Algebra 2 Homework 8

April 9, 2024

Solution of problem 1: Since x^3+ax+b is irreducible, then the discriminant $\Delta=-4a^3-27b^3$ is a square if and only if the Galois group is A_3 . The splitting field of F_{p^n} must be isomorphic to $F_{p^{3n}}$, since our polynomial is irreducible. Then since $[F_{p^{3n}}:F_{p^n}]=3$, which is the order of the Galois group of the splitting field, we have that the Galois group is A_3 , hence Δ is a square.

Solution of problem 2: The resolvent of the polynomial $x^4 + 2x^2 + x + 3$ is $x^3 - 4x^2 - 8x - 1$. See that modulo 3 the polynomial $x^3 - x^2 + x - 1$ is irreducible, and thus it must be irreducible in \mathbb{Q} . The discriminant of this polynomial is 3877, which is not a square, thus the Galois group is S_4 .

Solution of problem 3: If K has $x^4 + ax^2 + b$ as its minimal polynomial, then we can do some calculations to see that

$$K = \mathbb{Q}\left[\sqrt{rac{-a+\sqrt{a^2-4b}}{2}},\sqrt{rac{-a-\sqrt{a^2-4b}}{2}}
ight].$$

(If a^2-4b is not a square, and the two elements adjoined to $\mathbb Q$ aren't squares, then we can do the next steps). We can then see that $\sqrt{a^2-4b}\in K$, since if $\alpha=\sqrt{\frac{-a+\sqrt{a^2-4b}}{2}}$, then $\sqrt{a^2-4b}=2\alpha^2+a\in K$. Clearly, $\mathbb Q(\sqrt{a^2-4b})$ is a quadratic extension that will lie in K. Let F contain $\mathbb Q(\sqrt{\alpha})$, a field of degree 2. Then we must have that F is a quadratic extension of this field, hence we must have $F=\mathbb Q(\sqrt{a+\sqrt{\alpha}})$. It can now be seen that the minimal polynomial for $\sqrt{a+\sqrt{\alpha}}$ must be a biquadratic polynomial.

- Solution of problem 4: 1. The automorphisms of $\operatorname{Gal}(K/F)$ are cyclic of order n. Let σ be an automorphism .Then we only need to see where σ sends $\sqrt[n]{a}$. Clearly $\sigma(\sqrt[n]{a}) = (\zeta_n)^i \sqrt[n]{a}$, where ζ_n is a primitive nth root of unity, and $i \in \mathbb{Z}$. Since $\sigma^d = i$, ζ_n^i is a dth root of unity.
 - 2. See that $\frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}$ and $\frac{\sigma(\sqrt[n]{b})}{\sqrt[n]{b}}$ both are primitive dth roots of unity. Then we must have that the two are such that $\frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}} = \left(\frac{\sigma(\sqrt[n]{b})}{\sqrt[n]{b}}\right)^i$, for some i coprime to d. See that $\sigma\left(\frac{\sqrt[n]{a}}{\sqrt[n]{b}^i}\right) = \frac{\sqrt[n]{a}}{\sqrt[n]{b}^i}$, which means that this element lies in the fixed field of the automorphism, which is F. Thus it lies in F.

3. If $K = F(\sqrt[n]{a}) = F(\sqrt[n]{b})$, then by the previous problem we have $a = b^i \left(\frac{\sqrt[n]{a}}{\sqrt[n]{b^i}}\right)^n$, and a similar expression for b. The term in the brackets is in F, which is the required result.

Solution of problem 5: By Cauchy's theorem, G has a subgroup H of order p, which gives us a subfield F of L such that [L:F]=p. If we say that for all $\sigma \in G$ we have $\sigma(\alpha) \in F$, then we would have F=L. This is not possible, hence there is some $\sigma \in G$ where $\sigma(\alpha) \notin F$. Since P is prime and degree multiplies then $F(\sigma(\alpha))=L$. See that $F'=\sigma^{-1}(F)$ is our required field.

Solution of problem 6: Any Galois extension of F in $K = F(\sqrt[n]{a})$ is trivial if n is odd and if n is even then the only non-trivial Galois extension. In either case, $[K:F] \leq 2$.

Solution of problem 7: We know that S_p is generated by a p-cycle and a transposition. To show this, see that we just need to check that any transposition can be generated using these two. Without loss of generality, assume that the two permutations are (1,2) and $(1,2,\ldots,p)$. Now see that (m,k)=(1,m)(1,k)(1,m), and (1,k+1)=(1,k)(k,k+1)(1,k). Thus if we could generate (k,k+1) for all k then we are done since we could generate (1,k) inductively. Now see that $(k,k+1)=(1,2,\ldots,p)(k-1,k)(1,2,\ldots,p)^{-1}$, so inductively using (1,2) we can generate the entire group S_p .

We want to show that a polynomial with exactly 2 non-real roots has its Galois group as S_p . Let E be the splitting field of f in \mathbb{C} , and let $\alpha \in E$ be a root of f. $[\mathbb{Q}(\alpha) : \mathbb{Q}] = p$, so $p \mid [E : \mathbb{Q}]$. Thus the Galois group must contain an element of order p by Cauchy's theorem, which gives us p cycles in S_p . If we consider σ , complex conjugation, then it must flip the two non-real roots, and fix the others. Then that gives us an element of order 2 in the Galois group, which generates S_p .

Now pick a polynomial $f(x) = (x^2 + m)(x - n_1) \dots (x - n_{p-2})$, where m > 0, and $n_i = n_j \implies i = j$, all even. Consider the polynomial g(x) = f(x) - 2/n, where n is such that $2/n < \varepsilon$, where $\varepsilon = \min_{f'(x)=0} = |f(x)| > 0$. This must also have p-2 roots, and 2 non-real roots. Now see that ng(x) fulfills Eisenstein's criterion since all coefficients of x^i for i < p are even, and the constant term does not divide 4. This must have S_p as its Galois group.