Chapitre 5 : Statistique inférentielle/tests

I- Lois usuelles et non usuelles

Lois discrètes	Fonctions R	Espérance Variance	Fonction de masse $P(X = x)$	
Binomiale (m, α)	$\frac{\texttt{dbinom}(\texttt{x},\texttt{size}=m,\texttt{prob}=\alpha)}{\texttt{pbinom}(\texttt{q},\texttt{size}=m,\texttt{prob}=\alpha)}$	тα	$\binom{m}{x}\alpha^x(1-\alpha)^{m-x}$	
$\operatorname{Dinominate}(m, \alpha)$	qbinom(p,size= m ,prob= α) rbinom(n,size= m ,prob= α)	$m\alpha(1-\alpha)$		
D-:(1)	dpois(x,lambda= λ) ppois(q,lambda= λ)	λ	$e^{-\lambda} \frac{\lambda^x}{x!}$	
$Poisson(\lambda)$	qpois(p,lambda= λ) rpois(n,lambda= λ)	λ		
Géométrique (α)	dgeom(x,prob=α) pgeom(q,prob=α)	$\frac{1}{\alpha}$	$(1-\alpha)^{x-1}\alpha$	
	$qgeom(p,prob=\alpha)$ $rgeom(n,prob=\alpha)$	$\frac{1-\alpha}{\alpha^2}$	$(1-\alpha)^{n-1}\alpha$	
Hyper-	dhyper(x,m=m,n=n,k=k) phyper(q,m=m,n=n,k=k)	$\frac{nm}{N} \text{ (avec } N = n + m)$	$\frac{\binom{m}{x}\binom{n}{k-x}}{\binom{m+n}{x}}$	
géométrique (m,n,k)	qhyper(p,m= m ,n= n ,k= k) rhyper(nn,m= m ,n= n ,k= k)	$\frac{n(m/N)(1-(m/N))(N-n)}{(N-1)}$	$\frac{(m+n)}{\binom{m+n}{k}}$	
Binomiale	$\begin{array}{l} \texttt{dnbinom}(\texttt{x},\texttt{size}=m,\texttt{prob}=\alpha) \\ \texttt{pnbinom}(\texttt{q},\texttt{size}=m,\texttt{prob}=\alpha) \end{array}$	$m\frac{1-lpha}{lpha}$	$\binom{x+m-1}{m-1}\alpha^m(1-\alpha)^x$	
$\operatorname{n\'egative}(m,\alpha)$	qnbinom(p,size= m ,prob= α) rnbinom(n,size= m ,prob= α)	$m\frac{1-lpha}{lpha^2}$	$\binom{m-1}{m}$ $\binom{m-1}{m}$	
Uniforme	(x %in% 1:m)/m sum(1:m<=q)/m	<u>m+1</u> 2	$\frac{1}{m}1_{\{1,\ldots,m\}}(x)$	
$\operatorname{discrète}\{1,\ldots,m\}$	<pre>match(1,1:m/m>=p) sample(x=1:m,size=n,TRUE)</pre>	$\frac{m^2-1}{12}$		

Lois continues	Fonctions R	Espérance Variance	Densité
Normale (μ, σ^2)	dnorm(x,mean= μ ,sd= σ) pnorm(q,mean= μ ,sd= σ) qnorm(p,mean= μ ,sd= σ) rnorm(n,mean= μ ,sd= σ)	μ σ^2	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
$\mathrm{Student}(\nu,\mu)$	$dt(x,df=v,ncp=\mu)$ $pt(q,df=v,ncp=\mu)$ $qt(p,df=v,ncp=\mu)$	$\mu \sqrt{\frac{y}{2}} \frac{\Gamma((\nu-1)/2)}{\Gamma(\nu/2)}$ $(\nu > 1)$ $\frac{\nu(1+\mu^2)}{\nu-2} - \frac{\mu^2 \nu}{2} \times$	$\frac{v^{\nu/2}e^{-\nu\mu^2/2(x^2+\nu)}}{\sqrt{\pi}\Gamma(\nu/2)2^{(\nu-1)/2}(x^2+\nu)^{(\nu+1)/2}}$ $\mu x \qquad t$
	rt(n,df= ν ,ncp= μ) dchisq(x,df= k ,ncp= λ)	$\left(\frac{\Gamma((\nu-1)/2)}{\Gamma(\nu/2)}\right), \ (\nu > 2)$ $k + \lambda$	$\times \int_0^\infty t^{\nu} e^{\frac{\mu x}{2\sqrt{\chi^2 + \nu}} - \frac{t}{2}} dt$ $\frac{1}{2} e^{-(x+\lambda)/2} \left(\frac{x}{\lambda}\right)^{k/4 - 1/2}$
$\text{Khi-deux}(k,\lambda)$	pchisq(q,df= k ,ncp= λ) qchisq(p,df= k ,ncp= λ) rchisq(n,df= k ,ncp= λ)	$2(k+2\lambda)$	$\times I_{k/2-1}(\sqrt{\lambda x})$
$\mathrm{Fisher}(\nu_1,\nu_2,\lambda)$	$df(x,df1=v_1,df2=v_2,ncp=\lambda)$ $pf(q,df1=v_1,df2=v_2,ncp=\lambda)$ $qf(p,df1=v_1,df2=v_2,ncp=\lambda)$	$\frac{\frac{v_2(v_1+\lambda)}{v_1(v_2-2)}}{(v_2 > 2)}$ $2\frac{(v_1+\lambda)^2 + (v_1+2\lambda)(v_2-2)}{(v_1+2\lambda)^2 + (v_1+2\lambda)(v_2-2)}$	$\sum_{k=0}^{\infty} \frac{e^{-\lambda/2} (\lambda/2)^k}{B(\frac{\nu_2}{2}, \frac{\nu_1}{2} + k) k!} (\frac{\nu_1}{\nu_2})^{\frac{\nu_1}{\nu_2} + k}$
	rf(n,df1= ν_1 ,df2= ν_2 ,ncp= λ) dexp(x,rate= λ)	$2\frac{(\nu_1 + \lambda)^2 + (\nu_1 + 2\lambda)(\nu_2 - 2)}{(\nu_2 - 2)^2(\nu_2 - 4)} \times \left(\frac{\nu_2}{\nu_1}\right)^2, \ (\nu_2 > 4)$ $\frac{1}{\lambda}$	$\times \left(\frac{v_2}{v_2 + v_1 x}\right)^{\frac{v_1 + v_2}{2} + k} x^{\frac{v_1}{2} - 1 + k}$
Exponentielle(λ)	$pexp(q,rate=\lambda)$ $qexp(p,rate=\lambda)$ $rexp(n,rate=\lambda)$	$\frac{1}{\lambda^2}$	$\lambda e^{-\lambda x} 1\{x \ge 0\}$
$\mathrm{Uniforme}(a,b)$	<pre>dunif(x,min=a,max=b) punif(q,min=a,max=b) qunif(p,min=a,max=b) runif(n,min=a,max=b)</pre>	$\frac{a+b}{2}$ $\frac{(b-a)^2}{12}$	$\frac{1}{b-a}1\{a \le x \le b\}$
Bêta (α, β, λ)	dbeta(x,shape1= α ,shape2= β ,ncp= λ) pbeta(q,shape1= α ,shape2= β ,ncp= λ) qbeta(p,shape1= α ,shape2= β ,ncp= λ) rbeta(n,shape1= α ,shape2= β ,ncp= λ)	$\approx 1 - \frac{\beta}{C} \left(1 + \frac{\lambda}{2C^2} \right)$ avec $C = \alpha + \beta + \frac{\lambda}{2}$ $\frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)} \text{ si } \lambda = 0$	$\sum_{i=0}^{\infty} P(i; \frac{\lambda}{2}) I_x'(\alpha + i, \beta)$
Cauchy (x_0, γ)	dcauchy(x,location= x_0 ,scale= γ) pcauchy(q,location= x_0 ,scale= γ) qcauchy(p,location= x_0 ,scale= γ) rcauchy(n,location= x_0 ,scale= γ)	Non définie	$\frac{1}{\pi} \left[\frac{\gamma}{(x-x_0)^2 + \gamma^2} \right]$
$\operatorname{Logistique}(\mu,s)$	dlogis(x,location=\mu,scale=s) plogis(q,location=\mu,scale=s) qlogis(p,location=\mu,scale=s) rlogis(n,location=\mu,scale=s)	μ $\frac{\pi^2}{3}s^2$	$\frac{1}{4s}\operatorname{sech}^2\left(\frac{x-\mu}{2s}\right)$
$\text{Log-Normale}(\mu,\sigma)$	$\begin{array}{l} \texttt{dlnorm}(\texttt{x},\texttt{meanlog}=\mu,\texttt{sdlog}=\sigma) \\ \texttt{plnorm}(\texttt{q},\texttt{meanlog}=\mu,\texttt{sdlog}=\sigma) \\ \texttt{qlnorm}(\texttt{p},\texttt{meanlog}=\mu,\texttt{sdlog}=\sigma) \end{array}$	$e^{\mu+\sigma^2/2}$ $(e^{\sigma^2}-1)e^{2\mu+\sigma^2}$	$\frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln(x)-\mu)^2}{2\sigma^2}}$
$\operatorname{Gamma}(\alpha,\beta)$	rlnorm(n,meanlog= μ ,sdlog= σ) dgamma(x,shape= α ,rate= β) pgamma(q,shape= α ,rate= β) qgamma(p,shape= α ,rate= β)	$\alpha\beta$ $\alpha\beta^2$	$x^{\alpha-1} \frac{e^{-x/\beta}}{\overline{\beta}^{\alpha}\Gamma(\alpha)} 1_{x>0}$
Weibull (λ, k)	rgamma(n,shape=α,rate=β) dweibull(x,shape=λ,scale=k) pweibull(q,shape=λ,scale=k) qweibull(p,shape=λ,scale=k)	$\lambda\Gamma\left(1+\frac{1}{k}\right)$ $\lambda^2\Gamma\left(1+\frac{2}{k}-\mu^2\right)$	$\frac{\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} 1_{x \ge 0}$
Gumbel (μ, β)	rweibull(n,shape= λ ,scale= k) dgumbel(x,loc= μ ,scale= β) pgumbel(q,loc= μ ,scale= β) qgumbel(p,loc= μ ,scale= β)	$\mu + \beta$	$\frac{ze^{-z}}{\beta} \text{ avec } z = e^{-\frac{x-\mu}{\beta}}$
(Package evd)	rgumbel(n ,loc= μ ,scale= β)	$\frac{\pi^2}{6}\beta^2$	

II - Intervalles de confiance et tests d'hypothèses

Paramètre	Notation	Estimateur	Estimation	Fonction R
moyenne	μ	X	\bar{x}	mean()
variance	σ^2	$\hat{\sigma}^2$	$\hat{\sigma}^2$	var()
médiane	m_e	$\widehat{\mathrm{m}_e}$	$\widehat{m_e}$	median()
corrélation	ρ	ρ̂	$\hat{ ho}$	cor()
proportion	p	ĝ	\hat{p}	mean()

Loi	Notation	Fonction R
Normale : $\mathcal{N}(0,1)$	u_p	qnorm(p)
Student à n d.d.l. : $\mathcal{T}(n)$	t_p^n	qt(p,df=n)
Khi-deux à n d.d.l. : $\chi^2(n)$	q_p^n	qchisq(p,df=n)
Fisher à n et m d.d.l. : $\mathcal{F}(n,m)$	$f_p^{n,m}$	qf(p,df1=n,df2=m)

d.d.l. : degrés de liberté

Résumé sur les intervalles de confiance.

Type	Condition de validité	Fonction R	
proportion	$np \ge 5 \text{ et } n(1-p) \ge 5$	<pre>prop.test(x)\$conf</pre>	
proportion	aucune	binom.test(x)\$conf	
moyenne	n > 30 ou normalité	t.test(x)\$conf	
variance	normalité	sigma2.test(x)\$conf	
médiane	aucune	wilcox.test(x)\$conf	
corrélation	binormale	<pre>cor.test(x)\$conf</pre>	

III- Tests paramétriques

Nature	Données	Conditions de validité	Fonction R
Tests paramétriques :			
moyenne	1 échantillon	n > 30 ou normalité	t.test(x,)
	2 échantillons	normalité et variances égales	t.test(x,y,)
	2 échantillons	normalité	t.test(x,y,var.equal=F)
	2 éch. appariés	n > 30 ou normalité	<pre>t.test(x,y,paired=T)</pre>
	1 échantillon	normalité	sigma2.test(x,)
variance	2 échantillons	normalité	<pre>var.test(x,y,)</pre>
	2 échantillons	grand échantillon	<pre>asymp.test(x,y,)</pre>
corrélation	1 échantillon	normalité, $\mathcal{H}_0: \rho = \rho_0$	<pre>cor.test(x,y)</pre>
correlation	2 échantillons	normalité	cor.test.2.sample(x,y,)
	1 échantillon	$np \ge 5$ et $n(1-p) \ge 5$	prop.test(x,)
proportion	1 échantillon		binom.test(x,)
	2 échantillons	grand échantillon	<pre>prop.test(x,y,)</pre>
Tests d'indépendance :			
χ^2 d'indépendance	tableau de contingence	effectifs théoriques ≥ 5	chisq.test(.,correct=F)
χ^2 de Yates	tableau 2×2	effectifs théoriques ≥ 2.5	chisq.test()
Fisher exact	tableau de contingence		fisher.test()
Tests d'adéquation :			
Shapiro-Wilk	1 échantillon		shapiro.test(x,)
χ^2 d'ajustement	1 échantillon	effectifs théoriques ≥ 5	chisq.test()
Kolmogorov-Smirnov	1 échantillon		ks.test(x,.)
Nonnogorov-Simirnov	2 échantillons		ks.test(x,y)
Tests de position :			
médiane	1 échantillon		binom.test(x,)
test du signe	2 échantillons		fisher.test(x,y,)
	2 éch. appariés		binom.test(x,y,paired=T)
Mann-Whitney	2 échantillons	$\min(n_1, n_2) \ge 10$	wilcox.test(x,y,exact=F)
Mann-Whitney	2 échantillons	$\min(n_1, n_2) \le 10$	wilcox.test(x,y)
Wilcoxon	2 éch. appariés		wilcox.test(x,y,paired=T)