# Sprawozdanie Obliczenia Naukowe lista 2

Łukasz Bratos

Listopad 2019

# 1 Zadanie 1

#### 1.1 O zadaniu

W tym zadaniu mamy wykonać polecenie z zadania 5 z poprzedniej listy, ale tym razem ze zmodyfikowanymi danymi wejściowymi, tj. usunąć ostatnią 9 z  $x_4$  i ostatnią 7 z  $x_5$ . Mamy zaobserwować jaki wpływ mają niewielkie zmiany danych na wyniki.

#### 1.2 Rozwiązanie

Korzystamy z kodu, który napisaliśmy na potrzeby ostatniej listy. Modyfikujemy tylko nasze dane wejściowe zgodnie z poleceniem.

# 1.3 Wyniki

| Algorytm                         | Float64                 | Zmodyfikowany Float64 |
|----------------------------------|-------------------------|-----------------------|
| W przód                          | 1.0251881368296672e-10  | -0.004296342739891585 |
| W tył                            | -1.5643308870494366e-10 | -0.004296342998713953 |
| Od największego do najmniejszego | 0.0                     | -0.004296342842280865 |
| Od najmniejszego do największego | 0.0                     | -0.004296342842280865 |

Tabela 1: Wyniki dla zadania 5 w arytmetyce Float64

| Algorytm                         | Float32             | Zmodyfikowany Float32 |
|----------------------------------|---------------------|-----------------------|
| W przód                          | -0.3472038161853561 | -0.3472038161889941   |
| W tył                            | -0.3472038162872195 | -0.3472038162872195   |
| Od największego do najmniejszego | -0.5                | -0.5                  |
| Od najmniejszego do największego | -0.5                | -0.5                  |

Tabela 2: Wyniki dla zadania 5 w arytmetyce Float32

Widzimy, że otrzymane wyniki w przypadku Float64 różnią się znacząco od poprzednich oraz dla każdego algorytmu zwracają podobną wartość. W przypadku Float32 niewiele się zmienia (usunięte cyfry i tak nie zawierały się w tej precyzji).

#### 1.4 Wnioski

Po otrzymanych wynikach możemy przypuszczać, że zadanie to jest źle uwarunkowane. Bardzo mała zmiana danych wejściowych daje ogromną różnicę w wyniku oraz sprawia, że algorytmy zachowują się podobnie.

# 2 Zadanie 2

#### 2.1 O zadaniu

W tym zadaniu mamy narysować wykres funkcji f(x) w co najmniej dwóch dowolnych programach do wizualizacji, a następnie policzyć granicę funkcji  $\lim_{x\to\infty} f(x)$  i porównać wykres funkcji z policzoną granicą.

$$f(x) = e^x \ln(1 + e^{-x})$$

# 2.2 Rozwiązanie

Pierwszy wykres rysuję za pomocą biblioteki matplotlib w Pythonie. Drugi wykres tworzę z pomocą programu Gnuplot korzystając z następujących komend:

set xrange 
$$[-10.0:45.0]$$
  
plot  $\exp(x) * \log(1 + \exp(-x))$ 

Granicę liczę korzystając z programu WolframAlpha.

# 2.3 Wyniki

Otrzymana granica to:

$$\lim_{x \to \infty} e^x \ln(1 + e^{-x}) = 1$$

Widzimy, że na wykresach po przekroczeniu wartości 32 zaczyna dochodzić do anomalii. Pomimo, że granica funkcji wynosi 1, to wartości funkcji coraz bardziej od niej dobiegają, aby ostatecznie osiągnąć wartość 0.



Rysunek 1: Wykres funkcji  $f(x) = e^x \ln(1 + e^{-x})$  wykonany w PyPlot

#### 2.4 Wnioski

Dla wartości x powyżej 36 wartość  $e^{-x}$  zaczyna być mniejsza od epsilona maszynowego, więc wartość logarytmu zaczyna być równa 0, a co za tym idzie cała funkcja osiąga wartość 0.



Rysunek 2: Wykres funkcji  $f(x) = e^x \ln(1 + e^{-x})$  wykonany w GNUPlot

# 3 Zadanie 3

#### 3.1 O zadaniu

W tym zadaniu mamy rozwiązać układy równań liniowych postaci Ax = b (gdzie x jest wektorem jednostkowym, A jest macierzą współczynników, a b wektorem prawych stron) dla macierzy Hilberta oraz macierzy losowych o ustalonym wskaźniku uwarunkowania. Mamy skorzystać z metody eliminacji Gaussa oraz metody inwersji.

#### 3.2 Rozwiązanie

Korzystając z pakietu Linear Algebra wyliczamy b metodą eliminacji Gaussa oraz metodą inwersji  $(x = A^{-1} \cdot b)$ . Liczymy błędy względne w porównaniu z wektorem jednostkowym.

#### 3.3 Wyniki

Wyniki dla macierzy Hilberta umieszczam w tabeli 3, a dla macierzy losowych w tabeli 4.

# 3.4 Wnioski

Macierz Hilberta jest przykładem macierzy źle uwarunkowanej. Niezależnie od algorytmu bład względny jest znaczny. Dla stosunkowo niewielkich rozmiarów wskaźnik uwarunkowania jest bardzo duży. Błąd względny w przypadku macierzy losowych jest znacznie mniejszy.

# 4 Zadanie 4

#### 4.1 O zadaniu

W tym zadaniu mamy zbadać pierwiastki wielomianu Wilkinsona w postaci naturalnej obliczone przy pomocy pakietu Polynomials. Porównamy wyliczone pierwiastki z rzeczywistymi pierwiastkami oraz wyliczymy wartość wielomianu (dla postaci normalnej i iloczynowej) w  $z_k$ , gdzie  $z_k$ , to k-ty wyliczony pierwiastek wielomianu. W drugiej części zadania modyfikujemy współczynnik przy  $x_{19}$  zmniejszając go o  $2^{-23}$ . Wielomian Wilkinsona wygląda następująco:

$$p(x) = \prod_{i=0}^{20} (x - i)$$

| n  | rank(H)              | $\operatorname{cond}(H)$ | Błąd metody Gaussa     | Błąd metody inwersji   |
|----|----------------------|--------------------------|------------------------|------------------------|
| 1  | 1                    | 1.0                      | 0.0                    | 0.0                    |
| 2  | 2                    | 19.28147006790397        | 5.661048867003676e-16  | 1.4043333874306803e-15 |
| 3  | 3                    | 524.0567775860644        | 8.022593772267726e-15  | 0.0                    |
| 4  | 4                    | 15513.73873892924        | 4.137409622430382e-14  | 0.0                    |
| 5  | 5                    | 476607.25024259434       | 1.6828426299227195e-12 | 3.3544360584359632e-12 |
| 6  | 6                    | 1.4951058642254665e7     | 2.618913302311624e-10  | 2.0163759404347654e-10 |
| 7  | 7                    | 4.75367356583129e8       | 1.2606867224171548e-8  | 4.713280397232037e-9   |
| 8  | 8                    | 1.5257575538060041e10    | 6.124089555723088e-8   | 3.07748390309622e-7    |
| 9  | 9                    | 4.931537564468762e11     | 3.8751634185032475e-6  | 4.541268303176643e-6   |
| 10 | 10                   | 1.6024416992541715e13    | 8.67039023709691e-5    | 0.0002501493411824886  |
| 11 | 10                   | 5.222677939280335e14     | 0.00015827808158590435 | 0.007618304284315809   |
| 12 | 11                   | 1.7514731907091464e16    | 0.13396208372085344    | 0.258994120804705      |
| 13 | 3.344143497338461e18 |                          | 0.11039701117868264    | 5.331275639426837      |
| 14 | 11                   | 6.200786263161444e17     | 1.4554087127659643     | 8.71499275104814       |
| 15 | 12                   | 3.674392953467974e17     | 4.696668350857427      | 7.344641453111494      |
| 16 | 12                   | 7.865467778431645e17     | 54.15518954564602      | 29.84884207073541      |
| 17 | 12                   | 1.263684342666052e18     | 13.707236683836307     | 10.516942378369349     |
| 18 | 12                   | 2.2446309929189128e18    | 9.134134521198485      | 7.575475905055309      |
| 19 | 13                   | 6.471953976541591e18     | 9.720589712655698      | 12.233761393757726     |
| 20 | 13                   | 1.3553657908688225e18    | 7.549915039472976      | 22.062697257870493     |

Tabela 3: Wyniki dla macierzy Hilberta z zadania 3

# 4.2 Rozwiązanie

Wielomian w postaci normalnej tworzymy korzystając z funkcji Poly(), a przy postaci iloczynowej z funkcji poly(). Pierwiastki wyliczamy przy pomocy funkcji roots(). Do obliczenia wartości wielomianu w punkcie wykorzystujemy funkcję polyval().

#### 4.3 Wyniki

Widzimy, że wyliczone pierwiastki różnią się od tych poprawnych, stąd też wartość wielomianu w punktach  $z_k$  jest różna od 0. Modyfikując współczynnik o zaledwie  $2^{-23}$  otrzymujemy już pierwiastki zespolone.

#### 4.4 Wnioski

Zadanie to jest źle uwarunkowane ze względu na zaburzenia współczynników. Pokazaliśmy, że niewielka zmiana daje duży błąd. Przez to, że pierwiastki są kolejnymi liczbami rzeczywistymi, niektóre współczynniki naszego wielomianu posiadają więcej cyfr znaczących niż *Float64* jest nam w stanie zaoferować.

# 5 Zadanie 5

#### 5.1 O zadaniu

Mamy dane następujące równanie rekurencyjne:

$$p_{n+1} = p_n + rp_n(1 - p_n)$$

gdzie n = 0, 1, ..., r jest pewną stałą,  $rp_n(1 - p_n)$  jest czynnikiem wzrostu populacji, a  $p_0$  jest wielkością populacji stanowiącą procent maksymalnej wielkości populacji dla danego stanu środowiska.

 ${\it Mamy}$  przeprowadzić następujące eksperymenty i porównać otrzymane wyniki wewnątrz każdego z nich.

1. Dla danych  $p_0 = 0.01$  i r = 3 wykonać 40 iteracji naszego wyrażenia, a następnie wykonać ponownie 40 iteracji naszego wyrażenia z niewielką modyfikacją tj. wykonać 10 iteracji, zatrzymać,

| n  | rank(R) | $\operatorname{cond}(R)$ | Błąd metody Gaussa     | Błąd metody inwersji   |
|----|---------|--------------------------|------------------------|------------------------|
| 5  | 5       | 1.0                      | 1.4043333874306804e-16 | 0.0                    |
| 5  | 5       | 10.0                     | 1.9860273225978183e-16 | 9.930136612989092e-17  |
| 5  | 5       | $10.0^{3}$               | 1.3726775207334618e-14 | 1.9394042374125575e-14 |
| 5  | 5       | $10.0^{7}$               | 4.468561475845091e-16  | 1.7371110714613055e-11 |
| 5  | 5       | $10.0^{12}$              | 2.7641805370534272e-5  | 3.1687255336448955e-5  |
| 5  | 4       | $10.0^{16}$              | 0.09390766327130208    | 0.12558457060881323    |
| 10 | 10      | 1.0                      | 3.0606736594252445e-16 | 2.3551386880256624e-16 |
| 10 | 10      | 10.0                     | 3.439900227959406e-16  | 3.0606736594252445e-16 |
| 10 | 10      | $10.0^{3}$               | 4.399700525621334e-14  | 4.171224775237441e-14  |
| 10 | 10      | $10.0^{7}$               | 3.2365059857557353e-10 | 2.880029537346403e-10  |
| 10 | 10      | $10.0^{12}$              | 9.063798727310973e-6   | 2.6614178058710672e-5  |
| 10 | 9       | $10.0^{16}$              | 0.07411320652669048    | 0.10504835196232257    |
| 20 | 20      | 1.0                      | 3.7567558654335876e-16 | 3.640109616122045e-16  |
| 20 | 20      | 10.0                     | 5.517707908259862e-16  | 4.896322696446008e-16  |
| 20 | 20      | $10.0^{3}$               | 2.446322963599226e-14  | 2.528521665712367e-14  |
| 20 | 20      | $10.0^{7}$               | 1.8900240649868923e-10 | 1.5613669335925758e-10 |
| 20 | 20      | $10.0^{12}$              | 3.309470002356853e-5   | 3.623821230698555e-5   |
| 20 | 19      | $10.0^{16}$              | 0.050545658363591955   | 0.11703114569421252    |

Tabela 4: Wyniki dla macierzy losowych z zadania 3

zastosować obcięcie wyniku odrzucając cyfry po trzecim miejscu po przecinku (daje to liczbę 0.722) i kontynuować dalej obliczenia (do 40-stej iteracji) tak, jak gdyby był to ostatni wynik na wyjściu. Obliczenia wykonać w arytmetyce *Float32*.

2. Dla danych  $p_0=0.01$  i r=3 wykonać 40 iteracji naszego wyrażenia w arytmetyce Float32 i Float64.

# 5.2 Rozwiązanie

Implementujemy dosłownie podane równanie w języku **Julia** i korzystając z pętli **for** wykonujemy kolejne iteracje.

Drugą część podpunktu 1. wyliczamy wykonując 30 iteracji dla  $p_0 = 0.722$  i r = 3.

#### 5.3 Wyniki

Widzimy, że funkcja, gdzie w pewnym momencie wykonujemy zaokrąglenie, zwraca nam ponad czterokrotnie większy wynik niż funkcja bez żadnych modyfikacji. Korzystając z arytmetyki *Float64* otrzymujemy wynik który jest ponad 20-krotnie mniejszy od tego otrzymanego z obliczeń we *Float32*.

#### 5.4 Wnioski

Dla złożonych obliczeń dokładna reprezentacja liczb ma duże znaczenie, gdyż już we wczesnych iteracjach małe różnice mogą mieć duży wpływ na ostateczny wynik.

# 6 Zadanie 6

#### 6.1 O zadaniu

Rozważamy równanie rekurencyjne:

$$x_{n+1} = x_n^2 + c$$

dla n = 0, 1, ..., gdzie c jest pewną daną stałą.

Mamy wykonać testy dla następujących danych:

1. 
$$c = -2, x_0 = 1$$

2. 
$$c = -2, x_0 = 2$$

| k  | $z_k$              | $ P(z_k) $                    | $ p(z_k) $         | $ z_k - k $            |
|----|--------------------|-------------------------------|--------------------|------------------------|
| 1  | 0.999999999996989  | 36352.0                       | 38400.0            | 3.0109248427834245e-13 |
| 2  | 2.0000000000283182 | 181760.0                      | 198144.0           | 2.8318236644508943e-11 |
| 3  | 2.9999999995920965 | 209408.0                      | 301568.0           | 4.0790348876384996e-10 |
| 4  | 3.9999999837375317 | 3.106816e6                    | 2.844672e6         | 1.626246826091915e-8   |
| 5  | 5.000000665769791  | 2.4114688e7                   | 2.3346688e7        | 6.657697912970661e-7   |
| 6  | 5.999989245824773  | 1.20152064e8                  | 1.1882496e8        | 1.0754175226779239e-5  |
| 7  | 7.000102002793008  | 4.80398336e8                  | 4.78290944e8       | 0.00010200279300764947 |
| 8  | 7.999355829607762  | 1.682691072e9                 | 1.67849728e9       | 0.0006441703922384079  |
| 9  | 9.002915294362053  | 4.465326592e9                 | 4.457859584e9      | 0.002915294362052734   |
| 10 | 9.990413042481725  | 1.2707126784e10               | 1.2696907264e10    | 0.009586957518274986   |
| 11 | 11.025022932909318 | 3.5759895552e10               | 3.5743469056e10    | 0.025022932909317674   |
| 12 | 11.953283253846857 | 7.216771584e10                | 7.2146650624e10    | 0.04671674615314281    |
| 13 | 13.07431403244734  | $2.15723629056\mathrm{e}{11}$ | 2.15696330752e11   | 0.07431403244734014    |
| 14 | 13.914755591802127 | 3.65383250944e11              | 3.653447936e11     | 0.08524440819787316    |
| 15 | 15.075493799699476 | 6.13987753472e11              | 6.13938415616e11   | 0.07549379969947623    |
| 16 | 15.946286716607972 | 1.555027751936e12             | 1.554961097216e12  | 0.05371328339202819    |
| 17 | 17.025427146237412 | 3.777623778304e12             | 3.777532946944e12  | 0.025427146237412046   |
| 18 | 17.99092135271648  | 7.199554861056e12             | 7.1994474752e12    | 0.009078647283519814   |
| 19 | 19.00190981829944  | $1.0278376162816\mathrm{e}13$ | 1.0278235656704e13 | 0.0019098182994383706  |
| 20 | 19.999809291236637 | 2.7462952745472e13            | 2.7462788907008e13 | 0.00019070876336257925 |

Tabela 5: Wyniki dla zadania 4

4. 
$$c = -1, x_0 = 1$$

5. 
$$c = -1, x_0 = -1$$

6. 
$$c = -1, x_0 = 0.75$$

7. 
$$c = -1, x_0 = 0.25$$

w arytmetyce Float64, dla 40 iteracji naszego wyrażenia. Spróbujemy zaobserwować zachowanie generowanych ciągów.

# 6.2 Rozwiązanie

Prosta implementacja podanego równania w języku Julia zwraca nam kolejne wartości ciągów, które następnie przedstawiam na wykresie korzystając z paczki Plots i backendu PyPlot.

| k  | $z_k$                                     | $ P(z_k) $                         | $ z_k - k $            |
|----|-------------------------------------------|------------------------------------|------------------------|
| 1  | 0.999999999998357 + 0.0im                 | 20992.0                            | 1.6431300764452317e-13 |
| 2  | 2.0000000000550373 + 0.0im                | 349184.0                           | 5.503730804434781e-11  |
| 3  | 2.9999999660342 + 0.0im                   | 2.221568e6                         | 3.3965799062229962e-9  |
| 4  | 4.000000089724362 + 0.0im                 | 1.046784e7                         | 8.972436216225788e-8   |
| 5  | 4.99999857388791 + 0.0im                  | 3.9463936e7                        | 1.4261120897529622e-6  |
| 6  | 6.000020476673031 + 0.0im                 | 1.29148416e8                       | 2.0476673030955794e-5  |
| 7  | 6.99960207042242 + 0.0im                  | 3.88123136e8                       | 0.00039792957757978087 |
| 8  | 8.007772029099446 + 0.0im                 | 1.072547328e9                      | 0.007772029099445632   |
| 9  | 8.915816367932559 + 0.0im                 | 3.065575424e9                      | 0.0841836320674414     |
| 10 | 10.095455630535774 - 0.6449328236240688im | 7.143113638035824e9                | 0.6519586830380406     |
| 11 | 10.095455630535774 + 0.6449328236240688im | 7.143113638035824e9                | 1.1109180272716561     |
| 12 | 11.793890586174369 - 1.6524771364075785im | 3.357756113171857e10               | 1.665281290598479      |
| 13 | 11.793890586174369 + 1.6524771364075785im | 3.357756113171857e10               | 2.045820276678428      |
| 14 | 13.992406684487216 - 2.5188244257108443im | $1.0612064533081976\mathrm{e}{11}$ | 2.5188358711909045     |
| 15 | 13.992406684487216 + 2.5188244257108443im | 1.0612064533081976e11              | 2.7128805312847097     |
| 16 | 16.73074487979267 - 2.812624896721978im   | 3.315103475981763e11               | 2.9060018735375106     |
| 17 | 16.73074487979267 + 2.812624896721978im   | 3.315103475981763e11               | 2.825483521349608      |
| 18 | 19.5024423688181 - 1.940331978642903im    | 9.539424609817828e12               | 2.454021446312976      |
| 19 | 19.5024423688181 + 1.940331978642903im    | 9.539424609817828e12               | 2.004329444309949      |
| 20 | 20.84691021519479 + 0.0im                 | 1.114453504512e13                  | 0.8469102151947894     |

Tabela 6: Wyniki dla zmienionego wielomianu z zadania 4

|                                   | Wynik      |
|-----------------------------------|------------|
| Funkcja obliczana normalnie       | 0.25860548 |
| Funkcja obliczana z zaokrągleniem | 1.093568   |

Tabela 7: Wyniki dla podpunktu 1. zadania 6

# 6.3 Wyniki



|   |         | Wynik                |
|---|---------|----------------------|
|   | Float32 | 0.25860548           |
| Ì | Float64 | 0.011611238029748606 |

Tabela 8: Wyniki dla podpunktu 2. zadania 6



Dla wykresów 1, 2, 4 oraz 5 otrzymujemy wartości całkowite zgodne z naszymi oczekiwaniami. W przykładzie 3 po przekroczeniu pewnego momentu wartości się rozbiegają. W przykładach 6 i 7 po pewnym czasie otrzymujemy po dwa podciągi zbieżne do 0 i -1.

# 6.4 Wnioski

Po przykładzie 3 widzimy, że mała zmiana wartości, która będzie kumulowana, może doprowadzić do otrzymania rozbieżnych wyników. W przykładach 6 i 7 przez działanie na małych liczbach doświadczamy niestabilności numerycznej.