MTAT.05.008 Fou Math

Assoc. Prof. Dirk Oliver Theis

Homework # 02

Handed out: Thu, Sep 12, 2022

Due: Mon, Sep 26, 2022 (by 16:15)

In TeX as PDF by email to $\,$ dotheis@ut.ee $\,$

Subject: FOUMATH-HW02-lastname

Problem 1

Simplify

(a)
$$(3-8i)(9+2i)$$

(b)
$$(3-4i)^2$$

(c)
$$\frac{1}{3-7i}$$

(d)
$$\frac{9+2i}{i-4}$$

(e)
$$(1-i)^3$$

(f)
$$\frac{1}{3i}$$

(g)
$$\frac{3i-2}{7-3i}$$

(h)
$$i^k$$
, for $k = -1, 0, 1, 2, 3, 4, 5, 15, 25, 34$

(i)
$$i^k$$
, for $k = -1, -2, -3, -4, -5$

(j)
$$\left(\frac{1}{3-i}\right)^2$$

Let z = 3 - 4i, w = 3i - 7. Find:

(k)
$$z + w$$

(m)
$$z/w$$

(n)
$$w^*, z^*$$

(o)
$$|w|, |z|$$

Problem 2

Solve the following system of equations in $z, w \in \mathbb{C}$:

$$\frac{z - w}{z^2 - w^2} = 1 + i {2a}$$

$$\frac{z - iw}{z^2 + w^2} = 1 - i. {(2b)}$$

(I.e., give complex number $z, w \in \mathbb{C}$ satisfying both equations.)

Problem 3

A mapping $f\colon\mathbb{C}^m\to\mathbb{C}^n$ is called \mathbb{R} -linear, if for all $\alpha,\beta\in\mathbb{R}$ and all $z,w\in\mathbb{C}^m$ we have

$$f(\alpha \cdot z + \beta \cdot w) = \alpha \cdot f(z) + \beta \cdot f(w)$$
(3a)

(where addition of vectors, and multiplication of vectors by scalars is defined as usual).

A mapping $f\colon \mathbb{C}^m\to\mathbb{C}^n$ is called \mathbb{C} -linear, if for all $\alpha,\beta\in\mathbb{C}$ and all $z,w\in\mathbb{C}^m$ we have

$$f(\alpha \cdot z + \beta \cdot w) = \alpha \cdot f(z) + \beta \cdot f(w)$$
(3b)

(where addition of vectors, and multiplication of vectors by scalars is defined as usual).

- (a) Show that every \mathbb{C} -linear mapping is \mathbb{R} -linear.
- (b) Show that for all $n \ge 1$, the mapping

$$c: \mathbb{C}^n \to \mathbb{C}^n : z \mapsto \left(z_j^*\right)_{j=1,\dots,n}$$
 (3c)

("entry-wise complex conjugate") is \mathbb{R} -linear.

(c) Show that, for all $n \ge 1$, the mapping c is not \mathbb{C} -linear.

Problem 4

Prove the following.

- (a) For all $z \in \mathbb{C}$: $\Re(z) = \frac{z + z^*}{2}$.
- (b) For all $z \in \mathbb{C}$: $\Im(z) = \frac{z z^*}{2i}$.
- (c) For all $z, w \in \mathbb{C}$: $w^* \cdot z = 0$ implies w = 0 or z = 0.

P.S.: These equations/facts are important, they should be committed to memory.