Traccia A

Estendere il set di istruzioni della macchina a registri con l'operazione SUMPARDIS R_i , R_j , R_k , X. In particolare, si considerino i due vettori V_1 e V_2 , entrambi di dimensione pari al valore contenuto in R_k e tali che V_1 sia memorizzato in RAM a partire dall'indirizzo X, mentre V_2 a partire dall'indirizzo X+20. L'operazione restituirà in R_i la somma degli elementi pari di V_1 e in V_2 in somma degli elementi dispari di V_2 . Se non ci sono elementi pari in V_1 (o dispari in V_2), l'operazione restituirà zero in V_3 (o in V_3), rispettivamente).

Esempio: Supponiamo che R_k contenga il valore 7 e che i due vettori siano $V_1 = [1, 4, 7, 3, 7, 4, 2]$ e $V_2 = [2, 7, 5, 2, 4, 1, 3]$. Allora in R_i verrà memorizzato il valore 10 mentre in R_i il valore 16.

Traccia B

Estendere il set di istruzioni della macchina a registri con l'operazione SUMPOSNEG $R_i,\,R_j,\,R_k,\,X$. In particolare, si considerino i due vettori V_1 e V_2 , entrambi di dimensione pari al valore contenuto in R_k e tali che V_1 sia memorizzato in RAM a partire dall'indirizzo X, mentre V_2 a partire dall'indirizzo X+25. L'operazione restituirà in R_i la somma degli elementi positivi di V_1 e in R_j la somma degli elementi negativi di V_2 . Se non ci sono elementi positivi in V_1 (o negativi in V_2), l'operazione restituirà zero in R_i (o in R_j , rispettivamente).

Esempio: Supponiamo che R_k contenga il valore 7 e che i due vettori siano $V_1 = [-1, 4, 2, -3, 0, -3, 3]$ e $V_2 = [2, -3, 10, 12, 0, 0, -5]$. Allora in R_i verrà memorizzato il valore 9 mentre in R_j il valore -8.

Traccia C

Estendere il set di istruzioni della macchina a registri con l'operazione SUMDISPAR R_i, R_j, R_k, X . In particolare, si considerino i due vettori V_1 e V_2 , entrambi di dimensione pari al valore contenuto in R_k e tali che V_1 sia memorizzato in RAM a partire dall'indirizzo X, mentre V_2 a partire dall'indirizzo X+18. L'operazione restituirà in R_i la somma degli elementi dispari di V_1 e in V_2 in a somma degli elementi pari di V_2 . Se non ci sono elementi dispari in V_1 (o pari in V_2), l'operazione restituirà zero in V_2 (o in V_3), rispettivamente).

Esempio: Supponiamo che R_k contenga il valore 7 e che i due vettori siano $V_1 = [1, 4, 7, 3, 7, 4, 2]$ e $V_2 = [2, 7, 5, 2, 4, 1, 3]$. Allora in R_i verrà memorizzato il valore 18 mentre in R_j il valore 8.

Traccia D

Estendere il set di istruzioni della macchina a registri con l'operazione SUMNEGPOS $R_i,\,R_j,\,R_k,\,X$. In particolare, si considerino i due vettori V_1 e V_2 , entrambi di dimensione pari al valore contenuto in R_k e tali che V_1 sia memorizzato in RAM a partire dall'indirizzo X, mentre V_2 a partire dall'indirizzo X+17. L'operazione restituirà in R_i la somma degli elementi negativi di V_1 e in R_j la somma degli elementi positivi di V_2 . Se non ci sono elementi negativi in V_1 (o positivi in V_2), l'operazione restituirà zero in R_i (o in R_j , rispettivamente).

Esempio: Supponiamo che R_k contenga il valore 7 e che i due vettori siano $V_1 = [6, -4, 2, -3, 2, -3, 3]$ e $V_2 = [2, 3, -10, -1, 0, 1, -5]$. Allora in R_i verrà memorizzato il valore -10 mentre in R_j il valore 6.