Temos que $f_{xx}(a,b) > 0$ e D(a,b) > 0. Mas f_{xx} e $D = f_{xx}f_{yy} - f_{xy}^2$ são funções contínuas, logo existe uma bola aberta B com centro (a,b) e raio $\delta > 0$ tal que $f_{xx}(x,y) > 0$ e D(x,y) > 0 sempre que (x,y) pertencer a B. Portanto, olhando a Equação 10, vemos que $D_{\mathbf{u}}^2 f(x,y) > 0$ sempre que (x,y) pertencer a B. Isso implica que, se C é uma curva obtida pela interseção do gráfico de f com o plano vertical que passa por P(a,b,f(a,b)) na direção de f0, então f0 tem concavidade para cima no intervalo de comprimento f0. Isso é verdadeiro na direção de todo vetor f1; portanto, se restringirmos f2, f3 a f3, o gráfico de f4 permanecerá acima do plano horizontal tangente a f3 em f4. Logo, f6, f7, f8 empre que f8. Isso mostra que f8, f9 é um mínimo local.

44.7

Exercícios

Suponha que (1, 1) seja um ponto crítico de f com derivadas de segunda ordem contínuas. Em cada caso, o que se pode dizer sobre f?

(a)
$$f_{xx}(1, 1) = 4$$
, $f_{xy}(1, 1) = 1$, $f_{yy}(1, 1) = 2$

(b)
$$f_{xx}(1, 1) = 4$$
, $f_{xy}(1, 1) = 3$, $f_{yy}(1, 1) = 2$

2. Suponha que (0, 2) seja um ponto crítico de g com derivadas de segunda ordem contínuas. Em cada caso, o que se pode dizer sobre q?

(a)
$$g_{xx}(0, 2) = -1$$
, $g_{xy}(0, 2) = 6$, $g_{yy}(0, 2) = 1$

(b)
$$g_{xy}(0, 2) = -1$$
, $g_{xy}(0, 2) = 2$, $g_{yy}(0, 2) = -8$

(c)
$$q_{xx}(0, 2) = 4$$
, $q_{xy}(0, 2) = 6$, $q_{yy}(0, 2) = 9$

3-4 □ Utilize as curvas de nível da figura para predizer a localização dos pontos críticos de f e se f tem um ponto de sela ou um máximo ou mínimo locais em cada um desses pontos. Explique seu raciocínio. Em seguida empregue o Teste da Segunda Derivada para confirmar suas predições.

$$f(x, y) = 4 + x^3 + y^3 - 3xy$$

4.
$$f(x, y) = 3x - x^3 - 2y^2 + y^4$$

5-18 □ Determine os valores máximos e mínimos locais e pontos de sela da função. Se você tiver um programa para traçar gráficos tridimensionais no computador, utilize-o com a janela de inspeção e o ponto de vista que mostre os aspectos importantes da função.

5.
$$f(x, y) = 9 - 2x + 4y - x^2 - 4y^2$$

6.
$$f(x, y) = x^3y + 12x^2 - 8y$$

7.
$$f(x, y) = x^4 + y^4 - 4xy + 2$$

8.
$$f(x, y) = e^{4y-x^2-y^2}$$

9.
$$f(x, y) = (1 + xy)(x + y)$$

10.
$$f(x, y) = 2x^3 + xy^2 + 5x^2 + y^2$$

11.
$$f(x, y) = 1 + 2xy - x^2 - y^2$$

960 CÁLCULO Editora Thomson

12.
$$f(x, y) = xy(1 - x - y)$$

$$f(x,y) = e^x \cos y$$

14.
$$f(x, y) = x^2 + y^2 + \frac{1}{x^2 y^2}$$

15.
$$f(x, y) = x \sin y$$

16.
$$f(x, y) = (2x - x^2)(2y - y^2)$$

17.
$$f(x, y) = (x^2 + y^2)e^{y^2-x^2}$$

18.
$$f(x, y) = x^2 y e^{-x^2 - y^2}$$

19-22 □ Utilize o gráfico e/ou curvas de nível para estimar os valores máximos e mínimos locais e pontos de sela da função. Em seguida use o cálculo para achar esses valores precisamente.

19.
$$f(x, y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2$$

20.
$$f(x, y) = xye^{-x^2-y^2}$$

21.
$$f(x, y) = \sin x + \sin y + \sin(x + y),$$

 $0 \le x \le 2\pi, \ 0 \le y \le 2\pi$

22.
$$f(x, y) = \operatorname{sen} x + \operatorname{sen} y + \cos(x + y),$$

 $0 \le x \le \pi/4, \ 0 \le y \le \pi/4$

23-26 □ Utilize um dispositivo gráfico como no Exemplo 4 (ou Método de Newton ou um determinador de raízes) para estabelecer os pontos críticos de f com arredondamento na terceira casa decimal. Em seguida classifique o ponto crítico e determine o valor mais alto e o mais baixo do gráfico.

23.
$$f(x, y) = x^4 - 5x^2 + y^2 + 3x + 2$$

24.
$$f(x, y) = 5 - 10xy - 4x^2 + 3y - y^4$$

25.
$$f(x, y) = 2x + 4x^2 - y^2 + 2xy^2 - x^4 - y^4$$

26.
$$f(x, y) = e^x + y^4 - x^3 + 4\cos y$$

27–34 \square Determine os valores máximo e mínimo absolutos de f no conjunto D.

- 27. f(x, y) = 1 + 4x 5y, D é a região triangular fechada com vértices (0, 0), (2, 0), (0, 3)
- **28.** f(x, y) = 3 + xy x 2y, D é a região triangular fechada com vértices (1, 0), (5

29
$$f(x, y) = x^2 + y^2 + x^2y + 4$$
,
 $D = \{(x, y) \mid |x| \le 1, |y| \le 1\}$

30.
$$f(x, y) = 4x + 6y - x^2 - y^2$$
, $D = \{(x, y) \mid 0 \le x \le 4, 0 \le y \le 5\}$

31.
$$f(x, y) = x^4 + y^4 - 4xy + 2$$
,
 $D = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 2\}$

32.
$$f(x, y) = xy^2$$
, $D = \{(x, y) | x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$

33.
$$f(x, y) = 2x^3 + y^4$$
, $D = \{(x, y) | x^2 + y^2 \le 1\}$

34.
$$f(x, y) = x^3 - 3x - y^3 + 12y$$
, D é o quadrilátero cujos vértices são $(-2, 3)$, $(2, 3)$, $(2, 2)$, e $(-2, -2)$.

35. Para as funções de uma variável, é impossível uma função contínua ter dois pontos de máximo local e nenhum de mínimo local. Para as funções de duas variáveis, esse caso existe. Mostre que a função

$$f(x, y) = -(x^2 - 1)^2 - (x^2y - x - 1)^2$$

só tem dois pontos críticos, ambos de máximo local. Em seguida utilize um computador para desenhar o gráfico com uma escolha cuidadosa de tamanho de janela de inspeção e de ponto de vista para ver como isso é possível.

36. Se uma função de uma variável é contínua em um intervalo e tem um único ponto crítico, então um máximo local tem de ser um máximo absoluto. Mas isso não é verdadeiro para as funções de duas variáveis. Mostre que a função

$$f(x, y) = 3xe^y - x^3 - e^{3y}$$

tem exatamente um ponto crítico, onde f tem um máximo, local, porém este não é um máximo absoluto. Em seguida utilize um computador com uma escolha conveniente de janela de inspeção e ponto de vista para ver como isso é possível.

- 37. Determine a distância mais curta entre o ponto (2, 1, -1) e o plano x + y z = 1.
- **38.** Determine o ponto do plano x y + z = 4 que está mais próximo do ponto (1, 2, 3).
- Determine os pontos da superfície $z^2 = xy + 1$ que estão mais próximos da origem.
- **40.** Determine os pontos da superfície $x^2y^2z = 1$ que estão mais próximos da origem.
- Determine três números positivos cuja soma é 100 e cujo produto é máximo.
- **42.** Determine três números positivos x, y e z cuja soma é 100 tal que $x^a y^b z^c$ seja máximo.
- 43. Determine o volume da maior caixa retangular com arestas paralelas aos eixos e que pode ser inscrita no elipsóide

$$9x^2 + 36y^2 + 4z^2 = 36$$

 Resolva o problema do Exercício 43 para um elipsóide genérico

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

- **45.** Determine o volume da maior caixa retangular no primeiro octante com três faces nos planos coordenados e com um vértice no plano x + 2y + 3z = 6.
- **46.** Determine as dimensões da caixa retangular de maior volume se sua superfície total é dada como 64 cm².
- **47.** Determine as dimensões de uma caixa retangular de volume máximo tal que a soma dos comprimentos de suas 12 arestas seja uma constante *c*.
- **48.** A base de um aquário com volume *V* é feita de ardósia e os lados são de vidro. Se o preço da ardósia (por unidade de área) equivale a cinco vezes o preço do vidro, determine as dimensões do aquário para minimizar o custo do material.