STATS219: Stochastic Processes

Erich Trieschman

2022 Fall quarter class notes

1 Measure theory

1.1 Definitions of measure theory

1.1.1 Powerset (2^{Ω})

Set of all possible subsets of Ω

1.1.2 σ -algebra (\mathcal{F})

- (a) $\Omega \in \mathcal{F}$
- (b) $A \in \mathcal{F} \Rightarrow A^C \in \mathcal{F}$
- $(c) A_1, \ldots, A_{\infty} \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

1.1.3 Probability space $((\Omega, \mathcal{F}, P))$

 $P: \mathcal{F} \longrightarrow [0,1]$ such that

- (a) $0 \le P(A) \le 1 \ \forall A \in \mathcal{F}$
- (b) $P(\Omega) = 1$
- (c) $P(A) = \bigcup_{i=1}^{\infty} P(A_i)$ whenever $A = \bigcup_{i=1}^{\infty} A_i$ and $A_n \cap A_m = \emptyset$ for $n \neq m$

2 Random variables

2.1 Definitions of random variables

2.1.1 Random varible $(X, "\mathcal{F}$ -measurable function")

 $X: \Omega \longrightarrow \mathbb{R}$ such that

$$\{\omega : X(\omega) \le \alpha\} \in \mathcal{F}, \ \forall \alpha \in \mathbb{R}$$

2.1.2 Indicator function ($\mathbb{I}_{\mathbb{A}}$)

A rv $\forall A \in \mathcal{F}$ such that

$$I_A(\omega) = \begin{cases} 1 & if \ \omega \in A \\ 0 & else \end{cases}$$

2.1.3 Borel function

 $g: \mathbb{R} \longrightarrow \mathbb{R} \Longrightarrow g$ is an rv on $(\mathbb{R}, \mathcal{B})$

2.1.4 σ -algebra generator $(\sigma(\{A_{\alpha}\}))$

$$\sigma(\{A_{\alpha}\}) = \bigcap \{\mathcal{G} : \mathcal{G} \subseteq 2^{\Omega} \ a\sigma - field, \ A_{\alpha} \in \mathcal{G}, \ \forall \alpha \in \Gamma, \ a \ countable \ or \ uncountable \ index\}$$
$$\sigma(X) = \mathcal{F}_{x} = \sigma(\{\omega : X(\omega) \leq \alpha\} \forall \alpha)$$

2.1.5 Expectation of an rv (E[X])

$$E[X] = \lim_{n \to \infty} \left[\sum_{k=0}^{\infty} x_{k,n} * P(\{\omega : X(\omega) \in I_{k,n}\}) \right]$$
for $x_{k,n} = k2^{-n}, I_{k,n} = (x_{k,n}, x_{k+1,n}]$

2.1.6 Independence

events
$$A, B$$
 independent $\Longrightarrow P(A \cap B) = P(A)P(B)$ for $A, B \in \mathcal{F}$
 σ -fields $\mathcal{H}, \mathcal{G} \subseteq \mathcal{F}$ independent $\Longrightarrow P(G \cap H) = P(G)P(H), \forall G \in \mathcal{G}, \forall H \in \mathcal{H}$

2.1.7 Uncorrelated

$$E(XY) = E(X)E(Y)$$
, for $X, Y \in L^2$

2.1.8 L^q spaces $(L^q(\Omega, \mathcal{F}, P))$

The collection of all rv X on (Ω, \mathcal{F}) where $E(|X|^q) < \infty$

2.1.9 Law of an rv (\mathcal{P}_x)

Probability measure on $(\mathbb{R}, \mathcal{B})$ such that $\mathcal{P}_x(B) = P(\{\omega : X(\omega) \in B\})$ for all $B \in \mathcal{B}$

2.1.10 Distribution function of an rv (F_X)

$$F_X(\alpha) = P(\{\omega : X(\omega) \le \alpha\}) = \mathcal{P}_X((-\infty, \alpha]) \ \forall \alpha \in \mathbb{R}$$

2.1.11 Convergence and equality almost surely (a.s.)

$$X \stackrel{a.s.}{=} Y \iff P(\{\omega : X(\omega) \neq Y(\omega)\}) = 0$$

$$X \stackrel{a.s.}{\leq} 0 \iff P(\{\omega : X(\omega) > 0\}) = 0$$

$$X_n \stackrel{a.s.}{=} X \iff X_n(\omega) \to X(\omega) \text{ as } n \to \infty \ \forall \omega \in A \in \mathcal{F} \text{ with } P(A) = 1$$

2.1.12 Convergence in probability (p)

$$X_n \xrightarrow{p} X \iff P(\{\omega : |X_n(\omega) - X(\omega)| > \epsilon\}) \longrightarrow 0 \text{ as } n \to \infty \ \forall \epsilon \in \mathbb{R}$$

2.1.13 Convergence in L^q (or in q-mean)

$$X_n \overset{q.m}{\longrightarrow} X \Longleftrightarrow \|X_n - X\|_q = [E(|X_n - X|^q)]^{\frac{1}{q}} \longrightarrow 0 \text{ as } n \to 0, \text{ for } X_n, X \in L^q$$

2.1.14 Convergence in law (or weak convergence or in distribution)

$$X_n \stackrel{d}{\longrightarrow} X \Longleftrightarrow F_{X_n}(\alpha) \longrightarrow F_X(\alpha)$$
 as $n \to \infty \ \forall \alpha$ continuity points of F_X

3 Conditional expectation

3.1 Definitions of conditional expectation

3.1.1 In discrete space

$$f(y) := E(X|Y = y) = \frac{E(X * I\{Y = y\})}{P(Y = y)} \forall y \text{ requiring } P(Y = y) > 0$$

3.1.2 In L^2 space (Hilbert space)

$$Z=E(X|Y)$$
 unique random variable satisfying :
$$Z\in H_Y=L^2(\Omega,\sigma(Y),P)$$

$$E[(X-Z)V]=0 \ \forall V\in H_Y$$

$$\min_{Z}\{E[(X-Z)^2]:Z\in H_Y\} \ (\text{interchangeable with line above it b/c of } L^2 \ \text{properties})$$

3.1.3 In L^1 space

$$Z = E(X|Y)$$
 such that :
$$E[(X-Z)I\{Y=y\}] = 0, \forall y \in \mathbb{R}$$

$$E[(X-Z)I\{Y \in B\}] = 0, \forall B \in \mathcal{B}$$

3.2 Properties of conditional expectation

For $X, Y \in L^1$, σ -fields $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$

- $\bullet \ \, X \geq 0 \Longrightarrow E(X|\mathcal{G}) \stackrel{a.s.}{\geq} 0$
- If $\mathcal{G}, \sigma(X)$ independent $\Longrightarrow E(X|\mathcal{G}) = E(X)$
- If X is \mathcal{G} -measurable $\Longrightarrow E(X|\mathcal{G}) = X$
- $E[\alpha X + \beta Y | \mathcal{G}] = \alpha E(X | \mathcal{G}) + \beta E(Y | \mathcal{G}) \ \forall \alpha, \beta \in \mathbb{R}$
- $E[E(X|\mathcal{G})|\mathcal{H}] = E(X|\mathcal{H})$
- $E[E(X|\mathcal{G})] = E(X)$
- If Y is \mathcal{G} -measurable and $X, XY \in L^1 \Longrightarrow E[XY|\mathcal{G}] = YE[X|\mathcal{G}]$

For $Var(Y|\mathcal{G}) := E(Y^2|\mathcal{G}) + E(Y|\mathcal{G})^2, Y \in L^2$

- If $Y \in L^2(\Omega, \mathcal{G}, P) \Longrightarrow Var(Y|\mathcal{G}) = 0$
- $Var(Y) = E[Var(Y|\mathcal{G})] + Var[E(Y|\mathcal{G})]$
- If $E(Y|\mathcal{G}) = X$ and $E(X^2) = E(Y^2) < \infty \Longrightarrow X \stackrel{a.s.}{=} Y$
- If $\mathcal{H} \subseteq \mathcal{G}$ and $X \in L^2(\Omega, \mathcal{F}, P) \Longrightarrow E[(X E(X|\mathcal{G}))^2] \le E[(X E(X|\mathcal{H}))^2]$