Семинар 10 Стандарт МРІ (часть 3)

Михаил Курносов

E-mail: mkurnosov@gmail.com WWW: www.mkurnosov.net

Цикл семинаров «Основы параллельного программирования» Институт физики полупроводников им. А. В. Ржанова СО РАН Новосибирск, 2015

Коммуникационные режимы блокирующих обменов

- **Стандартный режим** (Standard communication mode, local/non-local) реализация определяет будет ли исходящее сообщение буферизовано:
 - a) сообщение помещается в буфер, вызов MPI_Send завершается до вызова советующего MPI_Recv
 - b) буфер недоступен, вызов MPI_Send не завершится пока не будет вызван соответствующий MPI_Recv (non-local)
- Режим с буферизацией (Buffered mode, local) завершение MPI_Bsend не зависит от того, вызван ли соответствующий MPI_Recv; исходящее сообщение помещается в буфер, вызов MPI_Bsend завершается
- Синхронный режим (Synchronous mode, non-local + synchronization) вызов MPI_Ssend завершается если соответствующий вызова MPI_Recv начал прием сообщения
- Режим с передачей по готовности (Ready communication mode) вызов MPI_Rsend может начать передачу сообщения если соответствующий MPI_Recv уже вызван (позволяет избежать процедуры "рукопожатия" для сокращения времени обмена)

Неблокирующие функции Send/recv (non-blocking)

- Возврат из функции происходит сразу после инициализации процесса передачи/приема
 - □ Буфер использовать нельзя до завершения операции
- Передача
 - ☐ MPI_Isend(..., MPI_Request *request)
 - ☐ MPI_Ibsend(..., MPI_Request *request)
 - ☐ MPI_Issend(..., MPI_Request *request)
 - ☐ MPI_Irsend(..., MPI_Request *request)
- Прием
 - ☐ MPI_Irecv(..., MPI_Request *request)

Ожидание завершения неблокирующей операции

■ Блокирующее ожидание завершения операции

```
    int MPI_Wait(MPI_Request *request, MPI_Status *status)
    int MPI_Waitany(int count, MPI_Request array_of_requests[], int *index, MPI_Status *status)
    int MPI_Waitall(int count, MPI_Request array_of_requests[], MPI_Status array_of_statuses[])
```

Блокирующая проверка состояния операции

```
    int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)
    int MPI_Testany(int count, MPI_Request array_of_requests[], int *index, int *flag, MPI_Status *status)
    int MPI_Testall(int count, MPI_Request array_of_requests[], int *flag, MPI_Status array of statuses[])
```

Совмещение обменов и вычислений (overlaping)

Использование блокирующих функций

Использование неблокирующих функций

Ring example

Двусторонние обмены (point-to-point communication)

- Один процесс инициирует передачу сообщения (send), другой его принимает (receive)
- Изменение памяти принимающего процесса происходит при его явном участии
- Обмен совмещен с синхронизацией процессов

• Односторонние обмены (one-sided communication, remote memory access)

- Только один процесс явно инициирует передачу/прием сообщения из памяти удаленного процесса
- Синхронизация процессов отсутствует

Неблокирующая проверка сообщений

- В параметре flag возвращает значение 1, если сообщение с подходящими атрибутами уже может быть прочитано и 0 в противном случае
- В параметре status возвращает информацию об обнаруженном сообщении (если flag == 1)

Постоянные запросы (persistent)

- Постоянные функции привязывают аргументы к дескриптору запроса (persistent request), дальнейшие вызовы операции осуществляется по дескриптору запроса
- Позволяет сократить время выполнения запроса
- int MPI_Send_init(const void* buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)
- int MPI_Recv_init(void* buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Request *request)
- Запуск операции (например, в цикле)
- int MPI_Start(MPI_Request *request)
- int MPI_Startall(int count, MPI_Request array_of_requests[])

Коллективные обмены (collective communications)

Трансляционный обмен (One-to-all)

- MPI_Bcast
- MPI_Scatter
- MPI_Scatterv

Коллекторный обмен (All-to-one)

- MPI_Gather
- MPI Gatherv
- MPI_Reduce

Трансляционно-циклический обмен (All-to-all)

- MPI_Allgather
- MPI_Allgatherv
- MPI Alltoall
- MPI_Alltoallv
- MPI_Allreduce
- MPI_Reduce_scatter

- Участвуют все процессы коммуникатора
- Коллективная функция должна быть вызвана каждым процессом коммуникатора
- Коллективные и двусторонние обмены в рамках одного коммуникатора используют различные контексты

MPI_Bcast

- MPI_Bcast рассылка всем процессам сообщения buf
- Если номер процесса совпадает с root, то он отправитель, иначе приемник

MPI_Scatter

Элементы					Элементы				
A0	A1	A2	А3			A0			
				MPI Scatter					
5					CPI	A1			
					ပို				
ָר ר				Рассылка всем	тс	A2			
2		разных сообщений	разных сообщений	<u> 2</u>					
-				разных сосощении	L	A3			
		A0 A1	A0 A1 A2	A0 A1 A2 A3	A0 A1 A2 A3 MPI Scatter	A0 A1 A2 A3 MPI Scatter	A0 A1 A2 A3 MPI Scatter	A0 A1 A2 A3 MPI_Scatter Pассылка всем A2 разных сообщений	A0 A1 A2 A3 MPI_Scatter Рассылка всем A2 разных сообщений

- Pasmep sendbuf = sizeof(sendtype) * sendcnt * commsize
- Pasmep **recvbuf** = sizeof(sendtype) * recvcnt

MPI_Gather

Элементы					
	A0	A1	A2	А3	
СЬІ					
Процессы					
Пр					

MPI_Gather

✓
Прием от всех
разных сообщений

Элементы					
	A0				
эссы	A1				
Процессы	A2				
Ц	A3				

■ Pasmep **sendbuf**: sizeof(sendtype) * sendcnt

■ Pasmep recvbuf: sizeof(sendtype) * sendcnt * commsize

MPI_Alltoall

Элементы						
СЫ	A0	A1	A2	А3		
	В0	B1	B2	В3		
) Tec	CO	C1	C2	С3		
Процессы	D0	D1	D2	D3		

MPI_Alltoall							
В каждом процессе							
собираются сообщения							
всех процессов							

Элементы						
	A0	В0	CO	D0		
СЫ	A1	B1	C1	D1		
) jec	A2	B2	C2	D2		
Процессы	А3	В3	С3	D3		

- Pasmep sendbuf: sizeof(sendtype) * sendcount * commsize
- Pasmep recvbuf: sizeof(recvtype) * recvcount * commsize

All-to-all

```
int MPI_Allgather(void *sendbuf, int sendcount, MPI Datatype sendtype,
                  void *recvbuf, int recvcount, MPI_Datatype recvtype,
                  MPI Comm comm)
int MPI_Allgatherv(void *sendbuf, int sendcount, MPI Datatype sendtype,
                   void *recvbuf, int *recvcounts,
                   int *displs,
                   MPI_Datatype recvtype,
                   MPI Comm comm)
int MPI_Allreduce(void *sendbuf, void *recvbuf,
                  int count, MPI Datatype datatype,
                  MPI Op op, MPI Comm comm)
```

MPI_Reduce

- Pasmep sendbuf: sizeof(datatype) * count
- Pasmep recvbuf: sizeof(datatype) * count

Операции MPI_Reduce

- MPI MAX
- MPI MIN
- MPI MAXLOC
- MPI MINLOC
- MPI SUM
- MPI PROD

- MPI LAND
- MPI_LOR
- MPI LXOR
- MPI_BAND
- MPI BOR
- MPI_BXOR

- Операция пользователя должна быть ассоциативной
 A * (B * C) = (A * B) * C
- Если commute = 1, то операция коммутативная A * B = B * A

Барьерная синхронизация

```
int MPI_Barrier(MPI_Comm comm)
```

 Блокирует работу процессов коммуникатора, вызвавших данную функцию, до тех пор, пока все процессы не выполнят эту процедуру

Задание

- Разработать на MPI параллельную программу численного интегрирования методом прямоугольников (семинар 2, пример 1 integrate)
- Провести анализ эффективности параллельной программы