Name:	Question 1	
	Question 2	
Exam 2	Question 3	
CSc 75010: Theoretical Computer Science	Question 4	
Graduate Center of CUNY	Question 5	
22 November 2002	Question 6	
(Pink Version)	Total	

Do five of the following six problems. Write each answer on a separate piece of paper.

- 1. (a) Define decidable set and give an example of a set that is not decidable.
 - (b) Assume that the alphabet and tape alphabet are: $\Sigma = \Gamma = \{0, 1\}$. Give an implementation level description of a Turing machine that decides the language:

 $\{w \mid w \text{ contains an equal number of 0's and 1's}\}$

Total

- (a) Show that for any finite set Σ , the set of all finite strings of Σ , Σ^* is countable.
 - (b) Let $\Sigma = \{0, 1\}$. Show that the set of all infinite strings over Σ is uncountable.
- (a) Show that the Halting Problem is undecidable, using the diagonalization method.
 - (b) Show that the set of all constant computable functions is not decidable.
- 4. (a) Show that the set of decidable languages is closed under union.
 - (b) Show that if A and \bar{A} are Turing-recognizable, then A is decidable.
- 5. (a) State Rice's Theorem.
 - (b) Prove Rice's Theorem.
- 6. (a) Show that for all A and B, $A \leq_m B$ implies $\bar{A} \leq_m \bar{B}$.
 - (b) Show for all A, B, there exists a set J such that $A \leq_T J$ and $B \leq_T J$.