B. M. S. COLLEGE OF ENGINEERING, BANGALORE-560 019 DEPARTMENT OF MATHEMATICS

Fourth Semester B.E. Course-(AS/ME/EEE/ECE/ET/ML/CIVIL/EIE) Course Title: Complex Analysis, Probability and Statistical Methods Course Code: 22MA4BSCPS

UNIT 3: STATISTICAL METHODS

Correlation and Regression

1. Find the correlation co-efficient between x and y from the given data:

x:	78	89	97	69	59	79	68	57	
<i>y</i> :	125	137	156	112	107	138	123	108	Ans : $r = 0.96$

2. Find the co-efficient of correlation between industrial production and export using the following data and comment on the result.

```
Production (in crore tons): 55 56 58 59 60 60 62
Export (in crore tons): 35 38 38 39 44 43 45 Ans: r = 0.92
```

3. Find the correlation co-efficient between x and y for the given data. Find also the two regression lines.

```
x: 1
         2
                 3
                        4
                               5
                                      6
                                             7
                                                    8
                                                           9
                                                                   10
         12
                16
                        28
                               25
                                      36
                                             41
                                                    49
                                                           40
                                                                   50
y: 10
```

Ans: r = 0.96, x = 0.2y-0.64, y = 4.69x + 4.9

4. Psychological tests of intelligence and of engineering ability were applied to 10 students. Here is a record of ungrouped data showing intelligence ration and engineering ratio. Calculate the co-efficient of correlation.

Student	A	В	C	D	E	F	G	Η	I	J	
I.R.	105	104	102	101	100	99	98	96	93	92	
E.R.	101	103	100	98	95	96	104	92	97	94	Ans . $r = 0.59$

5. Establish the formula $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2 \sigma_x \sigma_y}$. Hence calculate r from the following data:

```
57
                                                                 90
x: 21
         23
                 30
                       54
                                     58
                                            72
                                                   78
                                                           87
                72
         71
                       83
                              110
                                     84
                                            100
                                                   92
                                                                 135
y: 60
                                                          113
                                                                        Ans: r = 0.876
```

6. Using the formula $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$, find r from the following data:

```
x : 92
         89
                        86
                               83
                                                     63
                                                             53
                                                                    50
                 87
                                       77
                                              71
y: 86
         88
                 91
                        77
                               68
                                       85
                                              52
                                                     82
                                                             37
                                                                    57
                                                                           Ans: r = 0.7291
```

7. In the following table are recorded dates showing the test scores made by salesman on an intelligence test and their weekly sales.

Salesman	1	2	3	4	5	6	7	8	9	10
Test scores	40	70	50	60	80	50	90	40	60	60
Sales (000)	2.5	6.0	4.5	5.0	4.5	2.0	5.5	3.0	4.5	3.0

Calculate the regression line of sales on test scores and estimate the most probable weekly sales volume if a salesman makes a score of 70.

Ans:
$$\bar{x} = 60 \ \bar{y} = 4.05$$
, $y = 0.06x + 0.45$, At $x = 70$, $y = 4.65$

UNIT 3: STATISTICAL METHODS

- 8. In a partially destroyed laboratory record, only the lines of regression of y on x and x on y are available as 4x-5y+33=0 and 20x-9y=107 respectively. Calculate \overline{x} , \overline{y} and the coefficient of correlation between x and y.

 Ans: $\overline{x}=13$, $\overline{y}=17$ r=0.6
- 9. The two regression equations of the variables x and y are x = 19.13 0.87y and y = 11.64 0.50x. Find (i) Mean of x's (ii) mean of y's (iii) the correlation co-efficient between x and y. **Ans**. Mean of x's = 15.79, Mean of y's = 3.74 and r = -0.66
- 10. If the co-efficient of correlation between two variables x and y is 0.5 and the acute angle between their lines of regression is $\tan^{-1}\left(\frac{3}{8}\right)$, show that $\sigma_x = \frac{1}{2}\sigma_y$.
- 12. The following results were obtained from records of age (x) and blood pressure (y) of a group of 10 men.

Mean: x : 53 142

Variance: 130 165 and 2000

Find the appropriate regression equation and use it to estimate the blood pressure of a man whose age is 45. **Ans**: y = 0.006 x + 141.682 At x = 45 y = 141.952

Rank Correlation

1. Find the rank correlation for the following data:

i.	х:	56	42	72	36	63	47	55	49	38	42	68	60
	y:	147	125	160	118	149	128	150	145	115	140	152	155

ii.	x:	2	4	5	6	8	11
	y:	18	12	10	8	7	5

iii.	x:	14	17	28	17	16	13	24	25	18	31
	y:	0.9	1.1	1.6	1.3	1.0	0.8	1.5	1.4	1.2	2.0

iv.	x :	2	5	7	6	8	1	3	4
	y:	4	6	8	5	9	2	1	3

v.	x:	1	2	3	4	5	6
	y:	2	1	5	3	4	6

2. Ten competitors in a beauty contest were given ranking x and y as follows:

x:	1	6	5	10	3	2	4	9	7	8
y:	6	4	9	8	1	2	3	10	5	7

Compute the coefficient of rank correlation.

3. Ten students get the following percentage of marks in two subjects A and B. Find the rank correlation coefficient

Marks in A	78	36	98	25	75	82	90	62	65	39
Marks in B	84	51	91	60	68	62	86	58	53	47

Curve Fitting

I. Least Squares Straight line fitting:

1. If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form P = a + bW connecting P and W using the following data

P	12	15	21	25
W	50	70	100	120

Ans: $P = 2.2759 + 0.1879 \overline{W} \quad P(150) = 30.4635$

2. Find a least squares straight line for the following data and estimate y at x = 4 and x at y = 4.

X	1	2	3	4	5	6
Y	6	4	3	5	4	2

Ans: y = 5.7999 - 0.514x, y(4) = 3.743, x = 7.1 - 0.94y, x(4) = 3.5.

3. Fit a least squares straight line to the following data

X	2	7	9	1	5	12
у	13	21	23	14	15	21

Ans: y = 12.45 + 0.8977 x

4. In some determinations of the volume V of carbon dioxide dissolved in a given volume of water at different temperature the following pairs of values were obtained:

	θ	0	5	10	15
ı					

Dept. of Mathematics, BMSCE

UNIT 3: STATISTICAL METHODS

	1.00	4 4 =	1.10	1.00
V	1.80	1.45	1.18	1.00

Obtain a relation of the form $V = a + b\theta$ by the method of least squares.

Ans: $V = 1.758 - 0.053 \theta$.

5. Fit a straight line to the following data

x(year)	1961	1971	1981	1991	2001
Y(production in 1000 tons)	8	10	12	14	16

Find the expected production in 2006.

6. A simply supported beam carries a concentrated load P at its midpoint. Corresponding to various values of P, the maximum deflection y is measured. The data are given below:

	P	100	120	140	160	180	200
Find a law of	у	0.45	0.55	0.60	0.70	0.80	0.85

the form y = a + bP.

Ans: y = 0.004P + 0.048

7. The results of measurement of electric resistance R of a copper bar at various temperatures $t^{\circ}c$ are listed below:

t	19	25	30	36	40	45	50
R	76	77	79	80	82	83	85

Find a relation R = a + bt where a & b are constants.

Ans: R = 70.052 + 0.292 t.

II. Least squares quadratic curve (or) parabolic curve fitting:

1. Fit a least squares quadratic curve to the following data:

х	1	2	3	4
у	1.7	1.8	2.3	3.2

Estimate y (2.4)

Ans:
$$y = 2 - 0.5 x + 0.2 x^2$$
 & $y(2.4) = 1.952$

2. Fit a least squares parabola to the following data:

х	0.0	0.2	0.4	0.7	0.9	7.0
у	1.016	0.768	0.648	0.401	0.272	0.193

Ans: $y = 0.999 - 1.0006 x + 0.210 x^2$

3. Find the quadratic equation that fits the following data by least squares method

x	1	2	3	4	5	6
у	13235	11528	11600	12747	14940	18400

Ans: $y = 11953 + 531.5 x + 153.3 x^2$.

4. Using least squares method, fit a second degree polynomial. Estimate y at x = 6.5

Dept. of Mathematics, BMSCE

UNIT 3: STATISTICAL METHODS

х	0	1	2	3	4	5	6	7	8
у	12.0	10.5	10.0	8.0	7.0	8.0	7.5	8.5	9.0

Ans: $y = 12.2 - 1.85 x + 0.183 x^2 & y(6.5) = 7.9$

5. Fit a second degree parabola to the following data:

х	1.0	1.5	2.0	2.5	3.0	3.5	4.0
у	1.1	1.3	1.6	2.0	2.7	3.4	4.1

Ans: $y = 1.04 - 198 x + 0.244 x^2$

6. If V (km/hr) and R (kg/ton) are related by a relation of the type $R = a + bV^2$, find a & b by the method of least squares with the help of the following table.

V	10	20	30	40	50
R	8	10	15	21	30

Ans: a = 6.68 & b = 0.0092

7. The following table gives the results of the measurements of train resistances, V is the velocity in miles per hour. R is the resistance in pounds per ton.

the resistance in			pouria	o per u	/11.		
	V	20	40	60	80	100	120
	R	5.5	9.1	14.9	22.8	33.3	46.0

If R is related to V by the relation $R = a + bV + cV^2$, find. a, b & c.

Ans: a = 3.48, b = -0.002 & c = 0.0029

8. Fit a second-degree polynomial (or parabola) to the following data:

	х	1929	1930	1931	1932	1933	1934	1935	1936	1937
•	У	352	356	357	358	360	361	361	360	359

Ans: $y - 358 = 2.0043 + 0.85(x - 1933) - 0.2673(x - 1933)^2$

III. Exponential growth curve fitting: $y = ax^b$.

1. Fit a power function of the form $y = ax^b$ to the following data and estimate y at x = 12;

x(Price)	20	16	10	11	14
y (Demand)	22	41	120	89	56

2. Fit a power function $y = ax^b$ to the following data pertaining to demand for a product and its price charged at five different cities. Predict the demand when price of the product is Rs. 12

Price (Rs.)	X	20	16	10	11	14
Demand	у	22	41	120	89	56
(1000 units)						

3. Fit a geometric curve $y = ax^b$ to the following data and estimate y(2.5).

х	1	2	4	6
У	6	4	2	2

4. Fit a power function of the form $y = a x^b$ to the following data.

х	1	2	3	4	5
у	12.5	8	4.5	2	0.5

5. Fit a least square geometric curve $y = a x^b$ to the following data.

Х	1	2	3	4	5
у	0.5	2	4.5	8	12.5