the compared methods according to the pairwise t-test at 0.05 significance level. Method D1 D2 D3D4 D5 D6 D7D8 D9 D10 Average CEAM (TKDE'24) $| \bullet 5.6+10. \bullet 36.2+26. \bullet 16.7+4. \bullet 27.4+1. \bullet 60.1+10. \bullet 4.3+3. \bullet 18.0+2. \bullet 19.0+5. \bullet 14.3+4. \bullet 8.8+5. | 21.0+8.$

Table B3. Performance (%) evaluation of different datasets based on the NMI metric. We have highlighted the values of the best-performing method in **bold**, and the second-best method is marked with an underline. • indicates whether proposed method is statistically superior to

CD: 11.11 (11112 2 2 1)	- C.O ± 10	- 0 0 120	- 10.7 ± 1	/	- 00.1 ±10		- 10.0±2	17.013	- I I	- O.O ±5	
CEs ² L (AIJ'19)	•3.4±5	●9.3±10	$\bullet 19.0{\scriptstyle \pm 4}$	$\bullet 27.9{\scriptstyle \pm 2}$	$\bullet 45.1 {\scriptstyle \pm 14}$	●12.3±5	$\bullet 12.0{\scriptstyle \pm 2}$	●15.2±7	$\underline{15.7}$ ±3	●10.2±6	17.0±6
CEs ² Q (AIJ'19)	●2.5±4	●11.5±8	$\bullet 17.6{\scriptstyle \pm 5}$	●28.1±3	$\bullet 43.9 \scriptstyle{\pm 15}$	●12.1±5	$\bullet 12.2 {\scriptstyle \pm 2}$	$\bullet 17.9{\scriptstyle \pm 4}$	●15.4±3	●7.5±4	$16.9_{\pm 6}$
LWEA (TCYB'18)	●0.4±0	●53.3±3	$\bullet 15.9{\scriptstyle \pm 3}$	●28.1±1	●63.3±3	●12.1±5	$\bullet 13.7{\scriptstyle \pm 3}$	●21.0±4	●14.7±1	●7.9±4	23.0±3
NWCA (arXiv'24)	●0.4±0	●52.5±3	$\bullet 16.0{\scriptstyle \pm 3}$	$\bullet 28.4 \pm 1$	●63.7±3	$\bullet 12.5{\scriptstyle \pm 4}$	●13.6±3	$\bullet 21.7 \pm 1$	●14.8±1	●9.7±4	23.3±2
ECCMS (TNNLS'24)	●0.4±0	$\bullet 50.7 \scriptstyle{\pm 19}$	$\bullet 18.4{\scriptstyle \pm 5}$	$\bullet 28.2 \pm 0$	●64.7±3	$\bullet 12.3 \pm 5$	$\bullet 12.9 \pm 3$	$\bullet \underline{22.8}{\scriptstyle \pm 4}$	$\bullet 15.5 {\scriptstyle \pm 2}$	●9.1±4	23.5±5
MKKM (arXiv'18)	●8.1±12	$\bullet 40.8 \scriptstyle{\pm 20}$	$\bullet 12.8{\scriptstyle \pm 3}$	$\bullet 20.6 \scriptstyle{\pm 6}$	●55.4±9	●12.0±5	$\bullet 19.7{\scriptstyle \pm 4}$	$\bullet 14.3{\scriptstyle \pm 4}$	●12.0±7	●9.1±6	20.5±8

SMKKM (TPAMI'23)	●8.7±4	●38.5±11	$\bullet 19.3{\scriptstyle \pm 4}$	$\bullet 27.0{\scriptstyle \pm 2}$	●59.4±9	●10.5±5	$\bullet \underline{20.0} {\scriptstyle \pm 2}$	●18.2±3	$\bullet 15.5 {\scriptstyle \pm 2}$	●10.5±4	22.8±5
SEC (TKDE'17)	•9.2±12	$\bullet 24.9 \scriptstyle{\pm 18}$	●17.3±4	●21.9±5	●36.0±17	●12.8±4	●15.5±3	●13.6±7	●9.9 _{±6}	●7.1±4	16.8±9
Proposed ($\alpha = 0.1$)	25.0 ±12	<u>58.3</u> ±1	$\underline{20.0}_{\pm 4}$	$\underline{29.4}_{\pm 2}$	<u>67.5</u> ±3	$\underline{14.4}_{\pm 4}$	$18.8{\scriptstyle\pm2}$	19.6±6	15.0±4	$\underline{12.4}_{\pm 4}$	28.0 _{±4}
Proposed	25.0 ±12	59.0 ± 1	21.1 ±3	29.4 ± 2	67.5 ±3	$\textbf{15.0}{\scriptstyle\pm4}$	22.9 ± 2	27.4 ± 2	15.8 ± 3	$\textbf{12.4}{\scriptstyle\pm4}$	29.6±4

Proposed ($\alpha = 0.1$)	$25.0_{\pm 12}$	$58.3_{\pm 1}$	$20.0_{\pm 4}$	$29.4_{\pm 2}$	67.5 ± 3	$14.4_{\pm 4}$	$18.8_{\pm 2}$	19.6 ± 6	$15.0_{\pm 4}$	$12.4_{\pm 4}$	$\frac{28.0}{1}$
Proposed	25.0 ±12	59.0 ±1	21.1 ±3	29.4 ±2	67.5 ±3	$\textbf{15.0}{\scriptstyle\pm4}$	22.9 ± 2	27.4 ±2	15.8 ±3	12.4 _{±4}	29.6 ±4
Table B4. Performance (%) evaluation of different datasets based on the ARI metric. We have highlighted the values of the best-performing											
mathod in hold and the so	*						C	_			_

D4

ECCMS (TNNLS'24) \bullet -0.5±0 \bullet 56.1±24 \bullet 13.5±3 \bullet 21.3±1 \bullet 60.8±7 \bullet 19.0±6 \bullet -0.3±1 \bullet 12.2±4 \bullet 14.0±3 \bullet 10.5±6

 22.1 ± 2

22.1+2

the compared methods according to the pairwise t-test at 0.05 significance level.

 30.8 ± 15 69.2 ± 1

 69.5 ± 2

30.8±15

D2

 D_3

 15.8 ± 4

16.7±3

D1

Method

CEAM (TKDE'24)

CEs²L (AIJ'19)

CEs²O (AIJ'19)

LWEA (TCYB'18)

NWCA (arXiv'24)

MKKM (arXiv'18)

SMKKM (TPAMI'23)

SEC (TKDE'17)

Fix $\alpha = 0.1$

Proposed

Troposed ($\alpha = 0.1$)	23.0 ±12	<u>50.5</u> ±1	20.0 ±+	<u> </u>	<u>07.5</u> ±5	<u> </u>	10.012	17.010	13.014	<u>12.1</u> 17	20.0±+
Proposed	25.0±12	59.0 ±1	21.1 ±3	29.4 ±2	67.5 ±3	$\textbf{15.0}{\scriptstyle\pm4}$	22.9 ± 2	27.4 ±2	15.8±3	$\textbf{12.4}{\scriptstyle\pm4}$	29.6 ±4
Table D4 Deformance (0/) evaluation of different detects based on the ADI metric. We have highlighted the values of the best neufaming											
Table B4. Performance (%) evaluation of different datasets based on the ARI metric. We have highlighted the values of the best-performing											
method in bold , and the second-best method is marked with an <u>underline</u> . • indicates whether proposed method is statistically superior to											

D5

 $\bullet 6.6 \pm 12$ $\bullet 42.8 \pm 31$ $\bullet 12.9 \pm 4$ $\bullet 20.4 \pm 1$ $\bullet 59.0 \pm 13$ $\bullet 2.7 \pm 5$ $\bullet 2.5 \pm 1$ $\bullet 10.8 \pm 4$ $\bullet 12.8 \pm 5$ $\bullet 10.1 \pm 7$

 $\bullet 2.4 + 4 \quad \bullet 3.0 + 10 \quad \bullet 14.0 + 3 \quad \bullet 20.3 + 2 \quad \bullet 33.3 + 19 \quad \bullet 18.3 + 6 \quad \bullet 0.2 + 2 \quad \bullet 6.8 + 7 \quad \bullet 15.4 + 4 \quad \bullet 9.6 + 9$

 $\bullet 1.7+3$ $\bullet 3.5+7$ $\bullet 12.4+3$ $\bullet 20.0+2$ $\bullet 31.2+17$ $\bullet 18.5+6$ $\bullet 0.3+2$ $\bullet 9.0+4$ $\bullet 15.2+5$ $\bullet 6.7+5$

 \bullet -0.5±0 \bullet 62.9±4 \bullet 13.1±3 \bullet 21.2±1 \bullet 57.5±5 \bullet 18.5±6 \bullet 0.0±2 \bullet 10.0±4 \bullet 13.5±3 \bullet 8.8±6

 \bullet -0.5±0 \bullet 62.3±4 \bullet 12.9±2 21.6±1 \bullet 56.3±6 \bullet 19.8±5 \bullet -0.1±2 \bullet 10.4±1 \bullet 13.3±3 \bullet 11.7±6

 $\bullet 8.8 \pm 14$ $\bullet 47.1 \pm 25$ $\bullet 9.5 \pm 2$ $\bullet 14.2 \pm 5$ $\bullet 53.8 \pm 10$ $\bullet 13.6 \pm 12$ $\bullet 2.1 \pm 2$ $\bullet 7.2 \pm 3$ $\bullet 10.9 \pm 6$ $\bullet 10.1 \pm 7$

 $\bullet 8.8 \pm 5$ $\bullet 41.9 \pm 10$ $\bullet 14.6 \pm 3$ $\bullet 17.0 \pm 3$ $\bullet 55.5 \pm 11$ $\bullet 13.2 \pm 9$ $\bullet 3.5 \pm 1$ $\bullet 7.2 \pm 4$ 15.7 ± 2 $\bullet 12.2 \pm 5$

 $\bullet 8.9 \pm 15$ $\bullet 23.8 \pm 25$ $\bullet 12.8 \pm 4$ $\bullet 13.5 \pm 5$ $\bullet 26.9 \pm 19$ $\bullet 13.5 \pm 12$ $\bullet 1.1 \pm 2$ $\bullet 5.6 \pm 7$ $\bullet 7.2 \pm 6$ $\bullet 5.2 \pm 5$

 20.6 ± 5

21.5±5

67.5±5

67.5±5

D6

D7

 2.6 ± 1

4.1±1

D8

 12.0 ± 5

D9

 14.8 ± 5

18.4±2 **16.0**±3

D10

 14.5 ± 6

 14.5 ± 6

Average

 18.1 ± 8

 12.3 ± 7

 11.8 ± 6

20.5+4

 20.8 ± 3

 20.7 ± 6

 17.7 ± 8

 19.0 ± 5

11.9±9

 27.0 ± 4

 28.1 ± 3

superior to the compared methods according to the pairwise t-test at 0.05 significance level. Method D1D2 D_3 D4 D5D6 D7D8D9 D10 Average CEAM (TKDE'24) $\bullet 60.5 + 9 \bullet 79.4 + 15 \bullet 46.4 + 3 \bullet 42.7 + 1 \bullet 83.1 + 7 \bullet 66.0 \pm 2 \bullet 22.8 \pm 2 \bullet 51.4 \pm 3 \bullet 49.9 \pm 3 \bullet 61.8 \pm 6 \mid 56.4 \pm 5 \mid 56.4 \pm$ CEs^2L (AIJ'19) \bullet 58 0+4 \bullet 59 5+7 \bullet 46 3+2 \bullet 42 0+2 \bullet 65 0+12 \bullet 72 2+3 \bullet 19 3+2 \bullet 49 1+5 \bullet 51 7+3 \bullet 62 7+6 \bullet 52 6+4

Table B5. Performance (%) evaluation of different datasets based on the F-score metric. We have highlighted the values of the best-performing method in **bold**, and the second-best method is marked with an underline. ● indicates whether proposed method is statistically

CEs ² Q (AIJ'19)	●57.4±3	●60.3±5			●62.9±12		•19.2±1	●50.5±5	●51.6±3	●60.3±4	52.1±4
LWEA (TCYB'18)	●55.5±0	●89.6±1	●46.0±3	$43.2{\scriptstyle\pm1}$	●81.7±4	●72.4±3	$\bullet 18.6 {\scriptstyle \pm 2}$	$\bullet 49.5 \pm 1$	$\bullet 51.3{\scriptstyle\pm2}$	●61.2±4	$56.9{\scriptstyle\pm2}$
NWCA (arXiv'24)	●55.5±0	$\bullet 89.4 \pm 1$	$\bullet 45.9 {\scriptstyle \pm 2}$	●43.6±1	●80.7±5	$73.2{\scriptstyle\pm2}$	$\bullet 18.8{\scriptstyle \pm 2}$	$\bullet 49.2 \pm 1$	$\bullet 51.2 {\scriptstyle \pm 2}$	$\bullet 63.5{\scriptstyle \pm 4}$	$57.1{\scriptstyle\pm2}$

43.7+1

43.7+1

ECCMS (TNNLS'24)

MKKM (arXiv'18) SMKKM (TPAMI'23)

SEC (TKDE'17)

Fix $\alpha = 0.1$

Proposed

76.5+9

76.5+9

91.6+0

91.7₊₁

48.9+3

49.8+2

•55.5±0 •85.6±12 •46.1±3 •43.3±1 •84.0±3 72.6±3 •18.5±2 •51.0±3 •51.6±3 •62.5±4 57.1±3

73.3+3 21.4+2 55.4+5

73.8+2 **27.3**+3 **63.3**+1

61.5+3

63.1+3

52.3+2

 $\bullet62.1_{\pm10}$ $\bullet82.6_{\pm11}$ $\bullet42.9_{\pm3}$ $\bullet37.4_{\pm5}$ $\bullet79.8_{\pm7}$ $\bullet70.8_{\pm5}$ $\bullet25.2_{\pm3}$ $\bullet50.2_{\pm2}$ $\bullet49.7_{\pm6}$ $\bullet62.5_{\pm6}$

 $\bullet 62.9 \pm 4$ $\bullet 73.7 \pm 7$ $\bullet 47.7 \pm 3$ $\bullet 39.8 \pm 2$ $\bullet 80.6 \pm 8$ $\bullet 69.9 \pm 4$ $\bullet 23.4 \pm 3$ $\bullet 53.2 \pm 1$ 52.2 ± 1 $\bullet 63.3 \pm 4$

 $\bullet 62.2 \pm 10$ $\bullet 71.9 \pm 12$ $\bullet 46.0 \pm 3$ $\bullet 37.2 \pm 4$ $\bullet 59.9 \pm 13$ $\bullet 71.0 \pm 4$ $\bullet 20.5 \pm 2$ $\bullet 48.2 \pm 5$ $\bullet 45.7 \pm 5$ $\bullet 58.8 \pm 5$

87.6+2

87.6+2