1. Introduction to Apache Spark

Hadoop vs Spark

Apache Hadoop and Apache Spark are both used for **Big Data processing**, but they differ in architecture, speed, and ease of use.

Feature	Hadoop (MapReduce)	Apache Spark
Processing Speed	Slow (disk-based processing)	Fast (in-memory processing)
Ease of Use	Complex, requires extensive coding	Simple, supports multiple languages
Processing Modes	Batch processing only	Batch, streaming, SQL, ML, and graph processing
Fault Tolerance	Replication-based	RDD lineage-based recovery
Resource Management	Uses YARN	Can use YARN, Kubernetes, or Mesos

HDFS (Hadoop Distributed File System)

- A distributed file system that stores data across multiple nodes.
- Stores large datasets efficiently and allows parallel processing.

YARN (Yet Another Resource Negotiator)

- Manages cluster resources efficiently.
- Alternatives: Docker and Kubernetes for containerised environments.

2. Limitations of MapReduce

MapReduce is **not suitable for real-time or interactive processing** due to several reasons:

1. High Latency

- Writes intermediate data to disk, increasing I/O overhead.
- Slow processing due to disk dependency.
- Inefficient for real-time analytics.

2. Complex & Boilerplate Code

- Requires separate Mapper and Reducer classes.
- Hard to maintain and debug.

3. Only Supports Batch Processing

- · Cannot handle streaming data.
- Inefficient for real-time fraud detection, log processing, or monitoring.

4. Rigid Execution Flow

- Strict Map → Reduce flow.
- Difficult to implement custom workflows.

5. No Interactive Mode & Limited Job Monitoring

- Jobs must fully execute before results are visible.
- Debugging & optimization are difficult.

3. Apache Spark: Overview & Features

What is Apache Spark?

- An open-source distributed computing system for processing large-scale data efficiently.
- Much faster than Hadoop due to in-memory processing.

Processing Capabilities

- Batch Processing Like MapReduce but much faster.
- Real-time Streaming Processes real-time data.
- SQL Queries Query structured data efficiently.

- Machine Learning (MLlib) Built-in ML support.
- **Graph Processing (GraphX)** For graph-based computations.

Characteristics of Apache Spark

Feature	Description	
In-Memory Processing	Reduces disk I/O, increasing speed.	
Ease of Use	Supports Scala, Python, Java, R.	
Unified Framework	Handles batch, streaming, ML, and graph processing.	
Storage Flexibility	Works with HDFS, Amazon S3, NoSQL, SQL databases.	