EPFL - Automne 2020	Prof. Z. Patakfalvi
Structures Algébriques	Exercices
Série 8	6 Novembre 2020

Veuillez télécharger vos solutions aux exercices à rendre (Exercice 7) sur la page Moodle du cours avant le lundi 16 novembre, 18h.

Les Exercices à rendre sont signalés par un .

1 Exercices

Exercice 1.

Le centre Z(G) d'un groupe G a été défini dans l'Exemple 3.3.3.(7).

- 1. Soit $f: G \to H$ un homomorphisme de groupes surjectif. Montrez que $f(Z(G)) \subseteq Z(H)$.
- 2. Donnez un exemple d'un homomorphisme $f: G \to H$ tel que $f(Z(G)) \not\subset Z(H)$.
- 3. Si $f: G \to H$ est injectif et que $f(G) \subset Z(H)$, alors G est abélien.
- 4. Soient G, H deux groupes. Montrez que $Z(G \times H) \cong Z(G) \times Z(H)$.

Exercice 2 (Sous-groupes de S_3).

Montrez que chaque sous-groupe propre de S_3 est cyclique (c'est-à-dire engendré par un élément).

Exercice 3 (Classes de conjugaison).

Soit G un groupe.

1. Montrez que pour tout $g \in G$, l'application

$$c_g \colon G \to G, \quad h \mapsto ghg^{-1}$$

est un automorphisme. On appelle c_g la **conjugaison par** g.

2. Montrez que l'ensemble

$$\{(g,h)\in G\times G\mid \exists f\in G \text{ tel que } g=c_f(h)\}\subset G\times G$$

définit une relation d'équivalence sur G. Les classes d'équivalence sont appelées les classes de conjugaison de G.

Exercice 4 (Classes de conjugaison de S_n). 1. Etablissez la formule de conjugaison des cycles : pour $n \ge 1$ et $\sigma \in S_n$, on a

$$\sigma \circ (i_1 \ldots i_r) \circ \sigma^{-1} = (\sigma(i_1) \ldots \sigma(i_r)).$$

2. En utilisant la formule précédente, montrez que deux permutations $\sigma, \tau \in S_n$ appartiennent à la même classe de conjugaison si et seulement leur décomposition en produit de cycles disjoints sont du même type (c'est-à-dire : pour tout $r \geq 2$, les nombres de r-cycles dans les décompositions de σ et de τ sont égaux).

Exercice 5 (Sous-groupes de A_4).

Dans cet exercice, nous allons identifier tous les sous-groupes de A_4 .

- 1. Montrez que le sous-ensemble $\{\sigma \in A_4 \mid \sigma^2 = e\}$ est un sous-groupe d'ordre 4 de A_4 .
- 2. Si $H \leq A_4$ est un sous-groupe qui contient un produit de 2-cycles ainsi qu'un 3-cycle, montrez que $H = A_4$.

 Indication: montrez que H est trop grand pour n'être pas égal à A_4 .
- 3. Si $H \leq A_4$ est un sous-groupe qui contient deux 3-cycles qui ne fixent pas le même élément, montrez que $H = A_4$.

 Indication: montrez que H est trop grand pour n'être pas égal à A_4 .
- 4. Faites la liste des sous-groupes de A_4 .

Exercice 6. 1. Soit G un groupe. Montrez que Z(G) est égal à l'union des classes de conjugaison qui sont des singletons.

- 2. Montrez que $Z(S_2) = S_2$ et que $Z(S_n) = \{e\}$ pour tout $n \geq 3$. Indication : utilisez le point précédent et l'Exercice 4 ; ou étant donné $\sigma \in S_n$, construisez une transposition qui ne commute pas avec σ .
- 3. Montrez que $Z(A_3)=A_3$ et que $Z(A_n)=\{e\}$ pour $n\geq 4$. Indication : étant donné $\sigma\in A_n$, construisez un 3-cycle qui ne commute pas avec σ .
- \spadesuit Exercise 7. 1. Soit G un groupe. Montrez qu'un sous-groupe $H \leq G$ est normal si et seulement si H est égal à l'union des classes de conjugaison dans G de ses éléments.

2. Montrez que S_3 possède un unique sous-groupe normal non-trivial (que vous identifierez explicitement).

Indication: utilisez l'Exercice 2 et l'Exercice 4.2.

3. Montrez que A_4 possède un unique sous-groupe normal non-trivial (que vous identifierez explicitement).

Indication: commencez par résoudre l'Exercice 5.

Exercice 8.

Montrez que le sous-groupe normal $H \subseteq A_4$ possède un sous-groupe normal $H' \subseteq H$ tel que $H' \subseteq A_4$ n'est pas normal.

En particulier, la propriété d'être un sous-groupe normal n'est pas transitive.

2 Exercice supplémentaire

Exercice 9 (Groupe de Prüfer).

Fixons un nombre premier p, et considérons le sous-ensemble de $\mathbb C$ donné par

 $G(p) := \left\{ e^{2\pi i \frac{a}{p^n}} \mid a \in \mathbb{Z}, n \in \mathbb{N} \right\}.$

- 1. Montrez que G(p), muni de la multiplication complexe, est un groupe abélien.
- 2. Montrez qu'il n'existe pas d'homomorphisme injectif $\mathbb{Z} \hookrightarrow G(p)$, quel que soit p.
- 3. Pour $n \ge 1$, montrez que l'ensemble

$$H_n := \left\{ e^{2\pi i \frac{a}{p^n}} \mid a \in \mathbb{Z} \right\}$$

est un sous-groupe de G(p), et que $H_n \cong \mathbb{Z}/p^n\mathbb{Z}$.

4. Montrez que les seuls sous-groupes non-triviaux de G(p) sont les $H_n, n \ge 1$.

Indication : commencez par montrer que si $H \leq G$ est un sous-groupe infini, alors H = G.