PS8_Zhang

Haotian Zhang

March 2025

1 Answer for question 5

Table 1: Comparison of True and Estimated β Values using the closed-form solution

Coefficient	True β	Estimated $\hat{\beta}_{OLS}$
β_1	1.50	1.5010518
β_2	-1.00	-1.0008296
β_3	-0.25	-0.2516480
β_4	0.75	0.7490406
β_5	3.50	3.5005531
β_6	-2.00	-2.0008185
β_7	0.50	0.4987148
β_8	1.00	1.0028269
β_9	1.25	1.2465102
β_{10}	2.00	2.0010012

The OLS estimate $\hat{\beta}_{OLS}$, computed using the closed-form solution, is very close to the true value of β . Each estimated coefficient differs from its corresponding true value by only a very small amount, typically less than 0.01.

Because the sample size is large (N=100,000), the law of large numbers ensures that the OLS estimator converges closely to the true parameter values.

2 Answer for question 7

Table 2: Comparison of $\hat{\beta}_{OLS}$ using gradient descent, L-BFGS algorithm and

Nelder-Mead algorithm

Coefficient	Gradient Descent	L-BFGS algorithm	Nelder-Mead algorithm
β_1	1.5010518	1.5010518	1.1770684
β_2	-1.0008296	-1.0008296	-0.9164661
β_3	-0.2516480	-0.2516480	-0.1601914
β_4	0.7490406	0.7490406	0.9990248
β_5	3.5005531	3.5005531	3.0740315
β_6	-2.0008185	-2.0008185	-2.2658981
β_7	0.4987148	0.4987148	0.5961485
β_8	1.0028269	1.0028269	0.8454130
β_9	1.2465102	1.2465102	1.4415925
β_{10}	2.0010012	2.0010012	2.0331941

The results from gradient descent and L-BFGS algorithm are nearly identical to the true β , confirming their reliability. Nelder-Mead algorithm, while still converging to a reasonable result, performs worse in this context and is less accurate.

3 Answer for question 9

Table 3: Comparison of True β and Estimated $\hat{\beta}_{OLS}$ Using lm()

Coefficient	True β	lm() Estimate
β_1	1.50	1.5010518
β_2	-1.00	-1.0008296
β_3	-0.25	-0.2516480
β_4	0.75	0.7490406
β_5	3.50	3.5005531
β_6	-2.00	-2.0008185
β_7	0.50	0.4987148
β_8	1.00	1.0028269
eta_9	1.25	1.2465102
β_{10}	2.00	2.0010012

Overall, these estimates are identical to those obtained from the closed-form solution, gradient descent, and the L-BFGS algorithm. This confirms that the lm() estimates in R are very close to the ground truth and are a fast and convenient method.