The Epistemic μ -calculus ¹

Cătălin Dima (LACL)

LACL, U-PEC

Based on joint (and ongoing) work with R. Bozianu (LACL) and C. Enea (LIAFA)

Dima (LACL, U-PEC)

The epistemic µ-calculus

Highlights'2013

1/18

A classical picture in the background

- LTL = FOL1S \subseteq S1S.
- CTL \nsubseteq CTL* \nsubseteq SnS.
- S2S = (binary) tree automata = turn-based 2-player games.
- MSO/bisimulation = μ -calculus (on trees).
- ATL \subseteq ATL* \subseteq modal μ -calculus.

What about the temporal epistemic framework?

Syntax:

$$\varphi ::= p \mid \varphi \land \varphi \mid \neg \varphi \mid AX\varphi \mid K_a\phi \mid \mu Z.\varphi$$
 where $Z \in \mathcal{Z}, a \in Ag, p \in \Pi = \bigcup_{a \in Ag} \Pi_a$.

$$\| \bullet \| : Form(Z_1, \dots, Z_n) \rightarrow \left[\left(2^{\text{supp}(t)} \right)^n \rightarrow 2^{\text{supp}(t)} \right]$$

•
$$\|AX.\phi\|(S_1,\ldots,S_n) = AX(\|\phi\|(S_1,\ldots,S_n))$$
 where
$$AX(S) = \{x \in \operatorname{supp}(t) \mid \forall i \in \mathbb{N} \text{ if } xi \in \operatorname{supp}(t) \text{ then } xi \in S\}$$

•
$$\|K_a.\phi\|(S_1,\ldots,S_n) = K_a(\|\phi\|(S_1,\ldots,S_n))$$
 where
$$K_a(S) = \{x \in \text{supp}(t) \mid \forall y \in \text{supp}(t), \text{ if } x \sim_a y \text{ then } y \in S\}$$
 where $x \sim_a y \text{ if } \forall z < x, z' < y, |z| = |z'| \text{ implies } t(z) \cap \Pi = t(z') \cap \Pi.$

Syntax:

$$\varphi ::= p \mid \varphi \land \varphi \mid \neg \varphi \mid \mathsf{AX}\varphi \mid \mathsf{K}_{\mathsf{B}}\phi \mid \mu Z.\varphi$$
 where $Z \in \mathcal{Z}, a \in \mathsf{Ag}, p \in \Pi = \bigcup_{\alpha \in \mathsf{Ag}} \Pi_{\mathsf{B}}.$

$$\| \bullet \| : Form(Z_1, \dots, Z_n) \rightarrow \left[\left(2^{supp(t)} \right)^n \rightarrow 2^{supp(t)} \right]$$

•
$$\|AX.\phi\|(S_1,\ldots,S_n) = AX(\|\phi\|(S_1,\ldots,S_n))$$
 where
$$AX(S) = \{x \in \operatorname{supp}(t) \mid \forall i \in \mathbb{N} \text{ if } xi \in \operatorname{supp}(t) \text{ then } xi \in S\}$$

•
$$\|K_a.\phi\|(S_1,\ldots,S_n) = K_a(\|\phi\|(S_1,\ldots,S_n))$$
 where
$$K_a(S) = \{x \in \operatorname{supp}(t) \mid \forall y \in \operatorname{supp}(t), \text{ if } x \sim_a y \text{ then } y \in S \text{ where } x \sim_a y \text{ if } \forall z < x, z' < y, |z| = |z'| \text{ implies } t(z) \cap \Pi = t(z') \cap \Pi.$$

Syntax:

$$\varphi ::= p \mid \varphi \land \varphi \mid \neg \varphi \mid AX\varphi \mid K_{a}\phi \mid \mu Z.\varphi$$
 where $Z \in \mathcal{Z}, a \in Ag, p \in \Pi = \bigcup_{a \in Ag} \Pi_{a}$.

$$\| \bullet \| : Form(Z_1, \dots, Z_n) \rightarrow \left[\left(2^{supp(t)} \right)^n \rightarrow 2^{supp(t)} \right]$$

•
$$\|AX.\phi\|(S_1,\ldots,S_n) = AX(\|\phi\|(S_1,\ldots,S_n))$$
 where
$$AX(S) = \{x \in \text{supp}(t) \mid \forall i \in \mathbb{N} \text{ if } xi \in \text{supp}(t) \text{ then } xi \in S\}$$

•
$$\|K_{a}.\phi\|(S_{1},...,S_{n}) = K_{a}(\|\phi\|(S_{1},...,S_{n}))$$
 where $K_{a}(S) = \{x \in \text{supp}(t) \mid \forall y \in \text{supp}(t), \text{ if } x \sim_{a} y \text{ then } y \in S\}$ where $x \sim_{a} y \text{ if } \forall z < x, z' < y, |z| = |z'| \text{ implies } t(z) \cap \Pi = t(z') \cap \Pi.$

Syntax:

$$\varphi ::= p \mid \varphi \land \varphi \mid \neg \varphi \mid \mathsf{AX}\varphi \mid \mathsf{K}_{a}\phi \mid \mu Z.\varphi$$
 where $Z \in \mathcal{Z}, a \in \mathsf{Ag}, p \in \Pi = \bigcup_{a \in \mathsf{Ag}} \Pi_{a}$.

$$\| \bullet \| : Form(Z_1, \dots, Z_n) \rightarrow \left[\left(2^{supp(t)} \right)^n \rightarrow 2^{supp(t)} \right]$$

•
$$\|AX.\phi\|(S_1,\ldots,S_n) = AX(\|\phi\|(S_1,\ldots,S_n))$$
 where
$$AX(S) = \{x \in \text{supp}(t) \mid \forall i \in \mathbb{N} \text{ if } xi \in \text{supp}(t) \text{ then } xi \in S\}$$

•
$$\|K_a.\phi\|(S_1,\ldots,S_n) = K_a(\|\phi\|(S_1,\ldots,S_n))$$
 where
$$K_a(S) = \{x \in \text{supp}(t) \mid \forall y \in \text{supp}(t), \text{ if } x \sim_a y \text{ then } y \in S\}$$
 where $x \sim_a y$ if $\forall z < x, z' < y, |z| = |z'| \text{ implies } t(z) \cap \Pi = t(z') \cap \Pi.$

Syntax:

$$\varphi ::= p \mid \varphi \land \varphi \mid \neg \varphi \mid \langle \overline{\mathbf{c}} \rangle \varphi \mid \mathsf{K}_a \phi \mid \mu Z. \varphi$$
 where $Z \in \mathcal{Z}, a \in \mathsf{A}g, p \in \Pi = \bigcup_{a \in \mathsf{A}g} \Pi_a \text{ and } \overline{\mathbf{c}} \in \mathsf{A}ct = \underset{a \in \mathsf{A}g}{\times} \mathsf{A}ct_a.$

Synchronous & perfect recall semantics in terms of trees $t : \mathbb{N}^* \to \Pi \times Act$,

$$\| \bullet \| : Form \rightarrow \left[\left(2^{\operatorname{supp}(t)} \right)^n \rightarrow 2^{\operatorname{supp}(t)} \right]$$

•
$$\|\langle \overline{c} \rangle.\phi \|(S_1,\ldots,S_n) = \langle \overline{c} \rangle (\|\phi \|(S_1,\ldots,S_n))$$
 where $\langle \overline{c} \rangle (S) = \{x \in \operatorname{supp}(t) \mid \forall i \in \mathbb{N} \text{ if } xi \in \operatorname{supp}(t) \text{ and } t \Big|_{act} (xi) = \overline{c} \text{ then } xi \in S\}$

$$\| K_{a}.\phi \| (S_{1},\ldots,S_{n}) = K_{a} \big(\|\phi \| (S_{1},\ldots,S_{n}) \big) \text{ where }$$

$$K_{a}(S) = \big\{ x \in \text{supp}(t) \mid \forall y \in \text{supp}(t), \text{ if } x \sim_{a} y \text{ then } y \in S \big\}$$

$$\text{where } x \sim_{a} y \text{ if } \forall z < x, z' < y, |z| = |z'| \text{ implies } t \Big|_{\Pi}(z) \cap \Pi = t \Big|_{\Pi}(z') \cap \Pi \text{ and }$$

◆□ > ◆□ > ◆■ > ◆■ > ■ めの○

 $t\Big|_{Act}(z) = t\Big|_{Act}(z').$

Issues on the expressivity of $K\mu$

Common knowledge :

$$C_{a,b}\phi = \nu Z.(\phi \wedge K_a Z \wedge K_b Z)$$

 \bullet KB_n through the usual fixpoint definition :

$$Ap\mathcal{U}\,q=\mu Z.q\vee (p\wedge A\bigcirc Z)$$

ATL with perfect information :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \left(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \right)$$

Issues on the expressivity of $K\mu$

Common knowledge :

$$C_{a,b}\phi = \nu Z.(\phi \wedge K_a Z \wedge K_b Z)$$

• KBn through the usual fixpoint definition :

$$Ap\mathcal{U}\,q=\mu Z.q\vee (p\wedge A\bigcirc Z)$$

ATL with perfect information :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \Big(p \vee \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \Big)$$

 Expressing winning strategies in 2-player games with the proponent having imperfect observability:

$$\nu Z_n \mu Z_{n-1} \dots \mu Z_1 . \bigvee_{\alpha \in Act_0} K_a \bigvee_{k \leq n} \left(p_k \land \bigwedge_{\beta \in Act_1} [\alpha, \beta] Z_k \right)$$

ATL with perfect information :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \Big(p \vee \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \Big)$$

ATL with imperfect information?

ATL with perfect information :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \left(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}]Z\right)$$

ATL with imperfect information?

ATL with perfect information :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \Big(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \Big)$$

- ATL with imperfect information?
 - Let's try :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \frac{K_A}{K_A} \left(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \right)$$

ATL with perfect information :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \Big(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \Big)$$

- ATL with imperfect information?
 - Let's try :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \frac{K_A}{K_A} \left(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \right)$$

Non-feasible strategies!

ATL with perfect information :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \Big(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \Big)$$

- ATL with imperfect information?
 - Let's try :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = {\color{red} K_A \mu Z.} \Big(p \lor \bigvee_{c_A \in Act_A} {\color{red} K_A \atop c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \Big)$$

ATL with perfect information :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \Big(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \Big)$$

- ATL with imperfect information?
 - Let's try :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = {\color{red} K_A \mu Z.} \Big(p \lor \bigvee_{c_A \in Act_A} {\color{red} K_A \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z} \Big)$$

With distributed knowledge!

ATL with perfect information :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \left(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}]Z\right)$$

- ATL with imperfect information?
 - Let's try :

$$\begin{split} & \langle\!\langle A \rangle\!\rangle \diamondsuit p = {\color{red} \textit{K}_{A}} \mu Z. \Big(p \lor \bigvee_{c_{A} \in Act_{A}} {\color{red} \textit{K}_{A}} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_{A}, c_{\overline{A}}] Z \Big) \\ & \langle\!\langle A \rangle\!\rangle \diamondsuit p = \bigwedge_{a \in A} {\color{red} \textit{K}_{a}} \mu Z. \Big(p \lor \bigvee_{c_{A} \in Act_{A}} {\color{red} \textit{A} \in A} {\color{red} \textit{K}_{a}} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_{A}, c_{\overline{A}}] Z \Big) \end{split}$$

◆ロ > ◆ 個 > ◆ 差 > ◆ 差 → り へ で ...

ATL with perfect information :

$$\langle\!\langle A \rangle\!\rangle \diamondsuit p = \mu Z. \left(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \right)$$

- ATL with imperfect information?
 - Let's try :

$$\begin{split} & \langle\!\langle A \rangle\!\rangle \diamondsuit p = {\color{red} K_A \mu Z}. \Big(p \lor \bigvee_{c_A \in Act_A} {\color{red} K_A} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \Big) \\ & \langle\!\langle A \rangle\!\rangle \diamondsuit p = \bigwedge_{a \in A} {\color{red} K_a \mu Z}. \Big(p \lor \bigvee_{c_A \in Act_A} \bigwedge_{a \in A} {\color{red} K_a} \bigwedge_{c_{\overline{A}} \in Act_{\overline{A}}} [c_A, c_{\overline{A}}] Z \Big) \end{split}$$

- Yeah, but both are too strong!
- They require that the objective p be attained at the same moment in each identically observable run!

→□▶→□▶→■▶ ● 釣魚@

Expressing single-agent coalition ATL in $K\mu$

- Given a tree model t, modify it by guessing the points z where p happened in the past of z.
- The guessing is encoded in the actions of the agent a, which may choose to force the system remember that p has happened.
- Then ⟨A⟩ ♦ p is equivalent with :

$$\tilde{\phi} = \mu Z. \bigvee_{\alpha \in \textit{Act}_{\textit{a}}} \textit{K}_{\textit{a}} \Big(p \vee \underset{\textit{past}_{\textit{p}}}{\textit{past}_{\textit{p}}} \vee \Big(\bigwedge_{\beta \in \textit{Act}_{\textit{Ag} \smallsetminus \{\textit{a}\}}} [\alpha, \beta] Z \Big)$$

- Can be applied by structural induction on the formula
- If the given tree has a finite presentation (regular tree), then the resulting tree also has a finite presentation.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

Expressing single-agent coalition ATL in $K\mu$

- Given a tree model t, modify it by guessing the points z where p happened in the past of z.
- The guessing is encoded in the actions of the agent a, which may choose to force the system remember that p has happened.
- Then ⟨A⟩ ♦ p is equivalent with :

$$\tilde{\phi} = \mu Z. \bigvee_{\alpha \in \textit{Act}_{\textit{a}}} \textit{K}_{\textit{a}} \Big(p \vee \underset{\textit{past}_{\textit{p}}}{\textit{past}_{\textit{p}}} \vee \Big(\bigwedge_{\beta \in \textit{Act}_{\textit{Ag} \smallsetminus \{\textit{a}\}}} [\alpha, \beta] Z \Big)$$

- Can be applied by structural induction on the formula.
- If the given tree has a finite presentation (regular tree), then the resulting tree also has a finite presentation.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < で

MSO with binary predicates

Syntax of MSO_{idobs}:

$$\phi ::= x \mid X \mid p(x) \mid x \in X \mid \phi \land \phi \mid \neg \phi \mid \forall x \phi \mid \forall X \phi \mid x \leq y \mid \mathsf{idobs}_{\Sigma}(x, y)$$

where x, y are individual variables, X are monadic 2nd order predicates, $p \in \Pi$ and $\Sigma \subseteq \Pi$.

- Usual tree semantics with bounded tree width.
- t, $[x \mapsto x_0, y \mapsto y_0] \models idobs_{\Sigma}(x, y)$ if for all $x' \le x$, $\forall y' \le y$, $\forall p \in \Sigma$, if |x'| = |y'| then p(x') iff p(y').
 - ▶ Same Σ -history on the paths $\epsilon \mapsto x$ and $\epsilon \mapsto y$.

Expressing ATL formulas into MSO_{idobs}

- Uninterpreted atoms = Π ∪ ∪_{a∈Ag} Act_a.
- Atoms in each Act_a are exclusive.
- Strategy for player a = 2nd order variable Y.
 - At each position, all Y-successors are labeled with the same atom in Acta.
 - At each position, if an Y-successors is labeled with α ∈ Act_a, then all successors which bear an α belong to Y.
 - Uniform strategy = the same next action in Act_a is chosen at positions having identically a-observable histories.
- LTL subformulas in the scope of an ATL (ATL*) strategy operator translated as usual.
- Strategies based on common knowledge can be expressed too.
 - Reflexive-transitive closure of idobs_a ∪ idobs_b can be expressed.
- Fully-uniform and strictly-uniform strategies can be expressed too.

A gap between $K\mu$ and MSO_{idobs} ?

- Conjecture : ATL and $K\mu$ are incomparable.
- Conjecture : $MSO_{idobs} \supseteq K\mu$.
- Single-agent $K\mu$ has a decidable satisfiability problem.
 - Reducible to a decidable subproblem of the model-checking problem for $K\mu$ (see below).
- MSO_{edlevel} has an undecidable satisfiability problem

Automata techniques?

A gap between $K\mu$ and MSO_{idobs} ?

- Conjecture : ATL and $K\mu$ are incomparable.
- Conjecture : $MSO_{idobs} \supseteq K\mu$.
- Single-agent $K\mu$ has a decidable satisfiability problem.
 - Reducible to a decidable subproblem of the model-checking problem for $K\mu$ (see below).
- MSO_{edlevel} has an undecidable satisfiability problem.

Automata techniques ?

11 / 18

A gap between $K\mu$ and MSO_{idobs} ?

- Conjecture : ATL and $K\mu$ are incomparable.
- Conjecture : $MSO_{idobs} \supseteq K\mu$.
- Single-agent $K\mu$ has a decidable satisfiability problem.
 - Reducible to a decidable subproblem of the model-checking problem for $K\mu$ (see below).
- MSO_{edlevel} has an undecidable satisfiability problem.

Automata techniques?

11 / 18

Automata for LTLK

- $\mathcal{A} = (Q, \Pi, \Pi_a, \delta, \pi, \theta, Q_0, \mathcal{R}).$
 - $\delta \subseteq \Omega \times \Omega$.
 - $\theta \subseteq 2^Q$: the identical observability constraint.
 - ▶ Subsets of initial states : $Q_0 \subseteq 2^Q$.
 - Büchi/Muller/etc. acceptance conditions.
- Runs = Q-trees $t: \mathbb{N}^* \to Q$
 - $(t(x), t(xi)) \in \delta$ for all $xi \in \text{supp}(t)$.
 - $\{t(x) \mid x \sim_a x_0\} \in \theta$, for all $x_0 \in \text{supp}(t)$.
 - Each infinite path in t satisfies R.
- Language = set of trees which are homomorphic images of runs under $\pi: Q \to \Pi$.
 - If t is accepted by A then any t' with runs(t') = runs(t) is accepted too.
- Notion generalizable to n agents : $(\theta_a)_{a \in Ag}$.

Automata for LTLK (2)

Example for Kap:

$$\Pi_a = \emptyset$$

$$\theta = \{\{1\}, \{2,3\}, \{3\}\}$$

- $\forall t : \mathbb{N}^* \to \mathbb{Q}$ run in \mathcal{A} , for any position $x \in \text{supp}(t)$, $(\pi(t), x) \models \mathcal{K}_a p$ iff t(x) = 1.
- Similarly, $(\pi(t), x) \models \neg K_a p \text{ iff } t(x) \in \{2, 3\}.$
- Can be refined for larger Π_a.

Automata for LTLK (3)

- Closed under union.
- Synchronous product, modeling intersection.
- For any LTLK formula ϕ there exists A_{ϕ} accepting the same set of trees
 - ▶ Π -trees, with \sim_a defined by Π_a for each $a \in Ag$.

Proposition (almost not a conjecture)

Single-agent automata have a decidable emptiness problem.

Probable techniques:

- Solving a (synchronous) 2-player game with the proponent (player 0) having incomplete information.
- ullet Constructing a single-agent $K\mu$ formula and testing its satisfiability.

Can be generalized to CTLK.

Model-checking $K\mu$

- Finite models = multi-agent systems $M = (Q, Ag, \delta, q_0, \Pi, (\Pi_a)_{a \in Ag}, \pi)$.
- $M \models \phi$ if the tree unfolding t_M satisfies $\phi, \epsilon \in \|\phi\|(S_1, \dots, S_n)$ for all $S_1, \dots, S_n \subseteq \text{supp}(t_M)$.
- Model-checking is undecidable for the μ -calculus of knowledge.
 - Subsumes CTLC (aka. CL_n from Halpern & Vardi '86), multi-agent CTLK with common knowledge.

15 / 18

Model-checking $K\mu$ (2)

- Decidable subproblem generalizing the need of a hierarchy of observations (Kupferman & Vardi, v.d. Meyden & Wilke & Engelhardt & Su, Finkbeiner & Schewe):
 - ϕ mixes observations of a and b if \exists subformula $\phi' = K_a \psi$ or $\phi' = P_a \psi$ with ψ containing a free variable Z and s.t. in ψ an epistemic operator for b is applied to a subformula in which the same Z is free.

The non-mixing model checking problem:

Decide whether $t_M \models \phi$ for all instances in which any two agents a, b which have mixed observations in ϕ have compatible observability in M.

- I.e. $\Pi_a \subseteq \Pi_b$ or $\Pi_b \subseteq \Pi_a$.
- An instance (M, ϕ) with $\phi = C_{a,b}p = \nu Z.(p \wedge K_aZ \wedge K_bZ)$ is non-mixing iff a and b have compatible observability in M.
- $K_aK_b \square p$ is non-mixing for any Π_a and Π_b .
- Subsumes known cases of decidable model-checking problems for LTLK/CTLK/ATL.

Technical approach for proving decidability of the non-mixing model-checking problem

Show that a finitary semantics suffices:

- State-based semantics : $[\bullet]$: $Form \rightarrow [(2^Q)^n \rightarrow 2^Q]$.
- Decidability of the non-epistemic μ -calculus (with tree semantics) :

- Generalizable to the μ -calculus of knowledge by including subset-refinements of M.
- Subset construction w.r.t. a commutes with subset construction for agent b only if Π_a and Π_b
 are compatible (⊆ or ⊇).

Technical approach for proving decidability of the non-mixing model-checking problem

Show that a finitary semantics suffices:

- State-based semantics : $[\bullet]$: $Form \rightarrow [(2^Q)^n \rightarrow 2^Q]$.
- Decidability of the non-epistemic μ -calculus (with tree semantics) :

- Generalizable to the μ -calculus of knowledge by including subset-refinements of M.
- Subset construction w.r.t. a commutes with subset construction for agent b only if Π_a and Π_b
 are compatible (⊆ or ⊇).

Technical approach for proving decidability of the non-mixing model-checking problem

Show that a finitary semantics suffices:

- State-based semantics : $[\bullet]$: $Form \rightarrow [(2^Q)^n \rightarrow 2^Q]$.
- Decidability of the non-epistemic μ -calculus (with tree semantics) :

- Generalizable to the μ -calculus of knowledge by including subset-refinements of M.
- Subset construction w.r.t. a commutes with subset construction for agent b only if Πa and Πb are compatible (⊆ or ⊇).

Remarks and further work

- Maybe fixpoint variants of the ATL operators are better?
- Tree automata for the μ -calculus of knowledge (work under progress).
- What if we replace idobs predicates with 3rd order predicates?...
 - This would allow comparing sets of runs in a system.
- Automata for Kμ and MSO :
 - "Strict" tree versions, alternating generalizations.
 - Difference between Kµ and MSO
 idobs lies in the presence/absence of an extra
 constraint on labeling of nodes in a run with sets of states.