UofT-MAT257-2014 Note

hysw, etc
(will add later)...

$March\ 4,\ 2015$

Contents			9.6 Fundamental theorem of Calculus	
1	KW	2	9.7.1 For simple regions	
			9.8 Properties of integral	
2	TODO	2	9.9 Properties of integral	11
3	Basic knowledge	3	9.10 Properties of rectifiable set	11
3	3.1 Abbreviations	3	40 Cl 477 1 1 1	
	3.2 Multi-index Notation	3	10 Change of Variables	12
	5.2 Within-Index Notation	3	11 Tensors	13
4	Linear Algebra	4		
	4.1 Definitions	4	12 Differential Forms	14
			40.75 40.11	
5	Topology	5	13 Manifolds	15
	5.1 Definitions	5	13.1 Parametrized Manifold	15
	5.2 Partition of unity	5	14 Lecture Notes	16
6	Measure Theory	6	14.1 2015-01-05 Monday	16
U	6.1 Measure zero	6	14.1.1 Review	16
	6.2 Theorems	6	14.1.2 Open Sets	16
	1.002	Ü	14.2 2015-01-07 Wednesday	16
7	General Calculus	7	14.3 2015-01-09 Friday	16
	7.1 Definitions	7	14.4 2015-01-12 Monday	17
	7.2 Extreme Value Theorem	7	14.4.1 Torus	17
	7.3 Intermediate Value Theorem	7	14.5 2015-01-14 Wednesday	18
	7.4 Mean Value Theorem	7	14.5.1 Existence of the Integral	18
0	Diff. (1.1.C.)	0	14.5.2 Evaluation of the Integral	18
8	Differential Calculus	8	14.5.3 Integral Over a Bounded Set	18
	8.1 Definitions	8	14.5.4 Rectifiable Sets	18 19
	8.2 Notations	8	14.5.5 Extended Integrals	19
	8.4 Continuously Differentiable Functions	8	14.6 2015-01-21 Wednesday	19
	8.5 Chain Rule	8	14.6.1 Midtern Review	
	8.6 Inverse Function Theorem	8	14.7 2015-01-23 Friday	
	8.7 Implicit Function Theorem	9	14.7.1 Definition of Volume	
	8.8 Taylor's theorem	9	14.8 2015-01-28 Wednesday	20
			14.8.1 Man-I-Fold	20
9	Integral Calculus	10		
	9.1 Definitions	10		
	9.2 Ignored	10		
	9.3 Riemann condition	10		
	9.4 Riemann-Lebesgue theorem	10		
	9.5 Munkers 11.3	10		

1 KW

Euclidean n-space \mathbb{R}^n , norm, inner product, usual basis, distance, closed rectangle, open rectangle, open, closed, interior, exterior, boundary, open cover, compact(etc...), Heine-Borel Theorem, function, composition, component function, projection function π^i , continuous function, continuous & compact, oscillation, Jacobian matrix, chain rule, partial derivative, continuously differentiable, inverse functions, implicit functions,

2 TODO

Munkers 11.3, 13.*, 14.3, 14.4, 15.*

3 Basic knowledge

Note, this section is for something that does not fit anywhere

3.1 Abbreviations

cts Continuous

msr Measure

3.2 Multi-index Notation

- $\alpha = (\alpha_1, \dots, \alpha_n)$
- $|\alpha| = \alpha_1 + \dots + \alpha_n$
- $\alpha! = \alpha_1! \cdots \alpha_n!$
- $\bullet \ x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$
- $\partial^{\alpha} f = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_n^{\alpha_n} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}}$

4 Linear Algebra

4.1 Definitions

norm A function $p: V \to \mathbb{R}$ such that

For all $a \in F$ and all $u, v \in V$

- $p(v) \ge 0 \land [p(v) = 0 \iff v = 0]$ (separates points)
- p(av) = |a|p(v) (absolute homogeneity)
- $p(u+v) \le p(u) + p(v)$ (triangle inequality)

inner product A function $\langle x,y\rangle:V\times V\to\mathbb{R}$ such that

For all $x, y, z \in V$ and $c \in \mathbb{F}$.

- $\bullet \ \langle x,y\rangle = \langle y,x\rangle$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\langle cx, y \rangle = c \langle x, y \rangle = \langle x, cy \rangle$
- $\langle x, x \rangle > 0$ if $x \neq 0$

5 Topology

5.1 Definitions

metric A function $d: X \times X \to \mathbb{R}$ such that For all $x, y, z \in X$

- $d(x,y) \geq 0$
- $d(x,y) = 0 \iff x = y$
- d(x,y) = d(y,x)
- $d(x,z) \le d(x,y) + d(y,z)$

 ϵ -neighborhood $\mathbf{U}(x;\epsilon) = \{y | d(x,y) < \epsilon\}$

open set in metric space A set $U \subseteq X$ is said to be open in X if $\forall x \in U \exists \epsilon > 0[\mathbf{U}(x;\epsilon) \subseteq U]$ note that finite intersections and arbitrary unions of open set are open set

closed set in metric space A set contains all its limit point.

note that closed set is complement of open set in topology

5.2 Partition of unity

TODO

6 Measure Theory

6.1 Measure zero

Let $A \subseteq \mathbb{R}^n$. We say A has <u>measure zero</u> in \mathbb{R}^n if for every $\epsilon > 0$, there is a covering Q_1, Q_2, \ldots of A by countably many rectangles such that $\sum_{i=1}^{\infty} v(Q_i) < \epsilon$. If this inequality holds, we often say that the <u>total volume</u> of the rectangles Q_1, Q_2, \ldots is less than ϵ .

6.2 Theorems

 $\{Munkers-11.1\}$

- 1. If $B \subseteq A$ and A has measure zero in \mathbb{R}^n , the so does B.
- 2. Let A be the union of the collection of sets A_1, A_2, \ldots If each A_i has measure zero, so does A.
- 3. A set A has measure zero in \mathbb{R}^n if and only if for every $\epsilon > 0$, there is a countable covering if A by open rectangles $IntQ_1, IntQ_2, \ldots$ such that $\sum v(Q_i) < \epsilon$
- 4. If Q is a rectangles in \mathbb{R}^n then BdQ has measure zero in \mathbb{R}^n .

7 General Calculus

7.1 Definitions

oscillation

Given $a \in Q$ define $A_{\delta} = \{f(x)|x \in Q \land |x-a| < \delta\}$. Let $M_{\delta}(f) = \sup A_{\delta}$, and let $m_{\delta}(f) = \inf A_{\delta}$, define oscillation at f by $\operatorname{osc}(f;a) = \inf_{\delta>0}[M_{\delta}(f) - m_{\delta}(f)]$. f is cts at a iff $\operatorname{osc}(f;a) = 0$

7.2 Extreme Value Theorem

Suppose $f: X \to \mathbb{R}$ is continuous and X is compact, then $\exists x_0 \in X$ such that $\forall x \in X. f(x) \leq f(x_0)$.

7.3 Intermediate Value Theorem

Suppose $E \in \mathbb{R}$ is connected and $f: E \to \mathbb{R}$ is continuous.

Suppose f(x) = a and f(y) = b for some $x, y \in E$ and a < b.

Then $\forall a < c < b \exists$ some $z \in E$ such that f(z) = c.

7.4 Mean Value Theorem

Suppose $\phi: [a, b] \to \mathbb{R}$ is

- continuous at each point of **closed** interval [a, b]
- differentiable at each point of **open** interval (a, b)

Then there exists a point $c \in (a, b)$ such that $\phi(b) - \phi(a) = \phi'(c)(b - a)$.

 \Leftrightarrow

8 Differential Calculus

8.1 Definitions

differentiable f is differentiable at a if there is an n by m matrix B such that

$$\frac{f(a+h) - f(a) - B \cdot h}{|h|} \to 0 \quad \text{as} \quad h \to 0$$

The matrix B is unique.

Directional derivative Given $u \in \mathbb{R}^m$ which $u \neq 0$ define

$$f'(a; u) = \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t}$$

Provide the limit exists.

Partial derivative Define the j^{th} partial derivative of f at a to be the directional derivative of f at a with respect to the vector e_j , provide derivative exists.

$$D_j f(a) = \lim_{t \to 0} \frac{f(a + te_j) - f(a)}{t}$$

8.2 Notations

Df(a): derivative of f at a

f'(a; u): directional derivative of f at a respect to vector u.

 $D_i f(a) : j^{\text{th}}$ partial derivative of f at a.

 f_i : i^{th} component function of f.

 ∇g : gradient of g, $\nabla g = \mathbf{grad}g = \sum_i (D_i g)e_i$

Jf: Jacobian matrix, $J_{ij} = D_j f_i(a)$

8.3 Differentiability Theorems

Theorems Munkers.5.1

If f is differentiable at a then all directional derivative of f at a exist and $f'(a; u) = Df(a) \cdot u$

Theorems Munkers.5.2

If f is differentiable at a then f is continuous at a.

Theorems Munkers.5.3

If f is differentiable at a then $Df(a) = [D_1f(a) \ D_2f(a) \ \cdots \ D_mf(a)].$

Theorems Munkers.5.4

- a. [f is differentiable at a] $\forall i [f_i \text{ is differentiable at } a].$
- b. If f is differentiable at a, then its derivative is the n by m matrix whose i^{th} row is the derivative of the function f_i . $(Df(a))_i = Df_i(a)$

8.4 Continuously Differentiable Functions

A function is C^1 if all of its partial derivatives are continous. A function is C^r if all of its partial derivatives are C^{r-1} .

Munkers 6.1

If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b), then there exists $c \in (a,b)$ such that f(b) - f(a) = f'(c)(b-a).

Munkers 7.3

Let A be open in \mathbb{R}^m ; let $f: A \to \mathbb{R}$ be differentiable on A. If A contains the line segment with end points a and a+h, then there is a point c=a+th with 0 < t < 1 of this line segment such that f(a+h) - f(a) = (Df(c))h.

Munkers 6.2

Let A be open in \mathbb{R}^m . Suppose that the partial derivative $D_i f_i(x)$ of the component function of f exists at each point x of A and are continuous on A. Then f is differentiable at each point of A.

Munkers 6.3

Let A be open in \mathbb{R}^m , let $f: A \to \mathbb{R}$ be a function of class \mathbb{C}^2 . Then for each $a \in A$: $D_k D_j f(a) = D_j D_k f(a)$.

8.5 Chain Rule

Let $A \subset \mathbb{R}^m$. Let $B \subset \mathbb{R}^n$. Let $f: A \to \mathbb{R}^n$ and $g: B \to \mathbb{R}^p$, with $f(A) \subset B$. Suppose f(a) = b. If f is differentiable at a and g is differentiable at b, then the composite function $g \circ f$ is differentiable at a. Furthermore,

$$D(g \circ f)(a) = Dg(b) \cdot Df(a)$$

8.6 Inverse Function Theorem

Let A be open in \mathbb{R}^n . Let $f: A \to \mathbb{R}^n$ be of class C^r .

IF Df(x) is invertible at $a \in A$.

THEN There exists a neighborhood of a such that

- $f|_U$ is injective AND f(U) = V open in \mathbb{R}^n
- the inverse function is of class C^r
- $f^{-1}(y) = [f'(f^{-1}(y))]^{-1}$

8.7 Implicit Function Theorem

Suppose $f: A \to \mathbb{R}^n$ be of class C^r .

Write f in the form f(x, y), for $x \in \mathbb{R}^k$ and $y \in \mathbb{R}^n$.

IF $(a,b) \in A$ AND f(a,b) = 0 AND $\det \frac{\partial f}{\partial y}(a,b) \neq 0$

THEN There exists $B \in \mathbb{R}^k, a \in B$ and a unique $g: B \to \mathbb{R}^n$ such that g(a) = b AND $\forall x \in B. f(x, g(x)) = 0$ AND g is C^r

Munkers 9.1

Let A be open in \mathbb{R}^{k+n} , B be open in \mathbb{R}^k .

Let $f: A \to \mathbb{R}^n$, $g: B \to \mathbb{R}^n$ be differentiable.

Write f in the form f(x, y), for $x \in \mathbb{R}^k$ and $y \in \mathbb{R}^n$.

IF f(x, g(x)) = 0 AND $\frac{\partial f}{\partial y}$ is invertible

THEN $Dg(x) = -\left[\frac{\partial f}{\partial y}(x, g(x))\right]^{-1} \cdot \frac{\partial f}{\partial x}(x, g(x))$

8.8 Taylor's theorem

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is of class C^k on an open convex set S. If $a \in S$ and $a + h \in S$, then

$$f(a+h) = \sum_{|\alpha| \le k} \frac{\partial^{\alpha} f(a)}{\alpha!} h^{\alpha} + R_{a,k}(h),$$

If f is of class C^{k+1} on S, for some $c \in (0,1)$ we have

$$R_{a,k}(h) = \sum_{|\alpha|=k+1} \frac{\partial^{\alpha} f(a+ch)}{\alpha!} h^{\alpha}$$

9 Integral Calculus

Note, Riemann Integral was taught in this class.

Measure Zero

9.1 Definitions

rectangle (in \mathbb{R}^n) $Q = [a_1, b_1] \times [a_2, b_2] \times [a_n, b_n]$

component interval of Q $[a_i, b_i]$

volume of
$$Q$$
 $v(Q) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$

partition (of [a, b]) a finite collection of points of [a, b] includes the points a, b

partition (of Q) n-tuple (P_1, \ldots, P_n)

subinterval(determined by P) OMIT

subrectangle(determined by P) OMIT

mech of P OMIT

refinement OMIT

common refinement OMIT

lower sum $L(f, P) = \sum_{R} m_{R}(f) \cdot v(R)$ where $m_{R}(f) = \inf\{f(x) | x \in R\}$

upper sum $U(f, P) = \sum_{R} M_{R}(f) \cdot v(R)$ where $M_{R}(f) = \inf\{f(x) | x \in R\}$

lower integral $\int_Q f = \sup_P \{L(f, P)\}$

 $\mathbf{upper\ integral\ } \overline{\int_Q} f = \inf_P \{L(f,P)\}$

oscillation TODO

rectifiable set A bounded set $S \in \mathbb{R}^n$ is rectifiable if the constant function 1 is integrable over S. S is rectifiable iff S is bounded and BdS has measure zero

volume of a rectifiable set $v(S) = \int_S 1$

simple region Let C be a compact rectifiable in R^{n-1} ; Let $\phi, \psi: C \to R$ be continuous function such that $\phi(x) \leq \psi(x)$ for $x \in C$. The subset $\{(x,t)|x \in C \land \phi(x) \leq t \leq \psi(x)\}$ is called a simple region in R^n .

9.2 Ignored

• Lemma 10.1: Munker p83.

- Lemma 10.2: Munker p84.
- Corollary 10.5: Munker p84.
- Lemma 13.1: Munker p104.
- Lemma 13.2: Munker p105.
- Lemma 14.3: Munker p114. a simple region is compact and rectifiable.

9.3 Riemann condition

Given: Q a rectangle, $f:Q\to\mathbb{R}$ a bounded function. Then $\int_Q f = \overline{\int_Q} f$ iff given $\epsilon>0$ there exist a partion P of Q for which $\forall \epsilon_{>0} \exists P[U(f,P)-L(f,P)\leq \epsilon]$

Corollary/Theorem: every constant function is integrable.

9.4 Riemann-Lebesgue theorem

A function on a compact interval [a, b] is Riemann integrable if and only if it is bounded and continuous almost everywhere (the set of its points of discontinuity has measure zero, in the sense of Lebesgue measure). [wiki] [Munkers 11.2]

9.5 Munkers 11.3

Let Q be a rectangle in \mathbb{R}^n ; let $f: Q \to \mathbb{R}$; assume f is integrable over Q.

- If f vanishes except on a set of measure zero, then $\int_Q f = 0$.
- If f is non-negative and if $\int_Q f = 0$, then f vanishes except on a set of measure zero.

9.6 Fundamental theorem of Calculus

- If f is continuous on [a, b], and if $F(X) = \int_a^x f$ for $x \in [a, b]$, then F'(x) exists and equals f(x).
- If f is continious on [a,b], and if g is a function such that g'(x)=f(x) for $x\in [a,b]$ then $\int_a^b f=g(b)-g(a)$

9.7 Fubini's theorem

Let $Q = A \times B$, where A is a rectangle in \mathbb{R}^k and B is a rectangle in \mathbb{R}^n . If f is bounded function and integrable over Q, then $\underline{\int_{y \in B} f(x,y)}$ and $\overline{\int_{y \in B} f(x,y)}$ are integrable over A and

$$\int_{Q} f = \int_{x \in A} \int_{y \in B} f(x, y) = \int_{x \in A} \overline{\int_{y \in B}} f(x, y)$$

9.7.1 For simple regions

 $TODO^{[\mathrm{Munkers}\ 14.4]}$

$$\int_{S} f = \int_{x \in C} \int_{t=\phi(x)}^{t=\psi(x)} f(x,t)$$

9.8 Properties of integral

 $TODO^{[\mathrm{Munkers}\ 13.3]}$

9.9 Properties of integral

 $\ref{TODO}A$ set S is rectifiable iff S is bounded and has measure zero boundary. [Munkers~14.1]

9.10 Properties of rectifiable set

 $TODO^{[Munkers\ 14.2]}$

10 Change of Variables

```
Diffeomorphism [wiki]
f: A \to B is a diffeomorphism if f is a bijection AND
f and f^{-1} are of class C^r.
Moreover f is called C^r-diffeomorphism
Change of Variables Theorem ^{\left[17.2\right]}
LET opensets U, V \subseteq \mathbb{R}
     g: U \to V a diffeomorphism
     f: V \to \mathbb{R} be a continuous function
THEN f is integrable over B
     IFF (f \circ g) | \det Dg | is integrable over A
NOTE \int_B f = \int_A (f \circ g) |\det Dg|
Substitution rule ^{[17.1]}
LET I = [a, b], J = [c, d] \subseteq \mathbb{R}
     g: I \to J of class C^1
     f: J \to \mathbb{R} is continuous
IF \forall x \in (a,b) [g'(x) \neq 0]
THEN \int_{g(a)}^{g(b)} f = \int_{a}^{b} (f \circ g) g'
     equivalently \int_{J}f=\int_{I}(f\circ g)|g'|
```

11 Tensors

Let V be a vector space. Define $V^k = \underbrace{V \times \ldots \times V}_k$,

denote all k-tuple of vectors of V.

A function is linear in i^{th} variable if given vector v_j for $j \neq i$ the function defined by ... TODO

multilinear function A function f is multilinear if it is linear in ith variable for each i.

k-tensor/tensor of order k A multilinear function of V^k .

 $\mathcal{L}^k(V)$ The set of all k-tensors on V.

 V^* $\mathcal{L}^1(V)$, dual space of V.

elementary tensor

*TODO*THM26.1 THM26.2

Theorem 26.3

Let V be a vector space with basis a_1, \ldots, a_n . Let $I = (i_1, \ldots, i_n)$ be a k-tuple of integers from set $\{1, \ldots, n\}$. There is a unique k-tensor ϕ_I on V such that for every tuple $J = (j_1, \ldots, j_n)$, such that

$$\phi(a_{j_1}, \dots, a_{j_n}) = \begin{cases} 1 & \text{if } I = J \\ 0 & \text{if } I \neq J \end{cases}$$

The tensors ϕ_I form a basis for $\mathcal{L}^k(V)$.

12 Differential Forms

13 Manifolds

TODO

Gram-Schmidt process

[21.2]

Let W be a k-dimensional linear subspace of \mathbb{R}^n . There is an orthogonal transformation $h: \mathbb{R}^n \to \mathbb{R}^n$ that carries W onto the subspace $\mathbb{R}^k \times 0$ of \mathbb{R}^n .

[21.3]

There is a unique function V that assigns, to each ktuple (x_1, \ldots, x_k) of \mathbb{R}^n , a non-negative number such that:

- 1. If $h: \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal transformation, then $V(h(x_1), \dots, h(x_k)) = V(x_1, \dots, x_k)$
- 2. If y_1, \ldots, y_k belong to the subspace $R^k \times 0$ of R^n , so that $y_i = (x_i, 0)$ for $z_i \in \mathbb{R}^k$ then $V(y_1, \ldots, y_k) = |\det[z_1 \cdots z_k]|$

The function V vanishes if and only if the vectors x_1, \ldots, x_k are dependent. It satisfies the equation $V(x_1, \ldots, x_k) = [\det(X^{tr} \cdot X)]^{\frac{1}{2}}$ where X is the n by k matrix $X = [x_1 \cdots x_k]$

TODOp182, k-dimensional volume

*TODO*p184 THM21.4

13.1 Parametrized Manifold

parametrized-manifold - Y_{α}

Let $k \leq n$, open set $A \subseteq \mathbb{R}^k$, $C^r(r \geq 1)$ function $\alpha : A \to \mathbb{R}^n$. The set $Y = \alpha(A)$, together with the map α , constitute what is called parametrized-manifold, of dimension k.

(k-dimensional) volume of Y_{α}

 $v(Y_{\alpha}) = \int_{A} V(D\alpha)$ (provide the integral exists)

TODOsee 2015-01-23 note

TODOp189 def

14 Lecture Notes

14.1 2015-01-05 Monday

14.1.1 Review

THM: rectifiable LET: $S \subset \mathbb{R}^n$ be bounded THEN: S is rectifiable

IFF ∂S has measure zero, equivalently χ_s is integrable **IDEA**: rectifiable is a property of the boundary of a set. If the boundary has measure zero then the set is rectifiable.

DEFN: volume

LET : $S \subset \mathbb{R}^n$ be bounded and *rectifiable*

THEN: define the volume of S as:

 $V(S) := \int_{\mathcal{S}} 1 := \int_{\mathcal{Q}} \chi_x$

THM: partition of unity

LET: $A \subset \mathbb{R}^n$, $\{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ be an open cover of A

THEN: \exists a collection of C^{∞} functions $\{\psi_{\beta}\}_{{\beta}\in\mathcal{B}}$ s.t

i $\forall x \in A \quad 0 < \psi_{\beta} \le 1 \quad \forall \beta \in \mathcal{B}$

ii $\forall x \in A \quad \exists$ open neighbourhood V of x such that: all but finitely many ψ_{β} vanish on V (locally finite)

iii $\forall x \in A \quad \sum_{\beta \in \mathcal{B}} \psi_{\beta}(x) \equiv 1$

iv $\forall x \in A \quad \exists \alpha \text{ such that}$

 $\operatorname{supp}(\psi_{\beta}) \subset U_{\alpha}$, ie $\{x | \psi_{\beta}(x) \neq 0\} \subset U_{\alpha}$

A collection of functions satisfying i, ii, iii is called a partition of unity

It is subordinate to the open cover $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ if it satisfies condition iv

14.1.2 Open Sets

DEFN: extended integral

LET: $U^{open} \subset \mathbb{R}^n$, $f: U \to \mathbb{R}$ is continuous

IF $f \geq 0$

THEN: define then extended integral of f over U as:

 $\int_{\mathbf{u}} f \qquad := \qquad \sup\{\int_{\mathbf{D}} f \quad | \quad \mathbf{D}$

U where D is compact, rectifiable}

IF f is arbitrary and $\int_{\Pi} f_+$, $\int_{\Pi} f_-$ exist

THEN : define then extended integral of f over U as:

 $\int_{\Pi} f := \int_{\Pi} f_{+} - \int_{\Pi} f_{-}$ where

 $f_{+}(x) = \max\{f(x), 0\} \text{ and } f_{-}(x) = \min\{-f(x), 0\}$

THM: mnk 15.2

LET: $U^{open} \subset \mathbb{R}^n$, $f: U \to \mathbb{R}$ is continuous

Choose an exhaustion of U by compact K_i such that

 $K_1 \subset K_2^{\circ} \subset K_2 \subset K_3^{\circ} \dots$ and $U = \bigcup_{i=1}^{\infty} K_i$

f has an extended integral

IFF the sequence $\int_{\mathbf{k}_i} |f_i|$ is bounded

THEN: $\int_{\mathbf{u}} f = \lim_{i \to \infty} \int_{\mathbf{k}_i} f$

RMK: If $U^{open} \subset \mathbb{R}^n$, then $\int_{\mathbf{u}} f$ refers to the *extended* integral

THM: mnk 15.4

LET: U^{open} is bounded, $f: U \to \mathbb{R}^n$ is bounded and

continuous

THEN:

i the extended integral exists

ii if the ordinary integral exists, then they are equal

THM: mnk 16.5

LET: $U^{open} \subset \mathbb{R}^n$, $f: U \to \mathbb{R}$ is continuous, $\{\psi_i\}$ be a

partition of unity with compact support

THEN: $\int_{\Omega} f$ exists

IFF $\sum_{i=1}^{\infty} \int_{\mathbf{u}}^{3\mathbf{u}} \psi_i |f|$ converges to a finite number

In this case $\int_{\mathbf{u}} f = \sum_{i=1}^{\infty} (\int_{\mathbf{u}} \psi_i f)$

14.2 2015-01-07 Wednesday

Note: this is not finished -_-.

- Diffeomorphism
- Change of Variables
- Substitution Rule

14.3 2015-01-09 Friday

Change of Variables Theorem [17.2]

LET opensets $U, V \subseteq \mathbb{R}$

 $g: U \to V$ a diffeomorphism

 $f:V\to\mathbb{R}$ be a continuous function

THEN f is integrable over B

IFF $(f \circ g) | \det Dg |$ is integrable over A

NOTE $\int_{B} f = \int_{A} (f \circ g) |\det Dg|$

IDEA: The theorem is proved in 5 steps.

- i Let $g: U \to V$ and $h: V \to W$ be diffeomorphisms of open sets in \mathbb{R}^n . Show that if the theorem holds for g and h, then it holds for $g \circ h$. The idea is to show that $\int_W f = \int_V (f \circ h) |\det Dh| = \int_U (f \circ h \circ g) |\det Dh| \circ g| |\det Dg| = \int_U (f \circ h \circ g) |\det (h \circ g)|$
- ii Suppose that for each $x \in A$, there is a neighborhood U of x contained in A such that the theorem holds for the diffeomorphism $g:U\to V$ where V=g(U) and all continues functions $f:V\to\mathbb{R}$ whose supports are compact subsets of V. Then show that the theorem holds for g. This basically means: show that if the theorem holds locally for g and fuctions f having compact support, then it holds for all g and all f. The idea is to find a partition of unity $\{\phi_i\}$ of B with compact support and show that the collection $\{\phi_i \circ g\}$ is a partition of unity on A having compact support. Then use the fact that $\int_B f = \sum_{i=1}^\infty \int_B (\phi_i)(f)$.
- iii Show the theorem holds for n=1. This can be done by showing that the theorem holds for the interiors of all closed intervals contained in A then applying step 2.
- iv We only need to prove the theorem for primitive diffeomorphisms. This is because, when restricted to a small enough neighbourhood, all diffeomorphisms are a composition of primitive diffeomorphisms. Step 1 shows that the validity of the theorem is preserved by composition. Step 2 shows that if the theorem holds on all the small neighbourhoods in A then it holds for all of A.
- v Show that if the theorem holds in dimension n-1, it holds in dimension n. Due to step 4, we only need to prove this for primitive diffeomorphisms. Assume without loss of generality that the primitive diffeomorphism preserves the last component. We can use Fuibini's theorem to reduce this to the n-1 dimensional case.

14.4 2015-01-12 Monday

14.4.1 Torus

Problem: Find the volume of the solid torus given by

$$\{(x,y,z)|(\sqrt{x^2+y^2}-b)^2+2^2\leq a\}$$

When y = 0, $(x - b)^2 + z^2 \le$ is the circle centered at (b, 0, 0) in the (x, z) plane with radius a.

For angle $0 < \varphi < 2\pi$, parametrize the circle by

• $x = b + a\cos\varphi$

• $z = a\sin\varphi$

and for $0 < \rho < a$ and parametrize the disc by

- $x = b + \rho \cos \varphi$
- $z = \rho \sin \varphi$

This defines a diffeomorphism from $(0, a) \times (0, 2\pi) \rightarrow$ disc with slit removed. Now rotate around z axis. For $0 < \theta < 2\pi$:

- $x = (b + \rho \cos \varphi) \cos \theta$
- $y = (b + \rho \cos \varphi) \sin \theta$
- $z = \rho \sin \varphi$

We want $G(\rho, \varphi, \theta) := (x, y, z)$, so $G(\rho, \varphi, \theta) \rightarrow \{(\sqrt{x^2 + y^2} - b)^2 + 2^2 < a\} \setminus (T \cap \{x > 0, y = 0\}) \cup (T \cap \{z = 0 \cap x^2 + y^2 \ge b^2\})$ is a diffeomorphism.

Notice that the set we have removed has measure 0 (First part $\subset \{y=0\}$ which has measure 0 and second part $\subset \{z=0\}$ which has measure 0).

Thus, Vol(T) =volume of the image of G (they differ by a set of measure 0).

So $\chi_T \equiv \chi_{G(R)}$ except on a set of measure 0.

Apply change of variables!

First check if G is a diffeomorphism:

G is a bijection by construction.

$$DG = \begin{bmatrix} \cos\varphi\cos\theta & -\rho\sin\varphi\cos\theta & (b+\rho\cos\varphi)\cos\theta \\ \cos\varphi\sin\theta & -\rho\sin\varphi\sin\theta & (b+\rho\cos\varphi)\sin\theta \\ \sin\varphi & \rho\cos\varphi & 0 \end{bmatrix}$$
$$|DG| = -(b+\rho\cos\varphi)\sin\theta(\rho\cos^2\varphi\sin\theta + \rho\sin^2\varphi)\cos\theta)$$
$$-(b+\rho\cos\varphi)\cos\theta(\rho\cos^2\varphi\cos\theta + \rho\sin^2\varphi)\cos\theta)$$
$$= -(b+\rho\cos\varphi)\rho$$
$$\neq 0$$

Thus G is a diffeomorphism of open sets.

Then by change of variables,

$$\int_{G(R)} 1 = \int_{R} 1|DG| = \int_{(0,a)\times(0,2\pi)\times(0,2\pi)} \rho(b + \rho \cos\theta)$$

Then by Fubini's theorem:

$$\int_{\rho=0}^{a} \int_{0}^{2\pi} \int_{0}^{2\pi} \rho(b + \rho \cos\varphi) = 4\pi^{2} \int_{0}^{a} \rho b = 2\pi^{2} a^{2} b$$

That's the torus!

14.5 2015-01-14 Wednesday

Second test review

14.5.1 Existence of the Integral

DEFN: integral

LET: Q be a rectangle, $f: Q \to \mathbb{R}$ be a bounded function, define:

 $\overline{\int}_{\mathbf{Q}} f := \inf\{U(f, \mathbf{P})\}\$ as the upper integral $\int_{\mathbf{Q}} f := \sup\{L(f, \mathbf{P})\}\$ as the lower integral

IF then the upper and lower sums agree

THEN: f is *integrable* over Q

THM: Riemann Condition

LET: Q be a rectangle, $f: Q \to \mathbb{R}$ be a bbd fn

THEN: upper and lower integral agree

IFF given $\epsilon > 0$ there is a partition P such that:

 $U(f, P) - L(f, P) \le \epsilon$

IDEA: necessary condition for the existence

THM: mnk 11.2

LET : $\mathbf{Q} \subset \mathbb{R}^n, \ f : \mathbf{Q} \to \mathbb{R}$ be a bounded function.

Define D to be the set of points for which f fails to be continuous

THEN : $\int_{O} f$ exists

IFF D has measure zero (f is almost continuous everywhere)

THM: mnk 11.3

LET: $Q \subset \mathbb{R}^n$, $f: Q \to \mathbb{R}$. Assume f is integrable

IF f vanishes except on a set of measure zero

THEN: $\int_{\mathcal{O}} f = 0$

IF f is non-negative and $\int_{\mathcal{O}} f = 0$

THEN: f = 0 almost everywhere

14.5.2 Evaluation of the Integral

THM: Fundamental Theory of Calculus

LET : $f : [a, b] \to \mathbb{R}$ be continuous

IF $F(x) = \int_a^x f(x)$ for $x \in [a, b]$

THEN: $D \int_a^x f = f(x)$

IF g is a function such that $g'(x) = f(x) \ \forall x$

THEN: $\int_a^x Dg = g(x) - g(a)$

THM: Fubini's Theorem

LET: $Q = A \times B$, where $A \subset \mathbb{R}^k$ and $B \subset \mathbb{R}^n$.

 $f: \mathbf{Q} \to \mathbb{R}$ be bdd, write f(x, y) for $x \in \mathbf{A}$ and $y \in \mathbf{B}$.

For each $x \in A$ consider upper and lower integrals

 $\underline{\int}_{y \in \mathcal{B}} f(x, y)$ and $\overline{\int}_{y \in \mathcal{B}} f(x, y)$

 $\overrightarrow{\mathbf{IF}} f$ is integrable over Q

THEN: these two functions are integrable over Q and

 $\int_{\mathcal{Q}} f = \int_{x \in \mathcal{A}} \underline{\int}_{y \in \mathcal{B}} f(x, y) = \int_{x \in \mathcal{A}} \overline{\int}_{y \in \mathcal{B}} f(x, y)$

14.5.3 Integral Over a Bounded Set

THM: mnk 13.5

LET: $S \subset \mathbb{R}^n$ be bounded, $f: S \to \mathbb{R}$ be bounded and continuous function. Define E to be the set of all points $x_0 \in \partial S$ for which the condition $\lim_{x\to x_0} f(x) = 0$ fails

IF E has measure zero

THEN: f is integrable over S

Converse also holds

THM: mnk 13.6

LET: $S \subset \mathbb{R}^n$ be bounded, $f: S \to \mathbb{R}$ be bounded and

continuous function, and $A = S^{\circ}$.

IF f is integrable over S

THEN: f is integrable over A and

 $\int_{\mathcal{S}} f = \int_{\mathcal{A}} f$

14.5.4 Rectifiable Sets

THM: mnk 14.1

LET : $S \subset \mathbb{R}^n$ **THEN** : S is rectifiable

IFF S bounded and ∂S has measure zero

THM: mnk 14.2

Properties of rectifiable sets

i (Positivity). If S is rectifiable, $v(S) \ge 0$

ii (Monotonicity). If S_1 and S_2 are rectifiable with

 $S_1 \subset S_2 \text{ then } v(S_1) \leq v(S_2)$

iii (Additivity). If S_1 and S_2 are rectifiable so are,

 $S_1 \cup S_2$ and $S_1 \cap S_2$

iv Suppose S is rectifiable. Then v(S) = 0 iff S has measure zero

v If S is rectifiable, so is S° and $v(S) = v(S^{\circ})$

vi If S is rectifiable, and $f: S \to \mathbb{R}$ is bounded continuous, then f is integrable over S.

DEFN: simple region

LET: C be a compact and rectifiable set in \mathbb{R}^{n-1} ,

 $\phi, \psi: \mathbb{C} \to \mathbb{R}$ be continuous functions such that

 $\phi(x) \le \psi(x) \ \forall x \in C.$

THEN: $S \subset \mathbb{R}^n$ defined as

 $S := \{(x,t)|x \in C \text{ and } \phi(x) \le t \le \psi x\}$

is a simple region.

THM: Fubini's Theorem for Simple Regions

LET: $S = \{(x,t)|x \in C \text{ and } \phi(x) \leq t \leq \psi(s)\}$ be a simple region in \mathbb{R}^n and let $f: S \to \mathbb{R}$ be a continuous function

THEN: f is integrable over S and

$$\int_{S} f = \int_{x \in c} \int_{t=\phi(s)}^{t=\psi(x)} f(x,t)$$

14.5.5 Extended Integrals

Three definitions of the extended integral:

- i Extended Integral 1
- ii Extended Integral 2
- iii Extended Integral 3

THM: mnk 15.4

LET : \mathbf{U}^{open} is bounded, $f: \mathbf{U} \to \mathbb{R}^n$ is bounded and

continuous **THEN**:

i the extended integral exists

ii if the ordinary integral exists, then they are equal

14.5.6 Change of Variables

DEFN: diffeomorphism

 $f: A \to B$ is a diffeomorphism if f is a bijection AND f and f^{-1} are of class C^r .

THM: Change of Variables

LET: opensets $U, V \subseteq \mathbb{R}$

 $g: U \to V$ a diffeomorphism

 $f:V\to\mathbb{R}$ be a continuous function

THEN: f is integrable over B

IFF $(f \circ g) | \det Dg |$ is integrable over A

RMK: $\int_{B} f = \int_{A} (f \circ g) |\det Dg|$

THM: Substitution Rule

LET: $I = [a, b], J = [c, d] \subseteq \mathbb{R}$

 $g: I \to J$ of class C^1

 $f: J \to \mathbb{R}$ is continuous

IF $\forall x \in (a,b) [g'(x) \neq 0]$

THEN: $\int_{g(a)}^{g(b)} f = \int_{a}^{b} (f \circ g)g'$ equivalently $\int_{I} f = \int_{I} (f \circ g)|g'|$

14.6 2015-01-21 Wednesday

14.6.1 Midterm Review

Extra Practice Problem 7 a) If $f:[a,b]\times[c,d]\to\mathbb{R}$ is continuous, and D_2f is continuous, define $F(x,y)=\int_a^x f(t,y)dt$. Find D_1F and D_2F .

Solution $D_1F = f(x, y)$. Now calculate D_2F .

Fix $y \in [c, d]$ and $y + h \in [c, d]$ and calculate:

$$\frac{F(x,y+h) - F(x,y)}{h} = \int_a^x \frac{f(t,y+h) - f(t,y)}{h} dt$$

 D_2f is continuous $\Longrightarrow D_2f$ is uniform continuous. $\forall t, y, h, \exists c \in (0,1)$ such that:

$$\frac{F(x,y+h) - F(x,y)}{h} = D_2 f(t,y+ch)$$

 $D_2 f$ is uniform continuous $\implies \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{such}$ that $|h| < \delta \implies |D_2 f(t, y + ch) - D_2 f(t, y)| < \varepsilon$.

therefore for $|h| < \delta$

$$\left| \frac{F(x,y+h) - F(x,y)}{h} - \int_{a}^{x} D_{2}f(t,y)dt \right|$$

$$\leq \int_{a}^{x} \left| \frac{f(x,y+h) - f(x,y)}{h} - D_{2}f(t,y) \right| dt$$

$$\leq \int_{a}^{x} \varepsilon dt$$

$$\leq \varepsilon (b-a)$$

Therefore
$$\lim_{h\to 0} \left(\frac{F(x,y+h) - F(x,y)}{h} - \int_a^x D_2 f(t,y) dt\right) = 0$$

So $D_2 F = \int_a^x D_2 f(t,y) dt$

14.7 2015-01-23 Friday

14.7.1 Definition of Volume

Parametrize the manifold $Y = \alpha(A)$.

Define $v(Y) = \int_Y 1 = \int_A v(D_\alpha)$ where $v(D_\alpha)$ = the volume of the parallelopiped determined by columns of $D_\alpha = \sqrt{\det(D_\alpha)^T D_\alpha}$

We need to check if this is a reasonable definition: it must be independent of parametrization.

Suppose $h: \mathbb{R}^n \to \mathbb{R}^n$, h linear such that $(D_h)^T D_h = I$ (in particular, h is an isometry, ie. it preserves distances, areas, ...).

Let
$$z = h(y) = h \circ \alpha(A)$$
.

Then v(Z) = v(Y) since $D(h \circ \alpha) = D_h \cdot D_{\alpha}$.

Suppose $\alpha(x) = y = y + Ax$ for some matrix A (parametrized plane). Then it's true.

Eg.

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 1 & 3 \\ 1 & 1 \end{pmatrix} x$$
$$\alpha(0,0) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
$$\alpha(s,0) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
$$\alpha(0,t) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$

Then the volume of the parallelopiped is $\sqrt{\det(D_{\alpha})^T D_{\alpha}}$.

Triangulate the surface:

Eg. Finding the length of a curve $\gamma:[0,1]\to\mathbb{R}^2$. By our definition, $v(\Gamma)=L(\Gamma)=\int_0^1\sqrt{\det(D_\gamma)^TD_\gamma}dt$

$$D_{\gamma} = \left(\begin{array}{c} \frac{dx}{dt} \\ \frac{dy}{dt} \end{array}\right)$$

$$(D_{\gamma})^{T} D_{\gamma} = \begin{pmatrix} \frac{dx}{dt} & \frac{dy}{dt} \end{pmatrix} \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix}$$
$$= (\frac{dx}{dt})^{2} + (\frac{dy}{dt})^{2}$$
$$= \gamma' \cdot \gamma'$$
$$= ||\gamma'||^{2} \sqrt{\det(D_{\gamma})^{T} D_{\gamma}} \qquad = ||\gamma'(t)||$$

So our definition reduces to $L(\Gamma) = \int_0^1 ||\gamma'(t)|| dt$. Now to evaluate it.

By our definition of integrals, there exists a partition $t_0 = 0, ..., t_n = 1$ such that

$$\sum_{i=1}^{n} ((M_i||\gamma'||) - m_i(||\gamma'||)) \cdot \Delta t_i < \epsilon$$

In this case,
$$L(\Gamma) - \sum_{i=1}^{n} ||\gamma'(t_i)|| \cdot \Delta t_i < \epsilon$$
.

On the other hand, consider the piecewise liner approximations to the image. Find the points $\gamma(t_i)$ and connect the dots.

The length of the piecewise linear approximation is $\sum_{i} \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}$, where

$$\Delta x_i = x(t_i) - x(t_{i-1})$$

$$= x'(c_i) \cdot \Delta t_i \text{ for some } c_i \in (t_i, t_{i-1})$$

$$\Delta y_i = y(t_i) - y(t_{i-1})$$

$$= y'(d_i) \cdot \Delta t_i \text{ for some } d_i \in (t_i, t_{i-1})$$

Now in general, $c_i \neq d_i$. Then,

$$\sum_{i=1}^{n} \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}$$

$$= \sum_{i=1}^{n} \sqrt{(x'(c_i))^2 (\Delta t_i)^2 + (y'(d_i))^2 (\Delta t_i)^2}$$

$$= \sum_{i=1}^{n} \sqrt{(x'(c_i))^2 + (y'(d_i))^2} \cdot \Delta t_i$$

Now use γ is continuous on [0,1]. Thus γ is uniformly continuous. Therefore there exists δ such that $|\Delta t_i| < \delta$ implies that $|c_i - t_i| < \delta$ and $|d_i - t_i| < \delta$ Thus, $|x'(c_i) - x'(t_i)| < \epsilon$ and $|y'(d_i) - y'(t_i)| < \epsilon$.

Thus,

$$\left| \sum_{i=1}^{n} \sqrt{(x'(c_i))^2 + (y'(d_i))^2} \cdot \Delta t_i - \sum_{i=1}^{n} ||\gamma'(t_i)|| \Delta t_i| < \epsilon \right|$$

Thus,

 $|L(\gamma)|$ – length of piecewise approximations $|<\epsilon|$

14.8 2015-01-28 Wednesday

14.8.1 Man-I-Fold

Definition Let k > 0. Suppose M is a subspace of \mathbb{R}^n (where $n \geq k$) having the following property: For each $p \in M$, there is a set V containing p that is open in M, a set U that is open in \mathbb{R}^k , and a continuous map $\alpha: U \to V$ carrying U onto V in a one-to-one fashion, such that:

- 1. α is of class C^r
- 2. $\alpha^{-1}: V \to U$ is continuous.
- 3. $D\alpha(x)$ has rank k for each $x \in U$.

Definition We say that $M \subset \mathbb{R}^n$ is locally a graph around $p \in M$ if

- There exists a reordering of the variables
- There exists a neighbourhood of $A \times B$ of p with A open in \mathbb{R}^k and B open in \mathbb{R}^{n-k} .
- There exists a C^r map $\varphi:A\to B$ s.t. $M\cap (A\times B)=\{(y,\varphi(y))|y\in A\}$ (The graph of φ)

Remark Let $F: A \times B \to \mathbb{R}^{n-k}$ where $F(y,z) = z - \varphi(y)$. Then $M \cap (A \times B) = \{x \in A - B | F(X) = 0\}$ i.e. M is defined implicitly. Note $\frac{\partial F}{\partial z} \neq 0$.

Remark By IFT, if $M \cap (A \times B) = \{(y, z) | F(y, z) = 0\}$ and $\frac{\partial F}{\partial z} \neq 0$, then we can solve $z = \varphi(y)$.

Proposition Let M be a k-dimensional manifold in \mathbb{R}^n . Then M is locally a graph at $p \in M$.

Proof Choose an open set V containing p. Choose an open subset U of \mathbb{R}^k and a function $\alpha: U \to V$ of class C^r .

Then $D\alpha$ has rank $k \implies \exists$ a reordering of the variables $(y,z) \in \mathbb{R}^n$ such that

$$x \to \alpha(x) = (y, z) \to \pi(y, z) = y$$

Where π is a projection function. Then $\pi \circ \alpha$ is locally a diffeomorphism (bijection of rank k). Let $(\pi \circ \alpha) = F^{-1}$.

Therefore $\alpha \circ F : A \to B$ is C^r and $\alpha \circ F(y) = (y, \varphi(y))$ for some $\varphi \in C^r$.

Definition Let $M^k \subset \mathbb{R}^n$ be a manifold of dimension k and regularity r and let $f:M\to\mathbb{R}$ be a function. f is said to be C^q in a neighbourhood of $p\in M$ if $f\circ\alpha$ is C^q where α is the coordinate chart for this neighbourhood.