## Dictionary data structures

William Hendrix

### **Outline**

- Review
- Other dictionary implementations
  - Binary search trees
  - Hash tables
  - Bit vectors
- Heaps
- Union-find
- Prefix and suffix trees

### **Dictionary**

Abstract data structure for storing and retrieving values

#### Primary operations

- Search(x): returns the location of x in the dictionary, or NIL if not contained
- Insert(x): adds x to the dictionary
- Delete(x): removes x from the dictionary

#### Additional operations

- Max(), Min(): return the location of the largest/smallest element
- Successor(x), Predecessor(x): return the next largest/smallest element than x



- If sorted, stop when values are too large
- If DLL, you can search backwards from end or forwards
- Insert: add links to include new node in chain





- If sorted, stop when values are too large
- If DLL, you can search backwards from end or forwards
- Insert: add links to include new node in chain





- If sorted, stop when values are too large
- If DLL, you can search backwards from end or forwards
- Insert: add links to include new node in chain





- If sorted, stop when values are too large
- If DLL, you can search backwards from end or forwards
- Insert: add links to include new node in chain



- If sorted, scan to find insertion position
- Delete: reroute links, then delete victim





- If sorted, stop when values are too large
- If DLL, you can search backwards from end or forwards
- Insert: add links to include new node in chain



- If sorted, scan to find insertion position
- Delete: reroute links, then delete victim





- If sorted, stop when values are too large
- If DLL, you can search backwards from end or forwards
- Insert: add links to include new node in chain



- If sorted, scan to find insertion position
- Delete: reroute links, then delete victim



Search: linear scan



- If sorted, stop when values are too large
- If DLL, you can search backwards from end or forwards
- Insert: add links to include new node in chain



- If sorted, scan to find insertion position
- Delete: reroute links, then delete victim



If SLL, need to scan to find previous node

### Summary: link-based dictionaries

| Operation      | <b>Unsorted SLL</b> | <b>Unsorted DLL</b> | Sorted SLL | Sorted DLL |
|----------------|---------------------|---------------------|------------|------------|
| Search(x)      | O(n)                | O(n)                | O(n)       | O(n)       |
| Delete(x)      | O(n)                | O(1)                | O(n)       | O(1)       |
| Insert(x)      | O(1)                | O(1)                | O(n)       | O(n)       |
| Build          | n/a                 | n/a                 | O(n lg n)  | O(n lg n)  |
| Min()          | O(n)                | O(n)                | O(1)       | O(1)       |
| Max()          | O(n)                | O(n)                | O(1)       | O(1)       |
| Predecessor(x) | O(n)                | O(n)                | O(n)       | O(1)       |
| Successor(x)   | O(n)                | O(n)                | O(1)       | O(1)       |

- **Note:** DLL time is strictly better, asymptotically
  - Trade-off: more space, more pointer manipulation

# **Summary: linear dictionaries**

| Operation      | Unsorted<br>array | Unsorted<br>DLL | Sorted array | Sorted<br>DLL         |
|----------------|-------------------|-----------------|--------------|-----------------------|
| Search(x)      | O(n)              | O(n)            | O(lg n)      | O(n)                  |
| Delete(x)      | O(1)              | O(1)            | O(n)         | O(1)                  |
| Insert(x)      | O(1), amortized   | O(1)            | O(n)         | <i>O</i> ( <i>n</i> ) |
| Build          | n/a               | n/a             | $O(n \lg n)$ | O(n lg n)             |
| Min()          | O(n)              | O(n)            | O(1)         | O(1)                  |
| Max()          | O(n)              | O(n)            | <i>O</i> (1) | O(1)                  |
| Predecessor(x) | O(n)              | O(n)            | O(1)         | O(1)                  |
| Successor(x)   | O(n)              | O(n)            | O(1)         | O(1)                  |

• Arrays are usually preferred, due to lower coefficients

### Binary search trees

- Non-linear linked data structure
- Trees start with a *root* node
  - Usually depicted at top
- Each node has two children
  - Use NIL link if no child on left/right
- Nodes also generally store parent pointer
  - NIL for root
- Binary Search Tree Property
  - All children of left child are equal or smaller
  - All children in right child are equal or larger



## Binary tree lingo



- *Leaf*: node with no children
- *Level*: number of links away from the root
- *Height*: the max level in the tree
- *Complete*: every node above last level has two children
- Left/right subtree of a node: tree rooted at node's left/right child
  - Trees are *recursive* data structures
- Balanced: each node's left and right subtrees are similar size
- Degenerate: BST with only left or right children

### **BST** properties



#### **Complete BSTs**

- Level i has  $2^i$  nodes
- Total nodes:  $\sum_{i=0}^{n} 2^i = 2^{h+1} 1$
- Height:  $O(\lg n)$
- Leaves: approx. n/2
- Root contains median element

#### **Degenerate BSTs**

- Every level has 1 node
- Total nodes: *n*
- Height: O(n)
- Leaves: 1
- Essentially a sorted linked list
  - Left children: descending
  - Right children: ascending

## **BST** dictionary operations

#### Search(x)

- Binary search
- Start with Search(root, x)
- O(1) time per call
- Worst case: h calls (height of BST)
- O(h) time

#### Insert(x)

- Binary search
- Insert as root or call Insert(root, x)
- O(h) time

```
1 Algorithm: Insert(node, x)
 \mathbf{z} if \mathbf{x} < \text{node.data then}
       if left = NIL then
           left = NewNode(x);
       else
 5
           Insert(left, x);
       end
8 else
       if right = NIL then
           right = NewNode(x);
10
       else
11
           Insert(right, x);
12
       end
13
14 end
                                           16
```

### **BST** dictionary operations

#### Delete(x)

- Binary search
- Special cases depending on children
  - o children: delete
  - 1 child: replace w/ child
  - 2 children: find right ST min, swap
- Worst case analysis
  - O(h) to find x
  - *O*(*h*) to find RST min
  - *O*(*h*) time

```
1 Algorithm: Delete(node, x)
\mathbf{2} if node = NIL then
      return:
4 else if node.data > x then
      Delete(node.left, x);
6 else if node.data < x then
      Delete(node.right, x);
8 else
      if node.left = NIL and node.right = NIL then
9
          Set node.parent's child pointer to NIL;
10
          free node;
11
      else if node.left \neq NIL and node.right \neq NIL
12
       then
          sub = min(node.right);
13
          Remove sub.parent's child link;
14
          Set sub's 3 links to match node;
15
          Set sub's parent's and child's links to sub;
16
          free node;
17
      else if node.left \neq NIL then
18
          Set parent's child pointer to node.right;
19
          node.right.parent = node.parent;
20
          free node;
21
      else
22
          Set parent's child pointer to node.left;
23
          node.left.parent = node.parent;
24
          free node;
25
      end
26
                                                 17
_{27} end
```

## **Balanced Binary Search Trees**

How tall are BSTs?

- Best case:  $O(\lg n)$ 

- Average case:  $O(\lg n)$ 

- Worst case: O(n)



- Balanced BSTs
  - Sophisticated variants of BST
  - Guarantee O(lg n) height with constant overhead
    - Red-Black trees, AVL trees, etc.
  - We are not going to cover details of Balanced BSTs

# **Summary: BST dictionaries**

| Operation      | Binary<br>Search Tree | Balanced<br>BST | Unsorted array | Sorted array |
|----------------|-----------------------|-----------------|----------------|--------------|
| Search(x)      | <i>O</i> ( <i>h</i> ) | O(lg n)         | O(n)           | O(lg n)      |
| Delete(x)      | <i>O</i> ( <i>h</i> ) | O(lg n)         | O(1)           | O(n)         |
| Insert(x)      | <i>O</i> ( <i>h</i> ) | O(lg n)         | O(1)*          | O(n)         |
| Build          | O(n lg n)             | O(n lg n)       | n/a            | O(n lg n)    |
| Min()          | <i>O(h)</i>           | O(lg n)         | O(n)           | O(1)         |
| Max()          | <i>O</i> ( <i>h</i> ) | O(lg n)         | O(n)           | O(1)         |
| Predecessor(x) | <i>O</i> ( <i>h</i> ) | O(lg n)         | O(n)           | O(1)         |
| Successor(x)   | <i>O(h)</i>           | O(lg n)         | O(n)           | O(1)         |

- Advantage: O(lg n) is much better than O(n) for large data
- **Disadvantage:** *O()* hides larger coefficients for BSTs

### **Hash tables**

- Sparse array-based data structure
- Insert elements according to a *hash function* 
  - Function that maps elements in domain to integers o to size of array minus one (m-1)
  - Must take O(1) time

#### Example hash function

$$-f:\mathbb{Z}\to[0,m-1]$$

$$-f(x) = x \mod m$$

Most hash functions use modulus to ensure range

#### Hash table example

- Size = 10, hash function: mod 10
- Inserting 3, 15, 27, 82, 96, 100

| 100 | 82 | 3 |  | 15 | 96 | 27 |  |  |
|-----|----|---|--|----|----|----|--|--|
|-----|----|---|--|----|----|----|--|--|

### **Collisions**

What do we do when two values map to the same location?



- Two basic solutions
- Separate chaining
  - Each location is the head of a linked list
  - Append new element to list
  - Never "need" to reallocate
- Open addressing
  - Find the next open location, insert there
    - Can scan quadratically to avoid "congestion"
  - No links, so table can be larger with same memory
  - Deleting an element requires reinserting everything that follows
- Both potentially require scanning to find element

### **Operations**

#### Search(x)

- Hash element
- Scan linked list (or until empty location)
- Worst case: O(n)

#### Insert(x)

- Hash element
- Append to linked list (or scan for open location)
- Worst case: O(1) (or O(n))

#### Delete(x)

- Hash element
- Delete from linked list (or scan/delete/re-insert)
- Worst case: O(n) (or  $O(n^2)$ )

```
    1 Algorithm: Search(x)
    2 loc = Hash(x);
    3 return table[loc].Search(x);
```

```
    Algorithm: Insert(x)
    ins = NewNode(x);
    loc = Hash(x);
    ins.next = table[loc];
    table[loc] = ins;
```

```
1 Algorithm: Delete(x)
 2 loc = Hash(x);
 \mathbf{3} \ node = table[loc];
4 if node.value = x then
      table[loc] = node.next;
      free node:
 7 else
      while node.next \neq NIL do
          next = node.next;
          if next value = x then
             node.next = next.next;
11
             free next;
12
          node = node.next;
13
      end
14
                                    22
15 end
```

## Hash table complexity

| Operation      | Separate chaining | Open addressing | Balanced<br>BST |
|----------------|-------------------|-----------------|-----------------|
| Search(x)      | O(n)              | O(n)            | O(lg n)         |
| Delete(x)      | O(n)              | $O(n^2)$        | O(lg n)         |
| Insert(x)      | O(n)              | O(n)            | O(lg n)         |
| Build          | $O(m+n^2)$        | $O(m + n^2)$    | O(n lg n)       |
| Resize         | $O(m+n^2)$        | $O(m + n^2)$    | n/a             |
| Min()          | O(m+n)            | O(m)            | O(lg n)         |
| Max()          | O(m+n)            | O(m)            | O(lg n)         |
| Predecessor(x) | O(m+n)            | O(m)            | O(lg n)         |
| Successor(x)   | O(m+n)            | O(m)            | O(lg n)         |

- This is <u>awful!</u>
- Why would anyone ever use a hash table?

## Why would anyone use a hash table?

- Bad worst-case complexity but great *expected-case* complexity
- Expected-case assumptions
  - Hash function produces *O*(1) collisions
    - Each inserted value has O(1) duplicates
  - -m = O(n)
- Search(x)
  - Hashing and scanning take O(1) time
- Insert(x)
  - Hashing and scanning take O(1) time
- Delete(x)
  - Hashing and scanning take O(1) time
  - Reinsertion takes O(1) time (open addressing)

### **Expected-case complexity**

| Operation      | Separate chaining | Open addressing | Balanced<br>BST |
|----------------|-------------------|-----------------|-----------------|
| Search(x)      | O(1)              | O(1)            | O(lg n)         |
| Delete(x)      | O(1)              | O(1)            | O(lg n)         |
| Insert(x)      | O(1)              | O(1)            | O(lg n)         |
| Build          | O(n)              | O(n)            | O(n lg n)       |
| Resize         | O(1), amortized   | O(1), amortized | n/a             |
| Min()          | O(n)              | O(n)            | O(lg n)         |
| Max()          | O(n)              | O(n)            | O(lg n)         |
| Predecessor(x) | O(n)              | O(n)            | O(lg n)         |
| Successor(x)   | O(n)              | O(n)            | O(lg n)         |

- This is <u>amazing!</u>
- The three most important techniques are hashing, hashing, and hashing.
  - -Udi Manber, Chief Scientist, Yahoo! (2001)

### **Coming up**

- Bit vectors
- Non-dictionary data structures
- **Project 1** will be due next Tuesday
  - Sorting algorithms, Big-Oh analysis
- Exam 1 will be returned Thursday
- Recommended readings: Sections 3.8-3.9
- **Practice problems:** 1-2 problems from "Trees and Other Dictionary Structures"