Logic (PHIL 2080, COMP 2620, COMP 6262) Chapter: Propositional Logic — Recap on Proof Strategies

Introduction

Introduction •00

2.15

- You know how to prove $X \vdash A$ via ND
- You know how to prove X ⊢ A via ST
- ND is useful to show $X \vdash A$ is valid
- To show invalidity, ST is more convenient.

ND:

- Validity only;
- Direct manipulation to derive conclusions from premises;
- More intuitive ad straightforward.

ST:

- Both validity & Invalidity;
- Exhausive search to explore all possible interpretations;
- More complex and time-consuming.

Introduction

So, when to use which?

Introduction

- If we don't tell whether it's valid or invalid:
 - If you think the sequent is invalid: ST is most useful
 - If you think the sequent is valid: Choose what you are stronger in!
 - If you don't know either way: Use ST and let it tell you!

Strategies: Overview

Semantic Tableau:

- Always apply non-branching rules first.
- In case of invalid sequents you could follow down branches
 leading to an open branch more quickly which requires "seeing"
 which interpretation proves invalidity.

Natural Deduction:

- See the next slide.
- We also sometimes need the fall-back strategy: Assume negation of final derivation and exploit contradiction.

Natural Deduction: Overview

How to show $X \vdash A$? Depends on A!

Note:

- $X \vdash A$ can also refer to sub steps!
- Usually, you will need $\forall E$ if $B \lor C \in X$, not if $B \lor C = A$.

Examples for Natural Deduction

$X \vdash A$, A is an Implication

$X \vdash A$, A is a Negation

$$\neg(p\lor q)\vdash \neg p$$

$$\frac{X, B \vdash A \qquad Y, B \vdash \neg A}{X, Y \vdash \neg B} RAA$$

$$\alpha_1$$
 (1) $\neg(p \lor q)$ A α_2 (2) p A

$$\alpha_2$$
 (2) p

$$\alpha_2$$
 (3) $p \lor q$ 2 $\lor I$

$$\alpha_1$$
 (4) $\neg p$ 1,3[α_2] RAA

$X \vdash A$, A is a Disjunction (here: in one of the Substeps)

$X \vdash A$, A is an Atom (Or: all Other Strategies Fail)

If everything else fails, assume $\neg A$ and derive A:

$$\frac{X, \neg A \vdash A}{X \vdash A}$$

Closely related is the sequent: $\neg p \rightarrow p \vdash p$ (p is so true that it's even implied by its own negation!)

Example:

$$(
ho
ightarrow q)
ightarrow
ho dash
ho$$

$$\boxed{\frac{X,B\vdash A \qquad Y,B\vdash \neg A}{X,Y\vdash \neg B}RAA}$$

$$lpha_1$$
 (1) $(p o q) o p$ A $lpha_2$ (2) $\neg p$ A $lpha_3$ (3) p A $lpha_2, lpha_3$ (4) $\neg \neg q$ 2,3[] RAA $lpha_2, lpha_3$ (5) q 4 $\neg = E$ $lpha_2$ (6) $p o q$ 5[$lpha_3$] $o I$ 1,6 $o E$ $lpha_1, lpha_2$ (7) p 1,6 $o E$ $lpha_1$ (8) $\neg \neg p$ 2,7[$lpha_2$] RAA $lpha_1$ (9) p 8 $\neg = E$

Previous Example, shown with Semantic Tableau

We now show $(p \to q) \to p \vdash p$ via Semantic Tableau.

$$(p \rightarrow q) \rightarrow p \vdash p$$

$$(1) \quad \mathsf{T:} \quad (p \rightarrow q) \rightarrow p \quad \checkmark$$

$$(2) \quad \mathsf{F:} \quad p$$

$$(3) \quad \mathsf{F:} \quad p \rightarrow q \quad \checkmark \quad \mathsf{from} \; (1) \quad (4) \quad \mathsf{T:} \quad p \quad \checkmark \quad \mathsf{from} \; (1)$$

$$(5) \quad \mathsf{T:} \quad p \quad \checkmark \quad \mathsf{from} \; (3)$$

$$(6) \quad \mathsf{F:} \quad q \qquad \mathsf{from} \; (3)$$

The primary strategy (that often suffices to create small trees) is:

- Always apply rules first that don't branch!
- Don't forget branches!! And mark lines that are "done".

Summary

Content of this Lecture

 Today, we did a recap on how to prove various kinds of sequents via Natural Deduction and Semantic Tableau

