

ACM-China International Parallel Computing Challenge

目录 CONTENTS

- 1. 参赛队伍简介
- 2. 应用程序运行的硬件环境和软件环境
- 3. 应用程序的代码结构
- 4. 优化方法
- 5. 程序运行结果
- 6. 其他可行的优化方法

01 参赛队简介

• 队伍名称: 网速好快

• 队伍编号: IPCC20224013

• 参赛单位:中国科学院 计算机网络信息中心

• 参赛队员: 邱霁岩、陈宇轩、白晨晗、韩子栋(排名不分先后)

• 指导老师: 张鉴

02 应用程序运行的硬件环境和软件环境

- 硬件设备
- CPU: AMD EPYC 7452 32-Core Processor
- 双节点,每节点双socket,每socket 32核心
- 软件环境:
- OS: CentOS Linux release 7.9.2009
- GCC compiler: GCC-8.1.0

	原始程序	优化后
Case 1	492.504 s	0.081s
Case 2	约9小时	0.104s
加速比 Case 1	1.000	6080.296
加速比 Case 2	1.000	311538.462

假设要处理的数据集是 $S = \{x_i \mid i = 1, 2, ..., n\}$,共有n个数据点,任两点间的距离可以由距离函数d(.,.)计算;要选择k个点作为支撑点,标记为 $P = \{p_j \mid j = 1, 2, ..., k\}$ 。对于S中任意的一个数据点x,其基于支撑点集合重建的坐标是其到各支撑点的距离形成的向量,

$$x^p = \left(d(x, p_1), \dots, d(x, p_k)\right)$$

本项目采用距离和目标函数,即任意两点的重建坐标间的切比雪夫距离的和,越大越好:

$$\sum L_{\infty}(x^p, y^p), x, y \in S$$

其中
$$L_{\infty}((a_1, a_2, ..., a_k), (b_1, b_2, ..., b_k)) = \max_{i}(|a_i - b_i|)$$

需要准确地求出(可采用但不限于穷举法,但要保证结果的正确性)目标函数值最大和最小的各 1000 个支撑点集合。

距离计算函数,以k=3为例

```
def L(a, b, c):
    sum=0
    for x in P:
        for y in P:
```

return sum

$$sum = sum + max(abs(L_{ax} - L_{ay}), abs(L_{bx} - L_{by}),$$

$$abs(L_{cx} - L_{cy}), \cdots)$$

• 原主程序

• 原程序切比雪夫距离和(时间占比98%)

应用程序的算法流程如图所示。

- 1. 读取文件
- 2. 每一个线程分配任务,开始并行计算
- 3. 计算完成之后,每个节点的指派一个线程合并该节点的结果
- 4. 使用MPI通信到0号节点再次合并结果。就可以得到最终结果。

04 优化方法

- 1. 编译优化
- 2. 算法和数据结构优化
- 3. 数值量化
- 4. 向量化
- 5. 并行优化

4.1 编译优化

- 默认 gcc -00 pivot.c -lm -o pivot (gcc 4.8.5)
- 替换后 mpicc -std=c11 -Ofast -march=native -o pivot pivot.c -lm
- 典型的编译优化:
 - 常量传播
 - 内联函数
 - 循环展开

•		ı

算例	优化前	优化后	加速比
CASE 1	492.504 s	48.747 s	10.103
CASE 2	约9小时	约40分钟	

4.2 算法和数据结构优化

1. 根据对称性,只需要计算其中一半。

$$\sum L_{\infty}(x^{p}, y^{p}), x, y \in S = 2 \sum L_{\infty}(x^{p}, y^{p}), x, y \in S, x < y$$

2. 复用坐标重构结果

4.2 算法和数据结构优化

- 3. 用堆排序、快速排序代替冒泡排序
- 维护最小的M个使用大顶堆
- 维护最大的M个使用小顶堆

算例	优化前	优化后	加速比
CASE 1	48.747 s	19.659 s	2.479
CASE 2	约40分钟	大于10分钟	

4.3 数值量化 (1/2)

- 将范围在 [0, 1] 的实数坐标量化为范围在 [0, Q] 的整数坐标
- 对于实数 $x \in [0,1]$,量化后的结果为 $\tilde{x} = \left[Qx + \frac{1}{2}\right]$
- 利用 $\sum L_{\infty}(\tilde{x}^p, \tilde{y}^p)/Q$ 的结果估算 $\sum L_{\infty}(x^p, y^p)$ 的值
- 误差 $\delta = |\sum L_{\infty}(x^p, y^p) \sum L_{\infty}(\tilde{x}^p, \tilde{y}^p)/Q| \le \sqrt{dim} \binom{n}{2}/Q$
 - 求 $\sum L_{\infty}(\tilde{x}^p, \tilde{y}^p)/Q$ 最大(最小)的 M 组支撑点
 - 以及与第 M 大(小)的结果差距不超过 2δ 的支撑点
- 最后复原为实数坐标计算 $\sum L_{\infty}(x^p,y^p)$, 排序求得最终结果

4.3 数值量化 (1/2)

4.4 向量化(1/2)

- int8 部分:
 - 所有int8数据按照256位对齐。
 - 所有运算都转化为epi8操作。
 - 每个int8向量包含32个点。
- 累加溢出怎么办?
 - 用两个int8模拟int16
 - 使用位运算实现指令集未实现全加器。
 - 距离求和=进位次数×128+尾数。

不对齐

4.4 向量化(2/2)

- double 部分的瓶颈是访存
- 设计依照减少访存次数设计向量算法

4.4 向量化(2/2)

- 方案2: 读入一次+交换位置
- 对齐、减少读入次数
- 需要处理内部计算

L6 ...

- 并行策略 1
 - 1. 将递归的第一层循环并行化
 - 2. 为每个线程分配搜索树的第一层
 - 3. 相邻根节点分配在同一个线程上,尽可能多的复用父节点结果。
 - 4. 每个线程维护M个有序最大、最小支撑点。最后使用单线归并排序得到结果。
- 任务分配不均
 - 搜索树的每个子节点都大于父节点, 树结构极不对称。
 - 每一层根节点个数呈现O(n^{k-1})级别递减。
 - 第一层有n个节点。
 - 第一层的第i个节点有 $\binom{k-1}{i-1}$ 叶子节点。

- 并行策略 2
 - 将递归展开为循环。
 - 为每个线程均匀分配相同多的叶子结点。
 - 通过进位的方式递推下一个要计算的叶子结点。
- 任务均分算法:
 - 为每个线程分配任务编号。
 - 每个任务编号起始点对。
 - 依次计算负责的中心点对

• 并行策略1,2效果对比

⊙ Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

CPU效率统计图对比,策略1(左图),策略2(右图)

算例	优化前	策略1	策略1加速比	策略2	策略2加速比	策略2/策略1
CASE 1	1.921s	0.255 s	10.234	0.134	14.230	1.903
CASE 2	12.133 s	11.964 s	-	3.487	-	3.431

4.4 并行优化(1/2)

- MPI并行
 - 从节点向主节点发送运算结果
 - 将两节点计算结果合并。
 - 使用快速排序计算最终结果。

算例	优化前	优化后	加速比
CASE 1	1.921s	0.081 s	23.716
CASE 2	12.133 s	0.104 s	116.66

05 程序运行结果

	原始程序	编译优化	算法和数据结 构优化	数值量化 和向量化	并行优化
Case 1	86.611	48.747	19.659	1.921	0.081
Case 2	~32400.000	~2400.000	~600.000	12.133	0.104
加速比 Case 1	1.000	10.103	25.052	256.379	6080.296
加速比 Case 2	~1.000	~13.500	~54.000	~2670.403	~311538.462

* Case 2 包含主办方提供的估算数值

06 其他优化方法

- 1. 网格剪枝 ——适用于n较大、dim较小情况
- 2. TSP剪枝——适用于点有明显聚类的情况
- 3. 采样计算——适用于n非常大的情况
- 4. SVD——适用于n较小, k较大的情况

- 将所有的点划分到每个格子里,
- 选取k个格子(可重复)
- 每个格子选取k个点(不重复)
- 计算这k个格子中的k个点得到的 SumDistance范围

440个点对

1430个点对

64个格子去组合共计2080种情况,此处按照上界排序可以对前M个最大最小点对的SumDistance做预估

- 通过中心点的距离预估:gridSumDistance
- 是一个无偏估计
- 计算距离之后,要使用频数加权,乘以桶中点个数
- 上下界: $vor=\pm 2*$ 格子对角线* $\binom{k}{n}$
- 时间复杂度 $O(m^{k+2})$,m为格子数,远远小于总体时间复杂度 $O(n^{k+2})$

CASE1 最多可减少50%计算

CASE 2 点过于稀疏,效果不佳