Statistical Methods in Particle Physics

4. Monte Carlo Methods

Prof. Dr. Klaus Reygers (lectures)
Dr. Sebastian Neubert (tutorials)

Heidelberg University WS 2017/18

Monte Carlo Method

- Any method which solves a problem by generating suitable random numbers
- Useful for obtaining numerical solutions to problems which are too complicated to solve analytically
- The most common application of the Monte Carlo method is Monte Carlo integration
- Pioneers
 - Enrico Fermi
 - Stanislaw Ulam
 - John von Neumann
 - Nicholas Metropolis

https://en.wikipedia.org

Enrico Fermi

Stanislaw Ulam

J. von Neumann

N. Metropolis

http://mathworld.wolfram.com/MonteCarloMethod.html

Monte Carlo Method: Examples

[from Bohm, Zech: Introduction to Statistics and Data Analysis for Physicists]

- Area of a circle
- Volume of the intersection of a cone and a torus
 - Hard to solve analytically
 - Easy to solve by scattering points homogeneously inside a cuboid containing the intersect
- Efficiency of particle detection with a scintillator
 - Produced photons are reflected at the surfaces and sometime absorbed
 - Almost impossible to calculate analytically for different parameters like incident angle, particle energy, ...
 - Monte Carlo simulation is the only sensible approach

Pseudo-Random Numbers

- Generated uniformly in [0,1]
- Principle: Use insignificant digits of an operation to generate next number:

$$x_{i+1} = n^{-1} \operatorname{mod}(\lambda x_i; n)$$

- User can provide a seed
 - Same seed gives same sequence of random numbers
- Example: Mersenne twister
 - Invented 1997 by M. Matsomoto and T. Nishimura
 - Sequence repeats after 2¹⁹⁹³⁷ calls, i.e., never ...
- Quality checks
 - Frequency of occurrence
 - Plot correlations between consecutive random numbers

Bohm, Zech: http://www-library.desy.de/preparch/books/vstatmp_engl.pdf

Random Numbers from Distributions: Inverse Transform Method

Consider a distribution f from which we want to draw random numbers. Let u(r) be the uniform distribution in [0, 1]:

$$\int_{-\infty}^{x} f(x') dx' = \int_{0}^{r(x)} u(r') dr' = r(x)$$

With F(x) = cumulative distr.:

$$F(x) = r$$

We get the random number *x* from the inverse of the cumulative distribution:

$$x(r) = F^{-1}(r)$$

Bohm, Zech: http://www-library.desy.de/preparch/books/vstatmp_engl.pdf

Cross check:

$$\frac{\mathrm{d}p}{\mathrm{d}x} = \underbrace{\frac{\mathrm{d}p}{\mathrm{d}r}}_{-1} \underbrace{\frac{\mathrm{d}r}{\mathrm{d}x}} = \frac{\mathrm{d}F(x)}{\mathrm{d}x} = f(x)$$

Examples I

Linear function:
$$f(x) = 2x$$
, $0 \le x \le 1$

$$F(x) = x^2 \rightarrow x = \sqrt{r}$$

Exponential:
$$f(x)=\gamma e^{-\gamma x}, \qquad x\geq 0$$

$$F(x)=1-e^{-\gamma x} \quad \to \quad x=-\frac{\ln(1-r)}{\gamma}$$

One can store F(x) as a histogram if there is no analytical solution, cf. root's **GetRandom()** function:

```
root [0] TF1 f("f", "x^3/(exp(x)-1)", 0., 15.);
root [1] cout << f.GetRandom() << endl;
13.9571</pre>
```

Example II: Uniform Points on a Sphere

$$\frac{dp}{d\Omega} = \frac{dp}{\sin\theta \, d\theta \, d\phi} = \text{const} \equiv k \qquad \qquad \frac{dp}{d\theta \, d\phi} = k \sin\theta \equiv f(\phi)g(\theta)$$

Distributions for θ and ϕ :

$$f(\phi) \equiv rac{\mathrm{d}p}{\mathrm{d}\phi} = \mathrm{const} = rac{1}{2\pi}, \qquad 0 \le \phi \le 2\pi$$
 $g(heta) \equiv rac{\mathrm{d}p}{\mathrm{d} heta} = rac{1}{2}\sin heta, \qquad 0 \le heta \le \pi$

Calculating the inverse of the cumulative distribution we obtain:

$$\phi = 2\pi r_1$$
 $\theta = \arccos(1 - 2r_2) \qquad [\text{as } G(\theta) = \frac{1}{2}(1 - \cos\theta)]$

Upshot: ϕ and $\cos \theta$ need to be distributed uniformly

Monte Carlo Integration: Acceptance-Rejection Method

Lecture M. Neumann, www.exp.univie.ac.at/cp1/cp6.pdf

Algorithm

- Generate random number x uniformly between a and b
- Generate second random y number uniformly between 0 and A
- Accept x if y < f(x)
- Repeat many times
- The efficiency of this algorithm can be quite small
- Improvement possible by choosing a majorant, i.e., a function which encloses f(x) and whose integral is known ("importance sampling")

Monte Carlo Integration

Naïve Monte Carlo integration:

uniform distribution
$$\int_{a}^{b} f(x) dx = (b-a) \int_{a}^{b} f(x) u(x) dx = (b-a) \langle f(x) \rangle \approx (b-a) \cdot \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

$$=: I$$
uniform distribution
$$= \int_{a}^{b} f(x) dx = (b-a) \langle f(x) \rangle \approx (b-a) \cdot \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

$$=: \hat{I}$$

Typical deviation from the true value of the integral (standard deviation)

$$V[\hat{I}] = \frac{(b-a)^2}{n^2} V[\sum_{i=1}^n f(x_i)] = \frac{(b-a)^2}{n^2} \cdot n \cdot \sigma^2[f] \quad \to \quad \sigma[\hat{I}] = \frac{b-a}{\sqrt{n}} \sigma[f]$$

x_i: uniformly distributed

Monte Carlo Integration: Multidimensional Integrals

Trapezoidal rule in one dimension

- accuracy improves as 1/n² with the number of points
- Much better than $1/\sqrt{n}$ scaling of the MC methods

Monte Carlo integration in *d* dimensions:

$$I = \int_{\Omega} f(\vec{x}) \, d\vec{x}, \quad \Omega \subset \mathbb{R}^d, \qquad V = \int_{\Omega} \, d\vec{x}$$

$$I \approx \hat{I} = V \frac{1}{n} \sum_{i=1}^{n} f(\vec{x}_i), \qquad \sigma[\hat{I}] \approx V \frac{\sigma[f]}{\sqrt{n}} \quad \bullet$$

https://en.wikipedia.org/wiki/Trapezoidal_rule

same as in 1d case

Trapezoidal rule in d dimension:

- accuracy improves as 1/n^{2/d} with the number of points
- for d > 4 the dependence on n is better for MC integration

For multidimensional integrals MC integration outperforms other numerical integration methods

Monte Carlo Simulation I: Event Generators (Pythia, Sherpa, ...)

Examples: Pythia

- Simulation of pp and e+ecollision on quark and gluon level
- Hard and soft interactions, parton showers, fragmentation and particle decay
- Many applications
 - Test underlying physics, e.g., perturbative QCD
 - Calculate QCD background processes, e.g., in Higgs searches
 - Calculation of detector efficiencies

Pythia

Output:

Four-vectors of of produced particles

Event listing (summary)

Ι	particle/	'jet	KS	KF	orig	p_x	р_у	p_z	E	m
1	(u)	A	12	2	0	0.000	0.000	10.000	10.000	0.006
2	(ubar)	V	11	-2	0	0.000	0.000	-10.000	10.000	0.006
3	(string)		11	92	1	0.000	0.000	0.000	20.000	20.000
4	(rho+)		11	213	3	0.098	-0.154	2.710	2.856	0.885
5	(rho-)		11	-213	3	-0.227	0.145	6.538	6.590	0.781
6	pi+		1	211	3	0.125	-0.266	0.097	0.339	0.140
7	(Sigma0)		11	3212	3	-0.254	0.034	-1.397	1.855	1.193
8	(K*+)		11	323	3	-0.124	0.709	-2.753	2.968	0.846
9	p~-		1	-2212	3	0.395	-0.614	-3.806	3.988	0.938
10	pi-		1	-211	3	-0.013	0.146	-1.389	1.403	0.140
11	pi+		1	211	4	0.109	-0.456	2.164	2.218	0.140

Monte Carlo Simulation II: Detector Simulation with GEANT

http://geant4.cern.ch/

http://www.uni-muenster.de/Physik.KP/santo/thesis/diplom/kees Calculation of detector response, óhotons (blue) reconstruction efficiencies, ... Example: electromagnetic shower incident electron (red) leadglass calorimeter

Monte Carlo Simulation III: Treatment Planning in Radiation Therapy

Codes

- GEANT 4
- FLUKA
- . . .

Intensity-Controlled Rasterscan Technique, Haberer et al., GSI, NIM A,1993

Source: GSI