

A Brief Introduction to GAIL (Guaranteed Automatic Integration Library) Version 2.3

Sou-Cheng T. Choi, Jagadeeswaran Rathinavel, Xin Tong, Kan Zhang, Fred J. Hickernell

hickernell@iit.edu, Department of Applied Mathematics, Illinois Institute of Technology, Chicago

OVERVIEW

GAIL algorithms compute answers of guaranteed accuracy for multidimensional integration as well as univariate integration, function approximation and optimization:

- Requires only input function and error tolerance
- Theoretically sound stopping criterion
- Well tested, documented, free, and open-source

Introduction

- Designing algorithms for a *cone* of input functions allows us to prove that our stopping criteria are valid and information cost is optimal.
- What is not observed about the function is not much worse than what is observed.
- We follow the philosophy of reproducible research & sustainable practices of software development.

APPROXIMATION & OPTIMIZATION

- funappx_g: One-dimensional function approximation on bounded interval [1]
- **2 funmin_g**: Global minimum value of univariate function on a closed interval [1]

OPTION PRICING

- **①** assetPath: A class of discretized stochastic processes that model the values of an asset with respect to time [2]
- **2** optPayoff: A class of option payoffs based on asset paths [2]
- **3 optPrice**: A class that computes the price of an option via (quasi-)Monte Carlo methods [2]

INTEGRATION

- **1** integral_g: One-dimensional integration on bounded interval [2]
- pmeanMC_g: Monte Carlo (MC) method for estimating mean
 of a random variable [3]
- **3** cubMC_g: MC method for multiple integration [3]
- 4 cubSobol_g: Quasi-Monte Carlo (QMC) method using Sobol' cubature for multiple integration [4]
- **6** cubLattice_g: QMC method using rank-1 lattices cubature for multiple integration [5]
- **6** cubBayesLattice_g: Bayesian cubature method using lattice sampling for multiple integration [6]
- meanMC_CLT: MC method with Central Limit Theorem (CLT) confidence intervals for estimating mean of a random variable [2]

EXAMPLE 1

Figure 1: We want to find the global minimum of $f(x) = -5e^{-100(x-0.2)^2} - e^{-100(x-1)^2}$ for $x \in [0, 1.5]$. Our funmin_g locates it but Matlab's fminbnd returns a local minimum. Our algorithm automatically samples the function more often in spiky areas.

EXAMPLE 2

Figure 2: Pricing arithmetic mean Asian call option by cubBayesLattice_g with equal initial stock price and strike price $S_0 = K = 100$, maturity T = 1/4, risk-free interest rate r = 5%, integral dimension d = 13, and volatility $\sigma = 0.5$. The tolerances are $\epsilon = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}$. A sufficiently large sample size is chosen automatically to satisfy each ϵ . The success rate is 100% for this example.

EXAMPLE 3

Table 1: Average performance of (quasi-)Monte Carlo algorithms in GAIL with automatic stopping criteria for estimating the Keister integrals [7] of dimension d for 1000 independent runs.

	$d=3, \ \varepsilon=0.005$				
Method	MC	Lattice	Sobol	Bayes	
Absolute Error	0.00120	0.00051	0.00053	0.00043	
Tolerance Met	100%	100%	100%	100%	
n	2 500 000	4100	3900	1000	
Time (seconds)	0.1400	0.0064	0.0034	0.0017	

	$d=8, \ \varepsilon=0.050$				
Method	MC	Lattice	Sobol	Bayes	
Absolute Error	0.01200	0.01500	0.007 10	0.00170	
Tolerance Met	100%	99%	100%	100%	
n	7 400 000	15 000	16 000	66 000	
Time (seconds)	0.8800	0.0240	0.0130	0.1700	

ONGOING WORK

- Submit GAIL to the Journal of Open Source Software
- Make GAIL part of the multi-research group
 Quasi-Monte Carlo Community Software

REFERENCES

- [1] S.-C. T. Choi, Y. Ding, F. J. Hickernell, and X. Tong, "Local adaption for approximation and minimization of univariate functions," *J. Complexity*, vol. 40, pp. 17–33, 2017.
- [2] S.-C. T. Choi, Y. Ding, F. J. Hickernell, L. Jiang, Ll. A. Jiménez Rugama, D. Li, R. Jagadeeswaran, X. Tong, K. Zhang, Y. Zhang, and X. Zhou, "GAIL: Guaranteed Automatic Integration Library (versions 1.0–2.3)." http://gailgithub.github.io/GAIL_Dev/, MATLAB software, 2013–2019.
- [3] F. J. Hickernell, L. Jiang, Y. Liu, and A. B. Owen, "Guaranteed conservative fixed width confidence intervals via Monte Carlo sampling," in *Monte Carlo and Quasi-Monte Carlo Methods 2012* (J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, eds.), vol. 65 of *Springer Proc. in Math. Stat.*, pp. 105–128, Springer-Verlag, Berlin, 2013.
- [4] Ll. A. Jiménez Rugama and F. J. Hickernell, "Reliable adaptive cubature using digital sequences," *Springer Proc. in Math. Stat.*, vol. 163, 2016.
- [5] Ll. A. Jiménez Rugama and F. J. Hickernell, "Adaptive multidimensional integration based on rank-1 lattices," *Springer Proc. in Math. Stat.*, vol. 163, 2016.
- [6] R. Jagadeeswaran and F. J. Hickernell, "Fast adaptive Bayesian cubature using lattice sampling," *In review*, 2018.
- [7] B. D. Keister, "Multidimensional quadrature algorithms," Computers in Physics, vol. 10, no. 2, pp. 119–128, 1996.
- [8] J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, eds., *Monte Carlo and Quasi-Monte Carlo Methods 2012*, vol. 65 of *Springer Proc. in Math. Stat.*, Springer-Verlag, Berlin, 2013.
- [9] Ll. A. Jiménez Rugama and L. Gilquin, "Reliable error estimation for Sobol' indices," *Statistics and Computing*, 2018.
- [10] F. J. Hickernell, S.-C. T. Choi, L. Jiang, and L. A. J. Rugama, "Monte carlo simulation, automatic stopping criteria for," Wiley StatsRef: Statistics Reference Online, pp. 1–7, 2018.
- [11] "Can you certify that a solution is global?," 2019.
- [12] E. D. Dolan and J. J. Moré, "Benchmarking optimization software with performance profiles," *Mathematical programming*, vol. 91, no. 2, pp. 201–213, 2002.
- [13] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, *Computer methods for mathematical computations*, vol. 8. Prentice-Hall Englewood Cliffs, NJ, 1977.
- [14] R. P. Brent, Algorithms for minimization without derivatives. Courier Dover Publications, 2013.
- [15] Y. Zhang, Guaranteed Adaptive Automatic Algorithms for Univariate Integration: Methods, Costs and Implementations. PhD thesis, llinois Institute of Technology, 2018.
- [16] C. A. Floudas, P. M. Pardalos, C. Adjiman, W. R. Esposito, Z. H. Gümüs, S. T. Harding, J. L. Klepeis, C. A. Meyer, and C. A. Schweiger, *Handbook of test problems in local and global optimization*, vol. 33.

 Springer Science & Business Media, 2013.

ACKNOWLEDGEMENTS

Our work is supported in part by grants NSF-DMS-1115392 and NSF-DMS-1522687. We thank all GAIL contributors, especially Yuhan Ding, Lan Jiang, Lluís Antoni Jiménez Rugama, Aleksei Sorokin, and Yizhi Zhang.