Chapter 1

Known Results on Finite Generation

We know that if \mathcal{U} is the unipotent subgroup of any exceptional rank 2 Chevalley group then $\langle \mathcal{U}_{\alpha}, \mathcal{U}_{\beta} \rangle \subsetneq \mathcal{U}$ where α, β are the simple roots of the root system. However, we do have the following results about generation.

Lemma 1. Let $\alpha, \beta, \beta + \alpha, \beta + 2\alpha$ be the positive roots of a root system of type C_2 and \mathcal{U} the unipotent subgroup of $C_2(\mathbb{F}_2)$. Then $\mathcal{U} = \langle \mathcal{U}_{\alpha}, \mathcal{U}_{\beta}, \mathcal{U}_{\beta+\alpha} \rangle = \langle \mathcal{U}_{\alpha}, \mathcal{U}_{\beta}, \mathcal{U}_{\beta+2\alpha} \rangle$.

Lemma 2. Let $\alpha, \beta, \beta + \alpha, \beta + 2\alpha, \beta + 3\alpha, 2\beta + 3\alpha$ be the positive roots of a root system of type G_2 and \mathcal{U} the unipotent subgroup of $G_2(\mathbb{F}_3)$. Then $\mathcal{U} = \langle \mathcal{U}_{\alpha}, \mathcal{U}_{\beta}, \mathcal{U}_{\beta+\alpha} \rangle = \langle \mathcal{U}_{\alpha}, \mathcal{U}_{\beta}, \mathcal{U}_{\beta+3\alpha} \rangle$.

Lemma 3. Let $\alpha, \beta, \beta + \alpha, \beta + 2\alpha, \beta + 3\alpha, 2\beta + 3\alpha$ be the positive roots of a root system of type G_2 and \mathcal{U} the unipotent subgroup of $G_2(\mathbb{F}_2)$. Then $\mathcal{U} = \langle \mathcal{U}_{\alpha}, \mathcal{U}_{\beta}, \mathcal{U}_{\beta+\alpha} \rangle$ but $\langle \mathcal{U}_{\alpha}, \mathcal{U}_{\beta}, \mathcal{U}_{\beta+3\alpha} \rangle \subsetneq \mathcal{U}$.