

TF-LM: TensorFlow-based Language Modeling Toolkit

Lyan Verwimp, Hugo Van hamme, Patrick Wambacq

ESAT – PSI, KU Leuven, Belgium

{lyan.verwimp, hugo.vanhamme, patrick.wambacq}@esat.kuleuven.be

1. Motivation

- \Box Long Short-Term Memory Language Models = state of the art
 - ② Implementing and training neural networks from scratch = difficult and timeconsuming
 - Many deep learning frameworks exist (TensorFlow, PyTorch, Keras, Caffe...) that usually offer the building blocks and example scripts
 - © ... but the example scripts are usually simple and not easy to extend
 - Many researchers publish their code
 - ② ... but usually only publish the code for their model without offering a more general framework
- ⇒ We present a framework for training and testing language models
 - □ based on the most popular deep learning framework **TensorFlow**
 - with a focus on **modularity** such that new ideas can easily be tested
 - providing different training/testing configurations
 - ☐ **not** optimized for efficiency
- \Rightarrow Pre-trained LMs
- https://github.com/lverwimp/tf-lm

2. Functionality of the toolkit

Command line switches

- ☐ Device: CPU or GPU
- ☐ Training/validation/testing

Configuration file

- ☐ Reading data: all at once or line by line (large datasets)
- ☐ Input unit:

word cat characters cat word + characters [1] cat c a t

character n-grams

☐ Batching:

owned by $\langle unk \rangle \& \langle unk \rangle$ co. was under contract with discourse <unk> to make the cigarette filters <eos> the finding level

probably

<bos> the plant which is owned by <unk> & <unk> co. was sentence under contract with <unk> to make the cigarette filters level

<eos> @ @ @ ... ☐ Open vocabulary

- ☐ Determine vocabulary based on training text or read from file
- ☐ Graph parameters: number of layers, size of layers, batch size, number of steps to unroll for backpropagation through time
- ☐ Initialization scale (uniform distribution)
- ☐ Training:
 - Several optimizers easy to add a new one
 - Regularization:
 - By default dropout on input embeddings and output of LSTM cell
 - By default clip norm of gradients
 - Early stopping or not
 - Exponentially decaying learning rate or not
- \Box Unidirectional (1) or bidirectional (2):

$$y_{t+1} = g(W_o \ h_t + b_o) \tag{1}$$

$$y_{t+1} = g([W_o^f \ h_t^f \ W_o^b \ h_{t+2}^b] + b_o)$$
 (2)

- ☐ Testing:
 - Perplexity
 - (Re-)scoring hypotheses: log probabilities
 - Predicting words given a seed word/sentence:
 - Most likely word
 - Sample from multinomial distribution of softmax
 - Generate 'debugging file' similar to SRILM [2]: can be used to calculate interpolation weights (with SRILM's compute-best-mix)

2. Pre-trained LMs

http://homes.esat.kuleuven.be/~lverwimp/lstm_lm/

- ☐ 2 English benchmarks:
 - Penn TreeBank (900k, 70k, 80k, vocab 10k)
 - WikiText (2M, 210k, 240k, vocab 33k)
- ☐ 2 corpora of spoken Dutch:
 - Corpus of Spoken Dutch (8M, 200k, 240k, vocab 100k)
 - Subtitles (Sub) dataset (45M, 100k, 120k, vocab 100k)

4. Experimental results

Perplexity

Data	5-gram	sentence	discourse
PTB	147.9	102.4	84.1
Wiki	231.0	150.6	98.2
CGN	395.2	257.6	192.6
Sub	114.5	74.4	65.1

Test perplexity of the pre-trained sentence-level and discourse-level LSTMs, compared with 5-gram LMs.

Input/output unit	PPL
word	84.1
character 2-gram	101.1
word+characters	83.6
character	2.8

Test perplexities for models with different input/output units on PTB.

Hypothesis rescoring

Hypothesis	Log prob
he made a sales goal he says	-31.9997
he made a sales call he says	-32.0053
he made its sales call he says	-32.0255
he made as sales call he says	-32.0360
he made it sails call he says	-32.0619
he may to a sales goal he says	-35.9857
he made a sales goal he says it	-35.9978
he made a sales call he says it	-36.0043
he made a sale to call he says	-36.0083

Rescoring 100-best lists from he DARPA WSJ'92 and WSJ'93 data sets with the pre-trained PTB LM.

! Note: word insertion penalty needed.

Predicting next word(s)

seed	consumers may		
РТВ-р	be able to $\langle unk \rangle$ the $\langle unk \rangle$ of the $\langle unk \rangle$		
PTB-s	no longer be active		
Wiki-p	be used to be a <unk></unk>		
Wiki-s	have made 0 - 3 victory in Mahwah		
seed	consumers may want		
РТВ-р	to be <unk></unk>		
PTB-s	to keep the gop golden share		
Wiki-p	to be the first to be <unk></unk>		
Wiki-s	to have a strong impact on the storytelling		
seed	in recent		
РТВ-р	years		
PTB-s	months after four years of investments last month for the year alone		
Wiki-p	years		
Wiki-s	years, broadcasts by Conservative Party theatre in the 18th century		
seed	The city 's growth has reflected the push and pull of many social		

PTB-p security benefits

PTB-s states in the areas of southeast asia

Wiki-p contexts

Wiki-s forms

Predicting the most probable words ('-p') or sampling based on the multinomial distribution ('-s') with the pre-trained PTB and Wiki models.

Interpolation weights

Model	Valid PPL	Test PPL
5-gram	155.12	147.9
LSTM	107.5	102.4
interpolation	98.6	94.7

Optimal weights: 0.24 for n-gram – 0.76 for LSTM (pre-trained PTB model).

5. Conclusion

- ☐ Open-source toolkit for language modeling based on TensorFlow
- ☐ Focus on modularity/easy to adapt
- ☐ Several options for input/output unit, batching, training and testing
- ☐ Pre-trained LSTM LMs on English benchmarks and corpora of spoken Dutch

6. References

[1] Verwimp, L., Pelemans, J., Van hamme, H., and Wambacq, P. (2017b). Character-Word LSTM Language Models. In Proceedings of the European Chapter of the Association for Computational Linguistics (EACL), pages 417–427.

[2] Stolcke, A. (2002). SRILM an extensible language modeling toolkit. In *Proceedings International Confer*ence Spoken Language Processing, pages 901–904.

This research is funded by the Flemish government agency IWT (project 130041, SCATE).