

IDP Talk

A Formalisation of Sturm's Theorem in Isabelle/HOL

Manuel Eberl eberlm@in.tum.de

We have: a polynomial with real coefficients

Chair for Logic and Verification

Motivation

We have: a polynomial with real coefficients

We want: the number of real roots in a specific interval

not really

We have: a polynomial with real coefficients

We want: the number of real roots in a specific interval

not really

We have: a polynomial with real coefficients

We want: the number of real roots in a specific interval

For "real" computations: restricted to appropriate subset of $\mathbb{R},$ such as $\mathbb{Q}.$

The solution: Sturm's Theorem

Provides a method for counting real roots algorithmically.

 \Longrightarrow Let's formalise it in Isabelle/HOL

Notation

Sign changes: $\sigma(P_0, \dots, P_{n-1}; x)$ denotes denotes the number of sign changes in the sequence $P_0(x), \dots, P_{n-1}(x)$

For the functionally inclined:

$$\sigma(ps;x) = (length \circ remdups_adj \circ filter \ (\neq 0) \circ map \ (\lambda p. \ p(x))) \ ps \ - \ 1$$

Sturm's Theorem

Sturm's Theorem: Let P be a real polynomial and P_0, \dots, P_{n-1} a Sturm sequence of P. Then

$$\sigma(P_0,\ldots,P_{n-1};a)-\sigma(P_0,\ldots,P_{n-1};b)$$

is the number of real roots of P in the interval (a; b].

But what is a Sturm sequence of P? A (reasonably) general definition:

 $\bullet P_0 = P$

But what is a Sturm sequence of P?

- A (reasonably) general definition:
 - $P_0 = P$
 - \blacksquare P₀ and P₁ have no common roots

But what is a Sturm sequence of P?

A (reasonably) general definition:

- $P_0 = P$
- $ightharpoonup P_0$ and P_1 have no common roots
- ightharpoonup P_{n-1} (last element) does not change its sign

But what is a Sturm sequence of P?

A (reasonably) general definition:

- $P_0 = P$
- \blacksquare P₀ and P₁ have no common roots
- $ightharpoonup P_{n-1}$ (last element) does not change its sign
- if x_0 is root of P_0 : $P_0P_1(x) < 0$ in some left-NH and $P_0P_1(x) > 0$ in some right-NH of x_0

But what is a Sturm sequence of P?

A (reasonably) general definition:

- $P_0 = P$
- \blacksquare P₀ and P₁ have no common roots
- $Arr P_{n-1}$ (last element) does not change its sign
- if x_0 is root of P_0 : $P_0P_1(x) < 0$ in some left-NH and $P_0P_1(x) > 0$ in some right-NH of x_0
- if x_0 is root of another P_i : $P_{i-1}P_{i+1}(x_0) < 0$

Assessment

The good news:

formalisation of real analysis, polynomials, algebra already exists $\,$

Assessment

The good news:

formalisation of real analysis, polynomials, algebra already exists

The bad news:

no formalisation of limits of polynomials, very little on divisibility

Assessment

The good news:

formalisation of real analysis, polynomials, algebra already exists

The bad news:

no formalisation of limits of polynomials, very little on divisibility

The ugly news:

textbook proofs of Sturm's theorem are extremely informal proof sketchs at best

Assume we already have a Sturm chain. Why does it count roots? Follow $x \mapsto \sigma(P_0, \dots, P_{n-1}; x)$ passing over \mathbb{R} . Obviously, it can only change at x_0 if one of the P_i has a root at x_0

 \blacksquare if $P_i \neq P_0$ has x_0 as a root, $P_{i-1}P_{i+1}(x_0) < 0$

Assume we already have a Sturm chain. Why does it count roots? Follow $x \mapsto \sigma(P_0, \dots, P_{n-1}; x)$ passing over \mathbb{R} . Obviously, it can only change at x_0 if one of the P_i has a root at x_0

• if $P_i \neq P_0$ has x_0 as a root, $P_{i-1}P_{i+1}(x_0) < 0$ \Rightarrow signs of P_{i-1} , P_{i+1} are $\neq 0$, opposite, constant in NH of x_0

Assume we already have a Sturm chain. Why does it count roots? Follow $x \mapsto \sigma(P_0, \dots, P_{n-1}; x)$ passing over \mathbb{R} . Obviously, it can only change at x_0 if one of the P_i has a root at x_0

• if $P_i \neq P_0$ has x_0 as a root, $P_{i-1}P_{i+1}(x_0) < 0$ \Rightarrow signs of P_{i-1} , P_{i+1} are $\neq 0$, opposite, constant in NH of x_0 \Rightarrow signs $[1, _, -1]$ or $[-1, _, 1]$ in the entire NH, i.e. one sign change

- if $P_i \neq P_0$ has x_0 as a root, $P_{i-1}P_{i+1}(x_0) < 0$ \Rightarrow signs of P_{i-1} , P_{i+1} are $\neq 0$, opposite, constant in NH of x_0 \Rightarrow signs $[1, _, -1]$ or $[-1, _, 1]$ in the entire NH, i.e. one sign change
 - \Rightarrow total number of sign changes not influenced

- if $P_i \neq P_0$ has x_0 as a root, $P_{i-1}P_{i+1}(x_0) < 0$ \Rightarrow signs of P_{i-1} , P_{i+1} are $\neq 0$, opposite, constant in NH of x_0 \Rightarrow signs $[1, _, -1]$ or $[-1, _, 1]$ in the entire NH, i.e. one sign change
 - \Rightarrow total number of sign changes not influenced
- if P_0 has x_0 as root, $P_0P_1(x_0) < 0$ in left-NH of $x_0, > 0$ in right-NH

- if $P_i \neq P_0$ has x_0 as a root, $P_{i-1}P_{i+1}(x_0) < 0$ \Rightarrow signs of P_{i-1} , P_{i+1} are $\neq 0$, opposite, constant in NH of x_0 \Rightarrow signs $[1, _, -1]$ or $[-1, _, 1]$ in the entire NH, i.e. one sign change
 - \Rightarrow total number of sign changes not influenced
- if P_0 has x_0 as root, $P_0P_1(x_0) < 0$ in left-NH of $x_0, > 0$ in right-NH
 - \Rightarrow signs are different left of x_0 and the same right of x_0

- if $P_i \neq P_0$ has x_0 as a root, $P_{i-1}P_{i+1}(x_0) < 0$
 - \Rightarrow signs of P_{i-1} , P_{i+1} are $\neq 0$, opposite, constant in NH of x_0
 - \Rightarrow signs [1, _ , -1] or [-1, _ ,1] in the entire NH, i.e. one sign change
 - \Rightarrow total number of sign changes not influenced
- if P_0 has x_0 as root, $P_0P_1(x_0) < 0$ in left-NH of $x_0, > 0$ in right-NH
 - \Rightarrow signs are different left of x_0 and the same right of x_0
 - \Rightarrow total number of sign changes decreases by one

Formal proof: a lot of induction on the sequences and number of roots \implies messy and not terribly interesting, I'll spare you the details

We now know that Sturm sequences can count roots. But how do we construct one?

Canonical construction for P with no multiple roots (i.e. gcd(P, P') = 1):

$$P_i = \begin{cases} P & \text{for } i = 0 \\ P' & \text{for } i = 1 \\ -(P_{i-2} \text{ mod } P_{i-1}) & \text{otherwise} \end{cases}$$

Why does it work? Nonobvious parts:

Why does it work? Nonobvious parts:

If x_0 is root of $P_0 = P$: $PP'(x_0) < 0$ in left-NH and $PP'(x_0) > 0$ in right-NH

– pick neighbourhood without roots of P_0 and P_1 (except for x_0), apply mean value theorem

Why does it work? Nonobvious parts:

If x_0 is root of $P_0 = P$: $PP'(x_0) < 0$ in left-NH and $PP'(x_0) > 0$ in right-NH

– pick neighbourhood without roots of P_0 and P_1 (except for x_0), apply mean value theorem

If x_0 is root of another P_i : $P_{i-1}P_{i+1}(x_0) < 0$ in some NH of x_0

- by construction, $P_{i-1} = Q \cdot P_i - P_{i+1}$ for some $Q \in \mathbb{R}[X]$ $\Longrightarrow P_{i-1}(x_0) = -P_{i+1}(x_0)$ also: $P_{i-1}(x_0) \neq 0$ since $gcd(P_{i-1}, P_i) = gcd(P_0, P_1) = 1$

This construction assumed no multiple roots. What do we do if there are multiple roots?

In case of multiple roots: Let $D := \mbox{\tt gcd}(P,P').$ Then:

In case of multiple roots: Let D := gcd(P, P'). Then:

The obvious way:

 compute canonical Sturm chain of P/D ("divide out" multiple roots)

In case of multiple roots: Let D := gcd(P, P'). Then:

The obvious way:

 compute canonical Sturm chain of P/D ("divide out" multiple roots)

The clever way:

• we can compute the canonical Sturm chain of P and divide by D afterwards

In case of multiple roots: Let D := gcd(P, P'). Then:

The obvious way:

 compute canonical Sturm chain of P/D ("divide out" multiple roots)

The clever way:

- we can compute the canonical Sturm chain of P and divide by D afterwards
- but: if $D(x) \neq 0$, dividing by D does not change the number of sign changes at x

In case of multiple roots: Let D := gcd(P, P'). Then:

The obvious way:

 compute canonical Sturm chain of P/D ("divide out" multiple roots)

The clever way:

- we can compute the canonical Sturm chain of P and divide by D afterwards
- but: if $D(x) \neq 0$, dividing by D does not change the number of sign changes at x
- sunless the interval bounds are multiple roots, we can use the canonical construction without changes

count_roots_between p a b: picks the most efficient Sturm chain construction and:

$$count_roots_between \ p \ a \ b \ = \ |\{x. \ a < x \ \land \ x \le b \ \land \ p(x) = 0\}|$$

 $count_roots_between \ p \ a \ b$: picks the most efficient Sturm chain construction and:

$$count_roots_between \ p \ a \ b \ = \ |\{x. \ a < x \ \land \ x \le b \ \land \ p(x) = 0\}|$$

Some fluff:

- \blacksquare case distinctions allow arbitrary combination og \leq and < in bounds
- "limit signs" allow infinite bounds

In summary: we can count roots in any open/halfopen/closed, bounded/unbounded real interval $\,$

Some more fluff:

• and/or: count x with

$$P(x) = 0 \land Q(x) = 0$$
 or $P(x) = 0 \lor Q(x) = 0$

Some more fluff:

• and/or: count x with

$$P(x) = 0 \land Q(x) = 0$$
 or $P(x) = 0 \lor Q(x) = 0$

 \blacksquare \forall -inequalities:

$$\forall x. \ P(x) \neq Q(x) \land \ R(x) \neq S(x) \lor \ T(x) \neq U(x)$$

Some more fluff:

• and/or: count x with

$$P(x) = 0 \land Q(x) = 0$$
 or $P(x) = 0 \lor Q(x) = 0$

 \blacksquare \forall -inequalities:

$$\forall x. \ P(x) \neq Q(x) \land \ R(x) \neq S(x) \lor \ T(x) \neq U(x)$$

• \forall with < and >:

$$\forall x. P(x) < Q(x) \land R(x) > S(x) \lor T(x) \neq U(x)$$

Examples:

```
lemma "card \{x::real. (x-1)^2*(x+1) = 0\} = 2" by sturm
```

lemma "card {x::real. $-0.010831\!<\!x\ \land\ x\!<\!0.010831\ \land$

poly [:0,
$$-17/2097152$$
, $-49/16777216$, $1/6$, $1/24$, $1/120$:] $x=0$ } = 3" **by** sturm

lemma "card $\{x:: real.\ x^3 + x = 2 * x^2 \land x^3 - 6 * x^2 + 11 * x = 6\} = 1$ " by sturm

lemma "(x::real)
$$^2 + 1 > 0$$
" by sturm

Size of the formalisation

3725 LOC in total, 185 of that ML, the rest Isabelle

