

Mar 04, 2021

© Development of a multiplexed RT-qPCR for the surveillance of SARS-CoV-2 variants of world-wide concern V.1

Ellinor Marving¹, Alonzo Alfaro-Núñez¹, Sofie Holdflod Nielsen², Michelle Jørgensen², Anna S. Fomsgaard¹, Shila Mortensen¹, Morten Rasmussen¹, Ria Lassaunière¹, Charlotte Polacek Strandh¹, Claus Nielsen¹, Maiken Worsøe Rosenstierne¹, Arieh Cohen², Anders Fomsgaard¹, Katja Spiess¹

¹[Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark] .

²[TestCenter Danmark, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark]

1 Works for me

This protocol is published without a DOI.

Coronavirus Method Development Community

Katja Spiess

SUBMIT TO PLOS ONE

ABSTRACT

Multiple SARS-CoV-2 variants have evolved that increase the transmissibility of the virus and/or cause its escape from immune response. Whole genome sequencing remains the gold standard and is implemented into the national surveillance programs worldwide to detect these novel variants of concern. However, this technique cannot immediately be scaled up when a fast action is needed to limit the spread of SARS-CoV-2 variants every time a new outbreak occurs, as this can be laborious and time-consuming.

Two key mutations with multiple reassurance in the SARS-CoV-2 spike glycoprotein have been identified to have a distinct signature enabling to detect five SARS-CoV-2 variants (B1.351, B1.1.7, P1 and N439K/Y453F variants). Three of them are SARS-CoV-2 variants of major concern worldwide. We developed a specific multiplexed RT-qPCR to detect these key mutations, the H69/V70deletion and the N501Y mutation and increased the sensitivity of the PCR by using LNA probes targeting the N501Y mutation carrying a single amino acid exchange. Additionally, we can exclude target failure and secure SARS-CoV-2 detection by a primer/probe pair detecting the Wt sequence (SARS-CoV-2; Wuhan lineage) at aa position 501. Our multiplexed RT-qPCR assay offers an alternative strategy for SARS-CoV-2 variant surveillance detecting five SARS-CoV-2 variants, which can build up on to detect new emerging SARS-CoV-2 variants.

PROTOCOL CITATION

Ellinor Marving, Alonzo Alfaro-Núñez, Sofie Holdflod Nielsen, Michelle Jørgensen, Anna S. Fomsgaard, Shila Mortensen, Morten Rasmussen, Ria Lassaunière, Charlotte Polacek Strandh, Claus Nielsen, Maiken Worsøe Rosenstierne, Arieh Cohen, Anders Fomsgaard, Katja Spiess 2021. Development of a multiplexed RT-qPCR for the surveillance of SARS-CoV-2 variants of world-wide concern. **protocols.io** https://protocols.io/view/development-of-a-multiplexed-rt-qpcr-for-the-surve-bsz8nf9w

KEYWORDS

Pandemic, mutation, viral lineages, SARS-CoV-2 variants, Cluster 5, Danish mink variants, B1.351, B1.1.7, P1 and N439K/Y453F variants

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Mar 04, 2021

LAST MODIFIED

Mar 04, 2021

PROTOCOL INTEGER ID

47904

GUIDELINES

The intention of this assay is to screen for the probable presence of the B1.351, B1.1.7, P1 and N439K/Y453F variants. Variant detection should be confirmed by sequencing.

MATERIALS TEXT

Material

Luna[®]Universal Probe One-step RT-qPCR Kit

Primer and probes

Primer/probe	primer/probe	ТМ	primer/probe	
name				
SARS-CoV-	forward	58.5	5′-	
2_deletion	primer		ACATTCAACTCAGGACTTGTTCT - 3`	
SARS-CoV-	reverse	58.0	5′-	
2_deletion	primer		TCATTAAATGGTAGGACAGGGTT- 3`	
SARSCoV2_deletion*	probe	61.2	5`-HEX-	
			TTCCATGCTATCTCTGGGACCA-BHQ2-	
			3,	
SNP_501	forward	57.7	5'-	
	primer		TGTTACTTTCCTTTACAATCATATGGT-	
			3'	
SNP_501	reverse	58.9	5'-TGCTGGTGCATGTAGAAGTTCA-3'	
	primer			
Probe4_	LNA probe	63.2	5'-FAM -CCC AC+T +T+AT GG+T GTT	
501_Y			GGT-BHQ1-3'	
Probe4_	LNA	62.6	5'-	
N_501_mutant	probe		Quasar 670-CCC AC+T +A+AT GG+T	
			GTT GGT-BHQ2-3'	

^{*}Please be aware that it is more common to use BHQ1 quencher together with HEX, but this system works fine with a BHQ2 quencher.

Controls:

TWIST synthetic RNA controls: TWIST control 1, part number 102019, Australian/VIC01/2020 and TWIST control 14, part number 103907, England 205041766/2020

Bio-Rad CFX96 touch real-time PCR detection system

Protocol

- Work on ice
- Vortex and centrifuge reagents before use, except the Luna WarmStart® RT Enzyme Mix here only mix carefully by pipetting or short vortexing
- Dilute the primer and probe stock (100μM) 1:5 with nuclease free water to a working concentration of 20μM
- Prepare mastermix on ice containing the following:

Luna® Universal Probe One-	per reaction
Step RT-qPCR Kit	
Luna® Universal Probe One-Step	12.5
RT-qPCR Kit 2x	μl
Luna WarmStart® RT Enzyme Mix	1.25
(20X)	μl
SNP_501_F_2	0,5
(20µM)	μl
SNP_501_R_2	0,5
(20µM)	μl
Probe4_Wt_n_501_LNA (20µM)	0,25
	μl
Probe4_B117_y_LNA (20μM)	0,25
	μl
SARS-CoV-2_deletion_F (20µM)	0.5
	μl
SARS-CoV-2_deletion_R (20µM)	0.5
	μl
SARSCoV2_deletion_P (20µM)	0,25 μΙ
H20	3.5 μΙ
Total	20 μΙ
Sample	5μΙ
Total	25μΙ

- Add 20µL of mastermix to each well/ PCR tube
- Add 5µl of the control (positive controls such as virus cultures, sequenced patient samples with known information about the SARS-CoV-2 variant or TWIST synthetic RNA controls and negative controls such as negative tested patient samples and nuclease free water) to the corresponding wells containing the mastermix and mix by pipetting
- Add 5µl of extracted RNA (unknown sample) to the designated wells and mix by pipetting
- Seal the plates/tubes
- Centrifuge to remove air bubbles
- Run the PCR with the following cycler conditions and set the thermocycler to read the **HEX**, **FAM** and **Cy5** channels:

Cycler protocol

Cycle	Time	Temperature
1 cycle	10min	550C
1 cycle	3min	950C
45 cycles	15s	950C
	30s	580C

Data evaluation

H69/70 deletion

■ HEX channel: no Ct value = no detection of the H69/70 deletion, Ct ≤ 38 H69/70 deletion detected

N501Y mutation

- Mark negative control (NTC) as NTC in plate set-up, otherwise the wild type and the N501Y mutant will not be grouped correctly.
- Correct undershooting curves (often for weak samples) by adjusting "Cycles to analyze". This also helps the software to group wildtype and the N501Y mutant correctly.
- In the tab Allelic discrimination: Set Selected Fluorophores (right low corner) to X: FAM, Y: Cy5
- Allele 1 –FAM probe detects the N501Y mutant. Allele 2 Cy5 detects the SARS-CoV-2 (Wuhan lineage). Sometimes
 the Wt (Cy5) is marked as Heterozygote and not Allele 2.

Interpreting results

Result	69/70del (HEX)	501 mutant (FAM)	501 wildtype (Cy5)
Potentially B.1.1.7	Ct	Grouped as allele 1	
(UK)	<45	(RFU FAM > RFU	
		Cy5 at Ct 45)	
Potentially B.1.351	Ct	Grouped as allele 1	
(South Africa) or	Undetected	(RFU FAM > RFU	
P.1 (Brazil)		Cy5 at Ct 45)	
Potentially B.1.258	Ct		Grouped as allele 2
(N439K mutation),	<45		or heterozygote
other lineages			(RFU Cy5 >
			RFU FAM at Ct 45)
Wildtype, other	Ct		Grouped as allele 2
lineages	Undetected		or heterozygote
			(RFU Cy5 >
			RFU FAM at Ct 45)