

Topic 5 Content

This lecture covers:

- Inductors
- Circuit analysis with inductors
- First order circuits with resistors and inductors (RL circuits)
 - Natural response
 - Step response

Corresponds to parts of Chapter 6 and 7 of your textbook

- An inductor is a circuit element that stores energy in its magnetic field.
 - An inductor consists of a coil of conducting wire.
 - Any conductor of electric current has inductive properties.
 - The inductive effect is typically enhanced by coiling the wire up.
- If a current is passed through an inductor, the voltage across it is directly proportional to the time rate of change in current.

$$v = L \frac{di}{dt}$$

- Inductance is the property whereby an inductor exhibits opposition to the change of current flowing through it.
- The symbol for inductance is L.
- Inductance is measured in henry, F, which are volts per ampere.

$$1 H = \frac{1 V}{1 A}$$

Circuit symbol for fixed inductor, (a) and (b), and variable inductor, (c).

- Inductance depends of the physical dimensions and construction of the inductor.
- For solenoid inductors, the inductance is given as follows:
 - N is the number of turns of the wire.
 - A is the **cross-sectional** area of the core.
 - ℓ is the **length** of the core.
 - μ is the **permeability** of the core.

$$L = \frac{N^2 \mu A}{\ell}$$

- The terms coil or choke are also used for inductors.
- Like capacitors, inductors are available in different values and types.
- They are described by their core material.
 - E.g. the core may be made of iron, steel, plastic, or air.
- Most inductors are rated in microhenry (μ H) to tens of henrys (H).
- They are used in power supplies, transformers, radios, TVs, radars, and electric motors.

- Passive sign convention applies to inductors as well.
 - If $v \times i > 0$, the inductor is being **charged** (absorbing energy).
 - If $v \times i < 0$, the inductor is **discharging** (supplying energy).
- The inductor's voltage v is proportional to the rate of change of its current i, with inductance L as the constant of proportionality, assuming passive sign convention.

$$v = L \frac{di}{dt}$$

Current will then be:

$$i(t) = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$$

where $i(t_0)$ is called the **initial current** or **initial conditions** at time t_0 .

Instantaneous power delivered to the inductor:

$$p = vi = Li \frac{di}{dt}$$

 The energy stored in the magnetic field that exists around the coil and wires of the can be then calculated as:

$$w(t) = \int_{t_0}^{t} p(\tau)d\tau = \int_{t_0}^{t} L \frac{di(\tau)}{d\tau} i(\tau) d\tau = L \int_{t_0}^{t} i(\tau)di(\tau) = L \frac{i(\tau)^2}{2} \left| \frac{t}{t_0} \right| d\tau$$

$$w(t) = \frac{1}{2} L(i(t)^2 - i(t_0)^2)$$
If $i(t_0) = 0 \longrightarrow w(t) = \frac{1}{2} Li(t)^2$

Properties of inductors

An inductor acts like a short circuit to DC current.

$$v = L \frac{di}{dt} = 0$$
 for constant current.

Properties of inductors

- Like an ideal capacitor, an ideal inductor does not dissipate energy.
 - Energy is absorbed from a circuit, stored as magnetic field and then released back to the circuit.
- A real inductor has a very small winding resistance R_w in series and a very small winding capacitance C_w in parallel with both, leading to a slow loss of stored energy.

Inductors in series

- Similar to resistors, inductors in series or parallel can be combined to simplify a circuit.
- For inductors in series, the current is the same across each inductor.
- Applying KVL and current-voltage relation $v = L \frac{di}{dt}$ for inductors:

$$v_{S} = v_{L_{1}} + v_{L_{2}}$$

$$v_{S} = L_{1} \frac{di_{L}}{dt} + L_{2} \frac{di_{L}}{dt}$$

$$v_{S} = (L_{1} + L_{2}) \frac{di_{L}}{dt} \rightarrow v_{S} = L_{eq} \frac{di_{L}}{dt}$$

$$L_{eq} = L_{1} + L_{2}$$

Inductors in series

 The equivalent inductance of any number of inductors in series is the sum of the individual inductances.

Inductors in parallel

- For inductors in parallel, the voltage is the same across each inductor.
- Applying KCL and voltage-current relation for inductors:

$$\begin{split} i_S &= i_{L_1} + i_{L_2} \\ i_S &= \frac{1}{L_1} \int_{t_0}^t v_L(\tau) d\tau + i_{L_1}(t_0) + \frac{1}{L_2} \int_{t_0}^t v_L(\tau) d\tau + i_{L_2}(t_0) \\ i_S &= \left(\frac{1}{L_1} + \frac{1}{L_2}\right) \int_{t_0}^t v_L(\tau) d\tau + \left(i_{L_1}(t_0) + i_{L_2}(t_0)\right) \\ & \leftrightarrow i_S = \frac{1}{L_{\rm eq}} \int_{t_0}^t v_L(\tau) d\tau + i_{L_{\rm eq}}(t_0) \\ & \frac{1}{L_{\rm eq}} = \frac{1}{L_1} + \frac{1}{L_2} \quad \text{or} \quad L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2} \\ & \text{and} \quad i_{L_{\rm eq}}(t_0) = i_{L_1}(t_0) + i_{L_2}(t_0) \end{split}$$

Inductors in parallel

 The reciprocal of the equivalent inductance of any number of inductors in parallel is the sum of the individual reciprocal inductances.

Characteristics of basic elements

Important characteristics of the basic elements.[†]

Relation	Resistor (R)	Capacitor (C)	Inductor (L)
v-i:	v = iR	$v = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau + v(t_0)$	$v = L\frac{di}{dt}$
<i>i-v</i> :	i = v/R	$i = C\frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$
<i>p</i> or <i>w</i> :	$p = i^2 R = \frac{v^2}{R}$	$w = \frac{1}{2}Cv^2$	$w = \frac{1}{2}Li^2$
Series:	$R_{\rm eq} = R_1 + R_2$	$C_{\rm eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\rm eq} = L_1 + L_2$
Parallel:	$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\rm eq} = C_1 + C_2$	$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$
At de:	Same	Open circuit	Short circuit
Circuit varia	ble		
change abruptly: Not applicable v			i

[†]Passive sign convention is assumed.

Exercise

In the circuit below, $i(t) = 4(2 - e^{-10t})$ mA. If $i_2(0) = -1$ mA, find $i_1(0)$, v(t), $v_1(t)$ and $v_2(t)$, $i_1(t)$ and $i_2(t)$.

Let's consider a circuit with a single inductor, charged to an initial current I_o and connected to a resistor. How will it behave?

We can use KVL to get:

$$v_L + v_R = 0$$
$$L\frac{di}{dt} + Ri = 0$$

Note: We will consider how this inductor was charged later in this lecture.

Note: A circuit characterised by a first order differential equation is called a first order circuit.

Solve differential equation:

Rearrange:

$$L\frac{di}{dt} = -iR$$
$$\frac{di}{dt} = \frac{-iR}{L}$$

Separate:

$$\frac{1}{i}di = \frac{-R}{L}dt$$

Integrate:

$$\int \frac{1}{i} di = \frac{-R}{L} \int dt$$

$$\ln(i) = \frac{-R}{L}t + D$$

Solve for v(t)

$$i(t) = e^{-\frac{R}{L}t + D}$$

$$i(t) = e^{-\frac{R}{L}t} e^{D}$$

$$i(t) = Ae^{-\frac{R}{L}t}$$

Apply initial conditions $i(0) = Ae^0 = A = I_0$

$$i(t) = I_0 e^{-\frac{R}{L}t}$$

- There is no need to derive the differential equation solution every time, just use the result.
- The result shows that the current response of the RL circuit is an exponential decay of the initial current.
- As in the case of RC circuits, the time constant of this circuit is the time required for the response to decay to 1/e (or 36.8%) of its initial value or to increase to 1 1/e (or 63.2%) of its final value. It is denoted by τ.

- Follow these steps to find the natural (or source-free response) of RL circuits:
 - 1. Find the **initial current** $i(0) = I_0$ through the inductor **before** it is connected to the resistor.
 - The inductor is assumed to be fully charged at the beginning and can be replaced with a short circuit.
 - 2. Find the **time constant** $\tau = \frac{L}{R}$.
 - If the circuit has **more than one resistor**, the resistance that we need to find in order to calculate the time constant is the equivalent resistance as seen by the terminals of the inductor, i.e. the **Thevenin equivalent resistance** $R = R_{Th}$.
 - When possible, this resistance can be obtained by simplification of series or parallel resistances.
 - 3. Calculate the current through the inductor as $i(t) = I_0 e^{-\frac{t}{\tau}}$.
 - 4. Find any other circuit variable using the inductor's current.

Note: A switch which opens or closes can remove part of the circuit or add something to it.

Exercise

Find the currents i and i_x for t > 0 if the initial current is i(0) = 10 A.

Exercise

The switch in the circuit has been closed for a long time. At t=0, the switch is opened. Find the current i(t) for t > 0.

- Step response is the response of the circuit due to a sudden application of a DC voltage or current.
 - It is the circuit behaviour when the excitation/input is the step function, which may be a voltage or a current source.
 - We can model this behavior with a switch opened or closed at $t = t_0$.
- Let's assume that the inductor is initially energised with a current I₀. Since the current of the inductor cannot change instantaneously:

$$i(0^-)=i(0^+)=I_0$$

Note: $i(0^-)$ is the inductor current just before switching and $i(0^+)$ just after switching.

- Following an analogous process to the one shown in Topic 5 for RC circuits, we find that the **current response** of the RL circuit will change from the initial I_o to the value of V_s/R in an **exponential manner**.
 - Depending on the value of initial conditions I_0 and voltage source V_s , the inductor can be charged or discharged.

$$i(t) = \begin{cases} I_0, & t < 0 \\ \frac{V_s}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-\frac{t}{\tau}}, & t > 0 \end{cases}$$

 Recall that the complete response in first order circuits can be described as the sum of transient response i_t and steady-state response i_{ss}.

$$i = i_t + i_{ss}$$

Transient response is always a decaying exponential:

$$i_t = Ae^{-\frac{t}{\tau}}, \qquad \tau = \frac{L}{R}$$

- The steady-state response is obtained a long time after the switch is closed (about 5τ).
- Replace inductor with **short circuit** and find the current through it:

$$i_{ss} = \frac{V_s}{R}$$

Adding the responses:

$$i = Ae^{-\frac{t}{\tau}} + \frac{V_S}{R} \qquad \xrightarrow{i(0^-) = i(0^+) = I_0} \qquad I_0 = A + \frac{V_S}{R} \rightarrow A = I_0 + \frac{V_S}{R}$$
Apply initial conditions

• Therefore:
$$i(t) = \frac{V_S}{R} + \left(I_0 - \frac{V_S}{R}\right)e^{-\frac{t}{\tau}}$$

- More specifically:
 - 1. First stage of steady-state (t < 0):

There has been **no change** in the circuit for a **long time** and the inductor is a **short circuit** with $i(0) = I_0$.

- 2. Transient stage $(0 < t < 5\tau)$: The inductor's voltage changes **exponentially** with $\tau = \frac{L}{R}$.
- 3. Second stage of steadystate ($t > 5\tau$):

The inductor's current reaches its final value or steady-state value and becomes short circuit again with $i(t) = \frac{V_s}{R}$ when $t \to \infty$ or $i(\infty) = \frac{V_s}{R}$.

$$\frac{V_S}{R} + \left(I_0 - \frac{V_S}{R}\right)e^{-\frac{t}{\tau}}, \qquad t > 0$$

$$i(t) = i(\infty) + [i(0) - i(\infty)]e^{-\frac{t}{\tau}}, \quad t > 0$$

- Follow these steps to find step response of RL circuits:
 - 1. Find the **initial current** i(0) at t=0 through the inductor **before any changes** in the circuit (t<0).
 - The inductor is assumed to be a short circuit.
 - 2. Find the **final current** $i(\infty)$ at $t \to \infty$ through the inductor **after the changes** in the circuit $(t \ge 0)$.
 - The inductor is assumed to be a short circuit.
 - 3. Find the time constant $\tau = \frac{L}{R_{\rm Th} \infty}$ after the changes in the circuit.
 - $R_{\text{Th}_{-}\infty}$ is Thevenin equivalent resistance after the changes $(t \ge 0)$.
 - 4. Calculate the current through the inductor as:

$$i(t) = i(\infty) + [i(0) - i(\infty)]e^{-\frac{t}{\tau}}$$

5. Find any other circuit variable using the inductor's current.

Note: A switch which opens or closes can remove part of the circuit or add something to it.

Exercise

Find i(t) in the circuit for t > 0 assuming that the switch has been closed for a long time.

Exercise

Find i(t) in the circuit for t > 0 assuming that the switch has been closed for a long time.

Questions?

