## Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application.

## Listing of Claims:

- Claim 1. (currently amended) An emitter, comprising:
- a light source which emits a first spectrum of light; and

a hemispheric conversion material region formed separately from said light source and including conversion particles distributed uniformly throughout said hemispheric conversion material region, said conversion material region positioned in proximity to said light source such that at least some of said light source light passes through said conversion material region, said conversion material region shaped such that said light passing through travels through substantially similar thicknesses of said conversion material region, said conversion particles absorbing at least some of said light source light passing through said conversion material region and emitting a second spectrum of light,

wherein said first spectrum of light and said second spectrum of light are combined within said conversion material region, said emitter emitting a combination of said first and second spectrums at a substantially uniform color and intensity.

Claim 2. (original) The emitter of claim 1, wherein said light source emits said first spectrum of light along a plurality of light paths extending through said conversion material region, each light path extending through a substantially equal amount of conversion particles.

Claim 3. (canceled)

Claim 4. (canceled)

Claim 5. (original) The emitter of claim 1, wherein said conversion material region includes scattering particles which redirect at least some of said first and second spectrum of light.

Claim 6. (original) The emitter of claim 1, wherein said conversion material region comprises a glass lens.

Claim 7. (original) The emitter of claim 6, wherein said glass lens is formed separately from said light source and bonded proximate to said light source.

Claim 8. (original) The emitter of claim 1, wherein said conversion material region comprises a phosphor loaded cap.

Claim 9. (original) The emitter of claim 8, wherein said phosphor loaded cap is shaped to fit closely over one or more of the surfaces of said emitter such that said light source light passing through said phosphor cap passes

through substantially the same amount of said conversion particles.

Claim 10. (original) The emitter of claim 8, wherein said phosphor loaded cap includes a perforation for receiving an electrical contact to said light source.

Claim 11. (original) The emitter of claim 10, wherein said perforation is at least partially filled with at least one of conversion particles and scattering particles.

Claim 12. (original) The emitter of claim 8, wherein said phosphor loaded cap is formed separately from said light source and bonded proximate to at least on of the surfaces of said light source.

Claim 13. (original) The emitter of claim 1, further comprising a submount, said light source mounted to said submount and said conversion material region mounted to said submount.

Claim 14. (original) The emitter of claim 1, wherein said conversion material region is hemispheric shaped and said light source is arranged to emit light toward the base of and through said conversion material region.

Claim 15. (original) The emitter of claim 1, wherein said light source comprises a light emitting diode.

Claim 16. (original) The emitter of claim 1, emitting a spectrum of light that is a combination of said first and second spectrums of light.

Claim 17. (original) The emitter of claim 1, wherein said conversion material region is positioned in relation to said light sources such that there is a space between the two.

Claim 18. (currently amended) An emitter, comprising:

a light source which emits a first spectrum of light, said light source comprising first and second electrical contacts on opposite surfaces of said light source; and

a conversion material region lens having an inside surface that is substantially the same shape as a plurality of outside surfaces of said light source, said conversion material region lens comprising a phosphor loaded cap perforated to allow said first contact to be housed within said phosphor loaded cap, said phosphor loaded cap comprising a top perforation, said first contact arranged within the top perforation and is accessible through the top perforation, said conversion material region lens formed separately from said light source and positioned on said light source, said conversion material region lens arranged to absorb at least some of the light emitted by said light source and re-emit light at a second spectrum of light, said emitter emitting a combination of said first and second spectrums of light in a uniform third spectrum of light.

Claim 19. (currently amended) The emitter of claim 18, wherein said conversion material  $\underline{\text{region}}$  lens is separable from said position on said light source.

Claim 20. (previously presented) The emitter of claim 18, further comprising a submount, wherein said light source is positioned on a first surface of said submount.

Claim 21. (currently amended) The emitter of claim  $\frac{18}{20}$ , wherein said submount is configured to reflect some of said first and second spectrums of light.

Claim 22. (canceled)

Claim 23. (currently amended) The emitter of claim 20, wherein said at least one of said submount surface reflects some of the first and second spectrums of light to said conversion material <u>region</u> lens.

Claim 24. (original) The emitter of claim 20, wherein said submount includes one of a cup-shaped submount and a flat submount.

Claim 25. (canceled)

Claim 26. (canceled)

Claim 27. (currently amended) The emitter of claim 18, wherein said conversion material region lens comprises a

phosphor loaded cap having substantially the same thickness throughout.

Claim 28. (previously presented) The emitter of claim 27, wherein the inside surface of said phosphor loaded cap is shaped to fit the shape of the majority of the outside surface of said light source.

Claim 29. (previously presented) The emitter of claim 27, wherein said phosphor loaded cap is formed separately from said light source and bonded to said light source.

Claim 30. (currently amended) The emitter of claim 18, wherein said conversion material region lens is positioned in relation to said light source such that there is a space between the two, said space chosen to obtain substantially uniform emission of said third spectrum of light.

Claim 31. (currently amended) The emitter of claim 18, wherein said conversion material <u>region lens</u> is positioned in relation to said light source such that there is a space between the two, said space chosen to provide said third spectrum of light with at least one of a desired color and intensity.

Claim 32. (currently amended) A method of fabricating an emitter, comprising:

providing a light source;

providing a separately formed hemispheric conversion material region which includes conversion particles

distributed uniformly throughout <u>said hemispheric</u> conversion material region; and

bonding said conversion material region proximate to said light source, said conversion material region being positioned so that at least some of the light emitted from said light source at different angles flows through said conversion material region and through substantially the same amount of conversion particles.

Claim 33. (original) The method of claim 32, further including a step of providing a submount, said light source being bonded to a first surface of said submount.

Claim 34. (previously presented) The method of claim 32, wherein said conversion particles are distributed throughout said conversion material region so that said emitter emits light having a substantially uniform color distribution and/or a substantially uniform intensity.

Claim 35. (previously presented) The method of claim 32, wherein the step of providing said hemispheric conversion material region includes a step of providing a lens which includes said conversion material region.

Claim 36. (original) The method of claim 33, wherein the step of bonding said conversion material region proximate to said light source includes a step of bonding said lens to one of said first surface and a second surface of said submount.

Claim 37. (previously presented) The method of claim 35, wherein the step of providing said lens includes a step of providing a lens with an opening configured to allow said lens to at least partially surround said light source.

Claim 38. (original) The method of claim 33, wherein the step of providing said submount includes a step of providing one of a flat submount and a cup-shaped submount.

Claim 39. (original) The method of claim 33, wherein said submount includes a cup-shaped submount with a third side configured to reflect at least a portion of the light remitted from said conversion material region.

Claim 40. (previously presented) The method of claim 32, wherein the step of providing said conversion material region includes a step of providing a phosphor loaded cap having an inside surface that is shaped substantially the same as the outside surface of said light source.

Claim 41. (original) The method of claim 40, wherein the step of providing said phosphor loaded cap includes a step of providing a phosphor loaded cap which is shaped to at least partially surround said light source.

Claim 42. (currently amended) The method of claim 40, wherein the step of providing said phosphor loaded cap includes  $\underline{a}$  step of providing a phosphor loaded cap with a perforation for engaging a contact.

Claim 43. (original) The method of claim 42, further including a step of filling said perforation with at least one of conversion particles and scattering particles.

Claim 44. (currently amended) An emitter, comprising:

a light source emitting a first spectrum of light; and

a substantially hemispherical lens element having a uniform distribution of wavelength conversion material dispersed throughout the substantially hemispherical lens element, said lens element molded separately from said light source and disposed proximate to said light source such that most of the light emitted from said source over the entire range of angles interacts with substantially equal amounts of said wavelength conversion material, wherein the light is transmitted from said lens element into the ambient;

wherein said emitter emits a second spectrum of light having substantially uniform color and intensity distributions over the entire range of viewing angles.

Claim 45. (previously presented) The emitter of claim 44, wherein said wavelength conversion material comprises phosphor conversion particles.

Claim 46. (previously presented) The emitter of claim 44, wherein said first spectrum comprises blue light and said second spectrum comprises blue and yellow light such that said second spectrum appears white to the human eye.

Claim 47. (previously presented) The emitter of claim 44, said lens element further comprising a perforation large enough to accommodate an electrical connection to said light source through said lens element.

Claim 48. (previously presented) The emitter of claim 47, wherein said perforation is at least partially filled with said wavelength conversion material.

Claim 49. (new) The emitter of claim 18, wherein said first contact is deposited on one of said outside surfaces of said light source.

Claim 50. (new) An emitter, comprising:

a submount including a first surface, a second surface adjacent to the first surface, and a third surface;

a light source which emits a first spectrum of light, said light source mounted on said third surface of said submount; and

a conversion material region formed separately from said light source and including conversion particles distributed uniformly throughout said conversion material region, said conversion material region positioned in proximity to said light source such that at least some of said light source light passes through said conversion material region, said conversion particles absorbing at least some of said light source light passing through said conversion material region and emitting a second spectrum of light;

wherein said conversion material region is positioned on said first surface and on said second surface;

wherein said second surface is oriented to redirect light emitted from said conversion particles;

wherein said first spectrum of light and said second spectrum of light are combined within said conversion material region, said emitter emitting a combination of said first and second spectrums at a substantially uniform color and intensity.

Claim 51. (new) The emitter of claim 50, wherein said light source emits said first spectrum of light along a plurality of light paths extending through said conversion material region, each light path extending through a substantially equal amount of conversion particles.

Claim 52. (new) The emitter of claim 50, wherein said conversion material region includes scattering particles which redirect at least some of said first and second spectrum of light.

Claim 53. (new) The emitter of claim 50, wherein said conversion material region comprises a glass lens.

Claim 54. (new) The emitter of claim 53, wherein said glass lens is formed separately from said light source and bonded proximate to said light source.

Claim 55. (new) The emitter of claim 50, wherein said light source comprises a light emitting diode.

Claim 56. (new) The emitter of claim 50, wherein said conversion material region is positioned in relation to said light sources such that there is a space between the two.

Claim 57. (new) An apparatus, comprising:

a light source which emits a first spectrum of light; and

a conversion material region having an inside surface that is substantially the same shape as a plurality of outside surfaces of said light source, said conversion material region comprising a phosphor loaded cap, said conversion material region fabricated separately from said light source and positioned on said light source, said conversion material region arranged to absorb at least some of the light emitted by said light source and re-emit light at a second spectrum of light, said apparatus emitting a combination of said first and second spectrums of light in a uniform third spectrum of light.

Claim 58. (new) The apparatus of claim 57, wherein said conversion material region is separable from said position on said light source.

Claim 59. (new) The apparatus of claim 57, further comprising a submount, wherein said light source is positioned on a first surface of said submount.

Claim 60. (new) The apparatus of claim 59, wherein said submount is configured to reflect some of said first and second spectrums of light.

Claim 61. (new) The apparatus of claim 59, wherein said at least one of said submount surface reflects some of the first and second spectrums of light to said conversion material region.

Claim 62. (new) The apparatus of claim 59, wherein said submount includes one of a cup-shaped submount and a flat submount.

Claim 63. (new) The apparatus of claim 57, wherein said conversion material region comprises a phosphor loaded cap having substantially the same thickness throughout.

Claim 64. (new) The apparatus of claim 57, wherein the inside surface of said phosphor loaded cap is shaped to fit the shape of the majority of the outside surface of said light source.

Claim 65. (new) The apparatus of claim 57, wherein said phosphor loaded cap is formed separately from said light source and bonded to said light source.

Claim 66. (new) The apparatus of claim 57, wherein said conversion material region is positioned in relation to said light source such that there is a space between the

two, said space chosen to obtain substantially uniform emission of said third spectrum of light.

Claim 67. (new) The emitter of claim 57, wherein said conversion material region is positioned in relation to said light source such that there is a space between the two, said space chosen to provide said third spectrum of light with at least one of a desired color and intensity.