DS UNIT 2

© Created @May 13, 2025 12:53 PM

Unit 2: Data Wrangling, Data Cleaning and **Preparation**

1. Data Handling: Challenges with Large Data

Challenges in Handling Large Volumes of Data

- Memory Limitations: RAM may not fit the entire dataset. Swapping to disk slows processing.
- · Algorithm Scalability: Many algorithms expect the whole dataset in memory, leading to "out-of-memory" errors.
- Performance Issues: Large data causes slow read/write (I/O) and processing (CPU).

Main Problems

- Out-of-memory errors.
- Algorithms running indefinitely (never-ending computations).
- I/O and CPU starvation (processes waiting on slow hardware resources).

2. Techniques for Handling Large Data Sets

a. Algorithm Design Approaches

- Online Learning: Data processed one sample at a time.
- Mini-batch Learning: Process small subsets (batches) instead of full data.
- Batch Learning: Classic approach, requires all data at once (impractical for big data).

b. Divide and Conquer Techniques

- **Split large matrices:** Use libraries (e.g., bcolz) to chunk data into manageable pieces.
- Parallel & Distributed Computing: (e.g., Dask, MapReduce).
 - MapReduce: Distribute tasks (e.g., sums/counts) across machines, then aggregate.

c. Use the Right Data Structures

- Sparse Matrices: Efficient for datasets with many zeros.
- **Trees:** For fast lookup, indexing, and retrieval (e.g., B-trees in databases).
- Hash Tables: Quick retrieval using hash keys (Python's dict is a hash table).

d. Choose Appropriate Tools & Libraries

- bcolz: Compressed arrays, operates out-of-core (beyond RAM).
- Dask: Parallel, scalable computations; can replace Pandas for big data.
- MapReduce: For parallel/distributed operations.
- Cython: Compile Python code for speed.
- **Numexpr:** Fast, multi-threaded computation on NumPy arrays.
- Numba: Just-in-time (JIT) compiling for Python.
- Blaze: Interface for working with out-of-core and database-backed arrays.
- Theano: Fast computation for machine learning; uses GPU.

e. General Programming Tips

- Re-use existing, optimized libraries; don't reinvent the wheel.
- Get more from hardware: use compression, multithreading, and GPUs if possible.
- Minimize computing needs:
 - Use code profilers to identify bottlenecks.

- Use compiled extensions (C/C++, Fortran) for critical code.
- Use generators to avoid holding entire intermediate data in memory.
- Process by chunks (stream data), use sampling if needed.
- Apply mathematical simplifications where possible.
- Utilize databases for data manipulation and querying, leveraging built-in query optimizations (indices, views).

3. Data Wrangling

Definition and Objectives

- Also called **Data Munging**: Process of transforming raw data into a usable format.
- Assures quality, consistency, and value for analysis and modeling.
- Involves discovering, structuring, cleaning, enriching, validating, and publishing data.

Steps in Data Wrangling

- 1. **Discovery:** Understand and explore what's in the data.
- 2. **Organization:** Structure the dataset sensibly.
- 3. Cleaning: Remove or correct errors, outliers, missing values, duplicates.
- 4. **Enrichment:** Add or derive new features if required.
- 5. **Validation:** Apply rules and checks for consistency.
- 6. **Publishing:** Document and make accessible for analysis/use.

Use Cases

- Fraud Detection: Identifying unusual patterns in transactions, emails, chats, etc.
- Customer Behaviour Analysis: Deriving insights swiftly for business decisions.

Common Data Wrangling Tools

- Excel/Power Query: Manual, small-scale wrangling.
- **OpenRefine:** Automated, for cleaning and transformation (needs programming).
- Tabula: Extracts tables from PDFs.
- Google DataPrep: Explores and prepares data at scale.
- Data Wrangler: Interactive tool for cleaning, especially tabular data.
- Plotly, Pandas (Python): Data analysis, visualization, and wrangling.

Benefits

- Enhanced Data Consistency.
- Improved Analytical Insights.
- Cost- and Resource-Efficient model and decision-making.

4. Data Cleaning and Preparation

Cleaning, Transforming, and Merging Data (Pandas)

1. Cleaning

- Handle Missing Values
- Remove Duplicates
- Resolve Inconsistencies (e.g., capitalization) Example:

```
import pandas as pd
df = pd.DataFrame({'Name': ['Alice', None], 'Age': [25, None]})
df = df.dropna() # Remove rows with missing data
df = df.fillna({'Name': 'Unknown', 'Age': df['Age'].mean()})
```

2. Transformation

- Change data types: df['col'] = df['col'].astype(int)
- Apply functions: df['new'] = df['old'].apply(func)
- Renaming columns: df.rename(columns={'old': 'new'})
- Create new columns or features.

3. Merging and Combining Data

- merge(): SQL-like joins on keys or columns.
- concat(): Stack datasets vertically or horizontally (axis=0 or 1).
- join(): Combines on indices or keys.
- combine_first(): Fill missing values in one DataFrame with another.Example:

```
# Left join on 'ID'
merged = pd.merge(df1, df2, on='ID', how='left')
# Combine with overlap
df1.combine_first(df2)
```

- Use the right method:
 - o concat() for stacking.
 - merge() for joining on columns.
 - combine_first() for filling missing data.

5. Reshaping and Pivoting Data

Reshaping Operations

- Pivoting (pivot(), pivot_table()):
 - Rearranges (reshapes) data from long to wide format (unique values become columns).
 - Example:

DS UNIT 2 5

```
df.pivot(index='Date', columns='City', values='Sales')
```

Melting (melt()):

- Converts wide data back into long format.
- Example:

```
df.melt(id_vars='Date', var_name='City', value_name='Sales')
```

Stack/Unstack

- stack() turns columns into hierarchical rows (MultiIndex).
- unstack() reverses the operation.
- Used for converting between wide and long forms.

6. Handling Missing Data

Definition

 Missing values (NaN, blank, None, 'NA') are common in datasets, and must be handled carefully.

Why Handle Missing Data?

• To ensure data quality, unbiased results, effective model building, and correct interpretations.

Techniques

1. Deletion Methods:

- Listwise Deletion: Drop entire rows/columns with missing data.
- Pairwise Deletion: Use only available (complete) pairs for calculations.

2. Imputation Methods

• **Mean/Median/Mode Imputation:** Replace missing values with mean, median, or mode.

- **K-Nearest Neighbors Imputation:** Fill missing values using similar (neighbor) records.
- Regression Imputation: Predict the missing value using a regression model.
- Multiple Imputation: Create multiple imputed datasets and combine results.

3. Forward/Backward Fill:

 Carry previous/next value forward/back to replace NaNs. Checking and Handling Example:

```
df.isnull() # Show missing data mask

df.isnull().sum() # Number of missing values per column

df.dropna() # Drop rows with any NaN

df.fillna(0) # Replace NaN by 0

df['col'].fillna(df['col'].mean()) # Replace with mean
```

Choosing Approach:

• Depends on data amount, nature of missingness, and importance to analysis.

7. Data Transformation Techniques

Smoothing

• Remove noise/outliers (e.g., via moving average, binning, or smoothing functions).

Attribute Construction

Create new features from existing ones for easier analysis.

Data Generalization

- Convert specific data into broader categories (e.g., age to age groups).
 - Attribute: More general value replaces specific (Age → Age group)

- Hierarchy: Use hierarchical levels (Make/Model/Type)
- **Numeric:** Convert continuous variables into ranges
- **Text:** Replace specific words with general ones

Data Aggregation

• Combine and summarize data (e.g., group by and aggregate sums, averages).

Data Discretization (Binning)

- Transform continuous variables into discrete bins:
 - Equal-width: Bins all have same range.
 - Equal-frequency (quantile): Same number of samples per bin.
 - Custom: User-defined bins.

```
import pandas as pd
df['binned'] = pd.cut(df['Column'], bins=3)
```

Normalization and Standardization

- Normalization: Scale features to range [0, 1]
 - Formula: (x min(x)) / (max(x) min(x))
- Standardization: Mean = 0, Std Dev = 1
 - Formula: (x mean) / std_dev
- Important for ML algorithms relying on distance or gradients.

8. String Manipulation in Data Cleaning

Basic Operations

- Length: len(text)
- Access: text[0], text[-1]
- Slicing: text[0:5]

• Reversing: text[::-1]

Case Conversion

```
• .upper() , .lower() , .title() , .capitalize() , .swapcase()
```

Concatenation and Repetition

- str1 + str2
- str1 * 3

Searching and Replacing

```
• "sub" in text , text.find("sub") , text.replace("old", "new")
```

Splitting and Joining

- text.split(",")
- ",".join([list])

Removing Whitespace

```
• text.strip() , .lstrip() , .rstrip()
```

Formatting Strings

```
• f-strings: f"My name is {name}"
```

```
• .format(): "My name is {}".format(name)
```

• % operator: "My name is %s" % name

String Properties

```
• .isalpha() , .isdigit() , .isalnum() , .islower() , .isupper() , .isspace()
```

Reversing words in a sentence

• '.join(text.split()[::-1])

9. Summarizing Data

Centrality

• Mean: Average

• Median: Middle value

• Mode: Most frequent value

Dispersion

• Standard Deviation: How far values spread from mean

• Variance: Average squared difference from mean

• Range: Max - Min

Sample Distribution

• Histogram: Visual distribution

• Tally: Simple counting

• Skewness: Asymmetry in data

• Kurtosis: "Tailedness" of the distribution

10. Binning

• Groups continuous variables into intervals.

• Types:

1. **Equal-width:** Divides range into equal intervals.

2. Equal-frequency (Quantile): Same number of samples per bin.

3. Custom: User-defined.

11. Standardization

Ensures all features contribute equally.

• Z-Score:

Formula: z = (x - mean) / std_dev

Min-Max:

Formula: (x - min) / (max - min)

12. Outliers, Noise & Anomalies

Definitions

• Outliers: Values that deviate significantly from the rest.

• Global outlier: Far from the entire dataset.

• Contextual outlier: Unusual in a specific context.

• Noise: Random errors or variabilities in data.

• **Anomalies:** Unusual data points that may indicate error or rare events.

Detection & Handling

• Visualizations: Boxplots, scatterplots

Statistical methods: Z-score, IQR methods, etc.

• Importance: Outliers can skew analyses and model results; sometimes they represent valuable rare events (e.g., fraud).