

Modulares Messsystem zur optischen und kapazitiven Schmierfilmdickenmessung in einem EHD-Kontakt

Quelle: Dr. Wedeven, What is ehd

Gliederung

- EHD
- Methoden zur Schmierfilmdickenmessung
- Ziel dieser Arbeit
- Vorgehensweise

Was ist EHD?

Elastohydrodynamische Schmierung

- Nichtkonformer Kontakt
- Hoch Pressung, 1-4 GPa
- Verformte Flächen
- Dünne Schmierfilmdicke < 1µm
- Hart EHD (Zahnräder, Nocken Wälzlager)
- Weich EHD (Reifen, RWDR)

Quelle: Jablonka, Glovnea, Bongaerts

Reibungsmodell

min. film thickness over RMS surface roughness height

Quelle

[©] Roland Larsson, Lulea University of Technology

Wichtigkeit der Schmierfilmdicke

- Hohe Belastung -> plastische Verformung
- Kontaktermüdung -> pitting, micro pitting
- Riefenbildung
- Schaden wegen Fremdpartikel

Hoher ∧, niedriger das Risiko

Messung der Schmierfilmdicke

- Optische Methode
- Eletrische Methode
- Ultraschall
- Laserinduzierte Fluoreszenz

Optische Interferometrie

Optische Inteferometrie

Interference image from ball and chrome layer

Quelle: PCS

Spacer Layer Imaging Method (SLIM)

Quelle: PCS

image.

50 100 150 200 200 250 300 300 250

STAGE 2
Acquire high resolution digital image of contact.

STAGE 3
Use colour information to determine film thickness within contact or full contact map.

Increasing speed

Elektrische Methode

- Resistiv: Metall-Metall Kontakt
- Kapazitiv: Trennung von Kontaktflächen

Voltage discharge curve Impedance analyser

Ultraschall

Quelle: Furtuna

Laserinduzierte Fluoreszenz

Quelle: Furtuna

Optisch vs elektrisch

Optisch

- Genauigkeit
- Zuverlässigkeit
- Optischer Zugang nötig

Elektrisch (kapazitiv)

- Metall-Metall Kontakt
- Einfacher Aufbau
- Parameterschwankung von verschiedenen Schmierungen

Ziel der Arbeit

- Korrelation zwischen optischer und elektrischer Messmethode
- Einflussfaktoren, Störfaktoren der Kapazitätmessung

Vorgehensweise

Optische und elektrische Messungen gleichzeitig

Voraussetzungen

Isolierung des Strompfads

Cr-Scheibe

Spacer-Scheibe + Beschichtung

Quelle: Furtuna

- Einfacher Aufbau
- Niedrige Auflösung

- Hohe Auflösung
- Dicke der Beschichtung
- Kugel über der Kante
- Timing der Messung

Zusammenfassung

- EHD Schmierfilmdicke
- Methoden zur Schmierfilmdickenmessung
- Ziel: Prüfung der Genauigkeit von kapazitiven Messungen
- Probleme und Vorgehensweise für die Messung