<u>10</u> Multivariate Gaussian

- Generalizes a univariate Gaussian.
- Consider a vector random variable $X=[X_1,X_2,\cdots,X_D]^T$. Nothing but a joint RV with d RVs. Represent as a $d\times 1$ vector.

Definition: The RV X has a multivariate (jointly) Gaussian PDF if \exists a finite set of i.i.d. univariate standard-normal RVs W_1, \dots, W_N (with $D \leq N$) such that each X_d can be expressed as $X_d = \mu_d + \sum_n A_{dn} W_n$ (i.e., $X = AW + \mu$).

Example 1 (Zero Mean + Isotropic): The case of independent standard-normal RVs W_1, \dots, W_D with $A = I_{D \times D}$ and $\mu=0$, i.e. X=W

Then, the Gaussian PDF is $p(w) = \prod_d p(w_d) = \frac{1}{(2\pi)^{d/2}} \exp(-0.5w^T w)$

Formula for the PDF using Transformation of RVs

Example 2 (Zero Mean + Anisotropic): What is the PDF q(X) for arbitrary non-singular SQUARE A and $\mu=0$?

- Recall: Given PDF p(w) and the transformation X=g(W), the PDF $q(x)=p(g^{-1}(x))\left|\frac{d}{dx}g^{-1}(x)\right|$
- In our case, X = g(W) = AW
- The inverse transformation $g^{-1}(X) = W = A^{-1}X$
- In the univariate case, we wanted the *magnitude* of the *derivative* of the inverse transformation: $\frac{\partial}{\partial u}g^{-1}(y)$
- In the multivariate case, we want the *volume* captured by the columns of the *Jacobian* of the inverse transformation: $\operatorname{vol}(\frac{d}{dX}A^{-1}X) = \operatorname{vol}(A^{-1}) = \det(A^{-1}) = 1/\det(A)$
- ** Geometric intuition for $vol(A^{-1}) = 1/\det(A)$ (Note: determinant is defined only for a square matrix)
- ** Observe that the linear transformation A maps an infinitesimal hyper-cube $\delta \times \cdots \times \delta$ to an infinitesimal hyperparallelepiped. If the axes of the hyper-cube were the cardinal axes, then the axes of the hyper-parallelepiped are the columns of A !!
- ** The volume of the hyper-parallelepiped is $\delta^d \det(A)$. In 3D, the volume can also be written as the scalar triple product $a_1 \cdot (a_2 \times a_3)$ where a_i is the *i*-th column of A
- ** Why is the volume equal to the determinant?

The following is some intuition (not a proof; a separate inductive proof exists):

Adding multiples of one column to another:

- 1) keeps the determinant remains unchanged because the determinant function is multi-linear.
- 2) corresponds to a skew translation of the parallelepiped, which does not affect its volume.

Using Gram-Schmidt orthogonalization, we can transform matrix A to an orthogonal matrix A_{ortho} (NOT orthonormal; that would have determinant 1). This doesn't change the determinant or the volume.

We can rotate A_{ortho} to make it to diagonal form. Rotation doesn't change the determinant or the volume.

For this diagonal matrix, the determinant (= product of diagonal entries) equals the volume of a "rectangle" (= product of side lengths).

** Thus,
$$|dw|=\delta^d \Longrightarrow |dx|=\delta^d\det(A)$$
 ** Thus, $\frac{|dw|}{|dx|}=1/\det(A)$

- Finally, the transformation of variables gives :

$$q(X) = p(A^{-1}X)\frac{1}{\det(A)} = \frac{1}{(2\pi)^{d/2}\det(A)}\exp(-0.5X^{T}(A^{-1})^{T}A^{-1}X)$$

- $q(X) = p(A^{-1}X) \frac{1}{\det(A)} = \frac{1}{(2\pi)^{d/2}\det(A)} \exp(-0.5X^T(A^{-1})^TA^{-1}X) \\ \text{Simplify: Let } C := AA^T. \text{ Then, } C^{-1} = A^{-T}A^{-1} \text{ and } \det(C) = \det(A)\det(A^T) = (\det(A))^2 \\ \text{So, the multivariate-Gaussian PDF } q(X) = \frac{1}{(2\pi)^{d/2}|C|^{0.5}} \exp(-0.5X^TC^{-1}X), \text{ where } C \text{ has a special name.}$

Property: The mean of X = AW is zero

Proof:
$$E[AW] = AE[W] = A \cdot 0 = 0$$

Note: $E[X] = [E[X_1], E[X_2], ..., E[X_d]]^T$ (recall: all X_i share the same probability space).

Example 3 (Nonzero mean + Anisotropic): If X is multivariate Gaussian with zero mean, then $Y = X + \mu$ is multivariate Gaussian with PDF $p(y) = \frac{1}{(2\pi)^{d/2}|C|^{0.5}} \exp(-0.5(y-\mu)^T C^{-1}(y-\mu))$

Proof:

- -Y is multivariate Gaussian because Y can be expressed as $AW + \mu$, where W_n is i.i.d. standard normal.
- PDF $p(y) = \frac{1}{(2\pi)^{d/2}|C|^{0.5}} \exp(-0.5(y-\mu)^T C^{-1}(y-\mu))$ because of the transformation of the variables $Y = X + \mu$

Property: The *mean vector* of $X = AW + \mu$ is μ .

Proof: $E[AW + \mu] = AE[W] + \mu = \mu$

Property: If Y is multivariate Gaussian, then Z = BY + c is multivariate Gaussian.

Proof: Because Y is multivariate Gaussian, $Y = AW + \mu$. Thus, $Z = B(AW + \mu) + c = (BA)W + (B\mu + c)$

Covariance Matrix

- For any multivariate RV X, the definition of covariance is $C := E[(X E[X])(X E[X])^T]$. This leads to a matrix C, where the outer-product structure implies that $C_{ij} = E[(X_i E[X_i])(X_j E[X_j])]$ which equals $Cov(X_i, X_j)$.
- $-\operatorname{Cov}(W) = E[WW^T] = I$ because:
- (i) $Cov(W_i, W_i) = 1$ and
- (ii) $Cov(W_i, W_{i\neq i}) = 0$ because of independence of W_i and W_i

$$-\operatorname{Cov}(X) = E[(X - E[X])(X - E[X])^T] = E[(AW)(AW)^T] = E[AWW^TA^T] = AE[WW^T]A^T = AA^T$$

– Thus, the RV $X = AW + \mu$ has covariance $C = AA^T$, where $C_{ij} = \text{Cov}(X_i, X_j)$.

More properties of C:

1)
$$C = E[XX^T] - E[X](E[X])^T$$

Proof: Expand the terms in the definition.

2) C is symmetric

Proof:
$$C_{ij} = \text{Cov}(X_i, X_j) = \text{Cov}(X_j, X_i) = C_{ji}$$

3) *C* is positive semi-definite (PSD)

Proof: For any $d \times 1$ non-zero vector a, $a^TCa = E[a^T(X - E[X])(X - E[X])^Ta] = E[(f(X))^Tf(X)] \ge 0$ that is the variance of a scalar RV $f(X) = (X - E[X])^Ta$

Marginal PDFs

Property: 1D marginal PDFs of the multivariate Gaussian Z, for any single variable, is (univariate) Gaussian.

Proof: From the definition, we know that:

- (i) $X_d = \mu_d + \sum_n A_{dn} W_n$, where W_n are i.i.d. standard Normal,
- (ii) the transformations of scaling and translation on a univariate Gaussian RV leads to another univariate Gaussian RV,
- (iii) sum of two univariate Gaussian RVs leads to another univariate Gaussian RV (usind concepts on convolution).

Property: Marginal PDFs of the multivariate Gaussian Z in n-dimensions, over any chosen subset of the variables, are (multivariate) Gaussian.

Proof: Choose the transformation B as the projection matrix of size $m \times n$ where m < n with ones on diagonal and zeros elsewhere.

Important: Marginal PDFs being Gaussian doesn't imply the joint PDF is multivariate Gaussian. See example below.

Example: Let X be a Gaussian random variable with zero mean, and Y = BX where B is +1 or to 1 with equal probability.

Note: Y also has a Gaussian PDF.

The joint PDF P(X,Y) for this case is like a cross \times . Thus, the joint PDF P(X,Y) isn't multivariate Gaussian because for this PDF $P(x,y) = 0, \forall |x| \neq |y|$, which isn't the case for the multivariate Gaussian.

Moreover, Cov(X, Y) = E[XBX] - E[X]E[BX] = 0 - 0 = 0

Note: Covariance and correlation are guaranteed to be informative only for linearly dependent random variables. In the above case Y := BX, RVs X and Y aren't deterministically and linearly related, i.e., BX is neither a deterministic nor a linear function of X.

Eigen Decomposition

Note: Every $N \times N$ real symmetric matrix M (like the covariance matrix C) has an eigen-decomposition $M = Q\Lambda Q^T$, where Q is an orthogonal matrix (i.e., $Q^TQ = QQ^T = I$).

Note: For a general $N \times N$ matrix M, the eigen-decomposition is $M = Q\Lambda Q^{-1}$, where the columns of M are the eigenvectors. However, the eigenvectors needn't be orthogonal and Q^{-1} needn't equal Q^T .

Contours of the Isotropic Multivariate Gaussian PDF

Property: If X is multivariate Gaussian in 2D with a diagonal (invertible) covariance matrix, then the iso-probability contours of P(X) are ellipses whose axes are aligned with the cardinal axes.

Proof:

Note: C^{-1} is SPD because C is SPD; this can be seen from the (unique) Cholesky decomposition of any SPD matrix $C = M^T M$, where M = upper triangular with positive diagonal entries, which leads to $C^{-1} = M^{-1}M^{-T} = NN^T$ that is also SPD

```
The contour \{x \in \mathbb{R}^D : P(x) = \alpha\} is the same as \{x : (x-\mu)^T C^{-1}(x-\mu) = \beta\} (\beta must be positive because C^{-1} is SPD) \{x : \sum_d (x_d - \mu_d)^2 / \sigma_d^2 = \beta\} \{x : \sum_d (x_d - \mu_d)^2 / (\beta \sigma_d^2) = 1\}
```

This is the equation of an ellipse in \mathbb{R}^D with center μ and axes of lengths $\sigma_d \sqrt{\beta}$ aligned with the coordinates axes.

Mahalanobis Distance

- The term $(x \mu)^T C^{-1}(x \mu)$ appearing in the exponent equals the squared Mahalanobis distance of a point x from the mean μ .
- Multidimensional generalization of measuring distance along a dimension.
- For a diagonal C, this measures distance in terms of the units of the standard deviation of the data along that dimension. That is, how many standard deviations away is the point x from the mean μ . This introduces scale invariance.
- Mahalanobis distance (for diagonal \mathcal{C}) rescales the units along each dimension, based on the variance of the data along that dimension
- Mahalanobis distance reduces to the Euclidean distance when C=I
- An iso-probability contour is the locus of points with the same Mahalanobis distance to the mean.

Property: The Mahalanobis distance is a true distance metric.

Proof:

Given a *non-singular* covariance C, let Mahalanobis distance be $d(x,y) := \sqrt{(x-y)^T C^{-1} (x-y)}$

1) Positivity: $d(x,y) \ge 0, \forall x,y.$ Follows from the positive semi-definiteness of C^{-1} d(x,y)=0 when x=y

d(x,y) > 0 when $x \neq y$ (note: C is non-singular)

- 2) Symmetry: Follows from definition.
- 3) Triangular inequality: $d(x,y) \leq d(x,z) + d(z,y), \forall x,y,z$

Proof for the case when the covariance is diagonal.

$$\begin{array}{l} \text{Let } u:=x-z \text{ and } v:=z-x \\ \text{Then } u+v=x-y \\ \text{LHS} = \sqrt{(u+v)^TC^{-1}(u+v)} \\ \text{RHS} = \sqrt{u^TC^{-1}u} + \sqrt{v^TC^{-1}v} \end{array}$$

We know that all distances are positive. So, showing LHS < RHS is same as showing LHS 2 < RHS 2

$$\begin{split} \mathsf{LHS}^2 &= (u+v)^T C^{-1} (u+v) \\ &= \sum_d (u_d + v_d)^2 / \sigma_d^2 \\ &= \sum_d u_d^2 / \sigma_d^2 + \sum_d v_d^2 / \sigma_d^2 + 2 \sum_d u_d v_d / \sigma_d^2 \\ \mathsf{RHS}^2 &= u^T C^{-1} u + v^T C^{-1} v + 2 \sqrt{u^T C^{-1}} u \sqrt{v^T C^{-1} v} \\ &= \sum_d u_d^2 / \sigma_d^2 + \sum_d v_d^2 / \sigma_d^2 + 2 \sqrt{\sum_d u_d^2 / \sigma_d^2} \sqrt{\sum_d v_d^2 / \sigma_d^2} \end{split}$$

The first 2 terms in LHS and RHS are same!

Let
$$a_d = u_d/\sigma_d$$
 and $b_d = v_d/\sigma_d$
Last term in LHS $= 2\langle a,b\rangle$
Last term in RHS $= 2\parallel a\parallel \parallel b\parallel$

Now, we know that $\langle a,b\rangle \leq |\langle a,b\rangle|$ (holds for any scalar) And the Cauchy-Schwartz inequality tells us that $|\langle a,b\rangle| \leq ||a|| ||b||$ for any $a,b\in\mathbb{R}^D$

Scaling and Rotating the coordinate frame

(1)

Let X:=SW, where S is a diagonal matrix that rescales the units along each coordinate axes Then, what is the covariance matrix ? A=S. Thus, $C=AA^T=SS^T=S^2$ Then, Mahalanobis distance between x and the mean (origin) is $x^TC^{-1}x=x^TS^{-2}x$

(2)

Let Y := UX = USW, where U is a rotation matrix that rotates the coordinate frame

Then, what is the covariance matrix ? A = US. Thus, $C = AA^T = (US)(US)^T = US^2U^T$

Then, Mahalanobis distance between y := Ux and the mean (origin) is $y^T C^{-1} y = (Ux)^T (US^{-2}U^T)(Ux) = x^T S^{-2}x$, which is the same as before!

Thus, rotating the data x simply rotates the iso-probability contours of P(X).

ML Estimation for Mean and Covariance

MLE for mean is sample mean. Prove.

Note:
$$\frac{d}{d\mu}(x-\mu)^T C^{-1}(x-\mu) = 2C^{-1}(x-\mu)$$

MLE for covariance is sample covariance. Prove.

Note:
$$\frac{d}{dC}(x-\mu)^T C^{-1}(x-\mu) = -C^{-T}(x-\mu)(x-\mu)^T C^{-T}$$

Note:
$$\frac{d}{dC}\log(|C|) = \frac{1}{|C|}|C|C^{-T} = C^{-T}$$

Connections to PCA

Suppose $A=USV^T$ was applied to W that had a spherical PDF Then,

- 1) Rotation V^T doesn't change the structure of the spherical PDF. The covariance C is still the identity I.
- 2) Scaling S scales each dimension d by S_{dd} making the PDF anisotropic. Consider distinct $S_{11} > S_{22} > \cdots$

This yields covariance $C=S^2$ such that $\mathrm{Cov}(X_d,X_e)=0$ and $\mathrm{Cov}(X_d,X_d)=S^2_{dd}=\mathrm{Var}(X_i)$ where X=SW

3) Rotation U rotates the anisotropic PDF so that the variance S^2_{dd} is now along U_i

Now $C = US(US)^T = US^2U^T$

Given data, we can empirically estimate \widehat{C} as the sample covariance that will tend to equal C asymptotically Given \widehat{C} , we can get back the vectors U and variances S^2 by performing an eigen decomposition of \widehat{C} , producing eigenvectors U (upto sign) and eigenvalues S^2_{ii}

PCA: Directions of maximal variance

Suppose we have data $\{x_i\}_{i=1}^n$ drawn from a Gaussian PDF with mean $\mu=0$ and diagonal covariance C

For a Gaussian PDF, a diagonal covariance implies that (i) $X^d = \sqrt{C_{dd}}W^d$, where W_d is a standard-Normal RV and (ii) the ellipsoidal data distribution is s.t. the ellipsoidal axes are aligned with the coordinate axes

Find the direction v ($||v||_2 = 1$) s.t. the data projected on the subspace v (containing the origin = mean) has the maximal variance

Projected data = $\langle x_i, v \rangle v$

Mean of the projected data
$$=\sum_{i}\langle x_i,v\rangle v=\langle \sum_{i}x_i,v\rangle v=0$$

Projected data is 1D

Distance of projected data from the mean $= \|\langle x_i, v \rangle v \|_2 = |\langle x_i, v \rangle|$

Variance of projected data = $\sum_{i} \langle x_i, v \rangle^2$

Optimal direction = $\arg \max_{v:||v||_2=1} \sum_i \langle x_i, v \rangle^2$

- $= \arg \max_{v: ||v||_2 = 1} \sum_i (x_i^T v)^2$
- $= \arg \max_{v: ||v||_2 = 1} \sum_{i} (x_i^T v)^T (x_i^T v)$
- $= \arg \max_{v: ||v||_2 = 1} \sum_i v^T x_i x_i^T v$
- $= \arg\max_{v: ||v||_2=1} v^T (\sum_i x_i x_i^T) v$
- $= \arg \max_{v:||v||_2=1} v^T C v$ (this is the connection between sample covariance C and direction v maximizing variance of projected data)
- = $rg \max_{v:\|v\|_2=1} \sum_d C_{dd} (v^d)^2$ (because C is diagonal)

This is maximized when $v^d=1$ for $d=\arg\max_e C_{ee}$ and $v^d=0$ otherwise

Think: I'll put all "weight" on that component of v that is associated with the maximum of the diagonal elements in C

Think: Constraint set = hypersphere. Contours of the objective function are ellipsoids with the *minor* axis being the dimension $\equiv \arg\max_d C_{dd}$. Thus, the point on the hypersphere that maximizes the objective function lies at the inter-

section of the *minor* axis with the hypersphere.

Now find the 2nd direction u that is (i) orthogonal to v and (ii) maximizes the variance of the data projected onto it

```
Optimal direction = \arg\max_{u:\|u\|_2=1, u\perp v} \sum_i \langle x_i, u \rangle^2 = \arg\max_{u:\|u\|_2=1, u\perp v} \sum_d C_{dd} (u^d)^2, where we know C_{dd} \geq 0 This is maximized when u^c=1 for c=\arg\max_{d\neq e} C_{dd} and u^c=0 otherwise
```

Think: I'll put all "weight" on that component of u that is (i) not the d chosen before and (ii) associated with the maximum of the remaining diagonal elements in C

Similar arguments hold for 3rd, 4th, ... directions

Thus, for a diagonal covariance matrix the cardinal directions are the directions maximizing variance. These directions = principal components of variation.

Rotating the coordinate frame by pre-multiplication with a orthogonal matrix U simply rotates the principal components.

PCA and Eigen decomposition

The *principal directions* U for data $X = AW + \mu$ are obtained by performing an eigen-decomposition of the (empirical) covariance matrix $C = US^2U^T$

The *variances* diag(S^2) along the principal directions for data $X=AW+\mu$ are obtained by performing an eigendecomposition of the (empirical) covariance matrix $C=US^2U^T$