NeTrainSim: A Longitudinal Freight Train Dynamics Simulator for Electric Energy Consumption

Ahmed Aredah

Ph.D. Student, Dept. of Civil & Environmental Engineering, VT Research Assistant, Center for Sustainable Mobility, VTTI

Karim Fadhloun

Research Associate, Center for Sustainable Mobility, VTTI

Hesham A. Rakha

Samuel Reynolds Pritchard Professor of Engineering Charles E. Via, Jr. Dept. of Civil & Environmental Engineering Bradley Dept. of Electrical and Computer Engineering Director, Center for Sustainable Mobility, VTTI

George List

Professor and Former Head Civil, Construction, and Environmental Engineering NC State University

Presentation Outline

- 1. Problem Statement
- 2. Motivation
- 3. Research Gap
- 4. Research Scope
- 5. NeTrainSim Description
- 6. Train Dynamics Formulation
- 7. Case Studies
- 8. Other Potential Utilization Areas
- 9. Conclusions
- 10.Q&A

1. Problem Statement

 Freight locomotives efficiently move cargo but are carbon-intensive.

 Class I freight locomotives consumed 3.7 billion gallons of diesel fuel and emitted 37 million tons of CO₂ in the past year.

U.S. Energy Information Administration. Annual Energy Outlook 2022. https://www.eia.gov/outlooks/aeo/data. Accessed May 19, 2022.

2. Motivation

- To reach green environment, a simulator is required to:
 - 1. Assess freight network performance,
 - 2. design alternative powertrains,
 - Identify necessary infrastructure investments,
 - 4. Determine energy system response.

3. Research Gap

- Available network simulators do not track the second-by-second movements and interactions of multiple trains on a rail graph for energy/fuel consumption calculation.
 - Tools that track second-by-second movement of trains are single train simulators or multi-train simulators on a single track.
 - To our best of knowledge, there are no simulators that model an entire network graph.

4. Research Scope

- Develop a network simulator that models:
 - 1. Train Interactions in the same direction,
 - 2. Train Interactions in **different** directions (resolve conflicts),
 - 3. Train dynamics considering each locomotive/car as a **point mass**, and
 - 4. Train **energy consumption** (diesel, electric, hydrogen, ...).

Network map and facilities. https://www.cpr.ca/en/choose-rail/network-and-facilities. Accessed Nov 29, 2022.

5. NeTrainSim Overview

- <u>Ne</u>twork <u>Train</u> <u>Simulator</u>.
 - Time-based network modeling of all trains
 - Track the position of each locomotive and car at user specified time steps to compute the forces on the train
 - Does not model coupler forces
 - Open-Source Python OOP

5. NeTrainSim GUI

■ Form Trajectory Forces Train ID: 1 X-Axis Variable: Distance - Time (hr) Grade (%) — Curvature (%) Distance (km) Acceleration (m/s²) ← → | + Q = x=15.5 y=0.008

(a) Pre-processing GUI

(b) Simulation Visualization

(c) Post-processing GUI

5. NeTrainSim Inputs

- 1. A network graph (nodes, links, signals),
- 2. Train configuration and schedule,
 - Energy sources
 - Diesel
 - Electric battery
 - Electric gantry
 - Hydrogen fuel cell

5. NeTrainSim Input/Output Interface

5. NeTrainSim High-level Logic

5. NeTrainSim Detailed Logic

Tractive Force (N):

$$F_{t|n}(t) = \sum_{l} min\left(\frac{1000\eta_n\lambda_n(t)P_l^{max}}{u_n(t)}, \mu m_l g\right)$$

Resistance Force (N):

Stance Force (N).
$$R_r = \frac{4.44822 \times 1.10231}{1000} \sum_{c,l} m_{c,l} \left(\frac{1.5 + \frac{16329.34}{m_{c,l}^a} + 0.0671 u_n(t) + \frac{16329.34}{m_{c,l}} + \frac{1.5 + \frac{1$$

m: total weight of car/locomotive, η : Transmission efficiency, λ_n : Throttle level (notch number). P_l^{max} : Max power of locomotive, $u_n(t)$: Current speed, μ : Friction coef., $A_{c,l}$: Frontal area, $K_{c,l}$: Streamlining coef., G: Grade, C: Curvature

λ_n - Notch number:

Time to activate brakes: $T_n =$

$$T_n = \frac{L_c^{max}}{u_s} + t_{pr}$$

$$s_n(t) = s_n^j + T_n u_n(t)$$

Safe spacing:

$$\tilde{u}_n(t + \Delta t) = min\left(\frac{s_n(t) - s_n^j}{T_n}, u_f\right)$$

Time to collision:

$$TTC = min\left(\frac{s_n(t) - s_n^j}{max(u_n(t) - u_{n-1}(t), 0.0001)}, TTC_{max}\right)$$

 u_s : Speed of Sound, L_c^{max} : Brakes signal travelled length, t_{pr} : Driver perception-reaction time, s_n^j : Spacing when stopped, **TTC**: Time To Collision, μ : friction coef., T_n : time step, $a_n^{max}(t)$: max acceleration, $s_n(t)$: train Spacing, s_n^j : train critical length.

Acceleration:

Estimate:

$$a_{n,1-1}(t) = \max\left(\frac{\widetilde{u}_n(t+\Delta t) - u_n(t)}{TTC}, -\mu g\right)$$

Clear headway:

$$a_{n,1-2}(t) = \min\left(\frac{\widetilde{u}_n(t+\Delta t) - u_n(t)}{T_n}, a_n^{max}(t)\right)$$

Acceleration selection:

$$a_{n,1-3}(t) = (1 - \beta_1)a_{n,1-1}(t) + \beta_1 a_{n,1-2}(t)$$

$$\beta_1 = \begin{cases} 0, & a_{n,1-1}(t) < 0 \\ 1, & a_{n,1-1}(t) \ge 0 \end{cases}$$

 $u_n(t)$: current speed, $u_{n-1}(t)$: leader speed, $\widetilde{u}_n(t+\Delta t)$: next time step predicted speed,. **TTC**: Time To Collision, μ : friction coef., T_n : Time to activate brakes, $a_n^{max}(t)$: max acceleration, μ : Friction coef.

Acceleration:

Train Following:
$$a_{n,1-4}(t) = max \left(min \left(\frac{u_{n-1}(t) - u_n(t)}{T_n}, a_n^{max}(t) \right), -\mu g \right)$$

Acceleration selection:
$$a_{n,1}(t) = \beta_2 a_{n,1-3}(t) + (1-\beta_2) a_{n,1-4}(t)$$

$$\beta_2 = \begin{cases} 1, & \text{spacing ahead is within range policy} \\ 0, & \text{spacing ahead is not within range policy} \end{cases}$$

 $u_n(t)$: current speed, $u_{n-1}(t)$: leader speed, μ : friction coef., $a_n^{max}(t)$: max acceleration.

Acceleration:

$$a_{n,2}(t) = \min\left(\frac{\left(u_n(t)^2 - u_{n-1}(t)^2\right)^2}{4\left(\max\left(s_n(t) - s_n^j - T_n u_n(t), 0.0001\right)\right)^2 d_{des}}, \mu g\right)$$

Acceleration selection:
$$a_n(t) = (1 - \gamma)a_{n,1}(t) + \gamma a_{n,2}(t)$$

$$\gamma = \frac{u_n(t) - u_{n-1}(t) + \sqrt{\left(u_n(t) - u_{n-1}(t)\right)^2}}{2 \times \max(|u_n(t) - u_{n-1}(t)|, 0.0001)}$$

 $u_n(t)$: current speed, $u_{n-1}(t)$: leader speed, μ : friction coef.

Acceleration Summary:

Estimate:
$$a_{n,1-1}(t) = max \left(\frac{\widetilde{u}_n(t+\Delta t) - u_n(t)}{TTC}, -\mu g\right)$$
 Clear headway:
$$a_{n,1-2}(t) = min \left(\frac{\widetilde{u}_n(t+\Delta t) - u_n(t)}{T_n}, a_n^{max}(t)\right)$$

$$a_{n,1-3}(t)$$
 Train Following:
$$a_{n,1-4}(t) = max \left(min \left(\frac{u_{n-1}(t) - u_n(t)}{T_n}, a_n^{max}(t)\right), -\mu g\right)$$
 Collision Avoidance:
$$a_{n,2}(t) = min \left(\frac{\left(u_n(t)^2 - u_{n-1}(t)^2\right)^2}{4\left(max\left(s_n(t) - s_n^j - T_n u_n(t), 0.0001\right)\right)^2 d_{des}}, \mu g\right)$$

 $u_n(t)$: current speed, $u_{n-1}(t)$: leader speed, $\widetilde{u}_n(t+\Delta t)$: next time step predicted speed,. **TTC**: Time To Collision, μ : friction coef., T_n : Time to activate brakes, $a_n^{max}(t)$: max acceleration, $s_n(t)$: train Spacing, s_n^j : train critical length.

Wang, J., Rakha, H.A., 2018. Longitudinal train dynamics model for a rail transit simulation system. Transp. Res. Part C Emerg. Technol. 86, 111–123. https://doi.org/10.1016/j.trc.2017.10.011

Acceleration:

Acceleration Smoothing: $a_n(t) = \alpha \times a_n(t) + (1 - \alpha) \times a_n(t - \Delta t)$

Jerk constraint:

$$\widetilde{a}_{n}(t) = \min(|a_{n}(t)|, |a_{n}(t - \Delta t)| + j_{max}\Delta t) * -1^{p}$$

$$p = \begin{cases} 0, & a_{n}(t) \geq 0 \\ 1, & a_{n}(t) < 0 \end{cases}$$

Speed:

$$u_n(t + \Delta t) = max(min(u(t) + \widetilde{a}(t) \times \Delta t, u_f), 0)$$

 $u_n(t)$: current speed, $u_{n-1}(t)$: leader speed, $\widetilde{u}_n(t+\Delta t)$: next time step predicted speed,. **TTC**: Time To Collision, μ : friction coef., T_n : time step, $a_n^{max}(t)$: max acceleration, $s_n(t)$: train Spacing, s_n^j : train critical length.

6. NeTrainSim Model: Energy Consumption

Train power:

$$P_{W|n}(t) = (m_n a_n(t) + R_n(t)) \times u_n(t)$$

Regenerative coef.: $\eta_{re}(t) = \begin{cases} \frac{1}{e^{\frac{\gamma}{|a(t)|}}} & \forall P_{W|n}(t) < 0 \\ 0 & \forall P_{W|n}(t) \geqslant 0 \end{cases}$

$$f(t) = \begin{cases} e^{|a(t)|} \\ 0 & \forall P_{W|n}(t) \geqslant 0 \end{cases}$$

Consumed power:
$$P_{B,n}(t) = \begin{cases} \frac{P_{W|n}(t)}{\eta_{W-T}} + P_A, & \forall P_{W|n}(t) > 0 \\ P_{W|n}(t) \times \eta_{re|n} \times \eta_{W-T} + P_A & \forall P_{W|n}(t) \le 0 \end{cases}$$

 η_{re} : regenerative eff., γ : regenerative coef., $\mathbf{a(t)}$: train acceleration, $P_{W|n}$: driving used power, η_{W-T} : driveline eff., P_A : used auxiliary power

7. Case Studies

A. 2 Scenarios: Validate train dynamics results,

B. 1 Scenario: Test conflict resolution, and

C. 1 Scenario: Network run.

• 2 Scenarios: Validate train dynamics results:

Value	Train Characteristics	Value
162	Track Length (km)	322
3262	Max Locomotive Power (kW)	2445.9
3	Number of Locomotives	11
71	Number of Cars	139
198	Locomotive Weight (ton)	190
44	Car Weight (ton)	100
	162 3262 3 71 198	Track Length (km) Max Locomotive Power (kW) Number of Locomotives Number of Cars Locomotive Weight (ton)

Trains Characteristics in Scenario I

Trains Characteristics in Scenario II

A. Validate train dynamics results - Scenario I

Speed Profile in Scenario I

A. Validate train dynamics results – Scenario I (Cont.)

Instantaneous Energy Consumption in Scenario I

Electric Total Energy Consumption (MWh) = 10.12 (Predicted)
10.58 (Ground Truth)

A. Validate train dynamics results - Scenario II

Speed Profile in Scenario II

A. Validate train dynamics results - Scenario II (Cont.)

Instantaneous Energy Consumption in Scenario II

Electric Total Energy Consumption (MWh) = 83.5

A. Scenario II - Extension - Following Model

A. Scenario II - Extension - Following Model (Cont.)

 $O(\#train^2)$

B. <u>Test conflict resolution – Scenario III:</u>

B. Test conflict resolution - Scenario III (Cont.):

B. Test conflict resolution - Scenario III - Case 1:

B. Test conflict resolution - Scenario III - Case 2:

B. Network Run – Scenario VI:

(a) Original Chicago Network

(b) Simplified Chicago Network

B. Network Run – Scenario VI (Cont.):

7. Trajectory Optimization

- Lookahead distance?
- Update throttle level?

8. Other Potential Utilization Areas

- Commodities path planning,
- Compare energy consumption of different energy sources,
- Optimize recharge station locations,
- Infrastructure-decision-making-investment tool.

9. Conclusion

- NeTrainSim: A Network Train Simulator.
- Energy consumption for different powertrains.
- Train following.
- Conflict resolution.
- Trajectory optimization.

Funded by

The US Department of Energy

Thank you!

Literature Review

- Simulator Types:
 - Macroscale simulators typically ignore the in-train forces to achieve scalability.
 - Microscale simulators include longitudinal dynamics and/or any relative motion between vehicles in the direction of the train movement.

- Simulator Types (Cont.):
 - Whole-trip simulators replicate one fixedconfiguration train running on a fixed route for the in-train forces and their patterns.
 - Short-trip provide a microanalysis of a single train vehicle or the train as a whole.

Wu, Q. Optimisations of Draft Gear Designs for Heavy Haul Trains. Central Queensland University, Australia, 2017.

- Whole-trip Simulators in Literature:
 - Cipek et al.:
 - Converted a diesel locomotive to a battery hybrid equivalent,
 - Derived fuel consumption and gases emissions models.

- Whole-trip Simulators in Literature (Cont.):
 - Train Energy and Dynamics Simulator (TEDS) for:
 - Safety and risk evaluations,
 - Energy consumption studies,
 - Incident investigations,
 - Train operation studies,
 - Ride quality evaluations.

- Whole-trip Simulators in Literature (Cont.):
 - Analysis of Train/Track Interaction Forces Simulator (ATTIF) for:
 - Accident investigation,
 - Train configuration evaluation,
 - Assist in the training of train operators.

- Whole-trip Simulators in Literature (Cont.):
 - Train Dynamics and Energy Analyzer/train Simulator
 - (TDEAS) for:
 - Longitudinal train dynamics,
 - Energy analyses.

NeTrainSim Model: Energy Consumption

(A) DC Bus to Tank Efficiency by Notch Number

Locomotives drive-line efficiencies by energy source

(B) Wheel to DC Bus Efficiency by train Speed