DSC 255 - MACHINE LEARNING FUNDAMENTALS

FEEDFORWARD NEURAL NETS

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

Feedforward Neural Nets

The Value at a Hidden Unit

How is h computed from $z_1, ..., z_m$?

The Value at a Hidden Unit

How is h computed from $z_1, ..., z_m$?

- $h = \sigma(w_1 z_1 + w_2 z_2 + \dots + w_m z_m + b)$
- $\bullet \sigma(\cdot)$ is a nonlinear **activation function**, e.g., "rectified linear"

$$\sigma(u) = \begin{cases} u & \text{if } u \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Common Activation Functions

Threshold function or Heaviside step function

$$\sigma(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic tangent

$$\sigma(z) = \tanh(z)$$

ReLU (rectified linear unit)

$$\sigma(z) = \max(0, z)$$

Why do we Need Nonlinear Activation Functions?

The Output Layer

Classification with k labels: want k probabilities summing to 1.

The Output Layer

Classification with k labels: want k probabilities summing to 1.

- $y_1, ..., y_k$ are linear functions of the parent nodes z_i .
- Get probabilities using softmax:

$$\Pr(label j) = \frac{e^{y_j}}{e^{y_1} + \dots + e^{y_k}}$$

The Complexity

Approximation Capability

Let $f: \mathbb{R}^d \to \mathbb{R}$ be any continuous function. There is a neural net with one hidden layer that approximates f arbitrarily well.

Approximation Capability

Let $f: \mathbb{R}^d \to \mathbb{R}$ be any continuous function. There is a neural net with one hidden layer that approximates f arbitrarily well.

■ The hidden layer may need a lot of nodes.

- The benefit of depth: for certain classes of functions, you need:
 - > Either: one hidden layer of enormous size
 - > Or: multiple hidden layers of moderate size