Enero 2019

1 ^{er} apellido													ΝE			
2º apellido												-				
Nombre																

(Tiempo 45 minutos)

Un satélite se encuentra en una órbita elíptica ecuatorial con altura de 600 km en el perigeo y 2000 km en el apogeo.

a) - Calcule la excentricidad de la elipse y el periodo de la órbita.

b) ¿Cuál sería la ecuación de la órbita en coordenadas cartesianas?

1 ^{er} apellido													ΝE	,			
2° apellido												-					
Nombre																	

c) Se desea dividir la órbita en cuatro segmentos de igual duración comenzando desde el perigeo. ¿Cuál será la anomalía media, excéntrica y verdadera al final del primer segmento?

d) Si al final del primer segmento se deseara convertir la órbita en parabólica, ¿Cuál será la velocidad de escape en ese punto?