HOARE LOGIC

HOARE LOGIC INTRODUCTION

- Since finding the exact wp or sp for while-loops is difficult, we will use an over-approximation in the form of an inductive invariant which preserves soundness.
 - Much of the rest of the course (and majority of research in verification) deals with how to handle the verification problem for loops/loop-like constructs.
- Hoare Logic is a program logic/verification strategy which can be directly used to prove the validity of Hoare Triples.
 - Also provides a framework for specifying and verifying Inductive Loop Invariants.

DEFINITION

- Given sets of states P and Q, a program c satisfies the specification $\{P\}$ c $\{Q\}$ if:
 - $\forall \sigma, \sigma' . \ \sigma \in P \land (\sigma, c) \hookrightarrow^* (\sigma', skip) \Rightarrow \sigma' \in Q$
- Using FOL formulae P and Q to express sets of states, we can now use the symbolic semantics $\rho(c)$:
 - $\forall V, V'. P \land \rho(c) \rightarrow Q[V'/V]$
- Hoare Logic is a program logic/proof system to directly prove the validity of Hoare Triples.
- We will study it in two forms:
 - A set of inference rules
 - A procedure to generate verification conditions (VCs) in FOL

RELATION WITH WP AND SP

- How are Hoare Triples, Weakest Pre-condition and Strongest Postcondition related with each other?
 - $\{wp(P, c)\}\ c\ \{P\}$
 - $\{P\}$ c $\{sp(P, c)\}$
- Homework: Prove this formally using the definitions!

INFERENCE RULES FORMAT

Key Idea: Use the validity of Hoare triples for smaller statements to establish validity for compound statements

INFERENCE RULES PRIMITIVE STATEMENTS

 ${P[e/x]} x := e {P}$

[R-ASSIGN]

 $\{ \forall x . P \} x := havoc \{ P \}$

[R-HAVOC]

 $\{Q \rightarrow P\}$ assume(Q) $\{P\}$

[R-ASSUME]

 $\{Q \land P\}$ assert(Q) $\{P\}$

[R-ASSERT]

EXAMPLES

Which of the following are true?

•
$$\{y = 10\} \ x := 10 \ \{y = x\}$$

•
$$\{x = n - 1\} \ x := x + 1 \ \{x = n\}$$

•
$$\{y = x\}$$
 $y := 2$ $\{y = x\}$

•
$$\{z = 10\}$$
 $y := 2 \{z = 10\}$

•
$$\{y = 10\}\ y := x \{y = x\}$$

- The last Hoare triple is valid, but we cannot prove it using [R-ASSIGN].
 - According to [R-ASSIGN], we have $\{y = x[x/y]\}\ y := x\ \{y = x\}$. Hence, $\{x = x\}\ y := x\ \{y = x\}$, which simplifies to $\{T\}\ y := x\ \{y = x\}$.
 - Notice that $y = 10 \Rightarrow T$.

$$\{P'\}$$
 c $\{Q\}$ $P \Rightarrow P'$ [R-STRENGTHEN-PRE] $\{P\}$ c $\{Q\}$

$$\{P'\}$$
 c $\{Q\}$ $P \Rightarrow P'$ [R-STRENGTHEN-PRE] $\{P\}$ c $\{Q\}$

$$\{P'\} \subset \{Q\} \qquad P \Rightarrow P'$$

 $\{P\}$ c $\{Q\}$

[R-STRENGTHEN-PRE]

$$\{P'\}$$
 c $\{Q\}$ $P \Rightarrow P'$ [R-STRENGTHEN-PRE] $\{P\}$ c $\{Q\}$

$$\{P'\}$$
 c $\{Q\}$ $P \Rightarrow P'$ [R-STRENGTHEN-PRE] $\{P\}$ c $\{Q\}$

$$\{true\} \ y := x \ \{y = x\} \qquad y = 10 \Rightarrow true$$

$${y = 10} y := x {y = x}$$

POST-CONDITION WEAKENING

$$\{P\}$$
 c $\{Q'\}$ $Q' \Rightarrow Q$ [R-WEAKEN-POST] $\{P\}$ c $\{Q\}$

POST-CONDITION WEAKENING

$$\{P\} \subset \{Q'\} \qquad Q' \Rightarrow Q$$

$$\{P\} \subset \{Q\}$$

[R-WEAKEN-POST]

POST-CONDITION WEAKENING

$$\{P\} \subset \{Q'\} \qquad Q' \Rightarrow Q$$

$$\{P\} \subset \{Q\}$$

[R-WEAKEN-POST]

INFERENCE RULES COMPOUND STATEMENTS

$$\{P\}\ c_1\ \{R\}\ \ \{R\}\ c_2\ \{Q\}$$

 $\{P\}\ c_1; c_2\ \{Q\}$

[R-SEQ]

INFERENCE RULES COMPOUND STATEMENTS

$$\{P\}\ \, c_1\ \, \{R\}\ \, \, \{R\}\ \, c_2\ \, \{Q\}$$

[R-SEQ]

$$\{P \wedge F\} \ \mathbf{c}_1 \ \{Q\} \qquad \{P \wedge \neg F\} \ \mathbf{c}_2 \ \{Q\}$$

[R-IF-THEN-ELSE]

 $\{P\}$ if (F) then c_1 else c_2 $\{Q\}$

INFERENCE RULES COMPOUND STATEMENTS

$$\{P\}\ \, \mathsf{c}_1\ \, \{R\}\ \, \, \{R\}\ \, \mathsf{c}_2\ \, \{Q\}$$

[R-SEQ]

$$\{P \wedge F\} \ \mathbf{c}_1 \ \{Q\} \qquad \{P \wedge \neg F\} \ \mathbf{c}_2 \ \{Q\}$$

[R-IF-THEN-ELSE]

 $\{P\}$ if (F) then c_1 else c_2 $\{Q\}$

Prove This!

SEQUENCING EXAMPLE

$$\{P\}\ c_1\ \{R\}\ \{R\}\ c_2\ \{Q\}$$

 $\{P\}\ c_1; c_2\ \{Q\}$

[R-SEQ]

 $\{true\} \ x := 2; \ y := x \ \{y = 2 \land x = 2\}$

SEQUENCING EXAMPLE

$$\{P\}\ \mathsf{c}_1\ \{R\}\ \{R\}\ \mathsf{c}_2\ \{Q\}$$

 $\{P\}\ c_1; c_2\ \{Q\}$

[R-SEQ]

$$\{true\} \ x := 2 \ \{x = 2\}$$

$$\{true\} \ x := 2 \ \{x = 2\}$$
 $\{x = 2\} \ y := x \ \{y = 2 \land x = 2\}$

$$\{true\} \ x := 2; \ y := x \ \{y = 2 \land x = 2\}$$

IF-THEN-ELSE EXAMPLE

$$\{P \wedge F\} \ \mathbf{c}_1 \ \{Q\} \qquad \{P \wedge \neg F\} \ \mathbf{c}_2 \ \{Q\}$$

[R-IF-THEN-ELSE]

 $\{P\}$ if (F) then c_1 else c_2 $\{Q\}$

 $\{true\}\ \text{if } (x > 0)\ \text{then } y := x \ \text{else } y := -x\{y \ge 0\}$

IF-THEN-ELSE EXAMPLE

$$\{P \wedge F\} \ \mathbf{c}_1 \ \{Q\} \qquad \{P \wedge \neg F\} \ \mathbf{c}_2 \ \{Q\}$$

$$\{P \wedge \neg F\} \mathbf{c}_2 \{Q\}$$

[R-IF-THEN-ELSE]

$$\{P\}$$
 if (F) then c_1 else c_2 $\{Q\}$

$$\{x \ge 0\}$$
 $y := x \{y \ge 0\}$ $x > 0 \Rightarrow x \ge 0$

$$\{x > 0\} \ y := x \ \{y \ge 0\}$$

$$\{x \le 0\} \ y := -x \ \{y \ge 0\}$$

 $\{true\}\ \text{if } (x > 0)\ \text{then } y := x \ \text{else } y := -x\{y \ge 0\}$

WHILE LOOPS LOOP INVARIANTS

- Our goal is to prove the validity of $\{P\}$ while(G) do c $\{Q\}$
 - Both sp and wp lead to non-terminating procedures.
- We will instead assume a loop invariant *I* which is an overapproximation of the states possible during execution of the loop, but is sufficient enough to prove the Hoare Triple.
 - *I* is assumed to be provided by the programmer.
- Hoare Logic provides inference rules to prove that I is indeed a loop invariant.

WHILE LOOPS LOOP INVARIANTS

- I needs to satisfy three properties:
 - I must hold initially at the start of the loop.
 - I must hold at the end of every iteration of the loop.
 - After exiting from the loop,
 I must imply the post-condition.

WHILE LOOPS LOOP INVARIANTS

- Consider the code
 - i:=0; j:=0; while(i<n) do i:=i+1; j:=i+j;
- Which of the following are loop invariants?
 - $i \le n$
 - i < n
 - $i \ge 0$

WHILE LOOP INFERENCE RULE

 $\{I \wedge F\} \subset \{I\}$

[R-WHILE-1]

 $\{I\}$ while(F) do c; $\{I \land \neg F\}$

WHILE LOOP INFERENCE RULE

$$\{I \wedge F\} \subset \{I\}$$

[R-WHILE-1]

$$\{I\}$$
 while(F) do c; $\{I \land \neg F\}$

$$P \Rightarrow I \qquad \{I \land F\} \ \mathsf{c} \ \{I\} \qquad I \land \neg F \Rightarrow Q$$

[R-WHILE-2]

 $\{P\}$ while(F) do c; $\{Q\}$

WHILE LOOP INFERENCE RULE - EXAMPLE

Prove $\{i = 0 \land n > 0\}$ while(i < n) do i := i+1; $\{i = n\}$

Loop Invariants: $i \ge 0$, $i \le n$, n > 0...

Which loop invariant is useful for proving the Hoare Triple? $I \triangleq i \leq n$

WHILE LOOP INFERENCE RULE - EXAMPLE

Prove $\{i = 0 \land n > 0\}$ while (i < n) do i := i+1; $\{i = n\}$

Loop Invariants: $i \ge 0$, $i \le n$, n > 0...

Which loop invariant is useful for proving the Hoare Triple? $I \triangleq i \leq n$

$$\{i = 0 \land n > 0\}$$
 while $(i < n)$ do $i := i+1$; $\{i = n\}$

WHILE LOOP INFERENCE RULE - EXAMPLE

Prove $\{i = 0 \land n > 0\}$ while (i < n) do i := i+1; $\{i = n\}$

Loop Invariants: $i \ge 0$, $i \le n$, n > 0...

Which loop invariant is useful for proving the Hoare Triple? $I \triangleq i < n$

$$\{i \leq n \land i < n\}i{:=}i{+}1; \{i \leq n\}$$

 $\{i = 0 \land n > 0\} \Rightarrow i \leq n \qquad \{i \leq n \land i < n\} \\ i := i+1; \{i \leq n\} \qquad i \leq n \land i \geq n \Rightarrow i = n$

 $\{i = 0 \land n > 0\}$ while (i < n) do i := i+1; $\{i = n\}$

LOOP INVARIANT VS INDUCTIVE LOOP INVARIANT

- Consider again the code
 - i:=0; j:=0; while(i<n) do i:=i+1; j:=i+j;
- Is $j \ge 0$ a loop invariant?
 - Yes, it does hold at the beginning and at the end of every iteration.
- Does $\{j \ge 0 \land i < n\} i := i+1; j := i+j; \{j \ge 0\} \text{ hold?}$
 - NO! $j \ge 0$ is not an inductive loop invariant.
 - The inference rule admits only inductive loop invariants.
- How to strengthen the invariant to make it inductive?
 - $j \ge 0 \land i \ge 0$ is an inductive loop invariant.

```
{n > 0}
i := 0;
j := 0;
while(i < n) do
i := i + 1;
j := i + j;
{2j = n(n+1)}</pre>
```

```
\{n > 0\}
\{P_1\}
i := 0;
\{P_2\}
j := 0;
\{P_3\}
while(i < n) do
    \{P_4\}
    i := i + 1;
    \{P_5\}
    j := i + j;
    \{P_6\}
\{P_7\}
\{2j = n(n+1)\}\
```

Loop Invariant: ???

```
\{n > 0\}
\{P_1\}
i := 0;
\{P_2\}
j := 0;
\{P_3\}
while(i < n) do
    \{P_4\}
    i := i + 1;
    \{P_5\}
    j := i + j;
    \{P_6\}
\{P_7\}
\{2j = n(n+1)\}\
```

Loop Invariant: $2j = i(i+1) \land i \le n$

```
\{n > 0\}
\{P_1\}
i := 0;
\{P_2\}
j := 0;
\{2j = i(i+1) \land i \le n\}
while(i < n) do
    \{2j = i(i+1) \land i \le n \land i < n\}
    i := i + 1;
    \{P_5\}
    j := i + j;
     \{2j = i(i+1) \land i \leq n\}
\{2j = i(i+1) \land i \le n \land \neg(i < n)\}
\{2j = n(n+1)\}\
```

 $\{I \wedge F\} \subset \{I\}$

 $\{I\}$ while(F) do c; $\{I \land \neg F\}$

```
\{n > 0\}
\{P_1\}
                                                  \{P\} \subset \{Q'\} \qquad Q' \Rightarrow Q
i := 0;
\{P_2\}
                                                           {P} c {Q}
j := 0;
                                                      [R-WEAKEN-POST]
\{2j = i(i+1) \land i \le n\}
while(i < n) do
     \{2j = i(i+1) \land i \le n \land i < n\} \qquad 2j = i(i+1) \land i \le n \land \neg(i < n)
                                                  \Rightarrow 2j = n(n+1)
     i := i + 1;
     \{P_5\}
     j := i + j;
     \{2j = i(i+1) \land i \leq n\}
\{2j = i(i+1) \land i \le n \land \neg(i < n)\}
\{2j = n(n+1)\}\
```

```
\{n > 0\}
\{P_1\}
                                                  \{P\} \subset \{Q'\} \qquad Q' \Rightarrow Q
i := 0;
\{P_2\}
                                                          \{P\} \subset \{Q\}
j := 0;
                                                      [R-WEAKEN-POST]
\{2j = i(i+1) \land i \le n\}
while(i < n) do
     \{2j = i(i+1) \land i \le n \land i < n\} 2j = i(i+1) \land i \le n \land \neg(i < n)
                                                  \Rightarrow 2j = n(n+1)
     i := i + 1;
     \{P_5\}
     j := i + j;
     \{2j = i(i+1) \land i \leq n\}
\{2j = n(n+1)\}\
```

```
\{n > 0\}
\{P_1\}
i := 0;
\{P_2\}
j := 0;
\{2j = i(i+1) \land i \le n\}
while(i < n) do
    \{2j = i(i+1) \land i \le n \land i < n\}
    i := i + 1;
    \{2i + 2j = i(i+1) \land i \le n\}
    j := i + j;
    \{2j = i(i+1) \land i \leq n\}
\{2j = n(n+1)\}\
```

$${P[e/x]} x := e {P}$$

[R-ASSIGN]

$$(2j = i(i+1) \land i \le n)[i + j/j]$$

$$\equiv 2(i+j) = i(i+1) \land i \le n$$

$$\equiv 2i + 2j = i(i+1) \land i \le n$$

```
\{n > 0\}
\{P_1\}
i := 0;
\{P_2\}
                                                            {P[e/x]} x := e {P}
j := 0;
                                                                   [R-ASSIGN]
\{2j = i(i+1) \land i \le n\}
while(i < n) do
                                                  (2i + 2j = i(i+1) \land i \le n)[(i+1)/i]
     {2j = i(i+1) \land i \le n \land i < n}
                                                  \equiv 2(i+1) + 2j = (i+1)(i+2) \land i+1 \le n
     \{2j = i(i+1) \land i+1 \le n\}
                                                  \equiv 2j = i(i+1) \land i+1 \le n
     i := i + 1;
     \{2\mathbf{i} + 2\mathbf{j} = \mathbf{i}(\mathbf{i} + \mathbf{1}) \land \mathbf{i} \le \mathbf{n}\}\
     j := i + j;
     \{2j = i(i+1) \land i \le n\}
\{2j = n(n+1)\}\
```

```
\{n > 0\}
\{P_1\}
i := 0;
\{P_2\}
j := 0;
\{2j = i(i+1) \land i \le n\}
while(i < n) do
     \{2j = i(i+1) \land i \le n \land i < n\}
                                                     2j = i(i+1) \land i \le n \land i < n
     \{2j = i(i+1) \land i+1 \le n\}
                                                    \Rightarrow 2j = i(i+1) \land i+1 \le n
     i := i + 1;
     \{2\mathbf{i} + 2\mathbf{j} = \mathbf{i}(\mathbf{i} + \mathbf{1}) \land \mathbf{i} \le \mathbf{n}\}\
     j := i + j;
     \{2j = i(i+1) \land i \leq n\}
\{2j = n(n+1)\}\
```

```
\{n > 0\}
\{P_1\}
i := 0;
\{P_2\}
j := 0;
\{2j = i(i+1) \land i \le n\}
while(i < n) do
     \{2j = i(i+1) \land i \le n \land i < n\}
                                             2j = i(i+1) \land i \le n \land i < n
     i := i + 1;
                                              \Rightarrow 2j = i(i+1) \wedge i + 1 \leq n
     \{2i + 2j = i(i+1) \land i \le n\}
    j := i + j;
     \{2j = i(i+1) \land i \leq n\}
\{2j = n(n+1)\}\
```

```
\{n > 0\}
\{P_1\}
i := 0;
\{\mathbf{i}(\mathbf{i}+1)=0 \land \mathbf{i} \leq \mathbf{n}\}\
j := 0;
\{2j = i(i+1) \land i \le n\}
while(i < n) do
     \{2j = i(i+1) \land i \le n \land i < n\}
     i := i + 1;
     \{2i+2j=i(i+1) \land i \leq n\}
     j := i + j;
     \{2j = i(i+1) \land i \leq n\}
\{2j = n(n+1)\}\
```

 $\{P[e/x]\} x := e \{P\}$

[R-ASSIGN]

```
\{n > 0\}
\{n \ge 0\}
i := 0;
\{\mathbf{i}(\mathbf{i}+1)=0 \land \mathbf{i} \leq \mathbf{n}\}\
j := 0;
\{2j = i(i+1) \land i \le n\}
while(i < n) do
     \{2j = i(i+1) \land i \le n \land i < n\}
     i := i + 1;
     \{2i+2j=i(i+1) \land i \leq n\}
     j := i + j;
     \{2j = i(i+1) \land i \leq n\}
\{2j = n(n+1)\}\
```

 ${P[e/x]} \times := e {P}$

[R-ASSIGN]

```
\{n > 0\}
i := 0;
\{i(i+1) = 0 \land i \le n\}
j := 0;
\{2j = i(i+1) \land i \leq n\}
while(i < n) do
    \{2j = i(i+1) \land i \leq n \land i < n\}
    i := i + 1;
    \{2i+2j=i(i+1)\land i\leq n\}
    j := i + j;
    \{2j = i(i+1) \land i \leq n\}
\{2j = n(n+1)\}\
```

$$\{P'\} \subset \{Q\}$$
 $P \Rightarrow P'$ $\{P\} \subset \{Q\}$

[R-STRENGTHEN-PRE]

SOUNDNESS AND COMPLETENESS

- All the inference rules together provide a procedure for establishing a Hoare triple $\{P\}c\{Q\}$.
- Soundness: If we can establish $\{P\}c\{Q\}$ using the inference rules, then is $\{P\}c\{Q\}$ a valid Hoare Triple?
 - · Yes.
- Completeness: If $\{P\}c\{Q\}$ is a valid Hoare Triple, then can we always use the inference rules to establish it?
 - Relatively Complete.
 - If the underlying FOL theory is complete, then Hoare Logic is complete.

HOARE LOGIC VERIFICATION CONDITION GENERATION

- We have already seen that the weakest pre-condition operator can be used to prove Hoare Triples:
 - $\{P\}c\{Q\}$ iff $P \Rightarrow wp(Q,c)$
- Finding exact wp for loops is hard. We will instead use the loop invariant as an approximate wp.
 - awp(Q, while(F)@I do c) = I
 - Does this always hold?
- Also need to show that following side-conditions hold:
 - {I \section F}c{I}
 - $1 \land \neg F \Rightarrow Q$

RELATION BETWEEN AWP AND WP

- Let us formally define awp:
 - $\forall \sigma \in awp(Q, c) . \forall \sigma' . (\sigma, c) \hookrightarrow *(\sigma', skip) \rightarrow \sigma' \in Q$
 - Homework: Prove that this holds for awp(Q, while(F)@I do c) = I, when the side-conditions hold.
- We defined $wp(Q, c) \triangleq \{ \sigma \mid \forall \sigma'. (\sigma, c) \hookrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in Q \}$
 - $awp(Q, c) \subseteq wp(Q, c)$
- We can then use *awp* for verifying the validity of Hoare Triples:
 - If $P \Rightarrow awp(Q, c)$ then $\{P\}c\{Q\}$.

• $awp(i \ge 0$, while(i < n)@(i >= 0) do i := i+1;) = ???

• $awp(i \ge 0$, while(i < n)@(i >= 0) do i := i+1;) = $i \ge 0$

- $awp(i \ge 0$, while(i < n)@(i >= 0) do i := i+1;) = $i \ge 0$
 - $wp(i \ge 0$, while(i < n)@(i >= 0) do i := i+1;) = ???

- $awp(i \ge 0$, while(i < n)@(i >= 0) do i := i+1;) = $i \ge 0$
 - $wp(i \ge 0$, while(i < n)@(i >= 0) do i := i+1;) = $n \ge 0 \lor i \ge 0$