Examination #2 Page 1 of 7

Fall 2000 50=17

Problem 1

A standard BOD test is run using seeded dilution water. In one bottle, the waste sample is mixed with seeded dilution water giving a dilution of 1:30. Another bottle the blank contains just seeded dilution. contains just seeded dilution water. Both bottles begin the test with DO at the saturation value of 9.2 mg/L. After five days, the bottle containing waste has DO equal to 2.0 mg/L, while that containing just seeded dilution water has DO equal to 8.0 mg/L. What is the 5-day BOD of the waste?

$$P = \frac{1}{30}$$

$$BoDw = \frac{(Doi - Dof) - (Bi - B_f)(1-P)}{P} \qquad (pg 190)$$

$$= \frac{(9.2 - 2.0 \text{ mg/L}) - (9.2 - 8.0 \text{ mg/L})(\frac{29}{30})}{\frac{1}{30}}$$

$$= \frac{1}{30}$$

$$= \frac$$

## Problem 2

A wastewater has a BOD<sub>5</sub> of 150 mg/L at  $20^{\circ}$ C. The reaction rate k at that temperature is 0.23/d.

- a) What is the ultimate CBOD?
- b) What is the reaction rate coefficient at 15°C?
- c) What is the BOD<sub>5</sub> at 15°C?

$$L_{0} = \frac{BOD_{5}}{(1 - e^{-kt})} (p_{9} | 193)$$

$$= \frac{150 \text{ mg/L}}{(1 - e^{-0.23(5)})} = \frac{219.5 \text{ mg/L}}{(1 - e^{-0.23(5)})} = \frac{219.5 \text{ mg/L}}{(p_{9} | 193 \nmid 194)}$$

$$= (0.2311)(1.047) = 0.183/2 = \frac{R_{5}^{\circ}}{(p_{9} | 194)}$$

$$= (219.5 \text{ mg/L})(1 - exp(-0.183(5)) = \frac{131.6 \text{ mg/L}}{(p_{9} | 194)}$$

## Problem 3

A city of 200,000 people discharges 37 ft<sup>3</sup>/sec of sewage having a BOD<sub>5</sub> of 28 mg/L and a DO of 1.8 mg/L into a river with a discharge of 250 ft<sup>3</sup>/sec and a mean section velocity of 1.2 ft/s. Upstream of the release location, the river has BOD<sub>5</sub> of 3.6 mg/L and DO of 7.6 mg/L. DO<sub>sat</sub> for the river is 8.5 mg/L. The deoxygenation coefficient,  $k_d$ , is 0.61/day and the reaeration coefficient,  $k_r$ , is 0.76/day. Assuming complete mixing in the river at the discharge location and neglect axial dispersion.

a) Plot the DO versus distance downstream from the outfall.

From your plot, or by separate calculation find:

- b) The initial oxygen deficit and ultimate BOD just downstream of the outfall.
- c) The time and distance to reach the minimum DO.
- d) The minimum DO.
- e) The DO that could be expected 10 miles downstream.

Use the attached sheets for your calculations.



Problem 3 (continued)

Hints:

- Sketch the Problem (not really useful, but gives you something to do while panicking).
- Determine initial deficit and initial DO concentration
- Find  $L_o$  of waste and river before mixing.
- Find  $L_o$  of river after mixing.
- Use D(x) formula where time is expressed as x/u to construct table of D(x) and DO(x). Be sure you get the time units consistent the reaction coefficients are expressed in days<sup>-1</sup> while velocity is ft/sec. Some unit conversion is necessary choose a simple one!
- Use  $t_c$  formula, but substitute  $x_c/u$  for time and solve for  $x_c$ . Put result into D(x) formula to get  $D_{max}$  and  $DO_{min}$ .
- Finally, using your tabulated values graph the curve on the grid on the previous page.

$$\frac{\text{Sketch}}{Q = 25043/s}$$

$$\frac{D0 = 1.8 \text{ ms/L}}{\text{BoD}_{5} = 28 \text{ mg/L}}$$

$$\frac{Q = 25043/s}{\text{BoD}_{5} = 28 \text{ mg/L}}$$

$$0 = 1.2 \text{ ft/s}$$

$$0 = 1.2 \text{ ft/s}$$

Lo before mixing

$$Lo_{W} = \frac{BoD_{5}}{(1-e^{-kt})} = \frac{28mg/L}{(1-exp(-0.61(5)))} = 29.4mg/L$$

$$Lo_{R} = \frac{BoD_{5}}{(1-e^{-kt})} = \frac{3.6mg/L}{(1-exp(-0.61(5)))} = 3.78mg/L$$

Problem 3 (continued)

|       |                      | (1)      | (2)  | (3)      | 1 (4)     |       | 1     |      | Dout-I |
|-------|----------------------|----------|------|----------|-----------|-------|-------|------|--------|
| K     | <del>بر</del><br>ا ل | brx<br>V | T T  | exp(-0)) | Cxp(-(2)) | k,-k, | Doles | D(x) | 00 (X) |
| (6    | 6.509                | 0.38     | 0.31 | 0.69     | 0.73      | 1.55  | 1.4   | 2.67 | 5-83   |
| 20    | 1.018                | 0.77     | 0.62 | 0.46     | 0.54      | 2.19  | 0.75  | 2.95 |        |
| 30    | 1.527                | 1.16     | 0.93 | 0.31     | 0.39      | 2.32  | 0.51  | 2.83 |        |
| 40    | 2.036                | 1.54     | 1-24 | 0.21     | 0.28      | 2.19  | 0.35  | 2.53 |        |
| 50    | 2.545                | 1.93     | 1.55 | 6        |           | 1.93  | 0.24  | 2.17 |        |
| 60    | 3.054                | 2.32     | 1.83 | 0.14     | 0.21      | 1.64  | 0.16  | 1.80 |        |
| 21.07 | 1.07                 | 0.81     | 0.65 | 0.44     | 0.52      | 2.22  | 6.73  | 2.95 | 5.5    |

FIND DOMIN

$$t_{c} = \frac{f_{c}}{v} = \frac{1}{k_{r} - k_{d}} \ln \left( \frac{k_{r}}{k_{d}} \left( 1 - \frac{D_{o}(k_{r} - k_{d})}{k_{d}} \right) \right) \left( p_{g} 203 \right)$$

$$= \frac{1}{0.76 - 0.61} \ln \left( \frac{.76}{.61} \left[ 1 - \frac{1.647(0.76 - 0.61)}{6.61(7.07)} \right] \right) = 1.07 \text{ days}$$

$$x_{c} = v \left( 1.07 \text{ days} \right) = 21.07 \text{ miles}$$

4) Three wells in an aquifer are monitored. The depth to water in each well is listed in Table 1. The relationship between depth to water and head is depicted in Figure 1. Determine the magnitude and direction of the hydraulic gradient. Use the attached sheet for your calculations.



Figure 1: Schematic of Well

Table 1: Monitoring Well Data

| Well Designation | X-coordinate (meters) | Y-coordinate (meters) | Depth to Water (meters) | Casing elevation (meters) | Head (meters)                            | 103<br>-83<br>20  |
|------------------|-----------------------|-----------------------|-------------------------|---------------------------|------------------------------------------|-------------------|
| MW-1             | 10                    | 10                    | 83                      | 103                       | 20                                       | 20                |
| MW-2             | 90                    | 20                    | 103                     | 119                       | 16                                       | 119<br>-103<br>16 |
| MW-3             | 30                    | 110                   | 116                     | 135                       | 19                                       | 135               |
| Toc.             | - DTW                 | = HEA                 | D                       |                           | 3 44 44 44 44 44 44 44 44 44 44 44 44 44 | -116              |



dmw-2->mw-2 = V102+802 = 80.6m

dmw-2->mw-3 = 80.6 m (1m) = 20.15m

GRADIENT = 0.05 due EAST (As drawn)