Programação Dinâmica

A Programação Dinâmica procura resolver o problema de otimização através da análise de uma sequência de problemas mais simples do que o problema original.

A resolução do problema original de N variáveis é caracterizado pela determinação de uma variável e pela resolução de um problema que possua uma variável a menos (N-1). Este por sua vez é resolvido pela determinação de uma variável e pela resolução de um problema de N-2 variáveis e assim por diante. O problema a ser resolvido é do tipo:

-existem N atividades ou estágios numerados de 1 a N.

 $-X_i$ é a quantidade de recursos colocados nas atividades ou estágios i $(X_i \ge 0)$

 $-g_i(X_i)$ é a função que representa o ganho ou o retorno devido a colocação de X_i recursos na atividade i, $Q=x_1+x_2+...+x_N$ é a quantidade total de recursos disponíveis.

-O objetivo é determinar a distribuição de recursos X_i que maximiza o ganho total.

$$R(X_1, X_2,...,X_N) = g_1(X_1) + g_2(X_2) + ...g_N(X_N).$$

considerando que as atividades são independentes e os ganhos g_i sejam aditivos.

Formulação

Maximizar R depende de Q e N. Esta dependência é explicada da seguinte maneira:

$$f_N(Q) = \frac{Max}{X_i} \{R(X_1, X_2, ..., X_N)\}$$

 $f_N(Q)$ representa o ganho máximo devido à distribuição de Q quantidades de recursos nas N atividades.

Condição Inicial

 $a)g_i(0) = 0 \implies para cada atividade i (ganho nulo para zeros recursos distribuídos).$

b) $f_N(0) = 0 \Rightarrow$ para N = 1,2,... (se o total Q de recursos é nulo, o ganho máximo também é nulo).

$$c)f_1(Q) = g_1(Q) \Rightarrow$$
 se existir $N = 1$ atividade, então $R(X_1) = g_1(X_1)$.

Relação de Recorrência entre $f_N(Q)$ e $f_{N-1}(Q)$

Ao atribuir a quantidade X_N ($0 \le X_N \le Q$) de recursos à atividade N, restarão $Q - X_N$ recursos a serem distribuídos nas N-1 atividades restantes e o ganho máximo proveniente dessas N-1 atividades pode ser expresso por $f_{N-1}(Q - X_N)$. Sendo assim, o ganho total das N atividades pode ser expresso por:

$$g_N(X_N) + f_{N-1}(Q - X_N)$$

e se escolhermos X_N , que maximize esse ganho, teremos o valor $f_N(Q)$ do ganho máximo devido à aplicação de Q recursos em N atividades. Temos então a relação fundamental da Programação Dinâmica, dada por:

$$f_N(Q) = 0 \le \frac{Max}{X_N} \le Q$$
 $\{g_N(X_N) + f_{N-1}(Q - X_N)\}$ para $N = 2,3,...$
para $N = 1 \Rightarrow f_1(Q) = g_1(Q)$

Exemplo: Problema de Investimento de Capital

Q = \$6,00 unidades de capital disponível

N=3 atividades diferentes para investimento e as funções de ganho $g_i(X_i)$ dadas pelo

quadro abaixo:

Q	g ₁ (Q)	g ₂ (Q)	g ₃ (Q)
0	0	0	0
1	15	15	26
2	40	40	40
3	80	60	45
4	90	70	50
5	95	73	51
6	100	75	53

Qual a distribuição ótima do recurso Q = \$6,00 nas 3 atividades ?

Obtenção da função f₁(Q) da atividade 1

Condição inicial

$$f_1(0) = g_1(0) = 0$$

 $f_1(1) = g_1(1) = 15$
 $f_1(2) = g_1(2) = 40$
 $f_1(3) = g_1(3) = 80$
 $f_1(4) = g_1(4) = 90$
 $f_1(5) = g_1(5) = 95$
 $f_1(6) = g_1(6) = 100$

Obtenção da função f₂(Q) da atividade 2

 $f_N(Q)$ para N=2

Para Q = 0, $f_2(0) = 0$ pela condição inicial (b)

Para
$$Q = 1$$
, $f_2(1) = 0 \le \frac{Max}{X_2} \le 1$ $\{g_2(X_2) + f_1(1 - X_2)\}$

e como os valores possíveis de X₂ são 0 e 1, temos:

$$f_2(1) = Max \begin{cases} g_2(0) + f_1(1) = 0 + 15 = 15 \\ g_2(1) + f_1(0) = 15 + 0 = 15 \end{cases} = 15 \text{ para } X_2 = 0 \text{ ou } X_2 = 1$$

escolhemos, como solução ótima $X_2 = 0$ (poderia ter sido $X_2 = 1$).

Para
$$Q = 2$$
, $f_2(2) = 0 \le \frac{Max}{X_2} \le 2$ $\{g_2(X_2) + f_1(2 - X_2)\}$

e como os valores possíveis de X₂ são 0, 1 e 2 temos:

$$f_{2}(2) = Max \begin{cases} g_{2}(0) + f_{1}(2) = 0 + 40 = 40 \\ g_{2}(1) + f_{1}(1) = 15 + 15 = 30 \\ g_{2}(2) + f_{1}(0) = 40 + 0 = 40 \end{cases} = 40 \text{ para } X_{2} = 0 \text{ ou } X_{2} = 2$$

escolhemos, como solução ótima $X_2 = 0$ (poderia ter sido $X_2 = 2$).

Para
$$Q = 3$$
, $f_2(3) = 0 \le \frac{Max}{X_2} \le 3$ $\{g_2(X_2) + f_1(3 - X_2)\}$

e como os valores possíveis de X₂ são 0, 1, 2 e 3 temos:

$$f_{2}(3) = Max \begin{cases} g_{2}(0) + f_{1}(3) = 0 + 80 = 80 \\ g_{2}(1) + f_{1}(2) = 15 + 40 = 55 \\ g_{2}(2) + f_{1}(1) = 40 + 15 = 55 \\ g_{2}(3) + f_{1}(0) = 60 + 0 = 60 \end{cases} = 80 \text{ para } X_{2} = 0$$

Prosseguindo, pode-se encontrar:

Para
$$Q = 4$$
, $f_2(4) = 95$, para $X_2 = 1$

Para
$$Q = 5$$
, $f_2(5) = 120$, para $X_2 = 2$

Para
$$Q = 6$$
, $f_2(6) = 140$, para $X_2 = 3$

Obtenção da função f₃(Q) da atividade 3

De maneira análoga, obtemos $f_3(Q)$:

Para
$$Q = 2$$
, $f_3(2) = 0 \le \frac{Max}{X_3} \le 2$ $\{g_3(X_3) + f_2(2 - X_3)\}$

$$f_3(2) = \text{Max} \begin{cases} g_3(0) + f_2(2) = 0 + 40 = 40 \\ g_3(1) + f_2(1) = 26 + 15 = 41 \\ g_3(2) + f_2(0) = 40 + 0 = 40 \end{cases} = 41 \text{ para } X_3 = 1$$

Quadro dos Valores de $f_N(Q)$

Q	X_1	$f_1(Q)$	X_2	$f_2(Q)$	X_3	f ₃ (Q)
0	0	0	0	0	0	0
1	1	15	0	15	1	26
2	2	40	0	40	1	41
3	3	80	0	80	1	80
4	4	90	1	95	0	106
5	5	95	2	120	1	121
6	6	100	3	140	1	146

Ganho Máximo do Investimento

Na coluna $f_3(Q)$ obtém-se como ganho máximo correspondente ao investimento nas 3 atividades, o valor \$146,00, para Q = 6.

A distribuição é:

- a) para a atividade 3: $X_3 = \$1,00 \Rightarrow f_3(Q) = 146$ e subtraindo o ganho $g_3(1) = 26$ (do quadro de ganhos) restam ainda 146-26 = 120 unidades que correspondem ao ganho da aplicação de Q = 5 unidades nas outras 2 atividades.
- b) para a atividade 2, o ganho de 120 unidades corresponde a aplicação de $X_2 = 2$ unidades na atividade e
- c) para a atividade 1, restam, portanto, $Q-X_3-X_2=3$ unidades a serem aplicadas. Portanto, $X_1=3$.

Solução Ótima

$$X_1 = 3 \text{ com } g_1(3) = 80, X_2 = 2 \text{ com } g_2(2) = 40, X_3 = 1 \text{ com } g_3(1) = 26 \text{ e}$$

$$R = g_1 + g_2 + g_3 = \$146,00$$

Problema da Mochila (*Knapsack problem*)

Objetivo: maximizar a somatória dos valores dos itens que serão colocados na mochila, respeitando a sua capacidade.

Existem n itens. Cada item i possui um valor c_i e um peso w_i associado. A capacidade da mochila é L. As variáveis de controle são x_i tal que:

Código MPL para o exemplo da figura

MAX 4X1 + 2X2 + 10X3 + 1X4 + 2X5

SUBJECT TO

12X1 + 1X2 + 4X3 + 1X4 + 2X5 <= 15;

BINARY X1 X2 X3 X4 X5

Outra "versão" deste problema é quando as variáveis de controle não são binárias, mas sim inteiras (neste caso a solução irá determinar quantas unidades de cada produto serão colocados na mochila):

$$Max \sum_{i=1}^{n} c_i X_i$$

$$\begin{cases} \sum_{i=1}^{n} w_i x_i \le L \\ x_i \ge 0 \quad e \in Z \end{cases}$$

Outra "versão" deste problema é quando as variáveis de controle são reais, limitadas por valores máximos b_i (neste caso a solução irá determinar a quantidade (grandeza contínua) de cada produto que será colocado na mochila):

Max
$$\sum_{i=1}^{n} c_i x_i$$

$$\begin{cases} \sum_{i=1}^{n} w_i x_i \leq L \\ 0 \leq x_i \leq b_i \end{cases}$$

Exemplo

Um navio pode carregar 4 toneladas. Existem 3 itens. A seguinte tabela fornece o peso unitário w_i em toneladas e o retorno unitário c_i em \$ para cada item i. Como o navio deve ser carregado para maximizar o retorno total?

Item i	w _i	c _i
1	2	31
2	3	47
3	1	14

Uma vez que os pesos w_i e o peso máximo que o navio pode carregar W são inteiros, as variáveis x_i devem ser somente inteiras também.

Porque $w_3 = 1$, o número máximo de itens 3 que o navio pode carregar é 4/1 = 4, que significa que os valores de m_3 são 0,1,2,3,4. Uma alternativa m_3 é viável somente se $w_3m_3 \le x_3$

$$f_3(x_3) = \max_{m_3} \{14m_3\}, \max\{m_3\} = \left[\frac{4}{1}\right] = 4$$

	14m ₃					Solução ótima	
x ₃	m ₃ =0	m ₃ =1	m ₃ =2	m ₃ =3	m ₃ =4	f ₃ (x ₃)	m_3
0	0					0	0
1	0	14				14	1
2	0	14	28			28	2
3	0	14	28	42		42	3
4	0	14	28	42	56	56	4

$$f_2(x_2) = \max_{m_2} \{47m_2 + f_3(x_2 - 3m_2)\}, \max\{m_2\} = \left[\frac{4}{3}\right] = 1$$

	47m ₂ +f ₃	(x_2-3m_2)	Solução ótima		
\mathbf{x}_2	m ₂ =0	m ₂ =1	$f_2(x_2)$	m_2	
0	0+0=0		0	0	
1	0+14=14		14	0	
2	0+28=28		28	0	
3	0+42=42	47+0=47	47	1	
4	0+56=56	47+14=61	61	1	

$$f_1(x_1) = \max_{m_1} \{31m_1 + f_2(x_1 - 2m_1)\}, \max\{m_1\} = \left[\frac{4}{2}\right] = 2$$

	$31m_1 + f_2(x_1 - 2m_1)$			Solução	o ótima
\mathbf{x}_1	m ₁ =0	m ₁ =1	m ₁ =2	$f_1(x_1)$	m_1
0	0+0=0			0	0
1	0+14=14			14	0
2	0+28=28	31+0=31		31	1
3	0+47=47	31+14=45		47	0
4	0+61=61	31+28=59	62+0=62	62	2

Solução ótima

$$m_1 = 2$$

$$x_2 = x_1 - 2m_1$$

$$x_2 = 4 - 2 \times 2 = 0 \Rightarrow m_2 = 0$$

$$\mathbf{x}_3 = \mathbf{x}_2 - 3\mathbf{m}_2$$

$$x_3 = 0 - 3 \times 0 = 0 \implies m_3 = 0$$

$$m_1 = 2$$
, $m_2 = 0$, $m_3 = 0$

$$Z = $62,00$$