Machine Learning with scikit-learn

https://github.com/nuitrcs/Python-scikit-learn-2023

What is Machine Learning?

Traditional Programming

What is Machine Learning?

Traditional Programming

Machine Learning

When Do We Use Machine Learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Learning isn't always useful:

There is no need to "learn" to calculate payroll

A classic example of a task requiring ML

What makes a "2"?

Some more examples of ML tasks

Recognizing patterns:

- Facial identities or facial expressions
- Handwritten or spoken words
- Medical images

Generating patterns:

Generating images or motion sequences

Recognizing anomalies:

- Unusual credit card transactions
- Unusual patterns of sensor readings in a nuclear power plant

Prediction:

Future stock prices or currency exchange rates

Types of ML Problems

Discrete classification or clustering categorization Continuous dimensionality regression reduction

Supervised Learning

When you already know the "answers" And want to predict future "answers"

Learn a discrete Classification

Learn a continuous Regression

Unsupervised Learning

When you don't know any labels

But want to predict / learn useful labels

Learn a discrete Clustering

Learn a continuous Dimension Reduction

Model Optimization Types of ML Errors

Bias:

Systematic prejudice in the model Simple model = High bias

Variance:

Change in the model's prediction, when the dataset is changed a little bit

Complex model = High variance

Model Optimization Bias-variance trade-off

Model Optimization Bias-variance trade-off

High Variance

Model Optimization Bias-variance trade-off

Under-fitting

High Bias Low Variance

Low Bias High Variance

Over-fitting

Model Validation Train – Test split

Model Validation k-fold cross-validation

ML workflow

1. Should I use ML on this problem?

Is there a pattern to detect? Can I solve it analytically?

Do I have data?

2. Gather and organize data.

Preprocessing, cleaning, visualizing.

3. Establishing a baseline.

4. Choosing a model, loss, regularization, ...

5. Optimization (could be simple, could be a PhD...).

6. Hyperparameter search.

7. Analyze performance & mistakes and iterate back to step 4 (or 2).