理论力学 AII 期末考试模拟试题

选择题(将正确答案的字母填在空格内,每小题 2 分,共 10 分)

A: 广义速度; B: 广义坐标; C: 时间 t

2、定点运动的圆锥 ABC 在水平固定圆盘上纯滚动,如图 1 所示。若圆锥底面圆心 D 作匀 速圆周运动,则该圆锥的角加速度矢量 α 与角速度矢量 α 的关系是

A: α 平行于 ω ; B: α 垂直于 ω ;

 $C: \alpha$ 为零矢量; $D: \alpha$ 为非零矢量

图 1

3、二自由度线性系统的振动周期与 有关。

A: 广义质量; B: 广义刚度; C: 初始位置; D: 初始速度

A: 一定能; B: 一定不能; C: 不一定能

质点系的力学问题。 5、第二类拉格朗日方程可用于研究具有

A: 完整约束; B: 定常约束; C: 非完整约束; D: 非定常约束

注: 第二类拉格朗日方程为: $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \left(\frac{\partial T}{\partial q_i} \right) = Q_j \quad (j = 1, 2, \dots, k)$ 。 其中 k 为系统的

自由度。 Q_i 为对应于广义坐标 q_i 的主动力的广义力。

填空题(将最简结果填在空格内,每空5分,共50分) 二、

1、质量为 m 的质点 M 可在半径为 R 的圆环内运动,圆环以角速度 $\boldsymbol{\omega}$ (常矢量) 绕 AB 轴 作定轴转动,如图 2 所示。 θ 为质点的广义坐标,此时质点的动能可以表示成

 $T = T_2 + T_1 + T_0$, $\sharp + T_i (i = 0,1,2)$

为广义速度的 i 次齐次函数。求:

$$T_2 = \underline{\hspace{1cm}}$$

$$T_1 = \underline{\hspace{1cm}}$$

$$T_0 = \underline{\hspace{1cm}}$$

图 2

图 3

2、长为L质量为m的均质杆OA用光滑柱铰链悬挂在天花板上,下端与刚度系数为k的水平弹簧连接,杆铅垂时弹簧为原长,如图 3 所示。求系统在平衡位置附近作微幅摆动的动力学方程。

动力学方程:		
大川 川一学、月末年。		

3、圆盘相对正方形框架 ABCD 以匀角速度 $\sqrt{2}\omega_0$ 绕 BC 轴转动,正方形框架以匀角速度 ω_0 绕 AB 轴转动,如图 4 所示。求该圆盘的绝对角速度 ω 的大小和绝对角加速度 α 的大小。

4、框架以匀角速度 $\omega_z = \omega$ 绕铅垂轴 AB 转动,半径为 R 的圆盘以匀角速度 $\omega_l = \omega$ 绕框架上的 CD 轴转动,如图 5 所示。求:圆盘在图示位置的最高点的速度的大小v,该点的向轴加速度的大小 a_N 和转动加速度的大小 a_R 。

, <u> </u>

5、如图 6 所示,质量为 m 半径为 R 的均质圆盘可绕其中心水平轴 O 作定轴转动,质量为 m 的滑块 A 可沿铅垂滑道运动,滑块 A 与圆盘通过铰链用长为 R 的无质量杆 AB 连接,忽略所有摩擦,系统在铅垂面内运动。求系统在静平衡位置附近做微幅振动的固有频率 ω_0 。

三、 计算题 (第1小题 25 分,第2小题 15 分,本题共40 分)

1、质量为m 半径为R 的均质圆盘在水平地面纯滚动,长为L 质量为m 的均质杆 AB 铰接在圆盘中心A,系统在铅垂平面内运动,系统的广义坐标如图7 所示。忽略空气阻力与铰链A 处的摩擦。求: (1) 用系统的广义坐标和广义速度给出系统的动能T 和势能V (杆在铅垂

位置时为势能零点);(2)若初始时,杆位于铅垂位置 $\theta_0 = 0$,圆盘中心A点的速度为u,杆的角速度为零。试给出系统拉格朗日方程的首次积分并确定积分常数。

要求:给出解题的基本理论和基本步骤。

图 7

2、已知质量为 m 的定点运动陀螺做规则进动($\alpha>0$ 为常量),其质心 C 到球铰链 O 的距离为 L,该陀螺对质量对称轴 z 的转动惯量为 J 且以 ω_2 绕 z 轴高速旋转,z 轴与 z_1 轴的夹角为 α ,如图 8 所示。求陀螺的进动角速度 ω_1 、铰链 O 的约束力在铅垂方向的分量 F_N 和水平方向的分量 F 的大小。 要求:画出受力图、加速度图;给出解题基本理论和基本步骤。

图 8

理论力学 AII 答案

选择题 (每题 2 分, 共 10 分)

- 1, AB 2, BD

- 4、B
- 5、ABD

二、填空题(每空5分,共50分)

1.
$$T_2 = \frac{1}{2} mR^2 \dot{\theta}^2$$
 $T_1 = 0$ $T_0 = \frac{1}{2} mR^2 \omega^2 \sin^2 \theta$

$$2, \quad \ddot{\theta} + \frac{3(mg + 2kL)}{2mL}\theta = 0$$

3.
$$\omega = \sqrt{5}\omega_0$$
 $\alpha = \omega_0^2$

4,
$$v = \omega R$$
 $a_N = \sqrt{2}\omega^2 R$ $a_R = \omega^2 R$

$$5, \ \omega_0 = 2\sqrt{\frac{g}{R}}$$

三、 计算题(共40分)

1.
$$T = \frac{5}{4}m\dot{x}^2 + \frac{1}{6}mL^2\dot{\theta}^2 + \frac{1}{2}mL\dot{x}\dot{\theta}\cos\theta$$

$$V = \frac{1}{2} mgL(1 - \cos\theta)$$

$$\frac{\partial L}{\partial \dot{x}} = \frac{\partial T}{\partial \dot{x}} = \frac{5}{2}m\dot{x} + \frac{1}{2}mL\dot{\theta}\cos\theta = \frac{5}{2}mu$$

$$T + V = \frac{5}{4}mu^2$$

$$2 \cdot \omega_1 = \frac{mgL}{J\omega_2},$$

$$F_N = mg$$
, $F = m\omega_1^2 L \sin \alpha$