Gesture Recognition Case Study

This document contains all the experiments we have done with the architecture of our neural network and different algorithms which we tried to achieve good accuracies and reduce loss on our models.

We tried 2 approaches in this case study and all our experiments revolve around these 2 approaches.

- 1. 3DCNN
- 2. Transfer Learning + RNN

3DCNN Models

Model	Accuracy	Params	Architectural Changes
3DCNN	Train –98%	Epochs-20	We used Batch Normalization here and did not use
	Val – 96%	Image-	any dropouts. We noticed that even though we are
		140x140	not using dropouts our model did not overfit.
		Frames-15	
3DCNN	Train -21%	Epochs-20	We Introduced some dropouts and as a result our
	Val – 20%	Image-	model did underfit, due to the loss of information.
		120x120	
		Frames-15	
3DCNN	Train -60%	Epochs-20	We reduced the number of dropouts in the network
	Val – 59%	Image-	and kept it only in the last layer at 0.25 value. We
		120x120	got significantly better results but not the best.
		Frames-15	
3DCNN	Train –98%	Epochs-20	This Model Among all our 3D CNN models
	Val – 94%	Image-	performed the best. Although the frame size was 10
		140x140	but we did not add any dropouts in the model.
		Frames-10	

Transfer Learning Models

Model	Accuracy	Params	Architectural Changes
RESNET+GRU	Train -78%	Epochs-20	Here we tried resnet and gru with 10 frames in
	Val – 92%	Image-	the hope that it might work well with 10 frames
		140x140	just like it did for 3DCNN, but it did not.
		Frames-10	
RESNET+GRU	Train -96%	Epochs-20	We Ran the same model as above but with 15
	Val – 98%	Image-	frames this time. And we got significantly good
		140x140	results with more number of frames.
		Frames-15	
Xception+GRU	Train -84%	Epochs-20	Kept the network similar to above and replaced
	Val – 88%	Image-	RESNET transfer learning to Xception transfer
		120x120	learning.
		Frames-15	

RESNET+LSTM	Train -99%	Epochs-20	As our model performed well with RESNET and
	Val – 99%	Image-	GRU, as we are aware LSTM has an extra gate in
		140x140	every RNN unit which we train. So, this might
		Frames-15	help us shoot up our accuracies even more. And
			it did. This was the best model we achieved so
			far.

Conclusion

1. 3DCNN

- a. 3DCNN gave us exceptional results when we used only 10/30 images from a video to train our model.
- b. 3DCNN tend to gave better results when we removed dropouts, when we added dropouts to the model the accuracy dropped miserably leading to an underfitting model.

2. Transfer Learning

- a. RESNET+GRU gave us good results, when we reduced the number of dropouts in this model we observed that the accuracy went up and we achieved around 96% accuracy on the val data
- b. XCEPTION+GRU gave us good results but <u>3DCNN</u> and <u>RESNET+GRU</u> proved to be better models for our dataset.
- c. RESNET+LSTM proved out be the best model for us, as the accuracy we achieved on the training and val set was approximately 99% on both.