Лабораторная работа № 1.1

Экспериментальная проверка уравнения Эйнштейна для фотоэффекта и определение постоянной планка

Николай Козырский

13 октября 2016 г.

1 Теория

Фотоэффект — испускание электронов фотокатодом, облучаемым светом — хорошо объясняется фотонной теорией света: фотон с энергией $\hbar\omega$ выбивает электрон с поверхности металла и сообщает электрону кинетическую энергию.

Энергетический баланс этого взаимодействия описывается уравнением:

$$\hbar\omega = W + E_{max},\tag{1}$$

где W — работа выхода электрона из катода, E_{max} — максимальная кинетическая энергия электрона после выхода из фотокатода.

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод, на который подается задерживающий (V<0) или ускоряющий (V>0) потенциал. При достаточно больших ускоряющих напряжениях фототок достигает насыщения (рис. 1): все испущенные электроны попадают на анод. При задерживающих потенциалах на анод попоадают лишь электроны, обладающие достаточно большой кинетической энергией, в то время как медленно движущиеся электроны заворачиваются полем и возвращаются на катод. При некотором значении $V=-V_0$ (потенциал запирания) даже наиболее быстрые фотоэлектроны не могут достичь анода.

Максимальная кинетическая энергия E_{max} электронов связана с запирающим потенциалом V_0 соотношением $E_{max} = eV_0$. Подставляя это соотношение в равенство (1), мы получаем уравнение Эйнштейна для фотоэффекта:

$$eV_0 = \hbar\omega - W \tag{2}$$

Чтобы определить величину запирающего напряжения, нам надо правильно экстраполировать получаемую токовую зависимость к нулю, т.е. определить, какова функциональная зависимость I(V). Расчет для простейшей геометрии – плоский катод, освещаемый светом, и параллельный ему анод – приводит к зависимости

$$\sqrt{I} \propto (V_0 - V). \tag{3}$$

Для экспериментальной проверки уравнения Эйнштейна по графикам $\sqrt{I} = f(V)$ определяются потенциалы запирания V_0 при разных частотах и строится зависимость $V_0(\omega)$, которая, как следует из (2), должна иметь вид

$$V_0(\omega) = \frac{\hbar\omega - W}{e}. (4)$$

По наклону этой прямой можно определить постоянную Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \tag{5}$$

2 Экспериментальная установка

Схема установки приведена на рис. 2. Свет от источника S с помощью конденсора фокусируется на входную щель монохроматора УМ-2, выделяющего узкий спектральный интервал, и попадает на катод фотоэлемента Ф-25.

3 Ход работы

- 1. Проградуировать шкалу монохроматора с помощью неоновой лампы
- 2. Для 4-5 длин волн измерить зависимость I(V)

Рис. 1: Схема установки

4 Обработка полученных результатов

1. Градуировка монохроматора:

Nº	монохроматор	длина волны	
1	2604	7032	
2	2572	6929	
3	2510	6717	
4	2496	6678	
5	2472	6598	
6	2446	6532	
7	2436	6506	
8	2398	6402	
9	2392	6383	
10	2370	6334	
11	2360	6304	
12	2342	6266	
13	2336	6217	
14	2302	6163	
15	2296	6143	
16	2274	6096	
17	2266	6074	
18	2244	6030	
19	2216	5975	
20	2204	5944	
21	2168	5881	
22	2152	5852	
23	1900	5400	

2. Измерение $V_0(\omega)$:

3. Вычисление $\frac{dV_0}{d\omega}$ и \hbar :

lambda, нм	omega, 10^1	V0, B	sigma V0, B
540	3.49	2.27	0.36
585	3.22	1.62	0.27
594	3.17	1.32	0.22
614	3.07	1.20	0.18
703	2.68	0.58	0.07
5			
dV0/domega, Дж*с/Кл	2.06	h/2 pi	3.30
погрешность	0.24	погрешность	0.39

5 Работа выхода и красная граница фотоэффекта

Из графика следует, что $W\approx 5.05$ эВ. Красная граница фотоэффекта вычисляется из соотношения

$$\omega_{red} = \frac{W}{\hbar},\tag{6}$$

и примерно равна $7.67 \cdot 10^{15} c^{-1}$.

6 Вывод

В ходе эксперимента подтвердились зависимости (2) и (3). Полученное значение постоянной Планка $(3.30\pm0.39)\cdot10^{-34}$ Дж \cdot с отличается от табличного $\hbar=1.05\cdot10^{-34}$ Дж \cdot с

примерно в три раза, но совпадает по порядку. Вероятная причина расхождения заключается в малом количестве экспериментальных данных. Наибольшая погрешность вносится большим временем установления напряжения на вольтметре.