

USA Real Estate Dataset

LARRY SERRATOS

Objetivos

- Price Prediction

I like data science and im interested in learning more about real state, so i mix up this topics in my proyect to keep track of both at the same time.

I want to know if we can predict housing prices based on the features of a house.

So the objetive is create a predictor model for the Price of a property in the US based on basic property information.

In the future I would like to mix this model with others made up of other datasets to include other characteristics of the properties and make better prediction for prices in the present and posibilities of investment (future prices).

Exploratory Data Analysis (EDA)

- Understanding the dataset
- Data structure
- Previsualization
- Outlier analysis
- Handle of missing data
- Correlation
- Relation of features and price

This dataset contains Real Estate listings in the US broken by State and zip code.

	status	bed	bath	acre_lot	city	state	zip_code	house_size	prev_sold_date	price
0	for_sale	3	2	0.12	Adjuntas	Puerto Rico	601	920	nan	105000
1	for_sale	4	2	0.08	Adjuntas	Puerto Rico	601	1527	nan	80000
2	for_sale	2	1	0.15	Juana Diaz	Puerto Rico	795	748	nan	67000
3	for_sale	4	2	0.1	Ponce	Puerto Rico	731	1800	nan	145000
4	for_sale	6	2	0.05	Mayaguez	Puerto Rico	680	nan	nan	65000

- status (Housing status a. ready for sale or b. ready to build)
- bed (# of beds)
- bath (# of bathrooms)
- acre_lot (Property / Land size in acres)
- city (city name)

- state (state name)
- zip_code (postal code of the area)
- house_size (house area/size/living space in square feet)
- prev_sold_date (Previously sold date)
- price (Housing price, it is either the current listing price or recently sold price if the house is sold recently)

First filters

There are a lot of data that is duplicated.

There are still 424121 rows after dropping duplicates

Missing Values

Need to imputation to handle the missing values or drop them.

Previsualization of the outliers

We can see some outliers in the price, probably related to the house size.

Drop prices up to 0.5*10^9

Drop rows with up to 100 bath

Drop up to 100 bed

Drop up to 0.2 house size

Previsualization of the different states

1.	Puerto Rico	12.	Virginia	23.	Maryland
2.	Virgin Islands	13.	Wyoming	24.	Missouri
3.	Massachusetts	14.	Maine	25.	District of Columbia
4.	Connecticut	15.	Georgia	26.	Wisconsin
5.	New Hampshire	16.	Pennsylvania	27.	North Carolina
6.	Vermont	17.	West Virginia	28.	Kentucky
7.	New Jersey	18.	Delaware	29.	Michigan
8.	New York	19.	Louisiana	30.	Mississippi
9.	South Carolina	20.	Ohio	31.	Florida
10.	Tennessee	21.	California	32.	Alabama
11.	Rhode Island	22.	Colorado	33.	New Brunswick

Distribución de los 9 Estados Más Comunes y Otros, sin duplicados Otros Maryland South Carolina 4.2% 15.2% 7.1% New Jersey New York 7.8% 16.6% 8.2% Virginia 13.2% 11.3% 11.5% North Carolina Pennsylvania

Georgia

Previsualization of the average prices in the

The price increase in zones of zip codes.

Previsualization of the average prices in the

The average prices could be very different according to the city.

Los 5 códigos postales más caros con sus respectivas ciudades, estados y precios promedio:

state	city	price	zip_code	
New York	Thompson Ridge	3.000000e+07	10985.0	4105
Massachusetts	Barnstable	1.810000e+07	2672.0	791
Connecticut	Cornwall	1.333000e+07	6753.0	2453
New York	Sagaponack	1.291905e+07	11962.0	4821
Massachusetts	Woods Hole	1.230000e+07	2543.0	717

Analysis of features respect to a single zip_code

We can notice the linear growing of the price in proportion to the features.

The acre lot is not

Analysis of features respect to a single zip_code

We can notice the linear growing of the price in proportion to the features.

The acre lot is not

Dataset	Statements	Other possible insights
-The data set have a lot of duplicated values	predictor, but not in a linear way, more like in a	-Does the duration of ownership impact the price of the house?
- The data set have a lot of missing values that need	neighborhood way.	
imputation or dropping	-Bath, bed and size of house are secondary good predictors. Not as good as acre_lot	
-Check the outliers	_	

Modelo Predictivo.

- INTELIGENCIA ARTIFICIAL A LA CIENCIA DE DATOS

Objetivos

- Price Prediction

- Predict the price of properties based on their characteristics.

Decisions.

Processing:
Drop duplicates
Drop Missing Values
Drop 'state' and 'city'
Drop 'prev_sold_date'
Change 'status' to categorical

Outliers:

Drop prices up to 0.5*10^9
Drop rows with up to 100 bath
Drop up to 100 bed
Drop up to 0.2 house size

1 2 3	status for_sale for_sale for_sale for_sale for_sale	3.0 4.0 2.0 4.0	2.0 2.0 1.0 2.0	0.12 0.08	Adjuntas Adjuntas Juana Diaz Ponce	state Puerto Rico Puerto Rico Puerto Rico Puerto Rico Puerto Rico Puerto Rico	795.0	\
0 1 2 3 4	house_siz 920. 1527. 748. 1800. Na	0 0 0 0	v_sold	NaN 105 NaN 80 NaN 67 NaN 145	price 6000.0 0000.0 0000.0 6000.0			
3	09656	5 ro	WS					

	status	bed	bath	acre_lot	zip_code	house_size	price
0	1	3	2	0.12	601	920	105000
1	1	4	2	0.08	601	1527	80000
2	1	2	1	0.15	795	748	67000
3	1	4	2	0.10	731	1800	145000
4	1	4	3	0.46	612	2520	179000

207480 rows

Split the data into training and testing sets (e.g., 80% training and 20% testing) to evaluate model performance.

Chosen Models

Linear Regression

KNN

Random Forest

Variables were scaled to improve model performance by ensuring that variables contribute equitably.

Linear Regression

The data were separated according to the number of beds given the variety of property types.

Dataset 1

RMSE = 355821.12

R2 = 0.063

Dataset 2

RMSE = 702258.56

R2 = 0.271

Dataset 3

RMSE = 249168.24

R2 = 0.102

Dataset 4

RMSE = 515830.7

R2 = 0.086

Dataset 5

RMSE = 524257.23

R2 = 0.207

Dataset 6

RMSE = 1337970.42

R2 = 0.248

Dataset 7

RMSE = 2519518.14

R2 = 0.336

Dataset 8

RMSE = 2779417.06

R2 = 0.405

Dataset 9

RMSE = 5254063.17

R2 = 0.313

Dataset 10

RMSE = 4518202.15

R2 = 0.656

KNN

KNN (K-Nearest Neighbors) is a machine learning algorithm that predicts the classification or value of a new data point by considering the majority class or average value of its nearest neighbors in the feature space.

RMSE for KNN : 869620.71

R2 for KNN : 0.4518

Random Forest

RMSE: 726526.68

R2 : 0.6174

Comparation

Interpretation

Random Forest

The best predictor model out of this research.

Would be good to readjust the importance of the variables.

Data

The types of property are very variable, it would be convenient to separate the data by type of property, hotels, personal homes, multi-family, etc.

Other models

It would be convenient to use a more advanced method such as Neural Networks

Due the great outliers in the data it is not easy to get a good prediction it would be better to use other IA techniques like Neural Networks.

La mejor cita que refleja su visión... "Es un pequeño paso para el hombre, pero un gran salto para la humanidad".