- **1.** Let (a_n) and (b_n) be sequences of numbers such that $a_n \le b_n$ for all n.
 - (a) Give a carful proof that,

$$\limsup_{n\to\infty} a_n \le \limsup_{n\to\infty} b_n$$

Proof. Let (a_n) and (b_n) be sequences of numbers such that $a_n \le b_n$ for all n. Now let $A_n = \sup\{a_n, a_{n+1}, a_{n+2}, \ldots\}$ and $B_n = \sup\{b_n, b_{n+1}, b_{n+2}, \ldots\}$. Note that since $a_n \le b_n$ for all n it follows from the definition of the supremum that $A_n \le B_n$ for all n. By the definition of $\lim \sup$ we know that,

$$\limsup_{n\to\infty} a_n = \inf_{n\geq 1} A_n, \qquad \limsup_{n\to\infty} b_n = \inf_{n\geq 1} B_n.$$

Since $A_n \leq B_n$ for all n it must follows that

$$\limsup_{n\to\infty} a_n = \inf_{n\geq 1} A_n \leq \inf_{n\geq 1} B_n = \limsup_{n\to\infty} b_n.$$

(b) Show that it need not be true that

$$\limsup_{n\to\infty} a_n \leq \liminf_{n\to\infty} b_n$$

Solution:

Consider the following pair of sequences,

$$b_n = (-1)^n$$
 $a_n = \begin{cases} -\frac{1}{n}, n \text{ is odd} \\ -1, n \text{ is even} \end{cases}$

Note these sequences satisfy $a_n \le b_n$ for all n with the property that $\limsup_{n\to\infty} a_n = 0 > -1 = \liminf_{n\to\infty} b_n$.

2. Carothers 8.53 Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous and that $f(x) \to 0$ as $x \to \pm \infty$. Prove that f is uniformly continuous.

Proof. Let $\epsilon > 0$. Since $f(x) \to 0$ as $x \to \pm \infty$ there exists a $K \in \mathbb{R}$ such that for all $|x| \ge K$ we know that,

$$|f(x)| < \epsilon$$
.

Now recall that $f|_{[-K,K]}$ is a continuous function on a compact interval, and therefore it must be uniformly continuous. Consider the appropriate $\delta > 0$ for our given ϵ . To extend uniform continuity to all of $\mathbb R$ without loss of generality consider $x \in [-K,K]$ and $|y| \geq K$, such that $|x-y| \leq \delta$

$$|f(x) - f(y)| \le |f(x) - f(K)| + |f(K) - f(y)|$$

$$\le |f(x) - f(K)| + |f(K) - 0| + |0 - f(y)| < 3\epsilon.$$

- **3.** Determine if the following function are continuous. [You are welcome to use the Cauchy-Schwarz inequality for integrals].
 - (a) $F: (C[0,1], L^{\infty}) \to \mathbb{R}$ defined by F(f) = f(0).

Solution:

First we will demonstrate that F is a linear operator. Let $f, g \in C[0, 1]$ and $\alpha, \beta \in \mathbb{R}$, and note that,

$$F(\alpha f + \beta g) = \alpha f(0) + \beta g(0) = \alpha F(f) + \beta F(g).$$

Now to demonstrate continuity we will show that this linear operator is bounded. Let $f \in C[0, 1]$ and note that,

$$|F(f)| = |f(0)| \le \max_{a \le x \le b} |f(x)| = ||f||.$$

Thus f is a bounded linear operator and is therefore continuous.

(b)
$$W: (C[0,1], L^2) \to \mathbb{R}$$
 defined by $W(f) = \int_0^1 f$.

Solution:

Again we demonstrate that W is a linear functional. Let $f, g \in (C[0, 1], L^2)$ and $\alpha, \beta \in \mathbb{R}$, and note that,

$$W(\alpha f + \beta g) = \int_0^1 \alpha f(x) + \beta g(x) dx = \alpha \int_0^1 f(x) dx + \beta \int_0^1 g(x) dx = \alpha W(f) + \beta W(g).$$

Let g(x) be a constant function with a value of 1 over C[0, 1] and by the Cauchy-Schwarz for integral we get the following,

$$\left| \int_0^1 f(x)dx \right| = \left(\left(\int_0^1 f(x)dx \right)^2 \right)^{1/2} = \left(\left(\int_0^1 f(x)g(x)dx \right)^2 \right)^{1/2}$$

$$\leq \left(\int_0^1 f(x)^2 dx \int_0^1 g(x)^2 dx \right)^{1/2} = \left(\int_0^1 f(x)^2 dx \right)^{1/2} = ||f||_2$$

Thus W is a bounded linear map and is therefore continuous.

(c)
$$G: (C[0,1], L^1) \to (C[0,1], L^2)$$
 defined by $G(f) = f$

Solution:

(d) $H: (C[0,1], L^2) \to (C[0,1], L^1)$ defined by H(f) = f

Solution:

4. Carothers 10.20 $C^{(1)}[a,b]$ is the vector space of all functions $f:[a,b] \to \mathbb{R}$ having a continuous first derivative on [a,b]. Show that $C^{(1)}[a,b]$ is complete under the norm $||f||_{C^{(1)}} = \max_{a \le x \le b} |f(x)| + \max_{a \le x \le b} |f'(x)|$.

Proof. Let $(f_n) \subseteq (C^{(1)}[a,b], \|\cdot\|_{C^{(1)}})$ be a Cauchy sequence of functions. Note that $(f'_n) \subseteq C[a,b]$, and further note that since f_n is Cauchy with respect to $\|\cdot\|_{C^{(1)}}$ it follows that for all $\epsilon > 0$ there exists an N such that if $n, m \ge N$ we know that,

$$\begin{split} \|f_n - f_m\|_{C^{(1)}} &= \max_{a \le x \le b} |f_n(x) - f_m(x)| + \max_{a \le x \le b} |f'_n(x) - f'_m(x)|, \\ &= \|f_n(x) - f_m(x)\|_{\infty} + \left\|f'_n(x) - f'_m(x)\right\|_{\infty}, \\ &< \epsilon. \end{split}$$

Therefore an N can be chosen to make, $||f_n(x) - f_m(x)||_{\infty}$ and $||f'_n(x) - f'_m(x)||_{\infty}$ arbitrarily small in C[a,b] with respect to L^{∞} . Therefore (f_n) and (f'_n) are Cauchy in C[a,b]. Since C[a,b] is complete there exists an $f,g \in C[a,b]$ such that $f_n \to f$ and $f'_n \to g$ uniformly with respect to L^{∞} . It now follows by Theorem 10.7 that f is a differentiable function on [a,b], and that f'=g. Now we must show that $f_n \to f$ uniformly under $\|\cdot\|$

What is left to show is that $f \in C^{(1)}[a,b]$ and $f_n \to f$ with respect to $C^{(1)}[a,b]$. Let $\epsilon > 0$ and note that since $f_n \to f$ and $f'_n \to f'$ uniformly with respect to L^{∞} there exists an N such that if $n \ge N$ then for all x, $||f_n(x) - f(x)||_{\infty} < \epsilon$ and $||f'_n(x) - f'(x)||_{\infty} < \epsilon$ so it follows that,

$$||f_n - f||_{C^{(1)}[a,b]} = ||f_n(x) - f(x)||_{\infty} + ||f'_n(x) - f'(x)||_{\infty}$$

$$< 2\epsilon.$$

5. Carothers 10.33 Define I(x) = 0 for $x \le 0$ and I(x) = 1 for x > 0. Given sequences (x_n) and (c_n) in \mathbb{R} , with $\sum_{n=1}^{\infty} |c_n| < \infty$, show that $f(x) = \sum_{n=1}^{\infty} c_n I(x - x_n)$ defines a bounded function on \mathbb{R} that is continuous except, possibly at the x_n .

Proof. Let $\sum_{n=1}^{\infty} |c_n| = M$ and note that for all $x \in \mathbb{R}$ it follows that,

$$|f(x)| = \left| \sum_{n=1}^{\infty} c_n I(x - x_n) \right| \le \left| \sum_{n=1}^{\infty} c_n \right| \le \sum_{n=1}^{\infty} |c_n| = M.$$

Note that we have shown f is a well-defined and bounded function. What is left to show is that f is continuous on $\mathbb{R} \setminus (x_n)$.

First let $x \in \mathbb{R} \setminus (x_n)$, $\epsilon > 0$ and note that since $\sum_{n=1}^{\infty} |c_n| < \infty$ there exists an N large enough such that $\sum_{n=N+1}^{\infty} |c_n| < \epsilon$, also note that each function $c_n I(x-x_n)$ is continuous at x, so there exists a δ_n such that when $0 < |x-y| < \delta_n$, it follows that,

$$|c_n I(x - x_n) - c_n I(y - x_n)| < \epsilon.$$

Considering $\delta = \min_{1 \le n \le N} \{\delta_n\}$ we find that when $0 < |x - y| < \delta$,

$$|f(x) - f(y)| = \left| \sum_{n=1}^{\infty} c_n I(x - x_n) - \sum_{n=1}^{\infty} c_n I(y - x_n) \right|$$

$$= \left| \sum_{n=1}^{\infty} c_n I(x - x_n) - c_n I(y - x_n) \right|$$

$$\leq \sum_{n=1}^{\infty} |c_n I(x - x_n) - c_n I(y - x_n)|$$

$$= \sum_{n=1}^{N} |c_n I(x - x_n) - c_n I(y - x_n)| + \sum_{n=N+1}^{\infty} |c_n I(x - x_n) - c_n I(y - x_n)| < (N+1)\epsilon.$$

6. Let X be a compact metric space, and let χ be the set of non-empty closed subsets of X. If $a \in X$ and $B \subseteq X$, we define $d(a, B) = \inf_{b \in B} d(a, b)$. We define a metric, called the Hausdorff distance, on χ by,

$$H(A,B) = \sup_{a \in A} d(a,B) + \sup_{b \in B} d(b,A).$$

(a) Suppose $X \subseteq \mathbb{R}^2$ is the closed ball of radius 100, A is the closed square with side length 1 centered at the origin, and B is the closed ball of radius 1/4 centered at the point (1/2, 1/2). Draw a picture of the arrangement and compute H(A, B). (No rigor here please!)

Solution:

(b) Show that H is a metric on χ .

(a)
$$0 \le H(A, B) < \infty$$
 for all pairs $A, B \in \chi$

Proof. This property is inherited from X being a metric space. For a given pair of closed sets $A, B \in \chi$ we know that since $0 \le d(b, a) < \infty$ for all $a, b \in X$,

$$H(A,B) = \sup_{a \in A} \inf_{b \in B} d(a,b) + \sup_{b \in B} \inf_{a \in A} d(b,a) < \infty.$$

(b) H(A, B) = 0 if and only if A = B

Proof. Suppose A = B, then clearly the set $\{d(a, B) : a \in A\}$ is all zeros and similarly with $\{d(b, A) : b \in B\}$. So therefore,

$$H(A,B) = \sup_{a \in A} d(a,B) + \sup_{b \in B} d(b,A) = 0$$

Proof. Suppose $A \neq B$, then without loss of generality there exists some $x \in B$ such that $x \notin A$. Now clearly $0 < \inf_{a \in A} d(x, a) \le \sup_{b \in B} d(b, A)$ and therefore $H(A, B) \neq 0$

(c) H(B, A) = H(A, B) for all $A, B \in \chi$,

Proof. Clearly this follows since,

$$H(A,B) = \sup_{a \in A} d(a,B) + \sup_{b \in B} d(b,A) = \sup_{b \in B} d(b,A) + \sup_{a \in A} d(a,B) = H(B,A).$$

(d) $H(A, B) \le H(A, C) + H(C, B)$ for all $A, B, C \in \chi$.

Proof. First note that since X is a metric space it follows that, if we let $c \in C$ then for all $a \in A$ and $b \in B$,

7. Show that the previous space χ in the previous problem is totally bounded.

Proof. Let X be a compact metric space, and let χ be the set of non-empty closed subsets of X. Let $\epsilon > 0$ and note that since X is compact it is also totally bounded so there exists ϵ -net with finitely many points $\{x_i\}_{i=1}^N$ such that $X \subseteq \bigcup_{i=1}^N B_{\epsilon}(x_i)$.

It is not clear to me how to write/ describe the ϵ -net for χ from here. I know I want each point of the ϵ -net for χ to look like a union of ϵ -balls from my ϵ -net of X. I want this since any point in χ , is really a closed set in X which can be covered within ϵ -Hausdorff distance by a union of ϵ -balls from my ϵ -net of X. I guess what would be left to show is that the set of all such points for my proposed ϵ -net for χ is finite, which would have to come from the fact that ϵ -net for X is finite. Then finally we would have that χ is totally bounded.

8. Let $C^{2\pi}$ denote the continuous 2π -periodic functions on \mathbb{R} . Let $f \in C^{2\pi}$, and define

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx.$$

for $n = 0, 1, 2, \dots$

(a) Suppose $h \in C^{2\pi}$ and,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) \cos(nx) dx = 0, \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) \sin(nx) dx = 0$$

for n = 0, 1, 2, ... Show that h = 0. Hint: See Application 11.6

Proof. Since $h \in C^{2\pi}$, applying Weierstrass' Second Theorem, we know that there exists a sequence of trig polynomial (T_n) such that $T_n \to h$ uniformly on \mathbb{R} . Now note that $(h)(T_n) \to h^2$ uniformly on \mathbb{R} . To see this let $\epsilon > 0$ and note that since $T_n \to h$ uniformly there exists an N such that for all $n \geq N$ it follows that for all $x \in \mathbb{R}$,

$$|T_n(x) - h(x)| < \epsilon$$
.

However since $h \in C^{2\pi}$, we know that h is bounded so $||h||_{\infty} = M < \infty$ and therefore it also follows that for all $x \in \mathbb{R}$,

$$|h(x)T(x) - (h(x))^2| = |h(x)(T(x) - h(x))| = |h(x)||T_n(x) - h(x)| < M\epsilon.$$

Now since $(h)(T_n) \to h^2$ uniformly on \mathbb{R} it also follows that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) T_n(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} h^2(x) dx$$

Note that we can define $T_n(x)$ by some pair of sequences of real numbers a_n and b_n where,

$$T(x) = \sum_{k=0}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

By substitution we get the following,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) \left(\sum_{k=0}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right) \right) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=0}^{n} \left(a_k h(x) \cos(kx) + b_k h(x) \sin(kx) \right) dx$$

and by linearity of the integral it follows that,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) T_n(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=1}^{n} \left(a_k h(x) \cos(kx) + b_k h(x) \sin(kx) \right) dx =$$

$$\sum_{k=1}^{n} a_k \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) \cos(kx) dx \right) + b_k \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} h(x) \sin(kx) dx \right) = 0$$

Thus it follows that,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} h^2(x) dx = 0.$$

Since h is continuous, non-zero function values are forced to contribute to the size of integral and since the integral of h^2 on $[-\pi, \pi]$ is 0 it must be the case that h(x) = 0 on $[-\pi, \pi]$ and since $h \in C^{2\pi}$ we know that h(x) = 0 on \mathbb{R} .

(b) Suppose that $\sum_{n=1}^{\infty} |a_n| + |b_n|$ converges. Show that the series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)$$

converges uniformly to a function $g \in C^{2n}$.

Proof. First let,

$$g_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos(kx) + b_k \sin(kx)$$

Note each g_n is well-defined, since for a fixed $x \in \mathbb{R}$,

$$g_{n}(x) \leq \left| \frac{a_{0}}{2} + \sum_{k=1}^{n} a_{k} \cos(kx) + b_{k} \sin(kx) \right|,$$

$$\leq \left| \frac{a_{0}}{2} \right| + \left| \sum_{k=1}^{n} a_{k} \cos(kx) + b_{k} \sin(kx) \right|,$$

$$\leq \left| \frac{a_{0}}{2} \right| + \sum_{k=1}^{n} |a_{k}| |\cos(kx)| + |b_{k}| |\sin(kx)|,$$

$$\leq \left| \frac{a_{0}}{2} \right| + \sum_{k=1}^{n} |a_{k}| + |b_{k}| < \infty.$$

Let g be the pointwise limit of g_n , which is also well defined since for a fixed $x \in \mathbb{R}$,

$$g(x) \le \left| \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx) \right|,$$

$$\le \left| \frac{a_0}{2} \right| + \left| \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx) \right|,$$

$$\le \left| \frac{a_0}{2} \right| + \sum_{n=1}^{\infty} |a_n| |\cos(nx)| + |b_n| |\sin(nx)|,$$

$$\le \left| \frac{a_0}{2} \right| + \sum_{n=1}^{\infty} |a_n| + |b_n| < \infty.$$

Note that since each $g_n \in C^{2\pi}$ we get that,

$$g(-\pi) = \lim_{n \to \infty} g_n(-\pi) = \lim_{n \to \infty} g_n(\pi) = g(\pi),$$

So we find that $g \in C^{2\pi}$. Now what is left to show is that $g_n \to g$ uniformly on \mathbb{R} . Let $\epsilon > 0$ and choose N such that $\sum_{k=N}^{\infty} |a_k| + |b_k| < \epsilon$ and note that for all $n \ge N$ and all $x \in \mathbb{R}$ it follows that,

$$|g_{n}(x) - g(x)| = \left| \left(\frac{a_{0}}{2} + \sum_{k=1}^{n} a_{k} \cos(kx) + b_{k} \sin(kx) \right) - \left(\frac{a_{0}}{2} + \sum_{k=1}^{\infty} a_{k} \cos(kx) + b_{k} \sin(kx) \right) \right|$$

$$= \left| \sum_{k=n+1}^{\infty} a_{k} \cos(kx) + b_{k} \sin(kx) \right|$$

$$\leq \sum_{k=n+1}^{\infty} |a_{k} \cos(kx) + b_{k} \sin(kx)|$$

$$\leq \sum_{k=n+1}^{\infty} |a_{k}| |\cos(kx)| + |b_{k}| |\sin(kx)|$$

$$\leq \sum_{k=n+1}^{\infty} |a_{k}| + |b_{k}| \leq \epsilon$$

(c) Recall the function *g* just defined. Let

$$\hat{a}_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos(nx) dx, \quad \hat{b}_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin(nx) dx.$$

Show that $a_n = \hat{a}_n$, and $b_n = \hat{b}_n$ for all n.

Proof. We will begin by demonstrating $a_n = \hat{a}_n$ noting that by a similar argument we can also conclude that $b_n = \hat{b}_n$. Recall $g_n(x)$ and define the following,

$$\hat{a}_{n,N} = \frac{1}{\pi} \int_{-\pi}^{\pi} g_N(x) \cos(nx) dx.$$

First we will demonstrate that whenever $N \ge n$ it is the case that $\hat{a}_{n,N} = a_n$ and then we will demonstrate that $\lim_{N\to\infty} \hat{a}_{n,N} = \hat{a}_n$ which will then allow us to conclude that $\hat{a}_n = a_n$.

Now consider the following expansion of $\hat{a}_{n,N}$ by the linearity of the integral,

$$\hat{a}_{n,N} = \frac{1}{\pi} \left(\frac{a_0}{2} \int_{-\pi}^{\pi} \cos(nx) dx + \sum_{k=1}^{N} \left(a_k \int_{-\pi}^{\pi} \cos(kx) \cos(nx) dx \right) + \sum_{k=1}^{N} \left(b_k \int_{-\pi}^{\pi} \sin(kx) \cos(nx) dx \right) \right)$$

We will proceed with an understanding that integrals of the following forms where $m \in \mathbb{Z}$, evaluate to zero,

$$\int_{-\pi}^{\pi} \sin(mx)dx = \frac{1}{m} [-\cos(m\pi) + \cos(-m\pi)] = \frac{1}{m} [-\cos(m\pi) + \cos(m\pi)] = 0.$$

$$\int_{-\pi}^{\pi} \cos(mx) dx = \frac{1}{m} [\sin(m\pi) - \sin(-m\pi)] = \frac{1}{m} [0] = 0.$$

Now consider that when $k \neq n$ we get the following by the angle sum identities,

$$a_k \int_{-\pi}^{\pi} \cos(kx) \cos(nx) dx = \frac{a_k}{2} \int_{-\pi}^{\pi} \cos((k+n)x) + \cos((k-n)x) dx$$
$$= \frac{a_k}{2} \left(\int_{-\pi}^{\pi} \cos((k+n)x) dx + \int_{-\pi}^{\pi} \cos((k-n)x) dx \right)$$
$$= \frac{a_k}{2} (0) = 0,$$

$$b_k \int_{-\pi}^{\pi} \sin(kx) \cos(nx) dx = \frac{b_k}{2} \int_{-\pi}^{\pi} \sin((k+n)x) + \sin((k-n)x) dx$$
$$= \frac{b_k}{2} \left(\int_{-\pi}^{\pi} \sin((k+n)x) dx + \int_{-\pi}^{\pi} \sin((k-n)x) dx \right)$$
$$= \frac{b_k}{2} (0) = 0.$$

Now when k = n, we get the following by the half-angle identity,

$$a_n \int_{-\pi}^{\pi} \cos^2(nx) dx = \frac{a_k}{2} \int_{-\pi}^{\pi} 1 + \cos(2nx),$$

$$= \frac{a_n}{2} \left(\int_{-\pi}^{\pi} 1 + \int_{-\pi}^{\pi} \cos(2nx) \right),$$

$$= \frac{a_n}{2} (2\pi),$$

$$= a_n \pi.$$

Applying the angle sum identities again we also find that,

$$b_n \int_{-\pi}^{\pi} \sin(nx) \cos(nx) dx = \frac{b_n}{2} \int_{-\pi}^{\pi} \sin(2nx) dx = \frac{b_n}{2} (0) = 0.$$

Putting our findings together we get that whenever $N \ge n$ it follows that,

$$\hat{a}_{n,N} = \frac{1}{\pi} \left(a_n \pi \right) = a_n.$$

Now we must show that $\lim_{N\to\infty} \hat{a}_{n,N} = \hat{a}_n$. Let $\epsilon > 0$ and recall that $g_n \to g$ uniformly and therefore there exists an M such that for all $n \ge M$ and $x \in \mathbb{R}$ we know that,

$$|g_n(x) - g(x)| = \left| \sum_{k=n+1}^{\infty} a_k \cos(kx) + b_k \sin(kx) \right| < \epsilon$$

so consider $N \ge M$ and we can conclude that,

$$\begin{aligned} \left| \hat{a}_{n,N} - \hat{a}_n \right| &= \left| \frac{1}{\pi} \int_{-\pi}^{\pi} g_N(x) \cos(nx) dx - \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos(nx) dx \right| \\ &= \left| \frac{1}{\pi} \int_{-\pi}^{\pi} (g_N(x) - g(x)) \cos(nx) dx \right| \\ &\leq \left| \frac{1}{\pi} \right| \int_{-\pi}^{\pi} |g_N(x) - g(x)| \left| \cos(nx) \right| dx \\ &< \left| \frac{1}{\pi} \right| \int_{-\pi}^{\pi} \epsilon dx \\ &= \left| \frac{1}{\pi} \right| 2\pi\epsilon \\ &= 2\epsilon \end{aligned}$$

Therefore $\hat{a}_n = a_n$ for all n.

(d) Conclude that f = g.

Proof. First note that if $\hat{a}_n = a_n$ for all n it also follows that $\hat{a}_n - a_n = 0$ for all n, and analogously for \hat{b}_n and b_n . Now applying this identity we can conclude that,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (g(x) - f(x)) \cos(nx) dx = 0, \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} (g(x) - f(x)) \sin(nx) dx = 0$$

By part a) we can conclude that g(x) - f(x) = 0 for all $x \in \mathbb{R}$ and therefore g(x) = f(x).

Remark. In this problem you've shown that each element of $C^{2\pi}$ determines a different collection of numbers (a_n) and (b_n) . Moreover, if these sequences converge to zero so fast that the series in part 2 converges, then the Fourier series of f converges uniformly to f. This begs the question: given an arbitrary element of $C^{2\pi}$, is it true that the series in part 2 converges? This is food for thought, not food for the exam.

- **9.** Suppose $\sum |a_n|$ converges. By Carothers Exercise 10.26 we can define a function $f \in C(\mathbb{R})$ by $f(x) = \sum_{n=0}^{\infty} a_n \sin(nx)$.
 - (a) If there exists constants M > 0 and $\alpha > 2$ such $|a_n| \le \frac{M}{n^{\alpha}}$, prove that f is differentiable.

Proof. Recall the statement of Exercise 10.26 which states that if $\sum_{n=1}^{\infty} |a_n| < \infty$, then $\sum_{n=1}^{\infty} a_n \sin(nx)$ and $\sum_{n=1}^{\infty} a_n \cos(nx)$ are uniformly convergent on \mathbb{R} . Define the following,

$$f_n(x) = \sum_{k=1}^n a_k \sin(kx)$$

and by Exercise 10.26 we know that $f_n \to f$ converges uniformly. We will proceed to show that f is differentiable by applying Theorem 10.7. First we must show that each f_n is continuous and differentiable on \mathbb{R} . Clearly this is the case as each f_n is a finite sum of continuous and differentiable functions on \mathbb{R} . Now we must show that each f'_n is continuous on \mathbb{R} . Note that

$$f'_n(x) = \sum_{k=1}^n a_k \cos(kx)(k),$$

which is a finite sum of continuous functions, so clearly each f'_n is also continuous on \mathbb{R} . Now we must show that $f'_n \to g$ uniformly on \mathbb{R} , or equivalently that $\sum_{k=1}^{\infty} a_k \cos(kx)(k)$ converges uniformly. Let $M_n = \frac{M}{n^{\alpha-1}}$ and it follows by our hypothesis that for all $x \in \mathbb{R}$,

$$|a_n \cos(nx)(n)| \le |a_n| |\cos(nx)| n \le |a_n| n \le \frac{M}{n^{\alpha}} n = M_n$$

Note that since $\alpha \geq 3$ we know that $\alpha - 1 \geq 2$ and therefore,

$$\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{M}{n^{\alpha - 1}} = M \sum_{n=1}^{\infty} \frac{1}{n^{\alpha - 1}}$$

is bounded above by a convergent *p*-series and therefore by the Weirstrass *M*-test, $\sum_{k=1}^{\infty} a_k \cos(kx)(k)$ converges uniformly. Applying Theorem 10.7 we can conclude that *f* is differentiable on \mathbb{R} .

(b) Visit http://mathworld.wolfram.com/FourierSeriesTriangleWave.html. Then remark on what that has to do with the current problem.

Solution:

The Fourier series for a symmetric triangle wave with period 2L is given by,

$$f(x) = \frac{8}{\pi^2} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1)/2}}{n^2} \sin\left(\frac{n\pi x}{L}\right)$$

Applying what we've shown in part a) there is a sense that f' is relatively well behaved since the fourier coefficients of f converge,

$$\frac{8}{\pi^2} \sum_{n=1,3,5...}^{\infty} \left| \frac{(-1)^{(n-1)/2}}{n^2} \right| \le \frac{8}{\pi^2} \sum_{n=1,3,5...}^{\infty} \left| \frac{1}{n^2} \right| < \infty.$$

Now, in the examples illustrated in the article with the asymmetric triangle wave we see that derivative of the first (1/m)th and last (1/m)th distance on the 2L interval are increasing/decreasing towards $\pm \infty$. We see this represented in the equation for the fourier coefficients of these asymmetric triangle waves, We note that as we increase m the series of fourier coefficients converge slower.

Remark. This problem illustrates a special case of the general principle that the faster the Fourier coefficients of a function converge to zero, the smoother that function is. 2