Boa définição do SQP basico
y -
min f(n)
s.a. h(x)=0.
QPx: min 1 de Bxdx + Vf(x) du
$A \cdot a \cdot \nabla h(x^{\mu})^{t} d_{x} + h(x^{\mu}) = 0$
Sendo du a solução de QP, (B, é
Sinétrica e définida position) e d', «
untiplicador de Jagrange associada à restriça
de igualdade, a parso de metodo e
de ignaldade, a passo de método e $x^{k+1} = x + dx$, $x^{k+1} = x + dx$.
Como SQP basico a Menton, o que
conseguinos provar e que ele esta lum
défindo en una reiginhança de uma

Solução x* do problema original.

Hipotiss:

H1) Thi, i=1,..., m são continuos

H27 $\frac{1}{\nabla h(x^*)} = \frac{\nabla h_1(x^*) \cdot \cdot \cdot \nabla h_m(x^*)}{1}$ ten posto coluna completo. Isto é, $Ph_1(x^*),...,Ph_m(x^*) > 8ão L.I. =$ X* e regular. H3) B_x é simetrica e definda partira. Teorema: Se valem H1, H2 e H3, então existe una reignhourca V(x*) da solução x* para a qual Pr tem solução sempre que $x^k \in V(x^*)$. In seja SQP lavios està bem définible as redor de x^* .

necessito globalizar SQP

(losses linear an regions de confiança)

SQP barico funciona! Prova: Por H2, as colinas de $\nabla h(x^*) = \nabla h_1(x^*) \cdot \cdot \cdot \nabla h_m(x^*)$ são L.I. Da continuidade de Vh (H1), existe uma vizinhança V(x*) de x* tal que $\nabla h(x^{\kappa}) = \nabla h(x^{\kappa}) \cdots \nabla h(x^{\kappa})$ tem colinas LI para todo x'EV(x*).
Particionamos as colinas da matriz mxm $\Omega h(x^{k})^{t} = \begin{bmatrix} - Qh_{x}(x^{k})^{t} - \\ \vdots \end{bmatrix}$ linkas $\left[- \nabla h_{m}(x^{n})^{t} - \right] / L.I.$

ma forma $\nabla h(x^x)^t = \begin{bmatrix} C^k & N^k \end{bmatrix}$ and $C^k = \begin{bmatrix} C^k & N^k \end{bmatrix}$ $\nabla h(\chi^{\kappa})^{\dagger} d_{\chi} + h(\chi^{\kappa}) = 0$ \Leftrightarrow $C^{\prime}d_{x} + N^{\prime}d_{x}^{\prime} + h(x^{\prime}) = 0$ $\Rightarrow d_{x}^{c} = -(C^{x})^{-1} \left[N^{x} d_{x} + h(x^{x}) \right]$ Nomando $d_{x}^{\nu} = 0$, venos que $(d_{x}^{c}, d_{x}^{\nu}) = (-(c^{\nu})^{-1}h(x^{\nu}), 0)$ e solução de QPx. Ou nja, QPx e viant. Lindmente, como QP, é un problèma quadratico estritamente convexo (H3 => Hx definda portiva), ele possioni (mica) solução. Logo, o 5QP basion esta bem definido. Problema: e se H2 não valor, on seja,

problema: e se H2

 $\begin{bmatrix} 1 & 1 & | d_{x_1} & | + | 1 & | = | 0 \\ 0 & 0 & | d_{x_2} & | 1 & | = | 0 \end{bmatrix} \times$

OPx não tem solução

Martínez, J. M.; Santos, S. A. Métodos computacionais de otimização

1) Uma ideia para contomar ene problema é
trocar a restrição Ph(x*) dx + h(x*) = 0 por
algo que possua solução, mas que de
alguma forma pareça com a restrição original
Lo Resolvemos o problema auxiliar
min Ph(x*) dx + h(x*)

Ay=b sem solução
min NAy-b N.

Este problema annilias fornece uma solução dr. Como imos, o passo do SQP é $\chi^{k+1} = \chi^k + d_{\chi}^k \rightarrow d_{\chi} = \chi - \chi^k$. $\mathcal{D}_{\alpha i}$, ϕ problema anxiliar fica min $Vh(x^{k})^{t}(x-x^{k})+h(x^{k})V^{k}$ Sija x'mor uma solução desse problema. Par trocamos a restrição original $Ph(x^{k})^{t}(x-x^{k}) + h(x^{k}) = 0$ $\nabla h(\chi^{\kappa})^{t}(\chi - \chi^{\kappa}) - \nabla h(\chi^{\kappa})^{t}(\chi^{\kappa}_{MOT} - \chi^{\kappa}) = 0$ Mosere que, ao resolver o problema anxilias, $-\nabla h(\chi^{\kappa})^{t}(\chi^{\kappa}_{mor}-\chi) \approx h(\chi^{\kappa})$. Vortanto a troca da restrição laz sentido. Observe ainola que se $\nabla h(x^{\kappa})^{t}(x-x^{\kappa}) + h(x^{\kappa}) = 0$ tem

	polução, entavo
	$-\nabla h(x^{k})^{t}(\chi_{MOT}^{k}-\chi^{k})=h(x^{k}),$
_	e logo a troca da restrição original do QP
	mantem a suesma restrição.
	Kermindo, o QP _K fica
	$QP_{\kappa}: \min_{x} \int_{\mathcal{L}} (x-x^{\kappa})^{t}B_{\kappa}(x-x^{\kappa}) + \nabla f(x^{\kappa})^{t}(x-x^{\kappa})$
	$ 8.a. \nabla h(x^{k})^{t}(x-x^{k}) - \nabla h(x^{k})^{t}(x^{k}-x^{k}) = 0. $ (*)
	Este QPx é sempre viant pois (*) vale
	Com $\chi = \chi_{Mg_1}^{\kappa}$
_	Connentarios
_	
_	1) é posiçue agregar limitantes em x,
	l <x<u.< th=""></x<u.<>
_	
	min $f(x)$ $QP_{\kappa}: \min_{x} \mathcal{I}_{2}(x-x^{\kappa})B_{\kappa}(x-x^{\kappa}) + \mathcal{I}_{2}(x^{\kappa})^{*}(x-x^{\kappa})$
	$S - \alpha - h(x) = 0$ $S - \alpha \cdot \nabla h(x^{k})^{t} (x - x^{k}) - \nabla h(x^{k})^{t} (x^{k} - x^{k}) = 0$
_	l Ln Lu.
	X < X < M.

2) QP, so a proxima leur o problema original ao redor de x.

Suamos regions de confrança no QP. QPx: min 1/2 (x-xx) + Bx (x-xx) + V/(xx) (x-xx) S.a. $\nabla h(x^k)^t(x-x^k) - \nabla h(x^k)^t(x_{mon}^k - x^k) = 0$ $1 \le \chi \le \mu$, $\|\chi - \chi^{\kappa}\|_{\infty} \le \Delta_{\chi}$ (usando 11-llos, a restrição 11x-xx 1100 < Dx e equivalente à xi-Dx ≤ xi ≤ xi+Dx, mantenalo somente restriéons lineares em QPx). Voren, vija que x=xnor pode mão satisfazer l ≤ x ≤ u. l'ur ainda, QP, pode víao ser mais viame com adição de novas restrições Para resolver esse impasse, boista computar mos de maneira adequada: min $\|\nabla h(x^k)^t(x-x^k) + h(x^k)\|^2$ s.a. $l \le x \le n$, $\|x-x^k\|_{\infty} \le \Delta_k$

Finalmente, o controle do rais de
confrança De le leito como no esprema
de regions de confiances visto em aula.
Outra forma de definirmes P's viaveis:
Relaxar as restrictes $\nabla h(x^{\kappa})^t d_{\kappa} + h(x^{\kappa}) = 0$.
$OD \cdot 1 \cdot $
QPr: min 1 dr Brdr + Of(xx)tdr + 7 52 dr. 8
S.a. $\nabla h(x^{\mu})^{t} d_{x} + (1-\delta) h(x^{\kappa}) = 0$
0 < 8 < 1
a variavel adicional S modifica o termo h(xx). Note
2
que &=1, dx=0 é semple viarel. I termo
1 5 na função objetivo visa forçar s=0,
recuperande o QP, original. Ciqui, n>0 é
· · · · · · · · · · · · · · · · · · ·
um termo penalizador para S.
Lo Essa estratigia e adotada no pacote
· V
computacional WORHP.
,