Earth Science

~ SPRING 2021 ~

	Date	Topic	NGSS (if applicable)	Page(s)
Week 0	Monday, Jan 11- Friday, Jan 15	Watch the welcome video or join one of our meetups for a face-to-face orientation!		
Week 1	Monday, Jan 18	Holiday - no class		
	Wednesday, Jan 20	What are you breathing?		
	Friday, Jan 22	Art Project: Layers of the a	ntmosphere	
Week 2	Monday, Jan 25	Could you live in a cloud?		
	Wednesday, Jan 27	Predicting weather	4-PS3-1	
	Friday, Jan 29	Science Activity: How do p	olanes fly? 4-PS3-3	
Week 3	Monday, Feb 1	Severe storms		
	Wednesday, Feb 3	Global weather patterns		
	Friday, Feb 5	Gameshow review		
Week 4	Monday, Feb 8	Rainforest biomes	4-LS1-2, 5-ESS3-2	
	Wednesday, Feb 10	Desert biomes	4-LS1-2, 5-ESS3-2	
	Friday, Feb 12	Art Project: Climate Zone (Quadramas	
Week 5	Monday, Feb 15	Holiday - no class		
	Wednesday, Feb 17	What caused the ice ages?		
	Friday, Feb 19	Science Activity: Mason Ja	ar Biomes	
Week 6	Monday, Feb 22	The ozone hole		
	Wednesday, Feb 24	Fossil fuels		
	Friday, Feb 26	Gameshow review		
Week 7	Monday, Mar 1	The story of CO ₂		
	Wednesday, Mar 3	The future of climate change		
	Friday, Mar 5	Science Activity: spaghetti	<i>bridge</i> 3-5-ETS1-1	
Week 8	Monday, Mar 8	Where do planets come from	n? 5-ESS1-1	
	Wednesday, Mar 10	Earth's structure	5-ESS1-2, 5-PS2-1	
	Friday, Mar 12	Art Project: Layers of Earth	h	
Week 9	Monday, Mar 15	How do volcanoes work?		
	Wednesday, Mar 17	Sedimentary rocks	4-ESS2-1	
	Friday, Mar 19	Gameshow review		
Week 10	Monday, Mar 22	Geologic time		
	Wednesday, Mar 24	How are fossils formed?		
	Friday, Mar 26	Science Activity: Candy Ro	ock Cycle 4-ESS2-1	

	Date	Topic	NGSS (if applicable)	Page(s)
Week 11	Monday, Mar 29			
	Wednesday, Mar 31	Spring Break		
	Friday, Apr 2			
Week 12	Monday, Apr 5	How to identify rocks		
	Wednesday, Apr 7	Spelunking for coral		
	Friday, Apr 9	Art Project: Moon Phase		
Week 13	Monday, Apr 12	Where is Earth's water?	5-ESS2-2	
	Wednesday, Apr 14	The strangest liquid		
	Friday, Apr 16	Science Activity: Waves	4-PS4-1, 4-PS4-2	
Week 14	Monday, Apr 19	Why are there tides?		
	Wednesday, Apr 21	Ocean currents		
	Friday, Apr 23	Gameshow Review		
Week 15	Monday, Apr 26	The strangest lakes		
	Wednesday, Apr 28	How rivers work		
	Friday, Apr 30	Art Project: Watershed Map	4-ESS2-2	
Week 16	Monday, May 3	Groundwater & Aquifers		
	Wednesday, May 5	Comparing 3 ecosystems	5-ESS2-1	
	Friday, May 7	Gameshow review		

Class is taught live on the above dates at 10:00-10:45 a.m. Pacific / 1:00-1:45 p.m. Eastern time on the Science Mom YouTube channel. The livestreams are only accessible to registered attendees and scholarship recipients. The replays and recordings of the lessons are freely available and can can be found at https://science.mom/earthscience.

There are 5 art projects and 5 hands-on science activities that can be completed throughout this course. A complete supply list is available on the following page.

Have questions? Contact jenny@science.mom

Supply List for Friday Projects:

January 22 - Layers of Atmosphere

- Paper (cardstock preferred, but any type will work)
- Crayons
- Watercolors or markers
- Gluestick or tape
- Scissors
- Printed template (optional found in the appendix of these notes)

January 29 - How do Planes Fly?

- Roll of tissue paper
- 3 ping pong balls
- 2 pencils OR a ruler OR another long straight object
- 4 Balloons
- String
- A wooden or paper "helicopter" toy (instructions in the appendix)
- A paper airplane (instructions in the appendix)
- Hair dryer (can substitute a straw if no hairdryer is available)

February 12 - Climate Zone Quadramas

- Cardstock
- · Crayons or markers for coloring
- Scissors
- Gluestick or tape
- Printed template (found in the appendix)

Feb 19 - Mason Jar Biomes

- 2 mason jars and lids
- 1 disk of compressed coconut fiber OR 2 cups of potting soil
- ½ cup Gravel
- Food scraps from the kitchen
- 1 bright light that can be placed over one of the jars
- Clover OR alfalfa OR chia seeds

March 5 - Spaghetti Bridge

- A box of thin spaghetti noodles (angel hair and regular spaghetti also work)
- Tape OR Marshmallows
- String and a weight

March 12 - Layers of Earth

- Paper (cardstock preferred, but any type will work)
- Crayons
- Watercolors or markers
- Gluestick or tape
- Scissors
- Printed template (optional found in the appendix)

March 26 - Candy Rock Cycle

- Skittles or other round candy with a marking on one side (m&ms are a good substitute)
- Starbursts or other chewy candy that has different colors and will soften in the microwave or oven
- Aluminum foil
- Knife or cheese grater
- A stove and pan or a candle and tongs

April 9 - Moon Phases

- Cardstock
- Crayons
- Watercolors or markers
- Printed template (found in the appendix)
- Sidewalk chalk

April 16 - Waves

- 1 lightweight blanket or sheet
- 3 pingpong balls
- 1 slinky

April 30 - Watershed Map

- Crayons or markers
- Printed Template (found in the appendix)

Please note: the supply list is subject to change! A finalized list will be posted on Pecember 1, 2020 when the full notes are published.

Why Earth Science?

Why study Earth Science? Well, Earth is the only place in our solar system where we find living things. The animals, plants, fungi, and single-celled organisms that call Earth home have one important thing in common; they each live in and depend on these four spheres:

Atmosphere: all the air surrounding our planet

Lithosphere: all the rocks! The crust of our planet

Biosphere: all the living things on planet Earth

Hydrosphere: The water on, under, and above the surface of our planet

Each of these spheres interacts with the others in fascinating ways, and the study of these spheres and their interactions is called *Earth Science*. In this course, we're going to focus our attention on the atmosphere, lithosphere, and hydrosphere. We can't wait to show you more

= The ATMOSPHERE

Have you ever felt sorry for a fish because it's trapped in a pond and can't walk around on land? Well, we live in air just like fish live in water, only we're too heavy to swim!

Just like a fish can't live without water, we can't live without air, which is a mixture of gases. The layer of gases surrounding a planet is called its atmosphere. Our atmosphere is important for more than breathing. It protects us from radiation, cycles nutrients and heat, and is the source of all our food.

Over the next several weeks, we'll learn exactly what it is that we're breathing and why it's so important for food, climate, weather, and life!

QUICK FACTS:

THE ATMOSPHERE IS MADE OF:

Nitrogen: 78% Oxygen: 20.9% Argon: 0.9%

Carbon Dioxide: 0.04%

Helium: 0.0005% Methane: 0.0001% Ozone: 0.00006%

At any given time there is a significant amount of **water vapor** in the air too. But since the amount of water is constantly changing, it isn't included in percentages of atmospheric gasses.

THE LAYERS ARE:

Troposphere: 1-12 km (1-7 miles)
Stratosphere: 12-50 km (7-31 miles)
Mesosphere: 50-80 km (31-50 miles)
Thermosphere: 80-700 km (50-440 miles)

Exosphere: 700-1,000 km (440-6,200 miles)

LAVERS of the ATMOSPHER REMAIN

How clouds are made

WATER

0

DROPLETS

0

0

0

RAINDROP

0

0

0

Most clouds are made of incredibly small droplets of water.
 These droplets are between 0.001 mm and 0.05 mm in size.
 Raindrops are 0.05 mm and larger, which is MUCH bigger than a water droplet. If the circles you see all around these words
 were water droplets, then THIS would be the size of a raindrop.
 To draw a raindrop at this scale.

FILL IN THE BLANKS USING THESE WORDS:

gas	water	humidi	ty pr	ecipitation
float	cond	lenses	merge	vapor

When water evaporates it turns into a _____ called _____

The amount of water vapor in the air is called the ______. When water ______ it changes from a gas into a liquid. Clouds are made from water droplets so small that they can ______ in air. If enough water droplets collide with each other, they can ______ to form a raindrop. Raindrops are too heavy to float, so they fall from the sky. This is called

____.

Sung to the tune of La Cucaracha. Best when performed with hand actions!

Evaporation,

Raise hands in a wavy motion Condensation,

Condensation,
Clap hands together up high
Precipitation's when it rains,
Bring hands down low
The water goes round
Move hands in a circle
From cloud to wet ground
Move hands in a circle
That's the water cycle song!
Clap three times when done!

CLOUD IN A BOTTLE DEMONSTRATION

Will the cloud appear or disappear?

Increasing the pressure makes the cloud _____.
Decreasing the pressure makes the cloud _____.

CAN YOU USE THE CLUES
FROM THE PICTURE BELOW
TO FILL IN THE BLANKS
USING THESE WORDS?

stratus cumulus nimbo alto cirrus The names of clouds come from latin root words. In latin, the word _____ means rain. ____ means a heap or pile. ____ means to extend, spread out, or cover with a layer. ____ means high or upper air, and the word ____ means a lock of hair or a tuft of horsehair.

Two Globs and a Pog - by Science Mom

Making a Forecast

To predict the weather, you need to know where the wind is blowing from and what it's bringing with it. Scientists who study weather (meteorologists) make their predictions by measuring the cloud cover, temperature, humidity, barometric pressure, and wind. If they gather this information for a large enough area, then they can use models to predict the weather for the

next 10 days. But how do you measure the temperature over 500 miles of desert, or the wind that's blowing over an entire prairie?

There are two important ways scientists gather the information they need to predict the weather: from

weather stations and satellites.

Then, once they have all of their data, they use computer models to predict what weather will happen next.

Whether or not the weather is fine, the wether is staying outside.

BELLWETHER: THE SHEEP THAT LEADS THE FLOCK AND WEARS A BELL AROUND ITS NECK. A TRENDSETTER.

A MODERN WEATHER STATION

FILL IN THE BLANKS USING THESE WORDS:					
thermometer anemometer meter					
barometer hygrometer					
An measures wind					
speed and direction. Air pressure is					
measured using a					
To measure the temperature, use a					
To measure					
humidity, a is the tool					
you'll need. You might have noticed that					
each of these tools contain the word					
which means "to measure." A					
good weather station will have all of these					
instruments, plus measure cloud cover					
and rainfall!					
Temperature Humidity					

HIGH

HIGH

I OW

How much water is in the air. Pressure

How much air there is

IOW

How hot the air is.

How much the air is moving. (Well, air molecules are ALWAYS

moving, wind is how much large

regions of air are moving)

Hands-on Activity

What does wind do?

- 1: Blow up 2 balloons and tie them off
- 2: Attach string to each
- 3: Suspend the balloons so they are about 4 inches apart
- 4: Circle your prediction
- 5: Try it!
- 6: Draw your results

How did your predictions diff from your results?					iffer	er	

Does air have weight?

- 1: Attach 2 empty balloons to the pencil with tape
- 2: Suspend the pencil from string so that it is balanced
- 3: Carefully remove one balloon, blow it up and reattach it in the same place
- 4: Circle your prediction
- 5: Draw what happened

How did your predictions differ from your results?					

When the wind blows, will the balloons...

Stay the same?

Push apart?

Push together?

Draw what you see!

Will the inflated balloon be...

Lighter?

Heavier?

Weigh the same?

Draw what you see!

Helicopter vs Plane

- 1: Build your helicopter and plane. See appendix if you would like directions
- 2: Circle your prediction
- 3: Toss your helicopter and plane from a height
- 4: How do their flight patterns differ?
- 5: Draw your results

How did your predictions differ from your results?

Tissue Trouble

- 1: Circle your prediction
- 2: Hold a tissue roll so that it will unravel away from you
- 3: Use your breath to blow over the top of the roll
- 4: Draw vour results
- 5: (Optional) Try it with the hair dryer!

from your results?						er

Flying Ping Pong Balls

- 1: Circle your prediction
- 2: Plug in your hair dryer and turn it on
- 3: Carefully place your ball over the air stream
- 4: What happens when you gently tip the drver?
- 5: Draw what happened

Glide?

Draw what you see!

When you blow over the top of a tissue roll...

Lift up?

Stay the same?

Curve around?

Draw what you see!

Will the ping pong ball...

Shoot into the air?

Fall to the ground? Continue hovering?

Draw what you see!

