Devoir facultatif n° 9

Inégalité de Wirtinger :

Question préliminaire

FIGURE 1 – Inégalité isopérimétrique $\mathcal{A} \leqslant \frac{L^2}{4\pi}$

Soit ψ une fonction continue, 2π -périodique sur \mathbb{R} et à valeurs réelles. Montrer que, pour tous les réels a, les intégrales

$$\int_{a}^{a+2\pi} \psi(t) \, \mathrm{d}t$$

sont égales.

On définit le nombre $valeur\ moyenne\ de\ \psi\ (noté\ \overline{\psi})\ par$:

$$\overline{\psi} = \frac{1}{2\pi} \int_{a}^{a+2\pi} \psi(t) \, \mathrm{d}t$$

pour un a quelconque.

L'objet de ce problème est de démontrer l'inégalité de Wirtinger.

$$\int_0^{2\pi} (f(t) - \overline{f})^2 dt \leqslant \int_0^{2\pi} f'^2(t) dt$$

pour certaines fonctions $f \in \mathcal{C}^1(\mathbb{R})$ et 2π -périodique. L'inégalité de Wirtinger permet de démontrer l'inégalité isopérimétrique.

Partie I.

Soit f une fonction de classe $\mathscr{C}^1(\mathbb{R})$ à valeurs réelles. Soit a et b deux réels tels que

$$a < b \leqslant a + \pi \qquad \qquad f(a) = f(b) = 0$$

Soit φ la fonction définie dans]a,b[par :

$$\forall t \in]a, b[: \varphi(t) = f(t) \cot a(t-a)$$

- 1) Montrer que l'on peut toujours prolonger φ par continuité en une fonction définie dans [a,b]. Préciser, suivant les cas, les valeurs de $\varphi(a)$ et $\varphi(b)$. Dans toute la suite, φ désignera la fonction continue prolongée dans [a,b]. Il est clair que φ est dérivable et à dérivée continue dans l'ouvert. En revanche, la question de la dérivabilité en a et b n'est pas abordée.
- 2) Soit u et v deux réels tels que a < u < v < b. Montrer que l'accroissement de $f\varphi$ entre u et v est égal à

$$\int_{u}^{v} f'^{2}(t) dt - \int_{u}^{v} f^{2}(t) dt - \int_{u}^{v} (\varphi(t) - f'(t))^{2} dt$$

La relation

$$0 = \int_a^b f'^2(t) dt - \int_a^b f^2(t) dt - \int_a^b (\varphi(t) - f'(t))^2 dt$$

est-elle valide?

3) Montrer que

$$\int_a^b f^2(t) \, \mathrm{d}t \leqslant \int_a^b f'^2(t) \, \mathrm{d}t$$

- 4) On suppose que l'inégalité du 3) est une égalité.
 - a) Montrer que $f'(t) = \varphi(t)$ pour tous les $t \in [a, b]$.
 - **b)** Montrer qu'il existe un réel λ tel que $f(t) = \lambda \sin(t a)$ pour tous les t dans [a, b].

Partie II.

1) Soit f une fonction de classe $\mathscr{C}^1(\mathbb{R})$ telle que la distance entre deux zéros consécutifs de f soit inférieure ou égale à π . Montrer que

$$\int_a^b f^2(t) \, \mathrm{d}t \leqslant \int_a^b f'^2(t) \, \mathrm{d}t$$

lorsque a et b sont deux zéros de f vérifiant a < b.

2) Soit f une fonction de classe $\mathscr{C}^1(\mathbb{R})$. Pour tout $\lambda > 0$, on définit f_{λ} par :

$$\forall t \in \mathbb{R} : f_{\lambda}(t) = f(\frac{t}{\lambda})$$

- **a)** Exprimer $\int_{\lambda a}^{\lambda b} f_{\lambda}^{2}(t) dt$ et $\int_{\lambda a}^{\lambda b} f_{\lambda}^{\prime 2}(t) dt$ en fonction de $\int_{a}^{b} f^{2}(t) dt$ et $\int_{a}^{b} f^{\prime 2}(t) dt$.
- b) Montrer que la proposition suivante est fausse. Pour toute fonction f de classe $\mathscr{C}^1(\mathbb{R})$ prenant la valeur 0 en a et b, on a :

$$\int_a^b f^2(t) \, \mathrm{d}t \leqslant \int_a^b f'^2(t) \, \mathrm{d}t$$

Partie III.

Soit n un entier naturel non nul fixé. On définit dans $\mathbb R$ les fonctions c_0,c_1,\cdots,c_n et s_1,\cdots,s_n par :

$$c_0(t) = 1,$$
 $c_1(t) = \cos(t),$ \cdots $c_n(t) = \cos(nt)$
 $s_1(t) = \sin(t),$ \cdots $s_n(t) = \sin(nt)$

- 1) Pour $i \in \{0, \dots, n\}$ et $j \in \{1, \dots, n\}$, calculer $\int_0^{2\pi} c_i(t)c_j(t) dt$, $\int_0^{2\pi} c_i(t)s_j(t) dt$, $\int_0^{2\pi} s_i(t)s_j(t) dt$ en séparant bien les divers cas.
- 2) Soit $\mathcal{T} = \text{Vect}(c_0, \dots, c_n, s_1, \dots, s_n)$ et $f \in \mathcal{T}$. Que vaut \overline{f} ? Démontrer

$$\int_0^{2\pi} (f(t) - \overline{f})^2 dt \leqslant \int_0^{2\pi} f'^2(t) dt$$

Partie IV. Inégalité isopérimétrique

Dans cette partie, on pourra utiliser (pour tous réels u et w)

$$uw \leqslant \frac{1}{2}(u^2 + w^2)$$

On pourra aussi utiliser des changements de paramètres très simples.

- 1) Démontrer l'inégalité indiquée au dessus.
- 2) Ici M est une courbe paramétrée normale de classe $\mathcal{C}^1([0,L])$ à valeurs dans un plan. La courbe est donc de longueur L. Un repère est fixé, les fonctions coordonnées sont notées x et y. On pose $U=x\circ M$ et $V=y\circ M$. Ce sont des fonctions de classe $\mathcal{C}^1([0,L])$ à valeurs réelles. On suppose (voir Fig. 2)

$$U(0) = U(L) = 0$$

On note \mathcal{A} l'aire définie par le support de la courbe et l'axe des y. Montrer que

$$\mathcal{A} \leqslant \frac{L^2}{2\pi}$$

Étudier le cas d'égalité.

FIGURE 2 – Inégalité $\mathcal{A} \leqslant \frac{L^2}{2\pi}$

3) Ici M est une courbe paramétrée normale, définie dans \mathbb{R} , périodique de plus petite période L (voir Fig. 1). La longueur du support est donc L. Les fonctions U et V sont définies comme au dessus. On désigne par \mathcal{A} l'aire de la portion de plan délimité par la courbe. On suppose que l'application

$$t \to U(\frac{L}{2\pi}t)$$

est dans l'espace $\mathcal T$ définie en partie III. Montrer l'inégalité isopérimétrique

$$\mathcal{A} \leqslant \frac{L^2}{4\pi}$$