台北市立松山高級中學 104 學年度第一學期數學科 一年級期末考試題卷

班級:_____ 姓名:_____ 座號:_____

一、是非題: (共20分,每題2分)

- 1. 若a為正數, $f(x) = a^x$ 必為嚴格遞增函數或是嚴格遞減函數。
- 2. 設a,b,c 為正數,若 $a^b > a^c$ 則b > c 。
- 3. 若1 < a < b 及0 < x < 1,則 $log_a x > log_b x$ 。
- 4. 設a,b,c 為正數,且 $a \neq 1$,若 $log_ab > log_ac$,則b > c。
- 5. 若 $2^a = \sqrt[3]{9}$ 及 $b = log_83$, 則a > b 。
- 6. $若f(x) = \frac{4^x}{4^x+2}$,則f(a) + f(1-a) = 1 。
- 7. 若a,b,c 為正數,且 $b \neq 1$,則 $a^{log_bc} = c^{log_ba}$ 。
- 8. 若a 為正數 ,若 $log_{10}a = -2.789$,則a 在小數點第 2 位開始不出現 0 的數字及尾數為 0.789 。
- 9. 若函數 $f(x) = log_a b$,則對於所有的 $x_1, x_2 \triangle f(x)$ 的定義域,f(x)滿足 $\frac{1}{2} (f(x_1) + f(x_2)) \ge f\left(\frac{x_1 + x_2}{2}\right)$ 。
- 10. 設a 為正數, log_{10} a 與 $log_{10}\frac{1}{a}$ 的首數和為 -1 。

- 二、複選題(共15分,每題5分,錯一個選項給3分,錯二個選項給1分,錯三個 選項以上不給分)
- 1. 下列哪一個圖形與直線 y = x 恰交於一點?

(A)
$$y = 2^x$$
 (B) $y = -2^x$ (C) $y = 2^{-x}$ (D) $y = log_2 x$ (E) $y = log_{\frac{1}{2}} x$

- 2. 如下圖已知 $y = log_a x$ 及 $y = log_a x$ 分別與 $y = log_b x$ 及 $y = log_c x$ 對稱於 x 軸,則下列何者正確?
- (A) $a \cdot b > c \cdot d$ (B) a > 2 b
- (C) b > a > d > c (D) a + b + c + d > 4
- (E) $a \cdot b \cdot c \cdot d = 1$

為 15 位數 (B) x 為 16 位數 (C) x的首位數字 3 (D) x的首位數字 4 (E) $\frac{1}{x}$ 化為 小數後,在小數點後第15位始出現不為0的數字

三、填充題: (佔65分)

第一部分(每格5分,共25分)

$$2.\cancel{x}\sqrt{\frac{4\cdot\sqrt[3]{4}}{3}}\times(\frac{81}{64})^{-0.25}\times\sqrt[6]{\frac{2}{27}}=$$
 (2)

3.化 簡
$$\left(log_2 5 + \frac{1}{3}log_2 0.2\right) \left(log_{125} 0.5 + log_5 2\right) =$$
 (3)

4.化 簡
$$log_8(\sqrt{7 + \sqrt{40}} - \sqrt{7 - \sqrt{40}}) =$$
 (4)

5.
$$\aleph 8^{(\log_2 3)} + 9^{(\frac{\log_5 8}{\log_5 3})} - 89 = (3^x + 3^{-x}) \ \Re x = \underline{\qquad (5)}$$

第二部分(每格5分,共40分)

1. 方程式
$$(\frac{1}{2})^x = \log_2 x$$
, $(\frac{1}{2})^x = \log_{\frac{1}{2}} x$, $(2)^x = \log_{\frac{1}{2}} x$ 的解依序為 $x = a, x = b, x = c$,求 a, b, c 大小關係為_____。

2. 設
$$a,b,c \in \mathbb{R}$$
 且 $abc \neq 0$,若 $8^a = 27^b = \sqrt[3]{6^c}$, 求 $\frac{ac+bc}{ab} =$ _______。

3. 設
$$f(x) = \frac{3^x + 3^{-x}}{3^x - 3^{-x}}$$
, $x \in \mathcal{R}$ 且 $x \neq 0$,若 $f(a) = 9$, $f(b) = 8$,求 $f(a + b) = (C)$ 。

- 4. 流言傳播數度極快,某位數學老師調查松山高中傳播方式,得到一個式子 $N=M(1-9^{-0.3d})$,其中M代表松高的總人數,N爲流言傳播了d天後聽過這流言的人數,根據這個式子,試問一則流言開始傳播至少 (D) (取整數)天,就會有超過90%的松高人聽過 $(log_{10}3=0.4771)$ 。
- 5. $log_{10}A$ 的首數與尾數恰為 $2x^2+5x+k=0$ 的兩根,求k=________。
- 6. $\log_{\frac{1}{2}}(\log_3(3x-1)) > -1$, 求x的範圍爲_____。
- 7. 方程式 $(log_{10}5x)(log_{10}3x)=10$ 之兩根為 α,β ,則 $\alpha \times \beta=$ (G) 。
- 8. 小華在銀行存款 10000 元,其存款的年利率為 12%,若每個月為一期,採用複利計息,求至少 (H) (取整數)年後本利和會超過 20000 元(log₁₀2 = 0.3010)。

N	0	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1582	1614	1644	1673	1703	1732

台北市立松山高級中學 104 學年度第一學期數學科 一年級期末考答案卷

一、是非題: (共20分,每題2分)

1	2	3	4	5
X	X	X	X	O
6	7	8	9	10
О	О	X	X	X

二、複選題(共15分,每題5分,錯一個選項給3分,錯二個選項給1分,錯三個 選項以上不給分)

1	2	3
BCE	ABCDE	ВС

三、填充題: (佔65分)

第一部分(每格5分,共25分)

1	2	3	4	5
36	<u>8</u> 9	$\frac{4}{9}$	$\frac{1}{2}$	0

第二部分(每格5分,共40分)

(A)	(B)	(C)	(D)
a > b > c	9	$\frac{73}{17}$	4
(E)	(F)	(G)	(H)
-3	$\frac{2}{3} < x < \frac{10}{3}$	$\frac{1}{15}$	6