人工智能中的数学讲义

方聪

北京大学

摘要

本讲义收录了人工智能中的数学课程中的主要概念与课程习题。概率与统计讲义内容摘录于陈家鼎、郑忠国《概率与统计》教材与复熹和张原概率与统计课程课件。图论内容摘录于耿素云、屈婉玲、王捍贫《离散数学教程》。本讲义版权归上述作者,不会出版。讲义仅供于上该课程的同学们学习参考,讲义的错误会不断修正。感谢张乙沐、张海涵对讲义整理的帮助。

1.1 随机事件及其运算

1.1.1 随机事件

样本空间和样本点: 随机实验 E 中所有可能结果组成的集合称为 E 的**样本空间**,记为 Ω 。样本空间中的元素称为样本点,记为 ω

• E_1 : 抛掷硬币, 观察正面 H, 反面 T 出现的情况。

$$\Omega_1 = \{H, T\}.$$

• E_2 : 抛掷一枚硬币 3 次, 观察正面 H, 反面 T 出现的情况。

 $\Omega_2 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

• E₃: 抛掷一枚硬币 3 次, 观察正面出现的次数。

$$\Omega_3 = \{0, 1, 2, 3\}.$$

随机现象的某些样本点组成的集合称为**随机事件**,简称为事件,常用 A, B, C, \cdots 表示

例如,E 为抛掷一枚骰子,事件 A = "出现奇数点",即 A = $\{1,3,5\}$,是样本空间 Ω = $\{1,2,3,4,5,6\}$ 的一个子集

事件的频率:设 μ 是n次实验中事件A发生的次数,则事件A发生的频率 $\frac{\mu}{n}$,随着实验次数n增大,频率会在某一数值p附近摆动,称为该事件的概率,记为P(A)=p

由于频率 $\frac{\mu}{n}$ 总在 0,1 之间, 我们有:

$$0 \leqslant P(A) \leqslant 1$$

例如投一枚硬币 n 次,出现 μ 次正面,则 $\frac{\mu}{n} \stackrel{n \to \infty}{\to} p$ 。其中,主观概率 p 为事件的置信度,概率是可能性大小的度量。大概率事情易发生,小概率事情不易发生。

1.1.1.1 事件的交和并

定义 2.1 设有事件 A 和事件 B, 如果 A 发生,则 B 必发生,那么称事件 B 包含事件 A (或称事件 A 在 B 中),并记为

$$A \subset B \ (\mbox{\it id}\ B \supset A)$$

定义 2.2 如果事件 A 包含事件 B, 同时事件 B 包含事件 A, 则事件 A 和事件 B 相等, 并记为

$$A = B$$

定义 2.3 设 A 和 B 都是事件,则 "A 或 B" 表示这样的事件 C: C 发生当且仅当 A 或 B 中至少有一个发生,该事件 C 叫做 A 与 B 的并,记为 $A \cup B$ 。

例 2.1 (对应郑书例 2.1) 在桌面上,投掷两枚匀称的硬币,A 表示"恰好一枚国旗朝上",B 表示"两枚国旗朝上",C 表示"至少一枚国旗朝上",则 $C = A \cup B$.

对于并运算,有以下性质,我们恒记必然事件为U,不可能事件为V:

$$A \cup B = B \cup A$$

$$A \cup U = U \,, \ A \cup V = V$$

定义 2.4 设 A 和 B 都是事件,则 "A 且 B" 表示这样的事件 C: C 发生当且仅当 A 和 B 都发生,该事件 C 叫做 A 与 B 的交,记为 $A \cap B$,也简记为 AB。

在例 2.1 中, $A \cap C = A$, $B \cap C = C$, $A \cap B = A$

对于交运算,有以下性质:

$$A \cap B = B \cap A$$
$$A \cap U = A, \ A \cap V = V$$

1.1.1.2 事件的余和差

定义 2.5 设 A 是事件,称"非 A"是 A 的对立事件(或称余是事件),其含义为,"非 A"发生当且仅当 A 不发生,常常用 \overline{A} 表示"非 A",也用 A^c 表示"非 A"。

由定义知 $\overline{(A)} = A$, $\overline{U} = V$, $\overline{V} = U$

定义 2.6 设 A 和 B 都是事件,则两个事件的差 "A 减去 B" 表示这样的事件 C: C 发生当且仅 当 A 发生而 B 不发生,该事件 C 记为 A - B (或 $A \setminus B$)

由定义知, $A - B = A \cap \overline{B}$ 画图法确定关系。

1.1.1.3 事件运算的性质

事件的基本运算还有以下性质:

- $A \cup (B \cup C) = (A \cup B) \cup C$ "并"的结合律
- $A \cap (B \cap C) = (A \cap B) \cap C$ "交"的结合律
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 分配律
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 分配律
- $A \cup A = A$, $A \cap A = A$
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$ 对偶律
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 対偶律

多个事件的交和并:

设 A_1,A_2,\cdots,A_n 是 n 个事件,则 " A_1,A_2,\cdots,A_n " 的并是指这样的事件: 它发生当且仅当 A_1,A_2,\cdots,A_n 中至少一个发生,常常用 $\mathop{\cup}_{i=1}^n A_i$ 表示 A_1,A_2,\cdots,A_n 的并

设 A_1, A_2, \dots, A_n 是 n 个事件,则 " A_1, A_2, \dots, A_n " 的交是指这样的事件: 它发生当且仅当 A_1, A_2, \dots, A_n 这 n 个事件都发生,常常用 $\bigcap_{i=1}^n A_i$ 表示 A_1, A_2, \dots, A_n 的交,也用 $A_1A_2 \dots A_n$ 表示这个 "交"

实际应用中, 还需定义无穷多事件的并与交

设 $A_1,A_2,\cdots,A_i,\cdots$ 是一列事件,则 B 是指这样的事件:B 发生当且仅当这些 $A_i(i=1,2,\cdots)$ 中至少一个发生,这个 B 叫做诸 A_i 的并,记为 $\underset{i=1}{\overset{\infty}{\cup}}A_i$,有时也写为 $A_1\cup A_2\cup\cdots$ 设 $A_1,A_2,\cdots,A_i,\cdots$ 是一列事件,则 C 是指这样的事件:C 发生当且仅当这些 $A_i(i=1,2,\cdots)$

设 $A_1, A_2, \cdots, A_i, \cdots$ 是一列事件,则 C 是指这样的事件:C 发生当且仅当这些 $A_i (i = 1, 2, \cdots)$ 都发生,这个 C 叫做诸 A_i 的交,记为 $\bigcap_{i=1}^{\infty} A_i$,有时也写为 $A_1 A_2 \cdots$

例: 取 $X \in \mathbb{R}$, 事件 A_i 为 $X \in [\frac{1}{i+1}, \frac{1}{i}]$, 事件 B_i 为 $X \in [0, \frac{1}{i}]$ 。则事件 $\overset{n}{\underset{i=1}{\cup}} A_i$ 发生等价于 $X \in [\frac{1}{n+1}, 1]$,事件 $\overset{n}{\underset{i=1}{\cap}} B_i$ 发生等价于 $X \in [0, \frac{1}{n}]$ 。进而当 $n \to \infty$ 时事件 $\overset{\infty}{\underset{i=1}{\cup}} A_i$ 发生等价于 $X \in (0, 1]$,事件 $\overset{\infty}{\underset{i=1}{\cap}} B_i$ 发生等价于 X = 0。

并的更一般定义是,设 $\{A_a, a \in \Gamma\}$ 是一族事件(其中 Γ 是任何非空集,每个 $a \in \Gamma$ 对应一个事件 A_a),这些事件 A_a 的 "并" 是指这样的事件 B: B 发生当且仅当至少一个 A_a 发生,这个 B 常常 记为 $\bigcup_{a \in \Gamma} A_a$,类似可以定义一族事件的交 $\bigcap_{a \in \Gamma} A_a$

例 2.3: (对应郑书例 2.3) 一射手向一个目标连续射击,设 A_1 = "第一次射击,命中", A_i = "前 i-1 次射击都未命中,第 i 次射击命中"($i=2,3,\cdots$),B= "终于命中",则 $B= \underset{i=1}{\overset{\infty}{\cup}} A_i$ **例 2.4:** (对应郑书例 2.4) 一射手向一个目标连续射击,设 A_i = "第 i 次射击,未命中目标"($i=2,3,\cdots$)则 $\underset{i=1}{\overset{\infty}{\cap}} A_i$ = "每次均未命中目标" 不难验证,对可列个事件的并和交有以下规律:

- $A \cup (\bigcap_{i=1}^{\infty} B_i) = \bigcap_{i=1}^{\infty} (A \cup B_i)$ 分配律
- $A \cap (\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} (A \cap B_i)$ 分配律
- $\overline{(\bigcup_{i=1}^{\infty} A_i)} = \bigcap_{i=1}^{\infty} \overline{A_i}$ 对偶律
- $(\bigcap_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} \overline{A_i}$ 对偶律

1.1.1.4 互斥事件

互不相容的事件

如果事件 A 和事件 B 不能都发生,即 $A \cap B = V$,则称 A 和 B 是互不相容的事件(也称互斥的事件)

称事件 $A_1, \cdots A_n$ 互不相容,若对任何 $i \neq j (i, j = 1, \cdots n)$, A_i 与 A_j 互不相容

例如,抛掷两枚硬币,事件"恰好一枚国徽朝上"和事件"两枚都是国徽朝上"是互不相容的。不难看出,对任何事件 A,A 和 \overline{A} 是互不相容的

• 加法公式: $A_1, A_2, ...$ 互不相容, 则:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

• $P(A \cup B) = P(A) + P(B) - P(AB)$

1.2 概率的公理化定义

概率空间子类: 设 Ω 为样本空间, \mathcal{F} 为 Ω 的一些子集构成的集类。若 \mathcal{F} 满足以下三个条件: (1) $\Omega \in \mathcal{F}$, (2) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$, (3) $\{A_n\}_{n \in \mathbb{N}} \subsetneq \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$, 则称 \mathcal{F} 为概率空间子类

例:

- $\mathcal{F} = \{\emptyset, \Omega\}$ 平凡概率空间子类
- $\mathcal{F} = \{\emptyset, \Omega, A, \overline{A}\}$ 包含 A 的最小概率空间子类
- $\mathcal{F} = \{A | A \subset \Omega\}$ Ω 上的最大概率空间子类
- $\Omega = \{\omega_1, \dots, \omega_n\}$,则 Ω 所有子集构成的概率空间子类共有 2^n 个元素

定义:设 \mathcal{F} 是满足上述条件的概率空间子集类。概率 $P = P(\cdot)$ 是 \mathcal{F} 上面定义的实值函数,满足:

- 非负性: $P(A) \ge 0$ 对于一切 $A \in \mathcal{F}$
- 规范性: P(Ω) = 1
- 可列可加性: 若 $A_n \in \mathcal{F}(n=1,2,\cdots)$ 两两不相交,则

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

 (Ω, \mathcal{F}, P) 为概率空间

例 1: 假定 $\Omega = \{\omega_1, \dots, \omega_n\}$, \mathcal{F} 为全体子集构成的概率空间子类。设 p_1, \dots, p_n 为 n 个非负实数,且满足 $\sum_{i=1}^n p_i = 1$ 。令

$$\mathbb{P}(\emptyset) = 0, \quad \mathbb{P}(A) = \sum_{j=1}^{k} p_{i_j}, \quad A = \{\omega_{i_1}, \dots, \omega_{i_k}\}, k = 1, \dots, n$$

则 \mathbb{P} 为 (Ω, \mathcal{F}) 上概率。

概率 P 有以下性质:

- $(1) P(\emptyset) = 0;$
- (2) 若 $A \in \mathcal{F}$, 则 $P(A^c) = 1 P(A)$;
- (3) 若 A_1, \dots, A_n 都属于 \mathcal{F} 且两两不相交,则

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$
 (1.2.1)

(4) 若 $A \subset B$, $A \in \mathcal{F}$, $B \in \mathcal{F}$, 则 $P(A) \leqslant P(B)$, 且

$$P(B - A) = P(B) - P(A)$$
(1.2.2)

(5) 若 $A_n \subset A_{n+1}$, $A_n \in \mathcal{F}(n=1,2,\cdots)$, 则

$$P(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$$
 (1.2.3)

(6) 若 $A_n \supset A_{n+1}$, $A_n \in \mathcal{F}(n=1,2,\cdots)$, 则

$$P(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$$
 (1.2.4)

$$P(\bigcup_{n=1}^{\infty} A_n) \leqslant \sum_{n=1}^{\infty} P(A_n)$$
 (1.2.5)

2.1 古典概型

模型定义: 若随机现象有如下两个特征:

- (1) 在实验中它的全部可能性只有有限个;
- (2) 基本事件发生或出现是等可能的;

则称其对应的数学模型为古典概型

取

$$\Omega = \{\omega_1, \omega_2, \cdots, \omega_n\}, \quad \mathcal{F} = \{A | A \subset \Omega\}$$

 $\Diamond P$ 为 (Ω, \mathcal{F}) 上的概率测度,满足

$$P(\{w_1\}) = \dots = P(\{w_n\})$$

则 $(\Omega, \mathcal{F} P)$ 为古典概型对应的概率空间。

计算公式: 对 $A = \{\omega_{i_1}, \dots, \omega_{i_k}\} \in \mathcal{F}$,利用概率的有限可加性可知:

$$P(A) = \sum_{j=1}^{k} P(\{\omega_{i_j}\}) = \frac{k}{n} = \frac{|A|}{|\Omega|}$$

排列: 从含有 n 个不同元素的总体中抽取 r 个进行排列

- (1) 放回情形: 共有 n^r 种排列方式
- (2) 不放回情形: 共有 $A_n^r := n(n-1)\cdots(n-r+1)$ 种排列方式 当 r=n 时,为全排列,此时 $A_n^n=n!$ 。

组合: (1) 从 n 个不同元素中取出 r 个而不考虑其顺序,称为组合,其总数为 $C_n^r = \frac{n!}{r!(n-r)!} = \frac{A_n^r}{r!}$ (2) 把 n 个不同元素分成 k 个部分,且第 i 个部分有 r 个元素, $1 \le i \le k$,且 $r_1 + r_2 + \cdots + r_k = n$,则有 $\frac{n!}{r_1!r_2\cdots r_k!}$ 种方法

- (3) 把 n 个元素全部带有标注,其中 n_1 个带标注 1, n_2 个带标注 2, \cdots , n_k 个带标注 k。现在从此 n 个元素中取出 r 个,使得带有标注 i 的元素有 r_i 个,其中 $1 \le i \le k$ 且 $r_1 + r_2 + \cdots + r_k = r$ 。则不同取法的总数为 $C_{n_1}^{r_1}C_{n_2}^{r_2}\cdots C_{n_k}^{r_k}$ 。
- (4) 从 n 个不同元素中有重复的取出 r 个,不计顺序,则不同的取法有 C_{n+r-1}^r (有重复组合数) **组合公式**: 对一切正整数 a,b,

$$\sum_{i=0}^{n} C_{a}^{i} C_{b}^{n-i} = C_{a+b}^{n}$$

约定当 k > n 时, $C_n^k = 0$ 。特别地,

$$\sum_{i=0}^{n} (C_n^i)^2 = C_{2n}^n$$

例 1: (对应郑书例 3.1) 某人同时抛掷两枚骰子,问:得到 7点(两颗骰子的点数之和的概率是多少?)

解: 我们用甲乙分别表示这两颗骰子,每颗骰子共有 6 种可能的点数: 1,2,3,4,5,6,两颗骰子共有 6×6=36 种可能结果: $(i,j)(i=1,\cdots,6)(j=1,\cdots,6)$,这里 i 表示骰子甲的点数,j 表示骰子乙的点数,显然这些结果出现的机会是相等的,它们构成了等概完备事件组,事件"得到 7点"由 6 种结果(基本事件)组成: (1,6),(2,5),(3,4),(4,3),(5,2),(6,1),故事件"得到 7点"的概率为 $\frac{6}{36}=\frac{1}{6}$ \square

例 2: 甲口袋有 5 个白球, 3 个黑球, 乙口袋中有 4 个白球, 6 个黑球, 从两个口袋中各任取一球, 求取到的两个球颜色相同的概率。

解:从两个口袋中各取一球,共有 $C_8^1C_1^10$ 种等可能取法。两球颜色相同可能情况为:从甲乙口袋均取出白球,从甲乙口袋均取出黑球,共有 $C_5^1C_4^1+C_3^1C_6^1$ 种取法,于是

$$P$$
(取到的两个球颜色相同) = $\frac{C_5^1C_4^1 + C_3^1C_6^1}{C_8^1C_{10}^1} = \frac{19}{40}$

例 3: (巴拿赫问题) 某数学家有两盒火柴,每盒有 n 根,每次使用时,他任取一盒并从中抽出一根,问他发现一盒空而同时另一盒还有 $r(0 \le r \le n)$ 的概率为多少 (发现为空表示最后一次抽到空盒)?

解: 设两盒火柴分别为 A, B, 由对称性,所求概率为事件 E = "发现 A 盒空而 B 盒还有 r 根" 的概率的 2 倍。

先计算样本空间中的样本点个数,由于共取了2n-r+1次,故有 2^{2n-r+1} 个样本点。

考察事件 E,等效为前 2n-r 次 A 盒恰好取 n 次,次序不论,最后一次必定取到 A 盒,此种样本点共有 C_{2n-r}^n 个,因此

$$P(E) = \frac{C_{2n-r}^n}{2^{2n-r+1}}.$$

所求概率为 $\frac{C_{2n-r}^n}{2^{2n-r}}$.

2.2 条件概率与独立性

2.2.1 条件概率

条件概率:设 $(\Omega, \mathcal{F} P)$ 为概率空间, $B \in \mathcal{F}$ 满足 P(B) > 0。称

$$P(A|B) = \frac{P(AB)}{P(B)}, A \in \mathcal{F}$$

为 B 发生条件下 A 发生的条件概率。

条件概率 $P(\cdot|B)$ 为 \mathcal{F} 上的概率, 即满足:

- $P(A|B) \geqslant 0$, $\forall A \in \mathcal{F}$
- $P(\Omega|B) = 1$
- $\forall \{A_n\} \subset \mathcal{F}, A_n \cap A_m = \emptyset, \forall n \neq m,$

$$P(\sum_{n=1}^{\infty} A_n | B) = \sum_{n=1}^{\infty} P(A_n | B)$$

容易得到, $P(B|\Omega) = P(B)$ 。

乘法公式: $P(AB) = P(B \mid A)P(A)$

乘法公式的推广: $P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$, 其中 $P(A_1A_2\cdots A_{n-1}>0$ 。

例 1: 将 52 张扑克牌 (不含大王、小王) 随机地分为 4 堆, 每堆 13 张, 问: 各堆都含有 A 牌 (即 1 点) 的概率是多少?

解: 将 4 堆扑克牌编号: 第 1 堆,第 2 堆,第 3 堆,第 4 堆,用 A_1, A_2, A_3, A_4 依次表示 4 个 A 牌,设 i_1, i_2, i_3, i_4 是 1,2,3,4 的一个排列,令 $E_{i_1 i_2 i_3 i_4}$ = "第 i_1 堆有 A_1 但没有 A_2, A_3, A_4 ,第 i_2 堆有 A_2 但没有 A_1, A_3, A_4 ,第 i_3 堆有 A_3 但没有 A_1, A_2, A_4 ,第 i_4 堆有 A_4 但没有 A_1, A_2, A_3 ",E = "各堆都含有 A",则

$$E = \bigcup_{i_1 i_2 i_3 i_4} E_{i_1 i_2 i_3 i_4}$$

这些事件两两不相容,易知 $P(E) = 4!P(E_{1234})$,令 $E_k = \{$ 第 k 堆含有 A_k 但不含有其他的 $A_i(j \neq k)\}$ (k = 1, 2, 3, 4),则

$$P(E_{1234}) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)P(E_4|E_1E_2E_3)$$

易知

$$P(E_1) = C_{48}^{12}/C_{52}^{13}, \quad P(E_2|E_1) = C_{36}^{12}/C_{39}^{13},$$

$$P(E_3|E_1E_2) = C_{24}^{12}/C_{26}^{13}, \quad P(E_4|E_1E_2E_3) = 1,$$

于是

$$P(E_{1234}) = \frac{C_{48}^{12}C_{36}^{12}C_{24}^{12}}{C_{52}^{13}C_{39}^{13}C_{26}^{13}} = \frac{13^4}{52 \times 51 \times 50 \times 49},$$

$$P(E) = 4!P(E_{1234}) \approx 0.105$$

例 2: (罐子模型)设罐中有b个黑球,r个红球,每次随机取出一个球,取出后将原球放回,还加进c个同色球和d个异色球,记 B_i 为"第i次取出的是黑球", R_j 为"第j次取出的是红球"。若连续从罐中取出三个球,其中有两个红球,一个黑球,则由乘法公式我们可得

$$P(B_1R_2R_3) = P(B_1)P(R_2|B_1)P(R_3|B_1R_2) = \frac{b}{b+r} \cdot \frac{r+d}{b+r+c+d} \cdot \frac{r+d+c}{b+r+2c+2d},$$

$$P(R_1B_2R_3) = P(R_1)P(B_2|R_1)P(R_3|R_1B_2) = \frac{r}{b+r} \cdot \frac{b+d}{b+r+c+d} \cdot \frac{r+d+c}{b+r+2c+2d},$$

$$P(R_1R_2B_3) = P(R_1)P(R_2|R_1)P(B_3|R_1R_2) = \frac{r}{b+r} \cdot \frac{r+c}{b+r+c+d} \cdot \frac{b+2d}{b+r+2c+2d},$$

以上概率与黑球在第几次被抽出有关。罐子模型也称波利亚(Polya)模型,这个模型的各种变化如下:

(1) 当 c = -1, d = 0 时,为不返回抽样,此时前次抽取结果会影响后次抽取结果,但只要抽取的黑球和红球个数确定,则概率不依赖其抽出球的次序,有

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br(r-1)}{(b+r)(b+r-1)(b+r-2)}$$

(2) 当 c=0, d=0 时,为返回抽样,此时前次抽取结果不会影响后次抽取结果,上述三种概率相等,有

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br^2}{(b+r)^3}$$

(3) 当 c > 0, d = 0 时,为传染病模型,此时每次取出球后会增加下一次取到同色球的概率,或者说,每发现一个传染病患者,以后都会增加再传染的概率。同样的,上述三种概率相等,且都等于

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br(r+c)}{(b+r)(b+r+c)(b+r+2c)}$$

可以看出,当 d=0 时,只要取出的黑球和红球个数确定,则概率不依赖于其抽出球的顺序。

(4) 当 c = 0, d > 0 时,为安全模型,可以解释为,每当事故发生,会抓紧安全工作,从而下一次发生事故的概率会减少,而当事故未发生时,安全工作会松懈,下一次发生事故的概率会增大,上述三种概率分别为:

$$P(B_1R_2R_3) = \frac{b}{(b+r)} \cdot \frac{r+d}{b+r+d} \cdot \frac{r+d}{b+r+2d},$$

M

$$P(R_1 B_2 R_3) = \frac{r}{(b+r)} \cdot \frac{b+d}{b+r+d} \cdot \frac{r+d}{b+r+2d},$$

$$P(R_1 R_2 B_3) = \frac{r}{(b+r)} \cdot \frac{r}{b+r+d} \cdot \frac{b+2d}{b+r+2d}$$

例:设 n 件产品中有 m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率。

 \mathbf{M} : 记事件 A "有一件是合格品",B "另一件也是合格品"。则

P(A) = P (取出一件合格品,一件不合格品) +P (取出两件都是合格品)

$$= \frac{C_m^1 C_{n-m}^1}{C_n^2} + \frac{C_{n-m}^2}{C_n^2} = \frac{2m(n-m) + (n-m)(n-m-1)}{n(n-1)}$$
$$= \frac{(n-m)(n+m-1)}{n(n-1)}$$

$$P(AB) = P$$
 (取出两件都是合格品) = $\frac{C_{n-m}^2}{C_n^2} = \frac{(n-m)(n-m-1)}{n(n-1)}$

于是所求概率为

$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{\frac{(n-m)(n-m-1)}{n(n-1)}}{\frac{(n-m)(n+m-1)}{n(n-1)}} = \frac{n-m-1}{n+m-1}$$

2.2.2 事件的独立性

事件的独立性: 设 $(\Omega, \mathcal{F} P)$ 为概率空间,称 $A, B \in \mathcal{F}$ 相互独立(独立),若

$$P(AB) = P(A)P(B)$$

性质: (1) 若 A, B 独立, 且 P(B) > 0, 则

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

即条件概率等于无条件概率。

(2) 若 A, B 独立,则 $A 与 \overline{B}$, $\overline{A} 与 B$, $\overline{A} 与 \overline{B}$ 亦独立。

$$P(A\overline{B}) = P(A) - P(AB) = P(A) - P(A)P(B) = P(A)P(\overline{B})$$

(3) 零概率事件及其对立的事件与任意的事件都独立。

例: 袋中有 a 只黑球和 b 只白球,令 A: "第一次摸到黑球",B: "第二次摸到黑球"。讨论 A 和 B 的独立性。

(1) 放回情形。因为

$$P(A) = \frac{a}{a+b}, P(AB) = \frac{a^2}{(a+b)^2}, P(\overline{A}B) = \frac{ab}{(a+b)^2},$$

所以

$$P(B) = P(AB) + P(\overline{A}B) = \frac{a^2 + ab}{(a+b)^2} = \frac{a}{a+b}$$

故

$$P(A)P(B) = P(AB)$$

(2) 不放回情形。易知

$$P(A) = P(B) = \frac{a}{a+b}, P(\overline{A}B) = \frac{ab}{(a+b)(a+b-1)}$$

故

$$P(A)P(B) \neq P(AB)$$

定义: 设 $\{A_k\}_{k \leq n} \subset \mathcal{F}$ 。称 A_1, A_2, \cdots, A_n 相互独立,若

$$P(\bigcap_{j=1}^{k} A_{i_j}) = \prod_{j=1}^{k} P(A_{i_j}), \quad 1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n, k \leqslant n$$

注意:独立 ⇒ 两两独立,但是反之不对:

伯恩斯坦反列:一个均匀的正四面体,其第一、二、三面分别涂上红、黄、蓝三种颜色第四面同时涂上以上三种颜色。以 A,B,C 分别表示投一次四面体出现红、黄、蓝颜色朝下的事件,则

$$P(A) = P(B) = P(C) = \frac{1}{2}, \quad P(AB) = P(BC) = P(AC) = \frac{1}{4}$$

从而 A, B, C 两两独立, 但是,

$$P(ABC) = \frac{1}{4} \neq P(A)P(B)P(C)$$

独立性与概率计算: 设 A_1, A_2, \cdots, A_n 相互独立, 则

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = 1 - \prod_{i=1}^n P(\overline{A_i})$$

例:设有某型号的高射炮,每门炮(发射一发)击中敌机的概率为 0.6,现在若干门炮同时发射(每炮射一发),问:若要以 99%的把握击中来犯的一架敌机,至少需要配置几门高射炮?

解: 设 n 是需要配置的高射炮的门数,记 A_i = "第 i 门炮击中敌机" $(i=1,\cdots,n)$,A = "敌机被击中"。由于 $A=\bigcup\limits_{i=1}^n A_i$,于是要找到 n,使得

$$P(A) = P(\bigcup_{i=1}^{n} A_i) \geqslant 0.99$$

由于 $P(A) = 1 - P(\overline{A}) = 1 - P(\bigcup_{i=1}^{n} \overline{A_i})$, 且 $\overline{A_1}, \dots, \overline{A_n}$ 相互独立, 故

$$P(A) = 1 - P(\overline{A_1}) \cdots P(\overline{A_n}) = 1 - 0.4^n$$

为使不等式成立,必须且只需 $1-0.4^n \ge 0.99$ 。由此得

$$n \geqslant \lg 0.01/\lg 0.4 = 5.026$$

故至少需配置 6 门高射炮方能以 99% 的把握击中敌机。

例: 设 A, B, C 三事件相互独立, 证明 A - B 与 C 独立。

解: 因为

$$P((A - B)C) = P(AC - BC) = P(AC) - P(ABC)$$

$$= P(A)P(C) - P(A)P(B)P(C)$$

$$= (P(A) - P(A)P(B))P(C)$$

$$= (P(A) - P(AB))P(C) = P(A - B)P(C).$$

所以 A-B 与 C 独立。

2.3 全概率公式和贝叶斯公式

2.3.1 全概率公式

完备事件组: 若 $\{B_n\}_{n\geqslant 1}\subset \mathcal{F}$ 满足两两互斥且 $\sum\limits_{n=1}^{\infty}B_n=\Omega$,则称 $\{B_n\}_{n\geqslant 1}$ 为完备事件组。

全概率公式: 假定 $\{B_n\}_{n\geqslant 1}$ 为完备事件组,则

$$P(A) = \sum_{n=1}^{\infty} P(B_n) P(A|B_n), \forall A \in \mathcal{F}$$

注意: 在上式中, 若 $P(B_n) = 0$, 则规定 $P(B_n)P(A|B_n) = 0$ 。

例: 一保险公司相信人群可以分为 2 类: 一类是容易出事故的; 另一类是不容易出事故的。已知前者在一年内出事故的概率为 0.4, 后者在一年内出事故的概率为 0.2。前者约占人群的 30%。今有一人前来投保, 他在一年内出事故的可能性有多大?

解: 设 A = "他在一年内出事故",B = "他是容易出事故的",则 B, \overline{B} 构成完备事件组,有

$$P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B})$$

图 2.1: 完备事件组

图 2.2: 全概率公式

由于
$$P(B)=0.3, P(A|B)=0.4, P(\overline{B})=0.7, P(A|\overline{B})=0.2$$
,于是
$$P(A)=0.3\times0.4+0.7\times0.2=0.26$$

例: 甲口袋有 1 个黑球,2 个白球,乙口袋有 3 个白球,每次从两口袋中任取一球,交换后放入另一口袋中,求交换 n 次之后,黑球仍然在甲口袋的概率。

设事件 A_i 为 "第 i 次交换后黑球仍然在甲口袋中",记 $p_i=P(A), i=0,1,2,\cdots$,则有 $p_0=1$,且

$$P(A_{i+1} \mid A_i) = \frac{2}{3}, \quad P(A_{i+1} \mid A_i^c) = \frac{1}{3}$$

由全概率公式得

$$p_n = \frac{2}{3}p_{n-1} + \frac{1}{3}(1 - p_{n-1}) = \frac{1}{3}p_{n-1} + \frac{1}{3}, \quad n \geqslant 1$$

得到递推公式

$$p_n - \frac{1}{2} = \left(\frac{1}{3}\right) \left(p_{n-1} - \frac{1}{2}\right), \quad n \geqslant 1$$

将 $p_0 = 1$ 代入上式可得

$$p_n - \frac{1}{2} = \left(\frac{1}{3}\right)^n \left(\frac{1}{2}\right)$$

因此

$$p_n = \frac{1}{2} \left[1 + \left(\frac{1}{3} \right)^n \right]$$

2.3.2 贝叶斯公式

贝叶斯公式: 假定 $\{B_n\}_{n\geqslant 1}$ 为完备事件组, $A\in\mathcal{F}$ 满足 P(A)>0,则

$$P(B_n|A) = \frac{P(B_n)P(A|B_n)}{\sum_{n=1}^{\infty} P(B_n)P(A|B_n)}$$

例: 一项血液化验有 95% 的把握诊断某种疾病,但这项化验用于健康人也会有 1% 的"假阳性"结果(即如果一个健康人接受这项化验,化验结果误诊此病人患该疾病的概率为 1%)。假定该疾病的患者事实上只占总人口的 0.5%。若某人化验结果为阳性,则此人确实患有该疾病的概率是多少?**解:** 令 A 表示"此人确实患该疾病",B 表示"其化验结果为阳性",则所求概率为

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\overline{A})P(B|\overline{A})}$$
$$= \frac{0.95 \times 0.005}{0.95 \times 0.005 + 0.01 \times 0.995}$$
$$= \frac{95}{294} \approx 0.323$$

 \Box **例:** 一架飞机失踪了,推测它等可能的坠落在 3 个区域。令 $\alpha_i(i=1,2,3)$ 表示飞机在第 i 个区域坠落但没有被发现的概率。已知对区域 1 的搜索没有发现飞机,求在此条件下,飞机坠落在第 i(i=1,2,3) 个区域的条件概率。

 \mathbf{M} : 令 B_i 表示 "飞机坠毁在第 i 个区域", i=1,2,3, A 表示 "在第 1 个区域没有搜索到飞机", 则

$$P(B_1|A) = \frac{P(B_1)P(A|B_1)}{\sum_{i=1}^{3} P(B_i)P(A|B_i)} = \frac{\frac{\alpha_1}{3}}{\frac{\alpha_1}{3} + 1 \times \frac{1}{3} + 1 \times \frac{1}{3}} = \frac{\alpha_1}{\alpha_1 + 2}$$

对 j = 2, 3,

$$P(B_j|A) = \frac{P(B_j)P(A|B_j)}{\sum_{i=1}^{3} P(B_i)P(A|B_i)} = \frac{\frac{1}{3}}{\frac{\alpha_1}{3} + 1 \times \frac{1}{3} + 1 \times \frac{1}{3}} = \frac{1}{\alpha_1 + 2}$$

随机游走:考虑数轴上一质点,假定它只在整数点上运动。当前时刻它处于位置 a (整数),下一时刻(单位间隔时间)以概率 p 向正向,概率 1-p 向负向运动一个单位,称这样的质点运动为随机游动,当 $p=q=\frac{1}{2}$ 时,称为对称随机游走。

(1) 无限制随机游走:对随机游走,以 S_n 表示 n 时刻质点的位置,假定 $S_0=0$ 。我们计算经过 n 次运动后到达位置 k 的概率。

由于质点在 n 时刻位于 k, 在 n 次游动中, 质点向右移动次数 x 比向左运动 y 多 k 次:

$$x - y = k$$
, $x + y = n$
$$x = \frac{n+k}{2}$$
, $y = \frac{n-k}{2}$

为使 x 为整数, k 和 n 的奇偶性需要相同, 即

$$P(S_n = k) = \begin{cases} C_n^{\frac{n+k}{2}} p^{\frac{n+k}{2}} (1-p)^{\frac{n-k}{2}}, & n, k$$
奇偶性相同 0, n, k 奇偶性不同

(2) 两端带有吸收壁的随机游走:设a,b为正整数。假定质点初始位置为a,在位置0和a+b均有一个吸收壁,求质点被吸收的概率。

记 q_n 为质点初始位置是 n 而最终在 a+b 被吸收的概率,显然,

$$q_0 = 0, \quad q_{a+b} = 1$$

若质点某时刻位于 n, $n = 1, \dots, a+b-1$ 。则其在位置 a+b 被吸收有两种可能: (1) 运动到 n-1 位置被 a+b 吸收, (2) 运动到 n+1 位置被 a+b 吸收, 由全概率公式得

$$q_n = q_{n-1}q + q_{n+1}p, \quad n = 1, \dots, a+b-1$$

由于 p+q=1, 上式可以写为

$$p(q_{n+1}-q_n)=q(q_n-q_{n-1}), \quad n=1,\cdots,a+b-1$$

记 $r = \frac{q}{p}$,则

$$q_{n+1} - q_n = r(q_n - q_{n-1}), \quad n = 1, \dots, a+b-1$$

可以分两种情况讨论:(i)若 r=1,即 $p=q=\frac{1}{2}$ 。则

$$q_{n+1} - q_n = q_n - q_{n-1} = \dots = q_1 - q_0$$

 $q_{n+1} = q_0 + (n+1)(q_1 - q_0), \quad n = 1, \dots a + b - 1$

结合边值条件,有

$$q_n = \frac{n}{a+b}, n = 1, \cdots, a+b-1$$

(ii) 若 $r \neq 1$, 即 $p \neq q$:

$$q_{n+1} - q_n = r(q_n - q_{n-1}) = \dots = r^n(q_1 - q_0)$$

即

$$q_n - q_0 = \sum_{i=0}^{n-1} (q_{i+1} - q_i) = \sum_{i=0}^{n-1} r^i (q_1 - q_0) = \frac{1 - r^n}{1 - r} (q_1 - q_0), \quad n = 1, \dots, a + b - 1$$

结合边值条件,得

$$q_1 = \frac{1 - r}{1 - r^{a+b}}$$

则

$$q_n = \frac{1 - r^n}{1 - r^{a+b}}$$

3.1 随机变量

为了进一步研究随机现象,我们需要引入随机变量的概念。

定义:(随机变量的直观描述)如果条件 S 下的结果可以用某个变量 X 来描述,X 的值不能预先确定,而随着条件 S 的不同可能变化,但是对任何实数 c,事件 "X 取值不超过 c" 是有概率的,将这样一种变量 X 称为随机变量。

定义:(随机变量的数学描述)如果条件 S 下的所有可能结果组成了集合 $\Omega = \{\omega\}$, $X = X(\omega)$ 是 在 Ω 上有定义的实值函数,而且对任何实数 c,事件 " $\{\omega: X(\omega) \leq c\}$ "是有概率的,将 X 称为随机变量。

例:(对应郑书例 1.2)盒中有 5 个球, 其中有 2 个白球, 3 个黑球. 从中任取 3 个球, 将其中所含的白球的数目记为 X.

建模: 将球编号, 1~3 表示黑球, 4,5 表示白球.

记摸到球的编号为 $\omega = (i, j, k)$, 其中 $1 \le i < j < k \le 5$. $|\Omega| = C_5^3 = 10$.

其中满足 X=0 的 ω 有 $C_2^0C_3^3=1$ 个; 满足 X=1 的 ω 有 $C_2^1C_3^2=6$ 个; 满足 X=2 的 ω 有 $C_2^2C_3^1=3$ 个.

设事件: $\{X=1\}=\{\omega:X(\omega)=1\},\quad \{X\leqslant 1\}=\{\omega:X(\omega)\leqslant 1\}.$

将 $P({X = 1})$ 简记为 P(X = 1).

$$P(X=1) = \frac{6}{10}, \ P(X \le 1) = \frac{7}{10}.$$

例:(对应郑书例 1.6) 某公共汽车站每隔 10 min 会有一两某路公交车到达. 某乘客随机在任意时刻到达车站.

显然,他的候车时间 X (单位: min) 为随机变量. X 的取值范围 $0 \le X \le 10$ 。事件 $\{X \le c\}$ 是有概率的,这是一种几何概型,我们会在后面给出计算过程,例如:

$$P(X \leqslant 3) = \frac{3}{10}, \quad P(2 \leqslant X \leqslant 6) = \frac{4}{10}.$$

3.2 离散型随机变量

定义: X 是离散型随机变量指: X 取有限个值 x_1, \dots, x_n , 或可列无穷个值 $x_1, x_2, \dots . X$ 的概率分 布 (列) 指:

$$p_k = P(X = x_k), \quad k = 1, \dots, n \ \ \vec{\boxtimes} k = 1, 2, \dots.$$

将 X 的可能值以及相应的概率列为表3.1。表3.1称为 X 的概率分布表,它能够清楚完整的表示 X

表 3.1: 概率分布表

的取值以及概率的分布情况。

定义: 设 X 的可能取值是 x_1, x_2, \cdots (有限个或者可列无穷个),则称

$$p_k = P(X = x_k) \quad (k = 1, 2, \cdots)$$

为 X 的概率分布,这时也称为 X 的概率函数或者概率分布律

关于 $\{p_k\}$, 有以下性质:

(1)
$$p_k \ge 0 \ (k = 1, 2, \cdots)$$
 (2) $\sum_k p_k = 1$

回忆本讲例 1 的 X (抽到的白球数) 它的概率分布表如表3.2所示:

$$\begin{array}{c|cccc} X & 0 & 1 & 2 \\ \hline p & 0.1 & 0.6 & 0.3 \end{array}$$

表 3.2: X 的概率分布表

对离散型随机变量,有以下几种常见的概率分布:

3.2.1 两点分布(伯努利分布)

定义随机变量 X 的可能值是 0 和 1 且概率分布为:

$$P(X = 1) = p, \quad P(X = 0) = 1 - p.$$

称 X 服从**两点分布**(也称伯努利分布),记为 $X \sim B(1,p)$ (参数 $0 \le p \le 1$)

我们定义示性函数 1_A : 事件 A 发生则取 1; A 不发生则取 0.

例: (对应郑书例 2.1) 100 件产品中有 3 件次品. 从中任取一件.

设事件 A= "取到合格品",,随机变量 $X=1_A, X$ 的可能取值为 0 和 1。取到每件产品的概率 均等,概率分布为

$$P(X=1) = \frac{97}{100}, P(X=0) = \frac{3}{100}$$

X 服从参数 p=0.97 的两点分布。

3.2.2 二项分布

设随机变量所有可能值为 0,1,…,n,且

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}, k = 0, 1, \dots, n$$

称 X 服从参数为 n, p 的二项分布,记作 $X \sim B(n, p)$ (参数 $n \ge 1, 0 \le p \le 1$)

二项分布有明显的实际背景,例如在单次实验中事件 A 发生的概率是 p,进行独立重复实验 n 次,记事件 A 发生的次数为 X,则 $X \sim B(n,p)$ 。

定理 2.1: 对于二项分布, 分布列 P(X = k) 的最大值点 k_0 如下:

若 $(n+1)p \notin \mathbb{Z}$, 则 $k_0 = [(n+1)p]$;

若 $(n+1)p \in \mathbb{Z}$, 则 $k_0 = (n+1)p$ 或 (n+1)p-1.

证明: 显然

$$\frac{p_n(k+1)}{p_n(k)} = \frac{n-k}{k+1} \cdot \frac{p}{1-p}$$

由于 $\frac{n-k}{k+1}\cdot\frac{p}{1-p}>1$ 等价于 k<(n+1)p-1, 于是有:

- (a) $\leq k < (n+1)p-1$ $\forall p_n(k+1) > p_n(k)$
- (b) $\leq k > (n+1)p-1$ $\exists k > (n+1)p-1$
- (c) $\stackrel{\text{def}}{=} k = (n+1)p-1$ $\stackrel{\text{def}}{=} p_n(k+1) = p_n(k)$

(i) 若 $(n+1)p \notin \mathbb{Z}$,设 $k_0 = [(n+1)p] < (n+1)p < k_0+1$,当 k < m 时, $k \le k_0-1 < (n+1)p-1$, 因此 $p_n(k) < p_n(k+1)$;当 $k \ge k_0$ 时,k > (n+1)p-1,因此 $p_n(k) > p_n(k+1)$,所以 k_0 为最大值。

(ii) 若 $(n+1)p \in \mathbb{Z}$,设 $k_0 = (n+1)p$,有 $p_n(k_0) = p_n(k_0+1)$,进而利用性质 (a) 和性质 (b) 知 k_0 为最大值。

3.2.3 泊松分布

定义:设随机变量 X 的所有可能取值是全体非负整数,且

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

则称 X 服从参数为 λ 的泊松分布,记为 $X \sim \mathcal{P}(\lambda)$ (参数: $\lambda > 0$)。

泊松分布常见于生物学,物理学,工业的应用中,例如电话交换台收到的电话呼唤次数,放射性物质在一定时间内放出的粒子数。

定理: 泊松分布的分布列最大值点 $k_0 = [\lambda]$ 。

证明: 注意到 $p_{k+1} = \frac{\lambda}{k+1} p_k$, 故由分布函数知

若 $k+1 \leqslant \lambda$,则 $p_{k+1} \geqslant p_k$

若 $k+1 \ge \lambda$,则 $p_{k+1} \le p_k$

因此当 $k_0 = [\lambda]$ 时,分布列取最大值。

例: 已知某商场一天来的顾客服从参数为 λ 的泊松分布,而每个来商场的顾客购物概率为 p,证明此商场一天内购物的顾客数服从参数为 λp 的泊松分布。

 \mathbf{M} : 用 Y 表示商场内一天购物的顾客数,则由全概率公式知,对任意正整数 k 有

$$P(Y = k) = \sum_{i=k}^{\infty} P(X = i) P(Y = k \mid X = i) = \sum_{i=k}^{\infty} \frac{\lambda^i e^{-\lambda}}{i!} C_i^k p^k (1 - p)^{i-k}$$

$$= \frac{(\lambda p)^k}{k!} e^{-\lambda} \sum_{i=k}^{\infty} \frac{[\lambda (1 - p)]^{i-k}}{(i - k)!} = \frac{(\lambda p)^k}{k!} e^{-\lambda} e^{\lambda (1 - p)} = \frac{(\lambda p)^k}{k!} e^{-\lambda p}$$

3.2.4 超几何分布

定义:若随机变量 X 的概率分布满足:

$$P(X = k) = \frac{C_D^k C_{N-D}^{n-k}}{C_N^n}, \quad k = 0, 1, \dots, n.$$

则称 X 服从超几何分布, 记为 $X \sim H(N, D, n)$ (参数 N, D, n 满足 $N \geqslant D \geqslant 0$)

设一批产品有 N 个产品, D 个次品, 任取 n 个, 抽到的次品数为 X。如果进行放回抽样则 X 服从二项分布, 如果进行不放回抽样则 X 服从超几何分布。

定理 2.3: 给定 n. 当 $N \to \infty$, $\frac{D}{N} \to p$ 时,

$$\lim_{N \to \infty} \frac{C_D^k C_{N-D}^{n-k}}{C_N^n} = C_n^k p^k (1-p)^{n-k}, \quad k \geqslant 0$$

证明:由于0 ,当<math>N充分大时,n < D < N,且n是固定的,易知

$$\begin{split} \frac{C_D^k C_{N-D}^{n-k}}{C_N^n} &= \frac{D!}{k!(D-k)!} \cdot \frac{(N-D)!}{(n-k)!(N-D-n+k)!} \cdot \frac{n!(N-n)!}{N!} \\ &= \frac{n!}{k!(n-k)!} \cdot \frac{D(D-1) \cdots (D-k+1)}{N^k} \\ &\cdot \frac{(N-D)(N-D-1) \cdots (N-D-n+k+1)}{N^{n-k}} \\ &\cdot \frac{N^n}{N(N-1) \cdots (N-n+1)} \\ &= C_n^k (\prod_{i=1}^k \frac{D-i+1}{N}) (\prod_{i=1}^{n-k} \frac{N-D-i+1}{N}) (\prod_{i=1}^n \frac{N}{N-i+1}) \\ &\to C_n^k p^k (1-p)^{n-k} \quad (N\to\infty) \end{split}$$

该定理的直观解释是,如果一批产品的总量 N 很大,其中次品占比为 p,则从整批产品随机抽取 n 个,抽到次品的个数 k 近似服从参数为 p,n 的二项分布。

3.2.5 几何分布

定义:若随机变量 X 的所有可能值是全体整数,且概率分布满足:

$$P(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, \cdots.$$

则称 X 服从几何分布,记为 $X \sim G(p)$,参数 0 。

例如,某个射手向目标连续射击,如果他单次射中目标的概率为 p,则他首次射中目标所需要的射击次数 X 是一个随机变量,且满足几何分布。

几何分布具备无记忆性: $P(X - n = k \mid X > n) = P(X = k)$.

例:设 X 是只取自然数的离散随机变量,若 X 的分布具有无记忆性,证明 X 的分布一定为几何分布。

证明: 由无记忆性知

$$P(X > n + m | X > m) = \frac{P(X > n + m)}{P(X > m)} = P(X > n),$$

将n换为n-1仍有

$$P(X > n + m - 1) = P(X > n - 1)P(X > m).$$

两式相减有

$$P(X = n + m) = P(X = n)P(X > m).$$

设 P(X = 1) = p, 若取 n = m = 1 有

$$P(X=2) = p(1-p).$$

若取 n=2, m=1 则有

$$P(X = 3) = P(X = 2)P(X > 1) = p(1 - p)^{2}.$$

若令 $P(X = k) = p(1 - p)^{k-1}$, 则用数学归纳法得

$$P(X = k + 1) = P(X = k)P(X > 1) = p(1 - p)^{k}, \quad k = 0, 1, \dots$$

这表明 X 的分布为几何分布。

3.2.6 离散均匀分布

定义: 若随机变量 X 的概率分布满足:

$$P(X = k) = \frac{1}{N}, \quad k = 1, \dots, N.$$

则称 X 服从离散均匀分布。

3.3 连续随机变量

定义: 连续型随机变量指: 存在 p(x) 使得

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} p(x)dx, \quad \forall a < b.$$

称 $p(\cdot)$ 为 X 的概率密度 (函数), 也记为 $p_X(\cdot)$.

连续随机变量有以下性质:

- (1) 非负: $p(x) \ge 0$
- (2) 规范: $\int_{-\infty}^{\infty} p(x)dx = 1$
- (3) P(X = x) = 0 在任意一点选中的概率都为 0.
- (4) $p(\cdot)$ 在 x 连续, 即 $P(X \in [x, x + \Delta x]) = p(x)\Delta x + o(\Delta x)$,

以下是常见的连续随机变量:

3.3.1 均匀分布

定义: 如果随机变量 X 的分布密度为:

$$p(x) = \begin{cases} \frac{1}{b-a}; & \text{ 若} a \leqslant x \leqslant b \\ 0, & \text{ 其他.} \end{cases}$$

则称 X 服从区间 [a,b] (或 (a,b)) 上的均匀分布,记为 $X \sim U(a,b)$ (参数 a < b):

均匀分布的分布函数也可以写为 $p(x) = \frac{1}{b-a} 1_{\{a \le x \le b\}}$.

例如,某公共汽车站每隔 10 分钟会有一班公交车到达,一位搭乘该车的乘客在任意时刻到达车站 是等可能的,则他的候车时间 X 是一个随机变量,且满足 [0,10] 上的均匀分布。

3.3.2 指数分布

定义:如果随机变量 X 的分布密度为:

$$p(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

则称 X 服从参数为 λ 的指数分布,记为 $X \sim \text{Exp}(\lambda)$ (参数 $\lambda > 0$)

若 X 服从参数为 λ 的指数分布,则对任何 $0 \le a < b$ 有:

$$P(a < X < b) = \lambda \int_{a}^{b} e^{-\lambda x} dx = e^{-\lambda a} - e^{-\lambda b}$$
$$P(X > a) = e^{-\lambda a}$$

定理: (无记忆性): $P(X - s > t \mid X > s) = e^{-\lambda t}, \forall t, s \ge 0.$

不难看出,
$$P(X-s>t\mid X>s)=rac{P(X-s>t)}{P(X>s)}=rac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda t}=P(X>t)$$

注意到, 无记忆性是指数分布独有的, 即设 X 是非负的随机变量, $P(X-s>t\mid X>s)=P(X>s)$ 对 $\forall t,s\geqslant 0$ 恒成立的充分必要条件是 X 服从指数分布。

证明:之前已经证明了充分性,现只需证明必要性:设X是非负随机变量满足 $P(X-s>t\mid X>s)=e^{-\lambda t}$,则

$$P(X > s) > 0$$
, $P(X > s + t) = P(X > s)P(X > t)$

 $\diamondsuit f(u) = P(X > u), \ \ \emptyset \ \ f(s+t) = f(s)f(t)$

于是 $f(1) = f(\frac{1}{n} \times n) = (f(\frac{1}{n}))^n$

从而
$$f(\frac{m}{n}) = f(\frac{1}{n} \times m) = (f(\frac{1}{n}))^m = (f(1))^{\frac{m}{n}}$$

故对任意正有理数 r,有 $f(r) = (f(1))^r$ 。由于 0 < f(1) < 1 且 f(u) 是关于 u 的减函数,因此对任意 $u \ge 0$,有 $f(u) = (f(1))^u$ 。

令 $\lambda = -\ln f(1)$, 则 $f(u) = e^{-\lambda u}$, 即

$$P(X > u) = e^{-\lambda u} = \int_{+\infty}^{u} e^{-\lambda x} dx$$

$$P(a < X < b) = \int_{a}^{b} \lambda e^{-\lambda x} dx \quad (0 \le a < b)$$

说明 X 服从指数分布。

3.3.3 正态分布

定义:如果随机变量 X 的分布密度为:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

则称 X 服从参数为 μ , σ 的正态分布,记为 $X \sim N\left(\mu,\sigma^2\right)$ (参数 $\mu \in \mathbb{R},\sigma > 0$)

参数 $\mu = 0$, $\sigma^2 = 1$ 时的正态分布称为标准正态分布 N(0,1) , 分布密度是:

$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

归一性: $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1$:

设 $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, 将积分的平方写为二重积分:

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \times \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = \frac{1}{2\pi} \iint_{\mathbb{R}^2} e^{-\frac{x^2+y^2}{2}} dx dy.$$

做极坐标变换:

$$x = r \cos \theta, y = r \sin \theta \Rightarrow \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} \end{vmatrix} = r.$$

因此, 二重积分可以写为

$$\frac{1}{2\pi} \int_0^{2\pi} \left(\int_0^{\infty} e^{-\frac{r^2}{2}} r dr \right) d\theta = \int_0^{\infty} e^{-R} dR = 1$$

对于其他正态分布的密度函数 $p(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$:令 $y=\frac{x-\mu}{\sigma}$,则

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = 1.$$

定义函数 Φ:

$$\Phi(x) = \int_{-\infty}^{x} \phi(x) dx.$$

容易看出 $\Phi(-x) = 1 - \Phi(x)$.

$$P(a < X < b) = \int_{a}^{b} \frac{1}{\sigma} \phi\left(\frac{x - \mu}{\sigma}\right) dx = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right).$$

推论: 设随机变量 $X \sim N(\mu, \sigma^2)$, 则对一切正数 k, 有

$$P(\mu - k\sigma < X < \mu + k\sigma) = \Phi(k) - \Phi(-k) = 2\Phi(k) - 1$$

例如查表得 $\Phi(3) = 0.9987$, 因此

$$P(\mu - 3\sigma < X < \mu + 3\sigma) = \Phi(3) - \Phi(-3) = 0.9974$$

该结果说明正态随机变量 X 的取值基本落在区间 $(\mu - 3\sigma, \mu + 3\sigma)$ 内。

3.3.4 伽马分布

定义:如果随机变量 X 的分布密度为:

$$p(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0.$$

则称随机变量 X 服从伽马分布,记为 $X \sim \Gamma(\alpha, \beta)$ (参数 $\alpha, \beta > 0$)

其中, 称 $\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy$ 为 Γ 函数。

若 $\Gamma(\alpha)$ 为 Γ 函数,则函数具备以下性质:

(1)
$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$$

证明:

$$\int_{0}^{\infty} y^{\alpha} e^{-y} dy = -y^{\alpha} e^{-y} \Big|_{0}^{\infty} + \int_{0}^{\infty} \alpha y^{\alpha - 1} e^{-y} dy = \alpha \int_{0}^{\infty} y^{\alpha - 1} e^{-y} dy$$

(2) $\Gamma(1) = 1; \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

证明:

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty \frac{1}{\sqrt{y}} e^{-y} dy = \sqrt{2} \int_0^\infty e^{-\frac{x^2}{2}} dx = \sqrt{\pi}.$$

(3) $\alpha = 1$ 时就是指数分布参数为 β .

3.4 随机变量的严格定义

定义: 假设 (Ω, \mathcal{F}, P) 是概率空间, $X: \Omega \to \mathbb{R}$ 满足:

对任意
$$x \in \mathbb{R}$$
 都有 $\{X \leq x\} \in \mathcal{F}$,

则称 X 是一个随机变量.

定义: 令 $F(x) = P(X \le x), x \in \mathbb{R}$. 称 F 为随机变量 X 的分布函数, 也记为 F_X .

定理: 分布函数 $F = F_X$ 的三条性质:

- (1) 单调性: 若 $x \leq y$, 则 $F(x) \leq F(y)$.
- (2) 规范性: $\lim_{x\to-\infty} F(x) = 0$; $\lim_{x\to\infty} F(x) = 1$.
- (3) 右连续性: $\lim_{y\to x+} F(y) = F(x)$.
- 离散型: $P(X = x_i) = p_i$. $x_i 为 F_X$ 的跳点, p_i 为跳跃幅度.
- 连续型: $F_X(x) = \int_{-\infty}^x p(z)dz$, 且

$$p(x) = F_X'(x).$$

反过来, 若 F_X "几乎" 连续可导, 则为连续型 (定理 4.3, 4.4).

- 尾分布函数: G(x) = P(X > x) = 1 F(x). 连续型: p(x) = -G'(x).
- \emptyset . $X \sim \text{Exp}(\lambda)$.

$$G(x) = e^{-\lambda x}, \quad \forall x > 0,$$

$$\Rightarrow G'(x) = -\lambda G(x). \quad \lambda : \ \text{x.e.}$$

- 由 $F_X(x)$ 可求出 $P(X \in B), \forall B$.
- 若 $F_X = F_Y$, 则称 X 与 Y 同分布, 记为 $X \stackrel{d}{=} Y$.
- X = Y, 即 P(X = Y) = 1, 则 $F_X = F_Y$. 反之不然.

4.1 随机变量的函数

随机变量的函数: 设 g = g(x) 是定义在 \mathbb{R} 上的一个函数,X 是一个随机变量,那么 Y = g(X) 作为 X 的函数,同样也是一个随机变量。

在实际问题中,如果已知随机变量 X 的分布,我们可以求出另一个随机变量 Y = g(X) 的分布。我们将从离散和连续两种场合分别讨论随机变量函数的分布。

注: 为了让 Y 是数学意义上严格定义的随机变量,必须对函数 f(x) 有所假定才能使得 $\{Y \leq c\}$ 是有概率的事件,通常假定 f(x) 是 Borel 函数,即对于任何实数 c, $\{x:f(x)\leq c\}$ 是 Borel 集,有以下定理:

定理: 设 $X=X(\omega)$ 是概率空间 (Ω,\mathcal{F},P) 上的随机变量,则对任何 Borel 函数 f(x), $Y=f(X(\omega))$ 也是这个概率空间上的随机变量。

证明:给定任意实数 c,令

$$B = \{x : f(x) \leqslant c\}$$

则 $\{\omega:Y\leqslant c\}=\{\omega:f(X(\omega))\leqslant c\}=\{\omega:X(\omega)\in B\},$ 由于 B 是 Borel 集,则由定理 [?] 知 $\{\omega:X(\omega)\in B\}\in\mathcal{F},$ 所以 $\{Y\leqslant c\}\in\mathcal{F},$ Y 是随机变量。

我们遇到的随机函数一般都是 Borel 函数,所以 $Y = X(\omega)$ 一般都是随机变量。

4.1.1 离散随机变量函数的分布

设 X 是离散随机变量, X 的分布列为: 则 Y = g(X) 也是一个离散随机变量, 此时 Y 的分布列可

以简单表示为: 若 $p_{x_1}, p_{x_2}, \cdots, p_{x_k}, \cdots$ 中有某些值相等时,把那些相等的值分别合并,并将对应概

率相加。

例: 已知随机变量 X 的分布如下, 求 $Y = X^2 + X$ 的分布列。

\overline{X}	-2	-1	0	1	2
p	0.2	0.1	0.1	0.3	0.3

解: $Y = X^2 + X$ 的分布列为

\overline{Y}	2	0	0	2	6
\overline{p}	0.2	0.1	0.1	0.3	0.3

合并得到

$$\begin{array}{c|ccccc} Y & 0 & 2 & 6 \\ \hline p & 0.2 & 0.5 & 0.3 \\ \end{array}$$

定理: (离散卷积公式) 若 ξ , η 是相互独立的随机变量,且取非负整数值,分布列分别为 $\{k; a_k\}$ 和 $\{k; b_k\}$ 。则随机变量 $\zeta = \xi + \eta$ 的分布列为 $P(\zeta = k) = \sum_{i=0}^k a_i b_{k-i}$,称为**卷积公式**。

证明: 注意到 $P(\zeta = k) = P(\xi = 0, \eta = k) + P(\xi = 1, \eta = k - 1) + \dots + P(\xi = k, \eta = 0)$ 。 其中 $= P(\xi = i, \eta = k - i) = a_i b_{k-i}$,因此 $P(\zeta = k) = \sum_{i=0}^{k} a_i b_{k-i}$ 。

例: (泊松分布可加性) 设 $X \sim \mathcal{P}(\lambda_1), Y \sim \mathcal{P}(\lambda_2)$, 且 X, Y 相互独立, 证明 $X + Y \sim \mathcal{P}(\lambda_1 + \lambda_2)$.

解: 泊松分布函数 $P(X=k)=\frac{\lambda_1^k}{k!}e^{-\lambda_1},\ P(Y=k)=\frac{\lambda_2^k}{k!}e^{-\lambda_2},$ 由卷积公式,

$$P(X+Y=k) = \sum_{i=0}^{k} P(X=i)P(X=k-i) = \sum_{i=0}^{k} \frac{\lambda_1^i}{i!} e^{-\lambda_1} \frac{\lambda_2^{k-i}}{(k-i)!} e^{-\lambda_2}$$

由二项式展开,上式整理为

$$\frac{e^{-(\lambda_1 + \lambda_2)}}{k!} \sum_{i=0}^k \frac{\lambda_1^i \lambda_2^{k-i} k!}{i!(k-i)!} = \frac{e^{-(\lambda_1 + \lambda_2)}}{k!} (\lambda_1 + \lambda_2)^k$$

4.1.2 连续随机变量函数的分布

对于连续随机变量,一般先求分布函数,如果能写出分布密度就写出分布密度。

例: 设 $X \sim N(\mu, \sigma^2)$, 试求 $Y = \frac{1}{\sigma}(X - \mu)$ 的概率分布。

解: 对任何实数 y, 由于 $\{Y \le y\} = \{X \le \sigma y + \mu\}$, 于是

$$P(Y \leqslant y) = P(X \leqslant \sigma y + \mu)$$

$$= \int_{-\infty}^{\mu+\sigma y} \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\} dx$$

变量替换 $\frac{x-\mu}{\sigma} = t$ 得

$$P(Y \leqslant y) = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dx$$

说明 $Y \sim N(0,1)$

定理: 设随机变量 X 有分布密度 p(x),且在区间 $(a,b)(-\infty \le a < b \le +\infty)$ 上满足 P(a < X < b) = 1。又 Y = f(X),其中 f(x) 是 (a,b) 上严格单调的连续函数,g(y) 是 f(x) 的反函数,且 g'(y) 处处存在,令

$$q(y) = \begin{cases} p(g(y))|g'(y)|, & y \in (\alpha, \beta), \\ 0, & 其他 \end{cases}$$

其中 (α, β) 是反函数 g(y) 的存在区间,即 $\alpha = \min\{A, B\}, \beta = \max\{A, B\}, A \triangleq \lim_{x \to a+} f(x), B \triangleq \lim_{x \to b-} f(x), 则 <math>q(y)$ 是 Y 的分布密度。

证明: 设 f(x) 是严格增函数 (当 f(x) 是严格减函数时,可以类似的证明)。那么对于 $u \in (\alpha, \beta)$ 有

$$P(Y \leqslant u) = P(f(X) \leqslant u) = P(X \leqslant g(u))$$
$$= \int_{-\infty}^{g(u)} p(x)dx = \int_{a}^{g(u)} p(x)dx$$

做变量替换 x = g(y), 则

$$P(Y \leqslant u) = \int_a^u p(g(y)) \mid g'(y) \mid dy = \int_{-\infty}^u q(y)dy$$

$$P(Y \leqslant u) = P(X \leqslant a) = 0 = \int_{-\infty}^{u} q(y)dy$$

当 $u \geqslant \beta$ 时

$$P(Y \leqslant u) = P(X \leqslant b) = 1 = \int_{a}^{b} p(x)dx$$
$$\int_{\alpha}^{\beta} p(g(y)) \mid g'(y) \mid dy = \int_{-\infty}^{u} q(y)dy$$

综上,对于一切实数 u,有 $P(Y\leqslant u)=\int_{-\infty}^u q(y)dy$,故 g(y) 是 Y=f(X) 的密度函数。

例:(对应郑书例 5.3)研究水箱内某种微生物的增长情况。设在时 0 微生物的总数是 v(v>0),增长率是 X,在时刻 t 微生物总数是 $Y=ve^{Xt}(t>0)$ 。若 X 有分布密度

$$p(x) = \begin{cases} 3(1-x)^2, & 0 < x < 1, \\ 0, & \text{其他}, \end{cases}$$

试求 Y 的概率分布。

解: 反函数的求解需要注意函数和区间的变化。

令 $f(x) = ve^{Xt}(0 < x < 1)$, 则其反函数为:

$$g(y) = \frac{1}{t} \ln \frac{y}{v} \quad (v < y < ve^t)$$

易知 $g'(y) = \frac{1}{ty}$,根据定理知, $Y = ve^{xt}$ 的分布密度是:

$$q(y) = \begin{cases} 3(1 - \frac{1}{t} \ln \frac{y}{v})^2 \frac{1}{ty}, & v < y < ve^t, \\ 0, & \not \equiv \text{th}, \end{cases}$$

例:(对应郑书例 5.4,对数正态分布)设 X 是只取正值的随机变量,使得 $Y = \ln X$ 服从正态分布 $N(\mu, \sigma^2)$,试求出 X 的分布函数和分布密度。

解:对任何 x > 0,有

$$F_X(x) = P(X \leqslant x) = P(\ln X \leqslant \ln x) = P(Y \leqslant \ln x)$$
$$= \int_{-\infty}^{\ln x} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\} dy$$

做变量替换 $y = \ln u$, 得

$$F_X(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}\sigma u} \exp\left\{-\frac{1}{2\sigma^2} (\ln u - \mu)^2\right\} du$$

当 $x \le 0$ 时,称变量 X 服从对数正态分布。不难看出,X 的分布密度 p(u) 为: 当 $u \le 0$ 时,p(u) = 0,当 u > 0 时,p(u) 是上式中的被积函数。

例: 设 $\theta \sim U(-\frac{\pi}{2}, \frac{\pi}{2}), \ \psi = tan\theta, \ \$ 求 ψ 的密度函数。

解: 设 $\psi = tan\theta$ 的反函数为 g(y),则 $g(y) = \arctan y$ 。由定理得 $p_{\psi}(y) = p_{U(-\frac{\pi}{2},\frac{\pi}{2})}(g(y))g'(y) = p_{U(-\frac{\pi}{2},\frac{\pi}{2})}(\arctan y)\frac{1}{1+y^2} = \frac{1}{\pi(1+y^2)}$, $y \in \mathbb{R}$,称该变量 ψ 符合 Cauchy 分布。

4.2 随机变量的反函数

随机变量的反函数: 设 F(x) 是任何分布函数(即 F(x) 非减,右连续,且 $\lim_{x\to-\infty} F(x)=0$, $\lim_{x\to+\infty} F(x)=1$),令

$$F^{-1}(p) \triangleq \min \{x : F(x) \ge p\} \quad (0$$

则称 $F^{-1}(p)$ 是 F(x) 的广义反函数。

注意,F(x) 是右连续增函数,满足不等式 $F(x) \ge p$ 的 x 中必有最小者,当 F(x) 是严格增的连续函数时, $F^{-1}(p)$ 正好是方程 F(x) = p 的唯一根,此时 $F^{-1}(p)$ 是 F(x) 的普通反函数。

引理: $F^{-1}(p)(0 有如下性质:$

- (1) $F^{-1}(p)$ 是 p 的增函数。
- (2) $F(F^{-1}(p)) \geqslant p$, 若 F(x) 在点 $x = F^{-1}(p)$ 处连续,则

$$F(F^{-1}(p)) = p.$$

(3) $F^{-1}(p) \leq x$ 的充分必要条件是 $p \leq F(x)$ 。

证明: (2) 由于 $F(F^{-1}(p) + \varepsilon) \ge p$ ($\forall \varepsilon > 0$),令 $\varepsilon \to 0$,利用 F(x) 的右连续性知 $F(F^{-1}(p)) \ge p$ 。 若 F(x) 在点 $F^{-1}(p)$ 处连续,从 $F(F^{-1}(p) - \varepsilon) < p$ ($\varepsilon > 0$) 推知 $F(F^{-1}(p)) = \lim_{\varepsilon \to 0} F(F^{-1}(p) - \varepsilon) \le p$,从而 $F(F^{-1}(p)) = p$ 。

(3) 若 $F(x) \ge p$,从非减性质知 $x \ge F^{-1}(p)$;反之若 $x \ge F^{-1}(p)$,则 $F(x) \ge F(F^{-1}(p)) \ge p$,故性质 (3) 成立。

定理: 设 F(x) 是任何分布函数,若 U 是服从区间 [0,1] 上的均匀分布的随机变量,且

$$X = F^{-1}(U)$$

则 X 的分布函数恰好是 F(x)。

证明:对任何 $y \in (0,1)$,从性质 (3) 知 $x \ge F^{-1}(y)$ 的充分必要条件是 $F(x) \ge y$,于是

$$P(X\leqslant x)=P(F^{-1}(U)\leqslant x)=P(U\leqslant F(x))=F(x).$$

这表明 X 的分布函数是 F(x)。

5.1 随机变量的数学期望

实际问题的概率分布比较难以确定,有时只需掌握随机变量的数学特征就足够了。随机变量的数学期望 (expectation) 的含义是,随机变量平均取值 (mean) 的大小。

• X 的大量独立观测值 (记为 a_1, a_2, \dots, a_n) 的算术平均,当样本数无穷大时,算术平均收敛于期望值:

$$\bar{a} = \frac{1}{n} \left(a_1 + \dots + a_n \right).$$

• X 的所有可能值的加权平均(总和).

5.1.1 离散型随机变量的数学期望

离散型随机变量的数学期望:假设X是离散型随机变量,分布列为

$$P(X = x_k) = p_k, \quad k = 1, \dots, n \ \ \vec{\boxtimes} k = 1, 2, \dots.$$

其中 X 的可能值是 x_1, x_2, \cdots ,如果 $\sum_k |x_k| p_k < \infty$,那么,称 X 的期望存在,称 $\sum_k x_k p_k$ 为 X 的数学期望,记为 EX.

注意,级数 $\sum_k |x_k| p_k$ 收敛可以保证和数 $\sum_k x_k p_k$ 与加项的先后次序无关。更一般的假定是级数 $\sum_k x_k^+ p_k$ 和 $\sum_k x_k^- p_k$ 中至少一个收敛(这里 $x_k^+ = \max\{x_k, 0\}, \ x_k^- = \max\{-x_k, 0\}$)这时和数 $\sum_k x_k p_k$ 与加项的先后次序无关。

注意到 E(X) 完全由 X 的概率分布确定,因此 E(X) 也称为相应概率分布的期望,下面计算几个常见的概率分布的期望:

(1) 两点分布

设随机变量 X 服从两点分布, P(X = 1) = p, P(X = 0) = 1 - p. 则,

$$E(X) = 1 \cdot p + 0 \cdot (1 - p) = p.$$

(2) 二项分布

设随机变量 X 服从二项分布: $P(X=k) = C_n^k p^k q^{n-k} := b(n;k), k = 0, 1, \dots, n, (q=1-p).$

对于 $\forall 1 \leq k \leq n$,

$$k \cdot b(n;k) = k \cdot \frac{n!}{k!(n-k)!} p^k q^{n-k} = \frac{n!}{(k-1)!(n-k)!} p^k q^{n-k}$$
$$= \frac{n \cdot (n-1)!}{(k-1)!(n-k)!} p \cdot p^{k-1} q^{n-k} = np \cdot b(n-1;k-1)$$

因此,

$$E(X) = \sum_{k=0}^{n} k \cdot b(n; k) = \sum_{k=1}^{n} np \cdot b(n-1; k-1)$$
$$= np \sum_{\ell=0}^{n-1} b(n-1, \ell) = np.$$

(3) 泊松分布

设随机变量 X 服从泊松分布:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} =: p_k, \quad k = 0, 1, 2, \dots$$

则对于 $\forall k \geq 1$,

$$x_k p_k = k \frac{\lambda^k}{k!} e^{-\lambda} = \lambda \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda p_{k-1}.$$

因此,

$$E(X) = \sum_{k=0}^{\infty} k p_k = \sum_{k=1}^{\infty} \lambda p_{k-1} = \lambda \sum_{\ell=0}^{\infty} p_{\ell} = \lambda.$$

(4) 几何分布

设随机变量 X 满足几何分布,即

$$P(X = k) = q^{k-1}p =: p_k, \quad k = 1, 2, \dots, (q = 1 - p).$$

直接计算期望:

$$E(X) = \sum_{k=1}^{\infty} k p_k = \frac{1}{p}.$$

(5) 离散均匀分布

设随机变量 X 的可能值是 $1, \dots, N$, 且

$$P(X = k) = \frac{1}{N}$$
 $(k = 1, \dots, N).$

直接计算

$$E(X) = \sum_{k=1}^{N} kP(X = k) = \frac{N+1}{2}.$$

(6) 超几何分布

设随机变量 X 满足超几何分布,即

$$P(X = k) = \frac{C_D^k C_{N-D}^{n-k}}{C_N^n}, \quad k = 0, 1, \dots, n.$$

记 $h(N,D,n;k) = A_1 \cdot A_2 \cdot A_3$

$$= \frac{D!}{k!(D-k)!} \cdot \frac{(N-D)!}{(n-k)!(N-D-(n-k))!} \cdot \frac{n!(N-n)!}{N!}.$$

记 x' = x - 1. 则, $\forall 1 \leq k \leq n$,

$$k \cdot A_1 = \frac{D!}{(k-1)!(D-k)!} = D \times \frac{D'!}{k'!(D'-k')!}.$$

进一步,

$$A_{2} = \frac{(N' - D')!}{(n' - k')! (N' - D' - (n' - k'))!},$$

$$A_{3} = \frac{n \cdot n'! (N' - n')!}{N \cdot N'!} = \frac{n}{N} \times \frac{n'! (N' - n')!}{N'!}.$$

记 x' = x - 1. 则 $\forall 1 \leq k \leq n$,

$$k \cdot h(N, D, n; k) = \frac{nD}{N} \times h(N', D', n'; k').$$

因此,

$$E(X) = \sum_{k=1}^{n} k \cdot h(N, D, n; k) = \frac{nD}{N} \sum_{k'=0}^{n'} h(N', D', n'; k') = \frac{nD}{N}$$

对于该期望, 当 D=1 时, 退化为伯努利分布, $E(X)=p=\frac{D}{N}$.

当 $D \ge 2$ 时, 不放回抽样, 仍有 E(X) = np.

5.1.2 一般随机变量的数学期望

若 X 为任意随机变量. 做如下近似: 对于 $\forall n \in \mathbb{Z}$,

该假设的直观含义是: $X^* \leq X < X^* + \varepsilon$, 因此 $EX^* \leq EX < EX^* + \varepsilon$.

一般随机变量的数学期望: 若 EX^* 存在且当 $\varepsilon \to 0$ 时有极限, 则称 X 的期望存在, 且称该极限为 X 的期望, 记为 E(X)。

对离散型随机变量, 离散型随机变量期望的定义和一般随机变量的数学期望的定义一致。

例: 对于连续性随机变量 X,且 $X \ge 0$. 证明 $E(X) = \int_0^{+\infty} P(X > x) dx$.

解:令

$$G(x) = P(X > x) = \int_{x}^{\infty} p(y)dy$$

则 G'(x) = -p(x). 于是,

$$\int_0^\infty x p(x) dx = \int_0^\infty x dG(x) = \int_0^\infty G(x) dx.$$

接下来,我们计算一些常见连续型随机变量的数学期望:

(1) 均匀分布

设随机变量 X 服从区间 [a,b] 上的均匀分布,即 X 有密度分布:

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b, \\ 0, & 其他 \end{cases}$$

由定义知

$$E(X) = \int_b^a x \frac{1}{b-a} dx = \frac{a+b}{2}.$$

(2) 指数分布

设随机变量 X 有分布密度

$$p(x) = \lambda e^{-\lambda x}, \quad x > 0, \lambda > 0.$$

由定义知 $E(X) = \int_0^\infty x \cdot \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x} = \int_0^\infty e^{-\lambda x} dx = \frac{1}{\lambda}.$

(3) 正态分布

设随机变量 X 有分布密度

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

对于 $X \sim N(0,1)$, 由对称性直接计算得,

$$E(X) = \int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 0$$

同理, $X \sim N(\mu, \sigma^2)$, 则 $p(\mu + x) = p(\mu - x)$, 因此 $E(X) = \int_{-\infty}^{\infty} (x + \mu)p(\mu + x)d(x + \mu) = \int_{-\infty}^{\infty} xp(x + \mu)dx + \mu \int_{-\infty}^{\infty} p(x + \mu)dx = \mu$.

例,对于柯西分布,

$$p(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}.$$

但是, $\int_{-\infty}^{\infty} |x| p(x) dx = \infty$. 因此, EX 不存在!

(4) 伽马分布

设随机变量 X 有分布密度

$$p(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0$$

对于 $\forall x > 0$,

$$xp(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha} e^{-\beta x} = \frac{\Gamma(\alpha+1)}{\beta \Gamma(\alpha)} \cdot \frac{\beta^{\alpha+1}}{\Gamma(\alpha+1)} x^{\alpha} e^{-\beta x} = \frac{\alpha}{\beta} \cdot \hat{p}(x).$$

因此,

$$E(X) = \int_0^\infty x p(x) dx = \frac{\alpha}{\beta} \int_0^\infty \hat{p}(x) dx = \frac{\alpha}{\beta}$$

5.1.3 数学期望的性质

定理: (1) 若 $X \equiv a$, 则 E(X) = a;

- (2) 若 $X \ge 0$, 且 E(X) 存在, 则 $EX \ge 0$;
- (3) 若 $F_X = F_Y$ (或, 若 X = Y), 且 E(X) 存在, 则 E(Y) 存在, 且 E(X) = E(Y);
- (4) 线性: 假设 E(X), E(Y) 存在. 则,

$$E(a(X)) = aE(X), \quad E(X+Y) = E(X) + E(Y).$$

- (5) 单调性: 假设 E(X),E(Y) 存在, 又若 $X \ge Y$, 则 $E(X) \ge E(Y)$;
- (6) $E|X| \ge |E(X)|$;
- (7) 若随机变量 X,Y 独立,且期望 E(X),E(Y) 存在,则

$$E(XY) = E(X)E(Y).$$

推论: (1) 线性: 假设 E(X), E(Y) 存在. 则,

$$E(aX + bY) = aE(X) + bE(Y).$$

(2) 和的期望: 假设 $E(X_1), \cdots, E(X_n)$ 都存在, $\eta = X_1 + \cdots + X_n$. 则 $E(\eta)$ 存在, 且

$$E(\eta) = \sum_{i=1}^{n} E(X_i)$$

推论(1)可以由性质(4)推出,推论(2)可以由数学归纳法和性质(4)推出。

例: 超几何分布 $\eta \sim H(N, D, n)$ 的期望可以使用推论 (2) 计算: 若第 i 个产品是次品,则令 $X_i = 1$; 否则,令 $X_i = 0$.则,

$$\eta = X_1 + \dots + X_n \Rightarrow E(\eta) = np$$

马尔科夫不等式:设 $X \ge 0$,且EX存在.则对任意C > 0,有

$$P(X \geqslant C) \leqslant \frac{1}{C}EX.$$

证明: \diamondsuit $A = \{X \geqslant C\}$. 则 $1_A \leqslant \frac{X}{C}$. 于是,

$$P(A) = E1_A \leqslant E\frac{X}{C} = \frac{1}{C}EX.$$

例: 若 $X \ge 0$, 且EX = 0, 证明P(X > 0) = 0。

解:

$$\begin{split} P\left(X\geqslant\frac{1}{n}\right)\leqslant nEX &=0\\ \Rightarrow &P(X>0)=\lim_{n\to\infty}P\left(X\geqslant\frac{1}{n}\right)=0. \end{split}$$

5.2 随机变量函数的期望

定理: (1) X 是离散型随机变量,且下面的级数绝对收敛,则

$$Ef(X) = \sum_{k} f(x_k) p_k$$
 (5.2.1)

(2) X 是连续型随机变量, 且下面的积分绝对收敛, 则

$$Ef(X) = \int_{-\infty}^{\infty} f(x)p(x)dx.$$
 (5.2.2)

例: (对应郑书例 6.1) 设 $X \sim U(0, 2\pi)$, 求 $E(\sin X)$.

解: $\Diamond p(x)$ 是 x 的分布密度,用公式:

$$E \sin X = \int_{-\infty}^{\infty} \sin x \cdot p(x) dx = \frac{1}{2\pi} \int_{0}^{2\pi} \sin x dx = 0$$

例: (对应郑书例 6.2) 设随机变量 X 服从参数为 λ 的指数分布,又 $v_0 > 0$,

$$Y = \begin{cases} X, & X < v_0, \\ v_0, & X \geqslant v_0, \end{cases}$$

求 E(Y)。

解:设 $f(x) = \min\{x, v_0\}$,则 Y = f(X),由于 X 的分布密度是

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & X \le 0, \end{cases}$$

由式5.2.2知

$$E(Y) = \int_{-\infty}^{+\infty} f(x)p(x)dx = \int_{0}^{+\infty} f(x)\lambda e^{-\lambda x} dx$$
$$= \int_{0}^{v_0} x\lambda e^{-\lambda x} dx + \int_{v_0}^{+\infty} v_0\lambda e^{-\lambda x} dx$$
$$= \frac{1}{\lambda} (1 - e^{-\lambda v_0})$$

琴生不等式: 若 ϕ 为凸函数,则

$$\phi(E(X)) \leqslant E(\phi(X)).$$

将期望等价于平均,代入琴生不等式即可证明。

例: 连续型随机变量 X, Y 的概率密度函数分别为 p(x), q(x) 且 $p(x), q(x) \neq 0, f$ 为一凸函数, f(1) = 0, 证明: $E_{x \sim q} f\left(\frac{p(x)}{q(x)}\right) \geqslant 0$.

证明: 由琴生不等式,

$$E_{x \sim q} f\left(\frac{p(x)}{q(x)}\right) \geqslant f\left(E_{x \sim q}\left(\frac{p(x)}{q(x)}\right)\right) = f\left(\int_{-\infty}^{+\infty} \frac{p(x)}{q(x)} q(x) dx\right) = f(1) = 0.$$

例: 连续型随机变量 X,Y 的概率密度函数分别为 p(x),q(x) 且 $p(x),q(x)\neq 0$,我们定义 X 关于 Y 的 KL-divergence 为 $\mathrm{KL}(X||Y)=E_X\left(\ln\frac{p(x)}{q(x)}\right)$,试证明 $\mathrm{KL}(X||Y)\geqslant 0$ 。

证明:

$$\mathrm{KL}(X||Y) = \int p(x) \left(-\ln\frac{q(x)}{p(x)}\right) dx,$$

由于 - ln x 是凸函数, 由琴生不等式知

$$\int p(x) \left(-\ln \frac{q(x)}{p(x)} dx \right) \geqslant -\ln \left(\int p(x) \frac{q(x)}{p(x)} dx \right) = -\ln 1 = 0.$$

例: 设随机变量 X 服从参数为 λ 的泊松分布,证明

$$E(X^n) = \lambda E((X+1)^{n-1}).$$

利用此结果计算 $E(X^3)$ 。

证明:

$$E(X^n) = \sum_{k=0}^{\infty} k^n \frac{\lambda^n}{k!} e^{-\lambda} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} k^{n-1} \frac{\lambda^{k-1}}{(k-1)!}$$

设 k' = k - 1, 则

$$E(X^n) = \lambda e^{-\lambda} \sum_{k'=0}^{\infty} (k'+1)^{n-1} \frac{\lambda^{k'}}{k'!} = \lambda E((X+1)^{n+1}).$$

由此得

$$E(X^3) = \lambda E(X+1)^2 = \lambda (E(X^2) + 2E(X) + 1) = \lambda (\lambda E(X+1) + 2\lambda + 1) = \lambda^3 + 3\lambda^2 + \lambda.$$

例:设 X 是仅取非负整数的离散随机变量,若其数学期望存在,证明

$$(1)E(X) = \sum_{k=1}^{\infty} P(X \geqslant k).$$

$$(2)\sum_{k=0}^{\infty} kP(X > k) = \frac{1}{2}[E(X^2) - E(X)].$$

证明: (1) 由于 $E(X) = \sum_{k=1}^{\infty} kP(X=k)$ 存在,所以该级数绝对收敛,从而

$$E(X) = \sum_{k=1}^{\infty} k P(X = k) = \sum_{k=1}^{\infty} \left[\sum_{i=1}^{k} P(X = k) \right]$$
$$= \sum_{i=1}^{\infty} \left[\sum_{k=i}^{\infty} P(X = k) \right] = \sum_{k=1}^{\infty} P(X \geqslant k).$$

(2)

$$\begin{split} \sum_{k=0}^{\infty} kP(X>k) &= \sum_{k=0}^{\infty} k \sum_{i=k+1}^{\infty} P(X=i) = \sum_{i=1}^{\infty} \sum_{k=0}^{i-1} kP(X=i) \\ &= \sum_{i=1}^{\infty} P(X=i) \frac{(i-1)i}{2} = \frac{1}{2} \sum_{i=1}^{\infty} i^2 P(X=i) - \frac{1}{2} \sum_{i=1}^{\infty} iP(X=i) \\ &= \frac{1}{2} E(X^2) - \frac{1}{2} E(X). \end{split}$$

例: 甲乙两人进行象棋比赛,每局甲胜的概率为 p,乙胜的概率为 q=1-p,比赛进行到有一人连胜两局为止,求平均比赛局数。

解: 设 X 为决定胜负所需的局数,可以取值为 $2,3,\cdots$,事件 $\{X \ge k\}$ 表示"到 k-1 局时没有一人连胜两局",所以

$$P(X \ge 1) = 1,$$

$$P(X \ge 2k) = p^k q^{k-1} + p^{k-1} q^k = (pq)^{k-1}, \quad k = 1, 2, \cdots,$$

$$P(X \ge 2k + 1) = 2p^k q^k, \quad k = 1, 2, \cdots.$$

利用上一题第一问提供的公式,可得

$$E(X) = \sum_{k=1}^{\infty} P(X \ge k) = 1 + \sum_{k=1}^{\infty} (pq)^{k-1} + 2\sum_{k=1}^{\infty} (pq)^k$$
$$= 1 + \frac{1}{1 - pq} + \frac{2pq}{1 - pq} = \frac{2 + pq}{1 - pq}.$$

注意到对任意的 $0 总有 <math>p(1-p) \leqslant \frac{1}{4}$, 故由 E(X) 关于 pq 单调增可得

$$E(X) \leqslant \frac{2 + \frac{1}{4}}{1 - \frac{1}{4}} = 3$$

故这种比赛最终决定胜负的平均局数不超过 3 局,在 $p=\frac{1}{2}$ 时达到上界。

5.3 随机变量的方差

随机变量的方差和标准差: 假设 E(X) 存在, 且 $E(X-EX)^2$ 也存在. 则称 $E(X-EX)^2$ 为 X 的 方差, 记为 var(X) 或 D(X). 称 $\sqrt{var(X)}$ 为标准差。

切比雪夫不等式: 设 X 是随机变量, 如果 E(X) 和 var(X) 都存在, 则 $\forall \varepsilon > 0$, 有

$$P(|X - EX| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \operatorname{var}(X).$$
 (5.3.1)

证明: $\{|X-EX|\geqslant \varepsilon\}=\left\{(X-EX)^2\geqslant \varepsilon^2\right\}$, 对 $Y=(X-EX)^2$ 用马尔可夫不等式,得

$$P(|X - EX| \ge \varepsilon) = P(Y \ge \varepsilon^2) \le \frac{1}{\varepsilon^2} E(Y).$$

推论: 若 var(X) = 0, 则

$$P(X = E(X)) = 1.$$

证明: 由切比雪夫不等式知

$$P(|X - E(X)| \ge \frac{1}{n}) = 0 \quad (n = 1, 2, \dots),$$

于是

$$P(X \neq E(X)) = P(\bigcup_{n=1}^{\infty} \left\{ |X - E(X)| \geqslant \frac{1}{n} \right\})$$

$$\leqslant \sum_{n=1}^{\infty} P(|X - E(X)| \geqslant \frac{1}{n}) = 0.$$

所以 P(X = E(X)) = 1。

对于方差的计算方法,有以下定理:

定理: X 为一般随机变量,且期望 $E(X^2)$ 和 E(X) 存在,则

$$var(X) = E(X^{2}) - (EX)^{2}.$$
(5.3.2)

证明:

$$var(X) = E(X^{2} - 2X \cdot EX + (EX)^{2})$$
$$= E(X^{2}) - 2E(X) \cdot E(X) + (E(X))^{2} = E(X^{2}) - (EX)^{2}$$

具体地, 离散型或连续型的公式如下:

$$\operatorname{var}(X) = \sum_{k} x_{k}^{2} p_{k} - (EX)^{2}$$
$$\operatorname{var}(X) = \int_{-\infty}^{\infty} x^{2} p(x) dx - (EX)^{2}$$

定理: X 的线性变换的方差:

$$var(aX + b) = a^2 var(X)$$

该定理可以利用式5.3.2计算。

$$var(aX + b) = E((aX + b)^{2}) - (E(aX + b))^{2}$$

$$= (a^{2}E(X^{2}) + 2abE(X) + b^{2}) - (a^{2}(E(X))^{2} + 2abE(X) + b^{2})$$

$$= a^{2}(E(X^{2}) - a^{2}(E(X))^{2}) = a^{2} var(X)$$

定理: 设 X 为随机变量,则方差 $D(X) = \inf_{c \in \mathbb{R}} E(X - c)^2$ 。

证明:【方法一】利用 E(X+c) = E(X) + c 与 D(X+c) = D(X), 可得

$$D(X) = D(X - c) = E(X - c)^{2} - (E(X - c))^{2} \leqslant E(X - c)^{2}.$$

等号成立条件是 E(X) = c。

【方法二】利用

$$E(X - c)^{2} = E(X - E(X) + E(X) - c)^{2}$$

$$= D(X) + 2E[(X - E(X))(E(X) - c)] + (E(X) - c)^{2}$$

$$= D(X) + (E(X) - c)^{2}.$$

在 c = E(X) 处取得最小值 D(X)。

下面计算常见随机变量的方差:

(1) 两点分布

设随机变量 X 服从两点分布,即 $X \sim B(1,p)$,根据之前的计算 E(X) = p, $E(X^2) = 0^2 \cdot P(X = 0) + 1^2 \cdot P(X = 1) = p$,由式5.3.2知

$$D(X) = E(X^{2}) - (E(X))^{2} = p - p^{2} = p(1 - p)$$

(2) 二项分布

设随机变量 X 服从参数为 n,p 的二项分布,即

$$P(X = k) = C_n^k p^k q^{n-k} =: b(n; k), \quad k = 0, 1, \dots, n, (q = 1 - p).$$

已经计算期望 EX = np, 且由分布函数知, 对于 $\forall 1 \leq k \leq n$,

$$k \cdot b(n; k) = np \cdot b(n-1, k-1).$$

那么对于 $\forall 2 \leq k \leq n$,

$$k(k-1) \cdot b(n;k) = np \cdot (k-1) \cdot b(n-1,k-1)$$

= $np \cdot (n-1)p \cdot b(n-2,k-2)$

于是,

$$E(X(X-1)) = \sum_{k=2}^{n} k(k-1) \cdot b(n;k) = np(n-1)p \sum_{k=2}^{n} b(n-2:k-2) = np(n-1)p = (np)^{2} - np^{2},$$

从而

$$D(X) = E(X^{2}) - (E(X))^{2} = E(X(X-1)) + E(X) - (E(X))^{2} = npq.$$

(3) 泊松分布

设随机变量 X 服从参数为 λ 的泊松分布,即

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

已经计算 X 的期望 $E(X)=\lambda$, 且由分布函数, $\forall k\geqslant 1, kp_k=\lambda p_{k-1}$. 因此, 对于 $\forall k\geqslant 2$,

$$k(k-1)p_k = \lambda(k-1)p_{k-1} = \lambda^2 p_{k-2}$$

于是,

$$E(X(X-1)) = \sum_{k=2}^{\infty} k(k-1) \cdot p_k = \lambda^2 \sum_{k=2}^{\infty} p_{k-2} = \lambda^2,$$

从而

$$Dvar(X) = E(X^{2}) - (E(X))^{2} = E(X(X-1)) + E(X) - (E(X))^{2} = \lambda.$$

(4) 均匀分布

设随机变量 X 服从区间 [a,b] 上的均匀分布,即 X 有密度分布:

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b, \\ 0, & \sharp \& \end{cases}$$

已经计算 X 的期望 $E(x) = \frac{a+b}{2}$, 且

$$\int_{-\infty}^{+\infty} x^2 p(x) dx = \frac{1}{b-a} \int_a^b x^2 dx = \frac{b^2 + ab + a^2}{3}.$$

由式5.3.2得

$$D(X) = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2 = \frac{(b-a)^2}{12}.$$

(5) 指数分布

设随机变量 X 服从参数为 λ 的指数分布, 即 X 的分布函数为:

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & X \leq 0, \end{cases}$$

已经计算期望 $E(X) = \frac{1}{\lambda}$, 且

$$\int_{-\infty}^{+\infty} x^2 p(x) dx = \lambda \int_0^{+\infty} x^2 e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

由式5.3.2得

$$D(X) = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

(6) 正态分布

设随机变量 X 服从正态分布, 即 X 的分布函数为:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

若 $\mu = E(X) = 0, \sigma^2 = 1,$ 则,

$$D(X) = E(X^{2}) = \int_{-\infty}^{\infty} x^{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$
$$= -\frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x de^{-\frac{x^{2}}{2}} = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{x^{2}}{2}} dx = 1$$

一般情形, 做变量替换 $Y = \frac{X-\mu}{\sigma} \sim N(0,1)$. 则

$$X - E(X) = (\mu + \sigma Y) - (\mu + \sigma E(Y)) = \sigma(Y - E(Y))$$

$$\Rightarrow D(X) = E((X - E(X))^{2}) = E(\sigma(Y - E(Y))^{2}) = \sigma^{2}D(Y) = \sigma^{2}$$

(7) 伽马分布

设随机变量 X 服从伽马分布,有分布密度

$$p(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0$$

已经计算 X 的期望 $E(X) = \frac{\alpha}{\beta}$, 由式5.3.2知

$$D(X) = \int_0^{+\infty} x^2 \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} dx - \left(\frac{\alpha}{\beta}\right)^2$$

做变量替换 $\beta x = t$, 易知

$$D(X) = \frac{1}{\Gamma(\alpha)\beta^2} \int_0^{+\infty} t^{\alpha+1} e^{-t} dt - \left(\frac{\alpha}{\beta}\right)^2$$
$$= \frac{1}{\Gamma(\alpha)\beta^2} \Gamma(\alpha+2) - \left(\frac{\alpha}{\beta}\right)^2$$
$$= \frac{(\alpha+1)\alpha\Gamma(\alpha)}{\Gamma(\alpha)\beta^2} - \left(\frac{\alpha}{\beta}\right)^2 = \frac{\alpha}{\beta^2}$$

随机变量的标准化: 一般地, 若 X 的方差存在, 且 $\mathrm{var}(X) > 0$, 则

$$X^* = \frac{X - E(X)}{\sqrt{\operatorname{var}(X)}}$$

满足 $E(X^*) = 0$, $var(X^*) = 1$. 称 X^* 为 X 的标准化。

例: 设随机变量 $X \sim N(0,1)$, 则对一切正整数 k,

$$E(X^{2k-1}) = 0$$
, $E(X^{2k}) = (2k-1)(2k-3)\cdots 3\cdot 1$.

证明:对任何 $m\geqslant 1$,积分 $\int_{-\infty}^{+\infty}|x|^me^{-x^2/2}dx$ 收敛,因此 $E(X^m)$ 存在,由于

$$x^{2k-1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

是x的奇函数,故

$$E(X^{2k-1}) = \int_{-\infty}^{+\infty} x^{2k-1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 0$$

$$E(X^{2k}) = \int_{-\infty}^{+\infty} x^{2k} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} x^{2k-1} d(e^{-x^2/2})$$

$$= (2k-1) \int_{-\infty}^{+\infty} x^{2k-2} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

$$= (2k-1)E(X^{2k-2}).$$

这是递推公式, 故

$$E(X^{2k}) = (2k-1)(2k-3)\cdots 3\cdot 1$$

例: 设随机变量 X 的概率密度函数为 $f(x) = \frac{k\theta^k}{x^{k+1}}, x > \theta > 0, k > 2$ 为正整数, 求 (1)E(X), (2)D(X).

解: (1):

$$E(X) = \int_{\theta}^{+\infty} \frac{k\theta^k}{x^{k+1}} x dx = \frac{k\theta}{k-1}.$$

(2):

$$D(X) = \int_{\theta}^{+\infty} \frac{k\theta^k}{x^{k+1}} x^2 dx - (E(X))^2 = \frac{3k - 2k^2}{(k-2)(k-1)^2}.$$

例: 设连续随机变量 X 的分布函数为 F(x), 且数学期望存在,证明:

$$E(X) = \int_0^\infty [1 - F(x)] dx - \int_{-\infty}^0 F(x) dx.$$

证明:

$$E(X) = \int_{-\infty}^{\infty} xp(x)dx = \int_{-\infty}^{0} xp(x)dx + \int_{0}^{\infty} xp(x)dx.$$

将第一个积分改写为:

$$\int_{-\infty}^{0} x p(x) dx = \int_{-\infty}^{0} -\left(\int_{x}^{0} dy\right) p(x) dx$$
$$= -\int_{-\infty}^{0} \int_{-\infty}^{y} p(x) dx dy$$
$$= -\int_{-\infty}^{0} F(y) dy.$$

第二个积分同理,

$$\int_0^\infty x p(x) dx = \int_0^\infty \left(\int_0^x dy \right) p(x) dx$$
$$= \int_0^\infty \int_y^\infty p(x) dx dy$$
$$= \int_0^\infty [1 - F(y)] dy.$$

将二式加和即可得

$$E(X) = \int_0^\infty [1 - F(x)]dx - \int_{-\infty}^0 F(x)dx.$$

5.4 随机变量的其他数学特征

原点矩和中心矩:

设 X 是随机变量,如果 $E(X^k)$ 存在 (k 是正整数),则称 $E(X^k)$ 是 X 的 k **阶原点矩**,常常记为 ν_k 。

设 X 是随机变量,如果 E(X) 存在,且 $E(X-E(X))^k$ 存在(k 是正整数),则称 $E(X-E(X))^k$ 为 X 的 k **阶中心矩**,常常记为 μ_k 。

显然, $E(X) = \nu_1$, $var(X) = \mu_2$ 。

随机变量的 p 分位数: 若 X 是随机变量, 0 , 且

$$P(X < a) \le p \le P(X \le a),$$

则称 a 为 X 的一个 p **分位数**。

p = 0.5 时, 也称 a 为一个中位数.

例: 设随机变量 X 的可能值是 1,2,3 且

$$P(X = 1) = \frac{1}{3}, \quad P(X = 2) = \frac{1}{6}, \quad P(X = 3) = \frac{1}{2}.$$

则 $E(X) = \frac{13}{6}$, 中位数有无穷个, 区间 [2,3] 中的每个数都是 X 的中位数。

例: (对应郑书例 8.3) 设随机变量 $X \sim N(0,1)$,则对一切正整数 k,

$$E(x^{2k-1}) = 0$$
, $E(X^{2k}) = (2k-1)(2k-3) \cdot \dots \cdot 3 \cdot 1$.

定理: 设 $X=X(\omega)$ 是随机变量,对某个 $\alpha\geqslant 1$, $E(|X|^{\alpha})$ 存在,则 E(X) 存在,且

$$E(|X|) \leqslant (E(|X|^{\alpha}))^{1/\alpha}.$$

证明: 首先指出,对一切 $x \ge 0$, $\alpha \ge 0$,如下不等式成立:

$$x^{\alpha} \geqslant a^{\alpha} + \alpha a^{\alpha - 1} (x - a). \tag{5.4.1}$$

实际上,令 $f(x) = x^{\alpha} - a^{\alpha} - \alpha a^{\alpha-1}(x-a)$,则 $f'(x) = \alpha(x^{\alpha-1} - a^{\alpha-1})$,从而 f(x) 在 x = a 处达到最小值,由于 f(a) = 0,因此式5.4.1成立。

由于 $\alpha \geqslant 1$,有 $|X(\omega)| \leqslant |X(\omega)|^{\alpha} + 1$,知 E(X) 存在。 \diamondsuit a = E(X),由式5.4.1知

$$|X(\omega)|^{\alpha} \geqslant (E(|X|))^{\alpha} + \alpha(E(|X|))^{\alpha-1}(|X(\omega)| - E(|X|)).$$

两侧取数学期望,得 $(E(|X|))^{\alpha} \leq E(|X|^{\alpha})$,表明定理成立。

6.1 随机向量的定义

n 维随机向量: 称 n 个随机变量 X_1, \dots, X_n 的整体 $\xi = (X_1, \dots, X_n)$ 为 n 维随机向量(或者 n 维随机变量),一维随机向量简称随机变量。

n **维随机变量数学上的精确定义:** 设 $X_1 = X_1(\omega), \dots, X_n = X_n(\omega)$ 都是概率空间 (Ω, \mathcal{F}, P) 上的随机变量,则称

$$\xi = \xi(\Omega) \triangleq (X_1(\omega), \cdots, X_n(\omega))$$

为概率空间 (Ω, \mathcal{F}, P) 上的 n **维随机向(变)**量。

例如,用炮弹向远处目标攻击,炮弹的落点用平面坐标系中的坐标表示为 (X,Y) ,是一个二维随机向量。

随机向量的函数: 设 $X_1 = X_1(\omega), \dots, X_n = X_n(\omega)$ 是 n 个随机变量, $f(x_1, \dots, x_n)$ 是 n 元实值函数,则称随机变量 $Y \triangleq f(x_1, \dots, x_n)$ 为随机变量 X_1, \dots, X_n 的函数(即随机向量 (X_1, \dots, X_n) 的函数)。

6.2 二维随机变量的联合分布和边缘分布

6.2.1 离散情形

离散型二维随机向量: 称二维随机向量 $\xi = (X,Y)$ 是离散型的,若它只取至多可列个不同的值,即 ξ 可能取的值可以排成一个(有限或无穷序列)。

二维离散型随机向量的概率分布: 设 $\xi = (X,Y)$ 是二维离散型随机向量,其可能值是 a_1, a_2, \cdots (有限个或者无穷可列个), $p_1 \triangleq P(\xi = a_i)(i = 1, 2, \cdots)$, 则称

$$\{p_i: i = 1, 2, \cdots\}$$

为 ξ 的概率分布,也称为 ξ 的概率函数或概率分布律。 $\xi = (X,Y)$ 的概率分布也叫做(X,Y)的**联合概率分布**(简称联合分布)。

今

$$p_{ij} = P(X = x_i, Y = y_i) \quad (i, j = 1, 2, \cdots),$$

 $\{p_{ij}\}$ 就是 $\xi = (X, Y)$ 的概率分布,可以用表6.3来表示,表6.3也称 $\xi = (X, Y)$ 的概**率分布表**。 联合分布满足性质:

表 6.3: (X,Y) 的概率分布表。

(1) 非负性: $p_{ij} \ge 0, i, j = 1, 2, \cdots$;

(2) 规范性: $\sum_{i,j} p_{ij} = 1$.

例: (三项分布) 设二维随机向量 $\xi = (X,Y)$ 取值于集合 $E = \{(k_1,k_2): k_1 \pi k_2 \text{ 都是非负整数且} k_1 + k_2 \leq n\}$, ξ 的概率分布是:

$$P((X,Y) = (k_1, k_2)) = \frac{n!}{k_1! k_2! (n - k_1 - k_2)!} p_1^{k_1} p_2^{k_2} (1 - p_1 - p_2)^{n - k_1 - k_2},$$

其中 $n \ge 1, 0 < p_1, 0 < p_2, p_1 + p_2 < 1, (k_1, k_2) \in E$, 这时称 ξ 服从三项分布。

例: 有一大批量粉笔,其中 60% 是白的,25% 是黄的,15% 是红的,现从中随机的依次取出 6 支,问:其中恰有 3 支白色,1 支黄色,2 支红色的概率是多少?

解: 令 X = "6 支中白粉笔的个数",Y = "6 支中黄粉笔的个数",则事件 "6 支中恰有 3 支白色,1 支黄色,2 支红色"就是事件

由三项分布, 概率可表示为

$$P((X,Y) = (3,1)) = \frac{6!}{3!1!2!} 0.6^3 \times 0.25 \times 0.15^2.$$

用组合数方法同样可以得到上述结果。

一般的,对于满足 $k_1 \ge 0, k_2 \ge 0$ 及 $k_1 + k_2 \le 6$ 的 k_1, k_2 ,由三项分布有

$$P((X,Y) = (k_1, k_2)) = \frac{6!}{k_1! k_2! (6 - k_1 - k_2)!} 0.6^{k_1} \times 0.25^{k_2} \times 0.15^{6 - k_1 - k_2}.$$

二**维随机向量的边缘分布:** 对于二维随机向量 $\xi = (X, Y)$, 分量 X 的概率分布称为 ξ 关于 X 的**边缘分布**, 分量 Y 的概率分布称为 ξ 关于 Y 的**边缘分布**。

二维随机向量 $\xi = (X, Y)$ 的两个边缘分布均由 ξ 的概率分布完全确定。

例: 从 1,2,3,4 中任取一数记为 X,再从 $1,\cdots,X$ 中任取一数记为 Y,求 (XY) 的联合分布列及 P(X=Y)。

 \mathbf{M} : 易知 X 的分布列为:

$$P(X=i) = \frac{1}{4}, \quad i = 1, 2, 3, 4.$$

显然, P(X = i, Y = j) = 0, j > i, i = 1, 2, 3, 4, 当 $1 \le j \le i \le 4$ 时, 由乘法公式得

$$P(X = i, Y = j) = P(X = i)P(Y = j|X = i) = \frac{1}{4} \times \frac{1}{i} = \frac{1}{4i}.$$

从而 (X,Y) 的分布列为 由此可算得

$$P(X = Y) = \sum_{i=1}^{4} P(X = Y = i) = \sum_{i=1}^{4} \frac{1}{4i} = \frac{25}{48}.$$

例: (对应郑书例 2.5) 设随机变量 X 取值是 0 或 1, 随机变量 Y 取值也是 0 或 1, 且二维随机向量 (X,Y) 的概率分布是

$$P((X,Y) = (0,0)) = \frac{1}{4} + \varepsilon, \quad P((X,Y) = (0,1)) = \frac{1}{4} - \varepsilon,$$

$$P((X,Y) = (1,0)) = \frac{1}{4} - \varepsilon, \quad P((X,Y) = (1,1)) = \frac{1}{4} + \varepsilon,$$

其中 $0 \leqslant \varepsilon \leqslant \frac{1}{4}$ 。

易知不同的 ε 对应不同的联合分布, 但是

$$P(X = 0) = P((X, Y) = (0, 0)) + P((X, Y) = (0, 1)) = \frac{1}{2},$$

$$P(X = 1) = P((X, Y) = (1, 0)) + P((X, Y) = (1, 1)) = \frac{1}{2}.$$

同理,

$$P(Y = 0) = P(Y = 1) = \frac{1}{2},$$

由此可见,两个边缘分布均与 ε 无关,表明有无穷多个不同的联合分布具有相同的边缘分布。

6.2.2 连续情形

连续型随机向量及其联合密度函数: 设 $\xi = (X,Y)$ 为二维随机向量,若存在非负函数 p(x,y) 使得

$$P(\xi \in D) = \iint_D p(x, y) dx dy,$$

对任意开矩形 D 成立,则称 ξ 为**连续型随机向量**,称 p(x,y) 为 ξ 的**联合密度** (函数),也称概率分布密度函数,记为 $p_{X,Y}(x,y)$.

对于二维连续型随机向量 $\xi = (X,Y)$, 对于平面上任意的集合 A, 有

$$P(\xi \in A) = \iint_A p(x, y) dx dy, \tag{6.2.1}$$

联合密度满足归一性:

$$p(x,y) \geqslant 0;$$

$$\iint_{\mathbb{R}^2} p(x,y) dx dy = 1.$$

例:(对应郑书例 2.6)设二维随机向量 $\xi = (X,Y)$ 的联合密度为

$$p(x,y) = \begin{cases} ce^{-(x+y)}, & x \ge 0 \\ 0, & \text{其他}, \end{cases}$$

其中 c 是一个常数, 求:

(1) c 的值; (2) P(0 < X < 1, 0 < Y < 1).

解:(1)由归一性知

$$1 = \int_{0}^{+\infty} \int_{0}^{+\infty} ce^{-(x+y)} dx dy = c \int_{0}^{+\infty} e^{-x} dx \cdot \int_{0}^{+\infty} e^{-y} dy$$

于是 c=1。

(2) 取 $D = \{(x,y): 0 < x < 1, 0 < y < 1\}$, 由定义知

$$P(0 < X < 1, 0 < Y < 1) = P((X, Y) \in D) = \int_{0}^{1} \int_{0}^{1} e^{-(x+y)} dx dy$$

$$= \int_0^1 e^{-x} dx \cdot \int_0^1 e^{-y} dy = (1 - e^{-1})^2.$$

定义: 设 G 是平面上面积为 $a(0 < a < +\infty)$ 的区域,称二维随机向量 $\xi = (X,Y)$ 服从 G 上的均匀分布,若 $P((X,Y) \in G) = 1$,且 (X,Y) 取值属于 G 的任何部分 A (A 是 G 的子区域)的概率与 A 的面积成正比。容易推知二维随机向量 $\xi = (X,Y)$ 有联合密度为

$$p(x,y) = \begin{cases} \frac{1}{a}, & (x,y) \in G, \\ 0, & \text{ 其他,} \end{cases}$$
 (6.2.2)

连续型随机向量的边缘分布: 设 p(x,y) 是二维随机向量 $\xi = (X,Y)$ 的联合密度,则

$$p_X(x) \triangleq \int_{-\infty}^{+\infty} p(x,y)dy, \quad p_Y(y) \triangleq \int_{-\infty}^{+\infty} p(x,y)dx$$

分别是 X,Y 的分布密度。

证明: 对任何 a < b, 令 $A = \{(x,y) : a < x < b, -\infty < y < +\infty\}$, 由式6.2.1知

$$P((X,Y) \in A) = P(a < X < b) = \int_a^b \int_{-\infty}^{+\infty} p(x,y) dx dy$$
$$= \int_a^b \left(\int_{-\infty}^{+\infty} p(x,y) dy \right) dx = \int_a^b p_X(x) dx.$$

这表明 $p_X(x)$ 是 X 的分布密度, 同理知 $p_Y(y)$ 是 Y 的分布密度。

例:(对应郑书例 2.7)设 G 是由抛物线 $y=x^2$ 和直线 y=x 所围成的区域(图6.3)若二维随机向量 $\xi=(X,Y)$ 服从 G 上的均匀分布,试求 ξ 的联合分布和两个边缘分布密度。

图 6.3: 区域 G 的示意图

M: 由于 G 的面积为

$$\int_0^1 (x - x^2) dx = \frac{1}{6},$$

由式6.2.2知联合密度为

$$p(x,y) = \begin{cases} 6, & (x,y) \in G, \\ 0, & 其他, \end{cases}$$

得 X 的分布密度 $p_X(x)$ 和 Y 的分布密度 $p_Y(y)$ 分别如下:

$$p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy$$

$$= \int_{x^2}^{x} 6 dy = 6(x - x^2) \quad (0 \le x \le 1),$$

$$p_X(x) = 0 \quad (x \notin [0, 1]),$$

$$p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx$$

$$= \int_{y}^{\sqrt{y}} 6 dx = 6(\sqrt{y} - y) \quad (0 \le y \le 1),$$

$$p_Y(y) = 0 \quad (y \notin [0, 1]).$$

由定义知边缘密度函数由联合密度确定,但是不同的联合密度可能有相同的边缘分布密度,即联合密度不能由两个边缘分布密度完全确定。

例:设二维随机向量 $\xi = (X, Y)$ 有联合密度

$$p_1(x,y) = \frac{1}{2\pi} \exp\{-\frac{1}{2}(x^2 + y^2)\},$$

二维随机向量 $\eta = (U, V)$ 有联合密度

$$p_2(x,y) = \begin{cases} 2p_1(x,y), & xy \ge 0, \\ 0, & \sharp \text{ 性}. \end{cases}$$

则 X 与 U 有相同的分布密度,Y 与 V 有相同的分布密度。

一方面, 当 $x \leq 0$ 时,

$$\int_{-\infty}^{+\infty} p_2(x,y)dy = \int_{-\infty}^{0} 2p_1(x,y)dy = \frac{1}{\pi} \int_{-\infty}^{0} e^{-(x^2+y^2)/2}dy$$
$$= \frac{1}{\pi} e^{-x^2/2} \int_{-\infty}^{0} e^{-y^2/2} = \frac{1}{\pi} e^{-x^2/2} \frac{1}{2} \int_{-\infty}^{+\infty} e^{-y^2/2} = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

类似的, 当 x > 0 时,

$$\int_{-\infty}^{+\infty} p_2(x,y)dy = \int_0^{+\infty} 2p_1(x,y)dy$$
$$= \frac{1}{\pi} \int_0^{+\infty} e^{-(x^2+y^2)/2}dy = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

即, 对一切 x, $\int_{-\infty}^{+\infty} p_2(x,y) dy = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

同理, 对一切 y, $\int_{-\infty}^{+\infty} p_2(x,y) dx = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}$.

6.2.3 一般情形

一般二维随机向量及其联合分布函数:设 $\xi = (X,Y)$ 是二维随机向量,则称

$$F(x,y) = P(X \leqslant x, Y \leqslant y) \quad (x, y \in \mathbb{R})$$

为 ξ 的分布函数。也称为(X,Y)的**联合分布函数**。

分布函数 F(x,y) 有以下性质:

- (1) $0 \leqslant F(x,y) \leqslant 1$;
- (2) F(x,y) 是 x 的右连续增函数, 也是 y 的右连续增函数;
- (3) $\lim_{x \to -\infty} F(x, y) = 0, \lim_{y \to -\infty} F(x, y) = 0;$
- (4) $\lim_{x\to+\infty} F(x,y) = P(Y \leqslant y), \lim_{y\to+\infty} F(x,y) = P(X \leqslant x);$
- (5) 对任何 $x_1 \leq x_2, y_1 \leq y_2$,有

$$F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1) \ge 0.$$

对性质(1)-(4)可以效仿一维随机变量的证明。

现在证明性质 (5), 我们指出,对一切 $x_1 \leqslant x_2, y_1 \leqslant y_2$,有

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) = P(x_1 < X \le x_2, Y \le y_2) - P(x_1 < X \le x_2, Y \le y_1)$$

$$= P(X \le x_2, Y \le y_2) - P(X \le x_1, Y \le y_2)$$

$$- [P(X \le x_2, Y \le y_1) - P(X \le x_1, Y \le y_1)]$$

$$= F(x_2, y_2) - F(x_1, y_2) - [F(x_2, y_1) - F(x_1, y_1)]$$

由 $P(x_1 < X \le x_2, y_1 < Y \le y_2) \ge 0$ 知性质 (5) 成立。

若二维随机向量 $\xi = (X,Y)$ 有联合密度 p(x,y),则 ξ 的联合分布函数 F(x,y) 与联合密度 p(x,y) 有关系式

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v) du dv.$$
 (6.2.3)

例:设二维随机向量 (X,Y) 有密度函数

$$p(x,y) = \begin{cases} Ce^{-(2x+y)}, & x > 0, y > 0, \\ 0, & \text{ 其他.} \end{cases}$$

求(1)常数 C 的值;(2)联合分布函数 F(x,y);(3)概率 $P(X \leq Y)$ 。

解: (1) 由于

$$1 = C \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x, y) dx dy = C \int_{0}^{+\infty} e^{-2x} dx \int_{0}^{+\infty} e^{-y} dy = \frac{C}{2}$$

得 C=2。

(2) 利用公式

$$\begin{split} F(x,y) &= \int_{-\infty}^{y} \int_{-\infty}^{x} p(t,r) dt dr \\ &= \begin{cases} \int_{0}^{y} \int_{0}^{x} 2e^{-2t-r} dt dr, & x > 0, y > 0, \\ 0, & \text{\sharp th}, \end{cases} \\ &= \begin{cases} (1 - e^{-2x})(1 - e^{-y}), & x > 0, y > 0, \\ 0, & \text{\sharp th}. \end{cases} \end{split}$$

(3) 设区域 $G = \{(x, y) | x \leq y\}$,则

$$P(X\leqslant Y)=P((X,Y)\in G)=\iint_G p(x,y)dydx=\int_0^{+\infty}\int_x^{+\infty}2e^{-2x-y}dydx=\frac{2}{3}.$$

例:设(X,Y)的联合密度函数为

$$p(x,y) = \begin{cases} 1, & 0 < x < 1, |y| < x, \\ 0, & \text{ 其他.} \end{cases}$$

求边际密度函数。

解:根据定义

$$p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \begin{cases} \int_{-x}^{x} 1 dy = 2x & x \in (0, 1), \\ 0, & x \notin (0, 1). \end{cases}$$

$$p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \begin{cases} \int_y^1 1 dx = 1 - y & y \in [0, 1), \\ \int_{-y}^1 1 dx = 1 + y, & y \in (-1, 0), \\ 0, & y \notin (-1, 1). \end{cases}$$

6.2.4 二维正态分布

二维正态分布: 若 $\xi = (X,Y)$ 的联合密度 p(x,y) 有如下表达式, 则称 ξ 服从二维 (元) 正态分布。

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left\{-\frac{u^2+v^2-2\rho uv}{2(1-\rho^2)}\right\},\tag{6.2.4}$$

其中,

$$u = \frac{x - \mu_1}{\sigma_1}, \quad v = \frac{y - \mu_2}{\sigma_2},$$

共有 5 个参数: $\mu_1, \mu_2 \in \mathbb{R}, \sigma_1, \sigma_2 > 0, \rho \in (-1, 1)$

例: 设二维随机向量 $\xi = (X, Y)$ 服从二维正态分布, 试求出 X 的分布密度和 Y 的分布密度。

解: 设 X 的分布密度为 $p_X(x)$,做变量代换 $v = \frac{y-\mu_2}{\sigma_2}$,得

$$p_X(x) = \int_{-\infty}^{+\infty} p(x,y)dy$$

$$= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right\}$$

$$\cdot \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{y-\mu_2}{\sigma_2}\right)^2 - 2\rho \frac{y-\mu_2}{\sigma_2} \frac{x-\mu_1}{\sigma_1}\right]\right\} dy$$

$$= \frac{1}{2\pi\sigma_1\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right\} \cdot \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} [v^2 - 2\rho v \frac{x-\mu_1}{\sigma_1}]\right\} dv$$

其中

$$\int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[v^2 - 2\rho v \frac{x-\mu_1}{\sigma_1}\right]\right\} dv$$

$$= \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(v - \rho \frac{x-\mu_1}{\sigma_1}\right)^2 - \rho^2 \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right]\right\} dv$$

$$= \exp\left\{\frac{\rho^2}{2(1-\rho^2)} \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right\} \cdot \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(v - \rho \frac{x-\mu_1}{\sigma_1}\right)^2\right\} dv$$

$$= \exp\left\{\frac{\rho^2}{2(1-\rho^2)} \left(\frac{x-\mu_1}{\sigma_1}\right)^2\right\} \sqrt{2\pi(1-\rho^2)}.$$

于是

$$p_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right\}.$$

同理知

$$p_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}.$$

这表明 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$

例: 假定 $(\xi_1, \xi_2) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,试求 (ξ_1, ξ_2) 落在

$$D = \left\{ (x,y) \left| \left(\frac{x - \mu_1}{\sigma_1} \right)^2 - 2\rho \frac{(x - \mu_1)(y - \mu_2)}{\sigma_1 \sigma_2} + \left(\frac{y - \mu_2}{\sigma_2} \right)^2 \leqslant \lambda^2 \right\} \right\}$$

内的概率。

解: 所求概率

求概率
$$\iint_D p(x,y)dxdy = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\times \iint_D \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right] \right\} dxdy$$

做变量代换 $u = \frac{x-\mu_1}{\sigma_1} - \rho \frac{y-\mu_2}{\sigma_2}, \quad v = \sqrt{1-\rho^2} \frac{y-\mu_2}{\sigma_2}, \quad$ 则

$$\left| \frac{\partial(u,v)}{\partial(x,y)} \right| = \left| \begin{array}{cc} \frac{1}{\sigma_1} & 0 \\ -\frac{\rho}{\sigma_2} & \frac{\sqrt{1-\rho^2}}{\sigma_2} \end{array} \right| = \frac{\sqrt{1-\rho^2}}{\sigma_1 \sigma_2}, \quad |J| = \frac{\sigma_1 \sigma_2}{\sqrt{1-\rho^2}}.$$

从而

$$\begin{split} \iint_D p(x,y) dx dy &= \frac{1}{2\pi (1-\rho^2)} \iint_{\{u^2+v^2\} \leqslant \lambda^2} \exp\left\{-\frac{u^2+v^2}{2(1-\rho^2)}\right\} du dv \\ &= \frac{1}{2\pi (1-\rho^2)} \int_0^{2\pi} \int_0^{\lambda} \exp\left\{-\frac{r^2}{2(1-\rho^2)}\right\} r dr d\theta \\ &= \int_0^{\frac{\lambda^2}{2(1-\rho^2)}} e^{-t} dt = 1 - \exp\left\{-\frac{\lambda^2}{2(1-\rho^2)}\right\}. \end{split}$$

6.3 条件分布

条件分布函数: 设 X 和 Y 是两个随机变量,给定实数 y,如果 P(Y = y) > 0),则称 x 的函数 $P(X \le x|Y = y)$ 为在 Y = y 的条件下 X 的**条件分布函数**,记作 $F_{X|Y}(x|y)$,显然,根据条件概率 的定义,有

$$F_{X|Y}(x|y) = \frac{P(X \leqslant x, Y = y)}{P(Y = y)}.$$

6.3.1 离散型情形

设(X,Y)是二维离散型随机向量,其概率分布为

$$P(X = x_i, Y = y_j) = p_{ij}$$
 $(i = 1, 2, \dots; j = 1, 2, \dots),$

这里 $P(Y = y_i) > 0$ $(j \ge 1)$,则在 $Y = y_i$ 的条件下 X的条件分布为

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{\sum_k p_{kj}} \quad (i = 1, 2, \dots).$$

例: 设随机变量 X 与 Y 相互独立,X 服从参数为 λ_1 的泊松分布,Y 服从参数为 λ_2 的泊松分布,试求在 X+Y=n 条件下 X 的条件分布(n 为正整数)。

解: 由于 X + Y 服从参数为 $\lambda_1 + \lambda_2$ 的泊松分布, 故对 $k = 0, 1, \dots, n$ 有

$$P(X = k | X + Y = n) = \frac{P(X = k, X + Y = n)}{P(X + Y = n)}$$

$$= \frac{P(X = k)P(Y = n - k)}{P(X + Y = n)}$$

$$= \frac{\lambda_1^k}{k!} e^{-\lambda_1} \frac{\lambda_2^{n-k}}{(n-k)!} e^{-\lambda_2} / \left[\frac{1}{n!} (\lambda_1 + \lambda_2)^n e^{-(\lambda_1 + \lambda_2)} \right]$$

$$= C_n^k \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{n-k}.$$

这表明, 在 X + Y = n 的条件下 X 的条件分布列为参数为 n, $\frac{\lambda_1}{\lambda_1 + \lambda_2}$ 的二项分布。

例: 设随机变量 X 与 Y 相互独立,都服从参数是 n,p 的二项分布,试求在 $X+Y=m(0\leqslant m\leqslant 2n)$ 条件下 X 的条件分布。

解: 记 $l = \min\{n, m\}$, 易知

$$P(X + Y = m) = \sum_{i=0}^{l} P(X = i, Y = m - i)$$

$$= \sum_{i=0}^{l} P(X=i)P(Y=m-i)$$

$$= \sum_{i=0}^{l} C_n^i p^i (1-p)^{n-i} C_n^{m-i} p^{m-i} (1-p)^{n-m+i}$$

$$= p^m (1-p)^{2n-m} \sum_{i=0}^{l} C_n^i C_n^{m-i}$$

$$= C_{2n}^m p^m (1-p)^{2n-m}.$$

于是, 当 $k = 0, 1, \dots, l$ 时,

$$\begin{split} P(X=k|X+Y=m) &= \frac{P(X=k,X+Y=m)}{P(X+Y=m)} \\ &= \frac{C_n^k p^k (1-p)^{n-k} C_m^{m-k} p^{m-k} (1-p)^{n-m+k}}{C_{2n}^m p^m (1-p)^{2n-m}} \\ &= \frac{C_n^k C_n^{m-k}}{C_{2n}^m}. \end{split}$$

当 k > l 时,显然 P(X = k | X + Y = m) = 0。

由此可见, 在X + Y = m条件下X的条件分布是超几何分布。

例: 一射手进行射击,击中目标的概率 $p \in (0,1)$,射击至击中目标两次为止。若以 X 表示首次击中目标所进行的射击次数,以 Y 表示总共进行的射击次数。试求 X 和 Y 的联合分布列及条件分布列。

W: Y = n 表示第 n 次击中目标且前 n-1 次恰有一次击中目标,

$$P(X = m, Y = n) = p^{2}(1-p)^{n-2}, \quad n = 2, 3, \dots, m = 1, \dots, n-1.$$

从而

$$P(X = m) = \sum_{n=m+1}^{\infty} P(X = m, Y = n)$$
$$= \sum_{n=m+1}^{\infty} p^{2} (1 - p)^{n-2}$$
$$= p(1 - p)^{m-1}, \quad m = 1, 2, \dots$$

且

$$P(Y = n) = \sum_{m=1}^{n-1} P(X = m, Y = n)$$

$$= \sum_{m=1}^{n-1} p^{2} (1 - p)^{n-2}$$

$$= (n-1)p^{2} (1-p)^{n-2}, \quad n = 2, 3, \dots$$

于是当 $n = 2, 3, \cdots$ 时,

$$P(X = m|Y = n) = \frac{p^2(1-p)^{n-2}}{(n-1)p^2(1-p)^{n-2}} = \frac{1}{n-1}, \quad m = 1, \dots, n-1.$$

$$P(Y = n | X = m) = \frac{p^2 (1 - p)^{n-2}}{p(1 - p)^{m-1}} = p(1 - p)^{n-m-1}, \quad n = m + 1, m + 2, \dots$$

6.3.2 连续型情形

设二维随机向量 (X,Y) 有联合分布函数 F(x,y),联合密度 p(x,y),若 $p_Y(y)>0$,则在 Y=y 条件下 X 的条件分布函数为

$$F_{X|Y}(x|y) = \int_{-\infty}^{x} \frac{p(u,y)}{p_Y(y)} du.$$

自然, 在Y = y条件下X的条件分布密度为

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}.$$

连续场合的全概率公式: 由基本公式

$$p(x,y) = p_Y(y)p(x|y) = p_X(x)p(y|x),$$

连续场合的全概率公式为:

$$p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{-\infty}^{+\infty} p_Y(y) p(x|y) dy,$$
$$p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \int_{-\infty}^{+\infty} p_X(x) p(y|x) dx.$$

连续场合的贝叶斯公式:

$$p(y|x) = \frac{p_Y(y)p(x|y)}{\int_{-\infty}^{+\infty} p_Y(y)p(x|y)dy},$$
$$p(x|y) = \frac{p_X(x)p(y|x)}{\int_{-\infty}^{+\infty} p_X(x)p(y|x)dx}.$$

M: 设二维随机向量 (X,Y) 满足二维正态分布,易知 Y 的分布密度为

$$p_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}.$$

则在 Y = y 条件下 X 的分布密度为

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}$$

$$= \frac{1}{\sqrt{2\pi(1-\rho^2)}\sigma_1} \exp\left\{-\frac{(x-m)^2}{2(1-\rho^2)\sigma_1^2}\right\},\,$$

其中 $m = \mu_1 + \rho \frac{\sigma_1}{\sigma_2} (y - \mu_2)$.

例: 设二维随机向量 (X,Y) 的联合密度为

$$p(x,y) = \begin{cases} \frac{1}{y}e^{-y} \cdot e^{-\frac{x}{y}}, & x > 0, y > 0, \\ 0, & \text{ 其他} \end{cases}$$

给定 y > 0,试求出条件概率 P(X > 1|Y = y)。

解: 在Y = y条件下X的条件分布密度是

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}.$$

其中 $p_Y(y) = \int_{-\infty}^{+\infty} p(x,y) dx = \int_0^{+\infty} \frac{1}{y} e^{-y} \cdot e^{-\frac{x}{y}} dx = e^{-y}$,于是

$$p_{X|Y}(x|y) = \begin{cases} \frac{1}{y}e^{-\frac{x}{y}}, & x > 0, y > 0\\ 0, & x \le 0, y > 0 \end{cases}$$

因此

$$P(X > 1|Y = y) = \int_{1}^{+\infty} \frac{1}{y} e^{-\frac{x}{y}} dx = e^{-\frac{1}{y}}.$$

例: 设随机变量 X 在区间 (0,1) 上随机取值,当观察到 X = x(0 < x < 1) 时,随机变量 Y 在区间 (x,1) 上随机取值,求 Y 的概率密度函数 $p_Y(y)$ 。

解: X 服从区间 (0,1) 上的均匀分布,对任意的 $x \in (0,1)$,在 X = x 条件下,Y 的条件概率密度为

$$p(y|x) = \begin{cases} \frac{1}{1-x}, & y \in (x,1), \\ 0, & \text{ 其他.} \end{cases}$$

从而,

$$p(x,y) = p(y|x)p_X(x) = \begin{cases} \frac{1}{1-x}, & 0 < x < y < 1, \\ 0, & 其他. \end{cases}$$

故

$$p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \begin{cases} \int_0^y \frac{1}{1 - x} dx = -\ln(1 - y), & 0 < y < 1, \\ 0, & y \notin (0, 1). \end{cases}$$

6.4 随机变量的独立性

随机变量的独立性: 设 X 和 Y 都是随机变量,如果对任何 a < b, c < d,事件 $\{a < X < b\}$ 和事件 $\{c < Y < d\}$ 相互独立,则称 X 与 Y 相互独立。

定理: 设随机变量 X 的可能值是 x_1, x_2, \cdots (有限个或无穷可列个), 随机变量 Y 的可能值是 y_1, y_2, \cdots (有限个或无穷可列个), 则 X 与 Y 相互独立的充分必要条件是, 对一切 i, j 下式成立:

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j).$$

定理: 设随机变量 X, Y 分别有分布密度 $p_X(x)$, $p_Y(y)$, 则 X 与 Y 相互独立的充分必要条件是二元函数 $p(x,y) = p_X(x)p_Y(y)$ 是二维随机向量 (X,Y) 的联合密度。

证明: 充分性: 设 $p_X(x)p_Y(y)$ 是 (X,Y) 的联合密度,则对于任何 a < b, c < d 有

$$P(a < X < b, c < Y < d) = \int_{a}^{b} \int_{c}^{d} p_{X}(x)p_{Y}(y)dxdy$$
$$= \int_{a}^{b} p_{X}(x)dx \cdot \int_{c}^{d} p_{Y}(y)dy = P(a < X < b)P(c < Y < d).$$

表明 X 与 Y 相互独立

必要性:设 X 与 Y相互独立,则对任何 a < b, c < d 有

$$P(a < X < b, c < Y < d) = P(a < X < b)P(c < Y < d)$$

$$= \int_{a}^{b} p_{X}(x)dx \cdot \int_{c}^{d} p_{Y}(y)dy = \int_{a}^{b} \int_{c}^{d} p_{X}(x)p_{Y}(y)dxdy$$

表明 $p_X(x)p_Y(Y)$ 是 (X,Y) 的联合密度。

推论: 设二维随机向量 (X,Y) 的联合密度 p(x,y) 可以表示为

$$p(x,y) = f(x)g(y),$$

其中 $f(x) \ge 0$, $g(y) \ge 0$, 且 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛,则 X 与 Y 相互独立。

证明: 由于 $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x,y) dx dy = 1$,记 $c \triangleq \int_{-\infty}^{+\infty} f(x) dx > 0$,推知 X 的分布密度是 $p_X(x) = \frac{1}{c} f(x)$,Y 的分布密度是 $p_Y(y) = cg(y)$,则 $p(x,y) = f(x)g(y) = p_X(x)p_Y(y)$,因此 X 与 Y 相互 独立。

定理: 设 $\xi = (X, Y)$ 是二维随机向量, X 的分布函数是 $F_X(x)$, Y 的分布函数是 $F_Y(y)$, 则 X 和 Y 相互独立的充分必要条件是 ξ 的分布函数 F(x, y) 等于 $F_X(x)$ 与 $F_Y(y)$ 之积, 即

$$F(x,y) = F_X(x)F_Y(y).$$
 (6.4.1)

证明: 必要性: 设 X 与 Y 相互独立,则对任何 $n \ge 1$,事件 $\{-n < X \le x\}$ 与事件 $\{-n < Y \le x\}$ 相互独立,于是

$$P(-n < X \le x, -n < Y \le y) = P(-n < X \le x)P(-n < Y \le y).$$

充分性:设6.4.1式成立,对任何a < b, c < d,有

$$P(a < X \le b, c < Y \le d) = F(b, d) - F(a, d) - F(b, c) + F(a, c)$$

$$= F_X(b)F_Y(d) - F_X(a)F_Y(d) - F_X(b)F_Y(c) + F_X(a)F_Y(c)$$

$$= (F_X(b) - F_X(a))(F_Y(d) - F_Y(c))$$

$$= P(a < X \le b)P(c < Y \le d).$$

由此知 X 与 Y 相互独立。

定理: 若随机变量 X 和 Y 相互独立, 且方差 D(X) 和 D(Y) 存在, 则 D(X+Y) = D(X) + D(Y)。

证明: 由式5.3.2知

$$D(X+Y) = E(X+Y)^2 - (E(X+Y))^2 = (E(X^2) + E(Y^2) - 2E(XY)) - ((E(X))^2 + (E(Y))^2 + 2E(X)E(Y)) - (E(X+Y))^2 + (E(X+Y))^$$

由独立的性质知 E(XY) = E(X)E(Y), 则

$$D(X + Y) = E(X^{2}) - (E(X))^{2} + E(Y^{2}) - (E(Y))^{2} = D(X) + D(Y).$$

例: 设二维随机向量 (X,Y) 服从参数为 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 的二维正态分布,则 X 与 Y 相互独立的 充分必要条件是 $\rho = 0$ 。

证明: 已求出 X 和 Y 的分布密度:

$$p_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right\}.$$
$$p_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}.$$

于是

$$p_X(x)p_Y(y) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}.$$

结合联合密度 p(x,y) (式6.2.4), 知当 $\rho = 0$ 时,

$$p(x,y) = p_X(x)p_Y(y).$$

故 X 与 Y 相互独立。

若 X 与 Y 相互独立,则 $p_X(x)p_Y(y)$ 是 (X,Y) 的联合密度,由于 $p_X(x),p_Y(y),p(x,y)$ 均为连续函数,故

$$p(x,y) \equiv p_X(x)p_Y(y).$$

特别地 $p(\mu_1, \mu_2) = p_X(\mu_1)p_Y(\mu_2)$,于是

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} = \frac{1}{2\pi\sigma_1\sigma_2},$$

从而 $\rho = 0$ 。

例:设(X,Y)联合密度为

$$p(x,y) = \begin{cases} 8xy, & 0 \leqslant x \leqslant y \leqslant 1, \\ 0, &$$
其他.

问 X 与 Y 是否独立?

解:易得

$$p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \begin{cases} \int_x^1 8xy dy = 4x(1 - x^2), & x \in [0, 1], \\ 0, & \text{ 其他.} \end{cases}$$
$$p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \begin{cases} \int_0^y 8xy dx = 4y^3, & y \in [0, 1], \\ 0, & \text{ 其他.} \end{cases}$$

从而,

$$p(x,y) \neq p_X(x)p_Y(y) = \begin{cases} 16x(1-x^2)y^3, & x,y \in [0,1], \\ 0, & \text{ 其他.} \end{cases}$$

故 X, Y 不独立。

例: 假定一天内进入邮局的人数为服从参数 λ 的泊松分布的随机变量,如果每个进入邮局的人为男性的概率为 p,为女性的概率为 1-p,证明进入邮局的男人数和女人数是相互独立的泊松随机变量,且参数分别为 λp 和 $\lambda (1-p)$ 。

解:设X和Y分别是进入邮局的男人数和女人数,则对任意的自然数i和j,

$$P(X = i, Y = j) = P(X = i, Y = j | X + Y = i + j)P(X + Y = i + j).$$

注意到

$$P(X+Y=i+j) = e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}.$$

且在给定 i+j 人进入邮局的条件下,恰有 i 个男人和 j 个女人的概率是 $C^i_{i+j}p^i(1-p)^j$,从而

$$P(X=i,Y=j) = C_{i+j}^{i} p^{i} (1-p)^{j} e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!} = e^{-\lambda p} \frac{(\lambda p)^{i}}{i!} e^{-\lambda (1-p)} \frac{(\lambda (1-p))^{j}}{j!}.$$

故

$$P(X=i) = e^{-\lambda p} \frac{(\lambda p)^i}{i!} \sum_{j=0}^{+\infty} e^{-\lambda(1-p)} \frac{(\lambda(1-p))^j}{j!} = e^{-\lambda p} \frac{(\lambda p)^i}{i!}, \quad i \in \mathbb{N}.$$

且

$$P(X=j)=e^{-\lambda(1-p)}\frac{(\lambda(1-p))^j}{j!}\sum_{i=0}^{+\infty}e^{-\lambda p}\frac{(\lambda p)^i}{i!}=e^{-\lambda(1-p)}\frac{(\lambda(1-p))^j}{j!},\quad j\in\mathbb{N}.$$

6.5 两个随机变量的函数

6.5.1 随机向量函数的概率分布

随机向量函数的概率分布: 假设二维随机向量 (X,Y) 有联合密度 p(x,y) (对于离散型情形,有类似的结论),随机变量 Z=f(X,Y),对于任何实数 z,令 $A=\{(x,y):f(x,y)\leqslant z\}$,则 Z 的分布函数的计算公式为

$$P(Z \leqslant z) = P(Z \in A) = \iint_A p(x, y) dx dy. \tag{6.5.1}$$

定理: 设二维随机向量 (X,Y) 有联合密度 p(x,y),随机变量 Z=X+Y,则 Z 的分布密度为

$$p_Z(z) = \int_{-\infty}^{+\infty} p(x, z - x) dx,$$

证明:令

$$A = \{(x, y) : x + y \leqslant z\}$$

由式6.5.1知

$$P(Z \leqslant z) = P((X,Y) \in A) = \iint_{\{x+y \leqslant z\}} p(x,y) dx dy.$$

利用变量替换 u = x + y 有

$$\begin{split} \iint_{\{x+y\leqslant z\}} p(x,y) dx dy &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{z-x} p(x,y) dy \right) dx \\ &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{z} p(x,u-x) du \right) dx \\ &= \int_{-\infty}^{z} \left(\int_{-\infty}^{+\infty} p(x,u-x) dx \right) du. \end{split}$$

因此

$$P(Z \leqslant z) = \int_{-\infty}^{z} \left(\int_{-\infty}^{+\infty} p(x, u - x) dx \right) du.$$

因此 Z 的分布函数为 $p_Z(z) = \int_{-\infty}^{+\infty} p(x, z - x) dx$.

推论: 设随机变量 X 和 Y 分别有分布密度 $p_X(x)$ 和 $p_Y(y)$, 且 X 和 Y 相互独立,则随机变量 Z = X + Y 有分布密度

$$p_Z(z) = \int_{-\infty}^{+\infty} p_X(x) p_Y(z - x) dx.$$

例: 设 (X,Y) 服从二维正态分布,联合密度 p(x,y) 为 $p(x,y) = \hat{C} \exp\left\{-\frac{u^2-2\rho u v+v^2}{2(1-\rho^2)}\right\}$, 其中 $u = \frac{x-\mu_1}{\sigma_1}, v = \frac{y-\mu_2}{\sigma_2}, \ \hat{C} = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}.$ 求 Z = X + Y 的密度。

解: 由定理知 Z 的分布密度为 $p_Z(z) = \int_{-\infty}^{\infty} p(x, z - x) dx$. 当 y 取 z - x 时,

$$v = \frac{y - \mu_2}{\sigma_2} = \frac{z - (\mu_1 + \sigma_1 u) - \mu_2}{\sigma_2} = C - \frac{\sigma_1}{\sigma_2} u,$$

其中, $C = (z - \mu_1 - \mu_2) / \sigma_2$.

此时,

$$u^{2} - 2\rho uv + v^{2} = u^{2} - 2\rho u \left(C - \frac{\sigma_{1}u}{\sigma_{2}}\right) + \left(C - \frac{\sigma_{1}u}{\sigma_{2}}\right)^{2}$$
$$= \left(1 + 2\rho \frac{\sigma_{1}}{\sigma_{2}} + \left(\frac{\sigma_{1}}{\sigma_{2}}\right)^{2}\right) u^{2} - 2\left(\rho + \frac{\sigma_{1}}{\sigma_{2}}\right)Cu + C^{2}.$$

现在计算 $p_Z(z) = \int_{-\infty}^{\infty} p(x, z - x) dx$,已知:

$$p(x, z - x) = \hat{C} \left\{ -\frac{Au^2 - 2Bu + C^2}{2(1 - \rho^2)} \right\}, \quad \text{\sharp.} + u = \frac{x - \mu_1}{\sigma_1},$$

$$A = 1 + 2\rho \frac{\sigma_1}{\sigma_2} + \left(\frac{\sigma_1}{\sigma_2}\right)^2, \quad B = \left(\rho + \frac{\sigma_1}{\sigma_2}\right)C, \quad C = \frac{z - (\mu_1 + \mu_2)}{\sigma_2}.$$

配方:

$$Au^{2} - 2Bu + C^{2} = A\left(u - \frac{B}{A}\right)^{2} - \left(\frac{B^{2}}{A} - C^{2}\right)$$

于是,

$$p_Z(z) = \hat{C} \exp\left\{\frac{\frac{B^2}{A} - C^2}{2(1 - \rho^2)}\right\} \times \int_{-\infty}^{\infty} \exp\left\{-\frac{A\left(u - \frac{B}{A}\right)^2}{2(1 - \rho^2)}\right\} \sigma_1 du$$
$$= \tilde{C} \exp\left\{\frac{B^2 - AC^2}{2(1 - \rho^2)A}\right\}. \quad \tilde{C} = \hat{C}\sigma_1 \sqrt{2\pi \frac{1 - \rho^2}{A}} = \frac{1}{\sqrt{2\pi\sigma_2^2 A}}$$

已有: $p_Z(z) = \tilde{C} \exp\left\{\frac{B^2 - AC^2}{2(1-\rho^2)A}\right\}$, 其中 \tilde{C} 是常数,

$$A = 1 + 2\rho \frac{\sigma_1}{\sigma_2} + \left(\frac{\sigma_1}{\sigma_2}\right)^2, B = \left(\rho + \frac{\sigma_1}{\sigma_2}\right)C, C = \frac{z - (\mu_1 + \mu_2)}{\sigma_2}.$$

$$B^2 - AC^2 = \left(\left(\rho + \frac{\sigma_1}{\sigma_2}\right)^2 - A\right)C^2 = \left(\rho^2 - 1\right)\frac{(z - (\mu_1 + \mu_2))^2}{\sigma_2^2}.$$

因此,

$$p_Z(z) = \tilde{C} \exp\left\{-\frac{(z-\mu)^2}{2\sigma^2}\right\} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(z-\mu)^2}{2\sigma^2}\right\}.$$

其中, $\mu = \mu_1 + \mu_2$, $\sigma^2 = \sigma_2^2 A = \sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2$.

特别地, 若 $\rho = 0$ (即 X, Y 相互独立), 则

$$X + Y \sim N \left(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2 \right).$$

M: 设随机变量 X 与 Y 相互独立, 且 X, Y 分别有分布密度:

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0, \end{cases} (\lambda > 0),$$

$$p_Y(y) = \begin{cases} \mu e^{-\mu y}, & y > 0, \\ 0, & y \le 0, \end{cases} (\mu > 0),$$

试求随机变量 X + Y 的分布密度。

解: 随机变量 Z = X + Y 的分布密度为

$$p(z) = \int_{-\infty}^{\infty} p_X(x) p_Y(z - x) dx.$$

易知, 当 $z \le 0$ 时, p(z) = 0, 设 z > 0, 则

$$p(z) = \int_0^z \lambda e^{-\lambda x} \mu e^{-\mu(z-x)} dx = \lambda \mu e^{-\mu z} \int_0^z e^{-(\lambda-\mu)x} dx$$

$$= \left\{ \begin{array}{ll} \lambda^2 e^{-\lambda z} z, & \lambda = \mu, \\ \frac{\lambda \mu}{\lambda - \mu} (e^{-\mu z} - e^{-\lambda z}), & \lambda \neq \mu. \end{array} \right.$$

定理: 设二维随机向量 (X,Y) 有联合密度 p(x,y). 令 Z=X/Y(当Y=0 时, 规定Z=0). 则 Z 为 连续型,且

$$p_Z(z) = \int_{-\infty}^{\infty} |y| p(zy, y) dy.$$

证明: 首先, $\frac{x}{y} \leqslant z$ 当且仅当 "y > 0 且 $x \leqslant yz$ " 或者 "y < 0 且 $x \geqslant yz$." 于是,

$$F_Z(z) = P(Y > 0, X \le Yz) + P(Y < 0, X \ge Yz).$$

其中,

$$\begin{split} P(Y>0,X\leqslant Yz) &= \int_0^\infty \int_{-\infty}^{yz} p(x,y) dx dy = \int_0^\infty \int_{-\infty}^z p(yu,y) y du dy \\ &= \int_{-\infty}^z \left(\int_0^\infty y p(yu,y) dy \right) du \end{split}$$

类似的,

$$\begin{split} P(Y<0,X\geqslant Yz) &= \int_{-\infty}^{0} \int_{yz}^{\infty} p(x,y) dx dy = \int_{-\infty}^{0} \int_{-\infty}^{z} p(yu,y) |y| du dy \\ &= \int_{-\infty}^{z} \left(\int_{-\infty}^{0} |y| p(yu,y) dy \right) du \end{split}$$

于是,

$$F_Z(z) = \int_{-\infty}^{z} \left(\int_{-\infty}^{\infty} |y| p(yu, y) dy \right) du$$
$$p_Z(z) = \int_{-\infty}^{\infty} |y| p(zy, y) dy.$$

例: 随机变量 X,Y 相互独立, 都服从 N(0,1). 求随机变量 Z=X/Y 的概率密度.

解:联合密度为:

$$p(x,y) = \frac{1}{2\pi} \exp\left\{-\frac{x^2 + y^2}{2}\right\}.$$

因此,

$$p_Z(z) = \int_{-\infty}^{\infty} |y| p(zy, y) dy = \int_{-\infty}^{\infty} |y| \frac{1}{2\pi} \exp\left\{-\frac{(zy)^2 + y^2}{2}\right\} dy$$
$$= \frac{2}{2\pi} \int_{0}^{\infty} y \exp\left\{-\frac{(z^2 + 1)y^2}{2}\right\} dy$$
$$= \frac{1}{\pi} \int_{0}^{\infty} e^{-(z^2 + 1)u} du = \frac{1}{\pi (z^2 + 1)}.$$

例: 设随机变量 X 与 Y 独立同分布,共同分布是 N(0,1),试求随机变量 $Z = \sqrt{X^2 + Y^2}$ 的概率分布。

解: 对任何 $z \le 0$,易知 $P(Z \le z) = 0$,设 z > 0,则

$$P(Z\leqslant z)=\iint_{\{x^2+y^2\leqslant z^2\}}\frac{1}{2\pi}\exp\left\{-\frac{x^2+y^2}{2}\right\}dxdy$$

做极坐标变换 $x = r \cos \theta$, $y = r \sin \theta (0 \le \theta < 2\pi, r \ge 0)$, 于是

$$P(Z \le z) = \int_0^{2\pi} \left(\int_0^z \frac{1}{2\pi} e^{-r^2/2} r dr \right) d\theta = \int_0^z r e^{-r^2/2} dr.$$

可见, $Z = \sqrt{X^2 + Y^2}$ 有分布密度

$$p(z) = \begin{cases} 0, & z \leq 0, \\ ze^{-z^2/2}, & z > 0. \end{cases}$$

这样的概率分布也称为瑞利分布。

定理: 假设 $\xi = (X,Y)$ 为连续型, 有密度 p(x,y), 区域 A 满足 $P((X,Y) \in A) = 1$, 假设

$$\eta = (U, V), \quad \sharp + U = f(X, Y), \quad V = g(X, Y).$$

如果: (1) $P(\xi \in A) = 1$ 且 $(f,g): A \rightarrow G$ 是一对一的;

(2) $f, g \in C^1(A)$, $\coprod \frac{\partial(u,v)}{\partial(x,y)} \neq 0, \forall (x,y) \in A$,

那么, η 是连续型, 且

$$p_{U,V}(u,v) = p(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right|, (u,v) \in G.$$

证明: 对于 $\forall D \subseteq G$, 设 $D^* = \{(x,y) : (f(x,y),g(x,y)) \in D\}$, 易知 $D^* \subseteq A$, (f(x,y),g(x,y)) 是 D^* 到 D 上的一一映射,其逆映射是 (x(u,v),y(u,v)),根据重积分的变量替换公式,

$$\iint_{D^*} p(x,y) dx dy = \iint_{D} p(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv.$$

于是,

$$P((U,V) \in D) = P((X,Y) \in D^*) = \iint_{D^*} p(x,y) dx dy = \iint_{D} p(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv.$$

因此

$$p_{U,V}(u,v) = p(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right|, (u,v) \in G.$$

6.5.2 两个随机变量函数的数学期望

我们首先考虑一个特殊情形: f(x,y) = xy。

定理: 设随机变量 X 与 Y 相互独立,且 E(X) 与 E(Y) 都存在,则

$$E(XY) = E(X)E(Y).$$

连续情形的证明:

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy p_X(x) p_Y(y) dx dy = (E(X))(E(Y)).$$

定理: 若随机变量 X 与 Y 相互独立, 则

$$var(X + Y) = var(X) + var(Y).$$

证明: 由于 E(X + Y) = E(X) + E(Y), 得

$$var(X + Y) = E(X + Y - (EX + EY))^{2}$$

$$= var(X) + var(Y) + 2E(X - E(X))(Y - E(Y)).$$

由 X 与 Y 相互独立得

$$E(X - E(X))(Y - E(Y)) = E(X - E(X))E(Y - E(Y)) = 0$$

因此等式成立。

均值公式: (1) 设二维随机向量 (X,Y) 的可能值是 a_1,a_2,\cdots (有限个或可列无穷个), f(x,y) 是任何二元函数,则

$$E(f(X,Y)) = \sum_{i} f(a_i)P((X,Y) = a_i).$$

(当 a_i 有无穷个时,要求此级数绝对收敛)。

(2) 设二维随机向量 (X,Y) 有联合分布密度 p(x,y), 二元函数 p(x,y) 满足积分

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(x,y)| p(x,y) dx dy$$

收敛,则

$$E(f(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)p(x,y)dxdy.$$

例: 在长为 a 的线段上, 任取两个点 X 和 Y, 求此两点间的平均距离。

 \mathbf{M} : 显然 X 和 Y 服从区间 (0,a) 上的均匀分布,且相互独立,从而 X 和 Y 的联合密度为

$$p(x,y) = \begin{cases} \frac{1}{a^2} & x, y \in (0,a), \\ 0, & 其他. \end{cases}$$

从而,两点间的平均长度为

$$E|X - Y| = \iint_{\mathbb{R}^2} |x - y| p(x, y) dx dy$$

$$= \int_0^a \int_0^a |x - y| \frac{1}{a^2} dx dy$$

$$= \frac{1}{a^2} \int_0^a \left(\int_0^x (x - y) dy + \int_x^a (y - x) dy \right) dx$$

$$= \frac{1}{a^2} \int_0^a \left(x^2 - ax + \frac{a^2}{2} \right) dx = \frac{a}{3}.$$

例: x, y, z 为相互独立的随机变量, h, l, f, g 为任意确定性映射。判断

- (1) 令 a = f(x, y), b = g(x, z), a 与 b 是否独立, a, b | x 是否独立?
- (3) h(l(x,y),z) 与 x 是否独立? h(l(x,y),z) 与 x 在 l(x,y) 给定条件下是否独立?

解:

- (1) a 与 b 不独立,都依赖于 x, a, b | x 独立。
- (2) 不独立
- (3) h(l(x,y),z) 与 x 不独立, 给定 l(x,y) 则独立。

6.6 二维随机向量的数字特征

两个随机变量的协方差: 假设随机变量 X,Y 的期望和方差存在,则称

$$E(X - E(X))(Y - E(Y))$$

为 X 与 Y 的**协方差**, 记为 cov(X,Y)或 σ_{XY} .

若 $\sigma_{XY} = 0$, 则称 X 与 Y 不相关.

注: 协方差存在, 因为

$$2(X - EX)(Y - EY) \le (X - EX)^2 + (Y - EY)^2$$
.

协方差的计算公式为:

$$cov(X,Y) = E(XY) - (EX)(EY).$$

注意: 协方差为 0 不等价于随机变量 X 和 Y 独立。

例如, 今随机变量 $X \sim U(0, 2\pi)$, 设 $Y = \sin X$, $Z = \cos X$, Y 和 Z 的协方差为

$$cov(Y, Z) = E(YZ) - E(Y)E(Z) = \frac{1}{2}E(\sin 2X) - E(\sin X)E(\cos X) = 0.$$

而 Y 和 Z 显然是不独立的。

定理: 假设 X,Y 的方差存在,则

$$(\operatorname{cov}(X,Y))^2 \leqslant \operatorname{var}(X) \cdot \operatorname{var}(Y). \tag{6.6.1}$$

证明: 若 var(X) = 0, 则 $X \equiv c$, 于是 cov(X, Y) = 0. 若 var(X) > 0, 则设

$$g(t) := E(t(X - EX) + (Y - EY))^{2}$$

= $t^{2} \operatorname{var}(X) + 2t \operatorname{cov}(X, Y) + \operatorname{var}(Y) \ge 0$

由于不等式恒成立, 故 g(t) 的判别式 ≤ 0 , 即 $(cov(X,Y))^2 \leq var(X) \cdot var(Y)$.

随机变量的相关系数: 设 $0 < var(X), var(Y) < \infty$, 则称

$$\frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}}$$

为 X 与 Y 的**相关系数**, 记为 ρ_{XY} , 简记为 ρ 。

定理: 设 ρ 是随机变量 X 与 Y 的相关系数,则有

- (1) $|\rho| \leq 1$;
- (2) X 与 Y 独立, 则不相关, 从而 $\rho = 0$;
- (3) $|\rho| = 1$ 当且仅当存在 a, b 以概率 1 使得 Y = a + bX.

证明: (1) 可以直接由式6.6.1推知成立。

(2) 若 X 与 Y 相互独立,则

$$E(X - E(X))(Y - E(Y)) = E(X - E(X))E(Y - E(Y)) = 0,$$

从而 $\rho = 0$ 。

(3) 设

$$g(t) := E(t(X - EX) + (Y - EY))^{2}$$
$$= t^{2} \operatorname{var}(X) + 2t \operatorname{cov}(X, Y) + \operatorname{var}(Y)$$

则 $|\rho| = 1$ 当且仅当 g(t) 的判别式为 0, 即存在 t_0 使得

$$g(t_0) = E(t_0(X - EX) + (Y - EY))^2 = 0$$

$$\Leftrightarrow Y = -t_0X + EY + t_0EX.$$

例:设(X,Y)服从二维正态分布,联合密度为

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}(u^2+v^2-2\rho uv)} \quad u = \frac{x-\mu_1}{\sigma_1}, v = \frac{y-\mu_2}{\sigma_2}.$$

求 ρ_{XY} 。

解: 由之前的结论, $\mu_1 = E(X), \mu_2 = E(Y), \sigma_1^2 = \text{var}(X), \sigma_2 = \text{var}(Y).$

故

$$\rho_{XY} = \frac{E(X - \mu_1)(Y - \mu_2)}{\sigma_1 \sigma_2} = E\left(\frac{X - \mu_1}{\sigma_1} \frac{Y - \mu_2}{\sigma_2}\right)$$
$$= \frac{1}{2\pi\sqrt{1 - \rho^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} uv \cdot e^{-\frac{1}{2(1 - \rho^2)}(u^2 + v^2 - 2\rho uv)} dv du.$$

先对 v 积分, $v^2 - 2\rho uv + u^2 = (v - \rho u)^2 + (1 - \rho^2) u^2$,

$$\int_{-\infty}^{\infty} uv \cdot e^{-\frac{1}{2(1-\rho^2)} (u^2 + v^2 - 2\rho uv)} dv = ue^{-\frac{u^2}{2}} \times \int_{-\infty}^{\infty} ve^{-\frac{(v-\rho u)^2}{2(1-\rho^2)}} dv$$
$$= ue^{-\frac{u^2}{2}} \times \sqrt{2\pi (1-\rho^2)} \cdot \rho u.$$

代入积分式,再对u积分,

$$\rho_{XY} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \rho u^2 e^{-\frac{u^2}{2}} du = \rho.$$

例:设二维随机向量 (X,Y) 的联合密度是

$$p(x,y) = \begin{cases} \frac{2}{2\pi} \exp\left\{-\frac{1}{2}(x^2 + y^2)\right\}, & xy > 0, \\ 0, & \text{其他.} \end{cases}$$

求 ρ_{XY} 。

解: 上一讲第二节已经指出 $X \sim N(0,1), Y \sim N(0,1),$ 故

$$E(X) = E(Y) = 0$$
, $var(X) = var(Y) = 1$.

因此

$$\begin{aligned} \cot(X,Y) &= E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyp(x,y)dxdy \\ &= \iint_{\{(x,y):xy>0\}} xy\frac{2}{2\pi} \exp\left\{-\frac{1}{2}(x^2+y^2)\right\} dxdy \\ &= \int_{0}^{\infty} ye^{-y^2/2} \left(\int_{0}^{\infty} \frac{2}{2\pi}xe^{-x^2/2}dx\right) dy \\ &+ \int_{-\infty}^{0} ye^{-y^2/2} \left(\int_{-\infty}^{0} \frac{2}{2\pi}xe^{-x^2/2}dx\right) dy \\ &= \int_{0}^{+\infty} \frac{2}{2\pi}ye^{-y^2/2}dy - \int_{-\infty}^{0} \frac{2}{2\pi}ye^{-y^2/2}dy \\ &= \int_{0}^{+\infty} \frac{2}{\pi}ye^{-y^2/2}dy = \frac{2}{\pi} \end{aligned}$$

故相关系数为 $\rho_{XY} = \frac{2}{\pi}$ 。

6.7 条件期望

条件期望的定义: 设X和Y是两个随机变量。

(1) 若在 Y=y 的条件下 X 的可能值是 x_1,x_2,\cdots (有限个或无穷可列个),条件概率分布是 $P(X=x_i|Y=y_i)(i=1,2,\cdots)$ 则称

$$\sum_{i} x_i P(X = x_i | Y = y)$$

为在 Y = y 条件下 X 的**条件期望**,记为 E(X|Y = y)。

(2) 若在 Y = y 的条件下 X 有条件分布密度 $p_{X|Y}(x|y)$, 则称积分

$$\int_{-\infty}^{\infty} x p_{X|Y}(x|y) dx$$

为在 Y = y 的条件下 X 的**条件期望**, 记为 E(X|Y = y)。

设二维随机向量 (X,Y) 有联合密度 p(x,y),有

$$E(X|Y=y) = \frac{1}{p_Y(y)} \int_{-\infty}^{\infty} x p(x,y) dx.$$

定理: 设二维随机向量 (X,Y) 有联合密度 p(x,y), 则

$$E(X) = \int_{\{y: p_Y(y) > 0\}} E(X|Y = y) p_Y(y) dy.$$

证明: 首先, 若 $p_Y(y) = 0$, 则对任何 A > 0 有

$$\left| \int_{-A}^{A} x p(x, y) dx \right| \leqslant A \int_{-A}^{A} p(x, y) dx \leqslant A \int_{-\infty}^{+\infty} p(x, y) dx = A p_{Y}(y) = 0,$$

于是

$$\int_{-\infty}^{+\infty} x p(x, y) dx = \lim_{A \to \infty} \int_{-A}^{A} x p(x, y) dx = 0$$

可见

$$\begin{split} &\int_{\{y:p_Y(y)>0\}} E(X|Y=y)p_Y(y)dy = \int_{\{y:p_Y(y)>0\}} \left(\int_{-\infty}^{+\infty} x p(x,y) dx\right) dy \\ &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} x p(x,y) dx\right) dy = \int_{-\infty}^{+\infty} x \left(\int_{-\infty}^{+\infty} p(x,y) dy\right) dx \\ &= \int_{-\infty}^{+\infty} x p_X(x) dx = E(X). \end{split}$$

对于离散情形,有类似的定理。

定理: 设 (X,Y) 是二维随机向量, Y 的可能值是 y_1, y_2, \cdots (有限个或可列无穷个), $P(Y = y_i) > 0$ $(i = 1, 2, \cdots)$, X 的可能值是 x_1, x_2, \cdots (有限个或可列无穷个), 且 E(X) 存在, 则

$$E(X) = \sum_{i} E(X|Y = y_i)P(Y = y_i).$$

证明: 由于 $P(X = x_k, Y = y_i) = P(X = x_k | Y = y_i) P(Y = y_i)$, 知

$$E(X) = \sum_{k} x_{k} P(X = x_{k}) = \sum_{k} x_{k} \sum_{i} P(X = x_{k}, Y = y_{i})$$

$$= \sum_{k} \sum_{i} x_{k} P(X = x_{k} | Y = y_{i}) P(Y = y_{i})$$

$$= \sum_{i} E(X | Y = y_{i}) P(Y = y_{i}).$$

例: 设 (X,Y) 的联合密度函数为

$$p(x,y) = \begin{cases} \frac{e^{-x/y}e^{-y}}{y}, & x,y \in (0,+\infty), \\ 0, &$$
其他.

求 E(X|Y=y)。

解: 对给定的 $y \in (0, +\infty)$, 在 Y = y 条件下 X 的条件密度函数为

$$p(x|y) = \begin{cases} \frac{p(x,y)}{p_Y(y)} = \frac{\frac{1}{y}e^{-x/y}e^{-y}}{\int_0^{+\infty} \frac{1}{y}e^{-x/y}e^{-y}dx} = \frac{e^{-x/y}}{y} & x \in (0,+\infty), \\ 0, & x \notin (0,+\infty), \end{cases}$$

因此,X 在给定 Y=y 条件下的条件分布恰好是参数为 $\frac{1}{y}$ 的指数分布。从而

$$E(X|Y=y) = \int_0^{+\infty} \frac{xe^{-x/y}}{y} dx = y.$$

例: (对应郑书例 7.7) 一矿工在有三个门的矿井中迷了路,第 1 个门通到一个通道,走 2 个小时可到达地面;第 2 个门通到另一个通道,走 3 个小时又回到原处;第 3 个门通到第 3 个通道,沿它走 5 个小时也回到原处,假定该矿工总是等可能从 3 个门选择任意一个进入通道,试问,该矿工到达地面平均需要多长时间。

解: 设矿工到达地面所需时间为 X , 选择门的编号为 Y , 则 $P(Y=1) = P(Y=2) = P(Y=3) = \frac{1}{3}$, 于是

$$E(X) = \sum_{i=1}^{3} P(Y=i)E(X|Y=i) = \frac{1}{3} \sum_{i=1}^{3} E(X|Y=i).$$

易知,E(X|Y=1)=2,E(X|Y=2)=E(X)+3,E(X|Y=3)=E(X)+5,于是

$$E(X) = \frac{1}{3}(2 + E(X) + 3 + E(X) + 5)$$

推知 E(X) = 10, 即矿工到达地面平均要 10 小时。

7.1 n 维随机向量

n 维随机向量及其联合分布函数: 设 $\xi = (X_1, \dots, X_n)$ 是 n 维向量, 称

$$F(x_1, \dots, x_n) = P(X_1 \leqslant x_1, \dots, X_n \leqslant x_n), \quad x_1, \dots, x_n \in \mathbb{R}^n$$

为 ξ 的**联合分布函数**, 也记为 F_{ξ} 或 F_{X_1,\dots,X_n} .

离散型 n 维随机向量: 若 ξ 取有限个或可列个值 (n 维向量), 则称 ξ 为离散型.

连续型 n 维随机向量: 若存在非负可积函数 $p(x_1, \dots, x_n)$ 使得对任意 n 维矩形 D 都有

$$P(\xi \in D) = \int \cdots \int_{D} p(x_{1}, \cdots, x_{n}) dx_{1} \cdots dx_{n},$$

则称 ξ 为连续型随机向量, 称 $p(x_1,\dots,x_n)$ 为 ξ 的**联合密度**, 也记为 P_{X_1,\dots,X_n} .(注:上式对一般集合 D 都成立).

例: (多项分布) 设 U_1, \dots, U_n 是取值 $1, \dots, t$ 的随机变量,且相互独立,都服从如下分布:

$$P(U_i = k) = p_k, \quad k = 1, \dots, t,$$

其中 $t \ge 2, p_k > 0, \forall k$ 且 $p_1 + \dots + p_t = 1$.

记

$$X_k = |\{1 \le i \le n : U_i = k\}| = \sum_{i=1}^n 1_{\{U_i = k\}}.$$

 $\xi = (X_1, \cdots, X_t)$ 的联合分布列:

$$P(\xi = (i_1, \dots, i_t)) = \frac{n!}{i_1! \dots i_t!} p_1^{i_1} \dots p_t^{i_t}.$$

因为 $X_t = n - \sum_{s=1}^{t-1} X_s$, $p_t = 1 - \sum_{s=1}^{t-1} p_s$, 所以 ξ 与 (X_1, \dots, X_{t-1}) 等价.

本例的背景模型为: n 次独立重复试验 (投郑一枚 t 面股子).

例: 口袋中有 5 个白球,8 个黑球,从中不放回的依次取出 3 个,若第 i 次取出白球,则 $X_i = 1$,否则令 $X_i = 0$, i = 1, 2, 3,求 (X_1, X_2, X_3) 的联合分布列。

解:

$$P(X_1 = 0, X_2 = 0, X_3 = 0) = \frac{8 \times 7 \times 6}{13 \times 12 \times 11} = 0.1958$$

$$P(X_1 = 1, X_2 = 0, X_3 = 0) = P(X_1 = 0, X_2 = 1, X_3 = 0)$$

$$= P(X_1 = 0, X_2 = 0, X_3 = 1) = \frac{8 \times 7 \times 5}{13 \times 12 \times 11} = 0.1632$$

$$P(X_1 = 1, X_2 = 1, X_3 = 0) = P(X_1 = 0, X_2 = 1, X_3 = 1)$$

$$= P(X_1 = 1, X_2 = 0, X_3 = 1) = \frac{5 \times 4 \times 8}{13 \times 12 \times 11} = 0.0932$$

$$P(X_1 = 1, X_2 = 1, X_3 = 1) = \frac{5 \times 4 \times 3}{13 \times 12 \times 11} = 0.0.035$$

独立性: 若对任意 $a_i < b_i, i = 1, \dots, n$ 都有

$$P(a_1 < X_1 < b_1, \dots, a_n < X_n < b_n)$$

$$= P(a_1 < X_1 < b_1) \dots P(a_n < X_n < b_n)$$

则称 n 个随机变量 X_1, \dots, X_n 相互独立.

若 X_1, \dots, X_n 相互独立, 且 $F_{X_i} = F_{X_1}, i = 2, \dots, n$, 则称 X_1, \dots, X_n 独立同分布.

若相互独立, 则上式中的 $a_i < X_i < b_i$ 可以改为 $X_i \in B_i$, 其中 B_1, \dots, B_n 为任意一维 Borel 集。

定理: 设 $X_1, \dots, X_n (n \ge 2)$ 都是随机变量,分别有分布密度 $p_1(x_1), \dots, p_n(x_n)$,则 X_1, \dots, X_n 相互独立的充分必要条件是 n 元函数

$$p_{X_1,\dots,X_n}(x_1,\dots,x_n) = p_1(x_1)\dots p_n(x_n).$$

为 n 维随机向量 (X_1, \dots, X_n) 的联合密度。

对于离散型随机向量,有类似的结论,设 n 个随机变量的取值分别为 $X_1=x_1^{(1)},x_2^{(1)},\cdots;\cdots;X_n=x_1^{(n)},x_2^{(n)},\cdots,$ 则 X_1,\cdots,X_n 相互独立的充分必要条件是

$$P\left(X_{1} = x_{i_{1}}^{(1)}, \cdots, X_{n} = x_{i_{n}}^{(n)}\right)$$

$$= P\left(X_{1} = x_{i_{1}}^{(1)}\right) \cdots P\left(X_{n} = x_{i_{n}}^{(n)}\right) = p_{i_{1}}^{(1)} \cdots p_{i_{n}}^{(n)}$$

定义: 若 X_i 与 X_j 相互独立, $\forall i \neq j$, 则称 X_1, \dots, X_n 两两独立.

例: 甲、乙玩石头剪刀布. 甲出 X, 乙出 Y, 结局为 Z. 则 X,Y,Z 两两独立, 但不相互独立.

例: 设随机向量 (X, Y, Z) 在矩形区域 a < x < b, c < y < d, e < z < f 内服从均匀分布,求 X, Y, Z 的分布密度函数,以及 X, Y, Z 是否相互独立。

解: 由均匀分布定义

$$p(x, y, z) = \frac{1}{(b-a)(d-c)(f-e)} \quad a < x < b, c < y < d, e < z < f.$$

当 x,y,z 所在边界矩形是独立的,且在矩形内时有:

$$p_X(x) = \int_e^f \int_c^d \frac{1}{(b-a)(d-c)(f-e)} dy dz = \frac{1}{b-a}$$

$$p_Y(y) = \int_e^f \int_a^b \frac{1}{(b-a)(d-c)(f-e)} dx dz = \frac{1}{d-c}$$

$$p_Z(z) = \int_c^d \int_a^b \frac{1}{(b-a)(d-c)(f-e)} dx dy = \frac{1}{f-e}.$$

由于 $p(x,y,z) = p_X(x)p_Y(y)p_Z(z)$, 因此 X,Y,Z 之间相互独立。

定义: 设 **X** = (X_1, \dots, X_m) 和 **Y** = (Y_1, \dots, Y_n) 分别是 m 维和 n 维随机向量,给定 **y** = (y_1, \dots, y_n) ,若 $P(\mathbf{Y} = \mathbf{y}) > 0$,则 x_1, \dots, x_m 的函数

$$P(X_1 \leqslant x_1, \cdots, X_m \leqslant x_m | \mathbf{Y} = \mathbf{y})$$

称为在 $\mathbf{Y} = \mathbf{y}$ 条件下 \mathbf{X} 的条件分布函数, 记为 $F_{\mathbf{X}|\mathbf{Y}}(x_1, \dots, x_m|\mathbf{y})$.

若 $\mathbf{X} = (X_1, \dots, X_m)$ 和 $\mathbf{Y} = (Y_1, \dots, Y_n)$ 有联合密度 $p(x_1, \dots, x_m, y_1, \dots, y_n)$,则

$$F_{\mathbf{X}|\mathbf{Y}}(x_1,\cdots,x_m|y_1,\cdots,y_n) = \int_{-\infty}^{x_1}\cdots\int_{-\infty}^{x_m}\frac{p(u_1,\cdots,u_m,y_1,\cdots,y_n)}{p_Y(y_1,\cdots,y_n)}du_1\cdots du_m,$$

这里 $p_Y(y_1, \dots, y_n)$ 是 $\mathbf{Y} = (Y_1, \dots, Y_n)$ 的联合密度,称这里的被积函数为在 $\mathbf{Y} = (y_1, \dots, y_n)$ 条件下 \mathbf{X} 的条件分布密度。

例: 设 X_1, X_2, X_3 为独立同分布的连续型随机变量,求 $P(X_3 < X_1 | X_1 = \min \{X_1, X_2\})$.

解:

$$P(X_3 < X_1 | X_1 = \min \{X_1, X_2\}) = \frac{P(X_3 < X_1, X_1 = \min \{X_1, X_2\})}{P(X_1 = \min \{X_1, X_2\})}$$

$$= \frac{\int_{-\infty}^{+\infty} \int_{x_3}^{+\infty} \int_{x_1}^{+\infty} p(x_2) dx_2 p(x_1) dx_1 p(x_3) dx_3}{\int_{-\infty}^{+\infty} \int_{x_1}^{+\infty} p(x_2) dx_2 p(x_1) dx_1}$$

$$= \frac{\int_{-\infty}^{+\infty} \int_{x_3}^{+\infty} (1 - F(x_1)) dF(x_1) dF(x_3)}{\int_{-\infty}^{+\infty} (1 - F(x_1)) dF(x_1)}$$

$$= \frac{\int_{-\infty}^{+\infty} \frac{1}{2} - F(x_3) + \frac{1}{2} F^2(x_3) dF(x_3)}{1/2} = \frac{1/6}{1/2} = \frac{1}{3}$$

7.1.1 n 维随机向量的数字特征

设 $\xi = (X_1, \dots, X_n)$ 是 n 维随机向量,每个 X_i 都有期望和方差,易知协方差

$$\sigma_{X_i X_j} = E((X_i - E(X_i))(X_j - E(X_j))) \quad (i \neq j)$$

必然存在。

期望: 称 $(E(X_1), \dots, E(X_n))$ 为 ξ 的期望, 记为 $E(\xi)$.

协方差阵: 记 $\sigma_{ij} = \operatorname{cov}(X_i, X_j)$, $\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$. 称 $\Sigma = (\sigma_{ij})_{n \times n}$ 为 ξ 的**协方差阵**, $\mathbf{R} = (\rho_{ij})_{n \times n}$ 为 ξ 的相关系数阵。

例: 设随机变量 *X*₁, *X*₂, *X*₃ 满足

$$aX_1 + bX_2 + cX_3 = 0,$$

 $E(X_1) = E(X_2) = E(X_3) = d,$
 $var(X_1) = var(X_2) = var(X_3) = \sigma^2.$

求相关系数 $\rho_{12}, \rho_{23}, \rho_{31}$.

解: 对等式 $aX_1 + bX_2 = -cX_3$ 两侧求方差得 $a^2\sigma^2 + b^2\sigma^2 + 2ab\sigma^2\rho_{12} = c^2\sigma^2$, 由此解得

$$\rho_{12} = \frac{c^2 - a^2 - b^2}{2ab},$$

同理,对等式 $aX_1 + cX_3 = -bX_2$ 两侧求方差得

$$\rho_{13} = \frac{b^2 - a^2 - c^2}{2ac},$$

同理,对等式 $bX_2 + cX_3 = -aX_1$ 两侧求方差得

$$\rho_{23} = \frac{a^2 - b^2 - c^2}{2bc}.$$

特别的, 当 $d \neq 0$ 时, 有 (a+b+c)d=0, 因此 a+b+c=0, 由此可得

$$c^2 = a^2 + b^2 + 2ab$$
, $b^2 = a^2 + c^2 + 2ac$, $a^2 = b^2 + c^2 + 2bc$

代人 ρ_{12} , ρ_{23} , ρ_{31} 表达式得 $\rho_{12} = \rho_{23} = \rho_{31} = 1$.

7.1.2 n 个随机变量的函数

定理: 设 $Y = f(X_1, \dots X_n)$ 的分布函数是 F(y), 令

$$A(y) = \{(x_1, \dots, x_n) : f(x_1, \dots, x_n) \le y\}$$

其中 y 是任意实数,则

$$F_Y(y) = P(f(\xi) \leqslant y) = \int \cdots \int_{A(y)} p(x_1, \dots, x_n) dx_1 \cdots dx_n$$

定理: (均值公式) 设 $Y = f(X_1, \dots X_n)$, n 维随机向量 (X_1, \dots, X_n) 有联合密度 $p(x_1, \dots, x_n)$, 则

$$EY = \int \cdots \int f(x_1, \cdots, x_n) p(x_1, \cdots, x_n) dx_1 \cdots dx_n.$$

例: $(\chi^2 \text{ 分布})$ 假设 X_1, \dots, X_n 独立同分布, 都服从 N(0,1). 于是, $Y_n := X_1^2 + \dots + X_n^2 \sim \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$, 密度为

$$p_n(x) = \frac{1}{2^{n/2}\Gamma(\frac{n}{2})}x^{n/2-1}e^{-x/2}, \quad x > 0.$$

其中

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx$$

证明: 利用数学归纳法,已经证明(郑书例 5.2) $Y_1 = X_1^2$ 的分布密度是

$$p_1(x) = \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2}, \quad x > 0.$$

设 n=k 时结论成立,考虑 n=k+1 的情形,由于 $Y_{k+1}=Y_k+X_{k+1}^2$, Y_k 与 X_{k+1}^2 相互独立,则 Y_{k+1} 的分布密度为

$$\begin{split} p_{k+1}(x) &= \int_{-\infty}^{+\infty} p_k(u) p_1(x-u) du \\ &= \int_0^x \frac{1}{2^{k/2} \Gamma\left(\frac{k}{2}\right)} u^{k/2-1} e^{-u/2} \frac{1}{\sqrt{2\pi}} (x-u)^{-1/2} e^{-(x-u)/2} du \\ &= \int_0^x \frac{e^{-x/2}}{2^{(k+1)/2} \Gamma\left(\frac{k}{2}\right) \sqrt{\pi}} u^{k/2-1} (x-u)^{-1/2} du \\ &= \frac{x^{(k+1)/2-1} e^{-x/2}}{2^{(k+1)/2} \Gamma\left(\frac{k}{2}\right) \sqrt{\pi}} \int_0^1 v^{k/2-1} (1-v)^{-1/2} dv \quad (做变量替换u = xv) \\ &= C x^{(k+1)/2-1} e^{-x/2} \quad (C 是与x 无关的常数). \end{split}$$

由归一性

$$1 = \int_0^{+\infty} Cx^{(k+1)/2-1} e^{-x/2} dx = C2^{(k+1)/2} \int_0^{+\infty} t^{(k+1)/2-1} e^{-t} dt$$

故

$$C = \frac{1}{2^{(k+1)/2} \Gamma\left(\frac{k+1}{2}\right)}.$$

因此 n = k+1 时结论成立。对一切 $n \ge 1$, Y_n 均服从 $\Gamma\left(\frac{n}{2},\frac{1}{2}\right)$ 。称 Y_n 服从 n 个自由度的 χ^2 (卡**方)** 分布。

例: 假设 X_1, \dots, X_n 独立同分布, 都服从参数为 λ 的指数分布,则 $Y_n := \sum_{i=1}^n X_i \quad (n \ge 1)$ 的分布密度是

 $p_n(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x}, \quad (x > 0).$

证明: 利用数学归纳法,当 n=1 时,结论显然成立。设 n=k 时结论成立,考虑 n=k+1 的情形,由于 $Y_{k+1}=Y_k+X_{k+1}$, Y_k 与 X_{k+1} 相互独立,则 Y_{k+1} 的分布密度为

$$p_{k+1}(x) = \int_{-\infty}^{+\infty} p_k(u) p_1(x - u) du$$

$$= \int_0^x \frac{\lambda^k}{(k-1)!} u^{k-1} e^{-\lambda u} \lambda e^{-\lambda(x-u)} du$$

$$= \frac{\lambda^{k+1}}{(k-1)!} e^{-\lambda x} \int_0^x u^{k-1} du = \frac{\lambda^{k+1}}{k!} x^k e^{-\lambda x}.$$

因此 n=k+1 时结论成立。对一切 $n\geqslant 1$, Y_n 的概率密度均为 $p_n(x)=\frac{\lambda^n}{(n-1)!}x^{n-1}e^{-\lambda x}$, (x>0)。 并且随机变量 $Z_n=2\lambda Y_n$ 服从 2n 个自由度的 χ^2 分布。

例: N 件产品中有 D 件次品. 随机抽取 n 件, 设包含 X 件次品. 可以利用期望的性质,求 E(X) 与 var(X). (其中, $N \ge n \ge 2$).

解: 随机数目的分解: $X = X_1 + \cdots + X_n$, 其中

$$X_i = \begin{cases} 1, \text{ 若第}i \text{ 件是次品;} \\ 0, \text{ 若第}i \text{ 件是合格品.} \end{cases}$$

由期望的线性、伯努利分布的期望,

$$E(X) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} P($$
 第 i 件是次品 $) = n \frac{D}{N}.$

由于 $var(X) = EX^2 - (EX)^2$. 根据对称性,

$$E(X^{2}) = \sum_{i=1}^{n} E(X_{i}^{2}) + \sum_{i \neq j} E(X_{i}X_{j}) = nE(X_{1}^{2}) + n(n-1)E(X_{1}X_{2})$$

由乘法公式,

$$E(X_1X_2) = P($$
 前两件都是次品 $) = \frac{D}{N} \cdot \frac{D-1}{N-1}.$

因此,

$$\operatorname{var}(X) = n \frac{D}{N} + n(n-1) \frac{D}{N} \cdot \frac{D-1}{N-1} - \left(n \frac{D}{N}\right)^{2}$$
$$= \frac{n(N-n)D(N-D)}{N^{2}(N-1)} \quad (N > 1)$$

例: 随机向量 $\mathbf{X} = (X_i)_{n \times 1}$, $E(\mathbf{X}) = \mu$, $var(\mathbf{X}) = \mathbf{\Sigma}$, 矩阵 $\mathbf{A}_{n \times n}$, 证明: $E(\mathbf{X}^{\top} \mathbf{A} \mathbf{X}) = tr(\mathbf{A} \mathbf{\Sigma}) + \mu^{\top} \mathbf{A} \mu$. 证明:

$$\begin{split} E(\mathbf{X}^{\top}\mathbf{A}\mathbf{X}) &= E(\operatorname{tr}(\mathbf{X}^{\top}\mathbf{A}\mathbf{X})) = E(\operatorname{tr}(\mathbf{A}\mathbf{X}\mathbf{X}^{\top})) \\ &= \operatorname{tr}(E(\mathbf{A}\mathbf{X}\mathbf{X}^{\top})) = \operatorname{tr}(\mathbf{A}E(\mathbf{X}\mathbf{X}^{\top})) \\ &= \operatorname{tr}(\mathbf{A}(\operatorname{var}(\mathbf{X}) + \mu\mu^{\top})) = \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}) + \operatorname{tr}(\mathbf{A}\mu\mu^{\top}) \\ &= \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}) + \mu^{\top}\mathbf{A}\mu. \end{split}$$

7.1.3 n 个随机变量的多个函数

定理: 设 $\xi = (X_1, \dots, X_n)$ 为连续型随机向量,且 \mathbb{R}^n 中的区域 A 满足 $P(\xi \in A) = 1$,函数 $f_1(x_1, \dots, x_n), \dots, f_n(x_1, \dots, x_n)$ 满足下列条件:

(1) 对任何实数 u_1, \cdots, u_n , 方程组

$$f_k(x_1, \dots, x_n) = u_k, \quad (k = 1, \dots, n)$$

在 A 中至多有一个解 $x_i = x_i(u_1, \dots, u_n), \quad i = 1, \dots, n;$

- (2) 对一切 $k = 1, \dots, n, f_k$ 在 A 中有连续偏导数;
- (3) 雅可比行列式

$$J = \frac{\partial (y_1, \dots, y_n)}{\partial (x_1, \dots, x_n)} \neq 0.$$

设 $Y_k = f_k(X_1, \dots, X_n)(k=1, \dots, n), G = \{(u_1, \dots, u_n) : 方程组f_k(x_1, \dots, x_n) = u_k, (k=1, \dots, n)$ 在A中有解 $\}$,则 $\eta = (Y_1, \dots, Y_n)$ 是连续型,且联合密度

$$p_{\eta}(y_1, \dots, y_n) = p_{\xi}(x_1, \dots, x_n) |J^{-1}|, (y_1, \dots, y_n) \in G.$$

定理: 设 $\xi = (X_1, \dots, X_n)$ 的协方差阵为 Σ , 且

$$Y_i = \sum_{j=1}^{n} a_{ij} X_j, j = 1, \cdots, m.$$

记 $\mathbf{A} = (a_{ij})_{m \times n}, \ \eta = (Y_1, \cdots, Y_m), \$ 则

$$(E(\eta))^{\top} = \mathbf{A}(E(\xi))^{\top},$$

$$cov(\eta, \eta) = \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top}.$$

证明:由于 $E(Y_i) = \sum_{j=1}^n a_{ij} E(X_j)$,故 $(E(\eta))^{\top} = \mathbf{A}(E(\xi))^{\top}$ 成立,又由于 $Y_i - E(Y_i) = \sum_{j=1}^n a_{ij} (X_j - E(X_j))$,知

$$(Y_i - E(Y_i))(Y_k - E(Y_k)) = \sum_{j=1}^n \sum_{l=1}^n a_{ij} a_{kl} (X_j - E(X_j))(X_l - E(X_l)).$$

于是

$$cov(Y_i, Y_k) = \sum_{j=1}^{n} \sum_{l=1}^{n} a_{ij} a_{kl} E(X_j - E(X_j)) (X_l - E(X_l))$$
$$= \sum_{j=1}^{n} \sum_{l=1}^{n} a_{ij} a_{kl} \sigma_{jl},$$

这里 $\sigma_{jl} = \text{cov}(X_j, X_l)$.

由于 $\Sigma = (\sigma_{jl})_{n \times n}$, 知 $\operatorname{cov}(\eta, \eta) = \mathbf{A} \Sigma \mathbf{A}^{\top}$ 成立。

次序统计量: 设n个随机变量 X_1, \cdots, X_n ,将它们从小到大排列:

$$X_{(1)} \leqslant X_{(2)} \leqslant \cdots \leqslant X_{(n)},$$

称 $X_{(k)}$ 为第 k 个次序统计量.

例: 设 X_1, \dots, X_n 独立同分布, 都服从 U(0,1). 已知对于 $\forall 0 < x < 1$,

$$P(X_{(k)} \le x) = \sum_{i=k}^{n} \frac{n!}{i!(n-i)!} x^{i} (1-x)^{n-i}.$$

求 $E(X_{(k)})$ 与 $\operatorname{var}(X_{(k)})$.

解: 由于对于 $\forall 0 < x < 1$,

$$P(X_{(k)} \le x) = \sum_{i=k}^{n} \frac{n!}{i!(n-i)!} x^{i} (1-x)^{n-i}.$$

 $k \le i \le n-1$, 上式单项的导数是

$$\frac{n!}{i!(n-i)!} \left(ix^{i-1} (1-x)^{n-i} - x^{i} (n-i)(1-x)^{n-i-1} \right)$$

$$= \frac{n!}{(i-1)!(n-i)!} x^{i-1} (1-x)^{n-i} - \frac{n!}{i!(n-i-1)!} x^{i} (1-x)^{n-i-1}$$

$$= a_{i-1} - a_{i},$$

 $i = n \text{ ff}, (x^n)' = a_{n-1}, \text{ ff}, \forall 0 < x < 1,$

$$p_{X_{(k)}}(x) = \sum_{i=k}^{n-1} (a_{i-1} - a_i) + a_{n-1} = a_{k-1}.$$

已有 $q_k(x) := p_{X_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} x^{k-1} (1-x)^{n-k}$,且对于 $\forall \ell, m \geqslant 1$,由分部积分

$$\int_0^1 x^{\ell} (1-x)^m dx = \frac{m}{\ell+1} \int_0^1 x^{\ell+1} (1-x)^{m-1} dx$$
$$= \dots = \frac{m!}{(\ell+1)\cdots(\ell+m)} \int_0^1 x^{\ell+m} dx = \frac{\ell! m!}{(\ell+m+1)!}$$

期望: 取 $\ell = k, m = n - k,$ 知

$$EX_{(k)} = \int_0^1 x q_k(x) dx = \frac{n!}{(k-1)!(n-k)!} \int_0^1 x^k (1-x)^{n-k} dx$$
$$= \frac{n!}{(k-1)!(n-k)!} \cdot \frac{k!(n-k)!}{(n+1)!} = \frac{k}{n+1}.$$

二阶矩: 取 $\ell = k + 1, m = n - k$,

$$EX_{(k)}^{2} = \int_{0}^{1} x^{2} q_{k}(x) dx = \frac{n!}{(k-1)!(n-k)!} \int_{0}^{1} x^{k+1} (1-x)^{n-k} dx$$
$$= \frac{n!}{(k-1)!(n-k)!} \cdot \frac{(k+1)!(n-k)!}{(n+2)!} = \frac{k(k+1)}{(n+1)(n+2)}.$$

方差:

$$\operatorname{var}(X_{(k)}) = EX_{(k)}^2 - (EX_{(k)})^2 = \frac{k(k+1)}{(n+1)(n+2)} - \frac{k^2}{(n+1)^2}$$
$$= \frac{k^2(n+1) + k(n+1) - k^2(n+2)}{(n+1)^2(n+2)} = \frac{k(n+1-k)}{(n+1)^2(n+2)}.$$

7.1.4 n 维正态分布

我们已经定义过n维正态分布。

n **维正态分布**: 假设 n 维随机向量 ξ 有如下的联合密度,则称 ξ 服从 n 维正态分布,记为 $\xi \sim N(\mu, \Sigma)$.

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi}^n \sqrt{|\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu)\right\}.$$

定理 8.1: 设 $(X_1, \dots, X_n)^{\top} \sim N(\mu, \Sigma)$, $\mathbf{A} = (a_{ij})_{n \times n}$, $|\mathbf{A}| \neq 0$, $Y_i = \sum_{j=1}^n a_{ij} X_j (i = 1, \dots, n)$, 则

$$(Y_1, \cdots, Y_n)^{\top} \sim N(\mathbf{A}\mu, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top}).$$
 (7.1.1)

证明: 设 $\mathbf{y} = (y_1, \dots, y_n)^{\mathsf{T}}, \mathbf{x} = (x_1, \dots, x_n)^{\mathsf{T}},$ 对于任意 n 维矩形 D, 记

$$D^* = \{\mathbf{x} = (x_1, \cdots, x_n)^\top : \mathbf{A}\mathbf{x} \in D\},\$$

则

$$P((Y_1, \cdots, Y_n)^{\top} \in D) = P((X_1, \cdots, X_n)^{\top} \in D^*) = \iint_{D^*} \frac{1}{\sqrt{2\pi^n} \sqrt{|\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu)\right\} d\mathbf{x}$$

做变量替换 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$, 雅可比行列式为

$$\frac{\partial(x_1,\cdots,x_n)}{\partial(y_1,\cdots,y_n)}=|A^{-1}|=|A|^{-1}.$$

于是

$$P((Y_1, \dots, Y_n)^{\top} \in D) = \int \dots \int_D \frac{1}{\sqrt{2\pi^n} \sqrt{|\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2} (\mathbf{A}^{-1} \mathbf{y} - \mu)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{A}^{-1} \mathbf{y} - \mu)\right\} ||A||^{-1} d\mathbf{y}$$

$$= \int \dots \int_D \frac{1}{\sqrt{2\pi^n} \sqrt{|\mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top}|}} \exp\left\{-\frac{1}{2} (\mathbf{y} - \mathbf{A} \mu)^{\top} (\mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top})^{-1} (\mathbf{y} - \mathbf{A} \mu)\right\} d\mathbf{y}.$$

这表明
$$(Y_1, \dots, Y_n)^{\top} \sim N(\mathbf{A}\mu, \mathbf{A}\Sigma \mathbf{A}^{\top}).$$

推论: 若 ξ 服从 n 元正态分布 $N(\mu, \Sigma)$,则存在一个正交变换 \mathbf{U} ,使得 $\eta = \mathbf{U}\xi$ 是一个具有独立正态分布分量的随机向量,它的数学期望为 $\mathbf{U}\mu$,方差分量是 Σ 的特征值。

证明: 对实对称矩阵 Σ ,存在正交矩阵 \mathbf{U} ,使得 $\mathbf{U}\Sigma\mathbf{U}^{\mathsf{T}} = \mathbf{D}$,其中 \mathbf{D} 为对角矩阵,对角元是 Σ 的特征值,若 Σ 的秩为 r,则有 r 个特征值不为零。

将这里的 U 作为定理 8.1 的变换矩阵,则可得推论结果。

推论:正交变换下,多维标准正态变量保持其独立性,同方差性不变。

证明: 设 $\mathbf{X} = (X_1, \dots, X_n)^{\top}$ 服从 n 元正态分布,且 X_i 相互独立有相同的方差 σ^2 ,则协方差矩阵 $D(\mathbf{X}) = \sigma^2 \mathbf{I}$,若 \mathbf{U} 是正交阵, $\mathbf{Y} = \mathbf{U}\mathbf{X}$,由定理 8.1 知 \mathbf{Y} 服从正态分布,协方差为

$$\mathbf{U}\sigma^2\mathbf{I}\mathbf{U}^{\top} = \sigma^2\mathbf{I}$$

因此 η 仍然是相互独立且具有相同方差。

推论: 若 $\xi \sim N(\mu, \Sigma)$, 其中 Σ 是 n 阶正定阵, 则

$$(\xi - \mu)^{\top} \mathbf{\Sigma}^{-1} (\xi - \mu) \sim \chi_n^2$$

证明:设正定阵 $\Sigma = LL^{T}$,则

$$(\xi - \mu)^{\top} \mathbf{\Sigma}^{-1} (\xi - \mu) = (\xi - \mu)^{\top} (\mathbf{L} \mathbf{L}^{\top})^{-1} (\xi - \mu)$$
$$= [\mathbf{L}^{-1} (\xi - \mu)]^{\top} [\mathbf{L}^{-1} (\xi - \mu)] = \eta^{\top} \eta$$

其中 $\eta = \mathbf{L}^{-1}(\xi - \mu)$, 由定理 8.1 知它是均值为 $\mathbf{0}$ 的 n 维正态变量, 协方差矩阵为

$$\mathbf{L}^{-1}\mathbf{\Sigma}(\mathbf{L}^{-1})^{\top} = \mathbf{I}$$

从而 η 的各个分量是相互独立的标准状态变量,因此

$$\eta^{\top} \eta = \chi_1^2 + \dots + \chi_1^2 \sim \chi_n^2.$$

定理 8.2: 设 $(X_1, \dots, X_m, X_{m+1}, \dots, X_n)^{\top} \sim N(\mu, \Sigma) (1 \leqslant m < n)$, 且

$$\mu = \left[egin{array}{c} \mu^{(1)} \\ \mu^{(2)} \end{array}
ight], \quad oldsymbol{\Sigma} = \left[egin{array}{cc} oldsymbol{\Sigma}^{(1)} & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{\Sigma}^{(2)} \end{array}
ight],$$

其中 $\mu^{(1)}$ 是 m 维列向量, $\mu^{(2)}$ 是 n-m 维列向量, $\Sigma^{(1)}$ 是 m 阶矩阵, $\Sigma^{(2)}$ 是 n-m 阶矩阵, 则

$$\mathbf{X}^{(1)} = (X_1, \cdots, X_m)^{\top} \sim N(\mu^{(1)}, \mathbf{\Sigma}^{(1)}), \quad \mathbf{X}^{(2)} = (X_{m+1}, \cdots, X_n)^{\top} \sim N(\mu^{(2)}, \mathbf{\Sigma}^{(2)}).$$

证明: 记 $\mathbf{x}^{(1)} = (x_1, \dots, x_m)^\top$, $\mathbf{x}^{(2)} = (x_{m+1}, \dots, x_n)^\top$, 易知 $(X_1, \dots, X_m, X_{m+1}, \dots, X_n)^\top$ 的联合密度为

$$p(x_1, \dots, x_m, x_{m+1}, \dots, x_n) = \frac{1}{\sqrt{2\pi}^n \sqrt{|\mathbf{\Sigma}^{(1)}|}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(1)} - \mu^{(1)})^\top (\mathbf{\Sigma}^{(1)})^{-1} (\mathbf{x}^{(1)} - \mu^{(1)})\right\}$$
$$\cdot \frac{1}{\sqrt{2\pi}^n \sqrt{|\mathbf{\Sigma}^{(2)}|}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(2)} - \mu^{(2)})^\top (\mathbf{\Sigma}^{(2)})^{-1} (\mathbf{x}^{(2)} - \mu^{(2)})\right\}.$$

于是

$$P((X_1, \cdots, X_m)^{\top} \in D) = \int \cdots \int_D \frac{1}{\sqrt{2\pi}^n \sqrt{|\mathbf{\Sigma}^{(1)}|}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(1)} - \mu^{(1)})^{\top} (\mathbf{\Sigma}^{(1)})^{-1} (\mathbf{x}^{(1)} - \mu^{(1)})\right\} d\mathbf{x}^{(1)}$$

$$\begin{split} & \cdot \int \cdots \int_{\mathcal{R}^{n-m}} \frac{1}{\sqrt{2\pi^n} \sqrt{|\mathbf{\Sigma}^{(2)}|}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^{\top} (\mathbf{\Sigma}^{(2)})^{-1} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right\} d\mathbf{x}^{(2)} \\ & = \int \cdots \int_{D} \frac{1}{\sqrt{2\pi^n} \sqrt{|\mathbf{\Sigma}^{(1)}|}} \exp\left\{-\frac{1}{2} (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^{\top} (\mathbf{\Sigma}^{(1)})^{-1} (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})\right\} d\mathbf{x}^{(1)}. \end{split}$$

这表明 $(X_1, \dots, X_m)^{\top} \sim N(\mu^{(1)}, \Sigma^{(1)})$,同理知 $(X_{m+1}, \dots, X_n)^{\top} \sim N(\mu^{(2)}, \Sigma^{(2)})$ 。

在上述定理的假设条件下, $(X_1, \dots, X_m)^{\mathsf{T}}$ 与 $(X_{m+1}, \dots, X_n)^{\mathsf{T}}$ 相互独立。进而推知多元正态分布 (X_1, \dots, X_n) 两两独立的充分必要条件是两两不相关。

定理 8.3:
$$(X_1, \cdots, X_m, \cdots, X_n)^{\top} \sim N(\mu, \Sigma)(1 \leqslant m < n)$$
, 则

$$(X_1, \cdots, X_m) \sim N(\mu^{(1)}, \Sigma_{11})$$

其中

$$oldsymbol{\Sigma} = \left[egin{array}{cc} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight], \quad \mu = \left[egin{array}{c} \mu^{(1)} \ \mu^{(2)} \end{array}
ight].$$

证明:令

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m & \mathbf{0} \\ -\mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1} & \mathbf{I}_{n-m} \end{bmatrix} \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \mathbf{B} \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$$

则由式7.1.1知

$$(Y_1, \cdots, Y_n)^{\top} \sim N(\mathbf{B}\mu, \mathbf{B}\Sigma\mathbf{B}^{\top}).$$

易知

$$\mathbf{B}\mu = \mathbf{B} \left[egin{array}{c} \mu^{(1)} \\ \mu^{(2)} \end{array}
ight], \quad \mathbf{B}\mathbf{\Sigma}\mathbf{B}^{ op} = \left[egin{array}{ccc} \mathbf{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{22} - \mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1}\mathbf{\Sigma}_{12} \end{array}
ight].$$

根据定理知

$$(X_1, \cdots, X_m) \sim N(\mu^{(1)}, \Sigma_{11}).$$

定理 8.4: 设 $(X_1, \dots, X_n)^{\top} \sim N(\mu, \Sigma)$, **A** 是 $m \times n$ 的矩阵且 **A** 的秩等于 m, $(Y_1, \dots, Y_m)^{\top} = \mathbf{A}(X_1, \dots, X_m)^{\top}$, 则

$$(Y_1, \cdots, Y_m)^{\top} \sim N(\mathbf{A}\mu, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top}).$$

证明: 若 m=n, 则结论与式7.1.1相同; 若 m < n, 则在 A 下方添加 n-m 行使得到的矩阵

$$\mathbf{B} = \left[egin{array}{c} \mathbf{A} \\ \mathbf{C} \end{array}
ight]$$

非奇异,令

$$(Z_1, \cdots Z_n)^{\top} = \mathbf{B}(X_1, \cdots, X_n)^{\top}.$$

由式7.1.1知

$$(Z_1, \cdots Z_n)^{\top} \sim N(\mathbf{B}\mu, \mathbf{B}\Sigma \mathbf{B}^{\top}).$$

注意到

$$\mathbf{B}\mu = \left[egin{array}{c} \mathbf{A}\mu \ \mathbf{C}\mu \end{array}
ight], \quad \mathbf{B}oldsymbol{\Sigma}\mathbf{B}^{ op} = \left[egin{array}{c} \mathbf{A}oldsymbol{\Sigma}\mathbf{A}^{ op} & \mathbf{A}oldsymbol{\Sigma}\mathbf{C}^{ op} \ \mathbf{C}oldsymbol{\Sigma}\mathbf{C}^{ op} \end{array}
ight], \ \left(Z_1, \cdots Z_m
ight)^{ op} = \left(Y_1, \cdots Y_m
ight)^{ op}.$$

由定理 8.3 知定理成立。

定理 8.5: 设 $(X_1, \cdots, X_n)^{\top} \sim N(\mu, \Sigma)$,则有

- (1) $E(\mathbf{X}) \triangleq (E(X_1), \cdots, E(X_n))^{\top} = \mu;$
- (2) $cov(\mathbf{X}, \mathbf{X}) = \mathbf{\Sigma}$.

证明: 先考虑 $\Sigma = \mathbf{I}$ 的情形, 此时 X_1, \dots, X_n 独立同分布, 且 $X_i \sim N(\mu_i, 1)$, 于是

$$(E(X_1), \cdots, E(X_n))^{\top} = \mu, \quad \operatorname{cov}(\mathbf{X}, \mathbf{X}) = \mathbf{I},$$

故 $\Sigma = I$ 时定理成立。

现考虑一般情形,设 Σ 是任何 n 阶正定矩阵,存在方阵 A,使得 $A\Sigma A = I$,令 Y = AX,由定理 8.1 知 $Y \sim N(A\mu, A\Sigma A)$,即

$$Y \sim N(\mathbf{A}\mu, \mathbf{I}),$$

因此

$$E(\mathbf{Y}) = \mathbf{A}\mu, \quad \text{cov}(\mathbf{Y}, \mathbf{Y}) = \mathbf{I}.$$

由于 $\mathbf{X} = \mathbf{A}^{-1}\mathbf{Y}$,利用期望的线性性质得到

$$E(\mathbf{X}) = \mathbf{A}^{-1}E(\mathbf{Y}) = \mu,$$

$$\mathrm{cov}(\boldsymbol{X},\boldsymbol{X}) = \boldsymbol{A}^{-1}\,\mathrm{cov}(\boldsymbol{Y},\boldsymbol{Y})(\boldsymbol{A}^{-1})^\top = \boldsymbol{\Sigma}.$$

例: 若 $\xi \sim N(0, I_d)$, 试证明 $\frac{\xi}{||\xi||}(\xi \neq 0)$ 为 $||x||_2 = 1$ 上的均匀分布。

证明: 只需说明 $\forall ||x||_2 = 1$, $R^{\top}R = I_d$, 有 $p_{\frac{\xi}{||\xi||}}(x) = p_{\frac{\xi}{||\xi||}}(Rx)$.

由于概率密度函数 $p_{\frac{\xi}{||\xi||}}(Rx)$ 等价于 $\frac{\xi}{||\xi||}$ 经过线性变换 R^{\top} 后,得到的变量 $Z=\frac{R^{\top}\xi}{||\xi||}$ 的概率密度函数,

$$p_{\frac{\xi}{||\xi||}}(Rx) = p_{\frac{R^{\top}\xi}{||\xi||}}(x),$$

注意到 $||R^{\mathsf{T}}\xi|| = ||\xi||$, 故

$$p_{\frac{\xi}{||\xi||}}(Rx) = p_{\frac{R^{\top}\xi}{||R^{\top}\xi||}}(x)$$

由定理 8.1 有 $R^{\mathsf{T}}\xi \sim N(0,I_d)$, 因此

$$p_{\frac{\xi}{||\xi||}}(Rx) = p_{\frac{R^{\top}\xi}{||R^{\top}\xi||}}(x) = p_{\frac{\xi}{||\xi||}}(x).$$

例: 若 ξ_1 , ξ_2 是相互独立的随机变量,均服从标准正态分布,而

$$\eta_1 = a\xi_1 + b\xi_2, \quad \eta_2 = c\xi_1 + d\xi_2,$$

则由于

$$E(\eta_1) = 0, \quad D(\eta_1) = a^2 D(\xi_1) + b^2 D(\xi_2) = a^2 + b^2$$

$$E(\eta_2) = 0, \quad D(\eta_2) = c^2 D(\xi_1) + d^2 D(\xi_2) = c^2 + d^2$$

$$\operatorname{cov}(\eta_1, \eta_2) = ac + bd, \quad \rho_{\eta_1, \eta_2} = \frac{ac + bd}{\sqrt{a^2 + b^2} \sqrt{c^2 + d^2}}$$

因此 $\eta_1 \sim N(0, a^2 + b^2)$, $\eta_2 \sim N(0, c^2 + d^2)$, 且

$$(\eta_1, \eta_2) \sim N(0, 0, a^2 + b^2, c^2 + d^2, \frac{ac + bd}{\sqrt{a^2 + b^2}\sqrt{c^2 + d^2}})$$

当 ac + bd = 0 时, $\rho_{\eta_1,\eta_2} = 0$, η_1 与 η_2 独立。

当 $\rho_{\eta_1,\eta_2}=\pm 1$,即 $(ac+bd)^2=(a^2+b^2)(c^2+d^2)$ 时, $(\eta_1,\eta_2)(\eta_1,\eta_2)$ 退化为一个点。退化为一维分布,而当 a=b=c=d=0 时, (η_1,η_2) 退化为一个点。

条件分布: 若 $\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$ 服从n 元正态分布 $N(\mu, \Sigma), E(\xi_1) = \mu_1, E(\xi_2) = \mu_2, \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$,则在给定 $\xi_1 = x_1$ 下, ξ_2 的分布仍然为正态分布,条件数学期望

$$\mu_{2|1} = E(\xi_2|\xi_1 = x_1) = \mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(x_1 - \mu_1)$$

条件方差

$$oldsymbol{\Sigma}_{22|1} = oldsymbol{\Sigma}_{22} - oldsymbol{\Sigma}_{21} oldsymbol{\Sigma}_{11}^{-1} oldsymbol{\Sigma}_{12}$$

这里 $E(\xi_2|\xi_1=x_1)$ 称为 ξ_2 关于 ξ_1 的回归,注意到它是 x_1 的线性函数。又有条件方差与 x_1 无关。

证明:考虑

$$\left[\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array}\right] \left[\begin{array}{cc} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{array}\right] = \boldsymbol{I}.$$

其中, $\mathbf{\Sigma}_{12} = \mathbf{\Sigma}_{21}^{\top}$ 和 $\mathbf{A}_{12} = \mathbf{A}_{21}^{\top}$ 。则有

$$\Sigma_{11}A_{12} + \Sigma_{12}A_{22} = 0.$$

则 $\boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{12}^{\top} = -\boldsymbol{\Sigma}_{12}^{\top}\boldsymbol{\Sigma}_{11}^{-1}$. 所以 $\boldsymbol{A}_{22}^{-1}\boldsymbol{A}_{21} = -\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}$. 另外有

$$\Sigma_{12}A_{12} + \Sigma_{22}A_{22} = I.$$

则有

$$(oldsymbol{\Sigma}_{22} - oldsymbol{\Sigma}_{21}oldsymbol{\Sigma}_{11}^{-1}oldsymbol{\Sigma}_{12})oldsymbol{A}_{22} = oldsymbol{I}.$$

而配方有

$$(x_2 - \mu_2)^{\top} \mathbf{A}_{22} (x_2 - \mu_2)^{\top} + 2(x_2 - \mu_2)^{\top} \mathbf{A}_{21} (x_1 - \mu_1)$$

$$= \left[x_2 - \mu_2 + \mathbf{A}_{22}^{-1} \mathbf{A}_{21} (x_1 - \mu_1) \right]^{\top} \mathbf{A}_{22} \left[x_2 - \mu_2 + \mathbf{A}_{22}^{-1} \mathbf{A}_{21} (x_1 - \mu_1) \right]$$

$$+ f(x_1).$$

得到证明。

例: 二元场合,若 $(\xi_1, \xi_2)^{\mathsf{T}}$ 服从正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}.$$

在给定 $\xi_1 = x_1$ 条件下, ξ_2 的条件分布还是正态分布而且其条件期望由定理可以推知

$$E(\xi_2|\xi_1 = x_1) = \mu_2 \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1)$$

条件方差可以推知为

$$\sigma_2^2 - \frac{(\rho \sigma_1 \sigma_2)^2}{\sigma_1^2} = \sigma_2^2 (1 - \rho^2).$$

8.1 随机序列的收敛性

设随机变量 $\eta = \eta(\omega), \xi_1 = \xi_1(\omega), \xi_2 = \xi_2(\omega), \cdots$ 都是概率空间 (Ω, \mathcal{F}, P) 上的实值函数,我们在表述上常常省去 ω 。

定义: 称随机变量 ξ_1, ξ_2, \cdots 依概率收敛于 η , 若对任何 $\varepsilon > 0$, 有

$$\lim_{n\to\infty} P(\{\omega : |\xi_n(\omega) - \eta(\omega)| \geqslant \varepsilon\}) = 0.$$

此时记作 $\xi_n \stackrel{P}{\longrightarrow} \eta$.

定义: 称随机变量 ξ_1, ξ_2, \cdots 概率为 1 (或几乎必然) 的收敛于 η , 若

$$P(\{\omega : \lim_{n \to \infty} \xi_n(\omega) = \eta(\omega)\}) = 1.$$

此时记作 $\xi_n \xrightarrow{a.s.} \eta.$, 其中 a.s. 是 almost surely 的缩写。

定义: 称随机变量 ξ_1, ξ_2, \cdots 弱收敛于 η , 若对于 η 的分布函数 F(x) 的任何连续点 x, 下式皆成立:

$$\lim_{n \to \infty} P(\{\omega : \xi_n(\omega) \leqslant x\}) = P(\{\omega : \eta(\omega) \leqslant x\}).$$

此时记作 $\xi_n \xrightarrow{\omega} \eta$ 。弱收敛也称为依分布收敛。

定理: 设 $\xi_n \xrightarrow{a.s.} \eta$, 则 $\xi_n \xrightarrow{P} \eta$ 。

证明(不做要求): 研究集合 $A = \{\omega : \xi_{(\omega)}, \xi_{2}(\omega), \cdots$ 不收敛于 $\eta(\omega)\}$,假设 $\xi_n \xrightarrow{a.s.} \eta$,知 P(A) = 0,对任何 $\varepsilon > 0$,令

$$B = \{\omega : 有无穷多个n, 使得|\xi_n(\omega) - \eta(\omega)| \ge \varepsilon\},$$

$$B_m = \{\omega : \exists n \geq m, \notin \exists |\xi_n(\omega) - \eta(\omega)| \geq \varepsilon\},\$$

则 $B_m \supset B_{m+1}$, $B = \bigcap_{m=1}^{\infty} B_m$, 于是

$$\lim_{m \to \infty} P(B_m) = P(B) \leqslant P(A) = 0,$$

因为 $P(|\xi_n - \eta| \ge \varepsilon) \le P(B_m)$, 所以

$$\lim_{m \to \infty} P(|\xi_n - \eta| \geqslant \varepsilon) = 0.$$

表明 $\xi_n \stackrel{P}{\longrightarrow} \eta$ 。

注意, 逆定理不成立:

例 (不做要求): 设 $\Omega = (0,1)$, \mathcal{F} 由 (0,1) 中所有 Borel 子集组成, P 是这样的概率测度: 对任何 区间 $(a,b)(0 \le a < b \le 1)$, P((a,b)) = b - a, 在概率空间 (Ω,\mathcal{F},P) 上考虑下列随机变量序列:

对任何正整数 k 及 $j=1,\cdots,2^k$,令

$$X_{k1} = \begin{cases} 1, & 0 < \omega < \frac{1}{2^k}, \\ 0, & \sharp \text{ th}; \end{cases}, \quad X_{kj} = \begin{cases} 1, & \frac{j-1}{2^k} < \omega < \frac{j}{2^k}, \\ 0, & \sharp \text{ th}; \end{cases} (j > 1).$$

这些 $X_{kj}: k \geqslant 1, j = 1, \cdots, 2^k$ 可排成一个序列: $X_{11}, X_{12}, X_{21}, X_{22}, X_{23}, X_{24}, \cdots$ (按照字典排列 法,将第一个足标从小到大排,若相同则按第二个足标从小到大排),将该序列记为 ξ_1, ξ_2, \cdots ,其中 $\xi_n = X_{k_n j_n}$,则对任何 $\varepsilon \in (0,1)$ 有:

$$P(|\xi_n| \geqslant \varepsilon) = P(\xi_n = 1) = \frac{1}{2_n^k}$$

在 $n \to \infty$ 时 $k_n \to \infty$, 故有 $\lim_{n \to \infty} P(|\xi_n| \ge \varepsilon) = 0$, 这表明 $\xi_n \xrightarrow{P} 0$.

而对于任何 $\omega \in (0,1)$, $\lim_{n\to\infty} \xi_n(\omega)$ 不存在。实际上对任何 ω 和 k, 存在唯一的 j_k 使得 $X_{kj_k}(\omega) = 1$, 而 $j \neq j_k$ 时 $X_{kj}(\omega) = 0$, 由此可见, $\lim_{n\to\infty} \xi_n(\omega)$ 不存在。即 $\xi_n \stackrel{a.s.}{\longrightarrow} \eta$ 不成立。

定理 (不做要求): 设 $\xi_n \xrightarrow{P} \eta$, 则 $\xi_n \xrightarrow{\omega} \eta$.

证明: 设 x_0 是 η 的分布函数 F(x) 的连续点,记

$$F_n(x) = P(\xi_n \leqslant x) \quad (n = 1, 2, \cdots).$$

易知,对任何 $\varepsilon > 0$,有

$$\{\xi_n \leqslant x_0\} \subset \{\xi_n - \eta \leqslant -\varepsilon\} \cup \{\eta \leqslant x_0 + \varepsilon\},$$

于是 $P(\xi_n \leqslant x_0) \leqslant P(\xi_n - \eta \leqslant -\varepsilon) + P(\eta \leqslant x_0 + \varepsilon)$.

故

$$F_n(x_0) - F(x_0) \leqslant P(|\xi_n - \eta| \geqslant \varepsilon) + F(x_0 + \varepsilon) - F(x_0).$$

类似地,有

$$\{\xi_n \leqslant x_0\} \supset \{\xi_n - \eta \leqslant \varepsilon, \eta \leqslant x_0 - \varepsilon\},\$$

于是

$$P(\xi_n \leqslant x_0) \geqslant P(\xi_n - \eta \leqslant \varepsilon, \eta \leqslant x_0 - \varepsilon) \geqslant P(\eta \leqslant x_0 - \varepsilon) - P(\xi_n - \eta > \varepsilon)$$

故

$$F_n(x_0) - F(x_0) \geqslant F(x_0 - \varepsilon) - F(x_0) - P(|\xi_n - \eta| \geqslant \varepsilon).$$

因此

$$|F_n(x_0) - F(x_0)| \le F(x_0 + \varepsilon) - F(x_0 - \varepsilon) + P(|\xi_n - \eta| \ge \varepsilon).$$

由于 x_0 是 F(x) 的连续点,因此对任何 $\delta > 0$,有 $\varepsilon > 0$,满足

$$F(x_0 + \varepsilon) - F(x_0 - \varepsilon) < \frac{\delta}{2}.$$

取 n_0 , 当 $n \ge n_0$ 时,

$$P(|\xi_n - \eta| \geqslant \varepsilon) < \frac{\delta}{2}.$$

于是对一切 $n \ge n_0$, 有

$$|F_n(x_0) - F(x_0)| < \delta.$$

这表明 $F_n(x_0) \to F(x_0)(n \to \infty)$, 故 $\xi_n \xrightarrow{\omega} \eta$.

注意, 逆定理不真:

例: 设随机变量 $X \sim N(0,1)$, 令

$$\xi_{2n-1} = X$$
, $\xi_{2n} = -X$ $(n = 1, 2, \cdots)$.

易知所有的 ξ_n 有相同的分布函数 $\phi(x)$,为标准正态分布函数,显然 $\xi_n \xrightarrow{\omega} \eta$. 但是对 $\varepsilon > 0$,有

$$P(|\xi_n - X| \ge \varepsilon) = \begin{cases} 0, & n$$
是奇数, $P(|X| \ge \frac{\varepsilon}{2}), & n$ 是偶数.

可见 ξ_1, ξ_2, \cdots 并不依概率收敛于 X。

设 X_1, X_2, \cdots 是随机变量序列, 令

$$S_n = X_1 + \dots + X_n.$$

定义: 若 $E(X_n), n = 1, 2, \cdots$ 都存在, 且

$$\frac{1}{n}\left(S_n - E(S_n)\right) \stackrel{P}{\to} 0$$

则称 X_1, X_2, \cdots 服从 (弱) 大数律 (Weak Law of Large Numbers, WLLN)。

定义: 若 $E(X_n), n = 1, 2, \cdots$ 都存在, 且

$$\frac{1}{n}\left(S_n - E(S_n)\right) \stackrel{\text{a.s.}}{\to} 0,$$

则称 X_1, X_2, \cdots 服从强大数律 (SLLN)。

定义: 若对任意 $n \ge 2$ 都有 X_1, \dots, X_n 相互独立,则称 X_1, X_2, \dots 是相互独立的随机变量序列。

若 X_1, X_2, \cdots 相互独立, 且 $X_n \stackrel{d}{=} X_1, \forall n \geq 2$, 则称 X_1, X_2, \cdots 独立同分布, 记为 i.i.d. (independent and identically distributed).

例: 设随机变量序列 $\{X_n\}$ 独立同分布,其密度函数为

$$p(x) = \begin{cases} \frac{1}{\beta}, & 0 < x < \beta, \\ 0, & \text{ 其他.} \end{cases}$$

其中常数 $\beta > 0$, 令 $Y_n = \max\{X_1, X_2, \dots, X_n\}$, 证明 $Y_n \xrightarrow{P} \beta$.

证明: 因为当 x < 0 时,有 $P(Y_n \le x) = 0$,当 $x \ge \beta$ 时,有 $P(Y_n \le x) = 1$,当 $0 \le x < \beta$ 时,有

$$P(Y_n \leqslant x) = \prod_{i=1}^n P(X_i \leqslant x) = \prod_{i=1}^n \int_0^x \frac{1}{\beta} dx = \left(\frac{x}{\beta}\right)^n,$$

所以对任意的 $\varepsilon > 0(\varepsilon < \beta)$, 当 $n \to \infty$ 时,有

$$P(|Y_n - \beta| \ge \varepsilon) = P(Y_n \le \beta - \varepsilon) = \left(\frac{\beta - \varepsilon}{\beta}\right)^n \to 0,$$

所以有 $Y_n \stackrel{P}{\longrightarrow} \beta$.

大数定律 8.2

切比雪夫大数定律: 假设 X_1, X_2, \cdots 相互独立, 且存在 M 使得 $\mathrm{var}(X_i) \leqslant M, \forall i$. 设 $S_n = X_1 + X_2 + X_3 + X_4 + X_4 + X_5 +$ $\cdots + X_n$.,那么,

$$\frac{1}{n}\left(S_n - ES_n\right) \stackrel{P}{\to} 0 \quad (n \to \infty).$$

证明: $\diamondsuit A_n = \{ \left| \frac{1}{n} \left(S_n - E S_n \right) \right| \ge \varepsilon \}.$ 需验证 $P(A_n) \to 0$.

由切比雪夫不等式,
$$P(A_n) = P(|S_n - ES_n| \ge n\varepsilon) \le \frac{1}{(n\varepsilon)^2} \operatorname{var}(S_n)$$

由于 X_1, X_2, \cdots 两两不相关,所以 $\text{var}(S_n) = \sum_{i=1}^n \text{var}(X_i) \leqslant nM$,于是

$$P(A_n) \leqslant \frac{nM}{n^2 \varepsilon^2} = \frac{M}{\varepsilon^2} \cdot \frac{1}{n} \to 0.$$

由此知定律成立。

其中定律里的条件"相互独立"可减弱为"两两不相关"。

推论:设 X_1, X_2, \cdots 独立同分布, $var(X_1) < \infty$, 则当 $n \to \infty$ 时,

$$\frac{S_n}{n} \stackrel{P}{\to} E(X_1).$$

推论: (伯努利大数律) 单次试验中 A 发生的概率为 p, 设在 n 次试验中事件 A 发生了 ν_n 次,则 当 $n \to \infty$ 时,

$$\frac{\nu_n}{n} \stackrel{P}{\to} p.$$

证明:令

$$X_i = \begin{cases} 1, & \text{第i次试验中A发生,} \\ 0, & \text{第i次试验中A不发生,} \end{cases} (i = 1, 2, \cdots),$$

则 $\frac{\nu_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$ 由于 X_1, X_2, \cdots 是独立同分布的随机变量序列, $E(X_i) = p$, $var(X_i) = p(1-p)(i=1,2,\cdots)$,故由上一推论知本推论成立。

如果不假定 $E(X_i)$ 存在,上述推论是否成立?

例: 设 X_1, X_2, \cdots 独立同分布, 密度为 $p(x) = \frac{1}{\pi(x^2+1)}$. 可以证明, $\frac{S_n}{n}$ 与 X_1 有相同的密度. 于是, 对任何 a 和 $\varepsilon > 0$,有

$$P\left(\left|\frac{S_n}{n}-a\right|>\varepsilon\right)=P\left(\left|X_1-a\right|>\varepsilon\right)$$
 不趋于0.

故 $\frac{S_n}{n}$ 不能以概率收敛于 a。

定理: (Cantelli 强大数定律) 假设 X_1, X_2, \cdots 相互独立, $E(X_i)$ 存在, 且 $E(X_i - E(X_i))^4 \leq M$, $\forall i$. 那么

$$\frac{1}{n}\left(S_n - ES_n\right) \stackrel{a.s.}{\to} 0.$$

推论: 设 X_1, X_2, \cdots 独立同分布, $E(X_1^4)$ 存在, 则 $\frac{S_n}{n} \stackrel{\text{a.s.}}{\to} E(X_1)$.

本推论可以由 Cantelli 强大数定律直接推出。

推论: (Borel 强大数律) 单次小试验中事件 A 发生的概率为 p. 在独立重复试验中, 前 n 次试验中 A 发生的次数为 ν_n , 则

$$\frac{\nu_n}{n} \stackrel{\text{a.s.}}{\to} p.$$

定理 2.4. (Kolmogorov's SLLN). 假设 X_1, X_2, \cdots 独立同分布, 期望存在, 则 $\frac{1}{n}S_n \stackrel{\text{a.s.}}{\to} EX_1$.

例: 设 X_1, X_2, \cdots 是相互独立的随机变量序列, $X_1 \equiv 0$, 对一切 $n \geq 2$, X_n 只取三个可能值 n, -n, 0, 且

$$P(X_n) = n = P(X_n = -n) = \frac{1}{2n \ln n}, \quad P(X_n = 0) = 1 - \frac{1}{n \ln n}.$$

证明 X_1, X_2, \cdots 服从切比雪夫大数定律。

证明: 易知

$$E(X_n) = 0$$
, $var(X_1) = 0$, $var(X_n) = \frac{n}{\ln n} (n = 2, 3, \dots)$.

令 $S_n = \sum_{i=1}^n X_i$,则 $\text{var}(S_n) = \sum_{i=1}^n \text{var}(X_i) = \sum_{i=2}^n \frac{i}{\ln i}$. 由于 $x \ge 3$ 时 $\frac{x}{\ln x}$ 是 x 的增函数,故 $\text{var}(S_n) \leqslant \frac{2}{\ln 2} + \frac{n^2}{\ln n}$,利用切比雪夫不等式,有

$$P\left(\left|\frac{S_n - E(S_n)}{n}\right| \geqslant \varepsilon\right) \leqslant \frac{1}{n^2 \varepsilon} \operatorname{var}(S_n) \to 0 \quad (\varepsilon > 0, n \to \infty).$$

这表明 X_1, X_2, \cdots 服从切比雪夫大数定律。

大数定律和强大数定律有广泛的应用:

(1): 统计方法的理论依据. 假设采集到数据数据: X_1, \dots, X_n 为 X 的 n 次独立观测值, 它们独立同分布.

常用 $\frac{1}{n}(X_1+\cdots+X_n)$ 估计期望:

$$\bar{X} := \frac{1}{n} (X_1 + \dots + X_n) \stackrel{\text{a.s.}}{\to} E(X).$$

常用 $\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2$ 估计方差:

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - (\bar{X})^2 \stackrel{\text{a.s.}}{\to} E(X^2) - (E(X))^2 = \text{var}(X).$$

(2): 用于计算机模拟期望、概率.

例: 设有 m 枚炮弹同时射击, 第 i 枚炮弹落点为 (x_i, y_i) ,

$$\varphi(x_1, y_1; \dots; x_m, y_m) = \begin{cases} 1, & \text{若落点造成有效毁伤;} \\ 0, & \text{否则.} \end{cases}$$

设第 i 枚炮弹的瞄准点为 (a_i,b_i) , 实际落点 (X_i,Y_i) . 模型假设: $X_1,\cdots,X_n;Y_1,\cdots,Y_n$ 相互独立,且

$$X_i \sim N\left(a_i, \sigma_1^2\right), \quad Y_i \sim N\left(b_i, \sigma_2^2\right).$$

根据 SLLN:

$$P\left(\varphi\left(X_{1}, Y_{1}; \cdots; X_{m}, Y_{m}\right) = 1\right)$$

$$\approx \frac{1}{n} \sum_{k=1}^{n} \varphi\left(X_{1}^{(k)}, Y_{1}^{(k)}; \cdots; X_{m}^{(k)}, Y_{m}^{(k)}\right).$$

利用数据 $X_1^{(k)}, Y_1^{(k)}; \cdots; X_m^{(k)}$ 即可用计算机计算概率的估计值。

(3): 估计积分 $I = \int_a^b f(x) dx$.

利用变量替换 x=a+(b-a)u 得, $I=\int_0^1 f(a+(b-a)u)(b-a)du$,因此不妨假设 a=0,b=1.

得到 $I = \int_0^1 f(x) \cdot 1 dx = E(f(U))$. 其中 U 为服从区间 (0,1) 上均匀分布的随机变量。

根据 SLLN:

$$I \approx \frac{1}{n} \sum_{i=1}^{n} \left(f\left(U_{1}\right) + \dots + f\left(U_{n}\right) \right)$$

因此只需得到服从区间 (0,1) 上均匀分布的随机数 u_1, \dots, u_n ,即可得到积分的近似值。该方法还可以推广到高维的数值积分。

8.3 中心极限定理

中心极限定理: 设 X_1, X_2, \cdots 为随机变量序列,若 $E(X_n), \text{var}(X_n), n = 1, 2, \cdots$ 都存在, $\text{var}(X_n)$ 不全为 0 , 令 $S_n = \sum_{i=1}^n X_i$,且

$$S_n^* = \frac{S_n - E(S_n)}{\sqrt{\operatorname{var}(S_n)}} \xrightarrow{\omega} Z \sim N(0, 1),$$

则称 X_1, X_2, \cdots 服从中心极限定理 (Central Limit Theorem, CLT)(或适合中心极限定理)。

定理: (Linderberg-Levy 中心极限定理) 假设 X_1, X_2, \cdots 独立同分布, $E(X_1)$ 存在且 $0 < \text{var}(X_1) < \infty$. 那么,

$$S_n^* \stackrel{\omega}{\to} Z \sim N(0,1).$$

例: 加法器同时收到 20 个噪声电压 $V_k, k=1,\cdots,20$, 它们独立同分布, $V_1 \sim U(0,10)$. 记 $V=\sum_{k=1}^{20} V_k$, 求 P(V>105).

解: 易知 $E(V_1) = 5$, $var(V_1) = \frac{10^2}{12}$.

设

$$V^* = \frac{V - 20 \times 5}{\sqrt{20 \times \frac{100}{12}}}$$

根据中心极限定理,

$$P(V > 105) = P\left(V^* > \frac{105 - 20 \times 5}{\sqrt{20 \times \frac{100}{12}}}\right) \approx 1 - \Phi(0.387)$$

查表得 $\Phi(x^*) = 0.652$, 从而所求的 p = 1 - 0.652 = 0.348.

例: 旅馆有 500 间客房, 每间有一台 2 千瓦的空调. 入住率为 80%. 问: 需多少千瓦的电力能有 99% 的把握保证电力足够?

解: 假设提供 x 千瓦.

设事件 A_i = "第 i 间房开空调", $P(A_i) = 80\%, X_i = 2 \times 1_{A_i}$.

则易知 $E(X_1) = 1.6$, $var(X_1) = 4 \times 0.8 - 1.6^2 = 0.64$.

要求 x 满足: $P(S_n \leq x) \geq 99\%$. 设

$$S_n^* = \frac{S_n - 500 \times 1.6}{\sqrt{500 \times 0.64}}$$

根据根据中心极限定理, 要求

$$P\left(S_{n} \leqslant x\right) = P\left(S_{n}^{*} \leqslant x^{*}\right) \approx \Phi\left(x^{*}\right) \geqslant 0.99$$

其中

$$x^* = \frac{x - 500 * 1.6}{\sqrt{500 * 0.64}}.$$

查表得 $\Phi(2.33) = 0.99$. 即, 要求 $x^* \geqslant 2.33$.

即,要求 $x \ge 800 + 2.33 * \sqrt{320} = 841.68$,从而需 842 千瓦.

9.1 统计学若干基本概念

定义: 所考察的对象的总和称为总体, 在统计学中可以归结为随机变量或其他形式的随机量。

例如,考察电子产品的使用寿命,于是将所有电子产品的使用寿命作为总体。所谓总体特性,就是使用寿命的特性,或者是刻画使用寿命的随机变量 X 的特性,该随机变量的分布称为**总体分布**。可以假定 X 的分布为指数分布,其分布密度有下列形式:

$$p(x,\theta) = \frac{1}{\theta} \exp\left\{-\frac{x}{\theta}\right\} \quad (x > 0, \theta > 0),$$

式中 θ 是分布的**参数**。

设用 $F(x,\theta)$ 表示随机变量 X 分布密度相应的分布函数,用 F_{θ} 表示相应的分布。为获取分布 F_{θ} 的信息,我们假定 F_{θ} 属于一个**分布族**,用 $\mathcal{G} = \{F_{\theta}, \theta \in \Theta\}$ 表示这个分布族。在分布族 \mathcal{G} 的表达式中 θ 称为参数, Θ 称为**参数空间**。在统计学中,随机变量 X 称为总体,它的分布 F_{θ} 称为**总体 分布**。这样, $X \sim F_{\theta} \in \mathcal{G}$ 形成了这个统计问题的**模型**,称为总体模型。

例如,电子产品的使用寿命 X 的分布 F_{θ} 由分布密度确定,其中参数 $\theta \in (0, +\infty)$ 。当 θ 确定后,我们获得了电子产品使用寿命的全部信息。

总体模型只涉及 X 这个随机变量,而没有涉及数据。观察数据 $\mathbf{x} = (x_1, \dots, x_n)$ 是 $\mathbf{X} = (X_1, \dots, X_n)$ 的观察值。其中 X_1, \dots, X_n 是独立同分布的,这由样本的产生所确定,其共同的分布为 F_{θ} 。在统计学中,我们称 $\mathbf{X} = (X_1, \dots, X_n)$ 为**样本**,称 n 为**样本量**,称 \mathbf{X} 的取值 $\mathbf{x} = (x_1, \dots, x_n)$ 为**样本值**。称 \mathbf{X} 的所有可能取值的集合为样本空间 \mathcal{X} ,在样本空间上的分布为 P_{θ} ,我们称 $\mathbf{X} \sim P_{\theta}(\theta \in \Theta)$ 为统计模型。

模型的参数 θ 可以是常数向量或者其他的量,主要特征是: 一旦参数的值确定后,统计模型中的分布就完全确定了。在某些统计问题中,我们需要了解与参数有关的量,即 θ 的函数 $g(\theta)$,为了简便,将 $g(\theta)$ 也称为参数。

例: (测量问题) 对某待估量 a 重复独立测量 n 次, 得到测量值 x_1, \dots, x_n .

测量值带有误差,总体分布 X = a + e, 其中 $e \sim N\left(0, \sigma^2\right)$. 即, $X \sim N\left(a, \sigma^2\right)$. 相应的参数空间为 $\Theta = \{\theta = (a, \sigma^2) : a \in \mathbb{R}, \sigma^2 > 0\}$ 。

参数 $\theta = (a, \sigma^2)$. 其中, σ^2 不是所关心的, 称为讨厌参数。

 $P_{\theta}: \vec{X}$ 的联合密度为

$$f_{\theta}(x) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x_i - a)^2}{2\sigma^2}\right\}.$$

这样, $\mathbf{X} \sim P_{\theta}$, $\theta = (a, \sigma^2) \in \Theta$ 形成了统计模型。

研究对象 θ 或 $g(\theta)$. 例, $g(a, \sigma^2) = a$.

定义:设 $\mathbf{X} \sim P_{\theta}(\theta \in \Theta)$ 是一个统计模型,则定义在样本空间 \mathcal{X} 上的任何函数 $T(\mathbf{x})(\mathbf{x} \in \mathcal{X})$ 都称为统计量。

在统计学中统计量通常是指具体的函数,不能泛指,尤其不能含有未知参数。从数学上,统计量是一个只依赖数据的函数,当 (x_1, \dots, x_n) 的值给定后根据函数关系可以算出 $T(\mathbf{x})$ 的值。

然而,如果将统计量看成样本 X 的函数,T(X) 还是一个随机变量,具有分布,且在不同参数值下具有不同的分布。严格意义下,统计量具有分布族。

例如在测量问题中,最常见的统计量为样本均值 $T=\frac{1}{n}(X_1+\cdots+X_n)$,当观察值为 x_1,\cdots,x_n 时, $T=\frac{1}{n}(x_1+\cdots+x_n)$ 为一个数值。当 $\mathbf{X}=(X_1,\cdots,X_n)$ 时,统计量是样本的函数,为随机变量。 我们可以计算 T 的分布, $T\sim N\left(a,\frac{\sigma^2}{n}\right)$ 。注意统计量的分布含有未知参数 (a,σ^2) 。

9.2 若干统计问题

估计问题: 依赖于样本的统计量就可以作为参数 a 的估计,在估计问题中,估计参数的统计量也称为估计量。

例:(测量问题续)测量问题中待测量 a 的一个估计为 $T_1 = \frac{1}{n} \sum_{i=1}^n x_i$ 。当 (X_1, \dots, X_n) 服从多元正态分布时,其常系数线性组合的分布也是正态分布,利用 $X_i (i=1,\dots,n)$ 独立同分布的特性,计算 T_1 的期望和方差,可得

$$E(T_1) = \frac{1}{n} \left[\sum_{i=1}^n E(X_i) \right] = a,$$

$$\operatorname{var}(T_1) = \frac{1}{n^2} \left[\sum_{i=1}^n \operatorname{var}(X_i) \right] = \frac{\sigma^2}{n},$$

这样我们得到 $T_1 \sim N\left(a, \frac{\sigma^2}{n}\right)$.

假设检验: 对假设 H_0 回答 "是"或"否"。

例如, 规定不合格率不能超过 3%. 现有 200 件产品, 从中任意抽取 10 件, 发现 2 件不合格. 问:是 否可以出厂? **线性回归**: 研究变量 Y 对 x 的线性依赖关系,

$$Y = b_0 + b_1 x + e, \quad e \sim N\left(0, \sigma^2\right).$$

9.3 极大似然

我们引入两类常用的统计模型:

离散统计模型: 设 (X_1, \dots, X_n) 为独立重复观察得到的样本,其中 $X_i (i = 1, \dots, n)$ 为离散型随机变量,样本分布列具有下列一般性质:

$$P_{\theta}((X_1, \dots, X_n) = (x_1, \dots, x_n)) = \prod_{i=1}^n P_{\theta}(X_i = x_i) \quad (\theta \in \Theta),$$

此时 θ 为参数,对于固定的样本值 (x_1, \dots, x_n) ,作为 θ 的函数

$$L(\theta) = \prod_{i=1}^{n} P_{\theta}(X_i = x_i)$$

称为似然函数。

连续统计模型: 此时 $X_i(i=1,\cdots,n)$ 为连续型随机变量, 样本 (X_1,\cdots,X_n) 具有联合密度

$$\prod_{i=1}^{n} p(x_i, \theta) \quad (\theta \in \Theta).$$

对于固定的样本值 (x_1, \dots, x_n) , θ 的函数

$$L(\theta) = \prod_{i=1}^{n} p(x_i, \theta)$$
(9.3.1)

也称为似然函数。

我们可以用似然函数刻画 θ 与数据的匹配程度。例如,在离散情况下,似然函数 $L(\theta)$ 就是总体参数为 θ 的情况下,事件 $\{(X_1, \dots, X_n) = (x_1, \dots, x_n)\}$ 的概率。极大似然估计就是挑选使 $P_{\theta}((X_1, \dots, X_n) = (x_1, \dots, x_n))$ 达到最大的 θ 值作为真值的估计。这个思路可以写为定义:

定义: 设 $\theta \in \Theta$ 为统计模型 $(X_1, \dots, X_n) \sim P_\theta$ 的参数,统计模型可为连续型或者离散型,又设 x_1, \dots, x_n 为总体的样本值,若存在 $\hat{\theta}(x_1, \dots, x_n)$,使得

$$L(\hat{\theta}(x_1, \cdots, x_n)) = \max_{\theta \in \Theta} L(\theta),$$

其中 $L(\cdot)$ 为离散统计模型或者连续统计模型的似然函数,则称 $\hat{\theta}(x_1, \dots, x_n)$ 为 θ 的**最大似然估计** (简称 ML 估计)。若 $\hat{\theta}$ 为参数 θ 的 ML 估计,则 θ 的函数 $g(\theta)$ 的 ML 估计定义为 $g(\hat{\theta})$ 。

注 1: 为记号统一, 离散和连续模型下的似然函数都用式9.3.1的表达式表示。

注 2: 与统计量的表示法一样,可用 $\hat{\theta}(x_1,\dots,x_n)$ 或 $\hat{\theta}(X_1,\dots,X_n)$ 表示参数 θ 的估计量 $\hat{\theta}$,当用 $\hat{\theta}(x_1,\dots,x_n)$ 表示时,强调 $\hat{\theta}$ 的计算,当用 $\hat{\theta}(X_1,\dots,X_n)$ 表示时,强调 $\hat{\theta}$ 的统计特性。

注 3: 本定义中, $g(\theta)$ 的 ML 估计定义为 $g(\hat{\theta})$, 此处 $\hat{\theta}$ 为参数 θ 的 ML 估计。这样定义后使得 ML 估计具有不变性。若 $g(\theta)$ 是一个一一变换, $\eta = g(\theta)$ 可以视为模型的一个新参数化,在新的模型中,似然函数 $\tilde{L}(\eta) = \prod_{i=1}^n p(x_i, \theta)$ 。显然, $\hat{\eta}$ 使 $\tilde{L}(\eta)$ 达到最大等价于原来的似然函数 $L(\theta)$ 在 $\hat{\theta}$ 处达到最大。这样 $\hat{\eta} = g(\hat{\theta})$ 。定义中并不要求 $g(\theta)$ 是一个一一变换,可以形式上定义一个似然函数

$$L(g) = \max_{\{g: g(\theta) = g\}} L(\theta),$$

利用该似然函数,求得 g 的最大似然估计就是 $g(\hat{\theta})$ 。

正态模型: 考虑随机变量 $X \sim N(\mu, \sigma^2)$,有独立重复观察得到的样本 $(X_1, \dots, X_n) = (x_1, \dots, x_n)$,希望由这些观察值求出参数 μ , σ^2 的 ML 估计,对于样本值 (x_1, \dots, x_n) ,似然函数为

$$L(\theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{-\frac{1}{2}\sum_{i=1}^n \left(\frac{x_i - \mu}{\sigma}\right)^2\right\},\,$$

其中 $\theta = (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}^+$ 为参数。为求似然函数 $L(\theta)$ 的最大值点,首先固定二维向量 $\theta = (\mu, \sigma^2)$ 的 σ^2 ,求 $L(\theta) = L(\mu, \sigma^2)$ 相对于变量 μ 的最大值点 $\mu^*(\sigma^2)$,随后代入 $L(\theta)$,得到 $L(\mu^*(\sigma^2), \sigma^2)$,再求 σ^2 的最大值点 σ^{2^*} ,可得

$$L(\mu^*(\sigma^{2^*}), \sigma^{2^*}) \geqslant L(\mu^*(\sigma^2), \sigma^2) \geqslant L(\mu, \sigma^2),$$

因此 $(\mu^*(\sigma^{2^*}), \sigma^{2^*})$ 为 $\theta = (\mu, \sigma^2)$ 的 ML 估计。

我们首先求 $\mu^*(\sigma^2)$ 。注意到,求 μ 的值 μ^* 使得 $L(\mu,\sigma^2)$ 达到最大,等价于求 μ^* 使得 $\sum_{i=1}^n (x_i - \mu)^2$ 达到最小。由于

$$\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2,$$

其中 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$,可知当 $\mu = \bar{x}$ 时, $\sum_{i=1}^{n} (x_i - \mu)^2$ 达到最小,将 $\mu = \bar{x}$ 代入 $L(\mu, \sigma^2)$ 的表达式中,得

$$L(\bar{x}, \sigma^2) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2\sigma^2}\right\}.$$

由于 $\sigma^2 \in (0, +\infty)$, L 作为 σ^2 的函数恒取正值。现等价的求解方程 $\frac{\partial \ln L}{\partial \sigma^2} = 0$, 即

$$-\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (x_i - \bar{x})^2 = 0$$

解得 $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$ 。由此可知, $\mu = \bar{x}$, $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$ 使得 $L(\mu, \sigma^2)$ 在它的定义域上达到最大,再由 ML 估计定义知

$$\hat{\mu} = \bar{x}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

分别为 μ 和 σ^2 的 ML 估计。

例: 设对飞机的最大飞行速度进行测试, 测得 15 个数据(单位 m/s) 如下:

422.2, 418.7, 425.6, 420.3, 425.8, 423.1, 431.5, 428.2, 434.0, 438.3, 412.3, 417.2, 413.5, 441.3, 423.7.

试估计飞机最大速度的均值。

解: 将飞机最大飞行速度的观察值 x_1, \dots, x_{15} 视为随机变量 X_1, \dots, X_{15} 的观察值,随机变量的共同分布为正态分布 $N(\mu, \sigma^2)$,该假设根据物理背景或经验确定。

将数据代入上面的结果,得

$$\hat{\mu} = \bar{x} = 425.05$$

本例建立的统计模型称为**正态模型**,有时也称为**测量模型**,其数据的总体 X 的分布是正态分布 $N(\mu, \sigma^2)$,而这些数据就是来自这个总体的一组观测值,对于正态总体,其参数 μ 和 σ^2 的 ML 估计分别是 $\hat{\mu} = \bar{x}, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$ 。

注意到在实际问题中,正态模型的参数空间不一定是 $\Theta = \mathbb{R} \times \mathbb{R}^+$,参数空间不同,其相应的模型就是不同的模型。在求解问题时,需要特别注意参数空间的范围。

例如实际问题中有下列两种常见的正态模型: 一种是 $X \sim N(\mu_0, \sigma^2)$, 其中 $\sigma^2 > 0$, μ_0 为已知的 参数值, 求解方程 $\frac{\partial \ln L}{\partial \sigma^2} = 0$, 即

$$-\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (x_i - \mu_0)^2 = 0$$

解得 σ^2 的 ML 估计为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2$ 。

另一种是 $X \sim N(\mu, \sigma_0^2)$,其中 $\mu \in \mathbb{R}$,而 σ_0^2 为已知的参数值,此时求解 $L(\theta)$ 的关于 μ 的最大值 仍等价于求解 μ^* 使 $\sum_{i=1}^n (x_i - \mu)^2$ 达到最小,因此 μ 的 ML 估计为 $\hat{\mu} = \bar{x}$ 。

例: (次品率的估计). 某工人生产 20 件产品, 检查出恰有一件为次品. 估计该工人生产的次品率.

解: 由题意知, 总体 $X \sim B(1,p), p \in [0,1]$. 样本量: n = 20.

似然函数:

$$L(p) = C_n^s p^s (1-p)^{n-s}, \, \sharp + s = x_1 + \dots + x_n.$$

显然 \hat{p} 也为 $\ln L(p) = s \ln p + (n-s) \ln(1-p)$ 的最大值点,且

$$\frac{d}{dp}\ln L(p) = \frac{s}{p} - \frac{n-s}{1-p} \Rightarrow \hat{p} = \frac{s}{n}.$$

将 n=20, s=1 代入, 因此, $\hat{p}=\frac{1}{20}$.

例: (对应郑书例 1.4) 设 $X_1, \dots, X_n \sim \text{iid } U(0, \theta)$, (样本量: n). 求: θ 的最大似然估计.

解: 似然函数:

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} 1_{\{0 \leqslant x_i \leqslant \theta\}} = \frac{1}{\theta^n} 1_{\{0 \leqslant x_1, \cdots, x_n \leqslant \theta\}}.$$

仅当 $\theta \ge \max_{1 \le i \le n} x_i$ 时, $L(\theta) > 0$.

当 $\theta \geqslant \max_{1 \leqslant i \leqslant n} x_i$ 时, $L(\theta) = \frac{1}{\theta^n}$, 关于 θ 单调下降.

从而, $\hat{\theta} = \max_{1 \leq i \leq n} x_i$, 即 $\max_{1 \leq i \leq n} X_i$.

例: (对应郑书例 1.5) 设 X 为某产品的寿命,服从指数分布,即 $X \sim \text{Exp}(\lambda)$,设 (x_1, \dots, x_n) 为来自总体 X 的一个样本值,样本量: n. 求: E(X) 的最大似然估计.

解: 似然函数:

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n \exp\left\{-\lambda \sum_{i=1}^{n} x_i\right\} = \exp\{n(\ln \lambda - \lambda \bar{x})\}.$$

 $\hat{\lambda}$ 是 $\ln \lambda - \bar{x}$ 的最大值点:

$$\frac{d}{d\lambda}(\ln\lambda - \bar{x}) = \frac{1}{\lambda} - \bar{x} \Rightarrow \hat{\lambda} = 1/\bar{x}.$$

 $E(X) = 1/\lambda$, 因此, $\widehat{E(X)} = 1/\hat{\lambda} = \bar{x}$, 或 \bar{X} .

例:(对应郑书例 1.6)设 X 服从泊松分布, $X \sim \mathcal{P}(\lambda)$,设 (x_1, \dots, x_n) 为来自总体 X 的一个样本值,样本量: n. 求: λ 的最大似然估计.

解: 似然函数:

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{1}{\prod_{i=1}^{n} x_i!} \lambda^{n\bar{x}} e^{-\lambda n} = \frac{1}{\prod_{i=1}^{n} x_i!} e^{n(\bar{x} \ln \lambda - \lambda)}.$$

 $\hat{\lambda}$ 是 $\bar{x} \ln \lambda - \lambda$ 的最大值点:

$$\frac{d}{d\lambda}(\bar{x}\ln\lambda - \lambda) = \frac{\bar{x}}{\lambda} - 1 \Rightarrow \hat{\lambda} = \bar{x}, \ \vec{\boxtimes}\bar{X}.$$

例: 设总体 X 的分布函数为 $f(x,\theta) = \frac{2x}{\theta^2}, 0 \le x \le \theta$,设 (x_1, \dots, x_n) 为来自总体 X 的一个样本值,求分布中位数的 ML 估计。

 \mathbf{M} : 设分布中位数为 a,则

$$\int_0^a f(x,\theta)dx = \int_a^\theta f(x,\theta)dx = \frac{1}{2}$$

其中

$$\int_0^a f(x,\theta)dx = \frac{a^2}{\theta^2} = \frac{1}{2} \Rightarrow a = \frac{\theta}{\sqrt{2}}$$

似然函数为

$$L(\theta) = \prod_{i=1}^{n} \frac{2x_i}{\theta^2} = \frac{2 \prod_{i=1}^{n} x_i}{\theta^{2n}}$$

由于 $\theta \geqslant x_i, i = 1, \dots, n$,上式关于 θ 单调减,故 θ 的 ML 估计为 $\hat{\theta} = \max\{x_1, \dots, x_n\}$ 。中位数 a 的 ML 估计为 $\hat{a} = \frac{\max\{x_1, \dots, x_n\}}{\sqrt{2}}$.

9.4 矩估计

定义设 X_1, \dots, X_n 为来自总体 $X \sim F_{\theta}(\theta \in \Theta)$ 的一个样本,通常 $\alpha_l \triangleq E_{\theta}(X^l)$ 称为 l 阶**总体矩**,而 $a_l \triangleq \frac{1}{n} \sum_{i=1}^n X_i^l$ 称为 l 阶**样本矩**。所涉及的矩存在且有限。

(1) l 阶总体矩 $\alpha_i = E_{\theta}(X^l)$ 的矩估计定义为相应的样本矩,即

$$\hat{\alpha}_l = a_l = \frac{1}{n} \sum_{i=1}^n X_i^l, \quad l = 1, 2, \dots;$$

(2) 若存在连续函数 ϕ 使 $g(\theta) = \phi(\alpha_1, \cdots, \alpha_k)$ 成立,则 $g(\theta)$ 的矩估计定义为

$$\hat{g}(\theta) = \phi(a_1, \cdots, a_k).$$

例: (对应郑书例 2.4) 设总体: $X \sim U(0, \theta)$. 样本量: n. 求 θ 的矩估计.

解: $\alpha_1 = \frac{1}{\theta} \int_0^\theta x dx = \frac{1}{2}\theta$, 即 $\theta = 2\alpha_1$. 故 $\hat{\theta}_1 = 2\bar{X}$ 是 θ 的矩估计.

 $\alpha_2 = \frac{1}{\theta} \int_0^{\theta} x^2 dx = \frac{1}{3} \theta^2$, 即 $\theta = \sqrt{3\alpha_2}$. 从而 $\hat{\theta}_2 = \sqrt{3X^2}$ 也是 θ 的矩估计.

比较 $\hat{\theta}_1$ 与最大似然估计 $\hat{\theta} = \max_{1 \leq i \leq n} X_i$.

(1) 当 $2\bar{X} < \max_{1 \leq i \leq n} X_i$ 时, $\hat{\theta}_1$ 不合理. 但, $\hat{\theta}$ 总是合理.

(2) 期望:

$$E_{\theta}(\hat{\theta}_1) = 2E(\bar{X}) = \theta, \quad E_{\theta}(\hat{\theta}) = \frac{n}{n+1}\theta$$

(3) 方差:

$$\operatorname{var}_{\theta} \left(\hat{\theta}_{1} \right) = \frac{4}{n} \operatorname{var}_{\theta}(X) = \frac{4}{n} \cdot \frac{\theta^{2}}{12} = \frac{1}{3n} \theta^{2}$$

$$\operatorname{var}_{\theta} \left(\frac{n+1}{n} \hat{\theta} \right) = \frac{(n+1)^{2}}{n^{2}} \cdot \frac{n}{(n+1)^{2}(n+2)} \theta^{2} = \frac{1}{n(n+2)} \theta^{2}.$$

一些常见分布的矩估计:

(1) 如果总体 $\xi \sim B(N,p), \ N,p$ 为未知参数,因为 $E(\xi) = Np, \ D(\xi) = Np(1-p),$ 由方程组 $\begin{cases} Np = \bar{\xi} \\ Np(1-p) = S^2 \end{cases},$ 解得 N,p 的矩估计为

$$\begin{cases} \hat{N} = \frac{\bar{\xi}^2}{\bar{\xi} - S^2}, \\ \hat{p} = 1 - \frac{S^2}{\xi}. \end{cases}$$

(2) 如果总体 $\xi \sim P(\lambda)$, λ 为未知参数, 因为 $E(\xi) = \lambda$, $D(\xi) = \lambda$, 所以 λ 的矩估计为

$$\hat{\lambda} = \bar{\xi} \vec{\boxtimes} \hat{\lambda} = S^2.$$

 $E(\xi) = \lambda$.

(3) 如果总体服从几何分布, $P(\xi=k)=p(1-p)^{k-1}$,p 为未知参数,则因为 $E(\xi)=\frac{1}{p}$,所以解得 p 的矩估计为

$$\hat{p} = \frac{1}{\bar{\xi}}.$$

(4) 如果总体 $\xi \sim U(\theta_1, \theta_2)$, θ_1, θ_2 均为未知参数, 因为

$$E(\xi) = \frac{\theta_1 + \theta_2}{2}, \quad D(\xi) = \frac{(\theta_1 - \theta_2)^2}{12}.$$

所以由方程

$$\frac{\theta_1 + \theta_2}{2} = \bar{\xi}, \quad \frac{(\theta_1 - \theta_2)^2}{12} = S^2$$

解得 θ_1, θ_2 的矩估计分别为

$$\hat{\theta}_1 = \bar{\xi} - \sqrt{3}S, \quad \hat{\theta}_2 = \bar{\xi} + \sqrt{3}S.$$

例: 设总体 ξ 的分布为 $p(\xi = k) = (k-1)\theta^2(1-\theta)^{k-2}, k = 2, 3, \dots, 0 < \theta < 1.$, 求 θ 的矩估计。

解:

$$E(\xi) = \sum_{k=2}^{\infty} kp(\xi = k) = \sum_{k=2}^{\infty} k(k-1)\theta^{2}(1-\theta)^{k-2},$$

$$=2\sum_{k=2}^{\infty}C_k^2\theta^2(1-\theta)^{k-2}=2\theta^2\sum_{k=0}^{\infty}C_{k+2}^2(1-\theta)^k$$

注意到由泰勒展开式 $(1-x)^{-3}=\sum_{k=0}^{\infty}\frac{(k+1)(k+2)}{2}x^k=\sum_{k=0}^{\infty}C_{k+2}^2x^k$,因此

$$E(\xi) = 2\theta^2 \sum_{k=0}^{\infty} C_{k+2}^2 (1-\theta)^k = 2\theta^2 (1-(1-\theta))^{-3} = \frac{2}{\theta}$$

因此解得

$$\hat{\theta} = \frac{2}{\bar{\xi}}.$$

9.5 估计的无偏性

定义: 设 $X_1, \dots, X_n \sim \text{iid } F(x, \theta)$ 是一个统计模型, $g(\theta)$ 为待估量。若统计量 $T = T(X_1, \dots, X_n)$ 满足

$$E_{\theta}[T(X_1, \cdots, X_n)] = g(\theta), \forall \theta \in \Theta.$$

则称 T 为 $g(\theta)$ 的**无偏估计**.

例:继续讨论正态模型中的估计问题。已经求得期望和方差的 ML 估计:

$$\hat{\mu} = \bar{X}, \quad \widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

样本均值 \bar{X} 是期望 μ 的无偏估计.

$$E_{\theta}(\bar{X}) = E_{\theta}(\frac{1}{n}(X_1 + \dots + X_n))$$
$$= \frac{1}{n}(E_{\theta}(X_1) + \dots + E_{\theta}(X_n)) = \mu.$$

样本方差 $\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ 不是 σ^2 的无偏估计.

注意到 $x_i - \mu = (x_i - \bar{x}) + (\bar{x} - \mu)$:

$$\frac{1}{n}\sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{n}\sum_{i=1}^{n} (x_i - \bar{x})^2 + (\bar{x} - \mu)^2.$$

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - (\bar{X} - \mu)^2.$$

$$E_{\theta}(\widehat{\sigma^2}) = \operatorname{var}(X) - \operatorname{var}(\bar{X}) = \sigma^2 - \frac{1}{n}\sigma^2 = \frac{n-1}{n}\sigma^2.$$

将方差的 ML 估计适当修改,可以得到 σ^2 的无偏估计。

定理: 若总体方差 σ^2 存在, 则 S^2 是 σ^2 的无偏估计, 其中,

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

例: 设总体: $X \sim \text{Exp}(\lambda)$. 样本量: n. 寻找 λ 的无偏估计.

解: 最大似然估计 & 矩估计: $\hat{\lambda} = 1/\bar{X} = \frac{n}{S_0}$, 其中,

$$S_n = X_1 + \dots + X_n \sim \Gamma(n, \lambda), \quad p_{S_n}(y) = \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y}, y > 0.$$

于是,

$$\begin{split} E(\hat{\lambda}) &= E(\frac{n}{S_n}) = n \int_0^\infty \frac{1}{y} \cdot \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy \\ &= n \frac{\lambda \Gamma(n-1)}{\Gamma(n)} \int_0^\infty \frac{\lambda^{n-1}}{\Gamma(n-1)} y^{n-2} e^{-\lambda y} dy = \frac{n}{n-1} \lambda \end{split}$$

 $n \geqslant 2$ 时, $\frac{n-1}{n}\hat{\lambda}$ 为 λ 的无偏估计.

n=1 时, $E\hat{\lambda}=\int_0^\infty \frac{1}{x} \times \lambda e^{-\lambda x} dx=\infty$. λ 的无偏估计不存在。

例: 设总体 X 服从参数为 λ 的泊松分布。现在求 $\exp\{-2\lambda\}$ 的估计。

解: $E(X) = \lambda$ 知 $X \in \lambda$ 的一个无偏估计。显然 $g_1(X) = \exp\{-2X\}$ 是一个可能的估计,但不是无偏估计 $(E[g_1(x)] = e^{-\lambda(1-e^{-2})} > e^{-2\lambda})$ 。因此考虑另一个估计 $g_2(X)$,令

$$g_2(x) = \begin{cases} 1, & x \neq \emptyset, \\ -1, & x \neq \emptyset, \end{cases}$$

此时

$$E(g_2(X)) = \sum_{k=0}^{\infty} (-1)^k P(X=k) = \exp\{-\lambda\} \sum_{k=0}^{\infty} \frac{(-\lambda)^k}{k!} = \exp\{-2\lambda\}.$$

确实是一个无偏估计,但是这个估计是荒谬的,当 X 为奇数时,它取负值。因此,在样本量很小的时候不能片面追求无偏性。

例: 设总体 $\xi \sim N(\mu, \sigma^2)$, 求 c 使得 $c \sum_{i=1}^n (\xi_{i+1} - \xi_i)^2$ 为 σ^2 的无偏估计。

解:

$$E(\sum_{i=1}^{n} (\xi_{i+1} - \xi_i)^2) = \sum_{i=1}^{n} E(\xi_{i+1}^2 - 2\xi_{i+1}\xi_i + \xi_i^2) = \sum_{i=1}^{n} 2\sigma^2 = 2n\sigma^2$$

因此可以取 $c = \frac{1}{2n}$ 。

例: 设 $\hat{\theta}$ 为参数 θ 的无偏估计,且有 $var(\hat{\theta}) > 0$,试证明 $(\hat{\theta})^2$ 不是 θ^2 的无偏估计。

证明: 由方差的定义可知,

$$var(\hat{\theta}) = E(\hat{\theta}^2) - (E(\hat{\theta}))^2 > 0$$

由于 $\hat{\theta}$ 为参数 θ 的无偏估计, 即 $E(\hat{\theta}) = \theta$, 因此

$$E(\hat{\theta}^2) = \operatorname{var}(\hat{\theta}) + (E(\hat{\theta}))^2 = \operatorname{var}(\hat{\theta}) + \theta^2 > \theta^2,$$

所以 $(\hat{\theta})^2$ 不是 θ^2 的无偏估计。

例: 设 x_1, \dots, x_n 是来自 $N(\theta, 1)$ 的样本, 证明 $g(\theta) = |\theta|$ 没有无偏估计。

证明: 假设 $T(x_1, \dots, x_n)$ 为 $g(\theta)$ 的无偏估计,则

$$\left(\frac{1}{\sqrt{2\pi}}\right) \int_{-\infty}^{+\infty} T(x_1, \cdots, x_n) \exp\left\{-\sum_{i=1}^n \frac{(x_i - \theta)^2}{2}\right\} dx_1 dx_2 \cdots dx_n = |\theta|.$$

由上式可知,等式左侧关于 θ 处处可导,而等式右侧在 $\theta = 0$ 不存在导数,因此假设不成立。即 $g(\theta) = |\theta|$ 没有无偏估计。

例: 设从均值 μ ,方差为 $\sigma^2 > 0$ 的总体中分别抽取容量为 n_1 和 n_2 的两独立样本, \bar{x}_1 和 \bar{x}_2 分别是这两个样本的均值。试证明,对于任意常数 a,b (a+b=1), $Y=a\bar{x}_1+b\bar{x}_2$ 都是 μ 的无偏估计,并确定常数 a,b 使得 var(Y) 达到最小。

证明: 由于 \bar{x}_1 和 \bar{x}_2 分别是容量为 n_1 和 n_2 的两独立样本的均值,故

$$E(\bar{x}_1) = \mu$$
, $E(\bar{x}_2) = \mu$, $var(\bar{x}_1) = \frac{\sigma^2}{n_1}$, $var(\bar{x}_2) = \frac{\sigma^2}{n_2}$.

因而

$$E(Y) = \overline{E}(a\bar{x}_1 + b\bar{x}_2) = aE(\bar{x}_1) + bE(\bar{x}_2) = a\mu + b\mu = (a+b)\mu = \mu$$

因此 $Y = a\bar{x}_1 + b\bar{x}_2$ 是 μ 的无偏估计。

又由 a+b=1 知 $Y=a\bar{x}_1+b\bar{x}_2=a\bar{x}_1+(1-a)\bar{x}_2$,从而

$$\operatorname{var}(Y) = \frac{a^2 \sigma^2}{n_1} + \frac{(1-a)^2 \sigma^2}{n_2} = \sigma^2 \left[\left(\frac{1}{n_1} + \frac{1}{n_2} \right) a^2 - \frac{2}{n_2} a + \frac{1}{n_2} \right],$$

求导知,当 $a=\frac{1/n_2}{1/n_1+1/n_2}=\frac{n_1}{n_1+n_2}$ 时, $\mathrm{var}(Y)$ 达到最小,此时 $b=\frac{n_2}{n_1+n_2}$ 。

结果表明,来自同一总体的容量为 n_1 和 n_2 的两独立样本的合样本的均值 $\bar{x} = \frac{n_1\bar{x}_1 + n_2\bar{x}_2}{n_1 + n_2}$ 是线性无偏估计类 $U = \{a\bar{x}_1 + (1-a)\bar{x}_2\}$ 中方差最小的。

9.6 无偏估计的优良性

设 $X_1, \dots, X_n \sim \text{iid } F_{\theta}(x) (\theta \in \Theta)$ 为统计模型, $g(\theta)$ 为待估量, $g(\theta)$ 的估计量 $T(X_1, \dots, X_n)$ 的**均** 方误差定义为

$$R(\theta, T) = E_{\theta}[T(X_1, \cdots, X_n) - g(\theta)]^2.$$

估计的均方误差有时也称为风险函数。

例: 设 $X_1, \dots, X_n \sim \text{iid } N(\mu, \sigma^2), \ \mu \in (+\infty, -\infty), \ \sigma^2 > 0, \ \text{在这个统计模型中}, \ \mu \text{ 的 ML 估计为}$ $\hat{\mu} = \bar{X}$,其均方误差或风险函数为

$$E(\bar{X} - \mu)^2 = \operatorname{var}(\bar{X}) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}\operatorname{var}\left(\frac{1}{n}\sum_{i=1}^n X_i\right)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \operatorname{var}(X_i) = \frac{\sigma^2}{n}.$$

它是不随 μ 的变化而变化的。

例: 设 $X_1, \dots, X_n \sim \text{iid} B(1, p)$,即 $X_i (i = 1, \dots, n)$ 以概率 p 取 1,以概率 1 - p 取 0。该统计模型在实际应用中是很常见的,我们已经求得参数 p 的 ML 估计为 $\hat{p} = \bar{X}$,不难验证 \hat{p} 也是 p 的无偏估计,其均方误差为

$$E(\bar{X} - p)^2 = \text{var}(\bar{X}) = \frac{1}{n} \text{var}(X_1) = \frac{p(1-p)}{n}.$$

由此可知,估计 \bar{X} 的风险函数为 $R(p,\bar{X}) = \frac{p(1-p)}{n}$ 。

注意:对于任何一个待估参数 $g(\theta)$,可以定义估计 $g(\theta_0)$,它将保证在 θ_0 处,风险函数最小,这意味着一个估计如果要成为最优估计,它的风险函数必须处处为 0。但是这是不可能的,为此我们需要考虑限制估计类。现在我们只考虑无偏估计类,希望在无偏估计类内找到最优估计。设 T(X) 是 $g(\theta)$ 的无偏估计,其均方误差变成方差:

$$R(\theta, T) = E_{\theta}[T - g(\theta)]^2 = E_{\theta}[T - E_{\theta}(T)]^2 = \operatorname{var}_{\theta}(T).$$

定义: 设 $X_1, \dots, X_n \sim \text{iid } F_{\theta}(x)(\theta \in \Theta)$ 为统计模型, $g(\theta)$ 为待估量, $g(\theta)$ 的一个估计量为 $T(X_1, \dots, X_n)$ 如果

- (1) T 是 $g(\theta)$ 的无偏估计,
- (2) 对于 $g(\theta)$ 的任意无偏估计 $\tilde{T} = \tilde{T}(X_1, \dots, X_n)$, 都有

$$\operatorname{var}_{\theta}(T) \leqslant \operatorname{var}_{\theta}(\tilde{T}), \quad \forall \theta \in \Theta.$$

则称 T 为 $g(\theta)$ 的 (一致) 最小方差无偏估计 (Uniformly Minimum Variance Unbiased, UMVU).

我们记

$$F_{\theta}(t) = P_{\theta}(T \leqslant t)$$

为统计量 T 的分布。

定义: 假设统计量 $T = T(X_1, \dots, X_n)$ 满足:

对任意统计量 $\tilde{T} = \tilde{T}(X_1, \dots, X_n)$ 都有,

那么, 称 T 为**充分统计**量。

例: (对应郑书例 4.3) 设总体: $X \sim B(1,p)$, 样本量: n. 考虑 $T = X_1 + \cdots + X_n$. 易知 T 的分布为二项分布,现在讨论 T 的充分性。

对 $t=0,1,\cdots,n,$ 令

$$S_t := \{(x_1, \dots, x_n) : x_i \in \{0, 1\}, \forall i; \ \underline{\mathbb{H}} x_1 + \dots + x_n = t\}.$$

那么, $\forall (x_1, \dots, x_n) \in S_t$,

$$P_{p}(X_{1} = x_{1}, \dots, X_{n} = x_{n} \mid T = t)$$

$$= \frac{P_{p}(X_{1} = x_{1}, \dots, X_{n} = x_{n})}{P_{n}(T = t)} = \frac{p^{t}(1 - p)^{n - t}}{C_{n}^{t}p^{t}(1 - p)^{n - t}} = \frac{1}{C_{n}^{t}}$$

因此 $\forall t$, 在 T=t 的条件下, (X_1,\cdots,X_n) 服从 S_t 上的均匀分布. 该分布与 p 无关. 因此, T 是充分统计量.

一般情况下,求充分统计量是麻烦的。有如定理:

定理: (因子分解定理) 设 $X_1, \dots, X_n \sim \text{iid} p(x, \theta)$, 其中 $p(x, \theta)$ 为分布密度或分布列。若 $T = T(X_1, \dots, X_n)$ 满足:

$$\prod_{i=1}^{n} p(x_i, \theta) = q_{\theta} (T(x_1, \dots, x_n)) h(x_1, \dots, x_n)$$

则 T 是充分统计量。

例: 设总体: $X \sim N(\mu, \sigma^2)$, 样本量: n.

联合密度为

$$\prod_{i=1}^{n} p(x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left\{-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}\right\}$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left\{-\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2}{2\sigma^2}\right\}.$$

指数上的部分可以写为 $\left(\bar{X}, \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2}\right)$ 的函数。因此, $\left(\bar{X}, \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2}\right)$ 是充分统计量. 若总体改为 $X \sim N(\mu, 1)$,则联合密度改为

$$\prod_{i=1}^{n} p(x_i, \theta) = \frac{1}{\sqrt{2\pi^n}} \exp\left\{-\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2}\right\}
= \frac{1}{\sqrt{2\pi^n}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} x_i^2\right\} \exp\left\{\mu \sum_{i=1}^{n} x_i\right\} \exp\left\{-\frac{n}{2} \mu^2\right\}.$$

因此, \bar{X} 是充分统计量.

例: 假设二维随机向量 (X,Y) 服从二元正态分布,参数 $\theta = (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,从总体中抽取一个样本 $((X_1, Y_1), \dots, (X_n, Y_n))$,样本量为 n,其联合密度为

$$\prod_{i=1}^{n} p(x_i, y_i; \theta) = \left(\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\right)^n \cdot \exp\left\{-\frac{1}{2(1-\rho^2)} \sum_{i=1}^{n} \left[\left(\frac{x_i - \mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x_i - \mu_1)(y_i - \mu_2)}{\sigma_1\sigma_2} + \left(\frac{y_i - \mu_2}{\sigma_2}\right)^2 \right] \right\},$$

 $x_i - \mu_1 = x_i - \bar{x} + \bar{x} - \mu_1$ 和 $y_i - \mu_2 = y_i - \bar{y} + \bar{y} - \mu_2$ 代入上式 e 指数上的表达式中, 化简,表达式可以写为

$$\left(\bar{x}, \bar{y}, \sum_{i=1}^{n} (x_i - \bar{x})^2, \sum_{i=1}^{n} (y_i - \bar{y})^2, \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})\right)$$

的函数, 因此联合密度具有形式

$$\prod_{i=1}^{n} p(x_i, y_i; \theta) = q_{\theta} \left(\bar{x}, \bar{y}, \sum_{i=1}^{n} (x_i - \bar{x})^2, \sum_{i=1}^{n} (y_i - \bar{y})^2, \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \right).$$

由因子分解定理知

$$T = \left(\bar{X}, \bar{Y}, \sum_{i=1}^{n} (X_i - \bar{X})^2, \sum_{i=1}^{n} (Y_i - \bar{Y})^2, \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})\right)$$

例: 设总体: $X \sim \text{Exp}(\lambda)$, 样本量: n.

联合密度具有形式

$$p_{\lambda}(x_1, \dots, x_n) = \lambda^n \exp\left\{-\lambda \sum_{i=1}^n x_i\right\} \cdot 1_{\{x_1, \dots, x_n > 0\}}.$$

其中 $1_{\{x_1,\cdots,x_n>0\}}$ 是示性函数,, 当所有 x_i 大于 0 时取 1, 否则为 0。显然该函数与参数无关, 因此由因子分解定理有, 令 $T=T(X_1,\cdots,X_n)=X_1+\cdots+X_n$.则 T 是充分统计量.

注意充分统计量不唯一,没有起到数据压缩的作用。**定义:** 设 $X_1, \dots, X_n \sim \text{iid} p(x, \theta)$,又设 $T = T(X_1, \dots, X_n)$ 为充分统计量. 若对任意 ϕ ,

$$E_{\theta}\phi(T) = 0, \forall \theta \in \Theta \text{ 可推出} P_{\theta}(\phi(T) = 0) = 1, \forall \theta \in \Theta.$$

则称 T 为完全充分统计量.

例: 设总体 $X \sim N(\theta, 1)$,样本量为 n。由因子分解定理知, $T_1 = \sum_{i=1}^n X_i$ 是一个充分统计量, $T_2 = (T_1, X_1 - X_2)$ 也是充分统计量。取 $\phi(T_2) = X_1 - X_2$,易知

$$E_{\theta}[\phi(T_2)] = E_{\theta}(X_1) - E_{\theta}(X_2) \equiv 0$$

但是 $P(\phi(T_2) = 0) = P(X_1 = X_2) \neq 1$, 这说明 $T_2 = (T_1, X_1 - X_2)$ 不是完全充分统计量。

定理: 设 $T = T(X_1, \dots, X_n)$ 为完全充分统计量. 若

$$E_{\theta}(\phi(T)) = g(\theta), \forall \theta,$$

则 $\phi(T)$ 是 $g(\theta)$ 的 UMVU 估计.

该定理说明,对于待估量 $g(\theta)$,只要找到依赖于完全充分统计量的函数 $\phi(T)$,使得 $\phi(T)$ 是 $g(\theta)$ 的无偏估计,则 $\phi(T)$ 就是 $g(\theta)$ 的 UMVU 估计。因此,要找到 $g(\theta)$ 的 UMVU 估计,只需在完全充分统计量中寻找即可。

例: 设总体 $\xi \sim U(0,\theta)$,已经证明样本量为 n 的样本的最大值为 θ 的充分统计量,记为 $\xi_{(n)}$,证 明 $\xi_{(n)}$ 也为 θ 的完全充分统计量。

证明:因为 $\xi_{(n)}$ 的密度为

$$f_{\xi_{(n)}}(x;\theta) = nf(x;\theta)[F(x;\theta)]^{n-1} = \begin{cases} \frac{nx^{n-1}}{\theta^n}, & 0 \leqslant x \leqslant \theta, \\ 0, & \text{ 其他}, \end{cases}$$

如果有函数 g(x), 使得对一切 $0 < \theta$, 有

$$E_{\theta}[g(\xi_{(n)})] = 0,$$

即

$$0 \equiv \int_0^\theta g(x) f_{\xi_{(n)}}(x;\theta) dx = \frac{n}{\theta^n} \int_0^\theta g(x) x^{n-1} dx,$$

故

$$\int_0^\theta g(x)x^{n-1}dx \equiv 0.$$

对两侧求导得

$$q(\theta)\theta^{n-1} \equiv 0.$$

从而对一切 $\theta > 0$, $g(\theta) = 0$, 因此 $\xi_{(n)}$ 是完全充分统计量。

定义: 若密度或分布列 $p(x,\theta)$ 能进行如下分解:

$$p(x,\theta) = S(\theta)h(x) \exp\left\{\sum_{k=1}^{m} C_k(\theta)T_k(x)\right\}, \quad (\theta \in \Theta)$$

则称 $p(x,\theta), \theta \in \Theta$ 为指数族分布.

注: x 可为高维向量, 于是 $p(x,\theta)$ 为联合密度/联合分布列.

例: 设总体: $X \sim N(\mu, \sigma^2)$, 样本量: n, 参数 $\theta = (\mu, \sigma^2)$, 分布密度具有形式:

$$p(x,\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\mu^2}{2\sigma^2}} e^{\frac{\mu}{\sigma^2}x - \frac{1}{2\sigma^2}x^2}.$$

显然,它具有指数分布的形式。

例: 设总体: X 服从参数为 p 的二项分布, 样本量: n, 分布列可以改写为

$$P(X = x) = C_n^x p^x (1 - p)^{n - x}$$
$$= (1 - p)^n C_n^x \exp\left\{x \ln \frac{p}{1 - p}\right\}$$

P(X=x) 所表示的三个因子的乘积符合指数族分布的要求。

引理: 若总体 X 是指数族, 则设 (X_1, \dots, X_n) 为 X 的一个样本,将 (X_1, \dots, X_n) 看做随机向量,则其联合分布也是指数族分布。

例: 设总体 $X \sim N(\mu, \sigma^2)$, 可得 (X_1, \dots, X_n) 的联合分布密度为

$$p(x_1, \dots, x_n; \mu, \sigma^2) = \prod_{i=1}^n p(x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left\{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right\}$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left\{-\frac{n\mu^2}{2\sigma^2}\right\} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 + \frac{\mu}{\sigma^2} \sum_{i=1}^n x_i\right\},$$

故正态分布的一个样本的联合分布也是指数族分布。直接使用引理也可以得证。

定理: 总体 X 具有指数族分布, $\Theta \in \mathbb{R}^m$ 且含内点; (C_1, \dots, C_m) 是在 Θ 上一对一、连续的函数; 诸 C_i 之间 $(T_i$ 之间) 无线性关系. 则

$$\left(\sum_{i=1}^{n} T_1\left(X_i\right), \cdots, \sum_{i=1}^{n} T_k\left(X_i\right)\right)$$

是完全充分统计量.

例: 设总体: $X \sim N(\mu, \sigma^2)$, 样本量: n, 参数 $\theta = (\mu, \sigma^2)$.

设 $T_1 = \sum_{i=1}^n X_i, T_2 = \sum_{i=1}^n X_i^2$, 则由上面的定理知 (T_1, T_2) 是完全充分统计量. \bar{X}, S^2 是 μ, σ^2 的 UMVU 估计,其中:

$$\bar{X} = \frac{1}{n}T_1, \quad S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1}\left(T_2 - \frac{1}{n}T_1^2\right)$$

是 (T_1,T_2) 的函数,并且是 μ,σ^2 的无偏估计.

改为已知 μ (例如, 已知 $\mu=1$). 则 $\theta=\sigma^2, m=1$:

$$p(x,\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-1)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-1)^2}$$

 $T_1 = \sum_{i=1}^{n} (X_i - \mu)^2$ 是完全充分统计量.

 $\hat{\sigma}^2$ 是 σ^2 的 UMVU 估计, 其中

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

例: 某工人生产 20 件产品, 其中 1 件为次品. 求: 次品率的 UMVU 估计.

解: 由题意, 总体: $Y \sim B(1,p)$, 参数 $p = \theta \in [0,1]$, 样本量: n = 20.

分布列: (记 $k = y_1 + \cdots + y_n$)

$$P_p(Y_1 = y_1, \dots, Y_n = y_n) = \prod_{i=1}^n p^{y_i} (1-p)^{1-y_i}$$
$$= p^k (1-p)^{n-k} = e^{k \cdot \log p + (n-k) \log(1-p)} = e^{n \log(1-p)} e^{(\log p - \log(1-p))k}$$

可见 Y 的分布列具有指数族分布的形式. 因此, $T_1=X=Y_1+\cdots+Y_{20}$ 是完全充分统计量. 又由于 E(X)=nE(Y)=np,即 $\frac{X}{n}$ 是 p 的无偏估计,因此, $\hat{p}=X/20$ 是 UMVU 估计.

例:(对应郑书例 4.15)总体: $X \sim N(\mu,1)$,样本量: n,求 μ^2 的 UMVU 估计.

解: 参数 $\theta = \mu$, 联合密度为:

$$p(x,\theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\mu^2} e^{-\frac{1}{2}x^2} e^{\mu x}.$$

 $T_1 = \sum_{i=1}^n X_i$ 是完全充分统计量, 因此 \bar{X} 也是完全充分统计量.

由 $var(Y) = E(Y^2) - (E(Y))^2$ 知,

$$\mu^2 = (E_\mu \bar{X})^2 = E_\mu \bar{X}^2 - \text{var}_\mu(\bar{X}) = E_\mu \bar{X}^2 - \frac{1}{n} = E_\mu \left(\bar{X}^2 - \frac{1}{n}\right)$$

因此, $\bar{X}^2 - \frac{1}{n}$ 是 μ^2 的 UMVU 估计.

例: 设总体 $Y \sim N(X\beta, \sigma^2 I_n)$, 其中 $Y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times p} (p \leqslant n), \beta \in \mathbb{R}^{p \times 1}$ 。 X 已知。 (β, σ^2) 是参数。设 $\hat{\beta} = (X^\top X)^{-1} X^\top Y$,证明 $\hat{\beta}$ 为 β 的 UMVU 估计。

证明:由于

$$E(\hat{\beta}) = (X^{\top}X)^{-1}X^{\top}E(Y) = (X^{\top}X)^{-1}X^{\top}X\beta = \beta,$$

因此 $(\hat{\beta})$ 是 β 的无偏估计。 Y_1, \dots, Y_n 的联合密度函数为

$$p(y_1, \dots, y_n; \beta, \sigma^2) = (\sqrt{2\pi}\sigma)^{-n} \exp\left\{-\frac{1}{2\sigma^2}||Y - X\beta||_2^2\right\} = Q(\theta) \exp\{\theta_1 T_1(Y) + \theta_2 T_2(Y)\}$$

 $\not \sqsubseteq \psi \; \theta_1 = -\tfrac{1}{2\sigma^2}, \theta_2 = \tfrac{\beta}{\sigma^2}, T_1(Y) = Y^\top Y, T_2(Y) = X^\top Y, Q(\theta) = (\sqrt{2\pi}\sigma)^{-n} \cdot \exp\left\{-\tfrac{1}{2\sigma^2}(X\beta)^\top (X\beta)\right\}.$

由指数分布族的性质知, $T_1(Y)$ 和 $T_2(Y)$ 为完全充分统计量, 而

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y = (X^{\top}X)^{-1}T_2(Y)$$

这表明 $\hat{\beta}$ 是完全充分统计量的函数,可知 $\hat{\beta}$ 是 β 的 UMVU 估计。

9.7 估计的相合性

定义: 设 $T_n = T_n(X_1, \dots, X_n)$ 满足: $\forall \varepsilon > 0$,

$$P_{\theta}(|T_n - g(\theta)| \geqslant \varepsilon) \stackrel{n \to \infty}{\longrightarrow} 0, \quad \forall \theta \in \Theta.$$

则称 T_n 为 $g(\theta)$ 的相合估计, 或估计 T_n 具有相合性.

定理: 设 $X_1, \dots, X_n \sim \text{iid } F_{\theta}(x) (\theta \in \Theta), E_{\theta}(X_i)$ 存在且有限,则

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} E_{\theta}(X_1) \quad (n \to \infty),$$

定理说明,在简单随机抽样的情况下,样本均值是总体均值的相合估计。

推论: 设 $X_1, \dots, X_n \sim \text{iid } F_{\theta}(x)(\theta \in \Theta)$,则 $\alpha_l = E_{\theta}(X_1^l)$ 的矩估计 $a_l = \frac{1}{n} \sum_{j=1}^n X_j^l$ 为 α_l 的相合估计。

定理: 设 $X_1, \dots, X_n \sim \text{iid } F_{\theta}(x)(\theta \in \Theta)$, 则 θ 的函数 $g(\theta)$ 的矩估计具有相合性. (注: $g(\theta) = \phi(\alpha_1, \dots, \alpha_k)$, 其中 ϕ 为连续函数).

隐藏使用了定理:

定理若 $T_n \xrightarrow{P} \theta$, f 为连续函数, 则 $f(T_n) \xrightarrow{P} f(\theta)$.

提示: 由连续性: 对于任意 $\epsilon > 0$, 存在 δ , 有 $|T_n - \theta| \le \delta$, 则 $|f(T_n) - f(\theta)| \le \epsilon$ 。故后者事件是前者的子集,有 $P(|T_n - \theta| \le \delta) \ge P(|f(T_n) - f(\theta)| \le \epsilon)$ 。

例: 设总体: $X \sim U(0, \theta)$, 样本量: n.

由定理可以直接得到, 参数 θ 的矩估计 $2\bar{X}$ 具有相合性.

最大似然估计 $T_n = \max_{1 \le i \le n} X_i$ 也具有相合性: $\forall 0 < \varepsilon < \theta$,

$$P_{\theta}(|T_n - \theta| \geqslant \varepsilon) = P_{\theta}(T_n \leqslant \theta - \varepsilon)$$
$$= P_{\theta}(X \leqslant \theta - \varepsilon)^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \to 0.$$

例:(对应郑书例 5.3)考虑某物种三种类型的个体,以 1,2,3 表示个体的三种类型,设此三种类型出现的概率分别为:

$$p(1,\theta) = \theta^2$$
, $p(2,\theta) = 2\theta(1-\theta)$, $p(3,\theta) = (1-\theta)^2$,

其中 $0 < \theta < 1$, 现有 n 个个体的类型 $\mathbf{x} = (x_1, \dots, x_n)$,设其中共有 n_1 个 $1, n_2$ 个 $2, n_3$ 个 3,求 ML 估计并探究相合性。

x 出现的概率为

$$P(X = \mathbf{x}) = p(1, \theta)^{n_1} p(2, \theta)^{n_2} p(3, \theta)^{n_3}$$
$$= \theta^{2n_1 + n_2} (1 - \theta)^{n_2 + 2n_3} 2^{n_2}$$
$$= 2^{n_2} \theta^{2n_1 + n_2} (1 - \theta)^{2n - (2n_1 + n_2)}.$$

这是对 θ 作 ML 估计的似然函数,与总样本量 2n,某事件出现 $2n_1 + n_2$ 次的二项分布的似然函数相同。利用二项分布的 ML 估计公式,可得 θ 的 ML 估计为

$$\hat{\theta}_n = \frac{2n_1 + n_2}{2n}.$$

为证明 $\hat{\theta}_n$ 的相合性,我们只需证明

$$\frac{n_1}{n} \xrightarrow{P} \theta^2, \quad \frac{n_2}{n} \xrightarrow{P} 2\theta(1-\theta)(n \to \infty).$$

事实上,利用大数定律可得 $\frac{n_1}{n} \xrightarrow{P} p(1,\theta) = \theta^2$, $\frac{n_2}{n} \xrightarrow{P} p(2,\theta) = 2\theta(1-\theta)$,将两个极限合并即可得到

$$\hat{\theta}_n = \frac{n_1}{n} + \frac{n_2}{2n} \xrightarrow{P} \theta^2 + \theta - \theta^2 = \theta$$

即 $\hat{\theta}_n$ 为 θ 的相合估计。

例: 设总体 $\xi \sim U(0,\theta)$, $Y = \left(\prod_{i=1}^n \xi_i\right)^{\frac{1}{n}}$, 证明 eY 是 θ 的相合估计。

证明: 需要证明 $eY \xrightarrow{P} \theta$, 等价于 $Y \xrightarrow{P} \frac{\theta}{\epsilon}$ 。注意到

$$E(\ln \xi) = \int_0^\theta \ln x \frac{1}{\theta} dx = \frac{1}{\theta} x \ln x \Big|_0^\theta - \int_0^\theta \frac{1}{\theta} dx = \ln \theta - 1.$$

因此,由独立同分布的大数定律得,

$$Y = \left(\prod_{i=1}^{n} \xi_i\right)^{\frac{1}{n}} = e^{\frac{1}{n} \sum_{i=1}^{n} \ln \xi_i} \xrightarrow{P} e^{E(\ln \xi)} = \frac{\theta}{e}.$$

9.8 估计的渐近分布

定义: 设 $T_n = T_n(X_1, \cdots, X_n)$ 满足:

$$\sqrt{n} (T_n - g(\theta)) \xrightarrow{\omega} Z \sim N(0, \sigma^2), \quad \forall \theta \in \Theta,$$

则称 T_n 是**渐近正态**的, 其中 $\sigma^2 = \sigma_\theta^2$ 称为渐近方差.

定理: 若 $Y_n \stackrel{\omega}{\to} Y$,且随机变量序列 A_n 和 $B_n(n=1,2,\cdots)$ 分别依概率收敛于 a 和 b,则 $A_n+B_nY_n\stackrel{\omega}{\to} a+bY$ 。

定理: (中心极限定理) 设 $X_i(i=1,\cdots,n)$ 是独立同分布的,且 $E(X_i)=\mu$, $\mathrm{var}(X_i)=\sigma^2<+\infty$,那么 $\sqrt{n}(\bar{X}-\mu)$ 弱收敛到 $N(\mu,\sigma^2)$,因此 $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$ 弱收敛到标准正态分布 N(0,1)。

定理: (Δ 方法). 设 T_n 为 θ 的估计, $\sqrt{n}(T_n - \theta) \stackrel{\omega}{\to} Z \sim N(0, \tau^2)$, $h'(\theta)$ 存在且不为 0, 则

$$\sqrt{n} \left(h \left(T_n \right) - h(\theta) \right) \stackrel{\omega}{\to} W \sim N \left(0, h'(\theta)^2 \tau^2 \right).$$

例: 设总体: $X \sim N(\mu, \sigma^2)$, 样本量: n.

UMVU 估计: $\hat{\mu} = \bar{X}, \widehat{\sigma^2} = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

 $\hat{\mu}$ 渐近正态: 事实上,

$$\sqrt{n}(\bar{X} - \mu) \sim N(0, \sigma^2)$$
.

例: (对应郑书例 6.2) 设 X_1, \dots, X_n 是来自总体 X 的一个样本,总体 X 服从泊松分布,分布列为

$$P(X_i = k) = \frac{\lambda^k}{k!} \exp\{-\lambda\} \quad (k = 0, 1, 2, \dots; \lambda > 0).$$

已经求得 λ 的 ML 估计为 $\hat{\lambda} = \bar{X}$,不难验证 λ 的矩估计也是 \bar{X} ,利用中心极限定理,有

$$\sqrt{n}(\bar{X} - \lambda) = \sqrt{n}[\bar{X} - E(X)] \xrightarrow{\omega} N(0, \text{var}(X)),$$

其中 $\text{var}(X) = \lambda$,故 \bar{X} 是渐近正态的,并且渐近方差为 λ 。现在试求 λ^2 的估计,并讨论其渐近分布。因 λ 的 ML 估计为 $\hat{\lambda} = \bar{X}$,故 λ^2 的 ML 估计为 \bar{X}^2 ,有

$$\sqrt{n}[h(\bar{X}) - h(\lambda)] \xrightarrow{\omega} N(0, (h'(\lambda))^2 \lambda) = N(0, 4\lambda^3) \quad (n \to \infty),$$

式中 $h(\bar{X}) = \bar{X}^2$, $h(\lambda) = \lambda^2$, 由此可知 λ^2 的 ML 估计 \bar{X}^2 是渐近正态的, 其渐近方差为 $4\lambda^2$ 。

例: 总体: $X \sim N(\mu, 1)$, 待估量: $g(\mu) = P_{\mu} (X \leqslant x_0)$ 。

方法一、设 $g(\mu) = P_{\mu}(X - \mu \leqslant x_0 - \mu) = \Phi(x_0 - \mu).$

由 CLT, μ 的最大似然估计 $\hat{\mu} = \bar{X}$ 渐近正态, 渐近方差 = 1.

再由 Δ 方法, $g(\mu)$ 的最大似然估计 $g(\hat{\mu}) = \Phi(x_0 - \bar{X})$ 渐近正态, 渐近方差为

$$\sigma_1^2 = g'(\mu)^2 \cdot 1 = \varphi(x_0 - \mu)^2$$
.

方法二、注意到 $\frac{1}{n}\sum_{i=1}^n 1_{\{X_i\leqslant x_0\}}\stackrel{P_\mu}{\to} P_\mu\left(X_i\leqslant x_0\right)=g(\mu)$, 渐近正态,渐近方差为

$$\sigma_2^2 = \operatorname{var} \left(1_{\{X \leqslant x_0\}} \right) = g(\mu)(1 - g(\mu)) = \Phi \left(x_0 - \mu \right) \left(1 - \Phi \left(x_0 - \mu \right) \right)$$

9.9 置信区间

定义: 设 $X_1, \dots, X_n \sim \text{iid } F(x, \theta)$ 是一个统计模型, $g(\theta)$ 为实值函数。假设 $\underline{T} = \underline{T}(X_1, \dots, X_n)$ 与 $\bar{T} = \bar{T}(X_1, \dots, X_n)$ 为统计量, $\alpha \in (0, 1)$.

(1) 若 $T < \bar{T}$ 且

$$P_{\theta}(\underline{T} \leqslant g(\theta) \leqslant \overline{T}) \geqslant 1 - \alpha, \quad \forall \theta \in \Theta,$$

则称 $[T, \bar{T}]$ 为 $g(\theta)$ 的置信度为 $1 - \alpha$ 的**置信区间**.

(2) 若

$$P_{\theta}(\underline{T} \leqslant g(\theta)) \geqslant 1 - \alpha, \quad \forall \theta \in \Theta,$$

则称 \underline{T} 为 $g(\theta)$ 的置信度为 $1-\alpha$ 的**置信下限**.

(3) 若

$$P_{\theta}(g(\theta) \leqslant \bar{T}) \geqslant 1 - \alpha, \quad \forall \theta \in \Theta,$$

则称 \bar{T} 为 $g(\theta)$ 的置信度为 $1-\alpha$ 的**置信上限**.

9.9.1 枢轴量法

定义: 设 $X_1, \dots, X_n \sim \text{iid } F(x, \theta)$ 是一个统计模型, $g(\theta)$ 是待估量. 若

$$h = h(X_1, \cdots, X_n; g(\theta))$$

的分布与 θ 无关, 则称 h 为枢轴量.

借助枢轴量,我们可以构造置信区间或置信限:

Step 1. 找枢轴量 $h = h(\vec{X}, g(\theta))$ 及其分布 F.

Step 2. 利用 F 选择 a,b, 使得:

$$P(a \le h \le b) \ge 1 - \alpha$$
.

Step 3. 将 $a \le h \le b$ 化为 $\underline{T} \le g(\theta) \le \overline{T}$, 于是得到

$$P(\underline{T} \leqslant g(\theta) \leqslant \overline{T}) \geqslant 1 - \alpha.$$

例: 设总体: $X \sim \text{Exp}(\lambda)$. 样本量: n. 求 λ 的置信区间.

解:由于 $\lambda X \sim \text{Exp}(1)$, 因此,

$$h_1 = \lambda (X_1 + \cdots + X_n) \sim \Gamma(n, 1).$$

 $2\lambda X \sim \text{Exp}\left(\frac{1}{2}\right)$, 因此

$$h_2 = 2\lambda (X_1 + \dots + X_n) \sim \Gamma(n, \frac{1}{2}) = \chi^2(2n).$$

查 $\chi^2(2n)$ 的表获得 $\chi^2(2n)$ 分布的 $\alpha/2$ 分位数和 $1-\alpha/2$ 分位数: $\lambda_1 = \chi^2_{\alpha/2}(2n), \lambda_2 = \chi^2_{1-\alpha/2}(2n).$ 于是, $P_{\lambda}(\lambda_1 \leq h_2 \leq \lambda_2) = 1-\alpha$. 从而, 所求为 $[\underline{T}, \overline{T}]$, 其中,

$$\underline{T} = \frac{\lambda_1}{2(X_1 + \dots + X_n)}, \quad \bar{T} = \frac{\lambda_2}{2(X_1 + \dots + X_n)}.$$

例: 设总体 $X \sim U(0,\theta)$, 样本量为 n, 试对设定的 $\alpha(0 < \alpha < 1)$ 给出 θ 的 $1 - \alpha$ 同等置信区间。

解: 使用枢轴量法:

第一步: 已知 θ 的 ML 估计是样本的最大次序统计量 $x_{(n)}$, 而 $\frac{x_{(n)}}{\theta}$ 的密度函数为

$$p(y; \theta) = ny^{n-1}, \quad 0 < y < 1,$$

与 θ 无关,可以选取 $\frac{x_{(n)}}{\theta}$ 作为枢轴量 G。

第二步:由于 $\frac{x_{(n)}}{\theta}$ 的分布函数为 $F(y)=y^n, 0 < y < 1$,故 $P(c \leqslant \frac{x_{(n)}}{\theta} \leqslant d) = d^n - c^n$,因此可以选择适当的 c 和 d 满足

$$d^n - c^n = 1 - \alpha.$$

第三步:整理不等式得到 θ 的 $1-\alpha$ 同等置信区间为 $[\frac{x_{(n)}}{d},\frac{x_{(n)}}{c}]$,该区间的平均长度为 $\left(\frac{1}{c}-\frac{1}{d}\right)E(x_{(n)})$ 。不难看出,当 $d=1,c=\sqrt[n]{\alpha}$ 时, $\frac{1}{c}-\frac{1}{d}$ 取最小值,说明 $[x_{(n)},x_{(n)}/\sqrt[n]{\alpha}]$ 是 θ 的此类区间估计中置信水平为 $1=\alpha$ 的最短置信区间。

例: 设总体 $\xi \sim N(\theta, \theta^2), \theta > 0$, 样本量为 n, 求 θ 的 $1 - \alpha$ 同等置信区间。

解:均值 $\bar{\xi} \sim N(\theta, \frac{\theta^2}{n})$, 因此 $\frac{\bar{\xi} - \theta}{\theta / \sqrt{n}} \sim N(0, 1)$,

$$-\Phi\left(1-\frac{\alpha}{2}\right)\leqslant\frac{\bar{\xi}-\theta}{\theta/\sqrt{n}}\leqslant\Phi\left(1-\frac{\alpha}{2}\right)$$

ĦΠ

$$\frac{\bar{\xi}}{1 + \frac{\Phi\left(1 - \frac{\alpha}{2}\right)}{\sqrt{n}}} \leqslant \theta \leqslant \frac{\bar{\xi}}{1 - \frac{\Phi\left(1 - \frac{\alpha}{2}\right)}{\sqrt{n}}}.$$

9.9.2 正态分布中参数的置信区间

正态分布的定义及运算性质请参考概率部分。

定理: 假设总体: $X \sim N(\mu, \sigma^2)$, 样本量: n. 则

(1) $\bar{X} \sim N\left(\mu, \frac{1}{n}\sigma^2\right)$

(2) $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1);$

(3) \bar{X} 与 $\sum_{i=1}^{n} (X_i - \bar{X})^2$ 相互独立.

t(n) **分布:** 设 $\xi \sim N(0,1), \ \eta \sim \chi^2(n), \$ 且 $\xi 与 \eta$ 独立,记 $T = \frac{\xi}{\sqrt{\eta/n}}.$

证明: 设 $X_i = \mu + \sigma Z_i$, 其中 $Z_i = X_i^* \sim N(0,1)$, i.i.d., 因此

$$\bar{X} = \mu + \sigma \bar{Z}, \quad \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2} = \sum_{i=1}^{n} (Z_i - \bar{Z})^2 = \sum_{i=1}^{n} Z_i^2 - n\bar{Z}^2$$

取正交矩阵 $\mathbf{A}_{n\times n}$, 其第一行是 $\left(\frac{1}{\sqrt{n}},\cdots,\frac{1}{\sqrt{n}}\right)$. 令 $\vec{Y}=\mathbf{A}\vec{Z}$.

由 A 正交, $\vec{Y} \sim N\left(\overrightarrow{0}, \mathbf{I}_{n \times n}\right)$ 且 $\sum_{i=1}^{n} Z_i^2 = \sum_{i=1}^{n} Y_i^2$.

由 A 的第一行, $Y_1^2 = n\bar{Z}^2$. 于是, $\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sigma^2} = \sum_{i=2}^n Y_i^2 \sim \chi^2(n-1)$. 故 (2) 成立.

 $\bar{Z} = \frac{1}{\sqrt{n}} Y_1 \sim N\left(0, \frac{1}{n}\right)$, 且与 $\sum_{i=2}^n Y_i^2$ 独立. 故, (1), (3) 成立.

例: 总体 $X \sim N(\mu, \sigma_0^2)$, 其中 σ_0^2 已知, (例如, $X \sim N(\mu, 1)$).

求: μ 的置信度为 $1-\alpha$ 的 (1) 置信区间, (2) 置信上限.

解: 取 $h = h(X_1, \dots, X_n, \mu) := \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \sim N(0, 1).$

(1) 查表获得标准正态分布的 $1-\alpha/2$ 分位数 $z_{1-\alpha/2}$, 于是 $P_{\mu}\left(|h|\leqslant z_{1-\alpha/2}\right)=1-\alpha$. 因此,

$$P_{\mu}\left(|\bar{X}-\mu|\leqslant \frac{\sigma}{\sqrt{n}}z_{1-\alpha/2}\right)=1-\alpha.$$

概率论角度: $\bar{X} \in \left[\mu - \frac{\sigma_0}{\sqrt{n}} z_{1-\alpha/2}, \mu + \frac{\sigma_0}{\sqrt{n}} z_{1-\alpha/2}\right]$, 末知的随机点 \bar{X} 落在已知的确定区间中.

统计学角度: $\mu \in \left[\bar{X} - \frac{\sigma_0}{\sqrt{n}} z_{1-\alpha/2}, \bar{X} + \frac{\sigma_0}{\sqrt{n}} z_{1-\alpha/2}\right]$ (此即所求置信区间),已知的随机区间(可由数据得到)覆盖末知参数 μ (确定的点).

(2) 置信上限为 $\bar{\mu} = \bar{X} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$:

$$P_{\mu}(h \geqslant z_{\alpha}) = 1 - \alpha \Rightarrow P_{\mu}\left(\bar{X} \leqslant \mu - \frac{\sigma}{\sqrt{n}}z_{\alpha}\right) = 1 - \alpha.$$

例: 若在上例中 μ , σ^2 均未知, 求: μ 的置信度为 $1-\alpha$ 的置信区间。

解: 这种情况不能用枢轴量 $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$ 得到 μ 的置信区间 (因 σ 未知)。不过可以取

$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{\hat{\sigma}}$$

作为枢轴量, 其中 $\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$, 且其分布是自由度为 n-1 的 t 分布。记 $t_{1-\alpha/2}(n-1)$ 为自由度是 n-1 的 t 分布的 $1-\alpha/2$ 分位数,则

$$P\left(\left|\frac{\sqrt{n}(\bar{X}-\mu)}{\hat{\sigma}}\right| \leqslant t_{1-\alpha/2}(n-1)\right) = 1-\alpha$$

这样,我们得到 $\left[\bar{X} - \hat{\sigma}t_{1-\alpha/2}(n-1)/\sqrt{n}, \bar{X} + \hat{\sigma}t_{1-\alpha/2}(n-1)/\sqrt{n}\right]$ 是 μ 的置信度为 $1-\alpha$ 的置信 区间。再将数据 x_1, \ldots, x_n 代入即可得所求的置信区间。

例: 设总体为正态分布 $N(\mu,1)$,为得到 μ 的置信水平为 0.95 的置信区间且长度不超过 1.2,样本容量应为多大?

 \mathbf{M} : 由题设条件知 μ 的 0.95 置信区间为

$$\left[\bar{x}-z_{1-\alpha/2}/\sqrt{n}, \quad \bar{x}+z_{1-\alpha/2}/\sqrt{n}\right]$$

其区间长度为 $2z_{1-\alpha/2}/\sqrt{n}$,它仅依赖于样本容量 n 而与样本具体取值无关。现要求 $2z_{1-\alpha/2}/\sqrt{n} \le 1.2$,立即有 $n \ge (2/1.2)^2 z_{1-\alpha/2}^2$ 。现 $1-\alpha=0.95$,故 $z_{1-\alpha/2}=1.96$,从而 $n \ge (5/3)^2 \times 1.96^2=10.67 \approx 11$ 。即样本容量至少为 11 时才能使 μ 的置信水平为 0.95 的置信区间长度不超过 1.2。

例:假设轮胎的寿命服从正态分布。为估计某种轮胎的平均寿命,现随机地抽取 12 只轮胎试用,测得它们的寿命(单位:万千米)如下:

试求平均寿命的 0.95 置信区间。

解:此处正态总体标准差未知,可使用 t 分布求均值的置信区间。本例中经计算有 $\bar{x}=4.709$, $s^2=0.0615$. 取 $\alpha=0.05$,查表知 $t_{0.975}(11)=2.2010$,于是平均寿命的 0.95 置信区间为

$$4.709 \pm 2.2010 \cdot \sqrt{\frac{0.0615}{12}} = [4.5516, 4.8668].$$

在实际问题中,由于轮胎的寿命越长越好,因此可以只求平均寿命的置信下限,也即构造单侧的置 信下限。由于

$$P\left(\frac{\sqrt{n}(\bar{x}-\mu)}{s} < t_{1-\alpha}(n-1)\right) = 1 - \alpha.$$

由不等式变形可知 μ 的 $1-\alpha$ 置信下限为 $\bar{x}-t_{1-\alpha}(n-1)s/\sqrt{n}$. 将 $t_{0.95}(11)=1.7959$ 代人计算可得平均寿命 μ 的 0.95 置信下限为 4.5806 (万千米).

9.9.3 参数的近似置信区间

定义: 设 $X_1, \dots, X_n \sim \text{iid } F(x, \theta)$ 是一个统计模型, $g(\theta)$ 是待估量, $T(X_1, \dots, X_n)$ 是 $g(\theta)$ 的渐 近正态估计,

(1) 若 σ^2 已知,则 $g(\theta)$ 的置信度为 $1-\alpha$ 的近似置信区间是

$$\left[T(X_1,\ldots,X_n)-\frac{\sigma}{\sqrt{n}}z_{1-\alpha/2},T(X_1,\ldots,X_n)+\frac{\sigma}{\sqrt{n}}z_{1-\alpha/2}\right];$$

(2) 若 σ^2 未知,则 $g(\theta)$ 的置信度为 $1-\alpha$ 的近似置信区间是

$$\left[T(X_1, \dots, X_n) - \frac{\hat{\sigma}_n}{\sqrt{n}} t_{n-1, 1-\alpha/2}, T(X_1, \dots, X_n) + \frac{\hat{\sigma}_n}{\sqrt{n}} t_{n-1, 1-\alpha/2} \right],$$

其中 $\hat{\sigma}_n$ 为 σ 的相合估计.

例: 某学校计划在数学系开一门新课,调查了 90 位学生以后,发现其中 15 位学生反映目前课业负担过重。试求课业负担过重的学生百分比的置信度为 0.95 的置信区间。

解:记 θ 为课业负担过重的学生的百分比,n 为调查的样本量,X 为样本中课业负担过重的学生数。利用中心极限定理,得到

$$\sqrt{n}\left(\frac{X}{n} - \theta\right) / \sqrt{\theta(1-\theta)} \xrightarrow{w} N(0,1) \quad (n \to \infty),$$

从而对给定的 $a \in (0,1)$,有

$$P\left(\left|\sqrt{n}\left(\frac{X}{n}-\theta\right)/\sqrt{\theta(1-\theta)}\right| \leqslant z_{1-a/2}\right) \approx 1-a.$$

现在需求解不等式

$$\left| \sqrt{n} \left(\frac{X}{n} - \theta \right) / \sqrt{\theta (1 - \theta)} \right| \leqslant z_{1 - a/2}.$$

这个不等式的解为

$$\tilde{\theta} - \Delta \leqslant \theta \leqslant \tilde{\theta} + \Delta,$$

其中

$$\tilde{\theta} = \frac{2X + z_{1-a/2}^2/n}{n},$$

$$\Delta = \sqrt{\frac{z_{1-a/2}^2/n[z_{1-a/2}^2/n + 4(1-X/n)X/n]}{n}}.$$

于是, $[\tilde{\theta}-\Delta,\tilde{\theta}+\Delta]$ 是 θ 的置信度为 $1-\alpha$ 的近似置信区间。

已知 $1-\alpha=0.95$,即 $\alpha=0.05$,n=90,X=15,查附表得 $z_{1-a/2}=z_{0.975}=1.96$,代入经计算得到 θ 的置信度为 0.95 的近似置信区间是 [0.1037,0.2569]。这个区间称为 Wilson 置信区间。

10.1 假设检验

定义: 设 $X \sim F_{\theta}(\theta \in \Theta)$ 为总体模型,所谓假设检验问题是两个关于总体真值的互相对立判断 $(\theta \in \Theta_0, \theta \in \Theta_1)$ 的鉴定问题。,其中 Θ_0 是 Θ 的一个真子集, $\Theta_1 = \Theta \setminus \Theta_0$ 为 Θ_0 的余集,判断 $\theta \in \Theta_0$ 称为零假设(或原假设),记为 0,判断 $\theta \in \Theta_1$ 称为对立假设(或备择假设),记为 1,通常用

$$H_0: \theta \in \Theta_0 \leftrightarrow H_1: \theta \in \Theta_1$$

或 (Θ_0, Θ_1) 表示假设检验问题。

假设检验要求回答是否接受零假设 $\theta \in \Theta_0$ 成立,该回答依赖于样本观测值 $\mathbf{x} = (x_1, \dots, x_n)$,它是样本空间 \mathcal{X} 的一个取值。因此为了做出判断,只需给出样本空间的一个子集 \mathcal{W} 。当且仅当 $\mathbf{x} \in \mathcal{W}$ 时,否定零假设 $\theta \in \Theta_0$,我们称 \mathcal{W} 为**否定域**。

实际问题需要评价否定域的优良性。我们考虑在取定否定域 W 后,实施起来会有什么后果。

在 H_0 为真的条件下,若样本观测值满足条件 $\mathbf{x} \in \mathcal{W}$,此时按照检验规则,应当否定 H_0 ,而 H_0 为真,这种错误称为**第一类错误**。若样本观察值 $\mathbf{x} \notin \mathcal{W}$,按照检验规则,不应否定 H_0 ,此时按检验规则能够做出正确的判断。

在 H_0 不真的条件下,若样本观测值 $\mathbf{x} \in W$,则按照检验规则应否定 H_0 ,做出了正确的判断。若样本观察值 $\mathbf{x} \in W$,按照检验规则,不应否定 H_0 ,而 H_0 不真,这种错误称为第二类错误。

在样本量固定的情况下,当选择否定域 W 使得犯第一类错误的概率减少时,相应的犯第二类错误的概率就增大。所以,不可能使得犯两类错误的概率都一致的任意小。一般优先控制第一类犯错概率。

例: 做核酸检测,将每一个人看成一个总体,总体的参数为有病($\theta = 0$)或没病($\theta = 1$),则假设检验问题为

 $H_0: \theta = 0 \leftrightarrow H_1: \theta = 1.$

例: 药品检验. 药效 $X \sim N(\mu, \sigma^2), \sigma^2$ 已知.

若 $\mu \ge \mu_0$, 则药有效; 若 $\mu \le \mu_0$, 则药无效.

我们需要考虑假设 H_0 的形式。

 $H_0: \mu \geqslant \mu_0 \leftrightarrow H_1: \mu < \mu_0$

 $H_0: \mu \leqslant \mu_0 \leftrightarrow H_1: \mu > \mu_0.$

控制第一类错误, 即 H_0 为真却输出"认定 H_1 "的概率

$$\sup_{\theta \in \Theta_0} P_{\theta}(\mathbf{X} \in \mathcal{W}) \leqslant \alpha$$

防止假药上市, 即 $\mu \leq \mu_0$ 为真却输出"认定 $\mu \geq \mu_0$ ".

因此, 应该选 $H_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu > \mu_0$.

定义: 设 (Θ_1, Θ_2) 称 $\beta_W(\theta) := P_{\theta}(\mathbf{X} \in W)$ 为 W 的功效函数. 若

$$P_{\theta}(\mathbf{X} \in \mathcal{W}) \leqslant \alpha, \quad \forall \theta \in \Theta_0,$$

则称 W 为检验问题 (Θ_0, Θ_1) 的一个 (显著性) 水平为 α 的否定域.

注: 选取 W, 使得 $\beta_W(\theta)$ 在 Θ_0 小, 在 Θ_1 越大越好.

定义: 若 W 是检验问题 (Θ_0, Θ_1) 的水平为 α 的否定域, 并且对任意水平为 α 的否定域 \tilde{W} 都有:

$$P_{\theta}(\mathbf{X} \in \mathcal{W}) \geqslant P_{\theta}(\mathbf{X} \in \tilde{\mathcal{W}}), \quad \forall \theta \in \Theta_1,$$

则称 \mathcal{W} 为检验问题 (Θ_0, Θ_1) 的水平为 α 的一致最大功效否定域/UMP 否定域.

10.2 N-P 引理和似然比检验

研究简单假设检验问题: $\Theta = \{\theta_0, \theta_1\}$.

$$H_0: \theta = \theta_0 \leftrightarrow H_1: \theta = \theta_1.$$

似然函数: $L(\vec{x}, \theta) = \prod_{i=1}^{n} f(x_i, \theta)$. (以连续型为例)

似然比否定域/似然比检验:

$$W_{\lambda} = \{ \vec{x} : L(\vec{x}, \theta_1) > \lambda L(\vec{x}, \theta_0) \}$$

定理: (Neyman-Pearson 引理) 若 λ_0 使得

$$P_{\theta_0}(\mathbf{X} \in \mathcal{W}_{\lambda_0}) = \alpha,$$

则 W_{λ_0} 是水平为 α 的 UMP 否定域.

N-P 引理是利用似然比 $\lambda(\mathbf{x}) \triangleq L(\mathbf{x}, \theta_1)/L(\mathbf{x}, \theta_0)$ 构造否定域,因此由 N-P 引理所给出的否定域又 称**似然比否定域**,而这种由似然比构造否定域的检验法叫做**似然比检验**。

作为假设检验的解, 通常经过化简以后, 否定域具有 $\{\mathbf{x}: T(\mathbf{x}) > c\}$ 或 $\{\mathbf{x}: T(\mathbf{x}) < c_1\} \cup \{\mathbf{x}: T(\mathbf{x}) > c_2\}$ 的形式, 它是通过统计量 $T(\mathbf{X})$ 构造得到的. 此时, 统计量 $T(\mathbf{X})$ 就称为**检验统计量**.

在求 UMP 否定域的时候,往往先给出否定域的形式 $\mathcal{W} = \{x : \lambda(x) \ge \lambda_0\}$, 其中 λ_0 是一个待定的常数,它是通过水平 α 来确定的。(求否定域问题被转化为在给定形式下求参数 λ 的问题)。在求否定域的时候,有时作一些变换可使否定域的计算变得简单。

例: $X \sim N(\mu, 1), \mu \in \{0, 2\}$. 求假设检验问题 $H_0: \mu = 0 \leftrightarrow H_1: \mu = 2$ 的水平为 $\alpha = 0.05$ 的 UMP 否定域.

解: 似然函数与似然比:

$$\frac{L\left(\mathbf{x},\theta_{1}\right)}{L\left(\mathbf{x},\theta_{0}\right)} = \frac{\frac{1}{\sqrt{2\pi^{n}}}e^{-\frac{1}{2}\sum_{i=1}^{n}(x_{i}-2)^{2}}}{\frac{1}{\sqrt{2\pi^{n}}}e^{-\frac{1}{2}\sum_{i=1}^{n}x_{i}^{2}}} = e^{\frac{1}{2}\sum_{i=1}^{n}4(x_{i}-1)}.$$

似然比否定域:

$$\mathcal{W}_{\lambda} = \left\{\mathbf{x}: \frac{L\left(\mathbf{x}, \theta_{1}\right)}{L\left(\mathbf{x}, \theta_{0}\right)} > \lambda\right\} = \left\{\mathbf{x}: \bar{x} > c\right\}.$$

 $T(x_1, \dots, x_n) = \bar{x}$ 称为检验统计量.

根据 α 选择 λ (等价地, 选择 c):

$$\alpha = P_{\theta_0}(\bar{X} > c) = P(Z > c\sqrt{n}) \Rightarrow c = z_{1-\alpha}/\sqrt{n}.$$

查表获得 $z_{1-0.05} = 1.65$. 从而所求为

$$\mathcal{W} = \{\mathbf{x} : \bar{x} > 1.65/\sqrt{n}\}.$$

例: $\Theta = \{0,1\}$. $\theta = 0$ 时, $f(x,0) = 1_{\{0 < x < 1\}}, \theta = 1$ 时, $f(x,1) = 2x1_{\{0 < x < 1\}}$. 求假设检验问题 $H_0: \theta = 0 \leftrightarrow H_1: \theta = 1$ 的水平为 α 的 UMP 否定域.

解: 似然函数与似然比:

$$\frac{L(\mathbf{x}, \theta_1)}{L(\mathbf{x}, \theta_0)} = \frac{2^n x_1 \cdots x_n 1_{\{0 < x_1, \dots, x_n < 1\}}}{1_{\{0 < x_1, \dots, x_n < 1\}}} = 2^n x_1 \cdots x_n 1_{\{0 < x_1, \dots, x_n < 1\}}$$

似然比否定域与检验统计量 $T = T(x_1, \dots, x_n)$:

$$W_{\lambda} = \left\{ \mathbf{x} : \frac{L\left(\mathbf{x}, \theta_{1}\right)}{L\left(\mathbf{x}, \theta_{0}\right)} > \lambda \right\} = \left\{ \mathbf{x} : -2\sum_{i=1}^{n} \ln x_{i} < c \right\}$$

故 $T=-2\sum_{i=1}^n \ln x_i$ 。 根据 α 选择 c: 在 H_0 下, $Y=-2\ln X$ 的密度函数为

$$p_Y(y) = p_X(e^{-\frac{1}{2}y})| - \frac{1}{2}e^{-\frac{1}{2}y}| = \frac{1}{2}e^{-\frac{1}{2}y} \quad (y > 0)$$

故 $-2 \ln X \sim \chi^2(2)$, 于是, $T \sim \chi^2(2n)$.

$$\alpha = P_{\theta_0} \left(-2 \sum_{i=1}^n \ln X_i < c \right) \Rightarrow c = \chi_{\alpha}^2(2n).$$

10.3 单参数模型检验

定理: 若存在 $\theta_0 \in \Theta_0$ 使得检验问题 (θ_0, θ_1) 的水平为 α 的 UMP 否定域 W 满足: $P_{\theta}(\mathbf{X} \in W) \leq \alpha, \forall \theta \in \Theta_0$. 则, W 是检验问题 (Θ_0, θ_1) 的水平为 α 的 UMP 否定域.

定理: 若对任意 $\theta_1 \in \Theta_1$, 检验问题 (Θ_0, θ_1) 都存在水平为 α 的 UMP 否定域 W, 且此 W 不依赖于 θ_1 . 则, 此 W 是检验问题 (Θ_0, Θ_1) 的水平为 α 的 UMP 否定域.

定义: 若 Θ 为有限或无穷区间,密度或分布列为

$$f(x,\theta) = S(\theta)h(x)\exp\{C(\theta)T(x)\}, \quad \theta \in \Theta,$$

其中, $C(\theta)$ 严格增. 则称 $f(x,\theta), \theta \in \Theta$ 为单参数指数族.

单参数指数族分布中如下的假设检验问题:

$$H_0: \theta \leqslant \theta_0 \leftrightarrow H_1: \theta > \theta_0$$

(称此假设检验问题为**单边假设检验问题**)。同样,假设检验问题

$$H_0: \theta \geqslant \theta_0 \leftrightarrow H_1: \theta < \theta_0$$

也称为单边假设检验问题。相应地, 称假设检验问题

$$H_0: \theta = \theta_0 \leftrightarrow H_1: \theta \neq \theta_0$$

为**双边假设检验问题**。利用前面的定理,可得到单边假设检验问题的水平为 α 的 UMP 否定域。

定理: 假设总体分布族为单参指数族

$$f(x,\theta) = S(\theta)h(x)\exp\{C(\theta)T(x)\}, \quad \theta \in \Theta.$$

若

$$W := \left\{ \mathbf{x} : \sum_{i=1}^{n} T(x_i) > c \right\}$$

满足 $P_{\theta_0}(\mathbf{X} \in \mathcal{W}) = \alpha \neq 0$, 其中 c 为任一常数,则 \mathcal{W} 是单边问题

$$H_0: \theta \leqslant \theta_0 \leftrightarrow H_1: \theta > \theta_0$$

的水平为 α 的 UMP 否定域.

例: 总体服从指数分布: $\operatorname{Exp}\left(\frac{1}{\theta}\right), \Theta = (0, \infty). \ \theta \ge 6000 \ (单位: 小时) 为合格. 测得 5 个数据,$

395, 4094, 119, 11572, 6133.

试进行检验.

假设检验问题. $H_0: \theta \leq \theta_0 = 6000 \leftrightarrow H_1: \theta > \theta_0$. (防止次品出厂). 注意,另一种问题 $H_0: \theta \geq \theta_0 = 6000 \leftrightarrow H_1: \theta < \theta_0$. 将产品合格作为零假设,不能保证不合格的产品不予出厂。

总体为单参指数族, T(x) = x, 因此, UMP 否定域形如

$$W = \left\{ \mathbf{x} : \sum_{i=1}^{n} x_i > c \right\}.$$

在 θ_0 下, $K_{2n} := 2\sum_{i=1}^n X_i/\theta_0 \sim \chi^2(2n)$. 因此, 要求

$$P_{\theta_0}(\mathbf{X} \in \mathcal{W}) = P(K_{2n} > 2c/\theta_0) = \alpha.$$

即, 应取
$$2c/\theta_0 = \chi^2_{1-\alpha}(2n)$$
, 即 $c = \chi^2_{1-\alpha}(2n) \times \theta_0/2$.

取 $\alpha = 0.05$, 查表获得 $\chi^2_{0.95}(10) = 18.307$,

$$\mathbb{RI}c = 18.307 \times 6000/2 = 54921.$$

 $\sum_{i=1}^{5} x_i = 22313 < 54921$,故接受 H_0 ,不予出厂。

例: $X \sim N(\mu, \sigma^2), \sigma^2$ 已知 (= 1.21), 测得 6 个数据.

32.56, 29.66, 31.64, 30.00, 31.87, 30.23.

 $\mu \ge 30$ 则合格. 问: 设水平为 $\alpha = 0.05$, 是否可以出厂?

解: 假设检验问题. $H_0: \mu \leq \mu_0 = 30 \leftrightarrow H_1: \mu > \mu_0$. (防止次品出厂).

总体为单参指数族: $f(x,\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\mu^2}{2\sigma^2}} e^{-\frac{1}{2\sigma^2}x^2} e^{\frac{\mu}{\sigma^2}x}$.

T(x) = x, 因此, UMP 否定域形如

$$W = \left\{ \mathbf{x} : \sum_{i=1}^{n} x_i > \tilde{c} \right\} = \left\{ \mathbf{x} : \frac{\sqrt{n} \left(\bar{x} - \mu_0 \right)}{\sigma} > c \right\}$$

 $\mathfrak{R} c = z_{1-\alpha}:$

$$P_{\mu_0}(\mathbf{X} \in \mathcal{W}) = P_{\mu_0}\left(\frac{\sqrt{n}\left(\bar{X} - \mu_0\right)}{\sigma} > c\right) = \alpha$$

查表获得 $z_{0.95}=1.65$. 代人数据: $\frac{\sqrt{n}(\bar{x}-\mu_0)}{\sigma}=2.212>1.65$, 故否定 H_0 , 可出厂!

例: $X \sim N(\mu, \sigma^2), \mu = 3$ 已知, 测得 9 个数据.

3.0012, 2.9987, 3.0051, 2.9959, 3.0153, 2.9990, 3.0008, 3.0075, 3.0004.

 $\sigma < \sigma_0 = 0.005$ 则合格. 问: 在显著性水平为 $\alpha = 0.05$ 下, 该产品是否合格?

解: 假设检验问题. $H_0: \sigma^2 \geqslant \sigma_0^2 \leftrightarrow H_1: \sigma^2 < \sigma_0^2$.

总体为单参指数族: $f\left(x,\sigma^2\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$, $T(x) = (x-\mu)^2$, 因此, UMP 否定域形如

$$W = \left\{ \mathbf{x} : \sum_{i=1}^{n} (x_i - \mu)^2 < \tilde{c} \right\} = \left\{ \mathbf{x} : \frac{1}{\sigma_0^2} \sum_{i=1}^{n} (x_i - \mu)^2 < c \right\}.$$

取 $c = \chi_{\alpha}^2(n)$:

$$P_{\sigma_0^2}(\mathbf{X} \in \mathcal{W}) = P_{\sigma_0^2} \left(\frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \mu)^2 < c \right) = \alpha.$$

查表获得 $c = \chi_{0.05}^2(9) = 3.325$. 代入数据: $\frac{1}{\sigma_0^2} \sum_{i=1}^n (x_i - \mu)^2 = 13.2563 > 3.325$, 故接受 H_0 .

10.4 广义似然比检验

设 $X \sim f(x,\theta)$ ($\theta \in \Theta$), $f(x,\theta)$ 是分布密度或分布列, θ 可以是向量, Θ_0 是 Θ 的真子集, 考虑假设检验问题

$$H_0: \theta \in \Theta_0 \longleftrightarrow H_1: \theta \in \Theta_1,$$

设 $\mathbf{X} = (X_1, \dots, X_n)$ 为来自总体 X 的一个样本, $\mathbf{x} = (x_1, \dots, x_n)$ 为样本观察值. 令

$$L(\mathbf{x}, \theta) = \prod_{i=1}^{n} f(x_i, \theta).$$

对于固定的点 \mathbf{x} , 变量 θ 的函数 $L(\mathbf{x}, \theta)$ 为似然函数, 有时候简记为 $L(\theta)$. 令 $\hat{\theta}$ 为 θ 的 ML 估计, 即 $\hat{\theta}$ 满足条件

$$L(\mathbf{x}, \hat{\theta}) = \sup_{\theta \in \Theta} L(\mathbf{x}, \theta).$$

同时, 令 $\hat{\theta}_0$ 为在总体模型 $X \sim f(x,\theta)$ ($\theta \in \Theta_0$) 的假设之下, 参数 θ 的 ML 估计, 即 $\hat{\theta}_0$ 满足条件

$$L(\mathbf{x}, \hat{\theta}_0) = \sup_{\theta \in \Theta_0} L(\mathbf{x}, \theta).$$

定义: 称 $\lambda(\mathbf{x}) := L(\mathbf{x}, \hat{\theta}) / L(\mathbf{x}, \hat{\theta}_0)$ 为广义似然比

广义似然比否定域指

$$\mathcal{W} := \left\{ \mathbf{x} : \frac{L(\mathbf{x}, \hat{\theta})}{L\left(\mathbf{x}, \hat{\theta}_0\right)} > c \right\} = \{ \mathbf{x} : \lambda(\mathbf{x}) > c \},$$

其中 $c \ge 1$, 且满足 $\sup P_{\theta}(\mathbf{X} \in \mathcal{W}) = \alpha, \theta \in \Theta_0$, 相应的检验方法称为广义似然比检验。

10.4.1 正态总体均值的检验

考虑单边问题 $H_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu > \mu_0$.

$$\theta = (\mu, \sigma^2), \Theta = (-\infty, \infty) \times (0, \infty), \Theta_0 = (-\infty, \mu_0] \times (0, \infty).$$

似然函数:
$$L(\mathbf{x}, \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2\right\}.$$

最大似然估计 $\hat{\theta}$: $\hat{\mu} = \bar{x}$, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$,

$$L(\mathbf{x}, \hat{\theta}) = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}}\right)^n \exp\left\{-\frac{1}{2\hat{\sigma}^2} \sum_{i=1}^n (x_i - \hat{\mu})^2\right\} = \left(2\pi\hat{\sigma}^2\right)^{-\frac{n}{2}} e^{-\frac{n}{2}}$$

最大似然估计 $\hat{\theta}_0$:

$$\hat{\mu}_0 = \begin{cases} \bar{x}, & \ddot{\pi} \leq \mu_0, \\ \mu_0, & \ddot{\pi} \bar{x} > \mu_0, \end{cases}$$
$$L\left(\mathbf{x}, \hat{\theta}_0^2\right) = \left(2\pi\hat{\sigma}_0^2\right)^{-\frac{n}{2}} e^{-\frac{n}{2}}.$$

广义似然比: $\lambda(\mathbf{x}) = \left(\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2}\right)^{\frac{n}{2}}$, 其中,

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2, \quad \hat{\sigma}_0^2 = \begin{cases} \hat{\sigma}^2, & \exists \bar{x} \leq \mu_0, \\ \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2, & \exists \bar{x} > \mu_0, \end{cases}$$

广义似然比否定域: $c_1 \ge 1$

$$W = \left\{ \mathbf{x} : \frac{\hat{\sigma}_0^2}{\hat{\sigma}^2} > c_1 \right\} = \left\{ \mathbf{x} : \bar{x} > \mu_0 \ \mathbb{E} \frac{\sum_{i=1}^n (x_i - \mu_0)^2}{\sum_{i=1}^n (x_i - \bar{x})^2} > c_1 \right\}.$$

$$\sum_{i=1}^{n} (x_i - \mu_0)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n (\mu_0 - \bar{x})^2$$
, 因此

$$\frac{\sum_{i=1}^{n} (x_i - \mu_0)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = 1 + \frac{T^2}{n-1}, \quad \sharp \dot{\mathbf{p}} T = \frac{\sqrt{n} (\bar{x} - \mu_0)}{S}.$$

总结: c > 0,

$$\mathcal{W} = \left\{ \vec{x} : T > 0 \, \, \underline{\square} \, T^2 > c_2 \right\} = \{ \vec{x} : T > c \}.$$

根据 α 求 c : $\forall \mu \leqslant \mu_0, T \leqslant \frac{\sqrt{n}(\bar{x}-\mu)}{S}$ =: $T_{n-1} \sim t(n-1)$, 在 $\mu = \mu_0$ 时等号成立. 因此, 取 $c = t_{1-\alpha}(n-1)$ 即可满足

$$\max_{\mu \le \mu_0} P_{\mu}(T > c) = P(T_{n-1} > c) = \alpha.$$

10.4.2 正态总体方差的检验

考虑单边问题 $H_0: \sigma^2 \geqslant \sigma_0^2 \leftrightarrow H_1: \sigma^2 < \sigma_0^2$.

$$\Theta = (-\infty, \infty) \times (0, \infty), \Theta_0 = (-\infty, \infty) \times [\sigma_0^2, \infty).$$

似然函数:
$$L(\mathbf{x}, \theta) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2\right\}.$$

最大似然估计:

广义似然比:

其中 $u = u(\mathbf{x}) = \frac{n\hat{\sigma}^2}{\sigma_0^2}$.

广义似然比否定域:

$$\mathcal{W} = \left\{ \mathbf{x} : \hat{\sigma}^2 \leqslant \sigma_0^2, \left(\frac{u}{n}\right)^{-\frac{n}{2}} e^{\frac{u}{2}} > \tilde{c} \right\} = \left\{ \mathbf{x} : u < c \right\}.$$

其中 $u = u(\mathbf{x}) = \frac{n\hat{\sigma}^2}{\sigma_0^2}, c < n.$

根据 α 求 c. $\forall \sigma^2 \geqslant \sigma_0^2, U := u(\mathbf{X}) \geqslant \frac{n\hat{\sigma}^2}{\sigma^2} =: U_{n-1} \sim \chi^2(n-1),$

在 $\sigma^2=\sigma_0^2$ 时, 等号成立. 因此, 取 $c=\chi^2_{lpha}(n-1)$ 即可满足

$$\max_{\sigma^2 \geqslant \sigma_0^2} P_{\sigma^2}(U < c) = P(U_{n-1} < c) = \alpha.$$

11.1 回归分析

实际问题中,两个变量之间往往有某种依赖关系

$$y = f(x) + e$$

其中 e 是误差项,为一个随机变量,该方程称为回归模型或回归方程,y 和 x 的这种关系称为回归**关系** (或者相关关系),称 x 为自变量/解释变量,称 y 为因变量/响应变量,f 为回归函数.

例如,x = 路程 (可设定), y = 耗油量. x = 父亲身高 (不可设定,只可测量), y = 儿子身高. 对这种关系的研究称为回归分析,通常只关心 f,不关心自变量如何变化.

通常回归函数采取特殊形式

$$y = b_0 + b_1 x_1 + \dots + b_p x_p + e,$$

其中 $b_i(i=1,\cdots,p)$ 称为回归系数, b_0 称为回归方程的截距, 这时称相应的回归分析为线性回归分析. 此时, 当自变量只有一个时, 称为一元线性回归分析; 当自变量个数为 $p(p \ge 2)$ 时, 称为多元线性回归分析.

例:(回归方程的建立)x 与 y 分别代表某个体的两个特征. 数据: $(x_i, y_i), i = 1, \dots, n = 50$.

问: x 与 y 之间什么依赖关系?

绘制散点图

图 11.4: 数据 (x_i, y_i) 的散点图。

初步判断:

$$y_i = b_0 + b_1 x_i + e_i, \quad i = 1, \dots, n.$$

例: (预测). x = x的沸点, y = x气压. 由 x = 17 组数据得到预测公式:

$$y = -43.131 + 0.895x + e.$$

某地测得 $x = x_0$, 那么, 可预测 $Y_0 = \hat{b}_0 + \hat{b}_1 x_0 + e_0$.

例: (预测与控制). x =某小区人口数, y =冬季用煤量, z =室温. 通过数据 (x_i, y_i, z_i) , $i = 1, \dots, n$ 得到回归关系:

$$y = a + bx + e$$
, $z = d + fy + \varepsilon$.

预测: 根据某小区人口数 x_0 , 预测用煤量 $Y_0 = \hat{a} + \hat{b}x_0 + e_0$. 控制: 为控制 $z \in [17, 18]$, 应该储备多少煤 (反求 y) ?

11.2 线性回归与最大似然估计

考虑一元线性回归问题

$$y = b_0 + bx + e$$
, $e \sim N(0, \sigma^2)$,

其中, σ^2 末知. 数据: $(x_i, y_i), i = 1, \dots, n$.

回归模型: $y_i = b_0 + bx_i + e_i, i = 1, \dots, n$.

$$p_{Y_i}(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i - (b_0 + bx_i))^2},$$

 x_i : 已知参数; b_0 ,b: 待估参数; σ^2 : 讨厌参数.

似然函数: $L(b_0, b, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}Q(b_0, b)}$, 其中 $Q(b_0, b) = \sum_{i=1}^n [y_i - (b_0 + bx_i)]^2$ 称为均方误差。

定义: $Q(b_0,b)$ 的最小值点 \hat{b}_0,\hat{b} 被称为最小二乘拟合系数, 或 b_0 b 的最小二乘估计.

最大似然估计: \hat{b}_0 , \hat{b} , $\hat{\sigma}^2 = \frac{1}{n}Q\left(\hat{b}_0,\hat{b}\right)$

定理: 假设 $x_1, \cdots x_n$ 不完全相同, 则

$$\hat{b}_0 = \bar{y} - \hat{b}\bar{x}, \quad \hat{b} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\ell_{xy}}{\ell_{xx}}.$$

其中, $\ell_{uv} = \sum_{i=1}^{n} (u_i - \bar{u}) (v_i - \bar{v}).$

证明: 只需找 $Q(a,b) = \sum_{i=1}^n \left[y_i - (b_0 + bx_i) \right]^2$ 的最小值点,注意到对 $w_i = y_i - (b_0 + bx_i)$ 有

$$\sum_{i=1}^{n} w_i^2 = \sum_{i=1}^{n} (w_i - \bar{w})^2 + n\bar{w}^2.$$

因此

$$Q(a,b) = \sum_{i=1}^{n} [(y_i - \bar{y}) - b(x_i - \bar{x})]^2 + n(\bar{y} - (b_0 + b\bar{x}))^2.$$

最小值点有 $\hat{b}_0 = \bar{y} - b\bar{x}$, 代入 Q(a,b) 得

$$Q(a,b) = \ell_{yy} - 2b\ell_{xy} + b^2\ell_{xx},$$

最小值点为 $\hat{b} = \frac{\ell_{xy}}{\ell_{xx}}$

定理: 若 x_i 不全相等,则 \hat{b}_0 , \hat{b} 是 (最优) 线性无偏估计.

证明: $\hat{b}_0, \hat{b} \neq (y_1, \dots, y_n)$ 的线性函数.

$$\hat{b}_0 = \bar{y} - \hat{b}\bar{x}, \quad \hat{b} = \frac{\sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\ell_{xy}}{\ell_{xx}}.$$

由于 $y_i = b_0 + bx_i + e_i$, $\bar{y} = b_0 + b\bar{x} + \bar{e}$,

$$y_i - \bar{y} = b(x_i - \bar{x}) + (e_i - \bar{e}).$$

由于 e_1, \dots, e_n i.i.d., 且 $e_1 \sim N(0, \sigma^2)$,

$$\hat{b} = b + \frac{1}{\ell_{xx}} \sum_{i=1}^{n} (x_i - \bar{x}) (e_i - \bar{e}) = b + \frac{1}{\ell_{xx}} \sum_{i=1}^{n} (x_i - \bar{x}) e_i,$$

故 $E(\hat{b}) = b$ 。

$$\hat{b}_0 = \bar{y} - \hat{b}\bar{x} = (b_0 + b\bar{x} + \bar{e}) - \hat{b}\bar{x} = b_0 + (b - \hat{b})\bar{x} + \bar{e}.$$

故 $E(\hat{b}_0) = b_0$.

11.3 参数检验(选学)

对于参数: $\theta = (b_0, b, \sigma^2)$, 考虑假设检验问题 (通常称为相关性检验问题):

$$H_0: b=0 \leftrightarrow H_1: b\neq 0.$$

否定 H_0 , 则表明 y 与 x 之间有线性依赖关系, 因此

$$\Theta = \{\theta : b_0, b \in \mathbb{R}, \sigma^2 > 0\}, \Theta_0 = \{\theta \in \Theta : b = 0\}$$

似然函数: $L(\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\pi\sigma^2}Q(b_0,b)}$,其中 $Q(b_0,b) = \sum_{i=1}^n \left[y_i - (b_0 + bx_i)\right]^2$...

 Θ 上的最大似然估计: $\hat{\theta} = (\hat{b}_0, \hat{b}, \hat{\sigma}^2), \hat{b}_0 = \bar{y} - \hat{b}\bar{x}, \hat{b} = \frac{\ell_{xy}}{\ell_{xx}},$

$$L(\hat{\theta}) = \left(\sqrt{2\pi\hat{\sigma}^2}\right)^{-n/2} e^{-\frac{n}{2}}, \quad \hat{\sigma}^2 = \frac{1}{n} Q\left(\hat{b}_0, \hat{b}\right).$$

 Θ_0 上的最大似然估计: $\check{\theta}_0 = \left(\check{b}_0,\check{b},\check{\sigma}^2\right), \check{b}_0 = \bar{y}, \check{b} = 0,$

$$L\left(\hat{\theta}_{0}\right) = \left(\sqrt{2\pi\check{\sigma}_{0}^{2}}\right)^{-n/2}e^{-\frac{n}{2}}, \quad \check{\sigma}_{0}^{2} = \frac{1}{n}Q\left(\tilde{b}_{0}, \tilde{b}\right).$$

 $Q = Q(\hat{b}_0, \hat{b}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$, 残差平方和;

$$Q(\bar{y}, 0) = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \ell_{yy},$$

广义似然比: $\lambda(\vec{y}) = L(\hat{\theta})/L(\hat{\theta}_0) = (\ell_{yy}/Q)^{n/2}$.

广义似然比否定域:

$$\mathcal{W} = \{ \vec{y} : \ell_{yy}/Q > c_1 \}$$

定义残差平方和 Q: $Q = \sum_{i=1}^{n} (y_i - (\hat{a} + \hat{b}x_i))^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$

定义回归平方和 $U: U = \sum_{i=1}^{n} \underline{(\hat{y}_i - \bar{y})^2} = \hat{b}^2 \sum_{i=1}^{n} (x_i - \bar{x})^2$.

引理: $\ell_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = U + Q$.

证明:将 l_{yy} 表达式的平方项展开:

$$l_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})]^2$$
$$= Q + U + 2\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}),$$

其中交叉项为

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) = \sum_{i=1}^{n} (y_i - \hat{b}_0 - \hat{b}x_i)(\hat{b}_0 + \hat{b}x_i - \bar{y})$$

$$= \sum_{i=1}^{n} \left[(y_i - \bar{y}) - \hat{b}(x_i - \bar{x}) \right] \hat{b}(x_i - \bar{x})$$

$$= \hat{b}(l_{xy} - \hat{b}l_{xx}) = \hat{b}l_{xx}(l_{xy}/l_{xx} - \hat{b}) = 0.$$

广义似然比否定域: $W = \{\vec{y}: U/Q > c_2\}$.

命题: 残差平方和 $Q = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ 与回归平方和 $U = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = \hat{b}^2 \ell_{xx}$ 相互独立,且

因此广义似然比否定域可以写为:

$$W = \left\{ \vec{y} : \frac{U}{Q} > c_2 \right\} = \left\{ \vec{y} : \frac{U}{Q/(n-2)} > \lambda \right\}.$$

F **分布:** 设 $\xi \sim \chi^2(m), \ \eta \sim \chi^2(n), \$ 且 $\xi \$ 与 η 独立,记 $F = \frac{\xi/m}{\eta/n}, \$ 则 F 有概率密度函数

$$f_F(x) = \begin{cases} \frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} m^{m/2} n^{n/2} x^{\frac{m}{2}-1} (n+mx)^{-\frac{m+n}{2}}, & x > 0, \\ 0, & x \leqslant 0. \end{cases}$$

并称 F 服从参数为 m 与 n 的 F 分布,记为 $F \sim F(m,n)$ 。

定理: 在 *H*₀ 下, 检验统计量:

$$\xi := \frac{U}{Q/(n-2)} \sim F(1, n-2).$$

因此, $\lambda = F_{1-\alpha}(1, n-2)$.

例: x =放射性元素注射后天数,y =全残留百分数.

图 11.5: 示踪放射性元素残留量衰减图。

解:根据散点图建立函数

$$ln y = b_0 + bx + e.$$

求 \bar{x} , \bar{z} : $\hat{z}_i = \hat{b}_0 + \hat{b}x_i$:

$$\hat{b} = \ell_{xz}/\ell_{xx}, \hat{b}_0 = \bar{z} - \hat{b}\bar{x};$$

求残差平方和: $Q = \sum_i (z_i - \hat{z}_i)^2$

回归平方和: $U = \sum_{i} (\hat{z}_i - \bar{z})^2$.

n=10, 根据 $\lambda=F_{0.95}(1,n-2)=F_{0.95}(1,8)=5.32$.

由于 $\frac{U}{Q/(n-2)}=344.82>\lambda$,否定 H_0 ,强烈认可 z 线性依赖于 x.

12.1 图的基本概念

无序积: 设 A, B 为任意的两个集合,称 $\{(a,b)|a\in A\land b\in B\}$ 为 A 与 B 的无序积,记为 A&B 无序积允许 a=b,只要对任意的 a 和 b: (a,b)=(b,a)

无向图: 无向图是一个有序的二元组 $\langle V, E \rangle$, 记作 G

 $V \neq \emptyset$, 称为**顶点集**, 其元素为顶点或结点

E 称为**边集**,是无序积 V&V 的多重子集,其元素称为无向边,简称边。

多重集: 允许元素重复出现的集合, 其中某元素出现次数称为重复度

无向图例: $D = \langle V, E \rangle, V = \{a, b, c, d\},$ $E = \{(a, a), (a, b), (b, b), (b, c), (b, c), (b, c)\}$

图 12.6: 无向图

有向图: 有向图是一个有序二元组 $\langle V, E \rangle$, 记作 D

顶点集 $V \neq \emptyset$, 其元素称为结点/顶点。

边集 E 是卡氏积 $V \times V$ 的多重子集,其元素称为边。

其中卡氏积(笛卡尔积): $A \times B = \{\langle x, y \rangle | x \in A \land y \in B\}, \langle x, y \rangle$

有向图例: $D = \langle V, E \rangle, V = \{a, b, c\}, E = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, a \rangle, \langle c, b \rangle\}$

图 12.7: 有向图

对于无向图 G: 用 V(G), E(G) 分别表示图 G 的顶点集和边集,用 $e_k = (v_i, v_j)$ 表示边

对于有向图 D: 用 V(D), E(D) 表示其顶点集和边集,用 $e_k = \langle v_i, v_j \rangle$ 表示边 |V(G)|, |E(G)|, |V(D)|, |E(D)| 分别表示 G 和 D 的顶点数和边数 特殊的图定义:

• n 阶图: |V(G)| = n 或 |V(D)| = n

• 有限图: |V(G)| 和 |E(G)| 均为有限数

零图: E = ∅

• n 阶零图: |V(G)| = n 的零图,记为 N_n

• 平凡图: 1 阶零图, N₁

空图: V = E = ∅

点与边的关联: 在无向图 G 中, 边 $e_k = (vi, vj)$, 则称 e_k 与 v_i $(e_k$ 与 $v_j)$ 彼此关联

• 关联次数: $v_i \neq v_j$, 称 $e_k = v_i$ ($e_k = v_j$) 关联次数为 1; 若 $v_i = v_j$, 关联次数为 2

• 环: 只与一个顶点关联的边

• 孤立点: 无边关联的点

例如,在图12.6中,边 (a,a) 和顶点 a 的关联次数为 2,边 (a,b) 和顶点 a 的关联次数为 1。a 有环,d 是孤立点,b c 有平行边。

对于有向图 G, 边 $e_k = \langle v_i, v_j \rangle$, 称 v_i, v_j 为 e_k 的端点, 其中 v_i 为始点, v_j 为终点

相邻: 对于无向图 G, 任意两顶点 v_i, v_j 之间存在边 e_k , $e_k = (v_i, v_j)$, 称 v_i, v_j 彼此相邻 (点与点)

边相邻: 任意两边 e_k, e_l , 至少存在一个公共端点,称 e_k, e_l 彼此相邻(边与边)

邻接: 对于有向图 D 任意两顶点 v_i, v_j 之间存在边 e_k , $e_k = \langle v_i, v_j \rangle$, 称 v_i 邻接到 v_j , v_j 邻接于 v_i 。

平行边:端点相同的两条无向边是平行边;起点与终点相同的两条有向边是平行边

• 邻域: 称 $N_G(v) = \{u | u \in V(G) \land (u,v) \in E(G) \land u \neq v\}$ 为 v 的邻域(v 在图 G 中的相邻顶点)

- 闭邻域: $N_G(v) \cup v$
- 关联集: $I_G(v) = \{e | e \le v \ne K\}$
- 后继: $\Gamma_D^+(v) = \{u | u \in V(D) \land \langle v, u \rangle \in E(D) \land u \neq v\}$
- 前驱: $\Gamma_D^-(v) = \{u | u \in V(D) \land \langle u, v \rangle \in E(D) \land u \neq v\}$
- 邻域: $N_D(v) = \Gamma_D^+(v) \cup \Gamma_D^-(v)$
- 闭邻域: $N_D(v) \cup v$

在无向图12.6中,a 的邻域为 $N_G(a) = \{b\}$,闭邻域为 $\{a,b\}$,关联集为 $I_G(a) = \{(a,a),(a,b)\}$ 。b 的邻域为 $N_G(b) = \{a,c\}$,闭邻域为 $\{a,b,c\}$,关联集为 $I_G(b) = \{(a,b),(b,b),(b,c),(b,c),(b,c)\}$ 。c 的邻域为 $N_G(c) = \{b\}$,闭邻域为 $\{b,c\}$,关联集为 $I_G(c) = \{(b,c),(b,c),(b,c)\}$ 。d 的邻域为 $N_G(d) = \emptyset$,闭邻域为 $\{d\}$,关联集为 $I_G(d) = \emptyset$ 。

在有向图12.7中,a 的后继为 $\Gamma_D^+(a) = \{b\}$,前驱为 $\Gamma_D^-(a) = \{b\}$,邻域为 $N_D(a) = \{b\}$,闭邻域为 $\{a,b\}$ 。b 的后继为 $\Gamma_D^+(b) = \{a\}$,前驱为 $\Gamma_D^-(b) = \{a,c\}$,邻域为 $N_D(a) = \{a,c\}$,闭邻域为 $\{a,b,c\}$ 。c 的后继为 $\Gamma_D^+(c) = \{b\}$,前驱为 $\Gamma_D^-(c) = \emptyset$,邻域为 $N_D(a) = \{b\}$,闭邻域为 $\{b,c\}$ 。

顶点的度数:

- 度 $d_G(v)$: v 作为 G 中边的端点的次数之和
- 出度 $d_D^+(v)$: v 作为 D 中边的始点的次数之和
- 入度 $d_D^-(v)$: v 作为 D 中边的终点的次数之和
- $\not \equiv d_D(v) = d_D^+(v) + d_D^-(v)$
- 最大度: $\Delta(G) = \max\{d_G(v)|v \in V(G)\}$
- 最小度: $\delta(G) = \min\{d_G(v)|v \in V(G)\}$
- 最大出度: $\Delta^+(D) = \max\{d_D^+(v)|v \in V(D)\}$
- 最小出度: $\delta^+(D) = \min\{d_D^+(v)|v \in V(D)\}$
- 最大入度: $\Delta^{-}(D) = \max\{d_{D}^{-}(v)|v \in V(D)\}$
- 最小人度: $\delta^{-}(D) = \min\{d_{D}^{-}(v)|v \in V(D)\}$

最大 (出/人) 度, 最小 (出/人) 度简记为 $\Delta, \delta, \Delta^+, \delta^+, \Delta^-, \delta^-$

在无向图12.6中,度 $d_G(a) = 3$, $d_G(b) = 6$, $d_G(c) = 3$, $d_G(d) = 0$, 最大度 $\Delta = 6$, 最小度 $\delta = 0$.

在有向图12.7中,出度 $d_D^+(a) = 2$, $d_D^+(b) = 2$, $d_D^+(c) = 1$,入度 $d_D^-(a) = 3$, $d_D^-(b) = 2$, $d_D^-(c) = 0$,度 $d_G(a) = 5$, $d_G(b) = 4$, $d_G(c) = 1$,最大 (出/人) 度,最小 (出/人) 度分别为 $\Delta = 5$, $\delta = 1$, $\Delta^+ = 2$, $\delta^+ = 1$, $\Delta^- = 3$, $\delta^- = 0$ 。

12.2 图论基本定理,可图化的条件

图论基本定理:

定理: 设 $G = \langle V, E \rangle$ 是无向图, $V = \{v_1, v_2, \cdots, v_n\}, |E| = m, 则$

$$d(v_1) + d(v_2) + \dots + d(v_n) = 2m$$

证明:每一条边均有两个端点,提供 2 度, m 条边一共提供 2m 度。

定理: 设 $D = \langle V, E \rangle$ 是有向图, $V = \{v_1, v_2, \cdots, v_n\}$, |E| = m, 则

$$d^+(v_1) + d^+(v_2) + \dots + d^+(v_n) = d^-(v_1) + d^-(v_2) + \dots + d^-(v_n) = m$$

推论: 任何图中, 奇数度顶点的个数是偶数。

简单图: 无环,无平行边的图,若 G 是简单图,则 $0 \le \Delta(G) \le n-1$

度数列: 设 $G = \langle V, E \rangle$, $V = \{v_1, v_2, \dots, v_n\}$, 称 $d = (d(v_1), d(v_2), \dots, d(v_n))$ 为 G 的度数列

可图化: 设非负整数列 $d=(d_1,d_2,\cdots,d_n)$,若存在图 G,使得 G 的度数列是 d,则称 d 为可图化的。

例:下面给出的两个整数列,哪个是可图化的?

1. d = (5, 4, 4, 3, 3, 2); 2. d = (5, 3, 3, 2, 1).

解:

- 1. $\sum_{i=1}^{6} d_i = 1 \pmod{2}$, d 不可图化。
- 2. $\sum_{i=1}^{5} d_i = 0 \pmod{2}$, d 是可图化的。以 d 为度数列的图可以有多个,图12.8所示的 3 个图都符合要求。

图 12.8

12.3 图同构

图同构: 设图 $G_1 = \langle V_1, E_1 \rangle$, $G_2 = \langle V_2, E_2 \rangle$, 若存在双射 $f: V_1 \to V_2$, 满足

$$\forall u \in V_1, v \in V_1, (u, v) \in E_1, \exists (f(u), f(v)) \in E_2$$

且 $\langle u,v\rangle$ 与 $\langle f(u),f(v)\rangle$ 重数相同,则称 G_1 与 G_2 同构,记作 $G_1\cong G_2$

同构关系: 同构关系是全体图集合上的二元关系,有性质: 自反的,对称的,传递的。同构关系是 等价关系

同构示例:

图 12.9: 同构示例

12.4 图族

完全图: 每个顶点均与其余的 n-1 个顶点相邻,记作 K_n

竞赛图: N 阶有向简单图,任意两节点之间只有一条有向边

图 12.10: 完全图

图 12.11: 竞赛图

k 正则图: $v = V(G), d(v) = k, k = 0, 1, 2, \cdots$,完全图 K_n 是 n - 1 正则图 (n = 1, 2, 3, ...),柏拉图图,彼德森图,库拉图斯基图也是正则图.

r **部图**: $G = \langle V, E \rangle$,若 V 分成 r 个互不相交的子集,使得 G 中任何一条边的两个端点都不在同一个 V_i 中,即 $V = V_1 \cup V_2 \cdots \cup V_r, V_i \cap V_j = \emptyset (i \neq j), E \subseteq \bigcup (V_i \& V_j)$,也记作 $G = \langle V_1, V_2, \cdots, V_r; E \rangle$

二**部图**: $G = \langle V_1, V_2; E \rangle$, 也称为偶图

完全 r **部图**: K_{n_1,n_2,\cdots,n_r} : V_i 中任一个顶点均与 $V_i(i \neq j)$ 所有顶点相邻

子图, 生成子图:

- 子图: 设 $G=\langle V,E\rangle,G'=\langle V',E'\rangle,$ 若 $V'\subseteq V$ 且 $E'\subseteq E$,则称 G' 是 G 的子图,记为 $G'\subseteq G$
- 真子图: $V' \subset V$ 或 $E' \subset E$
- 生成子图: V' = V

导出子图: 设 $G = \langle V, E \rangle$,

图 12.12: 正则图

- 若 $V_1 \subset V$,以 G 中两个端点都在 V_1 中的边组成边集 E_1 的图,即 $E_1 = E \cap (V_1 \& V_1)$, $G[V_1] = \langle V_1, E_1 \rangle$ 为由 V_1 导出的子图
- 若 $\emptyset \neq E_1 \subset E$,以 E_1 中的边关联的点为顶点集 V_1 ,则称 $G[E_1] = \langle V_1, E_1 \rangle$ 为由 E_1 导出的 子图

图 12.14: 导出子图

补图: 以 V 为顶点集,以使 G 成为 n 阶完全图的所有添加边组成的集合为边集的图,为 G 的补图,即 $G = \langle V, E \rangle$, $\overline{G} = \langle V, E(K_n) - E \rangle$

自补图: $G \cong \overline{G}$

例: 五边形的补图是五角星, 五边形是自补图

图 12.15: 补图

例:对于无向图,若它是自补图,则阶 n 满足什么性质? 设边为 m,则 2m = n(n-1)/2,故有 n = 4k or 4k + 1.

13.1 通路与回路

定义:对于标定图 G,称顶点与边的交替序列称为通路。

$$\Gamma = v_{i_0} e_{j_1} v_{i_1} \cdots e_{j_l} v_{i_l}$$

为顶点 v_{i_0} 到 v_{i_l} 的通路,其中 $e_{j_r} = (v_{i_{r-1}}, v_{i_r})$ (G 为无向图) 或 $e_{j_r} = \langle v_{i_{r-1}}, v_{i_r} \rangle$ (G 为有向图), v_{i_0} 和 v_{i_l} 分别称为通路 Γ 的始点与终点,边数 l 称为通路的长度,记为 $|\Gamma| = l$

定义: 若 $v_{i_0} = v_{i_l}$, 则称 Γ 为回路

图 13.16: 回路

• 简单通路: 没有重复边的通路

• 简单回路: 没有重复边的回路

• 复杂通路: 有重复边的通路

• 复杂回路: 有重复边的回路

• 初级通路(路径): 没有重复顶点和重复边的通路

• 初级回路(圈):没有重复顶点和重复边的回路

通路的表示:可以只用边的序列表示通路或回路,对于简单图,可以用顶点序列表示通路或回路。对于长度为l的圈:如果是非标定的,则在同构意义下只有一种画法;如果是标定的(指定起点,终点),则可以画出l个不同的圈。

定义: 设 G 是含圈的无向简单图,则称 G 中最长圈的长度为 G 的周长,最短圈的长度为 G 的围长。分别记为: c(G) = 最长圈的长度,g(G) = 最短圈的长度。

图 13.17: 圏

举例: $c(K_n) = n(n \ge 3), c(K_{n,n}) = 2n,$

 $g(K_n) = 3(n \ge 3), g(K_{n,n}) = 4(n \ge 2)$ 定理: 在 n 阶(有向或无向)图 G 中,若从不同顶点 v_i 到

图 13.18: 周长与围长

 v_j 存在通路,则从 v_i 到 v_j 存在长度小于等于 n-1 的通路。

推论: 在 n 阶图 G 中,若从不同顶点 v_i 到 v_j 存在通路,则从 v_i 到 v_j 存在长度小于等于 n-1 的路径(初级通路)。

证明:设 $\Gamma = v_{i_0}e_{j_1}\cdots v_{i_l}$ 为长度 l 的通路:

若 $l \le n-1$,则 Γ 为满足条件的通路

若 l>n-1,则 n< l+1,即 Γ 上的顶点数大于图的顶点数,因此 Γ 中一定存在某个 v_{is} 到自身的回路,在 Γ 中删掉该回路,得到 Γ' ,重复上述判断过程。

定理: 在 n 阶图 G 中,若有从顶点 v_i 到自身的回路,则有从 v_i 到自身长度小于等于 n 的回路

推论: 在 n 阶图 G 中,若有从顶点 v_i 到自身的简单回路,则有从 v_i 到自身长度小于等于 n 的圈(初级回路)

13.2 扩大路径法

定义: 在无向简单图中,路径的两个端点不与路径本身以外的顶点相邻,这样的路径称为**极大路径**; 在有向图中,路径起点的前驱,终点的后继,都在路径本身上的路径称为**极大路径**

图 13.19: 极大路径

扩大路径法:任何一条路径,只要不是极大路径,则至少有一个端点与路径本身以外的顶点相邻,则路径还可以扩大,直到变成极大路径为止

例: 设 G 为 $n \ge 3$ 阶无向简单图, $\delta(G) \ge 2$, 求证 G 中存在长度大于等于 3 的圈

证明: 任取 $v_0 \in V(G)$,由于 $\delta(G) \geq 2$,因此存在 $v_1 \in V(G)$ 且 $v_1 \neq v_0$ 使得 $(v_0, v_1) \in E(G)$,因此存在 $\Gamma_0 = v_0 v_1$,对 Γ_0 使用扩大路径法得到 $\Gamma = v_0 \cdots v_l$ 为极大路径且 $l \geq 2$ 。

若 v_0 与 v_l 相邻,则已找到 G 中长度大于等于 3 的圈。

若 v_0 与 v_l 不相邻,则一定存在某个 $v_s(2 \le s \le l-1)$ 与 v_0 相邻,否则与 $\delta(G) \ge 2$ 矛盾,此时找 到 G 中长度大于等于 3 的圈。

13.3 无向图的连通性

定义: 对于无向图 $G = \langle V, E \rangle$, 任取 $u, v \in V$, 若 u = v 之间存在通路,则称 u = v 是**连通**的,记为

$$u \sim v \iff u 与 v 之间有通路$$

规定 $u \sim u$ 。连通关系是等价关系。

设 V 关于顶点之间连通关系的商集是

$$V/\sim=\{V_1,V_2,\cdots,V_k\}$$

- 连通分支: 导出子图 $G[V_i], (i = 1, ..., k)$
- 连通分支数: $p(G) = |V/ \sim | = k$

• 连通图: p(G) = 1

• 非连通图: p(G) > 1

短程线: 若 u,v 连通, 称 u,v 之间长度最短的通路为 u,v 之间的短程线

距离: $d_G(u,v) = u,v$ 之间短程线的长度, 当 u,v 不连通时, $d_G(u,v) = \infty$

直径:图 G的顶点之间最大距离

$$d(G) = \max\{d_G(u, v) | u, v \in V(G)\}$$

"距离"应满足以下三条性质:

• 非负性: d(u,v) > 0, $d(u,v) = 0 \iff u = v$

• 对称性: d(u,v) = d(v,u)

• 三角不等式: d(u,v) + d(v,w) > d(u,w)

无向图的距离函数 $d_G(u,v)$ 满足上述要求,有向图的"距离"函数 $d_D(u,v)$ 不对称:

$$d(u,v) = 1, d(v,u) = 2$$

定理: (二部图判别定理) G 是二部图 \iff G 中无奇圈.

图 13.20: 有向图的距离函数

图 13.21: 二部图判别定理

证明: (⇒) 设二部图 $G = \langle V_1, V_2, E \rangle$,若 G 中无圈则成立,反之设 C 是 G 中任意圈, $C = v_1v_2\cdots v_{k-1}v_kv_1$ 。不妨设 $v_1 \in V_1$,则 $v_3, v_5, \cdots, v_{k-1} \in V_1$, $v_2, v_4, \cdots, v_k \in V_2$,所以 k 是偶数,|C| = k,C 是偶圈.

(⇐) 设 G 中无奇圈,设 G 连通,否则可以对每个连通分支进行讨论。任取 $v \in V(G)$,令

$$V_1 = \{u | u \in V(G) \land d(u,v) \in \mathcal{A}\},\$$

$$V_2 = \{u | u \in V(G) \land d(u,v) \in \mathcal{A}\},$$
(13.3.1)

则 $V_1 \cap V_2 = \emptyset$, $V_1 \cup V_2 = V(G)$, 下面证明

$$E \subseteq V_1 \& V_2$$

如图13.22所示。反证,假设存在 $e=(v_x,v_y)$, $v_x,v_y\in V_1$,设 Γ_{vx} 和 Γ_{vy} 分别为 v 到 v_x 和 v_y 的 短程线,则其长度均为偶数,且 e 不在 Γ_{vx} 和 Γ_{vy} 上。设 v_z 为 Γ_{vx} 和 Γ_{vy} 的公共点,且 Γ_{zx} 和 Γ_{zy} 除 v_z 外没有公共点,则 Γ_{zx} 和 Γ_{zy} 的长度也是偶数,因此存在一个包含 v_x,v_y,v_z 的奇圈,矛盾。

图 13.22: 二部图判别定理

定理: 若 n 阶无向图 G 是连通图,则 G 的边数 $m \ge n-1$

证明:不妨设 G 是简单图,若简单图情况下成立则非简单图一定成立,下面对 n 归纳:

- $G = N_1 : n = 1, m = 0$ 结论成立
- 设 $n \le k$ 时命题成立,下证 n = k + 1 时也成立.

图 13.23: 连通图的边数

取 $v \in V(G)$, G' = G - v, 设 p(G') = s, 连通分支分别为 G_1, G_2, \dots, G_s , 设 $|V(G_i)| = n_i, |E(G_i)| = m_i, (i = 1, 2, \dots, s)$, 由归纳假设知 $m_i \ge n_i - 1$ 。又由于删除 v 产生 s 个连通分支,所以至少删除了 s 条边,即 $d_G(v) \ge s$,则

$$m = m_1 + m_2 + \dots + m_s + d_G(v) \ge (n_1 - 1) + (n_2 - 1) + \dots + (n_s - 1) + s$$

$= n_1 + n_2 + \cdots + n_s = n - 1$

例:证明每个非连通图 G 的补图 \bar{G} 联通

证明: 只需证明任意连个顶点 x 和 y 在 \bar{G} 中连通即可:

- (1) $\stackrel{\cdot}{=}$ x $\stackrel{\cdot}{=}$ y $\stackrel{\cdot}{=}$ G $\stackrel{\cdot}{=}$ $\stackrel{\cdot}{=$
- (2) 若 x 和 y 在 G 中连通,则同属一个连通分支,又 G 不是连通图,因此存在 z 是 G 别的连通分支中的顶点,根据 (1),z 在 \bar{G} 中分别和 x, y 直接相连,因此 x 和 y 在 \bar{G} 中连通。

13.4 无向树的定义与性质

- 无向树: 连通无回路(指初级和简单回路)的无向图称为无向树
- 树: 常用 T 表示树
- 森林: 无向图至少有两个连通分支且每个连通分支都是树
- 平凡树: 平凡图 (无树叶, 无分支点)
- 树叶: 树中 1 度的顶点, d(v) = 1
- 分支点: 树中 2 度以上顶点, $d(v) \ge 2$

树的等价定义: 设 $G = \langle V, E \rangle$ 是 n 阶 m 边无向图,则以下命题等价

- 1. G 是树 (连通无回路)
- 2. G 中任何 2 顶点之间有唯一路径
- 3. G 无圏 $\wedge m = n 1$
- 4. G 连通 $\wedge m = n 1$
- 5. G 极小连通: 连通 ^ 所有边是桥
- 6. G 极大无回: 无圈 / 增加任何新边得唯一圈

证明: $1 \Rightarrow 2$: 根据 G 的连通性,任取 $u,v \in V$,u,v 之间存在通路,设 P_1 为 u,v 之间通路,根据 G 中无回路可知 P_1 一定为路径。设 P_1 不唯一, P_2 为 u,v 之间另一路径,则存在边 $e_1' = (v_x, v_1')$ 只在 P_1 上或只在 P_2 上,设 e_1' 只在 P_2 上,若还有与 e_1' 相邻的边 e_2' 只在 P_2 上,得通路 $e_1'e_2'$ 只在 P_2 上,以此类推得 $e_1'e_2'\cdots e_k'$ 只在 P_2 上, $e_k' = (v_k', v_y)$ 且 v_x, v_y 为 P_1 和 P_2 的公共顶点,因此可构造一条回路,矛盾。

 $2 \Rightarrow 3$: 先证明 G 中无圈,若 G 中存在顶点 v 上的环,则 v 到 v 存在两条路径,长度为 0 和 1,矛盾,若 G 中存在长度大于等于 2 的圈,则圈上任取 2 顶点均可构造两条路径,矛盾。

再证明 m=n-1, n=1 时,由于 G 中无圈,m=0,结论成立;设 $n \leq k$ 时结论成立,当 n=k+1 时,设 e=(u,v) 为 G 中一条边,则 G-e 一定有两个连通分支,否则若 G-e 连通,u,v 之间有圈。设连通分支为 G_1,G_2 ,其顶点数和边数记为 n_1,n_2 和 m_1,m_2 ,根据归纳假设有 $m_i=n_i-1$,则 $m=m_1+m_2+1=n-1$

 $3 \Rightarrow 4$: 只需证明 G 连通。若 G 不连通,则设 G 有 s 个连通分支 G_1, \dots, G_s , G_i 均为连通无回路的图,即树。根据 3, $m_i = n_i - 1$,因此 $m = \sum_{i=1}^s m_i = n - s$,由于 $s \ge 2$,因此与 m = n - 1 矛盾

 $4 \Rightarrow 5$: 任取 $e \in E$, 有 |E(G - e)| = n - 1 - 1 = n - 2, 根据定理 7.9 (任何无向连通图的边数大于等于顶点数-1) 可知, G - e 不连通, 因此 e 为桥

 $5 \Rightarrow 6$: 由于 G 中每条边均为桥,G 中一定没有圈,又 G 连通,则 G 为树。因此任取 $u,v \in V$,u,v 之间存在唯一路径 P,则 $P \cup (u,v)$ 为 $G \cup (u.v)$ 中唯一的圈

 $6 \Rightarrow 1$: 只需证明 G 连通,由于任取 $u,v \in V$, $G \cup (u,v)$ 中存在唯一的圈 C,则 C - (u,v) 为 G 中 u,v 之间的通路,根据 u,v 的任意性,G 连通

定理: n 阶非平凡树至少有 2 个树叶

证明: 设T有x个树叶,由树的等价定义和握手定理,有

$$2m = 2(n-1) = 2n - 2 = \sum d(v)$$

$$= \sum_{v \not\in M} d(v) + \sum_{v \not\in \Lambda} d(v)$$

$$\geq x + 2(n-x) = 2n - x,$$

$$(13.4.1)$$

所以 x > 2。

无向树的计数:设 $t_n: n \ge 1$ 为 n 阶非同构无向树的个数

六阶非同构无向树: n=6, $t_6=6$

七阶非同构无向树: n = 7, $t_7 = 11$

n	<u>t</u> n	n	t _n	n	<u>t</u> n	n	ţ _n
1	1	9	47	17	48629	25	104636890
2	1	10	106	18	123867	26	279793450
3	1	11	235	19	317955	27	751065460
4	2	12	551	20	823065	28	2023443032
5	3	13	1301	21	2144505	29	5469566585
6	6	14	3159	22	5623756	30	14830871802
7	11	15	7741	23	14828074	31	40330829030
8	23	16	19320	24	39299897	32	109972410221

图 13.24: 无向树的计数

图 13.25: 六阶非同构无向树

图 13.26: 七阶非同构无向树

例: 如果树中没有度数为 2 的顶点,证明树叶的个数不少于分支节点的个数。

证明: 当 n=1 时,树叶和分支节点的个数相等,都是 0;

当 $n \ge 2$ 时,设度数为 1, 2, 3, · · · 的顶点数分别为 n_1, n_2, n_3, \cdots ,则有

$$n_1 + n_2 + n_3 + \dots = n$$

$$n_1 + 2n_2 + 3n_3 + \dots = 2(n-1),$$

1 式乘 2 減 2 式可得 $n_1 > n_3 + 2n_4 + \cdots > n_2 + n_3 + n_4 \cdots (n_2 = 0)$ 。

13.5 生成树

• 生成树: $T \subseteq G \land V(T) = V(G) \land T$ 是树

• 树枝: $e \in E(T)$, 共有 n-1 条

• 弦: $e \in E(G) - E(T)$, 共有 m - n + 1 条

• 余树: $G[E(G) - E(T)] = \overline{T}$

定理: 无向图 G 连通 ⇔ G 有生成树。

证明: (⇐) 显然, (⇒) 破圈法

图 13.27: 生成树

若 G 无圈,则 G 为自己的生成树。若 G 中含圈,任取一个圈 C,任意删除 C 上任何一条边,所得图仍然是连通的,继续这一过程,直到最后得到的图无圈为止。设最后的图为 T,则 T 是连通的且是 G 的生成子图。

- 推论 1: G 是 n 阶 m 边无向连通图 $\Rightarrow m \geq n-1$
- 推论 2: T 是 n 阶 m 边无向连通图 G 的生成树 $\Rightarrow |E(\overline{T})| = m n + 1$
- 推论 3: T 是连通图 G 中一棵生成树, T 是 T 的余树, C 为 G 中任意圈,则 E(T) ∩ E(C) ≠ ∅
 推论 3 的证明: (反证法) 如果 E(T) ∩ E(C) = ∅,则 E(C) = E(T), T 中有回路与 T 是树矛盾。

定理: T 是无向连通图 G 的生成树,e 为 T 的任意一条弦,则 $T \cup e$ 中含 G 的只含一条弦其余边 均为树枝的圈,而且不同的弦对应的圈是不同的

证明: 设 e = (u, v),则 u,v 之间在 T 中存在唯一的路径 P(u, v)。则 $P(u, v) \cup e$ 为 G 中只含弦 e 其余边均为树枝的圈。当 e_1, e_2 不同时, e_2 不在 e_1 对应的圈 C_{e_1} 中, e_1 不在 e_2 对应的圈 C_{e_2} 中。 $\tau(G)$:标定图 G 的生成树的个数。若 $E(T_1) \neq E(T_2)$,则认为 $T_1 \neq T_2$ 。

G-e: 删除。 $G \setminus e$: 收缩

定理: n 阶无向连通标定图,对 G 的任意非环边 e,有 $\tau(G) = \tau(G-e) + \tau(G \setminus e)$

证明: $\forall e$ 非环,则

- 不含 e 的 G 的生成树个数: $\tau(G-e)$,
- 含 e 的 G 的生成树个数: $\tau(G \setminus e)$

注意:由于环不在任何生成树中,因而在计算过程中若出现环应自动将环去掉

图 13.28

例: 计算图 13.28标定图中生成树的个数,并画出所有不同的生成树。

解:图 13.29(a) 给出了求 $\tau(G)$ 的计算过程,带杠边表示在下一步删除和收缩的边。图 13.29(b) 给出了 G 的 4 棵不同的生成树。

图 13.29

13.6 根树

定义:

• 有向树: 基图是树的有向图

• 根树: 若有向树 T 是平凡树或 T 中有一个顶点的入度为 0,其余顶点的入度均为 1,则 T 为根树

树根: 入度为 0 的顶点

• 树叶: 入度为1出度为0的顶点

• 内点: 入度为 1 出度不为 0 的顶点

• 分支点: 树根和内点

• 层数: 树根到 v 的路径长度

• 树高: 层数最大的顶点的层数

• 儿子: u 在上方与 v 相邻, v 是 u 的儿子

• 父亲: *u* 在上方与 *v* 相邻, *u* 是 *v* 的父亲

• 兄弟: u = v 有相同父亲, $u \neq v$ 的兄弟

• 祖先: 从 *u* 可达 *v*, *u* 是 *v* 的祖先

• 后代: 从 *u* 可达 *v*, *u* 是 *v* 的后代

有序树:给相同层数的顶点标上次序的根树。

图 13.30: 有序树

- r **义树**: 每个分支点至多有 r 个儿子
- 正则 r 叉树: 每个分支点恰好有 r 个儿子
- 完全正则 r 叉树: 树叶的层数均为树高的 r 叉正则树

• 根子树: T 是根树, $v \in V(T)$, 由 v 本身及其所有后代导出的子图 T_v

• 左子树, 右子树: 二叉树中分支点的左右两个儿子导出的根子树

根树的周游: 列出根树的所有顶点,每个顶点恰好出现一次

图 13.31: r 叉树

• 中序行遍: 左子树, 根, 右子树

• 前序行遍: 根, 左子树, 右子树

• 后序行遍: 左子树, 右子树, 根

对于如图13.32所示的树, 前序, 中序, 后序周游分别为:

• 中序: dbigjehacf

• 前序: abdegijhcf

• 后序: dijghebfca

图 13.32: 根树的周游

中缀法, 前缀法, 后缀法: 如图13.32(b) 所示, 用中序, 前序, 后序周游方法表达算式:

- 中缀: $((a*(b+c))*d-e) \div (f+g) \div (h*(i+j))$
- 前缀 (波兰): $\div\div **a + bcde + fg*h + ij$

• 后缀 (逆波兰): $abc + *d * e - fg + \div hij + * \div$

M: 证明一个有向树 T 是根树, 当且仅当 T 中有且仅有一个顶点的入度为 0

证明: ⇒ 显然

 \Leftarrow 若 T 为平凡树一定为真,下面证明非平凡树的情况,归纳

n=2 时, T 两个顶点入度分别为 0, 1, T 是根树;

设 n = k 时结论为真,考虑 n = k + 1 时,设 T' 为 T 的基图,则 T' 为 k + 1 阶无向树,因此其至少有两片树叶(定理 9.2)。则 T 中至少存在一个顶点 v_0 满足其入度为 1,出度为 0。设 $T_1 = T - v_0$,则 T_1 为 k 阶树,且 T 中入度为 0 的顶点都在 T_1 中,根据条件与归纳假设, T_1 中有一个顶点的入度为 0,出度为 1,其为 k 阶根树。设 v_0 在 T 中的父亲为 v_1 ,则 $T = T_1 \cup \langle v_1, v_0 \rangle$,因此 T 中除一个顶点入度为 0 外其余顶点入度均为 1,其为根树。

13.7 关联矩阵

定义: (有向图关联矩阵) 设 $D = \langle V, E \rangle$ 是无环有向图, $V = \{v_1, v_2, ..., v_n\}$, $E = \{e_1, e_2, ..., e_m\}$ 。 关联矩阵 (incidence matrix):

$$M(D) = [m_{ij}]_{n \times m}, m_{ij} = \begin{cases} 1, v_i \neq e_j$$
的起点
$$0, v_i \neq e_j$$
不关联
$$-1 v_i \neq e_j$$
的终点

,其中D与M(D)是相互唯一确定的。

有向图关联矩阵的性质:

- 每列和为零: $\sum_{i=1}^{n} m_{ij} = 0$ (每条边关联两个顶点)
- 每行绝对值和为 $d(v_i): d(v_i) = \sum_{i=1}^m m_{ij}$, 其中 1 的个数为 $d^+(v)$, -1 的个数为 $d^-(v)$
- 握手定理: $\sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} = 0$ (各顶点入度之和等于出度之和)
- 平行边:相同两列

定义: (无向图关联矩阵) 设 G < V, E > 是无环无向图, $V = \{v_1, v_2, ..., v_n\}$, $E = \{e_1, e_2, ..., e_m\}$ 。关联矩阵 (incidence matrix):

$$M(G) = [m_{ij}]_{n \times m}, m_{ij} = \begin{cases} 1, v_i \ni e_j 美联\\ 0, v_i \ni e_j 不美联 \end{cases}$$

图 13.33: 有向图关联矩阵

,其中 G 与 M(G) 是相互唯一确定的。

图 13.34: 无向图关联矩阵

无向图关联矩阵的性质:

• 每列和为 2: $\sum_{i=1}^{n} m_{ij} = 2$

• 每行和为 $d(v): d(v_i) = \sum_{j=1}^{m} m_{ij}$

• 每行所有 1 对应的边组成的集合为 v_i 的关联集

• 平行边: 相同两列

• 伪对角阵: 若 G 有 k 个连通分支,则 G 的关联矩阵 M(G) 为伪对角阵

$$M(G) = \begin{bmatrix} v_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v_1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 0 & 1 & 1 & 1 \\ v_4 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} M(G) = \begin{bmatrix} M(G_1) & & & & & \\ M(G_2) & & & & & \\ M(G_k) & & & \\ M(G_k) & & & & \\ M(G_k) & & \\ M(G_k) & & & \\ M(G_k) & & \\ M(G_k) & & \\ M(G_k) & & \\ M(G_k$$

图 13.35: 无向图的关联矩阵

定义: (无向图基本关联矩阵) 设 G < V, E > 是无环无向图, $V = \{v_1, v_2, ..., v_n\}$, $E = \{e_1, e_2, ..., e_m\}$, 取任意 1 个顶点为参考点。基本关联矩阵 (fundamental incidence matrix) 是从 M(G) 删除参考点对应的行,记作 $M_f(G)$ 。

定理: n 阶无向连通图 G 的关联矩阵的秩 r(M(G)) = n - 1。

证明:在关联矩阵中删掉一行,依然可以复原原始矩阵,因此 $r \leq n-1$,下面证明 $r \geq n-1$ 。取 M 的前 n-1 行,记为 M_1, \dots, M_{n-1} ,他们是线性无关的,否则必定存在不全为 0 的 $k_1, \dots, k_{n-1} \in \{0,1\}$,在模 2 加法意义下使得 $\sum_{i=1}^{n-1} k_i M_i = 0$,不妨设其中 $k_1, \dots, k_s = 1$ 其余为 0,此处 $s \neq 1$,否则 v_1 为孤立点与连通矛盾;此时 M 的子阵 $[M_1, \dots, M_s]^{\mathsf{T}}$ 每列恰有两个 1 或者每列均为 0,可以得 到 G 至少有两个连通分支,矛盾。

- 推论 1: G 有 p 个连通分支, 则 $r(M(G)) = r(M_f(G)) = n p$, 其中 $M_f(G)$ 是从 M(G) 的每个对角块中删除任意 1 行而得到的
- 推论 2: G 连通 $\Leftrightarrow r(M(G)) = r(M_f(G)) = n-1$

定理: 设 $M_f(G)$ 是 n 阶连通图 G 的一个基本关联矩阵。 M_f' 是 $M_f(G)$ 中任意 n-1 列组成的方阵,则 M_f' 各列所对应的边集 $\left\{e_{i_1},e_{i_2},...,e_{i_{n-1}}\right\}$ 的导出子图 $G\left[\left\{e_{i_1},e_{i_2},...,e_{i_{n-1}}\right\}\right]$ 是 G 的生成树 当且仅当 M_f' 的行列式 $\left|M_f'\right| \neq 0$ 。

用关联矩阵求所有生成树:

- 忽略环, 求关联矩阵
- 任选参考点, 求基本关联矩阵
- 求所有 n-1 阶子方阵, 计算行列式, 行列式非 0 的是生成树

邻接矩阵与相邻矩阵 13.8

定义: (有向图邻接矩阵) 设 $D = \langle V, E \rangle$ 是有向图, $V = v_1, v_2, ..., v_n$ 。邻接矩阵 (adjacence matrix): $A(D) = [a_{ij}]_{n \times n}, a_{ij} = \mathcal{L}v_i$ 到 v_j 的边数。

图 13.36: 有向图的邻接矩阵

有向图邻接矩阵的性质:

- 每行和为出度: $\sum_{i=1}^{n} a_{ij} = d^{+}(v_i)$
- 每列和为入度: $\sum_{i=1}^{n} a_{ij} = d^{-}(v_{j})$
- 握手定理: $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} = \sum_{i=1}^{n} d^{+}(v_i) = \sum_{j=1}^{n} d^{-}(v_j)$
- 环个数: $\sum_{i=1}^{n} a_{ii}$

• 环个数: $\sum_{i=1}^{n} a_{ii}$ 定理: 设 $A(D) = A = [a_{ij}]_{n \times n}$, $A^{r} = A^{r-1} \cdot A$, $(r \ge 2)$, $A^{r} = \left[a_{ij}^{(r)}\right]_{n \times n}$, 则

- $a_{ij}^{(r)} = \mathcal{K} v_i$ 到 v_j 长度为 r 的通路总数
- $\sum_{i=1}^n \sum_{j=1}^n a_{ij}^{(r)} =$ 长度为r 的通路总数
- $\sum_{i=1}^{n} a_{ii}^{(r)} =$ 长度为r的回路总数

推论: $B_r = A + A^2 + ... + A^r = \left[b_{ij}^{(r)}\right]_{n \times n}$

- $b_{ij}^{(r)} = \mathcal{M} v_i$ 到 v_j 长度小于等于 r 的通路总数
- $\sum_{i=1}^n \sum_{j=1}^n b_{ij}^{(r)} =$ 长度小于等于 r 的通路总数
- $\sum_{i=1}^{n} b_{ii}^{(r)} =$ 长度小于等于 r 的回路总数

图 13.37: 邻接矩阵求通路数

例:用邻接矩阵求解通路数:

• v₂ 到 v₄ 长度为 3 和 4 的通路数:1,2

• v_2 到 v_4 长度 ≤ 4 的通路数 : 4

• v₄ 到 v₄ 长度为 4 的回路数:5

• v_4 到 v_4 长度 ≤ 4 的回路数:11

定义: (可达矩阵) 设 $D = \langle V, E \rangle$ 是 n 阶有向图, $V(D) = \{v_1, v_2, ..., v_n\}$ 。可达矩阵: $P(D) = [p_{ij}]_{n \times n}$, $p_{ij} = \begin{cases} 1, \forall v_i \in V_j \\ 0, \forall v_i \in V_j \end{cases}$

可达矩阵的性质:

• 主对角线元素都是 1: $\forall v_i \in V$, 从 v_i 可达 v_i

•
$$\forall i \neq j, p_{ij} = 1 \Leftrightarrow b_{ij}^{(n-1)} > 0$$

定义: (无向图相邻矩阵) 设 $G = \langle V, E \rangle$ 是无向简单图, $V = \{v_1, v_2, ..., v_n\}$ 。相邻矩阵 (adjacence matrix): $A(G) = [a_{ij}]_{n \times n}, a_{ii} = 0, \ a_{ij} = \begin{cases} 1, v_i = v_j \\ 0, v_i = v_j \end{cases}$ 和邻

无向图相邻矩阵的性质:

$$A(D) = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 0 & 1 \\ v_4 & 0 & 0 & 1 & 1 \end{bmatrix} \quad P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$A^3 = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{bmatrix}$$

$$B^2 = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \end{bmatrix} \qquad B^{3} = \begin{bmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 6 \end{bmatrix} \qquad B^{4} = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

$$B^4 = \begin{bmatrix} 0 & 2 & 7 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 7 & 11 \end{bmatrix}$$

图 13.38: 可达矩阵

$$A(G) = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ v_4 & 1 & 1 & 0 & 0 \end{bmatrix}$$

图 13.39: 无向图相邻矩阵

• A(G) 对称: $a_{ij} = a_{ji}$

• 每行 (列) 和为顶点度: $\sum_{i=1}^{n} a_{ij} = d(v_j)$

• 握手定理: $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} = \sum_{i=1}^{n} d(v_j) = 2m$

定理: 设 $A(G) = A = [a_{ij}]_{n \times n}, A^r = A^{r-1} \cdot A, (r \ge 2), A^r = \left[a_{ij}^{(r)}\right]_{n \times n}, B_r = A + A^2 + \dots + A^r = \left[b_{ij}^{(r)}\right]_{n \times n},$ 则

- $a_{ij}^{(r)} = \mathcal{M} v_i$ 到 v_j 长度为 r 的通路总数
- $\sum_{i=1}^{n} a_{ii}^{(r)} =$ 长度为 r 的回路总数

推论:

• $a_{ii}^{(2)} = d(v_i)$

• G 连通 \Rightarrow 距离 $d(v_i,v_j) = min\left\{r|a_{ij}^{(r)} \neq 0\right\}$

例:用相邻矩阵求通路数:

图 13.40: 用相邻矩阵求通路数

• v_1 到 v_2 长度为 4 的通路数:6 14142,14242,14232,12412,14212,12142

- v_1 到 v_3 长度为 4 的通路数: 4 12423, 12323, 14123, 12123
- v_1 到 v_1 长度为 4 的回路数: 7 14141, 14241, 14121, 12121, 12421, 12321, 12141

定义: (连通矩阵) 设 $G = \langle V, E \rangle$ 是 n 阶无向简单图, $V = \{v_1, v_2, ..., v_n\}$ 。连通矩阵: $P(G) = [p_{ij}]_{n \times n}$, $p_{ij} = \begin{cases} 1, \exists v_i \exists v_j \text{ 连通} \\ 0, \exists v_i \exists v_j \text{ 不连通} \end{cases}$

连通矩阵的性质:

- 主对角线元素都是 1: $\forall v_i \in V, v_i$ 与 v_i 连通
- 连通图: 所有元素都是1
- 伪对角阵: 对角块是连通分支的连通矩阵

•
$$\ \ \ \ \ \mathcal{B}_r = A + A^2 + \dots + A^r = \left[b_{ij}^{(r)}\right]_{n \times n}, \ \ \ \forall i \neq j, p_{ij} = 1 \Leftrightarrow b_{ij}^{(n-1)} > 0$$

图 13.41: 连通矩阵

13.9 谱图理论

定义: 设 $G = \langle V, E \rangle$ 是无向简单图, $V = \{v_1, v_2, ... v_n\}$, G 的**度数矩阵**: $D = [d_{ij}]_{n \times n}, d_{ij} = \begin{cases} d(i), i = j \\ 0, i \neq j \end{cases}$, 其中 $d_{n \times 1} = (d(i))_{1 \le i \le n} = \mathbf{A1_n}$, \mathbf{A} 为 G 的相邻矩阵。**拉普拉斯矩阵** L = D - A;

的二次型: $x^T L x = \sum_{(a,b) \in E} (x_a - x_b)^2$.

证明:(拉普拉斯二次型)

$$x^{\top} A x = \sum_{u \in V} \sum_{v \in V} A_{uv} x_u x_v = \sum_{u \in V} \sum_{v \in N(u)} x_u x_v = 2 \sum_{(u,v) \in E} x_u x_v$$
 (13.9.1)

$$x^{\top} D x = \sum_{u \in V} \sum_{v \in V} D_{uv} x_u x_v = \sum_{u \in V} d(u) x_u^2$$
 (13.9.2)

结合 (13.9.1) 和 (13.9.2), 有

$$x^{\top} A x = \sum_{u \in V} d(u) x_u^2 - 2 \sum_{(u,v) \in E} x_u x_v$$

$$= \sum_{(u,v) \in E} (x_u^2 + x_v^2 - 2x_u x_v)$$

$$= \sum_{(u,v) \in E} (x_u - x_v)^2$$
(13.9.3)

定理:(谱定理)若 M 为一个 $n \times n$ 的实对称矩阵,则存在实数 $\lambda_1, \lambda_2, ..., \lambda_n$ 和 n 个相互正交的单位向量 $\psi_1, \psi_2, ..., \psi_n$,其中对于任意 $i \in \{1, 2, ..., n\}$,向量 ψ_i 为矩阵 M 的特征向量,其对应的特征值为 λ_i $i.e. M\psi_i = \lambda_i \psi_i$ 。

定理: (拉普拉斯矩阵的性质) 对于简单无向图 $G = \langle V, E \rangle$, 其拉普拉斯矩阵 L 是半正定的。

证明: 取 x 为 L 的单位特征向量,则有 $x^TLx = x^T\lambda x = \lambda \Rightarrow \lambda = x^TLx = \sum_{(a,b)\in E} (x_a - x_b)^2 \ge 0$ 故 L 半正定。

定理: L 的最小特征值 $\lambda_1 = 0$.

证明:由于 $L1_n=(D-A)1_n=0$,知 0 为 L 的一个特征值,再由 L 半正定知 $\lambda_1=0$ 。

定理: $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$ 为图 G = < V, E > 的拉普拉斯矩阵 L 的特征值,则 $\lambda_2 > 0$ 当且仅 当图 G 是连通的。

证明: 若图 G 不连通,则 G 可以写成两个不连通的子图 G_1,G_2 的并, $L=\begin{bmatrix}L_{G_1}&0\\0&L_{G_2}\end{bmatrix}$,取

 $x_1 = \begin{bmatrix} 0_{G_1} \\ 1_{G_2} \end{bmatrix}, x_2 = \begin{bmatrix} 1_{G_1} \\ 0_{G_2} \end{bmatrix}, \Rightarrow Lx_1 = Lx_2 = 0,$ 因此 L 关于特征值 0 至少有两个相互正交的特征向量 x_1, x_2 , 故 $\lambda_1 = \lambda_2 = 0$

若 G 连通,设 ψ 为 L 关于特征值 0 对应的特征向量, $L\psi=0$, $\psi^T L\psi=\sum_{(a,b)\in E}(\psi_a-\psi_b)^2=0$, $\Rightarrow \forall (a,b)\in E, \psi_a=\psi_b$,由于 G 连通,知 $\psi=c1_n$,因此 0 对应的特征空间维数为 1, $\Rightarrow \lambda_2>\lambda_1=0$ 。

例: 完全图 K_n 的拉普拉斯矩阵存在特征值 0 和 n, 其中 n 对应的特征空间重数为 n-1。

证明: 设 ψ 为任意与 1_n 正交的非零向量,i.e. $\sum_{i=1}^n \psi(i) = 0$, $L\psi(i) = \sum_{(i,j)\in E} (\psi_i - \psi_j) = \sum_{j\neq i} (\psi_i - \psi_j) = (n-1)\psi_i - \sum_{j\neq i} \psi_j = n\psi_i$ 由 i 的任意性, $L\psi = n\psi$,因此全部与 1_n 正交的向量均为特征值 n 对应的特征向量,重数为 n-1。

13.10 欧拉图

定义:经过图中所有边一次且仅一次,行遍所有顶点的通路称为**欧拉通路**。根据定义可知,欧拉通路是经过所有边的简单通路并且是生成通路(经过所有顶点的通路)。

定义:经过图中所有边一次且仅一次,行遍所有顶点的回路称为**欧拉回路**。欧拉回路是经过所有边的简单生成回路。

欧拉图:有欧拉回路的图。

半欧拉图:有欧拉通路但无欧拉回路的图。

规定:平凡图为欧拉图。

定理: 设 G 是无向连通图,则以下命题等价: (1)G 是欧拉图; (2)G 中所有顶点都是偶数度; (3)G 是若干个边不交的圈的并。

证明: (1) ⇒(2): 设 G 是 n 阶、m 条边的无向图,若 G 是平凡图,结论成立;若 G 是非平凡图,因为 G 是欧拉图,所以存在欧拉回路,设 C 为 G 中一条欧拉回路, $C=v_0e_1v_1e_2v_2\cdots e_{m-1}v_{m-1}e_mv_0$,对于任意 v,在 C 中出现一次就获 2 度,若总共 k 次经过顶点 v,则 d(v)=2k,即 v 的度数为偶数。

则 G_i 的边数 $m_i \leq k$,且顶点的度仍为偶数,由归纳假设知: $G_r = \bigcup_{i=1}^{d_r} C_{ri}, r = 1, 2, ..., s$. 其中 $E(C_{ri}) \cap E(C_{rt}) = \emptyset, i, t = 1, 2, ..., d, i \neq t, r = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 $E(C_{ri}) \cap E(C_{tj}) = \emptyset, r, t = 1, 2, ..., s$,并且 E(C

(3) \Rightarrow (1): 对 G 中的圈的个数 d 应用数学归纳法。d=1 时, $G=C_1$,则 C_1 为 G 的欧拉回路,G 为欧拉图。

假如结论对 $d \le k$ 成立,考虑 d = k+1 的情况,设 $G_1' = \bigcup_{i=1}^{k+1} C_i - E(C_{k+1})$ 并且设 G_1' 有 s 个 连通分支 G_1, \dots, G_s ,由于 G 为若干个边不重的圈的并,可知 G_i 为若干个边不重的圈的并或为平

凡图,由归纳假设知 G_i 为欧拉图,设 \tilde{C}_i 为 G_i 中的欧拉回路,由 G 的连通性知 C_{k+1} 与 \tilde{C}_i 均有公共顶点,设 $v_{(k+1),i}$ 为 C_{k+1} 与 \tilde{C}_i 的一个公共顶点,规定一种走法: 从 C_{k+1} 的某一顶点出发开始行遍,当遇到 $v_{(k+1),i}$ 时,先行遍 \tilde{C}_i ,再继续行遍,最后回到原始出发点,得到回路 C,它经过 G 中每条边一次并且行遍 G 的所有顶点,因此 C 为 G 中欧拉回路,所以 G 为欧拉图。

图 13.42: 欧拉图

定理: 设 G 是无向连通图,则以下命题等价: G 是半欧拉图; G 中恰有 2 个奇度顶点。

证明: \Rightarrow 设 G 为半欧拉图,存在欧拉通路 $C = v_0 e_1 v_1 e_2 v_2 \cdots e_{m-1} v_{m-1} e_m v_m$,欧拉通路的起点和终点是奇数度,其余顶点都是偶数度

← 在两个奇数度顶点之间加 1 条新边所有顶点都是偶数度,得到欧拉回路。从欧拉回路上删除所加边后,得到欧拉通路

例: 设 G 是恰有 2k 个奇度顶点的连通图,证明 G 中存在 k 条边不重的简单通路 $P_1 \cdots P_k$,使得 $E(G) = \bigcup_{i=1}^k E(P_i)$

证明: 由归纳法:

- k=1 时, G 中恰好有两个奇度顶点,可知 G 为半欧拉图,其欧拉通路满足条件;
- 设 k = r 时结论为真, k = r+1 时, 设奇度顶点为 $v_1, v_1' \cdots v_{r+1}, v_{r+1}'$, 在 G 中加边 (v_{r+1}, v_{r+1}') 得 G' 为具有 2r 个奇度顶点的图,根据归纳假设存在 r 个边不重的简单通路使得 $E(G') = \bigcup_{i=1}^r E(P_i)$

同一简单通路最多含两个奇度顶点,因此 P_1, \dots, P_r 各自含两个奇度顶点且为通路的始点和终点。 又存在某个 P_i 含有新加边 (v_{r+1}, v'_{r+1}) ,则 $P_i - (v_{r+1}, v'_{r+1})$ 产生两条边不重的简单通路,因此 E(G) 由 r+1 条边不重的简单通路组成。