MATH 271: Chapter 7 homework

Micah Sherry

November 15, 2024

12. There exists a positive real number x for which $x^2 < \sqrt{x}$.

Proof. Consider the case when $x = \frac{1}{4}$. Then $x^2 = (\frac{1}{4})^2 = \frac{1}{16}$ and $\sqrt{x} = \sqrt{\frac{1}{4}} = \frac{1}{2}$. Since $\frac{1}{16} < \frac{1}{2}$. The proposition holds.

16. Suppose $a, b \in \mathbb{Z}$. If ab is odd, then $a^2 + b^2$ is even.

Proof. assume that ab is odd. Then a and b are both odd. So, $\exists n, m \in \mathbb{Z}$ such that a = 2m + 1 and b = 2n + 1.

$$a^{2} + b^{2} = (2m+1)^{2} + (2n+1)^{2}$$
 (by substitution)
= $4m^{2} + 4m + 1 + 4n^{2} + 4n + 1$
= $2(2m^{2} + 2n^{2} + 2m + 2n + 1)$.

Since, $2(2m^2 + 2n^2 + 2m + 2n + 1)$ is even by definition, The proposition holds.

18. There is a set X for which $\mathbb{Z} \in X$ and $\mathbb{Z} \subseteq X$.

Proof. Consider the set $X = \mathbb{Z} \cup \{\mathbb{Z}\}$. Therefore, $X = \{x | x \in \mathbb{Z} \text{ or } x \in \{\mathbb{Z}\}\}$ (by definition of union). So $\mathbb{Z} \in X$ because $\mathbb{Z} \in \{Z\}$. And \mathbb{Z} is a subset of X because \mathbb{Z} is a subset of itself. Since \mathbb{Z} is a subset and an element of X, the proposition holds

20. There exists an $n \in N$ for which 11|(2n-1).

Proof. Consider the case where n = 10. Then $2^n - 1 = 1023 = 11(93)$. So, 11 divides $2^{10} - 1$. Therefore the proposition holds. (Note: I found this solution with a Python script but I think an argument can be made that $(n+1)|(2^n-1)$).

22. if $n \in \mathbb{Z}$ then $4|n^2$ or $4|(n^2-1)$

Proof. Notice there are 2 cases for n: odd and even).

Case 1: n is odd. So, $\exists k \in \mathbb{Z}$ such that n = 2k + 1. Consider,

$$n^{2} - 1 = (2k + 1)^{2} - 1$$
$$= 4k^{2} + 4k + 1 - 1$$
$$= 4(k^{2} + k).$$

So 4 divides $n^2 - 1$ when n is odd.

Case 2: n is even. So, $\exists k \in \mathbb{Z}$ such that n = 2k. Consider,

$$n^2 = (2k)^2$$
$$= 4(k^2).$$

So 4 divides n^2 when n is even. Since 4 divides n^2 or $n^2 - 1$ the proposition holds.

30. Suppose $a, b, p \in \mathbb{Z}$ and p is prime. Prove that if p|ab then p|a or p|b.

Proof. Assume for the sake of contradiction that p|ab and $p \nmid a$ and $p \nmid b$. So, $\exists k$ such that ab = pk. And the gcd(p,b) = 1, because $p \nmid b$ and p only has factors 1 and p. so by proposition 7.1 (page 152) $\exists m, n$ such that 1 = bm + pn.

$$1 = bm + pn$$

 $a = abm + pna$ (multiplying both side by a)
 $= pkm + pna$ (by substituting ab for pk)
 $= p(km + na)$

Therefore p|a which is a contradiction therefore the original statement holds.

31. if gcd(a, c) = gcd(b, c) = 1, then gcd(ab, c) = 1.

Proof. Assume gcd(a, c) = gcd(b, c) = 1, So, $\exists w, x, y, z \in \mathbb{Z}$ such that 1 = aw + cx and 1 = by + cz (by proposition 7.1 page 152). let d denote the gcd(ab, c), therefore d|c and d|ab. So, $\exists m, n$ such that c = dm and ab = dn. Consider,

$$1 = aw + cx$$

 $b = abw + cby$ (multiplying both sides by b.)
 $= dnw + dmby$ (substituting c for dm and ab for dn.)
 $= d(nw + mby)$ (let k denote $nw + mby$.)

Therefore b = dk. Now consider,

$$1 = by + cz$$

$$= dky + dmz$$
 (substituting c for dm, and b for dk)
$$= d(ky + mz)$$

$$= dj$$
 (letting j denote $ky + mz$)

This implies that d|1, therefore, d=1 (because 1 only has divisors -1, and 1; and 1 ζ -1). Therefore the gcd(ab,c)=1, so the proposition holds.