### 時系列データに対する 動的ネットワークバイオマーカー解析の 適用方法

岡本有司(京都大学)

2022/08/20 第3回 合原ムーンショットプロジェクト全体会議

#### 目次

- Early-warning signalsとDNB
- 時系列データに対するDNBの処理の流れ
- デモンストレーション
- 問題点とまとめ

# Early-warning signals & DNB [M. Oku and K. Aihara 2018]

- 一次元データの場合、分岐現象が近づくと分散が増加
- 多次元データの場合、共分散行列の最大固有値が増加



### 例: 草食動物増加による植物の変化 [EH van Nes et al., Ecology 2006]

-0.2 -0.0 - -0.2 t = 100.0Biomass: X<sub>i</sub> <del>=</del> 891.2 5.0 t = 950.00.0 λ<sub>max</sub>(Cov\_Matrix) Time: t

# 入力データ形式

#### 特徴量の種類

| 対応           |
|--------------|
| 033          |
| Ø            |
|              |
| 隔の           |
| 定間           |
| <br> -<br> - |
| (現在          |

| - | Time  | 特徴量1     | 特徴量2     | 特徴量3     | ••• | 特徴量n     |
|---|-------|----------|----------|----------|-----|----------|
|   | 0.0   | 8.889084 | 8.889084 | 8.889084 |     | 8.889084 |
|   | 0.1   | 8.867865 | 8.898595 | 8.932079 |     | 8.838701 |
|   | 0.2   | 8.882646 | 8.878018 | 8.876108 |     | 8.855789 |
|   | 0.3   | 8.880202 | 8.870275 | 8.843226 |     | 8.851956 |
|   | 0.4   | 8.906546 | 8.816733 | 8.859035 |     | 8.835534 |
|   |       |          |          |          |     |          |
|   | 999.8 | 0.474045 | 0.447899 | 0.312656 |     | 0.553507 |
|   | 999.9 | 0.517102 | 0.441966 | 0.360587 |     | 0.514504 |
|   |       |          |          |          |     |          |

### 処理の流れ



### スライディングウィンドウ



共分散行列の最大固有値の計算

バイオマーカーの抽出

| Time  | 特徴量1     | 特徴量2     | <br>特徴量n     |   |   |
|-------|----------|----------|--------------|---|---|
| 0.0   | 8.889084 | 8.889084 | <br>8.889084 |   |   |
| 0.1   | 8.867865 | 8.898595 | <br>8.838701 | + | 1 |
| 0.2   | 8.882646 | 8.878018 | <br>8.855789 | + | 4 |
| 0.3   | 8.880202 | 8.870275 | <br>8.851956 | Ш | П |
| 0.4   | 8.906546 | 8.816733 | <br>8.835534 |   | Л |
|       |          |          | <br>         |   | J |
| 999.8 | 0.474045 | 0.447899 | <br>0.553507 | • |   |
| 999.9 | 0.517102 | 0.441966 | <br>0.514504 | • |   |



| (1) A                   | Time | 特徴    | 量1 特   | 持徴量    | 2    |          | 特徴量n        |           |              |   |
|-------------------------|------|-------|--------|--------|------|----------|-------------|-----------|--------------|---|
| Size                    | 0.0  | 8.889 | 0084 8 | .88908 | 34   |          | 8.889084    |           |              |   |
| window size<br><b>✓</b> | 0.1  | 8.86  | Time   | 特徴     | 量1   | 特徴量2     |             | +<br>特徴量n |              |   |
| br                      | 0.2  | 8.88  | 0.1    | 8.867  | 7865 | 8.898595 |             | 8.838701  |              |   |
| . <b>≧ ♦</b>            | 0.3  | 8.88  | 0.2    | 8.88   | Time | 特徴量      | <b>計 特徴</b> | 量2        | 特徴量n         |   |
|                         |      |       | 0.3    | 8.88   | 0.2  | 2 8.8890 | 8.889       | 084       | <br>8.889084 | ٦ |
|                         |      |       | 0.4    | 8.90   | 0.3  | 3 8.8678 | 865 8.898   | 595       | <br>8.838701 |   |
|                         |      |       |        |        | 0.4  | 4 8.8826 | 8.878       | 018       | <br>8.855789 |   |
|                         |      |       |        |        | 0.   | 5 8.8802 | 202 8.870   | 275       | <br>8.851956 |   |

window #3

#### 共分散行列の最大固有値の計算



## バイオマーカーの抽出

> 前の発表手法を使って バイオマーカーを抽出



分岐

| Time   | x_0      | x_1      | •••      | x_n          |          |
|--------|----------|----------|----------|--------------|----------|
| tc     | 8.889084 | 8.889084 |          | 8.889084     |          |
| tc+0.1 | 8.867865 | 8. 分岐    | 直前のデ     | <b>ータ</b> 01 |          |
| tc+0.2 | Time     | x_0      | x_1      |              | x_n      |
| tc+0.3 | tb       | 8.889084 | 8.889084 |              | 8.889084 |
| tc+0.4 | tb+0.1   | 8.867865 | 8.898595 |              | 8.838701 |
|        | tb+0.2   | 8.882646 | 8.878018 |              | 8.855789 |
| tc+T   | tb+0.3   | 8.880202 | 8.870275 |              | 8.851956 |
|        | tb+0.4   | 8.906546 | 8.816733 |              | 8.835534 |
|        |          |          |          |              |          |
|        | tb+T     | 0.474045 | 0.447899 |              | 0.553507 |
|        |          |          |          |              |          |

# デモンストレーション

#### ゆらぎと平均値の変化の区別は難しい

• Window内での分散

= ゆらぎ+平均値の変化+(観測ノイズ)



#### ゆらぎと平均値の変化の区別は難しい

• Window内での分散

= ゆらぎ+平均値の変化+(観測ノイズ)



### Controlはどこ?

• Control = 健康な状態 or 分散が大きくなる前?



#### まとめと今後の課題

- 時系列データに対するDNB推定方法を紹介した
- DNB推定方法のデモンストレーションを行った
- ・Window内での平均的な変化と分布としての変化の識別に 細心の注意が必要である。
  - 解決には対象の周波数特性などの情報が重要となる。
- Controlとするウィンドウの時点の設定には正解がない
  - ・変化が安定している時点や、分岐点の一定前の時点が 候補となる