

Derived RV probability models

Given X and $f_X(x)$, find the PDF of Y = g(X)

- 1. Find CDF of Y; $P[Y \le y]$ by plugging Y = g(x)
- 2. Obtain PDF of Y as $f_Y(y) = \frac{dF_Y(y)}{dy}$

 $F_Y(y) = F_X(y-b)$ and $f_Y(y) = f_X(y-b)$

Constant multiplication transformation: If Y = aX, we have

For
$$a > 0$$
: $F_Y(y) = F_X\left(\frac{y}{a}\right)$, $f_Y(y) = \frac{1}{a}f_X\left(\frac{y}{a}\right)$
For $a < 0$: $F_Y(y) = 1 - F_X\left(\frac{y}{a}\right)$, $f_Y(y) = -\frac{1}{a}f_X\left(\frac{y}{a}\right)$

General linear transformation: If Y = aX + b, we have

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

Quadratic transformation: If $Y = aX^2 + b$, where a > 0,

$$f_Y(y) = f_X\left(\sqrt{\frac{y-b}{a}}\right) \times \frac{1}{2a\sqrt{\frac{y-b}{a}}} + f_X\left(-\sqrt{\frac{y-b}{a}}\right) \times \frac{1}{2a\sqrt{\frac{y-b}{a}}}$$

How to generate RV Y of desired distribution $F_Y(y)$:

- 1. Generate a RV $X \sim \text{Uniform}(0, 1)$
- 2. Generate Y by plugging X into $Y = F_v^{-1}(X)$. $X \sim U(0,1) \rightarrow F_Y^{-1}(\cdot) \rightarrow Y$ with CDF $F_Y(y)$

Pairs of Random Variables

Bivariate RV: $S_{X,Y} = \{(x,y) | \zeta \in S, X(\zeta) = x \text{ and } Y(\zeta) = y\}$

Joint CDF: $F_{X,Y}(x,y) = P[X \le x, Y \le y]$

Properties of joint CDF:

- $a) \quad 0 \le F_{X,Y}(x,y) \le 1$
- b) $F_X(x) = F_{X,Y}(x, \infty)$
- c) $F_Y(y) = F_{X,Y}(\infty, y)$
- d) $F_{X,Y}(-\infty, y) = F_{X,Y}(x, -\infty) = 0$
- e) $F_{X,Y}(\infty,\infty) = P[X \le \infty, Y \le \infty] = 1$

f) If $x_1 \le x_2$ and $y_1 \le y_2$, then $F_{X,Y}(x_1, y_1) \le F_{X,Y}(x_2, y_2)$ Means that $F_{X,Y}(x,y)$ is non-decreasing in the "northeast" direction

Joint PMF for discrete RVs X and Y: $p_{X,Y}(x,y) = P[X = x, Y = y]$ Properties of joint PMF:

- a) $0 \le p_{X,Y}(x,y) \le 1$ for all $(x,y) \in S_{X,Y}$
- b) $\sum \sum_{(x,y)\in S_{X,Y}} p_{X,Y}(x,y) = 1$
- c) When $(X,Y) \in B$, we say event B occurs and

$$P[B] = P[(X,Y) \in B] = \sum_{(x,y) \in B} p_{X,Y}(x,y)$$

Marginal PMF:

$$p_X(x) = \sum_{y \in S_Y} p_{X,Y}(x,y), \qquad p_Y(y) = \sum_{x \in S_X} p_{(X,Y)}(x,y)$$
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \qquad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Joint PDF: $F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) du dv$, $f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$

Some properties of joint PDF:

- a) $P[x_1 < X \le x_2, y_1 < Y \le y_2] = F_{X,Y}(x_2, y_2) F_{X,Y}(x_2, y_1) F_{X,Y}(x_2, y_2)$ $F_{X,Y}(x_1, y_2) + F_{X,Y}(x_1, y_1)$
- b) $f_{X,Y}(x,y) \ge 0$ for all (x,y)
- c) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
- d) $P[B] = \iint_{(x,y)\in B} f_{X,Y}(x,y) dxdy$

Function of two RVs, when W = g(X,Y);

PMF: $p_W(w) = \sum \sum_{\{(x,y)|g(x,y)=w\}} p_{X,Y}(x,y)$

CDF:
$$F_W(w) = \int \int_{(x,y)\in\{g(x,y)\leq w\}} f_{X,Y}(x,y) dx dy$$
, $f_W(w) = \frac{dF_W(w)}{dw}$

CDF of W = max(X,Y): $F_W(w) = \int_{-\infty}^w \int_{-\infty}^w f_{X,Y}(x,y) dx dy$

Expected value (discrete): $E[W] = \sum_{x \in S_X} \sum_{y \in S_Y} g(x,y) p_{X,Y}(x,y)$ Expected value (continuous): $E[W] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$

Another theorem:

 $E[g_1(X,Y) + \dots + g_n(X,Y)] = E[g_1(X,Y)] + \dots + E[g_n(X,Y)]$

Covariance of two RVs

Covariance: $Cov[X,Y] = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$

Variance rule thing: Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

Correlation coefficient: $\rho_{X,Y} = \frac{Cov[X,Y]}{\sigma_X\sigma_Y}$, it is always $-1 \le \rho_{X,Y} \le 1$

Constant addition transformation: If Y = X + b, we have $\rho_{X,Y} = +1$ is strong positive relationship, -1 is strong negative, 0 is uncorrelated

Conditioning and Independent RVs

Conditional joint PMF:
$$p_{X,Y|B}(x,y) = \begin{cases} \frac{p_{X,Y}(x,y)}{P[B]}, & (x,y) \in B \\ 0, & otherwise \end{cases}, \sum \sum_{(x,y) \in B} p_{X,Y|B}(x,y) = 1$$

Marginal PMFs: $p_{X|B}(x) = \sum_{y \in S_y} p_{X,Y|B}(x,y)$, $p_{Y|B}(y) = \sum_{x \in S_X} p_{X,Y|B}(x,y)$

Conditional joint PDF:
$$f_{X,Y|B}(x,y) = \begin{cases} \frac{f_{X,Y}(x,y)}{P[B]}, (x,y) \in B \\ 0, & otherwise \end{cases}$$
, $\int_{(x,y)\in B} f_{X,Y|B}(x,y) dx dy = 1$

Marginal PDFs: $f_{X|B}(x) = \int_{-\infty}^{\infty} f_{X,Y|B}(x,y) dy$, $f_{Y|B}(y) = \int_{-\infty}^{\infty} f_{X,Y|B}(x,y) dx$ Conditional exp. val. discrete: $E[W|B] = \mu_{W|B} = \sum \sum_{(x,y) \in B} g(x,y) p_{X,Y|B}(x,y)$

Conditional exp. val. continuous: $E[W|B] = \mu_{W|B} = \int \int_{(x,y)\in B} g(x,y) f_{X,Y|B}(x,y) dxdy$

Variance conditional: $Var[W|B] = \sigma_{W|B}^2 = E[W^2|B] - (E[W|B])^2$

Another conditional PMF: $p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y) = p_{Y|X}(y|x)p_X(x)$

Another conditional PDF: $f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$ Another expected value discrete: $E[g(X,Y)|Y=y] = \sum_{x \in S_X} g(x,y) p_{X|Y}(x|y)$

Another expected value continuous: $E[g(X,Y)|Y=y] = \int_{-\infty}^{\infty} g(x,y) f_{X|Y}(x|y) dx$

Independence, iff: $p_{X,Y}(x,y) = p_X(x)p_Y(y)$, $f_{X,Y}(x,y) = f_X(x)f_Y(y) = F_X(x)F_Y(y)$ Important stuff to remember about independence:

- a) E[g(X)h(Y)] = E[g(X)]E[h(Y)]
- E[XY] = E[X]E[Y]
- c) Cov[X,Y]=0
- Var[X + Y] = Var[X] + Var[Y]
- E[X|Y = y] = E[X], E[Y|X = x] = E[Y]

Bivariate Gaussian

Bivariate standard Gaussian: $f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-(x^2-2\rho xy+y^2)/[2(1-\rho^2)]}$

Marginal PDFs: $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$

General bivariate gaussian RV

$$f_{X,Y}(x,y) = \frac{exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right\}}{2(1-\rho^2)\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right\}}$$

Conditional (You can switch around X and Y, same thing):

Bivariate Gaussian RVs are uncorrelated iff X

and Y are independent

Note: iff = if and only if

Consequently, given X=x, the conditional expected value and variance $VAR[Y|X=x] = \tilde{\sigma}_2^2$ $\mathsf{E}[Y|X=x] = \tilde{\mu}_2(x)$

Miscellaneous miscellanea

PDF of W = X + Y: $f_W(w) = \int_{-\infty}^{\infty} f_{X,Y}(x, w - x) dx = \int_{-\infty}^{\infty} f_{X,Y}(w - y, y) dy$

When independent (same for y): $\int_{-\infty}^{\infty} f_{X,Y}(x, w - x) dx = \int_{-\infty}^{\infty} f_X(x) f_Y(w - x) dx$

Characteristic function (CHF): $\Phi_X(\omega) = E[e^{j\omega x}] = \int_{-\infty}^{\infty} e^{j\omega x} f_X(x) dx$

Inverse Fourier transform: $f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_X(\omega) e^{-j\omega x} d\omega$

Moment theorem: $\frac{1}{i^n} \frac{d^n}{d\omega^n} \Phi_X(\omega)|_{\omega=0}$

When Z = X + Y: $\Phi_Z(\omega) = \Phi_X(\omega)\Phi_Y(\omega)$

Central Limit Theorem, where $Z_n=\frac{S_n-n\mu}{\sigma\sqrt{n}}$, also $E[Z_n]=0$, $Var[Z_n]=1$:

$$\lim_{n \to \infty} P[Z_n \le z] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx$$

Parameter estimation

Bias: $B = E[\hat{\theta}] - \theta$, unbiased if B = 0

Consistency: $\lim_{n\to\infty} P[|\hat{\theta}_n - \theta| > \epsilon] = 0$ for $\epsilon > 0$

Variance: $\sigma_{\hat{\theta}}^2 = E\left[\left(\hat{\theta} - E\left[\hat{\theta}\right]\right)^2\right]$

Mean squared error: $MSE(\hat{\theta}) = E |(\hat{\theta} - \theta)^2|$

Efficiency rule: better if var is lower. Minimum var is MVUE Minimum mean squared error: $MSE(\hat{\theta}_{MMSE}) \leq MSE(\hat{\theta}_{0})$

Maximum likelihood estimation: $\hat{\theta}_{ML} = \max L(\theta)$ or $\max \ln L(\theta)$