Induzione

Definizione induttiva di un insieme Definizione induttiva di una funzione

Con l'induzione possiamo definire in modo formalmente ineccepibile insiemi infiniti, fornendo elementi base e regole per costruirne altri

- Definizione induttiva di insiemi
- Definizione induttiva di funzioni
- Dimostrazione di proprietà per induzione

Definizione induttiva di un insieme

- 1. Clausola Base: certi elementi appartengono all'insieme
- 2. Clausola Induttiva: come usare elementi dell'insieme per costruirne altri
- 3. Clausola Terminale: l'insieme non contiene altro

Definizione induttiva di \mathbb{N} :

 \mathbb{N} è il più piccolo insieme di numeri che soddisfa:

- 1. Clausola Base: $0 \in \mathbb{N}$
- 2. Clausola Induttiva: Se $n \in \mathbb{N}$ allora $(n+1) \in \mathbb{N}$

Definizione induttiva di una funzione

Per una funzione f:A o B

Se A è definito induttivamente

- 1. Clausola Base: dare f(a) per qualche $a \in A$ per la clausola base
- 2. Clausola Induttiva: dare una regola per calcolare f(a) usando valori di f su elementi che sono già in $\cal A$

Questo garantisce che f sia una funzione totale

Esempio, definizione induttiva della successione $T:\mathbb{N} o\mathbb{N}$, $T_n=\sum_{i=0}^n i$

Induzione 1

1. Clausola Base: $T_0=0$

2. Clausola Induttiva: $T_{n+1} = T_n + (n+1)$