

تمرین سری هفتم درس پردازش تصویر

نام مدرس: دکتر محمدی دستیار آموزشی مرتبط: ثمین حیدریان

مهلت تحویل: ۴ دی

ا- هیستوگرام الگوهای دودویی محلی LBP_8^1 (نسخه یکنواخت و مستقل از چرخش) را برای دو تصویر زیر به صورت جداگانه محاسبه و مقایسه کنید (در صورت نیاز برای حاشیه تصویر از حالت reflect استفاده کنید).

١٣	۱۳	۱۳	١٣	١٣	١٣	77	77
١٣	۱۳	۱۳	١٣	١٣	١٣	77	77
١٣	١٣	۱۳	١٣	١٣	١٣	77	77
١٣	١٣	۱۳	١٣	١٣	١٣	77	77
١٣	١٣	۱۳	١٣	١٣	١٣	77	77
١٣	۱۳	۱۳	١٣	۱۳	١٣	77	77
١٣	۱۳	۱۳	١٣	۱۳	١٣	77	77
١٣	۱۳	۱۳	١٣	١٣	١٣	77	77

٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣
٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣
٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣
٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣
٨۵	۸۵	۸۵	۸۵	٨۵	۸۵	۸۵	۸۵
	٨۵						
۸۵		۸۵	۸۵	۸۵	۸۵	۸۵	۸۵

- ۲- تابع ضرر Cross Entropy یکی از توابع ضرر مناسب برای مسائل دستهبندی است. برای آشنایی بیشتر با توابع ضرر و توابع فعالسازی
 ۷- تابع ضرر و توابع فعالسازی در مسائل دستهبندی، این لینک را مطالعه کرده و سپس به سوالات زیر پاسخ دهید:
 - الف) این تابع (Cross Entropy) برای چه نوع مسائل دستهبندیای مناسب است؟
 - ب) کمترین مقدار این تابع چه مقداری است؟ این مقدار مربوط به چه حالتی از خروجی شبکه است؟
 - ج) بیشترین مقدار این تابع چه مقداری است (در حالت حدی)؟ این مقدار مربوط به چه حالتی از خروجی شبکه است؟
- د) مقدار اولیه این تابع در ابتدای آموزش شبکه چه مقداری است؟ فرض کنید تعداد کلاسها (برچسبهای صحیح) برابر با c است و مقادیر امتیاز این کلاسها نزدیک به یکدیگر هستند.

تمرین سری هفتم درس پردازش تصویر

نام مدرس: دکتر محمدی

دستيار آموزشي مرتبط: ثمين حيدريان

مهلت تحویل: ۴ دی

ŷ	$\operatorname{Softmax}(\hat{y})$	y	Cross Entropy Loss
[A, B, C, D]		[0, 0, 0, 1]	?
	?	[0, 0, 1, 0]	?
		[0, 1, 0, 0]	?
		[1, 0, 0, 0]	?

٣- لطفاً به سوالات زير پاسخ دهيد:

الف) تعداد پارامترهای شبکه زیر را محاسبه کنید (محاسبات خود را برای هر لایه به طور دقیق یادداشت کنید).

```
model = Sequential()
model.add(Input(shape=(500, 7)))
model.add(Conv1D(filters=16, kernel_size=3, activation="relu"))
model.add(MaxPool1D())
model.add(Conv1D(filters=32, kernel_size=5, activation="relu"))
model.add(MaxPool1D())
model.add(Conv1D(filters=64, kernel_size=5, activation="relu"))
model.add(MaxPool1D())
model.add(MaxPool1D())
model.add(Flatten())
model.add(Dense(units=128, activation="relu"))
model.add(Dense(units=5, activation="softmax"))
```

ب) لایه کانولوشنال دوبعدی (Conv2D) و سهبعدی (Conv3D) را مقایسه کرده و کاربرد لایه Conv3D را ذکر کنید (امتیازی).

- *- در این سوال قصد داریم دادگان تومور مغزی را دستهبندی کنیم. لطفا موارد خواسته شده در نوتبوک DIP_Q4.ipynb را پیادهسازی فرمایید. اهداف این سوال به ترتیب موارد زیر میباشد:
 - خواندن تصاویر دادگان که در یک مسیر مشخص قرار داده شدهاند و استفاده از آنها برای آموزش و ارزیابی شبکه.
 - ساختن یک شبکه عصبی کانولوشنال با معماری یکسان با Sequential API و Functional API

تمرین سری هفتم درس پردازش تصویر

نام مدرس: دکتر محمدی

دستيار آموزشي مرتبط: ثمين حيدريان

مهلت تحویل: ۴ دی

۵- در این سوال قصد داریم دادگان علائم راهنماییورانندگی را با یک شبکه عصبی کانولوشنال باقیمانده (ResNet) دستهبندی کنیم. لطفا
 موارد خواسته شده در نوتبوک DIP_Q5.ipynb را پیادهسازی فرمایید.

اهداف این سوال به ترتیب موارد زیر میباشد:

- کار کردن با دادگان به فرمت pickle.
- پیادهسازی یک شبکه ResNet از ابتدا.

نكات تكميلي:

- ۱. لطفاً پاسخ سوالات (تئوری و توضیحات پیادهسازی) را به طور گویا و به زبان فارسی و در صورت امکان تایپ همراه با سورس کدهای نوشته شده، فقط در یک فایل فشرده شده به شکل HW7_YourStudentID.zip قرار داده و بارگذاری نمایید.
 - ۲. منابع استفاده شده را به طور دقیق ذکر کنید.
 - ۳. برای سهولت در پیادهسازیها و منابع بیشتر، زبان پایتون پیشنهاد میشود. لطفا کدهای مربوطه را در فرمت ipynb. ارسال نمایید.
 - ۴. ارزیابی تمرینها براساس صحیح بودن راه حلها، گزارش مناسب، بهینه بودن کدها و کپی نبودن میباشد.
- ۵. در مجموع تمام تمرینها، تنها ۱۲۰ ساعت تاخیر در ارسال پاسخها مجاز است اما پس از آن به صورت خطی از نمره شما کسر خواهد شد
 (معادل با روزی ۵۰ درصد).
 - ۶. برای تحویل این تمرین تا روز شنبه ۱۱ دی امکان ارسال وجود دارد.
- ۷. اگر دانشجویی تمرین را زودتر از موعد ارسال کند و ۷۵ درصد نمره را کسب کند، زمان اضافه به ساعات مجاز تاخیر دانشجو اضافه می گردد.
 - ۸. تمرینها باید به صورت انفرادی انجام شوند و حل گروهی تمرین مجاز نیست.
 - ۹. پرسش و پاسخ در رابطه با تمرینها را میتوانید در گروه مربوطه مطرح کنید.

موفق و سربلند باشید