Project Description

- The project starts off with initializing the IT_Keyboard Interrupt
- Then continues down to initializing the LEDs ports for sending LED signals to the IO LED
 - Also getting the correct beginning signal ready of all green LED's and moving to the right at base speed
- Then starts the main loop
- Check to see if any LEDs are on if not wait for the start
- If they are, run through update LEDs
 - o Update LEDs shifts the LEDs left or right depending on the Direction variable
 - If Direction is #\$00 which is the beginning case go right
 - If Direction is #\$01 go left
- Then run through the Timer for LEDs
 - Initialize timer
 - o Check variable delay to see if the button 1,2, or 3 was pressed
 - If 1 was pressed set register a to equal NTIMES_x1 or known as base speed
 - If 2 was pressed -- set register a to equal NTIMES_x2 or known as base speed * 2
 - If 3 was pressed -- set register a to equal NTIMES_x3 or known as base speed * 3
 - o Clear the TFLG2 bit and spin the timer
 - o Continue to spin the timer until register a is equal to 0
 - \circ After a equals 0 exit the timer and continue back to main loop
- Check if any button was pressed
 - o If yes -- Find which button it was and go to the subroutine linked to that number
 - If that number is not 0,1,2,3,4,5 do nothing
 - If 0
 - Go to start This starts the movement of the LEDs
 - First make sure the LEDs are current not moving already
 - o If they are not moving already continue to start
 - Set the LEDs to #\$F0 and send to the IO LED
 - o If they are moving already skip start and do nothing
 - Continue back to main loop
 - If 1
 - Go to play This changes the direction of the LEDs and the speed

- Check to see if play was pressed at the time LEDs equal #\$F0 and check is the Direction was going left
 - If yes change the direction of the LEDs shift
 - Also change the speed to base speed * 1
 - If not #\$F0 skip to next test in play
 - If yes #\$F0 but Direction is not going left skip to next test in play
- Check to see if play was pressed at the time LEDs equal
 #\$0F and check is the Direction was going right
 - If yes change the direction of the LEDs shift
 - Also change the speed to base speed * 1
 - If not #\$0F leave the play subroutine and go back to main loop
 - If yes #\$0F but Direction is not going right leave the play subroutine and go back to main loop
- If 2
 - Go to play This changes the direction of the LEDs and the speed
 - Check to see if play was pressed at the time LEDs equal #\$F0 and check is the Direction was going left
 - If yes change the direction of the LEDs shift
 - Also change the speed to base speed * 2
 - If not #\$F0 skip to next test in play
 - If yes #\$F0 but Direction is not going left skip to next test in play
 - Check to see if play was pressed at the time LEDs equal
 #\$0F and check is the Direction was going right
 - If yes change the direction of the LEDs shift
 - Also change the speed to base speed * 2
 - If not #\$0F leave the play subroutine and go back to main loop
 - If yes #\$0F but Direction is not going right leave the play subroutine and go back to main loop
- If 3
 - Go to play This changes the direction of the LEDs and the speed
 - O Check to see if play was pressed at the time LEDs equal #\$F0 and check is the Direction was going left
 - If yes change the direction of the LEDs shift
 - Also change the speed to base speed * 3
 - If not #\$F0 skip to next test in play

- If yes #\$F0 but Direction is not going left skip to next test in play
- Check to see if play was pressed at the time LEDs equal #\$0F and check is the Direction was going right
 - If yes change the direction of the LEDs shift
 - Also change the speed to base speed * 3
 - If not #\$0F leave the play subroutine and go back to main loop
 - If yes #\$0F but Direction is not going right leave the play subroutine and go back to main loop
- If 4
- Go to Stop This iterates through an infinite loop until
 - Check the Key value
 - If the Key_value equals #\$06 (The Resume Button) then leave the loop and go right back to the main loop
 - If they Key_value equals anything else continue to loop through the infinite loop until Key_value equals #\$06
- If 5
- Go to Reset this completely resets the program to its beginning values
 - Set LEDs back to #\$00
 - Set Direction back to the right
 - Set Delay back to base speed
 - After setting everything back to start values, exit and go back to main loop
- If any other number on the IT Keyboard
 - DO NOTHING
- If no button was pressed
 - Continue to do the same thing as the previous iteration
- Clear Pressed
- Run through the IT delay
 - Set value to a and x registers and after each iteration of the loop, decrement the two registers until they are both equal to 0
 - If both registers are equal to 0 then exit the delay and continue back to the main loop

- If one or both registers are not equal to 0 then continue to run through the delay loop
- Main interrupt for reading IT_Keyboard
 - o Load address of masks and ground each column
 - o Read data from Row port and see if all are high
 - If not go to next row
 - If yes begin to check all columns
 - If found a column and row that are set high compare the two to find the number being pressed
 - o Store that Number into Key value
 - o Set Flag and exit the interrupt
 - If could not find a Column set high, a row set high, or neither then no button was pressed
 - o Set Flag and exit the interrupt