5. Podajte formalen opis naslednjega končnega avtomata:

M = (E, Q, 20, F, 3 >

Konini automat je podan s petico:

- · 2 = abeceda
- 2 = mozica moznih starj
- · 20 = zacetno stanje
- · F = wrotica kontrih stary
- J = furkcija premikanja/prehodna funkcija

Formalen opis je s pomotijo mnozice M. Na sliki je grafični zapis. Lahko izluščimo vaslednje podotke:

- · 2 = {a,b,c}
- · F = Za3

---> Prehadro funkcijo definiramo s pomočjo tabele:

- · Z = 30,1,23
- · 20 = a

					-> Abeceda
	J	0	1	r	_
2	٥	b	۷	/	. Če pre
`_	þ	Ь		С	v sta
		/			

"ce prebereno 0, ko sno v stanju a, se premalenemo v stanje b"

 $\Im: 2 \times Z \rightarrow 2$ Lie smo kaj kam gremo preberemo

Zgornje wrozice ter tabela prehodne funkcije predstavljajo formalen opis kontnega automata.

6. Ali je naslednji končni avtomat determinističen ali nedeterminističen?

Deterministicen: vsako stanje vodi v natanko eno stanje. Ni dvoma kako se premikati po stanjih.

To milatie opazimo preko tabele J-funkcijo:

<u></u>	a	Ь	С
20	21	22	/
21	/	/	22
92	21,22	/	/

nedeterministicen!

7. Podajte končni avtomat za $\Sigma = \{0,1\}$ in besede, ki vsebujejo natanko eno "1"

- (a) grafično.
- (b) s formalnim opisom.

Zaradi zvezdice to pomeni O-krat ali 1-krat ali 2-krat ali...

- a) Jezik za uvrozico M je definiran kot L(M):= \$0*10*\$
 - 1. Zachemo v O
 - 2. greeno v 1
 - 3. Kontamo v 0

1, 01, 001, 00--1, 10, 100, 10--0, 010, 0010, 0--10, 0.1.0

b) Definiramo unozico M:

$$q_{\bullet} = q$$

- 8. Podajte končni avtomat nad $\Sigma = \{0, 1\}$ za besede, ki vsebujejo liho število "1".
- To pomeni, če najdemo se ero enico, moramo ponastaviti kantni automnt. Spremenimo prejsnjega v: 5 tem se spremeni d-funkcija.

- 9. Podajte končni avtomat M nad $\Sigma = \{0, 1\}$ za
 - (a) besede enake "00"
 - (b) besede oblike "1*00"
 - (c) besede oblike "0*00" ali "1*00"
 - (d) $L(M) = \{00100, 0100, \Sigma^*00\}$

00:

(E* = katerikeli znak poljubro-krat): d) 00100 ali 0100 ali E* 00

- · Vsi se koncajo na 00
- · le prebere evico ga samo vrie na zatetek
- · Simple, dever, mom

10. Podajte deterministični končni avtomat nad $\Sigma = \{a, b, c\}$, ki sprejme besede, ki vsebujejo vse "a" pred "b" in vse "b" pred "c".

Ker sprejme €, mora bit 20 € F.

11. Podajte deterministični končni avtomat nad $\Sigma = \{0,1\}$, ki sprejme besede, ki vsebujejo natanko eno "1" in " ε ".

- "Natarko eno 1" pomeni 1, 01, 001, 0--01, 0--010, 0--010--0
 To pa je primer iz prej (glej ral. 7 cas), toda, ce bi imej cikel na 20, bi to pomenilo, da se lahko zakljinči za "0*", kar pa ni v redu ⇒ dodano extra stanje.
- aac aab 12. Podajte končni avtomat nad $\Sigma = \{a,b,c\}$, ki sprejme poljubno besedo, ki vsebuje niz "aab".

Zdaj zagotovo prebere 2×a preden prebere b.

13. Podajte deterministični končni avtomat nad $\Sigma=\{a,b\},$ ki sprejme vse besede z vsaj dvema nizoma "aa"

dya vec

- (a) ki sta disjunktna
- (b) ki nista disjunktna
- (c) ki nista nujno disjunktna

a) Disjunktina viza \ aaaa \ → L(M) = ₹ 2*aa 2* \$

Ni my treba v 20, saj je en "aa" že prebral ^

NKA!

b) Nista disjunktna \ preknivata se, torej L(M) = ₹ z*aaa z* ₹

Morata se prekrivat, zato tu b resetira namesto da gre v 21 ce ti pustiti tu a, ti lahko prislo do "aana" ali "aa...an", kar pa je disjunktro.

c) Nista nujro disjunktva \Rightarrow a in b skupaj. Potrebnjemo torej vsaj 3 a, ampak kako vemo, da 4 obstaja 2 . $L(M) = \frac{2}{3}$ aaaa, aaa, aa-aa, ... $3 = \frac{2}{5} \times \frac{4}{3}$ aa $\times \frac{4}{3}$

morda se en a ... idk

Lato naredimo se en stanje - ce prebere "a" zakljući, drugaće vemo, da mora najti se enkrat "aa".

14. Podajte deterministični končni avtomat nad $\Sigma=\{a,b\},$ ki sprejme vse besede, ki vsebujejo niz "aababb"

Lachi tako, da si izertas glavni del automata, v tem primem "aababb"

O le že prebral vsaj 2-krat a, zoto lahko še naprej brere a-je.

- @ Prebral je en zaporedni a. Ce prebere se enega, lahko preskoti naprej (nazaj) do stanja 22 namesto do 20.
- 3 podobne ket (2), le da prebere 2daj ponovne prvi a, zato mora prebrat vsaj se enega.