CSE 3222 Operating System Sessional

Degree Program: Bachelor of Science in Computer Science and Engineering
Course Code: CSE 3222
Course Tittle: Operating System Sessional

Credit: 0.75 (Sessional)

Terms Offered: 3rd year 2nd semester

Exam Hours: NA

CIE Marks: 100%

SEE Marks: 00%

Course Objectives/Summary: The aim of this course is to have students understand and appreciate the principles in the design and implementation of operating systems such as context-switch, unix command, scheduling algorithms representing fairness, infinite wait, optimal scheduling.

Course Learning Outcomes (CLOs): at the end of the Course, the student will be able to -

CLO1	Learn basic OS concepts and to be familiar with the design principles of Operating System
CLO2	Develop skills in system programming, process management, memory management, and synchronization.
CLO3	Familiar students with Linux system commands, scripting, and kernel-level operations.

Mapping of Course Learning Outcomes (CLOs) to Program Learning Outcomes (PLOs)-

Course Learning				Progr	ram Le	earning	Outco	omes (P	PLOs)			
Outcomes (CLOs)	01	02	03	04	05	06	07	08	09	10	11	12
01	✓											
02		✓										
03	✓								✓			

SN	COURSE CONTENT	Lab Tasks/Experiments	Hrs.	CLOs
1.	Deadlock Detection & Avoidance	Banker's algorithm implementation	03	CLO2
2.	CPU Scheduling Algorithms	Implementing FCFS, SJF, Round Robin, Priority scheduling in C/C++	03	CLO2
3.	. Memory Management Techniques	Simulation of page replacement algorithms (LRU, FIFO, Optimal)	03	CLO1
4.	Common Disk Scheduling Algorithms	Implementing FCFS, SSTF, SCAN, C- SCAN, LOOK in C/C++	03	CLO1
5.	Introduction to Unix/Linux Environment Shell Programming	Basic Linux commands, file systems, process monitoring Writing basic shell scripts (loops, conditionals, functions)	03	CLO3

Teaching Learning Strategies: Classroom lecture (white board and power point presentation), reading, solving practical problems, showing video presentation and feedback.

Textbooks

1. Operating System Concepts, Avi Silberschatz, Peter Baer Galvin, and Greg Gagne.

Reference Books

1. Modern Operating Systems, Andrew Tanenbaum, and Herbert Bos.

Assessment Pattern

CIE- Continuous Internal Evaluation (Marks: 100)

Bloom's Category	Assignment (Class and Home) / Report (50 Marks) (%)	Quiz (40 Marks)	In class Participation (10 Marks) (%)
Remember	10	10	50
Understand	10	10	50
Apply	20	20	
Analyze	20	30	
Evaluate	30	20	
Create	10	10	

Marks Distributions:

Lab Attendance & Participation 10

Report 10 (Hand written, Can use both page) (Title,

objectives, Theory, Source Code (SS), screenshots of output, Conclusion)

Continuous Assessment	20
Board Viva	10
Assignment	10
Quiz	20
Lab Final	20

Total 100