§4.5: Dimension

ullet Given a vector space V, a basis for V is a linearly independent set that spans V.

Proof: Let our set of vectors in V be $\{\mathbf{u}_1,\dots,\mathbf{u}_p\}$, and consider the matrix

 $A = \begin{bmatrix} | & | & | & | \\ |\mathbf{u}_1|_{\mathcal{B}} & \dots & [\mathbf{u}_p]_{\mathcal{B}} \end{bmatrix},$

i Any set in ${\cal V}$ containing more than n vectors must be linearly dependent.

ii Any set in ${\cal V}$ containing fewer than n vectors cannot span ${\cal V}.$

Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V.

- If $\mathcal{B}=\{\mathbf{b}_1,\dots,\mathbf{b}_n\}$ is a basis for V, then the \mathcal{B} -coordinates of \mathbf{x} are the weights c_i in the linear combination $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_p \mathbf{b}_p$.
 - Coordinate vectors allow us to test for spanning / linear independence, to solve linear systems, and to test for one-to-one / onto by working in \mathbb{R}^n

Another example of this idea:

Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V .

- i Any set in ${\cal V}$ containing more than n vectors must be linearly dependent (theorem 9 in textbook).
- ii Any set in ${\cal V}$ containing fewer than n vectors cannot span ${\cal V}$

We prove this (next page) using coordinate vectors, and the fact that we already know it is true for $V=\mathbb{R}^n$.

HKBU Math 2207 Linear Algebra

HKBU Math 2207 Linear Algebra Semester 2 2017, Week 8, Page 1 of 15

Semester 2 2017, Week 8, Page 2 of 15

ii If p < n, then $\operatorname{rref}(A)$ cannot have a pivot in every row, so the set of coordinate

i If p>n, then $\operatorname{rref}(A)$ cannot have a pivot in every column, so $\{[\mathbf{u}_1]_{\mathcal{B}},\ldots$ is linearly dependent in \mathbb{R}^n , so $\{\mathbf{u}_1,\dots,\mathbf{u}_p\}$ is linearly dependent in V

which has p columns and n rows.

vectors $\{[{f u}_1]_{\cal B},\ldots,[{f u}_p]_{\cal B}\}$ cannot span \mathbb{R}^n , so $\{{f u}_1,\ldots,{f u}_p\}$ cannot span V .

Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V

i Any set in ${\cal V}$ containing more than n vectors must be linearly dependent. ii Any set in V containing fewer than n vectors cannot span V .

Theorem 10: Every basis has the same size. If a vector space V has a basis of \boldsymbol{n} vectors, then every basis of ${\cal V}$ must consist of exactly n vectors. As a consequence:

Warning: the theorem does not say that "any set of more than n vectors must span V" - this is false, e.g. $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix} \right\}$ is a set of 3 vectors in \mathbb{R}^2 that does not

i Any set in ${\cal V}$ containing more than n vectors must be linearly dependent.

ii Any set in ${\cal V}$ containing fewer than n vectors cannot span ${\cal V}$.

Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V .

Similarly, any set of fewer than n vectors may be linearly independent or dependent

 $(think\ about\ 0)$

n or more vectors: has a chance of spanning V, depending on the set.

- Fewer than n vectors: cannot span V_{\cdot} span \mathbb{R}^2 . What the theorem says is:

Definition: Let V be a vector space.

So the following definition makes sense:

- The *dimension* of V, written $\dim V$, is the number of vectors in a basis for V. ullet If V is spanned by a finite set, then V is $\mathit{finite-dimensional}$. (This number is finite because of the spanning set theorem.
- ullet If V is not spanned by a finite set, then V is infinite-dimensional.

Note that the definition does not involve "infinite sets"

Definition: (or convention) The dimension of the zero vector space $\{0\}$ is 0.

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 8, Page 3 of 15

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 8, Page 4 of 15

Definition: The *dimension* of V is the number of vectors in a basis for V.

Examples:

- The standard basis for Rⁿ is {e₁,..., e_n}, so dim Rⁿ = n.
 The standard basis for P_n is {1, t,..., tⁿ}, so dim P_n = n + 1.
 - Exercise: Show that $\dim M_{m \times n} = mn$.

Example: Let W be the set of vectors of the form $\lfloor 0
floor$, where a,b can take any

value. We showed (week 8 p20) that a basis for W is $\left\{ egin{array}{c} 1 & 0 \\ 0 & 1 \end{array}
ight.$ $\dim W = 2$.

From the theorem on p2, we know that any set of 3 vectors in ${\cal W}$ must be linearly dependent, because $3 > \dim W$.

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 8, Page 5 of 15

Example: We classify the subspaces of \mathbb{R}^3 by dimension:

- ullet 0-dimensional: only the zero subspace $\{0\}$
- 1-dimensional, i.e. Span $\{v\}$: lines through the origin.
- 2-dimensional, i.e. Span $\{u,v\}$ where $\{u,v\}$ is linearly independent: planes through the origin.
- 3-dimensional: by Invertible Matrix Theorem, 3 linearly independent vectors in \mathbb{R}^3 spans \mathbb{R}^3 , so the only 3-dimensional subspace of \mathbb{R}^3 is \mathbb{R}^3 itself.

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 8, Page 6 of 15

Here is a counterpart to the spanning set theorem (week 7 p10):

Theorem 11: Linearly Independent Set Theorem: Let W be a subspace of a finite-dimensional vector space V. If $\{\mathbf{v}_1,\dots,\mathbf{v}_p\}$ is a linearly independent set in W, we can find $\mathbf{v}_{p+1},\dots,\mathbf{v}_n$ so that $\{\mathbf{v}_1,\dots,\mathbf{v}_n\}$ is a basis for W .

- If Span $\{{\bf v}_1,\dots,{\bf v}_p\}=W$, then $\{{\bf v}_1,\dots,{\bf v}_p\}$ is a basis for W.
- ullet Otherwise $\{{f v}_1,\ldots,{f v}_p\}$ does not span W , so there is a vector ${f v}_{p+1}$ in W that This process must stop after at most $\dim V - p$ additions, because a set of independent set. Continue adding vectors in this way until the set spans W_{\parallel} is not in Span $\{\mathbf{v}_1,\dots,\mathbf{v}_p\}$. Adding \mathbf{v}_{p+1} to the set still gives a linearly more than $\dim V$ elements must be linearly dependent.

The above logic proves something stronger:

subspace of a finite-dimensional vector space V, then W is also finite-dimensional Theorem 11 part 2: Subspaces of Finite-Dimensional Spaces: If W is a and $\dim W \leq \dim V$.

HKBU Math 2207 Linear Algebra

Because of the spanning set theorem and linearly independent set theorem:

i Any linearly independent set of exactly p elements in V is a basis for V. Theorem 12: Basis Theorem: If V is a p-dimensional vector space, then ii Any set of exactly p elements that span V is a basis for V.

only need to show two of the following three things (the third will be automatic): In other words, to prove that ${\cal B}$ is a basis of a p-dimensional vector space V, we

- B contains exactly p vectors;
 - ullet is linearly independent;
 - Span $\mathcal{B}=V$.
- . If V is a subspace of U, these two statements work in the big space U (see p10 and p14). are usually easier to check because we can

- i By the linearly independent set theorem, we can add elements to any linearly independent set to obtain a basis for V. But that larger set must contain exactly $\dim V = p$ elements. So our starting set must already be a basis.
 - By the spanning set theorem, we can remove elements from any set that spans ${\cal V}$ to obtain a basis for ${\cal V}$. But that smaller set must contain exactly $\dim V = p$ elements. So our starting set must already be a basis.

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 8, Page 7 of 15

Semester 2 2017, Week 8, Page 8 of 15

Summary:

- ullet If V is spanned by a finite set, then V is finite-dimensional and $\dim V$ is the number of vectors in any basis for V.
 - ullet If V is not spanned by a finite set, then V is infinite-dimensional
- If $\{\mathbf{v}_1,\dots,\mathbf{v}_n\}$ spans V, then some subset is a basis for V (week 7 p10). If $\{\mathbf{v}_1,\dots,\mathbf{v}_n\}$ is linearly independent and V is finite-dimensional, then it can
 - be expanded to a basis for $V\ ({\sf p5})$.

If $\dim V = p$ (so V and \mathbb{R}^p are isomorphic):

- \bullet Any set of more than p vectors in V is linearly dependent (p2).
 - Any set of fewer than p vectors in V cannot span V (p2).
- ullet Any linearly independent set of exactly p elements in V is a basis for V (p6)
 - ullet Any set of exactly p elements that span V is a basis for V (p6)

To prove that ${\cal B}$ is a basis of V , show two of the following three things:

- B contains exactly p vectors;
 - ullet is linearly independent;
 - Span $\mathcal{B} = V$.

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 8, Page 9 of 15

The basis theorem is useful for finding bases of subspaces:

Let
$$W = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$
. Is $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 1 \\ 2 \end{bmatrix} \right\}$ a basis for W ?

Answer: We are given that
$$W = \operatorname{Span}\{e_1, e_3, e_4\}$$
 and $\{e_1, e_3, e_4\}$ is a linearly independent set, so $\{e_1, e_3, e_4\}$ is a basis for W , and so $\dim W = 3$. The vectors in $\mathcal B$ are all in W , and $\mathcal B$ consists of exactly 3 vectors, so it's enough to check whether $\mathcal B$ is linearly independent.

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 3 & 5 & 2 \end{bmatrix} \xrightarrow{R_4 - 3R_1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & -1 & -7 \end{bmatrix} \xrightarrow{R_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 has a pivot in each column, so $\mathcal B$ is linearly independent, and is therefore a basis.

Note that we never had to work in W, only in \mathbb{R}^4

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 8, Page 10 of 15

§4.6: Rank

Next we look at how the idea of dimension can help us answer questions about existence and uniqueness of solutions to linear systems.

Definition: The rank of a matrix A is the dimension of its column space. The nullity of a matrix A is the dimension of its null space.

Example: Let
$$A = \begin{bmatrix} 5 & -3 & 10 \\ 7 & 2 & 14 \end{bmatrix}$$
, $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$. A basis for $\operatorname{Col} A$ is $\left\{ \begin{bmatrix} 5 \\ 7 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \end{bmatrix} \right\}$ \longleftarrow one vector per pivot A basis for $\operatorname{Nul} A$ is $\left\{ \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} \right\}$.

is for ColA is
$$\left\{\begin{bmatrix} 5\\7 \end{bmatrix}, \begin{bmatrix} -3\\9 \end{bmatrix}\right\}$$
 \leftarrow

basis for NulA is
$$\left\{ \begin{bmatrix} -1/2\\0\\1 \end{bmatrix} \right\}$$
.

 \longleftarrow one vector per free variable

A basis for Row A is $\{(1,0,1/2),(0,1,0)\}$. \longleftarrow one vector per pivot

So rank A = 2, nullity A = 1.

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 8, Page 11 of 15

So rankA + nullityA = ?

Rank Theorem: rank $A = \dim \operatorname{Col} A = \dim \operatorname{Row} A = \operatorname{number}$ of pivots in $\operatorname{rref}(A)$.

Rank-Nullity Theorem: For an m imes n matrix $A_{f i}$

$$\operatorname{rank} A + \operatorname{nullity} A = n.$$

Proof: From our algorithms for bases of ColA and NulA (see week 7 slides): $\operatorname{\mathsf{rank}} A = \operatorname{\mathsf{number}}$ of pivots in $\operatorname{\mathsf{rref}}(A) = \operatorname{\mathsf{number}}$ of basic variables,

nullityA = number of free variables.

Each variable is either basic or free, and the total number of variables is n, the number of columns.

An application of the Rank-Nullity theorem:

there are ten equations, there must be a pivot in every row, so any nonhomogeneous solution set that is spanned by two linearly independent vectors. Then the nullity of this system is 2, so the rank is 12-2=10. So this system has 10 pivots. Since Example: Suppose a homogeneous system of 10 equations in 12 variables has a system with the same coefficients always has a solution.

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 8, Page 12 of 15

Theorem 8 (The Invertible Matrix Theorem)

Let A be a square $n \times n$ matrix. The the following statements are equivalent (i.e., for a given A, they are either all true or all false)

- The columns of A form a basis for R o. dim Col A = nq. $Nul A = \{0\}$ p. rank A = nn. Col A = R" e. The columns of A form a linearly independent set. d. The equation Ax = 0 has only the trivial solution. f. The linear transformation x →.4x is one-to-one. b. A is row equivalent to I_n . a. A is an invertible matrix.
 - g. The equation Ax = b has at least one solution for each b in R'' The linear transformation x → Ax maps R" onto R" j. There is an $n \times n$ matrix C such that $CA = I_n$. h. The columns of A span R"

new (rephrasing

statements in

the new

the previous

terminology)

Semester 2 2017, Week 8, Page 13 of 15

Advanced application of the Rank-Nullity Theorem and the Basis Theorem:

Redo Example: (p11) Let $A=\begin{bmatrix}5&-3&10\\7&2&14\end{bmatrix}$. Find a basis for NulA and ColA.

- Answer: (a clever trick without any row-reduction)

 Observe that $2\begin{bmatrix} 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 10 \\ 14 \end{bmatrix}$, so $\begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$ is a solution to $A\mathbf{x} = \mathbf{0}$. So nullity $A \ge 1$.
- so $\left\{ \begin{bmatrix} 2\\0\\-1 \end{bmatrix} \right\}$ is a basis for NulA, $\left\{ \begin{bmatrix} 5\\7\\2 \end{bmatrix}, \begin{bmatrix} -3\\2 \end{bmatrix} \right\}$ is a basis for ColA.

Nul.A and n-k linearly independent vectors in ${\sf Col}A$. Semester 2 2017, Week 8, Page 14 of 15 So for a general $m \times n$ matrix, it's enough to find k linearly independent vectors in

> A^T is an invertible matrix HKBU Math 2207 Linear Algebra

The Rank-Nullity theorem also holds for linear transformations T:V o W whenever ${
m I}$ is finite-dimensional (to prove it yourself, work through q8 of homework 5 from 2015):

 $\dim \operatorname{range} \operatorname{of} T + \dim \operatorname{kernel} \operatorname{of} T = \dim V.$

Advanced application:

Example: Find a basis for Q, the set of polynomials $\mathbf{p}(t)$ of degree at most 3 satisfying

Answer: Remember (week 6 p43) that Q is the kernel of the evaluation-at-2 function $E_2:\mathbb{P}_3 \to \mathbb{R}$ given by $E_2(\mathbf{p}) = \mathbf{p}(2)$,

$$E_2(a_0 + a_1t + a_2t^2 + a_3t^3) = a_0 + a_12 + a_22^2 + a_32^3.$$

three polynomials have different degrees - see week 7 p14-15). Since ${\cal B}$ contains exactly (check with coordinate vectors relative to the standard basis of \mathbb{P}_3 , or because these Now $\mathcal{B}=\left\{(2-t),(2-t)^2,(2-t)^3
ight\}$ is a subset of Q, and is linearly independent E_2 is onto, so its range has dimension 1. So $\dim Q = \dim \mathbb{P}_3 - 1 = 4 - 1 = 3$. 3 vectors, it is a basis for Q.

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 8, Page 15 of 15