HumanActivityRecognition

This project is to build a model that predicts the human activities such as Walking, Walking_Upstairs, Walking Downstairs, Sitting, Standing or Laying.

This dataset is collected from 30 persons(referred as subjects in this dataset), performing different activities with a smartphone to their waists. The data is recorded with the help of sensors (accelerometer and Gyroscope) in that smartphone. This experiment was video recorded to label the data manually.

How data was recorded

By using the sensors(Gyroscope and accelerometer) in a smartphone, they have captured '3-axial linear acceleration'(*tAcc-XYZ*) from accelerometer and '3-axial angular velocity' (*tGyro-XYZ*) from Gyroscope with several variations.

prefix 't' in those metrics denotes time.

suffix 'XYZ' represents 3-axial signals in X, Y, and Z directions.

Feature names

- These sensor signals are preprocessed by applying noise filters and then sampled in fixed-width windows(sliding windows) of 2.56 seconds each with 50% overlap. ie., each window has 128 readings.
- 2. From Each window, a feature vector was obtianed by calculating variables from the time and frequency domain.

In our dataset, each datapoint represents a window with different readings

- The acceleration signal was saperated into Body and Gravity acceleration signals(tBodyAcc-XYZ and tGravityAcc-XYZ) using some low pass filter with corner frequecy of 0.3Hz.
- 4. After that, the body linear acceleration and angular velocity were derived in time to obtian *jerk signals* (*tBodyAccJerk-XYZ* and *tBodyGyroJerk-XYZ*).
- The magnitude of these 3-dimensional signals were calculated using the Euclidian norm. This
 magnitudes are represented as features with names like tBodyAccMag, tGravityAccMag,
 tBodyAccJerkMag, tBodyGyroMag and tBodyGyroJerkMag.
- 6. Finally, We've got frequency domain signals from some of the available signals by applying a FFT (Fast Fourier Transform). These signals obtained were labeled with prefix 'f' just like original signals with prefix 't'. These signals are labeled as fBodyAcc-XYZ, fBodyGyroMag etc.,.
- 7. These are the signals that we got so far.
 - tBodyAcc-XYZ
 - tGravityAcc-XYZ
 - tBodyAccJerk-XYZ
 - tBodyGyro-XYZ
 - tBodyGyroJerk-XYZ

- tBodyAccMag
- · tGravityAccMag
- tBodyAccJerkMag
- tBodyGyroMag
- tBodyGyroJerkMag
- fBodyAcc-XYZ
- fBodyAccJerk-XYZ
- · fBodyGyro-XYZ
- fBodyAccMag
- fBodyAccJerkMag
- fBodyGyroMag
- fBodyGyroJerkMag
- 8. We can esitmate some set of variables from the above signals. ie., We will estimate the following properties on each and every signal that we recoreded so far.
 - mean(): Mean value
 - std(): Standard deviation
 - mad(): Median absolute deviation
 - max(): Largest value in array
 - min(): Smallest value in array
 - sma(): Signal magnitude area
 - energy(): Energy measure. Sum of the squares divided by the number of values.
 - iqr(): Interquartile range
 - entropy(): Signal entropy
 - arCoeff(): Autorregresion coefficients with Burg order equal to 4
 - · correlation(): correlation coefficient between two signals
 - maxinds(): index of the frequency component with largest magnitude
 - meanFreq(): Weighted average of the frequency components to obtain a mean frequency
 - **skewness()**: skewness of the frequency domain signal
 - kurtosis(): kurtosis of the frequency domain signal
 - bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window.
 - angle(): Angle between to vectors.
- 9. We can obtain some other vectors by taking the average of signals in a single window sample. These are used on the angle() variable' `
 - gravityMean
 - tBodyAccMean
 - tBodyAccJerkMean
 - tBodyGyroMean
 - tBodyGyroJerkMean

Y_Labels(Encoded)

- In the dataset, Y labels are represented as numbers from 1 to 6 as their identifiers.
 - WALKING as 1
 - WALKING UPSTAIRS as 2
 - WALKING DOWNSTAIRS as 3
 - SITTING as 4
 - STANDING as 5

LAYING as 6

Train and test data were saperated

 The readings from 70% of the volunteers were taken as trianing data and remaining 30% subjects recordings were taken for test data

Data

- All the data is present in 'UCI_HAR_dataset/' folder in present working directory.
 - Feature names are present in 'UCI_HAR_dataset/features.txt'
 - Train Data
 - 'UCI HAR dataset/train/X train.txt'
 - 'UCI_HAR_dataset/train/subject_train.txt'
 - 'UCI_HAR_dataset/train/y_train.txt'
 - Test Data
 - 'UCI HAR dataset/test/X test.txt'
 - 'UCI_HAR_dataset/test/subject_test.txt'
 - 'UCI_HAR_dataset/test/y_test.txt'

Data Size:

27 MB

Quick overview of the dataset:

 Accelerometer and Gyroscope readings are taken from 30 volunteers(referred as subjects) while performing the following 6 Activities.

- 1. Walking
- 2. WalkingUpstairs
- 3. WalkingDownstairs
- 4. Standing
- 5. Sitting
- 6. Lying.
- Readings are divided into a window of 2.56 seconds with 50% overlapping.
- Accelerometer readings are divided into gravity acceleration and body acceleration readings, which has x,y and z components each.
- Gyroscope readings are the measure of angular velocities which has x,y and z components.
- Jerk signals are calculated for BodyAcceleration readings.
- Fourier Transforms are made on the above time readings to obtain frequency readings.
- Now, on all the base signal readings., mean, max, mad, sma, arcoefficient, engerybands, entropy etc., are calculated for each window.
- We get a feature vector of 561 features and these features are given in the dataset.
- Each window of readings is a datapoint of 561 features.

Problem Framework

- 30 subjects(volunteers) data is randomly split to 70%(21) test and 30%(7) train data.
- Each datapoint corresponds one of the 6 Activities.

Problem Statement

Given a new datapoint we have to predict the Activity

```
In [1]: from google.colab import drive
    drive.mount('/content/drive')
```

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fpeopleapi.readonly&response_type=code

```
Enter your authorization code:
.....
Mounted at /content/drive
```

In [2]: %cd /content/drive/My Drive/Colab Notebooks

/content/drive/My Drive/Colab Notebooks

```
In [3]: import numpy as np
import pandas as pd

# get the features from the file features.txt
features = list()
with open('UCI_HAR_Dataset/features.txt') as f:
    features = [line.split()[1] for line in f.readlines()]
print('No of Features: {}'.format(len(features)))
```

No of Features: 561

Obtain the train data

In [0]: # get the data from txt files to pandas dataffame X_train = pd.read_csv('UCI_HAR_Dataset/train/X_train.txt', delim_whitespace=Tr ue, header=None, names=features) # add subject column to the dataframe X_train['subject'] = pd.read_csv('UCI_HAR_Dataset/train/subject_train.txt', he ader=None, squeeze=True) y train = pd.read csv('UCI HAR Dataset/train/y train.txt', names=['Activity'], squeeze=True) y_train_labels = y_train.map({1: 'WALKING', 2:'WALKING_UPSTAIRS',3:'WALKING_DO WNSTAIRS',\ 4: 'SITTING', 5: 'STANDING', 6: 'LAYING'}) # put all columns in a single dataframe train = X train train['Activity'] = y_train train['ActivityName'] = y_train_labels train.sample()

/usr/local/lib/python3.6/dist-packages/pandas/io/parsers.py:702: UserWarning: Duplicate names specified. This will raise an error in the future. return _read(filepath_or_buffer, kwds)

Out[0]: _

	tBodyAcc- mean()-X	_	tBodyAcc- mean()-Z	_	_	_	
4771	0.286151	-0.018426	-0.103938	-0.983312	-0.986697	-0.988534	-0.983914

1 rows × 564 columns

```
In [0]: train.shape
Out[0]: (7352, 564)
```

Obtain the test data

```
In [0]: # get the data from txt files to pandas dataffame
        X_test = pd.read_csv('UCI_HAR_Dataset/test/X_test.txt', delim_whitespace=True,
        header=None, names=features)
        # add subject column to the dataframe
        X_test['subject'] = pd.read_csv('UCI_HAR_Dataset/test/subject_test.txt', heade
        r=None, squeeze=True)
        # get y labels from the txt file
        y_test = pd.read_csv('UCI_HAR_Dataset/test/y_test.txt', names=['Activity'], sq
        ueeze=True)
        y test labels = y test.map({1: 'WALKING', 2: 'WALKING UPSTAIRS',3: 'WALKING DOWN
        STAIRS',\
                                4: 'SITTING', 5: 'STANDING', 6: 'LAYING'})
        # put all columns in a single dataframe
        test = X test
        test['Activity'] = y test
        test['ActivityName'] = y_test_labels
        test.sample()
```

/usr/local/lib/python3.6/dist-packages/pandas/io/parsers.py:702: UserWarning: Duplicate names specified. This will raise an error in the future. return _read(filepath_or_buffer, kwds)

Out[0]:

		tBodyAcc- mean()-X			1	tBodyAcc- std()-Y	_	_	
5	25	0.292245	-0.016466	-0.118074	-0.971879	-0.887577	-0.912186	-0.977585	-(

1 rows × 564 columns

```
In [0]: test.shape
Out[0]: (2947, 564)
```

Data Cleaning

1. Check for Duplicates

```
In [0]: print('No of duplicates in train: {}'.format(sum(train.duplicated())))
    print('No of duplicates in test : {}'.format(sum(test.duplicated())))

No of duplicates in train: 0
    No of duplicates in test : 0
```

2. Checking for NaN/null values

3. Check for data imbalance

```
In [0]: import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('whitegrid')
plt.rcParams['font.family'] = 'Dejavu Sans'
```

```
In [0]: plt.figure(figsize=(16,8))
   plt.title('Data provided by each user', fontsize=20)
   sns.countplot(x='subject',hue='ActivityName', data = train)
   plt.show()
```


We have got almost same number of reading from all the subjects

In [0]: plt.title('No of Datapoints per Activity', fontsize=15)
 sns.countplot(train.ActivityName)
 plt.xticks(rotation=90)
 plt.show()

Observation

Our data is well balanced (almost)

4. Changing feature names

```
In [0]: columns = train.columns
                                  # Removing '()' from column names
                                  columns = columns.str.replace('[()]','')
                                  columns = columns.str.replace('[-]',
                                  columns = columns.str.replace('[,]','')
                                  train.columns = columns
                                  test.columns = columns
                                  test.columns
{\tt Out[0]: Index(['tBodyAccmeanX', 'tBodyAccmeanY', 'tBodyAccmeanZ', 'tBodyAccstdX', 'tBodyAccstdX', 'tBodyAccstdX', 'tBodyAccmeanZ', 'tBodyAccstdX', 'tBodyAccmeanZ', 'tBodyA
                                                              'tBodyAccstdY', 'tBodyAccstdZ', 'tBodyAccmadX', 'tBodyAccmadY',
                                                              'tBodyAccmadZ', 'tBodyAccmaxX',
                                                              'angletBodyAccMeangravity', 'angletBodyAccJerkMeangravityMean',
                                                              'angletBodyGyroMeangravityMean', 'angletBodyGyroJerkMeangravityMean',
                                                              'angleXgravityMean', 'angleYgravityMean', 'angleZgravityMean',
                                                              'subject', 'Activity', 'ActivityName'],
                                                         dtype='object', length=564)
```

5. Save this dataframe in a csv files

```
In [0]: train.to_csv('UCI_HAR_Dataset/train.csv', index=False)
test.to_csv('UCI_HAR_Dataset/test.csv', index=False)
```

Exploratory Data Analysis

"Without domain knowledge EDA has no meaning, without EDA a problem has no soul."

1. Featuring Engineering from Domain Knowledge

- Static and Dynamic Activities
 - In static activities (sit, stand, lie down) motion information will not be very useful.
 - In the dynamic activities (Walking, WalkingUpstairs, WalkingDownstairs) motion info will be significant.

2. Stationary and Moving activities are completely different


```
In [0]: # for plotting purposes taking datapoints of each activity to a different data
        frame
        df1 = train[train['Activity']==1]
        df2 = train[train['Activity']==2]
        df3 = train[train['Activity']==3]
        df4 = train[train['Activity']==4]
        df5 = train[train['Activity']==5]
        df6 = train[train['Activity']==6]
        plt.figure(figsize=(14,7))
        plt.subplot(2,2,1)
        plt.title('Stationary Activities(Zoomed in)')
        sns.distplot(df4['tBodyAccMagmean'],color = 'r',hist = False, label = 'Sittin
        sns.distplot(df5['tBodyAccMagmean'],color = 'm',hist = False,label = 'Standin
        g')
        sns.distplot(df6['tBodyAccMagmean'],color = 'c',hist = False, label = 'Laying'
        plt.axis([-1.01, -0.5, 0, 35])
        plt.legend(loc='center')
        plt.subplot(2,2,2)
        plt.title('Moving Activities')
        sns.distplot(df1['tBodyAccMagmean'],color = 'red',hist = False, label = 'Walki
        ng')
        sns.distplot(df2['tBodyAccMagmean'],color = 'blue',hist = False,label = 'Walki
        ng Up')
        sns.distplot(df3['tBodyAccMagmean'],color = 'green',hist = False, label = 'Wal
        king down')
        plt.legend(loc='center right')
        plt.tight layout()
        plt.show()
```


3. Magnitude of an acceleration can saperate it well

```
In [0]: plt.figure(figsize=(7,7))
    sns.boxplot(x='ActivityName', y='tBodyAccMagmean',data=train, showfliers=False
    , saturation=1)
    plt.ylabel('Acceleration Magnitude mean')
    plt.axhline(y=-0.7, xmin=0.1, xmax=0.9,dashes=(5,5), c='g')
    plt.axhline(y=-0.05, xmin=0.4, dashes=(5,5), c='m')
    plt.xticks(rotation=90)
    plt.show()
```


Observations:

- If tAccMean is < -0.8 then the Activities are either Standing or Sitting or Laying.
- If tAccMean is > -0.6 then the Activities are either Walking or WalkingDownstairs or WalkingUpstairs.
- If tAccMean > 0.0 then the Activity is WalkingDownstairs.
- We can classify 75% the Acitivity labels with some errors.

4. Position of GravityAccelerationComponants also matters

```
In [0]: sns.boxplot(x='ActivityName', y='angleXgravityMean', data=train)
   plt.axhline(y=0.08, xmin=0.1, xmax=0.9,c='m',dashes=(5,3))
   plt.title('Angle between X-axis and Gravity_mean', fontsize=15)
   plt.xticks(rotation = 40)
   plt.show()
```


Observations:

- If angleX,gravityMean > 0 then Activity is Laying.
- · We can classify all datapoints belonging to Laying activity with just a single if else statement.

Apply t-sne on the data

```
In [0]: import numpy as np
    from sklearn.manifold import TSNE
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [0]: # performs t-sne with different perplexity values and their repective plots.. def perform_tsne(X_data, y_data, perplexities, n_iter=1000, img_name_prefix='t -sne'): for index,perplexity in enumerate(perplexities): # perform t-sne print('\nperforming tsne with perplexity {} and with {} iterations at max'.format(perplexity, n iter)) X_reduced = TSNE(verbose=2, perplexity=perplexity).fit_transform(X_dat a) print('Done..') # prepare the data for seaborn print('Creating plot for this t-sne visualization..') df = pd.DataFrame({'x':X_reduced[:,0], 'y':X_reduced[:,1], 'label':y_d ata}) # draw the plot in appropriate place in the grid sns.lmplot(data=df, x='x', y='y', hue='label', fit reg=False, size=8,\ palette="Set1",markers=['^','v','s','o', '1','2']) plt.title("perplexity : {} and max_iter : {}".format(perplexity, n_ite r)) img_name = img_name_prefix + '_perp_{}_iter_{}.png'.format(perplexity, n_iter) print('saving this plot as image in present working directory...') plt.savefig(img name) plt.show() print('Done')

In [0]: X_pre_tsne = train.drop(['subject', 'Activity','ActivityName'], axis=1)
 y_pre_tsne = train['ActivityName']
 perform_tsne(X_data = X_pre_tsne,y_data=y_pre_tsne, perplexities =[2,5,10,20,5
 0])

```
performing tsne with perplexity 2 and with 1000 iterations at max
[t-SNE] Computing 7 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.426s...
[t-SNE] Computed neighbors for 7352 samples in 72.001s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.635855
[t-SNE] Computed conditional probabilities in 0.071s
[t-SNE] Iteration 50: error = 124.8017578, gradient norm = 0.0253939 (50 iter
ations in 16.625s)
[t-SNE] Iteration 100: error = 107.2019501, gradient norm = 0.0284782 (50 ite
rations in 9.735s)
[t-SNE] Iteration 150: error = 100.9872894, gradient norm = 0.0185151 (50 ite
rations in 5.346s)
[t-SNE] Iteration 200: error = 97.6054382, gradient norm = 0.0142084 (50 iter
ations in 7.013s)
[t-SNE] Iteration 250: error = 95.3084183, gradient norm = 0.0132592 (50 iter
ations in 5.703s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 95.308418
[t-SNE] Iteration 300: error = 4.1209540, gradient norm = 0.0015668 (50 itera
tions in 7.156s)
[t-SNE] Iteration 350: error = 3.2113254, gradient norm = 0.0009953 (50 itera
tions in 8.022s)
[t-SNE] Iteration 400: error = 2.7819963, gradient norm = 0.0007203 (50 itera
tions in 9.419s)
[t-SNE] Iteration 450: error = 2.5178111, gradient norm = 0.0005655 (50 itera
tions in 9.370s)
[t-SNE] Iteration 500: error = 2.3341548, gradient norm = 0.0004804 (50 itera
tions in 7.681s)
[t-SNE] Iteration 550: error = 2.1961622, gradient norm = 0.0004183 (50 itera
tions in 7.097s)
[t-SNE] Iteration 600: error = 2.0867445, gradient norm = 0.0003664 (50 itera
tions in 9.274s)
[t-SNE] Iteration 650: error = 1.9967778, gradient norm = 0.0003279 (50 itera
tions in 7.697s)
[t-SNE] Iteration 700: error = 1.9210005, gradient norm = 0.0002984 (50 itera
tions in 8.174s)
[t-SNE] Iteration 750: error = 1.8558111, gradient norm = 0.0002776 (50 itera
tions in 9.747s)
[t-SNE] Iteration 800: error = 1.7989457, gradient norm = 0.0002569 (50 itera
tions in 8.687s)
[t-SNE] Iteration 850: error = 1.7490212, gradient norm = 0.0002394 (50 itera
tions in 8.407s)
[t-SNE] Iteration 900: error = 1.7043383, gradient norm = 0.0002224 (50 itera
tions in 8.351s)
[t-SNE] Iteration 950: error = 1.6641431, gradient norm = 0.0002098 (50 itera
tions in 7.841s)
[t-SNE] Iteration 1000: error = 1.6279151, gradient norm = 0.0001989 (50 iter
ations in 5.623s)
[t-SNE] Error after 1000 iterations: 1.627915
Done..
```

Creating plot for this t-sne visualization.. saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 5 and with 1000 iterations at max
[t-SNE] Computing 16 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.263s...
[t-SNE] Computed neighbors for 7352 samples in 48.983s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.961265
[t-SNE] Computed conditional probabilities in 0.122s
[t-SNE] Iteration 50: error = 114.1862640, gradient norm = 0.0184120 (50 iter
ations in 55.655s)
[t-SNE] Iteration 100: error = 97.6535568, gradient norm = 0.0174309 (50 iter
ations in 12.580s)
[t-SNE] Iteration 150: error = 93.1900101, gradient norm = 0.0101048 (50 iter
ations in 9.180s)
[t-SNE] Iteration 200: error = 91.2315445, gradient norm = 0.0074560 (50 iter
ations in 10.340s)
[t-SNE] Iteration 250: error = 90.0714417, gradient norm = 0.0057667 (50 iter
ations in 9.458s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 90.071442
[t-SNE] Iteration 300: error = 3.5796804, gradient norm = 0.0014691 (50 itera
tions in 8.718s)
[t-SNE] Iteration 350: error = 2.8173938, gradient norm = 0.0007508 (50 itera
tions in 10.180s)
[t-SNE] Iteration 400: error = 2.4344938, gradient norm = 0.0005251 (50 itera
tions in 10.506s)
[t-SNE] Iteration 450: error = 2.2156141, gradient norm = 0.0004069 (50 itera
tions in 10.072s)
[t-SNE] Iteration 500: error = 2.0703306, gradient norm = 0.0003340 (50 itera
tions in 10.511s)
[t-SNE] Iteration 550: error = 1.9646366, gradient norm = 0.0002816 (50 itera
tions in 9.792s)
[t-SNE] Iteration 600: error = 1.8835558, gradient norm = 0.0002471 (50 itera
tions in 9.098s)
[t-SNE] Iteration 650: error = 1.8184001, gradient norm = 0.0002184 (50 itera
tions in 8.656s)
[t-SNE] Iteration 700: error = 1.7647167, gradient norm = 0.0001961 (50 itera
tions in 9.063s)
[t-SNE] Iteration 750: error = 1.7193680, gradient norm = 0.0001796 (50 itera
tions in 9.754s)
[t-SNE] Iteration 800: error = 1.6803776, gradient norm = 0.0001655 (50 itera
tions in 9.540s)
[t-SNE] Iteration 850: error = 1.6465144, gradient norm = 0.0001538 (50 itera
tions in 9.953s)
[t-SNE] Iteration 900: error = 1.6166563, gradient norm = 0.0001421 (50 itera
tions in 10.270s)
[t-SNE] Iteration 950: error = 1.5901035, gradient norm = 0.0001335 (50 itera
tions in 6.609s)
[t-SNE] Iteration 1000: error = 1.5664237, gradient norm = 0.0001257 (50 iter
ations in 8.553s)
```

[t-SNE] Error after 1000 iterations: 1.566424
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 10 and with 1000 iterations at max
[t-SNE] Computing 31 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.410s...
[t-SNE] Computed neighbors for 7352 samples in 64.801s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.133828
[t-SNE] Computed conditional probabilities in 0.214s
[t-SNE] Iteration 50: error = 106.0169220, gradient norm = 0.0194293 (50 iter
ations in 24.550s)
[t-SNE] Iteration 100: error = 90.3036194, gradient norm = 0.0097653 (50 iter
ations in 11.936s)
[t-SNE] Iteration 150: error = 87.3132935, gradient norm = 0.0053059 (50 iter
ations in 11.246s)
[t-SNE] Iteration 200: error = 86.1169128, gradient norm = 0.0035844 (50 iter
ations in 11.864s)
[t-SNE] Iteration 250: error = 85.4133606, gradient norm = 0.0029100 (50 iter
ations in 11.944s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.413361
[t-SNE] Iteration 300: error = 3.1394315, gradient norm = 0.0013976 (50 itera
tions in 11.742s)
[t-SNE] Iteration 350: error = 2.4929206, gradient norm = 0.0006466 (50 itera
tions in 11.627s)
[t-SNE] Iteration 400: error = 2.1733041, gradient norm = 0.0004230 (50 itera
tions in 11.846s)
[t-SNE] Iteration 450: error = 1.9884514, gradient norm = 0.0003124 (50 itera
tions in 11.405s)
[t-SNE] Iteration 500: error = 1.8702440, gradient norm = 0.0002514 (50 itera
tions in 11.320s)
[t-SNE] Iteration 550: error = 1.7870129, gradient norm = 0.0002107 (50 itera
tions in 12.009s)
[t-SNE] Iteration 600: error = 1.7246909, gradient norm = 0.0001824 (50 itera
tions in 10.632s)
[t-SNE] Iteration 650: error = 1.6758548, gradient norm = 0.0001590 (50 itera
tions in 11.270s)
[t-SNE] Iteration 700: error = 1.6361949, gradient norm = 0.0001451 (50 itera
tions in 12.072s)
[t-SNE] Iteration 750: error = 1.6034756, gradient norm = 0.0001305 (50 itera
tions in 11.607s)
[t-SNE] Iteration 800: error = 1.5761518, gradient norm = 0.0001188 (50 itera
tions in 9.409s)
[t-SNE] Iteration 850: error = 1.5527289, gradient norm = 0.0001113 (50 itera
tions in 8.309s)
[t-SNE] Iteration 900: error = 1.5328671, gradient norm = 0.0001021 (50 itera
tions in 9.433s)
[t-SNE] Iteration 950: error = 1.5152045, gradient norm = 0.0000974 (50 itera
tions in 11.488s)
[t-SNE] Iteration 1000: error = 1.4999681, gradient norm = 0.0000933 (50 iter
ations in 10.593s)
```

[t-SNE] Error after 1000 iterations: 1.499968
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 20 and with 1000 iterations at max
[t-SNE] Computing 61 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.425s...
[t-SNE] Computed neighbors for 7352 samples in 61.792s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.274335
[t-SNE] Computed conditional probabilities in 0.355s
[t-SNE] Iteration 50: error = 97.5202179, gradient norm = 0.0223863 (50 itera
tions in 21.168s)
[t-SNE] Iteration 100: error = 83.9500732, gradient norm = 0.0059110 (50 iter
ations in 17.306s)
[t-SNE] Iteration 150: error = 81.8804779, gradient norm = 0.0035797 (50 iter
ations in 14.258s)
[t-SNE] Iteration 200: error = 81.1615143, gradient norm = 0.0022536 (50 iter
ations in 14.130s)
[t-SNE] Iteration 250: error = 80.7704086, gradient norm = 0.0018108 (50 iter
ations in 15.340s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 80.770409
[t-SNE] Iteration 300: error = 2.6957574, gradient norm = 0.0012993 (50 itera
tions in 13.605s)
[t-SNE] Iteration 350: error = 2.1637220, gradient norm = 0.0005765 (50 itera
tions in 13.248s)
[t-SNE] Iteration 400: error = 1.9143614, gradient norm = 0.0003474 (50 itera
tions in 14.774s)
[t-SNE] Iteration 450: error = 1.7684202, gradient norm = 0.0002458 (50 itera
tions in 15.502s)
[t-SNE] Iteration 500: error = 1.6744757, gradient norm = 0.0001923 (50 itera
tions in 14.808s)
[t-SNE] Iteration 550: error = 1.6101606, gradient norm = 0.0001575 (50 itera
tions in 14.043s)
[t-SNE] Iteration 600: error = 1.5641028, gradient norm = 0.0001344 (50 itera
tions in 15.769s)
[t-SNE] Iteration 650: error = 1.5291905, gradient norm = 0.0001182 (50 itera
tions in 15.834s)
[t-SNE] Iteration 700: error = 1.5024391, gradient norm = 0.0001055 (50 itera
tions in 15.398s)
[t-SNE] Iteration 750: error = 1.4809053, gradient norm = 0.0000965 (50 itera
tions in 14.594s)
[t-SNE] Iteration 800: error = 1.4631859, gradient norm = 0.0000884 (50 itera
tions in 15.025s)
[t-SNE] Iteration 850: error = 1.4486470, gradient norm = 0.0000832 (50 itera
tions in 14.060s)
[t-SNE] Iteration 900: error = 1.4367288, gradient norm = 0.0000804 (50 itera
tions in 12.389s)
[t-SNE] Iteration 950: error = 1.4270191, gradient norm = 0.0000761 (50 itera
tions in 10.392s)
[t-SNE] Iteration 1000: error = 1.4189968, gradient norm = 0.0000787 (50 iter
```

ations in 12.355s)

[t-SNE] Error after 1000 iterations: 1.418997
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 50 and with 1000 iterations at max
[t-SNE] Computing 151 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.376s...
[t-SNE] Computed neighbors for 7352 samples in 73.164s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.437672
[t-SNE] Computed conditional probabilities in 0.844s
[t-SNE] Iteration 50: error = 86.1525574, gradient norm = 0.0242986 (50 itera
tions in 36.249s)
[t-SNE] Iteration 100: error = 75.9874649, gradient norm = 0.0061005 (50 iter
ations in 30.453s)
[t-SNE] Iteration 150: error = 74.7072296, gradient norm = 0.0024708 (50 iter
ations in 28.461s)
[t-SNE] Iteration 200: error = 74.2736282, gradient norm = 0.0018644 (50 iter
ations in 27.735s)
[t-SNE] Iteration 250: error = 74.0722427, gradient norm = 0.0014078 (50 iter
ations in 26.835s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 74.072243
[t-SNE] Iteration 300: error = 2.1539080, gradient norm = 0.0011796 (50 itera
tions in 25.445s)
[t-SNE] Iteration 350: error = 1.7567128, gradient norm = 0.0004845 (50 itera
tions in 21.282s)
[t-SNE] Iteration 400: error = 1.5888531, gradient norm = 0.0002798 (50 itera
tions in 21.015s)
[t-SNE] Iteration 450: error = 1.4956820, gradient norm = 0.0001894 (50 itera
tions in 23.332s)
[t-SNE] Iteration 500: error = 1.4359720, gradient norm = 0.0001420 (50 itera
tions in 23.083s)
[t-SNE] Iteration 550: error = 1.3947564, gradient norm = 0.0001117 (50 itera
tions in 19.626s)
[t-SNE] Iteration 600: error = 1.3653858, gradient norm = 0.0000949 (50 itera
tions in 22.752s)
[t-SNE] Iteration 650: error = 1.3441534, gradient norm = 0.0000814 (50 itera
tions in 23.972s)
[t-SNE] Iteration 700: error = 1.3284039, gradient norm = 0.0000742 (50 itera
tions in 20.636s)
[t-SNE] Iteration 750: error = 1.3171139, gradient norm = 0.0000700 (50 itera
tions in 20.407s)
[t-SNE] Iteration 800: error = 1.3085558, gradient norm = 0.0000657 (50 itera
tions in 24.951s)
[t-SNE] Iteration 850: error = 1.3017821, gradient norm = 0.0000603 (50 itera
tions in 24.719s)
[t-SNE] Iteration 900: error = 1.2962619, gradient norm = 0.0000586 (50 itera
tions in 24.500s)
[t-SNE] Iteration 950: error = 1.2914882, gradient norm = 0.0000573 (50 itera
tions in 24.132s)
[t-SNE] Iteration 1000: error = 1.2874244, gradient norm = 0.0000546 (50 iter
ations in 22.840s)
```

[t-SNE] Error after 1000 iterations: 1.287424
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...

Done

Obtain the train and test data

```
In [54]: train = pd.read_csv('UCI_HAR_Dataset/train.csv')
  test = pd.read_csv('UCI_HAR_Dataset/test.csv')
  print(train.shape, test.shape)
```

(7352, 564) (2947, 564)

```
In [0]: train.head(3)
```

Out[0]:

	tBodyAccmeanX	tBodyAccmeanY	tBodyAccmeanZ	tBodyAccstdX	tBodyAccstdY	tE
0	0.288585	-0.020294	-0.132905	-0.995279	-0.983111	- 0
1	0.278419	-0.016411	-0.123520	-0.998245	-0.975300	-0
2	0.279653	-0.019467	-0.113462	-0.995380	-0.967187	-O

3 rows × 564 columns

```
In [0]: # get X_train and y_train from csv files
    X_train = train.drop(['subject', 'Activity', 'ActivityName'], axis=1)
    y_train = train.ActivityName

In [0]: # get X_test and y_test from test csv file
    X_test = test.drop(['subject', 'Activity', 'ActivityName'], axis=1)
    y_test = test.ActivityName

In [57]: print('X_train and y_train : ({},{})'.format(X_train.shape, y_train.shape))
    print('X_test and y_test : ({},{})'.format(X_test.shape, y_test.shape))
    X_train and y_train : ((7352, 561),(7352,))
    X_test and y_test : ((2947, 561),(2947,))

In [0]: y_tr=y_train
    y_te=y_test
```

Let's model with our data

Labels that are useful in plotting confusion matrix

```
In [0]: labels=['LAYING', 'SITTING', 'STANDING', 'WALKING_DOWNSTAIRS', 'WALKING_
_UPSTAIRS']
```

Function to plot the confusion matrix

```
In [0]:
        import itertools
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.metrics import confusion matrix
        plt.rcParams["font.family"] = 'DejaVu Sans'
        def plot confusion matrix(cm, classes,
                                   normalize=False,
                                   title='Confusion matrix',
                                   cmap=plt.cm.Blues):
            if normalize:
                 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
            plt.imshow(cm, interpolation='nearest', cmap=cmap)
            plt.title(title)
            plt.colorbar()
            tick marks = np.arange(len(classes))
            plt.xticks(tick_marks, classes, rotation=90)
            plt.yticks(tick_marks, classes)
            fmt = '.2f' if normalize else 'd'
            thresh = cm.max() / 2.
            for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                 plt.text(j, i, format(cm[i, j], fmt),
                          horizontalalignment="center",
                          color="white" if cm[i, j] > thresh else "black")
            plt.tight_layout()
            plt.ylabel('True label')
            plt.xlabel('Predicted label')
```

Generic function to run any model specified

18/09/2019

In [0]: **from datetime import** datetime def perform_model(model, X_train, y_train, X_test, y_test, class_labels, cm_no rmalize=True, \ print cm=True, cm cmap=plt.cm.Greens): # to store results at various phases results = dict() # time at which model starts training train start time = datetime.now() print('training the model..') model.fit(X_train, y_train) print('Done \n \n') train end time = datetime.now() results['training_time'] = train_end_time - train_start_time print('training_time(HH:MM:SS.ms) - {}\n\n'.format(results['training_time'])) # predict test data print('Predicting test data') test start time = datetime.now() y pred = model.predict(X test) test end time = datetime.now() print('Done \n \n') results['testing time'] = test end time - test start time print('testing time(HH:MM:SS:ms) - {}\n\n'.format(results['testing_time' 1)) results['predicted'] = y pred # calculate overall accuracty of the model accuracy = metrics.accuracy_score(y_true=y_test, y_pred=y_pred) # store accuracy in results results['accuracy'] = accuracy print('----') print('| Accuracy print('----') print('\n {}\n\n'.format(accuracy)) # confusion matrix cm = metrics.confusion_matrix(y_test, y_pred) results['confusion matrix'] = cm if print cm: print('----') print('| Confusion Matrix |') print('----') print('\n {}'.format(cm)) # plot confusin matrix plt.figure(figsize=(8,8)) plt.grid(b=False) plot_confusion_matrix(cm, classes=class_labels, normalize=True, title='Nor malized confusion matrix', cmap = cm_cmap)

har

```
plt.show()

# get classification report
print('------')
print('| Classifiction Report |')
print('-----')
classification_report = metrics.classification_report(y_test, y_pred)
# store report in results
results['classification_report'] = classification_report
print(classification_report)

# add the trained model to the results
results['model'] = model

return results
```

Method to print the gridsearch Attributes

```
In [0]: def print grid search attributes(model):
          # Estimator that gave highest score among all the estimators formed in Gri
       dSearch
          print('----')
          print('| Best Estimator |')
          print('----')
          print('\n\t{}\n'.format(model.best estimator ))
          # parameters that gave best results while performing grid search
          print('----')
          print('|
                  Best parameters
          print('----')
          print('\tParameters of best estimator : \n\n\t{}\n'.format(model.best_para
       ms_))
          # number of cross validation splits
          print('----')
          print('| No of CrossValidation sets |')
          print('-----')
          print('\n\tTotal numbre of cross validation sets: {}\n'.format(model.n_spl
       its_))
          # Average cross validated score of the best estimator, from the Grid Searc
      h
          print('----')
          print('| Best Score |')
          print('----')
          print('\n\tAverage Cross Validate scores of best estimator : \n\n\t{}\n'.f
       ormat(model.best_score_))
```

1. Logistic Regression with Grid Search

```
In [0]: from sklearn import linear_model
from sklearn import metrics
from sklearn.model_selection import GridSearchCV
```

```
training the model..
Fitting 3 folds for each of 12 candidates, totalling 36 fits
[Parallel(n_jobs=-1)]: Done 36 out of 36 | elapsed: 1.2min finished
Done
training_time(HH:MM:SS.ms) - 0:01:25.843810
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.009192
-----
    Accuracy
   0.9626739056667798
| Confusion Matrix |
 [[537 0 0 0 0
                     0]
   1 428 58
                    4]
             0 0
   0 12 519 1 0
                    0]
   0 0 0 495 1
                    0]
   0 0 0 3 409
                    8]
     0 0 22 0 449]]
   0
```


| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING STANDING	0.97 0.90	0.87 0.98	0.92 0.94	491 532
WALKING WALKING_DOWNSTAIRS	0.95 1.00	1.00 0.97	0.97 0.99	496 420
WALKING_UPSTAIRS	0.97	0.95	0.96	471
avg / total	0.96	0.96	0.96	2947

In [0]: plt.figure(figsize=(8,8))
 plt.grid(b=False)
 plot_confusion_matrix(log_reg_grid_results['confusion_matrix'], classes=labels
 , cmap=plt.cm.Greens,)
 plt.show()


```
In [0]: # observe the attributes of the model
        print_grid_search_attributes(log_reg_grid_results['model'])
              Best Estimator
          -----
               LogisticRegression(C=30, class_weight=None, dual=False, fit_intercept
        =True,
                 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
                 penalty='12', random_state=None, solver='liblinear', tol=0.0001,
                 verbose=0, warm start=False)
             Best parameters |
               Parameters of best estimator :
               {'C': 30, 'penalty': '12'}
           No of CrossValidation sets
               Total numbre of cross validation sets: 3
                Best Score
               Average Cross Validate scores of best estimator :
               0.9461371055495104
```

2. Linear SVC with GridSearch

```
In [0]: from sklearn.svm import LinearSVC
```

```
training the model..
Fitting 3 folds for each of 6 candidates, totalling 18 fits
[Parallel(n_jobs=-1)]: Done 18 out of 18 | elapsed: 24.9s finished
Done
training_time(HH:MM:SS.ms) - 0:00:32.951942
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.012182
-----
    Accuracy
   0.9660671869697998
| Confusion Matrix |
 [[537 0 0 0 0
                    0]
   2 426 58
                    5]
             0 0
   0 14 518 0 0 0]
   0 0 0 495 0 1]
   0 0 0 2 413
                    5]
   0
     0 0 12
               1 458]]
```


| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.97	0.87	0.92	491
STANDING	0.90	0.97	0.94	532
WALKING	0.97	1.00	0.99	496
WALKING_DOWNSTAIRS	1.00	0.98	0.99	420
WALKING_UPSTAIRS	0.98	0.97	0.97	471
avg / total	0.97	0.97	0.97	2947

```
In [0]: print_grid_search_attributes(lr_svc_grid_results['model'])
              Best Estimator |
               LinearSVC(C=8, class weight=None, dual=True, fit intercept=True,
            intercept_scaling=1, loss='squared_hinge', max_iter=1000,
            multi_class='ovr', penalty='12', random_state=None, tol=5e-05,
            verbose=0)
        Best parameters
               Parameters of best estimator :
               {'C': 8}
          No of CrossValidation sets
               Total numbre of cross validation sets: 3
            Best Score
               Average Cross Validate scores of best estimator :
               0.9465451577801959
```

3. Kernel SVM with GridSearch

training the model.. Done training_time(HH:MM:SS.ms) - 0:05:46.182889 Predicting test data Done testing time(HH:MM:SS:ms) - 0:00:05.221285 -----Accuracy | -----0.9626739056667798 | Confusion Matrix | -----[[537 0 0 0 0 0] 0 441 48 0 0 2] 0 12 520 0 0 0] 0 0 0 489 2 5]

0 0 0 4 397 19] 0 0 0 17 1 453]]

| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.97	0.90	0.93	491
STANDING	0.92	0.98	0.95	532
WALKING	0.96	0.99	0.97	496
WALKING_DOWNSTAIRS	0.99	0.95	0.97	420
WALKING_UPSTAIRS	0.95	0.96	0.95	471
avg / total	0.96	0.96	0.96	2947

4. Decision Trees with GridSearchCV

In [0]: from sklearn.tree import DecisionTreeClassifier
 parameters = {'max_depth':np.arange(3,10,2)}
 dt = DecisionTreeClassifier()
 dt_grid = GridSearchCV(dt,param_grid=parameters, n_jobs=-1)
 dt_grid_results = perform_model(dt_grid, X_train, y_train, X_test, y_test, class_labels=labels)
 print_grid_search_attributes(dt_grid_results['model'])

training the model.. Done training_time(HH:MM:SS.ms) - 0:00:19.476858 Predicting test data Done testing time(HH:MM:SS:ms) - 0:00:00.012858 -----Accuracy | ------0.8642687478791992 | Confusion Matrix | -----[[537 0 0 0 0 0] 0 386 105 0 0 0] 0 93 439 0 0 0] 0 0 0 472 16 8] 0 0 0 15 344 61]

0 0 0 73 29 369]]


```
| Classifiction Report |
                 precision recall f1-score support
          LAYING
                     1.00
                              1.00
                                      1.00
                                                537
         SITTING
                     0.81
                              0.79
                                      0.80
                                                491
                     0.81
                             0.83
                                      0.82
                                                532
        STANDING
         WALKING
                    0.84
                            0.95
                                      0.89
                                                496
WALKING DOWNSTAIRS
                     0.88
                            0.82
                                      0.85
                                               420
 WALKING_UPSTAIRS
                     0.84
                             0.78
                                      0.81
                                               471
      avg / total 0.86 0.86
                                      0.86
                                               2947
______
     Best Estimator
      DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth
=7,
          max features=None, max leaf nodes=None,
          min_impurity_decrease=0.0, min_impurity_split=None,
          min samples leaf=1, min samples split=2,
          min_weight_fraction_leaf=0.0, presort=False, random_state=None,
          splitter='best')
______
  Best parameters
      Parameters of best estimator :
      {'max depth': 7}
  No of CrossValidation sets
-----
      Total numbre of cross validation sets: 3
    Best Score
      Average Cross Validate scores of best estimator :
      0.8369151251360174
```

5. Random Forest Classifier with GridSearch

In [0]: from sklearn.ensemble import RandomForestClassifier
 params = {'n_estimators': np.arange(10,201,20), 'max_depth':np.arange(3,15,2)}
 rfc = RandomForestClassifier()
 rfc_grid = GridSearchCV(rfc, param_grid=params, n_jobs=-1)
 rfc_grid_results = perform_model(rfc_grid, X_train, y_train, X_test, y_test, c
 lass_labels=labels)
 print_grid_search_attributes(rfc_grid_results['model'])

training the model.. Done training_time(HH:MM:SS.ms) - 0:06:22.775270 Predicting test data Done testing time(HH:MM:SS:ms) - 0:00:00.025937 -----Accuracy | ------0.9131319986426875 | Confusion Matrix | -----[[537 0 0 0 0 0] 0 427 64 0 0 0] 0 52 480 0 0 0] 0 0 0 484 10 2] 0 0 0 38 332 50]

0 0 0 34 6 431]]


```
| Classifiction Report |
                 precision recall f1-score support
          LAYING
                     1.00
                              1.00
                                       1.00
                                                537
         SITTING
                     0.89
                              0.87
                                       0.88
                                                491
                     0.88
                            0.90
                                       0.89
                                                532
        STANDING
                   0.87
         WALKING
                            0.98
                                      0.92
                                                496
WALKING DOWNSTAIRS
                   0.95
                            0.79
                                      0.86
                                                420
 WALKING_UPSTAIRS
                     0.89
                              0.92
                                       0.90
                                                471
                          0.91
      avg / total
                0.92
                                      0.91
                                           2947
______
     Best Estimator
       RandomForestClassifier(bootstrap=True, class_weight=None, criterion
='gini',
          max_depth=7, max_features='auto', max_leaf_nodes=None,
          min_impurity_decrease=0.0, min_impurity_split=None,
          min samples leaf=1, min samples split=2,
          min_weight_fraction_leaf=0.0, n_estimators=70, n_jobs=1,
          oob_score=False, random_state=None, verbose=0,
          warm start=False)
     Best parameters
      Parameters of best estimator :
       {'max depth': 7, 'n estimators': 70}
  No of CrossValidation sets
______
      Total numbre of cross validation sets: 3
      Best Score
-----
       Average Cross Validate scores of best estimator :
       0.9141730141458106
```

6. Gradient Boosted Decision Trees With GridSearch

training the model.. Done training_time(HH:MM:SS.ms) - 0:28:03.653432 Predicting test data Done testing time(HH:MM:SS:ms) - 0:00:00.058843 -----Accuracy | -----0.9222938581608415 | Confusion Matrix | -----[[537 0 0 0 0 0] 0 396 93 0 0 2] 0 37 495 0 0 0] 0 0 0 483 7 6] 0 0 0 10 374 36]

0 1 0 31 6 433]]


```
| Classifiction Report |
                  precision recall f1-score support
          LAYING
                      1.00
                               1.00
                                        1.00
                                                   537
                               0.81
          SITTING
                      0.91
                                        0.86
                                                  491
                      0.84
                              0.93
                                        0.88
                                                  532
         STANDING
                               0.97
         WALKING
                      0.92
                                        0.95
                                                  496
WALKING_DOWNSTAIRS
                      0.97
                             0.89
                                        0.93
                                                  420
 WALKING_UPSTAIRS
                      0.91
                               0.92
                                        0.91
                                                  471
      avg / total
                 0.92 0.92
                                        0.92
                                                 2947
______
      Best Estimator
       GradientBoostingClassifier(criterion='friedman_mse', init=None,
            learning rate=0.1, loss='deviance', max depth=5,
            max features=None, max leaf nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min samples leaf=1, min samples split=2,
            min_weight_fraction_leaf=0.0, n_estimators=140,
            presort='auto', random_state=None, subsample=1.0, verbose=0,
            warm start=False)
     Best parameters
       Parameters of best estimator :
       {'max depth': 5, 'n estimators': 140}
  No of CrossValidation sets
       Total numbre of cross validation sets: 3
     Best Score
       Average Cross Validate scores of best estimator :
```

7. Comparing all models

0.904379760609358

```
In [0]:
        print('\n
                                                    Error')
                                       Accuracy
        print('
        print('Logistic Regression : {:.04}%
                                                    {:.04}%'.format(log reg grid result
        s['accuracy'] * 100,\
                                                           100-(log_reg_grid_results['a
        ccuracy'] * 100)))
        print('Linear SVC
                                   : {:.04}%
                                                    {:.04}% '.format(lr svc grid result
        s['accuracy'] * 100,\
                                                                 100-(lr_svc_grid_resul
        ts['accuracy'] * 100)))
        print('rbf SVM classifier : {:.04}%
                                                   {:.04}% '.format(rbf_svm_grid_result
        s['accuracy'] * 100,\
                                                                   100-(rbf svm grid re
        sults['accuracy'] * 100)))
        print('DecisionTree
                                    : {:.04}%
                                                   {:.04}% '.format(dt_grid_results['ac
        curacy'] * 100,\
                                                                 100-(dt grid results[
         'accuracy'] * 100)))
        print('Random Forest
                                    : {:.04}%
                                                   {:.04}% '.format(rfc grid results['a
        ccuracy'] * 100,\
                                                                    100-(rfc_grid_resul
        ts['accuracy'] * 100)))
        print('GradientBoosting DT : {:.04}%
                                                   {:.04}% '.format(rfc grid results['a
        ccuracy'] * 100,\
                                                                 100-(rfc grid results[
         'accuracy'] * 100)))
```

	Accuracy	Error
Logistic Regression	: 96.27%	3.733%
Linear SVC	: 96.61%	3.393%
rbf SVM classifier	: 96.27%	3.733%
DecisionTree	: 86.43%	13.57%
Random Forest	: 91.31%	8.687%
GradientBoosting DT	: 91.31%	8.687%

Data

```
In [0]: # Data directory
        DATADIR = 'UCI HAR Dataset'
In [0]: # Raw data signals
        # Signals are from Accelerometer and Gyroscope
        # The signals are in x,y,z directions
        # Sensor signals are filtered to have only body acceleration
        # excluding the acceleration due to gravity
        # Triaxial acceleration from the accelerometer is total acceleration
        SIGNALS = [
             "body acc x",
            "body_acc_y",
            "body_acc_z"
            "body_gyro_x"
            "body_gyro_y",
            "body_gyro_z",
            "total_acc_x",
             "total_acc_y"
             "total_acc_z"
        ]
```

```
In [0]: # Utility function to read the data from csv file
        def _read_csv(filename):
            return pd.read csv(filename, delim whitespace=True, header=None)
        # Utility function to load the load
        def load_signals(subset):
            signals data = []
            for signal in SIGNALS:
                 filename = f'UCI_HAR_Dataset/{subset}/Inertial Signals/{signal}_{subse}
        t } . txt'
                 signals_data.append(
                     _read_csv(filename).as_matrix()
            # Transpose is used to change the dimensionality of the output,
            # aggregating the signals by combination of sample/timestep.
            # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signa
        Ls)
            return np.transpose(signals data, (1, 2, 0))
In [0]: def load_y(subset):
             .. .. ..
            The objective that we are trying to predict is a integer, from 1 to 6,
            that represents a human activity. We return a binary representation of
            every sample objective as a 6 bits vector using One Hot Encoding
             (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get dummie
        s.html)
            filename = f'UCI HAR Dataset/{subset}/y {subset}.txt'
            y = _read_csv(filename)[0]
            return pd.get_dummies(y).as_matrix()
In [0]:
        def load_data():
```

```
In [0]: def load_data():
    """
    Obtain the dataset from multiple files.
    Returns: X_train, X_test, y_train, y_test
    """
    X_train, X_test = load_signals('train'), load_signals('test')
    y_train, y_test = load_y('train'), load_y('test')
    return X_train, X_test, y_train, y_test
```

```
In [0]: # Importing tensorflow
    np.random.seed(42)
    import tensorflow as tf
    tf.set_random_seed(42)
```

```
In [0]: # Configuring a session
         session conf = tf.ConfigProto(
             intra op parallelism threads=1,
             inter op parallelism threads=1
         )
In [11]:
         # Import Keras
         from keras import backend as K
         sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
         K.set_session(sess)
         Using TensorFlow backend.
In [0]: # Importing libraries
         from keras.models import Sequential
         from keras.layers import LSTM
         from keras.layers.core import Dense, Dropout
In [0]: # Initializing parameters
         epochs = 30
         batch_size = 16
         # Utility function to count the number of classes
In [0]:
         def _count_classes(y):
             return len(set([tuple(category) for category in y]))
In [78]: # Loading the train and test data
         X_train, X_test, Y_train, Y_test = load_data()
         /usr/local/lib/python3.6/dist-packages/ipykernel launcher.py:11: FutureWarnin
         g: Method .as_matrix will be removed in a future version. Use .values instea
         d.
           # This is added back by InteractiveShellApp.init path()
         /usr/local/lib/python3.6/dist-packages/ipykernel launcher.py:12: FutureWarnin
         g: Method .as matrix will be removed in a future version. Use .values instea
         d.
           if sys.path[0] == '':
In [60]: X train.shape
Out[60]: (7352, 128, 9)
In [61]:
         timesteps = len(X_train[0])
         input dim = len(X train[0][0])
         n classes = count classes(Y train)
         epochs=30
         print(timesteps)
         print(input dim)
         print(len(X train))
         128
         9
         7352
```

Hyperparameter Tuning of Istm architecture.

```
In [0]:
        #https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-
        models-python-keras/
        def create_model(n_hidden, dropout_rate, init):
                # Initiliazing the sequential model
            model = Sequential()
            # Configuring the parameters
            model.add(LSTM(n_hidden,kernel_initializer=init, input_shape=(timesteps, i
        nput dim)))
            # Adding a dropout layer
            model.add(Dropout(dropout_rate))
            # Adding a dense output layer with sigmoid activation
            model.add(Dense(n classes, activation='softmax'))
            print(model.summary())
            # Compile model
            model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[
         'accuracy'])
            return model
```

In [0]: from sklearn.model_selection import GridSearchCV
 from keras.wrappers.scikit_learn import KerasClassifier

Hyper parameter tuning the LSTM model using GridSearchCV
model = KerasClassifier(build_fn=create_model, epochs=epochs, batch_size=64, v erbose=1)

parameters for Gridsearchcv
n_hidden = [32, 64, 128]
dropout_rate = [0.4,0.5,0.7]
kernel_init=['glorot_normal','glorot_uniform','he_normal','he_uniform']

parameters = dict(n_hidden=n_hidden, dropout_rate=dropout_rate,init=kernel_init)

grid = GridSearchCV(estimator=model, param_grid=parameters)
result = grid.fit(X_train, Y_train, validation_data=(X_test, Y_test))

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:66: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:541: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4479: The name tf.truncated_normal is deprecated. Pleas e use tf.random.truncated normal instead.

/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_split.py:197 8: FutureWarning: The default value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to silence this warning. warnings.warn(CV_WARNING, FutureWarning)

18/09/2019

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/ tensorflow backend.py:148: The name tf.placeholder with default is deprecate d. Please use tf.compat.v1.placeholder with default instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/ tensorflow_backend.py:3733: calling dropout (from tensorflow.python.ops.nn_op s) with keep prob is deprecated and will be removed in a future version. Instructions for updating:

Please use `rate` instead of `keep prob`. Rate should be set to `rate = 1 - k eep prob`.

Model: "sequential 1"

Layer (type)	Output Shape	Param #
lstm_1 (LSTM)	(None, 32)	5376
dropout_1 (Dropout)	(None, 32)	0
dense_1 (Dense)	(None, 6)	198

Total params: 5,574 Trainable params: 5,574 Non-trainable params: 0

None

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/optimize rs.py:793: The name tf.train.Optimizer is deprecated. Please use tf.compat.v 1.train.Optimizer instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/pyt hon/ops/math grad.py:1250: add dispatch support.<locals>.wrapper (from tensor flow.python.ops.array ops) is deprecated and will be removed in a future vers ion.

Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where Train on 4901 samples, validate on 2947 samples

```
c: 0.3491 - val loss: 1.3353 - val acc: 0.4004
Epoch 2/30
```

c: 0.4997 - val loss: 1.1172 - val acc: 0.5260

Epoch 3/30

c: 0.5931 - val loss: 0.9056 - val acc: 0.6101

Epoch 4/30

4901/4901 [==============] - 24s 5ms/step - loss: 0.7908 - ac c: 0.6442 - val loss: 0.8041 - val acc: 0.6468

Epoch 5/30

c: 0.6605 - val loss: 0.8036 - val acc: 0.6576

4901/4901 [==============] - 23s 5ms/step - loss: 0.7621 - ac

c: 0.6617 - val loss: 0.7714 - val acc: 0.6695

Epoch 7/30

c: 0.6839 - val loss: 0.7342 - val acc: 0.6793

```
Epoch 8/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.6948 - ac
c: 0.6937 - val_loss: 0.7535 - val_acc: 0.6797
Epoch 9/30
4901/4901 [============== ] - 22s 5ms/step - loss: 0.6519 - ac
c: 0.7184 - val_loss: 0.7252 - val_acc: 0.6970
Epoch 10/30
c: 0.7690 - val_loss: 0.6878 - val_acc: 0.7245
Epoch 11/30
c: 0.8043 - val_loss: 0.8217 - val_acc: 0.7173
Epoch 12/30
c: 0.8231 - val_loss: 0.6783 - val_acc: 0.7462
c: 0.8531 - val_loss: 0.7604 - val_acc: 0.7526
Epoch 14/30
4901/4901 [============== ] - 22s 5ms/step - loss: 0.3720 - ac
c: 0.8696 - val_loss: 0.6239 - val_acc: 0.7791
Epoch 15/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.3573 - ac
c: 0.8737 - val_loss: 0.6209 - val_acc: 0.7940
Epoch 16/30
4901/4901 [============== ] - 22s 5ms/step - loss: 0.4048 - ac
c: 0.8690 - val_loss: 1.2383 - val_acc: 0.6474
Epoch 17/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.6035 - ac
c: 0.7749 - val_loss: 0.5514 - val_acc: 0.7995
Epoch 18/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.3515 - ac
c: 0.8812 - val_loss: 0.4655 - val_acc: 0.8341
Epoch 19/30
c: 0.8902 - val_loss: 0.5356 - val_acc: 0.8161
Epoch 20/30
4901/4901 [============== ] - 22s 5ms/step - loss: 0.4047 - ac
c: 0.8629 - val loss: 0.6531 - val acc: 0.7421
Epoch 21/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.4031 - ac
c: 0.8490 - val loss: 0.4567 - val acc: 0.8320
Epoch 22/30
c: 0.8035 - val_loss: 0.5841 - val_acc: 0.8188
Epoch 23/30
c: 0.8504 - val loss: 0.4309 - val acc: 0.8660
Epoch 24/30
c: 0.9000 - val loss: 0.3704 - val acc: 0.8734
Epoch 25/30
c: 0.9153 - val loss: 0.3785 - val acc: 0.8758
Epoch 26/30
c: 0.9068 - val_loss: 0.4362 - val_acc: 0.8561
```

```
Epoch 27/30
c: 0.9114 - val_loss: 0.3997 - val_acc: 0.8687
Epoch 28/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.2747 - ac
c: 0.9088 - val_loss: 0.3609 - val_acc: 0.8741
Epoch 29/30
c: 0.9210 - val_loss: 0.3344 - val_acc: 0.8890
Epoch 30/30
c: 0.9172 - val loss: 0.7549 - val acc: 0.7414
Model: "sequential_2"
Layer (type)
                 Output Shape
                                  Param #
______
lstm_2 (LSTM)
                  (None, 32)
                                  5376
dropout 2 (Dropout)
                  (None, 32)
dense 2 (Dense)
                  (None, 6)
                                  198
_____
Total params: 5,574
Trainable params: 5,574
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
4901/4901 [============= ] - 23s 5ms/step - loss: 1.4859 - ac
c: 0.3967 - val loss: 1.2576 - val acc: 0.5120
Epoch 2/30
c: 0.5436 - val loss: 1.0611 - val acc: 0.5568
Epoch 3/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.9711 - ac
c: 0.5768 - val loss: 1.1430 - val acc: 0.5107
Epoch 4/30
c: 0.5966 - val loss: 1.0513 - val acc: 0.5711
Epoch 5/30
c: 0.5823 - val loss: 1.0104 - val acc: 0.5562
Epoch 6/30
c: 0.6284 - val_loss: 0.8679 - val_acc: 0.5979
Epoch 7/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.7326 - ac
c: 0.6544 - val_loss: 0.8725 - val_acc: 0.5914
Epoch 8/30
c: 0.6488 - val_loss: 0.8656 - val_acc: 0.6298
4901/4901 [============== ] - 23s 5ms/step - loss: 0.7006 - ac
c: 0.6617 - val_loss: 0.8293 - val_acc: 0.6471
Epoch 10/30
```

```
4901/4901 [============== ] - 23s 5ms/step - loss: 0.6769 - ac
c: 0.6858 - val_loss: 0.8386 - val_acc: 0.6722
Epoch 11/30
4901/4901 [============ ] - 22s 5ms/step - loss: 0.6436 - ac
c: 0.7115 - val loss: 0.7842 - val acc: 0.7038
Epoch 12/30
c: 0.7484 - val loss: 0.7508 - val acc: 0.7391
Epoch 13/30
c: 0.7923 - val loss: 0.6909 - val acc: 0.7794
Epoch 14/30
c: 0.8190 - val_loss: 0.6402 - val_acc: 0.8032
Epoch 15/30
c: 0.8362 - val loss: 0.6838 - val acc: 0.7682
Epoch 16/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.5133 - ac
c: 0.8241 - val loss: 0.7844 - val acc: 0.7384
Epoch 17/30
c: 0.8198 - val loss: 0.6308 - val acc: 0.7923
Epoch 18/30
c: 0.8680 - val loss: 0.6323 - val acc: 0.8008
Epoch 19/30
c: 0.7886 - val loss: 0.8394 - val acc: 0.7523
Epoch 20/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.6591 - ac
c: 0.7802 - val loss: 0.8987 - val acc: 0.6328
Epoch 21/30
c: 0.8372 - val loss: 0.6238 - val acc: 0.8140
Epoch 22/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.6530 - ac
c: 0.7994 - val_loss: 1.5745 - val_acc: 0.5843
c: 0.7013 - val loss: 0.8784 - val acc: 0.6983
Epoch 24/30
c: 0.7756 - val loss: 0.7650 - val acc: 0.7377
Epoch 25/30
c: 0.8162 - val_loss: 0.7671 - val_acc: 0.7533
Epoch 26/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.5365 - ac
c: 0.8184 - val_loss: 0.7344 - val_acc: 0.7567
Epoch 27/30
c: 0.7519 - val_loss: 1.0692 - val_acc: 0.6274
Epoch 28/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.6966 - ac
c: 0.7431 - val_loss: 0.7700 - val_acc: 0.7587
Epoch 29/30
```

```
4901/4901 [============= ] - 23s 5ms/step - loss: 0.5517 - ac
c: 0.8131 - val_loss: 0.7170 - val_acc: 0.7645
Epoch 30/30
c: 0.8323 - val loss: 0.7298 - val acc: 0.7523
2451/2451 [=========== ] - 4s 2ms/step
Model: "sequential 3"
Layer (type)
                    Output Shape
                                      Param #
______
1stm 3 (LSTM)
                    (None, 32)
                                      5376
dropout 3 (Dropout)
                    (None, 32)
                                      0
dense 3 (Dense)
                                      198
                    (None, 6)
______
Total params: 5,574
Trainable params: 5,574
Non-trainable params: 0
None
Train on 4902 samples, validate on 2947 samples
Epoch 1/30
4902/4902 [============= ] - 23s 5ms/step - loss: 1.4870 - ac
c: 0.4064 - val_loss: 1.2822 - val_acc: 0.4625
Epoch 2/30
4902/4902 [=============== ] - 23s 5ms/step - loss: 1.1947 - ac
c: 0.4886 - val_loss: 1.2010 - val_acc: 0.4927
Epoch 3/30
c: 0.5369 - val_loss: 1.0057 - val_acc: 0.5596
Epoch 4/30
4902/4902 [=============== ] - 23s 5ms/step - loss: 0.8792 - ac
c: 0.6042 - val loss: 0.9093 - val acc: 0.5711
Epoch 5/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.8029 - ac
c: 0.6328 - val_loss: 0.8185 - val_acc: 0.6471
Epoch 6/30
c: 0.6163 - val_loss: 0.9954 - val_acc: 0.5840
Epoch 7/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.7962 - ac
c: 0.6479 - val_loss: 0.8169 - val_acc: 0.6485
c: 0.6858 - val loss: 0.7709 - val acc: 0.6698
Epoch 9/30
4902/4902 [============= ] - 22s 5ms/step - loss: 0.6736 - ac
c: 0.6958 - val loss: 0.7449 - val acc: 0.6851
Epoch 10/30
c: 0.7138 - val loss: 0.7114 - val acc: 0.7214
Epoch 11/30
4902/4902 [============== ] - 22s 5ms/step - loss: 0.6388 - ac
c: 0.7389 - val_loss: 0.7272 - val_acc: 0.7302
Epoch 12/30
```

```
c: 0.7982 - val loss: 1.3925 - val acc: 0.5857
Epoch 13/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.6637 - ac
c: 0.7552 - val loss: 0.6238 - val acc: 0.7777
Epoch 14/30
4902/4902 [============= ] - 22s 5ms/step - loss: 0.4666 - ac
c: 0.8433 - val loss: 0.5773 - val acc: 0.8079
Epoch 15/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.4415 - ac
c: 0.8513 - val_loss: 0.6459 - val acc: 0.7930
Epoch 16/30
4902/4902 [============= ] - 22s 5ms/step - loss: 0.4226 - ac
c: 0.8703 - val loss: 0.5627 - val acc: 0.8015
Epoch 17/30
c: 0.8935 - val loss: 0.6915 - val acc: 0.7923
Epoch 18/30
4902/4902 [============== ] - 22s 5ms/step - loss: 0.3313 - ac
c: 0.8992 - val loss: 0.5439 - val acc: 0.8324
Epoch 19/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.3652 - ac
c: 0.8851 - val loss: 0.7821 - val acc: 0.7703
Epoch 20/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.3634 - ac
c: 0.8841 - val_loss: 0.5064 - val_acc: 0.8378
Epoch 21/30
c: 0.8974 - val loss: 0.4892 - val_acc: 0.8303
Epoch 22/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.2870 - ac
c: 0.9113 - val_loss: 0.4415 - val_acc: 0.8497
Epoch 23/30
4902/4902 [============= ] - 22s 5ms/step - loss: 0.2431 - ac
c: 0.9221 - val loss: 0.4455 - val acc: 0.8670
Epoch 24/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.2437 - ac
c: 0.9259 - val_loss: 0.4196 - val_acc: 0.8687
Epoch 25/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.6432 - ac
c: 0.8244 - val_loss: 1.2253 - val_acc: 0.5667
Epoch 26/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.5213 - ac
c: 0.7921 - val_loss: 0.5274 - val_acc: 0.8626
c: 0.8625 - val loss: 0.5220 - val acc: 0.8582
Epoch 28/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.3524 - ac
c: 0.8923 - val_loss: 0.4655 - val_acc: 0.8683
Epoch 29/30
4902/4902 [============= ] - 22s 5ms/step - loss: 0.2799 - ac
c: 0.9176 - val loss: 0.4637 - val acc: 0.8775
Epoch 30/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.2592 - ac
c: 0.9221 - val loss: 0.4883 - val acc: 0.8761
2450/2450 [=========== ] - 4s 2ms/step
Model: "sequential 4"
```

```
Output Shape
Layer (type)
                                   Param #
______
                  (None, 64)
1stm 4 (LSTM)
                                   18944
dropout 4 (Dropout)
                  (None, 64)
                                   0
dense 4 (Dense)
                  (None, 6)
                                   390
-----
Total params: 19,334
Trainable params: 19,334
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
c: 0.4346 - val_loss: 1.2056 - val_acc: 0.4954
Epoch 2/30
c: 0.5289 - val_loss: 1.0935 - val_acc: 0.5365
Epoch 3/30
4901/4901 [============= ] - 22s 4ms/step - loss: 0.8753 - ac
c: 0.6254 - val_loss: 0.8716 - val_acc: 0.6468
Epoch 4/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.7850 - ac
c: 0.6550 - val_loss: 0.7935 - val_acc: 0.6729
Epoch 5/30
c: 0.6564 - val loss: 0.7843 - val acc: 0.7004
Epoch 6/30
4901/4901 [============== ] - 24s 5ms/step - loss: 0.7105 - ac
c: 0.7037 - val_loss: 0.7134 - val_acc: 0.7363
Epoch 7/30
c: 0.7207 - val loss: 0.7470 - val acc: 0.7404
Epoch 8/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.9331 - ac
c: 0.6517 - val loss: 0.9532 - val acc: 0.6844
Epoch 9/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.6129 - ac
c: 0.7774 - val loss: 0.5859 - val acc: 0.7581
Epoch 10/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.4567 - ac
c: 0.8184 - val loss: 0.5055 - val acc: 0.7947
Epoch 11/30
c: 0.8508 - val loss: 0.5423 - val acc: 0.7950
Epoch 12/30
c: 0.8574 - val loss: 0.5141 - val acc: 0.8059
Epoch 13/30
c: 0.8549 - val loss: 0.5230 - val acc: 0.8174
Epoch 14/30
c: 0.8829 - val loss: 0.4518 - val acc: 0.8229
```

```
Epoch 15/30
c: 0.9082 - val_loss: 0.4496 - val_acc: 0.8426
Epoch 16/30
c: 0.9080 - val_loss: 0.4086 - val_acc: 0.8537
Epoch 17/30
c: 0.9223 - val_loss: 0.4674 - val_acc: 0.8497
Epoch 18/30
c: 0.9227 - val_loss: 0.3724 - val_acc: 0.8602
Epoch 19/30
c: 0.9210 - val_loss: 0.6325 - val_acc: 0.8001
Epoch 20/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.3399 - ac
c: 0.8833 - val_loss: 0.6927 - val_acc: 0.7964
Epoch 21/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.2931 - ac
c: 0.9014 - val_loss: 0.4277 - val_acc: 0.8398
Epoch 22/30
c: 0.9121 - val_loss: 0.3490 - val_acc: 0.8690
Epoch 23/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.2003 - ac
c: 0.9235 - val_loss: 0.4145 - val_acc: 0.8415
Epoch 24/30
c: 0.9202 - val loss: 0.3839 - val acc: 0.8775
Epoch 25/30
c: 0.9225 - val_loss: 0.3479 - val_acc: 0.8863
Epoch 26/30
c: 0.8857 - val loss: 0.3675 - val acc: 0.8806
Epoch 27/30
c: 0.8774 - val loss: 0.3996 - val acc: 0.8524
Epoch 28/30
c: 0.9153 - val loss: 0.4338 - val acc: 0.8741
Epoch 29/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1982 - ac
c: 0.9290 - val loss: 0.3865 - val acc: 0.8541
Epoch 30/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1978 - ac
c: 0.9196 - val loss: 0.3877 - val acc: 0.8561
2451/2451 [=========== ] - 4s 2ms/step
Model: "sequential_5"
Layer (type)
                 Output Shape
                                Param #
______
1stm_5 (LSTM)
                                18944
                 (None, 64)
dropout 5 (Dropout)
                 (None, 64)
```

18/09/2019

dense 5 (Dense)

```
Total params: 19,334
Trainable params: 19,334
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
4901/4901 [============ ] - 24s 5ms/step - loss: 1.4127 - ac
c: 0.3871 - val_loss: 1.1673 - val_acc: 0.5022
Epoch 2/30
4901/4901 [============== ] - 22s 5ms/step - loss: 0.9772 - ac
c: 0.5903 - val_loss: 1.1481 - val_acc: 0.5894
Epoch 3/30
4901/4901 [============ ] - 24s 5ms/step - loss: 0.7721 - ac
c: 0.6919 - val loss: 0.9315 - val acc: 0.6814
Epoch 4/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.8899 - ac
c: 0.6697 - val loss: 0.8500 - val acc: 0.7394
c: 0.7811 - val loss: 0.7694 - val acc: 0.7458
Epoch 6/30
c: 0.8392 - val_loss: 0.6555 - val_acc: 0.7957
Epoch 7/30
c: 0.8721 - val loss: 0.6445 - val acc: 0.8168
Epoch 8/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.5265 - ac
c: 0.8264 - val loss: 1.1292 - val acc: 0.6064
Epoch 9/30
c: 0.7749 - val loss: 0.6607 - val acc: 0.7323
Epoch 10/30
4901/4901 [============= ] - 24s 5ms/step - loss: 0.3369 - ac
c: 0.8859 - val_loss: 0.4597 - val_acc: 0.8334
c: 0.9280 - val loss: 0.4623 - val acc: 0.8622
Epoch 12/30
c: 0.9392 - val loss: 0.4517 - val acc: 0.8707
Epoch 13/30
c: 0.9390 - val_loss: 0.4018 - val_acc: 0.8744
Epoch 14/30
c: 0.8737 - val_loss: 0.5857 - val_acc: 0.7557
Epoch 15/30
c: 0.8984 - val_loss: 0.5063 - val_acc: 0.8537
Epoch 16/30
c: 0.9312 - val_loss: 0.4690 - val_acc: 0.8707
Epoch 17/30
```

(None, 6) ______

390

```
c: 0.8645 - val_loss: 0.4625 - val_acc: 0.8521
Epoch 18/30
c: 0.9414 - val loss: 0.4260 - val acc: 0.8680
Epoch 19/30
4901/4901 [============ ] - 23s 5ms/step - loss: 0.1811 - ac
c: 0.9429 - val loss: 0.4514 - val acc: 0.8463
Epoch 20/30
c: 0.9463 - val loss: 0.4526 - val acc: 0.8711
Epoch 21/30
4901/4901 [============ ] - 23s 5ms/step - loss: 0.1737 - ac
c: 0.9427 - val loss: 0.3990 - val acc: 0.8768
Epoch 22/30
c: 0.9508 - val loss: 0.3638 - val acc: 0.8867
Epoch 23/30
c: 0.9486 - val loss: 0.4135 - val acc: 0.8897
c: 0.9537 - val loss: 0.4220 - val acc: 0.8751
Epoch 25/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.1407 - ac
c: 0.9469 - val loss: 0.4276 - val acc: 0.8768
Epoch 26/30
c: 0.8731 - val loss: 0.4606 - val acc: 0.8619
Epoch 27/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1801 - ac
c: 0.9398 - val loss: 0.4340 - val acc: 0.8666
Epoch 28/30
c: 0.9521 - val loss: 0.4386 - val acc: 0.8795
Epoch 29/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.3185 - ac
c: 0.9102 - val loss: 1.5057 - val acc: 0.5898
Epoch 30/30
c: 0.8135 - val loss: 0.6063 - val acc: 0.7937
2451/2451 [=========== ] - 4s 2ms/step
Model: "sequential_6"
Layer (type)
                 Output Shape
                                 Param #
______
lstm_6 (LSTM)
                 (None, 64)
                                 18944
dropout 6 (Dropout)
                 (None, 64)
dense 6 (Dense)
                 (None, 6)
                                 390
______
Total params: 19,334
Trainable params: 19,334
Non-trainable params: 0
```

None

```
Train on 4902 samples, validate on 2947 samples
Epoch 1/30
4902/4902 [============== ] - 25s 5ms/step - loss: 1.3947 - ac
c: 0.4315 - val_loss: 1.2867 - val_acc: 0.4513
Epoch 2/30
c: 0.5255 - val loss: 1.0851 - val acc: 0.5229
Epoch 3/30
c: 0.6577 - val_loss: 0.7814 - val acc: 0.7170
Epoch 4/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.7053 - ac
c: 0.7042 - val loss: 0.7834 - val acc: 0.7319
Epoch 5/30
c: 0.7260 - val loss: 1.0508 - val acc: 0.6145
Epoch 6/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.6398 - ac
c: 0.7507 - val loss: 0.8034 - val acc: 0.6834
Epoch 7/30
4902/4902 [============ ] - 24s 5ms/step - loss: 0.5591 - ac
c: 0.7785 - val loss: 0.6991 - val acc: 0.7391
Epoch 8/30
4902/4902 [============== ] - 22s 5ms/step - loss: 0.5807 - ac
c: 0.7809 - val_loss: 0.6539 - val_acc: 0.7737
Epoch 9/30
c: 0.8421 - val_loss: 0.6305 - val_acc: 0.7743
Epoch 10/30
c: 0.8627 - val_loss: 0.7840 - val_acc: 0.7679
Epoch 11/30
c: 0.6891 - val loss: 0.7297 - val acc: 0.7102
Epoch 12/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.5231 - ac
c: 0.8184 - val_loss: 0.5631 - val_acc: 0.8096
Epoch 13/30
c: 0.8851 - val_loss: 0.4520 - val_acc: 0.8493
Epoch 14/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.3116 - ac
c: 0.9066 - val_loss: 0.3640 - val_acc: 0.8687
Epoch 15/30
4902/4902 [=========== ] - 23s 5ms/step - loss: 0.2496 - ac
c: 0.9241 - val loss: 0.3475 - val acc: 0.8775
Epoch 16/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.2749 - ac
c: 0.9088 - val_loss: 0.3374 - val_acc: 0.8792
Epoch 17/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.2240 - ac
c: 0.9245 - val loss: 0.3700 - val acc: 0.8812
Epoch 18/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.2103 - ac
c: 0.9300 - val_loss: 0.4302 - val_acc: 0.8616
Epoch 19/30
```

```
c: 0.9347 - val loss: 0.3162 - val acc: 0.8904
Epoch 20/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1649 - ac
c: 0.9386 - val loss: 0.2977 - val acc: 0.8941
Epoch 21/30
4902/4902 [=============== ] - 22s 5ms/step - loss: 0.1577 - ac
c: 0.9394 - val loss: 0.3086 - val acc: 0.8962
Epoch 22/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.2193 - ac
c: 0.9190 - val_loss: 0.4008 - val acc: 0.8612
Epoch 23/30
c: 0.9317 - val loss: 0.2934 - val acc: 0.8870
Epoch 24/30
c: 0.9351 - val loss: 0.5360 - val acc: 0.8269
Epoch 25/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.2094 - ac
c: 0.9215 - val loss: 0.6560 - val acc: 0.7591
Epoch 26/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.3050 - ac
c: 0.8796 - val loss: 0.3738 - val acc: 0.8656
Epoch 27/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.1857 - ac
c: 0.9321 - val_loss: 0.3627 - val_acc: 0.8768
Epoch 28/30
c: 0.9172 - val_loss: 0.4063 - val_acc: 0.8683
Epoch 29/30
c: 0.9382 - val_loss: 0.3437 - val_acc: 0.8941
Epoch 30/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1540 - ac
c: 0.9461 - val loss: 0.3764 - val acc: 0.8958
2450/2450 [============ ] - 4s 1ms/step
Model: "sequential 7"
Layer (type)
                    Output Shape
                                       Param #
______
1stm 7 (LSTM)
                     (None, 128)
                                       70656
dropout 7 (Dropout)
                     (None, 128)
                                       a
dense 7 (Dense)
                     (None, 6)
______
Total params: 71,430
Trainable params: 71,430
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
4901/4901 [============= ] - 25s 5ms/step - loss: 1.2966 - ac
c: 0.4619 - val loss: 1.2307 - val acc: 0.5137
Epoch 2/30
c: 0.5666 - val loss: 0.9510 - val acc: 0.5898
```

```
Epoch 3/30
c: 0.5501 - val_loss: 0.9602 - val_acc: 0.5511
Epoch 4/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.8610 - ac
c: 0.6425 - val_loss: 1.0359 - val_acc: 0.6142
Epoch 5/30
c: 0.5958 - val_loss: 0.8669 - val_acc: 0.6193
Epoch 6/30
c: 0.6923 - val_loss: 0.7658 - val_acc: 0.6848
Epoch 7/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.7312 - ac
c: 0.7037 - val_loss: 0.8798 - val_acc: 0.6576
4901/4901 [============= ] - 23s 5ms/step - loss: 0.6525 - ac
c: 0.7433 - val_loss: 0.7084 - val_acc: 0.7139
Epoch 9/30
c: 0.8084 - val_loss: 0.5609 - val_acc: 0.7940
Epoch 10/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.4871 - ac
c: 0.8321 - val_loss: 0.5704 - val_acc: 0.8161
Epoch 11/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.4531 - ac
c: 0.8470 - val_loss: 0.5622 - val_acc: 0.8120
Epoch 12/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.3521 - ac
c: 0.8792 - val_loss: 0.4934 - val_acc: 0.8436
Epoch 13/30
c: 0.8955 - val_loss: 0.5639 - val_acc: 0.8096
Epoch 14/30
c: 0.8927 - val loss: 0.5084 - val acc: 0.8310
Epoch 15/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.2466 - ac
c: 0.9098 - val loss: 0.5402 - val acc: 0.8331
Epoch 16/30
c: 0.7188 - val loss: 0.5505 - val acc: 0.8090
Epoch 17/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.4746 - ac
c: 0.8151 - val_loss: 0.4236 - val_acc: 0.8419
Epoch 18/30
c: 0.9047 - val loss: 0.4284 - val acc: 0.8493
Epoch 19/30
c: 0.9027 - val loss: 0.4678 - val acc: 0.8622
Epoch 20/30
c: 0.8984 - val loss: 0.4912 - val acc: 0.8721
Epoch 21/30
c: 0.9002 - val_loss: 0.5022 - val_acc: 0.8510
```

```
Epoch 22/30
c: 0.9216 - val_loss: 0.4051 - val_acc: 0.8829
Epoch 23/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.5216 - ac
c: 0.8435 - val_loss: 0.5504 - val_acc: 0.8541
Epoch 24/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.2988 - ac
c: 0.9012 - val_loss: 0.3569 - val_acc: 0.8850
Epoch 25/30
c: 0.9212 - val_loss: 0.5373 - val_acc: 0.8666
Epoch 26/30
c: 0.8947 - val_loss: 0.3122 - val_acc: 0.9033
c: 0.9210 - val_loss: 0.3547 - val_acc: 0.8894
Epoch 28/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.5400 - ac
c: 0.8411 - val_loss: 0.6774 - val_acc: 0.6851
Epoch 29/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.3751 - ac
c: 0.8659 - val_loss: 0.3767 - val_acc: 0.8714
Epoch 30/30
c: 0.9080 - val loss: 0.4607 - val acc: 0.8724
2451/2451 [=========== ] - 4s 2ms/step
Model: "sequential 8"
Layer (type)
                  Output Shape
                                  Param #
______
1stm_8 (LSTM)
                  (None, 128)
                                  70656
dropout 8 (Dropout)
                  (None, 128)
dense 8 (Dense)
                  (None, 6)
                                  774
______
Total params: 71,430
Trainable params: 71,430
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
c: 0.4183 - val_loss: 1.1731 - val_acc: 0.5093
Epoch 2/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.9256 - ac
c: 0.6148 - val_loss: 0.8738 - val_acc: 0.6413
Epoch 3/30
c: 0.7209 - val_loss: 0.8781 - val_acc: 0.6362
Epoch 4/30
c: 0.6184 - val_loss: 1.1373 - val_acc: 0.4754
Epoch 5/30
```

```
4901/4901 [============= ] - 23s 5ms/step - loss: 0.7935 - ac
c: 0.6911 - val_loss: 0.8008 - val_acc: 0.7197
Epoch 6/30
c: 0.8137 - val loss: 0.6977 - val acc: 0.7377
Epoch 7/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.3685 - ac
c: 0.8692 - val_loss: 0.6822 - val_acc: 0.8012
Epoch 8/30
c: 0.8143 - val loss: 0.5574 - val acc: 0.8107
Epoch 9/30
c: 0.8831 - val_loss: 0.5396 - val_acc: 0.8402
Epoch 10/30
c: 0.8866 - val loss: 0.5143 - val acc: 0.8375
Epoch 11/30
c: 0.8998 - val loss: 0.6303 - val acc: 0.7838
c: 0.8425 - val_loss: 0.5242 - val_acc: 0.8001
Epoch 13/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.3879 - ac
c: 0.8637 - val loss: 0.3740 - val acc: 0.8765
Epoch 14/30
c: 0.9314 - val loss: 0.4019 - val acc: 0.8680
Epoch 15/30
4901/4901 [============== ] - 22s 5ms/step - loss: 0.1660 - ac
c: 0.9435 - val loss: 0.4405 - val acc: 0.8697
Epoch 16/30
c: 0.9539 - val loss: 0.4219 - val acc: 0.8636
Epoch 17/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1564 - ac
c: 0.9412 - val loss: 0.4037 - val acc: 0.8853
c: 0.9551 - val loss: 0.4807 - val acc: 0.8823
Epoch 19/30
c: 0.9549 - val loss: 0.4877 - val acc: 0.8877
Epoch 20/30
c: 0.9565 - val_loss: 0.5853 - val_acc: 0.8833
Epoch 21/30
c: 0.9504 - val_loss: 0.5537 - val_acc: 0.8826
Epoch 22/30
c: 0.9535 - val_loss: 0.4517 - val_acc: 0.8901
Epoch 23/30
c: 0.9504 - val_loss: 0.3382 - val_acc: 0.8839
Epoch 24/30
```

```
c: 0.9539 - val_loss: 0.3579 - val_acc: 0.8904
Epoch 25/30
4901/4901 [============ ] - 22s 5ms/step - loss: 0.1257 - ac
c: 0.9490 - val loss: 0.4044 - val acc: 0.8792
Epoch 26/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.1122 - ac
c: 0.9553 - val_loss: 0.4433 - val_acc: 0.8860
Epoch 27/30
c: 0.9553 - val_loss: 0.3550 - val_acc: 0.8951
Epoch 28/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.1078 - ac
c: 0.9598 - val_loss: 0.4391 - val_acc: 0.8921
Epoch 29/30
4901/4901 [============ ] - 23s 5ms/step - loss: 0.1640 - ac
c: 0.9398 - val loss: 0.5427 - val acc: 0.8761
Epoch 30/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.1230 - ac
c: 0.9518 - val loss: 0.4986 - val acc: 0.8870
2451/2451 [=========== ] - 4s 2ms/step
Model: "sequential_9"
Layer (type)
                   Output Shape
                                      Param #
______
                                      70656
1stm 9 (LSTM)
                    (None, 128)
dropout 9 (Dropout)
                    (None, 128)
dense 9 (Dense)
                    (None, 6)
                                      774
______
Total params: 71,430
Trainable params: 71,430
Non-trainable params: 0
None
Train on 4902 samples, validate on 2947 samples
Epoch 1/30
c: 0.4576 - val_loss: 1.3062 - val_acc: 0.4839
Epoch 2/30
4902/4902 [============= ] - 23s 5ms/step - loss: 1.0285 - ac
c: 0.5357 - val_loss: 1.0400 - val_acc: 0.5402
c: 0.5785 - val loss: 0.9964 - val acc: 0.5633
Epoch 4/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.7761 - ac
c: 0.6685 - val loss: 0.9133 - val acc: 0.6600
Epoch 5/30
c: 0.6942 - val loss: 0.9134 - val acc: 0.6132
Epoch 6/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.9121 - ac
c: 0.6324 - val_loss: 0.9667 - val_acc: 0.6546
Epoch 7/30
```

```
c: 0.6777 - val loss: 1.1892 - val acc: 0.5694
Epoch 8/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.9289 - ac
c: 0.6283 - val loss: 0.9790 - val acc: 0.6189
Epoch 9/30
c: 0.6257 - val loss: 0.8977 - val acc: 0.6128
Epoch 10/30
4902/4902 [============= ] - 23s 5ms/step - loss: 1.0595 - ac
c: 0.6071 - val loss: 0.9341 - val acc: 0.6457
Epoch 11/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.7631 - ac
c: 0.7191 - val loss: 0.7711 - val acc: 0.7251
Epoch 12/30
c: 0.7034 - val loss: 0.7603 - val acc: 0.7760
Epoch 13/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.5741 - ac
c: 0.7976 - val loss: 0.6481 - val acc: 0.8029
Epoch 14/30
c: 0.7799 - val loss: 1.0941 - val acc: 0.4676
Epoch 15/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.6489 - ac
c: 0.7570 - val_loss: 0.5092 - val_acc: 0.8066
Epoch 16/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.3695 - ac
c: 0.8760 - val_loss: 0.4874 - val_acc: 0.8286
Epoch 17/30
c: 0.9045 - val_loss: 0.4313 - val_acc: 0.8592
Epoch 18/30
c: 0.8925 - val loss: 0.4185 - val acc: 0.8500
Epoch 19/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.2390 - ac
c: 0.9117 - val_loss: 0.4631 - val_acc: 0.8571
Epoch 20/30
c: 0.9190 - val_loss: 0.3961 - val_acc: 0.8700
Epoch 21/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1825 - ac
c: 0.9323 - val_loss: 0.4745 - val_acc: 0.8595
Epoch 22/30
c: 0.9098 - val loss: 0.4138 - val acc: 0.8636
Epoch 23/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.1809 - ac
c: 0.9276 - val_loss: 0.3993 - val_acc: 0.8690
Epoch 24/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.1825 - ac
c: 0.9278 - val loss: 0.4204 - val acc: 0.8683
Epoch 25/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1647 - ac
c: 0.9347 - val_loss: 0.3742 - val_acc: 0.8799
Epoch 26/30
```

```
c: 0.9390 - val loss: 0.3962 - val acc: 0.8707
Epoch 27/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.1417 - ac
c: 0.9380 - val loss: 0.3821 - val acc: 0.8728
Epoch 28/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1315 - ac
c: 0.9435 - val loss: 0.3529 - val acc: 0.8724
Epoch 29/30
c: 0.9476 - val_loss: 0.3427 - val acc: 0.8904
Epoch 30/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1230 - ac
c: 0.9449 - val loss: 0.3049 - val acc: 0.8904
2450/2450 [============ ] - 4s 2ms/step
Model: "sequential 10"
                  Output Shape
Layer (type)
                                   Param #
______
1stm 10 (LSTM)
                  (None, 32)
                                   5376
dropout 10 (Dropout)
                  (None, 32)
dense 10 (Dense)
                  (None, 6)
                                   198
______
Total params: 5,574
Trainable params: 5,574
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
4901/4901 [============== ] - 26s 5ms/step - loss: 1.4785 - ac
c: 0.3877 - val_loss: 1.3519 - val_acc: 0.4082
Epoch 2/30
c: 0.4889 - val loss: 1.0050 - val acc: 0.5762
Epoch 3/30
c: 0.6046 - val loss: 0.9028 - val acc: 0.6105
Epoch 4/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.7600 - ac
c: 0.6686 - val loss: 0.7923 - val acc: 0.6569
Epoch 5/30
c: 0.7023 - val loss: 0.7578 - val acc: 0.6698
Epoch 6/30
c: 0.6172 - val loss: 1.4232 - val acc: 0.4605
c: 0.6258 - val loss: 0.7714 - val acc: 0.6926
Epoch 8/30
c: 0.7539 - val loss: 0.9048 - val acc: 0.6518
Epoch 9/30
c: 0.6711 - val loss: 0.7477 - val acc: 0.7350
```

```
Epoch 10/30
c: 0.7341 - val_loss: 0.7470 - val_acc: 0.6773
Epoch 11/30
c: 0.7290 - val_loss: 0.7350 - val_acc: 0.6892
Epoch 12/30
4901/4901 [============= ] - 22s 4ms/step - loss: 0.5472 - ac
c: 0.7727 - val_loss: 0.6111 - val_acc: 0.7760
Epoch 13/30
c: 0.8062 - val_loss: 0.6481 - val_acc: 0.7642
Epoch 14/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.4847 - ac
c: 0.8123 - val_loss: 0.7694 - val_acc: 0.7112
c: 0.8180 - val_loss: 0.5254 - val_acc: 0.8198
Epoch 16/30
4901/4901 [============== ] - 24s 5ms/step - loss: 1.3513 - ac
c: 0.5680 - val_loss: 1.1230 - val_acc: 0.4822
Epoch 17/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.7861 - ac
c: 0.6468 - val_loss: 0.7161 - val_acc: 0.6916
Epoch 18/30
c: 0.6870 - val_loss: 0.7516 - val_acc: 0.6695
Epoch 19/30
4901/4901 [============= ] - 24s 5ms/step - loss: 0.7595 - ac
c: 0.6474 - val_loss: 0.7865 - val_acc: 0.6288
Epoch 20/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.7408 - ac
c: 0.6429 - val_loss: 0.7513 - val_acc: 0.6698
Epoch 21/30
c: 0.7021 - val loss: 0.6798 - val acc: 0.7156
Epoch 22/30
c: 0.7619 - val loss: 0.6547 - val acc: 0.7265
Epoch 23/30
c: 0.7935 - val loss: 0.6739 - val acc: 0.7048
Epoch 24/30
c: 0.7721 - val_loss: 0.6020 - val_acc: 0.7248
Epoch 25/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.4462 - ac
c: 0.8096 - val loss: 0.5819 - val acc: 0.7486
Epoch 26/30
c: 0.8109 - val loss: 0.6075 - val acc: 0.7428
Epoch 27/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.4029 - ac
c: 0.8223 - val loss: 0.5813 - val acc: 0.7581
Epoch 28/30
c: 0.8233 - val_loss: 0.5597 - val_acc: 0.7676
```

```
Epoch 29/30
c: 0.8215 - val_loss: 0.5889 - val_acc: 0.7737
Epoch 30/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.3867 - ac
c: 0.8304 - val_loss: 0.5665 - val_acc: 0.7794
Model: "sequential_11"
Layer (type)
                  Output Shape
                                   Param #
______
lstm_11 (LSTM)
                  (None, 32)
                                   5376
dropout_11 (Dropout)
                  (None, 32)
dense 11 (Dense)
                  (None, 6)
                                   198
______
Total params: 5,574
Trainable params: 5,574
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
4901/4901 [============= ] - 25s 5ms/step - loss: 1.5232 - ac
c: 0.3677 - val_loss: 1.2898 - val_acc: 0.4262
Epoch 2/30
c: 0.5160 - val loss: 1.1599 - val acc: 0.5324
Epoch 3/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.9938 - ac
c: 0.5740 - val loss: 1.0458 - val acc: 0.5606
Epoch 4/30
c: 0.5931 - val loss: 1.1118 - val acc: 0.5144
Epoch 5/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.8668 - ac
c: 0.6295 - val loss: 0.9139 - val acc: 0.6183
c: 0.6529 - val loss: 0.8338 - val acc: 0.6624
Epoch 7/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.6908 - ac
c: 0.6992 - val loss: 0.8364 - val acc: 0.6946
Epoch 8/30
c: 0.6982 - val_loss: 1.1770 - val_acc: 0.5395
Epoch 9/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.7549 - ac
c: 0.6825 - val_loss: 0.8082 - val_acc: 0.6970
Epoch 10/30
c: 0.7176 - val_loss: 0.8510 - val_acc: 0.6403
Epoch 11/30
c: 0.6901 - val_loss: 0.8119 - val_acc: 0.6759
Epoch 12/30
```

```
c: 0.6986 - val_loss: 0.7747 - val_acc: 0.6797
Epoch 13/30
c: 0.7060 - val loss: 0.8391 - val acc: 0.6675
Epoch 14/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.6507 - ac
c: 0.6895 - val loss: 0.7589 - val acc: 0.6929
Epoch 15/30
c: 0.7296 - val_loss: 0.7511 - val_acc: 0.7027
Epoch 16/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.5987 - ac
c: 0.7313 - val_loss: 0.6971 - val_acc: 0.7207
Epoch 17/30
c: 0.7529 - val loss: 0.6762 - val acc: 0.7357
Epoch 18/30
c: 0.7749 - val loss: 0.7163 - val acc: 0.7486
Epoch 19/30
c: 0.8102 - val_loss: 0.6842 - val_acc: 0.7655
Epoch 20/30
c: 0.8374 - val loss: 0.6439 - val acc: 0.8005
Epoch 21/30
c: 0.8580 - val loss: 0.6528 - val acc: 0.7998
Epoch 22/30
c: 0.8498 - val loss: 0.6693 - val acc: 0.7954
Epoch 23/30
c: 0.8819 - val loss: 0.6195 - val acc: 0.8110
Epoch 24/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.3200 - ac
c: 0.8990 - val loss: 0.5914 - val acc: 0.8263
c: 0.9092 - val loss: 0.7119 - val acc: 0.7991
Epoch 26/30
c: 0.9155 - val loss: 0.5532 - val acc: 0.8361
Epoch 27/30
4901/4901 [============== ] - 24s 5ms/step - loss: 0.2470 - ac
c: 0.9245 - val_loss: 0.5336 - val_acc: 0.8371
Epoch 28/30
c: 0.9288 - val_loss: 0.5786 - val_acc: 0.8453
Epoch 29/30
c: 0.9251 - val_loss: 0.5449 - val_acc: 0.8456
Epoch 30/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.3725 - ac
c: 0.8743 - val loss: 0.5381 - val acc: 0.8449
```

Model: "sequential 12"

```
Layer (type)
                     Output Shape
                                         Param #
______
1stm 12 (LSTM)
                     (None, 32)
                                         5376
dropout 12 (Dropout)
                     (None, 32)
                                         0
dense 12 (Dense)
                     (None, 6)
                                         198
______
Total params: 5,574
Trainable params: 5,574
Non-trainable params: 0
None
Train on 4902 samples, validate on 2947 samples
Epoch 1/30
4902/4902 [============ ] - 26s 5ms/step - loss: 1.5714 - ac
c: 0.3262 - val loss: 1.3601 - val acc: 0.3974
Epoch 2/30
4902/4902 [=========== ] - 23s 5ms/step - loss: 1.2428 - ac
c: 0.4643 - val loss: 1.1789 - val acc: 0.4832
Epoch 3/30
4902/4902 [============= ] - 23s 5ms/step - loss: 1.0871 - ac
c: 0.5330 - val_loss: 1.0696 - val_acc: 0.5426
Epoch 4/30
c: 0.6212 - val_loss: 0.8876 - val_acc: 0.6091
Epoch 5/30
c: 0.6428 - val_loss: 0.8180 - val_acc: 0.6515
Epoch 6/30
c: 0.6522 - val loss: 0.8238 - val acc: 0.6617
Epoch 7/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.6934 - ac
c: 0.6705 - val_loss: 0.7620 - val_acc: 0.6725
Epoch 8/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.6459 - ac
c: 0.7003 - val_loss: 0.7434 - val_acc: 0.6939
Epoch 9/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.6557 - ac
c: 0.6903 - val_loss: 0.7431 - val_acc: 0.7319
Epoch 10/30
4902/4902 [============ ] - 24s 5ms/step - loss: 0.6365 - ac
c: 0.7087 - val loss: 0.7648 - val acc: 0.6824
Epoch 11/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.7141 - ac
c: 0.6844 - val_loss: 0.7646 - val_acc: 0.7000
Epoch 12/30
c: 0.7456 - val loss: 0.7480 - val acc: 0.7201
Epoch 13/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.6473 - ac
c: 0.7124 - val_loss: 0.8088 - val_acc: 0.6790
Epoch 14/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.6721 - ac
```

```
c: 0.6732 - val loss: 0.7566 - val acc: 0.6668
Epoch 15/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.6163 - ac
c: 0.6991 - val loss: 0.7044 - val acc: 0.6926
Epoch 16/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.5573 - ac
c: 0.7540 - val loss: 0.6532 - val acc: 0.7445
Epoch 17/30
c: 0.7987 - val_loss: 0.5991 - val acc: 0.7879
Epoch 18/30
c: 0.7038 - val loss: 0.7946 - val acc: 0.7265
Epoch 19/30
c: 0.7815 - val loss: 0.6745 - val acc: 0.7740
Epoch 20/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.4667 - ac
c: 0.8435 - val loss: 0.4801 - val acc: 0.8517
Epoch 21/30
c: 0.8605 - val loss: 0.4575 - val acc: 0.8463
Epoch 22/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.4619 - ac
c: 0.8550 - val_loss: 0.4729 - val_acc: 0.8381
Epoch 23/30
c: 0.8576 - val_loss: 0.8463 - val_acc: 0.7479
Epoch 24/30
c: 0.8943 - val_loss: 0.6456 - val_acc: 0.7713
Epoch 25/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.3092 - ac
c: 0.9021 - val loss: 0.4802 - val acc: 0.8320
Epoch 26/30
4902/4902 [============== ] - 22s 4ms/step - loss: 0.3803 - ac
c: 0.8856 - val_loss: 0.4590 - val_acc: 0.8439
Epoch 27/30
4902/4902 [============ ] - 24s 5ms/step - loss: 0.2907 - ac
c: 0.9143 - val_loss: 0.4972 - val_acc: 0.8385
Epoch 28/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.2966 - ac
c: 0.9053 - val_loss: 0.4513 - val_acc: 0.8504
Epoch 29/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.2723 - ac
c: 0.9129 - val loss: 0.5446 - val acc: 0.8347
Epoch 30/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.2891 - ac
c: 0.9090 - val loss: 0.4049 - val acc: 0.8717
2450/2450 [========== ] - 4s 2ms/step
Model: "sequential 13"
                    Output Shape
Layer (type)
                                       Param #
______
lstm 13 (LSTM)
                    (None, 64)
                                       18944
```

(None, 64)

dropout 13 (Dropout)

```
dense 13 (Dense)
                   (None, 6)
                                     390
______
Total params: 19,334
Trainable params: 19,334
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
c: 0.4338 - val_loss: 1.2056 - val_acc: 0.4778
Epoch 2/30
4901/4901 [============== ] - 23s 5ms/step - loss: 1.0883 - ac
c: 0.5562 - val_loss: 0.9333 - val_acc: 0.5969
c: 0.6574 - val_loss: 0.8036 - val_acc: 0.6970
Epoch 4/30
4901/4901 [============= ] - 24s 5ms/step - loss: 0.7194 - ac
c: 0.6994 - val_loss: 0.7294 - val_acc: 0.7262
Epoch 5/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.6583 - ac
c: 0.7321 - val_loss: 0.6773 - val_acc: 0.7411
Epoch 6/30
c: 0.7511 - val_loss: 0.6999 - val_acc: 0.7051
Epoch 7/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.6140 - ac
c: 0.7545 - val loss: 0.7064 - val acc: 0.7021
Epoch 8/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.5936 - ac
c: 0.7574 - val_loss: 0.6143 - val_acc: 0.7604
Epoch 9/30
c: 0.8451 - val loss: 0.5964 - val acc: 0.7849
Epoch 10/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.3088 - ac
c: 0.8992 - val loss: 0.4549 - val acc: 0.8490
Epoch 11/30
c: 0.9231 - val loss: 0.4514 - val acc: 0.8612
Epoch 12/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.2097 - ac
c: 0.9302 - val_loss: 0.4089 - val_acc: 0.8626
Epoch 13/30
c: 0.9225 - val loss: 0.3622 - val acc: 0.8778
Epoch 14/30
c: 0.9331 - val loss: 0.3769 - val acc: 0.8738
Epoch 15/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.1990 - ac
c: 0.9345 - val loss: 0.3679 - val acc: 0.8856
Epoch 16/30
c: 0.9017 - val loss: 0.3796 - val acc: 0.8768
```

```
Epoch 17/30
c: 0.9229 - val_loss: 0.4780 - val_acc: 0.8361
Epoch 18/30
c: 0.9325 - val_loss: 0.3366 - val_acc: 0.8931
Epoch 19/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1709 - ac
c: 0.9418 - val_loss: 0.4230 - val_acc: 0.8347
Epoch 20/30
c: 0.9041 - val_loss: 0.3457 - val_acc: 0.8853
Epoch 21/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1731 - ac
c: 0.9365 - val loss: 0.3729 - val acc: 0.8873
c: 0.9410 - val_loss: 0.3419 - val_acc: 0.8599
Epoch 23/30
c: 0.9243 - val_loss: 0.3504 - val_acc: 0.8873
Epoch 24/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1520 - ac
c: 0.9359 - val_loss: 0.3232 - val_acc: 0.8931
Epoch 25/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1437 - ac
c: 0.9372 - val_loss: 0.3003 - val_acc: 0.9040
Epoch 26/30
c: 0.9331 - val loss: 0.4008 - val acc: 0.8873
Epoch 27/30
c: 0.9145 - val_loss: 0.3092 - val acc: 0.8979
Epoch 28/30
c: 0.9121 - val loss: 0.3625 - val acc: 0.8816
Epoch 29/30
c: 0.9347 - val loss: 0.3821 - val acc: 0.8921
Epoch 30/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1569 - ac
c: 0.9370 - val loss: 0.3334 - val acc: 0.9006
2451/2451 [=========== ] - 4s 2ms/step
Model: "sequential 14"
Layer (type)
                 Output Shape
                                 Param #
______
1stm 14 (LSTM)
                 (None, 64)
                                 18944
dropout 14 (Dropout)
                 (None, 64)
dense 14 (Dense)
                 (None, 6)
                                 390
------
Total params: 19,334
Trainable params: 19,334
Non-trainable params: 0
```

file:///C:/Users/1407244/Downloads/har.html

```
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
4901/4901 [============ ] - 27s 5ms/step - loss: 1.4132 - ac
c: 0.3971 - val loss: 1.2149 - val acc: 0.4537
Epoch 2/30
4901/4901 [============ ] - 23s 5ms/step - loss: 1.0593 - ac
c: 0.5262 - val_loss: 1.1417 - val_acc: 0.5368
Epoch 3/30
c: 0.6033 - val_loss: 0.9911 - val_acc: 0.6257
Epoch 4/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.7335 - ac
c: 0.7135 - val_loss: 0.9377 - val_acc: 0.6624
Epoch 5/30
c: 0.8002 - val loss: 0.7619 - val acc: 0.7496
Epoch 6/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.4902 - ac
c: 0.8251 - val loss: 0.5934 - val acc: 0.7988
c: 0.8664 - val_loss: 0.6167 - val_acc: 0.7910
Epoch 8/30
c: 0.9063 - val_loss: 0.4911 - val_acc: 0.8442
Epoch 9/30
c: 0.9331 - val loss: 0.5226 - val acc: 0.8415
Epoch 10/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.8082 - ac
c: 0.7215 - val loss: 0.7858 - val acc: 0.7044
Epoch 11/30
c: 0.8064 - val loss: 0.6434 - val acc: 0.7835
Epoch 12/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.4014 - ac
c: 0.8311 - val loss: 0.6148 - val acc: 0.8062
c: 0.8496 - val loss: 0.5910 - val acc: 0.8215
Epoch 14/30
c: 0.8898 - val loss: 0.5747 - val acc: 0.8232
Epoch 15/30
c: 0.8784 - val_loss: 0.6286 - val_acc: 0.7852
Epoch 16/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.4038 - ac
c: 0.8474 - val_loss: 0.5971 - val_acc: 0.8185
Epoch 17/30
c: 0.8908 - val_loss: 0.5320 - val_acc: 0.8534
Epoch 18/30
c: 0.9163 - val_loss: 0.4788 - val_acc: 0.8639
Epoch 19/30
```

```
c: 0.9082 - val_loss: 0.5215 - val_acc: 0.8531
Epoch 20/30
4901/4901 [============ ] - 23s 5ms/step - loss: 0.2301 - ac
c: 0.9239 - val loss: 0.4572 - val acc: 0.8653
Epoch 21/30
4901/4901 [============== ] - 22s 5ms/step - loss: 0.1769 - ac
c: 0.9457 - val_loss: 0.5147 - val_acc: 0.8436
Epoch 22/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1762 - ac
c: 0.9423 - val loss: 0.5929 - val acc: 0.8327
Epoch 23/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1640 - ac
c: 0.9478 - val_loss: 0.5056 - val_acc: 0.8609
Epoch 24/30
4901/4901 [============ ] - 24s 5ms/step - loss: 0.1324 - ac
c: 0.9518 - val loss: 0.4946 - val acc: 0.8646
Epoch 25/30
c: 0.9484 - val loss: 0.5222 - val acc: 0.8463
c: 0.9525 - val loss: 0.4120 - val acc: 0.8768
Epoch 27/30
c: 0.9580 - val_loss: 0.4559 - val_acc: 0.8860
Epoch 28/30
c: 0.9533 - val loss: 0.4015 - val acc: 0.8938
Epoch 29/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1703 - ac
c: 0.9457 - val loss: 0.3505 - val acc: 0.8979
Epoch 30/30
c: 0.9455 - val loss: 0.3355 - val acc: 0.8904
2451/2451 [=========== ] - 4s 1ms/step
Model: "sequential_15"
Layer (type)
                   Output Shape
                                    Param #
______
1stm 15 (LSTM)
                                    18944
                   (None, 64)
dropout 15 (Dropout)
                   (None, 64)
dense 15 (Dense)
                   (None, 6)
                                    390
______
Total params: 19,334
Trainable params: 19,334
Non-trainable params: 0
None
Train on 4902 samples, validate on 2947 samples
Epoch 1/30
4902/4902 [============= ] - 26s 5ms/step - loss: 1.3815 - ac
c: 0.4155 - val_loss: 1.2952 - val_acc: 0.4666
Epoch 2/30
```

```
c: 0.5082 - val loss: 1.1749 - val acc: 0.4947
Epoch 3/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.9849 - ac
c: 0.5757 - val loss: 0.9705 - val acc: 0.5867
Epoch 4/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.7634 - ac
c: 0.6554 - val loss: 0.8737 - val acc: 0.6345
Epoch 5/30
c: 0.6824 - val loss: 0.7582 - val acc: 0.6763
Epoch 6/30
c: 0.7009 - val loss: 0.7055 - val acc: 0.6960
Epoch 7/30
c: 0.7232 - val loss: 0.7142 - val acc: 0.7401
Epoch 8/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.5235 - ac
c: 0.8082 - val loss: 0.6327 - val acc: 0.8076
Epoch 9/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.4596 - ac
c: 0.8317 - val loss: 0.5471 - val acc: 0.8249
Epoch 10/30
4902/4902 [============= ] - 22s 5ms/step - loss: 0.3154 - ac
c: 0.9029 - val_loss: 0.5516 - val_acc: 0.8191
Epoch 11/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.2782 - ac
c: 0.9092 - val_loss: 0.5187 - val_acc: 0.8320
Epoch 12/30
c: 0.8643 - val_loss: 0.5270 - val_acc: 0.8595
Epoch 13/30
c: 0.9096 - val loss: 0.5271 - val acc: 0.8459
Epoch 14/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.2757 - ac
c: 0.8994 - val_loss: 0.6064 - val_acc: 0.8086
Epoch 15/30
c: 0.8388 - val_loss: 0.5328 - val_acc: 0.8473
Epoch 16/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.2813 - ac
c: 0.9068 - val_loss: 0.5113 - val_acc: 0.8609
Epoch 17/30
c: 0.9247 - val loss: 0.4462 - val acc: 0.8823
Epoch 18/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.1937 - ac
c: 0.9327 - val_loss: 0.4038 - val_acc: 0.8843
Epoch 19/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.4348 - ac
c: 0.8366 - val loss: 0.4769 - val acc: 0.8470
Epoch 20/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.2572 - ac
c: 0.9184 - val_loss: 0.4119 - val_acc: 0.8782
Epoch 21/30
```

```
c: 0.9270 - val loss: 0.5740 - val acc: 0.8480
Epoch 22/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.1967 - ac
c: 0.9359 - val loss: 0.3810 - val acc: 0.8836
Epoch 23/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.1897 - ac
c: 0.9329 - val loss: 0.4104 - val acc: 0.8738
Epoch 24/30
c: 0.9300 - val_loss: 0.4326 - val acc: 0.8629
Epoch 25/30
c: 0.9276 - val loss: 0.3304 - val acc: 0.8941
Epoch 26/30
c: 0.9345 - val loss: 0.3163 - val acc: 0.8928
Epoch 27/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.1529 - ac
c: 0.9388 - val loss: 0.3113 - val acc: 0.8887
Epoch 28/30
c: 0.9463 - val loss: 0.3381 - val acc: 0.9013
Epoch 29/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.1260 - ac
c: 0.9500 - val_loss: 0.3958 - val_acc: 0.8826
Epoch 30/30
c: 0.9433 - val_loss: 0.3395 - val_acc: 0.8897
Model: "sequential 16"
Layer (type)
                 Output Shape
                                Param #
______
lstm 16 (LSTM)
                 (None, 128)
                                70656
dropout 16 (Dropout)
                 (None, 128)
                                a
dense 16 (Dense)
                 (None, 6)
______
Total params: 71,430
Trainable params: 71,430
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
c: 0.4016 - val loss: 1.3689 - val acc: 0.3285
c: 0.3971 - val loss: 1.3565 - val acc: 0.3658
Epoch 3/30
c: 0.4677 - val loss: 1.2719 - val acc: 0.5490
Epoch 4/30
c: 0.5478 - val loss: 1.0562 - val acc: 0.5891
```

```
Epoch 5/30
c: 0.5452 - val_loss: 1.0730 - val_acc: 0.5504
Epoch 6/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.9749 - ac
c: 0.6021 - val_loss: 0.9824 - val_acc: 0.5931
Epoch 7/30
c: 0.6340 - val_loss: 0.9500 - val_acc: 0.5904
Epoch 8/30
c: 0.6556 - val_loss: 0.7712 - val_acc: 0.6522
Epoch 9/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.6772 - ac
c: 0.6999 - val_loss: 0.7126 - val_acc: 0.6709
c: 0.7027 - val_loss: 0.9696 - val_acc: 0.6013
Epoch 11/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.7803 - ac
c: 0.6890 - val_loss: 0.7352 - val_acc: 0.7360
Epoch 12/30
4901/4901 [============= ] - 24s 5ms/step - loss: 0.5078 - ac
c: 0.8243 - val_loss: 0.4677 - val_acc: 0.8426
Epoch 13/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.3427 - ac
c: 0.8853 - val_loss: 0.4123 - val_acc: 0.8558
Epoch 14/30
c: 0.9063 - val_loss: 0.3981 - val_acc: 0.8680
Epoch 15/30
c: 0.9196 - val_loss: 0.4455 - val_acc: 0.8436
Epoch 16/30
c: 0.9265 - val loss: 0.3492 - val acc: 0.8731
Epoch 17/30
c: 0.9329 - val loss: 0.4152 - val acc: 0.8673
Epoch 18/30
c: 0.9308 - val loss: 0.3697 - val acc: 0.8734
Epoch 19/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1707 - ac
c: 0.9341 - val_loss: 0.5271 - val_acc: 0.8476
Epoch 20/30
c: 0.9249 - val loss: 0.2958 - val acc: 0.8931
Epoch 21/30
c: 0.9343 - val loss: 0.2821 - val acc: 0.8897
Epoch 22/30
c: 0.9347 - val loss: 0.3393 - val acc: 0.8839
Epoch 23/30
c: 0.9433 - val_loss: 0.3679 - val_acc: 0.8744
```

```
Epoch 24/30
c: 0.9076 - val_loss: 0.3203 - val_acc: 0.8816
Epoch 25/30
c: 0.9231 - val_loss: 0.2710 - val_acc: 0.8992
Epoch 26/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1802 - ac
c: 0.9384 - val_loss: 0.2855 - val_acc: 0.8887
Epoch 27/30
4901/4901 [============ ] - 24s 5ms/step - loss: 0.1606 - ac
c: 0.9425 - val_loss: 0.2484 - val_acc: 0.9101
Epoch 28/30
c: 0.9429 - val_loss: 0.2695 - val_acc: 0.9030
Epoch 29/30
c: 0.9370 - val_loss: 0.2991 - val_acc: 0.8877
Epoch 30/30
c: 0.9359 - val loss: 0.3793 - val acc: 0.8073
2451/2451 [=========== ] - 4s 2ms/step
Model: "sequential_17"
Layer (type)
                 Output Shape
                                 Param #
______
1stm 17 (LSTM)
                 (None, 128)
                                 70656
dropout 17 (Dropout)
                 (None, 128)
                                 a
dense 17 (Dense)
                 (None, 6)
                                 774
______
Total params: 71,430
Trainable params: 71,430
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
c: 0.4340 - val loss: 1.2314 - val acc: 0.4696
Epoch 2/30
c: 0.5156 - val loss: 1.0090 - val acc: 0.5986
Epoch 3/30
c: 0.6456 - val_loss: 0.9103 - val_acc: 0.6295
Epoch 4/30
4901/4901 [============== ] - 24s 5ms/step - loss: 0.9368 - ac
c: 0.6276 - val_loss: 1.1300 - val_acc: 0.5056
Epoch 5/30
c: 0.5107 - val_loss: 1.1756 - val_acc: 0.5310
4901/4901 [============== ] - 23s 5ms/step - loss: 1.0134 - ac
c: 0.5780 - val_loss: 0.9863 - val_acc: 0.5972
Epoch 7/30
```

```
4901/4901 [============== ] - 24s 5ms/step - loss: 0.7221 - ac
c: 0.6974 - val_loss: 0.8926 - val_acc: 0.6420
Epoch 8/30
c: 0.7194 - val loss: 0.8019 - val acc: 0.6834
Epoch 9/30
4901/4901 [============= ] - 24s 5ms/step - loss: 0.6299 - ac
c: 0.7560 - val loss: 0.6991 - val acc: 0.7255
Epoch 10/30
c: 0.7943 - val loss: 0.6529 - val acc: 0.7893
Epoch 11/30
4901/4901 [============ ] - 23s 5ms/step - loss: 0.5797 - ac
c: 0.7688 - val_loss: 0.6632 - val_acc: 0.7750
Epoch 12/30
c: 0.8400 - val loss: 0.6782 - val acc: 0.7299
Epoch 13/30
c: 0.8298 - val loss: 0.5872 - val acc: 0.8073
Epoch 14/30
c: 0.7686 - val_loss: 0.8283 - val_acc: 0.6563
Epoch 15/30
4901/4901 [============== ] - 24s 5ms/step - loss: 0.6157 - ac
c: 0.7439 - val_loss: 0.7377 - val_acc: 0.7129
Epoch 16/30
c: 0.8480 - val loss: 0.5314 - val acc: 0.8205
Epoch 17/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.2844 - ac
c: 0.9096 - val loss: 0.4609 - val acc: 0.8646
Epoch 18/30
c: 0.9347 - val loss: 0.4275 - val acc: 0.8656
Epoch 19/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1534 - ac
c: 0.9455 - val loss: 0.4725 - val acc: 0.8595
c: 0.9482 - val loss: 0.4166 - val acc: 0.8619
Epoch 21/30
c: 0.9529 - val loss: 0.4779 - val acc: 0.8595
Epoch 22/30
c: 0.9353 - val_loss: 0.3799 - val_acc: 0.8741
Epoch 23/30
c: 0.9431 - val_loss: 0.4298 - val_acc: 0.8619
Epoch 24/30
c: 0.9472 - val_loss: 0.4592 - val_acc: 0.8704
Epoch 25/30
c: 0.9453 - val_loss: 0.4005 - val_acc: 0.8687
Epoch 26/30
```

```
c: 0.9431 - val_loss: 0.3862 - val_acc: 0.8812
Epoch 27/30
c: 0.9490 - val loss: 0.4336 - val acc: 0.8789
Epoch 28/30
c: 0.9414 - val loss: 0.3982 - val acc: 0.8734
Epoch 29/30
c: 0.9463 - val loss: 0.6795 - val acc: 0.7784
Epoch 30/30
4901/4901 [============== ] - 24s 5ms/step - loss: 0.2147 - ac
c: 0.9204 - val_loss: 0.4357 - val_acc: 0.8663
2451/2451 [============ ] - 4s 2ms/step
Model: "sequential 18"
Layer (type)
                 Output Shape
                                 Param #
______
1stm 18 (LSTM)
                 (None, 128)
                                 70656
dropout 18 (Dropout)
                 (None, 128)
                                 0
dense 18 (Dense)
                                 774
                 (None, 6)
______
Total params: 71,430
Trainable params: 71,430
Non-trainable params: 0
None
Train on 4902 samples, validate on 2947 samples
Epoch 1/30
c: 0.4867 - val loss: 1.5044 - val acc: 0.4479
Epoch 2/30
4902/4902 [============= ] - 23s 5ms/step - loss: 1.0295 - ac
c: 0.5736 - val_loss: 1.2313 - val_acc: 0.5372
Epoch 3/30
c: 0.6210 - val_loss: 1.6042 - val_acc: 0.4092
Epoch 4/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.9024 - ac
c: 0.6522 - val_loss: 0.8432 - val_acc: 0.7126
c: 0.7011 - val loss: 1.2068 - val acc: 0.5002
Epoch 6/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.8066 - ac
c: 0.6816 - val loss: 0.8728 - val acc: 0.6834
Epoch 7/30
c: 0.5796 - val_loss: 1.1733 - val_acc: 0.5310
Epoch 8/30
4902/4902 [============= ] - 24s 5ms/step - loss: 1.1259 - ac
c: 0.5496 - val_loss: 1.3131 - val_acc: 0.4544
Epoch 9/30
```

```
c: 0.5720 - val loss: 0.9377 - val acc: 0.6203
Epoch 10/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.7380 - ac
c: 0.7122 - val loss: 0.7586 - val acc: 0.7221
Epoch 11/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.6188 - ac
c: 0.7742 - val loss: 0.7039 - val acc: 0.7516
Epoch 12/30
c: 0.8127 - val_loss: 0.6289 - val acc: 0.7822
Epoch 13/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.4988 - ac
c: 0.8235 - val loss: 1.0158 - val acc: 0.6810
Epoch 14/30
c: 0.7734 - val loss: 0.6216 - val acc: 0.7805
Epoch 15/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.4181 - ac
c: 0.8458 - val loss: 0.6750 - val acc: 0.7655
Epoch 16/30
c: 0.8652 - val loss: 0.6019 - val acc: 0.7835
Epoch 17/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.3234 - ac
c: 0.8876 - val_loss: 0.5702 - val_acc: 0.7927
Epoch 18/30
c: 0.8886 - val_loss: 0.5233 - val_acc: 0.8341
Epoch 19/30
c: 0.9041 - val_loss: 0.4982 - val_acc: 0.8317
Epoch 20/30
c: 0.9125 - val loss: 0.6715 - val acc: 0.7913
Epoch 21/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.2507 - ac
c: 0.9072 - val_loss: 0.4517 - val_acc: 0.8622
Epoch 22/30
c: 0.9064 - val_loss: 0.3799 - val_acc: 0.8687
Epoch 23/30
4902/4902 [============== ] - 24s 5ms/step - loss: 0.1948 - ac
c: 0.9280 - val_loss: 0.5213 - val_acc: 0.8419
Epoch 24/30
c: 0.9292 - val loss: 0.4349 - val acc: 0.8653
Epoch 25/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1800 - ac
c: 0.9310 - val_loss: 0.4105 - val_acc: 0.8731
Epoch 26/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1761 - ac
c: 0.9302 - val loss: 0.4003 - val acc: 0.8734
Epoch 27/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.1574 - ac
c: 0.9382 - val_loss: 0.4155 - val_acc: 0.8683
Epoch 28/30
```

```
c: 0.9343 - val loss: 0.4268 - val acc: 0.8802
Epoch 29/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1845 - ac
c: 0.9274 - val loss: 0.5139 - val acc: 0.8392
Epoch 30/30
c: 0.9245 - val loss: 0.3796 - val acc: 0.8843
Model: "sequential_19"
Layer (type)
                 Output Shape
                                  Param #
_____
1stm 19 (LSTM)
                  (None, 32)
                                  5376
dropout 19 (Dropout)
                  (None, 32)
dense 19 (Dense)
                                  198
                  (None, 6)
______
Total params: 5,574
Trainable params: 5,574
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
c: 0.4256 - val_loss: 1.2720 - val_acc: 0.4703
Epoch 2/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.9930 - ac
c: 0.5893 - val loss: 0.9727 - val acc: 0.5752
Epoch 3/30
c: 0.6107 - val_loss: 0.8639 - val_acc: 0.6471
c: 0.6703 - val loss: 0.8046 - val acc: 0.6471
Epoch 5/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.7009 - ac
c: 0.6850 - val loss: 0.8820 - val acc: 0.6413
Epoch 6/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.6553 - ac
c: 0.7084 - val loss: 0.7397 - val acc: 0.6929
Epoch 7/30
4901/4901 [============== ] - 22s 5ms/step - loss: 0.6558 - ac
c: 0.7109 - val loss: 0.7959 - val acc: 0.7011
Epoch 8/30
c: 0.7168 - val loss: 0.7128 - val acc: 0.7119
Epoch 9/30
c: 0.7554 - val loss: 0.6780 - val acc: 0.7370
Epoch 10/30
c: 0.7872 - val loss: 0.6685 - val acc: 0.7482
Epoch 11/30
c: 0.8082 - val loss: 0.6443 - val acc: 0.7713
```

```
Epoch 12/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.4542 - ac
c: 0.8351 - val_loss: 0.6281 - val_acc: 0.7950
Epoch 13/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.4177 - ac
c: 0.8527 - val_loss: 0.5475 - val_acc: 0.8096
Epoch 14/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.3778 - ac
c: 0.8731 - val_loss: 0.5214 - val_acc: 0.8269
Epoch 15/30
4901/4901 [============ ] - 23s 5ms/step - loss: 0.3496 - ac
c: 0.8843 - val_loss: 0.4917 - val_acc: 0.8344
Epoch 16/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.3137 - ac
c: 0.8982 - val_loss: 0.4839 - val_acc: 0.8514
Epoch 17/30
c: 0.9021 - val_loss: 0.4833 - val_acc: 0.8487
Epoch 18/30
4901/4901 [============== ] - 22s 5ms/step - loss: 0.3077 - ac
c: 0.9021 - val_loss: 0.5973 - val_acc: 0.8164
Epoch 19/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.2807 - ac
c: 0.9125 - val_loss: 0.5523 - val_acc: 0.8371
Epoch 20/30
c: 0.9176 - val_loss: 0.4112 - val_acc: 0.8690
Epoch 21/30
c: 0.9247 - val_loss: 0.4135 - val_acc: 0.8721
Epoch 22/30
c: 0.9245 - val loss: 0.4009 - val acc: 0.8755
Epoch 23/30
c: 0.9263 - val loss: 0.3794 - val acc: 0.8765
Epoch 24/30
c: 0.9312 - val loss: 0.3882 - val acc: 0.8809
Epoch 25/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1872 - ac
c: 0.9404 - val loss: 0.4174 - val acc: 0.8741
Epoch 26/30
4901/4901 [============== ] - 22s 5ms/step - loss: 0.1827 - ac
c: 0.9380 - val_loss: 0.3905 - val_acc: 0.8792
Epoch 27/30
c: 0.9367 - val loss: 0.4022 - val acc: 0.8744
Epoch 28/30
c: 0.9402 - val loss: 0.4299 - val acc: 0.8731
Epoch 29/30
c: 0.9312 - val loss: 0.3355 - val acc: 0.8839
Epoch 30/30
c: 0.9412 - val_loss: 0.3559 - val_acc: 0.8782
```

2451/2451 [===========] - 4s 2ms/step Model: "sequential_20"

```
Layer (type)
                Output Shape
                               Param #
______
lstm_20 (LSTM)
                (None, 32)
                               5376
dropout 20 (Dropout)
                (None, 32)
dense 20 (Dense)
                (None, 6)
                               198
Total params: 5,574
Trainable params: 5,574
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
c: 0.4344 - val loss: 1.1785 - val acc: 0.5711
c: 0.6017 - val loss: 0.9974 - val acc: 0.6094
Epoch 3/30
c: 0.6635 - val_loss: 0.8472 - val_acc: 0.6627
Epoch 4/30
c: 0.6923 - val loss: 0.8017 - val acc: 0.6637
Epoch 5/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.6939 - ac
c: 0.6999 - val loss: 0.7621 - val acc: 0.6895
Epoch 6/30
c: 0.6848 - val loss: 0.9000 - val acc: 0.6617
Epoch 7/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.7193 - ac
c: 0.7315 - val loss: 0.7378 - val acc: 0.7581
c: 0.7788 - val loss: 0.6725 - val acc: 0.7655
Epoch 9/30
c: 0.8125 - val loss: 0.6237 - val acc: 0.8100
Epoch 10/30
c: 0.8464 - val_loss: 0.5898 - val_acc: 0.8042
Epoch 11/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.4099 - ac
c: 0.8719 - val_loss: 0.5775 - val_acc: 0.8178
Epoch 12/30
c: 0.8929 - val_loss: 0.5537 - val_acc: 0.8208
Epoch 13/30
c: 0.9157 - val_loss: 0.6577 - val_acc: 0.8039
Epoch 14/30
```

18/09/2019

```
c: 0.9196 - val_loss: 0.4769 - val_acc: 0.8402
Epoch 15/30
c: 0.9310 - val loss: 0.5080 - val acc: 0.8409
Epoch 16/30
4901/4901 [============ ] - 23s 5ms/step - loss: 0.2799 - ac
c: 0.9202 - val loss: 0.4854 - val acc: 0.8354
Epoch 17/30
c: 0.9439 - val loss: 0.4864 - val acc: 0.8473
Epoch 18/30
c: 0.9410 - val_loss: 0.4909 - val_acc: 0.8483
Epoch 19/30
c: 0.9457 - val loss: 0.5473 - val acc: 0.8310
Epoch 20/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.1763 - ac
c: 0.9465 - val loss: 0.5513 - val acc: 0.8415
c: 0.9508 - val loss: 0.5150 - val acc: 0.8521
Epoch 22/30
c: 0.9496 - val loss: 0.5156 - val acc: 0.8483
Epoch 23/30
c: 0.9459 - val loss: 0.5373 - val acc: 0.8527
Epoch 24/30
4901/4901 [============ ] - 23s 5ms/step - loss: 0.1556 - ac
c: 0.9480 - val loss: 0.5140 - val acc: 0.8487
Epoch 25/30
c: 0.9441 - val loss: 0.4782 - val acc: 0.8487
Epoch 26/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1642 - ac
c: 0.9427 - val loss: 0.5124 - val acc: 0.8422
c: 0.9549 - val loss: 0.4898 - val acc: 0.8673
Epoch 28/30
c: 0.9541 - val loss: 0.4530 - val acc: 0.8639
Epoch 29/30
c: 0.9565 - val_loss: 0.5224 - val_acc: 0.8575
Epoch 30/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.2161 - ac
c: 0.9296 - val_loss: 0.4249 - val_acc: 0.8639
Model: "sequential 21"
```

Layer (type)	Output Shape	Param #
lstm_21 (LSTM)	(None, 32)	5376

dropout 21 (Dropout)

dense 21 (Dense) 198 (None, 6) ______ Total params: 5,574 Trainable params: 5,574 Non-trainable params: 0 None Train on 4902 samples, validate on 2947 samples Epoch 1/30 4902/4902 [===============] - 28s 6ms/step - loss: 1.5489 - ac c: 0.3754 - val loss: 1.2330 - val acc: 0.5416 Epoch 2/30 c: 0.6285 - val loss: 0.8376 - val acc: 0.6994 Epoch 3/30 4902/4902 [=============] - 23s 5ms/step - loss: 0.8029 - ac c: 0.6905 - val loss: 0.9036 - val acc: 0.6552 Epoch 4/30 c: 0.7419 - val loss: 0.7295 - val acc: 0.7353 Epoch 5/30 4902/4902 [==============] - 24s 5ms/step - loss: 0.5465 - ac c: 0.7797 - val_loss: 0.6476 - val_acc: 0.7598 c: 0.7942 - val_loss: 0.6451 - val_acc: 0.7618 Epoch 7/30 c: 0.8184 - val_loss: 0.6680 - val_acc: 0.7689 Epoch 8/30 c: 0.8356 - val loss: 0.6175 - val acc: 0.7876 Epoch 9/30 4902/4902 [=============] - 23s 5ms/step - loss: 0.4053 - ac c: 0.8529 - val_loss: 0.6078 - val_acc: 0.7845 Epoch 10/30 c: 0.8827 - val_loss: 0.6321 - val_acc: 0.8073 Epoch 11/30 4902/4902 [=============] - 23s 5ms/step - loss: 0.3126 - ac c: 0.8892 - val_loss: 0.5250 - val_acc: 0.8432 Epoch 12/30 c: 0.9186 - val loss: 0.5119 - val acc: 0.8442 Epoch 13/30 4902/4902 [=============] - 23s 5ms/step - loss: 0.2231 - ac c: 0.9298 - val_loss: 0.5700 - val_acc: 0.8361 Epoch 14/30 c: 0.9186 - val loss: 0.5216 - val acc: 0.8537 Epoch 15/30 4902/4902 [=============] - 22s 5ms/step - loss: 0.2175 - ac c: 0.9198 - val_loss: 0.6689 - val_acc: 0.8164 Epoch 16/30

(None, 32)

0

18/09/2019

```
c: 0.9300 - val loss: 0.5541 - val acc: 0.8198
Epoch 17/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.2020 - ac
c: 0.9276 - val_loss: 0.5505 - val_acc: 0.8442
Epoch 18/30
4902/4902 [============= ] - 22s 5ms/step - loss: 0.1566 - ac
c: 0.9435 - val loss: 0.5362 - val acc: 0.8565
Epoch 19/30
c: 0.9457 - val_loss: 0.6673 - val acc: 0.8049
Epoch 20/30
4902/4902 [============= ] - 22s 5ms/step - loss: 0.1662 - ac
c: 0.9423 - val loss: 0.4752 - val acc: 0.8605
Epoch 21/30
c: 0.9398 - val loss: 0.4738 - val acc: 0.8690
Epoch 22/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1385 - ac
c: 0.9433 - val loss: 0.4991 - val acc: 0.8629
Epoch 23/30
4902/4902 [=========== ] - 23s 5ms/step - loss: 0.1457 - ac
c: 0.9417 - val loss: 0.6247 - val acc: 0.8510
Epoch 24/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1612 - ac
c: 0.9419 - val_loss: 0.5628 - val_acc: 0.8643
Epoch 25/30
c: 0.9417 - val_loss: 0.6441 - val_acc: 0.8490
Epoch 26/30
c: 0.9282 - val_loss: 0.5852 - val_acc: 0.8402
Epoch 27/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1577 - ac
c: 0.9364 - val loss: 0.5098 - val acc: 0.8663
Epoch 28/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1909 - ac
c: 0.9290 - val_loss: 0.4133 - val_acc: 0.8731
Epoch 29/30
c: 0.9390 - val_loss: 0.4292 - val_acc: 0.8775
Epoch 30/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1784 - ac
c: 0.9353 - val loss: 0.4981 - val acc: 0.8639
2450/2450 [============ ] - 4s 2ms/step
Model: "sequential 22"
Layer (type)
                    Output Shape
                                       Param #
______
1stm 22 (LSTM)
                     (None, 64)
                                       18944
                    (None, 64)
dropout 22 (Dropout)
dense 22 (Dense)
                                       390
                    (None, 6)
______
Total params: 19,334
Trainable params: 19,334
```

Non-trainable params: 0

```
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
c: 0.4938 - val_loss: 0.8568 - val_acc: 0.6423
Epoch 2/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.7133 - ac
c: 0.6899 - val_loss: 0.7525 - val_acc: 0.6994
Epoch 3/30
4901/4901 [============ ] - 22s 5ms/step - loss: 0.6069 - ac
c: 0.7488 - val_loss: 0.7826 - val_acc: 0.7387
Epoch 4/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.6260 - ac
c: 0.7843 - val_loss: 0.6629 - val_acc: 0.7727
4901/4901 [============== ] - 24s 5ms/step - loss: 0.4535 - ac
c: 0.8423 - val_loss: 0.6537 - val_acc: 0.7458
Epoch 6/30
c: 0.8910 - val_loss: 0.5521 - val_acc: 0.8069
Epoch 7/30
c: 0.9133 - val loss: 0.5539 - val acc: 0.8222
Epoch 8/30
c: 0.9253 - val_loss: 0.4416 - val_acc: 0.8341
Epoch 9/30
c: 0.9141 - val_loss: 0.5025 - val_acc: 0.8188
Epoch 10/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.2231 - ac
c: 0.9276 - val_loss: 0.3810 - val_acc: 0.8734
Epoch 11/30
c: 0.9251 - val loss: 0.4960 - val acc: 0.8388
Epoch 12/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.2501 - ac
c: 0.9063 - val loss: 0.4253 - val acc: 0.8470
Epoch 13/30
c: 0.9247 - val loss: 0.3981 - val acc: 0.8595
Epoch 14/30
c: 0.9182 - val_loss: 0.9518 - val_acc: 0.6814
Epoch 15/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.2095 - ac
c: 0.9225 - val loss: 0.4136 - val acc: 0.8612
Epoch 16/30
c: 0.9410 - val loss: 0.4067 - val acc: 0.8666
Epoch 17/30
c: 0.9443 - val loss: 0.4242 - val acc: 0.8575
Epoch 18/30
c: 0.9421 - val loss: 0.3942 - val acc: 0.8697
```

```
Epoch 19/30
c: 0.9333 - val loss: 0.3937 - val acc: 0.8690
Epoch 20/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1485 - ac
c: 0.9449 - val_loss: 0.4501 - val_acc: 0.8565
Epoch 21/30
c: 0.9398 - val_loss: 0.4519 - val_acc: 0.8643
Epoch 22/30
c: 0.9414 - val_loss: 0.4425 - val_acc: 0.8626
Epoch 23/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1681 - ac
c: 0.9243 - val_loss: 0.4173 - val_acc: 0.8554
c: 0.9357 - val_loss: 0.4110 - val_acc: 0.8605
Epoch 25/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1471 - ac
c: 0.9400 - val_loss: 0.4015 - val_acc: 0.8663
Epoch 26/30
c: 0.9414 - val_loss: 0.4398 - val_acc: 0.8636
Epoch 27/30
c: 0.9406 - val_loss: 0.4711 - val_acc: 0.8551
Epoch 28/30
c: 0.9437 - val loss: 0.4468 - val acc: 0.8619
Epoch 29/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1290 - ac
c: 0.9508 - val_loss: 0.4223 - val_acc: 0.8755
Epoch 30/30
c: 0.9500 - val loss: 0.5815 - val acc: 0.8320
2451/2451 [========== ] - 4s 2ms/step
Model: "sequential_23"
Layer (type)
                 Output Shape
                                 Param #
______
1stm 23 (LSTM)
                 (None, 64)
                                 18944
dropout 23 (Dropout)
                 (None, 64)
dense 23 (Dense)
                                 390
                 (None, 6)
_____
Total params: 19,334
Trainable params: 19,334
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
c: 0.5070 - val_loss: 0.9054 - val_acc: 0.6634
Epoch 2/30
```

```
4901/4901 [============== ] - 23s 5ms/step - loss: 0.6476 - ac
c: 0.7425 - val_loss: 0.6557 - val_acc: 0.7689
Epoch 3/30
c: 0.8727 - val loss: 0.5942 - val acc: 0.7869
Epoch 4/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.2505 - ac
c: 0.9239 - val_loss: 0.4888 - val_acc: 0.8426
Epoch 5/30
c: 0.9378 - val loss: 0.5330 - val acc: 0.8249
Epoch 6/30
c: 0.9345 - val loss: 0.4092 - val acc: 0.8626
Epoch 7/30
c: 0.9361 - val loss: 0.5659 - val acc: 0.8456
Epoch 8/30
c: 0.9429 - val loss: 0.5382 - val acc: 0.8415
c: 0.9312 - val loss: 0.4492 - val acc: 0.8711
Epoch 10/30
4901/4901 [============= ] - 24s 5ms/step - loss: 0.1539 - ac
c: 0.9553 - val_loss: 0.4202 - val_acc: 0.8758
Epoch 11/30
c: 0.9594 - val loss: 0.4353 - val acc: 0.8799
Epoch 12/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1300 - ac
c: 0.9572 - val loss: 0.4622 - val acc: 0.8741
Epoch 13/30
c: 0.9588 - val loss: 0.3810 - val acc: 0.8819
Epoch 14/30
4901/4901 [============= ] - 24s 5ms/step - loss: 0.1719 - ac
c: 0.9347 - val loss: 0.3973 - val acc: 0.8758
c: 0.9535 - val loss: 0.4112 - val acc: 0.8697
Epoch 16/30
c: 0.9594 - val loss: 0.4762 - val acc: 0.8751
Epoch 17/30
c: 0.9578 - val_loss: 0.4748 - val_acc: 0.8823
Epoch 18/30
c: 0.9590 - val_loss: 0.4762 - val_acc: 0.8772
Epoch 19/30
c: 0.9549 - val_loss: 0.4954 - val_acc: 0.8728
Epoch 20/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.0971 - ac
c: 0.9563 - val_loss: 0.5026 - val_acc: 0.8826
Epoch 21/30
```

```
c: 0.9463 - val_loss: 0.7910 - val_acc: 0.8229
Epoch 22/30
4901/4901 [============ ] - 23s 5ms/step - loss: 0.1207 - ac
c: 0.9572 - val loss: 0.6629 - val acc: 0.8636
Epoch 23/30
c: 0.9574 - val loss: 0.4932 - val acc: 0.8697
Epoch 24/30
c: 0.9578 - val loss: 0.5813 - val acc: 0.8660
Epoch 25/30
4901/4901 [============= ] - 24s 5ms/step - loss: 0.1103 - ac
c: 0.9572 - val_loss: 0.4709 - val_acc: 0.8768
Epoch 26/30
c: 0.9539 - val loss: 0.4664 - val acc: 0.8778
Epoch 27/30
c: 0.9580 - val loss: 0.5119 - val acc: 0.8714
c: 0.9557 - val loss: 0.4253 - val acc: 0.8724
Epoch 29/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1329 - ac
c: 0.9439 - val loss: 0.6467 - val acc: 0.7268
Epoch 30/30
c: 0.9219 - val loss: 0.4469 - val acc: 0.8717
Model: "sequential_24"
Layer (type)
                 Output Shape
                                  Param #
______
                  (None, 64)
1stm 24 (LSTM)
                                  18944
dropout_24 (Dropout)
                  (None, 64)
                                  0
dense 24 (Dense)
                  (None, 6)
                                  390
______
Total params: 19,334
Trainable params: 19,334
Non-trainable params: 0
None
Train on 4902 samples, validate on 2947 samples
Epoch 1/30
4902/4902 [============== ] - 29s 6ms/step - loss: 1.2446 - ac
c: 0.5063 - val loss: 0.8953 - val acc: 0.6390
Epoch 2/30
c: 0.6705 - val loss: 0.7350 - val acc: 0.7004
Epoch 3/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.5848 - ac
c: 0.7462 - val_loss: 0.6862 - val_acc: 0.7455
Epoch 4/30
4902/4902 [============ ] - 23s 5ms/step - loss: 0.4259 - ac
```

```
c: 0.8386 - val loss: 0.5207 - val acc: 0.8178
Epoch 5/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.2935 - ac
c: 0.9058 - val loss: 0.5166 - val acc: 0.8320
Epoch 6/30
c: 0.9109 - val loss: 0.4559 - val acc: 0.8541
Epoch 7/30
c: 0.9323 - val loss: 0.4278 - val acc: 0.8683
Epoch 8/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.1761 - ac
c: 0.9364 - val loss: 0.3920 - val acc: 0.8765
Epoch 9/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1644 - ac
c: 0.9390 - val loss: 0.4141 - val acc: 0.8806
Epoch 10/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.1508 - ac
c: 0.9366 - val loss: 0.3964 - val acc: 0.8758
Epoch 11/30
4902/4902 [=========== ] - 23s 5ms/step - loss: 0.1622 - ac
c: 0.9398 - val loss: 0.3970 - val acc: 0.8765
Epoch 12/30
4902/4902 [============= ] - 22s 5ms/step - loss: 0.1779 - ac
c: 0.9378 - val_loss: 0.3948 - val_acc: 0.8860
Epoch 13/30
c: 0.9231 - val_loss: 0.3750 - val_acc: 0.8850
Epoch 14/30
c: 0.9404 - val_loss: 0.3229 - val_acc: 0.8972
Epoch 15/30
c: 0.9390 - val loss: 0.3837 - val acc: 0.8639
Epoch 16/30
4902/4902 [============= ] - 24s 5ms/step - loss: 0.1510 - ac
c: 0.9376 - val_loss: 0.3132 - val_acc: 0.9033
Epoch 17/30
4902/4902 [=============== ] - 24s 5ms/step - loss: 0.1675 - ac
c: 0.9323 - val_loss: 0.3380 - val_acc: 0.9030
Epoch 18/30
4902/4902 [============== ] - 22s 5ms/step - loss: 0.1638 - ac
c: 0.9380 - val_loss: 0.4540 - val_acc: 0.8504
Epoch 19/30
4902/4902 [============ ] - 24s 5ms/step - loss: 0.1416 - ac
c: 0.9472 - val loss: 0.4620 - val acc: 0.8697
Epoch 20/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.1208 - ac
c: 0.9525 - val_loss: 0.4882 - val_acc: 0.8812
Epoch 21/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1228 - ac
c: 0.9498 - val loss: 0.4189 - val acc: 0.8765
Epoch 22/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1024 - ac
c: 0.9598 - val_loss: 0.4222 - val_acc: 0.8826
Epoch 23/30
```

```
c: 0.9521 - val loss: 0.4033 - val acc: 0.8877
Epoch 24/30
4902/4902 [============= ] - 23s 5ms/step - loss: 0.1167 - ac
c: 0.9480 - val loss: 0.3914 - val acc: 0.8962
Epoch 25/30
c: 0.9551 - val loss: 0.4562 - val acc: 0.8802
Epoch 26/30
c: 0.9551 - val_loss: 0.4109 - val acc: 0.8982
Epoch 27/30
c: 0.9264 - val loss: 0.4433 - val acc: 0.8690
Epoch 28/30
c: 0.9529 - val loss: 0.6180 - val acc: 0.8490
Epoch 29/30
4902/4902 [============== ] - 23s 5ms/step - loss: 0.1421 - ac
c: 0.9449 - val loss: 0.4366 - val acc: 0.8985
Epoch 30/30
4902/4902 [============ ] - 24s 5ms/step - loss: 0.1144 - ac
c: 0.9504 - val loss: 0.4239 - val acc: 0.8914
Model: "sequential 25"
Layer (type)
                  Output Shape
                                  Param #
______
lstm_25 (LSTM)
                  (None, 128)
                                  70656
dropout 25 (Dropout)
                  (None, 128)
                                  а
dense 25 (Dense)
                  (None, 6)
                                  774
______
Total params: 71,430
Trainable params: 71,430
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
c: 0.6182 - val loss: 0.8693 - val acc: 0.6498
Epoch 2/30
4901/4901 [============= ] - 24s 5ms/step - loss: 0.5647 - ac
c: 0.7960 - val loss: 0.5274 - val acc: 0.8045
Epoch 3/30
c: 0.8980 - val loss: 0.4171 - val acc: 0.8568
c: 0.9278 - val loss: 0.4451 - val_acc: 0.8395
Epoch 5/30
4901/4901 [=============== ] - 23s 5ms/step - loss: 0.1961 - ac
c: 0.9276 - val loss: 0.3291 - val acc: 0.8694
Epoch 6/30
c: 0.9351 - val loss: 0.3749 - val acc: 0.8653
```

```
Epoch 7/30
4901/4901 [============= ] - 24s 5ms/step - loss: 0.1976 - ac
c: 0.9267 - val loss: 0.4665 - val acc: 0.8490
Epoch 8/30
c: 0.9418 - val_loss: 0.4340 - val_acc: 0.8612
Epoch 9/30
4901/4901 [============= ] - 23s 5ms/step - loss: 0.1551 - ac
c: 0.9418 - val_loss: 0.3435 - val_acc: 0.8755
Epoch 10/30
4901/4901 [============ ] - 23s 5ms/step - loss: 0.1829 - ac
c: 0.9243 - val_loss: 0.3574 - val_acc: 0.8907
Epoch 11/30
4901/4901 [============== ] - 24s 5ms/step - loss: 0.1340 - ac
c: 0.9445 - val_loss: 0.3484 - val_acc: 0.8901
c: 0.9388 - val_loss: 0.3540 - val_acc: 0.8738
Epoch 13/30
4901/4901 [============= ] - 22s 5ms/step - loss: 0.1334 - ac
c: 0.9494 - val_loss: 0.3960 - val_acc: 0.8918
Epoch 14/30
c: 0.9510 - val_loss: 0.3436 - val_acc: 0.8907
Epoch 15/30
c: 0.9433 - val_loss: 0.4624 - val_acc: 0.8809
Epoch 16/30
c: 0.9345 - val_loss: 0.4598 - val_acc: 0.8663
Epoch 17/30
c: 0.9433 - val_loss: 0.2876 - val_acc: 0.9104
Epoch 18/30
c: 0.9504 - val loss: 0.3160 - val acc: 0.9063
Epoch 19/30
c: 0.9229 - val loss: 0.3852 - val acc: 0.8918
Epoch 20/30
4901/4901 [============== ] - 23s 5ms/step - loss: 0.1279 - ac
c: 0.9496 - val loss: 0.3718 - val acc: 0.8799
Epoch 21/30
c: 0.9408 - val_loss: 0.4326 - val_acc: 0.8945
Epoch 22/30
c: 0.9494 - val loss: 0.4681 - val acc: 0.8846
Epoch 23/30
c: 0.9547 - val loss: 0.4872 - val acc: 0.8911
Epoch 24/30
c: 0.9508 - val loss: 0.4664 - val acc: 0.8890
Epoch 25/30
c: 0.9347 - val loss: 0.4758 - val acc: 0.8836
```

```
Epoch 26/30
c: 0.9455 - val_loss: 0.5322 - val_acc: 0.8792
Epoch 27/30
c: 0.9498 - val_loss: 0.3986 - val_acc: 0.8992
Epoch 28/30
c: 0.9535 - val_loss: 0.4902 - val_acc: 0.8951
Epoch 29/30
c: 0.9478 - val_loss: 0.4360 - val_acc: 0.8979
Epoch 30/30
c: 0.9523 - val loss: 0.4217 - val acc: 0.9060
2451/2451 [=========== ] - 4s 2ms/step
Model: "sequential 26"
Layer (type)
                Output Shape
                              Param #
______
1stm 26 (LSTM)
                              70656
                (None, 128)
dropout 26 (Dropout)
                (None, 128)
dense 26 (Dense)
                (None, 6)
                              774
______
Total params: 71,430
Trainable params: 71,430
Non-trainable params: 0
None
Train on 4901 samples, validate on 2947 samples
Epoch 1/30
c: 0.5850 - val loss: 0.7571 - val acc: 0.7089
c: 0.8031 - val loss: 0.6674 - val acc: 0.7665
320/4901 [>.....] - ETA: 16s - loss: 0.3546 - acc:
0.8906Buffered data was truncated after reaching the output size limit.
```

Using CNN-1D

```
In [0]: from keras.layers.convolutional import Conv1D
    from keras.layers import Dense, Activation, Flatten, MaxPooling1D
    from keras.layers.normalization import BatchNormalization
```

```
In [79]:
         model = Sequential()
         model.add(Conv1D(64, kernel_size=3,activation='relu', padding='same', input_sh
         ape=(timesteps, input dim)))
         model.add(Conv1D(64, kernel size=3,activation='relu', padding='same', input sh
         ape=(timesteps, input dim)))
         model.add(MaxPooling1D(pool_size=2))
         model.add(Conv1D(32, 3, activation='relu', padding='same'))
         model.add(Conv1D(32, 3, activation='relu', padding='same'))
         model.add(MaxPooling1D(pool size=2))
         model.add(BatchNormalization())
         model.add(Dropout(0.5))
         model.add(Flatten())
         model.add(Dense(32, activation='relu'))
         model.add(Dense(n_classes, activation='softmax'))
         model.summary()
```

Model: "sequential_17"

Layer (type)	Output	Shape	Param #
conv1d_9 (Conv1D)	(None,	128, 64)	1792
conv1d_10 (Conv1D)	(None,	128, 64)	12352
max_pooling1d_5 (MaxPooling1	(None,	64, 64)	0
conv1d_11 (Conv1D)	(None,	64, 32)	6176
conv1d_12 (Conv1D)	(None,	64, 32)	3104
max_pooling1d_6 (MaxPooling1	(None,	32, 32)	0
batch_normalization_23 (Batc	(None,	32, 32)	128
dropout_39 (Dropout)	(None,	32, 32)	0
flatten_15 (Flatten)	(None,	1024)	0
dense_31 (Dense)	(None,	32)	32800
dense_32 (Dense)	(None,	6)	198
Total narams: 56.550			

Total params: 56,550 Trainable params: 56,486 Non-trainable params: 64

In [82]: history= model.fit(X_train, Y_train, batch_size=64, epochs=epochs, verbose=1, validation_data=(X_test, Y_test))

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/30
7352/7352 [============== ] - 2s 218us/step - loss: 0.0367 - a
cc: 0.9841 - val loss: 0.1573 - val acc: 0.9636
Epoch 2/30
7352/7352 [============== ] - 2s 223us/step - loss: 0.0342 - a
cc: 0.9846 - val loss: 0.0827 - val acc: 0.9713
Epoch 3/30
cc: 0.9837 - val loss: 0.1320 - val acc: 0.9638
Epoch 4/30
7352/7352 [=============== ] - 2s 225us/step - loss: 0.0359 - a
cc: 0.9836 - val loss: 0.1060 - val acc: 0.9675
cc: 0.9849 - val_loss: 0.2837 - val_acc: 0.9341
Epoch 6/30
cc: 0.9842 - val_loss: 0.1144 - val_acc: 0.9713
Epoch 7/30
cc: 0.9854 - val_loss: 0.1071 - val_acc: 0.9760
Epoch 8/30
7352/7352 [============== ] - 2s 220us/step - loss: 0.0309 - a
cc: 0.9860 - val_loss: 0.1271 - val_acc: 0.9695
Epoch 9/30
cc: 0.9862 - val_loss: 0.0794 - val_acc: 0.9702
Epoch 10/30
cc: 0.9873 - val_loss: 0.1459 - val_acc: 0.9621
Epoch 11/30
cc: 0.9863 - val_loss: 0.1536 - val_acc: 0.9651
Epoch 12/30
7352/7352 [============== ] - 2s 220us/step - loss: 0.0290 - a
cc: 0.9866 - val loss: 0.1432 - val acc: 0.9720
Epoch 13/30
7352/7352 [============== ] - 2s 221us/step - loss: 0.0300 - a
cc: 0.9857 - val_loss: 0.1859 - val_acc: 0.9705
Epoch 14/30
cc: 0.9866 - val_loss: 0.1291 - val_acc: 0.9709
Epoch 15/30
cc: 0.9865 - val loss: 0.2526 - val acc: 0.9576
Epoch 16/30
cc: 0.9872 - val loss: 0.2386 - val acc: 0.9516
Epoch 17/30
7352/7352 [============== ] - 2s 219us/step - loss: 0.0283 - a
cc: 0.9865 - val loss: 0.1769 - val acc: 0.9694
Epoch 18/30
cc: 0.9883 - val_loss: 0.1573 - val_acc: 0.9618
Epoch 19/30
```

```
cc: 0.9873 - val loss: 0.1546 - val acc: 0.9656
Epoch 20/30
7352/7352 [============== ] - 2s 215us/step - loss: 0.0245 - a
cc: 0.9882 - val loss: 0.1718 - val acc: 0.9674
Epoch 21/30
cc: 0.9872 - val loss: 0.1181 - val acc: 0.9683
Epoch 22/30
cc: 0.9878 - val loss: 0.2000 - val acc: 0.9727
Epoch 23/30
cc: 0.9885 - val loss: 0.1980 - val acc: 0.9672
Epoch 24/30
cc: 0.9892 - val loss: 0.1825 - val acc: 0.9679
Epoch 25/30
7352/7352 [============= ] - 2s 218us/step - loss: 0.0219 - a
cc: 0.9892 - val loss: 0.2449 - val acc: 0.9606
Epoch 26/30
cc: 0.9889 - val loss: 0.1731 - val acc: 0.9681
Epoch 27/30
7352/7352 [============== ] - 2s 225us/step - loss: 0.0217 - a
cc: 0.9895 - val_loss: 0.1576 - val_acc: 0.9712
Epoch 28/30
cc: 0.9903 - val_loss: 0.1358 - val_acc: 0.9707
Epoch 29/30
7352/7352 [============== ] - 2s 224us/step - loss: 0.0212 - a
cc: 0.9898 - val_loss: 0.1950 - val_acc: 0.9589
Epoch 30/30
cc: 0.9900 - val loss: 0.1482 - val acc: 0.9696
```

```
In [84]: score_ = model.evaluate(X_test, Y_test)
    print('loss:', score_[0])
    print('Accuracy:', score_[1])
    x = list(range(1,epochs+1))
    fig,ax = plt.subplots(1,1)
    ax.set_xlabel('epoch'); ax.set_ylabel('Categorical Crossentropy Loss')
    vy = history.history['val_loss']
    ty = history.history['loss']
    plt_dynamic(x, vy, ty, ax)
```

2947/2947 [==========] - 1s 196us/step

loss: 0.14820250596297643 Accuracy: 0.9695735862791478


```
In [83]: from prettytable import PrettyTable

x = PrettyTable()

x.field_names = ["Model", "Loss", "Test ACC"]

x.add_row(["LSTM", "categorical", 0.89])
x.add_row(["CNN:1D", "binary", 0.9696])

print(x)
```

```
+-----+
| Model | Loss | Test ACC |
+-----+
| LSTM | categorical | 0.89 |
| CNN:1D | binary | 0.9696 |
```

Conclusions:

1) Used Various ML model with features extracted by domain experts.

- 2) Linear SVM performed well with 96% accuracy.
- 3) Tried simple LSTM model with only 128 features given by sensors. Performed GridSearch to fine tune hyperparameters.LSTM Model performed good but not that great like Linear SVM.It gave 0.89 accuracy.
- 4) Then CNN 1D was tried and it yield almost 97% accuracy when used binary cross ectropy.
- 5) All models were run for 30 epochs.