Motivation Amino acid properties Methods Cross-validation Conclusions and perspectives

Encodings of amino acids and their impact on signal peptide prediction

Michał Burdukiewicz

University of Wrocław, Department of Genomics, Poland

Outline

- Motivation
- 2 Amino acid properties
 - Size
 - Polarity
 - PI
 - Hydrophobicity
 - α -chain
- Methods
 - Amino acid groupings
 - Cross-validation
- Cross-validation
 - AUC
 - H
 - Specificity
 - Mean cleavage site displacement
- 6 Conclusions and perspectives

Motivation
Amino acid properties
Methods
Cross-validation
Conclusions and perspectives

To reduce dimensionality of the problem, signalHsmm aggregates amino acids to four physicochemical groups.

Groups
H, K, R
C, F, I, L, M, U, V, W
N, Q, S, T
A, D, E, G, P, Y

Classification of amino acids used by signalHsmm.

Motivation
Amino acid properties
Methods
Cross-validation
Conclusions and perspectives

Is the default grouping optimal?

How does grouping of amino acids influence detection of signal peptides and cleavage sites?

Assumptions:

- 1 The optimal number of amino acid groups is 4.
- **②** Important properties are: size, polarity, charge, hydrophobicity and probability of being in the α -chain.
- All properties above are equally important and distinguish signal peptides from matures proteins.

Outline

- Motivation
- 2 Amino acid properties
 - Size
 - Polarity
 - PI
 - Hydrophobicity
 - α -chain
- Methods
 - Amino acid groupings
 - Cross-validation
- 4 Cross-validation
 - AUC
 - H
 - Specificity
 - Mean cleavage site displacement
- Conclusions and perspectives

Polarity
PI
Hydrophobicity
α-chain

Polarity
PI
Hydrophobicity
α-chain

Outline

- Motivation
- 2 Amino acid properties
 - Size
 - Polarity
 - PI
 - Hydrophobicity
 - α-chain
- Methods
 - Amino acid groupings
 - Cross-validation
- Cross-validation
 - AUC
 - H
 - Specificity
 - Mean cleavage site displacement
- 5 Conclusions and perspectives

For each combination of each variant of all properties:

- calculate euclidean distance between amino acids;
- cluster amino acids (complete-linkage clustering);
- extract four highest clusters of amino acids.

67 amino acid groupings in total (signalHsmm, 2 standard, 65 newly created).

For each grouping:

- sample 3722 from 134044 negative sequences (to have balanced data set);
- perform 5-fold cross-validation using all groupings (train an instance of signalHsmm using a single grouping);
- o repeat steps 1:2 15 times.

Outline

- Motivation
- 2 Amino acid properties
 - Size
 - Polarity
 - Pl
 - Hydrophobicity
 - α -chain
- Methods
 - Amino acid groupings
 - Cross-validation
- 4 Cross-validation
 - AUC
 - H
 - Specificity
 - Mean cleavage site displacement
- Conclusions and perspectives

Groups

A, F, I, L, M, V, W K, R

C, G, N, P, Q, S, T, Y D, E, H

Best grouping of amino acids - AUC.

Groups

A, L, M, N, Q, S, T, V D, E, H, K, R C, G F, I, P, W, Y

Worst grouping of amino acids - AUC.

Groups A, F, I, L, M, V, W K, R

C, G, N, P, Q, S, T, Y D, E, H

Best grouping of amino acids - H.

Groups

A, L, M, N, Q, S, T, V D, E, H, K, R C, G F, I, P, W, Y

Worst grouping of amino acids - H.

Groups

A, C, G, S H, K, R F, I, L, M, N, P, Q, T, V, W, Y D, E

Best grouping of amino acids - specificity.

Groups A. M

D, E, H, K, R

G. N. Q. S. T

C, F, I, L, P, V, W, Y

Worst grouping of amino acids - specificity.

Mean cleavage site displacement

Groups
A, C, G, N, P, Q, S, T
H, K, R
D, E
F, I, L, M, V, W, Y

Best grouping of amino acids - mean cleavage site displacement.

Groups
A, G, I, L, M, P, V
H, K, R
D, E
C, F, N, Q, S, T, W, Y

Worst grouping of amino acids - mean cleavage site displacement.

Median cleavage site displacement

Groups
A, C, G, N, P, Q, S, T, V
H, K, R
D, E
F, I, L, M, W, Y

Best (ex aequo) grouping of amino acids - median cleavage site displacement.

Groups A, C, G, I, N, P, Q, S, T, V H, K, R D, E F, L, M, W, Y

Best (ex aequo) grouping of amino acids - median cleavage site displacement.

Groups
A, G, I, L, M, P, V
H, K, R
D, E
C, F, N, Q, S, T, W, Y

Worst grouping of amino acids - median cleavage site displacement.

Outline

- Motivation
- 2 Amino acid properties
 - Size
 - Polarity
 - PI
 - Hydrophobicity
 - α-chain
- Methods
 - Amino acid groupings
 - Cross-validation
- 4 Cross-validation
 - AUC
 - H
 - Specificity
 - Mean cleavage site displacement
- 5 Conclusions and perspectives

Motivation Amino acid properties Methods Cross-validation Conclusions and perspectives

Grouping on amino acids has strong impact on misclassifications.

Detection of signal peptides:

- charged amino acids should be grouped separately;
- aromatic amino acids should not be grouped together;

Detection of cleavage sites:

- hydrophobic amino acids should be grouped together;
- amino acids typical for cleavage sites (A, G, I, L, P, V) should not be grouped together.