Premier University

Department of Computer Science and Engineering

4th Semester Special Retake Examination, September, 2020 Course Title: Signals and Systems Course Code: EEE 201

Suggestion

Q-1	a.	Define Signals and Systems.	01
	b.	Write short notes on: i)Odd Signal ii)Energy Signa iii)Memory system	06
Q-2	a.	Given $x[n] = 1, n=1,2$ = -1, n=-1,-2,-3	3.5
		= 0, n=0, n>2 or n<-3 Find y[n] = x[2n+3]	
	b.	Categorize the signal	3.5
		$x[n] = n,$ $0 \le n \le 5$ = 10-n, $5 \le n \le 10$ = 0,otherwise as power or energy signal and find the energy/time average power	
Q-3	a.	Write short notes on: i)Impulse Function ii)Ramp Function	02
	b.	Define causal system. Consider a system for which input-output relation is $y(t) = x(t) x(t-1)$. Find out whether the system is linear or non-linear.	05
Q-4	a.	Evaluate the convolutional integral for a system with input $x(t)$ and impulse response $h(t)$, respectively given by $x(t) = u(t-1)-u(t-3)$ and $H(t) = u(t) - u(t-1)$	05
	b.	Describe briefly the initial and final value theorem.	02
Q-5	a.	Find Fourier Transform for the rectangular pulse	04

		$x(t) = 1, - T_o < t < T_o$	
		= 0, otherwise	
		- 0, otherwise	
	b.		03
		Illustrate block diagram representation for	
		y[n] + y[n-1] + y[n-2] = x[n] + x[n-1] + x[n-2]	
Q-6	a.	Determine the Laplace transform, ROC and locations of poles and zeros of $X(s)$ for $x(t) = \sin(3t)u(t)$	04
	b.	Find the unilateral Laplace Transform of $x(t) = e^{-t}u(t) * \sin(t-2)u(t-2)$	03
Q-7	a.		06
		Use the linearity property to determine FS co-efficients Z[k] for the	
		signal depicted below	
		z(t)	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Figure: 6(b)	
	1-	State the consolidation was set of Francisco Bouncardation	01
0.0	b.	State the convolution property of Fourier Representation	01
Q-8	b.	Explain the difference between causal and memory system. Determine the Laplace transform, ROC and locations of poles and zeros of $X(s)$ for $x(t) = 3tu(t)$	04
Q-9	a.	The impulse response of a system is given by $h(t) = RC^{-1}*e^{-t/RC}*u(t)$ Find the expression for magnitude and phase response.	05
	b.	Explain whether the function $x(t) = t$ stable or not.	02
Q-10	a.	Find the frequency domain representation of the signal depicted below. Illustrate the amplitude and frequency spectra.	06

