What is claimed is:

A compound of formula (I):

$$Z \times X \xrightarrow{H} OH R_{15} \\ R_1 R_2 R_3$$
(I)

5

20

25

30

or a pharmaceutically acceptable salt or ester thereof, wherein Z is aryl, heteroaryl or heterocyclyl, wherein said groups are optionally substituted with 1 or 2 R_{B} groups, wherein,

where R_B at each occurrence is independently selected from halogen, -OH, -OCF₃, -O-phenyl, -CN, -NR₁₀₀R₁₀₁, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, (CH₂)₀₋₃(C₃-C₇ cycloalkyl), aryl, heteroaryl, or heterocyclyl wherein, the alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, aryl, heteroaryl, orheterocyclyl groups are optionally substituted with 1 or 2 substitutents independently selected from the groupconsisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, halogen, -OH, -CN, or -NR₁₀₀R₁₀₁;

where R_{100} and R_{101} are at each occurrence are independently H, C_1 - C_6 alkyl, or phenyl;

X is -(C=0) - or $-(SO_2)$ -;

wherein R_1 is C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -CN, -CF₃, -OCF₃, -C₃₋₇ cycloalkyl, -C₁-C₄ alkoxy, amino, monodialkylamino, aryl, heteroaryl, heterocycloalkyl, wherein each aryl group is optionally substituted with 1, 2 or 3 R_{50} groups; wherein R_{50} is selected from halogen, OH, SH, CN, -CO-(C₁-C₄ alkyl), -NR₇R₈, -S(O)₀₋₂-(C₁-C₄ alkyl), C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy and C₃-C₈ cycloalkyl;

wherein the alkyl, alkenyl, alkynyl, alkoxy and cycloalkyl groups are optionally substituted with 1 or 2 substituents independently selected from the

group consisting of C_1-C_4 alkyl, halogen, OH, $-NR_5R_6$, CN, C_1-C_4 haloalkoxy, NR_7R_8 , and C_1-C_4 alkoxy; wherein R_5 and R_6 are independently H or C_1-C_6 alkyl; or 5 wherein R₅ and R₆ and the nitrogen to which they are attached form a 5 or 6 membered heterocycloalkyl ring; and wherein R₇ and R_8 are independently selected from the group consisting of H; - C_1-C_4 alkyl optionally substituted with 1, 10 2, or 3 groups independently selected from the group consisting of -OH, $-NH_2$, and halogen; $-C_3-C_6$ cycloalkyl; $-(C_1-C_4$ alkyl)- $O-(C_1-C_4 \text{ alkyl})$; $-C_2-C_4 \text{ alkenyl}$; and $-C_2-C_4$ 15 alkynyl; wherein each heteroaryl is optionally substituted with 1 or 2 R₅₀ groups; each heterocycloalkyl group is optionally wherein substituted with 1 or 2 groups that are independently R50 20 or =0; R_2 and R_3 are independently selected from -H; -F; $-C_1-C_6$ alkyl optionally substituted with a substituent 25 selected from the group consisting of -F, -OH, -C \equiv N, - CF_3 , C_1-C_3 alkoxy, and $-NR_5R_6$; $-(CH_2)_{0-2}-R_{17};$ $-(CH_2)_{0-2}-R_{18};$ $-C_2-C_6$ alkenyl or C_2-C_6 alkynyl, wherein each is optionally 30 substituted with an indepdent substituent selected from the group consisting of -F, -OH, -C \equiv N, -CF $_3$ and C $_1$ -C $_3$ alkoxy;

independent substituent selected from

cycloalkyl, optionally

substituted

the

group

 $-(CH_2)_{0-2}-C_3-C_7$

15

25

consisting of -F, -OH, -C \equiv N, -CF $_3$, C $_1$ -C $_3$ alkoxy and -NR $_5$ R $_6$; or

 R_2 , R_3 and the carbon to which they are attached form a carbocycle of three thru seven carbon atoms, wherein one carbon atom is optionally replaced by a group selected from - O_{-} , $-S_{-}$, $-SO_{2}_{-}$, or $-NR_{7}_{-}$;

where R_{17} at each occurrence is an aryl group selected from phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl and tetralinyl, wherein said aryl groups are optionally substituted with one or two groups that are independently $-C_1-C_3$ alkyl; $-C_1-C_4$ alkoxy; CF_3 ; or

 $-C_2-C_6$ alkenyl or $-C_2-C_6$ alkynyl each of which is optionally substituted with one substituent selected from the group consisting of F, OH, C_1-C_3 alkoxy; or -halogen;

-OH;

-C≡N;

 $-C_3-C_7$ cycloalkyl;

20 $-CO-(C_1-C_4 \text{ alkyl});$

 $-SO_2-(C_1-C_4 \text{ alkyl});$

where R₁₈ is a heteroaryl group selected from pyridinyl, pyrimidinyl, quinolinyl, indolyl, pryidazinyl, pyrazinyl, isoquinolyl, quinazolinyl, quinoxalinyl, phthalazinyl, imidazolyl, isoxazolyl, oxazolyl, thiazolyl, furanyl, thienyl, pyrrolyl, oxadiazolyl or thiadiazolyl, wherein each of said heteroaryl groups is optionally substituted with one or two groups that are independently

 $-C_1-C_6 \ \ \, \text{alkyl optionally substituted with}$ one substituent selected from the group consisting of OH, C=N, CF_3, C_1-C_3 alkoxy, and -NR_5R_6;

 R_{15} is selected from the group consisting of hydrogen, C_1 - C_6 35 alkyl, C_1 - C_6 alkoxy, C_1 - C_6

MBHB 03-170-A PHA 01550.US1 ELN 467-US-NEW

10

alkyl, halo C_1 - C_6 alkyl, each of which is unsubstituted or substituted with 1, 2, 3, or 4 groups independently selected from halogen, C_1 - C_6 alkyl, hydroxy, C_1 - C_6 alkoxy, NH_2 , and $-R_{26}$ - R_{27} ;

wherein R_{26} is selected from the group consisting of a bond, -C(O)-, $-SO_2-$, $-CO_2-$, $-C(O)NR_5-$, and $-NR_5C(O)-$,

wherein R_{27} is selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, aryl C_1 - C_6 alkyl, heterocycloalkyl, and heteroaryl, wherein each of the above is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, haloalkyl, hydroxyalkyl, - NR_5R_6 , - $C(O)NR_5R_6$;

- 15 R_c is selected from the group consisting of $-(CH_2)_{0-3}-(C_3-C_8)$ cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of $-R_{205}$, $-CO_2-(C_1-C_4$ alkyl), and aryl, wherein aryl is optionally substituted with
- 20 1 or 2 independently selected R_{200} groups;
 - $-(CR_{245}R_{250})_{0-4}-aryl;$
 - $-(CR_{245}R_{250})_{0-4}$ -heteroaryl;
 - -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl;
 - -($CR_{245}R_{250}$)₀₋₄-aryl-heteroaryl;
- 25 $-(CR_{245}R_{250})_{0-4}$ -aryl-heterocycloalkyl;
 - $-(CR_{245}R_{250})_{0-4}$ -aryl-aryl;
 - $(CR_{245}R_{250})_{0-4}$ -heteroaryl-aryl;
 - -(CR₂₄₅R₂₅₀)₀₋₄-heteroaryl-heterocycloalkyl;
 - $(CR_{245}R_{250})_{0-4}$ -heteroaryl-heteroaryl;
- 30 (CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heteroaryl;
 - -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-heterocycloalkyl;
 - -(CR₂₄₅R₂₅₀)₀₋₄-heterocycloalkyl-aryl;
 - a monocyclic or bicyclic ring of 5, 6, 7 8, 9, or 10 carbons fused to 1 or 2 aryl, heteroaryl, or heterocycloalkyl groups

```
wherein 1, 2 or 3 carbons of the monocyclic or bicyclic ring
    is optionally replaced with
          -NH,
          -N(CO)_{0-1}R_{215},
 5
          -N(CO)_{0-1}R_{220},
          -0, or
          -S(=0)_{0-2},
          and wherein the monocyclic or bicyclic ring is optionally
          substituted with 1, 2 or 3 groups that are independently
10
          -R_{205}, -R_{245}, -R_{250} or =0;
    -C_2-C_6 alkenyl optionally substituted with 1, 2,
                                                                 or 3 R_{205}
          groups;
    -C_2-C_6 alkynyl optionally substituted with 1, 2, or 3 R_{205}
          groups;
          wherein each aryl group attached directly or indirectly
15
          to the -(CR_{245}R_{250})_{0-4} group is optionally substituted with
          1, 2, 3 or 4 R<sub>200</sub> groups;
          wherein each heteroaryl group attached directly
          indirectly to the -(CR_{245}R_{250})_{0-4} group is optionally
20
          substituted with 1, 2, 3, or 4 R_{200};
          wherein
                     each
                            heterocycloalkyl attached
                                                             directly
          indirectly to the -(CR_{245}R_{250})_{0-4} group is optionally
          substituted with 1, 2, 3, or 4 R_{210};
          wherein R_{200} at each occurrence is independently selected
25
     from the group consisting of
          -C_1-C_6 alkyl optionally substituted with 1, 2, or 3 R_{205}
     groups;
          -OH;
          -NO_2;
30
          -halogen;
          -C≡N;
          -(CH_2)_{0-4}-CO-NR_{220}R_{225};
          -(CH_2)_{0-4}-CO-(C_1-C_8 \text{ alkyl});
          -(CH_2)_{0-4}-CO-(C_2-C_8 \text{ alkenyl});
35
          -(CH_2)_{0-4}-CO-(C_2-C_8 \text{ alkynyl});
```

```
-(CH<sub>2</sub>)<sub>0-4</sub>-CO-(C<sub>3</sub>-C<sub>7</sub> cycloalkyl);
               -(CH_2)_{0-4}-(CO)_{0-1}-aryl;
              -(CH<sub>2</sub>)<sub>0-4</sub>-(CO)<sub>0-1</sub>-heteroaryl;
               -(CH<sub>2</sub>)<sub>0-4</sub>-(CO)<sub>0-1</sub>-heterocycloalkyl;
 5
               -(CH_2)_{0-4}-CO_2R_{215};
               -(CH<sub>2</sub>)<sub>0-4</sub>-SO<sub>2</sub>-NR<sub>220</sub>R<sub>225</sub>;
               -(CH_2)_{0-4}-S(O)_{0-2}-(C_1-C_8 \text{ alkyl});
               -(CH_2)_{0-4}-S(O)_{0-2}-(C_3-C_7 \text{ cycloalkyl});
               -(CH_2)_{0-4}-N(H \text{ or } R_{215})-CO_2R_{215};
               -(CH_2)_{0-4}-N(H \text{ or } R_{215})-SO_2-R_{220};
10
               -(CH_2)_{0-4}-N(H \text{ or } R_{215})-CO-N(R_{215})_2;
               -(CH_2)_{0-4}-N(-H \text{ or } R_{215})-CO-R_{220};
               -(CH<sub>2</sub>)<sub>0-4</sub>-NR<sub>220</sub>R<sub>225</sub>;
               -(CH_2)_{0-4}-O-CO-(C_1-C_6 \text{ alkyl});
15
               -(CH<sub>2</sub>)<sub>0-4</sub>-O-(R<sub>215</sub>);
               -(CH_2)_{0-4}-S-(R_{215});
               -(CH_2)_{0-4}-O-(C_1-C_6) alkyl optionally substituted with 1, 2,
       3, or 5 - F);
               -C_2-C_6 alkenyl optionally substituted with 1 or 2 R_{205}
20
       groups;
               -C_2-C_6 alkynyl optionally substituted with 1 or 2 R_{205}
       groups;
               and
               -(CH<sub>2</sub>)<sub>0-4</sub>-C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
25
              wherein each aryl group included within R200 is optionally
              substituted with 1, 2, or 3 groups that are independently
                      -R_{205},
                      -R_{210} or
                      -C_1-C_6 alkyl substituted with 1, 2, or 3 groups that
30
       are independently R_{205} or R_{210};
              wherein each heterocycloalkyl group included within R_{200}
              is optionally substituted with 1, 2, or 3 groups that are
               independently R210;
```

1, 2, or 3 R₂₀₅ groups;

optionally substituted with 1, 2, or 3 groups that are independently -R₂₀₅, 5 $-R_{210}$, or $-C_1-C_6$ alkyl substituted with 1, 2, or 3 groups that are independently $-R_{205}$ or $-R_{210}$; 10 wherein R_{205} at each occurrence is independently selected from the consisting of $-C_1-C_6$ alkyl, $-C_2-C_6$ alkenyl, 15 $-C_2-C_6$ alkynyl, $-C_1-C_6$ haloalkoxy -(CH₂)₀₋₃(C₃-C₇ cycloalkyl)-halogen, $-(CH_2)_{0-6}-OH$ 20 -O-phenyl, -SH, $-(CH_2)_{0-6}-C\equiv N$, $-(CH_2)_{0-6}-C(=0)NR_{235}R_{240}$ $-CF_3$, 25 $-C_1-C_6$ alkoxy, and -NR₂₃₅R₂₄₀, wherein R_{210} at each occurrence is independently selected from the group consisting of 30 $-C_1-C_6$ alkyl optionally substituted with 1, 2, or 3 R_{205} groups; -C₂-C₆ alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; -C₂-C₆ alkynyl optionally substituted with

wherein each heteroaryl group included within R_{200} is

```
-halogen;
                              -C_1-C_6 alkoxy;
                              -C_1-C_6 haloalkoxy;
                              -NR_{220}R_{225};
 5
                              -OH;
                              -C≡N;
                              -C<sub>3</sub>-C<sub>7</sub> cycloalkyl optionally substituted
     with 1, 2, or 3 R_{205}
                                                groups;
                              -CO-(C_1-C_4 \text{ alkyl});
10
                              -SO2-NR235R240;
                              -CO-NR<sub>235</sub>R<sub>240</sub>;
                              -SO_2-(C_1-C_4 \text{ alkyl}); and
                              =0; wherein
           wherein R_{215} at each occurrence is independently selected
     from the group consisting of
15
                 -C_1-C_6 alkyl,
                 -(CH_2)_{0-2}-(aryl),
                 -C_2-C_6 alkenyl,
                 -C_2-C_6 alkynyl,
20
                 -C<sub>3</sub>-C<sub>7</sub> cycloalkyl,
                 -(CH<sub>2</sub>)<sub>0-2</sub>-(heteroaryl), and
                 - (CH_2)_{0-2}- (heterocycloalkyl);
                 wherein the aryl group included within R215
                 optionally substituted with 1, 2, or 3 groups that
25
                 are independently
                        -R_{205} or
                        -R_{210};
                 wherein the heterocycloalkyl group included within
                 R_{215} is optionally substituted with 1, 2, or 3 R_{210};
30
                 wherein each heteroaryl group included within R_{215} is
                 optionally substituted with 1, 2, or 3 R_{210};
           wherein R_{220} and R_{225} at each occurrence are independently
           selected from the group consisting of
           -H,
           -C_1-C_6 alkyl,
35
```

```
-hydroxy C_1-C_6 alkyl,
            -amino C_1-C_6 alkyl,
            -halo C_1-C_6 alkyl,
            -(CH<sub>2</sub>)<sub>0-2</sub>-(C<sub>3</sub>-C<sub>7</sub> cycloalkyl),
 5
            -(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl}),
            -C_2-C_6 alkenyl,
            -C_2-C_6 alkynyl,
            -aryl,
            -heteroaryl, and
            -heterocycloalkyl;
10
            wherein the aryl, heteroaryl or heterocycloalkyl group
            included within R_{220} and R_{225} is optionally substituted
            with 1, 2, or 3 R_{270} groups,
                   wherein R_{270} at each occurrence is independently
15
                  -R_{205}
                   -C_1-C_6 alkyl optionally substituted with 1, 2, or 3
     R<sub>205</sub> groups;
                   -C_2-C_6 alkenyl optionally substituted with 1, 2, or 3
     R<sub>205</sub> groups;
20
                   -C_2-C_6 alkynyl optionally substituted with 1, 2, or 3
     R<sub>205</sub> groups;
                   -halogen;
                   -C_1-C_6 alkoxy;
                   -C_1-C_6 haloalkoxy;
25
                   -NR_{235}R_{240};
                   -OH;
                   -C≡N;
                   -C<sub>3</sub>-C<sub>7</sub> cycloalkyl optionally substituted with 1, 2,
            or 3 R_{205} groups;
30
                   -CO-(C_1-C_4 \text{ alkyl});
                   -SO_2-NR_{235}R_{240};
                   -CO-NR<sub>235</sub>R<sub>240</sub>;
                   -SO_2-(C_1-C_4 \text{ alkyl}); and
35
            wherein R_{235} and R_{240} at each occurrence are independently
```

```
-H, or
                   -C_1-C_6 alkyl;
                   -phenyl
            wherein R_{245} and R_{250} at each occurrence are independently
 5
            selected from the group consisting of
                  -H,
                  -(CH<sub>2</sub>)<sub>0-4</sub>CO<sub>2</sub>C<sub>1</sub>-C<sub>4</sub> alkyl
                  -(CH_2)_{0-4}C(=O)C_1-C_4 alkyl
                  -C_1-C_4 alkyl,
10
                  -C_1-C_4 hydroxyalkyl,
                  -C_1-C_4 alkoxy,
                  -C_1-C_4 haloalkoxy,
                  -(CH<sub>2</sub>)<sub>0-4</sub>-C<sub>3</sub>-C<sub>7</sub> cycloalkyl,
                  -C_2-C_6 alkenyl,
15
                  -C_2-C_6 alkynyl,
                  -(CH<sub>2</sub>)<sub>0-4</sub> aryl,
                  -(CH<sub>2</sub>)<sub>0-4</sub> heteroaryl, and
                  -(CH<sub>2</sub>)<sub>0-4</sub> heterocycloalkyl, or
            wherein R_{245} and R_{250} are taken together with the carbon to
20
            which they are attached to form a monocycle or bicycle of
            3, 4, 5, 6, 7 or 8 carbon atoms, optionally where 1 or 2
            carbon atoms is replaced by a heteroatom selected from
            the group consisting of
                  -0-,
25
                  -S-,
                  -SO_2-, and
                  -NR_{220}-;
            wherein the aryl, heteroaryl or heterocycloalkyl group
            included within R_{245} and R_{250} is optionally substituted
30
            with 1, 2, or 3 groups that are independenly halogen, C_{1-6}
            alkyl, CN or OH;
            wherein \ensuremath{R_{\text{255}}} and \ensuremath{R_{\text{260}}} at each occurrence are independently
```

selected from the group consisting of

-H;

- $-C_1-C_6$ alkyl optionally substituted with 1, 2, or 3 R_{205} groups;
 - $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl});$
- $-\left(CH_{2}\right)_{0-4}-C_{3}-C_{7}$ cycloalkyl optionally substituted with 1, 5 2, or 3 R_{205} groups;
 - -(CH₂)₀₋₄-aryl;
 - -(CH_2)₀₋₄ -heteroaryl;
 - -(CH_2)₀₋₄ -heterocycloalkyl;
- wherein each aryl group included within R_{255} and R_{260} is optionally substituted with 1, 2, or 3 groups that are independently
 - $-R_{205}$,
 - $-R_{210}$, or
 - $-C_1-C_6$ alkyl substituted with 1, 2, or 3 groups that are independently
 - $-R_{205}$ or
 - $-R_{210};$

where each heteroaryl group included within R_{255} and R_{260} is optionally substituted with 1, 2, 3, or $\,$ 4

 R_{200} groups, and

15

where each heterocycloalkyl group included within R_{255} and R_{260} is optionally substituted with 1, 2, 3, or 4 R_{210} groups.

- 2. A compound according to claim 1, wherein:
- 25 Z is aryl or heteroaryl, wherein each ring is independently 1 optionally substituted with or 2 groups independendently selected from halogen, -OH, -OCF3, -Ophenyl, -CN, -NR₁₀₀R₁₀₁, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1-C_6 alkoxy, $(CH_2)_{0-3}(C_3-C_7$ cycloalkyl), aryl, 30 heteroaryl, or heterocyclyl wherein, the alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, aryl, heteroaryl, orheterocyclyl groups are optionally substituted with 1 independently selected from the substitutents groupconsisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4

haloalkyl, C_1-C_4 haloalkoxy, halogen, -OH, -CN, or -NR₁₀₀R₁₀₁.

- 3. A compound according to claim 1, wherein X is -5 (C=O)-.
 - 4. A compound according to claim 1, wherein:
 - R_1 is $-C_1-C_6$ alkyl-aryl, $-C_1-C_6$ alkyl-heteroaryl, or $-C_1-C_6$ alkyl-heterocyclyl, wherein each aryl group at each occurrence is optionally substituted with 1, 2 or 3 R_{50} groups;

wherein R_{50} is independently selected from halogen, OH, SH, CN, -CO-(C_1 - C_4 alkyl), -NR₇R₈, -S(O)₀₋₂-(C_1 - C_4 alkyl), C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, or C_3 - C_8 cycloalkyl;

wherein the alkyl, alkenyl, alkynyl, alkoxy, or cycloalkyl groups are optionally substituted with 1 or 2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, halogen, OH, -NR₅R₆, CN, C_1 - C_4 haloalkoxy, NR₇R₈, and C_1 - C_4 alkoxy;

wherein R_5 and R_6 at each occurrence are independently H or C_1 - C_6 alkyl; or wherein R_5 and R_6 and the nitrogen to which they are attached, at each occurrence form a 5 or 6 membered heterocycloalkyl ring; and

wherein R_7 and R_8 are independently selected from the group consisting of H; - C_1 - C_4 alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of -OH, -NH₂, and halogen; - C_3 - C_6 cycloalkyl; - $(C_1$ - C_4 alkyl)- O- $(C_1$ - C_4 alkyl); - C_2 - C_4 alkenyl; and - C_2 - C_4 alkynyl;

20

10

15

25

30

wherein each heteroaryl at each occurrence is optionally substituted with 1 or 2 R_{50} groups; wherein each heterocycloalkyl group at each occurrence is

optionally substituted with 1 or 2 groups that are independently R_{50} or =0..

- 5. A compound according to claim 1, wherein $\ensuremath{R_2}$ and $\ensuremath{R_3}$ are hydrogen.
- 10 6. A compound according to claim 1, wherein R_{15} is hydrogen.
 - 7. A compound according to claim 1, wherein:
- R_C is selected from the group consisting of : $-(CH_2)_{0-3}-(C_3-C_8)$ 15 wherein the cycloalkyl is cycloalkyl substituted with 1, 2, or 3 groups independently selected from the group consisting of $-R_{205}$, and alkyl); and a monocyclic or bicyclic ring of 5, 6, 7 8, 9, or 10 carbons fused to 1 or 2 aryl, heteroaryl, or 20 heterocycloalkyl groups wherein 1, 2 or 3 carbons of the monocyclic or bicyclic ring is optionally replaced with -NH, $-N(CO)_{0-1}R_{215}$, $-N(CO)_{0-1}R_{220}$, -0, or $-S(=0)_{0-2}$, and wherein the monocyclic or bicyclic ring optionally substituted with 1, 2 or 3 groups that 25 are independently $-R_{205}$ $-R_{245}$, R_{250} or =0.
 - 8. A compound according to claim 1 wherein R_{C} is

30 wherein x_1 , x_2 , and x_3 are independently -CHR₂₄₅, SO₂, or NH, and wherein the phenyl ring is optionally substituted with 1 or 2 -R₂₄₅ groups.

- 9. A compound according to claim 8 wherein one of x_1 , x_2 , or x_3 is SO_2 .
- 5 10. A compound according to claim 8 wherein one of x_1 , x_2 , or x_3 is NH.
 - 11. A compound according to claim 8 wherein $\textbf{x}_1,~\textbf{x}_2,~\text{and}~\textbf{x}_3$ are each $\text{CH}_2.$

12. A compound according to claim 1 selected from the group consisting of:

 $N-((1S,2R)-1-(3,5-difluorobenzyl)-3-\{[(1S)-7-ethyl-1,2,3,4-tetrahydronaphthalen-1-yl]amino}-2-$

N-((1S,2R)-1-(3,5-difluorobenzyl)-3-{[(1S)-7-ethyl-1,2,3,4-tetrahydronaphthalen-1-yl]amino}-2-

hydroxypropyl)pyrazine-2-carboxamide;

hydroxypropyl)pyridine-2-carboxamide;

 $N-((1S,2R)-1-(3,5-\text{difluorobenzyl})-3-\{[(1S)-7-\text{ethyl-}1,2,3,4-\text{tetrahydronaphthalen-}1-yl]amino}-2-\text{hydroxypropyl})-1-\text{ethyl-}3-\text{methyl-}1H-pyrazole-5-carboxamide};$

 $3-amino-N-((1S,2R)-1-(3,5-difluorobenzyl)-3-\{[(1S)-7-ethyl-1,2,3,4-tetrahydronaphthalen-1-yl]amino}-2-hydroxypropyl)-1H-1,2,4-triazole-5-carboxamide;$

 $N-((1S,2R)-1-(3,5-\text{difluorobenzyl})-3-\{[(1S)-7-\text{ethyl-}1,2,3,4-\text{tetrahydronaphthalen}-1-yl]amino}-2-\text{hydroxypropyl})-5-methylisoxazole-3-carboxamide;}$

 $N-((1S, 2R)-1-(3, 5-\text{difluorobenzyl})-3-\{[(1S)-7-\text{ethyl-}1, 2, 3, 4-\text{tetrahydronaphthalen-}1-yl]amino}-2-\text{hydroxypropyl})-6-\text{hydroxypyridine-}2-\text{carboxamide};$

 $N-((1S,2R)-1-(3,5-\text{difluorobenzyl})-3-\{[(1S)-7-\text{ethyl-}1,2,3,4-\text{tetrahydronaphthalen-}1-yl]amino}-2-\text{hydroxypropyl})-1H-imidazole-4-carboxamide;$

 $N-((1S,2R)-1-(3,5-difluorobenzyl)-3-\{[(1S)-7-ethyl-1,2,3,4-tetrahydronaphthalen-1-yl]amino}-2-$

```
hydroxypropyl) nicotinamide;
     N-((1S,2R)-1-(3,5-difluorobenzyl)-3-\{[(1S)-7-ethyl-
1,2,3,4-tetrahydronaphthalen-1-yl]amino}-2-hydroxypropyl)-
1H-pyrazole-4-carboxamide;
     N-((1S, 2R)-1-(3, 5-difluorobenzyl)-3-\{[(1S)-7-ethyl-1]\}
1, 2, 3, 4-tetrahydronaphthalen-1-yl]amino}-2-
hydroxypropyl)isonicotinamide;
     5-chloro-N-((1S, 2R)-1-(3, 5-difluorobenzyl)-3-{[(1S)-7-
ethyl-1,2,3,4-tetrahydronaphthalen-1-yl]amino}-2-
hydroxypropyl) thiophene-2-carboxamide;
     N-((1S, 2R)-1-(3, 5-difluorobenzyl)-2-hydroxy-3-{((4S)-1)}
6-neopentyl-3,4-dihydro-2H-chromen-4-
yl]amino}propyl)benzamide;
     N-[(1S, 2R)-3-\{[(4S)-6-tert-butoxy-3, 4-dihydro-2H-
chromen-4-yl]amino}-1-(3,5-difluorobenzyl)-2-
hydroxypropyl]benzamide;
     N-((1S, 2R)-1-(3, 5-difluorobenzyl)-2-hydroxy-3-{[(4S)-1]}
6-neopentyl-1,2,3,4-tetrahydroquinolin-4-
yl]amino}propyl)benzamide;
     tetrahydroquinolin-4-yl]amino}-1-(3,5-difluorobenzyl)-2-
hydroxypropyl]benzamide;
     N-((1S, 2R)-1-(3, 5-difluorobenzyl)-2-hydroxy-3-{((1S)-1)}
7-neopentyl-1,2,3,4-tetrahydronaphthalen-1-
yl]amino}propyl)benzamide;
     tetrahydronaphthalen-1-yl]amino}-1-(3,5-difluorobenzyl)-2-
hydroxypropyl]benzamide;
     N-((1S, 2R)-1-(3, 5-difluorobenzyl)-2-hydroxy-3-{[(4R)-1]}
6-neopentyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-
yl]amino}propyl)benzamide;
     N-[(1S,2R)-3-\{[(4R)-6-tert-butoxy-2,2-dioxido-3,4-
dihydro-1H-isothiochromen-4-yl]amino}-1-(3,5-
difluorobenzyl) -2-hydroxypropyl]benzamide;
     N-((1S, 2R)-1-(3, 5-difluorobenzyl)-2-hydroxy-3-{[1-(3-
```

neopentylphenyl)cyclohexyl]amino}propyl)benzamide;

 $N-[(1S, 2R)-3-\{[1-(3-tert-$

butoxyphenyl)cyclohexyl]amino}-1-(3,5-difluorobenzyl)-2-hydroxypropyl]benzamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-{[1-(3-neopentylphenyl)cyclopropyl]amino}propyl)benzamide;

 $N-[(1S, 2R)-3-\{[1-(3-tert-$

butoxyphenyl)cyclopropyl]amino}-1-(3,5-difluorobenzyl)-2-hydroxypropyl]benzamide;

N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-{[(4-neopentyl-1,1'-biphenyl-2-yl)methyl]amino}propyl)benzamide;

N-[(1S,2R)-3-{[(4-tert-butoxy-1,1'-biphenyl-2-yl)methyl]amino}-1-(3,5-difluorobenzyl)-2-hydroxypropyl]benzamide;

N-{(1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(2-neopentyl-9H-fluoren-9-yl)amino]propyl}benzamide;

N-[(1S,2R)-3-[(2-tert-butoxy-9H-fluoren-9-yl)amino]-1-(3,5-difluorobenzyl)-2-hydroxypropyl]benzamide;

 $N-((1S,2R)-1-(3,5-diffluorobenzyl)-3-\{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-3,5-dimethylbenzamide; and$

 $N-((1S,2R)-1-(3,5-difluorobenzyl)-3-\{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-4-(2-methoxyethyl)benzamide.$

13. A method for making a compound of formula (I)

$$Z \times X \xrightarrow{H} OH \xrightarrow{R_{15}} X \xrightarrow{N} Rc$$

$$(I)$$

5

or a pharmaceutically acceptable salt or ester thereof, wherein Z, X, R_1 , R_2 , R_3 , R_{15} and Rc are as defined in claim 1.

- 14. A method for the treatment or prevention of Alzheimer's disease, mild cognitive impairment Down's syndrome, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, cerebral amyloid angiopathy, other

 5 degenerative dementias, dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease comprising

 10 administration of a therapeutically effective amount of a compound or salt according to Claim 1, to a patient in need thereof.
- $$15.\,$ A method of treatment as in claim 14, wherein the $$15\,$ patient is a human.
 - 16. A method of treatment according to claim 14, wherein the disease is dementia.
- 20 17. A pharmaceutical composition comprising a compound according to claim 1 in combination with a physiologically acceptable carrier or excipient.