The following pages contain the expanded versions of the proofs for Theorems 2 and 4.

APPENDIX

Theorem 2. Let $\ell(\theta, x, y)$ be a loss function, $\lambda > 0$ a variance penalization factor, and $\gamma \in \mathbb{R}$ the variance exponent. We then have the following bounds for the two stochastic optimization problems:

$$\max_{\mathbb{Q}_n \in \mathcal{A}} \mathbb{E}_{\mathbb{Q}_n} \left[\ell(\theta, x, y) \right] \leq \mathbb{E}_{\mathbb{P}_n} [\ell(\theta, x, y)] + \lambda \mathbb{V}_{\mathbb{P}_n} [\ell(\theta, x, y)]^{\gamma}$$

$$\min_{\mathbb{Q}_n \in \mathcal{A}} \mathbb{E}_{\mathbb{Q}_n} \left[\ell(\theta, x, y) \right] \geq \mathbb{E}_{\mathbb{P}_n} [\ell(\theta, x, y)] - \lambda \mathbb{V}_{\mathbb{P}_n} [\ell(\theta, x, y)]^{\gamma}$$

where
$$\mathcal{A} = \left\{ \mathbb{Q}_n : D_{\chi^2}(\mathbb{Q}_n \| \mathbb{P}_n) \leq \frac{\lambda^2}{n^2} \mathbb{V}_{\mathbb{P}_n} [\ell(\theta, x, y)]^{2\gamma - 1} \right\}$$
.

Proof.

Let Z be a random variable with $Z_i = \ell(\theta, x_i, y_i)$.

1. The expectation of the two stochastic optimization problems can be written as:
$$\sum_{i=1}^n q_i Z_i \quad \text{s.t.} \quad q_i \geq 0, \quad \sum_{i=1}^n q_i = 1, \quad \frac{1}{n} \sum_{i=1}^n \left(n q_i - 1 \right)^2 \leq \frac{\lambda^2}{n^2} \mathbb{V}_{\mathbb{P}_n}[Z]^{2\gamma - 1}.$$

2. Writing q_i in terms of a new variable u_i with $q_i = \frac{1}{n} + u_i$, we have:

$$\frac{1}{n} \sum_{i=1}^{n} Z_i + \sum_{i=1}^{n} u_i Z_i \quad \text{s.t.} \quad u_i \ge -\frac{1}{n}, \quad \sum_{i=1}^{n} u_i = 0, \quad \frac{1}{n} \sum_{i=1}^{n} u_i^2 \le \frac{\lambda^2}{n^2} \mathbb{V}_{\mathbb{P}_n}[Z]^{2\gamma - 1}.$$

3.
$$\frac{1}{n} \sum_{i=1}^{n} Z_i + \sum_{i=1}^{n} u_i Z_i \quad \Leftrightarrow \quad \mathbb{E}_{\mathbb{P}_n}[Z] + n \mathbb{E}_{\mathbb{P}_n} \left[u \left(Z - \mathbb{E}_{\mathbb{P}_n}[Z] \right) \right]$$

Proof: For the second term of the sum we have:

$$\sum_{i=1}^{n} u_{i} Z_{i} = n \mathbb{E}_{\mathbb{P}_{n}} [uZ]$$

$$= n \mathbb{E}_{\mathbb{P}_{n}} [u(Z - \mathbb{E}_{\mathbb{P}_{n}}[Z])] + n \mathbb{E}_{\mathbb{P}_{n}} [u \mathbb{E}_{\mathbb{P}_{n}}[Z]]$$

$$= n \mathbb{E}_{\mathbb{P}_{n}} [u(Z - \mathbb{E}_{\mathbb{P}_{n}}[Z])] + n \mathbb{E}_{\mathbb{P}_{n}} [u] \mathbb{E}_{\mathbb{P}_{n}}[Z]$$

$$= n \mathbb{E}_{\mathbb{P}_{n}} [u(Z - \mathbb{E}_{\mathbb{P}_{n}}[Z])]$$

Where on penultimate step we use the fact that $\mathbb{E}_{\mathbb{P}_n}[u] = 0$ since $\sum_{i=1}^n u_i = 0$.

4.
$$n |\mathbb{E}_{\mathbb{P}_n} [u(Z - \mathbb{E}_{\mathbb{P}_n}[Z])]| \leq \lambda \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma}$$

Proof: Using the Cauchy–Schwarz inequality we have:

$$n \left| \mathbb{E}_{\mathbb{P}_n} \left[u \left(Z - \mathbb{E}_{\mathbb{P}_n}[Z] \right) \right] \right| \leq n \sqrt{\mathbb{E}_{\mathbb{P}_n} \left[u^2 \right] \mathbb{E}_{\mathbb{P}_n} \left[\left(Z - \mathbb{E}_{\mathbb{P}_n}[Z] \right)^2 \right]}$$

$$\leq n \sqrt{\frac{\lambda^2}{n^2}} \mathbb{V}_{\mathbb{P}_n}[Z]^{2\gamma - 1} \mathbb{V}_{\mathbb{P}_n}[Z]$$

$$\leq \lambda \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma}$$

Where for the second inequality we used the constraint from step 2 on u^2 .

5.
$$n\left|\mathbb{E}_{\mathbb{P}_n}\left[u\left(Z-\mathbb{E}_{\mathbb{P}_n}[Z]\right)\right]\right| = \lambda \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma} \text{ for } u_i = \pm \frac{\lambda}{n} \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma-1} \left(Z_i - \mathbb{E}_{\mathbb{P}_n}[Z]\right)$$

Proof: From Cauchy–Schwarz, the equality holds if u_i and $(Z_i - \mathbb{E}_{\mathbb{P}_n}[Z])$ are linearly dependent. Thus, we achieve equality for

$$u_i = \pm \frac{\frac{\lambda}{n} \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma}}{\mathbb{V}_{\mathbb{P}_n}[Z]} \left(Z_i - \mathbb{E}_{\mathbb{P}_n}[Z] \right) = \pm \frac{\lambda}{n} \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} \left(Z_i - \mathbb{E}_{\mathbb{P}_n}[Z] \right)$$

given that the constraint $u_i \geq -\frac{1}{n}$ is satisfied.

6. When the constraint $u_i \geq -\frac{1}{n}$ is violated, $n |\mathbb{E}_{\mathbb{P}_n}[u(Z - \mathbb{E}_{\mathbb{P}_n}[Z])]| < \lambda \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma}$.

Proof: To avoid negative probabilities we clamp u_i with values smaller than $-\frac{1}{n}$ to $-\frac{1}{n}$, however, as a result u_i and $(Z_i - \mathbb{E}_{\mathbb{P}_n}[Z])$ are no longer linearly dependent.

In addition we have $u_i = \pm \frac{\alpha \lambda}{n} \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma-1} (Z - \mathbb{E}_{\mathbb{P}_n}[Z] - \mu)$ where we set $u_i \leq -\frac{1}{n}$ to $-\frac{1}{n}$, and $\mu > 0$ and $\alpha > 1$ are two constants selected to satisfy the constraints from step (ii).

7.
$$\max_{\mathbb{Q}_n \in \mathcal{A}} \mathbb{E}_{\mathbb{Q}_n} [Z] \leq \mathbb{E}_{\mathbb{P}_n} [Z] + \lambda \mathbb{V}_{\mathbb{P}_n} [Z]^{\gamma}$$
$$\min_{\mathbb{Q}_n \in \mathcal{A}} \mathbb{E}_{\mathbb{Q}_n} [Z] \geq \mathbb{E}_{\mathbb{P}_n} [Z] - \lambda \mathbb{V}_{\mathbb{P}_n} [Z]^{\gamma}.$$

Proof: Combining the results of steps 3 to 6 with equality achieved when the constraint $u_i \ge -\frac{1}{n}$ is satisfied.

Theorem 4. Let $\ell(\theta, x, y)$ be an unbounded and non-negative loss function, and q_i the solution to $\min_{\mathbb{Q}_n \in \mathcal{A}} \mathbb{E}_{\mathbb{Q}_n} \left[\ell(\theta, x, y) \right]$ with $\mathcal{A} = \left\{ \mathbb{Q}_n : D_{\chi^2}(\mathbb{Q}_n \| \mathbb{P}_n) \leq \frac{\lambda^2}{n^2} \mathbb{V}_{\mathbb{P}_n} \left[\ell(\theta, x, y) \right]^{2\gamma - 1} \right\}$, then:

$$0 \le \sum_{i=1}^{C} q_i \ell(\theta, x_i, j) \le \frac{C[1 + \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[\ell(\theta, x, y)]^{\gamma - 1} (\mathbb{E}_{\mathbb{P}_n}[\ell(\theta, x, y)] + \mu)]^2}{4n\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[\ell(\theta, x, y)]^{\gamma - 1}}$$

where $\alpha \geq 1$ and $\mu \geq 0$ are two constants that emerge when finding the distribution \mathbb{Q}_n .

Proof.

Let Z be a random variable with the realizations $Z_i = \ell(\theta, x_i, y_i)$ then the probabilities q_i from Theorem 2 are calculated as $q_i = \frac{1}{n} \left[1 - \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma-1} \left(Z_i - \mathbb{E}_{\mathbb{P}_n}[Z] - \mu \right) \right]_+$ where $\alpha \geq 1$ and $\mu \geq 0$ are constants found when solving the stochastic optimization problem $\min_{\mathbb{Q}_n \in \mathcal{A}} \mathbb{E}_{\mathbb{Q}_n} \left[\ell(\theta, x, y) \right]$. The operator $[\cdot]_+$ truncates negative values to 0 and enforces the non-negativity constraint for q_i .

1. $0 \le q_i Z_i$.

Proof: The two terms are non-negative and thus their product is also non-negative.

2.
$$\frac{\partial}{\partial Z_i}(q_i Z_i) = \frac{1}{n} \left[1 - \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} \left(2Z_i - \mathbb{E}_{\mathbb{P}_n}[Z] - \mu \right) \right].$$

Proof: To find the maximum of $q_i Z_i$, the probability q_i must be positive and thus we drop the non-negativity constraint. Of note, since we are interested to find the distance from the mean where we achieve the maximum value given $\mathbb{E}_{\mathbb{P}_n}[Z]$ and $\mathbb{V}_{\mathbb{P}_n}[Z]$, we will we treat them as constants.

$$\begin{split} \frac{\partial}{\partial Z_i}(q_i Z_i) &= q_i \frac{\partial}{\partial Z_i} Z_i + Z_i \frac{\partial}{\partial Z_i} q_i \\ &= \frac{1}{n} \left[1 - \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} \left(Z_i - \mathbb{E}_{\mathbb{P}_n}[Z] - \mu \right) \right] - \frac{1}{n} \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} Z_i \\ &= \frac{1}{n} \left[1 - \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} \left(2 Z_i - \mathbb{E}_{\mathbb{P}_n}[Z] - \mu \right) \right]. \end{split}$$

$$3. \ \frac{\partial}{\partial Z_i}(q_iZ_i) = 0 \ \text{for} \ Z_i = \frac{1}{2\lambda\alpha\mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma-1}} + \frac{\mathbb{E}_{\mathbb{P}_n}[Z] + \mu}{2}.$$

Proof

$$\begin{split} \frac{\partial}{\partial Z_i}(q_iZ_i) &= 0 \\ \frac{1}{n}\left[1 - \lambda\alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma-1}\left(2Z_i - \mathbb{E}_{\mathbb{P}_n}[Z] - \mu\right)\right] &= 0 \\ 2\lambda\alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma-1}Z_i &= 1 + \lambda\alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma-1}(\mathbb{E}_{\mathbb{P}_n}[Z] + \mu) \\ Z_i &= \frac{1}{2\lambda\alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma-1}} + \frac{\mathbb{E}_{\mathbb{P}_n}[Z] + \mu}{2} \end{split}$$

4.
$$q_i Z_i \leq \frac{[1 + \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} (\mathbb{E}_{\mathbb{P}_n}[Z] + \mu)]^2}{4n\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1}}.$$

Proof: Since $\frac{\partial^2}{\partial Z_i^2}(q_iZ_i)=-2\lambda\alpha\mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma-1}$ is negative, the product q_iZ_i is maximized when using for Z_i the value found at the previous step. Thus, we have:

$$\begin{split} q_i Z_i &\leq \frac{1}{n} \left[1 - \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} \left(\frac{1}{2\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1}} + \frac{\mathbb{E}_{\mathbb{P}_n}[Z] + \mu}{2} - \mathbb{E}_{\mathbb{P}_n}[Z] - \mu \right) \right] \left(\frac{1}{2\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1}} + \frac{\mathbb{E}_{\mathbb{P}_n}[Z] + \mu}{2} \right) \\ &\leq \frac{1}{n} \left[1 - \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} \left(\frac{1}{2\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1}} - \frac{\mathbb{E}_{\mathbb{P}_n}[Z] + \mu}{2} \right) \right] \left(\frac{1}{2\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1}} + \frac{\mathbb{E}_{\mathbb{P}_n}[Z] + \mu}{2} \right) \\ &\leq \frac{1}{n} \left[\frac{1}{2\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1}} + \frac{\mathbb{E}_{\mathbb{P}_n}[Z] + \mu}{2} - \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} \left(\frac{1}{4(\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1})^2} - \frac{(\mathbb{E}_{\mathbb{P}_n}[Z] + \mu)^2}{4} \right) \right] \\ &\leq \frac{1}{n} \left[\frac{1}{2\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1}} + \frac{\mathbb{E}_{\mathbb{P}_n}[Z] + \mu}{2} - \frac{1}{4\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} (\mathbb{E}_{\mathbb{P}_n}[Z] + \mu)^2} \right] \\ &\leq \frac{1}{n} \left[\frac{1}{4\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1}} + \frac{\mathbb{E}_{\mathbb{P}_n}[Z] + \mu}{2} + \frac{\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} (\mathbb{E}_{\mathbb{P}_n}[Z] + \mu)^2}{4} \right] \\ &\leq \frac{1 + 2\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} (\mathbb{E}_{\mathbb{P}_n}[Z] + \mu) + (\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1})^2 (\mathbb{E}_{\mathbb{P}_n}[Z] + \mu)^2}{4n\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1}} \\ &\leq \frac{[1 + \lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1} (\mathbb{E}_{\mathbb{P}_n}[Z] + \mu)]^2}{4n\lambda \alpha \mathbb{V}_{\mathbb{P}_n}[Z]^{\gamma - 1}} \end{aligned}$$