- 2
- Recap: - HMMs with known params ⊙= {TTo, 1, ₱ 3 are trees.
- (Oraw model from lost time)
- Belief propagation thenton allows us to compute all
Singleton marginals P(Z X 1:T) AKA "beliefs"
- BP in HMMs = the "forwards-backwards" algo.
To learn parameters, we need inference.
- EM: iteratos between updoting porons, doins interene.

Expectation - Maximization (EM) (1977)

Complete likelihood
$$P_{Q}(x, 7)$$

Maryinal likelihood $P_{Q}(x)$ aka "evidence"

Goal: Type-II MLE

 $\hat{Q} = avgmax P_{Q}(x)$

Setting up $A(x) = avgdov(x)$ hover bound (ELBO)

 $P_{Q}(x) = avgdov(x)$
 $P_{$

The EM algorithm Initialize of for m = 1, 2, ... until convergence in of Qm = argmax B(gm-1, 2) "E-step" Om = argmax B(g, Qm) "M-step"

This is a mihorize-maximize algorithm

- · conveyer to local mide of P(x;9)
- · vandom restarts for 80 good idea
- · ELBO is light after E-step and always in cruses

Is it? Often. But why? $\frac{7}{2}P(71x;0^{010})$ log P(x,7;0)

... assuming that ETI'S P(X,7)) is dractable.
P(21x)

seems just as bad as \ \ P(x, \forall i g) = P(x; \forall i) . . .

Recall lest kine:

$$P(X,Z) = P(\bar{X}_{|:T}, \bar{Y}_{|:T}) = \prod_{\ell} P(\bar{Z}_{|Z}) P(\bar{X}_{\ell} | \bar{Y}_{\ell})$$

Think about the M-step for just Mk ...

=
$$avgmax \sum ... \sum p(z_1...z_T) \times_{1:T} M^{ord} M^{ord}$$

 $Mu \quad z_1 \quad z_T \quad \sum 1(z_t=u) \log Pois (x_t; Mu)$

Note that:

$$\sum_{t} \frac{1}{z_{t}} = \sum_{t} \frac{1}{z_{t}} \frac{$$

= avgmax
$$\sum P(z_t : k \mid \overline{x}_{t+1}, M_k)$$
 log $P_{0:s}(\overline{x}_t; M_k)$

Alk t

= q_{tk}

50 in this cose we only had the beliefs q_{tk} .

= avgmax $\sum q_{tk} \left[\overline{x}_t \mid_{0.5} M_k - M_k \right]$

Alk t

= avgmax $\left(\overline{x}_t q_{tk} \right)$ log $A_{tk} - \left(\overline{x}_t q_{tk} \right)$ M_k

This is why it is collect the Expectation - Step.

(1) Compute all expectations required by M-step:

= q_{tk}

= $p(\overline{x}_t q_{tk})$

argmax
$$\sum P(z_t = k \mid X_{1:T}, M_k) \log P_{ois}(X_t; M_k)$$

All
$$= 9_{tk}$$

Remite in terms & natural parmeter M = log Mk.

arganx
$$\sum_{k} q \left(M_{k}^{T} t(\bar{x}_{k}) - \alpha(M_{k}) \right)$$

arymax
$$\eta_{u}^{T}(\Sigma_{t}(x_{t})q_{tu}) - (\Sigma_{q+k})a(y_{u})$$
 η_{u}

$$\nabla_{\eta_{N}}$$
 " = $Zq_{t}(\bar{x}_{t}) - M_{k}(\bar{z}_{t}(\bar{x}_{t}))$

Returning to the question of why 7P(71x;000) 10g P(x,7;0) is often a "nicer" objective than T P(x, 2;9) At a very high level, for the following reason: Elos IT exp(I···) = ZZE[···] we will see this motif egain... $F \left[\log \pi + \exp(\eta^T + cx) - a(\eta^T) \right]$ $F \left[\log \pi + \exp(\eta^T + cx) - a(\eta^T) \right]$ $F \left[\log \pi + \exp(\eta^T + cx) - a(\eta^T) \right]$ = IE Trong exp (Int (If the (xt)) - I(If the) a(Mn)) 9th = ETTENT $= \sum_{k} M_{k} \left(\sum_{t} q_{tk} (x_{t}) \right) - \sum_{t} \left(\sum_{t} q_{tk} \right) a(M_{k})$ Midels with expfan conditionals and lots of conditional independence tend to lack to "hice" EM.

$$\frac{\partial}{\partial \Lambda(j,k)} \left[B(9,Q) + \eta_0 \left(\sum_{k} \Lambda(j,k) - 1 \right) \right] = \text{or for each that } \Lambda_j \text{ sums } l = 2$$

$$V(j'') = \int_{\mathcal{A}} \frac{\sigma(J^{k}: \kappa', J^{k-1}=j)}{\omega}$$

satisfies the constraint that Mo enforces.

$$\Lambda(j_{i}k) = \frac{\sum Q(Z_{i}=k, Z_{i-1}=j)}{\sum Q(Z_{i}=j)}$$

Summary ! To maximize the ELBO with respect to 1, ue real the pairwise mayingly Q17, 7,1,

<u>Vairwise</u> marginals in HMMs The optimal 2 (2 17) = P(2 2 | X 1: T) -> How do we compute the pair wish mayimla? Think of (Zt-1, Zt) as a "super hode"... Then p(2+1, 2+ | x1:+) & r(2+1, 2+, x1:+) d d(7) B(7) L(7) L(7) N(7, 7) $= P(7 + 7 \times 1!\tau)$ Note that this is still o(h2). More generally for N-way marginal O(K).

What is or is not tractable in HMMs
· Eudliching tu joint of giwn zinzi;
P(7, 2, 7, 2/ X,)) (12 T) to run BP.
· Evelucting the evidence
$P(X_{1:T}; \Theta) \qquad O(k^{2}T)$
· Evaluating a gradient with backprop
P(XIIT; O) O(VT)
P(z,z / xint, D) & z,zr O(K) volus);
O(KN) volus : Albuys on M
Recoming about the joint P(7, Zor 1) is often important.
e.g. speech recognition. Treetable options:
MAP: algmax Plz,ZT XI:T; 8) Z1:T "Viterti algorithm"
· Sample: 2,2 ~ P(7,2, 1 71:7, 0)
"forward filtering backward sampling" (FFBS)
turn to last lecture to cover:
Vituali, FFBS, extensions of HMMs

Monto (orlo (MC) - EM

Say we have an m-order HMM

- · Z_{t+1} ~ P(Z_{t+1} | Z_{t·m})
- · N is a (km x k) matrix

 (or a kx ··· x k tensor)
- Exact EM would require all

 (M+1)-maryinals P(Z...Z | X,1,T)
- · Longe M -> indrectable
- · Instead, replace the E-Slep with:
 - Z,... Z ~ P(2,... Z | X | Θ) S=1... S
 - $Q(z_{1:t}) = \frac{1}{s} \sum_{s=1}^{s} 1(z_{1:t} = z_{1:t}^{s})$
 - "atomic measure", each unique 25; is an "ctim".
- · Onew = argmax = I I log P(x, 1:T, Z 1:T; @)
- · S=1 is celled "stachestic EM".

Variational EM

- · Constrain Q(Z1:T) to be from a tractable family of
- · e.g. Q(7117) = T(Q(74) "factorited"
- · Variofinal E-slep:

