HW 5 CHEM 362

Available: March 17, 2008 Due: March 24, 2008

- 1. What is the practical definition of a transition element? What fraction of the approximately 111 elements are of this type?
- 2. What are some of the important characteristics of transition elements?
- 3. What do the terms low-spin (L.S.) and high-spin (H.S.) mean?
- 4. Predict the magnetic properties and the LFSE for the following:
 When appropriate, explain why you chose a L.S. versus a H.S. electronic configuration.
 - a. $\left[\hat{Fe}(\hat{CN})_6 \right]^{3}$
 - b. $[Co(H_2O)_6]^{3+}$
 - c. $[Fe(H_2O)_6]^{3+}$
 - d. $[CoF_6]^{3}$
 - e. $[Ru(NH_3)_6]^{2+}$
 - f. $[Mn(H_2O)_6]^{2+}$
 - g. $[CoCl_4]^{2}$
 - h. $[Cr(H_2O)_6]^{2+}$
- 5. Why are tetrahedral complexes usually not low spin?
- 6. Prepare a drawing that shows the π -bond system in CO that is responsible for it being a very strong ligand (it is at the high end of the spectrochemical series). Clearly show the donor orbital of the metal and the acceptor orbital of the CO ligand.
- 7. Prepare a diagram that shows how the d-orbital splitting pattern changes as an octahedral complex is altered via a tetragonal distortion that is first weak and then reaches the extreme case where a square, four coordinate complex is obtained.
- 8. How does Δ_0 (10Dq) change on going from one octahedral metal complex to another with the same ligand set, but with the following changes:
 - a. M^{3+} instead of M^{2+}
 - b. A second row transition element instead of a first row transition element.
- 9. By using orbital diagrams for the five d orbitals, show which dⁿ (n = 0-10) configurations are capable of having both low-spin and high-spin configurations in an octahedral geometry.
- 10. Why are the d-d transitions weak? Why are the absorptions observed at all if they are Laporte (orbitally) forbidden?
- 11. What is the spectrochemical series and what limitations must be remembered when using it?
- 12. The complex $[NiCl_4]^{2-}$ is paramagnetic with two unpaired electrons whereas the compound $[Ni(CN)_4]^{2-}$ is diamagnetic. Deduce the geometries of the two compounds and explain the observations in terms of ligand field theory.

- 14. Make drawings of the d orbitals and state which of them fall into the category of $e_{\rm g}$ and which fall into the category of $t_{\rm 2g}$ orbitals in an octahedral ligand field.
- 15. What is the Jahn-Teller Effect? How does one go about detecting it?
- 16. Consider a high-spin Mn^{2+} complex such as $[Mn(H_2O)_6]^{2+}$. Sketch the d orbitals and put the electrons in them. If one excites an electron from the t_{2g} to the e_g set, what will have to happen? What ramification does this have on the spectrum of the Mn^{2+} complex.