Set Theory

Paradox & Cardinality

03

Huan Long Shanghai Jiao Tong University

longhuan@sjtu.edu.cn

Key points one should know of

- Set operations
 - $lack A \cup B$, $A \cap B$, A B, \overline{A} , $A \oplus B$, P(A)
- Set identity laws
- Set applications
 - Relation
 - ✓ Ordered pairs, A×B, Relation, Equivalence relation, Partition
 - **♦** Function
 - ✓ Onto function/Surjective function
 - ✓ Injective function/One-to-one function/Single-rooted
 - ✓ Bijective function

Part II.

CB

Paradox

Paradox and ZFC

Equinumerosity

Equinumerosity

Cardinal Numbers

Ordering

Infinite Cardinals

Countable sets

Russell's paradox

- Bertrand Russell(1872-1970)
- British philosopher, logician, mathematician, historian, and social critic.
- In 1950 Russell was awarded the Nobel Prize in Literature, "in recognition of his varied and significant writings in which he champions humanitarian ideals and freedom of thought."
- What I have lived for?

Three passions, simple but overwhelmingly strong, have governed my life: the longing for love, the search for knowledge, and unbearable pity for the suffering of mankind...

Barber Paradox^[1918]

- Suppose there is a town with just one male barber. The barber shaves all and only those men in town who do not shave themselves.
- Question: Does the barber shave himself?
 - If the barber does NOT shave himself, then he MUST abide by the rule and shave himself.
 - If he DOES shave himself, according to the rule he will NOT shave himself.

Formal Proof

-03

Theorem There is no set to which every set belongs. [Russell, 1902]

Formal Proof

03

Theorem There is no set to which every set belongs. [Russell, 1902]

Proof:

Let A be a set; we will construct a set not belonging to A. Let

$$B=\{x\in A\mid x\notin x\}$$

We claim that B∉A. we have, by the construction of B.

B∈B iff B∈A and B∉B

If B∈A, then this reduces to

B∈B iff B∉B, Which is impossible, since one side must be true and the other false. Hence B∉A

Natural Numbers in Set Theory

03

 Constructing the natural numbers in terms of sets is part of the process of

"Embedding mathematics in set theory"

John von Neumann

- December 28, 1903 February 8, 1957. Hungarian American mathematician who made major contributions to a vast range of fields:
 - Logic and set theory
 - Quantum mechanics
 - Economics and game theory
 - Mathematical statistics and econometrics
 - Nuclear weapons
 - Computer science

Natural numbers

03

• By von Neumann:

Each natural number is the set of all smaller natural numbers.

$$0 = \emptyset$$

$$1 = \{0\} = \{\emptyset\}$$

$$2 = \{0,1\} = \{\emptyset, \{\emptyset\}\}$$

$$3 = \{0,1,2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$$

Some properties from the first four natural numbers

$$0 = \emptyset$$

$$1 = \{0\} = \{\emptyset\}$$

$$2 = \{0,1\} = \{\emptyset, \{\emptyset\}\}$$

$$3 = \{0,1,2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$$

 $0 \in 1 \in 2 \in 3 \in \dots$ $0 \subseteq 1 \subseteq 2 \subseteq 3 \subseteq \dots$

Paradox

Paradox and ZFC

Equinumerosity

Equinumerosity

Cardinal Numbers

Ordering

Infinite Cardinals

Countable sets

Spring 2021

13

Motivation

03

™ To discuss the **size** of sets. Given two sets A and B, we want to consider such questions as:

☑ Do A and B have the same size?

OB Does A have more elements than B?

Example

Equinumerosity

03

Definition A set \mathcal{A} is *equinumerous* to a set \mathcal{B} (written $\mathcal{A} \approx \mathcal{B}$) iff there is a one-to-one function from \mathcal{A} onto \mathcal{B} .

 α A one-to-one function from \mathcal{A} onto \mathcal{B} is called a *one-to-one correspondence* between \mathcal{A} and \mathcal{B} .

Example: $\omega \times \omega \approx \omega$

03

The set $\omega \times \omega$ is equinumerous to ω . There is a function J mapping $\omega \times \omega$ one-to-one onto ω .

$$J(m,n)=((m+n)^2+3m+n)/2$$

Spring 2021

17

Example: ω≈Q

CB

 $\alpha f: \omega \rightarrow \mathbb{Q}$

•

Example: $(0,1) \approx \mathbb{R}$

$$(0,1)$$
={x ∈ **R** | 0R

$$f(x) = \tan(\pi(2x-1)/2)$$

Examples

03

$$(0,1) \approx (n,m)$$

Solution Proof: $f(x) = (n-m)x+m$

$$(0,1)$$
 ≈ {x| x∈**R** ∧ x>0} =(0,+∞)
Solution Proof: $f(x)=1/x-1$

Examples

03

Example: $\wp(A) \approx {}^{A}2$

03

 \bigcirc For any set A, we have $P(A) \approx {}^{A}2$.

Proof: Define a function H from P(A) onto A^2 as: For any subset B of A, H(B) is the characteristic function of B:

$$f_B(x) = \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{if } x \in A - B \end{cases}$$

H is one-to-one and onto.

Theorem

○For any sets A, B and C:

- \bullet A \approx A
- If $A \approx B$ then $B \approx A$
- If $A \approx B$ and $B \approx C$ then $A \approx C$.

Proof:

Theorem(Cantor 1873)

CB

αThe set ω is not equinumerous to the set \mathbf{R} of real numbers.

™No set is equinumerous to its power set.

Proof: show that for any function $f: \omega \to \mathbb{R}$, there is a real number z not belonging to ran f

$$f(0) = 32.4345...,$$

 $f(1) = -43.334...,$
 $f(2) = 0.12418...,$

z: the integer part is 0, and the $(n+1)^{st}$ decimal place of z is 7 unless the $(n+1)^{st}$ decimal place of f(n) is 7, in which case the $(n+1)^{st}$ decimal place of z is 6.

Then **z** is a real number not in *ran f*.

™ No set is equinumerous to its power set.

™ No set is equinumerous to its power set.

Proof: Let $g: A \rightarrow \wp(A)$; we will construct a subset B of A that is not in $ran\ g$. Specifically, let

$$B = \{ x \in A \mid x \notin g(x) \}$$

Then $B\subseteq A$, but for each $x\in A$

$$x \in B \text{ iff } x \notin g(x)$$

Hence $B\neq g(x)$.

Application

03

Paradox

Paradox and ZFC

Equinumerosity

Equinumerosity

Cardinal Numbers

Ordering

Infinite Cardinals

Countable sets

Ordering Cardinal Numbers

03

©Periodic Seric Seric

Examples

03

- Any set dominates itself.
- α If $A \subseteq \mathcal{B}$, then A is dominated by \mathcal{B} .
- $\alpha A \leq B$ iff A is equinumerous to some subset of B.

Schröder-Bernstein Theorem

 \bowtie If $A \leq B$ and $B \leq A$, then $A \approx B$.

Reproof:

$$f: A \to B$$
, $g: B \to A$. Define C_n by recursion:

$$C_0 = A - ran g$$
 and $C_n^+ = g[f[C_n]]$

$$h(x) = \begin{cases} f(x) & \text{if } x \in C_n \text{ for some } n, \\ g^{-1}(x) & \text{otherwise} \end{cases}$$

A:

B:

h(x) is one-to-one and onto.

Application of the Schröder-Bernstein Theorem

∝Example

©If A⊆B⊆C and A≈C, then all three sets are equinumerous.

The set \mathbb{R} of real numbers is equinumerous to the closed unit interval [0,1].

03

α₀ is the *least infinite* cardinal. i.e. ω≤A for any infinite A.

Paradox

Paradox and ZFC

Equinumerosity

Equinumerosity

Cardinal Numbers

Ordering

Infinite Cardinals

Countable sets

Spring 2021

36

Countable Sets

CB

 \bigcirc **Definition** A set *A* is countable iff $A \leq \omega$,

Intuitively speaking, the elements in a countable set can *be counted by* means of the natural numbers.

Example

CB

- $\boldsymbol{\alpha}$ $\boldsymbol{\omega}$ is countable, as is **Z** and **Q**
- **R** is uncountable
- \bowtie A, B are countable sets
 - \bowtie \forall $C \subseteq A$, C is countable
 - $\bowtie A \cup B$ is countable
 - \bowtie A × B is countable

Example

CB

- $\boldsymbol{\alpha}$ $\boldsymbol{\omega}$ is countable, as is **Z** and **Q**
- **R** is uncountable
- \bowtie A, B are countable sets
 - \bowtie \forall $C \subseteq A$, C is countable
 - $\bowtie A \cup B$ is countable
 - $\bowtie A \times B$ is countable
- \bigcirc For any infinite set A, $\wp(A)$ is uncountable.

Continuum Hypothesis

03

- \bowtie Are there any sets with cardinality between \aleph_0 and 2^{\aleph_0} ?

i.e., there is no λ with $\aleph_0 < \lambda < 2^{\aleph_0}$.

Or, equivalently, it says: Every uncountable set of real numbers is equinumerous to the set of all real numbers.

GENERAL VERSION: for any infinite cardinal κ , there is no cardinal number between κ and 2^{κ} .

HISTORY

- Georg Cantor: 1878, proposed the conjecture
- ❖ David Hilbert: 1900, the first of Hilbert's 23 problems.
- ❖ Kurt Gödel: 1939, \overline{ZF} ⊢ $/\neg CH$.
- ❖ Paul Cohen: 1963, $\mathbb{ZF} \vdash / \mathbb{CH}$.

Thanks!