Contents

Counting & Random Events	1
Definitions	2
Conditional Probability	2
Chain Rule	2
Marginalisation	3
Bayes Rule	3
Independence	3
Example Question	3
Expected Value	3
Linearity	4
Two Random Variables	4
Independent Random Variables	4
Variance	4
Non Linearity	4
Indepedent Random Variables	5
Inequalities	5
Markov	5
Chebyshev	5
Chernoff	5
Confidence Intervals	6
CLT	6
Linear Regression Model	6

Counting & Random Events

Bags of red & black balls

ullet With replacement

• Without replacement

Bag with 10 balls - how many ways can we take out 2 balls?

- 1. With replacement $10 \times 10 = 100$
- 2. Without replacement $10 \times 9 = 90$

 $3~{\rm red}~\&~7$ black balls - how many way can we take out:

- 1 red then 1 black

 - 1. With replacement $\frac{3\times7}{10\times10}$ 2. Without replacement $\frac{3\times7}{10\times9}$
- - 1. With replacement $\frac{3\times3}{10\times10}$ 2. Without replacement $\frac{3\times2}{10\times9}$
- 2 red & 3 black
 - 1. With replacement $\frac{(3\times3)(7\times7\times7)}{10^5} = (\frac{3}{10})^2(\frac{7}{10})^3$ 2. Without replacement $\frac{(3\times2)(7\times6\times5)}{10\times9\times8\times7\times6} \times \frac{5!}{2!3!}$

Definitions

- Sample space
- Random event
- Random variable Mapping from $S \to \mathbb{R}$

Conditional Probability

 $P(E \mid F) =$ the probability of E given F has already happened

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

Chain Rule

$$P(E \cap F) = P(E \mid F)P(F)$$

Marginalisation

$$P(E) = P(E \cap F_1) + P(E \cap F_2) + \dots + P(E \cap F_n)$$

$$P(E) = P(E \mid F_1)P(F_1) + P(E \mid F_2)P(F_2) + \dots + P(E \mid F_n)P(F_n)$$

given

- F_1, F_2, \ldots, F_n are mutually exclusive
- $F_1 \cup F_2 \cup \cdots \cup F_n = S$

Bayes Rule

$$P(E \mid F) = \frac{P(F \mid E)P(E)}{P(F)}$$

Independence

$$P(E \cap F) = P(E)P(F)$$
$$P(E \mid F) = P(E)$$

Example Question

$$X \in \{1, 2, 3\}, Y \in \{1, 2, 3\}, V = X + Y \in \{2, 3, 4, 5, 6\}$$

Are X & V Independent?

$$P(V=2 \land X=2) = 0$$

$$P(V=2) = (\frac{1}{3})^2$$

$$P(X=2) = \frac{1}{3}$$

$$P(V = 2) \times P(X = 2) \neq P(V = 2 \land X = 2)$$

Expected Value

$$E[X] = \sum_{i=1}^{n} x_i P(X = x_i)$$

Linearity

Random variable X takes values x_1, x_2, \ldots, x_n so,

$$E[aX + b] = \sum_{i=1}^{n} (ax_i + b)P(X = x_i)$$

$$= \sum_{i=1}^{n} ax_i P(X = x_i) + \sum_{i=1}^{n} bP(X = x_i)$$

$$= a \sum_{i=1}^{n} x_i P(X = x_i) + b \sum_{i=1}^{n} P(X = x_i)$$

$$= aE[X] + b$$

Two Random Variables

$$\begin{split} E[aX+bY] &= \sum_x \sum_y (ax+by) P(X=x\cap Y=y) \\ &= a \sum_x \sum_y x P(X=x\cap Y=y) + b \sum_x \sum_y y P(X=x\cap Y=y) \\ &= a \sum_x x P(X=x) + b \sum_y y P(Y=y) \\ &= a E[X] + b E[Y] \\ \text{since } \sum_y P(X=x\cap Y=y) = P(X) \end{split}$$

Independent Random Variables

$$\begin{split} E[XY] &= \sum_{x} \sum_{y} xy P(X=x \text{ and } Y=y) \\ &= \sum_{x} \sum_{y} xy P(X=x) P(Y=y) \\ &= \sum_{x} x P(X=x) \sum_{y} y P(Y=y) \\ &= E[X] E[Y] \end{split}$$

Variance

$$Var(X) = \sum_{i=1}^{n} (x_i - \mu)^2 P(x_i)$$

with
$$\mu = E[X]$$

Non Linearity

$$\begin{split} Var(aX+b) &= E[(aX+b)^2] - E[aX+b]^2 \\ &= E[a^2X^2 + 2abX + b^2] - (aE[X]+b)^2 \\ &= a^2E[X^2] + 2abE[X] + b^2 - a^2E[X]^2 - 2abE[X] - b^2 \\ &= a^2E[X^2] - a^2E[X]^2 \end{split}$$

$$= a^2(E[X^2] - E[X]^2)$$
$$= a^2Var(X)$$

Indepedent Random Variables

$$\begin{split} Var(X+Y) &= E[(X+Y)^2] - E[X+Y]^2 \\ &= E[X^2 + 2XY + Y^2] - (E[X] + E[Y])^2 \\ &= E[X^2] + 2E[XY] + E[Y^2] - E[X]^2 - 2E[X]E[Y] - E[Y]^2 \\ &= E[X^2] - E[X]^2 + E[Y^2] - E[Y]^2 + 2E[XY] - 2E[X]E[Y] \\ &= E[X^2] - E[X]^2 + E[Y^2] - E[Y]^2 \\ &= Var(X) + Var(Y) \end{split}$$

Inequalities

- Markov
- Cheyshev
 - Law of large numbers
- Chernoff
 - Frequency interpretation of probability

Will give us Chebyshev and Chernoff if needed

Markov

$$P(X \ge a) \le \frac{E(X)}{a}$$
 for all $a > 0$

Chebyshev

$$P(\mid X - \mu \mid \geq k) \leq \frac{\sigma^2}{k^2}$$
 for all $k > 0$

Chernoff

$$P(X \ge a) \le \min_{t>0} e^{ta} e^{\log E(e^{tX})}$$

Confidence Intervals

 $P(a \le X \le b)$

- Inequalities (esp. chernoff & cheybshev)
- Cental limit theorem
- Bootstrapping

CLT

$$X = \frac{1}{N} \sum_{k=1}^{N} X_k \sim N(E(X_i), \frac{Var(X_i)}{n})$$

Linear Regression Model

$$Y = \sum_{i=1}^m \Theta^{(i)} x^{(i)} + M, M \sim N(0,1), \Theta^{(i)} \sim N(0,\lambda)$$

$$f_{D|\Theta}(d \mid \vec{\theta}) \propto L(\theta) = \exp(-\sum_{j=1}^{n} (y_j - \sum_{i=1}^{m} \theta^{(i)} x_j^{(i)} * (i))^2 / 2), f_{\Theta^{(i)}}(\theta) \propto \exp(-\theta^2 / 2\lambda)$$