Math 230B Notes

SPRING, 2025

Contents

1	Differentiation	•
	1.1 The Derivative of a Function	

Chapter 1

Differentiation

1.1 The Derivative of a Function

Definition 1.1.1. (Differentiability and the Derivative) Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$, and $c \in I$.

(i) We say f is differentiable at c if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists (that is, it equals a real number). In this case, the quantity $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ is called the derivative of f at c and is denoted by

 $f'(c), \frac{df}{dx}(c), \frac{df}{dx}|_{x=c}$

(ii) If $f: I \to \mathbb{R}$ is differentiable at every point $c \in I$, we say f is differentiable (on I).

Remark. Note that

$$f'(c) = L \iff \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = L$$

$$\iff \forall \epsilon > 0 \; \exists \delta > 0 \text{ such that if } 0 < |x - c| < \delta, \text{ then } \left| \frac{f(x) - f(c)}{x - c} - L \right| < \epsilon$$

$$\iff \forall \epsilon > 0 \; \exists \delta > 0 \text{ such that if } 0 < |h < \delta, \text{ then } \left| \frac{f(c + h) - f(c)}{h} - L \right| < \epsilon \quad \text{(Let } h = x - c)$$

$$\iff \lim_{h \to 0} \frac{f(c + h) - f(c)}{h} = L$$

Remark. Let A denote the collection of all points at which $f:I\to\mathbb{R}$ is differentiable. If $A\neq\emptyset$, the function $f':A\to\mathbb{R}$ defined by

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \quad \forall c \in A$$

is called the derivative of f.

Example 1.1.1. Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be given by $f(x) = x^2$. Prove that f is differentiable on I and find the derivative.

Proof. $\forall c \in I$,

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x^2 - c^2}{x - c}$$

$$= \lim_{x \to c} x + c$$

$$= 2c \qquad (is continuous)$$

So, $\forall c \in I \quad f'(c) = 2c$. Hence,

$$f': I \to \mathbb{R}, \quad f'(x) = 2x.$$

Example 1.1.2. Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be given by $f(x) = x^n$ where $n \in \mathbb{N}, n \geq 3$. Prove that f is differentiable on I and find the derivative.

Proof.

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x^n - c^n}{x - c}$$

$$= \lim_{x \to c} \frac{(x - c)(x^{n-1} + cx^{n-2} + \dots + c^{n-1})}{x - c}$$

$$= \lim_{x \to c} \left[x^{n-1} + cx^{n-1} + \dots + c^{n-1} \right]$$

$$= c^{n-1} + c \cdot c^{n-2} + \dots + c^{n-1}$$

$$= n \cdot c^{n-1}$$
(Continuity)
$$= n \cdot c^{n-1}$$

So, $\forall c \in I \ f'(c) = n \cdot c^{n-1}$. Hence,

$$f': I \to \mathbb{R}, \quad f'(x) = nx^{n-1}.$$

Example 1.1.3. Prove that $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| is not differentiable at c = 0.

Proof. We need to show that $\lim_{x\to c} \frac{f(x)-f(0)}{x-0}$ does not exist. Note that

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x| - |0|}{x - 0} = \frac{|x|}{x}$$

Let $g(x) = \frac{|x|}{x}$. We want to show $\lim_{x\to 0} g(x)$ does not exist. By the sequential criterion for limits of functions, it is enough to find two sequences (a_n) and (b_n) in $\mathbb{R}\setminus\{0\}$ such that $a_n\to 0$ and $b_n\to 0$, but $\lim g(a_n)\neq \lim g(b_n)$. Let $a_n=-\frac{1}{n}$ and $b_n=\frac{1}{n}$. Clearly, $a_n\to 0$ and $b_n\to 0$. However,

$$\lim_{n \to \infty} g(a_n) = \lim_{n \to \infty} \frac{|a_n|}{a_n} = \lim_{n \to \infty} \frac{|-1/n|}{-1/n} = \lim_{n \to \infty} (-1) = -1$$

$$\lim_{n \to \infty} g(b_n) = \lim_{n \to \infty} \frac{|b_n|}{b_n} = \lim_{n \to \infty} \frac{|1/n|}{1/n} = \lim_{n \to \infty} (1) = 1$$

Theorem 1.1.1. (Differentiable \implies Continuous)

Let $I \subseteq \mathbb{R}$ be an interval, $c \in I$, and $f: I \to \mathbb{R}$ be differentiable at c. Then f is continuous at c.

Proof. It is enough to show that $\lim_{x\to c} f(x) = f(c)$ (an interval doesn't have an isolated point). Note that

$$\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} (x - c) \right]$$

$$= \left[\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \right] \left[\lim_{x \to c} (x - c) \right]$$
(ALT for Functions)
$$= f'(c) \cdot 0 = 0.$$

So,

$$\lim_{x \to c} f(x) = \lim_{x \to c} [f(x) - f(c) + f(c)]$$

$$= \lim_{x \to c} [f(x) - f(c)] + \lim_{x \to c} f(c)$$

$$= 0 + f(c)$$

$$= f(c).$$

Corollary 1.1.1. If $f: I \to \mathbb{R}$ is not continuous at $c \in I$, then f is not differentiable at c.

Example 1.1.4. Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$.

- (i) Prove f is continuous at 0.
- (ii) Prove f is discontinuous at all $x \neq 0$.
- (iii) Prove that f is nondifferentiable at all $x \neq 0$.
- (iv) Prove that f'(0) = 0.

Proof. (i) We need to show that

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \text{such that if} \ |x - 0| < \delta \ \text{then} \ |f(x) - f(0)| < \epsilon$$

Let $\epsilon > 0$ be given. Our goal is to find $\delta > 0$ such that

if
$$|x| < \delta$$
 then $|f(x)| < \epsilon$ (*)

Informal Discussion

Note that

Case 1: if $x \notin \mathbb{Q}$ then $|f(x)| = |0| < \epsilon$

Case 2: if $x \in \mathbb{Q}$ then $|f(x)| = |x^2| = |x|^2$

So, we want to find δ such that if $|x| < \delta$, then $|x|^2 < \epsilon$. Clearly, $\delta = \sqrt{\epsilon}$ works.

We claim that (*) holds with $\delta = \sqrt{\epsilon}$. See the discussion.

(ii) Let $c \neq 0$. Our goal is to show f is discontinuous at c. By the sequential criterion for continuity, it is enough to find a sequence (a_n) such that $a_n \to c$ but $f(a_n) \not\to f(c)$. We proceed by two cases:

Case 1: $c \notin \mathbb{Q}$

 \mathbb{Q} is dense in \mathbb{R} , so there exists a sequence of rational numbers (r_n) such that $r_n \to c$. We have

$$\begin{cases} f(r_n) = r_n^2 \ \forall n \\ f(c) = 0 \end{cases} \implies f(r_n) \not\rightarrow f(c)$$

$$r_n \to c$$
 $f(r_n) \not\to f(c)$ $\Longrightarrow f$ is discontinuous at c .

- (iii) Let $c \neq 0$. By (ii), f is not continuous at c. Therefore, f is not differentiable at c.
- (iv) We need to show $\lim_{x\to c} \frac{f(x)-f(0)}{x-0} = 0$. Note that

$$\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x}.$$

Our goal is to show:

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \text{such that if} \ 0 < |x - 0| < \delta \ \text{then} \ \left| \frac{f(x)}{x} - 0 \right| < \epsilon.$$

Let $\epsilon > 0$ be given. Our goal is to find $\delta > 0$ such that

if
$$0 < |x| < \delta$$
, then $\left| \frac{f(x)}{x} - 0 \right| < \epsilon$ (*)

We claim that (*) holds with $\delta = \epsilon$ (or any postive number less than ϵ). Indeed, if $x \in \mathbb{R}$ such that $0 < |x| < \delta = \epsilon$, then

Case 1:
$$x \notin \mathbb{Q}$$

$$\left| \frac{f(x)}{x} \right| = \left| \frac{0}{x} \right| = 0 < \epsilon.$$

Case 2: $x \in \mathbb{Q}$

$$\left| \frac{f(x)}{x} \right| = \left| \frac{x^2}{x} \right| = |x| < \delta = \epsilon.$$

Theorem 1.1.2. (Algebraic Differentiability Theorem)

Assume $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are differentiable at $c \in I$. Then

(i) $\forall k \in \mathbb{R}, kf$ is differentiable at c and

$$(kf)'(c) = k \cdot f'(x)$$

(ii) f + g is differentiable at c and

$$(f+g)'(c) = f'(c) + g'(c)$$

(iii) fg is differentiable at c and

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c)$$

(iv) $\frac{f}{g}$ is differentiable at c (provided $g(c) \neq 0$) and

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{[g(c)]^2}$$

Proof. Here, we will prove (ii) and (iii).

(ii)

$$\lim_{x \to c} \frac{(f+g)(x) - (f+g)(c)}{x - c} = \lim_{x \to c} \frac{f(x) + g(x) - f(c) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} \frac{g(x) - g(c)}{x - c}$$

$$= f'(c) + g'(c).$$

So, f + g is differentiable at c, and (f + g)'(c) = f'(c) + g'(c).

(iiii)

$$\lim_{x \to c} \frac{(fg)(x) - (fg)(c)}{x - c} = \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x) + f(c)g(x) - f(c)g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{(f(x) - f(c))g(x) + f(c)(g(x) - g(c))}{x - c}$$

$$= \left[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\right] \left[\lim_{x \to c} g(x)\right] + \left[\lim_{x \to c} f(c)\right] \left[\lim_{x \to c} \frac{g(x) - g(c)}{x - c}\right]$$

$$= f'(c) \cdot g(c) + f(c) \cdot g'(c)$$

Thus fg is differentiable at c, and (fg)'(c) = f'(c)g(c) + f(c)g'(c).

Theorem 1.1.3. (Chain Rule)

Let $I_1 \subseteq \mathbb{R}$ and $I_2 \subseteq \mathbb{R}$ be two intervals. Suppose $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$ such that $f(I_1)$ is contained in I_2 , f is differentiable at $c \in I_2$, and g is differentiable at $f(c) \in I_2$. Then the function $g \circ f: I_1 \to \mathbb{R}$ is differentiable at $c \in I_1$, and

$$(g \circ f)'(c) = g'(f(c)) \cdot f'(c).$$

Informal Discussion

The following is an incorrect proof of the theorem:

$$\lim_{x \to c} \frac{(g \circ f)(x) - (g \circ f)(c)}{x - c} = \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c}$$

$$= \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}$$

$$= \left[\lim_{x \to c} \frac{g(f(x)) - g(f(c))}{f(x) - f(c)}\right] \cdot \left[\lim_{x \to c} \lim_{x \to c} \frac{f(x) - f(c)}{x - c}\right]$$

$$= g'(f(c)) \cdot f'(c)$$

This proof fails because even though $x \to c \implies x \neq c$, it's not necessarily the case that $f(x) \to f(c) \implies f(x) \neq f(c)$. I.e., the algebraic limit theorem for functions fails as f(x) - f(c) might be zero. Dividing by f(x) - f(c) is not legitimate. To see why this fails, consider the case when f is a constant function. We instead use the following idea: Replace $\frac{g(f(x)) - g(f(c))}{f(x) - f(c)}$ with a new function d(f(x)) such that

(i)
$$d(f(x)) = \frac{g(f(x)) - g(f(c))}{f(x) - f(c)}$$
 when $f(x) \neq f(c)$

(ii) d(f(x)) is defined even when f(x) = f(c)

(iii)
$$d(f(x)) \cdot \frac{f(x) - f(c)}{x - c} = \frac{g(f(x)) - g(f(c))}{x - c}$$
 for all $x \in I_1, x \neq c$

Proof. Let $d: I_2 \to \mathbb{R}$ be defined by

$$d(y) = \begin{cases} \frac{g(y) - g(f(c))}{y - f(c)} & y \neq f(c) \\ \lim_{y \to f(c)} \frac{g(y) - g(f(c))}{y - f(c)} = g'(f(c)) & y = f(c) \end{cases}$$

Clearly, d satisfies requirements (i) and (ii) from above.

Observation 1: d is continuous at f(c). Indeed,

$$\lim_{y \to f(c)} d(y) = \lim_{y \to f(c)} \frac{g(y) - g(f(c))}{y - f(c)} = d(f(c))$$

Observation 2: For all $x \in I_1$ with $x \neq c$, we have

$$d(f(x)) \cdot \frac{f(x) - f(c)}{x - c} = \frac{g(f(x)) - g(f(c))}{x - c}$$

This is true because

Case 1: $f(x) \neq f(c)$

$$d(f(x)) \cdot \frac{f(x) - f(c)}{x - c} = \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}$$
$$= \frac{g(f(x)) - g(f(c))}{x - c}$$

Case 2: f(x) = f(c)

$$LHS = d(f(x)) \cdot \frac{f(x) - f(c)}{x - c} = d(f(c)) \cdot \frac{f(x) - f(c)}{x - c} = g'(f(c)) \cdot 0 = 0$$

$$RHS = \frac{g(f(x)) - g(f(c))}{x - c} = \frac{g(f(c)) - g(f(c))}{x - c} = 0$$

So,
$$LHS = RHS = 0$$
.

We have,

$$\lim_{x \to c} \frac{(g \circ f)(x) - (g \circ f)(c)}{x - c} = \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c}$$

$$= \lim_{x \to c} \left[d(f(x)) \cdot \frac{f(x) - f(c)}{x - c} \right]$$

$$= \left[\lim_{x \to c} (d \circ f)(x) \right] \cdot \left[\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \right]$$

$$\stackrel{(*)}{=} (d \circ f)(c) \cdot f'(c)$$

$$= d(f(c)) \cdot f'(c)$$

$$= g'(f(c)) \cdot f'(c)$$

So, $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

(*) Note that f is continuous at c and d is continuous at f(c), so by composition of continuous functions we conclude that $d \circ f$ is continuous at c and

$$\lim_{x \to c} (d \circ f)(c) = (d \circ f)(c).$$

Example 1.1.5. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

- (i) Prove that f is differentiable at all $x \neq 0$.
- (ii) Prove that f'(0) = 0
- (iii) Prove that f' is not continuous at 0.

Proof. (i) We have

Indeed, it follows from the algebraic differentiation theorem and the chain rule that

$$(x^{2} \sin \frac{1}{x})' = (x^{2})' \cdot \sin \frac{1}{x} + x^{2} \cdot (\sin \frac{1}{x})'$$
$$= 2x \cdot \sin \frac{1}{x} + x^{2} \left[(\cos \frac{1}{x})(-\frac{1}{x^{2}}) \right]$$
$$= 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$

(ii) Note that f(0) = 0 does not imply f'(0) = 0. When we want to compute f' at any point, in particular at 0, we need to pay attention to the behavior of f in a neighborhood of the point and not just the value of the function at the point. The reason is that f'(c) is defined by taking \lim .

Our goal is to show

$$\lim_{x \to c} \frac{f(x) - f(0)}{x - 0} = 0$$

Note that

$$\frac{f(x) - f(0)}{x - 0} = \frac{x^2 \sin \frac{1}{x} - 0}{x - 0} = x \sin \frac{1}{x}$$

We want to show

$$\lim_{x \to 0} \left(x \sin \frac{1}{x} \right) = 0$$

We have,

$$0 \le \left| x \sin \frac{1}{x} \right| \le |x|$$

$$\lim_{x \to 0} 0 = 0$$

$$\lim_{x \to 0} |x| = |0| = 0$$

$$\Rightarrow \lim_{x \to 0} \left| x \sin \frac{1}{x} \right| = 0$$

Thus $\lim_{x \to 0} x \sin \frac{1}{x} = 0$.

(iii) According to parts (i) and (ii):

$$f': \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

By the sequential criterion for continuity, it is enough to find a sequence (a_n) such that

$$a_n \to 0$$
 but $f'(a_n) \not\to f'(0)$

Let $a_n = \frac{1}{2n\pi}$. Clearly, $a_n \to 0$. However,

$$\lim_{n \to \infty} f'(a_n) = \lim_{n \to \infty} \left[\frac{2}{2n\pi} \sin(2n\pi) - \cos(2n\pi) \right]$$
$$= 0 - 1$$
$$\neq 0.$$