Devoir surveillé n°4

samedi 18 janvier 2020 Durée: 4 heures

♦ Le candidat peut admettre le résultat d'une question et l'utiliser dans la suite à condition de l'écrire clairement sur sa copie.

♦ Si le candidat repère ce qu'il croit être une erreur d'énoncé, il l'indique sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Exercice 1

On considère l'équation différentielle $(E): (1-x^2)y'' - xy' + y = x$.

- 1. (a) Résoudre l'équation $\operatorname{ch}(x) = 4$, pour $x \in \mathbb{R}$.
 - (b) Montrer que che st une application bijective de \mathbb{R}^+ sur un intervalle J qu'on déterminera. Notons dans la suite $g: J \to \mathbb{R}^+$ l'application réciproque de ch : $\mathbb{R}^+ \to J$.
 - (c) Montrer que g est dérivable et calculer la dérivée de g.
- 2. Résoudre l'équation (E) sur]-1,1[en effectuant le changement de variable $t=\arcsin(x)$.
- 3. Résoudre l'équation (E) sur $]1,+\infty[$ en effectuant le changement de variable t=g(x). On pourra remarquer que $x \mapsto \frac{-1}{2}x \operatorname{sh}(x)$ est solution de (E).

Exercice 2

On définit pour tout entier naturel $n \in \mathbb{N}^*$ l'application

$$f_n: x \mapsto nx^{n+1} - (n+1)x^n.$$

- 1. Étudier la fonction f_n sur \mathbb{R}_+^* , pour tout entier naturel $n \in \mathbb{N}^*$.
- 2. Montrer que $\forall n \in \mathbb{N}^*$, $\exists ! x_n \in \mathbb{R}^*_+$, $nx_n^{n+1} (n+1)x_n^n = 1$. 3. Montrer que $\forall n \in \mathbb{N}^*$, $1 + \frac{1}{n} \le x_n \le 1 + \frac{2}{n}$. En déduire que (x_n) converge.
- 4. Soit $\beta \in \mathbb{R}$. Montrer que la suite de terme général $f_n\left(1+\frac{\beta}{n}\right)$ converge lorque n tend vers l'infini et préciser la
- 5. Montrer que l'équation $(x-1)e^x=1$ admet une unique solution qu'on notera $\alpha \in]1,2[$. Attention ici, on ne cherchera pas à calculer α .
- 6. Soit $0 < \epsilon < \alpha 1$.
 - (a) Déterminer les limites $\lim_{n \to +\infty} f_n \left(1 + \frac{\alpha \epsilon}{n}\right)$ et $\lim_{n \to +\infty} f_n \left(1 + \frac{\alpha + \epsilon}{n}\right)$.
 - (b) Montrer que

$$\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}^*, (n \ge n_0) \implies 1 + \frac{\alpha - \epsilon}{n} \le x_n \le 1 + \frac{\alpha + \epsilon}{n}.$$

7. Déterminer la limite $\lim_{n \to +\infty} n(x_n - 1)$.

Exercice 3

On définit f, g et h par les expressions

$$f(x) = \frac{1}{2}\arctan\left(\sinh\left(x\right)\right), g(x) = \arctan\left(\frac{\sinh\left(x\right)}{1+\cosh\left(x\right)}\right) \text{ et } h(x) = \frac{\sinh\left(x\right)}{1+\cosh\left(x\right)}.$$

- 1. Démontrer la relation fondamentale de la trigonométrie hyperbolique (il s'aqit d'une relation entre ch² et sh²).
- 2. Étudier la fonciton h.
- 3. En déduire le tableau de variations de q sans dériver q.
- 4. Montrer que f = g.
- 5. (a) Calculer les valeurs de ch $\left(\frac{\ln(3)}{2}\right)$ et sh $\left(\frac{\ln(3)}{2}\right)$.
 - (b) À l'aide de l'égalité f = g, calculer $\tan\left(\frac{\pi}{12}\right)$.

Problème 1

Partie I - Intégrales de Wallis.

On définit pour tout entier naturel $n \in \mathbb{N}$ le nombre réel

$$I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt.$$

- 1. Déterminer les valeurs I_0 , I_1 et I_2 .
- 2. Montrer que pour tout entier naturel $n \in \mathbb{N}$,

$$I_{n+2} = \frac{n+1}{n+2}I_n.$$

- 3. Montrer que $\forall n \in \mathbb{N}, I_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \times \frac{\pi}{2}$. 4. Déterminer une expression de I_{2n+1} , pour tout entier naturel $n \in \mathbb{N}$.
- 5. Montrer que $\forall n \in \mathbb{N}, (n+1)I_nI_{n+1} = \frac{\pi}{2}$. 6. Montrer que (I_n) est décroissante et strictement positive.
- 7. Déterminer la limite de la suite $\left(\frac{I_{n+1}}{I_n}\right)_{n\in\mathbb{N}}$.
- 8. En déduire que

$$\lim_{n \to +\infty} \sqrt{\frac{2n}{\pi}} I_n = 1.$$

Partie II - Calcul de l'intégrale de Gauss

Dans cette partie, on définit f par l'expression $f(x) = \int_0^x e^{-t^2} dt$, pour tout nombre réel x.

- 1. Montrer que f est croissante.
- 2. Montrer que $\forall t \geq 1, \ e^{-t^2} \leq e^{-t}$.
- 3. Montrer que f admet une limite finie en $+\infty$.
- 4. Pour tout entier naturel n, on définit $J_n = \int_0^{\sqrt{n}} \left(1 \frac{t^2}{n}\right)^n dt$. Montrer que $\forall n \in \mathbb{N}, J_n = \sqrt{n}I_{2n+1}$.
- 5. Montrer que pour tout $n \ge 1$, pour tout $t \in [0, \sqrt{n}]$,

$$\left(1 - \frac{t^2}{n}\right)^n \le e^{-t^2} \le \frac{1}{\left(1 + \frac{t^2}{n}\right)^n}$$

On pourra étudier l'application $t \mapsto \ln(1+t) - t$.

6. Montrer que pour tout entier naturel $n \geq 1$,

$$\sqrt{n}I_{2n+1} \le \int_0^{\sqrt{n}} e^{-t^2} dt \le \sqrt{n}I_{2n-2}.$$

On pourra penser au changement de variable $t = \sqrt{n} \tan(u)$.

7. Déterminer la valeur $\lim_{x\to+\infty} f(x)$.

FIN.