Scuola di Scienze Matematiche, Fisiche e Naturali Università degli Studi di Firenze

Mining and Analysis of courses and students data about the Computer Science Degree

Analisi con tecniche di Data Mining su dati relativi a corsi e studenti del C. d. L. Triennale in Informatica

Simone Cipriani
prof. Donatella Merlini

A general view about the Data Mining process

The choice of appropriate technologies: picking the right tools

► Data Processing: mongoDB Mew tech, noSQL paradigm, good skill to learn!

The choice of appropriate technologies: picking the right tools

- ▶ Data Mining Algorithms:

Open source data mining software/framework;

The choice of appropriate technologies: picking the right tools

- ► Data Processing: mongoDB

 New tech, noSQL paradigm, good skill to learn!
- ► Data Mining Algorithms:

Open source data mining software/framework;

Visualization Techniques:

R is powerful, but spreadsheets are easier to use.

Raw Data

What is the nature of the raw material? How can we use it?

▶ Data about students: anonymous students records about academic career results, in a certain time span:

A.A.	2010-2011	2011-2012	2012-2013	2013-2014	2014-2015	2015-2016	2016-2017
		Coort	e 2010				
			Coort	e 2011			
			Coorte 2012				
			Coorte			e 2013	

Raw Data

What is the nature of the raw material? How can we use it?

▶ Data about students: anonymous students records about academic career results, in a certain time span:

A.A.	2010-2011	2011-2012	2012-2013	2013-2014	2014-2015	2015-2016	2016-2017
		Coorte 2010					
		Coorte 2011					
				Coort	e 2012		
			Cod			e 2013	

▶ Data about courses: teachings evaluations questionaries compiled by the students, in an aggregate form, about those Academical Years:

```
2010-2011, 2011-2012, ..., 2016-2017
```

Students Data Understanding

Example of visualization technique: interpreting a scatter plot

Students Data Understanding

Interpreting a std. dev. matrix about first year exam scores

Preprocessing

How can we combine all the available data in a single set?

Raw data sets has to be cleaned, and disaggregated data can be aggregated to match the appropriate primary key.

Then, they can be joined — for example, like this:

	KEYS			ST	TUDENT	S DATA				COURS	ES DATA	
											L	
Anno Acc T	Hash Docente/i	Insegnamento T	Produtt y Prod	utt 🔻 Pr	odutt 🔻	Produtt ▼	Produtt T	Produtt ▼	Valutazi ⊤	Valutazi ▼	Valutazi ▼	Valutazi ⊤
2015-2016	f6af79bac8bb	INTERPRETI E COM	45	20	0.36	82.22	26.16	2.8	44	8.25	1.58	94.02
2015-2016	3bbe80b19b92											71.26
2015-2016	7acf3f684e24	RETI DI CALCOLAT			0.89	91.43				7.96		90.35
2015-2016	fc2f8485971a											63.29
2014-2015	f6af79bac8bb	INTERPRETI E COM			0.56	82.05	25.92	2.88		7.68	1.89	87.43
2014-2015	3bbe80b19b92											69.66
2014-2015	ebf305b5bf29	PROGRAMMAZION	49	53	1.2	67.35	25.92	3.84	48	6.31	2.4	71.75

Before attemping any data mining technique, data may still need discretization, normalization, etc.

Each analysis needs its own specific preprocessing.

How can we find semantic groups among data instances?

How can we obtain a clustering on the joined data set?

► K-Means — Others algorithms as been tried, but K-Means gave the best results;

How can we find semantic groups among data instances?

How can we obtain a clustering on the joined data set?

- ► K-Means Others algorithms as been tried, but K-Means gave the best results;
- ► Euclidean distance metric Straight line distance between two points in an Euclidean Space;

How can we find semantic groups among data instances?

How can we obtain a clustering on the joined data set?

- K-Means Others algorithms as been tried, but K-Means gave the best results;
- ► Euclidean distance metric Straight line distance between two points in an Euclidean Space;
- ► Looking for 2 clusters Deviding teaching courses instances in *good* ones and *not-so-good* ones;

How can we find semantic groups among data instances?

How can we obtain a clustering on the joined data set?

- K-Means Others algorithms as been tried, but K-Means gave the best results;
- ► Euclidean distance metric Straight line distance between two points in an Euclidean Space;
- ► Looking for 2 clusters Deviding teaching courses instances in *good* ones and *not-so-good* ones;
- Considering 3 attributes Each one express a fundamental aspect of the whole data set: average exam score, average teaching evaluation and average delay.

How can we obtain a clustering on the joined data?

Section of the data space:

X axis: average delay

Cluster 0: good courses — Cluster 1: bad courses

Cluster Analysis How can we evaluate the obtained clustering?

Euclidean distance matrix Instances sorted by cluster

BIG DISTANCE

Correlation between matrixes: negative

OTHER CLUSTER

GOOD CLUSTERING

Cluster's composition: analysis and interpretation

Cluster 0 composition:

2010-2011_ASD	2012-2013_ASD
2010-2011_PRG	2013-2014_CAN
2011-2012 BDS	2013-2014 ASD
2011-2012_SOP	2013-2014_BDS
2011-2012_ASD	2013-2014_PRG
2011-2012_MDP	2013-2014_AN1
2011-2012_ALG	2013-2014_MDP
2011-2012_AN1	2013-2014_REC
2012-2013_AN1	2014-2015_INC
2012-2013_ITE	2014-2015_MDP
2012-2013_CAN	2014-2015_BDS
2012-2013_PRG	2014-2015_REC
2012-2013_REC	2014-2015_CAN
2015-2016_REC	2015-2016_INC

Cluster 1 composition:

2010-2011 ADE	2013-2014_SOP
2010-2011 AN2	2013-2014 ADE
2010-2011 MDL	2013-2014_MDL
2011-2012 PRC	2013-2014 ALG
2011-2012_MDL	2013-2014_ITE
2011-2012 PRG	2013-2014_PRC
2011-2012_ADE	2014-2015_ITE
2012-2013 MDL	2014-2015_PRC
2012-2013_ALG	2014-2015_SOP
2012-2013_BDS	2014-2015_ALG
2012-2013_MDL	2015-2016_ITE
2012-2013_PRC	2015-2016_CAN
2012-2013_ADE	
2012-2013 SOP	

Which courses have all their instances in a cluster?

Only in Cluster 0:

ASD - Algoritmi e Strutture Dati INC - Interpreti e Compilatori REC - Reti di Calcolatori

Only in Cluster 1:

ADE - Architetture degli Elaboratori MDL - Matematica Discreta e Logica PRC - Programmazione Concorrente

Looking for implications among the dataset's attributes

What do we need to perform an associative analysis?

 Apriori algorithm — It uses an heuristic technique to render the candidate generation problem computable;

Looking for implications among the dataset's attributes

What do we need to perform an associative analysis?

- ▶ Apriori algorithm It uses an heuristic technique to render the candidate generation problem computable;
- Confidence metric A good one is lift, as it values a rule ability to predict cases comparing it against the odds of a random prediction.

Looking for implications among the dataset's attributes

What do we need to perform an associative analysis?

- Apriori algorithm It uses an heuristic technique to render the candidate generation problem computable;
- Confidence metric A good one is lift, as it values a rule ability to predict cases comparing it against the odds of a random prediction.
- Discretization We need discrete attributes in order to find logical implications between them;

Looking for implications among the dataset's attributes

What do we need to perform an associative analysis?

- ► Apriori algorithm It uses an heuristic technique to render the *candidate generation problem* computable;
- Confidence metric A good one is lift, as it values a rule ability to predict cases comparing it against the odds of a random prediction.
- ▶ Discretization We need discrete attributes in order to find logical implications between them;
- ► Focus on a few attributes The same ones chosen for clustering will do: exam score, delay and teaching evaluation.

Looking for implications among the dataset's attributes: results

		a 6: 1	NA ERSYN
	are all double implications! $Y \to Y$	$\frac{supp(X \cup Y)}{supp(X)}$	$\frac{Lift}{supp(X \ U \ Y)}$ $\frac{supp(X) \times supp(Y)}{supp(X)}$
Low DelayGood Evaluation	Good EvaluationLow Delay	0.59 0.48	1.51
High DelayLow Marks	-> Low Marks -> High Delay	0.63 0.42	1.41
• Good Marks • Good Evaluation	Good EvaluationGood Marks	0.52 0.67	1.33
Low MarksLow Evaluation	-> Low Evaluation -> Low Marks	0.75 0.55	1.23
High DelayLow Evaluation	Low EvaluationHigh Delay	0.75 0.36	1.23

Frequent Sequential Patterns

Looking for meaningful frequent patterns in exams sequences

Which exams are skipped the most by the students?

 Deeper preprocessing — We need to transform students data in a totally different way;

Frequent Sequential Patterns

Looking for meaningful frequent patterns in exams sequences

Which exams are skipped the most by the students?

- Deeper preprocessing We need to transform students data in a totally different way;
- GSP algorithm Apriori-based algorithm to extract frequent sequential patterns from preprocessed data;

Frequent Sequential Patterns

Looking for meaningful frequent patterns in exams sequences

Which exams are skipped the most by the students?

- Deeper preprocessing We need to transform students data in a totally different way;
- GSP algorithm Apriori-based algorithm to extract frequent sequential patterns from preprocessed data;
- Clever post processing Which of those patterns are interesting? What do they mean?

Looking for implications among the dataset's attributes

Example of a frequent, unusual pattern:

... which stands for:

Calcolo Numerico, Informatica Teorica, Fisica
Generale

Fisica Generale is out of place, for it is a 2^{nd} year exam done after some 3^{rd} year exams.

Looking for implications among the dataset's attributes

Counting how many times an exams is out of place and making proportions with all out-of-place exams, we get...

