MARYLAND UNIV SOLOMONS NATURAL RESOURCES INST
HYDROGRAPHIC AND ECOLOGICAL EFFECTS OF ENLARGEMENT OF THE CHESA--ETC(U)
SEP 73 M H TAYLOR, R W SMITH, L M KATZ
DACW61-71-C-0062 AD-A073 696 UNCLASSIFIED NL OF | AD 4073696 1,341 END DATE FILMED 10-79

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
Appendix WI	MON HO. S. RECIPIENT'S CATALOG NUMBER
of enlargement of the Chesapeake Delaware of fish survey in the Delaware portion of C. I	
Cenal.	6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*)
Tay For Malcolm H. / Tay lor Smith Ronal W. / Smith Katz Lanny M. / Katz	15 DACW61-71-C-#062
Dept. of Biological Services, U. of Del. College of Marine Studies, U. of Del.	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Corps of Engineers Philadelphia Dist Customs House, 2nd & Chestnut Sts. Philadelphia, Pa. 19106	Septem 73
4. MONITORING AGENCY HAME & ADDRESS(II different from Controlling	Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
7. DISTRIBUTION STATEMENT (of the abetract entered in Stock 20, 11 dis	prept. man 71-Aug!
IS. SUPPLEMENTARY NOTES	
S. KEY WORDS (Continue on reverse side if necessary and identity by block White perch (Morone Americana) Fishe Weakfish (Synoscion regalis) Chess Striped bass Delaw Fish survey	es apeake & Dela, Canal
Bottom dwelling fish were sampled in the Delaw system from March 1971 to August 1973 exclusive most abundant of 33 species found were perch,	ware part of the C & D Canal we of January and February. The
	7036 Shu

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

C & D CAMAL ECOLOGICAL SURVEY

Biological Survey of the Canal

and its Approaches

Appendix VII - Delaware Fish Survey

Final Report

Malcolm H. Taylor

Ronal W. Smith

Lanny M. Katz

Franklin C. Daiber

Victor Lotrich

Department of Biological Sciences
University of Delaware
Newark, Delaware

and

College of Marine Studies
University of Delaware
Newark and Lewes, Delaware

September, 1973

Approved for public release; distribution unlimited

Table of Contents

															Page
List of Figures	٠	•	•		•			•		•	•	٠	•	•	11
List of Tables	٠	•	•	•	•	٠	•	•	•	•	٠	•	•	•	111
Abstract		•			•	•		٠	•	•		٠	•	•	iv
Methode		•	•	•	•		•		٠	•	•	•	•	•	1
Results & Discussion	•	•	•	•	•	•		•	٠		٠	٠	٠	•	4
Summary	٠			•	•	•	٠	•	٠		•	٠	•	•	12
References Cited			•	•	•	•	•	٠	٠	•	•		•	٠	15
Figures	٠	•		•			•	•	•	•	•	•	•	•	16
Tables		•	•		•			•		•	•		•	•	25

List of Figures

Figure No.	<u>Title</u>	18			Page
Figure 1	Fish sampling stations in Dels	ware	 •	•	16
Figure 2	Weakfish populations in Delawa part of C & D Canal system is and 1972	1971		•	17
Figure 3	Summary hydrographic data - St 109 (C & D Canal)	ation	 •	•	18
Figure 4	Summary trawl data - Station 1 (C & D Canal)		 •	•	19
Figure 5	Summary hydrographic data - Si 113 (Pea Patch Jetty)	ation			20
Figure 6	Summary trawl data - Station 1 (Pea Patch Jetty)			•	21
Figure 7	Summary hydrographic data - St 115 (Reedy Island)	ation	 ٠		22
Figure 8	Summary trawl data - Station I (Reedy Island)		 •		23
Figure 9	Average trawl catch in Canal a		•		24

I.

I

List of Tables

Table No.	<u> Title</u>	Page
Table I	Fish station descriptions for C & D Canal survey	. 25
Table II	Fish survey field operations personnel	. 28
Table III	Species captured in trawls - C & D Canal & Delaware River approaches, 1971-1972	. 29
Table IV	Standing crop sampled biomass (March 1971 - August 1973) at sampling stations of the C & D Canal study	. 31
Table V	Average monthly standing crop biomass (March-December) for indicated species in C & D Canal study area	. 37
Table VI	Correlation matrix based on individual station data (N = 117)	. 38
Table VII	Correlation matrix based on pooled monthly data (N = 15)	. 39
Table VIII	Multiple regression models of C & D Canal fish survey data	. 40
Table IX	Comparison of trawl catches in Canal & in the Delaware River, north of the Canal	. 43
Table X-XIII	Stomach contents of fish taken in the C & D Canal study	. 44
Table XIV-XXXIX	Trawl data (March 1971 - August 1973)	. 49

Abstract

Bottom dwelling fish were sampled in the Delaware part of the C & D Canal system from March 1971 to August 1973 exclusive of January and February. The most abundant of the 33 species collected were the white perch (Morone americana) the weakfish (Cynoscion regalis). The striped bass (Morone saxatilis) and the spot (Leistomus xanthurus) were caught in significant numbers in spring and late summer respectively. Of this group, only the white perch was a year-round resident in the Canal area. Striped bass utilize the Canal during spawning migration, and the two scisenids use the area as a nursery.

Stomach analysis of six species suggest that invertebrates are a primary food sources and that the Canal itself contributes little to the maintenance of the fish captured there.

Abundance of fish in the study area was found to be highly variable and apparently declined over the three years sampled. These observations are discussed in relation to the potential influence of enlargement of the C & D Canal.

METHODS

Field operations were carried out aboard the University of Delewere's R/V Wolverine using a 30 ft. otter trawl (3" mesh). The note were fitted with a 1" mesh liner in the bag to prevent loss of small fish. Ten monthly collections were made at eight stations (Figure 1) between March and December in 1971 and 1972. Two 0.5 statute mile travle were made routinely at each station, towing speed was 3-4 m.p.h. relative to the current. The net was towed with approximately one fathom of cable per foot of water depth. This was sufficient to keep it on the bottom, as evidenced by the accumulation of substrate and debris from individual trawls. Initially, one tow was made against the current and one with, but this procedure was terminated when analysis of numbers of individuals captured in tows in opposite directions showed no significant differences. Since working against the current is desirable in terms of boat safety, this procedure was used in the latter part of the study for both tows on stations exposed to strong currents.

Descriptions of station locations are given in Table I. Project limitations necessitated termination of sampling in August of 1973. Field personnel are listed in Table II.

Environmental parameters measured at each station were salinity dissolved oxygen, water temperature, air temperature, and turbidity. Turbidity was measured with a 1/2 meter dismeter white Secchi disc and is expressed in cm. to disappearance. Duplicate water samples for salinity and dissolved oxygen content were taken from Nansen bottle casts within 3 meters of the bottom. Salinity was calculated

from conductivity measurements made with an induction salinometer, and dissolved oxygen measurement made by the Winkler technique on samples preserved in the field. Heasurements of pH were made during the first year of the study in the field using a portable pH meter.

In almost every individual tow the fork length of all fish captured were measured to the nearest millimeter and recorded. When the number of individuals of a species captured in a single tow exceeded one hundred, the total number of individuals was recorded and a random subsample measured and recorded.

Separate A

The second secon

When possible, one-hundred individuals of a species were returned to the laboratory and weighed and measured to provide data for computation of a length-weight regression line. From this data length-weight regression lines of the form log wet weight = a + b log fork length were computed by the method of least squares. It was assumed that seasonal variation in the length-weight relationship was negligible and monthly samples were pooled to establish a single regression equation for each species.

Monthly fish biomass estimates for each station for six major species were made by solving the length-weight relationship for each fish captured and summing the results. In samples where the total catch was not measured the computed average weight was attributed to the unmeasured individuals in the sample.

To determine if resident fauna of the canal area were utilized as food, representatives of dominant species of fish caught during regular monthly collections in May, June, and September 1972 were preserved in 10% buffered formalin for future stomach analysis.

Species and size ranges examined were white perch (115-262 ma), striped bass (177-321 mm), weakfish (105-150 mm), spot (120-171 mm), and channel catfish (292-377 mm). White perch was the only species present in all collections. Stomach contents were examined under a dissecting microscope and when possible identified to species. If identifiable invertebrate fragments were present, the number of organisms eaten was based on duplicate fragments present which could only have come from a certain number of organisms.

An analysis was performed to determine the amount of simple correlation which exists between the numbers of individuals of six important fish species, water temperature, oxygen concentration and salinity. The analysis was performed on the data of all individual stations sampled between April 1971 and August 1972 (N = 117) and also upon the pooled monthly figures of those stations (N = 15). In the latter case the numbers of individuals were totals per month and the physical parameters were averages of the eight stations taken every month.

Since for most combinations of numbers of individuals and physical parameters the correlations were inconclusive, an attempt was made to snalyze the combined effects of parameters upon numbers of individuals by means of multiple regression models. As with the single correlations, the analysis was performed on both the data of individual stations and pooled monthly figures. A regression model was computed for each species and the species-specific constants b₁, b₂, b₃, and b₄ computed by the method of least squares.

RESULTS AND DISCUSSION

Monthly sampling was carried out at eight stations in the C & D Canal area from March 1971 through August 1973 (Figure 1). A total of 33 species of fish were captured during the sampling period (Table III). Of these, 15 were ranked as to relative abundance based on the total number of individuals and the frequency of capture for each species. The other 18 species occurred in such small numbers as to make rankings meaningless.

White perch, a common resident estuarine fish (Mansueti, 1960), was ranked first because of its high capture frequency. This species was present in almost all collections (Figures 4, 6, & 8) and appears to be a year-round resident of the study area. Spawning occurs in fresh water in early spring. Individuals of increasing size were present in the collections throughout the summer.

Weakfish, Cynoscion regalis, was the second most abundant species in trawl samples. Nearly all of those captured were young-of-the-year, less than 150 mm in length. These juveniles appear in great numbers in the upper estuary as a result of early summer spawning in the Delaware Bay (Daiber and Smith, 1971). They first appear in July or August at 35-60 mm length and increase in size throughout the summer. Peak abundance occurs in August or September (Pigure 2). Unlike the white perch which maintains a significant population in all parts of the study area throughout the year, weakfish are present only in summer and fall months. These two species accounted for almost 90% of the total individuals captured. Striped bass, spot, alewife, eel, hogchoker and anchovy as a group

accounted for only about 5% of individuals captured in 1971 and 1972. Table V shows the average monthly biomass and the total biomass for these species.

Computed biomass for six species by station is given in Table IV.

White perch was the dominant contributor and was the only species

present with a total monthly biomass consistently greater than 5

kilograms. Striped bass biomass was important in the spring when

they were present for spawning, but it was generally low and erratic

the rest of the year. Weakfish made a significant contribution to

the biomass during the late summer and early fall. These three

species made up 95% of the total biomass for the six species examined

(Table V).

Figures 3-8 suggest considerable temporal variation in both physical parameters and abundance of fish. Although pH and turbidity were also measured, they are not included in the figures because no pattern was detected in their variation. These data are included in the monthly summary tables (XIV-XXXIX). Water temperature was the most consistent variable, reaching 25-26°C in August and falling to 6°C by December. Temperatures in the Canal proper tended to be slightly lower in winter and higher in summer than those in the Delaware River approaches. Dissolved oxygen concentrations were inversely related to the water temperature, as would be expected. Month-to-month fluctuation of oxygen within the seasonal pattern was sometimes attributable to climatic changes. The low oxygen and salinity levels observed at all three stations in September 1971,

from heavy rainfall. In the 1971 case, localised flooding in the Wilmington-Philadelphia region was probably responsible. Trepical storm Agnes in June 1972 caused extreme increases in runoff into the headwaters of both the Chesapeake Bay and the Delaware River, which influenced the environmental conditions in the Canal area for several months. The third major oxygen sag, in July 1973, again occurred after a period of rainy weather in the Philadelphia area. A foamy scum was also observed at upper Delaware River stations in July, when dissolved oxygen levels were less than 4.0 mg/l. The unusually low salinity measurements of these samples suggest that land runoff was again the source of the oxygen demand, but no single causative event was identified.

Since the Canal enters the Delaware River in the area of the salt-freshwater interface, salinity can be expected to change rapidly in response to changes in river flow. A change of several ppt. occurred with the ebb and flood of tides. The extremes of fresh water runoff which occurred unpredictably during the study period mask an underlying seasonal variation in salinity in the Delaware portion of the Canal, and associated regions of the Delaware River. Based on the two and one-half years of observation in this study, salinity would be expected to rise during June and July to a peak of less than 10 % on in August or September before dropping in the fall. The highest salinities observed at station 109, nine miles west of Reedy Point, were 7-8 % oo. This was approximately 1 % oo greater than at station 113 which is four miles north of the Canal, and 1 % oo less than at station 115, about the same distance to the

south.

Figures 4, 6, and 8 summarise trawl catches at representative stations in the Canal proper and in the Delsware River to the north and south of the Canal entrance. Although month-to-month variation in catch size was considerable, numbers of fish were clearly greater in summer months than in winter, at all stations. Total catches for eight stations in the March collections over the three years ranged from 43-193, while in August as many as 8418 fish were taken (Tables XIV-XXXIX).

Comparison of the trawl and hydrographic data suggests a relationship between very low salinity or oxygen depletion and the
movements of fish. In September 1971 when runoff from heavy rains
was concentrated in the upper Delaware River, at station 113,
salinity was reduced to 0.1 ppt. and dissolved oxygen was reduced
to 3.58 mg/l. Few fish of any species were caught at this station,
but catches at station 115 and 109 were unusually large. At station
115 weakfish were most abundant, while white perch dominated the
catch at station 109. This distribution is suppertive evidence
for short-term migration in response to environmental stress. In
July 1972 and 1973 the fish catch (Figure 4, 6, 8, 9) was depressed,
and this again was probably due to fish leaving the area because of
low salinities.

The results of the simple correlation analyses performed on the data of individual station samples between April 1971 and August 1972 and also upon the pooled monthly figures are shown in Tables VI and VII respectively. Of the six fish species only weakfish showed any significant correlations, these with temperature and salinity. No

significant interactions between pairs of species was detected.

The multiple regression analyses of the weakfish and hogchoker have some predictive value (Table VIII). The weakfish model based on pooled monthly data showed a significant multiple correlation coefficient of 0.92, due largely to the close correlation between weakfish numbers and salinity. Thus, the multiple regression models do not offer much improvement over the simple correlation analyses. With the exception of the relationship between salinity and weakfish, the observed values of the three physical parameters considered do not adequately explain the occurrence and abundance of the six species in the eastern end of the Canal and its approaches. The suggestion is that the usual extremes of salinity, dissolved oxygen, and temperature in the Canal system are within the normal range of tolerances of the species examined and do not influence patchiness in the area.

Averaging trawl data for several stations reduced the monthto-month variation in catch enough to permit comparison of fish
populations in the Canal proper to those in the Delaware River approaches (Figure 9). Stations 109-111 were averaged to obtain figures
for the Canal proper, while 113, 114, and 116 were used for the river
stations. Station 115 was excluded because it generally is a higher
salinity area and 112 was excluded because catches there appeared to
be influenced by current abnormalities resulting from proximity to
the Canal entrance. In all three series of monthly samples, a consistent pattern was observed. Numbers of fish were greater in the
Canal proper in spring months, but summer catches were much larger in
the Delaware River approaches. Exceptions occurred only in times of

documented poor water quality in the River.

Examination of raw data for individual species (Table XIV-XXXIX) shows that the white perch was by far the most numerous fish in all spring collections. In the summer, however, large numbers of juvenile weakfish and spot moved up the estuary and accounted for as much as 50% of the numbers at river stations. Although both of these species were taken in the Canal proper weakfish were not typically as abundant there as they were in the river, probably the result of a salinity preference.

Another observation expressed in Figure 9, is the decline in numbers of fish sampled in the second two years of the study as compared to the first. This trend is also evident in the relative abundance figures for 1971-72 (Table III). All of the major species but the striped bass were markedly less abundant in 1972 than in 1971. The increase in numbers of striped bass is attributable to the coincidence of the May 1972 sampling period with the period of spawning migration when large numbers of these fish were moving through the Canal. No information is available to account for this decline; however, on examination of Table V, it is seen that biomass did not decline. This indicates that the size frequency of fish being sampled was increasing. Table V also includes data from stations 112 and 115 which are not included in Figure 9, and this is an important reason for the difference between biomass and numbers. Tropical storm Agnes may well have been a contributing factor in 1972 (Taylor, 1972). If 1972 year classes were reduced by loss of young or partial spawning failure this influence could be felt for a number of years.

As indicated in Table IX, the relative total catches were consistently higher at the three up-river stations than in the Ganal proper. Although actual numbers of fish declined in 1972, the Canal catch remained about 60% as large as that for the River. Since 1973 collections were available only through August, it is not possible to compare all three years of the study on a total catch basis. The comparison through August is subject to large variation due to the relatively large numbers of fish moving within and through this part of the estuary in summer. Since the differences between percentages for the partial seasons of 1971 and 1972 were not apparent when total catches for the full 10 months were compared, there is no reason to suspect that the 1973 figure indicates any change in Canal fish population relative to those in the river.

Tables X-XIII summarize the results of stomach analysis carried out in this study. Fourteen species of invertebrates were found to have been eaten by the fishes examined during this period. Twelve of these were benthic invertebrates, all of which were found in the benthic sampling program (Appendix IV). In addition, copepods, insects, insect larvae and fish were found in several of the individuals examined. Gammarus daiberi was the most abundant food item, and was also the most abundant organism in benthic collections. However, none of the fish species appeared selective in their diet.

Of the 340 fish examined, 54 had empty stomachs with a proportionately higher number occurring in May and June at the Canal station. Also, 59 fish had totally unrecognizable material in their stomachs, indicating that they had eaten several hours before being

captured. Again, proportionately higher numbers of these occurred at the Canal station during May and June.

The species <u>Crangon septemspinoss</u> and <u>Neomysis americans</u> occurred as food items only in the September collection except for one individual <u>Neomysis</u> which was found in May. This observation correlates with the appearance of these organisms in invertebrate samples in September.

SUMMARY

The results presented here suggest that the eastern end of the C & D Canal and its Delaware River approaches form a relatively homogeneous environment. Although the Canal and River have different sources, there is considerable exchange at the eastern end and physical parameters were similar throughout the study area. Some trends were observed but tidal and climatic variation made interpretation difficult. In general, salinities were 1-2 0/00 higher near Reedy Island than at other stations, and dissolved oxygen was most often depressed at river stations north of the Canal. Canal stations were subject to temperature fluctuations several tenths of a degree greater than those at river stations.

The small differences in physical characteristics of the Canal and river stations are associated with subtle gradations in the abundance of fish. There were no clear differences in the species makeup of the two areas, but it was apparent that the transient species such as the weakfish tended to be concentrated in more saline waters. They temporarily retreated from stations which were exposed to unusual fresh water runoff.

This association is supported by the correlation matrix (Table VII) relating temperature, dissolved oxygen and salinity to occurrence of the dominant fish species. Only the relation of weakfish to salinity was significant in this analysis (r = 0.92). Other variables such as availability of food, currents, and water quality may have influenced fish movements. Since many of the species con-

extremeous veriables would be significant.

The ecosystem under study in this program is an extremely complex one subject to the influences of two estuarine systems, plus the varying impact of man's activities. It has not been possible in the short time alloted to isolate and quantify the variables which control the movements of fishes within the system. Observations of sudden changes in environmental conditions, such as produced by tropical storm Agnes, serve to document the sensitivity of local fish populations to environmental perturbations. However, the fluctuation in abundance of fish induced by such climatic changes has masked any response to subtle influences, such as gradual enlargement of the Canal. The fact that fluctuations attributable to climatic conditions remained the dominant influence on fish movements during the final stages of the Canal enlargement, suggests any short-term perturbations which might result from the enlargement would be less significant than the apparently frequent occurrence of short periods of heavy contamination by land runoff. Of potentially greater significance to fish population are longerterm changes causing reduced growth or lessened spawning capability over a protracted period.

Documentation of the magnitude of so-called "natural variation" within the ecological system is an important result of the present study. It is evident that no absolute determination of possible environmental impact of the Capal enlargement can be made at this

time based on the field data. The present decline in fish abundance may well be a function of natural rather than men-induced changes of the system. If this is the case, at least several more years observation would be necessary to achieve a first approximation of the baseline on which this variation is superimposed.

REFERENCES CITED

- Daiber, F. C. and R. W. Smith. 1971. An analysis of the weakfish population in the Delaware Bay, 1970-1971, Annual Dingell-Johnson Report to the Division of Fish and Wildlife, State of Delaware. Project: F-13-R-13, Job No. I-8, 42 pp.
- Mansueti, R. J. 1960. Movements, reproduction, and mortality of the white perch, Roccus americanus, in the Patuxent estuary, Maryland. Chesapeake Science 2:142-205.
- Taylor, M. H. 1972. An assessment of the effects of Tropical Storm Agnes on the Delaware estuary; Results of a short term study. Report to Philadelphia District, U.S. Army Corps of Engineers.

Fish Sampling Stations in Delaware

Weakfish Populations in Delaware part of C&D Canal System in 1971 and 1972

Summary Hydrographic Data - Station 109 (C&D Canal)

Summary Trawl Data - Station 109 (C&D Canal)

-23-

Summary Trawl Data - Station 115 (Reedy Island)

Average Trawl Catch in Canal and in River North of Canal

Table I

FISH STATION DESCRIPTIONS FOR C & D CANAL SURVEY

All stations were sampled by towing a 30' otter trawl over a distance of 1/2 mile. The two locations given for each station description are the points at each end of this 1/2 mile transect. For stations in the canal use USC & GS Chart No. 570, and for stations in the Delsware River use Chart No. 294.

(C & D Canal, Railroad Bridge)

Western point - where rip-rap stones start on western end of old canal opening. (This is on North side of canal)

Eastern point - 5th pole West of Railroad Bridge on North side of canal.

STATION 110 (C & D Canal, St. Georges Bridge)

Western point - 2nd light pole West of 2nd fish pier West of St. Georges Bridge. (This is on South side of canal)

Eastern point - abeam of 1st fishing pier West of St. Georges Bridge. (This is on South side of canal)

(C & D Canal, Reedy Point Bridge)

Western point - 4th light pole East of Scott Run on South wide of canel.

Restern point - end of road and rip-rap stones on South side of canal.

This is known as Ice House Point.

(Delaware River, C & D Canal entrance)

Northern point - line up buoy "IN" with buoy "2N" from the West side of the ships channel.

Southern point - there are no ranges for this point so the only mark is to be 1/2 mile southwest of buoy "IN".

Tows are made in a depth of approximately 30 feet at mean low water.

(Delaware River, North end of Pes Patch Island Bulkhead)

Northern point - line up end of bulkhead (marker "E") with largest water tower in New Castle (Tower has red top and white bottom).

Southern point - line up bulkhead marker "D" with red and white striped smoke stack (one closest to water) at industrial complex South of New Castle.

Towe are made just East of bulkhead in a depth of approximately 25 feet at mean low water.

(Delaware River, Pee Patch Island)

Morthern point - line up bell buoy "7N" with monument on New Jersey side in southern part of Killcohook National Wildlife Refuge.

Southern point - line up end of bush vegetation on North end of Pea Patch Island with Delmarva Power & Light amoke stack (largest red and white striped stack) on Delmare side next to Getty Refinery.

Town are made just East of Pea Patch Island in a depth of approximately 25 - 30 feet at mean low water.

(Delaware River, Reedy Island)

Northern point - line up buoy "5R" with buoy "6R" from West side.

Southern point - line up silo at South end of Augustine Beach in middle of Reedy Island dike opening to Augustine Beach.

Tows are made just Bast of Reedy Island dike in a depth of approximately 25 - 30 feet at mean low water.

(Delaware River, Getty Refinery)

Northern point - abeam of Diamond Shamrock dock. (This is dock with long treatle leading out to it.)

Southern point - line up lower Bulkhead Shoal channel range light with Delmarva Fower & Light smoke stack (largest red and white striped stack) on Delaware side next to Getty Refinery.

Tows are made in slough in a depth of approximately 20 feet at mean low water.

Table II - FISH SURVEY FIELD OPERATIONS PERSONNEL

NAME	TITLE	RESPONSIBILITY
Malcolm H. Taylor, Ph.D.	Research Assoc.	Field Coordinator
Ronald W. Smith, M. S.	Resident Biologist	Fisheries Techniques
Lanny N. Katz	Graduate Assistant	Field Operations
Neal Parker	Graduate Assistant	Field Operations
Thomas H. White	Boat Captain	Vessel Operations
W. F. Carlsten	Utilities Mechanic	Vessel Operations
David Matthews	Boat Engineer	Vessel Operations

TABLE III

SPINCIPS CAPTURED IN TRAVILS G & D CANAL AND DELAWASE RIVER APPROACHES, 1971-1973

SCIENTIFIC HAIR		1971 REL.	1971	1972 REL.		OVERA
2711771777		ARROL	- FAR	AMIND.	RANK	RANK
Petromysontides						
Petromean marinus	See lamproy	*	•••			
Acisonactidas						
Acidenser oxyrhynchus	Atlantic sturgeon					
Anguillidae						
Anguilla rostrata	American eel	38.4	,	19.8	9	,
Clupeidae						
Alosa sestivales	Blueback herring	34.6	11 .	10.8	13	12
Alosa mediocris	Hickory shed Alewife	365.2	4	74.0	5	5
Alosa sapidissima	American shed	303.2		1		1
Brevoortie tyrannus	Atlantic menhaden	91.6	8	15.5	12	10
Dorosoma cepedianum	Gizzard shad					
Engraulidae						
Anchos mitchilli	Bay anchovy	161.3	6	80.0	4	6
Cyprinidee						
Cyprinus carpio	Carp				•••	
Notemigonus crysoleucas	Silvery minnow Golden shiner				•••	
Notropis cornutus	Common shiner					
Ictaluridae						
Ictalurus catus	White catfish	2.2	15	2.1	14	14
Ictelurus nebulosus	Brown bullhead	10.4	12	16.1	11	11
Ictalurus punctatus	Channel catfish	69.7		46.6	7	8
Belonidae	441					
Strongylura merine	Atlantic medicish				•	
Atherinidae						
Menidia menidia	Atlantic stlverside				•••	
Syngnathidae				100		
Proceeding fuecus	Northern pipefish				•••	
Perciehthyidae						
Morone americana Morone saxatilis	White perch Striped bass	7516.1 163.5	1 5	4338.9	1	1
	orrhon page	203.3				•
			9. 4			

SCIENTIFIC NAME	CONSCRI NAME	1971 REL. AMIND.1	1971 PANK	1972 REL. ABUND.	1972 PANK	•
Contrarchidae Lapomia macrochirus	Bluegill			•••	1	
Percidee Perce flavescens	Yellow perch					
Pomatomidae Pomatomia saltatrix	Bluefish					
Scieenidae Bairdiella chrysura Cymoscion regalis Leistomus xanthurus Micropogon undulatus Pogonias cromis	Silver perch Weakfish Spot Atlantic croaker Black drum	5962.0 642.9 2.6	2 3 14	1.7 2897.1 56.4 17.2	15 2 6 10	15 2 4 13
Gobiosoma bosci	Naked goby					
Triglidae Prionotus carolinus	Northern searobin					
Soleidae Trinectes maculatus	Hogehoker	127.6	7	38.0	•	,

Relative abundance is betal number of samples captured x frequency of capture.

^{2.} If average ranks were identical, most abundant species was placed first.

^{*} Species designated by --- were captured in numbers too small to be meaningfully ranked.

2 a , % % ; , , , % , , , A -31-All weights are in kilograms 86. 1.00. 1. Indicates station not 1972 2.82 4.83 2.77 2.77 2.97 12.66 25.77 3.68 4.22 4.83 Standing Crop Sampled Biomass (March 1971-August 1973) at Sampling Stations of the C & D Canal Study. The nearest hundreth. 2.76 2.76 5.63 24.39 3.76 7.88 19.80 6.14 9.77 9.77 10.02 7.81 1293 M 8.41 8.98 3.13 3.13 2.04 7.05 7.06 7.06 7.06 7.06 7.44.7.44.2.57.2.96.03.03.11.03.11.03.238.238 White Perch .98 5.44 6.20 6.88 2.75 2.75 2.04 33.44 109.77 13.72 2573 11.38 11.40 11.40 11.40 11.78 11.78 11.78 11.78 11.78 11.44 11.44 11.60 11.60 11.60 110 111 112 113 114 115 116 116 X S.D. X Pr. Ind. 8 .06 2.50 2.50 11.87 11.87 11.99 11.99 11.99 2.58 2.58 2.58 12.17 6.88. 7.07. 7.09. 7.00. X 26.23 - 4.28 2.35 - 4.28 2.3 TABLE IV.

I

TABLE IV (CONT'D.)

Total Control

I

[].

					1971										1972	2				
	J	¥	H	2	3	Y	S	0	=	9	H	Y	×	2	2	Y	S	0	-	٩
		.01				•		.22	8.		×		.39	•		.24	.17	•	.33	•
		*	.01	•	•		8.	=	.00	•			.00	•	•	3.	•	7	7	•
		8.		•	•			.00	.03	•			5				S	•	8	•
2015		=	8.	•	•		90.	8.	1.20	•			.02			•			77.	•
No. of the last		.0	•	•	1		10:	.07	.02	10:			.03			•		.23	17.	•
•		20.		•	•		9.	10.	.32	•			3.			.37		8	.26	
	1	.03	.17	•	.20	•		•	89.	•		8.	.50			•		a .	3.	
	97		•	•	70.		80.	1.66	1.07	•			70.		•	•	.42	•	.37	
	33	.85	.27	•	.24		.24	2.22	3.45	9.			1.94		•	1.24	1.45	3	2.52	.01
		=	•	•	•		.03	.56	.43	•			.24		•	•	•	•	¥.	
		:			•		9.	.28	64.				£.			•			37.	•
3	74	53	6	•	9		14	76	231				81		•	23	2	•	2	
nd.	10	.03	.03	•	80.		.02	.02	9.				9							

			197	3		
	H	Y	н	ſ	3	Y
109		.54	.53		•	70.
	•	1.67	.56	•	8.	.4.
		09.	.03	•	•	.23
		: :	.33	•	×	×
	•	•	.27	10:	•	1
		.16	.26	•	•	0.
		3.	.29	.02	•	1
		•	.02	1	•	1
Total		- 3.50 2.29 .03 .09 .78	2.29	.03	8	7.
		77.	.29		•	7
S.D.	•	.55	.20		•	.16
n(indiv.)		77	19	7	-	7
x pr. Ind.		.16	.12	.2	60.	

TABLE IV (CONT'D.)

1	1		1					_						_																	
		-	1	•	•	•	•	7.	•	•	Ħ.	•	•																		
		×			•		7	77.	•	•	.26	•		7											,	1		The state of	0		
1		. 0	9	2		.38		.23		.10	16.		:	•																= 1	
		S				1.				-	.13			-				4													
								.63			.63			8	,	, ,	,														
	1972								. 21		.33			•	11	7						-		11				i y			
		5	•	•		•	•	7				•	•	1																	
		7	•	•	.20	•	•	0.	4.	.58	1.2	•	•	-	7																
		×	•	1.34	.59		97.	.22	76.	•	3.19	3.	S.	2	97.			Y		•		*		.30	2.	7	.51		. '	•	
	í	Y			.10		97.			.22	.42	•		4	91.		1	J	-	.13	9.	*		•	•		.23				!
		×	×														1	2		7	•			.22	2.	.41	1.44		.:	35	7
Es1								.10		.21	.31	,	,	•	=		1973	×	.12				.12	,			.24			72	1
		N		10	10	12	.90	43	.18	. 25	38	29	8	21	=			_	.12	21.		,					.27		, ,	45	?
	i i		- 17.	. 9				21.			.70 2.	60	80.		=							60				63	72	36	.38		
		0				•	-		•	•	~	•	•					×		•	•	•	•	•	•	•					•
		S		.72		•	1	•	•	.20	6.	•			1.												ai			n(indiv.)	F. 180
	11	V		•	.13	•		. 29	1	64.	.91	•	•	80	17.				109	971	=	112	F	114	115	116	Tot	×	S.D	1) 1	4
	1971	2	1	=	•		•	.13	84.	•	.72	•	1	9	=																
		2	.28	.39	.10	01.	60.	.18	01.	01.	1.34	.17	=	14	=																
		X	,	.19	.10			•	97.	.27	99.			9	7																
											-																				
		32	1.	•	•	•				•	7	•	•	•	nd1																
			109	110	III	112	113	114	113	116	Total	1 ×	S.D.	n(indiv	x pr. Ind.																

24
3
a
3
•
(distrib.)
\sim
H
-
3
23872
-
Selfon.

- Proposition

		1	1	•	•	•	•	•	•	•	•	١	•	•											1				
		-	10:	•	•		•	•		10.	.02		•	7						~			*						
			3	20		.03		· .	05	8	65	80.	77	22									_					1.	
		ľ								7																			
		8	.27	•		•	•		ì	.03	3		•	79															-
					2	40			-		2			7	-		Τ\											1	•
	72			•		•	•	•	•	•		•	1)					×									
	3	-	ş	8			•		1	•	.12			*	.03	1	- /	,	,										
1.00	3	7	2	=======================================	22	22				2	2	=	12	77	22	*													
	т	1		•	۳.	•	•	•	١	•		v	•		•														V
*		×	22:	2.48	7		11	•	•		2.83	•		2	3			-			*	9	•		99	3 6	5 8	9	
	1. 1	-	,	1.								*								=							15	-	=
		1		•	•	•	•	•	1	•	1	•	•		٠		-	-	•	٠,	×	•	•	•	'	•	•		٦
300		×	×			. 6	1	1				1	4	1				3	10.	18		.03	•	.02	9.5	9 6	0	•	.03
cho	`			2	1						9			9	2	170	1973		.02	•	,				<u>.</u>	1		9	5
-		9	•	7	•	1	•	•	•	•	•	•	1		7			X	••	٠ -	1	•	•	•	٠,	? ,	•		٩
		1	.18	3	.18	.02	•	•	•	9.	.43	8	.05	19	.02	3 -		Y	1.	1/1	,		,	,	1				
			1	22	2	2	2	2	0	2		8.	8		1							y							
		0	•	•	•	٠.	.02	3	7	٠.	•	•	•	-	•	1.	7	=		. 1	11	•	•	•	•		•	•	
		8	70.	3	.02	1		ı		8	.26		•	=	.02	1													Ind.
			.10		-						12			0	12				60:	35	17	9	77	a :	9	1	9	1	Pr.
	n				No.	1	•	•	1														-	7	•	•••		7	
	19	J		9	.02			9.		9.	.05		ı	8	.03 .03 .01														
			75	82	54	07	01		70	12	3	81	18	53	23														
		J				•	•	1	•		7		•	•	•														
		H	.23	2.07	3	ı	•	•	.37	.02	3.48	3.	2.	2	.03														
		Y	•	٠	•	•	•	•	•	•	1	٠	•	•	•														
1		×	,			•	•	•	•	•	•	•	•	•	•														
														?	. Ind.														
			109	2	3	2	2	2	2	9	77		i.	1	pr.														
			7	-	-	-	-	7	7	7	ř	×	•	4	H														

TABLE IV (CONT'D.)

Coccasion

T.

					1971	1									:	6779				
11. 06 1.07 .98 -	=1	4	*	3	j	Y	S	0	×	-	=	-	-	-	-	-		6	1	1
111 .06 1.87 .68 .01	•	•	•	•	90.	90.		86.		١.	×	1.		1.	1.	ě	. 83	, -		1
1. 12 1.54 .95 .16	•	•	•	•	7.	8.		8.	.01	,		•	•	•	•	3	3			
11.05 1.92 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.1	•	•	•	•	.21	.12		.95	.16	,			,				300	2:		
100 100	•	•		•	-14	18		1 00	12			1			•	1.0	77.7	3		
11.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	•	•	•		3	13		76.1	33	•				•	•	23.64	3.73	9.66	6.	
100					1	04.		1.88	.03	•				•	•	11.05	7.89	9.35	•	
	•		•	•	.21	.74	,	2.05	1	•		•	•	•	•	62.73	25. 8	4 33	•	
109	•	•	•	•	28.	.77	•	3.27	115	•			,							
2.29 2.42 4.69 12.41 .56	•	•	•	,	30	36	10		18					1			7:	2.5	9	
2.29 2.26 4.69 12.41 .56	1					-	?	16.	\$	•				•	•	55.	17.45	12.51	91.	8
1.58 .35		•	•	•	7.79	2.82	4.69	12.41	.56	•			•	•	•	102.78	\$1.04	\$1.03	23	
1158 366 357 34	•	•	•	1	.28	.35	.59	1.55	.07			•	•	•	•	12 66	97		•	
1158 366 357 347 34 10020 .0079 .0131 .0227 .0165	•	•	1	1	26	. 20	20	Ş	0.7											
1973	- 1.4	•	1		35.5			2	3	,						22.03	5.17	4.04		
1973 109 110 110 111 111 111 112 114 115 116 118 119 119 119 119 119 119					F	2	357	547	34			•	•	•	•	2192	3363	2476	11	
1973 M A M J J	18d	•	•	•	.0020	.0079	.0131	.0227	.0165	•			,	•	•					
Z										193	m									
								=	V	1	5	1								
						109							1.							
						91		•	•	,	•	•	50							
						111		•		•	•	•	114							
						112		•		•	•	•								
						113		•	•		•	•								
						114		•			•		2							
						115		•		•	•	,	5							
						116						1								
, , , , , , , , , , , , , , ,						4						•								
 						100		•		•	•	,	1.09							
•••						×			•		•	•	:							
						S.D.		•			,	•	.20							
						n(12	('Atp		•	•	•	•	219							

TABLE TV (CONT'D.)

	1	•	•	•	•	•	•	ş		ă,		Ñ	-	
	-	3	•	٠	•	F.	٠	7	8	1.57	•	•		
	0	•	•	•	•	7	•	•	8.	89.	•	•	7	
	•	•	•	•	.22	×	3.		.72	1.73		•	•	
	7	.03	•	•	•	•	25	•	3	1.11	,	•	•	
1972	3	•	•	02	A	,	×	10.	61.	84.	×	*	•	700
	3	.os	.11							3.80				
	X	100								18.69				
	V	100								3.07 6				
	H	I												
	9	•	•	•	•	•	•	•	•	'	•	•	'	
		٠	•	•	9	.2	•	•	.21	.4.	×	×		
	0	8	,	,	8	2.89	.07	•	1.04	4.18	.52	1.02	*	
	8	8	8	•	.19		8		,	.59		×	-	
	7		•	8	3	2.92	2.45	67		7.25	.91	1.14	93	
1971	1	ş	77							2				
	1	9.	8							3.91				
	×	16:	2.32		•	3		*	١,	3.69	*	*	77	
	-	2.8	.02			•	•	50	6	2.6		•	•	
		-24	. 33							1.05				
													-	

		Control Court	-			
	×	7	H	1	1	1
•		1,42	8.	•	•	
•	8	2.29	3.69	•	•	•
-	8	*6.	1.04	Ş	ş	•
7	•	.02	.26	.03	*	*
9	9	1.31	.93	9.	•	8.
•	•	.02	•	•	•	
•	1	.57	.24			8.
9		1.26	.28	2	•	62.
3	Ş	7.83	1.94	×.	ş	1.37
			7.7	(.		•
8.0.	•	%	76 1.00			
indiv.)	•	2	3	2	-	9
er. Ind.	-		12.	-018	8	

TABLE V. Average monthly standing crop sampled biomass (March-December) for indicated species in C6D Canal study area. All weights are in kilograms rounded to the nearest hundredth.

1	IEAN MONTHLY	BIOMASS	
1971	1972	19731	TOTAL
26.38	36.53	37.29	100.20
2.39	9.14	3.20	14.73
2.28	22.89	*	25.17
0.82	1.06	1.12	3.00
0.80	0.80	0.57	2.17
0.64	0.61	0.08	1.33
	1971 26.38 2.39 2.28 0.82 0.80	1971 1972 26.38 36.53 2.39 9.14 2.28 22.89 0.82 1.06 0.80 0.80	26.38 36.53 37.29 2.39 9.14 3.20 2.28 22.89 x² 0.82 1.06 1.12 0.80 0.80 0.57

^{1.} Figures for 1973 include only months of March through August.

^{2.} Average biomass not computed since weakfish presence is in late summer and fall.

		ì	٥	ì		
	7	١	1	1	١	
	٠		١	١		
			į	i	ì	

П

F		Table VI-		ATION MAT	UX BASED (CORRELATION MATRIX BASED ON INDIVIDUAL STATION DATA (N - 117)	L STATION	DATA (# -	(III	
H S I H S H T H T H H T H		(*)								
F S I H T W E A I L S A L L S A L L S A B B A B B B B B B B B B B B B B B B		· E		۵	-	v				=
R A S R E A L A I S F F F E E T I		•	w	-	#	H	3			•
N		1	٧	s	•	e	M	4		O
T N E E E E E E E E E E E E E E E E E E		a	1	တ		•	4	1		ပ
T N E B F H E E U I X C S S F E E I.00 Y . H S H E I. I. <td></td> <td>•</td> <td>1</td> <td>٠</td> <td>۵.</td> <td></td> <td>×</td> <td>M</td> <td></td> <td>=</td>		•	1	٠	۵.		×	M		=
1.00 1.00 0.48* 1.00 0.18 -0.04 -0.02 1.00 0.35* 0.53* -0.13 0.08 -0.05 1.00 0.03 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12		4	2		M	8	Δ.	A		•
1.00 1.00 0.48* 1.00 0.18		n		0	#	٧	H	1	a	M
1.00 0.48* 1.00 -0.60 -0.10 1.00 0.18 -0.04 -0.02 1.00 0.02 -0.08 0.09 0.14 1.00 -0.11 -0.02 .01 -0.03 -0.01 -0.05 1.00 0.03 -0.12 -0.09 0.21 .01 0.08 0.17 1.00 .00 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12		a	н	×	ပ	s	s	1	2	M
1.00 0.48* 1.00 0.18		m	A	•	■.	•	*	N	1	e
0.48* 1.00 -0.60 -0.10 1.00 0.18 -0.04 -0.02 1.00 0.02 -0.08 0.09 0.14 1.00 0.35* 0.53* -0.13 0.08 -0.05 1.00 -0.11 -0.02 .01 -0.03 -0.01 -0.05 1.00 0.03 -0.12 -0.09 0.21 .01 0.08 0.17 1.00 -0.0 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12		8								
0.48* 1.00 -0.60 -0.10 1.00 0.18 -0.04 -0.02 1.00 0.02 -0.08 0.014 1.00 0.35* -0.13 0.08 -0.05 1.00 -0.11 -0.02 .01 -0.03 -0.01 -0.05 1.00 0.03 -0.12 -0.09 0.21 .01 -0.06 0.17 1.00 .00 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12	-	3;								
-0.60 -0.10 1.00 0.18 -0.04 -0.02 1.00 0.02 -0.08 0.09 0.14 1.00 0.35* -0.13 0.08 -0.05 1.00 -0.11 -0.02 .01 -0.03 -0.01 -0.05 1.00 0.03 -0.12 -0.09 0.21 .01 0.08 0.17 1.00 .00 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12	Salimity	0.48*	1.00							
0.18 -0.04 -0.02 1.00 0.02 -0.08 0.09 0.14 1.00 0.35* 0.53* -0.13 0.08 -0.05 1.00 -0.11 -0.02 .01 -0.03 -0.01 -0.05 1.00 0.03 -0.12 -0.09 0.21 .01 0.08 0.17 1.00 .00 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12	Dies. Ox.	-0.60	-0.10	1.00						
0.02 -0.08 0.09 0.14 1.00 0.35* 0.53* -0.13 0.08 -0.05 1.00 -0.11 -0.02 .01 -0.03 -0.01 -0.05 1.00 0.03 -0.12 -0.09 0.21 .01 0.08 0.17 1.00 .00 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12	White Perch	0.18	-0.04	-0.02	1.00					
0.35* 0.53* -0.13 0.08 -0.05 1.00 -0.11 -0.02 .01 -0.03 -0.01 -0.05 1.00 0.03 -0.12 -0.09 0.21 .01 0.08 0.17 1.00 .00 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12	Striped Bass	0.02	-0.08	0.00	0.14	1.00				
-0.11 -0.02 .01 -0.03 -0.01 -0.05 1.00 0.03 -0.12 -0.09 0.21 .01 0.08 0.17 1.00 .00 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12	Weakfish	0.35*	0.53*	-0.13	0.08	-0.05	1.00			
0.03 -0.12 -0.09 0.21 .01 0.08 0.17 1.00 .00 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12	Alertfe	-0.11	-0.02	9.	-0.03	-0.01	-0.05	1.00		
.00 -0.15 0.31 0.06 0.16 -0.10 -0.06 0.12	Ze1	0.03	-0.12	-0.09	0.21	.01	90.0	0.17	1.00	
	Hogeboker	90.	-0.15	0.31	90.0	0.16	0.10	9.0	0.12	1.00

* Significant at .05 level

Note: For explanation of correlation matrix & regression model, see Table VIII.

	Table	· 当	BELATION !	CORRELATION MATRIX BASED ON POOLED HOWTHLY DATA (N = 15)	D ON POOLE	D MONTHLY	DATA (N -	នា	
		よまま財まですら	рнии · ох ·	発用・ 写真の田	∞⊬≅· ≈∢ ∞∞	はまれまする日	< 13 kb 25 kb 26 kb 26	MMH	第 0 3 0 2 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Temperature	1.00								
Salinity	0.56	1.00							
Dies. Ox.	-0.81	-0.21	1.00						
White Perch	0.33	90.0	-0.07	1.00					
Striped less	.01	-0.21	.0.07	0.16	1.00				
Veskfish	0.50	0.92	-0.23	0.05	-0.20	1.00			
Alertic	-0.19	0.03	0.17	-0.17	60.0	9.11	1.00		
Ze1	10.	-0.23	0.03	0.35	0.51	-0.29	•	1.00	
Hogchoker	90.0	-0.28	-0.04	0.10	0.39	-0.27	0.10	0.33	1.06

* Significant at .05 level

Note: For explanation of correlation matrix & regression model, see Table VIII.

Table VIII - HULTIPLE REGRESSION HODELS OF C & D CANAL FISH SURVEY DATA

Multiple Regression Models Based on Individual Station Data (N=117)

Species	b 1*	b2*	b ₃ *	b4*	R	P
White perch	-57.27	5.08	8.16	-11.02	. 26	2.39
Striped bass	-24.86	.86	2.75	-2.55	.19	1.24
Weakfish	-76.58	3.18	74	52.79	.54**	13.77**
Alewife	14.79	38	67	.40	.16	.90
Eel	1.45	.01	05	16	.16	.85
Hogchoker	-25.79	.69	2.77	-1.81	.47**	9.66**

Multiple Regression Models Based on Pooled Monthly Data (N=15)

Species	b 1*	p ² *	b3*	b4*	R	F
White perch	-2028.01	71.12	213.38	-118.22	.58	1.82
Striped bass	-295.62	9.25	31.08	-29.41	.39	.64
Weakfish	773.73	-29.59	-117.21	656.22	.92**	21.34**
Alewife	99.49	-3.07	-3.98	8.02	.26	. 26
Eel	-10.25	.56	1.67	-2.10	.34	.48
Hogchoker	23.66	.77	.26	-8.45	.30	.37

b₁ = interval

b₂ = water temperature

b₃ = dissolved 0₂

b₄ = salinity

•• Significant at .01 level

Table VIII (Continued)

The multiple regression describes the relation between a set of physical parameters (the independent variables water temperature, dissolved oxygen, salinity) measured in the field and the mean number of fish (the dependent variable) caught at the same time. A set of partial regression coefficients (b₂, b₃, b₄) corresponding to each of the physical parameters, plus an intercept (b₁) are generated from the field data by the method of least squares. The analysis yields an equation which estimates the number of fish which can be expected with a given set of the physical parameters:

fish = $b_1 + b_2$ (temperature) + b_3 (oxygen) + b_4 (salinity)

A multiple correlation coefficient (R), which may be used as an index measuring the closeness of fit of the observed data to the estimated line of regression, is also computed. Finally, a statistic (F) which describes the ratio:

Regression mean square
Residual (error) mean square

is used to test the hypothesis that the regression coefficients (b_2, b_3, b_4) are all equal to zero. Statistically significant values of R and F indicate a model which explains the relationship between fish numbers and the physical parameters to an appreciable extent.

Correlation analysis determines the direction and degree of joint variation of two variates. The correlation coefficient r is computed according to the following:

Table VIII (continued)

$$r = \underbrace{\text{EXY}}_{N} - \underbrace{\text{EXEY}}_{N}$$

$$(N-1)S_{x}S_{y}$$

IXY - sum of cross-products of x and y

EX - sume of x variates

EY - sum of y variates

N - number of paired observations

Sx - standard deviation of x variates

y - standard deviation of y variates

Simple correlation analyses between pairs of variates are expressed in matrix form for convenience. The correlation coefficients in the body of the matrix express the joint variation of the two variates heading the respective row and column.

Table IX -Comparison of Trawl Catches in Canal and in the Delaware River, North of the Canal.

Total Catch in Canal (1)
Total Catch in River (2)
Canal Catch (Mar-Aug) (3)
River Catch (Mar-Aug) (4)
Cenal Catch as % of River Catch (full year)
Canal Catch as % of River Catch (Mar-Aug)

1971	1972	1973
272.8	154.4	
445.9	275.0	
125.9	89.6	53.1
346.9	142.2	124.6
61%	56%	
36%	61%	43%

- 1. Sum of fish/0.1 mile for stations 109-111, (March December)
- 2. Sum of fish/0.1 mile for station 113, 114, 116, (March December)
- 3. Same stations as 1
- 4. Same stations as 2

Stomach contents of white perch, Morone emericanus, caught in the C&D Canal area in May, June and September, 1972 Table I.

FOOD LITER	CED No. 1	CED CANAL	NORTH NO. 1	DELAMARE NORTH APPROACH No. 1 Freq. 2	SOUTH No.	SOUTH APPROACH
Oligochaeta Fragmenta				71		
Polychaeta Scolecolepides viridis	-	-				
Insecta	5	\$	3	1		
Copepode	∞	7				
Isopoda Chirodotea almyra Cyathure polita	1 3	7 1	ស ដ	01	ដូន	6 6
Amphipode Gemerus daiberi Corophium lacustre	483	27 6	989	27	2099	69
Mysidacea Neomysis emericana	13	, ,	28	•		-
Decapoda Crangon septemspinosa Palaemonetes vulgarus Rithropanopeus harrisi		-	-	-	14	30

Table X (continued.)

1000 TIES.	CED CAMAL. No. 1 Freq. 2	DELAHARE HORTH APPROACH Ho. 1 Proq. 2	SOUTH APPROACH 1 2 10. Freq.
Anchos ep. 71sh eggs 71sh remains	• 62		υ 1
inidentifiable remains	91	77	
	30	•	4
otal number examined	87	19	8

1. Total number of organisms found.

2.Total number of stomachs containing that organism.

3.Only present in September.

Table XI. Stomsch contents of striped bass, Morone stratilis, caught in the CéD Cenel eres in Mey. 1972

Contract

FD000 TETRA	C&D CANAL No. 1 Freq. 2	MML.	No. 1	HORTH APPROACE
-Nematomorpha	f	7		
Sepode Charodotes share			-	-
species deliberi	-	-	8	-
otherchthyse Fish eggs Fish remains	22	~ ·		
Unidentifiable remains		31		
- Code		93		74
Total number examined		84		7

1. Total number of organisms found.

2.Total number of stomsche containing that organism.

Table XII. Stomech contents of channel catfish, <u>Ictalurus punctatus</u>, caucht in the C&D Canal area in May and September, 1972

POOD LTEK	3	CED CANAL	HORTH	HORTH APPROACH
	No. 1	No. Preq. 2	No. 1	Freq. 2
Genetoda	==	-		
Insects	-	1		
Amphipoda Gamerue deiberi Corophium lacuetre	245	88	8	-
Crangon septementance 3	~~	88	Å.	7
Ostheichthyes Fish remains	۰	•		
Besty				
Total number examined		7		2

1-Total number of organisms found.

Total mather of stomachs containing that organism.

3.Only exactned or found in September.

f weakfish, Cynoscion results, and spot, laist Table MIII. Stor

2 To 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7000 ITM	3	CED CARAL	DELAWARE	MEE	DELAMAR
### ### ### ### ### ### ### ### ### ##		Marie Control	ğ (Vooreiten 1	. 8 _	Weakflah 1
Consider 411 5 101 2 Consider 3 2 101 2 Consider 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i de		E	No. Freq.	E -	No. Preq.
column lectures 5 2 column lectures 1 1.36 2 13 4 1 1 5 column lectures 9 1 10 1 10 5 1 1 5 column spectemptions 9 1 10 1 1 2 2 1 constant 6 5 1 2 2 6 ber consisted 10 5 7 3	Sperged					
	Cirripada <u>Balanus</u> sp.					
	Corophism lacustra	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	 	,
	Weideces Mearete emricens		10 1			-
	Decapods Crangon septementhose		-	2 2	· ;	•
	Descriptions Tich reacins	ın •				1
	, c					-
			\$		m	•

_ TRA	AL DYLY	Marc	h 5-9 19	11			-40-	
109	110	111	112	113	114	115	116]
	5.0	1.0	4.5	8.3	6.0	1.0		
3.1	4.3	4.1	4.2	4.9	4.5	4.0		
0.116	0.206	0.151	0.174	0.126	0.132	1.45		
19.2	11.7	12.8	11.7	12.7	11.3	11.5		
	7.4	7.4	7.2	7.1	7.1	7.1		
17 3/5/71 1600	21 3/8/71 1300	19 3/8/71 1500	24 3/5/71 1000	20 3/5/71 1315	24 3/5/71 1200	21 3/9/71 100		
Seet (2)	Rest	Rest	Rbb	Rbb	Ebb(2)			
1.0	1.0	1.0	0.9	0.5	1.0	1.0		
log		heng	Torn					OF FLE
1	15 1	•	1 57			15 12 1		1 15 1 1 1 1 133 5
45	16		59	1	5	28		158
4.5	1.6	0.4	6.6	0.2	0.5	2.6		1
	109 3.1 0.116 13.2 17 3/5/71 1600 Reat (2) 1.0 10g	109 110 5.0 3.1 4.3 0.116 0.204 13.2 11.7 7.4 17 21 3/5/71 3/8/71 1600 1.0 10g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	109 110 111 5.0 1.0 3.1 4.3 4.1 0.116 0.206 0.151 13.2 11.7 12.8 7.4 7.4 17 21 19 3/5/71 3/8/71 3/8/71 1500 Rask(2) Rask Rask 1.0 1.0 1.0 10g hang 42 15 3 2 1	109 110 111 112 5.0 1.0 4.5 3.1 4.3 4.1 4.2 0.116 0.206 0.151 0.174 13.2 11.7 12.8 11.7 7.4 7.4 7.2 17 21 19 24 3/5/71 3/8/71 3/8/71 3/5/71 1600 1300 1500 1000 Rask(2) Rask Rask Ebb 1.0 1.0 1.0 0.9 10g hang Tokk 1 1 42 15 3 57 2 1	3.1 4.3 4.1 4.2 4.9 0.116 0.206 0.151 0.174 0.126 13.2 11.7 12.8 11.7 12.7 7.4 7.4 7.2 7.1 17 21 19 24 20 13/5/71 3/8/71 3/8/71 1500 1000 1315 Rank (2) Rank Rank Rhh Rhh 1.0 1.0 1.0 0.9 0.5 10g hang Rek 1 42 15 3 57 1 45 16 4 59 1	109 110 111 112 113 114 5.0 1.0 4.5 8.3 6.0 3.1 4.3 4.1 4.2 4.9 4.5 0.116 0.204 0.151 0.174 0.126 0.132 15.2 11.7 12.8 11.7 12.7 11.3 7.4 7.4 7.2 7.1 7.1 17 21 19 24 20 24 3/5/71 3/8/71 3/8/71 3/5/71 3/5/71 1300 East (2) East East Ehh Ehh Ehh (2) 1.0 1.0 1.0 0.9 0.5 1.0 10g hang Torn 1 42 15 3 57 1 3 2 1 1 1 4 4 59 1 5	109 110 111 112 113 114 115	109

E

Cupped

STATION #	(1)09	110	111	112	113	(2)14	115	116	
AIR TEMP. (°C)	29.0	31.5	28.0	20.0	26.5	19.0	37.0	22.0	
WATER TEMP. (°C)	21.5	21.3	19.1	19.1	19.1	19.1	18.6	18.5	
SALINITY (0/00)	1,054	1.574	1.267	1.976	6.2135	CHEST AND LANG.	3.726	1.673	
OXYGEN (mg/L)	12.01	9.40	7.22	5.37	4.24	4.38	7.07	6.35	
12	7.2	6.9	6.9	6.7	6.6	6.7		6.9	
SECCHI DISC (cm).	63.0	60.0	40.0	35	60	60.0		34	
MIR The (EST)	6/7	6/7	6/4	6/4	6/3	6/3	6/4	6/3	
TIME (Current, Knote)	0	West	West	1015 ebb	1215 ebb	aleck 0	0830 late floo	0830 ebb 0.	
LENGTH OF TRAWL (ml)									
		0.5 n torn ne	1.0	1.0	trees &	1.0 rocks &	1.0	1.0	TODE NO.
DEBRIS	rock 1001	b.18			rocks	mud	-		OF PISH
Anguillidae Anguilla rostrata (American Eel) Clupeidae	3(6)	4(8)	1	1	1	2	1	1	14
Alosa sestivales (Blueback Herring)					1				1
Prevoortie tyrennue				2			,		6,
(Atlantic Menhader	,								
Anchoa mitchilli (Bay anchovy)							1		1
Cyprinus carpio									
(carp)		.1							
Ictalurus catus					1				
(white catfish) Ictalurus Nebulosus					1,				
(Brown bullhead) Ictalurus Punctatus	3(6)	6(12)	3					1	13
(Chennel catfish)									13
Moroge Americanus (White Perch)	123(246	217(434)	198	83	1	13	273	214	1122
Morone sexatelie	\$(10)	3(6)	12	,	3	3	27	30	92
oleidae									
Trinectes meculatus (Nogchoker)	18(36)	12(24)	•	3	1		•	,	54
Pioh/otation	152(304)	242 (484)	223	99	8	18	309	253	1304
	30.4	48.4	22.3	9.9	0.9	1.8	30.9	25.3	
Crangon Nuc Crab	20	10	4(20-18	7.0	L		1001-	-	
(1) Hoved & mt East f	e this me		*(27*114	"	D(64, 5 m)	3(20,100	Kar na	(1176-1)	79
(2) Hoved to Del. sid	of Chan								

TABLE XIX		ANL DATA	AUSUA	1/4			1	-54-	
STATION #	109	110	111	112	113	114	115 .	116	
AIR TEOP. (°C).	30.0	30.0	29°C	25.0	28.0	25.0	22.0	30.0	
WATER TENP. (°C)	26.8	27.0	27.0	27.4	27.1	27.0	26.4	27.1	
SALIWITY (°/00)	0.906	0.705	0.804	2.263	2.593	3.148	4.696	2,760	
OUTYGES (mg/L)	7.42	7.17	7.34	6.36	6.16	6,42	6.59	6.08	
	7.3		7.3	7.2	7.3	7.3	100	7.2	
SECCET MISC (cm).	74	8/3	39,0	8/40	58.	48.	25	60.0	
The (EST)	1200	1400	1500	1530	8/4 1030	8/4 0900	8/5 0900	8/4 1300	
TTRE (Current Knote	east (1k)	east 3	-	ebb2-3k	flood/ ebb	flood	flood/	ebb	
LENGTH OF TRANL (mL)	0.9	0.9	0.75 tora	0,0	1.0	1.0	1.0	1.0	
DEDRIS	hune	100 a 100 c	net	oor hard	n	erevel	pseka		OF FIS
Anguille rootrate			1			2		4	,
Clupeidee Alces pseudoharens Brevoortis tyrannú	10	1 5	i	3 10	9 1	3 2		2 6	19 34
Engranlidee Anches mitchilli			i	5.			5	1	12
Ictalurus catus Ictalurus punctatu	25	5	1	1		1	1	1	1 38
Perciethyidae Marano americanus Marane Americanus	225	122	9 1	2 10	196 43	103 32	3	27 12	687 101
Scientides Cracecion reselle	8 juv	9juv	17 juv	57 juv 11	1208 juv	5030juv	472juv Sadult	509juv	7310 3 daye
leistame sentiuru					1 05	51	2	22 1	191
Solotides Trinsettes meculatur	٠	3.	1			1	1 .		12
Piob/otation Piob/otation/0.lmi	272 30.2	147 16.3	32 4.3	99 11.0	1562 156.2	5 225 522.5	492 49.2	589 58.9	8418
Blue Crab Cranges	20,48	115,26	4 <i>7</i> , 2(1s	45,14(m)	11355471	632)346	130Y20	195 54	269¢ (100)\$

PARLE EX	_ 184	VL DATA	lepterber	1071			-5	5-	
STATION #	109	110	111	(1)	113	114	115	116	
AIR TOP, (°C)	26.0	24.5	24.3	28.6	25.5	25.0	25.1	20.4	
MIER TENP. (°C)	25.9	25.2	25.7	24.9	24.2	24.0	26.6	25.1	
SALDITY (°/00)	1.042	1.020	2.557	0.344	0.123	0.119	0.632	0.763	
ORYCER (mg/L)	9.49	3.93	5.60	2.00	3.50	2.40	2.49	3,68	
<u>, 18</u>	6.85	•••	6.60		•••	•••			
SECCHI DISC (cm). DATE TIME (EST)	57 9/13 1100	64cm 9/16 0630	51 9/13 1330	9/15 1330	29 9/14 1300	9/14 1400	51.0 9/15 0930	9/14	
TIME (Current, Knots	1000 785		east	066	ebb	-81100	early	early ebb	
LENGTH OF TRANL (ml.)	0.9	1.0	10	0.5	1.0	1.0	1.0	1:0	1
DEDOIS	•••	Jesas	is foot	tornnet	off site	stones	•••		OF PISE
Angeille rostrate		6		1 42	-AREIA		5	1	15
Clupcides Aloca pseudoharena Bravoortia tyrassuu Engraulides	4	?	<i>;</i>	13	1	ı	229 13	21 16	259
Anches mitchilli Istaluridae	3	2	5				45		55
Ictalurus punctatus Ictalurus nebulosus Perciethyidas	41	9 . 1	5 .					12	57 14
Morane emericanus Morane sexatilis Contrarchicas Lapomis macrochirus (Bluegill)	146	1057	32	\$		1	341	211	2093 23
Pometomus seltetrix Sciencides		1	1					1	,
Cynoscion regalis Laistonus xanthurus Posmias cromis Gobiosoma bosci	1	125 529	296 4 1	2 5			414 424 1	1 415 3	999 1398 5
Trinoctes maculatus	2	6	1					1	10
Pich/station Pich/station/0.lmi	677 75.2	1749 174.9	345 34.5	33 6.6	1 0.1	3	1475 147.5	698 69.8	4981
Blue Crab	155,18	17/	58	5628	36	15587	19/81	42/21/	1216
Creagon Palescenetes (1) Heavy rains in pa	t weeks,	local flo	present present coding in	upper Riv	•				201

Legisland

TABLE_TYIT	TRAU	r data 1	lovember 1	971			-:	7-	
STATION #	109	110	111	112	113	114	115	116	
AIR TEMP. (°C)	7.0	7.0	8.0	7.0	7.5	10.0	7.0	5.0	
WATER TENP. (°C)	10.5	11.3	12.0	12.7	13.9	14.0	12.7	12.9	
SALINITY (°/oo)	1.346	1.408	1.490	1.724	0.398	0.311	1.712	1.434	
OXYGEN (mg/L)	10.522	10.94	10.53	8,32	5.46	4.98	8.55	7.40	
pil	7.4	7.6	7.4	7.0	6.9	7.2	6.9	7.2	
SECCHI DISC (cm).	50	60	80	30	30	30.0	25	40.0	
DATE TIME (EST)	0830 11/12/71	0800	0900 11/11/71	1100 11/11/71	11 30 11/10/71	1400 11/10/71	1130	0900	
TIME (Current, Knots)	West	West 1	West 1	2.0	Ebb	Flood 0-1	Ebb	Epp	
LENGTH OF TRAVL (AL)	1.0	1.0	0.95	1.0	1.0	1.0	1.0	1.0	
DEBRIS	Mud	Stumpe	Bed Btm.		Anchor Lg. Rock				TOTAL NO. OF FISH
Anguilla rostrata		1	1	1	8	4	2	5	22
Clupeidas Alora sestivales A. pseudoharunas A. sapidiseina	5	3	3	33 74	6 2 .	12 22 3	12 29	2 65	65 203 5
Porceone chredianus Breveortia tyrennus Engranlidae Anchos mitchilli	•	1		13			17	9	132
Cyprinides Cyprinus carpio Evbornathus nachalis (silvery mines)				1				0
Ictaluridae Ictalurus catus I. Punctatus I. nobulorus	4	3		5	2	1		1 2	1 14 3
Perciehthyidee Morone anticenus Morone sanatilis	25 .	53	22	204 1	90	35	84	65 2	578 4
Scisonideo Cynoscion regalis Leistomus xanthurus Hicrosogon undulatus Pogonias cromis		juv 4 2	juv 9	juv 8 35 juv 5	uv 1	Juv 1	juv 1 k juv 6	juv 9 1 juv 27	32 47 39
Gobiosoma bosci Trinsctes maculatus	1	1	8	1				1	1 19
Pish/station	8	69	43	497	113	80	162	199	1211
Fish/station/0.1 mi		6.9	4.5	49.7	11.3	8.0	16.2	19.9	
Crangon	no shring	~50	shrimp	~300				120	

さん では 日間

TABLE PRITE	TRA	WL DATA	Decembe	1971				-58-	
STATION #	109	110	111	112	113	114	115	116	
AIR TEMP. (°C)	7.0	6.0	6.0	9.0	•	9.5	11.5	6.0	
WATER TEMP. (°C)	6.2	6.6	6.8	6.8	6.7	6.8	6.9	6.5	
SALIMITY (°/00)	0.649	0.552	0.539	0.767	0.290	0.281	0.836	0.476	
OXYGEN (mg/L)	10.52	8.76	8.49	8.03	8.17	7.63	8.14	9.25	
2	7.2	6.9	7.1	7.0	7.1	6.9			
SECCHI DISC (cm).	40	30 12/14	30 12/14	30 12/13	30 12/14	25	25 12/13	14/14	1
The (EST)	1500	1415 Black	1300	1100 ebb	0945 Flood	0930	1230 ebb	1130 ebb	
FIDE (Current, Knots)	1k	east0.5	1k	2k	1.5k	2k	2k	0.5-1.0	
LENGTH OF TRAVE (m1)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
DEBRIS	mud in one drag			offices in	etones forn	rocks i	fev		OF FISH
(Sea Lamprey) Anguille rostrate				1	*	1			1
Clupeidae Aloss sestivalis (Blueback)						1			1
A. pseudoharengus Ictaluridae					1				1
I. punctatus		1				1			2
Percichthyidae Morone americanus	57	29	38	14	, .	1 @	40	46	232
cisenidae <u>Micropogan</u> undulatus (Crosker)							2 juv		2
Tripectes maculatus		1	2						3
Pich/station Pich/station/0.lmi.	57 5.7	31 3.1	40	15 1.5	0.8	0.4	42 4.2	48	245
rengon eeptemapinosa Mhithropanopeus harrisi		,	2				1	1 3	1
						10			

Total Alice

									1
STATION #	109	110	111	112	113	114	115	116	
AIR TEMP. (°C)		17.0	17.0	15.0	10.8	10.0	13.5	14.5	
WATER TEMP. (°C)		2.4	2.9	2.7	3.2	3.1	2.4	2.7	
SALINITY (°/00)	0.159	0.281	0.449	0.735	0.495	0.554 muddy	4.859	0.987	
OXYGEN (mg/L)	11.76	11.65	10.29	10.54	8.66	7.59	10.81	10.62	
a a									1
RECCHI DISC (cm).	45	40	30		25.0	30.0	40	35	1
TOR (EST)	3/1 1200	3/1 1015	3/1 0900	2/29 1500	2/29 1015	2/28	2/29	2/29	
TIDE (Current, Knots)		1.5e		1.5	flood	flood	ebb	flood	
LENGTH OF TRAWL (m.L.)	1.0	1.0	1.50	1.0	0.5	116		0.5-1.0	
					0.5	1.0	1.0	1.0	TOTAL N
DESRIS	clean	clean	clean	clean		rocks	in pet	in net	OF FIS
Anguille rostrate elvers			2		3		seyeral	1	9
Cyprinidae Shiner	1								1
Ictalurus punctatus		1							1
Percichthyidae <u>Morone americanus</u> <u>Morone saxatilis</u>	3		2	•	2	1	12	12	36
Percidae Perca flavescens		1				1			2
Pish/station									-
									43 Selver
Fish/etation/O.lmi.	0.5	0.2	0.4	0.4	1.0	0.2	1.6	1.4	SETAGE
				1.04					

TABLE XXV	TRA	WL DATA	April 4	5 1972			•	60-	
STATION #	109	110	111	112	113	114	115	116	
AIR TEMP. (°C)	•••	11.5	8.5	6.0	10.0	9.5	7.0	9.0	
WATER TEMP. (°C)		7.4	7.1	7.3	7.6	7.6	7.4	7.5	
SALINITY (°/00)	0.326	0.493	0.546						
OXYGEN (mg/L)	9.982	9.479	8,961	8.820	7.594	7.586	8.679	8,969	
pl		•••							
SECCHI DISC (cm).	50	40		30	35	40	30	35	
TIME (EST)	1345	4/5 1200	4/5 1000	1030	1345	1115	0900	14/4	
TTDE (Current, Knots)	1.0-1.5 East	2.0k Best	1.5k East	slack	2k flood	1-1.5 flood	1.5k ebb	1.5 flood	1
LINGTH OF TRAWL (ml)	1.0	1.0	1.0	1.0	1.0	0.5	1.0	1.0	
DEBRIS	clean		torn		few	stones			OF FISH
Anguilla rostrata			1		1			2	4
Clupeidee Aloss sestiveles A. pseudoharengus A. sapidissime Engraulidee Anchos hepsetus		2	1 3	2 1	2		2 6	3 4 1	10 16 1
Cyptime carpio			1						1
Percichthyidae Morone americana Morone sexetilis	39 1	88 1	90 3	39 1	,	3	34	78 7	378 13
Fish/station	40	19	99	43	10	3	42	96	424
Fish/station/0.lmi.	4.0	9.1	9.9	4.3	1.0	0.6	4.2	9.6	

TABLE YYVI	TRAL	L DATA	May	8 & 10 19	12		-61-	•	
STATION /	109	110	111	112	113	114	115 -	116	
AIR TEND. (°C)	23.0		26.0	12.5	19.0	15.0	10.5	16.0	
WATER TERP. (°C)	16.0	16.4	16.2	15.1	15.3	15.4	15.0	15.3	
SALINITY (°/oc)	0.163	0.352	0.337	0.210	0.125	0.275	2.164	0.125	
OXYGEN (mg/L)	9.278	9.411	8.366	8.030	6.374	7.251	7.368	5,600	
pil		•••		•••			•••		
SECCET DISC (cm). BATE TIME (EST)	30.0 5/8 1244	5/8	5/8	5/10	5/10	5/10	5/10	5/10:	}
FIR (Current, Knote	Pest	east lk	nest 1k	0.5k	1230 ebb 1.5k	abb lk	flood 0.5k	1400 1.5k	1 .
LENGTH OF TRANL (mL)	10ft 108	0.5	1.0	1.0 Piece of	0.75 tree	1.0	1.0	1.0	TOOK 10.
Anguille rostrate	buer	3	5	pier	ripped n	2	708	clean	OF FISH
Clupeidae Alesa aestivales Alesa psuedoharensu	2 2	1	6,	1	2	2 2	3	1	3 18
Engraulidae Anchos mitchill				72	1	•	49		131
Cyprimus carpio Shiner				1	3)		1	1
Ictaluridae .									
i. catus I. nebulosus I. nunctatus	1 14	7	4	,	1	1		1	3 9 20
Percichthyidae Morone americanus Morone saxatilia	148	48 25	43	22	34	18	139	266	720 345
Percides Perce flevescene								1	1
Soleidee Tripectee megulatus	13	52	5						70
Fish/station	456	138	72	107	49	35	217	274	1349
Fish/station/0.1 mi.	61.06	27.60	7.20	10.70	6.53	3.50	21.70	27.4	

I

Davideo

STATION #					1972)				7
	109	110	111	112	113	114	115	116	
AIR TEMP. (°C)	17.0	21.5		20.5	23.5	22.5	17.0	26.5	
WATER TEMP. (°C)	20.6	19.5	19.1	18.9	19.6	19.3	19.1	19.3	
SALIMITY (°/00)	1.678	1.458	1.892	1.716	0.310	0.385	1.196	1.171	
OXYGEN (mg/L)	7.857	7.051	6.936	7.003	5.675	5.710	6.919	6.742	
pli									
SECCHI DISC (cm). ATE FIRE (EST)	30 6/1/72 1000	50 6/1/72 0845	45 6/1/72 0738	30 5/31/72 0900	25 5/31/72 1230		Charles and the second	40.0 5/31/72	
TIDE (Current, Knots)	A Company of the Comp	STATE OF THE PARTY OF THE PARTY.		Control of the Contro		1030	0800	1345	
LENGTH OF TRAWL (ml)	1.0	1.0	1.0	1.0			Ebb 1.5		P
DEBRIS	erons clean	clean	clean	clean	1.0	1.0 mill	1.0	1.0	TODAL NO
Anguilla rostrata			2		clean	1telver	3	clean 5	of FIS
Aloss sestivales A. pseudoharengus Ingraulidae			1.	1 2	2				3 4
Anchos sitchilli			1					1	2
I. catus I. nebulosus I. punctatus	•	1 .	5 5		2 1	1		1	2 10 12
ercichthyidae Morone americanus Morone saxatilis	57 1	89	410	77 1	100 3	260	105 1	195 6	1293
Perca flavescens		1							1
Trinectes maculatus	7	31	1	1				2	42
Pish/station Pish/station/0.lmi	65 6.5	133 13.3	431 43.1	82 8.2	109 10.9	263 26.3	109 10.9	210 21.0	1402
							Ι.	1	

TABLE EXVIII	TRA	WL DATA _	July 1	972	•		-63-		
STATION #	109	110	111	112	113	114	115	116	
AIR TEMP. (°C)	27.0	29.0	26.0	30.0	28.0	33.0	25.0	31.0	
WATER TEMP. (°C)	22.9	22.0	22.9	22.3	22.40	22.40		23.00	
SALINITY (°/co)	0.102	0.104	0.1405	0.136	0.1305	0.1165	0.181	0.134	
OXYGEN (mg/L)	5.38	5.95	4.18	4.45	4.032	3.539	4.29	4.96	
pH					===				
SECCHI DISC (cm). DATE TIME (EST)	20 7/10/72 0930	20 7/10/72 1200	23 7/12/72 0800	31.0 7/10/72 1400	26.0 7/11/72 1100	41 7/11/72 0915	30 7/11/72 1530	25 7/11/72 1400	
TIDE (Current, Knots)									
LENGTH OF TRAWL (mi.)	1.0	0.9	1.0	1.0	1.0	0	1.0	1.0	
DEBRIS					mud, log	torn net	hung		OF FISH
Anguillidae Anguilla rostrata							1	2	3
Clupeidae Brevoortia tyrannu	<u> </u>		2						3
Ictaluridae Ictalurus catus j Ictalurus nebulosu Ictalurus punctatu		1 10 3	1 2	.· 1	1	<u></u>	1		. 3 16 6
Cyprinus carpio		1				to 112			ì
Percichthyidae Morone americana Morone saxatilis	54	85	13 1	56 1	19	Statler to	21 1	220	468 5
Scisenidae Leistonus xenthuru			1			~	1		2
Soleidae Trinectes maculatu	4								٨
Pish/Station	62	100	20	58	20		25	226	511
Fish/Station/0.1 Mi.	6.2	11.9	2.0	5.8	2.0		2.5	22.6	
Very few blue crabs.									

Crab	Ŋ	5fz #	3/*	2,849(2 \$	0 68-341	1947(13	14.50 TO	s/	35 (63)
Fish/Station/o.1 Ni.	16.5	15.7	33.8		84.9	157.8		40.7	
Fish/Station	165	157	189	257	849	1578	127	407	3729
Soleidae Trinectes maculatus			2		24		,		2
Leistonus xanthurus Micropogon undulatu	2 2	:	3	5 2	1	14	3	22	63
Sciemidae Cynoscion regalis	24 Ju	. 53 j	y. 112 j	v. 236 ju			uv.119 j	v. 41	2185 (1(1m)
Percichthyidae Roccus smericana Morone sametilis Scieenidae	130 2	62	48	*	553	232	3	308	1340
Ictalurus catus Ictalurus nebulosus Ictalurus punctatus		1 10 2	3		1			3	2 16 6
Cyprinus carpio								1	1
Engraulidee Anchoa mitchilli	1	. 1		1	1	1			5
Clupcides Aloss sentiveles Aloss pseudoherens Brevoortis tyrannu	<u>.</u> ;	1 6 11.	,14			2 2	¥.	19	1 23 39
Anguillidae Anguilla rostrata		•/			2	6			
penais	_			mud.		_	clear	clear	OF FISH
LENGTH OF TRAVL (mL)	1.0	1.0	0.5	0.5	1.0	1.0	1.0	1.0	
TIDE (Current, Knote)	E 2.0	Bast 2.0	High slack	85-1.0	EBB 1.5	e1888 o.	flood	Ebb 1.5	
SECCHI DISC (cm). DATE TIME (EST)	35 8/10/72 0730	50 8/10/72 0830	8/10/72 1015	1415	8/9/72 1330	30 8/9/72 1200	55 8/10/72 1200	30 8/9/72 1630	
pH	7.0	7.0		6.9	_	7.0		7.0	
OXYGEN (mg/L)	6.79	6.70	6.69	6.68	6.54	6.52	7.04	6.98	
SALINITY (°/00)	1.755	2.394	3.354	5.434(1)	2.966	3.463	6.309	2.796	
WATER TEMP. (°C)	25.1	25.1	25.0	24.8	25.6	25.4	24.7	25.6	
AIR TENP. (°C)	23.0	26.0	23.0	23.0	30.0	32.5	23.0	30.0	
		110	111	112	113	114	115	116	

I

NAMES OF THE PERSON OF THE PER

TABLE XXX	_ TRAI	TL DATA _	Septembe	r 1972			-6	5-	
STATION #	109	110	(1)11	112	113	114	115	116	
AIR TENT. (°C)	29.0		30.0	26.0		25.0	28.0	21.0	
WATER TENP. (°C)	24.00	23.80	23.90	24.00	23.90	23.90	23.70	23.90	
SALIMITY (°/00)	5.595	5.716	5.888	4.645	4.471	5.322	8.105	4.598	
OXYGEN (mg/L)	6.324	6.768	6.085	5.865	6.815	6.538	7.292	6.419	
pli			_	=	_==	_	_		
SECCHI DISC (cm). DATE TIME (EST)	9(7/72	70 2675 ⁷²	9/3622	8/7/72	39.0	50 9{6{3²	50 1486 ⁷²	865672	
TIME (Current, Knots)	2.0k Vest	Hear slad	k 0.25-B	1 Flood	1.5-2.0 flood	0.5	1.5 ebb	2.0 flo	d
LENGTH OF TRAWL (ml)	0.8	1.0		1.0	1.0	1.0	1.0	1.0	
DERRIS	phus nba		move 0.3	e clean	cleen	clean	cleen_	clem	OF FISH
Anguillidee Anguilla rostrate	ì								1
Clupeidee Alosa sestivales Alosa pseudoharens Brevoortia tyrannu	<u>.</u> 1	2	2 4	1	2 3		1	17 3 2	20 10 13
Engraulidae Anchos mitchilli	,	,11	13					1	32
Ictaluridae Ictalurus nebulosu Ictalurus punctatu		4	4	1	1 2	2		•	2 21
Percichthyidae Morone americana Morone saxatilia	u	•	21	3 1	22	1	14	29 2	110
Pometomidae Pometomus seltetri	4							1	
Sciestides Cynoscion regalis Leistonus zanthuru Micropogon undulat Bairdiella chrysu		464		86 7 9	413	857 4 9 1	221	1005 18 35	3412 64 59 3
Soleidee Trinectes maculate	,		3					1	n
Fish/Station	85	501	380	110	450	881	240	1118	3765
Pich/Station/0.1 Mi.	10.0	50	. 38.	0 11.	0 45	.0 88	. 24	. 111.	1
Blue Grab (1) Station 111	4.2	36.24 W for	-12,2 1 m. dredge.	3,52		152371	\$5,00	3 W.	41/132 19m)

TABLE PYYI	- 11/	WL DATA	October 1	972		_	-66-		
STATION #	109	110	111	112	113	114	115	116	
AIR TEND. (°C)	25.0	18.0	22.0	21.5	23.0	23.0	21.0	24.0	
MATER TEMP. (°C)	19.6	19.5	19.3	19.2	19.6	19.7	19.4	19.4	
SALINITY (°/00)	7.72	7.70	8.74	8.70	6.73	6.76	8.78	7.69	
OXYGEN (mg/L)	7.58	7.99	8.20	8.09	7.57	7.02	7.78	8/03	
all .						••			
SECCHI DISC (cm).	80	60	60	60	70	70	75	60	
TDE (EST)	10/4/72	10/2/72	10/4/72	10/4/72	10/3/72	10/3/72	1073772	10/3/72	
FIR (Current, Knote)	E9.5	yest 2.8t	8.5c	F.8	8:3	P:8	F.8	Hat's	
LENGTH OF TRANL (ml)	1.0	1.0	1.0	1.0	1.0	1.0	0.5	1.0	
DEBRIS	Clear	Clear	Clear	Clear	Clear	Clear	Lg.Anch	*	OF PIS
Clupeidee Alogapseudoharengu Brevoortis tyrannu		1	.		1 2	2		1	5 5
Engraulidae. Anchos mitchilli	1	,	.5	,				3	15
Ictaluridae Ictalurus nebulonus Ictalurus punctatus Ictalurus catus	1 38 3	20 2	2		2	2		3	67 5
Anguillidae Anguilla rostrata	1			3		2		1	
Percichthyidee <u>Horone americana</u> Horone saxatilis	118	24	6	•	23 1	14	20	14	225
Sciemides Cynoscion regalis Leistomus genthurus Micropogon undulatu Sairdiella chrysura		421	n	390 6	41	231	126	976 3 5	2371 7 1 12
Soleides Trinectes asculatus	5	10		2			1	3	21
Total Fish	283	488	86	408	n	231	143	1010	2745
Fish/Station/0.1 mi.	28.3	48.	8.6	40.8	7.1	25.1	29.0	101.0	
Dium crab	10		11	4(12)	,2 (lm)	2 ,3 (imi)	5 ,3 (1 ,2 (lm)	30

STATION A	109	110							
STATION #			111	112	113	114	115	116	
AIR TEMP. (°C)	18.0	16.0	13.0	9.0	6.5	8.5	8.0	6.0	
MATER TEMP. (°C)	12.5	12.4	12.3	12.4	12.4	12.5	12.3	12.3	
SALINITY (°/00)	7.338	7.363	7.423	5.859	5.690	6.000	7.325	6.733	
OXYGEN (mg/L)	8.639	8.571	8.526	8.385	7.980	7.675	8.726	8.721	
			1					•••	
ERCCHI DISC (cm).		40		30	••• \		35	50	
OATE TIME (EST)	1200	1030 11/2/72	0930 11/2/72	1430	1030	1130 11/1/72	1330 11/1/72	0915 11/1/72	
FIDE (Current, Knots)	West 2.0	1.5 West 1.5 Bast	West 1.0	266 1-1.5	Ebb 0.5-1.0	Ebb 1.0	Ebb 1.5	Lest Fld.Slk.	
LENGTH OF TRAVE (mi.)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
DEBRIS	••						••	10	OF FISH
Anguille rostrate					-1	1			2
Clupeidae Alosa gestiveles A. pseudoharengus Brevoortia tyannus	3 17 3	1 7 1	1 5 1	5	12	<u> </u>	18	1 n	11 83 5
Engraulidae Anchos mitchilli	5	5	6	2			26	17	61
Ictaluridae I. <u>nebulosus</u>			•		1			-	1
Percichthyidee <u>Morone</u> mericanus <u>Morone</u> saxatilis	12 1	8	8	27	66 2	16	13 1.	22 1	172
Crossidae Crossidae regalis Laistomus manthurus Microsogon undulatus Bairdiella chrysura	3 Jw 2	1 1		1 ju _y .	1 juv 15	2	4 jur	8 jur 9 1	17 juv 31 3
loleidee Trinectes maculatus	1							1	2
Pish/station	47	24	21	46	99	23	63	72	395
Fish/station/0.lmi	4.7	2.4	2.1	4.6	9.9	2.3	6.3	7.2	
Crangon septemspinos		few		crangon	crangon		crangon		

STATE OF THE PERSON NAMED IN COLUMN NAMED IN C

and statement of the

TABLE THILL	TRAI	IL DATA	December	1972			-68		
STATION #	109	110	111	112	113	114	115	116	
AIR TENP. (°C)	3.5	4.0	17	12.0	8.0	4.0	10	8.0	
WATER TEMP. (°C)	6.1	6.1	6.4	6.3	6.3	6.0	6.2	6.0	
SALIMITY (°/00)	0.425	0.425	1.042	1.995	0.1305	0.1265		0.339	
OXYGEN (mg/L)	12.957	12.935	11.639	13.380	14.861	11.256	15.650	13.435	
pil					•••	•••			
SECCHI DISC (cm). DATE TIME (EST)	25 12/7/72 1500	23 12/7/72 1400	25 12/6/73 1500	30 12/6/72 1300	60 12/7/72 1030	34 12/7/72 0900	22 12/6/72 0930	24 12/7/72 1215	
PIDE (Current, Knote)	2.5k West	2.5 West	West 0.5	ebb 0.5	flood 1.5-1.0	flood	flood 2.0-2.9	flood	
LENGTH OF TRAVE (mL)	0.5	1.0	1.0	0.5	1.0	0.5	1.0	1.0	
DEBRIS		3-3	3-0		0-1	1-	0-1	6-0	OF FISH
Anguillidae Anguille rostrata Clupeidae			•			1			1
Alosa pesudoharengus Ictaluridae Ictalurus Punctatus I. nebulosus	no fish			no fish	1	1		1 &	1 1 1
Percichthyidae <u>Morone</u> <u>americana</u> <u>Morone</u> <u>sametilis</u>		•	3				1 .		13
Pish/station	0	6	3	0	1	1	1	6	18
Field/station/0.1 mi	0	0.6	0.3	0	0.1	0.2	0.1	0.6	

Titleston.

E

PARES TAXIY	144	WL DATA	HATCH 19	13			-69-		
STATION #	109	110	111	112	113	114	115	116	
AIR TEND. (°C)	90	90	11	16°	15	19	16	16	
MATER TEMP. (°C)	4.9	4.7	4.7	5.7	1.1	5.7	5.5	5.2	
SALINITY (°/00)	4.489	4.759	4.887	2.192	2.954	2.355	2.516	3.511	
OXYCEN (mg/L)		RO	02	data					
pB					150	3.4	1.7		
SECCHI DISC (cm). DATE TIME (EST)	50 3/9/73 0800	40 3/8/73 0830	35 3/8/73 11:00	40 3/8/73 11:40	40 3/9/73 11:20	35 3/9/73 1345	40 3/9/73 10; 25	45 3/8/73 1256	
TIDE (Current, Knots)	flood.	flood	.03 flood	1 flood	.5	.2 flood	.2	.5 flood	
LENGTH OF TRAVE (mL)	0.5	1		,					
	n helly			tota chei	388 ar	2/2001b	ista ber	.13	OF FIS
Anguillidee Anguille rostrate				1				,	•
Clupeidee Alose sestivales Alose mediocris	1				1				1
Percichthyidee Morone americanus Morone sexetilis	6	45 1	15 1	31	• 1	n	13	30	180
Pieb/station	7	46	16	32	11	11	13	57	193
Fish/station/0.1 mi	1.4	4.6	1.6	3.2	1.1	1.1	2.6	5.7	
)				

Control

TABLE NOVI	TRA	WL DATA _	May 19	21			-71-		
STATION #	109	110	111	112	113	114	115	116	
AIR TEMP. (°C)	13	13	16	17	14	22	. 22	13	
WATER TENP. (°C)	15.1	15	15.15	15.1	15.8	15.0	15.2	15.4	
SALINITY (°/oo)	.974	.620	. 780	.550	.252	.233	.572	.325	
OXYGEN (mg/L)	7.620	9.049	8.350	7.620	5.427	7.676	10.26	6.851	
M									
SECCHI DISC (cm).	35	35	55	25	25	. 70	55	40	
DATE TIME (EST)	13:00 5/8/73	13:15 5/4/73	11:40	13:10 5/7/72	09:25	11:38	08:05 5/4/73	5/8/73	
TIDE (Current, Knots)	Plood 2	2 Ebb	East 1.5	Flood 1.5	2.5	Flood 1.0	Lest	1.0	
LENGTH OF TRAWL (mL)	1	1	9	1	1	1	1	1	
DEBRIS	None		Sheet Ca						OF FISH
Acipenser oxyrhynchus Clupeidae							1		1
Alosa pseudoharengu Brevoortia tyrannus	8 3 2	3	1	3	3	2	1	1	20 19 2
Anguillidae Maguilla roetrata	1				1				. 2
Anchos mitchilli	'n			2					3
Ictaluridae Ictalurus nebulosus Ictalurus punctatus Ictalurus catus		3	1	2	1	1 2	1	1	710
Percichthyidae <u>Morone</u> <u>americana</u> <u>Morone</u> <u>sexatilis</u>	251 2	49 29	54 5	13 2	12	12	32	148	571 43
Percidee Perce flevescens	an Table						. 1		1
Soleidee <u>Trinectes</u> maculatus Cyprinidae Notropus cornutus	1	1	4					1	6
Pish/Station	269	85	65	29	23	18	40	153	682
Pish/Station/0.lmi	26.9	8.	7.2	2.9	2.		B 4.0	15.3	

I

TABLE PROVILE	TRAN	L DATA _	July 1	973			-73-		
STATION #	109	110	111	112	113	114	115	116	
AIR TEMP. (°C)	26.5	25.5	33.0						
WATER TENC. (°C)	28	23.80	27.4		26.0	26.10	26.40	26.5	
SALINITY (°/oo)	. 383	.378	.282		.145	.259	. 385	.207	
OXYGEN (mg/L)	3.913*	5.138	2.488		3.228	2.819	3.951	3.550	
pill									
SECCHI DISC (cm).	30	30	28		20	30	25	30	
The (EST)		3 99i97		_=_	991897		371897		
TIME (Current, Knots)	(2)	Ebb (.2)	Flood (2.5)	-	(.3)	Ebb (1)	(2)	Flood (.3)	
LENGTR OF TRAVL (mL)	1	1	1		1	1	1	1	
DESKIS	-81						Dead Str	ped	OF FISH
Clupeidae Alosa pseudohareng		1					Cuek eel.		1
Alosa asstivales			1						1
Ictalurus catus Ictalurus punctatu	. 1	11. 10	2 1						14
Anguilla rostrata Anchos mitchilli	1	1 2	1	7					2 2 1
Percichthyidae Horone americana Horone saxatilis	27	148	54 1	Not Sampled		1	1	7	238
Sciemides Leistonus xenthuru	6	50	22	2	6	1	1	13	99
Trinectes meculatus		1							
Fish/Station	36	223	82		6	1 2	2	20	371
Pish/Station/0.1 mi.	3.6	22.	8.2		0.6	0.2	0.2	2.0	
* Bod repeatability		6				,			

	116	115	114	113	112	111	110	109	STATION #
		100		11					AIR TER. (°C)
	27.4	27.0	28.0	27.90			27.8	27.8	WATER TEND. (°C)
	1.426	2.245	0.419	0.477		1.093	0.575	0.473	SALDETT (°/00)
									ORTON (mg/L)
•									
	65 8/7/7: 10:00	50 8/8/73 12:00	40 8/7/73 14:05	40 8/7/73 11:30		8/8/73 10:00	55 8/8/73 09:00	50 8/8/73 07: 30	ANY THE (EST)
	(1.5)	(2.0)	(1.0)	(2k)		West (0.2)	West (0.2)	West (0.2)	TTRE (Current, Knots
1	1.0	1.0	1.0	1.0		1.0	1.0	1.0	LENGTR OF TRAVE (ml.)
OF FIS									neers
1 10 12		3	2	1		2	5	1,1	Clupcides Aloca sestivales Aloca pecudoharence Erevoortia tyrenam
n	2	1					•	2	Anchos witchilli
1	1								Cyprimidae Cyprimus carpio
		4							Ictelurides
4 27 15 5	1 18 2 1	5	3 3	1 2 3		1 1 5	1	1	Ictalurus catus I. nebulosus I. punctatus Accuilla rustrata
581	163	38	90	55 2	fot Sampled	10	18	,	Percishthyidee Norma emericana Norma eaustilia
					ž				Scientides
768 2110	74 544 1	657 183	09	16		28 116	9 39	3	Cruoscion regalis Leistonus zenthurus Microscos undulatu
•	3	1		1		1			Soleidee Trinectes seculatus
3558	820	892	80	981		164	79	14	Fish/Station
									Fish/Station/0.1 Hile

Sept.

- Constitution

I was

GLOSSARY

Benthic - Bottom dwelling

Biomass - Living weight per unit area

Demersal - More dense than water

Detritus - Finely divided settleable material suspended in water

Epifaunal - Living on a substrate

Mensies trawl - A substrate interface sampling device consisting of a fine mesh net suspended in a flattened metal frame

Peterson Grab - Bottom sampling device consisting of 2 hinged buckets which when actuated samples a semi-circular cross-section of the substrate

Secchi Disc - A device used for measuring water turbidity.

Usually a white disc which is lowered to point of disappearance

Van Veen Grab - Bottom sampling device, similar in design to Peterson grab