Visualizing Surrogate Decision Trees of Convolutional Neural Networks

Shichao Jia¹, Peiwen Lin¹, Zeyu Li¹, Jiawan Zhang¹ and Shixia Liu²

Related Work

DQNViz

GANLab

Strategy 2 Close the Black Box **Using Surrogate Model** Strategy 2
Close the Black Box
Using Surrogate Model

IF A < B Then ... Else IF C > B Then ...

Decision Tree, Rule List ...

Same Input

Similar Output

Neural Networks, Random Forest...

Related Work

For example

Color(30, 40) > 200However False Low Level Input Color(10, 20) > 0 False Too Large Tree False Cat Dog image

Slice the Black Box

image

Slice the Black Box

image

A < 1.2

A < 1.2 Our Strategy: False B < 2.3Match Features to Concepts¹ False C < 1.2False Cat Classifier **Feature Extractor** Dog∎ eye

Segmented Labeled Images

A < 1.2 Our Strategy: False B < 2.3Match Features to Concepts¹ False C < 1.2False Cat Classifier **Feature Extractor** Dog∎ muzzle

Segmented Labeled Images

 $IoU(M_i, L_j) = rac{M_i \cap L_j}{M_i \cup L_i}$ Area of Overlap Area of Union

A < 1.2

C < 1.2

B < 2.3

 $IoU(M_1, L_1) > IoU(M_1, L_2) > IoU(M_1, L_3)$

eye > muzzle > ear!

 $IoU(M_i, L_j) = rac{M_i \cap L_j}{M_i \cup L_i}$ Area of Overlap Area of Union

 $IoU(M_2, L_2) > IoU(M_2, L_1) > IoU(M_2, L_3)$

eye < 1.2

C < 1.2

B < 2.3

muzzle > eye > ear!

Match Features to Concepts¹

 $IoU(M_i, L_j) = rac{M_i \cap L_j}{M_i \cup L_i}$ Area of Overlap Area of Union

eye < 1.2

False

muzzle < 2.3

 $IoU(M_2, L_2) > IoU(M_2, L_1) > IoU(M_2, L_3)$

muzzle > eye > ear!

Match Features to Concepts¹

 $IoU(M_i, L_j) = rac{M_i \cap L_j}{M_i \cup L_i}$ Area of Overlap Area of Union

eye < 1.2

False

C < 1.2

muzzle < 2.3

 $IoU(M_3, L_3) > IoU(M_3, L_1) > IoU(M_3, L_3)$

ear > eye > muzzle!

Segmented Labeled Images

 M_3

$$IoU(M_i, L_j) = rac{M_i \cap L_j}{M_i \cup L_j}$$
 Area of Overlap Area of Union

 $IoU(M_3, L_3) > IoU(M_3, L_1) > IoU(M_3, L_3)$

eye < 1.2

ear > eye > muzzle!

Challenges:

Neuron (28) <= 46.5589 Samples = 71 Value = [3, 0, 1, 3, 1, 35, 4, 24, 0, 0]

- Scalability of large decision trees
- 2 Hard to grasp information of each rule
- 3 Hard to reason misclassification

TreeFlow: dataflow along the decision tree

Neuron View: t-SNE projection of neurons based on semantics similarity

Neuron Ranking: a collection of semantic labels and salience maps

Basic Interactions

Use Case 2: Comparing Surrogate Decision Trees

Conclusion & Discussions

- Conclusion
 - New strategy to convert CNNs to surrogate decision trees
 - CNN2DT, a visual analytics system
 - Use cases and user study
- 2 Potential Users
 - Non-DL experts & ML practitioners
- 3 Limitations & Future Work
 - Scalability for color encoding, number of classes
 - Dependent on semantic database
 - Multi-semantics of each neuron | Non-interpretable neurons
 - Further evaluations on other architectures