第八章 群和环

第七节 群的阶与群中元素的阶

三. 群的阶与群中元素的阶

1. 群的阶:

定义: 设<G,★>是群,如果 |G|=n,则称 <G,★> 是 n 阶群。

当 G 所包含的元素个数为有限时,群 <G,★>的 阶为 G 所包含的元素个数。

当 G 所包含的元素个数为无限时,群 <G,★>为 无限群。

群< $\{a\}, \star >$, < $\{a,b\}, \star >$, < $\{a,b,c\}, \star >$ 分别是 1、2、3 阶群,假定 a 是幺元,根据有限群运算表的特征,它们的运算表分别是:

*	а	*	а	b
		a b	а	b
а	a	b	b	a

*	а	b	С	
а	a	b	С	
b	b	С	a	
С	С	a	b	

从运算表可以看出: 所有的一阶群都同构; 所有的二阶群都同构; 所有的三阶群都同构。

2. 群中元素的阶

定义: 设<G, \star >是群, a \in G, 使得 a^k = e 成立的最小正整数 k 称为 a 的阶, 记作 |a|=k, 称 a 为 k 阶元。

若不存在这样的正整数 k, 则称 a 的阶是无限的。

例如: 群 <I,+>是一个无限群,只有幺元 0 的阶是 1,其余元素的阶都是无限的。

例: <X, ∘>的运算表如下图所示: <X, ∘>是否是群? 若是群求各元素的阶。

0	S	R	Α	L	
S	S	R	Α	L	7
R	R	Α	L	S	
Α	Α	L	S	R	
L	L	S	R	Α	

解: 显然<X,。>是封闭的; 可以验证 <X,。>是可结合的; S是幺元; S的逆元为S, A的 逆元为A, R与 L 互为逆元。 所以<X,。>是群。

因为 S¹=S, A₀A=A²=S, R⁴=R²₀R²=A₀A=S, L⁴=L²₀L²=A₀A=S, 所以 |S|=1, |A|=2, |R|= 4, |L|=4。

设<G,★>是群, a∈G且 |a| = k。 设 n 是整数,则

- 定理 (1) aⁿ = e 当且仅当 k/n。
 - $(2) |a^{-1}| = |a|$.

证明 (1) 充分性:由于 k/n,必存在整数 m 使得 n=mk, 因 |a|=k, 所以 $a^k=e$, 因此有 $a^{n} = a^{mk} = (a^{k})^{m} = e^{m} = e_{o}$ 必要性:已知 $a^n=e$,(反证法)假设 n 不是 k 的整数倍, 根据除法规则,一定存在整数 m 和 r 使得 n=mk+r ($m,r \in I$, 0 ≤ r < k),于是有 e= aⁿ= a^{mk+r} = (a^k)^m★a^r = e★a^r = a^r 由 $a^r=e$,而 r<k,与 |a|=k 矛盾。 所以 n 一定是 k 的整数倍。 这就证明了 k/n。

证明: (I) 当 |a| 为有限数,

本 |a-1| - + 相根 /1 方 和 推论: <G,★>是个群,对任何 a∈G, 有 (aⁿ)⁻¹ = (a⁻¹)ⁿ

(II) 当 |a| 为无限,

若 |a⁻¹| 为有限数, 设 |a⁻¹|=n,
a¹ =((a⁻¹)⁻¹)¹ =((a⁻¹)¹)¹ =e⁻¹ = e
这与 |a|为无限矛盾。所以 |a⁻¹|也为无限的。

综上 |a⁻¹| = |a|。

第七节 结束