

Trabalho Prático 02 Fundamentos da Teoria da Computação

Mariana Souza - 3898

06 de Outubro de 2021

Sumário

0.	Introdução	3
1.	$\{a^nb^{2n} \mid n > 0\}$	4
2.	$\{0^{3n}1^{2n}\mid n>0\}$	4
3.	$\{0^{n}1^{3n}0^{2m}1^{m} n>0\}$	5
4.	Linguagem Livre de Contexto	6
5.	Máquina de Moore especificada	6
6.	Máquina de Mealy Equivalente a de Moore	7
7.	Máquina de Moore especificada	8
8.	Máquina de Moore criada	9
9.	Máquina de Mealy criada	.10
10	.Referências	.11

Introdução

O presente trabalho prático tem como objetivo apresentar diagramas de estados utilizando a ferramenta JFLAP, usada para construir autómatos e realizar simulações de entradas apresentando seus respectivos resultados. Para este trabalho foram apresentados diagramas de estados para autómatos de pilha e máquinas de Moore e de Mealy, de acordo com as especificações que foram apresentadas para cada máquina, demonstrando os resultados das computações para cada diagrama.

1. $\{a^nb^{2n} \mid n > 0\}$

Diagrama de estados:

Resultado das computações:

Input	Result
aabbbb	Accept
abb	Accept
bb	Reject
abb	Accept
ab	Reject
bbaaaa	Reject
aaabbbbbbb	Accept

2. $\{0^{3n}1^{2n} \mid n > 0\}$

Diagrama de estados:

Resultado das computações:

input	Result
00000000111111	Accept
00011	Accept
0011	Reject
0001	Reject
0000001111	Accept
000000111	Reject

3. $\{0^n1^{3n}0^{2m}1^m|n>0\}$

Diagrama de estados:

Input	Result
0111001	Accept
011100	Reject
011001	Reject
00111111001	Accept
0001111111111000011	Accept
011100111	Reject

4. Linguagem Livre de Contexto

Linguagem Livre de contexto que foi definida:

Lwwr =
$$\{wcw^r | w \text{ está } em (0 + 1)^*\}$$

Diagrama de estados para LLC definida acima:

Para a LLC que foi definida temos que são empilhados 0s e 1s até encontrar c, sendo assim é mudado para um estado em que se compara cada novo símbolo com o topo da pilha, caso forem iguais ele desempilha, até encontrar o "Zo" no topo, caso o não seja encontrado vai para um estado não final.

5. Máquina de Moore especificada

Diagrama de estados:

Resultado das computações:

Input	Result
abc	012
abbcc	01122
aacc	0022
aaacccbba	000222110
abcabca	0120120
aaccbbababaaac	00221101010002

6. Máquina de Mealy Equivalente a de Moore

Diagrama de estados:

Input	Result
abc	012
abbcc	01122
aacc	0022
aaacccbba	000222110
abcabca	0120120
aaccbbababaaac	00221101010002

7. Máquina de Moore especificada

Diagrama de estados:

Input	Result
012	хуу
111	ууz
02	xx
22	xx
001122	ххууух
0012	xxyy

8. Máquina de Moore criada

Uma máquina de Moore para o alfabeto $\{u,v,w\}$, produzindo palavras para o alfabeto $\{a,b,c\}$, onde ao ler "Us" consecutivos serão produzidos apenas um a, ao ler um "V" serão produzidos um b, e ao ser w será produzido c, sendo assim, independente da quantidade de "Us", sempre serão produzidos apenas um "a" na saída.

Diagrama de estados:

Input	Result
uu	a
wvuw	cbac
uvw	abc
VWW	bcc
vvwuu	bbca
uvvwuuuu	abbca

9. Máquina de Mealy criada

Uma máquina de Mealy que lê os símbolos do alfabeto $\{0, 1, 2\}$ e produz palavras para o alfabeto $\{a,b,c\}$, onde: 0 irá gerar um b, 1 irá gerar um a, sendo que dois 1s consecutivos são lidos ele gera um x, e 2 irá gerar um c.

Diagrama de estados:

Input	Result
012	bac
01122111	baxccaxx
0111110	baxxxxb
02212	bccac
0221120	bccaxcb
210	cab

9. Referências:

- https://www.yumpu.com/pt/document/read/12987713/exercicios-resolvidos
- https://www.cin.ufpe.br/~gcb/tc/tc_gramaticas_livres_contexto.pdf
- https://www.youtube.com/watch?v=7Mso4SFiat0
- http://www.ic.uff.br/~ueverton/files/LF/aula05.pdf