Umetna inteligenca 2017-2018

Seminarska naloga 1

Naloga se izvaja v parih. Zagovori bodo potekali v terminu vaj v tednu 11. 12. – 15. 12. 2017.

Na učilnici je podana datoteka "podatkiSem1.txt", ki vsebuje podatke o vremenu in onesnaženju zraka v obdobju od 2013 do 2016. Podatkovna množica vsebuje 2478 meritev.

Neodvisne spremenljivke (atributi):

Datum	Čas meritve v formatu YYYY-MM-DD
Postaja	Diskretni atribut, identifikacijska oznaka merilnega mesta
Glob_sevanje_max	Zv. atribut, najvišja vrednost globalnega sevanja med 0:00 in 7:00
Glob_sevanje_mean	Zv. atribut, povprečna vrednost globalnega sevanja med 0:00 in 7:00
Glob_sevanje_min	Zv. atribut, najnižja vrednost globalnega sevanja med 0:00 in 7:00
Hitrost_vetra_max	Zv. atribut, najvišja hitrost vetra med 0:00 in 7:00
Hitrost_vetra_mean	Zv. atribut, povprečna hitrost vetra med 0:00 in 7:00
Hitrost_vetra_min	Zv. atribut, najnižja hitrost vetra med 0:00 in 7:00
Sunki_vetra_max	Zv. atribut, najvišja hitrost sunkov vetra med 0:00 in 7:00
Sunki_vetra_mean	Zv. atribut, povprečna hitrost sunkov vetra med 0:00 in 7:00
Sunki_vetra_min	Zv. atribut, najnižja hitrost sunkov vetra med 0:00 in 7:00
Padavine_mean	Zv. atribut, povprečna količina padavin (na uro) med 0:00 in 7:00
Padavine_sum	Zv. atribut, skupna količina padavin med 0:00 in 7:00
Pritisk_max	Zv. atribut, najvišja vrednost zračnega pritiska med 0:00 in 7:00
Pritisk_mean	Zv. atribut, povprečna vrednost zračnega pritiska med 0:00 in 7:00
Pritisk_min	Zv. atribut, najnižja vrednost zračnega pritiska med 0:00 in 7:00
Vlaga_max	Zv. atribut, najvišja vrednost vlažnosti zraka med 0:00 in 7:00
Vlaga_mean	Zv. atribut, povprečna vrednost vlažnosti zraka med 0:00 in 7:00
Vlaga_min	Zv. atribut, najnižja vrednost vlažnosti zraka med 0:00 in 7:00
Temperatura_Krvavec_max	Zv. atribut, najvišja temperatura zraka na Krvavcu med 0:00 in 7:00
Temperatura_Krvavec_mean	Zv. atribut, povprečna temperatura zraka na Krvavcu med 0:00 in 7:00
Temperatura_Krvavec_min	Zv. atribut, najnižja temperatura zraka na Krvavcu med 0:00 in 7:00
Temperatura_lokacija_max	Zv. atribut, najvišja temp. zraka na merilnem mestu med 0:00 in 7:00
Temperatura_lokacija_mean	Zv. atribut, povpr. temp. zraka na merilnem mestu med 0:00 in 7:00
Temperatura_lokacija_min	Zv. atribut, najnižja temp. zraka na merilnem mestu med 0:00 in 7:00

Odvisni (ciljni) spremenljivki:

03	Zvezni atribut, maksimalna dnevna koncentracija ozona
PM10	Zvezni atribut, dnevna koncentracija prašnih delcev premera 10 μm

Cilj seminarske naloge je uporabiti metode strojnega učenja za gradnjo modelov za napovedovanje onesnaženja zraka, ustrezno ovrednotiti modele in jasno predstaviti dobljene rezultate.

Konkretne naloge, ki jih je potrebno opraviti:

1. Vizualizacija podatkov

Pripravite nekaj zanimivih grafov, ki ilustrirajo podane podatke (distribucije vrednosti, soodvisnosti med atributi, ponavljajoče se vzorce in podobno).

2. Ocenjevanje atributov

Ocenite kvaliteto podanih atributov in konstruirajte nove atribute, ki lahko izboljšajo kvaliteto zgrajenih modelov. Namig: datum je v obstoječi obliki relativno neuporaben, iz njega pa lahko izpeljemo nove atribute (npr. letni čas, dan v tednu...), ki potencialno pomagajo pri napovedovanju onesnaženja zraka.

3. Klasifikacija

Zgradite vsaj tri klasifikacijske modele za napovedovanje:

- a. maksimalne dnevne koncentracije ozona možni razredi so: NIZKA (pod 60.0), SREDNJA (med 60.0 in 120.0), VISOKA (med 120.0 in 180.0) in EKSTREMNA (nad 180.0),
- b. dnevne koncentracije prašnih delcev PM10 možni razredi so: NIZKA (do 35.0), VISOKA (nad 35.0).

4. Regresija

Zgradite vsaj tri regresijske modele za napovedovanje:

- a. maksimalne dnevne koncentracije ozona,
- b. dnevne koncentracije prašnih delcev PM10.

5. Evalvacija modelov

Zgrajene modele ustrezno ovrednotite in predstavite dobljene rezultate. Primerjajte različne modele na podlagi dosežene točnosti napovedovanja in razumljivosti delovanja.

6. Poročilo (dokument v formatu .doc ali .pdf)

V poročilu opišite vaš pristop, uporabljene modele in atribute, predstavite dosežene rezultate ter strnite zaključke na podlagi eksperimentalne evalvacije.

Za višjo oceno: primerjajte uspešnost modelov, ki se učijo samo iz meritev tekočega dne (originalna podatkovna množica), z modeli, ki se učijo iz meritev nekaj zadnjih dni (nova podatkovna množica, pri kateri so posamezne vrstice dobljene z združevanjem več zaporednih vrstic iz originalne podatkovne množice). Koliko zadnjih dni je potrebno upoštevati, da dobimo najbolj točne napovedi?

Ocenjevanje

Na končno oceno seminarske raziskovalne naloge vplivajo kvaliteta zgrajenih modelov, inovativnost in elegantnost rešitve, ambicioznost pri raziskovanju problema, argumentacija izbranih postopkov, vizualizacija in razlaga dobljenih rezultatov.