TD Matériaux semi-conducteurs

Objectifs

- Expliquer que les porteurs mobiles de charges dans un semi-conducteur se comportent essentiellement comme des particules classiques.
- Relier les densités de porteurs et de charges dans un semi-conducteur à son diagramme de bandes.

I Porteurs et particules classiques

Rappel : dans un matériau semi-conducteur, les électrons occupent des états stationnaires dont les valeurs possibles de l'énergie forment des bandes permises, séparées par des bandes interdites. À température nulle, le niveau de Fermi E_F est dans une bande interdite de largeur E_g . Comme illustré figure 1, l'énergie permise la plus basse possible au-dessus de E_F est notée E_c , c'est le niveau le plus bas d'une bande permise appelée bande de conduction (BC). L'énergie permise la plus haute possible en-dessous de E_F est notée E_v , c'est le niveau le plus haut d'une bande permise appelée bande de valence (BV).

Question 1 Quelles bandes sont pleines, quelles bandes sont vides, quelles bandes sont partiellement remplies (préciser si elles sont presque pleines ou presque vides), à température nulle et à température non nulle?

Question 2 (En leçon de groupe) Justifier que les électrons en bas de la BC peuvent satisfaire approximativement les propriétés suivantes, caractéristiques des particules classiques :

- 1. peu de contraintes sur la valeur de l'énergie, en particulier pas de quantification apparente;
- 2. énergie quadratique en la quantité de mouvement (à une constante additive près);
- 3. pour un ensemble de beaucoup de particules à l'équilibre avec un thermostat de température T, elles suivent la loi de Boltzmann : le nombre moyen de particules d'énergie E est en $\exp\left(-\frac{E}{k_BT}\right)$.

II Densités de porteurs

On rappelle un résultat du cours : on peut calculer la densité n d'électrons dans la BC, et la densité p de trous dans la BV, en fonction de l'écart entre E_F , E_c et E_v (ainsi que la température et des constantes

Figure 1 – Diagramme de bandes d'un matériau semi-conducteur (non dopé).

du matériau).

$$n = N_c \exp\left(\frac{E_F - E_c}{k_B T}\right) \tag{1}$$

$$p = N_v \exp\left(\frac{E_v - E_F}{k_B T}\right). \tag{2}$$

Question 3 Relier le produit $n \cdot p$ à E_g sous une forme qui ne dépend pas de E_F , E_c , E_v .

Question 4 Si n_i est la valeur de n dans un semi-conducteur intrinsèque, justifier que : $n \cdot p = n_i^2$. Cette relation reste-t-elle valable pour un semi-conducteur dopé?

Question 5 Ordres de grandeur. Pour le silicium, on donne : $E_g \simeq 1$ eV, $n_i \simeq 10^{16}$ m⁻³ à température ambiante ($k_BT \simeq 25 \cdot 10^{-3}$ eV). Quel est l'ordre de grandeur de N_c et N_v , en supposant que c'est le même pour les deux? Et en négligeant leur variation avec T, si T augmente de 20 %, que devient n_i (et quelle est la nouvelle température en °C?) Comparer à la densité du matériau lui-même (5 · 10^{28} atomes/m³).

Question 6 On considère maintenant du silicium dopé N, avec une densité $N_D = 10^{22} \,\mathrm{m}^{-3}$ de donneurs, que l'on considère tous ionisés à température ambiante. Calculer n et p en fonction de n_i et N_D et faire l'application numérique à température ambiante. Comparer aux valeurs pour le silicium intrinsèque. Remarquer que $p \neq 0$ mais justifier qu'on puisse négliger les trous.

III Niveau de Fermi, diagramme de bandes

Question 7 Relier la position de E_F par rapport au milieu de la bande interdite au rapport $\frac{n}{n}$.

Question 8 En considérant toujours N_c et N_v du même ordre de grandeur, dessiner l'allure du diagramme de bandes (E_F, E_c, E_v) pour le silicium intrinsèque, et pour le silicium dopé N comme ci-dessus.

IV Diagramme de bandes et densité de charges

À l'intérieur d'un composant électronique, on considère une zone de matériau semi-conducteur dopé, avec une densité de dopants $N_{\text{dopants}} \gg n_i$ uniforme. Le long d'un axe x, E_F sera constant (condition d'équilibre), mais E_c et E_v peuvent varier, notamment au voisinage d'une jonction avec une autre zone. Le diagramme de bandes a l'allure suivante :

Question 9 Vu le diagramme de bandes à gauche de x_1 , s'agit-il d'un matériau dopé N ou dopé P? Que valent les densités de porteurs n et p de ce côté, en fonction de n_i et N_{dopants} ?

Question 10 À droite de x_1 , comparer n, p et N_{dopants} . Lesquelles seront-elles négligeables devants d'autres? Les variations de n et p seront-elles abruptes ou progressives?

Question 11 Dans ce matériau, quelle est la charge électrique des électrons, des trous, et des dopants ? Au vu des questions 9 et 10, tracer l'allure de la densité de charge électrique selon x.