CSCI-GA.2560-001, Artificial Intelligence

February 7, 2022

Solutions to Problem 1 of Homework 2 (4 Points)

Name: Anav Prasad (ap7152)

Due: 5PM on Monday, February 7

Collaborators:

Trace the execution of hill climbing from a start state of A,D. Use basic hill climbing, so no sideways motion or restarts.

Solution:

Given T = 23, M = 13

Start: {A, D}, Total Value = 20, Total Weight = 15, Error = 5
Consider:

SET	TOTAL VALUE	TOTAL WEIGHT	ERROR
$\{A, B, D\}$	28	19	6
{A, C, D}	31	22	9
$*{A, D, E}$	25	17	4
{A}	13	11	10
{D}	7	4	16
{B, D}	15	8	8
{C, D}	18	11	5
{D, E}	12	6	11
{A, B}	21	15	4
{A, C}	24	18	5
{A, E}	18	13	5

Since there are two sets with lowest error (4), choosing the set with higher total value: $\{A, D, E\}$ Consider:

SET	TOTAL VALUE	TOTAL WEIGHT	ERROR
{A, B, D, E}	33	22	8
{A, C, D, E}	36	24	11
{D, E}	12	6	11
{A, E}	18	13	5
{A, D}	20	15	5
{B, D, E}	20	10	3
*{C, D, E}	23	13	0
{A, B, E}	26	17	4
{A, C, E}	29	20	7
{A, B, D}	28	19	6
{A, C, D}	31	22	9

Choosing the set with the lowest error: {C, D, E} Consider:

SET	TOTAL VALUE	TOTAL WEIGHT	ERROR
{A, C, D, E}	36	24	11
{B, C, D, E}	31	17	4
{D, E}	12	6	11
{C, E}	16	9	7
{C, D}	18	11	5
{A, D, E}	25	17	4
{B, D, E}	20	10	3
{A, C, E}	29	20	7
{B, C, E}	24	13	0
{A, C, D}	31	22	9
{B, C, D}	26	15	2

Return $\{C, D, E\}$ since nothing better was found.

CSCI-GA.2560-001, Artificial Intelligence

February 7, 2022

Solutions to Problem 2 of Homework 2 (3 Points)

Name: Anav Prasad (ap7152) Due: 5PM on Monday, February 7

Collaborators:

Also using basic hill climbing, trace the execution of hill climbing from a start state of A,B, and explain what was different from part 1.

Solution:

Given T = 23, M = 13

Start: {A, B}, Total Value = 21, Total Weight = 15, Error = 4 Consider:

SET	TOTAL VALUE	TOTAL WEIGHT	ERROR
{A, B, C}	32	22	9
{A, B, D}	28	19	6
*{A, B, E}	26	17	4
{B}	8	4	15
{A}	13	11	10
{B, C}	19	11	4
{B, D}	15	8	8
{B, E}	13	6	10
{A, C}	24	18	5
{A, D}	20	15	5
{A, E}	18	13	5

Since there are two sets with lowest error (4), choosing the set with higher total value: $\{A, B, E\}$ Consider:

SET	TOTAL VALUE	TOTAL WEIGHT	ERROR
$\{A, B, C, E\}$	37	24	11
$\{A, B, D, E\}$	33	22	8
{B, E}	13	6	10
{A, E}	18	13	5
{A, B}	21	15	4
*{B, C, E}	24	13	0
{B, D, E}	20	10	3
{A, C, E}	29	20	7
{A, D, E}	25	17	4
{A, B, C}	32	22	9
{A, B, D}	28	19	6

Choosing the set with the lowest error: $\{B, C, E\}$ Consider:

SET	TOTAL VALUE	TOTAL WEIGHT	ERROR
$\{A, B, C, E\}$	37	24	11
{B, C, D, E}	31	17	4
{C, E}	16	9	7
{B, E}	13	6	10
{B, C}	19	11	4
{A, C, E}	29	20	7
{C, D, E}	23	13	0
$\{A, B, E\}$	26	17	4
{A, D, E}	25	17	4
{A, B, C}	32	22	9
{B, C, D}	26	15	2

Return {B, D, E} since nothing better was found.

So, to explain the difference between the results of Problem 1 and 2, first of all notice that there are multiple possible solutions as seen in both Problem 1 and 2. Specifically, there are at least 2 possible solutions: $\{C, D, E\}$, $\{B, D, E\}$.

Now, the difference between these two problems was that while both of the hill climbing solutions considered both of the sets of $\{C, D, E\}$ and $\{B, D, E\}$ as possible solutions, they encountered different possible solutions first because of different starting points. Problem 1's solution encountered $\{C, D, E\}$ first, whereas Problem 2's solution encountered $\{B, D, E\}$ first. Since we aren't considering sideways motion and both $\{C, D, E\}$ and $\{B, D, E\}$ have error 0, the two solutions returned different solutions.

CSCI-GA.2560-001, Artificial Intelligence

February 7, 2022

Solutions to Problem 3 of Homework 2 (3 Points)

Name: Anav Prasad (ap7152)

Due: 5PM on Monday, February 7

Collaborators:

Consider now the general case where there are N objects under consideration (not the example above). What is the size of the state space? What is maximal number of neighbors of any state?

Solution:

The state space is the set of all possible subsets (not necessarily proper subsets) of the set of all N objects. As such, the size of the state space trivially becomes the count of all subsets of a set of size N which is 2^N .

Therefore:

Size of State space = 2^N

Now to find the maximal number of neighbors of any state, consider a state set of size x. As such, the number of it's neighbors would be the sum of the following:

- Count of neighbors with one object added = N x. That is so because there are N x objects that are not in the start set and only one object is added to get a distinct neighbor.
- \bullet Count of neighbors with one object removed is, trivially, x.
- Count of neighbors with one object swapped with an object outside of the start set $= x \cdot (N-x)$. This is so because for every object in the start set (count = x) there are N-x possible objects that are *outside* the start set that can be swapped in place of the object in the set to obtain a distinct neighbor.

Therefore, the number of neighbors of a set with x objects, say r, is:

$$r = N - x + x + (x \cdot (N - x))$$

$$\therefore r = N + N \cdot x - x^{2}$$

$$\therefore r = -x^{2} + N \cdot x + N$$

Therefore, the maximal number of neighbors of any state is the maximized value of r over all possible values of x.

As such, to maximize r over x, differentiating r w.r.t. x and equating to 0 to obtain the point of maxima/minima:

$$\frac{dr}{dx} = 0$$

$$\therefore -2 \cdot x + N = 0$$

$$\implies x = \frac{N}{2}$$

Now, computing the double derivative at $x = \frac{N}{2}$ to confirm whether x is the point of minima or maxima

$$\frac{d^2r}{dx^2}\Big|_{x=N/2} = (-2)\Big|_{x=N/2}$$
$$= -2$$

Therefore, we can conclude that x = N/2 is a point of maxima. Thus, the maximal value of r is:

$$r \Big|_{x=N/2} = \left(-x^2 + N \cdot x + N\right) \Big|_{x=N/2}$$
$$= \frac{N^2}{2} - \frac{N^2}{4} + N$$
$$= \frac{N^2}{4} + N$$
$$\implies r = \frac{N}{4} \cdot (N+4)$$

Therefore, the maximal number of neighbors is $\frac{N}{4} \cdot (N+4)$.