Ionic Equilibrium

- Q.1. The strongest conjugate base is
 - a) NO₃-
 - b) CI-
 - C) SO₄2-
 - d) CH₃COO⁻
- Q.2. A 0.2 molar solution of formic acid is 3.2% ionized. Its ionisation constant is
 - a) 9.6×10^{-3}
 - b) 2.1×10^{-4}
 - c) 1.25×10^{-6}
 - d) 4.8×10^{-5}
- Q.3. Which of the following will produce a buffer solution when mixed in equal volumes?
 - a) 0.1 mol dm⁻³ NH₄OH and 0.1 mol dm⁻³ HCl
 - b) 0.05 mol dm⁻³ NH₄OH and 0.1 mol dm⁻³ HCl
 - c) $0.1 \text{ mol dm}^{-3} \text{ NH}_4\text{OH}$ and $0.05 \text{ mol dm}^{-3} \text{ HCl}$
 - d) 0.1 mol dm⁻³ CH₃COONa and 0.1 mol dm⁻³ NaOH
- Q.4. A solution which is 10^{-3} M each in Mn^{2+} , Fe^{2+} , Zn^{2+} and Hg^{2+} is treated with 10^{-6} M sulphide ion. If K_{sp} of MnS, FeS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} and 10^{-54} respectively which one will precipitate first
 - a) FeS
 - b) MgS
 - c) HgS
 - d) ZnS
- Q.5. The solubility product of AgCl is 4.0×10^{-10} at 298 K. The solubility of AgCl in 0.04 M CaCl₂ will be
 - a) $2.0 \times 10^{-5} \text{ M}$
 - b) $1.0 \times 10^{-4} \text{ M}$
 - C) $5.0 \times 10^{-9} \text{ M}$
 - d) 2.2×10^{-4} M
- Q.6. The pH of a solution is increased from 3 to 6; its H⁺ ion concentration will be
 - a) reduced to half
 - b) reduced by 1000 times
 - c) doubled
 - d) increased by 1000 times

Q.7. For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ratio of the concentration of salt and acid should be (Ka = 10 ⁻⁵) a) 1:10 b) 10:1 c) 100:1 d) 1:100
 Q.8. Identify the indicator used to titrate Na₂CO₃ solution with HCl a) Methyl orange b) dil. H2SO4 c) Phenolphthalein d) None of these
Q.9. If pH of a saturated solution of Ba(OH) $_2$ is 12, the value of its K_{sp} is : a) $5.00 \times 10^{-7} M^3$ b) $4.00 \times 10^{-7} M^3$ c) $5.00 \times 10^{-6} M^3$ d) $4.00 \times 10^{-6} M^3$
Q.10. The conjugate base of H ₂ PO ₄ is a) H ₃ PO ₄ b) P ₂ O ₅ c) PO ₄ ³⁻ d) HPO ₄ ²⁻
 Q.11. Ostwald's dilution law is applicable to: a) Weak electrolyte only b) Non-electrolytes c) Strong electrolytes only d) Strong and weak electrolytes
 Q.12. Which of the following pairs constitutes a buffer ? a) NaOH and HCI b) HNO₃ and NH₄NO₃ c) HCI and KCI d) HNO₂ and NaNO₂
 Q.13. A base according to Bronsted concept is a substance which can: a) lose pair of electron b) donate protons c) gain a pair of electrons d) accept protons

Q.14. When NH ₄ Cl is added to NH ₄ OH solution the dissociation of ammonium hydroxide is reduced. It is due to: a) common ion effect b) hydrolysis c) oxidation d) reduction
Q.15. Which is not Lewis acid? a) BF ₃ b) AgCl c) BeCl ₂ d) MgCl ₂
 Q.16. The pH of a solution of hydrochloric acid is 4. The molarity of the solution is a) 4.0 b) 0.4 c) 0.0001 d) 0.04
Q.17. In the reaction $I_2 + I^- \rightarrow I_3^-, \text{ the Lewis base is}$ a) I_2 b) I^- c) I_3^- d) None of these
Q.18. The pH of a 0.005 M aqueous solution of sulphuric acid is a) 0.005 b) 2 c) 1 d) 0.01
Q.19. In the hydrolysis of a salt of weak acid and weak base the hydrolysis constant Kb is equal to a) Kw/Kb b) Kb/Kw c) Kw/KaKb d) KaKb
 Q.20. Water is a a) Protophobic solvent b) Protophilic solvent c) Amphiprotic solvent d) Aprotic solvent

- Q.21. Which of the following has highest pH?

 a) CH₃COOK
 - b) Na₂CO₃
 - c) NH₄CI
 - d) NaNO₃
- Q.22. The pH range of methyl red indicator is
 - a) 4.2 to 6.3
 - b) 8.3 to 10
 - c) 8.0 to 9.6
 - d) 6.8 to 8.4
- Q.23. In which of the following acid-base titration pH is greater than 8 at the equivalent point.
 - a) Acetic acid Vs ammonia
 - b) Acetic acid Vs sodium hydroxide
 - c) Hydrochloric acid Vs sodium hydroxide.
 - d) Hydrochloric acid Vs ammonia
- Q.24. The pH of 0.1 M aqueous solution of a weak acid (HA) is 3. What is its degree of dissociation?
 - a) 1%
 - b) 10%
 - c) 50%
 - d) 25%
- Q.25. Boric acid is an acid because its molecule
 - a) contains replaceable H⁺ ion
 - b) gives up a proton
 - c) accepts OH⁻ from water releasing proton
 - d) combines with proton from water molecule