c) A cargo de los estudiantes queda el resolver la ecuación diferencial (3), y hallar la solución buscada N = f(t).

1. Realizar el experimento y colocar los detos en la tabla 1.
2. Graficar N=f(t) en el papel milimetrado y Mogaritmico. Hallar la ecuación buecada gráficamente.
3. Hallar las pendientes en 8 purtos de la curva N=f(t) obtenida experimentalmente.
3. En la tabla 2, coducar los datos de la dependencia de las pendientes de la curva $\alpha=\frac{dN}{dt}$
4. Realizar la grafica N=f(t) de la ultima gráfica resolviendo la ecuación N=f(t) de la ultima gráfica resolviendo la ecuación diferencial (3) para siquientes tim les donde N varia entre $N_0=100$ hasta N y t varia entre t=0 y t=2 on debe ser igual a la que lue encontrada

Fig. 1 Pendiente de la curva en el punto 1

Fig. 2 Dependencia de la pendiente α con respecto al valor N

4. Busque en la granca N=f(t) el valor de t, cuando N disminuye en

ACETORIS DE LOS ESTUDIANTES queda el resolver la ecuación dife BMRO7NI

- 1. Realizar el experimento y colocar los datos en la tabla 1.
- 2. Graficar N=f(t) en el papel milimetrado y semilogarítmico. Hallar la ecuación buscada gráficamente.

haliar la solución buscada N = f(t).

- Hallar las pendientes en 8 puntos de la curva N=f(t) obtenida experimentalmente. En la tabla 2, colocar los datos de la dependencia de las pendientes de la curva $\alpha = \frac{dN}{dt}$ contra N_i .
- 4. Realizar la gráfica $\,lpha\,$ vs. $\,N$ en el papel milimetrado , buscar su pendiente K y la ecuación $\alpha = f(t)$
- 5. Hallar la ecuación $N=f\left(t\right)$ de la ultima gráfica, resolviendo la ecuación diferencial (3) para siguientes límites donde N varia entre N_{θ} = 100 hasta N y tvaria entre t = 0 y t La ecuación debe ser igual a la que fue encontrada gráficamente en la primera parte de esta práctica.

PREGUNTAS

- 1. Si en el papel semilogarítmico la gráfica no es una línea recta, ¿qué procedimiento hay que realizar para hallar la ecuación gráficamente?.
- 2. ¿Cómo se buscan las pendientes de una curva?.
- 3. Determine de la gráfica obtenida y también de la ecuación, si existe algún valor de t para el cual N = 0.
- Fig. 2 Dependencia de la pendiente « con respecto al valor » 4. Busque en la gráfica $N=f\left(t\right)$ el valor de t, cuando N disminuye en