Chapitre 8

Droite dans le plan

	Sommaire	
1	Repère du plan et coordonnées 1.1 Base et repère du plan	1 1 1
2	Colinéarité de deux vecteurs	2
3	Droite dans le plan	3
	3.1 Droite et vecteur directeur	3
	3.2 Représentation paramétrique d'une droite	3
	3.3 Équation cartésienne d'une droite	3
	3.4 Positions relatives de deux droites	4
4	Exercices	5

1 Repère du plan et coordonnées

1.1 Base et repère du plan

Définitions

- On appelle «base» du plan, tout couple (\vec{i}, \vec{j}) , où \vec{i} et \vec{j} sont deux vecteurs non colinéaires.
 - Une base (\vec{i}, \vec{j}) est dite «**orthogonale**», si les droites portant les vecteurs \vec{i} et \vec{j} sont perpendiculaires.
 - o Une base (\vec{i}, \vec{j}) est dite «**normée**», si les deux vecteurs \vec{i} et \vec{j} sont de même norme.
 - o Une base (\vec{i}, \vec{j}) est dite «**orthonormée**», s'elle est orthogonale et normée.
- On appelle «**repère**» du plan, tout triplet $(O; \vec{i}, \vec{j})$, où (\vec{i}, \vec{j}) est une base du plan, et O est un point quelconque, appelé «**origine du repère**».

 - Un repère $(O; \vec{i}, \vec{j})$ est dit «**normé**», si sa base (\vec{i}, \vec{j}) est normé.
 - o Un repère $(O; \vec{i}, \vec{j})$ est dit «**orthonormé**», si sa base (\vec{i}, \vec{j}) est orthogonale et normée.

Exemple

Repère orthogonal et non normé.

Repère normé, et non orthogonal.

Repère non orthogonal et non normé.

Repère orthonormé (orthogonal et normé).

Propriétés

- Tout trois points distincts non alignés du plan, forment une base de ce plan.
- Tout trois points distincts non alignés du plan, forment un repère de ce plan.

Exercice

ABCD est un losange de centre O.

Construire la figure, et relever de celle-ci trois repères :

(a) un repère orthogonal, non normé. (b) un repère normé, non orthogonal. (c) un repère orthonormé.

Dans toute ce qui suit, le plan est muni d'un repère (O, \vec{i}, \vec{j}) .

1.2 Coordonnées d'un point – Coordonnées d'un vecteur

Définitions

• Pour tout point M du plan, il existe deux réels x et y tels que $\overrightarrow{OM} = x\vec{i} + y\vec{j}$. Le couple (x;y) est appelé coordonnées du point M.

On écrit M(x;y) ou $M\begin{pmatrix} x \\ y \end{pmatrix}$.

• Pour tout vecteur \vec{u} du plan, il existe deux réels a et b tels que $\vec{u} = a\vec{i} + b\vec{j}$. Le couple (a;b) est appelé coordonnées du vecteur \vec{u} .

On écrit $\vec{u}(a;b)$ ou $\vec{u} \binom{a}{b}$.

Droite dans le plan Mathématiques

Exercice

ABCD est un losange de centre O.

Construire la figure, et déterminer les coordonnées des points A, B, C, D et O, et des vecteurs $\overrightarrow{AB}, \overrightarrow{AC}$ et \overrightarrow{BD} , dans chacun des repères suivants :

(i)
$$(O; \overrightarrow{OB}, \overrightarrow{OD})$$

(ii)
$$(O; \overrightarrow{OB}, \overrightarrow{OA})$$

(iii)
$$(A; \overrightarrow{AB}, \overrightarrow{AD})$$
 (iv) $(C; \overrightarrow{CB}, \overrightarrow{CA})$

(iv)
$$(C; \overrightarrow{CB}, \overrightarrow{CA})$$

Propriétés

- Si $\vec{u}(a;b)$ et $\vec{v}(a';b')$ sont deux vecteurs du plan, alors, $\vec{u}=\vec{v}$ si et seulement si a=a' et b=b'.
- Si $\vec{u}(a;b)$ et $\vec{v}(a';b')$ sont deux vecteurs du plan, alors, $\vec{u} + \vec{v}(a+a';b+b')$.
- Si $\vec{u}(a;b)$ est un vecteur du plan et k un nombre réel, alors, $k\vec{u}(ka;kb)$.
- Si $\vec{u}(a;b)$ est un vecteur du plan, alors, $||\vec{u}|| = \sqrt{a^2 + b^2}$.
- Si A(x_A; x_A) et B(x_B; x_B) sont deux points du plan, alors, AB(x_B x_A; y_B y_A).
 Si A(x_A; x_A) et B(x_B; x_B) sont deux points du plan, alors, AB = √(x_B x_A)² + (y_B y_A)².
 Si I est le milieu d'un segment [A(x_A; x_A), B(x_B; x_B)] du plan, alors, I (x_A+x_B/2; y_A+y_B/2).

Exercice

Le plan est muni d'un repère $(O; \vec{i}, \vec{j})$.

- 1. On considère les points A(-1;1), B(1;-2), C(5;1) et D(3;4).
 - (a) Déterminer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} et \overrightarrow{DC} . Quelle-est la nature du quadrilatère
 - (b) Déterminer les coordonnées du point d'intersection des diagonales de ABCD.
- 2. On considère les points A(-2;1), B(0;-2) et C(3;-1). Déterminer les coordonnées du point D, pour que ABCD soit un parallélogramme.
- 3. Déterminer le rayon du cercle, dont l'un de ses diamètre est le segment [A(2;-1),B(4;-5)].

2 Colinéarité de deux vecteurs

Définition

Soient $\vec{u}(a;b)$ et $\vec{v}(a';b')$ deux vecteurs du plan.

On appelle «**déterminant**» des deux vecteurs \vec{u} et \vec{v} , le nombre réel noté $\det(\vec{u}, \vec{v})$, défini par :

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = ab' - ba'$$

Propriété

Soient \vec{u} et \vec{v} deux vecteurs du plan.

- \vec{u} et \vec{v} sont colinéaires si et seulement si $\det(\vec{u}, \vec{v}) = 0$.
- \vec{u} et \vec{v} ne sont pas colinéaires si et seulement si $\det(\vec{u}, \vec{v}) \neq 0$.

Exercice

Le plan est muni d'un repère $(O; \vec{i}, \vec{j})$.

1. Etudier la colinéarité des deux vecteurs
$$\vec{u}$$
 et \vec{v} , dans les cas suivants : (a) $\vec{u} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}$. (b) $\vec{u} \begin{pmatrix} 2\sqrt{2} \\ \sqrt{3} \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -\sqrt{3} \\ \sqrt{2} \end{pmatrix}$. (c) $\vec{u} \begin{pmatrix} 2m-3 \\ m+3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.

- 2. On considère les points $A\left(-\frac{7}{2}; -\frac{1}{2}\right)$, $B\left(\frac{1}{2}; \frac{3}{2}\right)$, $C\left(\right)$ et $D\left(\right)$
 - (a) Montrer que les points A, B et C sont alignés.
 - (b) Les points B, C et D, sont-ils alignés?

Droite dans le plan Mathématiques

3 Droite dans le plan

3.1 Droite et vecteur directeur

Définition

 \vec{u} est un vecteur du plan, et A est un point donné.

L'ensemble des points M du plan, vérifiant $\overline{AM} = k\vec{u}$, où k est un nombre réel, est la droite passant par le point A et de vecteur directeur \vec{u} , et est noté $D(A, \vec{u})$.

On écrit $D(A, \vec{u}) = \{ M \in (\mathcal{P}) / \overrightarrow{AM} = k\vec{u} \}.$

Remarques

Soient \vec{u} et \vec{v} deux vecteurs du plan, et A et B deux points distincts.

- Si M est un point de la droite $D(A, \vec{u})$, alors, les vecteurs \overline{AM} et \vec{u} sont colinéaires.
- Si \vec{u} et \vec{v} sont colinéaires, alors, les droites $D(A, \vec{u})$ et $D(B, \vec{v})$ sont parallèles.
- Si \vec{u} et \vec{v} sont colinéaires, alors, les droites $D(A, \vec{u})$ et $D(A, \vec{v})$ sont confondues.
- Si \vec{u} et \vec{v} ne sont pas colinéaires, alors, les droites $D(A, \vec{u})$ et $D(B, \vec{v})$ sont sécantes.
- Si \vec{u} et \vec{v} ne sont pas colinéaires, alors, les droites $D(A, \vec{u})$ et $D(A, \vec{v})$ sont sécantes en A.
- Une droite passant par deux point A et B du plan, est de vecteur directeur \overrightarrow{AB} . On a $(AB) = D(A, \overrightarrow{AB})$.

3.2 Représentation paramétrique d'une droite

Activité

 $\vec{u}(a;b)$ est un vecteur du plan et $A(x_A;y_A)$ est un point donné.

Soit M(x; y) un point de la droite $D(A, \vec{u})$.

- 1. Montrer qu'il existe un réel t tel que $\overrightarrow{AM} = t\overrightarrow{u}$.
- 2. En déduire les coordonnées du point M en fonction de t.

Définition

Si $\vec{u}(a;b)$ est un vecteur directeur d'une droite (D) du plan, et $A(x_A;y_A)$ est un point donné de cette droite, alors, le système défini par $\begin{cases} x=x_A+at \\ y=y_A+bt \end{cases}$ ($t\in\mathbb{R}$) est appelé «**représentation paramétrique**» de (D), .

Exercice

Le plan est muni d'un repère $(O; \vec{i}, \vec{j})$.

- 1. Déterminer une représentation paramétrique de la droite (D) passant par le point A(3;-2) et de vecteur directeur $\vec{u}(4;2)$.
- 2. Déterminer une représentation paramétrique de la droite (AB) tel que A(1; -3) et B(2; -5).

3.3 Équation cartésienne d'une droite

Activité

 $\vec{u}(a;b)$ est un vecteur du plan et $A(x_A;y_A)$ est un point donné.

Soit M(x; y) un point de la droite $D(A, \vec{u})$.

- 1. Montrer que $\det(\overline{AM}, \vec{u}) = 0$.
- 2. En déduire que les coordonnées du point M forment une solution d'une équation à déterminer.

Définition

Si $\vec{u}(a;b)$ est un vecteur directeur d'une droite (D) du plan, et $A(x_A;y_A)$ est un point donné de cette droite, alors, l'équation défini par $b(x-x_A)-a(y-y_A)=0$ est appelé «**équation cartésienne**» de (D), .

Droite dans le plan Mathématiques

Exercice

Le plan est muni d'un repère $(O; \vec{i}, \vec{j})$.

- 1. Déterminer une équation cartésienne de la droite (D) passant par le point A(3;-2) et de vecteur
- 2. Déterminer une équation cartésienne de la droite (AB) tel que A(1, -3) et B(2, -5).

Propriété

Soient a et b deux réels non nuls.

- Toute équation de la forme ax + by + c = 0 est une équation cartésienne d'une droite du plan, et réciproquement, toute droite du plan a une équation de la forme ax + by + c = 0. Un vecteur directeur de cette droite est celui de coordonnées (-b; a).
- Une équation de droite de la forme y = mx + p est dite «équation réduite» de celle-ci. Le réel m est appelé «coefficient directeur» ou «pente», et le réel p «ordonnée à l'origine» de la droite.
- Toute droite parallèle à l'axe des ordonnées, a une équation cartésienne de la forme x=c, et toute droite parallèle à l'axe des abscisses, a une équation cartésienne de la forme y=c.

Exercice

Déterminer un vecteur directeur et le coefficient directeur de la droite (D), dans les cas suivant :

(a)
$$3x + 2y - 3 = 0$$

(b)
$$x - 2y + 4 = 0$$

(c)
$$4y - 2 = 0$$

(d)
$$-x + 1 = 0$$

Remarque

Une équation cartésienne de la droite du plan passant par un point $A(x_A; y_A)$ et de coefficient directeur m est $m(x - x_A) - (y - y_A) = 0$.

Positions relatives de deux droites 3.4

Rappel

Soient (D) et (D') deux droites du plan, de coefficients directeurs respectifs m et m'.

- (D) et (D') sont parallèles si et seulement si m = m'.
- (D) et (D') sont sécantes si et seulement si $m \neq m'$.
- (D) et (D') sont perpendiculaires si et seulement si $m \times m' = -1$.

Propriétés

Soient (D) et (D') deux droites du plan, de vecteurs directeurs respectifs \vec{u} et \vec{v} .

- (D) et (D') sont parallèles si et seulement si $\det(\vec{u}, \vec{v}) = 0$.
- (D) et (D') sont sécantes si et seulement si $\det(\vec{u}, \vec{v}) \neq 0$.

Exercice

Étudier la position relative des deux droites (D) et (Δ) , dans les cas suivants :

(a)
$$(D): \begin{cases} x = 4 + 2t \\ y = 3 - t \end{cases}$$
 $(t \in \mathbb{R})$ et $(\Delta): \begin{cases} x = 2 + \lambda \\ y = 2 + 3\lambda \end{cases}$ $(\lambda \in \mathbb{R}).$
(b) $(D): x - 4y - 2 = 0$ et $(\Delta): 2x - 3y + 1 = 0.$
(c) $(D): \begin{cases} x = 4 + 2t \\ y = 1 + 3t \end{cases}$ $(t \in \mathbb{R})$ et $(\Delta): x + y - 2 = 0.$

(b)
$$(D)$$
: $x-4y-2=0$ et (Δ) : $2x-3y+1=0$.

(c) (D):
$$\begin{cases} x = 4 + 2t \\ y = 1 + 3t \end{cases} (t \in \mathbb{R}) \text{ et } (\Delta): x + y - 2 = 0.$$

Droite dans le plan Mathématiques

4 Exercices

Exercice 1

Le plan est muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

On considère les points A(3;1), B(-3;-2) et C(5;-4).

- 1. Déterminer les coordonnées des points E et F sachant que $\overrightarrow{AE} = \frac{1}{3}\overrightarrow{AB}$ et $\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AC}$.
- 2. Donner une équation cartésienne de la droite (BF).
- 3. Donner une représentation paramétrique de la droite (CE).
- 4. Étudier la position relative de des deux droites (BF) et (CE).
- 5. Déterminer les coordonnées de G, intersection des deux droites (BF) et (CE).
- 6. Déterminer les coordonnées du point I, milieu du segment [BC].
- 7. Montrer que les points A, G et I sont alignés.
- 8. Soit $(\Delta): x-2y-7=0$. Monter que les droites (Δ) et (AB) sont parallèles.
- 9. Donner une équation cartésienne de la droite (D), passant par C et parallèle à l'axe des ordonnées.
- 10. Donner une équation cartésienne de la droite (D'), passant par B et parallèle à l'axe des abscisses.
- 11. On considère le point K(7,0). Quelle est la nature du quadrilatère ABIK?

Exercice 2

ABC est un triangle, et F le milieu de [BC].

Soient K et E deux points vérifiant $\overrightarrow{AE} = \frac{3}{4}\overrightarrow{AB}$ et $\overrightarrow{CK} = \frac{1}{2}\overrightarrow{CA}$.

- 1. Déterminer les coordonnées de E, F et K dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$.
- 2. Est-ce que les points E, F et K sont alignés?

Exercice 3

On considère un faisceau de droites d'équation (D_m) : x + my + m - 2 = 0, où m est un paramètre.

- 1. Déterminer la valeur de m dans les cas suivants :
 - La droite (D_m) passe par le point A(-2;1).
 - La droite (D_m) est parallèle à l'axe des ordonnées.
 - La droite (D_m) est parallèle à la droite $(\Delta): -x-y+2=0$.
- 2. Montrer que les droites (D_m) se coupent en un point stable F, dont on donnera les coordonnées.