

Khoa Công Nghệ Thông Tin Trường Đại Học Cần Thơ

Phương pháp học Bayes Bayesian classification

Đỗ Thanh Nghị dtnghi@cit.ctu.edu.vn

> Cần Thơ 12-02-2019

Nội dung

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- Kết luận và hướng phát triển

Nội dung

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- Kết luận và hướng phát triển

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Bayesian classification

- lớp các giải thuật học
 - dựa trên định lý Bayes
 - mang Bayes và naive Bayes
 - kết quả sinh ra có thể dịch được
 - giải quyết các vấn đề về phân lớp, gom nhóm, etc.
 - được ứng dụng thành công : phân tích dữ liệu, phân loại text, spam, etc.

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Top 10 DM algorithms (2015)

Here are the algorithms:

- 1. C4.5
- · 2. k-means
- · 3. Support vector machines
- 4. Apriori
- 5. EM
- 6. PageRank
- 7. AdaBoost
- 8. kNN
- 9. Naive Bayes
- 10. CART

Nội dung

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- Kết luận và hướng phát triển

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Giải thuật naive Bayes

- ngây thơ
 - các thuộc tính (biến) có độ quan trọng như nhau
 - các thuộc tính (biến) độc lập có điều kiện khi được cho lớp/nhãn
- nhận xét
 - giả thiết các thuộc tính độc lập không bao giờ đúng
 - nhưng trong thực tế, naive Bayes cho kết quả khá tốt ©

Dữ liệu weather, dựa trên các thuộc Giải thuật học của naive Bayes kết luận và hướng phát triển tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Dữ liệu weather, dựa trên các thuộc Giải thuật học của naive Bayes kết luận và hướng phát triển tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

`	\		1 /		J)		1	J		•	(1 .	<i>'</i>		
Out	tlook		Temp	eratur	е	Hu	midi	ty			Windy		Pl	ay
	Yes	No		Yes	No		Ye	25	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	ϵ	5	1	True	3	3		
Rainy	3	2	Cool	3	1									
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/	' 9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/	/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5			Ou	tlook	Temp	Humidity	Windy	Play	
			0001					Su	nny	Hot	High	False	No	
								Su	nny	Hot	High	True	No	
								Ov	ercast	Hot	High	False	Yes	
								Ra	iny	Mild	High	False	Yes	
								Ra	iny	Cool	Normal	False	Yes	
								Ra	iny	Cool	Normal	True	No	
								Ov	ercast	Cool	Normal	True	Yes	
								Su	nny	Mild	High	False	No	
								Su	nny	Cool	Normal	False	Yes	
								Ra	iny	Mild	Normal	False	Yes	
								Su	nny	Mild	Normal	True	Yes	
								Ov	ercast	Mild	High	True	Yes	
								Ov	ercast	Hot	Normal	False	Yes	
								Ra	iny	Mild	High	True	No	9

Dữ liệu weather, dựa trên các thuộc : Giải thuật học của naive Bayes kết luận và hướng phát triển tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Out	tlook		Temp	eratur	е	Hu	midity			Windy		PI	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

quyết định (play=yes/no)

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Giới thiệu về Bayesian classification

Likelihood(yes) = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

Likelihood(no) = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Xác suất:

$$P(yes) = 0.0053 / (0.0053 + 0.0206) = 0.205$$

$$P(no) = 0.0206 / (0.0053 + 0.0206) = 0.795$$

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Định lý Bayes

• Probability of event H given evidence E:

$$\Pr[H \mid E] = \frac{\Pr[E \mid H] \Pr[H]}{\Pr[E]}$$

- A priori probability of H : Pr[H]
 - Probability of event *before* evidence is seen
- A posteriori probability of $H : Pr[H \mid E]$
 - Probability of event *after* evidence is seen

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Luật Bayes

- học phân lớp khi có dữ liệu đến
 - Evidence $E = d\tilde{u}$ liệu
 - Event H = giá trị lớp của dữ liệu
- naïve :

$$\Pr[H \mid E] = \frac{\Pr[E_1 \mid H] \Pr[E_2 \mid H] \dots \Pr[E_n \mid H] \Pr[H]}{\Pr[E]}$$

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Luật Bayes

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

$$\Pr[yes \mid E] = \Pr[Outlook = Sunny \mid yes]$$

$$\times \Pr[Temperature = Cool \mid yes]$$

$$\times \Pr[Humidity = High \mid yes]$$

$$\times \Pr[Windy = True \mid yes]$$

$$\times \frac{\Pr[yes]}{\Pr[E]}$$

$$= \frac{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{\Pr[E]}$$

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Xác suất = 0

- giá trị của thuộc tính không xuất hiện trong tất cả các lớp ("Humidity = high" của lớp "yes")
 - Probability will be zero! Pr[Humidity = High | yes] = 0
 - A posteriori probability will also be zero! Pr[yes | E] = 0
- sử dụng *Laplace estimator*
- xác suất không bao giờ có giá trị 0

Laplace estimator

ví dụ: thuộc tính *outlook* cho lớp *yes*

$$\frac{2+\mu/3}{9+\mu}$$

$$\frac{4+\mu/3}{9+\mu}$$

$$\frac{3+\mu/3}{9+\mu}$$

Sunny

Overcast

Rainy

trọng số có thể không bằng nhau, nhưng tổng phải là 1

$$\frac{2 + \mu p_1}{9 + \mu}$$

$$\frac{4 + \mu p_2}{9 + \mu}$$

$$\frac{3+\mu p_3}{9+\mu}$$

Sunny

Overcast

Rainy

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Giá trị thuộc tính nhiễu

- học : bỏ qua dữ liệu nhiễu
- phân lớp: bỏ qua các thuộc tính nhiễu
- ví dụ:

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?

Likelihood(yes) =
$$3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$$

Likelihood(no) = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$
P(yes) = $0.0238 / (0.0238 + 0.0343) = 41$
P(no) = $0.0343 / (0.0238 + 0.0343) = 59$

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Outlook	Temperature	Humidity	Windy	Play
sunny	85	85	false	no
sunny	80	90	true	no
overcast	83	78	false	yes
rain	70	96	false	yes
rain	68	80	false	yes
rain	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rain	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rain	71	80	true	no

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

- giả sử các thuộc tính có phân phối Gaussian
- hàm mật độ xác suất được tính như sau
 - mean μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

standard deviation σ

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

hàm mật độ xác suất f(x)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 Karl Gauss, 1777-1855 great German mathematician

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

0ι	ıtlook		Temp	eratur	е	Hu	midity		V	Vindy		PI	ay
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny overcast rainy	2 4 3	3 0 2		83 70 68 64 69 75 75 72	85 80 65 72 71		86 96 80 65 70 80 70	85 90 70 95 91	false true	6 3	2 3	9	5
sunny overcast rainy	2/9 4/9 3/9	3/5 0/5 2/5	mean std. dev.	73 6.2	74.6 7.9	mean std. dev.	75 79.1 10.2	86.2 9.7	false true	6/9 3/9	2/5 3/5	9/14	5/14

ví dụ:
$$f(temperature = 66 \mid yes) = \frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

phân lớp

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

Likelihood(yes) = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$

Likelihood(no) = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$

P(yes) = 0.000036 / (0.000036 + 0.000136) = 20.9

P(no) = 0.000136 / (0.000036 + 0.000136) = 79.1

Nội dung

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- Kết luận và hướng phát triển

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Kết luận

naïve Bayes

- cho kết quả tốt trong thực tế mặc dù chịu những giả thiết về tính độc lập có điều kiện (khi được cho nhãn/lớp) của các thuộc tính
- phân lớp không yêu cầu phải ước lượng một cách chính xác xác suất
- dễ cài đặt, học nhanh, kết quả dễ hiểu
- sử dụng trong phân loại text, spam, etc
- tuy nhiên khi dữ liệu có nhiều thuộc tính dư thừa thì naïve Bayes không còn hiệu quả
- dữ liệu liên tục có thể không tuân theo phân phối chuẩn (=> kernel density estimators)

- Giới thiệu về Bayesian classification
- Giải thuật học của naive Bayes
- kết luận và hướng phát triển

Hướng phát triển

naïve Bayes

- chọn thuộc tính con từ các thuộc tính ban đầu
- chỉ sử dụng các thuộc tính con để học phân lớp
- mạng Bayes : mối liên quan giữa các thuộc tính
- tìm kiếm thông tin (ranking)

