問題3 次のネットワークに関する各設問に答えよ。

<設問1> 次の LAN 内のデータ通信に関する記述中の に入れるべき適切な 字句を解答群から選べ。

データ通信を実現するために、コンピュータが持つべき通信機能を 7 階層に分割し、国際標準化機構(ISO)が制定したプロトコル体系が OSI 基本参照モデルである。これに対して、インターネットで利用される TCP/IP 階層モデルでは、4 階層に分割して体系化している(図 1)。

OSI基本参照モデル	 TCP/IP 階層モデル
アプリケーション層	
プレゼンテーション層	アプリケーション層
セション層	
トランスポート層	トランスポート層
ネットワーク層	インターネット層
データリンク層	ネットワーク
物理層	インタフェース層

図 1 OSI 基本参照モデルと TCP/IP 階層モデル

両モデルとも、データ送信時は上位層から下位層の順序で処理が施され、各層ごとに \sim ッダが付けられる(図 2)。

図2 TCP/IP 階層モデルの送信データの構造

社内 LAN に TCP/IP プロトコルを利用したイントラネットでは、ホスト間の通信において宛先や送信元として IP アドレスが利用される。IP アドレスは、インターネットへッダに格納されるが、さらに下位層では (1) にカプセル化される。ネットワークインタフェース層の規格であるイーサネットを利用する場合、最下位層のヘッダでは、MAC アドレスが送信先や送信元のアドレスとして利用される。MAC アドレスは、NIC の ROM に格納されている 48 ビットのアドレスのことであり、8 ビットごとに 2 桁の 16 進数 $(00\sim FF)$ で表記し、それぞれの間をコロンで区切り、04:A2:8C:73:E5:BA のよう

に表す。

通常の利用において、IPアドレスを明示的に指定することはあるが、MACアドレスを指定することはない。しかし、最下位層のイーサネットで使用する送信先や送信元のアドレスが MACアドレスであることから、IPアドレスを基に MACアドレスを得る必要があり、ARP(Address Resolution Protocol:アドレス解決プロトコル)が用いられる。

ARP の機能は、問合せとして「ARP 要求」を送信し、それに対する回答として「ARP 応答」を受け取ることで実現する。「ARP 要求」は、送信元の IP アドレスと MAC アドレス、MAC アドレスを得たいホストの IP アドレスを設定して (2) で送信する。「ARP 要求」を受け取った各ノードは、アドレス解決 IP アドレスが自身の IP アドレスと一致する場合に、自身の MAC アドレスを設定した「ARP 応答」を送信元に対して (3) で送信する。「ARP 応答」を受け取ったホストは、MAC アドレスをキャッシングして以降の送信に利用する。

(1) ~ (3) の解答群

ア. インターネットヘッダ

イ. データ部分

ウ. トランスポートヘッダ

エ. ネットワークインタフェースヘッダ

オ. ブロードキャスト

カ. ユニキャスト

<設問2> 次の LAN 内のデータ通信に関する記述中の に入れるべき適切な 字句を解答群から選べ。

社内 LAN の一部を表した図 3 において、ホストAは LAN 内のホストや LAN 間接続装置の全ての MAC アドレスをキャッシュしていないとする。この状態で、ホストAがホストCにデータを送信しようとするとき、ホストAは (4) の IP アドレスに対する 「ARP 要求」を送信する。また、ホストAがホストEにデータを送信しようとするとき、ホストAは (5) の IP アドレスに対する 「ARP 要求」を送信する。これで得た MAC アドレスをデータに付加し、送信する。

なお、図 3 では CIDR で表記しており、末尾の[/24]がネットワークアドレスのビット数である。

(4), (5)の解答群

ア. ブリッジZ

イ. ホストA

ウ. ホストC

エ. ホストE

オ. ルータ X

カ. ルータY

<設問3> 次のサブネット化に関する記述中の に入れるべき適切な字句を 解答群から選べ。

クラス方式のホストアドレス部の一部をネットワークアドレスとして利用し、複数 のサブネットワークを構築することをサブネット化という。このとき、サブネットマ スクは、標準のネットワークアドレス部にサブネットワーク部を含んでネットワーク アドレスとして指定する。

例えば、クラス Cの IP P ドレスに対して、標準のサブネットマスク 「 (6)」を指定した場合、一つのサブネットワーク内には (7) 個のホストアドレスを設定できる。また、ホストアドレスのうち 3 ビットをネットワークアドレスとして利用し、サブネットマスク「255.255.255.224」を指定した場合、一つのサブネットワーク内には (8) 個のホストアドレスを設定できる。

ただし,各サブネットワーク内において,すべてのビットが「0」とすべてのビットが「1」のホストアドレスは設定できないものとする。

(6) の解答群

ア. 255.255.0.0

イ. 255, 255, 240, 0

ウ. 255.255.255.0

エ. 255.255.255.240

(7) の解答群

 7.2^{6}

(8) の解答群

ア. 30

イ. 32 ウ. 62 エ. 64

<設問4> 次の図4のLAN構成において、一般的に適切とされるサーバの設置場所を 表した組合せを解答群から選べ。

図4 LANの構成例

(9) の解答群

	公開 Web サーバ	データベースサーバ	プロキシサーバ
ア.	DMZ	社内 LAN	社内 LAN
イ.	DMZ	DMZ	社内 LAN
ウ.	DMZ	社内 LAN	DMZ
工.	社内 LAN	社内 LAN	社内 LAN