专业: 光电信息科学与工程

姓名: 毛永奇

学号: 3220103385

# 淅沙人学实验报告

实验名称: \_\_\_\_ 时序逻辑和计数电路设计 \_\_\_\_\_ 指导老师: \_\_\_\_ 周箭 \_\_ 实验类型: \_\_\_\_ 设计型

# 一、实验目的

- 1、加深理解时许逻辑电路和计数器电路的工作原理;
- 2、学习时许逻辑和计数器电路的设计组装和调试;
- 3、了解分析和比对集成时序逻辑和计数器电路的应用;
- 4、进一步掌握常用仪器设备的使用;

# 二、实验内容、实验电路和实验原理

1、测试集成触发器(74和107)的逻辑功能;

74LS74





- 74 和 107 拥有两个 D 触发器和 JK 触发器
- 2、测试集成计数器(161)的逻辑功能;

| 清零                                    | 预置 | 使  | 能  | 时钟 |   | 预置 | 数据 |   |                                              | 输                         | 出                          |                |
|---------------------------------------|----|----|----|----|---|----|----|---|----------------------------------------------|---------------------------|----------------------------|----------------|
| $\overline{R_{\scriptscriptstyle D}}$ | ĪD | EP | ET | СР | D | С  | В  | Α | $\mathbf{Q}_{\scriptscriptstyle \mathrm{D}}$ | $\mathbf{Q}_{\mathrm{c}}$ | $Q_{\scriptscriptstyle B}$ | Q <sub>A</sub> |
| 0                                     | ×  | ×  | ×  | ×  | × | ×  | ×  | × | 0                                            | 0                         | 0                          | 0              |
| 1                                     | 0  | ×  | ×  | 1  | D | С  | В  | Α | D                                            | С                         | В                          | Α              |
| 1                                     | 1  | 0  | ×  | ×  | × | ×  | ×  | × |                                              | 保                         | 持                          |                |
| 1                                     | 1  | ×  | 0  | ×  | × | ×  | ×  | × |                                              | 保                         | 持                          |                |
| 1                                     | 1  | 1  | 1  | 1  | × | ×  | ×  | × |                                              | 计                         | 数                          | 0 E E E        |

本次实验使用计数功能,同时使用清零端进行循环控制。

3、利用集成触发器和其他逻辑门实现 8421 编码的同步十进制加法计数器; 采用 JK 触发器设计加法计数器电路。十进制需要使用四个 JK 触发器,所以需要两个 107 芯片。根据状态转化图可得到真值表

| 0000 - 000   - 0000 - 0000 |
|----------------------------|
|                            |
| 1001                       |
| 1000 20 11 20 10 20 101    |

| CP | $Q_3^n Q_2^n Q_1^n Q_0^n$ | $Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$ |
|----|---------------------------|----------------------------------------|
| 1  | 0000                      | 0001                                   |
| 2  | 0001                      | 0010                                   |
| 3  | 0010                      | 0011                                   |
| 4  | 0011                      | 0100                                   |
| 5  | 0100                      | 0101                                   |
| 6  | 0101                      | 0110                                   |
| 7  | 0110                      | 0111                                   |
| 8  | 0111                      | 1000                                   |
| 9  | 1000                      | 1001                                   |
| 10 | 1001                      | 0000                                   |

再根据卡诺图可以得出驱动方程:

$$\begin{cases} J_0 = K_0 = 1 \\ J_1 = \overline{Q_3^n} Q_0^n & K_1 = Q_0^n \\ J_2 = K_2 = Q_1^n Q_0^n \\ J_3 = Q_2^n Q_1^n Q_0^n & K_3 = Q_0^n \end{cases}$$

然后进行自启动检查:

同じ  

$$0000 \rightarrow 000 \rightarrow 000 \rightarrow 000$$
  
 $1000 \rightarrow 000 \rightarrow$ 

可以自启动

# 因此可以使用11芯片的三输入与门。

4、利用集成计数器和其他逻辑门实现数字钟;



将7、9、10管脚全部置位高电位

对 Q3 和 Q1 取与非,并接入清零端进行清零,保证计数范围。

#### 三、主要仪器设备与实验元器件

实验箱、74 芯片、107 芯片、161 芯片、11 芯片、00 芯片

## 四、实验步骤与操作方法

- 1、检查芯片功能是否正常;
- 2、设计并接好电路一;
- 3、采用低频周期信号作为 CP 脉冲, 并使用发光二极管指示输出, 检查功能;
- 4、检查自启动;
- 5、接好电路二;
- 6、检查基本功能;
- 7、采用高频信号作为 CP 脉冲, 并使用示波器观察对比 CP 和输出端波形;
- 8、记录实验数据;

## 五、实验结果分析

74、107、11、00 芯片正常, 161 芯片损坏, 更换后正常。

JK 触发器组成的计数器功能正常, 自启动正常;

集成计数器计数功能正常、清零逻辑正常;

示波器信号稳定;

### 六、讨论、心得

实验前先检查芯片是否正常还是很重要的,这次我的 161 芯片又是坏的,已经是第二次发现新的芯片都是损坏的情况了。

这次看到有同学采用置数法进行循环控制,发现总是会出现奇怪的跳变,后来帮他换成了清零端控制就好了,接上示波器后图形正常,感觉是因为置数控制是同步的,可能会受到 CP 脉冲的毛刺影响,清零控制是异步的,所以可以避免这个情况。