

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТ	ЕТ Специальное машиностроение
КАФЕДРА	СМ1 «Космические аппараты и ракеты-носители»
	Домашнее задание
	по курсу «Основы автоматизированного проектирования»
	Вариант №13
Г	руппа: СМ1-81
	тудент: Новиков А.Р.
C	(Подпись, дата)
П	реподаватель: Сдобников А.Н.
	(Подпись, дата)

Условие

Для данной расчетной схемы необходимо:

Часть 1.

- 1. Сформулировать краевую задачу.
- 2. Построить точное решение краевой задачи.
- 3. Преобразовать краевую задачу в вариационный принцип
- 4. Получить решение энергетическим методом на линейной аппроксимации поля перемещений
- 5. Дать оценку погрешности по энергии между точным и приближенным решением **Часть 2.**
- 6. Записать разрешающую систему уравнений Метода Конечных Элементов (МКЭ), провести ее анализ и получить «вручную» решение для перемещений и напряжений
- 7. Выполнить расчет заданной конструкции с использованием пакета MSC Patran Nastran
- 8. Провести сравнительный анализ результатов, полученных методами, использованными в работе.
- 9. Подготовить отчет по результатам проведенных исследований

Согласно варианту №13 имеем следующие исходные данные:

$$\begin{cases} \frac{cl}{EF} = 7\\ \frac{ql}{EF} = 1\\ \frac{F_1^*}{EF} = 0\\ \frac{F_2^*}{EF} = 0.5\\ \frac{F_3^*}{EF} = 0.2 \end{cases}$$

$$(0.1)$$

При выполнении численных расчетов принять следующие значения параметров:

• Размеры попереного сечения: $R_1 = 150$ м, $R_2 = 110$ м

Поперечное сечение

- Длина участка l = 0.5м
- Для варианта №13 материал: АМг ($E=7.31\cdot 10^{10}~\Pi a; \nu=0.33$)

Решение

1 Формулировка краевой задачи

Введем начало координат в точке А. Отрежем пружину, заменим реакцией:

Рисунок 1.1 — Расчетная схема

Сила упругости пружины равна:

$$F_{ynp} = c \cdot u(0) \tag{1.1}$$

Разобьем стержень на 2 участка и запишем для них дифференциальное уравнение равновесия:

1. Участок AB:

$$EFu_I''(x) + q = 0 ag{1.2}$$

2. Участок BC:

$$EFu_{II}''(x) = 0 (1.3)$$

Для записи граничных условий рассмотрим равновесие сечений:

1. Сечение A:

$$F_{ynp}$$
 $N_{i}(0)$

Рисунок 1.2 — К записи условий равновесия сечения A

$$\Sigma F_x = 0 \tag{1.4}$$

$$F_{\rm ynp} = N_I(0) \tag{1.5}$$

$$cu_I(0) = EFu_I'(0) \tag{1.6}$$

2. Сечение *B*:

Рисунок 1.3 — К записи условий равновесия сечения B

$$\Sigma F_x = 0 \tag{1.7}$$

$$N_I(2l) = F_2 + N_{II}(2l) (1.8)$$

$$EFu'_{I}(2l) = F_2 + EFu'_{II}(2l)$$
 (1.9)

3. Сечение *C*:

Рисунок 1.4 — К записи условия равновесия сечения C

$$\Sigma F_x = 0 \tag{1.10}$$

$$N_{II}(3l) = F_3 (1.11)$$

$$EFu'_{II}(3l) = F_3$$
 (1.12)

После нагружения в новом состоянии равновесия выполняется условие неразрывности перемещений, т.е.:

$$u_I(2l) = u_{II}(2l) (1.13)$$

Получим следующие результаты формулировки краевой задачи:

$$\begin{cases}
EFu_{II}''(x) + q = 0 \\
EFu_{II}''(x) = 0 \\
cu_{I}(0) = EFu_{I}'(0) \\
EFu_{I}'(2l) = F_{2} + EFu_{II}'(2l) \\
EFu_{II}'(3l) = F_{3} \\
u_{I}(2l) = u_{II}(2l)
\end{cases}$$
(1.14)

2 Построение точного решения краевой задачи

Проинтегрируем дифференциальные уравнения равновесия (1.2) и (1.3):

Участок AB:

$$u_I''(x) = -\frac{q}{EF} \tag{2.1}$$

$$u_I'(x) = -\frac{qx}{EF} + C_1 \tag{2.2}$$

$$u_I(x) = -\frac{qx^2}{2EF} + C_1x + C_2 \tag{2.3}$$

2. Участок BC:

$$u_{II}''(x) = 0 (2.4)$$

$$u'_{II}(x) = C_3 (2.5)$$

$$u_{II}(x) = C_3 x + C_4 (2.6)$$

Подставим полученные выражения в уравнения 3-6 системы (1.14):

$$\begin{cases} c \cdot C_2 = EF \cdot C_1 \\ EF \cdot (-\frac{2ql}{EF} + C_1) = F_2 + EF \cdot C_3 \\ EF \cdot C_3 = F_3 \\ -\frac{2ql^2}{EF} + 2C_1l + C_2 = 2C_3l + C_4 \end{cases}$$
(2.7)

Найдем константы интегрирования:

$$C_3 = \frac{F_3}{EF} = 0.2 {(2.8)}$$

$$-2ql + EFC_1 = F_2 + 0.2EF (2.9)$$

$$C_1 = \frac{F_2 + 2ql}{EF} + 0.2 = 0.5 + 2 + 0.2 = 2.7 \tag{2.10}$$

$$C_2 = \frac{EFC_1}{c} = \frac{C_1 l}{7} = 0.386l \tag{2.11}$$

$$C_4 = -\frac{2ql^2}{EF} + 2(C_1 - C_3)l + C_2 = -2l + 2 \cdot 2.5l + 0.386l = 3.386l$$
 (2.12)

Получим итоговые функции перемещения:

$$\begin{cases} u_I(x) = -\frac{x^2}{2l} + 2.7x + 0.386l, \ 0 \le x \le 2l \\ u_{II}(x) = 0.2x + 3.386l, \ 2l \le x \le 3l \end{cases}$$
 (2.13)

Рисунок 2.1 — График перемещений

Получим функции нормальной силы N:

$$N = EFu'(x) (2.14)$$

$$\begin{cases} u'_{I}(x) = -\frac{x}{l} + 2.7 \\ u'_{II}(x) = 0.2 \end{cases}$$
 (2.15)

$$\begin{cases} N_I(x) = (-\frac{x}{l} + 2.7)EF, \ 0 \le x \le 2l \\ N_{II}(x) = 0.2EF, \ 2l \le x \le 3l \end{cases}$$
 (2.16)

Рисунок 2.2 — График нормальной силы N

Получим функции нормальных напряжений $\sigma(x)$:

$$\sigma(x) = \frac{N(x)}{F} \tag{2.17}$$

$$\begin{cases} \sigma_I(x) = (-\frac{x}{l} + 2.7)E, \ 0 \le x \le 2l \\ \sigma_{II}(x) = 0.2E, \ 2l \le x \le 3l \end{cases}$$
 (2.18)

Рисунок 2.3 — График нормальных напряжений

3 Преобразование краевой задачи в вариационный принцип

Запишем невязку дифференциального уравнения краевой задачи (1.14):

• для участка AB:

$$L[u_I] = EFu_I''(x) + q \tag{3.1}$$

• для участка BC:

$$L[u_{II}] = EFu_{II}''(x) \tag{3.2}$$

В операторной форме невязка выглядит следующим образом:

$$L[u] = Au - f (3.3)$$

где $A=EFrac{d^2}{dx^2}$ — дифференциальный оператор краевой задачи, f=-q.

Запишем условие аннулирования невязки:

$$\int_{0}^{L} L[u]\varphi_{k}(x)dx = 0, \ k = 1, 2, 3 \dots \infty$$
(3.4)

где u(x) имеет вид:

$$u(x) = \sum_{i=1}^{\infty} \alpha_i \varphi_i(x)$$
 (3.5)

где $\varphi_i(x)$ — базисные функции, α_i — некоторые коэффициенты.

Выражение (3.4) представляет собой систему уравнений

$$\begin{cases}
\int_0^L L[u]\varphi_1(x)dx = 0 \\
\int_0^L L[u]\varphi_2(x)dx = 0 \\
\dots \\
\int_0^L L[u]\varphi_n(x)dx = 0
\end{cases}$$
(3.6)

Эти уравнения можно привести к удобному для рассмотрения виду. Для этого запишем вариацию (3.5):

$$\delta u = \sum_{i=1}^{\infty} \delta \alpha_i \varphi_i \tag{3.7}$$

Уравнения (3.6) умножим на $\delta \alpha_i$ соответственно и сложим:

$$\int_0^L L[u](\sum_{i=0}^\infty \delta \alpha_i \varphi_i) dx = 0$$
(3.8)

$$\int_0^L L[u]\delta u dx = 0 \tag{3.9}$$

Запишем вариационное уравнение (3.9) для нашей задачи:

$$\int_{0}^{2l} (EFu_{I}''(x) + q)\delta u_{I}(x)dx + \int_{2l}^{3l} EFu_{II}''(x)\delta u_{II}(x)dx = 0$$
(3.10)

$$\int_{0}^{2l} EFu_{I}''(x)\delta u_{I}(x)dx + \int_{2l}^{3l} EFu_{II}''(x)\delta u_{II}(x)dx + \int_{0}^{2l} q\delta u(x)dx = 0$$
 (3.11)

Преобразуем первые 2 слагаемых:

$$\int_{0}^{2l} EFu_{I}''(x)\delta u_{I}(x)dx = \int_{0}^{2l} EF\delta u_{I}du_{I}' = EFu_{I}'\delta u_{I}\Big|_{0}^{2l} - \int_{0}^{2l} EFu_{I}'\delta u_{I}'dx$$
(3.12)

$$\int_{2l}^{3l} EFu_{II}''(x)\delta u_{II}(x)dx = \int_{2l}^{3l} EF\delta u_{II}du_{II}' = EFu_{II}'\delta u_{II}\Big|_{2l}^{3l} - \int_{2l}^{3l} EFu_{II}'\delta u_{II}'dx \qquad (3.13)$$

Подставим (3.12) и (3.13) в (3.11):

$$EFu'_{I}(2l)\delta u_{I}(2l) - EFu'_{I}(0)\delta u_{I}(0) - \int_{0}^{2l} EFu'_{I}\delta u'_{I}dx + EFu'_{II}(3l)\delta u_{II}(3l) - EFu'_{II}(2l)\delta u_{II}(2l) - \int_{2l}^{3l} EFu'_{II}\delta u'_{II}dx + \int_{0}^{2l} q\delta u_{I}dx = 0$$
(3.14)

Учтем граничные условия из формулировки краевой задачи (1.14) и условие $\delta u_I(2l)=\delta u_{II}(2l)$:

$$F_{2}\delta u_{I}(2l) - cu_{I}(0)\delta u_{I}(0) + F_{3}\delta u_{II}(3l) - \int_{0}^{2l} EFu'_{I}\delta u'_{I}dx - \int_{2l}^{3l} EFu'_{II}\delta u'_{II}dx + \int_{0}^{2l} q\delta u_{I}dx = 0$$
(3.15)

Преобразуем (3.15), используя правила варьирования:

$$\delta \left[\frac{1}{2} \int_{0}^{2l} EF u_{I}^{\prime 2} dx + \frac{1}{2} \int_{2l}^{3l} EF u_{II}^{\prime 2} dx - \int_{0}^{2l} q u_{I} dx + \frac{1}{2} c u_{I}^{2}(0) - F_{2} u_{I}(2l) - F_{3} u_{II}(3l) \right] = 0$$
(3.16)

Тогда функционал полной потенциальной энергии равен:

$$\Pi[u_I, u_{II}] = \frac{1}{2} \int_0^{2l} EF u_I'^2 dx + \frac{1}{2} \int_{2l}^{3l} EF u_{II}'^2 dx - \int_0^{2l} q u_I dx + \frac{1}{2} c u_I^2(0) - F_2 u_I(2l) - F_3 u_{II}(3l)$$
(3.17)

и выражение (3.16) можно переписать в виде:

$$\delta\Pi = 0 \tag{3.18}$$

Выражение (3.18) является условием стационарности функционала полной потенциальной энергии, которое согласно принципу Лагранжа выполняется на точном решении краевой задачи.

4 Получение решения энергетическим методом на линейной аппроксимации поля перемещений

Аппроксимируем поле перемещений кусочно-линейными функциями:

• Первый участок (первая половина AB)

$$u_I(x) = u_0 + \frac{u_1 - u_0}{l}x, \quad 0 \le x \le l$$
 (4.1)

где $u_0 = u(0), u_1 = u(l).$

• Второй участок (вторая половина AB) Введем новую систему координат $O\tilde{x}$ с началом в точке x=l. Тогда

$$u_{II}(\tilde{x}) = u_1 + \frac{u_2 - u_1}{l}\tilde{x}, \quad 0 \le \tilde{x} \le l$$
 (4.2)

где $u_2 = u(2l)$.

• Третий участок (BC) Введем новую систему координат $O\hat{x}$ с началом в точке x=2l. Тогда

$$u_{III}(x) = u_2 + \frac{u_3 - u_2}{l}\hat{x}, \quad 0 \le \hat{x} \le l$$
 (4.3)

где $u_3 = u(3l)$

Получим следующий функционал:

$$\Pi[u_I, u_{II}, u_{III}] = \frac{1}{2} \int_0^l EF u_I'^2(x) dx + \frac{1}{2} \int_0^l EF u_{II}'^2(\tilde{x}) d\tilde{x} + \frac{1}{2} \int_0^l EF u_{III}'^2(\tilde{x}) d\tilde{x} - \int_0^l q u_I(x) dx - \int_0^l q u_{II}(\tilde{x}) dx + \frac{1}{2} c u_0^2 - F_2 u_2 - F_3 u_3$$
(4.4)

Найдем производные функций перемещения:

$$u_I'(x) = \frac{u_1 - u_0}{l} \tag{4.5}$$

$$u'_{II}(\tilde{x}) = \frac{u_2 - u_1}{l} \tag{4.6}$$

$$u'_{III}(\hat{x}) = \frac{u_3 - u_2}{I} \tag{4.7}$$

Подставим (4.5) и (4.6) в функционал (4.4):

$$\Pi[u_0, u_1, u_2, u_3] = \frac{1}{2} EF \left[\left(\frac{u_1 - u_0}{l} \right)^2 \cdot l + \left(\frac{u_2 - u_1}{l} \right)^2 \cdot l + \left(\frac{u_3 - u_2}{l} \right)^2 \cdot l \right] - q \left((u_0 + u_1)l + \frac{u_2 - u_0}{l} \frac{l^2}{2} \right) + \frac{1}{2} c u_0^2 - F_2 u_2 - F_3 u_3 \tag{4.8}$$

Запишем условие стационарности функционала (4.8):

$$\begin{cases} \frac{\partial \Pi}{\partial u_0} = 0\\ \frac{\partial \Pi}{\partial u_1} = 0\\ \frac{\partial \Pi}{\partial u_2} = 0\\ \frac{\partial \Pi}{\partial u_3} = 0 \end{cases}$$
(4.9)

Распишем выражения (4.9):

$$\frac{(u_1 - u_0)EF}{l} = u_0c - \frac{ql}{2} \tag{4.10}$$

$$\frac{(2u_1 - u_0 - u_2)EF}{l} = ql (4.11)$$

$$\frac{(4u_2 - 2u_1 - 2u_3)EF}{2l} = F_2 + \frac{ql}{2} \tag{4.12}$$

$$\frac{(u_3 - u_2)EF}{I} = F_3 (4.13)$$

Из (4.10) выразим u_1 :

$$u_1 = u_0 \left(1 + \frac{cl}{EF} \right) - \frac{ql^2}{2EF} \tag{4.14}$$

Подставим (4.14) в (4.11) и выразим u_2 :

$$u_2 = u_0 \left(1 + \frac{2cl}{EF} \right) - \frac{2ql^2}{EF} \tag{4.15}$$

Подставим (4.15) и (4.14) в (4.12) и выразим u_3 :

$$u_3 = u_0 \left(1 + \frac{3cl}{EF} \right) - \frac{4ql^2 + F_2l}{EF} \tag{4.16}$$

Подставим (4.16) в (4.15) в (4.13) и найдем u_0 :

$$u_0 = \frac{2ql + F_2 + F_3}{c} \tag{4.17}$$

Найдем оставшиеся коэффициенты:

$$u_1 = \frac{(3ql + 2F_2 + 2F_3)l}{2EF} + \frac{2ql + F_2 + F_3}{c}$$
(4.18)

$$u_2 = \frac{(2ql + 2F_2 + 2F_3)l}{EF} + \frac{2ql + F_2 + F_3}{c}$$
(4.19)

$$u_3 = \frac{(2ql + 2F_2 + 3F_3)l}{EF} + \frac{2ql + F_2 + F_3}{c}$$
(4.20)

Подставим исходные данные (0.1) в полученные выражения:

$$u_0 = 0.386l \tag{4.21}$$

$$u_1 = 2.586l (4.22)$$

$$u_2 = 3.786l \tag{4.23}$$

$$u_3 = 3.986l (4.24)$$

Получим итоговые выражения для функций перемещений:

$$u_I(x) = 2.2x + 0.386l, \quad 0 \le x \le 2l$$
 (4.25)

$$u_{II}(\tilde{x}) = 1.2\tilde{x} + 2.586l, \quad 0 \le \tilde{x} \le l$$
 (4.26)

или

$$u_{II}(x) = 1.2x + 1.386l, \quad l \le x \le 2l$$
 (4.27)

$$u_{III}(\hat{x}) = 0.2\hat{x} + 3.786l, \quad 0 \le \hat{x} \le l$$
 (4.28)

или

$$u_{III}(x) = 0.2x + 3.386l, \quad 2l \le x \le 3l$$
 (4.29)

Рисунок 4.1 — График перемещений, полученных энергетическим и аналитическим методом

Найдем внутренние усилия:

$$N(x) = EFu'(x) \tag{4.30}$$

$$N_I(x) = 2.2EF, \quad 0 \le x \le l$$
 (4.31)

$$N_{II}(x) = 1.2EF, \quad l \le x \le 2l$$
 (4.32)

$$N_{III}(x) = 0.2EF, \quad 2l \le x \le 3l$$
 (4.33)

Рисунок 4.2 — График нормальной силы, полученной энергетическим и аналитическим методами

Найдем нормальные напряжения:

$$\sigma(x) = \frac{N(x)}{F} \tag{4.34}$$

$$\sigma_I(x) = 2.2E, \quad 0 \le x \le l \tag{4.35}$$

$$\sigma_{II}(x) = 1.2E, \quad l \le x \le 2l \tag{4.36}$$

$$\sigma_{III}(x) = 0.2E, \quad 2l \le x \le 3l \tag{4.37}$$

Рисунок 4.3 — График нормальных напряжений, полученных энергетическим и аналитическим методами

5 Оценка погрешности по энергии между точным и приближенным решением

Запишем выражение для функционала полной потенциальной энергии на приближенном решении:

$$\Pi[u_0, u_1, u_2, u_3] = \frac{1}{2} EF \left[\left(\frac{u_1 - u_0}{l} \right)^2 \cdot l + \left(\frac{u_2 - u_1}{l} \right)^2 \cdot l + \left(\frac{u_3 - u_2}{l} \right)^2 \cdot l \right] - q \left((u_0 + u_1)l + \frac{u_2 - u_0}{l} \frac{l^2}{2} \right) + \frac{1}{2} c u_0^2 - F_2 u_2 - F_3 u_3 \tag{5.1}$$

Подставим в (5.1) значения (4.21), (4.22), (4.23) и (0.1) и получим:

$$\Pi_9 = \Pi[u_0, u_1, u_2, u_3] = -3.68071EFl \tag{5.2}$$

Запишем выражение для функционала полной функциональной энергии на точном решении, используя выражения (2.13):

$$\Pi[u_I, u_{II}] = \frac{1}{2} \int_0^{2l} EF u_I'^2 dx + \frac{1}{2} \int_{2l}^{3l} EF u_{II}'^2 dx - \int_0^{2l} q u_I dx + \frac{1}{2} c u_I^2(0) - F_2 u_I(2l) - F_3 u_{II}(3l)$$
(5.3)

$$\Pi_{a} = \Pi[u_{I}, u_{II}] = -3.76405EFl \tag{5.4}$$

Расчитаем погрешность:

$$\Delta = \left| \frac{\Pi_9 - \Pi_a}{\Pi_a} \right| \cdot 100\% = 2.214\% \tag{5.5}$$

6 Запись разрешающей системы уравнений МКЭ, проведение ее анализа и получение «вручную» решения для перемещений и напряжений

Разрешающую систему МКЭ получим методом равновесия узлов. Для этого составим дискретную модель. За конечный элемент возьмем каждый участок длиной l:

Рисунок 6.1 — Дискретная модель

Разрежем модель на конечные элемнты и узлы:

Рисунок 6.2 — Разбиение дискретной модели на узлы и КЭ

Запишем условие равновесия для і-го КЭ:

$$\frac{EF}{l} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_1^{(i)} \\ u_2^{(i)} \end{Bmatrix} = \begin{Bmatrix} r_1^{(i)} \\ r_2^{(i)} \end{Bmatrix}$$
 (6.1)

или в обычном виде:

$$\begin{cases}
\frac{EF}{l}(u_1^{(i)} - u_2^{(i)}) = r_1^{(i)} \\
\frac{EF}{l}(u_2^{(i)} - u_1^{(i)}) = r_2^{(i)}
\end{cases}$$
(6.2)

Запишем условия равновесия узлов:

$$\begin{cases}
F_{\text{ymp}} + r_1^{(1)} - \frac{ql}{2} = 0 \\
r_2^{(1)} + r_1^{(2)} - ql = 0 \\
r_2^{(2)} + r_1^{(3)} - F_2 - \frac{ql}{2} = 0 \\
r_2^{(3)} - F_3 = 0
\end{cases}$$
(6.3)

Подставим (6.2) в (6.3) и учтем, что $F_{\text{упр}} = c \cdot u_1$:

$$\begin{cases}
cu_1 + \frac{EF}{l}(u_1^{(1)} - u_2^{(1)}) - \frac{ql}{2} = 0 \\
\frac{EF}{l}(u_2^{(1)} - u_1^{(1)}) + \frac{EF}{l}(u_1^{(2)} - u_2^{(2)}) - ql = 0 \\
\frac{EF}{l}(u_2^{(2)} - u_1^{(2)}) + \frac{EF}{l}(u_1^{(3)} - u_2^{(3)}) - F_2 - \frac{ql}{2} = 0 \\
\frac{EF}{l}(u_2^{(3)} - u_1^{(3)}) - F_3 = 0
\end{cases}$$
(6.4)

Объединим все элементы в единую систему. Тогда будут выполняться следующие соотношения:

$$\begin{cases}
 u_1^{(1)} = u_1 \\
 u_2^{(1)} = u_1^{(2)} = u_2 \\
 u_2^{(2)} = u_1^{(3)} = u_3 \\
 u_2^{(3)} = u_4
\end{cases}$$
(6.5)

Подставим (6.5) в (6.4):

$$\begin{cases}
cu_1 + \frac{EF}{l}(u_1 - u_2) - \frac{ql}{2} = 0 \\
\frac{EF}{l}(u_2 - u_1) + \frac{EF}{l}(u_2 - u_3) - ql = 0 \\
\frac{EF}{l}(u_3 - u_2) + \frac{EF}{l}(u_3 - u_4) - F_2 - \frac{ql}{2} = 0 \\
\frac{EF}{l}(u_4 - u_3) - F_3 = 0
\end{cases}$$
(6.6)

Сгруппируем коэффициенты при одинаковых перемещениях и перенесем нагрузку в правую часть:

$$\begin{cases} (c + \frac{EF}{l})u_1 - \frac{EF}{l}u_2 = \frac{ql}{2} \\ -\frac{EF}{l}u_1 + 2\frac{EF}{l}u_2 - \frac{EF}{l}u_3 = ql \\ -\frac{EF}{l}u_2 + 2\frac{EF}{l}u_3 - \frac{EF}{l}u_4 = F_2 + \frac{ql}{2} \\ -\frac{EF}{l}u_3 + \frac{EF}{l}u_4 = F_3 \end{cases}$$

$$(6.7)$$

Запишем (6.7) в матричном виде:

$$\begin{bmatrix} c + \frac{EF}{l} & -\frac{EF}{l} & 0 & 0 \\ -\frac{EF}{l} & 2\frac{EF}{l} & -\frac{EF}{l} & 0 \\ 0 & -\frac{EF}{l} & 2\frac{EF}{l} & -\frac{EF}{l} \\ 0 & 0 & -\frac{EF}{l} & \frac{EF}{l} \end{bmatrix} \cdot \begin{cases} u_1 \\ u_2 \\ u_3 \\ u_4 \end{cases} = \begin{cases} \frac{ql}{2} \\ ql \\ F_2 + \frac{ql}{2} \\ F_3 \end{cases}$$
 (6.8)

Разделим (6.8) на $\frac{EF}{l}$ учитывая (0.1):

$$\begin{bmatrix} 8 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} \frac{l}{2} \\ l \\ l \\ 0.2l \end{bmatrix}$$

$$(6.9)$$

Искать решения для системы (6.9) будем методом Крамера:

$$u_i = \frac{\Delta_i}{\Delta} \tag{6.10}$$

$$\Delta = \begin{vmatrix}
8 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{vmatrix} = 8 \cdot \begin{vmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{vmatrix} + 1 \cdot \begin{vmatrix}
-1 & -1 & 0 \\
0 & 2 & -1 \\
0 & -1 & 1
\end{vmatrix} = (6.11)$$

$$= 8 \cdot [2 \cdot (2-1) + 1(-1)] + (-1)(2-1) + 1 \cdot 0 = 8 - 1 = 7$$

$$\Delta_{1} = \begin{vmatrix} \frac{l}{2} & -1 & 0 & 0 \\ l & 2 & -1 & 0 \\ l & -1 & 2 & -1 \\ 0.2l & 0 & -1 & 1 \end{vmatrix} = \frac{l}{2} [2 \cdot (2-1) + 1 \cdot (-1)] + 1 \cdot [l \cdot (2-1) + 1 \cdot (l+0.2l)] =$$

$$(6.12)$$

= 0.5l + 2.2l = 2.7l

$$\Delta_2 = \begin{vmatrix} 8 & \frac{l}{2} & 0 & 0 \\ -1 & l & -1 & 0 \\ 0 & l & 2 & -1 \\ 0 & 0.2l & -1 & 1 \end{vmatrix} = 8 \cdot [l \cdot (2-1) + 1 \cdot (l+0.2l)] - 0.5l \cdot [-1 \cdot (2-1) + 1 \cdot (0)] =$$

 $= 8 \cdot (l+1.2l) - 0.5l \cdot (-1) = 18.1l$

(6.13)

$$\Delta_{3} = \begin{vmatrix} 8 & -1 & \frac{l}{2} & 0 \\ -1 & 2 & l & 0 \\ 0 & -1 & l & -1 \\ 0 & 0 & 0.2l & 1 \end{vmatrix} = -0.2l \cdot [1 \cdot 0 - 1 \cdot (8 \cdot 2 - 1)] + 1 \cdot [1 \cdot (8l + 0.5l) + l \cdot (8 \cdot 2 - 1)] = 0$$

 $= -0.2l \cdot (-15) + 8.5l + 15l = 26.5l$

(6.14)

$$\Delta_4 = \begin{vmatrix} 8 & -1 & 0 & \frac{l}{2} \\ -1 & 2 & -1 & l \\ 0 & -1 & 2 & l \\ 0 & 0 & -1 & 0.2l \end{vmatrix} = 1 \cdot [1 \cdot (8l + 0.5l) + l \cdot (8 \cdot 2 - 1)] + 0.2l \cdot [1 \cdot (-8) + 2 \cdot (8 \cdot 2 - 1)] = 0$$

 $= 8.5l + 15l + 0.2l \cdot 22 = 27.9l$

(6.15)

$$\begin{cases} u_1 = \frac{\Delta_1}{\Delta} = 0.386l = 0.193 \text{ M} \\ u_2 = \frac{\Delta_2}{\Delta} = 2.59l = 1.295 \text{ M} \\ u_3 = \frac{\Delta_3}{\Delta} = 3.786l = 1.893 \text{ M} \\ u_4 = \frac{\Delta_4}{\Delta} = 3.986l = 1.993 \text{ M} \end{cases}$$

$$(6.16)$$

Напряжения вычислим по закону Гука:

$$\sigma_i = E\varepsilon_i = E \cdot \frac{u_2^{(i)} - u_1^{(i)}}{I} \tag{6.17}$$

$$\begin{cases} \sigma_1 = E \frac{u_2 - u_1}{l} = 2.2E = 1.608 \cdot 10^{11} \text{ }\Pi\text{a} \\ \sigma_2 = E \frac{u_3 - u_2}{l} = 1.2E = 8.772 \cdot 10^{10} \text{ }\Pi\text{a} \\ \sigma_3 = E \frac{u_4 - u_3}{l} = 0.2E = 1.462 \cdot 10^{10} \text{ }\Pi\text{a} \end{cases}$$

$$(6.18)$$

- 7 Расчет заданной конструкции с использованием пакета MSC Patran_Nastran
- 8 Сравнительный анализ результатов, полученных методами, использованными в работе