IoT - Power energy consumption predict

In [44]:

```
# Import packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble.forest import RandomForestRegressor
from sklearn.feature_selection import SelectFromModel
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
from datetime import datetime
from sklearn.datasets import make_regression
from sklearn import ensemble
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.svm import SVR
```

Variables description

```
Appliances --> Power consumed
Lights --> Power appliance
Tx --> Temperatura
RH x --> Umidade Relativa
T_out --> Temperatura fora da casa
Press mm hg --> Unidade de pressão
RH out --> Umidade fora da casa
Visibility --> Visibilidade
Tdewpoint --> ponto de condensação
rvx --> variavel aleatória
In [3]:
#Import Train and Test dataset
df train = pd.read csv('projeto8-training.csv')
df_test = pd.read_csv('projeto8-testing.csv')
print(f'Train dataset has {df_train.shape[0]} lines and {df_train.shape[1]} variables')
print(f'Test dataset has {df_test.shape[0]} lines and {df_test.shape[1]} variables')
Train dataset has 14803 lines and 32 variables
```

Both dataset have the same amount of columns. Thus, we can concatenate both datasets

Test dataset has 4932 lines and 32 variables

localhost:8888/lab 1/14

```
In [4]:
```

```
df = pd.concat([df_train, df_test])
```

Exploratory Data Analysis

In [5]:

```
# Evaluate missing values in the dataset
df.isna().sum()
```

Out[5]:

date	0
Appliances	0
lights	0
T1	0
RH_1	0
T2	0
RH_2	0
Т3	0
RH_3	0
T4	0
RH_4	0
T5	0
RH_5	0
Т6	0
RH_6	0
T7	0
RH_7	0
Т8	0
RH_8	0
Т9	0
RH_9	0
T_out	0
Press_mm_hg	0
RH_out	0
Windspeed	0
Visibility	0
Tdewpoint	0
rv1	0
rv2	0
NSM	0
WeekStatus	0
Day_of_week	0
dtype: int64	

localhost:8888/lab 2/14

In [6]:

Evaluate the number of unique elements in the dataset
df.nunique()

Out[6]:

date	19735			
Appliances	92			
lights	8			
T1	722			
RH_1	2547			
T2	1650			
RH_2	3376			
T3	1426			
RH_3	2618			
T4	1390			
RH_4	2987			
T5	2263			
RH_5	7571			
T6	4446			
RH_6	9709			
T7	1955			
RH_7	5891			
T8	2228			
RH_8	6649			
T9	924			
RH_9	3388			
T_out	1730			
Press_mm_hg	2189			
RH_out	566			
Windspeed	189			
Visibility	413			
Tdewpoint	1409			
rv1	19735			
rv2	19735			
NSM	144			
WeekStatus	2			
Day_of_week	7			
dtype: int64				

localhost:8888/lab 3/14

In [6]:

```
df.describe()
```

Out[6]:

	Appliances	lights	T1	RH_1	T2	RH_2	
count	19735.000000	19735.000000	19735.000000	19735.000000	19735.000000	19735.000000	
mean	97.694958	3.801875	21.686571	40.259739	20.341219	40.420420	
std	102.524891	7.935988	1.606066	3.979299	2.192974	4.069813	
min	10.000000	0.000000	16.790000	27.023333	16.100000	20.463333	
25%	50.000000	0.000000	20.760000	37.333333	18.790000	37.900000	
50%	60.000000	0.000000	21.600000	39.656667	20.000000	40.500000	
75%	100.000000	0.000000	22.600000	43.066667	21.500000	43.260000	
max	1080.000000	70.000000	26.260000	63.360000	29.856667	56.026667	
8 rows × 29 columns							

4

For a easily understand, let's separate the dataset as **numerical** and **categorical**. The criteria adopted was, if the variable has *less than 10 different values*, it will be considered categorical.

In [7]:

```
num = [name for name in df.columns if df[name].nunique() > 10]
cat = [name for name in df.columns if df[name].nunique() < 10]
df_num = df[num]
df_cat = df[cat]</pre>
```

In [8]:

```
#Formating columns Date and separate them into Month, Day and Hour

df_num = df_num.sort_values(['date'], ascending=True)

df_num['date'] = pd.to_datetime(df_num['date'], format='%Y-%m-%d %H:%M:%S')

df_num['Year'] = df_num['date'].dt.year

df_num['Month'] = df_num['date'].dt.month

df_num['Day'] = df_num['date'].dt.day

df_num['Hour'] = df_num['date'].dt.hour
```

In [9]:

```
# Transform date column into index.
df_num.index = pd.DatetimeIndex(df_num['date'])
df_cat.index = pd.DatetimeIndex(df_num['date'])

# Adding column 'Date' to future analysis
df_num['date'] = df_num['date'].copy()
```

Plot power consumption by month

localhost:8888/lab 4/14

In [27]:

```
for i in range(6):
    if i == 1:
        fig, ax1 = plt.subplots(figsize=(8, 8))
        plot 1 = df num[df num['Month'] == 1]
        mean_1 = plot_1['Appliances'].mean()
        ax1.bar(plot_1['Day'], plot_1['Appliances'])
        ax1.set_title('Power consumed in January')
        ax1.axhline(mean_1, color='red', linewidth=2)
        plt.xlabel("Date")
        plt.ylabel("Temperature")
        fig.autofmt xdate()
    if i == 2:
        fig, ax2 = plt.subplots(figsize=(8, 8))
        plot_2 = df_num[df_num['Month'] == 2]
        mean_2 = plot_2['Appliances'].mean()
        ax2.bar(plot_2['Day'], plot_2['Appliances'])
        ax2.set_title('Power consumed in February')
        ax2.axhline(mean_2, color='red', linewidth=2)
        plt.xlabel("Date")
        plt.ylabel("Temperature")
        fig.autofmt xdate()
    if i == 3:
        fig, ax3 = plt.subplots(figsize=(8, 8))
        plot_3 = df_num[df_num['Month'] == 3]
        mean_3 = plot_3['Appliances'].mean()
        ax3.bar(plot_3['Day'], plot_3['Appliances'])
        ax3.set title('Power consumed in March')
        ax3.axhline(mean_3, color='red', linewidth=2)
        plt.xlabel("Date")
        plt.ylabel("Temperature")
        fig.autofmt_xdate()
    if i == 4:
        fig, ax4 = plt.subplots(figsize=(8, 8))
        plot 4 = df num[df num['Month'] == 4]
        mean_4 = plot_4['Appliances'].mean()
        ax4.bar(plot_4['Day'], plot_4['Appliances'])
        ax4.set title('Power consumed in April')
        ax4.axhline(mean 4, color='red', linewidth=2)
        plt.xlabel("Date")
        plt.ylabel("Temperature")
        fig.autofmt_xdate()
    if i == 5:
        fig, ax5 = plt.subplots(figsize=(8, 8))
        plot_5 = df_num[df_num['Month'] == 5]
        mean_5 = plot_5['Appliances'].mean()
        ax5.bar(plot_5['Day'], plot_5['Appliances'])
        ax5.set_title('Power consumed in May')
        ax5.axhline(mean 5, color='red', linewidth=2)
        plt.xlabel("Date")
        plt.ylabel("Temperature")
        fig.autofmt xdate()
```

localhost:8888/lab 5/14

Plot to visualize the outliers

localhost:8888/lab

In [28]:

```
year_start = str(df_num['Year'].min())
month_start = str(df_num['Month'].min())
day = int('01')
# fim
year_end = str(df_num['Year'].max())
month_end = str(df_num['Month'].max())
if day < 10:
    date_start = year_start + '-' + month_start
    date end = year end + '-' + month end + '-' + '0' + str(day) + ' 23:00:00'
else:
    date_start = year_start + '-' + month_start
    date_end = year_end + '-' + month_end + '-' + str(day) + ' 23:00:00'
print(f'{date_start} até {date_end} com {len(df_num[date_start])} pontos')
plt.subplots(figsize=(30, 20))
sns.set(style="ticks", color_codes=True)
df_filter = df_num[date_start]
df_filter = df_filter.drop(['date', 'NSM'], axis=1)
df_filter.boxplot()
plt.show()
```

2016-1 até 2016-5-01 23:00:00 com 2922 pontos

Analysing the outliers, we can remove data from "Appliances" that are greater than 150

localhost:8888/lab 9/14

Prev_Energia_v1

In [29]:

26/9/2020

```
df_num_v1 = df_num[df_num['Appliances'] < 150.0]
df_num_v1 = df_num_v1.drop(['Year', 'Month', 'Day', 'Hour', 'date'], axis=1)

# Reset index
df_num_v1.reset_index(drop=True, inplace=True)
df_num_v1.index

df_num_v1.head(2)</pre>
```

Out[29]:

	Appliances	T1	RH_1	T2	RH_2	Т3	RH_3	T4	RH_4	T5	
0	60	19.89	47.596667	19.2	44.7900	19.79	44.73	19.0	45.566667	17.166667	
1	60	19.89	46.693333	19.2	44.7225	19.79	44.79	19.0	45.992500	17.166667	
2 rows × 28 columns											
4											•

Correlation

In [30]:

```
plt.figure(figsize = (15,10))
sns.heatmap(df_num_v1.corr(), cmap="Blues")
```

Out[30]:

<matplotlib.axes._subplots.AxesSubplot at 0x2146c07b9e8>

localhost:8888/lab 10/14

In [31]:

```
#Correlation with output variable
cor_target = abs(df_num_v1.corr()["Appliances"])

#Selecting highly correlated features
relevant_features = cor_target[cor_target > 0.2]
relevant_features
```

Out[31]:

```
Appliances
               1.000000
               0.266959
T1
               0.277459
T2
T4
               0.211871
T5
               0.205815
T6
               0.233250
               0.255907
RH_6
T8
               0.288726
RH 8
              0.229389
RH 9
               0.212781
T_{out}
               0.224154
RH_out
               0.266875
NSM
               0.426494
```

Name: Appliances, dtype: float64

In [32]:

```
# Encode the variables that are string
lb = LabelEncoder()

#Adjusting columns into categorical
df['WeekStatus'] = lb.fit_transform(df['WeekStatus'])
df['Day_of_week'] = lb.fit_transform(df['Day_of_week'])
df_v1 = df[df['Appliances'] < 150.0]</pre>
```

Normalizing data

In [33]:

```
#Separating target variable
df_v2_target = df_v1['Appliances']
df_v2 = df_v1.drop(['Appliances','date'], axis=1)
```

localhost:8888/lab 11/14

In [34]:

```
# Normalizing dataset
df_norm2 = (df_v2 - df_v2.mean()) / (df_v2.max() - df_v2.min())
```

Out[34]:

Feature Selection

In [37]:

```
# Removing variables before fit the model
new_df_norm = df_norm2.drop(['rv1', 'rv2', 'Visibility', 'Press_mm_hg','Tdewpoint'], ax
is=1)

#Separating target variable for train dataframe
X_array = np.array(new_df_norm)
y_array = np.array(df_v2_target)

#Separating train and test data
X_train, X_test, y_train, y_test = train_test_split(X_array, y_array, train_size=0.7)
```

localhost:8888/lab 12/14

In [41]:

```
# random forest for feature importance on a regression problem
model = RandomForestRegressor()

# fit the model
model.fit(X_array, y_array)

# get importance
importance = model.feature_importances_

# summarize feature importance
for i,v in enumerate(importance):
    print('Feature: %0d, Score: %.5f' % (i,v))

# plot feature importance
plt.bar([x for x in range(len(importance))], importance)
plt.show()
```

Feature: 0, Score: 0.03302 Feature: 1, Score: 0.01811 Feature: 2, Score: 0.02112 Feature: 3, Score: 0.02180 Feature: 4, Score: 0.02321 Feature: 5, Score: 0.01899 Feature: 6, Score: 0.02117 Feature: 7, Score: 0.02258 Feature: 8, Score: 0.01877 Feature: 9, Score: 0.02209 Feature: 10, Score: 0.02900 Feature: 11, Score: 0.02180 Feature: 12, Score: 0.03195 Feature: 13, Score: 0.02626 Feature: 14, Score: 0.01794 Feature: 15, Score: 0.09208 Feature: 16, Score: 0.02473 Feature: 17, Score: 0.03125 Feature: 18, Score: 0.03002 Feature: 19, Score: 0.02223 Feature: 20, Score: 0.02448 Feature: 21, Score: 0.01882 Feature: 22, Score: 0.38054 Feature: 23, Score: 0.01451 Feature: 24, Score: 0.01352

localhost:8888/lab 13/14

Predictive Analysis

1) Gradient Boosting Regressor

In [45]:

R2 SCORE: 0.7044533450383282

2) Support Vector Regression

In [47]:

```
model_v2 = SVR()
model_v2.fit(X_train, y_train)
y_pred = model_v2.predict(X_test)
r2score_v2 = r2_score(y_test, y_pred)
print(f"R2 SCORE: {r2score_v2}")
```

R2 SCORE: 0.40585495932435556

3) Linear Regression

In [48]:

```
model_v3 = LinearRegression()
model_v3.fit(X_train, y_train)
y_pred = model_v3.predict(X_test)

r2score_v3 = r2_score(y_test, y_pred)
print(f"R2 SCORE: {r2score_v3}")
```

R2 SCORE: 0.36847786034013674

Conclusion

- The best model for this dataset is Gradient Boosting Regressor. It has an accurancy of 70%
- · It will be necessary more data to increase the accuracy of the model

localhost:8888/lab 14/14