

Prova sem consulta. Duração: 2h00min Exame de Recurso

•	Apr enu Lei	reva o nome no cabeçalho de todas as folhas de exame que entregar; resente as respostas na sua folha de exame segundo a ordem correspondente do inciado; a atentamente o enunciado e procure responder de uma forma clara e sucinta às estões que se lhe colocam.
Grupo) I –	(25%) Indique para cada uma das afirmações se a considera verdadeira ou falsa; reescreva completamente as afirmações falsas com as correções necessárias para serem verdadeiras. A correção de uma afirmação falsa recorrendo apenas à negação desta não é cotada. Geralmente, para construir uma afirmação verdadeira basta trocar ou acrescentar de uma a três palavras na afirmação falsa.
<u> </u>	1.	Quando um router Ethernet processa um pacote e o endereço MAC de destino é desconhecido nas suas tabelas de encaminhamento, o pacote é encaminhado para todas as interfaces, exceto a de origem. Commedia Charet , Um Hames
K	2.	Na comunicação entre duas estações localizadas em LANs distintas, um pacote transmitido pode ser fragmentado apenas uma vez e deverá ser reconstruído pelo último router que serve a LAN da estação de destino.
F	3.	Um <i>trap</i> SNMP é gerado pelo <i>manager</i> sempre que é produzida uma alteração numa variável monitorizada no agente.

Prova sem consulta. Duração: 2h00min

Exame de Recurso

F	4.	O SNMPv1 é uma solução de gestão de redes suportada nos protocolos de transporte TCP.
	5.	Na Análise de Requisitos devem ser consideradas dois tipos de aplicações do ponto de vista da capacidade, as aplicações de tempo real e as que não são de tempo real. Wirch Currel (Bet)
F	6.	Na Análise de fluxos, um fluxo <i>peer-to-peer</i> é caraterizado por uma hierarquia e uma direccionalidade. Lient - AUNUL
F	7.	O Telnet é uma aplicação que do ponto de vista dos requisitos da capacidade pode ser classificada como tempo real. No femo (ed interfec Bell)
F	8.	Um endereço IPv5 de uma rede com uma máscara de 22 bits a "1", permite endereçar no máximo 510 estações ativas na rede. IPVY 92-22=40 2 = 1024 2024-2 (Bracest e Nede) = 1022 afocas

Prova sem consulta. Duração: 2h00min Exame de Recurso

	9.	O OSPF é o protocolo de routing do tipo EGP mais utilizado na Internet devid à sua complexidade, suportar endereços não alinhados à classe, ter rápid
		convergência e ser uma norma do FCP.
		LG p / ywplicade warel IEPP
	40	
Y	10.	. O BGP4 é um protocolo de routing exterior do tipo <i>distance vector</i> e pode se usado como um IGP para trocar informação de routing entre routers dentro c
		mesmo Sistema Autónomo.
		mesmo Sistema Autónomo.
		1

Prova sem consulta. Duração: 2h00min

Exame de Recurso

- **Grupo II** (35%) Responda objetiva e sucintamente às seguintes questões, justificando todas as respostas:
 - 1. Apresente as soluções mais relevantes que conhece, do ponto de vista do routing, para a gestão das rotas de acesso a uma infraestrutura de rede de média e grande dimensão. Descreva o seu modo de operação (a coleção da informação de routing e a construção final da tabela de routing, etc.) e faça uma avaliação comparativa entre elas.
 - 2. Apresente as áreas funcionais do modelo OSI de gestão de redes, descreva os procedimentos e objetivos para cada uma delas
 - **3.** Caracterize o protocolo SNMPv3, fazendo referência às alterações importantes introduzidas nesta versão.
 - **4.** Explique o que é uma MIB privada, quais as funcionalidades disponibilizadas e vantagens na sua utilização.
 - **5.** Responda às seguintes questões sobre Planeamento, apresentando uma breve justificação:
 - a) O que entende por SLA e qual a relevância que lhe reconhece?
 - b) Qual a diferença de avaliação dos problemas "last foot" e "last mile"?
 - c) Comente quanto à disponibilidade um serviço de acesso à Internet com 99,50% comparativamente a outro com 95%.
 - d) Que tipo de aplicações distingue na análise de requisitos relativamente ao atraso? Caracterize-as.

Prova sem consulta. Duração: 2h00min

Exame de Recurso

Grupo III – (40%) A empresa QQCOISA Lda. tem as instalações, sede e filiais, localizadas em três cidades distintas. O edifício sede e as filiais comunicam entre si em IP com ligações diretas à Internet em Ethernet a 40 Mb/s e 20 Mb/s, respetivamente. Adicionalmente tem no edifício sede um segundo acesso à Internet através de outro ISP, reservado para o serviço de *Disaster Recovery*. As características principais das infraestruturas de rede da empresa são abaixo apresentadas, tendo em consideração o número máximo de estações previsto para cada rede local:

- Todos os serviços da rede são suportados na pilha de protocolos TCP/IP.
- Todos os routers GW1, GW2 e GW3 dialogam entre si em BGP e estão dentro do mesmo Sistema Autónomo (AS).
- Os circuitos de acesso ao ISP1 têm os endereços 84.155.41.65/30, 84.155.41.129/30 e 84.155.41.193/30 para os routers GW1, GW2 e GW3, respetivamente.
- O circuito de acesso ao ISP2 usa a rede de interligação 195.23.200.160/30, em que o endereço mais baixo é do router do ISP2.
- Em cada edifício das filiais estão previstos:

Prova sem consulta. Duração: 2h00min

Exame de Recurso

- 10 APs Wi-Fi para dar acesso em qualquer ponto do edifício a 30 estações móveis;
- 4 Ethernet *switches* a 10/100 Mb/s, com 48 portas RJ45 e suporte de "Inline Power";
- 4 VLANs (para além da VLAN1 que se pretende acessível) com 20 estações na VLAN10 para os serviços administrativos e gestão, 60 estações na VLAN20 para os terminais VoIP, 10 estações na VLAN30 para os servidores locais e 120 estações (já incluídas as estações móveis) na VLAN40 para os utilizadores comuns da rede.
- No edifício sede estão previstos:
 - 24 APs Wi-Fi para dar acesso em qualquer ponto do edifício a 120 estações móveis;
 - 16 Ethernet *switches* a 10/100/1000 Mb/s, com 48 portas RJ45 e suporte de "*Inline Power*";
 - 4 VLANs (para além da VLAN1 que se pretende acessível) com 96 estações na VLAN10 para os serviços administrativos e gestão, 300 estações na VLAN20 para os terminais VoIP, 30 estações na VLAN30 para os servidores de toda a empresa e 480 estações (já incluídas as estações móveis) na VLAN40 para os utilizadores comuns da rede.

Para resolver o problema de endereçamento da empresa QQCOISA Lda foi-lhe atribuído o bloco de endereços 200.16.124.0/22 e 200.16.128.0/22.

- Qual o número mínimo de redes que utilizava para resolver o endereçamento da empresa? Explique porquê, indicando o respetivo tamanho dos blocos de endereços.
- 2. Assumindo a atribuição de endereços que fez na pergunta anterior, apresente os vários endereços de identificação da rede, de *broadcast* e as respetivas máscaras, para cada uma delas.
- 3. Considerando o número de postos de trabalho indicado e assumindo que cada utilizador tem acesso a um posto de trabalho e um terminal VoIP, sendo o horário de trabalho das 9:00 até as 18:00, considere os seguintes padrões de tráfego:
 - E-mail cada utilizador envia em média 20 Mbyte por dia e recebe 80 Mbyte. Os servidores do serviço de E-mail estão alojados no edifício sede. O tráfego recebido tem o seguinte padrão: cerca de 70% tem origem no exterior e o restante é interno à empresa. O tráfego enviado tem o

Prova sem consulta. Duração: 2h00min

Exame de Recurso

- seguinte padrão: cerca de 20% destina-se a endereços internos à empresa, sendo os restantes 80% para destinatários externos;
- Acesso Web cada utilizador acede em média a 30 Mbyte de conteúdos da empresa e 120 Mbyte de conteúdos externos, cada edifício tem um proxy server com acesso direto à Internet;
- VoIP em média cada utilizador consome no total 4 Mbyte de tráfego de entrada e de saída, sendo 80% para o exterior;
- SAP só 10% dos utilizadores das filiais e 20% do edifício sede usam o SAP; as transações médias de dados são de 15 kbyte. Cada utilizador faz uma média de 20 transações diárias;
- Backup é transferido diariamente, a partir das 00:30 até às 06:30, dos servidores localizados no edifício sede para os servidores alojados nas instalações de um *Service Provider*, uma cópia de segurança dos documentos gerados localmente, com o volume total médio de 3 Gbyte.
- a) Qual o modelo de fluxos que caracteriza cada um destes fluxos na rede?
- b) Quais são as fronteiras importantes dos fluxos da rede da empresa?
- c) Quantifique com valores aproximados os fluxos de E-mail, acesso web e SAP em todos os edifícios.
- **d)** Discuta o débito disponibilizado nos acessos à Internet nos vários edifícios, tendo em consideração os valores obtidos na resposta à alínea anterior.

FIM