#### NATIONAL UNIVERSITY OF SINGAPORE

## **EXAMINATION FOR**

(Semester I: 2012/2013)

# EE3331C – FEEDBACK CONTROL SYSTEMS

Nov 2012 - Time Allowed: 2.5 Hours

## **INSTRUCTIONS TO CANDIDATES:**

- 1. This paper contains **FOUR** (4) questions and comprises **SIX** (6) printed pages.
- 2. All questions are compulsory. Answer **ALL** questions.
- 3. This is a **CLOSED BOOK** examination.
- 4. On page 6 of this question paper, the following tables are provided:
  - a) Useful Laplace Transform Rules
  - b) Table of useful Laplace Transforms
  - c) Useful design formulae

Q.1 A closed-loop control system and its root locus plot are shown in Figures Q1-a and Q1-b respectively.



Fig. Q1-a



Fig. Q1-b

(a) The transfer function of the plant is  $G(s) = \frac{s^2 + as + b}{s^3 + cs^2 + ds + e}$ . Find a, b, c, d and e.

[5 marks]

(b) What is the minimum gain, *K*, for the closed-loop system to be stable?

[7 marks]

(c) Determine the gain, K, for which the complex conjugate poles have a damping ratio of 0.5. Find the locations of the complex poles? [Hint: the third pole is located at s = -2.32]

[7 marks]

(d) Find the value of K such that the steady-state error (E(s) = R(s) - Y(s)) to a parabolic signal,  $r(t) = 2t^2$ , is 0.5.

[6 marks]

Q.2 A DC motor control system is shown in Fig. Q2-a, where  $K_1$  and  $K_2 > 0$ .



(a) Sketch the region in the *s*-plane where the complex poles should be located to meet the following specifications: i) the 2% settling time is less than 0.5 seconds, ii) the maximum overshoot less than 5% for a step input.

[5 marks]

(b) Select suitable values of  $K_1$  and  $K_2$  to meet the specifications in Q2(a).

[8 marks]

(c) Sketch the expected output response, y(t), for t > 0, due to step input of magnitude 2. Label the axes and all critical values on your plot.

[5 marks]

(d) Using the values of  $K_1$  from part Q2(b), find the range of values of  $K_2$  such that the closed-loop system has an underdamped response to a step input. Suppose  $K_2$  undergoes a small perturbation:  $K_2 \rightarrow K_2 + \delta K_2$ , what effect does this have on the system response?

[7 marks]

Q.3

(a) Sketch the polar plot for the transfer function  $\frac{K(s-1)}{s(s+2)}$ .

[4 marks]

(b) Draw the Nyquist plot for the system in Fig. Q3-b. Using the Nyquist stability criterion, determine the range of K for which the system is stable. Consider both positive and negative values of K.

[8 marks]



Fig. Q3-b

- (c) A magnetic tape-drive speed control system is shown in Fig. Q3-c. Parameters of different components are,  $J=2\ N.m.sec^2/rad$ ,  $b=1\ N.m.sec$ ,  $\tau_m=1$  sec and K=0.7.
  - i. What is the gain margin of this system?

Hint: 
$$\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left( \frac{A+B}{1-AB} \right)$$

[4 marks]

ii. Estimate the gain crossover frequency from the asymptotic Bode magnitude plot and use it to determine the phase margin. Is this a good system design?

[9 marks]



Fig. Q3-c

Q.4

Consider the open loop transfer function

$$G(s) = \frac{K}{s(s+8)}$$

where, K is the gain of the amplifier.

(a) Select the gain K such that the resulting velocity error constant  $K_v \ge 100 \text{ sec}^{-1}$ . What is the corresponding phase margin?

[6 marks]

(b) Design a compensator such that the phase margin of the compensated system is increased to 50° without compromising the low frequency characteristics.

[16 marks]

(c) What is the gain margin of the compensated system?

[3 marks]

#### **END OF PAPER**

**Some Useful Laplace Transform Rules** 

| Some eserui Lapiace Transform Ruics                            |                                                |  |
|----------------------------------------------------------------|------------------------------------------------|--|
| Transform of derivative, $L\left\{\frac{dy}{dt}\right\}$       | sY(s) - y(0)                                   |  |
| $L\left\{\frac{d^2y}{dt^2}\right\}$                            | $s^2Y(s) - sy(0) - y'(0)$                      |  |
| Transform of integral, $L\left\{\int_0^t y(\tau)d\tau\right\}$ | $\frac{Y(s)}{s}$                               |  |
| Shift in time-domain, $L\{y(t-t_d)u(t-t_d)\}$                  | $Y(s)e^{-st_d}$                                |  |
| Shift in s-domain, $L\{y(t)e^{-at}\}$                          | Y(s+a)                                         |  |
| Final Value Theorem                                            | $\lim_{t\to\infty} y(t) = \lim_{s\to 0} sY(s)$ |  |

**Laplace Transform of Commonly Used Functions** 

| Function f(t)             | Laplace Transform F(s)          | Function f(t)                    | Laplace Transform F(s)     |
|---------------------------|---------------------------------|----------------------------------|----------------------------|
| Unit impulse, $\delta(t)$ | 1                               | Unit step, u(t)                  | $\frac{1}{s}$              |
| Ramp function, t          | $\frac{1}{s^2}$                 | Exponential function, $ke^{-at}$ | $\frac{k}{s+a}$            |
| Sine function, sin(ωt)    | $\frac{\omega}{s^2 + \omega^2}$ | Cosine function, cos(ωt)         | $\frac{s}{s^2 + \omega^2}$ |
| Parabolic function, $t^2$ | $\frac{2}{s^3}$                 |                                  |                            |

Step Response of Underdamped Second Order System

Model of the prototype  $2^{\text{nd}}$  order underdamped system  $G(s) = \frac{\kappa \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$ 

| Maximum overshoot, M <sub>p</sub>                | $M_p = Ke^{-\left(\frac{\pi \zeta}{\sqrt{1-\zeta^2}}\right)}$ |
|--------------------------------------------------|---------------------------------------------------------------|
| Settling time, t <sub>s</sub>                    | $t_{S}=rac{4}{\zeta\omega_{n}}$                              |
| Rise time, t <sub>r</sub>                        | $t_r = \frac{1.8}{\omega_n}$                                  |
| Time of the 1 <sup>st</sup> peak, t <sub>p</sub> | $t_p = \frac{\pi}{\omega_n \sqrt{(1 - \zeta^2)}}$             |