Approximation speed of quantized vs. unquantized ReLU neural networks and beyond

Antoine Gonon

ENS Lyon

Joint work with: Nicolas Brisebarre, Rémi Gribonval, Elisa Riccietti

Curves & Surfaces, Arcachon, June 22, 2022

$\underbrace{(A_1, \dots, A_L)}_{\text{matrices}}, \underbrace{b_1, \dots, b_L}_{\text{vectors}}$

function represented

$$\underbrace{\left(A_1,\ldots,A_L,b_1,\ldots,b_L\right)}_{\theta}$$

function represented

$$\underbrace{\left(A_1,\ldots,A_L,b_1,\ldots,b_L\right)}_{\theta} \ x \mapsto$$

function represented $A_1x + b_1$

$$\underbrace{(A_1,\ldots,A_L,b_1,\ldots,b_L)}_{\theta} \quad x \mapsto$$

function represented
$$\rho(A_1x + b_1)$$

$$\underbrace{(A_1,\ldots,A_L,b_1,\ldots,b_L)}_{\theta} \quad x \mapsto$$

function represented
$$A_2\rho(A_1x+b_1)+b_2$$

$$\underbrace{(A_1,\ldots,A_L,b_1,\ldots,b_L)}_{\rho} \quad x \mapsto \qquad \begin{array}{c} \text{function represented} \\ \rho(A_2\rho(A_1x+b_1)+b_2) \end{array}$$

$$\underbrace{(A_1,\ldots,A_L,b_1,\ldots,b_L)}_{\rho} \quad x \mapsto A_L \cdots \rho (A_2 \rho (A_1 x + b_1) + b_2) \cdots + b_L$$

$$\underbrace{(A_1,\ldots,A_L,b_1,\ldots,b_L)}_{\theta} \quad \underbrace{x \mapsto A_L \cdots \rho(A_2 \rho(A_1 x + b_1) + b_2) \cdots + b_L}_{R_{\theta}(x)}$$

$$\underbrace{(A_1,\ldots,A_L,b_1,\ldots,b_L)}_{\theta} \quad \underbrace{x\mapsto A_L\cdots\rho(A_2\rho(A_1x+b_1)+b_2)\cdots+b_L}_{R_{\theta}(x)}$$

Consider: Σ_M set of networks with complexity increasing with M

Consider: Σ_M set of networks with complexity increasing with M

Consider: Σ_M set of networks with complexity increasing with M

Consider: Σ_M set of networks with complexity increasing with M

complexity $\nearrow \Longrightarrow$ approximation error \searrow

Consider: Σ_M set of networks with complexity increasing with M

complexity $\nearrow \Longrightarrow$ approximation error \searrow

Typical known result:

$$f \text{ "}\gamma\text{-smooth"} \implies d(f, \Sigma_M) \underset{\text{$\scriptstyle \triangleleft$ and \downarrow and \downarrow and \downarrow and \downarrow and \downarrow are \downarrow and \downarrow are \downarrow and \downarrow are \downarrow and \downarrow are \downarrow are \downarrow and \downarrow are \downarrow ar$$

A. Gonon Curves & Surfaces 2022 3/20

Definition:

$$\gamma^{*\mathsf{approx}}(\mathcal{C}|\Sigma) := \mathsf{largest} \ \gamma > 0 \ \mathsf{s.t.} \ \ \mathsf{sup}_{f \in \mathcal{C}} \ d(f, \Sigma_{M}) \underset{M \to \infty}{=} \ \mathcal{O}(M^{-\gamma})$$

Definition:

$$\gamma^{*\mathsf{approx}}(\mathcal{C}|\mathbf{\Sigma}) := \mathsf{largest} \ \gamma > 0 \ \mathsf{s.t.} \ \sup_{f \in \mathcal{C}} d(f, \mathbf{\Sigma}_{\textit{\textbf{M}}}) \underset{M \to \infty}{=} \mathcal{O}(M^{-\gamma})$$

Quantization vs. approximation

Definition:

$$\gamma^{*\mathsf{approx}}(\mathcal{C}|\Sigma) := \mathsf{largest} \ \gamma > 0 \ \mathsf{s.t.} \ \ \mathsf{sup}_{f \in \mathcal{C}} \ d(f, \Sigma_{M}) \underset{M \to \infty}{=} \mathcal{O}(M^{-\gamma})$$

Quantization vs. approximation

Definition:

$$\gamma^{*\mathsf{approx}}(\mathcal{C}|\Sigma) := \mathsf{largest} \ \gamma > 0 \ \mathsf{s.t.} \ \ \mathsf{sup}_{f \in \mathcal{C}} \ d(f, \Sigma_{M}) \underset{M \to \infty}{=} \ \mathcal{O}(M^{-\gamma})$$

Quantization vs. approximation

Context: $\gamma^{*approx}(\mathcal{C}|\Sigma)$ known for ReLU neural networks with **weights in** \mathbb{R} and certain \mathcal{C} 's

Question: Quantized weights?

Definition:

$$\gamma^{*\mathsf{approx}}(\mathcal{C}|\mathbf{\Sigma}) := \mathsf{largest} \ \gamma > 0 \ \mathsf{s.t.} \ \ \mathsf{sup}_{f \in \mathcal{C}} \ d(f, \mathbf{\Sigma}_{M}) \underset{M \to \infty}{=} \mathcal{O}(M^{-\gamma})$$

Quantization vs. approximation

Context: $\gamma^{*approx}(C|\Sigma)$ known for ReLU neural networks with **weights in** \mathbb{R} and certain C's

Relation between approximation- and information-theoretic quantities

Question: Quantized weights?

Definition:

$$\gamma^{*\mathsf{approx}}(\mathcal{C}|\mathbf{\Sigma}) := \mathsf{largest} \ \gamma > 0 \ \mathsf{s.t.} \ \sup_{f \in \mathcal{C}} d(f, \mathbf{\Sigma}_{M}) \underset{M \to \infty}{=} \mathcal{O}(M^{-\gamma})$$

Quantization vs. approximation

Context: $\gamma^{*approx}(\mathcal{C}|\Sigma)$ known for ReLU neural networks with **weights in** \mathbb{R} and certain \mathcal{C} 's

Relation between approximation- and information-theoretic quantities

Context: known inequality in certain situations

$$\underbrace{\gamma^{*\mathsf{approx}}(\mathcal{C}|\Sigma)}_{\text{approximation theory}} \leqslant \underbrace{\mathrm{complexity}(\mathcal{C})}_{\text{information theory}}$$

Question: Quantized weights?

Definition:

$$\gamma^{*\mathsf{approx}}(\mathcal{C}|\mathbf{\Sigma}) := \mathsf{largest} \ \gamma > 0 \ \mathsf{s.t.} \ \sup_{f \in \mathcal{C}} d(f, \mathbf{\Sigma}_{\mathbf{M}}) \underset{M \to \infty}{=} \mathcal{O}(M^{-\gamma})$$

Quantization vs. approximation

Context: $\gamma^{*approx}(\mathcal{C}|\Sigma)$ known for ReLU neural networks with **weights in** \mathbb{R} and certain \mathcal{C} 's

Relation between approximation- and information-theoretic quantities

Context: known inequality in certain situations

$$\underbrace{\gamma^{*\mathsf{approx}}(\mathcal{C}|\Sigma)}_{\text{approximation theory}} \leqslant \underbrace{\mathrm{complexity}(\mathcal{C})}_{\text{information theory}}$$

Question: Quantized weights?

Question: Unified framework?

Part 1: quantization vs. approximation

A key tool: bound on the Lipschitz constant of the parameterization

$$\|f - R_{Q(\theta)}\| \leqslant \|f - R_{\theta}\| + \underbrace{\|R_{\theta} - R_{Q(\theta)}\|}_{quantization\ error}$$

Question: Tradeoff number of bits/quantization error

A key tool: bound on the Lipschitz constant of the parameterization

$$\|f - R_{Q(\theta)}\| \leqslant \|f - R_{\theta}\| + \underbrace{\|R_{\theta} - R_{Q(\theta)}\|}_{quantization \ error}$$

Question: Tradeoff number of bits/quantization error

Known result¹: On every bounded set of parameters Θ , there exists $K_{\Theta} > 0$ s.t. for every $\theta, \theta' \in \Theta$:

$$\|R_{\theta} - R_{\theta'}\|_{L^p} \leqslant K_{\Theta} \|\theta - \theta'\|_{\infty}$$

Explicit bounds on K_{Θ} ?

A. Gonon Curves & Surfaces 2022 6 / 20

A key tool: bound on the Lipschitz constant of the parameterization

$$\|f - R_{Q(\theta)}\| \leqslant \|f - R_{\theta}\| + \underbrace{\|R_{\theta} - R_{Q(\theta)}\|}_{quantization \ error}$$

Question: Tradeoff number of bits/quantization error

Known result¹: On every bounded set of parameters Θ , there exists $K_{\Theta} > 0$ s.t. for every $\theta, \theta' \in \Theta$:

$$||R_{\theta} - R_{\theta'}||_{L^p} \leqslant K_{\Theta} ||\theta - \theta'||_{\infty}$$

Explicit bounds on K_{Θ} ?

To understand the tradeoff: new explicit bounds in terms of the depth, the width and a bound on the weights of the network

A. Gonon Curves & Surfaces 2022 6 / 20

¹Neural network approximation. R. DeVore et al. 2021₁□→ ←♂→ ← ②→ ← ②→ → ②→ → ②→ → ○○

Contribution 1: explicit bounds on the Lipschitz parameterization of ReLU networks and its consequences

Under mild assumptions, there exists c > 0 s.t.

$$\boxed{\frac{1}{c}LB^{L-1} \leqslant K_{\Theta_{L,W}(B)} \leqslant cWL \times LB^{L-1}}$$

Definition of $\Theta_{L,W}(B)$:

- depth = $L \in \mathbb{N}^*$
- width $= W \in \mathbb{N}^*$
- bound $B\geqslant 1$ on $\theta=(A_1,\ldots,A_L,b_1,\ldots,b_L)$: $\|A_\ell\|_2,\|b_\ell\|_2\leqslant B$

Contribution 1: explicit bounds on the Lipschitz parameterization of ReLU networks and its consequences

Under mild assumptions, there exists c > 0 s.t.

$$\frac{1}{c}LB^{L-1} \leqslant K_{\Theta_{L,W}(B)} \leqslant c \underbrace{WL}_{\text{can be improved?}} LB^{L-1}$$

Definition of $\Theta_{L,W}(B)$:

- depth = $L \in \mathbb{N}^*$
- width = $W \in \mathbb{N}^*$
- bound $B\geqslant 1$ on $\theta=(A_1,\ldots,A_L,b_1,\ldots,b_L)$: $\|A_\ell\|_2,\|b_\ell\|_2\leqslant B$

Recipe for quantization guarantees of θ

Fixed:

- depth = L
- width = W
- bound B on the parameters
- ullet desired quantization error arepsilon>0

Recipe for quantization guarantees of θ

Fixed:

- depth = L
- width = W
- bound B on the parameters
- desired quantization error $\varepsilon > 0$

Result: necessary and sufficient number of bits/weight to get ε -quantization error on $\Theta_{L,W}(B)$

Recipe for quantization guarantees of θ

Fixed:

- depth = L
- width = W
- bound B on the parameters
- ullet desired quantization error arepsilon>0

Ingredient provided by our work: bounds on $K_{\Theta_{L,W}(B)}$

Result: necessary and sufficient number of bits/weight to get ε -quantization error on $\Theta_{L,W}(B)$

Fixed: depth L, width W, bound B on the parameters, desired quantization error $\varepsilon>0$

Look for: smallest number of bits/weight to provide ε -error with $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise:

$$||R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)||_{p} \leqslant \varepsilon.$$

Fixed: depth L, width W, bound B on the parameters, desired quantization error $\varepsilon > 0$

Look for: smallest number of bits/weight to provide ε -error with $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise:

$$\max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_{p} \leqslant \varepsilon.$$

Fixed: depth L, width W, bound B on the parameters, desired quantization error $\varepsilon>0$

Look for: smallest number of bits/weight to provide ε -error with $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise:

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_{p} \leqslant \varepsilon.$$

Fixed: depth L, width W, bound B on the parameters, desired quantization error $\varepsilon>0$

Look for: smallest number of bits/weight to provide ε -error with $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise:

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_{p} \leqslant \varepsilon.$$

Necessary condition?

Fixed: depth L, width W, bound B on the parameters, desired quantization error $\varepsilon>0$

Look for: smallest number of bits/weight to provide ε -error with $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise:

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_{p} \leqslant \varepsilon.$$

Necessary condition?

Number of bits/weight $\propto \log(1/\varepsilon) + L\log(B)$

Fixed: depth L, width W, bound B on the parameters, desired quantization error $\varepsilon>0$

Look for: smallest number of bits/weight to provide ε -error with $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise:

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_{p} \leqslant \varepsilon.$$

Necessary condition?

Number of bits/weight $\propto \log(1/\varepsilon) + L\log(B)$

Sufficient condition?

Fixed: depth L, width W, bound B on the parameters, desired quantization error $\varepsilon>0$

Look for: smallest number of bits/weight to provide ε -error with $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise:

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_{p} \leqslant \varepsilon.$$

Necessary condition?

Number of bits/weight
$$\propto \log(1/\varepsilon) + L\log(B)$$

Sufficient condition?

Number of bits/weight
$$\propto \log(1/\varepsilon) + L \log(B) + \underbrace{\log(WL)}_{\text{can be improved?}}$$

Fixed: depth L, width W, bound B on the parameters, desired quantization error $\varepsilon>0$

Look for: smallest number of bits/weight to provide ε -error with $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise:

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_{p} \leqslant \varepsilon.$$

Necessary condition?

Number of bits/weight $\propto \log(1/\varepsilon) + L\log(B)$

Sufficient condition?

Number of bits/weight
$$\propto \log(1/\varepsilon) + L\log(B) + \underbrace{\log(WL)}_{\text{can be improved?}}$$

Improvement of the multiplicative constant compared to a known result²

²Deep Neural Network Approximation Theory. D. Elbrächter et al. 2021.

Recipe for quantized approximation of f				

Recipe for quantized approximation of f					
Fixed: quantization error $\varepsilon > 0$, function f					

Recipe for quantized approximation of f

Fixed: quantization error $\varepsilon > 0$, function f

Result: depth L, width W, bound B on the parameters, and number of bits/weight to get error ε

Recipe for quantized approximation of f

Fixed: quantization error $\varepsilon > 0$, function f

Ingredient independent of our work: depth L, width W, bound B and $\theta \in \Theta_{L,W}(B)$ s.t. $\|f - R_\theta\|_p \leqslant \varepsilon/2$

Result: depth L, width W, bound B on the parameters, and number of bits/weight to get error ε

Recipe for quantized approximation of f

Fixed: quantization error $\varepsilon > 0$, function f

Ingredient independent of our work: depth L, width W, bound B and $\theta \in \Theta_{L,W}(B)$ s.t. $||f - R_{\theta}||_{\mathcal{D}} \leq \varepsilon/2$

Ingredient provided by our work: Lipschitz bound to quantize θ within error $\varepsilon/2$

Result: depth L, width W, bound B on the parameters, and number of bits/weight to get error ε

Recipe for quantized approximation of f

Fixed: quantization error $\varepsilon > 0$, function f

Ingredient independent of our work: depth L, width W, bound B and $\theta \in \Theta_{L,W}(B)$ s.t. $||f - R_{\theta}||_{\mathcal{D}} \leq \varepsilon/2$

Ingredient provided by our work: Lipschitz bound to quantize θ within error $\varepsilon/2$

Result: depth L, width W, bound B on the parameters, and number of bits/weight to get error ε

Applying this recipe: Recovery of a known result³ in Sobolev spaces using an

external ingredient ⁴

³On the Universal Approximability and Complexity Bounds of Quantized ReLU Neural Networks. Y. Ding et al. 2019.

⁴Error bounds for approximations with deep ReLU networks. D. Yarotsky. 2017

Consequence 3: approximation speed of quantized ReLU networks

Consider: Increasingly complex $\Sigma = (\Sigma_M)_{M \in \mathbb{N}}$ with weights in \mathbb{R}

Can we guarantee:

$$\gamma^{*approx}(\mathcal{C}|\mathbf{Q}(\mathbf{\Sigma})) = \gamma^{*approx}(\mathcal{C}|\mathbf{\Sigma})$$
?

Recall the definition:

$$\gamma^{*approx}(\mathcal{C}|\mathbf{\Sigma}) := \operatorname{largest} \ \gamma > 0 \ \text{s.t.} \ \sup_{f \in \mathcal{C}} d(f, \Sigma_M) \underset{M \to \infty}{=} \mathcal{O}(M^{-\gamma})$$

Consequence 3: same approximation speed with quantized networks

 $(\log M)^2$ bits per weight is enough for Σ_M := functions represented by a ReLU network:

Part 2: on a relation between approximation- and information-theoretic quantities

Challenge: unified framework for a known inequality

Known: in certain situations (arbitrary C, sequence Σ : dictionaries⁵, ReLU neural networks⁶)

$$\underbrace{\gamma^{*\mathsf{approx}}(\mathcal{C}|\Sigma)}_{\text{approximation theory}} \leqslant \underbrace{\gamma^{*\mathsf{encod}}(\mathcal{C})}_{\text{information theory}}$$

 $\gamma^{* ext{encod}}(\mathcal{C})$ measures how well \mathcal{C} can be encoded into bit sequences

Challenge: Unified framework?

A. Gonon Curves & Surfaces 2022

⁵Optimally sparse data representations. P. Grohs. 2015

⁶Deep Neural Network Approximation Theory. D. Elbrächter et al. 2021 **a**

Can we: identify a property of Σ to guarantee $\gamma^{*approx}(\mathcal{C}|\Sigma) \leqslant \gamma^{*encod}(\mathcal{C})$

Can we: identify a property of Σ to guarantee $\gamma^{*approx}(\mathcal{C}|\Sigma) \leqslant \gamma^{*encod}(\mathcal{C})$

Can we: identify a property of Σ to guarantee $\gamma^{*approx}(\mathcal{C}|\Sigma) \leqslant \gamma^{*encod}(\mathcal{C})$

Can we: identify a property of Σ to guarantee $\gamma^{*approx}(\mathcal{C}|\Sigma) \leqslant \gamma^{*encod}(\mathcal{C})$

Observation: intuitively, if Σ_M "grows" too fast then $\gamma^{*approx}(\mathcal{C}|\Sigma)$ may be unreasonably large

Can we: identify a property of Σ to guarantee $\gamma^{*approx}(\mathcal{C}|\Sigma) \leqslant \gamma^{*encod}(\mathcal{C})$

Observation: intuitively, if Σ_M "grows" too fast then $\gamma^{*approx}(\mathcal{C}|\Sigma)$ may be unreasonably large

Extreme case : $\Sigma_1 = \dots = \Sigma_M = \dots = \mathcal{C}$ where $\gamma^{*\mathsf{approx}}(\mathcal{C}|\Sigma) = \infty$

A way to measure the "size" of Σ_M : covering numbers

A way to measure the "size" of Σ_M : covering numbers

A way to measure the "size" of Σ_M : covering numbers

A way to measure the "size" of Σ_M : covering numbers

Introduced property: controlled growth (with respect to M) of the covering numbers of Σ_M

A way to measure the "size" of Σ_M : covering numbers

Introduced property: controlled growth (with respect to M) of the covering numbers of Σ_M

Unification with this encodability property

Contribution 2: recovery and generalization of

$$\gamma^{*approx}(\mathcal{C}|\Sigma) \leqslant \gamma^{*encod}(\mathcal{C})$$

• encodability property $\Longrightarrow \gamma^{*approx}(\mathcal{C}|\Sigma) \leqslant \gamma^{*encod}(\mathcal{C})$ for every \mathcal{C}

Contribution 2: recovery and generalization of

$$\gamma^{*\mathsf{approx}}(\mathcal{C}|\Sigma) \leqslant \gamma^{*\mathsf{encod}}(\mathcal{C})$$

- $\bullet \ \ \text{encodability property} \Longrightarrow \gamma^{*\mathsf{approx}}(\mathcal{C}|\Sigma) \leqslant \gamma^{*\mathsf{encod}}(\mathcal{C}) \ \text{for every} \ \mathcal{C}$
- $oldsymbol{\circ}$ satisfied for Σ : dictionaries, ReLU neural networks

Contribution 2: recovery and generalization of

$$\gamma^{*approx}(\mathcal{C}|\Sigma) \leqslant \gamma^{*encod}(\mathcal{C})$$

- encodability property $\Longrightarrow \gamma^{*approx}(\mathcal{C}|\Sigma) \leqslant \gamma^{*encod}(\mathcal{C})$ for every \mathcal{C}
- \odot satisfied for Σ : dictionaries, ReLU neural networks

Proof of the encodability property for ReLU networks:

A. Gonon

Summary and perspectives

Quantization vs. approximation

Quantization vs. approximation

New key tool: Numbers of bits vs. quantization error controlled via new explicit Lipschitz bounds

Quantization vs. approximation

New key tool: Numbers of bits vs. quantization error controlled via new explicit Lipschitz bounds

New consequences:

• characterize ε -quantization error for $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise

Quantization vs. approximation

New key tool: Numbers of bits vs. quantization error controlled via new explicit Lipschitz bounds

New consequences:

- characterize ε -quantization error for $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise
- sufficient number of bits/weight to keep same approximation speed with quantized networks for every function class C

Quantization vs. approximation

New key tool: Numbers of bits vs. quantization error controlled via new explicit Lipschitz bounds

New consequences:

- characterize ε -quantization error for $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise
- sufficient number of bits/weight to keep same approximation speed with quantized networks for every function class C

 Relation between approximation- and information-theory

Quantization vs. approximation

New key tool: Numbers of bits vs. quantization error controlled via new explicit Lipschitz bounds

New consequences:

- characterize ε -quantization error for $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise
- sufficient number of bits/weight to keep same approximation speed with quantized networks for every function class C

Relation between approximation- and information-theory

New key tool: Encodability property

Quantization vs. approximation

New key tool: Numbers of bits vs. quantization error controlled via new explicit Lipschitz bounds

New consequences:

- characterize ε -quantization error for $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ applied coordinatewise
- sufficient number of bits/weight to keep same approximation speed with quantized networks for every function class C

Relation between approximation- and information-theory

New key tool: Encodability property

New consequence: Unifies situations where $\gamma^{*approx}(C|\Sigma) \leq \operatorname{complexity}(C)$

Current theory = number of bits/weight must be linear in the depth: if $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ gives ε -quantization error

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_p \leqslant \varepsilon$$

Practice = 1 bit/weight is enough⁷: quantization-aware training, same performance on MNIST for a 3 hidden-layers with 1024 neurons per layer

⁷BinaryConnect: Training Deep Neural Networks with binary weights during propagations. Courbariaux et al. 2015.

Current theory = number of bits/weight must be linear in the depth: if $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ gives ε -quantization error

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_p \leqslant \varepsilon$$

Practice = 1 bit/weight is enough⁷: quantization-aware training, same performance on MNIST for a 3 hidden-layers with 1024 neurons per layer

Fill the gap theory/practice?

⁷BinaryConnect: Training Deep Neural Networks with binary weights during propagations. Courbariaux et al. 2015.

Current theory = number of bits/weight must be linear in the depth: if $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ gives ε -quantization error

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_p \leqslant \varepsilon$$

Practice =1 bit/weight is enough⁷: quantization-aware training, same performance on MNIST for a 3 hidden-layers with 1024 neurons per layer

Fill the gap theory/practice?

- Less naive quantization?
- ε -quantization error on a smaller set $\Theta \subset \Theta_{L,W}(B)$? e.g., parameters that can be learned in practice
- not interested in every $\varepsilon > 0$?

⁷BinaryConnect: Training Deep Neural Networks with binary weights during propagations. Courbariaux et al. 2015.

Current theory = number of bits/weight must be linear in the depth: if $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ gives ε -quantization error

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_p \leqslant \varepsilon$$

Practice = 1 bit/weight is enough⁷: quantization-aware training, same performance on MNIST for a 3 hidden-layers with 1024 neurons per layer

Fill the gap theory/practice?

- Less naive quantization?
- ε -quantization error on a smaller set $\Theta \subset \Theta_{L,W}(B)$? e.g., parameters that can be learned in practice
- not interested in every $\varepsilon > 0$?

More on agonon.github.io

⁷BinaryConnect: Training Deep Neural Networks with binary weights during propagations. Courbariaux et al. 2015.

Current theory = number of bits/weight must be linear in the depth: if $Q_{\eta}(x) = \lfloor x/\eta \rfloor \eta$ gives ε -quantization error

$$\max_{\theta \in \Theta_{L,W}(B)} \max_{x \in [0,1]^d} \|R_{\theta}(x) - R_{Q_{\eta}(\theta)}(x)\|_{p} \leqslant \varepsilon$$

Practice = 1 bit/weight is enough⁷: quantization-aware training, same performance on MNIST for a 3 hidden-layers with 1024 neurons per layer

Fill the gap theory/practice?

- Less naive quantization?
- ε -quantization error on a smaller set $\Theta \subset \Theta_{L,W}(B)$? e.g., parameters that can be learned in practice
- not interested in every $\varepsilon > 0$?

More on agonon.github.io

Thank you!

⁷BinaryConnect: Training Deep Neural Networks with binary weights during propagations. Courbariaux et al. 2015.

Definition of the encoding speed

$$\begin{split} \mathit{L}(\varepsilon,\mathcal{C}) := \inf \Big\{ \ell \in \mathbb{N}, \exists \mathit{E} : \mathcal{C} \mapsto \{0,1\}^{\ell}, \\ \exists \mathit{D} : \{0,1\}^{\ell} \mapsto \mathcal{F}, \sup_{\mathit{f} \in \mathcal{C}} \mathit{d}\left(\mathit{f}, \mathit{D}(\mathit{E}(\mathit{f}))\right) \leqslant \varepsilon \Big\} \\ \\ \gamma^{*\mathsf{encod}}(\mathcal{C}) := \sup \Big\{ \gamma > 0, \mathit{L}(\varepsilon,\mathcal{C}) = \mathcal{O}_{\varepsilon \to 0}\left(\varepsilon^{-1/\gamma}\right) \Big\} \,. \end{split}$$

Known approximation speeds⁸

$\mathcal{C} := unit \; ball \; of$		Σ	$\gamma^{*approx}(\mathcal{C} \Sigma) = \gamma^{*encod}(\mathcal{C})$
lpha-Hölder	$C^{lpha}([0,1])$	Wavelet basis	α
<i>L^p</i> -Sobolev ^a	$W_p^m([0,1]^d)$	Wavelet frame	$\frac{m}{d}$
Besov ^b	$B_{p,q}^{m}([0,1]^d)$	Wavelet frame	$\frac{m}{d}$

 $^{^{}a}$ where $p\in [1,\infty], m>d\max(1/p-1/2,0)$

⁸Deep Neural Network Approximation Theory. D. Elbrächter et al. 2021. 🖘 💈 🔊 ५ ९ ९

^bwhere $p,q\in(0,\infty], m>d\max(1/p-1/2,0)$

Notations: ReLU neural networks

Architecture: (L, N) where

- $L \in \mathbb{N}$ is the number of layers : the depth
- $\mathbf{N} = (N_0, \dots, N_L) \in \mathbb{N}^{L+1}$ with N_ℓ the width (number of neurons) of layer ℓ

Notations: ReLU neural networks

Architecture: (L, N) where

- $L \in \mathbb{N}$ is the number of layers : the depth
- $\mathbf{N} = (N_0, \dots, N_L) \in \mathbb{N}^{L+1}$ with N_ℓ the width (number of neurons) of layer ℓ

Parameters: $\theta = (A_1, \dots, A_L, b_1, \dots, b_L)$ with $A_\ell \in \mathbb{R}^{N_\ell \times N_{\ell-1}}$ and $b_\ell \in \mathbb{R}^\ell$

Notations: ReLU neural networks

Architecture: (L, N) where

- $L \in \mathbb{N}$ is the number of layers : the depth
- $\mathbf{N}=(N_0,\ldots,N_L)\in\mathbb{N}^{L+1}$ with N_ℓ the width (number of neurons) of layer ℓ

Parameters: $\theta = (A_1, \dots, A_L, b_1, \dots, b_L)$ with $A_\ell \in \mathbb{R}^{N_\ell \times N_{\ell-1}}$ and $b_\ell \in \mathbb{R}^\ell$

Realization of the network: $R_{\theta}: \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}$ the realization of θ :

$$R_{\theta}(x) = A_L \rho(\cdots (A_2 \rho(A_1 x + b_1) + b_2) \cdots) + b_L \text{ avec } \rho(x) = \max(0, x).$$