XCS229i Problem Set 3

XCS229i Problem Set 3

Due **NO DUE DATE**.

Guidelines

- 1. These questions require thought, but do not require long answers. Please be as concise as possible.
- 2. If you have a question about this homework, we encourage you to post your question on our Slack channel, at http://xcs229i-scpd.slack.com/
- 3. Familiarize yourself with the collaboration and honor code policy before starting work.
- 4. For the coding problems, you may not use any libraries except those defined in the provided started code. In particular, ML-specific libraries such as scikit-learn are not permitted.

Submission Instructions

Written Submission: All students must submit an electronic PDF containing solutions to the written questions. As long as the submission is legible and well-organized, the course staff has no preference between a handwritten and a typeset LATEX submission. Students wishing to typeset their documents should follow these recommendations:

- Type responses only in submission.tex.
- If you choose to submit a typeset document, please submit the compiled PDF, not submission.tex.
- Use the commented recommendations within the Makefile and README.md to get started.

Honor code

We strongly encourage students to form study groups. Students may discuss and work on homework problems in groups. However, each student must write down the solutions independently, and without referring to written notes from the joint session. In other words, each student must understand the solution well enough in order to reconstruct it by him/herself. In addition, each student should write on the problem set the set of people with whom s/he collaborated. Further, because we occasionally reuse problem set questions from previous years, we expect students not to copy, refer to, or look at the solutions in preparing their answers. It is an honor code violation to intentionally refer to a previous year's solutions.

XCS229i Problem Set 3

1. Constructing kernels

In class, we saw that by choosing a kernel $K(x,z) = \phi(x)^T \phi(z)$, we can implicitly map data to a high dimensional space, and have a learning algorithm (e.g SVM or logistic regression) work in that space. One way to generate kernels is to explicitly define the mapping ϕ to a higher dimensional space, and then work out the corresponding K.

However in this question we are interested in direct construction of kernels. I.e., suppose we have a function K(x,z) that we think gives an appropriate similarity measure for our learning problem, and we are considering plugging K into the SVM as the kernel function. However for K(x,z) to be a valid kernel, it must correspond to an inner product in some higher dimensional space resulting from some feature mapping ϕ . Mercer's theorem tells us that K(x,z) is a (Mercer) kernel if and only if for any finite set $\{x^{(1)},\ldots,x^{(n)}\}$, the square matrix $K \in \mathbb{R}^{n \times n}$ whose entries are given by $K_{ij} = K(x^{(i)},x^{(j)})$ is symmetric and positive semidefinite. You can find more details about Mercer's theorem in the notes, though the description above is sufficient for this problem.

Now here comes the question: Let K_1 , K_2 be kernels over $\mathbb{R}^d \times \mathbb{R}^d$, let $a \in \mathbb{R}^+$ be a positive real number, let $f : \mathbb{R}^d \to \mathbb{R}$ be a real-valued function, let $\phi : \mathbb{R}^d \to \mathbb{R}^p$ be a function mapping from \mathbb{R}^d to \mathbb{R}^p , let K_3 be a kernel over $\mathbb{R}^p \times \mathbb{R}^p$, and let p(x) a polynomial over x with positive coefficients.

For each of the functions K below, state whether it is necessarily a kernel. If you think it is, prove it; if you think it isn't, give a counter-example.

[Hint: For part (e), the answer is that K is indeed a kernel. You still have to prove it, though. (This one may be harder than the rest.) This result may also be useful for another part of the problem.]

- (a) [6 points (Written)] $K(x,z) = K_1(x,z) + K_2(x,z)$
- (b) **[6 points (Written)]** $K(x,z) = K_1(x,z) K_2(x,z)$
- (c) **[6 points (Written)]** $K(x, z) = aK_1(x, z)$
- (d) [6 points (Written)] $K(x,z) = -aK_1(x,z)$
- (e) **[6 points (Written)]** $K(x,z) = K_1(x,z)K_2(x,z)$
- (f) [6 points (Written)] K(x,z) = f(x)f(z)
- (g) [6 points (Written)] $K(x,z) = K_3(\phi(x),\phi(z))$
- (h) **[6 points (Written)]** $K(x, z) = p(K_1(x, z))$