

ADVANCED DIGITAL SIGNAL PROCESSING Chapter 5: FEC Encoding/Decoding

18/11/2017

Content

- Channel coding
- Convolution Encoding
- Convolution Decoding Viterbi Decoding

Channel coding

- Channel coding is used to is used to detect and often correct symbols that are received in error.
- Error detection can be used by receiver to generate ARQ to transmitter for a re-transmission of the frame in error, as in computer networks.
- When re-transmission is not an option: forward error correction coding, which introduces extra information (redundancy) into transmitted data for receiver to detect and correct errors.

Channel coding

- Two types of channel coding:
 - □ Convolutional coding: processed on a bit-by-bit basis
 - Convolution coding Viterbi decoding
 - □Block coding: processed on a block-by-block basis
 - Hamming coding/decoding
 - Reed-Solomon coding/decoding
 - Turbo coding/decoding
 - Low-density parity check coding/decoding (LDPC)

Channel coding

- Error-correcting code encoder: generates redundant information according to the message information
- Advantage:
 - □ Allow receiver to detect a limited number of errors that may occur anywhere in the message, then correct it → No need to retransmit → Gain of channel bandwidth
- Disadvantage:
 - Cost of channel bandwidth

- Convolutional Code: *CC*(n, k, N):
 - \square n = k + r
 - □ k information bits
 - r: check bits
 - $\square R = k/n$: Code rate
 - ■N: constraint length (or **memory** N+1 stages)
- Codebook: several codewords

ightharpoonup CC(n, k=1, N) encoder

- □ During each bit interval, the register is shifted one stage: s_N is shifted out, $s_i \rightarrow s_{i+1}$, and the data bit enters s_0
- $lue{}$ After this shift, the values of $s_1...s_N$ define the current state of the register, which is used to produce code bits
- Modulo-2 adders produce code bits c_i , $0 \le i \le n-1$, which are specified by the n polynomials.

$$g_i(x) = g_{i,0} x^0 + g_{i,1} x^1 + g_{i,2} x^2 + ... + g_{i,N} x^N$$
 $0 \le i \le n-1$

 \square Output (code) bits depend on the state of s_1 ... s_N after shift and the input bit

State-Transition Diagram

- State-transition diagram describes the encoder of a CC code, showing all the 2N states and all the state transitions together with the output bits
- \square Example: half-rate constraint length N = 2, CC(2, 1, 2), defined by $g_0(x) = 1 + x^2$ and $g_1(x) = 1 + x + x^2$

input	current	next	output	$s_0 s_1 s_2$	00	
b	s_1s_2	s_1s_2	c_0c_1		00	(s_1s_2)
0	0 0	0 0	0 0	input		12)
0	0 1	0 0	11	input bit b	01	c_0c_1
0	1 0	0 1	0 1		01	997
0	1 1	0 1	1 0	$g_0(x) g_1(x)$	01	
1	0 0	1 0	1 1	$g_0(x) \mid g_1(x)$	10	1 0
1	0 1	1 0	0 0	output $\downarrow c_0 \downarrow c_1$		<u>b=0</u>
1	1 0	1 1	1 0	bits + c ₀ + c ₁	$01 \qquad \boxed{0}$	b=1
1	1 1	1 1	0 1		11)	-

Trellis Diagram

- ☐ An alternative way to describe a CC encoder is trellis diagram
- Same sample: CC(2, 1, 2), defined by $g_0(x) = 1 + x^2$ and $g_1(x) = 1 + x + x^2$
- ☐ Information bit sequence · · · 0011011000 (assume rightmost enters encoder first)
- Recall the state-transition diagram of previous slide, we have trellis diagram:

Convolution Decoding - Viterbi Decoding

Observe that:

- ☐ The register sequence of state transitions is not arbitrary
- ☐ Transmitted bit sequences are legitimate

Therefore:

☐ If a non-legitimate received sequence is encountered in the decoder, it must be due to channel errors, as such a sequence cannot be transmitted

Decoder:

- □ Choose a legitimate sequence that is most resembling to the received sequence: maximum likelihood sequence decoding
 - Efficiently implemented using the Viterbi algorithm

- Hard-Input Hard-Output Viterbi Algorithm
 - Hard-input decoding is for hard-decision demodulation where demodulator demapper (recall Lecture 3) has made binary decision concerning received bits
 - ☐ Hard-output decoding makes hard decision concerning decoded bits
 - Same example: CC(2, 1, 2), defined by $g_0(x) = 1 + x^2$ and $g_1(x) = 1 + x + x^2$, all zero sequence is transmitted and received sequence is $100000100000000 \cdot \cdot \cdot$ (leftmost bit at leftmost position of trellis)

Hard-Input Hard-Output Viterbi Algorithm

- Branch metric is the Hamming distance between the legitimate encoded (output) bits of a trellis branch at a stage and the received bits at the same stage
- Path metric is the accumulated branch metrics of a path (bold number shown on trellis diagram)
 - ☐ A path presents a legitimate sequence
- For two merging paths at a stage, the one with a larger path metric is discarded and the other, called survivor path, is kept
 - ☐ If two metrics are equal, a random decision is made to keep one path
- A final decision is made after a sufficiently large number of stages (8 for this example) to choose a winning path with the smallest path metric
 - ☐ This is MLSD, as winning path is most resembling to received sequence
- If decoding decision is correct, the winning path metric is the number of transmission errors inflicted by the channel

Another example: CC(2, 1, 2), defined by $g_0(x) = 1 + x^2$ and $g_1(x) = 1 + x + x^2$, all zero sequence is transmitted but received sequence is $10011000000000 \cdot \cdot \cdot$ (leftmost bit at leftmost position of trellis)

- Winning path is most resembling to received sequence
- But this is erroneous decoding. If decoding decision is incorrect, the winning path metric is not the number of transmission errors caused by the channel

Soft-Input Hard-Output Viterbi Decoding

- Soft-input decoding is for soft-decision demodulation where demapper does not make hard binary decision but gives confidence measure concerning probability of a binary bit being 1 or 0
 - ☐ As the decoder has more information, it does better than hard-input decoding
 - Recall slide 112, this confidence measure or soft decision is given as log likelihood ratio
 - Here we consider a quantised confidence measure alternative
- Assume we use $\pm 4, \pm 3, \pm 2, \pm 1$ 8-level (or 3-bit quantisation) for confidence measure with interpretation:
 - +4: extremely like to be 1; +3: strongly like to be 1; +2: like to be 1; +1: weakly like to be 1
 - \square -4: extremely like to be 0; -3: strongly like to be 0; -2: like to be 0; -1: weakly like to be 0
- Hard-output decoder outputs hard decoded bits, but soft-output decoder outputs sequence of log likelihood ratios or confidence measures and it is for iterative decoding

Soft-Input Hard-Output Viterbi Decoding

- Previous example: CC(2, 1, 2), defined by $g_0(x) = 1 + x^2$ and $g_1(x) = 1 + x + x^2$
 - An all zero sequence is transmitted but received soft decision sequence is:
 - \square +3,-4,-3,+2,+1,-3,-3,-1,-3,-3,-4,-4,-2,-2,-1, · · ·
 - ☐ Hard demapper would produce the hard decisions 10011000000000 · · · (with the leftmost bit at leftmost position of trellis)
 - \square As previous slide shows, HIHO VA chooses a legitimate sequence that is most resembling to $10011000000000 \cdot \cdot \cdot$, but it is erroneous decoding

Soft-Input Hard-Output Viterbi Decoding

- Trellis of SIHO VA decoding:
- Previously, HIHO
 VA gave erroneous decoding but SIHO
 VA produces correct decoding

- In quantised confidence measure based soft-input decoding, the meaning of metric has changed
 - If trellis branch output bits are 01 and receive soft decisions are +3,+1, it has a penalty -3 for the 1st bit and a credit +1 for the 2nd bit, so that branch metric is (-3) + (+1) = -2
 - If trellis branch output bits are 00 and receive soft decisions are +3,-4, it has a penalty -3 for the 1st bit and a credit +4 for the 2nd bit, so that branch metric is (-3) + (+4) = +1
- The winning path is the survivor path with the largest path metric (credit)
- Straightforward to generalise to log likelihood ratio based soft-input decoding

Summary

- Convolutional code CC(n, k,N):
 - \square Code rate R = k/n, constraint length N (memory length N + 1)
 - □ Concepts of encoder states, state transitions, and generator polynomials
- ightharpoonup CC(n, k = 1,N) encoding:
 - ☐ Encoder circuit, table of state transitions and output bits
 - ☐ State-transition diagram, and trellis diagram
- \blacksquare CC(n, k = 1,N) decoding:
 - ☐ Maximum likelihood sequence decoding, and trellis diagram based Viterbi decoding
 - ☐ Hard-input and hard-output decoding, soft-input and hard-output decoding

END