

•	Mot	ivating context:
	•	Extractive industries are usually dominated by large MNEs integrated in global production networks
	2	Incentives of MNEs and internationalization might imply low linkages of the sector with the local economy
	3	This might reinforce the "resource curse" and hinder strategies of resource-based economic development

• This paper:

- Provides evidence of the general equilibrium effects of a resource boom and bust
- Characterizes the heterogeneous impacts between MNEs and Domestic firms in Local Labor Markets
- Formalizes the concept of "modern enclave" and highlight the relevance of local amenities

Methodology:

- Incorporates MNEs into a spatial equilibrium model with "Dutch Disease" and productive linkages
- Identify the local economic impacts of mining activity by using variation from predetermined geology

- Preview of (preliminary) empirical evidence:
 - The resource boom increases local population, employment, wages and rents
 - Indicative evidence of multinationals having a larger effect on rents than domestic firms
 - The resource boom is inducing a decrease in manufacturing employment
 - No preliminary evidence of a loss of productivity spillovers (TFP)
 - Evidence of a decrease in relative social welfare with larger effects from multinationals

Outline of Talk		
Introduction		
Theory		
Data		
Empirical Evidence		
Conclusions		

Background

Capacity Expansion of the Chilean Copper Industry

Background

Spatial Distribution of Cities and Mines

Background

Offshoring and the Mineral Price Boom

General setting

- Small open economy with two cities, indexed by $c \in \{a, b\}$ endowed with L_c amounts of labor
- Labor is imperfectly mobile across cities but perfectly mobile across sectors
- Three final goods sectors, indexed by $j \in \{m, l, r\}$
 - *m* tradable good (manufacturing)
 - *l* local (non-tradable) good (services)
 - *r* booming sector good (natural resources)
- One non-tradable differentiated intermediate goods sector z
- Two types of firms $k = \{DOM, MNC\}$ in each final good sector
 - Multinationals use more intensively intermediate goods than labor
 - Multinationals offshore a larger proportion of intermediate inputs
- One housing sector h, with absentee landlords, that does not require labor, with $P_{hc} = H_0 L_c^h$

The Resource Boom and Bust

A resource boom is modeled as an exogenous shock to the revenue productivity of r

- The revenue productivity of a final good sector j in city c is denoted by $X_{jc} \equiv P_{jc}A_{jc}$
- There are three time periods $t \in \{0, 1, 2\}$, where
 - t = 0 is the initial symmetric equilibrium, i.e. $X_{ra} = X_{rb}$
 - in t = 1, city a experiences a resource boom, i.e. $X_{ra} > X_{rb}$ (e.g., mine discovery or price boom)
 - in t = 1, the resource boom implies $X_{ra,t=1} > X_{ma,t=1}$
 - in t=2, the resource boom ends (resource bust), and $X_{ra}=X_{rb}$

$$t = 0$$
 $t = 1$ $t = 2$ $X_{ra} = X_{rb}$ $X_{ra} > X_{rb}$ $X_{ra} = X_{rb}$

Production

Production function can be expressed in the Dixit-Stiglitz-Ethier form, as

$$Q_{jc}^k = A_{jc}^k (\Omega_{jc}^k)^{\eta_k} \left(\frac{L_{jc}^k}{\delta_k}\right)^{\delta_k} \left(\frac{L_{zjc}^k}{1 - \delta_k}\right)^{1 - \delta_k} \tag{1}$$

where $\Omega_{ic} \equiv \lambda_{ic}^k N_{ic}^k$, $\lambda_{ic}^k \in (0,1)$, and $\eta_k \equiv \frac{(1-\delta_k)(1-\alpha)}{\alpha} = \frac{(1-\delta_k)}{\alpha}$

- The production of multinationals and domestic firms vary in the input elasticities and domestic input demand
 - MNCs use more intensively intermediate goods ($\delta_{MNC} < \delta_{DOM} \Longrightarrow \eta_{MNC} > \eta_{DOM}$)
 MNCs offshore a larger proportion of intermediate inputs ($\lambda_{ic}^{MC} < \lambda_{ic}^{DOM}$)
- Productive linkages in each city are given by

$$L_{zc}^{k} = \alpha \left(\frac{1 - \delta_{k}}{\delta_{k}} \right) \sum_{j} w_{jc} \lambda_{jc}^{k} L_{jc}^{k}$$
 (2)

Agglomeration and Learning Externalities

• Physical productivity A_{jc} evolves over time due to agglomeration effects and learning-by-doing according to

$$A_{jct+1} = A_{jct}^{\psi_j} L_{ct}^{\Lambda} L_{jct}^{\phi_j} \zeta_j \tag{3}$$

- Learning-by-doing imply that $\phi_j > 0$; i.e. sectors current productivity increases with sector past employment (equivalent to localization economies -sector-specific scale economies-)
- Agglomeration spillovers imply that $\Lambda>0$; i.e. sectors current productivity increases with past local population (equivalent to urbanization economies -cross-sectoral scale economies-)

Consumption

• Cobb-Douglass preferences over *l*, *m*, and *h*

$$U_{ic} = C_{il}^{\gamma} C_{im}^{\varrho} H_i^{\varphi} B_c \epsilon_{ic} \tag{4}$$

- Budget constraint $p_{lc}C_{il} + C_{im} + r_cH_i = w_c$
- P_{lc} is endogenous, P_m is the numeraire and $r_c = H_0 L_c^h$
- The indirect utility is

$$U_{ic} = \frac{w_c B_c \epsilon_{ic} \kappa_u}{p_{ic}^{\gamma} r_c^{\varphi}} \tag{5}$$

where ϵ_{ic} is distributed type I extreme value with scale parameter ξ^2 with $\xi \in (0,\infty)$

Equilibrium

• Assuming spatial equilibrium $u_{ic} = \overline{u}$, relative population is

$$\log \hat{L} = \rho \tau \left(\log \hat{X}_n + (1 + \eta) \log \hat{L}_n \right) + \gamma \tau \left(\log \frac{\hat{A}_l}{\hat{L}_l} - \eta \log \hat{L}_l \right) + \tau \log \hat{B}$$
 (6)

Relative wages are given by

$$\log \hat{w} = (1 - \rho \tau) \left(\log \hat{X}_n + (1 + \eta) \log \hat{L}_n \right) - \gamma \tau \left(\log \frac{\hat{A}_l}{\hat{L}_l} - \eta \log \hat{L}_l \right) - \tau \log \hat{B}$$
 (7)

And relative housing rents are

$$\log \hat{r} = \rho \tau h \left(\log \hat{X}_n + (1 + \eta) \log \hat{L}_n \right) + \gamma \tau h \left(\log \frac{\hat{A}_l}{\hat{L}_l} - \eta \log \hat{L}_l \right) + \tau h \log \hat{B}$$
 (8)

where
$$\hat{X}_n \equiv \lambda_{jc}^{\eta} \sum_{j=m,r} \hat{p}_j \hat{A}_j$$

Long-term social welfare

• Relative social welfare, assuming that the social planner only focus on permanent residents, is

$$\log U_c = \sum_t \log U_{ct} = \sum_t \zeta^t \left(\log w_{ct} - \gamma \log p_{lct} - \varphi \log r_{ct} + \log B_{ct} \right) \tag{9}$$

In equilibrium, relative population is a sufficient statistic for welfare

$$\log \hat{U} = \sum_{t} \zeta^{t} \xi \log \hat{\mathcal{L}}_{t} \tag{10}$$

Table 1: Qualitative Relative Predictions of a Resource Boom and Bust

	Overall Effects	Comparison MNEs/Domestic
Booming Period (short-term)		
Population/Employment	↑	↓
Wages/Prices (non-tradables)	↑	†
Manufacturing Employment (tradable)	↓	↓
Bust Period (long-term)		
Manufacturing Productivity (tradable)	↓	↑
Social Welfare	1	<u> </u>

Note: social welfare effects assumes amenities negatively correlated with the boom.

Data

- Workers
 - Households Surveys (cross section)
 - Chile: 2000, 2003, 2006, 2009, 2011, 2013
- Firms
 - National Tax Agency (cross section)
 - Chile: 2005-2015
 - Census of Manufactures (panel)
 - Chile: 2001-2007
- Mines
 - Mining Reports
 - Remote Sensing Data
 - LanSat L8-9, Sentinel

Measuring Local Exposure to Mining Activity

$$R_{ct} = \sum_{k} Q_{kt} \left(d_{c,k} \right)^{-1}$$

- Q_{kt} = nighttime lights by area of plants (proxy of production) of a mining site k, in year t
- $d_{c,k}$ = euclidean distance between a city c and a mining plant k

Validation Example

Empirical Strategy

$$\Delta \log Y_{ct} = \beta \log R_{ct-1} + \mathbf{X}'_{ct0}\gamma + \delta_t + \epsilon_{ct}$$

- Y_{ct} = population, employment, wages, rents, revenue, and tfp in the manufacturing sector
- R_{ct} = exposure to shocks in the mining sector
- δ_t = year fixed effects
- X_{ct} = is a vector of city/firms characteristics at the initial period
- standard errors are clustered at the regional level
- identification comes from:
 - variation in the concentration of minerals within mining plants, with first stage given by

$$\log R_{ct} = \rho \log(Minerals_{ct-1}) + \mu_{ct}$$

Instrumental Variable

$$Minerals_{ct} = P_{mt} \sum_{k} M_{ckt}$$

- P_{mt} = price of the mineral m in year t
- M_{ckt} = the intensity of mineral indices on plant k in year t (within 500km from a city c)
- Intensity of minerals in soil is measure as the median of the product of:
 - Clay Minerals Ratio (CMR)
 - Ferrous Minerals Ratio (FMR)
 - Iron Oxide Ratio (IOR)
 - Bare Soil Index (BI)

Example

Empirical Evidence

- Does the resource boom induced local growth?
 - The resource boom increases local population, employment, wages and rents ==
 - Indicative evidence of multinationals having a larger effect on rents than domestic firms \implies
- Opes the size and productivity of the tradable sector (manufacturing) shrinks?
 - The resource boom is inducing a decrease in manufacturing employment \implies
 - No preliminary evidence of a loss of productivity spillovers
- Is the resource boom welfare improving?
 - Evidence of a decrease in relative social welfare with larger effects from multinationals

Does the resource boom induced local growth?

Relative effects on local labor markets

Table 2: Relative Effects on Population and Employment

		Ch	ange in L	og Popula	tion	Change in Log Employment						
	Ove	erall	all Domestic		Multinationals		Overall		Domestic		Multinationals	
	(1) OLS	(2) 2SLS	(3) OLS	(4) 2SLS	(5) OLS	(6) 2SLS	(7) OLS	(8) 2SLS	(9) OLS	(10) 2SLS	(11) OLS	(12) 2SLS
Log Exposure	0.007 (0.004)	0.011 (0.005)	0.015 (0.004)	0.016 (0.005)	0.013 (0.006)	0.003 (0.005)	0.006 (0.001)	0.008 (0.002)	0.006 (0.002)	0.009 (0.003)	0.008 (0.003)	0.009 (0.006)
Year FE + Controls	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Adjusted R ²	0.093		0.140		0.102		0.145		0.144		0.144	
Observations	365	365	365	365	365	365	365	365	365	365	365	365
First-Stage:												
K-P F-stat		39.427		77.681		218.893		39.427		77.681		218.893
Mineral Intensity		0.792		0.628		0.514		0.792		0.628		0.514
		(0.126)		(0.071)		(0.035)		(0.126)		(0.071)		(0.035)

Note: Standard errors are clustered at the regional level. Years: 2000, 2003, 2006, 2009, 2011, 2013. All estimates include year fixed-effects and local controls.

Does the resource boom induced local growth?

Relative effects on local labor markets

Table 3: Relative Effects on Wages and Rents

		(Change in	Log Wag	es	Change in Log Rents						
	Ove	erall	Dom	estic	Multin	ationals	Ove	erall	Dom	nestic	Multin	ationals
	(1) OLS	(2) 2SLS	(3) OLS	(4) 2SLS	(5) OLS	(6) 2SLS	(7) OLS	(8) 2SLS	(9) OLS	(10) 2SLS	(11) OLS	(12) 2SLS
Log Exposure	0.004 (0.003)	0.008 (0.004)	0.004 (0.003)	0.010 (0.007)	0.005 (0.004)	0.014 (0.005)	0.021 (0.007)	0.022 (0.009)	0.010 (0.009)	0.022 (0.016)	0.031 (0.014)	0.067 (0.012)
Year FE + Controls	√	√	✓	✓	√	√	√	✓	✓	✓	√	✓
Adjusted R ²	0.785		0.785		0.785		0.757		0.900		0.901	
Observations	365	365	365	365	365	365	365	365	365	365	365	365
First-Stage:												
K-P F-stat		44.995		80.227		328.827		44.995		80.227		328.827
Mineral Intensity		0.791		0.627		0.510		0.791		0.627		0.510
		(0.118)		(0.070)		(0.028)		(0.118)		(0.070)		(0.028)

Note: Standard errors are clustered at the regional level. Years: 2000, 2003, 2006, 2009, 2011, 2013. All estimates include year fixed-effects and local controls.

Relative Effects in the Labor Market

Local Sectoral Employment

Table 4: Relative Heterogeneous Effects on Employment

					Ch	ange in Log	g Employr	nent				
			Manuf	acturing					Ser	vices		
	Ove	erall	Dom	estic	Multin	ationals	Ove	erall	Dom	nestic	Multin	ationals
	(1) OLS	(2) 2SLS	(3) OLS	(4) 2SLS	(5) OLS	(6) 2SLS	(7) OLS	(8) 2SLS	(9) OLS	(10) 2SLS	(11) OLS	(12) 2SLS
Log Exposure	-0.011	-0.039	-0.027	-0.038	-0.020	-0.053	0.010	0.012	0.016	0.013	0.017	0.003
Log Exposure	(0.010)	(0.020)	(0.017)	(0.022)	(0.014)	(0.022)	(0.006)	(0.009)	(0.009)	(0.013)	(0.017)	(0.011)
Year FE + Controls	✓	✓	✓	√	√	√	√	√	✓	√	✓	✓
Adjusted R ²	0.198		0.200		0.198		0.108		0.109		0.108	
Observations	365	365	365	365	365	365	365	365	365	365	365	365
First-Stage:												
K-P F-stat		39.427		77.681		218.893		39.427		77.681		218.893
Mineral Intensity		0.792		0.628		0.514		0.792		0.628		0.514
		(0.126)		(0.071)		(0.035)		(0.126)		(0.071)		(0.035)

Note: Standard errors are clustered at the regional level. Years: 2000, 2003, 2006, 2009, 2011, 2013. All estimates include year fixed-effects and local controls.

Relative Effects in Productivity

Aggregate Local Sectoral Productivity

Table 5: Relative Heterogeneous Effects on Aggregate Revenue

					(Change in L	.og Reven	ue				
			Manuf	acturing					Ser	vices		
	Ove	erall	Dom	estic	Multin	ationals	Ove	erall	Dom	nestic	Multin	ationals
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	OLS	2SLS	OLS	2SLS	OLS	2SLS	OLS	2SLS	OLS	2SLS	OLS	2SLS
Log Exposure	0.052	0.055	0.078	0.023	0.097	0.095	0.139	0.166	0.183	0.192	0.217	0.157
	(0.030)	(0.046)	(0.055)	(0.061)	(0.052)	(0.048)	(0.047)	(0.058)	(0.040)	(0.058)	(0.055)	(0.061)
Year FE + Controls	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Adjusted R ²	0.133		0.139		0.137		0.203		0.230		0.209	
Observations	365	365	365	365	365	365	365	365	365	365	365	365
First-Stage:												
K-P F-stat		39.875		53.598		119.803		39.875		53.598		119.803
Mineral Intensity		0.751		0.584		0.548		0.751		0.584		0.548
		(0.119)		(0.080)		(0.050)		(0.119)		(0.080)		(0.050)

Note: Standard errors are clustered at the regional level. Years: 2000, 2003, 2006, 2009, 2011, 2013. All estimates include year fixed-effects and local controls.

Relative Effects on Productivity

Table 6: Relative Effects on the Productivity of Manufacturing Firms

						Change i	n Log TFP					
									Olley-Pal	kes method	ł	
	Ove	erall	Don	nestic	Multin	ationals	Ove	erall	Don	nestic	Multin	ationals
	(1) OLS	(2) 2SLS	(3) OLS	(4) 2SLS	(5) OLS	(6) 2SLS	(7) OLS	(8) 2SLS	(9) OLS	(10) 2SLS	(11) OLS	(12) 2SLS
Log Exposure	0.060	0.088	0.078	0.023	0.097	0.095	0.048	0.051	0.025	0.017	0.075	0.067
	(0.028)	(0.033)	(0.055)	(0.061)	(0.052)	(0.048)	(0.027)	(0.031)	(0.020)	(0.022)	(0.030)	(0.036)
Year FE + Controls	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Adjusted R ²	0.037		0.139		0.137		0.030		0.029		0.029	
Observations	2,215	2,215	2,215	2,215	2,215	2,215	2,215	2,215	2,215	2,215	2,215	2,215
First-Stage:												
K-P F-stat		17.762		112.169		112.169		17.762		112.169		112.169
Mineral Intensity		0.333		0.525		0.525		0.333		0.525		0.525
		(0.079)		(0.050)		(0.050)		(0.079)		(0.050)		(0.050)

Note: Standard errors are clustered at the regional level. Years: 2000, 2003, 2006, 2009, 2011, 2013. All estimates include year fixed-effects and local controls.

Relative Effects on Welfare

$$\hat{W} = rac{1}{14} \sum_{t=2000}^{T=2013} \left[\Delta \log R_t \left(T - t + 1
ight) \left(\hat{eta}_{wage} - 0.3 \hat{eta}_{rent} - \hat{eta}_{amenity}
ight)
ight]$$

Table 7: Relative Welfare Effects

		(1)		(2)	((3)
	Aggreg	ate Effect		ced by tic Firms		ced by ationals
	OLS	2SLS	OLS	2SLS	OLS	2SLS
Wage elasticity	0.004	0.008	0.004	0.010	0.005	0.014
	(0.003)	(0.004)	(0.003)	(0.007)	(0.004)	(0.005)
Rent elasticity	0.021	0.022	0.010	0.022	0.031	0.067
	(0.007)	(0.009)	(0.009)	(0.016)	(0.014)	(0.012)
$\hat{eta}_{wage} = 0.3 \hat{eta}_{rent}$	-0.002	0.002	0.000	0.004	-0.004	-0.006
Annual average real wage (log points)	-0.002	0.002	0.000	0.002	-0.005	-0.007
Population elasticity	0.007	0.011	0.015	0.016	0.013	0.003
	(0.004)	(0.005)	(0.004)	(0.005)	(0.006)	(0.005)
Annual average population gain (log points)	0.003	0.005	0.001	0.001	0.008	0.002

Note: Period 2000-2013. Cities 73.

Conclusions

- Multinationals might reinforce the local negative impacts of a resource boom
 - Although preliminary evidence suggest that MNEs also induce positive productivity spillovers
- This could lead to an equilibrium with enclave characteristics (local growth with limited welfare gains), which
 might justify policies such as
 - Protection of the lagging sector
 - Investment in local amenities (welfare compensation)
 - An heterogeneous taxation scheme between MNEs and domestic firms
- The evidence seems to be consistent with the hypothesis of a modern enclave generated by the mining sector
- However, there is no preliminary evidence suggesting that multinational mining companies foster the enclave equilibrium more than domestic firms

 $\label{limits} \textbf{Figure 1: Patterns of Offshoring in local labor markets}$

A "modern enclave" equilibrium is characterized by

- Local Dutch Disease
- Limited local productive linkages
- Loss of productivity spillovers
- Amenities negatively correlated with the boom

Measuring Local Exposure to Mining Activity

Figure 2: Individual Plant Production

Figure 3: Total Annual Production

Exposure

Instrumental Variable

Exposure

Minerals

Figure 4: Illustration of Nighttime Lights and Spectral Indices for El Romeral, Iron Mine

5/7

Relative Effects in the Labor Market

Local Population and Employment

$$\log Y_{ct} = \beta \log R_{ct-1} + \mathbf{X'}_{ct0}\gamma + \delta_t + \epsilon_{ct}$$

Table 8: Relative Effects in Local Population and Employment

		Change in	Log Popu	ılation	C	Change in	Log Empl	oyment
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	OLS	OLS	OLS	2SLS	OLS	OLS	OLS	2SLS
Log Exposure	0.008	0.018	0.007	0.011	0.004	0.005	0.006	0.008
	(0.004)	(0.005)	(0.004)	(0.005)	(0.002)	(0.001)	(0.001)	(0.002)
Year FE		✓	✓	✓		✓	✓	✓
Local Controls			✓	✓			✓	✓
Adjusted R ²	0.028	0.133	0.093		0.000	0.147	0.145	
Observations	365	365	365	365	365	365	365	365
First-Stage:								
K-P F-stat				39.427				39.427
Mineral Intensit	y			0.792 (0.126)				0.792 (0.126)

Note: Standard errors are clustered at the regional level. Years: 2000, 2003, 2006, 2009, 2011, 2013.

Table 9: Heterogeneous Effects on Population and Employment

Panel a) Effect f	rom Dom	estic Mini	ng Compa	nies:						
		Change in	Log Popu	lation	Change in Log Employment					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
	OLS	OLS	OLS	2SLS	OLS	OLS	OLS	2SLS		
Log Exposure	0.017	0.016	0.015	0.016	0.003	0.006	0.006	0.009		
	(0.004)	(0.005)	(0.004)	(0.005)	(0.002)	(0.002)	(0.002)	(0.003)		
Year FE		✓	✓	✓		✓	✓	✓		
Local Controls			✓	✓			✓	✓		
Adjusted R ²	0.079	0.106	0.140		-0.002	0.148	0.144			
Observations	365	365	365	365	365	365	365	365		
First-Stage:										
K-P F-stat				77.681				77.681		
Mineral Concen	tration			0.628 (0.071)				0.628 (0.071)		
Panel b) Effect f	rom Mult	nationals	Mining C	ompanies:						
		Change in	Log Popu	lation	C	hange in	Log Empl	oyment		
	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)		
	OLS	OLS	OLS	2SLS	OLS	OLS	OLS	2SLS		
Log Exposure	0.012	0.015	0.013	0.003	0.003	0.007	0.008	0.009		
	(0.004)	(0.005)	(0.006)	(0.005)	(0.003)	(0.002)	(0.003)	(0.006)		
Year FE		✓	✓	✓		✓	✓	✓		
Local Controls			✓	✓			✓	✓		
Adjusted R ²	0.029	0.069	0.102		-0.002	0.147	0.144			
Observations	365	365	365	365	365	365	365	365		
First-Stage:										
K-P F-stat				218.893				218.893		
Mineral Concen	tration			0.514 (0.035)				0.514 (0.035)		