

Année universitaire : 2017/2018 2ième année Licence-Informatique module : Théorie des langages

U.M.M.T.O - année: 2017/2018

CORRIGÉ ABRÉGÉ DE LA SÉRIE D'EXERCICES nº 1 de ThL

par: M.S. Habet, C. Cherifi, F. Bouhatem, N. Otmani

EXERCICE 1:

- 1) x = acabacbc
- 2) |x| = 8, $|x|_a = 3$, $|x|_b = 2$, et $|x|_c = 3$
- 3) acabac
- 4) acbc

EXERCICE 2:

Soit V un alphabet.

- On montre que pour tous u, v de V^* , on a : $(u.v)^R = v^R.u^R$ (I)
 - Soient u et v deux mots de V^* , et n = |u|. On raisonne par récurrence sur n.
 - -- pour n=0:

dans ce cas $u = \varepsilon$ et on a bien $(u.v)^R = (\varepsilon.v)^R = v^R = v^R.\varepsilon = v^R.\varepsilon^R = v^R.u^R$ d'où (I) est vérifiée.

Supposons que (I) reste vraie jusqu'au rang n=k. (Ir)

-- pour n=k+1:

dans ce cas il existe u' dans V^* et a dans V tels que u = a.u' (on a |u'| = k).

 $(u.v)^R = ((a.u').v)^R = (a.(u'.v))^R$ (d'après l'associativité de la concaténation)

= (u'.v)^R.a (d'après la définition du reflet miroir)

= v^R.u'^R.a (d'après l'hypothèse (Ir))

 $= v^R.u^R$ (d'après la définition du reflet miroir)

D'où le résultat : (I) est toujours valide.

- On montre que pour tout w de V^* , on $a:(w^R)^R=w$ (II)

Soit w un mot de V^* , et n = |w|. On raisonne par récurrence sur n.

-- pour n=0 :

 $w = \varepsilon$, par définition $w^R = \varepsilon$ et aussi : $(w^R)^R = \varepsilon = w$.

(II) est vérifiée.

Supposons que (II) reste vraie jusqu'au rang n=k. (IIr)

-- pour n=k+1:

Dans ce cas, il existe $a \in V$ et $v \in V^*$ tels que w = a.v, et : $w^R = v^R.a$.

On aura : $(w^R)^R = (v^R.a)^R = a^R.(v^R)^R = a.(v^R)^R$ (d'après la formule (I))

= a.v = w (d'après l'hypothèse de récurrence).

D'où le résultat : (II) est toujours valide.

EXERCICE 3:

- a) $L_1.L_2 = \{a, ab, aab, abb, abab, ba, bab, baab \}$;
- b) $L_2.L_1 = \{a, ab, ba, bab, bba, aba, abab, abba \}$;

```
c) L_1.L_3 = \{a^{n+1}.b^n / n \ge 0\} \cup \{a.b.a^n.b^n / n \ge 0\} \cup \{b.a^{n+1}.b^n / n \ge 0\};
```

- d) et e) $L_1.\{\epsilon\} = \{\epsilon\}.L_1 = L_1$;
- f) et g) $L_1.\emptyset = \emptyset.L_1 = \emptyset$;
- h) $L_1.L_1 = \{aa, aab, aba, abab, abba, baa, baab, baba \}$;
- i) $L_2.L_2 = \{ \epsilon, b, ab, bb, bab, abb, abab \} ;$
- j) $L_3.L_3 = \{a^n.b^n. a^m.b^m / n, m \ge 0\}.$

EXERCICE 4:

- Les mot w₁ et w₃ ne sont pas générés par G;
 les mots w₂ et w₄ sont générés par G : S ⊢ aS ⊢ aaS ⊢ aabA ⊢ aabcA ⊢ aabccA ⊢ aabcccA ⊢ w₂ et pour w₄ : S ⊢ ab ⊢ ab ⊢ ab = w₄.
- 2) Soit L = { a^ibc^j/i , $j \ge 0$ }. Montrons que L(G)=L en prouvant la double inclusion :
 - L(G) ⊆ L : soit w un mot de L(G), donc w est généré à partir de S en appliquant n fois les règles de production de G. Montrons par récurrence sur n que w ∈ L :
 - si n=2 alors on a : S ⊢ bA ⊢ b ; w=b ∈ L. Supposons que la propriété reste vraie jusqu'au rang n=k.
 - pour n=k+1, on a deux cas:
 - -- la première règle appliquée est S → aS, puis k règles pour avoir un mot a.u. Puisque u est généré à partir de S avec application de k règles de G, et d'après l'hypothèse de récurrence, u est dans L, donc il s'écrit comme u = aⁱb c^j et ainsi le mot a.u = aⁱ⁺¹bc^j ∈ L.
 - -- la première règle appliquée est $S \to bA$, puis à partir de A, on obtient c^j ($j \ge 0$), et on aura donc généré le mot $b.c^j$ qui $\in L$ (c'est : $a^i.b.c^j$ avec i=0).
 - $L \subseteq L(G)$: Soit $w \in L$. Donc w s'écrit comme $w = a^n b c^m$. w peut être dérivé de S en appliquant n fois la règle $S \to aS$ puis une fois la règle $S \to bA$, puis encore m fois la règle $A \to cA$ et enfin une fois la règle $A \to \epsilon$. Donc $w \in L(G)$.

EXERCICE 5:

- 1) Exemples de mots de L_1 : a, ab, accb, ... Une grammaire pour L_1 : $G_1 = (\{a, b, c\}, \{S, A\}, S, \{S \rightarrow aA ; A \rightarrow aA \mid bA \mid cA \mid \epsilon\})$
- 2) Exemples de mots de L_2 : a, ba, cabca, ... Une grammaire pour L_2 : $G_2 = (\{a, b, c\}, \{S\}, S, \{S \rightarrow aS \mid bS \mid cS \mid a\})$
- 3) Exemples de mots de L_3 : a, bba, acaacb, ... Une grammaire pour L_3 : G_3 = ({a, b, c}, {S, A}, S, { S \rightarrow aS | bS | cS | aA; A \rightarrow aA | bA | cA | ϵ })
- 4) Exemples de mots de L_4 : aa, aba, acacab, ...

 Une grammaire pour L_4 : G_4 = ({a, b, c}, {S, A, B}, S, P₄) P_4 : { $S \rightarrow aS \mid bS \mid cS \mid aA$; $A \rightarrow aA \mid bA \mid cA \mid aB$; $B \rightarrow aB \mid bB \mid cB \mid \epsilon$ })
- 5) Exemples de mots de L_5 : aa, baab, accaab, ... Une grammaire pour L_5 : $G_5 = (\{a, b, c\}, \{S, A\}, S, \{S \rightarrow aS \mid bS \mid cS \mid aaA ; A \rightarrow aA \mid bA \mid cA \mid \epsilon \})$

U.M.M.T.O - année: 2017/2018

EXERCICE 6:

- I) Nous donnons ici les types des G_i, (i=1,...,6), ainsi que les langages engendrés par les grammaires G_i (i=1,...,6). (Pour que la réponse soit complète, il faut le prouver comme c'est fait dans l'exercice 4).
 - 1) Type de $G_1 = 3$. $L(G_1) = \{ aa, aab, bb, bcb \}$.
 - 2) Type de $G_2 = 3$. $L(G_2) = \{ b.a^n / n \ge 0 \}$.
 - 3) Type de $G_3 = 2$. $L(G_3) = \{ a^n b^m c^n / n \ge 0, m \ge 1 \}$.
 - 4) Type de $G_4 = 2$. $L(G_4) = \{ w \in \{a, b\}^* / |w|_a = |w|_b \text{ et } \forall u \text{ préfixe de } w, |u|_a \ge |u|_b \}$.
- 5) Type de $G_5 = 1$. $L(G_5) = \{ a^n b^n c^n / n \ge 1 \}$.
- 6) Type de $G_6 = 0$. $L(G_6) = \{ a^n b^{2 \cdot [n/2]} / n \ge 0 \}$; ([x] est la partie entière de x) On peut aussi écrire $L(G_6)$ comme $\{ a^{2k+1} b^{2k} / k \ge 0 \} \cup \{ a^{2k} b^{2k} / k \ge 0 \}$.
- II) G_2 n'est pas de type 1 car elle contient la règle : $A \to \epsilon$; or dans les grammaires de type 1, le seul symbole qui peut produire la chaîne vide est S.

Cependant, on peut écrire une grammaire de type 1 équivalente à G₂ :

 G_2 ' a pour règles de production : $S \rightarrow Sa \mid b$; ce qui veut dire que $L(G_2)$ est de type 1.

III) Une grammaire de type 2 équivalente à G₆ :

 G_6 ' a pour règles de production : $S \rightarrow aaSbb \mid a \mid \varepsilon$

EXERCICE 7:

- a) pour L_1 : il est engendré par $G_1 = (\{0\}, \{S\}, S, P_1)$, où P_1 : $S \rightarrow 00S \mid \varepsilon$
- b) pour L_2 : il est engendré par $G_2 = (\{0, 1\}, \{S\}, S, P_2)$, où P_2 : $S \rightarrow 0S1 \mid \epsilon$
- c) pour L_3 : il est engendré par $G_3 = (\{a,b\},\{S\},S,P_3),$ où P_3 : $S \rightarrow aSbb \mid \epsilon$
- d) pour L_4 : il est engendré par $G_4 = (\{a, b\}, \{S, A\}, S, P_4),$ où P_4 : $S \rightarrow aSc \mid A$: $A \rightarrow aAb \mid \epsilon$
- e) pour L_5 : il est engendré par $G_5 = (\{a, b\}, \{S\}, S, P_5)$, où P_5 : $S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$
- f) pour L_6 : il est engendré par G_6 = ({a, b}, {S, A}, S, P_6) où P_6 : $S \rightarrow aSa \mid bSb \mid aAb \mid bAa$ $A \rightarrow aA \mid bA \mid \epsilon$
- g) pour L_7 : il est engendré par $G_7 = (\{a, b\}, \{S, A\}, S, P_7),$ où P_7 : $S \rightarrow AAAS \mid \epsilon$; $A \rightarrow a \mid b$
- h) pour L_8 : il est engendré par G_8 = ({0, 1}, {S}, S, P_8), où P_8 : $S \to 0S1 \mid 0S \mid \epsilon$

$$\begin{split} i) \;\; L_9 = \; \{ \; 0^i \, 1^j / \; i > j \; \} \cup \{ \; 0^i \, 1^j / \; i < j \; \} \; ; \quad L_9 \; \text{est engendr\'e par } G_9 = (\{0, \, 1\}, \, \{S, \, S_0, \, S_1\}, \, S, \, P_9), \\ o\`u \; P_9 : \; S \to S_0 \, \big| \; S_1 \; ; \\ S_0 \to 0 S_0 1 \, \big| \; 0 S_0 \, \big| \; 0 \; ; \\ S_1 \to 0 S_1 1 \, \big| \; S_1 1 \, \big| \; 1 \end{split}$$

j) L_{10} : il est engendré par $G_{10} = (\{a\}, \{S, A, B, C, D\}, S, P_{10}),$

où P₁₀: $S \rightarrow BCD$ $C \rightarrow AC \mid a$ $Aa \rightarrow aaA$ $AD \rightarrow D$ $Ba \rightarrow aB$ $BD \rightarrow \varepsilon$

EXERCICE 8:

- 1) Soient les langage $L = \{0, 1\}^*$ et $L' = \{0^n 1^n / n \ge 0\}$. L'est de type 3 (vérifier le!); mais L', qui est inclus dans L, n'est pas de type 3 (il est de type 2).
- 2) On considérera le cas d'une grammaire régulière à droite (l'autre cas à gauche est aussi vérifié). Toute grammaire régulière à droite respecte la condition que toute règle est de la forme A → wB | w; où A est un non terminal, w un mot quelconque de terminaux (éventuellement vide) et B non terminal. Ces contraintes respectent aussi les conditions du type 2; à savoir des règles de la forme A → w; où A est un non terminal et w est, dans ce cas, une suite quelconque (éventuellement vide) de terminaux et/ou de non terminaux. Donc toute grammaire régulière est à contexte libre.

Mais la réciproque est fausse ; soit la grammaire à contexte libre (type 2) :

 $G_2 = (\{a, b\}, \{S\}, S, \{S \rightarrow aSb \mid \epsilon\})$. Elle vérifie les conditions du type 2 mais pas celles du type 3.

EXERCICE 9:

1) L peut être généré par la grammaire, de type 3, $G = (\{a, b, c\}, \{S, C\}, S, P)$

où P : S
$$\rightarrow$$
 aaS | bcC
C \rightarrow ccC | ϵ

2) Une autre grammaire de type 2, et qui n'est pas de type 3, qui engendre L :

$$G' = (\{a, b, c\}, \{S, A, C\}, S, P')$$
où P': $S \rightarrow AbcC$

$$A \rightarrow aaA \mid \epsilon$$

$$C \rightarrow ccC \mid \epsilon$$

EXERCICE 10:

1) L peut être généré par la grammaire, de type 3, $G = (\{0, 1\}, \{S, A\}, S, P)$

où P : S
$$\rightarrow$$
 0S | 1A | ϵ A \rightarrow 0A | 1S

2) Une autre grammaire de type 2, et qui n'est pas de type 3, qui engendre L :

G' = ({0, 1}, {S}, S, P')
où P': S
$$\rightarrow$$
 0S | S1S1S | ϵ

EXERCICE 11:

- 1) $L(G) = \{ a^n b^m / n \le m \le 2*n \}$
- 2) Grammaire à contexte libre équivalente à $G : G' = (\{a, b\}, \{S, B\}, S, P')$

P':
$$S \rightarrow aSbB \mid \epsilon$$

 $B \rightarrow b \mid \epsilon$

EXERCICE 12:

$$\begin{aligned} 1) \ L(G) &= \{ \ a^{2.i+1}.b^{2.j+1} \ / \ i, \ j \geq 0 \ \} \ U \ \{ \ a^{2.i+1}.b^{2.j} \ / \ i, \ j \geq 0 \ \} \ U \ \{ \ a^{2.i}.b^{2.j+1} \ / \ i, \ j \geq 0 \ \} \ U \ \{ \ a^{2.i}.b^{2.j} \ / \ i, \ j \geq 0 \ \} \\ &= \{ \ a^{n}.b^{m} \ / \ n, \ m \geq 0 \ \}. \end{aligned}$$

2) Grammaire G' équivalente à G ayant moins de règles de production et qui a un seul symbole non terminal (S) : $G' = (\{a, b\}, \{S\}, S, P')$

où P':
$$S \rightarrow aS \mid Sb \mid \epsilon$$

3) G' n'est pas de type 3. Voici une grammaire de type 3 équivalente à G' : $G'' = (\{a, b\}, \{S, A\}, S, P'')$

où P" :
$$S \rightarrow aS \mid A$$

 $A \rightarrow bA \mid \epsilon$

EXERCICE 13:

1) Une grammaire de type 3 pour L pourrait être $G = (\{a, +, *\}, \{S\}, S, P)$

$$P: S \rightarrow a+S \mid a*S \mid a$$

2) Une grammaire de type 2 pour L' pourrait être $G' = (\{a, +, *, (,)\}, \{S\}, S, P')$

P':
$$S \rightarrow (S) \mid S+S \mid S*S \mid a$$

EXERCICE 14:

Pour générer ces identificateurs on utilisera la grammaire $G = (\pi, N, < Id1>, P)$;

où
$$\pi = \{A..Z, a..z, 0..9\}$$
; $N = \{\langle Id1 \rangle, \langle Id2 \rangle, \langle Id3 \rangle, \langle Lettre \rangle, \langle Chiffre \rangle\}$

et P:
$$\langle Id1 \rangle \rightarrow \langle Lettre \rangle \langle Id2 \rangle$$

$$< Id2 > \rightarrow < Id3 > < Id2 > | \epsilon$$

$$< Id3 > \rightarrow < Lettre > | < Chiffre >$$

$$\langle Lettre \rangle \rightarrow A \mid B \mid ... \mid Z \mid a \mid b \mid ... \mid z$$

$$<$$
Chiffre> $\rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

----- Fin du corrigé de la série n° 1 de ThL