Lecture 3

Multiple Linear Regression I

Reading: Forecasting, Time Series, and Regression (4th edition) by Bowerman, O'Connell, and Koehler: Chapter 4

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Agenda

- **Multiple Linear Regression**
- 2 Estimation & Inference
- Assessing Model Fit

Notes

Notes

Multiple Regression Analysis

Goal: To model the population relationship between two or more predictors (X's) and a response (Y).

Model: $Y = f(\mathbf{x}) + \varepsilon$.

Example: Species diversity on the Galapagos Islands. We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

Mile	ltin	ا ما	inear
		000	

Multiple Linear Regression

Estimation & Inference

Assessing Model

Notes			

Data: Species Diversity on the Galapagos Islands

аเа: әре	cies i	Jiversi	ity on		aiapa		isiand	S
		Endemics		Elevation		Scruz		
Baltra	58		25.09	346	0.6	0.6	1.84	
Bartolome	31		1.24	109	0.6	26.3	572.33	
Caldwell			0.21	114	2.8	58.7	0.78	
Champion	25		0.10	46	1.9	47.4		
Coamano			0.05		1.9	1.9	903.82	
Daphne.Major	18		0.34	119	8.0	8.0	1.84	
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34	
Darwin	10		2.33	168	34.1	290.2	2.85	
Eden	8		0.03	71	0.4	0.4	17.95	
Enderby			0.18	112	2.6	50.2	0.10	
Espanola	97	26	58.27	198	1.1	88.3	0.57	
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32	
Gardner1	58		0.57	49	1.1	93.1	58.27	
Gardner2			0.78	227	4.6	62.2	0.21	
Genovesa	40	19	17.35	76	47.4	92.2	129.49	
Isabela	347	89	4669.32	1707	0.7	28.1	634.49	
Marchena			129.49	343	29.1	85.9	59.56	
Onslow			0.01	25	3.3	45.9	0.10	
Pinta	104	37	59.56	777	29.1	119.6	129.49	
Pinzon	108	33	17.95	458	10.7	10.7	0.03	
Las.Plazas	12		0.23	94	0.5	0.6	25.09	
Rabida	70	30	4.89	367	4.4	24.4	572.33	
SanCristobal	280	65	551.62	716	45.2	66.6	0.57	
SanSalvador	237	81	572.33	906	0.2	19.8	4.89	
SantaCruz	444	95	903.82	864	0.6	0.0	0.52	
SantaFe	62	28	24.08	259	16.5	16.5	0.52	
SantaMaria	285	73	170.92	640	2.6	49.2	0.10	
Seymour	44	16	1.84	147	0.6	9.6	25.09	
Tortuga	16	8	1.24	186	6.8	50.9	17.95	
Wolf	21	12	2.85	253	34.1	254.7	2.33	

Multiple Linear Regression I
MATHEMATICAL AND STATISTICAL SCIENCES
Multiple Linear Regression

Notes

How Do Geographic Variables Affect Species Diversity?

Notes			

Let's Take a Look at the Correlation Matrix

Here we compute the correlation coefficients between the response (Species) and predictors (all the geographic variables)

16	/ 1 F	27)	2)			
> round(c						
	Species	Area	Elevation	Nearest	Scruz	Adjacent
Species	1.000	0.618	0.738	-0.014	-0.171	0.026
Area	0.618	1.000	0.754	-0.111	-0.101	0.180
Elevation	0.738	0.754	1.000	-0.011	-0.015	0.536
Nearest	-0.014	-0.111	-0.011	1.000	0.615	-0.116
Scruz	-0.171	-0.101	-0.015	0.615	1.000	0.052
Adjacent	0.026	0 180	0.536	-0.116	0.052	1 000

Multiple Linear Regression I
MATHEMATICAL AND STATISTICAL SCIENCES
Multiple Linear Regression

Notes			

Combining Two Pieces of Information in One Plot

Notes		

Multiple Linear Regression Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon$$

- The above relationship holds for every individual in the population, and $\mathbb{E}(\varepsilon)=0$ and $\mathrm{Var}(\varepsilon)=\sigma^2$
- \bullet The population of individual error terms $(\varepsilon$'s) follows normal distribution
- Observations are independent (true if individuals are selected randomly)

$$\Rightarrow \varepsilon \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$$

Multiple L	inear
Regrece	on I
negressi	OIII

Multiple Linear Regression

Estimation & Inference

Assessing Model

Notes

$\textbf{Model 1: Species} \sim \textbf{Elevation}$

Mult	iple	Line	ar
Red	Trac	eion	ï

Multiple Linear Regression Estimation & Inference Assessing Model

Model 1 Fit

$$\begin{split} \hat{\text{Species}} &= 11.33511 + 0.20079 \times \text{Elevation}, \\ \hat{\sigma} &= 78.66, \, \text{R}^2 = 0.5454 \end{split}$$

Multiple Linear Regression 1 Multiple Linear Regression 2 Multiple Linear Regression 8 Interence Assessing Model Fit

Notes

$\textbf{Model 2: Species} \sim \textbf{Elevation} + \textbf{Area}$

N	otac	

Model 2 Fit

Spêcies = 17.10519 + 0.17174 × Elevation + 0.01880 × Area, $\hat{\sigma} = 79.34, \, \mathrm{R}^2 = 0.554$

	STATISTICAL SCIENCES
Multip Regre	le Linear ession

$\textbf{Model 3: Species} \sim \textbf{Elevation} + \textbf{Area} + \textbf{Adjacent}$

Notes

"Full Model"

Notes			

MLR Topics

Similar to SLR, we will discuss

- Estimation
- Inference
- Diagnostics and Remedies

We will also discuss some new topics

- Model Selection
- Multicollinearity

Multiple Linear Regression I
MATHEMATICAL AND STATISTICAL SCIENCES
Multiple Linear Regression

1	Notes			
_				

Multiple Linear Regression in Matrix Notation

Given the actual data, we can write MLR model as:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} & \cdots & x_{p-1,1} \\ 1 & x_{1,2} & x_{2,2} & \cdots & x_{p-1,2} \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & x_{1,n} & x_{2,n} & \cdots & x_{p-1,n} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

It will be more convenient to put this in a matrix representation as:

$$y = X\beta + \varepsilon$$

Error Sum of Squares (SSE)

$$=\sum_{i=1}^n \left(y_i - \left(\beta_0 + \sum_{j=1}^{p-1} \beta_j x_{j,i}\right)\right)^2 \text{ can be expressed as:}$$

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

Next, we are going to find $\hat{\beta}=(\hat{\beta}_0,\hat{\beta}_1,\cdots,\hat{\beta}_{p-1})$ to minimize SSE as our estimate for $\beta=(\beta_0,\beta_1,\cdots,\beta_{p-1})$

Multiple Linear

STATISTICAL SCIENCES

Multiple Linear Regression

Estimation & Inference
Assessing Model

3 16

Estimating Regression Coefficients

We apply method of least squares to minimize $(y-X\beta)^T(y-X\beta)$ to obtain $\hat{\beta}$

What is important is the **orthogonality**, which leads to the following:

- $\sum_{i=0}^{n} (y_i \hat{y}_i) x_{1,i} = 0$
- •
- $\sum_{i=1}^{n} (y_i \hat{y}_i) x_{p-1,i} = 0$

Note: The first equation states that the mean of the residuals is 0, while the other equations indicate that the residuals are uncorrelated with the independent variables. The resulting least squares estimate is

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

(see LS_MLR.pdf for the derivation)

Multiple Linear Regression I

Multiple Linear Regression

Estimation & Inference

Assessing Mode Fit

0.17

Notes

Notes

Estimation of σ^2

Fitted values:

$$\hat{\boldsymbol{y}} = \boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y} = \boldsymbol{H} \boldsymbol{y}$$

Residuals:

$$e = y - \hat{y} = (I - H)y$$

Similar as we did in SLR

$$\hat{\sigma}^2 = \frac{e^T e}{n - p}$$

$$= \frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n - p}$$

$$= \frac{\text{SSE}}{n - p}$$

$$= \text{MSE}$$

Multiple Linear

Regression

Estimation & Inference

Assessing Model

Geometric Representation of Least Squares Estimation

Projecting the observed response y into a space spanned by X

Source: Linear Model with R 2nd Ed, Faraway, p. 15

Regression with Numerical and Categorical Predictors

What if some of the predictors are categorical variables?

Example: Salaries for Professors Data Set

Galaries ic	1 101633013	Data Oct						
<pre>> head(Salaries)</pre>								
discipline	yrs.since.phd	yrs.service	sex	salary				
= В	19	18	Male	139750				
= В	20	16	Male	173200				
= В	4	3	Male	79750				
= В	45	39	Male	115000				
= В	40	41	Male	141500				
= В	6	6	Male	97000				
c i i i i	aries) k discipline f B f B f B f B	aries) k discipline yrs.since.phd f	k discipline yrs.since.phd yrs.service f	B 19 18 Male F B 20 16 Male F B 4 3 Male F B 4 3 Male F B 45 39 Male F B 40 41 Male				

We have three categorical variables, namely, rank, discipline, and sex.

⇒ We will need to create dummy (indicator) variables for those categorical variables

Notes

Notes

Dummy Variable

For binary categorical variables:

$$x_{\text{sex}} = \begin{cases} 1 & \text{if sex = male,} \\ 0 & \text{if sex = female.} \end{cases}$$

$$x_{\rm discip} = \begin{cases} 0 & \text{if discip = A,} \\ 1 & \text{if discip = B.} \end{cases}$$

For categorical variable with more than two categories:

$$x_{\mathtt{rank1}} = \begin{cases} 0 & \text{if } \mathtt{rank} = \mathtt{Assistant \ Prof}, \\ 1 & \text{if } \mathtt{rank} = \mathtt{Associated \ Prof}. \end{cases}$$

$$x_{\mathrm{rank2}} = \begin{cases} 0 & \text{if } \mathrm{rank} = \mathrm{Associated\ Prof}, \\ 1 & \text{if } \mathrm{rank} = \mathrm{Full\ Prof}. \end{cases}$$

Design Matrix

>	head(X)				
	(Intercept)	${\tt rankAssocProf}$	rankProf	disciplineB	yrs.since.phd
1	1	0	1	1	19
2	1	0	1	1	20
3	1	0	0	1	4
4	1	0	1	1	45
5	1	0	1	1	40
6	1	1	0	1	6
	yrs.service	sexMale			
1	18	1			
2	16	1			
3	3	1			
4	39	1			
5	41	1			
6	. 6	1			

With the design matrix X, we can now use method of least squares to fit the model $oldsymbol{Y} = oldsymbol{X}oldsymbol{eta} + oldsymbol{arepsilon}$

$\textbf{Model Fit: } \texttt{lm}(\texttt{salary} \sim$

rank + sex + discipline + yrs.since.phd)

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 67884.32 4536.89 14.963 < 2e-16 *** disciplineB 13937.47 2346.53 5.940 6.32e-09 *** 3.145 0.00179 ** rankAssocProf 13104.15 4167.31 < 2e-16 *** rankProf 46032.55 4240.12 10.856 4349.37 1.122 0.26242 3875.39 sexMale yrs.since.phd 61.01 127.01 0.480 0.63124 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22660 on 391 degrees of freedom Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401 F-statistic: 63.27 on 5 and 391 DF, p-value: < 2.2e-16

Question: Interpretation of the slopes of these dummy variables (e.g. $\hat{\beta}_{rankAssocProf}$)? Interpretation of the intercept?

Notes

Notes

Model Fit for Assistant Professors

Color Line Type

Red: Female --: Applied (discipline B) - - -: Theoretical (discipline A) Blue: Male

9-month salary 91.8 k 77.4 k 70.2 k 63 k 10 Years since PhD

Multi	ple Linea	ar
Reg	receion	

Other Type of Predictor Variables: Polynomial regression

Suppose we would like to model the relationship between response Y and a predictor x as a p_{th} degree polynomial

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

Polynomial regression can be treated as a special case of multiple linear regression, with the design matrix taking the following form:

$$\boldsymbol{X} = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^p \\ 1 & x_2 & x_2^2 & \cdots & x_2^p \\ \vdots & \cdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^p \end{pmatrix}$$

One can also include the interaction terms; for example:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \varepsilon$$

Notes

Transformed Response Variables

Consider the following models:

$$\begin{split} \log(Y) &= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon; \\ Y &= \frac{1}{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon}, \end{split}$$

both of which can be expressed as follws

$$Y^* = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon;$$

$$Y^{**} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon,$$

respectively, where $Y^* = \log(Y)$, and $Y^{**} = 1/Y$.

Notes

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

Total sums of squares in response

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

We can rewrite SST as

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
Error: SSE Model: SSD

Partitioning Total Sums of Squares: A Graphical Illustration

Notes

ANOVA Table & F**-Test**

To answer the question: Is at least one of the predictors x_1, \dots, x_{p-1} useful in predicting the response y?

Source	df	SS	MS	F-Value
Model	p-1	SSR	MSR = SSR/(p-1)	MSR/MSE
Error	n-p	SSE	MSE = SSE/(n - p)	
Total	n-1	SST		

- \bullet F-test: Tests if the predictors $\{x_1,\cdots,x_{p-1}\}$ collectively help explain the variation in y
 - $H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$
 - ullet H_a : at least one $eta_k
 eq 0, \quad 1 \leq k \leq p-1$
 - $F^* = \frac{\text{MSR}}{\text{MSE}} = \frac{\text{SSR}/(p-1)}{\text{SSE}/(n-p)} \stackrel{H_0}{\sim} F_{p-1,n-p}$
 - Reject H_0 if $F^* > F_{1-\alpha,p-1,n-p}$

Notes

Testing Individual Predictor

- We can show that $\hat{\boldsymbol{\beta}} \sim \mathrm{N}_p\left(\boldsymbol{\beta}, \sigma^2\left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\right) \Rightarrow$ $\hat{\beta}_k \sim \mathrm{N}(\beta_k, \sigma_{\hat{\beta}_k}^2)$
- Perform t-test:
 - $\bullet \ H_0: \beta_k = 0 \ \text{vs.} \ H_a: \beta_k \neq 0$
 - $\bullet \ \ \tfrac{\hat{\beta}_k \beta_k}{\hat{\operatorname{se}}(\hat{\beta}_k)} \sim t_{n-p} \Rightarrow t^* = \tfrac{\hat{\beta}_k}{\hat{\operatorname{se}}(\hat{\beta}_k)} \overset{H_0}{\sim} t_{n-p}$
 - Reject H_0 if $|t^*| > t_{1-\alpha/2,n-p}$
- Confidence interval for β_k :

			^
0	100	4	(O)
$D_{\boldsymbol{k}}$	=	$t_{1-\alpha/2,n-p}$ se(D_{I}
1- 10		$1-\alpha/2,n-p$	(1-10)

Confidence Intervals and Confidence Ellipsoids

Comparing with individual confidence interval, confidence ellipsoids can provide additional information when inference with multiple parameters is of interest. A $100(1-\alpha)\%$ confidence ellipsoid for β can be constructed using:

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T \boldsymbol{X}^T \boldsymbol{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \le p \hat{\sigma}^2 F_{p, n-p}^{\alpha}.$$

Multiple Linear Regression I
MATHEMATICAL AN STATISTICAL SCIENCE
Estimation & Inference

Quantifying Model Fit using Coefficient of Determination ${\cal R}^2$

ullet Coefficient of determination R^2 describes proportional of the variance in the response variable that is predictable from the predictors

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}, \quad 0 \le R^2 \le 1$$

- $\bullet \ R^2$ increases with the increasing p, the number of the predictors
 - Adjusted R^2 , denoted by $R^2_{
 m adj}=1-\frac{{
 m SSE}/(n-p)}{{
 m SST}/(n-1)}$ attempts to account for p

Multiple Linear Regression I

Multiple Linear Regression Estimation &

Inference
Assessing Model

Notes

Notes

R^2 vs. $R^2_{ m adj}$ Example

Suppose the true relationship between response Y and predictors (x_1,x_2) is

$$Y = 5 + 2x_1 + \varepsilon,$$

where $\varepsilon \sim N(0,1)$ and x_1 and x_2 are independent to each other. Let's fit the following two models to the "data"

$$\begin{aligned} &\text{Model 1: } Y=\beta_0+\beta_1x_1+\varepsilon^1\\ &\text{Model 2: } Y=\beta_0+\beta_1x_1+\beta_2x_2+\varepsilon^2 \end{aligned}$$

Question: Which model will "win" in terms of \mathbb{R}^2 ?

Let's conduct a Monte Carlo simulation to study this

Multiple Linear

Multiple Linear Regression Estimation & Inference

Inference
Assessing Model

Notes			

Outline of Monte Carlo Simulation

- Generating a large number (e.g., M=500) of "data sets", where each has exactly the same $\{x_{1,i},x_{2,i}\}_{i=1}^n$ but different values of response ${y_i = 5 + 2x_{1,i} + \varepsilon_i}_{i=1}^n$
- ② Fitting model 1: $Y = \beta_0 + \beta_1 x_1 + \varepsilon^1$ (true model) and model 2: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon^2$, respectively for each simulating data set and calculating their \mathbb{R}^2 and R_{adj}^2
- § Summarizing $\{R_j^2\}_{j=1}^M$ and $\{R_{adj,j}^2\}_{j=1}^M$ for model 1 and model 2

Notes

An Example of Model 1 Fit

```
> summary(fit1)
```

```
Call:
lm(formula = y \sim x1)
Residuals:
Min 10 Median 30 Max
-1.6085 -0.5056 -0.2152 0.6932 2.0118
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.1720 0.1534 33.71 < 2e-16 ***
x1 1.8660 0.1589 11.74 2.47e-12 ***
Signif. codes: 0 '***' 0.01 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.8393 on 28 degrees of freedom Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

Notes

An Example of Model 2 Fit

> summary(fit2)

Call: $lm(formula = y \sim x1 + x2)$ Residuals: Min 1Q Median 3Q Max -1.3926 -0.5775 -0.1383 0.5229 1.8385 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 5.1792 0.1518 34.109 < 2e-16 *** 0.1593 11.923 2.88e-12 *** 0.1797 -1.274 0.213 x1 1.8994 x2 -0.2289 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8301 on 27 degrees of freedom Multiple R-squared: 0.8408, Adjusted R-squared: 0. F-statistic: 71.32 on 2 and 27 DF, p-value: 1.677e-11

Adjusted R-squared: 0.8291

Notes			

R^2 : Model 1 vs. Model 2

$R^2_{ m adj}$: Model 1 vs. Model 2

Takeaways:

- $\bullet \ R^2$ always pick the more "complex" model (i.e., with more predictors), even the simpler model is the true model
- $\bullet \ R_{\rm adj}^2$ has a better chance to pick the "right" model

Notes

Notes

Summary

These slides cover:

- Multiple Linear Regression: Model and Parameter Estimation
- Analysis of Covariance to handle situations where some predictors are categorical; Polynomial Regression, where polynomial terms are added to increase model flexibility
- Inference: F-test and t-test; Confidence intervals/ellipsoids
- ullet Assessing Model Fit: R^2 and $R^2_{
 m adj}$
- Monte Carlo Simulation

V	otes

R Functions to Know

- image.plot in the fields library and scatter3D in the plot3D library for visualization
- anova for computing the ANOVA table
- Use * to create interaction terms in 1m
- \bullet Use I (x) or poly(x, df) to create polynomial terms

Multiple Linear Regression I
MATHEMATICAL A STATISTICAL SCIEN
Assessing Model Fit
3.4

Notes Notes Notes