

# Vision document

### **Revision History**



| Name          | Date       | Reason For changes                       | Version |
|---------------|------------|------------------------------------------|---------|
| Arun Woosaree | Oct. 1 '18 | Edit Sections 3.1, 4.2, 4.4, 5, 1.3, 4.1 | 1.0     |
| Liyao         | Oct. 1 '18 | Edit Sections 1.2, 3.2, 4.1, 4.3.2&3     | 1.1     |
| Max           |            | Edit Sections 2.2, 2.3                   | 1.2     |
| Arun Woosaree | Oct 3, '18 | Edit Sections 1, 2.1                     | 1.3     |

### 1 Introduction

#### 1.1 Purpose of the vision document

This document outlines HireMe Software Ltd.'s vision for the implementation of a new traffic control system at a busy intersection, for customer Alberta Traffic Supply Ltd. This document is intended to be used for communication with the project's stakeholders, and the members of the team that will implement and verify the functionality of the system. Unless specified otherwise, all requirements specified here are high priority and committed for release 4.

#### 1.2 Product overview

The software will be used to control the traffic lights system at the intersection. The software controls the sequence of the traffic going through the intersection and provides signals for vehicles and pedestrians to cross the intersection safely. The system implements a sensor to detect the traffic on road 2, and the traffic light for road 2 only shows green when there is traffic waiting. As a result, the main road traffic will have more time to go through the intersection.

#### 1.3 References

Cost of project: <a href="https://wsdot.wa.gov/Operations/Traffic/signals.htm">https://wsdot.wa.gov/Operations/Traffic/signals.htm</a>

## 2 Business requirements

#### 2.1 Background, Business opportunity, Customer needs

The intersection is currently quite busy and unsafe for travelers. The system should help with optimizing the flow of traffic through the intersection so that travelers get to their destination safely. Priority should be given to vehicles on Road 1, since that is the road with the most volume of vehicles passing through the intersection. Road 3 is also a main road, and Road 2 should be given the least priority. With the implementation of a traffic light control system, the intersection should become much safer overall, and help decrease congestion in the area.

#### 2.2 Business objectives and success criteria

- BO-1: Implement a fully functional traffic light control system at the target intersection.
- BO-2: Implement a "night mode" which controls the intersection during specified night hours
- BO-3: Implement an "emergency mode" which controls the intersection in case malfunctions occur in the control system.
- BO-4: A pedestrian light that turns green only when a button is pressed and is safe to do so.
- BO-5: Make sure the control system complies with local traffic laws.
- SC-1: Make sure the traffic flows well following initial release.
- SC-2: Decreased injuries after the system has been implemented.

#### 2.3 Business risks

- RI-1: The implementation of a traffic light control system might increase traffic flow through said intersection, causing unexpected congestion (Prob=0.5, Impact= 4)
- RI-2: The timing of the lights may not be synced with lights from close-by intersections, causing frustration in drivers (Prob=0.8, Impact=6)
- RI-3: Drivers ignoring traffic laws and cross red lights (Prob=0.000371, Impact=9)
- RI-4: Pedestrians ignoring pedestrian lights(Prob=0.1, Impact=9)



#### 2.4 Assumptions and dependencies

F

- AS-1: People will use the intersection
- AS-2: The roads are properly marked
- AS-3: The necessary road signs are already in place
- AS-4: Most users will obey traffic laws
- AS-5: The hardware is functioning correctly
- DE-1: The system must fit within the constraints of the hardware.

### 3 Scope and limitations

#### 3.1 Scope of initial and subsequent releases



| Feature | Release 1 | Release 2                                 | Release 3                                 | Release 4                                          |
|---------|-----------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|
| FE-1    | Implement | -Demo with customer -Test with simulation | √                                         | √                                                  |
| FE-2    |           | Implement                                 | -Demo with customer -Test with simulation | 1                                                  |
| FE-3    |           | Implement                                 | -Demo with customer -Test with simulation | <b>√</b>                                           |
| FE-4    |           | Implement                                 | -Demo with customer -Test with simulation | √                                                  |
| FE-5    |           |                                           | Implement                                 | -Demo with<br>customer<br>-Test with<br>simulation |

| FE-7 Implement | FE-6 |  | Implement | -Demo with customer -Test with simulation |
|----------------|------|--|-----------|-------------------------------------------|
| FF-8 Implement | FE-7 |  |           | Implement                                 |
| Implement      | FE-8 |  |           | Implement                                 |

### 3.2 Limitations and exclusions

- LI-1: the system will be running on an embedded system with a 550KB hard drive and 50KB RAM
- LI-2: design must comply with the Alberta Traffic Safety Act

### 4 Business context

### 4.1 Stakeholder profiles

| Stakeholder  | Major Value                                     | Attitudes Major                                                                                         | Interests                                                                           | Constraints                                                                                     |
|--------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Manager      | Time and cost efficient coordination of project | Commitment to project management                                                                        | On-time product delivery within available budget                                    | None identified                                                                                 |
| Maintainers  | Maintain the system so it runs properly         | Commitment to keep maintain the system runs as expected and safely                                      | Easy access to<br>the system;<br>maintainable,<br>well-documente<br>d system design | Access to the system that the software runs on                                                  |
| Road workers | Fieldwork<br>safety;<br>Controllable<br>traffic | Concern about<br>the confusion<br>the traffic light<br>might give to<br>the road users<br>during a road | Their own safety when working near the intersection; Ease of providing              | Road workers<br>might not have<br>the access to<br>close the<br>intersection and<br>the system. |

|                             |                                                                                       | construction or closure                                                                                                                             | guidance to the traffic when road closed.                                             |                                                                                                                                                 |
|-----------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Traffic Enforcer/<br>Police | Enforce traffic<br>law and rules,<br>expeditious flow<br>of vehicular                 | Responsible for maintaining the order of the intersection                                                                                           | Safety and order of the traffic                                                       | None identified                                                                                                                                 |
| Software<br>Engineers       | Make a smart<br>solution; safe<br>design;<br>maintainable<br>and testable<br>software | Strong commitment to software system development and release.                                                                                       | Reliable hardware interfaces of the devices; available test or simulation environment | the software will be running on an embedded system with a 550KB hard drive and 50KB RAM; design must comply with the Alberta Traffic Safety Act |
| Drivers                     | Time savings;<br>intuitive signal;<br>safety when<br>driving through                  | Happy about<br>the increase of<br>efficiency and<br>safety                                                                                          | Easy and safe<br>to follow the<br>signal; minimum<br>waiting time                     | Inform about the new signal system is needed                                                                                                    |
| Pedestrians                 | Time savings;<br>Accessibility of<br>button; safety<br>when walking<br>through        | Not happy<br>about the effort<br>needed to wait<br>for the light to<br>change and/or<br>press a button,<br>but recognizes<br>the enhanced<br>safety | Minimum waiting time; enough time to cross; easy to reach buttons                     | Inform about the new signal system is needed                                                                                                    |

## 4.2 Project priorities

| - |   |
|---|---|
|   |   |
|   |   |
|   | _ |
|   |   |
|   |   |

| Dimension | Driver                                                                                        | Constraint                                                                  | Degree of Freedom                                          |
|-----------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|
| Schedule  |                                                                                               | Release 4 scheduled for Jan. 1 2019                                         | At most 2 weeks late.                                      |
| Features  | <b>P</b>                                                                                      | All features<br>scheduled for<br>release 3 must be<br>fully operational     | Features in release 4<br>won't be needed<br>right away     |
| Quality   |                                                                                               | The system should work continuously with little to no downtime              | <b>P</b>                                                   |
| Staff     | Projected team size is one half-time project manager, 3 developers, and one full-time tester. |                                                                             | Additional staff if necessary                              |
| Security  |                                                                                               | Members of the public should not have the ability to tamper with the system |                                                            |
| Cost      |                                                                                               | \$428 000 CAD                                                               | Budget overrun up to 20% acceptable without sponsor review |

#### 4.3 Product overview

The system is designed to direct the traffic lights system at the intersection. The software controls traffic lights in each direction in a predefined priority sequence. The software allows the traffic on main roads to go through the intersection first to reduce congestion of the main roads. The software signals the pedestrians to go across when safe after they pressed the button. The road 2 traffic light only goes green when the sensor detects cars and motorcycles on road 2 which will minimize the green light time of road 2 to give more time to the main road traffic.

#### 4.3.2 Summary of capabilities 📃



- The software is designed to follow the Alberta Traffic Safety Act and control traffic lights system at the intersection.
- During the day, the system will prioritize on the traffic flow in the order of road 1, road 3, road 2.
- The system allows the pedestrians to press a button when they want to go across the intersection and gives them signals when it is safe to go.
- The system shows red light in road 2 unless there is a car or motorcycle waiting on the sensor.
- In case of any hardware malfunction, the system switches to emergency mode.
- The system enters night mode between 8:00 PM and 6:00 AM.

#### 4.3.3 Cost and pricing

Prices in Canadian Dollars (CAD)

- Salary of 3 Software Engineers over 3 months \$120,000
- Maintenance \$8,000
- Materials cost \$100,000
- Construction \$200,000
- Total: \$428,000

# 4.4 Feature attributes



| Feature | Attributes                                                                                                                                                                                                                                                                                                  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FE-1    | The default mode is the main feature of the system. It should operate in the daytime. The system will be operating mostly in this mode. Therefore, it's priority is high, and will require significant effort to implement. Accidents would occur if this were to fail, which makes the risk for this high. |
| FE-2    | The system should switch to emergency mode briefly when starting up, and in case of a hardware malfunction. This functionality is required and comes with high risk because it serves as a backup if hardware fails. Since most of the system is implemented in version 1, this would require medium effort |
| FE-3    | The system must be able to be reset with a button. This should not be difficult to implement and poses little risk.                                                                                                                                                                                         |
| FE-4    | The system should switch to night mode at night. Since this is similar to emergency mode, this should not require much effort to implement, but it carries the same risks                                                                                                                                   |
| FE-5    | The user should be able to press a button to request to cross road 3. This will require medium effort and has high risk since pedestrians are more prone to injury than drivers                                                                                                                             |
| FE-6    | The sensor on road 2 should be able to detect if a vehicle is waiting for a light change and change the light when appropriate. This requires medium effort to implement, and medium risk                                                                                                                   |
| FE-7    | Timings for the traffic signals should be modifiable in the future. This functionality is important, but not required right away. This will require medium effort to implement, and low risk                                                                                                                |
| FE-8    | A nice-to-have is to have data available for a traffic engineer to analyze. This carries low risk, since it should not affect the functionality of the system but will require some extra effort, given the system's limited resources.                                                                     |

## 5 Product features

| Feature              | Status   | Propriety | Effort | Risk | Target ver. |
|----------------------|----------|-----------|--------|------|-------------|
| FE-1<br>Default mode | Approved | Critical  | High   | High | 1           |

| FE-2<br>Emergency<br>mode                                                                                   | Approved | Critical  | Medium      | High   | 2 |
|-------------------------------------------------------------------------------------------------------------|----------|-----------|-------------|--------|---|
| FE-3: Reset<br>mechanism<br>to reset the<br>system from<br>emergency<br>mode to<br>default mode             | Approved | Important | Low         | Low    | 3 |
| FE-4: Night mode: System should switch states at night                                                      | Approved | Critical  | Low         | Low    | 4 |
| FE-5:<br>Pedestrian<br>can press a<br>button to<br>cross road 3                                             | Approved | Critical  | Medium      | High   | 5 |
| FE-6 Sensor<br>on road 2<br>should detect<br>when a<br>vehicle is<br>waiting for<br>the light to<br>change. | Approved | Critical  | Medium      | Medium | 6 |
| FE-7 Timings<br>should be<br>modifiable in<br>the future                                                    | Proposed | Important | Low         | Low    | 7 |
| FE-8 Traffic data logging                                                                                   | Proposed | Useful    | Medium-High | Low    | 8 |