

■ 主要内容:

- 4.1 数据库安全性概述
- 4.2 数据库安全性控制
- 4.3 视图机制
- 4.4 安全审计
- 4.5 数据加密

第4章 数据库的安全性

4.1 数据库安全性概述

数据库安全性: 是指保护数据库以防止非法用户的越权使用、窃取、更改或破坏数据。

- 数据库的安全性可以划分为三个层次:
 - ✓ 网络系统的安全
 - ✓ 操作系统的安全
 - ✓ 数据库管理系统的安全

4.1 数据库安全性概述

◆ 网络系统的安全

这是数据库的第一个安全屏障。目前网络系统面临的主要威胁有木马程序、网络欺骗、入侵和病毒等。

◆ 操作系统安全

主要来自网络内所使用操作系统的安全。主要包括:操作系统本身的缺陷、对操作系统的安全配置、病毒的威胁三个方面。

4.1 数据库安全性概述

◆ 数据库系统面临的主要风险

✓ 操作系统的风险

数据库系统的安全性最终要靠操作系统和硬件设备所提供的环境,如果操作系统允许用户直接存取数据库文件,即使数据库系统中采取了最可靠的安全措施 也没有用。

✓ 管理的风险

主要指用户的安全意识,对信息网络安全的重视程度及相关的安全管理措施。

✓ 用户的风险

主要表现在用户账号和对特定数据库对象的操作权限。

√ 数据库管理系统内部的风险

4.1 数据库安全性概述

◆ 安全标准

- ✓ TCSEC: 可信计算机系统评估准则,美国国防部
- ✓ ITSEC: 信息技术安全评估准则, 欧洲
- ✓ CTCPSEC: 加拿大可信计算机产品评估准则, 加拿大
- ✓ CC: 通用准则, ISO (我国采用)

4.2 数据库安全性控制

◆ 数据库系统安全模型

◆ 数据库管理系统的安全模型

4.2 数据库安全性控制

◆ 数据库安全性控制的常用方法

- ✓用户标识和鉴定
- √访问控制
- √视图
- ✓审计
- ✓数据加密

4.2 数据库安全性控制

4.2.1 用户标识与鉴别

用户标识:每个合法用户均被赋予一个身份标识。 身份鉴别:鉴别用户的合法身份。

□身份鉴别方法

- ✔ 静态口令鉴别
- ✔ 动态口令鉴别
- ✓生物特征鉴别
- ✔ 智能卡鉴别

4.2 数据库安全性控制

4.2.2 存取控制

- ◆访问控制机制的组成
 - 定义用户权限
 - ●合法权限检查
- ◆常用访问控制方法
 - ●自主访问控制 DAC: C2级、灵活

4.2 数据库安全性控制

4.2.3 自主访问控制方法 DAC

- ✓ 主体与客体直接关联;
- ✓ 主体的权限需要授权;
- ✓ 具有授权资格的用户 均可实现授权。

4.2 数据库安全性控制

■ 关系数据库系统中的存取权限

		操作类型	
	模式	CREATE SCHEMA	
教据库	基本表	CREATE TABLE, ALTER TABLE	
模式	视图	CREATE VIEW	
	索引	CREATE INDEX	
数据	基本表和视图	SELECT, INSERT, UPDATE, DELETE, REFERENCES, ALL PRIVILEGES	
	属性列	SELECT, INSERT, UPDATE, REFERENCES ALL PRIVILEGES	N OF THE

4.2 数据库安全性控制

4.2.4 授权: 授予与收回

- 通过 SQL 的 GRANT 语句和 REVOKE 语句实现;
- 用户权限组成:数据对象、操作类型;
- 定义用户访问权限: 定义用户可以在哪些数据库对象上进行哪些类型的 操作。

■ 授权GRANT语句

GRANT < 权限 > [,< 权限>] ... [ON < 对象类型 > < 对象名 >] TO < 用户 > [,< 用户 >] ... [WITH GRANT OPTION];

4.2 数据库安全性控制

- 谁可以发出GRANT DBA、对象创建者(Owner)、拥有该权限的用户。
- 可接受权限的用户 一个或多个具体用户、PUBLIC(全体用户)。
- WITH GRANT OPTION子句
- 不允许循环授权:

4.2 数据库安全性控制

/* 将t_st表的查询权限授予用户test1 */ Grant select on t st to test1;

/* 将t_c的查询权限授予public */ Grant select on t_c to public;

/* 将sc表修改成绩的权限授予test1 */grant update(grade) on sc to test1;

/* 将t_st插入数据的权限授予test1 */ grant insert on t_st to test1;

4.2 数据库安全性控制

■ 撤销 (收回) 权限 REVOKE

REVOKE <权限> [,<权限>] ... [ON <对象类型> <对象名>] FROM <用户> [,<用户>] ...;

4.2 数据库安全性控制

■ 创建用户时初始角色授权

CREATE USER <username>

[WITH] [DBA | RESOURCE | CONNECT]

拥有的权限	可否执行的操作				
	CREATE USER	CREATE SCHEMA	CREATE TABLE	登录数据库 执行数据查询 和操纵	
DBA	可以	可以	可以	可以	
RESOURCE	不可以	不可以	可以	可以	
CONNECT	不可以	不可以	不可以	可以,但必须拥有相应权 限	

4.2 数据库安全性控制

4.2.5 数据库角色

- √ 数据库角色:被命名的一组与数据库操作相关的权限。
- √ 角色是权限的集合。
- ✓ 可以为一组具有相同权限的用户创建一个角色。
- √ 简化授权的过程。
- ✓ **角色的创建:** CREATE ROLE <角色名>;
- ✓ 给角色授权:

GRANT <权限> [, <权限>]... ON <对象类型> 对象名 TO <角色> [, <角色>]...;

4.2 数据库安全性控制

● 将一个角色授予其他的角色或用户:

GRANT <角色1> [, <角色2>]... TO <角色3> [, <用户1>]... [WITH ADMIN OPTION];

● 角色权限的收回:

REVOKE <权限>[, <权限>]... ON <对象类型> <对象名> FROM <角色> [, <角色>]...;

4.2 数据库安全性控制

- 4.2.6 强制存取控制MAC
- ✓ 保证更高程度的安全性。
- ✓ 用户不能直接感知或进行控制。
- ✓ 适用于对数据有严格而固定密级分类的部门。
- ✓ 主体 是系统中的活动实体。
 - ▶ DBMS所管理的实际用户
 - ▶ 代表用户的各个进程
- ✓ 客体 是系统中的被动实体,是受主体操纵的。

4.2 数据库安全性控制

- √ 私感度标记 (Label)
 - ●主体的敏感度标记称为许可证级别;
 - ●客体的敏感度标记称为密级;
- √ 强制存取控制规则
 - (1) 仅当主体的许可证级别大于或等于客体的密级时,该主体才能读 取相应的客体:
 - (2) 仅当主体的许可证级别等于客体的密级时,该主体才能写相应的
- **修正规则**: 当主体的许可证级别 <= 客体的密级时,主体能写客体

第4章 数据库的安全性

4.3 视图机制

- ◆ 作用:把要保密的数据对无权存取这些数据的用户隐藏起来, 对数据提供一定程度的安全保护。
- ◆ 视图的主要功能是提供数据独立性,无法完全满足要求;
- ◆ 视图间接实现了支持存取谓词的用户权限定义。

4.3 视图机制

视图示例:

CREATE VIEW CS_Student AS

SELECT * FROM Student WHERE Sdept='CS';

GRANT SELECT ON CS_Student TO $\pm \Psi$;

GRANT ALL PRIVILIGES ON CS_Student TO 张明;

第4章 数据库的安全性

4.4 审计

- ✓ 什么是审计?
- ✓ 审计日志(Audit Log): 将用户对数据库的所有操作记录在上面;
- ✓ DBA利用审计日志:找出非法存取数据的人、时间和内容;
- ✓ C2以上安全级别的DBMS必须具有。

4.4 审计

- 审计事件
- 服务器事件

如: 启动、停止、配置文件的重新加载等。

● 系统权限

审计对结构、模式等对象的操作权限是否是通过系统权限获得的。

● 语句事件

对各种SQL语句的审计。

● 模式对象事件

对特定模式对象(表、视图、过程、函数等)进行查询或更新操作的审计。

4.4 审计

■ 审计功能

- 基本功能
 - 能提供多种审计查阅方式。
- 提供多套审计规则 在数据库初始化时设定,方便审计员管理。
- 提供审计分析和报表功能
- 审计日志管理功能
- 提供查询审计设置及审计记录信息的专门视图

4.4 审计

■ AUDIT和NOAUDIT语句

AUDIT 语句:设置审计功能 NOAUDIT 语句:取消审计功能

- ullet 用户级审计: 一般用户使用,对自己的数据对象进行审计。
- 系统级审计: DBA设置,监测成功或失败的登录、授权或收回操作,以及其他系统级权限的操作。

● 审计设置示例

AUDIT ALTER, UPDATE ON SC; NOAUDIT ALTER, UPDATE ON SC;

第4章 数据库的安全性

4.5 数据加密

- 数据库中数据加密的特殊性。
- ✓ OS层加密: 在OS层无法辨认数据库中的数据关系,从而无法产生合理的密钥,对密钥的管理和使用也很难。
- ✓ DBMS内核层加密: 优点是加密功能强,可以实现加密功能与数据库管理系统之间的无缝耦合。缺点是加密运算在服务器端进行,加重了服务器的负载。
- ✓ **DBMS外层加密**:将数据库加密系统做成DBMS的一个**外层工具**。

第4章 数据库的安全性

■ 本章思考题:

影响数据库系统安全性的因素有哪些?

■ 本章作业:

P155 习题5、习题6

