

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina - Probabilidade e Estatística AP1 1° semestre de 2007

GABARITO

1- Primeira questão (3,0 pontos):

A Tabela 1 apresenta o salário (em salários mínimos) de 20 funcionários administrativos da indústria I_1 e a Tabela 2 fornece, por faixas salariais, o número de salários mínimos dos funcionários administrativos da indústria I_2 .

10,1	7,3	8,5	5	4,2	3,1	2,2	9	9,4	6,1
3,3	10,7	1,5	8,2	10	4,7	3,5	6,5	8,9	6,1

Tabela 1

Salário	1 3	3 5	5 7	7 9	9 11	total
Freqüência	4	10	8	16	12	50

Tabela 2

Solução:

(i) (0,5 ponto) construa uma tabela de freqüência da Tabela 1, agrupando os dados em intervalos de amplitude 2 a partir de 1 salário mínimo;

Tabela de freqüência da tabela 1

Faires		f	freq. relativa
Faixas	valor médio	freqüência	(11)
1,00 3,00	2,00	2	0,10
3,00 5,00	4,00	5	0,25
5,00 7,00	6,00	4	0,20
7,00 9,00	8,00	4	0,20
9,00 11,00	10,00	5	0,25
		20	1,00

(ii) (0,5 ponto) informe em que faixas estão a média, a mediana e a moda das 2 indústrias;

Solução:

Média:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i = \frac{n_1 x_1 + n_2 x_2 + n_3 x_3 + \dots + n_k x_k}{n}$$

Da industria I₁

$$\overline{x}_{ind.1} = \frac{2,00 \times 2 + 4,00 \times 5 + 6,00 \times 4 + 8,00 \times 4 + 10,00 \times 5}{20} = \frac{130,00}{20} = 6,50$$

portanto na faixa 5,00|-- 7,00 ou faixa 3

Da industria I₂

Salário	1 3	3 5	5 7	7 9	9 11	total
Freqüência	4	10	8	16	12	50
Valor médio	2,0	4,0	6,0	8,0	10,0	

$$\overline{x}_{ind.2} = \frac{2,00 \times 4 + 4,00 \times 10 + 6,00 \times 8 + 8,00 \times 16 + 10,00 \times 12}{50} = \frac{344,00}{50} = 6,88$$

portanto na faixa 5,00|-- 7,00 ou faixa 3

Moda:

Da industria I₁

Multimodal, são as faixas 2 e 5, isto é, 3,00|---5,00 e 9,00|--- 10,00

Da industria I₂

Moda na faixa 4, de 7,00 |-- 9,00.

Mediana:

Da industria I₁

A mediana está entre os salários das posições 10 e 11, isto é, na terceira faixa (5,00|-7,00).

Da industria I₂

A mediana será o salário da posição 25, isto é, na quarta faixa (7,00|-9,00).

(iii) (1,0 ponto) sabendo-se que o desvio padrão da indústria I_2 é 2,535, compare com o desvio padrão da indústria I_1 ;

Variância:

$$var = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^{k} n_k (x_i - \overline{x})^2$$

Desvio Padrão:

$$dp = \sqrt{\text{var}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{k} n_k (x_i - \overline{x})^2}$$

Solução:

Tabela 1 por faixa de valor

Faixas	valor médio	Freqüência	freq. relativa (fi)	média	salário - média	(salário - média)^2	[(salário - média)^2]*fi
1,00 3,00	2,00	2	0,10	6,50	-4,50	20,25	2,03
3,00 5,00	4,00	5	0,25	6,50	-2,50	6,25	1,56
5,00 7,00	6,00	4	0,20	6,50	-0,50	0,25	0,05
7,00 9,00	8,00	4	0,20	6,50	1,50	2,25	0,45
9,00 11,00	10,00	5	0,25	6,50	3,50	12,25	3,06
		20	1,00				7,15

$$dp_{Industria.1.por.faixa} = \sqrt{7,15} = 2,67$$

Podemos observar que o desvio padrão da industria I_1 é maior do que o desvio padrão da industria I_2 .

(iv) (1,0 ponto) Mostre o que acontecerá com a média da indústria I₂ se cada funcionário receber um gratificação fixa de "c" e calcule quanto terá que ser essa gratificação fixa "c" para que a indústria I₂ tenha a mesma média que a indústria I₁.

Solução

	valor	Freqüên-	f x valor
Faixas	medio	cia (f)	médio
1,00+c 3,00+c	2,00+c	4	8,00+4c
3,00+c 5,00+c	4,00+c	10	40,00+10c
5,00+c 7,00+c	6,00+c	8	48,00+8c
7,00+c 9,00+c	8,00+c	16	128,00+16c
9,00+c 11,00+c	10,00+c	12	120,00+12c
		50	344,00+50c

$$\overline{x}_{Industria.2} = \frac{1}{n} \sum_{i=1}^{n} n_i (Sal.medios.por.faixa)_i = \frac{1}{50} \times total = \frac{344,00 + 50c}{50} = 6,88 + c$$

Solução para tornar a média igual a indústria I₁ baseada na tabela 1:

Uma vez que a média da industria I_2 é maior que da indústria I_1 , não há gratificação que torne as médias iguais, teria que haver um desconto!!!

Querendo fazer as contas....

$$\overline{x}_{Industria.2} + c = \overline{x}_{Industria.1}$$
 $6,88 + c = 6,50$
 $c = 6,50 - 6,88$
 $c = -0,38$

ou seja, o valor de c teria que ser negativo, significando um desconto de c = 0.38!

2- Segunda questão - (1,0 pontos)

Numa certa população, a probabilidade de um indivíduo gostar de teatro é de 0,3, a de gostar de cinema é "p", enquanto a probabilidade de gostar de cinema e teatro é 0,6. Determine o valor de "p" nos seguintes casos:

a) (0,5 pontos) gostar de teatro e gostar de cinema são eventos disjuntos;

Solução:

Dados do problema:

Evento A gostar de teatro Evento B gostar de cinema

$$P(A) = 0.30$$

$$P(B) = ?$$

$$P(A \cap B) = 0.60$$

Eventos disjuntos teríamos que $P(A \cap B) = 0$, portanto esses eventos não são disjuntos uma vez que $P(A \cap B) = 0.60$.

b)(0,5 pontos) gostar de teatro e gostar de cinema são eventos independentes.

Solução:

$$P(A \cap B) = P(A) \times P(B)$$

 $0.60 = 0.30 \times P(B)$
 $P(B) = \frac{0.60}{0.30} = 2$

Os eventos não são independentes, pois neste caso a probabilidade de ocorrência do evento B seria 2, violando uma das condições básicas da teoria da probabilidade: $0 \le P(B) \le 1$.

3 - Terceira questão - (3,0 pontos)

Sabe-se que uma loja terceiriza o fabricação de calças jeans utilizando o serviço de 3 fábricas: F₁, F₂, F₃. Cada uma delas (F₁, F₂, F₃) produz calças jeans em lotes semanais de 150, 200 e 350 calças respectivamente e sabe-se que a probabilidade de se encontrar calças defeituosas na

produção de cada uma das fábricas é de 2%, 10% e 5% (respectivamente). Ao chegarem na loja as calças são misturadas recebendo etiquetas indistintamente. Selecionando-se uma dessas calças ao acaso, determine a probabilidade de:

a) (1,5 pontos) ser defeituosa;

Dados do problema

$$P(Defeito | F1) = 0,02$$

$$P(Defeito | F2) = 0.10$$

$$P(Defeito | F3) = 0.05$$

$$n\'umero.de.calças = F1 + F2 + F3 = 700$$

$$P(F1) = 0.21$$

$$P(F2) = 0.29$$

$$P(F3) = 0.50$$

Solução:

Os eventos F1, F2 e F3 formam o espaço amostral, portanto o evento *Defeito* é a união destes três eventos mutuamente exclusivos.

Ser defeituosa quer dizer que não importa o fabricante uma vez que as calças dos diferentes fabricantes estão juntas, portanto temos (teorema da probabilidade total):

$$P(Defeito) = P(F1) \times P(Defeito \mid F1) + P(F2) \times P(Defeito \mid F2) + (F3) \times P(Defeito \mid F3)$$

 $P(Defeito) = 0.21 \times 0.02 + 0.10 \times 0.29 + 0.05 \times 0.50 = 0.0582$

Portanto a probabilidade da calça ser defeituosa é 0,0582

b) (1,5 pontos) ser da fábrica F₁, sabendo que a peça é defeituosa.

Solução

O que se quer saber (teorema de Bayes):

$$P(F1 \mid Defeito) = \frac{P(F1 \cap Defeito)}{P(Defeito)} = \frac{P(F1) \cdot P(Defeito \mid F1)}{P(Defeito)}$$

$$P(F1 | Defeito) = \frac{P(F1 \cap Defeito)}{P(Defeito)} = \frac{P(F1)P(Defeito / F1)}{P(Defeito)}$$
$$P(F1 | Defeito) = \frac{0.21 \times 0.02}{0.0582} = 0.0722$$

Portanto a probabilidade de ser defeituosa e ser da fábrica F1 é 0,0722.

4 - Quarta questão - (3,0 pontos)

Um fabricante de um determinado produto eletrônico suspeita que 2% de seus produtos apresentam algum defeito. Se sua suspeita for correta:

a)(1,5 pontos)utilize o modelo binomial para determinar qual a probabilidade de que, numa amostra com 9 de seus produtos, tenha no máximo um defeituoso;

Dados do problema Probabilidade de defeito = 0,02 ou 2% Amostra da população n = 9

$$P(X \le 1) = \sum_{k=0}^{1} {9 \choose k} 0.02^{k} 0.98^{9-k}$$

$$P(X \le 1) = {9 \choose 0} 0.02^{0} 0.98^{9} + {9 \choose 1} 0.02^{1} 0.98^{8}$$

$$P(X \le 1) = 1 \cdot 1 \cdot 0.834 + 9 \cdot 0.02 \cdot 0.851$$

$$P(X \le 1) = 0.834 + 0.153 = 0.987$$

Portanto a probabilidade de achar no máximo 1 peça defeituosa é de 0,987

b)(1,5 pontos) utilize o modelo geométrico para saber se esse fabricante for escolher aleatoriamente 4 desses produtos para mostrar a um vendedor, qual a probabilidade de somente o quinto estar defeituoso?

Neste caso, quatro tentativas precedem o primeiro "sucesso". Assim,

$$P(X = 5) = p(1-p)^4$$

$$P(X = 5) = 0.02 \cdot 0.98^4$$

$$P(X = 5) = 0.0184$$

e a probabilidade de somente a quinta peça ser defeituosa é de 0,018.