ПОРЯДОК РАЗРАБОТКИ
ТЕХНИКО-ЭКОНОМИЧЕСКОГО ОБОСНОВАНИЯ
ВЫБОРА ВАРИАНТА ТЕПЛОСНАБЖЕНИЯ
ПРИ ВОЗВЕДЕНИИ И РЕКОНСТРУКЦИИ ОБЪЕКТОВ

ПАРАДАК РАСПРАЦОЎКІ ТЭХНІКА-ЭКАНАМІЧНАГА АБГРУНТАВАННЯ ВЫБАРУ ВАРЫЯНТА ЦЕПЛАЗАБЕСПЯЧЭННЯ ПРЫ ЎЗВЯДЗЕННІ І РЭКАНСТРУКЦЫІ АБ'ЕКТАЎ

Издание официальное

Министерство энергетики Республики Беларусь УДК 697.11.059.7(083.74)(476)

MKC 27.010, 93.010

КП 06

Ключевые слова: схема теплоснабжения, технико-экономическое обоснование, объект, энергоисточник, тепловые сети, экономическая эффективность

Предисловие

Цели, основные принципы, положения по государственному регулированию и управлению в области технического нормирования и стандартизации установлены Законом Республики Беларусь «О техническом нормировании и стандартизации»

- 1 РАЗРАБОТАН И ВНЕСЕН проектным научно-исследовательским республиканским унитарным предприятием «Белнипиэнергопром» (РУП «Белнипиэнергопром»)
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Министерства энергетики Республики Беларусь от 23 октября 2018 г. № 37
 - 3 B3AMEH TKI 241-2010 (02230)

© Минэнерго, 2018

Настоящий технический кодекс установившейся практики не может быть воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Министерства энергетики Республики Беларусь

Издан на русском языке

Содержание

1	Область применения	1
2	Нормативные ссылки	2
3	Термины и определения	2
4	Общие положения	4
5	Разработка, согласование и утверждение ТЭО	4
6	Основные разделы ТЭО и требования, предъявляемые к их разработке	5
П	риложение A (рекомендуемое) Методика расчета фактических тепловых нагрузок энергоисточников при разработке схемы теплоснабжения населенных пунктов	10
П	риложение Б (справочное) Разработка пароводяного баланса на энергоисточнике	
П	риложение В (справочное) Расчет годовых технико-экономических показателей работы энергоисточника	. 23
П	риложение Г (справочное) Методика оценки целесообразности строительства локальных энергоисточников с учетом экономического эффекта для республики	. 32
П	риложение Д (справочное) Пример выполнения ТЭОТЭР	36
Б	иблиография	. 58

ТЕХНИЧЕСКИЙ КОДЕКС УСТАНОВИВШЕЙСЯ ПРАКТИКИ

ПОРЯДОК РАЗРАБОТКИ ТЕХНИКО-ЭКОНОМИЧЕСКОГО ОБОСНОВАНИЯ ВЫБОРА ВАРИАНТА ТЕПЛОСНАБЖЕНИЯ ПРИ ВОЗВЕДЕНИИ И РЕКОНСТРУКЦИИ ОБЪЕКТОВ

ПАРАДАК РАСПРАЦОЎКІ ТЭХНІКА-ЭКАНАМІЧНАГА АБГРУНТАВАННЯ ВЫБАРУ ВАРЫЯНТА ЦЕПЛАЗАБЕСПЯЧЭННЯ ПРЫ ЎЗВЯДЗЕННІ І РЭКАНСТРУКЦЫІ АБ'ЕКТАЎ

Regulations of Electrical Installations

Дата введения 2019-01-01

1 Область применения

Настоящий технический кодекс установившейся практики (далее — технический кодекс) устанавливает порядок разработки в составе предпроектной (предынвестиционной) документации технико-экономического обоснования выбора варианта теплоснабжения для возводимых и реконструируемых объектов (зданий и сооружений) (далее — ТЭО), обоснованная необходимость возведения и реконструкции которых возникла после окончания разработки схемы теплоснабжения населенного пункта или при ее отсутствии.

2 Нормативные ссылки

В настоящем техническом кодексе использованы ссылки на следующие технические нормативные правовые акты в области технического нормирования и стандартизации (далее – ТНПА):

ТКП 45-1.01-4-2005 (02250) Система технического нормирования и стандартизации Республики Беларусь. Национальный комплекс технических нормативных правовых актов в области архитектуры и строительства. Основные положения

ТКП 45-2.04-43-2006 (02250) Строительная теплотехника. Строительные нормы проектирования

ТКП 45-4.01-52-2007 (02250) Системы внутреннего водоснабжения зданий. Строительные нормы проектирования

ТКП 45-4.02-322-2018 (02250) Тепловые сети. Строительные нормы проектирования

ТКП 45-1.02-298-2014 Строительство. Предпроектная (предынвестиционная) документация. Состав, порядок разработки и утверждения

ТКП 45-1.02-295-2014 Строительство. Проектная документация. Состав и содержание

ТКП 45-4.02-204-2010 (02250) Схемы теплоснабжения населенных пунктов. Правила разработки

ГОСТ 19431-84 Энергетика и электрификация. Термины и определения

Примечание – При пользовании настоящим техническим кодексом целесообразно проверить действие ТНПА по Перечню технических нормативных правовых актов в области архитектуры и строительства, действующих на территории Республики Беларусь, и каталогу, составленным по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году.

Если ссылочные ТНПА заменены (изменены), то при пользовании настоящим техническим кодексом следует руководствоваться замененными (измененными) ТНПА. Если ссылочные ТНПА отменены без замены, то положение, в котором дана ссылка на них, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем техническом кодексе применяются термины, установленные в [1]–[5], ТКП 45-1.01-4, ГОСТ 19431, ТКП 45-4.02-322, ТКП 45-1.02-298, ТКП 45-2.04-43, а также следующие термины с соответствующими определениями:

- **3.1 индивидуальные теплогенераторы; ИТГ**: Бытовые и промышленные теплогенерирующие агрегаты, аппараты и устройства, служащие для теплоснабжения одного потребителя с тепловой мощностью до 100 кВт.
- **3.2 зона действия централизованной системы теплоснабжения**: Территория населенного пункта или его часть, границы которой

устанавливаются по наиболее удаленным точкам технически возможного и экономически целесообразного подключения потребителей к тепловым сетям, входящим в систему теплоснабжения.

- **3.3 нормируемые тепловые потери**: Сумма нормируемых потерь тепловой энергии через изоляцию трубопроводов и с утечкой теплоносителя из тепловой сети, определенных в соответствии с действующими методическими рекомендациями [4].
- **3.4** объект: Здание, сооружение, на возведение (реконструкцию) которого разрабатывается проектная документация.
- **3.5** объект тепловой сети: Насосная станция, контрольно-распределительный пункт, устройство защиты тепловых сетей.
- 3.6 температурный график: Зависимость температуры сетевой воды, подаваемой энергоисточником в тепловую сеть и возвращаемой от потребителей, от температуры наружного воздуха при принятом в системе теплоснабжения методе центрального регулирования отпуска тепловой энергии [4].
- 3.7 теплоисточник (источник тепловой энергии): Комплекс технологически связанных одного или нескольких теплогенераторов, электрогенерирующих установок, электрокотлов и вспомогательного оборудования, расположенных в обособленных, встроенных, пристроенных, надстроенных помещениях, предназначенный для производства тепловой энергии, теплоносителя или нескольких видов энергии, одним из которых является тепловая энергия.
- **3.8 теплоэлектроцентраль; ТЭЦ**: Тепловая электрическая станция, предназначенная для производства электрической энергии и тепловой энергии.
- **3.9 система теплоснабжения**: Совокупность взаимосвязанных энергоисточников, тепловых сетей и систем теплопотребления.
- **3.10** система теплоснабжения децентрализованная (локальная): Система теплоснабжения с индивидуальным энергоисточником без внешних для потребителя передающих и распределительных теплопроводов (тепловых сетей) [3].
- **3.11 система теплоснабжения централизованная**: Система теплоснабжения с групповым энергоисточником (групповыми энергоисточниками) и внешними для потребителя передающими и распределительными теплопроводами (тепловыми сетями) [3].
- 3.12 схема теплоснабжения населенного пункта: Внестадийная работа, в которой обосновываются хозяйственная необходимость, экономическая целесообразность и экологическая возможность возведения новых, модернизации и реконструкции существующих энергетических источников, тепловых сетей и систем теплопотребления, средств их эксплуатации и управления с целью качественного, надежного теплоснабжения потребителей и рационального использования

топливно-энергетических ресурсов, выполненная в соответствии с ТКП 45-4.02-204.

3.13 энергоисточники: Теплоисточники и электрогенерирующие источники [3].

4 Общие положения

- **4.1** Функции заказчика на разработку ТЭО осуществляет организация, финансирующая выполнение данной работы.
- **4.2** Заказчиком предоставляются разработчику следующие исходные данные:
- ситуационный план размещения возводимого (реконструируемого) объекта;
- решение местного исполнительного и распорядительного органа о разрешении проведения проектно-изыскательских работ и возведении объекта или акт выбора места размещения земельного участка;
- характеристика возводимого (реконструируемого) объекта (этажность, материал стен, назначение, особые требования к теплоснабжению и т.д.);
- по жилым районам объемы строительства и тепловые нагрузки новой жилой и общественной застройки с разбивкой по годам, утвержденные планы детального планирования застраиваемого района;
- по промышленным предприятиям и общественным объектам общегородского назначения – тепловые нагрузки и их прирост по годам строительства;
 - задание на разработку ТЭО.

5 Разработка, согласование и утверждение ТЭО

- **5.1** ТЭО выбора варианта теплоснабжения при возведении и реконструкции объектов разрабатывается на основании [6] и в соответствии с настоящим техническим кодексом.
- **5.2** Заключения и согласования ТЭО выдаются органами государственного управления в порядке, определенном единым перечнем административных процедур, осуществляемых государственными органами и иными организациями в отношении юридических лиц и индивидуальных предпринимателей.
- **5.3** Согласованный в ТЭО вариант принимается в качестве изменения действующей схемы теплоснабжения населенного пункта в части теплоснабжения рассмотренного объекта, учитывается при ее последующей корректировке или является основанием для ее досрочной актуализации согласно ТКП 45-4.02-204.

6 Основные разделы ТЭО и требования, предъявляемые к их разработке

- 6.1 ТЭО должно содержать следующие разделы:
- общая характеристика объекта;
- характеристика близлежащей системы теплоснабжения;
- определение структуры и величины существующих и перспективных тепловых нагрузок, режимов теплопотребления в годовом и часовом разрезе;
- варианты обеспечения рассматриваемого объекта тепловой энергией;
- основные технические решения по развитию системы теплоснабжения;
- оценка эффективности инвестиций по вариантам теплоснабжения объекта и определение рекомендуемого варианта.
 - 6.2 Раздел «Общая характеристика объекта»

В разделе должна быть представлена исходная информация по рассматриваемому объекту:

- наименование;
- место расположения;
- год начала и окончания строительства (реконструкции);
- объемы застройки с разбивкой по годам;
- характеристика застройки (этажность, материал стен);
- производственные мощности и вид производства;
- категорийность по надежности теплоснабжения;
- особые требования по режимам теплоснабжения;
- тепловые нагрузки.
- **6.3** Раздел «Характеристика ближайшей системы теплоснабжения» Раздел должен содержать краткую информацию по системе теплоснабжения, в зоне действия которой располагается (или будет располагаться) рассматриваемый объект:
- ситуационный план размещения объекта и ближайшей системы (систем) теплоснабжения;
- централизованные энергоисточники (наименование, установленная мощность, состав оборудования и т.д.);
- схема тепловых сетей в масштабе с указанием номера ближайшей тепловой магистрали (диаметр, протяженность, тип прокладки и т.д.);
 - децентрализованные энергоисточники.
- **6.4** Раздел «Определение структуры и величины существующих и перспективных тепловых нагрузок, режимов теплопотребления в годовом и часовом разрезе».
- **6.4.1** Тепловые нагрузки существующих потребителей определяют с учетом их фактического теплопотребления в соответствии с методикой, приведенной в приложении А.

- **6.4.2** Основой для определения перспективных максимальных часовых тепловых нагрузок являются утвержденные документы территориального планирования генеральные планы населенных пунктов, планы детального планирования отдельных территорий, данные заказчика, подтвержденные местными органами государственного управления.
- **6.4.3** Расчет перспективных максимальных часовых тепловых нагрузок производится раздельно для жилищно-коммунального и промышленного секторов с разбивкой по видам теплопотребления и теплоносителя по укрупненным показателям в соответствии с ТКП 45-4.02-322, ТКП 45-2-04-43, [7], [8] с учетом [9], [10].
- **6.4.4** Тепловая нагрузка крупных общественных объектов общегородского и республиканского назначения учитывается дополнительно на основании проектов объектов-аналогов или по укрупненным показателям.
- **6.4.5** Максимальные часовые перспективные тепловые нагрузки существующих промышленных предприятий следует определять на основании их анкетного обследования с учетом данных из форм государственной статистической отчетности, действующих на момент разработки ТЭО.
- **6.4.6** Максимальные часовые тепловые нагрузки новых производственных предприятий и комплексов производственных предприятий следует принимать по данным заказчика с предоставлением обосновывающих материалов, по проекту-аналогу или по укрупненным показателям.
- **6.4.7** В расчетном максимуме тепловых нагрузок, обеспечиваемых от системы централизованного теплоснабжения, нагрузка горячего водоснабжения должна приниматься:
- для жилищно-коммунального сектора и общественных зданий по ТКП 45-4.02-322:
- для технологических и крупных общественных потребителей по среднечасовому расходу тепловой энергии за смену наибольшего водопотребления.
- 6.4.8 На перспективу необходимо учитывать снижение средней нормы расхода горячей воды на бытовые нужды в сутки до 90 л/чел.
- **6.4.9** При определении суммарных максимальных часовых тепловых нагрузок на энергоисточнике на перспективу следует учитывать разновременность (несовпадение максимумов) тепловых нагрузок по каждой группе потребителей на технологические цели в паре.
- **6.4.10** Коэффициент несовпадения максимумов тепловых нагрузок по группе потребителей на технологические цели в паре к_{оп} определяют по формуле

$$\kappa_{on} = \left(0, 7 + \frac{0, 3}{\sqrt{n}}\right) \cdot \left(1 + 0,001 \cdot \left(\frac{D_{rex}^6}{D_{rex}^M}\right)^{2/3}\right), \tag{6.1}$$

где n - количество потребителей;

- $D_{\text{тех}}^6$ тепловая нагрузка в паре потребителя с наибольшим потреблением пара, т/ч;
- $\mathsf{D}^{\scriptscriptstyle\mathsf{M}}_{\scriptscriptstyle\mathsf{Tex}}$ тепловая нагрузка в паре потребителя с наименьшим потреблением пара, т/ч.
- **6.4.11** Расчетные температуры для проектирования систем отопления и вентиляции, средние температуры за отопительный период, продолжительность отопительного периода и другие климатические характеристики населенного пункта следует принимать по [11].
- **6.5** Раздел «Варианты обеспечения рассматриваемого объекта тепловой энергией»
- **6.5.1** В ТЭО должно быть рассмотрено не менее трех вариантов теплоснабжения объекта, в том числе:
- базовый вариант существующее положение без модернизации (для существующих объектов);
- от существующей системы централизованного теплоснабжения (при ее наличии), с ее модернизацией и реконструкцией при необходимости;
- от новых централизованных или децентрализованных энергоисточников на местных топливно-энергетических ресурсах, с использованием электроэнергии, на природном газе в случае газификации района с использованием конденсационных теплоутилизаторов уходящих дымовых газов или комбинированные варианты. Применение электроэнергии на нужды теплоснабжения предусматривается преимущественно с использованием баков-аккумуляторов тепловой энергии. Емкость бака-аккумулятора рекомендуется выбирать из расчета обеспечения от него нагрузки горячего водоснабжения в дневные часы при его загрузке в ночное время.
- С учетом предложений заказчика в ТЭО могут быть рассмотрены иные варианты теплоснабжения объекта.
- **6.5.2** Выбор мощности основного оборудования осуществляется согласно требованиям [2], при установке котлов на местных видах топлива дополнительно учитывается [12]. Расчет осуществляется на основании пароводяного баланса, разрабатываемого в соответствии с [13]–[15]. На стадии ТЭО допускается использовать упрощенную методику расчета, приведенную в приложении Б.
- **6.6** Раздел «Основные технические решения по развитию системы теплоснабжения»
- **6.6.1** Раздел должен содержать основные решения как по энергоисточнику, так и по тепловым сетям для всех рассматриваемых вариантов.

- **6.6.2** При возведении нового, реконструкции существующего энергоисточника, как централизованного, так и децентрализованного, необходимо выполнить:
 - а) выбор вида топливно-энергетического ресурса;
- б) обоснование предложений по составу основного оборудования энергоисточника, установленной тепловой мощности ИТГ для жилых помещений и мест общего пользования;
- в) расчет годовых технико-экономических показателей работы энергоисточников, выполненный в соответствии с приложением В;
 - г) оценку капиталовложений, сроков реконструкции и строительства.
 - 6.6.3 По тепловым сетям требуется выполнить:
 - а) для новых систем теплоснабжения:
 - определение предварительной трассировки тепловой сети к объекту;
 - выбор способа прокладки тепловой сети;
 - выбор вида теплоносителя;
- выбор температурного графика и способа регулирования отпуска тепловой энергии от энергоисточника в соответствии с ТКП 45-4.02-322;
- расчет гидравлических режимов работы тепловых сетей и определение их диаметров;
- обоснование необходимости строительства объектов тепловой сети:
- разработку предложений по взаимодействию ТЭЦ и котельных (демонтаж котельных, вывод котельных в холодный резерв, перевод их в пиковый режим и т.д.);
 - оценку капиталовложений и сроков строительства;
 - б) для существующих систем теплоснабжения:
- гидравлический расчет работы тепловых сетей для оценки возможности присоединения к ним новых тепловых потребителей;
- определение необходимого объема реконструкции и строительства новых тепловых сетей (диаметры, протяженность и т.д.);
- обоснование требуемого температурного графика отпуска тепловой энергии;
 - обоснование схемы подключения новых потребителей;
 - оценку капиталовложений, сроков реконструкции и строительства.

Проектирование новых и реконструкция действующих тепловых сетей осуществляются в соответствии с ТКП 45-4.02-322, гидравлический расчет – в соответствии с [8], [16], [17].

6.6.4 Определение капиталовложений в возведение новых и реконструкцию существующих энергоисточников и тепловых сетей выполняется по проектам-аналогам или на основании статистических данных по удельным капиталовложениям.

- **6.7** Раздел «Оценка эффективности инвестиций по вариантам теплоснабжения объекта и определение рекомендуемого варианта»
- **6.7.1** Выбор рекомендуемого варианта теплоснабжения объекта осуществляется по результатам технико-экономического сравнения.
- **6.7.2** Сопоставляемые варианты развития систем теплоснабжения должны обеспечивать:
- а) одинаковую производственную программу по всем годам рассматриваемого периода (равное количество отпускаемой продукции);
 - б) качественное и надежное теплоснабжение потребителей.
- **6.7.3** Расчет экономической эффективности вариантов выполняется в соответствии с приложениями Г, Д.
 - 6.7.4 Критериями выбора варианта являются:
 - минимум приведенных затрат;
 - срок окупаемости;
 - снижение себестоимости производства тепловой энергии;
- экономия топлива, уменьшение объемов закупки импортного топлива, увеличение доли использования местных топливно-энергетических ресурсов;
- экономический эффект (ущерб) для объектов энергетики республики от возведения локальных энергоисточников.

Приложение А

(рекомендуемое)

Методика расчета фактических тепловых нагрузок энергоисточников при разработке схемы теплоснабжения населенных пунктов

А.1 Суммарные договорные максимальные часовые тепловые нагрузки существующих жилищно-коммунальных и промышленных потребителей Q, Гкал/ч, фиксируют в договорах на теплоснабжение, заключаемых с энергоснабжающей организацией, и определяют по формуле

$$Q = Q_o^{\text{max}} + Q_B^{\text{max}} + Q_{r_B}^{\text{max}}, \tag{A.1}$$

где Q_o^{max} , Q_B^{max} , Q_{rB}^{max} – договорные максимальные часовые нагрузки отопления, вентиляции и горячего водоснабжения, Гкал/ч.

- **А.2** При разработке ТЭО необходимо учитывать снижение теплопотребления существующих зданий за счет их утепления и герметизации при капитальных ремонтах, внедрения систем автоматического регулирования расхода тепловой энергии и счетчиков расхода горячей воды, проведения энергосберегающих мероприятий и ряда других факторов. С этой целью полученные договорные тепловые нагрузки корректируются с учетом фактически сложившегося теплопотребления в зоне действия энергоисточника (по возможности каждой магистрали) следующим образом:
- а) по фактическим данным энергоснабжающей организации за наиболее холодный месяц отопительного периода определяют средневзвешенный по температуре наружного воздуха часовой отпуск тепловой энергии Q_{ϕ} , Гкал/ч, и среднеарифметическую температуру наружного воздуха t_{ϕ}^{Φ} , °C (сутки с температурой наружного воздуха выше 0 °C и ниже минус 15 °C из расчета исключают);
- б) фактическую среднечасовую тепловую нагрузку горячего водоснабжения в отопительный период Q^{φ}_{rB} , Гкал/ч, определяют на основании фактических данных по формуле

$$Q_{r_B}^{\Phi} = Q_{r_B}^{n_{\Phi}} \cdot \frac{55 - t_x}{55 - t_x^{n}} - Q_{n_{OT}}^{n}, \tag{A.2}$$

где Q_{rs}^{φ} – фактический среднечасовой отпуск тепловой энергии за недельный период после окончания отопительного сезона и до начала ремонта тепловых сетей, Гкал/ч;

 Q_{not}^{n} — фактические среднечасовые тепловые потери через изоляцию трубопроводов и с утечками в рассматриваемый период межотопительного сезона, Гкал/ч:

- t_x , t_x^{n} соответственно температура холодной (водопроводной) воды в отопительный период (при отсутствии данных следует принимать равной 5 °C) и в неотопительный период (при отсутствии данных для поверхностных источников 15 °C, для подземных 5—7 °C);
- в) фактическую нагрузку отопления и вентиляции Q_{oB}^{Φ} , Гкал/ч, определяют по формуле

$$Q_{oB}^{\Phi} = Q^{\Phi} - Q_{fB}^{\Phi} - Q_{not}, \tag{A.3}$$

где Q_{пот} – среднечасовые нормируемые тепловые потери в тепловых сетях за рассматриваемый зимний месяц, определенные в соответствии с [18] или документом, ее заменяющим, Гкал/ч;

г) так как нагрузка вентиляции имеет, как правило, отопительный характер, приведение полученной по формуле (A.3) тепловой нагрузки к расчетным для систем отопления условиям $Q_{ob}^{\phi max}$, Гкал/ч, осуществляют следующим образом:

$$Q_{\text{\tiny OB}}^{\Phi\text{\tiny max}} = Q_{\text{\tiny OB}}^{\Phi} \cdot \frac{t_{\text{\tiny BH}} - t_{\text{\tiny O}}}{t_{\text{\tiny BH}} - t_{\text{\tiny O}}^{\Phi}}, \tag{A.4}$$

где $t_{_{\rm BH}}$ — расчетная температура внутри отапливаемых помещений, °C; $t_{_{\rm O}}$ — расчетная температура наружного воздуха для систем отопления, °C;

д) суммарную фактическую тепловую нагрузку энергоисточника (магистрали), приведенную к расчетным для систем отопления условиям, (фактическая приведенная), Q_{cvw}^{Φ} , Гкал/ч, определяют по формуле

$$Q_{\text{CVM}}^{\Phi} = Q_{\text{OB}}^{\Phi \text{max}} + Q_{\text{FB}}^{\Phi} + Q_{\text{DOT}}^{\text{max}}, \tag{A.5}$$

где Q_{not}^{max} – тепловые потери в тепловых сетях при расчетной для систем отопления температуре наружного воздуха, Гкал/ч, рассчитанные в соответствии с [18] или документом, ее заменяющим.

А.3 Фактическую приведенную тепловую нагрузку крупных общественных объектов общегородского и республиканского назначения $Q^{\Phi}_{06\text{цц}}$, Гкал/ч, и промышленных предприятий $Q^{\Phi}_{пром}$, Гкал/ч, находящихся в зоне теплоснабжения рассматриваемого энергоисточника, определяют по формулам A.2—A.5 на основании данных их анкетного обследования.

А.4 Фактическую приведенную тепловую нагрузку жилищно-коммунального сектора $Q_{\mathsf{жкc}}^{\phi}$, Гкал/ч, определяют как

$$Q_{\text{KKC}}^{\Phi} = Q_{\text{cym}}^{\Phi} - Q_{\text{npom}}^{\Phi} - Q_{\text{ofin}}^{\Phi}. \tag{A.6}$$

А.5 Для выявления возможных нарушений (ограничений) в подаче тепловой энергии потребителям в зоне действия рассматриваемого энергоисточника (магистрали) необходимо выполнить:

- для жилищно-коммунального сектора анализ данных диспетчерских служб тепловых сетей о наличии жалоб потребителей на низкую температуру воздуха внутри отапливаемых помещений и/или горячей воды в местах водоразбора;
- для промышленных и общественных предприятий анализ соответствия величины фактического теплопотребления данным формы государственной отчетности, действующей на момент разработки ТЭО.

А.6 В случае выявления регулярных жалоб на некачественное теплоснабжение в зоне действия рассматриваемого энергоисточника (магистрали) фактическая тепловая нагрузка жилищно-коммунального сектора принимается равной договорной величине, определяемой по формуле (А.1), или пересчитывается по укрупненным показателям.

При установлении факта ограничения потребления тепловой энергии промышленными и общественными предприятиями, приводящего к снижению температурного режима в помещениях ниже нормативных величин, ограничению или отключению вентиляции и горячего водоснабжения, ограниченная тепловая нагрузка определяется в соответствии с [9].

А.7 Полученные фактические приведенные тепловые нагрузки промышленного, жилищно-коммунального секторов и крупных общественных объектов, скорректированные в случае необходимости в соответствии с пунктами А.5, А.6, принимаются в качестве базовых при определении перспективных тепловых нагрузок соответствующих групп потребителей.

Приложение Б

(справочное)

Разработка пароводяного баланса на энергоисточнике

- **Б.1** Выбор единичной мощности основного оборудования осуществляется на основании пароводяного баланса энергоисточника, позволяющего определить необходимую паропроизводительность парового котла, тепловую мощность устанавливаемого оборудования, а также его загрузку в характерных режимах.
 - **Б.2** Расчет проводится для шести основных режимов:
- 1 максимального зимнего, соответствующего расчетной температуре наружного воздуха для отопления t_{\circ} . Этот режим определяет максимальную выработку пара и горячей воды и, следовательно, суммарную паропроизводительность устанавливаемых парогенераторов и тепловую мощность источников тепловой энергии. Для этого режима отопительно-вентиляционные и технологические нагрузки принимаются максимальными часовыми, нагрузка горячего водоснабжения в соответствии с ТКП 45-4.02-322;
- 2 аварийного, предусматривающего останов одного агрегата наибольшей производительности при расчетной температуре наружного воздуха для отопления $t_{\rm o}$. Тепловые нагрузки в этом режиме определяют в соответствии с ТКП 45-4.02-322;
- 3 наиболее холодного месяца при средней температуре наружного воздуха за наиболее холодный месяц года $t_{_{\rm HX}}$. Этот режим, как и режим 1, используется при расчете максимальных разовых выбросов вредных веществ от энергоисточника;
- 4 среднезимнего. При средней температуре наружного воздуха за отопительный период t_{∞} ;
 - 5 летнего:
- 6 ночного летнего. Технологическая нагрузка и нагрузка горячего водоснабжения принимаются минимальными часовыми за сутки. Расчет этого режима позволяет оценить техническую возможность использования энергетического оборудования при минимальных тепловых нагрузках.
- **Б.3** Расчет пароводяного баланса энергоисточника выполняется параллельно для всех режимов и состоит из трех частей:
- расчет расхода тепловой энергии внешним потребителям (пар, горячая вода);
- расчет расходов тепловой энергии на собственные нужды энергоисточника;
- расчет суммарной требуемой выработки тепловой энергии (пар, горячая вода).

- **Б.4** Как правило, на энергоисточнике имеются следующие основные коллекторы:
 - сетевой воды;
 - пара давлением 0,05-0,25 МПа;
 - пара давлением 0,6–1,4 МПа;
- свежего пара (в зависимости от начальных параметров паровой турбины).

Б.5 Расчет расхода тепловой энергии внешним потребителям

Б.5.1 Среднечасовую технологическую нагрузку задают на основании фактических данных или по данным аналогичных производств и сводят в таблицу Б.1.

Таблица Б.1 – Определение часового отпуска пара и горячей воды на технологические нужды в зависимости от режима

Технологическая нагрузка	Основные режимы				
	1,3	2	4	5	6
Часовой отпуск пара D _{тех} , т/ч	D _{rex}	D _{rex}	D _{Tex}	$D_{\scriptscriptstyle{Tex}} \cdot \alpha_{\scriptscriptstyle{Tex}}^{\scriptscriptstyle{net}}$	$D^{5}_{\mathsf{Tex}} \cdot \alpha^{\tiny HOY}_{\mathsf{Tex}}$
Часовой отпуск горячей воды Q _{тех} , Гкал/ч	Q _{Tex}	Q _{тех}	Q _{тех}	$Q_{\scriptscriptstyle{Tex}} \cdot \alpha_{\scriptscriptstyle{Tex}}^{\scriptscriptstyle{net}}$	$Q_{\text{\tiny Tex}}^5 \cdot \alpha_{\text{\tiny Tex}}^{\text{\tiny HOЧ}}$

В таблице Б.1:

 $lpha_{\text{тех}}^{\text{лет}}$ – коэффициент, учитывающий снижение максимальной часовой технологической нагрузки в паре или в горячей воде в неотопительный период относительно максимальной часовой величины;

 $\alpha_{\text{тех}}^{\text{ноч}}$ – коэффициент, учитывающий снижение среднечасовой технологической нагрузки в паре или в горячей воде в неотопительный период в ночное время.

Коэффициенты $\alpha_{\text{тех}}^{\text{лет}}$ и $\alpha_{\text{тех}}^{\text{ноч}}$ принимаются на основании анализа фактических часовых и годовых режимов отпуска тепловой энергии на технологические нужды предприятия.

Технологические нагрузки новых предприятий принимаются по данным аналогичных производств.

Б.5.2 Тепловую нагрузку в сетевой воде определяют в зависимости от рассматриваемого режима по формулам, приведенным в таблице Б.2.

Таблица Б.2 – Формулы для определения часового отпуска тепловой энергии в сетевой воде

Тепловая нагрузка в сетевой	Режим				
воде, Гкал/ч	1	2	3,4	5	6
Отопления и вентиляции $Q_{\scriptscriptstyle OB}^1$	Q _{тех} (исходные данные)	0,84 · Q _{ob}	$Q_{\text{\tiny OB}}^1 \cdot \frac{t_{_{\text{\tiny BH}}} - t_{_{i}}}{t_{_{\text{\tiny BH}}} - t_{_{o}}}$	0	0
Среднечасовая нагрузка горячего водоснабжения Q ⁱ _{гв}	Q _{гв} (исходные данные)	0,84 · Q _{гв}	Как для режима 1	$Q_{rB}^1 \cdot \frac{55 - t_x^n}{55 - t_x}$	$Q_{_{\Gamma \! B}}^5 \cdot \alpha_{_{\Gamma \! B}}^{_{HO \vee}}$

В таблице Б.2:

- $t_{_{0}}$ расчетная температура наружного воздуха для проектирования отопления. °C:
- **Б.5.3** Потери тепловой энергии с утечкой и через изоляцию трубопроводов Q_{пот}, Гкал/ч, определяют в соответствии с [18] или документом, ее заменяющим, для каждого режима при соответствующей температуре наружного воздуха;
- **Б.5.4** Суммарный отпуск тепловой энергии с сетевой водой в тепловую сеть в каждом режиме і $Q_{\tau c}^{i}$, Гкал/ч, составит

$$Q_{rc}^{i} = Q_{rg}^{i} + Q_{rg}^{i} + Q_{rgy}^{i} + Q_{rgy}^{i}.$$
 (6.1)

Б.6 Расчет затрат тепловой энергии на подготовку подпитки тепловой сети

- **Б.6.1** На энергоисточниках подготовка подпиточной воды, как для подпитки тепловой сети, так и для подпитки парового цикла, как правило, должна включать в себя три ступени подготовки:
- подогрев исходной воды в подогревателе сырой воды перед химводоподготовкой (XBO);
 - подогрев химочищенной воды после XBO;
 - деаэрацию.

На новых энергоисточниках при отсутствии на них паровой нагрузки подогрев подпиточной воды можно предусматривать от коллектора сетевой воды с установкой подогревателя сырой воды и вакуумного деаэратора.

Б.6.2 Расчет подпитки тепловой сети:

а) объем воды в тепловой сети $V_{\tau c}$, M^3 , принимают по фактическим данным, а при их отсутствии определяют по формуле

$$V_{rc} = \frac{v \cdot (Q_{rc}^1 - Q_{not}^1)}{860} \cdot 10^3,$$
 (5.2)

где v — удельный объем воды в тепловой сети на 1 МВт расчетной тепловой нагрузки (для закрытой системы горячего водоснабжения — 66 м³/МВт, при наличии транзитных магистралей – 50 м³/МВт);

- б) расход воды на подпитку тепловой сети $G_{\text{подп}}^{\text{тс}}$, м³/ч, в отопительный период (режимы 1–4) принимают равным 0,4 % от $V_{\text{тс}}$, в межотопительный период (режимы 5, 6) 0,3 % от $V_{\text{тc}}$;
- в) расчет схемы подпитки тепловой сети осуществляют по формулам, приведенным в таблице Б.3, в зависимости от тепловой схемы энергоисточника и греющей среды при $G_{\text{nogn}} = G_{\text{nogn}}^{\text{Tc}}$.

Таблица Б.3 – Формулы для определения расхода тепловой энергии на подпитку

Элементы	Потребность в тепловой энергии				
тепловой схемы	Гкал/ч	т/ч			
Подогреватель сырой воды	$Q_{1cT} = G_{nogn} \cdot (t_{1cT} - t_x) \cdot 1,25 / 1000$	$D_{1cr} = Q_{1cr} / q$			
Подогреватель химочищенной воды	$Q_{2cr} = G_{nogn} \cdot (t_{2cr} - (t_{1cr} - 2)) / 1000$	$D_{2cr} = Q_{2cr} / q$			
Деаэратор	$Q_{3cr} = G_{nogn} \cdot (t_{3cr} - t_{2cr}) / 1000$	$D_{3c\tau} = Q_{3c\tau} / q$			
Всего	$Q_{\text{nogn}} = Q_{1\text{cr}} + Q_{2\text{cr}} + Q_{3\text{cr}}$	$D_{nogn} = D_{1ct} + D_{2ct} + D_{3ct}$			

В таблице Б.3:

1,25 – коэффициент, учитывающий потери воды на химводоподготовке;

 t_{1cr} – температура воды после подогревателя сырой воды, °C;

2 - снижение температуры воды на химводоподготовке, °С;

q – разница энтальпий используемого пара и его конденсата, Гкал/т:

$$q = (i_n - t_\kappa) / 1000,$$
 (5.3)

где i_n , t_k – соответственно энтальпия пара, ккал/кг, i_n = f (P, t), и температура насыщения при давлении используемого пара, °C, (определяются по [19]);

P, t – соответственно давление, МПа, и температура, °C, используемого пара.

Температуру подогрева подпиточной воды по ступеням определяют из тепловой схемы энергоисточника;

г) из полученного расхода тепловой энергии на подпитку тепловой сети к собственным нуждам энергоисточника относят только потери тепловой энергии на XBO:

$$Q_{\text{not}}^{\text{XBO}} = 0, 2 \cdot Q_{\text{tot}} + 2 \cdot G_{\text{nogn}} / 1000,$$
 (5.4)

где 2 – температура воды, теряемая на XBO, °C;

0,2 – доля потерь воды на ХВО;

д) остальная тепловая энергия $Q_{nogn}^{\tau c}$, Гкал/ч, в качестве «подпитки тепловой сети» вносится в обратный коллектор сетевой воды в количестве

$$Q_{\text{nogn}}^{\text{TC}} = Q_{\text{nogn}} - Q_{\text{not}}^{\text{XBO}}. \tag{6.5}$$

Б.7 Расчет коллектора сетевой воды

Б.7.1 Тепловая нагрузка, которая должна быть обеспечена от коллектора сетевой воды Q_∞ , Гкал/ч, составляет

$$Q_{cB} = Q_{TC} + Q_{CH}^{CB}, \tag{5.6}$$

где Q_{cH}^{cB} — собственные нужды энергоисточника, обеспечиваемые за счет тепловой энергии в сетевой воде, Гкал/ч:

$$Q_{cH}^{cB} = \sum Q_{not}^{XBO} + Q_{oB}^{\Pi\Pi}, \tag{5.7}$$

 $\sum Q_{\text{пот}}^{\text{XBO}}$ — суммарные потери тепловой энергии, Гкал/ч, на XBO при нагреве подпиточной воды сетевой водой. Если часть подпиточной воды греется паром, в формуле (Б.7) учитывается только та часть, которая нагревается сетевой водой;

 Q_{os}^{nn} — отопление производственной площадки энергоисточника (производственные цеха и цеховая администрация), Гкал/ч. Рассчитывается аналогично нагрузке отопления внешних потребителей по формуле, приведенной в таблице Б.2.

Б.7.2 Распределение тепловой нагрузки Q_{cs} , Гкал/ч, между установленным на энергоисточнике оборудованием (турбинами, паровыми, водогрейными котлами, газопоршневыми агрегатами (ГПА), пучками

котлов-утилизаторов, электрокотлами) осуществляется в соответствии с фактическими режимами его работы и требованиями энергосистемы. Отпуск тепловой энергии от оборудования энергоисточника составит

$$Q_{ofop} = Q_{cB} - Q_{not}^{Tc}. (5.8)$$

Б.8 Определение производительности котельного цеха

- **Б.8.1** Расчет производительности котельного цеха можно осуществлять в сумме для паровых котлов с одинаковыми начальными параметрами. Котлоагрегаты с разными параметрами свежего пара и энергоблоки рассчитывают раздельно. Для расчета производительности котельного цеха необходимо определить загрузку паровых коллекторов энергоисточника.
- **Б.8.2** Загрузка паровых коллекторов может быть определена следующим образом для разных паровых коллекторов:
- а) коллектор свежего пара $D_{\text{пк}}$, т/ч (питается паром котлов высокого и среднего давления и является источником пара для паровых турбин):

$$D_{\Pi K} = 1,02 \cdot (D_{Ty} + D_{Tex} + D_{POy}),$$
 (5.9)

где D_{TV} – расход пара на турбины, т/ч;

 $D_{\text{тех}}$ – отпуск технологического пара, т/ч;

- D_{POY} отпуск пара через редуционно-охладительные установки (POУ), т/ч;
- 1,02 коэффициент, учитывающий неучтенные потери тепловой энергии в цикле энергоисточника, связанные с теплоизлучением трубопроводов в окружающую среду, потерями режимного характера (растопка котлоагрегатов), неучтенными утечками тепловой энергии и эксплуатационными отклонениями от расчетных режимов;
- б) коллектор пара давлением 0,6–1,4 МПа (питается паром производственного отбора или паровых котлов среднего давления) D_{Π -отб}($D_{\Pi K}$), т/ч:

$$D_{\Pi-\sigma T6}\left(D_{\Pi K}\right) = 1{,}02 \cdot \left(D_{TY} + D_{Tex} + D_{POY} + D_{Д6} + D_{MX} + D_{K\Phi} + D_{\Pi B}\right), \quad (B.10)$$

где $D_{\text{д6}}$ – расход пара на деаэратор 0,6 МПа, т/ч;

 D_{MX}^{HO} – расход пара на мазутное хозяйство, т/ч;

D_{кф} – расход пара на калориферы котлов, т/ч;

D_{пь} – расход пара на пиковый подогреватель сетевой воды, т/ч;

в) коллектор пара давлением 0,05–0,25 МПа D_{т-отб} (питается паром из теплофикационного отбора турбины), т/ч:

$$D_{T-\text{orf}} = 1,02 \cdot \left(D_{\text{CH}} + D_{\text{nogn}}\right), \tag{5.11}$$

где D_{сп} – расход пара на сетевые подогреватели, т/ч;

D_{подп} – расход пара на подготовку подпиточной воды (обычно реализуют на энергоисточниках с паровыми турбоустановками), т/ч:

$$D_{\text{nogn}} = D_{\text{nogn}}^{\text{TC}} + D_{\text{nogn}}^{\text{TK}}, \tag{5.12}$$

где D_{nogn}^{Tc} , $D_{nogn}^{\Pi K}$ – соответственно расход пара на подпитку тепловой сети и цикла паровых котлов, т/ч.

Б.8.3 Расход пара на турбину $D_{_{\mathrm{T}^{\prime\prime}}}$ т/ч, определяется по диаграммам режимов

$$D_{TY} = f(N_3, D_{T-o\tau6}, D_{\Pi-o\tau6}), \tag{5.13}$$

где N₃ – электрическая мощность турбины, МВт;

 $D_{T-\text{orf}}, D_{\Pi-\text{orf}}$ – величины соответственно теплофикационного и производственного отборов турбины, т/ч.

Б.8.4 Расход исходного пара на РОУ определяют по формуле

$$D_{POY} = D_{peg} \cdot \frac{i_{peg} - t_{nB}}{i \cdot \eta_{POY} - t_{nB}}, \tag{5.14}$$

где і', i_{ped} – энтальпии соответственно исходного и редуцированного пара; определяются по давлению и температуре исходного и редуцированного пара, ккал/кг;

 $t_{_{\rm nB}}$ – температура питательной воды котлов, используемая для охлаждения пара впрыском (принимать на основании фактических данных), °C;

 η_{POY} – коэффициент, учитывающий потерю тепловой энергии установкой в окружающую среду; можно принять равным 0,98;

- ${\sf D}_{\sf peg}$ требуемый расход пара после РОУ, т/ч.
- **Б.8.5** Тепловая нагрузка в паре до 1,4 МПа распределяется между оборудованием энергоисточника в зависимости от эффективности его использования в следующем порядке:
- загрузка до номинальной величины производственного отбора паровой турбины $D_{n_- orb}$, т/ч;
 - включение паровых котлов до 1,4 МПа $D_{\Pi K}$, т/ч;
- использование паровых котлов высокого давления с отпуском пара через POV $D_{\text{\tiny POV}}$ т/ч.
- **Б.8.6** Расход тепловой энергии на подпитку цикла паровых котлов можно рассчитывать в сумме для всего энергоисточника. При этом надо учитывать, что расходы тепловой энергии на мазутное хозяйство и калориферы котлов обеспечиваются, как правило, от коллектора 0,6–1,4 МПа, а при его отсутствии от коллектора более высокого давления через РОУ.

Для расчета расходов пара на подпитку цикла паровых котлов определяют расход сырой воды, требуемый для восполнения потерь пара, следующим образом:

- а) потери воды с непрерывной продувкой всех котлов $G_{\rm np}$, т/ч, определяются на основании расчета водного режима котлов. При отсутствии фактических данных $G_{\rm np}$ можно принять на уровне 1–3 % от расхода свежего пара;
 - б) потери с невозвратом конденсата пара от потребителей $G^n_{\mbox{\tiny HeB}}$, т/ч:

$$G_{\text{\tiny HeB}}^{\text{\tiny n}} = D_{\text{\tiny Tex}} \cdot (1 - \alpha_{\text{\tiny B}}^{\text{\tiny n}}), \tag{5.15}$$

где $\alpha_{\tiny o}^{\tiny n}$ – доля возвращаемого конденсата с производства;

в) потери с невозвратом конденсата с мазутного хозяйства (слив загрязненного конденсата) $\mathbf{G}_{\mathrm{nep}}^{\mathrm{MX}}$, т/ч:

$$G_{\text{\tiny HBB}}^{\text{\tiny MX}} = D_{\text{\tiny MX}} \cdot (1 - \alpha_{\text{\tiny B}}^{\text{\tiny MX}}), \tag{5.16}$$

где $\alpha_{_{\rm B}}^{_{\rm MX}}$ – доля возвращаемого конденсата с мазутного хозяйства. При отсутствии данных $\alpha_{_{\rm B}}^{_{\rm MX}}$ можно принять равным 0,7;

г) внутристанционные потери пара (можно принять 2 % для ТЭЦ высокого давления, 3 % – для остальных энергоисточников):

$$G_{CTAH} = (0.02 - 0.03) \cdot D_{TIK};$$
 (5.17)

д) суммарный расход сырой воды на подпитку парового цикла на энергоисточнике, т/ч, составит

$$G_{\text{nonn}}^{\text{IIK}} = G_{\text{no}} + G_{\text{HeB}}^{\text{n}} + G_{\text{HeB}}^{\text{MX}} + G_{\text{ctal}}. \tag{5.18}$$

Б.8.7 Расходы тепловой энергии и пара на подогрев сырой и химочищенной воды для подпитки цикла паровых котлов определяют, как и для подпитки тепловой сети, по таблице Б.3 при $G_{nogn} = G_{nogn}^{\Pi K}$.

При расчете расхода тепловой энергии на подпитку цикла паровых котлов надо учесть, что в деаэраторе кроме подпиточной воды также деаэрируется конденсат, возвращаемый с мазутного хозяйства и с производства.

В итоге расход тепловой энергии на деаэратор, Гкал/ч, определяют по формуле

где $t_{_{MX}}$, $t_{_{\Pi P}}$ – температуры возврата конденсата соответственно с мазутного хозяйства и с производства (средняя по всем потокам), °С. При отсутствии фактических данных могут быть приняты на уровне 70 °С;

 $G_{_{B}}^{_{MX}}$, $G_{_{B}}^{^{_{D}}}$ — возврат конденсата с мазутного хозяйства и с производства соответственно, т/ч,определенный через соответствующие коэффициенты возврата конденсата.

Потери тепловой энергии на XBO цикла паровых котлов определяют по формуле (Б.4).

Б.8.8 Расход пара на подогрев мазута для сжигания и при его хранении может быть определен по формуле

$$D_{MX} = D_{\Pi K}^{MX} + D_{BK}^{MX}, \tag{5.20}$$

где $D_{\Pi K}^{MX} = D_{\Pi K} \cdot d_{\Pi K}^{MX}$ — расход пара на подогрев мазута для паровых котлов, т/ч:

 $\mathsf{D}_\mathsf{BK}^\mathsf{mx} = \mathsf{D}_\mathsf{BK} \cdot \mathsf{d}_\mathsf{BK}^\mathsf{mx}$ — расход пара на подогрев мазута для водогрейных котлов, т/ч;

 $d_{\Pi K}^{MX}$, d_{BK}^{MX} — удельный расход тепловой энергии на подогрев мазута для паровых и водогрейных котлов соответственно, можно принять $d_{\Pi K}^{MX}=0.025$ т/т, $d_{BK}^{MX}=0.035$ т/Гкал;

 $D_{\Pi K}, Q_{BK}$ — соответственно отпуск пара, т/ч, от всех паровых котлов и отпуск тепловой энергии, Гкал/ч, от всех водогрейных котлов энергоисточника.

Б.8.9 Расход пара на подогрев воздуха в калориферах котлов, работающих на мазуте, $D_{\kappa h}$, т/ч, составит

$$D_{\text{reh}} = D_{\text{DK}}^{\kappa \phi} + D_{\text{BK}}^{\kappa \phi}, \tag{5.21}$$

где $D_{\Pi K}^{\kappa \varphi} = D_{\Pi K} \cdot d_{\Pi K}^{\kappa \varphi}$ — расход пара на подогрев воздуха в калориферах паровых котлов, т/ч;

 $\mathsf{D}_{\mathsf{BK}}^{\mathsf{xd}} = \mathsf{D}_{\mathsf{BK}} \cdot \mathsf{d}_{\mathsf{BK}}^{\mathsf{xd}} - \mathsf{расход}$ пара на подогрев воздуха в калориферах водогрейных котлов, т/ч;

 $d_{\Pi K}^{\kappa \varphi}$, $d_{BK}^{\kappa \varphi}$ — удельный расход тепловой энергии на калориферы соответственно для паровых и водогрейных котлов, т/т или т/Гкал.

Удельные расходы тепловой энергии на калориферы котлов в зависимости от рассматриваемых режимов приведены в таблице Б.4.

Таблица Б.4 – Удельные расходы тепловой энергии на калориферы котлов в зависимости от рассматриваемых режимов

Режимы	d _{ΠΚ} , τ/τ	d _{вк} ,т/Гкал
1,2	0,047	0,026
3	0,036	0,020
4	0,032	0,014
5, 6	0,022	0

Б.8.10 Выработку тепловой энергии паровыми котлами (в сумме для оборудования с одинаковыми начальными параметрами пара), Гкал/ч, определяют по формуле

$$Q_{_{K}}^{6p} = \left(D_{_{\Pi K}} \cdot (i_{_{o}} - t_{_{\Pi B}}) + D_{_{\Pi n}} \cdot (i_{_{nn}}^{''} - i_{_{nn}}^{'}) + G_{_{np}} \cdot (i_{_{KB}} - t_{_{nB}})\right) \cdot 10^{-3}, \tag{5.22}$$

где D_{nk} – отпуск пара от парового котла, т/ч;

D_{пп} – расход пара через промперегреватель пара, т/ч (на основании диаграмм режимов);

G_{пр} – расход продувочной воды, т/ч;

 $i_{_{o}},\,t_{_{_{BB}}}$ – энтальпия свежего пара, ккал/кг, и температура питательной воды, °C;

 $i_{nn}^{'}$, $i_{nn}^{'}$ – энтальпия пара, поступающего в промежуточный перегреватель и выходящего из него, ккал/кг;

 $i_{_{KB}}$ — энтальпия продувочной воды, определяемая давлением пара в барабане котла, ккал/кг.

Б.9 Расчет собственных нужд энергоисточника

- **Б.9.1** К собственным нуждам энергоисточника в паре Q_{cH}^{nap} , Гкал/ч, относят:
- суммарные потери тепловой энергии на XBO при подготовке воды для подпитки тепловой сети и парового цикла $\sum Q_{\text{nor}}^{\text{XBO}}$, Гкал/ч, в случае, если подогрев подпиточной воды осуществляется паром;
 - потери тепловой энергии с непрерывной продувкой котлов $Q_{_{1D}}$, т/ч:

$$Q_{np} = G_{np} \cdot i_{kB} \cdot \alpha_{noT} / 1000, \tag{5.23}$$

где α_{not} – доля тепловой энергии продувочной воды, не возвращаемая после расширителя непрерывной продувки. При отсутствии фактических данных может приниматься 0,3-0,5;

- потери тепловой энергии на мазутном хозяйстве Q_{пот.} Гкал/ч:

$$Q_{\text{not}}^{\text{MX}} = G_{\text{HeB}}^{\text{MX}} \cdot (i_{\text{K}} - t_{\text{X}}) / 1000,$$
 (5.24)

где i_{x} , t_{x} , — энтальпия конденсата, возвращаемого с мазутного хозяйства, ккал/кг, и температура холодной воды;

- внутристанционные потери тепловой энергии Q_{стан}, Гкал/ч:

$$Q_{ctah} = (0,02-0,03) \cdot Q_{\kappa}^{6p}$$
. (5.25)

- **Б.9.2** Собственные нужды энергоисточника в сетевой воде Q_{cH}^{cB} , Гкал/ч, определяют по (Б.7).
- **Б.9.3** Суммарные собственные нужды энергоисточника в тепловой энергии $Q_{_{\rm cl}}$, Гкал/ч, составят

$$Q_{cu} = Q_{cu}^{nap} + Q_{cu}^{cB}. \tag{5.26}$$

Приложение В

(справочное)

Расчет годовых технико-экономических показателей работы энергоисточника

- **В.1** Расчет годовых технико-экономических показателей работы энергоисточника осуществляется с использованием [8], [20] и заключается в определении годовых показателей на базе выполненного пароводяного баланса энергоисточника (приложение Б):
- выработки тепловой энергии на энергоисточнике $Q_{_{\text{выр}}}$, тыс. Гкал, и ее отпуска потребителям $Q_{_{\text{отп}}}$, тыс. Гкал;
- выработки на энергоисточнике электроэнергии $\mathfrak{I}_{\text{выр}}$, млн кВт·ч, и ее отпуска потребителям $\mathfrak{I}_{\text{отп}}$, млн кВт·ч;
 - расхода топлива на энергоисточнике В, тыс. т у.т.;
- удельных расходов топлива на отпуск тепловой $b_{\tau s}^{\circ \tau n}$, кг у.т./Гкал, и электрической энергии $b_{ss}^{\circ \tau n}$, г у.т./(кВт·ч).
- **В.2** Годовые технико-экономические показатели работы энергоисточника рассчитывают раздельно для отопительного и межотопительного периодов, а затем суммируют.

Для расчета отопительного периода используются данные из пароводяного баланса при среднезимнем режиме (режим 4), для расчета межотопительного – при летнем режиме (режим 5).

В.3 Формулы расчета отпуска тепловой энергии потребителям за отопительный, межотопительный периоды и в целом за год с учетом проведения энергосберегающих мероприятий приведены в таблице В.1.

В таблице В.1:

 $\sum_{\text{тех}} D_{\text{тех}}^4$ — сумма расходов технологического пара разного давления в режиме 4, т/ч;

 $\sum D_{\text{тех}}^1$ — сумма расходов технологического пара разного давления в режиме 1, т/ч;

 $H_{\text{тех}}$ – число часов использования максимума технологической нагрузки в паре или в горячей воде, ч. Расчет ведется отдельно по каждому виду технологической нагрузки;

 $i_{np},\ t_{np}$ — соответственно энтальпия пара, подаваемого на производство, ккал/кг, и температура возвращаемого конденсата, °C;

 α_1 – доля снижения тепловой нагрузки отопления в нерабочие часы; κ_1 – коэффициент, который учитывает снижение тепловой нагрузки в рабочие часы, определяют по формуле

$$\kappa_1 = (0,75 \cdot 1 + 0,25 \cdot \alpha_1);$$
 (B.1)

Z – усредненное за отопительный период число часов работы системы вентиляции общественных зданий в течение суток, ч (при отсутствии фактических данных можно принять равным 16 ч).

Таблица В.1 – Расчет отпуска тепловой энергии потребителям за отопительный, межотопительный периоды и в целом за год

Показатели	Обозначение	Отопительный период	Межотопительный период	Год
1	2	3	4	5
Продолжительность периода, ч	Н	Н _{от}	Столбец 5 – – столбец 3	8400
Отпуск пара на производство (рассчитывается отдельно по каждому давлению), тыс. Гкал	Q_{Tex}^{nap}	$\sum D_{\text{Tex}}^{4} \cdot \left(i_{\text{np}} - \alpha_{\text{B}}^{\text{n}} \cdot t_{\text{np}} \right) x$ $\times H_{\text{ot}} / 1000$	Столбец 5 — — столбец 3	
Расход тепловой энергии на отопление при круглосуточной работе систем жилищно-коммунального сектора, тыс. Гкал	Q _o ^{жкс}	Q _o ⁴ ·H _{oτ} /1000	0	Столбец 3
Расход тепловой энергии в отопительные системы предприятий, которые работают в одну или две смены пять или шесть дней в неделю, определяется с учетом снижения отопительной нагрузки в нерабочее время (6 ч ночью и 24 ч в нерабочие дни) на 50 % (или на другую величину), тыс. Гкал	Q_{o}^{npoM}	$\begin{split} & \left(\kappa_1 \cdot Q_o^4 \cdot H^{pa6} + \alpha_1 \cdot Q_o^4 \times \right. \\ & \left. \times \left(H_{o\tau} - H^{pa6} \right) \right) / 1000 \end{split}$	0	Столбец 3
Расход тепловой энергии на вентиляцию, тыс. Гкал	Q _B	$\left(Q_{\scriptscriptstyle B}^4 \cdot H_{\scriptscriptstyle OT} \cdot Z/24\right)/1000$	0	Столбец 3

TKI 241-2018

Окончание таблицы В.1

Показатели	Обозначение	Отопительный период	Межотопительный период	Год	
1	2	3	4	5	
Расход тепловой энергии на горячее водоснабжение, тыс. Гкал	Q _{rв}	Q _{гв} · H _{от} / 1000	Q _{гв} · (8400 – - Н _{от})/1000	Столбец 3 + + столбец 4	
Расход тепловой энергии в сетевой воде на технологические нужды, тыс. Гкал	Q _{rex}	$Q_{\tau ex}^4 \cdot H_{o\tau} / 1000$	Столбец 5 — – столбец 3	Q _{тех} · H _{тех} /1000	
Годовые нормируемые потери тепловой энергии, тыс. Гкал	Q _{not}	$Q_{no\tau}^4 \cdot H_{o\tau} / 1000$	Q _{пот} · (8400 – - Н _{от})/1000	Столбец 3 + + столбец 4	
Суммарный отпуск тепловой энергии, тыс. Гкал	Q _{orn}	$Q_{TeX}^{nap} + Q_{o}^{MKC} + Q_{o}^{npoM} + Q_{B} + Q_{rB} + Q_{TeX} + Q_{noT}$			
из них в сетевой воде, тыс. Гкал	Q _{cв}	$Q_o^{\text{MKC}} + Q_o^{\text{npom}} + Q_b + Q_{rB} + Q_{\tau ex} + Q_{\text{not}}$			

В.4 Годовой отпуск тепловой энергии от каждого вида оборудования, распределение между ними собственных нужд $Q_{_{\text{сн}}}$, тыс. Гкал, осуществляют на основании тепловой схемы с учетом фактических режимов работы оборудования за предыдущий год и требований энергоистемы. Суммарную выработку тепловой энергии на энергоисточнике $Q_{_{\text{выр}}}$, тыс. Гкал, определяют по формуле

$$Q_{\text{выр}} = Q_{\text{отп}} + Q_{\text{сн}}. \tag{B.2}$$

- **В.5** Электрическую мощность $N_{_{3}}$, МВт, энергоисточника определяют по диаграмме режимов с учетом загрузки оборудования и требований энергосистемы.
- **В.6** При определении числа часов использования установленной мощности H_3^{rod} , ч/год, необходимо учитывать его снижение из-за простоя оборудования на планово-предупредительный и капитальный ремонты. H_3^{rod} принимать на основании фактических данных или по данным изготовителя.
- **В.7** При определении выработки электроэнергии паровыми турбинами учитывают теплофикационный и конденсационный потоки пара.

Для расчета выработки электрической энергии в зависимости от типа рассматриваемого оборудования по периодам и ее отпуска в электрическую сеть можно использовать формулы, представленные в таблице В.2.

В таблице В.2:

 $W^{n_{yq}}$, W^{T} , W^{T} – удельная выработка электроэнергии на тепловом потреблении пара во встроенном пучке конденсатора, Т-отборе и П-отборе соответственно, МВт·ч/Гкал. Удельная выработка электроэнергии различна для отопительного и межотопительного периодов и должна приниматься по отчетным данным энергоисточника;

 ${\bf Q}_{{\sf T-or6}}, {\bf Q}_{{\sf П-or6}}, {\bf Q}_{{\sf пуч}}$ – отпуск тепла от теплофикационного, производственного отбора турбин, встроенного пучка конденсатора паровых турбин соответственно, тыс. Гкал;

N_{уст} – установленная электрическая мощность оборудования, МВт; 0,98; 0,97; 0,98 – коэффициенты, соответственно учитывающие аварийный и ремонтный простои оборудования и недогрузку в течение года отборов (противодавления) турбины;

Э, – расход электроэнергии на собственные нужды энергоисточника.

-KΠ 241-2018

Таблица В.2 – Формулы для расчета выработки электрической энергии по периодам

Показатели	Обозначение	Отопительный период	Межотопительный период	Год
1	2	3	4	5
Число часов использования электрического максимума	H _s	H _{ot}	Столбец 5 — — столбец 3	Н _э год
Суммарная выработка электроэнергии в теплофикационных турбинах, млн кВт·ч, в т.ч.	Э _{выр}	$\Theta_{ au \varphi} + \Theta_{ ext{koh}}$		$N_{yct} \cdot H_s^{rod} / 1000$
– теплофикационная выработка электроэнергии, млн кВт·ч	Э _{тф}	$ \left(Q_{ny4} \cdot W^{ny4} + Q_{T} \times 0,98 \cdot \right) $	Столбец 3 + + столбец 4	
конденсационная выработка электроэнергии для теплофикационных турбин, млн кВт·ч	Э _{кон}	$(0,05-0,1)\cdot \mathfrak{I}_{\tau \varphi}$	Столбец 5 – – столбец 3	$\mathbf{\mathfrak{S}}_{\scriptscriptstyle{Bbp}}-\mathbf{\mathfrak{S}}_{\scriptscriptstyle{T}\!$
Выработка электроэнергии конденсационными турбинами, газовыми турбинами и газопоршневыми агрегатами, млн кВт·ч	Э _{выр}	Столбец 5 — — столбец 4	N _{ycτ} ·(8400-H _{οτ})/1000	N _{yct} ·H _a ^{roд} /1000

Окончание таблицы В.2

Показатели	Обозначение	Отопительный период	Межотопительный период	Год
1	2	3	4	5
Выработка электроэнергии газопоршневыми агрегатами, млн кВт·ч	Э _{выр}	N _s ·(H _{oτ} – – – 102)/1000	N _s ·(8400 – H _{οτ} – – 100)/1000	Столбец 3 + + столбец 4
Отпуск электроэнергии, млн кВт·ч, в т.ч.	Э _{отп}	$\mathbf{\Theta}_{ exttt{выр}} - \mathbf{\Theta}_{ exttt{ch}}$		
Число часов использования установленной тепловой мощности электрогенерирующей установки, ч	Н _{тф}	$1000 \cdot \frac{\left(Q_{nyq} + Q_{T-ot6} + Q_{\Pi-ot6}\right)}{Q_{yct}}$		

В.8 Расход электроэнергии на собственные нужды делится на расход электроэнергии на производство электричества \mathfrak{Z}_{ch}^{3} и на отпуск тепловой энергии \mathfrak{Z}_{ch}^{τ} , млн кВт·ч:

$$\mathfrak{S}_{cH} = \mathfrak{S}_{cH}^{\mathfrak{S}} + \mathfrak{S}_{cH}^{\mathsf{T}}. \tag{B.3}$$

В.8.1 К расходу электроэнергии на ее производство относятся: расход электроэнергии по турбинному цеху, за исключением электроэнергии, израсходованной в теплофикационном отделении, собственный расход электроцехом, часть электроэнергии на хранение топлива, топливоподачу, топливоприготовление и производство пара в котельной.

Величину расхода электроэнергии, млн кВт·ч, на ее производство в зависимости от вида топлива и типа турбин определяют по формуле

$$\mathfrak{S}_{cH}^{\mathfrak{s}} = \mathfrak{S}_{\mathfrak{s}}^{cH} \cdot \mathfrak{S}_{Bhip}, \tag{B.4}$$

где $\mathfrak{I}_{\mathfrak{g}}^{\text{сн}}$ – удельный расход электроэнергии на производство электроэнергии, %, принимается на основании фактических данных или по проектам-аналогам.

В.8.2 Величина расхода электроэнергии, млн кВт·ч, на отпуск тепловой энергии зависит главным образом от мощности сетевых насосов и характера тепловой нагрузки (паровой или водяной) и составляет

$$\mathbf{\mathfrak{S}}_{\mathrm{ch}}^{\mathrm{T}} = \mathbf{\mathfrak{S}}_{\mathrm{T}}^{\mathrm{ch}} \cdot \mathbf{Q}_{\mathrm{otn}},\tag{B.5}$$

где $9_{\tau}^{\text{сн}}$ – удельный расход электроэнергии на отпуск тепловой энергии, кВт·ч/Гкал, принимается на основании фактических данных или по проектам-аналогам.

- **В.9** Выработку тепловой энергии за период H, (отопительный, межотопительный), Гкал, определяют:
- а) для паровых котлов (в сумме для оборудования с одинаковыми начальными параметрами пара):

$$Q_{\kappa}^{6p} = \left(D_{\Pi K} \cdot \left(i_{0} - t_{_{\Pi B}}\right) + D_{nn} \cdot \left(i_{nn}^{''} - i_{nn}^{'}\right) + G_{npog} \cdot \left(i_{_{KB}} - t_{_{\Pi B}}\right)\right) \cdot H_{\tau \varphi} \cdot 10^{-3}; \tag{B.6}$$

б) для газовых двигателей и газопоршневых агрегатов:

$$Q_{\kappa}^{6p} = 0.95 \cdot B \cdot Q_{\mu}^{p}, \tag{B.7}$$

где Q_{κ}^{6p} = 7 – низшая теплота сгорания условного топлива, Гкал/т у.т.;

В – расход топлива газовым двигателем, тыс. т у.т., определенный по формуле (В.11);

- в) для водогрейных котлов $Q_{\kappa}^{6p} = Q_{BbD}$.
- **В.10** Расчет расходов топлива производится одинаково для всех рассматриваемых периодов (отопительного, межотопительного, годового).
- а) Расход топлива паровыми и водогрейными котлами, тыс. т у.т., за период может быть определен на основании предыдущих расчетов по формуле

$$B = \frac{Q_{\kappa}^{6p}}{7 \cdot \eta_{\kappa}^{6p}} \cdot 10^2 - \frac{(Q_{\kappa \phi} + Q_{\tau})}{7}, \tag{B.8}$$

где 7 – низшая теплота сгорания условного топлива, Гкал/т у.т.;

 $\overline{\eta_{\kappa}^{6p}}$ – КПД котлов брутто, % (принимается по отчетным или справочным данным);

 $Q_{_{K\varphi}}$ – внесенная в котлоагрегат теплота с воздухом, подогретым в калориферах, тыс. Гкал:

$$Q_{_{K}\Phi} = \alpha_{_{B\Pi}} \cdot B_{_{H}} \cdot V^{0} \cdot \rho \cdot c_{_{D}} \cdot \left(t_{_{BbIX}} - t_{_{BX}}\right) \cdot 10^{-3}; \tag{B.9}$$

 $\alpha_{\mbox{\tiny вп}}$ – коэффициент избытка воздуха на входе в воздухоподогреватель. Принимается по фактическим данным, при их отсутствии можно принять 1,2;

 $B_{_{\rm H}} = 1{,}37{\,\cdot\,}B_{\Pi K(BK)} -$ расход мазута, т натурального топлива, за отчетный период;

1,37 – калорийный эквивалент для перевода мазута в условное топливо;

 V° , ρ — соответственно теоретически необходимый объем воздуха для сжигания мазута при 0 °C, м³/кг, и плотность воздуха при 0 °C, кг/м³, принимаются равными 10,45 м³/кг и 1,293 кг/м³ соответственно;

 c_p — теплоемкость воздуха, ккал/(кг·°С), при средней температуре $t_{\text{вых}} = 50$ °С равная 0,24 ккал/(кг·°С);

 $t_{\rm вых}$, $t_{\rm sx}$ — соответственно температура воздуха на выходе и входе в калорифер, °C. Принимается по фактическим данным, при их отсутствии — 70 и 30 °C соответственно;

Q₋ – теплота, внесенная с подогретым топливом, тыс. Гкал:

$$Q_{..} = B_{..} \cdot c_{..} \cdot t_{..} \cdot 10^{-3};$$
 (B.10)

 c_{τ} — средняя теплоемкость топлива, ккал/(кг·°С), для мазута можно принять 0,5 ккал/(кг·°С);

 $\rm t_{\scriptscriptstyle T}$ – температура топлива, вносимого в топку, °C. Для мазута при отсутствии данных можно принять 125 °C.

б) Для энергоисточников с газовыми турбинами, в том числе в составе парогазовых блоков, и ГПА расход топлива, тыс. т у.т., определяют по формуле

$$B = \frac{0.86 \cdot \vartheta_{\text{выр}}}{7 \cdot \eta_{\text{гл}}} \cdot 10^2, \tag{B.11}$$

где $\eta_{\text{гд}}$ – КПД газового двигателя по данным изготовителя, %.

- в) Суммарный расход топлива на энергоисточнике В_{сум}, тыс. т у.т., определяют как сумму расхода топлива на паровые, водогрейные котлы и газовые двигатели.
- **В.11** Расчет удельных расходов топлива на отпуск тепловой $b_{\tau_9}^{\text{отп}}$, кг у.т./Гкал, и электрической энергии $b_{s_9}^{\text{отп}}$, г у.т./(кВт.ч) осуществляется в соответствии с действующими методиками.
- **В.12** При рассмотрении варианта подключения к энергоисточнику нового объекта, тепловая нагрузка которого не превышает 3 % от его суммарного теплопотребления, анализ изменения работы энергоисточника может быть проведен по изменению его годовых технико-экономических показателей следующим образом:
- а) годовое увеличение отпуска тепла на энергоисточнике, тыс. Гкал, составит

$$Q_{\text{orn}}^{\text{don}} = Q_{\text{orn}}^4 \cdot H_{\text{or}} + Q_{\text{orn}}^5 \cdot (8400 - H_{\text{or}}); \tag{B.12}$$

б) увеличение годовой выработки электроэнергии за счет подключения новой нагрузки при наличии теплофикационного оборудования, млн кВт·ч, можно определить по формуле

$$\mathfrak{I}^{\text{don}}_{\text{выр}} = Q^{\text{don}}_{\text{otn}} \cdot W_{\text{T-ot6}}, \tag{B.13}$$

где W – фактическая средняя по энергоисточнику удельная выработка электроэнергии на тепловом потреблении, МВт·ч/Гкал;

в) при этом годовое изменение расхода топлива, тыс. т у.т., составит

$$B = \left(3_{\text{выр}}^{\text{доп}} \cdot b_{\text{ээ}} + Q_{\text{отп}}^{\text{доп}} \cdot b_{\text{тэ}}\right) / 1000, \tag{B.14}$$

где b_{33} , b_{73} — фактические удельные расходы топлива на ТЭЦ на выработку электроэнергии, г у.т./(кВт·ч), и на отпуск тепловой энергии, кг у.т./Гкал.

Приложение Г

(справочное)

Методика оценки целесообразности строительства локальных энергоисточников с учетом экономического эффекта для республики

Технико-экономическое сравнение вариантов выполняется на основании [21] следующим образом.

- **Г.1** По каждому рассматриваемому варианту і в соответствии с приложением В определяют годовые технико-экономические показатели работы энергоисточника:
 - отпуск тепловой энергии, Qⁱ_{отп}, Гкал;
 - выработка электроэнергии, Э_{выр}, млн кВт⋅ч;
 - отпуск электроэнергии, $\mathfrak{Z}_{\mathtt{otn}}^{\mathtt{i}}$, млн к $\mathtt{B}\mathtt{T}\cdot\mathtt{Y}$;
- потребление электроэнергии на электрокотлы $\mathfrak{I}_{\mathfrak{s}\kappa}^{\mathsf{I}}$, млн кВт·ч (при отсутствии бака-аккумулятора на горячее водоснабжение из них 70 % дневное потребление, 30 % ночное; при его наличии 30 и 70 % соответственно);
 - расход электроэнергии на собственные нужды, \mathfrak{Z}_{cu}^{i} , млн к $\mathsf{B}\mathsf{T}\cdot\mathsf{q}$;
 - расход топлива, Bⁱ, т у.т.
- **Г.2** Капиталовложения по вариантам в оборудование K_{o6} , тыс. долл. США, и в создание инженерной инфраструктуры $K_{инфp}$, тыс. долл. США, определяют по объектам-аналогам. При этом суммарные капвложения по варианту і за 15 лет (срок службы индивидуальных теплогенераторов) составят K_{cvw}^i , тыс. долл. США:

$$K_{\text{cym}}^{i} = K_{\text{of}} + K_{\text{инфр}}.$$
 (Г.1)

Г.3 Дополнительно необходимо учесть ежегодные постоянные издержки, связанные с поддержанием оборудования в работоспособном состоянии, которые можно оценить на уровне 5–10 % от первоначальных капитальных затрат $K_{\text{пи}}^i$, тыс. долл. США, и ежегодные затраты на содержание эксплуатационного персонала $K_{\text{эп}}^i$, тыс. долл. США:

$$K_{\Pi N}^{i} = 0,05 \cdot \left(K_{\text{cym}}^{i} + K_{3\Pi}^{i}\right). \tag{\Gamma.2}$$

Г.4 Так как по разным вариантам отпуск электроэнергии различный, для сопоставимости варианты должны быть уравнены по данному показателю. Для этого определяют максимальный отпуск электроэнергии по вариантам $\mathfrak{I}_{\text{отп}}^{\text{max}}$ и принимают, что электроэнергия, недовыработанная по варианту і по сравнению с $\mathfrak{I}_{\text{отп}}^{\text{max}}$, будет дополнительно выработана в энергосистеме $\mathfrak{I}_{\text{пс}}^{\text{пс}}$, млн кВт-ч:

$$\mathbf{\mathfrak{S}}_{ac}^{i} = \mathbf{\mathfrak{S}}_{arn}^{max} - \mathbf{\mathfrak{S}}_{arn}^{i}. \tag{\Gamma.3}$$

Г.5 Определяют расход топлива, необходимый для выработки \mathfrak{I}_{sc}^{i} с учетом потерь в электрических сетях, \mathfrak{B}_{ac}^{i} , т у.т.

$$\mathsf{B}_{\mathsf{ac}}^{\mathsf{i}} = \mathsf{9}_{\mathsf{ac}}^{\mathsf{i}} \cdot \mathsf{b}_{\mathsf{aa}} \cdot \mathsf{K}_{\mathsf{nor}}, \tag{\Gamma.4}$$

где K_{nor} – коэффициент, учитывающий потери в электрических сетях (представлен на официальном сайте ГПО «Белэнерго»);

 $b_{_{39}}$ — удельный расход топлива на отпуск электроэнергии, который принимается равным фактическому удельному расходу топлива в энергосистеме за предыдущий год, г у.т./кВт·ч (представлен на официальном сайте ГПО «Белэнерго»).

Г.6 Общий расход топлива по варианту і Ві ут., составит

$$B_{\text{cym}}^{i} = B^{i} + B_{\text{ac}}^{i}. \tag{\Gamma.5}$$

Г.7 Стоимость топлива по варианту і $\mathbf{C}_{\text{топ}}^{i}$, тыс. долл. США, определяется по формуле

$$C_{\text{TOR}}^{i} = B_{\text{CVM}}^{i} \cdot LL_{\text{T}}^{i}, \tag{\Gamma.6}$$

где Ц, – цена топлива, долл. США/т у.т. Информация по стоимости топлива размещена на сайте Министерства энергетики Республики Беларусь. Для выравнивания условий расчета по всем вариантам Ц, принимается одинаковой.

Г.8 Для упрощенного расчета экономии денежных средств наименее капиталоемкий вариант с $K_{\text{сум}}^i = \min$ принимают как базовый. Тогда экономия по варианту і Θ^i , тыс. долл. США, составит

$$\mathbf{\Theta}^{i} = \left(\mathbf{C}_{\text{TOR}}^{\text{6a3}} - \mathbf{C}_{\text{TOR}}^{i}\right) + \left(\mathbf{K}_{\Pi \mathsf{M}}^{\text{6a3}} - \mathbf{K}_{\Pi \mathsf{M}}^{i}\right),\tag{\Gamma.7}$$

где $K_{\Pi N}^{6a3}$, $C_{\tau on}^{6a3}$ – постоянные издержки на работу оборудования и затраты на покупку топлива по базовому варианту, тыс. долл. США.

Г.9 В случае отключения объекта от системы централизованного теплоснабжения или строительства электрогенерирующего источника дополнительно необходимо учесть сопутствующие ежегодные затраты в энергосистеме $3_{\rm sc}$, тыс. долл. США:

$$3_{gc} = 3_{gg} + 3_{gt} + 3_{nc}.$$
 (F.8)

Г.9.1 Затраты на содержание вытесняемой электрической мощности 3_n, тыс. долл. США:

$$3_{B9} = N_{VCT}^{i} \cdot 3_{VZ}^{IP}, \tag{\Gamma.9}$$

где $N_{yc\tau}^{i}$ — электрическая мощность устанавливаемого электрогенерирующего оборудования по варианту i, MBт;

 3_{yd}^{ns} – постоянная удельная составляющая затрат на единицу электрической мощности в энергосистеме, тыс. долл. США/МВт. Предоставляется ГПО «Белэнерго» или РУП-облэнерго.

ТКП 241-2018

Г.9.2 Затраты на содержание вытесняемой тепловой мощности $3_{\mbox{\tiny вг}}$, тыс. долл. США

$$3_{\text{вт}} = Q_{\text{max}}^{\text{сум}} \cdot 3_{\text{уд}}^{\text{пт}}, \tag{\Gamma.10}$$

где $Q_{\text{max}}^{\text{сум}}$ – максимальная часовая тепловая нагрузка объекта, Гкал/ч;

 3_{yq}^{nT} удельная постоянная составляющая затрат на единицу тепловой мощности на вытесняемом источнике теплоснабжения энергосистемы, в зоне действия которой планируется возведение локального источника, тыс. долл. США/(Гкал/ч). Предоставляется ГПО «Белэнерго» или РУП-облэнерго.

Г.9.3 Затраты на компенсацию перекрестного субсидирования $3_{\rm nc}$, тыс. долл. США:

$$3_{nc} = 9^{i}_{BMP} \cdot \Pi_{yd},$$
 (F.11)

где $\mathfrak{I}^{i}_{\text{выр}}$ – годовая выработка электроэнергии на локальном энергоисточнике по варианту і, млн кВт·ч;

 Π_{y_d} – удельная составляющая перекрестного субсидирования в тарифе на электрическую энергию в энергосистеме для юридических лиц и индивидуальных предпринимателей, долл. США/кВт·ч. Предоставляется ГПО «Белэнерго» или РУП-облэнерго.

Г.10 Также в случае установки электрогенерирующего оборудования необходимо учесть инвестиции, связанные с реализацией мероприятий по режимной интеграции Белорусской атомной электростанции И₂₀, тыс. долл. США (установка электрокотлов):

$$\mathbf{M}_{\text{sc}} = \left(\mathbf{N}_{\text{yct}}^{\text{i}} \cdot \mathbf{K}_{\text{y}}\right) / 15, \tag{\Gamma.12}$$

где K_y — удельные капиталовложения на реализацию мероприятий по режимной интеграции Белорусской атомной электростанции в баланс энергосистемы, тыс. долл. США/МВт. Ориентировочно можно принять 320 тыс. долл. США/МВт;

15 – количество рассматриваемых лет (срок службы индивидуального теплогенерирующего оборудования), так как установка электрокотлов является разовым мероприятием.

Г.11 В итоге суммарная ежегодная экономия денежных средств в республике по варианту і $\mathfrak{I}_{\text{сум}}^{\text{I}}$, тыс. долл. США, составит

$$\mathbf{3}_{\text{\tiny CVM}}^{\text{\tiny I}} = \mathbf{3}^{\text{\tiny I}} - \mathbf{3}_{\text{\tiny ac}} - \mathbf{N}_{\text{\tiny ac}}.\tag{\Gamma.13}$$

Г.12 Срок окупаемости инвестиций с точки зрения народного хозяйства, лет, показывающий, за сколько лет при $\mathfrak{Z}^{i}_{\text{сум}}$ окупятся дополнительные по сравнению с базовым вариантом капиталовложения в вариант і в целом по республике, определяют по формуле

$$\tau_{\text{ok}}^{\text{PS}} = \frac{K_{\text{cym}}^{i} - K_{\text{cym}}^{\text{faa}}}{\mathfrak{S}_{\text{cym}}^{i}}.$$
 (Г.14)

Г.13 При этом основные годовые затраты инвестора на производство (покупку) энергии через действующие на момент разработки ТЭО тарифы на топливо, электрическую и тепловую энергию, тыс. долл. США, составят

$$\mathbf{3}_{_{\text{CYM}}}^{_{i}}=B^{_{i}}\cdot\boldsymbol{L}_{_{T}}^{_{i}}+Q_{_{\text{OTI}}}^{_{i}}\cdot\boldsymbol{L}_{_{\text{CB}}}^{_{i}}+\left(\mathbf{3}_{_{99}}^{_{_{1}\text{Rehb}}}\cdot\boldsymbol{L}_{_{99}}^{_{_{1}\text{Rehb}}}+\mathbf{3}_{_{99}}^{_{_{1}\text{Provb}}}\cdot\boldsymbol{L}_{_{99}}^{_{_{1}\text{HoV4}}}\right)\cdot\mathbf{1000}+K_{_{3\Pi}},\tag{\Gamma.15}$$

где $\mathsf{U}_\mathsf{T}^\mathsf{i},\ \mathsf{U}_\mathsf{cs},\ \mathsf{U}_\mathsf{ss}^\mathsf{лень},\ \mathsf{U}_\mathsf{ss}^\mathsf{ночь}$ – цена на топливо, долл. США/т у.т., тарифы на сетевую воду, долл. США/Гкал, на электроэнергию в дневные и ночные часы, долл. США/кВт·ч, для инвестора соответственно.

Г.14 Срок окупаемости инвестиций с точки зрения инвестора, лет, по-казывающий, за сколько лет окупятся дополнительные по сравнению с базовым вариантом капиталовложения в вариант і за счет снижения ежегодных эксплуатационных затрат $3^i_{\text{сум}}$, определяются по формуле

$$\tau_{o_K}^{\text{MHB}} = \frac{K_{cyM}^{i} - K_{cyM}^{6a_3}}{3_{cyM}^{6a_3} - 3_{cyM}^{i}}.$$
 (Г.16)

Приложение Д

(справочное)

Пример выполнения ТЭО

Д.1 Общая характеристика объекта

Объект – «Новый жилой район».

Застройка осуществляется в течение двух лет. Ежегодно вводится примерно одинаковый объем общей жилой площади. Этажность застройки – 7–8 этажей.

Данные по общему объему застройки на основании информации заказчика приведены в таблице Д.1.

Таблица Д.1 – Объем и характеристика застройки нового жилого района

Объект	Общая площадь застройки, тыс. м²	Количество домов, шт.	Количество квартир, шт.	Средняя по дому общая площадь квартир, м ²	Количество человек, чел.
40-квартирный жилой дом	12,88	6	240	53,7	960
60-квартирный жилой дом	20,02	7	420	47,7	1680
40-квартирный жилой дом	10,74	5	200	53,7	800
80-квартирный жилой дом	17,91	4	320	56,0	1280
Всего по жилой застройке	61,55	22	1180	211,1	4720
Торговый центр	1,49	1	1	_	_
Магазин	1,46	5	5		_
Всего общественные здания	2,95	6	6	_	_
Всего	64,50	28	1186	_	_

Далее дается краткая характеристика объекта, план, сроки застройки, требования к режимам теплоснабжения, ситуационный план размещения объекта на территории города.

Д.2 Характеристика существующей системы централизованного теплоснабжения

«Новый жилой район» размещается на новой площадке, расположенной на расстоянии 200 м от ближайшей тепловой камеры тепломагистрали № 61 Минской ТЭЦ-4.

Д.3 Определение структуры и величины существующих и перспективных тепловых нагрузок

Д.3.1 Расчет максимальных часовых тепловых нагрузок

В настоящее время площадка, предназначенная под возведение «Нового жилого района», не застроена.

Тепловые нагрузки «Нового жилого района» определяют по укрупненным показателям в зависимости от характеристики застройки:

- а) тепловая нагрузка отопления при удельном тепловом потоке на отопление 57 Вт/м² общей площади при этажности 7–8 с наружными стенами из штучных материалов (таблица А.1 по ТКП 45-4.02-322):
 - жилых зданий:

$$Q_0^* = 61\,550 \text{ m}^2 \cdot 57 \text{ BT/m}^2 = 3\,508 \text{ кВт} = 3,0 \text{ Гкал/ч};$$

- общественных зданий:

$$Q_o^o = 2952 \text{ м}^2 \cdot 57 \text{ BT/M}^2 = 68 \text{ кВт} = 0,15 \Gamma \text{кал/ч};$$

- сумма Q₂ = 3,15 Гкал/ч;
- б) тепловая нагрузка горячего водоснабжения:
- жилых зданий при удельном среднечасовом тепловом потоке на горячее водоснабжение в отопительный период $q_{_0}$ = 259 Вт на одного человека (ТКП 45-4.02-322):

$$Q_{r_B}^* = 4720$$
 чел. · 259 Вт/чел. = 1,223 МВт = 1,05 Гкал/ч;

– общественных зданий при удельном среднечасовом тепловом потоке на горячее водоснабжение q_0 = 65 Вт на 20 м² (ТКП 45-4.01-52):

$$Q_{r_B}^{\circ}$$
 = (1,2 . 65 . (55 – 5) · 4,189 / (24 · 3,6)) · (2952 / 20) = 189 · (2952 / 20) = 27.9 кВт = 0.024 Гкал/ч:

- сумма Q_{гв} = 1,074 Гкал/ч;
- в) тепловая нагрузка вентиляции общественных зданий по данным проекта-аналога:

$$Q_{_{\rm B}}^{\circ}$$
 = 156,6 кВт = 0,135 Гкал/ч.

Суммарные тепловые нагрузки «Нового жилого района» приведены в таблице Д.2.

Таблица Д.2 – Суммарные тепловые нагрузки «Нового жилого района»

	Тепловая нагрузка, Q ^{сум} _{max} , Гкал/ч					
Потребители	отопление, Q _о	вентиляция, Q _в	горячее водоснабжение, Q _{гв}	Всего		
Жилые здания	3,00	-	1,05	4,05		
Общественные здания	0,15	0,14	0,02	0,31		
Всего	3,15	0,14	1,07	4,36		

Таблица Д.3 – Результаты расчета тепловых нагрузок при режимах теплоснабжения

Тепловая нагрузка	Режим					
в сетевой воде, Ѓкал/ч	1	3	4	5		
Тепловая нагрузка отопления и вентиляции Q _{ов}	3,29	$3,29 \cdot \frac{18 - \left(-5,9\right)}{18 - \left(-24\right)} = 1,87$	$3,29 \cdot \frac{18 - (-0,9)}{18 - (-24)} = 1,48$	0,0		
Среднечасовая нагрузка горячего водоснабжения Q _{гв}	1,07	1,07	1,07	$1,07 \cdot \frac{55 - 15}{55 - 5} = 0,86$		
Сумма Q _{сум}	4,36	2,94	2,55	0,86		

Д.3.2 Расчет годовой потребности в тепле

Расчет годовой потребности нового района в тепловой энергии выполняется при следующих исходных данных, принятых для г. Минска по [11]:

- длительность отопительного периода, H_{cr} = 198 сут. (4752 ч);
- расчетная температура наружного воздуха, t₀ = минус 24 °C;
- средняя за отопительный период температура наружного воздуха,
 t, = минус 0,9 °C;
- средняя температура наиболее холодного месяца (января) минус 5,9 °C:
 - средняя расчетная температура внутри помещений t_{пи} = 18 °C;
 - t, t, принимаются равными 5 °C и 15 °C соответственно.

Порядок расчета следующий:

- а) определяют тепловые нагрузки нового района при характерных режимах теплоснабжения (режимы 1, 3, 4, 5). Результаты расчета приведены в таблице Д.З, формулы в таблице Б.2;
- б) расчет годовых расходов тепловой энергии осуществляют по формулам, приведенным в таблице В.1.

Результаты расчета приведены в таблице Д.4.

Таблица Д.4 – Результаты расчета годового потребления тепловой энергии в «Новом жилом районе»

	Pacx	код тепловой энергии	
Показатели	отопительный период	межотопительный период	год
Среднечасовые тепловые нагрузки, Гкал/ч, в т.ч.	2,55	0,86	_
– отопление, вентиляция, Гкал/ч	1,48	_	_
– горячее водоснабжение, Гкал/ч	1,07	0,86	-
Годовое потребление тепловой энергии, Q _{отп} , тыс. Гкал, в т.ч.	12,12	3,14	15,26
– отопление и вентиляция, тыс. Гкал	$Q_{os}^{4} \cdot H_{ot} / 1000 =$ = 1,07 \cdot 4,752 = 7,04	0,00	7,04
– горячее водоснабжение, тыс. Гкал	$Q_{r_B}^4 \cdot H_{or} / 1000 =$ = 1,07 · 4,752 = 5,08	$Q_{r_8}^5 \cdot (8400 - H_{or})/1000 = 0,86 \text{ x}$ $\times (8400 - 4752)/1000 = 3,14$	8,22

ТКП 241-2018

Д.4 Варианты обеспечения тепловой энергией «Нового жилого района»

К рассмотрению принимаются следующие варианты:

вариант 1 – децентрализованное поквартирное теплоснабжение с использованием электроэнергии;

вариант 2 – децентрализованное пообъектное теплоснабжение с использованием электроэнергии и баков-аккумуляторов;

вариант 3 — децентрализованное поквартирное теплоснабжение с использованием природного газа;

вариант 4 – централизованное теплоснабжение от существующего централизованного энергоисточника;

вариант 5 – децентрализованное пообъектное теплоснабжение с использованием электроэнергии и баков-аккумуляторов для нужд горячего водоснабжения и газовых котлов для отопления.

Д.5 Основные технические решения по развитию системы теплоснабжения

Д.5.1 Вариант 1

Вариант 1 предусматривает децентрализованное теплоснабжение на базе поквартирного отопления с использованием электроэнергии.

К установке принимается следующее оборудование:

- для отопления электроконвекторы по 1 кВт, исходя из расчета 1 кВт на 10 м² отапливаемой площади;
- для обеспечения нагрузки горячего водоснабжения один накопительный электроводонагреватель емкостью 80 л электрической мощностью 1,6 кВт в каждую квартиру и общественный объект.

Результаты расчета годовых технико-экономических показателей по варианту 1 приведены в таблице Д.5.

Таблица Д.5 – Результаты расчета годовых технико-экономических показателей по варианту 1

Показатели	Формула	Отопительный период	Межотопительный период	Год
Суммарный отпуск тепловой энергии, тыс. Гкал	Q _{otn}	12,12	3,14	15,26
Расход электроэнергии на обогрев и горячее водоснабжение с учетом потерь в размере 2 %, млн кВт·ч	$\vartheta_{a\kappa}^{i} = \frac{Q_{onn}^{i}}{0,86} \cdot 1,02$	12,12 x x 1,02/0,86 = = 14,4	3,14 · 1,02/0,86 = = 3,7	18,1

Расчет капиталовложений по варианту 1 приведен в таблице Д.6. Срок эксплуатации электронагревателей и конвекторов — 15 лет.

Д.5.2 Вариант 2

Вариант 2 предусматривает теплоснабжение от пообъектных источников с использованием электроэнергии с баками-аккумуляторами на нужды горячего водоснабжения.

В подвале каждого жилого многоквартирного дома и в отдельно выделенном помещении общественного здания предусматривается установка электрокотлов с баками-аккумуляторами. Объем бака-аккумулятора рассчитан исходя из условия полного обеспечения от него нагрузки горячего водоснабжения в дневные часы. Зарядка баков-аккумуляторов осуществляется в ночное время.

Таким образом, в отопительный период электрокотлы работают круглосуточно, а в межотопительный – только в ночные часы. Данный вариант позволит снизить затраты на покупку электроэнергии в дневные часы и участвовать в регулировании электрического графика в энергосистеме.

Результаты расчета параметров баков-аккумуляторов и требуемой мощности электрокотлов представлены в таблице Д.7.

Результаты расчета годовых технико-экономических показателей по варианту 2 аналогичны варианту 1 и приведены в таблице Д.5.

Расчет капиталовложений по варианту 2 приведен в таблице Д.8.

Таблица Д.6 – Расчет капиталовложений по варианту 1, $K_{\text{сум}}^{i}$

Оборудование	Стоимость по аналогу (прайс-листу)	Размерность	Количество по варианту, шт. (из таблицы Д.1), нагрузка, Гкал/ч (из таблицы Д.2)	Стоимость по варианту, тыс. долл. США
Электрический конвектор NeoClima Comforte L1,0 (1 кВт на 10 м²)	62	<u>долл. США</u> шт.	64 500 m ² /10 = 6450	6450 · 62 = 400
Монтаж конвекторов	5 %	-	_	400 · 0,05 = 20,0
Электроводонагреватель накопительный ЭВАД 80/1,6 (80 л, 1,6 кВт)	240	долл. США квартиру	1186 квартир	1186 · 240/1000 = 284,6
Монтаж электроводонагревателей	30 %	-	_	284,6 · 0,3 = 85,4
Дополнительная прокладка электрокабелей в здании, УЗО и т.д.	11*	<u>долл. США</u> м²	64500 м²	11 · 64 500/1000 = 709,5
Внешнее электросетевое возведение	220 000*	<u>долл. США</u> Гкал/ч	4,36 Гкал/ч	4,36 · 220 000/1000 = = 959,2
Всего	-	_	_	2 458,6

TKП 241-2018

Таблица Д.7 – Результаты расчета параметров баков-аккумуляторов и мощности электрокотлов

Наименование параметров	Размерность	Формула	Величина
Суммарная максимально-часовая тепловая нагрузка, в т.ч.	Гкал/ч	<u> </u>	4,4
– нагрузка отопления	Гкал/ч	Q _{ob}	3,3
– нагрузка горячего водоснабжения	Гкал/ч	Q _{rB}	1,1
Суточный расход тепловой энергии на горячее водоснабжение за 24 ч	Гкал/сут.	$Q_{\text{сутГВС}}^1 = Q_{\text{rB}}^1 \cdot 24$	1,1 · 24 = 25,7
Число часов работы электрокотлов на горячее водоснабжение в сутки	Ч	H _{эк}	7
Расход тепловой энергии на зарядку бака- аккумулятора с тем, чтобы в течение 17 ч дня отпуск тепловой энергии на горячее водоснабжение осуществлялся только от него	Гкал/сут.	$Q_{6a\kappa} = Q_{re}^1 \cdot 17$	1,1 · 17 = 18,19
Расход тепловой энергии от электрокотлов ночью	Гкал/сут.	$Q_{_{9K}}=Q_{_{\Gamma B}}^{1}\cdot H_{_{9K}}$	1,1 · 7 = 7,49
Удельный расход сетевой воды на 1 Гкал	м³/Гкал	g	20
Суммарный требуемый объем баков-аккумуляторов	M^3	$V = Q_{6a\kappa} \cdot g$	18,2 · 20 = 364
Мощность электрокотлов на горячее водоснабжение	МВт	$N_{\text{cyt}\Gamma BC} = Q_{\text{cyt}\Gamma BC} / H_{\text{ak}} \cdot 1,02 \cdot 1,16$	25,7 / 7 · 1,02 · 1,16 = 4,4
Мощность электрокотлов на отопление	МВт	$N_{_{9KOB}} = Q_{_{0B}}^{1} \cdot 1,02 \cdot 1,16$	3,3 · 1,16 . 1,02 = 3,9
Суммарная мощность электрокотлов	МВт	$N_{\text{ak}} = N_{\text{akfBC}} + N_{\text{akOB}}$	4,4 + 3,9 = 8,3

Таблица Д.8 – Расчет капиталовложений по варианту 2, $K_{\text{сум}}^{\text{i}}$

Оборудование	Стоимость по аналогу (прайс-листу)	Размерность	Количество по варианту, шт. (из таблицы Д.1), нагрузка, Гкал/ч (из таблицы Д.2)	Стоимость по варианту, тыс. долл. США
Водогрейные электрокотлы с монтажом	120 000	<u>д</u> олл. США Гкал/ч	8,3 · 0,86 = 7,1	120 000 · 7,1/1000 = 851,7
Баки-аккумуляторы с монтажом	1000	<u>долл. США</u> м³	364 m³	1000 · 364/1000 = 363,8
Радиаторы отопления	90 000	<u>долл. США</u> Гкал/ч	3,29 Гкал/ч	90 000 · 3,29/1000 = 296,1
Монтаж радиаторов отопления	30 %	-	_	296,1 · 0,3 = 88,8
Дополнительная разводка трубопроводов по дому	4,3	<u>долл. США</u> м²	64 500 м²	4,3 · 64 500/1000 = 277,4
Внешнее электросетевое возведение	220 000*	долл. США Гкал/ч	7,1 Гкал/ч	7,1 · 220 000/1000 = = 1561,5
Всего	_	_	_	3 439,3

^{*}При тепловой нагрузке более 5 Гкал/ч уточнить у специализированной организации.

Д.5.3 Вариант 3

К установке принимается следующее оборудование:

- а) в каждой квартире устанавливается двухконтурный настенный газовый котел тепловой мощностью 24 кВт (АОГВ-24-3П), КПД котла 93 %. Срок службы котла 15 лет, после чего требуется его замена;
- б) для отопления торгового центра применяются одноконтурные газовые котлы мощностью 50 кВт (АОГВ-50-3П) в количестве трех штук с накопительным баком емкостью 80 л:
- в) для отопления магазинов газовые котлы АОГВ-24-3П (по два на каждый магазин).

Результаты расчета годовых технико-экономических показателей по варианту 3 приведены в таблице Д.9.

Таблица Д.9 – Результаты расчета годовых технико-экономических показателей по варианту 3

Показатели	Формула	Отопительный период	Межотопительный период	Год
Суммарный отпуск тепловой энергии, тыс. Гкал	Q _{orn}	12,12	3,14	15,26
Расход топлива, тыс. т у.т.	$B^i = \frac{Q^i_{o\tau n}}{7 \cdot \eta^{6p}_{BK}} \cdot 10^2$	12,12/(7 x x 0,93) = 1,86	3,14/(7 x x 0,93) = 0,48	2,34
Удельный расход топлива на отпущенную тепловую энергию, кг у.т./Гкал	$b_{\tau 9}^{o\tau n} = \frac{B^i}{Q^i_{o\tau n}}$	1,86 x x 1000/12,12 = = 153,6	0,48 x x 1000/3,14 = = 153,6	153,6

Расчет капиталовложений по варианту 3 приведен в таблице Д.10.

Таблица Д.10 – Расчет капиталовложений по варианту 3, $K_{\text{сум}}^{\text{i}}$

Оборудование	Стоимость по аналогу (прайс-листу)	Размерность	Количество по варианту, шт. (из таблицы Д.1), нагрузка, Гкал/ч (из таблицы Д.2)	Стоимость по варианту, тыс. долл. США
Котел «АОГВ-24-3П»	746	долл. США шт.	1190 шт.	746 · 1190/1000 = 887,7
Котел «АОГВ-50-3П» с накопительным баком на 80 л	1330	долл. США шт.	3 шт.	1330 · 3/1000 = 4,0
Монтаж котлов	10 %	-	_	(887,8 + 4) · 0,10 = 89,2
Радиаторы отопления	90 000	долл. США Гкал/ч	3,29 Гкал/ч	90 000 · 3,29/1000 = = 296,1
Монтаж радиаторов отопления	30 %	_	_	296,1 · 0,3 = 88,8
Разводка газопроводов по жилому дому	1,2	<u>долл. США</u> м ²	61 500 m²	1,2 · 61 500/1000 = 73,9
Строительство дымоходов типа "Сэндвич" 60 м на одно здание	2,8	<u>долл. США</u> м ²	64 500 m²	2,8 · 64 500/1000 = 180,6
Внешний газопровод	35 000*	долл. США Гкал/ч	5,9 Гкал/ч (с максимальной нагрузкой горячего водоснабжения)	35 000 · 5,9/1000 = 205,0
Всего	-	_	_	1 825,3

Д.5.4 Вариант 4

Вариант 4 предусматривает подключение к ближайшему централизованному энергоисточнику – Минской ТЭЦ-4.

Так как суммарная тепловая нагрузка Минской ТЭЦ-4 составляет 1254 Гкал/ч, подключение нового района с расчетной тепловой нагрузкой менее 5 Гкал/ч (0,4 %) не окажет существенного влияния на работу Минской ТЭЦ-4. По этой причине по фактическим удельным показателям работы энергоисточника определяется изменение его годовых технико-экономических показателей.

Расчет изменения годовых технико-экономических показателей Минской ТЭЦ-4 за счет подключения к ней «Нового жилого района» приведен в таблице Д.11.

Проведенный гидравлический расчет показал, что для подключения «Нового жилого района» требуется прокладка трубопровода 2Ду 200 мм протяженностью 0.2 км.

Вид прокладки – подземная бесканальная предизолированными трубопроводами. Вид теплоносителя – сетевая вода. Способ регулирования – центральный качественно-количественный, с местным количественным регулированием в ИТП. Температурный график отпуска тепловой энергии – 120/70 °C.

В приложении должны быть приведены схема тепловых сетей по варианту 4 и результаты гидравлических расчетов работы тепломагистрали.

Расчет капитальных вложений по варианту 4 приведен в таблице Д.12.

Таблица Д.11 – Расчет изменения технико-экономических показателей работы Минской ТЭЦ-4 для варианта 4

Помостоли	Единица		Период			
Показатели	измерения	отопительный	межотопительный	год		
Средние за отопительный период часовые тепловые нагрузки, всего:	Гкал/ч	2,68	0,98	-		
– на отопление и вентиляцию	Гкал/ч	1,48	0,0	-		
– на горячее водоснабжение	Гкал/ч	1,07	0,86	_		
на потери в тепловых сетях, Q _{пот} (в отопительный период 5 % от суммарной тепловой нагрузки, в межотопительный – 15 %)	Гкал/ч	0,13	0,12	-		
Годовой отпуск тепловой энергии от тепловой сети с учетом потерь в них, $Q_{\text{отп}}^{i}$, всего:	тыс.Гкал	2,74	3,58	16,32		
– на отопление и вентиляцию	тыс.Гкал	7,04	0,00	7,04		
– на горячее водоснабжение	тыс.Гкал	5,08	3,14	8,22		
– на потери в тепловых сетях,Q_{пот} · H/1000	тыс.Гкал	0,13 · 4752/1000 = 0,62	0,12 · (8400 – - 4752)/1000 = 0,44	0,62 + 0,44 = 1,06		

TKI 241-2018

Окончание таблицы Д.11

		Попися			
Показатели	Единица		Период		
Показатоли	измерения	отопительный	межотопительный	год	
Изменение технико-эк	ономических	показателей работы обору	удования ТЭЦ-4		
Увеличение выработки электроэнергии на тепловом потреблении $\mathfrak{I}_{\mathrm{sup}}^{\mathrm{I}} = \mathbf{Q}_{\mathrm{orn}}^{\mathrm{I}} \cdot \mathbf{W}$, для турбин T-250-240 принимается в отопительный период $\mathbf{W}_{\mathrm{or}} = 0,660~\mathrm{MBT} \cdot \mathbf{v}/\Gamma$ кал, в межотопительный $\mathbf{W}_{\mathrm{ner}} = 0,700~\mathrm{MBT} \cdot \mathbf{v}/\Gamma$ кал (уточнить у специализированной организации)	млн кВт∙ч	12,74 · 0,660 = 8,41	3,58 · 0,700 = 2,51	10,92	
Увеличение расхода электроэнергии на собственные нужды: — на выработку электроэнергии	млн кВт∙ч	8,41 · 0,015 = 0,13	2,51 · 0,015 = 0,04	0,17	
– на отпуск тепловой энергии	млн кВт∙ч	12,74 · 0,025 = 0,32	3,58 · 0,025 = 0,09	0,41	
Увеличение отпуска электроэнергии, $\mathfrak{Z}^{i}_{_{\mathtt{отп}}}$	млн кВт∙ч	8,41 - 0,13 - 0,32 = 7,96	2,51 - 0,04 - 0,09 = 2,38	10,34	
Увеличение годового расхода топлива на выработку тепловой энергии $B_{\tau_3}^{\text{aon}} = Q_{\tau_3 \text{L}}^{\text{non}} \cdot b_{\tau_3} / 1000$	тыс. т у.т.	12,74 · 169,2/1000 = 2,16	3,58 · 169,2/1000 = 0,61	2,77	
Фактический удельный расход топлива на отпуск тепловой энергии, b _{тэ}	кг у.т./Гкал	169,3	169,3	169,3	
Увеличение годового расхода топлива на выработку электроэнергии $B_{\tau s}^{alon} = \Theta_{sup} \cdot b_{ss} / 1000$	тыс. т у.т.	7,96 · 211,8/1000 = 1,69	2,38 · 211,8/1000 = 0,50	2,19	
Фактический удельный расход топлива на отпуск электроэнергии, b ₃₃	г у.т./кВт∙ч	211,8	211,8	211,8	
Увеличение годового расхода топлива на Минской ТЭЦ-4, В	тыс. т у.т.	3,85	1,11	4,96	

Таблица Д.12 – Расчет капиталовложений по варианту 4, $K^{i}_{\text{сум}}$

Оборудование	Стоимость по аналогу (прайс-листу)	Размерность	Количество по варианту, шт. (из таблицы Д.1), нагрузка, Гкал/ч (из таблицы Д.2)	Стоимость по варианту, тыс. долл. США	
Радиаторы отопления	90 000	долл. США Гкал/ч	3,29 Гкал/ч	90 000 · 3,29/1000 = 296,1	
Монтаж радиаторов отопления	30 %	-	_	296,1 · 0,3 = 88,83	
Дополнительная разводка трубопроводов по дому	4,3	<u>долл. США</u> м²	64 500 m²	4,3 · 64 500/1000 = 277,4	
ИТП на здание	48 000	<u>долл. США</u> м²	4,36 Гкал/ч	48 000 · 4,36/1000 = 209,3	
Возведение квартальных тепловых сетей	80 000	<u>долл. США</u> Гкал/ч	4,36 Гкал/ч	80 000 · 4,36/1000 = 348,8	
Возведение распределительной теплотрассы	500 000*	долл. США км	0,2 км	0,2 · 500 000/1000 = 100,0	
Всего	_	_	_	1 320,4	

^{*}При тепловой нагрузке более 5 Гкал/ч уточнить у специализированной организации.

Д.5.5 Вариант 5

Вариант 5 предусматривает теплоснабжение от пообъектных источников с использованием электроэнергии с баками-аккумуляторами на нужды горячего водоснабжения и газовых котлов на нужды отопления.

В подвале каждого жилого многоквартирного дома и в отдельно выделенном помещении общественного здания предусматривается установка электрокотлов с баками-аккумуляторами. Объем бака-аккумулятора рассчитан исходя из условия полного обеспечения от него нагрузки горячего водоснабжения в дневные часы. Зарядка баков-аккумуляторов осуществляется в ночное время.

Таким образом, электрокотлы работают только в ночные часы. В отопительный период отпуск тепловой энергии на нужды отопления осуществляется от газовых водогрейных котлов. Данный вариант позволит снизить затраты на покупку электроэнергии в дневные часы и участвовать в регулировании электрического графика в энергосистеме, а также повысить надежность теплоснабжения потребителей.

Результаты расчета параметров баков-аккумуляторов и требуемой мощности электрокотлов на горячее водоснабжение представлены в таблице Д.7.

Результаты расчета годовых технико-экономических показателей по варианту 5 аналогичны варианту 1 и приведены в таблице Д.13.

Таблица Д.13 – Результаты расчета годовых технико-экономических показателей по варианту 5

Показатели	Формула	Отопительный период	Межотопительный период	Год
Суммарный отпуск тепловой энергии, тыс. Гкал	Q_{otn}^{i}	12,12	3,14	15,26
Отпуск тепловой энергии от электрокотлов (горячее водоснабжение), тыс. Гкал	Q ⁱ _{orn9K}	5,08	3,14	8,22
Отпуск тепловой энергии от газовых котлов, тыс. Гкал	$Q^i_{o au au \Gamma K}$	7,04	0,0	7,04
Расход топлива на газовые котлы, тыс. т у.т.	$B^{i} = \frac{Q_{\text{otnFK}}^{i}}{7 \cdot \eta_{\text{BK}}^{6p}} \cdot 10^{2}$	7,04/(7 · 0,93) = = 1,08	0,0	1,08

ТКП 241-2018

Окончание таблица Д.13

Показатели	Формула	Отопительный период	Межотопительный период	Год
Удельный расход топлива на отпущенную теплоэнергию, кг у.т./Гкал	$b_{\tau 9}^{o\tau n} = \frac{B^i}{Q^i_{o\tau n \Gamma K}}$	1,08 x x 1000/7,04 = = 153,6	0,0	153,6
Расход электроэнергии на отопление с учетом потерь в размере 2 %, млн кВт·ч	$\vartheta_{\mathfrak{K}}^{i} = \frac{Q_{\mathfrak{o}T\mathfrak{n}\mathfrak{K}}^{i}}{0,86} \cdot 1,02$	5,08 x x 1,02/0,86 = = 6,0	3,14 · 1,02/0,86 = = 3,7	9,7

Расчет капиталовложений по варианту 5 приведен в таблице Д.14.

Д.6 Оценка эффективности инвестиций в варианты теплоснабжения объекта и выбор из них наиболее экономичного

- **Д.6.1** Для технико-экономического сравнения вариантов они должны быть уравнены по отпуску электроэнергии за счет использования энергосистемы при расчете приведенных затрат.
- **Д.6.2** Расчет выполнен в соответствии с [21], приложением Γ и приведен в таблице Д.15.

Вывод: на основании проведенных расчетов к реализации рекомендуется вариант 4, предусматривающий подключение района к тепловым сетям ТЭЦ. Дополнительные капиталовложения в остальные варианты не окупаются.

Таблица Д.14 – Расчет капиталовложений по варианту 5, $K_{\text{сум}}^{i}$

Оборудование	Стоимость по аналогу (прайс-листу)	Размерность	Количество по варианту, шт. (из таблицы Д.1), нагрузка, Гкал/ч (из таблицы Д.2)	Стоимость по варианту, тыс. долл. США
Радиаторы отопления	90 000	долл. США Гкал/ч	3,29 Гкал/ч	90 000 · 3,29/1000 = 296,1
Монтаж радиаторов отопления	30 %	-	_	296,1 · 0,3 = 88,8
Дополнительная разводка трубопроводов по дому	4,3	<u>долл. США</u> м²	64500 m²	4,3 · 64 500/1000 = 277,4
Водогрейные электрокотлы с монтажом на горячее водоснабжение	120 000	<u>д</u> олл. США Гкал/ч	4,4 · 0,86 = 3,8 Гкал/ч	120 000 · 3,8/1,16/1000 = = 454,1
Баки-аккумуляторы с монтажом	1000	<u>долл. США</u> м³	364 m³	1000 · 364/1000 = 363,8
Внешнее электросетевое возведение на электрокотлы	2 20 000*	долл. США Гкал/ч	4,4 · 0,86 = 3,8 Гкал/ч	3,8 · 220 000/1000 = 832,5
Газовые котлы на отопление	120 000	<u>долл. США</u> Гкал/ч	3,29 Гкал/ч	3,29 · 12 000/1000 = 394,8
Внешний газопровод с ШРП	35 000*	долл. США Гкал/ч	3,29 Гкал/ч	35 000 · 3,29/1000 =115,2
Всего	_	_	_	2 822,6
*При тепловой нагрузке более 5 Гкал/ч уточн	нить у специализи	рованной организац	ции.	

Таблица Д.15 – Технико-экономическое сравнение вариантов

Показатели	Формула	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5		
Исходные данные								
Потребление тепловой энергии, тыс. Гкал	Qiotn	15,26	15,26	15,26	15,26	15,26		
Тепловые потери в тепловых сетях, тыс. Гкал	Qinot	0,00	0,00	0,00	1,06	0,00		
Отпуск тепловой энергии от энергоисточника, тыс. Гкал	Q _{cym}	15,26	15,26	15,26	16,32	15,26		
Выработка электроэнергии, млн кВт·ч	\mathfrak{B}^{i}_{BMP}	_	_	_	10,92	_		
Расход электроэнергии на собственные нужды, млн кВт·ч	Э ⁱ	18,08	18,15	0,08	0,58	9,73		
Отпуск электроэнергии, млн кВт-ч	$\Theta_{\text{orn}}^{i} = \Theta_{\text{выр}}^{i} - \Theta_{\text{ch}}^{i}$	-18,08	-18,15	-0,08	10,34	-9,73		
Расход топлива, тыс. т у.т.	Bi	0,00	0,00	2,34	4,96	1,08		
Капитальные вложения, тыс. долл. США	K ⁱ _{cym}	2458,6	3439,3	1825,3	1320,4	2822,6		
Постоянные издержки на поддержание оборудования в работоспособном состоянии и содержание персонала, тыс. долл. США	$K_{\Pi \text{M}}^i = 5\% \cdot K_{\text{cym}}^i + K_{3\Pi}^i$	122,93	171,97	91,27	66,02	141,13		

TKI 241-2018

Продолжение таблицы Д.15

Показатели	Формула	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	
Расчет эффективности с точки зрения народного хозяйства							
Максимальный отпуск электроэнергии по вариантам, млн кВт·ч	\mathfrak{I}^{max}_{otn}	10,34					
Дополнительная выработка электроэнергии в энергосистеме по варианту, млн кВт·ч	$\boldsymbol{\vartheta}_{\mathtt{ac}}^{i} = \boldsymbol{\vartheta}_{\mathtt{otn}}^{\mathtt{max}} - \boldsymbol{\vartheta}_{\mathtt{otn}}^{i}$	28,4	28,5	10,4	0,0	20,1	
Дополнительный расход топлива в энергосистеме, тыс. т у.т.	$B_{\mathtt{ac}}^{i} = \mathfrak{I}_{\mathtt{ac}}^{i} \cdot b_{\mathtt{aa}} \cdot K_{\mathtt{not}}$	7,12	7,14	2,61	0,00	5,03	
Общий расход топлива по варианту, тыс. т у.т.	$B_{cym}^i = B^i + B_{sc}^i$	7,12	7,14	4,95	4,96	6,11	
Затраты на покупку топлива по варианту, тыс. долл. США	$C^i_{\tau on} = B^i_{cym} \cdot L\!$	982,56	985,20	683,35	684,49	843,24	
Экономия по варианту, тыс. долл. США	$\begin{split} \boldsymbol{\vartheta}^{i} = & \left(\boldsymbol{C}_{\tau \sigma n}^{\text{6as}} - \boldsymbol{C}_{\tau \sigma n}^{i}\right) + \\ & + \left(\boldsymbol{K}_{\Pi N}^{\text{6as}} - \boldsymbol{K}_{\Pi N}^{i}\right) \end{split}$	-354,99	-406,66	-24,11	Базоввый вариант	-233,87	
Расчет дополнительны	х затрат в энергосист	геме по срав	внению с баз	овым вариан	НТОМ		
Затраты на содержание вытесняемой электрической мощности, тыс. долл. США	$\boldsymbol{3}_{_{\boldsymbol{B}\boldsymbol{9}}} = \boldsymbol{N}_{_{\boldsymbol{y}\boldsymbol{C}\boldsymbol{T}}}^{_{\boldsymbol{i}}} \cdot \boldsymbol{3}_{_{\boldsymbol{y}\boldsymbol{d}}}^{_{\boldsymbol{n}\boldsymbol{9}}}$	Дополнительное электрогенерирующее оборудование не устанавливается					
Затраты на содержание вытесняемой тепловой мощности, тыс. долл. США	$\boldsymbol{3}_{\scriptscriptstyle{T9}} = \boldsymbol{Q}_{\scriptscriptstyle{max}}^{\scriptscriptstyle{\text{CYM}}} \cdot \boldsymbol{3}_{\scriptscriptstyle{yd}}^{\scriptscriptstyle{\PiT}}$	Объект не был подключен к системе централизованного теплоснабжения					

Продолжение таблицы Д.15

Показатели	Формула	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	
Затраты на компенсацию перекрестного субсидирования, тыс. долл. США	$3_{nc} = 9^{i}_{выр} \cdot \mathbf{\Pi}_{yd}$	Дополнительное электрогенерирующее оборудование не устанавливается					
Инвестиции, связанные с реализацией мероприятий по режимной интеграции Белорусской атомной электростанции, тыс. долл. США	$M_{\text{ac}} = (N_{\text{yct}}^{i} \cdot K_{y}) / 15$	Дополнительное электрогенерирующее оборудование не устанавливается					
Суммарные дополнительные годовые затраты в энергосистеме, тыс. долл. США	$3_{9c} = 3_{89} + 3_{8T} + 3_{nc}$	0,0	0,0	0,0	0,0	0,0	
Суммарная экономия по вариантам по сравнению с базовым, тыс. долл. США	$3_{\text{сум}}^{\text{i}} = \mathbf{\Pi}^{\text{i}} - 3_{\text{sc}} - \mathbf{N}$	-354,99	-406,66	-24,11	Базовый вариант	-233,87	
Срок окупаемости дополнительных инвестиций по сравнению с базовым вариантом для народного хозяйства, лет	$\tau_{_{\text{OK}}}^{\text{PB}} = \frac{K_{_{\text{CyM}}}^{i} - K_{_{\text{CyM}}}^{\text{Ga3}}}{9_{_{\text{CyM}}}^{i}}$	-	_	_	-	_	
Расче	ет эффективности с т	очки зрения	инвестора				
Ежегодные эксплуатационные затраты заказчика, тыс. долл. США, по формуле Г.15 всего, в т.ч.	$3_{_{\text{сум}}}^{i} = 3_{_{\text{св}}}^{i} + 3_{_{\text{T}}}^{i} + 3_{_{99}}^{i} + K_{_{3\Pi}}$	1450,8	1144,7	343,7	137,9	644,0	
– покупка сетевой воды от ТЭЦ при тарифе 8,5 долл./Гкал	$3_{_{CB}}^{i}=Q_{_{OTN}}^{i}\cdot L\!$	_	_	_	137,9	_	
– покупка природного газа при цене 144,2 долл./т у.т.	$3_{\tau} = B^{i} \cdot \coprod_{\tau}^{i}$	_	_	337,6	-	155,8	

Окончание таблицы Д.15

Показатели	Формула	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5
– покупка электроэнергии из энергосистемы при тарифе 0,0932 долл./кВт·ч днем и 0,0502 долл./кВт·ч ночью		1450,8	1144,7	6,1	0,0	488,2
Экономия денежных средств по сравнению с базовым вариантом, тыс. долл. США	$\mathfrak{Z}_{_{UHB}}^{i}=3_{_{CYM}}^{fas}-3_{_{CYM}}^{i}$	-1312,9	-1006,8	-205,8	Базовый вариант	-506,1
Перерасход капиталовложений по сравнению с базовым вариантом, тыс. долл. США	K _{cym} - K _{cym}	1138,3	2119,0	505,0	Базовый вариант	1502,2
Срок окупаемости для инвестора, лет	$\tau_{_{OK}}^{_{UHB}} = \frac{K_{_{CyM}}^{^{i}} - K_{_{CyM}}^{^{6as}}}{3_{_{CyM}}^{^{6as}} - 3_{_{CyM}}^{^{i}}}$	_	-	-	-	-

Библиография

- [1] СНБ 4.02.01-03 Отопление, вентиляция и кондиционирование воздуха
- [2] СНиП ІІ-35-76 Нормы проектирования. Котельные установки
- [3] Концепция развития теплоснабжения в Республике Беларусь на период до 2020 года Утверждена постановлением Совета Министров Республики Беларусь от 18 февраля 2010 г. № 225
- [4] Правила пользования тепловой энергией Утверждены постановлением Министерства экономики Республики Беларусь от 19 января 2006 г. № 9
- [5] Положение о финансировании, разработке (корректировке), согласовании и утверждении схем теплоснабжения городов, населенных пунктов, промышленных узлов и отдельных предприятий промышленности и сельского хозяйства на территории Республики Беларусь
 В редакции постановления Минжилкомхоза, Минэкономики от 05.07.2001
 № 114/14
- [6] Указ Президента Республики Беларусь «О мерах по совершенствованию строительной деятельности» от 14 января 2014 г. № 26
- [7] Манюк В.И., Каплинский Я.И., Хиж Э.Б. и др. Справочник по наладке и эксплуатации водяных тепловых сетей М.: Стройиздат. 1988. 435 с.
- [8] Соколов Е.Я. Теплофикация и тепловые сети. М.: Изд. дом МЭИ, 2009. 472 с.
- [9] Методические указания по нормированию потребления тепловой и электрической энергии в учреждениях и организациях социальной сферы
 - Минск: Госкомэнергоэффективности РБ, 2003
- [10] Проектирование тепловых сетей. Справочник проектировщика. Под ред. А.А. Николаева М.: Изд. литературы по строительству, 1965
- [11] СНБ 2.04.02-2000 Строительная климатология

- [12] Методические рекомендации к проектированию энергоисточников на местных видах топлива, строительство которых планируется за счет средств республиканского и (или) местных бюджетов Утверждены приказом Министерства жилищно-коммунального хозяйства Республики Беларусь от 14 апреля 2016 г. № 27
- [13] Соловьев Ю.П. Проектирование теплоснабжающих установок для промышленных предприятий М.: Энергия, 1978. 191 с.
- [14] Соловьев Ю.П. Проектирование крупных центральных котельных для комплекса тепловых потребителей М., Энергия, 1976. 189 с.
- [15] Рыжкин В.Я. Тепловые электрические станции М.: Энергоатомиздат, 1987. 327 с.
- [16] Водяные тепловые сети. Справочное пособие по проектированию. Под ред. Н.К. Громова, Е.П. Шубина и др. М.: Энергоатомиздат, 1988
- [17] Зингер Н.М. Гидравлические и тепловые режимы теплофикационных систем
 М.: Энергоатомиздат, 1986. 320 с.
- [18] Методика расчета потерь тепловой энергии в сетях теплоснабжения с учетом их износа, срока и условий эксплуатации Утверждена постановлением Комитета по энергоэффективности при Совете Министров Республики Беларусь от 29 сентября 2006 г. № 2
- [19] Вукалович М. П. Теплофизические свойства воды и водяного пара М.: Машиностроение, 1967. 160 с.
- [20] СТП 09110.09.118-06 Методическое пособие по расчету и анализу технико-экономических показателей ТЭЦ, оснащенных турбинами с противодавлением или ухудшенным вакуумом, котельных различных типов
 Утверждено приказом концерна «Белэнерго» от 29 декабря 2006 г. № 51
- [21] Методические рекомендации по составлению технико-экономических обоснований для энергосберегающих мероприятий Утверждены Департаментом по энергоэффективности Государственного комитета по стандартизации Республики Беларусь 11 мая 2017 г.