Университет ИТМО Факультет программной инженерии и компьютерной техники

Домашняя работа №1

«Проектирование гибридной интегральной схемы»

по дисциплине «Системы автоматизированного проектирования»

Выполнил:

Студент 3 курса группы Р3331

Дворкин Борис Александрович

Преподаватель: Поляков Владимир Иванович

г. Санкт-Петербург 2024 г.

Содержание

C	Годержание	2
	Введение	
	! Вариант лабораторной работы	
	В Расчет тонкопленочных резисторов	
	3.1 Определение критерия оптимальности	
	3.2 Выбор материала резистивной пленки	4
	3.3 Определение коэффициента формы кф	4
	3.4 Определение ширины b для резисторов с kф<10	
	3.5 Определение длины I для резисторов с kф<10	5
4	Расчет тонкопленочных конденсаторов	6
	4.1 Определение материала	6
	4.2 Определение активной площади конденсаторов	
	4.3 Определение конструкции конденсаторов	7
5	· Итоговая схема	7
	5.1 Итоговые параметры элементов	7
	5.2 Параметры располагаемых элементов в масштабе	8
	5.3 Топология гис ждущего мультивибратора	8

1 Введение

Целью работы является проектирование тонкопленочной гибридной интегральной схемы ждущего мультивибратора.

2 Вариант лабораторной работы

Рис.1: Принципиальная схема ждущего мультивибратора

Дано:

R1 = 15 κ OM; Δ R1 = 10%; W1 = 0.005 Bm

R2 = 1.2 kOm; $\Delta R2 = 20\%$; W2 = 0.01 Bm

R3 = 1.5 κ OM; Δ R3 = 20%; W3 = 0.01 Bm

R4 = 5.6 kOm; Δ R4 = 10%; W4 = 0.01 Bm

R5 = 0.3 kOm; $\Delta R5 = 10\%$; W5 = 0.005 Bm

 $C1 = 1000 \text{ n}\Phi$; $C2 = 510 \text{ n}\Phi$

3 Расчет тонкопленочных резисторов

3.1 Определение критерия оптимальности

$$p_{_{\mathrm{OIIT}}} = \sqrt{\frac{\sum\limits_{i=1}^{n}R_{_{i}}}{\sum\limits_{i=1}^{n}R_{_{i}}^{-1}}} = 2155.685 \approx 2200 \,\mathrm{Om/D}$$

Для упрощения вычислений в качестве $p_{_{\square}}$ выбирают округленное значение $p_{_{\rm опт}}$, следовательно получили удельное поверхностное сопротивление резистивной плёнки $p_{_{\square}}$ = 2200 Ом/ $_{\square}$

3.2 Выбор материала резистивной пленки

Наименование материала	р _□ , Ом/□	Диапазон значений сопротивления, Ом	Удельная мощность рассеяния W_0 , $B_{\rm T}/{\rm cm}^2$
Кермет К-50С	1000 - 10000	100 - 100000	2

3.3 Определение коэффициента формы $k_{_{\Phi}}$

$$k_{\Phi 1} = \frac{R_1}{p_{\Box}} = \frac{15 \cdot 10^3}{2200} \approx 6.818; l > b$$

$$k_{\Phi 2} = \frac{R_2}{p_{\Box}} = \frac{1,2 \cdot 10^3}{2200} \approx 0.545; l < b$$

$$k_{\Phi 3} = \frac{R_3}{p_{\Box}} = \frac{1,5 \cdot 10^3}{2200} \approx 0.682; l < b$$

$$k_{\Phi 4} = \frac{R_4}{p_{\Box}} = \frac{5,6 \cdot 10^3}{2200} \approx 2.545; l > b$$

$$k_{\Phi 5} = \frac{R_5}{p_{\Box}} = \frac{0,3 \cdot 10^3}{2200} \approx 0.136; l < b$$

3.4 Определение ширины b для резисторов с $k_{_{\Phi}} < 10$

Расчётное значение ширины каждого резистора b должно удовлетворять условию: $b \geq max[b_{_{\text{точ}\text{H}}},\ b_{_{W}}]$

, где $\boldsymbol{b}_{_{\mathrm{точ}\mathrm{H}}}$ определяется заданной точностью изготовления:

$$b_{_{\rm TOЧH}} = \begin{array}{l} \left\{0.2\,{\rm mm}~{\rm при}~\delta R = \pm 20\% \\ 0.3\,{\rm mm}~{\rm при}~\delta R = \pm 10\% \end{array}\right., \text{ a } b_w = \sqrt{\frac{p_{_\square} \cdot w}{R \cdot w_{_0}}}$$

b_1 = <u>0.3 мм</u> >= max[bw_1 = 0.191 мм; b_moчн = 0.3 мм]

$$b_2 = 1.0 \text{ MM} >= max[bw_2 = 0.957 \text{ MM}; b_moyh = 0.2 \text{ MM}]$$

$$b_3 = 0.9 \text{ мм} >= \text{max}[bw_3 = 0.856 \text{ мм}; b_moчh = 0.2 \text{ мм}]$$

3.5 Определение длины l для резисторов с $k_{_{\oplus}} < 10$

Расчётное значение
$$l=rac{R}{r_{_{p}}}\cdot\,b\,=k_{_{\mbox{$\mbox{$\mbox{$\mbox{$\phi$}}}$}}\cdot\,b$$

За длину резистора принимают ближайшее к l расчётное значение, кратное <u>шагу координатной сетки H, выбранному как 0.1 мм</u>. При округлении l рекомендуется оценить погрешность, вызванную округлением и если $\Delta R' > \Delta R$, то увеличить ширину резистора и пересчитать l

$$L_1 = 2.0 \text{ mm}$$
; $R'_1 = 14666.67 \text{ Om}$; $\Delta R' = 2.0\%$

$$L_2 = 0.5 \text{ mm}$$
; $R'_2 = 1100.0 \text{ Om}$; $\Delta R' = 8.0\%$

$$L_3 = 0.6 \text{ mm}$$
; $R'_3 = 1466.67 \text{ Om}$; $\Delta R' = 2.0\%$

$$L_4 = 1.3 \text{ mm}$$
; R' $_4 = 5720.0 \text{ Om}$; $\Delta R' = 2.0\%$

$$L_5 = 0.2 \text{ mm}$$
; R'_5 = 314.29 Om; Δ R' = 5.0%

Как видим, для всех резисторов значения $\Delta R'$ меньше ΔR .

4 Расчет тонкопленочных конденсаторов

4.1 Определение материала

Для повышения точности и надежности конденсаторов необходимо выбирать наиболее простую форму обкладок. Суммарная площадь, занимаемая конденсатором на микроплате, не должна превышать $2~{\rm cm}^2$, минимальная площадь Smin конденсатора равна $0.5 \cdot 0.5~{\rm mm}^2$.

Площадь конденсатора рассчитывается как $S = \frac{C}{C_0}$ (см²).

Следовательно, прикинем удельную ёмкость конденсаторов:

$$C_{0_{1}}^{*} = \frac{C}{S_{min}} = \frac{1000 \, \text{n}\Phi}{0.5 \cdot 0.5 \cdot 0.01 \, \text{cm}^{2}} = 400 \cdot 10^{3} \, \Pi \phi / \text{cm}^{2}$$

$$C_{0_{2}}^{*} = \frac{C}{S_{min}} = \frac{510 \text{ n}\Phi}{0.5 \cdot 0.5 \cdot 0.01 \text{ cm}^{2}} = 204 \cdot 10^{3} \text{ H}\Phi/\text{cm}^{2}$$

=> Пятиокись тантала:
$$C_0 = 200 \cdot 10^3 \, \Pi \phi / cm^2$$

Наименование	Материал	Удельная	Рабочее	Диэлектрическая
материала	обкладок	емкость C_0 ,	напряжение,	проницаемость ε на
		$ \pi\Phi/cм^2 $	В	частоте f = 1к Γ ц
Пятиокись	Алюминий А99	(60-200)*10 ³	10 - 5	11 - 12
тантала		(00 200) 10		

4.2 Определение активной площади конденсаторов

$$S_1 = \frac{C_1}{C_0} = 0.5 \text{ mm}^2; S_2 = \frac{C_2}{C_0} = 0.255 \text{ mm}^2$$

4.3 Определение конструкции конденсаторов

Исходя из рассчитанных площадей, $0.~1 \le S_1$, $S_2 \le 1~{\rm mm}^2$

Следовательно, выбирается конструкция с последовательным соединением конденсаторов:

Рис.2: Выбранная конструкция конденсаторов

5 Итоговая схема

5.1 Итоговые параметры элементов

	Длина элемента,	Ширина	Материал
	MM	элемента, мм	
R1	2	0.3	Кермет К-50С
R2	0.5	1	
R3	0.6	0.9	
R4	1.3	0.5	
R5	0.2	1.4	
C1	1	0.5	Проводники - Алюминий А99
C2	0.51	0.5	Диэлектрик - Моноокись германия

5.2 Параметры располагаемых элементов в масштабе

5.3 Топология гис ждущего мультивибратора

Как hardware инженер, я очень не люблю большие платы с 80% неиспользованного места и просто так выкинутым текстолитом. Поэтому я выбрал маленькую подложку 36х44 мм и постарался запихнуть в неё всю схему ждущего мультивибратора. Получилось вроде даже не плохо)

