Chapter 5

Sobolev and interpolation inequalities

5.1 Interpolation inequalities

Example 5.1.1

$$||u||_{L^2}^2 \le ||u||_{L^2} ||u'||_{L^2} \text{ for } u \in C^{\infty}(\mathbb{R})$$
 (5.1)

Proof. Idea: use that $(u^2)' = 2uu'$ and Newton-Leibniz

$$u^{2}(x) = 2 \int_{-\infty}^{x} uu' dy = -2 \int_{x}^{\infty} uu' dy$$

$$= \int_{-\infty}^{x} uu' dy - \int_{x}^{\infty} uu' dy$$

$$\leq \int_{-\infty}^{x} |u||u'| dy + \int_{x}^{\infty} |u||u'| dy$$

$$= \int_{\mathbb{R}} |u||u'| dy$$
(Hölder's inequality) $\leq ||u||_{L^{2}} ||u'||_{L^{2}}$

Question 1

Check that 5.1 is sharp. Namely, that 5.1 becomes equality for $u(x) = e^{-|x|}$ (u(x) is an extremal function for 5.1). Also 5.1 is shift and scaling invariant, i.e. $u_{\alpha}(x+h) = e^{-\alpha|x+h|}$, $h \in \mathbb{R}$, $\alpha > 0$ -extremals.

Example 5.1.2 (Interpolation inequality)

 $\Omega\text{-domain in }\mathbb{R}^n, u\in L_{p_1}(\Omega)\cap L_{p_2}(\Omega), 1\leqslant p_1, p_2, \leqslant \infty, p_1< p_2, \theta\in [0,1], \frac{1}{p}=\frac{\theta}{p_1}+\frac{1-\theta}{p_2}. \text{ Then }$

$$||u||_{L^{p}} \le ||u||_{L^{p_{1}}}^{\theta} ||u||_{L^{p_{2}}}^{1-\theta} \tag{5.2}$$

☺

Proof.

$$\int_{\mathbb{R}} |u|^p dx = \int_{\mathbb{R}} |u|^{\theta p} |u|^{(1-\theta)p} dx$$

We apply Hölder's inequality with exponents $P = \frac{p_1}{\theta p}$ and $Q = \frac{p_2}{(1-\theta)p}$ (Note $\frac{1}{P} + \frac{1}{Q} = \frac{\theta p}{p_1} + \frac{(1-\theta)p}{p_2} = 1$). Then

$$\int_{\mathbb{R}} |u|^{\theta p} |u|^{(1-\theta)p} dx \le \left(\int_{\mathbb{R}} |u|^{p_1} dx \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}} |u|^{p_2} dx \right)^{\frac{1}{Q}}$$

$$= ||u||_{I_{p_1}}^{\theta} ||u||_{I_{p_2}}^{1-\theta}$$

5.2 Sobolev inequalities

Example 5.2.1 (Sobolev inequality 1D)

 $u \in C^{\infty}([0,1])$, want to prove the embedding $W^{1,1}([0,1]) \subset C([0,1])$, i.e.

$$||u||_{C([0,1])} \le ||u||_{L^1([0,1])} + ||u'||_{L^1([0,1])} \tag{5.3}$$

Proof. By the Newton-Leibniz formula, $u(x) - u(y) = \int_{y}^{x} u'(s) ds$. Also,

$$|u(x)| \le |u(y)| + \int_0^1 |u'(s)| ds \quad \forall x, y \in [0, 1]$$

By integration over $y \in [0, 1]$,

$$|u(x)| \leq \int_0^1 |u(s)| \mathrm{d} s + \int_0^1 |u'(s)| \mathrm{d} s = \|u\|_{W^{1,1}([0,1])}$$

Taking supremum with respect to $x \in [0,1]$, we obtain $||u||_{C([0,1])} \le ||u||_{W^{1,1}([0,1])}$

Example 5.2.2 (Sobolev inequality 2D)

 $u\in C^{\infty}([0,1]^2), \text{ i.e. } \Omega=[0,1]^2, \text{ then } W^{1,1}(\Omega)\subset L^2(\Omega): \|u\|_{L^2}\leqslant \|u\|_{W^{1,1}(\Omega)}$

Proof. $\int_{\Omega} u^2(x_1, x_2) dx_1 dx_2$ should be estimated. From 5.3, we know that

$$|u(x_1, x_2)| \le \int_0^1 |u(s, x_2)| + |\partial_{x_1} u(s, x_2)| ds := f(x_2)$$

$$|u(x_1, x_2)| \le \int_0^1 |u(x_1, s)| + |\partial_{x_2} u(x_1, s)| ds := g(x_1)$$

Then

$$\int_{\Omega} u^{2} dx \leq \int_{0}^{1} g(x_{1}) f(x_{2}) dx_{1} dx_{2}
= \int_{0}^{1} f(x_{2}) dx_{2} \int_{0}^{1} g(x_{1}) dx_{1}
= \left(\int_{\Omega} |u(x_{1}, x_{2})| + |\partial_{x_{1}} u(x_{1}, x_{2})| dx_{1} \right) \left(\int_{\Omega} |u(x_{1}, x_{2})| + |\partial_{x_{2}} u(x_{1}, x_{2})| dx_{2} \right)
\leq ||u||_{W^{1,1}(\Omega)}$$

(2)

☺

☺

Question 2: Sobolev inequality 3D

 $u\in C^{\infty}(\bar{\Omega}), \Omega=(0,1)^3$. Prove that $W^{1,1}(\Omega)\subset L^{\frac{3}{2}}(\Omega)$, i.e.

$$\|u\|_{L^{\frac{3}{2}}(\Omega)} \le \|u\|_{W^{1,1}(\Omega)} \tag{5.4}$$

Hint: first, prove that

$$\int_{\Omega} f(x_1, x_2) g(x_2, x_3) h(x_1, x_3) dx \le ||f||_{L^2} ||g||_{L^2} ||h||_{L^2}$$

and use 5.3.

Example 5.2.3

 $u \in C^{\infty}(\bar{\Omega}), \Omega = (0, 1)^3$. Then

$$||u||_{L^{6}(\Omega)} \le C||u||_{W^{1,2}(\Omega)} \tag{5.5}$$

Proof.

$$\begin{split} \int_{\Omega} |u|^6 \mathrm{d}x &= \int_{\Omega} (|u|^4)^{\frac{3}{2}} \mathrm{d}x \\ &\leqslant C \left(\int_{\Omega} |u|^4 \mathrm{d}x + \int_{\Omega} u^3 |\nabla u| \mathrm{d}x \right)^{\frac{3}{2}} \\ &(\text{by (5.3)}) \quad \leqslant C \left(\int_{\Omega} |u|^4 \mathrm{d}x \right)^{\frac{3}{2}} + C \left(u^3 |\nabla u| \mathrm{d}x \right)^{\frac{3}{2}} \\ &\leqslant C \|u\|_{L^2}^{\frac{3}{2} \cdot 0 \cdot 4} \|u\|_{L^6}^{\frac{3}{2} \cdot (1 - \theta) \cdot 4} + C \|u\|_{L^6}^{\frac{3}{2} \cdot 3} \|\nabla u\|_{L^2}^{\frac{3}{2}} \\ &\left(\theta = \frac{1}{4} \right) \quad = C \|u\|_{L^2}^{\frac{3}{2}} \|u\|_{L^6}^{\frac{9}{2}} + C \|u\|_{L^6}^{\frac{9}{2}} \|\nabla u\|_{L^2}^{\frac{3}{2}} \\ &\left(\text{Young's inequality with } p = \frac{4}{5} \text{ and } q = -4 \right) \quad \leqslant \varepsilon \|u\|_{L^6}^6 + C_\varepsilon (\|u\|_{L^2} + \|\nabla u\|_{L^2})^6 \end{split}$$

Setting for example, $\varepsilon = \frac{1}{2}$, we obtain

$$\|u\|_{L^6(\Omega)} \leq C \|u\|_{W^{1,2}(\Omega)}$$

⊜

Theorem 5.2.1 Sobolev embeddings

- (2) $W^{k,p}(\Omega) \subset C^{\alpha}(\Omega)$ if $\alpha < k \frac{n}{p}$.