Utilisation de la Machine Learning pour le diagnostic des patients

T.I.P.E. Réalisé par

Hamza ABABOU

Numéro d'inscription au concours: FS018M

Plan

I. Introduction

II. Machine Learning : définition et fonctionnement

III.Modèle mathématique

IV. Etude de la corrélation

V. Conclusion

En 2019 : ~ 1,4 % de bébés morts-nés (Rapport ONU)

Causes:

- > Problémes survenus pendant la grossesse
- > Mauvais suivi médical

Solution:

Dignostic de l'état sanitaire du fœtus avec précision

Outil utilisé :

Algorithme de classification basé sur Machine Learning

En très bon accord avec le thème :

Santé Prévention

Machine Learning: Domaine scientifique qui consiste à remplir des tâches en se basant sur des motifs récurrents dans des bases de données.

Algorithmes de classification:

- Arbre de décision
- ☐ Forêt aléatoire
- **□** Régression logistique

Input:

- ✓ **Données relatives au cas à étudier :** Age, Groupe sanguin ...
- ✓ Données relatives à des tests conduits sur le cas à étudier : Fréquence cardiaque, Vitesse de mouvements dans l'utérus, Accélérations brusques, nombre de pics ...

Output:

Classifier le cas étudié :

Fœtus en bonne santé

✓ Intervention médicale d'urgence

✓ Cas suspect : Attention particulière

Exemple de classification

- cas sain
- cas malade

1 Concentre

Concentration du glucose (g/l)

Distribution de données avec 2 catégories (Rouge et Bleu)

Division en sous-domaines à une seule catégorie

Identification de la catégorie du cas à étudier

Réaliser les divisions de manière adéquate

Structure de l'arbre

Détermination de la pureté du domaine

Fonction Entropie : mesure l'impureté du domaine :

$$E(S) = -\sum_{i=1}^{c} p_i \log_2(p_i)$$

S: Domaine en question

c: Nombre de catégories présentes dans le domaine (dans notre exemple c = 2 : catégories bleue et rouge)

p_i: Proportion des éléments de la catégorie i dans le nœud S

Test d'arrêt : E(S) = 0 (Domaine pur)

Entropie relative à une division X :

$$E(S,X) = -P(d)E(d) - P(g)E(g)$$

S: le domaine qu'on divise.

d, g: les sous-domaines droit et gauche

P(i): proportion des éléments du sous-noeud i dans le noeud S

Fonction Information Gain (IG):

mesure le degré de séparation des éléments des catégories après division

III. Modèle mathématique

Information Gain(T,X) = Entropy(T) - Entropy(T, X)

Etape 3:

Répéter les étapes 1 et 2 pour chaque sous-domaine considéré comme domaine principal

Etape 3:

Iteration des étapes 1 et 2

Résultat :

Obtenir des domaines contenant des éléments de la même catégorie

1

Identifier la catégorie (diagnostic) associée au cas examiné

III. Modèle mathématique

Matrice de représentation de la base de données

$$\mathbf{A} = (a_{\mathbf{k},i})_{(k,i)} \in [1,\mathbf{N}] \times [1,\mathbf{p}]$$

N : nombre de cas traités

p : nombre de paramètres

		1-er paramètre	•••	J-ème paramètre	•••	p-ième paramètre
	1-er cas traité	a _{1,1}		a _{1,j}		a _{1,p}
	/					
	k-ème cas traité	a _{k,1}		$\mathbf{a}_{\mathbf{k},\mathbf{j}}$		a _{k,p}
Ī	•••					
	N-ième cas traité	$a_{k,N}$		$a_{N,j}$		a _{N,p}

III. Modèle mathématique

Choix de la division

 $(a_{k,i})_{1 \le k \le N}$ = toutes les valeurs associées au paramètre x_i

- $\hfill \Box$ Faire un classement ordonné des $(a_{k,i})_{1 \leq k \leq N}$ dans une liste $(L_{k,i})_{1 \leq k \leq N}$
- Réaliser la division du domaine considéré en sous-domaines $x_i > L_{k,i}$ et $x_i \le L_{k,i}$ pour tout $1 \le k \le N-1$ Opération effectuée pour tous les paramètres d'étude x_i $(1 \le i \le p)$
- ☐ Choisir la division correspondant au IG maximal

Grand nombre de paramètres - Temps de traitement très long

Corrélation entre les paramètres

 $(\Omega, P(\Omega), P)$: Espace probabilisé

- $\triangleright \Omega$: Ensemble des cas traités, peut être identifié avec [1, N]
- $\nearrow P(\Omega)$: Ensemble des parties de Ω
- \triangleright P: Probabilité, P: $P(\Omega) \rightarrow [0, 1]$

$$A \mapsto P(A) = \frac{card(A)}{card(\Omega)} = \frac{card(A)}{N}$$

Hamza ABABOU

 \succ Y_i: Variable aléatoire, i \in [1, P]

$$\forall \mathbf{k} \in [1, \mathbf{N}] : \mathbf{Y}_{\mathbf{i}}(\mathbf{k}) = \mathbf{a}_{\mathbf{k}, \mathbf{i}}$$

 \triangleright cov(A,B) = E(AB) - E(A) . E(B)

A, B: v-a discrétes définies d'un espace fini

 $ightharpoonup cor(A,B) = \frac{cov(A,B)}{\sqrt{V(A)V(B)}}$

V(A): variance de la v-a A

$$\operatorname{cor}(A,B) \in [-1,1] \operatorname{et} \operatorname{cor}(A,B) = \pm 1 \Leftrightarrow "\exists (\lambda,\beta) \in \mathbb{R}^2 \operatorname{tq} B = \lambda.A + \beta"$$

$$\forall \lambda \in \mathbb{R}$$
,

$$V(\lambda A - B) = E((\lambda A - Y)^{2}) - (E(\lambda A - B))^{2}$$

$$= E(\lambda^{2}A^{2} - 2\lambda AB + Y^{2}) - (\lambda E(A) - E(B))^{2}$$

$$= \lambda^{2}(E(A^{2}) - E(B)^{2}) - 2\lambda(E(AB) - E(A) E(B)) + E(B^{2}) - E(B)^{2}$$

$$= \lambda^{2}V(A) - 2\lambda Cov(A, B) + V(B).$$

$$\Delta = 4Cov(A, B)^2 - 4V(A) V(B) \le 0$$

$$Cor(A,B) = \pm 1 \implies \Delta = 0$$

$$et \exists \lambda \in R \text{ tq } V(\lambda A - B) = 0$$

$$\implies \exists \beta \in R \text{ tq } P(B = \lambda A + \beta) = 1 \iff B = \lambda A + \beta$$

Pour deux paramètres x_i et x_i :

$$\operatorname{Cor}(Y_{i}, Y_{j}) = \frac{\operatorname{cov}(Y_{i}, Y_{j})}{\sqrt{V(Y_{i}) V(Y_{j})}} = \frac{\operatorname{E}(Y_{i}, Y_{j}) - \operatorname{E}(Y_{i}) \operatorname{E}(Y_{j})}{\sqrt{\left[\operatorname{E}(Y_{i}^{2}) - \operatorname{E}(Y_{i})^{2}\right] \cdot \left[\operatorname{E}(Y_{j}^{2}) - \operatorname{E}(Y_{j})^{2}\right]}}$$

$$= \frac{N^{-1} \sum_{k=1}^{N} a_{k,i} a_{k,j} - N^{-1} \sum_{k=1}^{N} a_{k,i} \cdot N^{-1} \sum_{k=1}^{N} a_{k,j}}{\sqrt{\left[N^{-1} \sum_{k=1}^{N} a_{k,i}^{2} - \left(N^{-1} \sum_{k=1}^{N} a_{k,i}\right)^{2}\right] \cdot \left[N^{-1} \sum_{k=1}^{N} a_{k,j}^{2} - \left(N^{-1} \sum_{k=1}^{N} a_{k,j}\right)^{2}\right]}}$$

$$\operatorname{cor}(Y_i, Y_j) \approx \pm 1 \Rightarrow \forall k \in [1,N] \quad a_{k,i} \approx \lambda a_{k,j} + \beta$$

Pour chaque division suivant le paramètre x_i , il y a une division équivalente suivant le parameter x_i

23

IV. Etude de la corrélation

Portion de la base de données étudiée pour le diagnostic des foetus

baseline value	accelerations	fetal_movement	uterine_contractions	light_decelerations	severe_decelerations
136.0	0.007	0.000	0.007	0.001	0.0
140.0	0.000	0.001	0.003	0.007	0.0
133.0	0.001	0.000	0.009	0.004	0.0
127.0	0.000	0.000	0.009	0.011	0.0
125.0	0.002	0.014	0.006	0.008	0.0
120.0	0.002	0.000	0.001	0.009	0.0
142.0	0.004	0.041	0.003	0.004	0.0
121.0	0.003	800.0	0.000	0.000	0.0
127.0	0.006	0.003	0.000	0.000	0.0
144.0	0.002	0.000	0.003	0.000	0.0
	value 136.0 140.0 133.0 127.0 125.0 120.0 142.0 121.0	value accelerations 136.0 0.007 140.0 0.000 133.0 0.001 127.0 0.000 125.0 0.002 120.0 0.002 142.0 0.004 127.0 0.006	value accelerations fetal_movement 136.0 0.007 0.000 140.0 0.000 0.001 133.0 0.001 0.000 127.0 0.000 0.000 125.0 0.002 0.014 120.0 0.002 0.000 142.0 0.004 0.041 121.0 0.003 0.008 127.0 0.006 0.003	value accelerations retal_movement uterine_contractions 136.0 0.007 0.000 0.007 140.0 0.000 0.001 0.003 133.0 0.001 0.000 0.009 127.0 0.000 0.000 0.009 125.0 0.002 0.014 0.006 120.0 0.002 0.000 0.001 142.0 0.004 0.041 0.003 121.0 0.003 0.008 0.000 127.0 0.006 0.003 0.000	value accelerations fetal_movement uterine_contractions light_decelerations 136.0 0.007 0.000 0.007 0.001 140.0 0.000 0.003 0.007 133.0 0.001 0.000 0.009 0.004 127.0 0.000 0.000 0.009 0.011 125.0 0.002 0.014 0.006 0.008 120.0 0.002 0.000 0.001 0.009 142.0 0.004 0.041 0.003 0.004 121.0 0.003 0.008 0.000 0.000 127.0 0.006 0.003 0.000 0.000

IV. Etude de la corrélation

Matrice de corrélation : $C = (cor(Y_i, Y_j))_{1 \le i,j \le p}$

Tableau comparatif entre algorithmes

Algorithme	Précision		
Arbre de décision	91,60 %		
Forêt aléatoire	94,00 %		
Régression logistique	89,70 %		

- ☐ Présentation du modèle mathématique adopté pour développer un algorithme de classification des données
- ☐ Rôle important du Machine Learning à établir un diagnostic précis de l'état de santé du fœtus à partir de l'analyse de ses données en relation avec une base de données établie.
- ☐ Généralisation du modèle mathématique pour d'autres types de maladies

Merci pour votre attention

Matrice de corrélation (agrandie)

