Algebra liniowa 1R, Lista 12

- Wszystkie macierze których rozmiar nie jest explicite określony to macierze 3×3 .
- 1. Uzasadnij następujące wzory. Załóż, że występujące w nich macierze odwrotne istnieja. a) $(M^{-1})^{-1} = M$; b) $\det(MNM^{-1}) = \det(N)$; c) $(\lambda I M)^{-1} (\mu I M)^{-1} = (\mu \lambda)(\mu I M)^{-1}(\lambda I M)^{-1}$; d) $\det(M^{-1}) = (\det(M))^{-1}$.
- 2. Znajdź wartości i wektory własne. Porównaj krotność pierwiastka wielomianu charakterystycznego z maksymalną możliwą liczbą odpowiadających mu liniowo niezależnych wektorów własnych.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}; \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}; \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}; \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}.$$

- 3. Znajdź wektory i wartości własne dla (a) obrotu o kat θ wokół pewnej prostej; (b) rzutu na prostą; (c) rzutu na płaszczyznę; (d) symetrii względem prostej; (e) symetrii względem płaszczyzny. (O wszystkich prostych i płaszczyznach o których mowa w tym zadaniu zakładamy, że przechodzą przez 0.)
- 4. Wektory $(1, -2, 2)^{\top}$, $(-3, 0, 1)^{\top}$, $(7, 1, 0)^{\top}$ są wektorami własnymi przekształcenia liniowego $T : \mathbf{R}^3 \to \mathbf{R}^3$ o wartościach własnych odpowiednio -1, -3, 2. Znajdź macierz M tego przekształcenia.
- 5. Znajdź wszystkie wymierne pierwiastki wielomianów. Stwierdź też, ile mają one pierwiastków rzeczywistych. (a) $x^3 + 5x^2 + 2x 8$, (b) $x^3 + 5x^2 + 5x + 4$, (c) $2x^3 10x^2 + 7x + 3$, (d) $6x^3 + 7x^2 x 2$, (e) $-x^3 7x^2 + 3x + 27$, (f) $-x^3 + 7$, (g) $2x^3 (1 + 2\sqrt{2})x^2 + (\sqrt{2} 1)x + \sqrt{2}$.
- 6. Napisz co najmniej trzy macierze izometrii w których pierwszym wierszem jest $(3/5, \sqrt{7}/5, -3/5)$.
- 7. Macierze A i A^{-1} mają całkowite wyrazy. Co wynika stąd o $\det(A)$?
- 8. Niech $X,Y,Z\in\mathbf{R}^3$ będą niezerowymi wektorami, A macierzą, zaś $\lambda,\mu\in\mathbf{R}$ dwoma różnymi liczbami, przy czym $AX=\lambda X,\,AY=\lambda Y,\,AZ=\mu Z.$ Udowodnij, że jeśli X,Y są lnz, to X,Y,Z są lnz.
- 9. Zdiagonalizuj macierz M: znajdź wartości własne i bazę wektorów własnych; zapisz M w postaci PDP^{-1} z diagonalnym D; znajdź nowe współrzędne w których macierz M staje się diagonalna; wyraź nowe

z diagonalnym
$$D$$
; znajdź nowe współrzędne w których macierz M staje się diagonalna; współrzędne przez stare, a stare przez nowe. $M = \begin{pmatrix} 1 & 4 & -1 \\ 0 & 3 & -5 \\ 0 & 0 & -2 \end{pmatrix}$; $M = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$ 10. $\begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix}$, $\begin{pmatrix} 7 & -12 & 6 \\ 10 & -19 & 10 \\ 12 & -24 & 13 \end{pmatrix}$ – która z tych macierzy diagonalizuje się, a która nie?

- 11. Niech ciąg (a_n) będzie zadany rekurencyjnie: $a_0 = 1$, $a_1 = 7$, $a_2 = -1$, $a_{n+3} = 4a_{n+2} a_{n+1} 6a_n$. Wyprowadź jawny wzór na n-ty wyraz tego ciągu.
- 12. Następujące przekształcenia są izometriami ${\bf R}^3$; przedstaw każde z nich jako złożenie translacji i izometrii liniowej. Znajdź macierz części liniowej. (a) odbicie względem płaszczyzny x+z=1; (b) odbicie względem prostej x=z=1; (c) obrót o $\pi/2$ wokół prostej y=z=1 (są dwa takie obroty; wybierz dowolny z nich).
- 13. Znajdź macierz izometrii liniowej F, takiej że $F((2,2,-1)^{\top})=(0,3,0)^{\top}$.
- 14. Znajdź macierz izometrii liniowej F, takiej że $F((2,2,-1)^{\top})=(1,-1,\sqrt{7})^{\top}$. Ile jest takich izometrii?
- 15. Ślad pewnej izometrii wynosi -3. Co to za izometria?
- 16. Znajdź macierz obrotu o $\frac{\pi}{6}$ wokół prostej $x=-y=\frac{z}{3}$, w którąkolwiek stronę. Następnie wytłumacz komuś w którą stronę obracałeś.
- 17. Znajdź macierz złożenia obrotu prawoskrętnego wokół prostej $X = t(2,1,2)^{\top}$ o kąt $\frac{\pi}{4}$ (przekształcenia $R_{(2,1,2)^{\top},\frac{\pi}{4}}$) i odbicia w płaszczyźnie prostopadłej do osi tego obrotu.
- 18. Niech A będzie liniową izometrią \mathbf{R}^3 zmieniającą orientację, taką że liczba 1 jest jej wartością własną. Uzasadnij, że A jest odbiciem względem pewnej płaszczyzny.
- 19. Załóżmy, że macierz A ma 3 różne wartości własne, i że AB = BA. Uzasadnij, że macierz B jest diagonalizowalna.
- 20. Jak może wyglądać zbiór wszystkich wartości własnych liniowej izometrii \mathbb{R}^3 ? Opisz wszystkie możliwości. Uwzględnij zespolone wartości własne.
- 21. Udowodnij, że każda zachowująca 0 izometria \mathbb{R}^3 jest liniowa. [Robi się to podobnie jak dla \mathbb{R}^2 .]
- 22. Uzasadnij, że każda izometria \mathbb{R}^3 jest złożeniem co najwyżej czterech odbić (w płaszczyznach).
- 23. Które macierze 2×2 dają się rozszerzyć do macierzy izometrii rozmiaru 3×3 ? Spróbuj sformułować różne warunki konieczne i różne warunki dostateczne.