Package 'detectorchecker'

June 30, 2020

Type Package
Title A package for analysing pixel damage in CT Scanners
Version 1.0.8
Description DetectorChecker is an R package to aid in the assessment of damage to CT scanners arising from exposure to high energy radiation. While the target application concerns CT scanners this package can also be used to analyze screen damage arising from other sources.
Depends R (>= $3.6.2$)
Imports spatstat (>= 1.63-3), tools (>= 3.6.3), tiff (>= 0.1-5), hdf5r (>= 1.3.2), raster (>= 3.1-5), igraph (>= 1.2.5), plyr (>= 1.8.6), dplyr (>= 0.8.5), readr (>= 1.3.1), dbscan (>= 1.1-5)
Suggests testthat (>= 2.3.2), knitr (>= 1.28), rmarkdown (>= 2.1), roxygen2 (>= 7.1.0)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
VignetteBuilder knitr
R topics documented:
.assign_module

classify_clump	. 5
clump_module	. 6
create_ppp_edges_col	. 6
create_ppp_edges_row	. 7
create_ppp_gaps_col	. 7
create_ppp_gaps_row	. 8
Default_Detector	. 8
derive_detector	. 10
detector_edges	. 10
dist_closest_edge	. 11
dist_edge	. 11
extract_detector_parameter	. 12
extract_number	. 12
getmode	. 13
get_clump_event_ppp	. 13
get_clump_pixel_ppp	. 14
get_detector_ppps	. 14
get_ppp_dead_module	. 15
mask_to_events	
matrix_from_hdf	
matrix_from_tiff	
matrix_from_xml	
norm_vec	
plot_pixel	
tr	
xyc_pixels2events	
xyc_ply_func	
vailable_detectors	
check_clumps	
check_detector_avail	
reate_detector	
lead_pix_coords	
Dead_Stats	
lead_stats_summary	
letector_consist_check	
letector_summary	. 24
list_corner	
list_edge_col	
list_edge_min	
list_edge_row	
Excalibur_Detector	
ind_clumps	
get dead pix mask	
get_dead_stats	
get_events_mask	
get_events_marrix	
get_events_matrix	
rei_ppp_aeaa	. 30
AND EVENIN OF PROT	וור

gim_events_ctr_linf	31
glm_events_dist_corner	31
glm_events_dist_edge_col	32
glm_events_dist_edge_min	32
glm_events_dist_edge_row	33
glm_pixel_ctr_eucl	33
glm_pixel_ctr_linf	34
glm_pixel_dist_corner	
glm_pixel_dist_edge_col	35
glm_pixel_dist_edge_min	35
glm_pixel_dist_edge_row	36
ini_graphics	36
load_pix_matrix	37
perform_glm	37
PerkinElmerCropped1600_Detector	38
PerkinElmerFull_Detector	38
PerkinElmerRefurbished_Detector	38
Pilatus_Detector	39
pixel_dist_ctr_eucl	39
pixel_dist_ctr_linf	40
plot_angles	40
plot_arrows	
plot_counts	41
plot_density	42
plot_detector	42
plot_events	
plot_events_angles	43
plot_events_arrows	44
plot_events_count	45
plot_events_density	45
plot_events_kfg	46
plot_kfg	47
plot_module_events	47
plot_module_pixels	48
plot_pixels	48
plot_pixels_angles	49
plot_pixels_arrows	
plot_pixels_count	
plot_pixels_density	
plot_pixels_kfg	
plot_pixel_ctr_eucl	
plot_pixel_ctr_linf	
plot_pixel_dist_corner	
plot_pixel_dist_edge	
plot_pixel_dist_edge_col	
plot_pixel_dist_edge_row	
readin_detector	
remove high density cluster	55

4 .assign_pixel_matrix

Index 57

.assign_module

Pixel module Function assign a module to each dead pixel

Description

Pixel module Function assign a module to each dead pixel

Usage

```
.assign_module(detector)
```

Arguments

detector

Detector object

Value

dead_modules

Description

Assign dead pixels to a detector

Usage

```
.assign_pixel_matrix(detector, pix_matrix)
```

Arguments

detector Detector object pix_matrix A pixel matrix

.check_select 5

. check_select Checks if the selected row and column are within the boundaries of the detector	.check_select	
--	---------------	--

Description

Checks if the selected row and column are within the boundaries of the detector

Usage

```
.check_select(detector, row, col)
```

Arguments

detector Detector object
row module row
col module col

Value

Boolean

Description

Clasifies a clump

Usage

```
.classify_clump(detector, x, y)
```

Arguments

detector	Detector object
x	vector containing the x coordinates of a clump
у	vector containing the y coordinates of a clump

Value

the class of a clump (1 - singleton, 2 - double, 3 - triplet, 4 - larger cluster, unless it actually has the shape of a line, 5 (6): vertical line where closest edge is the upper (lower) one, 7 (8): horizontal line where closest edge is the right (left) one)

.clump_module

Identifying modules for clumps

Description

Identifying modules for clumps

Usage

```
.clump_module(detector, rrc)
```

Arguments

detector Detector object

rrc raster clumps objects

Value

data frame of the modules relating the clump

```
. \verb|create_ppp_edges_col| \textit{ This is the ppp\_edges\_col creation function}|
```

Description

This is the ppp_edges_col creation function

Usage

```
.create_ppp_edges_col(detector)
```

Arguments

detector Detector object

Value

Point pattern dataset

.create_ppp_edges_row 7

 $. \verb|create_ppp_edges_row|| \textit{This is the create_ppp_edges_row|| creation function}$

Description

This is the create_ppp_edges_row creation function

Usage

```
.create_ppp_edges_row(detector)
```

Arguments

detector

Detector object

Value

Point pattern dataset

Description

Creates ppp object of horizontal gaps

Usage

```
.create_ppp_gaps_col(detector)
```

Arguments

detector

Detector object

Value

Point pattern dataset

8 .Default_Detector

Description

Creates ppp object of vertical gaps

Usage

```
.create_ppp_gaps_row(detector)
```

Arguments

detector

Detector object

Value

Point pattern dataset

.Default_Detector

Detector module A S3 class to represent a detector.

Description

Detector module A S3 class to represent a detector.

Usage

```
.Default_Detector(
 name = "Default",
 date = NA,
 detector_width = NA,
 detector_height = NA,
 module_col_n = NA,
 module_row_n = NA,
 module_col_sizes = NA,
 module_row_sizes = NA,
 gap_col_sizes = NA,
 gap_row_sizes = NA,
 module_edges_col = NA,
 module_edges_row = NA,
 detector_inconsistency = NA,
 pix_matrix = NA,
 pix_dead = NA,
 dead_stats = NA,
 pix_dead_modules = NA,
```

.Default_Detector 9

```
clumps = NA,
  clumps_col = NA,
  clumps_row = NA
)
```

Arguments

name detector's name

date date

detector_width detector's width

detector_height

detector's height

module_col_n number of columns in the grid of modules

module_row_n number of rows in the grid of modules

module_col_sizes

vector with widths of the modules

module_row_sizes

vector with heights of the modules

gap_col_sizes vector with widths of the gaps

gap_row_sizes vector with heights of the gaps

module_edges_col

vector of columns that contain edges of modules

module_edges_row

vector of rows that contain edges of modules

detector_inconsistency

counts inconsistencies found in parameters entered

pix_matrix pixel matrix

pix_dead dead pixels coordinates

dead_stats dead pixel statistics

pix_dead_modules

assigned module for each dead pixel

clumps data (xyc_df data frame with pixels and their clump ID's, xyc_events

data frame with clusters (clumps) and their clump ID's and centre coordinates)

clumps_col col number of the module on which analysis was performed

clumps_row row number of the module on which analysis was performed

Value

Detector object

.detector_edges

.derive_detector

Deriving additional detector elements Conditions additional elements of Detector object that are frequently used later They are calculated from parameters defined in examples Matrices that contains xy coordiantes of edges of modules By definition, edges are part of modules (not part of gaps) i.e. for each module two pairs: first/last col and first/last row.

Description

Deriving additional detector elements Conditions additional elements of Detector object that are frequently used later They are calculated from parameters defined in examples Matrices that contains xy coordiantes of edges of modules By definition, edges are part of modules (not part of gaps) i.e. for each module two pairs: first/last col and first/last row.

Usage

```
.derive_detector(detector)
```

Arguments

detector

Detector object

Value

Detector object

.detector_edges

Defines the coordinates of detector's edges using module and gap sizes Function is in 1d context to be applied to rows and cols separately. Edges are inside the modules (first/last row/col of module).

Description

Defines the coordinates of detector's edges using module and gap sizes Function is in 1d context to be applied to rows and cols separately. Edges are inside the modules (first/last row/col of module).

Usage

```
.detector_edges(m, g)
```

Arguments

m vector of module sizes g vectors of gap sizes .dist_closest_edge

Value

Matrix with the information about the edges

.dist_closest_edge

A function to calculate closest distance to an edge for a pixel

Description

A function to calculate closest distance to an edge for a pixel

Usage

```
.dist_closest_edge(x, size)
```

Arguments

x Coordinate of pixel

size Size of module

Value

distance to closest edge

.dist_edge

Function returns distance of a pixel to module edges.

Description

Function returns distance of a pixel to module edges.

Usage

```
.dist_edge(xy, module_edges)
```

Arguments

xy Coordinate of pixel

module_edges vector of edges of a module

Value

tmp Distance to edges

.extract_number

```
.extract_detector_parameter
```

Checks whether a detector parameter is in the file string

Description

Checks whether a detector parameter is in the file string

Usage

```
.extract_detector_parameter(file_string, parameter)
```

Arguments

```
file_string String of a file context
parameter Detector parameter
```

Value

parameter value

.extract_number

Internal function to convert string values to numbers

Description

Internal function to convert string values to numbers

Usage

```
.extract_number(s)
```

Arguments

s String expression?

Value

Numeric value

.getmode 13

.getmode

Returns the mode of a set of data

Description

Returns the mode of a set of data

Usage

```
.getmode(v)
```

Arguments

٧

set of data

Value

uniqv the value of the mode

.get_clump_event_ppp Creates ppp object for damaged detector events

Description

Creates ppp object for damaged detector events

Usage

```
.get_clump_event_ppp(
 detector,
  incl_event_list = NA,
 height = NULL,
 width = NULL
)
```

Arguments

```
detector
                Detector object
incl_event_list
```

a list of events to be included

height Detector height width Detector width

Value

ppp object for damaged detector events

14 .get_detector_ppps

.get_clump_pixel_ppp Creates ppp object for damaged detector pixels

Description

Creates ppp object for damaged detector pixels

Usage

```
.get_clump_pixel_ppp(detector, incl_event_list = NA)
```

Arguments

Value

ppp object for damaged detector pixels

.get_detector_ppps

Generate detector ppps for edges and gaps

Description

Generate detector ppps for edges and gaps

Usage

```
.get_detector_ppps(detector)
```

Arguments

detector

Detector object

Value

a list of ppps for edges and gaps

.get_ppp_dead_module

.get_ppp_dead_module

Generates ppp for the dead pixels for a selected module

Description

Generates ppp for the dead pixels for a selected module

Usage

```
.get_ppp_dead_module(detector, row, col)
```

Arguments

detector Detector object
row module row number
col module column number

Value

ppp of dead pixels

.mask_to_events

Converts mask (dead pixels) to events

Description

Converts mask (dead pixels) to events

Usage

```
.mask_to_events(detector, dead_pix_mask, row = NA, col = NA)
```

Arguments

detector Detector object
dead_pix_mask Dead pixels mask
row Module row number
col Module col number

Value

list of pixels and events

.matrix_from_tiff

.matrix_from_hdf

Reads in hdf file(s) and returns a pixel matrix

Description

Reads in hdf file(s) and returns a pixel matrix

Usage

```
.matrix_from_hdf(detector, file_path)
```

Arguments

detector Detector object

file_path A list of paths to hdf files. Must be in the correct order.

Value

Data of a combined dataset from hdf files

 $.matrix_from_tiff$

I/O module Reads in tiff file and returns a pixel matrix

Description

I/O module Reads in tiff file and returns a pixel matrix

Usage

```
.matrix_from_tiff(detector, file_path)
```

Arguments

detector Detector object file_path Path to the tiff file

Value

Pixel matrix with dead pixels flagged with 1

.matrix_from_xml 17

.matrix_from_xml

Reads in xml file and returns a pixel matrix

Description

Reads in xml file and returns a pixel matrix

Usage

```
.matrix_from_xml(detector, file_path)
```

Arguments

detector Detector object file_path Path to the xml file

Value

Data from an xml file

.norm_vec

Estimates the norm of a vector

Description

Estimates the norm of a vector

Usage

```
.norm_vec(v)
```

Arguments

'

vector

Value

norm of the vector v

.tr

.plot_pixel

Plots pixel distance analysis

Description

Plots pixel distance analysis

Usage

```
.plot_pixel(data, width, height, file_path = NA)
```

Arguments

data Matrix containing pixel analysis data

width Plot width height Plot height

file_path Output path with an extension

.tr

Utils module Calculates the trace value of a square matrix

Description

Utils module Calculates the trace value of a square matrix

Usage

.tr(m)

Arguments

m

A square matrix

Value

tr The trace value

.xyc_pixels2events 19

.xyc_pixels2events

Modifying clusters to events (consisting of 1 pixel representing the cluster) Make into a point pattern of just events rather than pixels. Using xyc_ply object. Collapse in one point using centres for clusters, but end points for lines, type dependend: type 5 (closest to upper edge): ymin type 6 (closest to lower edge): ymax type 7 (closest to right edge): xmin type 8 (closest to left edge): xmax This is inspired by Perkin Elmer Detector and be replaced by other choices if desired.

Description

Modifying clusters to events (consisting of 1 pixel representing the cluster) Make into a point pattern of just events rather than pixels. Using xyc_ply object. Collapse in one point using centres for clusters, but end points for lines, type dependend: type 5 (closest to upper edge): ymin type 6 (closest to lower edge): ymax type 7 (closest to right edge): xmin type 8 (closest to left edge): xmax This is inspired by Perkin Elmer Detector and be replaced by other choices if desired.

Usage

```
.xyc_pixels2events(xyc_ply)
```

Arguments

xyc_ply

clums data frame

Value

events

.xyc_ply_func

Clasifies clumps with respect to xy coordinates.

Description

Clasifies clumps with respect to xy coordinates.

Usage

```
.xyc_ply_func(detector, xyc_pixel_df)
```

Arguments

detector Detector object xyc_pixel_df xyc_pixel_df

Value

data frame with clasification results

20 check_clumps

available_detectors A list of available detectors

Description

A list of available detectors

Usage

```
available_detectors
```

Format

An object of class character of length 5.

check_clumps

Checks if correct clumps were found. If not, finds clumps

Description

Checks if correct clumps were found. If not, finds clumps

Usage

```
check_clumps(detector, row = NA, col = NA)
```

Arguments

detector Detector object

row Module row number

col Module column number

Value

detector_events Detector object

check_detector_avail 21

check_detector_avail Checks whether specified detector is available

Description

Checks whether specified detector is available

Usage

```
check_detector_avail(detector_name)
```

Arguments

Value

True or False

 $create_detector$

Checks whether detector is available, if so, creates a Detector object

Description

Checks whether detector is available, if so, creates a Detector object

Usage

```
create_detector(detector_name)
```

Arguments

Value

Detector object

22 Dead_Stats

 $dead_pix_coords$

Extracts a table of dead pixel coordinates from a pixel matrix

Description

Extracts a table of dead pixel coordinates from a pixel matrix

Usage

```
dead_pix_coords(pix_matrix)
```

Arguments

```
pix_matrix pixel matrix with dead pixels flagged with 1
```

Value

Table containing dead pixel coordinates

Dead_Stats

Analysis module A S3 class to represent dead pixels statistics summary

Description

Analysis module A S3 class to represent dead pixels statistics summary

Usage

```
Dead_Stats(
  dead_n = NA,
  module_n = NA,
  module_count_arr = NA,
  module_count = NA,
  avg_dead_mod = NA,
  Chisq_s = NA,
  Chisq_df = NA,
  Chisq_p = NA
)
```

dead_stats_summary 23

Arguments

dead_n Total number of damaged pixels:

module_n Total number of modules

module_count_arr

Count of dead pixels in each quadrat

Chisq_s The Chi-Squared test statistic value

Chisq_df Chi-Squared degrees of freedom

Chisq_p Chi-Squared p-value

Value

Dead_Stats object

dead_stats_summary

Summary of damaged pixels

Description

Summary of damaged pixels

Usage

dead_stats_summary(detector)

Arguments

detector

Detector object

Value

A string with damaged pixels overall statitics

24 detector_summary

detector_consist_check

Basic checks if parameters entered (slightly redundant on purpose) add up

Description

Basic checks if parameters entered (slightly redundant on purpose) add up

Usage

```
detector_consist_check(detector = NA)
```

Arguments

detector

Detector object

detector_summary

Generates a string with the detector summary

Description

Generates a string with the detector summary

Usage

```
detector_summary(detector)
```

Arguments

detector

Detector object

Value

String with the detector summary

dist_corner 25

dist_corner

A function to calculate pixel distances from corners

Description

A function to calculate pixel distances from corners

Usage

```
dist_corner(detector)
```

Arguments

detector

Detector object

Value

Matrix containing pixel distances from corners

dist_edge_col

A function to calculate pixel horizontal distance to module edge

Description

A function to calculate pixel horizontal distance to module edge

Usage

```
dist_edge_col(detector)
```

Arguments

detector

Detector object

Value

distance matrix

26 dist_edge_row

dist_edge_min

A function to calculate L-infinity distance to module edge

Description

A function to calculate L-infinity distance to module edge

Usage

```
dist_edge_min(detector)
```

Arguments

detector

Detector object

Value

distance matrix

dist_edge_row

A function to calculate pixel vertical distance to module edge

Description

A function to calculate pixel vertical distance to module edge

Usage

```
dist_edge_row(detector)
```

Arguments

detector

Detector object

Value

distance matrix

Excalibur_Detector 27

Excalibur_Detector

A S3 class to represent the Excalibur detector.

Description

A S3 class to represent the Excalibur detector.

Usage

```
Excalibur_Detector()
```

Value

Excalibur detector object

find_clumps

Locates and clasifies clumps of a damaged detector

Description

Locates and clasifies clumps of a damaged detector

Usage

```
find_clumps(detector, row = NA, col = NA)
```

Arguments

detector Detector object

row Module row number

col Module column number

Value

Detector with events matrix

28 get_dead_stats

get_dead_pix_mask

Creates a mask matrix of dead pixels

Description

Creates a mask matrix of dead pixels

Usage

```
get_dead_pix_mask(detector)
```

Arguments

detector

Detector object

Value

dead pixel mask

 ${\sf get_dead_stats}$

Generate summary of damaged pixels

Description

Generate summary of damaged pixels

Usage

```
get_dead_stats(detector)
```

Arguments

detector

Detector object

Value

Dead_Stats object

get_events_mask 29

 get_events_mask

Generates events matrix (a matrix with pixels as 0 and events as 1)

Description

Generates events matrix (a matrix with pixels as 0 and events as 1)

Usage

```
get_events_mask(detector)
```

Arguments

detector

Detector object

Value

events mask

get_events_matrix

Generates events matrix for selected events

Description

Generates events matrix for selected events

Usage

```
get_events_matrix(detector, incl_event_list = NA)
```

Arguments

```
detector Detector object
incl_event_list
a list of events to be included
```

Value

Events matrix

30 glm_events_ctr_eucl

get_ppp_dead

Generates ppp for the dead pixels

Description

Generates ppp for the dead pixels

Usage

```
get_ppp_dead(detector)
```

Arguments

detector

Detector object

Value

ppp of dead pixels

glm_events_ctr_eucl

Fits events distances from the centre using glm

Description

Fits events distances from the centre using glm

Usage

```
glm_events_ctr_eucl(detector, incl_event_list = NA)
```

Arguments

```
detector Detector object
incl_event_list
```

a list of events to be included

Value

glm_events_ctr_linf 31

glm_events_ctr_linf

Fits events parallel maxima from the centre using glm

Description

Fits events parallel maxima from the centre using glm

Usage

```
glm_events_ctr_linf(detector, incl_event_list = NA)
```

Arguments

detector

Detector object

incl_event_list

a list of events to be included

Value

Fitted model

```
glm_events_dist_corner
```

Fits events distances to the nearest corner using glm

Description

Fits events distances to the nearest corner using glm

Usage

```
glm_events_dist_corner(detector, incl_event_list = NA)
```

Arguments

```
detector Detector object
incl_event_list
```

a list of events to be included

Value

```
glm_events_dist_edge_col
```

Fits events distances from the module edges by column using glm

Description

Fits events distances from the module edges by column using glm

Usage

```
glm_events_dist_edge_col(detector, incl_event_list = NA)
```

Arguments

```
detector Detector object
incl_event_list
```

a list of events to be included

Value

Fitted model

```
glm_events_dist_edge_min
```

Fits events distances to the nearest sub-panel edge using glm

Description

Fits events distances to the nearest sub-panel edge using glm

Usage

```
glm_events_dist_edge_min(detector, incl_event_list = NA)
```

Arguments

Value

```
glm_events_dist_edge_row
```

Fits events distances from the module edges by row using glm

Description

Fits events distances from the module edges by row using glm

Usage

```
glm_events_dist_edge_row(detector, incl_event_list = NA)
```

Arguments

Value

Fitted model

```
glm_pixel_ctr_eucl
```

Fits pixel distance from the centre using glm

Description

Fits pixel distance from the centre using glm

Usage

```
glm_pixel_ctr_eucl(detector)
```

Arguments

detector

Detector object

Value

glm_pixel_ctr_linf

Fits pixel parallel maxima from the centre using glm

Description

Fits pixel parallel maxima from the centre using glm

Usage

```
glm_pixel_ctr_linf(detector)
```

Arguments

detector

Detector object

Value

Fitted model

glm_pixel_dist_corner Fits pixel distances to the nearest corner using glm

Description

Fits pixel distances to the nearest corner using glm

Usage

```
glm_pixel_dist_corner(detector)
```

Arguments

detector

Detector object

Value

```
glm_pixel_dist_edge_col
```

Fits pixel distances from the module edges by column using glm

Description

Fits pixel distances from the module edges by column using glm

Usage

```
glm_pixel_dist_edge_col(detector)
```

Arguments

detector

Detector object

Value

Fitted model

```
glm_pixel_dist_edge_min
```

Fits pixel distances to the nearest sub-panel edge using glm

Description

Fits pixel distances to the nearest sub-panel edge using glm

Usage

```
glm_pixel_dist_edge_min(detector)
```

Arguments

detector

Detector object

Value

36 ini_graphics

```
glm_pixel_dist_edge_row
```

Fits pixel distances from module edges by row using glm

Description

Fits pixel distances from module edges by row using glm

Usage

```
glm_pixel_dist_edge_row(detector)
```

Arguments

detector

Detector object

Value

Fitted model

ini_graphics

Starts the graphics device driver for producing graphics with respect to a chosen format

Description

Starts the graphics device driver for producing graphics with respect to a chosen format

Usage

```
ini_graphics(file_path)
```

Arguments

file_path

Output path with an extension

load_pix_matrix 37

load_pix_matrix

A function to load pixel data

Description

A function to load pixel data

Usage

```
load_pix_matrix(detector, file_path)
```

Arguments

detector

The name of the detector object to be used

file_path

Path(s) to the file(s) containing dead pixel information

Value

Detector object

perform_glm

Performs glm fitting on the specified symbolic expression

Description

Performs glm fitting on the specified symbolic expression

Usage

```
perform_glm(symb_expr, family = binomial(link = logit))
```

Arguments

 $symb_expr$

symbolic description of the linear predictor

family

a description of the error distribution

Value

Fitted model

glm_git fitted model

PerkinElmerCropped1600_Detector

A S3 class to represent the PerkinElmerCropped1600 detector.

Description

A S3 class to represent the PerkinElmerCropped1600 detector.

Usage

PerkinElmerCropped1600_Detector()

Value

PerkinElmerCropped1600 detector object

PerkinElmerFull_Detector

A S3 class to represent the PerkinElmerFull detector.

Description

A S3 class to represent the PerkinElmerFull detector.

Usage

PerkinElmerFull_Detector()

Value

PerkinElmerFul detector object

PerkinElmerRefurbished_Detector

A S3 class to represent the PerkinElmerRefurbished detector.

Description

A S3 class to represent the PerkinElmerRefurbished detector.

Usage

PerkinElmerRefurbished_Detector()

Value

PerkinElmerRefurbished detector object

Pilatus_Detector 39

Pilatus_Detector

A S3 class to represent the PerkinElmerRefurbished detector.

Description

A S3 class to represent the PerkinElmerRefurbished detector.

Usage

```
Pilatus_Detector()
```

Value

Pilatus detector object

 ${\tt pixel_dist_ctr_eucl}$

A function to calculate euclidean distance from the centre for each pixel

Description

A function to calculate euclidean distance from the centre for each pixel

Usage

```
pixel_dist_ctr_eucl(detector)
```

Arguments

detector

Detector object

Value

Matrix of euclidean distances

40 plot_angles

pixel_dist_ctr_linf

A function to calculate parallel maxima from the centre for each pixel

Description

A function to calculate parallel maxima from the centre for each pixel

Usage

```
pixel_dist_ctr_linf(detector)
```

Arguments

detector

Detector object

Value

Matrix of parallel maxima

plot_angles

Plots NN angles

Description

Plots NN angles

Usage

```
plot_angles(ppp_obj, caption, file_path = NA)
```

Arguments

ppp_obj ppp object

caption caption of the figure

file_path file path

plot_arrows 41

plot_arrows

Plots NN oriented arrrows

Description

Plots NN oriented arrrows

Usage

```
plot_arrows(ppp_obj, caption, file_path = NA)
```

Arguments

ppp_obj ppp object

caption caption of the figure

file_path file path

plot_counts

Plots dead pixel counts

Description

Plots dead pixel counts

Usage

```
plot_counts(module_count_arr, caption, file_path = NA)
```

Arguments

module_count_arr

Counts per array

caption caption of the figure

file_path file path

42 plot_detector

plot_density

Plots module Plots density

Description

Plots module Plots density

Usage

```
plot_density(
  ppp_obj,
  caption,
  file_path = NA,
  adjust = 0.5,
  color = topo.colors(50)
)
```

Arguments

ppp_obj ppp object

caption caption of the figure

file_path file path

adjust Kernel density bandwidth

color a list of colors

plot_detector

Plot detector

Description

Plot detector

Usage

```
plot_detector(detector, file_path = NA, caption = TRUE)
```

Arguments

detector Detector object file_path Output file path

caption Flag to turn on/off figure caption

plot_events 43

plot_events

Plots damaged detector events

Description

Plots damaged detector events

Usage

```
plot_events(
  detector,
  col = NA,
  row = NA,
  file_path = NA,
  caption = TRUE,
  incl_event_list = NA,
  plot_edges_gaps = TRUE
)
```

Arguments

plot_events_angles

Plots angles graph of events of a detector or module

Description

Plots angles graph of events of a detector or module

44 plot_events_arrows

Usage

```
plot_events_angles(
  detector,
  file_path = NA,
  row = NA,
  col = NA,
  caption = TRUE,
  incl_event_list = NA
)
```

Arguments

detector Detector object

file_path Output file path

row Module row number

col Module column number

caption Flag to turn on/off figure caption

incl_event_list

a list of events to be included

plot_events_arrows

Plots arrows graph of events of a detector or module

Description

Plots arrows graph of events of a detector or module

Usage

```
plot_events_arrows(
  detector,
  file_path = NA,
  row = NA,
  col = NA,
  caption = TRUE,
  incl_event_list = NA
)
```

Arguments

detector Detector object

file_path Output file path

row Module row number

col Module column number

plot_events_count 45

```
caption Flag to turn on/off figure caption incl_event_list a list of events to be included
```

plot_events_count

Plots events count per detector or module

Description

Plots events count per detector or module

Usage

```
plot_events_count(
  detector,
  file_path = NA,
  row = NA,
  col = NA,
  caption = TRUE,
  incl_event_list = NA
)
```

Arguments

```
detector Detector object

file_path Output file path

row Module row number

col Module column number

caption Flag to turn on/off figure caption

incl_event_list

a list of events to be included
```

plot_events_density

Plots density graph of events of a detector or module

Description

Plots density graph of events of a detector or module

46 plot_events_kfg

Usage

```
plot_events_density(
  detector,
  file_path = NA,
  adjust = 0.5,
  row = NA,
  col = NA,
  caption = TRUE,
  incl_event_list = NA,
  color = topo.colors(50)
)
```

Arguments

```
detector
                  Detector object
file_path
                  Output file path
adjust
                  Kernel density bandwidth
                  Module row number
row
col
                  Module column number
                  Flag to turn on/off figure caption
caption
incl_event_list
                  a list of events to be included
                  a list of colors
color
```

plot_events_kfg

Plots K, F, G functions of a detector or module

Description

Plots K, F, G functions of a detector or module

```
plot_events_kfg(
  detector,
  func,
  file_path = NA,
  row = NA,
  col = NA,
  caption = TRUE,
  incl_event_list = NA
)
```

plot_kfg 47

Arguments

detector Detector object

func Function name

file_path Output file path

row Module row number

col Module column number

caption Flag to turn on/off figure caption

incl_event_list

a list of events to be included

plot_kfg

Plots K, F, G functions

Description

Plots K, F, G functions

Usage

```
plot_kfg(ppp_obj, func, file_path = NA, caption = TRUE)
```

Arguments

ppp_obj ppp object
func Function name
file_path Output file path

caption Flag to turn on/off figure caption

plot_module_events

Plots damaged detector module events

Description

Plots damaged detector module events

```
plot_module_events(
  detector,
  col,
  row,
  file_path = NA,
  caption = TRUE,
  incl_event_list = NA
)
```

48 plot_pixels

Arguments

detector Detector object

col Module column number
row Module row number
file_path Output file path

caption Flag to turn on/off figure caption

incl_event_list

a list of events to be included

plot_module_pixels

A function to plot detector module with damaged pixels

Description

A function to plot detector module with damaged pixels

Usage

```
plot_module_pixels(detector, col, row, file_path = NA, caption = TRUE)
```

Arguments

detector Detector object

col Module column number
row Module row number

file_path Output file path

caption Flag to turn on/off figure caption

plot_pixels

A function to plot detector with damaged pixels

Description

A function to plot detector with damaged pixels

```
plot_pixels(detector, col = NA, row = NA, file_path = NA, caption = TRUE)
```

plot_pixels_angles 49

Arguments

detector Detector object

col Module column number

row Module row number

file_path Output file path

caption Flag to turn on/off figure caption

plot_pixels_angles

A function to plot NN angles of dead pixels of detector or module

Description

A function to plot NN angles of dead pixels of detector or module

Usage

```
plot_pixels_angles(
  detector,
  file_path = NA,
  row = NA,
  col = NA,
  caption = TRUE
)
```

Arguments

detector Detector object file_path Output file path

row Module row number

col Module column number

caption Flag to turn on/off figure caption

50 plot_pixels_count

plot_pixels_arrows	A function to plot NN oriented arrrows of dead pixels of detector or
	module

Description

A function to plot NN oriented arrrows of dead pixels of detector or module

Usage

```
plot_pixels_arrows(
  detector,
  file_path = NA,
  row = NA,
  col = NA,
  caption = TRUE
)
```

Arguments

detector	Detector object
file_path	Output file path
row	Module row number
col	Module column number

caption Flag to turn on/off figure caption

Description

A function to plot detector with dead pixel counts per module

Usage

```
plot_pixels_count(detector, file_path = NA, row = NA, col = NA, caption = TRUE)
```

Arguments

detector	Detector object
file_path	Output file path
row	Module row number
col	Module column number
caption	Flag to turn on/off figure caption

plot_pixels_density 51

plot_pixels_density

A function to plot densities of dead pixels of detector or module

Description

A function to plot densities of dead pixels of detector or module

Usage

```
plot_pixels_density(
  detector,
  file_path = NA,
  adjust = 0.5,
  row = NA,
  col = NA,
  caption = TRUE,
  color = topo.colors(50)
)
```

Arguments

detector Detector object file_path Output file path

adjust Kernel density bandwidth row Module row number col Module column number

caption Flag to turn on/off figure caption

color a list of colors

plot_pixels_kfg

Plots K, F, G functions

Description

Plots K, F, G functions

```
plot_pixels_kfg(
  detector,
  func,
  file_path = NA,
  row = NA,
  col = NA,
  caption = TRUE
)
```

52 plot_pixel_ctr_linf

Arguments

detector Detector object

func Function name

file_path Output file path

row module row number

col module column number

caption Flag to turn on/off figure caption

plot_pixel_ctr_eucl

Calculates and plots pixel euclidean distance from the centre

Description

Calculates and plots pixel euclidean distance from the centre

Usage

```
plot_pixel_ctr_eucl(detector, file_path = NA)
```

Arguments

detector Detector object file_path Output file path

plot_pixel_ctr_linf

Calculates and plots pixel parallel maxima from the centre

Description

Calculates and plots pixel parallel maxima from the centre

Usage

```
plot_pixel_ctr_linf(detector, file_path = NA)
```

Arguments

detector Detector object file_path Output file path

plot_pixel_dist_corner 53

```
plot_pixel_dist_corner
```

Calculates and plots pixel distances from corners

Description

Calculates and plots pixel distances from corners

Usage

```
plot_pixel_dist_corner(detector, file_path = NA)
```

Arguments

detector Detector object file_path Output file path

plot_pixel_dist_edge

Calculates and plots L-infinity distances from the module edges

Description

Calculates and plots L-infinity distances from the module edges

Usage

```
plot_pixel_dist_edge(detector, file_path = NA)
```

Arguments

detector Detector object file_path Output file path

```
plot_pixel_dist_edge_col
```

Calculates and plots horizontal distances from the module edges

Description

Calculates and plots horizontal distances from the module edges

Usage

```
plot_pixel_dist_edge_col(detector, file_path = NA)
```

Arguments

detector Detector object file_path Output file path

```
plot_pixel_dist_edge_row
```

Calculates and plots vetical distances from the module edges

Description

Calculates and plots vetical distances from the module edges

Usage

```
plot_pixel_dist_edge_row(detector, file_path = NA)
```

Arguments

detector Detector object file_path Output file path

readin_detector 55

readin	detector
readin	$0 \leftarrow 1 \leftarrow 0 \leftarrow $

Reads in a user defined detector from a file

Description

Reads in a user defined detector from a file

Usage

```
readin_detector(file_path)
```

Arguments

file_path

A path to the user defined detector file

Value

Detector object

```
remove_high_density_cluster
```

Remove high density cluster of dead pixels Recalculates dead statistics and clumps if they were present in the Detector object

Description

Remove high density cluster of dead pixels Recalculates dead statistics and clumps if they were present in the Detector object

Usage

```
remove_high_density_cluster(detector, min_pts = 30, eps_adjust = 0.05)
```

Arguments

detector Detector object

min_pts minimum points argument of dbscan function

eps_adjust adjust eps

Value

detector object with high density cluster of pixels removed

56 which_module_idx

which_module	Module module Returns row or column of a module that a dead pixel
	belongs to

Description

Module module Returns row or column of a module that a dead pixel belongs to

Usage

```
which_module(coo, me)
```

Arguments

coo x or y coordinate of a dead pixel

me module edges

Value

row or column number

which_module_idx

Function returns both col and row number of a dead pixel.

Description

Function returns both col and row number of a dead pixel.

Usage

```
which_module_idx(x, y, module_edges_col, module_edges_row)
```

Arguments

```
x pixel x coordinate
y pixel y coordinate
module_edges_col
vector of columns that contain edges of modules
module_edges_row
vector of rows that contain edges of modules
```

Value

tmp

Index

*Topic datasets	Dead_Stats, 22
available_detectors, 20	dead_stats_summary, 23
.Default_Detector, 8	detector_consist_check, 24
.assign_module, 4	detector_summary, 24
.assign_pixel_matrix,4	dist_corner, 25
.check_select,5	dist_edge_col, 25
.classify_clump, 5	dist_edge_min, 26
.clump_module, 6	dist_edge_row, 26
.create_ppp_edges_col, 6	Evenlibur Detector 27
.create_ppp_edges_row,7	Excalibur_Detector, 27
.create_ppp_gaps_col,7	find_clumps, 27
.create_ppp_gaps_row, 8	Tina_clumps, 27
.derive_detector, 10	<pre>get_dead_pix_mask, 28</pre>
.detector_edges, 10	get_dead_stats, 28
.dist_closest_edge, 11	get_events_mask, 29
.dist_edge, 11	get_events_matrix, 29
<pre>.extract_detector_parameter, 12</pre>	get_ppp_dead, 30
<pre>.extract_number, 12</pre>	glm_events_ctr_eucl, 30
.get_clump_event_ppp, 13	glm_events_ctr_linf, 31
.get_clump_pixel_ppp, 14	glm_events_dist_corner, 31
.get_detector_ppps, 14	glm_events_dist_edge_col, 32
.get_ppp_dead_module, 15	glm_events_dist_edge_min, 32
.getmode, 13	glm_events_dist_edge_row, 33
.mask_to_events, 15	glm_pixel_ctr_eucl, 33
<pre>.matrix_from_hdf, 16</pre>	glm_pixel_ctr_linf, 34
<pre>.matrix_from_tiff, 16</pre>	glm_pixel_dist_corner, 34
<pre>.matrix_from_xml, 17</pre>	glm_pixel_dist_edge_col, 35
.norm_vec, 17	glm_pixel_dist_edge_min, 35
.plot_pixel, 18	glm_pixel_dist_edge_min, 35 glm_pixel_dist_edge_row, 36
.tr, 18	gim_pixei_dist_edge_iow, 30
.xyc_pixels2events, 19	ini_graphics, 36
.xyc_ply_func, 19	111_81 dp11100, 50
3 –1 3 –	<pre>load_pix_matrix, 37</pre>
available_detectors, 20	- , - ,
	perform_glm, 37
check_clumps, 20	PerkinElmerCropped1600_Detector, 38
check_detector_avail, 21	PerkinElmerFull_Detector, 38
create_detector, 21	PerkinElmerRefurbished_Detector, 38
	Pilatus_Detector, 39
dead_pix_coords, 22	pixel_dist_ctr_eucl, 39

58 INDEX

```
pixel_dist_ctr_linf, 40
plot_angles, 40
plot_arrows, 41
plot_counts, 41
plot_density, 42
plot_detector, 42
plot_events, 43
plot_events_angles, 43
plot_events_arrows, 44
plot_events_count, 45
plot_events_density, 45
plot_events_kfg, 46
plot_kfg, 47
plot_module_events, 47
plot_module_pixels, 48
plot_pixel_ctr_eucl, 52
plot_pixel_ctr_linf, 52
plot_pixel_dist_corner, 53
plot_pixel_dist_edge, 53
plot_pixel_dist_edge_col, 54
plot_pixel_dist_edge_row, 54
plot_pixels, 48
plot_pixels_angles, 49
plot_pixels_arrows, 50
plot_pixels_count, 50
plot_pixels_density, 51
plot_pixels_kfg, 51
readin_detector, 55
remove_high_density_cluster, 55
which_module, 56
which\_module\_idx, \color{red} \bf{56}
```