4/14/2019 Calc Team

question 2 yiews

Daily Challenge 15.5

(Due: Saturday 9/29 at 12:00 noon Eastern)

Now that we've seen the technique of taking time derivatives of static equations to obtain dynamical equations ("related rates"), let's apply it to a nice meaty problem. This is problem 8 on CD 4.

(1) Problem: concentric circles.

The area between two varying concentric circles is at all times 9π in 2 . The rate of change of the area of the larger circle is $10\pi\frac{\text{in}^2}{s}$. How fast is the circumference of the smaller circle changing when it has area 16π in 2 ?

daily_challenge

Updated 6 months ago by Christian Ferko

the students' answer, where students collectively construct a single answer

We can let the plural radius of the larger and smaller circle be R(t) and r(t) (what an excellent usage of capitalization) respectively; we then see we can write the difference in area as $\pi R^2 - \pi r^2 = 9\pi i n^2$. We then see by the chain rule that the derivative, with respect to time, of each side of this is $\pi 2RR' - \pi 2rr' = 0$. We then see that due to the structure of the former element, we can simply substitute into this our given rate of change for the area of the larger circle; then $10\pi \frac{in}{s^2} - \pi 2rr' = 0$ or $10\frac{in}{s^2} = 2rr'$. We are also told that the area of the smaller circle at the time in questions is $16\pi in^2$ and therefore it has a radius of 4in. Therefore $10\frac{in}{s^2} = 2 \cdot 4r'$, and therefore at the time in question $\frac{5}{4}\frac{in}{s^2} = r'$, and we see by taking the first derivative of the formula for circumference ($C' = 2\pi r'$), then by inserting our changing radius in, the circumference is inscreasing by $\frac{5\pi}{4}\frac{in}{s^2} = r'$.

Updated 6 months ago by Logan Pachulski

the instructors' answer, where instructors collectively construct a single answer

Let the radius of the larger circle be R(t) and the radius of the smaller circle be r(t). The area between the two is fixed, so

$$\pi \left(R^2 - r^2\right) = 9\pi \operatorname{in}^2.$$

Differentiating both sides with respect to time, one finds

$$\pi\left(2R\dot{R}-2r\dot{r}
ight)=0.$$

We consider the time at which the rate of change of the area of the larger circle is $10\pi\frac{\mathrm{in}^2}{s}$. That is,

$$\dot{A} = 2\pi R \dot{R} = 10\pi \frac{\mathrm{in}^2}{\mathrm{s}},$$

which means that $2R\dot{R}=10\frac{\mathrm{in}^2}{\mathrm{s}}$. We are also told that, at the time in question, the smaller circle has area $\pi r^2=16\pi~\mathrm{in}^2$, which means that its radius at this time is $4~\mathrm{in}$.

Plugging in all of this data to our equation $2R\dot{R}=2r\dot{r}$, one finds

$$10\frac{\mathrm{in}^2}{\mathrm{s}} = 2 \cdot (4 \mathrm{\ in}) \cdot \dot{r},$$

from which we have that

$$\dot{r} = \frac{5}{4} \frac{\text{in}}{\text{s}}$$
.

Finally, note that we are asked how fast the *circumference* of the smaller circle is changing. If $C=2\pi r$, then $\dot{C}=2\pi \dot{r}$, so

$$\dot{C} = \frac{5\pi}{2} \, \frac{\mathrm{in}}{\mathrm{s}}.$$

Updated 6 months ago by Christian Ferko

followup discussions for lingering questions and comments