Model-based Deep Hand Pose Estimation

Xingyi Zhou¹, Qingfu Wan¹, Wei Zhang¹, Xiangyang Xue¹, Yichen Wei²

¹Fudan University, ²Microsoft Research

{zhouxy13, qfwan13, weizh, xyxue}@fudan.edu.cn, ²yichenw@microsoft.com

Figure 1: Illustration of model based deep hand pose learning. After standard convolutional layers and fully connected layers, the hand model pose parameters (mostly joint angles) are produced. A new hand model layer maps the pose parameters to the hand joint locations via a forward kinematic process. The joint location loss and a physical constraint based loss guide the end-to-end learning of the network.

Goal

Given a depth image of human hand, estimate accurate 3D joint locations.

Challenges

- Highly articulated structure
- Significant self-occlusion
- various viewpoint changes

Previous Approaches

Model based(Generative)

- Synthesize observation from hand geometry.
- Optimize the discrepancy to obtain the pose.
- Accurate but slow.

Learning based(Discriminative)

- Learn a direct regression function that maps the image appearance to hand pose.
- Efficient but suffer from invalid poses.

Hybrid Discriminative and Generative

- Discriminative method for initialization.
- Model based refinement.
- Separated multi-stages.

Our Approach

We propose a model based deep learning approach that fully exploits the hand model geometry. We develop a new layer that realizes the non-linear forward kinematics, that is, mapping from the joint angles to joint locations. The layer is efficient, differentiable, parameter-free and servers as an intermediate representation in the network.

Contribution

- For the first time, we show that the end-to-end learning using the non-linear forward kinematics layer in a deep neutral network is feasible for hand pose estimation.
- we show that using joint location loss and adding an additional regularization loss on the intermediate pose representation are important for accuracy and pose validity.

Code is available at

https://github.com/tenstep/DeepModel

Method

Hand Model

A hand model is a map from hand pose parameters Θ to 3D joint locations Y

$$\mathcal{F}: \mathcal{R}^D o \mathcal{R}^{J imes 3}$$

D=26: The degrees of freedom of human hand

J=23: The number of key joints.

 $Y = \mathcal{F}(\Theta)$

Forward Kinematic

 $\mathbf{p}_{u^{(k)}} = (\prod_{t \in Pa(u)} Rot_{\phi_t}(\theta_t) \times Trans_{\phi_t}(\theta_t))[0, 0, 0, 1]^\top$

Deep Learning with a Hand Model Layer

Joint location loss:

$$L_{jt}(\Theta) = \frac{1}{2} ||\mathcal{F}(\Theta) - Y||^2$$

Physical constraint loss:

$$L_{phy}(\Theta) = \sum_{i} \left[max(\underline{\theta_i} - \theta_i, 0) + max(\theta_i - \overline{\theta_i}, 0) \right].$$

Overall loss:

$$L(\Theta) = L_{jt}(\Theta) + \lambda L_{phy}(\Theta)$$

Experiments

Self Comparison

Metrics Methods	Joint error	Angle error
direct joint	17.2 <i>mm</i>	21.4°
direct parameter	26.7mm	12.2°
ours w/o phy	16.9mm	12.0°
ours	16.9mm	12.2°

obtain joint angle ground truth.

We use a PSO based off-line model fitting to

- Direct joint is hard to be fitted in a model.
- Direct parameter has large joint error.
- Ours w/o phy is the best, but there are 18.6% frames have out-of-range angles.
- Physical constraint ensures pose validity.

NYU Dataset [4, 1, 2]

ICVL Dataset[3, 1]

References

- [1] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. Hands deep in deep learning for hand pose estimation. CVWW, 2015.
- [2] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. Training a feedback loop for hand pose estimation. In ICCV, 2015.
- [3] Danhang Tang, Hyung Jin Chang, Alykhan Tejani, and Tae-Kyun Kim. Latent regression forest: Structured estimation of 3d articulated hand posture. In CVPR, 2014.
- [4] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin. Real-time continuous pose recovery of human hands using convolutional networks. ACM Transactions on Graphics, 2014.