## Resilient Active Target Tracking with Multiple Robots

Lifeng Zhou<sup>1</sup>, Vasileios Tzoumas<sup>2</sup>, George J. Pappas<sup>3</sup> and Pratap Tokekar<sup>1</sup>

<sup>1</sup>ECE, Virginia Tech, USA, <sup>2</sup> AeroAstro, MIT, USA, <sup>3</sup>ESE, UPenn, USA

- **Problem:** Deploy mobile robots to enable active multi-target tracking despite attacks to robots.
- Sensing & Tracking: Each robot has a tracking sensor, (e.g., a camera), and a set of candidate trajectories from which it must choose one. Each trajectory covers a number of targets.
- Attack: Targets can block the field-of-views of a worst-case subset of robots.
- **Objective:** Maximize the number of targets covered (submodular) subject to the worst-case attack.
- Contribution: Propose the first resilient algorithm with provable performance guarantees, and with running time quadric in the number of robots.



