

Ανακάλυψη Γνώσης σε Βάσεις Δεδομένων (ISE709)

ΑΚΑΔ. ΕΤΟΣ 2024-25

Διδάσκουσα: Γ. Κολωνιάρη

HW1

Εξόρυξη Γνώσης σε Δεδομένα - Εργασία 1 (Classification)

Φοιτητής: Ερρίκος Ματεβοσιάν

AM: iis23018

(Α) Δέντρα Απόφασης με το χέρι

Colour	Height	Stripes	Texture	Poisonous
Purple	Tall	Yes	Rough	Yes
Purple	Tall	Yes	Smooth	Yes
Red	Short	Yes	Hairy	No
Blue	Short	No	Smooth	No
Blue	Short	Yes	Hairy	Yes
Red	Tall	No	Hairy	No
Blue	Tall	Yes	Smooth	Yes
Blue	Short	Yes	Smooth	Yes
Blue	Tall	No	Hairy	No
Blue	Short	Yes	Rough	Yes
Red	Short	No	Smooth	No
Purple	Short	No	Hairy	Yes
Red	Tall	Yes	Hairy	No
Purple	Tall	Yes	Hairy	Yes
Purple	Tall	No	Rough	No
Purple	Tall	No	Smooth	No

i)

Συνολικές τιμές = 16 Τιμή "Yes" στο χαρακτηριστικό "Poisonous" = 8 Τιμή "No" στο χαρακτηριστικό "Poisonous" = 8

Gini Index

$$GINI(t) = 1 - \sum_{j=1}^{c} [p(j | t)]^{2}$$

GiniSplit

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

• Gini Index για Colour

Χωρίζουμε σε Purple, Red, Blue

<u>Purple</u>

Έχουμε 4 Yes και 2 No στο χαρακτηριστικό Poisonous

Gini(Purple) =
$$1 - \left(\frac{4}{6}\right)^2 - \left(\frac{2}{6}\right)^2 = 1 - 0.444 - 0.111 \approx 0.444$$

Red

Έχουμε 4 Νο στο χαρακτηριστικό Poisonous

Gini(Red) =
$$1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0$$

Blue

Έχουμε 4 Yes και 2 No

Gini(Blue) =
$$1 - \left(\frac{4}{6}\right)^2 - \left(\frac{2}{6}\right)^2 = 1 - 0.444 - 0.111 \approx 0.444$$

Weighted Gini Index για Colour

Gini(Colour) =
$$\frac{6}{16} * 0.444 + \frac{4}{16} * 0 + \frac{6}{16} * 0.444 \approx 0.3334$$

• Gini Index για Height

Χωρίζουμε σε Tall και Short

Tall: έχουμε 5 Yes και 3 No στο χαρακτηριστικό Poisonous

Gini(Tall) =
$$1 - \left(\frac{5}{8}\right)^2 - \left(\frac{3}{8}\right)^2 \cong 0.468$$

Short: έχουμε 4 Yes και 4 No

Gini(Short) =
$$1 - \left(\frac{4}{8}\right)^2 - \left(\frac{4}{8}\right)^2 = 0.5$$

Weighted Gini Index για Height

Gini(Height) =
$$\left(\frac{8}{16}\right) * 0.468 + \left(\frac{8}{16}\right) * 0.5 \approx 0.4844$$

Gini Index για Stripes

Χωρίζουμε σε Yes και No

Yes: Έχουμε 6 Yes και 2 No

Gini(Yes) =
$$1 - \left(\frac{6}{8}\right)^2 - \left(\frac{2}{8}\right)^2 = 0.375$$

No: Έχουμε 2 Yes και 4 No

Gini(No) =
$$1 - \left(\frac{2}{6}\right)^2 - \left(\frac{4}{6}\right)^2 \approx 0.444$$

Weighted Index yıa Stripes

Gini(Stripes) =
$$\left(\frac{8}{16}\right) * 0.375 + \left(\frac{6}{16}\right) * 0.444 \approx 0.3542$$

• Gini Index για Texture

Χωρίζουμε σε Rough, Smooth, Hairy

Rough: Έχουμε 3 Yes και 1 No

Gini(Rough) =
$$1 - \left(\frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2 = 0.375$$

Smooth: Έχουμε 3 Yes και 3 No

Gini(Smooth) =
$$1 - \left(\frac{3}{6}\right)^2 - \left(\frac{3}{6}\right)^2 = 0.5$$

Hairy: Έχουμε 3 Yes και 3 No

Gini(Hairy) =
$$1 - \left(\frac{3}{6}\right)^2 - \left(\frac{3}{6}\right)^2 = 0.5$$

Weighted Index για Texture

Gini(Texture) =
$$\left(\frac{4}{16}\right) * 0.375 + \left(\frac{6}{16}\right) * 0.5 + \left(\frac{6}{16}\right) * 0.5 \approx 0.4688$$

Το Colour έχει το μικρότερο Gini Index οπότε το επιλέγουμε ως ρίζα

Ας δούμε το πιο εμφανιζόμενη τιμή του Poisonous για κάθε Colour

Purple

6 τιμές σύνολο, 4 Yes και 2 No

Πλειονότητα: Yes

Λάθος κατηγοριοποίηση: 2

<u>Red</u>

4 τιμές, 4 Νο

Πλειονότητα: Νο

Λάθος κατηγοριοποίηση: 0

Blue

6 τιμές, 4 Yes και 2 No

Πλειονότητα: Yes

Λάθος κατηγοριοποίηση: 2

Συνολικά λάθος κατηγοριοποιήσεις = 2 + 0 + 2 = 4

ii) Weka

- Tree View

To weka επιλέγει το χαρακτηριστικό Stripes ως ρίζα του δέντρου.

iii)

Colour	Height	Stripes	Texture	Poisonous
Purple	Tall	Yes	Rough	Yes
Red	Tall	Yes	Smooth	No
Red	Short	No	Hairy	Yes
Blue	Short	No	Smooth	No

- Purple, Tall, Yes, Rough → Πλειονότητα Purple = Poisonous → Σωστή κατηγοριοποίηση
- 2. Red, Tall, Yes, Smooth → Πλειονότητα Red = No Poisonous → Σωστή κατηγοριοποίηση

- 3. Red, Short, No, Hairy → Πλειονότητα Red = No Poisonous → Λάθος κατηγοριοποίηση, αφού στο παραπάνω dataset εμφανίζεται ως Poisonous Yes
- 4. Blue, Short, No, Smooth → Πλειονότητα Blue = Poisonous → Λάθος κατηγοριοποίηση, αφού στο παραπάνω dataset εμφανίζεται ως Non Poisonous

Accuracy 2/4 = 0.5

Weka Results

=== Summary ===

Correctly Classified Instances	2	50	8
Incorrectly Classified Instances	2	50	8

(B) Μελέτη περίπτωσης με το WEKA

• J48

✓ minNumObj = 2

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.983	0.014	0.994	0.983	0.989	0.963	0.989	0.992	unacc
	0.943	0.027	0.910	0.943	0.926	0.904	0.968	0.919	acc
	0.826	0.010	0.781	0.826	0.803	0.795	0.958	0.726	good
	0.846	0.003	0.917	0.846	0.880	0.876	0.958	0.836	vgood
Weighted Avg.	0.963	0.016	0.964	0.963	0.963	0.940	0.982	0.959	

✓ minNumObj = 5

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.974	0.031	0.987	0.974	0.980	0.935	0.987	0.993	unacc
	0.919	0.036	0.880	0.919	0.899	0.870	0.975	0.915	acc
	0.783	0.012	0.730	0.783	0.755	0.745	0.986	0.794	good
	0.769	0.005	0.847	0.769	0.806	0.800	0.949	0.847	vgood
Weighted Avg.	0.946	0.030	0.947	0.946	0.947	0.908	0.983	0.962	

✓ minNumObj = 10

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.971	0.035	0.985	0.971	0.978	0.928	0.987	0.994	unacc
	0.883	0.041	0.860	0.883	0.871	0.834	0.974	0.896	acc
	0.841	0.015	0.699	0.841	0.763	0.756	0.991	0.746	good
	0.708	0.007	0.793	0.708	0.748	0.740	0.962	0.822	vgood
Weighted Avg.	0.936	0.034	0.939	0.936	0.937	0.893	0.983	0.956	

✓ minNumObj = 20

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.959	0.023	0.990	0.959	0.974	0.917	0.985	0.994	unacc
	0.914	0.058	0.818	0.914	0.863	0.824	0.971	0.868	acc
	0.565	0.011	0.672	0.565	0.614	0.602	0.986	0.648	good
	0.800	0.010	0.754	0.800	0.776	0.767	0.981	0.723	vgood
Weighted Avg.	0.927	0.030	0.930	0.927	0.928	0.878	0.982	0.942	

✓ minNumObj = 50

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.927	0.091	0.960	0.927	0.943	0.819	0.967	0.987	unacc
	0.852	0.102	0.705	0.852	0.771	0.703	0.938	0.740	acc
	0.000	0.000	?	0.000	?	?	0.962	0.346	good
	0.785	0.026	0.537	0.785	0.638	0.633	0.958	0.422	vgood
Weighted Avg.	0.868	0.087	?	0.868	?	?	0.960	0.885	

• IBK

 \checkmark k = 1

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.934	0.091	0.960	0.934	0.947	0.829	0.923	0.945	unacc
	0.727	0.094	0.689	0.727	0.707	0.621	0.813	0.570	acc
	0.536	0.022	0.507	0.536	0.521	0.501	0.759	0.282	good
	0.769	0.014	0.685	0.769	0.725	0.715	0.870	0.528	vgood
Weighted Avg.	0.866	0.086	0.871	0.866	0.868	0.765	0.890	0.819	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.945	0.052	0.977	0.945	0.961	0.874	0.991	0.995	unacc
	0.885	0.094	0.728	0.885	0.799	0.740	0.963	0.840	acc
	0.377	0.002	0.897	0.377	0.531	0.572	0.980	0.701	good
	0.708	0.010	0.742	0.708	0.724	0.714	0.993	0.804	vgood
Weighted Avg.	0.900	0.058	0.910	0.900	0.899	0.827	0.985	0.942	

✓ k = 10

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.952	0.042	0.981	0.952	0.966	0.893	0.993	0.996	unacc
	0.938	0.100	0.729	0.938	0.820	0.771	0.969	0.869	acc
	0.246	0.000	1.000	0.246	0.395	0.489	0.990	0.772	good
	0.615	0.002	0.930	0.615	0.741	0.749	0.995	0.873	vgood
Weighted Avg.	0.908	0.052	0.924	0.908	0.903	0.844	0.988	0.954	

✓ k = 20 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.891 0.991 0.948 0.037 0.984 0.948 0.965 0.996 0.932 0.111 0.706 0.932 0.804 0.750 0.962 0.835 0.000 0.985 0.087 1.000 0.087 0.160 0.289 0.729 0.005 0.837 0.719 0.631 0.631 0.718 0.994 0.850 0.898 0.051 0.917 0.888 0.829 0.985 Weighted Avg. 0.898 0.944 ✓ k = 35 === Detailed Accuracy By Class ===

unacc

acc

good

vgood

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.936	0.058	0.974	0.936	0.954	0.857	0.990	0.995	unacc
	0.917	0.135	0.660	0.917	0.768	0.704	0.957	0.833	acc
	0.014	0.000	1.000	0.014	0.029	0.118	0.983	0.695	good
	0.446	0.002	0.906	0.446	0.598	0.627	0.994	0.842	vgood
Weighted Avg.	0.876	0.071	0.903	0.876	0.863	0.785	0.982	0.942	

Παρατηρούμε ότι ο J48 ξεπερνάει τον IBK στο Accuracy (93.4% σε αντίθεση με το 89.7%), στο Precision (91.84% έναντι 88.3%) και στο Recall (90.74% έναντι 87.1%). Συμπεραίνουμε, δηλαδή, πως ο J48 πέτυχε μεγαλύτερη ακρίβεια, είχε πιο αξιόπιστες προβλέψεις καθώς και ήταν καλύτερος στον εντοπισμό όλων των σχετικών περιπτώσεων.

Τα καλύτερο tree model του J48 ήταν για minNumObj = 10, καθώς είχε την καλύτερη απόδοση όσον αφορά το Accuracy, Precision και Recall για την πλειονότητα των κατηγοριών ειδικά των "unacc" και "acc".

```
=== Confusion Matrix ===

a b c d <-- classified as

1175 33 2 0 | a = unacc

18 339 17 10 | b = acc

0 9 58 2 | c = good

0 13 6 46 | d = vgood
```

Το καλύτερο IBK model παρατηρούμε πως είναι για k = 5 ειδικά για τις "unacc" και "acc" κατηγορίες, παρόλο που "χάνει" στην "good".

```
a b c d <-- classified as

1143 67 0 0 | a = unacc

26 340 3 15 | b = acc

1 41 26 1 | c = good

0 19 0 46 | d = vgood
```

=== Confusion Matrix ===

J48: Οι κατηγορίες «good» και «vgood» δεν προβλέπονται τόσο καλά όσο οι κατηγορίες «unacc» και «acc». Η κατηγορία «good» έχει σχετικά χαμηλό Recall (84,1%) και η κατηγορία «vgood» ακόμη χαμηλότερο (70,8%).

kNN: Ομοίως, η κατηγορία «good» περιέχει πολύ χαμηλό Recall (37,7%) και Precision (50,7%). Η «vgood» δεν προβλέπεται επίσης ικανοποιητικά, με Recall στο 70,8%.

Rules για κάθε κατηγορία για τον J48 με minNumObj = 10

- Unacceptable
 If (buying = high) and (maint = high) then unacc
- Acceptable
 If (buying = low) and (doors = 4) then acc

