Chapitre 4 : Statique des fluides (équilibre d'un fluide dans le champ de pesanteur)

I Condition d'équilibre dans \vec{g} .

On considère un référentiel (R) = (Ox, Oy, Oz) triorthogonal direct, et un fluide immobile dans (R) galiléen.

A) Bilan des forces sur un volume élémentaire du fluide

Point M(x, y, z): parallélépipède de cotés dx, dy, dz.

Bilan des forces appliquées à l'élément de fluide dans ce volume élémentaire $dV = dx \times dy \times dz$.

Poids
$$\vec{P} = m_{dy}\vec{g} = \rho(M)dV\vec{g} = -\rho(x, y, z)dx \times dy \times dz \times g.\vec{k}$$
.

Forces de pression du fluide extérieur sur F_x : $\vec{F}_{F_z} = P(x, y, z) dy dz \times \vec{i}$

Forces de pression du fluide extérieur sur F_{x+dx} : $\vec{F}_{F_{x+dx}} = P(x+dx,y,z)dydz \times (-\vec{i})$

Done
$$\vec{F}_{F_x} + \vec{F}_{F_{x+dx}} = (P(x, y, z) - P(x + dx, y, z)) dy dz \times \vec{i} = -\frac{\partial P}{\partial x} \Big|_{y, z} dx dy dz \times \vec{i}$$

De même,
$$\vec{F}_{F_y} + \vec{F}_{F_{y+dy}} = -\frac{\partial P}{\partial y}\bigg|_{x=z} dxdydz \times \vec{j}$$
 et $\vec{F}_{F_z} + \vec{F}_{F_{z+dz}} = -\frac{\partial P}{\partial z}\bigg|_{x,y} dxdydz \times \vec{k}$

B) Equilibre de *dV*

On admet que la condition d'équilibre s'écrit $\sum \vec{F} = \vec{0}$. Donc, ici :

$$\vec{P} + \vec{F}_{\rm pression} = \vec{0}$$

$$\Leftrightarrow -\rho(x,y,z) \times dxdydz \times g \times \vec{k} - \frac{\partial P}{\partial x}\bigg|_{y,z} dxdydz \times \vec{i} - \frac{\partial P}{\partial y}\bigg|_{x,z} dxdydz \times \vec{j} - \frac{\partial P}{\partial z}\bigg|_{x,y} dxdydz \times \vec{k} = \vec{0}$$

$$\Leftrightarrow \begin{cases} \frac{\partial P}{\partial x}\Big|_{y,z} = 0\\ \frac{\partial P}{\partial y}\Big|_{x,z} = 0\\ \rho(x,y,z) \times g + \frac{\partial P}{\partial z}\Big|_{x,y} = 0 \end{cases} \Leftrightarrow \begin{cases} P = P(z)\\ \frac{dP}{dz} = -\rho(x,y,z) \times g \\ 0 \end{cases}$$

Donc $dP = -\rho(x, y, z) \times g \times dz$: Relation Fondamentale de la Statique des Fluides.

C) Continuité de la pression à l'interface entre deux fluides à l'équilibre

Continuité de la pression à l'interface (admise) : $\lim_{M_1 \to A} P(M_1) = \lim_{M_2 \to A} P(M_2) = P(A)$ où M_1 appartient au fluide 1 et M_2 au fluide 2.

II Application de la RFS aux fluides incompressibles

A) Champ de pression dans un fluide incompressible

L'équation d'état du fluide incompressible montre que V est indépendant de P et T. Donc $\rho = \frac{m}{V} = cte$.

Soient A, B deux points dans un même fluide. S'il existe un chemin qui relie A et B tout en restant dans le fluide, on a :

Pour un élément infinitésimal de longueur de chemin qui relie A à B: $dP = -\rho_{\text{fluide}} \times g \times dz$. Donc, en intégrant : $P(B) - P(A) = -\rho_{\text{fluide}} \times g \times (z_B - z_A)$. On a alors, pour M variant dans le fluide et A constant : $P(M) = -\rho_{\text{fluide}} \times g \times z_m$ + cte avec la constante égale à $P(A) + \rho_{\text{fluide}} \times g \times z_A$.

Application: vases communicants

 $P(A) - P(B) = \rho_{\text{fluide}} \times g \times (z_B - z_A) \text{ Or } P(A) = P(B) = P_{\text{Atm}}. \text{ Donc } z_B = z_A.$

Remarque : pour un gaz (supposé incompressible), $P(M) = -\rho_{gaz} \times g \times z + cte$ en général, on pourra négliger ρ_{gaz} . Donc $P(M) \approx$ cte (à petite échelle seulement).

B) Applications

1) Surface libre d'un fluide dans le champ de pesanteur

Pour tout point M à l'interface fluide—air :

$$P(M) = k - \rho_{\text{fluide}} \times g \times z_M$$
 et $P(M) = P_{\text{Atm}}$ (par continuité). On a donc :

$$z_{M} = \frac{k - P_{\text{atm}}}{\rho_{\text{fluide}} \times g} = cte$$
. Tous les points de la surface libre sont donc à la même

altitude. La surface est donc perpendiculaire à \vec{g} . Il en est de même pour la surface de contact entre deux fluides (on suppose bien sûr les fluides non miscibles, au sens chimique du terme).

2) Mesure des pressions

$$P_A - P_B = \rho_{Hg} \times g \times (z_B - z_A) = \rho_{Hg} \times g \times h$$
. Donc $h = \frac{P_{atm}}{\rho_{Hg}g}$. h est donc une

mesure de la pression extérieure.

Définition:

1mmHg ou 1Torr =
$$\rho_{\text{Hg}} \times g \times 1$$
mm = 13595kg.m⁻³ × 9,80665m.s⁻² × 1,00000.10⁻³ m = 133,32Pa

Si
$$P = P_{Atm}$$
, $h = 760 \text{mm}$.

3) Tonneau de Pascal

Donc $P(M) = P(A) + \rho_{\text{fluide}} \times g \times z_A - \rho_{\text{fluide}} \times g \times z_M$. Donc P(M) augmente quand z_A augmente. On peut donc faire éclater le tonneau en ne rajoutant qu'un peu de fluide (à partir du moment où la section du tube est suffisamment faible).

III Exemple d'application de la RFS aux fluides incompressibles : l'atmosphère isotherme

A) Champ de pression dans l'atmosphère isotherme

Le fluide considéré est l'air.

- On suppose toutes les molécules identiques, de même masse $m = \frac{M_{\text{air}} (= 28,96 \text{g.mol}^{-1})}{N_a}$
- On suppose que c'est un gaz parfait à petite échelle. $P(M)\delta V = \delta nRT(M)$ avec δn le nombre de moles de molécules dans δV ($\delta V^{1/3} \leq 1$ m)
- On suppose enfin la température uniforme, $T(M) = T_0 = \text{cte}$, ainsi que \vec{g} .

Calcul de P(z): on considère un volume δV autour de M(z).

$$P(M)\delta V = \delta nRT_0$$
 et $\delta n = \frac{\delta m}{M_{air}}$. Donc $P(M) = \frac{\delta m}{\delta V} \times \frac{RT_0}{M_{air}}$. D'après la RFSF:

$$dP = -\rho_{\text{air}} \times g \times dz \iff dP = -\frac{P(M) \times M_{\text{air}}}{R \times T_0} g \times dz \iff \ln P = -\frac{M_{\text{air}}}{R \times T_0} g \times z + cte$$

$$\Leftrightarrow P = cte \times e^{-\frac{M_{\rm air}}{R \times T_0} g \times z} = P_0 \times e^{-\frac{M_{\rm air}}{R \times T_0} g \times z}$$

On pose $H = \frac{RT_0}{M_{\text{air}}g}$: hauteur d'échelle; $P(z) = P_0 e^{-z/H}$.

A $T_0 = 273,15$ K on a $H = 8,00.10^3$ m.

Pour $z \ll H$:

Différence de pression entre rez-de-chaussée et $8^{\text{ème}}$ étage (h = 24m)

$$P(8^{\hat{e}me}) = P(RdC)e^{-24/8000} \approx P(RdC)(1 - \frac{3}{1000})$$

Si P(RdC) = 1013mbar, $P(8^{eme}) = 1010$ mbar. La différence est non négligeable. Pour z proche de H (mais inférieur):

$$P(z) = P_0 e^{-z/H} = P_0 \left(1 - \frac{z}{H} + o(\frac{z}{H}) \right) \approx P_0 - \frac{P_0}{H} z = P_0 - \frac{P_0 M_{\text{air}}}{R T_0} g \times z = P_0 - \rho_0 g \times z$$

Donc l'air est incompressible.

IV Poussée d'Archimède

On considère un corps solide immergé dans un fluide (ou système de fluide) à l'équilibre mécanique.

A) Poussée d'Archimède

Définition : $\vec{\Pi}$ poussée d'Archimède = résultante des forces pressantes exercées par le fluide sur le solide immergé.

$$\vec{\Pi} = \oint_S d\vec{F}_{\text{pression}} = \oint_S P(M) \times dS(M) \times \vec{n}(M)$$
 (Pour une surface fermée).

B) Théorème d'Archimède

 $\vec{\Pi} = -\vec{P}_{\text{fluide déplacé}}$. Point d'application : le centre d'inertie du volume de fluide à l'équilibre qui occuperait la position du solide.

$$\begin{split} \vec{\Pi}_{->\text{fluide}} &= \vec{\Pi}_{->\text{solide}} \\ \text{Or, } \sum \vec{F}_{\text{fluide intérieur à S}} &= \vec{0} \text{ (équilibre)} \\ \text{Donc } \vec{P}_{\text{fluide intérieur à S}} + \vec{\Pi}_{->\text{fluide}} &= \vec{0} \text{ .} \\ \text{Donc } \vec{\Pi}_{->\text{solide}} &= \vec{\Pi}_{->\text{fluide}} &= -\vec{P}_{\text{fluide intérieur à S}} &= -\vec{P}_{\text{fluide déplacé}} \end{split}$$