Matrices

Ejercicio 1. Calcular A + 3B - C, -A + B + 2C, AB, BA, AC, CA, BC, CB, ABC, ACB, BAC, BCA, CAB y CBA, donde A, B y C son las siguientes matrices en $\mathbb{R}^{3\times 3}$:

$$A = \begin{pmatrix} 1 & -2 & 0 \\ 1 & -2 & 1 \\ 1 & -2 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 2 \\ -2 & 0 & -1 \\ 1 & 3 & 5 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}.$$

Ejercicio 2. Repetir el ejercicio anterior con aquellos productos que tengan sentido para las matrices con coeficientes en \mathbb{Z}_{11} :

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & -1 \end{pmatrix}.$$

Martes 6 de septiembre

Ejercicio 3.

- (a) Hallar una matriz $A \in \mathbb{k}^{2 \times 2}$ no nula tal que $A^2 = 0$. Repetir para tamaño 3×3 .
- (b) Decidir si existe una matriz $A \in \mathbb{R}^{2 \times 2}$ tal que $A^2 = -\operatorname{Id}_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.
- (c) Hallar dos matrices cuadradas A y B tales que $AB \neq BA$ (sin repetir del **Ejercicio 1**).
- (d) Hallar una matriz $A \in \mathbb{k}^{n \times n}$ tal que $A \neq 0$, $A \neq \mathrm{Id}_n$ y $A^2 = A$ (probar primero a mano para n = 2, luego generalizar).
- (e) Sean $A, B \in \mathbb{k}^{n \times n}$. Dar condiciones necesarias y suficientes para que valgan las igualdades:
 - (I) $(A+B)^2 = A^2 + 2AB + B^2$.
 - (II) $(A+B)(A-B) = A^2 B^2$.

Definiciones

• Una matriz $A \in \mathbb{k}^{n \times n}$ es diagonal si $a_{ij} = 0$ para todo $i \neq j$. Es decir, si es de la forma

$$A = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}.$$

• Dada una matriz cuadrada $A \in \mathbb{k}^{n \times n}$, la traza de A es $\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii} \in \mathbb{k}$. (Notar que estamos definiendo una función $\operatorname{tr}: \mathbb{k}^{n \times n} \longrightarrow \mathbb{k}$.)

Ejercicio 4. Dadas $A, B \in \mathbb{k}^{n \times n}$, y $c \in \mathbb{k}$, probar las siguientes igualdades:

(a)
$$\operatorname{tr}(A + cB) = \operatorname{tr}(A) + c\operatorname{tr}(B)$$
,

(b)
$$tr(AB) = tr(BA)$$

Sin embargo, mostrar que existen matrices A, B, C tales que $\operatorname{tr}(ABC) \neq \operatorname{tr}(BAC)$.

★ Ejercicio 5. Probar las siguientes afirmaciones

- (a) Si $A, B \in \mathbb{R}^{n \times n}$ son matrices diagonales, entonces AB = BA.
- (b) Si A es un múltiplo escalar de la matríz identidad (esto es, $A = c \operatorname{Id}_n$ para algún $c \in \mathbb{k}$), entonces AB = BA para toda $B \in \mathbb{k}^{n \times n}$.
- (c) Si $A \in \mathbb{k}^{n \times n}$ cumple AB = BA para toda $B \in \mathbb{k}^{n \times n}$, entonces A es un múltiplo escalar de Id_n . Sugerencias: A conmuta con todas las matrices que tienen un 1 y todo lo demás 0. Pensarlo primero para n = 2.

Jueves 8 de septiembre

Ejercicio 6. Para cada una de las siguientes matrices con coeficientes en \mathbb{R} , decidir si son inversibles y hallar la inversa cuando lo sean.

$$\begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 2 & 5 & -1 \\ 4 & -1 & 2 \\ 6 & 4 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & 1 & 2 \\ 1 & -3 & 3 & -8 \\ -2 & 1 & 2 & -2 \\ 1 & 2 & 1 & 4 \end{pmatrix}.$$

Ejercicio 7. Para cada una de las siguientes matrices con coeficientes en \mathbb{C} , decidir si son inversibles y hallar la inversa cuando lo sean.

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \\ 3 & 0 & i \end{pmatrix}, \qquad \begin{pmatrix} 1-i & 2 & i \\ 0 & i & 3-i \\ 0 & 0 & i \end{pmatrix}, \qquad \begin{pmatrix} 1 & 2 & 1+2i \\ 2i & 1-i & -3+i \\ 2+2i & 5-i & -1+5i \end{pmatrix}.$$

Ejercicio 8. Probar que una matriz diagonal A es inversible si y sólo si $a_{ii} \neq 0$ para todo i.

Definicione

- Dada una matriz $A \in \mathbb{k}^{m \times n}$, se define la matriz traspuesta de A como la matriz $A^t \in \mathbb{k}^{n \times m}$ tal que $(A^t)_{ij} = A_{ji}$, $1 \le i \le n$, $1 \le j \le m$.

 (Notar que estamos definiendo una función $(-)^t : \mathbb{k}^{m \times n} \longrightarrow \mathbb{k}^{n \times m}$.)
- Una matriz $A \in \mathbb{k}^{n \times n}$ se dice nilpotente si existe un $k \geq 1$ tal que $A^k = 0$.

Práctico 3

Ejercicio 9. Dadas $A, B \in \mathbb{k}^{m \times n}, C \in \mathbb{k}^{n \times p}$, y $c \in \mathbb{k}$, probar las siguientes igualdades:

$$(A+cB)^t = A^t + cB^t, (BC)^t = C^t B^t.$$

Probar que si $D \in \mathbb{k}^{n \times n}$ es inversible, entonces D^t también lo es, y $(D^t)^{-1} = (D^{-1})^t$.

Ejercicio 10. Sea *A* la matriz
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
.

Probar que A es inversible cuando se la mira en $\mathbb{R}^{3\times3}$ pero que no lo es cuando se la mira en $\mathbb{Z}_2^{3\times3}$.

Ejercicio 11. Probar que si una matriz A es nilpotente, entonces A – Id es invertible.

Ejercicio 12. Decidir si los siguientes subconjuntos de matrices de $\mathbb{k}^{n \times n}$ son subespacios de $\mathbb{k}^{n \times n}$:

- (a) $\{A \in \mathbb{k}^{n \times n} : A = A^t\}$ (matrices simétricas).
- (b) $GL(n, \mathbb{k}) := \{ A \in \mathbb{k}^{n \times n} : A \text{ es inversible} \}.$
- (c) $\{A \in \mathbb{k}^{n \times n} : a_{ij} = 0 \text{ si } i > j\}$ (matrices triangulares superiores).
- (d) $\{A \in \mathbb{R}^{n \times n} : a_{ij} = 0 \text{ si } i \geq j\}$ (matrices estrictamente triangulares superiores).
- (e) $\{A \in \mathbb{k}^{n \times n} : \operatorname{tr}(A) = 0\}.$
- (f) $\{A \in \mathbb{k}^{n \times n} : \operatorname{tr}(A) = 1\}.$