George Mason University

Department of Electrical and Computer Engineering

ECE 528: Introduction to Random Processes in ECE

Fall 2019

Dr. Bijan Jabbari

Examples 9.1 and 9.3 Details - Random Binary Sequence

Let ξ be a number selected at random from the interval S = [0,1] and let $b_1b_2...$ be the binary expansion of ξ :

$$\xi = \sum_{i=1}^{\infty} b_i 2^{-i}$$
 where $b_i \in \{0, 1\}$

Define the discrete-time random process $X(n, \xi)$ by

$$X(n,\xi) = b_n$$
 $n = 1, 2, ...$

The resulting process is sequence of binary numbers, with $X(n,\xi)$ equal to the nth number in the binary expansion of ξ .

For example, assume ξ is selected as 0.75. The binary expansion of ξ is:

$$\xi = 0.75 = 0.5 + 0.25 = b_1 2^{-1} + b_2 2^{-2}$$
 where $b_1 = 1, b_2 = 1, b_i = 0$ for $i = 3, 4, ...$

So, for $\xi = 0.75$, $X(1,\xi) = b_1 = 1$. $X(2,\xi) = b_2 = 1$. and $X(3,\xi) = b_3 = 0$. Using alternate notation, since $X(n,\xi)$ is a discrete-time random process, it can be denoted as $X_n = X(n,\xi)$, that is, $X_1 = X(1,\xi)$.

Now let's find the probability of the event $X_1 = 1$. Note that when $X_1 = 1$ that means $b_1 = 1$ which implies $\xi \to 1/2$, when $b_i = 0$ for i =2,3,... and $\xi \to 1$, when $b_i = 1$ for i =2,3,... Therefore, for the event $X_1 = 1$, $1/2 < \xi < 1$.

Similarly, we can find the probability of the event $X(2,\xi)=0$ i.e, when $X_2=0$ which means $b_2=0$ and in turn implies $\xi=0$, when $b_i=0$ for i=1,2,3,... and $\xi=3/4$, when $b_i=1$ for i=1,3,...Therefore, for the event $X_2=0,\ 0<\xi<3/4$. Similar to the above, we can find the probability of the event $X(2,\xi)=1$ (note that for $X(2,\xi)=1,\ b_2=1$) as $0<\xi<1$.

Now let's find the following probabilities for the random process:

- 1. $P[X(1,\xi) = 0]$
- 2. $P[X(1,\xi) = 0 \text{ and } X(2,\xi) = 1]$

The probabilities are obtained by finding the equivalent events in terms of ξ :

$$P[X(1,\xi) = 0] = P[0 \le \xi \le \frac{1}{2}] = \frac{1}{2}$$

$$P[X(1,\xi) = 0 \text{ and } X(2,\xi) = 1] = P[\frac{1}{4} \le \xi \le \frac{1}{2}] = \frac{1}{4},$$

The probabilities are obtained by finding the equivalent events in terms of ξ :

$$P[X(1,\xi) = 0] = P[0 \le \xi \le \frac{1}{2}] = \frac{1}{2}$$

$$P[X(1,\xi) = 0 \text{ and } X(2,\xi) = 1] = P[\frac{1}{4} \le \xi \le \frac{1}{2}] = \frac{1}{4},$$

since all points in the interval $0 \le \xi \le 1$ begin with $b_1 = 0$ and all points in [1/4, 1/2) begin with $b_1 = 0$ and $b_2 = 1$. Clearly, any sequence of k bits has a corresponding subinterval of length (and hence probability) 2^{-k} .

In class we also found the joint pmf of X_1 and X_2 . That is, we found the probabilities of the events $X_1 = i$, $X_2 = j$ in terms of the probabilities of the equivalent events in terms of ξ . We further showed that X_1 and X_2 are independent random variables,