LARGE VALUES OF WHITTAKER FUNCTIONS FOR GL_2

ABSTRACT. Note written around 2016 where, following Templier [3] and Saha [1], we exhibit large values of p-adic Whittaker functions for principal series representations of GL_2 .

Contents

1. General notation	1
2. Whittaker functions in principal series representations	2
2.1. Schwartz space parametrization	2
2.2. The Whittaker intertwiner	
2.3. Specialization to diagonal matrices	2 2
2.4. Specialization to matrices in the open Bruhat cell	3
3. The normalized newvector in a principal series represe	ntation 3
3.1. Choice of Schwartz function	g
3.2. Sanity check: the Whittaker function at diagonal ma	atrices 4
3.3. The Whittaker function at elements of the open Bru	hat cell 4
3.4. Final formula for the magnitude	4
4. The lower bound	E
4.1. Assumptions	Ę
4.2. The model case	Ę
4.3. Calculation	Ę
References	6

1. General notation

Let k be a local field. Fix a nontrivial additive character ψ of k. When k is nonarchimedean, we assume ψ is unramified and adopt the accompanying notation $\mathfrak{o},\mathfrak{p},q$ for its maximal order, maximal ideal and residue field cardinality. Let χ_1,χ_2 be unitary characters of k^{\times} with analytic conductors $C_1 := C(\chi_1), C_2 := C(\chi_2)$. Set $G := GL_2(k)$. We use the notation

$$n(x) := \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}, \quad a(y) := \begin{pmatrix} y & \\ & 1 \end{pmatrix}.$$

Let $\pi := \mathcal{I}(\chi_1, \chi_2)$ be the induced principal series representation of conductor $C:=C_1C_2.$

We write the character group of k^{\times} additively. We write α for the character given by the normalized modulus |.|. We denote by $\omega := \chi_1 + \chi_2$ the central character of π . We realize π in its induced model as a space of functions $f:G\to \mathbf{C}$ satisfying

$$f(n(x)a(y)zg) = y^{\alpha/2 + \chi_1} z^{\omega} f(g).$$

Here $z \in k^{\times}$ identifies with an element of the center of G, and we use notation such as

$$y^{\alpha/2+\chi_1} := |y|^{1/2} \chi_1(y).$$

We denote in what follows by ι_k a constant such as $\zeta_k(1)$, $\zeta_k(2)$, or a product of (inverses of) similar quantities; we allow the precise value of ι_k to vary from one occurrence to another.

2. Whittaker functions in principal series representations

2.1. Schwartz space parametrization. For $\Phi \in \mathcal{S}(k^2)$, define the element $f_{\Phi} \in \pi$ by the formula

$$f_{\Phi}(g) := \int_{z \in k^{\times}} \Phi(e_2 z g) z^{-\omega} \det(z g)^{\alpha/2 + \chi_1}.$$

Thus if

$$g = \begin{pmatrix} * & * \\ c & d \end{pmatrix},$$

then

$$f_{\Phi}(g) = \det(g)^{\alpha/2 + \chi_1} \int_{z \in k^{\times}} \Phi(cz, dz) z^{\alpha + \chi_1 - \chi_2}.$$

This association defines a surjective map $\Phi \mapsto f_{\Phi}$ onto π .

2.2. The Whittaker intertwiner. Embed $f \in \pi$ into its ψ -Whittaker model via the map $f \mapsto W_f$, where

$$W_f(g) := \int_{u \in k} f(wn(u)g)\psi(-u).$$

For $\Phi \in \mathcal{S}(k^2)$, set $W_{\Phi} := W_{f_{\Phi}}$. For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, we compute that

$$W_{\Phi}(g) = \det(g)^{\alpha/2 + \chi_1} \int_{z \in k^{\times}} \int_{u \in k} \Phi(z(a + cu), z(b + du)) z^{\alpha + \chi_1 - \chi_2} \psi(-u).$$

After the change of variables $u \mapsto u/z$ followed by $z \mapsto uz$, the above becomes

$$W_{\Phi}(g) = \det(g)^{\alpha/2 + \chi_1} \int_{z \in k^{\times}, u \in k} \Phi(u(az + c), u(bz + d))(uz)^{\chi_1 - \chi_2} \psi(-1/z).$$
 (1)

2.3. **Specialization to diagonal matrices.** In the special case $g = a(y) := \begin{pmatrix} y \\ 1 \end{pmatrix}$, the formula (1) specializes to

$$W_{\Phi}(a(y)) = y^{\alpha/2 + \chi_1} \int_{z \in k^{\times}, u \in k} \Phi(uyz, u) (uz)^{\chi_1 - \chi_2} \psi(-1/z),$$

which after the substitutions $u\mapsto u/yz,\,z=1/yt$ gives

$$W_{\Phi}(a(y)) = y^{\alpha/2 + \chi_2} \int_{u, t \in k} \Phi(u, ut) u^{\chi_1 - \chi_2} \psi(-yt).$$
 (2)

2.4. Specialization to matrices in the open Bruhat cell. The most relevant group element is

$$g = a(y)wn(x) = \begin{pmatrix} -y\\1 & x \end{pmatrix},$$

for which (1) gives

$$W_{\Phi}(a(y)wn(x)) = y^{\alpha/2 + \chi_1} \int_{z \in k^{\times}} \int_{u \in k} \Phi(u, u(-yz + x))(uz)^{\chi_1 - \chi_2} \psi(-1/z).$$

We substitute $z \mapsto z/y$ to rewrite this as

$$W_{\Phi}(a(y)wn(x)) = y^{\alpha/2 + \chi_2} \int_{z \in k^{\times}} \int_{u \in k} \Phi(u, u(x - z))(uz)^{\chi_1 - \chi_2} \psi(-y/z)$$

and then substitute z = x - t to obtain

$$W_{\Phi}(a(y)wn(x)) = y^{\alpha/2+\chi_2} \int_{u.t \in k} \Phi(u, ut) u^{\chi_1 - \chi_2} (x-t)^{\chi_1 - \chi_2 - \alpha} \psi(-y(x-t)^{-1})$$

and finally $t \mapsto xt$ to conclude that

$$W_{\Phi}(a(y)wn(x)) = y^{\alpha/2 + \chi_2} \int_{u, t \in k} \Phi(u, utx)(ux)^{\chi_1 - \chi_2} (1 - t)^{\chi_1 - \chi_2 - \alpha} \psi\left(\frac{-y/x}{1 - t}\right).$$
(3)

- 3. The Normalized Newvector in a principal series representation We suppose in this section that k is non-archimedean.
- 3.1. Choice of Schwartz function. Define $\Phi \in \mathcal{S}(k^2)$ by the formula

$$\Phi(c,d) := C_2^{1/2} c^{-\chi_1} d^{\chi_2} \cdot \begin{cases} 1_{C_2|c|=1} & C_1 > 1 \\ 1_{C_2|c| \le 1} & C_1 = 1 \end{cases} \cdot \begin{cases} 1_{|d|=1} & C_2 > 1 \\ 1_{|d| \le 1} & C_2 = 1. \end{cases}$$

The restriction of f_{Φ} to $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K := GL_2(\mathfrak{o})$ is

$$f_{\Phi}(g) = \det(g)^{\alpha/2 + \chi_1} \int_{z \in k^{\times}} \Phi(cz, dz) z^{\alpha + \chi_1 - \chi_2}.$$

This defines a newvector in π with L^2 -norm ≈ 1 . One can see this directly in the induced model (e.g., observe that it is supported on the same $B \times K_1(C)$ -double coset modulo $\mathfrak{p}^{n_1+n_2}$ as the one given in Schmidt's note [2], or just verify directly that it satisfies the needed invariance properties and has norm ≈ 1). We give another verification below.

We henceforth assume for simplicity that C_1, C_2 are both strictly greater than 1, so that we may simplify the above formula to

$$\Phi(c,d) = C_2^{1/2} c^{-\chi_1} d^{\chi_2} 1_{C_2|c|=1} 1_{|d|=1}.$$

Put another way, we have

$$\Phi(u, ut)u^{\chi_1 - \chi_2} = C_2^{1/2} t^{\chi_2} 1_{C_2|u|=1} 1_{|t|=C_2}.$$

3.2. Sanity check: the Whittaker function at diagonal matrices. The general formula (2) for the Schwartz function-parametrized Whittaker function at a diagonal element specialized to the choice of Φ given above gives

$$W(a(y)) = C_2^{1/2} y^{\alpha/2 + \chi_2} \int_{u,t \in k} t^{\chi_2} 1_{C_2|u|=1} 1_{|t|=C_2} \psi(-yt).$$

The integrand has support of volume ≈ 1 ; the u integrand is constant, while the t integrand is a Gauss sum vanishing unless |y|=1, in which case it has magnitude $\iota_k C_2^{-1/2}$. The change of variables $t\mapsto t/y$ and z:=1/t gives

$$W(a(y)) = \iota_k C_2^{1/2} y^{\alpha/2} \int_{z \in k^{\times}} 1_{C_2|yz| = 1} z^{-\chi_2} \psi(-1/z),$$

which by the stated properties of Gauss sums implies that

$$W(a(y)) = \iota_k 1_{\mathfrak{o}^{\times}}(y),$$

as expected.

3.3. The Whittaker function at elements of the open Bruhat cell. As a variant of the formula for $\Phi(u, ut)$ recorded above, we have

$$\Phi(u, uxt)(ux)^{\chi_1 - \chi_2} = C_2^{1/2} x^{\chi_1} t^{\chi_2} 1_{C_2|u|=1} 1_{|xt|=C_2}.$$

From the general formula for W(a(y)wn(x)) recorded above in (3), it follows that

$$W(a(y)wn(x)) = C_2^{1/2} x^{\chi_1} y^{\alpha/2 + \chi_2} \int_{u,t \in k} t^{\chi_2} (1-t)^{\chi_1 - \chi_2 - \alpha} 1_{C_2|u| = 1} 1_{|xt| = C_2} \psi\left(\frac{-y/x}{1-t}\right).$$

The \$u\$-integral is constant with support of volume $\iota_k C_2^{-1}$, while the support of the t integral has volume $\iota_k C_2/|x|$, so executing the u integral while renaming $t \in k$ to $z \in k^{\times}$ gives

$$W(a(y)wn(x)) = \iota_k \left(\frac{C_2|y|}{|x|^2}\right)^{1/2} x^{\chi_1} y^{\chi_2} \int_{z \in k^{\times}} z^{\chi_2} 1_{|xz| = C_2} (1-z)^{\chi_1 - \chi_2 - \alpha} \psi\left(\frac{-y/x}{1-z}\right)^{\chi_1 - \chi_2 - \alpha} \psi\left(\frac{-y/x}{1-z}\right)^{\chi_1 - \chi_2 - \alpha} \psi\left(\frac{-y/x}{1-z}\right)^{\chi_2 - \alpha} \psi\left(\frac{-y/x}{$$

Note that all calculations up until now basically work over an archimedean field, too; we just have to replace conditions like $1_{|z|=1}$ with a smooth cutoff.

3.4. Final formula for the magnitude. In particular, taking absolute values in the final formula from section 3.3 gives

$$W(a(y)wn(x)) \asymp \left(\frac{C_2|y|}{|x|^2}\right)^{1/2} \int_{z \in k^\times} 1_{|z| = C_2/|x|} z^{\chi_2} (1-z)^{\chi_1 - \chi_2 - \alpha} \psi\left(-\frac{y/x}{1-z}\right).$$

It will also be convenient (for later purposes unrelated to the lower bound) to record the result of the substitution $z \mapsto z^{-1}$:

$$W(a(y)wn(x)) \asymp \left(\frac{|y|}{C_2}\right)^{1/2} \int_{z \in k^{\times}} 1_{|z| = |x|/C_2} z^{-\chi_1} (1-z)^{\chi_1 - \chi_2 - \alpha} \psi\left(\frac{zy/x}{1-z}\right).$$

5

4. The lower bound

4.1. **Assumptions.** We consider in this section characters whose conductors satisfy

- $C_1 > C_2 > 1$,
- C_1 is a square,
- $C_2 < C_1^{1/2}$.

and x, y satisfying

- $C_1(C_2/|x|)^2 \le 1$, $|y/x|(C_2/|x|)^2 \le 1$, $C_2 < |x| < C_1$.

4.2. The model case. It is clear that x, y satisfying the above assumptions exist; for instance, it suffices to require that

$$|x| = C_2 C_1^{1/2}, |y| = C_2 C_1^{3/2}. (4)$$

4.3. Calculation. Under the above assmptions, for any $z \in k^{\times}$ with $|z| = C_2/|x|$ one has |1-z|=1 and

$$(1-z)^{\chi_1 - \chi_2} = \psi(\xi z)$$

for some $\xi \in k$ satisfying

$$|\xi| = C(\chi_1 - \chi_2) = C_1.$$

Moveover, by a quadratic Taylor expansion $(1-z)^{-1} = 1 + z + z^2(1-z)^{-1}$ (using our assumptions to kill off the contribution of the remainder).

$$\psi\left(-\frac{y/x}{1-z}\right) = \psi(-y/x)\psi(-yz/x)$$

and so by the first of the above formulas,

$$W(a(y)wn(x)) \simeq \left(\frac{C_2|y|}{|x|^2}\right)^{1/2} \int_{z \in k^{\times}} 1_{|z| = C_2/|x|} z^{\chi_2} \psi((\xi - y/x)z).$$

The inner integral is a Gauss sum of size

$$\int_{z \in k^{\times}} 1_{|z| = C_2/|x|} z^{\chi_2} \psi((\xi - y/x)z) \approx 1_{|\xi - y/x| \cdot C_2/|x| = C_2} C_2^{-1/2} = 1_{|x\xi - y| = |x|^2} C_2^{-1/2}.$$

From our assumption $|\xi| = C_1 > |x|$ we see that $|x\xi - y| = |x|^2$ implies $|y| = C_1|x|$ and thus

$$W(a(y)wn(x)) \asymp \left(\frac{C_1}{|x|}\right)^{1/2} \mathbf{1}_{|x\xi-y|=|x|^2}.$$

Choosing x, y as in the model case above which satisfy $|x\xi - y| = |x|^2$ (which is clearly possible), we obtain

$$W(a(y)wn(x)) \asymp \left(\frac{C_1^{1/2}}{C_2}\right)^{1/2}.$$

When is this big? Well, for instance, if $C_2 = 1$ and C_1 is large. But note that if C_1 and C_2 are the same size (e.g., if the central character is trivial), then the above is actually small, so we don't get values that are obviously large.

References

- [1] Abhishek Saha. Large values of newforms on GL(2) with highly ramified central character. *Int. Math. Res. Not. IMRN*, (13):4103–4131, 2016.
- [2] Ralf Schmidt. Some remarks on local newforms for GL(2). J. Ramanujan Math. Soc., 17(2):115–147, 2002.
- $[3] \ \ \text{Nicolas Templier. Large values of modular forms. } \textit{Camb. J. Math.}, \ 2(1):91-116, \ 2014.$