Math 110A HW 5

Sava Spasojevic

July 29, 2018

1) Use the Rational Root Test to write $x^5 + 4x^4 + x^3 - x^2$ as a product of irreducible polynomials in $\mathbb{Q}[x]$.

Factoring yields $x^2(x^3 + 4x^2 + x - 1)$. For the polynomial in parenthesis, $r = \pm 1$ and $s = \pm 1$. Thus, the only possible roots are ± 1 . Neither are roots however, so the final product is $x^2(x^3 + 4x^2 + x - 1)$.

2) Show that \sqrt{p} is irrational for every positive prime integer p.

Proof. Suppose that p is a positive prime integer. Consider the function $f(x) = x^2 - p$. By The Rational Root Test, the possible roots in \mathbb{Q} of f(x) are of the form $\frac{r}{s}$ where r is one of $\pm 1, \pm p$ and s is ± 1 . This reduces the search for roots of f(x) to $\pm 1, \pm p$. Plugging in yields

$$f(\pm p) = (\pm p)^2 - p = p^2 - p \neq 0$$

$$f(\pm 1) = (\pm 1)^2 - p = 1 - p \neq 0$$

This is the case since $p \neq \pm 1, 0$. Thus, there are no rational roots of f(x). But we know that $f(\sqrt{p}) = (\sqrt{p})^2 - p = p - p = 0$ This shows that \sqrt{p} is a root. But, since there are no rational roots, $\sqrt{p} \notin \mathbb{Q}$. Thus, \sqrt{p} is irrational.

3) Show that $f(x) = 9x^4 + 4x^3 - 3x + 7$ is irreducible in $\mathbb{Q}[x]$ by finding a prime p such that f(x) is irreducible in $\mathbb{Z}_p[x]$.

Proof. Consider p=2. Then f(x) becomes

$$\bar{f}(x) = x^4 - x + 1 \tag{1}$$

By the Rational Root Test, the only possible roots are ± 1 . But,

$$\bar{f}(1) = 1^4 - 1 + 1 = 1 \neq 0$$

 $\bar{f}(-1) = (-1)^4 - 1 + 1 = 1 \neq 0$

Thus, this polynomial has no first degree factors. The only quadratic factors in $\mathbb{Z}_2[x]$ are $x^2, x^2 + x$, and $x^2 + x + 1$. However, if these were factors, then (1) would have linear factors, a contradiction. Finally, if $\bar{f}(x)$ has a factor of degree 3 then the other factor would have degree 1, another contradiction. Therefore, $\bar{f}(x)$ is irreducible in $\mathbb{Z}_2[x]$, hence by Theorem 4.25 f(x) is irreducible in $\mathbb{Q}[x]$.

4) Prove that for p prime,

$$f(x) = x^{p-1} + x^{p-2} + \dots + x^2 + x + 1$$

is irreducible in $\mathbb{Q}[x]$.

Proof. Consider $(x-1)f(x) = x^p - 1$. Then,

$$f(x) = \frac{x^p - 1}{x - 1}$$
 and $f(x + 1) = \frac{(x + 1)^p - 1}{x}$

Expanding $(x+1)^p$ by the Binomial theorem gives,

$$f(x+1) = \frac{x^p + \binom{p}{1}x^{p-1} + \binom{p}{2}x^{p-2} + \dots + \binom{p}{p-1}x}{x}$$
$$f(x+1) = x^{p-1} + \binom{p}{1}x^{p-2} + \dots + \binom{p}{p-2}x + \binom{p}{p-1}$$

Note that $p \nmid 1$ and $p \mid \binom{p}{p-1}$ since $\binom{p}{p-1} = p$. But $p^2 \nmid p = \binom{p}{p-1}$, so by Eisenstein's Criterion, f(x+1) is irreducible. Since f(x+1) is irreducible f(x) too must be irreducible.

5) Prove that $f(x) \equiv g(x) \mod p(x)$ if and only if f(x) and g(x) leave the same remainder when divided by p(x).

Proof. Suppose that $f(x) \equiv g(x) \mod p(x)$. Then

$$f(x) - g(x) = p(x)q(x)$$
 for some $q(x) \in F[x]$

 $f(x) = p(x)q_1(x) + r_1(x)$ and $g(x) = p(x)q_2(x) + r_2(x)$. Subtracting gives,

$$f(x) - g(x) = p(x)(q_1(x) - q_2(x)) + (r_1(x) - r_2(x))$$

But, $p(x) \mid f(x) - g(x)$ so $r_1(x) - r_2(x) = 0$ or $r_1(x) = r_2(x)$, meaning that f(x) and g(x) have the same remainder.

Assume that f(x) and g(x) leave the same remainder when divided by p(x). This means [f(x)] = [g(x)]. Since $f(x) \equiv f(x) \mod p(x)$, $f(x) \in [f(x)]$. So, $f(x) \in [g(x)]$ by assumption. This means $f(x) \equiv g(x) \mod p(x)$. \square

6) Let $f(x), g(x), p(x) \in \mathbb{Q}[x]$. Determine whether $f(x) \equiv g(x) \mod p(x)$ where $f(x) = x^5 - 2x^4 + 4x^3 - 3x + 1$; $g(x) = 3x^4 + 2x^3 - 5x^2 + 2$; $p(x) = x^2 + 1$.

$$f(x) - g(x) = x^5 - 5x^4 + 2x^3 + 5x^2 - 3x - 2 = (x^2 + 1)q(x)$$
 for some $q(x) \in F[x]$.

$$x^5 - 5x^4 + 2x^3 + 5x^2 - 3x - 2 = (x^3 - 5x^2 + x + 10)(x^2 + 1) - 4x - 8$$

There is a nonzero remainder, hence $f(x) \not\equiv g(x) \mod p(x)$.

7) Prove or disprove: If p(x) is irreducible in F[x] and $f(x)g(x) \equiv 0 \mod p(x)$, then $f(x) \equiv 0 \mod p(x)$ or $g(x) \equiv 0 \mod p(x)$.

Proof. $f(x)g(x) \equiv 0 \mod p(x)$ implies that [f(x)g(x)] = [0]. Or that $[f(x)] \cdot [g(x)] = [0]$. By Theorem 5.2, either [f(x)] = [0] or [g(x)] = 0. This says that $f(x) \equiv 0 \mod p(x)$ or $g(x) \equiv 0 \mod p(x)$.

8) If p(x) is not irreducible in F[x], prove that there exist $f(x), g(x) \in F[x]$ such that $f(x) \not\equiv 0 \mod p(x)$ and $g(x) \not\equiv 0 \mod p(x)$, but $f(x)g(x) \equiv 0 \mod p(x)$.

Proof. Suppose that p(x) is not irreducible in F[x]. Then p(x) can be written as the product of two lower degree polynomials, call them $f(x), g(x) \in F[x]$. Thus, f(x)g(x) = p(x) or $f(x)g(x) - 0 = p(x) \cdot 1_F$. Thus, $f(x)g(x) \equiv 0 \mod p(x)$. But since f(x) and g(x) have lower degree relative to p(x), it is true that $f(x) \not\equiv 0 \mod p(x)$ and $g(x) \not\equiv 0 \mod p(x)$. This makes sense, since if it were not the case f(x) = p(x)q(x) would imply that deg $f(x) = \deg p(x) + \deg q(x)$ which contradicts the fact that f(x) has lower degree than p(x). The same reasoning applies for g(x).

9) If f(x) is relatively prime to p(x), prove that there exists a polynomial $g(x) \in F[x]$ such that $f(x)g(x) = 1_F \mod p(x)$.

Proof. Suppose that f(x) is relatively prime to p(x). Then $(f(x), p(x)) = 1_F$. This means $\exists g(x), h(x) \in F[x]$ such that $f(x)g(x) + p(x)h(x) = 1_F$ or that $f(x)g(x) - 1_F = p(x)h(x)$. But, this is the same as saying $f(x)g(x) = 1_F \mod p(x)$.

10) Show the $\mathbb{R}/(x^2+1)$ is a field by verifying that every nonzero congruence class [ax+b] is a unit.

Proof.

$$[ax+b] \left[\frac{-a}{a^2 + b^2} x - \frac{b}{a^2 + b^2} \right] = \left[\frac{-a^2 x^2 - abx + abx + b^2}{a^2 + b^2} \right]$$
$$= \left[\frac{-a^2 x^2 + b^2}{a^2 + b^2} \right]$$
$$= \left[\frac{a^2 + b^2}{a^2 + b^2} \right]$$
$$= [1]$$

Thus, [ax + b] has a multiplicative inverse, so it is a unit.

11) In each part, explain why [f(x)] is a unit in F[x]/(p(x)) and find its inverse.

(a)
$$[f(x)] = [2x - 3] \in \mathbb{Q}/(x^2 - 1)$$

(b)
$$[f(x)] = [x^2 + x + 1] \in \mathbb{Z}_3[x]/(x^2 + 1)$$

(a) $x^2 - 1$ is irreducible in \mathbb{Q} , thus $(2x - 3, x^2 - 1) = 1_F$. This means 2x - 3 is a unit. To find the inverse, we solve for a, b, c, d in

$$(2x-3)(ax+b) + (cx+d)(x^2-1) = 1$$
$$cx^3 + (2a+d)x^2 + (2b-3a-2c)x - 3b - 2d = 1$$

After performing calculations (my work is attached to the back), we get c = 0, d = 4, b = -3, a = -2. Thus,

$$(2x-3)(-2x-3) + 4(x^2-1) = 1$$

So the inverse of 2x - 3 is -2x - 3.

(b) Clearly $(x^2 + x + 1, x^2 + 1) = 1_F$ in $\mathbb{Z}_3[x]$. This means $x^2 + x + 1$ is a unit. To find the inverse, we solve for a, b, c, d in

$$(x^{2} + x + 1)(ax + b) + (cx + d)(x^{2} + 1) = 1$$
$$(a + c)x^{3} + (a + b + d)x^{2} + (a + b + c)xb + d = 1$$

After performing calculations (my work is attached to the back), we get c = 1, d = 1, b = 0, a = 2. Thus,

$$(x^{2} + x + 1)(2x) + (x + 1)(x^{2} + 1) = 1$$

So the inverse of $x^2 + x + 1$ is 2x.

12) Find a fourth degree polynomial in $\mathbb{Z}_2[x]$ whose roots are the four elements of the field $\mathbb{Z}_2[x]/(x^2+x+1)$.

Consider $f(x) = x^2 + x + 1$

$$f(0) = 1 \neq 0$$

$$f(1) = 3 = 1 \neq 0$$

$$f(x) = x^{2} + x + 1 = 0$$

$$f(x+1) = (x+1)^{2} + x + 1 + 1$$

$$= x^{2} + 3x + 3$$

$$= x^{2} + x + 1 = 0$$

This implies that x and x + 1 are roots for $x^2 + x + 1$. So a fourth degree polynomial with all four elements in $\mathbb{Z}_2[x]$ as roots is $x(x+1)(x^2+x+1)$.