

SEQUENCE LISTING

<110> Hair, Gregory A.
Boden, Scott D.

<120> Novel Bone Mineralization Proteins, DNA, Vectors,
Expression Systems

<130> 06148.0115

<140>
<141>

<150> 60/054,219

<151> 1997-07-30

<150> 60/080,407

<151> 1998-04-02

<160> 35

<170> PatentIn Ver. 2.0

<210> 1
<211> 457
<212> PRT
<213> Rattus norvegicus

<400> 1

Met Asp Ser Phe Lys Val Val Leu Glu Gly Pro Ala Pro Trp Gly Phe
1 5 10 15

Arg Leu Gln Gly Gly Lys Asp Phe Asn Val Pro Leu Ser Ile Ser Arg
20 25 30

Leu Thr Pro Gly Gly Lys Ala Ala Gln Ala Gly Val Ala Val Gly Asp
35 40 45

Trp Val Leu Ser Ile Asp Gly Glu Asn Ala Gly Ser Leu Thr His Ile
50 55 60

Glu Ala Gln Asn Lys Ile Arg Ala Cys Gly Glu Arg Leu Ser Leu Gly
65 70 75 80

Leu Ser Arg Ala Gln Pro Ala Gln Ser Lys Pro Gln Lys Ala Leu Thr
85 90 95

Pro Pro Ala Asp Pro Pro Arg Tyr Thr Phe Ala Pro Ser Ala Ser Leu

100 105 110

Asn Lys Thr Ala Arg Pro Phe Gly Ala Pro Pro Pro Thr Asp Ser Ala
115 120 125

Leu Ser Gln Asn Gly Gln Leu Leu Arg Gln Leu Val Pro Asp Ala Ser
130 135 140

Lys Gln Arg Leu Met Glu Asn Thr Glu Asp Trp Arg Pro Arg Pro Gly
145 150 155 160

Thr Gly Gln Ser Arg Ser Phe Arg Ile Leu Ala His Leu Thr Gly Thr
165 170 175

Glu Phe Met Gln Asp Pro Asp Glu Glu Phe Met Lys Lys Ser Ser Gln
180 185 190

Val Pro Arg Thr Glu Ala Pro Ala Pro Ala Ser Thr Ile Pro Gln Glu
195 200 205

Ser Trp Pro Gly Pro Thr Thr Pro Ser Pro Thr Ser Arg Pro Pro Trp
210 215 220

Ala Val Asp Pro Ala Phe Ala Glu Arg Tyr Ala Pro Asp Lys Thr Ser
225 230 235 240

Thr Val Leu Thr Arg His Ser Gln Pro Ala Thr Pro Thr Pro Leu Gln
245 250 255

Asn Arg Thr Ser Ile Val Gln Ala Ala Ala Gly Gly Thr Gly Gly
260 265 270

Gly Ser Asn Asn Gly Lys Thr Pro Val Cys His Gln Cys His Lys Ile
275 280 285

Ile Arg Gly Arg Tyr Leu Val Ala Leu Gly His Ala Tyr His Pro Glu
290 295 300

Glu Phe Val Cys Ser Gln Cys Gly Lys Val Leu Glu Glu Gly Gly Phe
305 310 315 320

Phe Glu Glu Lys Gly Ala Ile Phe Cys Pro Ser Cys Tyr Asp Val Arg
325 330 335

Tyr Ala Pro Ser Cys Ala Lys Cys Lys Lys Ile Thr Gly Glu Ile
340 345 350

Met His Ala Leu Lys Met Thr Trp His Val Pro Cys Phe Thr Cys Ala

355

360

365

Ala Cys Lys Thr Pro Ile Arg Asn Arg Ala Phe Tyr Met Glu Glu Gly
370 375 380

Ala Pro Tyr Cys Glu Arg Asp Tyr Glu Lys Met Phe Gly Thr Lys Cys
385 390 395 400

Arg Gly Cys Asp Phe Lys Ile Asp Ala Gly Asp Arg Phe Leu Glu Ala
405 410 415

Leu Gly Phe Ser Trp His Asp Thr Cys Phe Val Cys Ala Ile Cys Gln
420 425 430

Ile Asn Leu Glu Gly Lys Thr Phe Tyr Ser Lys Lys Asp Lys Pro Leu
435 440 445

Cys Lys Ser His Ala Phe Ser His Val
450 455

<210> 2

<211> 1696

<212> DNA

<213> Rattus norvegicus

<400> 2

gcacgaggat cccagcgcgg ctccctggagg ccgccaggca gcccggcaggc cggtgcattca 60
ggagcaggta ccatggattc cttcaaggta gtgtggagg gacctggcccc ttggggcttc 120
cgctctgcaag gggcaagga cttcaacgtg cccctctcca tctctcggtt cactcctgga 180
ggcaaggccg cacaggccgg tgtggccgtg ggagactggg tactgagttt cgacggtag 240
aacgcccggaa gcctcacaca cattgaagcc cagaacaaga tccgtgcctg tggggagcgc 300
ctcagcctgg gtcttagcag agcccagcct gtcagagca aaccacagaa ggcctgacc 360
cctccggccg acccccccggat gtacactttt gcaccaagcg cctccctcaa caagacggcc 420
cgccccccttcg gggcacccccc acctactgac agcccccgtt cgccaaatgg acagctgctc 480
agacagctgg tccctgtatgc cagcaaggcag cggtgtatgg agaatactga agactggcgc 540
ccgcggccag ggacaggcca gtccctgttcc ttccgcattt ttgctcacct cacgggcaca 600
gagttcatgc aagacccggaa tgaggaattt atgaagaagt caagccaggat gcccaggaca 660
gaagccccag ccccaagcctc aaccatacccc caggaatccct ggcctggccc caccacccccc 720
agcccccacca gccgccccacc ctggggccgtt gatcctgtatcc ttgctgagcg ctatgcacca 780
gacaaaacca gcacagtgtt gacccgacac agccagccag ccacacccatcc gcctctgcag 840
aaccgcaccc tccatagttca ggctgcagct ggagggggca caggaggagg cagcaacaat 900
ggcaagacgc ctgtatgcca ccagtggccac aagatcatcc gccggccgata cctggtagca 960
ctggggccacg cgtaccatcc tgaggaattt gtgtgcagcc agtgtggaa ggtccctggaa 1020
gagggtggct tcttcgagga gaaggggagct atcttttgcc cctcctgcta tgatgtgcgc 1080
tatgcacccca gctgtgccaa atgcaagaag aagatcaactg gagagatcat gcatgcgcgt 1140
aagatgaccc ggcattttcc ctgttttacc ttgtgcagcct gcaaaaacccc tatccgcaac 1200
agggttttctt acatggagga gggggctccc tactgcgcgc gagattacga gaagatgttt 1260

ggcacaaagt gtcgcggctg tgacttcaag atcgatgccg gggaccgttt cctggaagcc 1320
ctgggttca gctggcatga tacgtgttt gttgcgcaa tatgtcaa at caacttggaa 1380
ggaaagacac tctactccaa gaaggacaag cccctgtgca agagccatgc ctcccac 1440
gtatgagcac ctccctcacac tactgccacc ctactctgcc agaagggtga taaaatgaga 1500
gagctctc tccctcgacc tttctgggtg gggctggcag ccattgtcct agccttgct 1560
cctggccaga tcctgggct ccctcctcac agtccccctt cccacactc ctccaccacc 1620
accaccgtca ctcacaggtg cttagcctcct agccccagtt cactctggtg tcacaataaa 1680
cctgtatgt a gctgtg 1696

<210> 3
<211> 260
<212> DNA
<213> Rattus norvegicus

<400> 3
ttctacatgg aggagggggc tccctactgc gagcgagatt acgagaagat gtttggcaca 60
aagtgtcgcg gctgtgactt caagatcgat gccgggacc gtttcctgga agccctgggt 120
ttcagctggc atgatacgtg ttttgttgc gcaatatgtc aaatcaactt ggaaggaaag 180
actttctact ccaagaagga caagcccctg tgcaagagcc atgcctttc ccacgtatga 240
gcacacctc acactactgc 260

<210> 4
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Differential Display PCR Primer

<400> 4
aagctttttt tttttg 16

<210> 5
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Differential Display PCR Primer

<400> 5
aagcttggct atg 13

<210> 6
<211> 223
<212> DNA
<213> Rattus norvegicus