Calculating Fibonacci with reduce and map

Carlos Tavares

November 5, 2024

Hypothesis 1: Straight Sum with reduce I

Hypothesis: Calculate the Fibonacci function using a straight sum with reduce.

Solution:

```
r = reduce (lambda x, y: x+y, range (0, n+1))
```

Results:

n	0	1	2	3	4	5	6	7	8	9	10
Fibonacci(n)	0	1	1	2	3	5	8	13	21	34	55
Straight Sum	0	1	3	6	10	15	21	28	36	45	55

Table: Comparison of Fibonacci values and results from a straight sum

Conclusion: wrong!

Hypothesis 2: Straight Sum Starting in 1, 1 with map

Hypothesis: Use a straight sum starting with values 1, 1 and apply map to generate the sequence.

Solution:

```
r = reduce (lambda x,y: x+y, map (lambda x: 0 if x==0 or x == 2 else (1 if x == 1 else x), range (0, n+1)))
```

Results:

n	0	1	2	3	4	5	6	7	8	9	10
Fibonacci(n)	0	1	1	2	3	5	8	13	21	34	55
Straight Sum 1,1	0	1	1	4	8	13	19	26	34	43	53

Table: Comparison of Fibonacci values and results from a straight sum

Conclusion: wrong!

Hypothesis 3: Using pairs in reduce and map I

Hypothesis: Use pairs to store past and current results

```
if n == 0:
    r = 0
else:
    r = reduce (lambda x,_: (x [1], x[1]+x[0]), map
```

13

21

Pair combination 0 (0,1) (1,1) (1,2) (2,3) (3,5) (5,8) (8,13) (13, 21) (21,34) (34,55)

Table: Comparison of Fibonacci values and results from the combinations of pairs

([1] of each pair holds the result)

Conclusion: Correct!

Fibonacci(n)

34

55