RIEMANNIAN SYMMETRIC SPACE

BOWEN LIU

CONTENTS

1. Geometric viewpoints	2
1.A. Basic definitions and properties	2
1.B. Symmetric space, locally symmetric space and homogeneous space	3
2. Lie group viewpoint	7
2.A. Review of Killing fields	7
2.B. Riemannian symmetric space as a quotient	9
2.C. Riemannian symmetric pair	11
2.D. Transvection	12
3. Curvature of Riemannian symmetric space	15
4. Classifications and examples	18
4.A. Irreducible space	18
4.B. Classification of Riemannian symmetric space	18
4.C. Examples of Riemannian symmetric space	18
Appendix A. Appendix	20
References	21

1. Geometric viewpoints

1.A. Basic definitions and properties.

1.A.1. Riemannian symmetric space.

Definition 1.1 (Riemannian symmetric space). A Riemannian manifold (M, g) is called a Riemannian symmetric space if for each $p \in M$ there exists an isometry $\varphi : M \to M$, which is called a symmetry at p, such that $\varphi(p) = p$ and $(d\varphi)_p = -\mathrm{id}$.

Remark 1.2. Note that Theorem A.1, that is rigidity property of isometry, implies if symmetry at point p exists, then it's unique.

Example 1.3. Let g_{can} be the Euclidean metric on \mathbb{R}^n . For each $p \in \mathbb{R}^n$, the reflection

$$\varphi(x) = 2p - x$$

is a symmetric at point p. Thus (\mathbb{R}^n, g_{can}) is a Riemannian symmetric space.

Example 1.4. Let g_{can} be the metric of S^n induced from $(\mathbb{R}^{n+1}, g_{\text{can}})$. For each $p \in S^n$, the reflection

$$\varphi(x) = 2\langle x, p \rangle p - x$$

is a symmetric at point p. Thus (S^n, g_{can}) is a Riemannian symmetric space.

Proposition 1.5. *The following statements are equivalent.*

- (1) (M,g) is a Riemannian symmetric space.
- (2) For each $p \in M$, there exists an isometry $\varphi : M \to M$ such that $\varphi^2 = \operatorname{id}$ and p is an isolated fixed point of φ .

Proof. From (1) to (2). Let φ be a symmetry at $p \in M$. Since $(\mathrm{d}\varphi^2)_p = (\mathrm{d}\varphi)_p \circ (\mathrm{d}\varphi)_p = \mathrm{id}$ and $\varphi^2(p) = p$, one has $\varphi^2 = \mathrm{id}$ by Theorem A.1. If p is not an isolated fixed point, then there exists a sequence $\{p_i\}_{i=1}^\infty$ converging to p such that $\varphi(p_i) = p_i$. For $0 < \delta < \mathrm{inj}(p)$, there exists sufficiently large k such that $p_k \in B(p,\delta)$, and we denote $v = \exp_p^{-1}(p_k)$. Since φ is an isometry, one has $\varphi(\exp_p(tv))$ and $\exp_p(tv)$ are two geodesics connecting p and p_k , and thus

$$\varphi(\exp_p(tv)) = \exp_p(tv)$$

by uniqueness. In particular, one has $v = (d\varphi)_p v$, which is a contradiction.

From (2) to (1). From $\varphi^2 = \operatorname{id}$ we have $(\operatorname{d}\varphi)_p^2 = \operatorname{id}$, so only possible eigenvalues of $(\operatorname{d}\varphi)_p$ are ± 1 . Now it suffices to show all eigenvalues of $(\operatorname{d}\varphi)_p$ are -1. Otherwise if it has an eigenvalue 1, there exists some non-zero $v \in T_pM$ such that $(\operatorname{d}\varphi)_p v = v$. Since φ is an isometry, one has $\varphi(\exp_p(tv))$ and $\exp_p(tv)$ are geodesics with the same direction at p. Thus

$$\varphi(\exp_p(tv)) = \exp_p(tv)$$

for 0 < t < inj(p). In particular, p is not an isolated fixed point, which is a contradiction.

Proposition 1.6. The fundamental group of a Riemannian symmetric space is abelian.

Corollary 1.7. A surface of genus $g \ge 2$ does not admit a Riemannian metric with respect to which it is a symmetric space.

1.A.2. Locally Riemannian symmetric space.

Definition 1.8 (locally Riemannian symmetric space). A Riemannian manifold (M, g) is called a locally Riemannian symmetric space if each $p \in M$ has a neighborhood U such that there exists an isometry $\varphi: U \to U$ such that $\varphi(p) = p$ and $(d\varphi)_p = -\mathrm{id}$.

Theorem 1.9. Let (M, g) be a complete Riemannian manifold. The following statements are equivalent.

- (1) (M,g) is a locally Riemannian symmetric space.
- (2) $\nabla R = 0$.

Proof. From (1) to (2). If φ is the symmetry at point $p \in M$, then it's an isometry such that $(d\varphi)_p = -\mathrm{id}$, and thus for $u, v, w, z \in T_pM$, one has

$$\begin{split} -\nabla_{u}R(v,w)z &= (\mathrm{d}\varphi)_{p} \left(\nabla_{u}R(v,w)z\right) \\ &= \nabla_{(\mathrm{d}\varphi)_{p}u}((\mathrm{d}\varphi)_{p})v, (\mathrm{d}\varphi)_{p}w)(\mathrm{d}\varphi)_{p}z \\ &= \nabla_{u}R(v,w)z \end{split}$$

This shows $(\nabla R)_p = 0$, and thus $\nabla R = 0$ since p is arbitrary.

From (2) to (1). For arbitrary $p \in M$, it suffices to show

$$\varphi = \exp_p \circ \Phi_0 \circ \exp_p^{-1} : B(p, \delta) \to B(p, \delta)$$

is an isometry, where $0 < \delta < \operatorname{inj}(p)$ and $\Phi_0 = -\operatorname{id}: T_pM \to T_pM$. For $v \in T_pM$ with $|v| < \delta$ and $\gamma(t) = \exp_p(tv), \widetilde{\gamma}(t) = \exp_p(t\Phi_0(v))$, if we define

$$\Phi_t = P_{0,t;\widetilde{\gamma}} \circ \Phi_0 \circ P_{t,0;\gamma}$$

then direct computation shows

$$\begin{split} \Phi_t^* R_{\widetilde{\gamma}(t)} &= (P_{t,0;\gamma})^* \circ \Phi_0^* \circ (P_{0,t;\widetilde{\gamma}})^* R_{\widetilde{\gamma}(t)} \\ &\stackrel{(a)}{=} (P_{t,0;\gamma})^* \circ \Phi_0^* R_{\widetilde{\gamma}(0)} \\ &\stackrel{(b)}{=} (P_{t,0;\gamma})^* R_{\gamma(0)} \\ &\stackrel{(c)}{=} R_{\gamma(t)} \end{split}$$

where

- (a) and (c) holds from Proposition A.5.
- (b) holds from $\widetilde{\gamma}(0) = \gamma(0)$ and R is a (0, 4)-tensor.

Then by Theorem A.2, that is Cartan-Ambrose-Hicks's theorem, φ is an isometry, which completes the proof.

- 1.B. **Symmetric space, locally symmetric space and homogeneous space.** In this section, we will show any complete locally Riemannian symmetric space is a quotient of Riemannian symmetric space (Corollary 1.11), and any Riemannian symmetric space is a Riemannian homogeneous space (Corollary 1.16).
- 1.B.1. Riemannian symmetric space and locally Riemannian symmetric space.

Theorem 1.10. Let (M,g) be a complete, simply-connected locally Riemannian symmetric space. Then (M,g) is a Riemannian symmetric space.

Proof. For $p \in M$ and $0 < \delta < \operatorname{inj}(p)$, suppose $\varphi : B(p, \delta) \to B(p, \delta)$ is an isometry such that $\varphi(p) = p$ and $(d\varphi)_p = -\operatorname{id}$. For arbitrary $q \in M$, we use $\Omega_{p,q}$ to denote all curves γ with $\gamma(0) = p, \gamma(1) = q$, and for $c \in \Omega_{p,q}$ we choose a covering $\{B(p_i, \delta_i)\}_{i=0}^k$ of c such that

- (1) $0 < \delta_i < \operatorname{inj}(p_i)$.
- (2) $B(p_0, \delta_0) = B(p, \delta)$ and $p_k = q$.
- (3) $p_{i+1} \in B(p_i, \delta_i)$.

If we set $\varphi = \varphi_0$, then we can define isometries $\varphi_i : B(p_i, \delta_i) \to M$ such that $\varphi_i(p_i) = \varphi_{i-1}(p_i)$ and $(d\varphi_i)_{p_i} = (d\varphi_{i-1})_{p_i}$ by using Cartan-Ambrose-Hicks's theorem successively, and by Theorem A.1 one has φ_i and φ_{i+1} coincide on $B(p_i, \delta_i) \cap B(p_{i+1}, \delta_i)$. The covering together with isometries we construct is denoted by $\mathcal{A} = \{B(p_i, \delta_i), \varphi_i\}_{i=0}^k$. For arbitrary $x \in [0, 1]$, if $c(x) \in B(p_m, \delta_m)$, we may define

$$\varphi_{\mathcal{A}}(c(x)) := \varphi_m(c(x))$$
$$(d\varphi_{\mathcal{A}})_{c(x)} := (d\varphi_m)_{c(x)}$$

In particular, $\varphi_{\mathcal{A}}(q) := \varphi_k(q)$. If $\mathcal{B} = \{\widetilde{B}(\widetilde{p}_i, \widetilde{\delta}_i), \widetilde{\varphi}_i\}_{i=0}^l$ is another covering of c, let's show $\varphi_{\mathcal{A}}(q) = \varphi_{\mathcal{B}}(q)$. Consider

$$I = \{x \in [0,1] \mid \varphi_{\mathcal{A}}(c(x)) = \varphi_{\mathcal{B}}(c(x)), (\mathrm{d}\varphi_{\mathcal{A}})_{c(x)} = (\mathrm{d}\varphi_{\mathcal{B}})_{c(x)}\}$$

It's clear $I \neq \emptyset$, since $0 \in I$. Now it suffices to show it's both open and closed to conclude $1 \in I$.

(a) It's open: For $x \in I$, we assume $c(x) \in B(p_m, \delta_m) \cap \widetilde{B}(\widetilde{p}_n, \widetilde{\delta}_n)$, that is

$$\varphi_m(c(x)) = \widetilde{\varphi}_n(c(x))$$
$$(d\varphi_m)_{c(x)} = (d\widetilde{\varphi}_n)_{c(x)}$$

Then one has

$$\begin{split} \varphi_m \circ \exp_{c(x)}(v) &= \exp_{\varphi_m(c(x))} \circ (\mathrm{d}\varphi_m)_{c(x)}(v) \\ &= \exp_{\widetilde{\varphi}_n(c(x))} \circ (\mathrm{d}\widetilde{\varphi}_n)_{c(x)}(v) \\ &= \widetilde{\varphi}_n \circ \exp_{c(x)}(v) \end{split}$$

Since $\exp_{c(x)}$ maps onto a neighborhood of c(x), it follows that some neighborhood of x also lies in I, and thus I is open.

(b) It's closed: Let $\{x_i\}_{i=1}^{\infty} \subseteq I$ be a sequence converging to x. Without lose of generality we may assume $\{x_i\}_{i=1}^{\infty} \subseteq B(p_m, \delta_m) \cap \widetilde{B}(\widetilde{p}_n, \widetilde{\delta}_n)$, then one has

$$\varphi_m(c(x_i)) = \widetilde{\varphi}_n(c(x_i))$$
$$(d\varphi_m)_{c(x_i)} = (d\widetilde{\varphi}_n)_{c(x_i)}$$

By taking limit we obtain the desired results.

Since $\varphi_{\mathcal{A}}(q)$ is independent of the choice of coverings, we use $\varphi(q)$ to denote it for convenience, and as a consequence we obtain the following map

$$F: \Omega_{p,q} \to M$$
$$c \mapsto \varphi(q)$$

¹Since injective radius is a continuous function, it has a positive minimum on curve c, so such covering exists.

Note that F(c) is locally constant, and thus it's independent of the choice of homotopy classes of c. Since M is simply-connected, one has $F: \Omega_{p,q} \to M$ is constant, so we obtain a local isometry $\varphi: M \to M$ which extends $\varphi: B(p, \delta) \to B(p, \delta)$. By Proposition A.3 φ is a Riemannian covering map since M is complete, and thus φ is a diffeomorphism since M is simply-connected, which implies φ is an isometry.

Corollary 1.11. Let (M,g) be a complete locally Riemannian symmetric space. Then it's isometric to $(\widetilde{M}/\Gamma,\widetilde{g})$ where $(\widetilde{M},\widetilde{g})$ is a Riemannian symmetric space and Γ is a discrete Lie group acting on \widetilde{M} freely, properly and isometrically.

Proof. Let $(\widetilde{M}, \widetilde{g})$ be the universal covering of (M, g) with pullback metric. Then $(\widetilde{M}, \widetilde{g})$ is a simply-connected Riemannian manifold with parallel curvature tensor. Furthermore, by Proposition A.6 it's complete, hence it is symmetric.

As a consequence, above argument about analytic continuation can be used to give a proof of Hopf's theorem.

Theorem 1.12 (Hopf). Let (M, g) be a complete, simply-connected Riemannian manifold with constant sectional curvature K. Then (M,g) is isometric to

$$(\widetilde{M}, g_{can}) = \begin{cases} (\mathbb{S}^n(\frac{1}{\sqrt{K}}), g_{can}) & K > 0\\ (\mathbb{R}^n, g_{can}) & K = 0\\ (\mathbb{H}^n(\frac{1}{\sqrt{-K}}), g_{can}) & K < 0 \end{cases}$$

Proof. For $p \in M$, $\widetilde{p} \in \widetilde{M}$ and $\delta < \min\{\inf(p), \inf(\widetilde{p})\}$. By Cartan-Ambrose-Hicks's theorem, there exists an isometry $\varphi: B(p,\delta) \to B(\widetilde{p},\delta)$ such that $\varphi(p) = \widetilde{p}$ and $(d\varphi)_p$ equals to a given linear isometry, since both (M,g) and $(\widetilde{M},\widetilde{g})$ have constant sectional curvature K. By the same argument in proof of Theorem 1.10, there is an isometry $\varphi: (M,g) \to (\widetilde{M},\widetilde{g})$ which extends $\varphi: B(p,\delta) \to B(\widetilde{p},\delta)$. In particular, this completes the proof.

1.B.2. Riemannian symmetric space and Riemannian homogeneous space.

Definition 1.13 (Riemannian homogeneous space). A Riemannian manifold (M,g) is called a Riemannian homogeneous space, if Iso(M, g) acts on M transitively.

Proposition 1.14. Let (M,g) be a Riemannian homogeneous space. If there exists a symmetry at some point $p \in M$, then (M,g) is a Riemannian symmetric space.

Proof. Let φ be a symmetry at $p \in M$. For arbitrary $q \in M$, there exists an isometry $\psi: M \to M$ such that $\psi(p) = q$ since (M, g) is a Riemannian homogeneous space. Then

$$\varphi_q := \psi \circ \varphi \circ \psi^{-1}$$

is the desired symmetry at q.

Theorem 1.15. Let (M, g) be a Riemannian symmetric space. Then

- (1) (M,g) is complete.
- (2) for any isometry $\varphi: M \to M$ with $(d\varphi)_p = -\mathrm{id}$ and $\varphi(p) = p$, if $v \in T_pM$, then

$$\varphi(\exp_p(v)) = \exp_p(-v)$$

(3) the isometry group Iso(M, g) acts transitively on M.

Proof. For (1). For arbitrary geodesic $\gamma: [0,1] \to M$ with $\gamma(0) = p, \gamma'(0) = v$, the curve $\beta(t) = \varphi(\gamma(t)): [0,1] \to M$ is also a geodesic with $\beta(0) = p$ and $\beta'(0) = -v$. Now we obtain a smooth extension $\gamma': [0,2] \to M$ of γ , given by

$$\gamma'(t) = \begin{cases} \beta(1-t), & t \in [0,1] \\ \gamma(t-1), & t \in [1,2] \end{cases}$$

Repeat above process to extend γ to a geodesic defined on \mathbb{R} , this shows completeness.

For (2). Note that $\varphi(\exp_p(tv))$ and $\exp_p(-tv)$ are geodesics starting at p with the same direction since φ is an isometry, and thus $\varphi(\exp_p(tv)) = \exp_p(-tv)$. Furthermore, since (M,g) is complete, one has $\varphi(\exp_p(tv))$ and $\exp_p(-tv)$ are defined on \mathbb{R} . In particular, one has $\varphi(\exp_p(v)) = \exp_p(-v)$ by considering t=1.

For (3). Let $\gamma: [0,1] \to M$ be a geodesic connecting $p,q \in M$, and $\varphi_m: M \to M$ is the symmetry at $m = \gamma(\frac{1}{2})$. If we consider $\beta(t) = \varphi_m(\gamma(\frac{1}{2} - t))$, then $\beta(0) = m, \beta'(0) = \gamma'(\frac{1}{2})$, which implies $\beta(t) = \gamma(\frac{1}{2} + t)$. Therefore $q = \gamma(1) = \beta(\frac{1}{2}) = \varphi_m(\gamma(0)) = \varphi_m(p)$.

Corollary 1.16. The Riemannian symmetric space (M,g) is a Riemannian homogeneous space.

2. LIE GROUP VIEWPOINT

2.A. Review of Killing fields.

2.A.1. Basic properties.

Proposition 2.1. Let (M,g) be a Riemannian manifold and X be a Killing field.

- (1) If γ is a geodesic, then $J(t) = X(\gamma(t))$ is a Jacobi field.
- (2) For any two vector fields Y, Z,

$$\nabla_{Y}\nabla_{Z}X - \nabla_{\nabla_{Y}Z}X + R(X,Y)Z = 0$$

Proof. For (1). Suppose φ_s is the flow generated by X. Then we obtain a variation $\alpha(s, t) = \varphi_s(\gamma(t))$ consisting of geodesics, and thus

$$X(\gamma(t)) = \frac{\partial \varphi_s(\gamma(t))}{\partial s}\bigg|_{s=0}$$

is a Jacobi field.

For (2). It's an equation of tensors, so we check it pointwisely and use normal coordinate $\{x^i\}$ centered at p. Furthermore, we assume $X = X^i \frac{\partial}{\partial x^i}$, $Y = \frac{\partial}{\partial x^j}$, $Z = \frac{\partial}{\partial x^k}$. Then

$$\begin{split} \nabla_{Y}\nabla_{Z}X - \nabla_{\nabla_{Y}Z}X + R(X,Y)Z &= \nabla_{j}\nabla_{k}X + X^{i}R^{l}_{ijk}\frac{\partial}{\partial x^{l}} \\ &= (\frac{\partial^{2}X^{l}}{\partial x^{j}\partial x^{k}} + X^{i}\frac{\partial\Gamma^{l}_{ki}}{\partial x^{j}} + X^{i}R^{l}_{ijk})\frac{\partial}{\partial x^{l}} \\ &= (\frac{\partial^{2}X^{l}}{\partial x^{j}\partial x^{k}} + X^{i}\frac{\partial\Gamma^{l}_{jk}}{\partial x^{i}})\frac{\partial}{\partial x^{l}} \end{split}$$

since $R_{ijk}^l = \frac{\partial \Gamma_{jk}^l}{\partial x^i} - \frac{\partial \Gamma_{ik}^l}{\partial x^j} + \Gamma_{jk}^s \Gamma_{is}^l - \Gamma_{ik}^s \Gamma_{js}^l$. Now it suffices to show $\frac{\partial^2 X^l}{\partial x^j \partial x^k} + X^l \frac{\partial \Gamma_{jk}^l}{\partial x^i} \equiv 0$. In order to show this, for arbitrary $p \in M$, consider a geodesic γ starting at p and consider Jacobi field $J(t) = X(\gamma(t))$. Direct computation shows

$$J'(t) = \left(\frac{\partial X^{l}}{\partial x^{k}} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t} + X^{l} \Gamma^{l}_{kl} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t}\right) \frac{\partial}{\partial x^{l}} \Big|_{\gamma(t)}$$

$$J''(0) = \left(\frac{\partial^{2} X^{l}}{\partial x^{j} \partial x^{k}} \frac{\mathrm{d}\gamma^{j}}{\mathrm{d}t} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t} + X^{l} \frac{\partial \Gamma^{l}_{kl}}{\partial x^{j}} \frac{\mathrm{d}\gamma^{j}}{\mathrm{d}t} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t}\right) \frac{\partial}{\partial x^{l}} \Big|_{p}$$

$$= \left(\frac{\partial^{2} X^{l}}{\partial x^{j} \partial x^{k}} + X^{l} \frac{\partial \Gamma^{l}_{kl}}{\partial x^{j}}\right) \frac{\mathrm{d}\gamma^{j}}{\mathrm{d}t} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t} \frac{\partial}{\partial x^{l}} \Big|_{p}$$

$$= \left(\frac{\partial^{2} X^{l}}{\partial x^{j} \partial x^{k}} + X^{l} \frac{\partial \Gamma^{l}_{jk}}{\partial x^{l}} + X^{l} \frac{\partial \Gamma^{l}_{kl}}{\partial x^{j}} - X^{l} \frac{\partial \Gamma^{l}_{jk}}{\partial x^{l}}\right) \frac{\mathrm{d}\gamma^{j}}{\mathrm{d}t} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t} \frac{\partial}{\partial x^{l}} \Big|_{p}$$

$$= \left(\frac{\partial^{2} X^{l}}{\partial x^{j} \partial x^{k}} + X^{l} \frac{\partial \Gamma^{l}_{jk}}{\partial x^{l}}\right) \frac{\mathrm{d}\gamma^{j}}{\mathrm{d}t} \frac{\mathrm{d}\gamma^{k}}{\mathrm{d}t} \frac{\partial}{\partial x^{l}} \Big|_{p} - R(X, \gamma')\gamma'$$

which implies

$$\frac{\partial^2 X^l}{\partial x^j \partial x^k} + X^i \frac{\partial \Gamma^l_{jk}}{\partial x^i} = 0$$

holds at point p, and since p is arbitrary, this completes the proof.

Corollary 2.2. Let (M, g) be a complete Riemannian manifold and $p \in M$. Then a Killing field X is determined by the values X_p and $(\nabla X)_p$ for arbitrary $p \in M$.

Proof. The equation $\mathcal{L}_X g \equiv 0$ is linear in X, so the space of Killing fields is a vector space. Therefore, it suffices to show if $X_p = 0$ and $(\nabla X)_p = 0$, then $X \equiv 0$. For arbitrary $q \in M$, let $\gamma : [0,1] \to M$ be a geodesic connecting p and q with $\gamma'(0) = v$. Since $J(t) = X(\gamma(t))$ is a Jacobi field, and a direct computation shows

$$(\nabla_v X)_p = J'(0)$$

Thus $J(t) \equiv 0$, since Jacobi field is determined by two initial values. In particular, $X_q = J(1) = 0$, and since q is arbitrary, one has $X \equiv 0$.

Corollary 2.3. The dimension of vector space consisting of Killing fields $\leq n(n+1)/2$.

Proof. Note that ∇X is skew-symmetric and the dimension of skew-symmetric matrices is n(n-1)/2. Thus the dimension of vector space consisting of Killing fields ≤ n + n(n-1)/2 = n(n+1)/2.

2.A.2. Killing field as the Lie algebra of isometry group.

Lemma 2.4. Killing field on a complete Riemannian manifold (M, g) is complete.

Proof. For a Killing field X, we need to show the flow $\varphi_t: M \to M$ generated by X is defined for $t \in \mathbb{R}$. Otherwise, we assume φ_t is defined on (a,b). Note that for each $p \in M$, curve $\varphi_t(p)$ is a curve defined on (a,b) having finite constant speed, since φ_t is isometry. Then we have $\varphi_t(p)$ can be extended to the one defined on \mathbb{R} , since M is complete.

Theorem 2.5. Let (M, g) be a complete Riemannian manifold and \mathfrak{g} the space of Killing fields. Then \mathfrak{g} is isomorphic to the Lie algebra of G = Iso(M, g).

Proof. It's clear \mathfrak{g} is a Lie algebra since $[\mathcal{L}_X, \mathcal{L}_Y] = \mathcal{L}_{[X,Y]}$. Now let's see it's isomorphic to Lie algebra consisting of Killing field as Lie algebra.

- (1) Given a Killing field X, by Lemma 2.4, one deduces that the flow $\varphi : \mathbb{R} \times M \to M$ generated by X is a one parameter subgroup $\gamma : \mathbb{R} \to G$, and $\gamma'(0) \in T_eG$.
- (2) Given $v \in T_eG$, consider the one-parameter subgroup $\gamma(t) = \exp(tv)$: $\mathbb{R} \to G$ which gives a flow by

$$\varphi: \mathbb{R} \times M \to M$$
$$(t, p) \mapsto \exp(tv) \cdot p$$

Then the vector field *X* generated by this flow is a Killing field.

This gives a one to one correspondence between Killing fields and Lie algebra of G, and it's a Lie algebra isomorphism.

Corollary 2.6 (Cartan decomposition). Let (M,g) be a complete Riemannian manifold and G = Iso(M,g) with Lie algebra \mathfrak{g} . The Lie algebra \mathfrak{g} of G has a decomposition as vector spaces

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$$

where

$$\mathfrak{f} = \{X \in \mathfrak{g} \mid X_p = 0\}$$

$$\mathfrak{m} = \{X \in \mathfrak{g} \mid (\nabla X)_p = 0\}$$

and they satisfy

$$[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k},\quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{k},\quad [\mathfrak{k},\mathfrak{m}]\subseteq\mathfrak{m}$$

Proof. The decomposition follows from Corollary 2.2 and Theorem 2.5, and it's easy to see

$$[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k},\quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{k}$$

For arbitrary $X \in \mathfrak{k}$, $Y \in \mathfrak{m}$ and $v \in T_{p}M$, one has

$$\nabla_{v}[X,Y] = \nabla_{v}\nabla_{X}Y - \nabla_{v}\nabla_{Y}X$$

$$= -R(Y,v)X + \nabla_{\nabla_{v}X}Y + R(X,v)Y - \nabla_{\nabla_{v}Y}X$$

$$= 0$$

since $X_p = 0$ and $(\nabla Y)_p = 0$. This shows $[\mathfrak{k}, \mathfrak{m}] \subseteq \mathfrak{m}$.

2.B. Riemannian symmetric space as a quotient.

Definition 2.7 (involution). Let G be a Lie group. An automorphism σ of G is called an involution if $\sigma^2 = id_G$.

Definition 2.8 (Cartan decomposition). Let G be a Lie group and σ be an involution of G. The eigen-decomposition of \mathfrak{g} given by $(d\sigma)_e$ is called Cartan decomposition, that is,

$$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$$

where

$$\mathfrak{f} = \{X \in \mathfrak{g} \mid (\mathrm{d}\sigma)_{e}(X) = X\}$$

$$\mathfrak{m} = \{X \in \mathfrak{g} \mid (\mathrm{d}\sigma)_{e}(X) = -X\}$$

Proposition 2.9. Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ be a Cartan decomposition given by σ . Then

$$[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k}, \quad [\mathfrak{k},\mathfrak{m}]\subseteq\mathfrak{m}, \quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{k}$$

Proof. It follows from

$$(d\sigma)_{\rho}([X,Y]) = [(d\sigma)_{\rho}(X), (d\sigma)_{\rho}(Y)]$$

where $X, Y \in \mathfrak{g}$.

Theorem 2.10. Let (M,g) be a Riemannian symmetric space and G be the identity component of Iso(M,g). For $p \in M$, K denotes the isotropic group of G_p .

- (1) The mapping $\sigma: G \to G$, given by $\sigma(g) = s_p g s_p$ is an involution automorphism of G.
- (2) If G^{σ} is the set of fixed points of σ in G, and $(G^{\sigma})_0$ is the identity component of G^{σ} , then $(G^{\sigma})_0 \subseteq K \subseteq G^{\sigma}$.
- (3) If $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ is the Cartan decomposition given by σ , then \mathfrak{k} is the Lie algebra of K.
- (4) There is a left invariant metric on G which is also right invariant under K, such that G/K with the induced metric is isometric to (M,g).

Proof. For (1). σ is an involution since for arbitrary $g \in G$, one has $\sigma^2(g) = \sigma(s_p g s_p) = s_p^2 g s_p^2 = g$ since $s_p^2 = id$.

For (2). It follows from the following two steps:

- (a) To show $K \subseteq G^{\sigma}$. For any $k \in K$, in order to show $k = s_p k s_p$, it suffices to show they and their differentials agree at some point by Theorem A.1, since both of them are isometries, and p is exactly the point we desired.
- (b) To see $(G^{\sigma})_0 \subseteq K$. Suppose $\exp(tX) \subseteq (G^{\sigma})_0$ is a one-parameter subgroup. Since $\sigma(\exp(tX)) = \exp(tX)$, one has

$$\exp(tX)(p) = s_p \exp(tX)s_p(p) = s_p \exp(tX)(p)$$

But p is an isolated fixed point of s_p , which implies $\exp(tX)(p) = p$ for all t. This shows the one-parameter subgroup lies in K. Since exponential map of Lie group is a diffeomorphism in a small neighborhood of identity element e and $(G^{\sigma})_0$ can be generated by a neighborhood of e, which implies the whole $(G^{\sigma})_0 \subseteq K$.

For (3). Note that $(G^{\sigma})_0 \subseteq K \subseteq G^{\sigma}$, it suffices to show $\mathfrak{k} \cong \text{Lie } G^{\sigma}$. For $X \in \mathfrak{k}$, we claim $\gamma_2(t) = \sigma(\exp(tX))$: $\mathbb{R} \to G$ is a one-parameter subgroup. Indeed, note that

$$\gamma_2(t) \cdot \gamma_2(s) = s_p \exp(tX) s_p \cdot s_p \exp(sX) s_p$$
$$= \sigma(\exp(tX + sX))$$
$$= \gamma_2(t + s)$$

Furthermore, $\gamma_2(t) = \sigma(\exp(tX))$ and $\gamma_1(t) = \exp(tX)$ are two one-parameter subgroups of G such that $\gamma_1(0) = \gamma_2(0)$ and $\gamma_2'(0) = (\mathrm{d}\sigma)_e(X) = X = \gamma_1'(0)$. Then $\gamma_1(t) = \gamma_2(t)$, and thus $\exp(tX) \in G^{\sigma}$ for all $t \in \mathbb{R}$. This shows $\mathfrak{k} \subseteq \mathrm{Lie}\,G^{\sigma}$, and the converse inclusion is clear, so one has $\mathfrak{k} = \mathrm{Lie}\,G^{\sigma}$.

For (4). Let $\pi: G \to M$ be the natural projection given by $\pi(g) = gp$. Then for $k \in K$ and $X \in \mathfrak{g}$ one has

$$(d\pi)_{e}(Ad_{k}X) = (d\pi)_{e} \left(\frac{d}{dt}\Big|_{t=0} k \exp(tX)k^{-1}\right)$$

$$= \frac{d}{dt}\Big|_{t=0} \pi(k \exp(tX)k^{-1})$$

$$= \frac{d}{dt}\Big|_{t=0} k \exp(tX)k^{-1} \cdot p$$

$$= \frac{d}{dt}\Big|_{t=0} k \exp(tX) \cdot p$$

$$= (dL_{k})_{p}(d\pi)_{e}(X)$$

By using the equivalent isomorphism $(d\pi)_e|_{\mathfrak{m}}: \mathfrak{m} \to T_pM$, one has an Ad(K)-invariant metric on \mathfrak{m} , and then we can extend it to an Ad(K)-invariant metric on $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ by choosing² arbitrary Ad(K)-invariant metric on \mathfrak{k} such that $\mathfrak{m} \perp \mathfrak{k}$. This shows one has a left-invariant metric on G which is also right invariant with respect to K. Now it suffices to show G/K with the induced metric is isometric to (M,g). For any $gK \in G/K$, consider the following communicative diagram

²Such metric exists since K is compact.

$$\mathfrak{m} = T_{eK}G/K \xrightarrow{(\mathrm{d}\pi)_e|_{\mathfrak{m}}} T_pM$$

$$\downarrow^{\mathrm{d}L_g} \qquad \qquad \downarrow^{\mathrm{d}L_g}$$

$$T_{gK}G/K \longrightarrow T_{gp}M$$

Since both $(d\pi)_e|_{\mathfrak{m}}$ and (dL_g) are linear isometries, one has $T_{gK}G/K$ is isometric to $T_{gp}M$, and thus G/K with induced metric is isometric to (M,g).

2.C. **Riemannian symmetric pair.** In Theorem 2.10 one can see that if (M,g) is a symmetric space, then it gives a pair of Lie groups (G,K) with an involution σ on G such that

$$(G^{\sigma})_{0} \subseteq K \subseteq G^{\sigma}$$

Then there exists a left-invariant metric on G/K such that G/K with this metric is isometric to (M,g). This motivates us an effective way to construct Riemannian symmetric spaces from a pair of Lie groups with certain properties, and such a pair is called a Riemannian symmetric pair. Unless otherwise specified, we assume G is a connected Lie group with Lie algebra \mathfrak{g} .

Definition 2.11 (Riemannian symmetric pair). Let K be a compact subgroup of G. The pair (G, K) is called a Riemannian symmetric pair if there exists an involution $\sigma : G \to G$ with $(G^{\sigma})_0 \subseteq K \subseteq G^{\sigma}$.

Example 2.12. G = SO(n+1) and K = SO(n) is a Riemannian symmetric pair given by

$$\sigma: SO(n+1) \to SO(n+1)$$

$$a \mapsto sas^{-1}$$

where $s = diag\{-1, 1, ..., 1\}$. Indeed,

$$SO(n+1)^{\sigma} = \{a \in SO(n+1) \mid sa = as\} = \left\{ \begin{pmatrix} \pm 1 & 0 \\ 0 & b \end{pmatrix} \mid b \in O(n) \right\}$$

which implies $(SO(n + 1)^{\sigma})_0 = SO(n) \subseteq SO(n + 1)$.

Example 2.13. $G = SL(n, \mathbb{R})$ and K = SO(n) is a Riemannian symmetric pair given by

$$\sigma: \operatorname{SL}(n,\mathbb{R}) \to \operatorname{SL}(n,\mathbb{R})$$
$$g \mapsto (g^{-1})^T$$

Indeed,

$$(SL(n,\mathbb{R}))^{\sigma} = SO(n)$$

Example 2.14. Let K be a compact Lie group and $G = K \times K$. Then (G, K) is a Riemannian symmetric pair given by σ , where $\sigma : G \to G$ is given by $(x, y) \mapsto (y, x)$, since

$$G^{\sigma} = \{(a, a) \mid a \in K\} \cong K$$

Proposition 2.15. Let (G, K) be a symmetric pair given by σ . Then there is an isomorphism as Lie algebras

$$\mathfrak{k} \cong \operatorname{Lie} K$$

and an isomorphism as vector spaces

$$\mathfrak{m} \cong T_{eK}G/K$$

Proof. $\mathfrak{k} \cong \operatorname{Lie} K$ follows from the same as proof of (3) in Theorem 2.10, and $\mathfrak{m} \cong T_{eK}G/K$ is an immediate consequence.

Corollary 2.16. Let $\widetilde{\sigma}: G/K \to G/K$ be the automorphism of G/K induced σ . Then $(d\widetilde{\sigma})_{eK} = -\mathrm{id}_{G/K}$.

Proof. Since $K \subseteq G^{\sigma}$, one has $\sigma : K \to K$, and thus $\widetilde{\sigma} : G/K \to G/K$ is well-defined. By construction one has $(d\widetilde{\sigma})_{eK} = (d\sigma)_e|_{\mathfrak{m}}$. Then $(d\widetilde{\sigma})_{eK} = -\mathrm{id}_{G/K}$ since $\mathfrak{m} = \{X \in \mathfrak{g} \mid (d\sigma)_e X = -X\}$.

Theorem 2.17. Let (G, K) be a Riemannian symmetric pair given by σ . Then there exists a left-invariant metric on G which is also right invariant on K such that the induced metric on G/K making it to be a Riemannian symmetric space.

Proof. For convenience we use M to denote G/K. Note that a left-invariant metric on G which is also right invariant on K is equivalent to a metric on \mathfrak{g} which is Ad(K)-invariant. Since K is compact, it admits a Ad(K)-invariant metric, and it can be extended to a Ad(K)-invariant metric on \mathfrak{g} as what we have done in the proof of (4) in Theorem 2.10. Furthermore, by Corollary 2.16 one has $(d\widetilde{\sigma})_{eK} = -\mathrm{id}_M$.

Now it suffices to show for any $gK \in M$, $(d\widetilde{\sigma})_{gK} : T_{gK}M \to T_{\sigma(g)K}M$ is an isometry. Note that $\widetilde{\sigma}(ghK) = \sigma(g)\sigma(h)K = \sigma(g)\widetilde{\sigma}(hK)$ holds for all $h \in G$. This shows $\widetilde{\sigma} \circ L_g = L_{\sigma(g)} \circ \widetilde{\sigma}$, where $L_g : M \to M$ is given by $L_g(hK) = ghK$. By taking differential one has the following communicative diagram

$$T_{eK}M \xrightarrow{(d\widetilde{\sigma})_{eK}} T_{eK}M$$

$$(dL_g)_{eK} \downarrow \qquad \qquad \downarrow (dL_{\sigma(g)})_{eK}$$

$$T_{gK}M \xrightarrow{(d\widetilde{\sigma})_{gK}} T_{\sigma(g)K}M$$

Since $(dL_g)_{eK}$, $(dL_{\sigma(g)})_{eK}$, $(d\widetilde{\sigma})_{eK}$ are isometries, one has $(d\widetilde{\sigma})_{gK}$ is also an isometry as desired.

Example 2.18. S^n is a Riemannian symmetric space, since $S^n \cong SO(n+1)/SO(n)$ and (SO(n+1), SO(n)) is a Riemannian symmetric pair.

Example 2.19. $SL(n, \mathbb{R})/SO(n)$ is a Riemannian symmetric space, and it can be viewed as a generalization of hyperbolic plane \mathbb{H}^2 , since $SL(2, \mathbb{R})/SO(2) \cong \mathbb{H}^2$.

Example 2.20. Any compact Lie group K is a Riemannian symmetric space, since $(K \times K, K)$ is a Riemannian symmetric pair.

2.D. **Transvection.** Let (M, g) be a Riemannian manifold and \mathfrak{g} be the Lie algebra of isometry group. Recall in Corollary 2.6 we have the following decomposition

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$$

In this section we will give more explicit descriptions for this decomposition in case of Riemannian symmetric space.

Theorem 2.21. Let (M,g) be a complete Riemannian manifold with isometry group G. For any $p \in M$, the Lie algebra of the isotropy subgroup G_p is isomorphic to

$$\mathfrak{k} = \{ X \in \mathfrak{g} \mid X_p = 0 \}$$

where \mathfrak{g} is the Lie algebra of G.

Proof. Let $X \in \mathfrak{g}$ with $X_p = 0$ and $\varphi_t : M \to M$ be the flow of X. It suffices to show $\varphi_t(p) = p$ for all $t \in \mathbb{R}$. If we use $\gamma_p(t)$ to denote $\varphi_t(p)$, then for any smooth function $f : M \to \mathbb{R}$ and $s \in \mathbb{R}$, one has

$$\gamma_p'(s)f = \frac{d}{dt} \Big|_{t=s} f \circ \gamma_p(t)$$

$$= \frac{d}{dt} \Big|_{t=0} f \circ \gamma_p(t+s)$$

$$= \frac{d}{dt} \Big|_{t=0} f \circ \varphi_s \circ \varphi_t(p)$$

$$= \frac{d}{dt} \Big|_{t=0} (f \circ \varphi_s)(\gamma_p(t))$$

$$= \gamma_p'(0)(f \circ \varphi_s)$$

$$= X_p(f \circ \varphi_s)$$

$$= 0$$

Hence $\gamma_p'(s) = 0$ for all $s \in \mathbb{R}$, and thus $\gamma_p(s)$ is constant, which implies $\gamma_p(s) = \gamma_p(0) = p$.

In order to describe m, we need to introduce transvection.

Definition 2.22 (transvection). Let (M,g) be a Riemannian symmetric space and γ a geodesic. The transvection along γ is defined as

$$T_t = s_{\gamma(\frac{t}{2})} \circ s_{\gamma(0)}$$

where s_p is the symmetry at point p.

Proposition 2.23. Let (M,g) be a Riemannian symmetric space, γ a geodesic and T_t the transvection along γ . Then

- (1) For any $a, t \in \mathbb{R}$, $s_{\gamma(a)}(\gamma(t)) = \gamma(2a t)$.
- (2) T_t translates the geodesic γ , that is $T_t(\gamma(s)) = \gamma(t+s)$.
- (3) $(dT_t)_{\gamma(s)}: T_{\gamma(s)}M \to T_{\gamma(t+s)}M$ is the parallel transport $P_{s,t+s;\gamma}$.
- (4) T_t is one-parameter subgroup of Iso(M, g).

Proof. For (1). It follows from the uniqueness of geodesics with given initial value.

For (2). By (1) one has

$$T_{t}(\gamma(s)) = s_{\gamma(\frac{t}{2})} \circ s_{\gamma(0)}(\gamma(s))$$
$$= s_{\gamma(\frac{t}{2})}(\gamma(-s))$$
$$= \gamma(t+s)$$

For (3). Let X be a parallel vector field along γ . By uniqueness of parallel vector fields with given initial data, we have $(ds_{\gamma(0)})_{\gamma(s)}X_{\gamma(s)} = -X_{\gamma(-s)}$ for all s, since $(ds_{\gamma(0)})_{\gamma(0)}X_{\gamma(0)} = -X_{\gamma(0)}$

 $-X_{\gamma(0)}$. Thus

$$(dT_t)_{\gamma(s)}X_{\gamma(s)} = (ds_{\gamma(\frac{t}{2})})_{\gamma(-s)}(-X_{\gamma(-s)})$$
$$= X_{\gamma(t+s)}$$

This shows $(dT_t)_{\gamma(s)} = P_{s,t+s;\gamma}$.

For (4). In order to show $T_{t+s} = T_t \circ T_s$, it suffices to check they're same at some point, so do their derivatives, since isometry can be determined by these two values. Note that

$$T_{t+s}(\gamma(0)) = \gamma(t+s)$$

$$= T_t \circ T_s(\gamma(0))$$

$$(dT_{t+s})_{\gamma(0)} = P_{0,t+s;\gamma}$$

$$= P_{s,t+s;\gamma} \circ P_{0,s;\gamma}$$

$$= (dT_t)_{\gamma(s)} \circ (dT_s)_{\gamma(0)}$$

$$= (d(T_t \circ T_s))_{\gamma(0)}$$

This completes the proof.

Definition 2.24 (infinitesimal transvection). Let (M,g) be a Riemannian symmetric space. For any point $p \in M$ and any $v \in T_pM$, the infinitesimal generator X of transvections T_t along γ_v is given by

$$X_p = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} T_t(p)$$

This Killing field *X* is called an infinitesimal transvection.

Theorem 2.25. Let (M,g) be a Riemannian symmetric space and X an infinitesimal transvection of transvection T_t along geodesic $\gamma = \exp_p(tv)$. Then

$$X_p=v,\quad (\nabla X)_p=0$$

Proof. It's clear $X_p = v$. For any $w \in T_p M$, let c be a curve in M with c(0) = p and c'(0) = w. Then

$$\nabla_{w}X = \left. \widehat{\nabla}_{\frac{d}{ds}} X(c(s)) \right|_{s=0}$$

$$= \left. \widehat{\nabla}_{\frac{d}{ds}} \widehat{\nabla}_{\frac{d}{dt}} T_{t}(c(s)) \right|_{t=s=0}$$

$$= \left. \widehat{\nabla}_{\frac{d}{dt}} \widehat{\nabla}_{\frac{d}{ds}} T_{t}(c(s)) \right|_{t=s=0}$$

$$= \left. \widehat{\nabla}_{\frac{d}{dt}} \left((dT_{t})_{p}(w) \right) \right|_{t=0}$$

$$= 0$$

Corollary 2.26. The space of infinitesimal transvection is exactly \mathfrak{m} , and there is an isomorphism between $\mathfrak{m} \cong T_pM$ given by $X \mapsto X_p$.

3. CURVATURE OF RIEMANNIAN SYMMETRIC SPACE

Proposition 3.1. Let (M,g) be a Riemannian symmetric space and G = Iso(M,g) with Lie algebra \mathfrak{g} . For any $p \in M$, one has Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$, where \mathfrak{k} is Lie algebra of isotropy group G_p and $\mathfrak{m} \cong T_pM$. Then for any $X \in \mathfrak{m}$, one has

$$B(X,X) \leq 0$$

where B is the Killing form of g. Furthermore, the identity holds if and only if X = 0.

Proof. Since a Killing field is determined by X_p and $(\nabla X)_p$, one has elements in \mathfrak{k} is determined by $(\nabla X)_p$, and note that ∇X is a skew-symmetric matrice, so

$$\mathfrak{k} \cong \{ (\nabla X) \in \mathfrak{so}(T_n M) \mid X \in \mathfrak{k} \}$$

By using this identification, there is a natural metric on **f** given by

$$\langle S_1, S_2 \rangle = -\operatorname{tr}(S_1 S_2)$$

Then one has metric on \mathfrak{g} since there is a metric on \mathfrak{m} obtained from $\mathfrak{m} \cong T_pM$. For any $S \in \mathfrak{k}$, we claim with respect to this metric, $\mathrm{ad}_S : \mathfrak{g} \to \mathfrak{g}$ is skew-symmetric. Indeed, for $X_1, X_2 \in \mathfrak{k}$, one has

$$\langle \operatorname{ad}_{S} X_{1}, X_{2} \rangle = -\operatorname{tr}(\operatorname{ad}_{S} X_{1} X_{2})$$

$$= -\operatorname{tr}((SX_{1} - X_{1}S)X_{2})$$

$$= \operatorname{tr}(X_{1}(SX_{2} - X_{2}S))$$

$$= -\langle X_{1}, \operatorname{ad}_{S} X_{2} \rangle$$

For $Y_1, Y_2 \in \mathfrak{m}$, since $S_p = 0$ and $(\nabla S)_p$ is skew-symmetric, one has

$$\begin{split} \langle \mathrm{ad}_S Y_1, Y_2 \rangle &= \langle \nabla_S Y_1 - \nabla_{Y_1} S, Y_2 \rangle \\ &= -\langle \nabla_{Y_1} S, Y_2 \rangle \\ &= \langle \nabla_{Y_2} S, Y_1 \rangle \\ &= -\langle Y_1, \nabla_S Y_2 - \nabla_{Y_2} S \rangle \\ &= -\langle Y_1, \mathrm{ad}_S Y_2 \rangle \end{split}$$

Then one has

$$B(S,S) = \operatorname{tr}(\operatorname{ad}_S \circ \operatorname{ad}_S) = \sum \langle \operatorname{ad}_S \circ \operatorname{ad}_S(e_i), e_i \rangle = -\sum \langle \operatorname{ad}_S(e_i), \operatorname{ad}_S(e_i) \rangle \le 0$$

Furthermore, if B(S, S) = 0, then $ad_S = 0$ and for any $X \in \mathfrak{g}$, one has

$$0 = \operatorname{ad}_{S}(X) = [S, X] = \nabla_{S}X - \nabla_{X}S = -\nabla_{X}S$$

since $S_p = 0$. This implies $(\nabla S)_p = 0$, and thus S = 0.

Theorem 3.2. Let (M, g) be a Riemannian symmetric space and G = Iso(M, g). For any $p \in M$, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ with $\mathfrak{m} \cong T_pM$.

(1) For any $X, Y, Z \in \mathfrak{m}$, there holds

$$R(X,Y)Z = -[Z,[Y,X]]$$

Ric(Y,Z) = $-\frac{1}{2}B(Y,Z)$

(2) If
$$Ric(g) = \lambda g$$
, then for $X, Y \in \mathfrak{m}$, one has

$$2\lambda R(X, Y, Y, X) = -B([X, Y], [X, Y])$$

Proof. For (1). For any $X, Y, Z \in \mathfrak{m}$, direct computation shows

$$R(X,Y)Z \stackrel{(a)}{=} R(X,Z)Y - R(Y,Z)X$$

$$\stackrel{(b)}{=} \nabla_Z \nabla_Y X - \nabla_{\nabla_Z Y} X - \nabla_Z \nabla_X Y + \nabla_{\nabla_Z X} Y$$

$$\stackrel{(c)}{=} -\nabla_Z [X,Y]$$

$$\stackrel{(d)}{=} -[Z[X,Y]]$$

where

- (a) holds from the first Bianchi identity.
- (b) holds from (2) of Proposition 2.1.
- (c) holds from $X, Y \in \mathfrak{m}$, and thus $(\nabla X)_p = (\nabla Y)_p = 0$.
- (d) holds from

$$\nabla_{Z}[X,Y] - \nabla_{[X,Y]}Z = [Z,[X,Y]]$$

and
$$(\nabla Z)_p = 0$$
.

Too see Ricci curvature, note that for $Y \in \mathfrak{m}$

$$ad_Y: \mathfrak{k} \to \mathfrak{m}, \quad ad: Y: \mathfrak{m} \to \mathfrak{k}$$

Thus $\operatorname{ad}_Z \circ \operatorname{ad}_Y$ preserves the decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ if $Y, Z \in \mathfrak{m}$. Then

$$tr(ad_Z \circ ad_Y \mid_{\mathfrak{m}}) = tr(ad_Z \mid_{\mathfrak{f}} \circ ad_Y \mid_{\mathfrak{m}})$$
$$= tr(ad_Y \mid_{\mathfrak{m}} \circ ad_Z \mid_{\mathfrak{f}})$$
$$= tr(ad_Y \circ ad_Z \mid_{\mathfrak{f}})$$

Hence we obtain

$$B(Y,Y) = \operatorname{tr}(\operatorname{ad}_{Y} \circ \operatorname{ad} Y|_{\mathfrak{k}}) + \operatorname{tr}(\operatorname{ad}_{Y} \circ \operatorname{ad} Y|_{\mathfrak{m}}) = 2\operatorname{tr}(\operatorname{ad}_{Y} \circ \operatorname{ad}_{Y}|_{\mathfrak{m}})$$

Since Ricci tensor is trace of curvature tensor, and thus

$$\operatorname{Ric}(Y,Y) = -\operatorname{tr}(\operatorname{ad}_Y \circ \operatorname{ad}_Y|_{\mathfrak{m}}) = -\frac{1}{2}B(Y,Y)$$

Then by using Polarization identity, one has Ric(Y, Z) = -B(Y, Z)/2.

For (2). If
$$Ric(g) = \lambda g$$
, then

$$\begin{aligned} 2\lambda g(R(X,Y)Y,X) &= -2\lambda g(\operatorname{ad}_Y \circ \operatorname{ad}_Y X,X) \\ &= -2\operatorname{Ric}(\operatorname{ad}_Y \circ \operatorname{ad}_Y X,X) \\ &= B(\operatorname{ad}_Y \circ \operatorname{ad}_Y X,X) \\ &= -B(\operatorname{ad}_Y X,\operatorname{ad}_Y X) \\ &= -B([X,Y],[X,Y]) \end{aligned}$$

Corollary 3.3. Let (M,g) be a Riemannian symmetric space which is an Einstein manifold with Einstein constant λ . Then

- (1) If $\lambda > 0$, then (M, g) has non-negative sectional curvature.
- (2) If λ < 0, then (M, g) has non-positive sectional curvature.
- (3) If $\lambda = 0$, then (M, g) is flat.

Proof. By Theorem 3.2 one has

$$2\lambda R(X, Y, Y, X) = -B([X, Y], [X, Y]) \ge 0$$

since $[X,Y] \in [\mathfrak{m},\mathfrak{m}] \subseteq \mathfrak{m}$ and B is negative definite on \mathfrak{m} . This shows (1) and (2). If $\lambda = 0$, one has $B([X,Y],[X,Y]) \equiv 0$ for arbitrary X,Y. Then by Proposition 3.1 one has $[X,Y] \equiv 0$ for arbitrary X,Y, and thus (M,g) is flat.

4. CLASSIFICATIONS AND EXAMPLES

4.A. Irreducible space.

Definition 4.1 (isotropy irreducible). Let (M,g) be a Riemannian symmetric space with G = Iso(M,g) and $K = G_p$ for some $p \in M$. If the identity component K_0 acts irreducibly on T_pM , then M is called irreducible. Otherwise M is called reducible.

Lemma 4.2. Let B_1 , B_2 be two symmetric bilinear forms on a vector space V such that B_1 is positive definite. If a group K acts irreducibly on V such that B_1 and B_2 are invariant under K, then $B_2 = \lambda B_1$ for some constant λ .

Proof. Since B_1 is positive definite, there exists an endomorphism $L: V \to V$ such that

$$B_2(u, v) = B_1(Lu, v)$$

where $u, v \in V$. Since B_1, B_2 are invariant under K, one has for any $k \in K$

$$B_1(kLu, v) = B_1(Lu, k^{-1}v) = B_2(u, k^{-1}v) = B_2(ku, v) = B_1(Lku, v)$$

holds for arbitrary $u, v \in V$, which implies Lk = kL for all $k \in K$. Moreover, the symmetry of B_1, B_2 implies

$$B_1(Lu, v) = B_2(u, v) = B_2(v, u) = B_1(Lv, u) = B_1(u, Lv)$$

Hence L is symmetric with respect to B_1 , and thus the eigenvalues of L are real. If $E \subseteq V$ is an eigenspace with eigenvalue λ , the fact kL = Lk implies E is invariant under K. Since E acts irreducibly on E, one has E = E, that is E = E, which implies E = E.

Theorem 4.3. *The irreducible Riemannian symmetric space is Einstein, and the metric is unique determined up to a scalar.*

Proof. Since isometries preserves the metric and curvature, and Ricci tensor is also a symmetric bilinear form, by Lemma 4.2 there exists smooth function λ such that

$$Ric(g) = \lambda g$$

Note that Riemannian curvature of Riemannian symmetric space is parallel, so is Ricci curvature. Thus we have λ is a constant.

4.B. Classification of Riemannian symmetric space.

Theorem 4.4. Let (M,g) be a simply-connected Riemannian symmetric space. Then (M,g) is isometric to

$$(M_1, g_1) \times \cdots \times (M_k, g_k)$$

where (M_i, g_i) are irreducible Riemannian symmetric space for i = 1, ..., k.

4.C. Examples of Riemannian symmetric space.

4.C.1. Matrix groups as symmetric spaces.

Example 4.5 (hyperbolic Grassmannian). In $\mathbb{R}^{k,l}$ with $k \geq 2, l \geq 1$, consider the following quadratic form

$$v^t I_{k,l} w = v^t \begin{pmatrix} I_k & 0 \\ 0 & -I_l \end{pmatrix} w = \sum_{i=1}^k v_i w_i - \sum_{j=k+1}^{k+l} v_j w_j$$

The group of linear transformation X that preserves this quadratic form is denoted by O(k, l), that is

$$XI_{k,l}X^t = I_{k,l}$$

and SO(k, l) are those with positive determinant. The Lie algebra $\mathfrak{so}(k, l)$ of SO(k, l) is

$$\mathfrak{so}(k,l) = \{X = \begin{pmatrix} X_1 & B \\ B^t & X_2 \end{pmatrix} \in \mathfrak{gl}(k+l,\mathbb{R}) \mid X_1 \in \mathfrak{so}(k), X_2 \in \mathfrak{so}(l), B \in M_{k \times l} \}$$

Now consider set consisting of those oriented k-dimensional subspaces of $\mathbb{R}^{k,l}$ on which quadratic form $I_{k,l}$ are positive definite. This gives a manifold which is called the hyperbolic Grassmannian $M = \widehat{Gr}(k, \mathbb{R}^{k,l})$. It's clear G = O(k,l) acting transitively on M with isotropy group $G_p = SO(k) \times O(l)$. Then we have the decomposition of Lie algebra \mathfrak{g} of G as follows

$$\mathfrak{go}(k,l) \cong \mathfrak{go}(k) \oplus \mathfrak{go}(l) \oplus \mathfrak{m}$$

If we give the following metric on $\mathfrak{m} \cong T_n M$

$$\langle X, Y \rangle = \operatorname{tr}(XY) = \frac{1}{k+l-2}B(X,Y)$$

where B is the Killing form of $\mathfrak{so}(k, l)$. Then the corresponding metric on M has the curvature formulas

$$Ric(g) = -\frac{B}{2} = -\frac{k+l-2}{2}g$$

$$R(X, Y, Y, X) = \frac{B([X, Y], [X, Y])}{k+l-2} \le 0$$

Hence the hyperbolic Grassmannian has non-positive curvatures.

Example 4.6. Let $G = \mathrm{SL}(n, \mathbb{R}), K = \mathrm{SO}(n)$ with Lie algebras \mathfrak{g} and \mathfrak{k} . Consider $M = \mathrm{SL}(n, \mathbb{R})/\mathrm{SO}(n)$, one has

$$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{m}$$

If we give the following metric on $\mathfrak{m} \cong T_n M$

$$\langle X, Y \rangle = \operatorname{tr}(XY) = \frac{1}{2n} B(X, Y)$$

where B is the Killing form of $\mathfrak{so}(k, l)$. Then the corresponding metric on M has the curvature formulas

$$Ric(g) = -\frac{B}{2} = -ng$$

$$R(X, Y, Y, X) = \frac{B([X, Y], [X, Y])}{2n} \le 0$$

Hence it has non-positive curvatures.

APPENDIX A. APPENDIX

Theorem A.1. Let $\varphi, \psi : (M, g_M) \to (N, g_N)$ be two local isometries between Riemannian manifolds, and M is connected. If there exists $p \in M$ such that

$$\varphi(p) = \psi(p)$$
$$(d\varphi)_p = (d\psi)_p$$

then $\varphi = \psi$.

Theorem A.2 (Cartan-Ambrose-Hicks). Let (M,g) and $(\widetilde{M},\widetilde{g})$ be two Riemannian manifolds, and $\Phi_0: T_pM \to T_{\widetilde{p}}\widetilde{M}$ is a linear isometry, where $p \in M, \widetilde{p} \in \widetilde{M}$. For $0 < \delta < \min\{\inf_{n}(M), \inf_{\widetilde{n}}(\widetilde{M})\}$, The following statements are equivalent.

- (1) There exists an isometry $\varphi: B(p,\delta) \to B(\widetilde{p},\delta)$ such that $\varphi(p) = \widetilde{p}$ and $(d\varphi)_p = \Phi_0$.
- (2) For $v \in T_pM$, $|v| < \delta$, $\gamma(t) = \exp_p(tv)$, $\widetilde{\gamma}(t) = \exp_{\widetilde{p}}(t\Phi_0(v))$, if we define

$$\Phi_t = P_{0,t;\widetilde{\gamma}} \circ \Phi_0 \circ P_{t,0;\gamma} : T_{\gamma(t)} M \to T_{\widetilde{\gamma}(t)} \widetilde{M}$$

then Φ_t preserves curvature, that is $(\Phi_t)^*R = R$.

Proposition A.3. Let $(M, g_M), (N, g_N)$ be complete Riemannian manifolds and $f: M \to N$ be a local diffeomorphism such that for all $p \in M$ and for all $v \in T_pM$, one has $|(\mathrm{d}f)_p v| \geq |v|$. Then f is a Riemannian covering map.

Theorem A.4 (Myers-Steenrod). Let (M,g) be a Riemannian manifold and G = Iso(M,g). Then

- (1) G is a Lie group with respect to compact-open topology.
- (2) for each $p \in M$, the isotropy group G_p is compact.
- (3) G is compact if M is compact.

Proposition A.5. Let (M,g) be a Riemannian manifold, $\gamma: I \to M$ a smooth curve and $P_{s,t;\gamma}: T_{\gamma(s)}M \to T_{\gamma(t)}M$ is the parallel transport along γ . For any $s \in I$ with $v = \gamma'(s)$, one has

$$\nabla_{v}R = \frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=s} (P_{s,t;\gamma})^{*} R_{\gamma(t)}$$

In particular, if $\nabla R = 0$ then

$$(P_{s,t;\gamma})^* R_{\gamma(t)} = R_{\gamma(s)}$$

holds for arbitrary $t, s \in I$.

Proposition A.6. If $\pi: (\widetilde{M}, \widetilde{g}) \to (M, g)$ is a Riemannian covering, then M is complete if and only if \widetilde{M} is.

REFERENCES

DEPARTMENT OF MATHEMATICS, TSINGHUA UNIVERSITY, BEIJING, 100084, P.R. CHINA, $Email\ address$: liubw22@mails.tsinghua.edu.cn