- 1. $\pi_{student}(student \bowtie_{course \ id=1 \land mark='A'} student_mark)$
- 2. (a) $student \setminus \pi_{sudent}(student \bowtie_{course id=1 \land mark \neq null} student_mark)$
 - (b) $\pi_{student}(student \bowtie_{course id=1 \land mark=null} student_mark)$
- 3. $\pi_{student}(student \bowtie_{lecturer id=1 \land mark \neq null} student_mark)$
- 4. π_{sudent} $id(student) \setminus \pi_{sudent}$ $id(student) \bowtie_{lecturer}$ $id=1 \land mark \neq null$ student_mark)
- 5. $\pi_{sudent,course\ id}(student \bowtie_{mark \neq null} student\ mark) \div \pi_{course\ id}(\sigma_{lecturer\ id=1} student\ mark)$
- 6. $\pi_{sudent_name,course_id}(student \bowtie_{mark=null} student_mark)$
- 7. $\pi_{sudent}(student \bowtie_{lectorer id=1} student_mark)$
- 8. $(\rho_{student_id=s2_id,student_name=s2_name,group_id=s2_gr(\pi_{sudent,course_id}(student\bowtie_{mark\neq null}student_mark)))$ \div $(\rho_{student_id=s1_id,student_name=s1_name,group_id=s1_gr(\pi_{sudent,course_id}(student\bowtie_{mark\neq null}student_mark)))$
- 9. $(\pi_{student\ id,course\ id}(\sigma_{mark \neq null}(student_mark))) \div (\pi_{group\ id,student\ id}(student)))$
- 10. (a) $sum_{to_points(mark),\emptyset}(\sigma_{mark \neq null\&student_id=1}(\pi_{student_id,mark}(mark)))/$ $/count_{mark,\emptyset}(\sigma_{mark \neq null\&student_id=1}(\pi_{student_id,mark}(mark)))$
 - (b) $div_{(sum,count),student_id}(sum_{to_points(mark),student_id}(\sigma_{mark\neq null}(\pi_{student_id,mark}(mark))) \bowtie count_{mark,student_id}(\sigma_{mark\neq null}(\pi_{student_id,mark}(mark))))$
- 11. Для понятности записи обозначим отношение из 10(b) за $avarage_mark$, у которого есть атрибуты $student\ id, points$.

```
div_{(sum,count),group\_id}(sum_{points,group\_id}(\pi_{student\_id,points,group\_id}(avarage\_mark\bowtie student))\bowtie\\ \bowtie count_{points,group\_id}(\pi_{student\_id,points,group\_id}(avarage\_mark\bowtie student))
```

12. $\epsilon_{total=closed+unclosed}(\rho_{count=closed}(count_{mark,student_id}(\sigma mark \neq null(mark)))) \bowtie \rho_{count=unclosed}(count_{mark,student_id}(\sigma mark = null(mark))))$