#### ON GENERATING PLANAR GRAPHS\*

### **David BARNETTE**

University of California, Davis, Calif. 95616, USA

#### Received 6 February 1973

Abstract. A 3-valent graph G is cyclically n-connected provided one must cut at least n edges in or G to separate any two circuits of G. If G is cyclically n-connected but any separation of G by cutting n edges yields a component consisting of a simple circuit, then we say that G is strongly cyclically n-connected. We prove that there exists a graph  $G_0$  such that all strongly cyclically 4-connected planar graphs, other than the graph of the cube and the pentagonal prism, can be generated from  $G_0$  by adding edges. We introduce two operations called adding a pair of edges and replacing a face. We prove that using these two operations together with adding edges we can generate the cyclically 5-connected planar graphs.

#### 1. Introduction

It is a well-known theorem [3] that the planar 3-connected graphs can be generated from the graph S of the simplex by adding edges. That is, if G is a planar 3-connected graph, then there is a sequence  $S = G_1$ ,  $G_2, ..., G_n = G$  of planar 3-connected graphs such that  $G_i$  is obtained from  $G_{i-1}$  by adding an edge e, where either

- (i) the vertices of e are vertices of  $G_{i-1}$ ,
- (ii) one vertex of e lies on an edge of  $G_{i-1}$  and the other is a vertex of  $G_{i-1}$ ,
- (iii) each vertex of e lies on an edge of  $G_{i-1}$ .

If we restrict ourselves to adding edges of type (iii), then we generate the simple (i.e. 3-valent) planar 3-connected graphs. In studying the 4-color conjecture, a special kind of connectivity for simple graphs is important (see [1, Chapter 17]): a simple planar graph G is said to be cyclically n-connected provided no two circuits of G may be separated by removing fewer than n edges. We shall say that G is strongly cyclically n-connected provided G is cyclically n-connected and if two circuits of G are separated by the removal of G edges, then one of the component is

<sup>\*</sup> Research supported by N.S.F. Grant GP-8470.





Fig. 2.

a simple circuit. For brevity, we shall write c n-connected and c\* n-connected for cyclically n-connected and strongly cyclically n-connected, respectively.

Kotzig [2] has shown that the c 4-connected planar graphs can be generated from the graph of the cube by adding edges. In this paper we show how to generate the c\* 4-connected and c 5-connected graphs. For the c 5-connected graphs, we shall need two new operations. The first consists of adding a pair of edges simultaneously across two pentagonal faces as illustrated in Fig. 1.

This operation will be called adding a pair of edges. The second operation consists of replacing a pentagonal face by a pentagonal face surrounded by pentagonal faces as in Fig. 2. This operation will be called replacing a face.

We shall prove two theorems.

**Theorem 1.1.** The  $c^*$  4-connected graphs, with the exception of the graphs of the cube and pentagonal prism, can be generated from the graph  $G_0$  (see Fig. 3) by adding edges.



Fig. 3.

2. Preliminaries 201

**Theorem 1.2.** The c 5-connected graphs can be generated from the graph of the regular dodecahedron by adding edges, adding pairs of edges, and replacing faces.

## 2. Preliminaries

We shall need to talk about the inverses of our generating operations. The inverse operations will be called removing an edge, removing a pair of edges and removing a face. Since we shall find it useful to work in the dual  $G^*$  of G, we shall also need the corresponding inverse operation in  $G^*$ . If G is a planar 3-valent graph, the following facts about  $G^*$  will be useful and are easily verified:

- (1)  $G^*$  is a planar graph all of whose faces are triangles. (Such a graph will be called *triangular*.)
- (2) G is c n-connected if and only if  $G^*$  is n-connected (a graph is said to be n-connected provided it cannot be disconnected by removing fewer than n vertices).
- (3) If G is  $c^*$  n-connected, then any n-circuit C (i.e., circuit of length n) in  $G^*$  without diagonals consists entirely of the neighboring vertices of some vertex v together with the edges joining them. We shall say that C surrounds v, and we shall say that  $G^*$  is  $n^*$ -connected.
- (4) The dual of removing an edge of G is shrinking an edge of  $G^*$  as illustrated in Fig. 4(a). If shrinking an edge e produces a graph which is n-connected ( $n^*$ -connected), we shall say that e is n-shrinkable ( $n^*$ -shrinkable).



Fig. 4.



- (5) The dual of removing a pair of edges of G is shrinking a pair of edges (see Fig. 4(b)).
- (6) The dual of removing a face is *shrinking a pentagon* as illustrated in Fig. 5.

If G is a triangular graph, any circuit C without diagonals which separates the vertex set of G will be called a *separating circuit*. If C is a separating circuit and does not surround a vertex, then C will be called a proper separating circuit. A circuit of length n will be called an n-circuit.

# 3. The generation of c\* 4-connected graphs

Suppose G is the dual of a  $c^*$  4-connected graph. We shall show that G has a  $4^*$ -shrinkable edge, unless G is the dual of the graph of the cube or the dual of the graph  $G_0$ . We consider two cases.

Case 1: G is 5-connected. In this case, we must look for an edge which does not belong to any proper separating 5-circuit. Let  $v_0$  be a 5-valent vertex of G and let its neighbors be  $v_1, ..., v_5$  in cyclic order. We shall suppose that  $v_1v_0$  is an edge belonging to a proper separating 5-circuit  $C_1$ . Without loss of generality, we assume that  $v_0v_3$  is another edge of  $C_1$ . We shall label the other vertices of  $C_1$ , so that  $C_1 = v_0v_1v_6v_7v_3$ . If we assume that  $v_0v_2$  belongs to a proper separating 5-circuit  $C_2$ , then  $C_2$  will have one new vertex  $v_8$  and it must lie in the same region bounded by  $C_1$  in which  $v_2$  lies, for otherwise,  $C_1$  would not be proper.

This gives us two possibilities: either  $C_2 = v_0 v_2 v_8 v_7 v_4$  or  $C_2 = v_0 v_2 v_8 v_6 v_4$  (by symmetry, we may assume that  $v_4$  belongs to  $C_2$ ). In the first case,  $C_2$  must surround  $v_3$  and is not proper. In the second case,  $v_1 v_6 v_4 v_5$  is a 4-circuit and must have a diagonal (due to the 5-con-

nectedness of G), but adding a diagonal across this circuit creates either a 3 or 4-valent vertex. We conclude that G has a  $4^*$ -shrinkable edge.

Case 2: G has a 4-valent vertex  $v_0$ . Suppose G has no  $4^*$ -shrinkable edges. There are now several possibilities, an edge may fail to be  $4^*$ -shrinkable because it belongs to a proper 5-circuit or because it belongs to a 4-circuit which surrounds a vertex. Let the vertex  $v_0$  have neighbors  $v_1, v_2, v_3$  and  $v_4$  in cyclic order.

Case 2(a). The edges  $v_0v_1$  and  $v_0v_2$  both belong to 4-circuits which surround vertices. In this case, G is the graph of the octahedron; its dual is the graph of the cube which is one of the exceptional graphs of our theorem.

Case 2(b). The edge  $v_0v_1$  belongs to a proper separating 5-circuit  $C_1$  while the edge  $v_0v_2$  belongs to a 4-circuit  $C_2$  surrounding a vertex. Let  $C_2 = v_0v_2v_5v_4$ . By symmetry, we may assume that  $C_2$  surrounds  $v_1$  and thus  $C_1 = v_0v_1v_5v_6v_3$ . If either of the circuits  $v_2v_5v_6v_3$  or  $v_4v_5v_6v_3$  has a diagonal, then  $C_1$  would not be proper, thus both of these circuits surround vertices. The graph we now have has a proper 4-circuit  $v_3v_4v_5v_7$ , where  $v_7$  is the vertex surrounded by  $v_2v_5v_6v_3$ , which is a contradiction to the 4\*-connectedness of G.

Case 2(c). Both  $v_0v_1$  and  $v_0v_2$  belong to proper separating circuits. There are two possible ways that these circuits intersect. Let  $C_1 = v_0v_1v_5v_6v_3$  and let  $C_2$  be the other proper separating 5-circuit.

Subcase (i):  $C_2 = v_0 v_2 v_6 v_5 v_4$ . The circuits  $v_1 v_5 v_6 v_2$  and  $v_4 v_5 v_6 v_3$  both must surround vertices, for otherwise  $C_1$  or  $C_2$  would not be proper. This gives us the graph which is the dual of  $G_0$ .

Subcase (ii):  $C_2 = v_0 v_2 v_5 v_7 v_4$ . We consider the circuits  $C_3 = v_1 v_5 v_7 v_4$  and  $C_4 = v_2 v_5 v_6 v_3$ . Both must surround vertices or else  $C_1$  or  $C_2$  would not be proper. Suppose  $C_3$  surrounds  $v_8$  and  $C_4$  surrounds  $v_9$ . The edge  $v_1 v_8$  must belong to a proper separating 5-circuit if it is not  $4^*$ -shrinkable. The only possibility for such a circuit is  $v_1 v_8 v_7 v_3 v_0$ , but if this is a circuit in G, then  $v_2 v_9$  is  $4^*$ -shrinkable.

We have now shown that if G is not the dual of  $G_0$ , or the graph of the cube, then G contains a 4\*-shrinkable edge. One need only check that the graph of the pentagonal prism is the only c\* 4-connected graph which can be generated from the graph of the cube, and no c\* 4-connected graph can be generated from the graph of the pentagonal prism.

As a result of the above, we have Theorem 1.1.

## 4. The generation of c 5-connected graphs

**Lemma 4.1.** Let G be a 5-connected triangular graph with no 5-shrinkable edges. If G is not the graph of the icosahedron, then shrinking a pentagon surrounding v preserves the 5-connectivity of the graph.

**Proof.** Let G' be the graph obtained by shrinking the pentagon (see Fig. 5) and suppose G' is not 5-connected. Then there is a separating 4-circuit C in G' which includes v'. We may assume without loss of generality that C includes  $v_1$  and  $v_3$ . Let  $v_6$  be the fourth vertex of C. Since  $v_1v_2v_3v_6$  is a 4-circuit in G, it must have a diagonal which must be  $v_2v_6$ . We shall now show that  $v_2v_6$  is 5-shrinkable. Suppose not, then  $v_2v_6$  belongs to a separating 5-circuit in G. The only possible such circuits are  $v_6v_2$  abv<sub>4</sub> and  $v_6v_2$   $cdv_5$ , which implies that either  $v_6v_5$  is an edge or  $v_6v_4$  is an edge. Suppose  $v_6v_4$  is an edge, then  $v_6v_1v_5v_4$  is a 4-circuit and must have a diagonal which must be  $v_6v_5$ , but now G is the graph of the icosahedron. The same argument works if we assume that  $v_6v_5$  is an edge.

**Lemma 4.2.** Suppose G is a 5-connected triangular graph (other than the graph of the icosahedron) with four 5-valent vertices as in Fig. 5. Then unless there is a vertex  $v_{11}$  such that  $v_{11}v_1v_1v_1v_2v_4$  (or  $v_{11}v_2v_1v_3v_5$ ) is a separating 5-circuit, we may shrink either the pair  $v_1v_2v_3v_4$  or the pair  $v_2v_3v_4$ ; or we may shrink a pentagon.

**Proof.** Suppose we cannot shrink  $v_{10}v_9$ ,  $v_7v_8$ , then one (possibly both) of the edges is in a separating 5-circuit other than those surrounding  $v_{10}$  and  $v_8$ . By symmetry, we may assume that  $v_{10}v_9$  is in such a circuit C.

Case 1: the circuit C is  $v_3v_9v_{10}v_7v_6$ . In this case,  $v_3v_2v_1v_6$  is a 4-circuit and must have a diagonal. But no matter which way we add the diagonal, either  $v_1$  or  $v_2$  will have valence less than 5 contradicting the 5-connectedness of G.

Case 2: the circuit C is  $v_1v_{10}v_9v_3v_{11}$ , for some vertex  $v_{11}$  different from  $v_1, ..., v_{10}$ . Suppose that  $v_7v_{10}, v_9v_8$  is not shrinkable. As above we may assume that  $v_7v_{10}$  is in a separating 5-circuit C' other than those surrounding  $v_8$  or  $v_{10}$ .

Case 2(a): the circuit C' is  $v_3v_9v_{10}v_7v_6$ . This is the same as Case 1.

Case 2(b): the circuit C' is  $v_2v_{10}v_7v_5v_{12}$ , for some vertex  $v_{12}$  different from  $v_1,...,v_{10}$ . By symmetry, this is the type of circuit mentioned in the hypothesis.



Fig. 6.

Case 2(c): the circuit C' is  $v_2v_{11}v_6v_7v_{10}$ . In this case,  $v_{10}$  is surrounded by 5-valent vertices and we may shrink the pentagon  $v_1v_7v_8v_9v_2$ .

Case 3: the circuit C is  $v_1v_{11}v_4v_9v_{10}$ . This is the type of circuit in the hypothesis.

By the symmetry of Fig. 6, we have exhausted all types of circuits.

**Lemma 4.3.** If Fig. 6 appears in a  $5^*$ -connected triangular graph G, other than the graph of the icosahedron, then one of the pairs of edges  $v_{10}v_9$ ,  $v_7v_8$  or  $v_7v_{10}$ ,  $v_8v_9$  is shrinkable.

**Proof.** Suppose not, then there is a 5-circuit of the type  $v_1v_{10}v_9v_4v_{11}$ . This implies that  $v_1v_{10}v_8v_4v_{11}$  is a proper separating 5-circuit, which contradicts the 5\*-connectedness of G.

**Lemma 4.4.** If G is 5\*-connected, then it contains Fig. 6 as a subgraph, or contains a 5-shrinkable edge.

**Proof.** Let  $v_0$  be any 5-valent vertex of G If there do not exist at least three consecutive 5-valent vertices neighboring  $v_0$ , then one of the edges containing  $v_0$  will not belong to any 5-circuit surrounding a vertex and will thus be a 5-shrinkable edge. If, however, these three 5-valent vertices exist, then we have Fig. 6 (with  $v_0$  corresponding to  $v_8$  and the other three vertices corresponding to  $v_7$ ,  $v_{10}$  and  $v_9$ ).

At this point we have proved Theorem 1.2 for  $c^*$  5-connected graphs. Suppose now that G is not  $5^*$ -connected, that is, that G contains a proper separating 5-circuit. Suppose further that no edge of G is 5-shrinkable.

We shall assume that G is embedded in the plane and we choose a proper separating 5-circuit C that is minimal in the sense that every other proper separating 5-circuit with an edge inside C has at least one vertex outside C.

Lemma 4.5. There is no path of length 2 inside C connecting two non-consecutive vertices of C.

Proof. Let C be the circuit  $v_1v_2v_3v_4v_5$  and assume the path is  $v_1v_0v_3$ . If the circuit  $C' = v_1v_0v_3v_4v_5$  had a diagonal, it would have to be  $v_0v_5$  of  $v_0v_4$ . Assume that it is  $v_0v_5$ . Then the circuits  $v_0v_3v_4v_5$  and  $v_1v_0v_3v_2$  must have diagonals and the only possibilities are  $v_0v_4$  and  $v_0v_2$ , but this implies that  $v_1v_2v_3v_4v_5$  is not proper. Since C is minimal, C' must surround a vertex. But now, when we add the diagonal to  $v_1v_0v_3v_2$ , we have that  $v_0$  has valence 4 which is a contradiction.

Corollary 4.6. Each vertex of C meets at least two edges inside C.

Lemma 4.7. Each edge inside C belongs to a 5-circuit that surrounds a vertex.

**Proof.** Suppose not. Since no edge is 5-shrinkable, there is an edge inside C belonging to a proper separating 5-circuit C'. By Lemma 4.5, C' must have at least two vertices inside C. We may suppose that C' is  $v_6v_1v_7v_8v_3$  with  $v_6$  outside C and  $v_7$  and  $v_8$  inside C.

The circuit  $v_1v_7v_8v_3v_2$  cannot have diagonals because then there would be only one vertex inside C', namely  $v_2$ , and C' would not be proper. By the minimality of C,  $v_1v_7v_8v_3v_2$  must surround a vertex, but now when we add a diagonal to  $v_1v_2v_3v_6$ , we have that  $v_2$  is only 4-valent.

Lemma 4.8. Fig. 6 appears in G. With the four 5-valent vertices on or inside C.

**Proof.** We form a planar graph H consisting of C, everything inside C and a new vertex w outside that is joined to each vertex of C. We now use the following which follows from Euler's equation for triangular planar graph with vertices all of valence 3 or more (see [1, p. 254]):

$$\sum (6-i)v_i = 12,$$

where  $v_i$  is the number of *i*-valent vertices in G. Since no vertex of H has valence less than 5, it follows that  $v_5 \ge 12$  and thus there are at least six 5-valent vertices inside C. Let  $v_0$  be one such vertex inside C. The argument in Lemma 4.4 now gives us the desired subgraph in G (note that H is  $5^*$ -connected).

**Lemma 4.9.** Either  $v_{10}v_9$  and  $v_7v_8$  or  $v_7v_{10}$  and  $v_8v_9$  can be shrunk in G.

**Proof.** Suppose not, then without loss of generality we may assume that there is a path  $v_1v_{11}v_4$  with  $v_{11}$  different from  $v_1, ..., v_{10}$  in G. The circuit  $v_1v_{10}v_8v_4v_{11}$  is a proper separating circuit in G and thus one of its vertices must be outside C. If  $v_1$  is the outside vertex, then  $v_{10}$  and  $v_{11}$  are vertices of C. We consider the possible circuits that could be C. The only possible separating circuits of length 5 containing  $v_{10}$  and  $v_{11}$  but not  $v_1$  are  $v_2v_{10}v_8v_5v_{11}$ ,  $v_2v_{10}v_8v_4v_{11}$ ,  $v_2v_{10}v_7v_6v_{11}$  and  $v_2v_{10}v_7v_5v_{11}$ . In the first two cases, the circuit separates the set  $v_7v_8v_9v_{10}$  which is a contradiction. In the third case, the circuit would have to surround  $v_1$  and would not be proper. In the fourth case,  $v_2v_{11}$  being an edge would make  $v_2v_9v_4v_{12}$  a separating 4-circuit. We conclude that  $v_1$  cannot be the outside vertex, and similarly  $v_4$  cannot be the outside vertex, thus  $v_{11}$  is the outside vertex and  $v_1$  and  $v_4$  are on C.

Suppose  $v_{10}$  is on C. The vertex  $v_8$  cannot be on C because C would have to contain  $v_8v_{10}$  and thus would separate  $v_9$  from  $v_7$ . The vertex  $v_9$  cannot be on C because  $v_{10}v_8v_4$  would be a path of length 2 inside C connecting two non-consecutive vertices of C. Neither  $v_7$  nor  $v_2$  can be on C because C would have diagonals. Now we have, however, that no neighbor of  $v_{10}$  other than  $v_1$  can be on C, a contradiction. Thus we cor clude that  $v_{10}$  is not on C. Similarly,  $v_8$  is not on C.

If  $v_9$  is on C, then  $v_1v_{10}v_9$  is a path of length 2 inside C connecting non-consecutive vertices of C, thus  $v_9$  is not on C, and similarly  $v_7$  is not on C.

Now we have that none of the vertices  $v_7$ ,  $v_8$ ,  $v_4$ ,  $v_3$ ,  $v_5$  and  $v_6$  are not on C.

We cannot have that  $v_2v_4$  is an edge because  $v_3$  would be 3-valent; thus if  $v_2$  is on C, we would have that  $v_2v_9v_4$  is a path of length two inside connecting non-consecutive vertices of C. We conclude that  $v_2$  is not on C and similarly  $v_5$  is not on C.

We cannot have that  $v_1v_3$  is an edge because  $v_2$  would be only 4-valent. Now if  $v_3$  is on C, then  $v_1v_2v_3$  would be a path of length two inside C (note that  $v_2$  cannot be outside C when it is joined to  $v_{10}$  inside C) joining non-consecutive vertices of C. Thus  $v_3$  and similarly  $v_6$  are not on C.

We now have that the graph in Fig. 6 lies inside C except for the vertices  $v_1$  and  $v_4$  which lie on C. Let  $v_{12}$  be the vertex of C that is joined to  $v_1$  and  $v_4$ . The circuit  $v_{12}v_1v_6v_5v_4$  has no vertices outside C and thus must surround a vertex or have diagonals. If it has diagonals, then either  $v_6$  or  $v_5$  will have valence less than 5. If it surrounds a vertex, then  $v_6$  will be 4-valent. Thus we reach a contradiction, which completes the proof of Theorem 1.2.

Added in proof. Theorem 1.2 has been proved independently by Jean Butler (in: A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs, to appear).

#### References

- [1] B. Grünbaum, Convex Polytopes (Wiley, New York, 1967).
- [2] A. Kotzig, Regularly connected trivalent graphs without non-trivial cuts of cardinality 3, Acta. Fac. Rerum Natur. Univ. Comenian. Math. Publ. 21 (1968), 1-14 (1969).
- [3] E. Steinitz and H. Rademacher, Vorlesungen über die Theorie der Polyeder (Berlin, 1934).