

Week 3

Pioneer 3DX - SLAM (Group 17) Eufémio Marq

Eufémio Marques Ivan Figueiredo Miguel Roldão Pedro Matos

Plans for last week:

- 1. Create a simulation environment in Gazebo and explore existing topics.
- 2. Create a simple testing script to control the Pioneer and prevent it to exit a certain region.
- 3. Record data from simulated lasers and then use it on a new version of a script.
- 4. On EKF understand which are the necessary features...

Gazebo

We tested 2 different packages to simulate our pioneer:

- *p2os* maintained by Hunter Allen,
- *pioneer p3dx model* by mario-serna,

D20S maintained by Hunter Allen

 We managed to control the robot using a script and read pose msgs.

Setbacks:

- Some of the tutorials we found are not updated to noetic and Python3 (Major issues of incompatibility).
- We could not use the laser with this package.

pioneer p3dx model by mario-serna

```
neader:
 seq: 337
 stamp:
   nsecs: 552000000
                                                                                                                                                                                                                       updated
 frame id: "lms100'
 nale min: -2.094399929046631
 ngle max: 2.094399929046631
                                                                                                                                                                                                                        r and sonar.
ngle increment: 0.005769697017967701
ime increment: 0.0
   4083099365, 2.5603981018066406, 2.5303170680999756, 2.5254671573638916, 2.497307062149048, 2.4651570320129395, 2.4467227458953857,
 6296387, 2.257619857788086, 2.241198778152466, 2.2347939014434814, 2.22379469871521, 2.185835599899292, 2.1885507106781006, 2.199055
67351531982, 2.1399450302124023, 2.116119623184204, 2.121645450592041, 2.0942797660827637, 2.0834667682647705, 2.0608174800872803, 2
.030256748199463, 2.0202994346618652, 2.0199825763702393, 2.005363702774048, 2.017523765563965, 2.0086514949798584, 1.97686016559606
3396, 1.9563392400741577, 1.945106029510498, 1.93117356300354, 1.9203239679336548, 1.9178903102874756, 1.9224836826324463, 1.91875219
30005264282, 1.8868707418441772, 1.8378459215164185, 1.8582369089126587, 1.853101134300232, 1.8434593677520752, 1.8235381841659546, 1
1.8199172019958496, 1.8003772497177124, 1.8075454235076904, 1.7799742221832275, 1.7797428369522095, 1.7690985202789307, inf, inf, inf
0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,
```

First Scripts and launch files

Script that publishes a circular Created a launch file to motion to /pioneer/cmd_vel spawn pioneer on a map

```
if name == ' main ':
   rospy.init node("draw circle")
   rospy.loginfo("Hello from draw circle")
   pub=rospy.Publisher("/pioneer/cmd vel", Twist, queue size=10)
    #rospy.logwarn("Thos is a warning")
   rate = rospy.Rate(1)
   while not rospy.is shutdown():
       #publish cmd vel
       msa=Twist()
       msq.linear.x = 2.0
       msq.angular.z = 0.5
       pub.publish(msg)
       print(msq)
       rate.sleep()#rate of sleep 2hz
   rospy.loginfo("End of program")
```


Hokuyo laser

Simulation:

~ ∞ update rat whole range {-

Model No.	URG-04LX-UG01	
Power source	5VDC±5%(USB Bus power)	
Light source	Semiconductor laser diode(λ=785nm), Laser safety class 1	
Measuring area	20 to 5600mm(white paper with 70mm×70mm), 240°	
Accuracy	60 to 1,000mm : ±30mm, 1,000 to 4,095mm : ±3% of measurement	
Angular resolution	Step angle : approx. 0.36°(360°/1,024 steps)	
Scanning time	100ms/scan	
Noise	25dB or less	
Interface	USB2.0/1.1[Mini B](Full Speed)	
Command System	SCIP Ver.2.0	
Ambient illuminance*1	Halogen/mercury lamp: 10,000Lux or less, Florescent: 6000Lux(Max)	
Ambient temperature/humidity	-10 to +50 degrees C, 85% or less(No condensation, no icing)	
Vibration resistance	10 to 55Hz, double amplitude 1.5mm each 2 hour in X, Y and Z directions	
Impact resistance	196m/s2, Each 10 time in X, Y and Z directions	
Weight	Approx. 160g	

*1 Thease products are only for indoor applications. Strong sunlight may cause error output.

 Vibration resistance
 10 to 55Hz, double amplitude 1.5mm each 2 hour in X, Y and Z directions

 Impact resistance
 196m/s2, Each 10 time in X, Y and Z directions

 Weight
 Approx. 160g

^{*1} Thease products are only for indoor applications. Strong sunlight may cause error output.

Extended Kalman Filter (EKF)

Simulataneous localization and mapping with the extended Kalman filter

'A very quick guide... with Matlab code!'

Joan Solà

October 5, 2014

Table 1: EKF operations for achieving SLAM				
Event	SLAM	EKF		
Robot moves	Robot motion	EKF prediction		
Sensor detects new landmark	Landmark initialization	State augmentation		
Sensor observes known landmark	Map correction	EKF correction		
Mapped landmark is corrupted	Landmark deletion	State reduction		

Extended Kalman Filter (EKF)

Odometry:

Knowing v and ω

estimate

$$(x_0, y_0, \theta_0) \to (x, y, \theta)$$

$$f = (x, y, \theta) = \begin{cases} x = x_0 + v \cdot \cos\theta_0 \cdot \Delta t \\ y = y_0 + v \cdot \sin\theta_0 \cdot \Delta t \\ \theta = \theta_0 + \omega \cdot \Delta t \end{cases}$$

$$\frac{\partial f}{\partial r} = \begin{bmatrix} 1 & 0 & -v\sin\theta\Delta t \\ 0 & 1 & v\cos\theta\Delta t \\ 0 & 0 & 1 \end{bmatrix}$$

with
$$\varepsilon = n$$
 $n = (\varepsilon_v, \varepsilon_\omega)$

$$\frac{\partial f}{\partial n} = \begin{bmatrix} \frac{\partial v}{\partial \varepsilon_v} \cos \theta_0 \Delta t & 0\\ \frac{\partial v}{\partial \varepsilon_v} \sin \theta_0 \Delta t & 0\\ 0 & \frac{\partial \omega}{\partial \varepsilon_w} \Delta t \end{bmatrix}$$

$$f(v) = \frac{1}{\varepsilon_v \sqrt{2\pi}} \exp\{-\frac{(v-\mu)^2}{2\varepsilon_v^2}\}$$

$$\frac{\partial f(v)}{\partial \varepsilon_v} = \frac{1}{\varepsilon_v \sqrt{2\pi}} \exp\left\{-\frac{(v-\mu)^2}{2\varepsilon_v^2}\right\} \frac{(v-\mu)^2}{\varepsilon_v^3} - \frac{1}{\varepsilon_v^2 \sqrt{2\pi}} \exp\left\{-\frac{(v-\mu)^2}{2\varepsilon_v^2}\right\} \frac{(v-\mu)^2}{\varepsilon_v^3} = \frac{1}{\varepsilon_v^2 \sqrt{2\pi}} \exp\left\{-\frac{(v-\mu)^2}{2\varepsilon_v^2}\right\} \frac{(v-\mu)^2}{\varepsilon_v^3} = \frac{1}{\varepsilon_v^3 \sqrt{2\pi}} \exp\left\{-\frac{(v-\mu)^2}{2\varepsilon_v^3}\right\} \exp\left\{-\frac{(v-\mu)^2}{2\varepsilon_v^3}\right\}$$

$$\frac{1}{\varepsilon_v \sqrt{2\pi}} \exp\{-\frac{(v-\mu)^2}{2\varepsilon_v^2}\} \frac{(v-\mu)^2}{\varepsilon_v^3} - \frac{1}{\varepsilon_v^2 \sqrt{2\pi}} \exp\{-\frac{(v-\mu)^2}{2\varepsilon_v^2}\} \frac{(v-\mu)^2}{\varepsilon_v^3} - \frac{1}{\varepsilon_v^3 \sqrt{2\pi}} \exp\{-\frac{(v-\mu)^2}{2\varepsilon_v^2}\} \frac{(v-\mu)^2}{\varepsilon_v^3} - \frac{1}{\varepsilon_v^3 \sqrt{2\pi}} \exp\{-\frac{(v-\mu)^2}{2\varepsilon_v^3}\} \frac{(v-\mu)^2}{\varepsilon_v^3} - \frac{(v-\mu)^2}{2\varepsilon_v^3} - \frac{(v-$$

 $\iff \frac{\partial f(v)}{\partial \varepsilon_v} = \frac{1}{\varepsilon_v^2 \sqrt{2\pi}} \exp\{-\frac{(v-\mu)^2}{2\varepsilon_v^2}\} \left[\frac{(v-\mu)^2}{\varepsilon_v^2} - 1\right]$

Implementation of the odometry belief

```
if __name__ == '__main__':
    global t_final, positionx, positiony, theta

t_final=0
    positionx=0
    positiony=0
    theta=0

    rospy.init_node("Belief_calculation")
    rospy.loginfo("Hello from belief_calculation")

pub=rospy.Publisher("/pioneer/belief_calculation", PoseWithCovariance, queue_size=10)

#sub_pose=rospy.Subscriber("/pioneer/pose_belief", PoseWithCovariance)

sub_odometry=rospy.Subscriber("/pioneer/odom", Odometry, callback = belief_calculati
    rospy.spin()#keeps the node alive
```

```
def belief calculation callback(msg toreceive: Odometry):
    global t final, positionx, positiony, theta
    if(t final!=0):
        msq tosend=PoseWithCovariance()
        velocity=msq toreceive.twist.twist.linear.x
        angular velocity=msg toreceive.twist.twist.angular.z
        t inicial=t final
        t final=msg toreceive.header.stamp
       delta t=(t final-t inicial).to sec()
        positionx=velocity*delta t*math.cos(theta)+positionx
        positiony=velocity*delta t*math.sin(theta)+positiony
        theta=(theta+angular velocity*delta t)
        msq tosend.pose.position.x=positionx
        msq tosend.pose.position.y=positiony
        msg tosend.pose.orientation.z=theta
        rospy.loginfo(msg tosend)
        pub.publish(msg tosend)
        t final=msg toreceive.header.stamp
        positionx=msg toreceive.pose.pose.position.x
        positiony=msg toreceive.pose.pose.position.y
        theta=msg toreceive.pose.pose.orientation.z
```

Plans for next week:

- 1. Use the real Pioneer and Hokuyo laser and check connections.
- 2. Understand how to use the pose updating algorithm with the real model.
- 3. Record data from simulated lasers and then use it on a new version of a script.
- 4. On EKF, validate our results testing the pose updating algorithm. Understand how to include the laser readings/landmarks.

Thank you!

ANY QUESTIONS or Suggestions (please)?

eufemiomarques@tecnico.ulisboa.pt
ivan.figueiredo@tecnico.ulisboa.pt
miguel.roldao@tecnico.ulisboa.pt
pedromatoss@tecnico.ulisboa.pt