Chapter 3, Section 4

James Lee

August 9, 2025

1. Let $f: X \to Y$ be an affine morphism of Noetherian separated schemes (II, Ex. 5.17). Show that for any quasi-coherent sheaf \mathscr{F} on X, there are natural isomorphisms for all $i \geq 0$,

$$H^i(X, \mathscr{F}) \cong H^i(Y, f_*\mathscr{F}).$$

Proof. Let $\mathfrak V$ be an open affine cover of Y so that $\mathfrak U=(f^{-1}(V))_{V\in\mathfrak V}$ is an open affine cover of X. We can compute $H^i(X,\mathscr F)$ using the Čech complex defined by the open covering $\mathfrak U$. Also, $f_*\mathscr F$ is a quasi-coherent $\mathscr O_Y$ -module by (II, 5.8), so the cohomology of $f_*\mathscr F$ can be computed via the Čech complex defined by $\mathfrak V$ (4.5). Lastly, $f_*\mathscr F(V)=\mathscr F(U)$ for all $V\in\mathfrak V$ and corresponding $U=f^{-1}(V)\in\mathfrak U$, so the Čech cohomology of $\mathscr F$ and $f_*\mathscr F$ with respect to $\mathfrak U$ and $\mathfrak V$, respectively, are isomorphic. Hence, $H^i(X,\mathscr F)\cong H^i(Y,f_*\mathscr F)$ for all $i\geq 0$ by (4.5). Is this natural?

- **2.** Prove Chevalley's theorem: Let $f: X \to Y$ be a finite surjective morphism of Noetherian separated schemes, with X affine. Then Y is affine.
 - (a) Let $f: X \to Y$ be a finite surjective morphism of integral Noetherian schemes. Show that there is a coherent sheaf \mathcal{M} on X, and a morphism of sheaves $\alpha: \mathcal{O}_Y^r \to f_*\mathcal{M}$ for some r > 0, such that α is an isomorphism at the generic point of Y.
 - (b) For any coherent sheaf \mathscr{F} on Y, show that there is a coherent sheaf \mathscr{G} on X, and a morphism $\beta: f_*\mathscr{G} \to \mathscr{F}^r$ which is an isomorphism at the generic point of Y.
 - (c) Now prove Chevalley's theorem.

Proof.

- (a) Let \mathscr{L} and \mathscr{K} be the sheaf of total quotient rings of X and Y, respectively. By hypothesis, the function field of X is a finite field extension of that of Y, so there exists an isomorphism $\varphi: \mathscr{K}^r \to f_*\mathscr{L}$ for some r > 0. Let $\alpha: \mathscr{O}_Y^r \to f_*\mathscr{L}$ be the compositon of the natural map $\mathscr{O}_Y^r \to \mathscr{K}^r$ with φ . Then α is an isomorphism at the generic point of Y. Replacing \mathscr{L} by the sub- \mathscr{O}_X -module spanned by the image of \mathscr{K}^r , we obtain the desired \mathscr{M} .
- (b) Let \mathscr{F} be any coherent sheaf \mathscr{F} on Y, let $\mathscr{A} = f_*\mathscr{O}_X$, and let $\alpha : \mathscr{O}_Y^r \to f_*\mathscr{M}$ as in (a) for some coherent sheaf \mathscr{M} on X. Applying $\mathscr{H}om(\cdot,\mathscr{F})$ induces a morphism of sheaves

$$\beta: \operatorname{Hom}(f_*\mathscr{M},\mathscr{F}) \to \operatorname{Hom}(\mathscr{O}_Y^r,\mathscr{F}) \cong \mathscr{F}^r.$$

It is clearly an isomorphism at the generic point of Y. Consider the \mathscr{O}_Y -module $\mathscr{H}om(f_*\mathscr{M},\mathscr{F})$. It is naturally a coherent \mathscr{A} -module, and finite morpshims are also affine, so by the equivalence of categories of quasi-coherent \mathscr{O}_X -modules and \mathscr{A} -modules via the $\widetilde{}$ -functor of (II, 5.17e), there exists a coherent sheaf \mathscr{G} on X such that $f_*\mathscr{G} \cong \mathscr{H}om(f_*\mathscr{M},\mathscr{F})$.

(c) By (II, 3.1), (Ex. 3.1), and (Ex. 3.2), we reduce to the case when X and Y are integral Noetherian separated schemes. Let \mathscr{F} be a coherent sheaf on Y. By (2.9) and (3.7), it suffices to show $H^i(Y, \mathscr{F}^r) = 0$ for all i > 0 and some r > 0. Let $\beta : f_*\mathscr{G} \to \mathscr{F}^r$ be a morphism of coherent sheaves on X as in (b), where \mathscr{G} is a coherent sheaf on X.

Consider $\ker \beta$ and $\operatorname{coker} \beta$. We proceed by notherian induction

3. Let $X = \mathbf{A}_k^2 = \operatorname{Spec} k[x,y]$, and let $U = X - \{(0,0)\}$. Using a suitable cover of U by open affine subsets, show that $H^1(U, \mathcal{O}_U)$ is isomorphic to the k-vector space spanned by $\{x^i y^j \mid i, j < 0\}$. In particular, it is infinite-dimensional.

1

Proof. Let \mathfrak{U} be the open covering by the two open sets $V = X - \{x = 0\}$ and $U = X - \{y = 0\}$, with affine coordinates obtained by restricting the ones from X. Then the Čech complex has only two terms:

$$C^{0} = \Gamma(V, \mathscr{O}_{V}) \times \Gamma(W, \mathscr{O}_{W}),$$

$$C^{1} = \Gamma(V \cap W, \mathscr{O}_{V \cap W}).$$

Now

$$\Gamma(V,\Omega) = k \left[x, \frac{1}{x}, y \right]$$

$$\Gamma(W,\Omega) = k \left[x, y, \frac{1}{y} \right]$$

$$\Gamma(V, W, \Omega) = k \left[x, y, \frac{1}{x}, \frac{1}{y} \right]$$

and the map $d: C^0 \to C^1$ is given by $(f,g) \mapsto f - g$. To compute H^1 , the image of d is the set of all expressions $x^i y^j$ where at least one of i, j is non-negative. Hence, $H^1(U, \mathcal{O}_U)$ is spanned by $\{x^i y^j \mid i, j < 0\}$.

- **4.** On an arbitrary topological space X with an arbitrary Abelian sheaf \mathscr{F} , Čech cohomology may not give the same result as the derived functor cohomology. But here we show that for H^1 , there is an isomorphism if one takes the limit over all coverings.
 - (a) Let $\mathfrak{U} = (U_i)_{i \in I}$ be an open covering of the topological space X. A refinement of \mathfrak{U} is a covering $\mathfrak{V} = (V_j)_{j \in J}$, together with a map $\lambda : J \to I$ of the index sets, such that for each $j \in J$, $V_j \subseteq U_{\lambda(j)}$. If \mathfrak{V} is a refinement of \mathfrak{U} , show that there is a natural induced map on Čech cohomology for any Abelian sheaf \mathscr{F} , and for each i,

$$\lambda^i : \check{H}^i(\mathfrak{U}, \mathscr{F}) \to \check{H}^i(\mathfrak{V}, \mathscr{F}).$$

The coverings of X form a partially ordered set under refinement, so we can consider the Čech cohomology in the limit

$$\varinjlim_{\mathfrak{U}} \check{H}^i(\mathfrak{U},\mathscr{F}).$$

(b) For any Abelian sheaf \mathscr{F} on X, show that the natural maps (4.4) for each covering

$$\check{H}^i(\mathfrak{U},\mathscr{F}) \to H^i(X,\mathscr{F})$$

are compatible with the refinement maps above.

(c) Now prove the following theorem. Let X be a topological space, $\mathscr F$ a sheaf of Abelian groups. Then the natural map

$$\underset{\mathcal{U}}{\underline{\lim}} \check{H}^1(\mathfrak{U},\mathscr{F}) \to H^1(X,\mathscr{F})$$

is an isomorphism.

Proof.

- (a)
- (b)
- (c)

5. For any ringed space (X, \mathcal{O}_X) , let Pic X be the group of isomorphism classes of invertible sheaves (II, §6). Show that Pic $X \cong H^1(X, \mathcal{O}_X^*)$ where \mathcal{O}_X^* denotes the sheaf whose sections over an open set U are the units in the ring $\Gamma(U, \mathcal{O}_X)$, with multiplication as the group operation.

Proof.