

Find moment of inertia about centroidal axis

S.No	Element	$A_i(cm^2)$	\overline{y}_i (cm)	$A_i \overline{y}_i (cm^3)$
1.	Rectangle	450	7.5	3375
2.	Semicircle	$-\frac{\pi}{2}(5)^2 = -39.27$	$4(5)/3\pi = 2.12$	-83.25
Σ =		410.73		3291.75

$$\overline{y} = \frac{\sum A_i \overline{y}_i}{\sum A_i} = 8.01 \text{ cm}$$

S.No	$(\bar{I}_{xx})_i cm^4$	$(\bar{I}_{yy})_i cm^4$	$A_i(\bar{y}_i - \bar{y})^2 cm^4$	$A_i(\overline{x}_i - \overline{x})^2 cm^4$
1.	$(30)(15)^3/12 = 8437.5$	$(15)(30)^3/12 = 33750$	$450(7.5 - 8.01)^2 = 117.05$	0
2.	$-0.11(5)^4 = -68.75$	$-\pi(5)^4/8 = -245.44$	$-39.27(2.12 - 8.01)^2 = -1362.36$	0
Σ =	8368.75	33 504.56	<u>-1245.3</u> 1	0

$$\underline{\bar{I}_{xx}} = \sum (\bar{I}_{xx})_i + \sum A_i (\bar{y}_i - \bar{y})^2$$

$$= 8368.75 - 1245.31 = 7123.44 \text{ cm}^4$$

$$\bar{I}_{yy} = \sum (\bar{I}_{yy})_i + \sum A_i (\bar{x}_i - \bar{x})^2 = 33\ 504.56\ \text{cm}^4$$

S.No	Element	$A_i (cm^2)$	\bar{x}_{i} (cm)	\bar{y}_i (cm)	$A_i \bar{x}_i (cm^3)$	$A_i \bar{y}_i (cm^3)$
1.	Triangle	$(1/2) \times 40 \times 40 = 800$	(2/3)40 = 26.67	(1/3)40 = 13.33	21 336	10 664
2.	Semicircle	$\pi(20)^2/2 = 628.32$	20	$-4(20)/3\pi = -8.49$	12 566.4	-5334.44
3.	Circle	$-\pi(10)^2 = -3\overline{14.16}$	20	_0	-6283.2	0
	Σ =	1114.16	<u> </u>		27 619.2	5329.56

$$\overline{x} = \frac{\sum A_i \overline{x}_i}{\sum A_i} = \frac{24.79 \text{ cm}}{5 - 2x_1 s}$$

$$f_2 con + \frac{1}{2} = \frac{24.79 \text{ cm}}{5 - 2x_1 s}$$

$$\bar{y} = \frac{\sum A_i \bar{y}_i}{\sum A_i} = 4.78 \text{ cm}$$
Howe the >c- sixts

$$J_{x_{e}x_{e}} = J_{1} + J_{2} - J_{3}$$

$$J_{1} = J_{x_{e}} + A_{5}^{2} = 4_{0} \times 4_{0}^{3} + \frac{1}{2} \times 4_{0} \times 4_{0} \times (4.78 - 13.33) =$$

$$J_{2} = J_{x_{e}} + A_{7}^{2} = 0 \cdot 11 \times (20)^{4} + (1 \times (20)^{2} \times (4.24 + 4.78)^{2} =$$

$$J_{3} = J_{x_{e}} + A_{7}^{2} = 9 \times (10)^{4} + (10)^{2} \times (4.28)^{2} =$$

$$J_{3} = J_{x_{e}} + A_{7}^{2} = 9 \times (10)^{4} + (10)^{2} \times (4.28)^{2} =$$

S.No	$(\bar{I}_{xx})_i cm^4$	$(\bar{I}_{yy})_i cm^4$	$A_i(\bar{y}_i - \bar{y})^2 cm^4$	$A_i(\overline{x}_i - \overline{x})^2 cm^4$
1.	$40 \times (40)^3/36$ = 71111.11	$40 \times (40)^3/36$ = 71 111.11	$800(13.33 - 4.78)^2$ = 58 482	$800(26.67 - 24.79)^{2}$ $= 2827.52$
2.	$0.11(20)^4$ = 17 600	$\pi(20)^4/8 = 62 831.85$	$628.32(-8.49 - 4.78)^2$ = 110 642.69	$628.32(20 - 24.79)^2$ $= 14 416.24$
3.	$-\pi (10)^4/4 = -7853.98$	$-\pi(10)^4/4 = -7853.98$	$-314.16(0 - 4.78)^{2}$ $= -7178.05$	$-314.16(20 - 24.79)^2$ $= -7208.12$
Σ =	80 857.13	126 088.98	161 946.64	10 035.64

$$\bar{I}_{xx} = \sum (\bar{I}_{xx})_i + \sum A_i (\bar{y}_i - \bar{y})^2$$

= 80 857.13 + 161 946.64 = 242 803.77 cm⁴
 $\bar{I}_{yy} = \sum (\bar{I}_{yy})_i + \sum A_i (\bar{x}_i - \bar{x})^2$
= 126 088.98 + 10 035.64 = 136 124.62 cm⁴

$$J_{2c} = \frac{50 \times 50}{12} + 50 \times 50 \times (21.87.25)^2 = 545325.58 \text{ mm}$$

$$I_{3c} = 0.055(5b) + 9(6b)^{2} \times (4 \times 50 - 21.87)^{2} =$$

Thank you