计算机网络实验报告

实验名称		跨交换机实现 VLAN		
组	号	第三组		
小组成员		张翔		
		钱宝强		
学院(系)		计算机科学与技术学院		
专	71/	软件工程		
任课老师		蒋海鹰		
日	期	2025. 3. 5		

一、实验名称

跨交换机实现 VLAN

二、实验目的

理解跨交换机之间 VLAN 的特点

三、背景描述

加入某企业有两个主要部分:销售部和技术部,其中销售部门的个人计算机系统分散连接,他们之间需要相互进行通信,但为了数据安全起见,销售部和技术部需要进行相互隔离,现要在交换机上做适当配置来实现这一目标。

四、技术原理

Tag Vlan 是基于交换机端口的另外一种类型,主要用于实现跨交换机的相同 VLAN 内主机之间可以直接访问,同时对于不同 VLAN 的主机进行隔离。Tag Vlan 遵循了 IEEE802.1q 协议的标准。在利用配置了 Tag vlan 的接口进行数据传输时,需要在数据帧内添加四个字节的 802.1q 标签信息,用于标识该数据帧属于哪个 VLAN 以便于对端交换机接收到数据帧后进行准确的过滤。

五、实验功能

使在同一 VLAN 里的计算机系统能跨交换机进行相互通信,而在不同 VLAN 里的计算机系统不能进行相互通信。

六、实验设备

S3760 (两台)、主机 (三台)、直连线 (四条)

七、实验拓扑

图1实验拓扑图

八、实验步骤

步骤 1. 在交换机 SwitchA 上创建 Vlan10, 并将 0/5 端口划分到 Vlan10 中。

SwitchA#configure terminal

SwitchA(config)# vlan 10

SwitchA(config-vlan)# name sales
SwitchA(config-vlan)#exit
SwitchA(config)#interface fastethernet0/5
SwitchA(config-if)#switchport access vlan 10

Telnet 172.16.0.3

```
S3760-1>en 14
Password:

S3760-1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
S3760-1(config)#vlan 10
2025-03-05 16:56:50 @5-CONFIG:Configured from outband
S3760-1(config-vlan)#name sales
2025-03-05 16:56:56 @5-CONFIG:Configured from outband
S3760-1(config-vlan)#exit
2025-03-05 16:56:59 @5-CONFIG:Configured from outband
S3760-1(config)#interface fastethernet0/5
2025-03-05 16:57:31 @5-CONFIG:Configured from outband
S3760-1(config-if)#switchport access vlan 10
2025-03-05 16:57:56 @5-CONFIG:Configured from outband
```

图 2 步骤一命令行操作界面

步骤 2. 在交换机 switchA 上创建 Vlan 20, 并将 0/15 端口划分到 Vlan 20 中。

SwitchA(config)# vlan 20 SwitchA(config-vlan)# name technical SwitchA(config-vlan)#exit SwitchA(config)#interface fastethernet0/15 SwitchA(config-if)#switchport access vlan 20

```
S3760-1(config-if)#exit
2025-03-05 16:58:23 @5-CONFIG:Configured from outband
S3760-1(config)#vlan 20
2025-03-05 16:58:30 @5-CONFIG:Configured from outband
S3760-1(config-vlan)#name technical
2025-03-05 16:58:41 @5-CONFIG:Configured from outband
S3760-1(config-vlan)#exit
2025-03-05 16:58:46 @5-CONFIG:Configured from outband
S3760-1(config)#interface fastethernet0/15
2025-03-05 16:59:14 @5-CONFIG:Configured from outband
S3760-1(config-if)#switchport access vlan 20
2025-03-05 16:59:32 @5-CONFIG:Configured from outband
```

图 3 步骤二命令行操作界面

步骤 3. 把交换机 SwitchA 与交换机 SwitchB 相连的端口(假设为 0/24 端口)定义为 tag vlan 模式。

SwitchA(config)#interface fastethernet0/24 SwitchA(config-if)#switchport mode trunk !将 fastethernet 0/24端口设为 tag vlan 模式

```
S3760-1(config-if)#exit
2025-03-05 16:59:46 @5-CONFIG:Configured from outband
S3760-1(config)#interface fastethernet0/24
2025-03-05 17:00:05 @5-CONFIG:Configured from outband
S3760-1(config-if)#switchport mode trunk
2025-03-05 17:01:27 @5-CONFIG:Configured from outband
S3760-1(config-if)#exit
2025-03-05 17:01:53 @5-CONFIG:Configured from outband
S3760-1(config)#exit
```

图 4 步骤三命令行操作界面

步骤 4. 在交换机 SwitchB 上创建 Vlan 10, 并将 0/5 端口划分到 Vlan 10 中。

SwitchB#configure terminal
SwitchB(config)# vlan 10
SwitchB(config-vlan)# name sales
SwitchB(config-vlan)#exit
SwitchB(config)#interface fastethernet0/5
SwitchB(config-if)#switchport access vlan 10


```
S3760-2>en 14
Password:

S3760-2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
S3760-2(config)#vlan 10
2025-03-05 16:12:10 @5-CONFIG:Configured from outband
S3760-2(config-vlan)#name sales
2025-03-05 16:12:14 @5-CONFIG:Configured from outband
S3760-2(config-vlan)#exit
2025-03-05 16:12:16 @5-CONFIG:Configured from outband
S3760-2(config)#interface fastethernet0/5
2025-03-05 16:12:40 @5-CONFIG:Configured from outband
S3760-2(config-if)#switchport access vlan 10
2025-03-05 16:12:51 @5-CONFIG:Configured from outband
S3760-2(config-if)#exit
```

图 5 步骤四命令行操作界面

步骤 5. 把交换机 SwitchB 与交换机 SwitchA 相连的端口(假设为 0/24 端口)定义为 tag vlan 模式。

SwitchB(config)#interface fastethernet0/24 SwitchB(config-if)#switchport mode trunk !将 fastethernet 0/24端口设为 tag vlan 模式

```
S3760-2(config-if)#exit
2025-03-05 16:13:00 @5-CONFIG:Configured from outband
S3760-2(config)#interface fastethernet0/24
2025-03-05 16:13:24 @5-CONFIG:Configured from outband
S3760-2(config-if)#switchport mode trunk
2025-03-05 16:13:39 @5-CONFIG:Configured from outband
S3760-2(config-if)#exit
2025-03-05 16:13:48 @5-CONFIG:Configured from outband
```

图 6 步骤五命令行操作界面

九、验证测试

测试 1. 验证 SwitchA 上端口划分是否正确(Vlan10 是否创建,并将 0/5 端口划分到 Vlan 10 中; Vlan20 是否创建,并将 0/15 端口划分到 Vlan20 中; 0/24 端口是否被设置为 tag vlan 模式)

SwitchA#show vlan !查看当前交换机的所有 VLAN 信息

	- 三十二四人(八十二)//111	, 2.1. 1.6.
S3760-1#show v1an		
VLAN Name	Status	Ports
1 default	active	Fa0/1 ,Fa0/2 ,Fa0/3 ,Fa0/4 Fa0/6 ,Fa0/7 ,Fa0/8 ,Fa0/9 Fa0/10,Fa0/11,Fa0/12,Fa0/13 Fa0/14,Fa0/16,Fa0/17,Fa0/18 Fa0/19,Fa0/20,Fa0/21,Fa0/22 Fa0/23,Fa0/24,Gi0/25,Gi0/26 Gi0/27,Gi0/28
10 sales	active	Fa0/5 , Fa0/24
20 technical	active	Fa0/15, Fa0/24

图 7 测试 1 命令行操作界面

测试 2. 验证 SwitchB 上端口划分是否正确 (Vlan10 是否创建,并将 0/5 端口划分到 Vlan 10 中; 0/24 端口是否被设置为 tag vlan 模式)

SwitchB#show vlan !查看当前交换机的所有 VLAN 信息

S3760-2#show v1an		
VLAN Name	Status	Ports
1 default	active	Fa0/1 ,Fa0/2 ,Fa0/3 ,Fa0/4 Fa0/6 ,Fa0/7 ,Fa0/8 ,Fa0/9 Fa0/10,Fa0/11,Fa0/12,Fa0/13 Fa0/14,Fa0/15,Fa0/16,Fa0/17 Fa0/18,Fa0/19,Fa0/20,Fa0/21 Fa0/22,Fa0/23,Fa0/24,Gi0/25 Gi0/26,Gi0/27,Gi0/28
10 sales	active	Fa0/5 ,Fa0/24

图 8 测试 2 命令行操作界面

测试 3. 验证 PC1 与 PC3 能相互通信,但 PC2 与 PC3 不能相互通信。

```
C:\Users\Net317>ping 192.168.1.3

正在 Ping 192.168.1.3 具有 32 字节的数据:
来自 192.168.1.3 的回复:字节=32 时间<1ms TTL=128

192.168.1.3 的 Ping 统计信息:
数据包:已发送=4.已接收=4,丢失=0(0% 丢失),往返行程的估计时间(以毫秒为单位):最短=0ms,最长=0ms,平均=0ms

C:\Users\Net317>ping 192.168.1.2

正在 Ping 192.168.1.1 的回复:无法访问目标主机。请求超时。请求超时。请求超时。

192.168.1.1 的回复:字节的数据:
来自 192.168.1.1 的回复:字节=32 时间<1ms TTL=128
```

图 9 测试 3 命令行操作界面

十、分析讨论

VLAN (Virtual Local Area Network, 虚拟局域网): 它允许网络管理员将同一物理网络下的设备划分为多个逻辑子网,使得不同 VLAN 中的设备无法直接通信,而相同 VLAN 内的设备即使跨交换机也可以互相通信。

将销售部和技术部分别划分到不同的 VLAN 中,即便它们共用同一物理网络设备,也能通过逻辑分段达到数据隔离的效果,从而提高网络的安全性和管理效率。

Tag VLAN 机制:实验中采用 IEEE802. 1q 标准,通过在数据帧中加入 4 字节的 VLAN 标签,使交换机能够识别数据帧所属的 VLAN。这种机制不仅保证了同一 VLAN 内主机的跨交换机通信,同时也实现了不同 VLAN 之间的有效隔离。

Trunk 模式: 这是交换机端口的一种工作模式,允许多个 VLAN 的数据通过该端口进行传输。它主要用于交换机之间的互联,或者交换机与支持 VLAN 的路由器之间的连接,确保多个 VLAN 可以跨交换机进行通信。主机接入的端口配置为 Access 模式,直接关联特定的 VLAN,而连接交换机的端口则配置为 Trunk 模式,以便传递多个 VLAN 的信息。