3. Evolution of the magnetic Reld
The lorentz force [in ideal MHD $\hat{f} = \frac{1}{\mu_0} (\vec{\theta} \times \vec{R}) \times \vec{\theta} \times$
Induction equation Recall the field transformation when we go into the rest frame of the ions $\vec{E}' = \vec{E} + \vec{\nabla} \times \vec{R}$
Plasma (assumed to be) a perfect conductor,
SO EL O D D E = - VXB.
But Maxwell's 3rd equation states that
OR = - FXE
and so
$\frac{\partial \mathcal{R}}{\partial t} = \vec{\nabla} \times (\vec{\nabla} \times \vec{R}).$

Quick side note: by definition $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0 \quad \forall \vec{A}$ and so the induction equation implies 元司·民 = 司·[元(文文)] = 0 ⇒ ₹. ₹ conserved (=0); 1 good consistency check. The induction equation $\frac{\partial \vec{R}}{\partial t} = \vec{d} \times (\vec{u} \times \vec{B})$ implies so-called "flux freezing". Flux freezing can be analysed in a number of ways, first consider the "lindquist theorem". Lindquist theorem

 $\frac{\text{Lindquist-theorem}}{\text{Rx}(\vec{u} \times \vec{R})} = \frac{\text{Eijkd}}{\text{Eijkd}} \frac{\text{Ekem UeBm}}{\text{Ekem UeBm}}$ $= \left[\text{SieSjm} - \text{SimSje} \right] \frac{1}{2!} \left(\text{UeBm} \right)$ $= \frac{1}{2!} \left(\text{UiBj} \right) - \frac{1}{2!} \left(\text{UiBe} \right)$ $= \frac{1}{2!} \left(\text{UiBj} \right) + \left(\text{Bidj} \right) \text{Ui} - \frac{1}{2!} \left(\text{Jiuj} \right) - \left(\text{UiJi} \right) \text{Bi}$ $= \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) + \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!} - \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) - \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!}$ $= \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) + \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!} - \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right)$ $= \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) + \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!} - \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right)$ $= \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) + \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!} - \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right)$ $= \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) + \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!} - \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right)$ $= \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) + \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!} - \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right)$ $= \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) + \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!} - \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right)$ $= \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) + \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!} - \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right)$ $= \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!} - \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{1}{2!} + \frac{1}{2!} \left(\frac{1}{2!} \cdot \frac{1}{2!} \right) \frac{$

$$\frac{\partial \vec{R}}{\partial t} + (\vec{x} \cdot \vec{r})\vec{R} = (\vec{R} \cdot \vec{r})\vec{x} - \vec{R}(\vec{r} \cdot \vec{x})$$
Advertion stretching compression

Recall mass conservation

$$3 \frac{\partial P}{\partial t} + (\vec{u} \cdot \vec{r})P = -P(\vec{r} \cdot \vec{u})$$

Substitute back into induction equation

$$\frac{\mathcal{D}\vec{R}}{\mathcal{P}t} = (\vec{R} \cdot \vec{r})\vec{l} + \frac{\vec{R}}{\rho} \frac{\mathcal{P}\rho}{\mathcal{P}t}$$

$$\frac{1}{e} \frac{\overrightarrow{D}}{\overrightarrow{D}} - \frac{\overrightarrow{R}}{e^2} \frac{\overrightarrow{D}}{\overrightarrow{D}} = (\overrightarrow{R} \cdot \overrightarrow{C}) \overrightarrow{C}$$

$$\frac{\mathcal{D}}{\mathcal{D}t}\left(\frac{\vec{R}}{e}\right) = \left[\left(\frac{\vec{R}}{e}\right) \cdot \vec{\mathcal{T}}\right] \vec{\mathcal{U}}$$

"Lindquist identity".

Interprotation Consider two fluid elements seperated by Srit). Ti.e., during St 7 7 (F+87, t) St A(t,7) 87(t) B(t,7+87) $\mathbb{R} \to \mathbb{R}'$ As the flow evolves SP will change. Trivial vector identity $A'B' = Stit+dt) = -\overrightarrow{AA'} + \overrightarrow{AB'} + \overrightarrow{RB'}$ = AB + (BB) - AB) = S7(t) + 3(7+57, t) St - 3(7, t) St = 87(t) + (87.7) 3 St + ... $\frac{\partial}{\partial t} S \overrightarrow{r} = S \overrightarrow{r} (t + dt) - S \overrightarrow{r} (t) = (S \overrightarrow{r}, \overrightarrow{r}) \overrightarrow{v}$ Which is the change of line element moving with

The since
$$\frac{\mathbb{R}}{\mathbb{R}}(t) = (\frac{\mathbb{R}}{\mathbb{R}} \cdot \mathbb{R}) \cdot \mathbb{R}$$
 and $\frac{\mathbb{R}}{\mathbb{R}}$ are parallel: $\frac{\mathbb{R}}{\mathbb{R}} = \alpha S \cdot \mathbb{R}$

Since $\frac{\mathbb{R}}{\mathbb{R}}(t+st) = \frac{\mathbb{R}}{\mathbb{R}}(t) + \frac{\mathbb{R}}{\mathbb{R}}(t) \cdot \mathbb{R}$
 $= \frac{\mathbb{R}}{\mathbb{R}}(t) + (\frac{\mathbb{R}}{\mathbb{R}} \cdot \mathbb{R}) \cdot \mathbb{R}$
 $= \alpha S \cdot \mathbb{R}(t) + \alpha (S \cdot \mathbb{R} \cdot \mathbb{R}) \cdot \mathbb{R}$
 $= \alpha S \cdot \mathbb{R}(t+st)$

oo $\mathbb{R}(t+st)$ is parallel to $S \cdot \mathbb{R}(t+st)$.

In other words, magnetic field lines Move with the flow: if fluid elements Start on the same field line they stay on the same field line as they move with the flow.

But we discussed last week that field lines actively resist bending (through the force $\mathbb{Z}^2 \xrightarrow{2b}$) and compression (through the force $-\overline{\mathcal{F}}_1(\mathbb{F}^2/z_{\mu o})$).

Following fluid elements as they move around in voriably ends up with either field bending or compressing of complex phenomena.

Alfrens Theorem Begin by defining the magnetic flux through a Surface S(t) by 東(t) = 『张比. ds Consider now a later time t > t+8t. then $\overline{P}(t+st) = \iint \overline{R}(t+st) \cdot d\overline{S}$ S(t+st)and we define the malagrangian derivative of \$ by $\frac{D\Phi}{Dt} = \frac{\epsilon}{8\epsilon + 30} \left[\frac{\Phi(t + 8t) - \Phi(t)}{8\epsilon} \right]$ ute DI, consider this volume This describes the volume Wt Ss Swept out by a loop $S_1 \rightarrow S_2$ over a fine St asit is

advected by flow 17.

Trivially M7.8dV =0 as 7.8 =0 but $\iiint_{V} \vec{\beta} \cdot \vec{B} dV = \oint_{C} \vec{B} \cdot d\vec{S}$ by divergence theorem. Then $\begin{cases}
\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = - \iint_{S_1} \vec{R}(t+8t) \cdot d\vec{S}_1 + \iint_{S_2} \vec{R}(t+8t) \cdot d\vec{S}_2
\end{cases}$ + JE B(++8t). dS3 = 0 ·· \[\frac{1}{3} (t+8t). \ds_2 = \(\begin{array}{c} \frac{1}{3} (t+8t). \ds_3 \\ \end{array} - \(\begin{array}{c} \frac{1}{3} (t+8t). \ds_3 \\ \end{arra SLEY \$ (++St) → \$\P(+8t) = \(\vec{\mathbb{R}}(\vec{\mathbb{R}}(t) + \vec{\mathbb{R}}(\vec{\mathbb{R}}).\) ds 5(t) P - JJ B (++8+) . S. 5 = 草的 + 红 野 . 成。 - ST B(++84). 233 but $d\vec{S}_3 = d\vec{l} \times \vec{l} \cdot St$ and $\iint \vec{B}(t+St) \cdot d\vec{S}_3 = \iint \vec{B}(t+St) \cdot (d\vec{l} \times \vec{l} \cdot St)$ and so to linear order in St

 $\Re \mathbb{R}(t+St), dS_3 = \iint \mathbb{R}(t), (d\mathbb{R} \times \mathcal{U} St)$ (properties of scalar triple product) $= \iint (\mathcal{U} \times \mathbb{R}), d\mathbb{R} St$ (Stakes theorem)

= ST TX (QXR). ds St

00 combining our routs

= 4(0) $\Rightarrow D\Phi = 0. \Rightarrow \Phi \text{ conserved}.$

Alfrén's theorem has an interesting property: it implies that field lines one "kozen into" the slaw.

To see this, take a field line and encare it in a "flux tube"!

As the tube deforms (is advected with the flaw) the field line must stay within it — as the flux through the two ends must stay constant, and the flux through the flux through the sides must remain zero.

This can then lead to field amplification by fluid motion

by conservation of flux $B_1 S_1 = B_2 S_2$

By conservation of mass $R_1S_1R_1 = R_2S_2R_2$ and therefore

$$\frac{B_1}{P_1} = \frac{B_2}{P_2} \Rightarrow \frac{B_2}{P_1} = \frac{P_2 l_2}{P_1 l_1}$$

In an incompressible fluid $\ell_1 = \ell_2$, and the field is amplified by a factor ℓ_2/ℓ_1 .

In a compressible fluid we could get even more amplification if $\ell_2 > \ell_1$.

Ultimore fate of the field

Recall $\frac{\partial \vec{R}}{\partial t} + (\vec{x} \cdot \vec{r}) \vec{R} = (\vec{R} \cdot \vec{r}) \vec{x} - \vec{R} (\vec{r} \cdot \vec{x})$

the question: "are there fluid flaws that lead to sustained amplification of \$?" is the (famous) MHD dynamo problem.

Interestingly, in two dimensions were have a "no dynamo theorem" [due to Zeldovich et al. 1984].

We can write a two-dimensional R-field os $\vec{\mathbb{R}} = \vec{\mathbb{R}} \times (A\hat{\mathbb{Z}}) ; A = A(x,y).$

Then $\mathcal{R} = \frac{2}{2} \times (2 \times 2) \Rightarrow \frac{2}{2} \left(2 \times 4 \times 2\right) = \frac{2}{2} \times (2 \times 2 \times 2)$ Tun cuv (" $\mathcal{R} = \frac{2}{2} \times (2 \times 2) = \frac{2}{2} \times (2 \times 2 \times 2)$

A Z = Zx (ZxAZ)

= Eijkuj Eklm de Am

= [fiesin - Sinsie] WideAm

= MjdiAj - MjdjAi

Zero as U=0 (Q-7)AZ

 $\partial A + (\vec{u} \cdot \vec{\forall}) A = 0 \Rightarrow no growth.$

(decay's of non-ideal effects included).

In 3 dimensions we can however have field growth.

Simple example: consider a retating-flow

 $\vec{u} = u_{\delta}(r) \vec{\beta}$ with an initial field Fritially: $\vec{B} = \vec{B}_r \hat{r}$. [Simple model of accretion flow].

Assume incompressible [7.0 =0], then

 $\frac{\partial \vec{R}}{\partial t} = -(\vec{R} \cdot \vec{R}) \vec{R} + (\vec{R} \cdot \vec{R}) \vec{R}$

Move to ϕ component [assume $\frac{3}{36} = 0$ by symmety].

2Bb = - upBr = Br 2up

The advection Stretching

 $\Rightarrow \frac{d\mathcal{B}\phi}{dt} = \left(\frac{2\vec{R}}{2t} + (\vec{x}.\vec{z})\vec{R}\right) = \mathcal{B}_r \frac{\partial U\phi}{\partial r}$

Stretching of Br produces By.

Eventually $\frac{B^2}{2\mu b} \sim \frac{1}{2} \rho u^2$ and lorentz force modifies flow, will not grow indefinitely in this simple manner.