A new local race of the root-knot nematode Meloidogyne thamesi Chitwood in Chitwood, Specht & Havis, 1952 in Hungary

By

A. W. Amin*

Abstract. Root-knot nematodes, Meloidogyne species, are widely distributed both in open fields and in greenhouses in Hungary. Meloidogyne thamesi is one of the seven Meloidogyne species recorded in Hungary so far. It was detected alone or in combination with Meloidogyne arenaria in six localities till now including east, west and middle region. Meloidogyne thamesi gyulai is described and illustrated from tomato (Lycoperscicon esculentum MILL. cv. Balca) planted in plastic greenhouses in Gyula (South-East Hungary). Females have a characteristic perineal pattern with moderately high dorsal arch and distinctly broken striae near the tail tip in lateral fields above the anus.

The root-knot nematodes, *Meloidogyne* species, are of worldwide distribution. They are the cause of a major problem all over the world as well as in Hungary (1, 2, 3, 5), especially in the areas between the Danube and the Tisza rivers (appr. 25—30,000 ha) and in greenhouses (appr. 4000 ha). *Meloidogyne thamesi* was reported for the first time in Hungary by Budai (1980) as a serious pest of tomato in heated plastic greenhouses in the area between the Danube and the Tisza rivers. *Meloidogyne thamesi* was found in four further localities (Balástya, Kistelek, Bordány, Gyula) out of those twenty six locations (appr. 15%) surveyed between 1990 and 1992 (Amin, 1993). It was observed on cultivated vegetable crops, such as on tomato, pepper, cucumber and weed host, *Glansoga parviflora* (2), furthermore on pepper at Boglárlelle and on carnation in Szeged (5). *Meloidogyne thamesi* has been reported in the hot Palo Verde Valley of Southern California along the coast and cooler areas (29). In Greece it is one of the most common species on cucumber, grape, tomato, hyacinth, tobacco, carrot and cabbage (15). It is frequent in Turkey as well on different cultivated plants and weeds. In Chile *M. thamesi* is one of the five commonest root-knot nematode species on cultivated plants (25).

Meloidogyne thamesi was found in several countries (Table 1) as a major or minor pest associated with very wide range of cultivated crops and host weeds. In the present study a subspecies (or race) causing heavy damage on tomatoes in Gyula is

presented and described.

^{*} Dr. Amin Wasdy Amin, Nematode Research Center, Faculty of Agriculture, Cairo University, Cairo, Egypt. Present address: Csongrád megyei Növényegészségügyi és Talajvédelmi Állomás (Plant Health and Soil Conservation Station), 6800 Hódmezővásárhely, Rárósi út 102, Hungary.

Materials and methods

Specimens were obtained from plastic greenhouses (tomato, Lycopersicon esculentum MILL. cv. Balca) in Gyula (South-East Hungary, in September, 1992). Larvae and males were recovered from infected tomato roots, females were dissected from the roots in 3% formaldehyde solution. 20 female perineal patterns were prepared and used in the identification as proposed by DABAJ (1990).

Measurements of different populations of Meloidogyne thamesi Chitwood in Chitwood, Specht & Havis, 1952

1. After Whitehead (1968)

Females. L=590 μ m \pm 51 (514–703); widht= 409 μ m \pm 53 (331–534); stylet= 17 μ m (15–18); stylet knobs=3 μ m; dorsal oesophageal gland orifice=4 μ m (3–5) behind stylet base; length of medial bulb=35 μ m (33–42); width of medial bulb=30 μ m (26–33); length of medial valve=16 μ m (13–18); width of medial bulb valve=10 μ m (9–10).

Males. I=1526 μ m \pm 194 (1081–1804); a=47.7 μ m \pm 3.94 (39.1–59.2); head=8.3 μ m \pm 0.59 (6.5–9.4); stylet=24.9 μ m \pm 1.69 (20.5–28.1); stylet knobs=4.4 μ m \pm 0.48 (3.6–5.4); b₁=16 \pm 1.64 (12.4–18.2); c=121 \pm 37.8 (83–219); length of medial bulb=23.4 μ m \pm 2.56 (18.7–29.5); width of medial bulb 9.9 μ m \pm 1.65 (6.5–14.7); length of medial bulb valve=7.1 μ m \pm 1.18 (5.0–8.6); spicules=25.7 μ m \pm 2.42 (21.6–28.1); gubernaculum=9.2 μ m \pm 1.23 (7.9–10.8).

Larvae. I=432 μ m ± 17 (410–476); a=32.4 ± 1.83 (30–37.8); b=2.19 ± 0.267 (2.01–2.41); b₁=6.9 ± 0.3 (6.5–7.4); length of tail=53 μ m ± 2 (50–58); d=5.8 ± 0.4 (5.3–7.0); c=8.1 ± 0.27 (7.6–8.6); length of body to middle of primordium=269 μ m ± 11 (252–298); stylet=11.1 μ m ± 0.62 (10.2–12.7); length of medial bulb=12.5 μ m ± 1.08 (10.8–14.4); width of medial bulb=7.1 μ m ± 0.64 (6.1–8.3); length of medial bulb valve=5.2 μ m ± 0.64 (4.3–6.5)

Eggs. 92 μ m $\pm 6.0 (78-101) \times 33 \mu$ m $\pm 3.3 (27-40)$.

2. Populations from Hungary

Females. Stylet length=16.5 μ m (15.1—17.7 μ m); DGO=5.5 μ m (4.2—6.3 μ m). Males. Stylet length=22.4 μ m (20.1—23.2 μ m); DGO=3.8 μ m (3.3—4.0 μ m); spicules=31 μ m (29.7—22.2 μ m).

Larvae. Length=409 μ m (372—441 μ m); tail length=55.4 μ m (45.5—62.3 μ m); hyaline part of tail=14.8 μ m (12.5—18.6 μ m).

3. Meloidogyne thamesi gyulai subsp. n.

Females (17). Length=918–1667 μ m (mean 1095 μ m, standard deviation, SD=148); width=344–826 μ m (633.8 μ m, SD=124); a=1.3–2.3 (1.6, SD=0.3); stylet=14.4–15.6 μ m (14.7 μ m, SD=0.57); width of stylet knobs=2.1–2.4 μ m (2.3 μ m, SD=0.1); stylet w/h ratio=2–2.3 (2.1, SD=0.15); dorsal oesophageal gland orifice (DGO)=2.4–3.6 μ m (2.8 μ m, SD=0.5); distance from vulva slit to anus=20.2–26.4 μ m (23.9 μ m, SD=1.9); excretory pore=24–36 μ m (30.9 μ m, SD=6) from anterior part; medial bulb center=90–140 μ m (99.1 μ m, SD=9.4) from anterior part.

Fig. 1. Meloidogyne thamesi gyulai subsp. n. 1: adult female; 2: stylet (arrow) and medial bulb; 3: perineal pattern; 4: male head; 5: posterior end of male

Males (5). Length=1728—2530 μ m (2028 μ m, SD=307); a=51.5—75.3 (60.2 μ m, SD=9.8); c=120—176 (139.8 μ m, SD=25.34; Stylet length=19.6—25.2 μ m (22.6 μ m, SD=1.9); width of stylet knobs=6—7.2 μ m, dorsal oesophageal gland orifice

Table 1. Distribution of Meloidogyne thamesi

Localities	Hosts	References	
Australia	Vitis vinifera	McLeod & Khair, 1974	
	Cabbage, french bean	Jensen, 1972	
Brazil	Spondias lutea	Lordello, 1970	
	Momardica charantia	Lordello, 1970	
	Rivina humilis	Lordello, 1970	
	Lycopeersicon peruvianum	Lordello, 1970	
	Leonurus sibericum	Lordello, 1970	
	Theobroma sp.	Lordello, 1968	
	Allium cepa	Lordello & Filho, 1971	
Chile	Vegetable crops	Mauricio et al., 1982	
	Artocarpus incisa	Maura, 1967	
Egypt	Portulaca oleraceae sativa	Elgindi & Moussa, 1971	
	Cucumis melo var. aegyptiaca	Elgindi & Moussa, 1971	
England	Solanum tuberosum	GOODEY et al., 1956	
	Vigna catjang	GOODEY et al., 1956	
	Gardenia jasminoides	GOODEY et al., 1959	
Germany	Beta vulgaris	Goffart, 1957	
•	Cactus sp.	Goffart, 1957	
	Gardenia sp.	Goffart, 1957	
Greece	Brassica oleracea	Koliopanos, 1979	
	Daucus carota	Koliopanos, 1979	
	Antirrhinum sp.	KOLIOPANOS, 1979	
	Hyacinthus sp.	Koliopanos, 1979	
	Allium sativa	KOLIOPANOS, 1979	
	Tobacco, cabbage, carrot,	KOLOIPANOS, 1979	
	Tomato, grape, cucumber	KOLOIPANOS, 1979	
Hungary	Lycopersicon esculentum	BUDAI, 1980	
0 ,	Lycopersicon esculentum	Амін, 1993	
	Galinsoga parviflora	Amin & Budai, 1992	
	Capsicum spp., cucumber	Амін, 1993	
	Pepper, carnation	Dabaj, 1990	
India	Vegetable crops	DEAKER, 1969	
Iraq	Sugar cane	SETHI et al., 1964	
•	Sugar cane	Prasad, 1969	
	Cucumis sativus	Stephan, 1973	
Italy	Nicotiana tabacum	DIMURO, 1972	
Japan	Morus bombysis	TOIDA, 1973	
South Africa	Alium cepa	VAN DER LINDE et al., 1959	
Spain	Vegetable crops	Decker, 1969	
ÛSA			
(Kansas)	Clematis paniculate	MULVEY, 1961	
(Florida)	Boehmaria utilis	CHITWOOD et al., 1952	
(Florida)	Petivaeria hexaglochin	MULVEY, 1961	
(Texas)	Rosa sp.	MULVEY, 1961	
ÙSA	French been, cabbage	Jensen, 1972	
	Potato	WINSLOW & WILLIS, 1972	
	Sugar cane	Williams, 1969	
	Oriza sativa	HOLLIS & KEOBOONRUENG, 1984	
	Beta pateellaris	GOLDEN, 1959	
	B. procumbens	GOLDEN, 1959	
	Beta webbiana	GOLDEN, 1959	
	Albizzia julibrissim	SCHNDLER, 1958	
	Vitis Solonis	Linder, 1960	
	V. chamini	LINDER, 1960	

(DGO)=2.4—4.2 μ m (2.8 μ m, SD=0.9) from base of stylet; spicules=31.2—33.6 μ m (32.7 μ m, SD=1.2); gubernaculum=7.2—9.6 μ m (8.4 μ m, SD=1.2); tail length=14.4—16.2 μ m (15 μ m, SD=1).

Larvae (67). Length=367–443 μ m (421.7 μ m, SD=12.3); width=13.8–15.6 μ m (14.7 μ m, SD=0.46); a=22.8–32.2 (28.3 μ m, SD=2.7); b=5.2–6.1 (5.8, SD=2.7); c=8.1–8.7 (8.35), SD=0.18); stylet length=12–13.2 μ m (12.3 μ m, SD=0.5); dorsal oesophageal gland orifice (DGO)=2.4–3.9 μ m (2.9 μ m, SD=0.54) from base of stylet; center of medial bulb=52.8–60 μ m (54.5 μ m, SD=0.45); head height=3–3.6 μ m (3.3 μ m, SD=0.3); hw/hh ratio=1.3–1.6 (1.5, SD=0.1); tail length=49.2–52.8 μ m (51 μ m, SD=1.4); hyaline tail terminal=9.6–14.4 μ m (12.2 μ m, SD=1.9).

Meloidogyne thamesi gyulai subsp. n. is described and illustrated from specimens obtained from tomato from Gyula (South-East Hungary). M. thamesi gyulai resembles M. thamesi thamesi, in the structure of the female perineal pattern showing a round arch with distinctive broken striae near the tail tip above the anus and also in the labial and posterior body structure of males as well as in the tail length of the larvae, but the adult females and males are more than one and a half times longer and their stylets shorter than in M. thamesi measured by DABAJ (1990) in Hungary.

For the present, I regard M. thamesi gyulai as a local race. Further studies, including electron microscopic investigations and enzyme electrophoresis are necessary to decide whether our nematode is a subspecies of thamesi or a separate species close to that

Specimens on slides: adult female perineal patterns, female stylets as well as males and larvae were deposited in C. A. B. International Institute of Parasitology, England (IIP No. 10/93 [1—14], and Plant Health and Soil Conservation Institute at Hódmezővásárhely, Hungary.

I would like to express my sincere thanks to Prof. Dr. I. ANDRÁSSY for his supervision and unlimited help as well as to Dr. J. E. MACHON for his help in the identification of the animals.

Table 2. Comparison between Meloidogyne thamesi gyulai and Meloidogyne thamesi thamesi

Stage/Characters	Meloidogyne thamesi gyulai	Meloidogyne thamesi (WHITEHEAD, 1968)	Meloidogyne thamesi (DABAJ, 1990)
Females: Length Width Stylet length Stylet knobs DOG*	1095 μm (918—1667.5) 633.8 μm (344—826) 14.7 μm (14.4—15.6) 2.3 μm (2.1—2.4) 2.8 μm (2.4–3.6)	590 μm (514—703) 409 μm (331—534) 17 μm (15—18) 3 μm 4 μm (3—5)	
Males: Length Stylet length DOG Spicules Gubernaculum	2028 μm (1728—2530) 22.6 μm (19.6—25.2) 2.8 μm (2.4—4.2) 32.7 μm (31.2—33.6) 8.4 μm (7.2—9.6)	1526 μm (1081—1804) 24.9 μm (20.5—28.1) — 25.7 μm (21.6—28.1) 9.2 μm (7.9—10.8)	- 22.4 μm (20.1–23.3) 3.8 μm (3.3–4) 31 μm (29.7–32.2)
Larvae: Length Stylet length DOG Tail length Hyaline tail terminal	421.7 μm (367.2—443.7) 12.3 μm (12—13.2) 2.9 μm (2.4—3.9) 51.0 μm (49.2—52.8) 12.2 μm (9.6—14.4)	432 μm (410—476) 11.1 μm (10.2—12.7) — 53 μm (50—58)	409 μm (372.7—441) — — — 14.8 μm (12.5—18.6)

Dorsal oesophageal gland orifice.

REFERENCES

- AMIN, A. W. (1993): The problem of root-knot nematodes, Meloidogyne spp. in Hungary. EPPO Conference on plant nematology in the Mediterranean region, Valenzano, Italy, March 30—April 1, 1993.
- AMIN, A. W. & BUDAI, Cs. (1992): Gyökérgubacsfonálféreg fajok előfordulása Délkelet-Magyarország gyomnövényein. – Növényvédelem, 23: 356–361.
- BUDAI, Cs. (1980): Új kártevő faunánkban: a Meloidogyne thamesi (Chitwood, 1952) gyökérgubacsképző fonálféreg. – Növényvédelem, 16: 117–118.
- CHITWOOD, B. G., SPECHT, A. W. & HAVIS, L. (1952): Root-knot nematodes. II. Effects of Meloidogyne javanica on some peach root stock. — Plant and Soil, 4: 77—95.
- DABAJ, H. K. (1990): Distribution, host range and identification of root-knot nematodes, Meloidogyne species in Hungary. — Ph. D. thesis, Budapest: 1—148.
- 6. DECKER, H. J. (1969): Phytonematologie. Berlin: 1-526.
- ELGINDI, D. M. & MOUSSA, F. F. (1971): Root-knot nematodes in recently reclaimed sandy areas of U.A.R. II. New host records for root-knot nematodes, Meloidogyne spp. — Meded. Rijks. Fac. Landbouwwet. Gent, 36: 1341—1344.
- 8. GODEY, J. & FRANKLIN, M. T. (1956): The nematode parasites of plants catalogued under their hosts. Revised edition of T. Goodey, 1940. Farnham House, Farnham Royal, England, C.A.B.
- GOODEY, J. B., FRANKLIN, M. T. & HOOPER, D. J. (1959): Supplement to "Nematode parasites of plants catalogued under their hosts (1955—1958)." — Farnham House, Farnham Royal, England, C.A.B.
- JENSEN, H. J. (1972): Nematode pests of vegetables and related crops. In "Economic Nematology", London and New York.
- LORDELLO, L. G. E. (1970): Plantas hospedeiras no nematoide Meloidogyne thamesi na Bahia. Solo, 62: 19.
- MAURA, K. M. (1967): Ocorência em Pernambuco de Meloidogyne arenaria thamesi Chitwood, 1952 parasitando "Frut-P\u00e1o de caroco" (Artocarpus incisa) e sugestoes para o seu controle. — Rev. Soc. Brasil. Fitopatol.
- McLeod, R. W. & Khair, G. T. (1974): Male intersexes in Meloidogyne thamesi. Nematologica, 17: 561—562.
- SIDDIQUI, I. A., SHER, S. A. & FRENCH, A. M. (1973): Distribution of plant parasitic nematodes in California. — California Dep. Food Agric. Sacramento.
- WHITEHEAD, A. G. (1968): Taxonomy of Meloidogyne with description of new species. Trans. Zool. Soc. London, 31: 370—372.
- WINSLON, R. D. & WILLIS, R. J. (1972): Nematode diseases of potatoes. In "Economic Nematology". London and New York.