DAFTAR ISI

DAFTA	AR ISI	. i
DAFTA	AR GAMBAR	ii
DAFTA	AR TABEL	ii
Bab I. I	Pendahuluan	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan	2
1.4	Luaran yang Diharapkan	2
1.5	Manfaat	2
Bab 2. 7	Finjauan Pustaka	3
2.1	ESP32	3
2.2	Blynk	3
2.3	Aerator	3
2.4	Solenoid Valve	3
2.5	Motor Servo	3
2.6	ESP 32 Cam	4
2.7	Modul Termometer	4
2.8	Aquarium Heater	4
2.9	Aquarium Cooler	4
2.10	Sensor Turbidity	4
2.11	Sensor Kadar Garam	4
2.12	Sensor pH	4
2.13	pH Upper dan pH Lower	5
2.14	Filter Aquarium	5
2.15	Smart Fish Tank	5
Bab 3. '	Гаhap Pelaksanaan	5
3.1	Metode dan Model Pelaksanaan	5
3.2	Rancangan Alat	6
3.3	Cara Kerja Alat	6
3.4	Rancangan UI/UX (<i>User-Interface / User Experience</i>)	8

Bab 4. Biaya dan Jadwal Kegiatan	8
4.1 Anggaran Biaya	8
4.2 Jadwal Kegiatan	9
DAFTAR PUSTAKA	10
LAMPIRAN	11
Lampiran 1. Biodata Ketua, Anggota dan Dosen Pendamping	11
Lampiran 2. Justifikasi Anggaran Kegiatan	20
Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	22
Lampiran 4. Surat Pernyataan Ketua Pelaksana	23
Lampiran 5. Gambaran Teknologi yang Akan Diterapkembangkan	24
DAETAD CAMDAD	
DAFTAR GAMBAR	
Gambar 1.1 Ikan Sepat Mutiara	
Gambar 1.1 Ikan Sepat MutiaraGambar 3.2 Desain SCSEF	6
Gambar 1.1 Ikan Sepat MutiaraGambar 3.2 Desain SCSEF	6 6
Gambar 1.1 Ikan Sepat Mutiara Gambar 3.2 Desain SCSEF Gambar 3.3.1 Konfigurasi Komponen Hardware IoT Gambar 3.3.2 Desain Skema Elektrik SCSEF	6 6 7
Gambar 1.1 Ikan Sepat Mutiara	6 7 8
Gambar 1.1 Ikan Sepat Mutiara	6 7 8 24
Gambar 1.1 Ikan Sepat Mutiara	6 7 8 24
Gambar 1.1 Ikan Sepat Mutiara	6 7 8 24
Gambar 1.1 Ikan Sepat Mutiara	6 7 8 24
Gambar 1.1 Ikan Sepat Mutiara	6 7 8 24 26

Bab I. Pendahuluan

1.1 Latar Belakang

Spesies endemik merupakan spesies yang tumbuh secara alami hanya pada satu wilayah geografis yang ukurannya sempit maupun luas (Primarck, 2006). Faktor-faktor yang menyebabkan hal tersebut terjadi meliputi faktor fisik, lingkungan geografis, iklim, dan biologis. Indonesia merupakan kepulauan beriklim tropis dengan luas daratan 2,01 juta km² dan luas lautan sebesar 5,8 juta km² (Pratama, 2020). Luas perairan yang lebih besar dari daratan membuat Indonesia kaya akan spesies ikannya. Menurut buku penelitian LIPI dengan judul *Kekinian Keanekaragaman Indonesia* (2014), Indonesia merupakan negara dengan tingkat endemisitas jenis fauna yang sangat tinggi. Jenis fauna endemik Indonesia berjumlah 1468 dengan 280 diantaranya merupakan ikan. Hal tersebut merupakan potensi bagi Indonesia baik dalam bioproduk maupun bioprospeksi.

Gambar 1.1 Ikan Sepat Mutiara

(Sumber: https://aquadiction.world/species-spotlight/pearl-gourami/)

Akan tetapi keberagaman tersebut tidak sejalan dengan kesadaran masyarakat untuk menjaga dan melestarikan keanekaragaman fauna endemik tersebut. Berdasarkan *Aichi Biodiversity Target* (2011-2020) ke 6, pada tahun 2020 diharapkan semua ikan dapat dikelola secara berkelanjutan, legal, dan menerapkan pendekatan berbasis ekosistem, sehingga kondisi perikanan terjaga dengan baik. Tetapi hal tersebut tampaknya belum tercapai, berdasarkan data dari Humas LIPI (2020), saat ini terdapat 275 spesies ikan endemik yang keberadaannya sedang terancam karena rusaknya habitat ikan tersebut. Hal ini menjadi masalah yang sudah lama terjadi tetapi belum terselesaikan sampai saat ini.

Saat ini perkembangan teknologi IoT (*Internet of Things*) di Indonesia sudah termasuk jauh dan diperkirakan pada tahun 2021 akan semakin banyak dan luas (Setiyawan, 2020). Peningkatan ini dikarenakan oleh kemampuannya mengontrol dari jauh secara *real time*. Dengan kondisi

habitat ikan endemik yang semakin buruk serta banyaknya eksploitasi yang berlebihan, pengaplikasian teknologi berbasis IoT yang terintegrasi dengan sensor menjadikan konservasi ikan endemik secara *Ex Situ*, semakin dapat dimonitoring dan dikontrol dengan baik.

Dalam budi daya ikan, ketidaksesuaian parameter-parameter dapat menyebabkan kematian pada ikan. Dalam hal ini parameter yang dimaksud ialah Suhu air, Kecerahan, Kekeruhan, TDS, Oksigen terlarut, bebas CO2, pH (Nastiti, A.S., *et al.*, 2018).

Sebagai solusi dari masalah-masalah yang ada, kami menawarkan *Smart Conservation System for Endemic Fish.* Purwarupa ini dapat memberikan lingkungan khusus sesuai dengan kondisi habitat asli ikan endemik berdasarkan parameter suhu, pH, kadar garam dan turbiditas, sistem listrik pendukung serta pemberi makan otomatis. Selain itu purwarupa ini juga berbasis IoT sehingga dapat melakukan pengontrolan jarak jauh dengan mudah.

1.2 Rumusan Masalah

Bagaimana rancang bangun sistem IoT dalam konservasi ikan endemik yang dapat dioperasikan dengan mudah?

1.3 Tujuan

Tujuan dari kegiatan ini adalah untuk menghasilkan alat yang dapat melestarikan ikan endemik Indonesia dengan pengimplemtasian teknologi berbasis IoT melalui konservasi *Ex Situ*.

1.4 Luaran yang Diharapkan

Luaran yang diharapkan dari kegiatan ini yaitu:

- 1. Laporan kemajuan,
- 2. Laporan akhir,
- 3. Prototipe atau produk fungsional atau produk digital / virtual (design 2D/3D dan/atau animasi) yang akan dihasilkan dengan batasan bahwa biaya untuk menghasilkan produk fisik maupun produk fungsional (jika direalisasikan dalam bentuk fisik) sesuai dengan pendanaan yang disetujui,
- 4. Artikel ilmiah.

1.5 Manfaat

Manfaat dari rancang bangun ini untuk menyesuaikan lingkungan dan memudahkan pengontrolan dalam melestarikan ikan endemik melalui konservasi *Ex Situ*.

Bab 2. Tinjauan Pustaka

2.1 ESP32

ESP32 merupakan mikrokontroler yang digunakan untuk menerima, memproses, dan mengirim data. Pada perancangan alat kami, setiap sensor akan terhubung ke salah satu mikrokontroler untuk dilakukan pembacaan data sensor. Kemudian mikrokontroler tersebut akan mengolah dan menentukan tindakan apa yang selanjutnya perlu dilakukan oleh aktuator sebagai akibat dari pembacaan sensor tersebut.

Selain sebagai mikrokontroler, ESP32 juga merupakan modul wifi yang dapat terkoneksi ke internet. Oleh sebab itu, ESP32 digunakan sebagai pengendali utama dan sebagai alat komunikasi dengan server.

2.2 Blynk

Blynk merupakan IoT server yang digunakan sebagai jembatan bagi alat yang kami rancang dengan smartphone pengguna. Dengan Blynk, alat yang kita miliki dapat mengirim data kepada pengguna dan pengguna juga bisa memberikan perintah kepada alat tersebut. Hal tersebut dapat terfasilitasi karena Blynk menyediakan layanan cloud sebagai sarana bertukar informasi antara alat dan pengguna.

2.3 Aerator

Aerator adalah sebuah alat yang berfungsi menangkap udara bebas untuk dijadikan gelembung udara dalam air yang bertujuan agar air dalam akuarium tidak kekurangan oksigen terlarut. Cara kerja aerator adalah pompa penghisap akan menghisap udara bebas, kemudian akan disalurkan ke dalam air akuarium yang kemudian berubah menjadi gelembung udara.

2.4 Solenoid Valve

Solenoid valve adalah alat yang digunakan untuk mengontrol aliran air dengan membuka dan menutup katup. Solenoid valve akan membuka katup apabila diberi tegangan, sedangkan jika tidak diberi tegangan maka katup akan menutup.

2.5 Motor Servo

Motor servo merupakan aktuator motor yang sudut pergerakannya dapat diatur dan dibaca. Servo dikendalikan menggunakan sinyal PWM yang diatur menggunakan mikrokontroler dan terhubung dengan kabel kontrol pada servo. Lebar pulsa PWM akan menentukan posisi sudut putar dari poros motor servo.

2.6 ESP 32 Cam

ESP 32 Cam merupakan mikrokontroler dengan modul kamera OV2640 yang memiliki ukuran maksimal 1632x1232 pixel. ESP 32 Cam ini digunakan untuk memonitor akuarium dari jarak jauh.

2.7 Modul Termometer

DS18B20 merupakan sensor temperatur tahan air yang dapat digunakan untuk mengukur cairan, tanah, maupun larutan. sensor temperatur DS18B20 memiliki rentang pengukuran suhu dari -55°C sampai dengan 125°C.

2.8 Aquarium *Heater*

Aquarium *Heater* adalah alat yang digunakan untuk meningkatkan suhu air. Prinsip kerja *Heater* adalah dengan cara mengubah energi listrik menjadi energi panas oleh elemen panas. *Heater* digunakan untuk memberikan suhu yang sesuai dengan habitat asli dari ikan yang akan dipelihara.

2.9 Aquarium Cooler

Aquarium *cooler* adalah alat yang digunakan untuk menurunkan dan menjaga suhu air agar tetap rendah. *Cooler* bekerja dengan cara melewatkan air pada akuarium ke modul peltier pelat dingin, sehingga air yang telah melewati modul peltier tersebut menjadi lebih rendah suhunya.

2.10 Sensor Turbidity

Sensor turbidity adalah sensor yang bekerja untuk mendeteksi kekeruhan dalam air akuarium. Sensor ini bekerja dengan cara mendeteksi banyaknya partikel, semakin banyak partikel dalam air, maka sensor ini akan memberikan output yang semakin besar.

2.11 Sensor Kadar Garam

Sensor pembaca kadar garam yang digunakan merupakan sensor TDS. Sensor ini bekerja untuk mendeteksi berapa banyak total padatan terlarut yang dalam hal ini dimaksud adalah kadar garam.

2.12 Sensor pH

Sensor pH yang digunakan dalam alat ini adalah modul sensor MSP340. Modul ini dapat bekerja membaca pH suatu larutan pada rentang suhu 10°C - 50°C. Sensor ini bekerja dengan tegangan kerja sebesar 5V, sehingga mudah diintegrasikan dengan mikrokontroler.

2.13 pH *Upper* dan pH *Lower*

pH *upper* merupakan larutan asam fosfat 10% yang digunakan untuk menurunkan pH pada air akuarium. Sedangkan pH *lower* merupakan larutan kalium hidroksida 10% yang dapat digunakan untuk meningkatkan pH air. Penggunaan keduanya dapat diaplikasikan untuk mengontrol pH air seperti yang diinginkan.

2.14 Filter Aquarium

Filter akuarium adalah alat yang digunakan untuk menjaga air tetap bersih. Cara kerja filter adalah dengan cara mengubah kotoran ikan menjadi amonia, kemudian diubah lagi menjadi nitrit, dan terakhir diubah menjadi nitrat. Nitrat dalam air inilah yang dalam batas wajar tidak membahayakan bagi ekosistem akuarium.

2.15 Smart Fish Tank

Perusahaan teknologi asal China, Xiaomi, pernah meluncurkan sistem yang serupa dalam bentuk akuarium dengan nama produk Smart Fish Tank. Produk tersebut menawarkan akuarium berbasis IoT yang dapat memberikan makanan secara otomatis dan mengatur suhu serta lampu akuarium.

Bab 3. Tahap Pelaksanaan

3.1 Metode dan Model Pelaksanaan

Pada proses pembuatan purwarupa dari SCSEF ini, kami mulai dengan menjabarkan apa saja yang kami perlukan untuk membangun purwarupa dari SCSEF. Setelah itu kami akan mengumpulkan data-data sekunder dari penelitian serupa sebagai acuan dalam perancangan produk. Kemudian kami akan memulai pembangunan atau pembuatan awal dari purwarupa SCSEF. Setelah terbangun purwarupa yang diinginkan, kami akan melakukan pengujian alat secara langsung menggunakan ikan sepat mutiara dengan parameter-parameter lingkungan ikan tersebut. Untuk melanjutkan pada tahap pengembangan, kami akan menggunakan perangkat ini sendiri ataupun diberikan kepada orang lain sebagai usaha untuk mencari kekurangan yang akan dikembangkan nantinya. *Feedback* yang kami terima dari pengguna akan kami evaluasi dan kami kembangkan kembali menjadi ide lain untuk pengembangan dari purwarupa SCSEF. Proses ini akan kami ulang terus menerus hingga dirasa apa yang kami ingin raih benar-benar tercapai dan terbentuk.

3.2 Rancangan Alat

Sistem SCSEF terdiri dari akuarium pintar yang terintegrasi dengan internet. Pada SCSEF terdapat alat yang dapat menyesuaikan lingkungan ikan endemik sesuai habitatnya secara otomatis. Selain itu kondisi pada akuarium juga dapat dimonitor dan dikontrol melalui *smartphone* pengguna.

Gambar 3.2 Desain SCSEF (Sumber: Data Pribadi)

3.3 Cara Kerja Alat

Alat SCSEF bekerja dengan menggunakan mikrokontroler ESP 32 yang terhubung dengan beberapa sensor dan motor untuk memonitor dan mengontrol lingkungan akuarium.

Gambar 3.3.1 Konfigurasi Komponen Hardware IoT (Sumber: Data Pribadi)

Untuk fitur kontrol suhu, kami menggunakan modul termometer yang terintegrasi dengan *Heater* dan *cooler* yang diprogram otomatis untuk mengatur suhu lingkungan sesuai yang diinginkan melalui aplikasi. Pada fitur kontrol pH, kami memasang modul sensor pH yang bekerja dengan pH *upper* dan pH *lower* untuk mempertahankan pH air sesuai dengan keinginan *user*. Selanjutnya untuk fitur kontrol salinitas, kami menggunakan TDS sensor dan keran otomatis untuk memonitor dan mempertahankan kadar garam pada akuarium. Pada kontrol kekeruhan air juga menggunakan keran otomatis yang diintegrasikan dengan *turbidity sensor* untuk melakukan pergantian air jika sensor memberitahukan air sudah keruh.

Gambar 3.3.2 Desain Skema Elektrik SCSEF (Sumber: Data Pribadi)

Lalu terdapat juga modul kamera untuk memonitor secara visual yang dapat dilihat memlalui aplikasi. Serta terdapat fitur pemberi makan dan lampu yang akan diatur otomatis sesuai dengan keinginan *user*.

3.4 Rancangan UI/UX (*User-Interface / User Experience*)

Gambar 3.4 Mock-up Tampilan Aplikasi (Sumber: Data Pribadi)

Aplikasi SCSEF memiliki 2 *tab* yaitu setup dan control. Setup merupakan *dashboard* untuk mengatur sistem secara otomatis yang datanya akan tersimpan sebagai pengaturan *default*. Sedangkan Control merupakan *tab* yang digunakan untuk memonitoring dan mengontrol akuarium secara manual.

Dashboard Setup terdiri dari pengaturan jenis air yang akan digunakan untuk ikan endemik, jadwal pemberian makan, suhu air, tingkat pH akuarium, waktu menyala lampu dan aerator.

Untuk *tab* Control dengan fungsi monitoring terdapat tampilan akuarium, indikator kamera menyala, indikator filter menyala, pengukuran suhu, dan pH. Sedangkan pada bagian pengaturan manual terdapat tombol serta *slider* untuk mengatur lampu, kuras air, aerator, pemberi makan, pH dan suhu.

Bab 4. Biaya dan Jadwal Kegiatan

4.1 Anggaran Biaya

Tabel 4. 1 Anggaran Biaya

No	Jenis Pengeluaran	Biaya (Rp)
1	Sewa dan jasa	Rp4.750.000
2	Bahan Habis Pakai	Rp100.000
3	Transport Lokal	Rp1.000.000

4	Lain-lain	Rp3.895.000
	Jumlah	Rp9.745.000

4.2 Jadwal Kegiatan

Tabel 4. 2 Jadwal Kegiatan

	Tabel 4. 2 Ja	idv	vai	Ke	g12	itan	
No	Jenis Kegiatan		Bulan		Bulan		Person Penanggung Jawab
	T. 1 D. 1	1		3	4		
1.	Tahap 1 : Pembuatan Purwarupa SCSEF						
	a. Studi Literatur					Naufal Inas Fikri	
	b. Perancangan perangkat keras					Naufal Inas Fikri	
	c. Perancangan perangkat lunak					Muchamad Syahrul Gunawan	
	d. Persiapan komponen penyusun					Vito Louis Nathaniel	
	e. Pembangunan perangkat					Naufal Inas Fikri	
2.	Tahap 2 : Uji Jalan						
	a. Penggunaan perangkat oleh Tim					Vito Louis Nathaniel	
	b. Penggunaan perangkat oleh orang lain					Muchamad Syahrul Gunawan	
	c. Pengumpulan feedback dari masing masing pengguna					Naufal Inas Fikri	
3.	Tahap 3 : Evaluasi dan Pengembangan						
	a. Menganalisa seluruh feedback yang terkumpul					Vito Louis Nathaniel	
	b. Studi Literatur					Vito Louis Nathaniel	
	c. Pengembangan Ide					Naufal Inas Fikri	
	d. Pembangunan Purwarupa hasil akhir					Muchamad Syahrul Gunawan	
4.	Tahap 4 : Laporan						
	a. Penjagaan dan publikasi Purwarupa					Vito Louis Nathaniel	
	b. Pembuatan Laporan Akhir					Muchamad Syahrul Gunawan	

DAFTAR PUSTAKA

- Ayu, M. G. 2020. Perkembangan dan Penggunaan IoT di Indonesia Tahun 2021 Diprediksi Meningkat. URL: https://www.cloudcomputing.id/berita/perkembangan-dan-penggunaan-iot-di-indonesia. Diakses tanggal 23 Januari 2021.
- Nastiti, A.S., *et al.* 2018. ANALISIS DEGRADASI LINGKUNGAN PERAIRAN DAN KETERKAITANNYA DENGAN KEMATIAN MASSAL IKAN BUDIDAYA DI WADUK CIRATA, JAWABARAT. *BAWAL*. 10 (2): 99-109.
- Nidejovi. 2020. *Ikan Endemik, Spesies Perairan Darat Yang Terancam Punah*. URL: http://www.limnologi.lipi.go.id/newsdetail.php?id=1015. Diakses tanggal 23 Januari 2021.
- Pratama, Oki. 2020. Konservasi Perairan Sebagai Upaya menjaga Potensi Kelautan dan Perikanan Indonesia. URL: https://kkp.go.id/djprl/artikel/21045-konservasi-perairan-sebagai-upaya-menjaga-potensi-kelautan-dan-perikanan-indonesia#:~:text=Terbentang%20dari%20Sabang%20hingga%20Merauk e,juta%20km2%20yang%20berupa%20daratan. Diakses tanggal 22 Januari 2021.
- Primack, RB. 2006. Essentials of Conservation Biology. Sinauer Assoc., Inc., Sunderland, MA.
- Widjaja, E.A., Rahayuningsih, Y., Rahajoe, J. S., Ubaidillah, R., Maryanto, I., Walujo, E. B., dan Semiadi, G. 2014. *Kekinian Keanekaragaman Hayati Indonesia*. LIPI Press. Jakarta.
- Wulandari, T. N. M., Riani, E., Sudarmo, A. P., Iskandar, B. H., dan Nurhasanah. 2019. HUBUNGAN KELIMPAHAN SPESIES LARVA IKAN DENGAN PARAMETER KUALITAS PERAIRAN DI DANAU RANAU, SUMATERA SELATAN. *Jurnal Matematika, Sains, dan Teknologi*. 20 (1): 68-82.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota dan Dosen Pendamping A. Biodata Ketua

A. Identitas diri

1.	Nama Lengkap	Naufal Inas Fikri
2.	Jenis Kelamin	Laki - Laki
3.	Program Studi	Teknik Elektro
4.	NIM	1906299875
5.	Tempat dan Tanggal Lahir	Kebumen, 28 November 2001
6.	Alamat e-mail	naufal.inas@ui.ac.id
7.	No. Telepon/HP	08973734746

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Ikatan Mahasiswa Elektro Fakultas Teknik Universitas Indonesia 2020	Badan Pengurus Rohani Islam Elektro	2020, FT UI
2	Tim Robotika Universitas Indonesia	Penanggung Jawab Divisi Elektrik Tim Kontes Robot Tematik Indonesia	2020, FT UI
3	Gema Ramadhan Syiar Islam Fakultas Teknik Universitas Indonesia 2020	Wakil Ketua Pelaksana	2020, FT UI
4	Kajian Islam Awal Semester Fakultas Teknik Universitas Indonesia 2020	Penanggung Jawab Acara	2020, FT UI
5	Orientasi Kehidupan Kampus Universitas Indonesia 2020	Mentor	2020, UI

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	-	Į.	ı

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 26 Januari 2021 Ketua,

Naufal Inas Fikri

B. Biodata Anggota ke-1

A. Identitas diri

1 24 1	E. File III.				
1.	Nama Lengkap	Vito Louis Nathaniel			
2.	Jenis Kelamin	Laki - Laki			
3.	Program Studi	Teknik Elektro			
4.	NIM	1906354406			
5.	Tempat dan Tanggal Lahir	Tangerang, 3 Februari 2001			
6.	Alamat e-mail	vito.louis@ui.ac.id			
7.	No. Telepon/HP	082119512536			

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Ikatan Mahasiswa Elektro Fakultas Teknik Universitas Indonesia 2020	Ketua Bidang Rohani Islam Elektro	2020, FT UI
2	Majelis Permusyawaratan Mahasiswa FT UI 2021	Pimpinan Komisi Kemahasiswaan	2021, FT UI
3	Mentoring Lanjutan Departemen Teknik Elektro	Mentor	2021, FT UI

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun	
1.	**	-	-	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 26 Januari 2021 Anggota Tim,

Vito Louis Nathaniel

C. Biodata Anggota ke-2

A. Identitas diri

1.	Nama Lengkap	Muchamad Syahrul Gunawan
2.	Jenis Kelamin	Laki - Laki
3.	Program Studi	Teknik Elektro
4.	NIM	1906354356
5.	Tempat dan Tanggal Lahir	Tangerang, 12 Juni 2001
6.	Alamat e-mail	muchamad.syahrul@ui.ac.id
7.	No. Telepon/HP	081380218373

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Tim Robotika Universitas Indonesia	Programmer Tim KRAI	2021, UI
2	EXERCISE FT UI	Technical and Development staff	2020, FT UI
3	Nuansa Islam Mahasiswa Universitas Indonesia	Staf Hubungan Masyarakat	2020, UI

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 26 Januari 2021

Anggota Tim,

Muchamad Syahrul Gunawan

D. Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap (dengan	Tomy Abuzairi, S.T., M.Sc., Ph.D
	gelar)	
2	Jenis Kelamin	Laki – Laki
3	Program Studi	Teknik Elektro
4	NIP/NIDN	100140310203217891/0330128701
5	Tempat dan Tanggal	Nganjuk, 30 Desember 1987
	Lahir	
6	Alamat E-mail	tomy@ee.ui.ac.id dan
		tomy.abuzairi@gmail.com
7	No. Telepon/HP	0856-9585-6825

B. Riwayat Pendidikan

Program:	S-1	S-2	S3
	Universitas	National Taiwan	Shizuoka
Nama	Omversitas	University of	University,
Institusi	Indonesia	Science	Japan
		and Technology	
			Plasma Technology
	Elektronika /	Electro-Optic/Teknik	and Bio-
Jurusan /	Teknik	Elektro	Technology
Prodi	Elektro		/ Graduate School
			Science and
			Technology
Tahun	2005-2009	2010-2012	2013-2016
Masuk-			
Lulus			

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan / Pengajaran

No	Nama Mata Kuliah	Wajib / Pilihan	SKS
1	Divais Semikonduktor	Wajib	2
2	Fisika Listrik, Magnet,	Wajib	3
	Gelombang, dan Optik		
3	Pengantar Nanoelektronik	Pilihan	2
4	Topik Khusus Instrumentasi	Wajib	3
	Biomedis		
5	Matematika Teknik	Wajib	4
6	Analisis Vektor dan Peubah	Wajib	2
	Kompleks		
7	Rangkaian Elektronika	Wajib	3
8	Rangkaian Elektronika Lanjut	Pilihan	3
9	Fabrikasi Divais Semikonduktor	Pilihan	3
10	Divais Solid State	Wajib	3
11	Topik Khusus Elektronika	Pilihan	2
12	Komputasi Numerik	Wajib	2
13	Rangkaian Listrik 1	Wajib	3
14	Rangkaian Listrik 2	Wajib	3
15	Sistem Elektronika Kapal	Wajib	2
16	Instrumentasi Biomedis	Wajib	3
17	Nanoelektronika	Wajib	3
18	Pengantar Instrumentasi	Wajib	3
	Biomedik		
19	Pengantar Teknik Elektro	Wajib	2
20	Dasar Rangkaian Elektronika	Wajib	2
21	Introduction to Electrical	Wajib	2
	Engineering		

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Optimalisasi Perancangan	Hibah Riset Awal (UI)	2013
	Sel Surya Multi-Junction		
	Berbasis SilikonGermanium		
	Terhidrogenasi		
	(SiGe:H) dan Silikon		
	Mikrokristal Terhidrogenasi		
	(μc-Si:H)		

2	Pengembangan Perangkat	Hibah Penelitian	2013
	Sistem Antena Untuk Aplikasi	Desentralisasi (DIKTI)	
	Komunikasi Data Medis Secara		
	Nirkabel		
3	Biosensor based on CNT-FET	Hibah Kerjasama Luar	2014-2017
	using Plasma Treatment	Negeri Dan Publikasi	
		Internasional (DIKTI)	
4	Pengembangan Teknologi	Hibah PITTA (UI)	2017
	Plasma Bertekanan Atmosfer		
	dan Aplikasinya pada Bidang		
	Pertanian dan Biomedik		
5	Pengembangan Generator	Hibah PITTA (UI)	2018
	Plasma Bertekanan Atmosfer		
	untuk Aplikasi Modifikasi		
	Material dan Pengeringan Cepat	TT'1 1 TTT T 1	2010
6	Teknologi Sel Surya Portabel	Hibah UI Incubate (UI)	2018
7	untuk Daerah Bencana	Di-D D (III)	2010
7	Aplikasi APSIS: Aplikasi Alur	PhD Pro (UI)	2018
	Pembelajaran Alur Diagnosis		
8	dan Terapi Kedokteran Pengembangan Divais Organic	Hibah PITTA (UI)	2018
O	Light Emitting Diode (OLED)	THOUNT THE (OI)	2016
	untuk Aplikasi Lampu Hemat		
	Energi		
9	Pengembangan Instrumentasi	Hibah QQ (UI)	2019
	Wireless Biomedik		
10	Pengembangan Desain	Hibah PITTA B (UI)	2019
	Rangkaian Sensor, Amplifier,		
	dan Manajemen Baterai pada		
	Intrumentasi Elektronik		
11	Pengembangan Hole-	Penelitian Terapan	2019-2020
	Transporting Material (HTM)	Unggulan Perguruan	
	Pada Divais Sel Surya	Tinggi (DIKTI)	
	Perovskite		
12	Analisis Alat Pengering	Penelitian Dasar	2019
	Elektrohidrodinamik untuk	Unggulan Perguruan	
	Pengeringan Gabah dengan	Tinggi (DIKTI)	
4.5	Metode Permukaan Respon		•
13	Pengembangan Wireless	PUTI Q1 (UI)	2020
	Bioelektronik Sensor untuk		
	Kuantifikasi Rasa Nyeri Pada		

	Bayi		
14	Pengembangan metode terapi kanker alternating electric fields (AEFs): in vitro dan in silico study	PUTI Q2 (UI)	2020
15	Fungsionalisasi Plasma pada Material Limbah Polimer	PUTI Q3 (UI)	2020
16	Pengembangan Prototipe Solar Charge Controller Berbasis Maximum Power Point Tracking Untuk Photovoltaic Portabel	perancangan dan	2020
17	Desain Sensor Suhu Non- Contactless berbasis Infrared untuk Scanning Suhu Tubuh di Rumah Sakit	Penelitian Dasar Unggulan Perguruan Tinggi (DIKTI)	2020

C.3. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada	Penyandang Dana	Tahun
	Masyarakat		
1	Penerapan Sistem Teknologi Sel	Hibah Pengabdian	2017
	Surya yang Simple dan Murah	Masyarakat (UI)	
	untuk Penerangan Jalan Umum		
	di Desa Mekarwangi, Kabupaten		
	Tasikmalaya, Jawa		
	Barat		
2	Peningkatan Debit Air untuk	Hibah Pengabdian	2017
	Kebutuhan Rumah Tangga dan	Masyarakat (UI)	
	MCK dengan sistem Pompa		
	Hybrid di Desa Krakal		
3	Penerapan Sistem Teknologi Sel	Program Kemitraan	2018
	Surya pada Atap Gedung	untuk Pengabdian	
	Direktorat Riset dan Pengabdian	Kepada Masyarakat (UI)	
	Masyarakat Universitas		
	Indonesia (DRPM UI) Depok,		
	Jawa Barat		

4	Penerapan Sistem Teknologi Sel	Hibah Pengabdian	2018
	Surya yang Simple dan Murah	Masyarakat (UI)	
	untuk Penerangan Jalan Taman		
	Mekarsari, Depok, Jawa Barat		
5	Pemberdayaan Masyarakat	Fakultas Teknik UI	2018
	untuk Pembuatan Lampu	Peduli	
	Portabel Tenaga Surya		
6	Galon Air Pintar untuk	Aksi UI untuk Negeri	2019
	Mengurangi Penggunaan	(Go Green)	
	Kemasan Plastik Air di Kantin		
	Sekolah		
7	Smart Recycle Bin	AKSI UI UNTUK	2020
	Menggunakan Reverse Vending	NEGERI (GO GREEN)	
	Machine di Universitas		
	Indonesia untuk Meningkatkan		
	Kesadaran Membuang Sampah		
8	Pemberdayaan Rumah Yatim di	IPTEKS BAGI	2020
	Daerah Depok dengan Tanaman	MASYARAKAT (IbM)	
	Hidroponik	UI	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak- sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 26 Januari 2021 Dosen Pendamping,

(Tomy Abuzairi, ST, M.Sc, Ph.D)

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Sewa dan Jasa	Volume	Harga Satuan (Rp)	Nilai (Rp)
ESP32 DOIT IOT			
(Supports Wi-Fi &	1	Rp100.000	Rp100.000
Bluetooth)			
Akuarium Ikan 40x26x28	1	D=200.000	D=200.000
cm	1	Rp300.000	Rp300.000
Micro USB	1	Rp50.000	Rp50.000
Power supply 30 A/12 V	1	Rp110.000	Rp110.000
Hobbywing UBEC 10A	1	Rp500.000	Rp500.000
Relay 2 channel	4	Rp20.000	Rp80.000
Step-up Module Mini			
DC-DC Boost Converter	4	Rp10.000	Rp40.000
3V-5V			
Lampu Ultraviolet 11	1	D=90 000	D=20.000
Watt	1	Rp80.000	Rp80.000
Aerator Aquarium Dual	1	Dr 170 000	D=170.000
Use Air Pump AC/DC	1	Rp170.000	Rp170.000
Selang Air 5/8" 20 Meter	1	Rp60.000	Rp60.000
Solenoid Valve 1/2" 2W-	2	Dr.120.000	D=240.000
160-15	2	Rp120.000	Rp240.000
Wadah Cacing Sutra	1	Rp5.000	Rp5.000
Servo motor Sg 90	4	Rp20.000	Rp80.000
IC Timer NE555	2	Rp2.500	Rp5.000
ESP 32 Cam OV2640	1	Rp130.000	Rp130.000
ESP 32 Cam Case	1	Rp125.000	Rp125.000
Mini Tripod	1	Rp50.000	Rp50.000
DS18B20			
WATERPROOF	1	D=20 000	D=20,000
TEMPERATURE	1	Rp20.000	Rp20.000
SENSOR			
Water Heater Aquarium	1	Rp40.000	Rp40.000
50 Watt	1	1\p+0.000	1xp40.000
Chiller Aquarium	1	Rp200.000	Rp200.000
Turbidity Sensor Module	1	Rp150.000	Rp150.000
for Arduino	1	Kp130.000	KP130.000
Analog TDS			
Sensor/Meter for	1	Rp255.000	Rp255.000
Arduino			

PH Sensor Module V.1.1 with MSP340	1	Rp350.000	Rp350.000	
Filter Aquarium	1	Rp90.000	Rp90.000	
Capacitor Lipo Life Battery Balancer	1	Rp150.000	Rp150.000	
Ovonic 11.1V 5500mAh 50C-100C 3S LiPo Battery Pack	1	Rp600.000	Rp600.000	
Terminal Block 12 Pole 25A	1	Rp10.000	Rp10.000	
Stop Kontak 6 Soket	1	Rp210.000	Rp210.000	
Solder Listrik	1	Rp150.000	Rp150.000	
Digital Multimeter	1	Rp400.000	Rp400.000	
SUBT	OTAL (R	p)	Rp4.750.000	
2. Barang Habis Pakai	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Lem	1	50.000	Rp50.000	
pH Upper	500 ml	25.000	Rp25.000	
pH Lower	500 ml	25.000	Rp25.000	
SUBT	OTAL (R _l	p)	Rp100.000	
3. Perjalanan	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Perjalanan ke Laboratorium Universitas Indonesia	10	Rp100.000	Rp1.000.000	
SUBT	OTAL (R	p)	Rp1.000.000	
4. Lain-lain	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Blynk Server	1	Rp300.000	Rp300.000	
Biaya Pengiriman Bahan dan Peralatan	29	Rp15.000	Rp435.000	
Pulsa	15	Rp100.000	Rp1.500.000	
Pengajuan Paten	1	Rp1.500.000	Rp1.500.000	
Cetak PCB 2 Layer	1	Rp60.000	Rp60.000	
Ikan Sepat Mutiara 10 Rp10.000		Rp100.000		
SUBT	Rp3.895.000			
TOTAL	Rp9.745.000			
Terbilang: Sembilan juta tujuh ratus empat puluh lima ribu rupiah				

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No	Nama / NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam / minggu)	Uraian Tugas
1	Naufal Inas Fikri / 1906299875	Teknik Elektro	Elektronika dan Instrumentasi	20 Jam/ minggu	 Memimpin koordinasi antar anggota Membuat alur wiring purwarupa Melakukan uji coba lapangan
2	Vito Louis Nathaniel / 1906354406	Teknik Elektro	Perancangan dan analisis alat	20 Jam/ minggu	 Merancang sistem purwarupa Menganalisis data dari hasil lapangan Mengurus draft paten
3	Muchamad Syahrul Gunawan / 1906354356	Teknik Elektro	Algoritma dan Pemrograman	20 Jam/ minggu	 Menganalisis data dari hasil lapangan Merancang algoritma pemrograman Bertanggung jawab terhadap laporan akhir

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PENELITI/PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Naufal Inas Fikri

NIM

: 1906299875

Program Studi

: Teknik Elektro

Fakultas

: Teknik

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul Akuarium berbasis Internet of Things untuk Konservasi Ex Situ Ikan Endemik Indonesia yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaikan dengan pernyataan ini, maka saya bersedia dituntut dan diperoses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dnegan sesungguhnya dan dengan sebenarbenarnya.

> Depok, 10/3/2021 Yang menyatakan,

> Naufal Inas Fikri NIM. 1906299875

Lampiran 5. Gambaran Teknologi yang Akan Diterapkembangkan

Gambar A.1 Konfigurasi Komponen *Hardware* IoT (Sumber: Data Pribadi)

Pada fitur kontrol suhu, kami memasang sensor suhu tahan air yang akan disambungkan dengan CPU(Central Processing Unit). CPU ini merupakan mikrokontroler yang nantinya akan memproses data dari sensor tersebut. Kemudian dari data tadi, dapat dimonitor dan dikontrol lalu dikirimkan kembali datanya kepada Heater ataupun cooler yang berfungsi sebagai perangkat kontrol suhu yang akan menaikan atau menurunkan suhu air pada akuarium.

Kemudian pada fitur kontrol pH, kami memasang sensor pH yang dapat mengirimkan data kadar pH air ke CPU. Data yang tadi dikirimkan akan diproses kembali dan dapat diatur ulang. Data yang sudah diatur ulang akan dikirimkan kembali ke kontrol pH berupa cairan asam dan basa yang berfungsi meningkatkan maupun menurunkan nilai pH dari air di akuarium.

Selanjutnya untuk kontrol salinitas, kami menggunakan sebuah sensor salinitas yang diletakkan di akuarium. Disini fungsi sensor sama seperti sensor lainnya, yaitu mengirimkan data ke CPU yang nantinya akan diproses. Namun pada fitur ini, kami tidak akan melakukan perubahan salinitas melainkan menjaga tingkat dari salinitas itu sendiri. Kami merasa dengan adanya penguapan dari air yang sejalan dengan fungsi waktu, diperlukan kontrol salinitas sehingga kadar garam pada air akuarium tidak berubah. Ketika sudah mencapai kondisi dimana air terus berkurang, sensor tadi akan mengirimkan data yang menunjukkan level dari salinitas. Kemudian CPU akan memerintahkan kran otomatis untuk membuka dan memberikan air seperlunya demi menjaga kadar garam pada akuarium.

Untuk kontrol kekeruhan air, kami menggunakan sensor turbidity. Apabila sensor ini mendeteksi banyak partikel dalam air maka diterjemahkan sebagai air yang keruh. Kemudian CPU akan mengontrol kran untuk melakukan pergantian air.

Lalu untuk fitur kamera, kami memasang di bagian luar akuarium yang nantinya dapat langsung dihubungkan ke perangkat elektronik menggunakan aplikasi blynk. Sedangkan untuk pemberi makan otomatis akan memberikan makanan dengan otomatis pada saat waktu-waktu tertentu yang telah diatur melalui aplikasi.

Gambar A.2 Diagram Alir Cara Kerja Alat (Sumber: Data Pribadi)