LPP: All Methods:- Numerical Examples

Prof. M.P. Biswal

Department of Mathematics

IIT- Kharagpur E-Mail: mpbiswal@maths.iitkgp.ac.in

August 8, 2022

Numerical Example (1):

$$\max : Z = x_1 + 3x_2$$

$$x_1+x_2\leq 10$$

$$x_1+4x_2\leq 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (1): Introduce Slack Variables to transform the inequations to equations.

$$\max: Z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_4 = 16$
 $x_1, x_2, x_3, x_4 > 0$

Numerical Example (1): There are four non-negative variables (n = 4) but only two equations m = 2. Check it: r(A) = r(A|b) = 2 By equating any two (=n - m) variables to zero, we solve the system $\binom{4}{2} = 6$ times. That is all the non-basic variables are zero.

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_4 = 16$
 $x_1, x_2, x_3, x_4 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	Z
1.*	0*	0*	10	16	0
2.	0	10	0	-24	NO
3.*	0*	4*	6	0	12
4.*	10*	0*	0	6	10
5.	16	0	-6	0	NO
6.*	8*	2*	0	0	14

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, \max: Z^* = 14$$

Numerical Example (2):

$$min : Z = x_1 + 3x_2$$

$$x_1+x_2\leq 10$$

$$x_1+4x_2\leq 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (2): Introduce Slack Variables to transform the inequations to equations.

$$\min: Z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_4 = 16$

$$x_1,x_2,x_3,x_4\geq 0$$

Numerical Example (2): There are four non-negative variables (n = 4) but only two equations m = 2. Check it: r(A) = r(A|b) = 2By equating any two (=n - m) variables to zero, we solve the system $\binom{4}{2} = 6$ times. That is all the non-basic variables are zero.

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_4 = 16$
 $x_1, x_2, x_3, x_4 > 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	Z
1.*	0*	0*	10	16	0
2.	0	10	0	-24	NO
3.*	0*	4*	6	0	12
4.*	10*	0*	0	6	10
5.	16	0	-6	0	NO
6.*	8*	2*	0	0	14

Optimal Solution:

$$x_1^* = 0, x_2^* = 0, \min: Z^* = 0$$

Numerical Example (3):

min :
$$Z = x_1 + 3x_2$$

$$x_1+x_2\geq 10$$

$$x_1+4x_2\geq 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (3): Introduce surplus Variables to transform the inequations to equations.

$$\min: Z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 16$
 $x_1, x_2, x_3, x_4 > 0$

Numerical Example (3): There are four non-negative variables (n = 4) but only two equations m = 2. Check it: r(A) = r(A|b) = 2By equating any two (=n - m) variables to zero, we solve the system $\binom{4}{2} = 6$ times. That is all the non-basic variables are zero.

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 16$
 $x_1, x_2, x_3, x_4 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	Z
1.	0	0	-10	- 16	NO
2.*	0*	10*	0	24	30
3.	0	4	-6	0	NO
4.	10	0	0	-6	NO
5.*	16*	0	6	0	16
6.*	8*	2*	0	0	14

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, \min : Z^* = 14$$

Numerical Example (4):

$$\max : Z = -x_1 - 3x_2$$

$$x_1+x_2\geq 10$$

$$x_1+4x_2\geq 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (4): Introduce surplus Variables to transform the inequations to equations.

$$\min: Z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 16$
 $x_1, x_2, x_3, x_4 > 0$

Numerical Example (4): There are four non-negative variables (n = 4) but only two equations m = 2. Check it: r(A) = r(A|b) = 2By equating any two (=n - m) variables to zero, we solve the system $\binom{4}{2} = 6$ times. That is all the non-basic variables are zero.

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 16$
 $x_1, x_2, x_3, x_4 > 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	Z
1.	0	0	-10	- 16	NO
2.*	0*	10*	0	24	-30
3.	0	4	-6	0	NO
4.	10	0	0	-6	NO
5.*	16*	0	6	0	-16
6.*	8*	2*	0	0	-14

BFS=Extreme Points=
$$(16,0)$$
, $(0,10)$, $(8,2)$

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, \max : Z^* = -14$$

Numerical Example (5):

$$\max : Z = x_1 + 3x_2$$

$$x_1+x_2\geq 10$$

$$x_1 + 4x_2 > 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (5): Introduce surplus Variables to transform the inequations to equations.

$$\max: Z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 16$
 $x_1, x_2, x_3, x_4 > 0$

Numerical Example (5): There are four non-negative variables (n = 4) but only two equations m = 2. Check it: r(A) = r(A|b) = 2By equating any two (=n - m) variables to zero,

we solve the system $\binom{4}{2} = 6$ times.

That is all the non-basic variables are zero.

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 16$
 $x_1, x_2, x_3, x_4 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	Z
1.	0	0	-10	- 16	NO
2.*	0*	10*	0	24	30
3.	0	4	-6	0	NO
4.	10	0	0	-6	NO
5.*	16*	0	6	0	16
6.*	8*	2*	0	0	14

BFS=Extreme Points= (16,0), (0,10),(8,2) This LPP is feasible but unbounded. No Optimal Solution.

Numerical Example (6):

$$\max : Z = x_1 + 3x_2$$

$$x_1+x_2\leq 10$$

$$x_1+4x_2\geq 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (6): Introduce slack/surplus Variables to transform the inequations to equations.

$$\max: Z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 16$
 $x_1, x_2, x_3, x_4 > 0$

Numerical Example (6): There are four non-negative variables (n = 4) but only two equations m = 2. Check it: r(A) = r(A|b) = 2By equating any two (=n - m) variables to zero,

That is all the non-basic variables are zero.

we solve the system $\binom{4}{2} = 6$ times.

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 16$
 $x_1, x_2, x_3, x_4 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	Z
1.	0	0	10	- 16	NO
2.*	0*	10*	0	24	30
3.*	0*	4*	6	0	12
4.	10	0	0	-6	NO
5.	16	0	-6	0	NO
6.*	8*	2*	0	0	14

BFS=Extreme Points=
$$(0,10),(0,4),(8,2)$$

Optimal Solution:

$$x_1^* = 0, x_2^* = 10, \max : Z^* = 30$$

Numerical Example (7):

$$min : Z = x_1 + 3x_2$$

$$x_1+x_2\leq 10$$

$$x_1+4x_2\geq 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (7): Introduce slack/surplus Variables to transform the inequations to equations.

$$\min: Z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 16$
 $x_1, x_2, x_3, x_4 > 0$

Numerical Example (7): There are four non-negative variables (n=4) but only two equations m=2. Check it: r(A)=r(A|b)=2 By equating any two (=n-m) variables to zero, we solve the system $\binom{4}{2}=6$ times. That is all the non-basic variables are zero.

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 16$
 $x_1, x_2, x_3, x_4 \ge 0$

SL.	x ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	Z
1.	0	0	10	- 16	NO
2.*	0*	10*	0	24	30
3.*	0*	4*	6	0	12
4.	10	0	0	-6	NO
5.	16	0	-6	0	NO
6.*	8*	2*	0	0	14

BFS=Extreme Points=
$$(0,10),(0,4),(8,2)$$

Optimal Solution:

$$x_1^* = 0, x_2^* = 4, \min: Z^* = 12$$

Numerical Example (8):

$$\max : Z = x_1 + 3x_2$$

$$x_1+x_2\geq 10$$

$$x_1 + 4x_2 < 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (8): Introduce slack/surplus Variables to transform the inequations to equations.

$$\max: Z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 4x_2 + x_4 = 16$
 $x_1, x_2, x_3, x_4 > 0$

Numerical Example (8): There are four non-negative variables (n = 4) but only two equations m = 2. Check it: r(A) = r(A|b) = 2By equating any two (=n - m) variables to zero, we solve the system $\binom{4}{2} = 6$ times. That is all the non-basic variables are zero.

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 4x_2 + x_4 = 16$
 $x_1, x_2, x_3, x_4 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	Z
1.	0	0	-10	16	NO
2.	0	10	0	-24	NO
3.	0	4	-6	0	NO
4.*	10*	0*	0	6	10
5.*	16*	0*	6	0	16
6.*	8*	2*	0	0	14

Optimal Solution:

$$x_1^* = 16, x_2^* = 0, \max : Z^* = 16$$

Numerical Example (9):

$$min : Z = x_1 + 3x_2$$

$$x_1+x_2\geq 10$$

$$x_1+4x_2\leq 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (9): Introduce slack/surplus Variables to transform the inequations to equations.

$$\min: Z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 4x_2 + x_4 = 16$
 $x_1, x_2, x_3, x_4 > 0$

Numerical Example (9): There are four non-negative variables (n = 4) but only two equations m = 2. Check it: r(A) = r(A|b) = 2By equating any two (=n - m) variables to zero, we solve the system $\binom{4}{2} = 6$ times. That is all the non-basic variables are zero.

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 4x_2 + x_4 = 16$
 $x_1, x_2, x_3, x_4 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	Z
1.	0	0	-10	16	NO
2.	0	10	0	-24	NO
3.	0	4	-6	0	NO
4.*	10*	0*	0	6	10
5.*	16*	0*	6	0	16
6.*	8*	2*	0	0	14

Optimal Solution:

$$x_1^* = 10, x_2^* = 0, \min : Z^* = 10$$

Numerical Example (10):

$$min : Z = x_1 + 3x_2$$

$$x_1+x_2\leq 10$$

$$x_1 + 4x_2 \ge 44$$

$$x_1, x_2 \geq 0$$

Numerical Example (10): Introduce slack/surplus Variables to transform the inequations to equations.

$$\min: Z = x_1 + 3x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 44$
 $x_1, x_2, x_3, x_4 > 0$

Numerical Example (10): There are four non-negative variables (n = 4) but only two equations m = 2. Check it: r(A) = r(A|b) = 2 By equating any two (=n - m) variables to zero, we solve the system $\binom{4}{2} = 6$ times. That is all the non-basic variables are zero.

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 - x_4 = 44$
 $x_1, x_2, x_3, x_4 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	Z
1.	0	0	10	-44	NO
2.	0	10	0	-4	NO
3.	0	11	-1	0	NO
4.	10	0	0	-34	NO
5.	44	0	-34	0	NO
6.	-4/3	34/3	0	0	NO

BFS=Extreme Points= Nil There is no Basic Feasible Solution. Some x_i are negative. The LPP is infeasible.

Numerical Example (11):

$$\max : Z = x_1 + 3x_2$$

$$x_1 + x_2 \leq 10$$

$$x_1+2x_2\leq 11$$

$$x_1+4x_2\leq 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (11): Introduce Slack Variables to transform the inequations to equations.

max :
$$Z = x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

Subject to
$$x_1 + x_2 + x_3 = 10$$

$$x_1 + 2x_2 + x_4 = 11$$

$$x_1 + 4x_2 + x_5 = 16$$

 $x_1, x_2, x_3, x_4, x_5 > 0$

Numerical Example (11): There are five non-negative variables (n = 5) but only three equations m = 3. Check it: r(A) = r(A|b) = 3 By equating any two (=n - m) variables to zero, we solve the system $\binom{5}{2} = 10$ times.

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 2x_2 + x_4 = 11$
 $x_1 + 4x_2 + x_5 = 16$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	Z
1.*	0*	0*	10	11	16	0
2.	0	10	0	-9	-24	No
3.	0	11/2	9/2	0	-6	No
4.*	0*	4*	6	3	0	12
5.*	10*	0*	0	1	6	10
6.	11	0	-1	0	5	No
7.	16	0	-6	-5	0	No
8.*	9*	1*	0	0	3	12
9.	8	2	0	-1	0	No
10.*	6*	5/2*	3/2	0	0	27/2*

BFS=Extreme Points= (0,0), (0,4), (10,0), (9,1), (6,5/2)

Optimal Solution:

$$x_1^* = 6, x_2^* = 5/2, \max : Z^* = 27/2$$

Numerical Example (12):

$$\max : Z = x_1 + 4x_2$$

$$x_1+x_2\leq 10$$

$$x_1+2x_2\leq 11$$

$$x_1+4x_2\leq 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (12): Introduce Slack Variables to transform the inequations to equations.

max :
$$Z = x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5$$

Subject to
$$x_1 + x_2 + x_3 = 10$$

$$x_1 + 2x_2 + x_4 = 11$$

$$x_1 + 4x_2 + x_5 = 16$$

 $x_1, x_2, x_3, x_4, x_5 > 0$

Numerical Example (12):

There are five non-negative variables (n = 5)

but only three equations m = 3.

Check it: r(A) = r(A|b) = 3

By equating any two (=n-m) variables to zero,

we solve the system $\binom{5}{2} = 10$ times.

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 2x_2 + x_4 = 11$
 $x_1 + 4x_2 + x_5 = 16$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	Z
1.*	0*	0*	10	11	16	0
2.	0	10	0	-9	-24	No
3.	0	11/2	9/2	0	-6	No
4.*	0*	4*	6	3	0	16*
5.*	10*	0*	0	1	6	10
6.	11	0	-1	0	5	No
7.	16	0	-6	-5	0	No
8.*	9*	1*	0	0	3	13
9.	8	2	0	-1	0	No
10.*	6*	5/2*	3/2	0	0	16*

BFS=Extreme Points= (0,0), (0,4),(10,0),(9,1),(6,5/2)

Optimal Solution :

$$x_1^* = 6, x_2^* = 5/2, \max : Z^* = 16$$

$$x_1^* = 0, x_2^* = 4, \max: Z^* = 16$$

Numerical Example (13):

$$min : Z = x_1 + 3x_2$$

$$x_1 + x_2 \geq 10$$

$$x_1+2x_2\geq 11$$

$$x_1+4x_2\geq 16$$

$$\textit{x}_1,\textit{x}_2 \geq 0$$

Numerical Example (13): Introduce surplus Variables to transform the inequations to equations.

min :
$$Z = x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

Subject to
$$x_1 + x_2 - x_3 = 10$$

$$x_1 + 2x_2 - x_4 = 11$$

$$x_1 + 4x_2 - x_5 = 16$$

$$x_1, x_2, x_3, x_4, x_5 > 0$$

Numerical Example (13):

There are five non-negative variables (n = 5)

but only three equations m = 3.

Check it: r(A) = r(A|b) = 3

By equating any two (=n-m) variables to zero,

we solve the system $\binom{5}{2} = 10$ times.

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 2x_2 - x_4 = 11$
 $x_1 + 4x_2 - x_5 = 16$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5	Z
1.	0	0	-10	- 11	-16	No
2.*	0*	10*	0	9	24	30
3.	0	11/2	-9/2	0	6	No
4.	0	4	-6	-3	0	No
5.	10	0	0	-1	-6	No
6.	11	0	1	0	-5	No
7.*	16*	0*	6	5	0	16
8.	9	1	0	0	-3	No
9.*	8*	2*	0	1	0	14*
10.	6	5/2	-3/2	0	0	No

BFS=Extreme Points= (0,10), (16,0), (8,2)

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, \min : Z^* = 14$$

Numerical Example (14):

$$\min: Z = x_1 + 4x_2$$

$$x_1+x_2\geq 10$$

$$x_1+2x_2\geq 11$$

$$x_1+4x_2\geq 16$$

$$\textit{x}_1,\textit{x}_2 \geq 0$$

Numerical Example (14): Introduce surplus Variables to transform the inequations to equations.

min :
$$Z = x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5$$

Subject to
$$x_1 + x_2 - x_3 = 10$$

$$x_1 + 2x_2 - x_4 = 11$$

$$x_1 + 4x_2 - x_5 = 16$$

$$x_1, x_2, x_3, x_4, x_5 > 0$$

Numerical Example (14):

There are five non-negative variables (n = 5)

but only three equations m = 3.

Check it: r(A) = r(A|b) = 3

By equating any two (=n-m) variables to zero,

we solve the system $\binom{5}{2} = 10$ times.

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 2x_2 - x_4 = 11$
 $x_1 + 4x_2 - x_5 = 16$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5	Z
1.	0	0	-10	- 11	-16	No
2.*	0*	10*	0	9	24	40
3.	0	11/2	-9/2	0	6	No
4.	0	4	-6	-3	0	No
5.	10	0	0	-1	-6	No
6.	11	0	1	0	-5	No
7.*	16*	0*	6	5	0	16*
8.	9	1	0	0	-3	No
9.*	8*	2*	0	1	0	16*
10.	6	5/2	-3/2	0	0	No

BFS=Extreme Points= (0,10), (16,0),(8,2)

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, \min : Z^* = 16$$

$$x_1^* = 16, x_2^* = 0, \min: Z^* = 16$$

Numerical Example (15):

$$min : Z = x_1 + 3x_2$$

$$x_1+x_2\leq 10$$

$$x_1+2x_2=11$$

$$x_1+4x_2\geq 16$$

$$\textit{x}_1,\textit{x}_2 \geq 0$$

Numerical Example (15): Introduce slack/surplus/artificial Variables to transform the inequations to equations.

$$\min: Z = x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

Subject to

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 2x_2 + x_4 = 11$
 $x_1 + 4x_2 - x_5 = 16$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

where x_3 is a slack variable, x_4 is an artificial variable, x_5 is a surplus variable.

Numerical Example (15):

There are five non-negative variables (n = 5)

but only three equations m = 3.

Check it: r(A) = r(A|b) = 3

By equating any two (=n-m) variables to zero,

we solve the system $\binom{5}{2} = 10$ times.

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 2x_2 + x_4 = 11$
 $x_1 + 4x_2 - x_5 = 16$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	Z
1.	0	0	10	11	-16	NO
2.	0	10	0	-9	24	NO
3.	0	11/2	9/2	0	6	33/2
4.	0	4	6	3*	0	$x_4 > 0$
5.	10	0	0	1	-6	NO
6.	11	0	-1	0	-5	NO
7.	16	0	-6	-5	0	NO
8.	9	1	0	0	-3	NO
9.	8	2	0	-1	0	NO
10.	6	5/2	3/2	0	0	27/2

BFS=Extreme Points= (0,11/2), (6,5/2)

Optimal Solution:

$$x_1^* = 6, x_2^* = 5/2, \min : Z^* = 27/2$$

Numerical Example (16):

$$\max : Z = x_1 + 3x_2$$

$$x_1 + x_2 \leq 10$$

$$x_1+2x_2=11$$

$$x_1+4x_2\geq 16$$

$$x_1, x_2 \geq 0$$

Numerical Example (16): Introduce slack/surplus/artificial Variables to transform the inequations to equations.

$$\max: Z = x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

Subject to

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 2x_2 + x_4 = 11$
 $x_1 + 4x_2 - x_5 = 16$
 $x_1, x_2, x_3, x_4, x_5 > 0$

where x_3 is a slack variable, x_4 is an artificial variable, x_5 is a surplus variable.

Numerical Example (16):

There are five non-negative variables (n = 5)

but only three equations m = 3.

Check it: r(A) = r(A|b) = 3

By equating any two (=n-m) variables to zero,

we solve the system $\binom{5}{2} = 10$ times.

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 2x_2 + x_4 = 11$
 $x_1 + 4x_2 - x_5 = 16$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	Z
1.	0	0	10	11	-16	NO
2.	0	10	0	-9	24	NO
3.	0	11/2	9/2	0	6	33/2
4.	0	4	6	3*	0	$x_4 > 0$
5.	10	0	0	1	-6	NO
6.	11	0	-1	0	-5	NO
7.	16	0	-6	-5	0	NO
8.	9	1	0	0	-3	NO
9.	8	2	0	-1	0	NO
10.	6	5/2	3/2	0	0	27/2

BFS=Extreme Points= (0,11/2), (6,5/2)

Optimal Solution:

$$x_1^* = 0, x_2^* = 11/2, \max : Z^* = 33/2$$

Numerical Example (17):

$$\max : Z = x_1 + 3x_2$$

$$x_1 + x_2 \leq 10$$

$$x_1+4x_2\leq 16$$

$$3x_1+4x_2\geq 60$$

$$\textit{x}_1,\textit{x}_2 \geq 0$$

Numerical Example (17): Introduce slack/surplus Variables to transform the inequations to equations.

$$\max: Z = x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

Subject to

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_4 = 16$
 $3x_1 + 4x_2 - x_5 = 60$
 $x_1, x_2, x_3, x_4, x_5 > 0$

where x_3 is a slack variable, x_4 is a slack variable, x_5 is a surplus variable.

Numerical Example (17):

There are five non-negative variables (n = 5)

but only three equations m = 3.

Check it: r(A) = r(A|b) = 3

By equating any two (=n-m) variables to zero,

we solve the system $\binom{5}{2} = 10$ times.

$$x_1 + x_2 + x_3 = 10$$

$$x_1 + 4x_2 + x_4 = 16$$

$$3x_1 + 4x_2 - x_5 = 60$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> 5	Z
1.	0	0	10	16	-60	NO
2.	0	10	0	-24	-20	NO
3.	0	4	6	0	-44	NO
4.	0	15	-5	-44	0	NO
5.	10	0	0	6	-30	NO
6.	16	0	-6	0	-12	NO
7.	20	0	-10	-4	0	NO
8.	8	2	0	0	-28	NO
9.	-20	30	0	-84	0	NO
10.	22	-3/2	-21/2	0	0	NO

BFS=Extreme Points= Nil There is no Basic Feasible Solution. Some x_j are negative. The LPP is infeasible.

Numerical Example (18):

min :
$$Z = x_1 + 3x_2$$

$$x_1 + x_2 \leq 10$$

$$x_1+4x_2\leq 16$$

$$3x_1+4x_2\geq 60$$

$$x_1, x_2 \geq 0$$

Numerical Example (18): Introduce slack/surplus Variables to transform the inequations to equations.

$$\min: Z = x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

Subject to

$$x_1 + x_2 + x_3 = 10$$

 $x_1 + 4x_2 + x_4 = 16$
 $3x_1 + 4x_2 - x_5 = 60$
 $x_1, x_2, x_3, x_4, x_5 > 0$

where x_3 is a slack variable, x_4 is a slack variable, x_5 is a surplus variable.

Numerical Example (18):

There are five non-negative variables (n = 5)

but only three equations m = 3.

Check it: r(A) = r(A|b) = 3

By equating any two (=n-m) variables to zero,

we solve the system $\binom{5}{2} = 10$ times.

$$x_1 + x_2 + x_3 = 10$$

$$x_1 + 4x_2 + x_4 = 16$$

$$3x_1 + 4x_2 - x_5 = 60$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	Z
1.	0	0	10	16	-60	NO
2.	0	10	0	-24	-20	NO
3.	0	4	6	0	-44	NO
4.	0	15	-5	-44	0	NO
5.	10	0	0	6	-30	NO
6.	16	0	-6	0	-12	NO
7.	20	0	-10	-4	0	NO
8.	8	2	0	0	-28	NO
9.	-20	30	0	-84	0	NO
10.	22	-3/2	-21/2	0	0	NO

BFS=Extreme Points= Nil

There is no Basic Feasible Solution.

Some x_j are negative. The LPP is infeasible.

Numerical Example (19):

$$\max : Z = -x_1 - 3x_2$$

Subject to

$$x_1 + x_2 \ge 10$$
 $x_1 + 2x_2 \ge 11$
 $x_1 + 4x_2 \ge 16$
 $x_1, x_2 > 0$

Feasible region is not bounded.

This feasible region can not be enclosed in a circle of a finite radius.

Numerical Example (19): Introduce surplus Variables to transform the inequations to equations.

max :
$$Z=-x_1-3x_2+0x_3+0x_4+0x_5$$

Subject to $x_1+x_2-x_3=10$ $x_1+2x_2-x_4=11$ $x_1+4x_2-x_5=16$

 $x_1, x_2, x_3, x_4, x_5 > 0$

Numerical Example (19):

There are five non-negative variables (n = 5)

but only three equations m = 3.

Check it: r(A) = r(A|b) = 3

By equating any two (=n-m) variables to zero,

we solve the system $\binom{5}{2} = 10$ times.

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 2x_2 - x_4 = 11$
 $x_1 + 4x_2 - x_5 = 16$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

SL.	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5	Z
1.	0	0	-10	- 11	-16	No
2.*	0*	10*	0	9	24	-30
3.	0	11/2	-9/2	0	6	No
4.	0	4	-6	-3	0	No
5.	10	0	0	-1	-6	No
6.	11	0	1	0	-5	No
7.*	16*	0*	6	5	0	-16
8.	9	1	0	0	-3	No
9.*	8*	2*	0	1	0	-14*
10.	6	5/2	-3/2	0	0	No

BFS=Extreme Points= (0,10), (16,0), (8,2)

Optimal Solution:

$$x_1^* = 8, x_2^* = 2, \max : Z^* = -14$$

Numerical Example (20):

$$\max : Z = x_1 + 3x_2$$

Subject to

$$x_1 + x_2 \ge 10$$
 $x_1 + 2x_2 \ge 11$
 $x_1 + 4x_2 \ge 16$
 $x_1, x_2 > 0$

Feasible region is not bounded.

This feasible region can not be enclosed in a circle of a finite radius.

Numerical Example (20): Introduce surplus Variables to transform the inequations to equations.

max :
$$Z = x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

Subject to
$$x_1 + x_2 - x_3 = 10$$

$$x_1 + 2x_2 - x_4 = 11$$

$$x_1 + 4x_2 - x_5 = 16$$

$$x_1, x_2, x_3, x_4, x_5 > 0$$

Numerical Example (20):

There are five non-negative variables (n = 5)

but only three equations m = 3.

Check it: r(A) = r(A|b) = 3

By equating any two (=n-m) variables to zero,

we solve the system $\binom{5}{2} = 10$ times.

$$x_1 + x_2 - x_3 = 10$$

 $x_1 + 2x_2 - x_4 = 11$
 $x_1 + 4x_2 - x_5 = 16$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

SL.	x ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5	Z
1.	0	0	-10	- 11	-16	No
2.*	0*	10*	0	9	24	30*
3.	0	11/2	-9/2	0	6	No
4.	0	4	-6	-3	0	No
5.	10	0	0	-1	-6	No
6.	11	0	1	0	-5	No
7.*	16*	0*	6	5	0	16
8.	9	1	0	0	-3	No
9.*	8*	2*	0	1	0	14
10.	6	5/2	-3/2	0	0	No

BFS=Extreme Points= (0,10), (16,0),(8,2)

No Optimal Solution.

This LPP is feasible but unbounded.

