Digital Communications SSY125, Lecture 13

Low-Density Parity-Check Codes (Chapter 11)

Alexandre Graell i Amat alexandre.graell@chalmers.se https://sites.google.com/site/agraellamat

December 2, 2019

LDPC Codes

- Introduced by Robert Gallager in 1961.
- · Rediscovered in 1996 by Dave MacKay.
- One of the most celebrated code constructions, adopted in most of the communication standards.

LDPC Codes: Main Definitions

- An LDPC code is a binary linear block code.
- Can be described by a (typically large) $m \times n$ parity-check matrix \boldsymbol{H} (recall: n is the code length).
- Property: H has a low density of ones.

LDPC Codes: Main Definitions

- Notation: $w_{r,i}$ and $w_{c,i}$ are the weight of the *i*-th row and the *i*-th column of H.
- Low density: $w_{r,i} \ll n$ and $w_{c,i} \ll m$.

Two main classes of LDPC codes:

Regular LDPC codes: Same number of ones per row and per column.
 Then,

$$R_{\mathsf{c}}^{\mathsf{reg}} \geq 1 - \frac{w_{\mathsf{c}}}{w_{\mathsf{r}}}.$$

 Irregular LDPC codes: Number of ones not the same for all rows and/or for all columns. Then,

$$R_{\rm c}^{\rm irreg} \geq 1 - \frac{\bar{w}_{\rm c}}{\bar{w}_{\rm r}},$$
 where $\bar{w}_{\rm r} = \frac{1}{m} \sum_{i=1}^m w_{{\rm r},i}$ and $\bar{w}_{\rm c} = \frac{1}{n} \sum_{i=1}^n w_{{\rm c},i}.$

Graphical Representation of LDPC Codes: The Bipartite Graph

- LDPC codes (and any linear code) can be represented in a graphical, compact form: Bipartite graph (or Tanner graph) (Tanner, 1981).
- Two types of nodes:
 - Variable nodes (VNs): Represent the code bits.
 - Check nodes (or constraint nodes) (CNs): Represent the parity-check equations that the code bits satisfy.
- There exist an edge between a VN and a CN if the corresponding code bit participates in the corresponding parity-check equation.

The Bipartite Graph (the (7,4) Hamming Code)

Parity-check matrix representation:

$$\boldsymbol{H} = \left(\begin{array}{ccccccc} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right)$$

Bipartite-graph representation:

- neighborhood of a VN v, $\mathcal{N}(v)$: The set of all CNs v is connected to.
- neighborhood of a CN c, $\mathcal{N}(c)$: The set of all VNs c is connected to.

$$\mathcal{N}(v_1) = \{c_1, c_3\}, \ \mathcal{N}(c_3) = \{v_1, v_2, v_4, v_7\}$$

The Bipartite Graph

- A code is fully specified by both H and the bipartite graph.
- The values of the bits connected to the same CN must sum up to zero.
- A bipartite graph may contain cycles.
- Cycle: a sequence of edges starting and ending in the same node that form a closed path.
- The number of edges of the cycle is called its length.
- Girth of the graph: The length of the shortest cycle.

For this example: Girth 4.

Degree Distributions

- Node degree: Number of edges adjacent to the node.
- If the *i*-th column of H has Hamming weight $w_{c,i}$, the corresponding VN has degree $d_{v,i} \triangleq \deg(v_i) = w_{c,i}$.
- If the *i*-th row of H has Hamming weight $w_{\mathsf{r},i}$, the corresponding CN has degree $d_{\mathsf{c},i} \triangleq \deg(\mathsf{c}_i) = w_{\mathsf{r},i}$.
- Regular LDPC codes: all VNs and all CNs have the same degree, i.e., $d_{{\sf v},i}=d_{{\sf v}}\ \forall i$ and $d_{{\sf c},i}=d_{{\sf c}}\ \forall i$.

Degree Distributions

- The VN and CN degree distributions can be expressed in polynomial form.
- Node-perspective VN degree distribution:

$$\Lambda(x) = \sum_{i} \Lambda_i x^i,$$

 Λ_i : the probability that a VN has degree i (fraction of VNs of degree i).

• Node-perspective CN degree distribution:

$$P(x) = \sum_{i} P_i x^i,$$

 P_i : the probability that a CN has degree i (fraction of CNs of degree i).

• For regular LDPC codes: $\Lambda(x) = x^{d_v}$ and $P(x) = x^{d_c}$.

Degree Distributions

For the (7,4) Hamming code:

$$\Lambda(x) = \frac{3}{7}x + \frac{3}{7}x^2 + \frac{1}{7}x^3$$

and

$$P(x) = x^4$$
.

LDPC Codes as a Network of Repetition and SPC Codes

- For a VN the bits associated to its adjacent edges must all be equal → A
 VN of degree d_v can be interpreted as a (d_v, 1) repetition code.
- All bits associated to the adjacent edges of a CN must sum up to zero \rightarrow A CN of degree $d_{\rm c}$ is a $(d_{\rm c},d_{\rm c}-1)$ single parity-check (SPC) code.

LDPC codes can be interpreted as a network of connected repetition and SPC codes!

Decoding LDPC Codes: Belief Propagation Decoding

• Goal: Compute the log-APPs $L_{\text{APP}}(u_i|\boldsymbol{y})$ based on the received (noisy) sequence \boldsymbol{y} ,

$$L_{\mathsf{APP}}(u_i|\boldsymbol{y}) \triangleq \ln \frac{P_{\mathsf{APP}}(u_i=0|\boldsymbol{y})}{P_{\mathsf{APP}}(u_i=1|\boldsymbol{y})}.$$

MAP decoding of LDPC codes is unfeasible!

Decoding LDPC Codes

Suboptimal iterative decoding algorithm, based on the iterative exchange of messages along the edges of the bipartite graph: message passing decoding or belief propagation (BP) decoding.

Idea

Interpret the LDPC code as a network of connected repetition and SPC codes \rightarrow decode each repetition and SPC code optimally (using MAP decoding) and exchange extrinsic information between component decoders iteratively.

Decoding LDPC Codes: Belief Propagation Decoding

- The VNs and the CNs exchange extrinsic information iteratively along the edges of the bipartite graph.
- The extrinsic information is used as a priori information by the neighboring node.

Performance of Low-Density Parity-Check Codes

- The performance of LDPC codes depends greatly on the degree distributions $\Lambda(x)$ and P(x).
- Irregular LDPC codes perform closer to capacity than regular ones.
- To yield low error floors, short cycles in the graph must be avoided →
 construct codes with large girth.