### **Continuous-Time Markov Models**

**Markov assumption** = probability of change depends only on current state, not how long it has been in that state

# Our model of change depends on time: We must estimate branch lengths

Units of branch length will be expected number of substitutions per site

(= rate of substitions x time)



# Probabilities are dependent on time



$$\mu = 4\beta$$

 $A \longrightarrow A$ 

 $P_{AA} =$ 

**Probability nothing happened +** 

Probability something happened, but that the last thing that happened ended in an A



time  $(1 - e^{-\mu t})(1/4)$ **Probability that Probability** at least one the last thing

that happened

ends in an G

thing

happens

time  $(1 - e^{-\mu t})(1/4)$ 



ends in an C

thing

happens

time

$$P_{AT} =$$



**Probability** thing happens

**Probability that** at least one the last thing that happened ends in an T

# One last bit...substitutions vs. "events"

$$v = (3/4)\mu t = 3\beta t$$

$$4v/3 = \mu t$$

Only 3 out of 4 events results in a substitution. Thus, we can define the expected number of substitutions for a given time interval t as  $\nu$ .

$$P_{AA} = (e^{-\mu t}) + (1 - e^{-\mu t})(1/4)$$

$$P_{AG} = (1 - e^{-\mu t})(1/4)$$

$$P_{AC} = (1 - e^{-\mu t})(1/4)$$

$$P_{AT} = (1 - e^{-\mu t})(1/4)$$

$$P_{AA} = (1/4) + (3/4)(e^{-4\nu/3})$$
 $P_{AG} = (1/4) - (1/4)(e^{-4\nu/3})$ 
 $P_{AC} = (1/4) - (1/4)(e^{-4\nu/3})$ 
 $P_{AT} = (1/4) - (1/4)(e^{-4\nu/3})$ 

# Sanity check: Do they all add to 1?

#### Likelihood of an unrooted tree

(data shown for only one site)



#### Likelihood for site *k*



# Brute force approach would be to calculate $L_k$ for all 16 combinations of ancestral states and sum them

























### Lab Exercise in R

Goal:

Get some experience R

Understand probability, likelihoods, and Bayesian inference using non-phylogenetic models (linear regression)