TD BLACK SCHOLES - LE RÉSUMÉ

- (A) traiché: actif sans risque: dsf:= 2dt ex actif risqué Sp.
- . Ju est le gue le modèle de Black-Scholes ?
 - Voir que les prix sout à accroissements évolépendants
 - qu'ils out une volatilité constante et une évolution déterministe
 - dSt. 1 = odWt + pdt sous P pobe réelle.
- o Existence d'eure proba rèsque neutre?

Ou pocêde pour changement de proba. 1:=

On poècle par changement de prosa. $A:=\frac{dQ}{dP}:=L_T$ où $L_T:=\exp\left(-2B_T-\frac{\lambda^2}{2}T\right)$. i.e $VA\in\mathcal{F},\ Q(A):=\mathcal{F}\left[L_T \mathbb{1}_A\right]$ when $A:=\frac{\mu - \lambda^2}{D}$

Cette proba est fort suprepathique sur plusieurs points:

PARIVE: $(L_{\xi})_{\xi + (C_0, \tau)}$ mentingale sous \mathbb{R} .

- (i) Ly Fx-mesurable
- (ii) [[[|tel]= 1 i.e itg.
- (ii) $\mathcal{E}[L_t|\mathcal{F}_s] = L_s \mathcal{E}[\frac{L_t}{L_s}|\mathcal{F}_s] = L_s \mathcal{E}[\exp(-\lambda(B_t-B_s)-\frac{\lambda^2}{2}(t-s))] = L_s$

d'ai EQ[Y] = EPCLTY] = EP[E+CLTY]] = EP CY E+CLT] = EP(LY) B.

2) Soit (Xt) une majore sous Q = Xelt majore sous P

PREUVE : (i) Xt- It mes = Xtle- It mes

(ii) Xe ity ← €CIXel] <+ ← ←> €P [IXele] <+ co Xele P-ity

(iii) & [Xe] = Xs 1/1 / 1/2 + 3/2

\$\text{\alpha} \text{\alpha} \text{\beta} \\ \text{\beta} \\

XSLS ED (1/4 XS) & ER (1/4 XSLS) & ⇒ E(X+L+) = XSLS

3 a martingalise les prix actualisés

er dSt = odwe = dSt = Rdt + odwe

où Wt:= Bt + It et un Brownien Sous O

PREUVE :

4 quelques théorèmes sympathiques et inpacts.

Médiene [Chargement de mesure] (Girsonon)

M Martingale boale E(M) voice martingale rus [0,t] $E(M) = \exp(M - \frac{1}{2}(M/M)_{+})$

 $\forall A \in \mathcal{F}_{\epsilon}, \quad \mathcal{Q}(A) := \bigoplus_{\mathbf{P}} (\mathbf{1}_{A} \mathcal{E}(\mathbf{h})_{\epsilon})$

 \mathbb{Q} mesure deproba et $\forall s \in [0,t]$, $A \in \mathbb{F} \implies \mathbb{Q}(A) = \mathbb{E}_{\mathbb{R}}(\mathbb{1}_A \in (H))$

(Bs, st[0,t)) un Brownien Leus P

 $\mathcal{O}_{\Gamma}^{\mathcal{B}}(\Pi_{S}, s \in \Gamma_{0}, t))$ une martingale boole seus \mathcal{R} $\tilde{\Pi}_{\Gamma} := \Pi_{\Gamma} - \langle \Pi_{\Gamma}, L \rangle_{S}$ or sure martingale locale seus \mathcal{R}

de variation gradatique 2fi, fi) = 201, th).

Criter (E(L) Martingale (Novikou) (E(L)s, Sto, t]) voic martigale

o ici on a pris M:= - 18; nortingale donc nortingale boall Qu L = ε(n) = exp(-AB - 1/2 - AB ,-AB>) o Novikov: €[exp \t \ /+ = => E(n) vraie moutrigale

o & dit que Wt:= Bt + It = Bt - < B, - AB>t brownien sous Or dSt = e-xt dSt - 2 e-xt St dt = St e-st (2 gp+ + b gt - 2 gt) = St o gm

De plus $\frac{dS_t}{S_t} = \sigma dW_t + rdt$ (on consuit la loi sous Q)

+ Résultat pour ce geure d'éspediff statestique.

9xt = x (hf qt 1 2+ qB+)

(i) μ_t et σ_t progressifs à valeurs réelles (ii) $\int_{0}^{t} \mu_s | ds < +\infty$ et $\int_{0}^{t} \sigma_s^2 dt < +\infty$ \Re - ps

Reppel: formule d'Ito:

V The Alors la solution est de la forme: $X_{t} = X_{0} \exp\left(\int_{0}^{t} \sigma_{s} dB_{t} + \int_{0}^{t} H_{s} dt - \frac{1}{2} \int_{0}^{t} \sigma_{s}^{2} ds\right)$

 \Rightarrow $S_t = S_0 \exp(\sigma W_t - \frac{\sigma^2 t}{2})$ vaie vartigale some Q

df(t, Xt) over Xt martingale boole?!

df - 2 t dx + 2 t dr + 2 2 t d(x, x) t &

4 Un marché dans le modèle de Black Scholes verifie l'ADA et en compler.

Porteferille: $V_t = \mathcal{F}_t S_t + \mathcal{F}_t^s S_t^s$ and $(\mathcal{F}_t, \mathcal{F}_t^s)$ progressly verificant $\mathcal{F}_t^s \mathcal{F}_t^s$ discuss Autofinancement: dV = \$t dSt + \$todst = St todb + \$t tar) + '\$to 2 e 2 tolis

 $AV_{f} = d(e^{-\lambda t}V_{f}) = e^{-\lambda t}dV_{f} - \lambda V_{f}e^{-\lambda t}dV$ (Ito produit) = 5,5, (0 dB++ pd+) + 3, 2 db-2 Ve dr

or SE = VE - SEST => To = StSt (oder +(p-2)dt) Tasi = ents, (odb, + pdr) - ne-2+S, dr (The produit) = dVz = 3,5dSz = 3, odly sous O (on la puran de martingale!)

= V_t = V₀ + \(\frac{1}{5}_{5} \frac{3}{5}_{5} \text{ or } dW_{5}

PARVE ADA: $V_{t}^{5,V_{0}}$ marticipale \forall ξ pregnenif et \forall $V_{t} \in \mathbb{R}_{+}$ Supposons $V_{0} = 0$ et qu'il existe $(\xi_{t})_{t \in (0,1)}$ tel que: (*) $V_{T}^{0,\xi} > 0$ $\mathbb{P} - \mathbb{E}$ or $\mathbb{P}(V_{T}^{0,\xi} > 0) > 0$ extritrage

Grune \mathbb{P} et \mathbb{Q} sont équivalentes $\mathbb{P} - \mathbb{P}$ \cong $\mathbb{Q} - \mathbb{P}$ Or $(V_{t}^{5,0})$ en une noutrique sous \mathbb{Q} .

Donc $\mathbb{E}(V_{T}^{5,0})^{7} = \mathbb{E}[V_{0}]^{7} = 0 \Rightarrow V_{T}^{5,0} = 0 \Rightarrow \mathbb{P}(V_{T}^{5,0}) = 0$ Troprésentation \mathbb{Q}' \mathbb{P}^{5} \forall $h \in \mathbb{I}^{2}_{\mathbb{Q}}$, \mathcal{F}_{T} - measurable $\mathbb{E}(\mathbb{Q}^{1})_{t \in [0,T)}$ propertif eix $\mathbb{E}_{\mathbb{Q}}(\mathbb{R})$ $\mathbb{E}(\mathbb{Q}^{1})$ en finit \mathbb{Q} : $\mathbb{E}(\mathbb{Q}^{1})_{t \in [0,T)}$ propertif eix $\mathbb{E}_{\mathbb{Q}}(\mathbb{R})$ + $\mathbb{E}(\mathbb{Q}^{1})$ en finit \mathbb{Q} : $\mathbb{E}(\mathbb{Q}^{1})_{t \in [0,T)}$ propertif \mathbb{Q} $\mathbb{E}(\mathbb{Q})$ $\mathbb{E}(\mathbb{Q$

 $h = \mathbb{E}_{\mathbb{Q}}(\mathbb{R}) + \int_{\mathbb{R}}^{1} cl_{1} dW_{1}$ $de plus, \quad \mathbb{E}_{\mathbb{Q}}^{t} \left[\mathbb{R} \right] = \mathbb{E}_{\mathbb{Q}}(\mathbb{R}) + \int_{\mathbb{R}}^{1} cl_{2} dW_{3}$ PREUVE hanché complet (Tout payoff de $L^{2}_{\mathbb{Q}} \xrightarrow{\mathcal{F}_{T}}$ -mes es réplicable)

Ou cherche use tratique (5, V) telle que V, 5,2 = h!

Or $V_7^{57,c} = V_5 + \int_1^1 \tilde{S}^+ \tilde{S}_4 + \sigma dW_{\pm}$ Ponc on addite be theorem predent or on chaint: $V_0 = \mathcal{E}_Q[\tilde{h}]$ ex $\tilde{S}_5^* = \frac{\varphi}{\sigma \tilde{S}_5^*} \otimes .$

(3) Le prix d'une option de payoff $h := f(S_T)$ est solution d'une expection différentielle. (EDP de Black Scholes)

= V_0

 $\begin{array}{lll} \text{prix}: & \pi_{o}(k) \stackrel{?}{=} \mathbb{E}_{\mathbb{Q}}\left[\tilde{k}\right] = e^{-\lambda T}\mathbb{E}_{\mathbb{Q}}\left[k\right] & \text{d'après la réplication} \oplus \\ & \text{haut et l'ADA}. \\ \text{o prix en t}: & \pi_{t}(k) = \tilde{V}_{t}^{C,S^{*}} = \mathbb{E}_{\mathbb{Q}}\left[\tilde{V}_{t}^{C,S^{*}}|\mathcal{F}_{t}\right] = e^{-\lambda T}\mathbb{E}_{\mathbb{Q}}\left[k|\mathcal{F}_{t}\right] \Rightarrow \pi_{t}(k) = e^{-\kappa T}\mathbb{E}_{\mathbb{Q}}\left[k|\mathcal{F}$

replication

application

On veuts application

Let $\{f(s) : F(s) = F(t, s) = F(t, s)\}$ Let $\{f(s) : F(s) : F(s) = F(t, s)\}$ Let $\{f(s) : F(s) : F(s)\}$ Let $\{f(s) : F(s) : F(s)\}$

PREVIE: ITO Storade df(t,St) = 2 f(t,St) dt + 2 f(t,St) dSt + 12 f(t,St) d<5,15>t er d (e-++ f(+,s+)) = e-++ (T) - 1e-++ f(+,s+) dr = e-AF [2, F(t,St)+25,2, F(t,St) + 122 F(t,St) St 0'- 2 F(t,St) dt + 22 f (+,S+)St & dw+) Si on suppose F_{22} tornée on a : $F_{2}(\int_{0}^{t} f^{2}(s,S_{s}) S_{s}^{2} \sigma^{2} ds) / 100$ Si on a sup $F_{2}(S_{s}^{2})$ / + ∞ on rehande sur la martinyale racherchée. On $\mathbb{E}_{\mathbb{Q}}\left(S_{+}^{2}\right) = \mathbb{E}\left[S_{+}^{2}\exp(2\sigma W_{+} + 2(x - \frac{\sigma^{2}}{2})t) = S_{-}^{2}\exp(2\sigma^{2}t - \sigma^{2}t + 2\pi t) = S_{-}^{2}(\sigma^{2}+2\pi)t\right]$ Donc le drift s'aemule car $\tilde{\Pi}_{+} = \tilde{V}_{+}^{5,0}$ martigale! $\frac{1}{1} = \tilde{V}_{+}^{60,0}$ EDP de Black-Scholes (EDP.86) $\begin{cases} \partial_{t} f(t, x) + \frac{1}{2} \sigma^{2} x^{2} \partial_{x}^{2} f(t, x) + 2 x \partial_{x} f(t, x) - 2 f(t, x) = 0 & \forall (t, x) \in G_{1} I(x) R_{+}^{*} \\ f(T, x) = f(x), & \forall x \in \mathbb{R} \end{cases}$

M Feynmann fac $\mu: [0,T] \times \mathbb{R}^+ \to \mathbb{R}$ de classe C^{1} to

Unicité de la Colution:

Lix borne solution de (EDP. BS)

Alors $\mu(t,x) = f_0^t [f(S_7)] e^{-2(T-t)}$, $f_0^t f(S_7) \in C_0, T] \times \mathbb{R}^+$

où So:= >c

6 On a une formule explicite pour la réplication de l'action.

(3) Some le modèle de BS, pour un poupet $h := f(S_T)$ alors certaines propriétés vérifiées par f sont aumi vérifiées par le prix:

 $F(t_1S_1) = F(0,S_0) + \int_0^t \partial_{x_1} F(s_1S_s) \tilde{S}_s \cdot dW_s$ $S_s^* := F_{x_1}(s_1S_s) \quad \text{paradentification or unicitie.}$

- croissance selon n _ convexité selon a

$$2 d1 := \frac{\ln(30/K)}{10T} + 2 \frac{1}{5} \frac{1}{5} + \frac{1}{2} 01T$$

(1) On note
$$d1 := \frac{h(S_0/K)}{10T} + 2\frac{\sqrt{T}}{5} + \frac{1}{2} \text{ or } T$$
 et $d_2 := d_4 - 0T$

$$N(t) := \int_{J(0,1)}^{T} (t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{x}\right) dx$$

$$S_0, z, K, T, \sigma$$
 = $S_0 N(d_+) - K e^{-zT} N(d_-)$

Alors C(So, 2, K, T, 5) = So N(d+) - Ke-2TN(d-) P(So, z, K, T, v) = So N(-d+) + Ke-2T N(-d-)

PREVVE:

$$C(S_{0}, \lambda, K, T, \sigma) = \mathbb{E}_{\mathbb{Q}} \left[(S_{T} - K)_{+} \right] e^{-\lambda T}$$

$$= \mathbb{E}_{\mathbb{Q}} \left[S_{T} \mathbb{1}_{K \in S_{T}} - K \mathbb{1}_{K \in S_{T}} \right] e^{-\lambda T}$$

$$= \mathbb{E}_{\mathbb{Q}} \left[e^{-\lambda T} \mathbb{1}_{K \in S_{T}} - K e^{-\lambda T} \mathbb{R} \left(\frac{\ln(\frac{K}{S_{0}}) - (\lambda - \frac{\sigma^{2}}{2})T}{\sigma T} \right) \right]$$

$$= \mathbb{E}_{\mathbb{Q}} \left[e^{-\lambda T} \mathbb{1}_{K \in S_{T}} \right] - K e^{-\lambda T} \mathbb{R} \left(\mathbb{1}_{A_{1}} \right)^{-\Omega_{1}} Con \left(\mathbb{1}_{N} - \mathbb{1}_{N} \right) \right]$$

Et $F_{\mathcal{R}}(S_T e^{-rT} 1_{K \in S_T}) = S_0 \mathbb{E}_{P^*} (1_{K \in S_T}) \approx \frac{dP^*}{dQ} = \frac{S_T}{S_0} = \varepsilon(m)$

où
$$M := \sigma W_{\xi}$$

Dan c $W'_{\xi} = W_{\xi} - \sigma t$ en un Brownieu sous P_{ξ} (Girsanov @ Abrikov)

Or $dS_{T} = \sigma dW_{\xi} + r dt = \sigma dW'_{\xi} + (r + \sigma) dt$
 $S_{T} = S_{0} exp(\sigma W_{T} + (r - \sigma^{2} - \frac{\sigma^{2}}{2})_{T}) \Rightarrow F_{p, \xi}(1_{k \le S_{T}}) = P^{\xi}(\frac{-\ln(\frac{S_{0}}{k})}{\sigma \sqrt{T}} + (\pi + \sigma^{2} - \frac{\sigma^{2}}{2})_{T})_{T}$

= P* (d2 + 0 VT > Y) = A(d1) D'ai le resultat !

② Colculer le prix en t: mêne raissamenent mais plutôt que de de diviser par S_0 , diviser par S_+ . \clubsuit du comp $\S_0 \hookrightarrow \S_+$, $T \hookrightarrow T \cdot t$

Tt(b) = St N (d, (St, T-t)) - K e N (d2 (St, T-t))

. Une formule pour l'allocation pour call

On a rue: 3* = 2, F(+, St)

 $F(t,S_t) = \mathcal{F}_Q \left[f(S_T) | \mathcal{F}_t \right] e^{-\lambda(T-t)}$ $f(t,n) = \bigoplus_{Q} [(n \exp(\sigma \sqrt{T-t} Y - \frac{\sigma^2}{2}(T-t)) - k)_+)] e^{-r(T-t)}$ $\frac{\partial_{x} F(t, x)}{\partial_{x} F(t, S_{t})} = \underbrace{\mathbb{E}_{Q} \left(\underbrace{exp(\sigma \sqrt{\tau - \epsilon} \ Y - \frac{\sigma^{2}}{2}(\tau - \epsilon))} \underbrace{1}_{x > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \left(\underbrace{exp(... \ Y ...)}_{S_{x} > K} \right) \underbrace{\int e^{-r(\tau - \epsilon)}}_{S_{x} > K} \underbrace{\int e^{-r(\tau -$

 $\frac{dP^*}{dQ} = \frac{\tilde{S}_T}{\tilde{S}_t}$

 $\mathcal{E}_{Q} \left(\int_{0}^{T} S_{s} ds \right) \mathcal{F}_{E}$

= EQ[Sup(xs)ds | Ft]

. Options exotiques, opions américaires

Exercice 1. $\xi := \phi \left(\int_0^T S_s ds \right)$; $X_t := lu S_t$; $Y_t := \int_s^t S_s ds$

 $dS_t = S_t (\sigma dW_t + zdt)$

2) $\pi_t(\xi) = \bigoplus_{Q} \left(\xi \mid \mathcal{F}_t \right)^{-R(T-t)}$ prix de l'option au Terps t

= $\mathbb{E}_{\mathbb{Q}}\left[\mathbb{Q}(X_{t})\int_{0}^{t}\exp(X_{s}-X_{t})ds\right]$ = $\mathbb{E}_{\mathbb{Q}}\left[\mathbb{Q}(X_{t})\int_{0}^{t}\exp(X_{t})\int_{0}^{t}\exp(X_{s}-X_{t})ds\right]$ = $\mathbb{E}_{\mathbb{Q}}\left[\mathbb{Q}(X_{t})\int_{0}^{t}\exp(X_{t})\int_{0}^{t}\exp(X_{t})\int_{0}^{t}\exp(X_{s}-X_{t})ds\right]$

F(+, n, y):= EQ[Φ(y + exp(w)) exp(* 15-t'z+(-2)(s-t))ds]

0' opics Ino: dx = 1.ds - 1 1 025 dt = 0 dW+(2-0)dt

1) Dynamique de X_t sous Q On a d'après le modèle de BS sous Q:

3.
$$f$$
 be close $C^{1,2}$
On sail que le prix actualisé est une martigale (trun de repré at)
$$d(e^{-2t}f(t_1X_{t_1}Y_{t_1})) = e^{-2t}df(t_1X_{t_1}Y_{t_1}) - ne^{-2t}f(t_1X_{t_1}Y_{t_1}) + ne^{-2t}df(t_1X_{t_1}Y_{t_1}) +$$

Donc negale =
$$3 + f(t, x, y) + 3 + f(t, x, y)(x - \frac{\pi^2}{2}) + \exp(x) f(t, x, y)$$

$$\int_{2}^{1} \frac{1}{2} \frac{1}{x^2} F(t, x, y) \sigma^2 - \lambda F(t, x, y) = 0, \quad \forall (x, y) \in \mathbb{R}^{n}$$

$$F(T, x, y) = \phi(y)$$

$$F(T,n,y) = \phi(y)$$

$$4. d\vec{F} = F(0, \ln S_0, 0) + \int_0^t \frac{\partial_x F(s, X_S, Y_S)}{2} \vec{S}_S \sigma dW_S$$

 $\xi^* := \frac{\partial_x F(t, \chi_t, \gamma_t)}{\Im_t^2}$ Exercice 2 (Barrier Ophian and POF)

Exercice 2 (Bosnier Oprion and POF)
$$\xi := 1_{\{\theta = T, S_T < H\}} (S_T - K)_+ \quad \text{on} \quad \theta = \inf_{\theta = T} \{0, S_+ > H\} \wedge T$$

ga veux dire que si St dépasse un certain mentant alors au peur pas demander de le vendre pour K et c'est perdu. Danc le prix sera a priori

meindre puisque on peut re join au + H-K alors que S7-K offre de meilleux

pomibilités.

À faie: volatilité institute

o volatilité escale (Faire de pozafeuille 5-septer

aux Avidardes

Dupine . Volatilité implicite