Práctico 6: Relaciones de recurrencia.

Ref. Grimaldi 10.1, 10.2, 10.3 y 10.4

Ejercicio 1 Sea $a_0, a_1, \ldots a_n, \ldots$ una sucesión que verifica la ecuación:

$$a_n = 2a_{n-1}$$
 para todo $n \ge 1$.

a. Halle
$$a_3$$
 si se sabe que $a_0 = 3$.

b. Halle
$$a_0$$
 si se sabe que $a_{10} = 1024$.

c. Halle
$$\lim_{n\to+\infty} a_n/2^n$$
 si se sabe que $a_0=3$.

d. Halle
$$a_3$$
 si se sabe que $\lim a_n/(2^n+1)=1$.

e. Halle
$$\lim_{n\to+\infty} a_n/(2^n+3^n)$$
.

f. Halle a_3 si se sabe que $\lim a_n/(-2)^n$ existe (y es finito).

Ejercicio 2 Encuentre la solución general de las siguientes ecuaciones:

a.
$$a_{n+1} - 1.5a_n = 0, \quad n \geqslant 0.$$

b.
$$a_n - na_{n-1} = 0, \quad n \geqslant 1.$$

c.
$$na_n - (n-1)a_{n-1} = 0$$
, $n \ge 2$.

d.
$$a_n/a_{n-1}^p = 2$$
, siendo $a_0 = 1$, con $p > 1$.

Ejercicio 3 Resuelva las siguientes relaciones de recurrencia:

a.
$$a_n = 5a_{n-1} - 6a_{n-2}, \quad n \geqslant 2,$$

 $con \ a_0 = 1, a_1 = 3.$

b.
$$2a_{n+2} - 11a_{n+1} + 5a_n = 0$$
, $n \ge 0$, con $a_0 = 2$, $a_1 = -8$.

c.
$$3a_{n+1} = 2a_n + a_{n-1}, \quad n \geqslant 1,$$

 $con \ a_0 = 7, a_1 = 3.$

d.
$$a_{n+2} + a_n = 0, \quad n \geqslant 1,$$

 $con \ a_0 = 0, a_1 = 3.$

e.
$$a_{n+2} + 4a_n = 0$$
, $n \ge 1$,
 $con a_0 = a_1 = 1$.

f.
$$a_n - 6a_{n-1} + 9a_{n-2} = 0$$
, $n \ge 2$,
 $con a_0 = 5, a_1 = 12$.

g.
$$a_n + 2a_{n-1} + 2a_{n-2} = 0$$
, $n \ge 2$, $con a_0 = 1, a_1 = 3$.

h.
$$a_{n+1} - a_n = 2n + 3$$
, $n \ge 0$, con $a_0 = 1$. (Sugerencia: suma telescópica)

Ejercicio 4 (Parcial 2001) Se considera la siguiente ecuación: $a_n + \alpha a_{n-1} + \beta a_{n-2} = 2^n$, para todo $n \ge 2$. Halle α , β y a_{100} sabiendo que: $a_0 = 1, a_1 = 5, a_2 = 1$ y $a_3 = 17$.

Ejercicio 5 Resuelva las siguientes recurrencias de primer orden no homogéneas:

a.
$$a_{n+1} - a_n = 3n^2 - n$$
, $n \ge 0$, con $a_0 = 3$. **c.** $a_{n+1} - 2a_n = 2^n$, $n \ge 0$, con $a_0 = 1$.

b.
$$a_{n+1} - 2a_n = 5$$
, $n \ge 0$, con $a_0 = 1$.

c.
$$a_{n+1} - 2a_n = 2^n$$
, $n \ge 0$, con $a_0 = 1$.

d.
$$a_n = 2a_{n-1} + n2^n$$
, $n \ge 1$, con $a_0 = 1$.

Ejercicio 6 Resuelva las siguientes recurrencias no homogéneas de segundo orden:

a.
$$a_n - 5a_{n-1} + 6a_{n-2} = 3^n$$
, $n \ge 2$, con $a_0 = 0$, $a_1 = 1$. (Exam. marzo 2001)

b.
$$a_{n+2} - 2a_{n+1} + a_n = 3 + 5n$$
, $n \ge 0$.

c.
$$a_{n+2} - 9a_n = 2 \cdot 3^n + 5 \cdot 2^n$$
, $n \ge 0$, con $a_0 = -1$, $a_1 = 13/2$. (Examen 2007)

Ejercicio 7 Exprese a_n en función de los términos anteriores $(a_k \text{ con } k \leq n-1)$ siendo a_n :

- \mathbf{a} . La cantidad de pares de conejos en una granja luego de n meses, siendo que:
 - Al comienzo solo hay un par de conejos maduros en la granja.
 - Los conejos tardan un mes en alcanzar la madurez, y a partir del segundo mes de vida dan a luz a otro par de conejos cada mes.
- **b**. El determinante de la matriz $n \times n$ con coeficientes $a_{ij} = b$ si $|i j| \le 1$ y $a_{ij} = 0$ en otro caso.
- c. La mínima cantidad de movimientos para resolver una torre de Hanoi con n discos (puede jugar aqui: https://www.mathsisfun.com/games/towerofhanoi.html).
- **d**. La cantidad de saludos que se dieron los primeros n invitados de una reunión, si cada vez que llego uno, este saludó el resto.
- e. La cantidad de subconjuntos de $I_n = \{1, 2, ..., n\}$ sin enteros consecutivos (se define $I_0 = \emptyset$).

Ejercicio 8 Resuelva la siguientes relaciones de recurrencia por el método de las funciones generatrices:

 2

a.
$$a_{n+1} - a_n = 3^n$$
, $n \ge 0$, $a_0 = 1$.

b.
$$a_{n+2} - 3a_{n+1} + 2a_n = 0$$
, $n \ge 0$, $a_0 = 1$, $a_1 = 6$.

Ejercicio 9 Resuelva los siguientes sistemas de relaciones de recurrencia:

a.
$$\begin{cases} a_{n+1} = -2a_n - 4b_n, \\ b_{n+1} = 4a_n + 6b_n, \end{cases} \forall n \ge 0,$$
$$a_0 = 1, \ b_0 = 0.$$

b.
$$\begin{cases} a_n = -a_{n-1} - b_n \\ b_{n+1} = b_n - 3a_{n-1} \end{cases} \forall n \ge 1,$$
$$a_0 = 0, \ b_0 = 2, b_1 = 1. \text{ (Examen dic. 2009)}$$

EJERCICIOS COMPLEMENTARIOS

Ejercicio 10 (1^{er} parcial 2009)

Sea a_n la sucesión que verifica la ecuación $a_n - 2a_{n-1} = 3 \times 2^n$, $a_0 = 1$. Hallar a_{50} .

Ejercicio 11 Se pretende diseñar una bandera con n franjas horizontales, cada una de las cuales puede ser de color rojo, azul, verde o amarillo. Halle la cantidad de banderas posibles en cada una de las siguientes situaciones:

- a. No hay restricciones sobre el color de cada franja.
- b. Dos franjas advacentes nunca pueden ser del mismo color.
- c. Idem b y que la primera y última franjas sean de distinto color.

Ejercicio 12 Hay n estudiantes formando una fila y cuando suena el silbato cada estudiante puede quedar fijo en su lugar o intercambiar de lugar con su compañero de adelante o de atrás (en caso de que los haya). ¿De cuántas formas diferentes pueden quedar esos n estudiantes luego de haber sonado el silbato?

Ejercicio 13 (1^{er} examen 2003)

Sea a_n una sucesión tal que $a_{n+4} - 5a_{n+2} + 6a_n = 0$ con $a_0 = 3, a_1 = 5, a_2 = 7, a_3 = 9$. Hallar a_{1000} .

Ejercicio 14 (Examen diciembre 2008) Para todo $n \in \mathbb{N}$ se considera el número:

$$a_n = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3-\sqrt{5}}{2}\right)^n$$

- a. Mostrar que a_n verifica una relación de recurrencia de orden 2, homogénea, a coeficientes constantes.
- **b**. Probar que a_n es un entero positivo, para todo $n \in \mathbb{N}$.