

XEM6010 User's Manual

A compact (75mm x 50mm) integration board featuring the Xilinx Spartan-6 FPGA, High-Speed USB 2.0, and on-board DDR2 memory.

The XEM6010 is a compact USB 2.0 FPGA integration module featuring the Xilinx Spartan-6 FPGA, 1 Gb (64 Mx16-bit) DDR2 SDRAM, high-efficiency switching power supplies, and two high-density 0.8-mm expansion connectors. The high-speed USB 2.0 interface provides fast configuration downloads and PC-FPGA communication as well as easy access with our popular FrontPanel application and SDK. A flexible, multiple-output PLL is also provided on-board..

Software, documentation, samples, and related materials are

Copyright © 2010-2015 Opal Kelly Incorporated.

Opal Kelly Incorporated Portland, Oregon http://www.opalkelly.com

All rights reserved. Unauthorized duplication, in whole or part, of this document by any means except for brief excerpts in published reviews is prohibited without the express written permission of Opal Kelly Incorporated.

Opal Kelly, the Opal Kelly Logo, and FrontPanel are trademarks of Opal Kelly Incorporated.

Linux is a registered trademark of Linus Torvalds. Microsoft and Windows are both registered trademarks of Microsoft Corporation. All other trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

Revision History:

Date	Description
20110301	Initial release.
20110317	Minor updates.
20110406	Added note and reference regarding LVDS output restriction for Spartan-6.
20110818	Fix minor typo in pinout table. L59N_1 changed to L49N_1
20110926	Added sections on MUXSEL and I2C_SCL / I2C_SDA treatment.
20120216	Added another table to the BRK6110 connections section.
20121128	Added key storage information for newer PCB revision.
20140402	Added remarks about Pins reference.
20141202	Fix JP3-7 reference in the XEM3050 Migration information.
20150303	Added additional Pins information.

Contents

Introducing the XEM6010 5	
PCB Footprint	
BRK6110 Breakout Board5	
Functional Block Diagram6	
FPGA6	
Power Supply	
DC Power Connector	
High-Speed USB 2.0 Interface	
On-board Peripherals	
Cypress CY22393 PLL7	
128-MByte Word-Wide DDR2 Synchronous DRAM 7	
Serial Flash Memory	
LEDs7	
Expansion Connectors	
FrontPanel Support8	
Programmer's Interface	
Flogrammer's interface	
Applying the XEM6010	
Powering the XEM6010	
Power Budget	
Example XEM6010-LX150 FPGA Power Consumption 10	
Supply Heat Dissipation (IMPORTANT!!)10	
Host Interface	
MUXSEL11	
I ² C Connections	
SPI Flash	
FlashLoader Sample	
LEDs12	
DDR2 SDRAM	
Clock Configuration (Source Synchronous)	
Memory Controller Blocks	
MIG Settings	
JTAG14	
Key Memory Storage (LX150 only, PCB revision 20120510 and newer)	14
Volatile Encryption Key Storage (VBATT)14	
Non-Volatile Encryption Key Storage (eFUSE) 15	
Expansion Connectors	
JP216	
JP316	
Setting I/O Voltages	
Considerations for Differential Signals16	
BRK6110 Breakout Board	
Pins	
Toolbar	
Pin Lists	
Filters	
Coord	

Export (PDF, CSV, Constraints Files)	18
Peripherals	19
Migrating from the XEM3010 to the XEM6010	20
Four I/O Banks → Two I/O Banks	
32 MiB SDR SDRAM $ ightarrow$ 128 MiB DDR2 SDRAM	20
Two Pushbuttons → No Pushbuttons	20
Expansion Connector Differences	20
JTAG Connectivity	20
Migrating from the XEM3050 to the XEM6010	
Four I/O Banks → Two I/O Banks	21
64 MiB SDR SDRAM $ ightarrow$ 128 MiB DDR2 SDRAM	
Synchronous SRAM Removed	21
Expansion Connector Differences	
JTAG Connectivity	21
KEM6010 Mechanical Drawing	. 22
BRK6110 Mechanical Drawing	. 23
KEM6010 Quick Reference	. 24
KEM6010 Quick Reference	. 25

Introducing the XEM6010

The XEM6010 is a compact FPGA board featuring the Xilinx Spartan-6 FPGA and high-speed USB 2.0 connectivity. Designed as a full-featured integration system, the XEM6010 provides access to over 110 I/O pins on its 484-pin Spartan-6 device and has a 128-MiByte DDR2 SDRAM available to the FPGA. The XEM6010 is designed for medium-sized FPGA designs with a wide variety of external interface requirements.

PCB Footprint

A mechanical drawing of the XEM6010 is shown at the end of this manual. The PCB is 75mm x 50mm with four mounting holes (M2 metric screws) spaced as shown in the figure. These mounting holes are electrically isolated from all signals on the XEM6010. The two connectors (USB and DC power) overhang the PCB by approximately 4mm in order to accommodate mounting within an enclosure.

The XEM6010 has two high-density 80-pin connectors on the bottom side which provide access to many FPGA pins, power, and JTAG.

BRK6110 Breakout Board

A simple breakout board (the BRK6110) is provided as an optional accessory to the XEM6010. This breakout board provides DC power and easy access to the high-density connectors on the XEM6010 by routing them to lower-density 2mm-spaced thru-holes. The breakout board also provides a convenient reference for building boards that will mate to the XEM6010.

Opal Kelly reserves the right to change the form-factor and possibly pinout of the BRK6110. Therefore, unlike the XEM6010, it is not intended or recommended for production integration.

Full schematics and Gerber artwork files for the BRK6110 are provided free of charge. If your application depends on the existing form-factor, you may reproduce this board from these documents.

A mechanical drawing of the BRK6110 is also shown at the end of this document.

Functional Block Diagram

FPGA

The XEM6010 is offered in two variants. These two variants are identical except for the FPGA provided. The table below lists some of the differences between the two devices. Please consult the Xilinx documentation for a more thorough comparison.

Feature	XEM6010-LX45	XEM6010-LX150
FPGA	XC6SLX45-2FGG484C	XC6SLX150-2FGG484C
Slice Count	6,822	23,038
D Flip-Flops	54,576	184,304
Distributed RAM	401 Kib	1,355 Kib
Block RAM	2,088 Kib	4,824 Kib
DSP Slices	58	180
Clock Management Tiles	4	6

Power Supply

The XEM6010 is designed to be operated from a 5-volt power source supplied through the DC power jack on the device or the expansion connectors on the bottom of the device. This provides power for the three high-efficiency switching regulators on-board to provide 3.3v, 1.8v and 1.2v. 0.9v is derived from the 3.3-volt supply using a small low-dropout (LDO) regulator for use as a DDR2 termination voltage. Each of the three switching regulators can provide up to 2A of current.

DC Power Connector

The DC power connector on the XEM6010 is part number PJ-102AH from CUI, Inc. It is a standard "canon-style" 2.1mm / 5.5mm jack. The outer ring is connected to DGND. The center pin is connected to +VDC.

High-Speed USB 2.0 Interface

The XEM6010 uses a Cypress CY7C68013A FX2LP USB microcontroller to make the XEM a USB 2.0 peripheral. As a USB peripheral, the XEM is instantly recognized as a plug and play peripheral on millions of PCs. More importantly, FPGA downloads to the XEM happen blazingly fast, virtual instruments under FrontPanel update quickly, and data transfers are much faster than the parallel port interfaces common on many FPGA experimentation boards.

On-board Peripherals

The XEM6010 is designed to compactly support a large number of applications with a small number of on-board peripherals. These peripherals are listed below.

Cypress CY22393 PLL

A multi-output, triple-PLL clock generator can provide up to five clocks, three to the FPGA and another two to the expansion connectors JP2 and JP3. The PLL is driven by a 48-MHz signal output from the USB microcontroller. The PLL can output clocks up to 150-MHz and is configured through the FrontPanel software interface or the FrontPanel API.

128-MByte Word-Wide DDR2 Synchronous DRAM

The XEM also includes a 128-MiByte DDR2 SDRAM with a full 16-bit word-wide interface to the FPGA. This SDRAM is attached exclusively to the FPGA and does not share any pins with the expansion connector. The maximum clock rate of the SDRAM is 333 MHz. With the -2 speed grade of the Spartan-6, the maximum clock rate is 312.5 MHz for a supported peak memory bandwidth of 10 Gb/s.

The DDR2 SDRAM is a Micron MT47H64M16HR-3:G (or compatible).

Serial Flash Memory

A 32 Mib serial flash device (Numonyx M25P32-VME6G or equivalent) provides on-board configuration memory for the FPGA as well as general non-volatile storage for your design.

LEDs

Eight LEDs and are available for general use as debug outputs.

Expansion Connectors

Two high-density, 80-pin expansion connectors are available on the bottom-side of the XEM6010 PCB. These expansion connectors provide user access to several power rails on the XEM6010, the JTAG interface on the FPGA, and 124 non-shared I/O pins on the FPGA, including several GCLK inputs.

The connectors on the XEM6010 are Samtec part number: BSE-040-01-F-D-A. The table below lists the appropriate Samtec mating connectors along with the total mated height.

Samtec Part Number	Mated Height
BTE-040-01-F-D-A	5.00mm (0.197")
BTE-040-02-F-D-A	8.00mm (0.315")
BTE-040-03-F-D-A	11.00mm (0.433")
BTE-040-04-F-D-A	16.10mm (0.634")
BTE-040-05-F-D-A	19.10mm (0.752")

FrontPanel Support

The XEM6010 is fully supported by Opal Kelly's FrontPanel Application. FrontPanel augments the limited peripheral support with a host of PC-based virtual instruments such as LEDs, hex displays, pushbuttons, toggle buttons, and so on. Essentially, this makes your PC a reconfigurable I/O board and adds tremendous value to the XEM6010 as an experimentation or prototyping system.

Programmer's Interface

In addition to complete support within FrontPanel, the XEM6010 is also fully supported by the FrontPanel SDK, a powerful C++ class library available to Windows, Mac OS X, and Linux programmers allowing you to easily interface your own software to the XEM.

In addition to the C++ library, wrappers have been written for C#, Java, and Python making the API available under those languages as well. Sample wrappers are also provided for Matlab and LabVIEW.

Complete documentation and several sample programs are installed with FrontPanel.

Applying the XEM6010

Powering the XEM6010

The XEM6010 requires that this supply be clean, filtered, and within the range of 4.5v to 5.5v. This supply must be delivered through the +VDC pins on the two device's two expansion connectors or the DC power connector.

The expansion bus has several power supply pins, described below:

- +VDC is provided by an external device to the XEM6010. It must be a clean, filtered supply within the range of +4.5 volts and +5.5 volts.
- +3.3v is the output of a 2-Amp switching regulator on the XEM6010.
- +1.8v is the output of a 2-Amp switching regulator on the XEM6010.
- +1.2v is the output of a 2-Amp switching regulator on the XEM6010.
- +VCCO0 is the bank-0 I/O voltage to the FPGA. Factory default is +3.3v
- +VCCO1 is the bank-1 I/O voltage to the FPGA. Factory default is +3.3v

Power Budget

The table below can help you determine your power budget for each supply rail on the XEM6010. All values are highly dependent on the application, speed, usage, and so on. Entries we have made are based on typical values presented in component datasheets or approximations based on Xilinx power estimator results. Shaded boxes represent unconnected rails to a particular component. Empty boxes represent data that the user must provide based on power estimates.

The user may also need to adjust parameters we have already estimated (such as FPGA Vcco values) where appropriate.

Component(s)	1.2v	1.8v	3.3v
USB 2.0, PLL			320 mW
DDR2		600 mW	250 mW
FPGA VCCINT			
FPGA VCCAUX			250 mW
FPGA Vcco3 (DDR2), est.		250 mW	
FPGA Vcco2 (USB), est.		250 mW	
FPGA Vcco0,1			
Total:			
Available:	2,400 mW	3,600 mW	6,600 mW

Example XEM6010-LX150 FPGA Power Consumption

XPower Estimator version 12.3 was used to compute the following power estimates for the Vc-CINT supply. These are simply estimates; your design requirements may vary considerably. The numbers below indicate approximately 70% to 80% utilization.

Component	Parameters	V CCINT
Clock	150 MHz GCLK - 70,000 fanout	384 mW
Clock	100 MHz GCLK - 70,000 fanout	256 mW
Logic (DFF)	150 MHz, 70,000 DFFs	380 mW
Logic (DFF)	100 MHz, 70,000 DFFs	232 mW
Logic (LUT)	150 MHz, 32,000 Combinatorial, 1,000 SR, 1,000 RAM	287 mW
Logic (LUT)	100 MHz, 32,000 Combinatorial, 1,000 SR, 1,000 RAM	191 mW
BRAM	18-bit, 100 @ 150 MHz, 100 @ 100 MHz	237 mW
DSP	150 MHz, 140 slices	78 mW
MCB	150 MHz	85 mW
Misc.	DCM, PLL, etc.	100 mW
	Total:	2,230 mW
	Available:	2,400 mW

Supply Heat Dissipation (IMPORTANT!!)

Due to the limited area available on the small form-factor of the XEM6010 and the density of logic provided, heat dissipation may be a concern. This depends entirely on the end application and cannot be predicted in advance by Opal Kelly. Heat sinks may be required on any of the devices on the XEM6010. Of primary focus should be the FPGA (U10) and SDRAM (U11). Although the switching supplies are high-efficiency, they are very compact and consume a small amount of PCB area for the current they can provide.

If you plan to put the XEM6010 in an enclosure, be sure to consider heat dissipation in your design.

Host Interface

There are 26 pins that connect the on-board USB microcontroller to the FPGA. These pins comprise the host interface on the FPGA and are used for configuration downloads. After configuration, these pins are used to allow FrontPanel communication with the FPGA.

If the FrontPanel okHost module is instantiated in your design, you must map the interface pins to specific pin locations using Xilinx LOC constraints. This may be done using the Xilinx constraints editor or specifying the constraints manually in a text file. Please see the sample projects included with your FrontPanel installation for examples.

MUXSEL

MUXSEL is a signal on the XEM6010 which selects the signal path to the FPGA programming signals D0 and CCLK. When low (deasserted), the FPGA and USB microcontroller are connected. When high (asserted), the FPGA and PROM are connected.

In normal USB-programmed operation, JP5 is in the USB position connecting the FPGA and USB microcontroller at all times. This allows USB-based programming of the FPGA and subsequent USB communication with the FPGA design after configuration.

In order to allow the SPI to configure the FPGA, JP5 must be in the PROM position.. In order to deassert MUXSEL post-configuration, your design must deassert MUXSEL. This allows the FPGA design to properly startup and allows for communication over USB even after the PROM has configured it.

The end result is that your FPGA design should tie HI_MUXSEL to 0. This is the case regardless of how the design was configured (via PROM or USB). For example, in Verilog:

```
assign hi_muxsel = 1'b0;
```

I²C Connections

The FPGA on the XEM6010 is attached to the I²C lines from the USB microcontroller. In order to avoid contention with the I²C bus, these lines should be set to high-impedance within your design. If this is not done, FrontPanel may timeout or hang when trying to communicate with the XEM6010, particularly when programming the on-board PLL.

The following lines in your UCF (contraints) file will attach pull-ups to the I²C lines:

```
NET "i2c_sda" LOC = "AB9" | IOSTANDARD="LVCMOS33" | PULLUP;
NET "i2c_sc1" LOC = "Y9" | IOSTANDARD="LVCMOS33" | PULLUP;
```

In addition, you will need to set these signals to high-impedance in your HDL. Here is an example of how to do this in Verilog:

```
assign i2c_sda = 1'bz;
assign i2c_scl = 1'bz;
```

SPI Flash

The SPI flash on the module is a Numonyx M25P32-VME6G or equivalent. It can be programmed (using the FlashLoader sample) with an FPGA configuration bitfile to configure the

FPGA on boot. To boot the FPGA from flash, the switch JP5 must be slid to the "PROM" position. To boot the FPGA using FrontPanel, the switch must be slid to the "USB" position. In both cases, FrontPanel communication is available after configuration completes.

Flash Pin	FPGA Pin
С	W12
S	T5
D	AB15
Q	Y15

FlashLoader Sample

The FlashLoader sample is installed with your FrontPanel installation. It is a simple command-line utility that you can use to program the SPI flash with an FPGA configuration file. Please see the Samples directory for more information.

You can also load a configuration file to the Flash using your own HDL, of course. There is nothing special about the way our FlashLoader sample loads the configuration file into the Flash.

LEDs

There are eight LEDs on the XEM6010. Each is wired directly to the FPGA according to the pin mapping tables at the end of this document.

The LED anodes are connected to a pull-up resistor to +3.3VDD and the cathodes wired directly to the FPGA on Bank 2 with a bank I/O voltage of 3.3v. To turn ON an LED, the FPGA pin should be brought low. To turn OFF an LED, the FPGA pin should be at logic '1'.

DDR2 SDRAM

The Micron DDR2 SDRAM is connected exclusively to the 1.8-v I/O on Bank 3 of the FPGA. The tables below list these connections.

DDR2 Pin	FPGA Pin
СК	H4
CK	H3
CKE	D2
CS	C3
RAS	K5
CAS	K4
WE	F2
LDQS	L3
LDQS	L1
UDQS	T2
<u>UDQS</u>	T1
LDM	L4
UDM	M3
ODT	J6
A0	H2
A1	H1
A2	H5
A3	K6
A4	F3
A5	K3
A6	J4
A7	H6
A8	E3

DDR2 Pin	FPGA Pin
A9	E1
A10	G4
A11	C1
A12	D1
BA0	G3
BA1	G1
BA2	F1
D0	N3
D1	N1
D2	M2
D3	M1
D4	J3
D5	J1
D6	K2
D7	K1
D8	P2
D9	P1
D10	R3
D11	R1
D12	U3
D13	U1
D14	V2
D15	V1

Clock Configuration (Source Synchronous)

The DDR2 clocking is designed to be source-synchronous from the FPGA. This means that the FPGA sends the clock signal directly to the SDRAM along with control and data signals, allowing very good synchronization between clock and data.

Memory Controller Blocks

Spartan-6 has integrated memory control blocks to communicate with the external DDR2 memory on the XEM6010. This is instantiated using the Xilinx Core Generator (memory interface generator, or MIG) to create a suitable memory controller for your design. You should read and become familiar with the DDR2 SDRAM datasheet as well as MIG and the core datasheet. Although MIG can save a tremendous amount of development time, understanding all this information is critical to building a working DDR2 memory interface.

The XEM6010 provides 1.2v as VCCINT. According to the memory controller block documentation, the Spartan-6, -2 speed grade can operate memory to 312.5 MHz with this internal voltage.

MIG Settings

The following are the settings used to generate the MIG core for our RAMTester sample using Xilinx Core Generator. These settings were used with ISE 12.2 and MIG 2.3. Note that settings may be slightly different for different versions of ISE or MIG.

Frequency 312.5 MHz
Memory Type Component

Memory Part MT47H64M16XX-3 (1Gb, x16)

Data Width 16

Enable DQS Enable CHECKED
High-temp self-refresh
Output drive strength
CHECKED
DISABLED
Reducedstrength

RTT(nominal) 50 ohms [default]

DCI for DQ/DQS CHECKED DCI for address/control CHECKED

ZIO pin Y2
RZQ pin K7
Calibrated Input Selection Yes
Class for address/control Class II
Debug signals Your option
System clock Differential

JTAG

The JTAG connections on the FPGA are wired directly to the expansion connector JP2 on the XEM6010 to facilitate FPGA configuration and ChipScope usage using a Xilinx JTAG cable. The BRK6110 has these signals connected to a 2-mm header compatible with the Xilinx JTAG cable.

Key Memory Storage (LX150 only, PCB revision 20120510 and newer)

Note: This information is valid only for PCB revisions 20120510 and newer.

The Spartan-6 FPGA supports design security using AES decryption logic and provides two methods for encryption key memory storage. The first is a volatile memory storage supported by an external battery backup supply voltage (VBATT). The second is a one-time programmable eFUSE. The XEM6310 design supports both types of key storage with user-modification required.

For quantity purchases of 50 or more units, please contact Opal Kelly (sales@opalkelly.com) to discuss factory installation of these components.

Volatile Encryption Key Storage (VBATT)

A small lithium rechargeable battery and three support components can be installed to provide VBATT to the FPGA when the XEM is unpowered. This will preserve the contents of the FPGA's volatile key storage so long as VBATT remains over the threshold specified in the Spartan-6 documentation. Please see the Xilinx *Spartan-6 FPGA Configuration User Guide* (UG380) for more details. Alternatively, VBATT may be provided through JP2-3. In this case, BT1 should not be installed.

The applicable schematic section and components required to support this functionality are shown below.

RefDes	Manufacturer	Manufacturer P/N	Comment
BT1	Seiko Instruments	MS412FE-FL26E	3V, 1mAh lithium battery
D10	Micro Commercial	BAS40-04-TP	Schottky Diode, SOT23
C11	Generic	0.1 μF, SM-0402	Decoupling

RefDes	Manufacturer	Manufacturer P/N	Comment
R24, R39	Generic	4.7 kΩ, 5%, SM-0402	
R41	Generic	0 Ω, SM-0402	Connects VBATT to JP2-3

Non-Volatile Encryption Key Storage (eFUSE)

Non-volatile storage of the encryption key is also possible by programming the Spartan-6 eFUSE via JTAG. Please see the Xilinx *Spartan-6 FPGA Configuration User Guide* (UG380) for more details.

To program the eFUSE, you must first install the components listed in the table below. You must also provide an external resistor (R_{FUSE}) between JP2-12 and GND. The value of this resistor is specified in the Xilinx *Spartan-6 Datasheet* (DS162) between 1129 Ω and 1151 Ω .

RefDes	Manufacturer	Manufacturer P/N	Comment
C10	Generic	0.1 μF, SM-0402	Decoupling
R40	Generic	0 Ω, SM-0402	Connects FPGA VFs to +3.3v
R42	Generic	0 Ω, SM-0402	Connects FPGA RFUSE to JP2-12

Expansion Connectors

Opal Kelly Pins is an interactive online reference for the expansion connectors on all Opal Kelly FPGA integration modules. It provides additional information on pin capabilities, pin characteristics, and PCB routing. Additionally, Pins provides a tool for generating constraint files for place and route tools. Pins can be found at the URL below.

http://www.opalkelly.com/pins

JP2

JP2 is an 80-pin high-density connector providing access to FPGA Bank 1. Several pins (38, 40, 54, 58, 59, 61, 77, and 79) of this connector are wired to global clock inputs on the FPGA and can therefore be used as inputs to the global clock network.

Pin JP2-10 is connected to the VREF pins of Bank 1.

Pin mappings for JP2 are listed at the end of this document in the "Quick Reference" section. For each pin, the corresponding board connection is listed. For pins connected to the FPGA, the corresponding FPGA pin number is also shown. Finally, for pins routed to differential pair I/Os on the FPGA, the FPGA signal names and routed track lengths have been provided to help you equalize lengths on differential pairs.

JP3

JP3 is an 80-pin high-density connector providing access to FPGA Banks 0 and 1. Several pins (42, 44, 59, 61, 64, 66, 77, and 79) of this connector are wired to global clock inputs on the FPGA and can therefore be used as inputs to the global clock network.

Pin mappings for JP3 are listed at the end of this document in the "Quick Reference" section. For each pin, the corresponding board connection is listed. For pins connected to the FPGA, the corresponding FPGA pin number is also shown. Finally, for pins routed to differential pair I/Os on the FPGA, the FPGA signal names and routed track lengths have been provided to help you equalize lengths on differential pairs.

Setting I/O Voltages

The Spartan-6 FPGA allows users to set I/O bank voltages in order to support several different I/O signalling standards. This functionality is supported by the XEM6010 by allowing the user to connect independent supplies to the FPGA VCCO pins on two of the FPGA banks.

By default, ferrite beads have been installed that attach each VCCO bank to the +3.3VDD supply. If you intend to supply power to a particular I/O bank, you MUST remove the appropriate ferrite beads. Power can then be supplied through the expansion connectors.

The table below lists details for user-supplied I/O bank voltages

I/O Bank	Expansion Pins	Ferrite Bead
0	JP3-36, 56	FB2
1	JP2-35, 55	FB1

Considerations for Differential Signals

The XEM6010 PCB layout and routing has been designed with several applications in mind, including applications requiring the use of differential (LVDS) pairs. Please refer to the Xilinx Spartan-6 datasheet for details on using differential I/O standards with the Spartan-6 FPGA.

Note: LVDS output on the Spartan-6 is restricted to banks 0 and 2. LVDS input is available on all banks. For more information, please refer to the *Spartan-6 FPGA SelectIO Resources User Guide* from Xilinx.

FPGA I/O Bank Voltages

In order to use differential I/O standards with the Spartan-6, you must set the VCCO voltages for the appropriate banks to 2.5v according to the Xilinx Spartan-6 datasheet. Please see the section above entitled "Setting I/O Voltages" for details.

Characteristic Impedance

The characteristic impedance of all routes from the FPGA to the expansion connector is approximately $50-\Omega$.

Differential Pair Lengths

In many cases, it is desirable that the route lengths of a differential pair be matched within some specification. Care has been taken to route differential pairs on the FPGA to adjacent pins on the expansion connectors whenever possible. We have also included the lengths of the board routes for these connections to help you equalize lengths in your final application. Due to space constraints, some pairs are better matched than others.

Reference Voltage Pins (VREF)

The Xilinx Spartan-6 supports externally-applied input voltage thresholds for some input signal standards. The XEM6010 supports these VREF applications for banks 0 and 1:

For Bank 0, the four VREF pins are routed to expansion connector JP3 on pins 48, 51, 62, and 65. Note that all four must be connected to the same voltage for proper application of input thresholds. Please see the Xilinx Spartan-6 documentation for more details.

For Bank 1, the four VREF pins are connected to a single pin on expansion connector JP2, pin 10.

BRK6110 Breakout Board

The BRK6110 is a simple two-layer "breakout board" which can be used to evaluate or transition to the XEM6010. It provides standard 2-mm thru-hole connections to the 0.8-mm high-density connectors on the XEM6010 and a DC power connector (2.1mm/5.5mm, center positive) for providing +VDC to the XEM6010. Please visit the Pins reference for the XEM6010 for pin mapping details.

Pins

Opal Kelly Pins is an interactive online reference for the expansion connectors on all Opal Kelly FPGA integration modules. It provides additional information on pin capabilities, pin characteristics, and PCB routing. Additionally, Pins provides a tool for generating constraint files for place and route tools. Pins can be found at the URL below.

http://www.opalkelly.com/pins

Toolbar

The toolbar at the top of a Pins product page has a number of features. Explore a bit; you won't break it.

Pin Lists

As the primary reference for Opal Kelly integration module expansion connectors, Pin Lists contain a comprehensive table of the FPGA-to-Connector data including connector pin, FPGA pin, signal description, routed length (when applicable), breakout board pin mapping, FPGA I/O bank, and other properties.

By default, not all data columns are visible. Click on the "Toggle Filters" icon at the top-left to select which columns to show. Depending on the specific module, several additional columns may be shown. The data in these columns is always exported when you export the pin list to CSV.

Filters

You can hide or show the additional information associated with each signal by clicking on the icon at the top left ("Toggle Filters"). Use these filters to limit the visible pin listing to particular subsets of signals you are interested in.

Search

You can search the pin list using the search entry at the top-right. Click on the magnifying glass drop-down to adjust the function of the search to one of:

- Highlight Highlights search results only.
- Hide Matching Hides rows where search matches are found.
- Show Only Matching Shows only rows where a search match is found.

Export (PDF, CSV, Constraints Files)

The export button near the search entry allows you to export the pin list in several formats. PDFs can be viewed or printed. CSV can be loaded into a spreadsheet application or manipulated with scripts. Constraints files can be used as inputs to Xilinx and Altera synthesis and mapping tools.

The constraints files include additional mapping information for other peripherals on the module such as memory, clock oscillators, and LEDs.

Peripherals

A Pins Peripheral is a project definition where you can enter your top-level HDL design nets to have Pins generate a complete constraint file for you.

When you create a Peripheral, you will select a target integration module. The Peripheral is paired to this module so that the design parameters match the features and expansion capabilities of the module.

Specifying Net Names

The Pin List view for a Peripheral includes three additional, editable columns:

- Design Net The name of the signal as it appears in your top-level HDL.
- Constraints Text that is inserted into the constraints file for that signal.
- Comment Additional comment text that is added to the constraints file.

These additional data are merged with the default Pin List constraints file prior to export. The result is a constraints file complete with net names that can be used with your FPGA development flow.

Export Features

Enable the specific module features you would like to appear in the exported constraints file. When a feature is enabled, Pins will export the constraints appropriate to that feature such as pin locations. When a feature is disabled, Pins will skip that portion.

The User Lead In and User Lead Out sections allow you to add custom payloads (your own constraints) that will be added to the exported constraints file. Additional timing constraints or com-

ments can be added here.

Migrating from the XEM3010 to the XEM6010

The XEM6010 was designed to be as compatible as possible with our XEM3010 in order to facilitate customer design migration with minimal changes. The physical dimentions and connector footprints are identical. The differences between these two products are highlighted below.

Four I/O Banks → Two I/O Banks

The Spartan-3 device used on the XEM3010 has eight I/O banks, four of which are routed to the expansion connectors. Each of these four has selectable I/O bank voltages. The Spartan-6 device on the XEM6010 only has four total I/O banks, two of which are routed to the expansion connectors. This is a consideration in designs where multiple I/O bank voltages were used.

Note: LVDS output on the Spartan-6 is restricted to banks 0 and 2. LVDS input is available on all banks. For more information, please refer to the *Spartan-6 FPGA SelectIO Resources User Guide* from Xilinx.

32 MiB SDR SDRAM → 128 MiB DDR2 SDRAM

The XEM3010 has 32 MiB of on-board single-data-rate SDRAM. The XEM6010 replaces this with a faster, higher-capacity 128-MiB double-data-rate SDRAM. The Spartan-6 also has an internal memory control block (MCB) which provides a DDR2 controller to designs without consuming significant FPGA fabric.

Two Pushbuttons → No Pushbuttons

Due to space constraints, the XEM6010 does not have on-board pushbuttons.

Expansion Connector Differences

The following table lists the expansion connector differences:

XEM3010	XEM6010
JP2-3 is +2.5VDD	JP2-3 is a no-connect
JP2-10 is a no-connect	JP2-10 is VREF_BANK1
JP2-35 is +VCCO3	JP2-35 is +VCCO1
JP2-55 is +VCCO2	JP2-55 is +VCCO1
JP3-7 is a no-connect	JP3-7 is +1.8VDD
JP3-36 is +VCCO6	JP3-36 is +VCCO0
JP3-56 is +VCCO7	JP3-56 is +VCCO0

JTAG Connectivity

The XEM3010 has a header for connecting the Xilinx JTAG Platform Cable. Boards attached to the XEM3010 expansion connectors see TCK, TMS, TDI as inputs and TDO as an output. Therefore, from the perspective of the attached board, the XEM3010 is the JTAG controller.

The XEM6010 does not have a header for the Xilinx Platform Cable. This role has been migrated to the BRK6110 or other attached board. Boards attached to the XEM6010 provide TCK, TMS, TDI as outputs to the XEM6010 and receive TDO as an input from the XEM6010. Therefore, from the perspective of the attached board, the XEM6010 is a JTAG device.

Migrating from the XEM3050 to the XEM6010

The XEM6010 was designed to be as compatible as possible with our XEM3010 in order to facilitate customer design migration with minimal changes. As a result, the XEM6010 is also positioned to replace the XEM3050 in many applications. Depending on logic requirements, the XEM6010-LX45 or XEM6010-LX150 could replace the XEM3050.

Four I/O Banks → Two I/O Banks

The Spartan-3 device used on the XEM3050 has eight I/O banks, four of which are routed to the expansion connectors. Each of these four has selectable I/O bank voltages. The Spartan-6 device on the XEM6010 only has four total I/O banks, two of which are routed to the expansion connectors. This is a consideration in designs where multiple I/O bank voltages were used.

Note: LVDS output on the Spartan-6 is restricted to banks 0 and 2. LVDS input is available on all banks. For more information, please refer to the *Spartan-6 FPGA SelectIO Resources User Guide* from Xilinx.

64 MiB SDR SDRAM → 128 MiB DDR2 SDRAM

The XEM3050 has 64 MiB of on-board single-data-rate SDRAM available as two 32 MiB devices. The XEM6010 replaces this with a faster, higher-capacity 128-MiB double-data-rate SDRAM. The Spartan-6 also has an internal memory control block (MCB) which provides a DDR2 controller to designs without consuming significant FPGA fabric.

Synchronous SRAM Removed

The XEM6010 does not have the 9 MiB synchronous SRAM that is on the XEM3050.

Expansion Connector Differences

The following table lists the expansion connector differences:

XEM3050	XEM6010
JP2-3 is +2.5VDD	JP2-3 is a no-connect
JP2-10 is a no-connect	JP2-10 is VREF_BANK1
JP2-35 is +VCCO3	JP2-35 is +VCCO1
JP2-55 is +VCCO2	JP2-55 is +VCCO1
JP3-7 is SYS_CLK6	JP3-7 is +1.8VDD
JP3-36 is +VCCO6	JP3-36 is +VCCO0
JP3-56 is +VCCO7	JP3-56 is +VCCO0

JTAG Connectivity

The XEM3050 has a header for connecting the Xilinx JTAG Platform Cable. Boards attached to the XEM3050 expansion connectors see TCK, TMS, TDI as inputs and TDO as an output. Therefore, from the perspective of the attached board, the XEM3050 is the JTAG controller.

The XEM6010 does not have a header for the Xilinx Platform Cable. This role has been migrated to the BRK6110 or other attached board. Boards attached to the XEM6010 provide TCK, TMS, TDI as outputs to the XEM6010 and receive TDO as an input from the XEM6010. Therefore, from the perspective of the attached board, the XEM6010 is a JTAG device.

XEM6010 Mechanical Drawing

BRK6110 Mechanical Drawing

All dimensions in mm.

XEM6010 Quick Reference

JP2 Pin	Connection	FPGA Pin	Length (mm)
1	DGND		
3	-		
5	JTAG_TCK		
7	JTAG_TMS		
9	JTAG_TDI		
11	SYS_CLK4		
13	DGND		
15	G16	L9P_1	36.709
17	G17	L9N_1	35.889
19	H19	L34P_1	39.405
21	H18	L34N_1	36.649
23	F16	L10P_1	36,915
25	F17	L10N_1	37.537
27	J17	L36P_1	34.164
29	K17	L36N_1	32.463
31	K16	L21P_1	28.716
33	J16	L21N_1	29.917
35	+VCCO1		
37	V21	L52P_1	16.564
39	V22	L52N_1	16.617
41	T21	L50P_1	22.866
43	T22	L50N_1	21.947
45	P21	L48P_1	23.070
47	P22	L48N_1	22.213
49	M21	L46P_1	25.990
51	M22	L46N_1	24.527
53	L20	L45P_1	22.274
55	+VCCO1		
57	L22	L45N_1	20.797
59	H21	L41P_GCLK9_1	25.953
61	H22	L41N_GCLK8_1	25.014
63	F21	L37P_1	28.198
65	F22	L37N_1	26.589
67	D21	L31P_1	32.225
69	D22	L31N_1	31.347
71	B21	L19P_1	31.387
73	B22	L19N_1	30.050
75	A21	L20N_1	33.836
77	J20	L43P_GCLK5_1	24.102
79	J22	L43N_GCLK4_1	24.092

JP2			Length
Pin	Connection	FPGA Pin	(mm)
2	+3.3VDD		
4	+3.3VDD		
6	+3.3VDD		
8	JTAG_TDO		
10	VREF_1	Bank 1 VREF	
12	-		
14	DGND		
16	G19	L33P_1	60.218
18	F20	L33N_1	56.677
20	H20	L38P_1	52.874
22	J19	L38N_1	52.611
24	D19	L29P_1	47.404
26	D20	L29N_1	46.630
28	F18	L30P_1	39.799
30	F19	L30N_1	40.267
32	M16	L58P_1	27.342
34	L15	L58N_1	29.284
36	DGND		
38	K20	L40P_GCLK11_1	29.040
40	K19	L40N_GCLK10_1	28.878
42	U20	L51P_1	23.279
44	U22	L51N_1	21.883
46	R20	L49P_1	26.161
48	R22	L49N_1	24.437
50	N20	L47P_1	26.759
52	N22	L47N_1	25.105
54	M20	L42P_GCLK7_1	21.180
56	DGND		
58	L19	L42N_GCLK6_1	24.854
60	K21	L44P_1	24.187
62	K22	L44N_1	23.603
64	G20	L39P_1	27.676
66	G22	L39N_1	26.067
68	E20	L35P_1	31.492
70	E22	L35N_1	30.055
72	C20	L32P_1	33.935
74	C22	L32N_1	32.266
76	A20	L20P_1	34.325
78	DGND		
80	DGND	İ	

Host Interface Pin	FPGA Pin
HI_IN[0]	Y12
HI_IN[1]	AB20
HI_IN[2]	AB7
HI_IN[3]	AB8
HI_IN[4]	AA4
HI_IN[5]	AB4
HI_IN[6]	Y3
HI_IN[7]	AB3
HI_OUT[0]	Y19
HI_OUT[1]	AA8
HI_INOUT[0]	AB12
HI_INOUT[1]	AA12
HI_INOUT[2]	Y13
HI_INOUT[3]	AB18
HI_INOUT[4]	AA18
HI_INOUT[5]	V15
HI_INOUT[6]	AB2
HI_INOUT[7]	AA2
HI_INOUT[8]	Y7
HI_INOUT[9]	Y4
HI_INOUT[10]	W4
HI_INOUT[11]	AB6
HI_INOUT[12]	AA6
HI_INOUT[13]	U13
HI_INOUT[14]	U14
HI_INOUT[15]	AA20
HI_MUXSEL	AA22
HI_AA	W11

LED	FPGA Pin
D2	Y17
D3	AB17
D4	AA14
D5	AB14
D6	AA16
D7	AB16
D8	AA10
D9	AB10

PLL Pin	Clock Name	Connection
CLKA	SYS_CLK1	FPGA - AB13
CLKB	SYS_CLK2	FPGA - Y11
CLKC	SYS_CLK3	FPGA - AB11
CLKD	SYS_CLK4	JP2-11
CLKE	SYS_CLK5	JP3-8
XBUF	N/A	Not Connected

XEM6010 Quick Reference

JP3 Pin	Connection	FPGA Pin	Length (mm)
1	+VDC		
3	+VDC		
5	+VDC		
7	+1.8VDD	ĺ	
9	+3.3VDD		
11	+3.3VDD		
13	+3.3VDD		
15	W20	L60P_1	52.024
17	W22	L60N_1	53.341
19	U19	L70P_1	49.434
21	V20	L70N_1	50.801
23	C5	L2P_0	27.507
25	A5	L2N_0	27.626
27	D14	L49P_0	41.204
29	C14	L49N_0	37.149
31	E16	L66P_0	36.786
33	D17	L66N_0	37.192
35	DGND		
37	D7	L32P_0	23.590
39	D8	L32N_0	24.146
41	L17	L61P_1	44.830
43	K18	L61N_1	44.133
45	D6	L3P_0	18.185
47	C6	L3N_0	17.482
49	A3	L1P_HSWAPEN_0	13.928
51	A4	L1N_VREF_0	13.018
53	B8	L6P_0	18.615
55	DGND		
57	A8	L6N_0	17.038
59	B10	L34P_GCLK19_0	20.080
61	A10	L34N_GCLK18_0	18.748
63	C13	L38P_0	25.099
65	A13	L38N_VREF_0	22.706
67	C15	L51P_0	25.362
69	A15	L51N_0	23.293
71	C17	L64P_0	27.660
73	A17	L64N_0	25.374
75	A18	L65N_0	25.971
77	C11	L35P_GCLK17_0	18.067
79	A11	L35N_GCLK16_0	18.060

IDO	1	1	1
JP3 Pin	Connection	FPGA Pin	Length (mm)
2	DGND		
4	+1.2VDD		
6	+1.2VDD		
8	SYS_CLK5		
10	USB_SCL		
12	USB_SDA		
14	DGND		
16	T19	L74P_1	38.591
18	T20	L74N_1	40.628
20	P17	L72P_1	39.602
22	N16	L72N_1	33.852
24	M17	L71P_1	34.813
26	M18	L71N_1	34.914
28	P18	L73P_1	36.711
30	R19	L73N_1	39.280
32	D9	L7P_0	30.242
34	C8	L7N_0	26.971
36	+VCCO0		
38	D10	L33P_0	26.222
40	C10	L33N_0	25.323
42	D11	L36P_GCLK15_0	26.539
44	C12	L36N_GCLK14_0	26.506
46	D15	L62P_0	33.337
48	C16	L62N_VREF_0	32.259
50	B6	L4P_0	12.838
52	A6	L4N_0	12.356
54	C7	L5P_0	17.275
56	+VCCO0		
58	A7	L5N_0	12.741
60	C9	L8P_0	17.926
62	A9	L8N_VREF_0	14.028
64	B12	L37P_GCLK13_0	20.996
66	A12	L37N_GCLK12_0	20.055
68	B14	L50P_0	21.102
70	A14	L50N_0	19.964
72	B16	L63P_0	24.506
74	A16	L63N_0	22.571
76	B18	L65P_0	26.046
78	DGND		
80	DGND		