## Динамика

Df: Раздел механики, изучающий механическое движение на основе силовых представлений

 ${\it Df: Cuna}-$  векторная физическая величина, характеризующая направление и интенсивность взаимодействия между телами

Размерность силы  $[\vec{F}] = \frac{\text{кг·м}}{c^2}$ 



Lw 1: Существуют такие системы отсчёта, относительно которых MT движется равномерно и прямолинейно, если на неё <u>не</u> действуют другие тела или их воздействия скомпенсированы

**Lw 2:** Ускорение MT (центра масс абсолютно твёрдого тела) прямопропорционально равнодействующей всех сил и обратнопропорционально её массе.

## Равнодействующая сила:



$$\vec{F} = \vec{F} + \vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_5 = \sum_{i=1}^{5} \vec{F}_i$$
 (1)



$$|\vec{a}| = |F|$$

$$a \sim \frac{1}{m}$$

$$\vec{a} = \frac{\vec{F}}{m} = \frac{\sum_{i=1}^{n} \vec{F}_{i}}{m} \Leftrightarrow \boxed{m\vec{a} = \sum_{i=1}^{n} \vec{F}_{i}} \quad (2$$

Ex:



$$m\vec{a} = m\vec{g} + \vec{T}$$

$$T = m(a_n - g) = m\left(\frac{v^2}{R} - g\right)$$

$$\frac{v^2}{l} = g$$

$$v_{\min} = \sqrt{gl} \quad (3)$$

Lw 3: Tела(материальные точки) действуют друг на друга, равными по модулю и противоположными по направлению.

- $F_{12}$  и  $F_{21}$  возникают и исчезают одновременно
- $F_{12}$  и  $F_{21}$  имеют одинаковую природу
- Складывать силы нельзя, т.к. они приложены к разным телам



$$\vec{F}_{12} = \vec{F}_{21}$$
 (4)

Ex: 2.1.5. Какая сила действует в поперечном сечении однородного стержня длины l на расстоянии x от того конца,  $\kappa$  которому вдоль стержня приложена сила F?



К задаче 2.1.5

**Решение.** Если рассматривать стержень массой m как единое целое, то он будет двигаться с ускорением

$$a = \frac{F}{m}$$

 ${
m T.}$ к. стержень нерасстяжим, то ускорение всех его частей одинаково и равно a

Рассмотрим малый участок стержня длины  $\Delta x$  и массы  $\Delta m$ . Т.к. стержень однородный

$$\Delta m = m \frac{\Delta x}{l}$$

Запишем второй закон ньютона для этого участка.

$$a \,\Delta m = F(x + \Delta x) - F(x) \,(1)$$

Где  $F(x+\Delta x)$  и F(x) сила взаимодействия вместе с соседями Просуммируем выражение (1) по горизонтальной координате от x до l:

$$\sum am \frac{\Delta x}{l} = \sum \Delta F$$

$$F(x) = ma \frac{l-x}{l} \Leftrightarrow \boxed{F(x) = F(1-\frac{x}{l})}$$
 (5)

## Динамика вразательного движения



$$ec{F}-$$
 сила  $d-$  плечо силы

$$M \pm F \cdot d = \pm F \cdot r \cdot \sin \alpha$$

Размерность момента силы  $[M] = \mathbf{H} \cdot \mathbf{m} = \frac{\mathbf{K} \mathbf{\Gamma} \cdot \mathbf{m}^2}{\mathbf{c}^2}$ 

$$\boxed{\vec{M} = \vec{r} \times \vec{F} = -\vec{F} \times \vec{r}} \quad (1)$$

$$\vec{F} = m\vec{a}$$
 
$$m\vec{a} = \sum_{i=1}^{n} \vec{F}_{i}$$
 
$$\beta = \sum \pm M_{i}$$

J - момент инерции

$$J\beta = \sum_{i=1}^{k} \pm M_i \qquad (2)$$

Размерность момента инерции  $[J] = \kappa \Gamma \cdot \mathbf{m}^2$ 

 $\pmb{Lw}$ : Произведение момента инерции на угловое ускорение тела равно  $\underline{\text{сумме моментов сил}},$  действующих на тело

**Ex:** Материальная точка



Второй закон Ньютона

$$ma = F$$

$$mar = F \cdot r$$

$$a = \beta \cdot r$$

$$(mr^{2})\beta = M \Rightarrow \boxed{J = mr^{2}}$$
 (3)

**Ex:** Кольцо



**NO:** Момент инерции аддитивен

и инерции аооитивен 
$$J = J_1 + J_2 + \dots + J_n \qquad (4)$$
 
$$J = \sum_{i=1}^{\infty} J_i$$
 
$$J = \sum_{i=1}^{\infty} m_i r^2 = r^2 \sum_{i=1}^{\infty} m_i = mr^2$$

**Ex:** Однородный диск



Поверхностная плотность диска

$$\sigma = \frac{\Delta m}{\Delta S} = \frac{dm}{dS} = \text{const}$$

$$J_i = m_i r_i^2$$

$$2\pi r_i$$

$$\Delta S_i = 2\pi r_i \Delta r_i$$

$$m_i = \sigma \Delta S_i = \sigma 2\pi r_i \Delta r_i$$

$$J_{i} = m_{i}r^{2} = 2\pi\sigma r_{i}^{3}\Delta r_{i}$$

$$J = \sum_{i=1}^{\infty} m_{i}r^{2} = \sum_{i=1}^{\infty} 2\pi\sigma r_{i}^{3}\Delta r_{i}$$

$$J = 2\pi\sigma \sum_{i=1}^{\infty} r_{i}^{3}\Delta r_{i} = 2\pi\sigma \frac{r^{4}}{4} = \frac{\sigma\pi r^{4}}{2} \Rightarrow \boxed{J = \frac{mR^{2}}{2}}$$
 (5)

Другие примеры:

**E**x: *Шар* 



$$J = \frac{2mR^2}{5} \qquad (6)$$

**Ex:** Однородный стержень



$$J = \frac{ml^2}{12} \qquad (7)$$

## **Th:** Теорема Штейнера



C — центр масс

 $J_0$  — момент инерции относительно центра масс

$$J(a) = J_B = J_0 + ma^2$$

$$J = J_0 + ma^2 \qquad (8)$$

Ех: Груз на блоке



Момент инерции блока:

$$J = \frac{mR^2}{2}$$

Груз:

$$Ma = Mg - T$$

Блок:

$$J\beta = \sum_{i=1}^{k} \pm M_i = T \cdot R$$

$$Ja = TR^2 \Rightarrow T = \frac{Ja}{R^2}$$

$$a = \frac{Mg}{M + \frac{J}{R^2}} = \frac{g}{1 + \frac{m}{2M}}$$
 (9)

Ех: Скатывание с наклонной плоскости



 $F_{
m TP}$  — сила трения покоя

$$a = g \sin \alpha \quad (M = 0)$$

$$a = g(\sin \alpha - M \cos \alpha)$$

Второй закон Ньютона:

$$ma = mg \sin \alpha - F_{\text{TP}}$$
 (OX)

$$mg\cos\alpha = N \quad (OY)$$

$$J\beta = F_{\text{Tp}}R \Leftrightarrow F_{\text{Tp}} = \frac{Ja}{R^2}$$

$$ma = mg\sin\alpha - \frac{Ja}{R^2} \Rightarrow \boxed{a = \frac{g\sin\alpha}{1 + \frac{J}{mR^2}}} \quad (10)$$