Homework 8 - Predictive Modeling in Finance and Insurance

Dennis Goldenberg

2024-03-31

```
library(readxl)
library(ggplot2)
library(patchwork)
```

1. Poisson Regression

a. Exploratory Data Analysis

I first plot the claims rate by age, and by car

Age does not seem to have a very significant impact on claims rate; if anything, there may be a potential slight negative correlation. However, the car variable has a strong positive correlation with claims rate; as

the number of the car goes up, there is a noticeable shift in distribution of claims rates at each level. Next, I compare the boxplot of claims rate by district:

```
ggplot(data = claimsData) +
  geom_boxplot(aes(x = claimRate, y = district, group = district)) +
  labs(title = "Box Plot of Claims rate by District") +
  xlab("Claim Rate") +
  theme(plot.title = element_text(hjust = 0.5))
```


Note that district 0 and district 1 have about the same mean, but district 1's IQR is far larger (as is its overall range), suggesting that claims rates in district 1 have higher variance.

b. Testing for significance of Poisson Regression

I fit both models, and get their log likelihoods:

[1] "Log-Like - No Interactions: -96.035; Interactions: -86.828"

Then, I note that $C = 2 \left[\ell(\hat{\beta}_{\text{full}}) - \ell(\hat{\beta}_{\text{reduced}}) \right] \sim \chi^2(q)$, where q is the number of extra parameters in the model (in this case, the number of interactions is 15). So, I calculate the test statistic, and I compare to the $\chi^2(15)$ distribution:

```
test1 <- 2 * (ll_I - ll_noI)
pval <- pchisq(test1, df = 15, lower.tail = FALSE)
sprintf("Test statistic: %.4f, p-value: %.4f", test1, pval)</pre>
```

[1] "Test statistic: 18.4138, p-value: 0.2415"

Note that $\mathbb{P}(X^2 > \text{test}) = .2415 > .05$, so I fail to reject H_0 ; it seems as though the interaction terms are not jointly statistically significant.

c. Fitting Model without Interactions

i. Specify model, showing coefficients

I transform the age and car variables back into numeric variables and fit the no interactions model again:

```
## (Intercept) age car district1
## -1.8525316 -0.1767400 0.1977690 0.2186464
```

ii. Calculating Goodness of Fit statistic

I use the formula $X^2 = \sum_{i=1}^{N} \frac{(o_i - e_i)^2}{e_i}$:

```
expect <- exp(predict.glm(Inter2))
observe <- claimsData2$y
test2 = sum((observe - expect)^2/expect)
sprintf("Goodness of Fit Statistic: %.4f", test2)</pre>
```

```
## [1] "Goodness of Fit Statistic: 23.4976"
```

iii. Calcualting deviance statistic

I use the formula $D = 2 \sum_{i=1}^{N} o_i * \log \left(\frac{o_i}{e_i} \right)$:

```
test3 <- 2 * sum(observe * log((observe + 0.000001)/expect))
sprintf("Deviance Statistic: %.4f", test3)</pre>
```

[1] "Deviance Statistic: 24.6854"

2. Product binomial Distribution, Log-Linear

a. Proving simplification of algorithm

For arbitrary category i, let the distribution be modeled by Bernoulli(θ_{1i}) where θ_{1i} is the probability of success. Then, since $y_{.i} = n_i$ is fixed, given independent trials, I deduce that the random variable Z_i representing the number of successes in category i, is the sum of independent Bernoulli's - call them X_{ij} - so:

$$Z_i = \sum_{i=1}^{n_i} X_{ij} \sim \text{Binomial}(n_i, \theta_{1i}) = \text{Binomial}(n_i, \pi_i)$$

I assume each individual of the K categories is independent as to their distribution of success and failure. Letting $z_k = y_{1k}$, I deduce:

$$f(z_1, ... z_K | n_1,, n_K) = \prod_{k=1}^K f_{Z_k}(z_k | n_k) = \prod_{k=1}^k \binom{n_k}{z_k} \pi_k^{z_k} (1 - \pi_k)^{z_k}$$

b. Proving log-linear equivalent to logistic

Note that, as $Z_k \sim \text{Binomial}(n_k, \pi_k)$, I deduce that $\mathbb{E}[Z_k] = n_k \pi_k$. Therefore:

$$\mathbb{E}[n_k - Z_k] = n_k - n_k \pi_k = n_k (1 - \pi_k)$$

From this, and the information given in the problem:

$$\log (\mathbb{E}[Z_k]) = x_{1k}^T \beta \to \log(n_k \pi_k) = x_{1k}^T \beta$$
$$\log (\mathbb{E}[n_k Z_k]) = x_{2k}^T \beta \to \log(n_k (1 - \pi_k)) = x_{2k}^T \beta$$

From this:

$$x_k^T \beta = \left(x_{1k}^T - x_{2k}^T\right) \beta$$

$$= x_{1k}^T \beta - x_{2k}^T \beta$$

$$= \log(n_k \pi_k) - \log(n_k (1 - \pi_k))$$

$$= \log\left(\frac{n_k \pi_k}{n_k (1 - \pi_k)}\right)$$

$$= \log\left(\frac{\pi_k}{1 - \pi_k}\right)$$

c. Fitting Logistic, log-linear fits

```
## # A tibble: 8 x 4
## ulcer `case-control` aspirin frequency
## <ord> <chr> <chr> <dbl>
## 1 gastric control non-user 62
```

##	2	gastric	control	user	6
##	3	gastric	case	non-user	39
##	4	gastric	case	user	25
##	5	${\tt duodenal}$	control	non-user	53
##	6	${\tt duodenal}$	control	user	8
##	7	${\tt duodenal}$	case	non-user	49
##	8	duodenal	case	user	8

3. Calculating estimated beta, log-linear

I define the following variables:

$$x_{1i} = \begin{cases} 0 & \text{if Male} \\ 1 & \text{if Female} \end{cases} \text{ and } x_{2i} = \begin{cases} 0 & \text{if Q} \\ 1 & \text{if R} \end{cases}$$

Therefore, using the predicted $\hat{\mu}$ values, I formulate 4 equations and 4 unknowns (implementing the values for x_1 and x_2 for each combination of categories):

$$\log(148) = \hat{\beta}_0$$

$$\log(446) = \hat{\beta}_0 + \hat{\beta}_1$$

$$\log(545) = \hat{\beta}_0 + \hat{\beta}_2$$

$$\log(4024) = \hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$$

Therefore:

$$\hat{\beta}_0 = \log(148)$$

$$\to \hat{\beta}_1 = \log(446) - \hat{\beta}_0 = \log(446) - \log(148) = \log\left(\frac{446}{148}\right)$$

$$\to \hat{\beta}_2 = \log(545) - \hat{\beta}_0 = \log(545) - \log(148) = \log\left(\frac{545}{148}\right)$$

Therefore, $\hat{\beta}_3 = \log(4024) - \hat{\beta}_0 - \hat{\beta}_1 - \hat{\beta}_2$, the estimated coefficient for the interaction term, can be calculated:

$$\hat{\beta}_3 = \log(4024) - \log(148) - \log\left(\frac{446}{148}\right) - \log\left(\frac{545}{148}\right) = \log\left(\frac{4024}{\frac{446*545}{148}}\right) = \mathbf{0.3982}$$

4. Chi-squared Goodness of Fit

- a. Calculate the sample mean.
- b. Calculate the chi-square statistic
- 5. Predictions given fitted GLM
- a. Calculate the predicted claim size
- b. Calculate Variance of claim size