Midterm 1 Review Worksheets

Saturday, June 4, 2016 2:37 PM

1. (a) Find $\mathcal{P}(A)$ and $|\mathcal{P}(\mathcal{P}(A))|$ for $A = \{a, b\}$

$$|P(A) = \{ \{a\}, \{b\}, \{a, b\}, \emptyset \}|$$

 $|P(A)| = 2^{|A|} = 2^2 = 4$
 $|P(P(A))| = 2^{|P(A)|} = 2^4 = 16$

(b) Find $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for $A = \{1, \{2\}, \emptyset\}$

- 2. Give an example of a set S such that
 - (a) $S \in \mathcal{P}(\mathbb{Z})$ and |S| = 3.

$$P(\mathbb{Z}) = \{ \{ \{ \{ \}, \{ \}, \{ \}, 2 \}, \{ \}, 2, 3 \} \dots \}$$

$$|S = \{ \{ \{ \}, 2, 3 \} \}| |S| = 3$$

(b) $S \subseteq \mathcal{P}(\mathbb{Z})$ and |S| = 3.

3. Let a, b, c, d be real numbers with a < b < c < d. Express the set $[a, b] \cup [c, d]$ as the difference of two sets.

4. Let

$$\begin{split} A &= \{n \in \mathbb{N} : n = 4k \text{ for some } k \in \mathbb{N}, 1 \leq k \leq 10\} \\ B &= \{n \in \mathbb{N} : n = 3k \text{ for some } k \in \mathbb{N}, 1 \leq k \leq 30\} \end{split}$$

Compute the following:

- (a) |A|
- (b) |B|
- (c) $|A \cup B|$
- (d) $|A \cap B|$
- (e) Find a formula for $|A \cup B|$ in terms of |A|, |B|, and $|A \cap B|$. Use a Venn diagram to guide you.

2. For each $n \in \mathbb{N}$, define the half-open interval S_n by

$$S_n = (n, n+1]$$

- (a) Find $\bigcup_{n=1}^{\infty} S_n$
- (b) Find $\bigcap_{n=1}^{\infty} S_n$

$$(1,2] \cup (2,3] \cup (3,4] \dots \cup (\infty,\infty] = (1,\infty)$$

 $(1,2] \cup (2,3] \cup (3,4] \dots \cup (\infty,\infty] \neq \emptyset$

3. Let C be the circle of radius 1 centered at the origin in the xy-plane. Express this set in terms of its points (x, y) and some property p(x, y).

$$S = \{(x,y) : x^2 y^2 = 1, x,y \in \mathbb{R} \}$$

 $S = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 1\}$

4. Negate the following statements:

$$P: \pi < 4,$$
 $Q: \ln(e^2x^2) = 2(1 + \ln(x)),$ $R: 9$ is an even integer

$$\pi = 4$$
 $\ln(e^2x^2) \neq 2(1+\ln x)$ 9 is not an even integer (if we new domain was integer or naturals, we could say odd

5. Construct the truth tables for $P \vee Q$ and $P \wedge Q$.

2. Let the statements P and Q be defined by

 $Q: 3 < \sqrt{17}$ P:4 is an even integer,

Write each of the statements below symbolically and determine its truth value

- (a) 4 is an even integer and $3 < \sqrt{17}$.
- (b) 4 is an even integer and $3 \ge \sqrt{17}$.
- (c) 4 is an odd integer and $3 \ge \sqrt{17}$.
- (d) 4 is an even integer or $3 < \sqrt{17}$.
- (e) 4 is an odd integer or $3 < \sqrt{17}$.
- (f) 4 is an odd integer or $3 \ge \sqrt{17}$.
 - a) PAQET
- d) PVQI
- b) PANQ = F e) ~PVQ = T
- JNPANQ = F for PVNQ = F
- 3. Which of the following statements mean the same thing as "if 3 is prime, then 4 is even"?

if P then Q

- 4 is even only if 3 is prime & only if ?
- ✓ For 4 to be even it is sufficient that 3 be prime for Q, ς M. $P = P \rightarrow Q$
- \checkmark For 3 to be prime it is necessary that 4 be even for ?, rec. $Q = P \rightarrow Q$
- V For 4 to be even, 3 must be prime for \triangle , $P \equiv \bigcirc \nearrow P$
- √ 4 is even when 3 is prime

 ② when P

 P

 Q
- \times 3 is prime if 4 is even P if $Q = Q \rightarrow P$

4. Determine the values of a and/or b for which the statement is true:

- (a) 3 < 2 and b = 6
- -- , M A
- (b) a = 4 or 2 < 3
- any as any b
- (c) a = 4 or 3 < 2
- t, any b
- (d) If a = 4, then 2 < 3
- any as any b
- (e) If a = 4, then 3 < 2
- a + 4, any 6
- (f) If 2 < 3, then b = 6
- ,=6, cmy a
- (g) If 3 < 2, then b = 6
- ony a, ony b

- 5. Express each of the following statements as a conditional statement in "if-then" form. Also
 - write the negation, converse and contrapositive for each.

 (a) Every odd number is prime

 odd is soff. for prime

 if odd then prime
- if P, then Q
 P is sufficient for Q
 Q is recessary for P
- (b) Passing the test requires solving all the problems

(c) Being first in line guarantees a good seat

(d) I get mad when you whistle

Consider the following open sentence: "x is even if and only if 2x is even" over the domain of natural numbers. What is the largest subset S of the domain that makes this open sentence always true? Justify your answer.

if and only if
$$\therefore P \rightarrow Q \land Q \rightarrow P \times \in \mathbb{N}$$

Where $a,b \in \mathbb{Z}$
if $x=2a$, then $2x=2b$, $x=b$
if $2x=2b$, then $x=2a$
 $x=b$
 $S=52a$: $n \in \mathbb{N}$? = $\{2,4,6,8,10...7$

3. For statements P, Q and R prove that the following statement is a tautology:

$$[(P \Rightarrow Q) \Rightarrow R] \vee [(^{\sim}P) \vee Q].$$

Always true, thus a tautology.

1. Prove the logical equivalence $(P \wedge (^\sim Q)) \vee Q \equiv P \vee Q$

$$(P \land \neg Q) \lor Q \equiv P \lor Q$$
 $Q \lor (P \land \neg Q) \equiv P \lor Q$ by commutative law

 $(Q \lor P) \land (Q \lor \neg Q) \equiv P \lor Q$ by distributive law

 $(Q \lor P) \land T \equiv P \lor Q$ by invesse law

 $(P \lor Q) \land T \equiv P \lor Q$ by commutative law

 $P \lor Q \equiv P \lor Q$ by identity law

2. The statement "For every integer m, either $m \le 1$ or $m^2 \ge 4$ " can be expressed using symbols as

$$\forall m \in \mathbb{Z}, m \leq 1 \text{ or } m^2 \geq 4$$

For each of the statements below:

- (a) Express the negation of the statement in symbols
- (b) Express the negation of the statement in words
- 1. There exists integers a and b such that both ab < 0 and a + b > 0.

$$N$$
 (\exists a,b \in \mathbb{Z} s.t. ab<0 \land a+b>0) \forall a,b \in \mathbb{Z} , ab>0 \lor a+b<0 for all integers a and b, ab>0 or a+b<0

2. For all real numbers x and y, $x \neq y$ implies that $x^2 + y^2 > 0$.

3. State and prove the negation of the following statement:

 $\exists k \in \mathbb{Z} \text{ s.t. } k \text{ is odd and } k^2 \text{ is even.}$

$$N(\exists k \in \mathbb{Z} \text{ s.t. } k \text{ is odd } cnd k^2 \text{ is even})$$

$$\forall k \in \mathbb{Z}, k \text{ is even or } k^2 \text{ is odd}$$

Proof

Assume k is odd, thus
$$k=2a+1$$
 for some integer a, then $k^2=(2a+1)^2=4a^2+4a+1=2(2a^2+2a)+1$ $2a^2+2a$ is an integer, thus k^2 is odd.

Hence, when k is odd, k^2 is odd

4. Let p(x) be a polynomial of degree d with integer coefficients, and constant term equal to zero (i.e. p(0) = 0). Let $n \in \mathbb{N}$. Prove that if n is even, then p(n) is even.

$$\begin{aligned} \rho(k) &= 0 \, \text{x}^{2} + a_{1} \, \text{x}^{2} + \dots \, \text{a}_{3} \, \text{x}^{d} \\ &\text{Assume n is even, } n = 2 \, \text{k} \quad \text{for some integer k} \\ &\rho(2k) &= 0 + a_{1}(2k)^{1} + a_{2}(2k)^{2} + a_{3}(2k)^{3} + \dots + a_{1}(2k)^{1} \\ &= 2 a_{1} \, \text{k} + 4 a_{2} \, \text{k}^{2} + 8 a_{3} \, \text{k}^{3} + \dots + 2^{1} \, a_{1} \, \text{k}^{1} \\ &= 2 \left(a_{1} \, \text{k} + 2 a_{2} \, \text{k}^{2} + 4 a_{3} \, \text{k}^{3} + \dots + 2^{1} \, a_{1} \, \text{k}^{1} \right) \\ &\text{Since all coefficients a and ks are integers, } \rho(2k) &= \rho(n) \text{ is an even number.} \end{aligned}$$

1. Let x and y be integers. Prove that if x and y are not of the same parity, then $(x+y)^2$ is odd.

Proof by cases where x and y have opposite parity.

Case 1: Assume x is odd and y is even.

So x=2a+1 and y=2b for some integers a and b. Then

$$(x+y)^{2} = (2a+2b+1)^{2} = (2(a+b)+1)(2(a+b)+1)$$

$$= 4(a+b)^{2} + 4(a+b) + 1$$

$$= 2[2(a+b)^{2} + 2a+2b] + 1$$

Since 2(a+b)2 + 26+26 is an integer, (x+y)2 is odd.

Case 2: WLOG the same proof can be applied when x is even and y is odd.

2. Prove that 3n+2 is odd implies n is odd for all $n \in \mathbb{Z}$, first directly and then by contrapositive.

If 3n+2 is odd, then n is odd for all nEZ We will first prove the contrapositive "if n is even, then 3n+2 is even for all nEZ".

If n is even, n=2k for some integer k. Then 3n+2=Gk+2=2(3k+1). Since 8k+1 15 on integer, 3n+2 is even.

Thus by proving the contrapositive, we have proved the original statement.

A second second

Not going to bother with direct proof b/c it will be a pain.

- 3. Let $a \in \mathbb{Z}$. Prove that a is even if and only if a^3 is even.
 - "if and only if" indicates the biconditional. Thus we must prove both 1) if a is even, then a³ is even and 2) if a³ is even, then a is even.
 - 1) assume a is even, then a=2k for some integer k. Then $a^3=(2k)^3=8k^3=2(4k^3)$. Since $4k^7$ is an integer, a^3 is even.
 - 2) we will prove this by the contapositive "if a is odd, then a3 is odd."

assume a is odd, then
$$a = 2k + 1$$
 for some integer k. Then $a^3 = (2k+1)^3 = (2k+1)(2k+1)(2k+1)$

$$= (4k^2 + 4k + 1)(2k+1)$$

$$= 8k^3 + 8k^2 + 2k + 4k^2 + 4k + 1$$

$$= 8k^3 + 12k^2 + 6k + 1$$

$$= 2(4k^3 + 6k^2 + 3k) + 1$$

Since 4k3+Gk2+3k is an integer, a3 is odd.

Thus we have proved the contrapositive and also the original statement.

thaving proved both implications, we have proved the bicorditional.

1. Prove part (4) of the "sets lemma." Let A and B be sets.

"If $x \notin A \cap B$, then $x \notin A$ or $x \notin B$."

we call prove this by the contrapositive

"if xEA and xEB, then AEAOB"

Assume XEAO XEB ~(XES) = XES

Assume x&ANB. Then ~(xEANB), and so ~(xEA N xEB). By DeMorgan's law then ~(xEA) V ~(xEB), and so x&A V x&B

2. Let A and B be sets. Prove that

$$(A \cap B = A) \Rightarrow (A \subseteq B)$$

X

we must prove two implications to prove the biconditional.

CASE 1: ANB = A -> A SB

Assume ANB=A. Let XEA, since A=ANB, XEANB. Therefore XEA A XEB

Since XEA and XEB, thurstone ASB. Q

case 2: A≤B → AAB=A

ANB=A, SO ANBSA and ASANB

If AMB=A, then 1) AMB SA and 2) ASAMB.

- 1) Assume ACB. Take XCA. Then also XCB. So XCA and XCB, thus XCANB. SO ACANB. Q
- 2) Assume ASB. Take XEA, Then also XEB. So XEA

3. Let A and B be sets. Prove that $(A \times B) \cap (B \times A) = (A \cap B) \times (B \cap A)$

If RUS=LUS, then RUSSLUS A LUSSRUS

Then $A \times B = (a,b)$ and $B \times A = (b,a)$. So $(A \times B) \wedge (B \times A) = \emptyset$. Then $A \wedge B = \emptyset$ and $B \wedge A = \emptyset$. So $A \times B = \emptyset$.

Let XELMS and YERMS.

if $xe(A\times B) \cap (BXA)$, then $xe(A\times B) \wedge xe(B\times A)$