

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Processamento e Recuperação de Informação Efficient Similarity Search

Departamento de Engenharia Informática Instituto Superior Técnico

1º Semestre 2018/2019

Outline

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Finding Similar Items
- Shingles
- Minhashing
- 4 Locality-sensitive hashing

Bibliography

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing Jure Leskovec, Anand Rajaraman, and Jeff Ullman, Mining of Massive Datasets, Chapter $\bf 3$

High Dimensional Data

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Many real-world problems

- Web Search and Text Mining
 - Billions of documents, millions of terms
- Product Recommendations
 - Millions of customers, millions of products
- Scene Completion, other graphics problems
 - Image features
- Online Advertising, Behavioral Analysis
 - Customer actions (e.g., websites visited, searches, ...)

A Common Metaphor

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Locality-

Localitysensitive hashing Many problems can be expressed as finding similar sets.

Find near-neighbors in high-dimensional space.

Examples:

- Pages with similar words
 - For duplicate detection, classification by topic
- Customers who purchased similar products
 - NetFlix users with similar tastes in movies
- Products with similar customer sets
- Images with similar features
- Users who visited the similar websites

Distance Measures

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing We formally define near neighbors as points that are a small distance apart.

For each use case, we need to define what distance means.

Two major classes of distance measures:

- A Euclidean distance is based on the locations of points in such a space
- A Non-Euclidean distance is based on properties of points, but not their location in a space
 - Cosine similarity, Jaccard similarity coefficient, ...

Jaccard Similarity

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing The Jaccard Similarity of two sets is the size of their intersection over the size of their union.

$$Sim(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

The Jaccard Distance between sets is 1 minus their Jaccard similarity.

$$d(C_1, C_2) = 1 - \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

Outline

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Finding Similar Items
- 2 Shingles
- Minhashing
- 4 Locality-sensitive hashing

Finding Similar Documents

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Goal:

Given a large number (N in the millions or billions) of text documents, find pairs that are near duplicates

Applications:

- Mirror websites, or approximate mirrors
 - Don't want to show both in a search
- Similar news articles at many news sites
 - Cluster articles by same story

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in memory

Three Essencial Steps

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Shingling: Convert documents, emails, etc., to sets;
- Minhashing: Convert large sets to short signatures, while preserving similarity;
 - Depends on the distance metric;
- Occality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents.

The Big Picture

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Outline

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing 1 Finding Similar Items

2 Shingles

Minhashing

Documents as High Dimensional Data

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Step 1:

Shingling: Convert documents, emails, etc., to sets

- Simple approaches...
 - Document = set of words appearing in document
 - Document = set of important words
- ...don't work well for this application!
 - Need to account for ordering of words
- A different way: Shingles

Shingles

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the document

- Tokens can be characters, words or something else, depending on application
- $\bullet \ \, \mathsf{Assume tokens} = \mathsf{characters} \ \mathsf{for next \ examples} \\$

Example: k = 2; $D_1 = abcab$

Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

Option: Shingles as a bag (i.e., multi-set), counting ab twice

• Represent a doc by the set of hash values of its k-shingles

Compressing Shingles

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

- To compress long shingles, we can hash them into a convenient/efficient representation (e.g. 4 bytes)
- Represent a doc by the set of hash values of its k-shingles
- Idea: Two docs could (rarely) appear to have shingles in common, when in fact only the hash-values were shared

Example:
$$k = 2$$
; $D_1 = abcab$

Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

Hash the shingles: $h(D_1) = \{1, 5, 7\}$

Similarity Metric for Shingles

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Document $D_1 = \text{set of } k\text{-shingles } C_1 = S(D_1)$
- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$Sim(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

Working Assumption

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Careful: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - k = 10 is better for long documents

Motivation for Minhash/LSH

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing ullet Suppose we need to find near-duplicate documents among a large collection with N=1 million documents

- Naively, we'd have to compute pairwaise Jaccard similarites for every pair of documents
 - i.e, $\frac{N\times(N-1)}{2}\approx 5\times 10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days to compute all pairwaise Jaccard similarites
- For N = 10 million, it takes more than a year...

Outline

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Finding Similar Items
- 2 Shingles
- Minhashing
- 4 Locality-sensitive hashing

The Big Picture

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Encoding Sets as Bit Vectors

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing Many similarity problems can be formalized as finding subsets hat have significant intersection

- Encode sets using 0/1 (bit, Boolean) vectors
- One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR

Example: $C_1 = 10111$; $C_2 = 10011$

- Size of intersection = 3;
- Size of union = 4
- Jaccard similarity (not distance) = 3/4
- $d(C_1, C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing Rows = elements of the universal set

- Columns = sets
- 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the sets of their rows with 1
- Typical matrix is sparse

documents

Jaccard of Columns

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing Each document is a column:

Example: C1 = 1100011; C2 = 0110010

- Size of intersection = 2;
- size of union = 5,
- Jaccard similarity = 2/5
- $d(C_1, C_2) = 1 (Jaccard similarity) = 3/5$

We might not really represent the data by a Boolean matrix

 Sparse matrices can be represented by the list of places with non-zero values

Se
쑭
,≅'
sh
٠.

1	0	1	0
1	1	0	1
o	1	o	1
O	О	О	1
0	o	o	1
1	1	1	0
1	0	1	0

documents

Finding Similar Columns

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

So far:

- Documents represented as sets of shingles
- Represent sets as boolean vectors in a matrix

Next Goal: Find similar columns

- Signatures of columns: small summaries of columns
- Examine pairs of signatures to find similar columns
 - Essential that similarities of signatures and columns are related
- Optional: check that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: job for LSH
- These methods can produce false negatives, and even false positives (if the optional check is not made)

Signatures of Columns

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Key idea:

Hash each column C to a small signature h(C), such that:

- h(C) is small enough that the signature(s) fit(s) in RAM
- ② $sim(C_1, C_2)$ is the same as the similarity of signatures $h(C_1)$ and $h(C_2)$

Goal:

Find a hash function h() such that:

- if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Hash documents into buckets, and expect that most pairs of near duplicate documents hash into the same bucket

Min-Hashing (1)

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Goal:

Find a hash function h() such that:

- if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

- Not all similarity metrics have a suitable hash function
- There is a suitable hash function for Jaccard similarity: Min-hashing

Min-Hashing (2)

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing \bullet Imagine the rows of the boolean matrix permuted under random permutation π

• Define a hash function $h_{\pi}(C)$ = the number of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(C) = \min_{\pi}(C)$$

- Use several (e.g., 100) independent hash functions (i.e., permutations) to create a signature of a column
- Implementation trick
 - Ordering under hash function gives a random row permutation
 - \bullet For each column ${\cal C}$ and hash-function π keep a ${\it slot}$ for the min-hash value

Min-Hashing (3)

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Surprising Property

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing Under a random permutation π , $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

Sketch of proof:

- Let X be a set of shingles, and let $x \in X$
- Then: $Pr[\pi(y) = \min(\pi(X))] = \frac{1}{|X|}$
 - It is equally likely that any $y \in X$ is mapped to the min element
- Let x be s.t. $\pi(x) = \min(\pi(C_1 \cup C_2))$
 - Then either $\pi(x) = \min(\pi(C_1))$ if $x \in C_1$, or $\pi(x) = \min(\pi(C_2))$ if $x \in C_2$
 - So the probability that both are true is the probability $x \in C_1 \cap C_2$
- $Pr[\min(\pi(C_1)) = \min(\pi(C_2))] = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} = sim(C_1, C_2)$

Similarity for Signatures

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- We know $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures

Example

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Permutation π Input matrix (Shingles x Documents)

			_				
2	4	3		1	o	1	0
3	2	4		1	o	o	1
7	1	7		o	1	o	1
6	3	2		o	1	o	1
1	6	6		o	1	o	1
5	7	1		1	o	1	0
4	5	5		1	0	1	0

Signature matrix M

2	3	7	2
2	4	1	4
7	3	7	3

Similarities:

		2-4		3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.33	0.67	0	0

Minhash Signatures

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Pick 100 random permutations of the rows
- Think of sig(C) as a column vector
- Let sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- Note: The sketch (signature) of document C is small ~ 100 bytes!
- We achieved the goal of compressing long bit vectors into short signatures

Outline

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Finding Similar Items
- 2 Shingles
- Minhashing
- 4 Locality-sensitive hashing

The Big Picture

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

LSH: General Intuition

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Goal:

Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s = 0.8)

Locality-Sensitive Hashing (LSH)

- Use a function f(x, y) that tells whether x and y is a candidate pair, i.e. a pair of elements whose similarity must be evaluated
- For minhash matrices:
 - ullet Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

Candidates from Minhash

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

- Pick a similarity threshold 0 < s < 1
- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:

$$M(i,x) = M(i,y)$$
 for at least fraction s values of i

• We expect documents x and y to have the same similarity as their signatures

LSH for Minhash Signatures

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition M into Bands (1)

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for 1 band or more
- Tune b and r to catch most similar pairs, but few non-similar pairs

Partition M into Bands (2)

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Hashing Bands

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Simplifying Assumption

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that same bucket means identical in that band
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands (1)

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Assume the following case:

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose 20 bands of 5 integers/band

Goal: Find pairs of documents that are at least s=80% similar

Example of Bands (2)

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Assume: C_1 , C_2 are 80% similar

- Since s=80% we want C_1 , C_2 to hash to at least one common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are not similar in all of the 20 bands: $(1-0.328)^{20}=0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives
 - We would find 99.965% pairs of truly similar documents

Example of Bands (3)

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Assume: C_1 , C_2 are 30% similar

- Since s=30% we want C_1 , C_2 to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: $1 (1 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 30% end up becoming candidate pairs – false positives

LSH Involves a Tradeoff

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing Pick parameters to balance false positives/negatives:

- number of minhashes (rows of M)
- number of bands b, and
- number of rows r per band

Example: if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH - What we want

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Similarity *s* of two sets

Analysis of LSH - One band with one row

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Similarity s of two sets

Analysis of LSH - b bands with b rows/band (1)

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing Columns C_1 and C_2 have similarity s

Pick any band (r rows)

- Probability that all rows in band equal $= s^r$
- Probability that some row in band unequal $= 1 s^r$
- Probability that no band identical = $(1 s^r)^b$
- ullet Probability that at least 1 band identical $=1-(1-s^r)^b$

Analysis of LSH - b bands With r rows/band (2)

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

False Positives vs. False Negatives

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Blue area: False Negative rate Green area: False Positive rate

LSH Summary

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

The Big Picture

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Processamento e Recuperação de Informação

Finding Similar Items

Shingles

Minhashing

Localitysensitive hashing

Questions?