Imperial College London

Converging magnetic systems in CP2K: from bulk Ni to a Ni slab in vacuum

Christian Ahart

Motivation

- Magnetic systems are common in nature (Fe, Ni, Co etc.)
- Magnetic systems are typically more challenging and expensive to study

Bulk Ni

From electronic configuration [Ar] 3d8 4s2 Ni should be ferromagnetic

FCC unit cell

2x2x2 supercell

Bulk Ni

From electronic configuration [Ar] 3d⁸ 4s² Ni should be ferromagnetic

Consider a 2x2x2 supercell of Ni with 32 atoms and 576 electrons (32*18=576):

```
&FORCE_EVAL
        METHOD Quickstep
        STRESS_TENSOR ANALYTICAL
        &DFT
                BASIS_SET_FILE_NAME BASIS_MOLOPT
                POTENTIAL_FILE_NAME GTH_POTENTIALS
                CHARGE 0
                MULTIPLICITY 1
                UKS .TRUE.
                &QS
                        EPS_DEFAULT 1.0E-12
                        EXTRAPOLATION ASPC
            &END QS
                &MGRID
                        NGRIDS 5
                        CUTOFF 600.0
                        REL_CUTOFF 60.0
                &END MGRID
                &SCF
                        SCF GUESS ATOMIC
                        EPS_SCF 1.0E-8
                        MAX_SCF 500
                        ADDED_MOS 1000
                        &DIAGONALIZATION
                                ALGORITHM STANDARD
                        &END DIAGONALIZATION
                        &MIXING
                                METHOD BROYDEN_MIXING
                                ALPHA 0.1
                                NBUFFER 10
                        &END MIXING
                        &SMEAR
                                ELECTRONIC_TEMPERATURE [K] 500.0
                                METHOD FERMI DIRAC
                        &END SMEAR
                &END SCF
```

```
&XC
                &XC_FUNCTIONAL PBE
                &END XC_FUNCTIONAL
        &END XC
        &PRINT
          &E_DENSITY_CUBE ON
          &END E_DENSITY_CUBE
          &HIRSHFELD
             SHAPE_FUNCTION DENSITY
          &END HIRSHFELD
        &END PRINT
    &END DFT
&SUBSYS
        &CELL
                ABC 3.50579800 3.50579800 3.50579800
                ALPHA_BETA_GAMMA 90.000 90.000 90.000
               MULTIPLE_UNIT_CELL 2 2 2
        &END CELL
        &TOPOLOGY
                COORD_FILE_FORMAT XYZ
                COORD_FILE_NAME ${INPUT_COORD_FILE_NAME}
               MULTIPLE_UNIT_CELL 2 2 2
        &END TOPOLOGY
        &KIND Ni
                ELEMENT Ni
                BASIS_SET DZVP-MOLOPT-SR-GTH
                POTENTIAL GTH-PBE
        &END KIND
&END SUBSYS
```

&END FORCE_EVAL

FCC unit cell

2x2x2 supercell

From electronic configuration [Ar] 3d⁸ 4s² Ni should be ferromagnetic

Consider a 2x2x2 supercell of Ni with 32 atoms and 576 electrons (32*18=576):

```
Electronic structure
   Total number of core electrons
                                                                          10.00
   Total number of valence electrons
                                                                          18.00
   Total number of electrons
                                                                          28.00
  Multiplicity
                                                                  not specified
         2.00 2.00] 2.00 2.00
         6.001 6.00
          8.00
   D
 Spin 1
 Re-scaling the density matrix to get the right number of electrons for spin 1
                  # Electrons
                                            Trace(P)
                                                                   Scaling factor
                           288
                                             288.033
                                                                            1.000
 Spin 2
 Re-scaling the density matrix to get the right number of electrons for spin 2
                  # Electrons
                                            Trace(P)
                                                                   Scaling factor
                          288
                                             288.033
                                                                            1.000
```

*** SCF run converged in

25 steps ***

Spin 1 Re-scal	ling the density matri	ix to ae	t the right numb	er of electrons for	spin 1				1	Hirshfeld	d Charges			
	# Electrons		Trace(P)		ing factor	#44	5 1 +	144 - 4	D - f	Ch	D1	- 4	C-1	
	288		288.033		1.000	#Atom	Element	Kind	кет	Charge	Popul		Spin moment	_
						1	Ni	1		18.000	9.000	9.000	-0.000	-0.000
Spin 2						2	Ni	1		18.000	9.000	9.000	-0.000	-0.000
	ling the density matri	ix to ae	t the right numb	er of electrons for	spin 2	3	Ni	1		18.000	9.000	9.000	0.000	-0.000
	# Electrons		Trace(P)		ng factor	4	Ni	1		18.000	9.000	9.000	-0.000	-0.000
	288		288.033		1.000	5	Ni	1		18.000	9.000	9.000	-0.000	0.000
						6	Ni	1		18.000	9.000	9.000	-0.000	-0.000
						7	Ni	1		18.000	9.000	9.000	-0.000	0.000
SCF WAV	/EFUNCTION OPTIMIZATIO	ON				8	Ni	1		18.000	9.000	9.000	-0.000	0.000
						9	Ni	1		18.000	9.000	9.000	-0.000	0.000
Step	Update method	Time	Convergence	Total energy	Change	10	Ni	1		18.000	9.000	9.000	-0.000	-0.000
						11	Ni	1		18.000	9.000	9.000	0.000	-0.000
1 N	NoMix/Diag. 0.10E+00	0.4	0.80171411	-5429.7560153866	-5.43E+03	12	Ni	1		18.000	9.000	9.000	0.000	-0.000
	Broy./Diag. 0.10E+00	0.6	0.02588730	-5335.8096605085	9.39E+01	13	Ni	1		18.000	9.000	9.000	-0.000	-0.000
3 E	Broy./Diag. 0.10E+00	0.6	0.04784139	-5376.5137410802	-4.07E+01	14	Ni	1		18.000	9.000	9.000	-0.000	-0.000
4 E	Broy./Diag. 0.10E+00	0.6	0.00924909	-5457.1568627918	-8.06E+01	15	Ni	1		18.000	9.000	9.000	0.000	-0.000
5 E	Broy./Diag. 0.10E+00	0.6	0.02124621	-5458.3145504847	-1.16E+00	16	Ni	1		18.000	9.000	9.000	-0.000	0.000
6 E	Broy./Diag. 0.10E+00	0.6	0.01756844	-5434.4301411166	2.39E+01	17	Ni	1		18.000	9.000	9.000	-0.000	0.000
7 E	Broy./Diag. 0.10E+00	0.6	0.00206891	-5415.3312463523	1.91E+01	18	Ni	1		18.000	9.000	9.000	-0.000	0.000
8 E	Broy./Diag. 0.10E+00	0.6	0.00044585	-5418.7667399029	-3.44E+00	19	Ni	1		18.000	9.000	9.000	0.000	-0.000
9 E	Broy./Diag. 0.10E+00	0.6	0.00013968	-5418.0821093648	6.85E-01	20	Ni	1		18.000	9.000	9.000	0.000	-0.000
10 E	3roy./Diag. 0.10E+00	0.7	0.00006977	-5418.2285997701	-1.46E-01									
11 E	Broy./Diag. 0.10E+00	0.7	0.00003185	-5418.2033048944	2.53E-02	21	Ni	1		18.000	9.000	9.000	-0.000	0.000
12 E	3roy./Diag. 0.10E+00	0.6	0.00000965	-5418.2400190922	-3.67E-02	22	Ni	1		18.000	9.000	9.000	-0.000	-0.000
13 E	3roy./Diag. 0.10E+00	0.7	0.00002667	-5418.2281566399	1.19E-02	23	Ni	1		18.000	9.000	9.000	0.000	0.000
14 E	Broy./Diag. 0.10E+00	0.7	0.00002834	-5418.2101435214	1.80E-02	24	Ni	1		18.000	9.000	9.000	-0.000	-0.000
15 E	Broy./Diag. 0.10E+00	0.6	0.00000462	-5418.1881007901	2.20E-02	25	Ni	1		18.000	9.000	9.000	0.000	0.000
16 E	Broy./Diag. 0.10E+00	0.6	0.00000071	-5418.1824488938	5.65E-03	26	Ni	1		18.000	9.000	9.000	-0.000	0.000
	Broy./Diag. 0.10E+00	0.7	0.00000122	-5418.1824658980	-1.70E-05	27	Ni	1		18.000	9.000	9.000	0.000	0.000
18 E	Broy./Diag. 0.10E+00	0.6	0.00000135	-5418.1824690107	-3.11E-06	28	Ni	1		18.000	9.000	9.000	0.000	0.000
	Broy./Diag. 0.10E+00	0.6	0.00000113	-5418.1824976251	-2.86E-05	29	Ni	1		18.000	9.000	9.000	-0.000	-0.000
20 E	Broy./Diag. 0.10E+00	0.6	0.00000014	-5418.1824933141	4.31E-06	30	Ni	1		18.000	9.000	9.000	-0.000	0.000
	Broy./Diag. 0.10E+00	0.6	0.00000008	-5418.1824664816	2.68E-05	31	Ni	1		18.000	9.000	9.000	0.000	-0.000
	Broy./Diag. 0.10E+00	0.6	0.00000009	-5418.1824768989		32	Ni	1		18.000	9.000	9.000	-0.000	-0.000
	Broy./Diag. 0.10E+00	0.6	0.00000005	-5418.1824777986										
	Broy./Diag. 0.10E+00	0.6	0.00000002	-5418.1824779812										
25 E	Broy./Diag. 0.10E+00	0.6	3.7035E-09	-5418.1824782140	-2.33E-07									

From electronic configuration [Ar] 3d⁸ 4s² Ni should be ferromagnetic

2 unpaired electrons per atom -> total multiplicity 2S+1: 2*2*1/2*32+1=65

```
Electronic structure
  Total number of core electrons
                                                                           10.00
  Total number of valence electrons
                                                                           18.00
  Total number of electrons
                                                                           28.00
  Multiplicity
                                                                   not specified
         2.00 2.00] 2.00 2.00
      [ 6.00] 6.00
         8.00
  Spin 1
  Re-scaling the density matrix to get the right number of electrons for spin 1
                   # Electrons
                                             Trace(P)
                                                                    Scaling factor
                            320
                                              288.033
                                                                              1.111
  Spin 2
  Re-scaling the density matrix to get the right number of electrons for spin 2
                   # Electrons
                                             Trace(P)
                                                                    Scaling factor
                            256
                                              288.033
                                                                              0.889
```

Spin 1														
Re-scal:	ing the density matr	ix to ge	et the right numbe	r of electrons for	spin 1									
	# Electron		Trace(P)	Scalin	ng factor									
	32	0	288.033		1.111									
Spin 2						#Atom	Element	Kind	Ref Charge	Popula	ation	Cnin	mamant N	et charge
Re-scal:	ing the density matr											Spin		
	# Electron		Trace(P)	Scalin	ng factor	1	Ni	1	18.000	9.344	8.656		0.687	0.000
	25	6	288.033		0.889	2	Ni	1	18.000	9.344	8.656		0.687	0.000
						3	Ni	1	18.000	9.344	8.656		0.687	-0.000
SCE WAVE	EFUNCTION OPTIMIZATION	ON				4	Ni	1	18.000	9.344	8.656		0.687	0.000
001 117.11	TONOTION OF TENEENTE	0.11				5	Ni	1	18.000	9.344	8.656		0.687	0.000
Step	Update method	Time	Convergence	Total energy	Change	6	Ni	1	18.000	9.344	8.656		0.687	0.000
						7	Ni	1	18.000	9.344	8.656		0.687	-0.000
	Mix/Diag. 0.10E+00	0.4	0.90450672	-5430.9290286363 -										
	roy./Diag. 0.10E+00	0.6	0.01963244	-5360.9174089422		8	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00 roy./Diag. 0.10E+00	0.6 0.6	0.03786641 0.01643672	-5391.3474411346 - -5405.2813195731 -		9	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.01057503	-5388.1651812634		10	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.02784068	-5399.2606535744 -		11	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00097126	-5420.3160555134 -	-2.11E+01	12	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00691562	-5420.5626988254 -		13	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00073849	-5420.3611606832										
	roy./Diag. 0.10E+00	0.6	0.00082272	-5419.8704837172		14	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00 roy./Diag. 0.10E+00	0.6 0.6	0.00103204 0.00015473	-5419.1493765569 -5418.4205397216		15	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00015475	-5418.2998409068		16	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00000517	-5418.2842484945		17	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00004969	-5418.2863691706 -		18	Ni	1	18.000	9.344	8.656		0.687	0.000
16 B:	roy./Diag. 0.10E+00	0.6	0.00023052	-5418.2951055282 -	-8.74E-03	19	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00078318	-5418.3069846198 -										
	roy./Diag. 0.10E+00	0.6	0.00002694	-5418.3257565653 -		20	Ni	1	18.000	9.344	8.656		0.687	0.000
	roy./Diag. 0.10E+00	0.6 0.6	0.00007294	-5418.3160793514		21	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00 roy./Diag. 0.10E+00	0.6	0.00000274 0.00001096	-5418.3208987916 - -5418.3174419640		22	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00001075	-5418.3093980076		23	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00000298	-5418.3033214071		24	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00000164	-5418.3010164987		25	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.7	0.00000062	-5418.2998759471										
	roy./Diag. 0.10E+00	0.7	0.00000054	-5418.2993002624		26	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00000031	-5418.2989713234		27	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00 roy./Diag. 0.10E+00	0.6 0.6	0.00000007 0.00000004	-5418.2987449650 -5418.2988038120 -		28	Ni	1	18.000	9.344	8.656		0.687	0.000
	roy./Diag. 0.10E+00	0.7	0.00000004	-5418.2988106371 -		29	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.7	0.00000004	-5418.2988164482 -		30	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.8	0.00000010	-5418.2988162648		31	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00000003	-5418.2988136581										
	roy./Diag. 0.10E+00	0.6	0.00000002	-5418.2988129024		32	Ni	1	18.000	9.344	8.656		0.687	-0.000
	roy./Diag. 0.10E+00	0.6	0.00000002	-5418.2988128930										

5.3291E-09

-5418.2988130264 -1.33E-07

36 Broy./Diag. 0.10E+00

Bulk Ni summary

- Energy for bulk Ni is 3 eV lower with a ferromagnetic solution
- Correct choice of multiplicity is essential to converge magnetic solution

Multiplicity	Energy / Ha	SCF steps	Spin moment
1	-5418.1825	25	0.00
65	-5418.2988	36	0.69

2x2x2 Ni supercell

&BS section defines the atomic orbital occupation assigned in initialization of the density matrix

N: Principal quantum number

L: Angular momentum quantum number

NEL: Orbital occupation number

```
&KIND Ni
ELEMENT Ni
BASIS_SET DZVP-MOLOPT-SR-GTH
POTENTIAL GTH-PBE

&BS
&ALPHA
N 4 3
L 0 2
NEL 0 2
&END
&BETA
N 4 3
L 0 2
NEL 0 2
NEL 0 -2
&END
&END
&END
&END
```

```
Electronic structure
  Total number of core electrons
                                                                           10.00
  Total number of valence electrons
                                                                           18.00
  Total number of electrons
                                                                           28.00
  Multiplicity
                                                                   not specified
          2.00 2.00] 2.00
                            2.00
         6.001 6.00
          8.00
Electronic structure
   Total number of core electrons
                                                                         10.00
   Total number of valence electrons
                                                                         18.00
   Total number of electrons
                                                                         28.00
   Multiplicity
                                                                       triplet
   Alpha Electrons
                                                                    2*2*0.5+1=3
       [ 1.00 1.00] 1.00 1.00
       [ 3.00] 3.00
          5.00
   Beta Electrons
          1.00 1.00 1.00 1.00
         3.00] 3.00
          3.00
```

Alternative to &BS section is MAGNETIZATION keyword

```
&KIND Ni
        ELEMENT Ni
                                               Electronic structure
         BASIS_SET DZVP-MOLOPT-SR-GTH
                                                 Total number of core electrons
                                                                                                                       10.00
         POTENTIAL GTH-PBE
                                                 Total number of valence electrons
                                                                                                                       18.00
        &BS
                                                 Total number of electrons
                                                                                                                       28.00
                                                 Multiplicity
         &ALPHA
                                                                                                               not specified
                                                        2.00 2.00] 2.00 2.00
                   3
                                                        6.001 6.00
                                                        8.00
            NEL 0
         &END
          &BETA
            NEL 0 -2
          &END
                                               Electronic structure
                                                  Total number of core electrons
                                                                                                                     10.00
 &END
                                                  Total number of valence electrons
                                                                                                                     18.00
&END KIND
                                                  Total number of electrons
                                                                                                                     28.00
                                                  Multiplicity
                                                                                                                   triplet
                                                  Alpha Electrons
&KIND Ni
                                                      [ 1.00 1.00] 1.00 1.00
         ELEMENT Ni
                                                      [ 3.00] 3.00
         BASIS_SET DZVP-MOLOPT-SR-GTH
                                                         5.00
         POTENTIAL GTH-PBE
                                                  Beta Electrons
         MAGNETIZATION 2.0
                                                       1.00 1.001 1.00 1.00
&END KIND
                                                      [ 3.00] 3.00
                                                         3.00
```

Alternative to &BS section is MAGNETIZATION keyword

Bulk Ni summary

- Energy for bulk Ni is 3 eV lower with a ferromagnetic solution
- Multiplicity can be optimised with knowledge of calculated spin moment (starting guess s=0.5 is faster than s=1)

Multiplicity	Energy / Ha	SCF steps	Spin moment
1	-5418.1825	25	0.00
65 (MAGNETIZATION 2)	-5418.2988	46	0.69
33 (MAGNETIZATION 1)	-5418.2988	23	0.69

2x2x2 Ni supercell

Ni slab in vacuum

- Energy for Ni slab in vacuum is 2 eV lower with a ferromagnetic solution
- SCF convergence is very slow (SCF steps shown for EPS_SCF: 1e-5, 1e-7)

Multiplicity	Energy / Ha	SCF steps	Spin moment
1	-5417.5516	45, 73	0.00
65 (MAGNETIZATION 2)	-5414.6756	285, 374	0.68 bulk 0.74 interfacial
33 (MAGNETIZATION 1)	-5417.6242	564, 616	0.68 bulk 0.75 interfacial

2x2x2 Ni slab in vacuum

- 1. Define MAGNETIZATION for each unique atomic environment
- 2. Choose non-integer magnetizations which sum to integer multiplicity (16*0.7+16*0.8)+1=25

```
&KIND Ni_b
ELEMENT Ni
BASIS_SET DZVP-MOLOPT-SR-GTH
POTENTIAL GTH-PADE-q18
MAGNETIZATION 0.7
&END KIND
```

&KIND Ni_i

ELEMENT Ni

BASIS_SET DZVP-MOLOPT-SR-GTH

POTENTIAL GTH-PADE-q18

MAGNETIZATION 0.8

&END KIND

Multiplicity	Energy / Ha	SCF steps	Spin moment
1	-5417.5516	45, 73	0.00
65 (MAGNETIZATION 2)	-5414.6756	285, 374	0.68 bulk 0.74 interfacial
25 (MAGNETIZATION 0.7, 0.8)	-5414.6756	57, 139	0.68 bulk 0.74 interfacial

General workflow

- 1. Converge bulk crystal with multiplicity according to Hund's rule
- 2. Converge interface with multiplicity according to Hund's rule
- 3. Define MAGNETIZATION for each unique atomic environment
- 4. Optimise MAGNETIZATION (float) consistently with MULTIPLICITY (integer)

Multiplicity	Energy / Ha	SCF steps	Spin moment
1	-5417.5516	45, 73	0.00
65 (MAGNETIZATION 2)	-5414.6756	285, 374	0.68 bulk 0.74 interfacial
25 (MAGNETIZATION 0.7, 0.8)	-5414.6756	57, 139	0.68 bulk 0.74 interfacial

Thank you for listening

Supporting Information

Bulk Ni

Defining MAGNETIZATION increases number of SCF steps for bulk Ni

```
Multiplicity 65, MAX SCF 1
1 NoMix/Diag. 0.10E+00
                       0.5 0.90450672
                                          -5430.9290286363 -5.43E+03
       Νi
                    18.000 9.482 8.518
             1
                                                   0.964
                                                            -0.000
Multiplicity 65, MAX SCF 1, MAGNETIZATION 2
1 NoMix/Diag. 0.10E+00
                       0.4
                              0.80945817
                                           -5430.9700952423 -5.43E+03
       Νi
             1
                   18.000 9.479 8.521
                                                   0.957
                                                            -0.000
Multiplicity 65, MAX SCF 1
1 NoMix/Diag. 0.10E+00
                       0.4 0.87189090
                                           -5430.0490174185 -5.43E+03
       Νi
                   18.000 9.227 8.773
                                                   0.453
             1
                                                            -0.000
1
Multiplicity 65, MAX SCF 1, MAGNETIZATION 1
1 NoMix/Diag. 0.10E+00
                       0.4
                                          -5430.0597589981 -5.43E+03
                              0.82500894
       Νi
                    18.000 9.223 8.777
1
             1
                                                   0.446
                                                            -0.000
```

Bulk Ni

- Energy for bulk Ni is 3 eV lower with a ferromagnetic solution
- Correct choice of multiplicity is essential to converge magnetic solution
- &BS section or MAGNETIZATION lowers energy of first SCF step, however leads to slower convergence

Multiplicity	Energy / Ha	SCF steps	Spin moment
1	-5418.1825	25	0.00
65	-5418.2988	36	0.69
65 (MAGNETIZATION 2)	-5418.2988	46	0.69
33	-5418.2988	19	0.69
33 (MAGNETIZATION 1)	-5418.2988	23	0.69

My background

- PhD research involved converging antiferromagnetic iron oxides
- No previous experience with Ni or pure metals

Lepidocrocite

• Multiple magnetic solutions may exist for the same multiplicity, these must be checked manually

 $uudd \ \text{-}5623.8244 \ \text{Ha} \\ \text{Spin moment } 4.37 \ \mu_{\text{B}}$

udud -5623.8403 Ha Spin moment 4.29 μ_{B}

uddu~-5623.8383~Ha Spin moment 4.29 μ_{B}