

Geocoding Remote Sensing Data

Rüdiger Gens

Outline

- definitions
- cocktail ingredients for geocoding
 - spheroid
 - datum
 - map projection
 - resampling
 - interpolation
- various geocoding methods

Definitions

- geocoding
 - geometric transformation of an image into a cartographic map projection
- georeferencing
 - relating image coordinates to map coordinates by defining control points (usually image corners)
- geometric correction and image rectification are sometimes used synonymously
 - geocoding maybe part of geometric correction

Sphere versus spheroid

Source: ArcGIS help file

- assumption that the earth is a sphere is possible for small-scale maps (smaller than 1:5000000)
- to maintain accuracy for larger-scale maps (scales of 1: 1000000 or larger) a spheroid is necessary

Sphere versus spheroid

Common Spheroids

- Bessel 1841
- Clarke 1866, Clarke 1880
- GEM 6, GEM 10C
- GRS 1967, GRS 1980
- International 1924, International 1967
- WGS 72, WGS 84

Datum

Source: ArcGIS help file

- defines the position of the spheroid relative to the center of the earth
- provides a reference frame for measuring locations on the surface of the earth
- defines the origin and orientation of latitude and longitude lines

Common Datums

- World Geodetic System 1972 (WGS 72)
- World Geodetic System 1984 (WGS 84)
- North American Datum 1927 (NAD 27)
- North American Datum 1983 (NAD 83)
- European Datum 1950 (ED 50)
- South American Datum 1969 (SAD 69)

Map projections

- "orange peel problem"
 - distortion in the shape, area, distance, or direction of the data
- three general types
 - conic
 - cylindrical
 - planar

Most common map projections

Universal Transverse Mercator

Polar Stereographic

Lambert Conformal Conic

Lambert Azimuthal Equal Area

Resampling

- transformation of image coordinates into projection coordinates using a mapping function
 - usually determined as a polynomial fit
 - accounts for user defined output pixel size
- determination of the resulting pixel value using an interpolation method

Standard interpolation methods

- Nearest neighbor interpolation
 - takes pixel value closest to calculated location
 - preserves original pixel values
- Bilinear interpolation
 - weighted average (2x2 kernel)
 - smoothing effect
- Cubic convolution
 - third degree polynomial fit (4x4 kernel)
 - essentially low-pass filter

Interpolation using Sincs

Interpolation using Sincs

- theoretically ideal filter
 - provides error-free interpolation of the band-limited functions
- problem: no function can be at the same time band-limited and finite-support
- solution: truncation
- practical problem: slowest of the slowest as it requires large kernel sizes

Weighting functions

Weighting functions

Hamming

Hamming
$$(x, \tau, \alpha) = \begin{cases} \alpha + (1 - \alpha) \cos(\pi \frac{x}{\tau}) & for |x| < \tau \\ 0 & else \end{cases}$$

- α usually 0.54
- Kaiser

$$Kaiser(x,\tau,\alpha) = \begin{cases} \frac{I_0(\alpha\sqrt{1-(x/\tau)^2})}{I_0(\alpha)} & for |x| \le \tau \\ 0 & else \end{cases}$$

- where IO(x) is the zeroth order modified Bessel function
- Lanczos

Lanczos
$$(x, \tau) = \begin{cases} \frac{\sin(\pi \frac{x}{\tau})}{\pi \frac{x}{\tau}} & for |x| < \tau \\ 0 & else \end{cases}$$

Cubic B-Splines

- piecewise polynomial function of degree three
- very good approximation of sinc function
- generally as fast as cubic convolution
- → best bang for the buck

Geocoding by co-registration

- image to image
 - reference needs to be map projected
- image to map
 - map in raster or vector format
 - map needs to have map coordinates
- image with measured ground control points
 - ground control points (GCPs) need to be identified in the image
 - GCPs need to be known in some map coordinate system

Sensor Geometric Model

Sensor Model

- sensor specific
- analytical reconstruction of image formation using orbit and sensor parameters
- corrects image globally
- small number of ground control points to improve parameters
- DEM

Examples for sensor model

- optical data
 - Landsat (level 1G)
 - MODIS (level 1B)
 - SPOT (level 2A and 2B)
- radar data
 - any beam mode

Geocoding steps

- relation between image coordinates and geographic coordinates using image geometry
 - line / sample → latitude / longitude
- conversion of geographic coordinates into map projected coordinates
 - latitude / longitude → x_{map} / y_{map}
 - choice of map projection and datum

Geocoding steps

- determination of a transformation function to map image coordinates into projection coordinates
 - usually quadratic, at times cubic
 - linear least squares polynomial fit
- resampling using mapping function
 - determination of pixel value in the map projected using one of the interpolation methods

Example: Original image

Example: Transformed image

Example: Geocoded image

Light at the end of the tunnel*

- asf_geocode
 - currently under development
 - supports all major map projections
 - supports all major datums
 - supports all standard interpolation methods

More background information

- image processing literature
 - medical imaging
 - astronomy
 - signal processing
- remote sensing data providers
 - product descriptions for the various satellite imagery

Questions

