I.1 Antiderivatives and integration basics

a. Explain briefly in your own words why we write $\,+\,C$ after evaluating an indefinite integral.

b. Let $f(x) = 8x^7 - \sin x$. If F(x) satisfies F'(x) = f(x) and F(0) = 0, what is F(x)?

c. Evaluate the indefinite integral $\int \frac{4x^2}{x^2+1} dx$. Hint: $x^2 = x^2 + 1 + (-1)$.

I.2 Definite integrals and area

a. Evaluate the definite integral

$$\int_{1}^{2} \frac{dx}{4\sqrt{2x-1}}$$

You may leave any radicals in your answer uncalculated.

b. If f(x) is a (mystery) function that satisfies f(-x)=f(x) for all x, and

$$\int_0^1 f(x) \, dx = 2\pi$$

Then what is the value of $\int_{-2}^{2} f(x/2) dx$?

I.3 Integration by substitution

a. Which of the following integrals can be solved easily using u-substitution? After circling your answer, write down your choice for u next to the integral. (Do not evaluate the integral.)

i.
$$\int x^2 \sin(x^2) \, dx$$

ii.
$$\int x^3 \sin(x^2) dx$$

iii.
$$\int x^2 \sin(4x^3) \, dx$$

iv.
$$\int x^2 \sin(3x^2) dx$$

b. Evaluate the indefinite integral $\int xe^{-x^2} dx$.

c. Evaluate the indefinite integral $\int \frac{\cos x}{\sin x \cdot \ln \sin x} dx$.

Integration by Parts

b. Evaluate $\int x \sin x \, dx$.

a. Of the six integrals below, circle those for which substitution doesn't work and integrating by

parts with
$$u = x$$
 yields a $\int v \, du$ that can be evaluated easily (i.e. without a second round of IbP or trigonometric substitution)

i. $\int x \sin(x^2) \, dx$

ii. $\int x \cos x \, dx$

iii. $\int x e^x \, dx$

i. $\int x \sin(x^2) dx$ ii. $\int x \cos x dx$ iii. $\int x e^x dx$

iv. $\int x\sqrt{1-x^2} \, dx$ v. $\int x^3\sqrt{1-x^2} \, dx$ vi. $\int x \tan x \, dx$

c. Evaluate $\int_{a}^{\pi} x \sin x \, dx$ (you may of course use your answer to part b.).

parts with u = x yields a $\int v \, du$ that can be evaluated easily (i.e. without a second round of