Kylin-V: An Open-source Package Calculating the Dynamic and **Spectroscopic Properties of Large Systems**

- Supplementary Material

Yihe Xu,¹ Chungen Liu,¹ and Haibo Ma^{2, a)}
¹⁾School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023,

²⁾Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China

(Dated: 11 July 2024)

a) Electronic mail: Haibo.ma@sdu.edu.cn

S1. ETHYLENE

TABLE S1: 100 lowest-energy states of ethylene computed with excitation energies given relative to the ZPE. The number of variantional configurations of the last VHCI iteration $N_{\mathscr{V}}$, threshold for both VHCI and ENPT2 $\varepsilon_{\text{VHCI}}$, $\varepsilon_{\text{ENPT2}}$ and the time cost are shown below. The time of ENPT2 includes the necessary variational step. For simulation with Coriolis term (labelled with "+Coriolis"), Only those states observed by experiments 1 are listed. All energies are in cm⁻¹.

=	Method	VHC	I[Kylin-V]	VHCI[Berkelhach]	VHCI[Kylin-V]+Coriolis	Exp.
	$N_{\mathscr{V}}$		75563	161338	277342	ьлр.
	$\varepsilon_{ m VHCI}$	2	0.5	0.5	0.5	_
	CVHCI	Var.	$\varepsilon_{\text{ENPT2}} = 0.01$	$\varepsilon_{\text{ENPT2}} = 0.01$	$\varepsilon_{\text{ENPT2}} = 0.01$	_
-	ZPE	11011.61	11011.61	11011.61	11016.94	
	ω_{10}	820.00	819.98	819.99	823.53	825.93
	ω_{8}	926.34	926.32	926.33	935.18	939.86
	ω_8 ω_7	941.66	941.64	941.65	950.60	948.77
	ω_4	1017.47	1017.45	1017.45	1025.80	1025.59
	ω_6	1222.18	1222.15	1222.16	1224.79	1222.0
	ω_6 ω_3	1341.96	1341.94	1341.95	1342.78	1343.54
		1438.33	1438.31	1438.31	1441.75	1442.48
	$egin{array}{c} \omega_{12} \ \omega_2 \end{array}$	1622.82	1622.78	1622.78	1625.25	1625.4
	$2\omega_{10}$	1655.28	1655.21	1655.21	1661.16	1662.2
		1748.16	1748.03	1748.05	1760.28	1766.71
	$\omega_{10} + \omega_8$	1746.10	1746.03	1766.19	1781.00	1781.01
	$\omega_{10} + \omega_7$	1837.81	1837.65	1837.68	1851.02	1853.96
	$\omega_{10} + \omega_4$		1858.34	1858.36		
	$2\omega_8$	1858.45			1875.59	1880.9
	$\omega_8 + \omega_7$	1871.54	1871.40 1887.01	1871.42 1887.03	1888.41	1888.97 1899.75
	$2\omega_7$	1887.13		1939.47	1904.53	
	$\omega_8 + \omega_4$	1939.61	1939.45	1953.05	1956.35	1958.27
	$\omega_7 + \omega_4$	1953.19	1953.03		1969.92	1965.44
	$2\omega_4$	2032.18	2032.07	2032.09	2048.59	2046.4
	$\omega_{10} + \omega_6$	2037.59	2037.40	2037.42	2043.93	2047.76
	$\omega_8 + \omega_6$	2150.36	2150.20	2150.22	2160.00	2172.5
	$\omega_{10} + \omega_3$	2164.65	2164.50	2164.52	2169.00	2172.5
	$\omega_7 + \omega_6$	2165.84	2165.68	2165.70	2250.65	2251.5
	$\omega_4 + \omega_6$	2239.92	2239.76	2239.78	2250.65	2251.5
	$\omega_{10} + \omega_{12}$	2256.31	2256.12	2256.14		-
	$\omega_8 + \omega_3$	2265.41	2265.27	2265.29	2201.5	2201.5
	$\omega_7 + \omega_3$	2281.74	2281.59	2281.61	2291.5	2291.5
	$\omega_4 + \omega_3$	2355.72	2355.58	2355.60		-
	$\omega_8 + \omega_{12}$	2362.19	2362.03	2362.05		-
	$\omega_7 + \omega_{12}$	2375.52	2375.35	2375.37	2420.26	-
	$\omega_{10} + \omega_2$	2433.56	2433.37	2433.40	2439.26	2439.0
	$2\omega_6$	2443.36	2443.23	2443.25		-
	$\omega_4 + \omega_{12}$	2454.69	2454.53	2454.55		-
	$3\omega_{10}$	2497.06	2496.81	2496.84		-
	$\omega_8 + \omega_2$	2543.36	2543.18	2543.21	2571 (1	-
	$\omega_7 + \omega_2$	2560.21	2560.03	2560.06	2571.61	2571.0
	$\omega_6 + \omega_3$	2561.88	2561.75	2561.77		-
	$2\omega_{10}+\omega_8$	2583.87	2583.57	2583.60		-
	$2\omega_{10}+\omega_7$	2604.43	2604.12	2604.16		-
	$\omega_4 + \omega_2$	2637.19	2637.01	2637.04		-
	$\omega_6 + \omega_{12}$	2654.83	2654.67	2654.69		-
	$2\omega_{10}+\omega_4$	2672.84	2672.55	2672.59		-
	$2\omega_3$	2682.17	2682.08	2682.09	2683.73	2685.3
	$\omega_{10}+2\omega_8$	2682.49	2682.22	2682.25		-
	$\omega_{10} + \omega_8 + \omega_7$	2698.50	2698.13	2698.18		-
	$\omega_{10}+2\omega_7$	2716.79	2716.48	2716.52		-
	$\omega_{10} + \omega_8 + \omega_4$	2762.35	2762.03	2762.07		-
	$\omega_3 + \omega_{12}$	2774.94	2774.79	2774.81		-
	$\omega_{10} + \omega_7 + \omega_4$	2778.78	2778.42	2778.47		-
	$3\omega_8$	2795.90	2795.71	2795.74		-

$2\omega_8 + \omega_7$	2807.66	2807.38	2807.43	2832.20	2829.8
$\omega_8 + 2\omega_7$	2823.07	2822.77	2822.82		-
$\omega_6 + \omega_2$	2830.77	2830.59	2830.62		-
$3\omega_7$	2837.27	2837.03	2837.07	2862.66	2854.0
$\omega_{10} + 2\omega_4$	2853.14	2852.85	2852.89		-
$2\omega_{10}+\omega_6$	2867.29	2866.96	2867.00		-
$2\omega_8 + \omega_4$	2868.55	2868.29	2868.34		-
$2\omega_{12}$	2869.61	2869.47	2869.49		_
$\omega_8 + \omega_7 + \omega_4$	2882.68	2882.28	2882.36		-
$2\omega_7 + \omega_4$	2894.99	2894.69	2894.74		-
$\omega_8 + 2\omega_4$	2951.44	2951.15	2951.20		-
$\omega_3 + \omega_2$	2957.48	2957.34	2957.37	2960.26	2961.6
$\omega_7 + 2\omega_4$	2963.47	2963.18	2963.24		-
$\omega_{10} + \omega_8 + \omega_6$	2968.22	2967.88	2967.92	2986.09	2993.29
ω_{11}	2978.08	2977.99	2978.02	2985.26	2988.63
$\omega_{10} + \omega_7 + \omega_6$	2986.42	2986.07	2986.11		_
$2\omega_{10}+\omega_3$	2999.88	2999.62	2999.66		_
ω_1	3016.77	3016.71	3016.73	3018.64	3021.85
$3\omega_4$	3044.29	3044.08	3044.12		_
$\omega_{10} + \omega_4 + \omega_6$	3055.85	3055.49	3055.54		_
$\omega_{12} + \omega_2$	3070.39	3070.11	3070.16	3077.71	3078.46
ω_5	3071.24	3071.15	3071.18		3082.36
$2\omega_8 + \omega_6$	3085.21	3084.96	3084.99		_
$\omega_{10} + \omega_8 + \omega_3$	3090.23	3089.91	3089.95	3103.35	3109.32
ω_9	3091.51	3091.37	3091.40	3101.05	3104.87
$2\omega_{10} + \omega_{12}$	3096.00	3095.68	3095.72	3104.28	3104.33
$\omega_8 + \omega_7 + \omega_6$	3099.73	3099.45	3099.48		_
$\omega_{10} + \omega_7 + \omega_3$	3109.37	3109.00	3109.05		_
$2\omega_7 + \omega_6$	3113.42	3113.15	3113.19		_
$\omega_8 + \omega_4 + \omega_6$	3163.96	3163.63	3163.68		_
$\omega_7 + \omega_4 + \omega_6$	3177.82	3177.51	3177.55		_
$\omega_{10} + \omega_4 + \omega_3$	3179.00	3178.65	3178.70		_
$\omega_{10} + \omega_8 + \omega_{12}$	3182.49	3182.10	3182.15		_
$2\omega_8 + \omega_3$	3194.64	3194.40	3194.44		_
$\omega_{10} + \omega_7 + \omega_{12}$	3198.87	3198.49	3198.54		_
$\omega_8 + \omega_7 + \omega_3$	3209.16	3208.82	3208.87		_
$2\omega_7 + \omega_3$	3225.55	3225.29	3225.33		_
$2\omega_2$	3236.04	3235.77	3235.82	3241.51	3239.0
$\omega_{10} + 2\omega_6$	3254.81	3254.49	3254.54		-
$2\omega_4 + \omega_6$	3254.86	3254.60	3254.64		_
$2\omega_{10}+\omega_2$	3269.90	3269.58	3269.63	3276.28	3276.2
$\omega_{10} + \omega_4 + \omega_{12}$	3273.43	3273.07	3273.12		-
$\omega_8 + \omega_4 + \omega_3$	3274.99	3274.65	3274.71		_
$\omega_7 + \omega_4 + \omega_3$	3289.71	3289.36	3289.42		_
$2\omega_{8} + \omega_{12}$	3292.13	3291.84	3291.89		_
$\omega_8 + \omega_7 + \omega_{12}$	3304.39	3304.02	3304.09	3326.12	3327.3
$2\omega_7 + \omega_{12}$	3317.45	3317.12	3317.19	3320.12	-
$4\omega_{10}$	3349.38	3348.92	3348.99		_
$\omega_{10} + \omega_8 + \omega_2$	3356.18	3355.75	3355.81		- -
$2\omega_{10} + \omega_{8} + \omega_{2}$ $2\omega_{4} + \omega_{3}$	3366.59	3366.35	3366.39		_
$2\omega_4 + \omega_3$	2200.29	2200.22	3300.39		

S2. NAPHTHALENE

TABLE S2: 128 lowest-energy states of naphthalene computed with excitation energies given relative to the ZPE, computed with VHCI and VHCI+ENPT2. The reference data from VHCI[Brorsen] 2 are listed for comparison. All energies are in cm $^{-1}$.

Method	VHCI[Kylin-V]	VHCI[Brorsen]	VHCI[Kylin-V]	VHCI[Brorsen]
$N_{\mathscr{V}}$	2787046	2447654	7496009	6791503
$arepsilon_{ ext{VHCI}}$	1.0	1.0	0.5	0.5
Cores	64	40	64	40

ZPE	31760 18	31763 78	31772 27	31760 /1	31765.81	31761 15	31766 07	31763 1
	166.07	164.14	172.28	170.99	164.93	163.21	166.36	164.97
ω_{48}								
ω_{13}	179.82	177.98	185.99	184.36	178.73	177.02	180.34	178.82
$2\omega_{48}$	332.51	328.32	335.52	332.96	329.61	326.45	331.11	328.68
$\omega_{13} + \omega_{48}$	345.70	341.29	351.42	348.53	342.63	339.11	344.86	342.03
ω_{24}	357.37	355.55	366.35	364.43	356.49	354.60	360.55	358.69
$2\omega_{13}$	359.82	356.02	364.89	362.15	357.23	354.37	359.75	357.28
ω_{16}	390.32	388.15	397.04	395.10	389.23	386.99	392.48	390.51
ω_{28}	465.89	463.33	473.47	471.50	464.46	461.86	466.29	464.21
ω_{47}	474.50	471.76	483.15	480.96	472.97	470.26	475.48	473.19
$3\omega_{48}$	497.41	491.39	503.76	499.66	493.33	488.76	495.88	492.03
ω_{44}	508.31	506.68	519.44	517.87	507.48	505.60	511.21	509.43
$\omega_{13} + 2\omega_{48}$	510.45	503.71	522.01	516.77	505.81	500.34	509.84	505.19
ω_9	514.97	513.59	519.44	517.87	514.20	512.51	516.06	514.50
$\omega_{24} + \omega_{48}$	523.20	519.72	531.01	528.20	521.09	518.08	524.89	522.20
$2\omega_{13} + \omega_{48}$	524.42	517.86	535.22	530.00	519.99	514.76	524.19	519.66
$\omega_{13} + \omega_{24}$	537.71	533.68	543.84	540.94	534.83	531.62	539.05	536.32
$3\omega_{13}$	540.01	534.63	549.92	545.22	535.35	531.21	539.31	535.52
$\omega_{16} + \omega_{48}$	556.63	552.49	563.53	559.95	554.23	550.65	558.81	555.43
$\omega_{13} + \omega_{16}$	570.97	566.46	574.63	571.52	568.12	564.14	571.17	568.08
$\omega_{13} + \omega_{16}$ ω_{12}	624.40	622.11	634.55	631.74	623.06	620.69	628.55	626.03
	624.87	622.97	637.36	634.71	623.95	621.85	630.50	628.34
ω_{36}		626.91	641.92	637.91	628.71	623.54	632.21	
$\omega_{28} + \omega_{48}$	632.55							628.46
$\omega_{47} + \omega_{48}$	642.05	636.72	648.58	644.93	638.71	634.06	643.65	640.08
$\omega_{13} + \omega_{28}$	646.82	641.34	659.20	654.75	643.15	638.12	648.00	643.58
$\omega_{13} + \omega_{47}$	655.56	649.77	663.29	658.75	651.88	646.70	656.94	652.51
$4\omega_{48}$	664.60	657.23	667.74	663.57	659.17	654.86	659.51	656.58
$\omega_{44} + \omega_{48}$	676.14	671.95	685.53	681.79	673.66	669.89	679.00	675.59
$\omega_{13} + 3\omega_{48}$	677.62	668.72	684.70	678.94	670.91	665.20	673.09	668.71
$\omega_9 + \omega_{48}$	684.01	679.90	692.24	688.71	681.66	677.92	684.27	681.00
$\omega_{24} + 2\omega_{48}$	689.91	683.70	700.10	694.99	685.99	680.85	691.25	686.62
$\omega_{13} + \omega_{44}$	689.95	685.62	701.46	697.50	687.42	683.47	692.25	688.68
$2\omega_{13} + 2\omega_{48}$	690.81	681.84	697.94	692.70	684.05	678.24	687.40	682.64
$\omega_9 + \omega_{13}$	696.95	692.82	704.42	700.68	694.62	690.77	697.49	694.02
ω_{15}	698.10	692.28	710.45	706.13	694.12	688.58	697.00	692.45
$\omega_{13} + \omega_{24} + \omega_{48}$	703.75	697.22	718.87	713.34	699.44	693.64	706.81	701.55
$3\omega_{13} + \omega_{48}$	705.30	696.99	716.46	709.95	699.06	693.84	703.11	698.46
$2\omega_{24}$	714.17	711.07	726.64	723.51	712.47	709.58	718.89	716.24
$2\omega_{13} + \omega_{24}$	717.12	711.13	726.84	721.87	713.40	708.26	719.30	714.75
$4\omega_{13}$	719.43	713.00	729.66	724.23	714.69	711.12	718.80	715.57
$\omega_{16} + 2\omega_{48}$	724.61	717.14	735.29	729.38	719.86	713.51	725.49	719.96
$\omega_{16} + 2\omega_{48}$ $\omega_{13} + \omega_{16} + \omega_{48}$	738.38	730.32	751.08	744.89	733.06	726.04	739.63	733.66
	746.62	743.08	757.28	753.66	744.66	741.16	751.95	748.59
$\omega_{16} + \omega_{24}$	740.02	744.32	762.33	756.72	744.80	741.10	751.95	746.55
$2\omega_{13} + \omega_{16}$							757.99	
ω_8	758.82	756.28	759.90	757.56	757.47	754.72		755.65
ω_{46}	767.43	762.59	776.02	772.35	764.17	759.55	767.11	763.25
ω_{27}	771.40	768.09	781.20	778.30	769.51	766.00	773.43	770.49
$2\omega_{16}$	781.49	777.40	791.86	788.22	779.18	775.39	785.74	782.35
$\omega_{12} + \omega_{48}$	791.58	786.13	799.14	794.82	787.82	783.00	792.13	788.07
$\omega_{36} + \omega_{48}$	792.17	787.79	805.03	801.14	789.54	785.54	796.70	793.08
ω_{23}	795.14	792.60	806.27	803.52	793.86	791.02	800.32	797.69
$\omega_{28} + 2\omega_{48}$	798.23	789.63	807.28	801.21	792.21	784.60	797.11	790.83
$\omega_{12} + \omega_{13}$	805.27	800.22	813.47	809.28	801.87	797.42	806.31	802.48
$\omega_{13} + \omega_{36}$	806.27	802.02	819.31	815.42	803.79	799.86	809.18	805.60
$\omega_{47} + 2\omega_{48}$	808.03	800.48	818.38	812.80	803.19	796.81	808.03	802.59
$\omega_{13} + \omega_{28} + \omega_{48}$	812.58	803.49	826.33	820.00	806.12	797.81	811.04	804.13
ω_{11}	820.54	814.49	833.52	828.98	819.91	814.70	821.24	816.05
$\omega_{24} + \omega_{28}$	823.15	818.86	834.37	830.55	820.58	816.46	826.72	823.05
	823.78	817.36	836.54	831.29	815.65	808.04	824.87	819.83
$\omega_{13} + \omega_{47} + \omega_{48}$	825.78	817.95	832.77	826.82	820.54	813.49	825.49	819.50
$2\omega_{13} + \omega_{28}$		817.93	840.69	826.82				
60 L 60		8 /D 3H	X4U 09	さいし さい	828.21	824.06	833.46	829.7
$\omega_{24} + \omega_{47}$	830.72							
$egin{array}{l} \omega_{24} + \omega_{47} \ 2\omega_{13} + \omega_{47} \ \omega_{44} + 2\omega_{48} \end{array}$	834.55 842.10	826.54 835.94	844.69 851.29	838.59 846.35	829.43 838.21	822.42 832.97	833.86 843.02	827.81 838.49

5.0	0.45 61	042 61	051 21	040 22	843.51	842.26	045 27	012 02
$5\omega_{48}$	845.61	842.61	851.31	848.32			845.37	843.83
$\omega_9 + 2\omega_{48}$	851.05	844.97	859.63	848.32	847.24	842.06	851.33	847.08
$\omega_{24} + 3\omega_{48}$	855.11	848.13	865.48	860.10	850.16	845.78	854.96	851.20
$\omega_{13} + \omega_{44} + \omega_{48}$	856.22	849.44	866.79	861.35	851.88	845.91	856.76	851.66
$\omega_{16} + \omega_{28}$	857.19	852.20	868.66	864.39	854.08	849.47	859.85	855.79
$\omega_{13} + 4\omega_{48}$	858.48	854.08	867.98	863.70	855.26	852.58	858.82	855.98
$\omega_{15} + \omega_{48}$	861.11	851.91	881.34	875.13	853.36	844.50	857.28	849.97
$\omega_9 + \omega_{13} + \omega_{48}$	864.18	857.62	872.30	867.14	860.08	854.23	864.43	859.50
$\omega_{24} + \omega_{44}$	864.73	861.59	876.73	873.84	863.00	859.95	869.98	867.11
$\omega_{16} + \omega_{47}$	866.39	860.34	878.00	872.99	862.42	857.15	867.90	863.44
$\omega_{13} + \omega_{24} + 2\omega_{48}$	868.87	860.76	882.12	875.96	863.00	857.44	867.96	863.18
$2\omega_{13} + \omega_{44}$	869.10	863.14	880.37	875.48	865.42	860.27	870.74	866.29
$2\omega_{13} + 3\omega_{48}$	870.82	866.30	881.01	876.67	867.44	864.74	871.80	868.90
$\omega_9 + \omega_{24}$	871.87	868.79	881.77	878.77	870.31	867.22	874.50	871.72
ω_{26}	872.39	868.36	881.57	878.37	869.98	865.87	872.97	869.54
$\omega_{13} + \omega_{15}$	875.29	865.96	888.17	881.85	868.07	859.43	871.48	864.43
$\omega_9 + 2\omega_{13}$	876.44	870.73	884.52	879.92	873.00	868.04	877.26	872.95
$2\omega_{24} + \omega_{48}$	880.42	875.19	894.11	889.74	877.24	872.67	883.70	879.68
$2\omega_{13} + \omega_{24} + \omega_{48}$	882.24	874.41	894.36	888.12	876.95	871.57	882.99	878.25
$3\omega_{13} + 2\omega_{48}$	884.87	880.53	N/A	N/A	881.36	879.05	885.05	882.53
$\omega_{16} + 3\omega_{48}$	890.16	881.89	900.61	894.06	884.63	879.12	889.90	885.13
$\omega_{13} + 2\omega_{24}$	893.30	888.25	906.76	902.35	890.26	885.75	896.99	892.97
$\omega_{16} + \omega_{44}$	898.66	894.97	910.66	907.06	896.61	893.08	903.03	899.76
$4\omega_{13} + \omega_{48}$	899.67	895.97	N/A	N/A	897.18	895.66	900.37	898.47
$\omega_{13} + \omega_{16} + 2\omega_{48}$	904.30	894.73	917.06	909.89	897.31	890.58	901.41	895.71
$\omega_9 + \omega_{16}$	905.52	901.85	914.02	910.60	903.54	899.98	907.95	904.77
$\omega_{16} + \omega_{24} + \omega_{48}$	913.62	907.32	927.67	922.41	909.72	904.17	917.95	913.06
$2\omega_{13} + \omega_{16} + \omega_{48}$	918.82	909.70	N/A	N/A	914.92	909.09	N/A	N/A
$\omega_{13} + \omega_{16} + \omega_{24}$	N/A	N/A	N/A	N/A	922.86	915.93	N/A	N/A
$\omega_8 + \omega_{48}$	925.76	920.94	932.49	928.78	923.02	918.50	924.79	920.99
$\omega_{13} + \omega_{16} + \omega_{24}$	926.53	920.47	N/A	N/A	922.86	915.93	N/A	N/A
$\omega_{46} + \omega_{48}$	929.32	920.81	934.87	929.72	N/A 926.28	N/A 921.49	924.76	918.63
ω_{14}	929.47	924.61	939.73	935.93			928.59 935.20	924.55
$2\omega_{28}$	933.24	928.14	944.12	940.16	929.92	925.26		931.46
$\omega_{27} + \omega_{48}$	936.79	931.15	950.08	946.21 942.90	933.05	927.61	939.19	934.74
$\omega_8 + \omega_{13}$	940.24	935.50	946.85	942.90	937.55	933.07	939.85	936.03
$\omega_{28} + \omega_{47}$	941.09	935.51	952.80		937.70	932.45	944.23	939.78 934.46
$\omega_{13} + \omega_{46}$	941.34	935.73	952.10 959.87	947.36	936.43	929.18	940.35	
$2\omega_{16} + \omega_{48}$	948.54	941.75 944.32		954.68 954.47	944.36	938.39	951.31	946.29 946.78
$2\omega_{47}$	949.74 950.44		958.77	958.26	946.42	941.59	950.96	
$\omega_{13} + \omega_{27}$	950.44	944.87	962.79		946.92	941.45	951.57	946.73
ω_{43}		945.72	962.04	958.66	947.59	943.25	953.45	950.44
ω_{45}	950.84	946.08	959.09	955.62	947.59 950.85	942.82	951.52	947.73
$\omega_{12} + 2\omega_{48}$	956.44	949.61	N/A	N/A N/A		943.22 947.76	N/A 958.64	N/A 953.98
$\omega_{36} + 2\omega_{48}$	956.93	950.73	N/A 967.86		953.07 956.06			
ω_{10}	959.66 961.92	954.46 955.57	907.80 N/A	963.93 N/A	958.10	950.76 952.26	958.62 N/A	954.32 N/A
$\omega_{13} + 2\omega_{16}$	962.95	958.31	974.18	970.24	958.10	955.38	966.45	962.65
$\omega_{23} + \omega_{48}$	964.02	958.95	974.18	970.24	961.15	956.01	963.68	959.30
ω_{25}	971.12	963.03	970.04 N/A	972.83 N/A	965.50	958.33	N/A	939.30 N/A
$\omega_{12} + \omega_{13} + \omega_{48}$	971.12	964.95	N/A	N/A	967.38	961.43	N/A	N/A
$\omega_{13} + \omega_{36} + \omega_{48}$	971.03	970.33	985.82	982.00	907.38	967.95	977.97	974.49
$\omega_{28} + \omega_{44}$	974.37	970.33	987.12	983.12	971.90	968.66	977.74	974.49
$\omega_{13} + \omega_{23}$	980.35			989.59				
$\omega_{24} + \omega_{36}$	980.33 981.17	977.26 977.51	992.73 991.92	989.39 988.43	978.72 978.97	975.60 975.51	986.20 984.18	983.25 981.02
$\omega_{12} + \omega_{24}$								
$\omega_9 + \omega_{28}$	981.52	977.47	991.96 993.34	988.41 989.39	979.14	975.18	982.10	978.66
$\omega_{44} + \omega_{47}$	982.85	978.47 977.33	993.34 N/A	989.39 N/A	980.43	976.26 974.10	986.50 N/A	982.75 N/A
$\omega_{12} + 2\omega_{13}$	984.26 985.31	977.33	N/A N/A	N/A N/A	979.90 981.77	974.10 976.76	N/A N/A	N/A N/A
$2\omega_{13} + \omega_{36}$	988.02	980.43	1000.18	994.89	981.77	975.77	987.55	981.99
$\omega_{11} + \omega_{48}$	988.02	980.43	N/A	994.89 N/A	984.56	973.77	987.33	981.99
$\omega_{24} + \omega_{28} + \omega_{48} \\ \omega_9 + \omega_{47}$	989.20	985.77	999.56	995.86	987.78	983.63	990.01	987.45
	990.08	990.37	999.30 N/A	995.80 N/A	992.97	987.05	991.09 N/A	987.43 N/A
$\omega_{24} + \omega_{47} + \omega_{48}$	991.US	990.31	11/11	1 1/1/	224.71	201.03	1 N/ /1	1 N/ /A

S3. EXAMPLES FOR QUICK START OF KYLIN-V

Here we provide the detailed input and command lines for three examples in this paper. Through this section, we expect users can become familiar with Kylin-V and get start for their own models immediately.

A. Calculation of spectra of PBI-I trimer using SS-TD-DMRG

The PBI-trimer has 6 excitonic states and 15 vibrational modes. One should prepare a Hamiltonian input file pbi.input before calculation with following contents:

```
# electronic part
6 14
                  // number of excitonic states, non-zero excitonic Hamiltonian terms
1 1 2.13
1 3 -0.06203345
3 1 -0.06203345
                  // i j \epsilon_{ij}
# vibrational part
                  // number of vibrational modes
1 0.036847869299999995 10 // K, \omega_{K}, maximal occupation number
2 0.17567873039999998 10
# 1st-order coupling part
                  // number of terms
1 1 1 0.043909303913508266 // K i j g_{ij}^{K}
2 1 1 0.16480125714678628
# 2nd-order coupling part
                  // number of terms
#reordering
0 1 6 7 8 9 10 2 3 11 12 13 14 15 4 5 16 17 18 19 20
// default: 0^N_{ex}-1 = ex DoFs; N_{ex}^n_{ex}+1 = vib DoFs
```

All comments labelled with # are required and those with // are deleted in pratice. Then we can construct the necessary operators and states by running the kln-holstein.a command:

```
kln-holstein.a -i pbi.input -t 1e-8
# -i (input file)
# -t (truncation threshold for MPO compression)
```

Once the construction program is finished, two new directories exist: State/, Op/ which save the MPSs and MPOs respectively. The newest version builds not only the total Hamiltonian Op/H_tot but also all the density single operators $\{\hat{b}_j^{\dagger}\hat{b}_j\}$ named as Op/Density_j and pure excitonic and vibrational Hamiltonian Op/H_e,Op/H_v. Some other operators except raising/lowering operators $(\hat{b}_j^{\dagger},\hat{b}_j)$ which break the U(1)-symmetry are not built. Despite this, one may need some special operators due to their problems. Kylin-V supports the addition and multiplication of operators by kln-add-mpo.a commands. One can always build their own operators in this way unless they do not consist of fundamental operators.

```
kln-add-mpo.a -x o1 -y o2 -a c1 -b c2 -o res
# -x (MPO file 1)
# -y (MPO file 2)
# -a (coefficient for MPO 1)
# -b (coefficient for MPO 2)
# -o (result MPO file)
```

This created a resulting operator of $\hat{O}_{res} = c1\hat{O}_1 + c2\hat{O}_2$.

Similarly for MPS wave functions, Kylin-V only builds $N_{\rm ex}$ states: State/Ele-*.mps without vibrational excitation. But one can still obtain assigned state using kln-add-mps.a command.

```
kln-add-mps.a -x s1 -y s2 -a c1 -b c2 -o res
# -x (MPS file 1)
# -y (MPS file 2)
# -a (coefficient for MPS 1)
# -b (coefficient for MPS 2)
# -o (result MPS file)
```

This created a resulting operator of $|res\rangle = c1|s1\rangle + c2|s2\rangle$. For example, the PBI-1 model need linear combination of three S_1 states: $\frac{1}{\sqrt{3}}(|S_1^1\rangle + |S_1^2\rangle + |S_1^1\rangle)$:

```
kln-add-mps.a -x State/Ele-1.mps -y State/Ele-3.mps -a 0.5773502691896258 -b 0.5773502691896258 -o State/med.mps kln-add-mps.a -x State/med.mps -y State/Ele-5.mps -a 0.5773502691896258 -b 0.5773502691896258 -o State/init_s1.mps
```

And the inital linearly combined S_2 state can be obtained in the same way. Thereafter, we can carry out the time evolution using kln-tdvp.a command:

```
kln-tdvp.a -w State/init_s1.mps -o Op/H_tot -s [3,50,2447,0] -t 1e-6 -v 0.2 -D 6000
# -w inital wave function
# -o Hamiltonian operator
# -t SVD threshold
# -v time step
# -D maximal bond dimension
# -s four stages of time evolution :
[global Krylov, 2TDVP, SS, 1TDVP].
```

Note that running SS needs at least one 2TDVP sweep. The resulting wave function at step j is saved as State/T-j.mps for subsequent analyzation. To simulate the final absorption spectra, one has to obtain the so-called time-correlation function. This needs the kln-join.a command:

```
kln-join.a -a State/T-0.mps -b State/T-j.mps -o Op/Eye
```

The line above calculates the expectation $\langle \Psi_0 | \hat{I} | \Psi_i \rangle$. Then we can use Fourier transform to obtain the spectra.

B. Calculation of population of spin-boson model using HM-TD-DMRG

The only difference between TD-DMRG and HM-TD-DMRG lies on the MPO construction. HM-TD-DMRG uses different input format and command kln-holstein-map.a. The HM input file is much more complicated to write because we use the projected-purification in Kylin-V. Therefore, we recommend users to generate HM input file by the python script, bin/hm.py together a regular input file no_mapping.input in section S3 A. Beform performing HM, one should make sure that the number of effective modes (per block) N_{eff} and blocks N_b are well-defined in bin/hm.py:

```
# number of direct modes
Neff = 6
# number of INDIRECT blocks
Nbk = 14
```

Copy the file into your working directory and run:

```
python3 hm.py no_mapping.input
```

The HM input file map.input then exists. Remember to change the NumTerm in the first line into realistic number of terms in the file. After these preparation, one can build the HM Hamiltonian and perform time-evolution by a series of commands:

```
kln-holstein-map.a -i map.input -t 1e-8
kln-tdvp.a -w State/Ele-1.mps -o Op/H_tot -s [0,160,160,0] -v 0.05 -D 6000 -t 1e-4
for((i=0;i<320;++i)); do kln-join.a -a State/T-$i.mps -b State/T-$i.mps -o Op/Density_1; done
```

Then the population dynamics of spin-up state is obtained.

C. Calculation of anharmonic frequencies of ethylene using VHCI

Kylin-V currently supports VHCI Watson models with Coriolis couplings thus accepts special input file form:

```
1 1 0 0 0 0 5.927529690151226 \\ \omega_{i} Q_{i} Q_{i} \\
-1 -1 0 0 0 0 -5.927529690151226 \\ \omega_{i} P_{i} P_{i} \\
2 2 0 0 0 0 6.339926014913254
-2 -2 0 0 0 0 -6.339926014913254
...
1 -2 1 -2 0 0 -0.02773628575631299 \\ \zeta_{ijkl} Q_{i} P_{j} Q_{k} P_{1}
...
1 1 1 0 0 0.0635927789210315 \\ F_{ijkl} Q_{i} Q_{j} Q_{k} Q_{1}
1 1 1 1 0 -0.002136909096219944 \\ F_{ijklm} Q_{i} Q_{j} Q_{k} Q_{1} Q_{m}
1 1 1 2 6 0.0010678391467589675 \\ \\ F_{ijklmn} Q_{i} Q_{i} Q_{j} Q_{k} Q_{1} Q_{m}
...
```

Kylin-V treats Watson Hamiltonian terms equally because all of them can be represented by \hat{Q},\hat{P} and scalars. After that one can run the kln-watson-hci.a command:

```
kln-watson-hci.a ethylene.inp 100 10 0.5 0.01
# [input file] [number of targetted states] [maximal total quanta]
[threshold for VHCI] [threshold for ENPT2]
```

Then one can easily find all the information like variational and perturbed energies, dominating configurations and time cost in the output.

¹M. B. R. GEORGES and M. HERMAN, Molecular Physics **97**, 279 (1999).

²A. U. Bhatty and K. R. Brorsen, Molecular Physics **119**, e1936250 (2021).