

Elite Series

User Manual

EL-2800M-PMCL EL-2800C-PMCL

2.8M Digital Progressive Scan Monochrome and Color Camera

Document Version: 1.5 EL-2800-PMCL_Ver.1.5_Oct2013

Notice

The material contained in this manual consists of information that is proprietary to JAI Ltd., Japan and may only be used by the purchasers of the product. JAI Ltd., Japan makes no warranty for the use of its product and assumes no responsibility for any errors which may appear or for damages resulting from the use of the information contained herein. JAI Ltd., Japan reserves the right to make changes without notice.

Company and product names mentioned in this manual are trademarks or registered trademarks of their respective owners.

Warranty

For information about the warranty, please contact your factory representative.

Certifications

CE compliance

As defined by the Directive 2004/108/EC of the European Parliament and of the Council, EMC (Electromagnetic compatibility), JAI Ltd., Japan declares that EL-2800M-PMCL and EL-2800C-PMCL comply with the following provisions applying to its standards.

EN 61000-6-3 (Generic emission standard part 1)

EN 61000-6-2 (Generic immunity standard part 1)

FCC

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- 1. Reorient or relocate the receiving antenna.
- 2. Increase the separation between the equipment and receiver.
- **3**. Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- 4. Consult the dealer or an experienced radio/TV technician for help.

<u>Warning</u>

Changes or modifications to this unit not expressly approved by the party responsible for FCC compliance could void the user's authority to operate the equipment.

Supplement

The following statement is related to the regulation on "Measures for the Administration of the control of Pollution by Electronic Information Products", known as "China RoHS". The table shows contained Hazardous Substances in this camera.

mark shows that the environment-friendly use period of contained Hazardous Substances is 15 years.

重要注意事项

有毒,有害物质或元素名称及含量表

根据中华人民共和国信息产业部『电子信息产品污染控制管理办法』,本产品《 有毒,有害物质或元素名称及含量表 》如下.

	有毒有害物质或元素						
部件名称	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(VI))	多溴联苯 (PPB)	多溴二苯醚 (PBDE)	
螺丝固定座	×	0	0	0	0	0	
连 接插 头	×	0	0	0	0	0	
电路板	×	0	0	0	0	0	

- 〇:表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006规定的限量要求以下。
- ×: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006规定的限量要求。
- (企业可在此处、根据实际情况对上表中打"×"的技术原因进行进一步说明。)

环保使用期限

电子信息产品中含有的有毒有害物质或元素在正常使用的条件下不会发生外 泄或突变、电子信息产品用户使用该电子信息产品不会对环境造成严重污染 或对基人身、财产造成严重损害的期限。

数字「15」为期限15年。

Supplement

The following statement is related to the regulation on "Measures for the Administration of the control of Pollution by Electronic Information Products", known as "China RoHS". The table shows contained Hazardous Substances in this camera.

mark shows that the environment-friendly use period of contained Hazardous Substances is 15 years.

重要注意事项

有毒,有害物质或元素名称及含量表

根据中华人民共和国信息产业部『电子信息产品污染控制管理办法』,本产品《 有毒,有害物质或元素名称及含量表 》如下.

有毒有害物质或元素						
铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(VI))	多溴联苯 (PPB)	多溴二苯醚 (PBDE)	
×	0	0	0	0	0	
×	0	×	0	0	0	
×	0	0	0	0	0	
×	0	0	0	0	0	
	(Pb) X X X	(Pb) (Hg) X	铅 (Rb)	田 (Pb) (Hg) (Cd) (Cr(VI)) (Cr(VI)) (Cd) (Cr(VI)) (Cd) (Cr(VI))	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	

- 表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006规定的限量要求以下。
- ×:表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006规定的限量要求。

环保使用期限

电子信息产品中含有的有毒有害物质或元素在正常使用的条件下不会发生外 泄或突变、电子信息产品用户使用该电子信息产品不会对环境造成严重污染 或对基人身、财产造成严重损害的期限。

数字「15」为期限15年。

- Contents -

Before using this manual	- 6	-
1. General	- 7	-
2. Camera composition	- 7	_
3. Main feature's		
4. Locations and functions		
4.1 Locations and functions		
4.2. Rear Panel		
5. Input and output		
5.1 Connectors and pin assignment		
5.1.1 12-Pin connector		
5.1.1.1 Figure		
5.1.1.2 Pin assignment	- 11	
5.1.2 Camera Link connector	- 11	-
5.1.2.1 Figure		
5.1.2.2 Pin assignment		
5.1.3 AUX Standard Hirose 10-Pin Connector		
5.1.4 AUX Type 2 Hirose 10-Pin Connector (Factory option)		
5.1.5 AUX Type 3 Hirose 10-Pin Connector (Factory option)		
5.2 Camera Link interface		
5.3 Digital IN/OUIT interface		
5.3.1 Line Selector		
5.3.2 Line source		
5.3.4 Line Inverter.		
5.3.5 Line Status		
5.3.6 Line Format		
5.3.7 GPIO		
5.4 Pulse Generator		
5.4.1 Clock Pre-scaler		
5.4.2 Pulse Generator Selector		
5.4.3 Pulse Generator Length		
5.4.4 Pulse Generator Start Point		
5.4.5 Pulse Generator End Point		
5.4.6 Pulse Generator Repeat Count		
5.4.7 Pulse Generator Clear Activation		
5.4.8 Pulse Generator Clear Sync Mode		
5.4.9 Pulse Generator Clear Source		
5.4.10 Pulse Generator Inverter		
5.4.11 Pulse Generator Setting table		
6. Sensor layout, output format and timing	23	-
6.1 Sensor layout		
6.1.1 Monochrome sensor		
6.1.2 Bayer color sensor		
6.2. Camera output format		
6.2.1 1X-1Y		
6.2.2 1X-2YE		
6.2.4 1X2-2YE		
6.3 Output timing		
6.3.1 Horizontal timing		
6.3.1.1 Output format 1X2-2YE , 1X2-1Y		
6.3.1.1 Output format 1Y-2YF 1Y-1Y	- 26	

6.3.2	Vertical timing	27 -
6.3	.2.1 Output format 1X2-2YE , 1X-2YE	
6.3	.2.2 Output format 1X2-1Y , 1X-1Y	28 -
6.3.3	ROI (Region Of Interest)	28 -
6.4	Digital output bit allocation	
	perating modes	
7.1.	Acquisition control (change the frame rate)	
7.1.	• • • • • • • • • • • • • • • • • • • •	
7.1.1		
7.2.	Exposure control	
7.2.1		
7.2.2	F	
7.2.3	F	
7.3.	Trigger Mode	
7.3.1	33	
7.3.2	33	
7.3.3	33	
7.3.4	33 ,	
7.4.	Normal continuous operation (Timed Exposure Mode/Trigger Mode OFF)	
7.5.	Timed (EPS) mode	- 33 -
7.5.1	If the overlap setting is lse i	33 -
7.5.2	If the overlap setting is lse is 54	34 -
7.6.	Trigger Width mode	- 34 -
7.6.1		
7.6.2		
7.7.	RCT mode	
7.8.	PIV (Particle Image Velocimetry)	
7.9.	Sequential Trigger	
7.9.1	1 00	
7.9.1		
7.10.	Operation and function matrix	
	ther functions	
8.1	Black level control	
8.1.1	= 100 -	
8.1.2	2.46 20.00	
8.1.3		
8.2	Gain control	
8.2.1		
8.2.2		
8.2.3		
8.2.4		
8.2.5		
8.3.	LUT	
8.3.1	LUT Enable	46 -
8.3.2		
8.3.3		
8.4.	Gamma	- 47 -
8.5.	Shading Correction	
8.6.	Blemish compensation	
8.7.	Bayer color interpolation (Only for EL-2800C)	
8.8	Lens	
8.8.1		
8.8.2		
	2.1 P-Iris lens select	
× ×		

See the possibil	ities
8.8.2.2 Step max	
8.8.2.3 Position	
8.8.2.4 Current F value	
8.8.2.5 P-Iris Auto min. / P-Iris Auto max	
8.8.3 Motorized lenses	
8.8.3.1 Iris	
8.8.3.2 Zoom	
8.8.3.3 Focus+	- 51 -
8.8.4 Exclusive video output signal for iris control	- 51 -
8.9 ALC	52 -
9. Camera Control Tool	
10. External appearance and dimensions	54 -
11. Specifications	
11.1 Spectral response	
11.2 Specifications table	
Appendix 1 Short ASCII Command Communication Protocol	
1. Communication setting	
2. Protocol (Short ASCII Command)	
2.1 Transmit the setting command to camera	
2.2 Transmit the request command to camera	
2.3 Switching baud rate between PC and camera	
2.4 Command list (Short ASCII command)	
2.4.1 GenCP Bootstrap Register	
2.4.2 Technology Specific Bootstrap Register	
2.4.3 Device Control	
2.4.4 Image Format Control	
2.4.5 Acquisition Control	
2.4.6 Digital I/O Control	- 62 -
2.4.7 Analog Control	- 64 -
2.4.8 LUT Control	- 66 -
2.4.9 Transport Layer Control	- 66 -
2.4.10 User Set Control	- 66 -
2.4.11 JAI-Custom	- 67 -
Appendix 2	82 -
1. Precautions	82 -
2. Typical Sensor Characteristics	
3. Caution when mounting a lens on the camera	
4. Caution when mounting the camera	83 -
5. Exportation	
6. References	
Manual change history	
User's Record	
O DC O INCCOL O	.

Before using this manual

EMVA 1288

With regard to signal to noise ratio in this manual, specifications measured by EMVA 1288 are used together with specifications by a traditional measurement method.

EMVA 1288 is a more complete measurement that considers multiple noise sources, including random noise, pattern noise, and shading. Additionally, EMVA 1288 incorporates temporal variances in pixel output by capturing 100 frames of data and computing the RMS variations over the captured frames. Because of the comprehensive nature of the noise analysis and the additional consideration for RMS variances over time, EMVA 1288 SNR measurements are inherently lower than the traditional SNR measurements given by manufacturers. However, the comprehensive nature combined with rigid test parameters, means that all manufacturers' are measuring their products equally and EMVA 1288 tested parameters can be compared among different manufacturers' products.

In order to learn more about EMVA 1288, please visit http://www.emva.org

Frame grabber board

The EL-2800-PMCL complies with "Power over Camera Link" which enables power to be supplied to the camera through the Camera Link cable(s). Because the power requirements of the camera exceed the amount of power which can be provided over a single PoCL connection, power must be supplied via both Camera Link cables in order to utilize the PoCL capabilities. If you plan to use this function, please be sure that the frame grabber board you are using also complies with this specification. Alternatively, the camera can be powered via a separate power supply connected to the 12-pin Hirose connector.

See the possibilities

1. General

The EL-2800M-PMCL and EL-2800C-PMCL are the first new Elite Series cameras to be introduced. They provide high picture quality, such as high sensitivity and low noise, suitable for machine vision applications. The EL-2800M-PMCL is a monochrome progressive scan CCD camera and the EL-2800C-PMCL is the equivalent Bayer mosaic progressive scan CCD camera. Both are equipped with a 2/3-inch CCD sensor offering 2.83 million pixels resolution and a 4:3 aspect ratio. They provide 54.7 frames per second for continuous scanning with 1920 x 1440 full pixel resolution for both monochrome and raw Bayer output.

8-bit, 10-bit or 12-bit output can be selected for both monochrome and Bayer outputs. The EL-2800C-PMCL is also capable of performing in-camera color interpolation to produce 24-bit (8-bit per color) RGB output at 15.8 fps. Video output is via a Mini Camera Link interface supporting both Base and Medium configurations. A full pixel readout, partial scan readout, or binning mode (monochrome only) can be selected depending on the application.

EL-2800M-PMCL and EL-2800C-PMCL have various comprehensive functions needed for automated optical inspection applications, such as solid state device inspection or material surface inspection. They incorporate video processing functions such as a look-up table, flat field shading compensation and blemish compensation in addition to fundamental functions such as trigger, exposure setting and video level control.

As a common Elite Series feature, a new connector for lens control is employed. EL-2800M-PMCL and EL-2800C-PMCL support P-iris and motor-driven lenses as standard lens control capabilities. Factory options are available to configure this connector to support DC iris systems as well as provide a video iris output signal, or to provide additional TTL IN and OUT lines.

The latest version of this manual can be downloaded from: www.jai.com

The latest version of the Camera Control Tool for the EL-2800M-PMCL and EL-2800C-PMCL can be downloaded from: www.jai.com

For camera revision history, please contact your local JAI distributor.

2. Camera composition

The standard camera composition is as follows.

Camera body 1 Sensor protection cap 1 Dear Customer (sheet) 1

The following optional accessories are available.

Tripod base MP-42

Power supply unit PD-12 series

3. Main features

- New Elite Series, 2/3 " progressive scan camera
- Utilizes Mini Camera Link interface with Base and Medium configurations
- Aspect ratio 4:3, 1920 (h) x 1440 (v), 2.8 million effective pixels
- 4.54 µm square pixels
- S/N 61dB for monochrome and 58.5 dB for color (traditional measurement)
- 8-bit, 10-bit or 12-bit output for monochrome and Bayer or 8-bit per color output for RGB color
- 54.7 frames/second with full resolution in continuous operation for 4-tap output (monochrome or Bayer), 15.8 frames/second for 1-tap output (RGB output in-camera interpolation))
- Various readout modes, including horizontal and vertical binning (EL-2800M-PMCL only) and ROI (Region Of Interest) for faster frame rates
- 0dB to +30dB gain control for EL-2800M-PMCL and 0dB to +27dB for EL-2800C-PMCL
- 10 μ s (1/100,000) to 8 seconds exposure control in 1 μ s step
- Auto exposure control
- Timed and trigger width exposure control,
- RCT, PIV and sequential trigger modes for specific applications
- ALC control with combined function of AGC, auto exposure and auto iris
- Various pre-processing circuits are provided

Programmable LUT

Gamma correction from 0.45 to 1.0

Flat field correction

Bayer white balance with manual or one-push auto (EL-2800C-PMCL only)

Bayer color interpolation (EL-2800C-PMCL only)

Blemish compensation

- Auto iris lens video output with H-sync
- New Hirose 10P connector for lens interface including P-Iris lens control
- C-mount for lens mount
- Setup by Windows XP/Vista/7 via serial communication

See the possibilities

4. Locations and functions

4.1 Locations and functions

① Lens mount C-mount (Note *1)

2 10-pin AUX connector
 3 LED
 Standard (Connector for lens control)
 Indication for power and trigger input

① 12-pin connector DC+12V and trigger input

© Camera Link Connector 2
 © Camera Link Connector 1
 Digital video output (Medium configuration) (Note *2)
 Digital video output (Base configuration) (Note *2)

Mounting hole
M3 depth 5 mm for fixing the camera to the mount plate or tripod mount plate (Note *3)

*1) Note: Rear protrusion on C-mount lens must be less than 10.0 mm.

*2) Note: When a Camera Link cable is connected to the camera, please do not excessively tighten screws by using a driver. The Camera Link receptacle on the camera might be damaged. For security, the strength to tighten screws is less than 0.147 Newton meter (Nm). Tightening by hand is sufficient in order to achieve this.

*3) Note: The part number for the tripod adapter plate (with 1/4"-20 thread) is MP-42 (option).

Fig. 1 Locations

4.2. Rear Panel

The rear panel mounted LED provides the following information:

• Amber: Power connected - initiating

This light goes OFF after initiating.

• Steady green: Camera is operating in Continuous mode

* Flashing green: The camera is receiving external triggering

Note: The interval of flashing does not correspond with external trigger duration.

Fig. 2 Rear panel

See the possibilities

5. Input and output

- 5.1 Connectors and pin assignment
- 5.1.1 12-Pin connector
- 5.1.1.1 Figure

Type: HR10A-10R-12PB-01 (Hirose) male or equivalent. Use the part number HR10A-10P-12S for the cable side

Fig.3 Hirose 12-pin connector

5.1.1.2 Pin assignment

Table - 1 12P pin assignment

Pin no.	Signal	Remarks
1	GND	
2	DC input	+12V to +24V
3	GND	
4	Iris video	Exclusive video output for auto iris
5	NC	
6	NC	
7	NC	
8	NC	
9	TTL out 1	Line 1 (Note*1)
10	TTL In 1	Line 4 (Note*2)
11	DC input	+12V to +24V
12	GND	

^{*1)} Factory default setting is an Exposure Active signal with negative polarity.

5.1.2 Camera Link connector

5.1.2.1 Figure

Type: 26-pin Mini Camera Link Connector (Honda HDR-EC26FYTG2-SL+)

Fig.4 Camera Link connector

^{*2)} Factory default setting is a trigger input

5.1.2.2 Pin assignment

Table - 2 Camera Link connector 1 Pin assignment

Pin No	In/Out	Name	Note
1,26	1,26		Power
2(-),15(+)	0	TxOUT0	
3(-),16(+)	0	TxOUT1	Data out
4(-),17(+)	0	TxOUT2	
5(-),18(+)	0	TxClk	Clock for CL
6(-),19(+)	0	TxOUT3	Data out
7(+),20(-)		SerTC (RxD)	LVDS Serial Control
8(-),21(+)	0	SerTFG (TxD)	EVD3 Serial Control
9(-),22(+)		CC1 (Trigger)	Trigger IN
10(+),23(-)		N.C	
11,24		N.C	
12,25		N.C	
13,14		Shield	Power return

Table - 3 Camera Link connector 2 pin assignment

Pin No	In/Out	Name	Note
1,26		Power	Power
2(-),15(+)	0	TxOUT0	
3(-),16(+)	0	TxOUT1	Data out
4(-),17(+)	0	TxOUT2	
5(-),18(+)	0	TxClk	Clock for CL
6(-),19(+)	0	TxOUT3	Data out
7(+),20(-)		N.C	
8(-),21(+)	0	N.C	
9(-),22(+)		N.C	
10(+),23(-)		N.C	
11,24		N.C	
12,25		N.C	
13,14		Shield	Power return

5.1.3 AUX Standard Hirose 10-Pin Connector

Type: HIROSE 10-Pin Connector 3260-10S3(55)

Fig.5 Hirose 10P connector

See the possibilities

Table - 4 AUX Standard Hirose 10P connector pin assignment

No	1/0	Name	Note
1	0	DRIVE IRIS+	Motorized Lens
2	0	DRIVE FOCUS+	Motorized Lens
3	0	DRIVE ZOOM+	Motorized Lens
4	0	COMMON	Motorized Lens
5		GND	
6	0	P-IRIS OUT1A	P-Iris Lens
7	0	P-IRIS OUT1B	P-Iris Lens
8	0	P-IRIS OUT2A	P-Iris Lens
9	0	P-IRIS OUT2B	P-Iris Lens
10	0	GND	

5.1.4 AUX Type 2 Hirose 10-Pin Connector (Factory option)

HIROSE 10-Pin Connector 3260-10S3(55)

Note: This is a factory option.

Table - 5 AUX connector Type 2 pin assignment

No	1/0	Name	Note
1	0	Video Signal	Video Iris Lens
2	0	Power DC+12V	Video Iris Lens
3		NC	
4		NC	
5		GND	
6	0	DC IRIS DAMP-	DC Iris
7	0	DC IRIS DAMP+	DC Iris
8	0	DC IRIS DRIVE+	DC Iris
9	0	DC IRIS DRIVE-	DC Iris
10		GND	

5.1.5 AUX Type 3 Hirose 10-Pin Connector (Factory option)

HIROSE 10-Pin Connector 3260-10S3(55)

Note: This is a factory option.

Table - 6 AUX connector Type 3 pin assignment

No	1/0	Name	Note
1	0	TTL OUT2	Line8
2	0	TTL OUT3	Line9
3	ı	TTL_IN2	Line10
4		NC	
5		GND	
6	- 1	LVDS_IN1+	Line11
7	ı	LVDS_IN1-	
8		NC	
9		GND	
10		GND	

5.2 Camera Link interface

Table - 7 Camera Link interface

	EL-2800M/C-PMCL						
Port	Camera L	Link Configuration Base		Base	Medium	Base	
		a Link port/bit	1Tap / 12bit	2ap / 12bit	4 Tap / 12bit	1 Tap / 8bit	
	GenICa	m Tap Geometry	1X1 - 1Y	1X - 2YE/1X2-1Y	1x2 - 2YE	RGB	
	Port A0	TxIN 0	Tap1 D0	Tap 1 D0	Tap 1 D0	RD 0	
	Port A1	TxIN 1	Tap1 D1	Tap 1 D1	Tap 1 D1	RD 1	
	Port A2	TxIN 2	Tap1 D2	Tap 1 D2	Tap 1 D2	RD 2	
	Port A3	TxIN 3	Tap1 D3	Tap 1 D3	Tap 1 D3	RD 3	
_	Port A4	TxIN 4	Tap1 D4	Tap 1 D4	Tap 1 D4	RD 4	
D	Port A5	TxIN 6	Tap1 D5	Tap 1 D5	Tap 1 D5	RD 5	
i	Port A6	TxIN 27	Tap1 D6	Tap 1 D6	Tap 1 D6	RD 6	
g	Port A7	TxIN 5	Tap1 D7	Tap 1 D7	Tap 1 D7	RD 7	
;	Port B0	TxIN 7	Tap1 D8	Tap 1 D8	Tap 1 D8	G D2	
1	Port B1	TxIN 8	Tap1 D9	Tap 1 D9	Tap 1 D9	G D3	
t	Port B2	TxIN 9	Tap1 D10	Tap 1 D10	Tap 1 D10	G D4	
a	Port B3	TxIN 12	Tap1 D11	Tap 1 D11	Tap 1 D11	G D5	
1	Port B4	TxIN 13		Tap 2 D8	Tap 2 D8	G D6	
•	Port B5	TxIN 14		Tap 2 D9	Tap 2 D9	G D7	
	Port B6	TxIN 10		Tap 2 D10	Tap 2 D10	G D8	
I	Port B7	TxIN 11		Tap 2 D11	Tap 2 D11	G D9	
/	Port C0	TxIN 15		Tap 2 D0	Tap 2 D0	B D2	
0	Port C1	TxIN 18		Tap 2 D1	Tap 2 D1	B D3	
-	Port C2	TxIN 19		Tap 2 D2	Tap 2 D2	B D4	
	Port C3	TxIN 20		Tap 2 D3	Tap 2 D3	B D5	
-	Port C4	TxIN 21		Tap 2 D4	Tap 2 D4	B D6	
	Port C5	TxIN 22		Tap 2 D5	Tap 2 D5	B D7	
1	Port C6	TxIN 16		Tap 2 D6	Tap 2 D6	B D8	
•	Port C7	TxIN 17		Tap 2 D7	Tap 2 D7	B D9	
	-	TxIN 24	LVAL	LVAL	LVAL	LVAL	
	-	TxIN 25	FVAL	FVAL	FVAL	FVAL	
	(Port I0)	TxIN 26	DVAL	DVAL	DVAL	DVAL	
	(Port I1)	TxIN 23	Exposure Active	Exposure Active	Exposure Active	Exposure Active	

EL-2800M/C-PMCL								
Port	Camera L	ink Configuration		Base	Medium	Base		
	Camera Link port/bit		1Tap / 12bit	2ap / 12bit	4 Tap / 12bit	1 Tap / 8bit		
	GenICa	m Tap Geometry	1X1 - 1Y	1X - 2YE/1X2-1Y	1x2 - 2YE	RGB		
	Port D0	TxIN 0	_	_	Tap 4 D0	_		
D	Port D1	TxIN 1	_	_	Tap 4 D1	_		
i	Port D2	TxIN 2	_	_	Tap 4 D2	_		
	Port D3	TxIN 3	_	_	Tap 4 D3	_		
g	Port D4	TxIN 4	_	_	Tap 4 D4	_		
i	Port D5	TxIN 6	_	_	Tap 4 D5	_		
t	Port D6	TxIN 27	_	_	Tap 4 D6	_		
a	Port D7	TxIN 5	_	_	Tap 4 D7	_		
1	Port E0	TxIN 7	_	_	Tap 3 D0	-		
·	Port E1	TxIN 8	_	_	Tap 3 D1	-		
	Port E2	TxIN 9	_	_	Tap 3 D2	_		
1	Port E3	TxIN 12	_	_	Tap 3 D3	_		
/	Port E4	TxIN 13	_	_	Tap 3 D4	_		
0	Port E5	TxIN 14	_	_	Tap 3 D5	_		
U	Port E6	TxIN 10	_	_	Tap 3 D6	_		
	Port E7	TxIN 11	_	_	Tap 3 D7	_		
-	Port F0	TxIN 15	_	_	Tap 3 D8	_		
	Port F1	TxIN 18	_	_	Tap 3 D9	_		
2	Port F2	TxIN 19	_	_	Tap 3 D10	_		
Z	Port F3	TxIN 20	_	_	Tap 3 D11	_		
	Port F4	TxIN 21	_	_	Tap 4 D8	_		
_	Port F5	TxIN 22	_	_	Tap 4 D9	_		
1	Port F6	TxIN 16	_	_	Tap 4 D10	_		
,	Port F7	TxIN 17	_	_	Tap 4 D11	_		
,	-	TxIN 24	_	_	LVAL	_		
2	(Port I2)	TxIN 25	_	_	FVAL	_		
_	(Port I3)	TxIN 26	_	_	DVAL	_		
	(Port I4)	TxIN 23	_	_	Exposure Active	_		

See the possibilities

5.3 Digital IN/OUIT interface

In the EL-2800 the software control tool can assign the necessary signals to the digital I/O ports.

5.3.1 Line Selector

In the Line Selector, the following input and output signals can be assigned.

Line 1 TTL Out 1

Line 7 TTL In 1

Line 8 TTL Out 2

Line 9 TTL Out 3

Line 11 LVDS In

Note: Lines 8, 9 and 11 are only available if Option 2 for AUX connector is selected.

Table - 8 Line selector

Line Selector item	Description
Line 1 TTL 1 Out	TTL 1 output from # 9 pin of HIROSE 12 Pin on the rear
Line 8 TTL 2 Out	TTL 2 output from #1 pin of AUX connector on the rear
Line 9 TTL 3 Out	TTL 2 output from #2 pin of AUX connector on the rear
NAND 0 In 1	First input to a first gate of NAND
NAND 0 In 2	Second input to a first gate of NAND
NAND 1 In 1	First input to a second gate of NAND
NAND 1 In 2	Second input to a second gate of NAND

5.3.2 Line source

Line source signal can be selected from the following table to connect it to the line item which is selected in the line selector.

Table-9 Line Source

Line Source item	Description
Low	Connect Low Level signal to line item selected in Line Selector, Default setting
High	Connect Low High signal to line item selected in Line Selector
Frame Trigger Wait	Connect Frame Trigger Wait signal to line item selected in Line Selector
Frame Active	Connect Frame Active signal to line item selected in Line Selector
Exposure Active	Connect Exposure Active signal to line item selected in Line Selector
FVAL	Connect FVAL signal to line item selected in Line Selector
LVAL	Connect LVAL signal to line item selected in Line Selector
PulseGenerator0 Out	Connect Pulse Generator 0 signal to line item selected in Line Selector
PulseGenerator1 Out	Connect Pulse Generator 1 signal to line item selected in Line Selector
PulseGenerator2 Out	Connect Pulse Generator 2 signal to line item selected in Line Selector
PulseGenerator3 Out	Connect Pulse Generator 3 signal to line item selected in Line Selector
TTL 1 In	Connect TTL 1 IN signal to line item selected in Line Selector
CL CC1 In	Connect CL CC1 IN signal to line item selected in Line Selector
Nand0 Out	Connect NAND 0 signal to line item selected in Line Selector
Nand1 Out	Connect NAND 1 signal to line item selected in Line Selector
Line 10 TTL 2 In	Connect TTL 2 IN signal to Line 10 (Factory option)
Line 11 LVDS 1 In	Connect LVDS 1 IN signal to Line 11 (Factory option)
Note) As for LVAL, some	line items cannot be connected. Refer to "5.4.6.2 GPIO matrix table"

5.3.3 Line Mode

Indicates the status of the interface, input or output.

5.3.4 Line Inverter

Sets the polarity of the selected input or output. (False=Positive, True=Negative)

5.3.5 Line Status

Indicates the status of the selected signal, input or output (True=High or False=Low)

5.3.6 Line Format

Indicates the current interface of the selected line item, input or output.

Input CC1 In Line 4
TTL In 1 Line 7
Output TTL Out1 Line 1

5.3.7 GPIO

This is a general interface for input and output and controls input and output for trigger signals or valid signals and pulse generators. By using this interface, you can control an external light source, make a delayed function to input a trigger signal or make a precise exposure control with PWC trigger.

Basic block diagram is as follows.

EL-2800M/C-PMCL GPIO

Pixel Clock is 54 MHz.

I/F written in blue letters is available if AUX Type 3 is selected.

Fig.6 GPIO interface

See the possibilities

The following table shows the input and output matrix.

Table - 10 GPIO input and output matrix

Selector (Cross Point	Trigger Selector	Line Selector						Pulse Generator Selector				
Source Signal (Cross Point Switch Input)	Trigger Source (Frame Start Trig Source)	LS0 Line1 - 12Pin TTL Out	LS1 Line 8 - TTL 2 Out(※)	LS2 Line 9 - TTL 3 Out(※)	NDOIN1 NAND 0 In 1	NDOIN2 NAND 0 in 2	ND11N1 NAND 1 In 1	ND11N2 NAND 1 in 2	PGIN0 Pulse Generator 0	PGIN1 Pulse Generator 1	PGIN2 Pulse Generator 2	PGIN3 Pulse Generator 3
Low	0	0	0	0	0	0	0	0	0	0	0	0
HIGH	0	0	0	0	0	0	0	0	0	0	0	0
Soft Trigger	0											
Frame Trigger Wait Frame Active		0 0	0 0	0 0	0	0	0 0	0 0	0	0	0 0	0
Exposure Active		0	0	0	0	0	0	0	0	0	0	0
FVAL		0	0	0	0	0	0	0	0	0) 0	0
LVAL		0	0	0					0	0	0	0
PulseGenerator0	0	0	0	0	0	0	0	0		0	0	0
PulseGenerator1	0	0	0	0	0	0	0	0	0		0	0
PulseGenerator2	0	0	0	0	0	0	0	0	0	0		0
PulseGenerator3	0	0	0	0	0	0	0	0	0	0	0	
TTL_In1	0	0	0	0	0	0	0	0	0	0	0	0
CL_CC1_In	0	0	0	0	0	0	0	0	0	0	0	0
Nand0 Out	0	0	0	0			0	0	0	0	0	0
Nand1 Out	0	0	0	0	0	0			0	0	0	0
Line 10 - TTL 2 In (※)	0	0	0	0	0	0	0	0	0	0	0	0
Line 11 - LVDS 1 In(*)	0	0	0	0	0	0	0	0	0	0	0	0
	Trigger Source Source						Pulse Gene Clear Source	rator				

Note: Items with (X) are available if AUX Type 3 is selected.

5.4 Pulse Generator

The EL-2800M/C-PMCL has a frequency divider using the pixel clock as the basic clock and four pulse generators. In each Pulse Generator, various Clear settings are connected to GPIO. The following shows Pulse Generator default settings.

Table - 11 Pulse Generator default settings

Display Name	Value									
Clock Pre-scaler	1	1								
	Pulse G	Pulse Generator								
	Length	Start	End	Repeat	Clear	Clear	Clear	Clear		
Pulse Generator	_	Point	Point	Count	Source	Inverter	Activation	Sync		
Selector								Mode		
- Pulse Generator 0	1	0	1	0	Off	True	Off	Async Mode		
- Pulse Generator 1	1	0	1	0	Off	True	Off	Async Mode		
- Pulse Generator 2	1	0	1	0	Off	True	Off	Async Mode		
- Pulse Generator 3	1	0	1	0	Off	True	Off	Async Mode		

Note:1

When Pulse Generator Repeat Count is set to "0", the camera is operating in Free Running mode.

However, based on the above default settings (Length=1, Start Point=0 and End Point=1), Pulse Generator stops at High output. Therefore, if Start Point=0 and End Point=1 are configured, Length should be "2" as the minimum active width

5.4.1 Clock Pre-scaler

Clock pre-scaler (Divide Value) can set the dividing value of the frequency divider (12-bit length) and the pixel clock is used for this. Four built-in pulse generators work by the same clock. In the EL-2800M/C-PMCL, the pixel clock is 54 Mhz.

5.4.2 Pulse Generator Selector

This is where you select one of the 4 pulse generators in order to set or modify its parameters.

Table - 12 Pulse Generator setting

Trigger Selector item	Description
Pulse Generator 0	If Pulse Generator 0 is selected, Length, Start Point, End Point, Repeat Count, Clear Source, Clear Inverter, Clear Activation and Clear Sync Mode of pulse generator 0 are displayed under the selector.
Pulse Generator 1	If Pulse Generator 1 is selected, Length, Start Point, End Point, Repeat Count, Clear Source, Clear Inverter, Clear Activation and Clear Sync Mode of pulse generator 1 are displayed under the selector.
Pulse Generator 2	If Pulse Generator 2 is selected, Length, Start Point, End Point, Repeat Count, Clear Source, Clear Inverter, Clear Activation and Clear Sync Mode of pulse generator 2 are displayed under the selector.
Pulse Generator 3	If Pulse Generator 3 is selected, Length, Start Point, End Point, Repeat Count, Clear Source, Clear Inverter, Clear Activation and Clear Sync Mode of pulse generator 3 are displayed under the selector.

See the possibilities

Fig.7 Pulse Generator Pulse construction

5.4.3 Pulse Generator Length

Set the counter up value for the selected pulse generator. If Repeat Count value is "0", and if Pulse Generator Clear signal is not input, the pulse generator generates the pulse repeatedly until reaching this counter up value.

5.4.4 Pulse Generator Start Point

Set the active output start count value for the selected pulse generator. However, please note that a maximum 1 clock jitter for the clock which is divided in the clock pre-scaler can occur.

5.4.5 Pulse Generator End Point

Set the active output ending count value for the selected pulse generator.

5.4.6 Pulse Generator Repeat Count

Set the repeating number of the pulse for the selected pulse generator. After Trigger Clear signal is input, the pulse generator starts the count set in Repeat Count. Accordingly, an active pulse which has a start point and end point can be output repeatedly.

However, if Repeat Count is set to "0", it works as Free Running counter.

5.4.7 Pulse Generator Clear Activation

Set the clear conditions of clear count pulse for the selected pulse generator.

5.4.8 Pulse Generator Clear Sync Mode

Set the count clear method for the selected pulse generator.

In case of Async Mode, if the clear signal is input during the length setting value, the counter will stop counting according to the clear signal input.

In case of Sync Mode, if the clear signal is input during the length setting value, the counter will continue to count until the end of the length setting value and then clear the count.

Both modes clear the repeat count when the counter is cleared.

Fig.8 Counter clear in Async mode

Fig.9 Counter clear in Sync mode

5.4.9 Pulse Generator Clear Source

The following clear source can be selected as the pulse generator clear signal.

Table - 13 Pulse generator clear source

Connect Low level signal to Clear Source for the selected pulse generator. Default setting Connect High level signal to Clear Source for the selected pulse generator. Connect Frame Trigger Wait signal to Clear Source for the selected pulse generator. Connect Frame Active signal to Clear Source for the selected pulse generator. Connect Exposure Active signal to Clear Source for the selected pulse generator. Connect Exposure Active signal to Clear Source for the selected pulse generator. EXPAL Connect FVAL signal to Clear Source for the selected pulse generator. LVAL Connect LVAL signal to Clear Source for the selected pulse generator. PulseGenerator0 Out Connect Pulse Generator 0 output to Clear Source for the selected pulse generator. PulseGenerator1 Connect Pulse Generator 1 output to Clear Source for the selected pulse generator. PulseGenerator2 Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. Connect TTL 1 IN signal to Clear Source for the selected pulse generator. Connect NAND 0 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator.	Pulse Generator Clear Source item	Description
Frame Trigger Wait Frame Active Connect Frame Active signal to Clear Source for the selected pulse generator. Connect Exposure Active signal to Clear Source for the selected pulse generator. Exposure Active Connect Exposure Active signal to Clear Source for the selected pulse generator. EXPOSURE ACTIVE Connect Exposure Active signal to Clear Source for the selected pulse generator. EVAL Connect EVAL signal to Clear Source for the selected pulse generator. Connect LVAL signal to Clear Source for the selected pulse generator. PulseGenerator0 Out Connect Pulse Generator 0 output to Clear Source for the selected pulse generator. PulseGenerator1 Out Connect Pulse Generator 1 output to Clear Source for the selected pulse generator. PulseGenerator3 Out Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. Connect TIL 1 IN signal to Clear Source for the selected pulse generator. Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Connect NAND 0 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator.	Low	
Frame Active Generator. Connect Frame Active signal to Clear Source for the selected pulse generator. Connect Exposure Active signal to Clear Source for the selected pulse generator. Exposure Active Connect Exposure Active signal to Clear Source for the selected pulse generator. Exposure Active Connect Exposure Active signal to Clear Source for the selected pulse generator. Connect Exposure Active signal to Clear Source for the selected pulse generator. Connect LVAL signal to Clear Source for the selected pulse generator. Connect Pulse Generator 0 output to Clear Source for the selected pulse generator. PulseGenerator2 Out Connect Pulse Generator 1 output to Clear Source for the selected pulse generator. Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. Connect TTL 1 IN signal to Clear Source for the selected pulse generator. Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Connect NAND 0 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator.	High	generator.
Exposure Active Exposure Active Connect Exposure Active signal to Clear Source for the selected pulse generator. Connect EVAL signal to Clear Source for the selected pulse generator. Connect LVAL signal to Clear Source for the selected pulse generator. PulseGenerator0 Out PulseGenerator1 Out Connect Pulse Generator 1 output to Clear Source for the selected pulse generator. PulseGenerator2 Out PulseGenerator2 Out PulseGenerator3 Out Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. TTL 1 In Connect TTL 1 IN signal to Clear Source for the selected pulse generator. CCC1 In Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Connect NAND 0 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator.	Frame Trigger Wait	
generator. FVAL Connect FVAL signal to Clear Source for the selected pulse generator. LVAL Connect LVAL signal to Clear Source for the selected pulse generator. PulseGenerator0 Connect Pulse Generator 0 output to Clear Source for the selected pulse generator. PulseGenerator1 Connect Pulse Generator 1 output to Clear Source for the selected pulse generator. PulseGenerator2 Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. PulseGenerator3 Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. TTL 1 In Connect TTL 1 IN signal to Clear Source for the selected pulse generator. CL CC1 In Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Nand0 Out Connect NAND 0 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator.	Frame Active	generator.
LVAL Connect LVAL signal to Clear Source for the selected pulse generator. PulseGenerator0 Out generator. PulseGenerator1 Out Connect Pulse Generator 1 output to Clear Source for the selected pulse generator. PulseGenerator2 Out generator. PulseGenerator2 Out Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. PulseGenerator3 Out Generator3 Out Generator 2 output to Clear Source for the selected pulse generator. TTL 1 In Connect TTL 1 IN signal to Clear Source for the selected pulse generator. CL CC1 In Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Nand0 Out Connect NAND 0 output signal to Clear Source for the selected pulse generator. Nand1 Out Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator.	Exposure Active	
PulseGenerator0 Out PulseGenerator1 Out Connect Pulse Generator 0 output to Clear Source for the selected pulse generator. PulseGenerator2 Out PulseGenerator2 Out PulseGenerator3 Out Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. PulseGenerator3 Out Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. TTL 1 In Connect TTL 1 IN signal to Clear Source for the selected pulse generator. CL CC1 In Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Nand0 Out Connect NAND 0 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator.	FVAL	Connect FVAL signal to Clear Source for the selected pulse generator.
Out generator. PulseGenerator1 Connect Pulse Generator 1 output to Clear Source for the selected pulse generator. PulseGenerator2 Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. PulseGenerator3 Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. TTL 1 In Connect TTL 1 IN signal to Clear Source for the selected pulse generator. CL CC1 In Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Nand0 Out Connect NAND 0 output signal to Clear Source for the selected pulse generator. Nand1 Out Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator.	LVAL	Connect LVAL signal to Clear Source for the selected pulse generator.
PulseGenerator1 Out Connect Pulse Generator 1 output to Clear Source for the selected pulse generator. PulseGenerator2 Out Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. PulseGenerator3 Out Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. TTL 1 In Connect TTL 1 IN signal to Clear Source for the selected pulse generator. CL CC1 In Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Nand0 Out Connect NAND 0 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator.	PulseGenerator0	Connect Pulse Generator 0 output to Clear Source for the selected pulse
Out generator. PulseGenerator2 Connect Pulse Generator 2 output to Clear Source for the selected pulse generator. PulseGenerator3 Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. TTL 1 In Connect TTL 1 IN signal to Clear Source for the selected pulse generator. CL CC1 In Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Nand0 Out Connect NAND 0 output signal to Clear Source for the selected pulse generator. Nand1 Out Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect NAND 1 output signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator. Connect TTL 2 IN signal to Clear Source for the selected pulse generator.	Out	generator.
Out generator. PulseGenerator3 Connect Pulse Generator 3 output to Clear Source for the selected pulse generator. TTL 1 In Connect TTL 1 IN signal to Clear Source for the selected pulse generator. CL CC1 In Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Nand0 Out Connect NAND 0 output signal to Clear Source for the selected pulse generator. Nand1 Out Connect NAND 1 output signal to Clear Source for the selected pulse generator. Line 10 TTL 2 In Connect TTL 2 IN signal to LINE 10.		·
Out generator. TTL 1 In Connect TTL 1 IN signal to Clear Source for the selected pulse generator. CL CC1 In Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Nand0 Out Connect NAND 0 output signal to Clear Source for the selected pulse generator. Nand1 Out Connect NAND 1 output signal to Clear Source for the selected pulse generator. Line 10 TTL 2 In Connect TTL 2 IN signal to LINE 10.		' '
CL CC1 In Connect CL CC1 IN signal to Clear Source for the selected pulse generator. Nand0 Out Connect NAND 0 output signal to Clear Source for the selected pulse generator. Nand1 Out Connect NAND 1 output signal to Clear Source for the selected pulse generator. Line 10 TTL 2 In Connect TTL 2 IN signal to LINE 10.		·
Separation	TTL 1 In	Connect TTL 1 IN signal to Clear Source for the selected pulse generator.
Nand1 Out generator.	CL CC1 In	·
generator. Line 10 TTL 2 In Connect TTL 2 IN signal to LINE 10.	Nand0 Out	generator.
	Nand1 Out	. •
Line 11 LVDS 1 In Connect LVDS 11 1 IN signal to Line 11	Line 10 TTL 2 In	Connect TTL 2 IN signal to LINE 10.
Zo Z.Zo Solillook Ev Bo 11 1 11 oligilar to Elilo 11	Line 11 LVDS 1 In	Connect LVDS 11 1 IN signal to Line 11

Note

The pulse generator output cannot be used as the clear input to the same pulse generator. Refer to "5.3.7 GPIO matrix table".

5.4.10 Pulse Generator Inverter

Clear Source Signal can have polarity inverted.

5.4.11 Pulse Generator Setting table

Table - 14 Pulse Generator setting parameters

Display Name	Value
Clock Pre-scaler	1 to 4096
Pulse Generator Clock (MHz)	[Pixel Clock:54MHz]÷[Clock Pre-scaler]
Pulse Generator Selector	- Pulse Generator 0
	- Pulse Generator 1
	- Pulse Generator 2
	- Pulse Generator 3
- Pulse Generator Length	1 to 1048575
- Pulse Generator Length (ms)	([Clock Source]÷[Clock Pre-scaler]) ⁻¹ x [Pulse Generator Length]
- Pulse Generator Frequency (Hz)	[Pulse Generator Length (ms)] ⁻¹
- Pulse Generator Start Point	0 to 1048574
- Pulse Generator Start Point (ms)	([Clock Source]÷[Clock Pre-scaler]) ⁻¹ x [Pulse Generator Start Point]
- Pulse Generator End Point	1 to 1048575
- Pulse Generator End Point (ms)	([Clock Source]÷[Clock Pre-scaler]) ⁻¹ x [Pulse Generator End Point]
- Pulse Generator pulse-width (ms)	[Pulse Generator End Point (ms)]—[Pulse Generator Start Point (ms)]
- Pulse Generator Repeat Count	0 to 255
- Pulse Generator Clear Activation	- Off
Clear Mode for the Pulse Generators	- High Level
	- Low level
	- Rising Edge
	- Falling Edge
- Pulse Generator Clear Sync Mode	- Async mode
Dulas Canavatas Class Causas	- Sync mode
- Pulse Generator Clear Source	- Low - High
	- Frame Trigger Wait
	- Frame Active
	- Exposure Active
	- FVAL
	- LVAL
	- PulseGenerator0
	- PulseGenerator1
	- PulseGenerator2
	- PulseGenerator3
	- TTL_In1
	- CL_CC1_In
	- Nand0 Out - Nand1 Out
	- Nand1 Out - Line 10 - TTL 2 In
	- Line 10 - 11L 2 III - Line 11 - LVDS 1 In
- Pulse Generator Inverter(Polarity)	- False
Pulse Generator Clear Inverter	- True
Note:	

Note:

^{1.} If Pulse Generator Repeat Count is set to "0", the pulse generator works in Free Running mode.

See the possibilities

6. Sensor layout, output format and timing

6.1 Sensor layout

CCD sensors used in the EL-2800M-PMCL and EL-2800C-PMCL have the following tap and pixel layout.

6.1.1 Monochrome sensor

Fig.10 Monochrome sensor layout

6.1.2 Bayer color sensor

Fig.11 Bayer color sensor layout

6.2. Camera output format

The EL-2800M-PMCL and EL-2800C-PMCL have the following camera output formats described in GenICam SFNC Ver.1.5.1 as Tap Geometry.

Table - 15 Camera output format

Camera output format	Tap geometry	Reference figure
1X-1Y	Single tap	6.2.1
1X-2YE	Dual tap	6.2.2
1X2-1Y	Dual tap	6.2.3
1X2-2YE	Four tap	6.2.4
24-bit RGB (8-bit x 3) (1X-1Y)	Single tap	6.2.1

6.2.1 1X-1Y

1X-1Y is defined in GenlCam SFNC Ver.1.5.1 for 1-tap readout and the readout system is the following.

Fig.12 1X-1Y readout

6.2.2 1X-2YE

1X-2YE is for 2-tap readout and the readout system is as follows.

Fig.13 1X-2YE readout

6.2.3 1X2-1YE

1X2-1YE is also for 2-tap readout but the readout system is right and left as below.

Fig.14 1X2-1YE readout

6.2.4 1X2-2YE

1X2-2YE is 4-tap readout and reads out electronic charges up and down and right and left.

Fig.15 1X2-2YE readout

6.3 Output timing

6.3.1 Horizontal timing

6.3.1.1 Output format 1X2-2YE, 1X2-1Y

a) Vertical binning OFF

Fig.16 Horizontal Timing (Vertical timing OFF)

Fig. 17 Horizontal timing (Vertical binning ON)

6.3.1.2 Output format 1X-2YE, 1X-1Y

Fig. 18 Horizontal timing (Vertical binning OFF)

See the possibilities

b) Vertical binning ON

Fig.19 Horizontal timing (Vertical binning ON)

6.3.2 Vertical timing

6.3.2.1 Output format 1X2-2YE, 1X-2YE

a) Vertical binning OFF

Fig.20 Vertical Timing (Vertical timing OFF)

b) Vertical binning ON

Fig. 21 Vertical timing (Vertical binning ON)

6.3.2.2 Output format 1X2-1Y, 1X-1Y

a) Vertical binning OFF

Fig.22 Vertical timing (Vertical binning OFF)

b) Vertical binning ON

Fig.23 Vertical timing (Vertical binning ON)

6.3.3 ROI (Region Of Interest)

In the EL-2800M-PMCL and EL-2800C-PMCL, a subset of the image can be output by setting Height and Offset-Y in the Image Format Control section of the control tool. As the height is decreased, the number of lines read out is decreased and as the result, the frame rate is increased. The frame rate depends on the tap geometry and whether vertical binning is off or on. See section 7.1.2 for formulas that can be used to calculate the maximum frame rate for a specific ROI.

ROI can be set from 8 lines to 1440 lines in one-line increments for the EL-2800M-PMCL, or in two-line increments for the EL-2800C-PMCL.

Fig. 24 ROI setting

See the possibilities

6.4 Digital output bit allocation

Table - 16 Output level

	lable 10 Galpat level							
CCD	out		Analog Out		Digital Out			
			(equivalent)	8bit	10bit	12bit		
Bla	ack	0%	Setup 3.6%, 25mV	8LSB	32LSB	128LSB		
Monochrome	574mV	100%	700mV	222LSB	890LSB	3560LSB		
Color	386mV	100/0	7001114	ZZZLJD	070L3D	3300E3D		
Monochrome	662mV	115%	808mV	255LSB	1023LSB	4095LSB		
Color	445mV	113/0	OUOIIIV	ZJJLJD	1023230	407JLJD		

Fig.25 Bit allocation (10-bit)

7. Operating modes

The following controls are related to capturing the image.

7.1. Acquisition control (change the frame rate)

7.1.1 Acquisition frame rate

With Trigger OFF (free running mode - see section 7.2.1), the default frame rate of the camera is based on the specified ROI. The smaller the ROI, the faster the default frame rate. However, it is possible to specify a free-running frame rate (i.e., no trigger needed) that is slower than the default rate. This can be useful when a longer exposure time is needed for a specific ROI.

To change the frame rate, the user may modify the default value which is displayed in the AcquisitionFrameRate control based on the ROI specified. The user can type a number corresponding to the desired frame rate or move the slider control to the appropriate value. Allowed values range from the ROI's default fastest frame rate to a rate of 0.125 frames per second (8 seconds per frame). If the value entered is faster than the default frame rate, the setting is ignored and the default frame rate is used

The setting range in Acquisition Frame Rate is:

The secting range in requisition Frame rate is:							
Fastest	to	Slowest					
Maximum frame rate based on the area set by Image Format Control (ROI)	to	0.125 Hz = 8 seconds/frame					

How to set:

ROI should be set first using Height and Offset Y settings in Image Format Control.

The number shown in Acquisition Frame Rate (RAW) will correspond to the fastest frame rate for the specified ROI.

The value can be adjusted as low as 0.125 fps (8 seconds per frame).

If ROI is changed from a smaller size to a larger size, the default frame rate of the ROI is automatically recalculated inside the camera and changed to the slower frame rate of the larger ROI.

7.1.2 Calculation of default frame rate

```
a) V Binning Off
1X2-2YE(fps) = 1/[[Height/2 + {((720-(Height/2)-1)/4} + 25] \times Line rate]
1X2-1Y(fps)
             = 1/ [[ Height + {(OffsetY-1)/4} + [{1440-(OffestY + Height)}/9] + 46 ]
                     × Line rate
             = 1/[[Height/2 + {((720-(Height/2)-1)/4} + 25] \times Line rate]
1X-2YE(fps)
             = 1/[[Height + {(OffsetY-1)/7} + [{1440-(OffestY + Height)}/15] + 46]
1X-1Y(fps)
                     × Line rate
b) V Binning On
1X2-2YE(fps) = 1/[[(Height/4) + {((360-(Height/4)-1)/2} + 16] \times Line rate]
             = 1/ [[ (Height/2)+ {(OffsetY-1)/2} + [{720-(OffsetY + (Height/2))}/4.5] + 28 ]
1X2-1Y(fps)
                      × Line rate
1X-2YE(fps)
             = 1/[[(Height/4)+\{((360-(Height/4)-1)/4\} + 16] \times Line rate]
             = 1/[((Height/2)+{(OffsetY-1)/4}+[{720-(OffsetY+(Height/2))}/8]+33]
1X-1Y(fps)
                     × Line rate
where.
Line rate
a) V Binning Off
1X2-2YE = 24.574us
1X2-1Y
        = 24.574us
1X-2YE
         = 42.519us
1X-1Y
        = 42.519us
b) V Binning On
1X2-2YE = 29.296us
1X2-1Y
         = 29.296us
 1X-2YE
        = 47.259us
 1X-1Y
         = 47.259us
```

7.2. Exposure control

7.2.1 Exposure Mode

Exposure Mode sets which exposure mode is to be used.

If the trigger is used, Frame Start must also be used.

When Exposure Mode is set to Timed or Trigger Width, the combination of Exposure Mode and Frame Start can set various operations.

The following table shows the operation depending on the combination.

See the possibilities

Table - 17 Exposure mode

Exposure Mode	Trigger Control	Trigger OFF	Trigger ON	
Exposure mode	Frame Start	Beha	avior	
OFF	OFF or ON	Self-running No exposure control	_	
Timed (EPS) Timed(RCT)	OFF	Self-running Exposure control available	-	
Timed (PIV)	ON	_	Operate in EPS, RCT or PIV	
Trigger Width	OFF	Self-running No exposure control	-	
	ON	_	Exposure control by trigger width	

Frame Start trigger: Sets whether the start of the frame is controlled externally or not. Trigger Mode ON: If Acquisition Active is active and Exposure Mode chooses Timed or

Trigger Width, the exposure will be started by using the signal set

in Frame Trigger as the trigger.

Trigger Mode OFF: If Acquisition Active is active, the camera operates in free-running mode.

Exposure Mode can be selected from the following.

OFF: No shutter control

Timed: The exposure will be set in advance. The setting can be done in µsec

units.

Frame Start OFF: Free-running mode and exposure control is available.

Frame Start ON: EPS operation mode

In this status, if RCT or PIV is selected in Trigger option, the camera will

operate in RCT or PIV mode.

Trigger Width: The exposure will be controlled by the width of the trigger pulse.

Frame Start OFF: Not active. No exposure control

Frame Start ON: PWC operation mode

7.2.2 Exposure Time

This command is effective only when Exposure Mode is set to Timed. It is for setting exposure time.

The setting step for exposure time is 1 μ sec per step.

Minimum: $10 \mu sec$ Maximum: 8 seconds

7.2.3 Exposure Auto

This is a function to control the exposure automatically. It is effective only for Timed. ALC Reference controls the brightness.

There are three modes, OFF, Once and Continuous.

OFF: No exposure control

Once: Exposure adjusts when the function is set, then remains at that setting

Continuous: Exposure continues to be adjusted automatically

In this mode, the following settings are available.

ALC Speed: Rate of adjustment can be set (Common with Gain auto)

Exposure Auto Max: The maximum value for the exposure time to be controlled can

be set

Exposure Auto Min: The minimum value for the exposure time to be controlled can

be set

ALC Reference: The reference level of the exposure control can be set

(Common with Gain auto)

ALC Channel area: The measurement area of the exposure control can be set

7.3. Trigger Mode

7.3.1 Trigger Source

The following signals can be used as the trigger source signal.

OFF

Line 4 (Input to TTL In 1 and output from Digital IO)

Line 7 (Input to CL CC1 In and output from Digital IO)

7.3.2 Trigger Activation

This command can select how to activate the trigger.

Rising Edge: At the rising edge of the pulse, the trigger is activated. Falling Edge: At the falling edge of the pulse, the trigger is activated.

Level High: During the high level of trigger, the accumulation is activated Level Low: During the low level of trigger, the accumulation is activated If Exposure Mode is set to Trigger Width, Level High or Level Low must be used.

Table - 18 Trigger activation

	RisingEdge	FallingEdge	LevelHigh	LevelLow
Timed	0	0	×	×
TriggerWidth	×	×	0	0
Timed - PIV	0	0	×	×
Timed - RCT	0	0	×	×

7.3.3 Trigger Overlap

This function defines whether or not a trigger pulse can be accepted while data is being read out.

OFF: The trigger pulse is not accepted during CCD readout.

Read Out: The trigger pulse can be accepted during CCD readout.

7.3.4 Trigger Delay

This function is used to delay the trigger signal against the trigger input signal.

The step of the delay is 1μ sec.

The setting range: 0 to 0.65,535 μ sec (16-bit)

7.4. Normal continuous operation (Timed Exposure Mode/Trigger Mode OFF)

This is used for applications which do not require triggering. In this mode, the video signal

See the possibilities

for the auto-iris lens is available.

For the video timing, refer to the chapter 6.3.

The frame rate of full pixels readout is 54.7 fps for 4-tap output.

Primary settings to use this mode

Trigger Mode: Off

Table - 19 Minimum interval of the image (1X2-2YE, 8-bit)

4 tap output	FULL	2/3 ROI	1/2 ROI	1/4 ROI	1/8 ROI	1/2V Binning
Minimum frame lines	774	564	474	339	272	375

Note: The read out area for each ROI is a centered readout (same number of lines and lower)

7.5. Timed (EPS) mode

for upper

This mode allows a single image frame to be captured with a preset exposure time by using the external trigger. Additional settings determine if the trigger pulse can be accepted during the exposure period.

The frame rate of full pixels readout is 54.7 fps for 4-tap output.

Primary settings to use this mode

Exposure mode: Timed Trigger mode: ON

Table - 20 Minimum interval of the trigger pulse (1X2-2YE, 8-bit)

4 tap output	FULL	2/3 ROI	1/2 ROI	1/4 ROI	1/8 ROI	1/2V Binning
Minimum frame lines	745L	565L	475L	340L	273L	376L

Note: The read out area for each ROI is a centered readout (same number of lines for upper and lower)

7.5.1 If the overlap setting is lse i

Fig.26 Overlap OFF

7.5.2 If the overlap setting is lse is 54

7.6. Trigger Width mode

In this mode, the exposure time is equal to the trigger pulse width. Accordingly, longer exposure times are supported. Additional settings determine if the trigger pulse can be accepted during the exposure period.

See the possibilities

The frame rate of full pixels readout is 54.7 fps for 4-tap output.

Primary settings to use this mode

Exposure mode: Trigger Width

Trigger mode: ON

Table - 21 Minimum interval of the trigger pulse (1X2-2YE, 8-bit)

Table 21 Millimani	incervation t	cite crisser	patse (17tz	212 , 0 510)	1	
4 tap output	FULL	2/3 ROI	1/2 ROI	1/4 ROI	1/8 ROI	1/2V Binning
Minimum frame lines	745	565	475	340	273	376

Note: The read out area for each ROI is a centered readout (same number of lines for upper and lower)

7.6.1 If the overlap setting is lse (

t1 t2 t3 t4 8.1 μ sec (Typical) 2L (min) 4.5L \sim 5.5L 8 μ sec

Fig.28 Overlap = OFF

7.6.2 If the overlap setting is lse (1X24

Fig.29 Readout

7.7. RCT mode

Until the trigger is input, the camera operates continuously and the video signal for the auto-iris lens is output. During this time, the video signal, FVAL and LVAL are output but DVAL is not output. When the trigger is input, the fast dump is activated to read out the electronic charge very quickly, after which the accumulation and the readout are performed. When the accumulated signal against the trigger is read out, FVAL, LVAL and DVAL are output too.

Primary settings to use this mode

Exposure mode: Timed Trigger mode: ON Trigger option: RCT

In this mode, the setting of Trigger Overlap is invalid.

Table - 22 Minimum interval of the trigger pulse (1X2-2YE, 8-bit, Exposure time = 10μs)

4-tap output	FULL	2/3 ROI	1/2 ROI	1/4 ROI	1/8 ROI	1/2V Binning	
Minimum frame lines	Timed Exposure Mode/Trigger Mode OFF + Exposure Time + 195						

Note: The read out area for each ROI is a centered readout (same number of lines for upper and lower)

See the possibilities

Fig.30 RCT mode timing

7.8. PIV (Particle Image Velocimetry)

The Particle Image Velocimetry mode can be used in applications where 2 images need to be taken with a very short time interval. It can only be used with strobe flash as illumination. The first accumulation time is 10 μ sec to 2 sec. Then, the second exposure will be taken. The accumulation is LVAL asynchronous. The first strobe is activated during the first exposure duration and the second strobe is pulsed while the first frame is being read out. In this way, two strobe flashes generate two video outputs.

Primary Settings

Exposure Mode: Timed Trigger Mode: ON Trigger Option: PIV

In this mode, the setting of Trigger Overlap is invalid.

Table - 23 Minimum trigger interval (1X2-2YE, 8-bit)

Table 25 Milliman engger interval (TXZ ZTE, 6 bit)										
4-tap output	FULL	2/3 ROI	1/2 ROI	1/4 ROI	1/8 ROI	1/2V Binning				
Minimum frame lines	(Timed Exposure Mode/Trigger Mode OFF) x 2 + Exposure Time + 1									

time name	description	time
td	Exposure beginning delay	8.1 µsec (Typical)
te1	First exposure time period	10 μs ~ 2 s
te2	Second exposure time	1 frame
itf	Inter framing time	3.4 µsec
	FVAL non active	4LVAL
tframe1	First Frame read out	1 frame
tframe2	Second Frame read out	1 frame

Fig.31 PIV mode

7.9. Sequential Trigger

7.9.1 Video send mode

The sequential trigger mode has the following modes and it is selected in the video send mode.

Table - 24 Video send mode

Video send mode How to select the index

Trigger Sequence Select the index by the frame start trigger signal. (The setting

index can be determined by the next index setting.)

Command Sequence Select the index number to assign directly by the command

sequence index command.

Fig. 32 Behavior of Sequence trigger

See the possibilities

Table - 25 Minimum trigger interval (1X2 - 2YE, 8-bit, Exposure time=10 μs)

4-tap output	FULL	2/3 ROI	1/2 ROI	1/4 ROI	1/8 ROI	1/2V Binning	
Minimum frame line	Timed Exposure Mode/Trigger Mode OFF + Exposure Time +						

- Note 1. Overlap mode=Readout is not available
- Note 2. The minimum interval calculation assumes that the exposure times for all sequences are equal. If there are differences, it is necessary to add the differences to the calculation. If the exposure times are different, it is recommended to organize the exposure times from the shortest exposure to the longest one.
- Note 3. The sequence must start with Index 0. After Index 0 is executed, the sequence proceeds to the next setting index.

Table - 26 Sequence Index table (Default)

	Sequen	ice ROI												
			Offset		Gain S	elector				Binning				Next Index
Sequence ROI Index	Width	Height	Х	Y	Gain (ALL)	Red	Blue	Exposure Time	Black Level	Horizontal	Vertical	LUT Enable	Frame Count	
- Index 0		1440	0	0	0	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 0
- Index 1		1440	0	0	0	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 0
- Index 2		1440	0	0	0	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 0
- Index 3		1440	0	0	0	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 0
- Index 4		1440	0	0	0	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 0
- Index 5		1440	0	0	0	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 0
- Index 6		1440	0	0	0	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 0
- Index 7		1440	0	0	0	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 0
- Index 8		1440	0	0	0	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 0
- Index 9		1440	0	0	0	0	0	180000	0	1 (Off)	1 (Off)	Off	1	Index 0

7.9.2 Sequence ROI setting parameters

Setting parameters for Sequence ROI is as follows.

- (1) Sequence ROI Index Selector
 - In Sequence ROI Index Selector, Index 0 to 9 can be selected.

Sequence ROI - Width, Height, Offset X, Offset Y, Gain Selector - Gain/Red/Blue, Exposure Time, Black Level, Binning Horizontal, Binning Vertical, LUT Enable, Frame Count, Next Index for the selected index are displayed.

(2) Sequence ROI Width

Width is fixed at 1920. No setting is necessary for this parameter.

- (3) Sequence ROI Height
 - Set the height of sequence ROI. The setting range is 8 to 1440 lines.

Rules for setting area and step number are the same as the normal ROI mode set by [Video Send Mode] = "Normal".

(4) Sequence ROI Offset X

This parameter is fixed at 0.

(5) Sequence ROI Offset Y

Set Offset Y of sequence ROI.

Sequence ROI Binning Vertical =1 (Off):

Setting range is 0 to (1432 - [Sequence ROI Height])

Sequence ROI Binning Vertical =2 (On):

Setting range is 0 to (712 - [Sequence ROI Height])

The limitations of step number and other factors are the same as the normal ROI mode set by [Video Send Mode] = "Normal".

In 1X2-2YE and 1X-2YE, as only Height is set at the center of upper and lower taps, OFFSET Y setting is not enabled.

(6) Sequence ROI Gain Selector

In Sequence ROI Gain Selector, the gain settings for each index are available.

EL-2800C-PMCL: Gain(ALL), Red and Blue can be set.

EL-2800M-PMCL: Only Gain is displayed and can be set.

(7) Sequence ROI Black Level

Black Level setting is available for each index.

(8) Sequence ROI Exposure Time

Exposure Time setting is available for each index.

(9) Sequence ROI Binning Horizontal

ON or OFF of Horizontal Binning for each index can be set.

(10) Sequence ROI Binning Vertical

ON or OFF of Vertical Binning for each index can be set.

(11) Sequence ROI LUT Enable

Enable or disable of LUT function for each index 0 to 9 can be set.

(12) Sequence ROI Frame Count

This can set how many times the selected index is repeated. This is applied to each index. Triggers are input according to numbers set in Frame Count and index is repeated and moves to the next index. Therefore, the same number of triggers as Frame Count must be input.

(13) Sequence ROI Next Index

The number of the index that will follow the current index can be set.

If [Video Send Mode] is set to "Trigger Sequence" and the trigger pulse is input in EPS trigger, the sequence is executed from index 0.

Accordingly, after the number of frame count of index 0 is set, next index setting of index0 will be the first separation of sequence.

(14) Sequence ROI Reset Command

This command resets the current index pointer and reverts to index 0 in the table. Frame Count is also re-initialized.

See the possibilities

Fig. 33 Sequence trigger timing

7.10. Operation and function matrix Table - 27 Operation and function matrix

Exposure operation	Trigger mode	Trigger option	V. Binning (Note1)	H. Binning (Note1)	Exposure	ROI (Partial scan)	Auto White Balance (Note2)	Auto Tap Balance	Auto Iris Output	Auto gain	Auto Exposure	Over Lap
OFF	OFF	OFF	1	1	×	0	0	0	0	0	×	×
OFF	OFF	011	2	2	×	0	0	0	0	0	×	×
Timed	OFF	OFF	1	1	0	0	×	×	0	0	0	×
Tillieu	5	Oii	2	2	0	0	×	×	0	0	0	×
Timed	ON	OFF	1	1	0	0	×	×	×	×	×	\circ
			2	2	0	0	×	×	×	×	×	\circ
Trigger	ON	OFF	1	1	×	0	×	×	×	×	×	\circ
Width	Ö		2	2	×	0	×	×	×	×	×	\circ
RCT	ON	RCT	1	1	0	0	0	0	0	0	0	×
KCT	Öİ	KCT	2	2	×	×	\circ	0	×	×	×	×
PIV	ON	PIV	1	1	×	0	×	×	×	×	×	×
PIV	UN	PIV	2	2	×	×	×	×	×	×	×	×
Sequence	ON	Sequence trigger	1	1	0	0	×	×	×	×	×	×
trigger	UN		2	2	0	0	×	×	×	×	×	×

Note 1. Only EL-2800M Note 2: Only EL-2800C

See the possibilities

8. Other functions

8.1 Black level control

This function adjusts the setup level.

Variable range: -256 to 255 LSB (at 10-bit output)

8.1.1 Black Level Selector

The following factors can be set.

EL-2800M: DigitalAll/Tap1All/Tap2All/Tap3All/Tap4All EL-2800C: DigitalAll/Tap1All/Tap1Red/Tap1Blue

Tap2All/Tap2Red/Tap2Blue Tap3All/Tap3Red/Tap3Blue Tap4All/Tap4Red/Tap4Blue

8.1.2 Black Level

The black level can be set in the following range.

EL-2800M: DigitalAll : $-256\sim255$

Tap1All: -512~ +511
Tap2All: -512~ +511
Tap3All: -512~ +511
Tap4All: -512~ +511

EL-2800C: DigitalAll:-256~255

DigitalRed All/DigitalBlue:-512~ +511 Tap1All/Tap1Red/Tap1Blue:-512~ +511 Tap2All/Tap2Red/Tap2Blue:-512~ +511 Tap3All/Tap3Red/Tap3Blue:-512~ +511 Tap4All/Tap4Red/Tap4Blue:-512~ +511

8.1.3 Black Level Auto

The tap balance of black level can be adjusted.

This requires closing the lens iris or capping the lens in order to cut the incident light.

OFF: Adjust manually

Once: Adjust only one time when this command is set.

The detection area can be selected by BalanceWhiteChannelArea. The detection area is selected individually from the following areas or the entire screen.

High Left			High Right
Mid-High Left	Mid-High Mid-left	Mid-High Mid-right	Mid-High Right
Mid-Low Left	Mid-Low Mid-left	Mid-Low Mid-right	Mid- Low Right
Low Left	Low Mid-left	Low Mid-right	Low Right

Fig.34 Detection area

8.2 Gain control

The EL-2800M-PMCL can adjust the gain level from 0dB to +30dB using 0dB as the reference (Factory default). In the EL-2800C-PMCL, the master gain can be adjusted from 0dB to +27dB and R and B gains can be adjusted in the range of -7dB to +12.99dB using the master gain as the reference.

Resolution:

Master Gain: 0.035dB/Step Blue/Red Gain: x0.00012 /Step

The master gain uses an analog gain and digital gain internally. All digital gain has the resolution of x0.00012/Step and provides more precise gain setting.

The magnification of digital gain is calculated in the following formula.

Digital GainMagnification =
$$\frac{\text{Gain Value} + 8192}{8192}$$

Fig. 35 Gain control

8.2.1 Gain Selector

The following parameters can be set.

EL-2800M: AnalogAll/DigitalAll/Digital Tap2/Digital Tap3/Digital Tap4

EL-2800C: AnalogAll/DigitalAll/Digital Red All/Digital Blue All

/DigitalTap2All/DigitalTap3All/DigitalTap4All

/DigitalTap2Red/DigitalTap2Blue /DigitalTap3Red/DigitalTap3Blue /DigitalTap4Red/DigitalTap4Blue

8.2.2 Gain

This is reference vale to advise the magnification. The operational adjustment is done in Gain RAW.

EL-2800M: AnalogAll:0.7079~32.1
DigitalAll:0.7079~1.4125
Digital Tap2All:0.8912~1.1220
Digital Tap3All:0.8912~1.1220
Digital Tap4All:0.8912~1.1220

See the possibilities

EL-2800C: AnalogAll:1.0~22.7

DigitalAll:0.7079~1.4125

Digital Red All:0.4466~4.4688

Digital Blue All:0.4466~4.4688

Digital Tap2All:0.8912~1.1220

Digital Tap2Red:0.8912~1.1220

Digital Tap2Blue:0.8912~1.1220

Digital Tap3All:0.8912~1.1220

Digital Tap3Red:0.8912~1.1220

Digital Tap3Blue:0.8912~1.1220

Digital Tap4All:0.8912~1.1220

Digital Tap4All:0.8912~1.1220

Digital Tap4Red:0.8912~1.1220

Digital Tap4Blue:0.8912~1.1220

8.2.3 Gain Raw

The gain raw can be adjusted in the following range.

EL-2800M: AnalogAll:0 ~ 840 DigitalAll:-2393~+3379/

Digital Tap2All/ Digital Tap3All/ Digital Tap4All:-891~+1000

EL-2800C: AnalogAll:0 ~ 756 DigitalAll:-2393~+3379/

Digital Tap2All/Digital Tap3All/Digital Tap4All:-891~+1000/

Digital Red All/Digital Blue All: -4533~28400 Digital Tap2Red/Digital Tap2Blue: -891~+1000 Digital Tap3Red/Digital Tap3Blue: -891~+1000 Digital Tap4Red/Digital Tap4Blue: -891~+1000

8.2.4 Gain Auto

This function automatically controls the gain level. This function is effective only for Frame trigger OFF and RCT modes. This is controlled by the command JAI AGC Reference.

There are three modes.

OFF: Adjust manually.

Once: Operate only one time when this command is set

Continuous: Operate the auto gain continuously

The following detailed settings are also available.

ALC Speed: The rate of adjustment of GainAuto can be set. (Common with

Exposure Auto)

Gain Auto Max: The maximum value of GainAuto control range can be set
Gain Auto Min: The minimum value of GainAuto control range can be set
ALC Reference: The reference level of Gain Auto control can be set (Common

use with Expsoure Auto)

ALC channel area: The area of GainAuto control can be set, either entire area or

individual section

High	High	High	High		
Left	Mid-left	Mid-right	Right		
Mid-High	Mid-High	Mid-High	Mid-High		
Left	Mid-left	Mid-right	Right		
Mid-Low Left	Mid-Low Mid-left	Mid-Low Mid-right	Mid- Low Right		
Low	Low	Low	Low		
Left	Mid-left	Mid-right	Right		

Fig. 36 ALC channel area

8.2.5 Balance White Auto

This is auto white balance control function.

The operation can be selected from the followings.

OFF: Adjust manually.

Once: Operate only one time when this command is set Continuous: Operate the white balance control continuously

AWB channel area is the same as the gain and black controls.

8.3. LUT

This function can be used to convert the input to the desired output characteristics. The Look-Up Table (LUT) has 256 points for setup. The output level can be created by multiplying the gain data by the input level. In the EL-2800C-PMCL, the same LUT characteristic is applied independent of the color value

8.3.1 LUT Enable

ON or OFF LUT function.

8.3.2 LUT Index

The number of LUT data elements is 256. The lowest level is Index 0 and the highest level is Index 255.

8.3.3 LUT value

There are 256 LUT data elements to which a value can be assigned. The minimum LUT value is 0 and the maximum LUT value is 255.

The data between each LUT data element is calculated from adjacent data elements. In the color camera, LUT characteristics for R, G and B are the same.

Output Data = Video IN x LUT data Fig. 37 LUT value

See the possibilities

8.4. Gamma

This command is used set gamma between gamma 0.45 and gamma 1.0 (OFF). The gamma value is an approximate value.

Fig. 38 Gamma compensation

8.5. Shading Correction

This function compensates for shading (non-uniformity) caused by the lens or the light source used. This compensation can be performed even if shading issues are not symmetrical in horizontal and/or vertical directions.

There are two methods of correction.

Flat shading correction:

The method to compensate the shading is to measure the highest luminance level in the image and use that data as the reference. Luminance levels of other areas are then adjusted so that the level of the entire area is equal. The block for compensation is 24 pixels (H) x 18 pixels (V) and the complementary process is applied to produce the compensation data with less error.

Fig. 39 Flat shading correction concept drawing

Color shading correction (For EL-2800C only):

In this case, R channel and B channel are adjusted to match with G channel characteristics. The block for compensation is 24 pixels (H) x 18 pixels (V) and the complementary process is applied to produce the compensation data with less error.

Fig.40 Color shading correction concept drawing

Note: Under the following conditions, the shading correction circuit may not work properly.

- 1. If there is some area in the image with a video level less than 70%
- 2. If part of the image or the entire image is saturated
- 3. If the highest video level in the image is less than 300LSB (at 10-bit output)

8.6. Blemish compensation

The EL-2800M-PMCL and EL-2800C-PMCL have a blemish compensation circuit. This function compensates blemishes on the CCD sensor (typically pixels with extremely high response or extremely low response). This applies to both monochrome and color versions. Pixels that fulfill the blemish criteria can be compensated by adjacent pixels in both columns and, in the case of the EL-2800C-PMCL, the defective pixels can be compensated by the same Bayer color pixels in both adjacent columns. The number of pixels that can be compensated is up to 64 pixels per tap, for a total of 256 pixels.

Fig. 41 Blemish compensation

Note: If defective pixels are found consecutively in the horizontal direction, the blemish compensation circuit does not work.

See the possibilities

8.7. Bayer color interpolation (Only for EL-2800C)

This function is available only for EL-2800C-PMCL. The EL-2800C-PMCL uses a CCD with an RGB Bayer pattern. If the in-camera Bayer color interpolation is not used, the following RAW data can be output.

В	Gb	В	Gb	В	Gb	В	Gb	В	Gb	
Gr	R	Gr	R	Gr	R	Gr	R	Gr	R	
В	Gb	В	Gb	В	Gb	В	Gb	В	Gb	
Gr	R	Gr	R	Gr	R	Gr	R	Gr	R	

Fig.42 Bayer pattern

The RAW data contains only luminance information for each color and outputs as a monochrome signal. The Bayer color interpolation function can complement lacking color information on each pixel and output RGB color data as the result. Color interpolation compensates for the lack of color information by using information from adjacent pixels. The following is the concept drawing for the color interpolation process.

Fig.43 Color interpolation concept drawing

8.8 Lens

The EL-2800M-PMCL and EL-2800C-PMCL can be used with 4 different types of auto iris lenses, in addition to standard lenses with manual iris control. If an auto iris function is to be utilized, the lens type used must be selected in Lens Select.

Table -28 Lens selector

Table 20 Ectis selector									
Lens Select	Description (Control with	Note							
	camera)								
P-Iris Lens	1) Iris position can be	If P-iris lens is used, the							
	remotely controlled manually	specific model name should							
	2) Auto iris control is also	be selected in lens select.							
	available								
Motor controlled lens	1) Iris position can be								
	remotely controlled manually								
	2) Auto iris control is also								
	available								
Video iris lens	Only auto iris control is	Factory Option							
	available	(Use AUX option 1)							
DC iris lens	Only auto iris control is	Factory Option							
	available	(Use AUX option 1)							

8.8.1 About P-Iris

New Elite Series EL-2800M-PMCL and EL-2800C-PMCL come equipped with P-Iris control as part of the standard lens control function. The P-Iris system is a newly developed lens control method designed to control the iris more precisely. Especially for video cameras in surveillance applications utilizing megapixel CCD or CMOS imagers, it becomes a very important factor to control an iris in order to achieve the maximum camera performance. In surveillance applications, depending on shooting conditions, resolution and depth of field are important factors. The iris is deeply related with these factors. If the iris diaphragm is smaller, but not too small, resolution gets better and the depth of field is also deeper. The P-Iris system controls the iris diaphragm precisely and maintains the best image with the highest resolution and depth of field. P-Iris can also combine with gain and electronic shutter to keep the appropriate iris position under changing lighting conditions (ALC function).

8.8.2 Setting for P-iris lens being used

P-iris lenses use an absolute setting value control system and therefore, if the following parameters are input, precise iris position control is possible.

8.8.2.1 P-Iris lens select

Select the lens used. At present time, the following two lenses are available for these cameras.

P-Iris lens select	Description	Control step number	Open F value	
LM16JC5MM	KOWA 16mm 2/3-inch	74	F1.4	
LM35JC5MM	KOWA 35mm 2/3-inch	73	F2.0	

8.8.2.2 Step max.

Iris control step depends on lens. The setting value uses the value stored in the camera. Refer to the table above for the control step number.

8.8.2.3 **Position**

The iris position can be set between 0 to Step Max. 0 means to open the iris and Step Max means to close the iris. The camera initializes P-iris control and acquires iris position under the following conditions:

- 1) When the camera is powered
- 2) When the lens is selected in P-Iris lens select
- 3) If the lens is changed in P-iris lens select

8.8.2.4 Current F value

The current F value is indicated by using iris position information. This can be indicated during auto iris operation. The relation between iris position and F value depends on the lens used.

8.8.2.5 P-Iris Auto min. / P-Iris Auto max.

This function can set the control range when the iris is operated automatically. Auto max. sets the limit when the iris goes open and Auto min. sets the limit when the iris goes closed. Auto max. can be set to fully open but Auto min. is stopped at F5.6 as lens performance typically degrades if the iris is closed beyond this point.

8.8.2.6 Auto Iris Lens Control Signal Output

If the auto iris lens is used, this parameter should be ON. This is common for all types of auto iris lens.

See the possibilities

8.8.3 Motorized lenses

The EL-2800C-PMCL and EL-2800C-PMCL can use the 3-axis motorized lens control for zoom, focus and iris. The following functions are available via the motorized lens commands.

8.8.3.1 Iris

Open: While this command is supplied, the iris will continue to open. Close: While this command is supplied, the iris will continue to close. Stop: When this command is supplied, the iris operation stops.

8.8.3.2 Zoom

Wide: While this command is supplied, the zoom will continue to move towards wide angle.

Tele: While this command is supplied, the zoom will continue to mode towards telephoto. Stop: When this command is supplied, the zoom operation stops.

8.8.3.3 Focus+

Near: While this command is supplied, the focus will continue to shift closer to the camera.

Far: While this command is supplied, the focus will continue to move towards infinity. Stop: When this command is supplied, the focus operation stops.

8.8.4 Exclusive video output signal for iris control

This signal can be used for automatic lens iris control in Continuous and RCT modes. The iris video signal is composed to average the video level in the center area of each frame and can be output as a composite signal with H-sync. This signal is always output from the No. 4-pin of the Hirose 12P connector and can also be output from the Hirose 10P AUX connector as a factory option.

The following drawing shows the waveform of the iris control video signal. This signal is output with the same video level within the same frame and the average is recalculated with each new frame.

Fig. 44 Iris video output signal

The following parameters of this auto iris control signal output can be changed.

Auto Iris Control Signal Output:

ON: The auto iris control can be connected with AGC and ASC as ALC function OFF: The auto iris control is not connected with AGC and ASC.

Iris State Control:

Video: Use the iris control in auto mode.

Close: Force the iris to close.

Open: Force the iris to open.

8.9 ALC

In the EL-2800M-PMCL and EL-2800C-PMCL, auto gain, auto shutter and auto iris functions can be combined to provide a wide ranging automatic exposure control from dark to bright or vice versa. The functions are applied in the sequence shown below and if one function is disabled, the linkage between the other two is maintained.

In order to make the ALC function effective, set the Auto Iris Lens Control Signal Output to "ON". The auto iris function works together with AGC and Exposure Auto.

If the lighting condition is changed from bright to dark AIC - ASC - AGC If the lighting condition is changed from dark to bright AGC - ASC - AIC

Fig. 45 ALC function concept

ALC Reference will determine the target video level for AGC, Auto Shutter and/or Auto iris. For instance, if ALC Reference is set to 100% video level, AGC, Auto Shutter and/or Auto iris will function to maintain 100% video level.

■ Please note that ALC function is available only in continuous mode, as well as RCT mode.

See the possibilities

9. Camera Control Tool

In the EL-2800M-PMCL and EL-2800C-PMCL, control of all camera functions can be done by the JAI SDK and Control Tool software. All controllable camera functions are stored in an XML file inside of the camera. The JAI SDK and Control Tool software can be downloaded from www.jai.com.

If you need to use the Short ASCII communication protocol and associated control tool, please contact your local JAI representative.

Specific notes regarding Control Tool use:

- 1. For EL-2800-PMCL, the JAI SDK and Control Tool 2.0 can be used to control the camera, provided the PC on which the JAI software is installed is connected to the camera via a GenCP-compliant Camera Link frame grabber. Many frame grabber vendors also provide their own GenICam control tool software, as do a number of third-party software companies. Software conflicts can occur between these GenICam tools and the JAI SDK and Control Tool causing one or both tools to function improperly. Therefore, if you intend to use the JAI SDK and Control Tool you should A) not install any other GenICam software on your host PC, or B) install the JAI SDK and Control Tool last, after installing any other software. This will, in most cases, ensure that the JAI SDK and Control Tool functions properly. If not, please contact the frame grabber manufacturer or JAI to determine other ways to eliminate any software conflict.
- 2. The frame grabber used must be compliant with Camera Link Specification v1.1 or greater in order to communicate with the JAI SDK and Control Tool. If it is not, the JAI SDK and Control Tool cannot be used, and the Short ASCII communication protocol and associated control tool should be used instead.

10. External appearance and dimensions

Outside dimensions tolerance : \pm 0.3mm

Fig. 46 Outside dimensions

SpecificationsSpectral response 11.

11.1

Fig. 47 Spectral response (EL-2800M-PMCL)

Spectral response (EL-2800C-PMCL) Fig.48

11.2 Specifications table

Horizontal Frequency V-Binning 1 Tap 1X-1Y, 1X-2YE 23.519 kHz 1H=42.519 μs 229 1X2-2YE, 1X2-1Y 34.134 kHz 1H=29.296 μs 158 158 1X-1Y, 1X-2YE 21.160 kHz 1H=47.259 μs 255 1X2-2YE 54.7 Hz Total = 744 Effective 1 1X2-2YE 31.6 Hz Total = 744 Effective 1 1X2-1Y 27.4 Hz Total = 1485 Effective 1 1X-1Y 15.8 Hz Total = 1485 Effective 1 1X-1Y 15.8 Hz Total = 375 Effective 1 1X2-2YE 91.0 Hz Total = 375 Effective 1 1X2-2YE 1 1 1 1 1 1 1 1 1	27clks/line 96clks/line 82 clks/line 52 clks/line fective=720							
Synchronization	27clks/line 96clks/line 82 clks/line 52 clks/line fective=720							
Interface	27clks/line 96clks/line 82 clks/line 52 clks/line fective=720							
Tap 1 1 1 1 1 1 1 1 1	27clks/line 96clks/line 82 clks/line 52 clks/line fective=720							
Aspect Ratio	27clks/line 96clks/line 82 clks/line 52 clks/line fective=720							
Image size(Effective Image) 8.72 (h) x 6.54 (v) mm 10.972 mm diagonal Pixel size	96clks/line 82 clks/line 52 clks/line fective=720							
Pixel size 4.54 (h) x 4.54 (v) μm Effective Image output Pixels 1920 (h) x 1440 (v) 1920 (h) x 1440 (v) Pixel Clock 54 MHz Horizontal Prequency V-Binning 1 Tap	96clks/line 82 clks/line 52 clks/line fective=720							
Pixels 1920 (h) x 1440 (v) 1920 (h) x 1440 (v)	96clks/line 82 clks/line 52 clks/line fective=720							
Pixels Pixels Pixel Clock 54 MHz Horizontal Frequency V-Binning 1 Tap Geometry 1X2-2YE, 1X2-1Y 40.693 kHz 1H=24.574 μs 132 1 Tap JX-1Y, 1X-2YE 23.519 kHz 1H=42.519 μs 229 1 1X2-2YE, 1X2-1Y 34.134 kHz 1H=29.296 μs 158 1 1X-1Y, 1X-2YE 21.160 kHz 1H=47.259 μs 255 1 1X2-2YE 54.7 Hz Total = 744 Effect 1 1X2-2YE 31.6 Hz Total = 744 Effect 1 1X2-1Y 27.4 Hz Total = 1485 Effect Vertical Frequency 1 Tap JX-1Y 15.8 Hz Total = 1485 Effect Vertical Frequency 2 Geometry 1X2-2YE 91.0 Hz Total = 375 Effect	96clks/line 82 clks/line 52 clks/line fective=720							
V-Binning V-Binning Tap 1 Tap 1X2-2YE, 1X2-1Y 40.693 kHz 1H=24.574 μs 132	96clks/line 82 clks/line 52 clks/line fective=720							
V-Binning Frequency V-Binning Tap 1X-1Y, 1X-2YE 23.519 kHz 1H=42.519 μs 229 1X2-2YE, 1X2-1Y 34.134 kHz 1H=29.296 μs 158 1X-1Y, 1X-2YE 21.160 kHz 1H=47.259 μs 255 1X2-2YE 54.7 Hz Total = 744 Effective 1 1X2-2YE 31.6 Hz Total = 744 Effective 1X2-1Y 27.4 Hz Total = 1485 Effective 1X2-1Y 15.8 Hz Total = 1485 Effective 1X2-2YE 91.0 Hz Total = 375 Effective 1X2-2YE	96clks/line 82 clks/line 52 clks/line fective=720							
Tap Frequency September Tap Tap Tequency Tap Tequency Tap Tequency Tap Tequency Tap Tequency Tap Tequency Te	82 clks/line 52 clks/line fective=720							
2 1X-1Y, 1X-2YE 21.160 kHz 1H=47.259 μs 255 1 1X2-2YE 54.7 Hz Total = 744 Effet 1 1X2-2YE 31.6 Hz Total = 744 Effet 1 1X2-1Y 27.4 Hz Total = 1485 Effet 1 1X2-1Y 15.8 Hz Total = 1485 Effet 1 1X-1Y 15.8 Hz Total = 1485 Effet 1 1X2-2YE 91.0 Hz Total = 375 Effet 1 1X-2YE 91.0 Hz Total = 375 Eff	52 clks/line fective=720							
1	fective=720							
Vertical Frequency V-Binning 1 </td <td></td>								
Vertical Frequency V-Binning 1 1 Tap Geometry 1 1X2-1Y 27.4 Hz Total =1485 Effective 1 Tap Frequency 1 Tap Geometry 1 1X2-2YE 91.0 Hz Total =375 Effective	Coctive=720							
Vertical FrequencyV-Binning1Tap 21X-1Y15.8 HzTotal =1485Effective Effective1Tap 21X2-2YE91.0 HzTotal =375Effective	fective=720							
Frequency V-Binning 2 Geometry 1X2-2YE 91.0 Hz Total =375 Effe	ective=1440							
rrequency 2 Geometry 1X2-2YE 91.0 Hz Total = 3/5 Effe	ective=1440							
	fective=360							
2 1X-2YE 47.2 Hz Total =375 Effe	fective=360							
2 1X2-1Y 45.7 Hz Total =747 Effe	fective=720							
2 1X-1Y 45.3 Hz Total =752 Effe	fective=720							
Acquisition 1X2-2YE 54.7 fps ~ 0.125 fps 54.7 fps ~ 0.125 fps								
Frame Rate 1X-2YE 31.6 fps ~ 0.125 fps 31.6 fps ~ 0.125 fps								
1X2-1Y 27.4 fps ~ 0.125 fps 27.4 fps ~ 0.125 fps								
Tap 1X-1Y 15.8 fps ~ 0.125 fps 15.8 fps ~ 0.125 fps								
Geometry RGB − 15.8 fps ~ 0.125 fps								
EMVA 1288 Parameters at 12-bit output at 12-bit output								
Absolute sensitivity 15.94 p (λ = 525 nm) 23.71 p (λ = 525 nm)	23.71 p (λ = 525 nm)							
Maximum SNR 41.39dB 41.52dB								
	58.5dB (Typical)							
(Traditional method) (0dB gain, Black)) (0dB gain, Green Black)	,							
Full image 1920 (h) x 1440 (v) Bayer 1920 (h) x 1440 (v)								
Image ROI OFF 8 ~1440 lines, 1 line/step 8 ~1440 lines, 2 lines/step	•							
Output SET Y 0 ~1430 lines, 1 line/step 0 ~1430 lines, 2 lines/step format Output ÷p								
H 1 1920 (H) 1920 (H)								
Digital B1011 2 960 (H) -								
ng V 1 1440 (V) 1440 (V) - 1440 (V)								
2	PGR							
Iris Video Out(Analogue) Video signal 0.7 V p-p, Sync signal 0.3 V (H. sync only)	.1.00							
Trigger Mode OFF, Continuous, Timed (EPS), Trigger Width								
Trigger option Trigger Overlap :Readout/OFF, Long time exposure, Sequential trigger	PIV, RCT with ALC, RCT w/ALC/Continuous Video output, Trigger Overlap :Readout/OFF, Long time exposure. Sequential trigger							
Trigger Input Signal Line 1, Line 2, PG1, PG2								

See the possibilities

	Timed								
Exposure Mode	(EPS,RCT,PIV Sequential)	10 μs (Min.) ~ 8	sec (Max.)、 Variable unit: 1 μs						
	Trigger Width	1 line + 8	μs (Min.) ~ ~ (Max.)						
Auto Exposi	ure	OFF /	Once / Continuous						
Auto Exposi Speed	ure Response		1 ~ 8						
Digital I/O		Line Selector (Hir	rose 12P): GPIO IN / GPIO OUT						
Black	Ref. level	33.5LSB 10-bit	(Average value of 100*100)						
Level	Adj. range	-256	~ 255LSB 10-bit						
Adjust.	Resolution	1 STEP = 0.25LSB							
	Manual Adj. range	-3dB ~+24dB, Less 0.01dB/Step	0dB ~+24dB、Less 0.01dB / step						
Gain	WB Gain	_	R / B : -7dB to +13dB, Less 0.01dB/ step						
Adjust.	WB Area	_	4 x 4						
	WB Range	_	3000K ∼ 9000K						
	White Balance	_	OFF, Once, Continuous						
Blemish	Detection		nish above the threshold value is detected only by factory)						
Comp.	Compensation	Complement by adjacent pixels	(Continuous blemishes are not compensated)						
	Numbers	512 pixels	(White and black total)						
ALC		AGC, auto exposure, and iris contro	ol can be combined and automatically controlled						
Gamma		0.45 ~ 1.0 (8	steps settings are available)						
LUT		OFF: γ=1.0,	ON: 256 points can be set						
Shading Cor	mpensation	Flat Field Block Comp. (24 x 18 Pixels)	Flat Field, Color shading Block comp. (24 x 18 pixels)						
Color interp	oolation	Block comp. (24 x 10 1 ixets)	3 x 3 Linear compensation						
Cotor interp	1	DC :12V to :24V	,						
	Input range		± 10% (At the input terminal)						
Power	Power		out, full image, lens drive OFF) V input, ROI, lens drive OFF)						
I OWEI	Consumption		out, full image, lens drive OFF)						
	- Consumption	-	V input, ROI, lens drive OFF)						
Lens mount	<u> </u>		sion of the lens is less than 10 mm.						
Flange back			6 mm, Tolerance: 0 to -0.05 mm						
Optical filte		Protection glass: Not provided	Optical Low Pass filter + IR cut filter (Half value is 670nm)						
Operating Humidity Performanc	temperature/ e guaranteed	-5°C to +45°C	/ 20 - 80% (No-condensing)						
Operating Humidity	temperature/	-45° to +70° /	/ 20 - 80% (No-condensing)						
	np. / Humidity		20% to 80 % (no-condensing)						
Regulation		· · · · · · · · · · · · · · · · · · ·	00-6-3), FCC part 15 class B, RoHS, WEEE						
Housing Din	nensions	62 x 62 x 55.5 mm (W x H x D) (excluding protrusion)						
Weight			215 g						

Note1): Approximately 5 minutes pre-heating is required to achieve these specifications. Note2): The above specifications are subject to change without notice.

Appendix 1 Short ASCII Command Communication Protocol

This chapter described the communication control protocol based on the short ASCII command as the reference.

1. Communication setting

Baud Rate	9600
Data Length	8bit
Start Bit	1bit
Stop Bit	1bit
Parity	Non
Xon/Xoff Control	Non

2. Protocol(Short ASCII Command)

2.1 Transmit the setting command to camera

NN is any kind of the commands.

NN=[Param.]<CR><LF>

e.g.

Send to camera: GA=0 <CR><LF>

Camera response: COMPLETE<CR><LF>

When camera receives the valid command, camera will return 'COMPLETE'.

If camera receives the command, camera will return following:

e.g.

Send to camera: GAX=0 <CR><LF>

Camera response: 01 Unknown Command!!<CR><LF>

e.g.

Send to camera: GA=1000 <CR><LF>

Camera response: 02 Bad Parameters!!<CR><LF>

2.2 Transmit the request command to camera

The status of camera's settings can be queried by transmitting NN?<CR><LF>, where NN is any kind of the commands.

The camera will return the current setting data.

e.g

Send to camera: GA? <CR><LF>

Camera response: GA=0<CR><LF>

See the possibilities

2.3 Switching baud rate between PC and camera

Camera always starts up with 9600bps. This can be switched to higher baud rates after a communication has been established. When switching to other baud rate the procedure is as follows.

e.g. Change baud rate to 115200bps

1. Confirm baud rates camera supported

Send to camera: SBDRT? <CR><LF>

Camera response: SBDRT=31(0x1F)<CR><LF>

2. Request new baud rate

Send to camera: CBDRT=16(0x10) <CR><LF>Camera response: COMPLETE<CR><LF>

(Change baud rate to 115200bps)

3. Rewrite new baud rate again with new baud rate (Confirmation command)

Send to camera: CBDRT=16(0x10) < CR > < LF >

Camera response: COMPLETE<CR><LF>

In case the camera does not receive the confirming command with new baud rate within 250ms after sending the acknowledge it falls back to the original baud rate (9600bps).

2.4 Command list (Short ASCII command)

2.4.1 GenCP Bootstrap Register

Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAUL T	Description
DeviceVendorNa me	I String	R/O	DVN	"JAI Ltd., Japan"	_	_	_	DVN? <cr><lf></lf></cr>
DeviceModelNa me	I String	R/O	MD		ı	ı	ı	MD? <cr><lf></lf></cr>
DeviceVersion	I String	R/O	DV	Indicate device version (e.g. "0.1.0.0")	1	1	1	DV? <cr><lf></lf></cr>
DeviceID	I String	R/O	ID	Serial Number	-	_	-	ID? <cr><lf></lf></cr>
DeviceUserID	I String	R/W	UD	User can save and load free text. (12 or less characters)				UD=[Param.] <cr><lf > UD?<cr><lf></lf></cr></lf </cr>

2.4.2 Technology Specific Bootstrap Register

Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAUL T	Description
SupportedBaudr ates	l Integer	R/O	SBDRT	Indicate Support/Non-support status for each baud rate bit0: 9600bps bit1: 19200bps bit2: 38400bps bit3: 57600bps bit4: 115200bps bit5: 230400bps bit6: 460800bps bit7: 921600bps	0x01	0xFF	0x1F	SBDRT? <cr><lf></lf></cr>
CurrentBaudrate	l Integer	R/W	CBDRT	READ: Indicate current baud rate WRITE: Set any bit of baud rate bit0: 9600bps bit1: 19200bps bit2: 38400bps bit3: 57600bps bit4: 115200bps bit5: 230400bps bit6: 460800bps bit7: 921600bps	0x01	0x80	1 (9600b ps)	CBDRT=[Param.] <cr> <lf> CBDRT?<cr><lf> In case of WRITE execution (change baud rate), it needs to control in the proper sequence between Host and Camera. (Refer to the section 3.3)</lf></cr></lf></cr>

2.4.3 Device Control

Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAU LT	Description
DeviceFirmware Version	I String	R/O	VN	Firm Ver. No.	_	_	-	VN? <cr><lf></lf></cr>
DeviceReset	I Command	W/O	CRS00	1	ı	ı	ı	CRS00=1 <cr><lf></lf></cr>

See the possibilities

2.4.4 Image Format Control

Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAU LT	Description
Height	l Integer	R/W	HTL	Min∼(Max - OffsetY)	8	1440	1440	HTL=[Param.] <cr><lf> HTL?<cr><lf></lf></cr></lf></cr>
Offset Y	l Integer	R/W	OFL	Min∼(Max - Height)	0	1432	0	OFL=[Param.] <cr><lf> OFL?<cr><lf> This value is calcurated automatically for centering of picture during 1X-2YE, 1X2-2YE mode.</lf></cr></lf></cr>
BinningHorizont al	l Integer	R/W	НВ	1: Normal / 2: Binning mode	1	2	1	HB=[Param.] <cr><lf> HB?<cr><lf> only Mono</lf></cr></lf></cr>
BinningVertical	l Integer	R/W	VB	1: Normal / 2: Binning mode	1	2	1	VB=[Param.] <cr><lf> VB?<cr><lf> only Mono</lf></cr></lf></cr>
PixelFormat	l Enumerat ion	R/(W)	ВА	Mono model: 0: Mono8 1: Mono10 2: Mono12 Bayer model: 0: BayerRG8 1: BayerRG10 2: BayerRG12	0	2	0	BA =[Param.] <cr><lf>BA?<cr><lf></lf></cr></lf></cr>
TestImageSelect or	l Enumerat ion	R/W	TPN	0: Off 1: GreyHorizontalRamp 2: GreyVerticalRamp 3: GreyHorizontalRampMo ving 4: Horizontal Colorbar* 5: Vertical Colorbar* 6: Moving Colorbar* (* Bayer model only)	0	7	0	TPN=[Param.] <cr><lf> TPN?<cr><lf></lf></cr></lf></cr>

2.4.5 Acquisition Control

Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAU LT	Description
FrameStartTrigM ode	I Enumerat ion	R/W	ТМ	Off/On	0	1	0	TM=[Param.] <cr><lf> TM?<cr><lf></lf></cr></lf></cr>
TrigSoftware	I Command	(R)/ W	STRG	0	_	_	-	STRG=0 <cr><lf></lf></cr>
FrameStartTrigS ource	l Enumerat ion	R/W	TI	0: Low 1: High 2: SoftTrigger 8: PulseGenerator0 9: PulseGenerator1 10: PulseGenerator2 11: PulseGenerator3 12: TTL_In1 13: CL_CC1_In 14: Nand0 15: Nand1 16: TTL_In2(Option) 17: LVDS_In(Option)	0	17	0	TI=[Param.] <cr><lf>TI?<cr><lf></lf></cr></lf></cr>
FrameStartTrig Activation	l Enumerat ion	R/W	TA	0: RisingEdge 1: FallingEdge 2: LevelHigh 3: LevelLow	0	3	0	TA=[Param.] <cr><lf> TA?<cr><lf></lf></cr></lf></cr>
FrameStartTrigO ver Lap	I Enumerat ion	R/W	то	0: Off / 1: ReadOut	0	1	0	TO=[Param.] <cr><lf> TO?<cr><lf></lf></cr></lf></cr>
ExposureMode	l Enumerat ion	R/W	EM	0: Off 1: Timed 2: TriggerWidth	0	2	0	EM =[Param.] <cr><lf> EM?<cr><lf></lf></cr></lf></cr>
ExposureTimeRa w	l Integer	R/W	PE	Min~Max[us]	12	8000000	18000	PE=[Param.] <cr><lf> PE?<cr><lf></lf></cr></lf></cr>
ExposureAuto	I Enumerat ion	R/W	ASC	0: Off 2: Once 1: Continuous	0	2	2	ASC=[Param.] <cr><lf > ASC?<cr><lf></lf></cr></lf </cr>

2.4.6 Digital I/O Control

Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAU LT	Description
LineInverter_Li ne1	I Boolean	R/W	LIO	False/True	0	1	0	LI0 =[Param.] <cr><lf> LI0?<cr><lf></lf></cr></lf></cr>
LineInverter_Li ne8	I Boolean	R/W	LI1	False/True	0	1	0	LI1=[Param.] <cr><lf> LI1?<cr><lf></lf></cr></lf></cr>
LineInverter_Li ne9	I Boolean	R/W	LI2	False/True	0	1	0	LI2=[Param.] <cr><lf> LI2?<cr><lf></lf></cr></lf></cr>
LineInverter_N and0In1	I Boolean	R/W	ND0I NV1	False/True	0	1	0	ND0INV1=[Param.] <cr> <lf> ND0INV1?<cr><lf></lf></cr></lf></cr>
LineInverter_N and0In2	I Boolean	R/W	ND0I NV2	False/True	0	1	0	ND0INV2=[Param.] <cr> <lf> ND0INV2?<cr><lf></lf></cr></lf></cr>
LineInverter_N and1In1	I Boolean	R/W	ND1I NV1	False/True	0	1	0	ND1INV1=[Param.] <cr> <lf> ND0INV1?<cr><lf></lf></cr></lf></cr>

See the possibilities

LineInverter_N and1In2	I Boolean	R/W	ND1I NV2	False/True	0	1	0	ND1INV2=[Param.] <cr> <lf></lf></cr>
LineSource_Lin e1	I Enumerati on	R/W	LSO	0: Low 1: High 3: FrameTrigg erWait 4: FrameActiv e 5: ExposureAc tive 6: Fval 7: Lval 8: PulseGener ator0 9: PulseGener ator1 10: PulseGener ator2 11: PulseGener ator3 12: TTL_In 13: CL_CC1_In 14: Nand0 15: Nand1 16: TTL_In2(Op tion) 17: LVDS_In(Opt ion)	0	17	0	LS0=[Param.] <cr><lf> LS0?<cr><lf> For 12pin TTL out</lf></cr></lf></cr>
LineSource_Lin e8	I Enumerati on	R/W	LS1	Same as for Line1	0	17	0	LS1=[Param.] <cr><lf> LS1?<cr><lf> For Option TTL out</lf></cr></lf></cr>
LineSource_Lin	l Enumerati on	R/W	LS2	Same as for Line1	0	17	0	LS2=[Param.] <cr><lf> LS2?<cr><lf> For Option TTL out</lf></cr></lf></cr>
LineSource_Na nd0ln1	l Enumerati on	R/W	ND0I N1	Same as for Line1	0	17	0	ND0IN1=[Param.] <cr>< LF> ND0IN1?<cr><lf></lf></cr></cr>
LineSource_Na nd0In2	I Enumerati on	R/W	ND0I N2	Same as for Line1	0	17	0	ND0IN2=[Param.] <cr>< LF> ND0IN2?<cr><lf></lf></cr></cr>
LineSource_Na nd1ln1	I Enumerati on	R/W	ND1I N1	Same as for Line1	0	17	0	ND1IN1=[Param.] <cr>< LF> ND1IN1?<cr><lf></lf></cr></cr>
LineSource_Na nd1In2	I Enumerati on	R/W	ND1I N2	Same as for Line1	0	17	0	ND1IN2=[Param.] <cr>< LF> ND1IN2?<cr><lf></lf></cr></cr>

2.4.7 Analog Control

2.4.7 Analog	Control			-				-
Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAUL T	Description
GainRawAnalogA ll	l Integer	R/W	GA	min~0~max	-84 (mono) 0 (Bayer)	672	0	GA=[Param.] <cr><lf > GA?<cr><lf></lf></cr></lf </cr>
GainRawDigitalA ll	l Integer	R/W	FGA	min~0~max	-2393	3379	0	FGA=[Param.] <cr><l F> FGA?<cr><lf></lf></cr></l </cr>
GainRawDigitalR edAll	l Integer	R/W	PGR	min~0~max	-4533	28400	0	PGR=[Param.] <cr><l F> PGR?<cr><lf> (Bayer model only)</lf></cr></l </cr>
GainRawDigitalB lueAll	l Integer	R/W	PGB	min~0~max	-4533	28400	0	PGB=[Param.] <cr><l F> PGB?<cr><lf> (Bayer model only)</lf></cr></l </cr>
GainRawDigitalT ap2All	l Integer	R/W	GJUT2	min~0~max	-891	1000	0	GJUT2=[Param.] <cr> <lf> GJUT2?<cr><lf></lf></cr></lf></cr>
GainRawDigitalT ap2 Red	l Integer	R/W	PGR2	min~0~max	-891	1000	0	PGR2=[Param.] <cr>< LF> PGR2?<cr><lf> (Bayer model only)</lf></cr></cr>
GainRawDigitalT ap2 Blue	l Integer	R/W	PGB2	min~0~max	-891	1000	0	PGB2=[Param.] <cr>< LF> PGB2?<cr><lf> (Bayer model only)</lf></cr></cr>
GainRawDigitalT ap3All	l Integer	R/W	GJUT3	min~0~max	-891	1000	0	GJUT3=[Param.] <cr> <lf> GJUT3?<cr><lf></lf></cr></lf></cr>
GainRawDigitalT ap3 Red	l Integer	R/W	PGR3	min~0~max	-891	1000	0	PGR3=[Param.] <cr>< LF> PGR3?<cr><lf> (Bayer model only)</lf></cr></cr>
GainRawDigitalT ap3 Blue	l Integer	R/W	PGB3	min~0~max	-891	1000	0	PGB3=[Param.] <cr>< LF> PGB3?<cr><lf> (Bayer model only)</lf></cr></cr>
GainRawDigitalT ap4All	l Integer	R/W	GJUT4	min~0~max	-891	1000	0	GJUT4=[Param.] <cr> <lf> GJUT4?<cr><lf></lf></cr></lf></cr>
GainRawDigitalT ap4 Red	l Integer	R/W	PGR4	min~0~max	-891	1000	0	PGR4=[Param.] <cr>< LF> PGR4?<cr><lf> (Bayer model only)</lf></cr></cr>
GainRawDigitalT ap4 Blue	l Integer	R/W	PGB4	min~0~max	-891	1000	0	PGB4=[Param.] <cr>< LF> PGB4?<cr><lf> (Bayer model only)</lf></cr></cr>
GainAuto	I Enumerati on	R/W	AGC	0: Off 1: Continuous 2: Once	0	2	0	AGC=[Param.] <cr><l F> AGC?<cr><lf></lf></cr></l </cr>
GainAutoBalance	I Enumerati on	R/W	AWA	0: Off 1: Once 2: Continuous	0	2	0	AWA=[Param.] <cr><l F> AWA?<cr><lf></lf></cr></l </cr>
BlackLevelRawAl l	l Integer	R/W	BL	min~0~max	-256	255	0	BL=[Param.] <cr><lf > BL?<cr><lf></lf></cr></lf </cr>
BlackLevelRawTa p1All	l Integer	R/W	BL1	min~0~max	-512	511	0	BL1=[Param.] <cr><l F> BL1?<cr><lf></lf></cr></l </cr>
BlackLevelRawTa p1 Red	I Integer	R/W	BLR1	min~0~max	-512	511	0	BLR1=[Param.] <cr>< LF></cr>

See the possibilities

								BLR1? <cr><lf></lf></cr>
								(Bayer model only)
Dia dal accidence								BLB1=[Param.] <cr><</cr>
BlackLevelRawTa	I Integer	R/W	BLB1	min~0~max	-512	511	0	LF> BI B1? <cr><i f=""></i></cr>
p1 Blue								
								(Bayer model only)
BlackLevelRawTa	l Integer	R/W	BL2	min - O - may	-512	511	0	BL2=[Param.] <cr><l F></l </cr>
p2All	i iiitegei	K/ W	DLZ	min~0~max	-312	311	U	BL2? <cr><lf></lf></cr>
								BLR2=[Param.] <cr><</cr>
BlackLevelRawTa								LF>
p2 Red	I Integer	R/W	BLR2	min~0~max	-512	511	0	BLR2? <cr><lf></lf></cr>
pz neu								(Bayer model only)
								BLB2=[Param.] <cr><</cr>
BlackLevelRawTa								LF>
p2 Blue	I Integer	R/W	BLB2	min~0~max	-512	511	0	BLB2? <cr><lf></lf></cr>
pz bluc								(Bayer model only)
								BL3=[Param.] <cr><l< td=""></l<></cr>
BlackLevelRawTa	I Integer	R/W	BL3	min~0~max	-512	511	0	F>
p3All								BL3? <cr><lf></lf></cr>
								BLR3=[Param.] <cr><</cr>
BlackLevelRawTa	Linksman	D ///	פוס		F43	F44	^	LF>
p3 Red	I Integer	R/W	BLR3	min~0~max	-512	511	0	BLR3? <cr><lf></lf></cr>
ļ [*]								(Bayer model only)
								BLB3=[Param.] <cr><</cr>
BlackLevelRawTa	I Integer	R/W	BLB3	min~0~max	-512	511	0	LF>
p3 Blue	i iiitegei	K/ W	DLD3	IIIII1~U~IIIax	-312	311	U	BLB3? <cr><lf></lf></cr>
								(Bayer model only)
BlackLevelRawTa								BL4=[Param.] <cr><l< td=""></l<></cr>
p4All	l Integer	R/W	BL4	min~0~max	-512	511	0	F>
ртис								BL4? <cr><lf></lf></cr>
								BLR4=[Param.] <cr><</cr>
BlackLevelRawTa	l Integer	R/W	BLR4	min~0~max	-512	511	0	LF>
p4 Red	i integer	10, 11	DEIX	I max	3.2		·	BLR4? <cr><lf></lf></cr>
								(Bayer model only)
								BLB4=[Param.] <cr><</cr>
BlackLevelRawTa	l Integer	R/W	BLB4	min~0~max	-512	511	0	LF>
p4 Blue						-	-	BLB4? <cr><lf></lf></cr>
								(Bayer model only)
BlackLevelAutoB		D /\\/	A D A	0: Off	044	0	044	ABA=[Param.] <cr><l< td=""></l<></cr>
alance	Enumerati	R/W	ABA	1: Once	Off	Once	Off	F>
	on				1			ABA? <cr><lf></lf></cr>
BalanceWhiteAu	I			0: Off				AWB=[Param.] <cr><l< td=""></l<></cr>
	Enumerati	R/W	AWB	2: Once	0	2	0	F> AWB? <cr><lf></lf></cr>
to	on			1: Continuous				
				<u> </u>	1			(Bayer model only)

2.4.8 LUT Control

Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAUL T	Description
LUTValueRed	l Integer	R/W	LUTR	Param 1: LUT index Param 2:LUTdata(Min ~Max) (Bayer model only)	0	4095		LUT*=[Param1],[Para m2] <cr><lf> LUT*?[Param1]<cr>< LF></cr></lf></cr>
LUTValueGreen	l Integer	R/W	LUTG	Param 1: LUT index Param 2:LUTdata(Min ~Max)	0	4095	- γ=1 相当値 -	
LUTValueBlue	l Integer	R/W	LUTB	Param 1: LUT index Param 2:LUTdata(Min ~Max) (Bayer model only)	0	4095		

2.4.9 Transport Layer Control

27.17 Hanspert Layer Control										
Name	Interface	Acce ss	Short ASCII	Values	MIN	MAX	DEFAUL T	Description		
DeviceTapGeome try	l Enumerat ion	R/(W	TAGM	0: Geometry_1X_1Y 1: Geometry_1X2_1Y 3: Geometry_1X_2YE 6: Geometry_1X2_2YE	0	6	6	TAGM=[Param.] <cr>< LF> TAGM?<cr><lf></lf></cr></cr>		

2.4.10 User Set Control

Name	Interface	Access	Short ASCII	Values	MIN	MAX	DEFAULT	Description
UserSetLoad	I Command	(R)/W	LD	0: Default 1: UserSet1 2: UserSet2 3: UserSet3	0	3	0	LD=[Param.] <cr><lf> LD?<cr><lf></lf></cr></lf></cr>
UserSetSave	I Command	(R)/W	SA	1: UserSet1 2: UserSet2 3: UserSet3	1	3	1	SA=[Param.] <cr><lf> SA?<cr><lf></lf></cr></lf></cr>

See the possibilities

2.4.11 JAI-Custom

Name	Interfac e	Acc ess	Short ASCII	Values	MIN	MAX	DEFA ULT	Description
BlemishWhiteE nable	l Boolean	R/W	BMW	0: False 1: True	0	1	0	BMW=[Param.] <cr> <lf> BMW?<cr><lf></lf></cr></lf></cr>
BlemishWhite Detect	I Command	W/O	BMRC W	0	0	0	0	BMRCW=0 <cr><lf< td=""></lf<></cr>
BlemishWhite Detect Threshold	I Integer	R/W	BMTH W	0	0	100	10	BMTHW=[Param.] <c R><lf> BMTHW?<cr><lf></lf></cr></lf></c
BlemishWhite Detect PositionX	I Integer	R/W	BMPX W	Param 1: Blemish index Param 2: X position(Min~Max)	0	1919	0	BMPXW=[Param1],[P aram2] <cr><lf> BMPXW? [Param1]<cr><lf></lf></cr></lf></cr>
BlemishWhite Detect PositionY	I Integer	R/W	BMPY W	Param 1: Blemish index Param 2: Y position(Min~Max)	0	1439	0	BMPYW=[Param1],[P aram2] <cr><lf> BMPYW? [Param1]<cr><lf></lf></cr></lf></cr>
ShadingCorrec tion Mode	I Enumera tion	R/W	SDCM	0: Flat Shading 1: Color Shading* (*Bayer model only)	0	1	0	SDCM=[Param.] <cr ><lf> SDCM?<cr><lf></lf></cr></lf></cr
ShadingCorrec t	I Command	W/O	RS		0	0	0	BMRCW=0 <cr><lf< td=""></lf<></cr>
RequestShadin gDetectResult	I Enumera tion	R/O	SDRS	0=Complete. 1=Too Bright. 2=Too dark. 3=Timeout Error. 4=Busy. 5=Limit. 6= Trig is not set as Normal.	0	6	0	SDRS? <cr><lf></lf></cr>
ShadingMode	l Enumera tion	R/W	SDM	0: OFF 1: User 1 2: User 2 3: User 3	0	3	0	SDM=[Param.] <cr>< LF> SDM?<cr><lf></lf></cr></cr>
VideoSendMod e	l Enumera tion	R/W	VSM	0: Normal 1: Trigger Sequence 2: Command Sequence	0	2	0	VSM=[Param.] <cr>< LF> VSM?<cr><lf></lf></cr></cr>
SequenceMode Index	l Enumera tion	R/W	SQI	0: Index0 1: Index1 2: Index2 3: Index3 4: Index4 5: Index5 6: Index6 7: Index7 8: Index8 9: Index9	0	9	0	SQI =[Param.] <cr><l F> SQI?<cr><lf></lf></cr></l </cr>
SequenceMode Frame Count0	I Integer	R/W	SQF1	Min~Max	1	255	1	SQF1=[Param.] <cr> <lf> SQI1?<cr><lf></lf></cr></lf></cr>
SequenceMode Frame Count1	I Integer	R/W	SQF2	Min~Max	1	255	1	SQF2=[Param.] <cr> <lf> SQI2?<cr><lf></lf></cr></lf></cr>
SequenceNode Frame Count2	I Integer	R/W	SQF3	Min∼Max	1	255	1	SQF3=[Param.] <cr> <lf> SQI3?<cr><lf></lf></cr></lf></cr>

SequenceMode								SQF4 =[Param.] <cr></cr>
Frame Count3	I Integer	R/W	SQF4	Min~Max	1	255	1	<lf> SQI4?<cr><lf></lf></cr></lf>
SequenceMode Frame Count4	l Integer	R/W	SQF5	Min~Max	1	255	1	SQF5=[Param.] <cr> <lf> SQI5?<cr><lf></lf></cr></lf></cr>
SequenceMode Frame Count5	l Integer	R/W	SQF6	Min~Max	1	255	1	SQF6=[Param.] <cr> <lf> SQI6?<cr><lf></lf></cr></lf></cr>
SequenceMode Frame Count6	I Integer	R/W	SQF7	Min~Max	1	255	1	SQF7=[Param.] <cr> <lf> SQI7?<cr><lf></lf></cr></lf></cr>
SequenceMode Frame Count7	I Integer	R/W	SQF8	Min~Max	1	255	1	SQF8=[Param.] <cr> <lf> SQI8?<cr><lf></lf></cr></lf></cr>
SequenceMode Frame Count8	I Integer	R/W	SQF9	Min~Max	1	255	1	SQF9=[Param.] <cr> <lf> SQI9?<cr><lf></lf></cr></lf></cr>
SequenceMode Frame Count9	l Integer	R/W	SQF10	Min~Max	1	255	1	SQF10=[Param.] <cr ><lf> SQI10?<cr><lf></lf></cr></lf></cr
SequenceMode Next Index0	I Enumera tion	R/W	SQNI1	Same as SequenceRoiIndex	0	9	0	SQNI1=[Param.] <cr ><lf> SQNI1?<cr><lf></lf></cr></lf></cr
SequenceMode Next Index1	I Enumera tion	R/W	SQNI2	Same as SequenceRoiIndex	0	9	0	SQNI2=[Param.] <cr ><lf> SQNI2?<cr><lf></lf></cr></lf></cr
SequenceMode Next Index2	I Enumera tion	R/W	SQNI3	Same as SequenceRoiIndex	0	9	0	SQNI3=[Param.] <cr ><lf> SQNI3?<cr><lf></lf></cr></lf></cr
SequenceMode Next Index3	I Enumera tion	R/W	SQNI4	Same as SequenceRoiIndex	0	9	0	SQNI4=[Param.] <cr ><lf> SQNI4?<cr><lf></lf></cr></lf></cr
SequenceMode Next Index4	I Enumera tion	R/W	SQNI5	Same as SequenceRoiIndex	0	9	0	SQNI5=[Param.] <cr ><lf> SQNI5?<cr><lf></lf></cr></lf></cr
SequenceMode Next Index5	I Enumera tion	R/W	SQNI6	Same as SequenceRoiIndex	0	9	0	SQNI6=[Param.] <cr ><lf> SQNI6?<cr><lf></lf></cr></lf></cr
SequenceMode Next Index6	I Enumera tion	R/W	SQNI7	Same as SequenceRoiIndex	0	9	0	SQNI7=[Param.] <cr ><lf> SQNI7?<cr><lf></lf></cr></lf></cr
SequenceMode Next Index7	I Enumera tion	R/W	SQNI8	Same as SequenceRoiIndex	0	9	0	SQNI8=[Param.] <cr ><lf> SQNI8?<cr><lf></lf></cr></lf></cr
SequenceMode Next Index8	I Enumera tion	R/W	SQNI9	Same as SequenceRoiIndex	0	9	0	SQNI9=[Param.] <cr ><lf> SQNI9?<cr><lf></lf></cr></lf></cr
SequenceMode Next Index9	I Enumera tion	R/W	SQNI1 0	Same as SequenceRoiIndex	0	9	0	SQNI10 =[Param.] <c R><lf> SQNI10?<cr><lf></lf></cr></lf></c
SequenceMode Height0	I Integer	R/W	SQH1	Min~Max	8	1440	1440	SQH1=[Param.] <cr> <lf> SQH1?<cr><lf></lf></cr></lf></cr>
SequenceMode Height1	I Integer	R/W	SQH2	Min~Max	8	1440	1440	SQH2=[Param.] <cr> <lf> SQH2?<cr><lf></lf></cr></lf></cr>
SequenceMode Height2	I Integer	R/W	SQH3	Min~Max	8	1440	1440	SQH3=[Param.] <cr> <lf> SQH3?<cr><lf></lf></cr></lf></cr>

See the possibilities

							ı	20114 15 1 05
SequenceMode Height3	l Integer	R/W	SQH4	Min~Max	8	1440	1440	SQH4=[Param.] <cr> <lf> SQH4?<cr><lf></lf></cr></lf></cr>
SequenceMode Height4	I Integer	R/W	SQH5	Min~Max	8	1440	1440	SQH5=[Param.] <cr> <lf> SQH5?<cr><lf></lf></cr></lf></cr>
SequenceMode Height5	I Integer	R/W	SQH6	Min~Max	8	1440	1440	SQH6=[Param.] <cr> <lf> SQH6?<cr><lf></lf></cr></lf></cr>
SequenceMode Height6	I Integer	R/W	SQH7	Min~Max	8	1440	1440	SQH7=[Param.] <cr> <lf> SQH7?<cr><lf></lf></cr></lf></cr>
SequenceMode Height7	I Integer	R/W	SQH8	Min~Max	8	1440	1440	SQH8=[Param.] <cr> <lf> SQH8?<cr><lf></lf></cr></lf></cr>
SequenceMode Height8	I Integer	R/W	SQH9	Min~Max	8	1440	1440	SQH9=[Param.] <cr> <lf> SQH9?<cr><lf></lf></cr></lf></cr>
SequenceMode Height9	I Integer	R/W	SQH10	Min~Max	8	1440	1440	SQH10=[Param.] <cr ><lf> SQH10?<cr><lf></lf></cr></lf></cr
SequenceMode OffsetY0	I Integer	R/W	SQOY1	Min~Max	0	1432	0	SQOY1=[Param.] <cr ><lf> SQOY1?<cr><lf></lf></cr></lf></cr
SequenceMode OffsetY1	l Integer	R/W	SQOY2	Min~Max	0	1432	0	SQOY2=[Param.] <cr ><lf> SQOY2?<cr><lf></lf></cr></lf></cr
SequenceMode OffsetY2	I Integer	R/W	SQOY3	Min~Max	0	1432	0	SQOY3=[Param.] <cr ><lf> SQOY3?<cr><lf></lf></cr></lf></cr
SequenceMode OffsetY3	l Integer	R/W	SQOY4	Min~Max	0	1432	0	SQOY4=[Param.] <cr ><lf> SQOY4?<cr><lf></lf></cr></lf></cr
SequenceMode OffsetY4	I Integer	R/W	SQOY5	Min~Max	0	1432	0	SQOY5=[Param.] <cr ><lf> SQOY5?<cr><lf></lf></cr></lf></cr
SequenceMode OffsetY5	l Integer	R/W	SQOY6	Min~Max	0	1432	0	SQOY6=[Param.] <cr ><lf> SQOY6?<cr><lf></lf></cr></lf></cr
SequenceMode OffsetY6	I Integer	R/W	SQOY7	Min~Max	0	1432	0	SQOY7=[Param.] <cr ><lf> SQOY7?<cr><lf></lf></cr></lf></cr
SequenceMode OffsetY7	l Integer	R/W	SQOY8	Min~Max	0	1432	0	SQOY8=[Param.] <cr ><lf> SQOY8?<cr><lf></lf></cr></lf></cr
SequenceMode OffsetY8	l Integer	R/W	SQOY9	Min~Max	0	1432	0	SQOY9=[Param.] <cr ><lf> SQOY9?<cr><lf></lf></cr></lf></cr
SequenceMode OffsetY9	I Integer	R/W	SQOY1 0	Min~Max	0	1432	0	SQOY10=[Param.] <c R><lf> SQOY10?<cr><lf></lf></cr></lf></c
SequenceMode Gain0	I Integer	R/W	SQGA1	Min~Max	-84 (mono) 0 (Bayer)	672	0	SQGA1=[Param.] <c R><lf> SQGA1?<cr><lf></lf></cr></lf></c
SequenceMode Gain1	I Integer	R/W	SQGA2	Min~Max	-84 (mono) 0 (Bayer)	672	0	SQGA2=[Param.] <c R><lf> SQGA2?<cr><lf></lf></cr></lf></c
SequenceMode Gain2	I Integer	R/W	SQGA3	Min~Max	-84 (mono) 0 (Bayer)	672	0	SQGA3=[Param.] <c R><lf> SQGA3?<cr><lf></lf></cr></lf></c
SequenceMode Gain3	I Integer	R/W	SQGA4	Min~Max	-84 (mono)	672	0	SQGA4=[Param.] <c R><lf></lf></c

	1				0			SQGA4? <cr><lf></lf></cr>
					Bayer)			SQGA4? <cr><lf></lf></cr>
CoguenceMede					-84			SQGA5=[Param.] <c< td=""></c<>
SequenceMode	I Integer	R/W	SQGA5	Min∼Max	(mono) 0	672	0	R> <lf></lf>
Gain4					(Bayer)			SQGA5? <cr><lf></lf></cr>
					-84			SQGA6=[Param.] <c< td=""></c<>
SequenceMode	I Integer	R/W	SQGA6	Min~Max	(mono)	672	0	R> <lf></lf>
Gain5	i iiitegei	17/ 17	JQUAU	MIII Max	0	072	U	SQGA6? <cr><lf></lf></cr>
					(Bayer) -84			
SequenceMode					(mono)			SQGA7 =[Param.] <c< td=""></c<>
Gain6	I Integer	R/W	SQGA7	Min∼Max	0	672	0	R> <lf></lf>
					(Bayer)			SQGA7? <cr><lf></lf></cr>
CoguencoMede					-84			SQGA8=[Param.] <c< td=""></c<>
SequenceMode Gain7	I Integer	R/W	SQGA8	Min~Max	(mono) 0	672	0	R> <lf></lf>
Galli/					(Bayer)			SQGA8? <cr><lf></lf></cr>
					-84			SQGA9=[Param.] <c< td=""></c<>
SequenceMode	I Integer	R/W	SQGA9	Min~Max	(mono)	672	0	R> <lf></lf>
Gain8	i integer	137 11	JQUAY	MIII MAX	0	072		SQGA9? <cr><lf></lf></cr>
					(Bayer) -84			
SequenceMode		D ///	SQGA1		(mono)	470	_	SQGA10=[Param.] <c< td=""></c<>
Gain9	I Integer	R/W	0	Min∼Max	0	672	0	R> <lf></lf>
					(Bayer)			SQGA10? <cr><lf></lf></cr>
SequenceMode								SQPE1=[Param.] <cr< td=""></cr<>
ExposureTime	I Integer	R/W	SQPE1	Min∼Max	10	800000	18000	> <lf></lf>
0								SQPE1? <cr><lf></lf></cr>
SequenceMode								SQPE2=[Param.] <cr< td=""></cr<>
ExposureTime	I Integer	R/W	SQPE2	Min∼Max	10	800000	18000	> <lf></lf>
1				min max				SQPE2? <cr><lf></lf></cr>
SequenceMode								SQPE3=[Param.] <cr< td=""></cr<>
ExposureTime	I Integer	R/W	SQPE3	Min∼Max	10	800000	18000	> <lf></lf>
2	i iiitegei	17/ 17	JQFLJ	MIII Max	10	000000	10000	SQPE3? <cr><lf></lf></cr>
SequenceMode		D ///	CODE		40			SQPE4 =[Param.] <cr< td=""></cr<>
ExposureTime	I Integer	R/W	SQPE4	Min~Max	10	800000	18000	> <lf></lf>
3								SQPE4? <cr><lf></lf></cr>
SequenceMode								SQPE5 =[Param.] <cr< td=""></cr<>
ExposureTime	I Integer	R/W	SQPE5	Min~Max	10	800000	18000	> <lf></lf>
4								SQPE5? <cr><lf></lf></cr>
SequenceMode								SQPE6 =[Param.] <cr< td=""></cr<>
ExposureTime	I Integer	R/W	SQPE6	Min~Max	10	800000	18000	> <lf></lf>
5								SQPE6? <cr><lf></lf></cr>
SequenceMode								SQPE7=[Param.] <cr< td=""></cr<>
ExposureTime	I Integer	R/W	SQPE7	Min~Max	10	800000	18000	> <lf></lf>
6								SQPE7? <cr><lf></lf></cr>
SequenceMode								SQPE8=[Param.] <cr< td=""></cr<>
ExposureTime	I Integer	R/W	SQPE8	Min~Max	10	800000	18000	> <lf></lf>
7	i integer	137 11	JQI LU	MIII MAX	10	000000	10000	SQPE8? <cr><lf></lf></cr>
•								
SequenceMode	Linkson	D /\\/	CODEO	142 14	10	000000	40000	SQPE9=[Param.] <cr< td=""></cr<>
ExposureTime	I Integer	R/W	SQPE9	Min~Max	10	800000	18000	> <lf></lf>
8								SQPE9? <cr><lf></lf></cr>
SequenceMode	1		SQPE1					SQPE10=[Param.] <c< td=""></c<>
ExposureTime	I Integer	R/W	0	Min~Max	10	800000	18000	R> <lf></lf>
9	<u> </u>	<u></u>			<u></u>	<u> </u>		SQPE10? <cr><lf></lf></cr>
				<u> </u>				SQHB1=[Param.] <cr< td=""></cr<>
SequenceMode	Enumara	R/W	COLID4	1: Hbinning = OFF	4	2	4	> <lf></lf>
Hbinning0	Enumera	K/ W	SQHB1	2: Hbinning = ON	1	2	1	SQHB1? <cr><lf></lf></cr>
	tion]				(Mono model only)
						İ		SQHB2=[Param.] <cr< td=""></cr<>
SequenceMode	_			1: Hbinning = OFF		_		> <lf></lf>
Hbinning1	Enumera	R/W	SQHB2	2: Hbinning = ON	1	2	1	SQHB2? <cr><lf></lf></cr>
	tion							(Mono model only)
	1				1	 		SQHB3=[Param.] <cr< td=""></cr<>
SequenceMode	Enumera	R/W	SQHB3	1: Hbinning = OFF	1	2	1	> <lf></lf>
Hbinning2		13/ 44	SQLIDS	2: Hbinning = ON	'		'	
_	tion					<u> </u>		SQHB3? <cr><lf></lf></cr>

								(Mono model only)
SequenceMode Hbinning3	I Enumera tion	R/W	SQHB4	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB4=[Param.] <cr ><lf> SQHB4?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Hbinning4	l Enumera tion	R/W	SQHB5	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB5=[Param.] <cr ><lf> SQHB5?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Hbinning5	I Enumera tion	R/W	SQHB6	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB6=[Param.] <cr ><lf> SQHB6?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Hbinning6	I Enumera tion	R/W	SQHB7	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB7=[Param.] <cr ><lf> SQHB7?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Hbinning7	I Enumera tion	R/W	SQHB8	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB8=[Param.] <cr ><lf> SQHB8?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Hbinning8	I Enumera tion	R/W	SQHB9	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB9=[Param.] <cr ><lf> SQHB9?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Hbinning9	I Enumera tion	R/W	SQHB1 0	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQHB10=[Param.] <c R><lf> SQHB10?<cr><lf> (Mono model only)</lf></cr></lf></c
SequenceMode Vbinning0	I Enumera tion	R/W	SQVB1	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQVB1=[Param.] <cr ><lf> SQVB1?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Vbinning1	I Enumera tion	R/W	SQVB2	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQVB2=[Param.] <cr ><lf> SQVB2?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Vbinning2	I Enumera tion	R/W	SQVB3	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQVB3=[Param.] <cr ><lf> SQVB3?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Vbinning3	I Enumera tion	R/W	SQVB4	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQVB4=[Param.] <cr ><lf> SQVB4?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Vbinning4	I Enumera tion	R/W	SQVB5	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQVB5=[Param.] <cr ><lf> SQVB5?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Vbinning5	l Enumera tion	R/W	SQVB6	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQVB6=[Param.] <cr ><lf> SQVB6?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Vbinning6	l Enumera tion	R/W	SQVB7	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQVB7=[Param.] <cr ><lf> SQVB7?<cr><lf> (Mono model only)</lf></cr></lf></cr
SequenceMode Vbinning7	l Enumera tion	R/W	SQVB8	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQVB8=[Param.] <cr ><lf> SQVB8?<cr><lf> (Mono model only)</lf></cr></lf></cr

								SQVB9=[Param.] <cr< th=""></cr<>
SequenceMode Vbinning8	Enumera tion	R/W	SQVB9	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	> <lf> SQVB9?<cr><lf> (Mono model only)</lf></cr></lf>
SequenceMode Vbinning9	I Enumera tion	R/W	SQVB1 0	1: Hbinning = OFF 2: Hbinning = ON	1	2	1	SQVB10=[Param.] <c R><lf> SQVB10?<cr><lf> (Mono model only)</lf></cr></lf></c
SequenceMode LutEnable0	I Enumera tion	R/W	SQLUT 1	Off/On	0	1	0	SQLUT1=[Param.] <c R><lf> SQLUT1?<cr><lf></lf></cr></lf></c
SequenceMode LutEnable1	Enumera tion	R/W	SQLUT 2	Off/On	0	1	0	SQLUT2=[Param.] <c R><lf> SQLUT2?<cr><lf></lf></cr></lf></c
SequenceMode LutEnable2	I Enumera tion	R/W	SQLUT 3	Off/On	0	1	0	SQLUT3=[Param.] <c R><lf> SQLUT3?<cr><lf></lf></cr></lf></c
SequenceMode LutEnable3	Enumera tion	R/W	SQLUT 4	Off/On	0	1	0	SQLUT4=[Param.] <c R><lf> SQLUT4?<cr><lf></lf></cr></lf></c
SequenceMode LutEnable4	Enumera tion	R/W	SQLUT 5	Off/On	0	1	0	SQLUT5=[Param.] <c R><lf> SQLUT5?<cr><lf></lf></cr></lf></c
SequenceMode LutEnable5	I Enumera tion	R/W	SQLUT 6	Off/On	0	1	0	SQLUT6=[Param.] <c R><lf> SQLUT6?<cr><lf></lf></cr></lf></c
SequenceMode LutEnable6	I Enumera tion	R/W	SQLUT 7	Off/On	0	1	0	SQLUT7=[Param.] <c R><lf> SQLUT7?<cr><lf></lf></cr></lf></c
SequenceMode LutEnable7	I Enumera tion	R/W	SQLUT 8	Off/On	0	1	0	SQLUT8=[Param.] <c R><lf> SQLUT8?<cr><lf></lf></cr></lf></c
SequenceMode LutEnable8	I Enumera tion	R/W	SQLUT 9	Off/On	0	1	0	SQLUT9=[Param.] <c R><lf> SQLUT9?<cr><lf></lf></cr></lf></c
SequenceMode LutEnable9	I Enumera tion	R/W	SQLUT 10	Off/On	0	1	0	SQLUT10=[Param.]< CR> <lf> SQLUT10?<cr><lf ></lf </cr></lf>
SequenceMode BlackLevel0	I Integer	R/W	SQBL1	Min~Max	-256	255	0	SQBL1=[Param.] <cr ><lf> SQBL1?<cr><lf></lf></cr></lf></cr
SequenceMode BlackLevel1	I Integer	R/W	SQBL2	Min~Max	-256	255	0	SQBL2=[Param.] <cr ><lf> SQBL2?<cr><lf></lf></cr></lf></cr
SequenceMode BlackLevel2	I Integer	R/W	SQBL3	Min~Max	-256	255	0	SQBL3=[Param.] <cr ><lf> SQBL3?<cr><lf></lf></cr></lf></cr
SequenceMode BlackLevel3	I Integer	R/W	SQBL4	Min~Max	-256	255	0	SQBL4=[Param.] <cr ><lf> SQBL4?<cr><lf></lf></cr></lf></cr
SequenceMode BlackLevel4	I Integer	R/W	SQBL5	Min~Max	-256	255	0	SQBL5=[Param.] <cr ><lf> SQBL5?<cr><lf></lf></cr></lf></cr
SequenceMode BlackLevel5	I Integer	R/W	SQBL6	Min~Max	-256	255	0	SQBL6=[Param.] <cr ><lf> SQBL6?<cr><lf></lf></cr></lf></cr
SequenceMode BlackLevel6	I Integer	R/W	SQBL7	Min~Max	-256	255	0	SQBL7=[Param.] <cr ><lf> SQBL7?<cr><lf></lf></cr></lf></cr
SequenceMode BlackLevel7	I Integer	R/W	SQBL8	Min~Max	-256	255	0	SQBL8=[Param.] <cr><lf> SQBL8?<cr><lf></lf></cr></lf></cr>

	1	I						SQBL9=[Param.] <cr< th=""></cr<>
SequenceMode BlackLevel8	I Integer	R/W	SQBL9	Min~Max	-256	255	0	> <lf> SQBL9=[Faram.]<cr><lf> SQBL9?<cr><lf></lf></cr></lf></cr></lf>
SequenceMode BlackLevel9	I Integer	R/W	SQBL1 0	Min~Max	-256	255	0	SQBL10=[Param.] <c R><lf> SQBL10?<cr><lf></lf></cr></lf></c
SequenceMode GainRed0	I Integer	R/W	SQPGR 1	Min~Max	-4533	17713	0	SQPGR1=[Param.] <c R><lf> SQPGR1?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainRed1	l Integer	R/W	SQPGR 2	Min~Max	-4533	17713	0	SQPGR2=[Param.] <c R><lf> SQPGR2?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainRed2	I Integer	R/W	SQPGR 3	Min~Max	-4533	17713	0	SQPGR3=[Param.] <c R><lf> SQPGR3?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainRed3	I Integer	R/W	SQPGR 4	Min∼Max	-4533	17713	0	SQPGR4=[Param.] <c R><lf> SQPGR4?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainRed4	l Integer	R/W	SQPGR 5	Min∼Max	-4533	17713	0	SQPGR5=[Param.] <c R><lf> SQPGR5?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainRed5	l Integer	R/W	SQPGR 6	Min~Max	-4533	17713	0	SQPGR6=[Param.] <c R><lf> SQPGR6?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainRed6	I Integer	R/W	SQPGR 7	Min~Max	-4533	17713	0	SQPGR7=[Param.] <c R><lf> SQPGR7?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainRed7	I Integer	R/W	SQPGR 8	Min~Max	-4533	17713	0	SQPGR8=[Param.] <c R><lf> SQPGR8?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainRed8	I Integer	R/W	SQPGR 9	Min~Max	-4533	17713	0	SQPGR9=[Param.] <c R><lf> SQPGR9?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainRed9	l Integer	R/W	SQPGR 10	Min∼Max	-4533	17713	0	SQPGR10=[Param.]< CR> <lf> SQPGR10?<cr><lf ></lf </cr></lf>
SequenceMode GainBlue0	I Integer	R/W	SQPGB 1	Min~Max	-4533	17713	0	(Bayer model only) SQPGB1=[Param.] <c r=""><lf> SQPGB1?<cr><lf> (Bayer model only)</lf></cr></lf></c>
SequenceMode GainBlue1	I Integer	R/W	SQPGB 2	Min~Max	-4533	17713	0	SQPGB2=[Param.] <c R><lf> SQPGB2?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainBlue2	I Integer	R/W	SQPGB 3	Min~Max	-4533	17713	0	SQPGB3=[Param.] <c R><lf> SQPGB3?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainBlue3	I Integer	R/W	SQPGB 4	Min~Max	-4533	17713	0	SQPGB4=[Param.] <c R><lf> SQPGB4?<cr><lf></lf></cr></lf></c

								(Bayer model only)
SequenceMode GainBlue4	I Integer	R/W	SQPGB 5	Min~Max	-4533	17713	0	SQPGB5=[Param.] <c R><lf> SQPGB5?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainBlue5	l Integer	R/W	SQPGB 6	Min~Max	-4533	17713	0	SQPGB6=[Param.] <c R><lf> SQPGB6?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainBlue6	l Integer	R/W	SQPGB 7	Min~Max	-4533	17713	0	SQPGB7=[Param.] <c R><lf> SQPGB7?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainBlue7	I Integer	R/W	SQPGB 8	Min~Max	-4533	17713	0	SQPGB8=[Param.] <c R><lf> SQPGB8?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainBlue8	l Integer	R/W	SQPGB 9	Min∼Max	-4533	17713	0	SQPGB9=[Param.] <c R><lf> SQPGB9?<cr><lf> (Bayer model only)</lf></cr></lf></c
SequenceMode GainBlue9	I Integer	R/W	SQPGB 10	Min~Max	-4533	17713	0	SQPGB10=[Param.]< CR> <lf> SQPGB10?<cr><lf > (Bayer model only)</lf </cr></lf>
CommnadSequ ence Index	I Enumera tion	R/W	SQI	Same as SequenceModeInde x	0	9	0	CSQI=[Param.] <cr> <lf> CSQI?<cr><lf></lf></cr></lf></cr>
CurrentSequen ce Index	I Enumera tion	R/O	SQIDX	Same as SequenceModeInde x	0	9	0	SQIDX? <cr><lf></lf></cr>
SequenceRese t	I Enumera tion	W/O	SQRST	0	0	0	0	SQRST =[Param.] <cr><lf></lf></cr>
SequenceLutM ode	I Enumera tion	R/W	SQLUT	0: Gamma 1: LUT	0	1	0	SQLUT=[Param.] <cr ><lf> SQLUT?<cr><lf></lf></cr></lf></cr
LUTMode	I Enumera tion	R/W	LUTC	0: Off 1: Gamma 2: LUT	0	2	0	LUTC=[Param.] <cr> <lf> LUTC?<cr><lf></lf></cr></lf></cr>
AlcSpeed	l Integer	R/W	ALCS	Min~Max	1	8	4	ALCS=[Param.] <cr> <lf> ALCS?<cr><lf> for AGC and ASC</lf></cr></lf></cr>
ExposureAuto Max	I Integer	R/W	ASCEA	Min~Max[us]	101	800000	18000	ASCEA=[Param.] <c R><lf> ASCEA?<cr><lf> Maximum value is varied depending on frame rate.</lf></cr></lf></c
ExposureAuto Min	I Integer	R/W	ASCEI	Min∼Max	100	799999	100	ASCEI=[Param.] <cr ><lf> ASCEI?<cr><lf> Maximum value is varied depending on frame rate.</lf></cr></lf></cr
RequestExposu reAuto Result	l Enumera tion	R/O	ASRS	0=Complete. 1=Too Bright. 2=Too dark. 3=Timeout Error. 4=Busy.	0	6	0	ASRS? <cr><lf></lf></cr>

				5=Limit. 6= Trig is not set as Normal.				
TriggerOption	l Enumera tion	R/W	TRGO P	0: Off 1: RCT 2: PIV 3: Smear-less 4: RCT Continuous	0	4	0	TRGOP=[Param.] <cr ><lf> TRGOP?<cr><lf></lf></cr></lf></cr
AlcReference	I Integer	R/W	AGCF	Min~Max[%]	1	100	50	AGCF=[Param.] <cr> <lf> AGCF?<cr><lf></lf></cr></lf></cr>
GainAutoMax	I Integer	R/W	AGCG A	Min~Max	0	672	672	AGCGA=[Param.] <cr ><lf> AGCGA?<cr><lf></lf></cr></lf></cr
GainAutoMin	I Integer	R/W	AGCGI	Min~Max	-84 (Mono) 0 (Bayer)	671	0	AGCGI=[Param.] <cr> <lf> AGCGI?<cr><lf></lf></cr></lf></cr>
RequestGainA uto Result	I Enumera tion	R/O	AGRS	0=Complete. 1=Too Bright. 2=Too dark. 3=Timeout Error. 4=Busy. 5=Limit. 6= Trig is not set as Normal.	0	6	0	AGRS? <cr><lf></lf></cr>
AutoIrisLensCo ntrol SignalOutput	I Enumera tion	R/W	AIC	0: Off 1: On	0	1	0	AIC=[Param.] <cr><l F> AIC?<cr><lf></lf></cr></l </cr>
LensSelect	l Enumera tion	R/W	AIS	0: None 1: P-IRIS Lens 2: MOTOR Iris Lens 3: Video Iris Lens 4: DC Iris Lens	0	4	0	AIS=[Param.] <cr><l F> AIS?<cr><lf></lf></cr></l </cr>
VideoIrisState Control	I Enumera tion	R/W	ISC	0: Video 1: Close 2: Open	0	1	2	ISC=[Param.] <cr><l F> ISC?<cr><lf></lf></cr></l </cr>
ALCChannelAr eaAll	I Enumera tion	R/W	ALCA	0: Off / 1: On	0	1	0	ALCA=[Param.] <cr> <lf> ALCA?<cr><lf></lf></cr></lf></cr>
ALCChannelAr ea LowRight	I Enumera tion	R/W	ALCLR	0: Off / 1: On	0	1	1	
ALCChannelAr ea LowMidRight	I Enumera tion	R/W	ALCLM R	0: Off / 1: On	0	1	1	
ALCChannelAr ea LowMidLeft	I Enumera tion	R/W	ALCLM L	0: Off / 1: On	0	1	1	
ALCChannelAr ea LowLeft	I Enumera tion	R/W	ALCLL	0: Off / 1: On	0	1	1	ALC**=[Param.] <cr><lf></lf></cr>
ALCChannelAr ea MidLowRight	I Enumera tion	R/W	ALCML R	0: Off / 1: On	0	1	1	ALC**? <cr><lf></lf></cr>
ALCChannelAr ea MidLowMidRig ht	I Enumera tion	R/W	ALCML MR	0: Off / 1: On	0	1	1	
ALCChannelAr ea MidLowMidLef t	I Enumera tion	R/W	ALCML ML	0: Off / 1: On	0	1	1	

ALCChannelAr ea	l Enumera	R/W	ALCML	0: Off / 1: On	0	1	1	
MidLowLeft ALCChannelAr	tion I		ALCM					
ea MidHighRight	Enumera tion	R/W	HR	0: Off / 1: On	0	1	1	
ALCChannelAr ea MidHighMidRig ht	I Enumera tion	R/W	ALCM HMR	0: Off / 1: On	0	1	1	
ALCChannelAr ea MidHighMidLef t	l Enumera tion	R/W	ALCM HML	0: Off / 1: On	0	1	1	
ALCChannelAr ea MidHighLeft	I Enumera tion	R/W	ALCM HL	0: Off / 1: On	0	1	1	
ALCChannelAr ea HighRight	I Enumera tion	R/W	ALCHR	0: Off / 1: On	0	1	1	
ALCChannelAr ea HighMidRight	Enumera tion	R/W	ALCH MR	0: Off / 1: On	0	1	1	
ALCChannelAr ea HighMidLeft	Enumera tion	R/W	ALCH ML	0: Off / 1: On	0	1	1	
ALCChannelAr ea HighLeft	Enumera tion	R/W	ALCHL	0: Off / 1: On	0	1	1	
AWBChannelAr eaAll	I Enumera tion	R/W	AWBA	0: Off / 1: On	0	1	0	
AWBChannelAr ea LowRight	I Enumera tion	R/W	AWBLR	0: Off / 1: On	0	1	1	
AWBChannelAr ea LowMidRight	I Enumera tion	R/W	AWBL MR	0: Off / 1: On	0	1	1	
AWBChannelAr ea LowMidLeft	I Enumera tion	R/W	AWBL ML	0: Off / 1: On	0	1	1	
AWBChannelAr ea LowLeft	I Enumera tion	R/W	AWBLL	0: Off / 1: On	0	1	1	AWB**=[Param.] <cr< td=""></cr<>
AWBChannelAr ea MidLowRight	I Enumera tion	R/W	AWBM LR	0: Off / 1: On	0	1	1	AWB**? <cr><lf> (Bayer model only)</lf></cr>
AWBChannelAr ea MidLowMidRig ht	I Enumera tion	R/W	AWBM LMR	0: Off / 1: On	0	1	1	(suje: modet only)
AWBChannelAr ea MidLowMidLef t	I Enumera tion	R/W	AWBM LML	0: Off / 1: On	0	1	1	
AWBChannelAr ea MidLowLeft	I Enumera tion	R/W	AWBM LL	0: Off / 1: On	0	1	1	
AWBChannelAr ea MidHighRight	I Enumera tion	R/W	AWBM HR	0: Off / 1: On	0	1	1	

AWBChannelAr	I						l	<u> </u>
ea MidHighMidRig ht	Enumera tion	R/W	AWBM HMR	0: Off / 1: On	0	1	1	
AWBChannelAr ea MidHighMidLef t	l Enumera tion	R/W	AWBM HML	0: Off / 1: On	0	1	1	
AWBChannelAr ea MidHighLeft	I Enumera tion	R/W	AWBM HL	0: Off / 1: On	0	1	1	
AWBChannelAr ea HighRight	I Enumera tion	R/W	AWBH R	0: Off / 1: On	0	1	1	
AWBChannelAr ea HighMidRight	I Enumera tion	R/W	AWBH MR	0: Off / 1: On	0	1	1	
AWBChannelAr ea HighMidLeft	I Enumera tion	R/W	AWBH ML	0: Off / 1: On	0	1	1	
AWBChannelAr ea HighLeft	I Enumera tion	R/W	AWBH L	0: Off / 1: On	0	1	1	
RequestBalanc eWhite AutoResult	l Enumera tion	R/O	AWRS	0=Complete. 1=Too Bright. 2=Too dark. 3=Timeout Error. 4=Busy. 5=Limit. 6= Trig is not set as Normal.	0	6	0	AWRS? <cr><lf> (Bayer model only)</lf></cr>
CurrentAreaNo Request	I Integer	R/O	EA	0: Factory area 1: User 1 area 2: User 2 area 3: User 3 area	0	3	0	EA ? <cr><lf> The camera return the latest used DATA AREA.</lf></cr>
PirisLensSelect	I Enumera tion	R/W	PLS	0: LM16JC5MM 1: LM35JC5MM	0	1	0	PLS=[Param.] <cr>< LF> PLS?<cr><lf></lf></cr></cr>
PIrisStepMax	l Integer	R/O	PIS	Indicate P-IRIS control step maximum value	0	255	128	PIS? <cr><lf> Different depending on PirisLensSelect value</lf></cr>
PIrisPosition	I Integer	R/W	PIP	Min~Max	0	255	128	PIP=[Param.] <cr><l F> PIP?<cr><lf> Maximum value is PIrisStepMax</lf></cr></l </cr>
PirisAutoMin	l Enumera tion	R/W	PLI	0: FULL OPEN 1: F1.4 2: F2 3: F2.8 4: F4 5: F5.6 6: F8 7: F11 8: F16 9: F22 10: F32 11: CLOSE	0	11	1	PLI=[Param.] <cr><lf> F> PLI?<cr><lf> Minimum value and Maximum value are different depending on PirisLensSelect value</lf></cr></lf></cr>
PirisAutoMax	I Enumera tion	R/W	PLA	Same as above.	0	11	5	PLI=[Param.] <cr><l F> PLI?<cr><lf></lf></cr></l </cr>

								Minimum value and Maximum value are different depending on PirisLensSelect value
PirisCurrentFv alue	Enumera tion	R/O	PCV	Same as above.	0	11	0	PCV? <cr><lf></lf></cr>
AcquisitionFra meLine	l Integer	R/W	AR	Min~Max	1	325786	774	AR=[Param.] <cr><l F> AR?<cr><lf> Maximum value is calcurated depending on Height and Offset Y settings</lf></cr></l </cr>
GammaSelect or	l Integer	R/W	GMA	$0(\gamma=1) \sim 8(\gamma=0.45)$ $\sim 15(\gamma=TBD)$	0	15	8	GMA=[Param.] <cr> <lf> GMA?<cr><lf></lf></cr></lf></cr>
Temperature	I Integer	R/O	TMP0	value	_	_	_	TMP0 ?< $CR>$ (Value \div 128) = Temperature[$^{\circ}C$]
GpioPulseGen Divide Value	I Integer	R/W	PGDEV	Min~Max	1	4096	1	PGDEV=[Param.] <c R><lf> PGDEV?<cr><lf></lf></cr></lf></c
GpioPulseGen Length0	I Integer	R/W	PGL0	Min~Max	1	1048575	1	PGL0=[Param.] <cr> <lf> PGL0?<cr><lf></lf></cr></lf></cr>
GpioPulseGen Length1	I Integer	R/W	PGL1	Min~Max	1	1048575	1	PGL1=[Param.] <cr> <lf> PGL1?<cr><lf></lf></cr></lf></cr>
GpioPulseGen Length2	I Integer	R/W	PGL2	Min~Max	1	1048575	1	PGL2=[Param.] <cr> <lf> PGL2?<cr><lf></lf></cr></lf></cr>
GpioPulseGen Length3	I Integer	R/W	PGL3	Min~Max	1	1048575	1	PGL3=[Param.] <cr> <lf> PGL3?<cr><lf></lf></cr></lf></cr>
GpioPulseGenS tart Point0	I Integer	R/W	PGST0	Min~Max	0	1048574	0	PGST0=[Param.] <cr ><lf> PGST0?<cr><lf></lf></cr></lf></cr
GpioPulseGenS tart Point1	I Integer	R/W	PGST1	Min~Max	0	1048574	0	PGST1=[Param.] <cr ><lf> PGST1?<cr><lf></lf></cr></lf></cr
GpioPulseGenS tart Point2	I Integer	R/W	PGST2	Min~Max	0	1048574	0	PGST2=[Param.] <cr ><lf> PGST2?<cr><lf></lf></cr></lf></cr
GpioPulseGenS tart Point3	l Integer	R/W	PGST3	Min~Max	0	1048574	0	PGST3=[Param.] <cr ><lf> PGST3?<cr><lf></lf></cr></lf></cr
GpioPulseGen End Point0	I Integer	R/W	PGEN0	Min~Max	1	1048575	1	PGEN0=[Param.] <cr ><lf> PGEN0?<cr><lf></lf></cr></lf></cr
GpioPulseGen End Point1	I Integer	R/W	PGEN1	Min~Max	1	1048575	1	PGEN1=[Param.] <cr ><lf> PGEN1?<cr><lf></lf></cr></lf></cr
GpioPulseGen End Point2	I Integer	R/W	PGEN2	Min~Max	1	1048575	1	PGEN2=[Param.] <cr ><lf> PGEN2?<cr><lf></lf></cr></lf></cr
GpioPulseGen End Point3	I Integer	R/W	PGEN3	Min~Max	1	1048575	1	PGEN3=[Param.] <cr ><lf> PGEN3?<cr><lf></lf></cr></lf></cr
GpioPulseGen Repeat Count0	I Integer	R/W	PGRPT 0	Min~Max	0	255	0	PGRPT0=[Param.] <c R><lf></lf></c

								PGRPT0? <cr><lf></lf></cr>
GpioPulseGen Repeat Count1	I Integer	R/W	PGRPT 1	Min~Max	0	255	0	PGRPT1=[Param.] <c R><lf> PGRPT1?<cr><lf></lf></cr></lf></c
GpioPulseGen Repeat Count2	I Integer	R/W	PGRPT 2	Min~Max	0	255	0	PGRPT2=[Param.] <c R><lf> PGRPT2?<cr><lf></lf></cr></lf></c
GpioPulseGen Repeat Count3	I Integer	R/W	PGRPT 3	Min~Max	0	255	0	PGRPT3=[Param.] <c R><lf> PGRPT3?<cr><lf></lf></cr></lf></c
GpioPulseGen Clear Mode0	l Enumera tion	R/W	PGCM 0	0: Free Run 1: Level High 2: Level Low 3: Rising Edge 4: Falling Edge	0	4	0	PGCM0=[Param.] <c R><lf> PGCM0?<cr><lf></lf></cr></lf></c
GpioPulseGen Clear Mode1	I Enumera tion	R/W	PGCM 1	Same as above.	0	4	0	PGCM1=[Param.] <c R><lf> PGCM1?<cr><lf></lf></cr></lf></c
GpioPulseGen Clear Mode2	I Enumera tion	R/W	PGCM 2	Same as above.	0	4	0	PGCM2=[Param.] <c R><lf> PGCM2?<cr><lf></lf></cr></lf></c
GpioPulseGen Clear Mode3	I Enumera tion	R/W	PGCM 3	Same as above.	0	4	0	PGCM3=[Param.] <c R><lf> PGCM3?<cr><lf></lf></cr></lf></c
GpioPulseGenS ync Mode0	I Enumera tion	R/W	PGSM0	0: Async Mode 1: Sync Mode	0	1	0	PGSM0=[Param.] <c R><lf> PGSM0?<cr><lf></lf></cr></lf></c
GpioPulseGenS ync Mode1	I Enumera tion	R/W	PGSM1	Same as above.	0	1	0	PGSM1=[Param.] <c R><lf> PGSM1?<cr><lf></lf></cr></lf></c
GpioPulseGenS ync Mode2	I Enumera tion	R/W	PGSM2	Same as above.	0	1	0	PGSM2=[Param.] <c R><lf> PGSM2?<cr><lf></lf></cr></lf></c
GpioPulseGenS ync Mode3	I Enumera tion	R/W	PGSM3	Same as above.	0	1	0	PGSM3=[Param.] <c R><lf> PGSM3?<cr><lf></lf></cr></lf></c
GpioPulseGenI nput0	l Enumera tion	R/W	PGIN0	0:Low 1:High 2:Soft 3:AcquisitionTrigge rWait 4:FrameTriggerWai t 5:FrameActive 6:ExposureActive 7:FVAL 8:LVAL 9:PG0 10:PG1 11:PG2 12:PG3 13: TTL in 14:CL CC1 in 15:nand0 16:nand1 17: OPTTL in2 18: OPLVDS in	0	18	0	PGIN0=[Param.] <cr ><lf> PGIN0?<cr><lf></lf></cr></lf></cr
GpioPulseGenI nput1	I Enumera	R/W	PGIN1	Same as above.	0	18	0	PGIN1=[Param.] <cr ><lf></lf></cr

	tion							PGIN1? <cr><lf></lf></cr>
GpioPulseGenI nput2	I Enumera tion	R/W	PGIN2	Same as above.	0	18	0	PGIN2=[Param.] <cr ><lf> PGIN2?<cr><lf></lf></cr></lf></cr
GpioPulseGenI nput3	I Enumera tion	R/W	PGIN3	Same as above.	0	18	0	PGIN3=[Param.] <cr ><lf> PGIN3?<cr><lf></lf></cr></lf></cr
GpioPulseGenI nvert0	I Enumera tion	R/W	PGINV 0	0:Non-Inv 1:Inv	0	1	0	PGIN0=[Param.] <cr ><lf> PGIN0?<cr><lf></lf></cr></lf></cr
GpioPulseGenI nvert1	I Enumera tion	R/W	PGINV 1	Same as above.	0	1	0	PGIN1=[Param.] <cr ><lf> PGIN1?<cr><lf></lf></cr></lf></cr
GpioPulseGenI nvert2	I Enumera tion	R/W	PGINV 2	Same as above.	0	1	0	PGIN2=[Param.] <cr ><lf> PGIN2?<cr><lf></lf></cr></lf></cr
GpioPulseGenI nvert3	I Enumera tion	R/W	PGINV 3	Same as above.	0	1	0	PGIN3=[Param.] <cr ><lf> PGIN3?<cr><lf></lf></cr></lf></cr
GpioNand0Inp utSource1	l Enumera tion	R/W	NDOIN 1	0: Low 1: High 2: FrameTriggerWait 3: FramActive 4: ExposureActive 5: Fval 6: PulseGenerator0 7: PulseGenerator1 8: PulseGenerator2 9: PulseGenerator3 10: TTL_In1 11: CL_CC1_In	0	11	0	ND0N1=[Param.] <cr ><lf> ND0IN1?<cr><lf></lf></cr></lf></cr
GpioNand1Inp utSource1	I Enumera tion	R/W	ND1IN 1	Same as above.	0	11	0	ND1N1=[Param.] <cr ><lf> ND1IN1?<cr><lf></lf></cr></lf></cr
GpioNand0Inp utSource2	l Enumera tion	R/W	NDOIN 2	0: Low 1: High 2: FrameTriggerWait 3: FramActive 4: ExposureActive 5: Fval 6: PulseGenerator0 7: PulseGenerator1 8: PulseGenerator2 9: PulseGenerator3 10: TTL_In1 11: CL_CC1_In	0	11	0	ND0N2=[Param.] <cr ><lf> ND0IN2?<cr><lf></lf></cr></lf></cr
GpioNand1Inp utSource2	I Enumera tion	R/W	ND1IN 2	Same as above.	0	11	0	ND1N2=[Param.] <cr ><lf> ND1IN2?<cr><lf></lf></cr></lf></cr
GpioNand0Inp utInvert1	I Enumera tion	R/W	ND0IN V1	0: Non-Inv 1: Inv	0	1	0	ND0INV1=[Param.]< CR> <lf> ND0INV1?<cr><lf></lf></cr></lf>
GpioNand1Inp utInvert1	I Enumera tion	R/W	ND1IN V1	Same as above.	0	1	0	ND1INV1=[Param.]< CR> <lf> ND1INV1?<cr><lf></lf></cr></lf>
GpioNand0Inp utInvert2	I Enumera tion	R/W	ND0IN V2	0: Non-Inv 1: Inv	0	1	0	ND0INV2=[Param.]< CR> <lf> ND0INV2?<cr><lf></lf></cr></lf>

GpioNand1Inp utInvert2	I Enumera tion	R/W	ND1IN V2	Same as above.	0	1	0	ND1INV2=[Param.]< CR> <lf> ND1INV2?<cr><lf></lf></cr></lf>
MotorLensIris	I Enumera tion	R/W	MLI	0: Stop 1: Open 2: Close	0	2	0	MLI=[Param.] <cr><l F> MLI?<cr><lf></lf></cr></l </cr>
MotorLensZoo m	I Enumera tion	R/W	MLZ	0: Stop 1: Wide 2: Tele	0	2	0	MLZ=[Param.] <cr>< LF> MLZ?<cr><lf></lf></cr></cr>
MotorLensFoc us	I Enumera tion	R/W	MLF	0: Stop 1: Wide 2: Tele	0	2	0	MLF=[Param.] <cr>< LF> MLF?<cr><lf></lf></cr></cr>
LUTSequenceR	I Enumera tion	R/W	LUTSR	Min~Max	0	4095	0	LUTSR=[Param.] <cr ><lf> LUTSR?<cr><lf></lf></cr></lf></cr
LUTSequence G	I Enumera tion	R/W	LUTSG	Min~Max	0	4095	0	LUTSG=[Param.] <cr ><lf> LUTSG?<cr><lf></lf></cr></lf></cr
LUTSequenceB	I Enumera tion	R/W	LUTSB	Min~Max	0	4095	0	LUTSB=[Param.] <cr ><lf> LUTSB?<cr><lf></lf></cr></lf></cr
Request BalanceAutoRe sult	l Enumera tion	R/O	WBRS	0=Complete. 1=Too Bright. 2=Too dark. 3=Timeout Error. 4=Busy. 5=Limit. 6= Trig is not set as Normal.	0	6	0	BRFS? <cr><lf></lf></cr>
RequestBlack BalanceAutoRe sult	l Enumera tion	R/O	BBRS	0=Complete. 1=Too Bright. 2=Too dark. 3=Timeout Error. 4=Busy. 5=Limit. 6= Trig is not set as Normal.	0	6	0	BBRS? <cr><lf></lf></cr>
BlemishNum	I Integer	R/O	BNUM	Min~Max	0	512	0	BNUM? <cr><lf></lf></cr>

Appendix 2

1. Precautions

Personnel not trained in dealing with similar electronic devices should not service this camera. The camera contains components sensitive to electrostatic discharge. The handling of these devices should follow the requirements of electrostatic sensitive components.

Do not attempt to disassemble this camera.

Do not expose this camera to rain or moisture.

Do not face this camera towards the sun, extreme bright light or light reflecting objects.

When this camera is not in use, put the supplied lens cap on the lens mount.

Handle this camera with the maximum care.

Operate this camera only from the type of power source indicated on the camera.

Power off the camera during any modification such as changes of jumper and switch setting.

2. Typical Sensor Characteristics

The following effects may be observed on the video monitor screen. They do not indicate any fault of the camera, but are associated with typical sensor characteristics.

V. Aliasing

When the CCD camera captures stripes, straight lines or similar sharp patterns, jagged edges may appear on the monitor.

Blemishes

All cameras are shipped without visible image sensor blemishes.

Over time some pixel defects can occur. This does not have a practical effect on the operation of the camera. These will show up as white spots (blemishes).

Exposure to cosmic rays can cause blemishes to appear on the image sensor. Please take care to avoid exposure to cosmic rays during transportation and storage. It is recommended using sea shipment instead of air flight in order to limit the influence of cosmic rays on the camera. Pixel defects/blemishes also may emerge due to prolonged operation at elevated ambient temperature, due to high gain setting, or during long time exposure. It is therefore recommended to operate the camera within its specifications.

Patterned Noise

When the sensor captures a dark object at high temperature or is used for long time integration, fixed pattern noise may appear on the video monitor screen.

3. Caution when mounting a lens on the camera

When mounting a lens on the camera dust particles in the air may settle on the surface of the lens or the image sensor of the camera. It is therefore important to keep the protective caps on the lens and on the camera until the lens is mounted. Point the lens mount of the camera downward to prevent dust particles from landing on the optical surfaces of the camera. This work should be done in a dust free environment. Do not touch any of the optical surfaces of the camera or the lens.

See the possibilities

4. Caution when mounting the camera

When you mount the camera on your system, please make sure to use screws of the recommended length described in the following drawing. Longer screws may cause serious damage to the PCB inside the camera.

Attaching the tripod mount

If you mount the tripod mounting plate, please use the provided screws.

Mounting the camera to fixing plate

5. Exportation

When exporting this product, please follow the export regulation of your own country.

6. References

- 1. This manual and a datasheet for EL-2800M-PMCL / EL-2800C-PMCL can be downloaded from www.jai.com
- 2. JAI SDK software can be downloaded from www.jai.com

Manual change history

	inge mistory	
Date	Revision	Changes
June 2013	1.0	New release
July 2013	1.1	Correct typo in Table 2 and Table 3
July 2013	1.2	Change the description of AUX connectors
Aug. 2013	1.3	Revised specifications SNR and sensitivity, Add EMVA 1288 measurement specifications, Correct timing figures
Aug. 2013	1.4 1.5	Add Short ASCII Command Protocol as the reference
Oct. 2013	1.5	Add EMVA1288 spec. for EL-2800C^PMCL

User's Record		
Camera type:	EL-2800M-PMCL / EL-2800C-PMCL	
Revision:		
Serial No.		
Firmware version		
For camera revision history, please contact your local JAI distributor.		
User's Mode Settings.		
User's Modifications.		

Company and product names mentioned in this manual are trademarks or registered trademarks of their respective owners. JAI A-S cannot be held responsible for any technical or typographical errors and reserves the right to make changes to products and documentation without prior notification.

Europe, Middle East & Africa	Asia Pacific	Americas
Phone +45 4457 8888	Phone +81 45 440 0154	Phone (toll-free) +1 800 445 5444
Fax +45 4491 3252	Fax +81 45 440 0166	Phone +1 408 383 0300

Visit our web site at www.jai.com

