

DERIVATE

Definitione f(x) é DERIVABILE in Xo se il limite lim $f(x_0 + h) - f(x_0)$ existe $h \to 0$

happorte incuentale
$$\rightarrow f(x_0) - f(x_0) = y - f(x_0) = f'(x_0) = f$$

Funzioni elementari

f(x)	f.(x).				f(x)	. f'(x).
e .	0	•			tax	1 (0)2X
X X Q×	0 X X -1	٠		٠	ectqx.	1 Jensx
. log x .	. <u>1</u>	٠		٠	areknx.	1-X2
1em X .	eol X -Aen X				anecol x	- 11-x2
OX.	ax lua			٠	areto x.	$\frac{1}{1+x^2}$
					on ecoto x	$-\frac{1}{1+x^2}$

Proprietà delle derivate

$$f(x) = g(x) = f'(x) = g(x)$$

$$f(x) \cdot g(x) = f(x) \cdot g(x) + f(x) \cdot g(x)$$

•
$$\{lq(x)\} = f'(qx) \cdot q'(x)$$

$$\left(\frac{1}{f(x)}\right)' = \frac{1}{f(x)}$$

$$\left(\frac{1}{f(x)}\right)' = \frac{1}{f(x)}$$

$$g(x) q(x) = e^{g(x) \cdot \log f(x)} = f(x) q(x) \left(q'(x) \log f(x) + g(x) \cdot \frac{q'(x)}{f(x)} \right)$$

. Hopital

$$\lim_{X \to X_0} \frac{f(x)}{g(x)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} \frac{\pm \infty}{\pm \infty} \end{bmatrix}$$

te non existe, allow FAIL

$$\lim_{X \to X_0} \frac{g'(x)}{g'(x)} = \ell \in \overline{\mathbb{R}}$$

Taylor

con centre in 0. Pu (x) =
$$f(0) + f'(0) \times + \frac{f''(0)}{2!} \times^2 + \frac{f'''(0)}{3!} \times^3 + \dots + f'''(0)$$

Parto Differenza f(x)-Pu(x) -> f(x) = Pu(x) + O(x") per x -> 0

fuluppi di Toylor

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + \dots + \frac{1}{m!}x^{n} + o(x^{n}) \rightarrow tuti positivi$$

New
$$x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + ... + \frac{(-1)^4}{124+11!}x^{24+1} + o(x^{24+1})$$
 $x + object neg per$

$$eo(x) = 1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + ... + \frac{(-1)^n}{(2N)!}x^{2N} + o(x^{2N})$$
 1+ pain neg por

$$\log(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + ... + (-1)^{n+1}\frac{x^n}{n} + o(x^n)$$
 we fatt, my part.

outlow (x) - x -
$$\frac{x^3}{3}$$
 + $\frac{x^9}{5}$ - $\frac{x^4}{7}$ + ... + (-1) $\frac{x^{2N+1}}{2N+1}$ + 0 (x^{2N+1}). come sen, we fatt.

$$(1+x)^{\alpha} = 1 + \alpha x + \alpha(\alpha-1)x^{2} + \alpha(\alpha-1)(\alpha-2)x^{3} + \dots + \alpha(\alpha-1)(\dots)(\alpha-n+1)x^{n} + o(x^{n})$$

Con centre qualitait
$$P_{N}(x-x_{0}) = f(x_{0}) + f'(x_{0})(x-x_{0}) + f''(x_{0})(x-x_{0})^{2} + ... + f''(x_{0})(x-x_{0})^{2}$$