## Mécanique quantique : fentes d'Young

F. Kany. ISEN-Brest & La Croix-Rouge

## Présentation



On considère une source de lumière émettant des photons de longueur d'onde  $\lambda$  et d'impulsion  $\vec{p} = \hbar . \vec{k}$ . Ces photons arrivent sur une plaque opaque possédant deux fentes de largeur a, parallèles, distantes de d.

Un calcul purement quantique permet de montrer  $^1$  que la probabilité qu'**un** photon soit diffracté dans la direction  $\theta$  est donnée par :

$$P(\theta) = \frac{2.a}{\pi} \cdot \left[\cos^2(\phi/2) \cdot \operatorname{sinc}^2(\alpha)\right]$$

avec  $\phi = p.d.\sin(\theta)/\hbar$ ,  $\alpha = p.a.\sin(\theta)/(2.\hbar)$  et  $\mathrm{sinc}(x) = \frac{\sin(x)}{x}$ .

## Questions

- 1. Représenter la fonction  $P(\theta)$  pour  $\theta \in [-\pi/2, \pi/2]$ .
- 2. Simuler le passage de 50 000 photons à travers les deux fentes d'Young. On prendra  $a=\lambda$  et  $d=4.\lambda.$

<sup>1.</sup> https://arxiv.org/ftp/quant-ph/papers/0703/0703126.pdf