Лекция 18: рекуррентные искусственные нейронные сети

Евгений Борисов

модель МакКаллока-Питтса (1943)

$$a(x,w) = \sigma \left(\sum_{i=1}^n x_i \cdot w_i - w_0\right) = \sigma(\langle x,w \rangle)$$
 $\mathbf{x_i}$ - вес связи $\mathbf{\sigma}$ - функция а

 $\mathbf{X_i}$ - вход

σ - функция активации

состояние нейрона

$$s(x, w) = \sum_{i=1}^{n} x_i \cdot w_i - w_0$$

примеры функций активации

softmax (экспоненциальная нормализация) выходного слоя

$$(y_1,\ldots,y_m) = softmax(s_1,\ldots,s_m) = rac{\exp(s)}{\sum\limits_{j} \exp(s_j)}$$

стохастическая, выход нейрона с вероятностью р равен 1 и (1-р) равен 0

$$p = \frac{1}{1 + \exp(-s)}$$

коннекционизм -

модель ИИ из связанных между собой простых элементов

многослойная сеть прямого распространения

нейроны объединены в слои сигнал распространяется послойно

входной рапределительный слой обрабатывающие скрытые слои обрабатывающий выходной слой

обучение многослойных сетей

 $h: X \times W \rightarrow Y$ классификатор (X вход, W параметры, Y ответ)

 $E: Y \times C \rightarrow \mathbb{R}$ функция потери (Y ответ, C класс)

обучение классификатора как задача оптимизации

$$E(h(X,W),C) \rightarrow \min_{W}$$

примеры функций потери

MSQE среднеквадратичное отклонение

Кросс-энтропия

Расстояние Кульбака-Лейблера

градиентный спуск (GD)

стратегии обучения

full batch - на каждой итерации используем все примеры stochastic - на каждой итерации используем один случайный пример mini batch - на каждой итерации используем случайное подмножество примеров

метод обратного распространения ошибки

вычисление градиента функции потери для многослойной нейросети

$$\nabla E(W) = \left[\frac{\partial E}{\partial w_1} \dots, \frac{\partial E}{\partial w_k} \right]$$

$$rac{\partial E}{\partial w_{ij}} = rac{\partial E}{\partial y_j} rac{\partial y_j}{\partial s_j} rac{\partial s_j}{\partial w_{ij}}$$
 градиент функции потери для ИНС

$$\frac{\partial s_j}{\partial w_{ii}}$$
 выход і-того нейрона предыдущего слоя (определен явно)

$$\frac{\partial y_j}{\partial s_j}$$
 производная активационной функции (можем вычислить)

$$\frac{\partial E_j}{\partial y_j}$$
 ошибка нейрона номер ј (определена для выходного слоя)

$$\delta_i := rac{\partial E}{\partial y_i}$$
 ошибка нейрона номер ј для выходного слоя

$$\delta_i := rac{\partial y_i}{\partial s_i} \cdot \sum_j \delta_j w_{ij}$$
 ошибка нейрона номер ј для скрытого слоя

метод обратного распространения ошибки backProp

- 1. прямой проход: вычислить состояния нейронов s для всех слоёв и выход сети у
- 2. вычисляем значения ошибки выходного слоя $\delta := \partial E/\partial y$
- 3. обратный проход: последовательно от конца к началу вычисляем б для всех скрытых слоёв
- 4. для каждого слоя вычисляем значение градиента $\nabla E = \partial E/\partial w = v \cdot \delta^T$

рекуррентные нейросети

последовательности примеров

сеть Элмана

$$h(t) = f(V \cdot x(t) + U \cdot h(t-1) + b_h)$$
$$y(t) = g(W \cdot h(t) + b_y)$$

рекуррентные нейросети

последовательности примеров

способы организации работы рекуррентной сети

1. "много в один" (many-to-one) - скрытый слой последовательно изменяет своё состояние, из его конечного состояния вычисляется выход сети,

эту схему можно использовать для классификации текстов

рекуррентные нейросети

последовательности примеров способы организации работы рекуррентной сети

2. "один во много" (one-to-many) - скрытый слой инициализируется одним входом, из цепочки его последующих состояний генерируются выходы сети,

эту схему можно использовать для аннотирования изображений

рекуррентные нейросети

последовательности примеров способы организации работы рекуррентной сети

3. "много во много" (many-to-many) - на каждый вход сеть выдаёт выход, который зависит от предыдущих входов, эту схему можно использовать для классификации видео

рекуррентные нейросети

последовательности примеров

способы организации работы рекуррентной сети

4. "много во много" (many-to-many) - скрытый слой последовательно изменяет своё состояние, его конечное состояние служит инициализацией для выдачи цепочки результатов,

эту схему можно использовать для создания систем машинного перевода и чат-ботов

способ обучения

backpropagation through time - BPTT (метод обратного распространения с разворачиванием сети во времени)

идея: развернуть последовательность

«превращаем» рекуррентную сеть в «обычную»

- 1. прямой проход вычисляем состояния слоёв
- 2. обратный проход вычисляем ошибку слоёв
- 3. вычисляем изменения весов

backpropagation through time - BPTT

1. прямой проход - вычисляем состояния слоёв для каждого вектора последовательности $\{x(1), ...x(n)\}$ вычисляем состояния скрытого слоя $\{s(1), ...s(n)\}$ выходы скрытого слоя $\{h(1), ...h(n)\}$ выход сети $\{y(1), ...y(n)\}$

$$s(t) = V \cdot x(t) + U \cdot h(t-1) + a$$

$$h(t) = f\left(s(t)\right)$$

$$y(n) = g(W \cdot h(n) + b)$$

backpropagation through time - BPTT

- 1. прямой проход вычисляем состояния слоёв для каждого вектора последовательности $\{x(1), ...x(n)\}$ вычисляем состояния скрытого слоя $\{s(1), ...s(n)\}$ выходы скрытого слоя $\{h(1), ...h(n)\}$ выход сети $\{y(1), ...y(n)\}$
- $s(t) = V \cdot x(t) + U \cdot h(t-1) + a$ h(t) = f(s(t)) $y(n) = g(W \cdot h(n) + b)$

- 2. обратный проход вычисляем ошибку слоёв вычисляем ошибку выходного слоя δ о вычисляем ошибку скрытого слоя в конечном состоянии $\delta h(n)$ вычисляем ошибки скрытого слоя в промежуточных состояниях $\delta h(t)$ (t=1,...n)
 - $egin{aligned} \delta_o &= y d \ & \delta_h(n) &= W^T \cdot \delta_o \odot f'(s(n)) \ & \delta_h(t) &= U^T \cdot \delta_h(t+1) \odot f'(s(n)) \end{aligned}$

backpropagation through time - BPTT

- 1. прямой проход вычисляем состояния слоёв для каждого вектора последовательности $\{x(1), ...x(n)\}$ вычисляем состояния скрытого слоя $\{s(1), ...s(n)\}$ выходы скрытого слоя $\{h(1), ...h(n)\}$ выход сети $\{y(1), ...y(n)\}$
- $s(t) = V \cdot x(t) + U \cdot h(t-1) + a$ h(t) = f(s(t)) $y(n) = g(W \cdot h(n) + b)$

- 2. обратный проход вычисляем ошибку слоёв вычисляем ошибку выходного слоя δ о вычисляем ошибку скрытого слоя в конечном состоянии $\delta h(n)$ вычисляем ошибки скрытого слоя в промежуточных состояниях $\delta h(t)$ (t=1,...n)
 - $\delta_o = y-d$ (n) $\delta_h(n) = W^T \cdot \delta_o \odot f'(s(n))$ $\delta_h(t) = U^T \cdot \delta_h(t+1) \odot f'(s(n))$

3. вычисляем изменения весов

веса и сдвиг выходного слоя

$$\Delta W = \delta_o \cdot (h(n))^T$$
 $\Delta b_y = \sum \delta_o$

веса скрытого слоя

$$\Delta V = \sum_t \delta_h(t) \cdot (x(t))^T$$
 $\Delta U = \sum_t \delta_h(t) \cdot (h(t-1))^T$

сдвиг скрытого слоя

$$\Delta b_h = \sum \sum_t \delta_h(t)$$

нейросеть LSTM

имеет дополнительные элементы, называемые гейтами (gate), которые должны управлять потоками данных.

В зависимости от своего состояния гейт может пропускать сигнал или не пропускать.

Нейросети: литература

git clone https://github.com/mechanoid5/ml_lectorium.git

Евгений Борисов О рекуррентных нейронных сетях http://mechanoid.kiev.ua/neural-net-rnn.html

Евгений Борисов Рекуррентная сеть LSTM http://mechanoid.kiev.ua/neural-net-lstm.html

Вопросы?

Нейросети: практика

sklearn.datasets UCI Repository kaggle

