Deduzione Naturale

Calabrigo Massimo

November 12, 2019

Contents

1	Deduzione naturale		1
	1.1	Cos'è la deduzione naturale?	1
	1.2	Formule della deduzione naturale	2
	1.3	Dettagli utili per la deduzione naturale, e cose poco intuitive	3

1 Deduzione naturale

1.1 Cos'è la deduzione naturale?

La deduzione naturale è una tecnica utilizzata per trovare la conseguenza logica tra due formule A e B, e nella deduzione si scrive come $A \triangleright B$, oppure A deduce B.

Una tecnica utile per risolvere esercizi della deduzione naturale, in una formula $A \triangleright B$ è quella di procedere dalla tesi B alle ipotesi A, in modo da capire di cosa si ha bisogno per arrivare alla fine, e "ricorsivamente" costruire l'albero, ovviamente bisogna tener conto anche delle ipotesi, e quindi il modo giusto di risolvere gli esercizi è:

- 1. Guardare le ipotesi iniziali e tenerle a mente
- 2. Guardare la tesi e vedere come si può scomporre al livello sovrastante
- Continuare a scomporre le ipotesi finche si riesce, e quando ci si sente sicuri provare a sviluppare le ipotesi per ottenere le parti scomposte della tesi
- 4. Aggiungere, se servono, ipotesi che verranno successivamente scaricate, in modo da ottenere le parti scomposte della tesi, e quando si deve decidere che ipotesi aggiungere, chiedersi sempre se poi queste ipotesi potranno essere scaricate.

- 5. Fare in ogni momento un **elenco delle ipotesi da scaricare**. Se si riesce arrivare alla fine dell'esercizio con "ipotesi infinite", e poi fare un elenco di tutte le ipotesi e vedere se l'esercizio può funzionare, o ha bisogno di modifiche.
- 6. Finito

1.2 Formule della deduzione naturale

Formule normali

- 1. F, G|FandG; (and i)
- 2. FandG|F; (and e.1)
- 3. FandG|G; (and e.2)
- 4. F|ForG; (or i.1)
- 5. G|ForG; (or i.2)
- 6. $T, [F] \triangleright G|F \rightarrow G; (\rightarrow i)$
- 7. $F, F \to G|G; (\to e)$
- 8. $F, \neg F \mid \perp (\neg e)$
- 9. $[F], [G] \triangleright (FandG, H, H)|H$; (or e)
- 10. $[F] \triangleright \bot | \neg F; (\neg i)$
- 11. $\neg \neg F|F$; $(\neg \neg e)$

Formule speciali

- 1. $T \triangleright \bot |F|$
- 2. $[For \neg F]$
- 3. $T, [F] \triangleright \bot | \neg F$
- 4. $F \to G, \neg G | \neg F$

1.3 Dettagli utili per la deduzione naturale, e cose poco intuitive

1. Quando sono in una situazione di $(i\Rightarrow),$ dove normalmente la regola sarebbe

$$T, F \triangleright G | (F \rightarrow G)$$

se ho già scaricato F da un altra parte allora posso fare direttamente

$$G|(F \to G)$$

senza rifare lo scaricamento (ma devo comunque segnare affianco all linea tra $G|G \to F$, che sto facendo uno scaricamento mettendo il solito numeretto).

2. Quando sono in una situazione di ex-falso, con una formula del tipo

$$T \triangleright \bot |F$$

significa che avendo un falso, da esso posso dedurre qualsiasi formula.

3. Nella regola (or e), si puà usare come primo campo $For \neg F$, che poi verrà automaticamente scaricato.