3 Time Series Analysis (SARIMA and ARIMA Models)

3.1 ARIMA and SARIMA Models for Stock Price data

3.1.1 Dataset Description

The dataset used for this analysis consists of **44 years of historical stock price data**, specifically focusing on daily stock prices. Below are the key details of the dataset:

- Data Source: Daily stock price data (11,291 records)
- Timespan: From March 17, 1980 to December 27, 2024
- **Format**: Tabular data with 7 columns (Date, Adjusted Close, Close, High, Low, Open, Volume)

Key Variables:

- **Date**: The trading date
- Adj Close: Adjusted closing price accounting for dividends and stock splits
- **Close**: Closing price of the stock
- **High**: Highest price during the trading day
- Low: Lowest price during the trading day
- **Open**: Opening price of the stock

• Volume: Number of shares traded

Data Characteristics:

- **Initial Price (1980)**: \$3.29 (Close)
- **Final Price (2024)**: \$199.52 (Close)
- **Trading Volume**: Varies greatly, with a peak of 1,281,200 shares traded
- **Data Quality Issues**: Volume data from years before 2004 contained numerous missing values

3.1.2 Data Preprocessing

Initial Data Cleaning:

- Removed unnecessary columns (e.g., unnamed index column).
- Converted the **Date** column to a datetime format using pd.to_datetime().
- Conducted a thorough data quality check and identified missing values, especially in the **Volume** column from 1980–2003.

Data Filtering and Preparation:

- For improved quality, filtered the dataset to only include data from **2004 onwards** (4.998 records).
- Sorted the data chronologically, ensuring the time series structure was maintained.
- Ensured there were no missing values in the filtered dataset.

Missing Data Imputation:

- Implemented business day calculations to identify and fill missing trading days, ensuring the continuity of the stock market data.
- Applied **forward-fill** (**ffill**) for most variables (Adjusted Close, High, Low, and Volume).
- For **Open** and **Close** prices, special imputation logic was implemented to maintain market relationships across missing days.

3.1.3 Methodology

Stationarity and Parameter Selection:

- Augmented Dickey-Fuller (ADF) Test: Conducted to test for stationarity.
 - o **Null Hypothesis (H₀)**: The time series has a unit root (non-stationary).
 - o Initially, the series was non-stationary, but after **first differencing**, stationarity was achieved (p-value < 0.05).

Model Order Determination:

• Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots were used to identify appropriate parameters for ARIMA. Seasonal differencing with a lag of 5 was applied to the dataset to remove weekly seasonality to identify the parameters SARIMA models.

ARIMA Model:

- p (AR order): Determined from PACF with a significant spike at lag 1, so
 p = 1.
- o **d** (**Differencing**): First differencing (d = 1) was applied after ADF confirmed non-stationarity.
- o q (MA order): Based on ACF, no significant spike pattern was found, so q = 0.

SARIMA Model:

- o Non-seasonal components ($\mathbf{p=1}$, $\mathbf{d=1}$, $\mathbf{q=0}$) followed the same logic as ARIMA.
- Seasonal parameters:
 - P: Seasonal AR order (P = 1) based on significant PACF spikes at lag 5.
 - **D**: Seasonal differencing (D = 1) to address the seasonal unit root.
 - **Q**: No seasonal MA component (Q = 0).
 - s: Seasonal period of 5, identified as weekly seasonality.

3.1.4 Data Splitting

- **Training Set**: First 80% of the data (4,000 records) used for model training.
- **Test Set**: Remaining 20% (998 records) used for model validation. This chronological split ensured that the time series integrity was maintained.

3.1.5 Model Implementation

ARIMA Model:

- **Model Order**: (0, 1, 0)
 - o $\mathbf{p} = \mathbf{0}$: Autoregressive term based on PACF.
 - \circ **d** = 1: First differencing to make the series stationary.
 - \circ q = 0: No moving average component.

SARIMA Model:

- **Model Order**: (1, 1, 0)(1, 1, 0, 5)
 - o Non-seasonal components: Same as ARIMA model (1, 1, 0).
 - Seasonal components:
 - **P** = 1: Seasonal AR term based on significant PACF spikes at seasonal lags.
 - $\mathbf{D} = \mathbf{1}$: Seasonal differencing.
 - $\mathbf{Q} = \mathbf{0}$: No seasonal MA component.
 - **s** = **5**: Business days of a week seasonality confirmed by periodic ACF/PACF patterns.

3.1.6 Results and Interpretation

Model Evaluation:

- Both ARIMA and SARIMA models were validated using error metrics like Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE).
- Forecasts from both models were compared, with SARIMA showing a better fit due to its ability to account for seasonal variations.

Forecasting:

- o **ARIMA** provided forecasts that were effective for short-term predictions, but lacked seasonal considerations.
- SARIMA was better at capturing long-term trends with weekly seasonality, leading to more accurate forecasts over extended periods.

Conclusion

- Both ARIMA and SARIMA models were successfully applied to the stock price dataset.
- The SARIMA model, accounting for seasonal fluctuations, demonstrated superior forecasting ability compared to the ARIMA model.
- Insights gained from the analysis could be valuable for stock price prediction and investment decision-making.

3.1.7 Results and Analysis

Evaluation Metrics:

- Root Mean Square Error (RMSE): Measures the average magnitude of prediction errors.
- **Mean Absolute Error (MAE):** Measures the average absolute difference between predictions and actual values.
- Mean Absolute Percentage Error (MAPE): Expresses error as a percentage of actual values.
- **R-squared** (**R**²): Indicates the proportion of variance in the data explained by the model.

Metric SARIMA ARIMA Difference

RMSE 3.3186 2.6786 0.64

MAE 2.47 1.9591 0.51

MAPE 1.41% 1.1249% 0.2851%

R-squared 0.9837 0.9894 0.0057

3.1.8 Visual Analysis

- Both models demonstrate excellent tracking of the actual price movements, successfully capturing:
 - 1. The initial price range fluctuated in 2021.
 - 2. The temporary peak in early 2022.
 - 3. The significant decline through mid-2023.
 - 4. The dramatic rise and fall in early 2024.
 - 5. The stabilization pattern in mid-to-late 2024.
- The visual fidelity between predicted and actual values in both models is remarkable, with the ARIMA model showing slightly better alignment, particularly during periods of volatility.

Stock Price with Date

Evaluation Plot

3.1.9 Key Insights

- > Superior ARIMA Performance:
- The ARIMA model outperforms SARIMA across all four evaluation metrics, with particularly notable improvements in error measurements.
- o ARIMA reduces **RMSE by** 0.64 , **MAE by** 0.51, and **MAPE by** 0.2851% compared to SARIMA.
- ➤ High Explanatory Power:
- o Both models demonstrate exceptional fit to the data, with **R-squared values** above 0.98, indicating they explain over 98% of the variance.
- The ARIMA model achieves marginally better explanatory power, with an R-squared of 0.9894.
- > Seasonal Component Impact:
- The superior performance of the non-seasonal ARIMA model suggests that incorporating seasonal components (as in SARIMA) introduces unnecessary complexity that may obscure rather than enhance the forecasting accuracy for this particular time series

Line chart: Denoting all features

Conclusions:

The comparative analysis reveals that the **ARIMA model** offers superior forecasting performance for this financial time series. Despite the common assumption that seasonal models (like SARIMA) provide better predictions for financial data, our analysis demonstrates that the simpler **ARIMA approach** yields more accurate results for this dataset.

3.1.10 Practical Applications

- ➤ Investment Decision Support:
- o More accurate forecasts enable better entry and exit point identification.
- o Reduced prediction errors translate to lower investment risk.
- Seasonal insights provide additional market timing signals.
- ➤ Risk Management:
- o Improved forecasting precision supports more effective hedging strategies.
- A better understanding of expected price movements aids portfolio allocation decisions.
- Seasonal patterns can be utilized for diversification purposes.
- > Trading Strategy Development:
- SARIMA forecasts can serve as the foundation for algorithmic trading systems.
- o Seasonal components can be isolated for specialized seasonal trading strategies.
- Combined with technical indicators, these forecasts may enhance trading performance.
- > Financial Planning:
- o More accurate stock price predictions support better financial planning.
- o Institutional investors can better anticipate market movements for capital allocation.
- o Individual investors gain improved tools for retirement and investment planning.

3.2 ARIMA and SARIMA Models for Air Passenger Forecasting

3.2.1 Dataset Description

This analysis utilizes the well-known **AirPassengers** dataset, which contains monthly totals of international airline passengers over a 12-year period.

- **Data Source**: AirPassengers.csv
- **Timespan**: January 1949 to December 1960
- Format: Monthly time series data

Key Variables

- **Date**: Monthly timestamp
- **Passengers**: Number of airline passengers (in thousands)

Data Characteristics

- Starting value (Jan 1949): 112 passengers (in thousands)
- **Ending value (Dec 1960)**: 432 passengers (in thousands)
- The dataset exhibits a **strong upward trend** and **clear seasonal patterns**, making it ideal for seasonal time series modeling.

3.2.2 Data Preprocessing

Initial Data Cleaning

- Renamed columns:
 - \circ 'Month' \rightarrow 'Date'
 - o '#Passengers' → 'Passengers'
- Converted 'Date' to datetime format using pd.to datetime().
- Extracted **Year** and **Month** for exploratory data analysis.
- Confirmed **no missing or duplicate entries**.

Data Verification

- Ensured **chronological sorting** of observations.
- Performed exploratory analysis using:
 - Yearly and monthly groupings
 - o Trend plots to observe growth and seasonality

3.2.3 Methodology

Stationarity and Parameter Selection

ADF Test (Augmented Dickey-Fuller)

- **Null Hypothesis (H₀)**: The time series has a unit root (i.e., it is non-stationary).
- **ADF test on original series**: Non-stationary (p > 0.05)
- Applied **first differencing**.
- **ADF test on differenced series**: Stationary (p < 0.05)

3.2.4 Model Order Determination

ARIMA (p, d, q) Selection

- p = 1: PACF showed a spike at lag 1
- d = 1: First differencing confirmed by ADF
- q = 1: ACF indicated MA component at lag 1
- **Final ARIMA model**: ARIMA(1,1,1)

SARIMA (p, d, q)(P, D, Q, s) Selection

- Seasonal PACF: Spike at lag $12 \rightarrow P = 1$
- Seasonal ACF: Gradual decay \rightarrow Q = 1
- Seasonal frequency s = 12 (monthly)
- Seasonal differencing D = 1
- **Final SARIMA model**: SARIMA(1,1,1)(1,1,1,12)

3.2.5 Data Splitting for Model Evaluation

- **Training set**: First 80% (January 1949 October 1958)
- **Testing set**: Remaining 20% (November 1958 December 1960)

3.2.6 Results and Analysis

Evaluation Metrics

Metric SARIMA ARIMA Improvement (SARIMA vs ARIMA)

RMSE 30.21 97.44 67.23 lower (≈69% reduction)

MAE 23.62 85.20 61.58 lower (≈72% reduction)

- SARIMA outperformed ARIMA significantly in both Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
- The RMSE for SARIMA is **over three times lower** than that of ARIMA.
- The MAE shows a **72% error reduction** for SARIMA.

3.2.7 Performance Comparison

- **SARIMA** more accurately captured **recurring seasonal trends** in the dataset (e.g., consistent yearly peaks and troughs).
- ARIMA lacked the ability to model seasonality, resulting in much higher prediction errors.
- These results confirm the importance of **including seasonality** in forecasting models when working with periodic data.

3.2.8 Visual and Statistical Insights

- Forecast plots showed SARIMA closely tracking actual data.
- SARIMA exhibited **less volatility and more realistic seasonal peaks**, reinforcing its superiority in this context.

Conclusions

This time series analysis demonstrates that the **SARIMA model is significantly more effective** than the ARIMA model for datasets with **strong seasonal patterns**, such as the AirPassengers dataset.

3.2.9 Key Takeaways

- SARIMA reduced RMSE by 69% and MAE by 72% compared to ARIMA.
- The inclusion of seasonal parameters in SARIMA enables it to model **repeating annual trends**, which ARIMA fails to capture.
- For data with noticeable seasonality, **ARIMA alone is insufficient**, and seasonal models like SARIMA are essential for **accurate and reliable forecasting**.

3.2.10 Practical Applications

• Airline Demand Forecasting:

Accurate predictions help with staffing, inventory, and capacity planning.

• Seasonal Marketing and Pricing:

Identifying **peak travel seasons** allows for better **pricing strategies** and **promotional planning**.

• Infrastructure Planning:

Long-term demand forecasting supports **investment decisions** and **network expansion**.

3.3 Visualization

3.3.1 Box Plot: Passengers per Year

• Growth Over Time:

Each year shows a higher range and median of passenger numbers, confirming the increasing trend.

• Wider Ranges:

The height of the boxes and whiskers increases over the years, indicating that passenger numbers became more variable.

• More Outliers in Later Years:

The later years (1957–1960) show a broader spread, possibly hinting at new market conditions, routes, or external factors like economic expansion.

3.3.2 Line Plot: Number of Air Passengers Over Time

• Upward Trend:

The number of air passengers steadily increased from 1949 to 1960, showing clear long-term growth in air travel.

• Seasonal Pattern:

There's a **regular repeating wave pattern** each year — peaks and dips occur at consistent intervals, indicating **seasonality** (likely due to holidays or travel seasons).

• Volatility Increases Over Time:

The size of fluctuations grows, suggesting increasing variability as more people begin to travel.