Ejercicios de Análisis Matemático II

22 de abril de 2016

$\mathbf{\acute{I}ndice}$

1.	Sucesiones de funciones
	1.1. Sucesiones de funciones
	1.2. Series de potencias
2.	Integral de Lebesgue
	2.1. Medida de Lebesgue en \mathbb{R}^N
	$2.1.1$. Ejercicio $\overset{\circ}{4}$
	2.1.2. Ejercicio 5
	2.1.3. Ejercicio 6
	2.1.4. Ejercicio 7
	2.2. Integral de Lebesgue en \mathbb{R}^N
	2.3. Teoremas de convergencia
3.	Técnicas de integración
	3.1. Técnicas de integración en una variable
	3.2. Técnicas de integración en varias variables

- 1. Sucesiones de funciones
- 1.1. Sucesiones de funciones
- 1.2. Series de potencias

2. Integral de Lebesgue

2.1. Medida de Lebesgue en \mathbb{R}^N

2.1.1. Ejercicio 4

Sea μ^* una medida exterior en un conjunto no vacío Ω . Probar que la restricción de μ^* a la σ -álgebra C_{Ω,μ^*} es una medida completa (esto es, todo subconjunto B de un conjunto $Z \in C_{\Omega,\mu^*}$ tal que $\mu^*(Z) = 0$ es también un conjunto de la propia σ -álgebra) Sea Z un conjunto tal que $\mu^*(Z) = 0$ y $B \subseteq Z$, entonces, B será medible si y solo si

$$\forall A \subseteq \Omega, \mu^*(A) = \mu^*(A \cap B) + \mu^*(A \cap B^c).$$

Para probarlo partimos de la desigualdad que nos da la subaditividad de una medida exterior, es decir:

$$A \subseteq \Omega \ \mu^*(A) \le \mu^*(A \cap B) + \mu^*(A \cap B^c)$$

Si además usamos que

$$A \cap B \subseteq A \cap B \subseteq Z \Rightarrow \mu^*(A \cap B) = 0$$

entonces obtenemos

$$A \subseteq \Omega \ \mu^*(A) < \mu^*(A \cap B) + \mu^*(A \cap B^c) < \mu^*(A)$$

como queríamos demostrar.

2.1.2. Ejercicio 5

Probar que M es la mayor σ -álgebra que contiene los intervalos acotados y sobre la que λ^* es aditiva.

Supongamos que existe otra σ -álgebra N que contiene los intervalos acotados y sobre la que λ^* es aditiva. Terminaremos demostrando que en ese caso $N \subseteq M$.

Recordemos que $M = \{B \cup Z : B \in \mathfrak{B}, \lambda^*(Z) = 0\} \subseteq C_{\mathbb{R},\lambda}$

La σ -subaditividad nos decía:

$$\lambda^*(A \cup B) \le \lambda^*(A) + \lambda^*(B)$$

Llamaremos $\lambda' = \lambda^*/N$

Por ser una σ -álgebra $\Omega \in N$, al estar hablando de intervalos $\Omega = \mathbb{R}$

Sea $E \subseteq \mathbb{R}$, cogemos un conjunto arbitrario $A \subseteq \mathbb{R}$. Sabemos, en virtud de la propiedad de regularidad de la medida exterior (Prop. 2.1.10), que existe un boreliano B

$$B: A \subseteq B, \lambda'(A) = \lambda'(B)$$

 $\lambda'(A) = \lambda'(B)$, usando la propiedad de que N contiene los intervalos acotados podemos usar la σ -aditividad. $B \cap E, B \cap E^c \in N$

$$\lambda'(B) = \lambda'((B \cap E) \cup (B \cap E^c)) \geqslant \lambda'(A \cap E) + \lambda'(A \cap E^c) \geqslant \lambda'(A)$$

Por tanto $E \in C_{\mathbb{R},\lambda'}$ lo que es equivalente a $E \in M \implies N \subseteq M$

2.1.3. Ejercicio 6

Probar que la unión numerable de conjuntos de medida nula es un conjunto de medida nula. Dedúzcase que \mathbb{N} y \mathbb{Q} son dos conjuntos de medida nula.

Sea
$$\mu(A_i) = 0 \ \forall i \in \mathbb{N}$$
. Entonces, por la σ -aditividad, $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n) = 0$.

Probemos ahora que \mathbb{N} es un conjunto de medida nula. Para ello, demostraremos en primer lugar que $\mu(\{n\}) = 0 \ \forall n \in \mathbb{N}$. Definimos $A_k = [n - \frac{1}{k}, n + \frac{1}{k}]$. Por tanto, $\mu(\bigcap_{n \in \mathbb{N}} A_k) = \lim_k \mu(A_k) = \lim_k \frac{2}{k} = 0$. Demostramos así que $\mu(\mathbb{N}) = \mu(\bigcup_{n \in \mathbb{N}} \{n\}) = \sum_{n=1}^{\infty} \mu(\{n\}) = 0$.

La prueba para $\mathbb Q$ es muy parecida. Como $\mathbb Q$ es numerable, podemos definir una sucesión $\{q_n\}$ tal que $q_n \in \mathbb Q \ \forall n \in \mathbb N \ y \ \bigcup_{n \in \mathbb N} \{q_n\} = \mathbb Q$. Por tanto, $\mu(\mathbb Q) = \mu(\bigcup_{n \in \mathbb N} \{q_n\}) = \sum_{n=1}^\infty \mu(\{q_n\}) = 0$.

2.1.4. Ejercicio 7

Existencia de conjuntos no medibles

a) Probar que la familia $\{x + \mathbb{Q} : x \in \mathbb{R}\}$ es una partición de \mathbb{R} .

Sea $x \in \mathbb{R}$. Entonces $x \in x + \mathbb{Q}$ dado que x = x + 0. Por ello, $\bigcup_{x \in \mathbb{R}} \{x + \mathbb{Q}\} = \mathbb{R}$.

Sean $x, y, t \in \mathbb{R}$: $t \in x + \mathbb{Q}$ y $t \in y + \mathbb{Q}$. Entonces $\exists q_1, q_2 \in \mathbb{Q}$: $t = x + q_1 = y + q_2$. Así, $x = y + q_2 - q_1$, y, como $q_2 - q_1 \in \mathbb{Q}$, $x \in y + \mathbb{Q}$ y $x + \mathbb{Q} = y + \mathbb{Q}$.

Así, esta familia está formada por conjuntos disjuntos (si un número está en dos elementos de la familia, estos son el mismo) cuya unión es \mathbb{R} : es una partición de \mathbb{R} .

b) Pongamos $\{x + \mathbb{Q} : x \in \mathbb{R}\} = \{A_i : i \in I\} \ (A_i \neq A_j \text{ para } i \neq j) \text{ y, para cada } i \in I, \text{ sea } x_i \in A_i \cap]0,1]$. Probar que el conjunto $E = \{x_i : i \in I\}$ no es medible.

Sea $\{q_n : n \in \mathbb{N}\}$ una numeración de $]-1,1] \cap \mathbb{Q}$. Obsérvese que $\{q_n + E : n \in \mathbb{N}\}$ es una familia de conjuntos disjuntos entre sí: si hay un $x \in (q_a + E) \cap (q_b + E)$ para algunos $a, b \in \mathbb{N}$, entonces $x = q_a + x_i = q_b + x_j$ para algunos $i, j \in I$. En ese caso $x_i = x_j + q_b - q_a \implies x_i \in x_j + \mathbb{Q}$. Como cada x_i está escogido de forma que dos distintos pertenecen a un elemento distinto de la partición $\{x + \mathbb{Q} : x \in \mathbb{R}\}$, necesariamente $x_i = x_j \implies q_a = q_b \implies q_a + E = q_b + E$.

Supongamos que E es medible. En tal caso, $\lambda(E) = \lambda(E+k) \ \forall k \in \mathbb{R}$ dado que λ es invariante por traslación. Debido a la σ -aditividad de λ y a que los conjuntos $q_n + E$ son disjuntos entre sí, resulta que:

$$\lambda(\bigcup_{n\in\mathbb{N}}(q_n+E))=\sum_{n\in\mathbb{N}}\lambda(q_n+E)=\sum_{n\in\mathbb{N}}\lambda(E)$$

Puede verse que $]0,1]\subseteq\bigcup_{n\in\mathbb{N}}(q_n+E)\subseteq]-1,2]$. Demostración de la primera inclusión: sea $x\in]0,1]$. $x\in x+\mathbb{Q} \implies \exists i\in I: x\in A_i \implies \exists i\in I\exists q\in\mathbb{Q}: x=x_i+q \implies \exists q\in\mathbb{Q}: x\in q+E,$ y como $|x_i-x|<1$ puesto que $x_i,x\in]0,1]$, ocurre que $q\in]-1,1]$. Así, $q=q_k$ para algún $k\in\mathbb{N}$ y $x\in\bigcup_{n\in\mathbb{N}}(q_n+E)$. La otra inclusión se debe al rango de valores posible de los q_n y los x_i .

Aplicando que $A \subseteq B \implies \lambda(A) \le \lambda(B)$, tendremos que $\lambda(]0,1]) = 1 \le \lambda(\bigcup_{n \in \mathbb{N}} (q_n + E)) = \sum_{n \in \mathbb{N}} \lambda(E) \le \lambda(]-1,2]) = 3$. Como esto es imposible tanto si $\lambda(E) = 0$ (en cuyo caso $\sum_{n \in \mathbb{N}} \lambda(E) = 0$) $0 \ngeq 1$) como si $\lambda(E) \in \mathbb{R}^+$ (en cuyo caso $\sum_{n \in \mathbb{N}} \lambda(E) = +\infty \nleq 3$), la suposición de que E es medible resulta haber sido incorrecta, y E no es medible.

c) Probar que cualquier subconjunto medible de E tiene medida cero.

Los conjuntos $q_n + A$ son, de nuevo, disjuntos. Por ello, vuelve a ocurrir que $\lambda(\bigcup_{n \in \mathbb{N}} (q_n + A)) =$ $\sum_{n\in\mathbb{N}} \lambda(A). \text{ De nuevo, } \bigcup_{n\in\mathbb{N}} (q_n+A) \subseteq]-1,2] \text{ y consecuentemente } \sum_{n\in\mathbb{N}} \lambda(A) \le \lambda(]-1,2]) = 3. \text{ La}$

d) Sea $M \subseteq \mathbb{R}$ con $\lambda^*(M) > 0$. Probar que M contiene un subconjunto no medible.

Si M no es medible, el enunciado es cierto (M sería un subconjunto no medible de M). Sea Mmedible, es decir, $\lambda(M)=\lambda^*(M)$. Se observa que $M=\bigcup_{q\in\mathbb{Q}}M\cap(q+E)$: todo $m\in M$ tendrá en E un x_i representante de su clase de equivalencia según la partición $\{x+Q:x\in\mathbb{R}\}$, por lo

que $x = q_a + x_i \in q_a + E$.

Supongamos que $M \cap (q+E)$ es medible para todo $q \in \mathbb{Q}$. En ese caso: (aparece un \leq porque la unión no es disjunta)

$$\lambda(M) = \lambda(\bigcup_{q \in \mathbb{Q}} M \cap (q+E)) \le \sum_{q \in \mathbb{Q}} \lambda(M \cap (q+E)) = \sum_{q \in \mathbb{Q}} \lambda((M-q) \cap E)$$

Que es igual a 0 por ser la suma de las medidas de subconjuntos de E medibles (porque suponemos que todos son medibles), las cuales son 0 por lo probado en c). Contradicción (hemos obtenido que $\lambda(M) \leq 0$), por lo cual alguno de los $M \cap (q+E)$ no será medible.

Integral de Lebesgue en \mathbb{R}^N 2.2.

2.3. Teoremas de convergencia

- 3. Técnicas de integración
- 3.1. Técnicas de integración en una variable
- 3.2. Técnicas de integración en varias variables