LED Example

```
int main(void)
       u8 i = 0;
       System_Configuration();
       while(1)
       {
                                                                // LED_TX
// LED_RX
              GPIO_WriteBit(GPIOC, GPIO_Pin_13, i);
              GPIO_WriteBit(GPIOC, GPIO_Pin_13, 1);
GPIO_WriteBit(GPIOC, GPIO_Pin_14, !i);
              GPIO_WriteBit(GPIOC, GPIO_Pin_15, i);
                                                                  // PLAY
              GPIO_WriteBit(GPIOB, GPIO_Pin_12, !i);
                                                                  // EDIT
              GPIO_WriteBit(GPIOC, GPIO_Pin_6, i);
                                                                  // MNG
              i = !i;
              mDelay(150);
       } ;
```

Results

Control LED's blink

Button Example

```
int main(void)
{
    u8 sw_mode, sw_start;
    System_Configuration();

    while(1)
    {
        sw_mode = GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_14);
        sw_start = GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_15);

        GPIO_WriteBit(GPIOC, GPIO_Pin_15, sw_mode);
        GPIO_WriteBit(GPIOB, GPIO_Pin_12, sw_start);
    };
}
```

Results

Press the MODE button, the PLAY LED (red) and EDIT LED (green) turn on.

Serial Communications Example

```
int main(void)
{
    u16 recv;
    u8 led = 0;

    System_Configuration();

    USART_Configuration(USART_PC, 57600);
    USART_ITCOnfig(USART3, USART_IT_RXNE, DISABLE);

    while(1)
{
        if(USART_GetFlagStatus(USART3, USART_FLAG_RXNE) != 0)
        {
            GPIO_WriteBit(GPIOC, GPIO_Pin_14, led);
            led = !led;
            recv = USART_ReceiveData(USART3);
            USART_SendData(USART3, recv);
            USART_ClearFlag(USART3, USART_FLAG_RXNE);
        }
    };
}
```

Results

The terminal window outputs an echo after input a value is entered. The RX LED toggles.

```
RoboPlus Terminal v1.03

Setup Files
hi, echo is working..
```

Buzzer Example – GPIO

Results

Press the MODE button and the buzzer sounds off.

Dynamixel Power Control Example

Results

Dynamixel's LED blinks at 0.5 seconds intervals (note that Dynamixel has to be connected to the CM-730).

Dynamixel read/write Example

Results

Dynamixel's PLAY LED blinks momentarily after reaching goal/target position.

Acceleromater Read Example

```
void ACC_Setting(void)
{
      u16 i;
      u16 data;
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET);
      GPIO_ResetBits(PORT_SIG_ACC_CS,PIN_SIG_ACC_CS);
      i=0x2027;
      SPI_I2S_SendData(SPI2,i);
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET);
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET);
      data = SPI_I2S_ReceiveData(SPI2);
      GPIO_SetBits(PORT_SIG_ACC_CS, PIN_SIG_ACC_CS);
u8 getACC(u8 address)
{
      u16 data;
      u16 add;
      add = address << 8 ;</pre>
      add | = 0x8000;
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET);
      GPIO_ResetBits(PORT_SIG_ACC_CS, PIN_SIG_ACC_CS);
      SPI_I2S_SendData(SPI2, add);
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET);
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET);
      data = SPI_I2S_ReceiveData(SPI2);
      GPIO_SetBits(PORT_SIG_ACC_CS, PIN_SIG_ACC_CS);
      return (u8) (data&0x00FF);
void GetAccXYZ(u16 *x, u16 *y, u16 *z)
       *x = (((u16)getACC(0x28+1)) << 8) + getACC(0x28);
       *y = (((u16)getACC(0x28+3)) << 8) + getACC(0x28+2);
       *z = (((u16)getACC(0x28+5)) << 8) + getACC(0x28+4);
```

```
int main(void)
      u16 x, y, z;
      System_Configuration();
      ACC_Setting();
      USART_Configuration(USART_PC, 57600);
      TxDString(USART_PC, " == Acc Test == \r\n");
      while(1)
             GetAccXYZ(&x, &y, &z);
             TxD_Dec_S16((s16)x);
             TxDString(USART_PC, " / ");
             TxD_Dec_S16((s16)y);
             TxDString(USART_PC, " / ");
             TxD_Dec_S16((s16)z);
             TxDString(USART_PC, "\r\n");
             mDelay(100);
      } ;
```

Results

```
RoboPlus Terminal v1.03

Setup Files
== Acc Test ==
-15152 / -15903 / -1913
-11519 / 18560 / 16423
2688 / -32256 / 0
255 / -2553 / -10
2047 / -2553 / -10
```

Gyroscope Read Example

```
void Gyro_Setting(void)
      u16 i;
      u16 data;
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET);
      GPIO_ResetBits(PORT_SIG_GYRO_CS, PIN_SIG_GYRO_CS);
      i=0x200F;
      SPI_I2S_SendData(SPI2,i);
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET);
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET);
      data = SPI_I2S_ReceiveData(SPI2);
      GPIO_SetBits(PORT_SIG_GYRO_CS, PIN_SIG_GYRO_CS);
u8 getGyro(u8 address)
      u16 data;
      u16 add;
      add = address << 8 ;</pre>
      add | = 0x8000;
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET);
      GPIO_ResetBits(PORT_SIG_GYRO_CS, PIN_SIG_GYRO_CS);
      SPI_I2S_SendData(SPI2, add);
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET);
      while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET);
      data = SPI_I2S_ReceiveData(SPI2);
      GPIO_SetBits(PORT_SIG_GYRO_CS, PIN_SIG_GYRO_CS);
      return (u8) (data&0x00FF);
void GetGyroXYZ(u16 *x, u16 *y, u16 *z)
       *x = (((u16)getGyro(0x28+1)) << 8) + getGyro(0x28);
       *y = (((u16) getGyro(0x28+3)) << 8) + getGyro(0x28+2);
       *z = (((u16)getGyro(0x28+5)) << 8) + getGyro(0x28+4);
```

```
int main(void)
{
      u16 x, y, z;
       System_Configuration();
       Gyro_Setting();
       USART_Configuration(USART_PC, 57600);
       TxDString(USART_PC, " == Gyro Test == \r\n");
       while(1)
              GetGyroXYZ(&x, &y, &z);
              TxD_Dec_S16((s16)x);
              TxDString(USART_PC, " / ");
              TxD_Dec_S16((s16)y);
             TxDString(USART_PC, " / ");
             TxD_Dec_S16((s16)z);
TxDString(USART_PC, "\r\n");
             mDelay(100);
       } ;
}
```