......

Module A
Section A.1
Section A.2
Section A.3
Section A.4

Module A: Algebraic properties of linear maps

Math 237

Module A Section A.1

Section A.2 Section A.3 Section A.4

How can we understand linear maps algebraically?

At the end of this module, students will be able to...

- **A1. Linear map verification.** ... determine if a map between vector spaces of polynomials is linear or not.
- **A2. Linear maps and matrices.** ... translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.
- **A3. Injectivity and surjectivity.** ... determine if a given linear map is injective and/or surjective.
- **A4. Kernel and Image.** ... compute a basis for the kernel and a basis for the image of a linear map.

Module A Section A.1 Section A.2 Section A.3 Section A.4

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- State the definition of a spanning set, and determine if a set of Euclidean vectors spans \mathbb{R}^n **V4**.
- State the definition of linear independence, and determine if a set of Euclidean vectors is linearly dependent or independent **S1**.
- State the definition of a basis, and determine if a set of Euclidean vectors is a basis S2,S3.
- Find a basis of the solution space to a homogeneous system of linear equations
 \$6.

Section A.1 Section A.2 Section A.3 Section A.4

Module A Section 1

Definition A.1.1

A linear transformation (also known as a linear map) is a map between vector spaces that preserves the vector space operations. More precisely, if V and W are vector spaces, a map $T:V\to W$ is called a linear transformation if

2
$$T(c\mathbf{v}) = cT(\mathbf{v})$$
 for any $c \in \mathbb{R}, \mathbf{v} \in V$.

In other words, a map is linear when vector space operations can be applied before or after the transformation without affecting the result.

Definition A.1.2

Given a linear transformation $T: V \to W$, V is called the **domain** of T and W is called the **co-domain** of T.

Linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

Module A Section A.1

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x - z \\ 3y \end{bmatrix}$$

To show that T is linear, we must verify...

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} u \\ v \\ w \end{bmatrix}\right) = T\left(\begin{bmatrix} x+u \\ y+v \\ z+w \end{bmatrix}\right) = \begin{bmatrix} (x+u)-(z+w) \\ 3(y+v) \end{bmatrix}$$

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) + T\left(\begin{bmatrix} u \\ v \\ w \end{bmatrix}\right) = \begin{bmatrix} x - z \\ 3y \end{bmatrix} + \begin{bmatrix} u - w \\ 3v \end{bmatrix} = \begin{bmatrix} (x + u) - (z + w) \\ 3(y + v) \end{bmatrix}$$

And also...

$$T\left(c \begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = T\left(\begin{bmatrix} cx \\ cy \\ cz \end{bmatrix}\right) = \begin{bmatrix} cx - cz \\ 3cy \end{bmatrix} \text{ and } cT\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = c\begin{bmatrix} x - z \\ 3y \end{bmatrix} = \begin{bmatrix} cx - cz \\ 3cy \end{bmatrix}$$

Therefore T is a linear transformation.

Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ x^2 \\ y+3 \\ y+3 \end{bmatrix}$$

To show that T is not linear, we only need to find one counterexample.

$$T\left(\begin{bmatrix}0\\1\end{bmatrix} + \begin{bmatrix}2\\3\end{bmatrix}\right) = T\left(\begin{bmatrix}2\\4\end{bmatrix}\right) = \begin{bmatrix}6\\4\\7\\0\end{bmatrix}$$

$$T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)+T\left(\begin{bmatrix}2\\3\end{bmatrix}\right)=\begin{bmatrix}1\\0\\4\\-1\end{bmatrix}+\begin{bmatrix}5\\4\\6\\-5\end{bmatrix}=\begin{bmatrix}6\\4\\10\\-6\end{bmatrix}$$

Since the resulting vectors are different, T is not a linear transformation.

Fact A.1.5

A map between Euclidean spaces $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear exactly when every component of the output is a linear combination of the variables of \mathbb{R}^n .

For example, the following map is definitely linear because x-z and 3y are linear combinations of x, y, z:

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x - z \\ 3y \end{bmatrix} = \begin{bmatrix} 1x + 0y - 1z \\ 0x + 3y + 0z \end{bmatrix}$$

But this map is not linear because x^2 , y+3, and $y-2^x$ are not linear combinations (even though x+y is):

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ x^2 \\ y+3 \\ y-2^x \end{bmatrix}$$

Activity A.1.6 (\sim 5 min)

Recall the following rules from calculus, where $D: \mathcal{P} \to \mathcal{P}$ is the derivative map defined by D(f(x)) = f'(x) for each polynomial f.

$$D(f+g) = f'(x) + g'(x)$$
$$D(cf(x)) = cf'(x)$$

What can we conclude from these rules?

- a) \mathcal{P} is not a vector space
- b) D is a linear map
- c) D is not a linear map

Activity A.1.7 (\sim 10 min)

Let the polynomial maps $S:\mathcal{P}^4\to\mathcal{P}^3$ and $T:\mathcal{P}^4\to\mathcal{P}^3$ be defined by

$$S(f(x)) = 2f'(x) - f''(x)$$
 $T(f(x)) = f'(x) + x^3$

Compute $S(x^4 + x)$, $S(x^4) + S(x)$, $T(x^4 + x)$, and $T(x^4) + T(x)$. Which of these maps is definitely not linear?

Fact A.1.8

If $L: V \to W$ is linear, then $L(\mathbf{z}) = L(0\mathbf{v}) = 0L(\mathbf{v}) = \mathbf{z}$ where \mathbf{z} is the additive identity of the vector spaces V, W.

Put another way, an easy way to prove that a map like $T(f(x)) = f'(x) + x^3$ can't be linear is because

$$T(0) = \frac{d}{dx}[0] + x^3 = 0 + x^3 = x^3 \neq 0.$$

Activity A.1.9 (\sim 15 min)

Continue to consider $\mathcal{S}:\mathcal{P}^4 \to \mathcal{P}^3$ defined by

$$S(f(x)) = 2f'(x) - f''(x)$$

Activity A.1.9 (\sim 15 min)

Continue to consider $\mathcal{S}:\mathcal{P}^4 \to \mathcal{P}^3$ defined by

$$S(f(x)) = 2f'(x) - f''(x)$$

Part 1: Verify that

$$S(f(x) + g(x)) = 2f'(x) + 2g'(x) - f''(x) - g''(x)$$

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.

Activity A.1.9 (\sim 15 min)

Continue to consider $\mathcal{S}:\mathcal{P}^4 \to \mathcal{P}^3$ defined by

$$S(f(x)) = 2f'(x) - f''(x)$$

Part 1: Verify that

$$S(f(x) + g(x)) = 2f'(x) + 2g'(x) - f''(x) - g''(x)$$

is equal to S(f(x)) + S(g(x)) for all polynomials f, g.

Part 2: Verify that S(cf(x)) is equal to cS(f(x)) for all real numbers c and polynomials f. Is S linear?

Section A.1 Section A.2 Section A.3 Section A.4

Activity A.1.10 (~20 min)

Let the polynomial maps $\mathcal{S}:\mathcal{P}\to\mathcal{P}$ and $\mathcal{T}:\mathcal{P}\to\mathcal{P}$ be defined by

$$S(f(x)) = (f(x))^2$$
 $T(f(x)) = 3xf(x^2)$

Activity A.1.10 (\sim 20 min)

Let the polynomial maps $S: \mathcal{P} \to \mathcal{P}$ and $T: \mathcal{P} \to \mathcal{P}$ be defined by

$$S(f(x)) = (f(x))^2$$
 $T(f(x)) = 3xf(x^2)$

Part 1: Show that $S(x+1) \neq S(x) + S(1)$ to verify that S is not linear.

Activity A.1.10 (\sim 20 min)

Let the polynomial maps $S: \mathcal{P} \to \mathcal{P}$ and $T: \mathcal{P} \to \mathcal{P}$ be defined by

$$S(f(x)) = (f(x))^2$$
 $T(f(x)) = 3xf(x^2)$

- Part 1: Show that $S(x+1) \neq S(x) + S(1)$ to verify that S is not linear.
- Part 2: Prove that T is linear by verifying that

$$T(f(x)+g(x))=T(f(x))+T(g(x))$$
 and $T(cf(x))=cT(f(x))$.

Observation A.1.11

Note that S in the previous activity is not linear, even though $S(0) = (0)^2 = 0$. So showing S(0) = 0 isn't enough to prove a map is linear.

This is a similar situation to proving a subset is a subspace: if the subset doesn't contain z, then the subset isn't a subspace. But if the subset contains z, you cannot conclude anything.

Math 237

Module A Section A.1 Section A.2 Section A.3 Section A.4

Module A Section 2

Remark A.2.1

Recall that a linear map $T: V \to W$ satisfies

1
$$T(\mathbf{v} + \mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w})$$
 for any $\mathbf{v}, \mathbf{w} \in V$.

2
$$T(c\mathbf{v}) = cT(\mathbf{v})$$
 for any $c \in \mathbb{R}, \mathbf{v} \in V$.

In other words, a map is linear when vecor space operations can be applied before or after the transformation without affecting the result.

Activity A.2.2 (\sim 5 min)

$$\mathcal{T}\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}. \text{ Compute } \mathcal{T}\left(\begin{bmatrix}3\\0\\0\end{bmatrix}\right).$$

(a)
$$\begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

(c)
$$\begin{vmatrix} -4 \\ -2 \end{vmatrix}$$

(b)
$$\begin{bmatrix} -9 \\ 6 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 6 \\ -4 \end{bmatrix}$$

Activity A.2.3 (\sim 3 min)

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}. \text{ Compute } T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right).$$

(a)
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

(c)
$$\begin{vmatrix} -1 \\ 3 \end{vmatrix}$$

(b)
$$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

Activity A.2.4 (\sim 2 min)

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-3\\2\end{bmatrix}. \text{ Compute } T\left(\begin{bmatrix}-2\\0\\-3\end{bmatrix}\right).$$

(a)
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

(c)
$$\begin{vmatrix} -1 \\ 3 \end{vmatrix}$$

(b)
$$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

Activity A.2.5 (\sim 5 min)

$$T\begin{pmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -3\\2 \end{bmatrix}$$
. Do you have enough information to compute $T(\mathbf{v})$ for any $\mathbf{v} \in \mathbb{D}^3$?

- $\mathbf{v} \in \mathbb{R}^3$?
- (a) Yes.
- (b) No, exactly one more piece of information is needed.
- (c) No, an infinite amount of information would be necessary to compute the transformation of infinitely-many vectors.

Fact A.2.6

Consider any basis $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ for V. Since every vector \mathbf{v} can be written uniquely as a linear combination of basis vectors, $x_1\mathbf{b}_1 + \dots + x_n\mathbf{b}_n$, we may compute $T(\mathbf{v})$ as follows:

$$T(\mathbf{v}) = T(x_1\mathbf{b}_1 + \cdots + x_n\mathbf{b}_n) = x_1T(\mathbf{b}_1) + \cdots + x_nT(\mathbf{b}_n).$$

Therefore any linear transformation $T: V \to W$ can be defined by just describing the values of $T(\mathbf{b}_i)$.

Put another way, the images of the basis vectors **determine** the transformation T.

Definition A.2.7

Since linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is determined by the standard basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, it's convenient to store this information in the $m \times n$ standard matrix $[T(\mathbf{e}_1) \cdots T(\mathbf{e}_n)]$.

For example, let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear map determined by the following values for T applied to the standard basis of \mathbb{R}^3 .

$$\mathcal{T}\left(\mathbf{e}_{1}\right)=\mathcal{T}\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right)=\begin{bmatrix}3\\2\end{bmatrix}\qquad\mathcal{T}\left(\mathbf{e}_{2}\right)=\mathcal{T}\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right)=\begin{bmatrix}-1\\4\end{bmatrix}\qquad\mathcal{T}\left(\mathbf{e}_{3}\right)=\mathcal{T}\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right)=\begin{bmatrix}5\\0\end{bmatrix}$$

Then the standard matrix corresponding to T is

$$\begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & T(\mathbf{e}_3) \end{bmatrix} = \begin{bmatrix} 3 & -1 & 5 \\ 2 & 4 & 0 \end{bmatrix}.$$

Activity A.2.8 (\sim 3 min)

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by

$$T(\mathbf{e}_1) = \begin{bmatrix} 0 \\ 3 \\ -2 \end{bmatrix}$$
 $T(\mathbf{e}_2) = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$ $T(\mathbf{e}_3) = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$ $T(\mathbf{e}_4) = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$

Write the standard matrix $[T(\mathbf{e}_1) \cdots T(\mathbf{e}_n)]$ for T.

Activity A.2.9 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 3z \\ 2x - y - 4z \end{bmatrix}$$

Find the standard matrix for T.

Fact A.2.10

Because every linear map $T: \mathbb{R}^m \to \mathbb{R}^n$ has a linear combination of the variables in each component, and thus $T(\mathbf{e}_i)$ yields exactly the coefficients of x_i , the standard matrix for T is simply an ordered list of the coefficients of the x_i :

$$T\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}\right) = \begin{bmatrix} ax + by + cz + dw \\ ex + fy + gz + hw \end{bmatrix} \qquad A = \begin{bmatrix} a & b & c & d \\ e & f & g & h \end{bmatrix}$$

Activity A.2.11 (\sim 5 min)

Let $T:\mathbb{R}^3 o \mathbb{R}^3$ be the linear transformation given by the standard matrix

$$\begin{bmatrix} 3 & -2 & -1 \\ 4 & 5 & 2 \\ 0 & -2 & 1 \end{bmatrix}.$$

Compute
$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right)$$
.

Activity A.2.12 (\sim 5 min)

Let $T:\mathbb{R}^3 o \mathbb{R}^3$ be the linear transformation given by the standard matrix

$$\begin{bmatrix} 3 & -2 & -1 \\ 4 & 5 & 2 \\ 0 & -2 & 1 \end{bmatrix}.$$

Compute
$$T \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \end{pmatrix}$$
.

Module A

Math 237

Section A.1 Section A.2 Fact A.2.13

To quickly compute $T(\mathbf{v})$ from its standard matrix A, compute the **dot product** (defined in Calculus 3) of each matrix row with the vector. For example, if T has the standard matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 2 & -1 & 0 \end{bmatrix}$$

then for $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ we will write

$$T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 2 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1x + 2y + 3z \\ 0x + 1y - 2z \\ 2x - 1y + 0z \end{bmatrix}$$

and for $\mathbf{v} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ we will write

and for
$$\mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$$
 we will write
$$T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 2 & -1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 1(3) + 2(0) + 3(-2) \\ 0(3) + 1(0) - 2(-2) \\ 2(3) - 1(0) + 0(-2) \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ 6 \end{bmatrix}.$$

Activity A.2.14 (~15 min)

Compute the following linear transformations of vectors given their standard matrices.

$$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right)$$
 for the standard matrix $A=\begin{bmatrix}4&3\\0&-1\\1&1\\3&0\end{bmatrix}$

$$T\left(\begin{bmatrix}1\\1\\0\\-3\end{bmatrix}\right) \text{ for the standard matrix } A = \begin{bmatrix}4&3&0&-1\\1&1&3&0\end{bmatrix}$$

$$T\left(\begin{bmatrix}0\\-2\\0\end{bmatrix}\right) \text{ for the standard matrix } A = \begin{bmatrix}4&3&0\\0&-1&3\\5&1&1\\3&0&0\end{bmatrix}$$

Module A Section 3

Definition A.3.1

Let $T:V\to W$ be a linear transformation. T is called **injective** or **one-to-one** if T does not map two distinct values to the same place. More precisely, T is injective if $T(\mathbf{v})\neq T(\mathbf{w})$ whenever $\mathbf{v}\neq\mathbf{w}$.

Activity A.3.2 (\sim 3 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Show that T is not injective by finding two different vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ such that $T(\mathbf{v}) = T(\mathbf{w})$.

Activity A.3.3 (\sim 2 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Is T injective? (That is, do different vectors always transform into different vectors?)

Section A.1 Section A.2 Section A.3 Section A.4

Definition A.3.4

Let $T:V\to W$ be a linear transformation. T is called **surjective** or **onto** if every element of W is mapped to by an element of V. More precisely, for every $\mathbf{w}\in W$, there is some $\mathbf{v}\in V$ with $T(\mathbf{v})=\mathbf{w}$.

Activity A.3.5 (\sim 3 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

 $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

Find a vector in \mathbb{R}^3 that $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right)$ can never equal. Is T surjective?

Activity A.3.6 (\sim 2 min)

Let $T:\mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Is T surjective? (That is, can every vector in \mathbb{R}^2 be obtained by using T to transform a vector in \mathbb{R}^3 ?)

Observation A.3.7

As we will see, it's no coincidence that the RREF of the injective map's standard matrix

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

has all pivot columns. Similarly, the RREF of the surjective map's standard matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

has all pivot (zero) rows.

Definition A.3.8

Let $T:V\to W$ be a linear transformation. The **kernel** of T is an important subspace of V defined by

$$\ker T = \{\mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{z}\}$$

Activity A.3.9 (\sim 5 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

 $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad \text{with standard matrix} \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

Which of these subspaces of \mathbb{R}^2 describes ker T, the set of all vectors that transform into **0**?

$$\mathsf{a})\ \left\{ \begin{bmatrix} \mathsf{a} \\ \mathsf{a} \end{bmatrix} \ \middle|\ \mathsf{a} \in \mathbb{R} \right\}$$

Activity A.3.10 (\sim 5 min) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Which of these subspaces of \mathbb{R}^3 describes ker \mathcal{T} , the set of all vectors that transform into $\mathbf{0}$?

$$\mathsf{a})\ \left\{ \begin{bmatrix} 0\\0\\a\end{bmatrix} \middle|\ a\in\mathbb{R}\right\}$$

b)
$$\left\{ \begin{bmatrix} a \\ a \\ 0 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

$$\mathsf{c)} \ \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

d)
$$\mathbb{R}^3$$

Activity A.3.11 (~10 min)

Let $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Activity A.3.11 (\sim 10 min)

Let $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Part 1: Set
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} ? + ? + ? \\ ? + ? + ? \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 to find a linear system of equations

whose solution set is the kernel.

Activity A.3.11 (\sim 10 min)

Let $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Part 1: Set
$$T \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} ? + ? + ? \\ ? + ? + ? \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 to find a linear system of equations

whose solution set is the kernel.

Part 2: Use RREF(A) to solve this homogeneous system of equations and find a basis for the kernel of T.

Definition A.3.12

Let $T:V\to W$ be a linear transformation. The **image** of T is an important subspace of W defined by

$$\operatorname{Im} T = \big\{ \mathbf{w} \in W \mid \text{there is some } \mathbf{v} \in V \text{ with } T(\mathbf{v}) = \mathbf{w} \big\}$$

Module A Section A.1 Section A.2 Section A.3

Activity A.3.13 (\sim 5 min) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Which of these subspaces of \mathbb{R}^3 describes Im T, the set of all vectors that are the result of using T to transform \mathbb{R}^2 vectors?

$$\mathsf{a)} \ \left\{ \begin{bmatrix} 0 \\ 0 \\ a \end{bmatrix} \, \middle| \, a \in \mathbb{R} \right\}$$

b)
$$\left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

c)
$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$$

d)
$$\mathbb{R}^3$$

Activity A.3.14 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \text{with standard matrix } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Which of these subspaces of \mathbb{R}^2 describes Im T, the set of all vectors that are the result of using T to transform \mathbb{R}^3 vectors?

$$\mathsf{a)} \ \left\{ \begin{bmatrix} a \\ a \end{bmatrix} \,\middle|\, a \in \mathbb{R} \right\}$$

- b) $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$
- c) \mathbb{R}^2

Activity A.3.15 (\sim 5 min)

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & 7 & 1 \\ -1 & 1 & 0 & 2 \\ 2 & 1 & 3 & -1 \end{bmatrix} = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & T(\mathbf{e}_3) & T(\mathbf{e}_4) \end{bmatrix}.$$

Thus the set of vectors

$$\left\{ \begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 4\\1\\1 \end{bmatrix}, \begin{bmatrix} 7\\0\\3 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \right\}$$

- a) spans Im T
- b) is a linearly independent subset of Im T
- c) is a basis for Im T

Activity A.3.16 (\sim 10 min)

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by the standard matrix

$$A = \begin{bmatrix} 3 & 4 & 7 & 1 \\ -1 & 1 & 0 & 2 \\ 2 & 1 & 3 & -1 \end{bmatrix}.$$

Remove vectors from the set

$$\left\{ \begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 4\\1\\1 \end{bmatrix}, \begin{bmatrix} 7\\0\\3 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \right\}$$

spanning $\operatorname{Im} T$ to get a basis for $\operatorname{Im} T$.

Observation A.3.17

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A.

- The kernel of T is the solution set of the homogeneous system given by the augmented matrix $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$.
- The image of T is the span of the columns of A.

Module A Section A.1 Section A.2

Section A.4

Module A Section 4

Section A.1 Section A.2 Section A.3 Section A.4

Observation A.4.1

Let $T: V \to W$. We have previously defined the following terms.

- T is called injective or one-to-one if T does not map two distinct values to the same place.
- T is called surjective or onto if every element of W is mapped to by some element of V.
- The kernel of T is the set of all things that are mapped to 0. It is a subspace
 of V.
- The image of T is the set of all things in W that are mapped to by something in V. It is a subspace of W.

Activity A.4.2 (\sim 5 min)

Let $T: V \to W$ be a linear transformation where ker $T = \{0\}$. Can you answer either of the following questions about T?

- (a) Is *T* injective?
- (b) Is T surjective?

(Hint: If
$$T(\mathbf{v}) = T(\mathbf{w})$$
, then what is $T(\mathbf{v} - \mathbf{w})$?)

Module A
Section A.1
Section A.2
Section A.3
Section A.4

Fact A.4.3

A linear transformation T is injective **if and only if** ker $T = \{0\}$. Put another way, an injective linear transformation may be recognized by its **trivial** kernel.

Activity A.4.4 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation where Im $T = \text{span} \left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} 3\\-1\\-1 \end{bmatrix} \right\}$.

Can you answer either of the following questions about T?

- (a) Is T injective?
- (b) Is T surjective?

Module A Section A.1 Section A.2 Section A.3 Section A.4

Fact A.4.5

A linear transformation $T:V\to W$ is surjective **if and only if** Im T=W. Put another way, a surjective linear transformation may be recognized by its same codomain and image.

Activity A.4.6 (\sim 15 min)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with standard matrix A. Sort the following claims into two groups of equivalent statements.

- (a) T is injective
- (b) T is surjective
- (c) The kernel of T is trivial.
- (d) The columns of A span \mathbb{R}^m
- (e) The columns of A are linearly independent
- (f) Every column of RREF(A) has a pivot.
- (g) Every row of RREF(A) has a pivot.

- (h) The image of *T* equals its codomain.
- (i) The system of linear equations given by the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has a solution for all $\mathbf{b} \in \mathbb{R}^m$
- (j) The system of linear equations given by the augmented matrix $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ has exactly one solution.

Module A Section A.1 Section A.2 Section A.3 Section A.4

Definition A.4.7

If $T:V\to W$ is both injective and surjective, it is called **bijective**.

Section A.1 Section A.2 Section A.3 Section A.4

Activity A.4.8 (\sim 5 min)

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a bijective linear map with standard matrix A. Label each of the following as true or false.

- (a) The columns of A form a basis for \mathbb{R}^m
- (b) RREF(A) is the identity matrix.
- (c) The system of linear equations given by the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has exactly one solution for all $\mathbf{b} \in \mathbb{R}^m$.

Activity A.4.9 (\sim 10 min)

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x + 3y \\ x - y \\ x + 3y \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.

Activity A.4.10 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2x + y - z \\ 4x + y + z \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.

Activity A.4.11 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2x + y - z \\ 4x + y + z \\ 6x + 2y + z \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.

Activity A.4.12 (\sim 5 min)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2x + y - z \\ 4x + y + z \\ 6x + 2y \end{bmatrix}.$$

- (a) T is neither injective nor surjective
- (b) T is injective but not surjective
- (c) T is surjective but not injective
- (d) T is bijective.