Práctica 2

Índice

1.	Matrices	1
2.	Polinomios	2
3.	Funciones racionales	4

1. Matrices

Las matrices se forman escribiendo sus posiciones entre corchetes. La separación entre columnas es una coma o un espacio en blanco. La separación entre filas es un punto y coma. Por ejemplo:

Ventá de comandos A = 1 2 3

4 5 6

Un vector de \mathbb{R}^n no es más que una matriz con solo una fila.

Para recuperar el valor de una posición concreta de una matriz se deben escribir entre paréntesis los números de fila y columna. Por ejemplo:

Ventá de comandos

Es posible generar un vector indicando solo la primera componente, el máximo valor de la última y el paso que permite avanzar de una componente a otra. La sintaxis para hacerlo es X=a:p:b, siendo X el nombre del vector, a el valor de la primera componente, p la diferencia entre una componente y la anterior, y b el valor máximo de la última componente.

Ventana de comandos

editor
X=1:0.5:3
Y=1:0.6:3

```
>> X=1:0.5:3

X =

1.0000 1.5000 2.0000 2.5000 3.0000

>> Y=1:0.6:3

Y =

1.0000 1.6000 2.2000 2.8000
```

Como podemos observar en el vector X, la última componente coincide con el valor máximo permitido, mientras que eso non sucede en Y.

Ejercicio 1 Escribir un vector que proporcione una partición do intervalo [3, 10] con 9 subintervalos de la misma longitud.

El módulo de un vector se calcula con el comando norm. Por ejemplo:

Peditor V=[1 2 3] norm(V)

Ventana de comandos >> V=[1 2 3]; >> norm(V) ans = 3.7417

2. Polinomios

Definiremos los polinomios como funciones simbólicas dependientes de una variable. Para introducir el polinomio $P(x)=x^5+x^2-4$ se debe escribir:

Ventana de comandos

Para evaluar un polinomio en un punto se usa comando subs.

Ventana de comandos

Las operaciones entre polinomios se hacen con los operadores habituales. Si $P(x)=x^5+x^2-4$ y $Q(x)=2x^3-4x^2-x$ entonces:

editor

P= x^5+x^2-4 ; Q= $2*x^3-4*x^2-x$; P+Q

Ventana de comandos

El resultado del producto $P \cdot Q$ lo expresa sin desarrollar. Para hacerlo debemos usar el comando expand.

Ventana de comandos

editor

P*Q expand(P*Q)

Para encontrar las raíces de un polinomio usamos la función solve, que resuelve ecuaciones algebraicas. Por ejemplo, para calcular las raíces de $P(x)=x^5-6x^4+14x^3-6x^2+13x$ escribimos:

editor
$$\frac{P=x^5-6*x^4+14*x^3-6*x^2+13*x}{solve(P==0,x)}$$

Asociado a la obtención de raíces de un polinomio, está su factorización. Ésta se acostumbra a hacer con coeficientes reales. El comando que permite esta factorización es factor. Por ejemplo, para el polinomio $P(x)=x^5-6x^4+14x^3-6x^2+13x$.

editor $P=x^5-6*x^4+14*x^3-6*x^2+13*x;$ factor(P)

Ventana de comandos

3. Funciones racionales

La operación más interesante que utilizaremos con fracciones algebraicas es su descomposición en fracciones simples. El comando que lo permite es partfrac(fracción, variable). Por ejemplo, para la fracción $\frac{x^2+x+1}{x^3-5x^2+8x-4}$

editor

$$P=x^2 + x + 1;$$
 $Q=x^3 - 5*x^2 + 8*x - 4;$
 $P=x^2 + x + 1;$
 $P=x^2 + x + 1;$
 $P=x^2 + x + 1;$
 $P=x^2 + x + 1;$

Ventana de comandos

Ejercicio 2 Dados los polinomios $P(x) = 3x^5 - 7x^3 + 5x^2 - x + 3$ y $Q(x) = 7x^5 - 4x^4 - 2x^2 - 3x + 1$, calcular P + Q, 3 * P - 5 * Q.

Ejercicio 3 Calcular las raíces del polinomio $P(x) = x^5 + 13x^3 + 54x^2 + 140x + 200$ y su factorización.

Ejercicio 4 Dados los polinomios $P(x)=2x^4+14x^3+25x^2+17x-8$ y $Q(x)=x^3+7x^2+11x+5$, calcular P+Q, P-Q, $P\cdot Q$ y su factorización, y la descomposición en suma de fracciones simples de $\frac{P}{Q}$.

Ejercicio 5 Sean $P(x) = 6x^5 - 73x^4 + 202x^3 - 100x^2 - 168x + 421$ y $Q(x) = x^6 - 14x^5 + 43x^4 + 92x^3 - 409x^2 + 434x - 147$. Escribir la descomposición en suma de fracciones simples de P/Q.