第 4 章 上下文无关语言

(Part 2 of 2)

王 鑫

wangx@tju.edu.cn

天津大学 智能与计算学部

Outline

- Context-Free Grammars
- 2 Pushdown Automata
- Non-Context-Free Languages

Context-Free Languages

regular languages 正则语言

- finite automata: DFA / NFA
- regular expressions

some simple languages, such as $\{0^n1^n\mid n\geq 0\}$, are ${\it not}$ regular languages.

Context-Free Languages

regular languages 正则语言

- finite automata: DFA / NFA
- regular expressions

some simple languages, such as $\{0^n1^n\mid n\geq 0\}$, are ${\it not}$ regular languages.

context-free languages 上下文无关语言

- pushdown automata 下推自动机
- first used in the study of human languages
- in the specification and compilation of programming languages
 - parser
 - the construction of a parser from a context-free grammar

Outline

- Context-Free Grammars
 - Formal Definition of a Context-Free Grammar
 - Examples of a Context-Free Grammar
 - Designing Context-Free Grammars
 - Ambiguity
 - Chomsky Normal Form
- 2 Pushdown Automata
- Non-Context-Free Languages

Outline

- Context-Free Grammars
- Pushdown Automata
 - Formal Definition of a Pushdown Automaton
 - Examples of Pushdown Automata
 - Equivalence With Context-Free Grammars
- 3 Non-Context-Free Languages

Pushdown Automata (PDA): we introduce a new type of computational model.

• like NFA but have an extra component called a stack.

Pushdown Automata (PDA): we introduce a new type of computational model.

- like NFA but have an extra component called a stack.
- the stack provides additional memory beyond the finite amount available in the control.

Pushdown Automata (PDA): we introduce a new type of computational model.

- like NFA but have an extra component called a **stack**.
- the stack provides additional memory beyond the finite amount available in the control.
- the stack allows PDA to recognize some nonregular languages.

PDA are equivalent in power to CFG

- two options for proving that a language is context free
 - give either a CFG generating it (generator)
 - or a PDA recognizing it (recognizer)

DFA/NFA vs. PDA

Schematic of DFA/NFA

DFA/NFA vs. PDA

Schematic of DFA/NFA

Schematic of PDA

PDA can write symbols on the stack and read them back later.

Writing a symbol "pushes down" all the other symbols on the stack.

- all access to the stack may be done only at the top: "last in, first out"
- pushing: writing a symbol on the top of the stack
- popping: removing a symbol on the top of the stack

A stack can hold an unlimited amount of information.

the language $\{0^n1^n\mid n\geq 0\}$

- a DFA/NFA is unable to recognize it.
- A PDA is able to recognize it.

Deterministic and nondeterministic PDA are *not* equivalent in power.

- Nondeterministic PDA recognize certain languages that no deterministic PDA can recognize.
- Recall that DFA and NFA do recognize the same class of languages.
- So the pushdown automata situation is different.
- We focus on nondeterministic PDA because these automata are equivalent in power to CFG.

定义 (PDA (下推自动机))

定义 (PDA (下推自动机))

定义 (PDA (下推自动机))

A **pushdown automaton** (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

 $oldsymbol{0}$ Q is a finite set of **states**,

定义 (PDA (下推自动机))

- $oldsymbol{0}$ Q is a finite set of **states**,

定义(PDA(下推自动机))

- Q is a finite set of **states**,
- \circ \circ is a finite set called the *input alphabet*,
- \circ Γ is a finite set called the **stack alphabet**,

定义(PDA(下推自动机))

- Q is a finite set of **states**,
- Σ is a finite set called the *input alphabet*,
- \circ Γ is a finite set called the **stack alphabet**,
- **4** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the *transition function*,

定义 (PDA (下推自动机))

- $oldsymbol{0}$ Q is a finite set of **states**,
- \bullet Γ is a finite set called the **stack alphabet**,
- **4** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the *transition function*,
- $\mathbf{0} \ q_0 \in Q$ is the **start state**, and

定义 (PDA (下推自动机))

- $oldsymbol{0}$ Q is a finite set of **states**,
- \bullet Γ is a finite set called the **stack alphabet**,
- **3** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the *transition function*,
- $\mathbf{0} \ q_0 \in Q$ is the **start state**, and
- **6** $F \subseteq Q$ is the set of **accept states**.

A PDA $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ computes as follows.

• It accepts input w if w can be written as $w=a_1a_2\cdots a_m$, where $a_i\in \Sigma_{arepsilon}$ and

- It accepts input w if w can be written as $w=a_1a_2\cdots a_m$, where $a_i\in \Sigma_{\varepsilon}$ and
- sequences of states $r_0, r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots, s_m \in \Gamma^*$ exist that satisfy the following three conditions.

- It accepts input w if w can be written as $w=a_1a_2\cdots a_m$, where $a_i\in \Sigma_{\varepsilon}$ and
- sequences of states $r_0, r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots, s_m \in \Gamma^*$ exist that satisfy the following three conditions.
- The strings s_i represent the sequence of stack contents that M has on the accepting branch of the computation.

- It accepts input w if w can be written as $w=a_1a_2\cdots a_m$, where $a_i\in \Sigma_{\varepsilon}$ and
- sequences of states $r_0, r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots, s_m \in \Gamma^*$ exist that satisfy the following three conditions.
- ullet The strings s_i represent the sequence of stack contents that M has on the accepting branch of the computation.

- It accepts input w if w can be written as $w=a_1a_2\cdots a_m$, where $a_i\in \Sigma_{\varepsilon}$ and
- sequences of states $r_0, r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots, s_m \in \Gamma^*$ exist that satisfy the following three conditions.
- The strings s_i represent the sequence of stack contents that M has on the accepting branch of the computation.

 - ② For $i=0,\ldots,m-1$, we have $(r_{i+1},b)\in\delta(r_i,a_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_\varepsilon$ and $t\in\Gamma^*$

- It accepts input w if w can be written as $w=a_1a_2\cdots a_m$, where $a_i\in \Sigma_{arepsilon}$ and
- sequences of states $r_0, r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots, s_m \in \Gamma^*$ exist that satisfy the following three conditions.
- The strings s_i represent the sequence of stack contents that M has on the accepting branch of the computation.

 - ② For $i=0,\ldots,m-1$, we have $(r_{i+1},b)\in\delta(r_i,a_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_\varepsilon$ and $t\in\Gamma^*$
 - $r_m \in F$

例 (PDA M_1 recognizes the language $\{0^n1^n\mid n\geq 0\}$)

Let M_1 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where

$$Q = \{q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0,1\}$$

$$\Gamma = \{0, \$\}$$

$$F = \{q_1, q_4\}$$
, and

 δ is given by the following table, wherein blank entries signify \emptyset

例 (PDA M_1 recognizes the language $\{0^n1^n \mid n \geq 0\}$)

Let M_1 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where

$$Q = \{q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, \$\}$$

$$F = \{q_1, q_4\}$$
, and

 δ is given by the following table, wherein blank entries signify \emptyset

	Input:	0			1			ε		
	Stack:	0	\$	ε	0	\$	ε	0	\$	ε
Г	q_1									$\{(q_2,\$)\}$
	q_2			$\{(q_2, 0)\}$	$\{(q_3, \boldsymbol{\varepsilon})\}$					
	q_3				$\{(q_3, \boldsymbol{\varepsilon})\}$				$\{(q_4, \boldsymbol{\varepsilon})\}$	
	q_4									

例 (PDA M_1 recognizes the language $\{0^n1^n\mid n\geq 0\}$)

Let M_1 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where

$$Q = \{q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0,1\} \ \Gamma = \{0,\$\} \ F = \{q_1, q_4\}, \text{ and }$$

State diagram for the PDA M_1

例 (PDA M_1 recognizes the language $\{0^n1^n\mid n\geq 0\}$)

Let M_1 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where

$$Q = \{q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0,1\} \ \Gamma = \{0,\$\} \ F = \{q_1,q_4\}, \ \text{and}$$

State diagram for the PDA M_1

上下文无关语言 (Part 2 of 2)

例 (PDA M_2)

A pushdown automaton that recognizes the language

$$\{a^ib^jc^k\mid i,j,k\geq 0 \text{ and } i=j \text{ or } i=k\}$$

例 (PDA M_2)

A pushdown automaton that recognizes the language

$$\{a^ib^jc^k\mid i,j,k\geq 0 \text{ and } i=j \text{ or } i=k\}$$

4 D > 4 D > 4 E > 4 E > E = 99 C

例 (PDA M_3)

A pushdown automaton that recognizes the language

$$\{ww^{\mathcal{R}} \mid w \in \{0,1\}^*\}$$

例 (PDA M₃)

A pushdown automaton that recognizes the language

定理

A language is context free if and only if some pushdown automaton recognizes it.

定理

A language is context free if and only if some pushdown automaton recognizes it.

引理

If a language is context free, then some pushdown automaton recognizes it.

定理

A language is context free if and only if some pushdown automaton recognizes it.

引理

If a language is context free, then some pushdown automaton recognizes it.

引理

If a pushdown automaton recognizes some language, then it is context free.

推论

Every regular language is context free.

推论

Every regular language is context free.

Outline

- Context-Free Grammars
- 2 Pushdown Automata
- Non-Context-Free Languages
 - The Pumping Lemma for Context-Free Languages

定理 (Pumping lemma for context-free languages 泵引理)

If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

<u>定理 (Pumping</u> lemma for context-free languages 泵引理)

If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

• for each i > 0, $uv^i x y^i z \in A$.

<u>定理 (Pumping</u> lemma for context-free languages 泵引理)

If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

- for each i > 0, $uv^i x y^i z \in A$.
- **2** |vy| > 0, and

定理 (Pumping lemma for context-free languages 泵引理)

If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

- for each $i \ge 0$, $uv^i xy^i z \in A$,
- **2** |vy| > 0, and
- $|vxy| \leq p$.