# **Mathematics**

Senior 3 Part I

MELVIN CHIA

Started on 10 April 2023

Finished on XX XX 2023

Actual time spent: XX days

# Introduction

Why this book?

Disclaimer

Acknowledgements

# **Contents**

| Int | ntroduction 1                                                        |   |  |  |  |  |
|-----|----------------------------------------------------------------------|---|--|--|--|--|
| 22  | 2 Function                                                           | 4 |  |  |  |  |
|     | 22.1 Definition of a Function                                        | 4 |  |  |  |  |
|     | 22.1.1 Practice 1                                                    | 4 |  |  |  |  |
|     | 22.1.2 Practice 2                                                    | 6 |  |  |  |  |
|     | 22.2 Domain and Range                                                | 6 |  |  |  |  |
|     | 22.3 Graphs of Functions and Their Transformations                   | 6 |  |  |  |  |
|     | 22.4 Composite Functions                                             | 6 |  |  |  |  |
|     | 22.5 One to One Function, Onto Function and One to One Onto Function | 6 |  |  |  |  |
|     | 22.6 Inverse Functions                                               | 6 |  |  |  |  |
| 23  | 3 Exponents and Logarithms                                           | 7 |  |  |  |  |
|     | 23.1 Exponents                                                       | 7 |  |  |  |  |
|     | 23.2 Logarithms                                                      | 7 |  |  |  |  |
|     | 23.3 Arithmetic Properties of Logarithms and Base Changing Formula   | 7 |  |  |  |  |
|     | 23.4 Exponential Equations                                           | 7 |  |  |  |  |
|     | 23.5 Logarithmic Equations                                           | 7 |  |  |  |  |
|     | 23.6 Compound Interest and Annuity                                   | 7 |  |  |  |  |
| 24  | 4 Limits                                                             | 8 |  |  |  |  |
|     | 24.1 Concept of Limits                                               | 8 |  |  |  |  |
|     | 24.2 Limits of Functions                                             | 8 |  |  |  |  |
|     | 24.3 Arithmetic Properties of Limits of Functions                    | 8 |  |  |  |  |
| 25  | 5 Differentiation                                                    | 9 |  |  |  |  |
|     | 25.1 Gradient of Tangent Line on a Curve                             | 9 |  |  |  |  |
|     | 25.2 Gradient of Tangent Line and Derivative                         | 9 |  |  |  |  |
|     | 25.3 Law of Differentiation                                          | 9 |  |  |  |  |
|     | 25.4 Chain Rule - Differentiation of Composite Functions             | 9 |  |  |  |  |

| 25.5  | Higher Order Derivatives               | 9 |
|-------|----------------------------------------|---|
| 25.6  | Implicit Differentiation               | 9 |
| 25.7  | Two Basic Limits                       | 9 |
| 25.8  | Derivatives of Trigonometric Functions | 9 |
| 25.9  | Derivatives of Exponential Functions   | 9 |
| 25.10 | Derivatives of Logarithmic Functions   | 9 |

## **Function**

### 22.1 Definition of a Function

#### Mapping, Preimage and Image

For two non-empty sets A and B, If an element a inside set A has a corresponding element b inside set B, denoted as  $a \to b$ , then we say that a is mapped to b or a and b are paired. The mapping between two sets is normally denoted as f, g, h, etc. The mapping shown in the diagram below can be denoted as  $f: 1 \to x, 2 \to y, 4 \to z$ .



Let  $f: A \to B$  is a mapping, a is an element in A. If a is mapped to b under the mapping f, then b is said to be the image of a under the mapping f, denoted as b = f(a); a is said to be the preimage of b under the mapping f. In the diagram above, under the mapping f, the image of f, and f are f, f, and f respectively, while the preimage of f, f, and f are f, f, and f respectively.

Let A and B be two non-empty sets, f is a mapping from A to B such that for all elements in A, there is a unique corresponding element in B, then f is a function or a mapping from A to B, denoted as  $f: A \rightarrow B$ .

The mapping shown in the diagram below is a function.



#### **22.1.1** Practice 1

1. For the following mappings, list the image of each element in *A* and the preimage of each element in *B*, and determine whether the mapping is a function or not:









2. Given a mapping  $g: x \to x + 3, x \in \{-2, -1, 0, 1, 2, 3\}$ , find the image of each x.

3. Determine whether the following mappings are functions.













The function  $f: A \to B$  can be written as y = f(x), x is the element of A and y is the element of B. When x changes, y changes as well. x is called independent variable, while y is called dependent variable.

Keep in mind that f(x) is NOT the product of f and x.

### **Representation of Functions**

Generally speaking, there are a few ways to represent a function:

- 1. Narrative Form: express the function of two sets in words. For example, Let  $A = \{1,2,3\}$  and  $B = \{1,4,9\}$ , f is a function from A to B, its definition is that for any element x in A, its corresponding element is  $x^2$  in B.
- 2. **Arrow Method**: draw an arrow to connect the preimage and image of a function such that the preimage is corresponding to the image. To express the example above, we express it as  $f: 1 \rightarrow 1, 2 \rightarrow 4, 3 \rightarrow 9$ .
- 3. **Analytical Method**: express the function in the form of mathematical expression to represent the relationship between the independent variable and the dependent variable. For example,  $f(x) = x^2, x \in A$ .
- 4. Venn Diagram: draw arrows between the venn diagram of two sets to represent the function, as shown below:



5. **Table Method**: express the function in the form of table, showing the relationship of the chosen value between independent variable *x* and the value of its corresponding dependent variable *y*, as shown below:

| x | 1 | 2 | 3 |
|---|---|---|---|
| у | 1 | 4 | 9 |

6. **Graphical Method**: draw a graph to represent the function of the two variables, as shown below:



### **22.1.2** Practice 2

Express the following functions using analytical method, venn diagram, table method and graphical method.

- (a) f mapping each integers from -3 to 3 to its squares plus 4.
- (b) g mapping each natural numbers from 1 to 4 to its cubes.

### 22.2 Domain and Range

# 22.3 Graphs of Functions and Their Transformations

### 22.4 Composite Functions

# 22.5 One to One Function, Onto Function and One to One Onto Function

### 22.6 Inverse Functions

# **Exponents and Logarithms**

- 23.1 Exponents
- 23.2 Logarithms
- 23.3 Arithmetic Properties of Logarithms and Base Changing Formula
- 23.4 Exponential Equations
- 23.5 Logarithmic Equations
- 23.6 Compound Interest and Annuity

# Limits

- **24.1** Concept of Limits
- **24.2** Limits of Functions
- 24.3 Arithmetic Properties of Limits of Functions

## **Differentiation**

- 25.1 Gradient of Tangent Line on a Curve
- 25.2 Gradient of Tangent Line and Derivative
- 25.3 Law of Differentiation
- 25.4 Chain Rule Differentiation of Composite Functions
- 25.5 Higher Order Derivatives
- 25.6 Implicit Differentiation
- 25.7 Two Basic Limits
- 25.8 Derivatives of Trigonometric Functions
- **25.9 Derivatives of Exponential Functions**
- 25.10 Derivatives of Logarithmic Functions