Name: Ranjeet Gupta

Id no.: SC24M138

1. Array Operations

i) Create an empty and a full array

```
In [14]:
        import numpy as np
         empty_array = np.empty((2,3)) #Creates a 2X3 empty array with not initialized el
         print("Empty array using numpy.empty() \n", empty_array)
         empty_array = []
         print("Empty array using list", empty_array, "\n")
         full array = np.full((3, 3), 7) # Creates a 2x3 array filled with 7
         print("Full array using numpy.full() \n", full_array)
         full_array = [1] * 5
         print("Full array using list", full_array)
        Empty array using numpy.empty()
         [[6.95167060e-310 1.91515980e-095 1.05386693e-311]
         [1.05386693e-311 8.89318163e-323 1.43279037e-322]]
        Empty array using list []
        Full array using numpy.full()
         [[7 7 7]
         [7 7 7]
         [7 7 7]]
        Full array using list [1, 1, 1, 1, 1]
```

ii) Create 2 arrays, one filled with zeros and another filled with one

```
In [18]: # Array filled with zeros
zeros_array = np.zeros((3, 4), dtype=int) # Creates a 3x4 array of zeros
print(zeros_array)

# Array filled with ones
ones_array = np.ones((3, 5), dtype=int) # Creates a 3x5 array of ones
print(ones_array)
```

```
[[0 0 0 0]

[0 0 0 0]

[0 0 0 0]]

[[1 1 1 1 1]

[1 1 1 1 1]
```

iii) Perform matrix multiplication between two arrays

```
In [39]: matrix_1 = np.array([[1, 2], [3, 4]])
    matrix_2 = np.array([[5, 6], [7, 8]])

# Perform matrix multiplication
    result = np.dot(matrix_1, matrix_2)
    print(result)

[[19 22]
    [43 50]]
```

iv) Convert a numpy array into csv

```
In [40]: # Create a sample NumPy array
         arr = np.array([[1, 2, 3],
                        [4, 5, 6]])
         # Save the array to a CSV file
         np.savetxt("test.csv", arr, delimiter=",", fmt='%d', header='Column1,Column2,Col
         # fmt='%d': Specifies the int format of the numbers
         # comments='': Prevents from prefixing the header with #
         print(f"Array saved to {"test.csv"}")
         import pandas as pd
         # Read the CSV file into a DataFrame
         df = pd.read csv('test.csv')
         print("DataFrame read from CSV file: \n", df)
       Array saved to test.csv
       DataFrame read from CSV file:
           Column1 Column2 Column3
               1 2
                        5
       1
                4
                                  6
```

v) Plot line graph from NumPy array

```
import matplotlib.pyplot as plt

# Create a sample NumPy array
x = np.linspace(0, 10, 10)
y = np.sin(x)
```

```
# Plot the line graph
plt.plot(x, y)

# Add labels and a title
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Sine Wave")

plt.show() # Show the plot
```


2. Build a list that contains prime number btw 1 & 100, in 2 different ways: Using for loops and conditional if statements. Print total no. of prime numbers using a function of list and create a new list which displays these numbers in a descending order.

```
In [34]:

def find_prime_no(start, end):
    prime_numbers = []
    for num in range(start, end + 1):
        if num <= 1:
            continue
        is_prime = True
        for i in range(2, int(num)):
            if num % i == 0:</pre>
```

```
is_prime = False
    break

if is_prime:
    prime_numbers.append(num)
return prime_numbers

primes = find_prime_no(1, 100)
print(primes)
print("Total prime numbers:", len(primes))

# Create a new list with prime numbers in descending order
primes_descending = sorted(primes, reverse=True)
print("Prime numbers in descending order:", primes_descending)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
```

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
Total prime numbers: 25
Prime numbers in descending order: [97, 89, 83, 79, 73, 71, 67, 61, 59, 53, 47, 43, 41, 37, 31, 29, 23, 19, 17, 13, 11, 7, 5, 3, 2]

3. Generate an array as given ([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]), Print its dimensions, dtype.

```
In [47]: arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])
    print('Dimensions:', arr.shape)
    print('Data type:', arr.dtype)

[[ 1  2  3   4]
      [ 5  6  7   8]
      [ 9  10  11  12]
      [13  14  15  16]]
    Dimensions: (4, 4)
    Data type: int32
```

i) Extract the first row from the array

```
In [57]: first_row = arr[0,:]
    print(first_row)

[1 2 3 4]
```

ii) Extract the last column from the array.

```
In [54]: last_column = arr[: ,-1]
    print(last_column)

[ 4  8 12 16]
```

iii) Extract the subarray containing the first two rows and the last two columns.

```
In [58]: subarray = arr[:2, -2:]
    print(subarray)

[[3 4]
      [7 8]]
```

iv) Reverse the order of elements in the second row.

```
In [62]: arr[1, :] = arr[1, :][::-1]
    print(arr)

[[ 1  2  3   4]
      [ 8  7  6  5]
      [ 9  10  11  12]
      [13  14  15  16]]
```

4. For the given data that represents the monthly average precipitation and temperature of Trivandrum

1. Convert the precipitation to inches and temperature to Fahrenheit

```
In [8]: import pandas as pd
        #Read the csv file into dataframe
        filepath= r"C:\Users\Ranjeet Gupta\Downloads\Scientific Computing Lab\Lab2_triva
        df = pd.read_csv(filepath, encoding='Latin-1')
        # print(df)
        # ensure that columns are of string type, then clean and convert to numeric
        df['Precipitation / Rainfall mm '] = pd.to numeric(df['Precipitation / Rainfall
        df['Avg. Temperature °C '] = pd.to_numeric(df['Avg. Temperature °C '].astype(str
        # Convert precipitation: (1 mm = 0.0393701 inches)
        df['Precipitation inches'] = df['Precipitation / Rainfall mm '] * 0.0393701
        # Convert temperature from Celsius to Fahrenheit (F = C * 9/5 + 32)
        df['Temperature_F'] = df['Avg. Temperature °C '] * 9/5 + 32
        # # Drop the original columns if no longer needed
        # df = df.drop(columns=['Precipitation_mm', 'Temperature_C'])
        print("Converted Data:")
        print(df[['Precipitation_inches', 'Temperature_F']].head())
        # Save the updated DataFrame to a new CSV file
        output_filename = r"C:\Users\Ranjeet Gupta\Downloads\Scientific Computing Lab\co
        df.to_csv(output_filename, index=False)
```

```
print(f"Converted data saved to {output_filename}")

print("\n")
#Display the converted csv file into dataframe
df = pd.read_csv(output_filename, encoding='Latin-1')
print(df)
```

Converted Data:

	Precipitation_inches	Temperature_F
0	1.338583	78.08
1	2.244096	78.98
2	4.921263	79.88
3	7.480319	80.42
4	9,291344	79.88

Converted data saved to C:\Users\Ranjeet Gupta\Downloads\Scientific Computing Lab \converted_trivandrum_weather_data.csv

0 1 2 3 4 5 6 7 8 9 10 11	Unnamed: 0 NaN ? NaN NaN NaN NaN NaN NaN NaN NaN N	Unnamed: 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	Month January February March April May June July August September October November December	Avg. To	26 26 26 25 25 25 25 25	.6 (78) °F .1 (78.9) °F .6 (79.8) °F .9 (80.4) °F .6 (79.8) °F .4 (77.7) °F	
0 1 2 3 4 5 6 7 8 9 10 11	Min. Temper	22.2 22.6 23.7 24.8 24.9 24 23.6 23.5 23.6 23.5 23.1	°C (71.9) °C (72.7) °C (74.6) °C (76.6) °C (76.8) °C (75.3) °C (74.5) °C (74.4) °C (74.4) °C (74.4)	°F °F °F °F °F °F °F °F	x. Temperatur	e °C (°F) \ 29.6 °C \ 30.1 °C \ 30 °C \ 29.6 °C \ 29.6 °C \ 27.4 °C \ 27.1 °C \ 27.1 °C \ 27.6 °C \ 27.9 °C \ 28.7 °C \ 28.7 °C	
0 1 2 3 4 5 6 7 8 9 10 11	Unnamed: 8 (85.2) °F (86.2) °F (86) °F (85.3) °F (83.9) °F (81.4) °F (80.7) °F (80.8) °F (81.7) °F (82.2) °F (82.6) °F (83.7) °F	Precipitat	ion / Rainf	all mm	-1.3 -2.2 -4.9 -7.5 -9.3 -12.6 -8.8 -7.3	72% 74% 80% 84% 85% 89% 88% 87% 86% 86%	\
0 1 2 3 4 5	Rainy days	(d) avg. S 4 7 14 19 19 20	oun hours (h	ours) 9.6 9.4 8.7 7.7 6.5 6.1	2 4 7 9	_inches \ .338583 .244096 .921263 .480319 .291344 .559062	

6	19	6.6	8.818902
7	18	6.7	7.322839
8	16	7.0	6.771657
9	19	7.2	12.480322
10	16	8.0	9.921265
11	8	8.9	3.346458
	Temperature_F		
0	78.08		
1	78.98		
2	79.88		
3	80.42		
4	79.88		
5	77.72		
6	77.00		
7	77.00		
8	77.54		
9	77.72		
10	77.72		
11	77.90		

2. Plot a graph of the temperature variation

```
import matplotlib.pyplot as plt

# Plot the temperature variation
plt.figure(figsize=(10, 5))
plt.plot(df['Month'], df['Temperature_F'], marker='o', linestyle='-', color='r')

# Adding titles and labels
plt.title('Monthly Temperature Variation in Trivandrum (in Fahrenheit °F)')
plt.xlabel('Month')
plt.ylabel('Temperature (°F)')
plt.xticks(rotation=45)
plt.grid(True)

# Show the plot
plt.tight_layout()
plt.show()
```


In []:	
In []:	