(NATURAL SCIENCE)

Vol. 61 No. 5 JUCHE104(2015).

주체104(2015)년 제61권 제5호

자외선피부보호제의 흑화방지효과성평가방법

지 린 철

해빛자외선중 UVA(320~400nm)선은 피부로화와 피부암을 일으키는것[2, 3]으로 하여오늘 이 자외선을 차폐시키기 위한 여러가지 형태의 피부보호제품들이 개발되고있으며그 수요는 점점 높아지고있다.

우리는 파장에 따르는 흑화효과도를 결정하고 그에 기초하여 UVA에 대한 방지력을 in vitro적으로 평가하는 방법을 연구하였다.

1. 리론적기초

자외선피부보호제들의 해빛자외선흑화(어두운 색반점이 생기는 현상)방지효과성은 일 반적으로 화장품을 피부에 발랐을 때와 바르지 않았을 때 지속성흑화가 나타나는데 걸린 시간 또는 자외선량의 비 즉 UVA방지지수(PFA)로 평가한다.

$$PFA = \frac{MPPD}{MPPD_0} \tag{1}$$

여기서 MPPD는 피부에 자외선보호제를 바른 후 어두운 색반점이 나타나는데 걸린 시간 또는 자외선량, $MPPD_0$ 은 피부에 보호제를 바르지 않은 상태에서 어두운 색반점이 나타나는데 걸린 시간 또는 자외선량이다.

PFA는 인체의 피부에 자외선보호제를 직접 바른 상태에서 얻어지는 값으로서 국제적으로는 표준화되여있지 않다.

우리 나라에서는 in vitro적평가방법이 규격화되고있다.[1]

파장에 따르는 표준해빛자외선세기와 흑 화효과도 *in vitro*적으로 *PFA*를 결정하기 위하여 국제조명위원회(CIE)는 표준해빛 자외선세기분포와 상대흑화도를 그림 1 과 같이 규정하였다.[4]

파장에 따르는 해빛의 자외선세기 (W/m^2) 를 S_{λ} , 파장에 따르는 피부의 흑화 효과도를 D_{λ} 라고 하면 S_{λ} 와 D_{λ} 의 적 $S_{\lambda} \cdot D_{\lambda}$ 는 파장이 λ 인 자외선이 피부에 흑화를 일으키는 정도를 나타낸다.

파장에 따르는 $S_{\lambda} \cdot D_{\lambda}$ 변화는 그림 2

그림 1. 파장에 따르는 표준해빛자외선세기(1)와 상대흑화효과도(2)변화

와 같다.

그림 2에서 보는바와 같이 자외선 A구역 (320~400nm)에서 피부흑화효과를 대신할수 있는 《열쇠파장》이 없다.

그러므로 자외선 A구역에서 *in vitro*적으로 *PFA*를 측정하였다.

PFA측정 식 (1)에서 $MPPD_0$ 은 피부에 자외 선피부보호제를 바르지 않은 상태에서 해빛자 외선자체가 가지고있는 세기이다. 즉 실제로 피부의 흑화를 일으키는 자외선세기로서 $MPPD \cdot \alpha S_\lambda \cdot D_\lambda$ 로 표시할수 있다.

그림 2. 파장에 따르는 $S_2 \cdot D_2$ 의 변화

한편 MPPD는 피부에 자외선피부보호제를 바른 후 보호제를 투과해나온 해당 해빛자외선이 피부의 흑화를 일으키는 자외선세기로서 $MPPD \cdot \alpha S_{\lambda} \cdot D_{\lambda}/T_{\lambda}$ 로 표시할수 있다. 여기서 T_{λ} 는 해당 해빛자외선이 도포된 피부보호제에 대한 투과도이다.

in vitro적으로 자외선 A방지지수를 PFAin vitro로 표시하면

$$PFA_{in\ vitro} = \frac{MPPD}{MPPD_0} = \frac{\sum_{\lambda=320}^{400} S_{\lambda} \cdot D_{\lambda}}{\sum_{\lambda=320}^{400} S_{\lambda} \cdot D_{\lambda} \cdot T_{\lambda}^{C_{\pm}}} = \frac{\sum_{\lambda=320}^{400} S_{\lambda} \cdot D_{\lambda}}{\sum_{\lambda=320}^{400} S_{\lambda} \cdot D_{\lambda} \cdot 10^{-A_{\lambda} \cdot C_{\pm}}}$$
(2)

여기서 C_{\flat} 는 보정곁수이다.

보정결수결정 PFA 3.8인 표품을 정확한 제조방법에 의하여 만들고 파장에 따르는 흡광도를 측정하여 식 (2)를 리용하여 보정곁수를 계산한 결과 0.57이였다.

파장에 따르는 *PFA*표품의 흡수스펙트르를 보정한 경우와 보정하지 않은 경우는 그림 3과 같다.

그림 3. *PFA*표품의 흡수스펙트르 1-측정값, 2-보정값

그림 3에서 보는바와 같이 보정하였을 때 와 보정하지 않았을 때 스펙트르의 모양은 변 하지 않는다.

2. 측정방법

기구로는 전자천평, 자외가시선분광광도계 (《DV-1200》)를, 시약으로는 폴리프로필렌박막을, 시료로는 자외선피부보호크림을 리용하였다.

우선 폴리프로필렌박막에 2mg/cm^3 의 도포량으로 시료를 입히고 골고루 펴놓은 다음 $320 \sim 400 \text{nm}$ 에서 흡광도를 측정하고 식 (2)로부터 PFA를 구한다.

3. 대상물시료에 대한 분석결과

여러가지 해빛자외선방지화장크림들의 측정결과는 표와 같다.

표에서 보는바와 같이 *PFA*측정결과들은 제품에 ⁻¹ 표시된 방지지수(*PF*)와 잘 일치한다.

맺 는 말

보정결수를 도입하여 자외선피부보호제의 *PFA_{in vitro}*값을 평가하였다.

PFA측정결과들은 제품에 표시된 in vitro적결과와 잘일치한다.

표. *PFA*측정결과

No.	제품에 표시된 <i>PF</i>	PFA
1	PFA 3.8표품	3.9
2	+	3.2
3	++	5.6
4	+++	12.1
5	+	2.9
6	++	7.1
7	+++	11.2

PF는 제품의 PFA가 2~4일 때 +, 4~8일 때 ++, 8이상일 때 +++로 표시한다.

참 고 문 헌

- [1] 국가규격 7435-26, 주체98(2009).
- [2] 강승모; 피부와 건강, 과학백과사전출판사, 276~279, 1990.
- [3] 김봉구; 피부병치료편람, 과학백과사전출판사, 68~72, 1993.
- [4] B. L. Difey; Methods, 4, 13, 28, 2002.

주체104(2015)년 1월 5일 원고접수

Assessment Method of the Darking Protection Effectiveness of the Skin Protection Agent against Ultraviolet

Ji Rin Chol

We estimated the value of $PFA_{in\ vitro}$ of skin protection agent against UV by using of the repairing coefficient.

The measuring results of *PFA* were coincident sufficiently with *in vitro* value written on the product.

Key words: PFA, skin protection agent, UV