Performance & Final Submission Phase Solution Performance

Project Development Phase Model Performance Test

Performance Testing – Artificial Intelligence

Date	19 November 2023
Team ID	Team-591988
Project Name	Project - AI Body Language Detector Using
	Media pipe
Maximum Marks	10 Marks

S.No.	Parameter	Values	Screenshot	
1.	Model Summary		: # Model Summary rf_model = fit_models['rf'] # Access the RandomForestclassifier from the pipeline rf_classifier = rf_model.named_steps['randomforestclassifier'] # Get the number of trees (estimators) in the forest n_estimators = rf_classifier.n_estimators print("Number of Estimators (Trees): {n_estimators}") # Get feature importances (if applicable) feature_importances = rf_classifier.feature_importances_ print("Feature Importances:") for feature, importance in zip(X.columns, feature_importances): print(f"{feature}: {importance}") Number of Estimators (Trees): 100	
2.	Accuracy	Training Accuracy = 1.0 Validation Accuracy = 0.98	In [67]: #training accuracy rf_model = fit_models['rf'] # Predictions on the training data y_train_pred = rf_model.predict(X_train) # Calculate training accuracy training_accuracy = accuracy_score(y_train, y_train_pred) print(f"Training Accuracy: {training_accuracy}")	

```
In [69]:

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

# Assuming you have a DataFrame named df with your data

# Split the data into features (X) and target (y)

X = df.drop('class', axis=1)

y = df['class']

# Split the data into training and validation sets

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3, random_state=1234)

# Assuming you have a fitted Random Forest model stored in fit_models['rf']

rf_model = fit_models['rf']

# Predictions on the validation data

y_val_pred = rf_model.predict(X_val)

# Calculate validation accuracy

validation_accuracy = accuracy_score(y_val, y_val_pred)

print(f'Validation Accuracy: {validation_accuracy}")

Validation Accuracy: 0.9815668202764977
```

Performance Testing – Data Analytics

```
Parameter
                             Screenshot / Values
Dashboard
                            No of Visualizations = 144
                            n [70]: import mediapipe as mp import cv2
design
                                      mp_drawing = mp.solutions.drawing_utils
mp_holistic = mp.solutions.holistic
                                      cap = cv2.VideoCapture(0)
                                      # initialize the model
                                      with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic: frame_count = 0 # Initialize a frame counter
                                          while cap.isOpened():
    ret, frame = cap.read()
    frame_count += 1 # Increment the frame counter
                                               image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
                                               results = holistic.process(image)
                                               # ... (Your existing code for drawing landmarks and exporting coordinates)
                                               cv2.imshow("Holistic Model Detections", image)
                                               if cv2.waitKey(30) & 0xFF == ord('q'):
                                           print(f"Number of Visualizations: {frame_count}")
                                      cap.release()
                                      cv2.destroyAllWindows()
                                      Number of Visualizations: 144
Data
                            Data Responsiveness = 8.64
Responsiveness
                                 mp_drawing = mp.solutions.drawing_utils
mp_holistic = mp.solutions.holistic
                                 cap = cv2.VideoCapture(0)
                                  # initialize the model
                                 with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
                                      frame_count = 0
start_time = time.time() # Record start time
                                      while cap.isOpened():
                                           ret, frame = cap.read()
frame_count += 1
                                           image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
                                           results = holistic.process(image)
                                           # ... (Your existing code for drawing landmarks and exporting coordinates)
                                           cv2.imshow("Holistic Model Detections", image)
                                           if cv2.waitKey(30) & 0xFF == ord('q'):
                                                break
                                      end_time = time.time() # Record end time
elapsed_time = end_time - start_time
fps = frame_count / elapsed_time
print(f"Data Responsiveness (FPS): {fps:.2f}")
                                 cap.release()
cv2.destroyAllWindows()
                                 Data Responsiveness (FPS): 8.64
Amount Data
                            Frame size (Pixels): 307200
to Rendered
                             Total number of Landmarks: 501
(DB2 Metrics)
```

Performance Testing – Machine Learning

S.No.	Parameter	Values	Screenshot	
1.	Metrics	Regression Model: lr = 0.9907, rc = 0.995, rf = 0.981, gb = 0.986 Classification Model: Confusion Matrix, Accuracy Score = 0.981 & Classification Report	Regression Model: In [50]: for algo, model in fit_models.items(): yhat = model.predict(X_test) print(algo, accuracy_score(y_test, yhat)) Ir 0.9907834101382489 rc 0.9953917050691244 rf 0.9815668202764977 gb 0.9861751152073732 Classification model: In [78]: from sklearn.metrics import confusion matrix, accuracy_score, classification_report from sklearn.model_selection import train_test_split import pandas as pd # Assuming you have a DataFrame df with the columns 'class' and other features # Replace df with your actual DataFrame df = pd. read_csv('cords.csv') # Extract features (X) and target labels (y) X = df.drop('class', axis=1) y = df['class'] # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1234) # Assuming you have a fitted Random Forest model stored in fit_models['rf'] # Predictions on the test data y_pred = rf_model.predict(X_test) # Confusion Matrix conf_matrix = confusion_matrix(y_test, y_pred) print("confusion Matrix:") print(conf_matrix) # Accuracy Score acc_score = accuracy_score(y_test, y_pred) print("Classification Report class_report = classification_report(y_test, y_pred) print("classification Report:")	
			Confusion Matrix: [[54 0 0 0] [0 39 0 0] [0 1 54 0] [2 0 1 66]] Accuracy Score: 0.9815668202764977 Classification Report:	
2.	Tune the Model	Validation Method = 0.981	<pre>[80]: y_val_pred = model.predict(X_test) val_accuracy = accuracy_score(y_test, y_val_pred) print(f"Validation Accuracy: {val_accuracy}") Validation Accuracy: 0.9815668202764977</pre>	

Performance Testing – Cyber Security with AI

S.No	Parameter	Values	Screenshot
1.	Scanning the target	Risk factors -	Accuracy and Bias: Potential inaccuracies and biases in interpreting body language, leading to incorrect predictions and biased outcomes.
			<u>Privacy Concerns</u> : Capture and processing of sensitive information, risking privacy infringement if not handled properly.
			Security Vulnerabilities: Susceptibility to adversarial attacks, where attackers manipulate data to deceive the model.
			Ethical Considerations: Adherence to ethical standards, including issues of consent, fairness, and accountability.
			<u>Data Quality and Representativeness</u> : Impact of biases in training data on model predictions, emphasizing the importance of high-quality and representative data.
2.	Gaining access	Access process -	Access Process:
		Vulnerability found -	 Input: Capture video input of body movements. Media Pipe Processing: Use Media Pipe to extract spatial landmarks from the video. Model Inference: Apply a pre-trained model (e.g., Random Forest) to predict body language. Prediction: Receive real-time predictions with confidence scores. Visualization: Overlay predictions on the video for user interaction. Feedback: Allow user feedback for model improvement. Post-Processing: Log data for analysis and implement privacy measures. Security: Ensure secure communication and data protection. Monitoring: Regularly monitor system performance. User Education: Guide users on system interaction and limitations.
			 Vulnerability found: Privacy: Ensure compliance with privacy regulations and implement anonymization techniques for video data.

3.	Maintaining access - Automation (AI implementation)	AI tools used — Automation implemented -	 Data Security: Implement robust measures to secure sensitive information and prevent unauthorized access. Model Robustness: Assess the model's resilience to adversarial attacks and its generalization to different scenarios. Communication Security: Use secure protocols to protect data during network communication. Dependency Security: Regularly update and monitor dependencies to address potential security vulnerabilities. User Input Validation: Validate and sanitize user inputs to prevent injection attacks or exploitation. Access Control: Implement proper access controls to restrict system access based on user roles. Error Handling: Handle errors gracefully to avoid exposing sensitive information. AI tools used: Media pipe, OpenCV, NumPy, Pandas, scikit-learn, CSV
			Automation implemented: Real-time Pose Estimation and Landmark Detection, Data Collection and Export, Machine Learning Model Training, Model Evaluation, Real-time Inference, Visualization of Landmarks and Detections
4.	Covering Tracks & Report	Vulnerability risk factors	Vulnerability risk factors: Privacy Concerns, Data Security, Model Fairness and Bias, Adversarial Attacks, Model Robustness, Security of Dependencies, Real-time Inference Risks, Ethical Considerations