		Infemum		
(D) A) Lower Bound	Upper Bound	200	Supremum	Bourded
1.010	None	None	None	(Yes/NO) No
② A2 TT	TH	TT WA	71+1	Yes
3 Az None	TI-1	None	π-1	No
4 Aq None	None	None	None	No
(3) As 1	2	1	2	Yes
6 A6 [LATER]				
(F) A7 0	2	0	2	Yes
Calculation for A 4:		31 >1 D		
	n²-3 >	l or x	2-3<-1	A.
	x²>4 ₽		n² 6 < 2 √	
	n>2 or n	1<-2	- 1/2 < 01 <	V2
	A4 = C-			
Note: I have given	only one	lower bound	l Juffer 6	and above.
Any number	bigga than a	in offer	bound is a	do an upper bound.
0	smaller -	a lourer	bound	_ a lower bound.

Week 4

Ti

(8) let $\inf(A) = \sup(A) = \alpha$ since α is a lower bound of A, $\alpha \le x + \alpha \in A$ Since α is an upper bound of A, $\alpha \le \alpha + \alpha \in A$

$$\Rightarrow$$
 $n=\infty$

=)
$$A = \{ x \}$$
 A has only one element.

Since IN is not bounded above in R (by the Archivedian frofety),

No $x \in \mathbb{R}$ is an other bound of N.

⇒ Given x ∈ R, ∃ n ∈ N d such that n > x.

(10) $n > 1 \le R$ By the Archimedian frefity, $\exists n \in \mathbb{N}$ A such that $n > \frac{1}{n}$ $\exists n \in \mathbb{N}$ bound of \mathbb{N} $\exists n \in \mathbb{N}$

Problems based on Week 4 material

1. By induction on n, prove that for all real numbers x_1, x_2, \ldots, x_n ,

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|$$
.

2. By induction on n, prove that for all real numbers x_1, x_2, \ldots, x_n , $|x_1 + x_2 + \dots + x_n| \ge |x_1| - |x_2| - \dots - |x_n| \cdot - 2$

Support (1) is take for n=1.0 0000 (induction laybethin). That is, [x_1+...+x_{n-1}] \le [x_1] + ...+ |x_{n-1}].

We find the for n: (strictle n=2)

[x_1+...+x_n] = [(x_1+...+x_{n-1}) + x_n] \le [x_1+...+x_{n-1}] + [y_n] |x_n| \le [x_n] \le [x_n]

(2) We froved for n=2 in the class.

Suffer (2) is true for n-1. That is, | x1+ + xn-1 | 7 | x1 - | x2 | - ... - | xn-1 | .

| x1+... + xn | = | (x1+...+xn-1) + xn | 7 | x1+...+ xn-1 | - |xn | 7 (|x1| - |x2|-...-|x1|) - |xn | industrin by pothers for n-1 No frave for n. Conider

Problems based on Week 4 material

- 3. Consider the sequence $x_n = 1/n$, for $n \in \mathbb{N}$. Take it as a fact that x_n converges to 0. For various values of ϵ give below, produce a cut-off N as in the definition of convergence of a sequence.
 - a) $\epsilon = 1/10$.
- b) $\epsilon = 1/100$.
- c) $\epsilon = 1$
- d) $\epsilon = 2/99$.
- 1 th -01 < 1 ← 4 th <> 1 > 10. Take N = 11. Most amy number bigger than 10. a) 12n-21 < 8 4 n7 N
- L < 1 (3 N > 100 . Take N = 101.
- 1 <1 (N=2
- 1 < 2 (3) N > 99. Take N=50.
- Take n = 1-1+1 In general, I < 2 (3) N> I.
- greatest wit gre too ten or grat to 2.

Problems based on Week 4 material

4. Consider the sequence $x_n=1/n^2$, for $n\in\mathbb{N}$. Take it as a fact that x_n converges to \mathfrak{g} . For various values of ϵ give below, produce a cut-off N as in the definition of

convergence of a sequence. a)
$$\epsilon=1/25$$
.

b)
$$\epsilon = 1/100$$
.

c)
$$\epsilon = 1...$$

d) $\epsilon = 2/99.$

12n-21< &

0

5. Consider the sequence $x_n = \frac{(-1)^n}{10}$, for $n \in \mathbb{N}$. List the first 10 terms of the

For various values of x, ϵ give below, if you can, produce a cut-off N such that sednence.

$$x_n \in (x - \epsilon, x + \epsilon).$$

a)
$$x = 0$$
, $\epsilon = 1$.
b) $x = 0$, $\epsilon = 1/5$.

b)
$$x = 0$$
, $\epsilon = 1/5$.

c)
$$x = 0$$
, $\epsilon = 1/100$

d)
$$x = 1/10$$
, $\epsilon = 1$.

e)
$$x = 1/10$$
, $\epsilon = 1/5$.

