____ Complete the following table

Graph	Sign of Leading Coefficient	Even or Odd Degree?	End Behaviour	Symmetry	Number of turning points	Number of x-intercepts	Least Possible Degree
*	+	Even	Q2 to Q1	None	3	4	4
- __\o_\\x	+	Odd	Q3 to Q1	None	4	5	5
- 1 ×	_	Even	Q3 to Q4	None	3	4	4
y +		Odd	Q2 to Q4	None	4	5	5
3 × ×	_	Odd	Q2 6 B4	Point	2	3	3

2) Complete the following table

Graph	Sign of Leading Coefficient	Even or Odd Degree?	End Behaviour	Symmetry	Number of turning points	Number of x-intercepts	Least Possible Degree
	1	odd	Q2 to 04	Point	4	3	5
	+	Even	Q2 to Q1	Line	3	2	4
	+	Odd	Q3 to Q1	Point	2	3	3
	_	Even	Q3 ta Q4	None	5	5	6

3) Complete the following table

Equation	Degree	Sign of Leading Coefficient	Even or Odd Degree?	End Behaviour	Possible number of turning points	Possible number of x-intercepts
$f(x) = -4x^4 + 3x^2 - 15x + 5$	4	-	Even	Q3 to Q4	3,1	4,3,2,1,0
$g(x) = 2x^5 - 4x^3 + 10x^2 - 13x + 8$	5	+	Odd	Q3 to Q1	4,2,0	5,4,3,2,1
$p(x) = 4 - 5x + 4x^2 - 3x^3$	3	_	Odd	Q2 to 84	2,0	3,2,1
h(x) = 2x(x-5)(3x+2)(4x-3)	4	+	Even	Q2 401	3,1	4,3,2,1,0

4) Use end behaviours, turning points, and zeros to match each equation with the most likely graph. Write the letter of the equation beneath the graph.

$$v = 2x^3 - 4x^2 + 3x + 2$$

$$y = 2x^3 - 4x^2 + 3x + 2$$
 B) $y = -4x^4 + 3x^2 + 4$ C) $y = x^2 + 3x - 5$

c)
$$y = x^2 + 3x - 5$$

D)
$$y = x^4 - x^3 - 4x^2 + 5x$$

D)
$$y = x^4 - x^3 - 4x^2 + 5x$$
 E) $y = -2x^5 + 3x^4 + 6x^3 - 10x^2 + 2x + 5$

F)
$$y = 3x^3 + 5x^2 - 3x + 1$$

5) State the degree of the polynomial function that corresponds to each constant finite difference. Then determine the value of the leading coefficient for each polynomial function.

6) Use finite differences to determine the degree and value of the leading coefficient for each polynomial function.

			157		
a)	×	y		2nd	3rd
	-3	-45	5291		
	-2	-16	(10)	1-16	16
	-1	-3	5722	-10	
	0	0	3 <	-11) (
	1	-1	1-11	7	16
	2	0	315	7	. /
	3	9	29 1	8 1	6
	4	32	133)	14.	[,] 6

Degree =
$$3$$
 $6 = a(3!)$
 $6 = 6a$
 $1 = a$

		- 114
x	У	1st and 21
-2	-40	270
-1	12	352)-44 \ 112 4th
0	20	18 5-7 7427-24
1	26	76 (2) 18 (27
2	48	\22\16\5-6\-24
3	80	(32/10)-30)-26
4	92	(12) 54)
5	30	2.62 - 700

7) By analyzing the impact of growing economic conditions, a demographer establishes that the predicted population, P, of a town t years from now can be modelled by the function $P(t) = 6t^4 - 5t^3 + 200t + 12000$

a) What is the value of the constant finite differences

b) What is the current population of the town $P(0) = 6(0)^4 - 5(0)^3 + 200(0) + 120000$ = 12000

c) What will the population of the town be 10 years from now

ANSWER KEY

1)

Graph	Figs of Leading Coefficient	Even or Odd Degran?	End Setaviour	Specialtry	Humbur of turning points	Humber of a-intercepts	Lanct Possible Dayres
	POS	EVEN	Q2 to Q1	NONE	3	4	4
	POS	ODD	Q3 to Q1	NONE	4	S	5
	NEG	EVEN	Q3 to Q4	NONE	3	4	4
	NEG	ODD	Q2 to Q4	NONE	(4)	5	5
	NEG	ODD	Q2 to Q4	POINT	2	3	3:

2)

Graph	Sign of Leading Coefficient	Even or Odd Degree?	End Bakawiour	Symmetry	Itemsber of Burning points	Humber of u-latercapts	Leavi Possible Dograe
· M.	NEG	ODD	Q2 to Q4	Paint	4	3	5
—	POS	EVEN	Q2 to Q1	Line	3	2	4
- M	POS	ODD	Q3 to Q1	Point	2	3	3
	NEG	EVEN	Q3 to Q4	None	5	5	6

3)	Equation	Dagree	Sign of Leading Coefficient	Evan or Odd Dagraa?	End Rehaviour	Possible number of turning points	Possible number of x-intercepts
	$f(x) = -4x^4 + 3x^2 - 15x + 5$	4	NEG	EVEN	Q3 →Q4	3, 1	4, 3, 2, 1, 0
	$g(x) = 2x^5 - 4x^3 + 10x^2 - 13x + 8$	5	POS	ODD	Q3 → Q1	4, 2, 0	5, 4, 3, 2, 1
	$p(x) = 4 - 5x + 4x^2 - 3x^3$	3	NEG	ODD	Q2 → Q4	2, 0	3, 2, 1
	h(x) = 2x(x-5)(3x+2)(4x-3)	4	POS	EVEN	Q2 → Q1	3, 1	4, 3, 2, 1,

4) B F D

ACE

5) a) degree 2, a = -4 **b)** degree 4, a = 1

6) a) degree 3, a = 1 **b)** degree 4, a = -1

7) a) 144 **b)** 12 000 **c)** 69 000