一、S800 板介绍

S800 板 = TM4C1294XL(红) + TM4C1294XL_SUB(蓝)

红色板为 TI 提供的基于 TM4C1294NCPDT(ARM CORTEX-M4F 内核, 128PIN)CPU 的评估板;蓝色板为扩展功能板,提供实验的各种对象及执行部件.

扩展板提供的功能如下:

整板静电 ESD 保护及过电流负载保护

整板电流显示

多路可选电源输入,包括

DC5V

MICRO-USB5V 输入

MICRO-USB OTG 5V 输入

I2C 扩展 GPIO

- 8位共阴数码管
- 8位输入按键
- 8 位共阴 LED

USART- RS485 总线串行接口

CAN 总线串行接口

5V 直流有刷电机或步进电机接口

PWM 输出

DAC 输出

外部模拟量输入

可调电位器模拟量输入

蜂鸣器

SD 卡接口

QEI 数字电位器接口

- · 蓝牙模块接口
- · 舵机控制接口

RTC 备用电池

二、板上芯片简介

红板芯片

序号	芯片型号	说明
1	TM4C1294NCPDT	主 CPU,ARM-CORTEX-M4F
2	TM4C123GH6PMI	ICDI 板载仿真器 CPU, , ARM-CORTEX-M4F
3	TPD4S012	4 通道 ESD 保护用于 USB 接口保护
4	TPS2052B	过流保护及负载分配开关
5	TPS73733	3.3VLDO 稳压器

蓝板芯片

序号	芯片型号	说明
1	PCA9557	I2C 扩展 8 位 GPIO
2	TCA6424	I2C 扩展 24 位 GPIO
3	TPD3S044	USB 接口限流保护及 ESD 保护
4	TPD4E001	4 通道 ESD 保护
5	SN65HVD08	RS-485 收发器
6	SN65HVD1050	CAN 总线收发器
7	ULN2003A	7 位达林顿管阵列
8	S8050D	40V0.5A0.3W NPN 管
9	EC12	数字电位器
10	CL3641AH	4 位共阴数码管

三、按键及 LED 资源列表

红板

名称	对应管脚	说明
RESET	RESET	TM4C1294NCPDT 芯片复位按键低有效
WAKE	WAKE	从睡眠模式唤醒按键低有效
USR_SW1	PJ0	用户输入按键低有效
USR_SW2	PJ1	用户输入按键低有效
D0		3.3V 电源指示,绿 LED 高有效
D1	PN1	用户控制绿 LED 高有效
D2	PN0	用户控制绿 LED 高有效
D3	PF4	用户控制绿 LED 高有效
D4	PF0	用户控制绿 LED 高有效

蓝板

名称	对应管脚	说明
SW1-SW8	TCA6424-	TCA6424 I2C 展 GPIO 芯片 PO 口低有效
	P01~P08	
LED1-LED8	PCA9557-P0-P7	PCA9557 I2C 展 GPIO 芯片 P0 口低有效

LED_M0	PF0	用户控制 LED 高有效
LED_M1	PF1	用户控制 LED 高有效
LED_M2	PF2	用户控制 LED 高有效
LED_M3	PF3	用户控制 LED 高有效
D10		3.3V 电源指示,红 LED 高有效

● 红板与蓝板均有 PFO 对应控制 LED,两个 LED 一绿(高有效)一红(低有效),显示效果互补。

四、板上器件编程与使用

4.1 红板上资源编程

See PF0 and PF4 for additional LED's used for Ethernet or user application

红板上共有两个外部晶体振荡器供选择,一个为外部 25M 高精度无源晶振 HSE,为正常使用时提供外部时钟信号;一个为 32.768K 无源晶振 LSE,主要用于低功耗或电池供电时提供外部时钟信号。

同时在 CPU 内部也提供一个低精度的 16M 振荡器 HSI (正负 50%误差),可以用于不需要精确定时的场合。不能用于同步通讯如 USART, CAN, ETHERNET 等。

如果不使用 PLL 倍频电路,则只能使用 25M 的 HSE 或 16M 的 HSI 作为时钟。

如果使用 PLL 倍频电路,则可以升频到 480M 后再分频作为 CPU 时钟使用,最大可接受频率为 120M 时钟。

频率越高,则速度越快,功耗越大。

红板上共有四个用户可控 LED,如上图所示。分别为 PF0,PF4,PN0,PN1 管脚控制。只有当管脚输出高电平时,LED 才会亮。

红板上共有两个用户可控按键输入,如上图所示。分别为 USR_SW1, USR_SW2 接到 PJ0 与 PJ1,当按键按下时,与地相通。这两个引脚并没有外接上拉电阻,因此作为输入使用时,必须配置为内部弱上拉,才能清楚地分开未按下与按下状态。

4.2 蓝板上资源编程

4.2.1 GPIO 资源

PWM0-3 对应 PF0-3, 经过 ULN2003 达林顿管后, 当 CPU 管脚输出为高,则输出 C1-C4 输出为低,点亮 LED ;当 CPU 管脚输出为低,则输出 C1-C4 输出为高,熄灭 LED。

4.2.2 I2C 通讯简述

I2C 总线是一种简单的双向一线制串行通信总线。多个符合 I2C 总线标准的器件都可以通过同一条 I2C 总线进行通信,而不需要额外的地址译码器。

I2C 总线仅使用两个信号:SDA 和 SCL。SDA 是双向串行数据线,SCL 是双向串行时钟线。当 SDA 和 SCL 线为高电平时,总线为空闲状态。I2C 总线连接方式如下图所示。

在时钟 SCL 的高电平期间,SDA 线上的数据必须保持稳定。SDA 仅可在时钟 SCL 为低电平时改变,如下图所示。

I2C 总线的协议定义了两种状态:起始和停止。当 SCL 为高电平时,在 SDA 线上从高到低的跳变被定义为起始条件;而当 SCL 为高电平时,在 SDA 线上从低到高的天边则被定义为停止条件。总线在起始条件之后被看作为忙状态。总线在停止条件之后被看作为空闲。

SDA 线上的每个字节必须为 8 位长。不限制每次传输的字节数。每个字节后面必须带有一个应答位。数据传输是 MSB 在前。当接收器不能接受另一个完整的字节时,它可以将时钟线 SCL 拉到低电平,以迫使发送器进入等待状态。当接收器释放时钟 SCL 时继续进行数据传输。

从机地址在起始条件之后发送。该地址为7位,后面跟的是第8位是数据方向位,这个数据方向位决定了下一个操作是接受(高电平)还是发送(低电平),0表示传输(发送);1表示请求数据(接收)。数据传输始终由主机产生的停止条件来终止。然而,通过产生重复的起始条件和寻址另一个从机(而无需先产生停止条件),主机仍然可以再总线上通信。因此,在这种传输过程中可能会有接收/发送格式的不同组合。

首字节的前面 7 位组成了从机地址。第 8 位决定了消息的方向。首字节的 R/S 位为 0 表示主机将向所选择的从机发送信息。该位为 1 表示主机将接收来自从机的信息。

带有 I2C 总线的器件除了有从机地址 (Slave Address) 外, 还有数据地址 (也称子地址)。 从机地址是指该器件在 I2C 总线上被主机寻址的地址, 而数据地址是指该器件内部不同 部件和存储单元的编址。

4.2.3 I2C 芯片 PCA9557 地址定义

INPUTS			I ² C BUS SLAVE ADDRESS
A2	A1	A0	FC BUS SLAVE ADDRESS
L	L	L	24 (decimal), 18 (hexadecimal)
L	L	Н	25 (decimal), 19 (hexadecimal)
L	Н	L	26 (decimal), 1A (hexadecimal)
L	н	Н	27 (decimal), 1B (hexadecimal)
H	L	L	28 (decimal), 1C (hexadecimal)
н	L	Н	29 (decimal), 1D (hexadecimal)
Н	Н	L	30 (decimal), 1E (hexadecimal)
н	Н	н	31 (decimal), 1F (hexadecimal)

LEDS

从上图可以看出,蓝板使用的 PCA9557 芯片的地址为 0x18

Figure 24. Write To Output Port Register

因为 PCA9557 为 I2C 转 8 位 GPIO 扩展芯片,在板上为 LED 驱动,低有效。即当管脚 为低电平时,对应的 LED 亮。

PCA9557 的使用分为两步:

- 1. PCA9557 初始化,即将端口配置为输出。
- 2. 对 PCA9557 的输出端口赋值, 例赋 0x0 时, 则 8 个 LED 全亮, 当为 0x0ff 时, 8 个 LED 全灭。

固件库文件驱动方式从上图的对输出端口写数据可见,首先给 I2C 总线输出从设备即 PCA9557 地址, 然后给出两字节数据, 第一个字节为命令, 第二个字节为数据。命令即输出 端口 01h, 数据则为从 0x00-0x0ff。

因此固件库使用如下:其中 DevAddr 为设备地址即 0x18, RegAddr 为输出端口地址即 0x01, WriteData 为写给输出端口的数据。

```
uint8_t I2C0_WriteByte(uint8_t DevAddr, uint8_t RegAddr, uint8_t WriteData)
uint8 t rop;
while(I2CMasterBusy(I2C0_BASE)){};
I2CMasterSlaveAddrSet(I2C0_BASE, DevAddr, false);
I2CMasterDataPut(I2CO_BASE, RegAddr);
I2CMasterControl(I2CO_BASE, I2C_MASTER_CMD_BURST_SEND_START);
while(I2CMasterBusy(I2C0_BASE)){};
rop = (uint8_t)I2CMasterErr(I2C0_BASE);
I2CMasterDataPut(I2C0_BASE, WriteData);
I2CMasterControl(I2CO_BASE, I2C_MASTER_CMD_BURST_SEND_FINISH);
while(I2CMasterBusy(I2CO_BASE)){};
rop = (uint8_t)I2CMasterErr(I2C0_BASE);
return rop;
I2C 芯片 TCA6424
```

地址定义

Table 3. Address Reference

ADDR	I ² C BUS SLAVE ADDRESS	
L	34 (decimal), 22 (hexadecimal)	
н	35 (decimal), 23 (hexadecimal)	

从上图可以看出,蓝板使用的 TCA6424 芯片的地址为 0x22

因为 TCA6424 为 I2C 转 24 位 GPIO 扩展芯片,分为 3 组,每组 8 位。在板上分别为:P0 为按键 SW1-SW8;

P1 为动态共阴数码管的脚位信号, 高电平时点亮相应的笔划;

P2 为动态共阴数码管的片选信号, 当为高电平时, 驱动对应的 8050 三极管导通, 从而选通对应的位。

TCA6424 的使用分为两步:

- 3. TCA6424 初始化, 即将端口 P0 配置为输入, P1, P2 配置为输出。
- 4. 对 PCA9557 的输出端口赋值。从而点亮动态数码管。