

Auditorne vežbe AU-4[0] Audio obrada u realnom vremenu

Standalone audio obrada

Real-time audio sistem

- 1/44100 = 2.2675e-5 ~ 23micro seconds (između 2 sempla)
- Blok obrade = 16 semplova, 16*23 mikro sekunde za procesing
- Šta se dogodi ako ne stignemo u tom periodu da završimo obradu?

Real-time obrada

- □ Spoljni faktori definišu i ograničavaju brzinu audio obrade!
 - Brzina pristizanja podataka u sistem
 - Promene kontrola od strane krajnjeg korisnika
 - Drugi spoljni događaji: inicijalizacija sistema, tajmeri...
- □ DSP operativni sistemi najčešće obezbeđuju rutine (prekide) kao način da nas obaveste o spoljnim promenama u sistemu!

Rutina za blok podataka

Promena korisnički kontrola

Profiling

- □ Kako biti siguran da je obrada vremenski usklađena?
- ☐ Merenje MIPS-a (tzv. "profiling")!

Auditorne vežbe AU-4[1] Operativni sistem DSP-a CS497xx

Osnovna struktura OS-a (podsećanje)

Sprega modula sa OS-om

Slika 7.2 – Blok dijagram sprege modula sa operativnim sistemom

Osnovna struktura OS-a (sa spregama)

Slika 7.6 - Sprega dekodera sa ulazom izlazom

Tri pitanja za integraciju modula

- □ 1. Kako znati da je došlo do određenog spoljnjeg događaja tj. gde ubaciti našu obradu, a gde ubaciti inicijalizaciju?
- □ 2. Kako pristupiti sistemskim IO baferima?
- □ 3. Kako reagovati na promene kontrola krajnjeg korisnika?

1. Spoljni događaji - rutine

- □ BRICK/BLOCK rutina 16 pristiglih semplova u IO bafere, tu ubaciti obradu podataka!
- □ POST-KICK START rutina poziva se jednom, nakon inicijalizacije OS-a, tu ubaciti inicijalizaciju modula!
- BACKGROUND rutina izvršava se automatski kada se ni jedna druga rutina ne poziva, pogodna za ažuriranje MCV vrednosti!

2. Sprega sa 10 baferima

Tabela 7.2 – Pokazivači na ulazno-izlaznu sprežnu memoriju

Rastojanje od prve lokacije	Ime pokazivača	Opis			
0	X_BY_IOBuffer_Ptrs X_VY_IOBuffer_0_Ptr	Left Channel IO Buffer			
1	X_VY_IOBuffer_1_Ptr	Center Channel IO Buffer			
2	X_VY_IOBuffer_2_Ptr	Right Channel IO Buffer			
3	X_VY_IOBuffer_3_Ptr	Left Surround IO Buffer			
4	X_VY_IOBuffer_4_Ptr	Right Surround IO Buffer			
5	X_VY_IOBuffer_5_Ptr	Surround Back Left IO Buffer			
6	X_VY_IOBuffer_6_Ptr	Surround Back Right IO Buffer			
7	X_VY_IOBuffer_7_Ptr	LFE0 IO Buffer			
8	X_VY_IOBuffer_8_Ptr	Left High IO Buffer			
9	X_VY_IOBuffer_9_Ptr	Right High IO Buffer			
10	X_VY_IOBuffer_10_Ptr	Left Wide IO Buffer			
11	X_VY_IOBuffer_11_Ptr	Right Wide IO Buffer			
12	X_VY_IOBuffer_12_Ptr	Left DualZone IO Buffer			
13	X_VY_IOBuffer_13_Ptr	Right DualZone IO Buffer			
14	X_VY_IOBuffer_14_Ptr	Left Auxiliary IO Buffer			
15	X_VY_IOBuffer_15_Ptr	Right Auxiliary IO Buffer			

ASM ime: __X_BY_IOBUFFER_PTRS

Relativni offset koristiti za ostale: __X_BY_IOBUFFER_PTRS + 1, 2, N...

3. Sprega sa krajnjim korisnikom

Offset [bits]	Na	me	Control ru	uid	Type (prec	Dimer	nsion	Initial value	Comm.m	Comment
0x0000	ena	enable	enable		bool	1		true	read and w	non-zero t
Ad	d •	Single Variable Bits Structure Instan	ice >	fract unsign int unsign			led button check l none	- 1		

Slika 7.11 – Uređivač MCV tabele (dodavanje nove promenljive)