

ELECTRONIC DEVICES

Assist. prof. Laura-Nicoleta IVANCIU, Ph.D.

C9 – Summing and differential amplifiers with OpAmp

Contents

- Summing amplifiers with OpAmp
 - Inverting summing amplifier
 - Non-inverting summing amplifier
- Differential amplifiers with OpAmp
- Recap circuits with OpAmp

Types of amplifiers with OpAmp

NI	Ш	Amplifier	
V _I	ground	non-inverting	C 8
ground	V _I	inverting	C8
V _{I1}	V _{I2}	differential	
V_{11}, V_{12}	ground	summing, non-inverting	C 9
ground	V_{11}, V_{12}	summing, inverting	

> Inverting summing amplifier

How can we compute v_o?

$$v_O = -\left(\frac{R}{R_1}v_{I1} + \frac{R}{R_2}v_{I2}\right)$$

Relationship between resistors to obtain the average of input voltages:

$$R_1 = R_2 = 2R$$

> Inverting summing amplifier

Example

- a) $v_O(v_1, v_2)$ assuming op amp in the active region. What is the application of the circuit?
- b) Considering $v_{/1} = 2$ V, plot the VTC $v_{/2}(v_{/2})$ for $v_{/2} \in [-5$ V; 5 V]. What is the $v_{/2}$ range, so that the amplifier works in its active region?
- c) Plot $v_{/1}(t)$, $v_{/2}(t)$ and $v_{/2}(t)$ for $v_{/1}(t) = 1\sin\omega t$ [V], $v_{/2}(t) = 0.5\sin\omega t$ [V].
- d) Resize R_1 , R_2 , R_3 , R_4 so that $V_0 = -(V_{/1} + V_{/2})$.
- e) Modify the circuit, in order to obtain a non-inverting summing circuit, with $v_O = V_{II} + V_{ID}$.

Non-inverting summing amplifier

$$v_O = \left(1 + \frac{R_4}{R_3}\right) \left(\frac{R_2}{R_1 + R_2} v_{I1} + \frac{R_1}{R_1 + R_2} v_{I2}\right)$$

Relationship between resistors to have $v_O = v_{I1} + v_{I2}$?

$$R_1 = R_2$$
 and $R_3 = R_4$

Usually
$$R_1 = R_2 = R_3 = R_4$$

How can we compute v_o?

$$v_O = \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right) v_{I1} - \frac{R_2}{R_1} v_{I2}$$

Differential amplifier

Superposition method

$$v_{O1} = \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right) v_{I1}$$

$$v_{O2} = -\frac{R_2}{R_1} v_{I2}$$

$$v_O = v_{O1} + v_{O2} = \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right) v_{I1} - \frac{R_2}{R_1} v_{I2}$$

Differential amplifier

$$v_O = \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right) v_{I1} - \frac{R_2}{R_1} v_{I2}$$

If the goal is to amplify $(v_{11}-v_{12})$:

$$\frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right) = \frac{R_2}{R_1}$$

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \quad v_O = \frac{R_2}{R_1} (v_{I1} - v_{I2}) \quad \text{For } v_{I1} = v_{I2}, v_O = 0.$$

For
$$v_{11} = v_{12}$$
, $v_0 = 0$

The circuit **amplifies** the difference between the input voltages and **rejects** common mode signals.

$$v_{I1} = v_1 + v_{noise} v_{I2} = v_2 + v_{noise}$$

$$v_O = A_v(v_1 + v_{noise} - v_2 - v_{noise}) = A_v(v_1 - v_2)$$

In practical situations: $R_1 = R_3$ and $R_2 = R_4$

Differential amplifier

Superposition method

Input resistance, seen by V_{I1}

$$R_{I1} = R_3 + R_4$$

Input resistance, seen by V₁₂

$$R_{I2} = R_1$$

Example

A sensor provides a variable signal, v_i, with a dc component, V_I.

It is necessary to amplify the variable signal, that carries information, 10 times.

Design a differential amplifier for this requirement.

Differential amplifier

Example

$$v_{O}(t) = \frac{R_{4}}{R_{3} + R_{4}} \left(1 + \frac{R_{2}}{R_{1}} \right) v_{I}(t) - \frac{R_{2}}{R_{1}} V_{REF}$$

$$V_{REF} = V_{I} R_{1}$$

$$R_{1}$$

$$v_O(t) = \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right) (V_I + v_i(t)) - \frac{R_2}{R_1} V_I$$

$$\frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right) - \frac{R_2}{R_1} = 0 \qquad \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right) = 10$$

$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \qquad \frac{R_1}{R_2} = \frac{R_3}{R_4} = \frac{1}{10}$$

$$R_1 = R_3 = 2.5k\Omega$$

$$R_2 = R_4 = 25k\Omega$$

$$v_o(t) = 10v_i(t)$$

Standard instrumentation amplifier

- high R_i
- very good common mode rejection ratio

OA1 and OA2:

- high input resistance
- set the gain

OA3:

- gain = 1
- conversion from two voltages (v_{O1} and v_{O2}) to a single voltage (v_{O})
- additional rejection of the common mode

Standard instrumentation amplifier

$$v_O = \frac{R}{R} \left(v_{O1} - v_{O2} \right)$$

$$v_{O1} = \left(1 + \frac{R_2}{R_1}\right) v_{I1} - \frac{R_2}{R_1} v_{I2}$$

$$v_{O2} = \left(1 + \frac{R_2}{R_1}\right) v_{I2} - \frac{R_2}{R_1} v_{I1}$$

$$v_O = \left(1 + \frac{2R_2}{R_1}\right) (v_{I1} - v_{I2})$$

Integrated precision differential amplifiers

AD8221 Analog Devices

Precision Instrumentation Amplifier

$$Av = 1 + (49.4 \text{ k}\Omega/R_G)$$

MAX4194, MAX4195, MAX4196, MAX4197

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers Maxim Integrated

LT1167 Linear Technology

Common uses of instrumentation amplifiers: sensor readings for medical and industrial applications. **Examples?**

Recap - circuits with OpAmp

Given a circuit with OpAmp, how can we tell whether the circuit is:

- inverting or non-inverting?
- a simple comparator, a hysteresis comparator, or an amplifier?

What parameters do we compute, for each of the above? What can we tell about the output voltage?

Recap – circuits with OpAmp

Recap – circuits with OpAmp

Type of feedback	v _i goes to	Application	We compute	v _o	
No feedback	+	Simple comparator, non-inverting	V_Th	$V_{O} \in \{V_{OL}; V_{OH}\}$	
	-	Simple comparator, inverting			
Positive feedback	+	Hysteresis comparator, non-inverting	V_ThL	v = (V · V)	
	-	Hysteresis comparator, inverting	V _{ThH}	$V_{O} \in \{V_{OL}; V_{OH}\}$	
Negative feedback	+	Amplifier, non-inverting	Λ	V - (V - V)	
	-	Amplifier, inverting	A_{v}	$V_{O} \in (V_{OL}; V_{OH})$	

Summary

Today's menu consisted of a fine selection of OpAmp circuits, such as:

- Summing amplifiers with OpAmp
 - Inverting summing amplifier
 - Non-inverting summing amplifier
- Differential amplifiers with OpAmp
- Recap circuits with OpAmp

Next week: Applications with OpAmp

To do: Homework 7