# **ChE453: Capstone Project**

# Bi-weekly report number: 3



## Group No: 4

### Team members:

| Aaditya Amlan Panda | 220007 |
|---------------------|--------|
| Abhijit Dalai       | 220030 |
| Adarsh Pal          | 220054 |
| Akash Kumar Gupta   | 220095 |
| Kushagra Tiwari     | 220574 |
| Saurabh Yadav       | 220991 |
| Snehil Tripathi     | 221071 |
| Tushar Verma        | 221147 |

### Recap:

We are preparing the **Methyl benzoate**, which is an important aromatic ester widely used as a fragrance and flavouring agent, a solvent for resins and oils, and an intermediate in pharmaceuticals and agrochemicals.

It is typically synthesised via the **esterification of benzoic acid with methanol**, a reversible, equilibrium-limited reaction catalysed by strong acids such as sulfuric acid or hydrochloric acid( $HCl / H_2SO_4$ ).

Benzoic Acid + Methanol → Methyl Benzoate + H<sub>2</sub>O

This esterification is an **equilibrium reaction**, and high conversion requires process intensification strategies. Common approaches include:

- Using an excess of methanol as a reactant shifts the equilibrium towards ester formation.
- Employing strong mineral acids or solid acid catalysts to enhance the reaction rate.

In the last report, we mentioned the molar ratio of our reactant (Methanol: MEB: HCl = 16.59: 2.7: 0.1215). This is according to Roberts & Urey (1938)<sup>1</sup>; this ratio enabled a large amount of water in the product because water helped in the energy-efficient separation of methanol to help with efficient methanol recovery.

## Complete Flowsheet at a glance:



## **Material Flowsheet:**



#### **Component description:**

M1 (Mixer): Benzoic acid exists in the solid state at room temperature. Therefore, it is fed into a mixer along with Methanol, which acts as a carrier for benzoic acid to the reactor.

R1 (Equilibrium reactor): The flowsheet utilises an equilibrium reactor for the esterification reaction. A near-complete conversion of Benzoic Acid has been observed in the equilibrium reactor, yielding a large k, which we will correct once we obtain the detailed kinetics.

C1 (Distillation column 1): In distillation column 1, methanol and water (coming out as distillate in D1) are separated from the other components (coming out as bottoms in B1).

For 99.9% water recovery: -

No of Trays: 20 Feed Stage: 11

Reflux Ratio: 0.018697

Reboiler Duty: 22531.7 kW Condenser Duty: -17596.4 kW

C2 (Distillation column 2): This distillation column separates methanol in the distillate (D2) from water in the bottoms (B2).

For 99.99% methanol recovery & 99.9% water recovery: -

No of Trays: 20 Feed Stage: 14

Reflux Ratio: 1.7256

Reboiler Duty: 38339.7 kW Condenser Duty: -38109 kW

C3 (Distillation column 3): This distillation column separates the final product methyl benzoate in the distillate (D3) from benzoic acid + phthalic acid in the bottoms (B3).

For 99.7% Methyl Benzoate recovery: -

No of Trays: 20 Feed Stage: 11

Reflux Ratio: 0.3033

Reboiler Duty: 4291.45 kW Condenser Duty: -4435.88 kW **C4** (**Distillation column 4**): This distillation column separates benzoic acid as distillate (D4) from the impurity phthalic acid (B4) in the bottoms.

For 99.9% Benzoic Acid recovery: -

No of Trays: 20 Feed Stage: 10

Reflux Ratio: 1.19132 Reboiler Duty: 25 kW

Condenser Duty: -18.84 kW

**HX2** (**Heat Exchanger 2**): The output steam from the Rankine cycle, after being condensed, is passed through HX2 to cool the methanol distillate stream (D2) from C2 up to 26 °C. The water output of HX2 is split into two streams, with one stream, RECYCLE, used to cool the methyl benzoate in HX3.

**HX3** (**Heat Exchanger 3**): The water outlet stream from HX2 is cooled at B8 and then split into two streams: the RECYCLE stream is passed through HX3 to cool the methyl benzoate, coming out of column C3 as distillate.

**B10** (Makeup block): This was used to pump in fresh cooling water into the Rankine cycle, as the water from the bottom of C2 was alone insufficient to cool down the hot outgoing methanol distillate, which was in high quantity.

HX1 (Heat Exchanger 1): This block is optional to be put in the system. Basically, it has been used to cool down the mixture of outgoing water bottom and water from the HX3 unit (which cools down MeB) (around 80 °C) using the incoming cooling water recycle (+makeup), so that both of them come to an almost equal temperature. This allows their (errorless) mixing (the Bot+HX3 mixture and recycled water) before being sent into the cogeneration unit.

**B7** (Makeup block): Its primary function is purging some amount of water from the C2 Bot+HX3 mixture before being added to the Rankine cycle recycle stream. Fsplit was found to be error-prone, so we used a makeup block that returned near zero makeup.

### **Cogeneration Flowsheet (Continued...):**



**S8:** The cold water outlet is fed to **PUMP**, which increases its pressure, and then fed to a preheater, boiler and a superheater, and yields a superheated steam.

**HPTURB:** The superheated steam is fed to a high-pressure steam turbine, which yields high-pressure steam at a pressure of 40 bar and generates **1540 kW** of electricity. This high-pressure steam can be used for heating purposes, where the temperature is more than the MP steam limit.

**HPSPLIT:** A splitter is used to split the high-pressure steam in **TURBOUT** into two streams, one HPSOUT, which will be used for future purposes, and the other HPS,1 which is fed to MPTURB.

**MPTURB:** The high-pressure steam in **HPS1** is fed to a mid-pressure steam turbine, which yields mid-pressure steam at 10 bar and generates **7012.9 kW of** electricity.

**MPSPLIT:** This splitter splits the mid-pressure steam fed into two streams, MPSOUT, which will be used later in the process for heating, and the other MPS1, fed to the LPTURB.

**LPTURB:** The mid-pressure steam in MPS1 is then fed to a low-pressure steam turbine, which yields a low-pressure steam at 3 bar and generates **4692.6 kW of** electricity.

**LPSPLIT:** The low-pressure steam is split into two streams, one stream is LPSOUT, which will be used later in the process, and the other is LPS1, which is fed to the LLPTURB.

**LLPTURB:** This low-pressure steam turbine generates **3372 kW** of electricity with the 3 bar steam as input and yields a 1 bar steam.

**LLPS:** The low-pressure steam at 1 bar is then proceeded for condensation and fed to HX2 to be reused in the recycle.

## **Mass and Energy Balance in Distillation Columns:**

| _               |              |           |              |              |               |
|-----------------|--------------|-----------|--------------|--------------|---------------|
|                 |              | Column C1 |              |              |               |
|                 |              |           |              |              |               |
|                 | Mass In (S1) |           | Mass Out(B1) | Mass Out(D1) | MassOut_total |
| Methyl Benzoate | 36622.21057  |           | 36620.80996  | 1.400610149  | 36622.21057   |
| Benzoic Acid    | 1.996230958  |           | 1.996230958  | 2.47E-24     | 2.00E+00      |
| Water           | 4845.815842  |           | 48.45815348  | 4797.357689  | 4845.815842   |
| Methanol        | 45692.64392  |           | 0.017089908  | 45692.62683  | 45692.64392   |
| Pthalic Acid    | 166.13324    |           | 166.13324    | 1.97E-39     | 1.66E+02      |
| TOTAL           | 87328.7998   |           |              |              | 87328.7998    |

|                        |              | Column C1 |                    |               |
|------------------------|--------------|-----------|--------------------|---------------|
|                        |              |           |                    |               |
|                        | Heat In (kW) |           |                    | Heat out (kW) |
| Feed (S1)              | -141828.2926 |           | Distillate C1 (D1) | -113817.4079  |
| Reboiler Duty C1 (Qr)  | 22532        |           | Bottoms C1 (B1)    | -23075.58014  |
| Condenser Duty C1 (Qc) | -17596       |           |                    |               |
| Total                  | -136892.2926 |           | Total              | -136892.988   |

## **Column-1 Temperature and Composition Profile**



|                 |              | Column C2 |              |              |               |
|-----------------|--------------|-----------|--------------|--------------|---------------|
|                 |              |           |              |              |               |
|                 | Mass In (D1) |           | Mass Out(B2) | Mass Out(D2) | MassOut_total |
| Methyl Benzoate | 1.400610149  |           | 1.400610149  | 0            | 1.400610149   |
| Benzoic Acid    | 2.47E-24     |           | 0            | 0            | 0             |
| Water           | 4797.357689  |           | 4792.560331  | 4.797357688  | 4797.357689   |
| Methanol        | 45692.62683  |           | 9.138525366  | 45683.4883   | 45692.62683   |
| Pthalic Acid    | 1.97E-39     |           | 0            | 0            | 0             |
| TOTAL           | 50491.3851   |           |              |              | 50491.38513   |

|                        |              | Column C2 |                    |               |
|------------------------|--------------|-----------|--------------------|---------------|
|                        |              |           |                    |               |
|                        | Heat In (kW) |           |                    | Heat out (kW) |
| Distillate C1 (D1)     | -113817.4079 |           | Distillate C2 (D2) | -92874.60482  |
| Reboiler Duty C2 (Qr)  | 38340        |           | Bottoms C2 (B2)    | -20712.05695  |
| Condenser Duty C2 (Qc) | -38109       |           |                    |               |
| Total                  | -113586.4079 |           | Total              | -113586.6618  |

## **Column 2 Temperature and Composition profile:**





|                 |              | Column C3 |              |              |               |
|-----------------|--------------|-----------|--------------|--------------|---------------|
|                 |              |           |              |              |               |
|                 | Mass In (B1) |           | Mass Out(B3) | Mass Out(D3) | MassOut_total |
| Methyl Benzoate | 36620.80996  |           | 91.55202489  | 36529.2579   | 36620.80992   |
| Benzoic Acid    | 1.996230958  |           | 1.967318305  | 0.028912653  | 1.996230958   |
| Water           | 48.45815348  |           | 3.84E-15     | 48.45815344  | 4.85E+01      |
| Methanol        | 0.017089908  |           | 9.13E-18     | 0.017089908  | 1.71E-02      |
| Pthalic Acid    | 166.13324    |           | 166.13324    | 1.48E-12     | 1.66E+02      |
| TOTAL           | 36837.4147   |           |              |              | 36837.41464   |

|                        |              | Column C3 |                    |               |
|------------------------|--------------|-----------|--------------------|---------------|
|                        |              |           |                    |               |
|                        | Heat In (kW) |           |                    | Heat out (kW) |
| Bottoms C1 (B1)        | -23075.58014 |           | Distillate C3 (D3) | -22966.23687  |
| Reboiler Duty C3 (Qr)  | 4291         |           | Bottoms C3 (B3)    | -253.7746107  |
| Condenser Duty C3 (Qc) | -4436        |           |                    |               |
| Total                  | -23220.58014 |           | Total              | -23220.01149  |

## **Column 3 Temperature and Composition profile:**





|                 |              | Column C4 |              |              |               |
|-----------------|--------------|-----------|--------------|--------------|---------------|
|                 |              |           |              |              |               |
|                 | Mass In (B3) |           | Mass Out(B4) | Mass Out(D4) | MassOut_total |
| Methyl Benzoate | 91.55202489  |           | 7.38E-07     | 91.55202415  | 9.16E+01      |
| Benzoic Acid    | 1.967318305  |           | 1.97E-05     | 1.967298588  | 1.97E+00      |
| Water           | 3.84E-15     |           | 0            | 0            | 0             |
| Methanol        | 9.13E-18     |           | 0            | 0            | 0             |
| Pthalic Acid    | 166.13324    |           | 165.9671068  | 0.16613324   | 166.13324     |
| TOTAL           | 259.652583   |           |              |              | 259.6525832   |

|                        |              | Column C4 |                    |               |
|------------------------|--------------|-----------|--------------------|---------------|
|                        |              |           |                    |               |
|                        | Heat In (kW) |           |                    | Heat out (kW) |
| Bottoms C3 (B3)        | -253.7746107 |           | Distillate C4 (D4) | -58.29793905  |
| Reboiler Duty C4 (Qr)  | 25           |           | Bottoms C4 (B4)    | -189.3194072  |
| Condenser Duty C4 (Qc) | -19          |           |                    |               |
| Total                  | -247.7746107 |           | Total              | -247.6173463  |

## **Column 4 Temperature and Composition profile:**





### Mass & Energy Balance and in Heat Exchangers

## **Heat Exchanger:1**

|         |                 | Heat Ex1 |         |                  |
|---------|-----------------|----------|---------|------------------|
|         | Mass In (kg/hr) |          |         | Mass Out (kg/hr) |
| RECYOUT | 35000           |          | COLDOUT | 35000            |
| S10     | 29999.99996     |          | нотоит  | 29999.99996      |
| Total   | 64999.99996     |          | Total   | 64999.99996      |

|         | Enthalpy In (KW) |         | Enthalpy Out (KW) |
|---------|------------------|---------|-------------------|
| RECYOUT | -154167.4993     | COLDOUT | -152962.1945      |
|         |                  |         |                   |
| S10     | -129693.7601     | HOTOUT  | -130899.0632      |
|         |                  |         |                   |
| Total   | -283861.2594     | Total   | -283861.2576      |

|         | Temperature In (°C | C) |         | Temperature Out (°C) |
|---------|--------------------|----|---------|----------------------|
| RECYOUT | 25.00000582        |    | COLDOUT | 54.65208065          |
| S10     | 92.99341537        |    | нотоит  | 60                   |

The overall mass balance is satisfied for column **Hex1**, with total mass in = **64999.99996 kg/hr** and total mass out =**64999.99996 kg/hr**, confirming conservation of mass. Also, total energy in = **-283861.2594** KW and total energy out = **-283861.2576** KW, confirming conservation of energy.



### **Heat Exchanger: 2**

|          |                 | Heat Ex2 |          |                  |
|----------|-----------------|----------|----------|------------------|
|          |                 |          |          |                  |
|          | Mass In (kg/hr) |          |          | Mass Out (kg/hr) |
| CONDENSA | 64970.04089     |          | METHOUT  | 45688.28569      |
|          |                 |          |          |                  |
| D2       | 45688.28569     |          | RNKWATOU | 64970.04089      |
|          |                 |          |          |                  |
| Total    | 110658.3266     |          | Total    | 110658.3266      |

|          | Enthalpy In (KW) |          | Enthalpy Out (KW) |
|----------|------------------|----------|-------------------|
| CONDENSA | -286157.7773     | METHOUT  | -94400.43889      |
|          |                  |          |                   |
| D2       | -92874.60488     | RNKWATOU | -284631.9433      |
|          |                  |          |                   |
| Total    | -379032.3822     | Total    | -379032.3822      |

|          | Temperature In (°C) |          | Temperature Out (°C) |
|----------|---------------------|----------|----------------------|
| CONDENSA | 25                  | METHOUT  | 26                   |
|          |                     |          |                      |
| D2       | 64.203415           | RNKWATOU | 45.32497494          |
|          |                     |          |                      |
|          |                     |          |                      |

The overall mass balance is satisfied for column **Hex1**, with total mass in = 110658.3266 kg/hr and total mass out = 110658.3266 kg/hr, confirming conservation of mass. Also, total energy in = -379032.3822 KW and total energy out = -379032.3822 KW, confirming conservation of energy.



### **Heat Exchanger: 3**

|         |                 | Heat Ex3 |        |                  |
|---------|-----------------|----------|--------|------------------|
|         |                 |          |        |                  |
|         | Mass In (kg/hr) |          |        | Mass Out (kg/hr) |
| D3      | 36577.76419     |          | CDOUT  | 34970.04089      |
|         |                 |          |        |                  |
| RECYCLE | 34970.04089     |          | MEBOUT | 36577.76419      |
|         |                 |          |        |                  |
| Total   | 71547.80508     |          | Total  | 71547.80508      |

|         | Enthalpy In (KW) |        | Enthalpy Out (KW) |
|---------|------------------|--------|-------------------|
| D3      | -22966.23825     | CDOUT  | -151232.2142      |
| RECYCLE | -154024.0553     | MEBOUT | -25758.08211      |
| Total   | -176990.2936     | Total  | -176990.2963      |

|         | Temperature In (°C) |        | Temperature Out (°C) |
|---------|---------------------|--------|----------------------|
| D3      | 190.7919192         | CDOUT  | 92.10074176          |
|         |                     |        |                      |
| RECYCLE | 25                  | MEBOUT | 30                   |
|         |                     |        |                      |
|         |                     |        |                      |

The overall mass balance is satisfied for column Hex1, with total mass in = 71547.80508 kg/hr and total mass out = 71547.80508 kg/hr, confirming conservation of mass. Also, total energy in = -176990.2936 KW and total energy out = -176990.2963 KW, confirming conservation of energy.



## **Specifications of the Makeup block:**





## **Mass balance for Co-generation Unit:**

|                     | MASS BAL   | ANCE |              |           |
|---------------------|------------|------|--------------|-----------|
|                     |            |      |              |           |
|                     | Input(kg/h | 1)   | Output(kg/h) |           |
|                     |            |      |              |           |
| Stream              | Mass flow  | 1    | Stream       | mass flow |
|                     |            |      |              |           |
| S8                  | 65000.04   |      | LPSOUT       | 10        |
|                     |            |      | MPSOUT       | 10        |
|                     |            |      | HPSOUT       | 10        |
|                     |            |      | CONDENSA     | 64970.04  |
|                     |            |      |              |           |
| total input         | 65000.04   |      | total output | 65000.04  |
|                     |            |      |              |           |
| Total mass balance: | 4E-10      |      |              |           |

The overall mass balance is satisfied for the **Rankine cycle**, with total mass in = **65000.0408877573 kg/hr** and total mass out = **65000.04 kg/hr**, confirming conservation of mass. A small amount of energy imbalance was observed.

|                    | ENERGY BALANCE |                  |                    |
|--------------------|----------------|------------------|--------------------|
|                    |                |                  |                    |
|                    | Input(kW)      | Output(kW)       |                    |
| Stream             | Energy flow    | Stream           | Energy flow        |
|                    |                |                  |                    |
| S8                 | -283861.5566   | LPSOUT           | -42.709            |
|                    |                | MPSOUT<br>HPSOUT | -42.042<br>-40.823 |
|                    |                | CONDENSA         | -286158            |
| total innut        | 202061 5566    | total autaut     | 206202             |
| total input        | -283861.5566   | total output     | -286283            |
| Total energy balan | 2421.794008    |                  |                    |

#### Objectives that could not be accomplished with reasons:

- Even though we used the cogeneration plant's cooling water for cooling purposes, we could not make a cooling water loop with industry best practices, which uses a central cooling facility. We need to study a bit more on the same before implementing it.
- We have not found the exact use of LPS, MPS, HPS, and LLPS in our process
- We could not obtain a complete energy balance in the cogeneration loop

#### Any other challenges:

 The R-equilibrium block gave a massive right shift output, showing the need for detailed reaction kinetics data, which we do not have at this moment

#### **Bibliography:**

A Study of the Esterification of Benzoic Acid with Methyl Alcohol Using Isotopic Oxygen, Irving Roberts and Harold C. Urey

Number of hours spent on Capstone project during this period: 29 hours total

#### Contributions from individual members:

- 1. Aaditya Amlan Panda (Cogeneration Plant Integration)
- 2. Abhijit Dalai (Cooling Water Cycle Design)
- 3. Adarsh Pal (Distillation Column Spec Optimisation)
- 4. Akash Kumar Gupta (Distillation Column Spec Optimisation)
- 5. Kushagra Tiwari (Cogeneration Plant Integration)
- 6. Saurabh Yadav (Cogeneration Plant Integration)
- 7. Snehil Tripathi (Distillation Column Spec Optimisation)
- 8. Tushar Verma (Cooling Water Cycle Design)

## Signatures of members:

| Aaditya Amlan Panda | Aodityaamlan Panda |
|---------------------|--------------------|
| Abhijit Dalai       | Abhijit Dalai      |
| Adarsh Pal          | AdarshPal          |
| Akash Kumar Gupta   | Akash Kumar Gupta  |
| Kushagra Tiwari     | Kushagra           |
| Saurabh Yadav       | School Jane        |
| Snehil Tripathi     | a we hid           |
| Tushar Verma        | Lushe              |