

EGZAMIN MATURALNY W ROKU SZKOLNYM 2016/2017

FORMUŁA DO 2014 ("STARA MATURA")

MATEMATYKAPOZIOM ROZSZERZONY

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R1

MAJ 2017

Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania.

Zadanie 1. (0-4)

Wymagania ogólne	Wymagania szczegółowe
	3. Równania i nierówności. Zdający rozwiązuje proste równania i nierówności z wartością bezwzględną (R3.e).

Przykładowe rozwiązania

<u>I sposób</u> (wyróżnienie na osi liczbowej przedziałów)

Wyróżniamy na osi liczbowej przedziały: $(-\infty,1)$, $\langle 1,5 \rangle$, $\langle 5,+\infty \rangle$.

Rozwiązujemy nierówności w poszczególnych przedziałach i w każdym przedziale bierzemy część wspólną tego przedziału z otrzymanym zbiorem rozwiązań nierówności.

$x \in (-\infty, 1)$	$x \in \langle 1, 5 \rangle$	$x \in \langle 5, +\infty \rangle$
$-x+1-x+5 \le 10-2x$	$x-1-x+5 \le 10-2x$	$x-1+x-5 \le 10-2x$
$6 \le 10$	$2x \le 6$	$4x \le 16$
	$x \le 3$	$x \le 4$
W tym przypadku	W tym przypadku	
rozwiązaniem nierówności	rozwiązaniem nierówności	W tym przypadku nierówność
jest $x < 1$	$\int \text{jest } 1 \le x \le 3$	nie ma rozwiązania.

Sumując otrzymane rozwiązania, podajemy ostateczną odpowiedź: $(-\infty, 3)$.

Odpowiedź: Zbiorem rozwiązań nierówności jest $\left(-\infty,3\right\rangle$.

II sposób (zapisanie czterech przypadków)

Zapisujemy cztery przypadki:

Zapisujemy eztery przypadki.
$$\begin{cases} x-1 \ge 0 & \begin{cases} x-1 \ge 0 \\ x-5 \ge 0 \end{cases} & \begin{cases} x-1 < 0 \\ x-5 < 0 \end{cases} & \begin{cases} x-5 < 0 \end{cases}$$

W każdym z nich rozwiązujemy nierówność bądź układ nierówności

$x-1 \ge 0$	$\int x-1 \ge 0$	$\int x-1<0$	$\int x-1<0$
$\begin{cases} x-5 \ge 0 \end{cases}$	$\left \left\{ x - 5 < 0 \right. \right.$	$\begin{cases} x - 5 \ge 0 \end{cases}$	$\begin{cases} x-5 < 0 \end{cases}$
$\left \begin{array}{c} x - 1 + x - 5 \le 10 - 2x \end{array} \right $	$\left \left x - 1 - x + 5 \le 10 - 2x \right \right $	$\left \left -x + 1 + x - 5 \le 10 - 2x \right \right $	$\left -x + 1 - x + 5 \le 10 - 2x \right $
$x \ge 1$	$\int x \ge 1$	$\int x < 1$	$\int x < 1$
$\begin{cases} x \ge 5 \end{cases}$	$\begin{cases} x < 5 \end{cases}$	$\begin{cases} x \ge 5 \end{cases}$	$\begin{cases} x < 5 \end{cases}$
$4x \le 16$	$2x \le 6$	$2x \le 14$	6≤10
$x \ge 1$	$\int x \ge 1$	$\int x < 1$	
$\begin{cases} x \ge 5 \end{cases}$	$\left \left\{ x < 5 \right. \right $	$\begin{cases} x \ge 5 \end{cases}$	
$x \le 4$	$x \le 3$	$x \le 7$	
Brak rozwiązań	Rozw.: $1 \le x \le 3$	Brak rozwiązań	Rozw.: <i>x</i> < 1

Sumując otrzymane rozwiązania, podajemy ostateczną odpowiedź: $\left(-\infty,3\right)$.

III sposób (rozwiązanie graficzne)

Rysujemy wykresy funkcji f(x) = |x-1| + |x-5| i g(x) = 10 - 2x.

Wyróżniamy na osi liczbowej przedziały: $(-\infty,1)$, (1,5), $(5,+\infty)$.

Zapisujemy wzór funkcji f w poszczególnych przedziałach bez wartości bezwzględnej, np.

$$f(x) = \begin{cases} -2x + 6 & \text{dla } x \in (-\infty, 1) \\ 4 & \text{dla } x \in \langle 1, 5 \rangle \\ 2x - 6 & \text{dla } x \in \langle 5, +\infty \rangle \end{cases}$$

Rysujemy wykresy funkcji f i g:

Odczytujemy odciętą punktu przecięcia wykresów funkcji f i g: x=3. Sprawdzamy, czy spełniają one równanie $|x-1|+|x-5| \le 10-2x$, a następnie podajemy te

wszystkie argumenty, dla których $f(x) \le g(x)$: $x \in (-\infty, 3)$.

Uwaga

Zdający powinien zauważyć, że wykres funkcji f oraz wykres funkcji g dla $x \in (-\infty,1)$ są równoległe.

Schemat punktowania

I i II sposób rozwiazania

Zdaiacv

wyróżni na osi liczbowej przedziały $(-\infty,1)$, $\langle 1,5 \rangle$, $\langle 5,+\infty \rangle$. albo

zapisze cztery przypadki

$$\begin{cases} x-1 \ge 0 \\ x-5 \ge 0 \end{cases}$$

$$\begin{cases} x-1 \ge 0 & \begin{cases} x-1 \ge 0 & \begin{cases} x-1 < 0 & \begin{cases} x-1 < 0 \end{cases} \\ x-5 \ge 0 & \begin{cases} x-5 < 0 \end{cases} & \begin{cases} x-1 < 0 \end{cases} \end{cases}$$

$$\begin{cases} x-1 < 0 \\ x-5 > 0 \end{cases}$$

$$\begin{cases} x-1 < 0 \\ x-5 < 0 \end{cases}$$

i na tym zakończy lub dalej popełnia błedy.

Uwaga

Jeżeli zdający popełni błędy w wyznaczaniu przedziałów, to przyznajemy **0 punktów**. Podobnie **0 punktów** otrzymuje zdający, który błędnie zapisał cztery przypadki.

Zdający

zapisze nierówności w poszczególnych przedziałach, np.:

dla
$$x \in (-\infty, 1)$$
 mamy $-x+1-x+5 \le 10-2x$,
dla $x \in (1,5)$ mamy $x-1-x+5 \le 10-2x$,

dla
$$x \in (5, +\infty)$$
 mamy $x-1+x-5 \le 10-2x$

albo

zapisze nierówności w poszczególnych przypadkach, np.:

gdy
$$x-1 \ge 0$$
 i $x-5 \ge 0$, to wtedy $x-1+x-5 \le 10-2x$, gdy $x-1 \ge 0$ i $x-5 < 0$, to wtedy $x-1-x+5 \le 10-2x$,

gdy x-1<0 i $x-5\ge0$, to wtedy $-x+1+x-5\le10-2x$ (lub stwierdzi, że ten przypadek jest niemożliwy),

gdy
$$x-1 < 0$$
 i $x-5 < 0$, to wtedy $-x+1-x+5 \le 10-2x$

i na tym zakończy lub dalej popełnia błędy.

Uwagi

- Jeżeli zdający rozwiąże nierówności w poszczególnych przedziałach i na tym 1. zakończy lub nie wyznaczy części wspólnej otrzymanych wyników z poszczególnymi przedziałami i kontynuuje rozwiązanie, to otrzymuje 2 punkty.
- Jeżeli zdający rozpatrzy cztery przypadki, rozwiąże nierówności w poszczególnych przedziałach, stwierdzi, że czwarty przypadek jest niemożliwy i na tym zakończy lub nie wyznaczy części wspólnej otrzymanych wyników z poszczególnymi przedziałami i kontynuuje rozwiązanie, to otrzymuje 2 punkty.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają Zdajacy poprawnie rozwiąże nierówności i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami tylko dla dwóch przedziałów (spośród trzech wskazanych w I sposobie rozwiazania), popełni bład w trzecim i konsekwentnie doprowadzi rozwiazanie do końca albo zdający rozpatrzy cztery przypadki, poprawnie rozwiąże nierówności i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami tylko w dwóch przypadkach, popełni błąd w trzecim przypadku oraz stwierdzi, że przypadek: x-1 < 0 i $x-5 \ge 0$ jest niemożliwy i konsekwentnie doprowadzi rozwiązanie do końca. Rozwiązanie pełne 4 p. Zdający zapisze odpowiedź: $x \in (-\infty, 3)$. Uwaga We wszystkich rozważanych przypadkach zdający może rozpatrywać obie nierówności nieostre (przedziały obustronnie domkniete). Jeżeli natomiast rozważy wszystkie nierówności ostre (przedziały otwarte), to przyznajemy za całe zadanie o 1 punkt mniej, niż gdyby wyróżnił wszystkie przedziały poprawnie. III sposób rozwiązania Rozwiazanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze do pełnego rozwiązania 1 p. Zdający wyróżni na osi liczbowej przedziały: $(-\infty,1)$, (1,5), $(5,+\infty)$. Zdający zapisze wzór funkcji f w poszczególnych przedziałach, np.: dla $x \in (-\infty, 1)$ mamy f(x) = -2x + 6, dla $x \in \langle 1, 5 \rangle$ mamy f(x) = 4, dla $x \in \langle 5, +\infty \rangle$ mamy f(x) = 2x - 6lub $f(x) = \begin{cases} -2x+6 & \text{dla } x \in (-\infty, 1) \\ 4 & \text{dla } x \in \langle 1, 5 \rangle \\ 2x-6 & \text{dla } x \in \langle 5, +\infty \rangle \end{cases}$ i na tym zakończy lub dalej popełnia błedy. Pokonanie zasadniczych trudności zadania 3 p.

Zadanie 2. (0-5)

IV. Użycie i tworzenie strategii.

- 2. Wyrażenia algebraiczne. Zdający wykonuje dzielenie wielomianu przez dwumian x-a; stosuje twierdzenie o reszcie z dzielenia wielomianu przez dwumian x-a (R2.b).
- 3. Równania i nierówności. Zdający rozwiązuje równania i nierówności wielomianowe (R3.c).

Przykładowe rozwiązanie

Korzystając z warunków zadania zapisujemy układ równań

$$\begin{cases} W(3) = 0 \\ W(-2) = 20 \end{cases}, \text{ czyli } \begin{cases} 54 + 9a - 39 + b = 0 \\ -16 + 4a + 26 + b = 20 \end{cases}$$

Z układu równań obliczamy a i b

$$\begin{cases} 9a+b=-15 \\ 4a+b=10 \end{cases}, \begin{cases} 9a+10-4a=-15 \\ b=10-4a \end{cases}, \begin{cases} a=-5 \\ b=30 \end{cases}$$

Dla a = -5, b = 30 otrzymujemy $W(x) = 2x^3 - 5x^2 - 13x + 30$.

Obliczamy pozostałe pierwiastki wielomianu wykonując np. dzielenie wielomianu W(x)

przez
$$(x-3)$$
: $W(x) = (x-3)(2x^2 + x - 10) = 2(x-3)(x-2)(x+\frac{5}{2})$.

Pozostałymi pierwiastkami wielomianu W(x) są liczby 2 oraz $-\frac{5}{2}$.

Schemat punktowania

Zdający zapisze jedno z równań:

54+9a-39+b=0 albo -16+4a+26+b=20 i na tym zakończy lub dalej popełnia błędy.

Uwaga

Wystarczy, że zdający zapisze
$$\begin{cases} W(3) = 0 \\ W(-2) = 20. \end{cases}$$

Rozwiązanie, w którym postęp jest istotny 2 p.

Zdający zapisze układ równań

$$\begin{cases} 54 + 9a - 39 + b = 0 \\ -16 + 4a + 26 + b = 20 \end{cases}$$

i na tym zakończy lub dalej popełnia błędy.

Pokonanie zasadniczych trudności zadania 3 p.

Zdający rozwiąże układ równań: a = -5, b = 30 i na tym zakończy lub dalej popełnia błędy.

• wykona poprawnie dzielenie wielomianu W(x) przez (x-3): $W(x):(x-3)=2x^2+x-10$

albo

 rozwiąże układ równań z błędem rachunkowym i obliczy pozostałe pierwiastki konsekwentnie do popełnionego błędu;

albo

• podzieli wielomian z błędem rachunkowym i obliczy pozostałe pierwiastki konsekwentnie do popełnionego błędu.

Zadanie 3. (0-5)

|--|

Przykładowe rozwiązania

I sposób

Zapisujemy układ warunków

$$\begin{cases} \Delta > 0 \\ (4x_1 - 4x_2)^2 - 1 < 0 \end{cases}$$

Rozwiązujemy nierówność $\Delta > 0$, czyli $36m^2 - 16(2m^2 - 3m - 9) > 0$. Po uporządkowaniu otrzymujemy nierówność $4(m+6)^2 > 0$, której rozwiązaniem są wszystkie liczby rzeczywiste oprócz m = -6.

Drugą nierówność przekształcamy równoważnie i otrzymujemy kolejno:

$$16(x_1 - x_2)^2 - 1 < 0,$$

$$16(x_1^2 - 2x_1x_2 + x_2^2) - 1 < 0,$$

$$16[(x_1 + x_2)^2 - 4x_1x_2] - 1 < 0.$$

Stosujemy wzory Viete'a i otrzymujemy: $16\left(\frac{36m^2}{16} - 4 \cdot \frac{2m^2 - 3m - 9}{4}\right) - 1 < 0$.

Przekształcamy nierówność równoważnie otrzymujemy kolejno:

$$36m^2 - 32m^2 + 48m + 143 < 0$$
,
 $4m^2 + 48m + 143 < 0$

Rozwiązujemy tę nierówność.

$$\Delta = 2304 - 2288 = 4^{2}$$

$$m_{1} = \frac{-48 - 4}{8} = -\frac{13}{2}, \quad m_{2} = \frac{-48 + 4}{8} = -\frac{11}{2},$$

$$m \in \left(-\frac{13}{2}, -\frac{11}{2}\right).$$

Wyznaczamy część wspólną obu warunków: $m \in \left(-\frac{13}{2}, -6\right) \cup \left(-6, -\frac{11}{2}\right)$.

II sposób

Rozwiązujemy nierówność $\Delta > 0$, czyli $36m^2 - 16(2m^2 - 3m - 9) > 0$. Po uporządkowaniu otrzymujemy nierówność $4(m+6)^2 > 0$, której rozwiązaniem są wszystkie liczby rzeczywiste oprócz m = -6.

Obliczamy pierwiastki równania, z zachowaniem warunku $x_1 < x_2$:

$$x_1 = \frac{6m-2|m+6|}{8} = \frac{3m-|m+6|}{4}, \quad x_2 = \frac{6m+2|m+6|}{8} = \frac{3m+|m+6|}{4}.$$

Obliczamy wartość wyrażenia $4x_1 - 4x_2$ w zależności od m:

$$4x_1 - 4x_2 = 4 \cdot \frac{-2|m+6|}{4} = -2|m+6|$$

Zapisujemy nierówność z treści zadania z wykorzystaniem wyznaczonych rozwiązań równania i przekształcamy ją równoważnie, otrzymując kolejno:

$$(-2|m+6|-1)(-2|m+6|+1) < 0,$$

$$-[1-4(m+6)^{2}] < 0,$$

$$4m^{2} + 48m + 143 < 0.$$

Dalsza cześć rozwiazania przebiega podobnie jak w I sposobie rozwiazania,

Schemat punktowania

Rozwiązanie zadania składa się z trzech etapów.

Pierwszy z nich polega na rozwiązaniu nierówności $\Delta > 0$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 1 punkt.

Uwaga

Jeżeli zdający rozwiąże nierówność $\Delta \ge 0$ i nie odrzuci przypadku $\Delta = 0$, to za ten etap otrzymuje **0 punktów**.

Drugi etap polega na znalezieniu wartości m, dla których spełniona jest nierówność: $(4x_1 - 4x_2 - 1)(4x_1 - 4x_2 + 1) < 0$.

Za tę część rozwiązania zdający otrzymuje 3 punkty.

Ponizej podział punktów za drugi etap rozwiązania:

Zdający otrzymuje 1 punkt gdy:

• zapisze nierówność $(4x_1-4x_2-1)(4x_1-4x_2+1)<0$ w postaci równoważnej zawierającej jedynie sumę i iloczyn pierwiastków trójmianu kwadratowego $4x^2-6mx+(2m+3)(m-3)$, np.: $16\left[\left(x_1+x_2\right)^2-4x_1x_2\right]-1<0$ lub

• obliczy pierwiastki trójmianu:

$$x_1 = \frac{6m - 2|m + 6|}{8} = \frac{3m - |m + 6|}{4}, \ x_2 = \frac{6m + 2|m + 6|}{8} = \frac{3m + |m + 6|}{4}$$

i na tym zakończy lub dalej popełnia błędy.

Zdający otrzymuje 2 punkty gdy:

• zapisze nierówność $(4x_1 - 4x_2 - 1)(4x_1 - 4x_2 + 1) < 0$ w postaci nierówności równoważnej z jedną niewiadomą np.: $16\left(\frac{36m^2}{16} - 4 \cdot \frac{2m^2 - 3m - 9}{4}\right) - 1 < 0$ lub $4m^2 + 48m + 143 < 0$ lub (-2|m+6|-1)(-2|m+6|+1) < 0

i na tym zakończy lub dalej popełnia błędy.

Zdający otrzymuje 3 punkty gdy:

• poprawnie rozwiąże nierówność: $m \in \left(-\frac{13}{2}, -\frac{11}{2}\right)$.

Trzeci etap polega na wyznaczeniu części wspólnej zbiorów rozwiązań nierówności z etapów I i II oraz podaniu odpowiedzi: $m \in \left(-\frac{13}{2}, -6\right) \cup \left(-6, -\frac{11}{2}\right)$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 1 punkt.

Uwagi

- 1. W przypadku otrzymania na jednym z etapów (I lub II) zbioru pustego lub zbioru *R* jako zbioru rozwiązań nierówności przyznajemy **0 punktów** za III etap.
- 2. W przypadku otrzymania w II etapie zbioru rozwiązań, będącego podzbiorem zbioru rozwiązań z I etapu przyznajemy **0 punktów** za III etap.
- 3. W przypadku rozwiązania z błędami, nieprzekreślającymi poprawności rozumowania, za ostatni etap przyznajemy **1 punkt** jedynie wówczas, gdy zdający poprawnie wykona etap I i popełnia błędy w rozwiązaniu nierówności z etapu II lub gdy popełnia błędy w etapie I i dobrze rozwiąze etap II (uwaga 3. ma zastosowanie, gdy nie zachodzą przypadki 1. i 2.).
- 4. Jeżeli zdający w wyniku błędów otrzyma w II etapie nierówność z niewiadomą *m* stopnia drugiego z ujemnym wyróżnikiem lub nierówność liniową, to może otrzymać co najwyżej **3 punkty**.
- 5. W przypadku, gdy zdający przyjmuje błędnie $\sqrt{\Delta} = 2(m+6)$ i konsekwentnie rozwiąże zadanie do końca może otrzymać maksymalnie **3 punkty**.

Zadanie 4. (0-6)

III. Modelowanie matematyczne.	 5. Ciągi liczbowe. Zdający stosuje wzory na n-ty wyraz i sumę <i>n</i> początkowych wyrazów ciągu arytmetycznego i ciągu geometrycznego, również umieszczone w kontekście praktycznym (5.c). 3. Równania i nierówności. Zdający rozwiązuje układy równań, prowadzące do równań kwadratowych (3.c).
--------------------------------	---

Przykładowe rozwiązania

I sposób

Oznaczmy przez r różnicę ciągu arytmetycznego. Skoro suma wyrazów ciągu arytmetycznego jest równa 27, to b-r+b+b+r=27, a stąd b=9. Wówczas ciąg geometryczny (7-r,9,2r+19) spełnia warunek $81=(7-r)\cdot(2r+19)$. Równanie to ma dwa rozwiązania r=4 i $r=-\frac{13}{2}$.

W pierwszym przypadku otrzymujemy ciąg arytmetyczny (5,9,13), a w drugim przypadku ciąg arytmetyczny $\left(\frac{31}{2},9,\frac{5}{2}\right)$.

II sposób

Liczby a, b, c są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego, zatem $\frac{a+c}{2} = b$. Suma liczb a, b, c równa 27, stąd a+b+c=27. Ciąg (a-2,b,2c+1) jest geometryczny, zatem $b^2 = (a-2)\cdot(2c+1)$.

Zapisujemy układ trzech równań z trzema niewiadomymi: $\begin{cases} \frac{a+c}{2} = b \\ a+b+c = 27 \\ b^2 = (a-2) \cdot (2c+1) \end{cases}$

Z pierwszego równania wyznaczamy a+c=2b, podstawiamy do drugiego równania i otrzymujemy b=9. Do trzeciego równania podstawiamy b=9 i a=2b-c i otrzymujemy równanie kwadratowe:

 $2c^2 - 31c + 65 = 0$. Równanie to ma dwa rozwiązania: $c = \frac{5}{2}$ oraz c = 13. W pierwszym

przypadku otrzymujemy: a = 5, b = 9, c = 13 a w drugim przypadku otrzymujemy: $a = \frac{31}{2}$,

$$b=9, c=\frac{5}{2}.$$

III sposób

Niech q oznacza iloraz ciągu geometrycznego, natomiast a-2 pierwszy wyraz tego ciągu.

Wtedy b = (a-2)q i $2c+1=(a-2)q^2$. Z ostatniej zależności otrzymujemy $c = \frac{(a-2)q^2-1}{2}$.

Ponieważ suma liczb a, b, c jest równa 27, więc możemy zapisać równość

$$a+(a-2)q+\frac{(a-2)q^2-1}{2}=27$$
.

Z własności ciągu arytmetycznego wynika równanie

$$b = \frac{a+c}{2},$$

które możemy zapisać w postaci

$$(a-2)q = \frac{2a+(a-2)q^2-1}{4}$$
.

Otrzymaliśmy zatem układ równań z niewiadomymi a i q:

$$2a+2(a-2)q+(a-2)q^2=55$$

$$4(a-2)q = 2a + (a-2)q^2 - 1.$$

Ten układ jest równoważny układowi

$$2(a-2)+2(a-2)q+(a-2)q^2=51$$

$$-2(a-2)+4(a-2)q-(a-2)q^2=3$$

Po wyłączeniu czynnika (a-2) każde z równań przyjmuje postać

$$(a-2)(2+2q+q^2)=51$$

$$(a-2)(-2+4q-q^2)=3$$

Zatem

$$3(2+2q+q^2)=51(-2+4q-q^2)$$
,

skąd otrzymujemy równanie kwadratowe

$$3q^2 - 11q + 6 = 0.$$

To równanie ma dwa rozwiązania

$$q=3, q=\frac{2}{3}$$
.

Jeśli q=3, to a=5, b=9 i c=13. Jeżeli natomiast $q=\frac{2}{3}$, to $a=\frac{31}{2}$, b=9 i $c=\frac{5}{2}$.

Schemat punktowania

I sposób rozwiązania

Zdający uzależni wartości dwie spośród liczb a, b, c od trzeciej z liczb i od różnicy r ciągu arytmetycznego, np.: a = b - r i c = b + r i na tym zakończy lub dalej popełnia błędy.

Rozwiązanie, w którym postęp jest istotny
Zdający zapisze równania wynikające z własności ciągu arytmetycznego i z własności ciągu geometrycznego, np.: $a=b-r$, $c=b+r$, $b^2=(a-2)\cdot(2c+1)$
i na tym zakończy lub dalej popełnia błędy.
Pokonanie zasadniczych trudności zadania
Zdający zapisze równanie z jedną niewiadomą, wynikające z własności ciąg geometrycznego, np.: $81 = (7-r)(2r+19)$ i na tym zakończy lub dalej popełnia błędy.
Rozwiązanie prawie pełne 5 p
Zdający obliczy liczby <i>a</i> , <i>b</i> , <i>c</i> w jednym z możliwych przypadków.
Uwaga Jeśli zdający poprawnie rozwiąże równanie kwadratowe, to otrzymuje 4 punkty.
Rozwiązanie pełne 6 p
Zdający obliczy liczby w dwóch przypadkach spełniających warunki zadania: $a=5$, $b=9$
$c = 13 \text{ oraz } a = \frac{31}{2}, b = 9, c = \frac{5}{2}.$
II sposób rozwiązania
Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodz do pełnego rozwiązania
Zdający zapisze jedno z równań: $\frac{a+c}{2} = b$, $b^2 = (a-2) \cdot (2c+1)$ i na tym zakończy lub dale
popełnia błędy.
Rozwiązanie, w którym postęp jest istotny
$\left\{\frac{a+c}{2}=b\right.$
Zdający zapisze układ trzech równań z trzema niewiadomymi, np.: $\begin{cases} a+b+c=27 \end{cases}$
Zdający zapisze układ trzech równań z trzema niewiadomymi, np.: $\begin{cases} 2 \\ a+b+c=27 \\ b^2=(a-2)\cdot(2c+1) \end{cases}$
Pokonanie zasadniczych trudności zadania
Zdający zapisze równanie kwadratowe z jedną niewiadomą, np.: $-2c^2 + 31c + 16 = 81$ i na tyrzakończy lub dalej popełnia błędy.
Rozwiązanie prawie pełne 5 p
Zdający obliczy liczby a, b, c w jednym z możliwych przypadków.
Uwaga
Jeśli zdający poprawnie rozwiąże równanie kwadratowe, to otrzymuje 4 punkty.

Rozwiązanie pełne 6 p. Zdający obliczy liczby w dwóch przypadkach spełniających warunki zadania: a = 5, b = 9, $c = 13 \text{ oraz } a = \frac{31}{2}, b = 9, c = \frac{5}{2}.$ III sposób rozwiazania Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze Zdający zapisze wszystkie wyrazy ciągu arytmetycznego w zależności od jednej z liczb i ilorazu ciągu geometrycznego, np. a-2, b=(a-2)q, $c=\frac{(a-2)q^2-1}{2}$ i na tym zakończy lub dalej popełni błędy. Rozwiązanie, w którym postęp jest istotny 2 p. Zdający zapisze układ równań z dwiema niewiadomymi, np.: $a + (a-2)q + \frac{(a-2)q^2 - 1}{2} = 27$ i $(a-2)q = \frac{2a + (a-2)q^2 - 1}{4}$ i na tym zakończy lub dalej popełni błędy. Zdający zapisze równanie kwadratowe z jedną niewiadomą, np.: $3(2+2q+q^2) = 51(-2+4q-q^2)$ i na tym zakończy lub dalej popełni błędy. Rozwiązanie prawie pełne 5 p. Zdający obliczy liczby a, b i c w jednym z możliwych przypadków. Uwaga

Jeśli zdający poprawnie rozwiąże równanie kwadratowe, to otrzymuje 4 punkty.

Rozwiązanie pełne 6 p.

Zdający zapisze dwa zestawy liczb spełniające warunki zadania: a=5, b=9 i c=13 oraz $a=\frac{31}{2}$, b=9 i $c=\frac{5}{2}$.

Uwagi

- 1. Jeżeli zdający myli własności ciągu arytmetycznego z własnościami ciągu geometrycznego, to za całe rozwiązanie otrzymuje **0 punktów**.
- 2. Jeżeli zdający odgadnie jeden zestaw liczb *a*, *b*, *c*, także ze sprawdzeniem warunków zadania, to otrzymuje **0 punktów**.

Zadanie 5. (0-3)

Przykładowe rozwiązania

I sposób

Przekształcamy nierówność równoważnie:

$$x^{2}y^{2} - 4xy + 4 + 2x^{2} - 4xy + 2y^{2} > 0,$$

$$(xy - 2)^{2} + 2(x^{2} - 2xy + y^{2}) > 0,$$

$$(xy - 2)^{2} + 2(x - y)^{2} > 0.$$

Ponieważ $x \neq y$, więc $(x-y)^2 > 0$. Zatem lewa strona tej nierówności jest sumą liczby nieujemnej $(xy-2)^2$ oraz liczby dodatniej $2(x-y)^2$, a więc jest dodatnia. To kończy dowód.

II sposób

Zapiszmy nierówność $x^2y^2 + 2x^2 + 2y^2 - 8xy + 4 > 0$ w postaci równoważnej $(y^2 + 2)x^2 - 8y \cdot x + 2y^2 + 4 > 0$.

Ponieważ $y^2 + 2 > 0$ dla każdej liczby rzeczywistej y, więc możemy potraktować tę nierówność jak nierówność kwadratową z niewiadomą x i parametrem y (lub z niewiadomą y i parametrem x). Wystarczy więc wykazać, że wyróżnik trójmianu kwadratowego $(y^2 + 2)x^2 - 8y \cdot x + 2y^2 + 4$ zmiennej x jest ujemny.

$$\Delta = (-8y)^2 - 4 \cdot (y^2 + 2) \cdot (2y^2 + 4) = 64y^2 - 8(y^2 + 2)^2 =$$

$$= 8(8y^2 - y^4 - 4y^2 - 4) = 8(-y^4 + 4y^2 - 4) = -8(y^2 - 2)^2.$$

Dla każdej liczby rzeczywistej y, takiej, że $y^2 \ne 2$ wyróżnik jest ujemy. Gdy $y^2 = 2$, to wówczas nierówność $x^2y^2 + 2x^2 + 2y^2 - 8xy + 4 > 0$ ma postać

$$4x^{2} - 8\sqrt{2}x + 8 > 0 \text{ lub } 4x^{2} + 8\sqrt{2}x + 8 > 0$$

$$x^{2} - 2\sqrt{2}x + 2 > 0 \text{ lub } x^{2} + 2\sqrt{2}x + 2 > 0,$$

$$\left(x - \sqrt{2}\right)^{2} > 0 \text{ lub } \left(x + \sqrt{2}\right)^{2} > 0.$$

Ponieważ z założenia wynika, że $x \neq y$, więc $x^2 \neq 2$, a to oznacza, że każda z otrzymanych nierówności jest prawdziwa. To kończy dowód.

III sposób

Rozpatrzmy nierówność $x^2y^2 + 2x^2 + 2y^2 - 8xy + 4 > 0$ w trzech przypadkach.

I. Gdy co najmniej jedna z liczb x, y jest równa 0, np. gdy x=0. Wtedy nierówność przyjmuje postać

$$2v^2 + 4 > 0$$
.

Ta nierówność jest prawdziwa dla każdej liczby rzeczywistej y.

II. Gdy żadna z liczb x, y nie jest równa 0 i gdy xy < 0. Wtedy po lewej stronie nierówności $x^2y^2 + 2x^2 + 2y^2 - 8xy + 4 > 0$ wszystkie składniki są dodatnie, więc nierówność jest prawdziwa.

III. Gdy żadna z liczb x, y nie jest równa 0 i gdy xy > 0. Wtedy, dzieląc obie strony nierówności $x^2y^2 + 2x^2 + 2y^2 - 8xy + 4 > 0$ przez xy, otrzymujemy nierówność równoważną

$$xy + 2\frac{x}{y} + 2\frac{y}{x} - 8 + \frac{4}{xy} > 0,$$

$$xy + \frac{4}{xy} + 2\left(\frac{x}{y} + \frac{y}{x}\right) - 8 > 0,$$

$$xy - 4 + \frac{4}{xy} + 2\left(\frac{x}{y} - 2 + \frac{y}{x}\right) > 0,$$

$$\left(\sqrt{xy} - \frac{2}{\sqrt{xy}}\right)^2 + 2\left(\sqrt{\frac{x}{y}} - \sqrt{\frac{y}{x}}\right)^2 > 0.$$

Ponieważ z założenia $x \neq y$, więc $\frac{x}{y} \neq 1$, zatem $\frac{x}{y} \neq \frac{y}{x}$, co oznacza, że $\left(\sqrt{\frac{x}{y}} - \sqrt{\frac{y}{x}}\right)^2 > 0$.

Stąd i z tego, że $\left(\sqrt{xy} - \frac{2}{\sqrt{xy}}\right)^2 \ge 0$ wynika prawdziwość otrzymanej nierówności.

To kończy dowód.

IV sposób

I. Gdy $xy \le 0$, to wtedy po lewej stronie nierówności $x^2y^2 + 2x^2 + 2y^2 - 8xy + 4 > 0$ cztery pierwsze składniki są nieujemne, piąty jest dodatni, więc nierówność jest prawdziwa. II. Gdy xy > 0, wtedy z nierówności między średnią arytmetyczną i geometryczną dla liczb

dodatnich x^2y^2 , $2x^2$, $2y^2$ i 4 otrzymujemy

$$\frac{x^2y^2 + 2x^2 + 2y^2 + 4}{4} \ge \sqrt[4]{x^2y^2 \cdot 2x^2 \cdot 2y^2 \cdot 4} = \sqrt[4]{16x^4y^4} = 2xy,$$

skąd

$$x^2y^2 + 2x^2 + 2y^2 + 4 \ge 8xy$$
.

Równość miałaby miejsce tylko wtedy, gdyby $x^2y^2 = 2x^2 = 2y^2 = 4$, a więc gdyby $x^2 = y^2$, co wobec nierówności xy > 0 oznaczałoby x = y, co jest sprzeczne z założeniem . Zatem

$$x^2y^2 + 2x^2 + 2y^2 + 4 > 8xy,$$

czyli

$$x^{2}y^{2} + 2x^{2} + 2y^{2} - 8xy + 4 > 0.$$

To kończy dowód.

Schemat punktowania

I sposób rozwiązania
Pokonanie zasadniczych trudności zadania
Zdający zapisze nierówność w postaci $(xy-2)^2 + 2(x-y)^2 > 0$ i na tym zakończy lub dale popełnia błędy.
Rozwiązanie pełne
Zdający przeprowadzi pełne rozumowanie, uwzględniające założenie, że $x \neq y$.
II sposób rozwiązania
Rozwiązanie, w którym postęp jest istotny
Zdający zapisze nierówność w postaci $(y^2 + 2)x^2 - 8y \cdot x + 2y^2 + 4 > 0$ i obliczy wyróżnik
trójmianu kwadratowego $(y^2+2)x^2-8y\cdot x+2y^2+4$, np.: $\Delta=(-8y)^2-4\cdot (y^2+2)\cdot (2y^2+4)$ i na tym zakończy lub dalej popełnia błędy.
Pokonanie zasadniczych trudności zadania
Zdający uzasadni, że wyróżnik $\Delta = -8(y^2 - 2)^2$ jest niedodatni dla każdej liczby
rzeczywistej y , ale nie rozpatrzy przypadku, gdy $y^2 = 2$ i na tym zakończy lub dalej popełnia błędy.
Rozwiązanie pełne
Zdający przeprowadzi pełne rozumowanie.
III sposób rozwiązania
Rozwiązanie, w którym postęp jest istotny
Zdający wykaże prawdziwość nierówności w I i w II przypadku i na tym zakończy lub dalej popełnia błędy.
Pokonanie zasadniczych trudności zadania
Zdający zapisze nierówność w postaci $xy + \frac{4}{xy} + 2\left(\frac{x}{y} + \frac{y}{x}\right) - 8 > 0$ w przypadku, gdy $xy > 0$
i na tym zakończy lub dalej popełnia błędy.
Rozwiązanie pełne
Zdający przeprowadzi pełne rozumowanie.
IV sposób rozwiązania
Rozwiązanie, w którym postęp jest istotny 1 p.
Zdający wykaże prawdziwość nierówności $x^2y^2 + 2x^2 + 2y^2 - 8xy + 4 > 0$ w I przypadku i na tym zakończy lub dalej popełnia błędy.

Pokonanie zasadniczych trudności zadania 2 p.

Zdający uzasadni, że gdy xy > 0, to prawdziwa jest nierówność $\frac{x^2y^2 + 2x^2 + 2y^2 + 4}{4} \ge 2xy$ i na tym zakończy lub dalej popełnia błędy.

Rozwiązanie pełne 3 p.

Zdający przeprowadzi pełne rozumowanie.

Zadanie 6. (0-3)

	7. Planimetria. Zdający stosuje własności figur podobnych
V. Rozumowanie	i jednokładnych w zadaniach, także umieszczonych w kontekście
i argumentacja.	praktycznym oraz znajduje związki miarowe w figurach płaskich
i argumentacja.	z zastosowaniem twierdzenia sinusów i twierdzenia cosinusów (R7.c,
	R7.d).

Przykładowe rozwiązania

I sposób

Przyjmijmy oznaczenia jak na rysunku.

Pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} a \cdot c \cdot \sin \beta.$$

Pola trójkatów ABE i CBE są równe

$$P_{ABE} = \frac{1}{2} d \cdot c \cdot \sin \frac{\beta}{2} \text{ oraz } P_{CBE} = \frac{1}{2} d \cdot a \cdot \sin \frac{\beta}{2}.$$

Suma pól trójkątów ABE i CBE jest równa polu trójkąta ABC, zatem

$$\frac{1}{2}a \cdot c \cdot \sin \beta = \frac{1}{2}d \cdot c \cdot \sin \frac{\beta}{2} + \frac{1}{2}d \cdot a \cdot \sin \frac{\beta}{2}.$$

$$a \cdot c \cdot 2\sin\frac{\beta}{2}\cos\frac{\beta}{2} = d \cdot (a+c) \cdot \sin\frac{\beta}{2}$$

$$2ac \cdot \cos\frac{\beta}{2} = d \cdot (a+c),$$

$$d = \frac{2ac}{a+c} \cdot \cos\frac{\beta}{2}.$$

To kończy dowód.

II sposób

Przyjmijmy oznaczenia jak na rysunku.

Z twierdzenia o dwusiecznej otrzymujemy

$$\frac{|CE|}{|AE|} = \frac{|CB|}{|AB|}$$
, czyli $\frac{y}{x} = \frac{a}{c}$.

Z twierdzenia cosinusów dla trójkątów ABE i CBE otrzymujemy

$$x^{2} = c^{2} + d^{2} - 2cd \cos \frac{\beta}{2}$$
 oraz $y^{2} = a^{2} + d^{2} - 2ad \cos \frac{\beta}{2}$.

Zatem

$$\frac{a^2}{c^2} = \frac{y^2}{x^2} = \frac{a^2 + d^2 - 2ad \cos \frac{\beta}{2}}{c^2 + d^2 - 2cd \cos \frac{\beta}{2}}.$$

Stad otrzymujemy

$$a^{2}\left(c^{2}+d^{2}-2cd\cos\frac{\beta}{2}\right) = c^{2}\left(a^{2}+d^{2}-2ad\cos\frac{\beta}{2}\right),$$

$$a^{2}c^{2}+a^{2}d^{2}-2a^{2}cd\cos\frac{\beta}{2} = a^{2}c^{2}+c^{2}d^{2}-2ac^{2}d\cos\frac{\beta}{2},$$

$$a^{2}d^{2}-c^{2}d^{2} = 2a^{2}cd\cos\frac{\beta}{2}-2ac^{2}d\cos\frac{\beta}{2},$$

$$\left(a^{2}-c^{2}\right)d = 2\left(a-c\right)ac\cos\frac{\beta}{2}.$$

Gdy a = c, wówczas trójkąt ABC jest równoramienny, więc trójkąty ABE i CBE są prostokątne i przystające. Wtedy $\cos \frac{\beta}{2} = \frac{d}{c}$, skąd $d = c \cos \frac{\beta}{2} = \frac{2c^2}{2c} \cos \frac{\beta}{2} = \frac{2ac}{a+c} \cos \frac{\beta}{2}$.

Gdy zaś $a \neq c$, to $(a-c)(a+c) \neq 0$, czyli $a^2 - c^2 \neq 0$, więc

$$d = \frac{2(a-c)}{a^2 - c^2} ac \cos \frac{\beta}{2} = \frac{2ac}{a+c} \cos \frac{\beta}{2}.$$

To kończy dowód.

III sposób

Poprowadźmy wysokości *CG* i *EF* trójkątów *ABC* i *ABE*. Ponieważ trójkąt *ABC* jest ostrokątny, więc spodki *F* i *G* tych wysokości leżą na boku *AB* trójkąta *ABC*. Pozostałe oznaczenia przyjmijmy jak na rysunku.

Z twierdzenia o dwusiecznej otrzymujemy

$$\frac{|CE|}{|AE|} = \frac{|CB|}{|AB|}$$
, czyli $\frac{y}{x} = \frac{a}{c}$.

Z trójkatów BEF i BCG otrzymujemy

$$\frac{p}{d} = \sin \frac{\beta}{2} \text{ oraz } \frac{h}{a} = \sin \beta$$
.

Stad

$$p = d \sin \frac{\beta}{2}$$
 oraz $h = a \sin \beta$.

Trójkąty AFE i AGC są podobne, gdyż oba są prostokątne i mają wspólny kąt ostry przy wierzchołku A. Zatem

$$\frac{|EF|}{|AE|} = \frac{|CG|}{|AC|}$$
, czyli $\frac{p}{x} = \frac{h}{x+y}$.

Stąd i z poprzednio otrzymanych równości otrzymujemy kolejno

$$\frac{d\sin\frac{\beta}{2}}{x} = \frac{a\sin\beta}{x+y},$$

$$d\sin\frac{\beta}{2} = \frac{a\cdot 2\sin\frac{\beta}{2}\cos\frac{\beta}{2}}{1+\frac{y}{x}},$$

$$d = \frac{2a\cdot\cos\frac{\beta}{2}}{1+\frac{a}{c}} = \frac{2ac\cdot\cos\frac{\beta}{2}}{a+c}.$$

To kończy dowód.

Schemat punktowania

I sposób rozwiązania

- zapisze pola każdego z trójkątów ABC, ABE i CBE w zależności od długości a, c, d i kąta β : $P_{ABC} = \frac{1}{2} a \cdot c \cdot \sin \beta$, $P_{ABE} = \frac{1}{2} d \cdot c \cdot \sin \frac{\beta}{2}$, $P_{CBE} = \frac{1}{2} d \cdot a \cdot \sin \frac{\beta}{2}$
- albo
- zapisze, że pole trójkąta ABC jest sumą pól trójkątów ABE i CBE oraz zapisze jedno z tych pól: $P_{ABC} = \frac{1}{2} a \cdot c \cdot \sin \beta$ lub $P_{ABE} = \frac{1}{2} d \cdot c \cdot \sin \frac{\beta}{2}$ lub $P_{CBE} = \frac{1}{2} d \cdot a \cdot \sin \frac{\beta}{2}$

i na tym zakończy lub dalej popełnia błędy.

Pokonanie zasadniczych trudności zadania 2 p.

Zdający zapisze zależność między polem trójkąta ABC i polami trójkątów ABE i CBE w postaci, w której występują jedynie wielkości a, c, d i β , np.:

$$\frac{1}{2}a \cdot c \cdot \sin \beta = \frac{1}{2}d \cdot c \cdot \sin \frac{\beta}{2} + \frac{1}{2}d \cdot a \cdot \sin \frac{\beta}{2}$$

i na tym zakończy lub dalej popełnia błędy.

Rozwiązanie pełne 3 p.

Zdający przeprowadzi pełne rozumowanie.

II sposób rozwiązania

Rozwiązanie, w którym postęp jest istotny 1 p.

Zdający zapisze zależności między wielkościami x, y, d, a i c oraz kątem β :

$$\frac{y}{x} = \frac{a}{c}$$
, $x^2 = c^2 + d^2 - 2cd \cos \frac{\beta}{2}$, $y^2 = a^2 + d^2 - 2ad \cos \frac{\beta}{2}$

i na tym zakończy lub dalej popełnia błędy.

Zdający zapisze równanie, np.:
$$\frac{a^2}{c^2} = \frac{a^2 + d^2 - 2ad \cos \frac{\beta}{2}}{c^2 + d^2 - 2cd \cos \frac{\beta}{2}}$$

i na tym zakończy lub dalej popełnia błędy.

Rozwiązanie pełne 3 p.

Zdający przeprowadzi pełne rozumowanie.

Uwaga

Jeżeli zdający nie rozważy sytuacji gdy a = c, to może otrzymać co najwyżej 2 punkty.

III sposób rozwiązania

Zdający zapisze

• zależność między wielkościami x, y, a i c oraz zależności między wielkościami p, h i a oraz kątem β : $\frac{y}{x} = \frac{a}{c}$, $\frac{p}{d} = \sin \frac{\beta}{2}$, $\frac{h}{a} = \sin \beta$

albo

• zależność między wielkościami x, y, a i c oraz zależności między wielkościami p, h, x i y oraz kątem β : $\frac{y}{x} = \frac{a}{c}$, $\frac{p}{x} = \frac{h}{x+y}$

albo

• zależność między wielkościami p, h i a oraz kątem β oraz zależność między wielkościami x, y, a i c: $\frac{p}{d} = \sin \frac{\beta}{2}$, $\frac{h}{a} = \sin \beta$, $\frac{y}{x} = \frac{a}{c}$.

Zdający zapisze wystarczającą liczbę zależności między wielkościami x, y, a, c, p i h oraz kątem β , pozwalającą wyznaczyć d w zależności od wielkości a, c i kąta β , np.:

$$\frac{y}{x} = \frac{a}{c}, \frac{d\sin\frac{\beta}{2}}{x} = \frac{a\sin\beta}{x+y}.$$

Rozwiązanie pełne 3 p.

Zdający przeprowadzi pełne rozumowanie.

Zadanie 7. (0-4)

	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa
III. Modelowanie	i kombinatoryka. Zdający wykorzystuje wzory na liczbę
matematyczne.	permutacji, kombinacji i wariacji do zliczania obiektów
	w sytuacjach kombinatorycznych (R10).

Przykładowe rozwiązanie

Wybieramy miejsce dla dziewiątek. Jest $\binom{6}{2}$ = 15 takich miejsc.

Szóstka może wystąpić na jednym z pozostałych 4 miejsc.

Na pozostałych trzech miejscach mają wystąpić trzy cyfry, których suma ma być równa $30-2\cdot 9-6=6$.

Mamy następujące możliwości:

- 1, 2, 3 i na trzech miejscach te cyfry możemy ustawić na 3!=6 sposobów,
- 1, 1, 4 i na trzech miejscach te cyfry możemy ustawić na $\binom{3}{2}\binom{1}{1} = 3$ sposoby,
- 2, 2, 2 i na trzech miejscach te cyfry możemy ustawić na $\binom{3}{3}$ = 1 sposób.

Łącznie, pozostałe trzy cyfry na pozostałych trzech miejscach, możemy ustawić na 10 sposobów.

Stosując regułę mnożenia zapisujemy, że liczba liczb opisanych w treści zadania jest równa $15 \cdot 4 \cdot 10 = 600$.

Schemat punktowania

- obliczy liczbę miejsc, na których mogą znajdować się dziewiątki albo
- obliczy liczbę miejsc, na których może znajdować się szóstka i na tym zakończy lub dalej popełnia błędy.

i na tym zakończy lub dalej popełnia błędy.

równa 600.

Uwaga

Zdający może obliczać liczby miejsc dla dziewiątek i szóstki w sposób następujący:

$$\binom{6}{2}$$
 · 4 = 60 albo $6 \cdot \binom{5}{2}$ = 60.

Zadanie 8. (0-3)

	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa
III. Modelowanie	i kombinatoryka. Zdający wykorzystuje własności
	prawdopodobieństwa i stosuje twierdzenie znane jako klasyczna
matematyczne.	definicja prawdopodobieństwa do obliczania prawdopodobieństw
	zdarzeń (10.d).

Przykładowe rozwiązanie

Rysujemy drzewo odzwierciedlające etapy doświadczenia.

Prawdopodobieństwo zdarzenia A (wylosowanie kuli białej z drugiego pudełka) jest więc równe

$$P(A) = \frac{2}{5} \cdot \frac{2}{6} + \frac{3}{5} \cdot \frac{1}{6} = \frac{4}{30} + \frac{3}{30} = \frac{7}{30}$$
.

Schemat punktowania

Rozwiązanie pełne 3 p.

Zdający obliczy prawdopodobieństwo wylosowania kuli białej z drugiego pudełka: $\frac{7}{30}$.

Uwaga

Jeśli zdający rozwiąże zadanie do końca i otrzyma P(A) > 1 lub P(A) < 0, to za całe rozwiązanie otrzymuje **0 punktów**.

Zadanie 9. (0-6)

IV. Użycie i tworzenie strategii. 7. Planimetria. Zdający stosuje własności figur podobnych i jednokładnych w zadaniach, także umieszczonych w kontekście praktycznym (R7.c).
--

Przykładowe rozwiązania

I sposób

Oznaczmy przez S środek okręgu wpisanego w trójkąt, wysokość |CE|=36 oraz promień okręgu wpisanego |ES|=|DS|=10.

Z twierdzenia Pitagorasa obliczamy długość odcinka DC: $|DC| = \sqrt{|CS|^2 - |DS|^2} = 24$. Trójkąty *AEC* i *SDC* są podobne. Obydwa są prostokątne i mają jeden kąt wspólny.

Otrzymujemy równanie $\frac{36}{|AE|} = \frac{24}{10}$. Stąd |AE| = 15. Z twierdzenia o odcinkach stycznych wiemy, że |AD| = |AE| = 15. Długości boków tego trójkąta są zatem równe: |AB| = 30, |AC| = |BC| = 39.

Następnie obliczmy pole trójkąta. $P = \frac{1}{2} \cdot |AB| \cdot |CE| = \frac{1}{2} \cdot 30 \cdot 36 = 540$.

Promień okręgu opisanego na trójkącie obliczymy korzystając ze wzoru

$$P = \frac{|AB| \cdot |BC| \cdot |CA|}{4 \cdot R} :$$

$$R = \frac{30 \cdot 39 \cdot 39}{4 \cdot 540} = 21\frac{1}{8} .$$

II sposób

Oznaczmy przez S środek okręgu wpisanego w trójkąt, wysokość |CE|=36 oraz promień okręgu wpisanego |ES|=|DS|=10. Niech $| <\!\!<\!\!CSD|=| <\!\!<\!\!CAE|=\beta$.

Trójkaty AEC i SDC są podobne. Obydwa są prostokatne i mają jeden kat wspólny.

Obliczamy długość odcinka CS: |CS| = |CE| - |SE| = 26.

Obliczamy
$$\cos \beta = \frac{10}{26} = \frac{5}{13}$$
, wtedy $\sin \beta = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \frac{12}{13}$.

Obliczamy długość ramienia trójkąta równoramiennego ABC: $\sin \beta = \frac{|CE|}{|AC|}$, stąd |AC| = 39.

Z twierdzenia sinusów $\frac{|AC|}{\sin \beta} = 2R$, gdzie R oznacza promień okręgu opisanego na trójkącie:

$$2R = \frac{39}{\frac{12}{13}} = \frac{507}{12} = 42\frac{1}{4}$$
, zatem $R = 21\frac{1}{8}$.

III sposób

Niech |AB| = a, |AC| = |BC| = b.

Zapisujemy pole trójkąta na trzy sposoby: $\frac{1}{2} \cdot a \cdot 36 = \frac{ab^2}{4R} = 10p$.

Ponieważ $p = \frac{1}{2}(a+2b)$, stąd $p = \frac{1}{2}a+b$.

Otrzymujemy równanie $\frac{1}{2} \cdot a \cdot 36 = 10 \left(\frac{1}{2} a + b \right)$, stąd $b = \frac{13}{10} a$.

Zapisujemy twierdzenie Pitagorasa dla trójkąta AEC: $\left(\frac{1}{2}a\right)^2 + 36^2 = b^2$, stąd a = 30.

Zatem $b = \frac{13}{10} \cdot 30 = 39$.

Ponieważ $\frac{1}{2} \cdot 30 \cdot 36 = \frac{30 \cdot 39^2}{4R}$, stąd otrzymujemy $R = 21\frac{1}{8}$.

Schemat punktowania

I sposób rozwiązania Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze Zdajacy obliczy długość odcinka |DC| = 24. Zdający zapisze równanie wynikające z podobieństwa trójkątów *AEC* i *SDC*: $\frac{36}{|AE|} = \frac{24}{10}$. Pokonanie zasadniczych trudności zadania 4 p. Zdający obliczy długości boków trójkąta |AB| = 30, |AC| = |BC| = 39. Uwaga Jeżeli zdający obliczy jedynie długość podstawy trójkata: |AB| = 30 albo jedynie długość ramienia trójkata: |AC| = |BC| = 39, to otrzymuje **3 punkty**. Rozwiązanie prawie pełne 5 p. Zdający obliczy pole trójkąta: P = 540. Rozwiązanie pełne 6 p. Zdający obliczy promień okręgu: $R = 21\frac{1}{6}$. Uwaga Jeżeli zdający obliczy promień okręgu: $R = 21\frac{1}{8}$ i nie obliczy długości ramienia trójkąta:

|AC| = |BC| = 39, to otrzymuje co najwyżej **5 punktów**.

II sposób rozwiązania

Uwaga

Jeżeli zdający jedynie zauważy, że $\frac{|AC|}{\sin \beta} = 2R$ albo jedynie obliczy długość ramienia trójkąta: |AC| = |BC| = 39, to otrzymuje **3 punkty**.

Uwaga

Jeżeli zdający obliczy promień okręgu: $R = 21\frac{1}{8}$ i nie obliczy długości podstawy trójkąta: |AB| = 30 to otrzymuje co najwyżej **5 punktów**.

Zadanie 10. (0-6)

IV. Użycie i tworzenie strategii.	9. Stereometria. Zdający wyznacza przekroje wielościanów płaszczyzną oraz wyznacza związki miarowe w wielościanach i bryłach obrotowych z zastosowaniem trygonometrii (R9.a, 9.b).
-----------------------------------	--

Przykładowe rozwiązania

I sposób

Sporządzamy rysunek pomocniczy, wprowadzając oznaczenia i zaznaczając odpowiednie kąty.

Ponieważ trójkąt ABC jest trójkątem pięknym, przyjmijmy, że długości jego boków są równe a, 2a, $a\sqrt{3}$.

Stosując twierdzenie cosinusów do trójkąta *BDC* otrzymujemy $y^2 = x^2 + 4a^2 - ax\sqrt{6}$.

Stosując twierdzenie Pitagorasa dla trójkątów CED i BDE otrzymujemy:

$$x^{2} + 4a^{2} - ax\sqrt{6} = a^{2} + z^{2}$$

$$x^{2} + 3a^{2} - ax\sqrt{6} = x^{2} - 3a^{2}$$

$$x = a\sqrt{6}$$

$$a > 0$$

Zatem w trójkącie BFD mamy

$$\sin \alpha = \frac{a\sqrt{3}}{a\sqrt{6}} = \frac{\sqrt{2}}{2}$$
Stad $\alpha = \frac{\pi}{4}$

Kąt między przekątnymi ścian bocznych prostopadłościanu jest równy $\frac{\pi}{4}$.

II sposób

Sporządzamy rysunek pomocniczy, wprowadzając oznaczenia i zaznaczając odpowiednie katy.

Ponieważ trójkąt ABC jest trójkątem pięknym, przyjmijmy, że długości jego boków są równe a, 2a, $a\sqrt{3}$.

Zapisujemy długości boków x i z trójkąta BFD w zależności od szukanego kąta α :

$$x = \frac{a\sqrt{3}}{\sin \alpha}$$
 i $z = \frac{a\sqrt{3}}{\lg \alpha}$ dla $a > 0$ i $\alpha \neq 0$

Z twierdzenia Pitagorasa dla trójkąta CED otrzymujemy

$$y^2 = a^2 + z^2$$

$$y^2 = a^2 + \frac{3a^2}{\lg^2 \alpha}$$

Zapisujemy twierdzenie cosinusów dla trójkąta BDC:

$$y^2 = 4a^2 + x^2 - 4ax \cos \beta$$

Po dokonaniu podstawień za *x* i *y* otrzymujemy równanie postaci:

$$a^{2} + \frac{3a^{2}}{tg^{2}\alpha} = 4a^{2} + \frac{3a^{2}}{\sin^{2}\alpha} - \frac{a^{2}\sqrt{18}}{\sin\alpha}$$

a po przekształceniach równanie trygonometryczne:

$$2\sin^2\alpha - \sqrt{2}\sin\alpha = 0$$

$$\sin\alpha\left(\sin\alpha - \frac{\sqrt{2}}{2}\right) = 0$$

Rozwiązujemy alternatywę równań

$$\sin \alpha = \frac{\sqrt{2}}{2} \qquad \text{lub} \qquad \sin \alpha = 0$$

$$\alpha = \frac{\pi}{4}$$
 lub $\alpha = 0$ nie spełnia warunków zdania

Zatem kąt między przekątnymi ścian bocznych prostopadłościanu ma miarę $\frac{\pi}{4}$.

Schemat punktowania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania 1 p).
Zdający sporządzi rysunek i zaznaczy odpowiednie kąty $\frac{\pi}{3}$, α , β i na tym zakończy lub	
dalej popełnia błędy.	

• zapisze równanie z niewiadomymi a i x, prowadzące do rozwiązania zadania, np.: $x^2 + 3a^2 - ax\sqrt{6} = x^2 - 3a^2$

albo

• zapisze równanie z niewiadomymi a i α , prowadzącego do rozwiązania zadania, np.: $a^2 + \frac{3a^2}{tg^2\alpha} = 4a^2 + \frac{3a^2}{\sin^2\alpha} - \frac{a^2\sqrt{18}}{\sin\alpha}$

i na tym zakończy lub dalej popełnia błędy.

Uwaga

Jeżeli zdający zapisze równanie z niewiadomymi a i x albo z niewiadomymi a i α , z błędami rachunkowymi i na tym poprzestanie, to otrzymuje **3 punkty**.

Zadanie 11. (0-5)

8. Geometria na płaszczyźnie kartezjańskiej. Zdający posługuje się równaniem okręgu $(x-a)^2 + (y-b)^2 = r^2$, wyznacza współrzędne środka odcinka, rozwiązuje zadania dotyczące wzajemnego położenia prostej i okręgu, oraz dwóch okręgów na płaszczyźnie kartezjańskiej (8.g, 8.f, R8.b).

Przykładowe rozwiązania

I sposób

Środek S szukanego okręgu jest punktem przecięcia prostej x-3y+1=0 oraz symetralnej odcinka AB.

Wyznaczmy współrzędne środka *D* odcina *AB*: $D = \left(\frac{-5+0}{2}, \frac{3+6}{2}\right) = \left(\frac{-5}{2}, \frac{9}{2}\right)$.

Obliczamy współczynnik kierunkowy prostej przechodzącej przez punkty A i B:

$$a_{AB} = \frac{6-3}{0+5} = \frac{3}{5}.$$

Z warunku prostopadłości prostych wyznaczamy współczynnik kierunkowy symetralnej odcinka AB: $a = -\frac{5}{3}$. Wyznaczamy równanie symetralnej odcinka AB: $y = -\frac{5}{3}x + b$.

Przechodzi ona przez punkt $D = \left(-\frac{5}{2}, \frac{9}{2}\right)$, stąd otrzymujemy $\frac{9}{2} = -\frac{5}{3} \cdot \left(-\frac{5}{2}\right) + b$. Zatem $b = \frac{1}{3}$. Wobec tego symetralną odcinka AB jest prosta $y = -\frac{5}{3}x + \frac{1}{3}$.

Obliczamy współrzędne punktu *S*, rozwiązując układ równań $\begin{cases} x-3y+1=0\\ y=-\frac{5}{3}x+\frac{1}{3}. \end{cases}$ Środkiem

okręgu jest $S = \left(0, \frac{1}{3}\right)$.

Wyznaczamy promień okręgu r obliczając np.: $|AS| = \sqrt{5^2 + \left(\frac{8}{3}\right)^2} = \frac{17}{3}$.

Wyznaczamy równanie okręgu o środku w punkcie $S = \left(0, \frac{1}{3}\right)$ i promieniu $r = \frac{17}{3}$:

$$x^2 + \left(y - \frac{1}{3}\right)^2 = \frac{289}{9}$$
.

II sposób

Środkiem okręgu jest punkt S, który leży na prostej x-3y+1=0. Zatem S=(3y-1, y).

Ponieważ $|AS|^2 = |BS|^2$, więc możemy zapisać równanie $(x+5)^2 + (y-3)^2 = x^2 + (y-6)^2$.

Rozwiązujemy zatem układ równań

$$10x + 6y = 2 i x - 3y = -1$$
,

otrzymując współrzędne punktu S

$$S = \left(0, \frac{1}{3}\right).$$

Następnie obliczamy kwadrat długości promienia $|SB|^2 = r^2$

$$r^2 = \left(\frac{17}{3}\right)^2 = \frac{289}{9} \,.$$

Zatem równanie okręgu o środku w punkcie *S* i promieniu *r* ma postać $x^2 + \left(y - \frac{1}{3}\right)^2 = \frac{289}{9}$.

III sposób

Przyjmijmy, że punkt S = (a, b) jest środkiem szukanego okręgu. Ponieważ punkt ten leży na prostej x-3y+1=0, więc jego współrzędne spełniają równanie tej prostej. Stąd a-3b+1=0.

Okrąg przechodzi przez punkty A = (-5, 3) i B = (0, 6), zatem

$$\begin{cases} (-5-a)^2 + (3-b)^2 = r^2 \\ (-a)^2 + (6-b)^2 = r^2. \end{cases}$$

Stad otrzymujemy zależność między a i b: 5a + 3b - 1 = 0.

Z układu równań

$$\begin{cases} a - 3b + 1 = 0 \\ 5a + 3b - 1 = 0 \end{cases}$$

obliczamy współrzędne środka okręgu $S=\left(0,\frac{1}{3}\right)$. Wyznaczone współrzędne podstawiamy do jednego z równań układu z niewiadomą r i obliczamy kwadrat promienia okręgu: $r^2=\frac{289}{9}$.

Zatem szukane równanie okręgu ma postać: $x^2 + \left(y - \frac{1}{3}\right)^2 = \frac{289}{9}$.

Schematy punktowania

I sposób rozwiązania Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze do Zdający • wyznaczy współrzędne środka odcinka *AB*: $D = \left(-\frac{5}{2}, \frac{9}{2}\right)$ albo • wyznaczy współczynnik kierunkowy prostej zawierającej odcinek AB: $a_{AB} = \frac{3}{5}$ i na tym zakończy lub dalej popełnia błędy. Rozwiązanie, w którym postęp jest istotny 2 p. Zdający zapisze równanie symetralnej odcinka AB: $y = -\frac{5}{3}x + \frac{1}{3}$ i na tym zakończy lub dalej popełnia błędy. Pokonanie zasadniczych trudności 3 p. Zdający wyznaczy współrzędne punktu S: $S = \left(0, \frac{1}{3}\right)$ i na tym zakończy lub dalej popełnia błędy. Rozwiązanie prawie pełne 4 p. Wyznaczy promień okręgu (lub kwadrat promienia okręgu): $r = \frac{17}{3}$ i na tym zakończy lub dalej popełnia błędy. Rozwiązanie pełne 5 p.

Zdający wyznaczy równanie okręgu: $x^2 + \left(y - \frac{1}{3}\right)^2 = \frac{289}{9}$.

II sposób rozwiązania

- zapisze współrzędne punktu S w zależności od jednej zmiennej, np.: S = (3y-1, y) albo
- zapisze równość $|AS|^2 = |BS|^2$ lub równoważne równanie $(x+5)^2 + (y-3)^2 = x^2 + (y-6)^2$

i na tym zakończy lub dalej popełni błędy.

$$10x + 6y = 2 i x - 3y = -1$$

i na tym zakończy lub dalej popełni błędy.

$$S = \left(0, \frac{1}{3}\right)$$

i na tym zakończy lub dalej popełni błędy.

i na tym zakończy lub dalej popełni błędy.

III sposób rozwiazania

• zapisze układ równań: $\begin{cases} (-5-a)^2 + (3-b)^2 = r^2 \\ (-a)^2 + (6-b)^2 = r^2 \end{cases}$

albo

• zauważy, że współrzędne środka okręgu spełniają równanie: a-3b+1=0 i na tym zakończy lub dalej popełni błędy.

Rozwiązanie, w którym postęp jest istotny
Zdający zapisze układ równań: $\begin{cases} (-5-a)^2 + (3-b)^2 = r^2 \\ (-a)^2 + (6-b)^2 = r^2 \end{cases}$ i zauważy, że współrzędne
środka okręgu spełniają równanie $a-3b+1=0$
i na tym zakończy lub dalej popełni błędy.
Pokonanie zasadniczych trudności
Zdający wyznaczy współrzędne punktu S: $S = \left(0, \frac{1}{3}\right)$ i na tym zakończy lub dalej popełnia
błędy.
Rozwiązanie prawie pełne 4 p.
Rozwiązanie prawie pełne
dalej popełnia błędy.
Rozwiązanie pełne 5 p.
Zdający wyznaczy równanie okręgu: $x^2 + \left(y - \frac{1}{3}\right)^2 = \frac{289}{9}$.
Uwaga Jeżeli zdający oblicza współrzędne punktu <i>P</i> przecięcia danej prostej z osią <i>Oy</i> , oblicza odległość <i>PB</i> , zapisuje równanie okręgu i na tym poprzestaje, to otrzymuje 0 punktów .