Examenul de bacalaureat national 2014 Proba E. d)

Fizică

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TEMBOLINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

A. MECANICA

Model

Se consideră accelerația gravitațională $g = 10 \,\mathrm{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Un tren se deplasează rectiliniu, cu viteza constantă v_1 , pe o cale ferată orizontală. Forța de rezistență la înaintare este proporțională cu greutatea trenului. Dacă forța de tracțiune a locomotivei se menține tot timpul constantă, după desprinderea ultimului vagon trenul se va mișca:
- a. uniform, cu aceeași viteză constantă v_1
- **b.** uniform, cu o altă viteză constantă $v_2 < v_1$
- c. accelerat
- d. încetinit (3p)
- 2. Unitatea de măsură în S.I a impulsului unui punct material este:
- **a.** kg·m·s⁻²
- **b.** kg·m·s⁻¹
- **c.** kg·m²·s⁻²
- **d.** $kg \cdot m \cdot s^{-2}$

(3p)

- 3. Un automobil se deplasează orizontal pe o autostradă, cu viteza de 108 km/h. Puterea dezvoltată de motor este de 45 kW . Forța de tracțiune dezvoltată este:
- **b.** 1,5 kN
- **c.** 1,35 kN
- **d.** 1 kN

(3p)

- 4. Un tren frânează, până la oprire, pe distanta de 800 m. Variatia vitezei trenului în timpul frânării este reprezentată în graficul din figura alăturată. Durata de oprire a trenului este:
- **a.** 80 s
- **b.** 60 s
- **c.** 40 s
- d. 20 s

- 5. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia constantei elastice a unui fir elastic este:
- **a.** $k = \frac{E \cdot \ell_0}{S_0}$

- **b.** $k = E \cdot S_0 \cdot \ell_0$ **c.** $k = \frac{S_0}{E \cdot \ell_0}$ **d.** $k = \frac{E \cdot S_0}{\ell_0}$

(3p)

II. Rezolvaţi următoarea problemă:

În sistemul reprezentat în figura alăturată, corpul A are masa $M = 100 \, \mathrm{g}$ și se poate deplasa pe un plan înclinat cu unghiul α fată de orizontală ($\sin \alpha = 0.6$). Coeficientul de frecare la alunecare dintre corpul A și planul înclinat este $\mu = 0.1$. Firul care leagă corpul A de platanul B se consideră

inextensibil și de masă neglijabilă, iar scripetele S este lipsit de frecare și de inerție. Pe platanul de masă neglijabilă B se pot așeza corpuri de diferite mase.

- a. Pe platan se așază un corp. Se constată că platanul coboară cu viteză constantă. Reprezentați forțele care acționează asupra corpului A.
- b. Determinați masa m, a corpului asezat pe platan în situatia descrisă la punctul a.
- c. Determinați valoarea forței care apasă asupra axului scripețelui S în condițiile de

d. Se înlocuiește corpul cu masa m_1 de pe platanul B cu un alt corp de masă $m_2 = 40$ g. Se constată că platanul urcă accelerat. Determinați valoarea accelerației corpurilor.

III. Rezolvaţi următoarea problemă:

Un corp cu masa m = 2 kg este lansat, de la nivelul solului, de-a lungul unui plan înclinat, cu viteza $v_0 = 5 \text{ m/s}$. Lungimea planului înclinat este $\ell = 1,2 \, \text{m}$. Planul formează unghiul $\alpha = 30^{\circ}$ cu orizontala. Miscarea corpului are loc cu frecare, coeficientul de

frecare la alunecare fiind $\mu = 0.19 \left(\cong \frac{1}{3\sqrt{3}} \right)$. Din vârful planului

înclinat corpul își continuă mișcarea până când atinge solul. Neglijând frecările cu aerul, determinați:

- a. lucrul mecanic efectuat de greutatea corpului de la lansare până la atingerea solului;
- **b.** lucrul mecanic efectuat de forta de frecare la alunecare;

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

- c. valoarea vitezei corpului în vârful planului;
- d. valoarea impulsului corpului în momentul în care acesta atinge solul.