

WHO'S GOING DOWN?

Predicting Relegation from the Premier League By Raja Basu Roy, September 2017

AIM

- To predict who will get relegated from the Premier League using information contained in the current league table
- For example, games won, lost and drawn, goals for and against, number of points, position, current form ...

WHAT RELEGATION FEELS LIKE

SO, AFTER SIX WEEKS ...

... doing the Capstone, how do I feel?

MILD DEJECTION

RE-EVALUATION

WHO'S GOING DOWN?

Is it possible to predict relegation from the Premier League using the league table?

Yes and no

TWO SECTIONS, TWO STEPS

- Section One
 - Preparation of feature set
 - Analysis of results
- Section Two
 - Preparation of more features
 - More analysis of results

RAW DATA

- Historic league tables throughout the season are not recorded. However, historic match results are and league tables can be derived from them
- Match results obtained from <u>football-data.co.uk</u>
 - Each match has, date, name of home team,
 name of away team, home goals and away goals

FEATURE ENGINEERING

- Created a function to generate the final league table of each season in order to identify teams that were relegated - the target
- Created another function to produce a league table after N games. N varies between I and 38. This is an artificial table as it means disregarding results for teams that have played more than N games while waiting for teams that have played less Premier League games, e.g. due to European and Cup commitments, to catch up.

INITIAL FEATURES

- Decided to have 38 different models that varied with N rather than one that took N as a feature
- Dataset ended up as a dictionary of 38 different dataframes with each dataframe containing 20*22=440 rows where 20 is the number of teams in the league and 22 is the number of seasons after 1995/96 for which there were 20 teams

INITIAL FEATURES ...

- Row contains: Games won, drawn and lost, goals for, and against, goal difference and number of points.
 Treating these as continuous variables
- Hoping to be able to predict relegation from these features
- Saved features to a JSON file. Required a bespoke encoder for a dictionary of dataframes

INTERESTING ONLY IF ...

- ... Teams move in and out of the bottom three.
- There would be no need to model anything if, say, after 10 games, the bottom three consisted of the same three teams until the end of the season
- · So what does the journey to relegation look like?

DULL & EXCITING SEASONS

TRAIN TEST SPLIT

- Manually split data
- Training set to fit the model from seasons 1995/96 to 2009/10 and test set to evaluate the model from 2010/11 to 2016/17
- 300 rows in the training set and 140 in the test set
 - an approximate 2:1 ratio

CORRELATIONS

- Important to identify correlations
 - Between the target and features to identify predictive power
 - Within the features to avoid model overfitting

LOTS OF CORRELATIONS

- After 19 games
- Mostly obvious
- Interesting:
 - Games lost and relegation
 - Zero correlation with draws

PCA (AFTER NORMALISATION)

Most of the variance (72%) can be explained by one principal component. This is very approximately the sum of normalised positive features less normalised negative features when it comes to staying up, i.e. 0.4 * (Games Won + Points + Goal Difference + Goals For - Games Lost - Goals Against)

SCORE METRIC

- Baseline = 0.85 accuracy (17/20 teams stay up)
- K-Nearest Neighbours (K=3) = 0.88

0.87

relegated not_relegated	predic 10 6	cted_rele	gated	predi 11 113	cted_not_	relegated
prec	ision	recall	f1-sco	ore	support	
0 1	0.91	0.95		.93 .54	119 21	

0.88

• For minority classes, recall is a better metric than accuracy. Recall = Proportion of times model predicted relegation for teams actually relegated. 10/21 in example above

140

0.87

- Using the first two PCA features gave a recall of 0.57 compared with 0.48.
- Other models gave similar results

avg / total

EXPANDING THE FEATURES

Additional Section Two Features

- Number of points won in the n-th game, the (n-1)th game (n-4)th game current form
 - Position in the table 18 and below means relegation
- For the four teams in the two positions above and two positions below, the difference in games played and points gives context to position
 - Historic finishing positions in the previous three seasons
 - Promoted team flag

COMPLEX PYTHON CODE

(OK...LONG)

- Over 200 lines of code to generate the features
- After every day of games played, checked to see if any of the features had changed
- Some features depend on the other teams, such as games in hand

EXPANDED FEATURES (AFTER 19 GAMES AGAIN)

RANDOM FOREST

Model: (DEFAULT) RANDOM FOREST

	Predicted Safe	Predicted Relegated	Support
Actual Safe	199	4	203
Actual Relegated	21	13	34
Total Predicted	220	17	237

Baseline accuracy = 0.857 Accuracy = 0.895

	Precision	RecallF1-Score	
Safe	0.905	0.980	0.941
Relegated	0.765	0.382	0.510
Average	0.884	0.895	0.879

- 34 actual teams relegated in 7 seasons ?!?
 This is the features for the 21 actual teams relegated plus 15 more for the same teams but different games in hand information. Still around 15% of all records
- As the probability threshold for relegation increases the true positive rate (recall/sensitivity) increases but so does the false positive rate (I-specificity)

FI-SCORE AND APPLICATION TO SVC

Model: (DEFAULT) SVC

	Predicted Safe	Predicted Relegated	Support
Actual Safe	240	8	248
Actual Relegated	43	6	49
Total Predicted	283	14	297

Baseline accuracy = 0.835 Accuracy = 0.828

	Precision	Recall	F1-Score
Safe	0.848	0.968	0.904
Relegated	0.429	0.122	0.190
Average	0.779	0.828	0.786

Model: BEST SVC FROM GRIDSEARCH OPTIMISED FOR F1-SCORE

	Predicted Safe	Predicted Relegated	Support
Actual Safe	189	14	203
Actual Relegated	16	18	34
Total Predicted	205	32	237

Baseline accuracy = 0.857
Accuracy = 0.873

	Precision	Recall	F1-Score
Safe	0.922	0.931	0.926
Relegated	0.562	0.529	0.545
Average	0.870	0.873	0.872

Receiver operating characteristic for relegation

Receiver operating characteristic for relegation

BOTTOM THREE MODEL

Model: BOTTOM THREE RELEGATED

	Predicted Safe	Predicted Relegated	Support
Actual Safe	190	13	203
Actual Relegated	12	22	34
Total Predicted	202	35	237

Baseline accuracy = 0.857 Accuracy = 0.895

	Precision	Recall	F1-Score
Safe	0.941	0.936	0.938
Relegated	0.629	0.647	0.638
Average	0.896	0.895	0.895

LOGISTIC REGRESSION

Adding more features has reduced recall. Need to apply regularisation or PCs

SVC AND UPSAMPLING

• Upsampling has improved recall but increased the false positive rate too

BOTTOM THREE MODEL CHART

CONCLUSION

Bottom Three Model performs better than ML

models

NEXT STEPS / A.K.A. IF I HAD MORETIME

- Will Bournemouth be relegated this season?
 - BTM says yes. Recall of 0.33; Bookies c0.38
- Is it possible to use data from before 1995 in which 3 out of 22 teams were relegated to predict 3 out of 20 teams?
- Apply the model to all teams in the league. Identify the three teams with the highest probability of relegation and classify these teams as relegated
- Use a subset of the PCA components rather than the full set and/or regularisation
 - Allow for optimisation of hyperparameters in Section Three.