Unidad 4: IP. Temario

- IP
- ARP
- RARP
- •ICMP
- IPv6

Datagrama IP

- Implementación de servicio de entrega sin conexión no confiable (datagramas)
- Abstracción conceptual

Formato datagrama

DATAGRAM HEADER	DATAGRAM DATA AREA
-----------------	--------------------

Datagrama IP

Datagrama IP

- Formato campo TOS original
- Luego fue modificado para acomodar DSCP en DiffServ (RFC 2474). Más en U.6

MTU y Fragmentación en IP

- Cada enlace tiene asignado un atributo muy importante: MTU, o cantidad de bytes que puede tener el payload del enlace. Ej 1500 Ethernet.
- Cuando un dg no puede encapsularse en una trama, se fragmenta. El reensamblado se realiza en el destino! Ejemplo:

DATAGRAM HEADER	data ₁ 600 octets		data ₂ 600 octets	data ₃ 200 octets
		(a)		
FRAGMENT 1 HEADER	data ₁		Fragment 1 (offs	set 0)
FRAGMENT 2 HEADER	data ₂		Fragment 2 (offs	set 600)
FRAGMENT 3 HEADER	data ₃		Fragment 3 (offs	set 1200)

MTU y Fragmentación en IP

- El segundo grupo de 32 bits (ID, Flags, Offset) controla la fragmentación
- El desplazamiento (offset) se cuenta en múltiplos de 8 bytes, por la limitación en la longitud de dicho campo
- La operación de fragmentación consume muchos recursos en los routers
- Puede utilizarse en los hosts finales para montar ataques por DoS (más en U.8)

- Longitud variable
- Representan operaciones no siempre necesarias, pero disponibles si se necesitan
- Un dg puede tener 0,1, o más opciones
- Todas tienen el mismo octeto inicial

0	1	2	3	4	5	6	7
COPY OPTION CLASS			OPT	ION NUM	BER		

Option Class	Meaning
0	Datagram or network control
1	Reserved for future use
2	Debugging and measurement
3	Reserved for future use

Option	Option	Loueth	Description
Class	Number	Length	Description
0	0	-	End of option list. Used if options do not end at end of header (see header padding field for explanation).
0	1	-	No operation. Used to align octets in a list of options.
0	2	11	Security and handling restrictions (for military applications).
0	3	var	Loose source route. Used to request routing that includes the specified routers.
0	7	var	Record route. Used to trace a route.
0	8	4	Stream identifier. Used to carry a SATNET stream identifier (obsolete).
0	9	var	Strict source route. Used to specify a exact path through the internet.
0	11	4	MTU Probe. Used for path MTU discovery.
0	12	4	MTU Reply. Used for path MTU discovery.
0	20	4	Router Alert. Router should examine this datagram even if not an addressee.
2	4	var	Internet timestamp. Used to record timestamps along the route.
2	18	var	Traceroute. Used by traceroute program to find routers along a path.

Registro de ruta

Ruteo estricto de fuente

Sello de hora (timestamp)

Flags value	Meaning
0	Record timestamps only; omit IP addresses.
1	Precede each timestamp by an IP address (this is the format shown in Figure 7.15).
3	IP addresses are specified by sender; a router only records a timestamp if the next IP address in the list matches the router's IP address.

Valores del campo FLAGS

ARP

- Problema: cómo encuentro la dirección física de un DESTINO IP?
- ADDRESS RESOLUTION PROTOCOL
- Asocia una dirección lógica (conocida) a una dirección física (desconocida)
- Se basa en el envío de un mensaje de difusión (broadcast)
- Formato del mensaje

0		8	16	24	31
	HARDWA	HARDWARE TYPE		PROTOCOL TYPE	
	HLEN	PLEN		OPERATION	
		SENDER	HA (octets	0-3)	
	SENDER HA (octets 4-5) SENDER IP (octets 0-1)				
	SENDER IP (octets 2-3) TARGET HA (octet			RGET HA (octets 0-1)	
	TARGET HA (octets 2-5)				
	TARGET IP (octets 0-3)				

RARP

- Qué pasa cuando la estación no conoce SU PROPIA dirección IP? Ej. estaciones diskless
- Reverse ARP
- Se necesita servidor!
- Utiliza el mismo formato de mensaje de ARP, con otras operaciones
- Temporización
- Servidores primarios y secundarios RARP
- Encapsulamiento ARP/RARP

ARP - ejemplo

```
C:\WINDOWS\system32\cmd.exe
C:\>arp -a
No se encontraron entradas ARP
C:\>ping 10.0.0.7
Haciendo ping a 10.0.0.7 con 32 bytes de datos:
Respuesta desde 10.0.0.7: bytes=32 tiempo<1m TTL=128
Estadísticas de ping para 10.0.0.7:
    Paquetes: enviados = 4, recibidos = 4, perdidos = 0
    (0% perdidos).
Tiempos aproximados de ida y vuelta en milisegundos:
    Mínimo = Oms, Máximo = Oms, Media = Oms
C:\>arp =a
Interfaz: 10.0.0.20 --- 0x10003
  Dirección IP Dirección física
10.0.0.7 00-40-f4-92-92-0a
                                                Tipo
                                                dinámico
  10.0.0.7
C: \setminus \rangle_{-}
```

ARP - eiemplo

```
- D X
C:\WINDOWS\system32\cmd.exe
C: \searrow ping 10.0.0.15
Haciendo ping a 10.0.0.15 con 32 bytes de datos:
Respuesta desde 10.0.0.15: bytes=32 tiempo<1m TTL=128
Respuesta desde 10.0.0.15: bytes=32 tiempo<1m TTL=128
Respuesta desde 10.0.0.15: bytes=32 tiempo<1m TTL=128
Respuesta desde 10.0.0.15: bytes=32 tiempo=5ms TTL=128
Estadísticas de ping para 10.0.0.15:
    Paquetes: enviados = 4, recibidos = 4, perdidos = 0
    (0% perdidos),
Tiempos aproximados de ida y vuelta en milisegundos:
    Mínimo = Oms, Máximo = 5ms, Media = 1ms
C:\>arp -a
Interfaz: 10.0.0.20 --- 0x10003
 Dirección IP
                        Dirección física
                                              Tipo
 10.0.0.7
                       00-40-f4-92-92-0a
                                              dinámico
 10.0.0.15
                       00-1d-92-b4-b6-87
                                              dinámico
C:\>ping 10.0.0.10
Haciendo ping a 10.0.0.10 con 32 bytes de datos:
Respuesta desde 10.0.0.10: bytes=32 tiempo<1m TTL=65
Estadísticas de ping para 10.0.0.10:
    Paquetes: enviados = 4, recibidos = 4, perdidos = 0
    (0% perdidos).
Tiempos aproximados de ida y vuelta en milisegundos:
   Mínimo = Oms, Máximo = Oms, Media = Oms
C:\>arp -a
Interfaz: 10.0.0.20 --- 0x10003
                        Dirección física
 Dirección IP
                                              Tipo
 10.0.0.7
                        00-40-f4-92-92-0a
                                              dinámico
 10.0.0.10
                        00-0b-6a-77-ff-33
                                              dinámico
  10.0.0.15
                        00-1d-92-b4-b6-87
                                              dinámico
```

ARP - ejemplo

```
- 0
C:\WINDOWS\system32\cmd.exe
C:\>ping 192.168.1.1
Haciendo ping a 192.168.1.1 con 32 bytes de datos:
Respuesta desde 192.168.1.1: bytes=32 tiempo=6ms TTL=64
Respuesta desde 192.168.1.1: bytes=32 tiempo=4ms TTL=64
Respuesta desde 192.168.1.1: bytes=32 tiempo=11ms TTL=64
Respuesta desde 192.168.1.1: bytes=32 tiempo=2ms TTL=64
Estadísticas de ping para 192.168.1.1:
    Paquetes: enviados = 4, recibidos = 4, perdidos = 0
    (0% perdidos).
Tiempos aproximados de ida y vuelta en milisegundos:
   Mínimo = 2ms, Máximo = 11ms, Media = 5ms
C:\>arp -a
Interfaz: 10.0.0.20 --- 0x10003
 Dirección IP Dirección física
10.0.0.7 00-40-f4-92-92-0a
                                            Tipo
                                            dinámico
 10.0.0.10 00-0b-6a-77-ff-33
                                            dinámico
  10.0.0.15
                       00-1d-92-b4-b6-87
                                            dinámico
Interfaz: 192.168.1.15 --- 0x10004
  Dirección IP Dirección física
                                            Tipo
  192.168.1.1
                                             dinámico
                       ИИ-14-6c-98-97-78
```

- Protocolo de mensajes de control de Internet
- Conjunto de funciones no especificadas en IP, pero que mejoran su funcionalidad
- Originalmente servían para reportar condiciones de error al origen! Luego se extendió la funcionalidad
- Se encapsulan en IP (PROTO=1)

- Si bien cada mensaje tiene su propio formato, todos comienzan con: TYPE (8), CODE (8), CHECKSUM (16)
- El CHECKSUM es importante ya que IP sólo controla errores en el encabezado, no en los datos!

Type Field	ICMP Message Type
0	Echo Reply
3	Destination Unreachable
4	Source Quench
5	Redirect (change a route)
8	Echo Request
9	Router Advertisement
10	Router Solicitation
11	Time Exceeded for a Datagram
12	Parameter Problem on a Datagram
13	Timestamp Request
14	Timestamp Reply
15	Information Request (obsolete)
16	Information Reply (obsolete)
17	Address Mask Request
18	Address Mask Reply

0	8		31
TYPE (8 or 0)	CODE (0)	CHECKSUM	
IDENT	IFIER	SEQUENCE NUMBER	
	OPTIO	NAL DATA	
		• • •	

Solicitud (8)/Respuesta (0) eco (PING)

Destino inaccesible

Code Value	Meaning
0	Network unreachable
1	Host unreachable
2	Protocol unreachable
3	Port unreachable
4	Fragmentation needed and DF set
5	Source route failed
6	Destination network unknown
7	Destination host unknown
8	Source host isolated
9	Communication with destination network administratively prohibited
10	Communication with destination host administratively prohibited
11	Network unreachable for type of service
12	Host unreachable for type of service

Destino inaccesible (códigos)

0	8	16	31
TYPE (4)	CODE (0)	CHECKSUM	
	UNUSED (M	MUST BE ZERO)	
INTERN	IET HEADER + FI	RST 64 BITS OF DATAGRAM	
		•••	

Disminución en origen (Source Quench)

Redireccionamiento - 0 por red (obs)
1 por host
2 por TOS/red
3 por TOS/host

0	8	16	31
TYPE (11)	CODE (0 or 1)	CHECKSUM	
	UNUSED (M	UST BE ZERO)	
INTERN	ET HEADER + FIF	RST 64 BITS OF DATAGRAM	

TTL excedido - 0 TTL 1 Fragmentación

YPE (12)	CODE (0 or 1)	CHECKSUM	
POINTER	UNUSED (MUST BE ZERO)		
INTERN	ET HEADER + FIRST 6	4 BITS OF DATAGRAM	

Problema de parámetros

0	8	16	31	
TYPE (13 or 14)	CODE (0)	CHECKSUM		
IDENT	IFIER	SEQUENCE NUMBER		
	ORIGINAT	E TIMESTAMP		
	RECEIVE	TIMESTAMP		
	TRANSMI	TTIMESTAMP		

Solicitud (13) / Respuesta (14) sello hora

Solicitud (17) / Respuesta (18) máscara

IPv6

- Problema: agotamiento del espacio de direcciones
- Solución propuesta: 32 bits → 128 bits
- Además corregir y adecuar IPv4
- Comenzó como IPng. Documentado RFC 1883-7
- Direcciones jerárquicas
- Formato cabecera simplificado. Cabeceras extendidas, opcionales, no fijas
- Autoconfiguración
- Mayor soporte a variantes IP (móvil, multicast,...)
- Incorporación de características QoS (U.6)
- Características de seguridad e integridad (U.8)

Datagrama IPv6

Direcciones IPv6

- Idea general: agrupamiento de direcciones
- Varios prefijos basados en los primeros 8 bits

Prefix format	Usage
0000 0000	Embedded IPv4 address
0000 001	Embedded OSI address
0000 010	Embedded Novell NetWare IPX address
010	Provider-based unicast address
100	Geographic-based unicast address
1111 1110 10	Link local-use address
1111 1111 11	Site local-use address

Direcciones Ipv4 encapsuladas en IPv6

Dos tipos: tuneles y hosts

Direcciones IPv6: Unicast

- Direcciones unicast con 3 niveles de agregación (TLA, NLA, SLA). Esquema jerárquico
- Interface ID se divide en subnetID y hostID (subredes en Ipv6!)
- También basado en ubic. Geográfica (100)

Direcciones IPv6: Multicast

- Esquema más elaborado que IPv4
- Permite asignaciones temporarias o permanentes

Representación de direcciones IPv6

- En vez de grupos de 8 bits por puntos, 16 bits por dos puntos
- Ej. FEDC:BA98:7654:3210:0000:0000:0000:0089
- Se pueden comprimir, reemplazando 4 ceros consecutivos por ::. En el ejemplo sería FEDC:BA98:7654:3210::0089
- Para una dirección IPv4 encapsulada se puede mantener la notación por puntos, p.ej. ::12.3.0.21

Cabeceras IPv6

- Cada dg tiene al menos la cabecera principal y la de transporte
- Entre ambas se pueden insertar 0,1 o más cabeceras de extensión
- Se definieron 6 tipos de cabeceras de extensión

Main header NH = TP	Transport protocol header	Higher-layer data		
Main header NH = EH (1)	Extension header (1) NH = TP	Transport protocol header	Higher-layer data	
Main header NH = EH (3)	Extension header (3) NH = EH (5)	Extension header (5) NH = TP	Transport protocol header	Higher-layer data
NH = next header TP = transport protocol EH = extension header				

Cabeceras de extensión

- Opciones salto a salto
- Opciones de destino
- Enrutamiento
- Fragmentación
- Autenticación
- Encriptación

Cabeceras de opciones

- Todas las cabeceras (excepto la de salto-a-salto y enrutamiento) sólo se examinan en el destino
- Como pueden ser variables, se implementa un esquema TLV (tipo-long-valor). Similar a BGP
- El tipo (1er byte) especifica la acción a seguir si no se reconoce: ignorar (00), descartar (01), ICMP (10), ICMP para no multidifusión (11)
- Únicas opciones de destino: relleno (Pad1 ó PadN)
- Única opción salto a salto: jumbograma (194)
- Si existe se procesa inmediatamente luego de la principal, y su valor de NH es 0

Cabeceras de encaminamiento

- Similar a ruteo fuente (estricto/no estricto) en IPv4
- Código de NH=43

Cabecera de fragmentación

- IPv6 sólo fragmenta en el origen; los routers intermedios descartan y notifican vía ICMPv6
- Por lo tanto, los hosts utilizan MTUs estándar, o bien realizan Path MTU Discovery
- EL reensamblado se realiza en el destino únicamente
- Las cabeceras adicionales (seguridad, etc) se copian solamente en el primer fragmento

Cabecera de fragmentación

Cabecera de autenticación y seguridad

- Se utiliza ESP para encriptar, en modo transporte o en modo túnel (más en U.8)
- Como autenticación, se utiliza el algoritmo de hashing MD5 (más en U.8)

Autoconfiguración

- IPv6 soporta dos mecanismos de autoconfiguración: DHCP (conocido) y ND
- El segundo método se basa en el envío de mensajes ICMPv6 de solicitud/anuncio de router
- Para dirección origen, se concatena la MAC con el prefijo de dirección de enlace local (1111 1111 10)
- Para destino, una dirección de multidifusión local (1111 1111)
- Como respuesta, se envía el netid. El host construye la dirección IPv6 concatenando su MAC al netid recibido
- Similar procedimiento se utiliza para hosts móviles

Interoperatividad V4/V6

- Necesario para la coexistencia de ambos protocolos durante la transición
- Tres enfoques: pilas duales, túneles, traductores
- Pilas duales: ya utilizado (ej. IP/IPX, ...)

Interoperatividad V4/V6: túneles

Interoperatividad V4/V6: túneles

Interoperatividad V4/V6: traductores

NAT-PT

ALG

IPv6: conclusiones

- IPv6 fue propuesto a mediados de los 90, y estandarizado finalmente en 1998 (RFC 2460)
- Inicialmente su adopción fue muy lenta
- Principalmente debido a la utilización de técnicas que redujeron la necesidad de direcciones públicas (NAT, direcciones privadas, etc.)
- Pero a partir de 2001 se aceleró la demanda de direcciones (principalmente dispositivos móviles)
- Su interacción con IPv4, si bien posible, dista de ser perfecta
- Lección: reemplazar protocolos de red es como tratar de reemplazar los cimientos de una casa!
- Es mucho más fácil reemplazar protocolos de nivel 4 y superiores (procesos)