

MULTILOG 2019 Conference

SOLUTION OF A PURCHASING SCHEDULING PROBLEM WITH CONSTRAINED FUNDS THROUGH A GENETIC ALGORITHM BASED ON THE PARETIAN APPROACH

M. Sc. José Francisco Delgado Orta Universidad del Mar.

Instituto de Industrias. Licenciatura en Informática. Cuerpo Académico de Sistemas Inteligentes (PRODEP UMAR-CA-38)

Contents

- The Purchasing Scheduling problem
- **Experiments** and results
- **Conclusions**
- **™** Future Works

The Paretian approach

- The 80/20 rule: For many events, roughly 80% of the effect comes from 20% of the causes (machines, raw materials, operators, etc.).
- Multiobjective optimization.
 - Involve more than one objective function
 - Answer is set of solutions that define the best tradeoff between competing objectives.

The Paretian approach

Quality control of a product

Objetive n

Winner

(optimal)

The Paretian Approach

. . .

The Purchasing Scheduling Problem (PSP)

Scenario: orders placed by assistants or a manager in a purchasing department given a general product catalogue.

	Demand						
An order <i>k</i>						Purchasing	Satisfaction
All (order k	Supplier j	HP	Dell	Office	$Costs c_{ij}$	Required
	1				Depor	Max	units
/	Product	i					1
	1	Computer	\$1,000	\$2,000	\$0	\$0 .	. 2
	2	Printer	\$500	\$700	\$0	\$0 .	. 1
	3	Scanner	/\$1,000	\$2,000	\$0	\$0	. 5
1	4	Desk	\$0	\$0	\$1,500	\$1,000	. 11
j	5	Chair	\$0	\$0	\$3,000	\$2,500 /	\ 7
	•••	<i>,</i> /				/ .	\ /
	10000			Availabl		1	\ /
	`		resource	es		`	

Products per order: n_k

Available funds (a_k): \$50,000

The Purchasing Scheduling Problem (PSP)

Mathematical formulation

$$\max z = \sum_{i=1}^{n} \frac{f_i}{n}$$

Uniform distribution of objectives

Sujeto a:

$$\sum_{j=1}^{m} \sum_{i=1}^{n_k} c_{ij} x_{ijk} \le a_k \qquad k = 1, 2, \dots, s$$
$$x_{ijk} \in \{0, 1\}$$

$$k = 1, 2, ..., s$$

Available funds

The Purchasing Scheduling Problem (PSP)

™ Demands

Uniform assignation

○ Purchasing Costs

$$\min f_2 = 1 - \frac{\sum_{k=1}^{s} \sum_{j=1}^{m} \sum_{i=1}^{n_k} c_{ij} x_{ijk}}{\sum_{j=1}^{m} \sum_{i=1}^{n} c_{ij}}$$

$$0 \le f_2 \le 1$$

The Purchasing Scheduling Problem (PSP)

- Maximization of Satisfied Demands
- Minimization of Purchasing Costs

Methodology of solution

Architecture of solution

Natural Selection Charles Darwin (1858)

*Pop = population of individuals

```
John Holland (1975)

1 Procedure GeneticAlgorithm()

2 t = 0

3 initialize(Pop(t))

4 evaluate(Pop(t))

5 While (stop condition is not reached)

6 selection (Pop(t + 1), Pop(t))

7 crossover (Pop(t + 1))

8 mutation (Pop(t + 1))

9 t = t + 1

10 End_of_while

11 End_Procedure
```

Natural Selection: process in which an organism adapts to its environment by means of selectively reproducing changes in its genotype.

Selection operator: the fittest individuals of the population are selected to reproduce them.

Descendants

Parents

Descendants

Constructive parameter: a crossover rate (pc)

Crossover operators (Grouping schemes)

Elements
of groups
D and F
are reallocated

Repair techniques:

First Fit Decreasing (FFD) -Best Fit Decreasing (BFD)

Falkenauer E., 1996. A Hybrid Grouping Genetic Algorithm for Bin Packing. Journal of Heuristics 2: 5-30.

Mutation Operator P-SGA

 $oxed{0\ |\ 1\ |\ 0\ |\ 0\ |\ 0\ |\ 0\ |\ 1\ |\ 1}$

1 1 0 0 1 0 0 1 1

P-GGA

D E F A C B

B D E F A C

Constructive parameter: a mutation percentage (p_m)

Paretian Simple Genetic Algorithm (P-SGA)

IdProduct	Amount	IdSupplier	UnitPrice
1	2	1	10000
		2	12000
		3	0*
2	2	1	18000
		2	15000
		3	20000
3	3	1	0*
		2	5000
		3	7000

Available funds: \$50,000

Spent funds: \$39,000

$$f_1 = 0.57$$

 $f_2 = 1 - \frac{12000 + 15000 + 5000 + 7000}{87000} = 0.55$
 $z = 0.57/2 + 0.55/2 = 0.56 (56\%)$

Paretian Grouping Genetic Algorithm (P-GGA)

IdProduct	Amount	IdSupplier	UnitPrice
1	2	1	10000
		2	12000
		3	0*
2	2	1	18000
		2	15000
		3	20000
3	3	1	0*
		2	5000
		3	7000

Available funds: \$50,000

Spent funds: \$50,000

$$f_1 = 0.71$$

$$f_2 = 1 - \frac{12000 + 0 + 18000 + 15000 + 5000}{87000} = 0.42$$

 $z = 0.71/2 + 0.42/2 = 0.65 (65\%)$

Input instances

Order	Quantity of products	Mínimal Prices	Maximal Prices	Funds		
1	126	14.00	10,999.00	25,000.00		
2	123	73.00	60,000.00	50,000.00		
3	63	29.00	120,000.00	40,000.00		
4 146		99.90	15,980.00	65,000.00		
5 70		3.00	60,000.00	30,000.00		
6 194		56.90	20,000.00	80,000.00		
7 128		75.00	18,799.00	75,000.00		
8	8 119		18,000.00	55,000.00		
9	9 108		88,996.00	48,000.00		
10 126		14.00	11,499.00	40,500.00		

GA configuration

$$N = 30$$

$$p_c$$
=0.005

$$p_m = 0.001$$

Six tests executed: 1000, 5000, 10000, 15000, 20000 and 30000 iterations

Results

Algorithm	ACS	P-ACO 1	P-ACO ²	P-SGA	P-GGA
Métric					
Computation time (segs)	10.9	17.51	29.10	10.5	17.7
z values	0.86	0.88	0.90	0.90	0.98
Pearson's Correlation Coefficient (f1 - f2)	-0.21	-0.94	-0.96	0.26	-0.99

ACS: Ant Colony System (Delgado 2014)

P-ACO: Paretian Ant Colony Optimization (2 variants) (Delgado 2015)

P-SGA: Paretian Simple Genetic Algorithm

P-GGA: Paretian Grouping Genetic Algorithm

INFO_	PRODUCTS:				
11	JACINTO PEREZ	1	DESK	1	OFFICE DEPOT
11	JACINTO PEREZ	2	TABLET	2	HUAWEI
1 1	JACINTO PEREZ	3	HDMI CABLE	3	MASTER COMPUTER
11	JACINTO PEREZ	4	AJAX IN J2SEE	4	PRENTICE HALL
11	JACINTO PEREZ	5	RAM MEMORY	5	KINGSTON
11	JACINTO PEREZ	6 7	USB MEMORY	5	KINGSTON
1 1	JACINTO PEREZ		PRINTER	6	HEWLETT PACKARD
1 1	JACINTO PEREZ	8 9	KEYBOARD	6 7 8 9	MANHATTAN
1 1	JACINTO PEREZ	9	DVD WRITER	8	SAMSUNG
1 1	JACINTO PEREZ	10	DESKTOP COMPUTER		DELL
1 1	JACINTO PEREZ	11	LED LIGHTS	10	PHILLIPS
1 1	JACINTO PEREZ	12	OFFICE CHAIR	1	OFFICE DEPOT
2 1	JACINTO PEREZ	13	LADDER	1 11	TRUPPER
2 1	JACINTO PEREZ	14	LAPTOP COMPUTER	12	APPLE
2 1	JACINTO PEREZ	15	NO BREAK	9	DELL
2 1	JACINTO PEREZ	16	LED PROJECTOR	13	LG
3 2	ELSA GALINDO	17	CHAIR	1	OFFICE DEPOT
3 2	ELSA GALINDO	18	LAPTOP COMPUTER	9	DELL
3 2	ELSA GALINDO	19	SOLID STATE DISK	5	KINGSTON

File: ArchDescrip

File: ArchEntrada

A Purchasing plan

IdOrder	IdPuerchaser	IdProduct	IdSupplier	UnitPrice	RequiredUnits	SuggestedUnits	TotalCosts	AvailableFunds
1	1	1	1	4200	1	1	4200	
		2	2	1000	1	1	1000	
		3	3	25	7	4	100	
		4	4	8000	1	1	8000	
		5	5	1500	2	1	1500	
		6	6	899	2	1	899	
		7	7	6440	1	1	6440	
		8	8	179	4	2	358	
		9	9	185	6	1	185	
		10	10	7100	1	0	0	
		11	11	500	2	1	500	
		12	1	1800	1	1	1800	
							24982	25000

Conclusions and Future Works

A Paretian Aproach was designed to adapt the Genetic algorithm metaheuristic to solve efficiently the Purchasing Scheduling Problem.

Pearson's correlation coefficient of -0.99 and the z value of the P-GGA (0.98 or 98%) demonstrate that Purchasing Scheduling can be classified as a clusering problem.

Future Works

Exploration of the remaining solution space (looking for the z = 1 or 100%)

The solver can be included in an Inventory System to give it a smart feature, like an Enterprise Resource Planning System (ERP).

References

- Delgado Orta, J.F. et al. An ant Colony System Metaheuristic for solving a Bi-Objective Purchasing Scheduling Problem. Journal Research in Computing Science. Vol. 82. pp. 21-30 ISSN: 1870-4069. 2014.
- Delgado Orta, J.F. et al. Solving a Bi-Objective Purchasing Scheduling Problem with Constrained Funds using Pareto Optimization. Journal Research in Computing Science. Vol. 104. pp. 41-50 ISSN: 1870-4069. 2015.

For your attention

Thank you very much

Contact: fdelgado@zicatela.umar.mx, francisco.delgado.orta@gmail.com