$\underline{\mathbf{Misc}}$

Contents

dmissions Tests
Problem Solving Matters
General Tips
Tips For Sketching Graphs
Things To Remember
STEP Tips
General
Calculus
Trig
Proof
Specifics
State

Problem Solving Matters

General Tips

- Be lazy; only do necessary work
- Write in sentences to explain (especially in proofs)
- Avoid long and/or complicated calculations
- Draw diagrams and make them big
- In diagrams, label things and add lines
- Look for similar shapes (often triangles)

Tips For Sketching Graphs

- Look for symmetries
- Think about periodicity
- Look for turning points (0 derivative)
- Look for asymptotes
- Try values of x like 0, 1, -1, etc.
- If there's a trig function involved, try multiples of π
- See what happens when x tends to 0 or $\pm \infty$

Things To Remember

- $\log_a b \times \log_b a = 1$
- $\log_{a^c} b^c = \log_a b$
- When graphing $y^2 = f(x)$, draw the positive branch of $y = \sqrt{f(x)}$ and reflect it in the x axis
- $\log x$ is negative when 0 < x < 1

STEP Tips

General

- Be very careful with the stem; it will be used for the rest of the question
- Explore the stem to get everything out of it that you can
- Check every line of algebra when you write it
- Don't take shortcuts unless you can justify why they're allowed
- Look for similar shapes (often triangles)
- If you get stuck on a 'show that' question, then just go onto the next part and use the previous result

Calculus

- If you can get an integral I in two forms, try adding them
- If given a substitution and asked to find a similar one for a slightly different function, find what made the first substitution work. What cancelled?
- To differentiate an equation of the form $y = f(x)^{g(x)}$, take logs and differentiate $\ln y = g(x) \ln (f(x))$ implicitly

<u>Trig</u>

- If you've got multiple trig terms on the top of a fraction and just one on the bottom, try using tan
- If you have a sum of products of n trig terms like $\cos^2 x + \cos x \sin x$ (n = 2), then you can divide by $\cos^n x$ (in this example, you get $1 + \tan x$)
- If you're struggling to simplify a fraction with $\sin x$ and $\cos x$ mixed together on top and bottom, multiply top and bottom by $\frac{1}{\cos x}$

<u>Proof</u>

- A powerful form of proof is to try some simple cases, make a conjecture, and prove it to be true by induction
- If you're trying to prove that a > b, it's probably easier to prove that a b > 0
- Use the format of the answer to inform your solution: if it wants something with x^{-1} , try using x^{-1}

<u>Specifics</u>

• Be careful when cancelling fractions with a factorial on the bottom $\left(\frac{x^2}{x!} = \frac{x}{(x-1)!} \neq \frac{1}{(x-2)!}\right)$

\underline{Stats}

- PDF = $\frac{d}{dx}$ CDF (alt. $P(X = x) = \frac{d}{dx}P(X \le x)$)
- $E(X) = \sum_{\min(X)}^{\max(X)} x P(X = x)$ (for discrete X) or $\int_{-\infty}^{\infty} x P(X = x) dx$ (for continuous X)