## Cairo University





3<sup>rd</sup> Year Comp. MTH3251- Fall 2022 Number theory - Sheet 1

- Prove or disprove: If  $a \mid (b + c)$ , then either  $a \mid b$  or  $a \mid c$ .
- Prove that for any integer a, one of the integers a, a + 2, a + 4 is divisible by 3.
- (3) Prove that if a and bare both odd integers, then if  $16|a^4 + b^4 2$ .
- (4) Prove or disprove that if a|bc, where a, b, and c are positive integers and  $a \neq 0$ , then a|b or a|c.
- (5) Show that if *n* is an integer then  $n^2 \equiv 0$  or 1 (mod 4)
- (6) Prove that if n is an odd positive integer, then  $n^2 \equiv 1 \pmod{8}$ .
- (7) Show that if  $\underline{n} \mid \underline{m}$ , where n and m are integers greater than 1, and if  $\underline{a} \equiv \underline{b} \pmod{\underline{m}}$ , where a and b are integers, then  $\underline{a} \equiv \underline{b} \pmod{\underline{n}}$ .
- (8) Determine whether each of these integers is prime.
  - **d**) 19 b) 27
  - c) 93 d) 101
- (9) Determine whether the integers in each of these sets are pairwise relatively prime.
  - a) 21, 34, 55
- b) 14, 17, 85
- (10) How many zeros are there at the end of 100! ?
- (11) Prove that the product of any three consecutive integers is divisible by 6.7
- (12) We call a positive integer perfect if it equals the sum of its positive divisors other than itself.

  a) Show that 6 and 28 are perfect.
  - Show that  $2^{p-1}(2^p 1)$  is a perfect number when  $2^{p-1}$  is prime.