

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

Análisis Funcional

Autor: Jesús Muñoz Velasco

Índice general

Repaso

Definición 0.1 (Espacio normado). E un espacio vectorial y $\|\cdot\|: E \to \mathbb{R}$ una función que verifica:

- 1. $||x|| \ge 0 \ \forall x \in E$
- 2. $||x|| = 0 \iff x = 0$
- 3. $||x + y|| \le ||x|| + ||y||$
- 4. $\|\lambda x\| = |\lambda| \ \forall x, y \in E, \ \lambda \in \mathbb{R}$

A esta función la llamaremos **norma** y diremos que E es un **espacio normado** Podemos definir además una función $d: E \times E \to \mathbb{R}$ dada por $d(x,y) = \|x - y\|$ $\forall x,y \in E$ a la que llamaremos **distancia**.

Decimos que un espacio E es **completo** si toda sucesión de Cauchy es convergente. Si E es un espacio normado completo, entonces $(E, \|.\|)$ es un **espacio de Banach**.

Definición 0.2 (Espacio prehilbertiano). Sea H es un espacio vectorial, un **producto escalar** es una función $(\cdot, \cdot): H \times H \to \mathbb{R}$ tal que verifica las siguientes propiedades:

1. Bilineal: para todo $x, y, z \in H$, $\alpha, \beta \in \mathbb{R}$ se verifica que

$$(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$$
$$(x, \alpha y + \beta z) = \alpha(x, y) + \beta(x, z)$$

- 2. Simétrica: $(x,y) = (y,x) \quad \forall x,y \in H$
- 3. Positiva: $(x, x) \ge 0 \quad \forall x \in H$
- 4. **Definida positiva:** $(x, x) > 0 \quad \forall x \in H \setminus \{0\}$

Las dos últimas propiedades se pueden resumir en $(x,x)=0 \iff x=0$.

Diremos que $(H, (\cdot, \cdot))$ es un **espacio prehilbertiano**.

Todo espacio prehilbertiano es en particular un espacio normado, ya que podemos definir $||x|| = \sqrt{(x,x)}$ que es claramente una norma.

Si $\|\cdot\|$ es completa, diremos que $(H,(\cdot,\cdot))$ es un **espacio de Hilbert**.

Ejemplo. Los siguientes espacios son de Banach:

- 1. $(\mathbb{R}, |\cdot|)$.
- 2. $(\mathbb{R}^N, |\cdot|)$, donde $|x| = |(x_1, x_2, \dots, x_N)| = \sqrt{x_1^2 + x_2^2 + \dots + x_N^2}$. Además es de Hilbert ya que $(x, y) = \sum_{i=1}^N x_i y_i$ es un producto escalar.
- 3. Dado¹ $A \subset \mathbb{R}^N$ tomamos $C_b(A) = \{f : A \to \mathbb{R} : f \text{ es continua y acotada en } A\}$. Podemos definir una norma en este espacio como

$$||f||_{\mathcal{C}_b(A)} = \sup\{|f(x)| : x \in A\}$$

4. Tomamos $K \subset \mathbb{R}^N$ compacto. Consideramos el conjunto de las funciones continuas en K denotado por $\mathcal{C}(K)$ y el espacio $(K, (\cdot, \cdot))$, donde

$$(f,g) = \int_{K} f(x)g(x)dx$$

es un producto escalar que hace a este un espacio prehilbertiano. Tendríamos

$$||f|| = \left(\int_K f(x)^2 dx\right)^{1/2}$$

Ejemplo (El espacio del punto 4 No es de Hilbert). Veámoslo con un contraejemplo. Tomamos $K = [0,1] \subset \mathbb{R}$ y podemos definir $\forall n \in \mathbb{N}$ la función $f_n : [0,1] \to \mathbb{R}^+$ tal que f_n^2 viene dada por la siguiente gráfica:

De esta forma tenemos que

$$||f_n||^2 = \int_0^1 f_n^2(x) dx = \frac{1}{n} \cdot \frac{1}{2} = \frac{1}{2n} \Rightarrow ||f_n|| = \frac{1}{\sqrt{2n}} \to 0$$

y vemos que

$$\begin{cases} \{f_n(x)\} \to 0 & \forall x \in (0,1] \\ \{f_n(0) = 1\} \to 1 \end{cases}$$

Con esto tenemos que la sucesión $\{f_n\} \to 0$ en $(\mathcal{L}([0,1]), (\cdot, \cdot))$ (ya que la norma converge a 0).

PARA MAÑANA RESOLVER QUÉ ES LO QUE NO ESTÁ CLARO (la contradicción para ser espacio de Hilbert).

¹la b de C_b viene de bounded (acotado en inglés)

Ejemplo. Consideramos $\emptyset \neq \Omega \subset \mathbb{R}^N$ medible, entonces podemos definir

$$L^2(\Omega) = \mathcal{L}^2(\Omega) / \sim = \{ f : \Omega \to \mathbb{R} \text{ medible } : \int_{\Omega} f(x)^2 dx < \infty \}$$

 $L^2(\Omega)$ con la norma definida anteriormente (en el punto 4) es un espacio de Hilbert (teorema de Fischer)

Ejemplo. Sea $1 \leq p < \infty$. Consideramos el conjunto

$$L^p(\Omega) = \left\{ f : \Omega \to \mathbb{R} \text{ medibles } : \int_{\Omega} |f|^p dx < \infty \right\}$$

Entonces tenemos que con la norma definida como

$$||f||_{L^p(\Omega)} = \left(\int_{\Omega} |f|^p dx\right)^{1/p}$$

es un espacio de Banach. Recordemos para este resultado la desigualdad de Hölder y Minkowski. Definimos para ello el conjugado de p de la siguiente forma²:

$$p' = \left\{ \begin{array}{ll} \frac{p}{p-1} & \text{si} & 1$$

Con esto tendremos que

$$\left. \begin{array}{l} f \in L^p(\Omega) \\ g \in L^{p'}(\Omega) \end{array} \right\} \Rightarrow fg \in L^1(\Omega)$$

Además, se tiene que

$$\int |f(x)g(x)|dx \leqslant \left(\int |f|^p dx\right)^{1/p} \left(\int |f|^{p'} dx\right)^{1/p'} = \|f\|_{L^p} \|g\|_{L^{p'}}$$

Ejemplo.

1.
$$(\mathbb{R}^N, \|\cdot\|_p)$$
 con $\|x\|_p = (\sum_{i=1}^N |x_i|^p)^{1/p}(x, y) = \sum_{i=1}^N x_i y_i$.

2.
$$(\mathbb{R}^N, \|\cdot\|_{\infty})$$
 con $\|x\|_{\infty} = \max\{|x_i| : i = 1, \dots, N\}$

3. Sea $p = \infty$. Tenemos

$$L^{\infty} = \{ f : \Omega \to \mathbb{R} \text{ medible } : \sup\{ |f(x)| : x \in \Omega \} < \infty \}$$

A este supremo lo llamaremos **supremo esencial**, que se define de la siguiente forma³:

$$\sup_{\Omega} |f| = \inf\{M \geqslant 0 : |f(x)| \leqslant M \ a.e. \ x \in \Omega\}$$

²donde asumimos que $1/\infty = 0$

³a.e viene de almost everywhere (casi por doquier en inglés)

Análisis Funcional Índice general

En algunos libros se denota por ess sup.

Podremos reescribir lo anterior como

$$L^{\infty} = \{ f : \Omega \to \mathbb{R} \text{ medible } : \sup_{\Omega} |f| < \infty \}$$

Entonces el espacio $(L^{\infty}, \|\cdot\|_{\infty})$ con $\|f\|_{\infty} = \sup_{\Omega} |f|$ es un espacio de Banach. La desigualdad de Hölder con $p = \infty$, p' = 1 nos dice que para $f \in L^{\infty}(\Omega)$, $g \in L^{1}(\Omega)$ entonces $fg \in L^{1}(\Omega)$ y $\|fg\|_{L^{1}} \leq \|f\|_{L^{\infty}} \|g\|_{L^{1}}$ es una norma en H.

Ejemplo. Consideramos $1 \leq p < \infty$ y definimos el conjunto de sucesiones.

$$\mathcal{L}^p = \{x : \mathbb{N} \to \mathbb{R} : \sum_{n=1}^{\infty} |x(n)|^p < \infty \}$$

Si definimos ahora

$$||x||_{\mathcal{L}^p} = \left(\sum_{n=1}^{\infty} |x(n)|^p\right)^{1/p}$$

entonces $(\mathcal{L}^p, \|\cdot\|_p)$ es un espacio de Banach. Para verlo podemos tomar $x \in \mathcal{L}^p$, $y \in \mathcal{L}^{p'}$ y tenemos que

$$xy \in \mathcal{L}^1$$
 y $||xy||_{\mathcal{L}^1} \leqslant ||x||_{\mathcal{L}^p} ||y||_{\mathcal{L}^{p'}}$

de la que se deduce la desigualdad de Mikowsky.

Para p=2 tenemos que $(\mathcal{L}^2, \|\cdot\|_2)$ es un espacio de Hilbert. Para $p=\infty$ podemos definir $\mathcal{L}^{\infty}=\{x:\mathbb{N}\to\mathbb{R}:x \text{ sucesión acotada}\}$ y con $\|x\|_{\infty}=\sup\{|x(n)|:n\in\mathbb{N}\}$ es un espacio de Banach.

Ejemplo. Podemos considerar los siguientes subespacios que seguirán siendo espacios de Banach:

- 1. Tomamos $C = \{x \in \mathcal{L}^{\infty} : x \text{ es convergente}\}$ y es un subespacio de \mathcal{L}^{∞} .
- 2. Podemos tomar otro subespacio de este, $C_0 = \{x \in C : x \text{ es convergente a } 0\}$ que de nuevo es un subespacio de \mathcal{L}^{∞} .

Espacios de Hilbert

Recordemos que un espacio de Hilbert es un par $(H, (\cdot, \cdot))$ donde H es un espacio vectorial y (\cdot, \cdot) es una función bilineal simétrica y definida positiva.

Proposición 0.1. Si H es prehilbertiano entonces se tiene:

1. Se cumple la Desigualdad de Cauchy-Schwarz, es decir

$$|(u,v)| \le ||u|| \cdot ||v||, \quad \forall u, v \in H$$

2. Se verifica la desigualdad del paralelogramo

$$\left\| \frac{u+v}{2} \right\|^2 + \left\| \frac{u-v}{2} \right\|^2 = \frac{1}{2} \left(\|u\|^2 + \|v\|^2 \right), \quad \forall u, v \in H$$

Teorema 0.2 (Teorema de la Proyección). Supongamos que H es un espacio Hilbertiano y $\emptyset \neq K \subset H$ un conjunto convexo y cerrado, entonces $\forall f \in H \exists_1 u \in K$ tal que ||f - u|| = dist(f, K). Además, dicho u está caracterizado por:

$$\left\{ \begin{array}{l} u \in K \\ (f - u, v - u) \leqslant 0 \quad \forall v \in K \end{array} \right.$$

Notaremos a dicha u por $P_K f$ y diremos que es la proyección de f sobre K

Demostración. En primer lugar tendremos que ver que $d(f, K) = \inf\{\|f - v\| : v \in K\}$ existe y se alcanza. Al ser un ínfimo de cantidades positivas sabemos que existe y nos quedará ver que se alcanza.

Por definición de ínfimo tenemos que

$$\exists \{v_n\} \subset K \text{ tal que } ||f - v_n|| \to d$$

Aplicando la desigualdad del paralelogramo para $u=f-v_n$ y $v=f-v_m$, con $n,m\in\mathbb{N}$

$$\left\| \frac{f - v_n + f - v_m}{2} \right\|^2 + \left\| \frac{f - v_n - (f - v_m)}{2} \right\|^2 = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right)$$

$$\left\| f - \frac{v_n + v_m}{2} \right\|^2 + \left\| \frac{v_m - v_n}{2} \right\|^2 = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right)$$

$$\frac{\|v_m - v_n\|^2}{4} = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right) - \left\| f - \frac{v_n + v_m}{2} \right\|^2$$

$$\|v_m - v_n\|^2 = 2 \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right) - 4 \left\| f - \frac{v_n + v_m}{2} \right\|^2$$

Análisis Funcional Índice general

Como K es convexo y $v_n, v_m \in K$ tendremos que $d\frac{v_n+v_m}{2} \in K$ y además $\left\| f - \frac{v_n+v_m}{2} \right\| \geqslant d$ por lo que tenemos

$$||v_m - v_n||^2 = 2(||f - v_n||^2 + ||f - v_m||^2) - 4d^2$$

Cuando $n \to \infty$ tenemos que $||f - v_n|| \to d$ y $||f - v_m|| \to d$ por lo que el término de la derecha tenderá a 0 cuando $n, m \to \infty$. Esto significa que la sucesión $\{v_n\}$ es de Cauchy.

Como H es de Hilbert, en particular es completo por lo que sabemos que $\{v_n\} \to u$ en $(H, (\cdot, \cdot))$.

Como además $\{v_n\} \subset K$ y K es cerrado, el límite $u \in K$. Tendremos que

$$d = \lim_{n \to \infty} ||f - v_n|| = ||f - u||$$

Y tendremos probada la existencia de u.

Veamos ahora la equivalencia entre la primera y la segunda parte del teorema, es decir

$$\begin{array}{l} u \in K \\ \|f-u\| = dist(f,K) \end{array} \right\} \iff \left\{ \begin{array}{l} u \in K \\ (f-u,v-u) \leqslant 0 \quad \forall v \in K \end{array} \right.$$

Veamos las dos implicaciones:

 \Rightarrow) Supongamos que $u \in K$ y sabemos que $||f - u|| \le ||f - v||$ para todo $v \in K$. Tomamos ahora $w \in K$ y consideramos el segmento que une u con w. Entonces $\forall w \in K$ y $\forall t \in [0, 1]$, al ser K convexo tendremos que

$$(1-t)u + tw \in K$$
 y $||f - u||^2 \le ||f - (1-t)u - tw||^2$

Aplicando la bilinealidad podemos reescribir esta última expresión como

$$||f - (1 - t)u - tw||^2 = (f - (1 - t)u - tw, f - (1 - t)u - tw) =$$

$$= ||f - u||^2 + t^2||w - u||^2 - 2t(f - u, w - u)$$

Sustituyendo en la expresión que teníamos anteriormente nos queda que:

$$0 \le t^2 ||w - u||^2 - 2t(f - u, w - u) \quad \forall t \in (0, 1]$$

Al dividir entre t nos queda

$$0 \le t \|w - u\|^2 - 2(f - u, w - u) \quad \forall t \in (0, 1]$$

y tomando ahora el límite cuando t tiende a 0 por la derecha queda que

$$0 \leqslant -2(f-u, w-u) \Rightarrow (f-u, w-u) \leqslant 0$$

Se deja como ejercicio demostrar la otra implicación y la unicidad de u.