일반통계학 제 9장 분산분석

통계학 2016.1학기 정혜영

9-1 분산분석

- 1.1 분산분석(Analysis of variance: ANOVA)이란
- (1) 두 모평균의 차에 대한 검정(6장)의 확장으로 3개 이상의 모평균의 차에 대한 비교를 위한 대표적인 방법
- (2) 특성값의 분산 또는 변동을 분석하는 방법
- (3) 특성값의 변동을 제곱합으로 나타내고, 이 제곱합을 실험에 관련된 요인별로 분해하여, 오차에 비해 큰 영향을 주는 요인이 무엇인가를 찾아내는 분석 방법

(예제) 금속 가공품의 인장강도가 여러 공법에 따라 차이를 보이는가?

- 인장강도 : 특성값
- 공법: 요인
- 작업자들의 능률차이와 같이 인장강도에 영향을 주지만 아직 원인이 규명되지 않은 부분: 오차

서울대학교

9-1 분산분석

0/30/74/9/0/9

Q. 모평균의 차이에 대한 귀무가설 가설 H_0 : $\mu_1 = \mu_2 = \mu_3$ 를 검정하는데 왜 분산(변동)을 비교할까?

금속 B는 공법별로 인장강도의 평균에 차이가 있다. 금속 C는 공법별로 인장강도의 평균에 차이가 있다 고 단정하기 어려움.

- -공법별 분포에서 겹치는 부분이 많음.
- -공법 3에는 공법 2보다 인강장도가 낮은 값들이 적 지않고 공법2에도 공법1보다 인장강도가 낮은 값들 이 많이 있음.

평균들간의 차이 뿐만 아니라 집단에 속한 값들의 집단내 분산이 집단 간 평균의 차이에 대한 판단에 영향을 미치고 있음. 그렇게 되었다고 그러지의 있다. 공법 평균들 간의 분산이 크면 클수록 반면에 공법 대 분산은 작으면 작을수록, 공법 간 평균의 차이가 분명함을 알 수 있음.

금속 A는 공법내 분산은 금속B처럼 작으나 공법 평균들간의 분산 또한 작아서 공법별 분포에서 많은 부분이 서로 중복되어 공법별 평균인장강도에 대한차이가 명확하다고 단정하기 어렵다.

출처: 이영훈의 연구방법론

9-2 일원배치법 (One-way ANOVA)

- 2.1 통계적 실험
- (1) 실험단위와 처리

실험이 행해지는 개체를 실험단위라 하고, 각각의 실험단위에 특정한 실험환경 또는 실험조건을 가하는 것을 처리라고 한다.

(2) 반응변수와 인자 및 인자수준

통계적 실험에서, 실험환경이나 실험조건을 나타내는 변수를 <mark>인자</mark>라 하고, 이에 대한 반응을 나타내는 변수를 **반응변수**하고 한다. 인자가 취하는 값을 그 **인자의 수준**이라고 한다.

2.2 일원배치법 권 맛이 잘개

- 특성값에 대한 한 종류의 인자만의 영향을 조사하고자 할 때 사용
- 3개이상의 처리효과를 비교
- <mark>각 수준에서의 반복수는 같지 않아도 좋으며</mark> 보통 3~5수준, 반복수 3~10을 사용
- 실험이 <mark>랜덤하게 선택된 순서</mark>에 의해 시행되어야 하므로 완전랜덤화계획이라고도 함. (예) 금속가공품의 인장강도에 차이가 있는지의 여부를 검토하고 공법이 좋은가를 알고 싶을 때 사용함.

TH 0/2/2 7/2/

2.3 일원배치법의 자료구조

43	271
----	-----

HH

	처리1	처리2	•••	처리 <i>k</i>
	y_{11}	y_{21}		${\mathcal Y}_{k1}$
	y_{12}	y_{22}		y_{k2}
	:	:		:
	y_{1n_1}	y_{2n_2}		y_{kn_k}
평균	$\bar{y}_{1.}$	$\bar{y}_{2.}$		$ar{y}_{k.}$ 총평균 $ar{y}_{}$

 $\frac{z^2}{z^2} = \frac{z^2}{z^2}$ $x_i = \frac{z^2}{z^2} + \frac{z^2}{z^2}$

 $= \mathcal{M} + (\mathcal{M}_{i} - \mathcal{M}) + \mathcal{C}_{i}$

모형: $Y_{ij} = \mu_i + e_{ij} = \mu + (\mu_i - \mu) + e_{ij} = \mu + \alpha_i + e_{ij}, i = 1, \dots, k, j = 1, \dots, n_i, N = \sum_{i=1}^k n_i + \sum_{i=1}^k n_i \mu_i / N$: 처리효과 전체의 모평균, α_i : i번째 처리효과

• 총편차의 분해식

• 총제곱합의 분해식

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2 = \sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

$$SST (N-1) = SStr (k-1) + SSE(N-k)$$
총제곱합 = 처리제곱합(급간제곱합)+잔차제곱합(급내제곱합)

 $y_{ij} - \bar{y}_{..} = (\bar{y}_{i.} - \bar{y}_{..}) + (y_{ij} - \bar{y}_{i.})$

• 처리효과의 유의성에 대한 가설

 $H_0: \alpha_1=\alpha_2=\cdots=\alpha_k=0 \ (\Leftrightarrow \mu_1=\mu_2=\cdots=\mu_k=0) \ \text{vs} \ H_1: 적어도 한 <math>\alpha_i$ 는 0이 아니다.

- 처리효과가 유의하다면, 총제곱합 중에서 처리제곱합이 차지하는 비중이 커지고 잔차제곱합이 차지하는 비중이 작아질 것이다. 즉, F=MStr/MSE의 값이 커질 수록 처리효과가 유의하다는 증거가 강해지는 것이다. (MStr=SStr/(k-1), MSE=SSE/(N-k))
- 귀무가설 H_0 가 사실일 때, F=MStr/MSE $\sim F(k-1,N-k)$

• 분산분석표

요인	제곱합	자유도	평균제곱	F값	유의확률
처리	SStr	k-1	MSR=SSR/(k-1)	f=MStr/MSE	$P(F \ge f)$
잔차	SSE	N-k	MSE = SSE/(N-k)		
 계	SST	N - 1			

(예제) 3곳의 자동차회사에서 생산한 경승용차의 리터 당 평균주행거리를 비교하고자 한다. 같은 조건하에서 실시한 주행거리실험 결과 다음과 같다. 3곳의 자동차회사에서 생산한 경승용차의 리터 당 평균주행거리간에 차이가 있는지 유의수준 5%에서 검정하여라.

	ᄾᅩᅡ	B자동차	C자동차	
	A시당시	<u> P시당사</u>	<u> </u>	
	16.5	15.3	19	
	18	14.8	18.4	
	14.1	16.1	15.3	
	17.8		17.3	
평균	16.6	15.4	17.5	16.6

요인	제곱합	자유도	평균제곱합	F값
처리				
오자	26.02			
인세	26.02			

$$f_{0.05}(2,8) = 4.46$$

(예제) 어떤 직물의 가공시 처리액의 농도가 직물의 인장강도에 영향을 미치는지의 여부를 조사하기 위해, 네 가지 농도에서 반복 각 5회, 총 20회를 랜덤하게 처리한 후 인장강도를 측정한 결과가 아래와 같다. 이 자료에 대하여 일원배치법의 모형을 적용할 때, 농도에 따른 인장강도에 차이가 있는지를 알아보기 위한 분산분석표를 작성하고 적절한 가설을 유의수준 5%에서 검정하여라.

	Α	В	С	D		요인	제곱합	자유도	평균제곱	F값	유의확률
	47	51	50	22		처리	1826.55	3			0.0045
	58	62	38	23		잔차					
	51	31	47	28		 계	3334.55				
	61	46	27	42		V		<i>:</i> 1 4	1 F		
	46	49	23	25					ł, <i>j</i> = 1,,5 · VS <i>H</i> ₁: 적어	도 하 /	$\alpha_i \vdash 000$ 아
 평균	52.6	47.8	37.0	28.0	총평균 41.35	니다.	12	K	I. I.	— L ·	

- 분산분석의 기본 가정
- 1. 모집단은 정규분포를 따른다.
- 2. 모집단은 동일한 분산을 갖는다.
- 3. 모든 표본은 서로 독립적으로 추출한다.
- 분산 분석을 하지 않고 두 평균에 대한 t-test를 반복 시행한다면...
- 1. 두 개씩 쌍을 이루어 계산하므로 복잡해진다.
- 2. 제 1종 오류가 증가하게 된다.

9-3 반복이 없는 이원배치법 (요인이 2개)

인자 B	<i>B</i> ₁	 B_{j}	•••	B_q	평균
인자 A A ₁	<i>y</i> ₁₁	 y_{1j}	•••	y_{1q}	$\bar{y}_{1.}$
:	: 	:		:	:
A_i	y_{i2}	 y_{ij}	•••	y_{iq}	$ar{y}_{i}$.
:	:	:		:	:
A_p	y_{p1}	 y_{pj}	•••	y_{pq}	$ar{\mathcal{y}}_{p.}$
- 평균	$\bar{y}_{.1}$	 $\bar{y}_{.j}$		$\bar{\mathcal{Y}}_{.q}$	총평균 <u></u> ӯ

$$y_{i} - y_{i} = x_{i} + \beta_{j} + c_{ij}$$

$$y_{i} - y_{i}$$

$$y_{i} - y_{i}$$

$$y_{i} - y_{i}$$

$$y_{i} - y_{i}$$

• 이원배치법에서 완전랜덤화계획 : pq회의 실험을 랜덤하게 선택된 순서에 의하여 시행하는 것

9-3 반복이 없는 이원배치법

• 이원배치법의 모형

$$\begin{cases} Y_{ij} = \mu + \alpha_i + \beta_j + e_{ij}, i = 1, ..., p, j = 1, ..., q \\ e_{ij} \sim N(0, \sigma^2)$$
이고 서로 독립
$$\sum_{i=1}^p \alpha_i = 0 , \sum_{j=1}^q \beta_j = 0$$

 α_i : 인자 A의 i번째 처리효과, β_i : 인자 B의 j번째 처리효과

• 총편차의 분해식

$$y_{ij} - \bar{y}_{..} = (\bar{y}_{i.} - \bar{y}_{..}) + (\bar{y}_{.j} - \bar{y}_{..}) + (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})$$

• 총제곱합의 분해식

$$\sum_{i=1}^{p} \sum_{j=1}^{q} (y_{ij} - \bar{y}_{..})^{2} = q \sum_{i=1}^{p} (\bar{y}_{i.} - \bar{y}_{..})^{2} + p \sum_{i=1}^{q} (\bar{y}_{.j} - \bar{y}_{..})^{2} + \sum_{i=1}^{p} \sum_{j=1}^{q} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^{2}$$

$$SST (pq - 1) = SS_{A} (p - 1) + SS_{B} (q - 1) + SSE(p - 1) (q - 1)$$
총제곱합 = 요인 A의 제곱합 + 요인 B의 제곱합 + 잔차제곱합

9-3 반복이 없는 이원배치법

• 분산분석표

요인	제곱합	자유도	평균제곱	F값	유의확률
인자A	SS_A	p-1	$MS_A = SS_A/(p-1)$	$f_1 = MS_A / MSE$	$P(F \ge f_1)$
인자B	SS_B	q-1	$MS_B = SS_B/(p-1)$	$f_2 = MS_B / MSE$	$P(F \ge f_2)$
잔차	SSE	(p-1) (q-1)	MSE = SSE/(p-1)(q-1)		
계	SST	pq-1			

- 인자 A의 유의성 검정 $-H_0: \alpha_1=\alpha_2=\cdots=\alpha_p=0$ vs $H_1:$ 적어도 한 α_i 는 0이 아니다.
- 인자 B의 유의성 검정 $-H_0: \beta_1=\beta_2=\cdots=\beta_q=0$ vs $H_1:$ 적어도 한 β_j 는 0이 아니다.
- 귀무가설 H₀ 하에서

$$F = MS_A / MSE \sim F(p-1, (p-1)(q-1)), F = MS_B / MSE \sim F(q-1, (p-1)(q-1))$$

9-3 반복이 없는 이원배치법

(예제) 지역과 비료의 종류에 따라 토마토 생산량에 차이가 있는지를 확인하기 위하여 4개 지역에서 각각 A,B,C 세 종류의 비료를 적용시킨 후에 생산량을 조사한 결과 다음의 자료를 얻었다. 지역과 비료의 종류에 따라 토마토 생산량에 차이가 있는지를 유의수준 5%에서 검정하여라

				17
<u>지</u> 역	비료	A	В	С
1	지역1	42.8	52.3	48.2
	지역2	38.6	43.5	40.3
	지역3	50.2	58.7	53.5
	지역4	48.2	50.8	51.2

요인	제곱합	자유도	평균제곱	F 값
인자A	280.909	3	93.636	30.42
인자B	81.352	2	40.676	13.21
잔차	18.468	6	3.078	
계	380.729	11		
F(0, 0F	26) 514	F/0.0F 3	C) 4.7.6	

$$F(0.05, 2.6) = 5.14, F(0.05, 3.6) = 4.76$$

1)
$$H_{0}$$
: $X_{1} = X_{2} = X_{3} = X_{4} = 0$ Y_{5} Y_{1} : Y_{5} Y_{7} Y_{1} Y_{1} Y_{2} Y_{3} Y_{4} Y_{5} Y_{5} Y_{5} Y_{5} Y_{6} Y_{7} $Y_{$

HH-1 JEMPH CF2 4 52/52

到与为

4.1 반복이 있는 이원배치법의 자료구조

인자 B	$\boldsymbol{\mathit{B}}_{1}$	\boldsymbol{B}_2	•••	$\boldsymbol{B}_{\boldsymbol{q}}$	평균
인자 A 🔪				-1	
A_1	y ₁₁₁	<i>y</i> ₁₂₁	•••	y_{1q1}	$ar{y}_{1}$
	<i>y</i> ₁₁₂	<i>y</i> ₁₂₂		y_{1q2}	
	:	:		:	
	y_{11r}	y_{12r}	•••	y_{1qr}	
	$\bar{y}_{11.}$	$\bar{y}_{12.}$		\bar{y}_{1q} .	
:	:	:	:	:	:
A_p	y_{p11}	y_{p21}	•••	y_{pq1}	$ar{y}_{p}$
	y_{p12}	y_{p22}	•••	y_{pq2}	
	:	:		:	
	y_{p1r}	y_{p2r}	•••	y_{pqr}	
	$\bar{y}_{p1.}$	$\bar{y}_{p2.}$		$ar{\mathcal{y}}_{pq}$	
평균	$\bar{y}_{.1.}$	$\bar{y}_{.2.}$		$ar{\mathcal{Y}}_{.q}$.	총평균 <u></u> ӯ

- 반복이 있는 이원배치법에서
 완전랜덤화계획: pqr회의 실험을 랜덤
 하게 선택된 순서에 의하여 시행하는
 것
- 인자수준의 조합에서 생기는 효과인 교호작용을 분리하여 구할 수 있다. 교호작용은 인자 A의 효과가 인자 B의수준의 변화에 따라 변하는 모형에서 존재한다.

서울대학교

_____통계학

• 반복이 없는 이원배치법의 모집단 모형에서 $E(e_{ij}) = 0$ 이므로 $E(Y_{ij}) = \mu + \alpha_i + \beta_j$ 가 된다. $(\mu + \alpha_1 + \beta_j) - (\mu + \alpha_2 + \beta_j) = \alpha_1 - \alpha_2$ 가 되어 인자 A의 각 수준에서의 기댓값의 차이는 인자 B의 수준에 무관하게 된다. 이를 그림으로 나타내면 A의 각 수준을 연결하는 선분들이 평행하면 두 인자 A,B 사이에 교호작용이 존재하지 않음을 뜻하게 된다. A의 각 수준에서의 기대값의 차이가 B의 수준에 따라 변하게 될 때 A와 B는 교호작용이 있다고 하며이 경우에는 반복이 없 \pm 이원배치법을 사용해서는 안된다.

교호작용이 없는 경우

교호작용이 있는 경우

통계학

이원배치법의 모형 (반복이 있는 경우)

$$\begin{cases} Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}, i = 1, ..., p, j = 1, ..., q, k = 1, ..., r \\ e_{ijk} \sim N(0, \sigma^2) & \exists \exists \exists \\ \sum_{i=1}^p \alpha_i = 0, \sum_{j=1}^q \beta_j = 0, \sum_{i=1}^p \gamma_{ij} = 0, \sum_{j=1}^q \gamma_{ij} = 0 \end{cases}$$

 $lpha_i$: 인자 A의 i번째 처리효과, eta_i : 인자 B의 j번째 처리효과, γ_{ij} : 인자 A의 i번째 수준과 인 - " I LIF Z - () - () - ()))

자 B의 j번쨰 수준의 교호작용 효과

총편차의 분해식

$$y_{ijk} - \bar{y}_{...} = (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{.j.} - \bar{y}_{...}) + (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}) + (y_{ijk} - \bar{y}_{ij.})$$

• 총제곱합의 분해식

$$\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} (y_{ijk} - \bar{y}_{...})^2 = qr \sum_{i=1}^{p} (\bar{y}_{i..} - \bar{y}_{...})^2 + pr \sum_{i=1}^{q} (\bar{y}_{.j.} - \bar{y}_{...})^2 + pr \sum_{i=1}^{q} (\bar{y}_{...} - \bar{y}_{...})^2 + p$$

$$SST (pqr - 1) = SS_A (p - 1) + SS_B (q - 1) + SS_{A \times B} (p - 1) (q - 1) + SSE pq(r - 1)$$

총제곱합= 요인 A의 제곱합 + 요인 B의 제곱합 + 교호작용 제곱합+오차제곱합

• 분산분석표

요인	제곱합	자유도	평균제곱	F값	유의확률
인자A	SS_A	p-1	$MS_A = SS_A/(p-1)$	$f_1 = MS_A / MSE$	$P(F \ge f_1)$
인자B	SS_B	q-1	$MS_B = SS_B/(p-1)$	$f_2 = MS_B / MSE$	$P(F \ge f_2)$
교호작용	$SS_{A \times B}$	(p-1) (q-1)	$MS_{A\times B}=SS_{A\times B}/(p-1) (q-1)$	$f_3 = MS_{A \times B} / MSE$	$P(F \ge f_3)$
잔차	SSE	pq(r-1)	MSE = SSE/pq(r-1)		
계	SST	pqr-1			

- 교호작용의 유의성 검정 $-H_0: r_{ij}=0, i=1,...,p, j=1,...,q$ vs $H_1:$ 적어도 한 r_{ij} 는 0이 아니다.
- 귀무가설 H_0 하에서

$$F = MS_{A \times B} / \mathsf{MSE} \sim F((p-1)(q-1), pq(r-1))$$

▶ 교호작용이 존재하지 않는다면 요인 A와 요인 B의 효과를 검정 ╱╱

• 교호작용이 존재한다면 각 요인별 추가적인 검정은 실시하지 않음

(예) 리탈린(retalin)이 정상아동과 과잉운동아동에 미치는 영향을 조사

투여 ⁹ 아동	투여약 위약		리탈린		5	7.25	
저사이	50 45	6	67 60	56,5		-2.15	
정상아	55 52	58 65		<i>J 0</i> (⁹			
71 01 0 F 01	70 68		51 57	62		2.15	
과잉운동아	72 75	2	18 55	6 2			
155		<u> </u>	7/25	-1/25			
요인 	제곱합	자유도	평균제	곱 F	값		
인자A	121	1	121		8		
인자B 42.25		1	42.25		.79		
교호작용	교호작용 930.25		930.25		1.50		
잔차	잔차 181.5		15.125				
계	1275	15					

F(0.05,2,12)=0.3885, F(0.05,1,12)=4.747

(예제) 세 종류의 기계와 세 사람의 기능공이 제품품질에 미치는 영향을 조사하고자 하여 2회 반복이 있는 이원배치법에 의해 생산성을 측정한 결과 다음의 자료를 얻게 되었다. 이 자료에 대하여 이원배치법의 모형을 적용할 때, 각 인자와 교호작용의 효과에 대하여 유의수준 5%에서 검정하여라

	B ₁	B ₂	B ₃	평균
A_1	9, 14	14,16	19,22	15.67
A_2	13,16	18,26	14,18	<i>/</i> 7.5
A_3	11,12	11,17	15,16	13.67
평균	12.5	17	17.33	총평균15.61

요인	제곱합	자유도	평균제곱	F값	유의확률
인자A	44.11	2	21.055		0.1455
인자B	87.44	2			0.0387
교호작용	74.22	4			0.1744
잔차	82.51	9			
 계	288.28	17			

통계학