Social Upheaval Composite Index

A quantitative framework for measuring societal upheaval in the United States across decades, designed to objectively assess periods of political instability, institutional crisis, and social fragmentation.

Project Overview

This project develops a multi-dimensional composite index that measures social upheaval across five key components:

- Political Violence & Instability (25%)
- Institutional Trust Erosion (20%)
- Economic Stress & Inequality (15%)
- External Threats & Conflicts (20%)
- Social Fragmentation (20%)

The index provides a standardized 0-100 scale for comparing upheaval levels across different decades in American history.

Mathematical Framework

Composite Index Formula

$$CUI_d = w_p v imes PV_d + w_i t imes IT_d + w_e s imes ES_d + w_e t imes ET_d + w_s f imes SF_d$$

Where:

- ullet CUI_d = Composite Upheaval Index for decade d
- Component weights: Political Violence (25%), Institutional Trust (20%), Economic Stress (15%), External Threats (20%), Social Fragmentation (20%)

Component Calculations

Each component uses weighted event counts with caps to prevent outlier dominance:

Political Violence:

Institutional Trust:

$$PV_d = min(20A_d + 15T_d + 10R_d + 5P_d + 8G_d, 100) \ IT_d = min(25S_d + 10C_d + 15I_d + 12E_d, 100)$$

Economic Stress:

$$ES_d = min(min(M_d imes U_d, 40) + max(\Delta G_d imes 30, 0) + 15F_d, 100)$$

See /docs/mathematical_framework.md for complete formulation.

Project Structure

Installation

1. Clone the repository

git clone <repository-url> cd social_upheaval_index

1. Create virtual environment

python -m venv upheaval_env
source upheaval_env/bin/activate # On Windows: upheaval_env\Scripts\activ
ate

1. Install dependencies

pip install -r requirements.txt

Dependencies

Core Analysis

- pandas>=1.5.0 Data manipulation and analysis
- numpy>=1.21.0 Numerical computing
- scipy>=1.9.0 Statistical functions and optimization

Data Collection

- requests>=2.28.0 HTTP requests for web data
- beautifulsoup4>=4.11.0 Web scraping
- Ixml>=4.9.0 XML/HTML parser

Visualization & Analysis

- matplotlib>=3.6.0 Plotting and visualization
- seaborn>=0.11.0 Statistical visualization

• plotly>=5.10.0 - Interactive plots

Development & Testing

```
• jupyter>=1.0.0 - Interactive notebooks
```

- pytest>=7.0.0 Testing framework
- black>=22.0.0 Code formatting

Quick Start

1. Calculate Upheaval Index for a Decade

```
from src.calculators.composite_index import CompositeUpheavalIndex
# Initialize calculator
calculator = CompositeUpheavalIndex()
# Example: 1960s data
decade_1960s = {
  'political_violence': {
    'assassinations_major': 4, # JFK, MLK, RFK, Malcolm X
    'terrorist_attacks_domestic': 2,
    'riots_major': 4, # Watts, Newark, Detroit, post-MLK
    'protests_large': 5,
    'government_crises': 1
  },
  'institutional_trust': {
     'major_scandals': 1,
    'supreme_court_controversial': 2,
    'intelligence_scandals': 1,
    'electoral controversies': 0
  }
  # ... other components
}
```

```
# Calculate composite score

result = calculator.calculate(decade_1960s)

print(f"1960s Upheaval Index: {result['composite_score']:.2f}")

print(f"Component breakdown: {result['components']}")
```

2. Validate Against Historical Consensus

```
from src.validators.historical_validator import HistoricalValidator

validator = HistoricalValidator()

correlation = validator.test_historical_ranking()

print(f"Historical validation correlation: {correlation:.3f}")
```

3. Optimize Component Weights

```
from src.validators.weight_optimizer import WeightOptimizer

optimizer = WeightOptimizer()

optimal_weights = optimizer.find_optimal_weights()

print(f"Optimized weights: {optimal_weights}")
```

Data Collection

Current Test Decades

The project focuses on 5 decades for initial validation:

- 1950s (Expected LOW) Post-war stability
- 1960s (Expected HIGH) Assassinations, civil rights, Vietnam
- 1970s (Expected HIGH) Watergate, economic crisis
- 1990s (Expected MEDIUM) Economic boom but some scandals
- 2010s (Expected MEDIUM-HIGH) Financial crisis aftermath, polarization

Data Sources

- Primary: Government databases (FBI, BLS, NBER, Census)
- Secondary: Academic datasets, historical archives
- Validation: Wikipedia, news archives, scholarly sources

See /docs/data_sources.md for complete source documentation.

Validation Framework

1. Historical Consensus Test

Compares calculated rankings against expert historical consensus on most turbulent decades.

2. Component Sensitivity Analysis

Tests impact of removing individual components on overall rankings.

3. Weight Optimization

Uses correlation maximization to find optimal component weightings.

4. Robustness Testing

Validates stability across different aggregation methods and data sources.

Usage Examples

Basic Analysis

```
# Load processed data for multiple decades
from src.utils.data_loader import load_decade_data

decades_data = load_decade_data(['1960s', '1970s', '1950s'])
calculator = CompositeUpheavalIndex()

results = {}
for decade, data in decades_data.items():
    results[decade] = calculator.calculate(data)
```

```
# Rank decades by upheaval level
ranked = sorted(results.items(), key=lambda x: x[1]['composite_score'], revers
e=True)
for decade, score in ranked:
    print(f"{decade}: {score['composite_score']:.2f}")
```

Comparative Analysis

import matplotlib.pyplot as plt from src.visualizers.upheaval_plots import create_comparison_chart

Compare component contributions across decades create_comparison_chart(results) plt.show()