LATEX 一份简短的 Beamer 模板

RankFan ¹

XMU WISER

2021年7月18日

Outline

Beamer Features

Other Features

附录

What's this course about?

- Specific statistical methods for many research problems
- Hyperlinks (click here)
 - ► How to learn (or create) new methods
 - ▶ Inference: Using facts you know to learn about facts you don't know
- How to write a publishable scholarly paper
- All the practical tools of research theory, applications, simulation, programming, word processing, plumbing, whatever is useful
- \(\sim \) Outline and class materials:

- ► The syllabus gives topics, not a weekly plan.
- ▶ We will go as fast as possible subject to everyone following along
- We cover different amounts of material each week

Alerts

- First level alert
- Second level alert
- Third level alert
- Fourth level alert
- Fifth level alert

Systematic Components: Examples

- $E(Y_i) \equiv \mu_i = X_i \beta = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$
- $\Pr(Y_i = 1) \equiv \pi_i = \frac{1}{1 + e^{-x_i\beta}}$
- $V(Y_i) \equiv \sigma_i^2 = e^{x_i\beta}$
- Interpretation:
 - ► Fach is a class of functional forms
 - \blacktriangleright Set β and it picks out one member of the class
 - \triangleright β in each is an "effect parameter" vector, with different meaning

Recall:

one two three

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B) \Pr(B)$$

one two three

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B) \Pr(B)$$

one two three

$$\mathsf{NegBin}(y|\phi,\sigma^2) = \int_0^\infty \mathsf{Poisson}(y|\lambda) \times \mathsf{gamma}(\lambda|\phi,\sigma^2) d\lambda$$

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B) \Pr(B)$$

one two three

$$\begin{split} \mathsf{NegBin}(y|\phi,\sigma^2) &= \int_0^\infty \mathsf{Poisson}(y|\lambda) \times \mathsf{gamma}(\lambda|\phi,\sigma^2) d\lambda \\ &= \int_0^\infty \P(y,\lambda|\phi,\sigma^2) d\lambda \end{split}$$

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B) \Pr(B)$$

one two three

$$\begin{split} \mathsf{NegBin}(y|\phi,\sigma^2) &= \int_0^\infty \mathsf{Poisson}(y|\lambda) \times \mathsf{gamma}(\lambda|\phi,\sigma^2) d\lambda \\ &= \int_0^\infty \P(y,\lambda|\phi,\sigma^2) d\lambda \\ &= \frac{\Gamma\left(\frac{\phi}{\sigma^2-1} + y_i\right)}{y_i!\Gamma\left(\frac{\phi}{\sigma^2-1}\right)} \left(\frac{\sigma^2-1}{\sigma^2}\right)^{y_i} \left(\sigma^2\right)^{\frac{-\phi}{\sigma^2-1}} \end{split}$$

2 columns

- SVM
- GMM
- EM

数据与 tabular 环境

Category of your contents	Different types of each Category	other type of your data			
	Different types of each Category	other type of your data			
	θ-1kg				
	0.0056 ± 0.0097, 0.0021 ± 4.0056	3.5 × 10 ⁵ ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
Type of date (numbers)	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
Type of date (numbers)	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	$3.5 \times 10^5 : 5.43 (9.30\%)$			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	$3.5 \times 10^5 : 5.43 (9.30\%)$			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$\frac{\mu^2}{\pi - 2\theta} \times \sqrt[3]{\ \nu_i - \hat{\phi}\ } + \lim_{s \to \infty} \int_0^{+\infty} f(s)e^{ssi}ds$	$f(x) \in C^1[0,+\infty], \ f(x^n)\ _2 \leqslant \lambda$			
Mathematical formulas	$\frac{\mu^2}{\pi - 2\theta} \times \sqrt[3]{\ \nu_i - \hat{\phi}\ } + \lim_{s \to \infty} \int_0^{+\infty} f(s)e^{ssi}ds$	$f(x) \in C^{1}[0, +\infty], f(x^{n}) _{2} \leq \lambda$			
	$\frac{\mu^2}{\pi - 2\theta}$ × $\sqrt[3]{\ \nu_i - \phi\ } + \lim_{s \to \infty} \int_0^{+\infty} f(s)e^{ssi}ds$	$f(x) \in C^{1}[0, +\infty], f(x^{n}) _{2} \leq \lambda$			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
anguage description	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	3.5×10^{5} This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
Projection data	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			

tabel 1 Contents of different types of tables.

Word2Vec

topic 1		topic 2		topic 3			topic 4				
1	科技	0.9995	2	板块	mm	3	科技	mm	4	3500	mm
1	板块	0.9994	2	锂电池	mm	3	新能源	mm	4	反弹	mm
1	调整	0.9994	2	a 股	mm	3	in	机构	4	指数	
1	资金	0.9994	2	芯片	mm	3	in	板块	4	清仓	
1	业绩	0.9994	2	散户	mm	3	in	半导体	4	券商	mm
1	公司	0.9994	2	震荡	mm	3	in	中国	4	科技	mm
1	股价	0.9994	2	早盘	mm	3	in	芯片	4	in	mm
1	股市	0.9994	2	inches	mm	3	in	mm	4	in	mm
1	大跌	0.9994	2	inches	mm	3	in	mm	4	in	mm
1	基金	0.9994	2	inches	mm	3	in	mm	4	in	mm

tabel 2 Word2Vec of texts

RankFan Beamer 2021年7月18日 9 / 18

Structural Features

Levels of Structure

- usual LATEX \section, \subsection commands
- 'frame' environments provide slides
- 'block' environments divide slides into logical sections
- 'columns' environments divide slides vertically (example later)
- overlays (à la prosper) change content of slides dynamically

例 (Overlay Alerts)

On the first overlay, this text is highlighted (or alerted).

On the second, this text is.

Structural Features

Levels of Structure

- usual LATEX \section, \subsection commands
- 'frame' environments provide slides
- 'block' environments divide slides into logical sections
- 'columns' environments divide slides vertically (example later)
- overlays (à la prosper) change content of slides dynamically

例 (Overlay Alerts)

On the first overlay, this text is highlighted (or alerted).

On the second, this text is.

Algoritmos 代码 1

Algorithm 1: Algorithm Example

```
input : x: float, y: float
  output: r: float
1 while True do
     r = x + y;
    if r >= 30 then
         "O valor de r é maior ou igual a 10.";
         break:
     else
         "O valor de r =", r;
8
     end
9 end
```

Reviewing DeepWalk algorithm

Algorithm 2: Reviewing random walk + skip gram

for
$$n=1$$
, 2 ,..., N do

Pick w_1^n according to a probability distribution $P(w_1)$. Generate a vertex sequence (w_1^n,\cdots,w_L^n) of length L by a random walk on network G ;

for $j=1$, 2 ,..., L - T do

for $r=1$, 2 ,..., T do

Add vertex-context pair (w_j^n,w_{j+r}^n) to multiset \mathcal{D} ;

Add vertex-context pair (w_{j+r}^n,w_j^n) to multiset \mathcal{D}

Run SGNS on \mathcal{D} with b negative samplpes.

Code blocks

```
# Say hello in Python
def hello(name):
return("Hello" + " " + name)
```


Code blocks

```
# Say hello in Python
def hello(name):
return("Hello" + " " + name)
```

```
/* Say hello in C */
#include <stdio.h>
int main()
{
    char name[256];
    fgets(name, sizeof(name), stdin);
    printf("Hello %s", name);
    return(0);
}
```


Theorems and Proofs

The proof uses reductio ad absurdum.

定理

There is no largest prime number.

证明.

1 Suppose *p* were the largest prime number.

4 But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Theorems and Proofs

The proof uses *reductio ad absurdum*.

定理

There is no largest prime number.

证明.

- 1 Suppose p were the largest prime number.
- **2** Let q be the product of the first p numbers.
- **4** But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Theorems and Proofs

The proof uses reductio ad absurdum.

定理

There is no largest prime number.

证明.

- 1 Suppose p were the largest prime number.
- 2 Let q be the product of the first p numbers.
- **3** Then q+1 is not divisible by any of them.
- **4** But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers. \Box

Blocks

Normal block

A set consists of elements.

Alert block

2 = 2.

Example block

The set $\{1, 2, 3, 5\}$ has four elements.

Details

17 / 18

参考文献 I

Karsten Borgwardt. and Elisabetta Ghisu.

Graph Kernels, 2020.

https://arxiv.org/pdf/2011.03854v2.pdf

▶ 刘忠雨. and 李彦霖. and 周洋 深入浅出图神经网络. 机械工业出版社.2019

Petar and Cucurull, Guillem and Casanova, Arantxa and Romero, Adriana and Lio, Pietro and Bengio, Yoshua

Graph attention networks, 2017.

https://arxiv.org/pdf/1710.10903.pdf

Kipf, Thomas N and Welling, Max

Semi-supervised classification with graph convolutional networks, 2016.

https://arxiv.org/pdf/1609.02907.pdf?source=post_page-----

《*Semi-Supervised Classification with Graph Convolutional Networks*》阅读笔记, 2018, 知乎. https://zhuanlan.zhihu.com/p/31067515

RankFan Beamer 2021年7月18日

Thanks!