

Informe 9 Laboratorio de Maquinas: CURVAS CARACTERÍSTICAS DE UNA BOMBA CENTRÍFUGA

José Luis Riveros

Profesores: Tomás Herrera Muñoz

Cristóbal Galleguillos Ketterer

ICM557-2

2020

indice:

- 1. Objetivos
- 2. Trabajo de laboratorio
- 3. Tabla de valores medidos
- 4. Formulas
- 5. Tabas de valores calculados
- 6. Gráficos
- 7. Conclusiones

1. Objetivos

Analizar cómo se distribuye la energía en el equipo, partiendo desde la energía eléctrica hasta la útil en el aire comprimido.

2. Trabajo de laboratorio

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación y esperar un tiempo prudente para que se estabilice su funcionamiento, tome las siguientes medidas:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, en [rpm].
- pax% presión de aspiración, en [%].
- pdx% presión de descarga, en [%].
 Δhx caudal de la bomba, presión diferencial en el venturímetro en [mmHg].
- Fx fuerza medidas en la balanza, en [kp].
- ta temperatura de agua en el estanque, en [°C].
- Patm presión atmosférica, en [mmHg].

Manteniendo la velocidad constante, repetir las mediciones tantas veces como fuera necesario para recorrer completamente la curva característica de la bomba y tener los valores apropiados para trazar las curvas que se indican. Para obtener las distintas condiciones de operación, se modifica la curva característica del sistema estrangulando la descarga de la bomba. Se repite lo anterior para otras dos velocidades de ensayo. Mida los valores siguientes:

cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].

cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

3. Tabla de valores medidos

	VALORES MEDIDOS													
					3070	[rpm]								
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	Т	Patm				
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]				
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7				
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7				
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7				
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7				
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7				
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7				
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7				
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7				
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7				
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7				
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7				
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7				

Tabla 1

	VALORES MEDIDOS													
					2900	[rpm]								
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}				
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]				
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7				
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7				
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7				
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7				
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7				
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7				
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7				
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7				
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7				
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7				
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7				
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7				

	VALORES MEDIDOS													
					2700	[rpm]								
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm				
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]				
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7				
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7				
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7				
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7				
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7				
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7				
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7				
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7				
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7				
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7				
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7				
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7				

4. Formulas

Caudal:

De gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Grafico 1

Caudal corregido:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left\lceil \frac{m^3}{h} \right\rceil$$

Presión de aspiración:

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax = 115 [mm]

Presión de descarga:

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} [m_{ca}]$$

cpdx=165 [mm]

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$

Altura corregida:

$$H = Hx \left(\frac{n}{nx}\right)^2 \quad \left[m_{ca}\right]$$

Potencia en el eje de la bomba:

$$Nex = 0.0007355 Fxnx$$
 [kW]

Potencia en el eje de la bomba corregida:

$$Ne = Nex \left(\frac{n}{nx}\right)^3$$
 [kW]

Potencia hidráulica:

$$Nh = \gamma \frac{QH}{3600} \quad [kW]$$

 γ peso específico del agua en [N/m3] Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \quad \left[\frac{m}{s}\right]$$

D2 diámetro exterior del rodete: 0,135 m B2 ancho exterior del rodete: 0,08 m

$$\phi = \frac{cm_2}{U_2} \quad [-]$$
 Phi:

$$\psi = \frac{2gH}{U_2^2} \quad [-]$$
 Psi:

5. Tabla de valores calculados

											rend				
	Qx		Q	pax	pdx	Hx	Н	Nex	Ne	Nh	gl	U2	cm2	Phi	Psi
	(m3/s)*10^-														
	2	m3/h	m3/h	mca	mca	mca	mca	kW	kW	kW	(-)	m/s	m/s	(-)	(-)
		114,4	114,4	_				3,47	3,47	1,22		21,6	0,937	0,04	3,55
1	3,18	8	8	1,165	2,765	3,93	3,93	7	7	5	35,221	9	7	3	1
_	0,10			-	2,700	0,50	0,50	3,79	3,79	1,91	00,222	21,6	0,884	0,04	5,89
2	3	108	108	0,915	5,605	6,52	6,52	3	3	7	50,532	9	6	1	2
				-	Ź	-		4,04	4,04	2,39		21,6	0,840	0,03	7,73
3	2,85	102,6	102,6	0,635	7,925	8,56	8,56	2	2	1	59,152	9	4	9	5
				-		10,3	10,3	4,17	4,17	2,67		21,6	0,775	0,03	
4	2,63	94,68	94,68	0,415	9,965	8	8	7	7	5	64,045	9	5	6	9,38
				-	11,80	11,9	11,9	4,26	4,26	2,95		21,6	0,743	0,03	10,8
5	2,52	90,72	90,72	0,175	5	8	8	8	8	9	69,327	9	1	4	3
					13,92	13,8	13,8	4,31	4,31	3,05		21,6	0,663	0,03	12,5
6	2,25	81	81	0,055	5	7	7	3	3	8	70,914	9	5	1	3
					16,68	16,2	16,2	4,33	4,33	3,19		21,6	0,589	0,02	14,7
7	2	72	72	0,405	5	8	8	5	5	1	73,602	9	8	7	1
					18,64			4,26	4,26	3,08		21,6		0,02	16,2
8	1,75	63	63	0,645	5	18	18	8	8	7	72,336	9	0,516	4	7
					19,84	18,9	18,9	4,13	4,13	2,78		21,6	0,442		17,1
9	1,5	54	54	0,885	5	6	6	2	2	7	67,45	9	3	0,02	3
1		2.5	25	4 425	21,92	20,7	20,7	3,81	3,81	2,03	F2 202	21,6	0,294	0,01	18,7
0	1	36	36	1,135	5	9	9	6	6	7	53,392	9	9	4	9
1		22.4	22.4	1 215	22,92	21,6	21,6	2.5	2.5	1,90	E4 4E0	21,6	0,265	0,01	19,5
1	0,9	32,4	32,4	1,315	5	22.0	22.0	3,5	3,5	6	54,459	9	4	2	30.0
1	0	0	0	1 025	25,00 5	23,0 7	23,0 7	2,55	2,55	0	0	21,6 9	_	_	20,8
2	U	U	U	1,935	5	/	/	2	2	0	U	9	0	0	5

	Qx		Q	pax	pdx	Нх	Н	Nex	Ne	Nh	rend gl	U2	cm2	Phi	Psi
	(m3/s)*10^-2 m3/h		m3/h	mca	mca	mca	mca	kW	kW	kW	(-)	m/s	m/s	(-)	(-)
1	3,1	111,6	111,6	-0,965	2,645	3,61	3,61	2,922	2,922	1,097	37,531	21,69	0,9141	0,042	3,262
2	2,9	104,4	104,4	-0,725	5,245	5,97	5,97	3,135	3,135	1,697	54,113	21,69	0,8552	0,039	5,395
3	2,7	97,2	97,2	-0,485	6,725	7,21	7,21	3,306	3,306	1,908	57,705	21,69	0,7962	0,037	6,515
4	2,6	93,6	93,6	-0,245	8,725	8,97	8,97	3,455	3,455	2,286	66,145	21,69	0,7667	0,035	8,106
5	2,4	86,4	86,4	-0,065	10,605	10,67	10,67	3,519	3,519	2,51	71,308	21,69	0,7077	0,033	9,642
6	2,1	75,6	75,6	0,225	12,365	12,14	12,14	3,583	3,583	2,498	69,723	21,69	0,6192	0,029	10,97
7	1,95	70,2	70,2	0,445	14,365	13,92	13,92	3,605	3,605	2,66	73,796	21,69	0,575	0,027	12,58
8	1,7	61,2	61,2	0,695	16,245	15,55	15,55	3,583	3,583	2,591	72,296	21,69	0,5013	0,023	14,05
9	1,5	54	54	0,885	17,885	17	17	3,413	3,413	2,499	73,226	21,69	0,4423	0,02	15,36
10	1	36	36	1,115	19,405	18,29	18,29	3,178	3,178	1,792	56,399	21,69	0,2949	0,014	16,53
11	0,8	28,8	28,8	1,345	20,645	19,3	19,3	2,922	2,922	1,513	51,781	21,69	0,2359	0,011	17,44
12	0	0	0	1,835	22,605	20,77	20,77	2,005	2,005	0	0	21,69	0	0	18,77

Tabla 5

	Qx		Q	pax	pdx	Нх	Н	Nex	Ne	Nh	rend gl	U2	cm2	Phi	Psi
	(m3/s)*10^-2	m3/h	m3/h	mca	mca	mca	mca	kW	kW	kW	(-)	m/s	m/s	(-)	(-)
1	2,85	102,6	102,6	-0,685	2,485	3,17	3,17	2,304	2,304	0,885	38,435	21,69	0,8404	#####	2,865
2	2,63	94,68	94,68	-0,435	4,365	4,8	4,8	2,462	2,462	1,237	50,241	21,69	0,7755	0,036	4,338
3	2,6	93,6	93,6	-0,265	5,965	6,23	6,23	2,582	2,582	1,587	61,489	21,69	0,7667	0,035	5,63
4	2,4	86,4	86,4	-0,115	7,405	7,52	7,52	2,661	2,661	1,769	66,467	21,69	0,7077	0,033	6,796
5	2,2	79,2	79,2	0,125	9,205	9,08	9,08	2,74	2,74	1,958	71,435	21,69	0,6487	0,03	8,205
6	2	72	72	0,365	10,925	10,56	10,56	2,78	2,78	2,07	74,447	21,69	0,5898	0,027	9,543
7	1,75	63	63	0,595	13,005	12,41	12,41	2,78	2,78	2,128	76,553	21,69	0,516	0,024	11,21
8	1,55	55,8	55,8	0,795	14,605	13,81	13,81	2,74	2,74	2,098	76,547	21,69	0,4571	0,021	12,48
9	1,2	43,2	43,2	1,015	16,125	15,11	15,11	2,582	2,582	1,777	68,831	21,69	0,3539	0,016	13,65
10	0,8	28,8	28,8	1,245	17,565	16,32	16,32	2,343	2,343	1,279	54,602	21,69	0,2359	0,011	14,75
11	0,5	18	18	1,375	18,285	16,91	16,91	2,085	2,085	0,829	39,738	21,69	0,1474	0,007	15,28
12	0	0	0	1,845	19,805	17,96	17,96	1,549	1,549	0	0	21,69	0	0	16,23

6. Gráficos

De isorendimiento y potencia vs caudal.

grafico 2

Grafico 3

¿Cuáles son las condiciones óptimas de operación de esta bomba?

Cuando el caudal esta entre 50 y 70 [m^3/h] es cuando la bomba presenta un mejor rendimiento

¿Las curvas tiene la forma esperada?

Sí, a medida que el caudal aumenta el H disminuye

¿Cuál es la potencia máxima consumida?

La potencia máxima consumida del eje es de 4,335 [kW], se da cuando la velocidad es igual a 3070 [rpm], con un caudal de 72 [m3/h] y altura 16,28 [mca].

¿Qué tipo de curvas son?

Son curvas característica de las bombas centrifugas

Curva φ vs \emptyset .

¿La nube de puntos que conforman esta curva son muy dispersos?

Del gráfico se puede observar que la nube de puntos no está dispersa. Puesto que es un gráfico que su construcción está basada en parámetros adimensionales

Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es? Justifíquelo.

Es una bomba centrifuga de media velocidad especifica puesto que la curva de H vs Q, muestra una curva del tipo ascendente, que se da en bombas de tipo de media velocidad especifica.

7. Conclusiones

En este ensayo pudimos apreciar el comportamiento de un bomba mediante la graficación de sus curvas, vimos sus puntos de mejor rendimiento y como se forma el grafico de caudal vs altura que es uno de los más importante al momento de seleccionar una bomba.