Conceptos de Arquitectura de Computadoras

Clase 09 Superescalares y mas VLIW

Hacia Pentium 4

- 80486 CISC
- Pentium algún componente superescalar
 - 2 unidades de ejecución de enteros separadas
- Pentium Pro todo superscalar
- Modelos siguientes refinan y mejoran el diseño superscalar

Pentium 4: diagrama de bloques

Pentium 4. Operación

- Busca instrucciones en memoria en el orden del programa estático
- Traduce instrucciones en 1 o + instrucciones RISC
 - micro-operaciones
- Ejecuta las micro-ops en un cauce superscalar
 - micro-ops pueden ser ejecutadas fuera de orden
- Entrega resultados de micro-ops a los registros en el orden de flujo de programa original
- Caparazón CISC con núcleo RISC
- Cauce del núcleo interno de al menos 20 etapas
 - Algunas micro-ops requieren múltiples etapas de ejecución

Cauce segmentado de Pentium 4

		/	/	/					/	/	/	/	/	/	/	/	/	/	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
TC Nxt IP		TC Fetch		Drive	Alloc	Rena	ame	Que	Sch	Sch	Sch	Disp	Disp	RF	RF	Ex	Flgs	Br Ck	Drive

TC Next IP = trace cache next instruction pointer Rename = register renaming

TC Fetch = trace cache fetch

Alloc = allocate

Que = micro-op queuing

Sch = micro-op scheduling

Disp = Dispatch

RF = register file

Ex = execute

Flgs = flags

Br Ck = branch check

Pentium 4: segmentación

D-TLB= data translation lookaside buffer

I-TLB = instruction translation lookaside buffer

Operación del cauce

(a) Generation of micro-ops

(b) Trace cache next instruction pointer

Operación del cauce (2)

Operación del cauce (3)

(e) Allocate; Register renaming

(f) Micro-op queuing

Fms

Fop

D-Cache and D-TLB

Operación del cauce (4)

Operación del cauce (5)

Operación del cauce (6)

Hacia IA64

- Pentium 4 aparece como el último de la línea x86
- Desarrollo conjunto de Intel y Hewlett-Packard
- Nueva arquitectura
 - 64 bit
 - No es extensión de x86
 - No adapta la arquitectura HP de sus RISC de 64 bits
- Utiliza muchos circuitos a altas velocidades
- Hace uso sistemático del paralelismo
- Base superscalar

Motivación

- Paralelismo a nivel instrucción ILP
 - Implícito en la instrucción de máquina
 - No determinado por el procesador en tiempo de ejecución
- Palabras de instrucción larga o muy larga (LIW/VLIW)
- Predicación de saltos (no es predicción de saltos)
- Carga especulativa
- Intel-HP lo llaman EPIC Explicit Parallel Instruction Computing
- Arquitectura IA-64 pensada para implementación EPIC
- Itanium es el primer producto de Intel

¿Porqué nueva arquitectura?

- Hardware no compatible con x86 (IA32)
- Muchos millones de transistores disponibles en chip
 - Se pueden armar caches mas grandes
 - Se pueden colocar varios procesadores
 - Se pueden agregar mas unidades de ejecución
 - Aumenta superescalado, procesador mas "ancho"
 - Se necesita mas lógica para dirigir, mejor predicción de saltos, cauces mas largos, mas registros de "renaming"
 - Hay mayores penalidades por mala predicción
 - Retiro de hasta seis instrucciones por ciclo

Paralelismo explícito

- Paralelismo de instrucción programado en tiempo de compilación
 - Incluido con la instrucción de máquina
- El procesador usa esa información para realizar ejecución paralela
- Requiere circuitos menos complejos
- El compilador tiene mas tiempo para determinar posibles operaciones paralelas
- El compilador mira todo el programa

Organización **IA-64** 128 **GRs** M \mathbf{E} M O R 128 **FRs**

GR = General-purpose or integer register

FR = Floating-point or graphics register

PR = One-bit predicate register

EU = Execution unit

Características clave

- Gran número de registros
 - Formato de instrucción de IA-64 asume 256 registros
 - 128 de 64 bit para enteros, lógica y propósito general
 - 128 de 82 bit para punto flotante y gráficos
 - 64 registros de 1 bit para ejecución predicada
 - Soportan alto grado de paralelismo
- Múltiples unidades de ejecución
 - Se espera 8 o mas
 - Depende del número de transistores disponible
 - Ejecución paralela depende en hardware disponible
 - 8 instrucciones en paralelo pueden dividirse en 2 lotes de 4 si hay 4

Unidades de ejecución

- I-Unit
 - Aritmética de enteros
 - Suma y desplazamientos
 - Lógica
 - Comparaciones
 - Operaciones multimedia de enteros

- M-Unit
 - Load y Store
 - entre registro y memoria
 - alguna ALU de enteros
- B-Unit
 - Instrucciones de salto
- F-Unit
 - Instrucciones de punto flotante

Formato de instrucción IA-64

PR = Predicate register

GR = General or floating-point register

Ejecución con predicados

- Cualquier operación puede referirse a un registro de predicado
 - <PRi> operación
- La operación se retirará (resultados visibles) sólo cuando el valor del predicado sea verdad (PRi=1)
 - Si el valor se conoce cuando la instrucción se emite, la operación es ejecutada sólo si ese valor es verdadero
 - Si el valor no se conoce, la operación se inicia; si el valor se convierte en falso, la operación se descarta
- Si no se menciona registro de predicado, la operación es ejecutada y retirada incondicionalmente

Saltos predicados

- Es una técnica de compilación
 - Para generar código con alto grado de ILP
- Se basa en la ejecución con predicados de la IA-64
- Se deja que ambas ramas de un salto condicional se ejecuten en paralelo
 - Para explotar todo el potencial de paralelismo
- Se eliminan los saltos y reemplazan por ejecución condicional
 - Se requiere soporte de hardware

Saltos predicados

The compiler might rearrange instructions in this order, pairing instructions 4 and 7, 5 and 8, and 6 and 9 for parallel execution.

(a) Predication

Ubicación de operaciones de carga

- Una instrucción LOAD (carga desde memoria) puede ser reubicada de modo de evitar la latencia de memoria
 - el valor debe estar cuando se necesite
- ¿si se mueve de dentro de un salto?
 - La carga se ejecuta para ambas ramas
 - Si hay recursos hardware disponibles, no habría problemas
 - Si no se necesita la rama, será tiempo perdido
 - Se debe monitorear si provoca una excepción (ej. fallo de cache)
 - Interesa cuando la rama es útil por los recursos y el tiempo que la gestión de la misma necesita

Carga especulativa

- La instrucción LOAD en el programa original puede ser reemplazada por 2 instrucciones
 - Carga especulativa (ej. LOAD.S)
 - Búsqueda en memoria
 - Detección de excepción generada. No se reporta al S.O.
 - Ésta instrucción es la que cambia de lugar
 - Chequeo (ej. CHK.S)
 - Reporta la excepción si la carga especulativa la detectó
 - Ésta instrucción queda en su lugar
 - Si no se detectó excepción, no pasa nada
- Puedo manejar excepciones

Carga especulativa

(b) Speculative loading

Comparación

Superescalar

- Instrucciones de línea RISC, una por palabra
- Múltiples unidades de ejecución paralela
- Reordena y optimiza flujo de instr en tiempo de ejecución
- Predicción de salto con ejecución especulativa de un camino
- Carga datos de memoria sólo cuando necesita e intenta en cache primero

IA-64

- Instrucciones de línea RISC, empaquetadas en grupos de a 3
- Múltiples unidades de ejecución paralela
- Reordena y optimiza flujo de instr en tiempo de compilación
- Ejecución especulativa a lo largo de ambos caminos de un salto
- Carga especulativa de datos antes de necesitarlos e intenta en cache primero

Organización del Itanium

- Características Superscalares
 - Ancho 6, 10 etapas en el cauce segmentado
 - Prebúsqueda dinámica
 - Predicción de saltos
 - Registros marcadores (scoreboard) para optimización en tiempo de compilación no deterministica
- Características EPIC
 - Soporte Hardware para ejecución predicada
 - Control y datos especulativos
 - Segmentación por software (desenrrollado de bucles)

Itanium2: Organización

Itanium2 cauce

Lecturas recomendadas

- Organización y Arquitectura de Computadoras, W.Stallings,
 Capítulo 13 en 5º ed. ó Capítulos 14 y 15 en 7º ed.
- Diseño y evaluación de arquitecturas de computadores, M. Pardo y A. Guzmán, Capítulo 3.3. 1º ed.