

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 98/50584 (11) International Publication Number: **A2** C12Q 1/68 (43) International Publication Date: 12 November 1998 (12.11.98) (21) International Application Number: PCT/US98/08926 (81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, (22) International Filing Date: 1 May 1998 (01.05.98) NL, PT, SE). Published (30) Priority Data: US 60/045,400 2 May 1997 (02.05.97) Without international search report and to be republished upon receipt of that report. (71) Applicant (for all designated States except US): THE GOV-ERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY OF THE DEPART-MENT OF HEALTH AND HUMAN SERVICES, c/o Centers for Disease Control and Prevention, Technology Transfer Offic [US/US]; Atlanta, GA 30329 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): MORRISON, Christine, J. [US/US]; 3110 Tolbert Drive, Decatur, GA 30033 (US). REISS, Errol [US/US]; 3642 Castaway Court, Chamblee, GA 30341 (US). AIDOREVICH, Liliana [VE/VE]; Calle Circunvalación, Manzana B7 #16 Urlo, El Castan Maracay Edo Aragua (VE). CHOI, Jong, Soo [KR/KR]; 202-1506, Sinchungi-Town Apartment, Whangum-dong, Susung-gu, Taegu City 706-040 (KR). (74) Agents: WARREN, William, L. et al.; Jones & Askew, 37th floor, 191 Peachtree Street, N.E., Atlanta, GA 30303 (US).

(54) Title: NUCLEIC ACIDS FOR DETECTING ASPERGILLUS SPECIES AND OTHER FILAMENTOUS FUNGI

(57) Abstract

37

Nucleic acids for detecting Aspergillus species and other filamentous fungi are provided. Unique internal transcribed spacer 2 coding regions permit the development of nucleic acid probes specific for five different species of Aspergillus, three species of Fusarium, four species of Mucor, two species of Penecillium, five species of Rhizopus, one species of Rhizomucor, as well as probes for Absidia corymbifera, Cunninghamella elagans, Pseudallescheria boydii, and Sporothrix schenkii. The invention thereby provides methods for the species-specific detection and diagnosis of infection by Aspergillus, Fusarium, Mucor, Penecillium, Rhizopus, Rhizomucor, Absidia, Cunninghamella, Pseudallescheria or Sporthrix in a subject. Furthermore, genus-specific probes are also provided for Aspergillus, Fusarium and Mucor, in addition to an all-fungus nucleic acid probe.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Моласо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	
CA	Canada	IT	Italy	MX	Mexico	UZ	United States of America
CF	Central African Republic	JP	Japan	NE	Niger	VN	Uzbekistan Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands		
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	ZW	Zimbabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT			
CU	Cuba	KZ	Kazakstan	RO	Portugal		
cz	Czech Republic	LC	Saint Lucia	RU	Romania		
DE	Germany	LI	Liechtenstein	SD	Russian Federation Sudan		
DK	Denmark	LK	Sri Lanka	SE			
EE	Estonia	LR	Liberia	SE SG	Sweden Singapore		

34

10

20

25

30

35

₹

<u>ئ</u>يو. *

NUCLEIC ACIDS FOR DETECTING ASPERGILLUS SPECIES AND OTHER FILAMENTOUS FUNGI

This invention was made in the Centers for Disease Control

Mycotic Diseases Laboratories, an agency of the United States Government.

Technical Field

This application relates in general to the field of diagnostic microbiology. In particular, the invention relates to the species-specific detection of Aspergillus, Fusarium, Mucor, Penicillium, Rhizopus, Rhizomucor, Absidia, Cunninghamella, Pseudallescheria boydii (Scedosporium apiospermum), and Sporothrix species.

Background of the Invention

In recent years, chemotherapy for hematological malignancies, and high-dose corticosteroid treatment for organ transplant recipients, along with the spread of AIDS, have greatly increased the number of immunocompromised patients (1, 12, 14, 43). Saprophytic filamentous fungi, such as Aspergillus, Rhizopus, and Mucor species, found in the environment and considered to be of low virulence, are now responsible for an increasing number of infections in the immunocompromised host (17, 20, 43). In addition, these infections are often fulminant and rapidly fatal in immunocompromised patients (7, 11, 12, 20, 44). Morbidity and mortality is extremely high; for example, aspergillosis has a mortality rate of approximately 90% (8, 11).

To complicate matters, diagnosis is difficult and symptoms are often non-specific (18, 27, 29, 42, 44). Antibody-based tests can be

-17

4.4

2

5

10

15

20

25

30

35

÷,

1

g g

unreliable due to the depressed or variable immune responses of immunocompromised patents (2, 9, 18, 46). Antigen detection tests developed to date have fallen short of the desired sensitivity (2, 9, 38). Radiographic evidence can be non-specific and inconclusive (5, 29, 36), although some progress in diagnosis has been made with the advent of computerized tomography (40). However, definitive diagnosis still requires either a positive blood or tissue culture or histopathological confirmation (3, 21). An added complication is that the invasive procedures necessary to obtain biopsy materials are often not recommended in thrombocytopenic patient populations (37, 41).

Even when cultures of blood, lung or rhinocerebral tissues are positive, morphological and biochemical identification of filamentous fungi can require several days for adequate growth and sporulation to occur, delaying targeted drug therapy. Some atypical isolates may never sporulate, making identification even more difficult (23). When histopathology is performed on tissue biopsy sections, the morphological similarities of the various filamentous fungi in tissue make differentiation difficult (16). Fluorescent antibody staining of histopathological tissue sections is not specific unless cross-reactive epitopes are absorbed out which can make the resultant antibody reactions weak (14, 19). Therapeutic choices vary (7, 41, 44) making a test to rapidly and specifically identify filamentous fungi urgently needed for the implementation of appropriately targeted therapy. Early and accurate diagnosis and treatment can decrease morbidity and increase the chances for patient survival (6, 27, 39). identification of filamentous fungi to at least the species level would be epidemiologically useful (24, 31, 43, 47).

PCR-based methods of detection, which show promise as rapid, sensitive means to diagnose infections, have been used in the identification of DNA from *Candida* species (13, 15, 30) and some other fungi, particularly *Aspergillus* species (31, 33, 45). However, most of these tests are only genus-specific (28, 38) or are directed to detect only single-copy genes (4, 35). Others have designed probes to detect multi-copy genes so as to increase test sensitivity (31, 33) but in doing so have lost test specificity because they have used highly conserved genes, which detect one or a few species but which are also plagued with cross-reactivities to human, fungal or even viral DNA (25, 31, 33).

Therefore, it is an object of the invention to provide improved materials and methods for detecting and differentiating Aspergillus and other filamentous fungal species in the clinical and laboratory settings.

5

10

15

堆

が大

Ę.

Laste.

4

Summary of the Invention

The present invention relates to nucleic acids for detecting Aspergillus, Fusarium, Mucor, Penicillium, Rhizopus, Rhizomucor, Absidia, Cunninghamella, Pseudallescheria (Scedosporium), and Sporothrix species. Unique internal transcribed spacer 2 coding regions permit the development of probes specific for five different Aspergillus species, A. flavus, A. fumigatus, A. niger, A. terreus, and A. nidulans. The invention thereby provides methods for the species-specific detection and diagnosis of Aspergillus infection in a subject. In addition, species probes have been developed for three Fusarium, four Mucor, two Penicillium, five Rhizopus and one Rhizomucor species, as well as probes for Absidia corymbifera, Cunninghamella elegans, Pseudallescheria boydii (Scedosporium apiospermum), and Sporothrix schenckii. Generic probes for Aspergillus, Fusarium, and Mucor species have also been developed.

20

These and other objects, features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.

Detailed Description of the Invention

25

This invention provides a simple, rapid, and useful method for differentiating filamentous fungal species from each other and from other medically important fungi. This invention enables a rapid, simple and useful method to isolate fungal DNA from host samples, and to apply the species- and genus-specific probes for the diagnosis of a disease. Ultimately, these probes can be used for *in situ* hybridization or *in situ* PCR diagnostics so that the morphology of host tissue, and microorganisms, remain intact.

30

The invention provides nucleic acids containing regions of specificity for five Aspergillus, three Fusarium, four Mucor, two Penicillium, five Rhizopus and one Rhizomucor species as well as probes for Absidia corymbifera, Cunninghamella elegans, Pseudallescheria boydii (Scedosporium apiospremum), and Sporothrix schenckii. These nucleic acids are from the internal transcribed spacer 2 ("ITS2") region of ribosomal deoxyribonucleic

35

A STATE OF

4

F

1

5

10

15

20

25

30

35

acid (rDNA) of the genome of the aforementioned filamentous fungi. The ITS2 region is located between the 5.8S rDNA region and the 28S rDNA region.

In particular, the invention provides nucleic acids from Aspergillus flavus (SEQ ID NO:1), Aspergillus fumigatus (SEQ ID NO:2), Aspergillus niger (SEQ ID NO:3), Aspergillus terreus (SEQ ID NO:4), Aspergillus nidulans (SEQ ID NO:5), Fusarium solani (SEQ ID NO:6), Fusarium moniliforme (SEQ ID NO:7), Mucor rouxii (SEQ ID NO:8), Mucor racemosus (SEQ ID NO:9), Mucor plumbeus (SEQ ID NO:10), Mucor indicus (SEQ ID NO:11), Mucor circinilloides f. circinelloides (SEQ ID NO:12), Rhizopus oryzae (SEQ ID NO:13 and NO:14), Rhizopus microsporus (SEQ ID NO:15 and 16), Rhizopus circinans (SEQ ID NO:17 and 18), Rhizopus stolonifer (SEQ ID NO: 19), Rhizomucor pusillus (SEQ ID NO:20), Absidia corymbifera (SEQ ID NO:21 and 22), Cunninghamella elegans (SEQ ID NO:23), Pseudallescheria boydii (teleomorph of Scedosporium apiospermum) (SEQ ID NO:24, 25, 26, and 27), Penicillium notatum (SEQ ID NO:28), and Sporothrix schenkii (SEQ ID NO:29). These sequences can be used to identify and distinguish the respective species of Aspergillus, Fusarium, Mucor, Rhizopus, and Penicillium, and identify and distinguish these species from each other and from Absidia corymbifera, Cunninghamella elegans, Pseudallescheria boydii(Scedosporium apiospermum), and Sporothrix schenkii.

Furthermore, the invention provides isolated nucleic acid probes derived from GenBank nucleic acid sequences (for Penicillium marneffei and Fusarium oxysporum only) or from the above nucleic acid sequences which may be used as species-specific identifiers of Aspergillus flavus (SEQ ID NO:30 and 31), Aspergillus fumigatus (SEQ ID NO:32), Aspergillus niger (SEQ ID NO:33), Aspergillus terreus (SEQ ID NO:34), Aspergillus nidulans (SEQ ID NO:35), Mucor rouxii (SEQ ID NO:36), Mucor plumbeus (SEQ ID NO:37), Mucor indicus (SEQ ID NO:38), Mucor circinilloides f. circinelloides (SEQ ID NO:39), Mucor racemosus (SEQ ID NO:40), Rhizopus oryzae (SEQ ID NO:41), Rhizopus circinans (SEQ ID NO:42), Rhizomucor pusillus (SEQ ID NO:43), Rhizopus stolonifer (SEQ ID NO:44), Pseudallescheria boydii (Scedosporium apiospermum)(SEQ ID NO:45), Penicillium notatum (SEQ ID NO:46), Penicillium marneffei (SEQ ID NO:47 and 48), Fusarium moniliforme (SEQ ID NO:49), Fusarium oxysporum (SEQ ID NO:50), Fusarium solani (SEQ ID NO:51),

A COLUMN TO A COLU

3

ij.

5

10

15

20

25

30

35

4

NAME OF

Cunninghamella elegans (SEQ ID NO: 52, 53, and 54), Absidia corymbifera (SEQ ID NO:55), Sporothrix schenkii (SEQ ID NO:56), and Rhizopus microsporus (SEQ ID NO:57). Such probes can be used to selectively hybridize with samples containing nucleic acids from species of Aspergillus, Fusarium, Mucor, Rhizopus (or Rhizomucor), Penicillium, or from Absidia corymbifera, Cunninghamella elegans, Pseudallescheria boydii (Scedosporium apiospermum), and Sporothrix schenkii. These fungi can be detected after polymerase chain reaction or ligase chain reaction amplification of fungal DNA and specific probing of amplified DNA with DNA probes labeled with digoxigenin, reacted with anti-digoxigenin antibodies labeled with horseradish peroxidase and a colorimetric substrate, for example. Additional probes can routinely be derived from the sequences given in SEQ ID NOs:1-29, which are specific for the respective species. Therefore, the probes shown in SEQ ID NOs:30-57 are only provided as examples of the species-specific probes that can be derived from SEQ ID NOs:1-29.

Generic probes for Aspergillus (SEQ ID NO:58), Fusarium, (SEQ ID NO:59) and Mucor (SEQ ID NO:60) species have also been developed to identify all members of their respective species which are listed above as well as an all-fungus biotinylated probe (SEQ ID NO:61) to capture all species-specific and generic probes listed above for their detection.

By "isolated" is meant nucleic acid free from at least some of the components with which it naturally occurs. By "selective" or "selectively" is meant a sequence which does not hybridize with other nucleic acids to prevent adequate determination of an Aspergillus, Fusarium, Mucor, Penicillium, Rhizopus or Rhizomucor genus or species or of Absidia corymbifera, Cunninghamella elegans, Pseudallescheria boydii (Scedosporium apiospermum), or Sporothrix schenckii species.

The hybridizing nucleic acid should have at least 70% complementarity with the segment of the nucleic acid to which it hybridizes. As used herein to describe nucleic acids, the term "selectively hybridizes" excludes the occasional randomly hybridizing nucleic acids and thus has the same meaning as "specifically hybridizing". The selectively hybridizing nucleic acids of the invention can have at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, and 99% complementarity with the segment of the sequence to which it hybridizes.

The invention contemplates sequences, probes and primers which selectively hybridize to the complementary, or opposite, strand of DNA

A. 10

74

14

1

•

5

10

15

20

25

30

35

as those specifically provided herein. Specific hybridization with nucleic acid can occur with minor modifications or substitutions in the nucleic acid, so long as functional species-specific or genus-specific hybridization capability is maintained. By "probe" is meant nucleic acid sequences that can be used as probes or primers for selective hybridization with complementary nucleic acid sequences for their detection or amplification, which probes can vary in length from about 5 to 100 nucleotides, or preferably from about 10 to 50 nucleotides, or most preferably about 18 nucleotides. The invention provides isolated nucleic acids that selectively hybridize with the species-specific nucleic acids under stringent conditions and should have at least 5 nucleotides complementary to the sequence of interest. See generally, Maniatis (26).

If used as primers, the invention provides compositions including at least two nucleic acids which hybridize with different regions so as to amplify a desired region. Depending on the length of the probe or primer, target region can range between 70% complementary bases and full complementarity and still hybridize under stringent conditions. For example, for the purpose of diagnosing the presence of the Aspergillus, the degree of complementarity between the hybridizing nucleic acid (probe or primer) and the sequence to which it hybridizes (e.g., Aspergillus DNA from a sample) is at least enough to distinguish hybridization with a nucleic acid from other yeasts and filamentous fungi. The invention provides examples of nucleic acids unique to each filamentous fungus in the listed sequences so that the degree of complementarity required to distinguish selectively hybridizing from nonselectively hybridizing nucleic acids under stringent conditions can be clearly determined for each nucleic acid.

Alternatively, the nucleic acid probes can be designed to have homology with nucleotide sequences present in more than one species of the fungi listed above. Such a nucleic acid probe can be used to selectively identify a group of species such as the generic probes listed for Aspergillus (SEQ ID NO:58), Fusarium (SEQ ID NO:59), and Mucor (SEQ ID NO:60) as well as all fungi listed (SEQ ID NO:61). Additionally, the invention provides that the nucleic acids can be used to differentiate the filamentous fungi listed in general from other filamentous fungi and yeasts, such as Candida species. Such a determination is clinically significant, since therapies for these infections differ.

The invention further provides methods of using the nucleic acids to detect and identify the presence of the filamentous fungi listed, or

THE PARTY OF THE P

N. Carlo

Š

5

5

10

15

20

25

30

35

particular species thereof. The method involves the steps of obtaining a sample suspected of containing filamentous fungi. The sample may be taken from an individual, such as blood, saliva, lung lavage fluids, vaginal mucosa, tissues, etc., or taken from the environment. The filamentous fungal cells can then be lysed, and the DNA extracted and precipitated. The DNA is preferably amplified using universal primers derived from the internal transcribed spacer regions, 18S, 5.8S and 28S regions of the filamentous fungal rDNA. Examples of such universal primers are shown below as ITS1 (SEQ ID NO: 62), ITS3 (SEQ ID NO: 63), ITS4 (SEQ ID NO: 64). Detection of filamentous fungal DNA is achieved by hybridizing the amplified DNA with a species-specific probe that selectively hybridizes with the DNA. Detection of hybridization is indicative of the presence of the particular genus (for generic probes) or species (for species probes) of filamentous fungus.

Preferably, detection of nucleic acid (e.g. probes or primers) hybridization can be facilitated by the use of detectable moieties. For example, the species-specific or generic probes can be labeled with digoxigenin, and an all-fungus probe, such as described in SEQ ID NO:61, can be labeled with biotin and used in a streptavidin-coated microtiter plate assay. Other detectable moieties include radioactive labeling, enzyme labeling, and fluorescent labeling, for example.

The invention further contemplates a kit containing one or more species-specific probes, which can be used for the detection of particular filamentous fungal species and genera in a sample. Such a kit can also contain the appropriate reagents for hybridizing the probe to the sample and detecting bound probe. The invention may be further demonstrated by the following non-limiting examples.

Examples

In this example, PCR assay employing universal, fungus-specific primers and a simple, rapid EIA-based format for amplicon detection were used.

Extraction of Filamentous Fungal DNA

A mechanical disruption method was used to obtain DNA from filamentous fungal species and an enzymatic disruption method described previously (13) was used to obtain DNA from yeasts. Filamentous fungi were grown for 4 to 5 days on Sabouraud dextrose agar slants (BBL,

10

15

20

25

30

35

- 14

 \hat{n}_{i}

Ð

γ£.

division of Becton Dickinson, Cockeysville, MD) at 35°C. Two slants were then washed by vigorously pipeting 5 mls of 0.01 M potassium phosphate buffered saline (PBS) onto the surface of each slant and the washes were transferred to 500 ml Erlenmeyer flasks containing 250 ml of Sabouraud dextrose broth (BBL). Flasks were then incubated for 4 to 5 days on a rotary shaker (140 rpm) at ambient temperature. Growth was then harvested by vacuum filtration through a sterile Whatman #1 filter paper which had been placed into a sterile Buchner funnel attached to a 2 L sidearm flask. The resultant cellular mat was washed on the filtration apparatus three times with sterile distilled water, removed from the filter paper by gentle scraping with a rubber policeman, and placed into a sterile Petri plate which was then sealed with parafilm and frozen at -20°C until used.

Just prior to use, a portion of the frozen cellular mat, equal in size to a quarter, was removed and placed into a cold mortar (6" diameter). Liquid nitrogen was added to cover the mat which was then ground into a powder with a pestle. Additional liquid nitrogen was added as needed to keep the mat frozen during grinding.

DNA was then purified using proteinase K and RNase treatment, multiple phenol extractions, and ethanol precipitation by conventional means (26).

PCR amplification

The fungus-specific, universal primer pair ITS3 (5'-GCA TCG ATG AAG AAC GCA GC-3') (SEQ ID NO: 63) and ITS4 (5'-TCC TCC GCT TAT TGA TAT GC-3') (SEQ ID NO: 64) was used to amplify a portion of the 5.8S rDNA region, the entire ITS2 region, and a portion of the 28S rDNA region for each species as previously described (13, 34). DNA sequencing used this primer pair and also the fungus-specific, universal primer pair ITS1 (5'-TCC GTA GGT GAA CCT GCG G-3') (SEQ ID NO: 62) and ITS4 to amplify a portion of the 18S rDNA region, the entire ITS1 and ITS2 regions, and a portion of the 28S rDNA region.

A DNA reagent kit (TaKaRa Biomedicals, Shiga, Japan) was used for PCR amplification of genomic DNA. PCR was performed using 2 μ l of test sample in a total PCR reaction volume of 100 μ l consisting of 10 μ l of 10X Ex Taq buffer, 2.5 mM each of dATP, dGTP, dCTP, and dTTP, in 8 μ l, 0.2 μ M of each primer, and 0.5 U of TaKaRa Ex Taq DNA polymerase.

5

10

Thirty cycles of amplification were performed in a Perkin-Elmer 9600 thermal cycler (Emeryville, CA) after initial denaturation of DNA at 95°C for 5 minutes. Each cycle consisted of a denaturation step at 95°C for 30 seconds, an annealing step at 58°C for 30 seconds, and an extension step at 72°C for 1 minute. A final extension at 72°C for 5 minutes followed the last cycle. After amplification, samples were stored at -20°C until used.

Table 1
Synthetic Universal Oligonucleotides Used in PCR and Hybridization Analyses

Primers or Probes	Nucleotide Sequence (5' to 3')	Chemistry and Location					
ITS3	GCA TCG ATG AAG AAC GCA GC (SEQ ID NO:63)	5.8S rDNA universal 5' primer					
ITS4	TCC TCC GCT TAT TGA TAT GC (SEQ ID NO:64)	28S rDNA universal 3' primer					
ITS1	TCC GTA GGT GAA CCT GCG G (SEQ ID NO:62)	18S rDNA universal 5' primer					

DNA sequencing

Primary DNA amplifications were conducted as described above. The aqueous phase of the primary PCR reaction was purified using QIAquick Spin Columns (Quiagen, Chatsworth, CA). DNA was eluted from each column with 50 μ l of heat-sterilized Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, pH 8.0).

Purified DNA was labeled using a dye terminator cycle sequencing kit (ABI PRISM, Perkin Elmer, Foster City, CA). One mix was made for each of the primers so that sequencing could be performed in both the forward and reverse directions. The reaction volume (20 μ l) contained 9.5 μ l Terminator Premix, 2 μ l (1 ng) DNA template, 1 μ l primer (3.2 pmol) and 7.5 μ l heat-sterilized distilled H₂O. The mixture was then placed into a pre-heated (96°C) Perkin Elmer 9600 thermal cycler for 25 cycles of 96°C

25

20

15

BNSDOCID: <WO 9850584A2 1 >

15

25

35

4

表為

. 1

20

43

GCATCGATGA

for 10 seconds, 50°C for 5 seconds, 60°C for 4 minutes. The PCR product was then purified before sequencing using CentriSep spin columns (Princeton Separations, Adelphia, NJ). DNA was then vacuum dried, resuspended in 6 µl of formamide-EDTA (5 µl deionized formamide plus 1 µl 50 mM EDTA, pH 8.0), and denatured for 2 min at 90°C prior to sequencing using an automated capillary DNA sequencer (ABI Systems, Model 373, Bethesda, MD).

The sequencing results were as follows:

Aspergillus flavus 5.8S ribosomal RNA gene, partial sequence, internal transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial 10 sequence.

GCTGCCCATC **AAGCACGGC** TTGTGTGTTG GGTCGTCGTC CCCTCTCCGG GGGGGACGGG CCCCAAAGGC AGCGGCGCA CCGCGTCCGA TCCTCGAGCG **TATGGGGCTT** TGTCACCCGC TCTGTAGGCC CGGCCGCCC TTGCCGAACG CAAATCAATC TTTTTCCAGG TTGACCTCGG ATCAGGTAGG GATACCCGCT GAACTTCAA (SEQ ID NO:1)

Aspergillus fumigatus 5.8S ribosomal RNA gene, partial sequence, internal transcribed spacer 2, complete sequence, and 28S ribosomal 20 RNA gene, partial sequence. AAACTTTCAA CAATGGATCT

AGAACGCAGC GAAATGCGAT AACTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAGTCT TTGAACGCAC ATTGCGCCCC CTGGTATTCC GGGGGGCATG CCTGTCCGAG CGTCATTGCT GCCCATCAAG CACGGCTTGT GTGTTGGGCC CCCGTCCCCC TCTCCCGGGG GACGGGCCCG AAAGGCAGCG GCGCACCGC GTCCGGTCCT CGAGCGTATG GGGCTTGTCA CCTGCTCTGT AGGCCCGGCC GGCGCCAGCC GACACCCAAC TTTATTTTTC

CTTGGTTCCG

TAAGGTTGAC CTCGGATCAG GTAGGGATAC CCGCTGAACT TAAA 30 (SEQ ID NO:2)

Aspergillus niger 5.8S ribosomal RNA gene, partial sequence, internal transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial sequence.

AAACTTTCAA CAATGGATCT CTTGGTTCCG **GCATCGATGA** AGAACGCAGC GAAATGCGAT AACTAATGTG AATTGCAGAA

ID NO:4)

ģ

.

200

5

TTCAGTGAAT **CATCGAGTCT** TTGAACGCAC **ATTGCGCCCC** GGGGGCATG CTGGTATTCC CCTGTCCGAG **CGTCATTGCT GCCCTCAAGC** ACGGCTTGTG **TGTTGGGTCG** CCGTCCCCCT CTCCCGGGGG ACGGGCCCGA AAGGCAGCGG **CGGCACCGCG TCCGATCCTC** GAGCGTATGG GGCTTTGTCA CCTGCTCTGT AGGCCCGGCC GGCGCCTGCC **GACGTTATCC AACCATTTTT** TTCCAGGTTG ACCTCGGATC AGGTAGGGAT ACCCGCTGAA CTTAA (SEQ ID NO:3)

- Aspergillus terreus 5.8S ribosomal RNA gene, partial sequence, internal transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial sequence.
- AAACTTTCAA CAATGGATCT CTTGGTTCCG **GCATCGATGA** AGAACGCAGC GAAATGCGAT AACTAATGTG **AATTGCAGAA** 15 TTCAGTGAAT CATCGAGTCT **ATTGCGCCCC** TTGAACGCAC CTGGTATTCC GGGGGGCAT GCCTGTCCGA **GCGTCATTGC** TGCCCTCAAG CCCGGCTTGT GTGTTGGGCC CTCGTCCCCC GGCTCCCGGG GGACGGCCC GAAAGGCAGC **GGCGGCACCG** CGTCCGGTCC **TCGAGCGTAT GGGGCTTCGT CTTCCGCTCC** GTAGGCCCGG CCGGCGCCCT 20 **TTATTTGCAA** CTTGTTTTT TTTCCAGGTT GACCTCGGAT CAGGT (SEQ
- Aspergillus nidulans 5.8S ribosomal RNA gene, partial sequence, internal transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial sequence.
- AAACTTTCAA CAATGGATCT CTTGGTTCCG **GCATCGATGA** AGAACGCAGC GAACTGCGAT AAGTAATGTG **AATTGCAGAA** TTCAGTGAAT **CATCGAGTCT** TTGAACGCAC ATTGCGCCCC 30 GGGGGCATG CTGGCATTCC CCTGTCCGAG CGTCATTGCT GCCCTCAAGC CCGGCTTGTG TGTTGGGTCG TCGTCCCCC CCCCGGGGGA CGGGCCCGAA AGGCAGCGGC GGCACCGGTC CGGTCCTCGA GCGTATGGGG CTTGGTCACC **CGCTCGATTA** GGGCCGGCCG GGCGCCAGCC GGCGTCTCCA ACCTTATCTT TCTCAGGTTG ACCTCGGATC AGGTAGGGAT ACCCGCTGAA CTTAA 35 (SEQ ID NO:5)

*

1

5

10

25

30

35

桶

Fusarium solani (strain ATCC62877) internal transcribed spacer 2 and adjacent regions.

GAAAATGCGA TAAGTAATGT GAATTGCAGA ATTCAGTGAA
TCATCGAATC TTTGAACGCA CATTGCGCCC GCCAGTATTC
TGGCGGGCAT GCCTGTTCGA GCGTCATTAC AACCCTCAGG
CCCCCGGGCC TGGCGTTGGG GATCGGCGGA AGCCCCCTGC
GGGCACAACG CCGTCCCCCA AATACAGTGG CGGTCCCGCC
GCAGCTTCCA TTGCGTAGTA GCTAACACCT CGCAACTGGA
GAGCGGCGCG GCCACGCCGT AAAACACCCA ACTTCTGAAT
GTTGACCTCG AATCAGGTAG GAATACCCGC TGAACTTAA (SEQ ID
NO:6)

Fusarium moniliforme (strain ATCC38519) internal transcribed spacer 2 and adjacent regions.

15 AAATGCGATA AGTAATGTGA ATTGCAAAAT TCAGTGAATC ATCGAATCTT TGAACGCACA TTGCGCCCGC **CAGTATTCTG** GCGGCATGC CTGTTCGAGC GTCATTTCAA CCCTCAAGCC CCCGGGTTTG GTGTTGGGGA TCGGCAAGCC CTTGCGGCAA GCCGGCCCCG AAATCTAGTG GCGGTCTCGC TGCAGCTTCC 20 ATTGCGTAGT AGTAAAACCC TCGCAACTGG TACGCGGCGC GGCCAAGCCG TTAAACCCCC AACTTCTGAA **TGTTGACCTC** GGATCAGGTA GGAATACCCG CTGAACTTAA (SEQ ID NO:7)

Mucor rouxii (strain ATCC24905) internal transcribed spacer 2 and adjacent regions.

AAAGTGCGAT AACTAGTGTG AATTGCATAT TCAGTGAATC ATCGAGTCTT TGAACGCAAC TTGCGCTCAT **TGGTATTCCA** ATGAGCACGC CTGTTTCAGT ATCAAAACAA ACCCTCTATC CAGCATTTTG TTGAATAGGA ATACTGAGAG TCTCTTGATC TATTCTGATC TCGAACCTCT TGAAATGTAC AAAGGCCTGA TCTTGTTTAA ATGCCTGAAC TTTTTTTAA TATAAAGAGA AGCTCTTGCG GTAAACTGTG CTGGGGCCTC CCAAATAATA CTCTTTTTAA ATTTGATCTG AAATCAGGCG **GGATTACCCG** CTGAACTTAA (SEQ ID NO:8)

Mucor racemosus (strain ATCC22365) internal transcribed spacer 2 and adjacent regions.

AAAGTGCGAT AACTAGTGTG AATTGCATAT **TCAGTGAATC** ATCGAGTCTT **TGAACGCAAC** TTGCGCTCAT **TGGTATTCCA** ATGAGCACGC **CTGTTTCAGT** ATCAAAACAA **ACCCTCTATC** CAACTTTTGT TGTATAGGAT **TATTGGGGGC CTCTCGATCT** TGAAATCCCT GTATAGATCT GAAATTTACT **AAGGCCTGAA** CTTGTTTAAA TGCCTGAACT TTTTTTTAAT ATAAAGGAAA GCTCTTGTAA TTGACTTTGA TGGGGCCTCC CAAATAAATC TCTTTTAAAT TTGATCTGAA ATCAGGCGGG **ATTACCCGCT** GAACTTAA (SEQ ID NO:9)

10

5

自然ない湯

÷

ų.

蘇

-

180

ä

Mucor plumbeus (strain ATCC4740) internal transcribed spacer 2 and adjacent regions.

AAAGTGCGAT AACTAGTGTG **AATTGCATAT TCAGTGAATC** ATCGAGTCTT TGAACGCAAC **TTGCGCTCAT TGGTATTCCA** 15 ATGAGCACGC CTGTTTCAGT **ACCCTCTATC** ATCAAAACAA CAACTTTTGT **TGTATAGGAT** TATTGGGGGC **CTCTCGATCT** GTATAGATCT TGAAACCCTT GAAATTTACT AAGGCCTGAA CTTGTTTAAT GCCTGAACTT TTTTTTAATA TAAAGGAAAG CTCTTGTAAT TGACTTTGAT GGGGCCTCCC **AAATAAATCT** 20 TTTTTAAATT **TGATCTGAAA** TCAGGTGGGA **TTACCCGCTG** AACTTAA (SEQ ID NO:10)

Mucor indicus (strain ATCC4857) internal transcribed spacer 2 and adjacent regions.

- 25 AAAGTGCGAT AACTAGTGTG **AATTGCATAT TCAGTGAATC** ATCGAGTCTT **TGAACGCATC** TTGCACTCAA **TGGTATTCCA** TTGAGTACGC CTGTTTCAGT **ATCAAAAAC AACCCTTATT** CAAAATTCTT TTTTTGAATA GATATGAGTG **TAGCAACCTT** ACAAGTTGAG ACATTTTAAA TAAAGTCAGG CCATATCGTG 30 GATTGAGTGC **CGATACTTTT** TTAATTTGA AAAGGTAAAG CATGTTGATG TCCGCTTTTT GGGCCTCCCA **AATAACTTTT** TAAACTTGAT CTGAAATCAG GTGGGATTAC CCGCTGAACT TAA (SEQ ID NO:11)
- 35 Mucor circinelloides f. circinelloides (strain ATCC1209B) internal transcribed spacer 2 and adjacent regions.

AAAGTGCGAT AACTAGTGTG AATTGCATAT **TCAGTGAATC** ATCGAGTCTT **TGAACGCAAC** TTGCGCTCAT **TGGTATTCCA** ATGAGCACGC **CTGTTTCAGT** ATCAAAACAA **ACCCTCTATC** CAACATTTTT **GTTGAATAGG** ATGACTGAGA GTCTCTTGAT CTATTCTGAT CTCGAAGCTC TTGAAATGTA CAAAGGCCTG ATCTTGTTTG CTTTTTTTA AATGCCTGAA **ATATAAAGAG** AAGCTCTTGC GGTAAACTGT **GCTGGGGCCT** CCCAAATAAC ACATCTTTAA ATTTGATCTG **AAATCAGGT GGGACTACCC** GCTGAACTT AA (SEQ ID NO:12)

10

5

梅田

高いの

4

S

.

Rhizopus oryzae (strain ATCC34965) internal transcribed spacer 2 and adjacent regions.

AGTGCGATAA **CTAGTGTGAA** TTGCATATTC **AGTGAATCAT** CGAGTCTTTG AACGCAGCTT GCACTCTATG **GTTTTTCTAT** 15 AGAGTACGCC TGCTTCAGTA TCATCACAAA CCCACACATA ACATTTGTTT ATGTGGTGAT GGGTCGCATC GCTGTTTTAT TACAGTGAGC ACCTAAAATG TGTGTGATTT TCTGTCTGGC TTGCTAGGCA **GGAATATTAC** GCTGGTCTCA **GGATCTTTTT** TTTTGGTTCG CCCAGGAAGT AAAGTACAAG AGTATAATCC 20 AGTAACTTTC AAACTATGAT CTGAAGTCAG GTGGGATTAC CCGCTGAACT TAA (SEQ ID NO:13)

Rhizopus oryzae (strain ATCC11886) internal transcribed spacer 2 and adjacent regions.

- 25 AGTGCGATAA CTAGTGTGAA **TTGCATATTC AGTGAATCAT** CGAGTCTTTG **AACGCAGCTT** GCACTCTATG **GTTTTTCTAT** AGAGTACGCC TGCTTCAGTA TCATCACAAA CCCACACATA ACATTTGTTT **ATGTGGTAAT** GGGTCGCATC **GCTGTTTTAT** TACAGTGAGC ACCTAAAATG TGTGTGATTT TCTGTCTGGC 30 TTGCTAGGCA **GGAATATTAC** GCTGGTCTCA **GGATCTTTTT** CTTTGGTTCG CCCAGGAAGT AAAGTACAAG AGTATAATCC AGCAACTTTC AAACTATGAT CTGAAGTCAG GTGGGATTAC CCGCTGAACT TAA (SEQ ID NO:14)
- 35 Rhizopus microsporus (strain ATCC14056) internal transcribed spacer 2 and adjacent regions.

AAAGTGCGAT AACTAGTGTG AATTGCATAT **TCGTGAATCA GAACGCAGCT** TCGAGTCTTT **TGCACTCTAT GGATCTTCTA** TAGAGTACGC TTGCTTCAGT ATCATAACCA **ACCCACACAT AAAATTTATT** TTATGTGGTG **ATGGACAAGC TCGGTTAAAT TACCGATTGT** TTAATTATTA CTAAAATACA **GCCTCTTTGT** AAATTACGAA **AATTTTCATT CTACCTAGCC ATCGTGCTTT** TTTGGTCCAA CCAAAAACA TATAATCTAG **GGGTTCTGCT** AGCCAGCAGA TATTTTAATG ATCTTTAACT **ATGATCTGAA** GTCAAGTGGG ACTACCCGCT GAACTTAA (SEQ ID NO:15)

10

5

1

3.4

*

ű

Rhizopus microsporus (strain ATCC12276) internal transcribed spacer 2 and adjacent regions.

AAAGTGCGAT AACTAGTGTG AATTGCATAT **TCGTGAATCA** TCGAGTCTTT GAACGCAGCT **TGCACTCTAT GGATCTTCTA** 15 TAGAGTACGC TTGCTTCAGT ATCATAACCA **ACCCACACAT** TTATGTGGTG ATGGACAAGC AAAATTTATT TCGGTTAAAT TTAATTATTA TACCGATTGT CTAAAATACA GCCTCTTTGT **AATTTTCATT** AAATTACGAA CTACCTAGCC **ATCGTGCTTT** TTTGGTCCAA CCAAAAAACA **TATAATCTAG GGGTTCTGCT** 20 AGCCAGCAAA TATTTTAATG ATCTTTAACC **TATGATCTGA** AGTCAAGTGG GACTACCCGC TGAACTTAA (SEQ ID NO:16)

Rhizopus circinans (strain ATCC34106) internal transcribed spacer 2 and adjacent regions.

25 AAATTGCGAT **AACTAGTGTG AATTGCATTT** TCAGTGAATC ATCGAGTCTT TGAACGCAT CTTGCGCTCT **TGGGATTCTT CCCTAGAGCA** CACTTGCTTC AGTATCATAA CAAAACCCTC ACCTAATATT TTTTTTTTT **TATTAGAGTG** AAAAAAAAA GTATTGGGGT CTCTTTGGTA ATTCTTTGTA **ATTATAAAAG** 30 TACCCTTAAA **TGTCATAAAC** AGGTTAGCTT **TAGCTTGCCT** TTAAAGATCT **TCTTAGGGTA** TCATTACTTT **TCGTAAATCT** TTAATAGGCC **TGTCACATAA** TTCTACCCTT **AAATTTCTTA** AACCTTGATC TGAAGTCAAG TGGGAGTACC CGCTGAACTT AA (SEQ ID NO:17)

35

S

::5

3

ď

15

Rhizopus circinans (strain ATCC34101) internal transcribed spacer 2 and adjacent regions.

AAATTGCGAT AACTAGTGTG AATTGCATTT **TCAGTGAATC** ATCGAGTCTT TGAACGCATC TTGCGCTCTT **GGGATTCTTC** 5 CCTAGAGCAC ACTTGCTTCA GTATCATAAC **AAAACCCTCA** CCTAATATTT TTTTTTAAAA AAAAAAATA TTAGAGTGGT ATTGGGGTCT CTTTGGTAAT TCTTTGTAAT **TATAAAAGTA** CCCTTAAATG TCATAAACAG GTTAGCTTTA GCTTGCCTTT AAAGATCTTC **TTAGGGTATC** ATTACTTTTC **GTAAATCTTT** 10 AATAGGCCTG TCACATAATT CTACCCTTAA ATTTCTTAAA CCTTGATCTG AAGTCAAGTG GGAGTACCCG CTGAACTTAA (SEQ ID NO:18)

Rhizous stolonifer (strains ATCC14037 and 6227A) internal transcribed spacer 2 and adjacent regions.

AAAGTGCGAT AACTAGTGTG AATTGCATAT **TCAGTGAATC** ATCGAGTCTT TGAACGCAAC TTGCACTCTA **TGGTTTTCCG** TAAAGTACGC TTGCTTCAGT ATCATAAAGA CCCCATCCTG ATTATTATTT TTTTATTAAA ATAATTAATT **TTGGAGATAA** 20 TAAAAATGAG GCTCTTTCTT TTCTTTTTT TTTTTTAAA AAAAAGGGG GGAAAGGGTC TTTTAAAATG GGCAAATTCT GGGTTTTTTA CTAAACCTGA ACTCCCCCA AAAATTCAAA AAAAAAAAA TGGGTTTTAC CAAATTTTTT TTTTTTTTTT CCTTTTTGTG TAGTTAATAC TCTATTAAAT **TTATTTACTT**

30 Rhizomucor pusillus (strain ATCC36606) internal transcribed spacer 2 and adjacent regions.

AAATTGCGAA AAGTAATGCG ATCTGCAGCC **TTTGCGAATC** ATCGAATTCT CGAACGCACC **TTGCACCCTT TGGTTCATCC** ATTGGGTACG TCTAGTTCAG TATCTTTATT **AACCCCTAAA** GGTTTATTTT TTGATAAATC TTTGGATTTG **CGGTGCTGAT** GGATTTTCAT CCGTTCAAGC TACCCGAACA **ATTTGTATGT** TGTTGACCCT TGATATTTCC TTGAGGGCTT **GCATTGGTAT**

35

1

O

20

ŧ3

TTCTTGAACT

CTAATTTTT ACCAGTGTGC TTCGAGATGA **TCAAGTATAA** AGGTCAATCA ACCACAAATA AATTTCAACT **ATGGATCTGA** ACTTAGATGG GATTACCCGC TGAACTTAA (SEO ID NO:20)

Absidia corymbifera (strain ATCC46774) internal transcribed spacer 2 and 5 adjacent regions. **AAAGTGCGAT** AATTATTGCG **ACTTGCATTC ATAGCGAATC** ATCGAGTTCT **CGAACGCATC** TTGCGCCTAG **TAGTCAATCT** ACTAGGCACA **GTTGTTTCAG TATCTGCAAC TACCAATCAG** TTCAACTTGG TTCTTTGAAC 10 CTAAGCGAGC **TGGAAATGGG** CTTGTGTTGA **TGGCATTCAG** TTGCTGTCAT **GGCCTTAAAT** ACATTTAGTC CTAGGCAATT **GGCTTTAGTC ATTTGCCGGA** TGTAGACTCT AGAGTGCCTG **AGGAGCAACG ACTTGGTTAG** TGAGTTCATA ATTCCAAGTC

15 AGGTCTTAAT CTTTATGGAC **TAGTGAGAGG ATCTAACTTG** GGTCTTCTCT TAAAACAAAC **ATCTGAAATC TCACATCTAG** AACTGAGATC ACCCGCTGAA CTTAA (SEQ ID NO:21)

AATCAGTCTC

Absidia corymbifera (strain ATCC46773) internal transcribed spacer 2 and 20 adjacent regions.

AAAGTGCGAT **AATTATTGCG** ACTTGCATTC **ATAGTGAATC** ATCGAGTTCT **TGAACGCATC** TTGCGCCTAG **TAGTCAATCT** ACTAGGCACA GTTGTTTCAG TATCTGCATC **CACCAATCAA** CTTAACCTTT TGTGTTGAGT TGGAACTGGG **CTTCTAGTTG** 25 ATGGCATTTA GTTGCTGTCA TGGCCTTAAA **TCAATGTCCT** AGGTGTTAGA ACATCTAACA CCGGATGGAA **ACTTTAGAGC** GCTTTAAGAG CAGCTTGGTT AGTGAGTTCA **ATAATTCCAA** GCATTAAGTC TTTTAATGAA CTAGCTTTTC **TATCTATGGG** ACACTACTTG GAGAAATCCA AGTAACCTTT **AAACTCCCAT** TTAGATCTGA AATCAACTGA GACCACCCGC TGAACTTAA (SEQ ID 30 NO:22)

> Cunninghamella elegans (strain ATCC42113) internal transcribed spacer 2 and adjacent regions.

35 AAATCGCGAT ATGTAATGTG ACTGCCTATA **GTGAATCATC** AAATCTTTGA **AACGCATCTT GCACCTTATG GTATTCCATA** AGGTACGTCT GTTTCAGTAC CACTAATAAA **TCTCTCTCTA**

TCCTTGATGA TAGAAAAAAA AAAAATAATT TTTACTGGGC CCGGGGAATC CTTTTTTTT TTTAATAAAA AGGACCAATT TTGGCCCAAA AAAAAGGGTT GAACTTTTTT TACCAGATCT TGCATCTAGT AAAAACCTAG TCGGCTTTAA TAGATTTTTA TTTTCTATTA AGTTTATAGC CATTCTTATA TTTTTTAAAA TCTTGGCCTG AAATCAGATG GGATACCCGC TGAACTTAA (SEQ ID NO:23)

Pseudallescheria boydii (strain ATCC44328) internal transcribed spacer 2 and adjacent regions (teleomorph of Scedosporium apiospermum).

AAATGCGATA AGTAATGTAA ATTGCAAAAT TCAGTGAATC ATCGAATCTT TGAAACGCAC ATTGCGCCCG GCAGTAATCT GCCGGGCATG CCTGTCCGAG CGTCATTTCA ACCCTCGAAC

CTCCGTTTC CTTAGGGAAG CCTAGGGTCG GTGTTGGGGC

GCTACGGCAA GTCCTCGCAA CCCCCGTAGG CCCTGAAATA
CAGTGGCGGT CCCGCCGCGG TTGCCTTCTG CGTAGTAAGT
CTCTTTTGCA AGCTCGCATT GGGTCCCGGC GGAGGCCTGC
CGTCAAACCA CCTAACAACT CCAGATGGTT TGACCTCGGA
TCAGGTAGGG TTACCCGCTG AACTTAA (SEQ ID NO:24)

20

25

30

5

À

MS.

Ň

.

54

Ţ.,

Pseudallescheria boydii (strain ATCC36282) internal transcribed spacer 2 and adjacent regions (teleomorph of Scedosporium apiospermum).

GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAAT CATCGAATCT TTGAAACGCA CATTGCGCCC **GGCAGTAATC** GCCTGTCCGA GCGTCATTTC AACCCTCGAA TGCCGGGCAT CCTCCGTTTC CTCAGGGAAG CTCAGGGTCG GTGTTGGGGC GCTACGGCAA GTCTTCGCAA CCCTCCGTAG GCCCTGAAAT ACAGTGGCGG TCCCGCCGCG GTTGCCTTCT GCGTAGAAGT CTCTTTTGCA AGCTCGCATT GGGTCCCGGC GGAGGCCTGC CGTCAAACCA CCTATAACTC CAAATGGTTT GACCTCGGAT CAGGTAGGGT TACCCGCTGA ACTTAA (SEQ ID NO:25)

Scedosporium apiospermum (strain ATCC64215) internal transcribed spacer 2 and adjacent regions.

GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAATC
ATCGAATCTT TGAACGCACA TTGCGCCCGG CAGTAATCTG
CCGGGCATGC CTGTCCGAGC GTCATTTCAA CCCTCGAACC

TCCGTTTCCT CAGGGAAGCT CAGGGTCGGT GTTGGGGCGC TACGGCGAGT CTTCGCGACC CTCCGTAGGC CCTGAAATAC AGTGGCGGTC CCGCCGGGT TGCCTTCTGC GTAGTAAGTC TCTTTTGCAA GCTCGCATTG GGTCCCGGCG GAGGCCTGCC GTCAAACCAC CTATAACTCC AGATGGTTTG ACCTCGGATC AGGTAGGTAC CCGCTGAACT TAA (SEQ ID NO:26)

Scedosporium apiospermum (strain ATCC46173) internal transcribed spacer 2 and adjacent regions.

- AAATGCGATA AGTAATGTGA ATTGCAGAAT 10 **TCAGTGAATC ATCGAATCTT** TGAACGCACA TTGCGCCCGG **CAGTAATCTG** CCGGGCATGC CTGTCCGAGC GTCATTTCAA **CCCTCGAACC** TCCGTTTCCT CAGGGAAGCT CAGGGTCGGT **GTTGGGGCGC** TACGGCGAGT CTTCGCGACC CTCCGTAGGC **CCTGAAATAC** AGTGGCGGTC CCGCCGCGGT TGCCTTCTGC 15 **GTAGTAAGTC** TCTTTTGCAA GCTCGCATTG GGTCCCGGCG GAGGCCTGCC GTCAAACCAC CTATAACTCC AGATGGTTTG **ACCTCGGATC** AGGTAGGTAC CCGCTGAACT TAA (SEQ ID NO:27)
- 20 Penicillium notatum (strain ATCC10108) internal transcribed spacer 2 and adjacent regions.

AAATGCGATA CGTAATGTGA ATTGCAAATT CAGTGAATCA
TCGAGTCTT TGAACGCACA TTGCGCCCCC TGGTATTCCG
GCGGGCATGC CTGTCCGAGC GTCATTGCTG CCCTCAAGCA
CGGCTTGTGT GTTGGGCCCC GTCCTCCGAT CCCGGGGGAC
GGGCCCGAAA GGCAGCGGCG GCACCGCGTC CGGTCCTCGA
GCGTATGGGG CTTTGTCACC CGCTCTGTAG GCCCGGCCGG
CGCTTGCCGA TCAACCCAAA TTTTTATCCA GGTTGACCTC
GGATCAGGTA GGGATACCCG CTGAACTTAA (SEQ ID NO:28)

30

AND SHAPE

3

1

7

1

5

Sporothrix schenckii (strain ATCC14284) internal transcribed spacer 2 and adjacent regions.

GAAATGCGAT ACTAATGTGA ATTGCAGAAT TCAGCGAACC
ATCGAATCTT TGAACGCACA TTGCGCCCGC CAGCATTCTG

GCGGGCATGC CTGTCCGAGC GTCATTTCCC CCCTCACGCG
CCCCGTTGCG CGCTGGTGTT GGGGCGCCCT CCGCCTGGCG
GGGGGCCCCC GAAAGCGAGT GGCGGGCCCT GTGGAAGGCT

CCGAGCGCAG TACCGAACGC ATGTTCTCCC CTCGCTCCGG AGGCCCCCA GGCGCCCTGC CGGTGAAAAC GCGCATGACG CGCAGCTCTT TTTACAAGGT TGACCTCGGA TCAGGTGAGG ATACCCGCTG ACTTAA (SEQ ID NO:29)

5

4

THE PARTY NAMED IN

φά

4

7

101

34

Contamination precautions

Precautions were taken to avoid possible contamination of PCR samples by following the guidelines of Fujita and Kwok (13, 22). All buffers and distilled water used for PCR assays were autoclaved and fresh PCR reagents were aliquoted prior to use. Physical separation of laboratory areas used to prepare PCR assays and to analyze PCR products, and the use of aerosol-resistant pipette tips, reduced possible cross-contamination of samples by aerosols. Appropriate negative controls were included in each test run, including controls omitting either the primer or the DNA template during PCR assays.

15

10

Agarose gel electrophoresis

20

Gel electrophoresis was conducted in TBE buffer (0.1 M Tris, 0.09 M boric acid, 1 mM EDTA, pH 8.4) at 80 V for 1 to 2 hours using gels composed of 1% (w/vol) agarose (International Technologies, New Haven, CT) and 1% (w/vol) NuSieve agar (FMC Bioproducts, Rockland, ME). Gels were stained with 0.5 μ g of ethidium bromide (EtBr) per ml of distilled H₂O for 10 minutes followed by three serial washes for 10 minutes each with distilled H₂O.

25

Microtitration plate enzyme immunoassay for the detection of PCR products

30

Amplicons were detected using species-specific and genus probes labeled with digoxigenin and all-filamentous fungal probe labeled with biotin in a streptavidin-coated microtiter plate format (13, 34). Ten µl of PCR product was added to each 1.5 ml Eppendorf tube. Single-stranded DNA was then prepared by heating the tubes at 95°C for 5 minutes and cooling immediately on ice. Two-tenths of a ml of hybridization solution [4x SSC (saline sodium citrate buffer, 0.6 M NaCl, 0.06 M trisodium citrate, pH 7.0) containing 20 mM Hepes, 2 mM EDTA, and 0.15% (vol/vol) Tween 20] supplemented with 50 ng/ml each of the all-Aspergillus biotinylated probe and a species-specific digoxigenin-labeled probe was added to each

35

3NSDOCID: <WO___9850584A2_I_>

tube containing denatured PCR product. Tubes were mixed by inversion and placed in a water bath at 37°C to allow probes to anneal to PCR product DNA. After 1 hour, 100 µl of each sample was added to duplicate wells of a commercially prepared streptavidin-coated microtitration plate (Boehringer Mannheim, Indianapolis, IN). The plate was incubated at ambient temperature for 1 hour with shaking, using a microtitration plate shaker (manufactured for Dynatech by CLTI, Middletown, NY). Plates were washed 6 times with 0.01 M potassium phosphate buffered saline, pH 7.2, containing 0.05% Tween 20 (PBST). Each well then received 100 µl of horseradish peroxidase-conjugated, anti-digoxigenin Fab fragment (Boehringer Mannheim) diluted 1:1000 in hybridization buffer. incubation at ambient temperature for 30 minutes with shaking, the plate was washed 6 times with PBST. One hundred µl of a mixture of one volume of 3, 3', 5, 5'-tetramethyl benzidine peroxidase substrate (Kirkegaard and Perry Laboratories, Inc., Gaithersberg, MD) and one volume of peroxidase solution (Kirkegaard and Perry Laboratories) was added to each well and the plate was placed at ambient temperature for 10 minutes for color The A_{650nm} of each well was determined with a development. microtitration plate reader (UV Max, Molecular Devices, Inc., Menlo Park, CA). The absorbance value for the reagent blank, where DNA was absent but replaced with distilled H₂O, was subtracted from each test sample.

Statistical analysis

The Student's t test was used to determine differences between sample means. Means are expressed as the mean plus or minus the standard error from the mean. Differences were considered significant when P<0.05.

The following probes were used to detect and distinguish each species.

30

-11

3

一日本の大学

5

10

15

20

25

Table 2
Probe Sequences

	5' to 3'	
PROBES	OLIGONUCLEOTIDE	
	SEQUENCE	
Generic Biotin Probe	5' end-labeled biotinylated probe	
	5.8S region of rDNA	
B-58	GAA TCA TCG A(AG)T CTT	SEQ ID NO 61
	TGA ACG	
Digoxigenin-probe	5' end-labeled digoxigenin probe	
	ITS2 region of rDNA	
Aspergillus species		
A. flavus 22	GCA AAT CAA TCT TTT TCC	SEQ ID NO 30
A. flavus 23	GAA CGC AAA TCA ATC TTT	
A. fumigatus	CCG ACA CCC ATC TTT ATT	
A. niger	GAC GTT ATC CAA CCA TTT	SEQ ID NO 33
A. nidulans	GGC GTC TCC AAC CTT ATC	SEQ ID NO 35
A. terreus	GCA TTT ATT TGC AAC TTG	SEQ ID NO 34
Fusarium species		
F. moniliforme	TCT AGT GAC GGT CTC GCT	SEQ ID NO 49
F. oxysporum	CGT TAA TTC GCG TTC CTC	SEQ ID NO 50
F. solani	CTA ACA CCT CGC AAC TGG AGA	SEQ ID NO 51
Mucor species		
M. circinelloides	AAC ATT TTT GTG AAT AGG ATG	SEQ ID NO 39
M. indicus	CGT GGA TTG AGT GCC GAT	SEQ ID NO 38
M. plumbeus	GAA ACC CTT GAA ATT	SEQ ID NO 37
M. rouxii	GAA TAG GAA TAC TGA GAG	SEQ ID NO 36
M. racemosus	GAA ATC CCT GAA ATT	SEQ ID NO 40
Penicillium species		
caremium species		<u> </u>

BNSDOCID: <WO___9850584A2_I_>

3.5

ACCOUNT OF

Penicillium marneffei 1	GGG TTG GTC ACC ACC ATA	SEQ ID NO 47
Penicillium marneffei 2	TGG TCA CCA CCA TAT TTA	SEQ ID NO 48
Penicillium notatum	GAT CAA CCC AAA TTT TTA	SEQ ID NO 46
Rhizopus species		
R. circinans	CTT AGG GTA TCA TTA CTT	SEQ ID NO 42
R. microsporus	CAT ATA ATC TAG GGG TTC	SEQ ID NO 57
R. oryzae	GAG TAT AAT CCA G(CT)A	SEQ ID NO 41
	ACT	
R. stolonifer	CTT GGT ATT ATA ACG ATT	SEQ ID NO 44
Rhizomucor pusillus	TCC TTG AGG GCT TGC ATT	SEQ ID NO 43
Other Genera		
Absidia corymbifera	GTT GCT GTC ATG GCC TTA	SEQ ID NO 55
Cunninghamella elegans 4	TAG TCG GCT TTA ATA GAT	SEQ ID NO 52
Cunninghamella elegans 5	TAT TAA GTT TAT AGC CAT	SEQ ID NO 53
Cunninghamella elegans 6	TAA GTT TAT AGC CAT TCT	SEQ ID NO 54
Pseudallescheria boydii	AAG TCT CTT TTG CAA GCT	SEQ ID NO 45
Sporothrix schoenckii	GAC GCG CAG CTC TTT TTA	SEQ ID NO 56
Genus Probes		
G-ASPERGILLUS	CCT CGA GCG TAT GGG GCT	SEQ ID NO 58
G-FUSARIUM	CCC AAC TTC TGA ATG TTG	SEQ ID NO 59
G-MUCOR	(AC)TG GGG CCT CCC AAA	SEQ ID NO 60
<u></u>	TAA	

BNSDOCID: <WO___9850584A2_I_>

Species-specific probes to the ITS2 region of rDNA for Aspergillus fumigatus (SEQ ID NO:32), A. flavus (SEQ ID NO:31), A. niger (SEQ ID NO:33), A. terreus (SEQ ID NO:34), and A. nidulans (SEQ ID NO:35) correctly identified each of the respective species (P<0.001), and gave no false-positive reactions with Rhizopus, Mucor, Fusarium, Penicillium, or Candida species. The A. flavus probe also recognized A. oryzae, which belongs to the A. flavus group. Identification time was reduced from a mean of 5 days by conventional methods to 8 hours.

10

5

.3

Absolutions.

2.9

3

<u>Table 3</u>
Aspergillus Probes

Fungus	A. fumigatus	A.nidulans	A.niger	A.terreus	A.flavus
A.fumigatus (n=6)	2.197 ± 0.187	0.002	0.000	0.001	0.001
A.nidulans (n=3)	0.001	1.315 <u>+</u> 0.464	0.002	0.000	0.001
A.niger (n=5)	0.000	0.000	1.242 <u>+</u> 0.471	0.001	0.003
A.terreus (n=4)	0.001	0.000	0.001	1.603 ± 0.378	0.001
A.flavus (n=6)	0.001	0.001	0.000	0.001	2.043 ± 0.390
A.oryzae (n=2)	0.001	0.002	0.001	0.001	2.445 ± 0.106
A.parasitica (n=1)	0.001	0.002	0.002	0.002	0.051
A.clavus (n=1)	0.005	0.005	0.006	0.005	0.003
C.albicans (n=1)	0.002	0.001	0.002	0.000	0.000
C.parasilosis (n=1)	0.001	0.002	0.002	0.002	0.001
C.glabrata (n=1)	0.001	0.003	0.001	0.001	0.005

					·
C.krusei (n=1)	0.002	0.002	0.002	0.001	0.001
C.tropicalis (n=1)	0.002	0.002	0.001	0.000	0.001
F.moniliforme (n=1)	0.003	0.003	0.001	0.001	0.001
F.solani (n=1)	0.006	0.002	0.001	0.000	0.001
R.oryzae (n=1)	0.001	0.001	0.001	0.001	0.001
M.racemosus (n=1)	0.001	0.002	0.005	0.002	0.000
P.notatum (n=1)	0.001	0.002	0.002	0.002	0.000
Avg±SD negative controls	0.001 ± 0.002	0.001 ± 0.001	0.000 ± 0.002	0.000 ± 0.002	0.002 ± 0.010

Species-specific probes to the ITS2 region of rDNA for Fusarium oxysporum, F. solani, and F. moniliforme, correctly identified each of the respective species (P<0.001), and gave no false-positive reactions with Blastomyces, Apophysomyces, Candida, Aspergillus, Mucor, Penecillium, Rhizopus, Rhizomucor, Absidia, Cunninghamella, Pseudallescheria, Sporothrix, or Neosartorya. Empty boxes in Table 4 represent zero probe reactivity.

10

5

Table 4
Fusarium Probes

Fungus	F. oxysporum	F. solani	F. moniliforme	Generic Fusarium
F. oxysporum	1.40			1.76
(n=3)	± 0.13			± 0.27
F. solani		1.57		1.35
(n=5)		<u>+</u> 0.07		± 0.28

三十二 三十二

#

F. moniliforme			1.40	1.34
(n=2)			± 0.01	<u>+</u> 0.91
Negative control				
Fungus	F.	F. solani	F.	Generic
	oxysporum		moniliforme	Fusarium
A.fumigatus				
A.flavus				
A.niger				
A.nidulans				
A.terreus				
A.parasiticus				
A.clavatus				
P.marneffei		0.01	0.01	
P.notatum	0.01	0.01	0.01	
Rhizopus oryzae		0.03	0.01	
Rhizopus microsporus		0.01	0.01	
Rhizopus circinans		0.01	0.01	
Rhizopus stolonifer		0.01	0.01	
Rhizomucor pusillus		0.03	0.02	
M. racemosus				
M. circinelloides				
M. rouxii				
M. plumbeus				
M. indicus				
Absidia corymbifera		0.01	0.01	
Cunninghamella elegans		0.01	0.02	
P. boydii			0.02	
Sporothrix schenckii		0.01	0.01	
C.albicans				
C.tropicalis				
C.krusei				
C.parasilosis				
C.glabrata				

BNSDOCID: <WO___9850584A2_I_>

10

Neosartorya fischeri		0.01		
Blastomyces dermatitidis				
Apophysomyces elegans				
Average of negative controls	0.001	0.005	0.004	
	± 0.002	± 0.01	± 0.006	
	± 0.002	± 0.01	± 0.006	

Species-specific probes to various other zygomyces are presented in Table 5, showing correct identification of each species and no false positives. The exceptions are that the *M. circinelloides* probe hybridized with the *M. rouxii* DNA and the *M. plumbeus* probe hybridized with the *M. racemosus* DNA. However, the *M. rouxii* probe did not hybridize with *M. circinelloides* DNA, nor did the *M. racemosus* probe hybridize with *M. plumbeus* DNA. Therefore, by a process of elimination, each species can be correctly identified. Empty boxes in Table 5 represent zero probe reactivity.

吸

W.

2500

<u>Table 5</u> Zygomyces Probes

	SG												2.26 ± 0.03
	ABS											1.61 ± 0.08	1
	MIND										1.70 ± 0.04		
	MPLUM						0.29 ± 0.52	0.02		2.14 ± 0.25		0.01	
	MRX						+	0.01	0.76	H ⁷			
	MCIR				0.01			1.63 C	1.77 0				
	MRACE				0	-	2.02 ± 0.34	++					
	RPUS MI	0.01				1.10 ± 0.68	+ 2					0.01	
	RSTOL R	0			2.53 ± 0.07		0.01					0	
	RCIR RS			1.56 ± 0.19	2.		0						
	RMIC		0.96 ± 0.61	-							0.01		0.01
D- probes	RORY RI	1.50 ± 0.48									0		0
I old	S	1.											
	FUNGUS	R. oryzae (n=5)	R. microsporus (n=5)	R.circinans (n=3)	R. stolonifer (n=5)	Rhizomucor pusillus (n=2)	M. racemosus (n=6)	M.circinelloides (n=3)	M. rouxii (n=1)	M.plumbeus (n=2)	M. indicus (n=1)	Absidia corymbifera (n=2)	Cunninhamella elegans (n=2)

4.5

7

		ABS CUN																							5 0.001
		MIND	0.05	0.05		0.01		0.03	0.05		0.03			0.01											0.005
ned		MPLUM	0.01			0.01																			0.003
Contir		MRX			0.01							0.01		0.01											0.001
Table 5 Continued		MCIR																							0.001
Ι		MRACE																							0.001 0.001 0.001
		RPUS		0.01				0.01																	
		RSTOL												0.01											0.000
		RCIR								0.01												0.01			0.001 0.000 0.000
		RMIC																							0.001
	D- probes	RORY					0.01							0.01	0.02										0.001
	Negative control	FUNGUS	A.fumigatus	A.flavus	A.niger	A.nidulans	A.terreus	A.parasiticus	A.clavatus	P.marneffei	P.notatum	F. oxysporum	F.solani	F.moniliforme	P. boydii	Sporothrix schenckii	Calbicans	C.tropicalis	C.krusei	C.parasilosis	C.glabrata	Neosartorya fischeri	Blastomyces dermatitidis	Apophysomyces elegans	Average

BNSDOCID: <WO___9850584A2_1_>

Species-specific probes to various other fungi are presented in Table 6, showing correct identification of each species and no false positives. Empty boxes in Table 6 represent zero probe reactivity.

<u>Table 6</u>
Pseudallescheria and Sporothrix Probes

Fungus	P. boydii	P.marneffei	P.notatum	Sporothrix schenckii
P. boydii	1.65		· · · · · · · · · · · · · · · · · · ·	
(n=4)	± 0.48			
P.marneffei	0.01	1.24		
(n=3)		± 0.12		
P.notatum			1.93	
(n=3)			± 0.25	
Sporothrix schenckii	0.01			1.94
(n=3)				± 0.25
Negative control				
Fungus	P. boydii	P.marneffei	P.notatum	Sporothrix
			·	schenckii
A.fumigatus	0.01			
A.flavus				
A.niger				
A.nidulans				
A.terreus				E
A.parasiticus				
A.clavatus			0.11	
F.oxysporum		0.10		
F. solani		0.14		
F. moniliforme		0.08		
R. oryzae	0.01			
R. microsporus	0.01			
R. circinans	0.01			

3NSDOCID: <WO___9850584A2_I_>

ķ

R. stolonifer	0.01			
Rhizomucor pusilus	0.01			
M. racemosus		0.04		
M. circinelloides	0.01	0.09		
M. rouxii	0.01			
M. plumbeus		0.05		
M. indicus				
Absidia corymbifera	0.01			
Cunninghamela bertholletiae	0.01			
C.albicans				
C.tropicalis		0.02		
C.krusei				
C.parasilosis				
C.glabrata				
Neosatorya pseudofischeri		0.03		
Blastomyces dermatitidis	0.01			
Apophysomyces elegans	0.01			
Average Negative Controls	0.004	0.013	0.002	0.001
	<u>+</u> 0.002	± 0.03	± 0.019	± 0.002

All of the references mentioned in this Specification are hereby incorporated by reference in their entirety.

5

References

1. Ampel, N.M. 1996. Emerging disease issues and fungal pathogens associated with HIV infection. Emerg. Infec. Dis. 2:109-116.

10

Ş

 f_{ij}

- 2. Andriole, V.T. 1996. Aspergillus infections: problems in diagnosis and treatment. Infect. Agents and Dis. 5:47-54.
- 3. Andriole, V.T. 1993. Infections with Aspergillus species. Clin. Infec. Dis. 17 Suppl 2:S481-S486.

15

4. Bir, N., A. Paliwal, K. Muralidhar, P. Reddy, and P.U. Sarma. 1995. A rapid method for the isolation of genomic DNA from Aspergillus fumigatus. Prep. Biochem. 25:171-181.

14

29

Ŷ.

	5.	Blum, U., M. Windfuhr, C. Buitrago-Tellez, G.
		Sigmund, E.W. Herbst, and M. Langer. 1994. Invasive
		pulmonary aspergillosis. MRI, CT, and plain radiographic
		findings and their contribution for early diagnosis. Chest
5		106 :1156-1161.
	6.	Caillot, D., O. Casasnovas, A. Bernard, J.F.
		Couaillier, C. Durand, B. Cuisenier, E. Solary, F.
		Piard, T. Petrella, A. Bonnin, G. Couaillault, M.
		Dumas, and H. Guy, 1997. Improved management of
10		invasive pulmonary aspergillosis in neutropenic patients using
		early thoracic computed tomographic scan and surgery. J.
		Clin. Oncol. 15:139-147.
	7.	Denning, D.W. Therapeutic outcome in invasive
		aspergillosis. Clin. Infect. Dis. 23:608-615.
15	8.	Denning, D.W. Diagnosis and management of invasive
		aspergillosis. Curr. Clin. Topics Inf. Dis. 16:277-299.
	9.	de Repentigny, L., L. Kaufman, G. T. Cole, D.
		Kruse, J. P. Latge, and R. C. Matthews. 1994.
		Immunodiagnosis of invasive fungal infections. J. Med. Vet.
20		Mycol. 32 Suppl 1239-252.
	10.	Dupont, B., D. W. Denning, D. Marriott, A. Sugar,
		M. A. Viviani, and T. Sirisanthana. 1994. Mycoses in
		AIDS patients. J. Med. Vet. Mycol. 32 Suppl 1:221-239.
	11.	Fisher, B. D., D. Armstrong, B. Yu, and J. W. M.
25		Gold. 1981. Invasive aspergillosis: progress in early
		diagnosis and treatment. Am. J. Med. 71:571-577.
	12.	Fridkin, S. K. and W. R. Jarvis. 1996. Epidemiology of
		nosocomial fungal infections. Clin. Microbiol. Rev. 9:499-
		511.
30	13.	Fujita, S-I., B.A. Lasker, T. J. Lott, E. Reiss, and C.
		J. Morrison. 1995. Micro titration plate enzyme
		immunoassay to detect PCR-amplified DNA from Candida
		species in blood. J. Clin. Microbiol. 33:962-967.
	14.	Gordon, M. A., E. W. Lapa, and J. Kane. 1977.
35		Modified indirect fluorescent antibody test for aspergillosis. J.
		Clin. Microbiol. 6:161-165.

The state of the s

15

	15.	Holmes, A. R., R. D. Cannon, M. G. Shepard, and H.
		F. Jenkinson. 1994. Detection of Candida albicans and other
		yeast in blood by PCR. J. Clin. Microbiol. 32:228-231.
	16.	Hung, C. C., S. C. Chang, P. C. Yang, W. C. Hseigh.
5		1994. Invasive pulmonary pseudallescheriasis with direct
		invasion of the thoracic spine in an immunocompromised
		patient. Eur. J. Clin. Microbiol. Infect. Dis. 13:749-751.
	17.	Kappe, R., and H. P. Seeliger. 1993. Serodiagnosis of
		deep-seated fungal infections. Curr. Topics Med. Mycol.
10		5 :247-280.
	18.	Kappe, R., A. Schulze-Berge, H. G. Sonntag. 1996.
		Evaluation of eight antibody tests and one antigen test for the
		diagnosis of invasive aspergillosis. Mycoses 39:13-23.
. =	19.	Kaufman and Reiss, Manual of Clinical Microbiology.
15	20.	Kremery, V., Jr., E. Kunova, Z. Jesenska, J. Trupl,
		S. Spanik, J. Mardiak, M. Studena, and E.
		Kukuckova. 1996. Invasive mold infections in cancer
		patients: 5 years' experience with Aspergillus, Mucor,
20		Fusarium and Acremonium infections. Supportive Care in
20	0.1	Cancer 4:39-45.
	21.	Khoo, S. H., and D. W. Denning. 1994. Invasive
		aspergillosis in patients with AIDS. Clin. Infect. Dis 19
	22	Suppl 1: S41-S48.
25	22.	Kwok, S., and R. Higuichi. 1989. Avoiding false positives
23	23.	with PCR. Nature (London) 339:237-238.
	25.	Larone, D. H. Medically Important Fungi: A Guide to Identification. 3rd ed. ASM Press, Washington, D. C. 1995.
	24.	Leenders, A., A. van Belkum, S. Janssen, S. de
	21.	Marie, J. Kluytmans, J. Wielenga, B. Lowenberg, and
30		H. Verbrugh. Molecular epidemiology of apparent outbreak
		of invasive aspergillosis in a hematology ward. J. Clin.
		Microbiol. 34 :345-351.
	25.	Makimura, K., S. Y. Murayama, H. Yamaguchi. 1994.
		Specific detection of Aspergillus and Penicillium species from
35		respiratory specimens by polymerase chain reaction (PCR).
		Jap. J. Med. Sci. Biol. 47:141-156.

ij.

;			
		26.	Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982.
			Molecular cloning: a laboratory manual. Cold Spring Harbor
9			Laboratory, Cold Spring Harbor, N.Y.
.2	_	27.	Martino, P., and C. Girmenia. 1993. Diagnosis and
	5		treatment of invasive fungal infections in cancer patients.
			Supportive Care in Cancer. 1:240-244.
		28.	Melchers, W. J., P. E. Verweij, P. van den Hurk, A.
3	•		van Belkum, B. E. De Pauw, J. A. Hoogkamp-
	10		Korstanje, and J. F. Meis. 1994. General primer-
į. į	10		mediated PCR for detection of Aspergillus species. J. Clin.
			Microbiol. 32:1710-1717.
٠		29.	Miller, W. T. J., G. J. Sals, I. Frank, W. B. Gefter,
			M. Aronchick, W. T. Miller. 1994. Pulmonary
			aspergillosis patients with AIDS. Clinical and radiographic
3	15		correlations. Chest 105:37-44.
100		30.	Miyakawa, Y., T. Mabuchi, and Y. Fukazawa. 1993.
			New method for detection of Candida albicans in human blood
			by polymerase chain reaction. J. Clin. Microbiol. 31:3344-3347.
	20	31.	Montone, K. T., and L. A. Litzky. 1995. Rapid method
			for detection of Aspergillus 5S ribosomal RNA using a genus-
			specific oligonucleotide probe. J. Clin. Microbiol. 103:48-51
		32.	Rogers, T. R., K. A. Haynes, and R. A. Barnes. 1990.
		5 2 .	Value of antigen detection in predicting invasive aspergillosis.
	25		Lancet 336:1210-1213.
		33.	Sandhu, G. S., B. C. Kline, L. Stockman, and G. D.
		55.	Roberts, 1995. Molecular probes for diagnosis of fungal
*			infections. J. Clin. Microbiol. 33:2913-2919.
***		34.	Shin, J. H., F. S. Nolte, and C. J. Morrison. 1997.
	30		Rapid identification of <i>Candida</i> species in blood cultures using
100 mg			a clinically useful PCR method. J. Clin. Microbiol. in press.
, si		35.	Tang, C. M., D. W. Holden, A. Aufauvre-Brown, and
			J. Cohen. The detection of Aspergillus spp. by the
			polymerase chain reaction and its evaluation in
	35		bronchoalveolar lavage fluid. Amer. Rev. Respir. Dis
			148 :1313-1317.

Α,

	36.	Thompson, B. H., W. Stanford, J. R. Galvin, and Y.
		Kurlhara. 1995. Varied radiologic appearances of
		pulmonary aspergillosis. Radiographics 15:1273-1284.
	37.	Tierney, Jr. L.M. Aspergillosis. In Current Medical
5		Diagnosis and Treatment. 33rd ed. Norwalk, Conn.: Appleton
		and Lange, 1994.
	38.	Verweij, P. E., J. P. Latge, A. J. Rijs, W. J.
		Melchers, B. E. De Pauw, J. A. Hoogkamp-Korstanje
		and J. F. Mels. 1995. Comparison of antigen detection and
10		PCR assay using bronchoalveolar lavage fluid for diagnosing
		invasive pulmonary aspergillosis in patients receiving
		treatment for hematological malignancies. J. Clin. Microbiol.
		33 :3150-3153.
	39.	von Eiff, M., N. Roos, R. Schulten, M. Hesse, M.
15		Zuhisdorf, and J. van de Loo. 1995. Pulmonary
		aspergillosis: early diagnosis improves survival. Respiration
		62: 341-347.
	40.	von Eiff, M., N. Roos, W. Fegeler, C. von Eiff, R.
	•	Schulten, M. Hesse, M. Zuhisdorf, and J. van de Loo.
20		1996. Hospital acquired Candida and Aspergillus pneumonia -
		diagnostic approaches and clinical findings. J. Hosp. Infect.
		32 :17-28.
	41.	Walsh, T. J. 1993. Management of immunocompromised
		patients with evidence of an invasive mycosis. Hemat. Oncol.
25		Clin. N .Amer. 7:1003-1026.
	42.	Walsh, T. J., C. Gonzalez, C. A. Lyman, S. J.
		Chanock, and P. A. Pizzo. 1996. Invasive fungal
		infections in children: recent advances in diagnosis and
		treatment. Adv. Ped. Inf. Dis. 11:187-290.
30	43.	Walsh, T. J., B. De Pauw, E. Anaissle, and P.
		Martino. 1994. Recent advances in the epidemiology,
		prevention, and treatment of invasive fungal infections in
		neutropenic patients. J. Med. Vet. Mycol. 32 Supp 1:33-51.
	44.	Warnock, D. W. 1995. Fungal complications of
35		transplantation: diagnosis, treatment, and prevention. J.
		Antimicrob. Chemother. 36 Suppl B:73-90.

- 45. Yamakami, Y., A. Hashimoto, I. Tokimatsu, and M. Nasu. 1996. PCR detection of DNA specific for Aspergillus species in serum of patients with invasive aspergillosis. J. Clin. Microbiol. 34:2464-2468.
- 46. Young, R. C., and J. E. Bennett. 1971. Invasive aspergillosis: absence of detectable antibody response. Am. Rev. Respir. Dis 104:710-716.
- 47. **Zervos, M. J. and J. A. Vasquez.** 1996. DNA analysis in the study of fungal infections in the immunocompromised host. Clin. Lab. Med. 16:73-88.

*

7

5

CLAIMS

We claim:

4

H

X

- 1. An isolated nucleic acid probe for identifying a species selected from the group consisting of Aspergillus flavus (SEQ ID NO:1), Aspergillus fumigatus (SEQ ID NO:2), Aspergillus niger (SEQ ID NO:3), Aspergillus terreus (SEQ ID NO:4), Aspergillus nidulans (SEQ ID NO:5), Fusarium solani (SEQ ID NO:6), Fusarium moniliforme (SEQ ID NO:7), Mucor rouxii (SEQ ID NO:8), Mucor racemosus (SEQ ID NO:9), Mucor plumbeus (SEQ ID NO:10), Mucor indicus (SEQ ID NO:11), Mucor circinilloides f. circinelloides (SEQ ID NO:12), Rhizopus oryzae (SEQ ID NO:13 and NO:14), Rhizopus microsporus (SEQ ID NO:15 and 16), Rhizopus circinans (SEQ ID NO:17 and 18), Rhizopus stolonifer (SEQ ID NO: 19), Rhizomucor pusillus (SEQ ID NO:20), Absidia corymbifera (SEQ ID NO:21 and 22), Cunninghamella elegans (SEQ ID NO:23), Pseudallescheria boydii (teleomorph of Scedosporium apiospermum) (SEQ ID NO:24, 25, 26, and 27), Penicillium notatum (SEQ ID NO:28), or Sporothrix schenkii (SEQ ID NO:29) wherein the probe selectively hybridizes to a portion of the nucleic acid of SEQ ID NOS:1-29, or a complementary sequence thereof, respectively.
- 2. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with an *Aspergillus flavus* nucleic acid of SEQ ID NO:1, or a complementary sequence thereof.
- 3. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with an *Aspergillus fumigatus* nucleic acid of SEQ ID NO:2, or a complementary sequence thereof.
- 4. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with an *Aspergillus niger* nucleic acid of SEQ ID NO:3, or a complementary sequence thereof.

- 5. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with an Aspergillus terreus nucleic acid of SEQ ID NO:4, or a complementary sequence thereof.
- 6. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with an *Aspergillus nidulans* nucleic acid of SEQ ID NO:5, or a complementary sequence thereof.
- 7. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Fusarium solani* nucleic acid of SEQ ID NO:6, or a complementary sequence thereof.
- 8. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Fusarium moniliforme* of SEQ ID NO:7, or a complementary sequence thereof.
- 9. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Mucor rouxii* of SEQ ID NO:8, or a complementary sequence thereof.
- 10. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Mucor racemosus* of SEQ ID NO:9, or a complementary sequence thereof.
- 11. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Mucor plumbeus* of SEQ ID NO:10, or a complementary sequence thereof.
- 12. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Mucor indicus* of SEQ ID NO:11, or a complementary sequence thereof.
- 13. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Mucor circinilloides f. circinelloides* of SEQ ID NO:12, or a complementary sequence thereof.

¥

2.4

- 14. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Rhizopus oryzae* of SEQ ID NO:13 and 14, or a complementary sequence thereof.
- 15. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Rhizopus microsporus* of SEQ ID NO:15 and 16, or a complementary sequence thereof.
- 16. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Rhizopus circinans* of SEQ ID NO:17 and 18, or a complementary sequence thereof.
- 17. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Rhizopus stolonifer* of SEQ ID NO:19, or a complementary sequence thereof.
- 18. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Rhizomucor pusillus* of SEQ ID NO:20, or a complementary sequence thereof.
- 19. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Absidia corymbifera* of SEQ ID NO:21 and 22, or a complementary sequence thereof.
- 20. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Cunninghamella elegans* of SEQ ID NO:23, or a complementary sequence thereof.
- 21. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Pseudallescheria boydii* (teleomorph of *Scedosporium apiospermum*) of SEQ ID NO:24, 25, 26 and 27, or a complementary sequence thereof.

Į.

9

.

- 22. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Penicillium notatum* of SEQ ID NO:28, or a complementary sequence thereof.
- 23. The isolated nucleic acid probe of Claim 1 capable of selectively hybridizing with a *Sporothrix schenkii* of SEQ ID NO:29, or a complementary sequence thereof.
- A method of detecting a species selected from the 24. group consisting of Aspergillus flavus (SEQ ID NO:1), Aspergillus fumigatus (SEQ ID NO:2), Aspergillus niger (SEQ ID NO:3), Aspergillus terreus (SEQ ID NO:4), Aspergillus nidulans (SEQ ID NO:5), Fusarium solani (SEQ ID NO:6), Fusarium moniliforme (SEQ ID NO:7), Mucor rouxii (SEQ ID NO:8), Mucor racemosus (SEQ ID NO:9), Mucor plumbeus (SEQ ID NO:10), Mucor indicus (SEQ ID NO:11), Mucor circinilloides f. circinelloides (SEQ ID NO:12), Rhizopus oryzae (SEQ ID NO:13 and NO:14), Rhizopus microsporus (SEQ ID NO:15 and 16), Rhizopus circinans (SEQ ID NO:17 and 18), Rhizopus stolonifer (SEQ ID NO: 19), Rhizomucor pusillus (SEQ ID NO:20), Absidia corymbifera (SEQ ID NO:21 and 22), Cunninghamella elegans (SEQ ID NO:23), Pseudallescheria boydii (teleomorph of Scedosporium apiospermum) (SEQ ID NO:24, 25, 26, and 27), Penicillium notatum (SEQ ID NO:28), or Sporothrix schenkii (SEQ ID NG:29) in a sample comprising combining the sample with a nucleic acid probe capable of selectively hybridizing with a nucleic acid of SEQ ID NO:1-29, or a complementary sequence thereof, respectively, the presence of hybridization indicating the detection of the species in the sample.
- 25. The method of Claim 24, wherein the probe is capable of selectively hybridizing with an *Aspergillus flavus* nucleic acid of SEQ ID NO:1, or a complementary sequence thereof.
- 26. The method of Claim 24, wherein the probe is capable of selectively hybridizing with an *Aspergillus fumigatus* nucleic acid of SEQ ID NO:2, or a complementary sequence thereof.

á

S

- 27. The method of Claim 24, wherein the probe is capable of selectively hybridizing with an *Aspergillus niger* nucleic acid of SEQ ID NO:3, or a complementary sequence thereof.
- 28. The method of Claim 24, wherein the probe is capable of selectively hybridizing with an Aspergillus terreus nucleic acid of SEQ ID NO:4, or a complementary sequence thereof.
- 29. The method of Claim 24, wherein the probe is capable of selectively hybridizing with an *Aspergillus nidulans* nucleic acid of SEQ ID NO:5, or a complementary sequence thereof.
- 30. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Fusarium solani* nucleic acid of SEQ ID NO:6, or a complementary sequence thereof.
- 31. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Fusarium moniliforme* of SEQ ID NO:7, or a complementary sequence thereof.
- 32. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Mucor rouxii* of SEQ ID NO:8, or a complementary sequence thereof.
- 33. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Mucor racemosus* of SEQ ID NO:9, or a complementary sequence thereof.
- 34. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Mucor plumbeus* of SEQ ID NO:10, or a complementary sequence thereof.
- 35. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Mucor indicus* of SEQ ID NO:11, or a complementary sequence thereof.

椞

- 36. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Mucor circinilloides f. circinelloides* of SEQ ID NO:12, or a complementary sequence thereof.
- 37. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Rhizopus oryzae* of SEQ ID NO:13 and 14, or a complementary sequence thereof.
- 38. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Rhizopus microsporus* of SEQ ID NO:15 and 16, or a complementary sequence thereof.
- 39. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Rhizopus circinans* of SEQ ID NO:17 and 18, or a complementary sequence thereof.
- 40. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Rhizopus stolonifer* of SEQ ID NO:19, or a complementary sequence thereof.
- 41. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Rhizomucor pusillus* of SEQ ID NO:20, or a complementary sequence thereof.
- 42. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Absidia corymbifera* of SEQ ID NO:21 and 22, or a complementary sequence thereof.
- 43. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Cunninghamella elegans* of SEQ ID NO:23, or a complementary sequence thereof.
- 44. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Pseudallescheria boydii* (teleomorph of

4

¥

NAT W

33

Scedosporium apiospermum) of SEQ ID NO:24, 25, 26 and 27, or a complementary sequence thereof.

- 45. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Penicillium notatum* of SEQ ID NO:28, or a complementary sequence thereof.
- 46. The method of Claim 24, wherein the probe is capable of selectively hybridizing with a *Sporothrix schenkii* of SEQ ID NO:29, or a complementary sequence thereof.
- 47. An isolated nucleic acid probe for identifying a member of a genus selected from the group consisting of Aspergillus, Fusarium and Mucor wherein the probe selectively hybridizes to a portion of the nucleic acid of SEQ ID NOS:58-60, or a complementary sequence thereof, respectively.
- 48. An isolated nucleic acid probe for identifying a fungus wherein the probe selectively hybridizes to a portion of the nucleic acid of SEQ ID NO:61, or a complementary sequence thereof, respectively.
- 49. A method for detecting a member of a genus selected from the group consisting of Aspergillus, Fusarium and Mucor in a sample comprising combining the sample with a nucleic acid probe capable of selectively hybridizing to a portion of the nucleic acid of SEQ ID NOS:58-60, or a complementary sequence thereof, respectively, the presence of hybridization indicating the detection of the respective genus.
- 50. A method for detecting a fungus in a sample comprising combining the sample with a nucleic acid probe capable of selectively hybridizing to a portion of the nucleic acid of SEQ ID NO:61, or a complementary sequence thereof, respectively, the presence of hybridization indicating the detection of the fungus.

TO SERVICE OF THE PARTY OF THE

97

7000

*

Section .

绑

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 98/50584
C12Q 1/68	A3	(43) International Publication Date: 12 November 1998 (12.11.98)
(21) International Application Number: PCT/USS (22) International Filing Date: 1 May 1998 (6)		CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
(30) Priority Data: 60/045,400 2 May 1997 (02.05.97) (71) Applicant (for all designated States except US): THE ERNMENT OF THE UNITED STATES OF All as represented by THE SECRETARY OF THE E MENT OF HEALTH AND HUMAN SERVICES, ters for Disease Control and Prevention, Technolog fer Offic [US/US]; Atlanta, GA 30329 (US).	IE GO MERIC DEPAR c/o Ce	(88) Date of publication of the international search report: 18 February 1999 (18.02.99)
(72) Inventors; and (75) Inventors/Applicants (for US only): MORRISON, (75) Inventors/Applicants (for US only): MORRISON, (75) I. [US/US]; 3110 Tolbert Drive, Decatur, GA 300 REISS, Errol [US/US]; 3642 Castaway Court, C GA 30341 (US). AIDOREVICH, Liliana [VE/VI] Circunvalación, Manzana B7 #16 Urlo, El Castan Edo Aragua (VE). CHOI, Jong, Soo [KR/KR]; 2 Sinchungi-Town Apartment, Whangum-dong, Su Taegu City 706-040 (KR).	033 (US Chamble E]; Ca Marac 02–150 Isung–g). e, le by 6, u,
(74) Agents: WARREN, William, L. et al.; Jones & Ask floor, 191 Peachtree Street, N.E., Atlanta, GA 303		

(54) Title: NUCLEIC ACIDS FOR DETECTING ASPERGILLUS SPECIES AND OTHER FILAMENTOUS FUNGI

(57) Abstract

Nucleic acids for detecting Aspergillus species and other filamentous fungi are provided. Unique internal transcribed spacer 2 coding regions permit the development of nucleic acid probes specific for five different species of Aspergillus, three species of Fusarium, four species of Mucor, two species of Penecillium, five species of Rhizopus, one species of Rhizomucor, as well as probes for Absidia corymbifera, Cunninghamella elagans, Pseudallescheria boydii, and Sporothrix schenkii. The invention thereby provides methods for the species-specific detection and diagnosis of infection by Aspergillus, Fusarium, Mucor, Penecillium, Rhizopus, Rhizomucor, Absidia, Cunninghamella. Pseudallescheria or Sporthrix in a subject. Furthermore, genus-specific probes are also provided for Aspergillus, Fusarium and Mucor, in addition to an all-fungus nucleic acid probe.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	sı	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	Œ	Ireland	MIN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	П	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			

BNSDOCID: <WO__9850584A3_I_>

INTERNATIONAL SEARCH REPORT

International Application No

			PC1, JS 98/08926		
A CLASSI IPC 6	FICATION OF SUBJECT MATTER C12Q1/68		-		
	•				
	o International Patent Classification (IPC) or to both national o	lessification and IPC			
	SEARCHED commentation searched (classification system followed by classification system followed by classif	seification symbols)			
IPC 6	C12Q	,			
Documenta	tion searched other than minimum documentation to the exter	nt that such documents are inc	luded in the fields searched		
Electronio d	ate base consulted during the international search (name of o	data base and, where practica	i, search terms used)		
	ENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.		
A	LU JJ. ET AL.,: "Typing of carinii strains with type-spe oligonucleotide probes derive nucleotide sequences of intertranscribed spacers of rRNA of J. CLINICAL MICROBIOLOGY, vol. 33, no. 11, - November 1	ecific ed from rnal genes"	1-6, 24-29, 47-50		
A	pages 2973-2977, XP002075326 see the whole document US 5 426 027 A (LOTT TIMOTHY June 1995	J ET AL) 20	1-6, 24-29,		
	see the whole document	-/	47-50		
X Furth	ner documents are listed in the continuation of box C.	X Patent family	members are listed in annex.		
Special cat	tegories of cited documents :	T later document red	plished after the international filing date		
consid	nt defining the general state of the art which is not ered to be of particular relevance locument but published on or after the international	or priority date an oited to understau invention	ed not in conflict with the application but not the principle or theory underlying the		
filing di L* docume which i citation O* docume other n P* docume	ate It which may throw doubts on priority claim(s) or is cited to establish the publication date of another i or other special reason (as specified) In referring to an oral disclosure, use, exhibition or	oannot be consid involve an inventi "Y" document of partic cannot be consid document is com ments, such com in the art.	ular relevance; the claimed invention ered novel or cannot be considered to vestep when the document is taken alone ular relevance; the claimed invention ered to involve an inventive step when the birded with one or more other such docubination being obvious to a person skilled or of the same patent family		
	uctual completion of the international search 4 August 1998	Date of mailing of	Date of mailing of the international search report 0.6, 01, 1999		
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Authorized officer	r		
	Fax: (+31-70) 340-3016	Müller	, г		

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

PC. JS 98/08926

(0		PC., JS 98	7 00320
ategory *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with Indication, where appropriate, of the relevant passages		Relevant to claim No.
4	WO 96 21741 A (CIBA CORNING DIAGNOSTICS CORP ;SANDHU GURPREET S (US); KLINE BRUCE) 18 July 1996 see whole document, esp. claims		1-6, 24-29, 47-50
, ,Α	GASKELL G. ET AL.,: "Analysis of the internal transcribed spacer regions of ribosomal DNA in common airborne allergenic fungi" ELECTROPHORESIS, vol. 18, - August 1997 pages 1567-1569, XP002075325 see the whole document		1-6, 24-29, 47-50
	10 (continuation of second sheet) (July 1992)	·	

3

.

INTERNATIONAL SEARCH REPORT

n ational application No.

PCT/US 98/08926

Box i	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
з. 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
sed	e FURTHER INFORMATION sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 2-6,25-29,48,50 (complete); 1,24,47,49 (partial)
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

-

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 2-6,25-29,48,50 (complete); 1,24,47,49 (partial)

Nucleic acid sequences (Seq ID.: 1-5,58,61) specific for Aspergillus spp. and methods using them

2. Claims: 7,8,30,31 (complete); 1,24,47,49 (partial)

Nucleic acid sequences (Seq ID.: 6,7) specific for Fusarium spp. and methods using them

3. Claims: 9-13,32-36 (complete); 1,24,47,49 (partial)

Nucleic acid sequences (Seq ID.: 8-12) specific for Mucor spp. and methods using them

4. Claims: 14-17,37-40 (complete); 1,24 (partial)

Nucleic acid sequences (Seq ID.: 15-19) specific for Rhizopus spp. and methods using them

5. Claims: 18,41 (complete); 1,24 (partial)

Nucleic acid sequence (Seq ID.: 20) specific for Rhizomucor pusillus and methods using it

6. Claims: 19,42 (complete); 1,24 (partial)

Nucleic acid sequences (Seq ID.: 21,22) specific for Absidia corymbifera and methods using them

7. Claims: 20,43 (complete), 1,24 (partial)

Nucleic acid sequence (Seq ID.: 23) specific for Cunninghamella elegans and methods using it

8. Claims: 21,44 (complete); 1,24 (partial)

Nucleic acid sequences (Seq ID.: 24-27) specific for Pseudallescheria boydii and methods using them

9. Claims: 22,45 (complete); 1,24 (partial)

Nucleic acid sequence (Seq ID.: 28) specific for Penicillium notatum and methods using it

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

10. Claims: 23,46 (complete); 1-24 (partial)

Nucleic acid sequence (Seq ID.: 29) specific for Sporothrix schenkii and methods using it

BNSDOCID: <WO___9850584A3_1_>