del origen según la dirección positiva del eje x, 4 unidades según la dirección positiva del eje y y 4 unidades según la dirección positiva del eje z (Figura 1.1.3).

Figura 1.1.2 Coordenadas cartesianas en el espacio.

Figura 1.1.3 Representación geométrica del punto (2, 4, 4) en coordenadas cartesianas.

Dado que podemos asociar de este modo puntos en el espacio con ternas ordenadas, a menudo emplearemos la expresión "el punto (a_1, a_2, a_3) " en lugar de la frase más larga "el punto P que corresponde a la terna (a_1, a_2, a_3) ". Decimos que a_1 es la **coordenada** x (o primera coordenada), a_2 es la **coordenada** y (o segunda coordenada) y a_3 es la **coordenada** z (o tercera coordenada) de P. También es frecuente denotar los puntos del espacio con las letras x, y y z en lugar de a_1, a_2 y a_3 . Así, la terna (x, y, z) representa un punto cuya primera coordenada es x, su segunda coordenada es y y su tercera coordenada es z.

Vamos a emplear la siguiente notación para la recta, el plano y el espacio tridimensional :

- (I) La recta de los números reales se denota por \mathbb{R}^1 o simplemente \mathbb{R} .
- (II) El conjunto de los pares ordenados (x,y) de números reales se designa como \mathbb{R}^2 .
- (III) El conjunto de las ternas ordenadas (x, y, z) de números reales se designa como \mathbb{R}^3 .

Cuando se habla de \mathbb{R}^1 , \mathbb{R}^2 y \mathbb{R}^3 al mismo tiempo, escribimos \mathbb{R}^n , donde n=1,2 o 3; o \mathbb{R}^m , donde m=1,2,3. A partir de la Sección 1.5 también estudiaremos \mathbb{R}^n para $n=4,5,6,\ldots$, pero puesto que los casos para n=1,2,3 son los más próximos a nuestra intuición geométrica, pondremos un mayor enfásis en ellos a lo largo del libro.

Suma de vectores y multiplicación por un escalar

La operación de la suma se puede extender de \mathbb{R} a \mathbb{R}^2 y a \mathbb{R}^3 . Para \mathbb{R}^3 , se hace como sigue. Dadas las dos ternas (a_1, a_2, a_3) y (b_1, b_2, b_3) , definimos su **suma** como

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3).$$