Lecture notes of Stochastic Process

lectured by prof. Hsueh-I Lu

pishen

AlgoLab, CSIE, NTU

May 15, 2012

Thank list

LeoSW, windker

pishen (AlgoLab) Stochastic Process May 15, 2012 2 / 148

Stochastic Process

Definition

A Stochastic process is a set of random variables $\{X(t)|t\in T\}$ where T is a index (time) set.

State Space: possible value of X(t) for each t, which is defined as subset of R.

Stochastic Process May 15, 2012

Markov Chain

Definition

A Stochastic Process X with state space S is a Markov Chain if $\exists 0 \leq p_{ij} \leq 1 \quad \forall i,j \in S$ such that

$$(a) \quad \sum_{j \in S} p_{ij} = 1 \quad \forall i \in S$$

(b)
$$P(X(t+1) = j|X(0) = i_0, X(1) = i_1, ..., X(t) = i) = p_{ij}$$

 $\forall t, i_0, i_1, ..., i_{t-1}$

 \mathbb{P} denotes the matrix form of p_{ij} with sum of any row is 1.

Lemma: $P(X(n) = j | X(0) = i) = \mathbb{P}^n[i, j]$

Proof of lemma

We know statement is true for (m+n)=0. For (m+n)>0:

$$\begin{split} &P(X(m+n) = j | X(0) = i) \\ &= \sum_{k \in S} P(X(m+n) = j \text{ and } X(m) = k | X(0) = i) \\ &= \sum_{k \in S} P(X(m+n) = j | X(m) = k \text{ and } X(0) = i) \\ &P(X(m) = k | X(0) = i) \\ &= \sum_{k \in S} P(X(m+n) = j | X(m) = k) \cdot P(X(m) = k | X(0) = i) \\ &= \sum_{k \in S} P^n[k,j] \cdot P^m[i,k] \\ &= \sum_{k \in S} P^m[i,k] \cdot P^n[k,j] \\ &= \mathbb{P}^n[i,j] \end{split}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 5 / 148

Proof of lemma(cont)

```
: conditional on X(m)
= : definition of condit
```

= : definition of conditional probability

= : (see next page)

= : inductive hypothesis

Proof of lemma(cont)

$$\begin{split} &P(X(m+n) = j | X(m) = k \text{ and } X(0) = i) \\ &= \sum_{r \in S} P(X(m+n) = j | \\ &X(m+n-1) = r \text{ and } X(m) = k \text{ and } X(0) = i) \cdot \\ &P(X(m+n-1) = r | X(m) = k \text{ and } X(0) = i) \\ &= \sum_{r \in S} P(X(m+n) = j | X(m+n-1) = r) \cdot \\ &P(X(m+n-1) = r | X(m) = k) \\ &= P(X(m+n) = j | X(m) = k) \end{split}$$

=: conditional on X(m+n-1)

=: first part by definition of Markov chain and second part by inductive hypothesis

pishen (AlgoLab) Stochastic Process May 15, 2012 7 / 148

Absorbing State

Let $\mathbb A$ be a set of accepting states. We would like to know the probability that $\mathbb X$ has ever entered some state in $\mathbb A$. Technique: merge all state of $\mathbb A$ into a new absorbing state a. Set matrix of $\mathbb X$ by once enter a, then probability of a goes to a is 1.

Recurrent & transient

Definition

The recurrent probability of state i of Markov chain $\mathbb X$ is

$$f_i = P(\text{there exists an index } t \ge 1 \text{ with } X(t) = i | X(0) = i)$$

- State i of X is recurrent if $f_i = 1$.
- State i of X is transient if $f_i < 1$.

Recurrent & transient (cont.)

- If state i is recurrent, by the property of Markov chain, once it re-enter the state i, we can take it as starting from X(0) again. Hence we know that it will keep re-entering the state i again and again in the process.
- If state i is transient, in each period it start going from i, it may have probability $1-f_i$ that it won't come back anymore. Hence the probability that the process will be in state i for exactly n periods equals $f_i^{n-1}(1-f_i), \ n \geq 1$, which is a geometric distribution.

pishen (AlgoLab) Stochastic Process May 15, 2012 10 / 148

Recurrent & transient (cont.)

- From the preceding page, it follows that state *i* is recurrent if and only if, starting in state *i*, the expected number of steps that the process is in state *i* is infinite.
- We can also derive that, if the Markov chain has finite states, at least one state is recurrent.

pishen (AlgoLab) Stochastic Process May 15, 2012 11 / 14

Expected number of visits

Let

$$I(n) = \begin{cases} 1 & \text{if } X(n) = i \\ 0 & \text{if } X(n) \neq i \end{cases}$$

we have $\sum_{n=0}^{\infty}I(n)$ represents the number of steps that the process is in state i, and

$$E\left[\sum_{n=0}^{\infty} I(n)|X(0) = i\right] = \sum_{n=0}^{\infty} E[I(n)|X(0) = i]$$

$$= \sum_{n=0}^{\infty} 1 \cdot P(X(n) = i|X(0) = i)$$

$$= \sum_{n=0}^{\infty} P_{ii}^{n}$$

We set $T = \sum_{n=0}^{\infty} I(n)$

Lemma 1

From the above statements, we prove the following

Lemma

State i is

recurrent
$$\iff \sum_{n=0}^{\infty} P_{ii}^n = \infty$$
,

transient
$$\iff \sum_{n=0}^{\infty} P_{ii}^n < \infty$$

Proof of Lemma 1

Suppose state i is transient($f_i < 1$), consider $P(T = k) = f_i^{k-1} \cdot (1 - f_i)$. Since T is a geometric distribution, we have

$$E[T] = \sum_{k=0}^{\infty} k \cdot f_i^{k-1} \cdot f_i$$
$$= \frac{1}{1 - f_i} < \infty$$

Communicated states

Definition

State i and j communicate, denoted $i \leftrightarrow j$, if there exist integers $m \ge 0$ and $n \ge 0$ such that

$$P_{ij}^m > 0$$
 and $P_{ji}^n > 0$

We say a Markov chain X is irreducible if $i \leftrightarrow j \quad \forall i, j \in S$

Lemma 2

Lemma

If $i \leftrightarrow j$, then the following statements hold.

- State *i* is recurrent if and only if state *j* is recurrent.
- State *i* is transient if and only if state *j* is transient.

Corollary: X is finite and irreducible \implies all states are recurrent.

- X is finite $\implies \exists i \in S$ is recurrent (proof later)
- By Lemma 2, all states are recurrent

Let m and n be nonnegative integers with $P^m_{ij}, P^n_{ji} > 0$. Suppose that state j is recurrent, i.e., $\sum_{t=0}^{\infty} P^t_{jj} = \infty$. We have

$$\begin{split} \sum_{t=0}^{\infty} P_{ii}^t &\geq \sum_{t=0}^{\infty} P_{ii}^{m+t+n} \\ &\geq \sum_{t=0}^{\infty} P_{ij}^m \cdot P_{jj}^t \cdot P_{ji}^n \\ &= P_{ij}^m \cdot P_{ji}^n \cdot \sum_{t=0}^{\infty} P_{jj}^t = \infty \end{split}$$

Thus, state i is also recurrent.

Infinite drunken man problem

Let the state space consist of all integers. Let X(0)=0 (i.e. at time 0 the drunken man is in state 0). The transition probabilities are such that

$$P_{i,(i+1)} = P_{i,(i-1)} = 0.5$$

holds for all states i of X.

Gambler's ruin

pishen (AlgoLab) Stochastic Process May 15, 2012 19 / 148

Outline

- Limiting probabilities
- Stationary distribution
- 3 Long-run proportion
- 4 (Inverse of) Expected return time

Stochastic Process May 15, 2012 20 / 148

Limiting Probabilities

Definition

Number π_j is the *limiting probability* of j if

$$\pi_j = \lim_{n \to \infty} P_{ij}^n$$

holds for all states $i \in S$ ($S \subseteq \mathbb{N}$ is the state space).

- \blacksquare π_i is independent of i.
- $\blacksquare \lim_{n \to \infty} P^n = \begin{pmatrix} \pi \\ \pi \\ \vdots \end{pmatrix}$, where $\pi = (\pi_1, \pi_2, \ldots)$

Stationary Probability Distribution

Definition

Non-negative row vector $\pi = (\pi_1, \pi_2, ...)$ is a stationary probability distribution of \mathbb{X} if $\pi \times P = \pi$ holds and $\sum_{i \in S} \pi_i = 1$

- $\blacksquare \pi$ is a normalized left eigenvector with eigenvalue = 1.
- If X(0) has distribution π , then X(t) has the same distribution π for all $t \ge 1$. π is also called as *steady-state distribution*.
- It doesn't mean that each X(t) become independent. π only means the distribution of X(t) when the previous random variable's value is unknown.

pishen (AlgoLab) Stochastic Process May 15, 2012 22 / 148

Theorem 1

Theorem

Let X be an irreducible, aperiodic, positive recurrent Markov chain, then

- The limiting probability π_i of each state j exists.
- $\pi = (\pi_1, \pi_2, ...)$ is the unique stationary probability distribution.
- The proof will be stated at page 38.

Expected return time

Definition

The expected return time of state $i \in S$ is

$$\mu_i = \sum_{n \ge 1} n \cdot f_i^{(n)}$$

where

$$f_i^{(n)} = P(\min\{t: X(t) = i, t \ge 1\} = n|X(0) = i)$$

 $f_i = \sum_{n \ge 1} f_i^{(n)}$

Positive recurrent & null recurrent

Definition

State i is positive recurrent if $\mu_i < \infty$

Definition

State *i* is *null recurrent* if $\mu_i = \infty$

- lacktriangle Both are recurrent states, and are *class properties*, which means that if state i and j communicate, they will share this property.
- If X is finite, then each recurrent state of X is positive recurrent. Proof stated at page 63.

Example of null recurrent

Example

For a Markov chain with n states $(1, \ldots, n)$, if

$$P(X(t+1) = i + 1 | X(t) = i) = 1 - 1/n$$

and

$$P(X(t+1) = 1|X(t) = i) = 1/n$$

According to geometric distribution (taking p = 1/n), the expectation value of "steps taken for state 1 to come back" will be 1/p = n, hence $\lim_{n\to\infty} n = \infty.$

Stochastic Process May 15, 2012 26 / 148

Period of a chain

Definition

The *period* of state i is d if d is the largest integer such that

$$P_{ii}^n = 0$$

holds for all n which is not divisible by d.

Definition

If each state of X has period 1, then X is called *aperiodic*.

- If $P_{ii} > 0$ for all $i \in S$, then X is aperiodic.
- Period can be seen as the gcd of all n that have $P_{ii}^n > 0$, note that $P_{ii}^{\text{gcd}} > 0$ is not necessary.
- The period of drunken man problem is 2.

Stochastic Process May 15, 2012 27 / 148

Lemma 1

_emma

If state j has period 1 and is positive recurrent, then

$$\pi_{ij} \equiv \lim_{n \to \infty} P_{ij}^n$$

exists and is positive for all states $i \in S$.

- This can be proved by the Blackwell theorem in Renewal theory.
- It doesn't promise that $\pi_{ij} = \pi_{i'j}$ for any $i, i' \in S$. But they will be the same if we add the irreducible property ($i \leftrightarrow i'$).

Stochastic Process May 15, 2012 28 / 148

Property of lim

■ The position of lim may not be switched arbitrarily in an equation.

Example

$$1 = \lim_{n \to \infty} \lim_{m \to \infty} \frac{m}{m+n} \neq \lim_{m \to \infty} \lim_{n \to \infty} \frac{m}{m+n} = 0$$

lim would not influence the inequality.

Example

If
$$f(n) \geq g(n)$$
, then $\lim_{n \to \infty} f(n) \geq \lim_{n \to \infty} g(n)$

Stochastic Process May 15, 2012 29 / 148

Property of lim (cont.)

■ lim is linear operator under finite number of functions.

Example

For $m < \infty$,

$$\sum_{i=1}^{m} \lim_{n \to \infty} f_i(n) = \lim_{n \to \infty} \sum_{i=1}^{m} f_i(n)$$

need an example of $m=\infty$

Inequality 1

Inequality

$$\sum_{j \in S} \pi_{ij} \le 1 \quad \forall i \in S$$

$$\lim_{m \to \infty} \sum_{j=1}^{m} \pi_{ij} = \lim_{m \to \infty} \sum_{j=1}^{m} \lim_{n \to \infty} P_{ij}^{n}$$

$$= \lim_{m \to \infty} \lim_{n \to \infty} \sum_{j=1}^{m} P_{ij}^{n}$$

$$\leq \lim_{m \to \infty} \lim_{n \to \infty} \sum_{j \in S} P_{ij}^{n} = 1$$

■ The last equation works since $\sum_{j \in S} P_{ij}^n = 1$.

pishen (AlgoLab) Stochastic Process May 15, 2012 32 / 148

Inequality 2

Inequality

For state $j \in S$, we have

$$\pi_{ij} \ge \sum_{k \in S} \pi_{ik} P_{kj}$$

Proof

For $m \ge 1$ and $n \ge 1$,

$$P_{ij}^{n+1} = \sum_{k \in S} P_{ik}^n P_{kj} \ge \sum_{k=1}^m P_{ik}^n P_{kj}$$

then

$$\pi_{ij} = \lim_{n \to \infty} P_{ij}^{n+1} \ge \lim_{n \to \infty} \sum_{k=1}^{m} P_{ik}^{n} P_{kj} = \sum_{k=1}^{m} \lim_{n \to \infty} P_{ik}^{n} P_{kj} = \sum_{k=1}^{m} \pi_{ik} P_{kj}$$

hence, we know

$$\lim_{m \to \infty} \pi_{ij} = \pi_{ij} \ge \lim_{m \to \infty} \sum_{k=1}^{m} \pi_{ik} P_{kj} = \sum_{k \in S} \pi_{ik} P_{kj}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 34 / 148

Equality 1

Equality

$$\pi_{ij} = \sum_{k \in S} \pi_{ik} P_{kj}$$

Proof

Assume for contradiction $\pi_{ij} > \sum_{k \in S} \pi_{ik} P_{kj}$, then

$$\lim_{m \to \infty} \sum_{j=1}^{m} > \lim_{m \to \infty} \sum_{j=1}^{m} \lim_{p \to \infty} \sum_{k=1}^{p} \pi_{ik} P_{kj}$$

$$= \lim_{m \to \infty} \lim_{p \to \infty} \sum_{j=1}^{m} \sum_{k=1}^{p} \pi_{ik} P_{kj}$$

$$= \lim_{m \to \infty} \lim_{p \to \infty} \sum_{k=1}^{p} \pi_{ik} \sum_{j=1}^{m} P_{kj}$$

$$= \lim_{p \to \infty} \sum_{k=1}^{p} \pi_{ik} \lim_{m \to \infty} \sum_{j=1}^{m} P_{kj}$$

$$= \lim_{p \to \infty} \sum_{k=1}^{p} \pi_{ik} \cdot 1 = \lim_{p \to \infty} \sum_{k=1}^{p} \pi_{ik}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 36 / 148

Proof (cont.)

- Since a value cannot be greater than itself, we got contradiction.
- In the 4th line, two lim can be switched because the value can only get larger when applying \lim on it. not sure

Stochastic Process May 15, 2012 37 / 148

Proof of theorem 1

- **Step 0**: existence of limiting probability.
- **Step 1**: existence of stationary probability distribution.
- Step 2: uniqueness.

0. Existence of limiting probability

Proof.

By lemma 1, we know that there exists a π_j for row i. Since the Markov chain is irreducible and all the states are positive recurrent, for any state i' other than i, we know that i' surely will visit i in finite steps. Therefore, the π_j value at row i' will equal to the π_j value at row i, which means that all the π_j for column j are the same, and is the limiting probability. \square

still not clear enough

1. Existence of stationary probability distribution

We want to prove that

Target

There's a vector $s = (s_1, s_2, ...)$ such that

- $\sum_{i \in S} s_i = 1$
- $2 s \times P = s$

Proof.

By lemma 1, we know that there exists a $\pi=(\pi_1,\pi_2,\ldots)$. And by equality 1, we know that

$$(\pi_1, \pi_2, \ldots) \times P = (\pi_1, \pi_2, \ldots)$$

Hence π can satisfy the 2nd part of our target.

Then, we take $k=\sum_{i\in S}\pi_i$. By inequality 1, we know that $k<\infty$, and can get

$$\left(\frac{\pi_1}{k}, \frac{\pi_2}{k}, \ldots\right) \times P = \left(\frac{\pi_1}{k}, \frac{\pi_2}{k}, \ldots\right)$$

where $\sum_{i \in S} \frac{\pi_i}{k} = 1$ also satisfy the 1st part of our target.

Therefore, this vector can be s, which means that it exists.

pishen (AlgoLab) Stochastic Process May 15, 2012 41 / 14

2. Uniqueness

Target

If $s = (s_1, s_2, ...)$ is a stationary distribution of X, then $s = \pi$.

■ We'll prove this by inequality 3 & 4.

Inequality 3

Inequality

$$s_j \ge \pi_j, \forall j \in S$$

Proof.

Let the distribution of X(0) be s, by the property of stationary distribution, we have

$$s_{j} = P(X(n) = j) = \sum_{i \in S} P(X(n) = j | X(0) = i) P(X(0) = i)$$

$$= \sum_{i \in S} P_{ij}^{n} \cdot s_{i}$$

$$\geq \sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i}$$

$$\Rightarrow s_{j} = \lim_{m \to \infty} \lim_{n \to \infty} s_{j}$$

$$\geq \lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i} = \lim_{m \to \infty} \sum_{i=1}^{m} \pi_{j} \cdot s_{i} = \pi_{j}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 44 / 148

Inequality 4

Inequality

$$s_j \le \pi_j, \forall j \in S$$

pishen (AlgoLab) Stochastic Process May 15, 2012 45 / 148

Proof.

Similar in the proof above, $\forall m, n \geq 1$, we have

$$s_{j} = \sum_{i \in S} P_{ij}^{n} \cdot s_{i}$$

$$\leq \sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i} + \sum_{i=m+1}^{\infty} s_{i}$$

$$\Rightarrow s_{j} = \lim_{m \to \infty} \lim_{n \to \infty} s_{j}$$

$$\leq \lim_{m \to \infty} \lim_{n \to \infty} \left(\sum_{i=1}^{m} P_{ij}^{n} \cdot s_{i} + \sum_{i=m+1}^{\infty} s_{i} \right)$$

$$= \pi_{j}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 46 / 148

An example Markov chain

Example

$$P = \begin{pmatrix} \alpha & 1 - \alpha \\ \beta & 1 - \beta \end{pmatrix}, 0 < \alpha, \beta < 1$$
$$\pi = \left(\frac{\beta}{1 + \beta - \alpha}, \frac{1 - \alpha}{1 + \beta - \alpha} \right)$$

Stochastic Process May 15, 2012 47 / 148

Real world example: Hardy-Weinberg Law

Example

There're two kinds of allele:

- dominant: A
- recessive: a

And three kinds of senotype with population proportion as follow:

- AA: *p*
- aa: q
- Aa: r = 1 (p + q)

Example (cont.)

$$P = \begin{array}{ccc} AA & aa & Aa \\ AA & p + \frac{r}{2} & 0 & q + \frac{r}{2} \\ 0 & q + \frac{r}{2} & p + \frac{r}{2} \\ Aa & \frac{p}{2} + \frac{r}{4} & \frac{p}{2} + \frac{r}{4} & \frac{p+q+r}{2} \end{array}$$

we get $\pi = (p, q, r)$ when

$$p = (p + \frac{r}{2})^2$$

$$q = (q + \frac{r}{2})^2$$

Long-run proportion

Definition

We say that r_i is the *long-run proportion* of state $j \in S$ if

$$r_j = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P_{ij}^t$$

holds for each state $i \in S$.

- It represents the average appearance times of state i in the whole process.
- We will show that (in theorem 3) if X is irreducible, then the long-run proportion of all states exist.

Stochastic Process May 15, 2012 50 / 148

Theorem 2

Theorem (type 1)

If r_j exists for each $j \in S$ and $\sum_{i \in S} r_i > 0$, then $r = (r_1, r_2, ...)$ is the unique stationary distribution of X.

or

Theorem (type 2)

If r_i exists for each $i \in S$ and a stationary distribution exists, then $r = (r_1, r_2, ...)$ is the unique stationary distribution of X.

pishen (AlgoLab) Stochastic Process May 15, 2012 51 / 148

Proof

Existence of stationary distribution in type 1:

Let

$$R = \begin{pmatrix} r \\ r \\ \vdots \end{pmatrix} = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^t$$

then

$$R \times P = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^{t+1}$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^t + \lim_{n \to \infty} \frac{1}{n} (P^{n+1} - P)$$
$$= R$$

As stated later, $\sum_{j\in S} r_j \le 1$, hence by normalizing r, we prove that stationary distribution exist.

- $(\lim f(n)) \cdot g(n) = \lim f(n) \cdot g(n)?$
- can replace the proof on page 40?

pishen (AlgoLab) Stochastic Process May 15, 2012 52 / 148

Proof (cont.)

Uniqueness:

Let π be an arbitrary stationary distribution, then

$$\begin{split} r &= \pi \times R \\ &= \pi \times \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} P^t \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} \pi \times P^t \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le t \le n} \pi \\ &= \pi \end{split}$$

can replace the proof for page 42?

Proof (cont.)

Prove that $\sum_{j \in S} r_j \leq 1$:

$$\sum_{j \in S} r_j = \lim_{m \to \infty} \sum_{j=1}^m \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n P_{ij}^t$$

$$= \lim_{m \to \infty} \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n \sum_{j=1}^m P_{ij}^t$$

$$\leq \lim_{m \to \infty} \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n \sum_{j \in S} P_{ij}^t$$

$$= \lim_{m \to \infty} \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^n 1 = 1$$

pishen (AlgoLab) Stochastic Process May 15, 2012 54 / 148

Example 1

On a highway, if we know the probability that

- \blacksquare A truck is followed by a truck: 1/4
- \blacksquare A truck is followed by a car: 3/4
- A car is followed by a truck: 1/5
- \blacksquare A car is followed by a car: 4/5

We can construct a matrix

$$\begin{array}{ccc}
T & C \\
T & 1/4 & 3/4 \\
C & 1/5 & 4/5
\end{array}$$

and get the portion of trucks and cars on the whole highway as the eigenvector (4/19,15/19) (we will know that long-run proportion exists by Theorem 3).

Example 2

For a system which has several good and bad states, we have a matrix P:

pishen (AlgoLab) Stochastic Process May 15, 2012 56 / 148

Example 2 (cont.)

Q1: Breakdown rate (breakdown times / total time)
The long-run frequency of going to a bad state from a good state is

$$\sum_{i \in g} \sum_{j \in b} r_i P_{ij}$$

Example 2 (cont.)

Q2: The expected time μ_G (resp. μ_B) of staying in good (resp. bad) states once we reach a good (resp. bad) state?

Ans:

For each t=1,2,..., let G_t (resp. B_t) be the length of the t-th good (resp. bad) phase of consecutive good (resp. bad) states. By the strong law of large numbers,

$$P\left(\lim_{t \to \infty} \frac{G_1 + B_1 + G_2 + B_2 + \dots + G_t + B_t}{t} = \mu_G + \mu_B\right) = 1$$

Since the reciprocal of above is the breakdown rate, we get equation (1):

$$P\left(\sum_{i \in G} \sum_{j \in B} \pi_i P_{ij} = \frac{1}{\mu_G + \mu_B}\right) = 1$$

pishen (AlgoLab) Stochastic Process May 15, 2012 58 / 148

Example 2 (cont.)

Also, with probability 1, we get equation (2):

$$P\left(\sum_{i \in G} r_i = \lim_{t \to \infty} \frac{G_1 + G_2 + \dots + G_t}{G_1 + B_1 + \dots + G_t + B_t} = \frac{\mu_G}{\mu_G + \mu_B}\right) = 1$$

Then, by (2)/(1), we get that

$$P\left(\mu_G = \frac{\sum_{i \in G} r_i}{\sum_{i \in G} \sum_{j \in B} r_i P_{ij}}\right) = 1$$

 $\blacksquare \lim \frac{f(n)}{g(n)} = \frac{\lim f(n)}{\lim g(n)}?$

Theorem 3

$\mathsf{Theorem}$

If X is irreducible, then the long-run proportion r_i exists with probability 1, moreover.

- **1** If state i is positive recurrent (i.e. $0 < \mu_i < \infty$), then $P(r_i = \frac{1}{\mu_i}) = 1.$
- 2 If state i is null recurrent (i.e. $\mu_i = \infty$) or transient, then $P(r_i = 0) = 1.$

where μ_i is the expected return time of state i

Proof

Part 1:

Suppose X(0) = i, T_k is the number of steps required for the k-th i goes to (k+1)-st i, then by the strong law of large number,

$$P\left(\lim_{k\to\infty}\frac{T_1+T_2+\cdots+T_k}{k}=\mu_i\right)=1$$

$$\Rightarrow P\left(r_i=\lim_{k\to\infty}\frac{k}{T_1+T_2+\cdots+T_k}=\frac{1}{\mu_i}\right)=1$$

 \blacksquare $\lim(A/B) = \frac{1}{\lim(B/A)}$?

Stochastic Process May 15, 2012 61 / 148

Proof (cont.)

Part 2:

f I If i is transient, i will only appear finite times in the long-run, hence

$$r_i = \frac{finite}{\infty} = 0$$

2 If i is null recurrent, μ_i is ∞ , then

$$P\left(\lim_{k\to\infty}\frac{T_1+T_2+\cdots+T_k}{k}=\infty\right)=1$$

$$P\left(r_{i} = \lim_{k \to \infty} \frac{k}{T_{1} + T_{2} + \dots + T_{k}} = 0\right) = 1$$

(The first equation is not promised by the strong law of large number. But if it's not ∞ , we can say that μ_i is not ∞ , which is a contradiction.)

Example 1

Example (type 1)

If X is **irreducible** and finite, then X has no null recurrent states.

Example (type 2)

If X is finite, then X has no null recurrent states.

Finite irreducible imply positive recurrent.

Stochastic Process May 15, 2012 63 / 148

Proof

■ Type 1:

If there's a state which is null recurrent, by irreducible, all the states will be null recurrent. Then, all states have $P(r_i=0)=1$. By changing the proof in page 54 into finite states version, we know that $\sum r_i=1$. So it's impossible for finite r_i , which are all close to 0, to sum up to 1.

■ Type 2:

If it's not irreducible, the finite set of communicated null recurrent states still form an irreducible and finite Markov chain, which can fit the requirement of type 1.

pishen (AlgoLab) Stochastic Process May 15, 2012 64 / 148

Example 2

Example

In the drunken man problem with infinite states, no state will be positive recurrent.

Infinite drunken man imply no positive recurrent. Note that it doesn't mean all infinite irreducible Markov chain has no positive recurrent state.

pishen (AlgoLab) Stochastic Process May 15, 2012 65 / 148

Proof

If all the states are positive recurrent, then by theorem 3, we know that all the $r_i>0$ and is a finite value. Since each state of drunken man problem has the same structure, all the r_i has same value. We then set $r=\epsilon \cdot r_i$ $(0<\epsilon<1)$ such that $r_i>r>0, \forall i$. And get

$$\sum_{i \in S} r_i > \sum_{i \in S} r = \infty > 1$$

which is contradiction to page 54.

Example 3: Poisson Hotel

Example

There's a hotel, with N representing the number of newly occupied rooms each day $(N \text{ is a poisson distribution with parameter } \lambda)$. And the number of consecutive check-in days of each room is a geometric distribution with probability p (p is the probability of check-out). X(t) is the number of occupied rooms in day t.

pishen (AlgoLab) Stochastic Process May 15, 2012 67 / 148

Q1: $P_{ij} = ?$

We set R_i as a binomial distribution with parameter (i, 1-p), which represents the number of rooms which will remain occupied in the next day, then

$$P_{ij} = P(R_i + N = j)$$

$$= \sum_{k \ge 0} P(R_i + N = j | R_i = k) P(R_i = k)$$

$$= \sum_{k \ge 0} P(N = j - k) P(R_i = k)$$

$$= \sum_{0 \le k \le \min(i,j)} \frac{e^{-\lambda} \cdot \lambda^{j-k}}{(j-k)!} \binom{i}{k} (1-p)^k p^{1-k}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 68 / 148

Q2: $r_i = ?$

We guess (by a dream?) there's a stationary distribution which is a poisson distribution with parameter λ_0 . Setting X(0) with this distribution. And let R as the number of rooms in X(0) which remain check-in in the next day (R is a poisson distribution with parameter $\lambda_0(1-p)$). X(1) will have distribution R+N, which is a poisson distribution with parameter $\lambda_0(1-p)+\lambda$. Then since X(0) is a stationary distribution, it will have the same distribution with X(1), which means that $\lambda_0=\lambda_0(1-p)+\lambda$, and we get $\lambda_0=\lambda/p$. After getting r_i , we get that with probability 1,

$$\mu_i = \frac{1}{P(X(0) = i)} = \frac{i!}{e^{-\lambda/p} \cdot (\lambda/p)^i}$$

not clear enough

pishen (AlgoLab) Stochastic Process May 15, 2012 69 / 148

Corollary of theorem 2 & 3

Corollary

If X is irreducible, then

 \mathbb{X} is positive recurrent $\iff \mathbb{X}$ admits a stationary distribution.

Moving to transient states

For transient states i and j, we define the following:

1 Expected steps in a transient state:

Definition

E is a matrix where E_{ij} is the expected number of steps t with X(t) = iwhen X(0) = i.

2 Probability of reaching a transient state:

Definition

F is a matrix where

$$F_{ij} = P(X(t) = j \text{ for some } t \ge 1 | X(0) = i)$$

pishen (AlgoLab) Stochastic Process May 15, 2012

Computing E & F

Theorem

For a Markov chain X consisting finite transient states,

$$E = (I - T)^{-1}$$

where I is an identity matrix, T is the induced matrix of P by all the transient states in P. Moreover,

$$F_{ij} = rac{E_{ij} - \delta_{ij}}{E_{jj}}$$
 ,where $\delta_{ij} = egin{cases} 1 & ext{if } i=j \ 0 & ext{if } i
eq j \end{cases}$

Conditioned on X(1), we have

$$E_{ij} = \underbrace{\delta_{ij}}_{\text{step}=0} + \underbrace{\sum_{k} P_{ik} \cdot E_{kj}}_{\text{step} \geq 1} = \delta_{ij} + \sum_{k} T_{ik} \cdot E_{kj}$$

The 2nd equation works since the process will not go back to transient state once it enter a recurrent state. Then, we have

$$I \times E = E = I + T \times E$$

$$\Longrightarrow (I - T) \times E = I$$

$$\Longrightarrow E = (I - T)^{-1}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 73 / 148

Proof (cont.)

Conditioned on whether or not X(t) = j holds for some $t \ge 1$, we have

$$E_{ij} = \underbrace{\delta_{ij}}_{\text{step}=0} + \underbrace{F_{ij} \cdot E_{jj}}_{\text{steps} \geq \text{ the first } j}$$

therefore.

$$F_{ij} = \frac{E_{ij} - \delta_{ij}}{E_{jj}}$$

Example: Gambler's ruin

pishen (AlgoLab) Stochastic Process May 15, 2012 75 / 148

Branching process

In the beginning, there're X(0) life forms, each life form has probability p_i of becoming i life forms in the next step.

- state 0 is recurrent (absorbing).
- if $p_0 > 0$, all other states (1, 2, ...) are transient since $P(X(t+1) = 0 | X(t) = i) = p_0^i > 0$

We'll show that

$$E[X(n)] = \mu^n \cdot X(0)$$

where

$$\mu = \sum_{j>1} j \cdot p_j = E[Z_k]$$

and Z_k is the number of offspring of the k-th life form, all Z_k are i.i.d.

$$E[X(n)] = E[E[X(n)|X(n-1)]]$$

$$= E\left[E\left[\sum_{k=1}^{X(n-1)} Z_k | X(n-1)\right]\right]$$

$$= E[X(n-1) \cdot \mu]$$

$$= \mu \cdot E[X(n-1)]$$

$$= \mu^n \cdot X(0)$$

Probability of extinction

Definition

 e_i is the probability of extinction when X(0) = i.

Case 1: $\mu < 1$

$$1 - e_i = \lim_{n \to \infty} P(X(n) \ge 1 | X(0) = i)$$

$$= \lim_{n \to \infty} \sum_{j \ge 1} P(X(n) = j | X(0) = i)$$

$$\le \lim_{n \to \infty} \sum_{j \ge 1} j \cdot P(X(n) = j | X(0) = i)$$

$$= \lim_{n \to \infty} E[X(n) | X(0) = i]$$

$$= \lim_{n \to \infty} \mu^n \cdot i = 0$$

Probability of extinction (cont.)

Case 2:
$$\mu \ge 1$$

$$e_2 = e_1^2, \quad e_3 = e_2 \cdot e_1, \quad \dots$$

$$e_1 = P(\mathsf{extinct} | X(0) = 1)$$

$$= \sum_{j \ge 0} P(\mathsf{extinct} | X(1) = j) \cdot P_{1j}$$

$$= \sum_{j \ge 0} e_j \cdot p_j$$

$$= \sum_{j \ge 0} e_1^j \cdot p_j$$

We then solve the above equation to get e_1 .

Example

$$p_0 = p_1 = 0.25, \quad p_2 = 0.5$$

 $\implies \mu = 1 \cdot 0.25 + 2 \cdot 0.5 > 1$
 $\implies e_1 = e_1^0 \cdot 0.25 + e_1^1 \cdot 0.25 + e_1^2 \cdot 0.5$
 $\implies e_1 = \{1/2, 1\}$

Since $\mu>1$, we know $\lim_{n\to\infty} E[X(n)]=\infty$. But if $e_1=1$, we have $\lim_{n\to\infty} P(X(n)=0)=1$, which would not make $\lim_{n\to\infty} E[X(n)]=\infty$, hence $e_1\neq 1$.

pishen (AlgoLab) Stochastic Process May 15, 2012 80 / 148

Reversed Markov chain

Definition

Let \mathbb{X} (resp. \mathbb{Y}) be a Markov chain with matrix P (resp. Q). We say that \mathbb{Y} is the *reversed chain* of \mathbb{X} if there exists a stationary distribution π of \mathbb{X} such that

$$\pi_i \cdot Q_{ij} = \pi_j \cdot P_{ji}$$

holds for all states $i, j \in S$.

Observation 1

Observation

The reversed sequence \mathbb{Y} of \mathbb{X} is a Markov chain.

pishen (AlgoLab) Stochastic Process May 15, 2012 82 / 148

$$\begin{split} &P(Y(n)=i_0|Y(n-1)=i_1,Y(n-2)=i_2,\ldots,Y(n-k)=i_k)\\ &=P(X(n)=i_0|X(n+1)=i_1,X(n+2)=i_2,\ldots,X(n+k)=i_k)\\ &=\frac{P(X(n)=i_0,X(n+1)=i_1,\ldots,X(n+k)=i_k)}{P(X(n+1)=i_1,\ldots,X(n+k)=i_k)}\\ &=\frac{P(X(n)=i_0)\cdot P(X(n+1)=i_1|X(n)=i_0)\cdot P_{i_1i_2}\cdots P_{i_{k-1}i_k}}{P(X(n+1)=i_1)\cdot P_{i_1i_2}\cdots P_{i_{k-1}i_k}}\\ &=\frac{P(X(n)=i_0,X(n+1)=i_1)}{P(X(n+1)=i_1)}\\ &=P(X(n)=i_0|X(n+1)=i_1)\\ &=P(Y(n)=i_0|Y(n-1)=i_1) \end{split}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 83 / 148

Observation 2

Observation

If $\mathbb Y$ is the reversed sequence of Markov chain $\mathbb X$ and π is a stationary distribution of $\mathbb X$, then

$$\pi_i \cdot Q_{ij} = \pi_j \cdot P_{ji}$$

holds for all $i, j \in S$, where Q is the transition matrix of \mathbb{Y} .

Let X and Y have distribution π

$$\pi_{i} \cdot Q_{ij} = P(Y(n-1) = i) \cdot P(Y(n) = j | Y(n-1) = i)$$

$$= P(Y(n-1) = i, Y(n) = j)$$

$$= P(Y(n-1) = i | Y(n) = j) \cdot P(Y(n) = j)$$

$$= P(X(n+1) = i | X(n) = j) \cdot P(X(n) = j) = \pi_{j} \cdot P_{ji}$$

Stochastic Process May 15, 2012 85 / 148

Observation

Let P (resp. Q) be the transition matrix of X (resp. Y), if vector π satisfy the following

- $\sum_{i \in S} \pi_i = 1$
- $\pi_i > 0 \quad \forall i \in S$
- $\pi_i \cdot Q_{ij} = \pi_i \cdot P_{ii} \quad \forall i, j \in S$

then \mathbb{Y} is the reversed sequence of \mathbb{X} .

- The long-run proportion of $i \to j$ in the sequence of Y is equal to the long-run proportion of $j \to i$ in the sequence of X.
- Reversed Markov chain is the reversed sequence.

From the third property, we have

$$\sum_{j \in S} \pi_i \cdot Q_{ij} = \pi_i = \sum_{j \in S} \pi_j \cdot P_{ji} \quad \forall i \in S$$

From the 2nd equation, we know that $\pi \times P = \pi$, hence π is a stationary distribution of \mathbb{X} .

Then by observation 2, we know that for any π , there's a reversed sequence \mathbb{Y}' , whose transition matrix Q' satisfy

$$\pi_i \cdot Q'_{ij} = \pi_j \cdot P_{ji} \quad \forall i, j \in S$$

hence $\mathbb{Y} = \mathbb{Y}'$, which is a reversed sequence of \mathbb{X} .

Example: Bulb's life

There's a room which need to be lighted by one bulb, when the bulb in use fails, it will be replaced by a new one on next day.

- lacksquare X(n)=i if the bulb in use on day n is in its ith day of use.
- $lue{L}$ is a random variable representing the lifetime of a bulb.

We want to know the stationary probability π_i of state i.

pishen (AlgoLab) Stochastic Process May 15, 2012 88 / 148

Example: Bulb's life (cont.)

 $\mathbb X$ is a irreducible, positive recurrent, aperiodic Markov chain which has the sequence like this:

$$1, 2, 3, 1, 2, 3, 4, 5, 1, 1, 2, 1, 2, 3, 4, \dots$$

We know that

$$P_{i1}=P({
m buld}, {
m on its} \ i{
m th day of use, fails})=rac{P(L=i)}{P(L\geq i)}=1-P_{i(i+1)}$$

And the expected return time of state 1 is E[L], which means that the long-run proportion of state 1 is 1/E[L] by page 60.

Stochastic Process May 15, 2012 89 / 148

Example: Bulb's life (cont.)

Take \mathbb{Y} (with matrix Q) as the reversed chain of \mathbb{X} , we know that for all $i \in S$,

- $Q_{(i+1)i} = 1$
- $Q_{1i} = P(L=i)$
- $\blacksquare \ \pi_1 \cdot Q_{1i} = \pi_i \cdot P_{i1}$

Hence,

$$\pi_i = \frac{\pi_1 \cdot Q_{1i}}{P_{i1}} = \frac{P(L=i) \cdot P(L \ge i)}{E[L] \cdot P(L=i)} = \frac{P(L \ge i)}{E[L]}$$

Time-reversible

Definition

X is time-reversible if X is the reversed chain of X.

pishen (AlgoLab) Stochastic Process May 15, 2012 91 / 148

Example: Reversed drunken man

- $0 < p_0 \le 1$
- $0 \le p_m < 1$

The long-run proportion of transition $i \to i+1$ and $i+1 \to i$ are the same, since one must go back to i from i+1 in order to go to i+1 from i.

Hence the drunken man problem is time-reversible.

Example: Reversed drunken man (cont.)

$$\pi_{0} \cdot p_{0} = \pi_{1} \cdot (1 - p_{1})$$

$$\pi_{1} \cdot p_{1} = \pi_{2} \cdot (1 - p_{2})$$

$$\vdots$$

$$\pi_{m-1} \cdot p_{m-1} = \pi_{m} \cdot (1 - p_{m})$$

Thus,

$$\pi_1 = \pi_0 \cdot p_0 / (1 - p_1)$$

$$\pi_2 = \pi_1 \cdot p_1 / (1 - p_2)$$

$$\vdots$$

$$\pi_m = \pi_{m-1} \cdot p_{m-1} / (1 - p_m)$$

Example: Reversed drunken man (cont.)

$$\pi_i = \underbrace{\frac{\prod_{j=0}^{i-1} p_j}{\prod_{j=1}^{i} (1-p_j)}}_{q_i} \cdot \pi_0 \quad \forall i = 1, \dots m$$

$$\Longrightarrow \pi_0 + \sum_{i=1}^m \pi_i = 1 = \pi_0 + \sum_{i=1}^m q_i \cdot \pi_0$$

$$\Longrightarrow \pi_0 = \frac{1}{1 + \sum_{i=1}^m q_i}$$

$$\Longrightarrow \pi_k = \frac{q_k}{1 + \sum_{i=1}^m q_i} \quad \forall k = 0, 1, \dots m$$

Example: Two bukkits of balls

There're two bukkits contain total m balls.

In each step, we randomly choose one ball and put it in another bukkit. Let X(n) represent the number of balls in the first bukkit, it's the Markov chain of previous example with

$$p_0 = 1, \ p_m = 0, \ p_i = \frac{m-i}{m} \quad \forall i = 1, \dots, m-1$$

We can get that

$$q_{i} = \frac{\prod_{j=0}^{i-1} \frac{m-j}{m}}{\prod_{j=1}^{i} \frac{j}{m}} = \frac{\prod_{j=0}^{i-1} m - j}{\prod_{j=1}^{i} j} = \binom{m}{i} \quad \forall i = 1, \dots m$$

$$\implies \pi_{0} = \frac{1}{1 + \sum_{i=1}^{m} \binom{m}{i}} = \frac{1}{2^{m}} \implies \pi_{k} = \frac{\binom{m}{k}}{2^{m}} \quad \forall k = 0, 1, \dots m$$

pishen (AlgoLab) Stochastic Process May 15, 2012 95 / 148

Example: A random walk

$$P_{ij} = \frac{w(i,j)}{\sum_{k} w(i,k)}$$

where w(a, b) is the weight of edge (a, b). To make it as a time-reversible chain, we let

$$\pi_i = \frac{\sum_k w(i, k)}{\sum_{\ell} \sum_k w(\ell, k)} \quad \forall i$$

We can see that

$$\pi_i \cdot P_{ij} = \pi_j \cdot P_{ji} \quad \forall i, j$$

Hastings-Metropolis sampling algorithm

Design an irreducible Markov chain X such that the unique stationary distribution of X is the distribution of random variable Y. Since the long-run proportion of state i is P(Y = i),

$$\lim_{n \to \infty} \frac{X(1) + X(2) + \dots + X(n)}{n} = \sum_{i \in S} i \cdot P(Y = i) = E[Y] = \mu$$

While computing μ by the law of large number is difficult (hard to sample on Y), we use this alternative method to compute μ by generating a sequence of X, which is sometime easier.

Stochastic Process May 15, 2012 97 / 148

Hastings-Metropolis sampling algorithm (cont.)

There's a random variable Y such that

$$P(Y=i) = \frac{b_i}{C}$$

for some unknown (or intractable) $C = \sum_{i \in S} b_i$. We then design a Markov chain $\mathbb X$ that

- $P_{ii} = Q_{ii} + \sum_{k \in S, k \neq i} Q_{ik} \cdot (1 q_{ik})$
- $P_{ij} = Q_{ij} \cdot q_{ij} \quad \forall j \neq i$

where

- $lue{Q}$ is the transition matrix of an arbitrary irreducible Markov chain X which has the same state space as Y.
- q is a matrix to be determined later.

Hastings-Metropolis sampling algorithm (cont.)

For n = 0, 1, ...

- If X(n) = i, set Z such that $P(Z = j) = Q_{ij} \quad \forall j \in S$.
- 2 If Z = j, set X(n+1) such that
 - $P(X(n+1)=i)=q_{ii}$
 - $P(X(n+1)=i)=1-q_{ii}$

One can see that this satisfies the requirement on previous page.

Hastings-Metropolis sampling algorithm (cont.)

Then, we let

$$q_{ij} = \min\left(\frac{b_j \cdot Q_{ji}}{b_i \cdot Q_{ij}}, 1\right)$$

$$\implies b_i \cdot Q_{ij} \cdot q_{ij} = b_j \cdot Q_{ji} \cdot q_{ji}$$

$$\implies \frac{b_i}{C} \cdot P_{ij} = \frac{b_j}{C} \cdot P_{ji}$$

By observation 3 on page 86, we know that $(b_1/C, b_2/C,...)$ is the stationary distribution of X.

Example: Space of permutations

Example

Let S consist of all the permutations (x_1, x_2, \ldots, x_n) of $\{1, 2, \ldots, n\}$ that

$$\sum_{k=1}^{n} k \cdot x_k \ge \frac{n^3}{4}$$

- This is same as Y in page 98 with C = |S| and $b_i = 1 \ \forall i$.
- S is hard to compute.
- We need to design a matrix Q such that when given a permutation x, it's efficient to compute the value of $Q_{xy} \forall y \in S$.

pishen (AlgoLab) Stochastic Process May 15, 2012 101 / 148

Example: Space of permutations (cont.)

We let

$$Q_{xy}=rac{1}{N(x)}$$
 , if y can be obtained from x by one swap

where N(x) is the number of permutations that can be obtained from x by one swap. For example:

$$\underbrace{\left(1,2,3,4,5\right)}_{y} \leftrightarrow \underbrace{\left(1,3,2,4,5\right)}_{x} \leftrightarrow \underbrace{\left(1,3,4,2,5\right)}_{y}$$

This chain is irreducible since each $x \in S$ can go to (x_1, x_2, \dots, x_n) , where $x_1 \le x_2 \le \dots \le x_n$, by several swaps.

Also, given a x, finding all the obtainable y can be done efficiently.

pishen (AlgoLab) Stochastic Process May 15, 2012 102 / 148

Counting process

Definition

A collection \mathbb{N} of random variables is a *counting process* if N(t) denotes the total number of events that occur by time t.

- \blacksquare N(t) is a nonnegative integer.
- The value of N(t) is increasing as t increase.
- N(t) N(s) is the number of events that occur between time index s and t, where t > s.

Stochastic Process May 15, 2012 103 / 148

Two properties

Independent increments:

Definition

A counting process is *independent increments* if the number of events in two non-overlapping time intervals are independent.

■ For example, N(s) - N(0) and N(s+t) - N(s) are independent.

Stationary increments:

Definition

A counting process is *stationary increments* if the number of events in any time interval depends only on the length of the interval.

■ For example, $P(N(s_1 + t) - N(s_1) = k) = P(N(s_2 + t) - N(s_2) = k)$.

pishen (AlgoLab) Stochastic Process May 15, 2012 104 / 148

Poisson process

Definition

A Poisson process with rate λ is a counting process with independent increments and stationary increments such that

$$P(N(s+t) - N(s) = n) = \frac{e^{-\lambda t} \cdot (\lambda t)^n}{n!}$$

holds for all nonnegative integers.

- N(s+t) N(s) is Poisson distributed with parameter λt .
- The average number of events that occur in an unit time interval (t=1) is λ (since the expectation value of Poisson distribution with parameter λ is λ .)

pishen (AlgoLab) Stochastic Process May 15, 2012 105 / 148

An operational definition

Theorem

Let $\mathbb N$ be a counting process with independent increments and stationary increments. Then $\mathbb N$ is a Poisson process if and only if the following two conditions hold:

- $P(N(t) = 1) = \lambda \cdot t + o(t)$
- $P(N(t) \ge 2) = o(t)$
- We say that f(t) = o(t) if

$$\lim_{t \to 0} \frac{f(t)}{t} = 0$$

106 / 148

Proof

(⇒⇒):

Since N(t) is Poisson distributed with parameter λt ,

$$P(N(t) = 1) = \frac{(\lambda t) \cdot e^{-\lambda t}}{1!} = \lambda t \cdot \left(1 - \frac{\lambda t}{1!} + \frac{(\lambda t)^2}{2!} - \cdots\right)$$
$$= \lambda t - \lambda^2 t^2 + \cdots$$
$$= \lambda t + o(t)$$

$$P(N(t) = 2) = \frac{(\lambda t)^2 \cdot e^{-\lambda t}}{2!} = \frac{(\lambda t)^2}{2!} \cdot \left(1 - \frac{\lambda t}{1!} + \frac{(\lambda t)^2}{2!} - \cdots\right)$$
$$= o(t)$$

One can prove that P(N(t)=k)=o(t) for all $k\geq 2$, hence $P(N(t)\geq 2)=o(t)$.

pishen (AlgoLab) Stochastic Process May 15, 2012 107 / 148

Proof (cont.)

(⇐=):

The Laplace transform of a random variable X is

$$\phi(u) = E[e^{-u \cdot X}]$$

We say that two random variables have the same distribution if their Laplace transform are the same.

And if X is Poisson distributed with parameter λt , then

$$E[e^{-u \cdot X}] = e^{(e^{-u} - 1) \cdot \lambda t}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 108 / 148

We define $\phi_u(t) = E[e^{-u \cdot N(t)}]$, then we know that

$$\begin{split} \phi_u(s+t) &= E[e^{-u \cdot N(s+t)}] \\ &= E[e^{-u \cdot (N(s)-N(0))} e^{-u \cdot (N(s+t)-N(s))}] \\ &= E[e^{-u \cdot N(s)}] \cdot E[e^{-u \cdot (N(s+t)-N(s))}] \\ &= E[e^{-u \cdot N(s)}] \cdot E[e^{-u \cdot N(t)}] \\ &= \phi_u(s) \cdot \phi_u(t) \end{split}$$

The 3rd equation is because two independent random variables \boldsymbol{X} and \boldsymbol{Y} will make

$$E[X \cdot Y] = E[X] \cdot E[Y]$$

pishen (AlgoLab) Stochastic Process May 15, 2012 109 / 148

By the two conditions in page 106, we know

$$P(N(t) = 0) = 1 - \lambda t + o(t)$$

Therefore,

$$\phi_{u}(t) = E[e^{-u \cdot N(t)}]$$

$$= e^{-u \cdot 0} \cdot (1 - \lambda t + o(t)) + e^{-u \cdot 1} \cdot (\lambda t + o(t))$$

$$+ (e^{-u \cdot 2} + e^{-u \cdot 3} + \cdots) \cdot o(t)$$

$$= 1 - \lambda t + e^{-u} \cdot \lambda t + o(t)$$

$$= 1 + (e^{-u} - 1) \cdot \lambda t + o(t)$$

And

$$\phi_u(s+t) = \phi_u(s) \cdot \phi_u(t) = \phi_u(s) \cdot (1 + (e^{-u} - 1) \cdot \lambda t + o(t))$$

pishen (AlgoLab) Stochastic Process May 15, 2012 110 / 148

Differentiate on $\phi_u(s)$, we can get

$$\phi_{u}'(s) = \lim_{t \to 0} \frac{\phi_{u}(s+t) - \phi_{u}(s)}{t} = \lim_{t \to 0} (\phi_{u}(s) \cdot (e^{-u} - 1) \cdot \lambda + o(t))$$
$$= \phi_{u}(s) \cdot (e^{-u} - 1) \cdot \lambda$$

By $\frac{\phi_u{}'(s)}{\phi_u(s)}=(e^{-u}-1)\cdot\lambda$, we have

$$\ln \phi_u(s) = \int (e^{-u} - 1) \cdot \lambda \ ds = (e^{-u} - 1) \cdot \lambda s + C$$

By $\phi_u(0)=1$ and $\ln 1=0$, we know C=0, hence

$$\phi_u(s) = e^{(e^{-u}-1)\cdot\lambda s} \quad \forall s, u$$

which means that N(s) is Poisson distributed for all s.

pishen (AlgoLab) Stochastic Process May 15, 2012 111 / 148

Inter-arrival time

Definition

The kth inter-arrival time T_k of $\mathbb N$ is the time interval between the (k+1)st and kth events.

 $\mathbb{T} = T_1, T_2, \dots$ is the sequence of inter-arrival times of \mathbb{N} .

• 0th event arrives at time 0.

pishen (AlgoLab) Stochastic Process May 15, 2012 112 / 148

Observation 1: Independent & exponential distributed

Observation

If $\mathbb N$ is a Poisson process with rate λ , then each T_k is an independent exponential distribution with parameter λ .

Proof:

The cumulative distribution function of T_1 is

$$F_1(s) = P(T_1 \le s)$$
= 1 - P(T_1 > s)
= 1 - P(N(s) = 0)
= 1 - e^{-\lambda s}

The 3rd equation is because $T_1 > s \iff N(s) = 0$. We can observe that T_1 is expenential distributed.

$$P(T_2 > t | T_1 = s) = P(N(T_1 + t) - N(T_1) = 0 | T_1 = s)$$

$$= P(N(T_1 + t) - N(T_1) = 0)$$

$$= P(N(t) = 0)$$

$$= e^{-\lambda t}$$

The equations are derived by stationary increments.

Thus, T_2 is also exponential distributed with parameter λ .

And T_1 , T_2 are independent.

One can prove for T_k with $k \ge 3$ by the same approach.

pishen (AlgoLab) Stochastic Process May 15, 2012 114 / 148

Observation 2: Waiting time is gamma distributed

Observation

The waiting time $S_k = T_1 + T_2 + \cdots + T_k$ of the kth event is gamma distributed with parameter (k, λ) . check gamma distribution

■ The probability density function is

$$f(t) = \lambda e^{-\lambda t} \cdot \frac{(\lambda t)^{k-1}}{(k-1)!}$$

■ It's also called Erlang distribution since $k \in \mathbb{Z}^+$.

Verification

$$P(S_k \le t) = P(N(t) \ge k) = \sum_{i \ge k} P(N(t) = i) = \sum_{i \ge k} \frac{(\lambda t)^i \cdot e^{-\lambda t}}{i!}$$

So,

$$\frac{dP(S_k \le t)}{dt} = \sum_{i \ge k} \frac{\lambda \cdot (\lambda t)^{i-1} \cdot e^{-\lambda t}}{(i-1)!} - \sum_{i \ge k} \frac{(\lambda t)^i \cdot e^{-\lambda t} \cdot \lambda}{i!}$$
$$= \frac{\lambda \cdot (\lambda t)^{k-1} \cdot e^{-\lambda t}}{(k-1)!}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 116 / 148

Property 1 (Different types of events)

Property

Let $\mathbb N$ be a Poisson process with rate λ , each event is classified as type 1 with probability p or type 2 with probability 1-p.

Then the arrival of type 1 and type 2 events are both Poisson processes with rate $p \cdot \lambda$ and $(1-p) \cdot \lambda$. And the two processes are independent.

- Let \mathbb{N}_1 be the process of type 1 event, $N_1(k)$ is the number of type 1 events that occur by time k. (same for \mathbb{N}_2)
- \mathbb{N}_1 and \mathbb{N}_2 are said to be independent if $N_1(s_1+t_1)-N_1(s_1)$ and $N_2(s_2+t_2)-N(s_2)$ are independent for all s_1,t_1,s_2,t_2 .

pishen (AlgoLab) Stochastic Process May 15, 2012 117 / 14

Proof

Here we prove that \mathbb{N}_1 is a Poisson process with rate λp .

Stationary increments:

$$P(N_1(s+t) - N_1(s) = k_1 | N(s+t) - N(s) = k) = \binom{k}{k_1} \cdot p^{k_1} \cdot (1-p)^{k-k_1}$$

Therefore,

$$P(N_1(s+t) - N_1(s) = k_1) = \sum_{k>0} {k \choose k_1} \cdot p^{k_1} \cdot (1-p)^{k-k_1} \cdot \frac{(\lambda t)^k \cdot e^{\lambda t}}{k!}$$

which has nothing to do with s.

pishen (AlgoLab) Stochastic Process May 15, 2012 118 / 148

Independent increments:

Let (s, s + t) and (u, u + v) be two non-overlapping time intervals,

$$P(N_{1}(s+t) - N_{1}(s) = k_{1}, N_{1}(u+v) - N_{1}(u) = \ell_{1})$$

$$= \sum_{k \geq 0} \sum_{\ell \geq 0} P(N_{1}(s+t) - N_{1}(s) = k_{1}, N_{1}(u+v) - N_{1}(u) = \ell_{1})$$

$$|N(s+t) - N(s) = k, N(u+v) - N(u) = \ell)$$

$$\cdot P(N(s+t) - N(s) = k, N(u+v) - N(u) = \ell)$$

$$= \sum_{k \geq 0} \sum_{\ell \geq 0} P(N_{1}(s+t) - N_{1}(s) = k_{1}|N(s+t) - N(s) = k)$$

$$\cdot P(N_{1}(u+v) - N_{1}(u) = \ell_{1}|N(u+v) - N(u) = \ell)$$

$$\cdot P(N(s+t) - N(s) = k) \cdot P(N(u+v) - N(u) = \ell)$$

$$= P(N_{1}(s+t) - N_{1}(s) = k_{1}) \cdot P(N_{1}(u+v) - N_{1}(u) = \ell_{1})$$

pishen (AlgoLab) Stochastic Process May 15, 2012 119 / 148

Conditions on page 106:

1.
$$P(N_1(t) \ge 2) \le P(N(t) \ge 2) = o(t)$$

2. $P(N_1(t) = 1) = P(N_1(t) = 1|N(t) = 1) \cdot P(N(t) = 1) + P(N_1(t) = 1|N(t) \ge 2) \cdot P(N(t) \ge 2)$
 $= p \cdot (\lambda t + o(t)) + o(t)$
 $= p\lambda t + o(t)$

Hence we know that \mathbb{N}_1 is a Poisson process with rate λp . Seems like we can also derive this from the result of next page and omit this page's proof? (By Example 3.23 on textbook?)

pishen (AlgoLab) Stochastic Process May 15, 2012 120 / 148

\mathbb{N}_1 and \mathbb{N}_2 are independent:

$$P(N_{1}(t) = i, N_{2}(t) = j)$$

$$= P(N_{1}(t) = i, N_{2}(t) = j | N(t) = i + j) \cdot P(N(t) = i + j)$$

$$= {i + j \choose i} \cdot p^{i} \cdot (1 - p)^{j} \cdot \frac{e^{-\lambda t} \cdot (\lambda t)^{i+j}}{(i+j)!}$$

$$= \frac{e^{-\lambda pt} \cdot (\lambda pt)^{i}}{i!} \cdot \frac{e^{-\lambda(1-p)t} \cdot (\lambda(1-p)t)^{j}}{j!}$$

$$= P(N_{1}(t) = i) \cdot P(N_{2}(t) = j)$$

We only prove for two intervals that have the same length here. This also prove that $N_1(t)$ and $N_2(t)$ are Poisson distributed over t (Example 3.23 on textbook).

pishen (AlgoLab) Stochastic Process May 15, 2012 121 / 148

Example 1

 \mathbb{N} has rate 10 and p = 1/12,

$$P(N_1(4) = 0) = \frac{e^{-\frac{40}{12}} \cdot (\frac{40}{12})^0}{0!} = e^{-\frac{10}{3}}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 122 / 148

Example 2: Type transitions

There're r classes of particles.

- $Y_i(k)$ is the number of class i particles at time k.
- The time is discrete in this case.
- $Y_i(0)$ is Poisson distributed with parameter λ_i .
- P_{ij} is the transition probability for a class i particle to class j.

We prove that $Y_i(n)$ is Poisson distributed with parameter $\sum_{i=1}^r P_{ii}^n \cdot \lambda_i$.

pishen (AlgoLab) Stochastic Process May 15, 2012 123 / 148

Proof

Take class i for example, we consider a Poisson process $\mathbb N$ with rate λ_i , where each event is classified as type k with probability P^n_{ik} .

For an arbitrary unit time interval, the number of events that occur in this interval is Poisson distributed with parameter λ_i . We take this Poisson distributed number as the value of $Y_i(0)$.

By property 1, we know that the number of type k events in this interval is Poisson distributed with parameter $P^n_{ik} \cdot \lambda_i$, which also means that the number of class i particles that eventually become class k at time n, which is denoted as C^n_{ik} , is also Poisson distributed with parameter $P^n_{ik} \cdot \lambda_i$.

 $Y_j(n) = \sum_i C_{ij}^n$, which is Poisson distributed with parameter $\sum_{i=1}^r P_{ij}^n \cdot \lambda_i$. (since the Poisson parameter can be summed up.)

pishen (AlgoLab) Stochastic Process May 15, 2012 124 / 148

Example 3: Selling a product

Consider a Poisson process with rate λ , where each event is an offer that has density function f(x).

A product is sold if an offer with value higher than the price y comes. Assume the accepted offer comes at time t, then the storage cost is $c \cdot t$, where c is a constant decided by the product.

We want to know the expected profit, which is $E[f(x) - ct|f(x) \ge y]$.

pishen (AlgoLab) Stochastic Process May 15, 2012 125 / 148

Solution

The probability for each offer being accepted is

$$p(y) = P(X \ge y) = \int_{y}^{\infty} f(x) dx$$

The expectation of storage time t is $1/(\lambda \cdot p(y))$. Hence,

$$E[f(x)|f(x) \ge y] - E[ct|f(x) \ge y]$$

$$= \int_0^\infty x \cdot f_{X|X \ge y}(x) \ dx - \frac{c}{\lambda \cdot p(y)}$$

$$= \int_y^\infty x \cdot \frac{f_X(x)}{P(X \ge y)} \ dx - \frac{c}{\lambda \cdot p(y)}$$

$$= \frac{1}{p(y)} \left(\int_y^\infty x \cdot f(x) \ dx - \frac{c}{\lambda} \right)$$

pishen (AlgoLab) Stochastic Process May 15, 2012 126 / 148

Example 4: Coupon collection

There are r types of coupons, and p_i is the probability for a collected coupon being type i.

We want to know the expectation of N, where N is the number of collected coupons so that all r types of coupons are collected.

pishen (AlgoLab) Stochastic Process May 15, 2012 127 / 14

Solution: First attempt

Let N_i be the number of coupons collected to receive the first type i coupon. We know that

$$E[N] = E[\max(N_1, N_2, \dots, N_r)]$$

And

$$P(N \le n) = P(N_1 \le n, N_2 \le n, \cdots, N_r \le n)$$

But since each N_i are not independent, we can't go even further from here. For example, given that $N_1=1,\ P(N_2=1|N_1=1)=0.$

pishen (AlgoLab) Stochastic Process May 15, 2012 128 / 148

Solution: Second attempt

Without loss of generality, we assume that the coupons arrive as a Poisson process $\mathbb N$ with rate 1.

 \mathbb{N}_i is the process of type i coupons, which has rate p_i .

 X_i is the time that the first type i coupon appears, and

$$X = \max(X_1, X_2, \dots, X_r)$$

 X_1, X_2, \dots, X_r are independent since $\mathbb{N}_1, \mathbb{N}_2, \dots, \mathbb{N}_r$ are independent.

pishen (AlgoLab) Stochastic Process May 15, 2012 129 / 148

Solution: Second attempt (cont.)

We can see that

$$P(X \le t) = P(X_1 \le t, X_2 \le t, \cdot, X_r \le t)$$

= $\prod_{i=1}^{r} P(X_i \le t) = \prod_{i=1}^{r} (1 - e^{-t \cdot p_i})$

And

$$E[X] = \int_0^\infty P(X > t) \ dt = \int_0^\infty 1 - \prod_{i=1}^r (1 - e^{-t \cdot p_i}) \ dt$$

The first equation is from the property of probability. Surprisingly, E[X] = E[N] as explained below.

Solution: Second attempt (cont.)

$$X = T_1 + T_2 + \dots + T_N$$

where T_i is the jth inter-arrival time of \mathbb{N} .

Each T_i are i.i.d. and are exponential distributed with rate 1.

Also, N is independent with each T_i .

$$E[X|N = n] = E[T_1 + T_2 + \dots + T_n] = n \cdot E[T_1] = n$$

 $E[X|N] = N \cdot E[T_1] = N$

Hence,

$$E[X] = E[E[X|N]] = E[N]$$

pishen (AlgoLab) Stochastic Process May 15, 2012 131 / 148

Property 2-simple (Distribution of one event)

Property

Given that exactly one event of a Poisson process arrives in the interval [0, t], this arrival time is uniformly distributed over [0, t].

Proof:

$$P(T_1 \le s | N(t) = 1) = \frac{P(T_1 \le s, N(t) = 1)}{P(N(t) = 1)}$$

$$= \frac{P(N(s) = 1) \cdot P(N(t) - N(s) = 0)}{e^{-\lambda t} \cdot (\lambda t)^1 / 1!}$$

$$= \frac{e^{-\lambda s} \cdot \lambda s \cdot e^{-\lambda (t - s)}}{e^{-\lambda t} \cdot \lambda t} = \frac{s}{t}$$

Property 2-advanced (Distribution of several events)

Property

Given that exactly n events of a Poisson process arrive in the interval [0, t], each with arrival time X_1, X_2, \ldots, X_n .

The order statistics $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ of these random variables have the joint density function

$$f_{X_{(1)}, X_{(2)}, \dots, X_{(n)}}(x_1, x_2, \dots, x_n | N(t) = n)$$

$$= \begin{cases} \frac{n!}{t^n} & \text{if } 0 < x_1 < x_2 < \dots < x_n < t \\ 0 & \text{otherwise} \end{cases}$$

■ This implies that X_1, X_2, \dots, X_n are i.i.d. and each is uniformly distributed over [0, t].

pishen (AlgoLab) Stochastic Process May 15, 2012 133 / 148

For any
$$0 < x_1 < x_2 < \ldots < x_n < t$$
,

$$\begin{split} &f_{X_{(1)},X_{(2)},\dots,X_{(n)}}(x_1,x_2,\dots,x_n|N(t)=n)\\ &=\frac{f_{X_{(1)},X_{(2)},\dots,X_{(n)},N(t)}(x_1,x_2,\dots,x_n,n)}{P(N(t)=n)}\\ &=\frac{f_{T_1,T_2,\dots,T_n}(x_1,x_2-x_1,\dots,x_n-x_{n-1})\cdot P(T_{n+1}>t-x_n)}{P(N(t)=n)}\\ &=\frac{\lambda e^{-\lambda x_1}\cdot \lambda e^{-\lambda(x_2-x_1)}\cdots \lambda e^{-\lambda(x_n-x_{n-1})}\cdot e^{\lambda(t-x_n)}}{\frac{e^{-\lambda t}(\lambda t)^n}{n!}}\\ &=\frac{n!}{t} \end{split}$$

 T_i are the inter-arrival times, which are exponential distributed.

pishen (AlgoLab) Stochastic Process May 15, 2012 134 / 148

Corollary of property 2 (simple version)

Corollary

Consider a Poisson process with rate λ .

Each event is classified into a type i, where there are r types of event. Suppose that $p_i(\cdot)$ is a sampling function over interval [0,t] such that each arrived event at time x has probability $p_i(x)$ to be classified as type i. Then the number $N_i(t)$ of type i events in [0,t] is Poisson distributed with parameter

$$\lambda \int_0^t p_i(x) \ dx = \lambda \cdot t \cdot R_i$$
 , where $R_i = \frac{1}{t} \int_0^t p_i(x) \ dx$

 $lackbox{N}_i(\cdot)$ does not form a Poisson process here. It doesn't satisfy stationary distribution because of $p_i(\cdot)$.

pishen (AlgoLab) Stochastic Process May 15, 2012 135 / 148

Proof

Assume that N(t) = n.

Let
$$n = n_1 + n_2 + \cdots + n_r$$
, where $n_i \ge 0 \ \forall i = 1, \dots, r$.

These n events arrive independent and uniformly at random over [0,t]. If an event arrives at time $x\in [0,t]$, then with probability $p_i(x)$ it becomes type i. Therefore, each event is of type i with probability

$$\int_0^t P(\mathsf{type}\ i|\mathsf{arrives}\ \mathsf{at}\ \mathsf{time}\ x) \cdot \frac{1}{t}\ dx$$

$$= \frac{1}{t} \int_0^t p_i(x)\ dx$$

$$= R_i$$

which can be seen as the average of $p_i(\cdot)$ over [0,t].

pishen (AlgoLab) Stochastic Process May 15, 2012 136 / 148

$$P(\bigwedge_{1 \le i \le r} N_i(t) = n_i) = P(\bigwedge_{1 \le i \le r} N_i(t) = n_i | N(t) = n) \cdot P(N(t) = n)$$

$$= \left(\frac{n!}{n_1! n_2! \cdots n_r!} \cdot \prod_{1 \le i \le r} R_i^{n_i}\right) \cdot \frac{e^{-\lambda t} \cdot (\lambda t)^n}{n!}$$

$$= \prod_{1 \le i \le r} \frac{e^{-\lambda t R_i} (\lambda t R_i)^{n_i}}{n_i!}$$

$$= \prod_{1 \le i \le r} P(N_i(t) = n_i)$$

Hence we know that each $N_i(t)$ is Poisson distributed with parameter $\lambda t R_i$ and are independent. (Check Example 3.23 on textbook.)

pishen (AlgoLab) Stochastic Process May 15, 2012 137 / 148

Corollary of property 2 (full version)

Corollary

Consider a Poisson process with rate λ .

Each event is classified into a type i, where there are r types of event. Suppose that $p_i(\cdot)$ is a sampling function over interval [s,s+t] such that each arrived event at time x has probability $p_i(x)$ to be classified as type i. Then the number $N_i(s+t)-N_i(s)$ of type i events in [s,s+t] is Poisson distributed with parameter

$$\lambda \int_{s}^{s+t} p_i(x) dx$$

Proof

Regarding [s, s+t] as [0, t], the sampling function becomes

$$p_i'(x) = p_i(x+s)$$

From the simple version, we know that $N_i(s+t) - N_i(s)$ is Poisson distributed with parameter

$$\lambda \int_0^t p_i'(x) \ dx = \lambda \int_0^t p_i(x+s) \ dx = \lambda \int_s^{s+t} p_i(x) \ dx$$

pishen (AlgoLab) Stochastic Process May 15, 2012 139 / 148

Example 1: Infinite server queue

Suppose that jobs arrive at a Poisson rate λ , and we have infinite number of servers. The running time of each job is independent and distributed with function $T(\cdot)$. We want to know

- **1** The distribution of the number X(t) of completed jobs by time t.
- **2** The distribution of the number Y(t) of running jobs by time t.
- **3** The joint distribtuion of $Y(t_1)$ and $Y(t_2)$, where $t_1 < t_2$.

pishen (AlgoLab) Stochastic Process May 15, 2012 140 / 148

Solution of question 1 & 2

We classify the jobs into two types:

- **type 1**: completed by time t.
- **type 2**: not completed by time t.

If a job arrives at time x, then the sampling function is

- $p_1(x) = T(t-x)$
- $p_2(x) = 1 T(t x)$

Thus, $X(t) = N_1(t)$ is Poisson distributed with parameter

$$\lambda \int_0^t T(t-x) dx$$

And $Y(t) = N_2(t)$ is Poisson distributed with parameter

$$\lambda \int_0^t (1 - T(t - x)) dx = \lambda t - \lambda \int_0^t T(t - x) dx$$

Solution of question 3

$$p_1(x) = T(t_2 - x) - T(t_1 - x) \quad \text{if } 0 < x < t_1$$

$$p_2(x) = 1 - T(t_2 - x) \quad \text{if } 0 < x < t_1$$

$$p_3(x) = 1 - T(t_2 - x) \quad \text{if } t_1 < x < t_2$$

pishen (AlgoLab) Stochastic Process May 15, 2012 142 / 148

Solution of question 3 (cont.)

We know that $Y(t_1) = N_1(t_2) + N_2(t_2)$ and $Y(t_2) = N_2(t_2) + N_3(t_2)$, hence $Y(t_1)$ and $Y(t_2)$ are not independent. Therefore, we use the following method:

$$P(Y(t_1) = m_1, Y(t_2) = m_2)$$

$$= \sum_{n_2=0}^{\infty} P(N_1(t_2) = m_1 - n_2, N_2(t_2) = n_2, N_3(t_2) = m_2 - n_2)$$

$$= \sum_{n_2=0}^{\infty} P(N_1(t_2) = m_1 - n_2) \cdot P(N_2(t_2) = n_2) \cdot P(N_3(t_2) = m_2 - n_2)$$

$$= \cdots$$

The ∞ in \sum can be replaced by $\min(m_1, m_2)$.

pishen (AlgoLab) Stochastic Process May 15, 2012 143 / 148

Example 2: Encounters on a highway

Cars enter a distance-d highway in a Poisson rate λ . The fixed speed of each car is i.i.d. with function $F_S(\cdot)$. Suppose our car enters the highway and moves at a fixed speed s, what's the distribution of the number of encountering with other cars?

Solution

Suppose we enter at time t_1 and leave at $t_2 = t_1 + d/s$. Each car choose a fixed speed S according to F_S , its travel time T = d/S. The distribution function of T is

$$F_T(t) = P(T \le t) = P(S \ge \frac{d}{t}) = 1 - F_S(\frac{d}{t})$$

We classify the cars into three types:

- **type a** (overtaken by us): $0 < t < t_1, t + T > t_2$.
- **type b** (overtake us): $t_1 < t < t_2$, $t + T < t_2$.
- **type c**: otherwise

pishen (AlgoLab) Stochastic Process May 15, 2012 145 / 148

Solution (cont.)

$$\begin{aligned} p_a(t) &= P(T > t_2 - t) = 1 - F_T(t_2 - t) & \text{if } 0 < t < t_1 \\ p_b(t) &= P(T < t_2 - t) = F_T(t_2 - t) & \text{if } t_1 < t < t_2 \end{aligned}$$

Since the Poisson parameters can be summed up, $N_a(t_2)+N_b(t_2)$ is Poisson distributed with parameter

$$\lambda \int_0^{t_1} (1 - F_T(t_2 - t)) dt + \lambda \int_{t_1}^{t_2} F_T(t_2 - t) dt$$

which is the distribution we want.

pishen (AlgoLab) Stochastic Process May 15, 2012 146 / 148

Example 3: HIV infection

People are infected with an unknown Poisson rate λ .

The incubation time for each infected person has distribution function F. At time t, we know the number n_1 of people who already have the AIDS symptoms (finished incubations).

We want to estimate the value of λ , and the number n_2 of the incubating people at time t.

pishen (AlgoLab) Stochastic Process May 15, 2012 147 / 14

Solution

We classify the infected people into two types:

- type 1: have symptoms appear by time t.
- **type 2**: still in incubation by time t.

Then

$$E[N_{1}(t)] = \lambda \int_{0}^{t} F(t-x) dx = \lambda \int_{0}^{t} F(x) dx$$

$$E[N_{2}(t)] = \lambda \int_{0}^{t} (1 - F(t-x)) dx = \lambda \int_{0}^{t} (1 - F(x)) dx$$

$$n_{1} \approx E[N_{1}(t)] \implies \hat{\lambda} = \frac{n_{1}}{\int_{0}^{t} F(x) dx}$$

$$n_{2} \approx \hat{\lambda} \int_{0}^{t} (1 - F(x)) dx = \frac{n_{1} \int_{0}^{t} (1 - F(x)) dx}{\int_{0}^{t} F(x) dx}$$

pishen (AlgoLab) Stochastic Process May 15, 2012 148 / 148