EA772 Circuitos Lógicos Prof. José Mario De Martino – Prova 03 – 20. Semestre 2005

Androalle RA: 045889

1. (2,0 pts) Desenhe as formas de onda dos sinais CLK, a, b e c geradas pelo circuito abaixo. Considere o estado inicial igual a '001'. Desenhe as formas de onda para 12 ciclos de relógio, começando com o valor lógico '0'. Desconsidere os tempos de atraso dos Flip-Flops.

2. (2,0 pts) Um sistema sequencial possui a descrição de estado não-otimizada abaixo. Apresente o diagrama de estados de um sistema equivalente com um número mínimo de estados

Entrada: $x(t) \in \{a, b, c\}$

Saída: $z(t) = \{0, 1\}$

Estado: $s(t) \in \{A, B, C, D, E, F\}$ com s(0) = A

Funções:

2 332,0 42.		Entrada	
EA	a	b	c
_> A	Ĕ,0	D,1	B,0
В	F,0	D,0	A, 1
-> C	E,0	B,1	D,0
D	F,0	B,0	C,1
<u> → E</u>	C,0	F,1	F,0
<u>F</u>	В,0	C,0	F,1
	V	PE,z	_

3. (2,0 pts) Projete um circuito sequencial detector de padrão que tenha o comportamento no tempo especificado abaixo. Utilize Flip-Flops D sensível a borda de subida:

Entrada: $x(t) \in \{0, 1\}$ Saída: $z(t) \in \{0, 1\}$ Função: $z(t) \begin{cases} 1 & \text{se } x(t-3, t) = 1011 \\ 0 & \text{caso contrário} \end{cases}$

4. (2,0 pts) Projete um contador binário cíclico módulo 5 decrescente com Flip-Flops JK.

5. (2,0 pts) Projete um circuito somador de 4 bits ($\underline{z} = \underline{x} + \underline{y}$, com \underline{z} , \underline{x} e \underline{y} com 4 bits cada) que possua ainda como saída, além do z, os sinais: a) cout para indicar o transporte (vai-um) do último bit e b) ovf para indicar o estouro aritmético, considerando a representação em complemento de dois. A figura abaixo apresenta o somador e os sinais de entrada e saída. Projete o circuito utilizando a estratégia de propagação de transporte. Apresente o circuito do somador envolvendo apenas portas NOT, OR e AND.

