☞ Fonction logarithme 1

On considère la fonction suivante définie sur]0; $+\infty$ [:

$$f(x) = 3x + 8 - 3x \ln(x)$$

- 1. Calculer la limite de f en 0^+
- 2. Calculer la limite de f en $+\infty$
- **3.** Calculer la dérivée de f.
- **4.** Déterminer le signe de f'(x).
- **5.** En déduire le tableau de variation de f(x).
- **6.** Déterminer le nombre de solutions de f(x) = 0 et en donner un encadrement d'amplitude 10^{-2} .

Logarithme

Correction:

1. On sait que:

$$\lim_{x \to 0^+} 3x + 8 = 8$$

$$\lim_{x \to 0^+} 3x \ln(x) = 0 \quad \text{par propriété du cours}$$

$$\text{donc } \lim_{x \to 0^+} 3x + 8 - 3x \ln(x) = 8$$

2.

$$\lim_{x \to +\infty} 3x + 8 = +\infty$$

$$\lim_{x \to +\infty} -3x \ln(x) = -\infty \quad \text{par propriété du cours}$$
 donc
$$\lim_{x \to +\infty} 3x + 8 - 3x \ln(x) = -\infty \quad \text{par prédominance de } x \ln(x)$$

3.

$$f'(x) = 3 - 3(x \ln(x))'$$

$$= 3 - 3(x' \ln(x) + x \times \ln(x)')'$$

$$= 3 - 3(\ln(x) + x \times \frac{1}{x})'$$

$$= 3 - 3(\ln(x) + 1)'$$

$$= 0 - 3\ln(x)$$

4.

$$f'(x) \ge 0$$

$$0 - 3\ln(x) \ge 0$$

$$-3\ln(x) \ge 0$$

$$\ln(x) \le \frac{0}{-3}$$

$$x \le e^{\frac{0}{-3}}$$

5. On a:

x	0		$e^{rac{0}{-3}}$		+∞
f'(x)		+	0	-	
f(x)	8		$8+3e^{\frac{0}{-3}}$		

6. D'après le tableau de variation, comme 8 > 0, la fonction f ne peut pas s'annuler sur l'intervalle $[0; e^{\frac{0}{-3}}]$.

Pour $x > e^{\frac{0}{-3}}$, la fonction est décroissante de $8 + 3e^{\frac{0}{-3}} > 0$ vers $-\infty$, donc, d'après le théorème des valeurs intermédiaires, il existe une unique valeur

Logarithme TG

 $\alpha > e^{\frac{0}{-3}}$ telle que $f(\alpha) = 0$. En utilisant la calculatrice, on trouve :

$$f(1.0) > 0$$

 $f(1.0) < 0$
 $1.0 \le \alpha \le 1.0$