

Discrete Structures and Theory (Spring 2023)

Week 10 Discussion Date: 20/03/2023

Exercise 1:

For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.

- a) the set of airline flights from New York to New Delhi, the set of nonstop airline flights from New York to New Delhi
- b) the set of people who speak English, the set of people who speak Chinese
- c) the set of flying squirrels, the set of living creatures that can fly

Exercise 2:

Determine whether each of these statements is true or false.

a) $0 \in \emptyset$

b) $\emptyset \in \{0\}$

c) $\{0\} \subset \emptyset$

d) $\emptyset \subset \{0\}$

e) $\{0\} \in \{0\}$ f) $\{0\} \subset \{0\}$

g) $\{\emptyset\} \subseteq \{\emptyset\}$ h) $x \in \{x\}$

i) $\{x\} \subseteq \{x\}$

k) $\{x\} \in \{x\}$

1) $\{x\} \in \{\{x\}\}$

Exercise 3:

Find two sets A and B such that $A \in B$ and $A \subseteq B$.

Exercise 4:

Let $A = \{a, b, c, d\}$ and $B = \{y, z\}$. Find

- a) $A \times B$.
- b) $B \times A$.

Exercise 5:

What is the Cartesian product $A \times B$, where A is the set of courses offered by the mathematics department at a university and B is the set of mathematics professors at this university? Give an example of how this Cartesian product can be used.

Exercise 6:

Find A^2 if

- a) $A = \{0, 1, 3\}.$
- b) $A = \{1, 2, a, b\}.$

Exercise 7:

Suppose that A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$. Show that $A \subseteq C$.

Exercise 8:

Let A, B, and C be sets. Show that

- a) $(A \cap B) \subseteq A$.
- b) $A \subseteq (A \cup B)$.
- c) $A B \subseteq A$.

Exercise 9:

What can you say about the sets \boldsymbol{A} and \boldsymbol{B} if we know that

- a) $A \cup B = A$?
- b) $A \cap B = A$?
- c) A B = A?
- d) $A \cap B = B \cap A$?
- e) A B = B A?

Exercise 10:

Show that if A is a subset of a universal set U, then

- a) $A \oplus A = \emptyset$.
- b) $A \oplus \emptyset = A$.
- c) $A \oplus U = \bar{A}$.
- d) $A \oplus \bar{A} = U$.

<u>Hint</u>: Recall that $A \oplus B = (A - B) \cup (B - A)$