《Walter Rudin: Real and Complex Analysis》 読書記録

最終更新: 2023年12月3日

<u>注意</u>: 記述の正確性は保証しません. ややこしいことになりたくないので, 本文の引用は最小限にしています. ? マークは不明/自信なし/要復習を意味しています.

誤植と思われるもの

頁	行	誤	正
1	1	a	a

1. Abstract Integration

The Concept of Measurability

topological space, open set, continuous function の関係は, measurable space, measurable set, measurable function の関係に似ている. このことを強調していくらしい.

- ■1.3 Definition: measurable space/measurable set/measurable function
- $\blacksquare 1.5$ Proposition: $f: X \to Y$ 連続 \iff 任意の点 $x \in X$ で f 連続
- ■1.7 Theorem: 連続関数の連続関数は連続/可測関数の連続関数は可測
- ■1.8 Theorem: 1.7 **の引数** 2 **次元バージョン** 複素関数や, 和/積に関する可測性を示すのに使う.
- **■**1.9 **シンプルな関数演算で可測性が保たれること**. **基本的な関数の可測性**. (e) はじめから $\alpha(x)$ を 4 行目のように定義したいところだが, 可測性が全く見えな

いので、見えるような表式を採用している. E の可測性: f の可測性と、 $\{0\}$ は Euclid 位相で閉集合ゆえ $E^c = \{x: f(x) \neq 0\}$ は可測. よって E も可測.

- ■1.10 Theorem: 集合族 \mathcal{F} から生成される σ -algebra
- **■**1.11 Borel Sets 1.10 で \mathcal{F} を top. sp. X の開集合族にとったときのそれを Borel sets という. $X \to Y$ 連続 $\Longrightarrow X \to Y$ Borel measurable をすぐ納得できないと理解が怪しいよ.
- **■**1.12 Theorem: Borel measurable **に関するいろいろ** X が測度空間, Y が位相空間, f が一般の写像. (d) が 1.7(b) の拡張になっていて重要なのだと思う. (b) も measurable function の定義が強くなっている.
- ■1.14 Theorem: sup, lim sup で可測性が保たれる
- ■1.16 Definition: 単関数
- ■1.17 Theorem: 可測関数は単関数の下からの極限でかける
- ■1.18 Definition: 測度
- ■1.22 ∞ の演算規則 $0 \cdot \infty = 0$ をしておくと主張が統一的にかける.

Integration of Positive Functions

■1.23 Definition: **正の可測関数の積分の定義** 単関数の積分をまず定義し, f の積分を, $f \geq s$ なる単関数 s の積分たちの \sup として定義する:

$$\int_{E} f d\mu = \sup \int_{E} s \ d\mu. \tag{1}$$

- ■1.25 Proposition: 積分範囲を足算する, 和の積分は積分の和 単関数バージョン
- ■1.26 Lebesgue's Monotone Convergence Theorem
- ■1.27 和の積分は積分の和, 一般の非負可測関数バージョン
- ■1.28 Fatou's Lemma

■1.29 ちょっとした測度変換

Integration of Complex Functions

lacksquare 1.40 任意の領域で f の平均取って S に入ってるなら、 f は a.e. S に入ってる

2. Positive Borel Measures

Topological Preliminaries

最終目的は Urysohn's Lemma を証明すること. それに用いる道具: 定理 2.7, lower/upper semicontinuous の概念.

The Riesz Representation Theorem

■定理 2.14 The Riesz Representation Theorem

Regularity Properties of Borel Measures

■2.15 Borel measure

参考文献

[1] a