Math 307: Homework 08

Due Wednesday, October 29. This homework is mostly based on section 5.1 in the textbook.

Problem 1. Find all solutions of

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 - x_4 = 4 \\ x_1 + x_2 - x_3 + x_4 = -4 \\ x_1 - x_2 + x_3 + x_4 = 2 \end{cases}$$

Problem 2. Let

$$A = \begin{bmatrix} 4 & -1 & 2 & 1 \\ 2 & 3 & -1 & -2 \\ 0 & 7 & -4 & -5 \\ 2 & -11 & 7 & 8 \end{bmatrix}$$

For the following parts, you must fully justify your work to recieve credit—this includes providing at least one or two complete sentences explaining why your calculations justify your answer.

- (a) Find a basis for NS(A)
- (b) Find a basis for RS(A)
- (c) Find a basis for CS(A)
- (d) Determine the rank of A.
- (e) Determine whether the matrix is invertible

Problem 3. The matrix $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ produces a *stretching* in the x-direction. Draw the circle $x^2 + y^2 = 1$. What happens to this circle when space is transformed by A? Illustrate your answer with a sketch.

Problem 4. The matrix $A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$ yields a *shearing* transformation, which leaves the *y*-axis unchanged. Sketch its effect on the *x*-axis, by indicating what happens to the points (x, y) = (1, 0), (2, 0),and (-1, 0)—and how the whole axis is transformed.

Problem 5.

- (a) What 2×2 matrix has the effect of rotating every vector counterclockwise 90° and then projecting the result onto the x-axis?
- (b) What 2×2 matrix represents projection onto the x-axis followed by projection onto the y-axis?

Problem 6. Let c be a scalar, and let $T: V \to W$ be a linear transformation. Verify that cT is a linear transformation.

Problem 7. Let $S, T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformations

$$S\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x - y \\ x + 2y \end{bmatrix} \quad \text{and} \quad T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + 3y \\ x - y \end{bmatrix}.$$

- (a) Find matrices A, B such that T and S are expressed as the matrix transformations T(X) = AX and S(X) = BX.
- (b) Find the matrix C such that the composition $S \circ T$ is expressed in the form $(S \circ T)(X) = CX$. Then verify that C = AB.
- (c) Find the matrix D such that the composition $T \circ S$ is expressed in the form $(T \circ S)(X) = DX$. Then verify that D = BA.

1

Problem 8. The 4 Hadamard matrix is

Find H^{-1} and write $v = \begin{bmatrix} 7 \\ 5 \\ 3 \\ 1 \end{bmatrix}$ as a linear combination of the columns of H.

Problem 9. Find the rank and nullsapce of

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Problem 10. If S and T are linear transformations with S(v) = T(v) = v, then S(T(v)) = v or v^2 ?

Problem 11. A linear transformation must leave the zero vector fixed: T(0) = 0. Prove this from T(u+v) = T(u) + T(v) by choosing v =____. Prove it also from the requirement T(cv) = cT(v) by choosing c =____.

Problem 12. Every straight line remains straight after a linear transformation. If z is halfway between x and y, show that Az is halfway between Ax and Ay

Problem 13. True or false, with counterexample if false:

- (a) If the vectors x_1, \ldots, x_m span a subspace S, then dim S = m.
- (b) The intersection of two subspaces of a vector space cannot be emptyy.
- (c) If Ax = Ay, then x = y.
- (d) The row space of A has a unique basis that can be computed by reducing A to reduced row-echelon form.
- (e) If a square matrix A has independent columns, then so does A^2 .