

Алгоритмы и структуры данных

Лекция 15. Алгоритмы на графах

Антон Штанюк (к.т.н, доцент) 26 мая 2022 г.

Нижегородский государственный технический университет им. Р.Е. Алексеева Институт радиоэлектроники информационных технологий Кафедра "Компьютерные технологии в проектировании и производстве"

Содержание

Основные определения

Программные реализации

Обход графов

Список литературы

Понятие графа

Граф - это абстрактное представление множества объектов и связей между ними. Графом называют пару (V, E) где V - это множество вершин, а E - множество пар, каждая из которых представляет собой связь (эти пары называют рёбрами).

Граф может быть ориентированным или неориентированным.

Путь в графе это конечная последовательность вершин, в которой каждые две вершины идущие подряд соединены ребром. Путь может быть ориентированным или неориентированным в зависимости от графа.

Пример графа

Виды графов

Простой, мультиграф, псевдограф

Виды графов

Полный и двудольный графы

Два ребра называются смежными, если у них есть общая вершина.

Два ребра называются *кратными*, если они соединяют одну и ту же пару вершин.

Ребро называется петлей, если его концы совпадают.

Стветенью вершины называют количество ребер, для которых она является концевой (при этом петли считают дважды).

Вершина называется *изолированной*, если она не является концом ни для одного ребра.

Вершина называется висячей, если из неё выходит ровно одно ребро.

Граф без кратных ребер и петель называется обыкновенным.

Циклом называют путь, в котором первая и последняя вершины совпадают.

Путь или цикл называют простым, если ребра в нем не повторяются.

Если в графе любые две вершины соединены путем, то такой граф называется *связным*.

Два графа называются *изоморфными*, если у них поровну вершин. При этом вершины каждого графа можно занумеровать числами так, чтобы вершины первого графа были соединены ребром тогда и только тогда, когда соединены ребром соответствующие занумерованные теми же числами вершины второго графа.

Граф ${\bf H}$, множество вершин ${\bf V}'$ которого является подмножеством вершин ${\bf V}$ данного графа ${\bf G}$ и множество рёбер которого является подмножеством рёбер графа ${\bf G}$ соединяющими вершины из ${\bf V}'$ называется *подграфом* графа ${\bf G}$.

Программные реализации

Основные представления

- 1. Матрица смежности
- 2. Список смежности
- 3. Матрица инцидентности
- 4. Список ребер

Матрица смежности

По строками и столбцам номера вершин, а значения в матрице говорят, связаны ли соответствующие вершины ребрами

Граф	Матрица смежности
3 4 6	$\begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$

Матрица инциндентности

Строки соответствуют вершинам от 1 до 6, а столбцы — рёбрам e1-e7.

Список смежности

Создается массив список соединенных вершин

Сравнение

Матрица смежности удобна, когда граф плотный (ребер больше чем вершин). Для разреженных графов в матрице будет много нулей.

Преимуществом матрицы смежности является быстрота проверки соединения і-й вершины с ј-й вершиной.

Список смежности подходит для разреженных графов (число ребер меньше или равно числу вершин). Памяти требуется существенно меньше, чем при использовании матрицы смежности. Недостатком является время поиска конкретного ребра.

Класс Graph на основе матрицы смежности

```
class Graph {
private:
   std::vector<std::vector<int>> matrix; // матрица смежности
   int vnumber: // число вершин
public:
   Graph(int vn):vnumber(vn) {
      matrix.resize(vnumber,std::vector<int>(vnumber));
   }
   void displav() { // вывод матрицы на экран
      int i. i:
      for(i = 0; i < matrix.size(); i++) {</pre>
         for(j = 0; j < matrix[0].size(); j++) {</pre>
             std::cout << matrix[i][i] << "..":
      std::cout << std::endl;
   void add edge(int u. int v) \{ //функция добавления ребра в матрицу
      matrix[u][v] = 1:
      matrix[v][u] = 1;
};
```

Пример задания графа

Сконструируем граф:

Пример задания графа

```
int main(int argc, char* argv[]) {
  enum VER {A,B,C,D,E};
  Graph gr(5);
  gr.add_edge(A,B);
  gr.add_edge(B,D);
  gr.add_edge(B,D);
  gr.add_edge(B,E);
  gr.add_edge(B,C);
  gr.add_edge(C,E);
  gr.display();
  return 0;
}
```

Вывод матрицы смежности

- 0 1 0 1 0
- 10111
- 0 1 0 0 1
- 1 1 0 0 0
- 0 1 1 0 0

Класс Graph на основе списков смежности

```
class Graph {
    private:
       std::map < int , std::list < int >> adj; // список смежности
       int vnumber: // число вершин
    public:
       Graph(int vn):vnumber(vn) {}
       void display() {
          for(auto& [key, value] : adj) { // C++17!
             std::cout << kev << ",_,":
             for(auto& i: value) {
                 std::cout << i << "...";
          std::cout << std::endl:
       void add edge(int u, int v) { // функция добавления ребра в матрицу
          adi[u].push back(v):
          adj[v].push_back(u);
    };
```

Пример задания графа

- 0 1 3
- 1 0 3 4 2
- 2 1 4
- 3 0 1
- 4 1 2

Обход графов

Методы обхода

Основными методами обхода являются:

- 1. Обход в глубину (DFS)
- 2. Обход в ширину (BFS)

Отличие поиска в глубину от поиска в ширину заключается в том, что (в случае неориентированного графа) результатом алгоритма поиска в глубину является некоторый маршрут, следуя которому можно обойти последовательно все вершины графа, доступные из начальной вершины. Этим он принципиально отличается от поиска в ширину, где одновременно обрабатывается множество вершин, в поиске в глубину в каждый момент исполнения алгоритма обрабатывается только одна вершина. С другой стороны, поиск в глубину не находит кратчайших путей, зато он применим в ситуациях, когда граф неизвестен целиком, а исследуется каким-то автоматизированным устройством.

Методы обхода

Для поиска в глубину и в ширину создаем отдельные функции, которые должны быть объявлены дружественными классу Graph.

Функция DFS будет рекурсивной. Для того чтобы хранить посещённые вершины, создается статический массив, доступ к которому обеспечивается только из копий функции DFS.

Функция BFS - не рекурсивная.

Поиск в глубину (DFS)

Поиск в ширину (BFS)

```
void BFS(Graph& gr, int s) {
    std::vector<bool> visited;
    visited.resize(gr.vnumber,false);
    // создаем очередь BFS
    std::list<int> queue:
    // помечаем текуший узел как посешённый
    visited[s] = true;
    queue.push back(s);
    while(!queue.emptv()) {
        // извлекаем из очереди и печатаем
        s = queue.front();
        std::cout << s << "..":
        queue.pop front():
        for (auto adjecent: gr.adj[s]) {
            if (!visited[adjecent]) {
                visited[adiecent] = true:
                queue.push_back(adjecent);
```

Список литературы

Список литературы і

- № Кормен Т.,Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ МЦНМО, Москва, 2000
- № Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ.
 2-е изд. М.: «Вильямс», 2006
- Википедия
 Алгоритм
 http://ru.wikipedia.org/wiki/Алгоритм
- Википедия Список алгоритмов http://ru.wikipedia.org/wiki/Список_алгоритмов
- ▶ Традиция За∂ача коммивояжёра http://traditio.ru/wiki/Задача

Список литературы іі

- Википедия
 NP-полная задача
 http://ru.wikipedia.org/wiki/NP-полная
- № Серджвик Р. Фундаментальные алгоритмы на C++. Части 1-4 Diasoft,2001
- № Седжвик Р. Фундаментальные алгоритмы на С. Анализ/Структуры данных/Сортировка/Поиск СПб.: ДиаСофтЮП, 2003
- ▶ Седжвик Р. Фундаментальные алгоритмы на С. Алгоритмы на графах СПб.: ДиаСофтЮП, 2003
- Ахо А., Хопкрофт Д., Ульман Д. Структуры данных и алгоритмы. Издательский дом «Вильямс», 2000

Список литературы ііі

- 🍆 Кнут Д.
 - *Искусство программирования, том 1. Основные алгоритмы* 3-е изд. М.: «Вильямс», 2006
- № Кнут Д.
 Искусство программирования, том 2. Получисленные методы
 3-е изд. М.: «Вильямс», 2007
- № Кнут Д.
 Искусство программирования, том 3. Сортировка и поиск
 2-е изд. М.: «Вильямс», 2007
- № Кнут Д.
 Искусство программирования, том 4, выпуск 3. Генерация всех сочетаний и разбиений
 М.: «Вильямс», 2007

Список литературы іv

Кнут Д.

Искусство программирования, том 4, выпуск 4. Генерация всех деревьев. История комбинаторной генерации М.: «Вильямс», 2007