Poznámka (Literature)

Kechris.

Definice 0.1 (Polish space)

We say TS (X, τ) is polish (PTS) if X is separable and completely metrizable.

Poznámka

Complete compatible metric is not unique: $\tilde{\rho} = \min\{1, \rho\}$.

Například

 \mathbb{R} , \mathbb{C} , \mathbb{R}^n , \mathbb{C}^n , $2 := \{0, 1\}$, $\omega := \{0, 1, 2, \ldots\}$ with discrete topology, Separable Banach space (SBS), metrizable compacts, 2^{ω} , ω^{ω} (both with product topology).

Věta 0.1 (Baire)

X TS metrizable with complete metric. Then countable intersection of open dense subsets of X is dense in X.

 $D\mathring{u}kaz$

Without proof. (We should know it already.)

Věta 0.2

X complete metric space, $\{F_n\}$ is decreasing sequence of closed subsets of X, such that $\operatorname{diam}(F_n) \to 0$. Then $|\bigcap F_n| = 1$.

 $D\mathring{u}kaz$

Without proof. (We should know it already.)

Věta 0.3

- (i) If X_n are PTS, $n \in \omega$. Then $\prod_{n \in \omega} X_n$ is PTS.
 - (ii) X PTS, $H \subset X$. Then H is $PTS \Leftrightarrow H \in \mathcal{G}_{\delta}(X)$

D ukaz ((i))

Let d_n be CCM (complete compatible metric) on X_n , $n \in \omega$. Then

$$d(x,y) := \sum_{n=0}^{\infty} \min \{2^{-n}, d_n(x_n, y_n)\}\$$

is CCM on $X = \prod_{n \in \omega} X_n$, where $x = (x_n)$, $y = (y_n)$. ("Definition is correct" is trivial, "d is metric" straightforward, "d is complete" also easy, compatibility too).

Důkaz ((ii))

 $H = \emptyset$, H = X trivial. Assume $H \neq \emptyset$, X.

$$\subseteq$$
 : $x \in H, n \in \omega, x \in B_{\varrho}(x, 2^{-n-2}) \subset V_n$.

" \supseteq ": $x \in V_n \cap \overline{H}$ for every $n \in \omega \implies \exists$ open sets G_n : $x \in G_n$, $G \cap H \neq \emptyset$, $\operatorname{diam}(G_n \cap H) < 2^{-n}$. We can assume: $G_{n+1} \supset G_n$ (we can use intersection: $G_{n+1} \cap G_n \cap H \neq \emptyset$) \iff $x \in G_n \cap G_{n+1} \cap \overline{H} \neq \emptyset$).

 $\{y\} := \bigcap_{n \in \omega} \overline{G_n \cap H}^H \in H. \text{ For contradiction: } x \neq y \implies \exists O \subset X \text{ open: } x \notin \overline{O}, y \in O, G_n \cap H \subset B(y, 2^{-n}), n \in \omega. \implies \exists n \in \omega G_n \cap H \subset O, x \in G_n \cap (X \setminus \overline{O}) \cap \overline{H} \implies G_n \cap (X \setminus \overline{O}) \cap H \neq \emptyset.$

" \Leftarrow ": fix CCM d on X, $H = \bigcap_{n \in \omega} U_n$, $\emptyset = U_n \neq X$. $F_n := X \setminus U_n$, $\tilde{d}(x,y) = d(x,y) + \sum_{n=0}^{\infty} \min \left\{ 2^{-n}, \left| \frac{1}{\operatorname{dist}(x,F_n)} - \frac{1}{\operatorname{dist}(y,F_n)} \right| \right\}$, $x,y \in H$. Next we verified that \tilde{d} is metric, that \tilde{d} is equivalent with d on H (by convergence), and that (H,\tilde{d}) is complete metric space and separable. TODO?

Definice 0.2 (Notation)

 $A \neq 0$:

- $A^{<\omega}$:= finite sequence of elements of $A = \bigcup_{n \in \omega} A^n$;
- $s \in A^k$, $t \in A^{<\omega} \cup A^{\omega}$: $s \wedge t := (s_0, s_1, \dots, s_{k-1}, t_0, t_1, \dots)$, where $s = (s_0, \dots, s_{k-1})$, $t = (t_0, t_1, \dots)$;
- $s \in A^{<\omega} \cup A^{\omega}$: |s| is the number of elements of sequence s $(|s| \in \omega \cup \{\infty\})$;
- $s \in A^{<\omega} \cup A^{\omega}$, $k \in \omega$, $|s| \ge k$, then we denote restriction of s on first k elements as s/k;
- $s < t \text{ iff } |t| \ge |s| \text{ and } s = t/|s| \ (s \in A^{<\omega}, \ t \in A^{<\omega} \cup A^{\omega}).$

1 Baire space ω^{ω}

Definice 1.1

For $s \in \omega^{<\omega}$ we define Baire interval of s as $\mathcal{N}(s) := \{ \nu \in \omega^{\omega} | s < \nu \}$.

 $\mathcal{N}(s)$ are clopen $(\mathcal{N}(s) = \omega^{\omega} \setminus \bigcup \{\mathcal{N}(t) | |t| = |s|, t \neq s, t \in \omega^{<\omega}\}).$

 $\{\mathcal{N}|s\in\omega^{<\omega}\}$ is base of topology of ω^{ω} .

Věta 1.1 (Alexandrov–Urysohn)

 ω^{ω} is up to homeomorphism unique nonempty multi-dimension PTS such that every compact has empty interior.

 $D\mathring{u}kaz$

Bez důkazu.

Důsledek

 ω^{ω} is homeomorphic to $\mathbb{R}\backslash\mathbb{Q}$.

Věta 1.2

Let $X \neq \emptyset$, PTS. Then X is continuous image of ω^{ω} .

Poznámko

 $X \neq \emptyset$ PTS. Then there $\exists F \subset \omega^{\omega}$, F closed, and continuous injection $\varphi : F \to X$.

 $D\mathring{u}kaz$

Find CCM on X such that diam $X \leq 1$. We inductively construct closed $\emptyset \neq A_s \subset X$ for every $s \in \omega^{<\omega}$ such that 1. $A_{\emptyset} = X$; 2. diam $(A_s) \leq 2^{-|s|}$; 3. $A_s = \bigcup_{i \in \omega} A_{s \hat{i}}$.

Empty set is trivial. Assume we already have A_s . Find $\{x_i|i\in\omega\}\subset A_s$ dense in A_s . $A_{s^{\hat{}}i}:=A_s\cap\overline{B(x_i,2^{-|s|-2})}\neq\varnothing$ closed.

Fix $\forall \nu \in \omega^{\omega} : f(\nu) := x$, where $\{x\} = \bigcap_{k \in \omega} A_{\nu/k} \neq \emptyset$ (intersection of closed nonempty non-increasing sequence of sets). "f is surjection": $x \in A_s \stackrel{3}{\Longrightarrow} \exists n \in \omega : x \in A_{s^{\wedge}n} \stackrel{1}{\Longrightarrow} \forall x \in X \ \exists \alpha \in \omega^{\omega} \ \forall k \in \omega : x \in A_{\alpha/k} \implies x = f(\alpha)$.

"f continuous": $f(\mathcal{N}_{\nu/k}) \subset A_{\nu/k}$ for every $\nu \in \omega^{\omega}$, $k \in \omega$, diam $A_{\nu/k} \leq 2^{-k}$.

1.1 Cantor set 2^{ω}

Tvrzení 1.3

 2^{ω} is up to homeomorphism unique nonempty nuldimensional compact metrizable space without isolated points (without isolated points is called perfect space).

Tvrzení 1.4

Let $X \neq \emptyset$ metrizable, compact. Then X is continuous image of 2^{ω} .

Without proof, but it is similar to the previous one.

1.2 Hilbert cube $[0,1]^{\omega}$

Tvrzení 1.5

Let X be PTS. Then X is homeomorphic to G_{δ} subset of $[0,1]^{\omega}$.

Důkaz

X PTS, case \emptyset is trivial, so assume $X \neq \emptyset$, ϱ is CCM on X, $\varrho \leqslant 1$. Let $\{x_n, n \in \omega\}$ be dense in X. Define $f: [0,1]^{\omega}: f(x) = (\varrho(x,x_n))_{n \in \omega}$. $\varrho \leqslant 1 \implies f(x) \in [0,1]^{\omega}$.

"Continuity of f": $f^{-1}(U) = \bigcap_{i=1}^n B(x_i, b_i) \setminus \overline{B(x_i, a_i)}$ open.

"Injective": $x \neq y \implies \exists n \in \omega : \varrho(x, x_n) < \varrho(y, x_n) \implies f(x) \neq f(y)$.

"Continuity of f^{-1} " $f(y^n) \to f(y) \stackrel{?}{\Longrightarrow} y^n \to y$.

$$f(y^n) \to f(y) \stackrel{?}{\Leftrightarrow} \forall k \in \omega : \varrho(y^n, x_k) \to \varrho(y, x_k).$$

Let $\varepsilon > 0$ be arbitrary:

$$\exists k \in \omega : \varrho(y, x_k) < \frac{\varepsilon}{3}. \ \exists n_0 \ \forall n \geqslant n_0 : \varrho(y^n, x_k) < \frac{2\varepsilon}{3}.$$

Then

$$\forall n \geqslant n_0 : \varrho(y^n, y) \leqslant \varrho(y^n, x_k) + \varrho(x_k, y) < \varepsilon.$$

So f(X) is homeomorphism to $X \implies f(X)$ is PTS $\implies f(X) \in \mathcal{G}_{\delta}([0,1]^{\omega})$.

Důsledek

Let X be compact metrizable space. Then X is homeomorphic to some closed subset of $[0,1]^{\omega}$.

 $D\mathring{u}kaz$

Compact metrizable space is Polish. And compact subset must be closed.

1.3 $\mathcal{K}(X)$: Hyperspace of compact subsets of X

Definice 1.2

Let X be PTS, denote $\mathcal{K}(X) := \{K \subset X | K \text{ is compact}\}$. Vietoris topology on $\mathcal{K}(X)$ is generated by $\{K \in \mathcal{K}(X) | K \subset V\}$ for V open and $\{K \cap \mathcal{K}(X) | K \cap V \neq \emptyset\} = \mathcal{K}(X) \setminus \{K \in \mathbb{K}(X) | K \subset X \setminus V\}$

Tvrzení 1.6

Let X be PTS, ϱ CCM on X, $\varrho \leqslant 1$. Then mapping $h : \mathcal{K}(X) \times \mathcal{K}(X) \mapsto [0, +\infty)$ defined as:

$$h(K,L) = \begin{cases} 0, & K = L = \varnothing, \\ \max\left\{\sup_{x \in K} \varrho(x,L), \sup_{y \in L} \varrho(y,K)\right\}, & K,L \neq \varnothing, \\ 1, & other \ cases, \end{cases}$$

is CCM on K(X) with Vietoris topology. h is known as Hausdorff metric.

Poznámka

 $\mathcal{K}(X)$ is separable if X is PTS. X is compact metrizable $\implies \mathcal{K}(X)$ is compact (totally bounded).

X is separable $\implies \exists D \subset X : \overline{D} = X, |D| = \omega.$

$$M = \{K \subset D | |K| < \omega\} \implies |M| = \omega.$$

 $\overline{M} = \mathcal{K}(X)$. $K \in \mathcal{K}(X)$ arbitrary, $\varepsilon > 0$ arbitrary. Then $\exists \frac{\varepsilon}{2}$ net $P \subset K$, $|P| < \omega$. We find $\{\tilde{x}_0, \dots, \tilde{x}_n\} \subset D : \varrho(x_i, \tilde{x}_i) < \frac{\varepsilon}{2} \wedge h(K, \{\tilde{x}_0, \dots, \tilde{x}_n\}) < \varepsilon$.

X is compact, P is ε -net in X, $|P| < \omega \implies 2^P$ is finite ε -net in $\mathcal{K}(X)$.

 $D\mathring{u}kaz$

 $(\emptyset \neq K, L, P \in \mathcal{K}(X).)$ h is metric, definition is correct, $h \geqslant 0$ trivial, h(K, L) = h(L, K) trivial, $h(K, L) = 0 \implies K = L \ (x \notin L \implies \varrho(x, L) > 0 \implies K \subset L \land L \subset K).$

" " aka "
 $h(K,L) \leqslant h(K,P) + h(P,L)$ ": Let $x \in K, y \in L, p \in P.$ Then

$$\begin{split} \varrho(x,L) \leqslant \varrho(x,y) \leqslant \varrho(x,p) + \varrho(p,y) & \quad \inf y \in L \\ \varrho(x,L) \leqslant \varrho(x,p) + \varrho(p,L) & \quad \sup p \in P \\ \varrho(x,L) \leqslant \varrho(x,p) + h(P,L) & \quad \inf p \in P \\ \varrho(x,L) \leqslant \varrho(x,P) + h(P,L) & \quad \inf p \in P \\ & \quad \sup_{x \in K} \varrho(x,L) \leqslant h(K,P) + h(P,L). \end{split}$$

Similarly $\sup_{y \in L} \varrho(y, K) \leq h(K, P) + h(P, L)$.

TODO!!!

Definice 1.3

X is metrizable space, $1 \leq \alpha < \omega_1$. We define $\Sigma^0_{\alpha}(X)$, $\Pi^0_{\alpha}(X)$, and $\Delta^0_{\alpha}(X)$ by induction:

$$\Sigma_1^0(X) := \{ U \subset X | U \text{ open} \},\,$$

$$\Pi^0_\alpha(X) := \left\{ A \subset X | X \backslash A \in \Sigma^0_\alpha(X) \right\},$$

$$\Sigma^0_\alpha(X) := \left\{ \bigcup_{n \in \omega} A_n | A_n \in \Pi^0_{\alpha_n}(X), \alpha_n < \alpha, n \in \omega \right\},$$

$$\Delta^0_\alpha(X) := \Sigma^0_\alpha \cap \Pi^0_\alpha(X).$$

Poznámka (By induction it can be prooven)

$$\Sigma^0_{\alpha}(X) \subset \Sigma^0_{\beta}(X), \Pi^0_{\alpha}(X) \subseteq \Pi^0_{\beta}(X), \qquad 1 \leqslant \alpha < \beta < \omega_1.$$

Poznámka

$$\forall \alpha, \beta : 1 \leqslant \alpha < \beta < \omega_1 : \Sigma_{\alpha}^0(X) \subset \Pi_{\beta}^0(X).$$

Poznámka

If X contains homeomorphic copy of 2^{ω} then all inclusions are strict.

We denote Borel(X) as σ -algebra of Borel sets (σ -algebra generated by $\Sigma_1^0(X)$).

Poznámka (Also non-trivial theorem)

$$Borel(X) = \bigcup_{1 \leq \alpha < \omega_1} \Sigma_{\alpha}^0(X) = \bigcup_{1 \leq \alpha < \omega_1} (X) = \bigcup_{1 \leq \alpha < \omega_1} \Delta_{\alpha}^0(X).$$

$$A_n \in \bigcup_{1 \leq \alpha < \omega_1} \Sigma_{\alpha}^0(X) \implies \exists 1 \leq \alpha_n < \omega_1 : A_n \in \Sigma_{\alpha_n}^0(X) \implies A_n \in \Sigma_{\sup\{\alpha_n \mid n \in \omega\}}^0 \implies \bigcup_{n \in \omega} A_n \in \Sigma_{\sup\{\alpha_n, n \in \omega\}}^0$$

Poznámka

$$F_{\sigma} = \Sigma_{2}^{0}, G_{\delta} = \Pi_{2}^{0}, F_{\sigma\delta} = \Pi_{3}^{0}, G_{\delta\sigma} = \Sigma_{3}^{0}.$$

 $\Sigma^0_{\alpha}(X)$ is closed under countable union and $\Pi^0_{\alpha}(X)$ under countable intersection.

Věta 1.7

X be metrizable, $1 \leq \alpha < \omega_1$. Then

- 1. $\Sigma^0_{\alpha}(X)$ is closed under finite intersection;
- 2. $\Pi^0_{\alpha}(X)$ is closed under finite union.

"1." Firstly for $\alpha=1$, it is trivial. Then let $A,B\in \Sigma^0_{\alpha}(X),\ \alpha>1$. Then $A=\bigcup_{n\in\omega}A_n$, $A_n\in \Pi^0_{\alpha_n}(X),\ \alpha_n<\alpha,\ B=\bigcup_{m\in\omega}B_m,\ B_m\in \Pi^0_{\beta_m}(X),\ \beta_n<\alpha.\ A\cap B=\bigcup_{(m,n)\in\omega^2}A_n\cap B_m$, $A_n\cap B_m\in \Pi^0_{\max\{\alpha_n,\beta_n\}}(X)\implies A\cap B\in \Sigma^0_{\alpha}(X)$. "2." \Longleftrightarrow de Morgan and 1.

Věta 1.8

X be metrizable, $A \subset Z \subset X$, $1 \leq \alpha < \omega_1$. Then $A \in \Sigma^0_{\alpha}(Z) \Leftrightarrow$ there exists $\tilde{A} \in \Sigma^0_{\alpha}(X)$: $A = \tilde{A} \cap Z$. Similarly for $\Pi^0_{\alpha}, \Delta^0_{\alpha}$.

 $D\mathring{u}kaz$

Firstly $\alpha = 1$ from definition of subspace. Then assume that it is all true for all $\beta < \alpha$. We want to prove it for α . ":

$$A \in \Sigma_{\alpha}^{0}(Z) \implies A = \bigcup A_{n}, A_{n} \in \Pi_{\beta_{n}}^{0}(Z), \beta_{n} < \alpha \implies \exists \tilde{A}_{n} \in \Pi_{\beta_{n}}^{0}(X) : \tilde{A}_{n} \cap Z = A_{n}.$$

$$\tilde{A} = \bigcup \tilde{A}_n \in \Sigma^0_{\alpha}(X), \tilde{A} \cap Z = Z \cap \bigcup \tilde{A}_n = \bigcup (Z \cap \tilde{A}_n) = \bigcup A_n = A.$$

"←=":

$$\tilde{A} \in \Sigma_{\alpha}^{0}(X), A = \tilde{A} \cap Z \implies \exists \tilde{A}_{n} \in \Pi_{\beta_{n}}^{0}(X), \beta_{n} < \alpha, \bigcup \tilde{A}_{n} = \tilde{A}.$$

$$\tilde{A} \cap Z \in \Pi^0_{\beta_n}(Z) \implies A = \tilde{A} \cap Z = \left(\bigcup \tilde{A}_n\right) \cap Z = \bigcup \left(\tilde{A}_n \cap Z\right) = \bigcup A_n \in \Sigma^0_{\alpha}(Z).$$

Věta 1.9

 $X, Y \text{ be metric spaces, } f: X \to Y \text{ is continuous. If } A \in \Sigma^0_{\alpha}(Y) \ (\Pi^0_{\alpha}(Y), \ \Delta^0_{\alpha}(Y)) \text{ then } f^{-1}(A) \in \Sigma^0_{\alpha}(X) \ (\Pi^0_{\alpha}(X), \ \Delta^0_{\alpha}(Y)).$

 $D\mathring{u}kaz$

 $\alpha = 1$ trivial. Assume it holds true for $\Sigma^0_{\beta}(Y)$, $\Pi^0_{\beta}(Y)$, $\beta < \alpha$, and we want to show for $\Sigma^0_{\alpha}(Y)$ ($\Pi^0_{\alpha}(Y)$). Let $A \in \Sigma^0_{\alpha}(Y)$, $\alpha > 1 \implies A = \bigcup_{n \in \omega} A_n$, $A_n \in \Pi^0_{\beta_n}(Y)$, $\beta_n < \alpha$.

$$f^{-1}(A) = f^{-1}(\bigcup A_n) = \bigcup \underbrace{f^{-1}(A_n)}_{\Pi^0_{\beta^n}(X)} \in \Sigma^0_{\alpha}(X),$$

$$f^{-1}(Y \backslash A) = f^{-1}(Y) \backslash f^{-1}(A) = X \backslash f^{-1}(A).$$

Věta 1.10 (Borel classes in PTS)

X,Y be PTS, $A \in \Sigma^0_{\alpha}(X)$, $\alpha \geq 3$ (resp. $A \in \Pi^0_{\alpha}(X)$, $\alpha \geq 2$), $B \subset Y$. If B and A are homeomorphic then $B \in \Sigma^0_{\alpha}(Y)$ (resp. Π^0_{α}).

 $f: A \to B$ is homeomorphism A onto B. The theorem above (name?) there is extension \tilde{f} of f, \tilde{f} is homeomorphism \tilde{A} onto \tilde{B} , $A \subset \tilde{A}$, $B \subset \tilde{B}$, $\tilde{A} \in \Pi_2^0(X)$, $\tilde{B} \in \Pi_2^0(Y)$. Then $B \in \Sigma^0_{\alpha}(\tilde{B})$ (because $B = (f^{-1})^{-1}(A)$). From the theorem above, $\exists \hat{B} \in \Sigma^0_{\alpha}(Y) : B = \hat{B} \cap \tilde{B} \in \Sigma^0_{\alpha}(Y) \iff \alpha \geqslant 3$.

1.4 Analytic sets

Definice 1.4

X PTS, $A \subset X$. We say that A is analytic set in X if there exists PTS Y and continuous mapping $\varphi: Y \to X$ such that $\varphi(Y) = A$.

We denote collection of analytic subsets of X as $\Sigma_1^1(X)$. We say that A is coanalytic in X if $X \setminus A \in \Sigma_1^1(X)$ and we denote this collection as $\Pi_1^1(X)$. $\Delta_1^1(X) = \Sigma_1^1(X) \cap \Pi_1^1(X)$.

Například

$$Q = \{ \alpha \in 2^{\omega} | \exists n \in \omega \ \forall j \geqslant n : \alpha_j = 0 \} = 2^{<\omega} \in \Sigma_2^0(2^{\omega}) \setminus \Pi_2^0(2^{\omega})$$

TODO?

Poznámka

 $X \text{ PTS}, F : X \to \mathcal{K}(X) \text{ by } F(x) = \{x\}. \text{ Then } F \text{ is continuous, } F^{-1}(\mathcal{K}(A)) = A \Longrightarrow \text{if } \mathcal{K}(A) \in \Sigma^0_{\alpha}(\mathcal{K}(X)) \ (\Pi^0_{\alpha}, \ \Delta^0_{\alpha}) \text{ then } A \in \Sigma^0_{\alpha}(X) \ (\Pi^0_{\alpha}, \ \Delta^0_{\alpha}). \ A \text{ open } \Longrightarrow \mathcal{K}(A) \text{ is open,} A \text{ is closed } \Longrightarrow \mathcal{K}(A) \text{ is closed. } \mathcal{K}(\bigcap A_n) = \bigcap \mathcal{K}(A_n). \text{ Thus for } A \in \Pi^0_2(X) : \mathcal{K}(A) \in \Pi^0_2(\mathcal{K}(X)). \ A \in \Sigma^0_1(X) \ (\Pi^0_1(X), \ \Pi^0_2(X)) \Leftrightarrow \mathcal{K}(A) \in \Sigma^0_1(\mathcal{K}(X)) \ (\Pi^0_1(\mathcal{K}(X)), \ \Pi^0_2(\mathcal{K}(X))).$

Věta 1.11

 $X \ PTS, \ |X| > \omega. \ Assume \ I \subset \mathcal{K}(X), \ I \ is \ \sigma\text{-ideal} \ (K \in I, L \subset K \implies L \in I; \ K_n \in I, \bigcup K_n \in \mathcal{K}(X) \implies \bigcup K_n \in I). \ If \ I \in \Pi_2(\mathcal{K}(X)), \ then \ I \in \Sigma^1_1(\mathcal{K}(X)).$

Důsledek

 $A \notin \Pi_2^0(X) \implies \mathcal{K}(A) \notin \Sigma_1^1(\mathcal{K}(X)).$

Poznámka

 $A \in \Pi_1^1(X), \mathcal{K}(A) = \mathcal{K}(X) \setminus \{K \in \mathcal{K}(X) | \exists x \in (X \setminus A) \cap K\} \{(K, x) \in \mathcal{K}(X) \times X | x \in K\} \text{ is closed.}$

Definice 1.5

$$\Sigma_1^1(X) := \{ A \subset X | \exists Y \text{ PTS}, f : Y \to X \text{ continuous} : f(Y) = A \}.$$

 $Poznámka \quad \bullet \quad \varnothing \in \Sigma_1^1;$

- $\Pi_2^0(X) \subset \Sigma_1^1(X), f = id;$
- $X, Z \text{ PTS}, \psi : X \to Z \text{ continuous}, A \in \Sigma^1_1(X) \implies \psi(A) \in \Sigma^1_1(Z);$
- $\Sigma_{n+1}^1(X) = \{A \subset X | \exists Y \text{ PTS}, \psi : Y \to X \text{ continuous}, B \in \Pi_n^1(X), A = \psi(B)\}, n \in \omega \setminus \{\emptyset\};$
- $\Pi_n^1(X) = \{A \subset X | X \setminus A \in \Sigma_n^1(X)\}, \ \Delta_n^1(X) = \Sigma_n^1(X) \cap \Pi_n^1(X);$
- $\bigcup_{n\in\mathbb{N}} \Sigma^1_n(X) = \bigcup_{n\in\mathbb{N}} \Pi^1_n = \bigcup_{n\in\mathbb{N}} \Delta^1_n(x) = \mathbb{P}(X);$
- $\#\mathbb{P}(X) \leq 2^{\omega}$, $\mathbb{P}(X)$ is closed under continuous images and inverse images;
- $\Sigma^1_1(X) = \{A \subset X | \exists \psi : \omega^\omega \to X \text{ continuous } : \psi(\omega^\omega) = A\}; Y \text{ PTS}, f : Y \to X : f(Y) = A, g : \omega^\omega \to Y : g(\omega^\omega) = Y, g, f \text{ are constant. So } \psi = f \circ g.$

Věta 1.12

 $X \ PTS, \ A_n \in \Sigma^1_1(X), \ n \in \omega. \ Then \bigcup_{n \in \omega} A_n, \bigcap_{n \in \omega} A_n \in \Sigma^1_1(X).$

Důsledek

Similar for $\Pi_1^1(X)$.

 $D\mathring{u}kaz$

"Union": Assume $A_n \neq \emptyset$, $n \in \omega \implies \varphi_n : \omega^\omega \to X : \varphi_n(\omega^\omega) = A_n$ continuous. Define $\varphi : \omega^\omega \to X$ by $\varphi(\nu_0, \nu_1, \ldots) = \varphi_{\nu_0}(\nu_1, \nu_2, \ldots)$. " φ is continuous": $\nu^j \to \nu \implies \exists n_0 \in \omega \ \forall j \geqslant n_0 : \nu_0^j = \nu_0$.

$$\lim_{j\to\infty}\varphi(\nu^j)=\lim_{j\to\infty}\varphi_{\nu_0^j}(\nu_1^j,\nu_2^j,\ldots)=\lim_{j\to\infty}\varphi_{\nu_0}(\nu_1^j,\ldots)=\varphi_{\nu_0}(\nu_1,\ldots)=\varphi(\nu).$$

$$,\varphi(\omega^{\omega}) = \bigcup_{n \in \omega} A_n$$
":

$$x \in \bigcup A_n \implies \exists n \in \omega : x \in A_n \implies \exists \nu \in \omega^\omega : \varphi_n(\nu) = x \implies \varphi(n^{\hat{\ }}\nu) = x.$$

$$x \in \varphi(\omega^{\omega}) \implies \exists \tilde{\nu} \in \omega^{\omega} : \varphi(\tilde{\nu}) = x \implies x = \varphi_{\tilde{\nu}_0}(\tilde{\nu}_1, \ldots) \implies z \in A_{\tilde{\nu}_0} \implies x \in \bigcup A_n.$$

Poznámka (Intersection)

WLOG: $A_n \neq \emptyset$, $n \in \omega$. $Y := (\omega^{\omega})^{\omega}$, Y PTS by the theorem above (first item). $\varphi_n : \omega^{\omega} \to \emptyset$

X, meh that $\varphi_n(\omega^{\omega}) = A_n$.

$$F := \{ y = (y_0, y_1, \ldots) \in Y | \forall n, m \in \omega : \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_m(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y | \varphi_m(y_m) = \varphi_m(y_m) \} = \bigcap_$$

intersection of closed, so F is closed and is PTS.

$$,\varphi_0\circ\pi_0(F)=\bigcap_{n\in\omega}A_n$$
":

$$x \in \varphi_0 \circ \pi_0(F) \implies \exists y \in F : x = \varphi_0(y_0) = \varphi_1(y_1) = \varphi_2(y_2) = \dots \implies x \in \bigcap_{n \in \omega} A_n.$$

$$x \in \bigcap A_n \implies \exists y_0, y_1, \ldots \in \omega^\omega : \varphi_0(y_0) = x, \varphi_1(y_1) = x, \ldots \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x = x$$

Poznámka

 $\Sigma_1^1(X)$ is not closed under complement: $\sigma(\Sigma_1^1(X)) \supset \Sigma_1^1(X) \cup \Pi_1^1(x)$.

$$Borel(X) \subset \Sigma^1_1(X) \cap \Pi^1_1(X) = \Delta^1_1(X).$$

Věta 1.13

 $X, Y PTS, A \in \Sigma^1_1(X)$ (respective $\Pi^1_1(X)$), $B \subset Y, A$ and B are homeomorphism. Then $B \in \Sigma^1_1(Y)$ (resp. $\Pi^1_1(Y)$).

 $D\mathring{u}kaz$

For Σ^1_1 trivial. $A \in \Pi^1_1(X)$, $\varphi : A \to B$ homeomorphism. Then from the theorem above, $\exists \tilde{A} \in \Pi^0_2(X), \tilde{B} \in \Pi^0_2(Y)$ and $\tilde{\varphi} : \tilde{A} \to \tilde{B}$ homeomorphism extending $\varphi, A \subset \tilde{A}, B \subset \tilde{B}$. Then $\tilde{A} \backslash A = (X \backslash A) \cap \tilde{A} \in \Sigma^1_1(X) \Longrightarrow \tilde{B} \backslash B \in \Sigma^1_1(Y)$. $B = Y \backslash (\tilde{B} \backslash B \cup Y \backslash \tilde{B}) \in \Pi^1_1(Y)$. \Box

Věta 1.14

X PTS. Then $Borel(X) \subset \Delta_1^1(X)$.

 $D\mathring{u}kaz$

Trivial.

1.5 Luzin theorem

Věta 1.15 (Luzin)

X PTS, $A_1, A_2 \in \Sigma_1^1(X)$, $A_1 \cap A_2 = \emptyset$. Then there exists $B \in Borel(X)$, such that $A_1 \subset B \subset X \setminus A_2$.

```
D\mathring{u}sledek \\ X \ PTS. \ \Delta^1_1(X) = Borel(X).
D\mathring{u}kaz \\ \Delta^1_1(X) \subseteq Borel(X) \ \text{we already have.}
A \in \Delta^1_1(X) \implies A \in \Sigma^1_1(X), X \backslash A \in \Sigma^1_1 \implies \exists B \in Borel(X) : A \subset B \subset X \backslash (X \backslash A) = A \implies A = B = A
```

Lemma 1.16

 $C_n, D_n \subset X$, $n, m \in \omega$ and $\forall n, m \in \omega$ we can separate C_n, D_m by some Borel set. Then we can separate $\bigcup_{n \in \omega} C_n$ and $\bigcup_{m \in \omega} D_m$ by Borel set.

 $D\mathring{u}kaz$

Let $B_{n,m} \in Borel(X)$ separating C_n from D_m ($C_n \subset B_{n,m} \subset X \setminus D_m$). Put $B := \bigcup_{n \in \omega} \bigcap_{m \in \omega} B_{n,m}$.

Důkaz (Luzin theorem)

Assume $A_1, A_2 \neq \emptyset$. Then exists $\varphi_1, \varphi_2 : \omega^{\omega} \to X \ \varphi_i(\omega^{\omega}) = A_i$. We assume A_1 can't be separated from A_2 by any Borel set.

$$A_i = \varphi_i(\omega^\omega) \implies A_i = \bigcup_{n \in \omega} \varphi_i(\mathcal{N}(n)) \implies \exists \nu_0, \mu_0 \in \omega : \varphi_i(\mathcal{N}(\mu_0)) \text{ can't be separated from } \varphi_2(\mathcal{N}(\nu_0)).$$

We use lemma again and obtain $\mu, \nu \in \omega^{\omega}$ such that $\forall k \in \omega : \varphi_1(\mathcal{N}(\mu/k))$ can't be separated from $\varphi_2(\mathcal{N}(\nu/k))$

$$\varphi_1(\mu) \in A_1, \varphi_2(\nu) \in A_2 \implies \varphi_1(\mu) \neq \varphi_2(\nu) \implies \exists G_1, G_2 \text{ open }, G_1 \cap G_2 = \emptyset$$

such that $\varphi_1(\mu) \in G_1$, $\varphi_2(\nu) \in G_2$, φ_1, φ_2 are continuous $\Longrightarrow \exists k \in \omega : \varphi_1(\mathcal{N}(\mu/k)) \subset G_1$, $\varphi_2(\mathcal{N}(\nu/k)) \subset G_2$ which is continuous.

Například

$$\{f \in C([0,1]) | \forall x \in [0,1] : f'(x) \in \mathbb{R}\} \in \Pi_1^1 \backslash \Delta_1^1.$$

 $\{f \in C([0,2\pi)| \text{ Fourier series converges to } f \text{ for every } x \in [0,2\pi]\} \in \Pi_1^1 \backslash \Delta_1^1.$

$$\{K \in \mathcal{K}([0,1])||K| \leq \omega\}, \{K \in \mathcal{K}(\mathbb{R})|K \subset \mathbb{Q}\} \in \Pi_1^1 \backslash \Delta_1^1.$$

 $Nap \check{r} iklad$

$${x \in X | \exists y \in Y : (x, y) \in B} \in \Sigma_1^1(X).$$

TODO!!!

Lemma 1.17

 (X,τ) PTS, $F \in \Pi_1^0(X)$. Let τ_F be topology generated by $\tau \cup \{F\}$. Then τ_F is Polish, $F \in \Delta_1^0(X,\tau_F)$, $\Delta_1^1(X,\tau_F) = \Delta_1^1(X,\tau)$.

 $D\mathring{u}kaz$

 (X, τ_F) is homeomorphic with $((X \setminus F) \times \{0\}) \cup (F \times \{1\}) \subset X \times \{0, 1\}$ which is PTS and those two subsets are G_δ in $X \times \{0, 1\}$, so, (X, τ_F) is Polish.

$$\Delta_1^1(((X\backslash F)\times\{0\})\cup(F\times\{1\})) \leftrightarrow \Delta_1^1(\tau_F) = \left\{A\cup B|A\in\Delta_1^1(X\backslash F,\tau), B\in\Delta_1^1(F,\tau)\right\} \subset \Delta_1^1(\tau) \subset \Delta_1^1(\tau_F).$$

Lemma 1.18

 (X,τ) PTS, $(\tau_n)_{n\in\omega}$ Polish topology, $\tau\subset\tau_n$, $n\in\omega$. Then topology τ_∞ generated by $\bigcup_{n\in\omega}\tau_n$ is polish. If $\forall n\in\omega:\tau_n\subset\Delta^1_1(\tau)$, then $\Delta^1_1(\tau)=\Delta^1_1(\tau_\infty)$.

 $D\mathring{u}kaz$

Set $X_n := (X, \tau_n)$, $\varphi : X \to \prod_{n \in \omega} X_n$, $\varphi(x) = (x, x, x, x, \ldots)$. φ is homomorphism (X, τ_∞) on $\varphi(X)$. $(U \in \text{base of } \tau_\infty \implies \exists n \in \omega : U \in \tau_n, \varphi(U) = x_1 \times x_2 \times \ldots \times x_{n-1} \times U \times x_{n+1} \times \ldots \cap \varphi(X)$ is open. $\varphi(X) \in \Pi_1^0(\prod X_n) \implies \varphi(X)$ PTS $\implies (X, \tau_\infty)$ PTS.)

$$\Delta_1^1(\tau) = \Delta_1^1(\tau_\infty) \iff \sigma(\sigma(M)) = \sigma(M). \ (\tau_\infty \subset \Delta_1^1(\tau) = \Delta_1^1(\tau_n).) \ \tau_\infty \subset \bigcup \Delta_1^1(\tau_n).$$

Věta 1.19

 (X, τ) PTS, $A \in \Delta_1^1(X, \tau)$. There exists polish topology τ_A such that $\tau \subset \tau_A$, $\Delta_1^1(\tau_A) = \Delta_1^1(\tau)$ and $A \in \Delta_1^0(X, \tau_A)$.

 $D\mathring{u}kaz$

 $\mathcal{S} := \{D \in \Delta_1^1(X) | \text{ exists polish topology } \tau_D \supset \tau \text{ and } \Delta_1^1(\tau_D) = \Delta_1^1(\tau), D \in \Delta_1^0(X, \tau_D) \}.$ We know that $\tau \subset \mathcal{S}$ and that \mathcal{S} is closed under complements. Moreover, \mathcal{S} is closed under countable union $(A_n \in \mathcal{S} \to \tau_{A_n} \to \tau_{\infty} = \tau_{|A_n})$. So $\mathcal{S} = \Delta_1^1(X, \tau)$.

Lemma 1.20

 $X, Y PTS. \ f: X \to Y \ Borel. \ Then \ \mathrm{graph}(f) \in \Delta^1_1(X \times Y).$

 \Box $D\mathring{u}kaz$

Fix compatible complete metric ϱ on Y. U_n , $n \in \omega$, countable collection of open balls with diam $< 2^{-n}$ covering Y.

graph
$$f \stackrel{?}{=} \bigcap_{n \in \omega} \bigcup_{U \in U_n} f^{-1}(U) \times U \in \Delta^1_1(X \times Y).$$

"⊆":
$$(x,y) \in \operatorname{graph}(f) \Leftrightarrow f(x) = y \implies \forall n \in \omega \; \exists U \in U_n : y \in U \land x \in f^{-1}(U) \implies (x,y) \in \bigcap_{n \in \omega} \bigcup_{U \in U_n} f^{-1}(U) \times U.$$

Poznámka (Notation)

If f is Borel, we write $f \in \Delta_1^1$.

Věta 1.21

 $X, Y PTS, f \in \Delta_1^1(X \times Y). If A \in \Delta_1^1(X) and f|_A is injective, then <math>f(A) \in \Delta_1^1(Y).$

Důkaz

If $f: X \to Y$ is injective, then $f(A) = \prod_{Y} (\operatorname{graph}(f) \cap A \times Y) \in \Sigma_1^1(Y)$.

$$Y\backslash F(A) = \prod_{Y} (\operatorname{graph}(f) \cap (X\backslash A) \times Y) \in \Sigma^1_1(Y) \implies f(A) \in \Delta^1_1(Y).$$

Assume f is continuous, $A \in \Pi_1^0(X)$. From the theorem above $A \subset \omega^{\omega}$, $B_s := f(\mathcal{N}(s)capA)$. $\forall s \in \omega^{<\omega} \ \forall i, j, i \neq j : B_{s^{\wedge}i} \cap B_{s^{\wedge}j} = \emptyset \iff f \text{ is injection.} \ \forall s \in \omega^{<\omega} : B_s = \bigcup_{i \in \omega} B_{s^{\wedge}i}$.

From Luzin separation theorem, there exists (by induction) $(B'_s)_{s\in\omega^{<\omega}}$ of Borel sets:

$$\forall s \in \omega^{<\omega} \ \forall i, j \in \omega, i \neq j B'_{s^{\wedge}i} \cap B'_{s^{\wedge}i} = \varnothing.$$

(separation $B_{s^{\wedge}i}$, $\bigcup_{j < i} B_{s^{\wedge}j} \cup \bigcup_{l > i} B_{s^{\wedge}l}$) $\forall s \in \omega^{<\omega} : B_s \subset B'_s$.

Put: $B_{\varnothing}^* = Y$, $B_{s^{\wedge}j}^* = B_{s^{\wedge}j} \cap \overline{B_{s^{\wedge}j}} \cap B_s^*$. $\forall s \in \omega^{<\omega} : B_s^* \in \Delta_1^1(Y)$, $B_s \subset B_s^* \subset \overline{B_s}$, $B_{s^{\wedge}j}^* \subset B_s^*$, $B_{s^{\wedge}j}^* \cap B_{s^{\wedge}i}^* = \varnothing$, $s \in \omega^{<\omega}$, $i, j \in \omega$, $i \neq j$. We proof: $f(A) \stackrel{?}{=} \bigcup_{s \in \omega^{<\omega}} \bigcap_{k \in \omega} B_{s/k}^* = \bigcap_{k \in \omega} \bigcup_{s \in \omega^k} B_s^* \in \Delta_1^1(Y)$.

$$B_s^*, s \in \omega^{<\omega}, B_s^* \in \Delta_1^1(Y). \ f(A) = \bigcap_{k \in \omega} \bigcup_{s \in \omega^k} B_s^*:$$

 $,\subseteq : x \in f(A) \implies \exists \nu \in A : f(\nu) = x. \text{ Then } x \in f(\mathcal{N}_{\nu/k} \cap A) = B_{\nu/k} \subset B_{\nu/k}^*, \ k \in \omega$ $\implies x \in \bigcap_{k \in \omega} \bigcup_{s \in \omega^k} B_s^*.$

- a) Let f is continuous and $A \in \Delta_1^1(X)$. On X we find Polish topology τ_A such that $A \in \Delta_1^0(\tau_A)$, $\tau \subset \tau_A$ (so f is continuous with respect to τ_A), $\Delta_1^1(\tau) = \Delta_1^1(\tau_A)$.
- b) Let $f \in \Delta_1^1$. Then $f(A) = \pi_Y(\operatorname{graph}(f) \cap A \times Y)$. Observe that π_Y is injective on $(\operatorname{graph}(f) \cap A \times Y)$ if f is injective on A.

m V'eta~1.22

 $X, Y PTS, f \in \Delta^1_1(X \times Y).$

1.
$$A \in \Sigma^1_1(X) \implies f(A) \in \Sigma^1_1(Y);$$

$$2. \ B \in \Sigma^1_1(Y) \implies f^{-1}(B) \in \Sigma^1_1(X);$$

3.
$$B \in \Pi_1^1(Y) \implies f^{-1}(B) \in \Pi_1^1(X)$$
.

```
Důkaz
"1.": f(A) = \pi_Y((\operatorname{graph}(f) \cap A \times Y) is continuous image of \Sigma_1^1 set.

"2.": f^{-1}(B) = \pi_X((\operatorname{graph}(f) \cap X \times B) is continuous image of \Sigma_1^1 set.

"3.": f^{-1}(B) = f^{-1}(Y) \setminus f^{-1}(Y \setminus B).
```

1.6 Standard Borel spaces (SBS)

Definice 1.6 (Standard Borel space (SBS))

Measurable space (X, \mathcal{S}) is called standard Borel space (SBS) if there exists Polish topology τ on X such that $\Delta_1^1(X, \tau) = \mathcal{S}$.

Definice 1.7 (Effros Borel space)

Let X be PTS and $\mathcal{F}(X) := \Pi_1^0(X)$. Let \mathcal{S} be σ -algebra generated by sets of form $\{F \in \mathcal{F}(X) | F \cap U \neq \emptyset\} =: M_U$, where $U \in \Sigma_1^0(X)$. $(\mathcal{F}(X), \mathcal{S})$ is called Effros Borel space.

Věta 1.23

X PTS. Then $(\mathcal{F}(X), \mathcal{S})$ is SBS.

 $D\mathring{u}kaz$

Without proof.

Poznámka

X be measurable compact. Then $\mathcal{F}(X)$ can be equipped by Vietoris topology.

Příklad

 $SB := \{Y \in \mathcal{F}(C([0,1])) | Y \text{ is Banach subspace of } C([0,1]) \}$. If we restrict Effros σ -algebra on SB then SB is SBS.

$$SD = \{Y \in SB | Y \text{ has separable dual} \},$$

 $NU = \{Y \in SB | Y \text{ is not universal} \},$
 $REFL = \{Y \in SB | Y \text{ is reflexive} \},$
 $NL_1 = \{Y \in SB | Y \text{ does not contain } l_1 \}.$

2 Regularity of Σ_1^1 sets

2.1 Sets with Baire property (BP)

Definice 2.1 (Baire property (BP))

X TS, $A \subset X$ has Baire property (BP) in X if there exists open $U \subset X$ and set of 1. category $M \subset X$ such that $A = U \triangle M := (U \backslash M) \cup (M \backslash U)$. Collection of all sets with BP we denote as Baire(X).

Věta 2.1

X TS. Then Baire(X) is σ -algebra and $Baire(X) \supset \Delta_1^1(X)$.

 $D\mathring{u}kaz$

1. "Baire(X) $\supset \Sigma_1^0(X)$ " trivial. 2. "Baire(X) is σ -algebra": a) " $A \in Baire(X) \stackrel{?}{\Longrightarrow} X \setminus A \in Baire(X)$ ": $A \in Baire(X) \implies \exists G \in \Sigma_1^0(X)$ and M meagre such that $A = G \triangle M$.

$$X \setminus A = X \setminus (G \triangle M) = (X \setminus G) \triangle M = (\operatorname{int}(X \setminus G) \cup (X \setminus G) \setminus \operatorname{int}(X \setminus G)) \triangle M = (X \setminus G) \triangle M$$

$$= (V \cup M_1) \triangle M_2 = V \triangle M \qquad (M = M_1 \triangle M_2).$$

b) $A_n \in Baire(X) \stackrel{?}{\Longrightarrow} \bigcup A_n \in Baire(X)$ ": $A_n = G_n \triangle M_n$, $G_n \in \Sigma_1^0(X)$, M_n meager. $M'_n = G_n \cap M_n$ (meager), $M''_n = M_n \setminus G_n$ (meager).

$$\bigcup A_n = \bigcup ((G_n \backslash M'_n) \cup M''_n) = ((\bigcup G_n) \backslash M''') \cup \bigcup M''_n,$$

where $M''' \subset \bigcup_{n \in \omega} M'_n$.

Lemma 2.2

X TS, $A \subset X$. Then A is meager iff $\forall x \in A \exists V \in \Sigma_1^0(X)$ such that $x \in V$ and $A \cap V$ is meager.

" \Longrightarrow " trivial. " \Longleftarrow " \mathcal{U} denote as maximal collection of disjoint Σ_1^0 sets such that $U \cap A$ is meager for $U \in \mathcal{U}$. We show that $A \cap \bigcup \mathcal{U}$ is meager, $X \setminus \bigcup \mathcal{U}$ is nowhere dense, so meager.

 $"X \setminus \bigcup \mathcal{U}$ is nowhere dense": By contradiction we assume that there exists $\varnothing \neq V \in \Sigma_1^0(X), \ V \subset X \setminus \bigcup \mathcal{U}$. Now we have 2 cases: $A \cap V = \varnothing \implies V \in \mathcal{U}$ contradiction, or $A \cap V \neq \varnothing \implies \exists x \in A \cap V \implies \exists W \in \Sigma_1^0(X) : x \in W, W \cap A$ is meager $\implies x \in W \cap V \neq \varnothing, W \cap V \cap A$ is meager $\implies W \cap V \in \mathcal{U}$ contradiction.

" $\bigcup \mathcal{U} \cap A$ is meager": $\mathcal{U} := \{U_{\alpha} | \alpha \in I\}$, $U_{\alpha} \cap A$ meager \Longrightarrow exist? $F_n^{\alpha} \in \Pi_1^0(X)$ nowhere dense: $U_{\alpha} \cap A \subset \bigcup F_n^{\alpha} \subset \overline{U_{\alpha}}$. We show that $\bigcup_{\alpha \in I} F_n^{\alpha}$ is nowhere dense:

$$a)\bigcup_{\alpha\in I}U_{\alpha}\backslash F_{n}^{\alpha}\in\Sigma_{1}^{0}(X),\quad (\bigcup_{\alpha\in I}U_{\alpha}\backslash F_{n}^{\alpha})\cap(\bigcup_{\alpha\in I}F_{n}^{\alpha})=\varnothing\iff F_{n}^{\alpha}\subset\overline{U_{\alpha}},\quad \overline{U_{\alpha}}\cap U_{\beta}=\varnothing,\alpha\neq\beta$$

So \mathcal{U} is disjoint collection, so $\bigcup_{\alpha \in I} U_{\alpha} F_n^{\alpha} \cap \overline{\bigcup_{\alpha \in I} F_n^{\alpha}} = \emptyset$.

$$\implies \overline{\bigcup_{\alpha \in I} F_n^{\alpha}} \subset (\bigcup_{\alpha \in I} (U_{\alpha} \cap F_n^{\alpha})) \cup (X \setminus \bigcup \mathcal{U}).$$

b) We assume $\exists V \in \Sigma_1^0(X), \ V \neq \emptyset, \ V \subset \overline{\bigcup_{\alpha \in I} F_n^{\alpha}}$.

?
$$\Longrightarrow V \not \subset X \setminus \bigcup \mathcal{U} \stackrel{a)}{\Longrightarrow} V \cap \bigcup_{\alpha \in I} (U_{\alpha} \cap F_{n}^{\alpha}) \neq \emptyset \implies \exists \alpha \in I : V \cap U_{\alpha} \neq \emptyset.$$

$$a) \implies V \cap U_{\alpha} \subset \bigcup_{\alpha \in I} (U_{\alpha} \cap F_n^{\alpha}) \stackrel{\mathcal{U} \text{ disjoint}}{\Longrightarrow} V \cap U_{\alpha} \subset F_n^{\alpha} \not = 0.$$

TODO!!!

2.2 Solecky theorem

Poznámka (Notation) X PTS, $\mathcal{I} \subset \Pi_1^0(X)$.

$$\mathcal{I}^{ext} := \left\{ A \subset X | \exists \mathcal{F} \subset \mathcal{I}, |\mathcal{F}| = \omega, A \subset \bigcup \mathcal{F} \right\}.$$

Například

 $\mathcal{I} = \{ A \subset X | |A| < \omega \}, \ \mathcal{I} = \{ A \subset X | A \text{ nowhere dense} \}.$

$$\mathcal{I}^{perf} = \left\{ A \subset X | A \neq \varnothing, \forall U \in \Sigma_1^0(X) : U \cap A \neq \varnothing \implies U \cap A \notin \mathcal{I}^{ext} \right\}.$$

Ker $A := A \setminus \bigcup \left\{ U \subset X | U \in \Sigma_1^0(X), U \cap A \in \mathcal{I}^{ext} \right\} =$

= max perfect subset of $A \iff X$ has countable base.

$$MGR(A) = \{ Z \subset A | Z \text{ be meager in } A \}, \qquad A \subset X.$$

Věta 2.3 (Solecki)

 $X \ PTS, \ A \in \Sigma^1_1(A), \ \mathcal{I} \subset \Pi^0_1(X). \ A \notin \mathcal{I}^{ext} \implies \exists H \in \Pi^0_2(X), H \subset A, H \notin \mathcal{I}^{ext}$

Lemma 2.4 (For proof of Solecki)

 $A \in \Sigma_1^1(X) \backslash \mathcal{I}^{ext}$. Then there exists Suslin scheme $(A_s)_{s \in \omega^{<\omega}}$ of closed subsets of X such that:

$$A_{\varnothing} = \varnothing, \qquad a_s A_s \subset A, \qquad A_s \neq \varnothing \implies A \cap A_s \in \mathcal{I}^{perf}, \overline{A \cap A_s} = A_s, \qquad \overline{\bigcup_{n \in \omega} A_{s^{\wedge} n}} = A_s.$$

Důkaz

 $(H_s)_{s \in \omega^{<\omega}}$ closed subsets of X, decreasing $(H_s \supset H_{s \land n}, n \in \omega)$, $A = a_s H_s \iff A \in \Sigma^1_1(X)$. For $s \in \omega^{<\omega} : L_s := a_t H_{s \land t}, A_s := \overline{\operatorname{Ker}(L_s)}$.

- 1. $A_{\varnothing} = \overline{\operatorname{Ker}(L_{\varnothing})} = \overline{\operatorname{Ker}(A)} \neq \varnothing \iff A \notin \mathcal{I}^{ext}$ (X has countable base).
- 2. $H_s \searrow \Longrightarrow L_s \subset H_s \Longrightarrow \operatorname{Ker}(L_s) \subset H_s \stackrel{H_s \in \Pi_1^0(X)}{\Longrightarrow} A_s \subset H_s \Longrightarrow a_s A_s \subset a_s H_s = A.$
- 3. $\operatorname{Ker}(L_s) \subset A_s, L_s \subset A : (A = \bigcup_{|s|=k} L_s, k \in \omega \iff H_s \setminus) \implies \operatorname{Ker}(L_s) \subset A_s \cap A,$ $\overline{\operatorname{Ker}(L_s)} = A_s.$

$$A_s = \overline{\mathrm{Ker}(L_s)} \subset \overline{A_s \cap A} \subset \overline{A_s} = A_s.$$

Assume $A_s \neq \emptyset \implies A \cap A_s \neq \emptyset$. $U \in \Sigma_1^0(X)$, $U \cap A \cap A_s \neq \emptyset \implies U \cap \operatorname{Ker}(L_s) \neq \emptyset \implies U \cap \operatorname{Ker}(L_s) \notin \mathcal{I}^{ext}$. $\Longrightarrow U \cap A \cap A_s \notin \mathcal{I}^{ext}$.

4. $\bigcup_{n\in\omega} A_{s^{\wedge}n} \subset A_s \iff (H_s \searrow \Longrightarrow L_s \searrow \Longrightarrow A_s \searrow)$. Let $U \in \Sigma_1^0(X)$, $U \cap A_s \neq \emptyset$ $\Longrightarrow U \cap \operatorname{Ker}(L_s) \neq \emptyset \implies U \cap L_s \notin \mathcal{I}^{ext}$.

$$L_s = \bigcup_{n \in \mathcal{U}} L_{s \wedge n} \implies \exists n_0 \in \omega : U \cap L_{s \wedge n_0} \notin \mathcal{I}^{ext} \implies U \cap \operatorname{Ker}(L_{s \wedge n_0}) \notin \mathcal{I}^{ext} \implies U \cap A_{s \wedge n_0} \neq \emptyset.$$

Důkaz (Solecki theorem, not in exam)

 $A \in \Sigma_1^1(X) \setminus \mathcal{I}^{ext}$, $(A_s)_{s \in \omega^{<\omega}}$ from the previous lemma. There are 2 cases:

"1st case $\exists s \in \omega^{<\omega} \ \exists U \in \Sigma_1^0(X) : A_s \cap U \neq \emptyset \land MGR(A_s \cap U) \subset \mathcal{I}^{ext}$ ": Put $\tilde{A} := A \cap A_s \cap U$. Then from the third item of the previous lemma $\tilde{A} \in \mathcal{I}^{perf}$, $\tilde{A} \in \Sigma_1^1(X)$. $A_s \neq \emptyset$,

$$A \cap A_s \in \mathcal{I}^{perf}, \ U \cap A_s \neq \varnothing \implies U \cap A \cap A_s \neq \varnothing \iff \overline{A \cap A_s} = A_s.$$

$$\implies \tilde{A} \in Baire(A_s \cap U) \iff (A_s \cap U \in \Pi_2^0(X)), A_s \cap U \text{ PTS}.$$

$$\tilde{A} = H \cup M, H \in \Pi_2^0(A_s \cup U), M \in MGR(A_s \cap U) \subset \mathcal{I}^{ext} \implies H \notin \mathcal{I}^{ext}, H \subset A.$$

"2nd case $\forall s \in \omega^{<\omega} \ \forall U \in \Sigma_1^0(X), U \cap A_s \neq \emptyset : MGR(A_s \cap U) \backslash \mathcal{I}^{ext} \neq \emptyset$ ": Notation: $\mathcal{F} \subset 2^X : \mathcal{F}^d := \overline{\bigcup \mathcal{F}} \backslash \bigcup \{\overline{F} | F \in \mathcal{F}\}$. Choose CCM ≤ 1 on X. We will inductively construct $\varphi : \omega^{<\omega} \to \omega^{<\omega}, \ U_s \subset X, \ s \in \omega^{<\omega} \ \text{such that:}$

- 1. $|\varphi(s)| = |s|$ TODO
- 2. $U_s \in \Sigma_1^0(X)$;
- 3. diam $U_s \leq 2^{-|s|}$;
- 4. $\lim_{n\to\infty} \operatorname{diam}(U_{s^{\wedge}n}) = 0$;
- 5. $\forall t, s \in \omega^{<\omega}, t < s, t \neq s : \overline{U_s} \subset U_t;$
- 6. $\forall s \in \omega^{<\omega} \ \forall m, n \in \omega, m \neq n : U_{s^{\wedge}m \cap U_{s^{\wedge}n}} = \emptyset;$
- 7. $U_a \cap A_{\varphi(s)} \neq \emptyset$;
- 8. $\{U_{s^{\wedge}n}|n\in\omega\}^d\notin\mathcal{I}^{ext};$
- 9. $\{U_{s^{\wedge}n}|n\in\omega\}^d\subset U_s;$
- 10. $(9. + 5.) \overline{\bigcup_{n \in \omega} U_{s^{\wedge} n}} \subset U_s.$

Construction: $\varphi(\emptyset) = \emptyset$, U_{\emptyset} be arbitrary open subset of X: $U_{\emptyset} \cap A_{\emptyset} \neq \emptyset$. Then all items are satisfied. We assume that U_s , φ_s are constructed for all $s \in \omega^{<\omega}$, $|s| \leq N \in \omega$. Let $s \in \omega^{<\omega}$, $|s| \leq N$ be arbitrary. From 7th item $U_s \cap A_{\varphi(s)} \neq \emptyset$, $MGR(A_{\varphi(s)} \cap U_s) \notin \mathcal{I}^{ext}$ $\Longrightarrow \exists K \subset A_{\varphi(s)} \cap U_s, K \in \Pi_1^0(X)$, nowhere dense in $A_{\varphi(s)} \cap U_s, K \notin \mathcal{I}^{ext}$. Because

$$\exists L \in MGR(A_{\varphi(s)} \cap U_s) \backslash \mathcal{I}^{ext} \implies \exists H \in \Sigma_2^0(X), H \supset L, H \in \Sigma_2^0(A_{\varphi(s)} \cap U_s), H \notin \mathcal{I}^{ext},$$

so
$$H = \bigcup F_n$$
, $F_n \in \Pi_1^0(X)$, nowhere dense in $A_{\varphi(s)} \cap U_s \implies \exists n_0 \in \omega : F_{n_0} = K \notin \mathcal{I}^{ext}$.

Find $D \subset A_{\varphi(s)} \cap U_s$: D is discrete in $X \setminus K$. $D \cap K = \emptyset$. $\overline{D} = K \cup D$. Let $\{y_n\} \subset K$, $\overline{\{y_n\}} = K$, and every element of $\{y_n\}$ repeats infinitely many times. Find $x_n \in (A_{\varphi(s)} \cap U_s) \setminus K$ such that $\varrho(x_n, y_n) < \frac{1}{n}$ (it exists $\longleftarrow K$ is nowhere dense in $A_{\varphi(s)} \cap U_s$). Then $D = \{x_n | n \in \omega\}$, $D \cap K = \emptyset$, $\overline{D} \supset \overline{D \cup \{y_n | n \in \omega\}} \supset D \cup K$, $x \notin K \cup D \Longrightarrow \exists n \in \omega \setminus \{0\}$: $\varrho(x, K) > \frac{1}{n} \Longrightarrow \#(B(x, 1/2n) \cap D) \leqslant 2n \Longrightarrow x \notin \overline{D}$. $\Longrightarrow \overline{D} = D \cup K$, D is discrete in $X \setminus K$. Assume $x_n \neq x_m$, $n \neq m$.

Define $U_{s^{\wedge}n}$ as open ball with center x_n : $\overline{U_{s^{\wedge}n}} \subset U_s$. $U_{s^{\wedge}n} \cap U_{s^{\wedge}m} = \emptyset$ (D is discrete), diam $U_{s^{\wedge}n} \leqslant 2^{-|s|-1}$, $\lim_{n\to\infty} \operatorname{diam} U_{s^{\wedge}n} = 0$, $\overline{\bigcup_{n\in\omega} U_{s^{\wedge}n}} \setminus \overline{\bigcup_{n\in\omega} U_{s^{\wedge}n}} = \{U_{s^{\wedge}n}|n\in\omega\} = 0$

 $K \iff \overline{U_{s^{\wedge}n}} \cap K = \varnothing, \ \overline{D} = K \cup D. \ x_n \in A_{\varphi(s)} \implies U_{s^{\wedge}n} \cap A_{\varphi(s)} \neq \varnothing, \ \overline{\bigcup_{k \in \omega} A_{\varphi(s)^{\wedge}k}} = A_{\varphi(s)} \implies \exists k \in \omega : U_{s^{\wedge}n} \cap A_{\varphi(s)^{\wedge}k} \neq \varnothing.$ Put $\varphi(s^{\wedge}n) = \varphi(s)^{\wedge}k$. And then all items are satisfied. $H = \bigcap_{n \in \omega} \bigcup_{|s| = n, s \in \omega^{<\omega}} U_s \in \Pi_2^0(X), \ H \subset A, \ H \notin \mathcal{I}^{ext}.$