, 17
 Union of sets, 3
 Unit distance, 7
 Upper limit of summation, 519

V

Variable, 5
 Variation, 468
 constant of, 468
 direct, 468–69
 inverse, 470–71
 joint, 471–72
 Vertex, of a parabola, 402
 Vertical line, slope of, 320
 Vertical line test, 445

W

Weak inequality, 9
 Whole numbers, 4

X

x-axis, 306
 x-intercept, 309, 403

Y

y-axis, 306
 y-intercept, 309, 404

Z

Zero
 division by, 17
 as an exponent, 114
 Zero factor property, 24
 Zero product property, 155