Discrete Math Homework 9

noflowerzzk

2024.11.09

1

- b) not reflexive; symmetric; not antisymmetric; not transitive.
- f) reflexive; symmetric; not antisymmetric; transitive.

$\mathbf{2}$

- a) $R_1 \circ R_1 = \{(a, b) \in \mathbb{R}^2 | a > b\} = R_1$
- b) $R_1 \circ R_2 = \{(a, b) \in \mathbb{R}^2 | a > b\} = R_1$
- c) $R_1 \circ R_3 = \mathbb{R}^2$
- e) $R_1 \circ R_5 = \{(a,b) \in \mathbb{R}^2 | a > b \} = R_1$
- f) $R_1 \circ R_6 = \mathbb{R}^2$
- g) $R_2 \circ R_3 = \mathbb{R}^2$
- h) $R_3 \circ R_3 = \{(a,b) \in \mathbb{R}^2 | a > b\} = R_1$

3

Let $R_1 = \{(1,2), (2,1)\} \cup I_A$, $R_2 = \{(2,3), (3,2)\} \cup I_A$, $A = \{1,2,3\}$. Then $(1,2), (2,3) \in R_1 \cup R_2$, but $(1,3) \notin R_1 \cup R_2$, $R_1 \cup R_2$ is not transitive. So it is not a an equivalence relation on A.

4

Proof. Reflexive: Noting that $I_A \subseteq R_1, I_A \subseteq R_2$, so $I_A \subseteq R_1 \cap R_2$.

Symmetric: $\forall a, b \in A$, if $a(R_1 \cap R_2)b$, then aR_1b and aR_2b . Then $bR_1a \Rightarrow b(R_1 \cap R_2)a$, i.e. $a(R_1 \cap R_2)b$ iff. $b(R_1 \cap R_2)a$.

Transitive: $\forall a, b, c \in A, a(R_1 \cap R_2)b, b(R_1 \cap R_2)c$, then aR_1b, bR_1c , so aR_1c , similarly, aR_2c . So $a(R_1 \cap R_2)c$.

5

- a) $[1]_R = \mathbb{Z}$.
- b) $\left[\frac{1}{2}\right]_{R} = \{x | x = a + \frac{1}{2}, a \in \mathbb{Z}\}.$

a) *Proof.* Let the set of all equivalence classes of R is R'. Reflexive: $I_{R'} \subseteq S_2$.

Symmetric: If $[a]_R S_2[b]_R$ ($[a]_R \neq [b]_R$), then $a, b \in \mathbb{R}, a - b = \frac{1}{2}$. Noting that $b + 1 - a = \frac{1}{2}, b + 1 \in [b]_R \Rightarrow [b]_R = [b + 1]_R$, so $[b]_R S_2[a]_R$.

 $[b]_R \Rightarrow [b]_R = [b+1]_R, \text{ so } [b]_R S_2[a]_R.$ Transitive: Assume $[a]_R S_2[b]_R, [b]_R S_2[c]_R.$ If [a] = [b] or [b] = [c], it is obvious that S_2 is transitive. If $[a] \neq [b], [b] \neq [c]$, then $a-b=\frac{1}{2}, b-c=\frac{1}{2}$, so $a-c=1, [a]_R = [c]_R, [a]_R S_2[c]_R, S_2$ is transitive.

b) Proof. Let the set of all equivalence classes of R is R'.

Reflexive: $I_{R'} \subseteq S_3$.

Symmetric: If $[a]_R S_3[b]_R$ ($[a]_R \neq [b]_R$), then $a, b \in \mathbb{R}$, $|a - b| = \frac{1}{3} \Leftrightarrow |b - a| = \frac{1}{3}$, i.e. $[b]_R S_3[a]_R$. Transitive: Assume $[a]_R S_3[b]_R$, $[b]_R S_3[c]_R$. If [a] = [b] or [b] = [c], it is obvious that S_3 is transitive. If $[a] \neq [b]$, $[b] \neq [c]$, then $|a - b| = \frac{1}{3}$, $|b - c| = \frac{1}{3}$, so either a = c or $c = a + \frac{2}{3} = (a + 1) - \frac{1}{3}$ or $c = a - \frac{2}{3} = (a - 1) + \frac{1}{3}$, i.e. $[a]_R S_3[c]_R$, S_3 is transitive.

c) Let $a = 0, b = \frac{1}{4}, c = \frac{1}{2}, |a - b| = |b - c| = \frac{1}{4} \Rightarrow [a]_R S_3[b]_R, [b]_R S_3[c]_R$, but $a - c \notin \mathbb{Z}, |a - c| \neq \frac{1}{4}, [a]_R \mathcal{S}_4[c]_R, S_4$ is not transitive.