

AMINO ACIDS

Master of Science in Data Science

Damiano Piovesan

Amino acids

- Amino acids are monomers of proteins and other biological macromolecules
- Proteins are polymers
- Proteins are chains of amino acids
- They are linear chains of different combinations of 20 different amino acids
- Each amino acid has a specific chemical behaviour

α-amino acids

- Only 20 out of 500 known amino acids appear in the genetic code
- All α-amino acids have a **carboxyl** (-COOH) and an **amminic** (-NH2) group bound to the α **carbon**
- They differ for the side chain (R)
- Different side chains have different three dimensional structure and charge
- Structure, electric charge and hydrophobicity are the principal features

Chirality

- α -carbon is always bound to four different groups (except Glycine, R \rightarrow H)
- Chiral molecules → not superimposable to mirrored version
- Translations and rotations not sufficient to superimpose the two versions
- Proteins contain only L-amino acids
- Protein active sites are asymmetric

Side chain (R)

Post translational modifications

- Amino acids can be modified after their synthesis
- Chemical groups can be added to the side chain conferring new properties
- The same residue can undergo multiple modifications

Non protein amino acids

- Some amino acids does not appear in proteins but are produced by specific metabolic reactions
- They are fundamental components of some biological processes
 - Neurotransmitters, Hormones, Urea cycle, Metil group exchangers

ACID-BASE THEORY

Master of Science in Data Science

Damiano Piovesan

Definitions

Arrhenius

- acid release H⁺
- base release OH⁻

BrØnsted-Lowry

- acid release H⁺
- base accept H⁺

Lewis

- acid accept electron pairs (electrophile)
- base release electron pairs (nucleophile)

Acid

$$H_2O + HCI \rightarrow H_3O^+ + CI^-$$

- React with water → covalent bonds form and break up
- Can be an ion +/-, or a neutral compound
- (BrØnsted-Lowry) Must have 1 H, but only H bound to very electronegative atoms are transferred

Base

- Only negative ions or neutral molecules
- Metal hydroxides → **Dissolve** in water (do not react), ions get solvatated

$$NaOH(s) \xrightarrow{H_2O} Na^+(aq) + OH^-(aq)$$

Other bases → React with water

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

Strong acids and bases

$$HCI(aq) + H_2O(I) \rightarrow CI^{-}(aq) + H_3O^{+}(aq)$$

- React completely with water to form H₃O⁺
- Fully dissociate or ionize
- The strength of an acid (or base)
 does not depend on its concentration

6 Strong Acids		6 Strong Bases	
HCIO ₄	perchloric acid	LiOH	lithium hydroxide
HCI	hydrochloric acid	NaOH	sodium hydroxide
HBr	hydrobromic acid	кон	potassium hydroxide
НІ	hydroiodic acid	Ca(OH) ₂	calcium hydroxide
HNO ₃	nitric acid	Sr(OH) ₂	strontium hydroxide
H ₂ SO ₄	sulfuric acid	Ba(OH) ₂	barium hydroxide

Acid dissociation constant

$$HA + H_2O \rightleftharpoons A^- + H_3O^+$$

$$K = \frac{[A^{-}][H_3O^{+}]}{[HA][H_2O]}$$

$$\mathbf{K_a} = K [H_2O] = \frac{[A^-] [H_3O^+]}{[HA]}$$

$$pK_a = -log K_a$$

- Water (solvent) contraction stays constant in comparison to the acid (solute)
- Water is removed from the denominator of K and included in K_a

Exercise. What is the concentration of pure water?

Weak acids

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

$$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]} = 1.8 \times 10^{-5}$$

$$pK_a = ?$$

Given pK_a how do you calculate the K_a?

$$K_a = 10^{-pKa}$$

Weak acids

TABLE 9.4 K	AND PKA VALUES	FOR SELECTED	ACIDS
Name	Formula	K _a	рKa
Hydrochloric acid	HCl	1.0×10^{7}	-7.00
Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	2.12
Hydrofluoric acid	HF	6.6×10^{-4}	3.18
Lactic acid	CH ₃ CH(OH)CO ₂ H	1.4×10^{-4}	3.85
Acetic acid	CH₃CO₂H	1.8×10^{-5}	4.74
Carbonic acid	H ₂ CO ₃	4.4×10^{-7}	6.36
Dihydrogenphosphate ion	H ₂ PO ₄ ⁻	6.2×10^{-8}	7.21
Ammonium ion	NH ₄ ⁺	5.6×10^{-10}	9.25
Hydrocyanic acid	HCN	4.9×10^{-10}	9.31
Hydrogencarbonate ion	HCO ₃ ⁻	5.6×10^{-11}	10.25
Methylammonium ion	CH ₃ NH ₃ ⁺	2.4×10^{-11}	10.62
Hydrogenphosphate ion	HPO ₄ ²⁻	4.2×10^{-13}	12.38

Self-ionization of water

$$2H_2O \rightleftharpoons H_3O^+ + OH^-$$

$$K = \frac{[OH^{-}][H_{3}O^{+}]}{[H_{2}O][H_{2}O]}$$

$$K_a = K [H_2O] = \frac{[OH^{--}] [H_3O^+]}{[H_2O]}$$

$$K_w = K [H_2O]^2 = [OH^-] [H_3O^+]$$

Ionic product of water (K_w)

$$K_{w} = K [H_{2}O]^{2} = [H_{3}O^{+}] [OH^{-}] = 10^{-14} M^{2}$$

$$[H_{3}O^{+}] = [OH^{-}] = 10^{-7} M$$

$$pH = -log [H_{3}O^{+}] = 7$$

$$pK_{w} = pH + pOH = 14$$

K_w is valid for any aqueous solution, not only for water

pН

Exercise

Calculate the concentration of hydroxide ions [OH] of an aqueous solution with a concentration of hydrogen ions of [H₃O⁺] 10⁻⁵.

Exercise

Calculate the concentration of hydroxide ions [OH] of an aqueous solution with a concentration of hydrogen ions of [H₃O⁺] 10⁻⁵.

$$[OH^{-}] = K_w / [H_3O^{+}] = 10^{-14} / 10^{-5} = 10^{-9}$$

or

pH =
$$-\log([H_3O^+]) = -\log(10^{-5}) = 5$$

pOH = 14 - 5 = 9
[OH⁻] = $10^{-pOH} = 10^{-9}$

Conjugate acids and bases (BrØnsted-Lowry)

- Molecules or ions pairs are correlated by gaining or losing a proton
- Stronger the acid, weaker the conjugate base
- Equilibrium is shifted toward the weakest acid (and base) since strong acids (and bases) react more
- It applies to reactions without water as well:

$$CH_3COOH + NH_3 \rightleftharpoons CH_3COO^- + NH_4^+$$

Conjugate acids and bases

Special cases

Amphoteric compounds
 (react both as an acid and as a base)

Polyprotic acids

$$H_2CO_3 + H_2O \stackrel{Ka_1}{\longleftrightarrow} HCO_3^- + H_3O^+ \qquad Ka_1 = \frac{[HCO_3^-][H_3O^+]}{[H_2CO_3]}$$
 $HCO_3^- + H_2O \stackrel{Ka_2}{\longleftrightarrow} CO_3^{2-} + H_3O^+ \qquad Ka_2 = \frac{[CO_3^{2-}][H_3O^+]}{[HCO_3^-]}$
 $Ka_1 = 4,56 \times 10^{-7} \qquad Ka_2 = 5,61 \times 10^{-11}$

Buffer solutions

- pH changes very little when a small amount of strong acid or base is added to it (e.g. H₃O⁺ o OH⁻)
- When H⁺ (or OH⁻) increases, also the concentration of HA (or A-) rises but the pH does not change
- The generated HA is a weak acid and does not affect the pH, because it is weak and in low amount

Amino acids as dipolar ions

Amino acids as acid-base

- Amino acid at physiological pH (ca. 7.0) exist in the Zwitterionic form
- The isoelectric point (pl) is the pH value at which an amino acid is found as dipolar ion (Zwitterionic form) with null net charge

How to calculate isoelectric point

Two reactions, two pKa

Buffer zones (pH does not change) pH = pKa

From a strong base (eg. NaOH)

Zwitterion Glycine NH₃+CH₂COO-

Side chains dissociation

Main chain

Side chain

	Amino Acid Name	pKa Value		
		Alpha Carboxy	+Alpha Amino	Side Chain
	Glycine	2.34	9.60	
	Alanine	2.34	9.69	
	Valine	2.32	9.62	
	Leucine	2.36	9.60	
Non-Polar Amino Acids	Isoleucine	2.36	9.68	
	Methionine	2.28	9.21	
	Phenylalanine	1.83	9.13	
	Tryptophan	2.38	9.39	
	Proline	1.99	10.60	0
	Serine	2.21	9.15	
	Threonine	2.63	9.10	
Polar Amino Acids	Cysteine	1.71	9.69 9.62 9.60 9.68 9.21 9.13 9.39 10.60 9.15 9.10 10.78 8.33 9.11 10.00 8.84 9.13 9.82 3.86 9.67 4.25 8.95 9.04 12.44	8.33
Polar Amino Acids	Tyrosine	2.2	9.11	10.07
	Asparagine	2.02	8.84	
	Glutamine	2.17	9.13	
Acidia Amina Acida	Aspartic Acid	2.09	9.82	3.86
Acidic Amino Acids	Glutamic Acid	2.19	9.67	4.25
and the second s	Lysine	2.18	8.95	10.79
Basic Amino acids	Arginine	2.17	9.04	12.48
	Histidine	1.82	9.17	6.04

©Leah4sci.com

Amino Acid Tutorials + Cheat Sheet Leah4sci.com/AminoAcids

Protein pl

- Proteins have specific pl that correspond to the pH when the protein has a null net charge
- pH < pl protein positively charged
- pH > pI protein negatively charged

SIDE CHAINS

Master of Science in Data Science

Damiano Piovesan

Classification

- pKa values
- Charges

At physiological pH \rightarrow 7.4

Aliphatic

- Compounds composed solely of carbon and hydrogen
- Non polar, hydrophobic
- Tend to stay within the protein core (except Glycine)

Hydroxyl

- Polar, uncharged and hydrophilic
- The phenolic hydroxyl ionizes with a pK_a of 10 and generally regarded as non ionizing
- Serine and Threonine can be post-translationally modified (phosphorylated)

Aromatic

- Relatively nonpolar, hydrophobic
- Tyrosine can form hydrogen bonds

Basic

- Polar and positively charged (at pH < pKa)
- Very hydrophilic
- Almost always in contact with the solvent
- Often histidine participates in the active site of a protein as proton donor or acceptor

Acidic and their Amides

Acidic

- Polar and negatively charged
- Have a second carboxyl group

Amides

- Polar and uncharged, and not ionizable
- Very hydrophilic

Aspartate

Asparagine

Cyclic

- Proline is the only **cyclic** amino acid
- Nonpolar
- Shares many properties with the aliphatic group
- Ambivalent amino acid, it can be inside or outside of a protein molecule
- Due to its unique structure, proline occurs in proteins frequently in turns or bends, which are often on the surface

Sulfur-Containing

- Nonpolar and hydrophobic
- Methionine almost always found on the interior of proteins
- Cysteine ionize to yield the thiolate anion
- Sulfur has a low propensity to hydrogen bond, unlike oxygen. H₂S is a gas at room T, H₂O is a liquid
- The thiol group of cysteine can react with other thiol groups in an oxidation reaction that yields a disulfide bond

Disulphide bridge

- Two cysteine residues can bind by means of an oxidation reaction of -SH groups
- S-S disulfide bridge
- It can connects different regions of a protein, different chains, or stabilize its three dimensional conformation

Hydrophobicity

'Volume' classes		'Hydropathy' classes								
	in \mathbb{A}^3	Hydropho	bic		Neutral		Ну	droph	ilic	
Very large	189-228	•	W		Υ		G N	3 - 32V		
Large	162-174	l L	М				K R			
Medium	138-154	V			0.116	Н	(S)	Е	Q	
Small	108-117	5 5	С	P	T		3	D	N	
Very small	60-90	Α		G	S					
		Aliphatic	Sulfur		Hydroxyl		Basic	Acidic	Amide	
					Uncharged		Charged		Uncharged	
		Nonpolar			Polar					

PROTEINS

Master of Science in Data Science

Damiano Piovesan

Proteins

- Two amino acids can form covalent bonds (peptide bond) through the carboxyl -COOH and the aminic -NH3 groups
- Proteins are polymers of variable length
- They are made of 20 amino acids covalently bonded with a peptide bond

Peptides and proteins

DIPARTIMENTO MATEMATICA

- Oligopeptides are polymers with a low number of amino acids
- Polypeptides contains more amino acids (<10 kDa)
- Proteins are even larger (>10 kDa)
- 1 Dalton (Da) is the mass of a mole of C atoms
- N-terminal (left end)
- C-terminal (right end)
- · Amino acids in the chain are called residues

Pentapeptide (Ser--Gly--Tyr--Ala--Leu o SGYAL)

Protein size

Biologically active peptides and proteins have different size and composition

Protein	Residues	Weight (Da)		
Cytochrome C	104	12,400		
Ribonuclease A	124	13,700		
Albumin	609	66,000		
Apolipoprotein B	4,536	513,000		
Titin	26,926	2,293,000		

Multi chain proteins

- Functional proteins can have single chains (monomeric proteins) or multiple different chains (multimeric proteins)
- Chains are not kept together by covalent bonds, but through intermolecular (weak) interactions

Conjugated proteins

 Some proteins can have chemical groups (prosthetic group) different from amino acids

Class	Prosthetic group				
Lipoproteins Lipids		Blood lipoprotein			
Glycoproteins Carbohydrates		Imunoglobulin			
Phosphoproteins	Phosphate	Milk casein			
Eme-proteins	Eme	Hemoglobine			
Flavoproteins	Nucleotides	Succinate dehydrogenase			
Metalloproteins	Iron, Zinc, Calcium, Cupper	Ferritine, Alcohol dehydrogenase, Calmodulin Plastocyanin			

Hemoglobine

Titin

