Espaces de dimension finie

Dimension d'un espace

Exercice 1 [01634] [Correction]

Soit E l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles qu'il existe $a, b, c \in \mathbb{R}$ pour lesquels :

$$\forall x \in \mathbb{R}, f(x) = (ax^2 + bx + c)\cos x.$$

- (a) Montrer que E est sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$.
- (b) Déterminer une base de E et sa dimension.

Exercice 2 [01635] [Correction]

Soient $p \in \mathbb{N}^*$ et E l'ensemble des suites réelles p périodiques i.e. l'ensemble des suites réelles (u_n) telles que

$$\forall n \in \mathbb{N}, u(n+p) = u(n).$$

Montrer que E est un \mathbb{R} -espace vectoriel de dimension finie et déterminer celle-ci.

Exercice 3 [01636] [Correction]

Soit $E = \mathbb{R}^{\mathbb{R}}$. Pour tout $n \in \mathbb{N}$, on pose $f_n : x \mapsto x^n$.

- (a) Montrer que (f_0, \ldots, f_n) est libre.
- (b) En déduire $\dim E$.

Bases en dimension finie

Exercice 4 [01637] [Correction]

On pose $\vec{e}_1 = (1, 1, 1)$, $\vec{e}_2 = (1, 1, 0)$ et $\vec{e}_3 = (0, 1, 1)$. Montrer que $\mathcal{B} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ est une base de \mathbb{R}^3 .

Exercice 5 [01638] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension 3 et $e = (e_1, e_2, e_3)$ une base de E. On pose

$$\varepsilon_1 = e_2 + 2e_3, \varepsilon_2 = e_3 - e_1 \text{ et } \varepsilon_3 = e_1 + 2e_2.$$

Montrer que $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de E.

Exercice 6 [01639] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension 3 et $e=(e_1,e_2,e_3)$ une base de E. Soit

$$\varepsilon_1 = e_1 + 2e_2 + 2e_3 \text{ et } \varepsilon_2 = e_2 + e_3.$$

Montrer que la famille $(\varepsilon_1, \varepsilon_2)$ est libre et compléter celle-ci en une base de E.

Exercice 7 [01640] [Correction]

Soit E un \mathbb{K} -espace vectoriel muni d'une base $e = (e_1, \dots, e_n)$.

Pour tout $i \in \{1, ..., n\}$, on pose $\varepsilon_i = e_1 + \cdots + e_i$.

- (a) Montrer que $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ est une base de E.
- (b) Exprimer les composantes dans ε d'un vecteur en fonction de ses composantes dans e.

Exercice 8 [03724] [Correction]

(Lemme d'échange) Soient (e_1, \ldots, e_n) et (e'_1, \ldots, e'_n) deux bases d'un \mathbb{R} -espace vectoriel E.

Montrer qu'il existe $j \in \{1, ..., n\}$ tel que la famille $(e_1, ..., e_{n-1}, e'_j)$ soit encore une base de E.

Sous-espaces vectoriels de dimension finie

Exercice 9 [01641] [Correction]

Soient F, G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie $n \in \mathbb{N}$.

Montrer que si $\dim F + \dim G > n$ alors $F \cap G$ contient un vecteur non nul.

Exercice 10 [01642] [Correction]

Dans \mathbb{R}^4 on considère les vecteurs

u = (1, 0, 1, 0), v = (0, 1, -1, 0), w = (1, 1, 1, 1), x = (0, 0, 1, 0) et y = (1, 1, 0, -1).

Soit F = Vect(u, v, w) et G = Vect(x, y).

Quelles sont les dimensions de F, G, F + G et $F \cap G$?

Exercice 11 [04134] [Correction]

Soient U, V et W trois sous-espaces vectoriels d'un \mathbb{R} -espace vectoriel de dimension finie n.

- (a) On suppose $\dim U + \dim V > n.$ Montrer que $U \cap V$ n'est pas réduit au vecteur nul.
- (b) On suppose $\dim U + \dim V + \dim W > 2n$. Que dire de l'espace $U \cap V \cap W$?

Supplémentarité

Exercice 12 [01646] [Correction]

Dans \mathbb{R}^3 , déterminer une base et un supplémentaire des sous-espaces vectoriels suivants :

- (a) F = Vect(u, v) où u = (1, 1, 0) et v = (2, 1, 1)
- (b) F = Vect(u, v, w) où u = (-1, 1, 0), v = (2, 0, 1) et w = (1, 1, 1)
- (c) $F = \{(x, y, z) \in \mathbb{R}^3 \mid x 2y + 3z = 0\}.$

Exercice 13 [00182] [Correction]

Soit E un espace vectoriel de dimension finie.

- (a) Soient H et H' deux hyperplans de E. Montrer que ceux-ci possèdent un supplémentaire commun.
- (b) Soient F et G deux sous-espaces vectoriels de E tels que dim $F = \dim G$. Montrer que F et G ont un supplémentaire commun.

Exercice 14 [00181] [Correction]

Soient \mathbb{K} un sous-corps de \mathbb{C} , E un \mathbb{K} -espace vectoriel de dimension finie, F_1 et F_2 deux sous-espaces vectoriels de E.

- (a) On suppose dim $F_1 = \dim F_2$. Montrer qu'il existe G sous-espace vectoriel de E tel que $F_1 \oplus G = F_2 \oplus G = E$.
- (b) On suppose que dim $F_1 \leq \dim F_2$. Montrer qu'il existe G_1 et G_2 sous-espaces vectoriels de E tels que $F_1 \oplus G_1 = F_2 \oplus G_2 = E$ et $G_2 \subset G_1$.

Exercice 15 [00184] [Correction]

Soit (e_1, \ldots, e_p) une famille libre de vecteurs de $E, F = \text{Vect}(e_1, \ldots, e_p)$ et G un supplémentaire de F dans E. Pour tout $a \in G$, on note

$$F_a = \text{Vect}(e_1 + a, \dots, e_p + a).$$

(a) Montrer que

$$F_a \oplus G = E$$
.

(b) Soient $a, b \in G$. Montrer

$$a \neq b \implies F_a \neq F_b$$
.

Rang d'une famille de vecteurs

Exercice 16 [01650] [Correction]

Déterminer le rang des familles de vecteurs suivantes de \mathbb{R}^4 :

- (a) (x_1, x_2, x_3) avec $x_1 = (1, 1, 1, 1), x_2 = (1, -1, 1, -1)$ et $x_3 = (1, 0, 1, 1)$.
- (b) (x_1, x_2, x_3, x_4) avec $x_1 = (1, 1, 0, 1), x_2 = (1, -1, 1, 0), x_3 = (2, 0, 1, 1)$ et $x_4 = (0, 2, -1, 1)$.

Exercice 17 [01651] [Correction]

Dans $E = \mathbb{R}^{]-1;1[}$ on considère :

$$f_1(x) = \sqrt{\frac{1+x}{1-x}}, f_2(x) = \sqrt{\frac{1-x}{1+x}}, f_3(x) = \frac{1}{\sqrt{1-x^2}}, f_4(x) = \frac{x}{\sqrt{1-x^2}}.$$

Quel est le rang de la famille (f_1, f_2, f_3, f_4) ?

Hyperplans en dimension finie

Exercice 18 [01678] [Correction]

Dans \mathbb{R}^3 , on considère le sous-espace vectoriel

$$H = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + 3z = 0\}.$$

Soient u = (1, 2, 1) et v = (-1, 1, 1). Montrer que $\mathcal{B} = (u, v)$ forme une base de H.

Exercice 19 [01643] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension finie supérieure à 2.

Soit H_1 et H_2 deux hyperplans de E distincts.

Déterminer la dimension de $H_1 \cap H_2$.

Exercice 20 [01644] [Correction]

Soient H un hyperplan et F un sous-espace vectoriel non inclus dans H. Montrer

$$\dim F \cap H = \dim F - 1.$$

Exercice 21 [01647] [Correction]

Soient D une droite vectorielle et H un hyperplan d'un \mathbb{K} -espace vectoriel E de dimension $n \in \mathbb{N}^*$. Montrer que si $D \not\subset H$ alors D et H sont supplémentaires dans E.

Exercice 22 [01648] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$, H un hyperplan de E et D une droite vectorielle de E.

À quelle condition H et D sont-ils supplémentaires dans E?

Exercice 23 [00175] [Correction]

Soient E un espace vectoriel de dimension finie et F un sous-espace vectoriel de E, distinct de E.

Montrer que F peut s'écrire comme une intersection d'un nombre fini d'hyperplans.

Quel est le nombre minimum d'hyperplans nécessaire?

Corrections

Exercice 1 : [énoncé]

- (a) $E = \text{Vect}(f_0, f_1, f_2)$ avec $f_0(x) = \cos x$, $f_1(x) = x \cos x$ et $f_2(x) = x^2 \cos x$. E est donc un sous-espace vectoriel et (f_0, f_1, f_2) en est une famille génératrice.
- (b) Supposons $\alpha f_0 + \beta f_1 + \gamma f_2 = 0$. On a $\forall x \in \mathbb{R}$, $(\alpha + \beta x + \gamma x^2) \cos x = 0$. Pour $x = 2n\pi$, on obtient $\alpha + 2n\pi\beta + 4n^2\pi^2\gamma = 0$ pour tout $n \in \mathbb{N}$. Si $\gamma \neq 0$ alors $\alpha + 2n\pi\beta + 4n^2\pi^2\gamma \to \pm \infty$. C'est exclu. Nécessairement $\gamma = 0$. On a alors $\alpha + 2n\pi\beta = 0$ pour tout $n \in \mathbb{N}$. Pour n = 0, puis n = 1 on obtient successivement $\alpha = \beta = 0$. Finalement (f_0, f_1, f_2) est une famille libre. C'est donc une base de E et dim E = 3

Exercice 2 : [énoncé]

On vérifie aisément que E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. Pour tout $0 \leq i \leq p-1$, on note e_i la suite définie par

$$e_i(n) = \begin{cases} 1 & \text{si } n = i \ [p] \\ 0 & \text{sinon.} \end{cases}$$

On vérifie aisément que les suites e_0, \dots, e_{p-1} sont linéairement indépendantes et on a

$$\forall u \in E, u = \sum_{i=0}^{p-1} u(i)e_i.$$

La famille (e_0, \ldots, e_{p-1}) est donc une base de E et par suite dim E = p.

Exercice 3: [énoncé]

- (a) Supposons $\lambda_0 f_0 + \dots + \lambda_n f_n = 0$. On a $\forall x \in \mathbb{R} : \lambda_0 + \lambda_1 x + \dots + \lambda_n x^n = 0$. Si $\lambda_n \neq 0$ alors $\lambda_0 + \lambda_1 x + \dots + \lambda_n x^n \xrightarrow[x \to +\infty]{} \pm \infty$ c'est absurde. Nécessairement $\lambda_n = 0$ puis de même $\lambda_{n-1} = \dots = \lambda_0 = 0$. Finalement (f_0, \dots, f_n) est libre.
- (b) Par suite $n+1 < \dim E$ pour tout $n \in \mathbb{N}$, donc $\dim E = +\infty$

Exercice 4: [énoncé]

Supposons $\lambda_1 \vec{e_1} + \lambda_2 \vec{e_2} + \lambda_3 \vec{e_3} = \vec{0}$.

On a

$$\begin{cases} \lambda_1 + \lambda_2 = 0\\ \lambda_1 + \lambda_2 + \lambda_3 = 0\\ \lambda_1 + \lambda_3 = 0 \end{cases}$$

qui donne $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

La famille \mathcal{B} est une famille libre formée de $3 = \dim \mathbb{R}^3$ vecteurs de \mathbb{R}^3 , c'est donc une base de \mathbb{R}^3 .

Exercice 5 : [énoncé]

Supposons $\lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2 + \lambda_3 \varepsilon_3 = 0_E$. On a

$$(\lambda_3 - \lambda_2)e_1 + (\lambda_1 + 2\lambda_3)e_2 + (2\lambda_1 + \lambda_2)e_3 = 0_E$$

Or (e_1, e_2, e_3) est libre donc

$$\begin{cases} \lambda_3 - \lambda_2 = 0\\ \lambda_1 + 2\lambda_3 = 0\\ 2\lambda_1 + \lambda_2 = 0 \end{cases}$$

puis $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

La famille ε est une famille libre formée de $3=\dim E$ vecteurs de E, c'est donc une base de E.

Exercice 6: [énoncé]

Les vecteurs ε_1 et ε_2 ne sont pas colinéaires donc forme une famille libre. Pour $\varepsilon_3 = e_2$ (ou encore par exemple $\varepsilon_3 = e_3$ mais surtout pas $\varepsilon_3 = e_1$), on montre que la famille $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est libre et donc une base de E.

Exercice 7: [énoncé]

(a) Supposons $\lambda_1 \varepsilon_1 + \dots + \lambda_n \varepsilon_n = 0_E$. On a $(\lambda_1 + \dots + \lambda_n)e_1 + \dots + \lambda_n e_n = 0_E$ donc

$$\begin{cases} \lambda_1 + \lambda_2 + \dots + \lambda_n = 0 \\ \lambda_2 + \dots + \lambda_n = 0 \end{cases}$$

$$\vdots$$

$$\lambda_n = 0$$

qui donne $\lambda_1 = \ldots = \lambda_n = 0$.

La famille ε est une famille libre formée de $n=\dim E$ vecteurs de E, c'est donc une base de E.

(b)
$$\lambda_1 \varepsilon_1 + \cdots + \lambda_n \varepsilon_n = \mu_1 e_1 + \cdots + \mu_n e_n$$
 donne

$$\begin{cases} \lambda_1 + \lambda_2 + \dots + \lambda_n = \mu_1 \\ \lambda_2 + \dots + \lambda_n = \mu_2 \\ \vdots \\ \lambda_n = \mu_n \end{cases}$$

puis

$$\begin{cases} \lambda_1 = \mu_1 - \mu_2 \\ \vdots \\ \lambda_{n-1} = \mu_{n-1} - \mu_n \\ \lambda_n = \mu_n \end{cases}$$

Exercice 8: [énoncé]

Par l'absurde, supposons la famille $(e_1, \ldots, e_{n-1}, e'_j)$ liée pour chaque $j \in \{1, \ldots, n\}$.

Puisque la sous-famille (e_1, \ldots, e_{n-1}) est libre, le vecteur e'_j est combinaison linéaire des vecteurs e_1, \ldots, e_{n-1} et donc

$$\forall j \in \{1, ..., n\}, e'_{i} \in \text{Vect}(e_{1}, ..., e_{n-1}).$$

Cela entraîne

$$e_n \in E = \text{Vect}(e'_1, \dots, e'_n) \subset \text{Vect}(e_1, \dots, e_{n-1})$$

ce qui est absurde.

Exercice 9: [énoncé]

On sait

$$\dim F + G = \dim F + \dim G - \dim F \cap G$$

donc

$$\dim F \cap G = \dim F + \dim G - \dim F + G$$

or dim $F + G \le \dim E = n$ donc dim $F \cap G > 0$. Par suite $F \cap G$ possède un vecteur non nul.

Exercice 10: [énoncé]

(u,v,w) forme une famille libre donc une base de F. Ainsi dim F=3. (x,y) forme une famille libre donc une base de G. Ainsi dim G=2. (u,v,w,x) forme une famille libre donc une base de \mathbb{R}^4 . Ainsi F+G=E et dim F+G=4. Enfin

$$\dim F \cap G = \dim F + \dim G - \dim F + G = 1.$$

Exercice 11 : [énoncé]

(a) Puisque $U+V\subset E$, on a $\dim(U+V)\leq n$. La formule des quatre dimensions donne alors

$$\dim U + \dim V - \dim(U \cap V) = \dim(U + V) \le n.$$

L'hypothèse de travail fournit alors $\dim(U \cap V) > 0$.

(b) Introduisons l'espace $W' = U \cap V$. Par la fomule des quatre dimensions

$$\dim W' = \dim U + \dim V - \dim(U + V) \ge \dim U + \dim V - n.$$

On a donc

$$\dim W' + \dim W \ge \dim U + \dim V + \dim W - n > n.$$

L'étude précédent assure alors que l'espace $U \cap V \cap W = W' \cap W$ n'est pas réduit à l'espace nul.

Exercice 12 : [énoncé]

(u, v, w) est une base de \mathbb{R}^3 .

- (a) (u, v) est libre (car les deux vecteurs ne sont pas colinéaires) et (u, v) génératrice de F. C'est donc une base de F. D = Vect(w) avec w = (1, 0, 0) est un supplémentaire de F car la famille
- (b) w = u + v donc F = Vect(u, v). (u, v) est libre (car les deux vecteurs ne sont pas colinéaires) et (u, v) génératrice de F. C'est donc une base de F. D = Vect(t) avec t = (1, 0, 0) est un supplémentaire de F car la famille (u, v, t) est une base de \mathbb{R}^3 .
- (c) $F = \{(2y 3z, y, z) \mid y, z \in \mathbb{R}\}$ = Vect(u, v) avec u = (2, 1, 0) et v = (-3, 0, 1). (u, v) est libre (car les deux vecteurs ne sont pas colinéaires) et (u, v) génératrice de F. C'est donc une base de F. D = Vect(w) avec w = (1, 0, 0) est un supplémentaire de F car la famille (u, v, w) est une base de \mathbb{R}^3 .

Exercice 13: [énoncé]

(a) Si H = H' alors n'importe quel supplémentaire de H est convenable et il en existe.

Sinon, on a $H \not\subset H'$ et $H' \not\subset H$ donc il existe $x \in H$ et $x' \in H'$ tels que $x \notin H'$ et $x' \notin H$.

On a alors $x + x' \notin H \cup H'$ et par suite Vect(x + x') est supplémentaire commun à H et H'.

(b) Raisonnons par récurrence décroissante sur

 $n = \dim F = \dim G \in \{0 \mid 1, \dots, \dim E\}.$

Si $n = \dim E$ et $n = \dim E - 1$: ok

Supposons la propriété établie au rang $n + 1 \in \{1, ..., \dim E\}$.

Soient F et G deux sous-espaces vectoriels de dimension n.

Si F = G alors n'importe quel supplémentaire de F est convenable.

Sinon, on a $F \not\subset G$ et $G \not\subset F$ donc il existe $x \in F$ et $x' \in G$ tels que $x \notin G$ et $x' \notin F$.

On a alors $x + x' \notin F \cup G$.

Posons $F' = F \oplus \operatorname{Vect}(x + x')$ et $G' = G \oplus \operatorname{Vect}(x + x')$.

Comme dim $F' = \dim G' = n + 1$, par hypothèse de récurrence, F' et G' possède un supplémentaire commun H et par suite $H \oplus \operatorname{Vect}(x + x')$ est supplémentaire commun à F et G.

Récurrence établie.

Exercice 14: [énoncé]

(a) Par récurrence sur $p = \dim E - \dim F_1$.

Si dim E – dim $F_1 = 0$ alors $G = \{0_E\}$ convient.

Supposons la propriété établie au rang $p \geq 0$.

Soient F_1 et F_2 de même dimension tels que dim $E - \dim F_1 = p + 1$.

Si $F_1 = F_2$ l'existence d'un supplémentaire à tout sous-espace vectoriel en dimension finie permet de conclure.

Sinon, on a $F_1 \not\subset F_2$ et $F_2 \not\subset F_1$ ce qui assure l'existence de $x_1 \in F_1 \setminus F_2$ et de $x_2 \in F_2 \setminus F_1$.

Le vecteur $x = x_1 + x_2$ n'appartient ni à F_1 , ni à F_2 . On pose alors $F_1' = F_1 \oplus \operatorname{Vect}(x)$ et $F_2' = F_2 \oplus \operatorname{Vect}(x)$. On peut appliquer l'hypothèse de récurrence à F_1' et F_2' : on obtient l'existence d'un supplémentaire commun G' à F_1' et F_2' . $G = G' \oplus \operatorname{Vect}(x)$ est alors supplémentaire commun à F_1 et F_2 . Récurrence établie.

(b) Soit F'_1 un sous-espace vectoriel contenant F_1 et de même dimension que F_2 . F'_1 et F_2 possèdent un supplémentaire commun G. Considérons H un supplémentaire de F_1 dans F'_1 . En posant $G_1 = H \oplus G$ et $G_2 = G$ on conclut.

Exercice 15 : [énoncé]

(a) Soit $x \in F_a \cap G$, on peut écrire

$$x = \sum_{i=1}^{p} \lambda_i (e_i + a).$$

Mais alors

$$\sum_{i=1}^{p} \lambda_i e_i = x - \sum_{i=1}^{p} \lambda_i \cdot a \in F \cap G = \{0_E\}$$

donc $\lambda_1 = \ldots = \lambda_p = 0$ puis $x = 0_E$.

Soit $x \in E$, on peut écrire x = u + v avec $u = \sum_{i=1}^{p} \lambda_i . e_i \in F$ et $v \in G$. On a alors

$$x = \sum_{i=1}^{p} \lambda_i (e_i + a) + \left(v - \sum_{i=1}^{p} \lambda_i a \right) \in F_a + G.$$

Ainsi $F_a \oplus G = E$.

(b) Par contraposée : Si $F_a = F_b$ alors on peut écrire

$$e_1 + a = \sum_{i=1}^{p} \lambda_i (e_i + b).$$

On a alors

$$\sum_{i=1}^{p} \lambda_i e_i - e_1 = \sum_{i=1}^{p} \lambda_i b - a \in F \cap G$$

donc $\lambda_1 = 1$ et $\forall 2 \leq i \leq p, \lambda_i = 0$.

La relation initiale donne alors $e_1 + a = e_1 + b$ puis a = b.

Exercice 16: [énoncé]

- (a) (x_1, x_2, x_3) est libre donc $rg(x_1, x_2, x_3) = 3$.
- (b) Comme $x_3 = x_1 + x_2$ et $x_4 = x_1 x_2$, on a $Vect(x_1, x_2, x_3, x_4) = Vect(x_1, x_2)$. Comme (x_1, x_2) est libre, on a $rg(x_1, x_2, x_3, x_4) = rg(x_1, x_2) = 2$.

Exercice 17: [énoncé]

On a

$$f_1(x) = \frac{1+x}{\sqrt{1-x^2}} = f_3(x) + f_4(x), f_2(x) = \frac{1-x}{\sqrt{1-x^2}} = f_3(x) - f_4(x)$$

donc

$$rg(f_1, f_2, f_3, f_4) = rg(f_3, f_4) = 2$$

car (f_3, f_4) est libre.

Exercice 18: [énoncé]

 $u, v \in H$ car ces vecteurs vérifient l'équation définissant H. (u, v) est libre et dim H = 2 car H est un hyperplan de \mathbb{R}^3 . On secoue, hop, hop, le résultat tombe.

Exercice 19: [énoncé]

 $H_1 + H_2$ est un sous-espace vectoriel de E qui contient H_1 donc dim $H_1 + H_2 = n - 1$ ou n.

Si dim $H_1+H_2=n-1$ alors par inclusion et égalité des dimensions : $H_2=H_1+H_2=H_1$.

C'est exclu, il reste dim $H_1 + H_2 = n$ et alors dim $H_1 \cap H_2 = \dim H_1 + \dim H_2 - \dim H_1 + H_2 = n - 2$.

Exercice 20 : [énoncé]

On a $F \subset F + H \subset E$ et $F \not\subset H$ donc F + H = E d'où dim $F \cap H = \dim F - 1$ via le théorème des quatre dimensions.

Exercice 21 : [énoncé]

D+H est un sous-espace vectoriel de E contenant H donc $\dim D+H=n-1$ ou n.

Si dim D+H=n-1 alors par inclusion et égalité des dimensions D+H=H or $D\subset D+H$ et $D\not\subset H$, ceci est donc exclu. Il reste dim D+H=n d'où D+H=E.

Puisque D+H=E et $\dim D+\dim H=\dim E,\ D$ et H sont supplémentaires dans E.

Exercice 22 : [énoncé]

Si $D \subset H$ alors H et D ne sont pas supplémentaires car

$$H \cap D = D \neq \{0_E\}.$$

Supposons $D \not\subset H$.

Soit $x \in D \cap H$. Si $x \neq 0_E$ alors $D = \operatorname{Vect}(x) \subset H$ ce qui est exclu. Nécessairement $D \cap H = \{0_E\}$. De plus $\dim H + \dim D = \dim E$ donc

$$H \oplus D = E$$
.

Exercice 23: [énoncé]

Posons $n = \dim E$ et $p = \dim F$.

Soit $\mathcal{B} = (e_1, \dots, e_p)$ une base de F que l'on complète en (e_1, \dots, e_n) base de E. Posons

$$H_i = \operatorname{Vect}(e_1, \dots, \hat{e}_i, \dots, e_n).$$

Par double inclusion, on montre

$$F = \bigcap_{i=p+1}^{n} H_i.$$

On ne peut construire une intersection avoir moins d'hyperplans car on peut montrer par récurrence que l'intersection de q hyperplans est de dimension supérieure à n-q.

Ainsi, le nombre minimum d'hyperplans intersecté pour écrire F est de n-p.