

ARRAY DESCRIPTION

Beam scanning. Situation 1: array pointing at $\phi = 0^{\circ}$, $\theta = 0^{\circ}$.

Frequency: 18.95 GHz

Beam scanning. Situation 5: array pointing at $\phi = 35^{\circ}$, $\theta = 0^{\circ}$.

Frequency: 18.95 GHz

At 20.2 GHz (less favorable scenario), the grating lobe is still outside of coverage region (just about to enter).

Now the grating lobe is completely outside coverage region

Beam scanning. Situation 5: array pointing at $\phi = 35^{\circ}$, $\theta = 0^{\circ}$.

Frequency: 18.95 GHz

Solution: Quad-Ridged fanout array

DESCRIPTION OF ELEMENTS

HOW TO FEED THE ARRAY

Array of custom quadridge waveguides
(transforming also from square to quad-ridge)

Array of quadridge apertures

Array of septum polarizers in standard waveguide

Customized Quad-Ridge Waveguides

Simple "lofts" work well

More complex waveguides can be built by connecting small waveguides that work well

Overview of the proposed antenna structure

- Mass: Max. 700g (Aluminum base material). Further weight reduction is feasible and will be explored in the design phase
- Dimensions are based on first preliminary design and may be optimized (especially the height of 81mm may be reduced)

Negative view of quad-ridge waveguides

Beam Scanning: $\phi = 0^{\circ}$, $\theta = 0^{\circ}$

Scanning: $\phi = 0^{\circ}$, $\theta = 10^{\circ}$

Array 13x13 phi0theta10 1.0 30.0 20.0 0.5 10.0 $V = \sin(\theta) * \sin(\phi)$ 0.0 -10.0 茵 -20.0 -0.5-30.0 -40.0 -50.0 $-1.0_{-1.0}^{\downarrow}$ 1.0 $u = \sin(\theta) * \cos(\phi)$

Scanning: $\phi = 45^{\circ}$, $\theta = 10^{\circ}$

Scanning: $\phi = 0^{\circ}$, $\theta = 20^{\circ}$

Array 13x13 phi0theta20 1.0 30.0 20.0 0.5 10.0 $V = \sin(\theta) * \sin(\phi)$ 0.0 -10.0 勇 -20.0 -0.5-30.0 -40.0 -50.0 $-1.0_{-1.0}^{\downarrow}$ 1.0 $u = \sin(\theta) * \cos(\phi)$

Scanning: $\phi = 45^{\circ}$, $\theta = 20^{\circ}$

Scanning: $\phi = 0^{\circ}$, $\theta = 30^{\circ}$

Array 13x13 phi0theta30 1.0 30.0 20.0 0.5 10.0 $V = \sin(\theta) * \sin(\phi)$ 0.0 -10.0 勇 -20.0 -0.5-30.0 -40.0 -50.0 $-1.0_{-1.0}^{\downarrow}$ 1.0 0.0 $u = \sin(\theta) * \cos(\phi)$

Scanning: $\phi = 45^{\circ}$, $\theta = 30^{\circ}$

Scanning: $\phi = 0^{\circ}$, $\theta = 40^{\circ}$

Array 13x13 phi0theta40 1.0 30.0 20.0 0.5 10.0 $V = \sin(\theta) * \sin(\phi)$ 0.0 -10.0 第 -20.0 -0.5-30.0 -40.0 -50.0 $-1.0_{-1.0}^{\downarrow}$ 1.0 0.0 $u = \sin(\theta) * \cos(\phi)$

Scanning: $\phi = 45^{\circ}$, $\theta = 40^{\circ}$

Scanning: $\phi = 0^{\circ}$, $\theta = 50^{\circ}$

Scanning: $\phi = 45^{\circ}$, $\theta = 50^{\circ}$

Interface with the SSPAs

SWISSto12 SA
EPFL Innovation Park, Building L
Chemin de la Dent d'Oche 1B
CH-1024 Lausanne
www.swissto12.ch
+41 21 353 02 40

