

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICS 0625/23

Paper 2 Core October/November 2012

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall = $10 \,\text{m/s}^2$).

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of 19 printed pages and 1 blank page.

1 Two boys, X and Y, decide to measure the speed of some of the vehicles travelling along a road. The two boys stand 405 m apart beside the road, as shown in Fig. 1.1.

For Examiner's Use

Fig. 1.1 (not to scale)

Boy X has a stopwatch which he sets to zero. As a vehicle passes boy Y, boy Y drops his hand as a signal to boy X to start his stopwatch. Boy X then stops the stopwatch as the vehicle goes past him.

The appearance of the stopwatch is then as shown in Fig. 1.2.

Fig. 1.2

(a) How long did it take for the vehicle to travel from Y to X?

(b) Calculate the average speed of the vehicle as it travels from Y to X.

average speed =[4]

For
Examiner's Use

	completely fills the container
shape {	fills the container from the bottom
	fixed shape
snape	

Solids, liquids and gases have different properties. The list below gives some of them.

2

molecules $\begin{cases} \text{move around, close together} \\ \text{move around, far apart} \\ \text{vibrate about a fixed position} \end{cases}$

Use descriptions from the list to complete the table. Any description may be used more than once if appropriate. Two spaces have been filled in to help you.

	shape	molecules	
(a) solid			[2]
(b) liquid		move around, close together	[1]
(c) gas	completely fills the container		[1]

[Total: 4]

3	Here is a list of energy resources available to the world. Some of these are renewable and
	some are non-renewable.

In the first blank column, put a tick by any **two** resources that are renewable.

In the second blank column, put a tick by any **two** resources that are non-renewable.

	renewable	non-renewable
coal		
hydroelectricity		
nuclear energy		
oil		
solar energy		
tidal energy		
wind energy		

[4]

[Total: 4]

4 An aluminium rod is cut into a longer section and a shorter section, as shown in Fig. 4.1.

Fig. 4.1

(a) The shorter section of the rod is placed into a measuring cylinder containing water.

Fig. 4.2 shows the appearance of the measuring cylinder before and after this is done.

Fig. 4.2 (not full size)

(i) Calculate the volume of the shorter section of aluminium rod.

volume = cm³ [3]

	(ii)	The mass of this shorter section is measured as 21.2 g.	For
		1. Name a laboratory instrument that might have been used to measure this mass.	Examiner's Use
		[1]	
		2. Calculate the density of aluminium.	
		density =[4]	
(b)	(i)	Name an instrument that could be used to measure the length of the longer section of aluminium rod.	
		[1]	
	(ii)	Suggest a method, different from that in Fig. 4.2, that could be used to determine the volume of this longer section.	
		[2]	
		[Total: 11]	

5 (a) In Fig. 5.1, A and B are two parallel plane mirrors. A ray of light strikes mirror A at an angle of incidence of 45°. The ray then reflects, to strike mirror B.

For Examiner's Use

Fig. 5.1

(i) State the name given to the angle *x* shown on Fig. 5.1.

.....[1]

(ii) State the value of

1. angle *x*,

2. angle *y*.

[2]

(iii) On Fig. 5.1, use your ruler to draw the path of the ray after it leaves the surface of B. [1]

(b) The mirror B is now rotated so that it reflects the ray of light back along its original path.

For Examiner's Use

On Fig. 5.2, draw mirror B in the correct position to do this.

[1]

Fig. 5.2

[Total: 5]

6 Some water in a glass beaker is heated from below, as shown in Fig. 6.1.

			 heat
			Fig. 6.1
(a)	Nar	me the process by which the	ermal energy is transferred
	(i)	through the glass,	
	(ii)	throughout the water	[2]
(b)	the		the temperature of the water begins to rise. Although constant, eventually the temperature becomes steady at
	Sug	ggest why this happens.	
			[1]
(c)	aga	-	ncreased. The temperature of the water begins to rise steady at a higher temperature. This time many bubbles
	(i)	State what is now happeni	ng to the water.
			[1]
	(ii)	What gas do the bubbles of	ontain? Tick one box.
		air	
		hydrogen	
		oxygen	
		steam	[1]
			[Total: 5]

Describe how the echo of a sound may be demonstrated. Include a diagram that shows approximate sizes and distances. diagram description of method	a) Sta	ate what is meant by the echo of a sound.
Describe how the echo of a sound may be demonstrated. Include a diagram that shows approximate sizes and distances. diagram description of method		
Describe how the echo of a sound may be demonstrated. Include a diagram that shows approximate sizes and distances. diagram description of method		
description of method		[2]
description of method		
(i) Which two measurements should be made? 1	dia	agram
(i) Which two measurements should be made? 1		
(i) Which two measurements should be made? 1		
(i) Which two measurements should be made? 1		
(i) Which two measurements should be made? 1		
(i) Which two measurements should be made? 1		
(i) Which two measurements should be made? 1		
The demonstration in (b) is used to find the speed of sound in air. (i) Which two measurements should be made? 1	de	scription of method
The demonstration in (b) is used to find the speed of sound in air. (i) Which two measurements should be made? 1		
The demonstration in (b) is used to find the speed of sound in air. (i) Which two measurements should be made? 1		
The demonstration in (b) is used to find the speed of sound in air. (i) Which two measurements should be made? 1		
The demonstration in (b) is used to find the speed of sound in air. (i) Which two measurements should be made? 1		
The demonstration in (b) is used to find the speed of sound in air. (i) Which two measurements should be made? 1		[3]
(i) Which two measurements should be made? 1	 •\ Th	
1		
2	(1)	
(ii) State how you would calculate the speed of sound from these measurements.		
		2
	(ii)	[2]
	(ii)	[2]
[2]	(ii)	[2] State how you would calculate the speed of sound from these measurements.
	(ii)	State how you would calculate the speed of sound from these measurements.

8 Fig. 8.1 represents the circuit that operates two of the lamps on a car.

Fig. 8.1

(a) In the space below, draw the circuit diagram for this circuit, using conventional symbols.

[3]

(b) The car battery has an e.m.f. of 12V and, when the lamps are switched on, there is a current of 1.6 A in each lamp.

Calculate the resistance of one of the lamps.

resistance =[4]

(c)	When the switch is turned on, both lamps should light up. On one occasion when the driver operates the switch, lamp L ₂ fails to light up.			
	Suggest a reason for this.			
		[1]		
(d)	An a	amateur workman connects a length of wire across lamp L ₂ and shorts it out.		
	When the switch is closed for the first time after this, what happens, if anything, to			
	(i)	the fuse,		
	(ii)	lamp L ₁ ,		
	(iii)	$\operatorname{lamp} \operatorname{L}_{2} ? \hspace{1cm} [3]$		
		[Total: 11]		

9	(a)	Magnets A and B, sho	own in Fig. 9.1, attract each	other.	
		S	net A	magnet B	
			Fig. 9.1		
		The S pole of magne	t A has been marked.		
		On Fig. 9.1, mark the	polarities of the other poles	s, using the letters N or S.	[1]
	(b)		a steel rod each have coil oils are attached to circuits,	s around them. Both rods a as shown in Fig. 9.2.	re initially
			soft iron	steel	
		(i) Use the following the steel rod sho		e table referring to the soft-iro	n rod and
		magnetised	loses its magnetism	keeps its magnetism	
			switch closed	switch open	
		soft iron			
		steel			
					[2]
			oly to the force between the	rods when the switches are	closed?
		Tick one box.			
		no force			
		attractive for			
		repulsive for	rce		[1]

(iii)	Which of the two arrangements in Fig. 9.2 would be used as the electromagnet on the crane in a scrap-metal yard?	For Examiner's Use
	[1]	
(iv)	State one advantage that an electromagnet could have in comparison with a similar-sized permanent magnet.	
	[1]	
	[Total: 6]	

(a)	Suggest how a plastic rod may be given an electrostatic charge.				
		[2]			
(b)	A charged sphere is suspended on an insulating thread.				
	When a plastic rod with a positive charge is held near the suspended charged sphere, the sphere moves to the position shown in Fig. 10.1.				
	plastic rod insulating thread charged sphere				
	Fig. 10.1				
	(i) State the sign of the charge on the sphere.				
	(ii) Give the reason for your answer to (b)(i).				
		[2]			

(d)	The positively-charged plastic rod is removed and replaced by a plastic rod with a negative charge.	For Examiner's Use
	Describe the position that the suspended sphere now takes.	
	[1]	
	[Total: 6]	

	18					
11	(a)	The charges on the particles in an atom may be represented by				
			0 or +1 or -1.			
		The masses of the particles in an atom may be represented by				
		0 or <i>m</i> or 2000 <i>m</i> .				
		Using these choices, complete the table below.				
		particle	charge	mass		
		electron	-1	m		
		neutron				
		proton				
	(b) How many of each of these particles are there in a neutral atom of $^{238}_{92}$ U?					
	number of electrons =					
	number of neutrons =					
		number of protons =[3]				
				[Total: 7]		

12 Fig. 12.1 shows the graph of the count rate from a radioactive source over a period of time. The readings have already had the background count rate subtracted.

For Examiner's Use

Fig. 12.1

(a) From Fig. 12.1, find the time taken for the count rate to decrease from 1000 counts/s to 125 counts/s.

(b) How many half-lives of the radioactive material were there during the time interval in **(a)**?

(c) From your answers to (a) and (b), calculate the half-life of the material.

(d) On Fig. 12.1, sketch the curve that might have been plotted if the background count rate had **not** been subtracted. [1]

[Total: 5]

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.