INFO 1998: Introduction to Machine Learning

Lecture 3: Data Visualization

INFO 1998: Introduction to Machine Learning

Agenda

- 1. Why Data Visualization is Important
- 2. Data Visualization Libraries
- 3. Basic Visualizations
- 4. Advanced Visualizations
- 5. Challenges of Visualization

The Data Pipeline

This!!!

```
X
                    amphitheaters.csv - Notepad
         File Edit Format View Help
"Roman", "Modern", "Country", "Year", "Length", "Notes", "Photo", "Latitude", "Longia "Dyrrhachium", "Durrës", "Albania", "2nd century AD", "61 m", "Durrës Amphitheatr" "Lambaesis", "Lambèse", "Algeria", "", "64 m", "", "", 35.489247, 6.259935 "Colonia Claudia Caesarea", "Cherchell", "Algeria", "", "33 m", "", "", 36.60874, 2. "Gemellae", "M'lili", "Algeria", "", "37 m", "", "34.635409, 5.522764 "Theveste", "Tébessa", "Algeria", "4th century AD", "45 m", "Aerial Photograph", "" "Tipasa", "Tipaza", "Algeria", "", "Map of Tipasa", "https://en.wikipedia.org/"Carnuntum", "Petronell", "Austria", "", "69 m", "2 amphitheatres ", "https://en.w" "Carnuntum", "Petronell", "Austria", "", "69 m", "2 amphitheatres ", "https://en.w" "Flavia Solva", "Leibnitz", "Austria", "", "", "", "46.766744,15.567417" "Virunum", "Magdalensberg", "Austria", "", "", "", "https://en.wikipedia.org/wiki/"Diocletianopolis", "Hisarya", "Bulgaria", "", "", "", "42.502825,24.709776" "Marcianopolis", "Bulgaria", "", "", "", ", "43.222222,27.569444" "Serdica", "Sofia", "Bulgaria", "", "", "", "", "In ground floor of Arena c
 "Serdica", "Sofia", "Bulgaria", "3rd century AD", "", "In ground floor of Arena c "Pietas Iulia Pola", "Pula", "Croatia", "1st century AD", "68 m", "Pula Arena", "h "Salonae", "Solin", "Croatia", "", "65 m", "", "https://en.wikipedia.org/wiki/File "Burnum", "", "Croatia", "", "46 m", "Roman military camp near Sibenik, had a sma "Augusta Paphus", "Paphos", "Cyprus", "", "65 m", "", "34.754942, 32.405344" "Salamis" "" "Cyprus" "" "Amphitheatra almost vanished " "" 35 185522 33
```


https://manifold.net/doc/mfd9/images/eg_formats_csv01_01.png

Why is Data Visualization Important?

Why is Data Visualization Important?

Informative

Appealing

Universal

Predictive

Why is Data Visualization Important?

Same summary stats (mean, median, mode) but different distributions!

We need to see how the **actual** data looks!

df.describe() is not enough

Data Visualization Simple Example: Ratings on Yelp

Question: What do you notice? What trends do you see?

Data Visualization Libraries

matplotlib

- Python data visualization package
- Capable of handling most data visualization needs
- Simple object-oriented library inspired from MATLAB
- Cheatsheet

seaborn

Another visualization package built on matplotlib

Seaborn vs Matplot

Seaborn

- Easier syntax
- Built for working with Pandas DF
- High level functions for more robust visualizations
- Superset of matplot

Matplot

Python libraries for data

visualizations!!

 Harder to work with for DF

Syntactically more complex

Use for basic graphs

Basic Data Visualizations

Bar Graph

- Represent magnitude or frequency of discrete variables
- Allows us to compare features

Source

Histograms

Source

- Used to observe frequency distribution of continuous variables
- Data split into bins

Histograms: Different Bin Sizes

Density Plot

Like a histogram, but **smooths** the shape of the distribution

Histogram vs Density Plot

Boxplot (a.k.a box and whisker plot)

- Summary of data
- Shows spread of data
- Gives range, interquartile range, median, and outlier information

Violin Plot

- Combination of boxplot and density plot to show the spread and shape of the data
- Can show whether the data is normal (i.e. is distributed normally)

Advanced Data Visualizations

Scatterplot

- See relationship between two features
- Can be useful for extrapolating information

Scatterplot

- See relationship between two features
- Can be useful for extrapolating information
- Correlation ≠ Causation!

Scatterplot - more ways

Line of best fit

Scatterplot - more ways

- Line of best fit
- Demonstrate clusters
- Bubble chart

Original data, 1500 points

Scatterplot - Overplotting

- Only sample a random selection
- Change dot form (eg. add transparency)
- Use heatmap

Heatmap

- Varying degrees of one metric are represented using color
- Especially useful in the context of maps to show geographical variation

Heatmap - Click Density / Website Heatmaps

Using Maps

- Map visualization → contextual information
 - Trends are not always apparent in the data itself
 - Eg. Longitudes + Latitudes → Geographical Map

Correlation Plots

- 2D matrix with all variables on each axis
- Entries represent the correlation coefficients between each pair of variables

Why are all entries on the diagonal '1'?

Correlation Plots

4.5 5.5 6.5 7.5

1 2 3 4 5 6 7

Demo

Challenges of Visualization

Higher Dimension

Non-Trivial

Time Consuming

Hard to Show Uncertainty

High Dimensional Data

4D Plot For Earthquake Data

- Color, time animations, or point shape can be used for higher dimensions
- There is a limit to the number of features that can be displayed

Error Bars

- Show uncertainty
- Usually display 95 percent confidence interval

"Did you really have to show the error bars?"

Error Bars

Residual Plot

- Values should be equally and randomly spaced on horizontal axis
- Regression line is called line of best fit
- Not optimal if data has outliers or is non-linear

Coming Up

- Assignment 2: Due Tonight at 11:59 PM
- Assignment 3: Due next Wednesday at 11:59 PM
- Next Lecture: Fundamentals of Machine Learning

Check ED before writing emails! Post Questions on ED!

