PROBLEM 1.1.* Simplify each of the following expressions and write the answer in both rectangular form and polar form. The first one is done for you. Summarize your answers in a table, like the one shown below, but also describe your approach and **show your work** in each case.

PROBLEM 1.2.* The figure below shows the locations in the complex plane of an unspecified complex number z when raised to the powers of $k \in \{0, 1, 2, 3, ..., 40\}$. In other words, it show the locations in the complex plane of z^0 , z^1 , z^2 , z^3 , z^4 , z^5 , ... and z^{40} :

Find z. Specify the answer in polar form, $z=re^{j\varphi}$, with r>0 and $\varphi\in(-\pi,\pi]$ to ensure that the answer is unique.

More details regarding the figure:

- The axes are not labeled.
- The large gray circles are centered at the origin and are concentric with radii r_1 , $2r_1$, and $3r_1$, for some unspecified r_1 .
- The innermost point intersects both the real axis and the inner concentric circle, while the outermost point intersects both the real axis and the outer circle.

$$Z^{0} = \Gamma_{1} \implies (\Gamma e^{j\theta T})^{0} \Rightarrow \Gamma^{0} e^{j\theta T} = \Gamma_{1}^{0} = \Gamma_{2}^{0} = \Gamma_{1}^{0} = \Gamma_{2}^{0} =$$

PROBLEM 1.3.* The equation |z - 6 - 8j| = 10 specifies a shape in the complex plane.

- (a) Describe the shape, in words.
- (b) Draw a picture of the shape in the complex plane. Carefully label the scale of both axes.
- (c) Of all of the values of z that satisfy this equation, which has the largest real part?

Z=6+83 => 10e.92735

- (d) Specify all of the real values of z that satisfy this equation, if any.
- (e) Specify all of the imaginary values of z that satisfy this equation, if any.

PROBLEM 1.4.* Consider the complex number $z = e^{j0.4\pi}$.

- Sketch the locations of z, z^2 , z^3 , z^4 , and z^5 in the complex plane. (a) Include the unit circle in the sketch for reference.
- Specify the three smallest positive integers n for which $z^n = 1$. (b)
- Specify the three smallest positive integers N for which $\sum_{k=0}^{N-1} z^k = 1$. (c)
- Specify the three smallest positive integers m for which $\sum_{k=0}^{4} z^{mk} = 0$. (d)
- Specify the three smallest positive integers m for which $\sum_{k=0}^{4} z^{mk} \neq 0$. (e)

$$z^{2} = e^{i(1\cdot z)\pi}$$
 $z^{3} = e^{i(1\cdot z)\pi}$
 $z^{4} = e^{i(1\cdot c)\pi}$
 $z^{5} = e^{i(2\pi)}$
Re

$$Z^{2} = e^{j(1\cdot 2)\pi}$$

$$Z^{3} = e^{j(1\cdot 2)\pi}$$

$$Z^{4} = e^{j(1\cdot 2)\pi}$$

$$Z^{5} = e^{j(2\pi)}$$

$$Z^{5} = e^{j(2\pi)}$$

$$Z^{7} = e^{j(2\cdot 2\pi)}$$

$$Z^{8} = e^{j(3\cdot 2\pi)}$$

$$Z^{9} = e^{j(3\cdot 2\pi)}$$

$$Z^{9} = e^{j(3\cdot 2\pi)}$$

PROBLEM 1.5.* The waveform shown below can be represented by $x(t) = \text{Re}\{Xe^{j\omega_0t}\}$:

As indicated in the figure, it achieves a peak at time $t_p = 2/3$.

- (a) Find $\omega_0 \geq 0$.
- (b) Find the complex phasor X, expressed in polar form.
- (c) The waveform can also be written in *standard form* as $x(t) = A\cos(2\pi f_0 t + \varphi)$. Find the amplitude A, the Hertzian frequency f_0 (in Hz), and the phase φ . (*Standard form* means that $A \geq 0$, $f_0 \geq 0$, and $-\pi < \varphi \leq \pi$, which makes the answers unique.)
- (d) There are infinitely many values for t_0 for which the given signal can be written as: $x(t) = A\cos(2\pi f_0(t-t_0))$.

Of these, specify the three that are *smallest*, when constrained to be positive $(t_0 > 0)$.

G)
$$T = \frac{2\pi}{\omega} \Rightarrow \omega_{0} = \frac{2\pi}{T} \Rightarrow \frac{2\pi}{\sqrt{1}} = \frac{5\pi}{5\pi} \frac{\cos(5\omega)}{\cos(2\pi)}$$
 $X = Ae^{\frac{1}{2}(-2\pi)} \frac{1}{5} \frac{1}{5} \cos(2\pi)$

B) $W_{0} = 5\pi \frac{\cos(5\omega)}{\cos(2\pi)} = \frac{1}{2\pi} \frac{1}{5} \frac{\cos(5\omega)}{\cos(2\pi)} = \frac{1}{3} \frac{\cos(5\omega)}{\cos(5\omega)} = \frac{1}$