종합실습2 이변량분석(y-숫자) : car seat 매출 분석

• 카시트에 대해서 지역 매장 별 매출액을 예측하고자 합니다.

1.환경준비

(1) 라이브러리 로딩

In [1]: import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import scipy.stats as spst

(2) 데이터 로딩

변수명	설명	구분
Sales	각 지역 판매량(단위 : 1000개)	Target
CompPrice	지역별 경쟁사 판매가격(달러)	feature
Advertising	각 지역, 회사의 광고 예산(단위 : 1000달러)	feature

변수명	설명	구분
Population	지역 인구수(단위 : 1000명)	feature
Price	자사 지역별 판매가격(달러)	feature
ShelveLoc	진열상태	feature
Age	지역 인구의 평균 연령	feature
US	매장이 미국에 있는지 여부	feature
Income	지역 주민 평균 소득	feature
Urban	매장이 도시에 있는지 여부	feature

```
path = 'https://raw.githubusercontent.com/DA4BAM/dataset/master/Carseats2.csv'
data = pd.read_csv(path)
data.head()
```

Out[2]:		Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Urban	US
	0	9.50	138	73	11	276	120	Bad	42	Yes	Yes
	1	11.22	111	48	16	260	83	Good	65	Yes	Yes
	2	10.06	113	35	10	269	80	Medium	59	Yes	Yes
	3	7.40	117	100	4	466	97	Medium	55	Yes	Yes
	4	4.15	141	64	3	340	128	Bad	38	Yes	No

1.숫자형 X --> Y

• 모든 숫자형 X에 대해서 Y와 비교하여 차트를 그리고 수치화 하시오.

① 시각화 : scatter, jointplot

② 수치화 : 상관분석

(1) Advertising -> Sales

1) 시각화 : scatter(regplot), jointplot

```
In [3]: target = 'Sales'
    var = 'Advertising'

sns.scatterplot(x=var, y = target, data = data)
    plt.show()
```


In [4]: sns.regplot(x=var, y = target, data = data)
 plt.show()

In [5]: sns.jointplot(x=var, y = target, data = data)
 plt.show()

2) 수치화: 상관분석

```
In [6]: result = spst.pearsonr(data[var], data[target]) print(f'상관계수 : {result[0]}, p-value : {result[1]}')
```

상관계수 : 0.269506781376902, p-value : 4.3776771103027514e-08

- 3) 시각화와 수치화 결과로부터 파악한 내용을 적어 봅시다.
- 광고비와 판매량은 관련이 있다. 그러나 크지 않다.

(2) Population -> Sales

1) 시각화 : scatter(regplot), jointplot

```
In [7]: target = 'Sales'
var = 'Population'
```

sns.scatterplot(x=var, y = target, data = data)
plt.show()

In [8]: sns.jointplot(x=var, y=target, data=data)

Out[8]: <seaborn.axisgrid.JointGrid at 0x186e2949310>

2) 수치화 : 상관분석

In [9]: spst.pearsonr(data[var], data[target])

Out[9]: PearsonRResult(statistic=0.0504709844720392, pvalue=0.31398160931904856)

- 3) 시각화와 수치화 결과로부터 파악한 내용을 적어 봅시다.
 - 인구가 많다고 해서 판매량으로 이어지지는 않는다
 - 인구, 판매량이 골골루 분포되어 있다

(3) Price -> Sales

1) 시각화: scatter(regplot), jointplot

```
In [10]: var = 'Price'
target = 'Sales'
```

sns.scatterplot(x=var, y=target, data=data)

Out[10]: <Axes: xlabel='Price', ylabel='Sales'>

In [11]: sns.jointplot(x=var, y=target, data=data)

 $\verb"Out[11]: & <seaborn.axisgrid.JointGrid at 0x186e371dbd0>$

2) 수치화: 상관분석

In [12]: spst.pearsonr(data[var], data[target])

Out[12]: PearsonRResult(statistic=-0.4449507278465726, pvalue=7.618187011913169e-21)

- 3) 시각화와 수치화 결과로부터 파악한 내용을 적어 봅시다.
 - 가격에 따라 판매량이 달라진다
 - 100 ~ 125 달라 사이가 많으나 대부분 이정도 가격에 판매하는 것으로 보임
 - 가장 싸게 팔고 있는 25달러 짜리도 판매량이 높음을 보임
 - 가격이 높아 질수록 판매량이 감소가 보임

(4) Age -> Sales

1) 시각화: scatter(regplot), jointplot

```
In [23]: var = 'Age'
target ='Sales'
```

In [24]: sns.scatterplot(x=var, y=target, data=data)
plt.show()

In [25]: sns.jointplot(x=var, y=target, data=data)
plt.show()

2) 수치화: 상관분석

In [22]: spst.pearsonr(data[var], data[target])

Out[22]: PearsonRResult(statistic=-0.4449507278465726, pvalue=7.618187011913169e-21)

- 3) 시각화와 수치화 결과로부터 파악한 내용을 적어 봅시다.
 - 나이에 따라 판매량의 변화는 관계가 없어 보임
 - 특정 나이대에 판매량이 있는 것을 보아 어린 자녀들이 있는 것으로 보임

(5) CompPrice -> Sales

1) 시각화 : scatter(regplot), jointplot

In [26]: var = 'CompPrice' # 지역별 경쟁사 판매 가격 target = 'Sales' sns.scatterplot(x=var, y=target, data=data)
plt.show()

In [28]: sns.jointplot(x=var, y=target, data=data)
plt.show()

In [30]: sns.regplot(x=var, y=target, data=data)
plt.show()

2) 수치화 : 상관분석

In [29]: spst.pearsonr(data[var], data[target])

Out[29]: PearsonRResult(statistic=0.06407872955062152, pvalue=0.2009398289418404)

- 3) 시각화와 수치화 결과로부터 파악한 내용을 적어 봅시다.
 - 경쟁사 가격에 따라 판매량이 관계가 있어 보이지는 않음
 - 약 110 ~ 140달러 사이에 판매량이 대부분
 - 경쟁사의 판매 가격대를 알아봐야 할것 같음

In [53]: data['Price_diff'] = data['CompPrice'] - data['Price'] # 타사, 자사의 가격 경쟁력 data.head()

Out[53]:		Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Urban	US	Price_diff
	0	9.50	138	73	11	276	120	Bad	42	Yes	Yes	18
	1	11.22	111	48	16	260	83	Good	65	Yes	Yes	28
	2	10.06	113	35	10	269	80	Medium	59	Yes	Yes	33
	3	7.40	117	100	4	466	97	Medium	55	Yes	Yes	20
	4	4.15	141	64	3	340	128	Bad	38	Yes	No	13
4												

```
In [55]: # 피처 엔지니어링 #비지니스 관점으로 재해석
var = 'Price_diff'
target = 'Sales'

sns.scatterplot(x=var, y=target, data=data)
plt.show()
```


In [56]: spst.pearsonr(data[var], data[target])

Out[56]: PearsonRResult(statistic=0.5979217124533921, pvalue=3.877120641788767e-40)

(6) Income -> Sales

1) 시각화: scatter(regplot), jointplot

```
In [36]: var = 'Income' # 지역 주민 평균 소득
target = 'Sales'

sns.scatterplot(x=var, y=target, data=data)
plt.show()
```


In [38]: sns.jointplot(x=var, y=target, data=data)
plt.show()

2) 수치화: 상관분석

In [39]: spst.pearsonr(data[var], data[target])

Out[39]: PearsonRResult(statistic=0.15195097946754424, pvalue=0.0023096704539517904)

- 3) 시각화와 수치화 결과로부터 파악한 내용을 적어 봅시다.
 - 지역 소득에 따라 판매량에 관계는 약한 상관관계

2.범주형 X --> Y

• 모든 범주형 X에 대해서 Y와 비교하여 차트를 그리고 수치화 하시오.

① 시각화 : 평균비교 barplot

② 수치화 : t-test, anova

```
In [71]: def ed_bar(data, var, target):
# barplot 시각화
sns.barplot(x=bar, y=target, data=data)
plt.show()
```

(1) Urban -> Sales

1) 시각화 : 평균비교 barplot

```
In [40]: var = 'Urban' # 도심 여부
target = 'Sales'
sns.barplot(x=var, y=target, data=data)
plt.show()
```


2) 수치화: t-test, anova

```
In [45]: # 두 그룹으로 데이터 저장
Y_Urban = data.loc[data['Urban']=='Yes', 'Sales']
N_Urban = data.loc[data['Urban']=='No', 'Sales']

In [46]: # 독립표본 T-테스트
t_statistic, p_value = spst.ttest_ind(Y_Urban, N_Urban)
# 결과 출력
print("T-statistic:", t_statistic)
print("P-value:", p_value)
```

T-statistic: -0.30765346670661126 P-value: 0.7585069603942775

```
In [48]: # anova
a_statistic, p_value = spst.f_oneway(Y_Urban, N_Urban)

# 결과 출력
print("T-a_statistic:", a_statistic)
print("P-value:", p_value)
```

T-a_statistic: 0.09465065557659712 P-value: 0.7585069603942085

- 3) 시각화와 수치화 결과로부터 파악한 내용을 적어 봅시다.
 - 차트 p-value를 barplot 차트를 봐도 도심여부에 따라 판매량 증가에 대해서는 관련이 없어 보임

(2) ShelveLoc-> Sales

1) 시각화 : 평균비교 barplot

```
In [74]: var = 'ShelveLoc' # 진열상태
target= 'Sales'

sns.barplot(x=var, y=target, data=data)
plt.show()
```


2) 수치화 : t-test, anova

```
In [75]: # 세 그룹으로 데이터 저장
          Good = data.loc[data[var]=='Good', 'Sales']
          Medium = data.loc[data[var]=='Medium', 'Sales']
          Bad = data.loc[data[var]=='Bad', 'Sales']
In [51]: # 독립표본 T-테스트
          temp = spst.ttest_ind(Good, Medium)
          t statistic, p value = spst.ttest ind(temp, Bad)
          # 결과 출력
          print("T-statistic:", t_statistic)
          print("P-value:", p_value)
         T-statistic: -0.37131177056842923
         P-value: 0.711223539704839
In [76]: t_statistic, P_value = spst.f_oneway(Good, Medium, Bad)
          # 결과 출력
          print("T-statistic:", t_statistic)
          print("P-value:", p_value)
         T-statistic: 92.22990509910349
          P-value: 0.711223539704839
```

- 3) 시각화와 수치화 결과로부터 파악한 내용을 적어 봅시다.
- barplot 그래프 상으로는 진열 상태가 좋을 수록 판매량이 증가가 보임
- t 테스트 및 p_value는 상관이 없다 나옴

(3) US-> Sales

1) 시각화 : 평균비교 barplot

```
In [59]: var = 'US' # 미국에 있는 매장 여부 target = 'Sales'

In [69]: sns.barplot(x=var, y=target, data=data) plt.grid() plt.show()
```


2) 수치화 : t-test, anova

```
In [64]: Y_US = data.loc[data[var] == 'Yes', target]
N_US = data.loc[(data[var] == 'No', target)]

In [67]: t_statistic, P_value = spst.ttest_ind(Y_US, N_US)
    print('t_statistic :', t_statistic)
    print('P_value :', P_value)

    t_statistic : 3.589738747802499
    P_value : 0.00037233958701471517

In [68]: a_statistic, P_value = spst.f_oneway(Y_US, N_US)
    print('a_statistic :', a_statistic)
    print('P_value :', P_value)

    a_statistic : 12.886224277474618
    P value : 0.0003723395870148404
```

- 미국 내에 매장이 판매량이 높은 것을 알수 있다
- 그래프를 보면 신뢰구간에 아주 약간 겹치는 구간이 있다

3) 시각화와 수치화 결과로부터 파악한 내용을 적어 봅시다.

3.관계 정리하기

- ① 강한관계
 - Price->Sales
 - Age->Sales
 - Income->Sales
 - ShelveLoc->Sales
- ② 중간관계
 - Advertising->Sales
 - CompPrice->Sales
 - US->Sales
- ③ 관계없음
 - Population->Sales
 - Urban->Sales