Parallel and Distributed Programming Introduction

Kenjiro Taura

Contents

- Why Parallel Programming?
- 2 What Parallel Machines Look Like, and Where Performance Come From?

3 How to Program Parallel Machines?

Contents

- Why Parallel Programming?
- What Parallel Machines Look Like, and Where Performance Come From?

3 How to Program Parallel Machines?

Why parallel?

• frequencies no longer increase (end of Dennard scaling)

source: http://cpudb.stanford.edu/

Why parallel?

- frequencies no longer increase (end of Dennard scaling)
- techniques to increase performance (Instruction-Level Parallelism, or ILP) of serial programs are increasingly difficult to pay off (Pollack's law)

source: http://cpudb.stanford.edu/

Why parallel?

- frequencies no longer increase (end of Dennard scaling)
- techniques to increase performance (Instruction-Level Parallelism, or ILP) of serial programs are increasingly difficult to pay off (Pollack's law)
- multicore, manycore, and GPUs are in part response to it

have more transistors? \Rightarrow have more cores

source: http://cpudb.stanford.edu/

There are no serial machines any more

- virtually all CPUs are now *multicore*
- high performance accelerators (GPUs and Xeon Phi) run at even low frequencies and have many more cores (manycore)

Processors for supercomputers are ordinary, perhaps even more so

Rank	System	Cores	Rmax (PFlop/s)	Rpeak [PFlop/s]	Power (kW)
1	Prontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz AMD Instinct MI250X, Slingshot-11, HPE DOE/ISC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	1,110,144	151.90	214.35	2,942
4	Summit - IBM Power System AC922, IBM POWER9 22C 3.076Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM Doel/SC/Gak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
5	Sierra - IBM Power System AC922, IBM POWER9 22C 3.10Hz NYDDA Votta 6V100 0 uu-1-ait Metlanox EDR Infiniband, IBM / NVIDIA / Metlanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438
6	Sunway TaihuLight - Sunway MPP, Sunway SW26010 280C 1.456Hz, Sunway] NRCPC National Supercomputing Center in Wuxi China	10,649,600	93.01	125.44	15,371

https://www.top500.org/lists/top500/2022/06/

Implication to software

• existing serial SWs do not get (dramatically) faster on new CPUs

Implication to software

- existing serial SWs do not get (dramatically) faster on new CPUs
- just writing it in C/C++ goes nowhere close to machine's potential performance, unless you know how to exploit parallelism of the machine

Implication to software

- existing serial SWs do not get (dramatically) faster on new CPUs
- just writing it in C/C++ goes nowhere close to machine's potential performance, unless you know how to exploit parallelism of the machine
- you need to understand
 - does it use multiple cores (and how the work is distributed)?
 - does it use SIMD instructions?
 - does it have good instruction level parallelism?

Example: matrix multiply

• how much can we improve this on a single machine?

Contents

- 1 Why Parallel Programming?
- 2 What Parallel Machines Look Like, and Where Performance Come From?

3 How to Program Parallel Machines?

What a single parallel machine (node) looks like

- SIMD : Single Instruction Multiple Data
- a single SIMD register holds many values
- a single instruction applies the same operation (e.g., add, multiply, etc.) on all data in a SIMD register
- a single core can execute multiple instructions in each cycle (ILP)

What a single parallel machine (node) looks like

- SIMD : Single Instruction Multiple Data
- a single SIMD register holds many values
- a single instruction applies the same operation (e.g., add, multiply, etc.) on all data in a SIMD register
- a single core can execute multiple instructions in each cycle (ILP)

What a single parallel machine (node) looks like

- SIMD : Single Instruction Multiple Data
- a single SIMD register holds many values
- a single instruction applies the same operation (e.g., add, multiply, etc.) on all data in a SIMD register
- a single core can execute multiple instructions in each cycle (ILP)

What a machine looks like

- performance comes from *multiplying* parallelism of many levels
- parallelism (per CPU)
 - = SIMD width \times instructions/cycle \times cores
- in particular, peak FLOPS (per CPU)
 - $= (2 \times SIMD \text{ width}) \times FMA \text{ insts/cycle/core} \times freq \times cores$
- FMA: Fused Multiply Add (d = a * b + c)
- the first factor of 2: multiply and add (each counted as a flop)

What a GPU looks like?

- a GPU consists of many Streaming Multiprocessors (SM)
- each SM is highly multithreaded and can interleave many warps
- each warp consists of 32 *CUDA threads*; in a single cycle, threads in a warp can execute the same single instruction

What a GPU looks like?

• despite very different terminologies, there are more commonalities than differences

GPU	CPU			
SM	core			
multithreading in an SM	simultaneous multithreading			
a warp (32 CUDA threads)	a thread executing SIMD instructions			
	multiple instructions from a single thread			

• there are significant differeces too, which we'll cover later

How much parallelism?

• Intel CPUs

_	intel Cl US						
	arch model	SIMD	FMAs	freq	core	peak	TDP
		width	/cycle			GFLOPS	
		SP/DP	/core	GHz		SP/DP	W
ĺ	Haswell e78880Lv3	8/4	2	2.0	18	1152/576	115
	Broadwell 2699v4	8/4	2	2.2	22	1548/604	145
	Cascade Lake 9282	16/8	2	2.6	56	9318/4659	400
	Ice Lake 8368	16/8	2	2.4	38	5836/2918	270

• NVIDIA GPUs (numbers are without Tensor Cores)

acrh model	threads	FMAs	freq	SM	paek	TDP
	/warp	/cycle			GFLOPS	
	·	/SM				
		SP/DP	GHz		SP/DP	W
Pascal P100	32	2/1	1.328	56	9519/4760	300
Volta v100	32	2/1	1.530	80	15667/7833	300
Ampere A100	32	2/1	1.410	108	19353/9676	400

Peak (SP) FLOPS

```
Ice Lake 8368 A100
= (2 \times 16) [flops/FMA insn] = (2 \times 32) [flops/FMA insn]
\times 2 [FMA insns/cycle/core] \times 2 [FMA insns/cycle/SM]
\times 2.4G [cycles/sec] \times 1.41G [cycles/sec]
\times 38 [cores] \times 108 [SMs]
= 5836 GFLOPS = 19353 GFLOPS
```

NVIDIA: Tensor Cores

- performance shown so far is limited by the fact that a single (FMA) instruction can perform 2 flops (1 multiply + 1 add)
- Tensor Core, a special execution unit for a small matrix-multiply-add, changes that
- A100's each Tensor Core can do $C = A \times B + C$ (where $A: 4 \times 4, B: 4 \times 8$) per cycle $(A: 4 \times 4 \text{ TF}32, B: 4 \times 8 \text{ TF}32, C \text{ and } D \text{ are SP})$

$$2 \times 4 \times 4 \times 8 = 256$$
 flops/cycle

• each SM of A100 GPU has 4 Tensor Cores, so a single A100 device can do

$$(2 \times 4 \times 4 \times 8)$$
 [flops/cycle]

- \times 1.41G [cycles/sec]
- \times 4 × 108 [Tensor Cores]
- = 155934.72 GFLOPS

Trends

- processors' performance improvement is getting less and less "generic" or "transparent"
 - frequencey + instruction level parallelism
 - → explicit parallelism (multicore/manycore)
 - \rightarrow special execution unit for macro operations (e.g., MMA)
 - \rightarrow application-specific instructions (?)
- performance is getting more and more dependent on programming

Contents

- 1 Why Parallel Programming
- 2 What Parallel Machines Look Like, and Where Performance Come From?

3 How to Program Parallel Machines?

So how to program it?

- no matter how you program it, you want to maximally utilize all forms of parallelism
- "how" depends on devices and programming languages

Language constructs for multiple cores / GPUs

from low level to high levels

- (CPU) OS-level threads
- (GPU) CUDA threads
- SPMD \approx the entire program runs with N threads
- parallel loops
- dynamically created tasks
- internally parallelized libraries (e.g., matrix operations)
- high-level languages executing pre-determined operations (e.g., matrix operations, map & reduce-like patterns, deep learning) in parallel

Language constructs for CPU SIMD

from low level to high levels

- assembly
- intrinsics
- vector types
- vectorized loops
- internally vectorized libraries (e.g., matrix operations)

those who want to:

• have a first-hand experience in parallel and high performance programming (OpenMP, CUDA, SIMD, ...)

- have a first-hand experience in parallel and high performance programming (OpenMP, CUDA, SIMD, ...)
- know good tools to solve more complex problems in parallel (divide-and-conquer and task parallelism)

- have a first-hand experience in parallel and high performance programming (OpenMP, CUDA, SIMD, ...)
- know good tools to solve more complex problems in parallel (divide-and-conquer and task parallelism)
- understand when you can get "close-to-peak" CPU/GPU performance and how to get it (SIMD and instruction level parallelism)

- have a first-hand experience in parallel and high performance programming (OpenMP, CUDA, SIMD, ...)
- know good tools to solve more complex problems in parallel (divide-and-conquer and task parallelism)
- understand when you can get "close-to-peak" CPU/GPU performance and how to get it (SIMD and instruction level parallelism)
- learn many reasons why you don't get good parallel performance

- have a first-hand experience in parallel and high performance programming (OpenMP, CUDA, SIMD, ...)
- know good tools to solve more complex problems in parallel (divide-and-conquer and task parallelism)
- understand when you can get "close-to-peak" CPU/GPU performance and how to get it (SIMD and instruction level parallelism)
- learn many reasons why you don't get good parallel performance
- have a good understanding about caches and memory and why they matter so much for performance