

iSCALARE

Лаборатория суперкомпьютерных технологий для биомедицины, фармакологии и малоразмерных структур

Языки разработки моделей и аппаратуры

Григорий Речистов

grigory.rechistov@phystech.edu

На предыдущих лекциях:

- Цели симуляции
- Алгоритмы моделирования
- Проблемы, связанные с симуляцией устройств

На этой лекции:

- Компоненты симулятора
- Языковые средства разработки моделей и аппаратуры

Вопрос

На каком языке программирования должен быть написан симулятор?

Классификация компонент

Графический интерфейс

Интерфейс командной строки

Интерпретатор скриптов

Использование языков общего назначения (C, C++, Java...)

- Используется ООП
- Написание моделей «с нуля»
- Особенности языков
 - Специфика int, struct, endianness
 - thread safety
 - malloc/free

Абстракции аппаратуры (1/2)

- Сигналы логический уровень (0, 1, X, Z)
- Шины передача групп бит
- Операции над отдельными битами
- Транзакции отображение направления сигнала
- Абстракции хранения данных: группы регистров, банки памяти

Абстракции аппаратуры (2/2)

- Карты памяти
- Задержки событий разные для различных действий

Решения

- Создание библиотек, реализующих общие примитивы моделирования (SystemC/TLM)
- Использование специализированных языков написания моделей (DML)

DML (1/2)

10

12.05.2014

DML(2/2)

```
dml 1.2;
device simple dml device;
parameter desc = "Simple DML device";
parameter documentation = "This is an implementation of
simple DML device.";
bank regs {
      parameter register size = 4;
      register r1 @ 0x1000;
      register r2 @ 0x1004;
```

12.05.2014 Лаборатория суп<mark>еркомпью</mark>терных технологий для биомедицины, фармакологии и малоразмерных структур

Разработка процессора (1/2)

Примеры:

- LISA
- ISDL
- SimGen

int 13h

Дизассемблер

f(x)Симулятор

Документация

Разработка процессора (2/2)

Недостатки:

- Генерируется не самый быстрый код
- Код может быть не компактен
- Модель может работать медленнее

Преимущества:

- Скорость создания/ модификации
- Согласованность

SystemC/TLM (1)

Дата	Версия	Примечания	
Sept 1999	0.9	First version; Cycled based	
Mar 2000	1.0	Widely accessed major release	
Aug 2002	2.0	Add channels & events; cleaner syntax	
Apr 2002	2.0.1	Bug fixes; widely used	
Dec 2005	2.1.v1	IEEE approves the IEEE 1666-2005 standard for SystemC	
Jun 2008	2.2.05	TLM-2.0.0 library released	
Nov 2011	2.3.0	IEEE approves the IEEE 1666-2011 standard for SystemC	

12.05.2014 Лаборатория суп<mark>еркомпью</mark>терных техн<mark>о</mark>логий для биомедицины, фармакологии и малоразмерных структур

Application

Written by the end user

Methodology- and technology-specific libraries (SystemC verification library, bus models)

Modules	Signal, cloc
Ports	mutex, sen
Exports Processes	Channels

Events

Core language

Interfaces

ck, FIFO, maphore

Predefined channels Utilities

Report handling, tracing

Bit vectors Finite-precision integers Limited-precision integers

Fixed-point types

Data types

4-valued logic type

4-valued logic

vectors

Programming language C++

Verilog

Phil Moorby & Prabhu Goel «Automated Integrated Design Systems», 1984 г.

Netlist — логически эквивалентное описание, состоящее из элементарных логических примитивов

Команды:

- Синтезируемые представленные в аппаратуре
- Несинтезируемые для отладки и симуляции

В 2009 стандарт объединен с Verilog

VHDL

- Был разработан в 1983 г. по заказу Министерства обороны США
- Первоначально предназначался для моделирования, но позже появилась и синтезируемое подмножество
- Стандарт многократно обновлялся

Литература

- O. Schliebusch et al. Architecture implementation using the machine description language LISA — 2002 — http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=9 94928.
- Hadjiyiannis G., Hanono S., Devadas S. ISDL: An Instruction Set Description Language for Reatargetability. — 1997 — http://www.caa.lcs.mit.edu/~devadas/pubs/isdl.ps
- Rishiyur S Nikhil et al. BSV by Example.
 http://csg.csail.mit.edu/6.S078/6_S078_2012_www/resources/bsv_by_example.pdf
- Fredrik Larsson et al. SimGen: Development of Efficient Instruction Set Simulators. ftp://ftp.sics.se/pub/SICS-reports/Reports/SICS-R--97-03--SE.ps.Z

На следующей лекции:

Контрольная работа

Спасибо за внимание!

Все материалы курса выкладываются на сайте лаборатории: http://iscalare.mipt.ru/material/course_materials/

Замечание: все торговые марки и логотипы, использованные в данном материале, яв<mark>ляются собс</mark>твенностью их владельцев. Представленная здесь точка зрения отражает личное мнение автора, не выступающего от лица какой-либо организации.