UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/533,612	04/29/2005	Kohei Asada	SONYJP 3.3-1024	6316
	7590 01/06/200 /ID, LITTENBERG,	9	EXAMINER	
KRUMHOLZ &	& MENTLIK		SAUNDERS JR, JOSEPH	
600 SOUTH AVENUE WEST WESTFIELD, NJ 07090			ART UNIT	PAPER NUMBER
,			2614	
			MAIL DATE	DELIVERY MODE
			01/06/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)		
	10/533,612	ASADA ET AL.		
Office Action Summary	Examiner	Art Unit		
	Joseph Saunders	2614		
The MAILING DATE of this communication ap Period for Reply	opears on the cover sheet with the c	correspondence address		
A SHORTENED STATUTORY PERIOD FOR REPI WHICHEVER IS LONGER, FROM THE MAILING I - Extensions of time may be available under the provisions of 37 CFR 1 after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period - Failure to reply within the set or extended period for reply will, by statu Any reply received by the Office later than three months after the maili earned patent term adjustment. See 37 CFR 1.704(b).	DATE OF THIS COMMUNICATION .136(a). In no event, however, may a reply be tird d will apply and will expire SIX (6) MONTHS from te, cause the application to become ABANDONE	N. nely filed the mailing date of this communication. D (35 U.S.C. § 133).		
Status				
Responsive to communication(s) filed on 27 of 2a) This action is FINAL . 2b) The 3) Since this application is in condition for allowed closed in accordance with the practice under	is action is non-final. ance except for formal matters, pro			
Disposition of Claims				
4) Claim(s) 1-20 is/are pending in the applicatio 4a) Of the above claim(s) is/are withdra 5) Claim(s) is/are allowed. 6) Claim(s) 1-20 is/are rejected. 7) Claim(s) is/are objected to. 8) Claim(s) are subject to restriction and/ Application Papers 9) The specification is objected to by the Examin	awn from consideration. or election requirement.			
10) ☐ The drawing(s) filed on 14 March 2008 is/are: Applicant may not request that any objection to the Replacement drawing sheet(s) including the corre 11) ☐ The oath or declaration is objected to by the E	a)⊠ accepted or b)⊡ objected to e drawing(s) be held in abeyance. Sec ction is required if the drawing(s) is ob	e 37 CFR 1.85(a). jected to. See 37 CFR 1.121(d).		
Priority under 35 U.S.C. § 119				
12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.				
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail D: 5) Notice of Informal F 6) Other:	ate		

Art Unit: 2614

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on September 26, 2008 has been entered. Claims 1 – 20 are currently pending and considered below.

Claim Rejections - 35 USC § 112

- 2. The following is a quotation of the first paragraph of 35 U.S.C. 112:
 - The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.
- 3. Claims 1 20 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. The limitations "spatially-localized" and "such that the frequency content of the audio signal at a first point in the sound field remains substantially unchanged," were not previous presented. The limitations raise issues of new matter, since the specification on page 17 from which Applicant claims support

Art Unit: 2614

does not recite "spatially- localized" or that "the frequency content of the audio signal at a first point in the sound field remains substantially unchanged". The closest recitation from page 17 is "the oozing sound Anc from front will be smaller than the intended sound Atg from behind", and therefore the limitations "spatially-localized" and "such that the frequency content of the audio signal at a first point in the sound field remains substantially unchanged," constitutes new matter.

Claim Rejections - 35 USC § 102

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- 4. Claims 1 4 and 10 13 are rejected under 35 U.S.C. 102(b) as being anticipated by Bienek et al. (WO 02/078388 A2), hereinafter <u>Bienek</u>.

Claim 1: Bienek discloses an audio signal processing method (method and apparatus to create a sound field) comprising the steps of: supplying an audio signal (input signal 101) to each of a plurality of digital filters (means 1506 includes signal delay means 1508, amplitude control means 1510, and adjustable digital filter 1512); respectively supplying outputs from the plurality of digital filters to a plurality of speakers arranged in a speaker array to form a sound field (Description of Figure 6, Pages 18 – 19); setting a predetermined delay time in each of the plurality of digital filters so that transmission delay times with which the audio signal arrives at a first point in the sound field via each of the plurality of digital filters and each of the plurality of speakers will coincide with each other (Third Sound Field, Pages 21 – 22 and Figure 7C and Figure 8); and

Application/Control Number: 10/533,612

Art Unit: 2614

adjusting at least one amplitude characteristic of the plurality of digital filters ("The amplitude control means (ACM) is conveniently implemented as digital amplitude control means for the purposes of gross beam shape modification," Page 12 Line 25 – Page 13 Line 6) so as to effect a spatially-localized low-pass filtering of the audio signal as output from the speakers ("The amplitude control means is preferably arranged to apply differing amplitude control to each signal output from the Distributor so as to counteract for the fact that the DPAA is of finite size by using a window function," Page 12 Line 25 – Page 13 Line 6 and Figures 11A – 11D), such that the audio signal at a second point in the sound field exhibits less higher frequency content than it would had the amplitude characteristic(s) not been adjusted ("The window function reduces the effects of "side lobes" at the expense of power," Page 26 Lines 2 - 3), and such that the frequency content of the audio signal at the first point in the sound field remains substantially unchanged ("Thus, in general, output signals destined for SETs near the centre of the array will not be significantly affected but those near to the perimeter of the array will be attenuated according to how near to the edge of the array they are," Page 12 Line 25 – Page 13 Line 6).

Page 4

Claim 2: <u>Bienek</u> discloses the audio signal processing method according to claim 1, wherein a sound wave from the speaker array is caused to reach at least one of the first and second points after it is reflected by a wall surface (Figure 8).

Application/Control Number: 10/533,612

Art Unit: 2614

Claim 3: <u>Bienek</u> discloses the audio signal processing method according to claim 1, wherein when forming the first and second points in the sound field, a filter factor of each of the plurality of digital filters is determined by calculation and set for each of the plurality of digital filters (Third Sound Field, Pages 21 – 22 and Figure 7C).

Page 5

Claim 4: <u>Bienek</u> discloses the audio signal processing method according to claim 1, wherein when forming the first and second points in the sound field, a filter factor of each of the plurality of digital filters is read from a data base and set for each of the plurality of digital filters (stored sets of delays (for the DDGs) and filter coefficients (for the ADFS) can be recalled, Page 14 Lines 26 and 27).

Claim 10: Bienek discloses an audio signal processor (method and apparatus to create a sound field) comprising a plurality of digital filters (means 1506 includes signal delay means 1508, amplitude control means 1510, and adjustable digital filter 1512) each supplied with an audio signal (input signal 101), wherein each of the plurality of digital filters supplies an output signal to each of a plurality of speakers arranged in a speaker array to form a sound field (Description of Figure 6, Pages 18 – 19); each of the plurality of digital filters has a predetermined delay time so that transmission delay times with which the audio signal arrives at a first point in the sound field via each of the plurality of digital filters and each of the plurality of speakers will coincide with each other (Third Sound Field, Pages 21 – 22 and Figure 7C and Figure 8); and of the plurality of digital filters has an amplitude characteristic ("The amplitude control means (ACM) is

conveniently implemented as digital amplitude control means for the purposes of gross beam shape modification," Page 12 Line 25 – Page 13 Line 6) so as to effect a spatially-localized low-pass filtering of the audio signal as output from the speakers ("The amplitude control means is preferably arranged to apply differing amplitude control to each signal output from the Distributor so as to counteract for the fact that the DPAA is of finite size by using a window function," Page 12 Line 25 – Page 13 Line 6 and Figures 11A – 11D), such that the audio signal at a second point in the sound field exhibits less higher frequency content than it would had the amplitude characteristic(s) not been adjusted ("The window function reduces the effects of "side lobes" at the expense of power," Page 26 Lines 2-3), and such that the frequency content of the audio signal at the first point in the sound field remains substantially unchanged ("Thus, in general, output signals destined for SETs near the centre of the array will not be significantly affected but those near to the perimeter of the array will be attenuated according to how near to the edge of the array they are," Page 12 Line 25 – Page 13 Line 6).

Claim 11: Bienek discloses the audio signal processor according to claim 10, wherein a sound wave from the speaker array is caused to reach at least one of the first and second points after it is reflected by a wall surface (Figure 8).

Claim 12: Bienek discloses the audio signal processor according to claim 10, wherein when forming the first and second points in the sound filter, a filter factor of each of the

plurality of digital filters is determined by calculation and set for each of the plurality of digital filters (Third Sound Field, Pages 21 – 22 and Figure 7C).

Claim 13: Bienek discloses the audio signal processor according to claim 10, wherein when forming the first and second points in the sound field, a filter factor of each of the plurality of digital filters is read from a data base and set for each of the plurality of digital filters (stored sets of delays (for the DDGs) and filter coefficients (for the ADFS) can be recalled, Page 14 Lines 26 and 27).

Claim Rejections - 35 USC § 103

- 5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 6. Claims 5 9 and 14 20 are rejected under 35 U.S.C. 103(a) as being unpatentable over <u>Bienek</u> in view of Masako et al. (JP-8-191225-A), hereinafter <u>Masako</u>.

Claim 5: Bienek discloses the audio signal processing method according to claim 1, but does not explicitly disclose wherein: the predetermined delay time set for at least one of the plurality of digital filters is divided into an integer part and decimal part in units of a sampling period of the audio signal; over-sampling an impulse response including a

Application/Control Number: 10/533,612

Art Unit: 2614

delay time represented by at least the decimal part of the predetermined delay time for a shorter period than a sampling period to provide a sample train and, wherein the sample train is down-sampled to provide pulse-waveform data of the sampling period: and factor data is set for a part to be delayed by the plurality of digital filters based on the pulse- waveform data. Bienek does disclose "the minimum delay possible for a given signal is preferably as small or smaller than Ts, that signal's sample period" and that "most preferably, the smallest incremental change in delay possible for a given digital signal should be no larger than Ts, that signal's sampling period. Otherwise, interpolation of the signal is necessary," Page 12 Lines 17 – 24. Therefore Bienek does disclose a fractional delay and also discloses that a delay filter and an adaptive digital filter may be used. Bienek does not disclose details of how to perform, for example, the interpolation necessary for the fractional delays disclosed above and therefore one would be inclined to look elsewhere for such a teaching. Masako discloses the technique necessary to include a fractional delay (Figure 6 –7 and Paragraph 29 – 33) and discloses that this technique is an effective approach when slight spacing differences influence the felling of the direction of perceived sound. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the process of over-sampling an impulse response and then down-sampling to provide a pulse-waveform data of the sampling period as disclosed by Masako for setting the delay coefficients for the plurality of digital filters as disclosed by Bienek, thereby providing better perceived spatial resolution.

Page 8

Claim 6: Bienek and Masako disclose the audio signal processing method according to claim 5, wherein the audio signal is delayed by a part of the predetermined delay time, which is a multiple of the sampling period, by digital delay circuits which operate for the sampling period, while it is being delayed by the remainder of the predetermined delay time, which includes the decimal part by the digital filters (Bienek discloses that the delay time may be a fractional sampling period and also discloses cascading a delay means with adjustable digital filter means that can also apply delays. Therefore given the disclosure of Bienek and the teachings of Masako of how to calculate a finer representation of an impulse response, Bienek and Masako disclose implementing a delay using a simple delay element and an adjustable digital filter for the remainder or fractional part of the delay in a two stage process as disclosed by Bienek).

Claim 7: Bienek and Masako disclose the audio signal processing method according to claim 5, and wherein: an over-sampling period of the over-sampling operation is 1/N (N is an integer larger than or equal to 2) of the sampling period of the digital signal; and when the delay time represented by the decimal part is nearly an integral multiple (m) of the over-sampling period, m/N is adopted as the decimal part (Masako, Paragraph 26).

Claim 8: <u>Bienek</u> and <u>Masako</u> disclose the audio signal processing method according to claim 7, wherein: the pulse-waveform data to be delayed by a delay time which is m/N (m = 1 to N - 1) of the sampling period is pre-stored in a data base; and pulse-waveform data approximate to the decimal part is taken out of the stored pulse-waveform data and

set as a filter factor of each of the plurality of digital filters (<u>Bienek</u>, stored sets of delays (for the DDGs) and filter coefficients (for the ADFS) can be recalled, Page 14 Lines 26 and 27).

Claim 9: <u>Bienek</u> and <u>Masako</u> disclose the audio signal processing method according to claim 5, wherein a transfer characteristic providing a predetermined acoustic effect is convoluted in the pulse-waveform data and set as a filter factor of each of the plurality of digital filters ("convolution multiplier", <u>Masako</u>, Paragraph 26).

Claim 14: Bienek discloses the audio signal processor according to claim 10, wherein: the pulse-waveform provided by the calculation circuit is set as a filter factor of each of the plurality of digital filters (Third Sound Field, Pages 21 – 22 and Figure 7C) but does not explicitly disclose the predetermined delay time set for at least one of the plurality of digital filters is divided into an integer part and decimal part in units of a sampling period of the audio signal, there is further provided a calculation circuit to calculate pulse-waveform data of the sampling period by over-sampling an impulse response including a delay time represented by at least the decimal part of the predetermined delay time for a shorter period than the sampling period to provide a sample train, and down-sampling the sample train. Bienek does disclose "the minimum delay possible for a given signal is preferably as small or smaller than Ts, that signal's sample period" and that "most preferably, the smallest incremental change in delay possible for a given digital signal should be no larger than Ts, that signal's sampling period. Otherwise,

Art Unit: 2614

interpolation of the signal is necessary," Page 12 Lines 17 – 24. Therefore <u>Bienek</u> does disclose a fractional delay and also discloses that a delay filter and an adaptive digital filter may be used. <u>Bienek</u> does not disclose details of how to perform, for example, the interpolation necessary for the fractional delays disclosed above and therefore one would be inclined to look elsewhere for such a teaching. <u>Masako</u> discloses the technique necessary to include a fractional delay (Figure 6 –7 and Paragraph 29 – 33) and discloses that this technique is an effective approach when slight spacing differences influence the felling of the direction of perceived sound. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the process of over-sampling an impulse response and then down-sampling to provide a pulse-waveform data of the sampling period as disclosed by <u>Masako</u> for setting the delay coefficients for the plurality of digital filters as disclosed by <u>Bienek</u>, thereby providing better perceived spatial resolution.

Claim 15: <u>Bienek</u> and <u>Masako</u> disclose the audio signal processor according to claim 14, wherein: an over-sampling period of the over-sampling in the calculation circuit is 1/N (N is an integer larger than or equal to 2) of the sampling period of the digital signal; and when the delay time represented by the decimal part is nearly an integral multiple (m) of the over-sampling period, m/N is adopted as the decimal part (<u>Masako</u>, Paragraph 26).

Art Unit: 2614

Claim 16: <u>Bienek</u> and <u>Masako</u> disclose the audio signal processor according to claim 14, wherein a transfer characteristic providing a predetermined acoustic effect is convoluted in the pulse-waveform data to set synthetic-waveform data as a filter factor of each of the plurality of digital filters ("convolution multiplier", <u>Masako</u>, Paragraph 26).

Claim 17: Bienek discloses the audio signal processor according to claim 10, wherein: the pulse-waveform data stored in the storing means is taken out and set as a filter factor of each of the plurality of digital filters (stored sets of delays (for the DDGs) and filter coefficients (for the ADFS) can be recalled, Page 14 Lines 26 and 27) but does not explicitly disclose the predetermined delay time set for at least one of the plurality of digital filters is divided into an integer part and decimal part in units of a sampling period of the audio Signal; there is further provided a storing means for storing pulse-waveform data of the sampling period provided by over-sampling an impulse response including a delay time represented by at least the decimal part of the predetermined delay time for a shorter period than the sampling period to provide a sample train, and down-sampling the sample train. Bienek does disclose "the minimum delay possible for a given signal is preferably as small or smaller than Ts, that signal's sample period" and that "most preferably, the smallest incremental change in delay possible for a given digital signal should be no larger than Ts, that signal's sampling period. Otherwise, interpolation of the signal is necessary," Page 12 Lines 17 – 24. Therefore Bienek does disclose a fractional delay and also discloses that a delay filter and an adaptive digital filter may be used. Bienek does not disclose details of how to perform, for example, the interpolation

necessary for the fractional delays disclosed above and therefore one would be inclined to look elsewhere for such a teaching. Masako discloses the technique necessary to include a fractional delay (Figure 6 –7 and Paragraph 29 – 33) and discloses that this technique is an effective approach when slight spacing differences influence the felling of the direction of perceived sound. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the process of oversampling an impulse response and then down-sampling to provide a pulse-waveform data of the sampling period as disclosed by Masako for setting the delay coefficients for the plurality of digital filters as disclosed by Bienek, thereby providing better perceived spatial resolution.

Claim 18: Bienek and Masako disclose the audio signal processor according to claim 17, wherein: an over-sampling period of the over-sampling is 1/N (N is an integer larger than or equal to 2) of the sampling period of the digital signal; and when the delay time represented by the decimal part is nearly an integral multiple (m) of the over-sampling period, m/N is adopted as the decimal part (Masako, Paragraph 26).

Claim 19: Bienek and Masako disclose the audio signal processor according to claim 17, wherein: a plurality of the pulse-waveform data corresponding to the decimal part is pre-stored in the storing means; and pulse-waveform data approximate to the decimal part is taken out of the stored pulse-waveform data and set as a filter factor of each of

the plurality of digital filters (<u>Bienek</u>, stored sets of delays (for the DDGs) and filter coefficients (for the ADFS) can be recalled, Page 14 Lines 26 and 27).

Claim 20: <u>Bienek</u> and <u>Masako</u> disclose the audio signal processor according to claim 17, wherein a transfer characteristic providing a predetermined acoustic effect is convoluted in the pulse-waveform data to set the pulse-waveform data as a filter factor of each of the plurality of digital filters ("convolution multiplier", <u>Masako</u>, Paragraph 26).

Response to Arguments

- 7. Applicant's arguments filed September 26, 2008 with regards to the provisional double patenting rejection under 35 U.S.C. 101 as claiming the same invention as that of claims 2 and 4 of copending Application No. 10/706,772 have been considered and are persuasive. The provisional double patenting rejection of claims 1, 2, 10, and 11has been withdrawn.
- 8. Applicant's arguments with respect to claim 1 20 under 35 U.S.C. 102 and 103 have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

9. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Joseph Saunders whose telephone number is (571) 270-1063. The examiner can normally be reached on Monday - Thursday, 9:00 a.m. - 4:00 p.m., EST.

Art Unit: 2614

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Curtis Kuntz can be reached on (571) 272-7499. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/J. S./
Examiner, Art Unit 2614
/CURTIS KUNTZ/
Supervisory Patent Examiner, Art Unit 2614