量子力学

Anko

2023年7月10日

1 量子力学の基礎

TODO: 実験的背景: 電子線を用いた二重スリット実験など

定義.

すべての粒子は波動性を持つ。

定義.

波動方程式を満たす関数 $\psi({m r},t)\in C^1(\mathbb C)$ を粒子の場とし、これを波動関数 (wave function) という。また $\rho({m r},t)=|\psi({m r},t)|^2$ を粒子の確率密度 (probability density) と解釈し、この規格化条件を満たすように波動関数を定義する。

$$\int \rho(\mathbf{r}, t) \, \mathrm{d}\mathbf{r} = 1 \tag{1}$$

光子や電子の性質から粒子の性質と対応付ける。

定義 (ド・ブロイの関係式).

光子と同様に任意の粒子は次のような関係式が成り立つとする。

$$E = \hbar \omega, \qquad p = \hbar k$$
 (2)

また質量 m の粒子の持つ力学的エネルギーは運動エネルギーとポテンシャルエネルギーの和で与えられる。

$$E = \frac{p^2}{2m} + V(\mathbf{r}) \tag{3}$$

定理 1 (Schrödinger の方程式).

このとき波動関数 $\psi(\mathbf{r},t)$ について次の関係式が成り立つ。

$$i\hbar \frac{\partial}{\partial t}\psi(\mathbf{r},t) = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\psi(\mathbf{r},t)$$
 (4)

 \Diamond

証明

波動関数は波動方程式を満たすので次のように書ける。

$$\frac{k^2}{\omega^2} \frac{\partial^2 \psi(\mathbf{r}, t)}{\partial t^2} = \nabla^2 \psi(\mathbf{r}, t) \tag{5}$$

このときダランベールの解より $|\mathbf{k}|^2 = k^2$ を満たす \mathbf{k} を用いて波動関数は $f(\mathbf{k} \cdot \mathbf{r} - \omega t)$ の重ね合わせとなる。ここでは特に次の関数となると考える。

$$\psi(\mathbf{r},t) = \int_{\mathbf{k}} \tilde{\varphi}(\mathbf{k}) e^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)} \,\mathrm{d}\mathbf{k}$$
 (6)

よって波動方程式は次のようになる。

$$-k^2\psi(\mathbf{r},t) = \nabla^2\psi(\mathbf{r},t) \tag{7}$$

$$k^{2} = \frac{p^{2}}{\hbar^{2}} = \frac{2m}{\hbar^{2}} (E - V(\mathbf{r})) = \frac{2m}{\hbar^{2}} (\hbar\omega - V(\mathbf{r}))$$
(8)

$$\hbar\omega\psi(\mathbf{r},t) = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\psi(\mathbf{r},t)$$
(9)

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r})\right) \psi(\mathbf{r}, t)$$
 (10)

定理 2.

粒子の確率密度について連続の方程式を満たす。

$$\frac{\partial}{\partial t}\rho(\boldsymbol{r},t) + \boldsymbol{\nabla} \cdot \boldsymbol{j}(\boldsymbol{r},t) = 0$$
(11)

 \Diamond

証明

確率密度の時間微分を考えると

$$\frac{\partial}{\partial t}\rho(\mathbf{r},t) = \psi^*(\mathbf{r},t) \left(\frac{\partial}{\partial t}\psi(\mathbf{r},t)\right) + \left(\frac{\partial}{\partial t}\psi^*(\mathbf{r},t)\right)\psi(\mathbf{r},t)
= \psi^*(\mathbf{r},t) \left(-\frac{i}{\hbar}\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\psi(\mathbf{r},t)\right) + \left(\frac{i}{\hbar}\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\psi^*(\mathbf{r},t)\right)\psi(\mathbf{r},t)
(13)$$

$$= \frac{i\hbar}{2m} \Big(\psi^*(\mathbf{r}, t) \nabla^2 \psi(\mathbf{r}, t) - \nabla^2 \psi^*(\mathbf{r}, t) \psi(\mathbf{r}, t) \Big)$$
(14)

$$=\frac{i\hbar}{2m}\nabla \cdot (\psi^*(\boldsymbol{r},t)\nabla \psi(\boldsymbol{r},t) - \nabla \psi^*(\boldsymbol{r},t)\psi(\boldsymbol{r},t))$$
(15)

より確率の流れ $j(\mathbf{r},t)$ を次のように解釈する。

$$\boldsymbol{j}(\boldsymbol{r},t) := -\frac{i\hbar}{2m} (\psi^*(\boldsymbol{r},t) \boldsymbol{\nabla} \psi(\boldsymbol{r},t) - \boldsymbol{\nabla} \psi^*(\boldsymbol{r},t) \psi(\boldsymbol{r},t))$$
(16)

これより連続の方程式を満たす。

$$\frac{\partial}{\partial t}\rho(\boldsymbol{r},t) + \boldsymbol{\nabla} \cdot \boldsymbol{j}(\boldsymbol{r},t) = 0$$
(17)

 \Diamond

定理 3.

粒子の全存在確率は保存する。

証明

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \rho(\boldsymbol{r}, t) \, \mathrm{d}V = -\int \boldsymbol{\nabla} \cdot \boldsymbol{j}(\boldsymbol{r}, t) \, \mathrm{d}V = -\lim_{|\boldsymbol{r}| \to \infty} \int \boldsymbol{j}(\boldsymbol{r}, t) \cdot \boldsymbol{n} \, \mathrm{d}S = 0$$
 (18)

定義.

物理量 F に対する期待値を次のように定義する。

$$\langle F \rangle := \int \psi^*(\mathbf{r}, t) F \psi(\mathbf{r}, t) \, d\mathbf{r}$$
 (19)

定理 4.

このとき以下の物理量の期待値は次のようになる。

$$\langle \boldsymbol{r} \rangle = \langle \boldsymbol{r} \rangle, \qquad \langle \boldsymbol{p} \rangle = \langle -i\hbar \boldsymbol{\nabla} \rangle, \qquad m \frac{\mathrm{d}^2 \langle \boldsymbol{r} \rangle}{\mathrm{d}t^2} = -\langle \boldsymbol{\nabla} V(\boldsymbol{r}, t) \rangle$$
 (20)

 \Diamond

証明

$$\langle \boldsymbol{r} \rangle = \int \psi^*(\boldsymbol{r}, t) \boldsymbol{r} \psi(\boldsymbol{r}, t) \, d\boldsymbol{r} = \int \boldsymbol{r} \rho(\boldsymbol{r}, t) \, d\boldsymbol{r}$$
 (21)

$$\langle \boldsymbol{p} \rangle = m \frac{\mathrm{d} \langle \boldsymbol{r} \rangle}{\mathrm{d}t} = m \frac{\mathrm{d}}{\mathrm{d}t} \int \psi^*(\boldsymbol{r}, t) \boldsymbol{r} \psi(\boldsymbol{r}, t) \,\mathrm{d}\boldsymbol{r}$$
 (22)

$$= m \int \left(\psi^*(\mathbf{r}, t) \mathbf{r} \frac{\partial}{\partial t} \psi(\mathbf{r}, t) + \frac{\partial}{\partial t} \psi^*(\mathbf{r}, t) \mathbf{r} \psi(\mathbf{r}, t) \right) d\mathbf{r}$$
(23)

$$= -m \int \psi^*(\boldsymbol{r}, t) \boldsymbol{r} \frac{i}{\hbar} \left(-\frac{\hbar^2}{2m} \nabla^2 + V(\boldsymbol{r}) \right) \psi(\boldsymbol{r}, t) d\boldsymbol{r} + m \int \frac{i}{\hbar} \left(-\frac{\hbar^2}{2m} \nabla^2 + V(\boldsymbol{r}) \right) \psi^*(\boldsymbol{r}, t) \boldsymbol{r} \psi(\boldsymbol{r}, t) d\boldsymbol{r}$$

(24)

$$= \frac{i\hbar}{2} \int \psi^*(\mathbf{r}, t) \mathbf{r} \nabla^2 \psi(\mathbf{r}, t) \, d\mathbf{r} - \frac{i\hbar}{2} \int \nabla^2 \psi^*(\mathbf{r}, t) \mathbf{r} \psi(\mathbf{r}, t) \, d\mathbf{r}$$
(25)

$$= \frac{i\hbar}{2} \int \psi^*(\boldsymbol{r}, t) \boldsymbol{r} \nabla^2 \psi(\boldsymbol{r}, t) \, d\boldsymbol{r} - \frac{i\hbar}{2} \int \psi^*(\boldsymbol{r}, t) (\nabla^2 \boldsymbol{r} \psi(\boldsymbol{r}, t)) \, d\boldsymbol{r}$$
 (26)

$$= -i\hbar \int \psi^*(\mathbf{r}, t) \nabla \psi(\mathbf{r}, t) d\mathbf{r}$$
 (27)

$$= \langle -i\hbar \nabla \rangle \tag{28}$$

$$m\frac{\mathrm{d}^{2}\langle \boldsymbol{r}\rangle}{\mathrm{d}t^{2}} = \frac{\mathrm{d}\langle \boldsymbol{p}\rangle}{\mathrm{d}t} = -i\hbar\frac{\mathrm{d}}{\mathrm{d}t}\int\psi^{*}(\boldsymbol{r},t)\boldsymbol{\nabla}\psi(\boldsymbol{r},t)\,\mathrm{d}\boldsymbol{r}$$
(29)

$$= -\int \psi^*(\mathbf{r}, t) \mathbf{\nabla} \left(i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) \right) d\mathbf{r} + \int \left(-i\hbar \frac{\partial}{\partial t} \psi^*(\mathbf{r}, t) \right) \mathbf{\nabla} \psi(\mathbf{r}, t) d\mathbf{r}$$
(30)

$$= -\int \psi^*(\boldsymbol{r}, t) \boldsymbol{\nabla} \left(\left(-\frac{\hbar^2}{2m} \nabla^2 + V(\boldsymbol{r}) \right) \psi(\boldsymbol{r}, t) \right) d\boldsymbol{r} + \int \left(\left(-\frac{\hbar^2}{2m} \nabla^2 + V(\boldsymbol{r}) \right) \psi^*(\boldsymbol{r}, t) \right) \boldsymbol{\nabla} \psi(\boldsymbol{r}, t) d\boldsymbol{r}$$
(21)

(31)

$$= \frac{\hbar^2}{2m} \int \psi^*(\boldsymbol{r}, t) \boldsymbol{\nabla} \left(\nabla^2 \psi(\boldsymbol{r}, t) \right) d\boldsymbol{r} - \int \psi^*(\boldsymbol{r}, t) \boldsymbol{\nabla} (V(\boldsymbol{r}) \psi(\boldsymbol{r}, t)) d\boldsymbol{r}$$
(32)

$$-\frac{\hbar^2}{2m} \int \left(\nabla^2 \psi^*(\boldsymbol{r},t)\right) \boldsymbol{\nabla} \psi(\boldsymbol{r},t) \, d\boldsymbol{r} + \int \left(V(\boldsymbol{r})\psi^*(\boldsymbol{r},t)\right) \boldsymbol{\nabla} \psi(\boldsymbol{r},t) \, d\boldsymbol{r}$$
(33)

$$= -\int \psi^*(\boldsymbol{r}, t) \nabla V(\boldsymbol{r}, t) \psi(\boldsymbol{r}, t) d\boldsymbol{r}$$
(34)

$$= -\langle \nabla V(\mathbf{r}, t) \rangle \tag{35}$$

このようなことから物理量に対して演算子を定義する。

定義.

位置演算子 \hat{r} 、運動量演算子 \hat{p} 、ハミルトニアン \hat{H} を次のように定義する。

$$\hat{\boldsymbol{r}} := \boldsymbol{r}, \qquad \hat{\boldsymbol{p}} := -i\hbar \boldsymbol{\nabla}, \qquad \hat{H} := \frac{\hat{\boldsymbol{p}}^2}{2m} + V(\hat{\boldsymbol{r}}, t)$$
 (36)

ただし任意の演算子はエルミート演算子であるとする。

$$\int \phi^*(\boldsymbol{r}, t) \hat{F} \psi(\boldsymbol{r}, t) \, d\boldsymbol{r} = \int (\hat{F} \phi(\boldsymbol{r}, t))^* \psi(\boldsymbol{r}, t) \, d\boldsymbol{r}$$
(37)

これより期待値は実数である。

$$\hat{H}\psi(\mathbf{r}) = E\psi(\mathbf{r}) \tag{38}$$

定義 (固有関数、固有値).

次のように演算子 \hat{F} に対して定数倍を除いて波動関数が変化しないとき、波動関数 $\psi_f(\mathbf{r},t)$ を演算子 \hat{F} の固有関数、定数 f を固有値と呼ぶ。

$$\hat{F}\psi_f(\mathbf{r},t) = f\psi_f(\mathbf{r},t) \tag{39}$$

定理 5.

エルミート演算子 \hat{F} において異なる固有値 f,f' を持つ固有関数 $\psi_f(\mathbf{r},t),\psi_{f'}(\mathbf{r},t)$ は直交する。

証明

エルミート演算子の性質より

$$\int \psi_{f'}^*(\boldsymbol{r},t)\hat{F}\psi_f(\boldsymbol{r},t) = \int \left(\hat{F}\psi_{f'}(\boldsymbol{r},t)\right)^* \psi_f(\boldsymbol{r},t)$$
(40)

$$f \int \psi_{f'}^*(\boldsymbol{r}, t) \psi_f(\boldsymbol{r}, t) = f' \int \psi_{f'}^*(\boldsymbol{r}, t) \psi_f(\boldsymbol{r}, t)$$
(41)

$$(f - f') \int \psi_{f'}^*(\mathbf{r}, t) \psi_f(\mathbf{r}, t) = 0$$

$$(42)$$

$$\int \psi_{f'}^*(\boldsymbol{r}, t)\psi_f(\boldsymbol{r}, t) = 0 \tag{43}$$

定理 6 (不確定性原理).

ある波動関数においてある2つの物理量の標準偏差の積は一定値以上である。

$$\Delta r_i \Delta p_j \ge \frac{\hbar}{2} \delta_{ij} \tag{44}$$

>

証明

波動関数が次のような関数のとき

$$\Psi(\mathbf{r},t) := (is(\hat{r}_i - \langle \hat{r}_i \rangle) + (\hat{p}_i - \langle \hat{p}_i \rangle))\psi(\mathbf{r},t)$$
(45)

$$\int |\Psi(\boldsymbol{r},t)|^{2} d\boldsymbol{r} = \int \Psi^{*}(\boldsymbol{r},t)\Psi(\boldsymbol{r},t) d\boldsymbol{r}$$

$$= \int (is(\hat{r}_{i} - \langle \hat{r}_{i} \rangle) + (\hat{p}_{j} - \langle \hat{p}_{j} \rangle)\psi(\boldsymbol{r},t))^{*}(is(\hat{r}_{i} - \langle \hat{r}_{i} \rangle) + (\hat{p}_{j} - \langle \hat{p}_{j} \rangle)\psi(\boldsymbol{r},t)) d\boldsymbol{r}$$

$$= \int \psi^{*}(\boldsymbol{r},t)(-is(\hat{r}_{i} - \langle \hat{r}_{i} \rangle) + (\hat{p}_{j} - \langle \hat{p}_{j} \rangle))(is(\hat{r}_{i} - \langle \hat{r}_{i} \rangle) + (\hat{p}_{j} - \langle \hat{p}_{j} \rangle))\psi(\boldsymbol{r},t) d\boldsymbol{r}$$

$$(48)$$

$$= \int \psi^{*}(\boldsymbol{r},t)(s^{2}(\hat{r}_{i} - \langle \hat{r}_{i} \rangle)^{2} - is(\hat{r}_{i} - \langle \hat{r}_{i} \rangle)(\hat{p}_{j} - \langle \hat{p}_{j} \rangle) + is(\hat{p}_{j} - \langle \hat{p}_{j} \rangle)(\hat{r}_{i} - \langle \hat{r}_{i} \rangle) + (\hat{p}_{j} - \langle \hat{p}_{j} \rangle)^{2})\psi(\boldsymbol{r},t) d\boldsymbol{r}$$

$$(49)$$

$$= s^{2} \left\langle (\hat{r}_{i} - \langle \hat{r}_{i} \rangle)^{2} \right\rangle + s\hbar\delta_{ij} + \left\langle (\hat{p}_{j} - \langle \hat{p}_{j} \rangle)^{2} \right\rangle$$

$$(50)$$

$$= s^2 \Delta r_i^2 + s\hbar \delta_{ij} + \Delta p_j^2 \tag{51}$$

$$= \left(s + \frac{\hbar \delta_{ij}}{2\Delta r_i^2}\right)^2 \Delta r_i^2 - \frac{\hbar^2 \delta_{ij}}{4\Delta r_i^2} + \Delta p_j^2 \ge 0 \tag{52}$$

(53)

 $s=rac{\hbar\delta_{ij}}{2\Delta r_i^2}$ と代入すると

$$\Delta r_i \Delta p_j \ge \frac{\hbar}{2} \delta_{ij} \tag{54}$$

2 時間に依存しないポテンシャル

ここではポテンシャルが時間に依存せず、シュレーディンガー方程式が時間に依存しないときを考える。時間成分について波動関数は $\psi({m r},t)=\varphi({m r})e^{-i\omega t}$ と分けられるからシュレー

ディンガー方程式は次のように書ける。

$$\hbar\omega\varphi(\mathbf{r}) = \left(-\frac{\hbar^2}{2m}\mathbf{\nabla}^2 + V(\mathbf{r})\right)\varphi(\mathbf{r})$$
(55)

$$\hat{H}\varphi(\mathbf{r}) = E\varphi(\mathbf{r}) \tag{56}$$

2.1 有限ポテンシャル

ポテンシャルが有限のとき

$$\lim_{\epsilon \to +0} \nabla \psi(\mathbf{r}, t)|_{\mathbf{r}_0}^{\mathbf{r}_0 + \epsilon} = \lim_{\epsilon \to +0} \int_{\mathbf{r}_0}^{\mathbf{r}_0 + \epsilon} \nabla^2 \psi(\mathbf{r}, t)$$
(57)

$$= -\frac{2m}{\hbar^2} \lim_{\epsilon \to +0} \int_{\mathbf{r}_0}^{\mathbf{r}_0 + \epsilon} (E - V(\mathbf{r})) \psi(\mathbf{r}, t)$$
 (58)

$$\rightarrow 0$$
 (59)

ポテンシャルが空間反転対称性をもつとき

$$E\varphi(-\mathbf{r}) = \left(-\frac{\hbar^2}{2m}(-\nabla)^2 + V(-\mathbf{r})\right)\varphi(-\mathbf{r})$$
(60)

$$= \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\boldsymbol{r})\right)\varphi(-\boldsymbol{r}) \tag{61}$$

より $\varphi(r), \varphi(-r)$ は解となる。線形従属、線形独立のときを考えると偶関数または奇関数としても一般性は失われない。

2.2 平面波

ポテンシャルが全くないとき平面波となる。

命題 7.

ポテンシャルがないときを考える。

$$V(x) = 0 (62)$$

このとき波数 k の波動関数は次のようになる。

$$\psi_{\mathbf{k}}(\mathbf{r},t) = \frac{e^{i(\mathbf{k}\cdot\mathbf{r}-\omega_{\mathbf{k}}t)}}{(2\pi)^{3/2}} \qquad \left(\hbar\omega_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m}\right)$$
(63)

 \Diamond

証明

このとき波数 k の波動関数は次のようになる。

$$\psi_{\mathbf{k}}(\mathbf{r},t) = Ce^{i(\mathbf{k}\cdot\mathbf{r}-\omega_{\mathbf{k}}t)} \qquad \left(\hbar\omega_{\mathbf{k}} = \frac{\hbar^2k^2}{2m}\right)$$
(64)

一辺の長さ L の箱の中に閉じ込めるという周期境界条件を考える。

$$\psi(\mathbf{r},t) = \psi(\mathbf{r} + L\mathbf{e}_i, t) \iff e^{ik_i L} = 1 \iff k_i = \frac{2\pi n_i}{L} \qquad (n_i \in \mathbb{Z})$$
(65)

また規格化条件より次のようになる。

$$\int |\psi_{\mathbf{k}}(\mathbf{r},t)|^2 d\mathbf{r} = |C|^2 L^3 = 1 \iff |C| = \frac{1}{L^{3/2}}$$
 (66)

また正規直交関係式より

$$\int \psi_{\mathbf{k}'}^*(\mathbf{r}, t) \psi_{\mathbf{k}}(\mathbf{r}, t) \, \mathrm{d}\mathbf{r} = \delta_{\mathbf{k}\mathbf{k}'}$$
(67)

一辺の長さが無限大の箱を考えるときディラックのデルタ関数を用いると

$$\lim_{L \to \infty} \int \psi_{\mathbf{k}'}^*(\mathbf{r}, t) \psi_{\mathbf{k}}(\mathbf{r}, t) \, d\mathbf{r} = |C|^2 e^{-i(\omega_{\mathbf{k}} - \omega_{\mathbf{k}'})t} \lim_{L \to \infty} \int e^{i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{r}} \, d\mathbf{r}$$
(68)

$$= |C|^{2} e^{-i(\omega_{\mathbf{k}} - \omega_{\mathbf{k}'})t} \prod_{i=x,y,z} \lim_{L \to \infty} \int_{-L/2}^{L/2} e^{i(k_{i} - k'_{i})r_{i}} dr_{i}$$
 (69)

$$= |C|^2 e^{-i(\omega_{\mathbf{k}} - \omega_{\mathbf{k}'})t} \prod_{i=x,y,z} \lim_{L \to \infty} \frac{e^{i(k_i - k_i')L/2} - e^{-i(k_i - k_i')L/2}}{i(k_i - k_i')}$$
(70)

$$= |C|^{2} e^{-i(\omega_{\mathbf{k}} - \omega_{\mathbf{k}'})t} \prod_{i=x,y,z} 2\pi \lim_{L \to \infty} \frac{\sin((k_{i} - k'_{i})L/2)}{\pi(k_{i} - k'_{i})}$$
(71)

$$= |C|^2 e^{-i(\omega_{\mathbf{k}} - \omega_{\mathbf{k}'})t} \prod_{i=x,y,z} 2\pi \delta(k_i - k_i')$$

$$\tag{72}$$

$$= |C|^2 e^{-i(\omega_{\mathbf{k}} - \omega_{\mathbf{k}'})t} (2\pi)^3 \delta(\mathbf{k} - \mathbf{k}')$$
(73)

$$= e^{-i(\omega_{\mathbf{k}} - \omega_{\mathbf{k}'})t} \delta(\mathbf{k} - \mathbf{k}') \qquad \left(: |C| = \frac{1}{(2\pi)^{3/2}} \right)$$
 (74)

$$=\delta(\mathbf{k}-\mathbf{k}')\tag{75}$$

2.3 剛体壁ポテンシャル

命題 8.

中心から距離 L 以降には粒子が入れないような 1 次元ポテンシャルを考える。

$$V(x) = \begin{cases} +\infty & (|x| > L) \\ 0 & (|x| < L) \end{cases}$$

$$(76)$$

このとき固有関数、固有エネルギーは次のようになる。

$$\varphi_n(x) = \begin{cases} \frac{1}{\sqrt{L}} \cos\left(\frac{n\pi}{2L}x\right) & (n = 1, 3, 5, \dots) \\ \frac{1}{\sqrt{L}} \sin\left(\frac{n\pi}{2L}x\right) & (n = 2, 4, 6, \dots) \end{cases}$$
(77)

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{2L}\right)^2 \tag{78}$$

 \Diamond

証明

|x|>L においてポテンシャルの深さが無限大となるので粒子は侵入出来ない為に波動関数はゼロとなる。また |x|< L においては次の微分方程式となる。

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\varphi(x) = E\varphi(x) \qquad (|x| < L)$$
 (79)

これより波動関数の解は次のようになる。

$$\varphi(x) = \begin{cases} 0 & (|x| > L) \\ Ae^{ikx} + Be^{-ikx} & (|x| < L) \end{cases}$$

$$\tag{80}$$

$$E = \frac{\hbar^2 k^2}{2m} > 0 \tag{81}$$

波動関数は連続的につながっていなければならないので

$$\varphi(\pm L) = 0 \iff \begin{cases} Ae^{ikL} + Be^{-ikL} = 0\\ Ae^{-ikL} + Be^{ikL} = 0 \end{cases}$$
(82)

$$\iff \begin{cases} Ae^{2ikL} + B = 0\\ Ae^{-2ikL} + B = 0 \end{cases}$$
(83)

$$\iff \begin{cases} Ae^{2ikL} + B = 0\\ Ae^{-2ikL} - Ae^{2ikL} = 0 \end{cases}$$
(84)

$$\iff \begin{cases} B = -Ae^{2ikL} \\ A(e^{4ikL} - 1) = 0 \end{cases}$$
 (85)

ここで A = B = 0 となる解は意味を成さないので排除すると次のように k が離散化される。

$$e^{4ikL} = 1 \iff k = \frac{n\pi}{2L} \qquad (n = 1, 2, \cdots)$$
 (86)

これより波動関数は次のようになる。

$$B = -Ae^{in\pi} = \begin{cases} +A & (n = 1, 3, 5, ...) \\ -A & (n = 2, 4, 6, ...) \end{cases}$$
(87)

$$\varphi_n(x) = Ae^{i\frac{n\pi}{2L}x} + Be^{-i\frac{n\pi}{2L}x} = \begin{cases} 2A\cos\left(\frac{n\pi}{2L}x\right) & (n = 1, 3, 5, ...) \\ 2Ai\sin\left(\frac{n\pi}{2L}x\right) & (n = 2, 4, 6, ...) \end{cases}$$
(88)

最後に A を規格化条件

$$\int_{-\infty}^{\infty} |\varphi_n(x)|^2 = \int_{-L}^{L} |\varphi_n(x)|^2 = (2A)^2 L = 1$$
 (89)

より決定すると、固有関数とエネルギー固有値は

$$\varphi_n(x) = \begin{cases} \frac{1}{\sqrt{L}} \cos\left(\frac{n\pi}{2L}x\right) & (n = 1, 3, 5, \dots) \\ \frac{1}{\sqrt{L}} \sin\left(\frac{n\pi}{2L}x\right) & (n = 2, 4, 6, \dots) \end{cases}$$
(90)

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{2L}\right)^2 \tag{91}$$

のように離散化される。

2.4 井戸型ポテンシャル

命題 9.

$$V(x) = \begin{cases} V_0 & (|x| < L) \\ 0 & (|x| > L) \end{cases}$$
 (92)

$$V_0 < E < 0$$
 のとき

証明

空間反転対称性より偶関数と奇関数 $\varphi_+(x), \varphi_-(x)$ としてよい。

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\varphi_{\pm}(x) = (E - V_0)\varphi_{\pm}(x) \qquad (|x| < L)$$
(93)

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\varphi_{\pm}(x) = E\varphi_{\pm}(x) \qquad (|x| > L)$$
 (94)

まず $V_0 < E < 0$ となる場合を考える。

$$\varphi_{\pm}(x) = \begin{cases} Ae^{ikx} + Be^{-ikx} & (|x| < L) \\ C_{\pm}e^{\kappa(x-L)} + D_{\pm}e^{-\kappa(x-L)} & (|x| > L) \end{cases}$$

$$(95)$$

$$E - V_0 = \frac{\hbar^2 k^2}{2m} > 0, \qquad E = -\frac{\hbar^2 \kappa^2}{2m} < 0$$
 (96)

|x| < L において偶奇性より

$$\begin{cases} \varphi_{+}(x) = A_{+} \cos(kx) \\ \varphi_{-}(x) = A_{-} \sin(kx) \end{cases}$$

$$(97)$$

境界における波動関数とその微分係数の連続性を要請すると

$$\begin{cases}
\varphi_{+}(L) = A_{+}\cos(kL) = C_{+} + D_{+} \\
\varphi_{-}(L) = A_{-}\sin(kL) = C_{-} + D_{-} \\
\varphi'_{+}(L) = -A_{+}k\sin(kL) = C_{+}\kappa - D_{+}\kappa \\
\varphi'_{-}(L) = A_{-}k\cos(kL) = C_{+}\kappa - D_{+}\kappa
\end{cases}
\iff
\begin{cases}
2C_{+} = A_{+}\cos(kL) - A_{+}\frac{k}{\kappa}\sin(kL) \\
2D_{+} = A_{+}\cos(kL) + A_{+}\frac{k}{\kappa}\sin(kL) \\
2C_{-} = A_{-}\sin(kL) + A_{-}\frac{k}{\kappa}\cos(kL) \\
2D_{-} = A_{-}\sin(kL) - A_{-}\frac{k}{\kappa}\cos(kL)
\end{cases}$$
(98)

2.5 1次元調和振動子

命題 10.

ポテンシャルが質点の遠心力を仕事とした調和振動子とする。

$$V(x) = \frac{1}{2}m\omega^2 x^2 \tag{99}$$

固有関数と固有エネルギーは次のようになる。

$$\psi_n(x) = \sqrt{\frac{1}{2^n n! \sqrt{\pi}}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{m\omega x^2}{2\hbar}}$$
(100)

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right) \tag{101}$$

 \Diamond

証明

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 \tag{102}$$

 $\xi = \sqrt{m\omega/\hbar}x$ とおくと

$$H\psi(x) = \left(-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}m\omega^2 x^2\right)\psi(x)$$
 (103)

$$= \frac{\hbar\omega}{2} \left(-\frac{\mathrm{d}^2}{\mathrm{d}\xi^2} + \xi^2 \right) \psi(\xi) \tag{104}$$

より $\epsilon = 2E/\hbar\omega$ とおくと

$$\psi'' + \left(\epsilon - \xi^2\right)\psi(\xi) = 0 \tag{105}$$

となる。この解は $\psi(\xi)=X(\xi)e^{\pm\frac{\xi^2}{2}}$ と予測されるのでこれを微分方程式に代入とすると

$$X'' \pm 2\xi X' + (\epsilon \pm 1)X = 0 \tag{106}$$

よりこの微分方程式の解 $X(\xi)$ はエルミート多項式の定数倍 $cH_n(\xi)$ となる。このとき無限大で発散する $\psi(\xi)=X(\xi)e^{\frac{\xi^2}{2}}$ は不適。// TODO なぜ + の場合を排除できるのかを明確に記す。これより $\psi_n(\xi)=cH_n(\xi)e^{-\frac{\xi^2}{2}}$ となる。規格化条件を考えると

$$\int_{\mathbb{R}} \psi_m^* \psi_n \, d\xi = c^2 \int_{\mathbb{R}} \left(H_m(\xi) e^{-\frac{\xi^2}{2}} \right)^* H_n(\xi) e^{-\frac{\xi^2}{2}} \, d\xi \tag{107}$$

$$= c^2 \int_{\mathbb{D}} H_m(\xi) H_n(\xi) e^{-\xi^2} d\xi$$
 (108)

$$=2^n n! \sqrt{\pi} c^2 \delta_{m,n} \tag{109}$$

$$=\delta_{m,n} \tag{110}$$

よって次のようになる。

$$\psi_n(\xi) = \sqrt{\frac{1}{2^n n! \sqrt{\pi}}} H_n(\xi) e^{-\frac{\xi^2}{2}}$$
(111)

$$\psi_n(x) = \sqrt{\frac{1}{2^n n! \sqrt{\pi}}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{m\omega x^2}{2\hbar}}$$
(112)

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right) \tag{113}$$

定義.

上昇演算子 \hat{a}^{\dagger} , 下降演算子 \hat{a} , 数演算子 \hat{N} を次のように定義する。

$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi} \right) \qquad \qquad \hat{a} = \frac{1}{\sqrt{2}} \left(\xi + \frac{\mathrm{d}}{\mathrm{d}\xi} \right) \qquad \qquad \hat{N} = \hat{a}^{\dagger} \hat{a} \qquad (114)$$

命題 11.

上昇・下降演算子により

$$\hat{a}^{\dagger}\psi_n(\xi) = \sqrt{n+1}\psi_{n+1}(\xi) \tag{115}$$

$$\hat{a}\psi_n(\xi) = \sqrt{n}\psi_{n-1}(\xi) \tag{116}$$

$$\hat{N}\psi_n(\xi) = n\psi_n(\xi) \tag{117}$$

 \Diamond

証明

これらを波動関数に掛けると

$$\hat{a}^{\dagger}\psi_{n}(\xi) = \frac{1}{\sqrt{2}} \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi}\right) \left(\sqrt{\frac{1}{2^{n} n! \sqrt{\pi}}} H_{n}(\xi) e^{-\frac{\xi^{2}}{2}}\right)$$
(118)

$$= \sqrt{\frac{n+1}{2^{n+1}(n+1)!\sqrt{\pi}}} (\xi H_n(\xi) - (H'_n(\xi) - \xi H_n(\xi)))$$
 (119)

$$=\sqrt{n+1}\psi_{n+1}(\xi)\tag{120}$$

$$\hat{a}\psi_n(\xi) = \frac{1}{\sqrt{2}} \left(\xi + \frac{\mathrm{d}}{\mathrm{d}\xi}\right) \left(\sqrt{\frac{1}{2^n n! \sqrt{\pi}}} H_n(\xi) e^{-\frac{\xi^2}{2}}\right)$$
(121)

$$= \sqrt{\frac{1}{2^{n-1}(n-1)!\sqrt{\pi}}} \frac{1}{2\sqrt{n}} (\xi H_n(\xi) + (H'_n(\xi) - \xi H_n(\xi)))$$
 (122)

$$=\sqrt{n}\psi_{n-1}(\xi)\tag{123}$$

$$\hat{N}\psi_n(\xi) = n\psi_n(\xi) \tag{124}$$

となる。

命題 12.

 $[\hat{a}, \hat{a}^{\dagger}] = 1 \tag{125}$

$$[\hat{N}, \hat{a}] = -\hat{a}^{\dagger} \tag{126}$$

$$[\hat{N}, \hat{a}^{\dagger}] = \hat{a} \tag{127}$$

$$\hat{H} = \hbar\omega \left(\hat{N} + \frac{1}{2}\right) \tag{128}$$

 \Diamond

証明

$$[\hat{a}, \hat{a}^{\dagger}] = \hat{a}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a} \tag{129}$$

$$= \frac{1}{2} \left(\left(\xi + \frac{\mathrm{d}}{\mathrm{d}\xi} \right) \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi} \right) - \left(\xi - \frac{\mathrm{d}}{\mathrm{d}\xi} \right) \left(\xi + \frac{\mathrm{d}}{\mathrm{d}\xi} \right) \right) \tag{130}$$

$$= \frac{1}{2} \left(\left(\xi^2 + 1 - \frac{\mathrm{d}^2}{\mathrm{d}\xi^2} \right) - \left(\xi^2 - 1 - \frac{\mathrm{d}^2}{\mathrm{d}\xi^2} \right) \right) \tag{131}$$

$$=1 \tag{132}$$

$$[\hat{N}, \hat{a}] = [\hat{a}^{\dagger} \hat{a}, \hat{a}] = \tag{133}$$

$$[\hat{N}, \hat{a}^{\dagger}] = \hat{a} \tag{134}$$

(135)

2.6 3次元調和振動子

命題 13.

3次元等方調和振動子について

$$\hat{H} = \frac{\hat{\boldsymbol{p}}}{2m} + \frac{1}{2}m\omega^2 \boldsymbol{r}^2 \tag{136}$$

固有関数、固有エネルギーは次のようになる。

$$\psi_{n_1, n_2, n_3}(\mathbf{r}) = \prod_{i=1}^{3} \sqrt{\frac{1}{2^{n_i} n_i! \sqrt{\pi}}} H_{n_i} \left(\sqrt{\frac{m\omega}{\hbar}} r_i \right) e^{-\frac{m\omega r_i^2}{2\hbar}}$$
(137)

$$E_{n_1, n_2, n_3} = \sum_{i=1}^{3} \hbar \omega \left(n_i + \frac{1}{2} \right) \tag{138}$$

 \Diamond

証明

波動関数を $\psi(\mathbf{r})=X_1(r_1)X_2(r_2)X_3(r_3)$ と変数分離すると 1 次元調和振動子と同様に解ける。

$$E_i X_i(r_i) = \left(\frac{\hat{p}_i^2}{2m} + \frac{1}{2}m\omega^2 r_i^2\right) X_i(r_i)$$
 (139)

$$X_i(r_i) = \sqrt{\frac{1}{2^{n_i} n_i! \sqrt{\pi}}} H_{n_i}(\xi_i) e^{-\frac{\xi_i^2}{2}} \qquad \left(\xi_i = \sqrt{\frac{m\omega}{\hbar}} r_i\right)$$
 (140)

$$E_i = \hbar\omega \left(n_i + \frac{1}{2}\right) \tag{141}$$

より

$$\psi_{n_1,n_2,n_3}(r_1,r_2,r_3) = \prod_{i=1}^{3} \sqrt{\frac{1}{2^{n_i} n_i! \sqrt{\pi}}} H_{n_i}(\xi_i) e^{-\frac{\xi_i^2}{2}}$$
(142)

$$E_{n_1, n_2, n_3} = \sum_{i=1}^{3} \hbar \omega \left(n_i + \frac{3}{2} \right)$$
 (143)

となる。

2.7 2次元中心カポテンシャル

命題 14.

2次元中心力ポテンシャルのとき、波動関数は $\psi(r,\theta)=R(r)e^{i\mu\theta}$ として R(r) は次の微分方程式を満たす関数である。

$$R'' + \frac{1}{r}R' - \left(\frac{2m(V(r) - E)}{\hbar^2} + \mu^2\right)R = 0$$
 (144)

 \Diamond

証明

極座標

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V(r) \tag{145}$$

$$= -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) + V(r)$$
 (146)

$$0 = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + \frac{2m(E - V(r))}{\hbar^2}\right)\psi(r, \theta)$$
 (147)

波動関数を $\psi(r,\theta)=R(r)\Theta(\theta)$ と変数分離する。

$$\frac{R''}{R} + \frac{1}{r}\frac{R'}{R} + \frac{1}{r^2}\frac{\Theta''}{\Theta} + \frac{2m(E - V(r))}{\hbar^2} = 0$$
 (148)

依存する変数を分けることで定数 μ を用いて次のようになる。

$$\begin{cases} R'' + \frac{1}{r}R' + \frac{2m(E - V(r))}{\hbar^2}R = \mu^2 R \\ \Theta'' = -\mu^2 \Theta \end{cases}$$
 (149)

 $\Theta(\theta)$ については次のように解ける。

$$\Theta(\theta) = \begin{cases} Ae^{i|\mu|\theta} + Be^{-i|\mu|\theta} & (\mu^2 \neq 0) \\ C\theta + D & (\mu^2 = 0) \end{cases}$$

$$(150)$$

波動関数は連続であるから $\Theta(0)=\Theta(2\pi)$ であり、規格化条件を満たす。 これより C=D=0 となる解は意味を成さず、 $m\in\mathbb{Z}$ となる。

$$\Theta(\theta) = \frac{1}{\sqrt{2\pi}} e^{i\mu\theta} \qquad (\mu \in \mathbb{Z})$$
 (151)

よって波動関数は $\psi(r,\theta)=R(r)e^{i\mu\theta}$ として R(r) は次の微分方程式を満たす関数である。

$$R'' + \frac{1}{r}R' + \left(\frac{2m(E - V(r))}{\hbar^2} - \mu^2\right)R = 0$$
 (152)

2.8 2次元等方調和振動子

命題 15.

2次元等方調和振動子のポテンシャルにおいて固有関数と固有エネルギーは次のようになる。

$$\psi(\rho,\theta) = \rho^{|\mu|} e^{-\frac{\rho^2}{2}} L_n^{|\mu|}(\rho) e^{i\mu\theta}$$
(153)

$$E_{n,\mu} = \tag{154}$$

 \Diamond

証明

極座標で2次元等方調和振動子を考える。まず r を無次元化すると

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + \frac{1}{2}m\omega^2 r^2 \tag{155}$$

$$= -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) + \frac{1}{2} m \omega^2 r^2$$
 (156)

$$= -\frac{\hbar\omega}{2} \left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \theta^2} - \rho^2 \right) \qquad \left(\rho = \sqrt{\frac{m\omega}{\hbar}} r \right)$$
 (157)

波動関数を $\psi(\rho,\theta) = R(\rho)e^{i\mu\theta}$ と変数分離する。

$$R'' + \frac{1}{\rho}R' + \left(\frac{2E}{\hbar\omega} - \rho^2 - \frac{\mu^2}{\rho^2}\right)R = 0$$
 (158)

ho o 0 のとき $R(
ho) =
ho^s$ とおくと $R(
ho) =
ho^{|\mu|}$ が適する。

$$\rho^2 R'' + \rho R' - \mu^2 R = 0 \qquad (\rho \to 0) \tag{159}$$

$$\rho^2 s(s-1)\rho^{s-2} + \rho s \rho^{s-1} - \mu^2 \rho^s = 0 \tag{160}$$

$$(s^2 - \mu^2)\rho^s = 0 (161)$$

 $ho
ightarrow \infty$ のとき $R = e^{-rac{
ho^2}{2}}$ が適する。

$$\rho R'' + R' - \rho^3 R = 0 \qquad (\rho \to \infty) \tag{162}$$

$$\rho(-1+\rho^2)e^{-\frac{\rho^2}{2}} - \rho e^{-\frac{\rho^2}{2}} - \rho^3 e^{-\frac{\rho^2}{2}} = 0$$
(163)

この結果を用いて微分方程式に代入するとそれらはラゲールの陪関数によって補完されることが分かる。

$$R(\rho) = \rho^{|\mu|} e^{-\frac{\rho^2}{2}} L_n^{|\mu|}(\rho) \qquad (|\mu| \le n \in \mathbb{Z})$$
 (164)

$$\psi(\rho, \theta) = \rho^{|\mu|} e^{-\frac{\rho^2}{2}} L_n^{|\mu|}(\rho) e^{i\mu\theta}$$
(165)

$$E_{n,\mu} = \tag{166}$$

2.9 3 次元中心力 (球対称) ポテンシャル

命題 16.

3次元中心力ポテンシャルのとき、波動関数は $\psi_{lm}(r,\theta,\phi)=r\chi_l(r)\Theta_{lm}(\theta)e^{im\phi}$ となり、 $\Theta_{lm}(\theta)$ は次のようになり、 $\chi_l(r)$ は次の微分方程式を満たす。 $l,m\in\mathbb{Z}$

$$\Theta_{lm}(\theta) = (-1)^{\frac{m+|m|}{2}} \sqrt{\left(l + \frac{1}{2}\right) \frac{(l-|m|)!}{(l+|m|)!}} P_l^{|m|}(\cos \theta)$$
 (167)

$$-\frac{\hbar^2}{2\mu r}\frac{d^2}{dr^2}\chi_l(r) + \left(V(r) + \frac{l(l+1)\hbar^2}{2\mu r^2}\right)\chi_l(r) = E\chi_l(r)$$
 (168)

 \Diamond

証明

動径方向のみに依存するポテンシャルV(r)を考える。

$$\hat{H} = -\frac{\hbar^2}{2\mu} \nabla^2 + V(r) \tag{169}$$

$$= -\frac{\hbar^2}{2\mu} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) + V(r)$$
 (170)

$$0 = \left(\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r}\right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta}\right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{2\mu r^2 (E - V(r))}{\hbar^2}\right) \psi(r, \theta, \phi)$$
(171)

と書ける。波動関数 $\psi(r,\theta,\phi)$ を $\psi(r,\theta,\phi)=R(r)Y(\theta,\phi)$ と変数分離すると定数 λ を用いて

$$\begin{cases}
\left(\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{2\mu r^2(E - V(r))}{\hbar^2}\right)R(r) = \lambda R(r) \\
\left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right)Y(\theta,\phi) = -\lambda Y(\theta,\phi)
\end{cases}$$
(172)

となる。また $Y(\theta,\phi) = \Theta(\theta)\Phi(\phi)$ と変数分離すると定数 m を用いて

$$\begin{cases}
\left(\sin\theta \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta}\right) + \lambda \sin^2\theta\right) \Theta(\theta) = m^2 \Theta(\theta) \\
\frac{d^2 \Phi(\phi)}{d\phi^2} = -m^2 \Phi(\phi)
\end{cases}$$
(173)

となる。よって次の3式を解けばよい。

$$\left(\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}}{\mathrm{d}r}\right) + \frac{2\mu r^2(E - V(r))}{\hbar^2}\right)R(r) = \lambda R(r)$$
(174)

$$\left(\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta}\right) + \lambda\sin^2\theta\right)\Theta(\theta) = m^2\Theta(\theta)$$
(175)

$$\frac{\mathrm{d}^2\Phi(\phi)}{\mathrm{d}\phi^2} = -m^2\Phi(\phi) \tag{176}$$

まず $\Phi(\phi)$ の一般解は次のようになる。

$$\frac{\mathrm{d}^2\Phi(\phi)}{\mathrm{d}\phi^2} + m^2\Phi(\phi) = 0 \tag{177}$$

$$\Phi(\phi) = \begin{cases}
Ae^{i|m|\phi} + Be^{-i|m|\phi} & (m^2 \neq 0) \\
C\phi + D & (m^2 = 0)
\end{cases}$$
(178)

波動関数は連続であるから $\Phi(0)=\Phi(2\pi)$ であり、規格化条件を満たす。C=D=0 となる解は意味を成さず、 $m\in\mathbb{Z}$ となる。 L_z の固有関数となることから

$$\Phi(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi} \qquad (m \in \mathbb{Z})$$
 (179)

となる。次に $\Theta(\theta)$ について解く。 $z = \cos \theta$ とおくと、

$$\left(\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta}\right) + \lambda\sin^2\theta\right)\Theta(\theta) = m^2\Theta(\theta)$$
(180)

$$\frac{\mathrm{d}}{\mathrm{d}z}\left((1-z^2)\frac{\mathrm{d}\Theta}{\mathrm{d}z}\right) + \left(\lambda - \frac{m^2}{1-z^2}\right)\Theta(z) = 0 \tag{181}$$

となる。m=0 において $\Theta(z)$ はルジャンドルの微分方程式を満たす。 $\Theta(z)$ をべき展開することで

$$(1-z^2)\Theta'' - 2z\Theta' + \lambda\Theta = 0, \qquad \Theta(z) = \sum_{k=0}^{\infty} a_k z^k$$
(182)

$$(1-z^2)\sum_{k=2}^{\infty}k(k-1)a_kz^{k-2} - 2z\sum_{k=1}^{\infty}ka_kz^{k-1} + \lambda\sum_{k=0}^{\infty}a_kz^k = 0$$
(183)

$$\sum_{k=0}^{\infty} ((k+1)(k+2)a_{k+2} + (\lambda - k(k+1))a_k)z^k + \mathcal{O}(z) = 0$$
(184)

$$a_{k+2} = \frac{k(k+1) - \lambda}{(k+2)(k+1)} a_k \tag{185}$$

となる。よって z について一般に発散しない為には $\lambda=l(l+1)$ $(l\in\mathbb{Z}_{>0})$ とならければならない。すると $m\neq 0$ のときはルジャンドルの陪微分方程式となる。これよりルジャンドルの陪関数 $P_l^m(z)$ と規格化条件から

$$\Theta_{lm}(\theta) = (-1)^{\frac{m+|m|}{2}} \sqrt{\left(l + \frac{1}{2}\right) \frac{(l-|m|)!}{(l+|m|)!}} P_l^{|m|}(\cos \theta)$$
(186)

$$P_l^m(z) = (1 - z^2)^{\frac{m}{2}} \frac{\mathrm{d}^m P_l(z)}{\mathrm{d}z^m}$$
(187)

$$P_l(z) = \frac{1}{2^l} \frac{d^l}{dz^l} (z^2 - 1)^l$$
 (188)

と書けるらしい。また $R_l(r)$ については $R_l(r) = \frac{\chi_l(r)}{r}$ とおくと

$$-\frac{\hbar^2}{2\mu r}\frac{d^2}{dr^2}\chi_l(r) + \left(V(r) + \frac{l(l+1)\hbar^2}{2\mu r^2}\right)\chi_l(r) = E\chi_l(r)$$
(189)

$$-\frac{\hbar^2}{2\mu r}\frac{d^2}{dr^2}\chi_l(r) + V_{\text{eff}}(r)\chi_l(r) = E\chi_l(r) \qquad \left(V_{\text{eff}}(r) = V(r) + \frac{l(l+1)\hbar^2}{2\mu r^2}\right)$$
(190)

となり, 1 次元のシュレーディンガー方程式に帰着する。

2.10 自由な 3 次元系

命題 17.

ポテンシャルが球対称に無いとき

$$V(r) = 0 (191)$$

球ベッセル関数 $j_l(\xi)$ と球ノイマン関数 $n_l(\xi)$ の線形結合で書かれる。

$$R_l(\xi) = \alpha j_l(\xi) + \beta n_l(\xi) \tag{192}$$

 \Diamond

証明

動径方向のシュレーディンガー方程式について $k^2=\frac{2\mu E}{\hbar^2}, \xi=kr$ とすると

$$\frac{\mathrm{d}^2}{\mathrm{d}r^2} R_l(r) + \frac{2}{r} \frac{\mathrm{d}}{\mathrm{d}r} R_l(r) + \left(\frac{2\mu E}{\hbar^2} - \frac{l(l+1)}{r^2}\right) R_l(r) = 0$$
(193)

$$\frac{\mathrm{d}^2}{\mathrm{d}\xi^2} R_l(\xi) + \frac{2}{\xi} \frac{\mathrm{d}}{\mathrm{d}\xi} R_l(\xi) + \left(1 - \frac{l(l+1)}{\xi^2}\right) R_l(\xi) = 0$$
(194)

となり、一般解は球ベッセル関数 $j_l(\xi)$ と球ノイマン関数 $n_l(\xi)$ の線形結合で書かれる。

$$R_l(\xi) = \alpha j_l(\xi) + \beta n_l(\xi) \tag{195}$$

球ノイマン関数は原点に極を持つので大体の場合排除される。

例えば球面波のとき $\psi_{lm}(r,\theta,\phi) = j_l(kr)Y_l^m(\theta,\phi)$ となる。

平面波のとき $\psi_{lm}(r,\theta,\phi)=e^{i{m k}\cdot{m r}}$ となる。特に z 方向のとき次のようになるらしい。

$$e^{i\mathbf{k}\cdot\mathbf{z}} = e^{ikr\cos\theta} = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\cos\theta)$$
(196)

2.11 球対称剛体壁ポテンシャル

命題 18.

次のようなポテンシャルのとき

$$V(r) = \begin{cases} 0 & (0 \le r \le L) \\ \infty & (L < r) \end{cases}$$
 (197)

固有関数と固有エネルギーは次のようになる。

$$\psi_{nlm}(r,\theta,\phi) = C_{nl}j_l(\xi_{nl})Y_l^m(\theta,\phi) \tag{198}$$

$$E_{ln} = \frac{\hbar^2}{2\mu L^2} \xi_{ln}^2 \tag{199}$$

 \Diamond

証明

これは境界条件 $R_{nl}(L)=0$ から ξ_{nl} を定めて となる。

$$\psi_{nlm}(r,\theta,\phi) = C_{nl}j_l(\xi_{nl})Y_l^m(\theta,\phi)$$
(200)

$$E_{ln} = \frac{\hbar^2}{2\mu L^2} \xi_{ln}^2 \tag{201}$$

2.12 3次元等方調和振動子

命題 19.

$$V(r) = \frac{1}{2}\mu\omega^2 r^2 \tag{202}$$

$$R_l(x) = x^{l/2} e^{-x/2} S_n^{\alpha}(x) \tag{203}$$

 \Diamond

証明

まず無次元化するために $\rho = \sqrt{\frac{\mu\omega}{\hbar}}r$ とおくと

$$\frac{\mathrm{d}^2}{\mathrm{d}r^2} R_l(r) + \frac{2}{r} \frac{\mathrm{d}}{\mathrm{d}r} R_l(r) + \frac{2\mu}{\hbar^2} \left(E + \frac{1}{2}\mu\omega^2 r^2 - \frac{l(l+1)\hbar^2}{2\mu r^2} \right) R_l(r) = 0$$
(204)

$$\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} R_l(\rho) + \frac{2}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} R_l(\rho) + \left(\lambda + \rho^2 - \frac{l(l+1)}{\rho^2}\right) R_l(\rho) = 0 \qquad \left(\lambda = \frac{2E}{\hbar\omega}\right) \tag{205}$$

となる。 $x = \rho^2$ と変数変換すると

$$x\frac{d^2}{dx^2}R_l(x) + \frac{3}{2}\frac{d}{dx}R_l(x) + \frac{1}{4}\left(\lambda + x - \frac{l(l+1)}{x}\right)R_l(x) = 0$$
 (206)

となり, 級数展開法より $\rho\to\infty$ で発散しない為には n を非負整数として $\lambda=4n+2l+3$ となる。 $\rho\to\infty$, $\rho\to0$ のときの漸近解はそれぞれ $e^{-x/2}$, $x^{l/2}$ となるので $R_l(x)=x^{l/2}e^{-x/2}S_n^\alpha(x)$ と分離すると

$$x\frac{\mathrm{d}^2}{\mathrm{d}x^2}S_n^\alpha + (\alpha + 1 - x)\frac{\mathrm{d}}{\mathrm{d}x}S_n^\alpha + nS_n^\alpha = 0$$
 (207)

ソニンの多項式となるので解はラゲールの陪関数を用いて L_{n+lpha}^{lpha} と書ける。

2.13 水素原子

命題 20.

$$V(r) = -\frac{e^2}{4\pi\epsilon_0 r} \tag{208}$$

固有関数と固有エネルギーは次のようになる。

$$R_{nl}(\rho) = \left(\frac{2}{na_0}\right)^{3/2} \sqrt{\frac{(n-l-1)!}{2n((n+l)!)^3}} \rho^l e^{-\rho/2} L_{n+l}^{2l+1}(\rho)$$
 (209)

$$E_n = -\frac{e^2}{8\pi\epsilon_0 a_B} \frac{1}{n^2} \tag{210}$$

 \Diamond

証明

まず無次元化するために $\rho=\alpha r,\, \alpha=2\sqrt{rac{2\mu|E|}{\hbar^2}}$ とすると

$$\frac{\mathrm{d}^2}{\mathrm{d}r^2} R_l(r) + \frac{2}{r} \frac{\mathrm{d}}{\mathrm{d}r} R_l(r) + \frac{2\mu}{\hbar^2} \left(E + \frac{e^2}{4\pi\epsilon_0 r} - \frac{l(l+1)\hbar^2}{2\mu r^2} \right) R_l(r) = 0$$
(211)

$$\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} R_l(\rho) + \frac{2}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} R_l(\rho) + \left(\frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2}\right) R_l(\rho) = 0 \qquad \left(\lambda = \frac{e^2}{8\pi\epsilon_0 E} \sqrt{\frac{2\mu|E|}{\hbar^2}}\right)$$
(212)

 $ho o \infty,\,
ho o 0$ のときの漸近解はそれぞれ $e^{ho/2},\,
ho^l$ となるので $R_l(
ho)=
ho^l e^{ho/2}L(
ho)$ と分離すると

$$\rho \frac{\mathrm{d}^2 L}{\mathrm{d}\rho^2} + (2l + 2 - \rho) \frac{\mathrm{d}L}{\mathrm{d}\rho} + (\lambda - 1 - l)L = 0$$
 (213)

となりラゲールの陪多項式となる。ここで級数展開法より $r\to\infty$ で発散しない為には非負整数 n を用いて $\lambda=n+l+1$ とかける。これより水素原子のエネルギー準位はボーア半径 a_B を用いて

$$E_n = -\frac{\mu e^4}{2(4\pi\epsilon_0)^2 \hbar^2} \frac{1}{n^2} = -\frac{e^2}{8\pi\epsilon_0 a_B} \frac{1}{n^2} \qquad a_B = \frac{4\pi\epsilon_0 \hbar^2}{\mu e^2}$$
(214)

とかける。よって規格化条件を加えると

$$R_{nl}(\rho) = \left(\frac{2}{na_0}\right)^{3/2} \sqrt{\frac{(n-l-1)!}{2n((n+l)!)^3}} \rho^l e^{-\rho/2} L_{n+l}^{2l+1}(\rho)$$
 (215)

となり $0 \le l < n$ を満たす。

2.14 電磁場中の荷電粒子

スカラーポテンシャル ϕ , ベクトルポテンシャル \boldsymbol{A} の中での電荷 e を持つ粒子の運動は次の置き換えで記述できる。

$$H \mapsto H - e\phi(\mathbf{r}, t)$$
 (216)

$$\boldsymbol{p} \mapsto \boldsymbol{p} - e\boldsymbol{A}(\boldsymbol{r}, t)$$
 (217)

一様な磁場 $m{B}$ の場合、ベクトルポテンシャルは $m{A} = \frac{1}{2} m{B} \times m{r}$ (対称ゲージ) と置くことができるので

$$\frac{1}{2m}(\boldsymbol{p} - e\boldsymbol{A}) = \frac{\boldsymbol{p}^2}{2m} - \frac{e}{2m}\boldsymbol{B} \cdot \boldsymbol{L} + \frac{e^2}{8m}(\boldsymbol{B}^2 \boldsymbol{r}^2 - (\boldsymbol{B} \cdot \boldsymbol{r})^2)$$
(218)

 $\sigma_i \sigma_j = \delta_{ij} + i \epsilon_{ijk} \sigma_k$ となるので

$$H = \frac{(\boldsymbol{\sigma} \cdot \boldsymbol{p})^2}{2m} \tag{219}$$

$$=\frac{(\boldsymbol{\sigma}\cdot\boldsymbol{p}-\boldsymbol{e}\boldsymbol{A})^2}{2m}\tag{220}$$

$$= \frac{1}{2m}(\boldsymbol{p} - \boldsymbol{e}\boldsymbol{A})^2 - 2\frac{e\hbar}{2m}\boldsymbol{B} \cdot \boldsymbol{s} \qquad \left(\boldsymbol{s} = \frac{\boldsymbol{\sigma}}{2}\right)$$
 (221)

となる。ゼーマン相互作用

2.15 摂動論

近似法の一種。有限和で止めるとユニタリティはなくなる。重ね合わせの原理を満たさない。

命題 21.

1 次, 2 次の固有値 $E_n^{(1)}$, $E_n^{(2)}$ と固有状態 $|\phi_n^{(1)}\rangle$, $|\phi_n^{(2)}\rangle$ は定数 $c_n^{(1)}$, $c_n^{(2)}$ を用いて次のようになる。

$$E_n^{(1)} = \langle \phi_n^{(0)} | V | \phi_n^{(0)} \rangle \tag{222}$$

$$|\phi_n^{(1)}\rangle = \sum_{m \neq n} \frac{\langle \phi_m^{(0)} | V | \phi_n^{(0)} \rangle}{E_n^{(0)} - E_m^{(0)}} |\phi_m^{(0)}\rangle + c_n^{(1)} |\phi_n^{(0)}\rangle \tag{223}$$

$$E_n^{(2)} = \sum_{m \neq n} \frac{\left| \langle \phi_m^{(0)} | V | \phi_n^{(0)} \rangle \right|^2}{E_n^{(0)} - E_m^{(0)}}$$
(224)

$$|\phi_{n}^{(2)}\rangle = c_{n}^{(1)} \sum_{m \neq n} \left(\frac{\langle \phi_{m}^{(0)} | V | \phi_{n}^{(0)} \rangle}{E_{n}^{(0)} - E_{m}^{(0)}} - E_{n}^{(1)} \frac{\langle \phi_{m}^{(0)} | V | \phi_{n}^{(0)} \rangle}{\left(E_{n}^{(0)} - E_{m}^{(0)}\right)^{2}} + \sum_{k \neq n} \frac{\langle \phi_{m}^{(0)} | V | \phi_{k}^{(0)} \rangle \langle \phi_{k}^{(0)} | V | \phi_{n}^{(0)} \rangle}{\left(E_{n}^{(0)} - E_{k}^{(0)}\right) \left(E_{n}^{(0)} - E_{k}^{(0)}\right)} \right) |\phi_{m}^{(0)}\rangle + c_{n}^{(2)} |\phi_{n}^{(0)}\rangle$$

$$(225)$$

$$\hat{H}_0 |\phi_n^{(0)}\rangle = E_n^{(0)} |\phi_n^{(0)}\rangle \tag{226}$$

 \Diamond

証明

$$\hat{H} |\phi_n\rangle = E_n |\phi_n\rangle \tag{227}$$

$$\hat{H} = \hat{H}_0 + \lambda V \tag{228}$$

$$|\phi_n\rangle = \sum_{i=0}^{\infty} \lambda^i |\phi_n^{(i)}\rangle \tag{229}$$

$$E_n = \sum_{i=0}^{\infty} \lambda^i E_n^{(i)} \tag{230}$$

$$(H - E_n) |\phi_n\rangle = \left((H_0 + \lambda V) - \left(\sum_{i=0}^{\infty} \lambda^i E_n^{(i)} \right) \right) \left(\sum_{i=0}^{\infty} \lambda^i |\phi_n^{(i)}\rangle \right)$$
(231)

$$= \sum_{i=0}^{\infty} \lambda^{i} \left(\sum_{j+k=i} \left(\delta_{0j} H_{0} + \delta_{1j} V - E_{n}^{(j)} \right) |\phi_{n}^{(k)}\rangle \right) = 0$$
 (232)

これより各 λ の次数について比較して次のようになる。

$$\sum_{j+k=i} \left(\delta_{0j} H_0 + \delta_{1j} V - E_n^{(j)} \right) |\phi_n^{(k)}\rangle = 0$$
 (233)

ここでは 0, 1, 2 次についてのみ考える。

$$\begin{cases}
\left(E_n^{(0)} - H_0\right) |\phi_n^{(0)}\rangle = 0 \\
\left(E_n^{(0)} - H_0\right) |\phi_n^{(1)}\rangle = \left(V - E_n^{(1)}\right) |\phi_n^{(0)}\rangle \\
\left(E_n^{(0)} - H_0\right) |\phi_n^{(2)}\rangle = \left(V - E_n^{(1)}\right) |\phi_n^{(1)}\rangle - E_n^{(2)} |\phi_n^{(0)}\rangle
\end{cases}$$
(234)

まず 0 次については次のように書ける。

$$H_0 |\phi_n^{(0)}\rangle = E_n^{(0)} |\phi_n^{(0)}\rangle$$
 (235)

式 (234) に $\langle \phi_m^{(0)} |$ を掛けると

$$\begin{cases}
\langle \phi_m^{(0)} | \left(E_n^{(0)} - H_0 \right) | \phi_n^{(1)} \rangle = \langle \phi_m^{(0)} | \left(V - E_n^{(1)} \right) | \phi_n^{(0)} \rangle \\
\langle \phi_m^{(0)} | \left(E_n^{(0)} - H_0 \right) | \phi_n^{(2)} \rangle = \langle \phi_m^{(0)} | \left(V - E_n^{(1)} \right) | \phi_n^{(1)} \rangle - \langle \phi_m^{(0)} | E_n^{(2)} | \phi_n^{(0)} \rangle
\end{cases}$$
(236)

$$\begin{cases}
\langle \phi_{m}^{(0)} | \left(E_{n}^{(0)} - H_{0} \right) | \phi_{n}^{(1)} \rangle = \langle \phi_{m}^{(0)} | \left(V - E_{n}^{(1)} \right) | \phi_{n}^{(0)} \rangle \\
\langle \phi_{m}^{(0)} | \left(E_{n}^{(0)} - H_{0} \right) | \phi_{n}^{(2)} \rangle = \langle \phi_{m}^{(0)} | \left(V - E_{n}^{(1)} \right) | \phi_{n}^{(1)} \rangle - \langle \phi_{m}^{(0)} | E_{n}^{(2)} | \phi_{n}^{(0)} \rangle \\
\iff \begin{cases}
\left(E_{n}^{(0)} - E_{m}^{(0)} \right) \langle \phi_{m}^{(0)} \rangle \phi_{n}^{(1)} = \langle \phi_{m}^{(0)} | V | \phi_{n}^{(0)} \rangle - E_{n}^{(1)} \delta_{mn} \\
\left(E_{n}^{(0)} - E_{m}^{(0)} \right) \langle \phi_{m}^{(0)} \rangle \phi_{n}^{(2)} = \langle \phi_{m}^{(0)} | V | \phi_{n}^{(1)} \rangle - E_{n}^{(1)} \langle \phi_{m}^{(0)} \rangle \phi_{n}^{(1)} - E_{n}^{(2)} \delta_{mn}
\end{cases} (237)$$

よって 1 次, 2 次の固有値 $E_n^{(1)}, E_n^{(2)}$ と固有状態 $|\phi_n^{(1)}\rangle, |\phi_n^{(2)}\rangle$ は定数 $c_n^{(1)}, c_n^{(2)}$ を用いて次のようになる。

$$E_n^{(1)} = \langle \phi_n^{(0)} | V | \phi_n^{(0)} \rangle \tag{238}$$

$$|\phi_n^{(1)}\rangle = \sum_{m \neq n} \frac{\langle \phi_m^{(0)} | V | \phi_n^{(0)} \rangle}{E_n^{(0)} - E_m^{(0)}} |\phi_m^{(0)}\rangle + c_n^{(1)} |\phi_n^{(0)}\rangle$$
(239)

$$E_n^{(2)} = \sum_{m \neq n} \frac{\left| \left\langle \phi_m^{(0)} \mid V \mid \phi_n^{(0)} \right\rangle \right|^2}{E_n^{(0)} - E_m^{(0)}}$$
(240)

$$|\phi_{n}^{(2)}\rangle = c_{n}^{(1)} \sum_{m \neq n} \left(\frac{\langle \phi_{m}^{(0)} | V | \phi_{n}^{(0)} \rangle}{E_{n}^{(0)} - E_{m}^{(0)}} - E_{n}^{(1)} \frac{\langle \phi_{m}^{(0)} | V | \phi_{n}^{(0)} \rangle}{\left(E_{n}^{(0)} - E_{m}^{(0)}\right)^{2}} + \sum_{k \neq n} \frac{\langle \phi_{m}^{(0)} | V | \phi_{k}^{(0)} \rangle \langle \phi_{k}^{(0)} | V | \phi_{n}^{(0)} \rangle}{\left(E_{n}^{(0)} - E_{k}^{(0)}\right) \left(E_{n}^{(0)} - E_{k}^{(0)}\right)} \right) |\phi_{m}^{(0)}\rangle + c_{n}^{(2)} |\phi_{n}^{(0)}\rangle$$

$$(241)$$

3 ヒルベルト空間

これからは固有関数を状態として抽象化を行う。

定義.

無限次元の複素ベクトル空間をヒルベルト空間

定義 (ケット空間).

状態ベクトル (state vector) をケット (ket) と呼び $|\alpha\rangle$ と記そう。この状態ケットは物理的状態の完全な情報を含んでいるものと仮定しておく。すなわち状態に関して問われるすべての事項がこのケットの中に含まれているとする。

$$|\alpha\rangle + |\beta\rangle = |\gamma\rangle \tag{242}$$

$$c |\alpha\rangle = |\alpha\rangle c \tag{243}$$

特別な場合として c がゼロのとき掛けてできるケットは零ケット (null ket) といわれる。 物理的要請の 1 つとして $|\alpha\rangle$ と c $|\alpha\rangle$ は同じ状態を表すことにする。 定義 (演算子).

一般に演算子はケットに左から作用し、別のケットになる。

$$A \cdot (|\alpha\rangle) = A \,|\alpha\rangle \tag{244}$$

$$A = B \iff \forall |\alpha\rangle, A |\alpha\rangle = B |\alpha\rangle \tag{245}$$

$$C = A + B \iff \forall |\alpha\rangle, C |\alpha\rangle = (A + B) |\alpha\rangle = A |\alpha\rangle + B |\alpha\rangle \tag{246}$$

一般に $A|\alpha\rangle$ は $|\alpha\rangle$ の定数倍ではない。しかし演算子の固有ケット (eigenkets) と呼ばれ

$$|a'\rangle, |a''\rangle, |a'''\rangle, \dots$$
 (247)

の記号で表される重要な特別のケットがあり、これらは数 $a', a'', \ldots \in \mathbb{C}$ を用いて

$$A|a'\rangle = a'|a'\rangle, A|a''\rangle = a''|a''\rangle, \dots$$
 (248)

という性質を持つ。固有ケットに相応する物理的状態は固有状態 (eigenstate) と呼ばれる。

定義 (ブラ空間).

$$\langle \alpha | := |\alpha\rangle^{\dagger} \tag{249}$$

 $|\alpha\rangle^{\dagger}$ には線形性があり、

$$c_{\alpha}^{*} \langle \alpha | + c_{\beta}^{*} \langle \beta | = (c_{\alpha} | \alpha \rangle + c_{\beta} | \beta \rangle)^{\dagger}$$
(250)

定義.

運動量やスピン成分といった観測可能量 (observable) は扱っているベクトル空間の演算子 (operator) によって表せられる。

内積

4 時間発展のあるシュレーディンガー方程式

$$i\hbar \frac{\partial}{\partial t} |\phi(t)\rangle = \hat{H} |\phi(t)\rangle$$
 (251)

 $\hat{H}\ket{\phi_n}=E_n\ket{\phi_n}$ としたとき, $\ket{\phi_n}$ は完全系をなす。これで展開して代入すると

$$|\phi(t)\rangle = \sum_{n} c_n(t) |\phi_n\rangle$$
 $(c_n(t) = \langle \phi_n \rangle \phi(t))$ (252)

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}c_n(t) = E_n c_n(t) \tag{253}$$

$$c_n(t) = c_n(0) \exp\left(-i\frac{E_n t}{\hbar}\right) \tag{254}$$

$$|\phi(t)\rangle = \sum_{n} c_n(0) \exp\left(-i\frac{E_n t}{\hbar}\right) |\phi_n\rangle$$
 (255)

となる。

4.1 ラーモア歳差運動

$$|\sigma(t)\rangle$$
 (256)

5 角運動量代数

定義.

角運動量演算子 Â を次のように定義する。

$$\hat{\boldsymbol{L}} = \hat{\boldsymbol{r}} \times \hat{\boldsymbol{p}} \tag{257}$$

これは次のように無次元化できる。

$$\hat{\boldsymbol{j}} = \frac{\hat{\boldsymbol{L}}}{\hbar} \tag{258}$$

命題 22.

$$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 \tag{259}$$

$$[\hat{L}_i, \hat{L}_j] = i\hbar \epsilon_{ijk} \hat{L}_k \tag{260}$$

$$[\hat{L}^2, \hat{L}_i] = 0 \tag{261}$$

定義.

 \hat{j} を無次元の演算子として次の交換関係が成り立つとする。

$$[\hat{j}_i, \hat{j}_j] = i\epsilon_{ijk}\hat{j}_k \tag{262}$$

 $[\hat{j}^2,\hat{j}_z]=0$ より \hat{j}^2,\hat{j}_z は固有値 λ,m とする同時固有状態 $|\lambda,m\rangle$ を持つ。上昇演算子 \hat{j}_+ と下降演算子 \hat{j}_- を次のように定義する。

$$\hat{j}_{\pm} = \hat{j}_x \pm i\hat{j}_y \tag{263}$$

命題 23.

$$[\hat{j}^2, \hat{j}_z] = 0, \qquad [\hat{j}_+, \hat{j}_-] = 2\hat{j}_z, \qquad [\hat{j}_z, \hat{j}_\pm] = \pm \hat{j}_\pm, \qquad [\hat{j}^2, \hat{j}_\pm] = 0$$
 (264)

$$\hat{\boldsymbol{j}}^2 = \frac{1}{2}(\hat{j}_+\hat{j}_- + \hat{j}_-\hat{j}_+) + \hat{j}_z^2 = \hat{j}_-\hat{j}_+ + \hat{j}_z + \hat{j}_z^2 = \hat{j}_+\hat{j}_- - \hat{j}_z + \hat{j}_z^2$$
(265)

証明

命題 24.

上昇演算子 \hat{j}_+ を演算させると \hat{j}_z の固有値は 1 つ上昇し、下降演算子 \hat{j}_- を演算させると \hat{j}_z の固有値が 1 つ下降する。

$$\hat{j}_{\pm} |\lambda, m\rangle = |\lambda, m \pm 1\rangle \tag{266}$$

 \Diamond

 \Diamond

 \Diamond

証明

このとき上昇,下降演算子を作用させたとき

$$\hat{\boldsymbol{j}}^{2}(\hat{j}_{\pm}|\lambda,m\rangle) = \hat{j}_{\pm}\hat{\boldsymbol{j}}^{2}|\lambda,m\rangle = \lambda\hat{j}_{\pm}|\lambda,m\rangle \tag{267}$$

$$\hat{j}_z(\hat{j}_{\pm}|\lambda,m\rangle) = (\hat{j}_{\pm}\hat{j}_z \pm \hat{j}_{\pm})|\lambda,m\rangle = (m\pm 1)\hat{j}_{\pm}|\lambda,m\rangle$$
(268)

より
$$\hat{j}_{\pm} |\lambda, m\rangle = |\lambda, m \pm 1\rangle$$
 とかける。

命題 25.

$$\hat{j}_z$$
 の固有値 m の上限と下限は存在する。

証明

$$\langle \lambda, m | \hat{j}^2 | \lambda, m \rangle = \langle \lambda, m | (\hat{j}_x^2 + \hat{j}_y^2 + \hat{j}_z^2) | \lambda, m \rangle$$
 (269)

$$= \langle \lambda, m | \hat{j}_x^2 | \lambda, m \rangle + \langle \lambda, m | \hat{j}_y^2 | \lambda, m \rangle + m^2$$
 (270)

 \Diamond

$$=\lambda \tag{271}$$

 \hat{j}_x,\hat{j}_y はエルミート演算子より $\langle \lambda,m|\,\hat{j}_x^2\,|\lambda,m
angle\geq 0,\,\langle \lambda,m|\,\hat{j}_y^2\,|\lambda,m
angle\geq 0$ であり $0\leq m^2\leq \lambda$ のの題 **26.**

 \hat{j}_z の固有値 m は非負の整数または半整数 j を用いて $m=-j,-j+1,\ldots,j-1,j$ と書ける。

証明

次のような関係式が成り立つ。

$$\langle \lambda, m | \hat{\boldsymbol{j}}^2 | \lambda, m \rangle = \langle \lambda, m | (\hat{j}_- \hat{j}_+ + \hat{j}_z^2 + \hat{j}_z) | \lambda, m \rangle = \langle \lambda, m | \hat{j}_- \hat{j}_+ | \lambda, m \rangle + m^2 + m$$
 (272)

$$= \langle \lambda, m | (\hat{j}_{+} \hat{j}_{-} + \hat{j}_{z}^{2} - \hat{j}_{z}) | \lambda, m \rangle = \langle \lambda, m | \hat{j}_{+} \hat{j}_{-} | \lambda, m \rangle + m^{2} - m$$
 (273)

$$=\lambda \tag{274}$$

これより m の上限値 j と置くと $\lambda=j(j+1)$ となり、下限値 j-n と置くと $\lambda=(j-n)(j-n-1)$ となる。

$$\begin{cases} \lambda = j(j+1) \\ \lambda = (j-n)(j-n-1) \end{cases} \iff \begin{cases} \lambda = j(j+1) \\ j = \frac{n}{2} \end{cases}$$
 (275)

より j は非負の整数または半整数であることがわかる。これより $m=-j,-j+1,\ldots,j-1,j$ である。

定義.

 $|\lambda,m\rangle$ を $|j,m\rangle$ と表現する。

命題 27.

$$\hat{\boldsymbol{j}}^2 |j, m\rangle = j(j+1) |j, m\rangle \tag{276}$$

$$\hat{j}_z |j, m\rangle = m |j, m\rangle \tag{277}$$

$$\hat{j}_{\pm}|j,m\rangle = \sqrt{(j\mp m)(j\pm m+1)}|j,m\pm 1\rangle$$
(278)

 \Diamond

この角運動量が複数あるときについて考える。角運動量の合成とは合成系の角運動量固有状態を部分系の角運動量固有状態で表すことである。角運動量演算子 \hat{j}_1,\hat{j}_2 について

$$\hat{\boldsymbol{j}} = \hat{\boldsymbol{j}}_1 + \hat{\boldsymbol{j}}_2 \tag{279}$$

とおく。このとき

$$[\hat{j}_{a,i},\hat{j}_{b,j}] = i\delta_{ab}\epsilon_{ijk}\hat{j}_{ck} \tag{280}$$

$$[\hat{j}_a, \hat{j}_b] = i\epsilon_{abc}\hat{j}_c \tag{281}$$

$$[\hat{j}^2, \hat{j}_a] = 0 \tag{282}$$

$$[\hat{\boldsymbol{j}}^2, \hat{\boldsymbol{j}}_s] = 0 \tag{283}$$

となる。また状態についても

$$|j,m\rangle\rangle = \sum_{m_1,m_2} C_{j_1m_1j_2m_2}^{jm} |j_1,m_1\rangle |j_2,m_2\rangle$$
 (284)

とおき, 次のようになるとする。

$$\hat{\boldsymbol{j}}^2 |j, m\rangle\rangle = j(j+1) |j, m\rangle\rangle \tag{285}$$

$$\hat{j}_z |j, m\rangle\rangle = m |j, m\rangle\rangle$$
 (286)

$$\hat{j}_{\pm} |j, m\rangle\rangle = \sqrt{(j \mp m)(j \pm m + 1)} |j, m \pm 1\rangle\rangle \tag{287}$$

$$\hat{\boldsymbol{j}}_s |j, m\rangle\rangle = j_s(j_s + 1) |j, m\rangle\rangle \tag{288}$$

この上で

$$\hat{j}_z |j, m\rangle\rangle = (j_{1z} + j_{2z}) \sum_{m_1, m_2} C^{jm}_{j_1 m_1 j_2 m_2} |j_1, m_1\rangle |j_2, m_2\rangle$$
 (289)

$$= \sum_{m_1, m_2} C_{j_1 m_1 j_2 m_2}^{jm}(m_1 + m_2) |j_1, m_1\rangle |j_2, m_2\rangle$$
 (290)

$$= m \sum_{m_1, m_2} C^{jm}_{j_1 m_1 j_2 m_2} |j_1, m_1\rangle |j_2, m_2\rangle$$
 (291)

$$\hat{\boldsymbol{j}}^2 |j, m\rangle\rangle = (j_- j_+ + j_z^2 + j_z) |j, m\rangle\rangle \tag{292}$$

$$= (j_{-}j_{+} + m^{2} + m) |j, m\rangle\rangle \tag{293}$$

$$= j(j+1)|j,m\rangle\rangle \tag{294}$$

より状態の係数比較して $m\neq m_1+m_2$ のとき $C^{jm}_{j_1m_1j_2m_2}=0$ となる。m の最大値 $j_{\max}=j_1+j_2$ である。

$$\sum_{j=j_{\min}}^{j_{\max}} (2j+1) = (2j_1+1)(2j_2+1)$$
(295)

より $j_{\min} = |j_1 - j_2|$ となる。

$$|1,1\rangle\rangle = |\uparrow\uparrow\rangle \tag{296}$$

$$|1,0\rangle\rangle = \frac{1}{\sqrt{2}}j_{-}|1,1\rangle\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$
 (297)

$$|1, -1\rangle\rangle = |\downarrow\downarrow\rangle \tag{298}$$

$$|0,0\rangle\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$
 (299)

定義.

角運動量演算子の固有値は整数だけであったが、スピン演算子は半整数と成り得る。量子力学的粒子にはスピンという内部自由度がある。スピン角運動量演算子 \hat{S} は位置演算子 \hat{r} 、運動量演算子 \hat{p} 、角運動量演算子 \hat{L} と交換する。

$$[\hat{r}_i, \hat{S}_j] = 0, \qquad [\hat{p}_i, \hat{S}_j] = 0, \qquad [\hat{L}_i, \hat{S}_j] = 0$$

$$(300)$$

無次元化されたスピン角運動量演算子 â は次の交換関係を満たす。

$$[\hat{s}_x, \hat{s}_y] = i\hat{s}_z, \qquad [\hat{s}_y, \hat{s}_z] = i\hat{s}_x, \qquad [\hat{s}_z, \hat{s}_x] = i\hat{s}_y$$
 (301)

スピン演算子の 2 乗 \hat{s}^2 や昇降演算子 \hat{s}_{\pm} を次のように定義する。

$$\hat{s}^2 = \hat{s}_x + \hat{s}_y + \hat{s}_z, \qquad \hat{s}_{\pm} = \hat{s}_x \pm i\hat{s}_y \tag{302}$$

命題 28.

$$[\hat{\mathbf{s}}^2, \hat{s}_z] = 0, \qquad [\hat{s}_+, \hat{s}_-] = 2\hat{s}_z, \qquad [\hat{s}_z, \hat{s}_\pm] = \pm \hat{s}_\pm, \qquad [\hat{\mathbf{s}}^2, \hat{s}_\pm] = 0$$
 (303)

$$\hat{\mathbf{s}}^2 = \frac{1}{2}(\hat{s}_+\hat{s}_- + \hat{s}_-\hat{s}_+) + \hat{s}_z^2 = \hat{s}_-\hat{s}_+ + \hat{s}_z + \hat{s}_z^2 = \hat{s}_+\hat{s}_- - \hat{s}_z + \hat{s}_z^2$$
(304)

 \Diamond

命題 29.

スピン s=1/2 では \hat{s}_z の固有状態が 2 つあり、それぞれ固有値 $m_s=\pm 1/2$ を持つ $|\uparrow\rangle,\,|\downarrow\rangle$ とおく。

$$\hat{s}_z |\uparrow\rangle = \frac{1}{2} |\uparrow\rangle, \qquad \hat{s}_z |\downarrow\rangle = -\frac{1}{2} |\downarrow\rangle, \qquad \hat{s}^2 |\uparrow\rangle = \frac{3}{4} |\uparrow\rangle, \qquad \hat{s}^2 |\downarrow\rangle = \frac{3}{4} |\downarrow\rangle$$
 (305)

スピン昇降演算子を用いると固有状態は互いに入れ替わる。

$$\hat{s}_{+} |\uparrow\rangle = 0, \qquad \hat{s}_{+} |\downarrow\rangle = |\uparrow\rangle, \qquad \hat{s}_{-} |\uparrow\rangle = |\downarrow\rangle, \qquad \hat{s}_{-} |\downarrow\rangle = 0$$
 (306)

 \Diamond

定義 (パウリ行列).

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(307)

命題 30.

スピン演算子の表現は次のようになる。

$$|\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad |\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$
 (308)

$$\hat{s}_i = \frac{1}{2}\sigma_i, \qquad \hat{s}_+ = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}, \qquad \hat{s}_- = \begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix}, \qquad \hat{s}^2 = \frac{3}{4} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$
 (309)

6 相対論的量子力学

定理 31.

$$L = \frac{m}{2}\dot{\boldsymbol{r}}^2 - q\phi(t,\boldsymbol{r}) + q\dot{\boldsymbol{r}}\cdot\boldsymbol{A}(t,\boldsymbol{r})$$
(310)

$$m\ddot{\mathbf{r}} = q\mathbf{E}(t, \mathbf{r}) + q\dot{\mathbf{r}} \times \mathbf{B}(t, \mathbf{r})$$
(311)

$$\boldsymbol{p} = m\dot{\boldsymbol{r}} + q\boldsymbol{A}(t, \boldsymbol{r}) \tag{312}$$

$$H = \frac{(\boldsymbol{p} - q\boldsymbol{A}(t, \boldsymbol{r}))^2}{2m} + q\phi(t, \boldsymbol{r})$$
(313)

 \Diamond

 \Diamond

証明

$$\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{r}} \right) - \frac{\partial L}{\partial r} = 0 \tag{314}$$

$$m\ddot{\mathbf{r}} = q\mathbf{E}(t, \mathbf{r}) + q\dot{\mathbf{r}} \times \mathbf{B}(t, \mathbf{r})$$
 (315)

$$\boldsymbol{p} = \frac{\partial L}{\partial \dot{\boldsymbol{r}}} = m\dot{\boldsymbol{r}} + q\boldsymbol{A}(t, \boldsymbol{r}) \tag{316}$$

$$H = \mathbf{p} \cdot \dot{\mathbf{r}} - L = \frac{(\mathbf{p} - q\mathbf{A}(t, \mathbf{r}))^2}{2m} + q\phi(t, \mathbf{r})$$
(317)

 $i\hbar \frac{\partial}{\partial t} \psi(t, \mathbf{r}) = \left(\frac{(\hat{\mathbf{p}} - q\mathbf{A}(t, \mathbf{r}))^2}{2m} + q\phi(t, \mathbf{r}) \right) \psi(t, \mathbf{r})$ (318)

$$\left(i\hbar\frac{\partial}{\partial t} - q\phi(t, \mathbf{r})\right)\psi(t, \mathbf{r}) = \frac{(-i\hbar\nabla - q\mathbf{A}(t, \mathbf{r}))^2}{2m}$$
(319)

$$i\hbar \frac{\partial}{\partial t} \to i\hbar \frac{\partial}{\partial t} - q\phi(t, \mathbf{r})$$
 (320)

$$-i\hbar \nabla \to -i\hbar \nabla - q\mathbf{A}(t, \mathbf{r}) \tag{321}$$

定理 32.

$$\frac{\partial \rho(t, \mathbf{r})}{\partial t} + \nabla \cdot \mathbf{j}(t, \mathbf{r}) = 0$$
(322)

 \Diamond

証明

$$i\hbar \frac{\partial}{\partial t} \psi(t, \mathbf{r}) = \left(\frac{(\hat{\mathbf{p}} - q\mathbf{A}(t, \mathbf{r}))^2}{2m} + q\phi(t, \mathbf{r}) \right) \psi(t, \mathbf{r})$$
(323)

(324)