Formal Methods in Software Developement Propositional Logic - refresher

Mădălina Erașcu

West University of Timișoara Faculty of Mathematics and Informatics

Based on slides of the lecture Satisfiability Checking (Erika Ábrahám), RTWH Aachen

October 5, 2018

Propositional logic

The slides are partly taken from:

www.decision-procedures.org/slides/

Propositional logic - Outline

- Syntax of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- Normal forms
- Enumeration and deduction

Propositional logic - Outline

- Syntax of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- Normal forms
- Enumeration and deduction

Abstract syntax of well-formed propositional formulae:

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

$$\perp$$
 := $(a \land \neg a)$

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

$$\begin{array}{ccc} \bot & & := (a \land \neg a) \\ \top & & := \end{array}$$

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

$$\perp := (a \land \neg a)$$

$$\vdash := (a \lor \neg a)$$

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

```
\begin{array}{ccc} & \bot & := (a \land \neg a) \\ & \top & := (a \lor \neg a) \\ ( & \varphi_1 & \lor & \varphi_2 & ) := \end{array}
```

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

```
\begin{array}{ccc} & \bot & := (a \land \neg a) \\ & \top & := (a \lor \neg a) \\ ( & \varphi_1 & \lor & \varphi_2 & ) := \neg((\neg \varphi_1) \land (\neg \varphi_2)) \end{array}
```

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

```
 \begin{array}{ccc} \bot & := (a \land \neg a) \\ \top & := (a \lor \neg a) \\ ( \varphi_1 & \lor & \varphi_2 &) := \neg((\neg \varphi_1) \land (\neg \varphi_2)) \\ ( \varphi_1 & \to & \varphi_2 &) := \end{array}
```

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

```
 \begin{array}{ccc} \bot & := (a \land \neg a) \\ \top & := (a \lor \neg a) \\ ( \varphi_1 & \lor & \varphi_2 &) := \neg((\neg \varphi_1) \land (\neg \varphi_2)) \\ ( \varphi_1 & \to & \varphi_2 &) := ((\neg \varphi_1) \lor \varphi_2) \end{array}
```

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

```
\begin{array}{ccc}
 & \bot & := (a \land \neg a) \\
 & \top & := (a \lor \neg a) \\
( \varphi_1 & \lor & \varphi_2 &) := \neg((\neg \varphi_1) \land (\neg \varphi_2)) \\
( \varphi_1 & \to & \varphi_2 &) := ((\neg \varphi_1) \lor \varphi_2) \\
( \varphi_1 & \leftrightarrow & \varphi_2 &) :=
\end{array}
```

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

```
 \begin{array}{cccc} \bot & := (a \wedge \neg a) \\ \top & := (a \vee \neg a) \\ \\ (\varphi_1 & \vee & \varphi_2 &) := \neg((\neg \varphi_1) \wedge (\neg \varphi_2)) \\ (\varphi_1 & \to & \varphi_2 &) := ((\neg \varphi_1) \vee \varphi_2) \\ (\varphi_1 & \leftrightarrow & \varphi_2 &) := ((\varphi_1 \to \varphi_2) \wedge (\varphi_2 \to \varphi_1)) \end{array}
```

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

```
 \begin{array}{cccc} & \bot & & := (a \land \neg a) \\ & \top & & := (a \lor \neg a) \\ (& \varphi_1 & \lor & \varphi_2 &) := \neg((\neg \varphi_1) \land (\neg \varphi_2)) \\ (& \varphi_1 & \to & \varphi_2 &) := ((\neg \varphi_1) \lor \varphi_2) \\ (& \varphi_1 & \leftrightarrow & \varphi_2 &) := ((\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1)) \\ (& \varphi_1 & \bigoplus & \varphi_2 &) := \end{array}
```

Abstract syntax of well-formed propositional formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

Let AP is a set of (atomic) propositions (Boolean variables). Then $a \in AP$. We write PropForm for the set of all propositional logic formulae.

```
 \begin{array}{cccc} & \bot & := (a \land \neg a) \\ & \top & := (a \lor \neg a) \\ \hline ( & \varphi_1 & \lor & \varphi_2 & ) := \neg((\neg \varphi_1) \land (\neg \varphi_2)) \\ ( & \varphi_1 & \to & \varphi_2 & ) := ((\neg \varphi_1) \lor \varphi_2) \\ ( & \varphi_1 & \leftrightarrow & \varphi_2 & ) := ((\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1)) \\ ( & \varphi_1 & \bigoplus & \varphi_2 & ) := (\varphi_1 \leftrightarrow (\neg \varphi_2)) \\ \end{array}
```

Formulae

- Examples of well-formed formulae:
 - (¬a)
 - $(\neg(\neg a))$
 - \bullet $(a \land (b \land c))$

Formulae

- Examples of well-formed formulae:
 - \blacksquare $(\neg a)$
 - $(\neg(\neg a))$
 - \bullet $(a \land (b \land c))$
 - $(a \rightarrow (b \rightarrow c))$
- We omit parentheses whenever we may restore them through operator precedence:

binds stronger

$$\neg \land \lor \rightarrow \leftrightarrow$$

chaining the same operator: left binds stronger e.g., $a \rightarrow b \rightarrow c$ means $((a \rightarrow b) \rightarrow c)$

Propositional logic - Outline

- Syntax of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- Normal forms
- Enumeration and deduction

Semantics: Assignments

Structures for predicate logic:

- The domain is $\mathbb{B} = \{0, 1\}$.
- The interpretation assigns Boolean values to the variables:

$$\alpha: AP \rightarrow \{0,1\}$$

We call these special interpretations assignments and use *Assign* to denote the set of all assignments.

Semantics: Assignments

Structures for predicate logic:

- The domain is $\mathbb{B} = \{0, 1\}$.
- The interpretation assigns Boolean values to the variables:

$$\alpha: AP \rightarrow \{0,1\}$$

We call these special interpretations assignments and use *Assign* to denote the set of all assignments.

Example:
$$AP = \{a, b\}, \alpha(a) = 0, \alpha(b) = 1$$

■ Truth tables define the semantics (=meaning) of the operators.

They can be used to define the semantics of formulae inductively over their structure.

- Truth tables define the semantics (=meaning) of the operators.
 They can be used to define the semantics of formulae inductively over their structure.
- Convention: 0= false, 1= true

- Truth tables define the semantics (=meaning) of the operators.
 They can be used to define the semantics of formulae inductively over their structure.
- Convention: 0= false, 1= true

p	q	$\neg p$	$p \wedge q$	$p \lor q$	p o q	$p \leftrightarrow q$	$p \bigoplus q$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	0	0	1
1	1	0	1	1	1	1	0

- Truth tables define the semantics (=meaning) of the operators.
 They can be used to define the semantics of formulae inductively over their structure.
- Convention: 0= false, 1= true

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$	$p \bigoplus q$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	0	0	1
1	1	0	1	1	1	1	0

Each possible assignment is covered by a line of the truth table.

 α satisfies φ iff in the line for α and the column for φ the entry is 1.

■ Let φ be defined as $(a \lor (b \to c))$.

- Let φ be defined as $(a \lor (b \to c))$.
- Let $\alpha: \{a, b, c\} \rightarrow \{0, 1\}$ be an assignment with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.

- Let φ be defined as $(a \lor (b \to c))$.
- Let $\alpha: \{a, b, c\} \rightarrow \{0, 1\}$ be an assignment with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- **Q**: Does α satisfy φ ?

- Let φ be defined as $(a \lor (b \to c))$.
- Let $\alpha: \{a, b, c\} \rightarrow \{0, 1\}$ be an assignment with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- **Q**: Does α satisfy φ ?
- A1: Replace values of α in φ .

Semantics II: Satisfaction relation

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- ullet φ holds for α or
- lacksquare α is a model of φ .

Semantics II: Satisfaction relation

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

is defined recursively:

Semantics II: Satisfaction relation

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

 \models is defined recursively:

$$\alpha \models p$$

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

$$\alpha \models p$$
 iff $\alpha(p) = true$

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- ullet φ holds for α or
- lacksquare α is a model of φ .

$$\begin{array}{ccc} \alpha & \models p & & \text{iff} & \alpha(p) = \text{true} \\ \alpha & \models \neg \varphi & & \end{array}$$

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

$$\begin{array}{cccc} \alpha & \models p & & \textit{iff} & \alpha(p) = \textit{true} \\ \alpha & \models \neg \varphi & & \textit{iff} & \alpha \not\models \varphi \end{array}$$

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

 \models is defined recursively:

$$\begin{array}{lll} \alpha & \models p & & \textit{iff} & \alpha(p) = \textit{true} \\ \alpha & \models \neg \varphi & & \textit{iff} & \alpha \not\models \varphi \\ \alpha & \models \varphi_1 \land \varphi_2 & & & \end{array}$$

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

```
\begin{array}{lll} \alpha & \models p & & \textit{iff} & \alpha(p) = \textit{true} \\ \alpha & \models \neg \varphi & & \textit{iff} & \alpha \not\models \varphi \\ \alpha & \models \varphi_1 \wedge \varphi_2 & & \textit{iff} & \alpha & \models \varphi_1 \textit{ and } \alpha & \models \varphi_2 \end{array}
```

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

```
\begin{array}{lll} \alpha & \models p & & \textit{iff} & \alpha(p) = \textit{true} \\ \alpha & \models \neg \varphi & & \textit{iff} & \alpha \not\models \varphi \\ \alpha & \models \varphi_1 \land \varphi_2 & & \textit{iff} & \alpha \models \varphi_1 \textit{ and } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \lor \varphi_2 & & \end{array}
```

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

```
\begin{array}{lll} \alpha & \models p & \text{iff} & \alpha(p) = \text{true} \\ \alpha & \models \neg \varphi & \text{iff} & \alpha \not\models \varphi \\ \alpha & \models \varphi_1 \land \varphi_2 & \text{iff} & \alpha \models \varphi_1 \text{ and } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \lor \varphi_2 & \text{iff} & \alpha \models \varphi_1 \text{ or } \alpha \models \varphi_2 \end{array}
```

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

```
\begin{array}{lll} \alpha & \models p & & \textit{iff} & \alpha(p) = \textit{true} \\ \alpha & \models \neg \varphi & & \textit{iff} & \alpha \not\models \varphi \\ \alpha & \models \varphi_1 \wedge \varphi_2 & & \textit{iff} & \alpha & \models \varphi_1 \textit{ and } \alpha & \models \varphi_2 \\ \alpha & \models \varphi_1 \vee \varphi_2 & & \textit{iff} & \alpha & \models \varphi_1 \textit{ or } \alpha & \models \varphi_2 \\ \alpha & \models \varphi_1 \rightarrow \varphi_2 & & \end{array}
```

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

```
\begin{array}{llll} \alpha & \models p & \textit{iff} & \alpha(p) = \textit{true} \\ \alpha & \models \neg \varphi & \textit{iff} & \alpha \not\models \varphi \\ \alpha & \models \varphi_1 \land \varphi_2 & \textit{iff} & \alpha \models \varphi_1 \textit{ and } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \lor \varphi_2 & \textit{iff} & \alpha \models \varphi_1 \textit{ or } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \to \varphi_2 & \textit{iff} & \alpha \models \varphi_1 \textit{ implies } \alpha \models \varphi_2 \end{array}
```

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

```
\begin{array}{llll} \alpha & \models p & & \textit{iff} & \alpha(p) = \textit{true} \\ \alpha & \models \neg \varphi & & \textit{iff} & \alpha \not\models \varphi \\ \alpha & \models \varphi_1 \land \varphi_2 & & \textit{iff} & \alpha \models \varphi_1 \textit{ and } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \lor \varphi_2 & & \textit{iff} & \alpha \models \varphi_1 \textit{ or } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \to \varphi_2 & & \textit{iff} & \alpha \models \varphi_1 \textit{ implies } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \leftrightarrow \varphi_2 & & \end{array}
```

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

```
\begin{array}{llll} \alpha & \models p & \text{iff} & \alpha(p) = \text{true} \\ \alpha & \models \neg \varphi & \text{iff} & \alpha \not\models \varphi \\ \alpha & \models \varphi_1 \land \varphi_2 & \text{iff} & \alpha \models \varphi_1 \text{ and } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \lor \varphi_2 & \text{iff} & \alpha \models \varphi_1 \text{ or } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \to \varphi_2 & \text{iff} & \alpha \models \varphi_1 \text{ implies } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \leftrightarrow \varphi_2 & \text{iff} & \alpha \models \varphi_1 \text{ iff } \alpha \models \varphi_2 \end{array}
```

Satisfaction relation: $\models \subseteq Assign \times PropForm$ Instead of $(\alpha, \varphi) \in \models$ we write $\alpha \models \varphi$ and say that

- lacksquare α satisfies φ or
- lacksquare φ holds for α or
- lacksquare α is a model of φ .

|= is defined recursively:

$$\begin{array}{llll} \alpha & \models p & \text{iff} & \alpha(p) = \text{true} \\ \alpha & \models \neg \varphi & \text{iff} & \alpha \not\models \varphi \\ \alpha & \models \varphi_1 \land \varphi_2 & \text{iff} & \alpha \models \varphi_1 \text{ and } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \lor \varphi_2 & \text{iff} & \alpha \models \varphi_1 \text{ or } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \to \varphi_2 & \text{iff} & \alpha \models \varphi_1 \text{ implies } \alpha \models \varphi_2 \\ \alpha & \models \varphi_1 \leftrightarrow \varphi_2 & \text{iff} & \alpha \models \varphi_1 \text{ iff } \alpha \models \varphi_2 \end{array}$$

Note: More elegant but semantically equivalent to truth tables.

■ Let φ be defined as $(a \lor (b \to c))$.

- Let φ be defined as $(a \lor (b \to c))$.
- Let $\alpha: \{a, b, c\} \rightarrow \{0, 1\}$ be an assignment with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.

- Let φ be defined as $(a \lor (b \to c))$.
- Let $\alpha: \{a, b, c\} \rightarrow \{0, 1\}$ be an assignment with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- **Q**: Does α satisfy φ ?

- Let φ be defined as $(a \lor (b \to c))$.
- Let $\alpha: \{a, b, c\} \rightarrow \{0, 1\}$ be an assignment with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- **Q**: Does α satisfy φ ?

A2: Compute with the satisfaction relation:

$$\alpha \models (a \lor (b \to c))$$
iff $\alpha \models a \text{ or } \alpha \models (b \to c)$
iff $\alpha \models a \text{ or } (\alpha \models b \text{ implies } \alpha \models c)$
iff $0 \text{ or } (0 \text{ implies } 1)$
iff $0 \text{ or } 1$

Semantics III: The algorithmic view

• Using the satisfaction relation we can define an algorithm for the problem to decide whether an assignment $\alpha:AP \to \{0,1\}$ is a model of a propositional logic formula $\varphi \in PropForm$:

Semantics III: The algorithmic view

• Using the satisfaction relation we can define an algorithm for the problem to decide whether an assignment $\alpha:AP \to \{0,1\}$ is a model of a propositional logic formula $\varphi \in PropForm$:

Semantics III: The algorithmic view

• Using the satisfaction relation we can define an algorithm for the problem to decide whether an assignment $\alpha:AP \to \{0,1\}$ is a model of a propositional logic formula $\varphi \in PropForm$:

■ Equivalent to the |= relation, but from the algorithmic view.

- Recall our example
 - $\varphi = (a \lor (b \rightarrow c))$
 - lacktriangledown $\alpha: \{a,b,c\}
 ightarrow \{0,1\}$ with $\alpha(a)=0$, $\alpha(b)=0$, and $\alpha(c)=1$.

- Recall our example
 - $\varphi = (a \lor (b \rightarrow c))$
 - $\alpha: \{a, b, c\} \rightarrow \{0, 1\}$ with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- Eval $(\alpha, \varphi) =$

- Recall our example
 - $\varphi = (a \lor (b \rightarrow c))$
 - $\alpha: \{a,b,c\} \rightarrow \{0,1\}$ with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- $Eval(\alpha, \varphi) = Eval(\alpha, a)$ or $Eval(\alpha, b \rightarrow c) =$

- Recall our example
 - $\varphi = (a \lor (b \rightarrow c))$
 - $\alpha: \{a, b, c\} \rightarrow \{0, 1\}$ with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- Eval(α , φ) = Eval(α , a) or Eval(α , b \rightarrow c) = 0 or (Eval(α , b) implies Eval(α , c)) =

- Recall our example
 - $\varphi = (a \lor (b \rightarrow c))$
 - $\alpha: \{a,b,c\} \rightarrow \{0,1\}$ with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- Eval(α , φ) = Eval(α , a) or Eval(α , b \rightarrow c) = 0 or (Eval(α , b) implies Eval(α , c)) = 0 or (0 implies 1) =

- Recall our example
 - $\varphi = (a \lor (b \rightarrow c))$
 - $\alpha: \{a, b, c\} \rightarrow \{0, 1\}$ with $\alpha(a) = 0$, $\alpha(b) = 0$, and $\alpha(c) = 1$.
- Eval(α , φ) = Eval(α , a) or Eval(α , b \rightarrow c) = 0 or (Eval(α , b) implies Eval(α , c)) = 0 or (0 implies 1) = 0 or 1 =

Recall our example

```
 \varphi = (a \lor (b \to c)) 
 \alpha : \{a, b, c\} \to \{0, 1\} \text{ with } \alpha(a) = 0, \ \alpha(b) = 0, \text{ and } \alpha(c) = 1.
```

```
■ Eval(\alpha, \varphi) = Eval(\alpha, a) or Eval(\alpha, b \rightarrow c) = 0 or (Eval(\alpha, b) implies Eval(\alpha, c)) = 0 or (0 implies 1) = 0 or 1 = 1
```

- Recall our example

 - $lack lpha: \{a,b,c\}
 ightarrow \{0,1\} \ ext{with} \ lpha(a)=0, \ lpha(b)=0, \ ext{and} \ lpha(c)=1.$

■ Eval(
$$\alpha$$
, φ) = Eval(α , a) or Eval(α , b \rightarrow c) = 0 or (Eval(α , b) implies Eval(α , c)) = 0 or (0 implies 1) = 0 or 1 = 1

■ Hence, $\alpha \models \varphi$.

■ Intuition: each formula specifies a set of assignments satisfying it.

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$sat(a) =$$

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$sat(a)$$
 = $\{\alpha \mid \alpha(a) = 1\}, a \in AP$

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$sat(a)$$
 = $\{\alpha \mid \alpha(a) = 1\}, a \in AP$
 $sat(\neg \varphi_1)$ =

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$sat(a)$$
 = $\{\alpha \mid \alpha(a) = 1\}, a \in AP$
 $sat(\neg \varphi_1)$ = $Assign \setminus sat(\varphi_1)$

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$\begin{array}{lll} \mathit{sat}(\mathsf{a}) & = & \{\alpha \mid \alpha(\mathsf{a}) = 1\}, & \mathsf{a} \in \mathit{AP} \\ \mathit{sat}(\neg \varphi_1) & = & \mathit{Assign} \setminus \mathit{sat}(\varphi_1) \\ \mathit{sat}(\varphi_1 \wedge \varphi_2) & = & \end{array}$$

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$\begin{array}{lll} \mathit{sat}(\mathsf{a}) & = & \{\alpha \mid \alpha(\mathsf{a}) = 1\}, & \mathsf{a} \in \mathit{AP} \\ \mathit{sat}(\neg \varphi_1) & = & \mathit{Assign} \setminus \mathit{sat}(\varphi_1) \\ \mathit{sat}(\varphi_1 \wedge \varphi_2) & = & \mathit{sat}(\varphi_1) \cap \mathit{sat}(\varphi_2) \end{array}$$

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$sat(a) = \{\alpha \mid \alpha(a) = 1\}, a \in AP$$

$$sat(\neg \varphi_1) = Assign \setminus sat(\varphi_1)$$

$$sat(\varphi_1 \land \varphi_2) = sat(\varphi_1) \cap sat(\varphi_2)$$

$$sat(\varphi_1 \lor \varphi_2) =$$

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$\begin{array}{lll} \mathit{sat}(\mathsf{a}) & = & \{\alpha \mid \alpha(\mathsf{a}) = 1\}, & \mathsf{a} \in \mathit{AP} \\ \mathit{sat}(\neg \varphi_1) & = & \mathit{Assign} \setminus \mathit{sat}(\varphi_1) \\ \mathit{sat}(\varphi_1 \land \varphi_2) & = & \mathit{sat}(\varphi_1) \cap \mathit{sat}(\varphi_2) \\ \mathit{sat}(\varphi_1 \lor \varphi_2) & = & \mathit{sat}(\varphi_1) \cup \mathit{sat}(\varphi_2) \end{array}$$

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$sat(a) = \{\alpha \mid \alpha(a) = 1\}, \quad a \in AP$$

$$sat(\neg \varphi_1) = Assign \setminus sat(\varphi_1)$$

$$sat(\varphi_1 \land \varphi_2) = sat(\varphi_1) \cap sat(\varphi_2)$$

$$sat(\varphi_1 \lor \varphi_2) = sat(\varphi_1) \cup sat(\varphi_2)$$

$$sat(\varphi_1 \to \varphi_2) =$$

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$sat(a) = \{\alpha \mid \alpha(a) = 1\}, \quad a \in AP$$

$$sat(\neg \varphi_1) = Assign \setminus sat(\varphi_1)$$

$$sat(\varphi_1 \land \varphi_2) = sat(\varphi_1) \cap sat(\varphi_2)$$

$$sat(\varphi_1 \lor \varphi_2) = sat(\varphi_1) \cup sat(\varphi_2)$$

$$sat(\varphi_1 \to \varphi_2) = (Assign \setminus sat(\varphi_1)) \cup sat(\varphi_2)$$

- Intuition: each formula specifies a set of assignments satisfying it.
- Remember: Assign denotes the set of all assignments.
- Function sat : PropForm → 2^{Assign}
 (a formula → set of its satisfying assignments)
- Recursive definition:

$$sat(a) = \{\alpha \mid \alpha(a) = 1\}, \quad a \in AP$$

$$sat(\neg \varphi_1) = Assign \setminus sat(\varphi_1)$$

$$sat(\varphi_1 \land \varphi_2) = sat(\varphi_1) \cap sat(\varphi_2)$$

$$sat(\varphi_1 \lor \varphi_2) = sat(\varphi_1) \cup sat(\varphi_2)$$

$$sat(\varphi_1 \to \varphi_2) = (Assign \setminus sat(\varphi_1)) \cup sat(\varphi_2)$$

■ For φ ∈ *PropForm* and α ∈ *Assign* it holds that

$$\alpha \models \varphi \quad iff \quad \alpha \in sat(\varphi)$$

$$sat(a \lor (b \rightarrow c))$$

$$sat(a \lor (b \rightarrow c))$$
 = $sat(a) \cup sat(b \rightarrow c)$

$$sat(a \lor (b \to c))$$
 = $sat(a) \cup sat(b \to c)$ = $sat(a) \cup ((Assign \setminus sat(b)) \cup sat(c))$

```
sat(a \lor (b \to c)) = sat(a) \cup sat(b \to c) = sat(a) \cup ((Assign \setminus sat(b)) \cup sat(c)) = \{\alpha \in Assign \mid \alpha(a) = 1\} \cup \{\alpha \in Assign \mid \alpha(b) = 0\} \cup \{\alpha \in Assign \mid \alpha(c) = 1\}
```

```
sat(a \lor (b \to c)) = sat(a) \cup sat(b \to c) = sat(a) \cup ((Assign \setminus sat(b)) \cup sat(c)) = \{\alpha \in Assign \mid \alpha(a) = 1\} \cup \{\alpha \in Assign \mid \alpha(b) = 0\} \cup \{\alpha \in Assign \mid \alpha(c) = 1\} = \{\alpha \in Assign \mid \alpha(a) = 1 \text{ or } \alpha(b) = 0 \text{ or } \alpha(c) = 1\}
```

Short summary for propositional logic

■ Syntax of propositional formulae $\varphi \in PropForm$:

$$\varphi := AP \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

- Semantics:
 - Assignments $\alpha \in Assign$:

$$\begin{aligned} \alpha : AP &\rightarrow \{0,1\} \\ \alpha &\in 2^{AP} \\ \alpha &\in \{0,1\}^{AP} \end{aligned}$$

■ Satisfaction relation:

```
\begin{array}{lll} \models \subseteq \textit{Assign} \times \textit{PropForm} &, & (\text{e.g., } \alpha & \models \varphi \text{ }) \\ \models \subseteq 2^{\textit{Assign}} \times \textit{PropForm} &, & (\text{e.g., } \{\alpha_1, \dots, \alpha_n\} \models \varphi \text{ }) \\ \models \subseteq \textit{PropForm} \times \textit{PropForm}, & (\text{e.g., } \varphi_1 & \models \varphi_2) \\ \textit{sat} : \textit{PropForm} \rightarrow 2^{\textit{Assign}} &, & (\text{e.g., } \textit{sat}(\varphi) & ) \end{array}
```

Propositional logic - Outline

- Syntax of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- Normal forms
- Enumeration and deduction

■ A formula φ is called valid if $sat(\varphi) = Assign$. (Also called a tautology).

- A formula φ is called valid if $sat(\varphi) = Assign$. (Also called a tautology).
- A formula φ is called satisfiable if $sat(\varphi) \neq \emptyset$.

- A formula φ is called valid if $sat(\varphi) = Assign$. (Also called a tautology).
- A formula φ is called satisfiable if $sat(\varphi) \neq \emptyset$.
- A formula φ is called unsatisfiable if $sat(\varphi) = \emptyset$. (Also called a contradiction).

- A formula φ is called valid if $sat(\varphi) = Assign$. (Also called a tautology).
- A formula φ is called satisfiable if $sat(\varphi) \neq \emptyset$.
- A formula φ is called unsatisfiable if $sat(\varphi) = \emptyset$. (Also called a contradiction).

- We can write:
 - $\blacksquare \models \varphi$ when φ is valid

- We can write:
 - $\blacksquare \models \varphi$ when φ is valid
 - $\blacksquare \not\models \varphi$ when φ is not valid

- We can write:
 - $\blacksquare \models \varphi$ when φ is valid
 - $\blacksquare \not\models \varphi$ when φ is not valid
 - $\blacksquare \not\models \neg \varphi$ when φ is

- We can write:
 - $\blacksquare \models \varphi$ when φ is valid
 - $\blacksquare \not\models \varphi$ when φ is not valid
 - $\blacksquare \not\models \neg \varphi$ when φ is satisfiable

- We can write:
 - $\blacksquare \models \varphi$ when φ is valid
 - $\blacksquare \not\models \varphi$ when φ is not valid
 - $\blacksquare \not\models \neg \varphi$ when φ is satisfiable
 - $\blacksquare \models \neg \varphi$ when φ is

- We can write:
 - $\blacksquare \models \varphi$ when φ is valid
 - $\blacksquare \not\models \varphi$ when φ is not valid
 - $\blacksquare \not\models \neg \varphi$ when φ is satisfiable
 - $\blacksquare \models \neg \varphi$ when φ is unsatisfiable

is valid

$$(x_1 \wedge x_2) \rightarrow (x_1 \vee x_2)$$

 $(x_1 \lor x_2) \to x_1$

is valid

$$(x_1 \land x_2) \rightarrow (x_1 \lor x_2)$$

$$(x_1 \lor x_2) \to x_1$$

is valid

is satisfiable

$$(x_1 \wedge x_2) \rightarrow (x_1 \vee x_2)$$

- $(x_1 \lor x_2) \to x_1$
- $(x_1 \wedge x_2) \wedge \neg x_1$

is valid

is satisfiable

$$(x_1 \wedge x_2) \rightarrow (x_1 \vee x_2)$$

$$(x_1 \lor x_2) \to x_1$$

$$(x_1 \wedge x_2) \wedge \neg x_1$$

is valid

is satisfiable

is unsatisfiable

- Here are some valid formulae:
 - $\blacksquare \models a \land 1 \leftrightarrow a$
 - $\blacksquare \models a \land 0 \leftrightarrow 0$

- Here are some valid formulae:
 - $\blacksquare \models a \land 1 \leftrightarrow a$
 - $\blacksquare \models a \land 0 \leftrightarrow 0$
 - $\blacksquare \models \neg \neg a \leftrightarrow a \text{ (double-negation rule)}$

- Here are some valid formulae:
 - $\blacksquare \models a \land 1 \leftrightarrow a$
 - $\blacksquare \models a \land 0 \leftrightarrow 0$
 - $\blacksquare \models \neg \neg a \leftrightarrow a \text{ (double-negation rule)}$
 - $\blacksquare \models a \land (b \lor c) \leftrightarrow (a \land b) \lor (a \land c)$

■ Here are some valid formulae:

$$\blacksquare \models a \land 1 \leftrightarrow a$$

$$\blacksquare \models a \land 0 \leftrightarrow 0$$

$$\blacksquare \models \neg \neg a \leftrightarrow a \text{ (double-negation rule)}$$

$$\blacksquare \models a \land (b \lor c) \leftrightarrow (a \land b) \lor (a \land c)$$

■ Some more (De Morgan rules):

$$\blacksquare \models \neg(a \land b) \leftrightarrow (\neg a \lor \neg b)$$

$$\blacksquare \models \neg(a \lor b) \leftrightarrow (\neg a \land \neg b)$$

The satisfiability problem for propositional logic

■ The satisfiability problem for propositional logic is as follows: Given an input propositional formula φ , decide whether φ is satisfiable.

The satisfiability problem for propositional logic

- The satisfiability problem for propositional logic is as follows: Given an input propositional formula φ , decide whether φ is satisfiable.
- This problem is decidable but NP-complete.

The satisfiability problem for propositional logic

- The satisfiability problem for propositional logic is as follows: Given an input propositional formula φ , decide whether φ is satisfiable.
- This problem is decidable but NP-complete.
- An algorithm that always terminates for each propositional logic formula with the correct answer is called a decision procedure for propositional logic.

The satisfiability problem for propositional logic

- The satisfiability problem for propositional logic is as follows: Given an input propositional formula φ , decide whether φ is satisfiable.
- This problem is decidable but NP-complete.
- An algorithm that always terminates for each propositional logic formula with the correct answer is called a decision procedure for propositional logic.

Goal: Design and implement such a decision procedure:

The satisfiability problem for propositional logic

- The satisfiability problem for propositional logic is as follows: Given an input propositional formula φ , decide whether φ is satisfiable.
- This problem is decidable but NP-complete.
- An algorithm that always terminates for each propositional logic formula with the correct answer is called a decision procedure for propositional logic.

Goal: Design and implement such a decision procedure:

Note: A formula φ is valid iff $\neg \varphi$ is unsatisfiable.

Propositional logic - Outline

- Syntax of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- Normal forms

■ Definition: A literal is either a variable or a negation of a variable.

- Definition: A literal is either a variable or a negation of a variable.
- Example: $\varphi = \neg(a \lor \neg b)$ Variables: $AP(\varphi) = \{a, b\}$

Literals: $lit(\varphi) = \{a, \neg b\}$

Definition: A literal is either a variable or a negation of a variable.

```
■ Example: \varphi = \neg(a \lor \neg b)
Variables: AP(\varphi) = \{a, b\}
Literals: lit(\varphi) = \{a, \neg b\}
```

■ Note: Equivalent formulae can have different literals.

- Definition: A literal is either a variable or a negation of a variable.
- Example: $\varphi = \neg(a \lor \neg b)$ Variables: $AP(\varphi) = \{a, b\}$ Literals: $lit(\varphi) = \{a, \neg b\}$
- Note: Equivalent formulae can have different literals.
 - Example: $\varphi' = \neg a \land b$ Literals: $lit(\varphi') = {\neg a, b}$

- Definition: a term is a conjunction of literals
 - Example: $(a \land \neg b \land c)$

- Definition: a term is a conjunction of literals
 - Example: $(a \land \neg b \land c)$
- Definition: a clause is a disjunction of literals
 - Example: $(a \lor \neg b \lor c)$

Negation Normal Form (NNF)

- Definition: A formula is in Negation Normal Form (NNF) iff
 - (1) it contains only \neg , \wedge and \vee as connectives and
 - (2) only variables are negated.

Negation Normal Form (NNF)

- Definition: A formula is in Negation Normal Form (NNF) iff (1) it contains only ¬, ∧ and ∨ as connectives and (2) only variables are negated.
- Examples:
- $\varphi_1 = \neg(a \lor \neg b)$ is **not** in NNF
- $\varphi_2 = \neg a \wedge b$ is in NNF

- Every formula can be converted to NNF in linear time:
 - Eliminate all connectives other than \land , \lor , \neg
 - Use De Morgan and double-negation rules to push negations to operands

- Every formula can be converted to NNF in linear time:
 - Eliminate all connectives other than \land , \lor , \neg
 - Use De Morgan and double-negation rules to push negations to operands
- **Example:** $\varphi = \neg(a \rightarrow \neg b)$
 - Eliminate ' \rightarrow ' : $\varphi = \neg(\neg a \lor \neg b)$

- Every formula can be converted to NNF in linear time:
 - Eliminate all connectives other than \land , \lor , \neg
 - Use De Morgan and double-negation rules to push negations to operands
- **Example:** $\varphi = \neg(a \rightarrow \neg b)$
 - Eliminate ' \rightarrow ' : $\varphi = \neg(\neg a \lor \neg b)$
 - Push negation using De Morgan: $\varphi = (\neg \neg a \land \neg \neg b)$

- Every formula can be converted to NNF in linear time:
 - Eliminate all connectives other than \land , \lor , \neg
 - Use De Morgan and double-negation rules to push negations to operands
- **Example:** $\varphi = \neg (a \rightarrow \neg b)$
 - Eliminate ' \rightarrow ' : $\varphi = \neg(\neg a \lor \neg b)$
 - Push negation using De Morgan: $\varphi = (\neg \neg a \land \neg \neg b)$
 - Use double-negation rule: $\varphi = (a \land b)$

■ Definition: A formula is said to be in Disjunctive Normal Form (DNF) iff it is a disjunction of terms.

- Definition: A formula is said to be in Disjunctive Normal Form (DNF) iff it is a disjunction of terms.
- In other words, it is a formula of the form

$$\bigvee_{i} \left(\bigwedge_{j} I_{i,j} \right)$$

where $l_{i,j}$ is the j-th literal in the i-th term.

- Definition: A formula is said to be in Disjunctive Normal Form (DNF) iff it is a disjunction of terms.
- In other words, it is a formula of the form

$$\bigvee_{i} \left(\bigwedge_{j} I_{i,j} \right)$$

where $l_{i,j}$ is the j-th literal in the i-th term.

Example:

$$\varphi = (a \land \neg b \land c) \lor (\neg a \land d) \lor (b)$$
 is in DNF

- Definition: A formula is said to be in Disjunctive Normal Form (DNF) iff it is a disjunction of terms.
- In other words, it is a formula of the form

$$\bigvee_{i} \left(\bigwedge_{j} I_{i,j} \right)$$

where $l_{i,j}$ is the j-th literal in the i-th term.

Example:

$$\varphi = (a \land \neg b \land c) \lor (\neg a \land d) \lor (b) \text{ is in DNF}$$

DNF is a special case of NNF.

- Every formula can be converted to DNF in exponential time and space:
 - Convert to NNF
 - 2 Distribute disjunctions following the rule:

$$\models \varphi_1 \land (\varphi_2 \lor \varphi_3) \leftrightarrow (\varphi_1 \land \varphi_2) \lor (\varphi_1 \land \varphi_3)$$

- Every formula can be converted to DNF in exponential time and space:
 - Convert to NNF
 - 2 Distribute disjunctions following the rule:

$$\models \varphi_1 \land (\varphi_2 \lor \varphi_3) \leftrightarrow (\varphi_1 \land \varphi_2) \lor (\varphi_1 \land \varphi_3)$$

■ Example:

$$\varphi = (a \lor b) \land (\neg c \lor d)$$

$$= ((a \lor b) \land (\neg c)) \lor ((a \lor b) \land d)$$

$$= (a \land \neg c) \lor (b \land \neg c) \lor (a \land d) \lor (b \land d)$$

- Every formula can be converted to DNF in exponential time and space:
 - Convert to NNF
 - Distribute disjunctions following the rule: $\models \varphi_1 \land (\varphi_2 \lor \varphi_3) \leftrightarrow (\varphi_1 \land \varphi_2) \lor (\varphi_1 \land \varphi_3)$
- Example:

$$\varphi = (a \lor b) \land (\neg c \lor d)$$

$$= ((a \lor b) \land (\neg c)) \lor ((a \lor b) \land d)$$

$$= (a \land \neg c) \lor (b \land \neg c) \lor (a \land d) \lor (b \land d)$$

- Now consider $\varphi_n = (a_1 \vee b_1) \wedge (a_2 \vee b_2) \wedge \ldots \wedge (a_n \vee b_n)$.
- Q: How many clauses will the DNF have?

- Every formula can be converted to DNF in exponential time and space:
 - Convert to NNF
 - Distribute disjunctions following the rule: $\models \varphi_1 \land (\varphi_2 \lor \varphi_3) \leftrightarrow (\varphi_1 \land \varphi_2) \lor (\varphi_1 \land \varphi_3)$
- Example:

$$\varphi = (a \lor b) \land (\neg c \lor d)$$

$$= ((a \lor b) \land (\neg c)) \lor ((a \lor b) \land d)$$

$$= (a \land \neg c) \lor (b \land \neg c) \lor (a \land d) \lor (b \land d)$$

- Now consider $\varphi_n = (a_1 \vee b_1) \wedge (a_2 \vee b_2) \wedge \ldots \wedge (a_n \vee b_n)$.
- Q: How many clauses will the DNF have?
 - A: 2ⁿ

• Q: Is the following DNF formula satisfiable?

$$(a_1 \wedge a_2 \wedge \neg a_1) \vee (a_2 \wedge a_1) \vee (a_2 \wedge \neg a_3 \wedge a_3)$$

• Q: Is the following DNF formula satisfiable?

$$(a_1 \wedge a_2 \wedge \neg a_1) \vee (a_2 \wedge a_1) \vee (a_2 \wedge \neg a_3 \wedge a_3)$$

A: Yes, because the term $a_2 \wedge a_1$ is satisfiable.

• Q: Is the following DNF formula satisfiable?

$$(a_1 \wedge a_2 \wedge \neg a_1) \vee (a_2 \wedge a_1) \vee (a_2 \wedge \neg a_3 \wedge a_3)$$

A: Yes, because the term $a_2 \wedge a_1$ is satisfiable.

• Q: What is the complexity of the satisfiability check of DNF formulae?

Q: Is the following DNF formula satisfiable?

$$(a_1 \wedge a_2 \wedge \neg a_1) \vee (a_2 \wedge a_1) \vee (a_2 \wedge \neg a_3 \wedge a_3)$$

A: Yes, because the term $a_2 \wedge a_1$ is satisfiable.

Q: What is the complexity of the satisfiability check of DNF formulae?
 A: Linear (time and space).

• Q: Is the following DNF formula satisfiable?

$$(a_1 \wedge a_2 \wedge \neg a_1) \vee (a_2 \wedge a_1) \vee (a_2 \wedge \neg a_3 \wedge a_3)$$

A: Yes, because the term $a_2 \wedge a_1$ is satisfiable.

- Q: What is the complexity of the satisfiability check of DNF formulae?
 A: Linear (time and space).
- Q: Can there be any polynomial transformation into DNF?

• Q: Is the following DNF formula satisfiable?

$$(a_1 \wedge a_2 \wedge \neg a_1) \vee (a_2 \wedge a_1) \vee (a_2 \wedge \neg a_3 \wedge a_3)$$

A: Yes, because the term $a_2 \wedge a_1$ is satisfiable.

- Q: What is the complexity of the satisfiability check of DNF formulae?
 A: Linear (time and space).
- Q: Can there be any polynomial transformation into DNF?
- A: No, it would violate the NP-completeness of the problem.

Definition: A formula is said to be in Conjunctive Normal Form (CNF)
iff it is a conjunction of clauses.

- Definition: A formula is said to be in Conjunctive Normal Form (CNF) iff it is a conjunction of clauses.
- In other words, it is a formula of the form

$$\bigwedge_{i} \left(\bigvee_{j} I_{i,j} \right)$$

where $l_{i,j}$ is the j-th literal in the i-th clause.

- Definition: A formula is said to be in Conjunctive Normal Form (CNF) iff it is a conjunction of clauses.
- In other words, it is a formula of the form

$$\bigwedge_{i} \left(\bigvee_{j} l_{i,j} \right)$$

where $l_{i,j}$ is the *j*-th literal in the *i*-th clause.

Example:

$$\varphi = (a \lor \neg b \lor c) \land (\neg a \lor d) \land (b)$$
 is in CNF

- Definition: A formula is said to be in Conjunctive Normal Form (CNF) iff it is a conjunction of clauses.
- In other words, it is a formula of the form

$$\bigwedge_{i} \left(\bigvee_{j} I_{i,j} \right)$$

where $l_{i,j}$ is the j-th literal in the i-th clause.

■ Example:

$$\varphi = (a \lor \neg b \lor c) \land (\neg a \lor d) \land (b)$$
 is in CNF

Also CNF is a special case of NNF.

- Every formula can be converted to CNF in exponential time and space:
 - Convert to NNF
 - 2 Distribute disjunctions following the rule:

$$\models \varphi_1 \lor (\varphi_2 \land \varphi_3) \leftrightarrow (\varphi_1 \lor \varphi_2) \land (\varphi_1 \lor \varphi_3)$$

- Every formula can be converted to CNF in exponential time and space:
 - Convert to NNF
 - 2 Distribute disjunctions following the rule: $\models \varphi_1 \lor (\varphi_2 \land \varphi_3) \leftrightarrow (\varphi_1 \lor \varphi_2) \land (\varphi_1 \lor \varphi_3)$
- Consider the formula $\varphi = (a_1 \wedge b_1) \vee (a_2 \wedge b_2)$.

Transformation: $(a_1 \lor a_2) \land (a_1 \lor b_2) \land (b_1 \lor a_2) \land (b_1 \lor b_2)$

Converting to CNF

- Every formula can be converted to CNF in exponential time and space:
 - 1 Convert to NNF
 - Distribute disjunctions following the rule: $\models \varphi_1 \lor (\varphi_2 \land \varphi_3) \leftrightarrow (\varphi_1 \lor \varphi_2) \land (\varphi_1 \lor \varphi_3)$
- Consider the formula $\varphi = (a_1 \wedge b_1) \vee (a_2 \wedge b_2)$. Transformation: $(a_1 \vee a_2) \wedge (a_1 \vee b_2) \wedge (b_1 \vee a_2) \wedge (b_1 \vee b_2)$
- Now consider $\varphi_n = (a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee \ldots \vee (a_n \wedge b_n)$. Q: How many clauses does the resulting CNF have?

Converting to CNF

- Every formula can be converted to CNF in exponential time and space:
 - Convert to NNF
 - 2 Distribute disjunctions following the rule: $\models \varphi_1 \lor (\varphi_2 \land \varphi_3) \leftrightarrow (\varphi_1 \lor \varphi_2) \land (\varphi_1 \lor \varphi_3)$
- Consider the formula $\varphi = (a_1 \wedge b_1) \vee (a_2 \wedge b_2)$. Transformation: $(a_1 \vee a_2) \wedge (a_1 \vee b_2) \wedge (b_1 \vee a_2) \wedge (b_1 \vee b_2)$
- Now consider $\varphi_n = (a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee \ldots \vee (a_n \wedge b_n)$. Q: How many clauses does the resulting CNF have? A: 2^n

- Every formula can be converted to CNF in linear time and space if new variables are added.
- The original and the converted formulae are not equivalent but equisatisfiable.

Two formulae are equisatisfiable if both are, or are not, satisfiable simultaneously.

- Every formula can be converted to CNF in linear time and space if new variables are added.
- The original and the converted formulae are not equivalent but equisatisfiable.

Two formulae are equisatisfiable if both are, or are not, satisfiable simultaneously.

Consider the formula

$$\varphi = (a \rightarrow (b \land c))$$

- Every formula can be converted to CNF in linear time and space if new variables are added.
- The original and the converted formulae are not equivalent but equisatisfiable.

Two formulae are equisatisfiable if both are, or are not, satisfiable simultaneously.

Consider the formula

$$\varphi = (a \rightarrow (b \land c))$$

- Every formula can be converted to CNF in linear time and space if new variables are added.
- The original and the converted formulae are not equivalent but equisatisfiable.

Two formulae are equisatisfiable if both are, or are not, satisfiable simultaneously.

Consider the formula

$$\varphi = (a \rightarrow (b \land c))$$

 Associate a new auxiliary variable with each gate.

- Every formula can be converted to CNF in linear time and space if new variables are added.
- The original and the converted formulae are not equivalent but equisatisfiable.

Two formulae are equisatisfiable if both are, or are not, satisfiable simultaneously.

Consider the formula

$$\varphi = (a \rightarrow (b \land c))$$

- Associate a new auxiliary variable with each gate.
- Add constraints that define these new variables.

- Every formula can be converted to CNF in linear time and space if new variables are added.
- The original and the converted formulae are not equivalent but equisatisfiable.

Two formulae are equisatisfiable if both are, or are not, satisfiable simultaneously.

Consider the formula

$$\varphi = (a \rightarrow (b \land c))$$

- Associate a new auxiliary variable with each gate.
- Add constraints that define these new variables.
- Finally, enforce the root node.

■ Need to satisfy:

$$(h_1 \leftrightarrow (a \rightarrow h_2)) \land (h_2 \leftrightarrow (b \land c)) \land (h_1)$$

■ Each gate encoding has a CNF representation with 3 or 4 clauses.

■ Need to satisfy:

$$(h_1 \leftrightarrow (a \rightarrow h_2)) \land (h_2 \leftrightarrow (b \land c)) \land (h_1)$$

■ Need to satisfy:

$$(h_1 \leftrightarrow (a \rightarrow h_2)) \land (h_2 \leftrightarrow (b \land c)) \land (h_1)$$

■ First: $(h_1 \lor a) \land (h_1 \lor \neg h_2) \land (\neg h_1 \lor \neg a \lor h_2)$

■ Need to satisfy:

$$(h_1 \leftrightarrow (a \rightarrow h_2)) \land (h_2 \leftrightarrow (b \land c)) \land (h_1)$$

- First: $(h_1 \lor a) \land (h_1 \lor \neg h_2) \land (\neg h_1 \lor \neg a \lor h_2)$
- Second: $(\neg h_2 \lor b) \land (\neg h_2 \lor c) \land (h_2 \lor \neg b \lor \neg c)$

Let's go back to

$$\varphi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \cdots \vee (x_n \wedge y_n)$$

Let's go back to

$$\varphi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \cdots \vee (x_n \wedge y_n)$$

- With Tseitin's encoding we need:
 - n auxiliary variables h_1, \ldots, h_n .
 - Each adds 3 constraints.
 - Top clause: $(h_1 \lor \cdots \lor h_n)$

Let's go back to

$$\varphi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \cdots \vee (x_n \wedge y_n)$$

- With Tseitin's encoding we need:
 - n auxiliary variables h_1, \ldots, h_n .
 - Each adds 3 constraints.
 - Top clause: $(h_1 \lor \cdots \lor h_n)$
- Hence, we have
 - 3n+1 clauses, instead of 2^n .
 - 3*n* variables rather than 2*n*.

Propositional logic - Outline

- Syntax of propositional logic
- Semantics of propositional logic
- Satisfiability and validity
- Normal forms