8	Nombre:				2 ª Evaluación	No
p. 1253	Curso:	Grupo:	Fecha:	Examen IX		
Departamento de Matemáticas	2º ESO		18 de abril de 2023	Recuperación 2º evalu	ación	

Cada ecuación vale 1 punto

1. - Completa la siguiente tabla de monomios: (1 punto)

Monomio	Coeficiente	Grado	Parte Literal	Monomio Semejante
2x ⁷				
-xt				
	9	0	No tiene	
3x ² y ³				
				5x ⁴ y ² t ⁷

2. - Completa la siguiente tabla de polinomios: (1 punto)

Polinomio	Grado	¿Completo?	Término Independiente	P(-1)=
$P(x)=3x^5+5x^4-3x^3+7x$				
$P(x) = x - 2x^2 - 3x^4 + 7$				
$P(z)=4z^2-2z-3+5z^3$				
$P(y) = y^2 + 4y - 2y^3 + 15$				

3.- Dados los polinomios
$$\begin{cases} \rho(x) = 2x^4 - x^3 + 2x^2 - 3x - 3\\ q(x) = 4x^3 - 3x^2 + 2x - 1\\ r(x) = 2x^2 - 5x + 3 \end{cases}$$
 calcula:
$$\begin{cases} a) \ \rho(x) + 2q(x) - 3r(x) = \\ b) \ q(x) \cdot r(x) = \end{cases}$$

a)

b)

4. - Resuelve las siguientes ecuaciones: (2 puntos)

a)
$$7x - (1 - x) = x - 8$$

b)
$$3\cdot [2x-(x-5)]=0$$

c)
$$\frac{2(x+3)}{9} - \frac{4x-9}{15} = 1$$

$$d) 2x^2 - 10x + 12 = 0$$

6.— Mónica tiene 12 € más que Javier y esperan que mañana les den 5 € de paga a cada uno. En ese caso, Mónica tendrá mañana el doble que Javier. ¿Cuánto tiene hoy cada uno? (1,5 puntos)

7.— Un frutero ha cargado en su furgoneta 26 cajas: unas de manzanas, de 15 kilos, y otras de plátanos, de 10 kilos. Si en total pesan 320 kilos, ¿cuántas cajas eran de cada clase? (1,5 puntos)

8.- En la granja de mi tío Antonio hay x vacas e y gallinas, expresa algebraicamente: (1 punto)

Número de cabezas	
Número de patas	
Número de patas si se mueren 6 gallinas y se compran 2 vacas	
Número de patas después de nacer 18 pollitos	
Los hvevos obtenidos en una semana, si cada gallina pone 3 al día	
Número de gallinas si se llevan 50 al matadero	
La leche obtenida si cada vaca da ¾ de litro de leche	

BONUS. – Resuelve la ecuación:
$$(x-2)^2 = (x-4)\cdot(x-3)+(x-3)\cdot x$$

B A E	Nombre:	&	SOLUCI	Nota		
e. 125	Curso:	Grupo:	Fecha:	Examen IX		
Departamento de Matemáticas	2º ESO		18 de abril de 2023	Recuperación 2º evalu	ación	

Cada ecuación vale 1 punto

1.- Completa la siguiente tabla de monomios: (1 punto)

Monomio	Coeficiente	Grado	Parte Literal	Monomio Semejante
2x ⁷	2	7	x ⁷	3x ⁷
-xt	-1	2	xt	3xt
9	9	0	No tiene	5
3x ² y ³	3	5	x^2y^3	5x ² y ³
2x ⁴ y ² t ⁷	2	13	x ⁴ y ² t ⁷	5x ⁴ y ² t ⁷

2.- Completa la siguiente tabla de polinomios: (1 punto)

Polinomio	Grado	¿Completo?	Término Independiente	P(-1)=
$P(x)=3x^5+5x^4-3x^3+7x$	5	No (x^2, Ti)	No / 0	-2
$P(x) = x - 2x^2 - 3x^4 + 7$	4	No (x ³)	+ 7	1
$P(z)=4z^2-2z-3+5z^3$	3	Si	-3	-2
$P(y) = y^2 + 4y - 2y^3 + 15$	3	Si	15	14

3.- Dados los polinomios
$$\begin{cases} \rho(x) = 2x^4 - x^3 + 2x^2 - 3x - 3 \\ q(x) = 4x^3 - 3x^2 + 2x - 1 \\ r(x) = 2x^2 - 5x + 3 \end{cases} \text{ calcula: } \begin{cases} (2^{\circ}D) \text{ a) } \rho(x) + 2q(x) - 3r(x) = \\ (2^{\circ}F) \text{ a) } \rho(x) + q(x) + r(x) = \\ b) \text{ } q(x) \cdot r(x) = \end{cases}$$

$$2^{\circ}D: a) \rho(x) + 2q(x) - 3r(x) = (2x^{4} - x^{3} + 2x^{2} - 3x - 3) + 2(4x^{3} - 3x^{2} + 2x - 1) - 3(2x^{2} - 5x + 3) =$$

$$= 2x^{4} - x^{3} + 2x^{2} - 3x - 3 + 8x^{3} - 6x^{2} + 4x - 2 - 6x^{2} + 15x - 9 = 2x^{4} + 7x^{3} - 10x^{2} + 16x - 14$$

$$2^{\circ}F: a)\rho(x)+q(x)+r(x)=(2x^{4}-x^{3}+2x^{2}-3x-3)+(4x^{3}-3x^{2}+2x-1)+(2x^{2}-5x+3)=$$

$$=2x^{4}-x^{3}+2x^{2}-3x-3+4x^{3}-3x^{2}+2x-1+2x^{2}-5x+3=2x^{4}+3x^{3}+x^{2}-6x-1$$

b)
$$q(x) \cdot r(x) = (4x^3 - 3x^2 + 2x - 1) \cdot (2x^2 - 5x + 3) = 8x^5 - 20x^4 + 12x^3 - 6x^4 + 15x^3 - 9x^2 + 4x^3 - 10x^2 + 6x - 2x^2 + 5x - 3 = 8x^5 - 26x^4 + 31x^3 - 21x^2 + 11x - 3$$

4. - Resuelve las siguientes ecuaciones: (2 puntos)

a)
$$7x-(1-x)=x-8$$
 \rightarrow
 $7x-1+x=x-8$
 \rightarrow
 $7x-1+x=x-8$
 \rightarrow
 $7x+x-x=1-8$
 \rightarrow
 $7x=-7$

Despejamos x
 \Rightarrow
 $x=\frac{-7}{7}$
 \Rightarrow
 $x=-1$

c)
$$\frac{2(x+3)}{9} - \frac{4x-9}{15} = 1$$

$$\xrightarrow{\text{Red, a comón denominador}} \xrightarrow{\text{denominador}} \frac{18 \cdot (x+3)}{45} - \frac{3 \cdot (4x-9)}{45} = \frac{45}{45}$$

$$\xrightarrow{\text{Quitamos paréntesis}} \xrightarrow{\text{Quitamos denomi.}} \xrightarrow{\text{Quitamos denomi.}} 18(x+3) - 3(4x-9) = 45$$

$$\xrightarrow{\text{Transponemos términos}} \xrightarrow{\text{Transponemos términos}} 18x + 54 - 12x + 27 = 45$$

$$\xrightarrow{\text{Despejamos x}} x = \frac{-36}{6} \xrightarrow{\text{Quitamos denomi.}} x = -6$$

d)
$$2x^2 - 10x + 12 = 0$$
 $\xrightarrow{\text{Simplificamos}}$ $x^2 - 5x + 6 = 0$ \Rightarrow
$$\begin{cases} a = 1 \\ b = -5 \\ c = 6 \end{cases} \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2a}$$

$$\Rightarrow x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot 6}}{2 \cdot 1} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm \sqrt{1}}{2} = \frac{5 \pm 1}{2} = \begin{cases} x_1 = \frac{5 - 1}{2} = \frac{4}{2} = 2 & \Rightarrow x_1 = 2 \\ x_1 = \frac{5 + 1}{2} = \frac{6}{2} = 3 & \Rightarrow x_2 = 3 \end{cases}$$

6.— Mónica tiene 12 € más que Javier y esperan que mañana les den 5 € de paga a cada uno. En ese caso, Mónica tendrá mañana el doble que Javier. ¿Cuánto tiene hoy cada uno? (1,5 puntos)

Se trata de un problema de dinero, y para poder resolverlo, nos ayudaremos de una tabla en la que representaremos el dinero que tienen Mónica y Javier hoy y el dinero que tendrán mañana:

	Hoy	Mañana
Mónica	x+12	x+12+5 = x+17
Javier	X	x+5
		_

Como en el enunciado dice que mañana Mónica tendrá el doble que Javier, no fijamos en esa columna para plantear la ecuación:

Doble

$$x + 17 = 2 \cdot (x + 5)$$

Dinero de Mónica

Dinero lavier

Rompemos paréntesis

 $x + 17 = 2x + 10$

Transposición de términos

 $x + 17 = 2x + 10$

Transposición de términos

Agrupamos Despejamos x
$$x - 2x = 10 - 17 \rightarrow -x = -7 \rightarrow x = 7$$

Por tanto, Javier tiene 7 € y Mónica 19€.

7.— Un frutero ha cargado en su furgoneta 26 cajas: unas de manzanas, de 15 kilos, y otras de plátanos, de 10 kilos. Si en total pesan 320 kilos, ¿cuántas cajas eran de cada clase? (1,5 puntos)

Se trata de un problema de números que vamos a resolver mediante ecuaciones, así que, si llamamos \mathbf{x} al número de cajas de manzanas, como el número total de cajas es 26, de plátanos serán la diferencia de todas menos las de manzanas:

Por tanto, con esto ya podemos plantear la ecuación con los kilos:

$$15 \cdot x + 10 \cdot (26 - x) = 320 \rightarrow 15x + 10(26 - x) = 320 \rightarrow 15x + 260 - 10x = 320$$
Kilos de Manzanas Kilos de Platanos Transposición de términos
$$\rightarrow 15x - 10x = 320 - 260 \rightarrow 5x = 60 \rightarrow x = \frac{60}{5} \rightarrow x = 12$$

Por tanto, el frutero ha cargado 12 cajas de manzanas y 26-12=14 cajas de plátanos.

8. – En la granja de mi tío Antonio hay x vacas e y gallinas, expresa algebraicamente: (1 punto)

Número de cabezas	x + y
Número de patas	4x + 2y
Número de patas si se mueren 6 gallinas y se compran 2 vacas	$4\cdot(x+2) + 2\cdot(y-6)$
Número de patas después de nacer 18 pollitos	$4x + 2 \cdot (y+18)$
Los hvevos obtenidos en una semana, si cada gallina pone 3 al día	7.3x = 21x
Número de gallinas si se llevan 50 al matadero	x – 50
La leche obtenida si cada vaca da ¾ de litro de leche	³ / ₄ X

BONUS. – Resulve la ecuación: $(x-2)^2 = (x-4)\cdot(x-3)+(x-3)\cdot x$

$$(x-2)^{2} = (x-4)\cdot(x-3) + (x-3)\cdot x \qquad \to \qquad x^{2} - 4x + 4 = x^{2} - 3x - 4x + 12 + x^{2} - 3x \qquad \to$$
Agrupamos
$$\to \qquad x^{2} - 4x + 4 = 2x^{2} - 10x - 12 \qquad \to \qquad 2x^{2} - 10x - 12 - x^{2} + 4x - 4 = 0 \qquad \to$$

$$\to \qquad x^{2} - 6x - 16 = 0 \qquad \to \qquad \begin{cases} a = 1 \\ b = -6 \\ c = -16 \end{cases} \qquad \to \qquad x = \frac{-b \pm \sqrt{b^{2} - 4 \cdot a \cdot c}}{2 \cdot a}$$

Por tanto, las soluciones son -2 y 8.

