

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: H02J 7/02	A1	(11) International Publication Number: WO 00/14848 (43) International Publication Date: 16 March 2000 (16.03.2000)
(21) International Application Number: PCT/CA99/00805		Published
(22) International Filing Date: 03 September 1999 (03.09.1999)		
(30) Priority Data: 2,246,579 03 September 1998 (03.09.1998) CA		
(60) Parent Application or Grant SIMMONDS, S., Neil [/]; O. SIMMONDS, S., Neil [/]; O. BARRIGAR, Robert, H. ; O.		
(54) Title: BATTERY CHARGER (54) Titre: CHARGEUR D'ACCUMULATEUR		
(57) Abstract		
<p>A charging circuit and method for charging a lithium-ion cell or battery at a charging voltage that is varied during the charging of the cell or battery from a selected minimum charging voltage to a predetermined maximum charging voltage. The charging circuit includes a transformer for transforming line voltage applied to the primary winding thereof to a lower AC secondary winding voltage, the transformer being selected to limit secondary winding output current when the charging voltage is not less than the selected minimum charging voltage to a value not exceeding a selected upper limit for the lithium-ion cell; a rectifier sub-circuit connected to the secondary winding of the transformer for rectifying the secondary winding voltage; and a charge-voltage regulator sub-circuit connected to the rectifier sub-circuit for receiving the rectified secondary winding voltage and providing an output charging voltage that is limited to the predetermined maximum charging voltage.</p>		
<p>(57) Abrégé</p> <p>L'invention porte sur un circuit de charge et sur un procédé visant à charger une pile ou accumulateur aux ions de lithium à une tension de charge variant d'une tension minimale sélectionnée à une tension maximale prédéterminée. Le circuit de charge comprend un transformateur qui transforme la tension du secteur appliquée sur l'enroulement primaire en une tension de courant alternatif inférieure appliquée sur l'enroulement secondaire. Le transformateur est sélectionné de façon à limiter le courant de sortie de l'enroulement secondaire lorsque la tension de charge n'est pas inférieure à la tension de charge minimale sélectionnée par rapport à une valeur n'excédant pas une limite supérieure sélectionnée de la pile aux ions de lithium. Un sous-circuit de redressement est connecté à l'enroulement secondaire du transformateur de façon à redresser la tension de l'enroulement secondaire, et un sous-circuit de régulation de la tension de charge est connecté au sous-circuit de redressement de façon à recevoir la tension redressée de l'enroulement secondaire et à générer une tension de charge de sortie limitée à la tension de charge maximale prédéterminée.</p>		

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : H02J 7/02	A1	(11) International Publication Number: WO 00/14848 (43) International Publication Date: 16 March 2000 (16.03.00)
(21) International Application Number: PCT/CA99/00805 (22) International Filing Date: 3 September 1999 (03.09.99) (30) Priority Data: 2,246,579 3 September 1998 (03.09.98) CA (71)(72) Applicant and Inventor: SIMMONDS, S., Neil [CA/CA]; 3306 Lancaster Court, Coquitlam, British Columbia V3E 3H9 (CA). (74) Agent: BARRIGAR, Robert, H.; Suite 830, Oceanic Plaza, 1066 West Hastings Street, Vancouver, British Columbia V6E 3X1 (CA).	(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published <i>With international search report</i>	
(54) Title: BATTERY CHARGER		
(57) Abstract <p>A charging circuit and method for charging a lithium-ion cell or battery at a charging voltage that is varied during the charging of the cell or battery from a selected minimum charging voltage to a predetermined maximum charging voltage. The charging circuit includes a transformer for transforming line voltage applied to the primary winding thereof to a lower AC secondary winding voltage, the transformer being selected to limit secondary winding output current when the charging voltage is not less than the selected minimum charging voltage to a value not exceeding a selected upper limit for the lithium-ion cell; a rectifier sub-circuit connected to the secondary winding of the transformer for rectifying the secondary winding voltage; and a charge-voltage regulator sub-circuit connected to the rectifier sub-circuit for receiving the rectified secondary winding voltage and providing an output charging voltage that is limited to the predetermined maximum charging voltage.</p>		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NB	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LJ	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Description

5

10

15

20

25

30

35

40

45

50

55

BATTERY CHARGER

10

5 **Field of the Invention:**

15

This invention relates to the field of devices and methods for charging lithium-ion cells (or batteries) and specifically to a charging circuit including a power transformer in which the loading curve of the power transformer is used to limit the current flow to the lithium-ion cell (or battery) and a method for charging lithium-ion cells (or batteries) in which the loading curve of a power transformer is used to limit the current flow to the lithium-ion cell (or battery).

20

15

Background of the Invention:

30

Lithium-ion cells are used in battery packs where high energy density and low weight are required. However, lithium-ion cells can be dangerous if operated outside of their rated specifications. Typically, such batteries are used in controlled environments and are accompanied by suitable protective devices to prevent such problems as short circuits, unduly high temperatures and over-discharge. A number of such protective devices are typically installed in the battery pack. It is standard industry practice that lithium-ion cells are equipped with in-pack circuitry that provides the necessary protection for the cell in use. Although the in-pack circuitry will provide over-all protection, suitable cell charging circuitry is required to provide repeated charging of the cell while satisfying applicable charging and operational constraints that vary

45

30

50

- 1 -

SUBSTITUTE SHEET (RULE 26)

5 somewhat from one cell type to another, as the manufacturer may
have specified for any given design.

10 Particularly, lithium-ion cells carry a risk of generating
5 excess gas due to overcharge or overdischarge - this may cause
the safety vent of the battery pack to open and release
15 electrolyte into the atmosphere. If this release of electrolyte
is continued, the cells can lose sufficient electrolyte that they
are disabled. Further, overcharge or overdischarge may generate
10 excess heat, causing a severe rise in temperature that can reduce
the ability of the cell to retain energy and reduce the number
20 of charging cycles the cell can undergo before it must be
replaced. More seriously, overcharging or overdischarging may
occur to such an extent that the lithium metal is isolated from
25 the other elements and may become plated onto one of the
electrodes. Lithium metal is explosive in water and will, in
varying degrees, react with the moisture in the atmosphere.
30 Lithium-containing batteries have been known to catch fire,
although more recent safety designs have reduced the chances of
20 this occurrence. The avoidance of overcharge voltage and
overcharge current during charging of a lithium-ion cell is
35 therefore an important objective in the use of lithium-ion cells,
has been achieved by a number of known regulator circuits, and
is also a principal objective of the present invention.

40
25 It is known that the attained charge capacity of a lithium-
ion cell is significantly reduced if the charging voltage is less
45 than the manufacturer's recommended maximum charging voltage (say
4.1 volts). With a drop of charging voltage of only 0.05V
30 (approximately 1%), a loss of up to 5% in charge capacity occurs.
However, if the charging voltage reaches only 4.0 volts (a drop

5 of 0.1V or approximately 2%) then a loss of charge capacity of
up to 12% occurs. On the other hand, as pointed out previously,
if one exceeds the manufacturer's recommended maximum charging
10 voltage, the life cycle of the cell is decreased, or worse,
5 catastrophic breakdown of the cell can occur. Therefore one is
compelled by these combined constraints to charge the lithium-ion
15 cell at a voltage (at least at the end of the charging cycle)
that is as close as reasonably possible to the maximum charging
voltage without exceeding it.

10 Previous battery charging circuits for lithium-ion cells or
20 batteries are known that include suitable regulator devices to
maintain charging voltage and current within acceptable
constraints. The "charge inhibition voltage" refers to the value
25 that the cell manufacturer has set as the upper limit of
operating/charging voltage of the cell. If the voltage exceeds
this value, lithium metal may become plated to an electrode, with
30 potentially dire consequences as discussed above. The "maximum
charging voltage" is also established by the manufacturer at a
20 lower value than the charge inhibition voltage; if for example
the charge inhibition voltage is 4.35 volts for a representative
35 cell, the maximum charging voltage is typically set at about 4.1
or 4.2 volts. Lithium-ion cell manufacturers have found that
operation above the maximum charging voltage tends to reduce
40 severely the recharging life cycle of the battery. Accordingly,
in order to ensure that charging voltage is no greater than the
set maximum charging voltage for the cell, controlled lithium-ion
cell charging circuits typically provide a maximum output charge
45 voltage that is no more than the maximum charging voltage.

30

50

5 In a typical charging circuit, an alternating current source
operating at line voltage (typically 110-120 volts in North
10 America) is applied to the primary winding of a transformer whose
secondary winding applies a relatively low AC voltage to a bridge
15 rectifier. The output of the bridge rectifier is applied across
a smoothing capacitor to the load (the load in the charging
circuit is the lithium-ion cell or battery to be charged). If
no circuit elements were present other than the foregoing, the
output voltage delivered to the lithium-ion cell would be at risk
10 of exceeding the maximum charging voltage and ultimately might
exceed the charge inhibition voltage of the lithium-ion cell.
Accordingly, interposed between the bridge circuit and the
lithium-ion cell or battery is a regulator circuit for limiting
the voltage and current applied to the lithium-ion cell or
20 battery during the charging operation.

30 Two types of regulator circuit are conventionally used, both
of which are constant current/constant voltage regulator
circuits, viz a linear regulator circuit, and a switching
20 regulator circuit.

35 A switching regulator circuit includes a specially-designed
charge control integrated circuit (IC) device for use with the
other circuit elements. Such IC device is connected within the
40 switching regulator circuit in constant-current mode. With the
regulator operating in constant-current mode, charging continues
at a constant current until the voltage across the lithium-ion
cell or battery reaches the pre-set maximum charging voltage.
45 The circuit then limits the output charging voltage to the
maximum charging voltage, using a pulse-width modulation
30 technique. According to this technique, the length of time that

5 charge current is applied to the lithium-ion cell load during each AC cycle is progressively and gradually decreased as charging proceeds.

10 5 The commercially available BenchmarkTM model bq2054 IC device and the 4CTM Technologies 4C-101656Li device are representative examples of charge control IC elements for use 15 with a switching regulator circuit of the type described above.

10 20 As an alternative to the switching regulator, the principal other previously known regulated lithium-ion cell charging circuit includes a linear regulator incorporating a pair of suitable linear regulator charge control IC devices, one such device being connected within a charge current regulation 25 15 subcircuit of the overall charging circuit, and the other within a charge voltage regulation subcircuit. These linear IC devices incorporate transistors constrained to operate within a relatively linear region of operation which happens to be a relatively inefficient region of operation. (By contrast, 30 20 switching regulator IC devices permit the transistors in the integrated circuit to operate in relatively efficient Class C mode of operation.) Until fairly recently, such linear regulator 35 25 circuits were considerably less efficient than switching regulator circuits, and generated an undesirable amount of heat, although such linear regulators were typically lower in cost than 40 30 switching regulators. For the older type of linear regulator, the minimum differential voltage (generally referred to as the "minimum dropout voltage") between unregulated voltage at the 45 35 input of the linear regulator circuit and the regulated output 50 30 charge voltage of the linear regulator circuit was approximately 1.5 volts when used for constant-voltage regulation and 1.2 volts

5 when used for constant-current regulation. As this differential
10 voltage is relatively high, leading to relatively inefficient
15 charging, linear regulators using the older type of linear
20 regulator IC device were typically used only for low-power
25 charging requirements.

15 A previously known battery-charging circuit not designed
20 specifically for lithium-ion cells or batteries that uses only
25 a single linear regulator charge control IC device that provides
30 both charge current regulation and voltage regulation is shown
35 in Figure 11-2 of Gordon McComb, *Robot Builder's Bonanza* (New
40 York, 1987), p. 81. However, that circuit includes a current
45 limiting resistor and a silicon-controlled rectifier and appears
50 to be designed to provide constant charging current until the
55 charging voltage reaches the maximum charging voltage.

30 More recently, a new generation of linear regulator charge
35 control IC devices has been developed that offers significant
40 improvements in efficiency and a reduction in heat generation.
45 These new regulators are frequently referred to as low drop-out
50 voltage regulators or "LDO" regulators, because the minimum
55 differential voltage (dropout voltage) between input supply
60 voltage and output charge voltage can be as low as about 0.5
65 volts when used for constant-voltage regulation and as low as 1.2
70 volts (about the same as for the older type of linear regulator
75 IC device) when used for constant-current regulation of the
80 charging circuit. The 0.5-volt differential when the IC device
85 is operated in constant-voltage mode permits these LDO regulators
90 to operate from an unregulated DC supply voltage that is
95 appreciably closer to the maximum charging voltage than was the

5 case for the older linear regulator IC devices, thereby reducing power dissipation.

10 5 The older type of linear regulator charge control IC device is exemplified by the Motorola™ LM317 IC device. The more recently available LDO linear regulator charge control IC device is exemplified by the Micrel™ MIC29372 IC device.

15 10 Despite the improvements effected in IC design, lithium-ion cell charging circuits of the types previously known remain inherently inefficient because they operate from unregulated DC power that is supplied at a voltage significantly above the maximum charging voltage; the inefficiencies are also due to the conventional use of both charge current and charge voltage 20 25 regulating subcircuits, both of which dissipate energy.

30 30 The prior art teaches that both charge current and charge voltage should be actively regulated during the charging of lithium-ion cell; the charge current initially at a constant 20 25 value until the charge voltage reaches the manufacturer's suggested maximum charging voltage and the charging voltage at the maximum charging voltage thereafter. Actively regulating current to a constant value requires that the regulating subcircuit be supplied with a high enough voltage that the 35 40 regulator will not drop out of regulation as the charging voltage increases to the maximum charging voltage.

45

30

50

55

5

Summary of the Invention:

10 The conventional design approach heretofore taken for the
5 design of the regulation of lithium-ion cell or battery charging
circuits proceeds on the premise that it is a good idea for the
regulating circuit to be constantly active and to be regulating
15 charging voltage and/or charging current throughout the complete
cell charging process. (Herein frequent reference will be made
10 to the "cell" to be charged, it being understood that with
appropriate adjustments, one may in each case charge a battery
20 of cells. Generally, a reference to a "battery" should be
understood to include a reference to a single cell.)

25 15 According to the invention, the transformer used in the
lithium-ion charging circuit is selected so that its inherent
30 current-limiting characteristic (loading effect) permits the
circuit to charge the lithium-ion cell during an initial period
in which the regulator circuit need not perform any regulating
35 20 function. This enables a satisfactory regulator circuit to be
designed according to the invention using only a single charge
control IC device that in an initial stage of the charging
40 25 operation is in non-regulating mode, permitting the rectified
transformer secondary output to be applied to the lithium-ion
cell with only a minimum voltage drop across the single IC device
(present in a voltage regulating subcircuit), as compared to two
45 30 voltage drops across two IC devices (one in a current-regulating
subcircuit and one in a voltage-regulating subcircuit) that would
be present in conventional charging circuits, thereby affording
substantial energy savings. When the charge voltage reaches a
pre-set threshold level, the regulator circuit functions for the

50

55

5 remainder of the charging operation in a manner similar to that
of previous voltage regulation subcircuits, but with less overall
power loss, since there is no separate current-regulation
10 subcircuit present.

5 Accordingly, the invention provides a charging circuit for
15 a lithium-ion cell (or battery) including a selected suitable
transformer characterized by an inherent secondary output
current-limiting capability that meets the initial current-
10 limiting needs of the charging circuit, in combination with a
suitable rectifier circuit (that may itself be of conventional
20 design) and a linear charge-voltage regulating subcircuit that
during the initial part of the charge cycle does not operate in
regulating mode. Otherwise the linear charge-voltage regulator
25 subcircuit and the rest of the circuit may be of conventional
design, except that no separate charge-current regulator
subcircuit is necessary nor present, thereby avoiding the
30 associated power dissipation that occurs in such subcircuit
present in conventional designs.

20 During the initial stage of the charging operation, charge
35 voltage and charge current are maintained within acceptable
limits by the condition of the discharged lithium-ion cell and
the inherent secondary winding current-limiting characteristic
40 of the transformer itself, and therefore the linear charge-
voltage regulating subcircuit drops the supply voltage only by
a minimum voltage drop (the minimum dropout voltage) between the
rectified transformer secondary output and the lithium-ion cell
45 being charged. The charge current applied during this initial
30 stage slowly declines as the voltage across the cell being
charged increases. For that reason, this initial mode of

5 operation of the charging circuit may be referred to as "taper
current mode", since the current tapers off from an initial value
varying more or less linearly with time to a reduced value.
10 During the later stage of the charging operation, the linear
charge-voltage regulating subcircuit operates in the same manner
5 as a conventional such subcircuit to limit applied charge voltage
to the maximum charging voltage, during which time charge current
15 decreases substantially logarithmically in the same manner as
would occur in a conventional charging circuit incorporating
10 linear regulation. Preferably the linear regulator IC device
used in the charge-voltage regulating subcircuit is of the LDO
20 type for maximum efficiency and charge capacity.

25 The inventor has found that the charge-current regulator
15 subcircuit and the consequent power dissipation associated with
such subcircuit may be eliminated without significantly affecting
the performance of the battery charger while maintaining the
30 charging voltage within safe limits. The elimination of the
current-limiting subcircuit offers both improved energy
20 efficiency and reduced cost of manufacture of the charging
circuit, because not only is one subcircuit eliminated, but the
35 required transformer can be smaller and lighter.

40 Note that it is important that the current rating and
25 secondary voltage of the transformer be carefully selected, both
to prevent damage to the cell during the initial charging stage
and to provide an appropriate transformer loading curve so that
45 the supply voltage begins to be regulated after the desired
portion of the charging cycle has been completed. Specifically,
30 a current rating for the transformer should be selected that is
not greater than the maximum charging current for the cell or

5 battery suggested by the manufacturer. The secondary voltage of
10 the transformer (and therefore the characteristics of the
 transformer loading curve) should then be selected so that when
 the maximum charging current is flowing through the secondary
15 winding of the transformer, the voltage supplied to the voltage
 regulating subcircuit is approximately equal to the sum of (1)
 a minimum charging voltage of the cell or battery to be charged
 selected to be somewhat less than the manufacturer's nominal
 voltage rating of the battery and (2) the minimum voltage drop
20 across the voltage regulating subcircuit. To compensate for line
 voltage variations, it is advisable to select the secondary
 voltage of the transformer based upon the maximum expected
 transformer primary voltage, rather than upon the average primary
 voltage, to avoid having the current flow during the initial
25 charging stage exceed the transformer rating due to higher than
 average primary voltage.

30 A minimum charging voltage somewhat less than the nominal
 voltage is desirable, although the exact voltage used is not
20 critical. For example, the battery manufacturer's specifications
 for the battery for which the charge is being designed should
35 provide the charging voltage as a function of time, assuming
 constant current until the charging voltage rises to the maximum
 charging voltage. In typical batteries known to the inventor,
40 the charging voltage increases almost instantly from the
 discharged voltage (which may be as low as 2.5 volts) to
 approximately 3.3 to 3.7 volts reaching roughly 3.6 to 3.9 volts
 within a few minutes, depending upon a number of factors
45 including the age and prior use of the battery. After the first
 few minutes the charging voltage continues to climb, but somewhat
 more slowly, until it reaches the maximum charging voltage of 4.1

5 or 4.2 volts as specified by the manufacturer (at which point the
10 charging circuit must clamp the voltage or the battery may be
damaged). While an initial charging voltage of 3.4 volts or even
less could be used, the inventor has found that using an initial
15 charging voltage of 3.5 to 3.6 volts to select the current rating
of the transformer does not cause the charging current during the
first few minutes under charge to reach levels high enough to
adversely affect the battery being charged.

10 In accordance with the invention, for given battery
20 specifications, the transformer selected for the charger will
have a lower power rating (a lower current rating at the rated
voltage) because the charging current decreases as the charging
25 voltage increases. In a conventional charger in which current
is regulated to a constant value until the charging voltage rises
30 to the maximum charging voltage, the power consumed by the
circuit must increase as the voltage rises as the current is
being held constant. Hence the transformer must be rated to
provide the maximum charging current at the maximum charging
35 voltage, rather than at the minimum charging voltage selected as
discussed above. A transformer with a lower power rating is
lighter, smaller, and less expensive and generates less heat.

40 As mentioned, in this specification, in many passages,
25 reference will be made to the charging of a lithium-ion cell; the
representative voltages and currents specified at various points
45 in the charging circuit are for a representative such cell, and
the charging circuit parameters for such cell will be given
typical values. However, it is to be understood that there is
30 a variability in the characteristics of commercially-manufactured
lithium-ion cells; such variability has to be taken into account

5 in establishing various critical voltage and current values
within the charging circuit. Further, it is to be understood
10 that a given charging circuit could be designed to charge two or
more lithium cells arranged in parallel or in series, and that
15 5 depending upon the load for the circuit (i.e. the number of
lithium-ion cells to be charged and whether they are connected
in parallel or series) such values again would require adjustment
from the typical values given in this specification.

10 10 The method according to the invention may be referred to as
20 a "starved regulator technique" or as a "tapered current/constant
voltage" technique. Reference to a "starved regulator" is
appropriate because during the initial charging phase, the linear
25 15 regulator IC device does not limit the charge voltage as the
supply voltage is too low to require limiting. The regulator is
starved for lack of voltage; this is not the way in which such
regulators are designed to be used. The term "tapered
30 20 current/constant voltage" is appropriate because current steadily
diminishes as the threshold voltage is approached at which charge
voltage regulation commences; charge voltage is maintained at a
35 25 constant value during the regulated stage of the charging
operation.

40 40 While the invention is optimized if the more recently
25 available LDO charge-control IC device is used, the invention may
also make use of the older generation of linear IC devices, and
45 45 in that event entails advantages of the sort recited in the
preceding description relative to previously known circuits that
employ the older generation of linear IC devices. In each case,
30 50 the conventional current-regulating subcircuit can be eliminated.

5

Summary of the Drawings:

10

5 Figure 1 is a circuit diagram of a charging circuit for a lithium-ion cell incorporating a linear regulator subcircuits of the type previously known in the technology, and incorporating an older known type of charge control IC device.

15

10 Figure 2 is a circuit diagram of a charging circuit for a lithium-ion cell incorporating a linear regulator subcircuit of the type previously known in the technology, and incorporating a more recent known type of charge control IC device.

20

15 Figure 3 is a circuit diagram of a charging circuit for a lithium-ion cell including a charge-voltage regulator subcircuit in accordance with the invention, and incorporating an older known type of charge control IC device.

30

20 Figure 4 is a circuit diagram of a charging circuit for a lithium-ion cell including a charge-voltage regulator subcircuit in accordance with the invention, and incorporating a more recent known type of charge control IC device.

35

25 Figure 5 is a graph plotting the output voltage against output current of a universal AC adaptor used in place of the transformer, bridge rectifier, and smoothing capacitor of Figure 3 for the purpose of testing the circuit shown in Figure 3.

45

30 Figure 6 is a graph plotting the voltage drop across and the current through the lithium-ion cell of Figure 1 during the operation of the charging circuit of Figure 1.

50

55

5 Figure 7 is a graph plotting the voltage drop across and the
current through the lithium-ion cell of Figure 3 during the
operation of the charging circuit of Figure 3.

10 5 Figures 8 - 11 are graphs plotting the output voltage
against output current of AC adaptors rated at 300, 400, 800, and
1200 mA, respectively, each used in place of the transformer,
15 bridge rectifier, and smoothing capacitor of Figure 4 for the
purpose of testing the circuit shown in Figure 4.

10 10 Detailed Description with Reference to the Drawings:
20

25 15 In the following, if a voltage is stated at a particular
point in a circuit, it is to be understood that such voltage is
measured relative to ground. In each of Figures 1 through 4, the
25 15 grounds are terminals G1, G2, G3, and G4, respectively.

30 30 Figure 1 illustrates a conventional lithium-ion cell
charging circuit whose elements are interconnected in accordance
20 30 with known technology. An alternating-current source 101, which
may typically be a mains power source at standard mains voltage
35 35 (110-120 volts in North America), provides power to the input
winding 103 of a transformer 105 whose secondary winding 107
delivers an AC output that is rectified by a bridge rectifier
40 40 circuit 109 and is smoothed by smoothing capacitor 111. If
desired, more elaborate smoothing may be provided in this
conventional circuit and in the charge circuit according to the
invention, to be described below. If the resulting unregulated
45 45 DC current applied at a voltage V_{W1} between terminals W1 and G1
30 50 in the circuit were applied directly to lithium-ion cell 135 to
be charged, there would be a serious risk of applying too high

5 a charging current or too high a charging voltage, or both, to
the lithium-ion cell 135, risking damage to the cell 135 and
other hazards (including serious internal gas expansion within
10 cell 135 and potentially an explosion). Accordingly, it is
5 conventional to provide in such charging circuit regulator
subcircuits to control the current and voltage applied to the
cell 135.

15

If the lithium-ion cell 135 is nearly fully discharged to
10 rated minimum discharge voltage when it is connected to the
circuit of Figure 1 at terminals Z1 and G1 for recharging, there
20 is no immediate risk of applying too high a charging voltage (the
fully discharged condition of cell 135 precludes too high an
initial charge voltage rise); the immediate risk is that too high
25 a charging current might be applied. Accordingly, the linear
current regulator subcircuit comprising charge control integrated
circuit (IC) device 113 and resistor 119 ensures that charging
30 current is kept within an acceptable range. Once the charge
voltage at terminal Z1 in the circuit reaches the maximum charge
20 voltage acceptable for charging the lithium ion cell 135, a
second regulator subcircuit limits the charge voltage to hold the
35 charge voltage at or below a preset maximum voltage.

The second regulator subcircuit (charge-voltage subcircuit)
40 comprises charge control IC device 123, fixed resistor 129, and
variable resistor 133. Fixed resistor 129 and variable resistor
45 133 are used to set the regulated value of the charge voltage in
accordance with the instructions of the manufacturer of the
charge control IC device 123. Resistors 129 and 133 may normally
30 be omitted if the IC device 123 has been designed by the
manufacturer for the particular lithium-ion cell to be charged.

50

5 The charge-voltage subcircuit limits the charge-voltage to the maximum voltage for the particular lithium-ion cell to be charged.

10 5 The IC devices 113 and 123 are conventional and may each be one and the same type of device, for example, the Motorola™ model LM317 charge control IC device. The IC devices 113 and 123 are connected within their respective subcircuits in conventional manner. The input terminal 115 of IC device 113 is connected to
15 10 the positive output terminal W1 of the bridge rectifier 109. (Terminals W1, G1, Y1 and Z1 in the circuit may or may not be correlatable with physically discrete terminals, as the circuit designer may prefer). The output terminal 117 of IC device 113 is connected to one terminal of resistor 119, and the other
20 15 25 terminal of resistor 119 is connected to the adjustment input terminal 121 of IC device 113. The bridge rectifier negative terminal G1 (which may be considered a ground line for the circuit) is connected to the negative terminal of lithium-ion cell 135.
30

20 30 IC device 123 is similarly conventionally connected. The input terminal 125 of IC device 123 is connected to terminal Y1, the output terminal 127 of IC device 123 is connected at terminal Z1 to one terminal of resistor 129 whose other terminal is
35 40 25 connected to the adjustment terminal 131 of IC device 123. The variable resistor 123 is connected between the adjustment terminal 131 and terminal G1. If the IC device 123 has been designed by the manufacturer as discussed above, then terminal 131 (which would then be referred to as ground terminal 131) is
45 50 30 connected directly to the terminal G1; resistors 129 and 133 are omitted.

5 During the initial stage of the charging operation, the
10 current regulator subcircuit comprising IC device 113 and
resistor 119 regulates current, but IC device 123 provides an
unregulated connection between its input terminal 125 and output
15 terminal 127, since the output voltage (the charge voltage
applied to lithium-ion cell 135) does not require regulation
during the initial stage of the charging operation. However,
when the charge voltage at terminal Y1 reaches the established
threshold at which the maximum permitted charging voltage for
10 application to cell 135 appears at terminal Z1 (relative to
ground voltage at terminal G1, of course), IC device 123 begins
to regulate the output voltage at terminal Z1, maintaining it at
the maximum permitted charge voltage value pre-set for charging
the cell 135. From the time that IC device 123 begins to
15 regulate the output voltage at terminal Z1 that charges the cell
135, the charge current applied to cell 135 begins to decline
approximately logarithmically, and eventually approaches zero by
the time that the cell 135 is fully charged to the capacity
30 permitted by the pre-set regulated charge voltage.

20

35 Figure 2 is a charging circuit for a lithium-ion cell that
is essentially identical to the circuit of Figure 1 except that
charge control IC devices 213 and 223 respectively have been
substituted for charge control IC devices 113 and 123 of Figure
40 1. Otherwise, the circuit of Figure 2 may be identical to the
circuit of Figure 1. The charge control IC devices 213 and 223
of Figure 2 are the more recent "low drop-out voltage" or "LDO"
45 type of IC devices capable of operating with a lower minimum
differential voltage across charge control IC device 223. The
30 IC devices 213 and 223 are conventional and may each be one and

5 the same type of device, for example, the MicrelTM model MIC29372
charge control IC device.

10 Figure 3 illustrates a charging circuit according to the
5 invention for a lithium-ion cell 335 that resembles, to a
considerable extent, the charging circuit of Figure 1 but
completely eliminates the charge current regulator subcircuit of
15 Figure 1. In Figure 3, an alternating current source 301
provides power to the input winding 303 of a suitable transformer
10 305 whose secondary winding 307 provides an output AC current
that is rectified by bridge rectifier 309, the output of which
20 is smoothed by smoothing capacitor 311. The charging circuit
illustrated in Figure 3 will also perform advantageously, at
least for some applications, without the smoothing capacitor 311,
25 but the smoothing capacitor 311 is desirable to increase the
15 effective DC voltage and to correct the power factor.

30 The transformer 305 is selected not only for suitability to
meet the usual charging circuit requirements, but also for its
20 inherent current-limiting capability during the initial mode of
operation of the circuit that enables the conventional current-
limiting subcircuit to be eliminated. In the transformer 305,
35 the windings ratio is selected to provide an output AC voltage
that after rectification delivers a DC supply voltage across
25 terminals W3, G3 that is sufficient to provide a regulated charge
voltage at the preferred maximum pre-set value (which DC supply
40 voltage may be lower than that provided in the circuit of Figure
1 by at least the minimum dropout voltage of the charge control
IC device 113), but with a voltage and current rating low enough
45 to limit initially the charge current in the manner discussed
30 below. Otherwise, circuit elements 301, 305, 309, and 311 may

5 be essentially identical to the counterpart circuit elements 101,
105, 109, and 111 of Figure 1 and are interconnected in
essentially the same way.

10 5 However, in contradistinction to conventional charging
circuits, the output of the bridge rectifier 309 applied across
15 terminals W3 and G3 of Figure 3 is not regulated by any active
current regulating device; instead, the circuit of Figure 3
relies upon the inherent current regulatory capability of the
10 transformer 305 to limit charge current, as will be further
discussed below.
20

25 Charge control IC device 323 may be identical in type to IC
device 123 of Figure 1, e.g. a MotorolaTM LM317 device, and is
15 connected in the circuit of Figure 3 in generally the same way
as IC device 123 is connected in the circuit of Figure 1. As is
the case with Figure 1, as long as the charge voltage applied
30 across the lithium-ion cell 335 remains below the designed
maximum charge voltage for the circuit, charge control IC device
20 323 does not regulate the charge voltage, but begins to operate
in regulation mode only when the charge voltage at terminal Z3
35 has reached the designed permitted maximum value. Accordingly,
to achieve this charge voltage regulation, input terminal 325 of
IC device 323 is connected to the bridge rectifier output
40 25 positive voltage terminal W3 (there being no intervening charge
current regulator circuit), and the output terminal 327 of IC
device 323 is connected to the positive terminal of lithium-ion
cell 335; the connection terminal is identified as Z3. Connected
45 between the output terminal 327 and the adjustment terminal 331
30 of IC device 323 is the resistor 329 whose resistance may be
selected to be the same as that of resistor 129 of Figure 1,

5 assuming that IC device 323 is of the same type as IC device 123
of Figure 1. Connected between the adjustment terminal 331 and
10 "ground" terminal G3, which is connected to the negative terminal
of lithium-ion cell 335, is an adjustable resistor 333 that can
5 be essentially identical to adjustable resistor 133 of Figure 1,
again assuming that IC device 323 is of the same type as IC
device 123 of Figure 1. Resistors 329 and 333 may be omitted and
15 terminal 331 (which would then be referred to as ground terminal
331) connected directly to "ground" terminal G3 if the IC device
10 has been designed by the manufacturer for the particular
lithium-ion cell to be charged.

20

Figure 4 is a charging circuit for a lithium-ion cell 435
25 that is essentially identical to the charging circuit of Figure
15 3 except that IC device 423 is of the "low drop-out voltage" or
"LDO" type more recently available. Otherwise, the elements of
Figure 4 are essentially identical to the counterpart elements
30 of Figure 3. Thus AC source 401, transformer 405 having primary
winding 403 and secondary winding 407, bridge rectifier 409 and
20 smoothing capacitor 411 are essentially identical to the
counterpart elements 301, 305, 309 and 311 of Figure 3, the
output of the bridge rectifier 409 of Figure 4 being applied
35 across terminals W4 and G4. Terminal G4 serves as ground
terminal for the circuit and is connected to one terminal of
25 adjustable resistor 433 and to the negative terminal of lithium-
ion cell 435. Resistor 429 may be of the same resistance value
as resistor 329 (again assuming identity of type of IC devices
30 323, 423) and is connected along with adjustable resistor 433 to
the adjustment terminal of IC device 423 in essentially the same
manner as resistor 329 and adjustable resistor 333 are connected
in Figure 3. The input, output and adjustment terminals of IC

40

50 - 21 -

55

5 device 423 are identified by reference numerals 425, 427, and 431
respectively. The output voltage applied at circuit terminal Z4
to the positive terminal of lithium-ion cell 435 is regulated by
charge control IC device 423 in essentially the same way as the
10 voltage at terminal Z3 is regulated by the IC device 323 of
Figure 3, the significant difference being that the minimum
15 difference between the supply voltage at terminal W4 and the
regulated charge voltage at terminal Z4 is lower for the circuit
of Figure 4 than for the circuit of Figure 3 because the LDO
10 charge control IC device 423 operates at a lower dropout voltage.
IC device 423 may be essentially identical to the IC device 223
20 of Figure 2 and may be, for example, a Micrel™ model MIC 29372
device.

25 15 The reason that the charging circuits of Figures 3 and 4 are
able to function successfully despite the absence of a charge-
current regulating subcircuit is that the transformer 303 or 403,
30 as the case may be, is selected so that its loading effect
provides an inherent current-limiting function. An understanding
20 of this phenomenon is facilitated by reference to the graph of
Figure 5.

35

Figure 5 is a graph of the output voltage representative of
that of a typical power transformer of the type that would be
40 used in the circuits shown in Figures 1 - 4 measured after
rectification and smoothing. In Figure 3, this voltage would be
measured at terminal W3. For convenience, the voltage plotted
45 in Figure 5 is the measured output voltage of a 300 mA-rated
universal (multi-voltage) AC power adaptor set at the 6.0 volt
50 setting with a line voltage input of 110 volts AC and assuming
a variable load over the range plotted, the variation in the load

55

5 correspondingly varying the current draw. The AC power adaptor
includes a 300 mA-rated transformer corresponding to transformer
10 303 or 403 and rectification and smoothing components equivalent
to those in Figures 1 - 4. Note that the 6.0 setting indicates
15 5 an output voltage of 6.0 volts DC at 300 mA with an input voltage
of 120 volts AC rather than 110 volts AC. The lower input AC
voltage used to obtain the data for Figure 5 resulted in a
reduction in the output voltage at 300 mA current to about 5.0
volts DC.

10 As is apparent in Figure 5, the rectified and smoothed DC
20 voltage provided by an unregulated DC power supply (an example
of which is the portion of the circuit shown in Figure 3 between
the alternating current source 301 and terminal W3 of the
25 15 smoothing capacitor 311) declines with increasing current draw.
To utilize this effect so that no charge-current regulating
subcircuit is needed, the battery charger designer must select
an appropriate transformer. Rectification and smoothing may be
30 accomplished by a variety of known circuit designs. The use of
20 designs for rectification and smoothing other than that shown in
Figures 1 - 4 may result in a different constant voltage drop
35 across the rectifier from that discussed below, but the rate of
decline of voltage with increasing current will not be affected.

40 25 To select a transformer appropriate for use in a charging
circuit for a particular lithium-ion cell or battery, the current
rating and secondary voltage of the transformer must be
determined. Cell/battery manufacturers generally suggest a
45 30 charging rate (conventionally referred to as "C" or "C rate") for
a lithium-ion cell or battery of 0.5 C to 1.0 C to obtain optimal
cell or battery lifetime. The C rate is the value of current

5 required to provide a given charge capacity within a given time,
and its unit is defined so that a 1.0 C rate is a rate that
discharges the cell or battery in 1 hour. For example, the 1.0
10 C rate for a 500mAh battery is 500 mA and a 0.5 C rate is 250 mA.
10 5 A transformer current rating should preferably be selected that
is within the 0.5 C to 1.0 C range, or at least not above the 1.0
C rate, to obtain optimal cell or battery life and minimize
15 transformer weight and size. (Lower C rates can be chosen, but
these appreciably increase the required charging time). The
10 transformer's secondary voltage at the selected current rating
should then be selected so that the DC voltage supplied to the
20 voltage regulator (IC device 323 in the circuit shown in Figure
3 and voltage regulator IC device 423 in the circuit shown in
Figure 4) is approximately equal to the sum of (1) an initial
25 minimum charging voltage of the cell or battery to be charged
(typically chosen as approximately 3.5 or 3.6 volts based upon
30 measurements of the charging characteristics of the cell or
battery to be charged) and (2) the minimum dropout voltage of the
voltage regulator of approximately 1.8 to 2.0 volts for a typical
35 voltage regulator IC such as the LM317 (for low dropout voltage
regulators such as the MIC 29372 the minimum dropout voltage may
be as low as approximately 0.8 volts, increasing in proportion
to the load current). Typically the secondary voltage of the
40 transformer should therefore be selected so that the DC voltage
supplied to the voltage regulator is about 5.3 to 5.6 volts at
the selected current rating for a voltage regulator IC such as
the LM317. Selection of a higher secondary voltage would cause
45 current in excess of the transformer's current rating to be drawn
during initial charging, and selection of a lower secondary
30 voltage would reduce the charging current.

5 To compensate for line voltage variations it is advisable
to select the current rating of the transformer as approximately
10 the 1.0 C rate and the secondary voltage of the transformer based
upon the maximum expected transformer primary voltage to avoid
15 the current exceeding the transformer rating.

15 **Examples:**

10 Example 1:
20 In a representative lithium-ion cell charging circuit in
conformity with Figure 3, the cell 335 (an NEC Moli Energy
Corporation IMP220748) to be charged had a nominal 3.6 volt/500
mA rating. A current rating of 300 mA was selected, as it is
25 a readily available current rating for power transformers and is
within the desired range for a 500 mAh cell, as discussed above.
In testing the circuit, in place of the transformer 305, bridge
rectifier 309, and smoothing capacitor 311, a 300 mA rated
30 universal (multi-voltage) AC power adaptor set at the 6.0 volt
setting and supplied by an AC input voltage of approximately 110
volts was used (the same input voltage used to obtain data for
35 the loading curve plotted in Figure 5). Hence the unregulated
voltage/current relationship, measured across the smoothing
capacitor 311, is as shown in Figure 5. A Motorola™ LM317
40 device was chosen as the IC device 323. Resistor 329 had a
resistance of 2 kΩ and variable resistor 333 a maximum resistance
of 1 kΩ. In this example, the transformer 305 was selected based
45 upon its current rating at 110 volts AC input. As discussed
above it is preferable to use the current rating at the maximum
50 expected line voltage, which can be as high as 132 volts AC.
However, as the current rating selected was considerably less

5 than the 1.0 C rate (300 mA rather than 500 mA), the transformer
selected is appropriate. The examples given below illustrate
selection of transformer specifications based upon maximum line
voltage. While the current rating for transformer selected for
10 5 this example at an input of 132 volts AC and a selected voltage
of 6.0 volts is not known, it is expected that the rating would
be not be greater than 500 mA (maximum charging current suggested
15 by the manufacturer).

10 10 As discussed above, charging occurs in two stages. In the
first stage (before the voltage across the cell 335 reaches 4.1
20 20 volts), assume that at a given time the cell 335 is partially
charged so that the charge voltage at terminal Z3 is, for
example, 3.5 volts. The IC device 323 is set by the resistors
25 15 329 and 333 so that it will not regulate until the charge voltage
at terminal Z3 is 4.1 volts. As IC device 323 is not regulating
30 30 voltage, its input voltage (terminal W3) will be higher than the
voltage at its output (terminal Z3) of 3.5 volts by its minimum
dropout voltage of approximately 1.8 volts, hence the voltage at
35 35 terminal W3 will be approximately 5.3 volts. From the loading
relationship shown in Figure 5, the current drawn by the battery
will be limited to approximately 300 mA, which is the rated
current of the transformer (in this example, the rated current
of the power adaptor).

25 40 45 As the cell 335 becomes charged, the voltage at terminal Z3
will gradually increase until it reaches 4.1 volts and the second
stage of the charging process begins. The voltage measured at
30 30 45 terminal Z3 (the voltage drop from terminal Z3 to terminal G3)
is the sum of the battery voltage and the voltage drop across the
internal resistance of the battery due to the current flowing

5 through the battery. Note that the battery voltage is here
distinguished from the voltage drop across the battery measured
at terminal Z3. The battery voltage will be slightly less than
4.1 volts (or else charging would cease as no current would flow)
10 5 and the continuing charging current will be decreasing as the
battery accepts further charge and the voltage increases toward
4.1 volts. When the voltage at reaches 4.1 volts, the input
15 voltage of the IC device 323 at terminal W3 will be approximately
5.6 volts. At 5.6 volts, the transformer 305 will limit the
10 current to approximately 200 mA, as can be seen from Figure 5.
It can be seen that as the charge voltage increased during the
20 first stage, the charging current gradually declined, or "tapered
down", linearly from approximately 300 mA to approximately 200
mA.

25 15 During the second stage, as the battery continues to charge,
the battery voltage approaches 4.1 volts and the current through
30 the battery must decline as the internal resistance is fixed and
the voltage drop across the internal resistance is the difference
20 between the regulated voltage across the battery and the battery
voltage. The declining current causes the voltage at terminal
35 W3 to increase as the load on the transformer 305 is further
reduced, but the increased voltage at terminal W3 is limited by
the IC device 323. This increases the voltage drop across IC
40 device 323, but the current is declining rapidly so that the
power dissipated by IC device 323 decreases.

45 The behavior of the voltage measured at terminal Z3
(labelled "E") and the current (labelled "I") passing through
30 terminal Z3 during the charging of cell 335 discussed above is
illustrated by the charging curves shown in Figure 7. For

5 example, the transition from the first to the second stage takes
place at just under 4000 seconds.

10 Example 2:

5

15 A similar illustration of the behavior of the voltage measured at terminal Z1 (labeled "E") and the current (labelled "I") passing through terminal Z1 during the charging of cell 135 in the prior art circuit shown in Figure 1 is shown in the
10 charging curves of Figure 6. The measurements used to plot Figure 6 were obtained by using the same 300 mA rated universal (multi-voltage) AC power adaptor that was used to obtain data for the loading curve plotted in Figure 5 except that the output voltage selector of the power adaptor was set at the 9.0 volt
20 15 setting. The adaptor was supplied by an AC input voltage of 110 volts. In place of the transformer 105, the bridge rectifier 109 and the smoothing capacitor 111 shown in Figure 1 the adaptor was
25 used.
30

20 A comparison between the charging curves shown in Figure 6 and those shown in Figure 7 suggests that the circuit shown in
35 Figure 3, which is a battery charger in accordance with the invention, is capable of charging a lithium-ion cell in essentially the same time as the prior art charger circuit shown
40 25 in Figure 1, but does so without the charge-current regulating subcircuit of Figure 1, provided that an appropriate transformer current and voltage rating are selected.

45 Note that the universal (multi-voltage) AC power adaptor
30 used in the examples given above contains a multi-tap
transformer and provides a selector switch for selecting a tap
50

5 for the desired output voltage. (Neither a designer of a
battery charger in accordance with the prior art nor a designer
10 of a battery charger in accordance with the invention would be
likely to use a multi-tap transformer except for testing, but
5 would instead select a power transformer with the desired
current rating and a fixed voltage rating. Nevertheless, the
choice of such multi-tap transformer for testing purposes is not
15 inappropriate.)

10 Example 3:

20 As a further example, battery chargers for NEC Moli Energy
Corporation lithium ion rechargeable batteries models IMP300648-
1, IMP340848-1, and IMP341065 may be designed using single-
25 voltage AC adaptors such models T35-4.4-300, T35-4.4-400, T35-
4.4-800, and T35-4.4-1200 obtained from ENG Electric Co. Ltd.,
3F No. 558, Hong Chang Twelve St., Taoyuan City, Taiwan ROC.
Such AC adaptors contain a transformer, a bridge rectifier, and
30 a smoothing capacitor so as to provided an unregulated DC power
supply for use as a battery substitute for battery powered
20 devices. Since the adaptor inherently includes a transformer
(305, 405), a bridge rectifier (309, 409), and a smoothing
35 capacitor (311, 411), these elements of Fig. 3 and 4 need not be
separately provided.

25 The specifications of NEC Moli Energy Corporation lithium
ion rechargeable batteries models IMP300648-1, IMP340848-1, and
40 IMP341065 are provided in NEC documents Nos. PE2523 (Ver. 2),
PE2526 (Ver. 3), PE2512 (Ver. 1), all published in April, 1999.
45 The specifications of earlier similar models are given in
earlier publications. Each battery is rated at a charge voltage

5 of 4.2 volts and a nominal operating voltage of 3.8 volts.
Nominal capacities are 650 mAh, 1030 mAh, and 1650 mAh,
respectively. For the purpose of designing a charger, the
10 inventor has found that a minimum charging voltage somewhat less
5 than the nominal operating voltage is desirable, although the
exact voltage used is not critical. In this case, a minimum
15 charging voltage of 3.6 volts is suggested by the following
considerations. The NEC documents mentioned above show plots of
the charging voltage as a function of time. In each case, the
10 charging voltage increases almost instantly from the discharged
voltage (which may be as low as 2.5 volts) to approximately 3.4
20 volts and climbs within a short time on the order of minutes to
roughly 3.8 volts. From there it climbs somewhat more slowly
until it reaches the maximum charging voltage of 4.2 volts (at
25 which point the charging circuit must clamp the voltage or the
battery may be damaged). While an initial charging voltage of
30 3.4 volts could be used, the inventor has found that using an
initial charging voltage of 3.6 volts to select the current
rating of the transformer does not cause the initial current to
20 reach levels high enough to adversely affect the battery being
charged. Because initially the current and voltage are
unregulated, if it happens that a battery is charged that has
been fully discharged and the current rating of the transformer
used in the charger was selected to be the 1.0 C rate based upon
35 3.6 volts as an initial charging voltage, the initial current
40 will exceed the current rating of the transformer for a short
period. However, the inventor has found that the 1.0 C rate is
not exceeded by a significant amount for long enough to cause
harm to the battery in such circumstances. Using a lower
45 initial charging voltage for selecting a transformer would mean
30 that a smaller transformer with a lower current rating would be
50

5 chosen. Doing so would reduce the current provided to the
battery throughout the charging cycle and therefore adversely
affect the charging rate. A compromise between selecting a low
10 initial charging voltage, which would decrease the charging
rate, and a high initial charging voltage such as 3.8 volts,
5 which would increase the possibility of damage to the battery in
the initial portion of the charging cycle (only at the maximum
15 line voltage, of course), is to use 3.5 or 3.6 volts as the
initial charging voltage for the purposes of designing the
10 charger.

20 Figures 8, 9, 10, and 11 are graphs of the DC output
voltage in volts as a function of current in millamps for
adaptors T35-4.4-300, T35-4.4-400, T35-4.4-800, and T35-4.4-
25 1200, respectively, based upon input voltages of 132 volts AC.
15 Input voltages of 132 volts should be used in selecting an AC
adaptor or an equivalent transformer/bridge rectifier 307/309 or
30 407/409 so that variations in line voltage with the normal range
of 10% above the nominal line voltage of 120 volts AC will not
cause the current at the minimum charging voltage to exceed the
20 maximum charging current of the battery. If the AC adaptor is
selected so that the maximum charging current for a particular
battery at the minimum charging voltage is provided at an input
35 voltage to the AC adaptor of 132 volts AC, then lower (and
therefore safer) maximum charging currents will be provided at
40 lower AC input voltages.

Example 4:

45

30 Applying the inventive method discussed above, an AC
adaptor for use in a battery charger within the scope of the

50

55

5 invention for charging an NEC Moli Energy Corporation lithium
ion rechargeable battery model IMP300648-1 (say) should be
selected by finding an AC adaptor which provides a current of
10 650 mA or less at a voltage calculated as the sum of the 3.6
volt minimum charging voltage and dropout voltage of the linear
15 regulator that limits the voltage across the battery (e.g., IC
device 423 in Figure 4). Typically, the dropout voltage is
approximately 0.6 volts for a low dropout voltage device such as
the Micrel™ model MIC 29372. Hence an AC adaptor that provides
10 4.2 volts at a current of 650 mA or less when provided with an
input voltage of 132 VAC is optimal.
20

Example 5:

25 15 Inspection of Figures 8 - 11 indicates that the T35-4.4-400
adaptor, whose loading curve is plotted in Figure 9, is an
30 optimal choice for an NEC Moli Energy Corporation lithium ion
rechargeable battery model IMP300648-1, assuming that a low
dropout voltage device such as the Micrel™ model MIC 29372 is
20 used as in the circuit shown in Figure 4. The T35-4.4-800 and
T35-4.4-1200 adaptors would not be usable as at 4.2 volts the
35 current provided by each exceeds 650 mA. The T35-4.4-300
adaptor could be used, but would provide less current and
therefore require more time to recharge the battery.

40 25 Similarly, of the AC adaptors under discussion, the best
choices for the NEC Moli Energy Corporation lithium ion
45 rechargeable batteries models IMP340848-1 and IMP341065 can be
seen to be the T35-4.4-800 and T35-4.4-1200 adaptors,
30 respectively. However, neither provides a full 1.0C current and
are hence not optimal.

5

Comment on the Examples:

10

It is convenient to construct prototype battery chargers in accordance with the invention using such single-voltage AC adaptors such as the ENG Electric AC adaptors discussed above, as such adaptors are inexpensive and readily available. However, battery chargers in accordance with the invention may be manufactured using discrete transformers 307, 407, bridge rectifiers 309, 409, and capacitors 311, 411, as the case may be. As a further option, a manufacturer of AC adaptors may simply modify its AC adaptor design to add the IC device 323, 423 (and associated resistors 329, 429 and 333, 433, if necessary), thereby producing a battery charger conforming to Figure 3 or Figure 4 and falling within the scope of the invention.

15

20

25

By contrast, the prior art of lithium-ion battery charger design teaches use of a higher voltage transformers than those discussed above in the present set of examples, necessitating the use of a charge-current regulating subcircuit, which in turn increases power dissipation losses as illustrated below.

35

Power Consumption in the Examples:

40

The following discusses the typical power dissipation of the circuits of Figures 3 and 4.

45

In taper current mode (IC device 323 not operating in voltage regulating mode), the maximum power dissipation of IC device 323 is given by:

50

5 $P_d = (V_d) (I_{out}) = (1.5V) (0.3A) = 0.45W$

where

P_d is the power dissipated in the IC device 323;

10 V_d is the voltage drop across the IC device 323, i.e. the
5 difference between the voltages at terminals Z3 and W3 in the
circuit; and

I_{out} is the charge current supplied to the cell 335.

15

In constant-voltage mode (in which the IC device 323 is
10 in regulating mode), the maximum power dissipation of the IC
device 323 is roughly given by:

20

$$P_d = (V_W - V_Z) (I_{out})$$

where

25 V_W is a typical voltage at terminal W3 in the circuit
during the constant-voltage stage; and

V_Z is the voltage at terminal Z3 in the circuit.

30

Accordingly,

20 $P_d = (6.4V - 4.1V) (0.2A) = 0.46W$

35

The foregoing power dissipation losses at about 0.5 watt are
significantly superior to power dissipation losses in the
circuits of Figures 1 and 2, in each of which, assuming similar
40 circuit implementation but necessarily involving a second charge
control IC device in each circuit, power dissipation losses can
easily exceed 1 watt.

45

If the circuit of Figure 4 were substituted for that of
30 Figure 3 in the foregoing example, a further improvement in
power dissipation losses would result; such losses in a circuit

50

55

5 essentially equivalent to that discussed above but with a
Micrel™ model MIC 29372 LDO device 423 substituted for the
Motorola™ LM317 device specified above are typically less than
about 0.25 W.

10

5

Effect of AC Line Voltage Variations on Charging Time:

15 Testing of lithium ion batteries suggests that the first
80% of capacity of the battery is attained during the portion of
10 charging before the charging voltage reaches the maximum
20 charging voltage specified by the manufacturer. Hence if 1000
mA of charging current is applied to a 1000 mAh cell, the 80%
capacity level would be attained in approximately 0.8 hours.
The last 20% of capacity is attained during the constant voltage
25 portion of charging. During that period, the battery determines
the amount of current it can consume. The time the battery
takes to attain the final 20% of capacity is approximately 1
hour regardless of how much charging current is available.
Therefore the total time it takes to charge a 1000 mAh cell with
30 a charging current of 1000 mA is approximately 1.8 hours. If
only 500 mA of charging current is provided to a 1000mAh cell,
35 the first 80% of capacity would take 1.6 hours and the final 20%
capacity would be attained in again 1 hour. Therefore the total
charging time would be 2.6 hours.

30

25

40

If an AC adapter is selected for which the current of the
AC adapter at a charging voltage of 3.6 volts is 450 mA with 108
volts AC input, 600 mA with 120 volts AC input, and 850 mA with
45 132 volts AC input, then the charging time to attain 80%
30 capacity for 108 VAC input is $1000 \text{ mAh} \times 80\% \div 450 \text{ mA} = 1.78$
hours, for 120 VAC input is $1000 \text{ mAh} \times 80\% \div 600 \text{ mA} = 1.23$

50

5 hours, and for 132 VAC input is $1000 \text{ mAh} \times 80\% \div 850 \text{ mA} = 0.94$ hours. Since the last 20% will always take approximately 1 hour, the total times for the various input voltages are 2.78 hours for 108 VAC, 2.23 hours for 120 VAC, 1.94 hours for 132 VAC. For many applications this variation in charging times is not significant, especially in view of the reduced cost, size, and heat produced by a battery charge in accordance with the invention.

10 The foregoing discussion has proceeded on the basis that the output voltage at terminals W3 and W4 in the circuits of Figures 3 and 4 respectively is a DC voltage, but as a practical matter, there will continue to be some AC ripple in the voltage at this terminal in the respective circuit. However, the IC
20 15 device 323 or 423 is effective to limit the charge voltage applied to the lithium-ion cell 335, 435 to values that do not damage the cell.

30 While the foregoing circuits have been described in the context of charging a lithium-ion cell, it is apparent that the circuits have utility whenever it is necessary to supply a charging current to a battery or the like, that during a first stage requires only that the charging current be below a specified value, and during a second stage additionally requires
35 40 that the charging voltage be below a specified value.

45 Variations will occur to those skilled in the technology without involving any departure from the principles of the invention. For example, various other types of rectifier could
30 be substituted for the bridge rectifier 309, 409, or various

5 more elaborate smoothing circuits could be substituted for the
smoothing capacitor 311, 411.

10 The scope of the invention is not limited to the circuits
5 illustrated and described but is as defined in the appended
claims.

15

20

25

30

35

40

45

50

55

Claims

5

10

15

20

25

30

35

40

45

50

55

5 What is claimed is:

10 1. A charging circuit for charging a lithium-ion cell or battery at a charging voltage that varies during the charging of the cell or battery from a selected minimum charging voltage to a predetermined maximum charging voltage, comprising:

15 (a) a selected suitable transformer for transforming AC line voltage applied to the primary winding thereof to a lower AC secondary winding voltage, the transformer being selected to limit secondary winding output current when the charging voltage is greater than the selected minimum charging voltage so that the secondary winding output current will not exceed a selected upper limit for the lithium-ion cell;

20 (b) a rectifier sub-circuit connected to the secondary winding of the transformer for rectifying the secondary winding voltage; and

25 (c) a charge-voltage regulator sub-circuit connected to the rectifier sub-circuit for receiving the rectified secondary winding voltage and providing an output charging voltage that is limited to the predetermined maximum charging voltage; the charge-voltage regulator sub-circuit being connectable to the lithium-ion cell or battery for charging the lithium-ion cell or battery by applying the output charging voltage across the lithium-ion cell or battery;

30 45 the charging circuit in operation providing charging current to the cell or battery in two successive stages, viz

5. A charging circuit as defined in any of Claims 1 - 4,
wherein the minimum charging voltage is selected to be less than
the predetermined nominal voltage of the lithium-ion cell or
battery and greater than the initial charging voltage of the
lithium-ion cell or battery when the charging current is held at
a constant level equal to the 1.0 C rate for the lithium-ion
cell or battery.

15

6. A charging circuit as defined in any of Claims 1 - 4,
wherein the minimum charging voltage is selected to be
approximately equal to the average of (1) the initial charging
voltage of the lithium-ion cell or battery when the charging
current is held at a constant level equal to the 1.0 C rate for
the lithium-ion cell or battery and (2) the predetermined
nominal voltage of the lithium-ion cell or battery.

25

7. A charging circuit as defined in any of Claims 1 - 4 for a
single lithium-ion cell, wherein the minimum charging voltage is
approximately 3.6 volts.

30

8. A charging circuit as defined in any of Claims 1 - 7,
wherein the upper current limit is selected to be not greater
than the maximum rate for the lithium-ion cell or battery
specified by the manufacturer of the lithium-ion cell or
battery.

40

9. A charging circuit as defined in any of Claims 1 - 7,
wherein the upper current limit is selected to be not less than
the 0.5 C rate nor greater than the 1.0 C rate for the lithium-
ion cell or battery.

50

- 5 10. A charging circuit as defined in any of Claims 1 - 7,
wherein the upper current limit is selected to be approximately
the 1.0 C rate for the lithium-ion cell or battery.
- 10 11. A charging circuit as defined in any of Claims 1 - 10,
wherein the smoothing sub-circuit is a smoothing capacitor
connected between the positive and negative output terminals of
15 the rectifier sub-circuit so that the rectified secondary
winding voltage supplied by the rectifier sub-circuit is applied
across the smoothing capacitor.
- 20 12. A charging circuit as defined in any of Claims 1 - 11,
wherein the charge voltage regulator sub-circuit comprises a
25 selected suitable charge-control IC device whose input terminal
is connected to the positive output terminal of the rectifier
sub-circuit, and whose output terminal is connected to the
positive terminal of the lithium-ion cell or battery to be
30 charged, and whose ground terminal is connected to the negative
terminal of the rectifier sub-circuit and to the negative
terminal of the lithium-ion cell or battery to be charged.
- 35 13. A charging circuit as defined in any of Claims 1 - 11,
wherein the charge voltage regulator sub-circuit comprises a
40 selected suitable charge-control IC device whose input terminal
is connected to the positive output terminal of the rectifier
sub-circuit, and whose output terminal is connected to the
positive terminal of the lithium-ion cell or battery to be
45 charged, and whose adjustment terminal is connected to one
terminal of an adjustable resistor whose other terminal is
connected to the negative terminal of the rectifier sub-circuit
and to the negative terminal of the lithium-ion cell or battery

5 to be charged, the adjustment terminal also being connected to one terminal of a resistor whose other terminal is connected to the output terminal of the IC device.

10 14. A charging circuit as defined in Claim 12 or Claim 13, wherein the charge control IC device is of the low drop-out voltage type.

15 15. A charging circuit as defined in any of Claims 10 - 14, wherein the connection between the negative output terminal of the rectifier sub-circuit and the negative terminal of the lithium-ion cell or battery to be charged is a direct ohmic connection, and the connection between the positive output terminal of the rectifier sub-circuit and the input terminal of the charge-control IC device is a direct ohmic connection.

20 16. A method of charging a lithium-ion cell or battery having a predetermined maximum charging voltage comprising a first stage of charging during which charging current supplied to the cell or battery is limited by the loading effect of a transformer used to supply the charging current to the cell or battery and continually declines until the charging voltage reaches the maximum charging voltage and a second charging stage commencing when the charging voltage reaches the maximum charging voltage during which stage the charging current is supplied to the cell or battery at the maximum charging voltage.

25 17. The method of charging a lithium-ion cell or battery as defined in Claim 16, wherein the transformer is selected to supply less than a selected maximum current at a selected initial charging voltage.

30 40 45 50 55 55 - 42 -

5 18. The method of charging a lithium-ion cell or battery as
defined in Claim 167 wherein the transformer is selected on the
basis that the AC line voltage applied to the primary winding
thereof is a predetermined maximum AC line voltage.

10

15 19. The method of charging a lithium-ion cell or battery as
defined in any of Claims 16 - 18, wherein the initial charging
voltage is selected to be less than the predetermined nominal
voltage of the lithium-ion cell or battery and greater than the
initial charging voltage of the lithium-ion cell or battery when
the charging current is held at a constant level equal to the
20 1.0 C rate for the lithium-ion cell or battery.

25 20. The method of charging a lithium-ion cell or battery as
defined in any of Claims 16 - 18, wherein the initial charging
voltage is selected to be approximately equal to the average of
30 (1) the initial charging voltage of the lithium-ion cell or
battery when the charging current is held at a constant level
equal to the 1.0 C rate for the lithium-ion cell or battery and
 (2) the nominal voltage of the lithium-ion cell or battery.

35

40 21. The method of charging a lithium-ion cell or battery as
defined in any of Claims 16 - 18, wherein the maximum current is
selected to be not greater than that for the lithium-ion cell or
battery specified by the manufacturer of the lithium-ion cell or
battery.

45

50 22. The method of charging a lithium-ion cell or battery as
defined in any of Claims 16 - 18, wherein the maximum current is
selected to be not less than the 0.5 C rate nor greater than the
1.0 C rate for the lithium-ion cell or battery.

55

5 23. The method of charging a lithium-ion cell or battery as defined in any of Claims 16 - 18, wherein the maximum current is selected to be approximately the 1.0 C rate for the lithium-ion cell or battery.

10 24. A charging circuit for charging a lithium-ion cell or battery at a voltage not exceeding a predetermined maximum charge voltage and a current not exceeding a predetermined maximum charge current, comprising:

20 a transformer for transforming line voltage to a lower AC supply voltage and limiting the maximum charging current supplied to the lithium-ion cell or battery;

25 a rectifier for rectifying the AC supply voltage;

30 a smoothing capacitor for smoothing the rectified AC supply voltage to produce a DC supply voltage;

35 a charge-voltage regulator sub-circuit for limiting the DC supply voltage to the predetermined maximum charge voltage,

40 the charge-voltage regulator sub-circuit being connectable to the lithium-ion cell or battery for charging the lithium-ion cell or battery by maintaining the voltage limited DC supply voltage across the lithium-ion cell or battery.

45

50

55

1/5

FIG. 1 PRIORITY ART

FIG. 2 PRIORITY ART

2/5

FIG. 3

FIG. 4

3/5

FIG. 5

4/5

FIG. 6**FIG. 7**

5/5

FIG. 8**FIG. 9****FIG. 10****FIG. 11**

INTERNATIONAL SEARCH REPORT

Int'l Application No PCT/CA 99/00805

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H02J7/02		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) IPC 7 H02J		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the International search (name of data base and, where practical, search terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 825 699 A (BENCHMARK MICROELECTRONICS) 25 February 1998 (1998-02-25) page 2, line 54 -page 10, line 13; figures 1-11	1-3,11, 12,15, 16,24
A	US 3 736 490 A (FALLON ET AL) 29 May 1973 (1973-05-29) column 3, line 30 -column 6, line 34; figures 1,2	1,16,124
A	DE 35 28 476 A (GFS) 19 February 1987 (1987-02-19) the whole document	-/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C. <input checked="" type="checkbox"/> Patent family members are listed in annex.		
* Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the International filing date "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the International filing date but later than the priority date claimed		
Date of the actual completion of the International search 13 December 1999		Date of mailing of the International search report 17/12/1999
Name and mailing address of the ISA European Patent Office, P.B. 5018 Patendaan 2 NL - 2280 MV Rijswijk Tel. (+31-70) 340-2040, Tx. 51 651 epo nl Fax (+31-70) 340-3016		Authorized officer Calarasanu, P

Form PCT/ISA210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inter	nat Application No
PCT/CA 99/00805	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 1996, no. 3, 29 March 1996 (1996-03-29) & JP 07 296854 A (MITSUI), 10 November 1995 (1995-11-10) abstract	1, 16, 24

Form PCT/ISA210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l. Appl. No.
PCT/CA 99/00805

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 825699	A 25-02-1998	NONE	
US 3736490	A 29-05-1973	NONE	
DE 3528476	A 19-02-1987	NONE	
JP 07296854	A 10-11-1995	NONE	