

<u>Home</u>

<u>Gameboard</u>

Maths

Differentiation: Implicit 3ii

Differentiation: Implicit 3ii

Part A Derivative

For the curve $2x^2+xy+y^2=14$, find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x and y.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B Stationary points

Find the coordinates of the points at which the tangents to the curve $2x^2 + xy + y^2 = 14$ are parallel to the x -axis.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Home Gameboard Maths Differentiation: Implicit 5i

Differentiation: Implicit 5i

Part A Derivative

Given that $y \sin 2x + \frac{1}{x} + y^2 = 5$, find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x and y.

The following symbols may be useful: Derivative(y, x), cos(), cosec(), cot(), sec(), sin(), tan(), x, y

Part B Gradient

Find the gradient of the curve $4x^2 + 2xy + y^2 = 12$ at the point (1,2).

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric

Equations & Integration

<u>Home</u> <u>Gameboard</u>

Maths

Differentiation: Implicit 3i

Differentiation: Implicit 3i

The equation of a curve is $xy^2 = 2x + 3y$.

Part A Implicit Differentiation

Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x and y.

The following symbols may be useful: Derivative(y, x), x, y

Part B Tangents

Give the number of tangents to this curve which are parallel to the y-axis.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Integration

<u>Home</u> <u>Gameboard</u> Maths Functions Graph Sketching Sketching a Parametric Curve

Sketching a Parametric Curve

A curve has parametric equations $x=1-\cos t$, $y=\sin t\sin 2t$, for $0\leq t\leq \pi$.		
Part A x -axis		
Find the coordinates of the points where the curve meets the x -axis.		
()		
Part B Derivative		
Find an expression for $rac{\mathrm{d}y}{\mathrm{d}x}$ in terms of t .		
The following symbols may be useful: Derivative(y, x), arccos(), arccosec(), arccot(), arcsec(), arcsin(), arctan(), cos(), cosec(), cot(), sec(), sin(), t, tan(), x, y		
Part C Stationary points		
Hence find the coordinates of the stationary points. Give your answer to 3 significant figures.		
()		

Part D Cartesian equation

Find the cartesian equation of the curve. Give your answer in the form y = f(x), where f(x) is a polynomial.

The following symbols may be useful: x, y

Part E Sketch

Sketch the curve.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric

Equations & Integration

<u>Home</u>

<u>Gameboard</u>

Maths

Parametric Equations 2i

Parametric Equations 2i

A curve has parametric equations

$$x=rac{1}{t+1},y=t-1.$$

The line y = 3x intersects the curve at two points.

Part A Value of t

Show that the value of t at one of these points is -2 and find the value of t at the other point.

The following symbols may be useful: t

Part B Normal

Find the equation of the normal to the curve at the point for which t=-2, giving your answer in the form y=f(x).

The following symbols may be useful: x, y

Find the value of t at the point where this normal meets the curve again.
The following symbols may be useful: t
Part D Cartesian Equation
Find a cartesian equation of the curve, giving your answer in the form $y=f(x)$.
The following symbols may be useful: x, y
Used with permission from UCLES A-level Maths papers, 2003-2017.
Gameboard: STEM SMART Double Maths 28 - Implicit & Parametric Equations & Integration

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

 $\quad \text{Value of } t$

Part C

<u>Home</u> <u>Gameboard</u> Maths Parametric Equations 3i

Parametric Equations 3i

The parametric equations of a curve are

$$x=2\theta+\sin2\theta,y=4\sin\theta$$

and part of its graph is shown in Figure 1.

Figure 1: A sketch of the curve.

Part A Value of θ at A

Find the value of θ at A.

The following symbols may be useful: pi, theta

Part E Nature of Origin

Point O is at the origin. State the nature of point O, justifying your answer by reference to suitable values of $\frac{dy}{dx}$.
At O, we find that $\theta = $ and $\frac{\mathrm{d}y}{\mathrm{d}x} = $. Hence, O is not a stationary point.
When $ heta=0.1$, we find that $x=$
When $ heta=-0.1$, we find that $x=$
Since $\frac{\mathrm{d}y}{\mathrm{d}x}$ is on both sides of O than it is at O, O must be a non-stationary

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Integration

Home Gameboard Maths Calculus Integration Parametric Integration 1

Parametric Integration 1

The curve C has parametric equations

$$x = 2t^2 - 3$$
 $y = t(4 - t^2)$

The curve crosses the x-axis at the points A and B and the region R is enclosed by the loop of the curve, as shown in **Figure 1**.

Figure 1: A graph of the curve *C*

Part A	Point A
Find the	x-coordinate of the point A.
Part B	Point B
Find the	x-coordinate of the point B.
Part C	Area of R
The region	on R is enclosed by the loop of the curve, as shown in Figure 1 . Find the exact value of the area of R
Created for is	aacphysics.org by Matthew Rihan
Gameboard:	adophysios.org by Matthew Hillan
STEM SMA	RT Double Maths 28 - Implicit & Parametric
<u>Equations</u>	<u>& Integration</u>
	All materials on this site are licensed under the Creative Commons license , unless stated otherwise.

<u>Home</u>

<u>Gameboard</u>

Maths

Partial Fractions 1i

Partial Fractions 1i

Part A Partial Fractions

Express
$$\frac{2+x^2}{(1+2x)(1-x)^2}$$
 in the form $\frac{A}{1+2x}+\frac{B}{1-x}+\frac{C}{(1-x)^2}$.

The following symbols may be useful: x

Part B Integration

Hence find $\int_0^{rac{1}{4}} rac{2+x^2}{(1+2x)(1-x)^2} \,\mathrm{d}x$ in exact form.

The following symbols may be useful: , $_{\text{logs}}$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric

Equations & Integration

Home Gameboard Maths Calculus Integration Integration with Partial Fractions 4

Integration with Partial Fractions 4

Further A
PPP

Pre-Uni Maths for Sciences K5.4

Part A Find A, B and C

Write the function
$$rac{2z^2-z-3}{(z+2)(z^2-2z-1)}$$
 in the form $rac{A}{z+2}+rac{B+Cz}{z^2-2z-1}.$

Drag and drop the correct values in the expression below.

$$\frac{1}{z+2} + \frac{1}{z^2-2z-1}$$

Items:

Part B Integrate

Hence find
$$\displaystyle\int_1^2 \dfrac{2z^2-z-3}{(z+2)(z^2-2z-1)} \;\mathrm{d}z.$$

Created for isaacphysics.org by Julia Riley