Universidad de I	Buenos Aires - Facultad de	Ingeniería	1º Cuatrimestre 201		
Indique materia □ 75.12/95.04/95.13 □ 95.10			Evaluación Parcial. Segunda Oportunidad.	Tema 1	Nota
Padrón:	Apellido y Nombres:				

Ejercicio 1. Se han obtenido la matriz A y el vector B de los SEL correspondientes a un a una Interpolación por **Spline** (desde X0 en adelante) y de un Ajuste por **Cuadrados Mínimos** (desde X6 hacia atrás). Tomando ciertos puntos se construyó una interpolación de **Newton** y una de **Lagrange Baricéntrico**. Finalmente, por **Diferencias Centradas**, se han calculado las derivadas en X2 y X4, por **Diferencias Progresivas** en X3:

i	0	1	2	3	4	5	6	A1 -	5	0	B1 =	0,4		0,8	nd	0	0
Xi	-1	?	?	?	?	?	?	AI =	0	nd		A2 =	nd	nd	nd	0	
Yi	1	?	?	?	?	?	?	F'(X2) =	-0,8	F'(X4) =	0	F'(X3) =	-0,2	0	nd	0,8	nd
PN(x)=	0,04+	nd	.(x-X5) +	1,0	. (x-X5)	. (x-X4)		W3 =	62,5	(con X2	, X3, X4	l y X5)		0	0	nd	nd

- a) Indicar los puntos, el grado y la cantidad de polinomios de ajuste o interpolantes en cada caso
- b) A partir de la información de Diferenciación, fijar relaciones entre los puntos Xi involucrados.
- c) Incorporando la información de Spline, hallar al menos 3 valores de Xi.
- d) Incorporando la información de Lagrange Baricéntrico y Cuadrados Mínimos, hallar los Xi faltantes.
- e) Hallar al menos 3 valores de Yi incorporando los datos de Newton.
- f) Aprovechando la información de Cuadrados Mínimos y Diferencias Centradas, hallar los Yi faltantes.
- g) Considerando el orden de convergencia y las características de los métodos, ¿aconsejaría usar Diferencias Centradas para el Método de Spline?
- h) En base a los resultados obtenidos, ¿bajo qué condiciones puede resultar rala una matriz de ajuste?

Ejercicio 2. Se tiene el sistema A.X = B, la Factorización por Doolittle de A y algunos datos usados para el MGC:

$$A := \begin{bmatrix} A11 & A12 & A13 \\ A21 & x & 0 \\ A31 & 0 & x \cdot \cos(x) \end{bmatrix} \quad L := \begin{bmatrix} nd & 0 & 0 \\ 0,5 & nd & 0 \\ 0,25 & nd & nd \end{bmatrix} \quad U := \begin{bmatrix} 8 & 4 & 2 \\ 0 & nd & nd \\ 0 & 0 & nd \end{bmatrix} \quad B := \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad X0 := \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \alpha := \frac{\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{$$

- a) A partir de la información de L y U, obtener la matriz A
- b) Considerando el vector inicial XO para el MGC, plantear una ENOL para el caso $\alpha(x) = 1/8$
- c) Resolver la ENOL en [3.5, 5.5] por un Método de convergencia cuadrática con una tolerancia de 10⁻⁵
- d) Para el valor de x hallado, reescriba la matriz A e indique si el MGC y el método de Jacobi convergerían para dicha matriz.
- e) Estime el valor de Te por perturbaciones experimentales para [f(x) = α (x) 1/8] en x=4.5 NOTA: Si no pudo hallar α (x) adopte α (x) = 2 / [x 2.x.cos(x) + 11]

Ejercicio 3. Indicar a qué método corresponde el siguiente bloque de Python y detectar cuáles son los 3 errores que impedirían que el mismo llegue a un resultado correcto:

```
iterar = False
while(iterar==True):
    x1 = x2
    x2 = x1 - self.ecuacion(x2)/self.derivada(x1)
    iter += 1
    if (np.abs(x2 + x1)/np.abs(x2)>tol):
        iterar = True
    else:
        iterar = False
```

Universidad de I	Buenos Aires - Facultad de	Ingeniería	1º Cuatrimestre 201		
Indique mater	ia □ 75.12/95.04/95.13	□ 95.10	Evaluación Parcial. Segunda Oportunidad.	Tema 2	Nota
Padrón:	Apellido y Nombres:				

Ejercicio 1. Se han obtenido la matriz A y el vector B de los SEL correspondientes a un a una Interpolación por **Spline** (desde X0 en adelante) y de un Ajuste por **Cuadrados Mínimos** (desde X6 hacia atrás). Tomando ciertos puntos se construyó una interpolación de **Newton** y una de **Lagrange Baricéntrico**. Finalmente, por **Diferencias Centradas**, se han calculado las derivadas en X2 y X4, por **Diferencias Progresivas** en X3:

i	0	1	2	3	4	5	6	A1 =	5	0	B1 =	0,5		0,6	nd	0	0
Xi	-0,8	?	?	?	?	?	?	AI =	0	nd	D1 -	0	A2 =	nd	nd	nd	0
Yi	0,64	?	?	?	?	?	?	F'(X2) =	-0,8	F'(X4) =	0	F'(X3) =	-0,3	0	nd	0,4	nd
PN(x)=	0,09+	nd	.(x-X5) +	1,0	. (x-X5)	. (x-X4)		W3 =	55,555	5555556	(con)	(2, X3, X4	y X5)	0	0	nd	nd

- a) Indicar los puntos, el grado y la cantidad de polinomios de ajuste o interpolantes en cada caso
- b) A partir de la información de Diferenciación, fijar relaciones entre los puntos Xi involucrados.
- c) Incorporando la información de Spline, hallar al menos 3 valores de Xi.
- d) Incorporando la información de Lagrange Baricéntrico y Cuadrados Mínimos, hallar los Xi faltantes.
- e) Hallar al menos 3 valores de Yi incorporando los datos de Newton.
- f) Aprovechando la información de Cuadrados Mínimos y Diferencias Centradas, hallar los Yi faltantes.
- g) Considerando el orden de convergencia y las características de los métodos, ¿aconsejaría usar Diferencias Centradas para el Método de Spline?
- h) En base a los resultados obtenidos, ¿bajo qué condiciones puede resultar rala una matriz de ajuste?

Ejercicio 2. Se tiene el sistema A.X = B, la Factorización por Doolittle de A y algunos datos usados para el MGC:

$$A := \begin{bmatrix} A11 & A12 & A13 \\ A21 & (-x) \cdot \sin(x) & 0 \\ A31 & 0 & x \end{bmatrix} \quad L := \begin{bmatrix} nd & 0 & 0 \\ 0,25 & nd & 0 \\ 0,5 & nd & nd \end{bmatrix} \quad U := \begin{bmatrix} 8 & 2 & 4 \\ 0 & nd & nd \\ 0 & 0 & nd \end{bmatrix} \quad B := \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad x0 := \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \alpha := \frac{r0}{d0} \cdot A \cdot d0$$

- a) A partir de la información de L y U, obtener la matriz A
- b) Considerando el vector inicial XO para el MGC, plantear una ENOL para el caso $\alpha(x) = 1/8$
- c) Resolver la ENOL en [2.5, 4.5] por un Método de convergencia cuadrática con una tolerancia de 10⁻⁵
- d) Para el valor de x hallado, reescriba la matriz A e indique si el MGC y el método de Jacobi convergerían para dicha matriz.
- e) Estime el valor de Te por perturbaciones experimentales para [f(x) = α (x) 1/8] en x=4.5 NOTA: Si no pudo hallar α (x) adopte α (x) = 2 / [x + 2.x.sen(x) + 14]

Ejercicio 3. Indicar a qué método corresponde el siguiente bloque de Python y detectar cuáles son los 3 errores que impedirían que el mismo llegue a un resultado correcto:

```
iterar = True
while(iterar==False):
    x1 = x2
    x2 = x1 - self.ecuacion(x1)*self.derivada(x1)
    iter += 1
    if (np.abs(x2-x1)+np.abs(x2)>tol):
        iterar = True
    else:
        iterar = False
```

Firma