Group:1

ASSIGNMENT: 1

Prashansa Rathod - 8993410

Harsh Joshi - 8952840

Jaiv Burman - 8930180

Nidhi Ahir - 9041129

Nil Kumar Patel - 8983991

PART: 2 Data Analysis and Visualization

- Insights from Data Analysis
- 1. The dataset provides detailed records of animal intakes and outcomes from Austin Animal Center.
- 2. Key outcome types include Adoption, Transfer, Return to Owner, Euthanasia, and more. 3. Adoption is the most frequent outcome, highlighting its importance in shelter operations.

In [13]: import pandas as pd import matplotlib.pyplot as plt # Load the datasets with proper encoding intakes_path = 'Austin_Animal_Center_Intakes.csv' outcomes_path = 'Austin_Animal_Center_Outcomes.csv' # Try using 'latin1' encoding to read the files intakes_df = pd.read_csv(intakes_path, encoding='latin1') outcomes_df = pd.read_csv(outcomes_path, encoding='latin1') # Display the first few rows of each dataset print("Intakes Dataset:") display(intakes_df.head())

Outcomes Dataset:

print("\nOutcomes Dataset:") display(outcomes_df.head())

Intakes Dataset:												
	Animal ID	Name	DateTime	MonthYear	Found Location	Intake Type	Intake Condition	Animal Type	Sex upon Intake	Age upon Intake	Breed	Color
0	A786884	*Brock	01/03/2019 04:19:00 PM	January 2019	2501 Magin Meadow Dr in Austin (TX)	Stray	Normal	Dog	Neutered Male	2 years	Beagle Mix	Tricolor
1	A706918	Belle	07/05/2015 12:59:00 PM	July 2015	9409 Bluegrass Dr in Austin (TX)	Stray	Normal	Dog	Spayed Female	8 years	English Springer Spaniel	White/Liver
2	A724273	Runster	04/14/2016 06:43:00 PM	April 2016	2818 Palomino Trail in Austin (TX)	Stray	Normal	Dog	Intact Male	11 months	Basenji Mix	Sable/White
3	A857105	Johnny Ringo	05/12/2022 12:23:00 AM	May 2022	4404 Sarasota Drive in Austin (TX)	Public Assist	Normal	Cat	Neutered Male	2 years	Domestic Shorthair	Orange Tabby
4	A682524	Rio	06/29/2014 10:38:00 AM	June 2014	800 Grove Blvd in Austin (TX)	Stray	Normal	Dog	Neutered Male	4 years	Doberman Pinsch/Australian Cattle Dog	Tan/Gray

DateTime MonthYear Date of Birth Outcome Type Outcome Subtype Animal Type Sex upon Outcome Age upon Outcome Animal ID Name **Breed** Color 0 A794011 Chunk 05/08/2019 06:20:00 PM May 2019 05/02/2017 Neutered Male NaN Domestic Shorthair Mix Brown Tabby/White Rto-Adopt 2 years 1 A776359 Gizmo 07/18/2018 04:02:00 PM Chihuahua Shorthair Mix White/Brown Adoption NaN Neutered Male Dog Gray **2** A821648 NaN 08/16/2020 11:38:00 AM Aug 2020 08/16/2019 Euthanasia NaN Other Unknown 1 year Raccoon **3** A720371 Moose 02/13/2016 05:59:00 PM Feb 2016 Neutered Male 4 months Anatol Shepherd/Labrador Retriever 10/08/2015 Adoption NaN Dog Buff 4 A674754 NaN 03/18/2014 11:47:00 AM Mar 2014 03/12/2014 Transfer Partner Cat Intact Male Domestic Shorthair Mix 6 days Orange Tabby

In [14]: # Merge datasets based on common identifiers (e.g., Animal ID) merged_df = pd.merge(intakes_df, outcomes_df, on="Animal ID", how="inner") # Analyze trends: Outcomes distribution outcome_counts = merged_df["Outcome Type"].value_counts() # Visualization: Outcomes distribution plt.figure(figsize=(10, 6)) outcome_counts.plot(kind='bar', color='blue', alpha=0.8) plt.title("Distribution of Outcome Types") plt.xlabel("Outcome Type") plt.ylabel("Count") plt.xticks(rotation=45) plt.tight_layout() # Show plot plt.show()

- Proposed DSS-Based Solutions
- 1. Outcome Prediction System:
- Objective: Forecast the likely outcomes (adoption, transfer, etc.) for incoming animals. • Implementation: Use machine learning models to analyze historical data and predict outcomes based on attributes such as age, breed, and health condition.
- 2. Adoption Priority Dashboard:
- Objective: Identify animals with lower adoption probabilities and prioritize their visibility to adopters. • Implementation: Create a dashboard highlighting animals at higher risk of prolonged stays or euthanasia.
- 3. Seasonal Intake and Outcome Analysis:
- Objective: Prepare shelters for seasonal trends in intakes and outcomes.
- Implementation: Use time-series analysis to predict seasonal variations and align resources accordingly.
- 4. Enhanced Animal Profile System:
- Objective: Increase adoption rates by providing detailed and visually appealing animal profiles. • Implementation: Use AI-powered tools to generate descriptive profiles, including photos and behavior summaries.
- 5. Resource Allocation Tool: • Objective: Optimize shelter resources (e.g., food, space) based on predicted intake trends. • Implementation: Integrate predictive analytics into resource planning modules.

```
Part 3: Building a Simple AI Model
In [16]: import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import accuracy_score, classification_report
         from sklearn.preprocessing import LabelEncoder
         # Load the outcomes dataset
         outcomes_path = 'Austin_Animal_Center_Outcomes.csv'
         outcomes_df = pd.read_csv(outcomes_path, encoding='latin1')
         # Select relevant features and target variable
         features = ['Animal Type', 'Sex upon Outcome', 'Age upon Outcome', 'Breed', 'Color']
         target = 'Outcome Type'
         # Handle missing values
         outcomes_df = outcomes_df.dropna(subset=features + [target])
         # Encode categorical variables
         X = pd.get_dummies(outcomes_df[features], drop_first=True)
         label_encoder = LabelEncoder()
         y = label_encoder.fit_transform(outcomes_df[target])
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
         # Train a Random Forest Classifier
         model = RandomForestClassifier(random_state=42)
         model.fit(X_train, y_train)
         # Make predictions
         y_pred = model.predict(X_test)
         # Evaluate the model
         accuracy = accuracy_score(y_test, y_pred)
         report = classification_report(y_test, y_pred, labels=range(len(label_encoder.classes_)), target_names=label_encoder.classes_)
         print("Accuracy of the AI Model:", accuracy)
         print("\nClassification Report:\n", report)
         # Feature importance
         feature_importance = pd.DataFrame({'Feature': X.columns, 'Importance': model.feature_importances_})
         feature_importance = feature_importance.sort_values(by='Importance', ascending=False)
         print("\nTop Features Contributing to Predictions:\n", feature_importance.head())
         # Decision-Making Integration
         print("\nThis model can help prioritize actions based on predicted outcomes, improving resource allocation and decision-making in the shelter.")
```

Accuracy of the AI Model: 0.6792776208461612											
Classification Report:											
	precision	recall	f1-score	support							
Adoption	0.72	0.87	0.79	14939							
Died	0.14	0.02	0.04	321							
Disposal	0.32	0.05	0.08	155							
Euthanasia	0.76	0.56	0.64	1940							
Missing	0.20	0.05	0.08	19							
Relocate	0.00	0.00	0.00	3							
Return to Owner	0.47	0.37	0.41	4983							
Rto-Adopt	0.04	0.01	0.01	215							
Stolen	0.00	0.00	0.00	0							
Transfer	0.68	0.62	0.65	8932							
accuracy			0.68	31507							
macro avg	0.33	0.25	0.27	31507							
weighted avg	0.66	0.68	0.66	31507							

```
Top Features Contributing to Predictions:
                         Feature Importance
6 Sex upon Outcome_Spayed Female 0.095463
    Sex upon Outcome_Intact Male 0.055332
       Age upon Outcome_2 months 0.038468
        Sex upon Outcome_Unknown 0.032951
```

```
5 Sex upon Outcome_Neutered Male 0.074512
29
This model can help prioritize actions based on predicted outcomes, improving resource allocation and decision-making in the shelter.
c:\Users\ratho\Desktop\CONESTOGA\CSCN8010\ML_labs\Lib\site-packages\sklearn\metrics\_classification.py:1531: Undefined and being set to 0.0 in labels with no predicted samples. Use `zero_division`
parameter to control this behavior.
  _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\ratho\Desktop\CONESTOGA\CSCN8010\ML_labs\Lib\site-packages\sklearn\metrics\_classification.py:1531: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` paramet
er to control this behavior.
  _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\ratho\Desktop\CONESTOGA\CSCN8010\ML_labs\Lib\site-packages\sklearn\metrics\_classification.py:1531: Undefined and being set to 0.0 in labels with no true nor predicted samples. Use `zero_di
vision` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\ratho\Desktop\CONESTOGA\CSCN8010\ML_labs\Lib\site-packages\sklearn\metrics\_classification.py:1531: Undefined and being set to 0.0 in labels with no predicted samples. Use `zero_division`
parameter to control this behavior.
  _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\ratho\Desktop\CONESTOGA\CSCN8010\ML_labs\Lib\site-packages\sklearn\metrics\_classification.py:1531: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` paramet
  _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\ratho\Desktop\CONESTOGA\CSCN8010\ML_labs\Lib\site-packages\sklearn\metrics\_classification.py:1531: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no true nor predicted samples. Use `zero_di
vision` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\ratho\Desktop\CONESTOGA\CSCN8010\ML_labs\Lib\site-packages\sklearn\metrics\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division`
```

parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) c:\Users\ratho\Desktop\CONESTOGA\CSCN8010\ML_labs\Lib\site-packages\sklearn\metrics_classification.py:1531: Undefined and being set to 0.0 in labels with no true samples. Use `zero_division` paramet er to control this behavior.

c:\Users\ratho\Desktop\CONESTOGA\CSCN8010\ML_labs\Lib\site-packages\sklearn\metrics_classification.py:1531: Undefined and being set to 0.0 in labels with no true nor predicted samples. Use `zero_di vision` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))