

Anticipating Hate Speech from Partial Input

Federico Rocca, Timothé Dard, Nevò Mirzai Hamadani Group 30

Problem definition

- What? Predict the probability a user's draft will become hate speech as they type.
- Why? Current detectors only flag finished post; sometimes it is too late to prevent harm, especially if applied to live events.
- Challenge: No off-the-shelf dataset of partial sentences labeled by evolving hate-speech risk.

Key Related Works

- Full-sentence hate speech classifiers:
 - HateBERT: BERT retrained on abusive Reddit posts [1]
- Proactive detection:
 - o Predictive analytics on drafts [2]
- Early text classification:
 - Weighted loss for prediction [3]

Method

- Transformer backbone, BERT or GPT2
 - Impact of bidirectional (BERT) vs causal (GPT2) self attention on the prediction task
- Optional 3 layer biLSTM (h=256)
 - Recurrency bias to put emphasis on the last token

- Loss: prefix-length weighting
 - Do not punish wrong prediction on short prefixes
- Finetuning with probability-labeled dataset

Datasets

- Initial training: hate_speech18 (Hugging face) and OLID, large hate speech/offensive speech datasets for general hate speech classification. (≈25000 rows)
- Refinement for implicit hate detection: Implicit-Hate
 Corpus(MIT), 6347 tweets labeled for explicit/implicit hate
- Task-specific adaptation: cut and hand-labeled the Implicit-Hate dataset
- Final evaluation: Hand constructed dataset, sentence fragments hand-labeled with our subjectively assessed probability of becoming hate speech

Sentence	Label	
	_	
After you strip	0.0	
After you strip off	0.0	
After you strip off his	0.1	
After you strip off his makeup	0.3	
After you strip off his makeup, biologically	0.6	
	_	

Validation

- Data split: 85% training, 15% validation
- Models comparison, training on binary-labeled datasets:

Model	Train Accuracy	Validation Accuracy	Train F1 score	Validation F1 score
BERT	0.6552 ± 0.0039	0.6653 ± 0.0047	0.5726 ± 0.0059	0.5999 ± 0.0059
BERT + biLSTM	0.6877 ± 0.0050	0.6902 ± 0.0025	0.6156 ± 0.0072	0.6206 ± 0.0153
GPT2	0.7825 ± 0.0060	0.7812 ± 0.0024	0.7467 ± 0.0074	0.7419 ± 0.0040
GPT2 + biLSTM	0.7971 ± 0.0077	0.7776 ± 0.0060	0.7656 ± 0.0099	0.7350 ± 0.0092

Key observations:

- GPT2 models converge faster with higher accuracy and F1
- biLSTM on top of the text encoder seems to improve accuracy and F1 on the validation set
- Training vs validation metric show small generalization gap

Results on test set:

Limitations

- Label mismatch (classification labels and prediction task)
- Dataset size
- Subjectivity in the annotations
- Skewed distribution

Conclusion

- Incorporating an RNN between transformer and classification head doesn't yield clear benefits at test time.
- Fine-tuning with probability-labeled data improves test-time performance.
- Data improvement is needed.
- The model's current test MSE indicates that further refinement is necessary before practical application.

References

- [1] T. Caselli, V. Basile, J. Mitrovi 'c, and M. Granitzer, "Hatebert: Retraining bert for abusive language detection in english," 2021.
- [2] S. Bandara and H. Abeysundara, "A predictive model for anticipated hate and speech violence in social media: Large language model approach," International Journal of Research and Scientific Innovation, vol. XII, pp. 325–332, 03 2025.
- [3] A. Cao, J. Utke, and D. Klabjan, "A policy for early sequence classification," 2023.