

Université Abdelmalek Essaâdi Faculté des Sciences et Techniques de Tanger Département : Génie Informatique

Base de Données Structurées et Non Structurées Cours 1: Introduction aux bases de données et méthode de conception MERISE

Prof. Badr-Eddine BOUDRIKI SEMLALI

Email: badreddine.boudrikisemlali@uae.ac.ma

2024/2025

Clauses du module

Présence obligatoire: Toute présence injustifiée sera comptabilisée sur la note.

Ponctualité: Porte se ferme 10 min maximum.

Participation: Être actifs dans les cours, TDs et TPs.

N.B.

- Flux de communication avec le(a) délégué(e) de la section.
- Tous les cours, TDs, et TPs seront partagés sur un lien Google Classroom: https://classroom.google.com/c/NzE3ODk4MDA4MzQw?cjc=u3bdt2u

Evaluation:

- > QCM (15%)
- > TPs + Présence + Assiduité (15%)
- > Examen final (70%)

Objectifs du cours

- Acquérir les outils d'analyse et de conception d'un Système d'information (Méthodologie MERISE);
- Présenter les concepts fondamentaux sur lesquelles s'appuient les bases de données et les systèmes de gestion de bases de données;
- Comprendre la structure d'une base de données;
- Apprendre les bases du langage SQL;
- Ètre capable de concevoir, interroger et mettre à jour une base de données (MySQL, langage SQL);

Evaluation:

- > QCM (15%)
- ►TPs + Présence + Assiduité (15%)
- ➤ Projets/Exposés (30%)
- ➤ Examen final (40%)

Plan de cours

- 1. Introduction aux bases de données et méthode de conception MERISE
- 2. Modélisation des traitements : MCC, MCT, MOT
- 3. Modélisation des données: (MCD) → modèle « E/A »
- 4. Dépendance fonctionnelles (Construction du MCD)
- 5. Normalisation (5 formes de normalisation)
- 6. Le Modèle Logique de Données (relationnel) : MLD
- 7. Le Modèle Physique de Données : MPD
- 8. Le Modèle relationnel: Concepts de bases
- 9. Structure de base de données
- 10. Règles d'intégrité structurelle
- 11.Algèbre relationnel

Méthodes d'analyse et de conception

Qu'est ce qu'une méthode?

Une méthode comporte trois axes indispensables pour obtenir ce label « méthode » :

- une démarche, ensemble coordonné d'étapes, de phases et de tâches indiquant le chemin à suivre pour conduire un projet, ici, la conception d'un SI;
- des raisonnements et des techniques nécessaires à la construction de l'objet projeté, traduits ici par des modélisations ;
- des moyens de mise en œuvre, en l'occurrence une organisation de projet et des outils.

Méthodes d'analyse et de conception

Démarche globale

Analyse du problème → Conception de la solution → Réalisation du système

i. Analyse:

- ➤ Au sens informatique, l'analyse consiste d'une part à comprendre et modéliser le fonctionnement d'un domaine de gestion d'une organisation, et d'autre part à concevoir la solution informatique adéquate.
- ➤ On s'intéresse en générale à un domaine d'activité de l'entreprise (ventes, production, logistique, finances, RH,...)
 - On prend en compte les besoins de l'utilisateur
 - On définie le problème à résoudre
- ii. Conception : on définie la solution informatique
 - structuration des données
 - organisation des traitements
 - définition des postes de travail
 - chois technique : matériel, langage de programmation, logiciels de gestion de base de données (SGBD), ...
- iii. Réalisation du système: Développement du Système par Langage de Programmation, SGBD,...

Méthodes d'analyse et de conception: Dictionnaire des données

Le dictionnaire de données : Il a pour but essentiel de recenser toutes les informations utiles à l'entreprise et de distinguer :

- Il doit être à la fois épuré (ne pas comporter des synonymes) et exhaustif (ne pas Comporter de propriétés aux significations multiples).
- Les données paramétrées : cette information prendra toujours la même valeur.
- Les données calculées : cette information pourra être retrouvée par le biais d'un calcul, à l'aide d'une requête, grâce aux données élémentaires et paramétrées.
- Les données élémentaires : cette information pourra prendre plusieurs valeurs.
- On ne retiendra par la suite que les données élémentaires.
 - > On peut proposer la présentation sous forme de tableau:

Exemple:

N°	Nom de la propriété	signification	type	Domaine de définition
1				
2				
3				

Méthodes d'analyse et de conception: Règles de gestion

Énoncé des règles de gestion

- Elles se présentent sous forme d'hypothèse issus de l'étude de l'existant permettant d'expliciter le Modèle Conceptuel.
- Précisent les contraintes qui doivent être respectées par le modèle.
- Une règle de gestion peut porter sur les données manipulées par l'organisation ou sur les traitements exécutés au sein de celle-ci.

Méthodes d'analyse et de conception: Règles de gestion : Exemple

Exemple de Règles de gestion relatives à l'organisation d'un examen

- Règle 1: chaque épreuve comporte un libellé, un numéro sur 4 positions et un coefficient sur seule position;
- Règle 2: les candidats sont identifiés par un numéro sur 4 positions et décrits par un nom et un prénom;
- Règle 3: les établissements scolaires sont référencés par un code sur 6 positions, ils sont ensuite décrits par leur nom et leur ville d'implantation;
- Règle 4: à chaque épreuve, les candidats obtiennent une notre sur 20. A l'issue de la correction des copies, un nombre total de points est calculé à partir des notes obtenues et des coefficients. Si le total des point est d'au moins 210, le candidat est déclaré admis ; sinon, il est ajourné.

MERISE

- éthode d'
- R tude et de
- R éalisation,
 - I nformatique pour les
- S ystèmes d'
- R ntreprise

Historique de la méthode MERISE

- La méthode MERISE (Méthode d'Etude et de Réalisation Informatique pour les Systèmes d'Entreprise).
- Développée à l'initiative du Ministère de l'Industrie, par une SSII, le centre d'études techniques de l'équipement et des universitaires (1977). Plusieurs versions (Merise, Merise 2, Merise Objet...).
- A partir de 90 Merise est devenu une figure imposée dans le cursus de formation de tout informaticien, du moins sur la partie de modélisation, plus particulièrement des données.
- Libre de droits.
- Vise les SI construits autour de BD relationnelles.
- Encore utilisée aujourd'hui même si concurrencée par UML. Toutefois, les modélisations de Merise continuent à avoir leur place dans les programmes de formation scolaires et universitaires.

Méthode Merise : Caractéristiques

Méthode formalisée, complète, détaillée qui garantit une informatisation réussie.

- Formalisée: utilisation d'outils logiques (graphes, règles).
- **Complète**: de la décision d'informatisation à la mise en œuvre effective.
- > Détaillée : de la technique d'interview jusqu'au commentaires des programmes.
- > Approche descendante qui met l'accent sur les interconnections entre les sous-systèmes ;
- ➤ Qui va du général au particulier ;
- > Analyse qui **sépare** les données et les traitements :
 - **■** Traitements:
 - Étude des évènements
 - Indépendances entre les domaines
 - Données
 - Étude du vocabulaire de l'organisation
 - Intégration des domaines: Vue globale stabilité
- > Approche par **niveaux**
 - Quatre niveaux de description ou niveaux d'abstraction

Merise: Cycles et démarche MERISE Les trois cycles de MERISE

La démarche merise de développement d'un S.I doit être conduite suivant trois axes appelés cycles.

Les trois cycles de MERISE (suite)

MERISE présente dans sa démarche d'analyse trois cycles fondamentaux :

- > Cycle de vie: c'est l'axe de temps.
- Cycle de décision: il représente l'ensemble des choix qui doivent être fait durant le déroulement du cycle de vie.
- Cycle d'abstraction: il permet de modéliser le système à chaque étape selon 4 niveaux de description:
 - Conceptuel
 - Organisationnel
 - •Logique
 - Physique

Le cycle de vie en « Cascade »

Adapté pour des projets de petite taille, et dont le domaine est bien maitrisé.

Cycle de décision

L'informatisation d'un S.I est conduite au travers d'un projet décomposer en étapes :

1. Le schéma directeur

Approche globale du S.I; Définition des domaines d'études; Planification du développement de chaque domaine; évaluation des moyens en personnel et matériel; mise en œuvre de la méthode.

2. L'étude préalable

Étude de différents solution possible puis choix; Détermination du système de l'étude afin de donner aux responsables les moyens de prendre des décisions pertinentes sur la globalité du projet.

3. L'étude détaillée

Détermination des spécifications complètes du future S.I

4. Réalisation

Étude technique; production des programmes ; rédaction des consignes d'utilisation.

5. Mise en œuvre

Tests, essais, formation des utilisateurs.

6. Maintenance: Corrections; adaptation aux évolutions de l'entreprise.

<u>Remarque</u>: Les trois premières étapes de décision correspondent à la partie conception du cycle de vie et les suivantes concernent la réalisation du système et son lancement.

Cycle d'abstraction

- Elle permet de faire un lien de communication entre les différents acteurs d'un projet.
- ➤ La méthode Merise se base sur la démarche 3 découpages sur 4 niveaux.

	Communication	Données	Traitement	
Conceptuel	MCC: Modèle Conceptuel de Communication	MCD: Modèle Conceptuel de Données	MCT: Modèle Conceptuel de Traitement	
Organisationnel	MOC: Modèle Organisationnel de Communication	MOD: Modèle Organisationnel de Données	MOT: Modèle Organisationnel de Traitement	
Logique	MLC: Modèle Logique de Communication	MLD: Modèle Logique de Données	MLT: Modèle Logique de Traitement	
Physique	MPC: Modèle Physique de Communication	MPD: Modèle Physique de Données	MPT: Modèle Physique de Traitement	

Cycle d'abstraction

Niveau Conceptuel

- Exprime les choix fondamentaux de gestion, les objectifs de l'organisation.
- Décrit les invariants de l'organisation: le métier de l'organisation;
- Définit les activités et les choix de gestion ;
- Indépendamment des aspects organisationnels et des aspects techniques de mise en œuvre ;
- du point de vue:
 - traitements: objectif, résultat, règles de gestion, enchaînement;
 - des données: signification, structure, liens.

Niveau Organisationnel

- Exprime les choix organisationnels de ressources humaines et matérielles.
- Définit : la répartition géographique et fonctionnelle des sites de travail (du point de vue des données et des traitements).
 - le mode de fonctionnement: temps réel ou temps différé.
 - la répartition du travail homme/machine (degré et type d'automatisation).
 - les postes de travail et leur affectation, la volumétrie des données, la sécurité des données.
- Indépendamment des moyens de traitement et de stockage de données actuels ou futurs.

Cycle d'abstraction

Niveau Logique

- Exprime la forme que doit prendre l'outil informatique pour être adapté à l'utilisateur, à son poste de travail.
- Indépendamment de l'informatique spécifique, des langages de programmation ou de gestion des données.
- Décrit: le schéma de la base de données (relationnel, hiérarchique ou réseau) c.-à-d. les caractéristiques du mode de gestion des données ;
 - les volumes par unité de stockage ;
 - La répartition des données sur les différentes unités de stockage ...

Niveau Physique ou opérationnel

- Traduit les choix techniques et la prise en compte de leurs spécificités.
- Répond aux besoins des utilisateurs sur les aspects logiciels et matériels.
- Définit complètement:
- ➤ les programmes et les ressources à utiliser ;
- ➤ l'implantation physique des données et des traitements ;
- les modalités de fonctionnement.
- 🖎 C'est la description des moyens mis en ouvre pour gérer les données et effectuer les traitements.

Merise: Les Modèles d'abstraction MERISE : Résumé

Niveau	Communication	Données	Traitement	
Conceptuel	MCC: Modèle Conceptuel de Communication	MCD: Signification des informations sans contraintes techniques ou économiques.	MCT: Activité du domaine sans préciser les ressources ou leur organisation.	Indépendant du système
Organisationnel	MOC: Modèle Organisationnel de Communication	MOD: Signification des informations avec contraintes techniques ou économiques.	MOT: Fonctionnement du domaine avec les ressources utilisées et leur organisation.	Indépendant du système
Logique	MLC: Modèle Logique de Communication	MLD: Description des donnes en tenant compte de leurs conditions et des techniques de mémorisations	MLT: Fonctionnement du domaine avec les ressources utilisées et leur organisation informatique.	Choix du SGBD
Opérationnel ou Physique	MPC: Modèle Physique de Communication	MPD: Description de la ou des BD dans la syntaxe du SGBD.	MPT : Architecture technique des programmes (Procédures).	Haut connaissance du SGBD

Merise: Les Modèles d'abstraction MERISE

Les modèles au niveau conceptuel

Le niveau conceptuel est constitué des 3 modèles suivants :

■ Le modèle conceptuel des communications : MCC

Diagramme représentant les informations transmises et récupérer par le domaine de gestion.

Le Modèle Conceptuel des Données : MCD

Permet la description statique du S.I : (Description des données et des relations entre elles.) sans prendre en compte des détails liés à sa mise en œuvre physique. S'appuie sur le modèle entité/association.

Le modèle Conceptuel des Traitements : MCT

Description de la partie dynamique du S.I., représentant l'activité d'une entreprise indépendamment des chois d'organisation et des moyens d'exécution.

Merise: Les Modèles d'abstraction MERISE

Les modèles au niveau Organisationnel, Logique et Physique

Le Modèle logique de données: MLD

Diagramme issue du MCD et permettant de prendre en compte la structuration technique propre au stockage informatisé.

Le Modèle Organisationnel des Traitements: MOT

Diagramme représentant l'ensemble des traitements en prenant compte de l'organisation de l'entreprise.

Le Modèle Physique des Données : MPD

La Description Physique des Données : Diagramme table-référence qui permet de modéliser le S.I en tenant compte des détails de mise en œuvre physique.

Le MPD peut correspondre :

- > création des tables en fonction du SGBD utilisé.
- > au stockage des données dans des fichiers suivant le type des fichiers, leur organisation.

Le Modèle Physique des Traitements : MPT

Diagramme permettant de détailler au niveau opérationnel chaque tâche logicielle par des actions logicielles élémentaires,...

Méthode Merise : Les points forts

- ➤ La méthode s'appuie sur une approche systémique : c'est donc une approche globale.
- Les concepts sont peu nombreux et simples.
- > Une représentation graphique simple et naturelle.
- Elle est assez indépendante vis à vis de la technologie.
- > Elle est la plus utilisée en France dans les domaines de gestion.
- > Elle sert de référence aux enseignements sur les méthodes.
- > Une formalisation non ambigüe et donc un bon outil de spécification détaillée.