Intro. to Image Processing HW4

110550093 蔡師睿

Method

test1.tif

- 1. Read the image, and then use np.fft.fft2() and np.fft.fftshift() to transform to the frequency domain. Then I use 20*np.log(np.abs()) to make the spectrum enable to show.
- 2. Due to the noise of the test1.tif, I need to use the veritcal notch reject filter in frequency domain. Thus, I apply the ideal filter to make the vertical line to be zero except the center.
- 3. Use np.fft.ifftshift(), np.fft.ifft2(), and np.abs() to get the final filtered image.

test2.tif

- 1. Read the image, and then use np.fft.fft2() and np.fft.fftshift() to transform to the frequency domain. Then I use 20*np.log(np.abs()) to make the spectrum enable to show.
- 2. Due to the noise of the test2.tif, I use the notch reject filter in frequency domain and use Microsoft paint to plot the center of the eight bright points. I've applied butterworth and ideal filter, and I thought that the ideal filter is better. Thus, I still use ideal filter in this part.
- 3. Use np.fft.ifftshift(), np.fft.ifft2(), and np.abs() to get the final filtered image.

Result

test1.tif Spectrum

test1.tif Filtered Spectrum

test1.tif Final Image

test2.tif Spectrum

test2.tif Filtered Spectrum

test2.tif Final Image

Feedback

It's amazing that filters applied in frequency domain can obtain better results in some cases.