The Weighted Mean and the Median: Takeaways

by Dataquest Labs, Inc. - All rights reserved © 2018

Syntax

• Computing the weighted mean for a distribution distribution_X with weights weights_X :

• Finding the median for a Series :

```
median = Series.median()
```

• Finding the median for any numerical array:

```
from numpy import median
median_numpy = median(array)
```

Concepts

•	When data points bear different weights, we need to compute the weighted mean . The
	formulas for the weighted mean are the same for both samples and populations, with slight
	differences in notation:

- It's difficult to define the median algebraically. To compute the median of an array, we need to:
 - Sort the values in an ascending order.
 - Select the middle value as the median. If the distribution is even-numbered, we select the middle two values, and then compute their mean the result is the median.
- The median is ideal for:
 - Summarizing numerical distributions that have **outliers**.
 - **Open-ended** distributions.
 - Ordinal data.

Resources

- An intuitive introduction to the weighted mean.
- The Wikipedia entry on the weighted mean.
- The Wikipedia entry on the median.
- Useful documentation:
 - numpy.average()
 - Series.median()
 - numpy.median()

Takeaways by Dataquest Labs, Inc. - All rights reserved $\ensuremath{\text{@}}$ 2018