ECE 250: Stochastic Processes: Week #1

Instructor: Behrouz Touri

Outline:

- Curious Random Processes
- Probability Space
- Random Variables

Deterministic vs Random Processes (dynamics)

• Deterministic: starting from $x_0 \in \mathbb{R}^n$ for all $t \geq 0$

$$x_{t+1} = f(t, x_t).$$

More generally: $x_{t+1} = f(t, x_t, \dots, x_{t-m})$ where m is the memory of the system.

Example: n = 1, starting at $x_0 > 0$, a simple (deterministic) population growth model:

$$x_{t+1} = r_0 x_t.$$

Note that $x_t = r_0^t x_0$.

• Random process: starting from $x_0 \in \mathbb{R}^n$ for all $t \geq 0$

$$x_{t+1} = f(t, x_t, w_t).$$

More generally: $x_{t+1} = f(t, x_t, \dots, x_{t-m}, w_t)$ where m is the memory of the system and w_t is a random variable/vector.

Example: Beginning phase of a pandemics: for some initially infected population $x_0 > 0$, the population of infected people at the beginning phase of a pandemics can be modeled by:

$$x_{t+1} = r_t x_t,$$

where r_t is a non-negative random variable independent of r_k for k < t with some $\mathbb{E}[r_t] = r_0$.

Some Curious Examples of Random Processes

ullet Averaging: suppose that $\{w_t\}$ is an independently and identically distributed random process with $\mathbb{E}[w_k]=\mu$.

How does the running average $x_t = \frac{w_1 + \ldots + w_t}{t}$ behave as $t \to \infty$? In this case:

$$tx_{t} = (t-1)x_{t-1} + w_{t}$$

$$x_{t} = (1 - \frac{1}{t})x_{t-1} + \frac{1}{t}w_{t}$$

$$x_{t} = f_{t}(x_{t-1}, w_{t})$$

$$f_{t}(x, w) = (1 - \frac{1}{t})x + \frac{1}{t}w.$$

- What happens if we use other weights such as: $x_t = \frac{w_1 + ... + w_t}{\sqrt{t}}$?
- ullet What if we don't have any weights at all, i.e., $x_t=w_1+\ldots+w_t$? What happens?
- What can we say about asymptotic behavior of such processes in general?

More Complicated Random Processes

• **Polar Codes**: Suppose that x_t is a random process whose evolution is given by

$$x_{t+1} = \begin{cases} 2x_t - x_t^2 & \text{with probability } 1/2 \\ x_t^2 & \text{with probability } 1/2 \end{cases}.$$

More precisely, let $\{w_t\}$ be a sequence of i.i.d. binary random process with

$$P(w_t = 1) = P(w_t = 0) = \frac{1}{2}$$

and

$$x_{t+1} = f(x_t, w_t) = w_t(2x_t - x_t^2) + (1 - w_t)x_t^2.$$

Note that both x^2 and x(2-x) map [0,1] to [0,1] (why?). What happens if we start with $x_1 \in (0,1)$? Does this process converge or not?

• **Pandemics**: Suppose that $\{w_t\}$ are i.i.d. with $w_t > 0$ with probability one. If $x_0 > 0$, what happens with the process

$$x_{t+1} = w_t x_t$$

as $t \to \infty$? Do we have some sort of exponential behavior in this case as well?

• Notations: \mathbb{R} : set of real numbers, \mathbb{Z} : set of integers, \mathbb{Q} : set of rational numbers, $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x \geq 0\}$ and $\mathbb{Z}^+ = \{a \in \mathbb{Z} \mid a \geq 0\}$. For a set X, we denote the set of all its subsets by $\mathcal{P}(X)$.

Probability Theory: Axiomatic and Mathematical Approach

- This course: a theory course on probability and stochastic processes that provides systematic/axiomatic approach to probability
- Probability spaces are triplets of $(\Omega, \mathcal{F}, \Pr(\cdot))$ consisting of a sample space Ω , set of events \mathcal{F} , and a probability measure $\Pr(\cdot)$
 - Sample space: any set Ω
 - Events \mathcal{F} : This is a set consisting of **subsets** of Ω satisfying:
 - a. $\Omega \in \mathcal{F}$
 - b. Closed under complement: $E \in \mathcal{F}$ implies $E^c \in \mathcal{F}$, and
 - c. Closed under countable union: for any countably many subsets $E_1, \ldots, E_k, \ldots \in \mathcal{F}$, we have $\bigcup_{k=1}^{\infty} E_k \in \mathcal{F}$
 - Probability measure $\Pr(\cdot)$: is a function from \mathcal{F} to $\mathbb{R}^+ := \{x \in \mathbb{R} \mid x \geq 0\}$ that satisfies:
 - i. $Pr(\Omega) = 1$, and
 - ii. For a countably many subsets $\{E_k\}$ in \mathcal{F} that is mutually disjoint (i.e., $E_i \cap E_j = \emptyset$ for all $i \neq j$), we have

$$\Pr(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \Pr(E_k).$$

Note

- Any \mathcal{F} that satisfies the properties a,b, and c is called a σ -algebra over Ω .
- Any (Ω, \mathcal{F}) is called a *measurable space*.
- Any function $\mu: \mathcal{F} \to \mathbb{R}^+$ that only satisfies $\Pr(\emptyset) = 0$ and (ii) of probability measure is called a *measure*. Probability measures are measures with unit measure for the entire space.
- Volume is a measure!

Examples of measurable spaces

- Example: $\Omega = \{0, 1\}$, and $\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.
- Example: In general, $\mathcal{P}(\Omega)$ is a σ -algebra for any Ω .
- Example: $(\mathbb{Z}^+, \mathcal{P}(\mathbb{Z}^+))$. Can we make this a probability space by adding a proper probability measure?
- Example: $\{\emptyset, \Omega\}$ is a σ -algebra for any Ω .
- When Ω has countably many elements, then we can throw (meaningful) probability measures on any (Ω, \mathcal{F}) for any σ -algebra $\mathcal{F} \subseteq \mathcal{P}(\Omega)$.
- What if Ω is uncountable such as \mathbb{R}^n ?
- Related Important Historic Question: Can we find the volume of all the subsets of \mathbb{R}^n ? Answer: No!
 - **Theorem 1.** Banach-Tarski Theorem (Paradox) For any two balls E, F in \mathbb{R}^n ($n \geq 3$), there exist finite partitions $\{E_1, \ldots, E_d\}$ of E and $\{F_1, \ldots, F_d\}$ of F such that E_i can be obtained by a combination of translations, rotations, or reflections of F_i for $i = 1, \ldots, d$.
- Fortunately, for \mathbb{R}^n there exists a σ -algebra that we can define meaningful measures in \mathbb{R}^n , namely the *Borel* σ -algebra.