5. The Riemann Integral

5.1 The Riemann integral

A partition P of an interval [a,b] is a finite set of real numbers $\{x_0,x_1,...,x_n\}$ such that $a=x_0< x_1<...< x_n=b$, we write $\Delta x_1=x_i-x_{i-1}$.

Let $f:[a,b] o\mathbb{R}$ be a bounded function, and P be a partition of [a,b]. Define

$$m_i = \inf\{f(x) : x \in [f_{i-1}, f_i]\}$$

$$M_i = \sup\{f(x) : x \in [f_{i-1}, f_i]\}$$

lower Darboux sum $L(P,f) = \sum_{i=1}^n m_i \Delta x_i$

upper Darboux sum $U(P,f) = \sum_{i=1}^n M_i \Delta x_i$

Prop. (Darboux sums are bounded) Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Let $m,M\in\mathbb{R}$ be such that $m\le f(x)\le M$ for all $x\in[a,b]$. Then for every partition P of [a,b], we have $m(b-a)\le L(P,f)\le U(P,f)\le M(b-a)$.

Pf.
$$m(b-a)=m(\sum_{i=1}^n \Delta x_i)=\sum_{i=1}^n m\Delta x_i \leq \sum_{i=1}^n m_i \Delta x_i \leq \sum_{i=1}^n M_i \Delta x_i$$

As the sets of lower and upper Darboux sums are bounded, we define

$$\int_a^b f(x)dx = \sup\{L(P, f) : P \text{ is a partition of } [a, b]\}$$

$$\overline{\int_a^b} f(x) dx = \inf \{ U(P, f) : P \text{ is a partition of } [a, b] \}$$

Let $P=\{x_0,x_1,...,x_n\}$, $\tilde{P}=\{\tilde{x_0},\tilde{x_1},...,\tilde{x_n}\}$ be partition of [a,b]. We set \tilde{P} is a refinement of P if as sets $P\subset \tilde{P}$.

Example:
$$P = \{0, \frac{1}{2}, 1\}$$
, $\tilde{P} = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$

Then $L(\tilde{P},f) \geq L(P,f)$ and $U(\tilde{P},f) \leq U(P,f)$.

Pf.
$$x_0 = ilde{x}_0$$
, $x_n = ilde{x}_l$, $x_j = ilde{x}_{ ilde{k}_i}$, $j = 0, 1, ..., n$

$$L(P,f) = \sum_{j=1}^n m_j \Delta x_j \leq \sum_{j=1}^n \sum_{p=k_{i-1}+1}^{k_j} ilde{m}_p \Delta ilde{x}_j = \sum_{j=1}^l ilde{m}_j \Delta ilde{x}_j = L(ilde{P},f)$$

Let $f:[a,b]\to\mathbb{R}$ be a bounded function. If $\underline{\int_a^b}f(x)dx=\overline{\int_a^b}f(x)dx$, we say f is Riemann integrable. We denote the set of Riemann integrable functions on [a,b] as $\mathcal{R}(a,b)$.

If
$$f\in\mathcal{R}$$
, then $\int_a^bf(x)dx:=\int_a^bf(x)dx=\overline{\int_a^b}f(x)dx$. We call this the Riemann integral of f .

Prop. Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Then f is Riemann integrable if for every $\epsilon>0$, there exists a partition P of [a,b] such that $U(P,f)-L(P,f)<\epsilon$.

Pf.
$$0 \leq \overline{\int_a^b} f(x) dx - \int_a^b f(x) dx \leq U(P,f) - L(P,f) < \epsilon \ riangleq \int_a^b f(x) dx = \overline{\int_a^b} f(x) dx$$

5.2 Properties of the integral

Additivity.

Lemma. (Additivity of Darboux sum) Suppose a < b < c and $f:[a,b] \to \mathbb{R}$ is a bounded function. Then $\underline{\int_a^c f(x) dx} = \underline{\int_a^b f(x) dx} + \underline{\int_b^c f(x) dx} \text{ and } \overline{\int_a^c f(x) dx} = \overline{\int_a^b f(x) dx} + \overline{\int_b^c f(x) dx}.$ Pf. $\underline{\int_a^c f(x) dx} = \sup\{L(P,f): P \text{ is a partition of } [a,c]\}$ $= \sup\{L(P,f): P \text{ is a partition of } [a,c], b \in P\}$ $= \sup\{L(P_1,f) + L(P_2,F): P_1 \text{ is a partition of } [a,b], P_2 \text{ is a partition of } [b,c]\}$ $= \sup\{L(P_1,f): P_1 \text{ is a partition of } [a,b]\} + \sup\{L(P_1,f): P_2 \text{ is a partition of } [b,c]\}$ $= \int_a^b f(x) dx + \int_b^c f(x) dx$

Prop. Let a < b < c. A function $f:[a,b] \to \mathbb{R}$ is Riemann integrable $\iff f$ is Riemann integrable on [a,b] and [b,c]. If f Riemann integrable, then $\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$. Cor. If $f \in \mathcal{R}[a,b]$ and $[c,d] \subset [a,b]$, then the restriction $f|_{[c,d]}$ is in $\mathcal{R}[c,d]$.

Linearity.

Prop. Let f and g in $\mathcal{R}[a,b]$ and $lpha\in\mathbb{R}.$ Then

1.
$$lpha f$$
 is in $\mathcal{R}[a,b]$ and $\int_a^b lpha f(x) dx = lpha \int_a^b f(x) dx$

2.
$$f+g$$
 is in $\mathcal{R}[a,b]$ and $\int_a^b (f(x)+g(x))dx=\int_a^b f(x)dx+\int_a^b g(x)dx$

Monotonicity.

Prop. Let $f,g:[a,b] o\mathbb{R}$ be bounded, and $f(x)\leq g(x)$ for all $x\in[a,b]$. Then $\underline{\int_a^b f(x)dx}\leq\underline{\int_a^b g(x)dx}$ and $\overline{\int_a^b f(x)dx}\leq\overline{\int_a^b g(x)dx}$ Furthermore, if $f,g\in\mathcal{R}[a,b]$, then $\int_a^b f=\int_a^b g$.

Refined forms of continuity

Def. Let $S \subset \mathbb{R}$. $f: S o \mathbb{R}$.

We say f is uniformly continuous if for all $\epsilon>0$, there exists $\delta>0$ such that for all $x,y\in S$ with $|x-y|<\delta$,

$$|f(x) - f(y)| < \epsilon$$

f is Lipschitz continous if there exists $K \in \mathbb{R}$ such that for all $x,y \in S$

$$|f(x) - f(y)| \le K|x - y|$$

We call K a Lipschitz constant.

Hierarchy of continuity.

For $c \in S$,

f differentiable at $c \rightarrow f$ continuous at c

For an interval $I \subset \mathbb{R}$. $f: I \to \mathbb{R}$.

differentiable + bounded derivative → Lipschitz continuous → uniformly continuous → continuous

For a closed and bounded interval $f:[a,b] o \mathbb{R}$

continuous derivative → bounded derivative

uniformly continuous \iff continuous

Prop. uniformly continuous → continuous

Pf. Let $c \in S$, $\epsilon > 0$ be arbitrary

uniformly continuous
$$\exists \delta > 0$$
: $\forall x,y \in S$ with $|x-y| < \delta$, $|f(x) - f(y)| < \delta$

Take
$$y=c$$
. $orall x\in S$ with $|x-c|<\delta$, $|f(x)-f(c)|<\delta$

Claim: $f:(0,1) o \mathbb{R}$, $f(x)=rac{1}{x}$ is continuous but not uniformly continuous

Prop. $f:[a,b] o \mathbb{R}$, continous o uniformly continuous

Prop. f differentiable + f' bounded \rightarrow Lipschitz continuous

Claim: $f:[-1,1]\to\mathbb{R}$, f(x)=|x| is Lipschitz continuous but not differentiable

Prop. Lipschitz continuous → uniformly continuous

Pf. Lipschitz continuous
$$\exists K \in \mathbb{R}: \forall x,y \in S, |f(x)-f(y)| \leq K|x-y|$$

Let
$$\epsilon>0$$
 be arbitrary. Take $\delta=\frac{\epsilon}{K}$. $\forall x,y\in S$ with $|x-y|<\delta$, $|f(x)-f(y)|\leq K|x-y|< K\cdot \delta=K\cdot \frac{\epsilon}{K}=\epsilon$

Claim: $f:[0,1] o \mathbb{R}$, $f(x) = \sqrt{x}$ is uniformly continuous but not Lipschitz continuous.

Lemma. If $f:[a,b] o\mathbb{R}$ is continuous, then it is Riemann integrable.

Pf. $f:[a,b]
ightarrow \mathbb{R}$, continous ightarrow uniformly continuous

Let
$$\epsilon>0$$
 be arbitrary. $\exists \delta>0$: $\forall x,y\in [a,b]$ with $|x-y|<\delta$, $|f(x)-f(y)|<rac{\epsilon}{b-a}$

$$egin{aligned} \overline{\int_a^b} f - \underline{\int_a^b} f &\leq U(P,f) - L(P,f) \ &= (\sum_{i=1}^n M_i \Delta x_i) - (\sum_{i=1}^n m_i \Delta x_i) \ &= \sum_{i=1}^n (M_i - m_i) \Delta x_i \ &< rac{\epsilon}{b-a} \sum_{i=1}^n \Delta x_i \ &= rac{\epsilon}{b-a} (b-a) = \epsilon \end{aligned}$$

$$\overline{\int_a^b} f = \underline{\int_a^b} f$$
 $ightarrow$ Riemann integrable

5.3 Fundamental theorem of calculus

First form of the fundamental theorem of calculus. Let $F:[a,b] o \mathbb{R}$ be a continuous function, differentiable on (a,b). Let $f\in \mathcal{R}[a,b]$ be such that $f(x)=F'(x), \, \forall x\in (a,b).$ Then $\int_a^b f=F(b)-F(a)$.

Pf. Let $P = \{x_0, ..., x_n\}$ be an arbitrary partition of [a, b]. For each inverval $[x_{i-1}, x_i]$, by MVT,

$$\exists c_i \text{ s.t. } F(x_i) - F(x_{i-1}) = F'(c_i)(x_i - x_{i-1}).$$

$$m_i \leq f(c_i) \leq M_i
ightarrow m_i \Delta x_i \leq F(\underline{x_i}) - F(x_{i-1}) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f) \leq F(b) - F(a) \leq M_i \Delta x_i
ightarrow L(P,f)
ightarrow$$

$$U(P,f)
ightarrow rac{\int_a^b}{f} f \leq F(b) - F(a) \leq \overline{\int_a^b} f
ightarrow \int_a^b f = F(b) - F(a)$$

Second form of the fundamental theorem of calculus. Let $f \in \mathcal{R}[a,b]$. Define

$$F(x) = \int_a^x f(x) dx$$
.

Then

1. F is Lipschitz continuous on [a,b].

2. If f is continous at $c \in [a,b]$, then F is differentiable at c, F'(c) = f(c).

Pf. Since $f \in \mathcal{R}[a,b]$, it is bounded, then $\exists M>0$: $orall x \in [a,b], |f(x)| \leq M$

Suppose
$$x,y\in [a,b]$$
 with $x>y$, then $|F(x)-F(y)|=|\int_a^x f(x)dx-\int_a^y f(x)dx|=|\int_x^y f(x)dx|\leq M|x-y|$ o Lipschitz continuous

Suppose f is continous at c,

$$orall \epsilon > 0$$
, $\exists \delta > 0$: $orall x \in [a,b]$ with $|x-c| < \delta$, $|f(x) - f(c)| < \epsilon$

$$o f(c) - \epsilon < f(x) < f(c) + \epsilon$$

If
$$x>c$$
, $(f(c)-\epsilon)(x-c)<\int_c^x f(x)<(f(c)+\epsilon)(x-c)$; If $x< c$, the inequalities are reversed. Therefore, if $x\neq c$, $f(c)-\epsilon\leq \frac{\int_c^x f(x)}{x-c}\leq f(c)+\epsilon$

since
$$rac{F(x)-F(c)}{x-c}=rac{\int_a^x f(x)-\int_a^c f(x)}{x-c}=rac{\int_c^x f(x)}{x-c}$$
 $ightarrow$ $|rac{F(x)-F(c)}{x-c}-f(c)|\leq \epsilon$ $ightarrow$ $F'(c)=f(c)$