

产业链和生态

- CPU芯片产业链
- CPU主流生态体系
- CPU竞争格局
- 国产化发展情况

CPU芯片产业链

产业链的上游基本被国外公司垄断,管制新规将加速成熟制程制造设备及材料端国产化趋势,但当前整体国产化率仍处于低位

- EDA技术覆盖从前端到后端的逻辑设计、仿真验证、综合、版图设计,工艺等各个环节
- IP核设计:接口IP,存储IP和功能
 性IP
- ➤ EDA行业存在高度垄断,Synopsys、 Cadence及MentorGraphics垄断 了我国95%、全球65%的市场份额

- 晶圆制造材料: 硅片、特种气体、 掩膜版、光刻胶、湿电子化学品、 靶材、抛光液;
- 封装材料: 封装基板、引线框架、 键合丝、包封材料、陶瓷基板、 芯片粘接材料等
- 制程的不断缩小推动<mark>硅片向大尺寸</mark> 发展,新需求集中在8英寸、12英寸, 当前<mark>硅片主要被日本信越、SUMCO</mark> 及中国台灣环球晶圆等垄断

- 制造关键设备:光刻机、蚀刻机、 镀膜、清洗、离子注入设备等
- **制程工艺微缩**: 28nm, 14nm, ..., 3nm, 2nm
- 美国AMAT、荷兰ASML、东京电子垄断了全球半导体设备市场,美、荷、日相继加码制裁,聚焦14nm以下先进制程,国产化率仍不足20%
- ➤ 最先进制程被Intel、台积电、三星 等公司垄断,已进入3nm时代

先进封装技术:

- FC、WLP、2.5D/3D堆叠
- 测试技术:

设计验证,过程工艺测试,晶圆测试,成品测试

 长电科技、通富微电、华天科技、 晶方科技等国内企业技术逐步接近 国际水平,并已可以与国际企业展 开全面竞争

来源: https://pdf.dfcfw.com/pdf/H3_AP202304131585440417_1.pdf?1681466433000.pdf

生态体系决定CPU能走多远

软硬件生态体系是CPU产业化的关键,X86生态最成熟;ARM生态嵌入式和手机市场成熟,服务器市场稍弱;RISC-V当前生态 初具规模,正在加速发展

面向开发者

必备:编译工具链、调试工具、 模拟器、OS操作系统、核心软件

库

持续做: 更多主流编程语言的支持、更多的开发工具、编程框架、参与开源社区,贡献开源项目、建立开发者社区.

面向应用者

根据应用领域,提供应用框架与软件。

联合开源社区,操作系统公司 或者ISV软件公司,应用框架和 软件的移植与优化

Wintel生态联盟,历史长、强大的市场占有率、庞大的软件生态系统、丰富的开发工具和生态伙伴

A-A生态,嵌入式和手机市场占有率最高,生态系统、开发工具和生态伙伴众多;华为鲲鹏生态建设,开启国内ARM服务器产业新格局

市场份额已经相对较小,主要应用于嵌入式系统和网络设备中。MIPS架构的生态系统存在着数量不足和功能不完善的问题

逐步完善,多个RISC-V开源版本及商用IP诞生;科技巨头和初创公司纷纷布局;行业应用纷纷落地;基础软件已经基本完善,中间件和开放应用层移植和适配正在开发中,尚需时间

CPU三足鼎立逐渐形成

X86具有高性能、高功耗特点,凭借先发优势建立了专利技术壁垒、坚固的生态系统和通用标准,几乎占据整个计算机和服务器处理器市场 ARM综合性能上不及x86,但高并发、低功耗、高集成的优势在移动端和物联网市场占据主导地位,不断挑战计算机和服务器领域X86地位 RISC-V 开源、低成本、低功耗、可定制化的优势全方位覆盖物联网场景需求,正在朝更高性能的移动、PC和服务器CPU市场进军

应用场 景	CPU技术特点	主流操作 系统	主流厂家	挑战者			
服务器	 单颗处理器核心数20核以上居多,指令集功能齐全 支持多路2/4/8一致性互联 片上缓存容量大,内存通道数多,高端内存、可靠性高 性能高、功耗高 微结构复杂、制造工艺先进 	Windows Server、 Unix、 Linux	X86: Intel、 AMD、海 光、澜起	ARM:安培、英伟达、华为、 飞腾 RISC-V: Ventana、Sifive、算 能、赛昉、平头哥			
计算机 (台式 机、笔 记本)	 单颗处理器核心数一般4/8核居多,指令集功能较齐全,主要单路形式 IO接口功能齐全 内存通道1-2个,内存成本低,容量要求低 性能和功耗较平衡,功耗一般在100w以下 微结构复杂、制造工艺先进 	Windows	X86: Intel、 AMD、兆 芯	ARM: 苹果、高通、飞腾 RISC-V: 赛昉、平头哥			
移动终端	 单颗处理器核心数一般4/8核居多,指令集功能较齐全,主要单路形式 内存成本低,容量要求低 功耗要求严格,关注能效比、低功耗设计 微结构较复杂、制造工艺先进 	Android iOS	ARM:高 通、联发科、 三星、苹果	RISC-V: Sifive、赛昉、平头 哥			
嵌入式 设备	处理器一般采用SOC方案, CPU内部集成丰富的外围设备, 不同应用领域不同规格功耗要求苛刻, 功耗一般较低	系统多样	ARM:高 通、联发科、 三星	RISC-V:平头哥、晶芯科技、 芯来科技			

X86、ARM 和RISC-V 三足鼎立初步形成

当前90% 移动设备 (手机、 平板等) CPU芯片选择 ARM架构; 预估至2025年Arm架构服 务器渗透率达22%; Arm 筆记本电脑将在五年 当前出货量达到100亿颗, 是ARM出货量的 4%; 预估到2025年 RISC-V 在 loT市占有率将达28%,在工 业市占率将达12%,在汽车 市占率将达10%。

内市占率达 25%

CPU全球竞争格局1: X86 Intel、AMD双巨头主导

全球CPU市场继续呈现Intel和AMD巨头垄断格局,英特尔继续在服务器、计算机 CPU市场占据主导地位 AMD在服务器、计算机CPU市场上一直在挑战英特尔,预计服务器市场AMD市场将逐步增加,笔记本市场ARM份额将逐步增加

Intel

- 内核数60;新品上市推迟
- 近年工艺制程延缓,正发力赶超

AMD

- 高内核高性能96核,台积电最新制程;加速产品迭代
- 性价比高;微软、谷歌30%订单

ARM

- 功耗低,单位面积内核数更多,性能大幅提升
- 大厂支持:亚马逊、阿里、微软、谷歌、苹果...

■Intel ■ AMD ■ ARM

CPU全球竞争格局2: ARM异军突起

基于ARM V9架构Neoverse处理器性能已接近Intel和AMD处理器,且有望保持每年25~30%的性能提升,逐步渗透到服务器领域随着苹果 Mac产品线全面切入Arm架构,**Arm芯片在PC端的应用,已成为了产业关注的焦点**,高通以及国内等厂商开始奋起直追

ARM 服务器CPU重点参与厂商							
	主流厂家	产品	描述				
国外	NVIDIA	Grace	Arm v9 架构Neoverse N2核,采用 chiplet设计; 4nm 144核、NVLink- C2C 技術; DDR5 、PCIE5.0,CXL2.0				
	AWS	Graviton3	Arm v9 架构Neoverse N2核,采用 chiplet设计;5nm,64核、DDR5、 PCIE5.0				
	Ampere	Altra Max	基于ArmV9 Neoverse N1 ,7nm 128cores PCle4 和 DDR4				
		Ampere One	(5月发布,架构未公开) 5nm , 192 核,PCle5 和 DDR5				
国内政策	华为	鲲鹏	基于ARMV8架构,下一代国产制程				
红利型	飞腾 腾云		基于ARMV8架构,下一代国产制程				
国内自产 自用型	阿里	倚天	Arm v9 架构Neoverse N2核 ,下一代 未知				
国内纯商 初创公司 已涌现了十几家新公司,包括鸿钧微、此芯、遇贤业型 大部分处于开发产品早期阶段,未来两年才有产品							

ARM 计算机CPU重点参与厂商						
	主流厂家	产品	描述			
国外	苹果 M1,M2, M3		M1芯片跑分性能已与11代酷睿i7接近 M2芯片5nm工艺,相比上一代CPU性能提升 18%及35%GPU性能提升 M3 12内核,3nm工艺,年底或明年初推出			
	高通	骁龙	对Windows on Arm看好,骁龙8CX处理器已 经发展三代,预计2024年,搭载骁龙芯片的 Windows PC将在市场上迎来拐点。			
	微软	自研,预计 明年推出	准备将 Windows 12 为其 Arm 芯片进行优化,以在性能、效率等方面赶超苹果。			
	联发科	Kompanio SoCs	为Windows on Arm笔记本电脑开发			
国内	联想	高通骁龙 8CX处理器	2022年2月份发布首款搭载 Arm 处理器的 ThinkPad 笔记本			
	华为		MateBook E Go搭载骁龙 8cx Gen 3 芯片			

• 据Counterpoint Research数据: 苹果在 2022 年以 90% 的份额主导了 Arm 笔记本电脑市场。2024 年至 2025 年,高通和联发科的解决方案在 Arm 笔记本电脑上的同比增长可能超过 50%。

CPU全球竞争格局3: RISC-V后起之秀

- 据统计RISC-V全球出货量达到**100亿颗**,中国公司占50%以上,主要应用在嵌入式领域场景
- Semico预测,到2025年采用RISC-V架构的芯片数量 将增至**624亿颗**,并进入包括计算机,消费者,通讯, 运输和工业市场在内的细分市场

相比ARM架构的出货量还存在差距,Arm架构芯片累计总出货已达 2500亿片,但增长速度超过ARM同期

• RISC-V正在全球快速崛起,成为不少头部**科技企业**重点发力方向

RISC-V CPU重点参与厂商								
	主流厂家	产品	IP核	描述				
国外 SOC	Ventana	Veyron-V1	自研内核	2023年终量产,采用5nm,Chiplet 设计				
	Intel	HorseCreek	SiFive P550 内核	样品,集sifive,英特尔及EAD厂家 IP大SOC				
	Google	Intelligence X280	已量产,宣布android将支持RISC-V					
	其他	NVIDIA、Wes	NVIDIA、Western Digital、高通、Meta					
国内	阿里	含光800	平头哥内核	已量产并应用于数据中心				
SOC	赛昉	JH8100	自研	研发中, 笔电应用				
	算能	SG2042	平头哥内核	2023年发布,已量产				
	其他	华为海思、兆易创新、华米科技、全志科技、格兰仕、泰凌微、中科院、 中科昊芯、库瀚、晶芯多家公司布局						
国内处	平头哥	玄铁家族C/E/R系列处理器核IP						
理器核 IP	芯来	N200/300/600/900系列; NX600/900系列; UX600/900系列等11 款型号处理器核IP						
	赛昉	昉·天枢系列处理器内核IP,重点高性能计算						

RISC-V除了**中国,欧盟、俄罗斯、印度**等也非常重视

RISC-V持续向高端市场迈进

最高性能相当 AMD EPYC Millan7763 AWS G3 (Neovers V1)

- 截至2022年末,我国大约有50款不同型号的 国产RISC-V芯片量产,应用场景集中在 MCU、电源管理、无线连接、存储控制、物 联网等中低端场景;
- 目前已有多家创新企业计划在2023年发布对标64核高性能的服务器级处理器,2023年RISC-V正式步入高性能计算场景,应用领域也有望从专业应用场景逐步拓展到通用计算场景,生态和性能有待完善,后续持续跟踪。

国产主流CPU竞争格局:任重道远

- . 国内CPU目前形成了ARM、X86、自研三大流派,以及华为、飞腾、龙芯、海光、兆芯、申威六大品牌的格局
- . **在可控程度上**, 申威、龙芯>飞腾、鲲鹏>海光、兆芯, 但X86和ARM受控, 未来发展大概率受限
- . 性能上,现有海光、鲲鹏产品在芯片性能方面稍好,但至少落后Intel/AMD的1~2代

厂家	架构	背景	授权层级	优势	劣势	代表产品	覆盖领域	应用市场	最小制程
海思	ARMv8	华为	指令集授权	自主化程度更高,ARM服务 器芯片性能最高	兼容性和生态需进一步打造	Kunpeng 920/麒麟	服务器、桌面、嵌入式	`党政+商用	鲲鹏: 7nm 麒麟: 14nm
飞腾	ARMV8	国防科技大 学		自主化程度更高,PKS生态, 党政市场接受程度高		腾云S系列,腾锐D系列及腾珑E系列三 大产品线	服务器、桌面、 嵌入式	党政+商用	16nm
海光	X86 (AM D)	中科曙光	IP授权	X86 ZEN1授权,性能较强, 应用生态丰富	自主化程度低; 无桌 面授权	海光 1 号/2 号 /3 号	服务器	党政+商用	14nm
兆芯	X86(VIA)	上海市国资 委+ 台湾威盛电 子		x86 应用生态丰富,在PC产业上使用wintel生态,优势明显	日工化性皮似,服为品	开先KX 6000,开胜KH 40000系列处 理器	服务器、桌面、嵌入式	`党政+商用	16nm
龙芯	LoongArc h	中科院计算 机所	指令集授权-》自 研	起步最早,自主化程度高		龙芯1号 、龙芯2号和龙芯 3号三个系 列	网络, 桌面、服务器	党政市场	14nm
申威	Alpha	江南计算所	指令集授权-》自 研	在军方市场占有率高,底层 应用、超算为主力方向	超算为主要方向,商用产 品开发不足,生态构建困 难	SW1600/ SW26010	服务器、桌面	军方+党政	16nm

其他国产CPU厂家概览

近两年市场上涌现了十几家高性能CPU的新商业公司,大部分是面向数据中心云计算市场服务器ARMV9 N2架构CPU,当前基本在融资与研发的过程中,尚无落地的芯片,预计今年底或明年开始入市。

	X86		ARM初创							
	澜起	金丽科技 (台)	遇贤微电子	鸿钧微	熠知电子	此芯	数渡科技	超摩科技	鼎道智芯	启灵芯
创立时间	2004	1986	2020.9	2021.8	2017	2021.1	2021.2	2021.1	22年初	2021.11
授权	/	/	ARMV9N2 IP授权	ARMV9N2 IP授权	ARM V8(A77)/V9 N2 IP授权	ARMV9	ARMV9N2	ARMV9N2	-	-
产品方向	服务器CPU	工业级、自 动驾驶类 CPU	云服务器CPU	云服务器CPU		面向笔记本,高端平板电脑,台式机,AR/VR	通用服务器CPU	云服务器CPU	平板、电脑	服务器 CPU
产品上市时间	量产产品,2018年 第一代	已有量产产 品	计划2023年上市	计划2023年上市	已有量产V8产品	计划2024年上市	计划2024年上市	-	传闻已流片成功	
产品规格	津逮服务器平台,,目前迭代到第四代产品				升级下一代V9架 构, 3GHz, 128+核数, 制程 7nm, 12通道 DDR5 6400, 128*PCle Gen5	制程6nm,架构在美国做,代码在 国内	产品主打性价比 (比拼良率, chiplet多die设计) 4-7nm,32-256 内核,2-4.6GHz ,支持CCIX/CXL 扩展, DDR5/PCIE5	主频 2~3.0GHz, 互联总线CLCI 制程5nm,核	为平板、PC应用 而设计 ,	
投资方	已上市,股东:中国 电子第一大股东, Intel第二大股东, 其他	已上市	常春藤资本、光远 脑子笨、东方嘉富、 源来资本 A轮:广州开发区产	天使轮+Pre-A轮: 8亿, 华登国际、高瓴创投、鼎晖VGC领投、 壁仞科技、芯岚微、晨道资本、木杉 创投、松禾资本、六脉资本、C资本、 中益仁、海河启睿资本、小即是大创 投、超兴创投、三亚星睿私募基金管 理	投资方: 高瓴资 本、云锋基金等	Pre A 轮:蔚来资本、启明创投、 云九资本、基石资本、中科创星、 嘉实投资、BAI资本、元禾璞华	航天科工、上海市 天使基金,已融资 7000万元,正在融 资2亿元?	国、联想之星	想100%控股	天使轮: 校校 校校 校校 校校 校校 校校 校校 校校 校校 校

国产CPU在信创PC和服务器端市场趋势

- 整体而言,国产行业进入**更为市场化**发展阶段,除考虑自主可控的强弱要求和股东背景外,**性能、生态、性价比、功耗**等均是相关企业衡量的 重要指标。当下国产CPU无论在性能还是生态方面都有较大的进步空间
- IDC 预计,至 2025 年我国 PC 及服务器出货量将分别达到 6766 万台及 564 万台,**预计 2025年国产CPU在信创 PC及服务器出货量将分别达 到约1000及100 万台,信创化率分别将为约 14.78%及 17.82%,不断增长中**

总结

- CPU技术趋势
- 政策下产业趋势
- 三足鼎立初形成

CPU从通用到专用、异构与集成

■ CPU技术面临 从通用到专用、异构与集成的方向转变

- 摩尔定律变缓,制程工艺的提升性能有限, 芯片功耗上升,晶体管成本不降反升; 单核性能趋近极限,多核架构的性能提升亦在放缓
- AloT时代来临,算力需求呈现多样化及碎片化,通用处理器难以应对

中美科技博弈加剧,自主可控的需求长期不变

国内扶持: 提升美国芯片制造产能, 维护美国在芯片领域的整体优势

• 2022年8月签署生效的《**芯片和科学法案**》,从政府补贴和配 套措施等层面扶持美国国内芯片产业

国际合作: 建立以美国为核心的全球芯片供应链

- 双边合作:加强与韩国、日本和印度的技术合作
- 多边合作:加强与欧盟、南美洲以及"印太"地区在芯片领域的多边合作

出口管制: 打压威胁来源保持美国芯片竞争力

- 2018年修订《出口管制改革法》扩大美国政府的自由裁量权, 以频繁利用实体清单对中国芯片企业实施出口管制措施。
- 2022年10年月,修订《出口管理条例》,新增加针对中国 先进计算和半导体制造项目的出口管制措施,并将多达31家 中国企业列入所谓"未经核实清单",从高端芯片出口、芯 片制造设备和技术转让,以及芯片人才禁令等多个层面强化 美国对华芯片制裁措施

对国产化CPU厂商的影响较大

鲲鹏、海光、飞腾、神威为实体清单企业,无法使用美国技术和产品进行流片,六家厂商目前都在销售的主力芯片制程都在16nm及以下,企业在"先进制程"上的扩张将在短期内受阻,并且也难以通过跨国并购的方式获取相应人才和技术资源,很大程度上影响着芯片国产化进程

有望通过 Chiplet 、先进封装技术,使用低制程实现类似于7nm及更先进制程芯片的性能表现,从而满足服务器等高性能芯片的使用需求

CPU三足鼎立局面 初形成、并持续

X86 强壮的狮子 不开源

- X86具有高性能、高功耗、先发优势、专利壁垒、坚固的生态系统
- 占据整个计算机和服务器处理器 市场90%份额

ARM 稳扎稳打的蚂蚁 授权模式

- **ARM低功耗、多核心**,在移动端 和嵌入式市场约占据**90%份额**
- · 预估至2025年Arm架构服务器渗 透率达**22%**, Arm 笔记本电脑将 在五年内市占率达 **25%**

RISC-V 自由的麻雀 开放、开源

- RISC-V 开源、低成本、低功耗、 可定制化,覆盖物联网场景,正 在朝移动、PC和服务器进军
- 预估到2025年在IoT市占有率将达 28%,在工业市占率将达12%,在汽 车市占率将达10%

RISC-V契合技术创新与自主可控需求

精简高能效

RISC-V指令精简度远超 X86&ARM,实现更小的尺 寸和更低的功耗.

中国深度参与

RISC-V国际基金会最高级 别共有22家,其中12家来 自中国,中国企业深度参 与标准制定

模块化设计

模块化灵活设计有助于开 发者对指令集进行定制化 扩展、修改等,可满足各 种差异化需求

开源、开放

RISC-V开源模式,采用 BSD许可,不需支付许可 费,且RISC-V基金会设在 中立国,无地缘政治风险

