# Relational event models for the analysis of social networks an overview of network models

Alessandro Lomi Jürgen Lerner

University of Exeter University of Konstanz

University of Exeter, Business School 3-4 June 2019

#### On these slides we discuss

- what is special about network data;
- a range of statistical network models
  - for time-independent network data;
  - for longitudinal data given by snapshots;
  - for networks of relational events.

#### Outline.

Network data.

Models for time-independent networks and network snapshots.

Relational event models.

#### Outline.

Network data.

Models for time-independent networks and network snapshots.

Relational event models

#### Network data.

Observations are associated with dyads

#### Network data.

#### Observations are associated with overlapping dyads



#### Network data.

Observations are associated with overlapping dyads



⇒ independence of observations is nearly unthinkable.

#### Networks as realizations of random variables.

Observations are associated with **overlapping dyads**.



$$\begin{bmatrix} \cdot & 1 & 0 & 1 & 1 & 0 \\ 1 & \cdot & 1 & 0 & 1 & 0 \\ 0 & 1 & \cdot & 0 & 1 & 1 \\ 1 & 0 & 0 & \cdot & 0 & 1 \\ 1 & 1 & 1 & 0 & \cdot & 1 \\ 0 & 0 & 1 & 1 & 1 & \cdot \end{bmatrix}$$

Observed network  $y = (y_{ij})$  is realization of a matrix of random variables  $Y = (Y_{ij})$ .

#### Outline.

Network data.

Models for time-independent networks and network snapshots.

Relational event models.

Cross-sectional data: time-independent networks.

# A simple statistical model for networks.

Observed network  $y = (y_{ij})$  is realization of a matrix of random variables  $Y = (Y_{ij})$ .

#### Mutually independent model

$$P(Y = y) = \prod_{ij} P(Y_{ij} = y_{ij}) .$$

Dyadic tie probabilities are independent of each other.

This model is completely unrealistic.

# Exponential random graph models (ERGM).

very general framework for network models

Probability of a network *y* has the functional form

$$P_{\theta}(Y = y) = \frac{1}{z} \exp \left( \sum_{k} \theta_{k} \cdot s_{k}(y) \right)$$
, where

- the  $\theta_k$  are parameters
- the  $s_k(y)$  are **statistics** of the network y, such as
  - number of edges (density)
  - number of edges connecting nodes with similar characteristics (homophily)
  - number of triangles (triadic closure)
  - number of stars (activity or popularity)
  - **.** . . .
- z is a normalizing constant.

# Exponential random graph models (ERGM).

very general framework for network models

Probability of a network *y* has the functional form

$$P_{\theta}(Y = y) = \frac{1}{Z} \exp \left( \sum_{k} \theta_{k} \cdot s_{k}(y) \right)$$
.

Given an observed network, parameters  $\theta$  are estimated s.t.

- the expected values of all statistics are equal to
- the statistics of the observed network.

Estimated parameters reveal network effects (homophily, ...).

## Some points about ERGMs.

- Can deal with complex dependence among dyadic observations;
- might lead to degenerate models;
- parameter estimation is quite involved (but software exists)
- ⇒ e.g., R package ergm (https://statnet.org/).

Is a model for cross-sectional networks without time information (does not apply to our setting).

Longitudinal data given by network snapshots.

# Longitudinal data given by network snapshots.

Networks, observed at given points in time  $t_1, \ldots, t_h$ 

$$y = (y^{(1)}, \ldots, y^{(h)})$$
.

Each  $y^{(\ell)}$  is an observed adjacency matrix.

Often results from repeated application of a questionnaire: "list all your friends within your school class."

## Stochastic actor-oriented models (SAOM).

#### Define probability distributions on

- latent (unobserved) sequences of micro-steps,
- where each micro-step changes the value of one dyad (deleting a tie or creating a tie),
- ▶ transforming a network  $y^{(t)}$  into the next  $y^{(t+1)}$ .

## Stochastic actor-oriented models (SAOM).

Define probability distributions on

- latent (unobserved) sequences of micro-steps,
- where each micro-step changes the value of one dyad (deleting a tie or creating a tie),
- ▶ transforming a network  $y^{(t)}$  into the next  $y^{(t+1)}$ .

A micro-step is defined by two processes determining

- the actor i who becomes active
   (gets the opportunity to change one out-going tie);
- 2. the target actor j (so that the tie  $y_{ij}$  will be flipped).

The active actor chooses micro-steps leading to desirable configurations (reciprocated ties, transitive closure, ...).

Distribution of micro-steps depends on current (latent) state.

## Some points about SAOMs.

Define probability distributions on **latent (unobserved)** sequences of micro-steps,...

- Model network dynamics (rather than network state).
- Parameter estimation is quite involved (but software exists)
- ⇒ RSiena (www.stats.ox.ac.uk/~snijders/siena).

Is a model for network snapshots at given points in time (does not apply to our setting).

#### Outline.

Network data

Models for time-independent networks and network snapshots.

Relational event models.

#### Networks of relational events.

Given by sequences of time-stamped dyadic events

$$E = (e_1, ..., e_N)$$
, where  $e_i = (a_i, b_i, t_i, x_i)$ 

- a<sub>i</sub> source (sender) of the event;
- b<sub>i</sub> target (receiver) of the event;
- ▶ t<sub>i</sub> time of the event (potentially: ordinal);
- ➤ *x<sub>i</sub>* **type** of the event (potentially: type and weight).

Who does when what to whom?

## Relational event models (REM).

Given a sequence of time-stamped dyadic events

$$E = (e_1, \dots, e_N)$$
, where  $e_i = (a_i, b_i, t_i, x_i)$ ,

define  $G[E_{< t}] = G[\{e_i \in E; t_i < t\}]$  (network of past events).

## Relational event models (REM).

Given a sequence of time-stamped dyadic events

$$E = (e_1, \dots, e_N)$$
, where  $e_i = (a_i, b_i, t_i, x_i)$ ,

define  $G[E_{< t}] = G[\{e_i \in E ; t_i < t\}]$  (network of past events).

Relational event models specify probability distributions

$$P(E) = \prod_{i=1}^{N} P(e_i \mid G[E_{< t_i}])$$
.

- Events are assumed to be conditionally independent, given the network of past events.
- ⇒ With sufficient statistics of the network of past events, REMs are regression models(!).



## Relational event models (REM).

Relational event models specify probability distributions

$$P(E) = \prod_{i=1}^{N} P(e_i | G[E_{< t_i}])$$
.

The conditional probabilities  $P(e_i | G[E_{< t_i}])$  are specified by

$$y(e_i) \sim f(G[E_{< t_i}]; e_i)$$

- ▶ Response variables  $y(e_i)$ , encoding aspects of the event,
- are drawn from a probability distribution f,
- ▶ which is a function of the network of past events  $G[E_{< t_i}]$ .

**Explanatory variables:** statistics characterizing how the dyad  $(a_i, b_i)$  is embedded in the network of past events  $G[E_{< t_i}]$ .

$$y(e_i) \sim f(G[E_{< t_i}]; e_i)$$

# Explanatory variables: event network statistics.

The distribution f in  $y(e_i) \sim f(G[E_{< t_i}]; e_i)$  is typically a parametric function of dyad statistics  $s = s_1, \ldots, s_k$ 

$$f(s(G[E_{< t_i}]; e_i); \theta)$$
, where  $\theta = \theta_1, \dots, \theta_k$ 

# Explanatory variables: event network statistics.

The distribution f in  $y(e_i) \sim f(G[E_{< t_i}]; e_i)$  is typically a parametric function of dyad statistics  $s = s_1, \ldots, s_k$ 

$$f(s(G[E_{< t_i}]; e_i); \theta)$$
, where  $\theta = \theta_1, \dots, \theta_k$ 

Statistics  $s_h$  characterize how dyads (A, B) are embedded into the network of past events.

- ▶ Distribution of events on the dyad (A, B) depend on past events
  - from A to B (repetition);
  - from B to A (reciprocation);
  - to/from A or B (degree effects);
  - to/from common third actors (triadic effects);
- ▶ Parameters  $\theta_h$  (to be estimated from empirical data) determine the effect of statistics on response variables.

# Event network statistics $s_h(a, b, t)$ .

**Statistics**  $s_h(a, b, t)$  assign time-varying values to dyads;

- ightharpoonup are the variables which explain events on (a,b) at t;
- are functions of past events happening before t on the same or other dyads;
- introduce dependence among dyadic observations.



**Examples:** repetition, reciprocation, (in-/out-/mixed-)degrees, triadic effects, four-cycle effects, covariate effects, . . .

# Examples: common statistics $s_h(a, b, t)$ .

| statistic    | $s_h(a,b,t) =$                             | a>b depends on                                           |
|--------------|--------------------------------------------|----------------------------------------------------------|
| repetition   | att(a, b, t)                               | $a \longrightarrow b$                                    |
| reciproc.    | att(b, a, t)                               | a←b                                                      |
| transitivity | $\sum_{i} att(a, i, t) \cdot att(i, b, t)$ | $a \xrightarrow{i_2} b$                                  |
| outDegSource | $\sum_{i}$ att $(a, i, t)$                 | $i_1$ $i_2 \leftarrow a \rightarrow b$ $i_3$             |
| inDegTarget  | $\sum_{i} att(i, b, t)$                    | $a \longrightarrow b \stackrel{i_1}{\longleftarrow} i_2$ |

#### Families of probability distributions for the next event

$$y(e_i) \sim f(G[E_{< t_i}]; e_i)$$

Here: describe four variants

- 1. modeling relative event rates;
- 2. modeling the time to events;
- 3. modeling conditional event types;
- 4. modeling conditional event weights.

#### Families of probability distributions for the next event

$$y(e_i) \sim f(G[E_{< t_i}]; e_i)$$

(I) Modeling relative event rates.

⇒ Cox proportional-hazard models.

# Modeling relative event rates.

Cox proportional-hazard models

On which dyad does the next event happen?

Specify time-varying dyadic event rates  $\lambda(A, B; t)$  (expected number of events per time unit on (A, B) at t).

Decompose into time-varying baseline rate and a parametric relative part

$$\lambda(A, B; t) = \lambda_0(t) \cdot \lambda_1(A, B; t; \theta)$$

$$\lambda_1(A, B; t; \theta) = \exp\left(\sum_h \theta_h \cdot s_h(A, B; G[E_{< t}])\right)$$

Baseline rate  $\lambda_0$  may be estimated by non-parametric methods.

# Modeling relative event rates.

Cox proportional-hazard models

Parametric relative event rate

$$\lambda_1(A, B; t; \theta) = \exp \left( \sum_h \theta_h \cdot s_h(A, B; G[E_{< t}]) \right)$$

Leads to a partial likelihood for the i'th event  $e_i = (a_i, b_i, t_i)$ 

$$P(e_i \mid G[E_{< t_i}]; \theta) = \frac{\lambda_1(a_i, b_i; t_i; \theta)}{\sum_{ab \in R_{t_i}} \lambda_1(a, b; t_i; \theta)}$$

**Risk set**  $R_{t_i}$ : all dyads that could experience an event at  $t_i$ ; potentially: sample from  $R_{t_i}$ .

Parameters: maximize  $P(E; \theta) = \prod_i P(e_i \mid G[E_{< t_i}]; \theta)$ . coxph in the R-package **survival**.

#### Families of probability distributions for the next event

$$y(e_i) \sim f(G[E_{< t_i}]; e_i)$$

(II) Modeling the time to events.

## Modeling the time to events.

assuming piecewise-constant event rates, changing only at event times

On which dyad – and when – does the next event happen?

Specify time-varying dyadic event rates  $\lambda(A, B; t)$  (expected number of events per time unit on (A, B) at t).

$$\lambda(A, B; t; \theta) = \exp\left(\sum_{h} \theta_{h} \cdot s_{h}(A, B; G[E_{< t}])\right)$$

Leads to likelihood for the *i*'th event  $e_i = (a_i, b_i, t_i)$ 

$$P(e_i \mid G[E_{< t_i}]; \theta) = \frac{\lambda(a_i, b_i; t_i; \theta)}{\exp\left((t_i - t_{i-1}) \cdot \sum_{ab \in R_{t_i}} \lambda(a, b; t_i; \theta)\right)}$$

Parameter estimation: survreg in R-package survival.

#### Families of probability distributions for the next event

$$y(e_i) \sim f(G[E_{< t_i}]; e_i)$$

(III) Modeling conditional event types.

# Modeling conditional event types.

How do actors interact, given that they do interact?

Assume that there are two types of events: cooperative and conflictive.

Specify probability that type  $x_i$  of given event  $e_i = (a_i, b_i, t_i, x_i)$  is cooperative (e.g., by a logit model)

$$P(x_i = \mathsf{coop} \mid a_i, b_i; G[E_{< t_i}]; \theta) = \mathsf{logit}^{-1} \left( \sum_h \theta_h \cdot s_h(a_i, b_i; G[E_{< t}]) \right)$$

Generalizes to, e.g., (ordered) multi-nominal event types.

#### Families of probability distributions for the next event

$$y(e_i) \sim f(G[E_{< t_i}]; e_i)$$

(VI) Modeling conditional event weights.

# Modeling conditional event types.

How do actors interact, given that they do interact?

Assume that events have numeric weights  $x \in \mathbb{R}$  e.g., x measuring the performance of interaction.

Specify distribution of weight  $x_i$  of given event  $e_i = (a_i, b_i, t_i, x_i)$  e. g., by the normal distribution  $\Rightarrow$  linear regression.

$$x_i \mid a_i, b_i; G[E_{< t_i}]; \theta \sim \mathcal{N}(\mu, \sigma^2)$$
  
 $\mu = \sum_h \theta_h \cdot s_h(a_i, b_i; G[E_{< t}])$ 

Generalizes to other distributions of event weights.

