Екзаменаційна робота з дисципліни

"Дослідження операцій"

Студента групи К-28

Гущі Дмитра Сергійовича

Білет 23

1. Кутові точки опуклих множин. Довести теорему про множину оптимальних розв'язків задачі ЛП та кутові точки.

<u>Означення.</u> Точка х опуклої множини X називається кутовою(крайньою), якщо її не можна представити у вигляді

$$x = \alpha x^1 + (1 - \alpha)x^2$$
, де $x^2 \in X$, $x^1 \neq x^2$, $0 < \alpha < 1$

Кутові точки опуклої многогранної множини називаються її вершинами.

<u>Теорема</u>. Цільова функція ЗЛП досягає оптимального значення у вершині многогранника розв'язків. Якщо цільова функція досягає цього значення у двох та більше точках, то вона досягає того ж значення у будь-якій точці, що є їх опуклою лінійною комбінацією.

<u>Доведення</u>. Нехай x^i , i = 1,....r, -- вершини многогранника D i, розглядаючи задачу мінімізації покладемо x^* = arg min L(x) [x∈D]. Останнє співвідношення означає що

$$\sum_{i=1}^{n} c_i x_i^* \le \sum_{i=1}^{n} c_i x_i, x \in D$$

або з використанням позначення скалярного добутку

$$(c,x^*) \leq (c,x), x \in D$$
, де $\mathbf{c} = (c_1,\dots,c_n)$

Якщо x^* -- вершина D, то першу частину теореми доведено. Нехай

 x^* не є вершиною D, За лемою 1.4 (Будь-яка точка многогранника є опуклою лінійною комбінацією його вершин) існують $\alpha_i \geq 0$, $i=1,\ldots,r$, $\alpha_1+\cdots+\alpha_r=1$, такі що $x^*=\sum_{i=1}^r \alpha_i x^i$

Використовую відомі властивості скалярного добутку, маємо

$$(c,x^k) = \left(c,\sum_{a=1}^r a_i x^i\right) = \sum_{i=1}^r a_i \left(c,x^i\right) \ge (c,x^k) \sum_{i=1}^r a_i$$
 $= (c,x^k)$, де х така вершина що $(c,x^k) = \min(c,x^i)$ $[1 \le i \le r]$

Все це означає що існує вершина x^k допустимої області D, де цільова фукція приймає найменше значення. Доведемо другу частину теореми. Нехай цільова функція досягає свого мінімального значення у точках

$$x^1, ..., x^s$$
 тобто $(c, x^i) = I = \min L(x)[x \in D], i = 1, ..., s$

Розглянемо опуклу лінійну комбінацію $x^* = \sum_{i=1}^s a_i x^i$, $a_i \ge 0$, $i=1,\dots,s$ $a_1+\dots+a_s=1$

Покажемо, що $L(x^*) = 1$. Дійсно,

$$L(x^*) = (c, x^*) = \left(c, \sum_{i=1}^{s} a_i x^i\right) = \sum_{i=1}^{s} a_i (c, x^i) = I \sum_{i=1}^{s} a_i = I$$

Згідно доведеної теореми розв'язки ЗЛП слід шукати серед вершин її допустимої множини.

2. Нехай у M – методі розв'язку ЗЛП отримали оптимальний розв'язок $xy=(x_1,...,x_n,y_1,...,y_m)$, I існує $y_i>0$. Довести, що тоді допустима область $D=\not O$.

<u>Теорема.</u> Нехай М-задача розв'язана симплекс методом і \tilde{x} *=(x* $_1$, ..., x* $_n$, y* $_1$, ...,y* $_m$) – ії оптимальний розв'язок. Тоді:

- 1) Якщо серед чисел y_1^* , ..., y_m^* є відмінні від нуля, то вихідна КЗЛП не має допустимих розв'язків.
- 2) Якщо $y_1^* = y_2^* = \dots = y_m^* = 0$, то вектор $x^* = (x_1^*, x_2^*, \dots, x_n^*)^T$ є оптимальним розв'язком КЗЛП.

Допустима область D буде рівна пустій множині у випадку якщо якась компонента у * _j > 0. Доведемо це від супротивного. Нехай ($x_1^*, ... x_n^*$) — допустимий розв'язок СЗЛП. Тоді $\overline{x^*} = \{x_1, ..., x_n, 0, ..., 0\}$ є допустимим розв'зяком КЗЛП ($\overline{x} \in \overline{D}$). Але при цьому $\overline{L} = 0$, що суперечить умові min $\overline{L} > 0$, $\overline{x} \in \overline{D}$.

3. Розв'язати дану задачу двоїстим симплекс-методом:

$$L = x_1 + 4x_2 \rightarrow min$$

$$2x_1 + x_2 \le 8$$

$$3x_1 + x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

Для побудови першого опорного плану систему нерівностей приведемо до системи рівнянь шляхом введення додаткових змінних (перехід до канонічної формі). У 1-му нерівності сенсу (≤) вводимо базисну змінну х3. У 2-му нерівності сенсу (≤) вводимо базисну змінну х4.

$$2x1 + x2 + x3 = 8$$
$$-3x1 - x2 + x4 = -3$$

Вирішимо систему рівнянь щодо базисних змінних: x3, x4 Вважаючи, що вільні змінні рівні 0, отримаємо перший опорний план: X0 = (0,0,8,-3)

Базис	В	X ₁	X2	X3	X4
X ₃	8	2	1	1	0
X4	-3	-3	-1	0	1
F(X0)	0	-1	-4	0	0

Серед негативних значень базисних змінних вибираємо найбільший по модулю. Провідним буде 2-а рядок, а змінну х4 слід вивести з базису.

Мінімальне значення θ відповідає 1-му стовпцю, тобто змінну х1 необхідно ввести в базис. На перетині провідних рядки і стовпці знаходиться дозволяє елемент (PE), рівний (-3).

Базис	В	\mathbf{x}_1	X ₂	X3	X4
X ₃	8	2	1	1	0
X4	-3	-3	-1	0	1
F(X0)	0	-1	-4	0	0
θ		1/3	-4	-	-
Базис	В	x1	x2	х3	x4
х3	6	0	1/3	1	2/3
x1	1	1	1/3	0	-1/3
F(X0)	1	0	-11/3	0	-1/3

У базисному стовпці всі елементи позитивні.

Переходимо до основного алгоритму симплекс-методу.

Серед значень індексного рядка немає позитивних. Тому ця таблиця визначає оптимальний план завдання. Остаточний варіант симплекс-таблиці:

Базис	В	X ₁	X ₂	X3	X4
Х3	6	0	1/3	1	2/3
Х1	1	1	1/3	0	-1/3
F(X1)	1	0	-11/3	0	-1/3

$$x1 = 1, x2 = 0$$

 $F(X) = 1 * 1 + 4 * 0 = 1$