January 2012 International GCSE Mathematics (4PM0) Paper 01 Mark Scheme

Question	Working	Notes	
1	$y = -\frac{6}{4}x - \frac{15}{4}$, gradient = $-\frac{3}{2}$ oe	M1 A1	
	$y = {}^{10}/_{15} x - {}^{9}/_{15}$, gradient = ${}^{2}/_{3}$ oe	A1	
	Product of gradients = $-\frac{3}{2} \times \frac{2}{3} = -1 \implies$ lines perpendicular	A1	
		4	
2	x(x+2) - (x+1) = 2(x+1)(x+2) $x^2 + x - 1 = 2x^2 + 6x + 4$	M1	
	$ \begin{array}{c} x + x - 1 = 2x + 6x + 4 \\ x^2 + 5x + 5 = 0 \end{array} $	A 1	
		A1	
	$x = \frac{-5 \pm \sqrt{25 - 20}}{2} = -3.62, -1.38$	M1 A1	
	2	4	
3	(3x+1)(2x-7) < 0	M1 A1	
	$-\frac{1}{3} < x < 3\frac{1}{2}$	M1 A1	
		4	
4	$10!_{3}(1)^{7}$	Allow all marks if x^7	
	$\left[\frac{10!}{7!3!}1^3\left(\frac{1}{\sqrt{3}}\right)^7\right]$	included.	
		M1	
	$=120\frac{1}{27\sqrt{3}}$	A 1	
		A1	
	$=120\frac{1}{27}\frac{\sqrt{3}}{3}$	M1 rationalise	
	$=120{27}{3}$	Wii Tationanse	
	40 /2	A1	
	$=\frac{1}{27}\sqrt{3}$	4	
5	$= \frac{40}{27}\sqrt{3}$ (a) $\frac{dy}{dx} = x^2 e^x + 2x e^x$	M1 two terms with	
	(a) $\frac{1}{dx} = x^2 e^x + 2x e^x$	one correct	
		A1	
	(b) $\frac{dy}{dx} = 5(x^3 + 2x^2 + 3)^4 (3x^2 + 4x)$	M1 use chain rule	
	$ \begin{vmatrix} (0) & -3(x + 2x + 3) & (3x + 4x) \\ dx \end{vmatrix} $	A1 $5(x^3 + 2x^2 + 3)^4$	
		A1 $(3x^2 + 4x)$	
		5	

7	(a)	$A(1\frac{1}{2},0), B(0,1)$	B1, B	1
		4)	D.1	
	(b)	$\begin{array}{ll} \text{(i)} & x = 3 \\ \text{(ii)} & 2 \end{array}$	B1	
		(ii) $y = 2$	B1	
	(c)	4- 1.5 3 x	B1 B1 B1	two branches in correct quadrants asymptotes dep on some curve intercepts
	(d)	$\frac{dy}{dx} = \frac{2(x-3) - (2x-3)}{(x-3)^2} = \frac{-3}{(x-3)^2}$	M1 A1	Quotient rule Result (unsimplified)
		At B, $x = 0$ so $\frac{dy}{dx} = \frac{-3}{(-3)^2} = -\frac{1}{3}$	A1	
		Grad of normal = $-1/(-1/3) = 3$ Normal $y = 3x + 1$	B1ft	
		1101111111 y = 3x + 1	B1ft	
	(e)	At D, $3x+1 = \frac{2x-3}{x-3}$	M1	
		$3x^2 - 8x - 3 = 2x - 3$		
		$3x^2 - 10x = 0$ $x(3x - 10) = 0$	A1 M1	
		x(3x - 10) = 0 x = 0 or x = 10/3	IVII	
		At D , $x = 3\frac{1}{3}$	A1	
		•	16	