Fundamental Methods of Data Science

Class 7

Linear Classifiers

Linear Regression

Linear Regression in Python

```
import statsmodels.formula.api as smf
est = smf.ols(formula="TRB ~ AST + STL + BLK", data=nba_data).fit()
est.summary()
```

Linear Regression in Python

Linear Regression in Python

After cleaning and normalizing the data

Evaluating the Model

Dep. Variable:	TRB	R-squared:	0.634
Model:	OLS	Adj. R-squared:	0.632
Method:	Least Squares	F-statistic:	272.9
Date:	Fri, 06 Oct 2017	Prob (F-statistic):	1.10e-102
Time:	09:48:10	Log-Likelihood:	-853.73
No. Observations:	476	AIC:	1715.
Df Residuals:	472	BIC:	1732.
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.0288	0.128	8.020	0.000	0.777	1.281
AST	0.0884	0.054	1.633	0.103	-0.018	0.195
STL	1.3464	0.221	6.100	0.000	0.913	1.780
BLK	3.7348	0.154	24.179	0.000	3.431	4.038

Omnibus:	110.206	Durbin-Watson:	1.716
Prob(Omnibus):	0.000	Jarque-Bera (JB):	314.747
Skew:	1.100	Prob(JB):	4.50e-69
Kurtosis:	6.321	Cond. No.	9.70

► Higher (Adj.) R-squared is normally better

Evaluating the Model

Dep. Variable:	TRB	R-squared:	0.634
Model:	OLS	Adj. R-squared:	0.632
Method:	Least Squares	F-statistic:	272.9
Date:	Fri, 06 Oct 2017	Prob (F-statistic):	1.10e-102
Time:	09:48:10	Log-Likelihood:	-853.73
No. Observations:	476	AIC:	1715.
Df Residuals:	472	BIC:	1732.
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.0288	0.128	8.020	0.000	0.777	1.281
AST	0.0884	0.054	1.633	0.103	-0.018	0.195
STL	1.3464	0.221	6.100	0.000	0.913	1.780
BLK	3.7348	0.154	24.179	0.000	3.431	4.038

Omnibus:	110.206	Durbin-Watson:	1.716
Prob(Omnibus):	0.000	Jarque-Bera (JB):	314.747
Skew:	1.100	Prob(JB):	4.50e-69
Kurtosis:	6.321	Cond. No.	9.70

- ▶ Higher (Adj.) R-squared is normally better
- ▶ What does it mean?

Statistics

- Understanding the R-squared measure
- Understanding how to improve the model
 - Selecting correct features
- Following material is based on https://onlinecourses.science.psu.edu/stat501/
 - For better understanding, please follow further the online material

Choosing the Best Line

Looking for correlation between Height and Weight

Choosing the Best Line

Looking for correlation between Height and Weight

- Some notation
 - \triangleright y_i observed response for instance i
 - \triangleright x_i predictor value for instance i
 - \hat{y}_i predicted response for instance i
 - $\hat{y_i} = b_0 + b_1 x_i$ linear formula

Least Square Error

▶ For each instance, the residual error is $e_i = y_i - \hat{y}_i$

Least Square Error

▶ For each instance, the residual error is $e_i = y_i - \hat{y}_i$

- ▶ Least square error find b_0 and b_1 which minimize
 - $\sum_{i=0}^n e_i^2$

Least Square Error

▶ For each instance, the residual error is $e_i = y_i - \hat{y}_i$

- ▶ Least square error find b_0 and b_1 which minimize
 - $\sum_{i=0}^{n} e_i^2$
- Assuming we have:
 - ► dashed $\sum_{i=0}^{n} e_i^2 = 766$ ► solid $\sum_{i=0}^{n} e_i^2 = 597$
- Which line is better?

Correlation

► Assume we've found the best line, can we now safely predict values?

Correlation

- Assume we've found the best line, can we now safely predict values?
 - ▶ We don't know if our sample match the population (later)
 - ► We don't know if there is a correlation between the dependent and the independent variables at all

Population Regression Line

► To know if our regression line is accurate, we can compare it against the "population" regression line

Population Regression Line

► To know if our regression line is accurate, we can compare it against the "population" regression line

- μ_{y} the mean of the dependent variable for the whole population
- **Each** sample has an error ϵ_i
- We can see the errors ϵ_i have equal variance (σ^2)

Correlation in Population and Variance

► Assume we are comparing two thermometers

Correlation in Population and Variance

Assume we are comparing two thermometers

• We know that $\sigma^2 = 0$ in this case, which one is more precise?

Correlation in Population and Variance

► Assume we are comparing two thermometers

- We know that $\sigma^2 = 0$ in this case, which one is more precise?
- ▶ But if we didn't know $\sigma^2 = 0$?

- ▶ In order to compute the variance, we need to take into account the whole population
 - Normally it is impossible, what can we do?

- ▶ In order to compute the variance, we need to take into account the whole population
 - Normally it is impossible, what can we do?
- We can estimate the variance

- n number of samples
- \triangleright y_i response of sample i
- ightharpoonup estimated mean

- ▶ In order to compute the variance, we need to take into account the whole population
 - ▶ Normally it is impossible, what can we do?
- We can estimate the variance

- n number of samples
- $ightharpoonup y_i$ response of sample i
- ightharpoonup estimated mean
- ▶ Why n 1?

- In order to compute the variance, we need to take into account the whole population
 - Normally it is impossible, what can we do?
- We can estimate the variance

- n number of samples
- $ightharpoonup y_i$ response of sample i
- ightharpoonup estimated mean
- ▶ Why n 1?
 - ► Since we only estimated the mean, we lose 1 "degree of freedom" and increase the variance

▶ How can we estimate the mean - \overline{y} ?

- ▶ How can we estimate the mean \overline{y} ?
- We can estimate the mean for the set of responses for x_i using our model
 - $\hat{y_i} = b_0 + b_1 x_i$

- ▶ How can we estimate the mean \overline{y} ?
- We can estimate the mean for the set of responses for x_i using our model

$$\hat{y_i} = b_0 + b_1 x_i$$

▶ The estimated variance is

•
$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$$

- ▶ How can we estimate the mean \overline{y} ?
- ▶ We can estimate the mean for the set of responses for x_i using our model

$$\hat{y_i} = b_0 + b_1 x_i$$

▶ The estimated variance is

•
$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$$

▶ Why n - 2?

- ▶ How can we estimate the mean \overline{y} ?
- We can estimate the mean for the set of responses for x_i using our model

$$\hat{y_i} = b_0 + b_1 x_i$$

▶ The estimated variance is

•
$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$$

- ▶ Why n 2?
 - ▶ We are estimating two values now, b_0 and b_1

- ► How can we check if our model capture a possible correlation between the variables?
 - ▶ We check if it explains the variance in the sample

- ► How can we check if our model capture a possible correlation between the variables?
 - We check if it explains the variance in the sample
- ▶ Below there are two examples containing a regression function, which one can be useful for prediction?

- ► How can we check if our model capture a possible correlation between the variables?
 - We check if it explains the variance in the sample
- ▶ Below there are two examples containing a regression function, which one can be useful for prediction?

▶ How can we determine that it is useful?

- ► How can we check if our model capture a possible correlation between the variables?
 - We check if it explains the variance in the sample
- ▶ Below there are two examples containing a regression function, which one can be useful for prediction?

- ▶ How can we determine that it is useful?
 - ▶ We compare it against another model

The Null Model

- ► In the above examples, we compare both functions against a constant model
 - \blacktriangleright Such a model is called the null model and it always predict $\hat{y_i} = \overline{y}$

R-squared

We can now compute for each example and model the following three values

$$SSR = \frac{\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2}{n-2}$$

•
$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$$

►
$$SSR = \frac{\sum_{i=1}^{n} (\hat{y_i} - \overline{y})^2}{n-2}$$
► $MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y_i})^2}{n-2}$
► $Tot = \frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-2}$

R-squared

- We can now compute for each example and model the following three values
 - $SSR = \frac{\sum_{i=1}^{n} (\hat{y_i} \overline{y})^2}{n-2}$

 - ► $MSE = \frac{\sum_{i=1}^{n-2} (y_i \hat{y}_i)^2}{n-2}$ ► $Tot = \frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{n-2}$
- $ightharpoonup SSR_A = 12$, $MSE_A = 170$, $Tot_A = 182$

R-squared

- We can now compute for each example and model the following three values
 - $SSR = \frac{\sum_{i=1}^{n} (\hat{y}_i \overline{y})^2}{n-2}$
 - $MSE = \frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{n-2}$
 - $Tot = \frac{\sum_{i=1}^{n} (y_i \overline{y})^2}{n-2}$
- $ightharpoonup SSR_A = 12$, $MSE_A = 170$, $Tot_A = 182$
- $ightharpoonup SSR_B = 670, MSE_B = 170, Tot_B = 840$

R-squared

Example A	Example B		
· · · · · · · · · · · · · · · · · · ·	\overline{y}		

- ► $SSR_A = 12$, $MSE_A = 170$, $Tot_A = 182$
- ► $SSR_B = 670$, $MSE_B = 170$, $Tot_B = 840$
- ▶ We can now define R − squared

►
$$R - squared = \frac{SSR}{Tot} = \frac{\sum_{i=1}^{n} (\hat{y_i} - \overline{y})^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$$

R-squared and Pearson Correlation Coefficient

- ▶ Remember that Pearson correlation coefficient is denoted by *R*
- ▶ What is the relationship between R and R squared?

R-squared and Pearson Correlation Coefficient

- ▶ Remember that Pearson correlation coefficient is denoted by *R*
- ▶ What is the relationship between R and R squared?
- Couldn't we just square R then?

R-squared and Pearson Correlation Coefficient

- ▶ Remember that Pearson correlation coefficient is denoted by *R*
- ▶ What is the relationship between R and R squared?
- Couldn't we just square R then?
 - Only for simple regression functions

R-squared relates to linear relationship

Pearson correlation of Year and USPopn = 0.959

► There might be a better function

Pearson correlation of Deaths and Magnitude = 0.732

Sensitive to outliers

Correlation does not imply causation

Hypothesis Test for the Population Correlation Coefficient

- ▶ All our computations so far were based on sample data
- How can we generalize our observations to the whole population?

Hypothesis Test for the Population Correlation Coefficient

- ▶ All our computations so far were based on sample data
- ► How can we generalize our observations to the whole population?
- We test our hypothesis that our data behaves in a certain way

Criminal Trial Analogy

- ▶ Null hypothesis (H_0) Defendant is not guilty
- ▶ Alternative hypothesis (H_1) Defendant is guilty

Criminal Trial Analogy

- ▶ Null hypothesis (H_0) Defendant is not guilty
- ▶ Alternative hypothesis (H_1) Defendant is guilty
- Jury uses evidence (sample data) to make a decision
 - ▶ If there is sufficient evidence to refute the assumption of innocence, they deem the defendant as guilty (they reject the null hypothesis)
 - ▶ If there is insufficient evidence, they do not reject the null evidence and the defendant is deemed innocent

Test Statistic and P-values

- How do we make decision?
 - We obtain the evidence (sample data) as a value denoting the behavior of the data
 - ▶ This value is called the **test statistic**
 - We check the probability of the test statistic to be this value given the null hypothesis
 - ► This is the P-value
 - If it is very low, we reject the null hypothesis and accept the alternative one

Hypothesis Test for the Population Correlation Coefficient

- When testing for population correlation
 - ▶ Test statistic: $t^* = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$
 - Null hypothesis: there is no correlation
 - Alternative hypothesis: there is some correlation
 - ► Compute the probability (P-value) that we have *t** given the null hypothesis
 - ▶ If the P-value is sufficiently small, reject the null hypothesis

Hypothesis Test for the Population Correlation Coefficient

Our dependent variable is total rebounds

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.0288	0.128	8.020	0.000	0.777	1.281
AST	0.0884	0.054	1.633	0.103	-0.018	0.195
STL	1.3464	0.221	6.100	0.000	0.913	1.780
BLK	3.7348	0.154	24.179	0.000	3.431	4.038

Adjusted R-squared in Multiple Linear Regression

- ► For every additional feature added to the model, the R-squared increases
 - Our model can never explain less variance
- In addition, having more features increases the chance of over-fitting

Adjusted R-squared in Multiple Linear Regression

- For every additional feature added to the model, the R-squared increases
 - Our model can never explain less variance
- In addition, having more features increases the chance of over-fitting
- Adjusted R-squared takes the number of used features into account

$$R_{adj}^2 = 1 - (\frac{n-1}{n-p})(1-R^2)$$

Having "Wrong" Predictors

- By including features which do not improve our model we incur several issues
 - We reduce the degree of freedom, which increases the estimated variance and lowers the power of our tests
 - Visualization and understanding are harder
 - Longer computation time

Example - IQ and Physical Characteristics

- Are a person's brain size and body size predictive of his or her intelligence?
- ► MLR Model: $IQ = b_0 + b_1 * Br + b_2 * Hht + b_3 * Wht$

Example - IQ and Physical Characteristics

- Are a person's brain size and body size predictive of his or her intelligence?
- ► MLR Model: $IQ = b_0 + b_1 * Br + b_2 * Hht + b_3 * Wht$

Model Summary

S R-sq R-sq(adj) 19.7944 29.49% 23.27%

Example - IQ and Physical Characteristics

- Are a person's brain size and body size predictive of his or her intelligence?
- ► MLR Model: $IQ = b_0 + b_1 * Br + b_2 * Hht + b_3 * Wht$

Model Summary

S R-sq R-sq(adj) 19.7944 29.49% 23.27%

Term	Coef	SE Coef	T-Value	P-Value
Constant	111.4	63.0	1.77	0.086
Brain	2.060	0.563	3.66	0.001
Height	-2.73	1.23	-2.22	0.033
Weight	0.001	0.197	0.00	0.998