

KOD PESEL

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 20 stron (zadania 1-33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego próbny egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1-23) zaznacz kółkiem. Błędne zaznaczenie przekreśl i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (24-33) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na karcie odpowiedzi wpisz swój numer PESEL.

Marzec 2017

we współpracy z

Czas pracy: 170 minut

Liczba punktów do

uzyskania: 50

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 23. wybierz i przenieś na kartę poprawną odpowiedź.

Zadanie 1.

Pewien towar kosztował 600 zł. Jego cenę obniżono o 15%, a następnie w ramach wyprzedaży sezonowej obniżono o kolejne 10%. Po obu obniżkach towar kosztuje:

A. 450 zł

B. 459 *z*ł

C. 561 *z*ł

D. 621 *z*ł

Zadanie 2.

Liczba $\left(\frac{3+\sqrt{3}}{\sqrt{3}}\right)^2$ jest równa:

A. 4

B. 9

C. $\frac{3+\sqrt{3}}{3}$

D. $4 + 2\sqrt{3}$

Zadanie 3.

Zbiorem wartości funkcji, której wykres jest przedstawiony na rysunku jest przedział:

 $A.\langle -4,5\rangle$

B. (-4,5)

 $\mathbf{C}.\langle -2,3\rangle$

D. (-2,3)

Zadanie 4.

Liczba dodatnich wyrazów ciągu o wyrazie ogólnym $a_n = -2 (n+1)(n-4)$ jest równa:

A. 3

B. 4

C. 5

D. 6

Zadanie 5.

Do prostej należy początek układu współrzędnych oraz punkt P = (-8; 15). Wówczas cosinus kąta nachylenia tej prostej do osi OX jest równy:

 $A. - \frac{15}{17}$

B. $-\frac{8}{17}$

 $C_{\cdot}\frac{8}{17}$

D. $\frac{15}{17}$

Zadanie 6.

Poniżej przestawiony jest fragment wykresu funkcji kwadratowej. Funkcja ta ma wzór:

A.
$$f(x) = -\frac{1}{2}x^2 + \frac{5}{2}x + 2$$

B.
$$f(x) = -\frac{1}{2}x^2 + \frac{5}{2}x - 2$$

C.
$$f(x) = -\frac{1}{2}x^2 - \frac{5}{2}x + 2$$

D.
$$f(x) = -\frac{1}{2}x^2 - \frac{5}{2}x - 2$$

Zadanie 7.

Liczba $32^{\frac{2}{5}} \cdot 16^{-\frac{3}{4}} \cdot \left(0,125^{\frac{1}{12}}\right)^{-4}$ jest równa:

A. 1

B. 4

C. 64

D. 80

Zadanie 8.

Dana jest prosta m o równaniu $y = -\frac{1}{3}x - 2$. Prosta k równoległa do prostej mi przechodząca przez punkt P o współrzędnych P=(-3,-5) ma równanie:

A.
$$y = 3x + 4$$

B.
$$y = -\frac{1}{3}x - 6$$
 C. $y = \frac{1}{3}x - 4$ **D.** $y = -3x - 14$

C.
$$y = \frac{1}{3}x - 4$$

D.
$$y = -3x - 14$$

Zadanie 9.

semestrze otrzymał następujące oceny Janek pierwszym z matematyki: z prac klasowych 2,3,3,4, z kartkówek 5,5,4,4,5,5, z odpowiedzi ustnych 2,3,4. Oceny z prac klasowych mają wagę 0,5, z kartkówek 0,3, z odpowiedzi ustnych 0,2. Średnia ważona (zaokrąglona do dwóch miejsc po przecinku) ocen z matematyki Janka w pierwszym semestrze jest równa:

A. 3,68

B. 3,58

C. 3,25

D. 1,23

Zadanie 10.

Dany jest kąt ABD o mierze 29 ° (rys.). Kąt BCD ma miare:

- **A.** 29°
- **B.** 69°
- **C.** 61° **D.** 58°

Zadanie 11.

Odległość punktu A = (3, -4) od jego obrazu w symetrii względem początku układu współrzędnych jest równa:

A. 6

- **B.** 7
- **C.** 8
- **D.** 10

Zadanie 12.

Wartość wyrażenia $\frac{4 \log_2 2\sqrt{2} + \log_2 \frac{1}{8}}{\log_3 45 - \log_3 5}$ jest równa:

 $A_{\cdot} \frac{3}{2}$

- **B.** 1
- $C_{\frac{8}{9}}$
- **D.** $\frac{9}{2}$

Zadanie 13.

Suma n początkowych wyrazów ciągu (a_n) jest wyrażona wzorem $S_n = n^2 + 3n$. Drugi wyraz tego ciągu jest równy:

A. 16

- **B.** $\frac{3}{2}$
- **C.** 6
- **D.** -9

Zadanie 14.

Symetralna odcinka AB, gdzie A = (-2,4), B = (3,-6) ma równanie:

A.
$$y = \frac{1}{2}x + \frac{3}{4}$$

B.
$$y = -\frac{1}{2}x - \frac{3}{4}$$
 C. $y = \frac{1}{2}x - \frac{5}{4}$ **D.** $y = 2x - 2$

C.
$$y = \frac{1}{2}x - \frac{5}{4}$$

D.
$$y = 2x - 2$$

Zadanie 15.

Zbiorem wszystkich rozwiązań równania -2x(3x+1)(2-3x) = 0 jest:

$$A.\left\{-\frac{1}{3};\frac{2}{3}\right\}$$

B.
$$\left\{-\frac{1}{3}; 0; \frac{2}{3}\right\}$$

$$C.\left\{-2; -\frac{1}{3}; \frac{2}{3}\right\}$$

B.
$$\left\{-\frac{1}{3}; 0; \frac{2}{3}\right\}$$
 C. $\left\{-2; -\frac{1}{3}; \frac{2}{3}\right\}$ **D.** $\left\{-2; -\frac{1}{3}; 0; \frac{2}{3}\right\}$

Zadanie 16.

Kąt nachylenia przekątnej ściany bocznej graniastosłupa prawidłowego trójkątnego do sąsiedniej ściany bocznej przedstawiono na rysunku:

Zadanie 17.

Do wykresu funkcji liniowej należą punkty A=(-1,-5), B=(-3,7), zatem funkcja liniowa ma wzór:

$$\mathbf{A.}\,f(x) = -\tfrac{1}{6}x - 5$$

B.
$$f(x) = -\frac{1}{2}x - 5\frac{1}{2}$$

$$\mathbf{C.}\,f(x) = -6x - 11$$

D.
$$f(x) = -2x + 7$$

Zadanie 18.

Którym wzorem ogólnym przedstawiono ciąg geometryczny?

A.
$$a_n = \left(\frac{1}{3}\right)^n + \left(\frac{1}{2}\right)^n$$
 B. $a_n = \frac{2n-4}{4}$ **C.** $a_n = 5n^2$ **D.** $a_n = \frac{3^n}{5^{n+1}}$

B.
$$a_n = \frac{2n-4}{4}$$

$$\mathbf{C.}\,a_n=5n^2$$

D.
$$a_n = \frac{3^n}{5^{n+1}}$$

Zadanie 19.

Wartość wyrażenia
$$\sqrt{\frac{4cos^230^\circ + tg30^\circ tg60^\circ}{sin^233^\circ + sin^257^\circ}} + tg45^\circ$$
 jest równa:

$$\mathbf{B}.\sqrt{2}$$

D.
$$\frac{2}{\sin 33^{\circ} + \sin 57^{\circ}} + 1$$

Zadanie 20.

Wszystkich liczb naturalnych pięciocyfrowych, w których cyfrą jedności jest 4, cyfra setek jest liczba nieparzystą, a cyfra tysięcy jest liczbą podzielną przez 3 jest:

$$\mathbf{A.9} \cdot 4 \cdot 5 \cdot 9 \cdot 4$$

$$\mathbf{B.}\,9\cdot 4\cdot 5\cdot 10\cdot 1$$

B.
$$9 \cdot 4 \cdot 5 \cdot 10 \cdot 1$$
 C. $10 \cdot 4 \cdot 5 \cdot 10 \cdot 1$ **D.** $9 \cdot 3 \cdot 5 \cdot 10 \cdot 1$

$$\mathbf{D.} 9 \cdot 3 \cdot 5 \cdot 10 \cdot 1$$

Zadanie 21.

Na rysunkach przedstawione są wykresy funkcji f i g.

Wykres funkcji f przekształcono i otrzymano wykres funkcji g, zatem:

A.
$$g(x) = f(x-2) + 3$$

B.
$$g(x) = f(x+2) + 3$$

C.
$$g(x) = f(x-2) - 3$$

D.
$$g(x) = f(x+2) - 3$$

Zadanie 22.

Rozwiązaniem równania $\frac{-2x+6}{x-3} = x$ jest:

A.
$$x_1 = -2$$

B.
$$x_1 = -2$$
, $x_2 = 3$

A.
$$x_1 = -2$$
 B. $x_1 = -2$, $x_2 = 3$ **C.** $x_1 = -3$, $x_2 = 2$ **D.** $x_1 = 3$

$$\mathbf{D} \cdot x_1 = 3$$

Zadanie 23.

Najmniejsza wartość funkcji kwadratowej $f(x) = x^2 - 4x - 5$ w przedziale $\langle -3, -1 \rangle$ jest równa:

B.
$$-2$$

$$C. -9$$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 24. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 24. (0-2)

W trójkącie równobocznym ABC punkt D dzieli bok AC w stosunku |AD|: |DC|=2:3. Oblicz tangens kąta ABD.

Zadanie 25. (0-2)

Rozwiąż nierówność $(x-2)(x-4) \ge 4(x+4) + 3$.

Zadanie 26. (0-2)

Dane są trzy okręgi $o_1, o_2 i o_3$. Okręgi o_1, o_2 są styczne zewnętrznie, jednocześnie są styczne wewnętrznie do okręgu o_3 (patrz rysunek). Promienie okręgów o_1 i o_2 są odpowiednio równe r_1 i r_2 , a środki wszystkich trzech okręgów leżą na jednej prostej. Uzasadnij, że długość odcinka EF jest równa $4\sqrt{r_1r_2}$, gdzie odcinek EF jest cięciwą okręgu o_3 i zawiera się w wspólnej stycznej okręgów o_1 i o_2 .

Zadanie 27. (0-2)

Różnica ciągu arytmetycznego jest równa (-3), a szósty wyraz jest równy 3012. Oblicz S_{2017} .

Zadanie 28. (0-2)

Uzasadnij, że suma trzech kolejnych potęg liczby 2 o wykładnikach całkowitych dodatnich jest podzielna przez 14.

Zadanie 29. (0-2)

Przekątna AC czworokąta ABCD zawiera się w prostej o równaniu x-2y-7=0. Wierzchołki B, D tego czworokąta mają współrzędne B=(8;-6), D=(-3;5). Oblicz współrzędne punktu przecięcia się przekątnych czworokąta ABCD.

Zadanie 30. (0-2)

Ze zbioru liczb {1,2,3,4,5,6,7,8,9,10} losujemy bez zwracania kolejno dwie liczby i od pierwszej odejmujemy drugą. Oblicz prawdopodobieństwo zdarzenia, że otrzymana w ten sposób różnica liczb jest większa od 2.

Zadanie 31. (0-4)

Oblicz pole i obwód trapezu prostokątnego, w którym podstawy mają długości 13 cm i 22 cm, a tangens kąta ostrego jest równy $1\frac{1}{3}$.

Zadanie 32. (0-5)

W ciągu geometrycznym (a_n) dane są iloraz $q=-\frac{1}{2}$ oraz suma $a_{12}+a_{13}+\cdots+a_{24}=\frac{7\cdot(2^{13}+1)}{3\cdot 2^{23}}$. Oblicz x, dla którego ciąg $(a_4,x-a_6,a_8)$ jest ciągiem arytmetycznym.

Zadanie 33. (0-4)

Suma długości wszystkich krawędzi ostrosłupa prawidłowego trójkątnego jest równa 96, a krawędź boczna tworzy z płaszczyzną podstawy kąt, którego cosinus jest równy $\frac{\sqrt{3}}{9}$. Oblicz pole powierzchni bocznej tego ostrosłupa.

PESEL										

WYPEŁNIA ZDAJĄCY

W I FELNIA ZDAJĄC I							
Nr	Odpowiedzi						
zad.	A	В	C	D			
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							

WYPEŁNIA EGZAMINATOR

Nr	Punkty					
zad.	0	1	2	3	4	5
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						

SUMA	
PUNKTÓW	