SQL for astro

Colin Navin

what is SQLP

- Structured Query Language the standard language used to manipulate relational databases
- the acronym is not really accurate it is not only used to query databases but can also create and edit them as well as create queries, forms, and reports

Commercial Software

- - Oracle
 - SAP Sybase
 - Microsoft SQL Server
- → Free
 - Microsoft SQL Server Express
 - mySQL
 - PostgreSQL
 - SQLite (our weapon of choice for today)

Overview

- relational database basics
- basic SQL syntax and usage
- online (astro) databases
- embedded SQL (in Python)
- one hour exam

relational database basics (1)

- database is a computerised record keeping system – a collection of data files
- users need to be able to add and delete files, insert data into files, retrieve data from files, change data in files, delete data from files

relational database basics (2)

- in a <u>relational</u> database, data is organised in one or more tables
- tables have columns (fields) and rows (records)
- columns have names and data types
- rows contain records or data for the columns
- Note: the physical files are (almost certainly) not stored as tables but the database system is designed to make it appear that way to the user

relational database basics (3)

- ⇒ each table must have a primary key a field that uniquely identifies each record in the table
- tables may have relationships with other tables
- ⇒ relationships are managed by foreign keys a field that contains the primary key of another table

test.db

stars table		
FIELD	DATA TYPE	
star_id	TEXT	
image_id	TEXT	
ra	REAL	
dec	REAL	
v_mag	REAL	
spectral_type	TEXT	

primary key

foreign key

images table		
FIELD	DATA TYPE	
∍ <mark>image_id</mark>	TEXT	
ra_cen	REAL	
dec_cen	REAL	
date	TEXT	
time	TEXT	

spectral_categories table		
FIELD	DATA TYPE	
spectral_type	TEXT	
T_eff	REAL	

test.db - stars table

star_id	image_id	ra	dec	v_mag	spectral_type
HIP29807	146-34-01	146.12	-34.32	6.78	0
HIP30973	146-33-01	146.33	-32.91	7.98	G
HD35294	145-33-01	144.82	-33.21	11.56	0
HD269324	145-33-01	145.22	-33.21	12.67	M
HD269334	145-33-01	145.28	-33.17	12.68	M
HD49091	146-34-01	145.82	-34.34	9.99	M
HD49126	146-34-01	145.82	-34.41	13.01	M
HD169334	146-34-01	146.5	-33.73	12.81	В
1252BT14	146-33-01	145.9	-33.24	10.02	M
1252BT12	146-34-01	146.26	-34.45	12.98	М
1252BT18	147-34-01	146.66	-33.84	8.42	F
HD48765	147-34-01	146.76	-33.56	8.45	M
HD24670	147-34-01	146.62	-34.34	9.07	M

test.db - images and spectral_categories tables

image_id	ra_cen	dec_cen	date	time
145-33-01	145.2	-33.1	20130321	1117
146-33-01	146.2	-33.1	20130321	1152
147-33-01	147.2	-33.1	20130321	1229
145-34-01	145.2	-34.1	20130322	1312
146-34-01	146.2	-34.1	20130322	1117
147-34-01	147.2	-34.1	20130322	1117

spectral_type	T_eff
0	50000
В	28000
А	10000
F	7500
G	6000
К	5000
M	3500

basic SQL syntax and usage

- [SQLite metacommands]
- SELECT statements to query the database
- ⇒ INSERT, DELETE and UPDATE statements to change the data

SQLite metacommands

- .help
- .tables
- schema :
- show
- .mode list|columns|csv
- .header on off

SELECT statements

basic syntax:

SELECT "column_a", ..., "column_n"

FROM "table_a"

WHERE "condition";

INSERT statements

basic syntax:

```
INSERT INTO "table_a"
("column_a", ..., "column_n")
VALUES ("value_a", ..., "value_n");
```

UPDATE statements

⇒ basic syntax:
UPDATE "table_a"
SET "column_a" = "value_a", ..., "column_n" = "value_n"

WHERE "condition";

DELETE statements

⇒basic syntax:
DELETE FROM "table_a"

WHERE "condition";

online (astro) databases

- ⇒ NASA/IPAC Infrared Science Archive (IRSA)
 - http://irsa.ipac.caltech.edu/index.html
- Sloan Digital Sky Survey
 - http://cas.sdss.org/astro/en/

embedded SQL (python)

- you can include SQL statements in many programming languages
- in particular for today you can embed SQLite3 statements in Python
- have a look at and run SQLtest.py