

Cálculo I Trabalho Individual

Eng. Informática 1/2/2008 [2h 00m]

Nome (Número

Exercício 1. [5 valores] Indique, justificando, se cada uma das alíneas seguintes é verdadeira ou falsa:

a) $\{x \in \mathbb{R} : |x+3| < |x+2|\} = \emptyset;$

b) a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que $f(x) = 2x^3 - 3x^2 - 12x$, é injectiva no intervalo [-1, 0];

c) se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é tal que $\lim_{x \to 0^+} f(x) = 0$, então $\lim_{x \to 0} |f(x)| = 0$;

d) se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é integrável, f(-1) = -1 e f(1) = 1, então $\exists c \in]-1, 1[$ tal que f(c) = 0;

e) se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é derivável f(-1) = -1 e f(1) = 1, então o comprimento do gráfico da função entre os pontos de abcissa -1 e 1 nunca será inferior a $2\sqrt{2}$.

Exercício 2. [5 valores] Considere a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ cujo gráfico se apresenta na figura. Em cada alínea apresente o(s) elemento(s) pedido(s) ou justifique porque não exite(m):

a) $a \in \mathbb{R}$ onde f é descontínua;

- b) $a \in \mathbb{R}$ onde f é contínua mas não é derivável;
- c) $a \in \mathbb{R}$ tal que f'(a) = 0;
- d) $a, b \in \mathbb{R}$, com a < b tais que f é monótona crescente em [a, b];
- e) $a, b \in \mathbb{R}$, com a < b tais que $\int_a^b f(x) dx = 0$;
- f) $a, b \in \mathbb{R}$, com a < -1 < b tais que $\int_a^b f(x) dx = 1$.

Exercício 3. [2 valores] Calcule $\lim_{x\to 0} \frac{e^x \operatorname{sen} x - x}{4x^2}$.

Exercício 4. [2 valores] Seja f uma função cujo polinómio de Taylor de ordem 3, em torno de 1, é x^3 . Determine o polinómio de Taylor de ordem 2, em torno de 1, da função g(x) = f(x) - x.

Exercício 5. [2 valores] Calcule apenas um dos seguintes integrais:

a)
$$\int \frac{e^x}{4 + e^{2x}} dx;$$

b)
$$\int \frac{x+1}{2x^2+x} dx.$$

Exercício 6. [2 valores] Calcule a área da região do plano limitada pelas curvas de equações x=0, $x=1, y=x^2$ e $y=x-x^2$.

Exercício 7. [2 valores] Sejam $a\in\mathbb{R}$ e $f,g\colon\mathbb{R}\longrightarrow\mathbb{R}$ contínuas e tais que

$$\int_{a}^{x} f(t) dt = \int_{a-x}^{0} g(a-t) dt, \text{ para todo } x \in \mathbb{R}.$$

Mostre que f = g, justificando convenientemente a sua resposta.