東吳大學 資料探勘導論 期中考題目

一、假設 I 是所有購物籃 (或車) 中曾經賣過的所有商品項目 (Items) 的集合,我們以 $I = \{I_1, I_2, I_3, ..., I_m\}$ 來表示,而資料庫 D 為所有交易 (Transaction) 資料 T 的集合, $D = \{T_1, T_2, T_3, ..., T_n\}$,如下表 14-1 所示:

	表	14-1	交易資料庫	D
•	14	14-1	<i>头勿貝咐</i>	v

交易代號 (TID)	商品項目 (Items)
T_1	飯糰、豆漿、尿布
T_2	飯糰、尿布、啤酒、麥片
T_3	豆漿、尿布、啤酒、綠茶
T_4	飯糰、豆漿、尿布、啤酒
T ₅	飯糰、豆漿、尿布、綠茶

(定義 1)每一個項目集 X 的支持數量可以寫成 σ(X), $σ(X) = |\{T_i \mid X \subseteq T_i, T_i \in D\}|$,其中 $|\cdot|$ 表示集合中元素的數量

(定義 2)每一個項目集 X 的支持度可以寫成 s(X),其定義為

$$s(X) = \frac{\sigma(X)}{|D|}$$

,其中 |D| 為交易資料庫中的總交易資料筆數

(定義 3)令 X 與 Y 為 I 的兩個子項目集,假如 X 與 Y 產生關聯規

則,則關聯規則可以表示為

X⇒Y[s, c] 的型式 X, Y⊆I, 其中 X, Y≠Φ 且 X∩Y=Φ

根據上述三個定義描述內容,請使用"購物車或者購物籃的白話觀念" 回答下列問題

- (A)根據上述定義 1 中的描述請舉例說明 $\sigma(X)$ 的白話意義為何?
- (B)根據上述定義 3 中的描述請舉例說明 X, Y ≠φ 的白話意義為何?
- (C)根據上述定義 3 中的描述請舉例說明 X ∩ Y = φ 的白話意義為何?
- 二、請透過表 2 中的五筆交易資料內容,並利用關聯規則(Association Rules)中的 Apriori 方法回答下列問題:
- (A)找出滿足最小支持度(Minimum Support Count)為 3 的頻繁項目集 (Frequent Itemsets),
- (B)以及滿足最小信賴度(Minimum Confidence)為 50%的關聯規則, (C)如果(B)中的答案內有提升度(lift)>1 的規則,請標示星號特別註明,

請注意:解題時,頻繁項目集、關聯規則的產生過程全部都需要有計算過程,並保持演算法中計算的邏輯與特性。

表 2

TID

100	f, a, c, d, g, i, m, p
200	a, b, c, f, l, m, o
300	b, f, h, j, o
400	b, c, k, s, p
500	a, f, c, e, l, p, m, n

三、請回答下列問題:

(A)簡單貝氏分類法(Naïve Bayes Classifier)可以應用在資料分類的假設 為何?請以表 3 簡易舉例說明,不用證明。

(B)商業資料經過各式各樣的分類技術確認其類別後的主要目的為何? (C)承上題(B)的答案,請使用 Naïve Bayes Classifier 並回答表 3 中的兩個問號答案是?一定要有計算過程否則不給分。

表3

ID	婚姻	年齡層	收入	是否購買不動產
1	已婚	青年	低	有
2	已婚	中年	高	無
3	單身	中年	高	無

4	單身	青年	高	有
5	已婚	中年	中	有
6	單身	中年	低	有
7	單身	青年	高	無
8	已婚	青年	高	無
9	已婚	中年	高	有
10	已婚	青年	高	有
11	已婚	中年	高	?
12	單身	青年	中	?

四、請簡單說明圖1的意涵

圖 1

五、當目標變數只有兩個類別資料值的時候,請根據圖 2 以及下列三條公式,請問該如何描述乾淨(混亂)的程度?

三個亂度衡量指標的定義如下

$$Gini(t) = 1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$

$$Entropy(t) = -\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$$

 $Misclassification\ error(t) = 1 - \max_{i}[p(i|t)]$

六、請使用第五題的 misclassification error 亂度公式以及表 4 資料集分別建立決策樹分類模型以及產出測試階段的混淆矩陣、Accuracy、Precision、Recall 以及 F1-Measure。

七、請利用 K 最鄰近法(KNN)、表 4 資料集以及下列距離公式回答下列問題:

- (A)當 K=1 時的混淆矩陣(Confusion Matrix)
- (B)當 K=3 時的混淆矩陣(Confusion Matrix)
- (C)請計算說明(A)與(B)答案中不同 K 值條件下,Precision、Recall 以及 F1-Measure 在"是否還款"上的差異為何?

表4

客戶編號	是否負債 性別 婚姻		婚姻狀況	收入	是否還款
1	是	男	單身	低	否
2	否	女	單身	低	否
3	是	男	男 單身		是
4	否	女	結婚	低	是
5	否	男	單身	高	是

6	是	女	單身	高	否
7	否	女	結婚	低	是
8	是	男	結婚	高	否
9	否	男	單身	低	是
10	是	女	結婚	低	否
11	否	女	結婚	高	是
12	是	男	結婚	高	否
13	是	男	單身	高	是

八、請利用表 6-1、圖 6-6、圖 6-7 以及下列新客戶(顧客編號 15)說明何謂"過度配適(Overfitting)"的觀念。新顧客資料如下:顧客編號 15,年紀 19 歲,女性,已婚,居住於鄉鎮中,忠誠度目前未知 (unknown)。

表 6-1 分類分析之範例資料

		顧客厚	易性		類別	
顧客編號	居住區域	年紀	婚姻狀況	性别	(忠誠度)	
1	副市	小於 21	已婚	女		
2	副市	小於 21	已婚	男	低	
3	液布	小於 21	已婚	女	高	
4	鄉鎮	21至30	已婚	女	高	
5 鄉鎮		大於30	未婚	女	高	
6 鄉鎮		大於30	未婚	未婚 男		
7 市郊		大於 30	未婚	男	高	
8	副市	21至30	已婚	女	低	
9	副市	大於 30	未婚	女	高	
10	鄉鎮	21至30	未婚	女	高	
11	區市	21至30	未婚	男	高	
12 市郊		21至30	已婚	男	高	
13	市郊	小於 21	未婚	女	高	
14	鄉鎮	21至30	已婚	男	低	

圖 6-6 可正確描述表 6-1 中資料的複雜決策樹

圖 6-7 可正確描述表 6-1 中資料的簡單決策樹

九、ANN 技術基本上為深度學習方法的基礎,請回答下列問題

- (A)請簡單說明 ANN 技術處理資料常見被詬病的缺點為何?
- (B)請簡單回答或者繪圖說明感知機(Perceptron)可以解決的資料分類問題有哪些? (可以繪圖說明)
- (C)請簡單回答或者繪圖說明感知機(Perceptron)不能解決的問題為何? (可以繪圖說明)

十、假設講義中的這一題,各個參數值都不變,僅將學習速率分別改成 0.5 與 1 之後,請重新解題,說明差異。

圖 8.5 為一個多層前饋式類神經網路的範例,假設學習速率為 (1,0,1),它對應的類別標籤為 (1,0,1),它對應的類別

此範例説明當此值組餵入網路後,倒傳遞演算法詳細的計算步驟, 首先,計算網路中每一個單元的輸入值與輸出值,這些輸入 / 輸出數 值的計算顯示在表格 8.2 中,接著,計算每一個單元的錯誤值,並將錯 誤值向後傳遞,這些錯誤值的計算顯示在表格 8.3 中,最後,進行權重 值與偏移量的更新,其計算過程顯示在表格 8.4 中。

圖 8.5 多層前饋式類神經網路的範例。

表 8.1	輸入、	初始權重值與偏移量
-------	-----	-----------

<i>x</i> ₁	x_2	x_3	w ₁₄	w ₁₅	w ₂₄	w ₂₅	w ₃₄	w ₃₅	W ₄₆	w ₅₆	θ_{4}	θ_{5}	$\theta_{\rm 6}$
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1