1

ECE 269: Linear Algebra and Applications Fall 2021

Practice Problems

Try to solve the following problems on your own. We will post solutions on Thursday Nov. 18.

- 1) **Problem 1: Orthogonal Projection Matrices.** Let \mathcal{M} and \mathcal{N} be subspaces of \mathbb{C}^n , and consider the associated orthogonal projectors $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$.
 - a) Prove that $P_{\mathcal{M}}P_{\mathcal{N}}=0$ if and only if $\mathcal{M}\perp\mathcal{N}$.
 - b) Is it true that $P_{\mathcal{M}}P_{\mathcal{N}}=0$ if and only if $P_{\mathcal{N}}P_{\mathcal{M}}=0$? Justify
 - c) Show $R(\mathbf{P}_{\mathcal{M}} + \mathbf{P}_{\mathcal{N}}) = R(\mathbf{P}_{\mathcal{M}}) + R(\mathbf{P}_{\mathcal{N}})$
- 2) Problem 2: Orthonormal Basis Expansion and Parseval's Theorem. Suppose we are given a set of orthonormal basis vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N\}$ of an inner product vector space \mathcal{U}
 - a) Let $\mathbf{x} \in \mathcal{U}$, we can find a unique representation of $\mathbf{x} = \sum_{i=1}^{N} \alpha_i \mathbf{u}_i$. Prove

$$||\mathbf{x}||_2^2 = \sum_{i=1}^N |\alpha_i|^2 \tag{1}$$

(Note: This is known as Parseval's identity)

b) Suppose you have a subset of orthonormal vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_s\}$ (where s < N) from the given basis. Show that any vector $\mathbf{v} \in \mathcal{U}$ satisfies

$$||\mathbf{v}||_2^2 \ge \sum_{i=1}^s |\langle \mathbf{v}, \mathbf{u}_i \rangle|^2$$
 (2)

- 3) Problem 3: Range Space perpendicular to Null Spaces. Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ satisfy $\mathbf{A}^H \mathbf{A} = \mathbf{A} \mathbf{A}^H$. Show that $R(\mathbf{A}) \perp N(\mathbf{A})$, i.e, show that for all $\mathbf{x} \in R(\mathbf{A})$, $\mathbf{y} \in N(\mathbf{A})$, $\mathbf{x}^H \mathbf{y} = 0$
- 4) **Problem 4: Householder Reflections.** A Householder matrix is defined as

$$\mathbf{Q} = \mathbf{I} - \mathbf{2}\mathbf{u}\mathbf{u}^T$$

for a unit vector $\mathbf{u} \in \mathbb{R}^n$

- a) Show that Q is orthogonal.
- b) Show that Qu = -u and that Qv = v for every $v \perp u$. Thus, the linear transformation y = Qx reflects x through the hyperplane with normal vector u.
- c) Given y, find x such that y = Qx.
- d) Given nonzero vectors \mathbf{x} and \mathbf{y} , find a unit vector \mathbf{u} such that $(\mathbf{I} 2\mathbf{u}\mathbf{u}^T)\mathbf{x} \in \text{span}(\mathbf{y})$, in terms of \mathbf{x} and \mathbf{y} .

5) **Problem 5: System Identification.** Consider a system whose input x(n) and output y(n) are related by:

$$y(n) = \sum_{k=0}^{L-1} h(k)x(n-k), \quad n = 0, 1, 2, \dots$$
 (3)

Here h(n) is called the impulse response of the system. Suppose you are given an input signal $\overline{x}(n)$ (non-zero for all n) and are able to observe a noisy version $(\overline{y}(n))$ of the output of the system, contaminated with noise w(n), i.e., you observe

$$\overline{y}(n) = \sum_{k=0}^{L-1} h(k)\overline{x}(n-k) + w(n), \quad n = 0, 1, 2, \dots$$
 (4)

Using the idea of orthogonal projection, describe a method to estimate the impulse response h(n) using $\overline{y}(n)$ and $\overline{x}(n)$. In the absence of noise, under what conditions can you exactly identify h(n)? Justify your answer.

6) Problem 6: Variations of Orthogonal Projection

a) Given $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, consider the following problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} ||\mathbf{x} + \mathbf{c}||_2 \tag{5}$$

$$s.t. \mathbf{A}\mathbf{x} = \mathbf{b} \tag{6}$$

Cast it as an orthogonal projection problem. Identify the subspace you are projecting on? What is the point being projected?

b) Given $\mathbf{x}_0 \in \mathbb{R}^n$, $\mathbf{a} \in \mathbb{R}^n$, $b \in \mathbb{R}$, solve the following problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} ||\mathbf{x}_0 - \mathbf{x}||_2 \tag{7}$$

$$s.t \mathbf{a}^T \mathbf{x} = b \tag{8}$$

Derive the solution in closed form.