Capítulo 9

POSIÇÃO RELATIVA DE RETAS E PLANOS

Neste capítulo, estudaremos as posições relativas entre duas retas, entre reta e plano e entre dois planos.

9.1 Reta e Reta

Queremos, neste parágrafo, resolver o seguinte problema: dadas duas retas \mathbf{r} e \mathbf{s} , decidir se \mathbf{r} e \mathbf{s} são paralelas (coincidentes ou não), concorrentes ou reversas.

Fixemos um sistema de coordenadas (O, \vec{e}_1 , \vec{e}_2 , \vec{e}_3) em relação ao qual $\vec{r} = (a, b, c)$ é um vetor diretor e $A = (x_1, y_1, z_1)$ é um ponto fixado de uma reta \vec{r} e $\vec{s} = (m, n, p)$ é um vetor diretor e $B = (x_2, y_2, z_2)$ é um ponto fixado de uma reta s. Temos, então que:

$$r // s \iff \vec{r} // \vec{s} \iff \vec{r} e \vec{s} s \tilde{a} o LD \iff \iff \exists \lambda \in \mathbb{R} : \vec{r} = \lambda \vec{s}$$

(iii) r e s são retas concorrentes

<u>Resumindo</u>: Dadas as retas \mathbf{r} e \mathbf{s} , escolha vetores $\vec{\mathbf{r}}$ e $\vec{\mathbf{s}}$, respectivamente paralelos a \mathbf{r} e a \mathbf{s} . Temos, então, duas possibilidades: $\vec{\mathbf{r}}$ e $\vec{\mathbf{s}}$ são LI ou $\vec{\mathbf{r}}$ e $\vec{\mathbf{s}}$ são LD. Então:

- ♦ Se r e s são LI, escolha um ponto A de r e um ponto B de s e verifique se r, s e AB são LI. Em caso afirmativo, r e s são reversas. Se, por outro lado, r, s e AB são LD, então r e s são concorrentes.
- ♦ Se r e s são LD, então as retas r e s são paralelas. Escolha um ponto A da reta r e verifique se A pertence a s. Se A ∈ s, então r = s. Caso contrário, r e s são retas paralelas e distintas.

9.2 Problemas Resolvidos

1. Estude a posição relativa das retas

r:
$$X = (1, 2, 3) + \lambda (0, 1, 3)$$
 $(\lambda \in \mathbb{R})$ e s: $X = (0, 1, 0) + \lambda (1, 1, 1)$ $(\lambda \in \mathbb{R})$.

Solução: Temos que:

$$A=(1,2,3)\in r$$
 $B=(0,1,0)\in s$ $\vec{r}=(0,1,3):$ vetor diretor de r $\vec{s}=(1,1,1):$ vetor diretor de s

Como os vetores \vec{r} e \vec{s} são LI, segue que as retas \vec{r} e \vec{s} são reversas ou concorrentes. Passemos, então, a analisar os vetores \vec{r} , \vec{s} e \overrightarrow{AB} . Para isso, do cálculo do determinante:

$$\det\begin{pmatrix} 0 & 1 & 3 \\ 1 & 1 & 1 \\ -1 & -1 & -3 \end{pmatrix} = 2 \neq 0$$

segue que os vetores \vec{r} , \vec{s} e \overrightarrow{AB} são LI e, portanto, as retas \vec{r} e s são reversas.

2. Estude a posição relativa das retas

r:
$$X = (1, 2, 3) + \lambda (0, 1, 3)$$
 $(\lambda \in \mathbb{R})$ e s: $X = (1, 3, 6) + \lambda (0, 2, 6)$ $(\lambda \in \mathbb{R})$.

Solução: Temos que:

Como os vetores \vec{r} e \vec{s} são LD, segue que as retas \vec{r} e \vec{s} são paralelas, podendo ser coincidentes ou não. Verifiquemos se o ponto $A=(1,\,2,\,3)$ é um ponto da reta \vec{s} . Para isso, devemos verificar se existe um número real λ_0 para o qual $(1,\,2,\,3)=(1,\,3,\,6)+\lambda_0$ $(0,\,2,\,6)$; isto é:

$$\mathbf{r} = \mathbf{s} \iff \mathbf{A} = (1, 2, 3) \in \mathbf{s} \iff (1, 2, 3) = (1, 3, 6) + \lambda_0 (0, 2, 6)$$
, para algum $\lambda_0 \in \mathbb{R} \iff (1, 2, 3) - (1, 3, 6) = \lambda_0 (0, 2, 6)$, para algum $\lambda_0 \in \mathbb{R} \iff (0, -1, -3) = \lambda_0 (0, 2, 6)$, para algum $\lambda_0 \in \mathbb{R} \iff \lambda_0 = -1$

Em outras palavras, A ∈ s e, portanto, r e s são retas coincidentes.

3. Estude a posição relativa das retas

r:
$$X = (1, 2, 3) + \lambda (0, 1, 3)$$
 $(\lambda \in \mathbb{R})$ e s: $\begin{cases} x + y + z = 6 \\ x - y - z = -4 \end{cases}$

Solução: Temos que determinar um vetor não nulo paralelo à reta s, que é dada como a intersecção de dois planos. Se o sistema fixado fosse ortogonal, bastaria, para isso, considerar o produto vetorial dos vetores normais aos planos que determinam a reta s. Assim, para determinar \vec{s} , tomemos dois pontos distintos de s: fazendo z=0 nas equações de s, obtemos x=1 e y=5; fazendo agora z=1, obtemos x=1 e y=4. Concluímos, assim, que os pontos B=(1,5,0) e C=(1,4,1) são dois pontos distintos de s e, dessa forma, \overrightarrow{BC} é um vetor diretor de s. Assim:

Como os vetores \vec{r} e \vec{s} são LI, segue que as retas \vec{r} e \vec{s} são reversas ou concorrentes. Passemos, então, a analisar os vetores \vec{r} , \vec{s} e \overrightarrow{AB} . Para isso, do cálculo do determinante:

$$\det\begin{pmatrix} 0 & 1 & 3 \\ 0 & -1 & 1 \\ 0 & 3 & -3 \end{pmatrix} = 0$$

segue que os vetores \vec{r} , \vec{s} e \overrightarrow{AB} são \vec{LD} e, portanto, as retas \vec{r} e \vec{s} são concorrentes.

9.3 Problemas Propostos

Considere fixado um sistema ortogonal de coordenadas cartesianas.

1. Estude a posição relativa das retas r e s nos seguintes casos:

(a) r:
$$X = (1, -1, 1) + \lambda(-2, 1, -1)$$
 s: $\begin{cases} y + z = 3 \\ x + y - z = 6 \end{cases}$

(b)
$$r: \begin{cases} x - y - z = 2 \\ x + y - z = 0 \end{cases}$$
 s: $\begin{cases} 2x - 3y + z = 5 \\ x + y - 2z = 0 \end{cases}$

(c) r:
$$\frac{x+1}{2} = \frac{y}{3} = \frac{z+1}{2}$$
 s: $X = (0, 0, 0) + \lambda(1, 2, 0)$

(d)
$$r: \frac{x+3}{2} = \frac{y-1}{4} = z$$
 s: $\begin{cases} 2x - y + 7 = 0 \\ x + y - 6z + 2 = 0 \end{cases}$

(e) r:
$$X = (8, 1, 9) + \lambda(2, -1, 3)$$
 s: $X = (3, -4, 4) + \lambda(1, -2, 2)$

(f) r:
$$\frac{x-1}{3} = \frac{y-5}{3} = \frac{z+2}{5}$$
 s: $x = -y = \frac{z-1}{4}$

(g)
$$r: \frac{x+1}{2} = y = -z$$

S: $\begin{cases} x + y + -3z = 1 \\ 2x - y - 2z = 0 \end{cases}$

(h) r:
$$x + 3 = \frac{2y-3}{4} = \frac{z-1}{3}$$
 s: $X = (0, 2, 2) + \lambda(1, 1, -1)$

2. Calcule $\mathbf{m} \in \mathbb{R}$ para que

- (a) r e s sejam paralelas;
- (b) r, s e t sejam paralelas a um mesmo plano;
- (c) r e t sejam concorrentes;
- (d) s e t sejam coplanares;
- (e) r e s sejam reversas.

São dadas: r:
$$\begin{cases} x = my - 1 \\ z = y - 1 \end{cases}$$
 s: $x = \frac{y}{m} = z$ t: $-x + z = y = -z - 1$

- 3. No Exercício 1, obtenha, quando possível, uma equação geral para o plano determinado pelas retas ${\bf r}$ e ${\bf s}$.
- 4. Nos itens do Exercício 1 em que as retas \mathbf{r} e \mathbf{s} são reversas, obtenha uma equação geral para o plano que contém a reta \mathbf{r} e \mathbf{e} paralelo à reta \mathbf{s} .

5. Determine **m** para que as retas dadas r: $X = (1, 0, 2) + \lambda(2, 1, 3)$ e s: $X = (0, 1, -1) + \lambda(1, m, 2m)$ sejam coplanares e, nesse caso, estude sua posição relativa.

9.4 Reta e Plano

O problema que queremos resolver agora é: dados uma reta \mathbf{r} e um plano Π , decidir se \mathbf{r} está contida em Π , se é paralela a Π ou transversal a Π (isto é, $\mathbf{r} \cap \Pi = \{P\}$).

Fixemos um sistema de coordenadas $(O, \vec{e}_1, \vec{e}_2, \vec{e}_3)$ em relação ao qual \vec{r} é um vetor diretor e A é um ponto fixado de uma reta \mathbf{r} e $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$ são vetores diretores de um plano Π . Temos, então, duas situações possíveis:

 $r // \Pi \iff \vec{r}, \ \vec{v}_1, \ \vec{v}_2 \ \text{são LD}$ No caso em que $r // \ \Pi \ e \ A \in \Pi$, tem-se $r \subset \Pi$.

Se o sistema de coordenadas é ortogonal e π é um vetor normal a Π, então:

$$r // \Pi \iff \vec{r} \perp \vec{n} \iff \vec{r} \cdot \vec{n} = 0$$

(ii) r é transversal a Π/N

r e Π são transversais \iff \vec{r} , \vec{v}_1 , \vec{v}_2 são LI

Se o sistema de coordenadas é ortogonal e \vec{n} é um vetor normal a Π , então:

r é transversal a $\Pi\iff\vec{r}$ não é ortogonal a $\vec{n}\iff\vec{r}\bullet\vec{n}\neq0$

Observação: Um outro modo de estudar a posição relativa entre uma reta ${\bf r}$ e um plano Π é estudar a intersecção ${\bf r} \cap \Pi$:

- \Diamond r \subset Π \iff r \cap Π contém infinitos pontos.
- \Diamond r // Π e r $\not\subset$ Π \iff r \cap Π = \emptyset
- \Diamond r transversal a $\Pi \iff r \cap \Pi = \{P\}$

9.5 Problemas Resolvidos

1. Considerando o plano Π : X = (1, 1, 3) + λ (1, -1, 1) + μ (0, 1, 3) e a reta \mathbf{r} : X = (1, 1, 1) + α (3, 2, 1), estude a posição relativa de \mathbf{r} e Π .

Primeira Solução: Os vetores $\vec{u}=(1,-1,1)$ e $\vec{v}=(0,1,3)$ são vetores diretores do plano Π e $\vec{r}=(3,2,1)$ é um vetor diretor da reta $\bf r$. Basta analisar a dependência linear destes vetores. Como

$$\det \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} = -17 \neq 0$$

segue que os vetores \vec{u} , \vec{v} e \vec{r} são LI e, portanto, a reta r é transversal ao plano Π .

Segunda Solução: Conhecendo o ponto A=(1,1,3) do plano Π , obtemos a seguinte equação geral de Π :

$$\det \begin{pmatrix} x-1 & y-1 & z-3 \\ 1 & -1 & 1 \\ 0 & 1 & 3 \end{pmatrix} = 0$$

e daí segue que Π : 4x + 3y - z - 4 = 0. Logo, $\vec{n} = (4, 3, -1)$ é um vetor normal a Π e portanto $\vec{n} \bullet \vec{r} = (4, 3, 1) \bullet (3, 2, 1) = 4.3 + 3.2 + 1.1 = 12 + 6 + 1 = 17 \neq 0$; ou seja, \vec{r} é transversal a Π .

2. Considerando o plano Π : $X = (1, 0, 1) + \lambda(1, 1, 1) + \mu(0, 0, 3)$ e a reta \mathbf{r} : $X = (2, 2, 1) + \alpha(3, 3, 0)$, estude a posição relativa de \mathbf{r} e Π .

Solução: Os vetores $\vec{u}=(1,1,1)$ e $\vec{v}=(0,0,3)$ são vetores diretores do plano Π e um vetor diretor da reta \mathbf{r} é $\vec{\mathbf{r}}=(3,3,0)$. Estes vetores são \mathbf{LD} , uma vez que

$$\det \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 3 \\ 3 & 3 & 0 \end{pmatrix} = 0$$

Isto significa que $\mathbf{r} \subset \Pi$ ou \mathbf{r} // Π . Para decidir esta questão, basta tomarmos um ponto de \mathbf{r} e analisar se ele pertence a Π . O ponto $\mathbf{A} = (2, 2, 1)$ é um ponto de \mathbf{r} e

$$(2, 2, 1) \in \Pi \iff (2, 2, 1) = (1, 0, 1) + \lambda(1, 1, 1) + \mu(0, 0, 3) \iff \begin{cases} 2 = 1 + \lambda \\ 2 = \lambda \\ 1 = 1 + \lambda + 3\mu \end{cases}$$

Como o sistema obtido é incompatível, segue que A $\notin \Pi$ e, portanto \mathbf{r} // Π .

3. Considerando o plano Π : x + y - 2 = 0 e a reta \mathbf{r} : $X = (1, 1, 0) + \alpha(1, -1, 1)$, estude a posição relativa de \mathbf{r} e Π .

Solução: Temos que $\vec{\bf r}=(1,$ -1, 1) e $\vec{\bf n}=(1,$ 1, 0) são, respectivamente, um vetor diretor de $\bf r$ e um vetor normal a Π . Como $\vec{\bf r}$ • $\vec{\bf n}=1.1+(-1).1=0$, segue que estes vetores são ortogonais e, portanto, $\bf r\subset\Pi$ ou $\bf r$ // Π . Além disso, $\bf A=(1,$ 1, 0) $\in \bf r$ satisfaz a equação de Π (uma vez que 1+1-2=0) e, portanto, $\bf r\subset\Pi$.

9.6 Problemas Propostos

Considere fixado um sistema ortogonal de coordenadas cartesianas.

1. Estude a posição relativa da reta \mathbf{r} e do plano Π e, quando forem tranversais, obtenha o ponto intersecção \mathbf{P} , nos casos:

(a)
$$r: X = (1, 1, 0) + \lambda(0, 1, 1)$$
 $\Pi: x - y - z = 2$

(b)
$$r: \frac{x-1}{2} = y = z$$
 $\Pi: X = (3, 0, 1) + \lambda(1, 0, 1) + \mu(2, 2, 0)$

(c)
$$r: \begin{cases} x-y+z=0\\ 2x+y-z-1=0 \end{cases}$$
 $\Pi: X = (0, \frac{1}{2}, 0) + \lambda(1, -\frac{1}{2}, 0) + \mu(0, 1, 1)$

(d) r:
$$\begin{cases} x - y = 1 \\ x - 2y = 0 \end{cases}$$
 II: $x + y = 2$

(e)
$$r: X = (0, 0, 0) + \lambda(1, 4, 1)$$
 $\Pi: X = (1, -1, 1) + \alpha(0, 1, 2) + \beta(1, -1, 0)$

(f)
$$r: \frac{x+2}{2} = y - 1 = \frac{z+3}{2}$$
 $\Pi: 3x - 6y - z = 0$

- **2.** Calcule o valor de **m** para que a reta r: $X = (1, 1, 1) + \lambda(2, m, 1)$ seja paralela ao plano Π : $X = (0, 0, 0) + \alpha(1, 2, 0) + \beta(1, 0, 1)$.
- 3. Calcule $m, n \in \mathbb{R}$ para que a reta r: $X = (n, 2, 0) + \lambda(2, m, m)$ esteja contida no plano Π : x 3y + z = 1.
- 4. Calcule **m** para que a reta r: $\frac{x-1}{m} = \frac{y}{2} = \frac{z}{m}$ seja transversal ao plano Π : x + my + z = 0.

9.7 Plano e Plano

O problema que queremos resolver agora é: dados os planos Π_1 e Π_2 , decidir se $\Pi_1 = \Pi_2$ ou se Π_1 e Π_2 são paralelos distintos ou Π_1 e Π_2 são transversais. Neste último caso, a interseçção $\Pi_1 \cap \Pi_2$ é uma reta.

Fixado um sistema de coordenadas (O, $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$), consideremos o plano Π_1 , com vetores diretores $\vec{u_1}$ e $\vec{u_2}$ e o plano Π_2 , com vetores diretores $\vec{v_1}$ e $\vec{v_2}$. Temos as seguintes possíveis situações:

Se o sistema de coordenadas é ortogonal e \vec{n}_1 , \vec{n}_2 são vetores respectivamente normais a Π_1 e a Π_2 , então:

$$\Pi_1 // \Pi_2 \iff \vec{n}_1 // \vec{n}_2$$

(ii) Π_1 é transversal a Π_2

 Π_1 é transversal a $\Pi_2 \iff \vec{u}_1, \ \vec{v}_1, \ \vec{v}_2 \ \text{são LI}$ $\mathbf{ou} \qquad \vec{u}_2, \ \vec{v}_1, \ \vec{v}_2 \ \text{são LI}$

Se o sistema de coordenadas é ortogonal e \vec{n}_1 , \vec{n}_2 são vetores respectivamente normais a Π_1 e a Π_2 , então:

$$\Pi_1$$
 é transversal a $\Pi_2 \iff \vec{n}_1, \vec{n}_2$ são LI.

Nesse caso, a intersecção entre Π_1 e Π_2 é uma reta \mathbf{r} , cujo vetor diretor é **paralelo** a $\vec{\mathbf{n}}_1 \wedge \vec{\mathbf{n}}_2$.

9.8 Problemas Resolvidos

Considere fixado um sistema ortogonal de coordenadas cartesianas.

1. Estude a posição relativa dos planos

$$\Pi_1$$
: $X = (1, 0, 1) + \lambda (1, 1, 1) + \mu(0, 1, 0)$ e Π_2 : $X = (0, 0, 0) + \alpha (1, 0, 1) + \beta(-1, 0, 3)$.

Solução: Inicialmente, obtemos equações gerais de Π_1 e de Π_2 (faça isso!!!):

$$\Pi_1$$
: $\mathbf{x} - \mathbf{z} = \mathbf{0}$ Π_2 : $\mathbf{y} = \mathbf{0}$

ou seja:

$$\Pi_1$$
: 1.x + 0.y + (-1).z = 0 Π_2 : 0.x + 1.y + 0.z = 0

Então: $\vec{\mathbf{n}}_1 = (1, 0, -1)$ e $\vec{\mathbf{n}}_2 = (0, 1, 0)$ são vetores normais a Π_1 e a Π_2 , respectivamente. Como $\vec{\mathbf{n}}_1$ e $\vec{\mathbf{n}}_2$ são LI, segue que os planos Π_1 e Π_2 são transversais e, portanto, $\Pi_1 \cap \Pi_2$ é uma reta \mathbf{r} . Uma maneira (existem outras) de encontrar equações paramétricas dessa reta \mathbf{r} é resolvendo o sistema formado pelas equações de Π_1 e Π_2 :

$$\mathbf{r}: \begin{cases} \mathbf{x} - \mathbf{z} = 0 \\ \mathbf{y} = 0 \end{cases}; \quad \stackrel{\lambda := \mathbf{z}}{\Longrightarrow} \quad \mathbf{r}: \begin{cases} \mathbf{x} = \lambda \\ \mathbf{y} = 0 \\ \mathbf{z} = \lambda \end{cases} \quad (\lambda \in \mathbb{R})$$

2. Estude a posição relativa dos planos

$$\Pi_1$$
: $2x - y + z - 1 = 0$ e Π_2 : $x - \frac{1}{2}y + \frac{1}{2}z - 9 = 0$.

Solução: Das equações de Π_1 e de Π_2 os vetores normais a estes planos são, respectivamente, $\vec{n}_1=(2,-1,1)$ e $\vec{n}_2=(1,-\frac{1}{2},\frac{1}{2})$. Como $\vec{n}_1=2$ \vec{n}_1 , segue que estes vetores são LD, e, portanto, os planos Π_1 e Π_2 são paralelos. Na equação de Π_1 , fazendo x=y=0, obtemos z=1 e, portanto, $A=(0,0,1)\in\Pi_1$. Como as coordenadas de A não satisfazem a equação de Π_2 , segue que $A\not\in\Pi_2$ e daí conclui-se que Π_1 e de Π_2 são planos paralelos distintos.

3. Estude a posição relativa dos planos
$$\Pi_1$$
: $X = (0, 1, 6) + \lambda$ (1, 0, 1) + μ (4, 1, -6) e Π_2 : $X = (36, -6, -28) + \lambda$ (0, 1, 10) + μ (8, -1, -2)

Solução: Das equações de Π_1 e de Π_2 , temos que $\vec{u}_1 = (1, 0, 1)$ e $\vec{u}_2 = (4, -1, -6)$ são vetores diretores de Π_1 e $\vec{v}_1 = (0, 1, 10)$ e $\vec{v}_2 = (8, -1, -2)$. Devemos analisar a dependência linear de $L_1 = \{\vec{u}_1, \vec{v}_1, \vec{v}_2\}$ e depois, se necessário, de $L_2 = \{\vec{u}_2, \vec{v}_1, \vec{v}_2\}$. Fazendo os cálculos, concluise que L_1 é LD e, dessa forma, precisamos analisar a dependência linear de L_2 . Novamente, fazendo os cálculos, obtém-se que L_2 é LD. Assim, Π_1 // Π_2 . Resta, então, analisar se estes planos são coincidentes ou não. Das equações deos planos, segue que $A = (0, 1, 6) \in \Pi_1$ e facilmente verifica-se que $A \in \Pi_2$. Assim, $\Pi_1 = \Pi_2$.

9.9 Problemas Propostos

1. Estude a posição relativa de Π_1 e Π_2 nos casos:

(a)
$$\Pi_1$$
: $X = (1, 1, 1) + \lambda(0, 1, 1) + \mu(-1, 2, 1)$
 Π_2 : $X = (1, 0, 0) + \lambda(1, -1, 0) + \mu(-1, -1, -2)$

(b)
$$\Pi_1$$
: $2x - y + 2z - 1 = 0$
 Π_2 : $4x - 2y + 4z = 0$

(c)
$$\Pi_1$$
: $x - 2y + 2z - 2 = 0$
 Π_2 : $X = (0, 0, 1) + \lambda(1, 0, 3) + \mu(-1, 1, 1)$

2. Encontre o valor de m para que os planos

$$\Pi_1$$
: X = (1, 1, 0) + λ (m, 1, 1) + μ (1, 1, m)
 Π_2 : 2x + 3y + 2z + n = 0

sejam paralelos distintos, nos casos: (a) n = -5 e (b) n = 1.

3. Mostre que os planos

$$\Pi_1$$
: X = (0, 0, 0) + λ (-1, m, 1) + μ (2, 0, 1)

$$\Pi_2$$
: X = (1, 2, 3) + α (m, 1, 0) + β (1, 0, m)

são transversais, para todo $\mathbf{m} \in \mathbb{R}$.

A partir daqui, considere, quando necessário, fixado um sistema ortogonal de coordenadas.

4. Obtenha uma equação vetorial para a reta t que passa por P e é concorrente com r e s, nos seguintes casos:

(a)
$$P = (1, 1, 1)$$
 $r: x + 3 = \frac{y-2}{2} = \frac{z-1}{3}$ $s: X = (-2, 0, 4) + \lambda(1, 1, -1)$

(b)
$$P = (-2, 2, 4)$$
 $r: X = (-1, 1, 3) + \lambda(-2, -2, 2)$ $s: X = (-2, 4, 4) + \lambda(1, 2, 3)$

(c)
$$P = (1, 0, 6)$$
 $r: \begin{cases} x - y - z + 5 = 0 \\ 2x - z + 4 = 0 \end{cases}$ s: $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z}{3}$

(d)
$$P = (1, -2, -1)$$
 $r: \begin{cases} z = x - 2 \\ y = 1 - x \end{cases}$ $s: \begin{cases} z = x - 1 \\ y = 1 + 2x \end{cases}$

(e)
$$P = (1, 0, 3)$$
 r: $X = (1, 0, 0) + \lambda(3, -1, 2)$ s: $X = (-5, 2, -4) + \lambda(1, 5, -1)$

5. Obtenha uma equação vetorial para a reta ${f t}$, concorrente com ${f r}$ e s, nos seguintes casos:

(a) **r**:
$$X = (1, 1, -1) + \lambda(2, 1, -1)$$
 s: $\sqrt{\frac{x + y - 3z = 1}{2x - y - 2z = 0}}$

e t é paralela à reta determinada por M=(1, -1, 4) e N=(0, -3, -1)

(b) r:
$$\frac{x+1}{2} = y = -z$$
 s: $X = (\frac{1}{3}, \frac{2}{3}, 0) + \lambda(5, 4, 3)$ e t: é paralela ao vetor $\vec{v} = (1, 0, 1)$

(c) r:
$$X = (1, 2, 3) + \lambda(2, -1, 0)$$
 s: $X = (0, 1, -3) + \lambda(-1, 1, 2)$ e t é paralela à reta h: $X = (0, 0, 0) + \lambda(\frac{43}{9}, \frac{86}{27}, -\frac{43}{27})$

6. Obtenha uma equação vetorial para a reta ${\bf t}$ que passa pelo ponto ${\bf P}$, é paralela ou contida no plano Π e concorrente com a reta ${\bf r}$ nos seguintes casos:

(a)
$$P = (1, 1, 0)$$
 II: $2x + y - z - 3 = 0$ r: $X = (1, 0, 0) + \lambda(-1, 0, 1)$

(b)
$$P = (1, 0, 1)$$
 $\Pi: x - 3y - z = 1$ $r: X = (0, 0, 0) + \lambda(2, 1, -1)$

(c)
$$P = (1, 2, 1)$$
 $\Pi: x - y = 0$ $r: X = (1, 0, 0) + \lambda(2, 2, 1)$

- 7. Obtenha uma equação vetorial para a reta ${\bf t}$ contida no plano Π : ${\bf x}$ ${\bf y}$ + ${\bf z}$ = 0 e que é concorrente com as retas ${\bf r}$: $\begin{cases} {\bf z} = {\bf x} 2 \\ {\bf y} = 1 {\bf x} \end{cases}$ $\begin{cases} {\bf z} = {\bf x} 1 \\ {\bf y} = 1 + 2 {\bf x} \end{cases}$
- 8. Obtenha uma equação vetorial para a reta ${\bf t}$ paralela aos planos α e β e concorrente com as retas ${\bf r}$ e ${\bf s}$, sendo:

r:
$$x - 2y = z - x = y + 1$$
 s: $\begin{cases} x + 2y - z = 3 \\ x - 2y + z + 1 = 0 \end{cases}$
 α : $x + 2y + z - 1 = 0$ β : $x + 4y + 2z = 0$

- 9. Obtenha uma equação geral para o plano que contém a reta r: $X=(1,\,1,\,0)+\lambda(2,\,1,\,2)$ e é paralelo à reta s: $\frac{x+1}{2}=y=z+3$.
- 10. Obtenha uma equação geral para o plano que passa pelo ponto $P=(1,\,3,\,4)$ e é paralelo ao plano $\Pi:\,x+y+z+1=0$.
- 11. Projete o ponto $P=(1,\,4,\,0)$ sobre o plano Π : x+y-2z+1=0, paralelamente à reta r: $X=(0,\,0,\,0)+\lambda(1,\,4,\,1)$.