# Chapter I Signals And Systems

Signals & Systems:

Is about using mathematical techniques to help describe and analyze systems which process signals

Signals are variables that carry information
Systems process input signals to produce output signals

Output Signal

Signal

### Introduction

- Continuous-Time & Discrete-Time Signals
- Transformations of the Independent Variable
- Exponential & Sinusoidal Signals
- The Unit Impulse & Unit Step Functions
- Continuous-Time & Discrete-Time Systems
- Basic System Properties











## Signal Energy & Power:



$$m{E} \triangleq \int_{t_1}^{t_2} |x(t)|^2 dt$$
 continuous-time 
$$m{E} \triangleq \sum_{n=n_1}^{n_2} |x[n]|^2 \qquad \text{discrete-time}$$

Time-averaged power over a finite time interval

$${\color{red} P} \stackrel{\Delta}{=} \qquad \frac{1}{t_2-t_1} \int_{t_1}^{t_2} |x(t)|^2 dt \quad \text{ continuous-time}$$

$$\mathbf{P} \stackrel{\Delta}{=} \frac{1}{n_2 - n_1 + 1} \sum_{n=n_1}^{n_2} |x[n]|^2$$
 discrete-time

### ■ Three Classes of Signals:

$$E_{\infty} = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt$$

 $\begin{array}{c} \text{Infree Ciasses of Signals:} & E_{\infty} = \lim_{T \to \infty} \int_{-T} |x(t)|^2 dt \\ \text{Profite total energy \& zero average power} \end{array}$ 

$$0 \le E_{\infty} < \infty$$
  $\Rightarrow$   $P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} = 0$ 

• Finite average power & infinite total energy

$$0 \le P_{\infty} < \infty \quad \Rightarrow \quad E_{\infty} = \infty \text{ (if } P_{\infty} > 0)$$

Infinite average power & infinite total energy

$$P_{\infty} = \infty$$
 &  $E_{\infty} = \infty$ 

### Signal Energy & Power:

Total energy over an infinite time interval

$$\underline{E_{\infty}} \stackrel{\triangle}{=} \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |x(t)|^2 dt$$

$$\underline{E}_{\infty} \stackrel{\triangle}{=} \lim_{N \to \infty} \sum_{n=-N}^{+N} |x[t]|^2 = \sum_{n=-\infty}^{+\infty} |x[n]|^2$$

• Time-averaged power over an infinite time interval

$$P_{\infty} \stackrel{\triangle}{=} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

$$\underset{N\to\infty}{\mathbf{P}_{\infty}} \stackrel{\triangle}{=} \lim_{N\to\infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} |x[t]|^2$$

- Introduction
- Continuous-Time & Discrete-Time Signals
- Transformations of the Independent Variable
  - Time Shift
  - Time Reversal
  - Time Scaling
  - Periodic Signals
  - Even & Odd Signals
- Exponential & Sinusoidal Signals
- The Unit Impulse & Unit Step Functions
- Continuous-Time & Discrete-Time Systems
- Basic System Properties

















### ■ Periodic Signals:

x(t) = x(t+T) for T > 0 and all values of t

x[n] = x[n+N] for N > 0 and all values of n

- A periodic signal is unchanged by a time shift of T or N
- They are also periodic with period
  - 2T, 3T, 4T,
  - 2N, 3N, 4N, .
- T or N is called the fundamental period denoted as  $T_0$  or  $N_0$

### ■ Periodic signal ?

$$x(t) = x(t+T) \quad \forall t, T > 0$$

$$x(t) = \begin{cases} \cos(t), & \text{if } t < 0 \\ \sin(t), & \text{if } t > 0 \end{cases}$$



- Problems:
  - P1.25 for CT
  - P1.26 for DT

### ■ Even & odd signals:

A signal is even if x(-t) = x(t) or x[-n] = x[n]

A signal is odd if x(-t) = -x(t) or x[-n] = -x[n]







### ■ Even-odd decomposition of a signal:

 Any signal can be broken into a sum of one even signal and one odd signal

$$\mathcal{E}v\left\{x(t)\right\} = \frac{1}{2}\left[x(t) + x(-t)\right] = \frac{1}{2}\left[x(-t) + x(t)\right]$$

$$\mathcal{O}d\left\{x(t)\right\} = \frac{1}{2}\left[x(t) - x(-t)\right] = -\frac{1}{2}\left[x(-t) - x(t)\right]$$

$$\Rightarrow x(t) = \mathcal{E}v\left\{x(t)\right\} + \mathcal{O}d\left\{x(t)\right\}$$



### • Uniqueness of even-odd decomposition:

Assume that 
$$x(t) = \mathcal{E}v_1(t) + \mathcal{O}d_1(t)$$
 and  $x(t) = \mathcal{E}v_2(t) + \mathcal{O}d_2(t)$ 

So,  $\mathcal{E}v_1(t) + \mathcal{O}d_1(t) = \mathcal{E}v_2(t) + \mathcal{O}d_2(t)$ 

and  $\mathcal{E}v_1(-t) + \mathcal{O}d_1(-t) = \mathcal{E}v_2(-t) + \mathcal{O}d_2(-t)$ 

Because 
$$\begin{cases} \mathcal{E}v_1(-t) = \mathcal{E}v_1(t) \\ \mathcal{E}v_2(-t) = \mathcal{E}v_2(t) \end{cases}$$
 and 
$$\begin{cases} \mathcal{O}d_1(-t) = -\mathcal{O}d_1(t) \\ \mathcal{O}d_2(-t) = -\mathcal{O}d_2(t) \end{cases}$$

Then,  $\mathcal{E}v_1(t) - \mathcal{O}d_1(t) = \mathcal{E}v_2(t) - \mathcal{O}d_2(t)$ 

$$\Rightarrow 2\mathcal{E}v_1(t) = 2\mathcal{E}v_2(t) \quad \text{or, } \mathcal{E}v_1(t) = \mathcal{E}v_2(t)$$

$$\Rightarrow 2\mathcal{O}d_1(t) = 2\mathcal{O}d_2(t) \quad \text{or, } \mathcal{O}d_1(t) = \mathcal{O}d_2(t)$$

### Introduction

- Continuous-Time & Discrete-Time Signals
- Transformations of the Independent Variable
- Exponential & Sinusoidal Signals
- The Unit Impulse & Unit Step Functions
- Continuous-Time & Discrete-Time Systems
- Basic System Properties

### Magnitude & Phase Representation:



$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$\Rightarrow \sigma + jw = r\left(\cos\theta + j\sin\theta\right)$$

$$= (r\cos\theta) + j(r\sin\theta)$$

■ CT Complex Exponential Signals:

$$x(t) = {}^{C}e^{at}$$

• where C & a are, in general, complex numbers

$$a = \sigma + jw$$

$$C = |C| e^{j\theta}$$

- Periodic complex exponential signals:
  - If a is purely imaginary

$$a=\sigma+jw$$

$$x(t) = e^{jw_0t}$$

- It is periodic
- -Because let

$$T_0 = \frac{2\pi}{|w_0|}$$

Then

$$e^{jw_0T_0} = e^{jw_0\frac{2\pi}{w_0}} = 1$$

Hence

$$e^{jw_0(t+T_0)} = e^{jw_0t}e^{jw_0T_0} = e^{jw_0t}$$







$$x(t) = A \cos(w_0 t + \phi)$$



$$T_0 = \frac{1}{f_0}$$

- $T_0:(sec)$
- $w_0:(rad/sec)$
- $f_0: (1/sec = Hz)$

## ■ Period & Frequency:

$$T_0 = \frac{2\pi}{w_0}$$

$$w_0 = 2\pi f_0$$

$$T_0 = \frac{1}{f_0}$$

■ Total energy & average power: 
$$E_{\text{period}} = \int_0^{T_0} \left| e^{jw_0 t} \right|^2 dt$$

$$= \int_0^{T_0} 1 \cdot dt = T_0$$

$$\int_0^{T_0} t \cdot dt = T_0$$

$$\int_0^{T_0} t \cdot dt = T_0$$

$$P_{\rm period} = \frac{1}{T_0} E_{\rm period} = 1$$

$$E_{\infty} = \infty$$

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left| e^{jw_0 t} \right|^2 dt = 1$$

### ■ Euler's relation:

$$\begin{aligned} \cos(\theta) &= \mathcal{R}e\left\{e^{(j\theta)}\right\} \\ e^{j\theta} &= \cos\theta + j\sin\theta \\ &\sin(\theta) &= \mathcal{I}m\left\{e^{(j\theta)}\right\} \end{aligned}$$

$$e^{j(-\theta)} = \cos(-\theta) + j\sin(-\theta) \qquad \Rightarrow \cos(\theta) = \frac{e^{(j\theta)} + e^{-(j\theta)}}{2}$$
$$= \cos(\theta) - j\sin(\theta) \qquad \Rightarrow \sin(\theta) = \frac{e^{(j\theta)} - e^{-(j\theta)}}{2j}$$

$$\Rightarrow A\cos(w_0t + \phi) = \frac{A}{2}e^{j(\phi + w_0t)} + \frac{A}{2}e^{-j(\phi + w_0t)}$$
$$= \frac{A}{2}e^{j\phi}e^{jw_0t} + \frac{A}{2}e^{-j\phi}e^{-jw_0t}$$

### Harmonically related periodic exponentials

$$e^{j0w_0t}$$
,  $e^{j1w_0t}$ ,  $e^{j2w_0t}$ ,  $e^{j3w_0t}$ , ...,  
 $e^{j(-1)w_0t}$ ,  $e^{j(-2)w_0t}$ , ...|  
 $\phi_k(t) = e^{jk} w_0 t$ ,  $k = 0, \pm 1, \pm 2, ...$ 

- For k = 0,  $\phi_k(t)$  is constant
- For  $k \neq 0$ ,  $\phi_k(t)$  is periodic with

fundamental frequency  $|\mathbf{k}|w_0$  and fundamental period  $\frac{T_0}{|k|}$ 

General complex exponential signals:  $Ce^{at} = (|C|e^{j\theta})(e^{(r+jw_0)t}) \qquad \qquad \sigma + jw = r e^{j\theta}$  $= (|C|e^{j\theta}) (e^{rt}e^{jw_0t}) \qquad e^{j\theta} = \cos\theta + j\sin\theta$  $= |C| e^{rt} e^{j(w_0t+\theta)}$  $= |C|e^{rt}\cos(w_0t + \theta) + j|C|e^{rt}\sin(w_0t + \theta)$ 





■ DT complex exponential signal or sequence:  $x[n] = Ca^n$ • where C & a are, in general, complex numbers Alternatively,  $x[n] = Ce^{bn}$  $=C(e^b)^n$  with  $a=e^b$ 



### ■ Euler's relation:

$$e^{jw_0n} = \cos w_0n + j\sin w_0n$$

And,

$$A\cos(w_0n + \phi) = \frac{A}{2} e^{j\phi} e^{jw_0n} + \frac{A}{2} e^{-j\phi} e^{-jw_0n}$$

### Periodicity properties of DT complex exponentials:

$$e^{j2\pi n} = \cos 2\pi n + j \sin 2\pi n$$

$$e^{j(w_0+2\pi)n} = e^{j2\pi n} e^{jw_0n} = e^{jw_0n}$$

- The signal with frequency  $\boldsymbol{\omega}_{0}$  is identical to the signals with frequencies  $w_0 \pm 2\pi$ ,  $w_0 \pm 4\pi$ ,  $w_0 \pm 6\pi$ , ...
- Only need to consider a frequency interval of length  $2\pi$ – Usually use  $0 \le w_0 < 2\pi$  or  $-\pi \le w_0 < \pi$ ,
- The low frequencies are located at  $w_0 = 0, \pm 2\pi, \cdots$ The high frequencies are located at  $w_0 = \pm \pi, \pm 3\pi, \cdots$

$$e^{j(0)n} = 1$$
 and  $e^{j(\pi)n} = (e^{j(\pi)})^n = (-1)^n$ 

# General complex exponential signals:

$$Ca^n = (|C|e^{j\theta})((|a|e^{jw_0})^n)$$

$$= |C||a|^{n}\cos(w_{0}n + \theta) + j|C||a|^{n}\sin(w_{0}n + \theta)$$



### CT exponential signals



















Comparison of CT & DT signals: **TABLE 1.1** Comparison of the signals  $e^{i\omega_0 t}$  and  $e^{i\omega_0 n}$ .  $e^{jw_0t}$ Distinct signals for distinct values of  $\omega_0$ Identical signals for values of  $\omega_0$ separated by multiples of  $2\pi$ Periodic for any choice of  $\omega_0$ Periodic only if  $\omega_0 = 2\pi m/N$  for some integers N > 0 and m. Fundamental frequency ω<sub>0</sub> Fundamental frequency\* ω<sub>0</sub>/m Fundamental period Fundamental period  $\omega_0 = 0$ : undefined  $\omega_0 = 0$ : undefined  $\omega_0 \neq 0$ :  $\frac{2\pi}{\omega_0}$  $\omega_0 \neq 0$ :  $m\left(\frac{2\pi}{\omega_0}\right)$ "Assumes that m and N do not have any factors in common. · Problem: • P1.36

- Introduction
- Continuous-Time & Discrete-Time Signals
- Transformations of the Independent Variable
- Exponential & Sinusoidal Signals
- The Unit Impulse & Unit Step Functions
- Continuous-Time & Discrete-Time Systems
- Basic System Properties

Harmonically related periodic exponentials

$$\phi_{k}[n] = e^{jk(2\pi/N)n}, \quad k = 0, \pm 1, \pm 2, \dots$$

$$\phi_{k+N}[n] = e^{j(k+N)(2\pi/N)n}$$

$$= e^{jk(2\pi/N)n} e^{j2\pi n} = \phi_{k}[n]$$

• Only N distinct periodic exponentials in the set

$$\begin{split} \phi_0[n] = 1, & \ \phi_1[n] = e^{j(2\pi n/N)}, & \ \phi_2[n] = e^{j(4\pi n/N)}, \\ & \ \dots, & \ \phi_{N-1}[n] = e^{j2\pi(N-1)n/N} \end{split}$$

$$\phi_{N}[n] = e^{j2\pi(N)n/N} = e^{j2\pi n} = 1 = \phi_{0}[n], \; ; \; \phi_{N+1}[n] = \phi_{1}[n], ...$$

- DT Unit Impulse & Unit Step Sequences
  - Unit impulse (or unit sample)

$$\delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$



Unit step

$$\mathbf{u}[n] = \left\{ \begin{array}{ll} 0, & n < 0 \\ 1, & n \ge 0 \end{array} \right.$$











### ■ Relationship Between Impulse & Step

Running integral

$$u(t) = \int_{-\infty}^{t} \frac{\delta(\tau)d\tau}{1, t > 0}$$

$$= \begin{cases} 0, t < 0 \\ 1, t > 0 \end{cases}$$

First derivative

$$\delta(t) = \frac{du(t)}{dt}$$

- But, u(t) is discontinuous at t = 0, hence, not differentiable
- Use approximation















### Simple examples of CT systems

Automobile

Input signal: 
$$f(t)$$
Output signal:  $v(t)$ 

$$f(t) - \rho v(t) = m \frac{dv(t)}{dt}$$

$$\frac{dv(t)}{dt} = \frac{1}{m} [f(t) - \rho v(t)]$$

$$\Rightarrow \frac{dv(t)}{dt} + \frac{\rho}{m} v(t) = \frac{1}{m} f(t)$$

$$\Rightarrow \frac{dy(t)}{dt} + ay(t) = bx(t)$$

# ■ Simple examples of DT systems

Balance in a band account

$$y[n] = 1.01y[n-1] + x[n]$$

or, 
$$y[n] - 1.01y[n-1] = x[n]$$

$$\Rightarrow y[n] + ay[n-1] = bx[n]$$

### Simple examples of DT systems

• Digital simulation of differential equation

$$\frac{dv(t)}{dt} \approx \frac{v(n\Delta) - v((n-1)\Delta)}{\Delta} = \frac{v[n] - v[n-1]}{\Delta},$$

$$t = n\Delta$$

$$\frac{dv(t)}{dt} + \frac{\rho}{m}v(t) = \frac{1}{m}f(t)$$

$$\Rightarrow \mathbf{v[n]} - \frac{m}{m + \rho \Delta} \mathbf{v[n-1]} = \frac{\Delta}{m + \rho \Delta} f[n]$$

$$\Rightarrow y[n] + ay[n-1] = bx[n]$$



















### ■ Time Invariance

- Time-invariant systems
- Behavior & characteristics of system are fixed over time

$$\Rightarrow \frac{dv_c(t)}{dt} + \frac{1}{RC}v_c(t) = \frac{1}{RC}v_s(t)$$

$$\Rightarrow \frac{dv(t)}{dt} + \frac{\rho}{m}v(t) = \frac{1}{m}f(t)$$

· A time shift in the input signal results in an identical time shift in the output signal

$$x[n] \to y[n] \iff x[n-n_0] \to y[n-n_0]$$

### Time Invariance

• Example of time-varying system (Example 1.16) 
$$y(t) = x(2t)$$

$$y(t) = x(2t)$$

$$x_1(t) = x_1(t)$$

$$y_1(t) = x_1(t)$$

$$y_2(t) = x_1(t)$$

### ■ Time Invariance

 $x_1(t)$ 

Example of time-invariant system (Example 1.14)

$$y(t) = \sin [x(t)]$$

$$x_1(t) \qquad y_1(t) = \sin [x_1(t)]$$

$$x_2(t) = x_1(t - t_0) \qquad y_2(t) = \sin [x_2(t)] = \sin [x_1(t - t_0)]$$

$$y_1(t - t_0) = \sin [x_1(t - t_0)]$$

 $y_2(t) = y_1(t - t_0)$ 

### Linearity

- Linear systems
  - If an input consists of the weighted sum of several signals, then the output is the superposition of the responses of the system to each of those signals

$$x_1[n] \to y_1[n]$$
 
$$x_2[n] \to y_2[n]$$
 IF (1)  $x_1[n] + x_2[n] \to y_1[n] + y_2[n]$  (additivity) (2)  $a \cdot x_1[n] \to a \cdot y_1[n]$  (scaling or homogeneity)  $a$ : any complex constant THEN, the system is linear

# • Linearity • Linear systems • In general, a,b: any complex constants $ax_1[n] + bx_2[n] \rightarrow ay_1[n] + by_2[n] \quad \text{for DT}$ $ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t) \quad \text{for CT}$ • Or, $x[n] = \sum_k a_k x_k[n] = a_1 x_1[n] + a_2 x_2[n] + \dots$ $\rightarrow y[n] = \sum_k a_k y_k[n] = a_1 y_1[n] + a_2 y_2[n] + \dots$ This is known as the superposition property

```
• Linearity

• Example 1.18: S: y(t) = (x(t))^2

x_1(t) \rightarrow y_1(t) = (x_1(t))^2

x_2(t) \rightarrow y_2(t) = (x_2(t))^2

x_3(t) = ax_1(t) + bx_2(t)

\rightarrow y_3(t) = (x_3(t))^2 = (ax_1(t) + bx_2(t))^2

= a^2(x_1(t))^2 + b^2(x_2(t))^2 + 2abx_1(t)x_2(t)

= a^2y_1(t) + b^2y_2(t) + 2abx_1(t)x_2(t)
```

```
■ Linearity

■ Example 1.17: S: y(t) = tx(t)
x_1(t) \rightarrow y_1(t) = tx_1(t)
x_2(t) \rightarrow y_2(t) = tx_2(t)
x_3(t) = ax_1(t) + bx_2(t)
\rightarrow y_3(t) = tx_3(t)
= t(ax_1(t) + bx_2(t)) = atx_1(t) + btx_2(t)
= ay_1(t) + by_2(t)
```

```
■ Linearity

■ Example 1.20: S: y[n] = 2x[n] + 3

x_1[n] \rightarrow y_1[n] = 2x_1[n] + 3

x_2[n] \rightarrow y_2[n] = 2x_2[n] + 3

x_3[n] = ax_1[n] + bx_2[n]

\rightarrow y_3[n] = 2x_3[n] + 3

= 2(ax_1[n] + bx_2[n]) + 3

= a(2x_1[n] + 3) + b(2x_2[n] + 3) + 3 - 3a - 3b

= ay_1[n] + by_2[n] + 3(1 - a - b)
```

■ Linearity

■ Example 1.20: S: y[n] = 2x[n] + 3  $x_1[n] \rightarrow y_1[n] = 2x_1[n] + 3$   $x_2[n] \rightarrow y_2[n] = 2x_2[n] + 3$ ■ However,  $y_1[n] - y_2[n] = 2\left(x_1[n] + 3\right) - 2\left(x_2[n] + 3\right)$   $= 2\left[x_1[n] - x_2[n]\right]$ It is a incrementally linear system

