教学安排(星期四,08:00-09:35,六教6A116)

周次	日期	内容	作业	编程	项目		
1	2月29日	绪论				绪论,课程内容	
2	3月 7日	无信息搜索		1		状态空间表示,宽度优先,深度优先	1
3	3月14日	有信息搜索(1)			1	算法复杂度分析,一致代价,贪婪最佳优先搜索	
4	3月21日	有信息搜索(2)	1			A* 算法	P
5	3月28日	约束满足	2			约束满足问题,回溯法,局部搜索	
6	4月 4日	清明节假期]]
7	4月11日	对抗搜索	3			博弈树搜索, 蒙特卡洛树搜索	Ji
8	4月18日	逻辑推理	4			归结原理] 4
9	4月25日	线性回归			2	线性回归	Ŋŧ
11	5月 9日	分类问题与对比学习	5			Logistic 回归,Softmax 回归,对比学习	
11	5月11日	前馈神经网络及应用		2		前馈神经网络,智能光电计算	١,
12	5月16日	卷积神经网络	6			卷积神经网络,循环神经网络	1
13	5月23日	马尔可夫决策过程	7			强化学习的数学基础	Ī
14	5月30日	策略迭代与价值迭代		3		状态转移概率已知时的预测与控制	
15	6月 6日	蒙特卡洛与时序差分	8			状态转移概率未知时的预测与控制	
16	6月13日	深度强化学习				价值函数的近似,深度强化学习,考试解读	J
	1 2 3 4 5 6 7 8 9 11 11 12 13 14 15	12月29日23月7日33月14日43月21日53月28日64月4日74月11日84月18日94月25日115月9日115月11日125月16日135月23日145月30日156月6日	1 2月29日 绪论 2 3月 7日 无信息搜索 3 3月14日 有信息搜索(1) 4 3月21日 有信息搜索(2) 5 3月28日 约束满足 6 4月 4日 清明节假期 7 4月11日 对抗搜索 8 4月18日 逻辑推理 9 4月25日 线性回归 11 5月 9日 分类问题与对比学习 11 5月11日 前馈神经网络及应用 12 5月16日 卷积神经网络 13 5月23日 马尔可夫决策过程 14 5月30日 策略迭代与价值迭代 15 6月 6日 蒙特卡洛与时序差分	1 2月29日 绪论 2 3月 7日 无信息搜索 3 3月14日 有信息搜索(1) 4 3月21日 有信息搜索(2) 5 3月28日 约束满足 6 4月 4日 清明节假期 7 4月11日 对抗搜索 8 4月18日 逻辑推理 9 4月25日 线性回归 11 5月 9日 分类问题与对比学习 5 11 5月11日 前馈神经网络及应用 12 5月16日 卷积神经网络 13 5月23日 马尔可夫决策过程 7 14 5月30日 策略迭代与价值迭代 15 6月 6日 蒙特卡洛与时序差分 8	1 2月29日 绪论 2 3月 7日 无信息搜索 1 3 3月14日 有信息搜索 (1) 4 3月21日 有信息搜索 (2) 1 5 3月28日 约束满足 2 6 4月 4日 清明节假期 3 8 4月11日 对抗搜索 3 8 4月18日 逻辑推理 4 9 4月25日 线性回归 4 11 5月 9日 分类问题与对比学习 5 11 5月11日 前馈神经网络及应用 2 12 5月16日 卷积神经网络 6 13 5月23日 马尔可夫决策过程 7 14 5月30日 策略迭代与价值迭代 3	1 2月29日 绪论 2 3月 7日 无信息搜索 3 3月14日 有信息搜索(1) 4 3月21日 有信息搜索(2) 5 3月28日 约束满足 6 4月 4日 清明节假期 7 4月11日 对抗搜索 8 4月18日 逻辑推理 9 4月25日 线性回归 2 11 5月 9日 分类问题与对比学习 5 11 5月11日 前馈神经网络及应用 12 5月16日 卷积神经网络 13 5月23日 马尔可夫决策过程 7 14 5月30日 策略迭代与价值迭代 15 6月 6日 蒙特卡洛与时序差分 8	1 2月29日 绪论 绪论,课程内容 2 3月7日 无信息搜索 1 状态空间表示,宽度优先,深度优先 3 3月14日 有信息搜索(1) 1 算法复杂度分析,一致代价,贪婪最佳优先搜索 4 3月21日 有信息搜索(2) 1 A* 算法 5 3月28日 约束满足 2 约束满足问题,回溯法,局部搜索 6 4月 4日 清明节假期 4 四结原理 7 4月11日 对抗搜索 3 博弈树搜索,蒙特卡洛树搜索 8 4月18日 逻辑推理 4 四结原理 9 4月25日 线性回归 2 线性回归 10 5月 9日 分类问题与对比学习 5 Logistic 回归, Softmax 回归, 对比学习 11 5月11日 前馈神经网络及应用 2 前馈神经网络, 智能光电计算 12 5月16日 卷积神经网络 6 卷积神经网络, 循环神经网络 13 5月23日 马尔可夫决策过程 7 强化学习的数学基础 14 5月30日 策略迭代与价值迭代 3 状态转移概率未知时的预测与控制 15 6月 6日 蒙特卡洛与时序差分 8 状态转移概率未知时的预测与控制

逻 学

人工智能原理

Principles of Artificial Intelligence

乔晖 自动化系

马尔可夫决策过程

Markov Decision Process

马尔可夫过程

Markov Process

S	1	2	3	4	5	6	7
名字	回归	分类	编程	提交	微信	溜达	睡觉

▶ 考虑两个相邻时刻,定义**状态转移概率**

$$p_{ss'} = P(S_{t+1} = s' \mid S_t = s)$$

▶ 考虑所有状态, 定义**状态转移矩阵**

- ▶ 满足马尔可夫性的随机变量序列
 S₁, S₂, ... 称为一个马尔可夫过程,
 由二元组 (S, P) 描述
 - ▶ $S = \{s_1, ..., s_n\}$ 称为状态空间
 - ト $\mathbf{P} = (p_{ss'})_{n \times n}$ 称为状态转移矩阵 $p_{ss'} = P(S_{t+1} = s' \mid S_t = s)$

马尔可夫回报过程

Markov Reward Process

- ▶ 状态转移 $S_t \rightarrow S_{t+1}$ 产生回报 R_{t+1}
- ▶ 随机变量序列 S_1 , R_2 , S_2 , R_3 , ... 构成一个马尔可夫回报过程,

由四元组 (S, P, r, γ) 描述

- ▶ 状态空间: $S = \{s_1, ..., s_n\}$
- 》 状态转移矩阵: $\mathbf{P} = (p_{ss'})_{n \times n}$ $p_{ss'} = P(S_{t+1} = s' \mid S_t = s)$
- 》 状态期望回报: $\mathbf{r}=(r_1,\,...,\,r_n)$ $r_s=\mathrm{E}[R_{t+1}\mid S_t=s]=\sum_{r\in\mathbf{R}}rp(r\mid S_t=s)$
- ▶ **折现因子:** $\gamma \in [0,1]$

马尔可夫回报过程是对状态(节点)建模

马尔可夫决策过程

0.8 0.6 回归 微信 睡觉

马尔可夫决策过程是对行动(边)建模

走神/-1

Markov Decision Process

- ▶ 行动 A_t 导致状态转移 $S_t \rightarrow S_{t+1}$ 产生回报 R_{t+1}
- ▶ 随机变量序列 $S_1, A_1, R_2, S_2, A_2, R_3, ...$ 构成一个马尔可夫决策过程, 由五元组 (S, A, P, R, γ) 描述
 - ▶ 状态空间: $S = \{s_1, ..., s_n\}$

 - ▶ 行动期望回报: $\mathbf{R} = (r^a_s)_{n \times m}$ $r^a_s = \mathrm{E}[R_{t+1} \mid S_t = s, A_t = a]$
 - ▶ 折现因子: $\gamma \in [0,1]$

状态价值函数

State value function

状态价值函数

$$v_{\pi}(s) = \mathrm{E}[G_{t} \mid S_{t} = s]$$

▶ 行动价值函数

$$q_{\pi}(s, a) = \mathrm{E}[G_{t} \mid S_{t} = s, A_{t} = a]$$

状态价值是同时刻行动价值的期望

$$v_{_{\boldsymbol{\pi}}}(s) = \sum_{a \in \mathbf{A}} \boldsymbol{\pi}(a \mid s) q_{_{\boldsymbol{\pi}}}(s, a)$$

$$\begin{split} v_{\pi}(s) &= \mathrm{E}[G_{t} \mid S_{t} = s] &= \mathrm{E}_{\sim A_{t} \mid S_{t} = s}[\mathrm{E}_{\sim G_{t} \mid S_{t} = s, A_{t}}]] \\ &= \sum_{g} gp(g \mid S_{t} = s) &= \mathrm{E}_{\pi}[\mathrm{E}[G_{t} \mid S_{t} = s, A_{t}]] = \mathrm{E}_{\pi}[q_{\pi}(s, A)] \\ &= \sum_{g} g\sum_{a} p(g, A_{t} = a \mid S_{t} = s) \\ &= \sum_{g} g\sum_{a} p(A_{t} = a \mid S_{t} = s)p(g \mid S_{t} = s, A_{t} = a) \\ &= \sum_{a} p(A_{t} = a \mid S_{t} = s)\sum_{g} gp(g \mid S_{t} = s, A_{t} = a) \\ &= \sum_{a \in \mathbf{A}} \pi(a \mid s)q_{\pi}(s, a) \end{split}$$

行动价值函数

Action value function

状态价值函数

$$v_{\pi}(s) = \mathrm{E}[G_{t} \mid S_{t} = s]$$

状态价值是同时刻行动价值的期望

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) q_{\pi}(s, a)$$

$$\begin{split} q_{\pi}(s,a) &= \mathrm{E}[G_t \mid S_t = s, A_t = a] \\ &= \mathrm{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a] \\ &= \mathrm{E}[R_{t+1} \mid S_t = s, A_t = a] + \gamma \mathrm{E}[G_{t+1} \mid S_t = s, A_t = a] \\ &= \mathrm{E}[G_{t+1} \mid S_t = s, A_t = a] \\ &= \mathrm{E}_{\sim S_{t+1} \mid S_t = s, A_t = a} [\mathrm{E}_{\sim G_{t+1} \mid S_{t+1}} [G_{t+1} \mid S_{t+1}] \mid S_t = s, A_t = a] \\ &= \mathrm{E}[v(S_{t+1}) \mid S_t = s, A_t = a] \\ &= \sum_{s' \in \mathbf{S}} p_{ss'}^a v_{\pi}(s') \end{split}$$

行动价值函数

$$q_{\pi}(s, a) = E[G_{t} \mid S_{t} = s, A_{t} = a]$$

▶ 行动价值由后续状态价值的期望计算

$$q_{\pi}(s,a) = r_{\!\scriptscriptstyle s}^{\scriptscriptstyle a} + \gamma \! \sum_{s' \in \mathbf{S}} p_{ss'}^{\scriptscriptstyle a} v_{\pi}(s')$$

贝尔曼期望方程

Bellman expectation equation

▶ 状态价值函数

$$v_{\pi}(s) = \mathrm{E}[G_t \mid S_t = s]$$

▶ 状态价值是同时刻行动价值的期望

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) q_{\pi}(s, a)$$

▶ 行动价值函数

$$q_{\pi}(s, a) = \mathrm{E}[G_t \mid S_t = s, A_t = a]$$

▶ 行动价值由后续状态价值的期望计算

$$q_{\pi}(s,a) = r_{\!\scriptscriptstyle s}^{\scriptscriptstyle a} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{\scriptscriptstyle a} v_{\pi}(s')$$

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_{\pi}(s') \right)$$

贝尔曼期望方程

▶ 状态价值函数

$$v_{\pi}(s) = \mathrm{E}[G_{t} \mid S_{t} = s]$$

状态价值是同时刻行动价值的期望

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) q_{\pi}(s, a)$$

行动价值函数

$$q_{\pi}(s, a) = \mathrm{E}[G_{t} \mid S_{t} = s, A_{t} = a]$$

▶ 行动价值由后续状态价值的期望计算

$$q_{\pi}(s,a) = r_{s}^{a} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{a} v_{\pi}(s')$$

▶ 行动价值的贝尔曼期望方程

$$q_{\boldsymbol{\pi}}(s,a) = r_{\!\scriptscriptstyle s}^{\scriptscriptstyle a} + \gamma \sum_{s' \in \mathbf{S}} p_{\scriptscriptstyle ss'}^{\scriptscriptstyle a} \sum_{a' \in \mathbf{A}} \pi(a' \mid s') q_{\boldsymbol{\pi}}(s',a')$$

行动价值

状态价值函数

$$v_{\pi}(s) = \mathrm{E}[G_t \mid S_t = s]$$

状态价值是同时刻行动价值的期望

$$v_{_{\boldsymbol{\pi}}}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) q_{_{\boldsymbol{\pi}}}(s,a)$$

▶ 状态价值贝尔曼期望方程

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_{\pi}(s') \right)$$

▶ 行动价值函数

$$q_{\pi}(s, a) = \mathrm{E}[G_{t} \mid S_{t} = s, A_{t} = a]$$

▶ 行动价值由后续状态价值的期望计算

$$q_{\pi}(s,a) = r_{\!\scriptscriptstyle s}^{\scriptscriptstyle a} + \gamma \sum_{s' \in \mathbf{S}} p_{\scriptscriptstyle ss'}^{\scriptscriptstyle a} v_{\pi}(s')$$

▶ 行动价值贝尔曼期望方程

$$q_{\pi}(s,a) = r_{s}^{a} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{a} \sum_{a' \in \mathbf{A}} \pi(a' \mid s') q_{\pi}(s',a')$$

预测问题 — 如何评价已有策略,求状态价值 $v_{\pi}(s)$ 控制问题 — 如何找到最优策略,求最优策略 $\pi_*(a \mid s)$

控制问题

- ▶ 计算价值函数,评价给定策略
- 基于价值函数
 - ▶ 基于状态转移模型 (Model-based)
 - ▶ 线性方程
 - 动态规划
- $p_{ss'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$
- ▶ 不基于状态转移模型 (Model-free)
 - > 蒙特卡洛预测
 - ▶ 时序差分预测
- 近似方法
 - 线性回归
 - > 深度学习
- ▶ 基于策略模型

- ▶ 优化价值函数,获得最优策略
- 基于价值函数
 - ▶ 基于状态转移模型
 - **策略迭代**
 - ▶ 价值迭代
 - 不基于状态转移模型
 - > 蒙特卡洛控制
 - ▶ 时序差分控制: SARSA, Q-learning
 - 近似方法
 - > 线性回归
 - ▶ 深度学习: DQN
- ▶ 基于策略模型

策略评价

Policy Evaluation

掌握

求解贝尔曼期望方程

预测问题

状态价值函数

$$v_{\pi}(s) = \mathbb{E}[G_t \mid S_t = s]$$

状态价值是同时刻行动价值的期望

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) q_{\pi}(s, a)$$

▶ 状态价值贝尔曼期望方程

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_{\pi}(s') \right)$$

$$p_{ss'}^{\pi} = \sum_{a \in A} \pi(a \mid s) p_{ss'}^a$$

$$r_s^{\pi} = \sum_{s,t} \pi(a \mid s) r_s^a$$

▶ 行动价值函数

$$q_{\pi}(s, a) = \mathbb{E}[G_{t} \mid S_{t} = s, A_{t} = a]$$

> 行动价值由后续状态价值的期望计算

$$q_{\pi}(s,a) = r_{s}^{a} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{a} v_{\pi}(s')$$

▶ 行动价值贝尔曼期望方程

$$q_{\pi}(s,a) = r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a \sum_{a' \in \mathbf{A}} \pi(a' \mid s') q_{\pi}(s',a')$$

扫地机器人的期望累积回报

$$\mathbf{v}_{\pi} = (\mathbf{I} - \gamma \mathbf{P}^{\pi})^{-1} \mathbf{r}^{\pi}$$

▶ 状态空间

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

▶即时回报

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

$$\pi(a \mid s) = \frac{1}{4}$$
 for all actions

$$\gamma = 1.0$$

0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-20	-14	0

$$\gamma = 0.6$$

0.0	-2.0	-2.4	-2.5
-2.0	-2.3	-2.4	-2.4
-2.4	-2.4	-2.3	-2.0
-2.5	-2.4	-2.0	0.0

$$\gamma = 0.2$$

0.0	-1.2	-1.2	-1.2
-1.2	2-1.2	-1.2	-1.2
-1.2	2-1.2	-1.2	-1.2
-1.2	2-1.2	-1.2	0.0

$$\gamma = 0.8$$

0.0	-3.4	-4.3	-4.5
-3.4	-4.1	-4.4	-4.3
-4.3	-4.4	-4.1	-3.4
-4.5	-4.3	-3.4	0.0

$$\gamma = 0.4$$

0.0	-1.5	-1.6	-1.7
-1.5	-1.6	-1.7	-1.6
-1.6	-1.7	-1.6	-1.5
-1.7	-1.6	-1.5	0.0

$$\gamma = 0.0$$

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

▶ 状态转移矩阵

当有上百万个状态时, 求解线性 方程组并不现实

- 问题: 计算在给定策略 π 下各状态的价值
- 算法: 迭代应用状态价值贝尔曼期望方程
- ightharpoonup 计算: $\mathbf{v}^{(k+1)} = \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{v}^{(k)}$
- ullet 过程: 生成序列 $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_\pi$

$$v_{k+1}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_k(s') \right)$$

$$v_{k+1}(s) = \underbrace{\sum_{a \in \mathbf{A}} \pi(a \mid s) r_s^a}_{r_s^{\pi}} + \gamma \underbrace{\sum_{s' \in \mathbf{S}} \sum_{a \in \mathbf{A}} \pi(a \mid s) p_{ss'}^a}_{p_{ss'}^{\pi}} v_k(s')$$

$$v_{k+1}(s) = r_s^{\pi} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{\pi} v_k(s')$$

状态价值贝尔曼期望方程

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_{\pi}(s') \right)$$

策略评价的动态规划算法

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow r_s^{\pi} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{\pi} V(s')$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$

像宽度优先搜索

动态规划策略评价

$$\mathbf{v}^{(k+1)} = \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{v}^{(k)}$$

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0
	la _	_ 1	

0	-1.75	-2	-2		0	-2.44	-2.94	-3
-1.75	-2	-2	-2		-2.44	-2.88	-3	-2.94
-2	-2	-2	-1.75		-2.94	-3	-2.88	-2.44
-2	-2	-1.75	0		-3	-2.94	-2.44	0
k = 2					k =	= 3		
•								

对初值不敏感

$$\mathbf{v}^{(k+1)} = \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{v}^{(k)}$$

中间策略

k = 10

k = 24

最优策略

$$\mathbf{v}^{(k+1)} = \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{v}^{(k)}$$

0	-0.67	0.25	-0.93
0.39	1.53	-1.23	0.32
-1.50	-1.22	1.09	1.12
-1.10	1.06	-0.87	0

0	-1.00	-0.33	-0.72					
-1.00	-0.47	0.31	0.12					
-0.61	0.31	-0.88	-1.00					
-1.22	-1.87	-1.00	0					
k = 1								

-2

-3

-1

 $k = \infty$

预测问题

策略评价

- 计算价值函数,评价给定策略
- > 基于价值函数
 - ▶ 基于状态转移模型 (Model-based)
 - > 线性方程
 - ▶ 动态规划
 - ▶ 不基于状态转移模型 (Model-free)
 - 家特卡洛预测
 - ▶ 时序差分预测
 - **近似方法**
 - > 线性回归
 - 深度学习
- 基于策略模型

- 求解线性方程组和动态规划迭代改进是基于状态转移模型计算价值函数的方法
- 因为策略的评价是基于价值函数进行的 计算价值函数的值也就是求解预测问题
- 求解线性方程组适用于规模较小的问题 动态规划迭代则适用于规模较大的问题

- ▶ 我们一直学习的是如何求状态价值函数 行动价值函数的预测问题该如何解决?
- ▶ 求得状态价值后,直接计算即可

$$q_{\pi}(s,a) = r_{\!\scriptscriptstyle s}^{\scriptscriptstyle a} + \gamma \sum_{s' \in \mathbf{S}} p_{\scriptscriptstyle ss'}^{\scriptscriptstyle a} v_{\pi}(s')$$

策略迭代

Policy Iteration

掌握

最优策略

Optimal Policy

▶ 策略就是在特定状态时采取什么行动

$$\pi(a \mid s) = p(A_t = a \mid S_t = s)$$

▶ 策略的好坏用状态价值来评价(预测状态价值的原因)

$$\pi \geq \pi' : v_{\pi}(s) \geq v_{\pi'}(s), \forall s$$

▶最优策略

$$\pi_* \geq \pi' : v_{\pi_*}(s) \geq v_{\pi'}(s), \forall s, \forall \pi'$$

	0	-1	-2	-3
1 7 7 1	-1	-2	-3	-2
1 1	-2	-3	-2	-1
	-3	-2	-1	0

0	-1	-2	-4
-1	-2	-3	-2
-2	-3	-2	-1
-4	-2	-1	0

最优状态价值

Optimal state value

▶ 状态价值函数

$$v_{\pi}(s) = \mathrm{E}[G_{t} \mid S_{t} = s]$$

▶ 最优状态价值

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

▶ 在最优策略下状态价值取得最大值

$$\pi_* \geq \pi' : v_{\pi_*}(s) \geq v_{\pi'}(s), \forall s, \forall \pi'$$

$$v_{\pi_*}(s) = \max_{\pi} v_{\pi}(s)$$

$$v_*(s) = v_{\pi_*}(s)$$

▶ 最优状态价值即最优策略下的状态价值

0	-1	-2	-4
-1	-2	-3	-2
-2	-3	-2	-1
-4	-2	-1	0

最优行动价值

Optimal action value

▶ 行动价值函数

$$q_{\pi}(s, a) = E[G_t \mid S_t = s, A_t = a]$$

▶ 最优行动价值

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

▶ 行动价值由后续状态价值的期望计算

$$egin{aligned} q_{\pi}(s,a) &= r_{s}^{a} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{a} v_{\pi}(s') \ q_{\pi_{*}}(s,a) &= \max_{\pi} q_{\pi}(s,a) & \pi = \pi_{*} \ v_{\pi}(s) &= v_{\pi_{*}}(s) \ q_{*}(s,a) &= q_{\pi_{*}}(s,a) \end{aligned}$$

最优行动价值即最优策略下的行动价值

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

最优策略的性质

▶ 最优状态价值

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

状态价值是同时刻行动价值的期望

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) q_{\pi}(s, a)$$

▶ 在最优策略下

$$v_*(s) = \sum_{a \in \mathbf{A}} \pi_*(a \mid s) q_*(s, a)$$

▶ 求解优化问题

$$\max_{\pi_*} \quad \sum_{a \in \mathbf{A}} \pi_*(a \mid s) q_*(s, a)$$

s.t.
$$\sum_{a \in \mathbf{A}} \pi_*(a \mid s) = 1$$

$$\pi_*(a \mid s) \ge 0$$

▶ 最优行动价值

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

▶ 线性规划问题,解为确定性**贪心策略**

$$\pi_*(a \mid s) = \begin{cases} 1 & \text{if } a = \argmax_{a \in \mathbf{A}} q_*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

▶ 最优状态价值即同时刻最优行动价值

$$v_*(s) = \max_{a \in \mathbf{A}} q_*(s, a)$$

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

-2	-3	-4	-1	-2	-3	-4	-2	-3	-4	-3	-3	-4	-3
-3	-4	-4	-3	-4	-3	-3	-4	-3	-2	-2	-3	-2	-1
-3	-4	-3	-3	-4	-3	-2	-4	-3	-2	-1	-4	-3	-2
-1	-2	-3	-2	-2	-3	-4	-3	-3	-4	-3	-4	-4	-3
1	2	3	4	5	6	7	8	9	10	11	12	13	14

策略改进

Policy Improvement

▶ 最优状态价值是同时刻最优行动价值

$$v_*(s) = \max_{a \in \mathbf{A}} q_*(s, a)$$

- ▶ 但是最优状态价值、最优行动价值,以 及最优策略都是未知的
- ト 能做的是给定一个策略 π , 通过策略评价 计算其状态价值 $v_{\pi}(s)$ 和行动价值 $q_{\pi}(s, a)$

$$\pi'(a \mid s) = \begin{cases} 1 & \text{if } a = \underset{a \in \mathbf{A}}{\operatorname{arg\,max}} \, q_{\pi}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

ightharpoonup 如果对某一状态 s, 仿照最优化方程改进

一下策略, 而保持其他状态的策略不变

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) q_{\pi}(s, a)$$

$$q_{\pi}(s,a) = r_{\!\scriptscriptstyle s}^{\scriptscriptstyle a} + \gamma \sum_{s' \in \mathbf{S}} p_{\scriptscriptstyle ss'}^{\scriptscriptstyle a} v_{\pi}(s')$$

> 该状态的价值会发生什么变化?

$$\begin{array}{cccc} & = & \\ < & < \\ v_{\pi}(s) & \leq & v_{\pi'}(s) \\ > & > & \\ > & \end{array}$$

如何求最优策略?

策略改进试验

0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-20	-14	0

k = 200

-1	.5	-21	-23	-1	-15	-21	-23	-15	-19	-21	-21	-21	-21	-19
-2	21	-23	-23	-19	-21	-21	-21	-21	-19	-15	-15	-21	-15	-1
-1	.9	-21	-21	-21	-21	-19	-15	-23	-21	-15	-1	-23	-21	-15
-	1	-15	-21	-15	-15	-19	-21	-21	-21	-21	-19	-23	-23	-21
1	L	2	3	4	5	6	7	8	9	10	11	12	13	14

0	-1	-11.0	-14.6
-10.2	-10.9	-13.4	-14.2
-15.7	-15.1	-13.6	-10.6
-17.9	-16.1	-11.2	0

0	-13.4	-18.7	-19.7
-13.6	-17.4	-19.0	-18.7
-19.6	-19.5	-17.4	-13.4
-21.6	-19.6	-13.6	0

$$k = 187$$

$$k = 200$$

$$k = 200$$

0	-10.2	-15.7	-17.9
-1.00	-10.9	-15.1	-16.1
-11.0	-13.4	-13.6	-11.2
-14.6	-14.2	-10.6	0

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

策略改进能够 提升状态价值

$$k = 187$$

$$k = 4$$

策略改进提升状态价值

基于原来策略 π , 产生新策略 π'

$$\pi'(a \mid s) = \begin{cases} 1 & \text{if } a = \argmax_{a \in \mathbf{A}} q_{\pi}(s, a) & \pi(a \mid s) \\ 0 & \text{otherwise} \end{cases}$$

$$\pi'(s) = \argmax q_\pi(s,a)$$

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) q_{\pi}(s, a)$$

$$\leq \sum_{a \in \mathbf{A}} \pi(a \mid s) q_{\pi}(s, \pi'(s))$$

$$= q_{\pi}(s, \pi'(s)) \sum_{a \in \mathbf{A}} \pi(a \mid s)$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

▶ 随机性策略

$$\pi(a \mid s)$$

	0.5	
0.1		0.3
	0.1	

▶ 确定性策略

$$\pi(s) = a$$

策略改进定理

策略迭代思想

ightharpoonup 基于原策略 π , 产生新策略 π'

- 如果 $v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$
- $\qquad \qquad v_{\pi}(s) \leq v_{\pi'}(s)$

http://rl.qiwihui.com/zh_CN/latest/

交替进行策略评价和策略改进

那么状态价值会持续提升

$$v_{_{\! 1}}(s) \leq v_{_{\! 2}}(s) \leq \cdots \leq v_{_{\! t}}(s) \leq \cdots$$

策略迭代

▶ 改进到最后

$$v_{\boldsymbol{\pi}}(s) = q_{\boldsymbol{\pi}}(s, \boldsymbol{\pi}'(s)) = \max_{\boldsymbol{a} \in \mathbf{A}} q_{\boldsymbol{\pi}}(s, \boldsymbol{a})$$

▶ 满足最优策略的性质

$$v_*(s) = \max_{a \in \mathbf{A}} q_*(s, a)$$

此时,策略 π 为最优策略

▶ 交替进行策略评价和策略改进

▶ 那么状态价值会持续提升

$$v_1(s) \leq v_2(s) \leq \dots \leq v_t(s) \leq \dots$$

控制问题

Policy Iteration

交替进行策略评价和策略改进

策略评价 策略改进

▶ 直至收敛 (策略不再变化)

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s) \\ V(s) \leftarrow r_s^{\pi} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{\pi} V(s') \\ \Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

 $policy\text{-}stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} (r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_{\pi}(s'))$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

动态规划

贪心算法

策略迭代过程

0	-14	-20	-22						
-14	-18	-20	-20						
-20	-20	-18	-14						
-22	-20	-14	0						
k = 200									

2	-15	-21	-23	-1	-15	-21	-23	-15	-19	-21	-21	-21	-21	-19	4
)	-21	-23	-23	-19	-21	-21	-21	-21	-19	-15	-15	-21	-15	-1	
1	-19	-21	-21	-21	-21	-19	-15	-23	-21	-15	-1	-23	-21	-15	,
	-1	-15	-21	-15	-15	-19	-21	-21	-21	-21	-19	-23	-23	-21	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

-2	-3	-4	-1	-2	-3	-4	-2	-3	-4	-3	-3	-4	-3
-3	-4	-4	-3	-4	-3	-3	-4	-3	-2	-2	-3	-2	-1
-3	-4	-3	-3	-4	-3	-2	-4	-3	-2	-1	-4	-3	-2
-1	-2	-3	-2	-2	-3	-4	-3	-3	-4	-3	-4	-4	-3
1	2	3	4	5	6	7	8	9	10	11	12	13	14

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0
	k =	= 4	

-2	-3	-4	-1	-2	-3	-4	-2	-3	-4	-3	-3	-4	-3
-3	-4	-4	-3	-4	-3	-3	-4	-3	-2	-2	-3	-2	-1
-3	-4	-3	-3	-4	-3	-2	-4	-3	-2	-1	-4	-3	-2
-1	-2	-3	-2	-2	-3	-4	-3	-3	-4	-3	-4	-4	-3
1	2	3	4	5	6	7	8	9	10	11	12	13	14

策略迭代

控制问题

- 策略迭代是基于状态转移模型优化价值的方法,也就是获得最优策略、求解控制问题的方法
- 策略迭代是策略评价和策略改进两个步骤交替进行的过程
- 策略改进的原理是基于策略评价的结果 使用贪心算法获得更好的策略,即状态 价值在改进后会提升

- 优化价值函数,获得最优策略
- 基于价值函数
 - 基于状态转移模型
 - ▶ 策略迭代
 - ▶ 价值迭代
 - 不基于状态转移模型
 - ▶ 蒙特卡洛控制
 - ▶ 时序差分控制: SARSA, Q-learning
 - **近似方法**
 - > 线性回归
 - ▶ 深度学习: DQN
- 基于策略模型

价值迭代

Value Iteration

掌握

策略迭代

动态规划

贪心算法

交替进行策略评价和策略改进

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*$$

策略评价计算量很大

$$\gamma = 1.0$$

	0 -14 -20 -
++++	-14 -18 -20 -
++++	-20 -20 -18 -
+++	-22 -20 -14

$$k = 200$$

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

 $\Delta \leftarrow 0$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow r_s^{\pi} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{\pi} V(s')$$

 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

policy- $stable \leftarrow true$

For each $s \in S$:

 $old\text{-}action \leftarrow \pi(s)$

$$\pi(s) \leftarrow \arg\max_{a} r_{s}^{a} + \gamma \sum_{s' \in S} p_{ss'}^{a} v_{\pi}(s')$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

- ▶ 真的有必要迭代到收敛吗?
- ▶ 迭代多少次就停止合适呢?

每次策略评价后立即进行策略改进

0	-1	-1	-1						
-1	-1	-1	-1						
-1	-1	-1	-1						
-1	-1	-1	0						
k = 1									

-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1	2	3	4	5	6	7	8	9	10	11	12	13	14

)	-2	-2	-2	-1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
)	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-1
5	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-1	-2	-2	-2
	-1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
_	1	2	3	4	5	6	7	8	9	10	11	12	13	14

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

0	-2.44	-2.94	-3.00
-2.44	-2.88	-3.00	-2.94
-2.94	-3.00	-2.88	-2.44
-3.00	-2.94	-2.44	0
	k =	= 3	

)	-2.75	-3.00	-3.00	-1.00	-2.75	-3.00	-3.00	-2.75	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	
4	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-2.75	-2.75	-3.00	-2.75	-1.00	
4	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-2.75	-3.00	-3.00	-2.75	-1.00	-3.00	-3.00	-2.75	
	-1.00	-2.75	-3.00	-2.75	-2.75	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	4
•	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

每次策略评价后立即进行策略改进

$$\gamma = 1.0$$

0	-3.06	-3.84	-3.97
-3.06	-3.72	-3.91	-3.84
-3.84	-3.91	-3.72	-3.06
-3.97	-3.84	-3.06	0
	k =	= 4	

																=
7	-3.	.44	-3.94	-4.00	-1.00	-3.44	-3.94	-4.00	-3.44	-3.88	-4.00	-3.94	-3.94	-4.00	-3.88	,
4	-3.	.94	-4.00	-4.00	-3.88	-4.00	-3.94	-3.94	-4.00	-3.88	-3.44	-3.44	-3.94	-3.44	-1.00	
5	-3.	.88	-4.00	-3.94	-3.94	-4.00	-3.88	-3.44	-4.00	-3.94	-3.94	-1.00	-4.00	-3.94	-3.44	,
	-1.	.00	-3.44	-3.94	-3.44	-3.44	-3.88	-4.00	-3.94	-3.94	-4.00	-3.88	-4.00	-4.00	-3.94	•
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	

0	-6.14	-8.35	-8.97
-6.14	-7.74	-8.43	-8.35
-8.35	-8.43	-7.74	-6.14
-8.97	-8.35	-6.14	0
	1,	1.0	`

0	-6.14	-8.35	-8.97
-6.14	-7.74	-8.43	-8.35
-8.35	-8.43	-7.74	-6.14
-8.97	-8.35	-6.14	0
	<i>k</i> =	= 10)

-6.70	-8.70	-9.24	-1.00	-6.70	-8.70	-9.24	-6.70	-8.16	-8.78	-8.70	-8.70	-8.78	-8.16
-8.70	-9.24	-9.24	-8.16	-8.78	-8.70	-8.70	-8.78	-8.16	-6.70	-6.70	-8.70	-6.70	-1.00
-8.16	-8.78	-8.70	-8.70	-8.78	-8.16	-6.70	-9.24	-8.70	-6.70	-1.00	-9.24	-8.70	-6.70
-1.00	-6.70	-8.70	-6.70	-6.70	-8.16	-8.78	-8.70	-8.70	-8.78	-8.16	-9.24	-9.24	-8.70
1	2	3	4	5	6	7	8	9	10	11	12	13	14

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

0	-14	-20	-22			
-14	-18	-20	-20			
-20	-20	-18	-14			
-22	-20	-14	0			
k = 200						

-15	-21	-23	-1	-15	-21	-23	-15	-19	-21	-21	-21	-21	-19
-21	-23	-23	-19	-21	-21	-21	-21	-19	-15	-15	-21	-15	-1
-19	-21	-21	-21	-21	-19	-15	-23	-21	-15	-1	-23	-21	-15
-1	-15	-21	-15	-15	-19	-21	-21	-21	-21	-19	-23	-23	-21
1	2	3	4	5	6	7	8	9	10	11	12	13	14

策略迭代

交替进行策略评价和策略改进

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*$$

策略评价计算量很大

0	-3.06	-3.84	-3.97
-3.06	-3.72	-3.91	-3.84
-3.84	-3.91	-3.72	-3.06
-3.97	-3.84	-3.06	0

$$\gamma = 1.0$$

$$k=4$$

-3.44	-3.94	-4.00	-1.00	-3.44	-3.94	-4.00	-3.44	-3.88	-4.00	-3.94	-3.94	-4.00	-3.88	1
-3.94	-4.00	-4.00	-3.88	-4.00	-3.94	-3.94	-4.00	-3.88	-3.44	-3.44	-3.94	-3.44	-1.00	
-3.88	-4.00	-3.94	-3.94	-4.00	-3.88	-3.44	-4.00	-3.94	-3.94	-1.00	-4.00	-3.94	-3.44	,
-1.00	-3.44	-3.94	-3.44	-3.44	-3.88	-4.00	-3.94	-3.94	-4.00	-3.88	-4.00	-4.00	-3.94	•
1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

```
V(s) \in \mathbb{R} and \pi(s) \in \mathcal{A}(s) arbitrarily for all s \in \mathbb{S}
```

2. Policy Evaluation

```
Loop:
```

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

```
policy-stable \leftarrow true
```

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

似乎没有必要迭代到收敛

何不每次迭代都更新策略

每次策略评价后立刻改进策略

▶ 策略评价: 贝尔曼期望方程

▶ 策略改进: 贪心策略

$$v_{\pi}(s) \approx v_{k+1}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_k(s') \right) \quad \pi'(a \mid s) = \begin{cases} 1 & \text{if } a = \arg\max_{a \in \mathbf{A}} q_{\pi}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

$$q_{\boldsymbol{\pi}}(s,a) \approx q_{\boldsymbol{k}+1}(s,a) = r_{\boldsymbol{s}}^{\boldsymbol{a}} + \gamma \sum_{\boldsymbol{s}' \in \mathbf{S}} p_{\boldsymbol{s}\boldsymbol{s}'}^{\boldsymbol{a}} v_{\boldsymbol{k}+1}(\boldsymbol{s}')$$

$$\pi'(a \mid s) \approx \begin{cases} 1 & \text{if } a = \underset{a \in \mathbf{A}}{\operatorname{arg\,max}} \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_{k+1}(s') \right) \\ 0 & \text{otherwise} \end{cases}$$

将贪心策略带入贝尔曼期望方程

$$v_{\boldsymbol{\pi'}}(s) \approx v_{k+2}(s) = \max_{a \in \mathbf{A}} \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_{k+1}(s') \right) \approx \max_{a \in \mathbf{A}} \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_{\boldsymbol{\pi}}(s') \right)$$

▶ 不断迭代 $\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$

$$v_*(s) = \max_{a \in \mathbf{A}} \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_*(s') \right)$$

贝尔曼最优方程

Bellman optimality equations

状态价值函数

$$v_{\pi}(s) = \mathrm{E}[G_{t} \mid S_{t} = s]$$

▶ 最优状态价值是同时刻最优行动价值

$$v_*(s) = \max_{a \in \mathbf{A}} q_*(s, a)$$

状态价值贝尔曼最优方程

$$v_*(s) = \max_{a \in \mathbf{A}} \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_*(s') \right)$$

▶ 状态价值贝尔曼期望方程

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_{\pi}(s') \right) \qquad v_*(s') \leftarrow$$

行动价值函数

$$q_{\pi}(s, a) = \mathrm{E}[G_{t} \mid S_{t} = s, A_{t} = a]$$

▶ 行动价值由后续状态价值的期望计算

贝尔曼最优方程

状态价值函数

$$v_{\pi}(s) = \mathrm{E}[G_{t} \mid S_{t} = s]$$

▶ 最优状态价值是同时刻最优行动价值

▶ 行动价值函数

$$q_{\pi}(s, a) = \mathrm{E}[G_{t} \mid S_{t} = s, A_{t} = a]$$

▶ 行动价值由后续状态价值的期望计算

$$q_{\pi}(s,a) = r_{\hspace{-1pt}s}^{\hspace{-1pt}a} + \gamma \hspace{-1pt} \sum_{s' \in {f S}} p_{\hspace{-1pt}s\hspace{-1pt}s'}^{\hspace{-1pt}a} v_{\pi}(s')$$

▶ 行动价值贝尔曼最优方程

$$q_*(s,a) = r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a \max_{a' \in \mathbf{A}} q_*(s',a')$$

▶ 行动价值贝尔曼期望方程

$$q_{\pi}(s, a) = r_{s}^{a} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{a} \sum_{a' \in \mathbf{A}} \pi(a' \mid s') q_{\pi}(s', a')$$

贝尔曼最优方程

Bellman Optimality Equations

状态价值函数

$$v_{\pi}(s) = \mathrm{E}[G_{t} \mid S_{t} = s]$$

最优状态价值是同时刻最优行动价值

$$v_*(s) = \max_{a \in \mathbf{A}} q_*(s, a)$$

状态价值贝尔曼最优方程

$$v_*(s) = \max_{a \in \mathbf{A}} \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_*(s') \right)$$

▶ 状态价值贝尔曼期望方程

$$v_{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(a \mid s) \left(r_{s}^{a} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{a} v_{\pi}(s') \right) \qquad q_{\pi}(s, a) = r_{s}^{a} + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^{a} \sum_{a' \in \mathbf{A}} \pi(a' \mid s') q_{\pi}(s', a')$$

▶ 行动价值函数

$$q_{\pi}(s, a) = \mathrm{E}[G_{t} \mid S_{t} = s, A_{t} = a]$$

行动价值由后续状态价值的期望计算

$$q_{\pi}(s,a) = r_{\!\scriptscriptstyle s}^{\scriptscriptstyle a} + \gamma \! \sum_{s' \in \mathbf{S}} p_{\scriptscriptstyle ss'}^{\scriptscriptstyle a} v_{\pi}(s')$$

▶ 行动价值贝尔曼最优方程

$$q_*(s, a) = r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a \max_{a' \in \mathbf{A}} q_*(s', a')$$

▶ 行动价值贝尔曼期望方程

$$q_{\boldsymbol{\pi}}(s, a) = r_{\boldsymbol{s}}^{\boldsymbol{a}} + \gamma \sum_{\boldsymbol{s}' \in \mathbf{S}} p_{\boldsymbol{s} \boldsymbol{s}'}^{\boldsymbol{a}} \sum_{\boldsymbol{a}' \in \mathbf{A}} \pi(\boldsymbol{a}' \mid \boldsymbol{s}') q_{\boldsymbol{\pi}}(\boldsymbol{s}', \boldsymbol{a}')$$

- \triangleright 问题:搜索最优策略 π
- ▶ 算法: 迭代应用贝尔曼最优方程
- ▶ 结果: 生成序列 $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_*$

$$v_{k+1}(s) = \max_{a \in \mathbf{A}} \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_k(s') \right)$$

▶ 策略:

$$\pi_*(s) = rg \max_{a \in \mathbf{A}} \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_*(s') \right)$$

状态价值贝尔曼最优方程

$$v_*(s) = \max_{a \in \mathbf{A}} \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_*(s') \right)$$

价值迭代

Value Iteration

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\begin{array}{c|c} & \Delta \leftarrow 0 \\ & \text{Loop for each } s \in \mathbb{S} \text{:} \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_{a \in \mathbb{A}} (r_s^a + \gamma \sum_{s' \in \mathbb{S}} p_{ss'}^a v_k(s')) \\ & \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ & \text{until } \Delta < \theta \end{array}$$

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) \leftarrow \arg\max_{a \in \mathbf{A}} (r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a V(s'))$

▶ 价值迭代
$$v_{k+1}(s) = \max_{a \in \mathbf{A}} \left(r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_k(s') \right)$$

▶ 策略提取
$$\pi_*(s) = \operatorname*{arg\,max}_{a \in \mathbf{A}} \left[r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_*(s') \right]$$

算完所有状态后一次更新

$$egin{aligned} v_{k+1}^{}(s) &= \max_{a \in \mathbf{A}} \left[r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a v_k^{}(s')
ight] \end{aligned}$$

- ▶ 保存两份状态价值
- 计算量大收敛较慢

> 算一个更新一个

$$egin{aligned} oldsymbol{v}(oldsymbol{s}) &= \max_{a \in \mathbf{A}} \left[r_s^a + \gamma \sum_{s' \in \mathbf{S}} p_{ss'}^a oldsymbol{v}(oldsymbol{s'})
ight] \end{aligned}$$

- 只有一份状态价值
- 计算量小收敛较快
- ▶ 更新的顺序没关系

有点像梯度下降与随机梯度下降之间的关系

同步价值迭代示例

$$\gamma = 1.0$$

$$k = 0$$

k = 3

-2	-1	0	
<i>k</i> =	= 2		•

异步价值迭代示例

R-			
	—		
		1	
			R

$$\gamma = 1.0$$

$$k = 0$$

-2

$$k = 2$$

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	- 1
-3	-2	-1	0
	7	4	

控制问题

- 价值迭代是基于状态转移模型优化价值 的方法,也就是获得最优策略、求解控 制问题的方法
- 价值迭代的原理是基于卡尔曼最优方程 和动态规划算法获得最优价值,进而提 取出最优策略
- 价值迭代包括同步迭代和异步迭代两种
- 价值迭代与策略迭代相比, 迭代次数少, 收敛速度快

- 优化价值函数,获得最优策略
- > 基于价值函数
 - > 基于状态转移模型
 - 策略迭代
 - ▶ 价值迭代
 - 不基于状态转移模型
 - 蒙特卡洛控制
 - ▶ 时序差分控制: SARSA, Q-learning
 - **近似方法**
 - > 线性回归
 - ▶ 深度学习: DQN
- ▶ 基于策略模型

Thank you very much!