Haplotype-based somatic mutation calling in heterogeneous cancer samples

Daniel Cooke

University of Oxford

dcooke@well.ox.ac.uk

October 26, 2015

Haplotype-based variant calling

freebayes

Haplotype methods can resolve alignment errors

Haplotype methods can resolve alignment errors

Haplotype methods give local phasing

Haplotype methods give local phasing

Haplotype methods give local phasing

Phasing is often intractable

$$\#$$
haplotypes $pprox 2^{\#$ alleles} $\#$ genotypes $= \begin{pmatrix} \#$ haplotypes $+$ ploidy $-$ 1 $\\ \#$ haplotypes $\end{pmatrix}$

Algorithm overview

Population genotype model: overview

Population genotype model: maths

- Unknown population haplotype frequencies π
- ullet Unknown sample genotypes $oldsymbol{g}_s$
- Known sample ploidy

Marginal distribution: diploid case

$$p(\boldsymbol{R}, \boldsymbol{\pi}) = p(\boldsymbol{\pi} | \boldsymbol{\alpha}) \prod_{s=1}^{S} \sum_{\boldsymbol{g}} p(\boldsymbol{g} | \boldsymbol{\pi}) \prod_{r \in R_s} \left\{ \frac{1}{2} p(r | \boldsymbol{g}_1) + \frac{1}{2} p(r | \boldsymbol{g}_2) \right\}$$

Challenges of cancer calling: messy karyotypes

Source: Hillman et al. BMC Cancer 2007

Challenges of cancer calling: tumor heterogeneity

How many haplotypes do we need?

More than three local haplotypes are rare in most cancer types

Source: Alexandrov et al. Nature 2013

Cancer genotype model: overview

Cancer genotype model: maths

- ullet One unknown 'cancer' genotype $ilde{m{g}}$
- ullet Unknown haplotype mixtures ϕ_s
- Mixture priors θ_s implicitly model 'normal'

Marginal distribution: diploid case

$$p(\boldsymbol{R}, \boldsymbol{\pi}) = p(\boldsymbol{\pi} | \alpha) \sum_{\tilde{\boldsymbol{g}}} p(\tilde{\boldsymbol{g}} | \boldsymbol{\pi}) \prod_{s=1}^{S} \int d\phi_{s} p(\phi_{s} | \theta_{s}) \prod_{r \in R_{s}} \sum_{i=1}^{3} p(\tilde{\boldsymbol{g}}_{i} | \phi_{si}) p(r | \tilde{\boldsymbol{g}}_{i})$$

Phased somatic mutation calls

Phased somatic mutation calls

Summary & future work

Acknowledgements

Supported by wellcome trust

Lunter group with special thanks to Gerton Lunter