LINGUAGGI E COMPILATORI - ASSIGNMENT 3

Esercizio 1 – Very Busy Expressions)

• Derivare una formalizzazione per il framework di Dataflow Analysis, riempiendo lo specchietto coi parametri adeguati.

	Very Busy Expressions
Domain	Sets of Expressions
Direction	Backward: $IN[B] = f_B(OUT[B])$ $OUT[B] = \land IN[succ(B)]$
Transfer Function	$f_B(OUT[B]) = Use_B \cup (OUT[B] - Reevalutaion_B)$
Meet Operator	Λ
Boundary condition	$IN[Exit] = \emptyset$
Initial Interior Points	$IN[B] = \emptyset$

Dominio: bit vector contenente tante cifre quante sono le diverse espressioni valutate, nel quale un bit di valore:

- 1: indica che l'espressione i-esima è very busy.
- 0: indica che l'espressione i-esima <u>NON</u> è very busy.

Backward: in quanto sono necessarie informazioni riguardo valutazioni "future".

*Use*_B: bit vector di dimensione uguale al vettore del dominio che si riferisce alle medesime espressioni, nel quale un bit di valore:

- 1: indica che l'espressione i-esima è stata "utilizzata" nel blocco B.
- 0: indica che l'espressione i-esima <u>NON</u> è stata "utilizzata" nel blocco B.

 $Reevaluation_B$: bit vector di dimensione uguale al vettore del dominio che si riferisce alle medesime espressioni, nel quale un bit di valore:

- 1: indica che il valore di un operando dell'espressione i-esima è stato modificato nel blocco B.
- 0: indica che il valore di un operando dell'espressione i-esima NON è stato modificato nel blocco B.
- Per il CFG di esempio fornito popolare una tabella con le iterazioni dell'algoritmo iterativo di soluzione del problema.

Bit Vector = \langle a!=b, b-a, a-b \rangle

	Inizializzazione		Iterazione 1	
	IN[B]	OUT[B]	IN[B]	OUT[B]
BB8	< 0 0 0 >	-	< 0 0 0 >	-
BB7	< 0 0 0 >	-	< 0 0 1 >	< 0 0 0 >
BB6	< 0 0 0 >	-	< 0 0 0 >	< 0 0 1 >
BB5	< 0 0 0 >	-	< 0 1 0 >	< 0 0 0 >
BB4	< 0 0 0 >	-	< 0 0 1 >	< 0 0 0 >
BB3	< 0 0 0 >	-	< 0 1 1 >	< 0 0 1 >
BB2	< 0 0 0 >	-	< 110>	< 0 1 0 >
BB1	< 0 0 0 >	-	<110>	<110>

	Use	Reevaluation
BB8	< 0 0 0 >	< 0 0 0 >
BB7	< 0 0 1 >	< 0 0 0 >
BB6	< 0 0 0 >	<111>
BB5	< 0 1 0 >	< 0 0 0 >
BB4	< 0 0 1 >	< 0 0 0 >
BB3	< 0 1 0 >	< 0 0 0 >
BB2	< 1 0 0 >	< 0 0 0 >
BB1	< 0 0 0 >	< 0 0 0 >

Esercizio 2 – Dominator Analysis)

• Derivare una formalizzazione per il framework di Dataflow Analysis, riempiendo lo specchietto coi parametri adeguati.

	Dominator Analysis
Domain	Sets of Basic Blocks
Direction	Forward: $IN[B] = \land OUT[pred(B)]$ $OUT[B] = f_B(IN[B])$
Transfer Function	$f_B(IN[B]) = Self_B \cup IN[B]$
Meet Operator)
Boundary condition	OUT[Entry] = Entry
Initial Interior Points	IN[B] = u = Universal Set

Dominio: bit vector contenente tante cifre quanti sono i Basic Block contenuti nel programma, nel quale l'i-esimo bit di valore:

- 1: indica che il Basic Block i-esimo domina il Basic Block corrente.
- 0: indica che il Basic Block i-esimo <u>NON</u> domina il Basic Block corrente.

 $Self_B$: bit vector contenente tante cifre quanti sono i Basic Block usato per indicare l'auto-dominazione di un blocco:

- Esempio con 5 BB totali: $Self_{BB5} = \langle 0 \ 0 \ 0 \ 1 \rangle$
- Per il CFG di esempio fornito popolare una tabella con le iterazioni dell'algoritmo iterativo di soluzione del problema.

Bit Vector = < A, B, C, D, E, F, G >

	Inizializzazione		Iterazione 1	
	IN[B]	OUT[B]	IN[B]	OUT[B]
A	-	<1000000>	-	<1000000>
В	1	<11111111>	<1000000>	<1100000>
С	1	<11111111>	<1000000>	<1010000>
D	•	<11111111>	<1010000>	<1011000>
Е	-	<11111111>	<1010000>	<1010100>
F	-	<11111111>	<1010000>	<1010010>
G	-	<11111111>	<1000000>	<1000001>

	Dominator
A	{A}
В	{A, B}
С	{A, C}
D	{A, C, D}
E	{A, C, E}
F	{A, C, F}
G	{A, G}

Esercizio 3 – Constant Propagation)

• Derivare una formalizzazione per il framework di Dataflow Analysis, riempiendo lo specchietto coi parametri adeguati.

	Constant Propagation
Domain	Sets of pairs (variable name, value)
Direction	Forward: $IN[B] = \land OUT[pred(B)]$ $OUT[B] = f_B(IN[B])$
Transfer Function	$f_B(IN[B]) = IN[B] - AllDef_B \cup ConstDef_B$
Meet Operator	Ω
Boundary condition	$OUT[Entry] = \emptyset$
Initial Interior Points	$IN[B_i] = \{(var_1,*),, (var_j,*)\};$ For each Basic Block i and for each Variable j

Con * si intende un elemento qualsiasi facente parte dell'insieme universale tale per cui possa fare "match" con qualsiasi altro elemento:

- Esempio: $\{(x, 10), (y, 20)\}$ - $\{(x, *)\}$ = $\{(y, 20)\}$

Dominio: insieme contenente tante coppie **(variabile, valore)** quante sono le diverse variabili definite nel programma.

- Esempio: Se ad un punto **p** del CFG è presente la coppia (**x**, **10**) significa che la variabile **x** è una costante di valore **10** indipendentemente da come il punto **p** venga raggiunto.

*AllDef*_B: insieme contenente le coppie (variabile, *) <u>per ogni singola</u> <u>variabile definita all'interno del blocco B</u>:

- Esempio:

 $ConstDef_B$: insieme contenente le coppie (variabile, costante) <u>per ogni</u> <u>singola variabile definita</u> tramite:

- Assegnamento a costante:
 - Esempio: $x = 10 \rightarrow (x, 10)$
- Operazione binaria con entrambi gli operatori costanti:
 - Esempio: $x = 10 + 20 \rightarrow (x, 30)$
- Operazione binaria con <u>uno</u> o <u>entrambi</u> gli operatori <u>variabili</u> presenti nell'IN[B] con una coppia di **(valore, costante)**:
 - Esempio:

• Per il CFG di esempio fornito popolare una tabella con le iterazioni dell'algoritmo iterativo di soluzione del problema.

	$ConstDef_B$ (basato sulla soluzione finale)
Entry	{}
BB1	{(k, 2)}
BB2	{}
BB3	{(a, 4)}
BB4	$\{(x,5)\}$
BB5	{(a, 4)}
BB6	$\{(x,5)\}$
BB7	$\{(k, 4)\}$
BB8	{}
BB9	{(b, 2)}
BB10	{}
BB11	{(y, 8)}
BB12	{}
BB13	{}
Exit	{}

Iterazione 1

	Inizializzazione		Iterazione 1	
	IN[B]	OUT[B]	IN[B]	OUT[B]
Entry	-	{}	-	8
BB1	•	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{}	{(k,2)}
BB2	•	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,2)}	{(k,2)}
BB3	•	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,2)}	{(k,2),(a,4)}
BB4	-	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,2),(a,4)}	{(k,2), (a,4),(x,5)}
BB5	-	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,2)}	{(k,2),(a,4)}
BB6	-	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,2),(a,4)}	{(k,2),(a,4),(x,8)}
BB7	ı	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,2),(a,4)}	{(k,4),(a,4)}
BB8	•	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,4),(a,4)}	{(k,4),(a,4)}
BB9	•	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,4),(a,4)}	{(k,4),(a,4),(b,2)}
BB10	•	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,4),(a,4),(b,2)}	{(k,4),(a,4),(b,2),(x,8)}
BB11	-	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,4),(a,4),(b,2),(x,8)}	$\{(k,4),(a,4),(b,2),(x,8),(y,8)\}$
BB12	-	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	$\{(k,4),(a,4),(b,2),(x,8),(y,8)\}$	$\{(k,5),(a,4),(b,2),(x,8),(y,8)\}$
BB13	-	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,4),(a,4)}	{(k,4),(a,4)}
Exit	-	$\{(k,*),(a,*),(x,*),(b,*),(y,*)\}$	{(k,4),(a,4)}	{(k,4),(a,4)}

	Iterazione 2	
	IN[B]	OUT[B]
Entry	-	{}
BB1	{}	{(k,2)}
BB2	{(k,2)}	{(k,2)}
BB3	{(k,2)}	{(k,2),(a,4)}
BB4	{(k,2),(a,4)}	$\{(k,2), (a,4), (x,5)\}$
BB5	{(k,2)}	{(k,2),(a,4)}
BB6	{(k,2),(a,4)}	$\{(k,2),(a,4),(x,8)\}$
BB7	{(k,2),(a,4)}	{(k,4),(a,4)}
BB8	{(a,4)}	{(a,4)}
BB9	{(a,4)}	{(a,4),(b,2)}
BB10	{(a,4),(b,2)}	{(a,4),(b,2)}
BB11	{(a,4),(b,2)}	{(a,4),(b,2),(y,8)}
BB12	$\{(a,4),(b,2),(y,8)\}$	{(a,4),(b,2),(y,8)}
BB13	{(a,4)}	{(a,4)}
Exit	{(a,4)}	{(a,4)}

Iterazione 3

Si ha convergenza alla terza iterazione:

	Iterazione 3		
	IN[B]	OUT[B]	
Entry	-	{}	
BB1	{}	{(k,2)}	
BB2	{(k,2)}	{(k,2)}	
BB3	{(k,2)}	$\{(k,2),(a,4)\}$	
BB4	{(k,2),(a,4)}	$\{(k,2), (a,4), (x,5)\}$	
BB5	{(k,2)}	$\{(k,2),(a,4)\}$	
BB6	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,8)\}$	
BB7	{(k,2),(a,4)}	$\{(k,4),(a,4)\}$	
BB8	{(a,4)}	{(a,4)}	
BB9	{(a,4)}	{(a,4),(b,2)}	
BB10	{(a,4),(b,2)}	{(a,4),(b,2)}	
BB11	{(a,4),(b,2)}	$\{(a,4),(b,2),(y,8)\}$	
BB12	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$	
BB13	{(a,4)}	{(a,4)}	
Exit	{(a,4)}	{(a,4)}	