Force and Motion Practice

- 1 Describe what is meant by
 - (a) balanced forces
 - (b) unbalanced forces
 - (c) resultant force
- What is the resultant force on each block below? For each one give the strength and direction of the resultant force.

- 3 Add one extra force to each block above so that the forces on every block are balanced.
- 4 Explain what you did to work out the resultant force on each block in Q2.
- Two of the four forces on the dragonfly are shown in the diagram. The resultant force is $1\,\mathrm{mN}$ upwards. Draw the extra forces and label their strengths.

6 Describe what will happen t	tc	nappen	II h	hat wil	e w	escril	De	6
-------------------------------	----	--------	------	---------	-----	--------	----	---

- (a) a stationary suitcase with balanced forces,
- (b) a moving trolley with balanced forces,
- (c) a moving trolley with a resultant force pushing forwards (in its direction of motion),
- (d) a moving trolley with a resultant force pushing backwards (against its motion),
- (e) a moving trolley with a resultant force pushing it sideways.
- 7 Fill in the table to say what will happen to each object. Choose your answers from speeds up, slows down, stays still, steady speed, turns.

Object and motion	Relevant force(s)	What happens
Truck driver 'puts foot down*'	engine force > friction	
Planet moving away from star	gravity force	
Cow sleeping in a field	$weight = support \ force$	
Moving express train	engine force = friction	

 $[\]star$ this means they press the accelerator pedal as far as it will go.

Add contact, weight and drag forces (where needed) on a basketball thrown upwards

(a) as it is being thrown,

(b) just after letting go,

(c) at the top of its motion.

- 9 A bungee jumper steps off a bridge. Give the direction of the resultant force when
 - (a) the bungee has just gone taut (it begins to stretch),
 - (b) at the bottom of their motion,
 - (c) as the bungee goes slack on the way up.