Figure 1 A

Figure 1<u>8</u>

		-	1
AMD#	Structures	Formula	Observ d (M+H) ⁺
7142		C ₃₂ H ₃₅ N₅O	506.7
7145		C ₃₇ H ₃₈ N₄O	555
7147	O NH ₂ CH ₃	C ₂₄ H ₂₉ N₅O	404.6
7151		C ₃₈ H ₄₀ N ₄ O	569.4
7155		C ₂₉ H ₃₂ N₄S	469.2
7156		C ₃₁ H ₃₅ N₅	478.4
7159	H CH ₃	C ₂₇ H ₃₂ N ₆	441.2
7160	N CH ₃	C ₂₈ H ₃₀ N ₄	423.5

Figure 1_C

	I iguiv I			
AMD#	Structures	F rmula	Observed (M+H) ⁺	
7164		C ₃₂ H ₃₄ N₄O ₂	507.3	
	N N N N N N N N N N N N N N N N N N N			
7166		C ₃₄ H ₃₉ N ₅ O ₂	550.2	
7167		C ₃₁ H ₃₂ N ₄ O ₂	493.5	
7168		С ₃₀ Н ₃₃ N ₅	464.4	
7169	CH9 CH3	C ₃₁ H ₃₅ N ₅ O	494.6	
7171	N N O CH ₃	C ₃₅ H ₃₈ N ₆ O	559.5	
7172	П П П П П П П П П П П П П П П П П П П	C ₃₄ H ₄₀ N ₄ O	521.4	
7175	La CH,	С ₃₅ Н ₃₈ N ₆	543.3	

Figure $1\frac{9}{2}$

AMD#	Structur s	Formula	Observed
			(M+H) ⁺
7177		C ₂₄ H ₂₆ N ₆	399.4
7180	CH3	C ₃₃ H ₃₆ N ₄ O ₃	537.3
7182		C ₃₂ H ₃₃ N₅	488.4
7184		C ₃₁ H ₃₁ N₅	474.3
7185	CH ₃	C ₃₁ H ₃₆ N₄S	497.4
7186	CN N S CH3	C₃₀H₃₄N₄S	483.3
7187		C ₃₁ H ₃₂ F ₂ N ₄	499.5

Figure 1

AMD#	Structures	F rmula	Observed (M+H)⁺
7188		C ₃₀ H ₃₀ F₂N₄	485.4
7189		C ₃₂ H ₃₄ F ₂ N₄O	529.2
7195	N N N N N N N N N N N N N N N N N N N	C ₃₁ H ₃₂ F ₂ N₄O	515.4
7196		C ₃₃ H ₃₆ N ₄ O ₂	521.4
7197	O = N = N	C₃₃H₃₅N₅O	535.6
7198	0 Сн _з	C ₄₁ H ₄₆ N ₆ O ₃ S	703.2

Figure 1_F

AMD#	Structures	Formula	Observed (M+H)⁺
7199		C ₃₁ H ₃₄ N ₆ O	507.4
7200		C ₂₉ H ₃₅ N ₅ O	470.2
7201	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C ₃₅ H ₃₉ N ₅ O	546.2
7202		C ₃₂ H ₃₄ N₄O ₂	507.6
7203	O CH ₃	՝ C ₃₈ H ₃₇ CIN ₆ O₂	621.4
	N N N N N N N N N N N N N N N N N N N		
7204	0	C ₃₂ H ₃₆ N ₆ OS	553.2
7207		C ₃₀ H ₃₀ F₂N₄	485.4

Figure 1 <u>~</u>

AMD#	Structures	F rmula	Observed (M+H) ⁺
7208	N N N CH3	C ₂₉ H ₃₃ N₅	452.3
7209		C ₃₀ H ₃₂ N₄O	465.5
7212	Chy Chy	C ₃₂ H ₃₄ N₄O ₃	523.4
7216		C ₂₉ H ₃₁ N ₅	450.2
7217		C₃₀H₃₃N₅O	486.4
7220	N H ₃ C N	С ₂₉ Н ₃₉ N ₅	458.3
7222	N CH ₃	C ₃₂ H ₃₄ N ₆	503.3
7223		C ₃₁ H ₃₅ N ₅	478.4

Figure 1<u>H</u>

AMD#	Structures	F rmula	Observed (M+H) ⁺
7228		C ₃₃ H ₃₉ N₅O	522.5
7229	H ₃ C-CH ₃	С ₂₈ Н ₃₇ N ₅	444.2
7230	ңс	C ₃₁ H ₃₉ N ₅ O ₂	514.4
7231		С ₃₀ Н ₃₆ N ₆	481.4
7235	H ₃ C CH ₃	C ₂₈ H ₃₇ N ₅ O	460.4
7236		C ₃₂ H ₃₆ N ₄ O ₂ S	541.4
7238		C ₃₁ H ₃₁ CIN ₄ O ₂	527.3

Figure 1_7

AMD#	Structur s	Formula	Observ d (M+H) ⁺
7239	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	C₃₃H₃₅CIN₅O	554.4
7241		C ₃₅ H ₃₇ N₅O	544.4
7242	N CH ₃	C ₃₉ H ₄₂ N ₄ O ₂	599.7
7244		C₃₃H₃₃N₅	500.3
7245	N H OH	C ₃₄ H ₃₅ N₅O	530.3
7247		C ₃₄ H ₃₅ N ₅	530.3 514.4
7249	CH, CH,	C ₃₃ H ₃₇ N₅O	520.7

AMD#	Structures	Formula	Observed (M+H) ⁺
7250	HN N N N N N N N N N N N N N N N N N N	C ₂₄ H ₂₆ N ₆	399.5
7251		C ₃₄ H ₃₅ N ₅	514.4
7252		C ₂₈ H ₃₁ N ₅ S	470.3
7253		С ₃₀ Н ₃₃ N ₅	464.6
7254	N N N N N N N N N N N N N N N N N N N	C ₃₆ H ₃₅ N₅O	554.4
7256	N CH ₃	C ₃₀ H ₃₅ N ₅	466.4
7257	H ₃ C NH	C ₂₅ H ₂₈ N ₆	413.6

Figure 1 <u></u>

AMD#	Structures	Formula	Observed (M+H)*
	N-CH.		
7259	N-сн ₃	C ₃₃ H ₃₅ N ₅	502.4
7260	CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	C ₃₂ H ₃₄ N ₆ O	519.5
7261	O = CH ₃	C ₃₃ H ₄₂ N ₆ O ₂	555.3
7262	O CH ₃	C ₃₅ H ₄₀ N ₆ O ₂	577.5
7270		C ₃₃ H ₃₅ N₅	502.4
7272	N= NH NH	C₃9H₄₅N ₇ O₂	644.4

Figure 1__

	riguie i			
AMD#	Structur s	Formula	Observed (M+H) ⁺	
7273	O NH CH ₃ CH ₃	C ₃₉ H ₄₈ N ₆ O ₂	633.2	
7274	N N CH ₃	C ₃₃ H ₃₉ N₅	506.6	
7275		С ₂₉ Н ₃₁ N ₅	450.2	
7276	N N CH3	C₃₃H₃₅N₅	517.4	
7277	CH ₃	C ₂₉ H ₃₉ N ₅	458.4	
7278	H N N N N N N N N N N N N N N N N N N N	C ₂₉ H ₃₉ N ₅ C ₃₃ H ₃₇ N ₅ O	520.4	
7290		C ₃₂ H ₃₇ N ₅	492.5	

Figure 1<u>M</u>

AMD#	Structures	Formula	Observed (M+H) ⁺
	H, C		
7309		C ₃₁ H ₃₃ N ₅	476.6
7311		C ₂₅ H ₂₈ N ₆	413.2
7359		C ₃₃ H ₃₉ N ₅	506.6
7374	N= N-CH ₃	C ₃₃ H ₃₉ N ₅	477.2
7379		C ₃₆ H ₃₅ N ₅	538.4
9025	CH3	С ₃₀ Н ₃₃ N ₅	464.4
	N HN N CH		
9031	CH ₃	C ₂₈ H ₃₂ N ₆	453

Figure 1 N

AMD#	Structures	Formula	Obs rved (M+H)*
9032	H ₃ C·O	C ₃₁ H ₃₄ N ₄ O	479.4
9039	H,C_O	C ₃₃ H ₃₈ N ₄ O	507.6
9045		C ₃₂ H ₃₆ N ₄ O	493.2
9052	H ₃ C_O	C ₃₆ H ₃₈ N₄O	543.3
9053	CH₃	C ₃₀ H ₃₃ N ₅	464.4

N N N N N N N N N N N N N N N N N N N	
8780	8778
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N N N N N N N N N N N N N N N N N N N
8783	8784
HE NOTE OF THE PROPERTY OF THE	HZ HZ
8785	8788 NH 8799
HN HN N	
7490	7491

7492	(N
8634	8816
8818	8819
HN N N N N N N N N N N N N N N N N N N	HN HO CH,
8931	8820
8712	8821
8713	8825
	1

242 Figure 1

8827
HN
8829
8833
HN N 8835
8836

N N N N N N N N N N N N N N N N N N N	CH ₃ 8838	
N H NH	NH ₂	
8734	8839	
н _ч с~~ р ~ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	N N N N N N N N N N N N N N N N N N N	
N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	
N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	
N N N N N N N N N N N N N N N N N N N	8742	
H ₂ N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	
	· ····································	

Figure 1_

8852	8858
NH ₂ CO ₂ H 8749	8859
8750	H ₃ C ₋₀ O-CH ₃ 8861
8876	8862
\$^	
N N N N N N N N N N N N N N N N N N N	8863
8752	8867

245 Figure 1

N N N N N N N N N N N N N N N N N N N	8869
N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N
CN COME	H,C.O.
8759	8871
8762	8886
N N N N N N N N N N N N N N N N N N N	8887
N, N	# D D D D D D D D D D
CO ₂ H OTCE	F NH SPOR
8765	8895

Figure 1 W

HN. CHAN	
8766	8767
8768	8770
	CATH CAN WH WH
8771	8772
8774	8775
0774	8775
8776	NH ₂ NH ₂ 8777
	8789
HN H N	OMe N N N N N N N N N N N N N N N N N N N
8728	8902

Figure <u>W</u>

