Ch 1b Lecture 16 February 12th, 2013

Next few lectures – OK, let's do some actual chemistry!

Today: Spontaneous Process & Equilibrium,
Part II

Reading: OGC Chapter 14, Sections 14.3-14.7

The Gibbs Free Energy, or G = H - TS

Temperature (°C)

Why is $\Delta S < 0$?

For gases, neither ΔH or ΔS is all that temperature sensitive, and so the variation in ΔG is determined mostly by the *entropy* term.

Gases exhibit the largest T dependence, followed by liquids and then by solids.

Why should this be so? Think about the statistical definition of entropy, $S = k_B \ln \Omega$.

The Gibbs Free Energy, or *G*, and Equilibrium:

With these tools in hand, we can now, at last, consider the *equilibrium* nature of chemical reactions. The equations we want to get to for a general chemical reaction are:

$$aA + bB \rightleftharpoons cC + dD$$

$$-\Delta G = RT \ln K$$

$$K = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}$$

Law of Mass Action

Reaction Coordinates

For the reaction aA + bB ⇔ cC + dD

$$K = \frac{\left[C\right]_{eq}^{c} \left[D\right]_{eq}^{d}}{\left[A\right]_{eq}^{a} \left[B\right]_{eq}^{b}}$$

In solution, $K = K_C$ & has units of [concentration]^{c+d-a-b}

In the gas phase, $K = K_P$ & has units of [pressure]^{c+d-a-b}

Reaction Coordinate

Here we will focus on gas phase equilibria, but the arguments we make are general.

For the gas phase reaction aA + bB ⇔ cC + dD

Reaction Coordinate

$$K_{P} = \frac{\left[P_{C}\right]_{eq}^{c} \left[P_{D}\right]_{eq}^{d}}{\left[P_{A}\right]_{eq}^{a} \left[P_{B}\right]_{eq}^{b}}$$

Assume

- all products and reactants are ideal gases,
- the initial pressure is P₁,
- the final pressure is P₂,
- ∆T = 0; T=298K

Then
$$\Delta \mathbf{G} = \Delta (\mathbf{H} - \mathbf{T} \Delta \mathbf{S}) = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$$

 $\Delta H = 0$ (isothermal process)

For the gas phase reaction aA + bB ⇔ cC + dD

Reaction Coordinate

$$K_{P} = \frac{\left[P_{C}\right]_{eq}^{c} \left[P_{D}\right]_{eq}^{d}}{\left[P_{A}\right]_{eq}^{a} \left[P_{B}\right]_{eq}^{b}}$$

$$\Delta G = - T \Delta S$$

From previous lectures

$$\Delta S = nR \ln \left(\frac{V_2}{V_1}\right) = -nR \ln \left(\frac{P_2}{P_1}\right)$$

And so:

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1} \right)$$

For the gas phase reaction aA + bB ⇔ cC + dD

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1}\right)$$

 Δ G is a state function, so we can **propose a path** from reactants to products and, as long as we start and end in the right places, we will get the correct value for Δ G

Choose reference pressure to be 1 atm.

For the gas phase reaction aA + bB ⇔ cC + dD

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1}\right)$$

aA (
$$P_A$$
) + bB (P_B) \rightarrow cC (P_C) + dD (P_D)
$$\Delta G_1 \downarrow$$
aA (P_{ref}) + bB (P_{ref})

propose a path

Let's say we start out at some **Pressure** (≠ 1 atm)

Then, step 1: Adjust P of reactants from P_{initial} to P = 1 atm
Choose T to be 298 K

We will have to account for this step (ΔG_1) .

For the gas phase reaction aA + bB ⇔ cC + dD

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1}\right)$$

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1}\right)$$

$$\Delta G_1$$

$$AG_2$$

$$AA (P_A) + bB (P_B) \rightarrow cC (P_C) + dD (P_D)$$

$$\Delta G_2$$

$$AA (P_{ref}) + bB (P_{ref}) \rightarrow cC (P_{ref}) + dD (P_{ref})$$

$$AG_2$$

$$AA (P_{ref}) + bB (P_{ref}) \rightarrow cC (P_{ref}) + dD (P_{ref})$$

propose a path

Then, step 2: Carry out reaction under standard conditions

Use ΔG° , ΔH° , ΔS° , etc. from tables

(25° C, 1 atm for gases, 1 M for solutions, see activity discussion on pp. 584-587 OGC for pure solids and liquids.)

For the gas phase reaction aA + bB ⇔ cC + dD

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1} \right)$$

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1}\right)$$

$$\Delta G_1 \qquad \Delta G_2$$

$$A (P_{R}) + bB (P_{R}) \rightarrow cC (P_C) + dD (P_D)$$

$$\Delta G_3 \qquad \Delta G_3$$

$$A (P_{ref}) + bB (P_{ref}) \rightarrow cC (P_{ref}) + dD (P_{ref})$$

propose a path

Then, step 3: Adjust P of reactants from P=1 atm to P_{products}

$$\Delta G = \sum_{i=1}^{3} \Delta G_i$$

Explicit Example

For the gas phase reaction $O_2 + 2 H_2 \Leftrightarrow 2 H_2O$

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1}\right)$$

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1}\right)$$

$$\Delta G_1 \qquad \Delta G_2$$

$$\Delta G_2 \qquad \Delta G_3$$

$$\Delta G_2 \qquad \Delta G_3$$

$$\Delta G_2 \qquad \Delta G_2$$

$$\Delta G_2 \qquad \Delta G_2$$

$$\Delta G_3 \qquad \Delta G_3$$

$$\Delta G_4 \qquad \Delta G_2$$

$$\Delta G_2 \qquad \Delta G_3$$

$$\Delta G_2 \qquad \Delta G_3$$

propose a path

STEP 1
$$\underbrace{O_2 + 2H_2}_{P} \rightarrow \underline{\Delta G_1}_{1} \rightarrow \underbrace{O_2 + 2H_2}_{P_{ref}}$$

$$\Delta G_1 = RT \ln \left(\frac{P_{ref}}{P_{O_2}} \right) + 2RT \ln \left(\frac{P_{ref}}{P_{H_2}} \right) = RT \ln \left(\frac{P_{ref}}{P_{O_2}} \right) + RT \ln \left(\frac{P_{ref}}{P_{H_2}} \right)^2$$

Explicit Example

For the gas phase reaction $O_2 + 2 H_2 \Leftrightarrow 2 H_2O$

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1} \right)$$

propose a path

Carry out $O_2 + 2 H_2 \Leftrightarrow 2 H_2O$ under standard conditions STEP 2

$$\Delta G_2 = \sum_{i} \Delta G_{prod}^0 - \sum_{k} \Delta G_{react}^0$$

Explicit Example

For the gas phase reaction $O_2 + 2 H_2 \Leftrightarrow 2 H_2O$

$$\Delta G = -T\Delta S = nRT \ln \left(\frac{P_2}{P_1}\right)$$

propose a path

$$\underbrace{2H_{2}O}_{P_{ref}} \rightarrow \underbrace{\Delta G_{3}}_{P} \rightarrow \underbrace{2H_{2}O}_{P}$$

$$\Delta G_3 = 2RT \ln \left(\frac{P_{H_2O}}{P_{ref}} \right) = RT \ln \left(\frac{P_{H_2O}}{P_{ref}} \right)^2$$

Explicit Example

$$\Delta G = \Delta G^{\circ} + \Delta G_{\text{step1}} + \Delta G_{\text{step3}}$$

$$\Delta G_1 = RT \ln \left(\frac{P_{ref}}{P_{O_2}} \right) + RT \ln \left(\frac{P_{ref}}{P_{H_2}} \right)^2$$

$$\Delta G_3 = 2RT \ln \left(\frac{P_{H_2O}}{P_{ref}} \right) = RT \ln \left(\frac{P_{H_2O}}{P_{ref}} \right)^2$$

$$\Delta G_{steps1\&3} = RT \ln \left(\frac{\left(\frac{P_{H_2O}}{P_{ref}} \right)^2}{\left(\frac{P_{H_2}}{P_{ref}} \right)^2 \left(\frac{P_{O_2}}{P_{ref}} \right)} \right)$$
 At equilibrium $\Delta G = 0$ So, $\Delta G^o = -\Delta G_{steps1\&3}$

At equilibrium $\Delta G=0$

So,
$$\Delta G^o = -\Delta G_{steps1&3}$$

Explicit Example

This implies that:

$$-\Delta G^{o} = RT \ln \left[\frac{\left(\frac{P_{H_2O}}{P_{ref}}\right)^2}{\left(\frac{P_{H_2}}{P_{ref}}\right)^2 \left(\frac{P_{O_2}}{P_{ref}}\right)} \right]$$

Note that this looks a lot like the expression for K_P

$$K_{P} = \frac{\left[P_{C}\right]_{eq}^{c} \left[P_{D}\right]_{eq}^{d}}{\left[P_{A}\right]_{eq}^{a} \left[P_{B}\right]_{eq}^{b}}$$

Except this expression is unit-less

Explicit Example

When we are away from equilibrium

If $\Delta G < 0$ reaction proceeds spontaneously

If $\Delta G > 0$ reaction proceeds in reverse spontaneously

If $\Delta G = 0$ reactants and products are at equilibrium

Calculation

 $P H_2O = 0.1 atm$

 $PO_2 = 1$ atm

 $P H_2 = 0.05 atm$

T = 298K; V=1liter

Substance	ΔH _f ° (kJ·mol⁻¹)	S° (J·K ⁻¹ ·mol ⁻	∆G _f ° (kJ·mol ⁻¹)
H ₂	0	130.57	-T∆Sº
02	0	205.03	-T∆S°
H ₂ O (gas)	-241.82	188.72	-228.59

$$\Delta H^{o}_{rxtn} = \Delta H_{products} - \Delta H_{reactants} = -241.82 \text{ kJ} \cdot \text{mol}^{-1}$$

$$T\Delta S_{rxtn} = TS_{products} - TS_{reactants} = 298 \text{K} (188.72 - 0.5(205.03) - 130.57) = -13.1 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta G^{o}_{rxtn} = \Delta H - T\Delta S = -241.82 - (-13.1) = -228.7 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta G = \Delta G^o + RT \ln \left(\frac{\left(\frac{P_{H_2O}}{P_{ref}} \right)^2}{\left(\frac{P_{H_2}}{P_{ref}} \right)^2 \left(\frac{P_{O_2}}{P_{ref}} \right)} \right) = -228.7 \text{ kJ mol}^{-1} + 8.314 \text{ J mol}^{-1} \text{ K}^{-1} (298 \text{ K}) \ln[(0.1)^2(0.05)^{-2}(1)]} = -225 \text{ kJ mol}^{-1}$$

Reaction proceeds with a vengeance!

Substance	$\Delta H_{\rm f}^{\rm o}$ (kJ·mol ⁻¹)	S° (J·K ⁻¹ ·mol ⁻	ΔG_f^o (kJ·mol ⁻¹)
H ₂	0	130.57	-T∆S°
02	0	205.03	-T∆S°
H ₂ O (gas)	-241.82	188.72	-228.59

Suggested thought exercise #1:

At what pressure of H₂ will the system be in equilibrium?

Suggested thought exercise #2:

Example #2: Consider the reaction $BrNO(g) \Leftrightarrow NO(g) + \frac{1}{2} Br_2(g)$

If we mix the following quantities at 298K, will we get a spontaneous reaction and, if so, in what direction?

Pressure BrNO = 0.8 atm Pressure NO = 0.1 atm Pressure Br₂ = 0.16 atm

What happens if the system is perturbed?

Le Chatelier's Principle: When stress is applied to a system at equilibrium, the system will respond so as to relieve this stress.

- Concentration changes
- Temperature changes
- Pressure changes
- Addition of a catalyst

Can compare the reaction quotient, Q, to K in order to determine the direction of change (Section 14.6, OGC).

$$-\Delta G^0 = RT \ln K_{eq}$$

$$\Delta G = \Delta H - T\Delta S$$

Depending on the sign & magnitude of ΔS , ΔG can:

- may go from + to valued w/ increasing T
- may go from to + valued w/ increasing T
- may decrease in magnitude
- may increase in magnitude
- may remain unchanged

For many systems, ΔG is relatively invariant to at least small T changes (i.e. the entropic contributions to ΔG are often relatively small)

$$N_2 + 3 H_2 (g) \longrightarrow 2 NH_3 (g)$$
 $\Delta G = -33.32 kJ$

(Haber process, consumes several percent of the world's natural gas production, to make the H_2):

Exothermic

4 moles to 2

In
$$K = -\Delta G^{o}/RT = -\Delta H^{o}/RT + \Delta S^{o}/R$$

Can thus use the dependence of K with temperature to measure the enthalpy and entropy components. Important in atmospheric chemistry, esp. O_3 formation.

In $(K_2/K_1) = -\Delta H^o[1/T_2 - 1/T_1]/R$ (the van't Hoff equation)

In
$$K = -\Delta G^{o}/RT = -\Delta H^{o}/RT + \Delta S^{o}/R$$

Can we rationalize the temperature dependence physically, and not rely solely on the equations?

Ties to Boltzmann:

A→B (endothermic)

As Temperature increases, the population of B increases relative to A

Ties to Boltzmann:

Ties to Boltzmann:

Endothermic reaction

$$-\Delta G^0 = RT \ln K_{eq}$$

$$\frac{-\Delta G^0}{RT} = \ln K_{eq}$$

$$e^{\frac{-\Delta G^0}{RT}} = K_{eq} = \frac{[B]^b}{[A]^a}$$

Rotational Energy Levels

$$E_J = J(J+1)B_{LiF}$$

Energy Levels

____ 30B

____ 20B

____ 12B

____ 6B

____ 2B ___ 0B

Chemical catalysts accelerate reactions but do not the equilibrium, since they act principally on E_a.

potential energy

reaction coordinate (progress of reaction)

Uncatalyzed mechanism:

$$H_2 \longrightarrow 2 H$$
 $C_2H_4 + H \longrightarrow C_2H_5$
 $C_2H_5 + H \longrightarrow C_2H_6$

Net: $C_2H_4 + H_2 \longrightarrow C_2H_6$

Pd catalyzed mechanism

$$H_2+2 Pd \implies 2 Pd - H$$
 $C_2H_4+Pd - H \implies C_2H_5-Pd$
 $C_2H_5-Pd+Pd - H \implies C_2H_6+2 Pd$
Net: $C_2H_4+H_2 \implies C_2H_6$

Chemistry in Context: Building a habitable planet, or

From whence water and organics?

And, why is the D/H ratio in the oceans 10x that in Jupiter?

Why should we consider volatiles from the outer solar system as the source of terrestrial water?

"Earth 4.5 AE B.C. – Fishing is extremely poor, especially in August."

