复合函数极限

考虑 $g\colon A\to B, \ f\colon B\to C, \ \mathrm{range}(g)\subseteq B=\mathrm{dom}(f),$ 意味着 $f\circ g$ 是有意义的. 若 $\lim_{x\to a}g(x)=b, \ \lim_{y\to b}f(y)=L,$ 在满足下列任一条件时:

- 1. f 在 b 连续
- 2. g 在定义域内 a 附近 (不包括 a) 取不到极限值 b
- 3. $b = \infty$

复合函数的极限存在且:

$$\lim_{x \to a} f(g(x)) = L.$$

注 从证明过程中可看出,除了两极限都取最弱条件时 $\lim g(x) = \pm \infty$, $\lim_{y \to +\infty} f(y) = L$ 无法进行复合,其余三种情况均可按照上述方式复合:

- $(\mathfrak{P}, \mathfrak{P}) \lim g(x) = \pm \infty, \lim_{y \to \pm \infty} f(y) = L$
- $(\mathfrak{A}, \mathfrak{B}) \lim g(x) = +\infty, \lim_{y \to +\infty} f(y) = L$
- $(\mathfrak{A}, \mathfrak{A}) \lim g(x) = +\infty, \lim_{y \to \pm \infty} f(y) = L$

证明. (1) $\lim_{y \to b} f(x) = L$ 意味着 $\forall \varepsilon \exists \delta, (\forall y \in B \colon 0 < d(y,b) < \delta),$ 有 $d(f(x),L) < \varepsilon$.

(2) $\lim_{x\to a} g(x) = b$ 则对于 (1) 中的 δ , $\exists \delta'$, $(\forall x \in A: 0 < d(x,a) < \delta'$, 有 $d(g(x),b) < \delta$. 要将 (2) 和 (1) 连接起来, 矛盾在于 (2) 中 $d(g(x),b) < \delta$ 不是去心邻域, 而 (1) 中 $0 < d(y,b) < \delta$ 要求去心邻域.

(第一种条件) 若 f 在 b 连续, $\lim_{y\to b}f(y)=f(b)=L$, 意味着 (1) 中 $0< d(y,b)<\delta$ 的条件可以改写为 $d(y,b)<\delta$, 而已经有 $d\big(g(x),b\big)<\delta$, 于是 $d\Big(f\big(g(x)\big),L\Big)<\varepsilon$.

(第二种条件) 若 g 在 a 的一个去心邻域内取不到 b, 故 (2) 中的 $d\big(g(x),b\big) < \delta$ 可以 变为 $0 < d\big(g(x),b\big) < \delta$, 由 $(1),d\big(f\big(g(x)\big),L\big) < \epsilon$.

(第三种条件) 若 $b = \infty$, 根据定义, (2) 中最后为 $|g(x)| > \delta$, (1) 中有对应的条件 $|y| > \delta$. 故无需其它条件.

前两种条件下的证明可以直接推广到任意度量空间, 而第三个条件 (b 为无穷大) 只适用于 \mathbb{R} .