Algoritmos genéticos

- 1. Introducción
- 2. Esquema básico
- 3. Codificación
- 4. Evaluación
- 5. Selección
- 6. Operadores
- 7. Ejemplo

- Propuestos por Holland, mediados 70, computación evolutiva
- Popularizados por Goldberg, mediados 80, solución de problemas del mundo real
- Inspirados en el modelo de evolución biológica sexual
- Aplicables a problemas de búsqueda y optimización complejos

- Método de búsqueda y optimización inspirados en la evolución biológica
- Posibles soluciones: población
- Selección de los individuos más aptos
- Generación de nuevos candidatos: reproducción sexual
 - Recombinación (cruce)
 - Mutación

Esquema básico

```
función ALGORITMO-GENÉTICO(poblaciónInicial) returns una población
   entrada:
                  poblaciónInicial, una población
                  población(.), un array de población
   static:
begin
   t \leftarrow 0
   población(t) \leftarrow poblaciónInicial
   EVALUAR(población(t))
   while (not condiciónTerminación) do
         t \leftarrow t + 1
         población1 \leftarrow SELECCIONAR(población(t-1))
         población2 ← CRUZAR(población1)
         población3 ← MUTAR(población2)
         EVALUAR(población3)
         población(t) \leftarrow REMPLAZAR(población3 U población(t-1))
   end
return(población(t))
end
```


- Individuo: cromosoma
- Cromosoma: cadena de caracteres
 - En principio, cualquier representación es válida
- Codificación óptima: alfabeto binario (teorema de los esquemas)
- Codificación habitual: cadena de bits

Ejemplos de codificación maximización función

- f(x)=1-x², parábola invertida con máximo en x=0
- Buscar máximo en [-1, 1] con una precisión de 2 cifras decimales
- Único parámetro o atributo: variable x
- Codificamos el valor de la variable mediante un byte [0,255], pues hay que dividir el intervalo de longitud 2 en 200 unidades y 2⁷ < 200 < 2⁸
- Ajustado al intervalo real [-1,1], donde queremos hallar el máximo de la función

Valor binario	Descodi- ficación	Valor real
10010100	148	0,16
10010001	145	0,14
00101001	41	-0,68
01000101	65	-0,49

- Atributo: posición de una dama en una columna (3 bits)
- Cromosoma: secuencia de atributos, 24 bits

Co	ol.1	•	C	ol.	2	Co	ol.	3	C	ol. 4	4	C	ol.	5	C	ol. (6	C	ol.	7	C	ol. 8	8
0	1	0	1	0	0	0	0	0	1	1	0	0	1	1	1	1	1	1	0	1	0	0	1

- La codificación es clave en la resolución del problema
- Heurística: parámetros relacionados ente sí (genes) deben de estar cercanos en el cromosoma
- Gran flexibilidad
 - Cromosomas bi, tridimensionales
 - Longitud variable

- En esta etapa hay que cuantificar la calidad de los individuos de la población
- Generalmente
 - Descodificar el cromosoma
 - Calidad de la solución
 - Evaluación mediante función fitness o aptitud
 - Si problema de optimización, la propia función a optimizar

Ejemplos de funciones de aptitud

- Para f(x)=1-x², la función de aptitud es la misma
- Para 8-reinas: número total de pares de damas no amenazadas
 - En cualquier solución: 7+6+5+4+3+2+1=28

	i	ī	
Valor binario	Descodi- ficación	Valor real	Aptitud
10010100	148	0,161	0.974
10010001	145	0,137	.981
00101001	41	-0,678	.540
01000101	65	-0,490	.760

Selección

- Selección de los elementos que se reproducen
- A partir de la función de aptitud
- Varios métodos
 - Rueda de ruleta
 - Basado en el rango
 - Selección de torneo
- Cambio de generación
 - Manteniendo el tamaño de la población
 - Aumentando el tamaño de la población

- Se asigna a cada individuo la probabilidad:
- Si algún individuo domina la población, se escala o normaliza
- Se elijen parejas aleatorias de individuos de acuerdo a su probabilidad
- Inconveniente: los individuos con más aptitud tiende a dominar la población en pocas generaciones

$$Pr(x) = \frac{aptitud(x)}{\sum_{y \in población} aptitud(y)}$$

Rueda

Valor binario	Descodi -ficación	Valor real	Aptitud	Probabilidad	Probabilidad acumulada
10010100	148	0,161	0.974	0.299	0.299
10010001	145	0,137	0.981	0.301	0.600
00101001	41	-0,678	0.540	0.166	0.766
01000101	65	-0,490	0.760	0.233	1.000

- Se ordena la población por orden creciente de aptitud
- Se eliminan los M primeros (menor aptitud)
- Se eligen de forma aleatoria, con probabilidad dada por el rango, pares de individuos y sus descendientes se añaden a la población

- Se seleccionan dos individuos aleatoriamente
- Se elije el más apto con una probabilidad P y el menos apto con una probabilidad (1-P)
- Introduce más diversidad en la población

- Manteniendo el tamaño de la población intermedia
 - Reemplazar padres por hijos
 - Reemplazar un par de individuos elegidos aleatoriamente por los hijos
 - Otros
- Aumentando el tamaño de la población intermedia
 - Crear población temporal con padres e hijos, seleccionando los mejores
 - Dados n padres generar m (m>n) hijos y de ellos seleccionar los n mejores

Operador de cruce (crossover)

- Principal operador genético
- Simula el intercambio de material genético o genes
- Se aplica con probabilidad p_c a individuos seleccionados
- Cruce ideal: recombina buenos bloques de construcción de sus progenitores
- Operadores
 - Cruce de n-puntos
 - Cruce multipunto
 - Cruce especializado

Cruce de un punto

- Seleccionar aleatoriamente una posición en el cromosoma
- Intercambiar el final del cromosoma a partir de dicho punto

Cruce de dos puntos

- Multipunto o uniforme
 - Cada bit se hereda de un padre aleatoriamente
- Operadores especializados
 - En aquellos problemas donde un cruce aleatorio puede generar individuos no válidos

- La selección aleatoria del punto de cruce no es interesante
 - Genera individuos válidos
 - La mezcla de bloques –genes- no parece asimilable a un operador del problema real
- Seleccionar aleatoriamente el gen a partir del que se hace el reemplazo
 - Seleccionar aleatoriamente un entero 1 y 7 (número de genes)
 - Equivale a intercambiar columnas contiguas entre tableros padres

Ejemplo cruce 1 punto 8 reinas

	Co	ol.1		Co	ol.	2	С	ol.	3	Co	ol.	4	С	ol.	5	Co	ol.	6	Co	ol.	7	Сс	ol. 8	8
	1	0	1	1	1	1	1	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	1	0
	Сс	ol.1		Сс	ol.	2	Сс	ol.	3	Сс	ol.	4	С	ol.	5	Сс	ol.	6	Сс	ol.	7	Сс	ol.	8
	1	1	0	1	1	1	1	0	1	1	1	0	0	1	0	1	1	0	0	0	1	0	1	1
\ [Col.1			Сс	ol.	2	Сс	ol.	3	Сс	ol.	4	С	ol.	5	Сс	ol.	6	Сс	ol.	7	Сс	ol. a	8
	1	0	1	1	1	1	1	0	0	1	1	0	0	1	0	1	1	0	0	0	1	0	1	1
[Co	ol.1		Сс	ol.	2	Co	ol.	3	Co	ol.	4	С	ol.	5	Сс	ol.	6	Сс	ol.	7	Co	ol.	8
ĺ	1	1	0	1	1	1	1	0	1	0	1	1	0	1	1	1	1	0	0	0	0	0	1	0

Ejemplo cruce 1 punto 8 reinas

padres

Aptitud:26

hijos

Aptitud:27

- En la evolución
 - Las mutaciones son poco frecuentes
 - En la mayor parte de los casos letales
 - En promedio, contribuyen a la diversidad genética
- En los algoritmos genéticos:
 - Se simula cambiando aleatoriamente el valor de un bit
 - Se aplica con probabilidad baja (10⁻³ o menor) a cada bit de un nuevo individuo, habitualmente junto al cruce
 - Dependiendo del tamaño de la población y del número de bits por individuo, la mutación puede ser extremadamente rara en una generación

Genera diversidad

- Puede ser de utilidad cuando un algoritmo genético está estancado
- Su abuso reduce al algoritmo genético a una búsqueda aleatoria
- Otros mecanismos de generación de diversidad
 - Aumentar el tamaño de la población
 - Garantizar la aleatoriedad de la población inicial

- Cromosomas de longitud variable
 - Añadir, eliminar
- Operadores de nicho
 - Fuerzan a que cromosomas similares sólo reemplacen a cromosomas similares
 - Intentan mantener la diversidad
 - Distintas "especies" en la población
 - Cada una de ellas puede converger a un máximo diferente

Ejemplo optimización: f(x)=x² encontrar máximo entero en [1,32]

- Codificación binaria: cadena de 5 bits
- Tamaño población inicial: 4 individuos
- Población inicial: aleatoria
 - Sortear cada bit de cada cadena con p=1/2
- Función de aptitud $f(x)=x^2$
- Selección: ruleta
- Cambio de generación: manteniendo el tamaño de la población intermedia
 - Reemplazar un par de individuos elegidos aleatoriamente por los hijos

Población inicial

	Población inicial	X	aptitud	Probabilidad selección	Probabilidad acumulada
1	01101	13	169	0.14	0.14
2	11000	24	576	0.49	0.63
3	01000	8	64	0.06	0.69
4	10011	19	361	0.31	1.00
Suma			1170		
Media			293		
mejor			576		

- Generar cuatro números aleatorios, distribución de probabilidad uniforme en intervalo (0,1)
- Un individuo i se selecciona si el número aleatorio obtenido está en el intervalo definido por la probabilidad acumulada del individuo i-1 y la del individuo i
- Suponer que se obtienen: 0.58, 0.84, 0.11 y 0.43
- Individuos seleccionados: 2, 4, 1, 2

Población seleccionada

	Población inicial	X	aptitud	Probabilidad selección	Probabilidad acumulada
2	11000	24	576		
4	10011	19	361		
1	01101	13	169		
2	11000	24	576		
Suma			1682		
Media			420.5		
mejor			576		

Cruce

- Emparejamiento: emparejarlos según se han seleccionado -2 con 4, 1 con 2-
- Probabilidad de cruce: 0.8
 - Generar número aleatorio, distribución uniforme, (0, 1)
 - Suponer se obtienen 0.7, 0.3: se produce el cruce en ambos emparejamientos
- Generar puntos de cruce: numero aleatorio, distribución uniforme en [1, 2...,L] con L longitud del cromosoma
 - Suponer se obtienen 2,3

Creación descendientes

1	0	1	1	0	1
2	1	1	0	0	0
h3	0	1	1	0	0
	_				
h4	1	1	0	0	1

- Probabilidad mutación: 10⁻³
- Suponer no se produce ninguna mutación

Nueva población: reemplazar padres por hijos

	Población 1ª iteración	Х	aptitud	Probabilidad selección	Probabilidad acumulada
h1	11011	27	729	0.44	0.44
h2	10000	16	256	0.15	0.59
h3	01100	8	64	0.04	0.63
h4	11001	25	625	0.37	1.00
Suma			1674		
Media			418,5		
mejor			729		