Lecture 06:

Optimization

Markus Hohle
University California, Berkeley

Machine Learning Algorithms
MSSE 277B, 3 Units
Fall 2024

Berkeley Machine Learning Algorithms:

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

Berkeley Machine Learning Algorithms:

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

50 I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

Berkeley Optimization:

Any algorithm needs a "goal" aka objective function that has to be optimized (finding an extreme)

regression, e. g. curve fitting

minimize:

$$\chi_{red}^{2} = \frac{1}{N - p - 1} \sum_{i=1}^{N} \frac{(\bar{y}(model)_{i} - y_{i})^{2}}{\sigma_{i}^{2}}$$

classification

Non-Toxic - 0.67 0.33 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 Non-Toxic Predicted label

maximize: accuracy

$$S = -\sum_{i} p(true)_{i} \cdot \ln p(model)_{i}$$

finding **a** and **b** of a van-der-Waals gas

if critical points are not accessible

→ fitting curve, finding **a** and **b**

Berkeley Optimization:

Any algorithm needs a "goal" aka objective function that has to be optimized (finding an extreme)

Often, the extreme of the objective function is subject to **constrains**

$$S = -\sum_{i} p(true)_{i} \cdot \ln p(model)_{i}$$
 constrain: $\sum_{i} p_{i} = 1$

→ Lagrangian Multipliers and variational calculus

→ mathematically:

Free Energy like term = Energy like term – Entropy term

examples:

- KL divergence
- Lasso method (linear regression)
- actual energy → Boltzmann distribution

etc

These functions are very complicated, not analytical at all

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT... WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

main application: ANN!

$$\left. \frac{dy}{dx} \right|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t=2) = x(t=1) - \varepsilon \frac{dy}{dx} \Big|_{x(t=1)}$$

$$\left. \frac{dy}{dx} \right|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t=3) = x(t=2) - \varepsilon \frac{dy}{dx} \Big|_{x(t=2)}$$

$$\left. \frac{dy}{dx} \right|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t = 4) = x(t = 3) - \varepsilon \frac{dy}{dx} \Big|_{x(t=3)}$$

$$\left. \frac{dy}{dx} \right|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t = 4) = x(t = 3) - \varepsilon \frac{dy}{dx} \Big|_{x(t=3)}$$

$$\left. \frac{dy}{dx} \right|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t=2) = x(t=1) - \varepsilon \frac{dy}{dx} \Big|_{x(t=1)}$$

$\left. \frac{dy}{dx_1} \right|_{x_1(0)} \approx \frac{y(x_1(0) + \Delta x_1) - y(x_1(0) - \Delta x_1)}{2\Delta x_1}$

$$\frac{dy}{dx_2}\Big|_{x_2(0)} \approx \frac{y(x_2(0) + \Delta x_2) - y(x_2(0) - \Delta x_2)}{2\Delta x_2}$$

$$\frac{dy}{dx_1}\Big|_{x_1(0)} \approx \frac{y(x_1(0) + \Delta x_1) - y(x_1(0) - \Delta x_1)}{2\Delta x_1}$$

$$\frac{dy}{dx_2}\Big|_{x_2(0)} \approx \frac{y(x_2(0) + \Delta x_2) - y(x_2(0) - \Delta x_2)}{2\Delta x_2}$$

•

 $\left. \frac{dy}{dx_i} \right|_{x_i(0)} \approx \frac{y(x_i(0) + \Delta x_i) - y(x_i(0) - \Delta x_i)}{2\Delta x_i}$

$$\frac{dy}{dx_N}\bigg|_{x_N(0)} \approx \frac{y(x_N(0) + \Delta x_N) - y(x_N(0) - \Delta x_N)}{2\Delta x_N}$$

$$\left(\frac{dy}{dx_1} \Big|_{x_1(0)} \right) \\
\dots \\
\left(\frac{dy}{dx_i} \Big|_{x_i(0)} \right) = grad(y)_x \\
\dots \\
\left(\frac{dy}{dx_N} \Big|_{x_N(0)} \right)$$

Berkeley Machine Learning Algorithms:

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

$$\frac{dy}{dx}\Big|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

$$\Delta x = -\left. \frac{\epsilon}{dx} \frac{dy}{dx} \right|_{x(t)}$$

defines how large the leap Δx is

$$\frac{dy}{dx}\Big|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

$$= - \varepsilon \frac{dy}{dx} \Big|_{x(t)} \qquad \text{defines how large}$$
the leap Δx is

$$\frac{dy}{dx}\Big|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

E > 0

called *learning rate*

$$\Delta x = -\left. \frac{e}{x} \frac{dy}{dx} \right|_{x(t)}$$

defines how large the leap Δx is

... and so on...

 \rightarrow smaller ε ?

$$\frac{dy}{dx}\bigg|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

E > 0

called learning rate

$$\Delta x = -\left. \frac{dy}{dx} \right|_{x(t)}$$

defines how large the leap Δx is

... and so on...

 \rightarrow smaller ε ?

Takes too long!

$$\frac{dy}{dx}\Big|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

<u>learning rate as function of t:</u>

$$\boldsymbol{\varepsilon}(t) = \frac{\boldsymbol{\varepsilon}_0}{1 + \kappa t}$$
 decay rate κ

$$\Delta x = -\left. \frac{dy}{dx} \right|_{x(t)}$$

2 > 0

defines how large the leap Δx is

called *learning* rate

$$\frac{dy}{dx}\Big|_{x_0} \approx \frac{y(x_0 + \Delta x) - y(x_0 - \Delta x)}{2\Delta x}$$

$$x(t+1) = x(t) - \left. \frac{dy}{dx} \right|_{x(t)}$$

learning rate as function of t:

$$\boldsymbol{\varepsilon}(t) = \frac{\boldsymbol{\varepsilon}_0}{1 + \kappa t}$$
 decay rate κ

$$\Delta x = -\left. \frac{dy}{dx} \right|_{x(t)}$$

2 > 0

defines how large the leap Δx is

called *learning rate*

can also be a stepwise function (learning rate schedule)

<u>learning rate as function of t:</u>

Learning Rate Schedule

$$\boldsymbol{\varepsilon}(t) = \frac{\boldsymbol{\varepsilon}_0}{1 + \kappa t} \qquad \text{decay rate } \kappa$$

$$\Delta x = -\left. \frac{dy}{dx} \right|_{x(t)}$$

defines how large the leap Δx is

can also be a stepwise function (learning rate schedule)

$$\varepsilon \to \frac{\varepsilon}{\sqrt{grad(y)_x}}$$

adaptive gradient, aka AdaGrad

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT... WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

pressure [MPa]

temperature [K]

even with AdaGrad and learning rate schedule

→ would get stuck in local minimum

need to roll over → momentum

taking the **average** of **N** previous gradients

$$\langle grad(y)_{x(t)} \rangle = \frac{1}{N} [grad(y)_{x(t-1)} + grad(y)_{x(t-2)} + \dots + grad(y)_{x(t-N)}]$$

but we want more recent gradients to contribute more than older gradients

 \rightarrow weighted average with weighting factor μ_k

$$\langle grad(y)_{x(t)} \rangle = \sum_{k=t-N}^{t-1} \mu_k \cdot grad(y)_{x(k)}$$

Finding a clever way to adjust μ_k during every iteration t

weighted average with weighting factor μ_k

Momentum

Finding a clever way to adjust μ_k during every iteration t

$$\langle grad(y)_{x(0)} \rangle = grad(y)_{x(0)}$$
 $\mu_0 = (0,1)$

$$\langle \operatorname{grad}(y)_{x(1)} \rangle = \operatorname{grad}(y)_{x(1)} + \mu_0 \cdot \operatorname{grad}(y)_{x(0)}$$

weighted average with weighting factor μ_k

Momentum

Finding a clever way to adjust μ_k during every iteration t

$$\langle grad(y)_{x(0)} \rangle = grad(y)_{x(0)}$$
 $\mu_0 = (0,1)$

$$\langle \operatorname{grad}(y)_{x(1)} \rangle = \operatorname{grad}(y)_{x(1)} + \mu_0 \cdot \operatorname{grad}(y)_{x(0)}$$

$$\langle \operatorname{grad}(y)_{x(2)} \rangle = \operatorname{grad}(y)_{x(2)} + \mu_0 \left[\operatorname{grad}(y)_{x(1)} + \mu_0 \operatorname{grad}(y)_{x(0)} \right]$$

$$\mu_{k=2} = \mu_0 \ \mu_0 = \mu_0^2$$

$$\langle \operatorname{grad}(y)_{x(3)} \rangle = \operatorname{grad}(y)_{x(3)} + \mu_0 \left[\operatorname{grad}(y)_{x(2)} + \mu_0 \left[\operatorname{grad}(y)_{x(1)} + \mu_0 \cdot \operatorname{grad}(y)_{x(0)} \right] \right]$$

... and so on...

weighted average with weighting factor μ_k

$$\mu_0 = (0,1)$$
 called "momentum"

$$\langle \operatorname{grad}(y)_{\chi(3)} \rangle = \operatorname{grad}(y)_{\chi(3)} +$$

$$\mu_0 \left[grad(y)_{\chi(2)} + \mu_0 \left[grad(y)_{\chi(1)} + \mu_0 \cdot grad(y)_{\chi(0)} \right] \right]$$
 ... and so on...

Momentum

class Optimizer:

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT... WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

L1 and L2

Often, the extreme of the objective function is subject to **constrains**sometimes we have some **prior knowledge** about the **independent variables**

recall: linear regression

finding best β by

$$\min_{\beta} \left\{ \frac{1}{N} \| Y - X\beta \|^2 \right\}$$

now:

constrain: encourages sparsity of $oldsymbol{eta}$

$$\min_{\beta} \left\{ \frac{1}{N} \|Y - X\beta\|^2 + \lambda \|\beta\|^1 \right\}$$

lagrangian Multiplier

called L1 regularization, or LASSO

L1 and L2

Often, the extreme of the objective function is subject to **constrains**sometimes we have some **prior knowledge** about the **independent variables**

L1 regularization

We often have even hard constrains based on the laws of physics!

L1 and L2

Often, the extreme of the objective function is subject to **constrains**sometimes we have some **prior knowledge** about the **independent variables**

recall: linear regression

finding best β by

$$\min_{\beta} \left\{ \frac{1}{N} \| Y - X\beta \|^2 \right\}$$

now:

$$\hat{\beta} = (X^T X + \lambda I)^{-1} X^T Y \longrightarrow \min_{\beta} \left\{ \frac{1}{N} \|Y - X\beta\|^2 + \lambda \|\beta\|^2 \right\}$$

lagrangian Multiplier

called L2 regularization, or RIDGE penalizes large β

L1 and L2 regularization

L1 and L2

$$x(t=2) = x(t=1) - \varepsilon \frac{d[y + \lambda_1 ||x||^1 + \lambda_2 ||x||^2]}{dx} \bigg|_{x(t=1)}$$

- gradient descent does not stop if values for x are too large and prefers sparsity
- note: the derivative of $||x||^1$ returns the sign (i. e. direction)
- usually $\lambda \ll ||x||^n$
- will be important for ANNs later

Berkeley Machine Learning Algorithms:

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

<u>Outline</u>

- The Problem
- Gradient Descent
 - Vanilla
 - Learning Rate Schedule
 - Momentum
 - L1 and L2
 - More Finetuning

gradient descent (cyan), momentum (magenta), RMSProp (green), Adam (blue)

<u>TowardsDataScience</u>

gradient descent (cyan), momentum (magenta), RMSProp (green), Adam (blue)

Berkeley Machine Learning Algorithms:

Thank you very much for your attention!

BUT AT SOME POINT, THE COST OF THE TIME IT TAKES ME TO UNDERSTAND THE OPTIONS OUTWEIGHS THEIR DIFFERENCE IN VALUE.

SO I NEED TO FIGURE OUT WHERE THAT POINT IS, AND STOP BEFORE I REACH IT.

BUT...WHEN I FACTOR IN THE TIME TO CALCULATE THAT, IT CHANGES THE OVERALL ANSWER.

