Στοχαστικές Ανελίξεις Εξετάσεις Ιανουαρίου 2006 ΣΕΜΦΕ

Ζήτημα 1°. Έστω N διακριτή τ.μ. με σ.μ.π. $p_n = P[N=n]$ (n=0,1,...) και με γεννήτρια πιθανοτήτων $\pi(s)$. Έστω $\{Y_i: i=1,2,...\}$ ακολουθία ανεξάρτητων και ισόνομων τ.μ. με ροπογεννήτρια συνάστηση $g_{y}(s)$.

- (α) Να δειχθεί ότι η ροπογεννήτρια συνάρτηση του αθροίσματος $X = \sum_{i=1}^{N} Y_{i}$ με Electricintalis τυχαίο αριθμό όρων Ν, είναι: $g_X(s) = \pi(g_Y(s)).$
- Αν οι ανεξάρτητες τ.μ. $\{Y_i: i=1, 2, ...\}$ ακολουθούν Εκθετική κατανομή (β) παραμέτρου θ και η τ.μ. Ν ακολουθεί Γεωμετρική κατανομή παραμέτρου p, ποια η κατανομή της τ.μ. Χ:

Θεωρούμε τον τυχαίο περίπατο $\{X_n = X_{n-1} + Y_n: n = 1, 2, ...\}$ με χώρο καταστάσεων το σύνολο $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$, αρχική κατάσταση $X_0 = 0$ και ανεξάρτητες προσαυξήσεις $Y_n = +1$, -1, 0 με αντίστοιχες πιθανότητες $p = P[Y_n = 1]$, q $= P\{Y_n = -1\}$ και $r = P[Y_n = 0]$ (p+q+r = 1). Να προσδιοριστεί η ροπογεννήτρια συνάρτηση των προσαυξήσεων Υ_n και με εφαρμογή της ταυτότητας του Wald να προσδιοριστούν οι πιθανότητες απορρόφησης α και β με απορροφητικά φράγματα – a $(-a < X_0)$ και b $(b > X_0)$.

Zήτημα 3^{0} Έστω $\{X_n: n=0, 1, 2,...\}$ Μαρκοβιανή αλυσίδα με χώρο καταστάσεων S και $g:S \to T$ αμφιμονοσήμαντη συνάρτηση. Να δείξετε ότι η $\{Y_n=g(X_n): n=0,1,2,...\}$ είναι επίσης Μαρκοβιανή αλυσίδα.

√ **Ζήτημα 4º**. Δίνονται οι παρακάτω Στοχαστικοί Πίνακες:

$$\mathbf{E}_{1} \quad \mathbf{E}_{2} \quad \mathbf{E}_{3} \quad \mathbf{E}_{4}$$

$$\mathbf{P}_{1} = \begin{bmatrix} \mathbf{E}_{2} & \mathbf{E}_{3} & \mathbf{E}_{4} \\ \mathbf{E}_{3} & 0.4 & 0 & 0 & 0.6 \\ 0.2 & 0 & 0 & 0.8 \\ 0 & 0 & 0.3 & 0.7 \\ \mathbf{E}_{4} & 0.5 & 0.5 & 0 & 0 \end{bmatrix},$$

$$E_1 \quad E_2 \quad E_3 \quad E_4 \\ P_1 = \begin{bmatrix} 0.4 & 0 & 0 & 0.6 \\ 0.2 & 0 & 0 & 0.8 \\ 0 & 0 & 0.3 & 0.7 \\ E_4 & 0.5 & 0.5 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} E_1 \quad E_2 \quad E_3 \quad E_4 \quad E_5 \\ E_2 \quad 0.4 \quad 0.6 \quad 0 \quad 0 \quad 0 & 0 \\ 0.5 \quad 0 \quad 0 \quad 0 \quad 0.5 \\ 0 \quad 0.2 \quad 0 \quad 0 \quad 0.8 \quad 0 \\ E_2 \quad 0.2 \quad 0.2 \quad 0 \quad 0.8 \quad 0 \\ 0.2 \quad 0.2 \quad 0.6 \quad 0 \quad 0 \\ E_5 \quad 0.7 \quad 0 \quad 0 \quad 0 \quad 0.3 \end{bmatrix} . \quad \begin{cases} E_1 \quad E_2 \quad E_3 \quad E_4 \quad E_5 \\ E_4 \quad 0.5 \quad 0.5 \quad 0 \quad 0 \\ E_5 \quad 0.7 \quad 0 \quad 0 \quad 0 \quad 0.3 \end{bmatrix} . \quad \begin{cases} E_1 \quad E_2 \quad E_3 \quad E_4 \quad E_5 \\ 0.5 \quad 0 \quad 0 \quad 0 \quad 0.5 \\ 0.7 \quad 0 \quad 0 \quad 0 \quad 0.3 \end{bmatrix} . \quad \begin{cases} E_1 \quad E_2 \quad E_3 \quad E_4 \quad E_5 \\ 0.5 \quad 0 \quad 0 \quad 0 \quad 0.5 \\ 0.5 \quad 0 \quad 0 \quad 0 \quad 0.5 \\ 0.7 \quad 0 \quad 0 \quad 0 \quad 0.3 \end{bmatrix} . \quad \begin{cases} E_1 \quad E_2 \quad E_3 \quad E_4 \quad E_5 \\ 0.5 \quad 0 \quad 0 \quad 0 \quad 0.5 \\ 0.5 \quad 0 \quad 0 \quad 0 \quad 0.5 \\ 0.7 \quad 0 \quad 0 \quad 0 \quad 0.3 \end{bmatrix} . \quad \begin{cases} E_1 \quad E_2 \quad E_3 \quad E_4 \quad E_5 \\ 0.5 \quad 0 \quad 0 \quad 0 \quad 0.5 \\ 0.5 \quad 0 \quad 0 \quad 0 \quad 0.5 \\ 0.7 \quad 0 \quad 0 \quad 0 \quad 0.3 \\ 0.7 \quad 0 \quad 0 \quad 0$$

- Να ταξινομηθούν οι καταστάσεις σε κλάσεις. (α)
- Να γίνει ιεράρχηση των κλάσεων. (β)
- Να προσδιοριστούν, αν υπάρχουν, οι κλειστές κλάσεις. (γ)
- Να γραφούν οι στοχαστικοί πίνακες υπό την "κανονική" μορφή: (δ)

$$\mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{R} & \mathbf{T} \end{bmatrix}$$

 $\mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{R} & \mathbf{T} \end{bmatrix}$

και να καθορίσετε τις παροδικές, επαναληπτικές, γνήσια επαναληπτικές και περιοδικές κλάσεις, εάν υπάρχουν.

Ζήτημα 5°. Θεωρούμε τον απλό τυχαίο περίπατο $\{X_n:n=0,1,2,\ldots\}$ με χώρο καταστάσεων $S=\{0,1,2,\ldots\}$ και πιθανότητες μετάβασης $p_{i,i+1}=p_i,\ p_{i,i+1}=q_i=1-p_i$ με $0 < p_i < 1$ για όλα τα i > 1 και $p_0=0$, είναι δηλαδή η κατάσταση "0" απορροφητική. Έστω A το ενδεχόμενο απορρόφησης στην κατάσταση "0" και $\alpha_i=P[A|X_0=i]$ $(i \geq 0)$. Να δείξετε τα παρακάτω:

(α) Οι πιθανότητες α; ικανοποιούν την διαφοροεξίσωση

$$\alpha_i = \alpha_{i+1} p_i + \alpha_{i-1} q_i \blacktriangleleft (i > 1)$$
 we $\alpha_0 = 1$.

(β) Θέτοντας $\delta_i = \alpha_{i-1}$ - α_i , να λύσετε την ως άνω διαφοροεξίσωση και να προσδιορίσετε τη συνθήκη κάτω από την οποία έχουμε πιθανότητες απορρόφησης $\alpha_i < 1$ για όλα τα i > 1.

Να επιλέξετε 4 από τα 5. Τα θέματα είναι ισοδύναμα

Διάρκεια εξέτασης: 2.30'h.

Καλή επιτυχία