Decision Trees-2

Machine Learning Techniques

Karthik Thiagarajan

 $|x_2| < 5.5$

 $|x_1 < 3.5|$

Stopping Criterion

Stopping Criterion

• Leaves are pure (default)

Stopping Criterion

• Leaves are pure (default)

Pre-Pruning

• Minumum samples at leaf node

Stopping Criterion

• Leaves are pure (default)

Pre-Pruning

- Minumum samples at leaf node
- Maximum depth

Stopping Criterion

• Leaves are pure (default)

Pre-Pruning

- Minumum samples at leaf node
- Maximum depth
- Minimum decrease in impurity

Stopping Criterion

• Leaves are pure (default)

Pre-Pruning

- Minumum samples at leaf node
- Maximum depth
- Minimum decrease in impurity

Post-Pruning

Stopping Criterion

• Leaves are pure (default)

Pre-Pruning

- Minumum samples at leaf node
- Maximum depth
- Minimum decrease in impurity Post-Pruning

Stopping Criterion

• Leaves are pure (default)

Pre-Pruning

- Minumum samples at leaf node
- Maximum depth
- Minimum decrease in impurity Post-Pruning

Stopping Criterion

• Leaves are pure (default)

Pre-Pruning

- Minumum samples at leaf node
- Maximum depth
- Minimum decrease in impurity

Post-Pruning

• Cost Complexity Pruning

$$Cost = (0-1 Loss) + \lambda \cdot (Num of leaves)$$

Stopping Criterion

• Leaves are pure (default)

Pre-Pruning

- Minumum samples at leaf node
- Maximum depth
- Minimum decrease in impurity

Post-Pruning

- Cost Complexity Pruning
 - subtrees

 $\mathsf{Cost} = (0 - 1 \; \mathsf{Loss}) + \lambda \cdot (\mathsf{Num} \; \mathsf{of} \; \mathsf{leaves})$

Stopping Criterion

• Leaves are pure (default)

Pre-Pruning

- Minumum samples at leaf node
- Maximum depth
- Minimum decrease in impurity

Post-Pruning

- Cost Complexity Pruning
 - subtrees
 - regularization

 $\mathsf{Cost} = (0 - 1 \; \mathsf{Loss}) + \lambda \cdot (\mathsf{Num} \; \mathsf{of} \; \mathsf{leaves})$

Stopping Criterion

• Leaves are pure (default)

Pre-Pruning

- Minumum samples at leaf node
- Maximum depth
- Minimum decrease in impurity

Post-Pruning

- Cost Complexity Pruning
 - subtrees
 - regularization
 - Use CV to estimate λ

$$Cost = (0-1 Loss) + \lambda \cdot (Num of leaves)$$

 \mathbb{R}

 \mathbb{R}

 \mathbb{R}^2

 \mathbb{R}^2

 \mathbb{R}^2 \mathbb{R}^3

 \mathbb{R}^d

hyper-rectangles

Advantanges

Disadvantages

- Interpretable
- Can be displayed graphically
- Can be understood by non-experts

Advantanges

Disadvantages

- Interpretable
- Can be displayed graphically
- Can be understood by non-experts

- Low predictive power
- High variance, i.e., sensitive to small changes in the training dataset

Misc Details

```
Model:
Search space:
Type of algorithm:
Used for:

-

Terms:

-

-
```

Misc Details

- Model: tree
- Search space: trees
- Type of algorithm: greedy, top-down
- Used for:
 - classification
 - regression
- Terms:
 - CART
 - ID3
 - -C4.5