Тема 3. Основы использования и работы в прикладной компьютерной программе (системе компьютерной алгебры) Maxima.

Лабораторная работа – введение.

Задание 1.1

Компьютерная обработка информации.

1. Модели компьютерной обработки информации

Компьютерная обработка информации включает в себя формализованные подходы для представления и преобразования данных. Основные модели включают:

• Детерминированные модели:

- Такие модели работают с точными данными и выполняют операции с гарантированным результатом. В них каждая входная величина соответствует однозначному результату. Примером может быть моделирование работы процессоров или математические модели, основанные на определенных алгоритмах.
- о Пример: алгоритм Евклида для нахождения наибольшего общего делителя.

• Стохастические модели:

- Эти модели учитывают случайные факторы и неопределенность. Они используются для обработки данных с элементами неопределенности, где результат может иметь вероятностную природу.
- о **Пример**: модели машинного обучения, такие как нейронные сети, где результат может варьироваться в зависимости от входных данных и веса связей.

• Иерархические модели:

- Эти модели представляют систему данных в виде уровней, где каждый уровень обрабатывается на основе данных предыдущего. Они эффективны для организации сложных систем с множеством взаимосвязанных элементов.
- о Пример: иерархическая модель базы данных.

• Сетевая модель:

- Обработка данных в сетевых моделях осуществляется через узлы, соединенные между собой. Эти модели используются для представления сложных взаимосвязей между элементами, например, в компьютерных сетях или графах.
- о Пример: модель графов для поиска кратчайшего пути.

2. Методы компьютерной обработки информации

Методы обработки информации включают алгоритмы и подходы, которые используются для преобразования, анализа и хранения данных.

• Методы численного анализа:

- Используются для решения математических задач с помощью компьютеров,
 включая вычисление корней уравнений, интегрирование, дифференцирование,
 интерполяцию и др.
- о Пример: метод Ньютона для нахождения корней уравнений.

• Методы символьной обработки:

- Включают работу с символами, такими как переменные, уравнения, выражения. Эти методы используются в системах компьютерной алгебры (CAS).
- о Пример: символьное вычисление производных или интегралов.

• Методы машинного обучения и анализа данных:

- Включают алгоритмы классификации, кластеризации, регрессии и другие методы, используемые для автоматического извлечения информации из больших объемов данных.
- о **Пример**: метод ближайших соседей (k-NN) для классификации.

• Методы обработки естественного языка (NLP):

- Направлены на обработку, анализ и генерацию текста. Используются в чат-ботах, системах поиска информации и переводах.
- о Пример: токенизация текста и алгоритмы анализа тональности.

• Методы криптографии:

- о Используются для защиты данных, шифрования и дешифрования информации.
- о **Пример**: метод RSA для шифрования данных.

3. Средства компьютерной обработки информации

Средства обработки информации включают различные аппаратные и программные компоненты, которые обеспечивают выполнение методов и моделей.

• Программные средства:

- Операционные системы: Windows, Linux, macOS обеспечивают работу
 компьютера и взаимодействие между программами и аппаратными средствами.
- о **Прикладные программы**: специализированные программы для обработки текстов, таблиц, изображений, звука и видео.
 - Примеры: Microsoft Excel для обработки числовой информации, MATLAB для математического моделирования.

- о Программное обеспечение для работы с базами данных: обеспечивает хранение, организацию и обработку больших объемов информации.
 - Пример: MySQL, Oracle.

• Аппаратные средства:

- о **Процессоры (CPU, GPU)**: обеспечивают выполнение инструкций программ и обработку данных.
- о **Оперативная память (RAM)**: хранит временные данные, которые используются при выполнении программ.
- о **Системы хранения данных**: жесткие диски, SSD, серверные системы обеспечивают долговременное хранение информации.
- **Сетевые устройства**: маршрутизаторы, коммутаторы и серверы для передачи и обработки данных в сетях.

• Облачные вычисления:

- о Предоставляют ресурсы для обработки информации через интернет.

 Пользователи могут арендовать вычислительные мощности и сервисы, такие как

 Amazon Web Services (AWS) и Google Cloud Platform (GCP).
- о Используются для обработки больших объемов данных, хранения и выполнения сложных вычислений.

Структуры данных в компьютерной алгебре.

Структуры данных играют важную роль в компьютерной алгебре, обеспечивая эффективное представление и обработку математических объектов и выражений. В компьютерной алгебре часто используются следующие структуры данных:

1. Списки

• Описание: Списки являются базовой структурой данных, которая хранит упорядоченные элементы, включая числа, переменные, функции или другие структуры.

• Использование:

- о Представление математических выражений в виде последовательностей операций.
- о Хранение наборов коэффициентов многочленов или элементов матриц.
- Пример: Многочлен $3x2+2x+13x^2+2x+13x2+2x+1$ можно представить как список коэффициентов [3, 2, 1].

2. Деревья

• Описание: Дерево — это иерархическая структура данных, где каждый узел может иметь дочерние узлы. Каждый узел дерева представляет собой элемент или операцию, а ветви — аргументы этой операции.

• Использование:

- о Символьные вычисления: дерево может быть использовано для представления математических выражений. Узлы могут содержать операторы (+, -, *, /) или функции (sin, cos), а листья операнды (переменные или константы).
- о Построение и оптимизация выражений.
- **Пример**: Выражение (x+y)*z(x + y) * z(x+y)*z может быть представлено в виде дерева:
 - о Корень: оператор умножения (*),
 - Левый потомок: оператор сложения (+) с дочерними узлами ххх и ууу,
 - о Правый потомок: переменная zzz.

3. Графы

• Описание: Графы — это структуры, состоящие из узлов (вершин) и связей (ребер) между ними. В зависимости от задач графы могут быть направленными или ненаправленными.

• Использование:

- Представление сложных взаимосвязей между элементами, например, в системе линейных уравнений.
- Использование в решении задач оптимизации, таких как поиск кратчайшего пути или минимизации вычислений.
- **Пример**: Граф может быть использован для представления множества функций, где каждая вершина это функция, а ребра зависимости между ними.

4. Массивы и матрицы

• Описание: Массивы и матрицы — это структуры данных для представления многомерных числовых данных. Массив — это упорядоченная коллекция чисел или выражений, матрица — двумерный массив.

• Использование:

- о Решение систем линейных уравнений.
- Представление данных в символьной алгебре, таких как коэффициенты многочленов.
- **Пример**: Система уравнений может быть представлена в виде матрицы коэффициентов, например, для решения методом Гаусса.

5. Множества

• Описание: Множество — это структура данных, которая хранит уникальные элементы без повторений и в произвольном порядке.

• Использование:

- Представление математических множеств, таких как корни уравнений или множество решений.
- Операции объединения, пересечения и разности над множествами чисел или выражений.
- Пример: Множество решений уравнения $x2=4x^2=4x^2=4x^2=4$ может быть представлено как $\{-2,2\}\setminus\{-2,2\}$.

6. Хэш-таблицы

• Описание: Хэш-таблицы — это структуры данных, которые ассоциируют ключи с определенными значениями для быстрого доступа.

• Использование:

- о Хранение переменных и их значений во время вычислений.
- о Кэширование промежуточных результатов для ускорения вычислений, особенно в символьных системах.
- Пример: Для выражения $f(x)=x^2+2xf(x)=x^2+2xf(x)=x^2+2x$, система может сохранить значение f(2)f(2)f(2) в хэш-таблице для быстрого доступа при повторном вычислении.

7. Стек

• Описание: Стек — это структура данных, работающая по принципу «последний вошел — первый вышел» (LIFO).

• Использование:

- Используется для хранения промежуточных результатов вычислений, например,
 при разборе выражений в обратной польской записи.
- Управление вложенными функциями и выражениями.
- Пример: При вычислении выражения (2+3)*4(2+3)*4 система может сначала сохранить результат (2+3)(2+3)(2+3) в стеке, а затем умножить его на 4.

8. Очередь

• **Описание**: Очередь — это структура данных, работающая по принципу «первый вошел — первый вышел» (FIFO).

• Использование:

• Обработка задач в символьных вычислениях, где последовательность операций должна выполняться в определенном порядке.

- о Обработка алгоритмов в параллельных вычислениях.
- Пример: Вычисления могут выполняться по мере добавления операций в очередь для последовательной обработки.

Перспективы и будущее развитие

С развитием компьютерной алгебры структура данных становится все более важной для повышения эффективности вычислений и работы с большими символьными выражениями. Современные системы, такие как MATHEMATICA и Maple, продолжают улучшать алгоритмы, которые позволяют более эффективно использовать структуры данных. Одним из направлений развития является интеграция с квантовыми вычислениями, где структуры данных могут быть использованы для моделирования квантовых алгоритмов.

Тенденции:

- 1. Оптимизация структур данных для работы с большими выражениями и системами уравнений.
- 2. **Интеграция с машинным обучением** для автоматической классификации и упрощения математических объектов.
- 3. Использование распределенных и параллельных вычислений для ускорения символьных вычислений на больших наборах данных.

Таким образом, структуры данных в компьютерной алгебре остаются важным элементом, обеспечивающим эффективность символьных и численных расчетов.

Основные этапы развития компьютерной алгебры.

- 1. Появление концепции и первых алгоритмов (1950–1960-е годы):
 - Начало разработки алгоритмов для работы с символьными вычислениями. Ранее большинство вычислительных методов было сосредоточено на численных расчетах.
 - Разработка основ символьной математики: первые алгоритмы для разложения многочленов, нахождения производных и интегралов.
 - **Теоретические основы**: формализация понятий, связанных с символьными вычислениями, включая введение понятий алгебраических структур, таких как поля и кольпа.
- 2. Первые системы компьютерной алгебры (1960–1970-е годы):

- **FORTRAN**: первые программы для символьной математики были написаны на языках программирования общего назначения, таких как Fortran.
- Разработка специализированных систем, таких как **REDUCE** и **MACSYMA**. Эти системы могли решать уравнения, выполнять упрощение выражений и вычислять интегралы символическим образом.
- **Рождение первых компьютерных систем алгебры (CAS)**, где стали использоваться алгоритмы для более сложных математических операций.

3. Расширение возможностей и применения (1980-е годы):

- Появление **MATHEMATICA** (1988) и **Maple** (1981), что значительно расширило доступность и функциональность компьютерной алгебры для широкого круга пользователей.
- Развитие символьных алгоритмов для работы с большими выражениями, интеграцией, дифференцированием и решением систем уравнений.
- Появление **модульных систем**, где разработчики могли добавлять новые функции или модифицировать существующие.

4. Интеграция с другими областями и рост популярности (1990–2000-е годы):

- Интеграция с численными методами: разработка гибридных систем, которые могут сочетать как численные, так и символьные вычисления.
- Расширение области применения компьютерной алгебры на физику, химию, биоинформатику и другие научные дисциплины.
- Повышение эффективности алгоритмов, что позволило работать с большими символьными выражениями и уравнениями.

5. Современный этап (2010-е годы – по настоящее время):

- Развитие **параллельных вычислений** и использование графических процессоров (GPU) для ускорения символьных операций.
- Применение систем компьютерной алгебры в обучении, исследовательской деятельности и инженерии, что способствовало дальнейшему распространению программ, таких как SageMath.
- Развитие облачных вычислений: системы компьютерной алгебры теперь доступны онлайн, что позволяет пользователям выполнять сложные вычисления удаленно.

6. Будущее компьютерной алгебры:

• Увеличение интеграции с искусственным интеллектом и машинным обучением для автоматизации открытия новых математических результатов.

• Продолжение разработки более эффективных и масштабируемых символьных алгоритмов, особенно в свете развития квантовых вычислений.

Системы компьютерной алгебры. Достижения и перспективы.

Система	Тип	Совмест	Основные	Частот	Достижени	Перспектив
	(онлайн/устанав	имость	возможност	a	я	ы
	ливаемая)		и	обновл		
				ений		
MATHEM	Устанавливаема	Windows	Символьные	Обновл	Лидер в	Интеграция
ATICA	я и облачная	, macOS,	вычисления,	ения	области	с облачными
		Linux	машинное	ежегод	научных	сервисами,
			обучение,	но	расчетов,	развитие
			визуализац		поддержка	ИИ,
			ия данных,		нейронных	улучшение
			обработка		сетей и ИИ	производите
			больших			льности для
			данных			обработки
						больших
						данных
Maple	Устанавливаема	Windows	Дифференц	Обновл	Мощные	Углубленна
	я и облачная	, macOS,	иальные	ения	инструмент	я поддержка
		Linux	уравнения,	пример	ы для	математичес
			символьная	но раз	алгебры,	кого
			математика,	в год	большая	моделирова
			инженерные		библиотека	ния и
			расчеты,		встроенных	визуализаци
			оптимизаци		математиче	И,
			я		ских	улучшение
					функций	интеграции
						с облачными
						сервисами

SageMath	Устанавливаема	Windows	Открытая	Обновл	Бесплатное	Развитие
	я и онлайн	, macOS,	система для	ения	и мощное	через
		Linux	символьных	сообще	ПО для	открытое
			вычислений,	ства	ученых и	сообщество,
			поддержка	кажды	инженеров,	улучшение
			линейной	e 6-12	интеграция	совместимос
			алгебры,	месяце	c Python	ти с другими
			комбинатор	В		системами и
			ики			расширение
						функционал
						ьности
Wolfram	Онлайн	Любая	Автоматичес	Постоя	Быстрый	Развитие в
Alpha		OC	кий расчет	нные	доступ к	направлени
		(через	уравнений,	обновл	сложным	и поддержки
		браузер)	символьные	ения	расчетам	сложных
			вычисления,		без	символьных
			поиск		установки	вычислений,
			информаци		программн	интеграция
			и на основе		ого	с ИИ для
			данных		обеспечени	улучшения
					я,	обработки
					интеграция	запросов
					с базами	
					данных	
Maxima	Устанавливаема	Windows	Символьные	Нескол	Простой	Повышение
	я и онлайн	, macOS,	вычисления,	ько раз	интерфейс,	производите
		Linux	упрощение	в год	ориентиров	льности,
			выражений,		анность на	улучшение
			решение		научное	интерфейса
			уравнений и		сообщество	И
			систем			расширение
						математичес
						ких

						возможносте
						й
SymPy	Устанавливаема	Windows	Символьные	Регуля	Легкость	Развитие в
	я (Python-	, macOS,	вычисления	рные	интеграции	рамках
	библиотека)	Linux	в Python,	обновл	с другими	Python-
			работа с	ения в	библиотека	экосистемы,
			математичес	рамках	ми Python,	улучшение
			кими	Python-	активное	поддержки
			выражения	сообще	сообщество	для
			ми и	ства		сложных
			уравнениям			символьных
			И			расчетов
GeoGebra	Устанавливаема	Windows	Динамическ	Обновл	Популярно	Углубление
	я и онлайн	, macOS,	ая	ения	сть в	интеграции
		Linux,	геометрия,	нескол	образовате	с учебными
		Android,	графики,	ько раз	льной	системами,
		iOS	математика	в год	среде,	расширение
			для		поддержка	возможносте
			студентов и		множества	й в области
			преподавате		платформ	научных и
			лей			инженерных
						расчетов
Mathcad	Устанавливаема	Windows	Инженерны	Ежегод	Популярно	Интеграция
	я		е расчеты,	ные	сть среди	с другими
			интеграция	или	инженеров,	инженерны
			с системами	реже	поддержка	МИ
			проектирова		сложных	платформам
			ния (CAD),		расчетов и	и,
			символьные		их	улучшение
			вычисления		визуализац	возможносте
					ии	й для
						работы с

		большими
		проектами

Задание 1.2. Платное программное обеспечение.

No	Название	Цена	Официальный	Системн	Возможности	Жизненный
			сайт	ые		цикл
				требован		
				ия		
1	Wolfram	795\$	https://wolfram.co	Windows,	Символьные	1988:
	Mathemat	(стандартная	<u>m</u>	macOS,	и числовые	Появление
	ica)		Linux	вычисления,	первой
					обширные	версии
					библиотеки,	Mathematica.
					интеграция с	С тех пор
					ИИ,	система
					интерактивн	прошла
					ые блокноты	множество
						крупных
						обновлений,
						включая
						интеграцию с
						искусственн
						ым
						интеллектом
						и
						параллельны
						МИ
						вычислениям
						И
						Активное,

						регулярные
						обновления;
						зрелая
						система
2	Maple	995\$	https://maplesoft.c	Windows,	Символьные	1982:
		(академическ	<u>om</u>	macOS,	вычисления,	Выпущена
		ая)		Linux	алгебра,	первая
					калькуляция	версия. В
					, физические	последующие
					модели,	годы
					поддержка	добавлены
					единиц	мощные
					измерения	символьные
						и числовые
						возможности,
						улучшен
						графический
						интерфейс
						Активное,
						регулярно
						обновляется
3	LiveMath	69\$ - 199\$	https://livemath.co	Windows,	Алгебраическ	1994 : Вышла
			<u>m</u>	macOS,	ие	под
				Linux	преобразован	названием
					ия, 2D/3D	Theorist.
					графики,	Позже
					простой	переименова
					интерфейс,	на в
					публикация в	LiveMath, c
					интернете	акцентом на
						интерактивн
						ую работу с
						графиками.

						Активное,
						последнее
						обновление в
						2022 году
4	MathStudi	19,99\$	https://mathstudio.	iOS,	Графики,	2009:
	0	(базовая	<u>com</u>	macOS,	калькуляция	изначально
		версия)		Windows	, операции с	известна как
					матрицами,	SpaceTime,
					динамическо	переименова
					e 3D	на в
					построение	MathStudio в
					графиков	2011.
						Постоянно
						обновляется,
						фокусируясь
						на
						мобильных
						устройствах

Наблюдения и перспективы:

- **Частота обновлений**: Wolfram Mathematica и Maple являются самыми развитыми системами, регулярно получающими новые функции и улучшения. Mathematica интегрируется с технологиями ИИ, что может указать на дальнейшее развитие в сторону машинного обучения.
- Платформы: Большинство систем кроссплатформенные, хотя некоторые, например, MathStudio, более легковесные и доступны для мобильных операционных систем, что отражает растущую тенденцию к мобильной совместимости в вычислениях.
- Перспективы: Будущее CAS-инструментов движется в сторону более интерактивных и удобных для пользователя сред, таких как система LiveMath, которая делает упор на простоту использования, визуальные манипуляции с графиками и минимальные знания программирования для пользователей.

Задание 1.3. Бесплатное программное обеспечение.

No	Официальный	Системные	Возможности	Годы жизненного цикла и
	сайт	требования		этапы развития
	разработчика			

1	SageMath	Windows, macOS, Linux, 64-bit	Общая математика, алгебра, статистика, работа с большими данными, графика	Разработка с 2005 года. Этапы: первое публичное издание Sage 1.0 — 2006 г. Последняя версия — 2023 г. (9.8). Программа активно развивается и актуальна.
2	Maxima	Windows, macOS, Linux, 32/64- bit	Символьные вычисления, алгебра, дифференциальные уравнения, манипуляции с выражениями	Появилась в 1967 году как Масѕута. Открыта в 1998 году под GNU GPL. Последняя версия — 2022 г. (5.46.0). Программа актуальна и регулярно обновляется.
3	GNU Octave	Windows, Linux, macOS, Android	Численные вычисления, альтернатива МАТLAB, поддержка линейной алгебры и визуализации	Начало разработки — 1992 год, первая версия — 1994 г. Последняя версия — 2023 г. (7.4.0). Программа активно используется и обновляется.
4	Scilab	Windows, macOS, Linux, 32/64- bit	Численные вычисления, моделирование и симуляция, альтернатива MATLAB	Разработка с 1990 года, первая публичная версия — 1994 г. Последняя версия — 2023 г. (6.1.1). Программа активно поддерживается и актуальна.
5	SymPy	Windows, Linux, macOS, 32/64-bit	Символьные вычисления, интеграция с Python, простота использования	Основана в 2007 году. Последняя версия — 2024 г. (1.13.2). Программа активно развивается и остается актуальной.

Задание 1.4. Онлайн-сервисы.

No	Название	Адрес онлайн-сервиса	Возможности	Годы жизненного цикла
1	Wolfram	www.wolframalpha.com	Решение уравнений,	Появился в 2009 г.,
	Alpha		вычисление интегралов,	активно развивается. На
			построение графиков,	2024 г. — один из
			статистика, физика,	ведущих сервисов для
			химия и др.	вычислений.
2	GeoGebra	www.geogebra.org	Построение графиков,	С 2001 года, активно
			работа с функциями,	используется в
			геометрия, алгебра,	образовательных целях.
			статистика	Последняя версия —
				2023 г.

3	Symbolab	www.symbolab.com	Решение	Появился в 2011 г.,
			математических задач:	активно
			алгебра, тригонометрия,	поддерживается.
			производные,	Последние обновления
			интегралы	— 2023 г.
4	Desmos	www.desmos.com	Построение графиков,	С 2011 года.
			решение уравнений,	Используется в
			работа с функциями	образовании, актуален в
				2024 г.
5	Mathway	www.mathway.com	Решение уравнений,	Запущен в 2002 г.
			статистика, интегралы,	Актуален и активно
			тригонометрия	используется в 2024 г.