Lecture 7: Standing Wave and Input Impedance

Yan-zhao XIE

Xi'an Jiaotong University 2020.09.24

Recall: General solution

telegrapher's equation

$$-\frac{d\widetilde{V}(z)}{dz} = (R' + j\omega L') \, \widetilde{I}(z),$$
$$-\frac{d\widetilde{I}(z)}{dz} = (G' + j\omega C') \, \widetilde{V}(z).$$

traveling wave solutions

$$\widetilde{V}(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$

$$\widetilde{I}(z) = \frac{V_0^+}{Z_0} e^{-\gamma z} - \frac{V_0^-}{Z_0} e^{\gamma z}$$

Z

propagation constant

Recall: Reflection coefficient

In order to incorporate the **source and load condition** (boundary condition) into the general wave solution, we define a **voltage reflection coefficient** $\Gamma(z)$ as the ratio of the reflected and incident voltage waves

$$\Gamma(z) \stackrel{\text{def}}{=} \frac{V_0^- e^{\gamma z}}{V_0^+ e^{-\gamma z}} = \frac{V_0^-}{V_0^+} e^{2\gamma z}$$
 How to evaluate V_0^-/V_0^+ ?

One notices the direction of current: $\Gamma(z) = -\frac{I_0^-}{I_0^+} e^{2\gamma z}$

Considering the transmission line in the context of the complete circuit, including:

A generator circuit at its input terminals (z = -l)

A *l*-length $TL(l \le z \le 0)$

A load terminated at the output (z = 0)

● 西考系是大学 ■

Recall: Reflection coefficient

load impedance

$$Z_{L} = \frac{\tilde{V}(0)}{\tilde{I}(0)} = \frac{V_{0}^{+} + V_{0}^{-}}{\frac{V_{0}^{+}}{Z_{0}} - \frac{V_{0}^{-}}{Z_{0}}} = \frac{V_{0}^{+} + V_{0}^{-}}{V_{0}^{+} - V_{0}^{-}} Z_{0}$$

Therefore, the reflection coefficient along the line is:

$$\Gamma(z) = \frac{V_0^-}{V_0^+} e^{2\gamma z} = \frac{Z_L - Z_0}{Z_L + Z_0} e^{2\gamma z} = \Gamma_L e^{2\gamma z}$$

Especially, the reflection coefficient at the load:

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$

西安克通大學 🗕

Recall: Γ_L for various types of load

In general, Z_L is a complex quantity $Z_L = R + jX$, therefore, $\Gamma_L = |\Gamma_L|e^{j\theta_r}$

 $z_L = Z_L/Z_0 = (R+jX)/Z_0 = r+jx$ $r = R/Z_0$ and $x = X/Z_0$ are the real and imaginary parts of z_L , respectively.

Generator $\begin{array}{c|ccccc} \widetilde{V}_g & & & & & & & & & & & \\ \widetilde{V}_g & & & & & & & & & \\ \widetilde{V}_i & & & & & & & & \\ \widetilde{V}_i & & & & & & & & \\ \widetilde{V}_i & & & & & & & \\ \end{array}$ $\begin{array}{c|ccccc} \widetilde{V}_L & & & & & & \\ \widetilde{V}_L & & & & & & \\ \end{array}$ $\begin{array}{c|ccccc} Load & & & & & \\ z = -l & & & & & \\ d = l & & & & & \\ \end{array}$

From view of the load, we replace z with -d to express $|\tilde{V}(z)|$ as a function of d.

$$|\tilde{V}(d)| = |V_0^+|[1 + |\Gamma_L|^2 + 2|\Gamma_L|\cos(2\beta d - \theta_r)]^{1/2}$$

By applying the same steps to $\tilde{I}(z)$, a similar expression can be derived for $|\tilde{I}(z)|$

$$|\tilde{I}(d)| = \frac{|V_0^+|}{Z_0} [1 + |\Gamma_L|^2 - 2|\Gamma_L|\cos(2\beta d - \theta_r)]^{1/2}$$

Magnitude of voltage on the line

Substitute $V_0^- = \Gamma_L V_0^+$ in traveling wave equations, one can obtain

$$\tilde{V}(z) = V_0^{\dagger} (e^{-\gamma z} + \Gamma_L e^{\gamma z})$$

$$\tilde{I}(z) = \frac{V_0^{\dagger}}{Z_0} (e^{-\gamma z} - \Gamma_L e^{\gamma z})$$

Only one unknown V_0^+ to be determined

For a complex load, $\Gamma_L = |\Gamma_L| e^{j\theta_r}$, one can have the magnitude of $\tilde{V}(z)$.

$$\begin{split} |\tilde{V}(z)| &= [\tilde{V}(z) \cdot \underline{\tilde{V}}^*(z)]^{1/2} \\ &= \left\{ \left[V_0^+(e^{-\gamma z} + |\Gamma_L|e^{j\theta_r}e^{\gamma z}) \right] \cdot \left[V_0^{+*}\left(e^{\gamma z} + |\Gamma_L|e^{-j\theta_r}e^{-\gamma z}\right) \right] \right\}^{1/2} \\ &= |V_0^+| \left[1 + |\Gamma_L|^2 + |\Gamma_L|(e^{2\gamma z + j\theta_r} + e^{-(2\gamma z + j\theta_r)}) \right]^{1/2} \\ &= |V_0^+| \left[1 + |\Gamma_L|^2 + 2|\Gamma_L|\cos(-2j\gamma z + \theta_r) \right]^{1/2} \\ e^{jx} + e^{-jx} &= 2\cos x \end{split}$$

lossless transmission lines, $\alpha = 0$, $\gamma = i\beta$

$$|\tilde{V}(z)| = |V_0^+|[1 + |\Gamma_L|^2 + 2|\Gamma_L|\cos(2\beta z + \theta_r)]^{1/2}$$

Standing wave pattern

Standing wave is a wave which oscillates in time but whose *peak amplitude profile does not move in space*. This phenomenon are caused by the *interference* of the two traveling waves traveling in *opposite directions* (incident and reflected waves).

Standing wave pattern

- characteristic impedance: $Z_0 = 50\Omega$ reflection coefficient: $\Gamma_I = 0.3e^{j\pi/6}$ magnitude of incident wave: $|V_0^+| = 1V$
- The max $|\widetilde{V}(d)|$ corresponds to the position at which the incident and reflected waves are in-phase

$$2\beta d - \theta_r = 2n\pi$$

$$\text{Max} |\tilde{V}(d)| = |V_0^+|(1 + \Gamma_L) = 1.3V$$

ullet The min $|\widetilde{V}(d)|$ corresponds to the position at which the incident and reflected waves are opposite in-phase

$$2\beta d - \theta_r = (2n+1)\pi$$

$$\text{Min} |\tilde{V}(d)| = |V_0^+|(1 - \Gamma_L) = 0.7V$$

• The repetition period of standing waves

$$\cos(2\beta d - \theta_r) = \cos(4\pi d/\lambda - \theta_r)$$

Voltage Standing-Wave Ratio (VSWR)

In the cases of a short-circuit or an opencircuit load (severely mismatched), the maximum and the adjacent minimum are separated by 1/4 wavelength, and locations on the line corresponding to voltage maxima correspond to current minima. Vice versa.

 $\lambda/4$ difference of \tilde{V} and \tilde{I} is undesirable!

It will cause:

- 1. Large voltages can occur that may damage insulation:
- 2. Load voltages and currents are radically different from the input voltage to the line.

We want a matched load where there is no effect on the signal transmission (other than a phase shift of time delay.)

How to evaluate the degree of "match"?

Voltage Standing-Wave Ratio (VSWR)

$$\left|\tilde{V}\right|_{max} = |V_0^+|(1+|\Gamma_L|)$$

$$\left|\tilde{V}\right|_{min} = |V_0^+|(1 - |\Gamma_L|)$$

The ratio of maximum \tilde{V} to minimum \tilde{V} is called the Voltage standing-wave ratio (VSWR)

$$S = \frac{\left| \tilde{V} \right|_{max}}{\left| \tilde{V} \right|_{min}} = \frac{1 + \left| \Gamma_L \right|}{1 - \left| \Gamma_L \right|}$$

A quantity measure "match":

matched (
$$Z_L = Z_0$$
), $\Gamma_L = 0$, $S = 1$ short circuit ($Z_L = 0$), $\Gamma_L = -1$, $S = \infty$ open circuit ($Z_L = \infty$), $\Gamma_L = 1$, $S = \infty$

Input Impedance

Recall:

$$\tilde{V}(z) = V_0^+(e^{-\gamma z} + \Gamma_L e^{\gamma z})$$

$$\tilde{V}(z) = V_0^+(e^{-\gamma z} + \Gamma_L e^{\gamma z})$$

$$\tilde{I}(z) = \frac{V_0^+}{Z_0}(e^{-\gamma z} - \Gamma_L e^{\gamma z})$$

$$\Gamma(z) = \Gamma_L e^{2\gamma z}$$

$$\Gamma(z) = \Gamma_L e^{2\gamma z}$$

Define the *input impedance* as voltage to current ratio at a point on a line:

$$\begin{split} Z_{in}(z) &\stackrel{\text{def}}{=} \frac{\tilde{V}(z)}{\tilde{I}(z)} \\ &= Z_0 \frac{e^{-\gamma z} + \Gamma_L e^{\gamma z}}{e^{-\gamma z} - \Gamma_L e^{\gamma z}} \\ &= Z_0 \frac{1 + \Gamma_L e^{2\gamma z}}{1 - \Gamma_L e^{2\gamma z}} \\ &= Z_0 \frac{1 + \Gamma(z)}{1 - \Gamma(z)} \end{split}$$

Consider input ports B&B' as two ends of a resistor, then input impedance is $\tilde{V}_{g}(\sim)$ the resistance of this resistor.

Input Impedance

Characteristic impedance Zc:

The ratio of the voltage and current in the traveling waves.

▶ It should be noted that Z_0 is equal to the ratio of the voltage amplitude to the current amplitude for each of the traveling waves individually (with an additional minus sign in the case of the -z propagating wave), but it is not equal to the ratio of the total voltage $\widetilde{V}(z)$ to the total current $\widetilde{I}(z)$, unless one of the two waves is absent. \blacktriangleleft

A *matched line* is one in which the load impedance is equal to the characteristic impedance, $Z_1 = Z_C$.

The input impedance to a matched line is equal to the characteristic impedance at all points along the line.

For a lossless line, $Z_{\mathbb{C}}$ is a real number. Hence, in order to match a lossless line the load impedance can only be purely resistive.

あ考ええ大学 **一**

Thank you!

