Yau College Math Competition 2022

Final Probability and Statistics

Individual Overall Exam Problems (Aug. 20-21, 2022)

Problem 1. Let X and Y be independent identically distributed random variables with mean 0 and variance 1. Let $\phi(t)$ be their common characteristic function, and suppose that X + Y and X - Y are independent.

- (1) Deduce a relation between $\phi(2t)$ and $\phi(\pm t)$.
- (2) Show that X and Y are N(0,1) random variables.

Problem 2. Let $\mathcal{N} = \{1, 2, 3, 4, \ldots\}$ be the set of natural numbers and $\mathcal{P} = \{2, 3, 5, 7, \ldots\}$ the set of all prime numbers. Write a|b if a divides b. Fix any real number s > 1, let $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$, and define a probability measure P_s on \mathcal{N} by $P_s(n) = \frac{1}{\zeta(s)} n^{-s}$, $n \in \mathcal{N}$. For each $p \in \mathcal{P}$, define a random variable X_p on \mathcal{N} by the formula $X_p(n) = \mathbf{1}_{\{p|n\}}(n)$, $n \in \mathcal{N}$. Here $\{p|n\}$ denotes the event $\{n: p|n\} \subset \mathcal{N}$.

- (1) Are the random variables $\{X_p : p \in \mathcal{P}\}$ independent under P_s ?
- (2) Give a probabilistic proof of Euler's identity $\frac{1}{\zeta(s)} = \prod_{p \in \mathcal{P}} (1 p^{-s})$.