UNIVERSITATEA BABES BOLYAI, CLUJ NAPOCA, ROMANIA FACULTATEA DE MATEMATICA SI INFORMATICA

Reconstituiri istorice

- MIRPR -

Membrii echipei

Andrei-Danut Blagoi, Informatica romana, grupa 231 Andreea Bolonyi, Informatica romana, grupa 231 Stefan-Nicolae Parvanescu, Informatica engleza, grupa 936 Oana-Alexandra Sidorencu, Informatica romana, grupa 236 2021-2022

Rezumat

Proiectul propus este menit sa vina in ajutorul persoanelor pasionate de istorie si arheologie care isi doresc informatii plastice despre anumite date introduse. Utilizatorii aplicatiei au posibilitatea sa exploreze niste date numerice pe care le gasesc, reusind sa cunoasca care este sexul sau varsta unui os pe care acestia il studiaza si, de asemenea, utilizatorii au posibilitatea sa perceapa informatia si intr-un mod vizual.

Cuprins

1	Introducere					
	1.1 Motivarea temei	1				
	1.2 Tehnologii	1				
	1.3 Setul de date	1				
	Problema stiintifica 2.1 Definitia problemei	5				
3	Lucrari stiintifice	6				

Capitolul 1

Introducere

1.1 Motivarea temei

Problema abordata in acest proiect este de interes pentru persoanele care lucreaza in acest domeniu, studenti ce vor ajunge angajati sau persoane care sunt doar pasionate. Aplicatia dezvoltata este usor de folosit, intuitiva si menita sa ofere doar ajutor, nu probleme utilizatorului.

Pasionatii folosind aplicatia noastra vor putea sa aiba o idee mult mai aprofundata in legatura cu subiectul pe care il studiaza, nu doar sa se bazeze pe niste cifre pe care le vad. De asemenea, o functionalitate pe care dorim sa o oferim utilizatorului este posibilitatea de a vedea 3D aceste informatii pe care le introduce.

1.2 Tehnologii

Dezvoltarea aplicartiei se bazeaza pe limbajul Python pentru partea de backend si PyQT pentru partea de frontend. Am decis sa folosim Python datorita usurintei cu care se poate scrie codul si multitudinea de solutii pe care le putem gasi, fie ca este vorba de o problema obisnuita pentru un programator, fie ca este vorba de biblioteci din domeniul inteligentei artificiale pe care le putem folosi pentru rezolvarea subiectului (spre exemplu Scikit-learn, TensorFlow, Theano).

1.3 Setul de date

TML	Tibia Maximum Length
TPB	Tibia Plateau Mediolateral
	(Bicondylar) Breadth
TMLD	Tibia 50% Diaphyseal
	Mediolateral Diameter
TAPD	Tibia 50% Diaphyseal
	Anteroposterior Diameter

Figura 1.1: Caracteristici tibie.

HML	Humerus Maximum Length –b (33,4)M (30,7)F
HEB	Humerus Epicondylar Breadth -c
HHD	Humerus Head Diameter -g
HMLD	Humerus 50% Diaphyseal Mediolateral Diameter -a
HAPD	Humerus 50% Diaphyseal Anteroposterior Diameter -a

Figura 1.2: Caracteristici humerus.

RML	Radius Maximum Length
RMLD	Radius 50% <u>Diaphyseal</u>
	Mediolateral Diameter (MAX) -a
RAPD	Radius 50% Diaphyseal
	Anteroposterior Diameter (MIN) -a

Figura 1.3: Caracteristici radius.

FML	Femur Maximum Length –FML
FBL	Femur Bicondylar Length - FBL
FEB	Femur <u>Epicondylar</u> Mediolateral
	Breadth – FEB
FAB	
FHD	
FMLD	Femur 50% Diaphyseal
	Mediolateral Diameter
FAPD	Femur 50% <u>Diaphyseal</u>
	Anteroposterior Diameter

Figura 1.4: Caracteristici femur.

Capitolul 2

Problema stiintifica

2.1 Definitia problemei

Subiectul abordat tine de domeniul istoriei si al arheologiei pentru a obtine informatii revelante despre obiectele identificate in santierele arheologice. Astfel se doreste o aplicatie care, plecand de la informatii deja studiate de arheologi umani, sa permita vizualizarea 3D a unor "descoperiri deja efectuate" in intregime sau partial, din diferite unghiuri, reliefand anumite detalii. Mai mult, ofera posibilitatea determinarii sexului sau varstei pe baza unor caracteristici numerice ale unui anumit tip de os.

Pentru simplitatea aplicatiei si usurinta folosirii exista o interfata grafica care va permite utilizatorului sa introduca caracteristicile pe baza carora se va stabili rezultatul. Dupa apasarea unui buton de trimitere a datelor, utilizatorul va fi intrebat daca este de acord ca datele introduse sa fie pastrate in baza de date pentru imbunatatirea solutiei. In urma procesarii datelor, utilizatorul va vedea care este sexul sau varsta osului specificat si va avea posibilitatea sa observe si in 3D cum ar arata acesta.

Capitolul 3

Lucrari stiintifice

Punctul de start al proiectului dat a fost constituit de urmatoarele lucrari stiintifice: [2], [4], [5], [3], [1]. Acestea au oferit inspiratia si ajutorul de care am avut nevoie pentru a dezvolta aplicatia.

Bibliografie

- [1] Gabriela Czibula. Machine learning-based approaches for predicting stature from archaeological skeletal remains using long bone lengths. 2016.
- [2] Geertje Klein Goldewijk and Jan Jacobs. The relation between stature and long bone length in the roman empire. 2013.
- [3] Gabriela Czibula Ionescu, Vlad-Sebastian and Mihai Teletin. Supervised Learning Techniques for Body Mass Estimation in Bioarchaeology. 2016.
- [4] Jan PAM Jacobs Jongman, Willem M. and Geertje M. Klein Goldewijk. *Health and wealth in the Roman Empire*. 2019.
- [5] Diana-Lucia Miholca. Machine learning based approaches for sex identification in bioarchaeology. 2016.