Deep Learning for Computer Vision (Discriminative way)

Andrii Liubonko

multimodal LLMs

CV foundational models

Deep Learning based CV

"classical" CV

math

CLIP, DINO, SAM, ...

- discriminative model Pr(w|x)
- **generative** model Pr(x|w)
- $Pr(\mathbf{w}|\mathbf{x}) = Pr(\mathbf{x}|\mathbf{w}) * Pr(\mathbf{w}) / [[Pr(\mathbf{x} | \mathbf{w}) * Pr(\mathbf{w})] d\mathbf{w}$

multimodal LLMs

CV foundational models

Deep Learning based CV

"classical" CV

math

CLIP, DINO, SAM, ...

- discriminative model Pr(w|x)
- generative model Pr(x|w)
- $Pr(\mathbf{w}|\mathbf{x}) = Pr(\mathbf{x}|\mathbf{w}) * Pr(\mathbf{w}) / \int [Pr(\mathbf{x} | \mathbf{w}) * Pr(\mathbf{w})] d\mathbf{w}$

Intro

Era of Human-Crafter Features

Era of Deep Learning

Era of LLMs (FoundM)

2012 AlexNet

2022 ChatGPT

traditional ML

Old days: one model for one purpose

prompt-based ML

Now: one model for multiple purposes

prompt-based ML

traditional ML

Big Picture

- Layers
 - Layers [Convolution] [Receptive field]
 - Layers [Dilated Convolution, Deformable Convolution]
 - Layers [Group Convolutions and its variants]
 - Layers [Upsampling, Learnable Upsampling]
 - Layers [Normalization, Batch Norm, Dropout]
- Blocks
 - VGG, Inception
 - ResNet*
 - MobileNet*
- Architectures
 AlexNet, VGG, Inception,
 ResNet, MobileNet, EfficientNet

Net [AlexNet]

Net [VGG16]

Net [ResNet]

Content of today's lecture

- Attention Intro
 - Brief History
 - Seq2seq Attention
 - Self-Attention
 - Transformer
- Attention in CV
 - SE
 - ViT
 - latest developments

Attention Timeline

Attention Intro

Attention [intro]

Attention [seq2seq]

Attention [seq2seq] Decoder

Attention [seq2seq]

Attention [seq2seq] $h_t^D = \sigma_h(\mathbf{V^D} \cdot h_{t-1}^D + \mathbf{U^D} \cdot y_{t-1} + \mathbf{b_h^D})$ $y_t^D = \sigma_y(\mathbf{W^D} \cdot h_t^D + \mathbf{b_y})$ $h_t^E = \sigma_h(\mathbf{V^E} \cdot h_{t-1}^E + \mathbf{U^E} \cdot x_t + \mathbf{b_h})$

query-key-value abstraction

Self-Attention

Self-Attention

Self-Attention

Self-Attention

Self-Attention $Q = Linear_{[\mathbf{W_Q}, \mathbf{b_Q}]}(X)$ $K = Linear_{[\mathbf{W_K}, \mathbf{b_K}]}\left(X\right)$ $V = Linear_{[\mathbf{W_{V}}, \mathbf{b_{V}}]}(X)$ Q $Y = softmax\left(\frac{Q \cdot K^{T}}{\sqrt{d}}\right) \cdot V$ X Softmax V

^{*} image from <u>Understanding Deep Learning</u>, book by Simon J.D. Prince, 2023

Transformer layer

^{*} image from <u>Understanding Deep Learning</u>, book by Simon J.D. Prince, 2023

Transformer layer

Transformer [Encoder]

Transformer Softmax Transformer: <u>1706.03762</u> Linear BERT: <u>1810.04805</u> Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Attention Feed Forward Add & Norm Add & Norm Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Input Output Embedding Embedding

Transformer [Encoder]

Transformer [Encoder]

Memory & Compute

Transformer [Multi head attention]

$$FC(X) = Linear_{[\mathbf{W_{out},b_{out}}]}(\sigma(Linear_{[\mathbf{W_{in},b_{in}}]}(X)))$$

$$\begin{aligned} MultiHead(\mathbf{X}, \mathbf{X}) &= Linear_{[\mathbf{W^{0}, b^{0}}]} \left(concat_{i \in [A]} \left[\mathbf{H^{i}} \right] \right) \\ Attention(Q, K, V) &= softmax \left(\frac{Q \cdot K^{T}}{\sqrt{d}} \right) \cdot V \\ \mathbf{H^{i}} &= Attention(Linear_{[\mathbf{W_{Q}^{(i)}, b_{Q}^{(i)}}]}(X), \\ &\qquad \qquad Linear_{[\mathbf{W_{K}^{(i)}, b_{K}^{(i)}}]}(X), \\ &\qquad \qquad Linear_{[\mathbf{W_{V}^{(i)}, b_{V}^{(i)}}]}(X)) \end{aligned}$$

Transformer [Embeddings]

B - bach_size

H - hidden

V - vocabulary size

M - max token length

T - number of types

[bert-base: 768]

[bert-base: 50265] [bert-base: 514]

[bert-base: 314] [bert-base: 1]

Transformer [MHA]

L - batch_length

S - head_size (= H/A)

I - intermediate FC size

[bert-base: 64]

[bert-base: 3072]

Transformer [FC]

B - bach_size L - batch_length H - hidden
A - num_heads
S - head_size (= H/A)
I - intermediate FC size

[bert-base: 768] [bert-base: 12] [bert-base: 64] [bert-base: 3072]

Transformer [summary]

		#params [M]	mocs [B]
	FC-LayerNorm	2 * H	B*L*H
	FC-Out	(1 + H) * I	B*L*H*I
	FC-In	(1 + I) * H	B*L*H*I
LL {	Atten-LayerNorm	2 * H	B*L*H
	Atten-LinearOutput	(1 + H) * H	B*L*H*H
	Atten-AttenScoreValue	O	B*A*L*L*S
	Atten-AttenScore	O	B*A*L*L*S
	Atten-LinearInput	(1 + H) * H * 3	B*L*H*H*3
	Embedding-LayerNorm	2 * H	B * L * H
	Embedding-Word	V * H	O
	Embedding-Position	M * H	O
	Embedding-Token-Type	T * H	O

Transformer [summary]

		#params [M]	mocs [B]
	FC-LayerNorm	2 * H	B*L*H
	FC-Out	(1 + H) * I	B*L*H*I
	FC-In	(1 + I) * H	B*L*H*I
LL {	Atten-LayerNorm	2 * H	B*L*H
	Atten-LinearOutput	(1 + H) * H	B*L*H*H
	Atten-AttenScoreValue	O	B*A* L*L *S
	Atten-AttenScore	O	B*A* L*L *S
	Atten-LinearInput	(1 + H) * H * 3	B*L*H*H*3
	Embedding-LayerNorm	2 * H	B*L*H
	Embedding-Word	V * H	0
	Embedding-Position	M * H	0
	Embedding-Token-Type	T * H	0

Transformer [Memory & Runtime]

image source: 2410.02367

Transformer [Flash Attention]

Standard Attention Implementation

Flash Attention

Initialize O, I and m matrices with zeroes. m and I are used to calculate cumulative softmax. Divide Q, K, V into blocks (due to SRAM's memory limits) and iterate over them, for i is row & j is column.

image source: Flash Attention

Transformer [Flash Attention]

image source: GitHub - Dao-AlLab/flash-attention: Fast and memory-efficient exact attention

Transformer [Sage Attention]

(a) SageAttention (per-token quantize Q,K; INT8 V)

(b) SageAttention (per-block quantize Q,K; FP16 V)

image source: <u>2410.02367</u>

Transformer [another view]

image source: 2101.01169

Transformer [another view]

Transformer [another view]

L = 12 (bert-base), $12 \times 12 = 144$ heads