EECS 203: Discrete Mathematics Winter 2024

Discussion 4 Notes

1 Definitions

- Types of Proofs:
 - Direct Proof:
 - Proof by Contraposition:
 - Proof by Contradiction:
 - Proof by Cases:
- Set:
- Universe:
- Set Operations:
 - Union $S \cup T$
 - Intersection $S \cap T$
 - Complement \overline{S}
 - Minus S-T
- Inclusion–Exclusion Principle:
- Subset:
- Proper Subset:
- Disjoint:
- Power Set:
- Cardinality:
- Cartesian Product:
- Empty Set:

2 Exercises

1. Proof by Cases/Contradiction \star

Prove that there is no rational solution to the equation $x^3 + x + 1 = 0$. **Hint:** Use the fact that 0 is an even number.

You can use the following lemmas without proving:

- Odd \times Even = Even
- $Odd \times Odd = Odd$
- Even \times Even = Even
- Odd + Even = Odd
- Odd + Odd = Even
- Even + Even = Even

2. Prime Proof *

Show that for any prime number p, $p^2 + 11$ is composite (not prime). Recall that a prime p is defined to be a natural number ≥ 2 such that p and 1 are the only factors that divide p.

3. Proving the Triangle Inequality

Prove the triangle inequality, which states that if x and y are real numbers, then $|x| + |y| \ge |x + y|$ (where |x| represents the absolute value of x, which equals x if $x \ge 0$ and equals -x if x < 0).

4. Set Exploration \star

- a) What is $|\emptyset|$?
- b) Let $A = \{1, 2, 3\}, B = \{\emptyset\}, C = \{\emptyset, \{\emptyset\}\}, D = \{4, 5\}, \text{ and } E = \{\emptyset, 5\}.$
 - i. Is $\emptyset \in A$?
 - ii. Is $\emptyset \subseteq A$?
 - iii. Is $\emptyset \in B$?
 - iv. Is $\emptyset \subseteq B$?
 - v. Is $\emptyset \in C$?
 - vi. Is $\emptyset \subseteq C$?
 - vii. What is $A \cap D$?
 - viii. What is $B \cap C$?
 - ix. What is $B \cap E$?
 - x. What is |B|, |C|, |E|?
- c) Let A and C be the sets defined above.
 - i. What is P(A)?
 - ii. What is P(C)?
 - iii. Find a formula for the size of the power set of S, |P(S)|, in terms of |S|.
 - iv. What is $C \times A$?
 - v. What is A^2 ? $(A^2 = A \times A)$
 - vi. Find a formula for the size of the Cartesian product of A and B, $|A \times B|$ in terms of |A| and |B|.

5. Double Subset Equality \star

Prove the set equivalence: $A - (B \cap C) = (A - B) \cup (A - C)$

6. Subset Proofs

Let A, B, and C be sets. Prove that

- a) $(A \cap B \cap C) \subseteq (A \cap B)$
- b) $(A-B)-C \subseteq A-C$

7. Power Sets

Can you conclude that A=B if A and B are two sets with the same power set?

8. More Power Sets \star

Determine whether each of these sets is the power set of a set, where a and b are distinct elements.

- a) Ø
- b) $\{\emptyset, \{a\}\}$
- c) $\{\emptyset, \{a\}, \{\emptyset, a\}\}$
- d) $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

9. Power Set of a Cartesian Product

Prove or disprove that if A and B are sets, then $\mathcal{P}(A \times B) = \mathcal{P}(A) \times \mathcal{P}(B)$.