به نام خدا

Performance Evaluation of Computer Systems

Prof. Ali Movaghar Fall 2022

Performance Modeling and Design of Computer Systems

1- INTRODUCTION TO QUEUING

1- Examples

CPU

Disk

Router

Databases

Server farms

• • •

Metrics

- Delay
- Utilization
- Completion rate

— ...

2- Terminology Single Server

- Service order
 - Default is FCFS
- Average arrival rate
- Mean interarrival time
- Service requirement, size
- Mean service time
- Average service time

2- Terminology Single Server

- Performance metrics
 - Response time, Turnaround time (T)
 - $T = t_{depart} t_{arrive}$
 - Waiting time, Delay (T_Q)
 - $E(T) = E(T_Q) + E(S)$
 - Number of jobs in the system
 - Number of jobs in queue

2- Terminology Single Server

Question: What if $\lambda > \mu$?

Answer: Queue length goes to infinity over time.

- Large time, t
- Number of jobs in the system at time t, N(t)
- Number of arrivals by time t, A(t)
- Number of departures by time t, D(t)

$$E[N(t)] = E[A(t)] - E[D(t)] \ge \lambda t - \mu t = t(\lambda - \mu)$$

if
$$\lambda > \mu$$
 then $t \to \infty \Rightarrow t(\lambda - \mu) \to \infty$

2- Terminology Classification

- Open networks
- Closed networks

2- TerminologyOpen Networks

2- Terminology Throughput and Utilization

- In multi-queue, multi-server system
 - E(T), Mean time a job spends in the whole system

- For addressing the ith queue
 - $-E(T_i)$, expected time a job spends queueing and in service at server i

2- Terminology Throughput and Utilization

- Utilization, ρ_i
 - Fraction of time device i is busy

•
$$\rho_i = \frac{B}{\tau}$$

- Throughput, X_i
 - Rate of completions at device i

•
$$X_i = \frac{C}{\tau}$$

$$\frac{C}{\tau} = \left(\frac{C}{B}\right) \cdot \frac{B}{\tau}$$
 $X_i = \mu_i \cdot \rho_i \text{ or } \rho_i = X_i \cdot E[S] \text{ (utilization law)}$

2- Terminology Throughput and Utilization

• Example:

- − Assume $\lambda_i < \mu_i$, $\forall i$
- System throughput

•
$$X = \sum_{i} r_{i}$$

- Server i throughput
 - $X_i = \lambda_i$
 - $\lambda_i = r_i + \sum_j \lambda_j P_{ij}$

- Interactive (terminal-driven)
- Batch system

- Interactive (terminal-driven)
 - Think time: Z
 - Response time: time between in and out
 - System time: T
 - -E(T) = E(R) + E(Z)
- MPL(Multi-Programming Level)
 - Is at most N

- Batch systems
 - Think time is zero
 - "in" and "out" are equal
 - X is the number of jobs crossing "out" per second

MPL is exactly N

- Throughput in a closed system
 - What is X?

– What is E(R)?

•
$$E(R) = E(T)$$

•
$$E(T) = \frac{N}{\mu}$$

2- Terminology Differences

Open systems

Closed systems

– Throughput, X is independent of μ_i 's

– X depends on μ_i 's

Throughput and Response time are not related

Higher throughput ⇔
 Lower avg. response
 time