CSC242: Introduction to Artificial Intelligence

Lecture 4.5

Announcements

- Unit 4 Exam: Thu 27 Apr 940AM
- Project 4 due Thu 27 Apr 1159PM

- Final Exam: Thu 11 May 1600
 Douglass Ballroom (not Dewey 1-101)
 - BRING ID

Bags

Agent, process, disease, ...

Candies

Actions, effects, symptoms, results of tests, ...

 $D_2 = \blacksquare$

Observations

 $D_3 =$

Goal

candy

Predict next Predict agent's next move Predict next output of process Predict disease given symptoms and tests

Parameter Learning (in Bayesian Networks)

Independent Identically Distributed (i.i.d.)

 Probability of a sample is independent of any previous samples

$$\mathbf{P}(D_i|D_{i-1},D_{i-2},\ldots)=\mathbf{P}(D_i)$$

 Probability distribution doesn't change among samples

$$\mathbf{P}(D_i) = \mathbf{P}(D_{i-1}) = \mathbf{P}(D_{i-2}) = \cdots$$

Maximum Likelihood Hypothesis

 $\underset{\Theta}{\operatorname{argmax}} P(\mathbf{d} \mid h_{\Theta})$

 h_Θ

P(F=cherry)	P(F=lime)
Θ	1-⊖

(Flavor)

Maximum Likelihood Hypothesis

$$L(\mathbf{d} \mid h_{\Theta}) = c \log \Theta + l \log(1 - \Theta)$$

$$\underset{\Theta}{\operatorname{argmax}} L(\mathbf{d} \mid h_{\Theta}) = \frac{c}{c+l} = \frac{c}{N}$$

 $h_{\Theta,\Theta_1,\Theta_2}$

P(F=c)	P(F=l)
Θ	1-Θ

F	P(W=r F)	P(W=g F)
c	Θ_1	$1-\Theta_1$
l	Θ_2	$1-\Theta_2$

Maximum Likelihood Hypothesis

$$\Theta = \frac{c}{c+l} = \frac{c}{N}$$

$$\Theta_1 = \frac{r_c}{r_c + g_c} = \frac{r_c}{c}$$

$$\Theta_2 = \frac{r_l}{r_l + g_l} = \frac{r_l}{l}$$

Observed frequencies are the BEST hypothesis, in terms of maximizing the likelihood of the data.

Naive Bayes Models

Naive Bayes Models

Naive Bayes Models

Learning Naive Bayes Models

- ullet Naive Bayes model with n Boolean attributes requires $2n\!+\!1$ parameters
- Maximum likelihood hypothesis can be found with no search
 - Probabilities are observed frequencies
 - Scales to large problems
- Robust to noisy or missing data

Naive Bayes Classifier

New input: $x_1, ..., x_n$

$$\mathbf{P}(C \mid x_1, \dots, x_n) = \alpha \mathbf{P}(x_1, \dots, x_n \mid C) \mathbf{P}(C)$$
$$= \alpha \mathbf{P}(C) \prod_i \mathbf{P}(x_i \mid C)$$

Parameter Learning in Bayesian Networks

- Can learn the CPTs for a Bayes Net from observations that include values for all variables
- Finding maximum likelihood parameters decomposes into separate problems, one for each parameter
- Parameter values for a variable given its parents are the observed frequencies

Arrival	One-Way	Furtive		Class
taxi	yes	very		terrorist
car	no	none		tourist
car	yes	very	•••	terrorist
car	yes	some	•••	tourist
walk	yes	none	•••	student
bus	no	some		tourist

$oxed{Arrival}$	One-Way	Furtive		Class
taxi	yes	very		terrorist?
car	no	none		tourist?
car	yes	very	•••	terrorist?
car	yes	some	•••	tourist?
walk	yes	none	•••	student?
bus	no	some	•••	tourist?

Test	Test2	Test3		Disease
T	F	T		?
T	F	F		?
F	F	T	•••	?
T	T	T	•••	?
F	T	F	•••	?
T	\overline{F}	T	•••	?

3 values/variable

3 values/variable

3 values/variable

3 values/variable

3 values/variable

708 parameters!

78 parameters!

Smoking	Diet	Exercise	Swelling	Breath	Pain	Disease
low	low	high	low	low	low	?
high	med	high	med	high	med	?
low	low	med	low	low	med	?
•••						?

Hidden!

Hidden (Latent) Variables

- Can dramatically reduce the number of parameters required to specify a Bayes net
 - Reduces amount of data required to learn the parameters
- Values of hidden variables not present in training data (observations)
 - "Complicates" the learning problem

EM Expectation-Maximization

- Repeat
 - Expectation: "Pretend" we know the parameters and compute (or estimate) likelihood of data given model
 - Maximization: Recompute parameters using expected values as if they were observed values
- Until convergence

Flavor	cherry	lime	
Wrapper	red	green	
Hole	true	false	

$\mathbf{P}(F, W, H)$

Flavor	Wrapper	Hole	P(f, w, h)
cherry	red	t	$p_{c,r,t}$
		f	$p_{c,r,f}$
	green	t	$p_{c,g,t}$
		f	$p_{c,g,f}$
lime	red	t	$p_{l,r,t}$
		f	$p_{l,r,f}$
	green	t	$p_{l,g,t}$
		f	$p_{l,g,f}$

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam euismod euismod facilisis. Aliquam erat volutpat. Maecenas nisl ligula, dignissim et volutpat ac, pharetra blandit augue. Maecenas id ligula in leo tristique viverra. Curabitur lacinia nulla in nibh bibendum laoreet. Morbi a est mi, mattis imperdiet risus. Quisque quam felis, facilisis ac semper vel, viverra vitae nulla. Donec nisl lectus, faucibus vehicula tincidunt nec, ultrices nec eros. Proin non felicaec urna pellentesque tempor at sit armeest.

 ${f P}_1(X_1, X_2, X_3)$

 ${f P}_2(X_1, X_2, X_3)$

$\mathbf{P}(F, W, H)$

Flavor	Wrapper	Hole	P(f, w, h)
cherry	red	t	$p_{c,r,t}$
		f	$p_{c,r,f}$
	green	t	$p_{c,g,t}$
		f	$p_{c,g,f}$
lime	red	t	$p_{l,r,t}$
		f	$p_{l,r,f}$
	green	t	$p_{l,g,t}$
		f	$p_{l,g,f}$

Bag	P(W=red B)
1	Θ_{W1}
2	Θ_{W2}

Bag	$P(H{=}true B)$
1	Θ_{H1}
2	Θ_{H2}

Bag	$oxed{P(W=red B)}$
1	Θ_{W1}
2	Θ_{W2}

Bag	$P(H{=}true B)$
1	Θ_{H1}
2	Θ_{H2}

7 parameters

Flavor	Wrapper	Hole	Bag
cherry	red	true	?
cherry	red	true	?
lime	green	false	?
cherry	green	true	?
lime	green	true	?
cherry	red	false	?
lime	red	true	?

Hidden!

N=1000	W=red		$W\!\!=\!green$	
	$H\!\!=\!yes$	$H\!\!=\!no$	$H\!\!=\!yes$	$H\!\!=\!no$
F = cherry	273	93	104	90
$F\!\!=\!lime$	79	100	94	167

N=1000	W=red		$W\!\!=\!green$	
	$H\!\!=\!yes$	$H\!\!=\!no$	$H\!\!=\!yes$	H=no
F=cherry	273	93	104	90
$F\!\!=\!lime$	79	100	94	167

No values for Bag

EM Expectation-Maximization

- Repeat
 - E: Use the current values of the parameters to compute the expected values of the hidden variables
 - M: Recompute the parameters to <u>maximize</u> the likelihood of the data given the values of (all) the variables
- Until convergence

$$egin{align} \Theta &= N(B=1)/N \ \Theta_{F1}, \ \Theta_{W1}, \ \Theta_{H1} \ \Theta_{F2}, \ \Theta_{W2}, \ \Theta_{H2} \ \end{pmatrix}$$

We don't know N(B=1)Estimate: $\hat{N}(B=1)$

Flavor=cherry, Wrapper=red, Hole=true

 $P(Bag=1 \mid Flavor=cherry, Wrapper=red, Hole=true)?$

$$P(B = 1 | F = c, W = r, H = t)$$

$$= \alpha P(B = 1, F = c, W = r, H = t)$$

$$= \alpha P(B = 1) P(F = c | B = 1)$$

$$P(W = r | B = 1) P(H = t | B = 1)$$

$$= \alpha \Theta \Theta_{F1} \Theta_{W1} \Theta_{H1}$$

$$\hat{N}(B=1) = \sum_{j=1}^{N} \alpha P(B=1 \mid F=f_j, W=w_j, H=h_j)$$

$$\Theta \leftarrow \hat{N}(B=1)/N$$

$$\Theta \leftarrow \hat{N}(B=1)/N$$
 $\Theta_{F1}, \Theta_{W1}, \Theta_{H1}$
 $\Theta_{F2}, \Theta_{W2}, \Theta_{H2}$

$$\Theta^{(0)} = 0.6$$

$$\Theta_{F1}^{(0)} = \Theta_{W1}^{(0)} = \Theta_{H1}^{(0)} = 0.6$$

$$\Theta_{F2}^{(0)} = \Theta_{W2}^{(0)} = \Theta_{H2}^{(0)} = 0.4$$

$$\Theta^{(1)} = 0.6124$$

$$\Theta_{F1}^{(1)} = 0.6684$$

$$\Theta_{W1}^{(1)} = 0.6483$$

$$\Theta_{H1}^{(1)} = 0.6558$$

$$\Theta_{F2}^{(1)} = 0.3887$$

$$\Theta_{W2}^{(1)} = 0.3817$$

$$\Theta_{H2}^{(1)} = 0.3827$$

$$L(\mathbf{d}|h) \approx -2044$$

Actual:

$$\Theta = 0.5$$

$$\Theta_{F1} = \Theta_{W1} = \Theta_{H1} = 0.8$$

$$\Theta_{F2} = \Theta_{W2} = \Theta_{H2} = 0.3$$

$$L(\mathbf{d}|h) \approx -2021$$

EM Expectation-Maximization

- Repeat
 - E: Pretend we know the values of the parameters and infer the expected values of the hidden variables
 - M: Update the parameters to maximize the likelihood of the data given the values of (all) the variables
- Until convergence

Learning Probabilistic Models

- Learning parameters of probability distributions
- Maximum Likelihood Hypothesis:
 maximizes the likelihood of the data
- Learning parameters of Bayes Nets
- Naive Bayes classifiers
- EM: Learning with incomplete data

Intro to AI

Representation

 $Hungry \lor Cranky$ $\neg Hungry$ Cranky

if
$$\alpha \vdash \beta$$
 then $\alpha \models \beta$ if $\alpha \models \beta$ then $\alpha \vdash \beta$

Uncertainty

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \ \mathbf{P}(X, \mathbf{e}) = \alpha \ \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$

$$\mathbf{P}(R_0)$$
 $\mathbf{P}(R_t \mid R_{t-1})$
 $\mathbf{P}(U_t \mid R_t)$

Learning

Intro to AI

- Searching HUGE spaces for solutions to problems
- Representation matters!
 - Search through space of proofs
- Uncertainty: Can be done but...
 - Independence assumptions are the key
- Learning: Search for parameters

For Next Time

Unit 4 Exam

No class Tue 2 May

Final Exam: Thu 11 May 1600 Douglass Ballroom — BRING ID