

 $\frac{1}{16} + \frac{(2\sqrt{2}+1) \cdot 9 \times 10^{9} \times 10^{4} \times 10^{4}$

Soluciones	Soluciones reales Solución paso a paso																				
<i>u</i> ≈ −0,83	u ≈ −0,838568																				
<i>u</i> ≈ 0,838	$u \approx 0.838568$														7 / 5	1 15					
Soluciones	Soluciones complejas Forma cartesiana ▼ ✓ Solución paso a paso												60m0 0 = 0 = 1/2								
u = -0.66	u = -0.685256 - 0.906187 i														al	valo	10				
u = -0.6	u = -0.685256 + 0.906187 i													Como 0≤0≤1½ escogenos el valor real positivo de u							
	u = 0,685256 - 0,906187 i														Fivo	de i	ı				
	u = 0,685256 + 0,906187 i																				
Raíces en el plano complejo Im(u) 1.0 0.5 Re(u)																					
-0,5 -1,0 -1,0	-1,0 -0,5 0,0 0,5 1,0 Interpretación de la entrada																				
$\Theta = \text{sen}^-$	$\Theta = \operatorname{sen}^{-1}(0,838568)$																				
	$\operatorname{sen}^{-1}(x)$ es la función seno inversa																				
Resultado	Resultado Más dígitos												() ≈ (.99 v	$ad \approx$	57°/					
0,994649														<i>,</i>							
(resultado en radianes)																					
Conversión de radianes a grados 56,99°																					
	56,99° Triángulo de referencia para el ángulo 0.9946 radianes																				
ancho																					
altura																					