

Research Paper Series

Analytical Studies

The Wealth Position of Immigrant Families in Canada

by Xuelin Zhang

No. 197

ANALYTICAL STUDIES RESEARCH PAPER SERIES

The Analytical Studies Research Paper Series provides for the circulation, on a pre-publication basis, of research conducted by Branch staff, visiting Fellows and academic associates. The Research Paper Series is intended to stimulate discussion on a variety of topics including labour, business firm dynamics, pensions, agriculture, mortality, language, immigration, statistical computing and simulation. Readers of the series are encouraged to contact the authors with comments, criticisms and suggestions. A list of titles appears inside the back cover of this paper.

Papers in the series are distributed to Statistics Canada Regional Offices, provincial statistical focal points, research institutes, and specialty libraries. These papers can be downloaded from the Internet at www.statcan.ca.

To obtain a collection of abstracts of the papers in the series and/or copies of individual papers (in French or English), please contact:

Publications Review Committee Analytical Studies, Statistics Canada 24th Floor, R.H. Coats Building Ottawa, Ontario, K1A 0T6 (613) 951-1804

The Wealth Position of Immigrant Families in Canada

by Xuelin Zhang

No. 197

11F0019 No. 197 ISSN: 1205-9153 ISBN: 0-662-33245-8

Business and Labour Market Analysis Division
24-E R.H. Coats Building, Ottawa, K1A 0T6
Statistics Canada (613) 951-4295
Facsimile Number: (613) 951-5403
E-mail: xuelin.zhang@statcan.ca
The paper is available on Internet: (www.statcan.ca)

November 18, 2003

I wish to thank René Morissette, Garnett Picot, David Gray and Thomas Lemieux for their comments and suggestions.

This paper represents the views of the author and does not necessarily reflect the opinions of Statistics Canada.

The Wearth Position of Landgroot Faulties to Crossin

grand's nitsuit of

TVI :uso

CONGRUENCE DE LA CONGRU

See September 1985

and of an internal transfer to the part of the part peak started and the part of the part

To million plant a feet of plant record in the secondary names that he even and a record or appropriate

they be do not be up to brough

Table of Contents

I.	Introduction	
2.	Data	
3.	How wide is the wealth gap?	
4.	Explaining the wealth gap	10
	4.1 Results from restricted model	10
	4.2 A Semi-parametric decomposition	14
5.	The cohort effect	
6.	Summary and conclusions	
Re	eferences	43

Digitized by the Internet Archive in 2023 with funding from University of Toronto

Abstract

The economic assimilation of immigrants is a key concern for economists and policy makers. The topic has been widely explored in terms of earnings assimilation of immigrants. Using the 1999 Survey of Financial Security, this study attempts to look at the issue from the wealth perspective.

The study found that among married families, immigrants have higher wealth than their Canadian-born counterparts from the 40th to 90th percentiles of the distribution, with the wealth gap ranging between \$20,000 and \$78,000. Among single families, immigrants have higher wealth from the 55th to 95th percentiles, with the wealth gap ranging between \$14,000 and \$145,000. At the bottom of the distribution, however, evidence suggests that immigrants have lower wealth, although the gap is generally below \$10,000. Various decomposition results indicate that the age of the major income recipient (and of the spouse for married families) as well as factors affecting permanent income explain a significant portion of the wealth gap in cases where immigrant families have higher wealth than the Canadian-born. At the bottom of the wealth distribution, however, the wealth gap cannot be explained by the age of the major income recipient, permanent income factors, or family size (or lone-parent status), suggesting that low-wealth immigrant families may behave differently than low-wealth Canadian-born families in their wealth accumulation process.

The wealth gap is also studied from a cohort perspective. Not surprisingly, recent immigrants have lower wealth than comparable Canadian-born families, and immigrants who arrived before 1976 have higher wealth. While immigrants who arrived in Canada between 1976 and 1985 are widely believed to initially have had more of an earnings disadvantage than their predecessors with respect to the Canadian-born, this study finds that, over the upper segment of the distribution, the wealth of this cohort is not significantly different from that of comparable Canadian-born families. This cohort has lower wealth only over the lower portion of the distribution.

Keywords: immigrant, wealth gap, counterfactual decomposition, life-cycle hypothesis, cohort effect

I. Introduction

The economic assimilation of immigrants is a key concern for economists and policy makers. While economists focus almost exclusively on the earnings assimilation of immigrants, little is known about the wealth of immigrants in Canada and elsewhere. Using Statistics Canada's 1999 Survey of Financial Security, this article takes a first step in addressing some key issues pertaining to the wealth position of immigrants in Canada. Specifically, the study estimates the wealth gap between immigrant and Canadian-born families and identifies factors that may explain this gap. The cohort effect is also explored.

The importance of this topic can be seen first by looking at the earnings assimilation of immigrants. In this regard, leading economists have painted a rather pessimistic picture. Using data from the 1971, 1981 and 1986 Canadian censuses, Baker and Benjamin (1994) failed to reject the zero assimilation hypothesis for male immigrants aged between 16 to 64, while Bloom, Grenier and Gunderson (1995) found strong negative entry effect and negligible rate of assimilation for male immigrants and zero assimilation for female immigrants. If immigrants are able to close the wealth gap with those born in Canada, factors other than earnings, such as savings rate, inheritance, and return on investments, will play a significant role in their accumulation of wealth, and the zero earnings assimilation rate of immigrants need not be as disturbing as it has been perceived.

Second, not only is the wealth position of immigrants an important aspect of economic assimilation, it also plays a key role in the whole process of economic assimilation. A family's wealth affects access to the credit market, and allows family members to venture into business activities, pursue higher education, or spend more time looking for a better job. An established wealth position may help immigrants overcome disadvantages they may face socially and in the labour market. For example, until fully assimilated into the host economy, immigrants may face more earnings uncertainty than those born in Canada. Wealthy immigrants will be in a better position than low-wealth immigrants in dealing with the uninsurable portion of this risk and will achieve a higher rate of earnings assimilation.

Finally, according to the well-known life-cycle hypothesis, individuals accumulate wealth during their working age and consume this wealth upon retirement. Those who retire with a large amount of wealth will be less likely to rely on government transfers for their retirement consumption. If immigrants are unable to save enough for retirement, high immigrant intake will have negative effects for public retirement funds.

This study confirms the existence of wealth gaps between immigrant and Canadian-born families from the middle to the top portions of the wealth distribution. Within this segment, the wealth of immigrant families is significantly higher than that of Canadian-born families. Decompositions of the wealth gap indicate that the age of the major income recipient (MIR) and factors related to

The only exception is perhaps Shamsuddin and DeVoretz (1998), in which the authors study wealth accumulation of Canadian and foreign-born households from 1977 to 1984.

Borjas (1995) reaches similar conclusions with the 1970, 1980, and 1990 U.S. censuses. However, in a study using the 1981, 1986 and 1991 Canadian censuses, Grant (1999) finds evidence that male immigrants who arrived in Canada between 1980 and 1990 experienced significant earnings growth during their first five years after arrival.

family permanent income can explain a significant portion of the wealth gap. At the bottom of the distribution, however, the wealth gap cannot be explained by the model, suggesting that lower-wealth families may behave differently from families of other wealth classes.

The wealth gap is also explored for different cohorts of immigrants. Not surprisingly, recent immigrants have lower wealth than comparable Canadian-born families, while immigrants who arrived in Canada before 1976 have higher wealth. The results for low-wealth immigrants who arrived between 1976 and 1985 is consistent with the widely held notion that they were in a more disadvantageous earnings position than their predecessors. However, evidence suggests that highwealth immigrant families of this cohort have the same or even higher wealth than their Canadian-born counterparts.

The next section describes the data source and presents a summary of wealth across a few explanatory variables. Section 3 examines the existence and the magnitude of the wealth gap between immigrants and Canadian-born families. Section 4 attempts to identify factors that may explain the wealth gap, while Section 5 explores the cohort effect on the wealth gap. Section 6 contains a summary and the conclusion.

2. Data

The data source employed in this study is Statistics Canada's Survey of Financial Security. The survey, conducted from May to July 1999, is based on Statistics Canada's Labour Force Survey sampling frame and represents all families and individuals in Canada except residents of the Yukon and the Northwest Territories, households located on Indian reserves, full-time members of the Armed Forces, and inmates of institutions. Information was collected for 15,933 family units and included data on all family members aged 15 or over. In this study, observations were deleted for major income recipients who reported being married or living with a common-law partner but who did not provide information on the spouse. As a result, the actual sample consisted of 15,801 family units.³

There is no unique definition for an immigrant family. In this article, a family is referred to as an immigrant family if its major income recipient is an immigrant. If the major income recipient is not an immigrant, the family is referred to as a Canadian-born family. Since the study employs only cross-sectional data, no ambiguity can be introduced by this definition.⁴

Wealth or net worth is defined as the difference between total assets and total debts. Total assets include all deposits; investments in mutual funds, bonds, and stock holdings; registered retirement savings plans (RRSPs) or funds in locked-in retirement accounts (LIRAs); principal residence and other real estate assets; vehicles; contents of principal residence; collectibles and valuables; business equity; and other assets such as registered education savings plans (RESPs),

In the survey, an unattached individual is also viewed as a family unit. Detailed information on the survey is provided in the Statistics Canada publication the Assets and Debts of Canadians: An overview of the results of the Survey of Financial Security, 1999 (Catalogue number 13-595-XIE).

With longitudinal data, however, this definition does not work. For example, if the spouse of an immigrant major income recipient is not an immigrant, and if the spouse becomes the family's major income recipient of the family the following year, the immigrant family will become a Canadian-born family.

deferred profit-sharing plans, homeownership savings plans, and annuities. Total debts include mortgage debts on principal residence and other real estate; outstanding balances on credit cards, deferred payment and installment plans; student loans; vehicle loans; lines of credit; and other money owed. The value of work-related pension plans, entitlements to social security programs to be provided by governments such as the Canada and Quebec Pension Plans (CPP/QPP) and Old Age Security (OAS) are excluded from total assets.⁵

Since the death of a partner or a marital breakup may have a significant effect on family wealth (Burbidge and Robb, 1985), separate analyses for single and married families seem reasonable. A family in which the married major income recipient is married or lives with a common-law partner is defined as a married family. Among the 15,801 family units in the sample, 9,595 are married families. The remaining 6,206 consist of unattached individuals and lone-parent families. These are referred to as single families. Hence, there are four types of families according to marital status and immigration status: married immigrant families and Canadian-born families, single immigrant families and Canadian-born families. The corresponding number of observations are 1,746, 7,849, 910, and 5,296 respectively.

The non-parametric estimates of the wealth kernels (Figure 1) suggest that wealth distributions are highly skewed to the right, and data outliers are likely to be non-trivial. Indeed, Table 1 shows that the overall mean wealth of married families is roughly twice their overall median wealth, while the overall mean wealth of single families is approximately four times their overall median wealth. Likewise, the mean and median wealth of married immigrant families is 6.7% and 25.9% higher than the mean and median wealth of Canadian-born families, while the corresponding differences between single immigrant and Canadian-born families are 33.1% and 12.0% respectively. Hence the magnitude of the wealth gap between immigrant and Canadian-born families will be different depending on which measure one adopts. Instead of focusing on a single point such as the mean or the median of the wealth distribution, this study examines the wealth gap at all major points of the distribution.

Entitlements to work-related pension plans and social security incomes are excluded from family assets since they cannot be cashed to repay family debts. Nevertheless, these future entitlements may have a negative effect on family savings. Table A2 provides the mean and median pension and social securities incomes (CPP/QPP, private pension, OAS, and Guaranteed Income supplement) at the family level. The figures suggest that immigrant and Canadian-born families (with an MIR aged 55 or over) received similar amount of these incomes in 1998. If the estimates hold for future generations, pension and social security income entitlement should not affect family savings in any significant way.

Figure 1. Non-parametric estimates of wealth distributions

(2) Single families

A number of factors may be used to explain the wealth gap between immigrant and Canadian-born families. Among these factors, savings rate, return on investments, and bequests are not directly available from the Survey of Financial Security. This analysis must therefore rely on available information. One theory widely employed in studying wealth accumulation is the life-cycle model. It is natural to expand this theory to family wealth accumulation by postulating that a family also has its own life cycle. At an early stage, a family may have few assets but considerable amounts of debt, while at a later stage, it may have a substantial assets and no debts. The age of the family's major income recipient (and of the spouse for married families) will be used in this study to capture the effect of family life cycle on wealth accumulation. Table 1 shows that the wealth of married families reaches its maximum when the major income recipient is aged 56 to 65, and falls thereafter. With single families, the changes are more complex. The

mean wealth of single immigrant families increases to a maximum and then decreases, but the median wealth of single immigrant families, as well as the mean and median wealth of single Canadian-born families, reach their maximum when the major income recipient has turned 65.

Family income is another factor that affects wealth accumulation, and hence it helps explain the wealth gap between immigrant and Canadian-born families. Table 1 provides the mean and median wealth across different quintiles of family after-tax income. It can be seen that family wealth generally rises as after-tax income increases. But family after-tax income is a measure of current income, which is subject to random shocks such as unemployment and fluctuations in return on investments—factors beyond the control of individual families. Theoretically, a family's consumption and savings decisions are based on permanent income. To construct a permanent income measure, one would ideally have observations of family income over a number of years (Altonji and Doraszelski, 2001). However, given that the data set in this study is cross-sectional, age, education, and gender are used as factors affecting permanent income in explaining the wealth gap.⁸

⁶ A finer classification of five-year age intervals leads to the same observation.

⁷ Current income is also likely endogenous as a portion of family income is generated from current assets.

Blau and Graham (1990) construct their permanent income measure on cross-section income regression results. This approach uses the predicted income of the family head at a fixed age as a measure of family permanent income. Given that the study uses only cross-sectional data, it seems plausible to follow this approach. But a particular difficulty arises in calculating permanent income for immigrant families. Since the "year since migration" (YSM) variable plays a key role in immigrants' earnings assimilation, it has to be included in the regression. However, if the fixed age chosen for calculating permanent income is low enough, some older immigrants who arrived in Canada more recently would not yet have immigrated.

Table 1. Mean and median wealth (\$) vs. family characteristics

Immigrant

Canadian-born

	Median	Mean S	td. err.	Median	Mean	Std. err.
Married: overall MIR's age	159,600	280,154	16,839	126,750	262,631	8,059
<=25	10,275	25,007	6,865	14,700	60,452	13,277
26-35	52,000	102,267	14,317	57,701	103,087	7,061
36-45	87,800	184,464	33,544	120,120	243,558	18,150
46-55	222,904	345,595	23,605	180,200	349,893	19,915
56-65	322,000	449,547	44,485	215,500	403,179	26,726
>65	237,502	364,555	63,079	202,069	330,239	17,121
Single: overall MIR's age	30,451	140,908	10,717	27,200	105,871	3,384
<=25	1,020	104,601	53,738	1,550	24,797	5,139
26-35	7,100	90,940	23,711	14,750	72,876	10,658
36-45	16,100	73,159	10,714	36,500	87,218	4,831
46-55	62,200	164,803	24,362	49,003	142,287	14,193
56-65	82,466	235,067	51,501	55,400	163,670	13,173
>65	101,540	184,247	18,078	90,353	170,944	7,567
Married: after-tax income						
q1 - q20	61,070	159,298	33,886	63,400	137,823	9,472
q21 - q40	149,105	214,333	14,381	85,272	161,690	6,500
q41 - q60	133,000	204,248	16,480	110,004	207,106	14,125
q61 - q80	158,000	279,129	25,555	146,455	266,393	15,539
q81 - q100	326,498	511,202	55,169	284,605	551,834	31,062
Single: after-tax income						
q1 - q20	1,020	31,041	10,784	1,497	31,721	6,008
q21 - q40	10,100	76,866	11,710	11,000	64,759	5,699
q41 - q60	18,100	93,006	11,192	26,000	78,762	4,152
q61 - q80	62,200	148,185	20,002	51,900	108,263	5,328
q81 - q100	167,201	310,923	36,233	121,200	253,078	15,663
Married: Family size						
2	200,000	343,935	36,510	151,000	281,512	10,810
3	125,000	257,823	43,967	104,100	238,378	17,568
4	148,260	252,714	18,473	118,000	245,071	19,897
>=5	124,300	236,142	25,904	123,521	274,230	22,625
Single: lone-parent status						
lone parent	15,100	71,415	15,815	13,550	68,744	9,682
other single family	34,108	152,613	12,267	29,600	110,502	4,167

Aside from age and factors related to permanent income, the study also looked at difference in family size among married families and lone-parent status among single families. From the intergenerational wealth transfer perspective (Blinder, 1973), it would be more coherent to look at differences in number of children between immigrant and non-immigrant families. For transfer purposes, children of all ages must be taken into consideration when measuring the number of children. But the 1999 Survey of Financial Security only provides an accurate number of children aged below 25. Adult children aged 25 or older are considered relatives of the major income

recipient, even though these children are still living in the family and are future bequest recipients. Hence family size is used as an alternative for the number of children in married families. Table 1 shows that the effect of family size on wealth is complex. Families of two persons, presumably couples without children, have higher wealth than larger families. Among families with more than two persons, family size decreases the mean wealth of immigrants, but increases the mean and median wealth of Canadian-born families.

Lone-parent status could have important negative effects on wealth accumulation among single families. In order to work, lone parents with small children often have no choice but to purchase child-care services. This lowers savings and can create a situation where their wealth is lower than single families with no small children. Indeed, the sample shows that the mean and median wealth of lone-parent families are approximately half those of other families.

Appendix Table 1 contains a descriptive summary of the above characteristics. It shows that, those of average, major income recipients of married immigrant families are three years older than in married Canadian-born families, and those of single immigrant families are five years older than those of single Canadian-born families. While the average after-tax income of single immigrant families is 12% higher than that of single Canadian-born families, the difference between married immigrant and Canadian-born families is only 1.4%. The average family size of married immigrant families is 11.5% higher than that of married Canadian-born families, and single immigrants are 30% more likely than single Canadians to live in a lone-parent family. In terms of factors related to permanent income, immigrant families are more likely than Canadian-born families to have a female major income recipient, although the difference is not large, and immigrant major income recipients (and spouses) have higher education than the Canadian-born. Remarkably, immigrants are almost twice as likely as the Canadian-born to have above-university education.

3. How wide is the wealth gap?

As previously mentioned, the wealth distribution is highly skewed to the right and outliers in wealth data are likely to be non-trivial. The non-parametric estimates of the wealth distributions (Figure 1) show that a small number of families have extremely high wealth. In such a situation, analysts usually smooth the data by taking the natural logarithm transformation. However, at the left side of the distribution, there are a non-negligible number of families with zero or negative wealth. Some economists choose to exclude these families, while others conduct complex transformations. Even if the outliers and non-normality issues are resolved, it is unclear if immigrants really have higher wealth than Canadian-born families (and if so, by how much) when a single measure of the wealth gap such as the mean or the median is adopted. Hence, it seems more appropriate to estimate the wealth gap along the whole distribution rather than at one or two points.

⁹ It should be stated that family size itself also cannot fully measure the number of potential bequest recipients—for example, in the case of married children living away from parents.

For example, Shamsuddin and DeVoretz (1998) exclude all families with net worth less than \$3,500, while Burbidge and Robb (1985) apply a modified Box-Cox transformation on all observations of wealth.

The wealth gap at each point of the distribution may be simply calculated as the difference in wealth between immigrants and Canadian-born families at different percentiles. For example, one can find the median wealth of immigrant families and the median wealth of Canadian-born families. The difference between the two is the wealth gap at the 50th percentile of their wealth distributions. Similarly, one can find the wealth levels at the 75th percentiles, and the difference is their wealth gap at the 75th percentile of the wealth distribution. This calculation is simple but it does not provide the standard errors to the estimated wealth gaps,¹¹ and tests such as the significance of the wealth gap at a point of the distribution, as well as tests on whether the wealth gaps at different points of the distributions are the same, cannot be conducted.

An alternative method is the generalized quantile regression. The above tests are then feasible and identical estimates of the wealth gap are produced. The method was introduced by Koenker and Bassett (1978); and more recently applied by Buchinsky (1998); Mueller (1998); and Garcia, Hernandez, and Lopez-Nicolas (2001); among others. The advantages of the generalized quantile regression method are: (1) it can generate a wealth gap at any point of the distribution, not just a single measure such as the mean wealth gap; (2) the method is semi-parametric so that no distribution assumptions on the dependent variable are needed; (3) the estimator is less sensitive to outliers than the OLS estimator; and (4) tests of significance of the gap and tests on whether the gaps are the same at different points of the distribution can easily be conducted. The second and the third advantages of the method imply that it is not necessary to exclude any families from the analysis, and no complex transformation is needed to deal with data outliers or non-normality issues.

The method can be easily understood from its special case—the least absolute deviation (LAD) regression. While the OLS regression fits the dependent variable as a linear function of some explanatory variables through the mean, the LAD fits the dependent variable as a linear function of explanatory variables through the median of the dependent variable. Extending the notion of the LAD, the generalized q^{th} quantile regression fits the dependent variable as a linear function of some explanatory variables through the q^{th} quantile of the dependent variable. As shown by Buchinsky (1998), the generalized quantile estimators are consistent and asymptotically normally distributed, and hence tests of significance of an estimator and tests on the difference between estimators can be conducted.

In order to estimate the wealth gap between immigrant and Canadian-born families at the q^{th} quantile of the wealth distribution, it is only necessary to specify that the q^{th} quantile conditional expectation of wealth as a linear function of a constant and a dummy variable for immigration status.

$$w_i = \alpha^q + \beta^q IMG_i + \varepsilon_i^q \tag{1}$$

where w_i is wealth level, IMG_i is a dummy variable which equals 1 if family i is an immigrant family, and 0 if the family is Canadian-born. The only assumption one needs to make is the restriction that $Q^q(w_i|IMG_i)$ —the q^{th} quantile of the wealth density conditional on IMG_i —is equal to $\alpha^q + \beta^q IMG_i$, or equivalently, $Q^q(\epsilon^q \mid IMG_i) = 0$. The estimate for β^q represents the

¹¹ But bootstrap standard errors may be calculated.

¹² The tests are asymptotic, however.

wealth gap between immigrant and Canadian-born families at the q^{th} quantile of their wealth distributions. Moreover, the above equation can be estimated simultaneously at different values of q to obtain the variance-covariance matrix for the β s at those different quantiles. Since these estimators are asymptotically normal, the equality of the wealth gaps at different points of the distributions can be tested.

Table 2. Observed wealth gap between immigrant and Canadian-born families (\$10,000)

	All families		Marrie	d families	Single families			
location	Gap	t-stat.	Gap	t-stat.	Gap	t-stat.		
Mean	3.80	3.30	1.75	1.00	3.50	3.55		
5 th	-0.06	-0.54	-0.10	-1.03	-0.14	-0.65		
10 th	0.00	0.00	-0.52	-3.12	-0.10	-1.54		
15 th	-0.02	-0.24	-0.82	-3.46	0.00	-0.05		
20 th	-0.04	-0.26	-0.62	-1.54	-0.01	-0.32		
25 th	-0.02	-0.11	-0.07	-0.20	-0.06	-0.58		
30 th	0.33	1.30	0.30	0.81	-0.16	-1.79		
35 th	0.99	2.89	0.89	1.86	-0.18	-0.85		
40 th	1.63	5.22	1.98	3.72	-0.20	-0.85		
45 th	2.13	5.11	2.89	4.56	-0.30	-0.87		
50 th	3.44	7.27	3.29	4.79	0.33	. 0.70		
55 th	4.82	8.76	3.69	5.17	1.41	2.32		
60 th	5.06	8.67	4.77	6.16	1.49	2.33		
65 th	5.62	7.45	6.12	6.35	2.69	3.45		
70 th	7.08	8.93	6.58	5.68	5.25	4.94		
75 th	8.35	8.47	7.05	4.72	5.30	4.71		
80 th	9.89	8.85	6.68	3.43	6.51	5.59		
85 th	11.40	7.47	6.99	3.40	7.40	4.55		
90 th	10.99	4.96	7.79	2.29	13.94	5.63		
95 th	11.59	2.85	1.01	0.16	14.50	2.55		
Number of oservations	15,801		9,595		6,206			

Table 2 presents the estimated wealth gaps between immigrant and Canadian-born families at different locations of the wealth distribution. When all families are pooled together, immigrant families have higher wealth than Canadian-born families, at the mean and over a large portion of the wealth distribution. The average wealth gap is estimated to be \$38,000, and ranges between \$10,000 at the 35th percentile to \$116,000 at the 95th percentile. Outside the 35th to 95th percentile range, virtually no wealth gap can be found. Although the mean wealth gap of \$17,500 is not significantly different from zero between married immigrant and Canadian-born families, one cannot ignore the gaps along the wealth distribution. From the 10th to 20th percentiles, there is evidence suggesting that immigrant families have lower wealth than Canadian-born families. The wealth gap ranges between -\$5,000 at the 10th percentile to -\$8,000 at the 15th percentile. These differences are solid, although not huge. More remarkably, married immigrant families have higher wealth than their Canadian-born counterparts from the 35th to 90th percentiles of the

When the equation is estimated by OLS regression, the estimated β measures the mean wealth gap.

distribution. The wealth gap ranges between \$20,000 at the 40th percentile to \$78,000 at the 90th percentile, and it generally widens along the distribution up to the 90th percentile. A few tests based on results of simultaneous quantile regression¹⁴ leads to a decisive rejection of the hypothesis that the wealth gaps are the same along the distribution. For example, for the null hypothesis that the wealth gaps at the 50th, 75th and 90th percentiles are equal, an F-statistic of 4.80 with a p-value of 0.008 is obtained; and for testing the equality of the wealth gaps at the 40th, 60th, and 80th percentiles, the F-statistic is 12.65 and the p-value is close to 0.

The average wealth gap between single immigrant and Canadian-born families is estimated at \$35,000 and is significantly different from 0. Along the distribution, single immigrant families are found to have higher wealth than their Canadian-born counterparts from the 55th to 95th percentiles. The wealth gap ranges between \$14,000 at the 55th percentile to \$145,000 at the 95th percentile. On the other hand, there is no strong evidence that low-wealth single immigrant families have lower wealth than their Canadian-born counterparts. The only points where single immigrant families may have lower wealth are located around the 10th and 30th percentiles, where the wealth gaps are negligible (-\$1,000 and -\$1,600). As with married immigrant and Canadian-born families, strong evidence exists to reject the equal wealth gap hypothesis along the distribution. For example, the F-statistic for testing the equality of wealth gaps at the 55th, 75th and 95th percentiles is 10.36, and the p-value is practically 0. The equality of wealth gaps at the 65th, 75th, and 85th percentiles is also decisively rejected.

In summary, the above results indicate the existence of wealth gaps between immigrant and Canadian-born families along the distribution. At the lower tail of the distribution, there is evidence that low-wealth immigrant families have lower wealth than their Canadian-born counterparts. But over a large portion of the distribution—from the 40thth to 90th percentiles for married families, and from the 55th to 95th percentiles for single families—there is strong evidence that immigrant families have higher wealth than their Canadian-born counterparts, and that the wealth gaps are not equal at different points of the distribution. The gaps are small among the lower-middle wealth class for married families and among the middle class for single families, but they become considerably larger among the upper and upper-middle classes.

4. Explaining the wealth gap

The previous section demonstrates the existence and magnitude of the wealth gap between immigrant and Canadian-born families. An attempt will now be made to explain the wealth gap with a few key variables that may have important effects on wealth accumulation. The wealth gap is explained first under the restriction that immigrant and Canadian-born families have identical wealth distribution. This restriction is then relaxed and a semi-parametric analysis is carried out.

4.1 Results from restricted model

As discussed in Section 2, aside from savings, return on investments, and inheritance, characteristics such as age of the major income recipient (and spouse), family size, and lone-

¹⁴ Stata's SQREG procedure is employed to run the simultaneous quantile regression with 500 bootstrap replications to obtain an estimate of the variance-covariance matrix of the estimators.

parent status (for single families) as well as factors affecting family permanent income play important roles in wealth accumulation. As a first step, these available variables have been included in Equation (1), with a restriction that their effects on wealth are the same for immigrant and Canadian-born families. The coefficients on immigrant status in this extended model indicate the extent to which the wealth gap between immigrant and Canadian-born families remains unexplained when a number of observable differences are controlled. These coefficients are also referred to as "conditional wealth gap" between immigrant and Canadian-born families. The ratios of these coefficients to the observed wealth gap indicate the portion of the observed wealth gap that remains unexplained after controlling for characteristic differences. Three specifications are estimated. In Model 1, only age dummies of the major income recipient (and spouse for married families) are included as additional explanatory variables. In Model 2, family size (lone-parent status for single families) is added; and in Model 3, the major income recipient's (and spouse for married families) gender and education level, and the interaction between the two are included. The main results are presented in Table 3.

As expected, the coefficients on immigrant status become smaller when additional controls are introduced. First examined is the segment of the distribution over which immigrant families have higher wealth than their Canadian-born counterparts (from the 35th to 90th percentiles for married families, and from the 55th to 95th percentiles for single families). Model 1 shows that the observed wealth gaps are dramatically reduced when the age of the major income recipient and spouse are controlled. Indeed, most of the coefficients on immigrant status now become insignificant or only marginally significant among married families. For example, the coefficient at the median becomes \$6,300 with a t-statistic of 1.71, and at the 90th percentile, the coefficient changes to \$13,000 (t = 0.64) from \$78,000. While reductions of the coefficients for singlefamilies are not as dramatic, it is also apparent that the major income recipient's age plays a very important role in explaining the wealth gap between single immigrant and Canadian-born families. Overall, Model 1 shows that the age of the major income recipient and spouse can explain a minimum of 70% of the wealth gap (at the 60th percentile) between married immigrant and Canadian-born families, while the major income recipient's age alone can explain at least 27% of the wealth gap (at the 95th percentile) between single immigrant and Canadian-born families.

For single families, when lone-parent status and the major income recipient's age are controlled (Model 2), the coefficients on immigrant status are slightly reduced from those of Model 1. With Model 2, at least 32% of the wealth gap (at the 95th percentile) among single families can be explained. For married families, all of the estimated coefficients at points over the 35th to 90th percentile range of the distribution become insignificant or only marginally significant, and at least 76% of the wealth gap (at the 60th percentile) is explained by the age of the major income recipient, age of spouse, and family size. The results of Model 3 show that between 52% and 128% of the observed wealth gap among single families can be explained by age of the major income recipient, lone-parent status, and permanent income factors; and at least 76% of the wealth gap between married immigrant and Canadian-born families can be explained by age of the major income recipient and spouse, family size, and factors related to permanent income. Interestingly, in terms of explaining the observed wealth gap, Model 3 does not perform any better than Model 2 for married families, but it performs much better for single families.

For low-wealth families, the coefficient on immigrant status also becomes smaller when additional controls are introduced. For example, at the 10th percentile, the observed wealth gap of -\$5,200 between married families becomes -\$7,400, -\$7,200 and -\$14,700, while the observed gap of -\$1,000 between single families becomes -\$1,300, -\$1,400 and -\$1,900 under Models 1, 2, and 3 respectively. But since the observed wealth gaps between immigrant and Canadian-born families are negative—immigrant families have lower wealth than their Canadian-born counterparts—the now smaller coefficients imply that the wealth gaps are widened when additional controls are introduced. This result indicates that low-wealth immigrant families may behave differently from other wealth classes of immigrants in their wealth accumulation process.

The complete set of coefficient estimates of the three models is contained in Table A3. Except at the very bottom of the distribution, the results show that the effect of the major income recipient's age constantly increases along the wealth distribution, while the effect of spousal age constantly increases to the upper-middle of the wealth distribution, and then starts to decrease. As well, the effect of the major income recipient's education level increases at each point of the distribution. Although the effect of spousal education is not significant at the lower portion of the wealth distribution, it starts to increase from the middle of the wealth distribution. The effect of family size on the wealth of married families also increases along the distribution, but the effect of gender is by and large constant, while lone-parent status is generally not very important in the wealth accumulation process of single families.

Table 3. Effect of key variables on wealth gap (\$10,000)

I. Married family

		Model 1		Model 2		Model 3	
Location	Raw gap	Est. gap	t-stat	Est. gap	<u>t-stat</u>	Est. gap	std. err.
5 th	-0.10	-0.38	-2.56	-0.44	-2.97	-1.01	-5.48
10 th	-0.52**	-0.74	-3.48	-0.72	-3.39	-1.47	-6.49
15 th	-0.82**	-0.82	-3.71	-0.89	-4.17	-1.57	-9.12
20 th	-0.65*	-0.80	-2.63	-0.83	-2.69	-1.35	-5.14
25 th	-0.07	-0.29	-0.95	-0.37	-1.27	-1.05	-4.74
30^{th}	0.30	-0.03	-0.10	-0.10	-0.34	-0.70	-2.13
35 th	0.89**	0.02	0.06	-0.02	-0.06	-0.58	-1.48
40 th	1.98**	0.21	0.47	0.02	0.05	-0.16	-0.43
45 th	2.89**	0.59	1.72	0.41	0.93	0.50	0.13
50 th	3.29**	0.63	1.71	0.37	0.84	0.24	0.45
55 th	3.69**	0.90	1.78	0.83	1.61	0.85	2.00
60 th	4.77**	1.42	2.32	1.12	1.86	0.99	2.11
65 th	6.12**	1.42	2.09	0.96	1.50	1.08	1.94
70 th	6.58**	1.66	1.91	1.41	1.57	1.57	2.42
75 th	7.05**	1.28	1.60	0.49	0.56	1.35	1.73
80 th	6.68**	0.86	0.73	. 0.33	0.29	1.09	1.20
85 th	6.99**	-0.33	-0.22	-0.91	-0.60	0.67	0.51
90 th	7.79**	1.30	0.64	0.66	0.31	-0.37	-0.22
95 th	1.01	-3.92	-0.78	-5.17	-1.25	-3.00	-0.86
OLS	1.75	-0.75	-0.43	-1.25	-0.71	-3.03	-1.71
II. Single	family						
5 th	-0.14	-0.05	-0.80	-0.05	-0.80	-0.08	-0.80
10 th	-0.10**	-0.13	-3.97	-0.14	-4.33	-0.19	-4.51
15 th	0.00	-0.17	-4.60	-0.16	-4.26	-0.34	-8.26
20 th	-0.01	-0.17	-2.76	-0.17	-2.73	-0.39	-5.35
25 th	-0.06	-0.25	-2.61	-0.26	-2.79	-0.43	-5.28
30 th	-0.16**	-0.36	-5.21	-0.39	-4.97	-0.57	-7.47
35 th	-0.18	-0.49	-7.06	-0.48	-6.77	-0.59	-5.18
40 th	-0.20	-0.44	-4.46	-0.37	-3.67	-0.60	-4.64
45 th	-0.30	-0.31	-3.88	-0.35	-2.58	-0.60	-4.06
50 th	0.33	-0.25	-1.61	-0.21	-1.00	-0.51	-3.30
55 th	1.41**	-0.25	-1.00	-0.32	-1.23	-0.39	-2.39
60 th	1.49**	-0.30	-1.12	-0.19	-0.73	-0.15	-0.63
65 th	2.69**	0.34	1.31	0.41	1.31	0.52	2.09
70 th	5.25**	1.02	2.56	0.79	1.77	1.67	6.34
75 th	5.30**	1.21	2.89	1.35	3.37	2.55	9.47
80 th	6.51**	3.25	4.84	3.27	4.49	2.94	5.65
85 th	7.40**	4.92	4.27	4.74	5.12	2.87	3.55
90 th	13.94**	5.67	2.72	5.16	3.15	5.02	6.61
95 th	14.50**	10.54	2.53	9.85	2.55	6.09	2.45
OLS	3.50**	2.05	2.09	2.14	2.19	1.24	1.29
		*. Significant at			_,,,,	1.27	2.27

In summary, among middle and high-wealth families, where married immigrant families have higher wealth than their Canadian-born counterparts, more than 70% of the observed wealth gap can be explained by family life cycle, family size, and factors related to permanent income. Between the 55th and 95th percentiles of the distribution, where single immigrant families have higher wealth than their Canadian-born counterparts, at least 52% of the gap is explained by age of the major income recipient, lone-parent status, and factors related to permanent income (at the 75th percentile in Model 3). At the bottom of the wealth distribution, the conditional gap between low-wealth immigrant families and their Canadian-born counterparts diverges from the observed gap when a number of family characteristics are controlled, so the observed gap cannot be explained over this portion of the distribution by the above factors.

4.2 A Semi-parametric decomposition

The above result is subjected to the restriction that the effects of some key variables on wealth accumulation are identical for immigrant and Canadian-born families. To see the consequence, we now relax this restriction. The most widely followed approach is the Oaxaca decomposition. It attributes the mean difference of the dependent variables between two groups to an explained component that is due to differences in observed characteristics and an unexplained component that is due to differences in unobserved characteristics. A difficulty with this approach is that a parametric specification has to be made for the conditional expectation of the dependent variable (in this case, wealth). As Barsky et al. (2001) have shown, the mis-specification of the regression function is likely to result in erratic inferences regarding the portion attributable to differences in the explanatory variables. To avoid this problem, the semi-parametric decomposition approach proposed by DiNardo, Fortin and Lemieux (DFL) (1996) was modified and applied in this study. This approach is much the same as the Oaxaca decomposition. The key question is what would be the wealth distribution of immigrant families if they were given the characteristics of Canadian-born families, or of Canadian-born families if given the characteristics of immigrant families. A slight modification of the DFL principle enables us to answer the above counterfactual question. Using conditional probability rule, the marginal density of wealth (w) of a family with character(s) x is,

$$f(w) = \int f(w|x)g(x)dx,$$

where $f(\cdot)$ and $g(\cdot)$ are density functions. The observed density of wealth for an immigrant family (IMG=1) can be written as

$$f(w | IMG = 1) = \int f^{IMG}(w | x)g(x | IMG = 1)dx.$$

The counterfactual density of wealth for an immigrant family if it were given the characteristics of a Canadian-born family (IMG=O) can be defined as

$$f_{CF}^{IMG}(w) = \int f^{IMG}(w \mid x)g(x \mid IMG = 0)dx$$
$$= \int f^{IMG}(w \mid x)g(x \mid IMG = 1)\psi(x)dx.$$

where

$$\psi(x) = \frac{g(x \mid IMG = 0)}{g(x \mid IMG = 1)}.$$

is a "re-weighting" factor. Applying Bayes' rule for the unconditional density function g(x), the following identity is obtained,

$$\frac{g(x \mid IMG=0)P(IMG=0)}{P(IMG=0 \mid x)} = \frac{g(x \mid IMG=1)P(IMG=1)}{P(IMG=1 \mid x)}.$$

This implies that the re-weighting factor $\psi(x)$ —a ratio of two conditional densities—can be written as

$$\psi(x) = \frac{P(IMG = 1)}{P(IMG = 0)} \frac{P(IMG = 0 \mid x)}{P(IMG = 1 \mid x)}$$
(2)

One can construct statistics such as the weighted mean, weighted variance, and weighted quantiles, as well as weighted density function (non-parametrically) of wealth for immigrant families, using estimated values of $\psi(x)$ as the weights. They are referred to as counterfactual mean, counterfactual variance, counterfactual quantiles, and counterfactual density function respectively. The first part of the right hand side of Equation (2) can be approximated by the ratio of immigrant over Canadian-born families, while the second part is the ratio of two conditional probabilities, each can be calculated from a logit (or probit) regression on explanatory variable(s) x.

While the wealth gap decomposition can be based on the counterfactual mean or the counterfactual density, our decomposition was conducted using the counterfactual quantiles. The quantile-based decomposition results are directly comparable to those obtained in the previous two sections. The wealth gaps between immigrant and Canadian-born families at different quantiles of the distribution may be decomposed into an explained portion and an unexplained portion as the following,

$$W_q^{IMG} - W_q^{CND} = \left[W_q^{IMG} - \omega_q^{IMG} \right] + \left[\omega_q^{IMG} - W_q^{CND} \right] \tag{3}$$

where ω_q^{IMG} is the q^{th} counterfactual quantile of wealth for immigrant families estimated with the re-weighting factor, and W_q^{IMG} and W_q^{CND} are observed wealth quantities for immigrant and Canadian-born families.

Table 4 contains the decomposition results for three specifications of the logit model. Model 1 includes only major income recipient (and spousal) age dummies, Model 2 adds family size for married families and lone-parent status for single families, and Model 3 further adds education,

Statistical surveys usually have their own survey weights. In estimating the counterfactual density of a variable, the survey weight and the "re-weighting" factor will be used together. The new weight is simply the product of these two weights normalized to sum to 1.

¹⁶ Since the mean wealth gap between married immigrant and Canadian-born families is insignificant, a mean-based decomposition is not very interesting in the current case.

gender and their interaction. The decomposition is performed first by using the counterfactual wealth quantiles of immigrant families, i.e., the wealth quantiles of immigrant families if they were to have the characteristics of Canadian-born families. The explained percentage is calculated as the ratio of the explained portion (first item on the right-hand side of Equation (3)) of the wealth gap to the observed gap (the left-hand side of Equation (3)). The alternative decomposition is performed using the counterfactual wealth quantiles of Canadian-born families. For this alternative decomposition, the logit models regress Canadian-born status on the same explanatory variables as above.

The result shows that among married families, at the bottom of the distribution where immigrant families have lower wealth than Canadian-born families, none of the factors explored can explain the negative wealth gap. Indeed, results from all of the three models indicate that immigrant families would have lower wealth than observed if they were given the characteristics of their Canadian-born counterparts. Over the remaining segment of the wealth distribution (40th to 90th percentiles), where immigrant families have higher wealth than Canadian-born families, the age of the major income recipient (and spouse) plays a prominent role in explaining the wealth gap. When the age of the major income recipient alone is controlled (Model 1), a minimum of 42% of the wealth gap can be explained if the counterfactual wealth quantiles for immigrants are employed for the decomposition (Panel A), and a minimum of 31% if the counterfactual wealth quantiles for Canadian-born families are employed (Panel B). When family size is also controlled (Model 2), the first decomposition scheme (Panel A) shows that at least 52% of the wealth gap can be explained, while the alternative decomposition (Panel B) indicates that a minimum of 37% of the gap can be explained. When age of the major income recipient, family size, and factors affecting permanent income are all controlled (Model 3), at least 58% of the wealth gap can be explained in Panel A, and a minimum of 71% in Panel B.

For single families, the result is consistent with that of the restricted model where lone-parent status does not contribute much in explaining the wealth gap. The following discussion will therefore focus on Models 1 and 3. The wealth gaps along the upper-middle portion of the distribution are well explained under both decomposition schemes. Between the 55th and 85th percentiles, a minimum of 31% of the wealth gap is explained with Model 1, and at least 37% with Model 3. Over the top portion of the distribution (at the 90th and 95th percentiles, in particular) the decomposition scheme (Panel A) employing immigrant counterfactual wealth does not perform well.

Table 4. Semi-parametric decomposition (% of wealth gap explained)

Panel A. Immigrant Panel B. Canadian-Counterfactual I. Married families													
Locations	Raw gap	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3						
10 th	-0.52	-34.6	-40.4	-42.3	-77.7	-75.2	-81.6						
15 th	-0.82	-46.7	-52.9	-56.6	-81.5	-88.6	-104.0						
40 th	1.98	125.9	158.7	170.1	70.2	73.7	112.3						
45 th	2.89	92.7	110.2	124.6	56.8	62.7	91.2						
50 th	3.29	75.5	98.2	111.8	53.1	62.7	92.9						
55 th	3.69	72.1	94.8	102.5	47.2	57.7	85.4						
60 th	4.77	66.5	87.0	97.4	38.4	46.1	80.9						
65 th	6.12	60.0	72.9	85.9	34.3	40.8	70.5						
70 th	6.58	50.2	60.8	69.9	30.6	36.9	72.6						
75 th	7.05	41.8	54.6	58.4	34.8	46.1	92.3						
80 th	6.68	44.2	52.1	59.3	37.1	62.6	113.1						
85 th	6.99	54.4	70.1	73.7	45.2	59.9	142.0						
90 th	7.79	86.8	91.9	99.0	59.4	71.4	199.5						
II. Single fa	amilies												
mean	3.50	27.2	22.9	37.8	42.2	40.7	76.3						
55 th	1.41	144.2	144.2	149.9	97.2	90.1	119.9						
60 th	1.49	74.5	73.8	87.9	87.7	83.1	121.5						
65 th	2.69	74.9	72.9	79.4	60.8	58.2	84.6						
70 th	5.25	70.3	69.1	69.5	39.1	36.0	48.8						
75 th	5.30	35.9	33.6	36.8	46.2	44.2	61.3						
80 th	6.51	57.9	55.3	58.4	32.1	28.1	47.7						
85 th	7.40	34.3	28.4	48.6	31.1	27.0	43.9						
90 th	13.94	19.1	17.7	35.8	18.8	17.6	32.3						
95 th	14.50	0.0	-1.3	1.8	32.4	27.1	55.4						

Since the observed mean wealth gap between single immigrant and Canadian-born families is significant, both the DFL and the Oaxaca (1973) decompositions are meaningful. From Table 4, The DFL decompositions show that between 27% and 42% of the mean wealth gap can be explained in Model 1 where only age of the major income recipient is employed in constructing the re-weighting factor, and between 38% and 76% of the total gap is explained in Model 3 in which age of the major income recipient, lone-parent status, and permanent income factors are all employed in the logit regressions. Although the Oaxaca decomposition has some limitations as discussed earlier, it can be used to compare with the DFL decomposition of the mean wealth gap. The Oaxaca decomposition results reported in Table 5. They are almost the same as the DFL decompositions. They also suggest that the major income recipient's age is the most important factor in explaining the wealth gap, and that factors related to permanent income may also play an important role.

Table 5. Oaxaca decomposition of the mean gap between single families

		Scheme I		Scheme II				
	Model 1 Model 2 Model 3			Model 1	Model 2	Model 3		
Total percent explained	27.2	23.5	32.8	42.3	40.3	71.1		
Percent explained by MIR age	27.2	27.2	33.1	42.3	42.1	49.4		
Percent explained by lone-parent status		-3.7	-2.6		-1.8	1.2		
Percent explained by permanent income factors			2.4			20.5		

In summary, the unrestricted analysis shows that the main result of the restricted model is still valid when the restriction is relaxed. Over the range of the wealth distribution where immigrant families have higher wealth than Canadian-born families—from the 40th to 90th percentiles for married families, and from the 55th to 90th percentiles for single families—a significant portion of the wealth gap between immigrants and the Canadian-born can be explained by the major income recipient's (and spouse's) age, as well as factors related to permanent income. But at the bottom of the wealth distribution where immigrant families have lower wealth than Canadian-born families, the observed wealth gap cannot be explained by any of the factors that have been explored. This signifies that low-wealth families may behave differently from families of other wealth classes in their wealth accumulation process.

5. The cohort effect

The generalized quantile regression model presented in Equation (1) can also be employed to investigate cohort effects on the wealth gap. When the dummy variable of immigration status is replaced by a few dummy variables indicating periods of entry into Canada, the coefficient on a cohort dummy can be interpreted as observed wealth gaps between a typical Canadian-born family and an average immigrant family from this cohort. Immigrant families are divided here into three different cohorts according to years since migration of the major income recipient: families who arrived before 1976, between 1976 and 1985, and between 1986 and 1999. Particular attention will be paid to the 1976-1985 cohort, which had a worse entry position than its predecessors and a zero earnings assimilation rate, according to Baker and Benjamin (1994) and Bloom et al. (1995). The sample size and estimation results are contained in Table 6.

Some clear patterns are shown in Table 6. On average and along the wealth distribution, immigrant families with a major income recipient who arrived in Canada before 1976 have higher wealth than an average Canadian-born family, while those who arrived in Canada after 1985 have lower wealth. The wealth gaps are wider at the top than at the bottom of the distribution. The wealth position of the 1976-1985 cohort is somewhat better than their earnings position. Except over some small portions of the distributions where immigrant families have lower wealth than Canadian-born families, the wealth gaps are generally insignificant and not large. Married immigrant families of this cohort are found to have lower wealth than the average Canadian-born family only at the 25th percentile of the distribution, with the gap estimated to be -\$12,500. For single immigrant families in this cohort, significant wealth gaps are found at the 10th, 50th and 60th percentiles— -\$2,500, -\$16,900, and -\$24,400 respectively. But at the 90th and

95th percentiles, single immigrant families have significantly higher wealth than an average Canadian-born single family, with the wealth gaps estimated to be \$183,500 and \$305,700 respectively.

Table 6. Wealth gap by period of immigration (t-statistics in parentheses)

Cohort (N)	5 th	10 th	25 th	40 th 50 th		60 th	75 th	90 th	95 th	mean
				Married fa	<u>amilies</u>					
86-99 (524)	-0.64	-1.09	-3.8	-5.84	-7.1	-9.5	-14.3	-25.07	-38.61	-13.9
	(-3.42)	(-4.41)	(-8.63)	(-6.73)	(-7.04)	(-8.07)	(-6.62)	(-5.17)	(-4.07)	(-4.93)
76-85 (279)	-0.05	-0.49	-1.25	-0.09	0.44	0.25	0.5	-1.22	-6.94	-4.29
	(-0.17)	(-1.42)	(-2.03)	(-0.08)	(0.32)	(0.16)	(0.17)	(-0.19)	(-0.54)	(-1.09)
75 (943)	1.29	3.64	9.55	12.31	14.44	15.87	18.7	23.33	18.42	13.53
	(8.62)	(17.79)	(26.39)	(17.32)	(17.52)	(16.39)	(10.53)	(6.03)	(2.46)	(5.88)
				Single fa	amilies					
86-99 (218)	-1.22	-0.6	-0.2	-1.07	-2.38	-4.41	-8.93	-12.91	-19.45	-6.43
	(-3.39)	(-6.78)	(-1.28)	(-3.23)	(-3.54)	(-5.24)	(-4.27)	(-3.31)	(-2.01)	(-3.80)
76-85 (155)	-0.53	-0.25	-0.14	-0.69	-1.69	-2.44	-1.32	18.35	30.57	3.04
	(-1.09)	(-2.18)	(-0.71)	(-1.70)	(-2.01)	(-2.41)	(-0.52)	(3.44)	(2.75)	(1.42)
75 (537)	0.56	0.1	1.5	5	7.45	10.68	14.05	18.6	25.71	9.56
	(3.11)	(1.90)	(15.84)	(23.07)	(16.40)	(18.76)	(9.76)	(6.54)	(4.04)	(7.26)

Note that since the major income recipient in a family from an early cohort of immigrants is likely to be older than one in a typical Canadian-born family, and a major income recipient from a later cohort is likely to be younger, the estimated wealth gap must be interpreted as the wealth difference between an average Canadian-born family and an average family from a specific cohort of immigrants. This is different from Section 3 where the wealth gap is interpreted as the wealth difference between an average immigrant family and an average Canadian-born family. In order to compare the wealth difference between Canadian-born and immigrant families of different cohorts, it is necessary to control family life cycle and other aspects of wealth accumulation. These results are contained in Table 7. In Table 7.

As expected, the absolute wealth gaps are substantially reduced when the age of the major income recipient and spouse are controlled. For example, the median wealth gap between the 1986-1999 cohort of married immigrant families and an average Canadian-born family is estimated to be \$71,000 (Table 6), but when the ages of the major income recipient and spouse are controlled, it becomes -\$46,000 (Model 1). For families who arrived before 1976, the figures are \$144,000 and \$87,000 respectively. Similar results are obtained at other points of the distribution, and between single immigrant and Canadian-born families. The overall observation is that, given the ages of the major income recipient and spouse, recent immigrants still have lower wealth, and most immigrants who arrived before 1976 still have higher wealth, than their Canadian-born counterparts. When family size (or lone-parent status) and permanent income factors are also controlled (Models 2 and 3), the estimated wealth gaps are not too much different from those in Model 1 for the 1986-1999 cohort and the cohort who arrived before 1976.

¹⁷ To save space, the coefficients on age of the major income recipient, permanent income factors, and family size, etc. are not presented in the text. They are available upon request.

However, for immigrants who arrived between 1976 and 1985, the results are quite interesting. Below the 60th percentile of the distribution, almost all these immigrants have lower wealth than their Canadian-born counterparts in Model 3. Although this is not inconsistent with the notion that immigrants who arrived between 1976 and 1985 are disadvantaged from an earnings perspective, it is unclear whether their disadvantaged wealth position is a result of their disadvantaged earnings position or the fact that they have been in Canada for a relatively short time.

Immigrant families who arrived in Canada before 1976 account for more than 50% of the immigrant population in the sample. They are observed to have higher wealth than Canadianborn families, even after controlling for several key factors of the wealth accumulation process. This means that, after a sufficiently long period of residency, immigrant families are able to outpace Canadian-born families in accumulating wealth. Given that family life cycle and permanent income factors were already controlled, the results seem to indicate that immigrant families have a higher savings rate than Canadian-born families. The only exception might be the 1976-1980 sub-cohort of married immigrant families, where a significant portion was observed to be in a disadvantaged wealth position compared with both the 1981-1985 and the pre-1976 cohort of immigrants.

Higher risk-taking in investments (and hence higher rate of returns) and higher inheritance are other factors that may contribute to the higher wealth of immigrants. However, according to SCF 1999, 10.5% of immigrant families invested in stocks of private and public companies, and 26.8% of their non-RRSP investments are held in stocks. The corresponding numbers for Canadian-born families are 11.4% and 27.4%. (In addition, the ratios of RRSP/LIRA to total assets for immigrant and Canadian-born families are 9.4% and 10% respectively).

Table 7. Cohort effect on wealth gap (t-statistics in parentheses)

Cohort	5th	10th	25th	40th	50th	60th	75th	90th	95th	Mean
Model 1				MARRIET	FAMILIES					
1986-1999	-0.9	-1.56	-3	-3.64	-4.62	-4.81	-5.75	-9.05	-8.12	-10.5
1900-1999	(-4.21)	(-3.84)	(-6.77)	(-5.63)	(-7.23)	(-5.11)	(-4.14)	(-2.86)	(-0.95)	(-3.56)
1976-1985	-0.19	-0.82	-1.48	-1.49	0.03	-0.45	-0.32	-2.41	-6.7	-4.98
1770-1783	(-0.66)	(-1.40)	(-2.42)	(-1.69)	(0.04)	(-0.35)	(-0.17)	(-0.60)	(-0.67)	(-1.27)
before 1976	0.84	2.2	6.55	7.09	8.65	9.03	8.75	11.77	5.18	6.76
before 1570	(4.74)	(6.38)	(17.86)	(13.19)	(16.15)	(11.35)	(7.61)	(4.72)	(0.75)	(2.89)
	(4.74)	(0.30)	(17.00)		SINGLE FAMILIES		(7.01)	(4.72)	(0.75)	(2.0)
1986-1999	-0.81	-0.25	-0.37	-1.08	-1.6	-2.53	-2.91	-5.93	-7.6	-4.45
1700-1777	(-6.31)	(-4.02)	(-1.94)	(-7.26)	(-5.17)	(-5.36)	(-3.38)	(-2.00)	(-1.02)	(-2.67)
1976-1985	-0.1	-0.27	-0.58	-1.02	-1.04	-1.09	0.02	19.22	28	3.12
19/0-1903	(-0.90)	(-3.72)	(-2.23)	(-5.39)	(-2.73)	(-1.92)	(0.02)	(4.69)	(2.79)	(1.47)
before 1976	0	0	1.14	3.36	4.51	6.28	8.24	10.69	12.22	5.72
Deloie 1970	(0)	(0)	(9.59)	(33.88)	(21.69)	(19.75)	(13.65)	(4.46)	(2.28)	(4.28)
	(0)	(0)	(9.39)	(33.00)	(21.09)	(19.73)	(13.03)	(4.40)	(2.20)	(4.20)
Model 2				MARRIED	FAMILIES					
1986-1999	-0.97	-1.63	-3.16	-3.72	-4.61	-5.46	-5.99	-10.83	-10.9	-10.83
	(-4.15)	(-4.49)	(-6.64)	(-5.44)	(-6.76)	(-5.49)	(-4.34)	(-3.64)	(-1.51)	(-3.81)
1976-1985	-0.26	-1	-1.32	-1.36	-0.39	-0.81	-1.15	-2.38	-7.44	-5.68
	(-0.78)	(-2.00)	(-2.01)	(-1.47)	(-0.43)	(-0.61)	(-0.64)	(-0.60)	(-0.84)	(-1.44)
before 1976	0.84	2.11	6.44	7.08	8.66	8.91	7.81	12.15	3.86	6.36
	(4.22)	(6.82)	(16.40)	(12.51)	(15.28)	(10.75)	(6.82)	(4.93)	(0.67)	(2.71)
				SINGLE F	AMILIES					
1986-1999	-0.81	-0.25	-0.39	-1.05	-1.7	-2.51	-2.67	-5.4	-8.22	-4.36
	(-6.21)	(-3.93)	(-2.01)	(-5.84)	(-3.98)	(-5.69)	(-3.04)	(-2.00)	(-1.11)	(-2.62)
1976-1985	-0.1	-0.27	-0.58	-1.02	-0.91	-0.63	0.1	19.51	29.8	3.37
	(-0.90)	(-3.64)	(-2.19)	(-4.47)	(-1.70)	(-1.16)	(0.09)	(5.18)	(2.86)	(1.59)
before 1976	0	0	1.15	3.4	4.4	6.39	8.25	10.38	10.7	5.74
	(0)	(0)	(9.55)	(28.50)	(15.20)	(21.36)	(13.08)	(4.74)	(1.87)	(4.30)
Model 3				Married	EAMII IES					
1986-1999	-1.96	-3.1	-4.98	-5.37	-5.38	-5.68	-5.67	-9.9	-12.87	-14.25
1700 1777	(-5.91)	(-9.32)	(-10.41)	(-7.89)	(-7.71)	(-6.60)	(-5.38)	(-5.06)	(-2.84)	(5.00)
1976-1985	-0.73	-1.28	-1.34	-2.27	-2.03	-1.76	0.38	-2.75	-5.71	-7.97
1770-1703	(-1.55)	(-2.62)	(-2.04)	(-2.48)	(-2.18)	(-1.54)	(0.28)	(-1.07)	(-1.12)	(-2.04)
before 1976	0.7	1.86	5.05	7.18	7.9	8.65	10.04	10.17	9.27	5.67
	(2.40)	(6.38)	(12.52)	(12.78)	(13.70)	(12.10)	(11.50)	(6.32)	(2.46)	(2.42)
				SINGLE FA						
1986-1999	-1.24	-0.37	-0.8	-1.37	-2	-2.63	-2.56	-3.86	-0.66	-5.41
	(6.73)	(-4.04)	(-4.74)	(-6.15)	(-6.96)	(-6.90)	(-4.05)	(-2.15)	(-0.13)	(-3.30)
1976-1985	-0.2	-0.42	-0.86	-1.35	-1.35	-1.09	0.35	19.34	25.43	2.18
	(-1.30)	(-5.38)	(-3.47)	(-5.01)	(-3.75)	(-2.36)	(0.47)	(9.05)	(3.43)	(1.05)
before 1976	0	-0.05	0.79	3.22	3.9	5.86	7.69	13.01	10.86	5.04
	(-0.02)	(-0.83)	(6.96)	(21.61)	(19.79)	(22.62)	(17.59)	(11.13)	(2.66)	(3.85)

6. Summary and conclusions

The economic assimilation of immigrants is a key concern for economists and policy makers. Most studies focus on the earnings assimilation of immigrants. This article attempts to assess the assimilation issue from a wealth perspective by studying wealth differences between immigrant and Canadian-born families and uncovering the factors that may explain the wealth gap.

This study found that, on average and along the upper segment (from the 55th to 95th percentiles) of the wealth distribution, single immigrant families have higher wealth than their Canadian-born counterparts. The wealth gap ranges from \$14,000 to \$145,000, with a mean of \$35,000. Among married families, immigrants have higher wealth than the Canadian-born from the 40th to 90th percentiles, with the gap ranging between \$20,000 and \$78,000. However, at the lower tail of the distribution, evidence suggests that low-wealth immigrants have lower wealth than their Canadian-born counterparts, although the gaps are well below \$10,000. Various decomposition practices indicate that the age of the major income recipient, which captures the effect of a family's life cycle, as well as factors related to permanent income, such as education and gender can explain a significant portion of the wealth gap. However, at the bottom of the wealth distribution where immigrants have lower wealth than Canadian-born families, none of the wealth gap can be explained by age of the major income recipient, permanent income factors, or family size. This seems to indicate that low-wealth families may behave differently in their accumulation of wealth.

It was also found that the 1986-1999 cohort of immigrant families have lower wealth, and immigrants who arrived in Canada before 1976 have higher wealth, even after controlling several key factors of wealth accumulation. The results show that after a sufficient period of residency, immigrant families are capable of outpacing Canadian-born families in wealth accumulation. However, some evidence suggests that the 1976-1980 cohort may be an exception, since they are in a disadvantaged wealth position relative to both their predecessors and the 1981-1986 cohort. But it is unclear whether this is due to their disadvantaged earnings position or the fact that they have not yet resided long enough in Canada.

There are a few caveats to this study. In a cross-sectional survey, the ability to identify and estimate some key parameters is limited. A longitudinal study of wealth with additional information on pensions and savings would be helpful for further research.

Appendix

Table A1. Descriptive Statistics

		Married:	families			Single fa	amilies	
	Immig	rant	Canadiar	n-born	Immig	rant	Canadia	n-born
	Mean	std.err.	Mean	std.err.	Mean	std.err.	Mean	std.err
Age of MIR	49.7	0.34	46.9	0.17	50.5	0.6	45.8	0.26
Age of spouse	47.9	0.33	45.5	0.16				
Female MIR	0.25	0.01	0.22	0.01	0.58	0.02	0.55	0.01
Female spouse	0.76	0.01	0.78	0.01				
Family size	3.45	0.03	3.09	0.01	1.7	0.04	1.4	0.01
lone parent					0.14	0.01	0.11	0.01
MIR ed: 0-8 yr.	0.123	0.008	0.096	0.003	0.153	0.012	0.123	0.005
MIR ed: 9 -13 yr.	0.104	0.007	0.159	0.004	0.11	0.01	0.182	0.005
MIR ed: high school	0.151	0.009	0.158	0.004	0.149	0.012	0.134	0.005
MIR ed: P.S.	0.32	0.011	0.376	0.006	0.362	0.016	0.378	0.007
MIR ed: University	0.168	0.009	0.143	0.004	0.149	0.012	0.139	0.005
MIR ed: above Univ	0.134	0.008	0.068	0.003	0.077	0.009	0.043	0.003
spo ed: 0-8 yr.	0.143	0.008	0.092	0.003				
spo ed: 9 -13 yr.	0.121	0.008	0.175	0.004				~
spo ed: high school	0.202	0.01	0.199	0.005				
spo ed: P.S.	0.306	0.011	0.369	0.006				
spo ed: Univ.	0.151	0.009	0.131	0.004				
spo ed: above Univ	0.078	0.006	0.034	0.002			***	
IMG 8699	0.33	0.011			0.31	0.015		
IMG 7685	0.16	0.009			0.18	0.013		
IMG before 1976	0.52	0.012			0.51	0.017		
Sample size	1,746	7,849			910	5,296		

Table A2: Family pension and social security incomes (1998 \$)

	Mean	Std. err	Median	Sample size
Married families				
Immigrant	33,150	913	32,430	445
Canadian-born	34,470	454	32,410	1,899
Single families				
Immigrant	22,090	813	18,790	308
Canadian-born	22,070	361	18,620	1,594

Source: SFS 1999 (families with an MIR aged 55 or over). Total pension and social security income include income from Canada/Quebec pension plan, private pension incomes, Old Age Security and Guaranteed Income Supplement.

Table A3. Selected generalized quantile regression results: restricted models19

1. Model 1: Married families

OLS regression

	SS					Number of obs F(11, 9583)	= 9595
Modal	1269444.43			04 039		F(11, 9583)	= 23.37
	47320300.6					Prob > F R-squared	= 0.0261
	+					Adj R-squared	= 0.0250
Total	48589745.1	9594	5064	.59715		Root MSE	= 70.27
wealth		Std.				[95% Conf.	
	+				- -		
imigrnt	7448278 -9.372401	1.73	745	-0.43	0.668	-4.150596	2.660941
age_1m age_2m	-9.372401	2 710	285 782	-2 96	0.078	-19.7856	-2 702159
age_4m	5.320138	2.569	418	2.07	0.038	.2835346	10.35674
age_5m	10.55492	3.652	153	2.89	0.004	3.395926	17.71391
age_6m	5.671805	4.718	975	1.20	0.229	-3.578383	14.92199
age_1s	-10.32146	4.514	527	-2.29	0.022	-19.17089	-1.472034
age_2s age_4s	-4.8/9969	2.648	652	7 53	0.065	1 006743	14 31502
age_4s	8.044998	3.765	699	2.14	0.000	.6634317	15.42657
age_6s	3.982364	4.912	349	0.81	0.418	-5.646878	13.61161
_cons	23.30265	1.576	913	14.78	0.000	-4.150596 -19.7856 -13.32957 .2835346 3.395926 -3.578383 -19.17089 -10.07084 4.096743 .6634317 -5.646878 20.21157	26.39374
.1 Quantile r	egression deviations 516	50 59	(ahou:	- 1 005\		umber of obs =	9595
	deviations 507		(abou	C 1.005/		seudo R2 =	0.0183
	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
imigrnt	+	.2112	352	-3.48	0.001	-1.149066 -2.505286 -1.345087 .3670013 -1581044 -1.988944 -2.417304 -1.319806 -3409355 1.11138 .2129171 1.369083	3209344
age_1m	-1.386	.5710	028	-2.43	0.015	-2.505286	2667138
age_2m	7325	.3125	107	-2.34	0.019	-1.345087	1199129
age_4m	1.035	.3407	789	3.04	0.002	.3670013	1.702999
age_5m	1 0016	.4591 612	8/3 227	1.64	0.106	1581044	2 201694
age_om	-1.4245	.5064	777	-2.81	0.005	-2.417304	4316965
age_2s	704	.3141	529	-2.24	0.025	-1.319806	0881939
age_4s	.318	.3361	553	0.95	0.344	3409355	.9769354
age_5s	2.025	.4660	822	4.34	0.000	1.11138	2.93862
age_os cons	1.4564	.1892	232	9.20	0.022	1.369083	2.110917
.25 Quantile	regression deviations 120	281 7	(about	- 4 82219		umber of obs =	9595
	deviations 1		(about	. 1.00013		seudo R2 =	0.0449
wealth	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
imigrnt	+	3052	363	_0 95	0 3//	_ 9974276	3092278
age 1m	-1.9109	. 8837	824	-2.16	0.031	-3.6433	1784996
age_2m	-1.2352	.4807	481	-2.57	0.010	-2.177568	292832
age_4m	2.0945	.4769	762	4.39	0.000	1.159526	3.029474
age_5m	2.18	.6516	262	3.35	0.001	.9026746	3.457325
age_bm	-3 5741	7895	041	-4.53	0.014	-5.121695	-2.026505
age_1s	-2.145	.4674	449	~4.59	0.000	-3.061291	-1.228709
age_4s	1.175	.4871	468	2.41	0.016	-2200894	2.129911
age_5s	4.170301	.6608	849	6.31	0.000	2.874826	5.465775
age_6s	3.591201	.8573	057	4.19	0.000	1.9107	5.271701
_cons	0.345	.2084		19.91		8874276 -3.6433 -2.177568 1.159526 .9026746 .3993976 -5.121695 -3.061291 .2200894 2.874826 1.9107 4.818686	5.6/1514

¹⁹ Definitions of variables are provided in Table A4.

Median regression Raw sum of deviations 206408 (about		: 13.3461)		Number of obs	=	9595	
	deviations 191		13.3401		Pseudo R2	=	0.0705
wealth	Coef.	Std. Err.	t	P> t	[95% Conf		Interval]
imigrnt age_1m age_2m age_5m age_6m age_1s age_1s age_2s age_4s age_5s age_6s _cons	5.902699 5.242699	.368098 1.053709 .5795081 .5285768 .7423165 .9598669 .9259151 .5624277 .5395898 .7711626 1.003002 .3270133	1.71 -4.58 -4.41 8.06 9.15 4.02 -6.93 -6.47 7.47 7.65 5.23 36.20	0.087 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.895493 -3.690958 3.223879 5.336703 1.978459 -8.23229 -4.739778 2.97499 4.391057 3.276603		1.351549 -2.764507 -1.419041 5.296123 8.246898 5.741544 -4.602311 -2.534823 5.09041 7.218795 12.47832
	deviations 238		28.941)		Number of obs		9595
Min sum of	deviations 218	763.9			Pseudo R2	=	0.0812
wealth	Coef.	Std. Err.	t	P> t	[95% Conf		Interval]
imigrnt age_1m age_2m age_5m age_5m age_1s age_1s age_2s age_4s age_5s age_5s age_6s _cons	8.249998 14.04 7.519995 -11.907 -6.599901 6.900002	.8007605 2.295516 1.183798 1.070475 1.551039 2.162903 1.963169 1.15326 1.092731 1.629468 2.284075 .7018604	1.60 -4.13 -4.73 7.71 9.05 3.48 -6.07 -5.72 6.31 4.66 2.39 34.37	0.110 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000	10.99963 3.280247 -15.75523 -8.860535 4.758017 4.395899		2.849659 -4.983303 -3.279506 10.34836 17.08036 11.75974 -8.058775 -4.339266 9.041986 10.7841 9.937274 25.4958
.9 Quantile re	egression deviations 200	719 2 (about	55 50000		Number of obs	=	9595
	deviations 184		33.3777		Pseudo R2	=	0.0793
wealth	Coef.	Std. Err.	t	P> t	[95% Conf		Interval]
imigrnt age_1m age_2m age_5m age_6m age_1s age_2s age_4s age_4s age_6s _cons	1.3025 -15.5955 -11.233 16.8501 38.6226 27.4901 -23.1309 -12.4064 11.7336 .4984968 -6.625 45.2764	2.925668 2.674183 4.049418 5.412002 4.955043 2.863662 2.723068 4.169168 5.738162	0.64 -2.41 -3.84 6.30 9.54 5.08 -4.67 -4.33 4.31 0.12 -1.15 24.89	0.522 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.905 0.248 0.000	-2.686421 -28.2858 -16.96793 11.60814 30.68488 16.88143 -32.84383 -18.01979 6.395807 -7.673955 -17.87301 41.71106		5.29142 -2.905201 -5.498072 22.09207 46.56032 38.09877 -13.41797 -6.79302 17.07139 8.670949 4.623011 48.84174

Model 1. Single families

OLS regression

Source	SS		MS	5		Number of obs F(6, 6199)	=	6206
						F(6, 6199)	=	36.45
Model	174092.764 4934780.32	6100	796 060	1507		Prob > F R-squared	=	0.0000
Residual	+	0193				Adj R-squared		
Total	5108873.09	6205	823.347	7798		Root MSE		
rron1+h	Coef.	C+3		+	D> +	105% Conf	Tnt	
imigrnt	2.047798 -5.32501 9321385 6.096838 9.154444 8.779809 8.173877	.9775	453	2.09	0.036	.1314706	3.	964126
age_1m	-5.32501	1.249	324 -	4.26	0.000	-7.774119	-2.	875901
age_2m	9321385	1.116	259 -	-0.84	0.404	-3.120394	1.	256117
age_4m	6.096838	1.244	102	6 11	0.000	3.658095	11	04040
age_Sill	8 779809	1 111	174	7 90	0.000	6 601524	1	0 9581
_cons	8.173877	.8119	998 1	0.07	0.000	6.582076	9.	765678
.1 Quantile re	paression				N1:	mber of obs =		6206
	deviations 150	18.38	(about -	.015)	140	TIMET OF ODD -		0200
	deviations 148				Ps	eudo R2 =		0.0099
wealth	Coef.	Std	 Err	t	P> +	[95% Conf	Tnt	ervall
	+							
imigrnt	125	.0315	092 -	3.97	0.000	1867691	0	632309
are 1m	_ 9	0431	207 <u>-</u> 2	n 8.4	0 000	_ 9846491	_ 2	153509
age_2m	325	.0346	249 -	9.39	0.000	3928768	2	571232
age_4m	.005	.0351	856 0 <i>61</i>	1 01	0.887	063976	1	073976 523306
age_5m age_6m	225	0314	904 238	7 16	0.057	1633985	- 1	866015
age_om	. 223	. O J T 4					. 4	000013
_cons	.025	.0246	302	1.02	0.310	3928768 063976 0021306 .1633985 0232836	.0	732836
.25 Quantile n		19.36			Nu	0232836 		6206
.25 Quantile n	regression deviations 356	19.36	(about .	2442000	Nu (1) Ps	mber of obs =		6206
.25 Quantile : Raw sum of c Min sum of c	regression deviations 356 deviations 352	19.36 68.51	(about .	2442000 t	Nu (1) Ps P> t	mber of obs = eudo R2 = [95% Conf.	Int	6206 0.0099
.25 Quantile : Raw sum of (Min sum of (wealth	regression deviations 356 deviations 352	19.36 68.51	(about .	2442000 t	Nu (1) Ps P> t	mber of obs = eudo R2 = [95% Conf.	Int	6206 0.0099
.25 Quantile : Raw sum of c Min sum of c	regression deviations 356 deviations 352	19.36 68.51	(about .	2442000 t	Nu (1) Ps P> t	mber of obs = eudo R2 = [95% Conf.	Int	6206 0.0099
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_2m	regression deviations 356 deviations 352	19.36 68.51	(about .	2442000 t	Nu (1) Ps P> t	mber of obs = eudo R2 = [95% Conf.	Int	6206 0.0099
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_2m age_4m	regression deviations 356 deviations 352	19.36 68.51	(about .	2442000 t	Nu (1) Ps P> t	mber of obs = eudo R2 = [95% Conf.	Int	6206 0.0099
.25 Quantile name sum of common sum of commo	regression deviations 356 deviations 352	19.36 68.51	(about .	2442000 t	Nu (1) Ps P> t	mber of obs = eudo R2 = [95% Conf.	Int	6206 0.0099
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_4m age_5m age_6m age_6m	regression deviations 356 deviations 352	19.36 68.51	(about .	2442000 t	Nu (1) Ps P> t	mber of obs = eudo R2 = [95% Conf.	Int	6206 0.0099
.25 Quantile name sum of common sum of commo	regression deviations 356 deviations 352	19.36 68.51	(about .	2442000 t	Nu (1) Ps P> t	mber of obs = eudo R2 = [95% Conf.	Int	6206 0.0099
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_4m age_5m age_6m age_6m	regression deviations 356 deviations 352	19.36 68.51	(about .	2442000 t	Nu Ps P> t 0.009 0.003 0.214 0.122 0.002 0.000 0.000	mber of obs = eudo R2 = [95% Conf4375634673894936099890479325 .1483422 1.082112 .2130494	Int0011 .00 .4 .66 15	6206 0.0099 erval] 624366 361051 809989 079325 516578 477888 269507
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_2m age_4m age_5m age_6mcons	regression deviations 356 deviations 352 Coef. 25 405 14 .18 .4 1.28 .37	19.36 68.51 	(about . Err. 787 - 167 - 346 - 715 741 453 1	2442000 t 2.61 2.95 3.12 2.68	Nu Ps P> t 0.009 0.003 0.214 0.122 0.002 0.000 0.000	mber of obs = eudo R2 = [95% Conf.	Int0011 .00 .4 .66 15	6206 0.0099 erval] 624366 361051 809989 079325 516578 477888 269507
.25 Quantile name sum of common sum of commo	regression deviations 356 deviations 352 Coef2540514 .18 .4 1.28 .37	19.36 68.51 	(about . Err. 787 - 167 - 346 - 715 741 453 1	2442000 t 2.61 2.95 3.12 2.68	Nu P> t 0.009 0.003 0.214 0.122 0.002 0.000 0.000	mber of obs = eudo R2 = [95% Conf4375634673894936099890479325 .1483422 1.082112 .2130494	Int01 .0 .4 .6 15	6206 0.0099 erval] 624366 361051 80989 079325 516578 477888 269507
.25 Quantile name sum of common sum of commo	regression deviations 356 deviations 352 Coef. 2540514 .18 .4 1.28 .37 sion deviations 667 deviations 633	19.36 68.51 Std. .0956 .137 .1127 .1162 .1283 .1009 .0800	(about . Err. 787 - 167 - 346 - 715 741 453 1 627	2442000 t 2.61 2.95 1.24 1.55 3.12 2.68 4.62	Nu P> t 0.009 0.003 0.214 0.122 0.002 0.000 0.000	mber of obs = eudo R2 = [95% Conf4375634673894936099890479325 .1483422 1.082112 .2130494 mber of obs =	Int01 .0 .4 .6 15	6206 0.0099 erval] 624366 361051 80989 079325 516578 477888 269507
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_4m age_5m age_6m _cons Median regress Raw sum of c	regression deviations 356 deviations 352 Coef. 2540514 .18 .4 1.28 .37 sion deviations 667 deviations 633	19.36 68.51 	Err. 787 - 167 - 146 - 715 - 741 453 1 527 - (about 2	2442000 t 2.61 1.24 1.55 3.12 2.68 4.62	Nu Ps t	mber of obs = eudo R2 = [95% Conf4375634673894936099890479325 .1483422 1.082112 .2130494 mber of obs = eudo R2 =	 Int 	6206 0.0099 erval] 624366 361051 809989 079325 516578 477888 269507 6206 0.0509
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_4m age_5m age_6m _cons Median regress Raw sum of c Min sum of c	regression deviations 356 deviations 352 Coef. 2540514 .18 .4 1.28 .37 sion deviations 667 deviations 633	19.36 68.51 	Err. 787 - 167 - 146 - 715 - 741 - 1527 - (about 2	2442000 t 2.61 1.24 1.55 3.12 2.68 4.62	Nu Ps P> t Nu Ps Nu Ps Nu Ps Nu Ps Nu Ps P> t	mber of obs = eudo R2 = [95% Conf. 4375634 6738949 3609989 0479325 .1483422 1.082112 .2130494 mber of obs = eudo R2 =	Int01 .0 .4 .6 15.	6206 0.0099 erval] 624366 361051 809989 079325 516578 477888 269507 6206 0.0509
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_4m age_5m age_6m _cons Median regress Raw sum of c Min sum of c	regression deviations 356 deviations 352 Coef. 2540514 .18 .4 1.28 .37 sion deviations 667 deviations 633	19.36 68.51 	Err. 787 - 167 - 146 - 715 - 741 - 1527 - (about 2	2442000 t 2.61 1.24 1.55 3.12 2.68 4.62	Nu Ps P> t Nu Ps Nu Ps Nu Ps Nu Ps Nu Ps P> t	mber of obs = eudo R2 = [95% Conf. 4375634 6738949 3609989 0479325 .1483422 1.082112 .2130494 mber of obs = eudo R2 =	Int01 .0 .4 .6 15.	6206 0.0099 erval] 624366 361051 809989 079325 516578 477888 269507 6206 0.0509
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_4m age_5m age_6m _cons Median regress Raw sum of c Min sum of c	regression deviations 356 deviations 352 Coef. 2540514 .18 .4 1.28 .37 sion deviations 667 deviations 633	19.36 68.51 	Err. 787 - 167 - 146 - 715 - 741 - 1527 - (about 2	2442000 t 2.61 1.24 1.55 3.12 2.68 4.62	Nu Ps P> t Nu Ps Nu Ps Nu Ps Nu Ps Nu Ps P> t	mber of obs = eudo R2 = [95% Conf. 4375634 6738949 3609989 0479325 .1483422 1.082112 .2130494 mber of obs = eudo R2 =	Int01 .0 .4 .6 15.	6206 0.0099 erval] 624366 361051 809989 079325 516578 477888 269507 6206 0.0509
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_4m age_5m age_6m _cons Median regress Raw sum of c Min sum of c	regression deviations 356 deviations 352 Coef. 2540514 .18 .4 1.28 .37 sion deviations 667 deviations 633	19.36 68.51 	Err. 787 - 167 - 146 - 715 - 741 - 1527 - (about 2	2442000 t 2.61 1.24 1.55 3.12 2.68 4.62	Nu Ps P> t Nu Ps Nu Ps Nu Ps Nu Ps Nu Ps P> t	mber of obs = eudo R2 = [95% Conf. 4375634 6738949 3609989 0479325 .1483422 1.082112 .2130494 mber of obs = eudo R2 =	Int01 .0 .4 .6 15.	6206 0.0099 erval] 624366 361051 809989 079325 516578 477888 269507 6206 0.0509
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_4m age_5m age_6m _cons Median regress Raw sum of c Min sum of c	regression deviations 356 deviations 352 Coef. 2540514 .18 .4 1.28 .37 sion deviations 667 deviations 633	19.36 68.51 	Err. 787 - 167 - 146 - 715 - 741 - 1527 - (about 2	2442000 t 2.61 1.24 1.55 3.12 2.68 4.62	Nu Ps P> t Nu Ps Nu Ps Nu Ps Nu Ps Nu Ps P> t	mber of obs = eudo R2 = [95% Conf. 4375634 6738949 3609989 0479325 .1483422 1.082112 .2130494 mber of obs = eudo R2 =	Int01 .0 .4 .6 15.	6206 0.0099 erval] 624366 361051 809989 079325 516578 477888 269507 6206 0.0509
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_4m age_5m age_6m _cons Median regress Raw sum of c Min sum of c	regression deviations 356 deviations 352 Coef. 2540514 .18 .4 1.28 .37 sion deviations 667 deviations 633	19.36 68.51 	Err. 787 - 167 - 146 - 715 - 741 - 1527 - (about 2	2442000 t 2.61 1.24 1.55 3.12 2.68 4.62	Nu Ps P> t Nu Ps Nu Ps Nu Ps Nu Ps Nu Ps P> t	mber of obs = eudo R2 = [95% Conf. 4375634 6738949 3609989 0479325 .1483422 1.082112 .2130494 mber of obs = eudo R2 =	Int01 .0 .4 .6 15.	6206 0.0099 erval] 624366 361051 809989 079325 516578 477888 269507 6206 0.0509
.25 Quantile r Raw sum of c Min sum of c wealth imigrnt age_1m age_4m age_5m age_6m _cons Median regress Raw sum of c Min sum of c	regression deviations 356 deviations 352 Coef. 2540514 .18 .4 1.28 .37 sion deviations 667 deviations 633 Coef. 25 -3.11 -1.89 1.82 3.1293	19.36 68.51 	Err. 787 - 167 - 146 - 715 - 741 - 1527 - (about 2	2442000 t 2.61 1.24 1.55 3.12 2.68 4.62	Nu Ps P> t Nu Ps Nu Ps Nu Ps Nu Ps Nu Ps P> t	mber of obs = eudo R2 = [95% Conf. 4375634 6738949 3609989 0479325 .1483422 1.082112 .2130494 mber of obs = eudo R2 =	Int01 .0 .4 .6 15.	6206 0.0099 erval] 624366 361051 809989 079325 516578 477888 269507 6206 0.0509

.75 Quantile	regression			Number	of	obs	=	63	206
Raw sum of	deviations	81248.92	(about 12.1445)						
Min sum of	deviations	74004.8		Pseudo	R2		=	0.08	892

wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_lm age_2m age_4m age_5m age_6m _cons	1.21 -8.9725 -4.5725 5.6475 11.2175 10.8275 9.9725	.4184961 .6296604 .5243312 .5573582 .5785744 .465409 .3513467	2.89 -14.25 -8.72 10.13 19.39 23.26 28.38	0.004 0.000 0.000 0.000 0.000 0.000 0.000	.3896024 -10.20685 -5.600371 4.554885 10.08329 9.915136 9.283739	2.030397 -7.738147 -3.544629 6.740115 12.35171 11.73986 10.66126

.9 Quantile regression				Number	of	obs	=	6206
Raw sum of deviation	s 66923.46	(about	28.0287)					
Min sum of deviation	s 62024.53			Pseudo	R2		=	0.0732

wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_5m age_6m _cons	5.667999 -15.952 -5.102001 10.298 24.3386 18.08 21.502	2.085519 2.933937 2.467847 2.862875 2.907145 2.404546 1.803292	2.72 -5.44 -2.07 3.60 8.37 7.52 11.92	0.007 0.000 0.039 0.000 0.000 0.000	1.579659 -21.70353 -9.939837 4.685771 18.63959 13.36626 17.96692	9.75634 -10.20047 2641651 15.91023 30.03761 22.79374 25.03708

OLS regression

ozo regresorom										
Source	SS	df	MS		Number of obs					
W-d-1	1206706 00	12	107233.082		F(12, 9582)					
Model Residual	1286796.99 47302948.1		4936.64664		Prob > F R-squared	= 0.0000 $= 0.0265$				
	+				Adj R-squared					
Total	48589745.1	9594	5064.59715		Root MSE	= 70.261				
1-1-	Coof	C+2 F	rr. t	P> t	[95% Conf.	Totows 2 1				
wealth	Coef.	Std. E	t	F/ L	[95% CONI.	Interval]				
imigrnt	-1.252008	1.7581	58 -0.71	0.476	-4.69837	2.194353				
age_1m	-8.486194	5.3325	79 -1.59	0.112	-18.93918	1.966788				
age_2m	-7.606801	2.7191		0.005	-12.937	-2.276606				
age_4m	5.672185	2.5759		0.028	.6228084	10.72156				
age_5m	11.54044	3.6893		0.002	4.308603	18.77227				
age_6m age_1s	6.758808 -9.542304	4.7538		0.155	-2.559731 -18.42799	16.07735				
age_1s age_2s	-4.608717	2.651		0.033	-9.806649	.5892142				
age_4s	9.754452	2.6226		0.000	4.613491	14.89541				
age_5s	9.083061	3.8056		0.017	1.62309	16.54303				
age_6s	5.236101	4.9570	17 1.06	0.291	-4.480701	14.9529				
fmsz27	1.26932	.67702		0.061	0577941	2.596433				
_cons	18.42381	3.0426	59 6.06	0.000	12.45955	24.38806				
.1 Quantile regression Number of obs = 9595										
	deviations 516	50.59 (about 1.005)			2025				
	deviations 507				eudo R2 =	0.0184				
wealth	Coef.	Std. E	rr. t	P> t	[95% Conf.	Interval]				
imigrnt	7199583	.21221	-3.39	0.001	-1.135948	3039689				
age_1m	-1.300667	.58135		0.025	-2.440244	1610897				
age_2m	6206667	.31373		0.048	-1.235645	0056883				
age_4m	1.052875	.3414	37 3.08	0.002	.3835861	1.722164				
age_5m	.8334833	.46310		0.072	0742921	1.741259				
age_6m	.9393496	.6172		0.128	2705497	2.149249				
age_1s	-1.369717 702875	.52405		0.009	-2.396974	3424589				
age_2s age_4s	.3665166	.3459		0.028	-1.330756 3116283	0749936 1.044662				
age_4s	2.040042	.48369		0.000	1.091906	2.988177				
age_6s	1.66065	.65751		0.012	.371787	2.949513				
fmsz27	.0535417	.08632		0.535	1156782	.2227616				
_cons	1.492917	.40108	3.72	0.000	.7067019	2.279132				
Of Overhile				37	mber of obs =	9595				
.25 Quantile 1	deviations 120	281 7 (;	about 4 8221		mber of obs =	9595				
	deviations 114		20000 1.0221	Ps	eudo R2 =	0.0451				
wealth										
	Coef.	Std. E	er. t	P> t	[95% Conf.	Interval]				
imigrnt	3671999	.2894	54 -1.27	0.205	9346105	.2002107				
age_1m	3671999 -1.6718	.2894	54 -1.27 48 -1.98	0.205 0.048	9346105 -3.327914	.2002107				
age_1m age_2m	3671999	.2894	54 -1.27 48 -1.98 55 -2.35	0.205	9346105	.2002107				
age_1m	3671999 -1.6718 -1.0571	.28940 .84486 .449470	54 -1.27 48 -1.98 55 -2.35 39 4.65	0.205 0.048 0.019	9346105 -3.327914 -1.938169	.2002107 0156865 1760313				
age_1m age_2m age_4m	3671999 -1.6718 -1.0571 2.0854 2.3253 2.1	.28940 .84486 .449470 .44828 .615170	54 -1.27 48 -1.98 55 -2.35 39 4.65 03 3.78 98 2.70	0.205 0.048 0.019 0.000 0.000 0.007	9346105 -3.327914 -1.938169 1.206659 1.119437 .5774842	.2002107 0156865 1760313 2.964141 3.531164 3.622515				
age_1m age_2m age_4m age_5m age_6m age_1s	3671999 -1.6718 -1.0571 2.0854 2.3253 2.1 -3.5121	.28940 .844860 .449470 .44828 .615170 .776709	54 -1.27 48 -1.98 55 -2.35 39 4.65 03 3.78 98 2.70 55 -4.73	0.205 0.048 0.019 0.000 0.000 0.007	9346105 -3.327914 -1.938169 1.206659 1.119437 .5774842 -4.968766	.2002107 0156865 1760313 2.964141 3.531164 3.622515 -2.055434				
age_1m age_2m age_4m age_5m age_6m age_1s age_2s	3671999 -1.6718 -1.0571 2.0854 2.3253 2.1 -3.5121 -2.0815	.2894 .84486 .44947 .4482 .61517 .77670 .74311	54 -1.27 48 -1.98 55 -2.35 39 4.65 03 3.78 98 2.70 55 -4.73 49 -4.76	0.205 0.048 0.019 0.000 0.000 0.007 0.000 0.000	9346105 -3.327914 -1.938169 1.206659 1.119437 .5774842 -4.968766 -2.939581	.2002107 0156865 1760313 2.964141 3.531164 3.622515 -2.055434 -1.22342				
age_1m age_2m age_4m age_5m age_6m age_1s age_2s age_4s	3671999 -1.6718 -1.0571 2.0854 2.3253 2.1 -3.5121 -2.0815 1.386	.2894 .84486 .44947 .4482 .61517 .77670 .743116 .4377	-1.27 48 -1.98 55 -2.35 39 4.65 03 3.78 98 2.70 -4.73 49 -4.76 15 3.02	0.205 0.048 0.019 0.000 0.000 0.007 0.000 0.000 0.000	9346105 -3.327914 -1.938169 1.206659 1.119437 .5774842 -4.968766 -2.939581 .4853522	.2002107 0156865 1760313 2.964141 3.531164 3.622515 -2.055434 -1.22342 2.286647				
age_1m age_2m age_5m age_5m age_6m age_1s age_2s age_4s age_5s	3671999 -1.6718 -1.0571 2.0854 2.3253 2.1 -3.5121 -2.0815 1.386 4.4859	.2894 .84486 .44947 .4482 .61517 .77670 .74311 .4377 .45946 .62679	-1.27 -1.98 -2.35 -3.35 -3.37 -3.37 -4.76 -4.73 -4.76 -4.76 -3.02 -4.76	0.205 0.048 0.019 0.000 0.000 0.007 0.000 0.000 0.003	9346105 -3.327914 -1.938169 1.206659 1.119437 .5774842 -4.968766 -2.939581 .4853522 3.25725	.2002107 0156865 1760313 2.964141 3.531164 3.622515 -2.055434 -1.22342 2.286647 5.71455				
age_1m age_2m age_4m age_5m age_1s age_1s age_2s age_4s age_5s age_6s	3671999 -1.6718 -1.0571 2.0854 2.3253 2.1 -3.5121 -2.0815 1.386 4.4859 3.9213	.28946 .84486 .44947 .44828 .615170 .776709 .743116 .4377 .45946 .62679	-1.27 -1.98 -5.5 -2.35 39 4.65 30 3.78 98 2.70 -4.73 19 -4.76 15 3.02 16 7.16 71 4.83	0.205 0.048 0.019 0.000 0.007 0.000 0.007 0.000 0.000 0.003 0.000 0.000	9346105 -3.327914 -1.938169 1.206659 1.119437 .5774842 -4.968766 -2.939581 .4853522 3.25725 2.331358	.2002107 0156865 1760313 2.964141 3.531164 3.622515 -2.055434 -1.22342 2.286647 5.71455 5.511241				
age_1m age_2m age_5m age_5m age_6m age_1s age_2s age_4s age_5s	3671999 -1.6718 -1.0571 2.0854 2.3253 2.1 -3.5121 -2.0815 1.386 4.4859	.2894 .84486 .44947 .4482 .61517 .77670 .74311 .4377 .45946 .62679	-1.27 -1.27 -1.28 -2.35 -2.35 -3.3 -3.78 -2.70 -4.73 -4.76 -4.73 -4.76 -4.73 -4.74 -4.76 -4.74 -4.76 -4.74 -4.76 -4.74 -4.76 -4.74 -4.76 -4.74 -4.76 -4.74 -4.74 -4.76 -4.74 -4.	0.205 0.048 0.019 0.000 0.000 0.007 0.000 0.000 0.003	9346105 -3.327914 -1.938169 1.206659 1.119437 .5774842 -4.968766 -2.939581 .4853522 3.25725	.2002107 0156865 1760313 2.964141 3.531164 3.622515 -2.055434 -1.22342 2.286647 5.71455				

Number of obs = 9595 Median regression Raw sum of deviations 206408 (about 13.3461)

Raw sum of o	deviations 2 deviations 191	06408 (about 814.9	13.3461) Ps	seudo R2 =	0.0707
wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_4m age_5m age_6m age_1s age_1s age_4s age_5s age_6s fmsz27 _cons	.3650007 -4.2046 -2.311 4.316699 6.916798 3.7268 -6.6483 -3.7347 4.255 6.435 5.789899 3249998 10.5983	.4331749 1.227193 .6763741 .618971 .8779168 1.127225 1.083541 .656137 .6354282 .9126546 1.18113 .1641113	0.84 -3.43 -3.42 6.97 7.88 3.31 -6.14 -5.69 6.70 7.05 4.90 1.98 14.06	0.399 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.048 0.000	4841137 -6.610157 -3.636837 3.103385 5.195896 1.5172 -8.77227 -5.020868 3.009426 4.646004 3.474635 .0033068 9.120425	1.214115 -1.799043 9851639 5.530013 8.637701 5.9364 -4.52433 -2.448533 5.500574 8.223996 8.105163 .6466927 12.07618
	regression deviations 238 deviations 218		28.941)		umber of obs = seudo R2 =	9595 0.0821
wealth	Coef.	Std. Err.	t		[95% Conf.	Interval]
	8.5985 6.241901 .9750005 20.1		0.56 -3.70 -4.15 7.27 8.89 3.84 -5.24 -4.78 6.44 4.79 2.50 3.05 14.09	98)	-1.216235 -13.97975 -7.825501 6.172094 11.86186 4.455235 -15.07035 -8.405236 5.367983 5.077433 1.339893 .347365 17.30431	2.186235 -4.290253 -2.8045 10.72791 18.57114 13.73777 -6.869646 -3.514763 10.06202 12.11957 11.14391 1.602636 22.89569
wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
imigrnt age_1m age_2m age_4m age_5m age_6m age_1s age_2s age_4s age_5s age_6s fmsz27cons	.6600005 -13.5424 -9.854899 18.0351 38.9321 29.9751 -21.9876 -12.4001 10.6625 3.389901 -5.220099 2.6525 35.44	6.15054	0.31 -1.99 -3.18 6.43 9.03 5.15 -4.17 -4.11 3.67 0.75 -0.85 3.44 10.18	0.760 0.047 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.451 0.396 0.001	-15.9272 12.53436 30.48165 18.57044 -32.32944 -18.31769 4.974321	4.897844 1865944 -3.782598 23.53585 47.38255 41.37977 -11.64576 6.482506 16.35068 12.20246 6.836259 4.16532 42.26482

OLS regression

Source Model Residual	SS +		MS 41.4036 5.65719		Number of obs F(7, 6198) Prob > F R-squared	= 31.85 = 0.0000 = 0.0347
Total	5108873.09	6205 823	.347798		Adj R-squared Root MSE	= 0.0336 = 28.207
wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_4m age_5m age_6m lone_p _cons	2.138012 -5.80894 -1.182487 -5.722914 8.532543 8.128358 -2.390763 8.807636	.9783018 1.271431 1.122732 1.257213 1.453307 1.156069 1.174454 .8694464	2.19 -4.57 -1.05 4.55 5.87 7.03 -2.04 10.13	0.029 0.000 0.292 0.000 0.000 0.000 0.042 0.000	.2202009 -8.301385 -3.383431 3.25834 5.683558 5.862062 -4.6931 7.103219	4.055823 -3.316496 1.018458 8.187488 11.38153 10.39465 0884257 10.51205
	egression deviations 150 deviations 148		out015)		umber of obs = seudo R2 =	
wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_lm age_2m age_4m age_5m age_6m lone_p _cons	1381 8834 3215 .0135 .0736 .2416 .0186	.0319222 .0431694 .0340897 .0353861 .0405799 .033069 .0282797 .0257302	-4.33 -20.46 -9.43 0.38 1.94 7.31 0.66 0.84	0.000 0.000 0.000 0.703 0.053 0.000 0.511 0.403	2006786 968027 3883276 0558691 0009506 .1767732 036838 0289401	0755213 798773 2546724 .0828691 .1581506 .3064267 .074038
	regression deviations 356 deviations 352		ut .244200	001)	umber of obs = seudo R2 =	6206
wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_4m age_5m age_6m lone_p _cons	2575 4468 1639 .1682 .3607 1.2407 0843 .4168	.092296 .1360222 .110168 .1154111 .1296404 .105281 .0956975 .0866703	-2.79 -3.28 -1.49 1.46 2.78 11.78 -0.88 4.81	0.005 0.001 0.137 0.145 0.005 0.000 0.378 0.000	4384322 7134507 3798675 0580457 .1065599 1.034313 2719002 .2468961	0765678 1801493 .0520674 .3944457 .6148401 1.447087 .1033003 .5867039
	sion deviations 667 deviations 633		ut 2.75)		umber of obs = seudo R2 =	6206
wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	
imigrnt age_1m age_2m age_4m age_5m age_6m lone_p	205 -3.1451 -1.9052 1.7509 2.9942 5.9299 2981	.2044484 .3090923 .2501821 .2574658 .2849712 .2312539 .2208112 .1857648	-1.00 -10.18 -7.62 6.80 10.51 25.64 -1.35 18.14	0.316 0.000 0.000 0.000 0.000 0.000 0.177 0.000	6057897 -3.751028 -2.395644 1.246178 2.435557 5.476562 7309665 3.005937	.1957898 -2.539172 -1.414756 2.255622 3.552842 6.383238 .1347665 3.734263

.75 Quantile :	regression deviations 812	248.92 (about	12.1445		mber of obs =	6206
	deviations 739				eudo R2 =	0.0903
wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_5m age_6m lone_p _cons	1.349999 -9.4558 -5.276801 4.9942 10.2442 9.994199 -1.3718 10.8058	.400552 .5927162 .4967071 .5406991 .5743705 .4728504 .4536663 .3701344	3.37 -15.95 -10.62 9.24 17.84 21.14 -3.02 29.19	0.001 0.000 0.000 0.000 0.000 0.000 0.003	.5647782 -10.61773 -6.250519 3.934242 9.118235 9.067248 -2.261143 10.08021	2.13522 -8.293871 -4.303082 6.054157 11.37017 10.92115 482457 11.53139
.9 Quantile re	egression deviations 669	923 46 (about	- 28 0287		mber of obs =	6206
	deviations 617		20.0207		eudo R2 =	0.0771
wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_4m age_5m age_6m lone_p	5.159401 -16.42 -6.239 9.604998 22.685 16.4945 -6.555599	1.635448 2.189873 1.923366 2.255098 2.361764 1.990427 1.735367	3.15 -7.50 -3.24 4.26 9.61 8.29 -3.78	0.002 0.000 0.001 0.000 0.000 0.000	1.953357 -20.71291 -10.00946 5.184224 18.05512 12.59257 -9.95752	8.365445 -12.12709 -2.468536 14.02577 27.31488 20.39643 -3.153678 26 17295

OLS regression

Source	SS	đf	MS		Number of obs F(33, 9561)	= 9595 = 14.82
Model Residual	2364079.64 46225665.4		.638.7768 334.81492		Prob > F R-squared	= 0.0000 = 0.0487
Total	48589745.1	9594 50	064.59715		Adj R-squared Root MSE	= 0.0454 = 69.533
wealth	Coef.	Std. Err	r. t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_4m age_5m age_6m age_1s age_2s age_4s age_5s age_6s fmsz27 femal_m ed0_8m ed9_13m ed_psm ed_um ed_abum ed_abum ed_abum ed_abum ed_scan ed_us ed_sx4m ed_sx2m ed_sx4m ed_sx2m ed_sx4m ed_sx5m ed_sx4m ed_sx5m ed_sx4m ed_sx5m ed_sx4m ed_sx5m ed_sx6m ed_sx1s ed_sx6s ed_sx4s ed_sx4s ed_sx4s ed_sx4s ed_sx5s	-3.028583 -6.913408 -8.31906 5.155992 13.06048 9.79736 -7.019513 -4.801123 11.32402 13.25817 12.22906 1.557893 1.72221 -7.543371 -2.331468 -3419116 13.25476 21.9878 -2.900782 -1.617007 -2.054964 4.941923 -12.12264 -8.916497 .0340322 -11.33357 -10.20507 -9.931271 -4.721376 -1.464326 2.916632	1.770768 5.333866 2.7721797 2.599865 3.793656 4.95974 4.565563 2.6533793 2.63431 3.862315 5.049869 5.25555 3.5555323 2.957144 2.493164 2.493164 2.493163 5.436891 7.069264 8.660346 6.63592 5.172547 6.157495 5.943287 7.587629 5.943287 4.934252 6.156065	5 -1.30 -3.06 5 1.98 6 3.44 4 1.98 8 -1.54 -1.81 -2.31 -3.00 -3.43 -2.12 -4.30 -0.79 -0.14 -1.31 -0.79 -1.84 -1	0.087 0.195 0.002 0.047 0.001 0.048 0.124 0.070 0.000 0.001 0.015 0.021 0.743 0.034 0.430 0.891 0.000 0.671 0.762 0.963 0.162 0.179 0.995 0.162 0.199 0.191 0.427 0.191 0.427 0.767 0.763	-6.499663 -17.36892 -13.65436 .0597057 5.624112 .0752174 -15.96898 -10.00312 6.160217 5.687217 2.330247 .2359945 -8.579782 -14.51256 -8.128099 -5.229042 6.921293 14.62141 -16.26817 -12.09448 -9.002464 -7.023168 -8.915334 -29.09875 -21.92432 -10.10526 -25.79106 -24.80463 -16.37148 -8.207855 -9.150562	
ed_sx6s _cons	1.820452 14.45514	8.55965 3.776933		0.832	-14.95828 7.051546	18.59918 21.85872

.1 Quantile regression
Raw sum of deviations 51650.59 (about 1.005)
Min sum of deviations 49968.94

Number of obs = 9595Pseudo R2 = 0.0326

wealth	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
imigrnt	-1.468909	.2264972	-6.49	0.000	-1.912892	-1.024927
age_1m	-1.648764	.6142577	-2.68	0.007	-2.852839	4446883
age 2m	9157727	.3113916	-2.94	0.003	-1.526166	3053791
age 4m	1.053555	.3625818	2.91	0.004	.3428173	1.764292
age_5m	1.765027	.4975556	3.55	0.000	.7897127	2.740342
age_6m	2.609509	.6624828	3.94	0.000	1.310902	3.908116
age 1s	-1.468582	.548296	-2.68	0.007	-2.543358	3938053
age_2s	6313546	.3173089	-1.99	0.047	-1.253347	0093619
age_4s	.8504819	.3569964	2.38	0.017	.1506933	1.550271
age_5s	2.417009	.5046978	4.79	0.000	1.427695	3.406324
age_6s	2.149655	.6865228	3.13	0.002	.8039245	3.495385
fmsz27	.3402273	.0902906	3.77	0.000	.1632385	.5172161
femal_m	.1239273	.8156518	0.15	0.879	-1.474923	1.722778
ed0_8m	1404182	.4319988	-0.33	0.745	9872274	.7063911
ed9_13m	.028291	.364336	0.08	0.938	6858849	.7424669
ed_psm	.6347092	.3296496	1.93	0.054	011474	1.280892
ed_um	1.625836	.4215894	3.86	0.000	.7994319	2.452241
ed_abum	3.513709	.4936764	7.12	0.000	2.545999	4.48142
ed0_8s	-1.5717	.9306746	-1.69	0.091	-3.39602	.2526196
ed9_13s	-1.287255	.7957482	-1.62	0.106	-2.84709	.2725808
ed_pss	3802455	.6558305	-0.58	0.562	-1.665812	.9053214
ed_us	.6250091	.7862303	0.79	0.427	9161691	2.166187
ed_abus	2089272	.9197686	-0.23	0.820	-2.011869	1.594014
ed_sx1m	-1.663518	1.081478	-1.54	0.124	-3.783445	.4564083
ed_sx2m	8604729	.83275	-1.03	0.301	-2.49284	.7718937
ed_sx4m	.1931726	.6892421	0.28	0.779	-1.157888	1.544233
ed_sx5m	-1.568964	.8168955	-1.92	0.055	-3.170252	.0323246
ed_sx6m	-2.258218	1.058798	-2.13	0.033	-4.333687	1827498
ed_sx1s	-1.736882	1.027835	-1.69	0.091	-3.751656	.2778922
· ed_sx2s	.1431907	.8722379	0.16	0.870	-1.566581	1.852962
ed_sx4s	.6357635	.7225509	0.88	0.379	7805895	2.052116
ed_sx5s	3108092	.8863183	-0.35	0.726	-2.048181	1.426563
ed_sx6s	556191	1.185252	-0.47	0.639	-2.879536	1.767154
_cons	.5548636	.5417574	1.02	0.306	5070957	1.616823

.25 Quantile regression
Raw sum of deviations 120281.7 (about 4.8221998)
Min sum of deviations 112097.8

Number of obs = 9595Pseudo R2 = 0.0680

wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wealth imigrnt age_1m age_2m age_4m age_5m age_6m age_1s age_1s age_2s age_4s age_5s fmsz27 femal_m ed0_8m ed9_13m ed_psm ed_um ed_abum ed_abum ed_abus ed_pss ed_us ed_sx2m ed_sx2m ed_sx2m	-1.048617 -1.927666 -1.47195 1.879767 4.1217 2.788368 -3.418184 -2.226684 2.001933 5.462499 7.147966 .4483333 -410017 -2.4399 -9219332 .6723666 2.6896 5.185466 -4.329667 -1.681 -41665 -1.366017 -1.66295 -0.870324 -7906829	.2210771 .6481078 .3525029 .3455796 .4769762 .6247783 .5926631 .3428949 .3486973 .4781905 .6343621 .0821686 .6878268 .4195221 .3620493 .3089044 .4008467 .4654031 .810874 .6849585 .5760625 .705526 .9376445 1.012238 .8024753	-4.74 -2.97 -4.18 5.44 8.64 4.46 -5.77 -6.49 5.74 11.42 11.27 5.46 -0.60 -5.82 -2.55 2.18 6.71 11.14 -5.34 -2.45 -0.72 -1.94 -1.77 -0.09 -0.99	0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000	-1.481975 -3.198095 -2.16293 1.202358 3.186726 1.56367 -4.579929 -2.89883 1.318412 4.525145 5.904482 2.872655 -1.758304 -3.262252 -1.631627 .0668484 1.903856 4.273178 -5.919152 -3.023664 -1.545855 -2.748997 -3.500932 -2.071235 -2.363705	Interval]
ed_sx4m ed_sx5m	067316 7091831	.6405674 .7720279	-0.11 -0.92	0.916 0.358	-1.322964 -2.222521	1.188332 .8041553
ed_sx6m ed_sx1s ed_sx2s ed_sx4s ed_sx5s ed_sx6s	-1.711782 -1.456733 6906666 .2829501 2.565084 1.7729	.9732564 .9111562 .7569896 .6366661 .7951441	-1.76 -1.60 -0.91 0.44 3.23	0.079 0.110 0.362 0.657 0.001 0.121	-3.619571 -3.242793 -2.174527 9650504 1.006432	.1960065 .3293262 .7931935 1.530951 4.123735 4.012965
_cons	4.1933	.4790205	8.75	0.000	3.254318	5.132282

Median regression Number of obs = 9595
Raw sum of deviations 206408 (about 13.3461)

Min sum of deviations 185212.6

Pseudo R2 = 0.1027

wealth | Coef. Std. Err. t P>|t| [95% Conf. Interval]
 imigrnt
 .2391866
 .5314421
 0.45
 0.653
 -.8025526
 1.280926

 age_lm
 -2.881534
 1.489722
 -1.93
 0.053
 -5.801704
 .0386371

 age_2m
 -2.120813
 .822771
 -2.58
 0.010
 -3.733619
 -.5080079

 age_4m
 4.304106
 .7599977
 5.66
 0.000
 2.814349
 5.793862

 age_5m
 6.271628
 1.095574
 5.72
 0.000
 4.124071
 8.419186

 age_6m
 5.59934
 1.442774
 3.88
 0.000
 2.771197
 8.427484

 age_ls
 -5.632726
 1.324296
 -4.25
 0.000

 age_ls
 -5.632726
 1.324296
 -4.25
 0.000

 age_2s
 -3.890093
 .7981176
 -4.87
 0.000

 age_4s
 5.063146
 .7789306
 6.50
 0.000

 age_5s
 9.867559
 1.135568
 8.69
 0.000

 age_6s
 9.86817
 1.47697
 6.68
 0.000

 fmsz27
 .6608134
 .1986362
 3.33
 0.001
 -8.228626 -3.036826 -5.454573 -2.325614 3.536277 6.590015 7.641605 12.09351 6.972996 12.76334 -3.036826 12.76334 .2714444
 femal_m
 -.4528921
 1.563615
 -0.29
 0.772
 -3.517909

 ed0_8m
 -3.009446
 1.021519
 -2.95
 0.003
 -5.011839

 ed9_13m
 -1.147099
 .8493131
 -1.35
 0.177
 -2.811932

 ed_psm
 1.408534
 .7399232
 1.90
 0.057
 -0418728

 ed_um
 6.238534
 .943697
 6.61
 0.000
 4.388688

 ed_abum
 11.17899
 1.099768
 10.16
 0.000
 9.023217
 2.612125 -1.007053 2.011932 .5177352 -.0418728 2.85894 4.388688 4.388688 8.08838 9.023217 13.33477 -4.344885 1.986294 -2.19 0.029 -1.828574 1.605043 -1.14 0.255 -.3969465 1.361647 -0.29 0.771 .204173 1.669748 0.12 0.903 .323267 2.257363 0.14 0.886 -3.295251 2.52669 -1.30 0.192 ed0_8s | ed9_13s | ed_pss | -8.238443 -.4513266 -4.974798 1.31765 -3.066063 2.27217 ed_us | ed_abus | ed_sx1m -3.068888 3.477234 -4.101644 -8.248099 4.748178 1.657597 ed_sx1m -1.203809 1.957527 -0.61 0.539
ed_sx4m -.7910679 1.533532 -0.52 0.606
ed_sx5m -3.510381 1.837925 -1.91 0.056
ed_sx6m -746631 2.498712 0.30 0.765
ed_sx1s -2.425553 2.213673 -1.10 0.273
ed_sx2s -2.3567 1.791566 -1.32 0.188 -5.040978 2.63336 -3.797117 2.214981 -7.113104 .0923421 5.644637 -4.151375 -6.764822 1.913716 -5.868549 1.155149

.75 Quantile regression
Raw sum of deviations 238098.9 (about 28.941)
Min sum of deviations 208452.4

Number of obs = 9595Pseudo R2 = 0.1245

wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wealth imigrnt age_1m age_2m age_6m age_6m age_1s age_1s age_2s age_4s age_5s age_6s fmsz27 femal_m ed0_8m ed9_13m ed_psm ed_um ed_abum ed0_8s ed9_13s ed_pss ed_pss ed_pss	Coef. 1.345572 -5.065064 -4.843715 6.962841 14.11863 9.488796 -8.496237 -6.271829 9.076319 11.63984 12.54426 1.382159 -1.425987 -5.098573 -2.235245 4.462846 9.301577 25.34648 -3.519796 -1.619305 -1.732237	Std. Err. .7796901 2.256685 1.204525 1.060237 1.563906 2.229681 1.921012 1.176279 1.09125 1.629121 2.290435 .2779591 2.174213 1.5222 1.238172 1.076953 1.404003 1.578104 2.892381 2.24735 1.985295 2.428436	t 1.73 -2.24 -4.02 6.57 9.03 4.26 -4.42 -5.33 8.32 7.14 5.48 4.97 -0.66 -3.35 -1.81 6.63 16.06 -1.22 -0.72 -0.87 0.73	P> t 0.084 0.025 0.000	[95% Conf182786 -9.488646 -7.204839 4.88455 11.05304 5.11815 -12.26183 -8.577586 6.937239 8.446412 8.054525 .8372998 -5.687905 -8.082409 -4.662325 -1.664772 6.549432 22.25307 -9.189476 -6.024587 -5.623835 -2.991781	Interval] 2.873936414823 -2.482591 9.041131 17.18422 13.85944 4.730646 -3.966072 11.2154 14.83326 17.034 1.927017 2.835931 -2.114738 .1918345 2.557341 12.05372 28.4399 2.149885 2.785978 2.159362 6.528718
ed_abus ed_sx1m ed_sx2m ed_sx4m ed_sx5m ed_sx5m ed_sx1s ed_sx1s ed_sx2s ed_sx4s ed_sx5s ed_sx6s _cons	7.766419 -11.53296 -2.064196 .6344079 -7.009235 -12.90788 -6.756518 -4.897579 .5991257 4.905931 5.239484 17.42251	2.975005 3.566675 2.817678 2.234519 2.674768 3.551634 3.229367 2.528013 2.19149 2.731083 3.660747 1.586679	2.61 -3.23 -0.73 0.28 -2.62 -3.63 -2.09 -1.94 0.27 1.80 1.43 10.98	0.009 0.001 0.464 0.776 0.009 0.000 0.036 0.053 0.785 0.072 0.152 0.000	1.934778 -18.5244 -7.587442 -3.745722 -12.25235 -19.86984 -13.08676 -9.853021 -3.696659 447571 -1.936356 14.31228	13.59806 -4.541521 3.45905 5.014538 -1.766122 -5.945927 4262733 .0578621 4.89491 10.25943 12.41532 20.53274

.9 Quantile regression
Raw sum of deviations 200718.2 (about 55.599998)
Min sum of deviations 173455.9

Pseudo R2 = 0.1358

wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt	3683978	1.68768	-0.22	0.827	-3.676608	2.939813
age_1m	-7.746803	4.970098	-1.56	0.119	-17.48925	1.995642
age_2m	-9.132994	2.484933	~3.68	0.000	-14.00399	-4.261998
age_4m	9.615798	2.099166	4.58	0.000	5.500987	13.73061
age_5m	34.60221	3.251929	10.64	0.000	28.22774	40.97668
age_6m	27.1281	4.296113	6.31	0.000	18.70681	35.54939
age_1s	-12.4855	3.939435	-3.17	0.002	-20.20762	-4.763367
age_2s	-9.239504	2.417842	-3.82	0.000	-13.97899	-4.500021
age_4s	16.86719	2.158997	7.81	0.000	12.6351	21.09929
age_5s	9.930202	3.303318	3.01	0.003	3.454998	16.40541
age_6s	5.184414	4.435765	1.17	0.243	-3.510626	13.87945
fmsz27	2.932505	.5846673	5.02	0.000	1.786433	4.078577
femal_m	-3.884625	4.288986	-0.91	0.365	-12.29195	4.522697
ed0_8m	-11.0045	3.235849	-3.40	0.001	-17.34745	-4.661546
ed9_13m	-5.832194	2.552641	-2.28	0.022	-10.83591	8284761
ed_psm	-2.137509	2.268009	-0.94	0.346	-6.583287	2.30827
ed_um	17.91299	3.004863	5.96	0.000	12.02282	23.80316
ed_abum	38.13041	3.272838	11.65	0.000	31.71495	44.54586
ed0_8s	3.961321	5.723303	0.69	0.489	-7.257566	15.18021
ed9_13s	3.504611	4.488261	0.78	0.435	-5.293333	12.30255
ed_pss	1.361777	4.156263	0.33	0.743	-6.785379	9.508933
ed_us	6.380887	5.005174	1.27	0.202	-3.430315	16.19209
ed_abus	15.68609	6.596424	2.38	0.017	2.755696	28.61647
ed_sx1m	-14.67498	7.153151	-2.05	0.040	-28.69667	6532884
ed_sx2m	-7.537489	5.6014	-1.35	0.178	-18.51742	3.442443
ed_sx4m	1.378445	4.492383	0.31	0.759	-7.427579	10.18447
ed_sx5m	-11.40987	5.298609	-2.15	0.031	-21.79627	-1.023473
ed_sx6m	1.830929	7.76012	0.24	0.813	-13.38055	17.04241
ed_sx1s	-16.27923	6.431123	-2.53	0.011	-28.88559	-3.672865
ed_sx2s	-12.31461	5.058619	-2.43	0.015	-22.23058	-2.398648
ed_sx4s	-1.639275	4.598618	-0.36	0.721	-10.65354	7.374991
ed_sx5s	5.493613	5.629813	0.98	0.329	-5.542015	16.52924
ed_sx6s	21.30861	8.102683	2.63	0.009	5.425629	37.19158
_cons	29.53499	3.434569	8.60	0.000	22.8025	36.26747

Model 3: Single families

OLS regress	sion					
Source	SS	df	MS		Number of obs F(18, 6187)	
Model Residual	386473.828 4722399.26		0.7682 277721		Prob > F R-squared Adj R-squared	= 0.0000 $= 0.0756$ $= 0.0730$
Total	5108873.09	6205 823.3	347798		Root MSE	= 27.627
wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt	1.241774	.9627768	1.29	0.197	6456027	3.129151
age_1m	-4.696066	1.252074	-3.75	0.000	-7.150566	-2.241566
age_2m	-1.734072	1.107456	-1.57	0.117	-3.905072	.4369268
age_4m	5.739514	1.235539	4.65	0.000	3.317427	8.1616
age_5m	11.39586	1.453811	7.84	0.000	8.545887	14.24584
age_6m	13.81462	1.245591	11.09	0.000	11.37283	16.25641
lone_p	.4143839	1.208417	0.34	0.732	-1.954534	2.783302
femal_m	-1.649115	1.938463	-0.85	0.395	-5.449176	2.150946
ed0_8m	-7.115401	2.189638	-3.25	0.001	-11.40785	-2.82295
ed9 13m	-2.854334	1.869095	-1.53	0.127	-6.518409	.8097411
ed psm	.5190615	1.594598	0.33	0.745	-2.606904	3.645027
ed um	3.955156	1.90972	2.07	0.038	.211441	7.698871
ed_abum	23.22687	2.589299	8.97	0.000	18.15095	28.3028
ed_sx1m	-3.611768	2.814161	-1.28	0.199	-9.128502	1.904965
ed_sx2m	-1.779847	2.563184	-0.69	0.487	-6.804579	3.244885
ed_sx4m	-1.227717	2.227144	-0.55	0.581	-5.593694	3.13826
ed sx5m	2.272931	2.678421	0.85	0.396	-2.977705	7.523567
ed sx6m	-9.379294	3.718524	-2.52	0.012	-16.66889	-2.089695
_cons	8.315637	1.519489	5.47	0.000	5.33691	11.29436
.1 Quantile re	egression Neviations 150	18.38 (about	015)	N	umber of obs =	6206
	deviations 148			P	seudo R2 =	0.0118
wealth	Coef,	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt	19035	.0421632	-4.51	0.000	2730046	1076954

	deviations 14		10 .013)	P	seudo R2 =	0.0118
wealth	Coef,	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_4m age_6m age_6m lone_p femal_m ed0_8m	19035 9099 29285 .0801 .1818 .3556 .0137 .2062	.0421632 .0633416 .0481171 .0499086 .0574463 .0521732 .045854 .0761251	-4.51 -14.36 -6.09 1.60 3.16 6.82 0.30 2.71 -2.13 -1.64	0.000 0.000 0.000 0.109 0.002 0.000 0.765 0.007 0.033 0.101	2730046 -1.034072 3871763 0177382 .0691854 .2533224 0761897 .0569683 3942959 270642	1076954 7857284 1985237 .1779382 .2944146 .4578775 .1035897 .3554317 016304 .024042
ed9_13m ed_psm ed_upsm ed_abum ed_sx1m ed_sx2m ed_sx2m ed_sx4m ed_sx5m ed_sx6m	185 12535 .50225 1369 2366 0695 .2363	.0751612 .0708969 .0774405 .0971824 .1143616 .1021333 .0934076 .1072333 .1389367	-1.64 -2.61 -1.62 5.17 -1.20 -2.32 -0.74 2.20 -4.39	0.101 0.009 0.106 0.000 0.231 0.021 0.457 0.028 0.000	27042 3239826 2771603 .3117388 3610885 4368168 2526113 .0260855 8824642	04042 0460174 .0264603 .6927613 .0872885 0363832 .1136113 .4465145 3377358

25	Ouantila	regression					Number	of	obs	=	6206
. 20	Quantitie	regression					14CHILDE L	0.2	025		0200
173	71.1 G117 OF	dorrintiona	25610	26	(about	244200011					

Min sum of deviations 35024.89 Pseudo R2 = 0.0167

wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_4m age_5m age_6m lone_pf femal_m ed0_8m ed9_13m ed_psm ed_um ed_abum ed_asx1m ed_sx2m ed_sx4m ed_sx5m ed_sx5m ed_sx5m ed_sx5m ed_sx5m cons	4281667516833316183343351 .6181667 1.608167 .1167334853442326662050999 .0467334046733411843340995001 .51556677817334	.0811104 .1193128 .0967264 .1009783 .1145654 .0985345 .0910515 .1511818 .1705971 .1517149 .1328095 .1782988 .1985859 .2133187 .2010395 .1795989 .2353318 .2805659	-5.28 -4.33 -1.67 3.32 5.40 16.32 0.03 0.77 -5.00 -2.86 -1.54 0.26 10.31 -0.56 -0.49 -0.03 2.19 -2.79 4.59	0.000 0.000 0.094 0.001 0.000 0.972 0.440 0.000 0.123 0.793 0.000 0.579 0.621 0.978 0.029 0.005	5871711 7507278 3514507 .1371474 .3935788 1.415005 1753259 1796355 -1.187829 7306805 4654527 3027942 1.657436 5366122 4936073 3569763 .0542346 -1.33174 .3293355	2691622 2829388 .027784 .5330527 .8427547 1.801328 .1816593 .4131022 5189705 1358526 .0552528 .396261 2.436031 .2997454 .2946071 .3471762 .9768988 2317268 .8208644

Median regression Raw sum of deviations 66718.79 (about 2.75) Min sum of deviations 62166.46 Number of obs = 6206 Pseudo R2 = 0.0682

wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_4m age_5m age_6m lone_p femal_m ed0_8m ed9_13m ed_psm ed_um ed_abum ed_sx1m ed_sx2m ed_sx4m ed_sx4m ed_sx4m	5059999 -3.055 -2.13 1.695 3.845 7.634 3121999 .0938002 -3.6885 655 .0200001 1.9725 6.855199 -1.143301 8738002 6678003 5463003	.1532742 .2305001 .1860982 .192285 .217207 .1926481 .1764906 .3020295 .3403379 .3113385 .2700963 .3374776 .3989561 .4231655 .4061492 .3564641 .4481023	-3.30 -13.25 -11.45 8.82 17.70 39.63 1.77 0.31 -10.84 -2.10 0.07 5.84 17.18 -2.70 -2.15 -1.87	0.001 0.000 0.000 0.000 0.000 0.000 0.007 0.756 0.000 0.035 0.941 0.000 0.000 0.007 0.000	8064706 -3.50686 -2.494817 1.318054 3.419199 7.256343033778314982825 -4.355681 -1.2653325094824 1.310927 6.073106 -1.972852 -1.669994 -1.366594	2055293 -2.60314 -1.765183 2.071945 4.270801 8.011657 .6581829 -3.021319 -0446682 2.634073 7.637292 -3.3137493 -0776066 .0309932 3.3321358
ed_sx6m _cons	-4.567199 3.71	.5617786 .2500645	-8.13 14.84	0.000	-5.66848 3.219787	-3.465918 4.200213

.75 Quantile	regression			
Raw sum of	deviations	81248.92	(about	12.1445)
Min sum of	deviations	71648.52		

Number of obs = 6206

= 0.1182

Pseudo R2

wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_5m age_6m lone_p femal_m ed0_8m	2.550001 -7.665498 -5.450498 4.618799 11.3095 13.1587 .0249998 .7601013 -5.471199	.2691401 .3978997 .3312576 .3606453 .3945493 .3714826 .3249658 .5457036	9.47 -19.26 -16.45 12.81 28.66 .35.42 0.08 1.39 -8.99	0.000 0.000 0.000 0.000 0.000 0.000 0.939 0.164 0.000	2.022393 -8.44552 -6.099878 3.911809 10.53605 12.43046 6120461 3096674 -6.664756	3.077609 -6.885477 -4.801119 5.325789 12.08296 13.88693 .6620457 1.82987 -4.277642
ed9_13m ed_psm ed_um ed_abum ed_sxlm ed_sx2m ed_sx2m ed_sx5m ed_sx5m ed_sx6m _cons	-2.2927 .9942997 4.8193 17.7101 -3.9887 9081015 -3.400101 3901023 -11.21 10.1312	.5463236 .4704082 .5812571 .7246001 .7758824 .7364942 .6347959 .7920087 1.034088 .4424659	-4.20 2.11 8.29 24.44 -5.14 -1.23 -5.36 -0.49 -10.84 22.90	0.000 0.035 0.000 0.000 0.000 0.218 0.000 0.622 0.000 0.000	-3.363684 .0721363 3.679834 16.28963 -5.509699 -2.351886 -4.644522 -1.942715 -13.23717 9.263812	-1.221716 1.916463 5.958765 19.13057 -2.467701 .5356829 -2.155681 1.16251 -9.182831 10.99859

.9 Quantile regression
Raw sum of deviations 66923.46 (about 28.0287)
Min sum of deviations 58785.28

Number of obs = 6206Pseudo R2 = 0.1216

wealth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
imigrnt age_1m age_2m age_4m age_5m age_6m lone_p femal_m ed0_8m ed9_13m ed_psm ed_um ed_abum ed_sx1m ed_sx2m	5.021503 -11.845 -6.795002 6.8845 23.705 21.24 0955 -1.255004 -12.765 -9.129502 -2.03 11.87 19.525 -4.744997 -2.720497	Std. Err7592353 1.014508 .8930657 1.022141 1.095374 1.067323 .8917334 1.667609 1.768964 1.532161 1.35076 1.718796 2.082712 2.232101 2.055796 1.864994	6.61 -11.68 -7.61 6.74 21.64 19.90 -0.11 -0.75 -7.22 -5.96 -1.50 6.91 9.37 -2.13 -1.32	0.000 0.000 0.000 0.000 0.000 0.000 0.915 0.452 0.000 0.000 0.133 0.000 0.000 0.000	[95% CONf. 3.533137 -13.83379 -8.545722 4.880749 21.55769 19.14768 -1.843607 -4.524097 -16.23279 -12.13307 -4.677958 8.500562 15.44216 -9.12069 -6.75057 -9.161035	6.509868 -9.856212 -5.044283 8.888251 25.85231 23.33232 1.652607 2.01409 -9.297218 -6.125935 .6179577 15.23944 23.60784 -3693035 1.309577
ed_sx4m ed_sx5m ed_sx6m _cons	-5.504999 -1.849495 -5.408796 25.225	2.309112 2.939209 1.302765	-2.95 -0.80 -1.84 19.36	0.003 0.423 0.066 0.000	-9.161035 -6.376157 -11.17067 22.67113	-1.848962 2.677167 .3530753 27.77888

Table A4. Definitions of variables in the regression results

```
imigrnt: 1 if major income recipient (MIR) is an immigrant, 0 otherwise.
age_1m: 1 if MIR is aged under 26.
age_2m: 1 if MIR is aged between 26 and 35.
age_3m: 1 if MIR is aged between 36 and 45 (reference group).
age_4m: 1 if MIR is aged between 46 and 55.
age_5m: 1 if MIR is aged between 56 and 65.
age_6m: 1 if MIR is above 65 years old.
age_1s -- age_6s: age dummies for spouse, same as those for the MIR above.
fmsz27: family size (married families).
lone_p: 1 if MIR is a lone parent, 0 otherwise (for single families).
femal_m: 1 if MIR is female, 0 if male.
femal_s: 1 if spouse is female, 0 if male.
ed0_8m: 1 if MIR's years of schooling is between 0 and 8.
ed9 13m: 1 if MIR's years of schooling is between 9 and 13.
ed_hsm: 1 if MIR is a high school graduate (reference group).
ed_psm: 1 if MIR has some post-secondary education.
ed_um: 1 if MIR is a university graduate with a degree.
ed_abum: 1 if MIR's education is above university level.
ed0 8s: This and the following 5 variables are education dummies for spouse. They are
ed9 13s: defined in the same way as for MIR above.
ed hss:
ed pss:
ed us:
ed abus:
ed sx1m: femal m*ed0 8m, interaction between sex and education for MIR.
ed sx2m: femal m*ed9 13m.
ed_sx3m: femal_m*ed_hsm (reference group).
ed_sx4m: femal_m*ed_psm.
ed sx5m: femal m*ed um.
ed sx6m: femal m*ed abum
ed_sx1s:
           This and the following are interactions between sex and education for spouse.
ed sx2s:
           They are defined in the same way as for MIR above.
ed sx3s:
ed sx4s:
ed sx5s:
ed_sx6s:
```

References

- Altonji, J. and D. Doraszedski. 2001. The Role of Permanent Income Demographics in Block/White Differences in Wealth. NBER working paper No. 8473.
- Baker, M., and D. Benjamin. 1994. "The performance of immigrants in the Canadian labor market." *Journal of Labor Economics* 12: 369-405.
- Baker, M., and D. Benjamin. 1995. "The receipt of transfer payments by immigrants to Canada." *Journal of Human Resources* 30: 650-676.
- Barsky, R., J. Bound, K. Charles and J. Lupton. 2001. "Accounting for the black-white wealth gap: a nonparametric approach." National Bureau of Economic Research (NBER) working paper no. 8466.
- Blau, F. D. and J. W. Graham. 1990. "Black-white differences in wealth and asset composition." *Quarterly Journal of Economics* 105: 321-339.
- Blinder, A. S. 1973. "A model of inherited wealth." *Quarterly Journal of Economics* 87: 608-626.
- Bloom, D. E., G. Grenier, and M. Gunderson. 1995. "The changing labour market position of Canadian immigrants." *Canadian Journal of Economics* 28: 987-1005.
- Borjas, G. 1995. "Assimilation and changes in cohort quality revisited: What happened to immigrant earnings in the 1980s?" *Journal of Labor Economics* 13: 201-245.
- Buchinsky, M. 1998. "Recent advances in quantile regression models." *Journal of Human Resources* 33: 88-126.
- Burbidge, J. and A. L. Robb. 1985. "Evidence on wealth-age profiles in Canadian cross section data." *Canadian Journal of Economics* 18: 854-875.
- Butcher, K., and J. DiNardo. 1998. "The immigrant and native-born wage distributions: evidence from United States censuses." National Bureau of Economic Research (NBER) working paper no. 6630.
- DiNardo, J., N. Fortin, and T. Lemieux. 1996. "Labor market institutions and the distribution of wages, 1973–1992: A semiparametric approach." *Econometrica* 64, no. 5: 1001–1044.
- Garcia, J., P. Hernandez, and A. Lopez-Nicolas. 2001. "How wide is the gap? An investigation of gender wage differences using quantile regression." *Empirical Economics* 26: 149-167.
- Grant, M. 1999. "Evidence of new immigrant assimilation in Canada." *Canadian Journal of Economics* 32, no. 4: 930-953.
- Koenker, R. and G. Bassett. 1978. "Regression quantiles." *Econometrica* 46: 33-50.

- Mueller, R. E. 1998. "Public-private sector wage differentials in Canada: evidence from quantile regressions." *Economics Letters* 60: 229-235.
- Oaxaca, R. 1973. "Male-female wage differentials in urban labour markets." *International Economic Review* 14: 693-709.
- Shamsuddin, A. F. M., and D. J. DeVoretz. 1998. "Wealth accumulation of Canadian and foreign-born households in Canada." *Review of Income and Wealth* 44: 515-533.
- Statistics Canada. 2001. Assets and debts of Canadians: An overview of the results of the Survey of Financial Security, 1999. Catalogue number 13-595-XIE. Ottawa.

ANALYTICAL STUDIES RESEARCH PAPER SERIES

- No. 1 Behavioural Response in the Context of Socio-Economic Microanalytic Simulation, Lars Osberg (April 1986)
- No. 2 Unemployment and Training, Garnett Picot (1987)
- No. 3 Homemaker Pensions and Lifetime Redistribution, Michael Wolfson (August 1987)
- No. 4 Modeling the Lifetime Employment Patterns of Canadians, Garnett Picot (Winter 1986)
- No. 5 Job Loss and Labour Market Adjustment in the Canadian Economy, Garnett Picot and Ted Wannell (1987)
- No. 6 A System of Health Statistics: Toward a New Conceptual Framework for Integrating Health Data, Michael C. Wolfson (March 1990)
- No. 7 A Prototype Micro-Macro Link for the Canadian Household Sector, Hans J. Adler and Michael C. Wolfson (August 1987)
- No. 8 Notes on Corporate Concentration and Canada's Income Tax, Michael C. Wolfson (October 1987)
- No. 9 The Expanding Middle: Some Canadian Evidence on the Deskilling Debate, John Myles (Fall 1987)
- No. 10 The Rise of the Conglomerate Economy, Jorge Niosi (1987)
- No. 11 Energy Analysis of Canadian External Trade: 1971 and 1976, K.E. Hamilton (1988)
- No. 12 Net and Gross Rates of Land Concentration, Ray D. Bollman and Philip Ehrensaft (1988)
- No. 13 Cause-Deleted Life Tables for Canada (1972 to 1981): An Approach Towards Analyzing Epidemiological Transition, **Dhruva Nagnur and Michael Nagrodski** (November 1987)
- No. 14 The Distribution of the Frequency of Occurrence of Nucleotide Subsequences, Based on Their Overlap Capability, Jane F. Gentleman and Ronald C. Mullin (1988)
- No. 15 Immigration and the Ethnolinguistic Character of Canada and Quebec, Réjean Lachapelle (1988)
- No. 16 Integration of Canadian Farm and Off-Farm Markets and the Off-Farm Work of Women, Men and Children, Ray D. Bollman and Pamela Smith (1988)
- No. 17 Wages and Jobs in the 1980s: Changing Youth Wages and the Declining Middle, J. Myles, G. Picot and T. Wannell (July 1988)
- No. 18 A Profile of Farmers with Computers, Ray D. Bollman (September 1988)
- No. 19 Mortality Risk Distributions: A Life Table Analysis, Geoff Rowe (July 1988)
- No. 20 Industrial Classification in the Canadian Census of Manufactures: Automated Verification Using Product Data, John S. Crysdale (January 1989)
- No. 21 Consumption, Income and Retirement, A.L. Robb and J.B. Burbridge (1989)

- No. 22 Job Turnover in Canada's Manufacturing Sector, John R. Baldwin and Paul K. Gorecki (Summer 1989)
- No. 23 Series on The Dynamics of the Competitive Process, John R. Baldwin and Paul K. Gorecki (1990)
 - A. Firm Entry and Exit Within the Canadian Manufacturing Sector.
 - B. Intra-Industry Mobility in the Canadian Manufacturing Sector.
 - C. Measuring Entry and Exit in Canadian Manufacturing: Methodology.
 - D. The Contribution of the Competitive Process to Productivity Growth: The Role of Firm and Plant Turnover.
 - E. Mergers and the Competitive Process.
 - F. n/a
 - G. Concentration Statistics as Predictors of the Intensity of Competition.
 - H. The Relationship Between Mobility and Concentration for the Canadian Manufacturing Sector.
- No. 24 Mainframe SAS Enhancements in Support of Exploratory Data Analysis, Richard Johnson, Jane F. Gentleman and Monica Tomiak (1989)
- No. 25 Dimensions of Labour Market Change in Canada: Intersectoral Shifts, Job and Worker Turnover, John R. Baldwin and Paul K. Gorecki (1989)
- No. 26 The Persistent Gap: Exploring the Earnings Differential Between Recent Male and Female Postsecondary Graduates, Ted Wannell (1989)
- No. 27 Estimating Agricultural Soil Erosion Losses From Census of Agriculture Crop Coverage Data,
 Douglas F. Trant (1989)
- No. 28 Good Jobs/Bad Jobs and the Declining Middle: 1967-1986, Garnett Picot, John Myles, Ted Wannel (1990)
- No. 29 Longitudinal Career Data for Selected Cohorts of Men and Women in the Public Service, 1978-1987, Garnett Picot and Ted Wannell (1990)
- No. 30 Earnings and Death-Effects Over a Quarter Century, Michael Wolfson, Geoff Rowe, Jane F. Gentleman and Monica Tomiak (1990)
- No. 31 Firm Response to Price Uncertainty: Tripartite Stabilization and the Western Canadian Cattle Industry, Theodore M. Horbulyk (1990)
- No. 32 Smoothing Procedures for Simulated Longitudinal Microdata, Jane F. Gentleman, Dale Robertson and Monica Tomiak (1990)
- No. 33 Patterns of Canadian Foreign Direct Investment Abroad, Paul K. Gorecki (1990)
- No. 34 POHEM A New Approach to the Estimation of Health Status Adjusted Life Expectancy, Michael C. Wolfson (1991)
- No. 35 Canadian Jobs and Firm Size: Do Smaller Firms Pay Less?, René Morissette (1991)
- No. 36 Distinguishing Characteristics of Foreign High Technology Acquisitions in Canada's Manufacturing Sector, John R. Baldwin and Paul K. Gorecki (1991)
- No. 37 Industry Efficiency and Plant Turnover in the Canadian Manufacturing Sector, John R. Baldwin (1991)
- No. 38 When the Baby Boom Grows Old: Impacts on Canada's Public Sector, Brian B. Murphy and Michael C. Wolfson (1991)

- No. 39 Trends in the Distribution of Employment by Employer Size: Recent Canadian Evidence, Ted Wannell (1991)
- No. 40 Small Communities in Atlantic Canada: Their Industrial Structure and Labour Market Conditions in the Early 1980s, Garnett Picot and John Heath (1991)
- No. 41 The Distribution of Federal/Provincial Taxes and Transfers in Rural Canada, Brian B. Murphy (1991)
- No. 42 Foreign Multinational Enterprises and Merger Activity in Canada, John Baldwin and Richard Caves (1992)
- No. 43 Repeat Users of the Unemployment Insurance Program, Miles Corak (1992)
- No. 44 POHEM -- A Framework for Understanding and Modeling the Health of Human Populations, Michael C. Wolfson (1992)
- No. 45 A Review of Models of Population Health Expectancy: A Micro-Simulation Perspective, Michael C. Wolfson and Kenneth G. Manton (1992)
- No. 46 Career Earnings and Death: A Longitudinal Analysis of Older Canadian Men, Michael C. Wolfson, Geoff Rowe, Jane Gentleman and Monica Tomiak (1992)
- No. 47 Longitudinal Patterns in the Duration of Unemployment Insurance Claims in Canada, Miles Corak (1992)
- No. 48 The Dynamics of Firm Turnover and the Competitive Process, John Baldwin (1992)
- No. 49 Development of Longitudinal Panel Data from Business Registers: Canadian Experience, John Baldwin, Richard Dupuy and William Penner (1992)
- No. 50 The Calculation of Health-Adjusted Life Expectancy for a Canadian Province Using a Multi-Attribute Utility Function: A First Attempt, J.-M. Berthelot, R. Roberge and M.C. Wolfson (1992)
- No. 51 Testing the Robustness of Entry Barriers, J.R. Baldwin and M. Rafiquzzaman (1993)
- No. 52 Canada's Multinationals: Their Characteristics and Determinants, Paul K. Gorecki (1992)
- No. 53 The Persistence of Unemployment: How Important were Regional Extended Unemployment Insurance Benefits?, Miles Corak, Stephen Jones (1993)
- No. 54 Cyclical Variation in the Duration of Unemployment Spells, Miles Corak (1992)
- No. 55 Permanent Layoffs and Displaced Workers: Cyclical Sensitivity, Concentration, and Experience Following the Layoff, Garnett Picot and Wendy Pyper (1993)
- No. 56 The Duration of Unemployment During Boom and Bust, Miles Corak (1993)
- No. 57 Getting a New Job in 1989-90 in Canada, René Morissette (1993)
- No. 58 Linking Survey and Administrative Data to Study Determinants of Health, P. David, J.-M. Berthelot and C. Mustard (1993)
- No. 59 Extending Historical Comparability in Industrial Classification, John S. Crysdale (1993)
- No. 60 What is Happening to Earnings Inequality in Canada?, R. Morissette, J. Myles and G. Picot (June 1994)

- No. 61 Structural Change in the Canadian Manufacturing Sector, (1970-1990), J. Baldwin and M. Rafiquzzaman (July 1994)
- No. 62 Unemployment Insurance, Work Disincentives, and the Canadian Labour Market: An Overview, Miles Corak (January 1994)
- No. 63 Recent Youth Labour Market Experiences in Canada, Gordon Betcherman and René Morissette (July 1994)
- No. 64 A Comparison of Job Creation and Job Destruction in Canada and the United States, John Baldwin, Timothy Dunne and John Haltiwanger (July 1994)
- No. 65 What is Happening to Weekly Hours Worked in Canada?, René Morissette and Deborah Sunter (June 1994)
- No. 66 Divergent Inequalities -- Theory, Empirical Results and Prescriptions, Michael C. Wolfson (May 1995)
- No. 67 XEcon: An Experimental / Evolutionary Model of Economic Growth, Michael C. Wolfson (June 1995)
- No. 68 The Gender Earnings Gap Among Recent Postsecondary Graduates, 1984-92, Ted Wannell and Nathalie Caron (November 1994)
- No. 69 A Look at Employment-Equity Groups Among Recent Postsecondary Graduates: Visible Minorities, Aboriginal Peoples and the Activity Limited, Ted Wannell and Nathalie Caron (November 1994)
- No. 70 Employment Generation by Small Producers in the Canadian Manufacturing Sector, John R. Baldwin and Garnett Picot (November 1994)
- No. 71 Have Small Firms Created a Disproportionate Share of New Jobs in Canada? A Reassessment of the Facts, Garnett Picot, John Baldwin and Richard Dupuy (November 1994)
- No. 72 Selection Versus Evolutionary Adaptation: Learning and Post-Entry Performance, J. Baldwin and M. Rafiquzzaman (May 1995)
- No. 73 Business Strategies in Innovative and Non-Innovative Firms in Canada, J. Baldwin and J. Johnson (February 1995)
- No. 74 Human Capital Development and Innovation: The Case of Training in Small and Medium Sized-Firms, J. Baldwin and J. Johnson (March 1995)
- No. 75 Technology Use and Industrial Transformation: Emprirical Perspectives, John Baldwin, Brent Diverty and David Sabourin (August 1995)
- No. 76 Innovation: The Key to Success in Small Firms, John R. Baldwin (February 1995)
- No. 77 The Missing Link: Data on the Demand side of Labour Markets, Lars Osberg (April 1995)
- No. 78 Restructuring in the Canadian Manufacturing Sector from 1970 to 1990: Industry and Regional Dimensions of Job Turnover, J. Baldwin and M. Rafiquzzaman (July 1995)
- No. 79 Human Capital and the Use of Time, Frank Jones (June 1995)
- No. 80 Why Has Inequality in Weekly Earnings Increased in Canada?, René Morissette (July 1995)
- No. 81 Socio-Economic Statistics and Public Policy: A New Role For Microsimulation Modeling, Michael C. Wolfson (July 1995)

- No. 82 Social Transfers, Changing Family Structure, and Low Income Among Children, Garnett Picot and John Myles (September 1995)
- No. 83 Alternative Measures of the Average Duration of Unemployment, Miles Corak and Andrew Heisz (October 1995)
- No. 84 The Duration of Unemployment: A User Guide, Miles Corak and Andrew Heisz (December 1995)
- No. 85 Advanced Technology Use in Manufacturing Establishments, John R. Baldwin and Brent Diverty (November 1995)
- No. 86 Technology Use, Training and Plant-Specific Knowledge in Manufacturing Establishments, John R. Baldwin, Tara Gray and Joanne Johnson (December 1995)
- No. 87 Productivity Growth, Plant Turnover and Restructuring in the Canadian Manufacturing Sector, John R. Baldwin (November 1995)
- No. 88 Were Small Producers the Engines of Growth in the Canadian Manufacturing Sector in the 1980s?, John R. Baldwin (October 1996)
- No. 89 The Intergenerational Income Mobility of Canadian Men, Miles Corak and Andrew Heisz (January 1996)
- No. 90 The Evolution of Payroll Taxes in Canada: 1961 1993, Zhengxi Lin, Garnett Picot and Charles Beach (February 1996)
- No. 91 Project on Matching Census 1986 Database and Manitoba Health Care Files: Private Households Component, Christian Houle, Jean-Marie Berthelot, Pierre David, Cam Mustard, L. Roos and M.C. Wolfson (March 1996)
- No. 92 Technology-induced Wage Premia in Canadian Manufacturing Plants during the 1980s, John Baldwin, Tara Gray and Joanne Johnson (December 1996)
- No. 93 Job Creation by Company Size Class: Concentration and Persistence of Job Gains and Losses in Canadian Companies, Garnett Picot and Richard Dupuy (April 1996)
- No. 94 Longitudinal Aspects of Earnings Inequality in Canada, René Morissette and Charles Bérubé (July 1996)
- No. 95 Changes in Job Tenure and Job Stability in Canada, Andrew Heisz (November 1996)
- No. 96 Are Canadians More Likely to Lose Their Jobs in the 1990s?, Garnett Picot and Zhengxi Lin (August 6, 1997)
- No. 97 Unemployment in the Stock and Flow, Michael Baker, Miles Corak and Andrew Heisz (September 1996)
- No. 98 The Effect of Technology and Trade on Wage Differentials Between Nonproduction and Production Workers in Canadian Manufacturing, John R. Baldwin and Mohammed Rafiquzzaman (May 1998)
- No. 99 Use of POHEM to Estimate Direct Medical Costs of Current Practice and New Treatments Associated with Lung Cancer in Canada, C. Houle, B.P. Will, J.-M. Berthelot, Dr. W.K. Evans (May 1997)
- No.100 An Experimental Canadian Survey That Links Workplace Practices and Employee Outcomes: Why it is Needed and How it Works, Garnett Picot, Ted Wannell (May 1997)
- No.101 Innovative Activity in Canadian Food Processing Establishments: The Importance of Engineering Practices, John Baldwin and David Sabourin (November 1999)

- No. 102 Differences in Strategies and Performances of Different Types of Innovators, John R. Baldwin and Joanne Johnson (December 1997)
- No.103 Permanent Layoffs in Canada: Overview and Longitudinal Analysis, Garnett Picot, Zhengxi Lin and Wendy Pyper (September, 1997)
- No.104 Working More? Working Less? What do Canadian Workers Prefer?, Marie Drolet and René Morissette (May 20, 1997)
- No.105 Growth of Advanced Technology Use in Canadian Manufacturing During the 1990's, by John Baldwin, Ed Rama and David Sabourin (December 14, 1999)
- No.106 Job Turnover and Labour Market Adjustment in Ontario from 1978 to 1993, by Zhengxi Lin and Wendy Pyper (1997)
- No.107 The Importance of Research and Development for Innovation in Small and Large Canadian Manufacturing Firms, John R. Baldwin (September 24, 1997)
- No.108 International Competition and Industrial Performance: Allocative Efficiency, Productive Efficiency, and Turbulence, John R. Baldwin and Richard E. Caves (October 1997)
- No.109 The Dimensions of Wage Inequality among Aboriginal Peoples, Rachel Bernier (December 1997)
- No.110 Trickling Down or Fizzling Out? Economic Performance, Transfers, Inequality and Low Income, Myles Zyblock and Zhengxi Lin (December 10, 1997)
- No.111 Corporate Financial Leverage: A Canada U.S. Comparison, 1961-1996, Myles Zyblock (December 1997)
- No.112 An explanation of the Increasing Age Premium, Constantine Kapsalis (July 1998)
- No.113 The Intergenerational Earnings and Income Mobility of Canadian Men: Evidence from Longitudinal Income Tax Data, Miles Corak and Andrew Heisz (October, 1998)
- No.114 Foreign-Born vs Native-Born Canadians: A Comparison of Their Inter-Provincial Labour Mobility, Zhengxi Lin (September 1998)
- No.115 Living Arrangements and Residential Overcrowding: the situation of older immigrants in Canada, 1991, K.G. Basavarajappa (September 1998)
- No.116 What is Happening to Earnings Inequality and Youth Wages in the 1990s?, Garnett Picot (July 1998)
- No 117 The Determinants of the Adoption Lag for Advanced Manufacturing Technologies, John R. Baldwin and Mohammed Rafiquzzaman (August 1998)
- No. 118 Labour Productivity Differences Between Domestic and Foreign-Controlled Establishments in the Canadian Manufacturing Sector, John R. Baldwin and Naginder Dhaliwal (March 1, 2000)
- No.119 Technology Adoption: A Comparison Between Canada and the United States, John R. Baldwin and David Sabourin (August 1998)
- No.120 Are There High-Tech Industries or Only High-Tech Firms? Evidence From New Technology-Based firms, John R. Baldwin and Guy Gellatly (December 1998)
- No.121 A Portrait of Entrants and Exits, John R. Baldwin (June 1999)

- No.122 Determinants of Innovative Activity in Canadian Manufacturing Firms: The Role of Intellectual Property Right, John R. Baldwin, Petr Hanel and David Sabourin (March 7, 2000)
- No.123 Innovation and Training in New Firms John R. Baldwin (November 2000)
- No.124 New Views on Inequality Trends in Canada and the United States, Michael C. Wolfson and Brian B. Murphy (August 1998 and October 1999 (paper)
- No.125 Employment Insurance in Canada: Recent Trends and Policy Changes, Zhengxi Lin (September 1998)
- No.126 Computers, Fax Machines and Wages in Canada: What Really Matters?, René Morissette and Marie Drolet (October 1998)
- No.127 Understanding the Innovation Process: Innovation in Dynamic Service Industries, Guy Gellatly and Valerie Peters (December 1999)
- No.128 Recent Canadian Evidence on Job Quality by Firm Size, Marie Drolet and René Morissette (November 1998)
- No.129 Distribution, Inequality and Concentration of Income Among Older Immigrants in Canada, 1990, K.G. Basavarajappa (April 1999)
- No.130 Earnings Dynamics and Inequality among Canadian Men, 1976-1992: Evidence from Longitudinal Income Tax Records, Michael Baker and Gary Solon (February 1999)
- No 131 The Returns to Education, and the Increasing Wage Gap Between Younger and Older Workers, C. Kapsalis, R. Morissette and G. Picot (March 1999)
- No.132 Why Do Children Move Into and Out of Low Income: Changing Labour Market Conditions or Marriage and Divorce?, G. Picot, M. Zyblock and W. Pyper (March 1999)
- No.133 Rising Self-Employment in the Midst of High Unemployment: An Empirical Analysis of Recent Developments in Canada, Zhengxi Lin, Janice Yates and Garnett Picot (March 1999)
- No.134 The Entry and Exit Dynamics of Self-Employment in Canada, Zhengxi Lin, Garnett Picot and Janice Yates (March 1999)
- No.135 Death and Divorce: The Long-term Consequences of Parental Loss on Adolescents, Miles Corak (June 9, 1999)
- No.136 Cancelled
- No.137 Innovation, Training and Success, John Baldwin (October 1999)
- No.138 The Evolution of Pension Coverage of Young and Older Workers in Canada, René Morissette and Marie Drolet (December 1999)
- No.139 Import Competition and Market Power: Canadian Evidence, Aileen J. Thompson (April 2000)
- No.140 Gender Composition and Wages: Why is Canada Different from the United States, Michael Baker and Nicole Fortin (August 2000)
- No.141 The Transition to Work for Canaddian University Graduates: Time to First Job, 1982-1990, Julian Betts, Christopher Ferrall and Ross Finnie (December 2000)

- No.142 Who Moves? A Panel Logit Model Analysis of Interprovincial Migration in Canada, Ross Finnie (August 2000)
- No.143 Differences in Innovator and Non-Innovator Profiles: Small Establishments in Business Services, Guy Gellatly (December 1999)
- No.144 Social Transfers, Earnings and Low-Income Intensity Among Canadian Children, 1981-1996: Highlighting Recent Development in Low-Income Measurement, John Myles and Garnett Picot (March 2000)
- No.145 How Much of Canada's Unemployment is Structural?, Lars Osberg and Zhengxi Lin (October 2000)
- No.146 To What Extent Are Canadians Exposed to Low-Income?, René Morissette and Marie Drolet (April, 2000)
- No.147 The Maturation of Canada's Retirement Income System: Income Levels, Income Inequality and Low-Income among the Elderly, John Myles (March 6, 2000)
- No.148 The Performance of the 1990s Canadian Labour Market, Garnett Picot and Andrew Heisz (April, 2000)
- No.149 Payroll Taxes in Canada Revisited: Structure, Statutory Parameters, and Recent Trends Zhengxi Lin (August, 2001)
- No.150 Patterns of Corporate Diversification in Canada: An Empirical Analysis, John R. Baldwin, Desmond Beckstead, Guy Gellatly and Alice Peters (June, 2000)
- No.151 Multinationals and the Canadian Innovation Process, John R. Baldwin and Petr Hanel (June, 2000)
- No.152 Rural Youth: Stayers, Leavers and Return Migrants, Richard Dupuy, Francine Mayer and René Morissette (September 5, 2000)
- No.153 Female Employment Rates and Labour Market Attachment in Rural Canada, Euan Phimster, Esperanza Vera Toscano, Alfons Weersink (December 2000)
- No.154 Training as a Human Resource Strategy: The Response to Staff Shortages and Technological Change, John R. Baldwin and Valerie Peters (April 2001)
- No.155 Job Tenure, Worker Mobility and the Youth Labour Market during the 1990s, G. Picot, A. Heisz and A. Nakamura (March 2001)
- No.156 The Impact of International Trade on the Wages of Canadians, Omar Zakhilwal (December 2000)
- No.157 The Persistent Gap: New Evidence on the Canadian Gender Wage Gap, Marie Drolet (December 2000)
- No.158 In Search of Intergenerational Credit Constraints Among Canadian Men: Quantile Versus Mean Regression Tests for Binding Crefdit Constraints, Nathan D. Grawe (December 2000)
- No.159 Intergenerational Influences on the Receipt of Unemployment Insurance in Canada and Sweden, Miles Corak, Bjorn Gustaffson and Torun Osterberg (December 2000)
- No.160 Neighbourhood Inequality in Canadian Cities, John Myles, Garnett Picot and Wendy Pyper (December 13, 2000)
- No.161 Cancelled
- No.162 The Evolution of Job Stability in Canada: Trends and Comparisons to U.S. Results, Andrew Heisz (October 16, 2002)

- No.163 The Effects of Inter-Provincial Mobility on Individuals' Earnings: Panel Model Estimates for Canada, Ross Finnie (October, 2001)
- No.164 Early Labour Market Outcomes of Recent Canadian University Graduates by Discipline: A Longitudinal, Cross-Cohort Analysis, Ross Finnie (March 2002)
- No.165 Innovation and Connectivity: The Nature of Market Linkages and Innovation Networks in Canadian Manufacturing Industries, John Baldwin and Alice Peters (May 2001)
- No.166 An Assessment of El and SA Reporting in SLID, Constantine Kapsalis (August, 2001)
- No.167 Cancelled
- No.168 Enhancing Food Safety and Productivity: Technology Use in the Canadian Food Processing Industry,

 John R. Baldwin and David Sabourin (May 2002)
- No.169 Dynamics of the Canadian Manufacturing Sector in Metropolitan and Rural Regions, John R. Baldwin and Mark Brown with Tara Vinodrai (November 2001)
- No170 Income Prospects of British Columbia University Graduates, Andrew Heisz (May 2001)
- No.171 Are the Kids All Right? Intergenerational Mobility and Child Well-being in Canada, Miles Corak (October 2001)
- No.172 Low-Income Intensity During the 1990s: The Role of Economic Growth, Employment Earnings and Social Transfers, G. Picot, R. Morissette, J. Myles (January 24, 2003)
- No.173 Impediments to Advanced Technology Adoption for Canadian Manufacturers, John Baldwin and Zhengxi Lin (August, 2001)
- No.174 Impact of the Adoption of Advanced Information and Communication Technologies on Firm Performance in the Canadian Manufacturing Sector, John R. Baldwin and David Sabourin (October, 2001)
- No.175 Skill Shortages and Advanced Technology Adoption, David Sabourin (September, 2001)
- No.176 Which Firms Have High Job Vacancy Rates in Canada?, René Morissette, Xuelin Zhang (October 25, 2001)
- No.177 A Tale of Three Cities: The Dynamics of Manufacturing in Toronto, Montreal and Vancouver, 1976-1997, Tara Vinodrai (November 2001)
- No.178 School Performance of the Children of Immigrants in Canada, 1994-98, Christopher Worswick (November 14, 2001)
- No.179 Changes in the Diversification of Canadian Manufacturing Firms (1973-1997): A Move to Specialization, John R. Baldwin, Desmond Beckstead and Richard Caves (February 2002)
- No.180 Differences in Interprovincial Productivity Levels, John R. Baldwin, Jean-Pierre Maynard, David Sabourin and Danielle Zietsma (December 2001)
- No.181 Does Parent or Child Know Best? An Assessment of Parent/Child Agreement in the Canadian National Longitudinal Survey of Children and Youth, Lori Curtis, Martin Dooley and Shelley Phipps (October 23, 2002)
- No.182 Effects of Selection Criteria and Economic Opportunities on the Characteristics of Immigrants, by Abdurrahman Aydemir (October 23, 2002)

- No.183 Setting up Shop: Self-Employment Amongst Canadian College and University Graduates, Ross Finnie, Christine Laporte, Maud-Catherine Rivard (March 2002)
- No.184 Winners and Losers in the Labour Market of the 1990s, Andrew Heisz, Andrew Jackson, Garnett Picot (February 2002)
- No.185 Do Neighbourhoods Influence Long Term Labour Market Success? A Comparison of Adults who Grew Up in Different Public Housing Projects, Philip Oreopoulos (June 2002)
- No. 186 Wives, Mothers and Wages: Does Timing Matter? Marie Drolet (May 1, 2002)
- No.187 The Evolution of Wealth Inequality in Canada, 1984-1999, René Morissette, Xuelin Zhang and Marie Drolet (February 2002)
- No.188 Management Experience and Diversity in an Aging Organization, Ted Wannell and Martin Gravel (August 2002)
- No.189 The Importance of Entry to Canadian Manufacturing with an Appendix on Measurement Issues, John Baldwin, Desmond Beckstead and Andrée Girard (May 2002)
- No.190 Financing Innovation in New Small Firms: Evidence From Canada, John R,. Baldwin, Guy Gellatly and Valérie Gaudreault (May 2002)
- No.191 Too Far to Go On? Distance to School and University Participation, Marc Frenette (June 24, 2002)
- No.192 Life After Welfare: The Economic Well-Being of Welfare Leavers in Canada during the 1990s, Marc Frenette, Garnet Picot (March 26, 2003)
- No.193 Plant Turnover and Productivity Growth in Canadian Manufacuturing, John Baldwin, Wulong Gu (April 2, 2003)
- No.194 Wage Progression of Less Skilled Workers in Canada: Evidence from the SLID (1993-1998), Xuelin Zhang (December 6, 2002)
- No.195 Do the Falling Earnings of Immigrants Apply to Self-Employed Immigrants?, Marc Frenette (December 2002)
- No.196 Minorities, Cognitive Skills and the Incomes of Canadians, Ross Finnie and Ronald Meng (January 24, 2003)
- No.197 The Wealth Position of Immigrant Families in Canada, Xuelin Zhang (November 18, 2003)
- No.198 The Rise in Low-Income Rates Among Immigrants in Canada, Garnett Picot and Feng Hou (June 19, 2003)
- No.199 Alternative Work Practices and Quit Rates: Methodological Issues and Empirical Evidence For Canada, René Morissette and Julio Miguel Rosa (March 17, 2003)
- No.200 Cohort Effects in Annual Earnings by Field of Study Among British Columbia University Graduates, Andrew Heisz (September 26, 2003)
- No.201 Access to College and University: Does Distance Matter?, Marc Frenette (June 2003)
- No.202 Learning From Failure: Organizational Mortality and the Resource-Based View, S. Thornhill and R. Amit (August 8, 2003)

- No.203 Effects of Business Cycles on the Labour Market Assimilation of Immigrants, Abdurrahman Aydemir (July 31, 2003)
- No.204 Visible Minority Neighbourhood Enclaves and Labour Market Outcomes of Immigrants, Garnett Picot, Feng Hou (July 9, 2003)
- No.205 (forthcoming)
- No.206 Neighbourhood Attainment and Residential Segregation Among Toronto's Visible Minorities, John Myles and Feng Hou (July 30, 2003)
- No.207 Life Cycle Bias in the Estimation of Intergerational Earnings Persistence, Nathan Grawe (August 5, 2003)
- No.208 forthcoming
- No.209 Working Hours in Canada and the United States, Andrew Heisz and Sébastien LaRochelle-Côté (September 2003)
- No.210 Family Income and Participation in Post-Secondary Education, Miles Corak, Garth Lipps and John Zhao (October 1, 2003)
- No.211-214 forthcoming
- No.215 Will They Ever Converge?: Earnings of Immigrant and Canadian-Born Workers over the Last Two Decades, Marc Frenette and René Morissette (October 8, 2003)

