Examenul național de bacalaureat 2021

Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Testul 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(\sqrt{10} - \sqrt{6})(\sqrt{10} + \sqrt{6}) = \sqrt{10}^2 - \sqrt{6}^2 =$	2p
	$=10-6=4=2^2$, deci numerele date sunt termeni consecutivi ai unei progresii geometrice	3p
2.	$f(-x) = \frac{(-x)^{2021}}{(-x)^2 + 1} = \frac{-x^{2021}}{x^2 + 1} = \frac{-x^{2021}}{x^$	3p
	$=-\frac{x^{2021}}{x^2+1}=-f(x)$, pentru orice $x \in \mathbb{R}$, deci funcția f este impară	2p
3.	$2^{2x} - 6 \cdot 2^x - 16 = 0 \Leftrightarrow (2^x - 8)(2^x + 2) = 0$	3p
	Cum $2^x > 0$, pentru orice număr real, obținem $2^x = 8$, deci $x = 3$	2p
4.	Numărul de submulțimi cu 2 elemente ale mulțimii $\{0,2,4,6,8\}$ este C_5^2 =	3p
	$=\frac{5!}{2! \cdot 3!} = 10$	2p
5.	$m_{AB} = 5$ şi, cum $d \parallel AB$, obţinem $m_d = 5$	3 p
	Ecuația dreptei d este $y-2=5(x+2)$, deci $y=5x+12$	2p
6.	$\sin A = \frac{1}{2}, \ \sin B = \frac{\sqrt{2}}{2}$	2p
	$\frac{AC}{\sin B} = \frac{BC}{\sin A} \Rightarrow \frac{2AC}{\sqrt{2}} = 2BC, \text{ deci } AC = BC\sqrt{2}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(m)) = \begin{vmatrix} 4 & 1 & m \\ 1 & 2 & -1 \\ -2 & -3 & 0 \end{vmatrix} = 0 - 3m + 2 - (-4m) - 12 - 0 =$	3p
	=-3m+4m-10=m-10, pentru orice număr real m	2p
b)	$A(9) = \begin{pmatrix} 4 & 1 & 9 \\ 1 & 2 & -1 \\ -2 & -3 & 0 \end{pmatrix}, \det(A(9)) = -1$	2p
	$A^{-1}(9) = \begin{pmatrix} 3 & 27 & 19 \\ -2 & -18 & -13 \\ -1 & -10 & -7 \end{pmatrix}$	3р
c)	$m \neq 10 \Rightarrow \det(A(m)) \neq 0$, deci sistemul este compatibil determinat și $(a,b,c) = (2,1,0)$	3р
	Cum $\log_2 a = \log_2 2 = 1$ şi $b + c = 1 + 0 = 1$, obţinem $\log_2 a = b + c$	2p

2.a)	x*3 = 7(x-3)(3-3)+3=	3p
	= 0 + 3 = 3, pentru orice număr real x	2p
b)	$x * x = 7(x-3)^2 + 3$, $x * x * x = 49(x-3)^3 + 3$, pentru orice număr real x	2p
	$49(x-3)^3 + 3 = -46 \Leftrightarrow (x-3)^3 = -1$, deci $x = 2$	3 p
c)	$f(x)*f(y) = 7(f(x)-3)(f(y)-3)+3 = 7\left(\frac{5^x}{7}+3-3\right)\left(\frac{5^y}{7}+3-3\right)+3 =$	3 p
	$=7 \cdot \frac{5^x}{7} \cdot \frac{5^y}{7} + 3 = \frac{5^{x+y}}{7} + 3 = f(x+y), \text{ pentru orice numere reale } x \text{ și } y$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\sqrt{x^2+2x+2}-x\cdot \frac{2x+2}{\sqrt{2x+2}}$	
	$f'(x) = \frac{\sqrt{x^2 + 2x + 2} - x \cdot \frac{2x + 2}{2\sqrt{x^2 + 2x + 2}}}{x^2 + 2x + 2} =$	3 p
	$= \frac{x^2 + 2x + 2 - x(x+1)}{\left(x^2 + 2x + 2\right)\sqrt{x^2 + 2x + 2}} = \frac{x+2}{\left(x^2 + 2x + 2\right)\sqrt{x^2 + 2x + 2}}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + 2x + 2}} = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + \frac{2}{x} + \frac{2}{x^2}}} = 1$	3 p
	Dreapta de ecuație $y = 1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f'(x) = 0 \Leftrightarrow x = -2$, $f'(x) < 0$ pentru orice $x \in (-\infty, -2) \Rightarrow f$ este strict descrescătoare pe $(-\infty, -2)$ și $f'(x) > 0$ pentru orice $x \in (-2, +\infty) \Rightarrow f$ este strict crescătoare pe $(-2, +\infty)$	2p
	$\lim_{x \to -\infty} f(x) = -1, f(-2) = -\sqrt{2}, \lim_{x \to +\infty} f(x) = 1 \text{si, cum} f \text{este continuă, obținem}$ $\operatorname{Im} f = \left[-\sqrt{2}, 1 \right]$	3 p
	$\lim_{J} - \lfloor -\sqrt{2}, 1 \rfloor$	
2.a)	$F'(x) = 2 - \frac{1}{x^2} - \frac{4}{x+2} = \frac{2x^2(x+2) - (x+2) - 4x^2}{x^2(x+2)} =$	2p
	$= \frac{2x^3 - x - 2}{x^2(x+2)} = f(x)$, pentru orice $x \in (0, +\infty)$, deci funcția F este o primitivă a funcției f	3p
b)	$\int_{1}^{2} (x+2) f(x) dx = \int_{1}^{2} \frac{2x^{3} - x - 2}{x^{2}} dx = \int_{1}^{2} \left(2x - \frac{1}{x} - \frac{2}{x^{2}} \right) dx = \left(x^{2} - \ln x + \frac{2}{x} \right) \Big _{1}^{2} =$	3р
	$= 4 - \ln 2 + \frac{2}{2} - 1 + \ln 1 - 2 = 2 - \ln 2$	2p
c)	$\int_{2}^{m} f(x) dx = F(x) \Big _{2}^{m} = F(m) - F(2) = 2m + \frac{1}{m} - \frac{9}{2} + 4 \ln \frac{4}{m+2}$	3p
	$2m + \frac{1}{m} - \frac{9}{2} + 4\ln\frac{4}{m+2} = 2m + \frac{1}{m} - \frac{17}{2}$, deci $\ln\frac{4}{m+2} = -1 \Rightarrow m = 4e - 2$, care convine	2p