

COURSE SYLLABUS

1. COURSE TITLE

Ordinary Differential Equations

2. COURSE CODE

MATH2043

3. PRE-REQUISITE

MATH1063 Linear Algebra II and MATH1083 Calculus II

4. **CO-REQUISITE**

Nil

5. NO. OF UNITS

3

6. CONTACT HOURS

42

7. MEDIUM OF INSTRUCTION (MOI)

English

8. OFFERING UNIT

Applied Mathematics Programme, Division of Science and Technology

9. SYLLABUS PREPARED & REVIEWED BY

Prepared by: Dr. Xiaoyi CHEN; Reviewed by: Dr. Sherry ZHOU

10. AIMS & OBJECTIVES

- 1. To introduce various forms of ordinary differential equations and their solution methods using analytical techniques.
- 2. Topics include first order, second order and higher order scalar ODE, systems of first order ODE, Laplace transform for initial value problems.

11. COURSE CONTENT

Topics

- 1. Introduction
 - 1) Formulation and Classification of Differential Equations
- 2. First Order Differential Equations
 - 1) Linear Equations
 - 2) Separable Equations
 - 3) Exact Equations
 - 4) Substitution Methods
 - 5) Existence and Uniqueness Theorems
 - 6) Direction field
 - 7) Modeling with Differential Equations
- 3. Linear Differential Equations
 - 1) Homogeneous Equations with Constant Coefficients
 - 2) Theory of Linear Homogeneous Equations
 - 3) Complex Roots
 - 4) Repeated Roots; Reduction of Order
 - 5) Method of Undetermined Coefficients
 - 6) Variation of Parameters
 - 7) Modeling: Mechanical Vibrations
 - 8) Higher Order Equations
- 4. The Laplace Transform
 - 1) Definition of the Laplace Transform
 - 2) Solve Initial Value Problems
 - 3) Step Functions
 - 4) Impulse Functions
 - 5) Convolutional Integral
- 5. Systems of First Order Linear Equations
 - 1) Introduction
 - 2) Basic Theory of Systems of First Order Linear Equations
 - 3) Homogeneous Linear Systems with Constant Coefficients
 - 4) Complex Eigenvalues
 - 5) Fundamental Matrices
 - 6) Repeated Eigenvalues

7) Nonhomogeneous Linear Systems

12. <u>COURSE INTENDED LEARNING OUTCOMES (CILOS) WITH MATCHING TO PILOS</u>

Programme Intended Learning Outcomes (PILOs)

Programme Title: Bachelor of Science (Honours) in Applied Mathematics				
PILO	Upon successful completion of the Programme, students should be able to:			
PILO 1	Evaluate the principles, concepts and theories of fundamental mathematics.			
PILO 2	Identify problems solvable by applied mathematics in business or other fields and develop critical solutions using appropriate academic and professional knowledge.			
PILO 3	Use mathematical software and computer programming/algorithms to solve problems in scientific, engineering, business and other practical fields.			
PILO 4	Develop appropriate mathematical models and enhance performance of such models through comparisons and refinements of alternative approaches.			
PILO 5	Communicate and practice effectively as a professional mathematician both in team and independent working context.			

CILOs-PILOs Mapping Matrix

Course Code & Title: MATH2xx3 Ordinary Differential Equations				
CILO	Unan successful completion students should be able to	PILO(s)		
	Upon successful completion, students should be able to:	Addressed		
CILO 1	Solve ordinary differential equations PILO			
	Model certain real-life problems mathematically into system			
CILO 2	of ODE and apply classical solution techniques to find their	PILO 1-4		
	solutions.			
CILO 2	Articulate the importance of differential equations and their	PILOs 4-5		
CILO 3	applications to real-life problems.			

13. TEACHING & LEARNING ACTIVITIES (TLAS)

CILO	TLAs		
No.			
CILO 1,2	• Lectures: Three hours of lectures will be given per week. This is a		
CILO 1,2	very standard course on differential equations. Instructor will explain		

CILO	TLAs
No.	
	 the concept, definition, theory and proofs to students. Tutorials: One hour of tutorials will be given per week. Assignments will be given to students to strengthen their concepts. Solutions to assignment will be given and discussed in tutorials. Assignments and Quizzes: Assignments and quizzes will be given to students regularly to strengthen their analytical, problem solving and critical thinking skills.
CILO 3	 Group Discussion: To enhance students' ability to model realistic situations by ordinary differential equations and to solve them analytically to obtain meaningful answers, some challenging questions will be given in class. Students will be required to discuss them by groups, and instructors will guide students to solve problems. Assignments: Assignments will be given to students regularly to strengthen their analytical, problem solving and critical thinking skills.

14. ASSESSMENT METHODS (AMS)

Type of	Weighting	CILOs	Description of Assessment Tasks
Assessment		Addressed	
Methods			
	30%	1-3	Quizzes will test and reward students'
			facility with computational techniques and
Assignment & Quizzes			concepts from lectures and readings
			Assignments are designed to measure
			students' understanding of the basic theory.
	20%	3	Group project is designed to measure
Group project			students' ability to apply the knowledge
			learned in class to real life.
		1-3	The examination will test the students'
Final	50%		understanding of concepts and theorems, and
Examination			the ability to apply comprehensive
			knowledge to some practical problems.

15. TEXTBOOKS / RECOMMENDED READINGS

TEXTBOOK:

W.E. Boyce and R.C. DiPrima (2012), Elementary Differential Equations and Boundary Value Problems, 10th Edition, John Wiley & Sons

RECOMMEND READINGS:

- 1.B. Bai, D. P. Choudhury, H. I. Freedman, *Course in Ordinary Differential Equations*, Alpha Science, U.K., 2013.
- 2.Dennis G. Zill, A First Course in Differential Equations with Modelling. Applications, Cengage Learning, 10th edition, 2012.
- 3.K. A. Stroud and Dexter Booth, Differential Equations, Industrial Press, Inc., 2004.
- 4.C. Henry Edwards and David E. Penney, Differential Equations Computing and. Modelling, Pearson, 4th edition, 2007.
- 5.R. Bronson, G. B. Costa, Schaum's Outline of Differential Equations, McGraw-Hill Education; 4th edition, 2014.
- 6.W. A. Adkins, M. G. Davidson, Ordinary Differential Equations, Springer, 2012.
- 7.K. B. Howell, Ordinary Differential Equations: An Introduction to the Fundamental, CRC Press; 1st edition, 2015.
- 8.D. G. Schaeffer, J. W. Cain, Ordinary Differential Equations: Basics and Beyond, Springer; 1st edition, 2016.
- 9.J. C. Robinson, An Introduction to Ordinary Differential Equations, Cambridge University Press; 1st edition, 2004.
- 10. P. Blanchard, R. L. Devaney, G. R. Hall, Differential Equations, Cengage Learning; 4th edition, 2011.