COMPOSITIONS AND METHODS FOR TREATING OR PREVENTING HIV INFECTION

This application claims the benefit of U.S. Provisional Application Nos. 60/491,258 filed July 31, 2003, 60/493,767 filed August 11, 2003, 60/496,908 filed August 22, 2003, and 60/501,832 filed September 11, 2003, which are hereby incorporated by reference in their entirety.

5

10

15

20

25

30

BACKGROUND OF THE INVENTION

Acquired Immune Deficiency Syndrome ("AIDS") is one of the most serious health threats confronting the human population today. AIDS is caused by a virus known as human immunodeficiency virus ("HIV") which presently includes HIV-1 and HIV-2. Over 40 million people are estimated to be living with HIV/AIDS. Current projections suggest that an additional 45 million people will become infected between 2002 and 2010. So far, it is believed that more 25 million people have died from AIDS.

Since its emergence in the 1970s, HIV has produced a continually growing global pandemic, and it has, thus far, defied all attempts to produce an effective vaccine. Although a number of drugs have been developed to treat the disease, all have limited usefulness, serious side effects, a high potential for resistance, and none have been identified so far which can cure or prevent it. HIV vaccine research has expanded over recent years, but success so far using HIV-based components has been limited. See, e.g., Graham et al., *J. Inf. Disease.*, 166:244-252, 1992; Belshe et al., *J. Inf. Disease.*, 183:1343-52, 2001; Horton et al., *J. Virol.*, 76:7187-7202, 2002; Gilbert et al., *Vaccine*, 21:2933-2947, 2003.

DESCRIPTION OF DRAWINGS

FIG. 1 (A-C). Comparison of cells from vaccinated versus non-vaccinated subjects, infected with the macrophage (CCR5) tropic HIV. A. A comparison of the mean + standard error measurement of the vaccinated versus non-vaccinated groups in cultures without autologous serum. (*, p<0.05) B. A comparison of the mean +

standard error measurement of the vaccinated versus non-vaccinated groups in cultures with autologous serum (*, p< 0.05; **, p<0.01). C. Comparison of the mean + standard error measurement of cells from vaccinated versus non-vaccinated subjects, infected with the T-cell (CXCR4) tropic HIV.

5

10

.

15

20

25

30

DESCRIPTION OF THE INVENTION

The present invention provides methods and compositions for treating and/or preventing HIV infection in a subject in need thereof. It features the use of poxviruses for therapy, prophylaxis, and diagnosis of HIV, as well as for any other medical or veterinary use associated with HIV and homologous viruses. The invention also provides for the use of poxviruses in the discovery of new agents to prevent and/or treat HIV infection.

A poxvirus or a component thereof, can be used to treat and/or prevent infection caused by any virus, preferably a lentivirus, such as HIV, that uses a CCR5 chemokine receptor for its infection of cells. This includes, but is not limited to, e.g., HIV-1 (e.g., clades A, B, C, D, and G, R5 and R5X4 viruses, etc.), HIV-2 (e.g., R5 and R5X4 viruses, etc.), simian immunodeficiency virus (SIV), simian/human immunodeficiency virus (SHIV), feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV) (Wright et al., *Vet. Res. Commun.*, 26:239-50, 2002), HTLV-1, HTLV-2, etc. It can be used as a vaccine, adjuvant, therapeutic agent, in combination with other agents, or in any suitable manner to treat and/or prevent such infections.

Any poxvirus can be used in accordance with the present invention, including, but not limited to, orthopoxvirus, parapoxvirus, avipoxvirus, capripoxvirus, leporipoxvirus, suipoxvirus, etc. Orthopoxvirus, include, e.g., buffalopox, camelpox, cowpox, monkeypox, rabbitpox, raccoon pox, tatera pox, canarypox, fowlpox, vaccinia, variola, and vole pox. Vaccinia virus is the prototype of the genus Orthopoxvirus for the desired effects, but other poxviruses can be used in its place. Thus, although the disclosure below may be written in terms of vaccinia, any poxvirus can be utilized in accordance with the present invention.

Vaccinia is a double-stranded DNA (deoxyribonucleic acid) virus. All strains, derivatives, variants, mutations, naturally-occurring strains, genetically-engineered, recombinant, etc., of vaccinia can be used in accordance with the present invention. For more information on vaccinia and other poxvirus, see e.g., *Virology*, Fields et al., Volume 2, Chapters 74-75, Raven Press, 1990.

5

 $\gamma^{\prime} \ll$

10

15

20

25

30

An amount of the poxvirus, such as vaccinia virus, can be administered to a subject in a quantity which is effective to achieve a therapeutic or prophylactic effect. The term "poxvirus," "vaccinia virus," etc., indicates that the virus (genome and protein coat) is administered to a subject. It can be administered in any effective form, including, e.g., as a live virus, as a live-attenuated virus, as a replication-deficient virus, as a viral extract not having any live viral particles, etc. Compositions comprising a poxvirus can be produced and utilized in any suitable manner, including, e.g., recombinant, naked DNA technology, etc.

The term "treating" is used conventionally, e.g., the management or care of a subject for the purpose of combating, alleviating, reducing, relieving, improving, eliminating, etc., one or more signs or symptoms associated with HIV infection. Treatment includes delaying the progression of HIV and its associated symptoms, thereby extending the life expectancy of an infected subject, and/or delaying or reducing the onset of symptoms associated with HIV infection. Treating can involve inhibiting, reducing, diminishing, etc., the replication and other events in the life cycle of the HIV virus.

The term "preventing" HIV infection indicates that a subject's susceptibility to HIV infection upon exposure to the virus is reduced or diminished as a result of the administration of the poxvirus. The subject's resistance to HIV infection is increased or improved by the poxvirus treatment since s/he is less likely to become infected by the virus. Any amount of improved resistance is useful, e.g., greater than 5-fold, greater than 7-fold, greater than ten-fold, etc., and any such improvement can be regarded as prevention.

A poxvirus, or component thereof, used in the present invention can be prepared routinely, or obtained from commercial sources. Attenuated strains are preferred. Attenuated strains are less able to cause disease, and are considered less virulent and weakened as compared to strains that are not attenuated.

5

10

15

20

٠.

Any strain of vaccinia virus, or components thereof, can be utilized to achieve a prophylactic and/or therapeutic effect, including, but not limited to, e.g., strains available from the ATCC, ECACC, or other virus collections, replication-competent, replication-deficient, non-replicating, attenuated strains, modified vaccinia Ankara (MVA), vaccinia virus Ankara, NYVAC (ATCC No. VR-2559) replication-deficient vaccinia viruses, VV Copenhagen, VV Western Reserve, VV Wyeth (ATCC No. VR325), Elstree, strains deficient in vCCI (Reading et al., J. Immunol., 170:1435-42, 2003), and/or vGF, strains comprising one or more copies of the 17K myristyloprotein, poxvirus strains, CCR5-dependent poxvirus strains, etc. Dryvax®, a vaccinia (smallpox) vaccine currently licensed in the United States, is a lyophilized, live-virus preparation of infectious vaccinia virus (Wyeth Laboratories, Inc., Marietta, Pennsylvania). Other strains which have been used include, but are not limited to, e.g., Lister, Bordeaux, Paris, Massachusetts 999, New York, Temple of Heaven. Patwadangar, Ikeda, Bern, Vienna, Bohemia, Finland, Hamburg, Budapest, Aosta, Spain, Sweden, B-51, Tashkent, EM-63, LE-IVP (Lister), etc. See, also, Smallpox and its Eradication, Fenner et al., WHO, Geneva, 1988, e.g., Chapter 11. Other strains include, e.g., MVA-BN (modified vaccinia Ankara - Bavarian Nordic) (ECACC V00083008; WO 02/42480), MVA-Vero (US 20030013190), MVA-NH, MVA 572 (ECACC V94012707), LC16m8, and ACAM1000 (ATCC Deposit No. PTA-3321; WO 02/085411). Any strain of canarypox can be utilized as well, including attenuated canarypox virus such as, e.g., ALVAC (ATCC No. VR-2547). Deposited strains also include, e.g., ATCC Nos. VR-117 (CL), VR-118 (Lederle-Chorioallantoic), VR-119 (WR (Mouse Neurotropic), VR-1354 (WR (NIH

Deposited strains also include, e.g., ATCC Nos. VR-117 (CL), VR-118 (Lederle-Chorioallantoic), VR-119 (WR (Mouse Neurotropic), VR-1354 (WR (NIH TC-adapted), VR-1431 (P-4), VR-1441 (IHD-W), VR-1508 (Modified vaccinia virus Ankara (MVA)), VR-1536 (New York City Department of Health Laboratories (Wyeth-calf adapted)), VR-1549 (Elstree (Lister Vaccine)), VR-156 (IHD), VR-2010 (AS), VR-2031 (Vtk-79), VR-2034 (S-variant), VR-2042 (vP-7), VR-2043 (vP-9), VR-2292 (SLZ103[recombinant Vaccinia virus (WR)]), VR-2379 (Rpmuhr+ [recombinant of Utrecht strain Rpuhr23]), VR-2589 (VVtm1:hPC1 [recombinant Vaccinia virus, in vitro construct]), VR-302 (Brighton), VR-3103 (IHD-W Dts 16 [Vaccinia ts-mutant]), VR-3109 (IHD-W Dts 46 [Vaccinia ts-mutant]), VR-3110 (IHD-W Dts 2 [Vaccinia ts-mutant]), VR-3113 (IHD-W Dts 17 [Vaccinia ts-mutant]),

VR-3121 (IHD-W Dts 8 [Vaccinia ts-mutant]), VR-3126 (IHD-W Dts 33 [Vaccinia ts-mutant]), VR-3129 (IHD-W Dts 48 [Vaccinia ts-mutant]), VR-3130 (IHD-W Dts 4 [Vaccinia ts-mutant]), VR-3139 (IHD-W Dts 50 [Vaccinia ts-mutant]), VR-3142 (IHD-W Dts 10 [Vaccinia ts-mutant]), VR-3144 (IHD-W Dts20), VR-3147 (IHD-W Dts 35 [Vaccinia ts-mutant]), VR-3148 (IHD-W Dts 40), VR-3154 (IHD-W Dts71 [Vaccinia ts-mutant]), VR-3160 (IHD-W Dts52 [Vaccinia ts-mutant]), VR-3161 (IHD-W Dts 57), VR-3165 (IHD-W Dts 77), VR-3166 (IHD-W Dts 82), VR-3169 (IHD-W Dts97 [Vaccinia ts-mutant]), VR-3175 (IHD-W Dts 78 [Vaccinia ts-mutant]), VR-3176 (IHD-W Dts 83 [Vaccinia ts-mutant]), VR-3178 (IHD-W Dts 93 [Vaccinia ts-mutant]), VR-3196 (IHD-W Dts 95 [Vaccinia ts-mutant]), VR-587 (Yaba monkey tumor virus deposited as Yaba monkey tumor virus, Yatapoxvirus (Roswell Park-Yohn)), VR-838 (Raccoonpox virus, Orthopoxvirus (Herman)).

A vaccinia virus is a preferred poxvirus in accordance with the present invention, but other poxviruses can also be used to treat and/or prevent HIV. For example, any poxvirus which expresses a gp120-like or TAT-like polypeptide, or which depends on CCR5 for entry into a cell can be used in accordance with the present invention.

15

20

25

30

Vaccinia virus can be administered to subjects according to any regimen which is effective for treating and/or preventing HIV infection. The particular dosages (i.e., effective amounts), and number and frequency of vaccinations can be determined routinely.

An effective amount of virus, or virus component, is the quantity of virus, or virus component, which is useful to achieve the desired purpose, e.g., to treat and/or prevent HIV infection. These amounts can be determined routinely. Effective amounts can be the same or less than the amounts currently used to achieve pox immunity with a pox vaccine. For example, DryvaxTM is commonly used at a potency of 100 million pock-forming units (pfu)/ml for primary vaccination for smallpox. Any effective amount can be used in accordance with the present invention, e.g., about 10^5 - 10^9 pfu/ml. The quantities of the particular virus which is utilized can be adjusted and determined routinely, e.g., to eliminate or reduce adverse reactions associated with the virus, as well as depending on the health of the patient receiving the treatment.

The specific dose level and frequency of dosage may vary, and can depend upon a variety of factors, including the activity and state of the specific poxvirus, e.g., whether it is live, heat-inactivated, attenuated, etc., its metabolic stability and length of action, rate of excretion, mode and time of administration, and the age, body weight, general health, gender, diet, and particular condition of the subject undergoing treatment or prevention.

5

10

15

20

25

30

Poxvirus can be administered in any form by any effective route, including, e.g., oral, parenteral, enteral, intraperitoneal, topical, transdermal (e.g., using any standard patch), ophthalmic, nasally, local, non-oral, such as aerosal, spray, inhalation, percutaneous (epidermal), subcutaneous, intravenous, intramuscular, buccal, sublingual, rectal, vaginal, intra-arterial, mucosal, and intrathecal, etc. It can be administered alone, or in combination with any ingredient(s), active or inactive.

Any subject can be administered a poxvirus in accordance with the present invention, including subjects who have been exposed to HIV, but have not yet developed HIV infection, as well as subjects who have progressed to one or more of the clinical symptoms of HIV infection (e.g., AIDS). In addition to treating and/or preventing HIV infection in humans, a poxvirus can be used to treat other organisms (e.g., non-human primates, cats, etc.) infected with HIV, or HIV-related viruses, such as SIV, SHIV, or FIV. Thus, subjects who can be treated include, e.g., mammals, humans, monkeys, apes, chimpanzees, gorillas, cats, dogs, mice, rats, etc.

Subjects, who have been exposed to HIV virus, or who are at risk for developing the disease, are particular candidates for poxvirus vaccination. For instance, a subject who has not yet tested positive, but has been exposed to HIV, can be administered vaccinia virus as a prophylactic/therapeutic approach. Individuals at high-risk for the disease, such as sexually-active individuals, subjects in parts of the world where HIV infection is high, subjects receiving blood and/or other invasive medical procedures, can also receive vaccination to increase their resistance to HIV infection.

In addition to administering the whole poxvirus, components of it can also be administered in accordance with the present invention. By the phrase "component," it is meant any part of the virus, which is less than the whole virus genome, including

particular nucleic segments of its genome, as well as any product which is produced using the viral genome. This includes modifications to polypeptides encoded for by the virus.

Components include polypeptides comprising the virus, such as envelope proteins, processing enzymes, structural proteins, nucleic acid synthesis enzymes, glycoproteins, carbohydrates, lipids, antigens or antigenic fragments of the virus, etc. Also included are nucleic acid fragments of the whole genome, including fragments comprising complete gene sequences, control sequences, etc.

5

10

15

20

25

30

Components includes one or more of the over about 198 open reading frames (ORF) and about 268 genes that have been identified in vaccinia and other poxvirus. Components include one or more of the genes and products thereof described in, but not limited to, Antoine et al., Virology, 244:365-396, 1998, and Goebel et al., Virology, 179(1):247-266, 1990 for vaccinia virus; Willer et al., Virology, 264(2):319-43, 1999 for Leporipoxvirus Shope fibroma virus (SFV); Cameron et al., Virology, 264(2):298-318, 1999 for myxoma virus; Shchelkunov et al., Virology, 297(2):172-94, 2002 for monkeypox virus; Shchelkunov and Totmenin, Virus Genes, 9(3):231-45, 1995 for variola, Massung et al., Virology, 201(2):215-40, 1994. For example, the polypeptide coding for the 17K myristylprotein, and which has amino acid sequence homology to gp120, can be used alone or in combination with other antigens, etc., in accordance with the present invention. See, e.g., Antoine et al., 1998; Barrett et al., Seminars in Immunol., 13:73-84, 2001. See, also Tables 1 (from Goebel et al., Virol., 179:247-266, 1990) and 2 (from Antoine et al., Virol., 244:365-396, 1998). Moreover, one or more of the aforementioned genes and open reading frames can be deleted from a vaccinia virus, e.g., to eliminate a toxic or other undesirable effect of an administered virus.

A useful composition can comprise one of the components of a poxvirus, including one or more of the components described in Tables 1 and 2. These can be individual purified and then combined into a therapeutic or prophylactic composition, or extracts can be prepared from viral particles and treated as desired. The individual components can be purified from the viral particles, or produced recombinantly, e.g., where a target gene is cloned, expressed in a host cell under conditions where the polypeptide is manufactured by the cell, and separating and purifying the polypeptide

accordingly to conventional methods. Components can also be administered as naked DNA. See, e.g., U.S. No. 6,413,942.

5

10

15

20

25

30

The therapeutic and/or prophylactic effect achieved with the poxvirus can be independent of an immunological response to it. For example, the purpose of ordinary smallpox vaccination is to elicit an immune response by the host. This response is both humoral and cellular, involving the generation of specific antibodies and immune cells (such as T-cells, cytolytic or cytotoxic T lymphocytes, etc.) which protect a host from future invasion by the smallpox virus. While the present invention is not bound by any mechanism through which the poxvirus achieves its therapeutic and/or prophylactic effect, it can be mediated through a pathway separate from the immune response and not require cellular or humoral immunity. For example, poxvirus, or a component thereof, can directly block or inhibit the ability of a HIV to infect a cell. In this respect, the poxvirus, or component of it, acts as an antagonist, blocker, etc., of HIV's ability to infect target cells. HIV usually activates a G-proteincoupled signal pathway cascade. Poxvirus can interfere with this pathway or modify it such a way that the cell is more difficult to infect, thereby increasing its resistance to the HIV virus. Consequently, the effective amounts of a poxvirus, or component thereof, can differ from the amounts that are ordinarily used when the objective is to achieve a humoral and/or cellular immune response.

Vaccination with vaccinia can be associated with adverse reactions. Those at highest risk include, e.g., pregnant women, immunocompromised patients (e.g. HIV-positive), and persons who have atopic dermatitis or eczema. Strains which are attenuated or otherwise modified to reduce adverse effects are especially useful in accordance with the present invention, e.g., for administration to persons at risk for adverse effects.

Modified strains of vaccinia can be utilized that are deficient, mutated, engineered, etc., in one or more of the about 198 open reading frames (ORF) and/or about 268 genes that comprise vaccinia (depending on the strain or variant). In addition, genes can be inserted into vaccinia, including, one or more copies of a vaccinia gene of interest (e.g., 17K myristylprotein, vCCI), and/or genes coding for all or part of an HIV proteins, such as gp120 or gp40.

5

10

15

20

25

30

The present invention also provides methods of treating and/or preventing HIV infection in a subject in need thereof, comprising, e.g., administering multiple doses of a poxvirus, or components thereof, to a subject, wherein each dose is administered at a time interval from the previous dose, and are effective to maintain a therapeutic effect, or to maintain protection against HIV infection. As discussed above, a dose of the poxvirus, or component thereof, is the amount of virus which is useful for accomplishing the therapeutic or prophylactic effect. More than one dose can be administered to the subject in order to maintain the therapeutic efficacy of the treatment, or to maintain protection against HIV infection. For example, smallpox immunization is usually achieved by a single vaccination with a booster every 5-10 years. To maintain protection against HIV, more frequent vaccination can be used, e.g., multiple times a year, at least twice a year, yearly, every two years, every three years, more than once every less than five years, more than once every less than ten years, etc. The periods between the separate and sequential vaccinations can be referred to as "time intervals." These intervals can be spaced apart by any desired time period which is effective to maintain protection or therapeutic efficacy in treating an infected subject. The intervals can be predetermined or preset, where they are already specified, or they can be determined by monitoring the progress of a subject, e.g., using blood serum to measure poxvirus antibody titer, or HIV titer in an infected subject. The frequency of vaccination utilized to achieve efficacy may vary depending upon multiple factors, including, e.g., person-to-person variations in the immune system, the stage of HIV infection, the potency of the virus or vaccine, etc. and may be as often as every 3 months to once every 5 years.

The present invention also provides methods of treating and/or preventing lentivirus infection in a subject in need thereof, comprising: administering an effective amount of a poxvirus or component thereof, wherein said amount is effective to treat and/or prevent lentiviral infection, with the proviso that a lentivirus nucleic acid, such as HIV, is not contained in the poxvirus genome. This excludes, e.g., a poxvirus which is utilized as a vector to administer HIV nucleic acid, such as when HIV nucleic acid is inserted into the poxvirus genome.

The present invention also provides methods of identifying a component of a poxvirus, or a poxvirus-associated agent, which interferes with HIV infection, and

components and agents identified thereby. Interfering with HIV infection indicates that the agent or component decreases, reduces, diminishes, lessens, etc., the ability of a susceptible cell or organism to become infected with HIV virus as compared to the same cell or organism in the same conditions, but in the absence of the agent or component. Interference with HIV infection can occur at any level, e.g., by blocking the ability of HIV to attach to its receptor(s) on a cell, by blocking the ability of HIV to be taken into a cell, by blocking viral function once inside the cell, by blocking viral infection, etc. The invention is not limited by the mechanism through which HIV interference is achieved. By interfering with HIV infection, the cell's or organism's resistance to HIV is increased.

5

10

15

20

25

30

These methods can involve one of more of the following steps in any effective order, e.g., (1) contacting a cell or organism which is susceptible to HIV infection with poxvirus, or a component thereof, or a poxvirus-associated agent, (2) contacting said cell or organism with HIV under conditions effective for said HIV to infect said cell or organism, and, (3) (a) determining whether said cell or organism is resistant to HIV infection, whereby said agent is identified as interfering with HIV infection, or (3) (b) identifying the poxvirus, or component thereof, which confers resistance to HIV infection. The term "organism" as used herein indicates a fully-gestated animal.

The method can also involve a step of identifying the poxvirus, or a component thereof, as the agent which confers resistance to HIV infection. Identifying the poxvirus, or component thereof, which confers resistance to HIV infection, indicates that the poxvirus is positively determined or ascertained to provide protection or resistance against HIV. This indicates a positive result in the method.

Agents can be tested for their ability to interfere with HIV infection in any suitable system, including whole animals and cell culture. Animal cells useful in the present invention are those which are susceptible to HIV infection, i.e., they are capable of being infected by the HIV virus. They can be naturally-susceptible, or genetically-engineered to confer susceptibility, e.g., by expressing HIV receptor (CCR5, CD4, etc.), or by grafting on the human immune system. Any methods for testing whether a cell or organism is infected with HIV can be used, e.g., measuring

anti-HTV antibody titer (e.g., gp120 antibodies), reverse transcriptase protein or nucleic acid, or any other polypeptide or nucleic acid.

5

10

15

20

25

30

Any suitable animal model for testing the efficacy and dosage of a poxvirus (or component thereof) can be used in accordance with the present invention. These include, but are not limited to, e.g., SCID mice reconstituted with human immune system components (e.g., peripheral blood lymphocytes) [e.g., Zhang et al., *Proc. Natl. Acad. Sci.*, 93:14720-14725, 1996, using SCIC.bg mice], chimpanzees infected with HIV-1, macaque monkeys infected with SIV, HIV2, or chimeric SIV/HIV [e.g., Johnson, *Curr. Opin. Immunol.*, 8(4):554-560, 1996], cats infected with feline immunodeficiency virus, HIV-1 transgenic mouse model [e.g., mice which have integrated molecular clone pNL4-3 containing 7.4 kb of the HIV-1 proviral genome deleted in the gag and pol genes (Dickie et al., *Virology*, 185:109-119, 1991; transgenic mice carrying an HIV provirus, optionally with deletion of one or more HIV genes (Tinkle et al., *J. Clin. Invest.*, 100(1):32-9, 1997)], HIV-1 transgenic rat model, human CD4 transgenic rat model, horse infected with EIAV, sheep infected with visna virus, goats infected with CAEV, etc. See, also, *The Retroviridae*, J. A. Levy, ed., Plenum Press, 1993, e.g., Chapters 3, 4, and 5.

A vaccinia virus-associated agent is any substance which is produced in response to a vaccinia infection, or in response to inhalation, injection, ingestion, etc., of any vaccinia virus, or component thereof. This substance can be present in a culture medium in which cells exposed to vaccinia have been cultured, or can be present in blood serum when harvested from an organism exposed to vaccinia. The present invention provides compositions which comprise such substances.

The invention also provides combinations of pharmaceutical agents for treating and/or preventing HIV, e.g., poxvirus, or a component thereof, and an agent which is used to treat HIV, such as a protease inhibitor or a reverse transcriptase inhibitor. Examples of the latter classes of drug, include, but are not limited to, saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir, AZT, ddI, ddC, ddT, 3TC, nevirapine, delavirdine, etc. The active agents can be present in the same dosage unit (e.g., a composition), or can be used as separate dosage units.

In addition, a poxvirus, such as vaccinia, can be administered in combination with HIV nucleic acid. The HIV nucleic acid can be physically joined to the poxvirus genome, or it can be administered as a separate component. For example, HIV nucleic acid (e.g., coding for gp120 or another viral antigen) can be administered at the same time as a poxvirus, but as a physically separated entity, or it can be administered at subsequent times after receiving only poxvirus) as part of a regimen for treating and/or preventing HIV infection.

5

10

15

20

25

30

The present invention also provides methods of making a poxvirus composition for conferring resistance to HIV infection or treating HIV infection,, comprising, one or more of the following steps in any effective order, e.g., preparing a composition comprising poxvirus, or a poxvirus component thereof, and/or identifying that the poxvirus, or component thereof, confers resistance to, or treats, HIV infection. As mentioned earlier, the identifying step indicates obtaining a positive result in finding that the poxvirus (e.g., vaccinia), or component thereof, provides resistance, protection, treatment, etc., against the HIV virus.

The preparation of a poxvirus composition can be carried out routinely, e.g., according to conventional methods used for vaccine manufacture. Preparing includes culturing poxvirus, isolating poxvirus, putting poxvirus into a form suitable for administration (oral, injection, nasal, etc.), making poxvirus components recombinantly, etc. The prepared poxvirus (or components of it) can be assayed for its ability to confer resistance to HIV infection to an organism challenged with it or provide a therapeutic effect. By this, it is meant that a sample of the prepared composition is tested to determine its titer, concentration, potency, etc., in making a subject, to whom it is administered, "resistant" to the HIV virus, or for its therapeutic effect. The assay step can be carried out on every batch, or only selected batches, etc. A purpose of this step is, e.g., to confirm that the manufactured poxvirus possesses an anti-HIV activity for which it is to be administered. Any suitable assay or testing method can be utilized, e.g., in vitro methods of evaluating its efficacy or potency. For instance, the determining step can involve, e.g., challenging said organism, or cells derived from it, with infectious HIV, and detecting the expression in said organism or cells of gp120, HIV reverse transcriptase, p24, infectious HIV particles, and/or HIV nucleic acid. By "challenge" it is meant the cells or organism are placed

in contact wit the HIV virus under conditions which are effective to become infected by it. These conditions will vary, depending upon how the assay is specifically accomplished.

When poxvirus is administered to a host, it can elicit a cellular response that is responsible or associated with the host's subsequent ability to resist HIV infection and/or treat HIV infection. This response can be measured, and used as index or marker to assess the efficacy of the poxvirus, and/or to determine effective amounts of it for the desired purpose (i.e., treating or preventing HIV infection). The appearance of one or more of the following "markers" can be modulated (e.g., elicited, stimulated, down-regulated, up-regulated, etc) by poxvirus, and associated with its anti-HIV effect, thereby making the marker useful as an indicator of poxvirus efficacy. By the term "marker," it is meant any measurable response to a poxvirus, including its effect on HIV's ability to infect and replicate in a cell, as well as on the host's immune system and the cells which comprise it. These markers, include, but are not limited to, one or more of the following agents, activities, responses, pathways, etc.:

- CD4 expression, e.g., measuring the amount of CD4 present in a cell-type that is susceptible to HIV infection
- HIV coreceptor expression, e.g., CCR5 or CXCR4 chemokine receptor, including its cell-surface expression
 - Cytokine receptors
- Virus-specific CTLs (cytolytic or cytotoxic T-cells, including CD8+ T-cells) which are capable of lysing HIV infected cells (cells can be co-infected with poxvirus and HIV, or infected by HIV alone)
 - CD8 cells

5

10

15

20

25

30

- Cytokines, including mediators and regulators of innate immunity, such as interferons, type I interferon, interleukins, interleukin-15, interleukin-12, tumor necrosis factor, interleukin-1, interleukin-6, interleukin-10, etc.; and mediators and regulators of specific immunity, such as interleukins, interleukin-2, interleukin-4, transforming growth factor-beta, interferon-gamma, lymphotoxin, interleukin-5, etc.
- Chemokines (a large family of structurally homologous cytokines, that, e.g., stimulate leukocyte motility and directed movement), including, but not limited to,

the C-C and C-X-C families. Examples of chemokines, include, but are not limited to, e.g., interleukin 8, Gro, platelet basic protein, epithelial-derived neutrophil attractant 78, platelet factor 4, interferon-gamma-induced protein 10, stromal cell-derived factor-1, monocyte chemotactic proteins 1, 2, and/or 3, RANTES, monocyte inflammatory protein 1-alpha and 1-beta ("MIP"), eotaxin, lymphotaxin, etc.

5

10

15

20

25

30

- Th1/Th2 phenotype and cytokine secretion pattern. Effector T-cells (e.g., CD4+ helper T-cells) can be categorized, on the basis of the cytokines they secrete, into Th1 and Th2 cells. Th1 cells secrete, e.g., interferon-gamma, lymphotoxin-alpha, TNF-beta, IL-2, IL-10, and CCR5 ligands, such as RANTES and MIPS. Th2 cells secrete, e.g., IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, etc. Th1 and Th2 cells also include resting, but polarized T-cells (i.e., committed to a Th type). In addition to cytokine production profiles, there are a number of cell surface markers that can be used to differentiate between Th1 and Th2 subtypes. For example, Th1 cells express both components of IL-12 receptor chains (beta1 and beta2), while Th2 cells exhibit IL-12R-beta1. Th2 cells exhibit both IFN-gamma receptor chains (a and b), while Th1 cells express IFN-gamma-R-alpha. Th2 cells appear to express a fully functional IL-1 receptor, and ST2L/T1, an IL-1R-like molecule, is found on Th2 cells. Chemokine receptors CXCR-3 and CCR-5 are also characteristic of Th1 cells, while CXCR-4, CCR-3, CCR-4, CCR-7 and CCR-8 are associated with Th2 cells. CD30, a member of the TNF superfamily, is associated with Th2 cells. The Th1/Th2 pattern can be polarized by poxvirus administration, resulting in a phenotype that favors the secretion, etc., of cytokines that inhibit HIV infection and/or render cells resistant to infection. One or more of the aforementioned molecules can be utilized as markers of poxvirus efficacy

- Antibodies that specifically recognize HIV, e.g., neutralizing antibodies
- Antibodies that specifically recognize poxvirus
- Complement control protein. Vaccinia virus encodes a secreted complement control protein (VCP, 35-kDa) protein with sequence homology to the SCR-containing complement control protein superfamily. It binds C3b and C4b, and interferes with the complement cascade by providing cofactor activity for the cleavage of C3 and C4 by factor I, and by accelerating the decay of the C3 converse of both the alternative and, more effectively, the classical pathway of complement

activation. VCP may suppress the complement system or their receptor expression, rendering the host less susceptible to the complement-enhancement of HIV infection

- Activation state of a cytokine receptor, e.g., CCR5 receptor or other HIV chemokine coreceptor. For example, poxvirus can interfere with CCR5 activation after HIV binding, e.g., by modulating tyrosine kinase feedback pathways
- One or more of the vaccinia proteins listed in Tables 1 and 2. This includes any poxvirus-encoded protein that specifically interferes with CCR5/CD4/gp120 interactions, including, e.g., vaccinia encoded CC chemokine binding proteins and/or IFN-gamma receptor-like protein
 - RNA interference with HIV expression/replication in infected cell
 - Alpha-defensins 1, 2, and/or 3

5

10

15

20

25

- Soluble factors including those produced by CD8+ lymphocytes and sometimes referred to as CAF
- Interference with the HIV life cycle, including viral entry, import into the host cell nucleus, viral integration into host genome, Rev-dependent and Rev-independent transport from the host nucleus, replication, gene expression, RNA splicing, etc
- Inhibiting HIV replication, including its ability to make copies of itself in the cell, and for productive viral particles to be extruded into the blood
- Inhibiting the ability of HIV to infect a cell, e.g., to bind to CD4 and/or its coreceptor, for the envelope protein to fuse with the host cell membrane, etc.
- Modulating gene expression of the HIV virus, including modulating regulatory genes (e.g., tat and rev), accessory genes (e.g., vif, vpu, vpr, and nef), structural genes (e.g., gag, pol, and env), inner core polypeptides (e.g., gag, p17, p24, p7, and p9), viral enzymes (pol, reverse transcriptase, protease, and integrase), and envelope proteins (e.g., env, gp120, and gp41). The phrase "gene expression" is used broadly to mean any step in the pathway from viral RNA to protein synthesis, and therefore includes all regulatory processes, transcription, translation, polypeptide processing, etc.
- Modulating activity of a HIV encoded polypeptide, including, tat, rev, vif, vpu, vpr, nef, gag, p17, p24, p7, p9, pol, reverse transcriptase, protease, integrase, env, gp120, gp41, etc.

- Modulating viral regulatory sequences, such as RRE, cis-acting repressive sequences (CRS), and inhibitory/instability RNA sequences (INS)

- Any cell or tissue of the immune system, including, but not limited to, lymphocytes, B lymphocytes, T lymphocytes, helper T cells, cytotoxic (or cytolytic) T cells ("CTL), natural killer (NK) cells, naïve T cells, memory T cells, CD4+ helper T cells, CD8+ CTLs, monocytes, macrophages, antigen-presenting cells (APCs), dendritic cells, granulocytes, etc.

5

10

15

20

25

The present invention also provides kits comprising a poxvirus. For example, a kit for preventing HIV infection, comprising: an effective amount of a poxvirus, and instructions for administering an effective amount of said poxvirus to a subject to prevent HIV infection; and a kit for treating HIV infection, comprising: an effective amount of a poxvirus, and instructions for administering an effective amount of said poxvirus to a subject to treat HIV infection. The instructions can provide any information that is useful for directing the administration of the poxvirus for the desired purpose.

The present invention also provides methods of advertising, licensing, selling, purchasing, etc., a poxvirus for the purpose of treating and/or preventing HIV infection. Methods can comprise, one or more of the following steps in any effective order: e.g., displaying information (a) comprising instructions for administering a poxvirus for treating and/or preventing HIV infection or (b) comprising a description of the use of poxvirus for treating and/or preventing HIV infection, in a printed or computer-readable medium (e.g., on the Web, Internet, personal computer, server, etc); offering for sale a poxvirus for treating and/or preventing HIV infection in a printed or computer-readable medium; accepting an offer to purchase poxvirus for said use in a printed or computer-readable medium.

EXAMPLES

PCT/US2004/002064

The following experiments were performed in the laboratory of Dr. Beda Brichacek and Dr. Michael Bukrinsky of the Department of Microbiology and Tropical Medicine, The George Washington University, Washington D.C. 20037.

5

10

15

20

25

30

Methods

Subject selection and specimen collection.

Twenty subjects were chosen for inclusion in the study. Ten subjects had been immunized with vaccinia within the previous 3 to 6 months, and ten subjects had never been immunized with vaccinia. All subjects were healthy and had a negative HIV test within the previous year. No subjects of northern European descent were used in order to avoid the potentially complicating factor of including a subject who might be homozygous for the CCR5-delta32 mutation. Two tubes of heparinized blood and 1 serum separator tube were collected. All blood samples from all subjects were drawn within 6 hours of each other, and were immediately processed to separate the PBMCs using standard methods of Ficoll-Hypaque centrifugation.

Cell culture preparation.

PBMCs were centrifuged at 1200 rpm for 11 minutes and resuspended in RPMI tissue culture medium + 10% fetal calf serum + 10 μg/ml gentamicin at a concentration of about 1-3 x 10⁶ cells/ml with a final concentration of 2 x 10⁶ cells/culture. Cell cultures were incubated in a CO₂ incubator. On the second day, one of the utilized strains of HIV was mixed with either culture medium or serum from each individual subject and incubated on ice for 7 hours after which 175 μl of each mixture was added to the autologous cell cultures. The next day 1 ml of cell culture media was added and the cultures were incubated for 5 hours to dilute the viral inoculum and to allow the virus to detach. The supernatant was carefully aspirated and 1 ml of fresh media was added before the cultures were spun down at 1000 rpm for 7 minutes. The supernatant was again aspirated and 2 ml of fresh media was added to each culture. 150 μl of supernatant for RT analysis was aspirated from each culture tube on days 2, 5, 8 and 10, and if needed, up to an additional 1 ml was aspirated and replaced with fresh media. On day 2, PHA was added to the tubes of

culture series F to act as a cell activator. On day 5, 2 ml of supernatant was removed from each of tubes of culture series F and replaced with 2 ml media + human serum + IL-2.

5 Reverse Transcriptase (RT) analysis.

The measurements of viral replication were performed by standard RT assays using tritiated thymidine as described in numerous articles in the scientific literature. See, e.g., Rey et al., *Virology*, 181(1), 165-71, 1991.

10 Results

15

20

25

30

All results are based on RT analysis using tritiated thymidine, and are given in counts per minute (CPM).

Culture Series A, the control, demonstrated no viral replication in any cultures.

Culture Series B (without serum; Fig. 1A) demonstrated a significant reduction of viral replication in most cultures from vaccinated subjects when compared to unvaccinated subjects. Two subjects (1 and 10) showed a complete lack of viral replication, comparable to the controls in culture series A. One subject was excluded from all analyses when it was subsequently discovered that the subject had had a highly anomalous reaction to the vaccinia immunization with recurrent skin lesions for months afterward. This suggested an inadequate immune response to the vaccinia, and this subject correspondingly did not show any protection against HIV in cell culture, demonstrating viral replication comparable to unvaccinated subjects.

Culture Series C (with serum; Fig. 1B) also demonstrated a significant reduction of viral replication in most cultures from vaccinated subjects, when compared to unvaccinated subjects. The same two subjects (1 and 10) noted in culture series B also had no demonstrable viral replication, comparable to the controls in culture series A. The addition of autologous serum in culture series C further enhanced the difference between vaccinated and unvaccinated subjects when compared to culture series B (no serum).

Culture Series D, E and F, using the T-cell (CXCR4) tropic HIV (Fig. 1C), demonstrated no difference between vaccinated and unvaccinated subjects, including

the two subjects (1 and 10) who were resistant to infection by the macrophage (CCR5) tropic HIV in culture series B and C. As stated in the methods section, care was taken in the selection of subjects to avoid those of northern European descent who might be homozygous for the CCR5-delta32 mutation, so this cannot be an explanation for the described resistance. There was also no difference noted between the addition of serum and no serum (cultures D and E).

Discussion

5

10

15

20

25

By at least day 10, there is a statistically significant difference between the vaccinated and non-vaccinated subjects in culture series B and C (p=.035 and .013 respectively) that increases by day 13 (p=.017 and .008 respectively), indicating a resistance to infection by HIV in the vaccinated subjects (Fig. 1). Subjects 1 and 10 demonstrated total resistance to macrophage (CCR5) tropic HIV infection in both culture series B and C, with RT measurements equal to the non-HIV infected control (culture series A). The fact that the same result was achieved in both sets of cultures, while infection was easily achieved with the T-cell (CXCR4) tropic HIV in cultures D, E and F, indicate these finding were not the result of laboratory error.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. The entire disclosure of all applications, patents and publications, cited above and in the figures are hereby incorporated by reference in their entirety, including of U.S. Provisional Application Nos. 60/491,258 filed July 31, 2003, 60/493,767 filed August 11, 2003, 60/496,908 filed August 22, 2003, and 60/501,832 filed September 11, 2003.

TABLE 1

THE OPEN READING FRAMES OF VACCINIA VIRUS

_	Transla	tion [<u>Si</u>	ze_	_	
Gene ^a	Start	Stopb	aa	M _C	Characteristics ^d	References
C23L*	5008	4277	244	26.4	Nonessential; B29R	Perkus, et al. (1990b)
C22L*	6113	5748	122	13.6	Acidic ^e (4.2)	•
					Nonessential; B28R Hydrophobic N-terminus	Perkus, et al. (1990b)
C21L*	6815	6477		13.4	Nonessential; B27R	Perkus, et al. (1990b)
C20L*	7132	6824		12.5	Nonessential; B26R Basic (9.0)	Perkus, et al. (1990b)
C19L*	7856	7080	259	30.5	Nonessential; B25R Hydrophobic N-terminus	Perkus, et al. (1990b)
C18L*	8693	8244	150	17.5	Nonessential; B24R Acidic (4.8)	Perkus, et al. (1990b)
C17L*	9947	8790	386	44.9	Nonessential; B23R	Perkus, et al. (1990b)
C16L*	10539	9997		21.0	Nonessential; B22R	Perkus, et al. (1990b)
C15L*	11153	10881		10.5	Nonessential; B21R	Perkus, et al. (1990b)
C14L	. 12212	11967	82	9.3	Nonessential Basic (9.2)	Perkus, et al. (1990b)
C13L	12510	12316	65	7.4	Nonessential Acidic (4.0)	Perkus, et al. (1990b)
C12L	13733	12675	353	40.4	Serine Protease Inhibitor Nonessential	Kotwal and Moss (1988b)
					Acidic (4.8)	Perkus, et al. (1990b)
Clir	14178	14603	142	15.8	Growth Factor	Blomquist, et al. (1984); Brown, et al. (1985); Reisner (1985)
					Nonessential	Buller, et al. (1988); Perkus, et al. (1990b)
					EGF-like type A domain	•
02 OT	35754	14762			Hydrophobic C-terminus	
C10L	15/54	14/62	331	38.5	Nonessential Acidic (4.5)	Perkus, et al. (1990b)
C9L	18136	16235	634	74.7	Nonessential	Perkus, et al. (1990b);
C8L	18733	18182	184	21.6	Nonessential	Kotwal and Moss (1988b)
				22.0	Nonepaential	Kotwal and Moss (1988b); Perkus, et al. (1990b)
					Acidic (4.4)	10211110, 02 421 (23302)
C7L	19257	18808	150	18.0	Nonessential	Kotwal and Moss (1988b);
					•	Perkus, et al. (1990a,b)
				_	Host range function	Perkus, et al. (1990a)
C6L	19939	19487	151	17.4	Nonessential	Kotwal and Moss (1988b);
					Acidic (4.8)	Perkus, et al. (1990b)
C5L	20680	20069	204	24.5	Nonessential	Kotwal and Moss (1988b);
						Perkus, et al. (1990b)
					Acidic (4.8))	, , , , , , , , , , , , , , , , , , , ,
C4L	21693	20746	316	37.2	Nonessential	Kotwal and Moss (1988b);
C3L	22551	21763	263	28.6	Nonessential	Perkus, et al. (1990b)
	22332	21/03		20.0	Monespencial	Kotwal and Moss (1988a,b); Perkus, et al. (1990b)
	•				C4B binding protein	
					homolog; virokine	Kotwal and Moss (1988a)
C2L	24156	22621	512	59.2	Nonessential	Kotwal and Moss (1988b);
					grand and the late of the late	Perkus, et al. (1990b)
ClL	24900	24229	224	26.4	Hydrophobic N-terminus	w=b> 1
	24300	44447	224	40.4	Nonessential	Kotwal and Moss (1988b);
					Basic (9.0)	Perkus, et al. (1990b)

Reprinted from *Virology*, Vol. 179, S. J. Goebel, G. P. Johnson, M. E. Perkus, S. W. Davis, J. P. Winslow and E. Paoletti, "The Complete DNA Sequence of Vaccinia Virus", pgs. 247-266 (1990), with permission from Elsevier.

TABLE 1—Continued

a	Transla		<u>Si</u> :		Chamant and the	The Course of th
ene ^a	Start	Stopb	aa	м _с	Characteristics	References
.17	25240	24890	117	14.0	Nonessential	Kotwal and Moss (1988b);
11L	23240	24000	117	14.0		Perkus, et al. (1990b)
					Virokine Acidic (4.2)	Kotwal and Moss (1988a)
12L	25886	25362	175	20.8	Nonessential	Kotwal and Moss (1988a,b); Perkus, et al. (1990b)
41L	27346	25931	472	54.2	Nonessential Homology to K1L	Perkus, et al. (1990b) Perkus, et al. (1990a)
42L	27986	27327	220	25.1	Nonessential Hydrophobic N-terminus	Perkus, et al. (1990b)
K1L	28975	28124	284	32.6	Host range function	Gillard, et al. (1986);
					Nonessential	Perkus, et al. (1989) Perkus, et al. (1990b)
K2L	30313	29207	369	42.3	Serine protease inhibitor Nonessential Basic (9.3)	Boursnell, et al. (1988) Perkus, et al. (1990b)
K3L	30629	30366	88	10.5	Nonessential Basic (9.3)	Perkus, et al. (1990b)
4-	21055	30604	424	40.0	Translation initiation fa	ctor Boursnell, et al. (1988)
K4L	31955	30684	424	48.9	Homology to F13L Nonessential	Perkus, et al. (1990b)
K5L	32497	32090	136	15.2	Nonessential Basic (10.2)	Perkus, et al. (1990b)
K6L	32764		81	9.1	Nonessential	Perkus, et al. (1990b)
K7R	32903	33349	149	17.5	Nonessential Acidic (4.4) Hydrophobic C-terminus	Perkus, et al. (1990b)
F1L	34097	33420	226	26.4	Nonessential Acidic (4.4) Hydrophobic C-terminus	Perkus, et al. (1990b)
F2L	34552	34112	147	16.3	Retroviral protease Nonessential dUTPase	Slabaugh and Roseman (1989 Perkus, et al. (1990b)
F3L	36018	34579	480	55.7	Nonessential	Perkus, et al. (1990b)
F4L	36988	36032	319	37.0	Ribonucleotide reductase (small subunit)	Slabaugh, et al. (1988)
					Nonessential Acidic (4.6)	Perkus, et al. (1990b)
F5L	37985			36.5	Multiply hydrophobic	
F6L F7L	38239 38533		74 92		Acidic (4.1) - (Lys-Asn)	
F8L	38878			7.8	Basic (9.9)	
F9L	39576		212		Hydrophobic C-terminus	
F10L	40882	39566	439		Protein kinase 2nd signa	ture
Fill	41969	40908		39.7	-	
F12L	43919		635		Povelone anti-cen	Hirt, et al. (1986)
F13L F14L	45079 45318				Envelope antigen Acidic (2.9)	march er are (1900)
F15L	46068				Basic (9.5)	•
F16L	46770				Basic (9.6)	
F17R	46833				Basic (9.8)	
E1L E2L	48574 50784			55.6 85.9	-	
E3L	51483					
E4L	52318				Acidic (4.9)	
-					Transcription factor	

-22-

TABLE 1—Continued

Gene ⁸	Transla Start	Stopb	Si aa	Xe M _C	Characteristics	References
					4	
E5R	, 52395	53387	331	39.1	(ts: C19??) ^f	Condit, et al. (1983)
E6R	53527	55227	567	66.7	Basic (9.8) -	
E7R	55314	55811		19.5	_ _	
E8Ř	55939	56757		31.9	Basic (9.3)	
E9L	59787	56770	1006	117.0	DNA Polymerase	Earl, et al., 1986
					ts: C42, NG26;	,
					PAAr, Aphidicolin	Traktman, et al. (1989b)
E10R	59819	60103	95	10.8	DNA polymerase family B s	ignature
E11L	60490	60104	129	14.9	-	
		-,		_,,,		
Oll	62477	60480	666 [.]	77.6	Leucine Zipper Motif	
O2L	62851	62528	108	12.4	Glutaredoxin	
I1L	63935	53000	73.0	25.0		
I2L	64163	63000 63945	312 73	35.8 8.4	The described to the second	
	01200	00,743	, ,	0.4	Hydrophobic C-terminus Acidic (3.9)	
I3L	64973	64167	269	30.0	-	
I4L	67371	65059	771	87.0	Ribonucleotide reductase	Schmitt and Stunnenberg (1988)
					(large subunit) Nonessential	Tengelsen, et al. (1988) Perkus, et al. (unpublished)
						Child, et al., (1990)
					Divalent Fe-S ferredoxin	
I5L	67637	67401	79	8.7	binding region signature Basic (9.9)	
I6L	68804	67659	382	43.4	Basic (9.2)	
I7L	70068	68800	423	49.0	-	
18R	70074	72101	676	77.6	ATP/GTP binding motif A	
G1L	73883	72111	591	67.9		
G2R	74209	74868	220	25.7	_	
G3L	74215	73883		12.8	Hydrophobic N-terminus	
G4L	75215	74844		14.0	Acidic (4.8)	
G5R	75218	76519		49.9	Acidic (4.8)	
G6R	76723	77217	165	18.9	-	
G7L G8R	78300	77188	371	41.9	-	
G9R	78331 79133	79110 80152	260	29.9 38.8	Undershabing a housing	
,	,,,,,,,,	00132	340	30.0	Hydrophobic C-terminus	
LlR	80156	80905	250	27.3	Hydrophobic near C-termin	11 🛱
L2R	80940	81200	87	10.2		
L3L	82245	81196		40.6	Multiply hydrophobic	
L4R	82270	83022	251	28.5	Structural protein, VP8	Yang, et al. (1988)
L5R	83035	83418	128	14.0	Basic (10.0)	
Jir	83378	83836	153	17.8	_ ·	1
J2R .	83855	84385	177		Thymidine kinase	Weir and Money (1003) - Warber
					Imrered willes	Weir and Moss (1983); Hruby et al. (1983)
					Nonessential	Mackett, et al. (1982)
					ATP/GTP binding motif A	, , , , , , , , , , , , , , , , , , , ,
J3R	84454	85452	222	15.0		•
J4R	85370	85924		15.2 21.3	Basic (10.0)	Dunistan and Marris 18000
		00324	103	44.3	RNA Polymerase subunit ts: C7, C20	Broyles and Moss (1986)
	_			•	0// 020	Hooda-Dhingra, et al. (1989); Thompson, et al. (1989)
J5L	86403	86005		15.2	Hydrophobic C-terminus	
J6R	86510	90367	1286	146.8	RNA Polymerase subunit	Broyles and Moss (1986)
					ts: E8, E13, E72	Ensinger (1987)
					C51, C53, C65	Hooda-Dhingra, et al., (1989);
						Thompson, et

-23-

TABLE 1—Continued

Gene ^a	Transla Start	stop ^b	aa	M _C .	Characteristics	References
						
H1L	90882	90370	171	19.7	Basic (9.6)	•
H2R	90896	91462		21.5	Hydrophobic N-terminus	
H3L	92442	91471		37.5	Multiply hydrophobic	
H4L	94830	92446		93.6	-	
H5R	95016	95624	203	22.3	-	
H6R	95628	96569	314	36.7	Basic (10.0) DNA topoisomerase	Shuman and Moss (1987) .
H7R	96609	97046	146	16.9	-	Sidual and Hoss (1907)
DIR	97093	99624	844	96.7	mRNA capping enzyme (small subunit)	Morgan, et al. (1984)
D2L	100026	99589	146	16.9	ts: E52, E94	Seto, et al. (1987)
D3R	100019	100729	237	28.0	ts: C5, C35	Seto, et al. (1987)
D4R .	100732	101385	218	25.0	-	,
D5R	101420	103774	785	90.0	ts: C17, C24, E69 ATP/GTP binding motif A	Seto, et al. (1987)
D6R	103818	105728	637	73.8	Early transcription factor subunit	Broyles and Fesler (1990)
					ts: C46, E93	Seto, et al. (1987)
D.7.D	105759	106240	161	17 0	Hydrophobic N-terminus	75+ -I (1000)
D7R	103/38	100240	101	17.9	RNA polymerase subunit	Ahn, et al. (1990)
					ts: C21, E45 Acidic (4.5)	Seto, et al. (1987)
DSL	107120	106209	304	35.3	Carbonic anhydrase	Niles, et al. (1986)
DOD	107110	100203	204	55.5	Transmembrane	Niles and Seto (1988)
					Cell surface binding	Maa, et al (1990)
					Multiply hydrophobic	Maa, et al (1990)
					Basic (9.1)	•
D9R	107162	107800	213	25.0	basic (9.1)	
DIOR		108543		28.9	_	
DIIL		108550		72.4	NTPase .	Rodriguez, et al. (1986);
						Broyles and Moss (1987)
					ts: C36, C50, E17	Seto, et al. (1987)
					Basic (9.0)	, ,
D12L	111340	110480	287	33.4	mRNA capping enzyme (small subunit)	Niles, et al. (1989)
DISL	113026	111374	551	61.9	ts: C33, C43, E101	Seto, et al. (1987)
					Rifampicin resistance	Tartaglia and Paoletti (1985) Baldick and Moss (1987)
					Acidic (5.0)	, ,
A1L'	113502	113053	150	17.0	-	
A2L	114197	113526	224	26.3	-	•
A3L	116372	114441	644	72.6	Major core protein P4b	Rosel and Moss (1985)
A4L		116428		30.8	Acidic (4.6)	
A5R	117308	117799	164	19.0	Acidic (4.2)	
A6L		117802		43.1	-	
A7L	121073	118944	710	82.3	Early transcription factor subunit	Gershon and Moss (1990)
A8R	121127	121990	288	33.6	-	
A9L		121989		11.1	-	
Alol.		122289		102.3	Major core protein P4a	Van Meir and Wittek (1988)
Allr	124976	125929	318	36.1	Hydrophobic C-terminus	•
					Ácidic (4.7)	
A12L		125937			Basic (10.1)	
A13L		126539			Basic (9.7)	
Al4L		126859				
A15L		127299			-	
A16L		127567			Hydrophobic C-terminus	
A17L	129314	128706	203	23.0	Hydrophobic center	
					Acidic (4.1)	
A18R	129329	130807	493	56.7	Basic (9.3)	

-24-

TABLE 1-Continued

a8	Transl	Storb		ze_		
Gene ^a	Start	Stopb		M _C	Characteristics	References
2101	131024	130704	~~	٥ ،	·	
Al9L			77	8.3	-	
A2OR	131377		426	49.2		
A21L	131378		117		Hydrophobic N-terminus	
A22R	132620			20.7	Basic (9.9)	
A23R	133170			44.6		
A24R	134315	137806	1164	133.4	RNA polymerase subunit; ts: C27, C29, C32,	Hooda-Dhingra, et al. (1990)
					C47, C62 Leucine Zipper Pattern	Hooda-Dhingra, et al, (1990)
A25L	138011	137817	65	7.5	A-type inclusion protein (cowpox virus)	Funahashi, et al. (1988);
A26L	138948	137983	322	37.3	Acidic (3.3)	Funahashi, et al. (1988);
	2007 10	20,700	322	3,13	(cowpox virus)	runanasni, et al. (1986);
A27L	139330	139001	110	12.6	Basic (9.2)	Bodrieuse & Betaban (1997)
A28L		139334		16.3	Fusion protein	Rodriguez & Esteban (1987)
A29L		139775		35.4	_	
A3OL		140655	77	8.7	Basic (9.9)	
A31R		141416		14.2	Basic (9.0)	
					Ribonucleoprotein RNA-bir	ding ragion signatura
A32L	142288	141389	300	34.4	Basic (9.2) ATP/GTP Binding motif A	ding region bignature
A33R	142316	142870	185	20.5	- Dinaing Motil A	
A34R		143400		19.5	Basic (10.1)	
A35R		143974		20.0	Acidic (4.0)	
A36R		144706		25.1	Acidic (4.4)	
A37R		145561		29.9		
A38L		145848		31.6	Multiply hydrophobic	
A39R		147903		45.7		
A40R		148435		19.3	Hydrophobic N-terminus	
A41L		148499			Acidic (4.8)	
A42R		149732		15.0	Basic (9.9)	
					Profilin	
A43R	149773	150354	194	22.6		
A44L		150696		. 39.4	3B-Hydroxy-5-ene steroid	dehydrogenase
A45R		152154		13.8	Superoxide dismutase	uen, di ogenase
A46R		152788		24.7	-	•
A47L		152959		28.3	Basic (10.0)	
A48R		154400		23.2	Thymidylate kinase	Smith, et al. (1989a)
					ATP/GTP binding motif A Acidic (5.0)	Smittin, et al. (1909a)
A49R	154451	154936	162	18.8	Acidic (3.9)	
A50R	154972	156627	552	63.4	DNA Ligase	Colinas, et al. (1990); Smith, et al. (1989a); Kerr
					Nonaggential	and Smith (1989)
A51R	156683	157684	334	37.7	Nonessential Nonessential	Colinas, et al. (1990)
A52R		158326		22.7	Hydrophilic N-terminus	Davis, et al. (unpublished)
AS3R		158943			Nonessential	Darrie of al Amerikalished
AS4L		158474			Basic (10.4)	Davis, et al. (unpublished)
72	220177	1334/4	30	10.0	Nonessential	Donde of J. J
A55R	150442	161133	564	64 7		Davis, et al. (unpublished)
					Nonessential	Davis, et al. (unpublished)
A56R	191190	162130	312	34.8	Nonessential Hemagglutinin Hydrophobic C-terminus	Shida, et al. (1987) Shida (1986)
A57R	162279	162730		37.4	Acidic (3.9)	

TABLE 1-Continued

a	<u>Transla</u>		<u>Si</u> :		Ohamantani ati aa	D. F
Gene ^a	Start	Stopb	aa ——	Mr.	Characteristics	References
31R	162884	163783	300	34.3	ts: C2, C3, C25	Traktman, et al. (1989a)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Protein Kinase	Howard and Smith (1989)
82R	163876	164532	219	24.6	Basic (9.1)	,
B3R	164571			14.4	Acidic (4.7)	
B4R		167276		65.3	-	
B5R		168333		35.1	Multiply hydrophobic Acidic (4.4) Complement control protein	
					C3L homologue	13
B6R	168432	168950	173	20.1	-	
B7R		169536		21.3	Hydrophobic N-terminus	
B8R		170409	272	31.2	Hydrophobic N-terminus	
B9R		170729	77	8.8	=	
B10R	170695	171192	166	18.9	_	
B11R	171267	171530	88	9.9	Acidic (3.6)	
			_		M(DT) _Q DVTNV	
B12R		172448		33.4	Protein Kinase	Howard and Smith (1989)
B13R	172562	172909	116	12.8	Hemorrhage-inducing	Pickup, et al. (1986)
		•			Serine Protease Inhibitor	
			•	•	Nonessential	Perkus, et al. (1990b)
D1 4D	172007	173552		24.0	Acidic (4.6)	mi -1 1
B14R.	1/200/	1/3352	222	24.9	Hemorrhage-inducing	Pickup, et al. (1986)
					Serine Protease Inhibitor Nonessential	Perkus, et al. (1990b)
					Acidic (4.3)	reikus, et al. (1930b)
B15R	173632	174078	149	17.4	Nonessential	Perkus, et al. (1990b)
					Acidic (4.5)	
B16R	174272	175141	290	32.5	Nonessential	Perkus, et al. (1990b)
					Kinase-related	•
					transforming protein	
B17L		175193		39.5	Nonessential	Perkus, et al. (1990b)
B18R		178070	574		Nonessential	Perkus, et al. (1990b)
B19R	178145	179203	353	40.9	Hydrophobic N-terminus	
DOOR	170200	170600	100	1= -	Nonessential	Perkus, et al. (1990b)
B20R	1/2300	179680	127	15.5	Nonessential	Perkus, et al. (1990b)
B21R*	180585	180857	91	10.5	Acidic (4.1)	Perkus, et al. (1990b)
B21R*		181741	181		Nonessential; C15L Nonessential; C16L	Perkus, et al. (1990b)
B23R*		182948	386		Nonessential; C17L	Perkus, et al. (1990b)
B24R*		183494			Nonessential; C18L	Perkus, et al. (1990b)
					Acidic (4.8)	
B25R*	183882	184658	259	30.5	Hydrophobic N-terminus	Powleys of al (1990b)
B26R*	184604	184914	103	12.5	Nonessential; C19L Nonessential; C20L	Perkus, et al. (1990b) Perkus, et al. (1990b)
DZ GK*	T94900	. 104714	103	12.5		rervas, er dr. (1230b)
B27R*	184922	185261	113	13.4	Basic (9.0) Nonessential; C21L	Perkus, et al. (1990b)
B28R*		185990			Nonessential; C21L	Perkus, et al. (1990b)
	4000E				Hydrophobic N-terminus	111110, 00 021 (13305)
B29R*	186730	187461	244	26.4	Nonessential; C23L Acidic (4.2)	Perkus, et al. (1990b)

^a Open reading frames enumerated as described in text.

^b Translation stop does not incude the three bases of termination codon.

[°] M, values calculated for the nascent, unprocessed polypeptide chain are presented as kDa.

M, values calculated for the nascent, unprocessed polypeptide chain are presented as KDa.
 Functions or activities indicated in bold type are known functions of vaccinia virus. Those indicated in *italics* have been identified in this study on the basis of similarity to existing proteins. All others are possible functions previously described by other investigators.
 Acidic proteins: p/ < 5.0; basic proteins: p/ > 9.0. p/ presented within parentheses.
 Temperature-sensitive mutants indicated by ts. Those first isolated by Condit et al. (1983) are prefaced with C; 1
 begin with E. Mutant C19, while not localized to a particular open reading frame, appears to map in the vincinity of I

^{*} Open reading frames repeated in both left and right termini of genome.

REFERENCES

- ANN, B.-Y., JONES, E. V., and Moss, B. (1990). Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5' poly(A) leader on its early transcript. J. Virol. 64, 3019–3024.
- BAIROCH, A. (1989). "PROSITE: A Dictionary of Protein Sites and Patterns," 2nd ed. University of Geneva, Geneva.
- BALDICK, C. J., Jr., and Moss, B. (1987). Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH₂ terminus of a gene encoding an M, 62,000 polypeptide. Virology 156, 138–145.
- BAROUDY, B. M., and Moss, B. (1982). Sequence homologies of diverse length tandem repetitions near ends of vaccinia virus genome suggest unequal crossing over. *Nucleic Acids Res.* 10, 5673–5679.
- BAROUDY, B. M., VENKATESAN, S., and Moss, B. (1982). Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. *Cell* 28, 315–324.
- BAUSE, E. (1983). Structural requirements of N-glycosylation of proteins: Studies with proline peptides as conformational probes. *Biochem. J.* 209, 331–336.
- BLOMOUIST, M. C., HUNT, L. T., and BARKER, W. C. (1984). Vaccinia virus 19-kilodalton protein: Relationship to several mammalian proteins, including two growth factors. *Proc. Natl. Acad. Sci. USA* 81, 7363–7367.
- BOURSNELL, M. E. G., FOULDS, I. J., CAMPBELL, J. I., and BINNS, M. M. (1988). Nonessential genes in the vaccinia virus Hindlll K fragment: A gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. J. Gen. Virol. 69, 2995–3003.
- Brown, J. P., Twardzik, D. R., Marquardt, H., and Todaro, G. J. (1985). Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor. *Nature (London)* 313, 491–492.
- BROYLES, S. S., and FESLER, B. S. (1990). Vaccinia virus gene encoding a component of the viral early transcription factor. J. Virol. 64, 1523–1529.
- Broyles, S. S., and Moss, B. (1986). Homology between RNA polymerases of poxviruses, prokaryotes, and eukaryotes: Nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147-kDa and 22-kDa subunits. *Proc. Natl. Acad. Sci. USA* 83, 3141–3145.
- BROYLES, S. S., and Moss, B. (1987). Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. J. Virol. 61, 1738–1742.
- BULLER, M. L., CHAKRABARTI, S., COOPER, J. A., TWARDZIK, D. R., and Moss, B. (1988). Deletion of the vaccinia virus growth factor gene reduces virus virulence. J. Virol. 62, 866–874.
- CHILD, S. J., PALUMBO, G. J., BULLER, R. M. L., and HRUBY, D. E. (1990). Insertional inactivation of the large subunit of ribonucleotide reductase encoded by vaccinia virus is associated with reduced virulence in vivo. Virology 174, 625–629.
- COLINAS, R. J., GOEBEL, S. J., DAVIS, S. W., JOHNSON, G. P., NORTON, E. K., and PAOLETTI, E. (1990). A DNA ligase gene in the Copenhagen strain of vaccinia virus is nonessential for viral replication and recombination. *Virology* 179, 267–275.

- ONDIT, R. C., MOTYCZKA, A., and SPIZZ, G. (1983). Isolation, characterization and physical mapping of temperature-sensitive mutants of vaccinia virus. *Virology* 128, 429–443.
- DAVISON, A. J., and Moss, B. (1989). Structure of vaccinla virus late promoters. J. Mol. Biol. 210, 771–784.
- DEFILIPPES, F. M. (1982). Restriction enzyme mapping of vaccinia virus DNA. J. Virol. 43, 136–149.
- EARL, P. L., JONES, E. V., and Moss, B. (1986). Homology between DNA polymerase of poxviruses, herpesviruses, and adenoviruses: Nucleotide sequence of the vaccinia virus DNA polymerase gene. Proc. Natl. Acad. Sci. USA 83, 3659–3663.
- EARL, P. L., and Moss, B. (1987). Vaccinia virus. In "Genetic Maps" (S. J. O'Brien, Ed.), Vol. 4, pp. 116–123. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- EISENBERG, D., SCHWARZ, E., KOMAROMY, M., and WALL, R. (1984): Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125-142.
- ENSINGER, M. J. (1982). Isolation and genetic characterization of temperature-sensitive mutants of vaccinia virus WR. J. Virol. 43, 778–790.
- ENSINGER, M. J. (1987). Phenotypic characterization of temperaturesensitive mutants of vaccinia virus with mutations in a 135,000-M, subunit of the virion-associated DNA-dependent RNA polymerase. J. Virol. 61, 1842–1850.
- ERNST, H., DUNCAN, R. F., and HERSHEY, J. W. B. (1987). Cloning and sequencing of complementary DNAs encoding the a-subunit of translational initiation factor eIF-2: Characterization of the protein and its messenger RNA. J. Biol. Chem. 262, 1206–1212.
- FRANKE, C. A., REYNOLDS, P. L., and HRUBY, D. E. (1989). Fatty acid acylation of vaccinia virus proteins. J. Virol. 63, 4285–4291.
- Funahashi, S., Sato, T., and Shida, H. (1988). Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus. J. Gen. Virol. 69, 35–47.
- GARON, C. F., BARBOSA, E., and Moss, B. (1978). Visualization of an inverted terminal repetition in vaccinia virus DNA. Proc. Natl. Acad. Sci. USA 75, 4863–4867.
- GERSHON, P. D., and Moss, B. (1990). Early transcription factor subunits are encoded by vaccinia virus late genes. *Proc. Natl. Acad. Sci. USA* 87, 4401–4405.
- GILLARD, S., SPEHNER, D., DRILLIEN, R., and KIRN, A. (1986). Localization and sequence of a vaccinia virus gene required for multiplication in human cells. *Proc. Natl. Acad. Sci. USA* 83, 5573–5577.
- Guo, P., Goebel, S., Davis, S., Perkus, M. E., Languet, B., Des-METTRE, P., Allen, G., and Paoletti, E. (1989). Expression in recombinant vaccinia virus of the equine herpesvirus 1 gene encoding glycoprotein gp13 and protection of immunized animals. J. Virol. 63, 4189–4198.
- HANGGI, M., BANNWARTH, W., and STUNNENBERG, H. G. (1986). Conserved TAAAT motif in vaccinia virus late promoters: Overlapping TATA box and site of transcription initiation. *EMBO J.* 5, 1071–1076.
- HATTORI, M., and SAKAKI, Y. (1986). Dideoxy sequencing method using denatured plasmid templates. *Anal. Biochem.* 152, 232–237.
- HIRASHIMA, S., HIRAI, H., NAKANISHI, Y., and NATORI, S. (1988). Molecular cloning and characterization of cDNA for eukaryotic transcription factor S-II. *J. Biol. Chem.* 263, 3858–3863.
- HIRT, P., HILLER, G., and WITTEK, R. (1986). Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J. Virol. 58, 757–764.
- Hooda-Dhingra, U., Thompson, C. L., and Condit, R. C. (1989). Detailed phenotypic characterization of five temperature-sensitive mutants in the 22- and 147-kilodalton subunits of vaccinia virus DNA-dependent RNA polymerase. *J. Virol.* 63, 714–729.
- HOODA-DHINGRA, U., PATEL, D. D., PICKU (1990). Fine structure mapping and p

- temperature-sensitive mutations in the second largest subunit of vaccinia virus DNA-dependent RNA polymerase. *Virology* 174, 60-69.
- HOWARD, S. T., and SMITH, G. L. (1989). Two early vaccinia virus genes encode polypeptides related to protein kinases. J. Gen Virol. 70, 3187–3201.
- HRUBY, D. E., MAKI, R. A., MILLER, D. B., and BALL, L. A. (1983). Fine structure analysis and nucleotide sequence of the vaccinia virus thymidine kinase gene. *Proc. Natl. Acad. Sci. USA* 80, 3411– 3415.
- KERR, S. M., and SMITH, G. L. (1989). Vaccinia virus encodes a polypeptide with DNA ligase activity. *Nucleic Acids Res.* 17, 9039– 9050.
- KLEIN, P., KANEHISA, M., and DELISI, C. (1985). The detection and classification of membrane-spanning proteins. *Biochem. Biophys.* Acta 815, 468–476.
- KUNTROT, I.-M., HOOG, J.-O., JORNVALL, H., HOLMGREN, A., and LUTH-MAN, M. (1984). The primary structure of calf thymus glutaredoxin: Homology with the corresponding *Escherichia coli* protein but elongation at both ends and with an additional half-cystine/cysteine pair. *Eur. J. Biochem.* 144, 417–423.
- KOTWAL, G. J., and Moss, B. (1988a). Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. *Nature (London)* 335, 176–178.
- KOTWAL, G. J., and Moss, B. (1988b). Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167, 524–537.
- KOTWAL, G. J., and Moss, B. (1989). Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. J. Virol. 63, 600–606.
- KOZAK, M. (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292.
- KWIATKOWSKI, D. J., and BRUNS, G. A. P. (1988). Human profilin: Molecular cloning, sequence comparison, and chromosomal analysis. J. Biol. Chem. 263, 5910–5915.
- KYTE, J., and DOOLITTLE, R. F. (1982). A simple method for displaying the hydropathic character of a protein. *J. Mol. Biol.* 157, 105–132.
- LIPMAN, D. J., and PEARSON, W. R. (1985). Rapid and sensitive protein similarity searches. Science 227, 1435–1441.
- LUNDBERG, L. G., THORESSON, H.-O., KARLSTROM, O. H., and NYMAN, P. O. (1983). Nucleotide sequence of the structural gene for dUT-Pase of Escherichia coli K-12. EMBO J. 2, 967–971.
- Luu, T. V., Lachance, Y., Labrie, C., Leblanc, G., Thomas, J. L., Strickler, R. C., and Labrie, F. (1989). Full length cDNA structure and deduced amino acid sequence of human 3β-hydroxy-5-ene steroid dehydrogenase. *Mol. Endocrinol.* 3, 1310–1312.
- LUX, S. E., JOHN, K. M., and BENNETT, V. (1990). Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature (London) 334, 36–42.
- MAA, J.-S., RODRIGUEZ, J. F., and ESTEBAN, M. (1990). Structural and functional characterization of a cell surface binding protein of vaccinia virus. J. Biol. Chem. 265, 1569–1577.
- MACKETT, M., and ARCHARD, L. C. (1979). Conservation and variation in *Orthopoxvirus* genome structure. *J. Gen. Virol.* 45, 683–701.
- MACKETT, M., SMITH, G. L., and Moss, B. (1982). Vaccinia virus: A selectable eukaryotic cloning and expression vector. *Proc. Natl.* Acad. Sci. USA 79, 7415–7419.
- MAXAM, A. M., and GILBERT, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavages. *In* "Methods in Enzymology" (L. Grossman and K. Moldave, Eds.), Vol. 65, pp. 499–560. Academic Press, New York.
- MERCHLINSKY, M., and Moss, B. (1989). Nucleotide sequence re-

- quired for resolution of the concatemer junction of vaccinia virus DNA. J. Virol. 63, 4354-4361.
- MORGAN, J. R., COHEN, L. K., and ROBERTS, B. E. (1984). Identification of the DNA sequence encoding the large subunit of the MRNA-capping enzyme of vaccinia virus. J. Virol. 52, 206–214.
- Moss, B. (1985). Replication of poxviruses. In "Virology" (B. Fields, R. M. Chanock, and B. Roizman, Eds.), pp. 685–703. Raven Press, New York.
- Moss, B. (1990). Poxviridae and their replication. In "Virology" (B. N. Fields et al., Eds.), 2nd ed., pp. 2079–2111. Raven Press, New York.
- Moss, B., WINTERS, E., and COOPER, N. (1981). Instability and reiteration of DNA sequences within the vaccinia virus genome. Proc. Natl. Acad. Sci. USA 78, 1614–1618.
- NILES, E. G., CONDIT, R. C., CARO, P., DAVIDSON, K., MATUSICK, L., and SETO, J. (1986). Nucleotide sequence and genetic map of the 16kb vaccinia virus *Hind*III D fragment. *Virology* 153, 96–112.
- NILES, E. G., LEE-CHEN, G.-J., SHUMAN, S., Moss, B., and BROYLES, S. S. (1989). Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. *Virology* 172, 513–522.
- NILES, E. G., and SETO, J. (1988). Vaccinia virus gene D8 encodes a virion transmembrane protein. J. Virol. 62, 3772–3778.
- NYSTROM, L.-E., LINDBERG, U., KENDRICK-JONES, J., and JAKES, R. (1979). The amino acid sequence of profilin from calf spleen. *FEBS Lett.* 101, 161–165.
- Panicall, D., and Paoletti, E. (1982). Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. *Proc. Natl. Acad. Sci. USA* 79, 4927–4931.
- PATEL, D. D., RAY, C. A., DRUCKER, R. P., and PICKUP, D. J. (1988). A poxvirus-derived vector that directs high levels of expression of cloned genes in mammalian cells. *Proc. Natl. Acad. Sci. USA* 85, 9431–9435.
- Perkus, M. E., Goebel, S. J., Davis, S. W., Johnson, G. P., Limbach, K., Norton, E. K., and Paoletti, E. (1990a). Vaccinia virus host range genes. Virology 179, 276–286.
- PERKUS, M. E., GOEBEL, S. J., DAVIS, S. W., JOHNSON, G. P., NORTON, E. K., and PAOLETTI, E. (1990b). Deletion of fifty five open reading frames from the termini of vaccinia virus. *Virology*, in press.
- Perkus, M. E., Limbach, K., and Paoletti, E. (1989). Cloning and expression of foreign genes in vaccinia virus, using a host range selection system. *J. Virol.* 63, 3829–3836.
- Pickup, D. J., Ink, B. S., Hu, W., Ray, C. A., and Jokuk, W. K. (1986). Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. *Proc. Natl. Acad. Sci. USA* 83, 7698–7702.
- PLUCIENNICZAK, A., SCHROEDER, E., ZETTLENEISSEL, G., and STRECK, R. E. (1985). Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome. Nucleic Acids Res. 13, 985–998.
- Rao, J. K. M., and Arsos, P. (1986). A conformational preference parameter to predict helices in integral membrane proteins. *Bio-chem. Biophys. Acta* 869, 197–214.
- REISNER, A. H. (1985). Similarity between the vaccinia virus 19K early protein and epidermal growth factor. *Nature (London)* 313, 801–803.
- RODRIGUEZ, J. F., and ESTEBAN, M. (1987). Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. *J. Virol.* 61, 3550–3554.
- RODRIGUEZ, J. F., KAHN, J. S., and ESTEBAN, M. (1986). Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase nene Proc Natl. Acad. Sci. USA 83, 9566–9570.
- Rosel, J. L., Earl, P. L., Weir, J. P., and Mo

- TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the *HindIII* H genomic fragment. *J. Virol.* 60, 436–449.
- ROSEL, J. L., and Moss, B. (1985). Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. J. Virol. 56, 830–838.
- Schmitt, J. F. C., and Stunnenberg, H. G. (1988). Sequence and transcriptional analysis of the vaccinia virus *Hin*dlll I fragment. *J. Virol.* 62, 1889–1897.
- SETO, J., CELENZA, L. M., CONDIT, R. C., and NILES, E. G. (1987). Genetic map of the vaccinia virus *Hind*III D fragment. *Virology* 160, 110–119.
- SHIDA, H. (1986). Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150, 451–462.
- SHIDA, H., TOCHIKURA, T., SATO, T., KONNO, T., HIRAYOSHI, K., SEKI, M., ITO, Y., HATANAKA, M., HINUMA, Y., SUGIMOTO, M., TAKAHASHI-NISHIMAKI, F., MARUYAMA, T., MIKI, K., SUZUKI, K., MORITA, M., SASHIYAMA, H., and HAYAMI, M. (1987). Effect of the recombinant vaccinia viruses that express HTLV-I envelope gene on HTLV-I infection. EMBO J. 6, 3379–3384.
- SHUMAN, S., and Moss, B. (1987). Identification of a vaccinia virus gene encoding a type I¹DNA topoisomerase. *Proc. Natl. Acad. Sci. USA* 84, 7478–7482.
- SLABAUGH, M. B., and ROSEMAN, N. A. (1989). Retroviral protease-like gene in the vaccinia virus genome. *Proc. Natl. Acad. Sci. USA* 86, 4152–4155.
- SLABAUGH, M. B., ROSEMAN, N., DAVIS, R., and MATTHEWS, C. (1988).
 Vaccinia virus-encoded ribonucleotide reductase: Sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. J. Virol. 62, 519–527.
- SMITH, G. L., CHAN, Y. S., and KERR, S. M. (1989a). Transcriptional mapping and nucleotide sequence of a vaccinia virus gene encoding a polypeptide with extensive homology to DNA ligases. *Nucleic Acids Res.* 17, 9051–9062.
- SMITH, G. L., DECARLOS, A., and CHAN, Y. S. (1989b). Vaccinia virus encodes a thymidylate kinase gene: Sequence and transcriptional mapping. *Nucleic Acids Res.* 17, 7581–7590.
- SMITH, G. L., HOWARD, S. T., and CHAN, Y. S. (1989c). Vaccinia virus encodes a family of genes with homology to serine protease inhibitors. J. Gen. Virol. 70, 2333–2343.
- SPEHNER, D., GILLARD, S., DRILLIEN, R., and KIRN, A. (1988). A cowpox virus gene required for multiplication in chinese hamster ovary cells. *J. Virol.* 62, 1297–1304.
- SRI WIDADA, J., FERRAZ, C., and LIAUTARD, J. P. (1989). Total coding sequence of profilin cDNA from Mus musculus macrophage. Nucleic Acids Res. 17, 2855.
- TABOR, S., and Richardson, C. C. (1987). DNA sequence analysis

- with a modified bacterlophage T7 polymerase. Proc. Natl. Acad. Sci. USA 84, 4767–4771.
- TAMIN, A., VILLARREAL, E. C., WEINRICH, S. L., and HRUBY, D. E. (1988). Nucleotide sequence and molecular genetic analysis of the vaccinia virus *Hind*III N/M region encoding the genes responsible for resistance to alpha-amanitin. *Virology* 165, 141–150.
- .TARTAGLIA, J., and PAOLETTI, E. (1985). Physical mapping and DNA sequence analysis of the rifampicin resistance locus in vaccinia virus. Virology 147, 394–404.
- TENGELSEN, L. A., SLABAUGH, M. B., BIBLER, J. K., and HRUBY, D. E. (1988). Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. *Virology* 164, 121–131.
- THOMPSON, C. L., HOODA-DHINGRA, U., and CONDIT, R. C. (1989). Fine structure mapping of five temperature-sensitive mutants in the 22and 147-kilodalton subunits of vaccinia virus DNA-dependent RNA polymerase. J. Virol. 63, 705–713.
- TRAKTMAN, P., ANDERSON, M. K., and REMPEL, R. E. (1989a). Vaccinla virus encodes an essential gene with strong homology to protein kinases. *J. Biol. Chem.* 264, 21,458–21,461.
- TRAKTMAN, P., KELVIN, M., and PACHECO, S. (1989b). Molecular genetic analysis of vaccinia virus DNA polymerase mutants. J. Virol. 63, 841–846.
- VAN MEIR, E., and WITTEK, R. (1988). Fine structure of the vaccinia virus gene encoding the precursor of the major core protein 4a. *Arch. Virol.* 102, 19–27.
- VENKATESAN, S., BAROUDY, B. M., and Moss, B. (1981). Distinctive nucleotide sequences adjacent to multiple initiation and termination sites of an early vaccinia virus gene. Cell 125, 805–813.
- VENKATESAN, S., GERSHOWITZ, A., and Moss, B. (1982). Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the terminal repetition. J. Virol. 44, 637–646.
- VON HEUNE, G. (1986). A new method for predicting signal sequence cleavage sites. *Nucleic Acids Res.* 14, 4683–4690.
- WEINRICH, S. L., and HRUBY, D. E. (1986). A tandemly-oriented late gene cluster within the vaccinia virus genome. *Nucleic Acids Res.* 14, 3003–3016.
- WEIR, J. P., and Moss, B. (1983). Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutations. *J. Virol.* 46, 530–537.
- WITTEK, R., MULLER, H. K., MENNA, A., and WYLER, R. (1978). Length heterogeneity in the DNA of vaccinia virus is eliminated on cloning the virus. FEBS Lett. 90, 41–46.
- YANG, W.-P., KAO, S.-Y., and BAUER, W. R. (1988). Biosynthesis and post-translational cleavage of vaccinia virus structural protein VP8. Virology 167, 585–590.
- YUEN, L., and Moss, B. (1987). Oligonucleotide sequence signalling transcriptional termination of vaccinia virus early genes. *Proc. Natl. Acad. Sci. USA* 84, 6417–6421.

TABLE 2
Features and Homologies of Open Reading Frames of the Vaccinia MVA Strain

ORF.	START		kDa*	name / (putative) function / homologies*	BLAST expect	BLAST AA Id	HSS ^f (%)	references
eft te	6822	regio 136	14.9	35k mala				
93R*	6412	130	14.9	35k major seer, protein				(Patel et al., 1990)
723L	0412	244		chemokine receptor (f')	60-57	41740	07	(Graham et al., 1997)
234		253		VAC <i>(C23L/B29R)</i> VAR-I ^j G3R	6.0e-57	41/42	97	(Goebel et al., 1990)
		246		CPX ORF B	8.9e-51	46/49	93	(Shchelkunov et al., 1995)
		258			5.6e-49	40/42	95	(Hu et al., 1994)
		260		SFV T1 protein	2.5e-20	23/42	54	(Upton et al., 1987)
		200		Myxoma virus T1/35kDa	1.5c-14	21/42	50	(Graham et al., 1997)
02L/	7784	176	19.7	secr. TNF receptor (f)				/11
92R	7254	355		CPX crmB	5.le-71	76/83	91	(Upton et al., 1991a)
		348		VAR-BSH G2R	1.0e-66	73/83	87	(Hu et al., 1994)
		326		Myxoma virus T2	4.9e-30	21/37	56	(Shchelkunov et al., 1995)
		325		Rabbit fibroma Virus T2	1.8c-28	17/36	47	(Upton et al., 1991n)
		202		CPX C4L	8.7e-15	30/51	58	(Upton et al., 1987)
		346		'HS TNF receptor protein	1.9e-08	14/26	53	(Safronov et al., 1996)
19L		259		VAC (C19L/B25R)	0.00026	16/19	84	(Heller et al., 1990) (Goebel et al., 1990)
		277		human CD40L receptor	0.0015	11/24	45	
				30 matches to TNF receptors	<0.39		73	(Stamencovic et al., 1989)
				and surface proteins	40.57			
	_			,				
03L/	8780	102	12.1	45k ank*-like protein				(Goebel et al., 1990)
91R	8472			(f1)				()
217L	1	386		VAC CI7L/B23R	1.3e-39	62/63	98	(Goebel et al., 1990)
04L/	9558	233	26.9	45k ank-like protein				(Goebel et al., 1990)
90Rb	8857			(f2)				
:17L	1	386		VAĆ (CI7L/B23R)	6.2e-159	110/110	100	(Goebel et al., 1990)
)IL	1 .	91		VAR-BSH	9.1e-31	46/49	93	(Shchelkunov et al., 1995)
	1	669		CPX host range	1.1e-13	22/50	44	(Spehner et al., 1988)
	1	452		VAR-I D6L (BSH:D8L)	1.7e-11	21/50	42	(Shchelkunov et al., 1995)
	1	574		VAR-I BISR (BSH: BIGR)	1.2e-05	22/73	30	(Shchelkunov et al., 1995)
	1	574		VAC B18R (WR: B17R)	8.6c-05	22/73	30	(Goebel et al., 1990)
	i	634		VAC C9L	0.00011	11/24	45	(Kotwal and Moss, 1988a)
		585		VAR-I GIR	0.00013	22/74	29	(Shchelkunov et al., 1995)
	ı	516		orf virus	0.0088	15/49	30	(Sullivan et al., 1995b)
	ا	153		VAR-1 D7L (BSH:D10L)	0.014	12/28	42	(Shchelkunov et al., 1995)
								, , , , , , , , , , , , , , , , , , , ,
05R	10203	140	15.5	Growth factor (EGF				(Twardzik et al., 1985)
	10625			receptor binding)				(Stroobant et al., 1985)
CIIR		142		VAC	2.9e-82	99/104	95	(Goebel et al., 1990)
D2R		140		VAR-I (BSH:D4R)	3.6c-74	106/140	75	(Shchelkunov et al., 1995)
		138		CPX D5R	3.4e-95	101/114	88	(Safronov et al., 1996)
		169		human epiregulin	2.2c-14	29/78	37	D30783
				100 matches to growth factor	<0.10			
				like sequences				
DOGL	11758	326	37.9	37.9k protein				(Venkatesan et al., 1982)
CIOL	10778	331		VAC	1.7e-235	264/268		(Goebel et al., 1990)
D. 61		331		CPX D6L	7.7e-235	264/268		(Safronov et al., 1996)
D5L		330		VAR-BSH (I: D3L)	3.6e-233	169/171		(Shchelkunov et al., 1995)
		316		VAR-I DIIL (BSH:DI4L)	1.7e-94	34/68	44	(Shchelkunov et al., 1995)
		316		VAC C4L	1.8e-92	30/68	54	(Goebel et al., 1990)
		315		CPX DI6L	2.3e-92	31/68	45	(Safronov et al., 1996)
		82		Ectromelia 42K protein	1.2e-50	78/82	95	(Senkevich er al., 1993a)
		418		FPV BamHi ORF1	3.0c-11	13/41	31	(Tomley et al., 1988)
007R	12263	91	10.6	78k vivulance factor (5				(01
,	12538	242	10.0	28k virulence factor (f) CPX D7R	1 6- 0-	4214-	90	(Senkevich et al., 1993a)
	: 2330	184			1.5e-51	42/47	89	(Safronov et al., 1996)
D4R		242		VAC-WR 21.7k protein	5.3c-51	41/47	87	(Kotwal and Moss, 1988a)
J-71N		241		VAR-I (BSH:D6R)	3.7e-50	41/47	87	(Shchelkunov et al., 1995)
		441		Ectromelia 28k secreted virulence factor	3.7e-50	41/47	87	(Senkevich et al., 1993a)
				vitationed inteller				
008L	13414	120	13.7	13.7k protein				
D7L	13052	126		VAR-BSH (1:DSL)	1.9e-83	57/64	89	(Shehelkunou1 100m
_		138		Ectromelia 16k protein	7.8c-81	58/60	96	(Shchelkunov <i>et al.</i> , 1995) (Senkevich <i>et al.</i> , 1993a)
		124		CPX D8L	3.2e-67	49/60	81	(Safronov et al., 1993a)
		68		7.8k protein (VAC-WR)	1.3e-34	53/64	82	(Kotwal and Moss, 1988a)
	_	-						, 200 00000, 17000)
009L	13745	90	10.7	77k CPX hr protein (f1)				(Spehner et al., 1988)
	13473	669		CPX host range gene	2.7e-46	43/52	82	(Safronov et al., 1996)
	1	634		VAC C9L	1.7e-05	9/33	27	(Goebel et al., 1990)
010L	14186	142	16.1	77k CPX hr protein (f2)			٠. ،	
	13758	669		CPX host range gene	2.2e-91	133/142	93 `	(Safronov et al., 1996)
	1	634		VAC C9L	9.2e-21	26/63	41	(Goebel et al., 1990)
D6L	1	452		VAR-I (BSH: D8L)	4.5e-13	27/29	93	(Shchelkunov et al., 1995)
	1	150		VAC CI8L/B24R	1.3e-11	19/52	36	(Goebel et al., 1990)
	1	439		AT ankyrin repeat protein	9.5e-07	23/59	38	(Zhang et al., 1992)
		558		VAR-I BER (BSH:BSR)	4.0e-05	28/113	24	(Shchelkunov et al., 1995)
	1	. ,		30 matches with ankyrin	2.7e-05 to			,
	1			repeat containing proteins	0.016	-		
011L	14682	135	15.8	77k CPX hr protein (f3)				(Spehner et al., 1988) .
		669		CPX host range gene	7.6e-80	54/64	84	(Safronov et al., 1996)
	14275	007						
D6L 012L	15183	452 90	10.3	VAR-I (BSH: D8L) 77k CPX hr protein (f4)	9.2c-78	52/64	81	(Shchelkunov et al., 1995)

Reprinted from *Virology*, Vol. 244, G. Antoine, F. Scheiflinger, F. Dorner, and F. G. Falkner, "The Complete Genomic Sequence of the Modified Vaccinia Ankara Strain: Comparison with Other Orthopoxviruses", pgs. 365-396, (1998), with permission from Elsevier.

-30-GENOMIC SEQUENCE OF THE MVA STRAIN

ORF°	START STOP	ΑΛÞ	kDa*	name / (putative) function / homologies	BLAST	BLAST		references
left te	rminal	region	1:	rancore r nomorogres	expect	AA id	(%)	
D6L	14911	452		VAR-I (BSH: D8L)	2.2c-52	80/85	94	(Shchelkunov et al., 1995)
į	į	669 153		CPX host range gene	8.1e-51	77/85	90	(Spehner et al., 1988)
1	1	634		VAR-I D7L (BSH: D10L) VAC C9L	2.9c-17. 1.3c-13	19/45 19/45	42 42	(Shchelkunov et al., 1995)
]		1161		C. botulinum NTNH protein	0.00019	6/12	50	(Goebel et al., 1990) (Hutson et al., 1996)
		202		Capripox	0.00058	15/58	25	(Cao et al., 1995)
l		895 516		UDP glucose dehydrogenase orf virus ank-like	0.00051	6/19	31	(Bult et al., 1996)
l		673		rabbit fibroma 77.2k protein	0.0064 0.0072	16/49° 12/30	32 40	(Sullivan et al., 1995b) (Massung et al., 1992)
013L	15420	71	8.5	77k CPX hr protein (f5)				•
	15205	669		CPX host range gene	5.2c-44	68/69	98	(Spehner et al., 1988) (Safronov et al., 1996)
D6L	1	452 673	-	VAR (BSH: D8L)	7.9e-42	64/67	95	(Shehelkunov et al., 1995)
ļ		386		rabbit fibroma 77.2k protein VAC C17L/B23R	0.0052 0.018	8/26 14/33	30 42	(Massung et al., 1992)
1		202		Capripox	0.023	10/19	52	(Goebel et al., 1990) (Sullivan et al., 1995b)
	ŀ	574 574		VAC BI8R (WR: BI7R) VAR BI9R (BSH:BI6R)	0.71 0.71	12/28 12/28	42 42	(Goebel et al., 1990)
100.43	_ J./22/	100			•	15720	~•	(Shchelkunov et al., 1995)
014L C9L	16205 15876	109 634	13.1	75k auk-like gene (f1) VAC	3.9c-73	109/109	100	(Kotwal and Moss, 1988a)
ł		614		CPX DIIL	1.6e-70	105/108		(Gochel et al., 1990) (Safronov et al., 1996)
D9L	1	91		VAR (I: D6.5L)	1.2c-52	78/91	85	(Shchelkunov et al., 1995)
1		437 673		CPX DIL rabbit fibroma 77.2K protein	3.7c-19	28/67	41	(Safronov et al., 1996)
015L	16786	96	11.2	75k ank-like gene (f2)	0.021	5/16	31	(Massung et al., 1992) (Kotwał and Moss, 1988a)
C9L	16496	634		VAC	4.0c-53	80/80	100	(Goebel et al., 1990)
	1	614 437		CPX DIIL CPX DIL	3.9c-25	48/80	60	(Safronov et al., 1996)
1	1	172		VAR-Garcia 1966 BIIL	9.6e-12 0.0001	14/36 17/17	38 100	(Safronov et al., 1996) (Mussung et al., 1996)
		141		integrase (simian foamy v.)	0.033	10/24	41	(Schweizer and Neumann, 1995)
016L	17759	669 297	35.0	CPX host range gene 75k ank-like gene (f3)	0.043	9/17	52	(Spehner <i>et al.</i> , 1988)
C9L	16866	634	55.0	VAC	3.4e-208	291/294	98	(Kotwal and Moss, 1988a) (Goebel <i>et al.</i> , 1990)
	1	614		CPX DIIL	1.4e-130	90/126	71	(Sufronov et al., 1996)
D7L	ł	153 669		VAR-1 (BSH:D10L) CPX host range gene	8.4e-68	84/109	77	(Shchelkunov et al., 1995)
		452	•	CPX D9L	4.5e-17 2,2e-16	24/61 23/61	39 37	(Spehner et al., 1988) (Safronov et al., 1996)
D8L	İ	668		VAR-BSH (I:D6L)	3.3e-16	21/61	34	(Shchelkunov et al., 1995)
1	ļ	386 833		VAC C17L/B23R CPX D3L	2.9e-08 0.0085	11/24	45	(Gocbel et al., 1990)
1		574		VAC BISR (WR:B17R)	0.0083	13/58 13/40	22 32	(Safronov et al., 1996) (Goebel et al., 1990)
1		202 574		Capripox virus VAR-I B19R (BSH:B16R)	0.084 0.090	11/29	37	(Sullivan et al., 1995b)
					0.090	13/40	32	(Shchelkunov et al., 1995)
017L <i>C8L</i>	18335 17802	177 184	20.8	20.8k protein VAC	1.2e-125	125/120	06	(Kotwal and Moss, 1988a)
	.,	182		CPX D12L	5.0e-118	125/129 119/126		(Goebel et al., 1990) (Safronov et al., 1996)
		182		VAC B7R	8.3e-06	16/67	23	(Goebel et al., 1990)
		795		VAC H4L (RAP94)	0.60	12/45	26	(Goebel at al., 1990)
018L	18859	150	18.0	host range protein				(Perkus et al., 1991)
<i>C7L</i> D11L	18407	150 150		VAC VAR-BSH (I:D8L)	1.6e-106	150/150 149/150		(Kotwai and Moss, 1988a)
		185		Swinepox virus ORF SwF8a	4.2e-106 3.4e-35	31/82	37	(Shchelkunov et al., 1995) (Schnitzlein and Tripathy, 1991)
		197		Capripox virus ORF CF8a	1.4e-31	29/87	33	(Gershon and Black, 1989a) .
		170 158	_	CPX D4L Myxoma virus ORF MF8	3.5e-17	19/60	31	(Safronov et al., 1996)
		128		VAR-BSH D3L (I:D1.5L)	5.6e-13 5.4e-06	16/43 18/60	37 30	(Jackson and Bults, 1992) (Shchelkunov et al., 1995)
019L	19541	157	18.2	18.2k protein				(Kotwal and Moss, 1988a)
C6L	19068	151		VAC -	7.6c-104			(Goebel et al., 1990)
D9L		156 156		VAR (BSH: D12L) CPX D14L	1.6c-99	145/150		(Shchelkunov et al., 1995)
		159		Capripox virus ORF T3a	1.3c-96 4.4e-07	141/150 24/76	31	(Safronov et al., 1996) (Gershon and Black, 1989a)
		151		Rabbit fibroma virus T3Aa	0.0047	16/46	34	(Upton et al., 1987)
		181 149	•	VAC C16L/B22R VAR C4R	0.2	12/46	26	(Goebel et al., 1990)
		149		VAC-WR K7R	0.29 0.40	8/13 8/13	61 61	(Shchelkunov et al., 1995) (Kotwal and Moss, 1988a)
020L	20025	113	13.2	14k virulence factor,				•
	19684			secreted protein (f)				(Kotwal and Moss, 1988a) (Kotwal and Moss, 1988b)
NIL		117		VAC CPX PIL	2.6c-60	92/102	90	(Goebel et al., 1990)
PIL		117		VAR-BSH, virokine	7.3e-58 6.6e-56	85/102 88/102	83 86	(Shchelkunov et al., 1995) (Safronov et al., 1996)
		107		Rabbit fibroma virus	0.015	10/17	58	(Massung et al., 1992)
021L	20656 20144	170	20.3	alpha-amanitin sensitive	:	•		(Tamin et al., 1991)
	20144	175		protein CPX P2L	3.0c-118	138/142	97	(Kotwal and Moss, 1988a) (Safronov <i>et al.</i> , 1996)
N2L		175		VAC	6.le-118	137/142	96	(Goebel et al., 1996)
P2L		177		VAR	9.76-115			(Shchelkunov et al., 1995)
022L	20981	98	11.0	33k host range gene (f)				(Gillard et al., 1986)
KIL	20685	284 284		VAC CPX MIL	1.8c-56	86/88	97 .	(Altenburger et al., 1989)
				VAR	2.3e-56	86/88	97 95	(Safronov et al., 1996)
CIL		66 65		V A IL	2.0c-39	63/66	73	(Shchelkunov et al., 1995)

ORF'	START STOP erminal	AAb rogio	kDa ^c	name / (putative) function / homologies*	BLAST ⁴ expect	BLAST ⁴ AA id	HSS ¹	references
023L	22296	369	42.3	serpin SPI-3, cell-cell				(Poursett - 1 1000)
K2L	21187	369		fusion mutation				(Boursnell et al., 1988) (Altenburger et al., 1989)
C2L		373		VAC CPX M2L	1.2c-258 1.2c-256	365/369 331/337	98	(Goebel et al., 1990)]
		373		VAR-BSH	9.9e-249	321/337	95	(Safronov et al., 1996) (Shchelkunov et al., 1995)
		373 386		Ectromelia virus H14-B	6.5e-244	312/337		U67964
		500		HS plasminogen activator inhibitor	1.1e-35	30/68	44	(Loskutoff et al., 1987)
		58 369		CPX SPI 3 protein	8.2c-33	57/58	98	gi:1168082
		397		Myxoma virus MAPI gene mouse protease nexin	7.3e-32 1.5e-29	33/131 31/67	25 46	(Upton et al., 1990a)
		397		humane glia derived neurite-	8.7e-27	30/65	46	(Vassalli <i>et al.</i> , 1993) A03911
		320		promoting factor Swinepox SPI like protein	3.6€-21	20/70	28	(Manual et al. 1000)
		417		a-l antitrypsin, human	2.2e-20	26/66	39	(Massung et al., 1993) (Ciliberto et al., 1985)
		383		Corticosteroid-binding protein (rabbit)	9.0ε-20			(Seralini et al., 1989)
		390		squamous cell carcinoma antigen	1.9c-17			(Schneider et al., 1995)
024L	22612	88	10.5	IFN resistance, eIF-2a				(Beattie et al., 1991)
	22346	88		homolog CPX M3L	2.6e-61	8810n	100	(Davies et al., 1992)
K3L		88		VAC	1.4e-60	88/88 87/88	100 98	(Safronov et al., 1996) (Goebel et al., 1990)
C3L		88 86		VAR-I	1.0e-52	73/88	82	(Shchelkunov et al., 1995)
		-		SPV C8 protein translation initiation factor 2	4.1e-22 1.2e-08/	20/44	45	(Massung et al., 1993)
				family .	0.45			
025L	23938 22664	424	48.9	phospholipase D-like protein				(Cao et al., 1997)
K4L		424 424		VAC CPX M4L	1.5e-306 2.1e-303	423/424 416/424		(Goebel et al., 1990)
		437		human HU-K4	2.8e-135	53/95	98 55	(Safronov et al., 1996) U60644
		372 516		D. discoideum	2.5e-91	28/47	59	(Giorda et al., 1989)
		2327		C. elegans C. elegans	6.6e-89 2.8e-52	31/61 36/60	50 60	gi: 2435624 gi: 2291241
		635 377		C. elegans	1.1e-24	19/53	35	(Wilson et al., 1994)
		371		FPV major envelope protein Myxoma virus env protein	2.9e-23 3.6e-22	19/61 18/51	31 35	(Calvert <i>et al.</i> , 1992) U43549
1400011		378		Orf virus env protein B2L	1.2e-21	21/71	29	(Sullivan et al., 1994)
MC021L CI7L	1	388 372		MCV subtype I env protein - VAR-BSH	3.2e-21	20/63	31	(Senkevich et al., 1997)
		372		VAC F13L	4.6e-19 4.9e-17	15/52 15/52	28 28	(Shchelkunov et al., 1995) (Goebel et al., 1990)
026L	24478 23966	170	19.1	lysophospholipase-like protein (f1)				(Upton & Buller, unpub.)
	1	276		CPX M5L	2.6e-110	161/170	94	(Safronov et al., 1996)
KSL		277 136		Ectromelia virus H14-E VAC	2.7c-109 5.5c-69	160/170 107/108		X94355 U67964
	İ	134		VAC-WR	8.3e-63	98/101	97	(Goebel et al., 1990) (Boursnell et al., 1988)
	1	313 323		HS lysophospholipase homolog	3.36-35	35/105	33	U67963
				poss. oxidoreductase M.	1.2c-13	30/94	31	Z97050
•	1	324		tuberculosum Lysophospholipase isolog	3.1c-5	13/58	22	U95973
•		313		A. thaliana H. influenza probable	0.047	13/30	43	U32747
027L	24694	64	7.0	lysophospholipase L2 lysophospholipase-like				(Upton & Buller, unpub.)
K6L	24500	81		protein (f2) VAC		40.100		•
NUL		276		CPX MSL	5.3e-42 2.4e-36	63/63 57/58	100 98	(Boursnell et al., 1988) (Safronov et al., 1996)
		277		Ectromelia virus H14-E	2.4e-36	57/58	98	U67964
		313 323		HS lyophospholipase homolog hyp. oxidoreductase M.	9.1c-23 9.9c-14	34/53 22/54	64 40	U67963 Z97050
	1	530		tuberculosis				
		330		dihydrotestosterone/androsta nedlol UDP-glucuronosyl- transferase	7.06-05	6/17	35	A48633
central	conśei	ved	region:					•
028R	24864	149	17.5	17.5k protein				(Goebel et al., 1990)
K7R	25313	149 161		VAC CPX M6R	6.1e-105 1.6e-101	149/149 144/149		(Goebel et al., 1990)
C4R	•	149 236		VAR Swinepox (sc76)	4.9e-101 0.00017	143/149		(Safronov et al., 1996) (Shchelkunov et al., 1995)
029L	26046	222	25.9	25.9k protein	3.00017	17177	,,	(Massung et al., 1993)
FIL	25378	226		VAC	2.7e-158	208/211		(Roseman and Slabaugh, 1990) (Goebel et al., 1990)
CSL		238 251		CPX GIL VAR-I	7.0e-148 6.6e-147	166/189 184/200		(Safronov et al., 1996) (Shchelkunov et al., 1995)
030L	26501	147	16.2	dUTPase				(Roseman and Slabaugh, 1990)
	26058	147		VAC	2.9c-102	147/147	100	(Koseman <i>et al.</i> , 1996)
F2L		147		VAC				
F2L C6L		147		CPX G2L VAR	8.2e-100 1.1e-97	144/147	97	(Goebel et al., 1990) (Safronov et al., 1996) (Shchelkunov et al., 1995)

 $\ensuremath{\text{-32-}}$ genomic sequence of the MVA strain

1922 1935 1945	ORF	START STOP		kDa¢	name / (putative) function / homologies	BLAST ^d expect	BLAST AA id	HSS ^r (%)	references
159	left to			<u>. </u>	Swinepox viene	804.55	43/70	<u> </u>	/Marries 1
178			159		orf virus				
112									
## State			1124				49/117	^41	(Talbott et al., 1989)
### 26525 Fall						>4.2e-06			
## CTL	031L		476	55.3	keich-like protein				(Senkevich et al., 1993b)
CTL	F3L	20323	480		VAC	0.0	202/204	00	(Roseman and Slabaugh, 1990)
CRL 190									
Second S	C7L						166/179	92	(Shchelkunov et al., 1995)
Second Code Second Code					VAC ASSR				(Massung et al., 1993)
1990 1990			689	-		5.3e-18			(Vice and Cooley 1993)
1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 45 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3 1.50-1.6 1.57.3					CPX D18L	1.4e-16	15/33		(Safronov et al., 1996)
Section Sect									(Goebel es al., 1990)
Section CPK Coll. Section CPK Coll.					human KIAA0132 protein				
Second Color Color					R09A8.3 (C. elegans)				
1989 M M a catin binding protein 1980									(Wilson et al., 1994)
121									(Massung et al., 1993)
1990 Myrine New Yorks MT-9 2.5e-08 17/58 29 Change Had, 1990) Change Had, 1990) Change Had, 1991) Change Had, 1992) Change Had, 1992) Change Had, 1993) Change Had, 1993		•	521		CPX C3L				
							17/58	29	(Upton et al., 1990a)
326			-04			4.56-08	17/56	30	(Chang-Yeh et al., 1991)
S59					protein		22/80	27	Z99708
172 G-cruin (L. polyphemus) VAR-1 IR (BSH: 16R) SAR SA									(Senkevich et al., 1993b)
032L 2825 319 37.0									
27966 Silending at al., 1988 Silending at al., 1995 Silending at al., 1985 Silending a						0.010	13/30	41	(Sheneikunov et al., 1995)
State Stat	032L		319	37.0					(Slabaugh et al., 1988)
Folic Sample Folic Folic Sample Folic Sample Folic Sample Folic Sample Folic Sample Folic Sample Folic		27900	310			2 2 2 2 2 1	217/210	00	(Roseman and Slabaugh, 1990)
Sample S									(Sarronov et al., 1996) (Goehel et al. 1990)
100 100	C8L		333			4.1c-228			(Shchelkunov et al., 1995)
CSL 348						>2.2e-10			,,
Section Protein Process Section Process Section Sect	033L	29250	97	11.1	36.5k major membrane				(Roseman and Slabauch 1900)
Sale	١	28957			protein precursor (f1)				(Roseman and Stabaugh, 1990)
F3L	CSL								(Shcheikunov et al., 1995)
1584	F5L								
034L 29875 218 24.8 36.5k major membrane protein precursor (f2) 323 CPX (OSL 6.4e-155 215/217 99 (Goebel et al., 1990) (Goebel et al., 1995) (Goebel	1		1584						
Protein Procursor Procur	034L	29875	218	24.8					
F3L 348					protein precursor (f2)				(Roseman and Stabaugh, 1990)
CSL 348	F. 67	1							(Safronov et al., 1996)
0.35L 30129 74 8.6 8.6k protein		- 1							(Goebel et al., 1990)
Section Process Proc	-	-				0.00-141	190/210	00	(Shehetkunov zi at., 1995)
CIOL 72 VAR 2.3e-38 62/70 88 (General and Slabaugh, 1990) 036L 30387 80 9.4 9.4k protein CIIL 30145 79 VAR 2.9e-44 34/43 79 (Shchelkunov et al., 1995) 037L 30731 65 7.9 VAR 2.9e-44 34/43 79 (Goebel et al., 1995) 037L 30731 65 7.9 7.9k protein F8L 30534 65 VAC 5.1e-43 63/65 96 (Goebel et al., 1990) 038L 31429 1212 23.8 23.8k protein F9L 30791 212 VAC 7.1e-148 212/212 100 (Goebel et al., 1995) CI3L 215 Swinepox virus 8.1e-72 39/93 41 (Massung et al., 1995) MC016L 213 MCV subtype 1 2.8e-62 71/152 46 (Senkevich et al., 1996) C25 Orf virus 5.1e-39 27/84 32 (Mercer et al., 1995) MCV subtype 1 MC069R 7.7e-12 23/58 39 (Goebel et al., 1996) VAR I.1e-07 20/58 34 (Goebel et al., 1996) VAR II.1e-07 20/58 34 (Goebel et al., 1996) C14L 439 VAR II.1e-07 20/58 34 (Goebel et al., 1996) VAR III.1e-07 20/58 34 (Goebel et al., 1996) C14L 439 VAR II.1e-07 20/58 34 (Goebel et al., 1995) MC017L 443 MCV subtype 1 2.2e-123 151/214 70 (Massung et al., 1995) MC017L 443 MCV subtype 1 2.2e-123 151/214 70 (Massung et al., 1995) MC017L 443 MCV subtype 1 2.2e-138 151/214 70 (Massung et al., 1995) MC017L 443 MCV subtype 1 2.2e-138 151/214 70 (Massung et al., 1995) MC017L 443 MCV subtype 1 2.2e-138 151/214 70 (Massung et al., 1995) MC017L 443 MCV subtype 1 2.2e-138 151/214 70 (Massung et al., 1995) MC017L 443 MCV subtype 1 2.2e-138 151/214 70 (Massung et al., 1995) MC017L 443 MCV subtype 1 2.2e-198 178/282 63 (Senkevich et al., 1995) MC017L 443 MCV subtype 1 2.2e-198 178/282 63 (Senkevich et al., 1995) MC017L 443 MCV subtype 1 2.2e-198 178/282 63 (Senkevich et al., 1995) MC017L 443 MCV subtype 1 2.2e-162 198/366 54 (Mercer et al., 1995)				8.6			-41-2		(Roseman and Slabaugh, 1990)
0.36L 30387 80 9.4 9.4k protein 2.9e-44 34/43 79 (Shchelkunov et al., 1995) 77L 92 VAC 1.9e-43 65/65 100 (Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Goebel et al., 1995) (Goebel et al., 1995) (Goebel et al., 1995) (Goebel et al., 1995) (Goebel et al., 1996) (Goebel et al., 1996) (Goebel et al., 1996) (Goebel et al., 1995) (Goebel et al., 1995) (Goebel et al., 1990) (Goebe		29903							(Gocbel et al., 1990)
CIIL 30145 79						2.50-50	020.70	00	(Sitcherkunov et al., 1995)
F7L 92 VAC 1.9e-43 65/65 100 (Goebel et al., 1995) 037L 30731 65 7.9 7.9k protein F8L 30534 65 VAC 5.1e-43 63/65 96 (Goebel et al., 1990) 038L 31429 / 212 23.8 23.8k protein F9L 30791 212 VAC 7.1e-148 212/212 100 (Goebel et al., 1995) C13L 212 VAR 1.2e-144 207/212 97 C13L 213 Swinepox virus 8.1e-72 39/93 41 (Massung et al., 1995) MC016L 213 MCV subtype 1 2.8e-62 71/152 46 (Senkevich et al., 1995) 243 FPV protein FP2 2.8e-17 26/58 44 (Binns et al., 1995) 243 FPV protein FP2 2.8e-17 26/58 44 (Binns et al., 1995) 243 FPV protein FP2 2.8e-17 20/58 34 (Goebel et al., 1996) 250 VAC LIR 1.1e-07 20/58 34 (Goebel et al., 1990) 039L 32735 439 52.1 serine/threonine protein kinnse 2 F1OL 439 VAC 0.0 429/439 97 (Goebel et al., 1995) C14L 439 VAC 0.0 429/439 96 (Goebel et al., 1995) MC017L 443 MCV subtype 1 0.0 424/439 96 (Goebel et al., 1995) MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1995) MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1995) O40L 33012 84 9.6 39.7k protein (f1) C15L 32758 354 VAC 9.1e-27 50/64 78 (Goebel et al., 1990) O40L 33053 65 VAC 9.1e-27 50/64 78 (Goebel et al., 1990)				9.4		00.44	24142		
0371 30731 65 7.9 7.9k protein		50145							
F8L 30534 65		20221			- A				
C12L 65 VAR-I 3.1e-41 61/65 93 (Shchelkunov et al., 1995) 038L 31429 / 212 23.8 23.8k protein F9L 30791 212 VAC 7.1e-148 212/212 100 (Goebel et al., 1990), C13L 212 VAR 1.2e-144 207/212 97 (Shchelkunov et al., 1995) MC016L 213 MCV subtype 1 2.8e-62 71/152 46 (Senkevich et al., 1995) 225 Orf virus 5.1e-39 27/84 32 (Mercer et al., 1995) 243 FPV protein FP2 2.8e-17 26/58 44 (Binns et al., 1988) 243 MCV subtype 1 MC069R 7.7e-12 23/58 39 (Senkevich et al., 1996) 250 VAC LIR 1.1e-07 20/58 34 (Goebel et al., 1996) VAR MIR 1.1e-07 20/58 34 (Goebel et al., 1995) 039L 32735 439 52.1 serine/threonine protein kinnse 2 (Wang and Shuman, 1995) C14L 439 VAC 0.0 429/439 97 (Goebel et al., 1995) MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1995) MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1995) MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1995) O40L 33012 84 9.6 39.7k protein (f1) C15L 32758 354 VAC 9.1e-27 50/64 78 (Goebel et al., 1995)				7.9		5.10-43	62165	0.6	(Roseman and Slabaugh, 1990)
038L 31429 212 23.8 23.8k protein F9L 30791 212		,							(Shehelkunov et al. 1995)
F9L 30791 212 VAC 7.1c-148 212/212 100 (Goebel et al., 1990) C13L 212 VAR 1.2c-144 207/212 97 (Shchelkunov et al., 1995) 215 Swinepox virus 8.1c-72 39/93 41 (Massung et al., 1995) MC016L 213 MCV subtype 1 2.8c-62 71/152 46 (Senkevich et al., 1996) 225 Orf virus 5.1c-39 27/84 32 (Mercer et al., 1995) 243 FPV protein FP2 2.8c-17 26/58 44 (Binns et al., 1988) 243 MCV subtype 1 MC069R 7.7c-12 23/58 39 (Senkevich et al., 1996) 250 VAC LIR 1.1c-07 20/58 34 (Goebel et al., 1990), 250 VAR MIR 1.1c-07 20/58 34 (Goebel et al., 1990), 391L 32735 439 52.1 serine/threonine protein kinnse 2 (Wang and Shuman, 1995) C14L 439 VAC 0.0 429/439 97 (Goebel et al., 1990), C14L 439 VAR-BSH 0.0 424/439 96 (Shchelkunov et al., 1995) MC017L 443 MCV subtype 1 2.3c-198 178/282 63 (Senkevich et al., 1995) MC017L 443 MCV subtype 1 2.3c-198 178/282 63 (Senkevich et al., 1995) MC017L 33012 84 9.6 39.7k protein (f1) C15L 32758 354 VAC 9.1c-27 50/64 78 (Goebel et al., 1995)		21420	1 212						
C13L 212 VAR 1.2e-144 207/212 97 (Shchelkunov et al., 1995) MC016L 215 Swinepox virus 8.1e-72 39/93 41 (Massung et al., 1995) MC016L 213 MCV subtype 1 2.8e-62 71/152 46 (Senkevich et al., 1996) 225 Orf virus 5.1e-39 27/84 32 (Mercer et al., 1995) 243 FPV protein FP2 2.8e-17 26/58 44 (Binns et al., 1995) 243 MCV subtype 1 MC069R 7.7e-12 23/58 39 (Senkevich et al., 1996) 250 VAC LIR 1.e-07 20/58 34 (Goebel et al., 1990), 250 VAR MIR 1.le-07 20/58 34 (Goebel et al., 1990), 32735 439 52.1 Serine/threonine protein kinnse 2 F10L 439 VAC 0.0 429/439 97 (Goebel et al., 1995) 440 Swinepox virus 2.2e-233 151/214 70 (Massung et al., 1995) MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1995) MC017L 33012 84 9.6 39.7k protein (f1) C15L 32758 354 VAC 9.1e-27 50/64 78 (Shchelkunov et al., 1995) C3 212 VAR 1.2e-144 207/212 97 (Shchelkunov et al., 1995)				23.8		7 1- 140	212/212	100	(Roseman and Slabaugh, 1990)
MC016L 213			212		VAR				(Shchelkunov et al. 1995)
MCUIOL 213 MCV subtype 1 2.8e-62 271/152 46 (Senkevich et al., 1996) 2243 FPV protein FP2 2.8e-17 26/58 44 (Binns et al., 1995) 243 MCV subtype 1 MC069R 7.7e-12 23/58 39 (Senkevich et al., 1996) 250 VAC LIR 1.1e-07 20/58 34 (Goebel et al., 1990) (Shchelkunov et al., 1995) 039 L 32735 31416 FIOL 439 VAC 0.0 429/439 FIOL 439 VAC 0.0 429/439 MCV subtype 1 440 Swinepox virus 2.2e-233 151/214 70 (Massung et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Mercer et al., 1995) (Mercer et al., 1995) (Mercer et al., 1995) (Mercer et al., 1995) (Mercer et al., 1995)	14001	٤1			Swinepox virus	8.1e-72	39/93	41	(Massung <i>et al.</i> , 1993)
243 FPV protein FP2 2.8e-17 26/58 44 (Binns et al., 1988) 243 MCV subtype 1 MC069R 7.7e-12 23/58 39 (Senkevich et al., 1996) 250 VAC LiR 1.1e-07 20/58 34 (Goebel et al., 1990), 250 VAR MIR 1.1e-07 20/58 34 (Goebel et al., 1990), 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1995) 31416 (Cin and Broyles, 1994) 31416 (Cin and Broyles, 1995) 31416 (Cin and Broyles, 1996) 31416 (Cin and Br	WCOL	DL.							(Senkevich et al., 1996)
243 MCV subtype 1 MC069R 7.7e-12 23/58 39 (Senkevich et al., 1996) 250 VAC LIR 1.1e-07 20/58 34 (Goebel et al., 1990), VAR MIR 1.1e-07 20/58 34 (Goebel et al., 1990), 039L 32735 439 52.1 serine/threonine protein kinase 2 (Wang and Shuman, 1995) F10L 439 VAC 0.0 429/439 97 (Goebel et al., 1990), C14L 439 VAR-BSH 0.0 424/439 96 (Shchelkunov et al., 1995) MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1996) MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1996) 498 orf virus 2.2e-162 198/366 54 (Mercer et al., 1995) 040L 33012 84 9.6 39.7k protein (f1) C15L 32758 354 VAC 9.1e-27 50/64 78 (Goebel et al., 1995) F1/1L 3258 354 VAC 9.1e-27 50/64 78 (Goebel et al., 1995)			243		FPV protein FP2				(Binns <i>et al.</i> , 1995)
VAC LIR 1.1e-07 20/58 34 (Goebel et al., 1990), 1.1e-07 20/58 34 (Goebel et al., 1995) 1.1e-07 20/58 34 (Shchelkunov et al., 1995) 1.1e-07 20/58 34 (Shchelkunov et al., 1995) 1.1e-07 20/58 34 (Shchelkunov et al., 1995) 1.1e-07 20/58 34 (Goebel et al., 1995) 1.1e-07 20/58					MCV subtype 1 MC069R	7.7e-12	23/58	39	(Senkevich et al., 1996)
039 L 32735 439 52.1 serine/threonine protein (Lin and Broyles, 1994) (Wang and Shuman, 1995) (Wang and Shuman, 1995) (Goebel et al., 1990), (Shchelkunov et al., 1995) (Shchelkunov et					VAC LIK VAR MIR				(Goebel et al., 1990),
Single S	039L			52.1		1			·
C14L 439 VAR-BSH 0.0 429/439 96 (Shchelkunov et al., 1990), C14L 439 VAR-BSH 0.0 424/439 96 (Shchelkunov et al., 1995) MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1996) 498 orf virus 2.2e-162 198/366 54 (Mercer et al., 1995) O40L 33012 84 9.6 39.7k protein (f1) C15L 32758 354 VAR 6.6e-27 50/64 78 (Shchelkunov et al., 1995) F1/L 3354 VAC 9.1e-27 50/64 78 (Goebel et al., 1990)	FIAT	31416			kinase 2				(Wang and Shuman, 1995)
MC017L 440 Swinepox virus 2.2e-233 151/214 70 (Massung et al., 1993) MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1996) 498 0rf virus 2.2e-162 198/366 54 (Mercer et al., 1995) 040L 33012 84 9.6 39.7k protein (f1) C15L 32758 354 VAR 6.6e-27 50/64 78 (Shchelkunov et al., 1995) F1/L 3354 VAC 9.1e-27 50/64 78 (Goebel et al., 1995)									(Goebel et al., 1990),
MC017L 443 MCV subtype 1 2.3e-198 178/282 63 (Senkevich et al., 1996) 498 orf virus 2.2e-162 198/366 54 (Mercer et al., 1995) 040L 33012 84 9.6 39.7k protein (f1) C15L 32758 354 VAR 6.6e-27 50/64 78 (Shchelkunov et al., 1995) F1/L 3258 354 VAC 9.1e-27 50/64 78 (Goebel et al., 1990)			440		Swinepox virus	2.2e-233	151/214		(Massung et al., 1995)
040L 33012 84 9.6 39.7k protein (f1) C15L 32758 354 VAR 6.6e-27 50/64 78 (Shchelkunov et al., 1995) F1/L 354 VAC 9.1e-27 50/64 78 (Goebel et al., 1990)	MC017	/L					178/282	63	(Senkevich et al., 1996)
C15L 32758 354 VAR 6.6e-27 50/64 78 (Shchelkunov et al., 1995) F1/L 354 VAC 9.1e-27 50/64 78 (Goebel et al., 1990)	0401	33012		9.6					/cicoi ei ai., 1333)
1712 (334 VAC 9.16-27 30/64 78 (Goebel et al. 1990)	CISL		354		VAR				(Shehelkunov et al. 1995)
	FIIL 041L	33771	354 100	11.4	VAC 39.7k protein (f2)	9. le-27	50/64	78	(Goebel et al., 1990)

	START	AAb	kDac	name / (putative)	BLAST ⁴	BLAST*		references
	STOP minal_	region	.:	function / homologies	expect	AA Id	(%)	
FIIL	33469	354		VAC	3.8e-62	95/95	100	(Goebel et al., 1990).
CISL)	354		VAR	8.8e-58	90/95	94	(Shchelkunov et al., 1995)
042L	35721	635	73.1	73.1k protein				
F12L	33814	635		VAC	0.0	629/635		(Goebel et al., 1990),
CIGL		635 352		VAR-I Myxoma virus	0.0 3.6c-84	607/635 28/66	95 42	(Shchelkunov et al., 1995)
MC019L		663		MCV subtype I	4.0c-60	29/82	35	U43549 (Senkevich <i>et al.</i> , 1996)
		640 630		orf virus	4.8c-39	19/61	31	U34774
		0.50		FPV F12 homolog	2.3e-15	19/67	28	(Ogawa et al., 1993)
043L	36866	372	41.8	37k major EEV antigen				(Hirt et al., 1986)
	35748			IMCBH sensitive protein palmitylprotein				(Schmutz et al., 1991) (Grosenbach et al., 1997)
F13L		372 372		VAC	2.1e-268	369/372		(Goebel et al., 1990)
CITL		371		VAR-BSH Myxoma virus	8.9e-265 2.5e-115	364/372 110/200		(Shchelkunov <i>et al.</i> , 1995) U43549
1400011		378		orf virus	7.6e-108	83/194	42	(Sullivan et al., 1994)
MC021L		388 377		MCV subtype 1 FPV major env protein	6.1e-98 2.8c-88	44/113 47/112	38 4 I	(Senkevich <i>et al.</i> , 1996) (Calvert <i>et al.</i> , 1992)
		251		pigeonpox virus	1.8e-62	47/112	4 l	S27933
		424 424		CPX M4L VAC K4L	2.le-18 1.7e-17	16/52 14/35	30 40	(Safronov et al., 1996)
		372		D. discoideum	1.4c-16	28/84	33	(Goebel et al., 1990) (Giorda et al., 1989)
		437		HU-K4 (homo sapiens)	1.5c-1 i	25/94	26	U60644
044L	37105	73	8.3	8.3k protein				
<i>F14L</i> C18L	36884	73 73		VAC VAR	2.3e-44 2.1e-35	72/73	98 78	(Goebel et al., 1990)
					4.16-33	57/73	70	(Shchelkunov et al., 1995)
045L	378533 37377	158 158	18.6	18.6k protein VAC	9 2- 110	1677.60	00	(Carba) and tage
<i>F15L</i> C19L	31311	161		VAR	2.3c-112 1.4c-107	157/158 150/153		(Goebel et al., 1990), (Shchelkunov et al., 1995)
MC025L		148		MCV subtype I	3.5e-54	52/113	46	(Senkevich et al., 1996)
		148		Myxoma virus	5.4c-50	48/112	42	U43549
046L	38555	231	26.5	26.5k protein			••	
F16L C20L	37860	231 231		VAC VAR	3.3e-159 5.6e-157	227/231 222/231		(Goebel et al., 1990), (Shehelkunov et al., 1995)
1.000001		209		Myxoma virus	8.3e-48	26/58	44	U43549
MC029L		230		MCV subtype 1	6.9e-45	16/61	26	(Senkevich et al., 1996)
047R	38619	101	11.3	11k DNA binding				(Bertholet et al., 1985)
F17R	38924	101		phosphoprotein VAC	3.0e-69	100/101	99	(Kno and Bauer, 1987) (Goebel <i>et al.</i> , 1990)
C21R		101		VAR	9.7e-67	99/101	98	(Shehelkunov et al., 1995)
MC030R	!	102 92 -		MYX MCV subtype 1	6.6e-26 1.5e-20	45/92 33/53	98 48	U43549 (Senkevich et al., 1997)
	_	46		orf virus	1.3e-06	16/29	62	(Mercer et al., 1995)
048L	40360	479	55.6	poly(A) polymerase				(Gershon et al., 1991)
EIL	38921	479		catalytic subunit VAC	0.0	478/479	00	
EIL		479		VAR-I	0.0	472/479		(Goebel et al., 1990). (Shchcikunov et al., 1995)
MC031L	•	470		MCV subtype I	1.5e-177	114/173	65	(Senkevich et al., 1997)
049L	42570	737	85.9	85.9k protein				(Ahn et al., 1990a)
E2L E2L	40357	737		VAC	0.0	735/737		(Goebel et al., 1990),
MC032L	,	737 748		VAR-I MCV subtype I	0.0 8.3e-127	731/737 59/198	29	(Shchelkunov et al., 1995) (Senkevich et al., 1997)
0501	42260	100	21.6					
050L	43269 42697	190	21.5	dsRNA dependent PK inhibitor, host range				(Chang et al., 1992) (Chang et al., 1995b)
E3L		190		VAC	1.4c-129			(Gocbel et al., 1990),
E3L		192 1175	5	VAR-BSH dsRNA specific ADA (rat)	8.6c-126 7.2c-12	111/114 22/47	46	(Shchelkunov et al., 1995) (O'Connell et al., 1995)
		1226		dsRNA specific ADA (human)	2.8e-09	21/47	44	(Kim et al., 1994)
		551		human protein kinase p68 INF inducible kinase family	3.8e-05 >0.00099	22/42	52	(Meurs et al., 1990)
0.514	44100	0.60	00.0					/Ab
051L	44103 43324	259	29.8	RNA polymerase subunit rpo30, VITF-1				(Ahn et al., 1990a) (Broyles and Pennington, 1990)
E4L		259		VAC	1.6c-182			(Goebel et al., 1990)
E4L MC034I		259 444		VAR-BSH MCV subtype 1	3.2e-180 1.2e-84	255/259 107/171		(Shcheikunov et al., 1995) (Senkevich et al., 1996)
		39		orf virus	6.7c-10	21/39	53	(Mercer et al., 1995)
		243		African swine fever virus TFIIS family	0.00034 <0.0096	17/36	47	(Vydelingum et al., 1993)
	4410-			-				
052R <i>ESR</i>	44180 45175	33 I 33 I	39.1	39.1k protein VAC	1.2e-235	329/33	l 99	(Goebel et al., 1990) (Goebel et al., 1990)
E5R	.5	341		VAR	3.1e-223	312/33	94	(Shchelkunov et al., 1995)
		332 329		Taterapox Camelpox	7.1c-225 1.4c-221			(Douglas and Dumbell, 1996) (Douglas and Dumbell, 1996)
		319		Cowpox	1.5c-202	271/30	3 89	(Douglas and Dumbell, 1996)
MC0381	R	256 276		Ectromelia MCV subtype 1	3.8c-153 8.3c-109			(Douglas and Dumbell, 1996) (Senkevich et al., 1997)
_					2.30-103		٠.	
053R	45312	567	66.7	66.7k protein				(Gaebel et al., 1990)

-34- GENOMIC SEQUENCE OF THE MVA STRAIN $^{\circ}$

STOP left terminal region;	function / homologies	BLAST expect	BLAST AA id		
		<u> </u>	7172 10	(%)	references
E6R 567 MC037R 565	VAR MCV subtune 1	0.0	555/567	97	(Shchelkunov et al., 1995)
	MCV subtype]	7.26-247	258/451	57	(Senkevich et al., 1997)
E7R 47582 166	VAC	9.7e-116	166/166	100	(Martin et al., 1997) (Goebel et al., 1990)
E7R . 60	VAR-I (BSH: E6.5R)	2.7e-36	53/60	88	(Shchelkunov et al., 1995)
055R 47695 273 31 EBR 48516 273	9 31.9k protein VAC	4.5e-195	272/273	99	(Earl et al., 1986)
E8R 273 MC038R 276	VAR MCV subtype 1	9.9e-192 8.3e-109	266/273	99	(Goebel et al., 1990) (Shchelkunov et al., 1993a),
056L 51543 1006 11		0.36-109	94/152	97	(Senkevich et al., 1997)
E9L 48523 1006 E9L 1005	VAC	0.0	1005/10 9		(Earl et al., 1986) (Goebel et al., 1990),
1008	VAR BSH Orf virus	0.0 0.0	06 9 598/608 5	98 51	(Shchelkunov et al., 1995) (Mercer et al., 1996)
988 MC039L 1004	FPV MCV subtype !	0.0 0.0	199/388 6 179/294 5		(Binns et al., 1987) (Senkevich et al., 1997)
964	C. blennis poxvirus ONA polymerase family	2.6e-77 >6.0e-06	175/297 3 28/82		(Mustafa and Yuen, 1991)
057R 51575 95 10	•	20.00-00	20102		(0.11.
EIOR 51862 95 EIOR 95	VAC VAR	1.2e-65	93/95	97	(Goebel et al., 1990) (Goebel et al., 1990)
MC040R 101	MCV subtype 1	3.1e-64 5.2e-44	90/95 58/95	100 94	(Shchelkunov et al., 1993a) (Senkevich et al., 1997)
058L 52246 129 14					(Goebel et al., 1990)
EIIL 51857 129 EIIL 129	VAC VAR	3.3e-89 4.2e-87	129/129 I 125/129 9		(Goebel et al., 1990) (Shchelkunov et al., 1995)
MC041L 132	MCV subtype 1	1.8e-30		32	(Senkevich et al., 1997)
059L 52691 152 17 OIL 52233 666	6 77.6k protein (f1) VAC	6.9e-101	151/152 9	20	(Goebel et al., 1990)
QIL 666 MC042L 783	VAR-BSH MCV subtype 1	3.4e-92	137/152 9	90	(Goebel et al., 1990), (Shchelkunov et al., 1995)
703	leu zipper, bipartite nuclear	i.5e-22	39/105 3	37	(Senkevich et al., 1997) (Goebel et al., 1990)
060L 54189 405 47			•		(Goebel et al., 1990)
OIL 52972 666 QIL 666	VAC VAR-I	5.8c-277 1.7c-269	399/400 9 383/400 9		(Goebel et al., 1990) (Shchelkunov et al., 1995)
MC042L 783	MCV subtype 1	2.7e-51		36	(Senkevich et al., 1997)
061L 54555 108 12 54229	4 glutaredoxin 1				(Ahn and Moss, 1992a)
O2L 108 Q2L 108	VAC VAR	2.0e-74	108/108 1		(Johnson <i>et al.</i> , 1991) (Goebel <i>et al.</i> , 1990)
106	human glutaredoxin	4.9e-72 3.2e-31	104/108 9 49/106 4	96 46	(Shchelkunov et al., 1995) (Fernando et al., 1994)
0.000	glutaredoxin family	>9.0e-05			,,
062L 55639 312 35	9 35.9k protein VAC	4.7e-208	310/312 9	99	(Schmitt and Stunnenberg, 1988) (Goebel et al., 1990)
KIL 312 MC044L 310	VAR-BSH MCV.subtype 1	4.8c-205 3.8c-110	305/312 9 163/307 5	97	(Shchelkunov et al., 1995)
1451	transcription initiation protein (S. cerevisiae)	0.029		35	(Senkevich et al., 1996) (Hansen et al., 1996)
063L 55867 73 8.	•				
I2L 55646 73 K2L 73	VAC VAR	5.5e-50		100	(Schmitt and Stunnenberg, 1988) (Goebel et al., 1990)
MC045L 72	MCV subtype 1	5.5e-50 3.5e-18		100 50	(Shchelkunov et al., 1995) (Senkevich et al., 1996)
887	hypothetical yeast protein	8. le-05	9/24 3	37	S48422
064L 56677 269 30 55868	protein (F4L interacting)				(Schmitt and Stunnenberg, 1988) (Davis and Mathews, 1993)
13L 269 K3L 269	VAC VAR	2.1e-173 2.5e-172	267/269 9 265/269 9		(Goebel et al., 1990) (Shchelkunov et al., 1995)
MC046L 288 209	MCV subtype 1 FPV 13 protein	9.6e-66 8.4e-35	61/149 4		(Senkevich et al., 1995) A48563
065L 59075 771 87	•	J. 19:33	20.00	~~	
56760 141. 771	(large subunit) VAC	0.0	771/771		(Schmitt and Stunnenberg, 1988) (Tengelsen et al., 1988)
K4L 771	VAR	0.0 0.0	771/771 1 761/771 9		(Goebel et al., 1990) (Shcholkunov et al., 1995)
066L 59342 79 8.	ribonucleotide red. family	>1.8e-05			•
ISL 59103 79	VAC	6.3e-49		100	(Schnitt and Stunnenberg, 1988) (Goebel et al., 1990)
MC047L 82	VAR MCV subtype 1	1.2e-47 2.6e-17		96 36	(Shchelkunov et al., 1995) (Senkevich et al., 1996)
81 321	FPV 9.1k protein formate dep. nitrit reductuse	1.4e-12 0.00022	13/38 3	34 38	(Binns et al., 1988)
496	protein (H. influenzae) permease (b. subtilis)	0.00031		27	(Fleischmann et al., 1995)
067L 60509 382 43			10170 1		gi:2415386
16L 59361 382 K6L 382	VAC VAR	8.6e-268 3.1e-267	382/382 380/382		(Schmitt and Stunnenberg, 1988) (Goehel et al., 1990)
MC048L 406	MCV subtype I	2.1e-99		36	(Shelielkunov <i>et al.</i> , 1995) (Senkevich <i>et al.</i> , 1996)

	START STOP minai	region	kDa*	nome / (putative) function / homologies	BLAST ^d expect	BLAST'	HSS' (%)	references
left ter	minai	390	11	FPV 16 protein mitochondrial energy transfer proteins signature	1.4e-86	50/136	36	E48563, P12925 (Goebel et al., 1990)
	61773 60502	423 423 423 515 421 464	49.0	VAR MCV subtype 1	0.0 1.5e-306 1.9c-199 8.1e-180 3.2e-14	420/423 419/423 126/207 185/340 14/47	99 60	(Schmitt and Stunnenberg, 1988; (Kane and Shuman, 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) F48563 (Hall and Moyer, 1991)
	61776 63809	676 676 676 684 682	77.6	NPH-II, NTPase, RNA helicase VAC VAR MCV subtype 1 FPV virus 18FPV 61 matches mainly to RNA helicase family	0.0 0.0 7.6e-227 4.2e-206 <0.38	674/676 665/676 144/272 98/178	99 98 52 55	(Shuman, 1992), (Koonin and Senkevich, 1992) (Goebel et al., 1990) (Shcheikkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988)
070L G <i>IL</i> HIL MC056L	65588 63813	591 591 591 593 341	68.0	68k protein VAC VAR-1 MCV subtype 1 FPV	0.0 0.0 1.2e-217 9.4e-75	590/591 582/591 183/361 45/101	98 50	(Schmitt and Stunnenberg, 1988 (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) H48563
071L <i>03L</i> H3L MC057L	65920 65585	111 111 111 108	12.8	12.8k protein VAC VAR MCV subtype 1	7.6e-74 2.4e-71 0.00012	111/111 108/111 15/45		(Schmitt and Stunnenberg, 1988 (Mels and Condit, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
072R G2R H2R MC058R	65914 66576	220 220 220 246	25.8	IBT-dependent protein VAC VAR MCV subtype 1	1.9e-155 1.1e-151 2.7e-36	220/220 214/220 42/135		(Meis and Condit, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
173 L H4 L G4 L MC059 L	66920 66546	124 124 124 126	14.0	glutaredoxin 2 membrane protein VAR VAC MCV subtype 1	4.0c-83 7.5c-83 1.1e-21	123/124 123/124 21/51		(Gvakharia et al., 1996) (Jensen et al., 1996) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1997)
074R <i>G5R</i> H5R MC60R	66923 68227	434 434 434 437 1300	49.9	49.8k protein VAC VAR MCV subtype 1 HS CG1 protein	1.6e-305 1.9e-299 1.0e-55 0.015	432/434 423/434 56/119 22/82	99 97 47 26	(Goebel et al., 1990) (Goebel et al., 1990) (Shehelkunov et al., 1995) (Senkevich et al., 1997) (Print et al., 1994)
075R <i>G5.5R</i> H5.5R MC061R	68235 68426	63 63 63	7.3	RNA polymerase subunit rpo7 VAC VAR MCV subtype 1 35 matches mainly to RNA polymerases	1.1e-40 1.1e-39 9.3e-27 <0.54	63/63 61/63 41/63	100 96 65	(Amegadzie et al., 1992), (Meis and Condit, 1991) (Goebei et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
076R <i>G6R</i> H6R MC062R	68428 68925	165 165 165 195	19.0	18.9k protein VAC VAR MCV subtype l	3.8e-116 1.5e-116 3.0e-32	162/165 164/165 27/57		(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
077L <i>G7L</i> H7L MC065L	70005 68890	371 371 371 402	42.0	42.0k protein VAC VAR MCV subtype 1	5.2e-255 7.1e-255 2.0e-109	370/371 369/371 69/145	99	(Schmitt and Stunnenberg, 198 (Goebel et al., 1990) (Shehelkunov et al., 1995) (Senkevich et al., 1997)
078R <i>G8R</i> H8R MC067R	70036 70818	260 260 260 260 260	29.9	VLTF-1, late transcription factor VAC VAR-I MCV subtype I FPV virus FPO	8.6-184 3.1c-183 8.5c-136 3.3c-129	259/260 258/260 185/260 175/250	99	(Keck et al., 1990) (Wright et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988)
079R <i>G9R</i> H9R MC068R	70838 71860	340 340 340 342 336	38.9	37k myristylprotein VAC VAR MCV subtype i FPV virus FP1	3.7e-237 9.1e-236 4.8e-79 3.9e-65	317/319 315/319 59/127 59/124		(Martin et al., 1997) (Gocbel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988)
080R LIR MIR - MC069R	71861 72613	250 250 250 243 243 212 212	27.3	25k myristylprotein IMV virion protein VAC VAR MCV subtype I FPV virus FP2 VAC F9L VAR C13L	1.8e-175 6.4e-170 6.5e-103 6.2e-95 1.6e-0.7 3.1e-0.7	249/25	99 3 59	(Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988) (Goebel et al., 1990)

-36-GENOMIC SEQUENCE OF THE MVA STRAIN

ORF*	START STOP	AAb	kDaʻ	name / (putative) function / homologies	BLAST ³ expect	BLAST ^e AA id	HSS ^r (%)	references
left ter	rminal	region	:					
		213 215		MCV subtype 1 MC016L swinepox	1.6e-0.7 3.3e-0.5	13/57 15/51	22 29 .	(Senkevich et al., 1997) (Massung et al., 1993)
081R	72645	87 87	10.3	10.3k protein				(Plucienniczak et al., 1985)
L2R M2R	72908	87		VAC VAR	3.9e-57 4.0e-56	87/87 85/87	100 97	(Goebel et al., 1990)
MC070R		93		MCV subtype 1	0.064	18/80	22	(Shchelkunov et al., 1995) (Senkevich et al., 1997)
		504	•	Na* dependent phosphate	6.9e-05	10/39	25	(Wilson et al., 1994)
		233		transporter C. elegans ATPase subunit T. cruzi	0.013	16/44	36	1129104
		2336		Ca2+ channel rat	5.2c+0,2	6/25	24	U38184 (Dubel et al., 1992)
		2238		Ca ² channel mouse	7.1c+0.2	6/25	24	(Coppola et al., 1994)
		1559		ABC transporter yeast	0.40	12/40	30	X97560
082L	73950	350	40.6	40.6k protein				(Plucienniczak et al., 1985)
L3L	72898	350		VAC	2.2e-251	346/350		(Goebel et al., 1990)
M3L MC072L		349 310		VAR MCV subtype 1	1.5e-241 1.5e-88	296/306 64/136	96 47	(Shchelkunov et al., 1995)
		301		FPV F4 protein	1.1e-80	58/134	43	(Senkevich et al., 1997) (Binns et al., 1988)
083R	73975	251	28.5	core protein TING				,
NCOU	74730	231	28.3	core protein VP8 DNA/RNA binding protein				(Yang and Bauer, 1988) (Baylis and Smith, 1997)
L4R		251		VAC	5.6e-170	251/251	100	(Goebel et al., 1990)
M4R MC073R		251 254		VAR	3.7-169	250/251	99	(Shchelkunov et al., 1995)
MCU/3R	•	253		MCV subtype I FPV virus FP5	1.7e-76 6.4e-55	36/59 29/57	61 50	(Senkevich et al., 1997)
					0.10-33	27/3/	30	(Binns et al., 1988)
084R <i>L5R</i>	74740 75126	128 128	15.1	15.1k protein VAC 14.0k protein	2.00.00	107/100	00	(0-1-1
M5R	73.20	128		VAR	2.9e-89 2.0-87	127/128	99 97	(Goebel et al., 1990) (Shchelkunov et al., 1995)
•	•	129		FPV FP6	8.1e-16	19/45	42	(Drillien et al., 1987)
MC074R	•	146 152		MCV subtype I	0.073	10/18	55	(Senkevich et al., 1997)
	•	132		melatonin receptor D. rerio	0.44	15/66	222	(Reppert et al., 1995)
085R	75083	153	17.9	dimeric virion protein				(Holzer & Falkner, unpubl.)
JIR LIR	75544	153 159		VAC VAR-I	6.0e-103	152/153	99	(Goebel et al., 1990)
2114		147		capripox CF7	1.4c-101 6.5c-54	149/153 53/90	97 58	(Shchelkunov et al., 1995) (Gershon and Black, 1989b)
		148		myxoma MF7	4.8e-51	54/93	58	(Jackson and Bults, 1992)
MC075R	!	183 148		MCV subtype i FPV FP7	1.9c-47	47/93	50	(Senkevich et al., 1997)
086R	75560	177	20.0	thymidine kinase	1.3e-35	37/84	44	(Drillien et al., 1987) (Hruby and Ball, 1982)
	76093			_	•			(Weir and Moss, 1983)
<i>J2R</i> L2R		177 177		VAC VAR	5.7e-125 2.7e-122	175/177	98	(Goebel et al., 1990)
DDN		.,,		38 matches mainly to thymidine kinase family	<0.18	170/177	96	(Shchelkunov et al., 1995)
087R	76159	333	38.9	poly(A) polymerase su,				(Gershon et al., 1991)
	77160			2'methyl transferase				(Gershon and Moss, 1993)
<i>J3R</i> L3R		333 333		VAC VAR-BSH	8.7e-136 9.8e-233	330/333 326/333	99 97	(Goebel et al., 1990)
		338		myxoma	5.7e-288	247/333	74	(Shchelkunov et al., 1995) (Jackson and Bults. 1990)
MC076R	. .	343		MCV subtype t	1.4e-135	79/144	54	(Senkevich et al., 1997)
	•	308		FPV VP39	1.7e-96	125/267	46	(Binns et al., 1988)
088R	77075	185	21.3	RNA pol subunit rpo22				(Broyles and Moss, 1986)
<i>J4R</i> L4R	77632	185 185		VAC VAR-BSH	1.2e-125 7.9e-125	185/185 182/185	100 98	15,000
D-1.C		185		myxoma	1.5c-86	124/185	67	(Shcheikunov et al., 1995) (Jackson and Bults, 1990)
MC077F	₹ ,	187		MCV subtype 1	1.9e-76	73/132	55	(Senkevich <i>et al.</i> , 1997)
		186		FPV	2.1e-73	72/135	53	(Binns et al., 1988)
089L	78101	133	15.2	15.2k protein				(Plucienniczak et al., 1985)
<i>JSL</i> L5L	77700	133 133		VAC VAR-I	2.4e-95 2.4e-94	133/133	100 98	
MC078L		134		MCV subtype 1	5.7e-45	60/127	47	(Shchelkunov et al., 1995) (Senkevich et al., 1997)
		137		FPV	1.4c-43	60/130	46	(Drillien et al., 1987)
		377 378		VAR-I A16L (BSH:A17L) VAC A16L	0.049 0.049	7/28 7/28	25 25	(Shchelkunov et al., 1995)
		576			0.049	1120	23	(Goebel et al., 1990)
090R <i>J6R</i>	78207 82067	1286 1286		RNA pol subunit rpo147 VAC	0.0	1202//2	86 99	(Broyles and Moss, 1986)
L6R	02007	1286		VAR	0.0 0.0	1283/12		(Goebel et al., 1990) (Shehelkunov et al., 1995)
MC0791	R	1289		MCV subtype 1	0.0	556/760		(Senkevich et al., 1997)
				100 matches to RNA pol (large subunit) family	<3.7e-07			•
091L	82579	171	19.7	•				(Danel : 1 toon
UPIL	82064	1/1	17,7	protein tyrosine/serine phosphatase				(Rosel <i>et al.</i> , 1986) (Guan <i>et al.</i> , 1991)
HIL		171		VAC	2.0e-117			(Goebel et al., 1990)
111		171 171		VAR racconpox	1.le-114 6.0c-111			(Shchelkunov et al., 1995)
		172		myxoma virus	1.5c-77	157/171 83/138	91 60	B47452 (Mosaman <i>et al.</i> , 1995a)
140000	,	173		rabbit fibroma virus	1.8e-77	46/80	57	(Mossman et al., 1995a)
MC0821	L	169		MCV subtype I protein phosphatase family	1.4c-65 >2.8c-05	60/114	52	(Senkevich et al., 1997)
				Protess phosphalase tability	~4.0E-U3			

ORF*	START	AAb	kDa*	name / (putative)	BLAST	BLAST*	HSS	references
	STOP			function / homologies	expect	AA id	(%)	
left ter	<u>rminai</u> 82593	region	21.5	21.5k protein				(Porel et al. 1006)
H2R	83162	189		VAC	5.2c-134	188/189	99	(Rosel et al., 1986) (Goebel et al., 1990)
12R MC083R		189 191		VAR	1.4c-133	188/189	99	(Shchelkunov et al., 1995)
MCODIK		142		MCV subtype 1 myxoma	1.4e-71 1.3e-65	95/181 93/142	52 65	(Senkevich et al., 1997) (Jackson and Bults, 1990)
		•••			1.54 05	, , , , , ,	05	(Jackson and Buils, 1990)
093L	84139 83165	324	37.5	immunodominant env protein p35; IMV			i	(Rosel et al., 1986)
	03.05			membrane-associated				(Chertov et al., 1991) (Takahashi et al., 1994)
<i>H3L</i> 13L		324 325		VAC VAR-BSH	3.3e-231	322/324	99	(Goebel et al., 1990)
MC084L		298		MCV subtype 1	1.7e-225 1.1e-36	311/320 38/117	97 32	(Shchelkunov et al., 1995) (Senkevich et al., 1996)
0045	0/637	705	02.6	PAR OF CRAIL		-		
094L	86527 84140	795	93.6	RAP 94 (RNA-pol assoc. transer. spec. factor)				(Ahn and Moss, 1992b) (Kane and Shuman, 1992)
H4L	-	795		VAC	0.0	791/795	99	(Goebel et al., 1990)
I4L MC085L		795 791		VAR MCV subtype 1	0.0 0.0	780/795 327/546	98 59	(Shchelkunov et al., 1995) (Senkevich et al., 1996)
		804		Orf virus	0.0	96/131	73	(Fleming et al., 1993)
		484		FPV L1L protein	2.4c-181	91/176	51	2209386A
095R	86713	203	22.3	late transcription factor				(Kovacs and Moss, 1996)
H5R	87324	203		VLTF-4 VAC	1 0- 100	000/000		(Rosel et al., 1986)
ISR		221		VAR	1.8e-128 5.1e-102	202/203 91/97	99 93	(Goebel et al., 1990) . (Shehelkunov et al., 1995)
		227 220		orf virus F3R	3.1e-14	29/69	42	(Fleming et al., 1993)
		705		MCV subtype I nucleolin Xenopus	3.1e-09 0.00041	28/64 18/57	43 31	(Senkevich et al., 1997) (Messmer and Dreyer, 1993)
				31 matches to glu/asp rich	E<0.52	*****		(measure and Dieyer, 1993)
				proteins				
096R	87325	314	36.7	DNA topoisomerase I .				(Shuman and Moss, 1987)
H6R	88269	314		VAC	0.0	214/214	100	(Rosel et al., 1986)
I6R		314		VAR-BSH	9.5e-220	314/314 312/314	100 99	(Goebel et al., 1990) (Shchelkunov et al., 1995)
		314 318		shope fibroma virus	8.5e-141	119/170	70	(Upton et al., 1990b)
MC087R		323		orf virus MCV subtype 1	5.2e-128 1.6e-121	82/138 111/202	59 54	(Fleming et al., 1993) (Senkevich et al., 1997)
		316		FPV L3R	2.9e-113	159/303	52	(Zantinge et al., 1996)
				21 matches to topoisomerase family				
		. : .						
097R <i>H7R</i>	88306 88746	146 146	17.0	17.0k protein VAC	2.1e-98	144/146	98	(Rosel et al., 1986)
17R		146		VAR	6.7c-96	141/146	96	(Goebel et al., 1990) (Sheheikunov et al., 1995)
MC088R		143		MCV subtype 1	4.3c-30	45/115	39	(Senkevich et al., 1997)
098R	88790	844	96.8	mRNA capping enzyme,				(Morgan et al., 1984)
DIR	91324	844		large subunit VAC		0.40/0.44		(Niles et al., 1986)
FIR		844		VAR-BSH	0.0 0.0	842/844 830/844	99 98	(Goebel et al., 1990) (Shchelkunov et al., 1995)
MCO90R		950 836		MCV subtype I	0.0	322/64	64	(Senkevich et al., 1997)
		868		shope fibroma virus ASV NP868R	0.0 0.0033	243/305 17/55	79 30	(Upton et al., 1991b) (Pena et al., 1993)
099L	91723	146	160					
V77L	91723	140	16.9	structural protein				(Niles et al., 1986) (Dyster and Niles, 1991)
D2L		146		VAC	5.9e-98	146/146	100	(Goebel et al., 1990)
F2L		146 143		VAR (BSH: F3L) Rabbit fibroma virus	1.5e-97 2.0e-27	145/146 13/33	99 39	(Shchelkunov et al., 1995) (Upton et al., 1991b)
MC091L		170		MCV subtype 1	1.1c-20	19/41	46	(Senkevich et al., 1996)
100R	91716	233	27.6	27k structural protein	•	•		(Dyster and Niles, 1991)
D3R	92417	237		VAC	3.8-167	136/142	95	(Goebel et al., 1990)
F2R		237 241		VAR I:F3R shope fibroma virus	1.5e-162 9.3e-20	131/142 27/100	92 27	(Shchelkunov et al., 1995)
MC092R		268		MCV subtype I	3.5e-18	16/39	41	(Upton et al., 1991b) (Senkevich et al., 1997)
		206		rabbit fibroma virus C3	1.6e-09	26/96	27	(Strayer et al., 1991)
101R	92417	218	25.1	uracii DNA giycosylase				(Upton et al., 1993)
<i>D4R</i> F4R	93073	218 218		VAC VAR-BSH	1.4e-157	217/218	99	(Goebel et al., 1990)
		218		shope fibroma virus	5.1c-157 1.5c-117	216/218 151/218	99 69	(Shcheikunov et al., 1995) (Upton et al., 1993)
MC0938	Ł	226 218		MCV subtype 1	8.4c-91	65/113	57	(Senkevich et al., 1997)
		297		FPV FPD4 uracil DNA glycosylase UL2	3.1e-88 0.019	116/216 8/14	53 57	(Tartaglia et al., 1990) L34064
				gallid herpesvirus 1				
102R	93105	785	90.4	90.4k ATP/GTP binding				(Niles et al., 1986)
	95462			protein	• •		_	(Shchelkunov et al., 1993c)
<i>DSR</i> FSR		785 785		VAC VAR	0.0 0.0	780/785 774/785	99 98	(Goebel et al., 1990) (Shchelkunov et al., 1995)
		786		shope fibroma C5	0.0	283/450	62	(Strayer et al., 1991)
		791 791		MCV subtype 1 FPV virus FPD5	0.0 0.0	184/334 170/345	55 49	(Senkevich et al., 1997)
MC094F	t	942		C29E6.4 C. elegans	0.72	16/56	28	(Tartaglia et al., 1990) (Wilson et al., 1994)
103R	95503	637	73.9	early transcription factor				(Broyles and Fesler, 1990)
	97416			VETF-1	-			(Gershon and Moss, 1990)
				······································				

-38-GENOMIC SEQUENCE OF THE MVA STRAIN

ORF'	START STOP	AAb	kDa°	name / (putative) function / homologies*	BLAST	BLAST		references
left t	erminai	regio	n:	, nontologies.	expect	AA id	(%)	
D6R		637		VAC	0.0	635/637	99	(Goebel et al., 1990)
F6R		637		VAR-I	0.0	633/637	99	(Shchelkunov et al., 1995)
MC095R		635 635		shope fibroma virus MCV subtype 1	0.0	212/262	80	(Strayer et al., 1991)
		605		FPV	0.0 0.0	199/263 188/263	75 71	(Senkevich et al., 1997)
					V. U	100/203	7.	(Binns et al., 1990) (Tartaglia et al., 1990)
		648 648		Choristoneura biennis EPV	2.7e-08	24/72	33	(Yuen et al., 1991)
		706		Amsacta moorel EPV African swine fever virus	4.2c-06	24/77	31	(Hall and Moyer, 1991)
				MILITARY SWILLE LEVEL VILUS	1.5e-05	13/38	34	(Yanez et al., 1993)
104R	97443	161	17.9	RNA polymerase				(Ahn et al., 1990b)
D7R	97928	161		subunit rpo18			•	(Quick and Broyles, 1990)
F7R		161		VAC VAR	1.4e-108	160/161	99	(Goebel <i>et al.</i> , 1990)
		163		rabbit fibroma C8	2.2c-106 3.4c-76	156/161 108/161	96 67	(Shchelkunov et al., 1995) (Strayer et al., 1991)
MC097R	•	161		MCV subtype i	4.0e-70	99/158	62	(Senkevich et al., 1997)
		161		FPV D7	5.4c-66	95/160	59	(Binns et al., 1990)
105L	98805	304	35.4	virion transmembrane				
	97891			protein, carbonic				(Niles and Seto, 1988) (Niles et al., 1986)
				unhydrase-like				(Maa et al., 1990)
<i>D8L</i> F8L		304 304		VAC	2.3c-212	297/304		(Goebel et al., 1990)
. qL		304		VAR Camelpox virus	2.5c-209 1.1e-207	291/304 290/304		(Shchelkunov et al., 1995)
		303		Ectromelia virus	2.2e-207	195/207		X97857 X97856
		304		Monkeypox virus	3.0e-207	287/304	94	X97855
		304		Cowpox virus Carbonic anhydrase family	9.8c-206	285/304	93	X97858
				Caroonic annyuruse family	>4.9e-13			
106R	98847	213	25.0	25k mutT-like protein				(Koonin, 1993)
D9R	99488	213		VAC				(Niles et al., 1986)
F9R		213		VAC VAR	1.6c-146	212/213	99	(Goebel et al., 1990)
		218		rabbit fibroma	5.3c-145 1.7c-75	209/213 105/203	98 51	(Shehelkunov et al., 1995)
MC098R		212		MCV subtype I	5.3e-67	54/111	48	(Strayer et al., 1991) (Senkevich et al., 1997)
MC099R		78		FPV D9	2.0e-13	25/51	49	(Turtaglia et al., 1990)
MCCOSSK	•	229 248		MCV subtype 1 VAR-I F10R	0.0041 0.018	13/31	41	(Senkevich et al., 1997)
		225		FPV D10	0.016	14/32 15/34	43 44	(Shchelkunov et al., 1995) (Tartaglia et al., 1990)
		248		VAC DIOR	0.23	11/26	42	(Gocbel et al., 1990)
107R	99485	248	28.9	20te month little months				
20120	100231	270	20.5	29k mutT-like protein				(Koonin, 1993)
DIOR		248		VAC	7.4e-173	245/248	98	(Niles et al., 1986) (Goebel et al., 1990)
FIOR		248		VAR-I	5.4e-173	245/248	98	(Shchelkunov et al., 1995)
MC099R		260 229		shope fibroma D10 MCV subtype 1	3.8c-72	96/202	47	(Strayer et al., 1991)
		225		FPV D10	1.4e-54 1.1e-45	44/100 45/102	44 44	(Senkevich et al., 1997) (Binns et al., 1990)
		218		shope fibroma D9	1.9e-06	19/54	35	(Strayer et al., 1991)
		212 136		MCV subtype 1 MC098R	0.13	12/21	57	(Senkevich et al., 1997)
		213		mutator Synechocystis VAC D9R	0.23 0.24	12/27 11/26	44 42	D90899
		213		VAR F9R	0.24	11/26	42	(Goebel et al., 1990) (Shchelkunov et al., 1995)
		169		mutator M. jannaschii	0.39	13/25	52	(Bult et al., 1996)
108L	102127	631	72.4	Busineside Adabasah				•
	100232	031	7	nucleoside triphosphate phosphohydrolase I.				(Broyles and Moss, 1987)
				DNA helicase				(Rodriguez et al., 1986) (Koonin and Senkevich, 1992)
DIIL NIL		631		VAC	0.0	629/631		(Goebel et al., 1990)
MC100R	!	631 634		VAR MCV subtype 1	0.0 7.3c-286	626/631		(Shchelkunov et al., 1995)
		637		FPV protein 5	7.3c-266 2.8c-275	392/627 214/357		(Senkevich et al., 1996) \$42251
		370		Rabbit fibroma C14 protein	1.8e-176	244/368		F36819
		648 648		AMEPV	6.0e-142	81/159	50	(Hall and Moyer, 1991)
		89		Choristoneura biennis EPV Swinepox virus	1.1e-136 1.2e-34	81/158	51	(Yuen et al., 1991)
		1098		ASF	1.6e-13	60/89 26/89	67 29	(Massung et al., 1993) (Baylis et al., 1993)
		1085		RAD26 (yeast)	5.1e-05	16/45	35	(Huang et al., 1994)
		769		HS transcription activator	0.00093	10/22	45	(Okabe et al., 1992)
				NTPase family	>5.1e-5			
109L	103025	287	33.3	mRNA capping enzyme,				(Niles et al., 1989)
	102162			transcription initiation				(Weinrich and Hruby, 1986)
DI2L		287		factor VITF VAC	2.0e-198	285/287	ac	(Vos et al., 1991)
N2L		287		VAR .	9.8e-198	284/287		(Goebel et al., 1990) (Shehelkunov et al., 1995)
		287		Swinepox virus	4.le-160	220/287	76	(Massung et al., 1993)
MCIOIL	,	295 289		MCV subtype i FPV protein 6	5.8c-126	171/279		(Senkevich et al., 1996)
		~~,		• • 4 brotests o	3.4e-l13	114/215	23	S42252
110L	104711	551	61.9	rifampicin resistance				(Tartaglia and Paoletti, 1985)
D13L	103056	551		gene, IMV protein	0.0			(Weinrich and Hruby, 1986)
N3L		551		VAC VAR	0.0 0.0	551/551 547/551		(Goebel et al., 1990)
		551		Swinepox virus	4.5e-286	357/506	70	(Shchelkunov et al., 1995) (Massung et al., 1993)
MC102L		547		MCV subtype 1	5.4e-248	298/494	60	(Senkevich et al., 1995)
		552 584		FPV protein 7 Heliothis armigera EPV	6.6e-223	182/305		S42253
				annikera et a	9.50-51	54/107	20	(Osborne et al., 1996)

ORF°	START	ΑΛ	kDu	name / (putative)	BLAST ^d	BLAST H	SS ^r , references
left to	STOP rminal	regio	n:	function / homologiess	expect		%)
A/L A/L A/L MC103L	105187 104735	150 150 150 169 154	16.9	late gene trans-activator, VLTF-2 VAC VAR MCV subtype i FPV protein 8	6.8e-103 6.8e-103 6.3e-54 2.8e-50	149/150 99 149/150 99 74/147 50 50/87 57	(Weinrich and Hruby, 1986) (Keck et al., 1993) (Goebel et al., 1990) (Shehelkunov et al., 1995) (Senkevich et al., 1996) S42254
112L A2L A2L MC104L	105882 105208	224 224 224 228 606	26.3	late gene trans-activator VAC VAR MCV subtype I orf virus	1.3e-158 1.3e-158 6.4e-127 6.8e-30	224/224 100 224/224 100 172/222 77 43/66 65	(Weinrich and Hruby, 1986) (Passarelli et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Mercer et al., 1995)
A3L MC105L	106109 105879	76 76 76 70	8.9	8.9k protein VAC-WR VAR-BSH (I:A2.5L) MCV subtype 1	1.6e-47 2.1e-47 9.8e-12	73/76 96 71/76 93 26/63 41	(Weinrich and Hruby, 1986) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
114L <i>A3L</i> A4L MC106L	108058 106124		72.6	major core protein P4b VAC VAR-BSH (1:A3L) MCV subtype 1 FPV Major core protein P4b	0.0 0.0 8.9e-272 9.1e-220	643/644 99 636/644 98 227/357 63 169/299 56	(Rosel and Moss, 1985) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Binns et al., 1989)
115L A4L A5L	108929 108111	272 281 271 268 5179	29.9	membrane associated core protein VAC VAR-BSH (I: A4L) . Thermoproteus phage I human mucin many matches to Pro-rich proteins	1.le-145 1.le-112 1.9e-09 4.5e-07	180/187 96 165/178 92 38/127 29 34/139 24	(Demkowicz et al., 1992) (Cudmore et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Neumann and Zillig, 1990) (Gum et al., 1994)
116R A5R A5R MC108R	108967 109461		19.0	RNA pol subunit rpo19 VAC VAR-I (BSH:A6R) MCV subtype 1 FPV 54 matches/glu-rich proteins	5.8e-110 7.0e-109 3.3e-51 3.3e-51 <0.51	162/164 9 82/151 5	(Ahn et al., 1992) 100 (Goebel et al., 1990) 98 (Shehelkunov et al., 1995) 53 (Senkevich et al., 1997) 44 (Kumar and Boyle, 1990)
·117L A6L A7L MC109L	110576 109458		43.1	43.1k protein VAC VAR-BSH (I: A6L) MCV subtype 1 FPV ORF 2 protein	1.2e-248 1.1c-244 4.0c-99 1.9c-95	371/372 99 364/372 97 132/367 35 111/279 39	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) B60013
1181 <i>A71</i> A81 MC1101	112732 110600		82.3	VETF 82k subunit VAC VAR-BSH (i: A7L) MCV subtype i	0.0 0.0 0.0	708/710 99 700/710 98 240/374 64	(Gershon and Moss, 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
119R A8R A8R MCliir	112786 113652		33.6	33.6k protein VAC VAR-I (BSH:A9R) MCV subtype 1	5.3e-198 3.1e-195 4.4e-94	284/288	(Van Meir and Wittek, 1988) 99 (Goebel et al., 1990) 98 (Shchelkunov et al., 1995) 59 (Senkevich et al., 1997)
120L AIOL A9L MCII2L	113929 113645		10.5	10.5k protein VAR-BSH (I: A9L) VAC MCV subtype I orf virus	9.0e-59 9.4e-55 1.0e-29 3.0e-16	78/79 98 82/91 90 47/71 66 27/45 60	(Van Meir and Wittek, 1988) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1996) (Mercer et al., 1995)
121L A10L A11L MC113L	116605 113930	891 891 892 889	102.2	major core protein P4a VAC VAR-BSH (I: A10L) MCV subtype I	0.0 0.0 5.8e-289	883/891 99 442/463 95 99/177 55	(Van Meir and Wittek, 1988) (Vanslyke et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
122R AIIR AIIR MCII4F	116620 117576		36.1	36.1k protein VAC VAR- (BSH: Al2R) MCV subtype ! FPV 4n gene	3.5e-212 2.7e-154 2.9e-98 1.9e-13	92/154	(Goebel et al., 1990) 100 (Goebel et al., 1990) 87 (Shehelkunov et al., 1995) 59 (Senkevich et al., 1997) 56 A20158
123L A12L A13L MC115	118141 117578		20.0	virion protein VAC VAR-BSH (l: Al2L) MCV sublype i	4.8e-127 5.9e-64 5.9e-37	127/128 99 101/144 70 39/83 46	
124L <i>A/3L</i> A/4L	118377 118165		7.6	structural protein IMV membrane protein p8 VAC VAR-BSH (I: A13L)	2.4c-42 4.1c-20	66/69 95 37/64 57	
125L	118757 118485		10.0	structural protein IMV membrane protein p16			(Takahashi <i>et al.</i> , 1994) (Jensen <i>et al.</i> , 1996)

-40-GENOMIC SEQUENCE OF THE MVA STRAIN

ORF'	START STOP	ΑΛ ^b	kDar	name / (putative) function / homologies*	BLAST ^d expect	BLAST AA Id	HSS'	references
	minal	region						
A14L A15L MC118L		90 90 94 125		VAC VAR-BSH (l: A14L) MCV subtype 1 human interferon inducible protein	5.3e-62 5.3e-61 7.3e-22 0.23	90/90 88/90 31/72 15/49	100 97 43 30	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Deblandre et al., 1995)
126L <i>AISL</i> AI6L MCI20L	119209 118925	94 94 94 96	11.0	11k protein VAC VAR-BSH (I:A15L) MCV sublype 1	4.1e-63 1.0e-61 6.7e-08	94/94 92/94 17/5 I	100 97 33	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
127L A16L A17L MC12IL	120326	377 378 377 364	43.4	35k myristylprotein VAC VAR-BSH (I:A16L) MCV subtype 1	6.3e-288 1.5e-283 6.5e-110	327/327 368/377 45/115	100 97 39	(Martin et al., 1997) (Goebel et al., 1990) (Shehelkunov et al., 1995) (Senkevich et al., 1996)
128L	120940 120329	203	23.0	IMV membrane protein morphogenesis factor				(Krijnse-Locker et al., 1996) (Rodriguez et al., 1995)
A17L A18L MC122L		203 203 179		VAC VAR-BSH (I:A17L) MCV subtype 1	1.0e-141 1.0e-141 1.4e-47	201/203 201/203 36/81		(Wolffe et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
129 R A18 R A18 R MC123 R	120955 122436	493 493 493 694 450	56.8	DNA helicase DNA dependent ATPase VAC VAR-1 (BSH:A19R) MCV subtype l Bacterlophage T5 D10 helicase-like protein	0.0 0.0 5.3e-167 0.0066	488/493 478/493 203/403 13/36	98 96 50 36	(Koonin and Senkevich, 1992) (Bayliss and Condit, 1995) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) P11107
130L <i>A19L</i> A19L MC124L	122650 122417	77 77 76 78 1721	8.3	8.3kb protein VAC VAR-I (BSH: A20L) MCV subtype 1 HS RIZ, zink finger protein	2.9e-50 1.2e-34 1.5e-13 0.0060	77/77 54/64 14/37 7/16	100 84 37 43	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Buyse et al., 1995)
131L A21L A22L MC125L	123004 122651	117 117 117 114	13.6	13.6k protein VAC VAR-BSH (I: A20L) MCV subtype 1	5.3c-83 7.2c-82 2.8c-28	117/117 115/117 23/41		(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
132R <i>A20R</i> A21R MC126R	123003 124283	426 426 426 476 1118	49.1	49.1k protein VAC VAR MCV subtype l Pichia klyveri DNA pol	7.6e-298 1.6e-294 3.2e-95 0.069	423/426 418/426 34/131 12/54	99 98 25 22	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) Y11606
133R A22R A22R MC127R	124213 124776	187 187 176 282	21.9	21.9k protein VAR-I (BSH:A23R) VAC MCV subtype I	1.1e-126 1.2e-122 5.8e-43	182/187 174/176 35/85	97 98 41	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1997)
134R <i>A23R</i> A23R MC128R	124796 125944	382 382 382 383	44.6	44.6k protein VAC VARI (BSH:A24R) MCV subtype I	4.2e-269 1.7e-265 3.5e-136	382/382 377/382 83/143	100 98 58	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
135R <i>A24R</i>	125966 129436	1155	132.4	RNA pol subunit rpo132	0.0	794/796	99	(Hooda-Dhingra et al., 1990) (Amegadzie et al., 1991b)
A25R MC129R		1164 1164 1165 1162		CPX rpo132 VAR-BSH (I:A24R) MCV subtype I orf virus 101 matches to RNA pol beta subunit family	0.0 0.0 0.0 0.0 0.0 <0.036	794/795 789/795 441/565 166/258	99 99 78 64	(Goebel et al., 1990) (Patel and Pickup, 1989) (Shchelkunov et al., 1995) (Senkevich et al., 1997) U33419
	terminal			1501 007 15				•
136L <i>A25L</i>	129638 129441		7.5	150k CPX-ATI (f) VAC Cowpox (CPX-ATI)	1.3c-41 3.2e-15	64/65 28/30	98 93	(Funahashi et al., 1988) (Goebel et al., 1990) (Funahashi et al., 1988)
137L A30L A26L MC131L MC133L MC130L			27.1	27.1k protein (f) VAR-BSH (i: A29L) VAC (ATI flanking protein) MCV subtype 1 MCV subtype 1 MCV subtype 1 VAR-I A28L (BSH:A29L) Camelpox	3.1e-158 5.6e-142 2.1e-12 4.2e-11 2.3e-10 0.0021 0.051	216/227 195/197 19/59 12/40 14/40 12/37 11/37		(Amegadzle et al., 1991a) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1996) (Senkevich et al., 1996) (Senkevich et al., 1996) (Shchelkunov et al., 1995) (Meyer and Rziha, 1993)
138L A27L A31L	131298 130966	110 110 110	12.5	14k membrane protein EEV protein fusion protein VAC VAR-BSH (I: /A30L)	3.3e-70 1.1e-69	108/110 107/110		(Rodriguez and Esteban, 1987) (Rodriguez and Smith, 1990) (Gong et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995)

ORF*	START STOP	AAb	kDaʻ	name / (putative) function / homologies!	BLAST expect	BLAST'	HSS ^r (%)	references
left te	minal	region	n:	. Samoragios.			<u> </u>	
MCI33L		110 110 89 188 546 148		Ectromelia virus Monkeypox virus Orf virus Myxoma virus MCV subtype 1 Capripox virus HM2 protein	6.7e-68 8.3e-67 4.8e-15 2.5e-12 1.5e-11	105/110 103/110 22/57 18/33 26/58	93 38 54 44	(Meyer et al., 1994) (Meyer et al., 1994) (Nasse et al., 1991) (Jackson et al., 1996) (Senkevich et al., 1996)
MC131L		513		MCV subtype 1	2.6e-10 1.5e-05	21/42 18/58	50 31	(Gershon et al., 1989) (Senkevich et al., 1996)
139L A28L A31.5L MC134L	131739 131299	146 146 146 140 140 141	16.3	16.3k protein VAC VAR-BSH (I: A31L) Myxoma virus Capripox virus HM3 protein MCV subtype ! Amsacta moorei poxvirus	1.7e-103 2.9e-100 1.3e-55 3.3e-55 1.0e-53 2.0e-14	146/146 141/146 30/52 30/49 31/52 16/36		(Amegadzie et al., 1991a) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Jackson et al., 1986) (Gershon et al., 1989) (Senkevich et al., 1996) (Hall and Moyer, 1991)
140L <i>A29L</i> A32L MC135L	132657 131740	305 305 305 303 126	35.4	RNA pol subunit rpo35 VAC VAR-BSH MCV subtype 1 Capripox virus	3.6e-215 7.5e-211 7.0e-98 2.2e-54	304/305 297/305 51/103 46/61		(Amegadzie et al., 1991a) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Gershon et al., 1989)
141L <i>A30L</i> A33L MC136L	132853 132620	77 77 77 67	8.7	8.7k protein VAC VAR MCV subtype t	5.5c-48 5.5c-48 9.2c-16	77/77 77/77 18/40	100 100 45	(Amegadzie et al., 1991a) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
142R <i>A31R</i> A34R MC138R		125 124 140 117	14.4	14.4k protein VAC VAR MCV subtype 1	2.0c-84 1.6e-79 6.2e-24	118/124 111/114 39/98	95 97 39	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
143L A32L A35L MC140L	134169 133360	300 270 249	30.8	30.8k protein ATP/GTP binding motif A VAC VAR MCV subtype !	6.4e-190 1.6e-186	268/269 263/269 58/94	97	(Smith et al., 1991) (Koonin et al., 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995)
144R <i>A33R</i> A36R	134287 134844	185 185 184 185	20.6	EEV glycoprotein VAC VAR Ectromelia	7.6e-95 2.1e-124 1.8e-121 2.8e-113	182/185 103/112 165/185	98 91 89	(Senkevich et al., 1996) (Roper et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Roper et al., 1996)
145R A34R A37R	134868 135374	168 168 168 167	19.6	EEV glycoprotein virulence factor actin microvilli inducer VAC VAR-I FPV ORFs BamHI 2,8,11 hepatic	1.2e-117 1.7e-117 <0.056	165/168 164/168 16/66	98 97 24	(Duncan and Smith, 1992a) (McIntosh and Smith, 1996) (Wolffe et al., 1997) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Tomley et al., 1988)
MC143R		199 159		lectins homologs HS early T-cell activation antigen CD69 MCV subtype 1	0.0038	12/38	31	(Hamann et al., 1993)
MC145K	•	137		17 matches to lectins	0.080	12/48	25	(Senkevich et al., 1997)
146R A35R A38R MC145R		176 176 60 233	20.0	20.0k protein VAC VAR-I MCV subtype 1	1.4c-126 2.9c-37 1.2c-07	176/176 57/60 18/55	100 95 32	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
147R	136015 136641	208	23.8k	EEV membrane protein virulence factor		*		(Parkinson and Smith, 1994)
<i>A36R</i> A39R		221 216		VAC VAR 19 matches to asn/ser-rich proteins	2.8e-143 2.1e-89 <0.41	140/141 138/177	99 77	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
148R <i>A37R</i> A40R	136705 137496		29.8	29.8k protein VAC VAR	6.8e-183 4.9e-37	261/262 61/67	99 91	(Goebel et al., 1990) (Shchelkunov et al., 1995)
149 L <i>A38 L</i> A41 L	138589 137756		31.5	31.5k protein VAC VAR Rattus norvegicus CD47 MM integrin assoc. protein human CD47 precursor	9.3c-198 1.6c-187 3.9c-24 1.0c-21 5.0c-19	274/277 259/277 23/86 23/86 28/86		(Amegadzie et al., 1991a) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Nishiyama et al., 1997) (Lindberg et al., 1993) (Campbell et al., 1992)
150R	138606	83	9.4	semaphorin-like protein				(Kolodkin et al., 1993)
A39R A42R 151R	138857	403 74 210	23.9	(f1) VAC VAR-I semaphorin-like protein	8.0c-46 8.6c-44	73/76 67/71	96 94	(Goebel et al., 1990) (Shehelkunov et al., 1995) (Kolodkin et al., 1993)
<i>A39R</i> A43R	139795			VAC VAR (I:A44R) semaphorin-like protein Alcelaphine herpesvirus 37 matches to semaphorin	3.0-147 1.8c-68 1.7e-20	209/210 91/105 29/79	99 86 36	(Goebel et al., 1990) (Shehelkunov et al., 1995) (Ensser and Fleckenstein, 1995)

GENOMIC SEQUENCE OF THE MVA STRAIN

ORF	START STOP	AAb	kDa'	name / (putative) function / homologies*	BLAST ^d expect	BLAST ^e	HSS ^r	references
left ter		region	:			10	(10)	
				/collapsin gene family				
152R <i>A40R</i> A45R	139821 140327	168 168 61 233	19.4	NK cell receptor homolog lectin-like protein VAC VAR-I (BSH: A43.5R) HS natural killer (NK) cell protein group 2-A, B	6.6e-97 9.6e-36 4.5e-11	134/137 54/59 20/74	97 91 27	(Scheiflinger et al., unpubl.) (Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Houchins et al., 1991)
		240 182 179		HS type II membrane protein MM NK cell receptor HS CD 94 127 matches to lectins including NK cell surface proteins and snake venoms	6.9e-11 5.5e-09 1.7e-07	16/36 16/36 11/29	44 44 37	(Adamkiewicz et al., 1994) (Giorda et al., 1992) (Chang et al., 1995a)
153L <i>A41L</i> A44L	141025 140366		25.1	25.1k protein VAC VAR-BSH (I:A46L) VAC B29R/C23L Rabbit fibroma virus T1	1.9e-158 1.4e-152 0.0076 0.057	218/219 152/159 12/53 13/49	99 95 22 26	(Smith et al., 1991) (Goebel et al., 1990) (Shehelkunov et al., 1995) (Goebel et al., 1990) (Upton et al., 1987)
154R	141197 141583	128	14.5	profilin-like protein				(Blasco et al., 1991)
<i>A42R</i> A47R	141363	133 133 140		VAC VAR-I (BSH:A45R) HS profilin 10 matches profilin family	1.2e-87 1.4e-85 2.2e-23	85/87 82/87 19/45	97 94 42	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Kwiatkowski and Bruns, 1988)
155R	141621 142193	190	22.1	class I membrane				(Smith et al., 1991)
A43R A48R	142193	194 195 51		glycoprotein VAC VAR-I(BSH:A46R) HS leukocyte antigen	1.5e-137 1.9e-128 0.096	162/164 101/109 7/23	98 92 30	(Duncan and Smith, 1992b) (Goebel et al., 1990) (Shehelkunov et al., 1995) X79517
156R	142201 142437	78 78 258	8.8	8.8k protein VAC-WR Salf6R rabbit myosin heavy chain 144 matches to various asp/glu/lys-rich proteins	3.9e-45 0.00048	78/78 13/39	100 33	(Smith et al., 1991) (Smith et al., 1991) A02985
157L A44L A47L MC152R	143577 142537	346 210 354 369	39.4	3ß-hydroxysteroid dehydrogenase (3ß-HSD) VAC VAR-BSH (I: A49L) MCV subtype 1 FPV matches to dihydroflavonol reductases, cholesteroi dehydrogenases, UDP- galactose-4-epimerases	4.5e-249 1.1e-136 8.2e-104 3.1e-83 >2.8e-05	342/346 185/195 123/272 33/85	98 94 45 38	(Moore and Smith, 1992) (Blasco et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Skinner et al., 1994) (Baker and Blasco, 1992)
158R <i>A45R</i> A51R	143624 143989	121 125 125	13.3	superoxide dismutase-like protein VAC VAR-I BSH A48R I17 matches with superoxide dismutase family	2.1e-82 1.1e-82 <0.027	94/96 93/96	97 96	(Blasco et al., 1991) (Smith et al., 1991) (Goebel et al., 1990) (Shehelkunov et al., 1995)
159R <i>A46R</i> A52R	143979 144701		27.6	27.6k protein VAC VAR-I (BSH: A49R)	9.6e-167 5.6e-164	238/240 233/240	99 97	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
160L J1L <i>A47L</i>	145465 144749	238 244 244	27.6	27.6k protein VAR VAC integrin lipid binding motif	5.1e-146 8.2e-135	114/127 121/127	89 95	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Smith et al., 1991)
161R <i>A48R</i> J2R	145564 146178	204 204 205	23.2	thymidylate kinase VAC VAR 16 matches to thymidylate kinase family	5.2e-140 1.1e-137 <0.49	204/204 161/165	100 97	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
162R <i>A49R</i> J3R	146202 146690		18.8	18.8k protein VAC VAR	6.0e-106 2.4e-103	159/162 154/162	98 95	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
163R <i>ASOR</i> J4R	146722 148380		63.5	DNA ligase VAC VAR-I HS DNA ligase III shope fibroma ligase FPV ligase 31 matches mainly to DNA ligase family	0.0 0.0 2.1e-235 9.9e-213 3.0e-195 <0.029	547/552 537/552 102/165 95/200 101/170	99 97 61 47 59	(Kerr and Smith, 1989) (Goebel et al., 1990) (Shcheikunov et al., 1995) (Wei et al.,) (Parks et al., 1994) (Skinner et al., 1994)
164R <i>A51R</i> J5R	148426 149358		34.9	34.9k protein VAC VAR	1.5e-217 9.1c-208	267/274 251/274	97 91	(Antoine et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995)

ORF	START STOP			name / (putative) function / homologies*	BLAST expect	BLAST AA Id	HSS ^f (%)	references
left 1	terminal	regio	n:	fusion of ASIRIASSR ORFs				(Antoine et al., 1996)
165R <i>A56R</i> J9R	149416 150363		34.8	hemaggiutinin VAC VAR-I(BSH:J7R) raccoonpox 124 matches to various proteins	1.8e-211 4.3e-178 1.5e-91 <0.34	312/315 183/238 74/104	99 76 71	(Shida, 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Cavallaro and Esposito, 1992)
166R <i>A57R</i> JIOR	150659 150952		11.4	guanylate kinase (f) VAC VAR (BSH:J8R) MM guanylate kinase HS guanylate kinase 21 matches mainly to guanylate kinases	3.2e-62 2.2e-57 4.3e-24 2.8e-20 <0.20	94/97 88/97 39/91 35/91	96 90 42 38	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Brady et al., 1996) (Brady et al., 1996)
167R	151103 152005	300	34.3	serine/threonine protein kinase				(Howard and Smith, 1989) (Banham and Smith, 1992)
BIR BIR		300 300 283		VAC VAR-I VAC B12R 100 matches mainly to protein kinase family	7.1e-215 2.7e-210 4.9e-49 <0.00031	298/300 289/300 27/53	99 96 50	(Lin et al., 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990)
168R B2R	152144		11.5	24.6k protein (f1) VAC	8.5e-38	54/60	90	(Goshal et al. 1000)
169R	152289	149 143	16.1	histone H2A pea 24.6k protein (f2)	0.59	16/50	32	(Goebel et al., 1990) P40281 (Goebel et al., 1990)
B2R	152720		20.0	VAC	5.7e-86	124/128	96	(Goebel et al., 1990)
170R <i>B3R</i>	152917 153456	179 124 167 92	20.9	20.9k protein (f) VAC VAC WR VAR-GAR HSR	8.2e-33 5.3e-45 3.4e-06	51/56 51/56 19/28	91 91 67	(Goebei et al., 1990) (Smith et al., 1991) U18339
171R	153683 154216	177	21.4	65k ank-like protein virulence factor (f1)				(Howard et al., 1991)
<i>B4R</i> B6R 172R	154107 155336	558 558 409	47.7	VAC VAR-I (BSH:B5R) 65k ank-like protein	8.5e-107 1.7e-98	151/154 140/154	98 90	(Mossman <i>et al.</i> , 1996) (Goebel <i>et al.</i> , 1990) (Shchelkunov <i>et al.</i> , 1995) (Howard <i>et al.</i> , 1991)
B4R B6R		558 558 483 1765 516 574 882 668 237 472 474 446 437 634		virulence factor (f2) VAC VAR-I (BSH:B5R) MYX M-T5 protein MM ankyrin 3 orf virus VAC B18R VAR-I B19R HS KIAA0379 CPX host range gene VAC WR hr gene VAC MIL CPX OIL VAR OIL CPX DIL VAC C9L 159 matches including ankyrin proteins	2.4e-283 2.3e-270 5.5e-10 9.7e-10 1.8e-09 3.3e-09 5.1e-09 1.7e-08, 2.8e-08 5.1e-07 8.7e-07 8.8e-07	195/201 185/201 19/57 22/54 16/47 11/23 19/72 20/52 14/47 15/47 23/81 22/61 23/81 8/27	97 92 33 40 34 47 26 38 29 31 28 36 28 29	(Mossman et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Mossman et al., 1996) (Peters et al., 1995) U34774 (Goebel et al., 1990) (Shchelkunov et al., 1995) AB002377 (Spehner et al., 1988) (Kotwal and Moss, 1988a) (Goebel et al., 1990) (Safronov et al., 1996) (Shchelkunov et al., 1996) (Shchelkunov et al., 1995) (Safronov et al., 1996) (Goebel et al., 1996)
173R	155424 156377	317	35.1	ps/hr protein/ EEV gp42 complement control protein				(Takahashi-Nishimaki et al., 1991 (Engelstad et al., 1992) (Isaacs et al., 1992)
<i>B5R</i> B7R		317 317 259		VAC VAR-I (BSH:B6R) CPX D17L 186 matches to complement control protein family	1.6e-232 7.1e-220 2.1e-12 <7.7e-05	312/317 294/316 16/52	98 93 30	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Safronov et al., 1996)
174R <i>86R</i> 87R	156474 156995		20.2	20.2k protein VAC VAR-BSH (I:B8R) NAD-protein ADP ribosyl- transferase phage T4	1.5e-121 6.0e-40 0.56	173/173 62/65 17/56	100 95 30	(Gocbel et al., 1990) (Shehelkunov et al., 1995) SXBPT4
175R <i>B7R</i>	157033 157566		20.7	20.7k protein VAC VAC CSL CPX D12L EF-hand calcium-binding domain	7.8e-129 0.16 0.49	95/108 9/44 8/36	87 20 22	(Goebel et al., 1990) (Goebel et al., 1990) (Safronov et al., 1996)
176R <i>88R</i> B8R	157621 158301	226 272 266 266 274	26.0	31k Interferon-gamma receptor (f) VAC VAR-BSH (I:B9R) BCT swinepox C6	3.3e-164 3.0e-153 2.6e-151 3.2e-09	116/123 111/123 110/123 12/31	94 90 89 38	(Upton et al., 1992) (Alcami and Smith, 1995) (Goebel et al., 1990) (Shehelkunov et al., 1995) (Mossman et al., 1995b) (Massung et al., 1993)

-44-GENOMIC SEQUENCE OF THE MVA STRAIN

ORF'	START STOP	AAb	kDar	name / (putative) function / homologies*	BLAST	BLAST AA Id	HSS'.	references
left te	rminal	regio	n:	tunction / nomotogies-	expect	AA II	(70)	
177R	158458	72	8.3	8.3k protein				
B9R	158676	77 240		VAC capripox T4 protein	3.0e-49 1.2e-09	60/60 16/44	100 36	(Goebel et al., 1990)
		237		shope fibroma virus	0.0057	15/50	30	M28823 F43692
178R	158639	158	17.9	17.9k protein				
BIOR	159115	166	17.3	VAC	4.7c-110	146/146	100	(Goebel et al., 1990)
		530		swinepox VC04	0.040	13/42	30	(Massung et al., 1993)
		689		kelch protein D. melanogaster	0.14	12/54	27	(Xue and Cooley, 1993)
179R	159187		8.5	8.5k protein				(Senkevich et al., 1993b)
BIIR	159411	88		VAC	9.2c-43	70/73	95	(Goebel et al., 1990)
				177 matches to glu/asn rich proteins				
				•				
180R <i>B12R</i>	159478 160329		33.3	protein kinase VAC	1.8e-207	282/283	99	(Howard and Smith, 1989)
B12R	••••	134		· VAR-I	8.7c-26	31/54	57	(Goebel et al., 1990) (Shchelkunov et al., 1995)
		300 300		VAC BIR VAR-I BIR	1.7c-54	26/53	49	(Goebel et al., 1990)
		300		t20 matches mainly to protein	7.7e-53 ⊲0.34	25/53	47	(Shchelkunov et al., 1995)
				kinase family				
181R	160437	116	13.0	ICE inhibitor / SPI-2 (f1)				(Votrue) and Marry 1990)
	160787							(Kotwal and Moss, 1989) (Smith <i>et al.</i> , 1989)
B13R B13R		116		VAC VAR-I (BSH:BI2R)	3.04.72	1117116	0.4	(Ray et al., 1992)
1		344		CPX crmA	3.0e-72 2.7e-69	111/116 105/114	95 92	(Goebel et al., 1990) (Shchelkunov et al., 1995)
į.		341 353		VAC CI2L (SPI-1)	2.8c-39	66/100	66	(Pickup et al., 1986)
1	1	344		Ectromelia serpin rabbitpox SPI-1	2.1c-23 9.2c-23	25/34 24/34	73 70	(Goebel et al., 1990) (Senkevich et al., 1993b)
	l	357		CPX SPI-I	5.5c-22	25/34	73	(Ali <i>et al.</i> , 1994)
		355 372		VAR-I B25R (BSH:B21R) CPX serpin-like protein	1.4c-21 1.7c-21	25/36 25/34	69 73	(Ali et al., 1994)
1	1	372		135 matches mainly to serpins		25/36	69	(Shcheikunov et al., 1995) (All et al., 1994)
182R	160762	222	24.9	ICE inhibitor/SPI-2 (f2)	<0.12			and observe
BI4R	161430	222		VAC	6.2e-158	218/222	98	see above (Goebel et al., 1990)
1	1	345 345		VAC WR	9.4e-156	215/221	97	(Kotwal and Moss, 1989)
ı		341		rabbit pox SPI-2 CPX crmA	1.6e-153 4.5e-148	211/221 203/220	95 92	(Ali et al., 1994) (Pickup et al., 1986)
B13R	1	344		VAR-I (BSH:B12R)	1.5e-146	203/220	92	(Shchelkunov et al., 1995)
L				309 matches see above	<1.3e-21			
183R <i>B15R</i>		143	16.7	16.7k protein				(Smith and Chan, 1991)
B14R	161937	149 149	•	VAC VAR-I(BSH:B13R)	3.6e-105 9.1e-104	97/98 95/98	98 96	(Goebel et al., 1990) (Shchelkunov et al., 1995)
		153		VAR-I DIL (BSH:D2L)	8.8e-31	25/52	48	(Shchelkunov et al., 1995)
		181 159		VAC C16L/B22R capripox T3A	1.0e-26 1.4e-17	25/52 17/42	48 40	(Goebel et al., 1990)
		151		rabbit fibroma T3A	2.6c-07	17/44	38	(Gershon and Black, 1989a) (Upton et al., 1987)
		190 149		VAC A52R VAC WR K7R	0.073 0.21	10/28 7/22	35 31	(Goebel et al., 1990)
		149		VAR-I C4R	0.30	7/22	31	(Boursnell et al., 1988) (Shchelkunov et al., 1995)
		161		CPX M6R	0.51	7/22	31	(Safronov et al., 1996)
184R	162021	326	36.6	interleukin-18 receptor				(Alcami and Smith, 1992)
	163001	326		(IL-1BR) VAC-WR BI5R				(Spriggs et al., 1992)
		326		CPX B16	2.8c-229 2.3c-217	323/326 306/326	99 93	(Smith et al., 1991) (Spriggs et al., 1992)
B16R		290		VAC .	4.4e-202	287/290	98	(Goebel et al., 1990)
B17R		69 296		VAR-I (BSH:deleted) HS type II IL-I receptor	8.1e-38 1.7c-36	59/68 28/75	86 37	(Shchelkunov et al., 1995) U64094
				271 matches mainly to IL-1	<0.011	20773	٠,	001034
				receptors, growth factor receptors and lg family				
				proteins				
185L	164069	340	39.6	39.6k protein				
B17L	163047	340	23.0	VAC	4.8c-248	335/340	98	(Gochel et al., 1990)
BISL		340		VAR-BSH (I:B18L)	2.7e-241	325/340		(Shchelkunov et al., 1995)
186R	164209		68.0	68k unk-like protein				(Smith et al., 1991)
B18R	165933			VAC	0.0	560/574	97	(Goebel et al., 1990)
BIPR		574		VAR-I (BSH:B16R) 100 matches mainly to	0.0 <0.53	539/574	93	(Shchelkunov et al., 1995)
				poxvirus ankyrin proteins				
187R	165999	234	27.5	surface antigen,				(Ueda et al., 1990)
	166703			IFN-alpha/beta				(Symons et al., 1995)
B19R		353		receptor (f) VAC (WR:BIBR)	1.4c-163	218/233	93	(Colamonici et al., 1995)
B20R		354		VAR-I (BSH:B17R)	1.53-149	111/133	83	(Goebel et al., 1990) (Shehelkunov et al., 1995)
		569		HS interleukin-1 receptor	0.0051 <0.53	15/43	34	(McMahan et al., 1991)
				28 matches mainly to [1-1 receptors	CC.0~			
188R	167202	70	8.2	8.2k protein (f)				
				broom (r)				

ORF'	START	AA°	kDa*	name / (putative)	BLAST4	BLAST*	HSS	references
left te	STOP erminal	region		function / homologies*	expect	AA ld	(%)	
			1:					
B22R	167414	1897		VAR-BSH (I:B26R)	9.9e-23	31/38	81	(Shchelkunov et al., 1995)
189R	167897	188	21.7	21.7k protein				
B22R	168463	181		VAC B22R/C16L	2.9c-111	95/104	91	(Cookel and Loop)
DIL		153		VAR-I(BSH:D2L)	1.2e-88	66/71	92	(Goebel et al., 1990)
		149		VAC BISR	7.2e-19	25/52	48	(Shcheikunov et al., 1995)
		159		capripox T3A	8.0e-05	15/45	33	(Goebel et al., 1990)
		151		VAC C6L	0.25	12/46	26	(Gershon and Black, 1989a)
		156		VAR (I:D9L;BSH:D12L)	0.26	12/46	26	(Goebel et al., 1990) (Shchelkunov et al., 1995)
190R/ 004L	168531	233	26.9	45k ank-like protein				
B23R	1	386		VAC (CI7L/B23R)	C 3. 160			
DIL	i	91		VAR-BSH	6.2e-159	110/110		(Goebel et al., 1990)
	1	669		CPX host range	9.1e-31	46/49	93	(Shchelkunov et al., 1995)
	ı	452		VAR-I D6L (BSH:D8L)	1.1c-13	22/50	44	(Spehner et al., 1988)
	1	574		VAR-1 BI9R (BSH: BI6R)	1.7e-11	21/50	42	(Shchelkunov et al., 1995)
	1	574		VAC BISR (WR: BI7R)	1.2e-05 8.6e-05	22/73	30	(Shchelkunov et al., 1995)
	1	634	٠.	VAC C9L	0.00011	22/73	30	(Goebel et al., 1990)
	1	585		VAR-I GIR	0.00011	11/24	45	(Kotwal and Moss, 1988a)
		516		orf virus	0.00013	22/74	29	(Shchelkunov et al., 1995)
	1	153		VAR-I D7L (BSH:D10L)		15/49	30	(Sullivan et al., 1995b)
191R/	169309	102	12.1	45k ank-like protein	0.014	12/28	42	(Shchelkunov et al., 1995)
003L	169617			(f1)				
B23R]	386		VAC C17L/B23R	1.3e-39	62/63	98	(Goebel et al., 1990)
192R/	170305	176	19.7	cos TNP				
002L	170835	355		secr. TNF receptor (f) CPX crmB	.			(Upton et al., 1991a)
G2R		348		VAR-BSH	5.1e-71	76/83	91	(Hu et al., 1994)
		326		Myxoma virus T2	1.0e-66	73/83	87	(Shchelkunov et al., 1995)
		325		Rabbit fibroma Virus T2	4.9e-30	21/37	56	(Upton et al., 1991a)
		202		CPX C4L	1.8e-28	17/36	47	(Upton et al., 1987)
B25R		346		HS TNF receptor	8.7e-15	30/51	58	(Heller et al., 1990)
		259		VAC (C19L/B25R)	1.9e-08	14/26	53	(Safronov et al., 1996)
		277		human CD40L receptor	0.00026	16/19	84	(Goebel et al., 1990)
				30 matches to TNF receptors	0.0015 <0.39	11/24	45	(Stamencovic et al., 1989)
				and surface proteins	•			
	171267	136	14.9	35k major secr. protein				(Patel et al., 1990)
001L	171677			chemokine receptor (f)				(Graham et al., 1997)
B29R		244		VAC (C23L/B29R)	6.0e-57	41/42	97	(Goebel et al., 1990)
G5R		253		VAR-I	8.9e-51	46/49	93	(Shchelkunov et al., 1995)
		246		CPX ORF B	5.6e-49	40/42	95	(Hu et al., 1994)
		258		SFV T1 projein	2.5e-20	23/42	54	(Upton et al., 1987)
		260		Myxoma virus T1/35kDa	1.5c-14	21/42	50	(Graham et al., 1997)

^a Open reading frame coding for at least 65 amino acids (for exceptions see text); minor ORFs located in reverse orientation within large ORFs or ORFs located in the repeat regions of the ITRs (see text) are not listed; the MVA ORFs (boldface), listed consecutively as appearing in the genome, and homologs in the Copenhagen strain (in Italics), in the variola strains and in the molluscum contagiosum, are listed in this row. Split ORFs are boxed.

^b Number of deduced amino acids (AA) encoded within an ORF.

 $^{^{\}rm c}$ Predicted $M_{\rm r}$ (kDa) for the unmodified protein.

^d The lowest Poisson probability determined by the BLAST search (Altschul *et al.*, 1990). The Expect value of 0.0 indicates a probability of zero that an alignment occurs by chance; low Expect values correspond to high homology and vice versa.

^e Amino acid identity (AA id) of first high-scoring segment pair in the BLASTp protocol.

^{&#}x27;Amino acid Identity of first high-scoring segment pair (HSS)%.

⁹ Homologies based on searching PIR and SWISS-PROT databases (BLASTp nr).

h Duplicated ORFs located in ITRs.

¹ Fragment; complete homologous ORF present in related poxvirus (see reference).

J Variola India (I) or variola Bangladesh (BSH) sequences; in cases where the variola sequences are not Identical, the variola strain first appearing in the blast search protocol is listed.

k ank, ankyrin.

HS, homo sapiens.

^m MM, Mus musculus.

REFERENCES

- Adamkiewicz, T. V., McSherry, C., Bach, F. H., and Houchins, J. P. (1994).Natural killer lectin-like receptors have divergent carboxy-termini, distinct from C-type lectins. *Immunogenetics* 39, 218–218.
- Ahn, B. Y., Gershon, P. D., Jones, E. V., and Moss, B. (1990a). Identification of rpo30, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription elongation factor. *Mol. Cell. Biol.* 10, 5433–5441.
- Ahn, B. Y., Jones, E. V., and Moss, B. (1990b). Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5' poly(A) leader on its early transcript. J. Virol. 64, 3019–3024.
- Ahn, B. Y., and Moss, B. (1992a). Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. *Proc. Natl. Acad. Sci.* USA 89, 7060–7064.
- Ahn, B. Y., and Moss, B. (1992b). RNA polymerase-associated transcription specificity factor encoded by vaccinia virus. *Proc. Natl. Acad. Sci. USA* 89, 3536–3540.
- Ahn, B. Y., Rosel, J., Cole, N. B., and Moss, B. (1992). Identification and expression of rpo19, a vaccinia virus gene encoding a 19-kilodalton DNA-dependent RNA polymerase subunit. J. Virol. 66, 971–982.
- Akopian, T. A., Kaverina, E. N., Naroditsky, B. S., and Tikhonenko, T. I. (1992). Nucleotide sequence analysis of the avian adenovirus CELO (FAV1) DNA fragment (92-100%). Mol. Gen. Microbiol. Virol. 11, 19–23.
- Alcami, A., and Smith, G. L. (1992). A soluble receptor for interleukin-1 beta encoded by vaccinia virus: A novel mechanism of virus modulation of the host response to infection. Cell 71, 153–167.
- Alcami, A., and Smith, G. L. (1995). Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J. Virol. 69, 4633–4639.
- Ali, A. N., Turner, P. C., Brooks, M. A., and Moyer, R. W. (1994). The SPI-1 gene of rabbltpox virus determines host range and is required for hemorrhagic pock formation. *Virology* 202, 305–314.
- Altenburger, W., Suter, C. P., and Altenburger, J. (1989). Partial deletion of the human host range gene in the attenuated vaccinia virus MVA. Arch. Virol. 105, 15–27.
- Altschul, S. F., and Gish, W. (1996). Local alignment statistics. Methods Enzymol. 266, 460–480.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410.
- Amegadzie, B. Y., Ahn, B. Y., and Moss, B. (1991a). Identification, sequence, and expression of the gene encoding a Mr 35,000 subunit of the vaccinia virus DNA-dependent RNA polymerase. J. Biol. Chem. 266, 13712–13718.
- Amegadzie, B. Y., Ahn, B. Y., and Moss, B. (1992). Characterization of a 7-kilodalton subunit of vaccinla virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II. J. Virol. 66, 3003–3010.

- Amegadzie, B. Y., Holmes, M. H., Cole, N. B., Jones, E. V., Earl, P. L., and Moss, B. (1991b). Identification, sequence, and expression of the gene encoding the second-largest subunit of the vaccinia virus DNA-dependent RNA polymerase. Virology 180, 88–98.
- Antolne, G., Scheiflinger, F., Holzer, G., Langmann, T., Falkner, F. G., and Dorner, F. (1996). Characterization of the vaccinia MVA hemagglutinin gene locus and its evaluation as an insertion site for foreign genes. *Gene* 177, 43–46.
- Baker, M. E., and Biasco, R. (1992). Expansion of the mammalian 3 beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus. FEBS Lett. 301, 89–93.
- Banham, A. H., and Smith, G. L. (1992). Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. *Virology* 191, 803–812.
- Baylis, C. D., and Smith, G. L. (1997). Vaccinia virion protein VP8, the 25kDa product of the L4R gene, binds single-stranded DNA and RNA with similar affinity. *Nucleic Acids Res.* 25, 3984–3990.
- Baylis, S. A., Twigg, S. R., Vydelingum, S., Dixon, L. K., and Smith, G. L. (1993). Three African swine fever virus genes encoding proteins with homology to putative helicases of vaccinia virus. *J. Gen. Virol.* 74, 1969–1974.
- Baylis, C. D., and Condit, R. C. (1995). The vaccinia virus A18R gene product is a DNA-dependent ATPase. *J. Biol. Chem.* 270, 1550–1556.
- Beattle, E., Tartagia, J., and Paoletti, E. (1991). Vaccinia virus-encoded elF-2 alpha homolog abrogates the antiviral effect of interferon. *Virology* 183, 419–422.
- Bertholet, C., Drillien, R., and Wittek, R. (1985). One hundred base pairs of 5' flanking sequence of a vaccinia virus late gene are sufficient to temporally regulate late transcription. *Proc. Natl. Acad. Sci. USA* 82, 2096–2100.
- Binns, M. M., Boursnell, M. E., Tomley, F. M., and Campbell, J. (1989). Analysis of the fowlpoxvirus gene encoding the 4b core polypeptide and demonstration that it possesses efficient promoter sequences. Virology 170, 288–291.
- Binns, M. M., Britton, B. S., Mason, C., and Boursnell, M. E. (1990). Analysis of the fowlpox virus genome region corresponding to the vaccinla virus D6 to A1 region: Location of, and variation in, non-essential genes in poxviruses. *J. Gen. Virol.* 71, 2873–2881.
- Binns, M. M., Stenzler, L., Tomley, F. M., Campbell, J., and Boursnell, M. E. (1987). Identification by a random sequencing strategy of the fowlpoxvirus DNA polymerase gene, its nucleotide sequence and comparison with other viral DNA polymerases. *Nucleic Acids Res.* 15, 6563–6573.
- Binns, M. M., Tomley, F. M., Campbell, J., and Boursnell, M. E. (1988). Comparison of a conserved region in fowlpox virus and vaccinia virus genomes and the translocation of the fowlpox virus thymidine kinase gene. J. Gen. Virol. 69, 1275–1283.
- Blasco, R., Cole, N. B., and Moss, B. (1991). Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. J. Virol. 65, 4598–4608.
- Boursnell, M. E., Foulds, I. J., Campbell, J. I., and Binns, M. M. (1988). Non-essential genes in the vaccinia virus Hindill K fragment: A gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. J. Gen. Virol. 69, 2995–3003.
- Brady, W. A., Kokoris, M. S., Fitzgibbon, M., and Black, M. E. (1996). Cloning, characterization, and modeling of mouse and human guanylate kinases. *J. Biol. Chem.* 271, 16734–16740.
- Broyles, S. S., and Fesler, B. S. (1990). Vaccinia virus gene encoding a component of the viral early transcription factor. J. Virol. 64, 1523– 1529.
- Broyles, S. S., and Moss, B. (1986). Homology between RNA polymerases of poxviruses, prokaryotes, and eukaryotes: Nucleotide sequence and transcriptional analysis of vaccinia virus genes en-

- coding 147-kDa and 22-kDa subunits. Proc. Natl. Acad. Sci. USA 83, 3141–3145.
- Broyles, S. S., and Moss, B. (1987). Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNAdependent ATPase. J. Virol. 61, 1738–1742.
- Broyles, S. S., and Pennington, M. J. (1990). Vaccinia virus gene encoding a 30-kilodalton subunit of the viral DNA-dependent RNA polymerase. J. Virol. 64, 5376–5382.
- Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., Blake, J. A., and Venter, J. C. (1996). Complete genome sequence of the methanogenic archeon, *Methanococcus jannaschii*. *Science* 273, 1058–1073.
- Buyse, I. M., Shao, G., and Huang, S. (1995). The retinoblastoma protein binds to RIZ, a zinc-finger protein that shares an epitope with the adenovirus E1A. Proc. Natl. Acad. Sci. USA 92, 4467–4467.
- Cabirac, G. F., Strayer, D. S., Sell, S., and Leibowitz, J. L. (1985). Characterization, molecular cloning, and physical mapping of the Shope fibroma virus genome. *Virology* 143, 663–670.
- Calvert, J. G., Ogawa, R., Yanagida, N., and Nazerian, K. (1992). Identification and functional analysis of the fowlpox virus homolog of the vaccinia virus p37K major envelope antigen gene. *Virology* 191, 783–792.
- Campbell, I. G., Freemont, P. S., Foulkes, W., and Trowsdale, J. (1992). An ovarian tumor marker with homology to vaccinia virus contains an IgV-like region and multiple transmembrane domains. *Cancer Res.* 52, 5416–5420.
- Cao, J. X., Gershon, P. D., and Black, D. N. (1995). Sequence analysis of HindIII Q2 fragment of capripoxvirus reveals a putative gene encoding a G-protein-coupled chemokine receptor homologue. *Virology* 209, 207–212.
- Cao, J. X., Koop, B. F., and Upton, C. (1997). A human homolog of the vaccinia virus Hindlll K4L gene is a member of the phospholipase D superfamily. Virus Res. 48, 11–18.
- Carroll, M. W., and Moss, B. (1997). Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: Propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238, 198–205.
- Cavallaro, K. F., and Esposito, J. J. (1992). Sequences of the raccoon poxvirus hemagglutinin protein. Virology 190, 434–439.
- Chang, C., Rodriquez, A., Carretero, M., Lopez-Botet, M., Phillips, J. H., and Lanier, L. L. (1995a). Molecular characterization of human CD94: A type II membrane glycoprotein related to the C-type lectin superfamily. Eur. J. Immunol. 25, 2433–2437.
- Chang, H. W., Uribe, L. H., and Jacobs, B. L. (1995b). Rescue of vaccinia virus lacking the E3L gene by mutants of E3L. *J. Virol.* 69, 6605–6608.
- Chang, H. W., Watson, J. C., and Jacobs, B. L. (1992). The E3L gene of vaccinia virus encodes an inhibitor of the interferon-Induced, doublestranded RNA-dependent protein kinase. *Proc. Natl. Acad. Sci. USA* 89, 4825–4829.
- Chang-Yeh, A., Mold, D. E., and Huang, R. C. C. (1991). Identification of a novel murine IAP-promoted placenta-expressed gene. *Nucleic Ac-Ids Res.* 19, 3667–3672.
- Chen, W., Drillien, R., Spehner, D., and Buller, R. M. (1992). Restricted replication of ectromelia virus in cell culture correlates with mutations in virus-encoded host range gene. *Virology* 187, 433–442.
- Chertov, O., Telezhinskaya, I. N., Zaitseva, E. V., Golubeva, T. B., Zinov'ev, V. V., Ovechkina, L. G., Mazkova, L. B., and Malygin, E. G. (1991). Amino acid sequence determination of vaccinia virus immunodominant protein p35 and identification of the gene. *Biomed. Sci.* 2, 151–154.
- Ciliberto, G., Dente, L., and Cortese, R. (1985). Cell-specific expression of a transfected human alpha1-antitrypsin gene. *Cell*, 531–540.
- Colamonici, O. R., Domanski, P., Sweltzer, S. M., Larner, A., and Buller, R. M. (1995). Vaccinia virus B18R gene encodes a type I interferonbinding protein that blocks interferon alpha transmembrane signaling. J. Biol. Chem. 270, 15974–15978.
- Coppola, T., Waldmann, R., Borsotto, M., Heurteaux, C., Romey, G., Mattei, M. G., and Lazdunski, M. (1994). Molecular cloning of a

GENOMIC SEQUENCE OF THE MVA STRAIN

- murine N-type calcium channel alpha1 subunit. Evidence for isoforms, brain distribution, and chromosomal localization. *FEBS Lett.* 338, 1–5.
- Cudmore, S., Blasco, R., Vincentelli, R., Esteban, M., Sodeik, B., Griffiths, G., and Krijinse Locker, J. (1996). A vaccinia virus core protein, p39, is membrane associated. J. Virol. 70, 6909–6921.
- Davies, M. V., Elroy-Stein, O., Jagus, R., Moss, B., and Kaufman, R. J. (1992). The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J. Virol. 66, 1943–1950.
- Davis, R. E., and Mathews, C. K. (1993). Acidic C terminus of vaccinia virus DNA-binding protein interacts with ribonucleotide reductase. *Proc. Natl. Acad. Sci. USA* 90, 745–749.
- Deblandre, G., Marinx, O., Evans, S., Majjaj, S., Leo, O., Caput, D., Huez, G., and Wathelet, M. (1995). Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. J. Biol. Chem. 270, 23860–23866.
- Demkowicz, W. E., Maa, J. S., and Esteban, M. (1992). Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. J. Virol. 66, 386–398.
- Douglas, N. J., and Dumbell, K. R. (1996). DNA sequence variation as a clue to the phylogenesis of orthopoxviruses. J. Gen. Virol. 77, 947– 951.
- Drillien, R., Spehner, D., Villeval, D., and Lecocq, J. P. (1987). Similar genetic organization between a region of fowlpox virus DNA and the vaccinia virus Hindill J fragment despite divergent location of the thymidine kinase gene. Virology 160, 203–209.
- Dubel, S. J., Starr, T. V. B., Hell, J., Ahlijanian, M. K., Enyeart, J. J., Catterall, W. A., and Snutch, T. P. (1992). Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. *Proc. Natl. Acad. Sci. USA* 89, 5058–5062.
- Duncan, S. A., and Smith, G. L. (1992a). Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. J. Virol. 66, 1610–1621.
- Duncan, S. A., and Smith, G. L. (1992b). Vaccinia virus gene SalF5R is non-essential for virus replication in vitro and in vivo. J. Gen. Virol. 73, 1235–1242.
- Dyster, L. M., and Niles, E. G. (1991). Genetic and biochemical characterization of vaccinia virus genes D2L and D3R which encode virion structural proteins. Virology 182, 455–467.
- Earl, P. L., Jones, E. V., and Moss, B. (1986). Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses: Nucleotide sequence of the vaccinia virus DNA polymerase gene. *Proc. Natl. Acad. Sci. USA* 83, 3659–3663.
- Elhabazi, A., Lang, V., Herold, C., Freeman, G. J., Bensussan, A., Boumsell, L., and Bismuth, G. (1997). The human semaphorin-like leukocyte cell surface molecule CD100 associates with a serine kinase activity. *J. Biol. Chem.* 272, 23515–23520.
- Engelstad, M., Howard, S. T., and Smith, G. L. (1992). A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188, 801–810.
- Ensser, A., and Fleckenstein, B. (1995). The Alcelaphine herpesvirus type 1 has a semaphorin-like gene. *J. Gen. Virol.* 76, 1063–1067.
- Fernando, M. R., Sumimoto, H., Nanri, H., Kawabata, S., Iwanaga, S., Minakami, S., Fukumaki, Y., and Takeshige, K. (1994). Cloning and sequencing of the cDNA encoding human glutaredoxin. *Biochim. Biophys. Acta* 1218, 229–231.
- Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., and Merrick, J. M. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.
- Fleming, S. B., Blok, J., Fraser, K. M., Mercer, A. A., and Robinson, A. J. (1993). Conservation of gene structure and arrangement between vaccinla virus and orf virus. *Virology* 195, 175–184.
- Franke, C. A., Wilson, E. M., and Hruby, D. E. (1990). Use of a cell-free

- system to Identify the vaccinia virus L1R gene product as the major late myristylated virion protein M25. J. Virol. 64, 5988–5996.
- Funahashi, S., Sato, T., and Shida, H. (1988). Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus. J. Gen. Virol. 69, 35–47.
- Furuyama, T., Inagaki, S., Kosugi, A., Noda, S., Saltoh, S., Ogata, M., Iwahashi, Y., Miyazaki, N., Hamaoka, T., and Tohyama, M. (1996). Identification of a novel transmembrane semaphorin expressed on lymphocytes. J. Biol. Chem. 271, 33376–33381.
- Gershon, P. D., Ahn, B. Y., Garfield, M., and Moss, B. (1991). Poly(A) polymerase and a dissociable polyadenylation stimulatory factor encoded by vaccinia virus. *Cell* 66, 1269–1278.
- Gershon, P. D., Ansell, D. M., and Black, D. N. (1989). A comparison of the genome organization of capripoxvirus with that of the orthopoxviruses. J. Virol. 63, 4703–4708.
- Gershon, P. D., and Black, D. N. (1989a). A capripoxvirus pseudogene whose only intact homologs are in other poxvirus genomes. *Virology* 172, 350–354.
- Gershon, P. D., and Black, D. N. (1989b). The nucleotide sequence around the capripoxvirus thymidine kinase gene reveals a gene shared specifically with leporlpoxvirus. J. Gen. Virol. 70, 525–533.
- Gershon, P. D., and Moss, B. (1990). Early transcription factor subunits are encoded by vaccinla virus late genes. *Proc. Natl. Acad. Sci. USA* 87, 4401–4405.
- Gershon, P. D., and Moss, B. (1993). Stimulation of poly(A) tail elongation by the VP39 subunit of the vaccinia virus-encoded poly(A) polymerase. J. Biol. Chem. 268, 2203–2210.
- Gillard, S., Spehner, D., Drillien, R., and Kirn, A. (1986). Localization and sequence of a vaccinia virus gene required for multiplication in human cells. *Proc. Natl. Acad. Sci. USA* 83, 5573–5577.
- Giorda, R., Ohmachl, T., and Ennls, H. L. (1989). Organization of a gene family developmentally regulated during *Dictyostelium discoideum* spore germination. J. Mol. Biol. 205, 63–69.
- Giorda, R., Weisberg, E. P., Ip, T. K., and Trucco, M. (1992). Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1. *J. Immunol.* 149, 1957–1963.
- Goebel, S. J., Johnson, G. P., Perkus, M. E., Davis, S. W., Winslow, J. P., and Paoletti, E. (1990). The complete DNA sequence of vacclnia virus. *Virology* 179, 247–266, 517–563.
- Gong, S. C., Lai, C. F., and Esteban, M. (1990). Vaccinia virus induces cell fusion at acid pH and this activity is mediated by the N-terminus of the 14-kDa virus envelope protein. Virology 178, 81–91.
- Graham, K. A., Lalani, A. S., Macen, J. L., Ness, T. L., Barry, M., Liu, L. Y., Lucas, A., Clark-Lewis, I., Moyer, R. W., and McFadden, G. (1997). The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. *Virology* 229, 12–24.
- Grosenbach, D. W., Ulaeto, D. O., and Hruby, D. E. (1997). Palmitylation of the vaccinia virus 37-kDa major envelope antigen. Identification of a conserved acceptor motif and biological relevance. J. Biol. Chem. 272, 1956–1964.
- Guan, K. L., Broyles, S. S., and Dixon, J. E. (1991). A Tyr/Ser protein phosphatase encoded by vaccinia virus. *Nature* 350, 359–362.
- Gum, J. R. J., Hicks, J. W., Toribara, N. W., Kim, Y. S., and Siddlki, B. (1994). Molecular cloning of human intestinal mucin (MUC2) cDNA: Identification of the amino terminal and overall sequence similarity to pre-pro-von Willebrand factor. J. Biol. Chem. 269, 2440–2446.
- Gvakharia, B. O., Koonin, E., and Mathews, C. (1996). Vaccinia virus G4L gene encodes a second glutaredoxin. *Virology* 226, 408–411.
- Hall, K. T., Boumsell, L., Schultze, J. L., Boussiotis, V. A., Dorfman, D. M., Cardoso, A. A., Bensussan, A., Nadler, L. M., and Freeman, G. J. (1996). Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. *Proc. Natl. Acad. Sci. USA* 93, 11780–11785.
- Hall, R. L., and Moyer, R. W. (1991). Identification, cloning, and sequencing of a fragment of *Amsacta moorei* entomopoxvirus DNA containing the spheroidin gene and three vaccinia virus-related open reading frames. J. Virol. 65, 6516–6527.

- Hamann, J., Fiebig, H., and Strauss, M. (1993). Molecular cloning of the early activation antigen CD69, a type II integral membrane protein with a C-type lectin domain. J. Immunol. 150, 4920–4927.
- Hansen, M., Albers, M., Backes, U., Coblenz, A., Leuther, H., Neu, R., Schreer, A., Schafer, B., Zimmerman, M., and Wolf, K. (1996). The sequence of a 23.4 kb segment on the right arm of chromosome VII from Saccharomyces cerevisiae reveals CLB6, SPT6, RP28A and NUP57 genes, a Ty3 element and 11 new open reading frames. Yeast 12, 1273–1277.
- Heller, R. A., Song, K., Onasch, M. A., Fischer, W. H., Chang, D., and Ringold, G. M. (1990). Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. *Proc. Natl. Acad. Sci. USA* 87, 6151–6155.
- Hirt, P., Hiller, G., and Wittek, R. (1986). Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J. Virol. 58, 757–764.
- Hooda-Dhingra, U., Patel, D. D., Pickup, D. J., and Condit, R. C. (1990). Fine structure mapping and phenotypic analysis of five temperaturesensitive mutations in the second largest subunit of vaccinia virus DNA-dependent RNA polymerase. Virology 174, 60–69.
- Houchins, J. P., Yabe, T., McSherry, C., and Bach, F. H. (1991). DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J. Exp. Med. 173, 1017–1020.
- Howard, S. T., Chan, Y. S., and Smith, G. L. (1991). Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumor necrosis factor receptor family. Virology 180, 633–647.
- Howard, S. T., and Smith, G. L. (1989). Two early vaccinia virus genes encode polypeptides related to protein kinases. J. Gen. Virol. 70, 3187–3201.
- Hruby, D. E., and Ball, L. A. (1982). Mapping and identification of the vaccinia virus thymidine kinase gene. *J. Virol.* 43, 403–409.
- Hu, F. Q., and Pickup, D. J. (1991). Transcription of the terminal loop region of vaccinia virus DNA is initiated from the telomere sequences directing DNA resolution. Virology 181, 716–720.
- Hu, F. Q., Smith, C. A., and Pickup, D. J. (1994). Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the type II TNF receptor. *Virology* 204, 343–356.
- Huang, M. E., Chuat, J. C., and Galibert, F. (1994). A possible yeast homolog of human active-gene-repairing helicase ERCC6. *Biochem. Biophys. Res. Commun.* 201, 310–317.
- Hutson, R. A., Zhou, Y., Collins, M. D., Johnson, E. A., Hatheway, C. L., and Sugiyama, H. (1996). Genetic characterization of *Chlostridium* botulinum type A containing silent type B neurotoxin gene sequences. J. Biol. Chem. 271, 10786–10792.
- Isaacs, S. N., Wolffe, E. J., Payne, L. G., and Moss, B. (1992). Characterization of a vaccinia virus-encoded 42-kilodalton class 1 membrane glycoprotein component of the extracellular virus envelope. J. Virol. 66, 7217–7224.
- Jackson, R. J., and Bults, H. G. (1990). A myxoma virus nucleotide sequence with homology to the vaccinia virus RNA polymerase 22-kDa subunit gene. *Nucleic Acids Res.* 18, 5290.
- Jackson, R. J., and Bults, H. G. (1992). The myxoma virus thymidine kinase gene: sequence and transcriptional mapping. J. Gen. Virol. 73, 323–328.
- Jackson, R. J., Hall, D. F., and Kerr, P. J. (1996). Construction of recombinant myxoma viruses expressing foreign genes from different intergenic sites without associated attenuation. J. Gen. Virol. 77, 1569–1575.
- Jensen, O. N., Houthaeve, T., Shevchenko, A., Cudmore, S., Ashford, T., Mann, M., Griffiths, G., and Krijnse Locker, J. (1996). Identification of the major membrane and core proteins of vaccinia virus by twodimensional electrophoresis. J. Virol. 70, 7485–7497.
- Johnson, G. P., Goebel, S. J., Perkus, M. E., Davis, S. W., Winslow, J. P., and Paoletti, E. (1991). Vaccinia virus encodes a protein with similarity to glutaredoxins. *Virology* 181, 378–381.
- Kane, E. M., and Shuman, S. (1992). Temperature-sensitive mutations in the vaccinla virus H4 gene encoding a component of the virion RNA polymerase. J. Virol. 66, 5752–5762.

- Kane, E. M., and Shuman, S. (1993). Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the 17 gene that encodes a virion component. J. Virol. 67, 2689–2698.
- Kao, S. Y., and Bauer, W. R. (1987). Biosynthesis and phosphorylation of vaccinia virus structural protein VP11. Virology 159, 399–407.
- Katsanis, N., Fitzgibbon, J., and Fisher, E. M. C. (1996). Paratogy mapping: Identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35, 101–108.
- Keck, J. G., Baldick, C. J., Jr., and Moss, B. (1990). Role of DNA replication in vaccinia virus gene expression: A naked template is required for transcription of three late trans-activator genes. *Cell* 61, 801–809.
- Keck, J. G., Kovacs, G. R., and Moss, B. (1993). Overexpression, purification, and late transcription factor activity of the 17-kilodalton protein encoded by the vaccinia virus A1L gene. J. Virol. 67, 5740–5748.
- Kerr, S. M., and Smith, G. L. (1989). Vaccinia virus encodes a polypeptide with DNA ligase activity. *Nucleic Acids Res.* 17, 9039–9050.
- Kim, U., Wang, Y., Sanford, T., Zeng, Y., and Nishikura, K. (1994). Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. *Proc. Natl. Acad. Sci. USA* 91, 11457–11461.
- Kołodkin, A. L., Matthes, D. J., and Goodman, C. S. (1993). The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. *Cell* 75, 1389–1399.
- Koonin, E. V. (1993). A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. Nucleic Acids Res. 21, 4847.
- Koonin, E. V., and Senkevich, T. G. (1992). Vaccinia virus encodes four putative DNA and/or RNA helicases distantly related to each other. J. Gen. Virol. 73, 989–993.
- Koonin, E. V., Senkevich, T. G., and Chernos, V. I. (1993). Gene A32 product of vaccinia virus may be an ATPase involved in viral DNA packaging as indicated by sequence comparisons with other putative viral ATPases. Virus Genes 7, 89–94.
- Kotwal, G. J. (1996). The great escape. Immune evasion by pathogens. Immunologist 4/5, 157–164.
- Kotwal, G. J., and Moss, B. (1988a). Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167, 524–537.
- Kotwal, G. J., and Moss, B. (1988b). Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. *Nature* 335, 176–178.
- Kotwal, G. J., and Moss, B. (1989). Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease Inhibitor superfamily J. Virol. 63, 600–606. [Published erratum appears in J. Virol., 1990, 64(2), 966]
- Kovacs, G. R., and Moss, B. (1996). The vaccinia virus H5R gene encodes late gene transcription factor 4: purification, cloning, and overexpression. J. Virol. 70, 6796–6802.
- Krijnse-Locker, J., Schleich, S., Rodriguez, D., Goud, B., Snijder, E. J., and Griffiths, G. (1996). The role of a 21-kDa viral membrane protein in the assembly of vaccinia virus from the intermediate compartment. J. Biol. Chem. 271, 14950–14958.
- Kumar, S., and Boyle, D. B. (1990). Mapping of a major early/late gene of fowlpox virus. Virus Res. 15, 175–186.
- Kwiatkowski, D. J., and Bruns, G. A. P. (1988). Human profilin: Molecular cloning sequence comparison, and chromosomal analysis. J. Biol. Chem. 263, 5910–5915.
- Ladner, R. D., McNulty, D. E., Carr, S. A., and Roberts, G. D. (1996). Characterization of distinct nuclear and mitochondrial forms of human deoxyuridine triphosphate nucleotidohydrolase. J. Biol. Chem. 271, 7745–7751.
- Lanier, L. L. (1997). Natural killer cell receptors and MHC class I Interactions. *Curr. Opin. Immunol.* 9, 126–131.
- ŁIn, S., and Broyles, S. S. (1994). Vaccinia protein kinase 2: A second essential serine/threonine protein kinase encoded by vaccinia virus. Proc. Natl. Acad. Sci. USA 91, 7653–7657.

GENOMIC SEQUENCE OF THE MVA STRAIN

- Lin, S., Chen, W., and Broyles, S. S. (1992). The vaccinia virus B1R gene product is a serine/threonine protein kinase. *J. Virol.* 66, 2717–2723.
- Lindberg, F. P., Gresham, H. D., Schwarz, E., and Brown, E. J. (1993). Molecular cloning of Integrin-associated protein: An Immunoglobulin family member with multiple membrane spanning domains implicated in alpha-v beta-3-dependent ligand binding. J. Cell. Biol. 123, 485–496.
- Loskutoff, D. J., Linders, M., Keuer, J., Veerman, H., van Heerikhuizen, H., and Pannekoek, H. (1987). Structure of the human plasminogen activator Inhibitor 1 gene. Nonrandom distribution of introns. *Bio-chemistry* 26, 3763–3768.
- Maa, J. S., Rodriguez, J. F., and Esteban, M. (1990). Structural and functional characterization of a cell surface binding protein of vaccinia virus. J. Biol. Chem. 265, 1569–1577.
- Martin, K. H., Grosenbach, D. W., Franke, C. A., and Hruby, D. E. (1997). Identification and analysis of three myristylated vaccinia virus late proteins. J. Virol. 71, 5218–5226.
- Massung, R. F., Jayarama, V., and Moyer, R. W. (1993). DNA sequence analysis of conserved and unique regions of swinepox virus: Identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor homologue. Virology 197, 511–528.
- Massung, R. F., Liu, L. I., Qi, J., Knight, J. C., Yuran, T. E., Kerlavage, A. R., Parsons, J. M., Venter, J. C., and Esposito, J. J. (1994). Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201, 215–240.
- Massung, R. F., Loparev, V. N., Knight, J. C., Totmenin, A. V., Chizhikov, V. E., Parsons, J. M., Safronov, P. F., Gutorov, V. V., Shchelkunov, S. N., and Esposito, J. J. (1996). Terminal region sequence variations in variola virus DNA. *Virology* 221, 291–300.
- Massung, R. F., McFadden, G., and Moyer, R. W. (1992). Nucleotide sequence analysis of a unique near-terminal region of the tumorigenic poxvirus, Shope fibroma virus. J. Gen. Virol. 73, 2903–2911.
- Mayr, A., and Malicki, K. (1966). Attenuierung von virulentem Hühnerpockenvirus in Zellkulturen und Eigenschaften des attenuierten Virus. Zentralb. Vet. Med. B. 13, 1–13.
- Mayr, A., Stickl, H., Müller, H. K., Danner, K., and Singer, H. (1978). The smallpox vaccination strain MVA: Marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism. Zbl. Bakt. Hyg. I.Abt. Orig. B 167, 375–390.
- McIntosh, A. A., and Smith, G. L. (1996). Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J. Virol. 70, 272–281.
- McMahan, C. J., Slack, J. L., Mosley, B., Cosman, D., Lupton, S. D., Brunton, L. L., Grubin, C. E., Wignali, J. M., Jenkins, N. A., and Brannan, C. I. (1991). A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. *EMBO J.* 10, 2821–2832.
- Meis, R. J., and Condit, R. C. (1991). Genetic and molecular biological characterization of a vaccinia virus gene which renders the virus dependent on Isatin-beta-thiosemicarbazone (IBT). Virology 182, 442–454.
- Mercer, A. A., Fraser, K. M., Stockwell, P. A., and Robinson, A. J. (1989). A homologue of retroviral pseudoproteases in the parapoxvirus, orf virus. *Virology* 172, 665–668.
- Mercer, A. A., Green, G., Sullivan, J. T., Robinson, A. J., and Drillien, R. (1996). Location, DNA sequence and transcriptional analysis of the DNA polymerase gene of orf virus. J. Gen. Virol. 77, 1563–1568.
- Mercer, A. A., Lyttle, D. J., Whelan, E. M., Fleming, S. B., and Sullivan, J. T. (1995). The establishment of a genetic map of orf virus reveals a pattern of genomic organization that is highly conserved among divergent poxviruses. *Virology* 212, 698–704.
- Merchlinsky, M., and Moss, B. (1989). Nucleotide sequence required for resolution of the concatemer junction of vaccinia virus DNA. *J. Virol.* 63, 4354–4361.
- Messmer, B., and Dreyer, C. (1993). Requirements for nuclear translo-

- cation and nucleolar accumulation of nucleolin of X. laevis. Eur. J. Cell Biol. 61, 369–382.
- Meurs, E., Chong, K., Galabru, J., Thomas, N. S., Kerr, I. M., Williams, B. R., and Hovanessian, A. G. (1990). Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62, 379–390.
- Meyer, H., Osterrieder, N., and Czerny, C. P. (1994). Identification of binding sites for neutralizing monoclonal antibodies on the 14-kDa fusion protein of orthopox viruses. Virology 200, 778–783.
- Meyer, H., and Rziha, H. J. (1993). Characterization of the gene encoding the A-type inclusion protein of camelpox virus and sequence comparison with other orthopoxviruses. J. Gen. Virol. 74, 1679–1684.
- Meyer, H., Sutter, G., and Mayr, A. (1991). Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. *J. Gen. Virol.* 72, 1031–1038.
- Miller, C. G., Shchelkunov, S. N., and Kotwal, G. J. (1997). The cowpox virus-encoded homolog of the vaccinia virus complement control protein is an inflammation modulatory protein. Virology 229, 126–133.
- Moolenaar, W. H., Kranenburg, O., Postma, F. R., and Zondag, G. C. M. (1997). Lysophosphatidic acid: G-protein signalling and cellular responses. *Curr. Opin. Cell Biol.* 9, 168–173.
- Moore, J. B., and Smith, G. L. (1992). Steroid hormone synthesis by a vaccinia enzyme: A new type of virus virulence factor *EMBO J.* 11, 1973–1980. [Published erratum appears in *EMBO J.* 1992, 11(9), 3490]
- Morgan, J. R., Cohen, L. K., and Roberts, B. E. (1984). Identification of the DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus. J. Virol. 52, 206–214.
- Moss, B. (1996). Poxviridae: The viruses and their replication. In "Fields Virology" (B. N. Fields, D. M. Knipe, R. M. Chanock, J. Melnick, B. Roizman, and R. Shope, Eds.). Raven Press, Philadelphia.
- Mossman, K., Lee, S. F., Barry, M., Boshkov, L., and McFadden, G. (1996). Disruption of M-T5, a novel myxoma virus gene member of the poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits. J. Virol. 70, 4394–4411.
- Mossman, K., Ostergaard, H., Upton, C., and McFadden, G. (1995a). Myxoma virus and Shope fibroma virus encode dual-specificity tyrosine/serine phosphatases which are essential for virus viability. Virology 206, 572–582.
- Mossman, K., Upton, C., Buller, R. M., and McFadden, G. (1995b). Species specificity of ectromelia virus and vaccinia virus interferongamma binding proteins. Virology 208, 762–769.
- Mustafa, A., and Yuen, L. (1991). Identification and sequencing of the Choristoneura biennis entomopoxvirus DNA polymerase gene. DNA Seq. 2, 39–45.
- Naase, M., Nicholson, B. H., Fraser, K. M., Mercer, A. A., and Robinson, A. J. (1991). An orf virus sequence showing homology to the 14K 'fusion' protein of vaccinia virus. J. Gen. Virol. 72, 1177–1181.
- Neumann, H., and Zillig, W. (1990). Nucleotide sequence of the viral protein TPX of the TTV1 variant VT3. *Nucleic Acids Res.* 18, 2171.
- Niles, E. G., Condit, R. C., Caro, P., Davidson, K., Matusick, L., and Seto, J. (1986). Nucleotide sequence and genetic map of the 16-kb vaccinia virus *Hind*III D fragment. *Virology* 153, 96–112.
- Niles, E. G., Lee-Chen, G. J., Shuman, S., Moss, B., and Broyles, S. S. (1989). Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. *Virology* 172, 513–522.
- Niles, E. G., and Seto, J. (1988). Vaccinia virus gene D8 encodes a virion transmembrane protein. *J. Virol.* 62, 3772–3778.
- Nishlyama, Y., Tanaka, T., Naitoh, H., Mori, C., Fukumoto, M., Hiai, H., and Toyokuni, S. (1997). Overexpression of integrin-associated protein (CD47) in rat kidney treated with a renal carcinogen, ferric nitrilotriacetate. *Jpn. J. Cancer Res.* 88, 120–128.
- O'Connell, M. A., Krause, S., Higuchi, M., Hsuan, J. J., Totty, N. F., Jenny, A., and Keller, W. (1995). Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. *Mol. Cell. Biol.* 15, 1389–1397.
- Ogawa, R., Calvert, J. G., Yanagida, N., and Nazerian, K. (1993). Insertional inactivation of a fowlpox virus homologue of the vaccinia virus

- F12L gene inhibits the release of enveloped virions. *J. Gen. Virol.* 74, 55–64.
- Okabe, I., Bailey, L. C., Attree, O., Srinivasan, S., Perkel, J. M., Laurent, B. C., Carlson, M., Nelson, D. L., and Nussbaum, R. L. (1992). Cloning of human and bovine homologs of SNF2/SWI2: A global activator of transcription in yeast S. cerevisiae. Nucleic Acids Res. 20, 4649–4655.
- Osborne, R. J., Symonds, T. M., Sriskantha, A., Lai-Fook, J., Fernon, C. A., and Dall, D. J. (1996). An entomopoxvirus homologue of the vaccinia virus D13L-encoded 'ifampicin resistance' protein. J. Gen. Virol. 77, 839–846.
- Parkinsori, J. E., and Smith, G. L. (1994). Vaccinia virus gene A36R encodes a M(r) 43-50 K protein on the surface of extracellular enveloped virus. Virology 204, 376–390.
- Parks, R. J., Lichty, B. D., Karakis, C., and Evans, D. H. (1994). Characterization of the Shope fibroma virus DNA ligase gene. *Virology* 202, 642–650.
- Passarelli, A. L., Kovacs, G. R., and Moss, B. (1996). Transcription of a vaccinia virus late promoter template: Requirement for the product of the A2L Intermediate-stage gene. J. Virol. 70, 4444–4450.
- Patel, A. H., Gaffney, D. F., Subak-Sharpe, J. H., and Stow, N. D. (1990). DNA sequence of the gene encoding a major secreted protein of vaccinia virus, strain Lister. J. Gen. Virol. 71, 2013–2021.
- Patel, D. D., and Pickup, D. J. (1989). The second-largest subunit of the poxvirus RNA polymerase is similar to the corresponding subunits of procaryotic and eucaryotic RNA polymerases. J. Virol. 63, 1076–1086.
- Pena, L., Yanez, R. J., Revilla, Y., Vinuela, E., and Salas, M. L. (1993). African swine fever virus guanylyltransferase. *Virology* 193, 319–328.
- Perkus, M. E., Goebel, S. J., Davis, S. W., Johnson, G. P., Limbach, K., Norton, E. K., and Paoletti, E. (1990). Vaccinia virus host range genes. Virology 179, 276–286.
- Perkus, M. E., Goebel, S. J., Davis, S. W., Johnson, G. P., Norton, E. K., and Paoletti, E. (1991). Deletion of 55 open reading frames from the termini of vaccinia virus. *Virology* 180, 406–410.
- Peters, L. L., John, K. M., Lu, F. M., Eicher, E. M., Higgins, A., Yialamas, M., Turtzo, L. C., Otsuka, A. J., and Lux, S. E. (1995). Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. *J. Cell Biol.* 130, 313–330.
- Pickup, D. J., Ink, B. S., Hu, W., Ray, C. A., and Joklik, W. K. (1986). Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. *Proc. Natl. Acad. Sci. USA* 83, 7698–7702.
- Plucienniczak, A., Schroeder, E., Zettlmeissl, G., and Streeck, R. E. (1985). Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome. *Nucleic Acids Res.* 13, 985–998.
- Prabhakaran, K., Harris, E. B., and Randhawa, B. (1996). Properties of lysophospholipase in *Mycobacterium leprae*. J. Basic Microbiol. 36, 341–349.
- Print, C., Leung, E., Harrison, J., and Watoson, J. (1994). Cloning of a gene encoding a human leukocyte protein characterized by extensive heptad repeats. Gene 144, 221–228.
- Quick, S. D., and Broyles, S. S. (1990). Vaccīnia virus gene D7R encodes a 20,000-dalton subunit of the viral DNA-dependent RNA polymerase. Virology 178, 603–605.
- Ray, C. A., Black, R. A., Kronheim, S. R., Greenstreet, T. A., Sleath, P. R., Salvensen, G. S., and Pickup, D. J. (1992). Viral Inhibition of inflammation: Cowpox virus encodes an Inhibitor of the interleukin-1β converting enzyme. Cell 69, 597–604.
- Reppert, S. M., Weaver, D. R., Cassone, V. M., Godson, C., and Kolakowski, L. F. (1995). Melatonin receptors are for the birds: Molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron 15, 1003–1015.
- Rodriguez, D., Esteban, M., and Rodriguez, J. R. (1995). Vaccinia virus A17L gene product is essential for an early step in virion morphogenesis. J. Virol. 69, 4640–4648.

- Rodriguez, J. F., and Esteban, M. (1987). Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. J. Virol. 61, 3550–3554.
- Rodriguez, J. F., Kahn, J. S., and Esteban, M. (1986). Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic aciddependent nucleoside triphosphatase gene. *Proc. Natl. Acad. Sci.* USA 83, 9566–9570.
- Rodriguez, J. F., and Smith, G. L. (1990). IPTG-dependent vaccinia virus: Identification of a virus protein enabling virion envelopment by Golgi membrane and egress. *Nucleic Acids Res.* 18, 5347–5351.
- Roper, R. L., Payne, L. G., and Moss, B. (1996). Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J. Virol. 70, 3753–3762.
- Rosel, J., and Moss, B. (1985). Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. J. Virol. 56, 830–838.
- Rosel, J. L., Earl, P. L., Weir, J. P., and Moss, B. (1986). Conserved TAAATG sequence at the transcriptional and translational Initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the Hindlil H genome fragment. J. Virol. 60, 436– 449.
- Roseman, N. A., Evans, R. K., Mayer, E. L., Rossi, M. A., and Slabaugh, M. B. (1996). Purification and characterization of the vaccinta virus deoxyuridine triphosphatase expressed in *Escherichia coli. J. Biol. Chem.* 271, 23506–23511.
- Roseman, N. A., and Slabaugh, M. B. (1990). The vaccinia virus *Hindill* F fragment: Nucleotide sequence of the left 6.2 kb. *Virology* 178, 410–418.
- Ruby, J., Bluethmann, H., Aguet, M., and Ramshaw, I. A. (1995). CD40 ligand has potent antiviral activity. *Nature Med.* 1, 437–441. [See comments]
- Safronov, P. F., Petrov, N. A., Rlazankina, O. I., Totmenin, A. V., Shchel-kunov, S. N., and Sandakhiev, L. S. (1996). Genes of a circle of hosts for the cowpoxvirus. *Dokl. Akad. Nauk.* 349, 829–833.
- Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. *Proc. Natl. Acad. Sci. USA* 74, 5463– 5467.
- Schmitt, J. F., and Stunnenberg, H. G. (1988). Sequence and transcriptional analysis of the vaccinia virus Hindill I fragment. J. Virol. 62, 1889–1897.
- Schmutz, C., Payne, L. G., Gubser, J., and Wittek, R. (1991). A mutation in the gene encoding the vaccinia virus 37,000-M(r) protein confers resistance to an inhibitor of virus envelopment and release. J. Virol. 65, 3435–3442.
- Schneider, S. S., Schick, C., Fish, K. E., Miller, E., Pena, J. C., Treter, S., Hui, S. M., and Silverman, G. A. (1995). A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene. *Proc. Natl. Acad. Sci. USA* 92, 3147–3151
- Schnitzlein, W. M., and Tripathy, D. N. (1991). Identification and nucleotide sequence of the thymidine kinase gene of swinepox virus. *Virology* 181, 727–732.
- Schweizer, M., and Neumann-Haefelin, D. (1995). Phylogenetic analysis of primate foamy virus by comparison of pol sequences. *Virology* 207, 577–582.
- Senkevich, T. G., Bugert, J. J., Sisler, J. R., Koonin, E. V., Daral, G., and Moss, B. (1996). Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. *Science* 273, 813–816.
- Senkevich, T. G., Koonin, E. V., Bugert, J. J., Darai, G., and Moss, B. (1997). The genome of molluscum contagiosum virus: analysis and comparison with other poxyruses. *Virology* 233, 19–42.
- Senkevich, T. G., Koonin, E. V., and Buller, R. M. (1993a). A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. *Virology* 198, 118–128.
- Senkevich, T. G., Muravnik, G. L., Pozdnyakov, S. G., Chizhkov, V. E., Ryazankina, O. I., Shchelkunov, S. N., Koonin E. V., and Chernos, V. I.

GENOMIC SEQUENCE OF THE MVA STRAIN

- (1993b). Nucleotide sequence of Xhol O fragment of ectromelia virus DNA reveals significant differences from vaccinia virus. *Virus Res.* 30, 73–88.
- Seralini, G. E., Underhill, C. M., Smith, C. L., Nguyen, V. T., and Hammond, G. L. (1989). Biological half-life and transfer of maternal corticosteroid-binding globulin to amniotic fluid in the rabbit. *Endocrinology* 125, 1321–1325.
- Shchelkunov, S. N., Blinov, V. M., Resenchuk, S. M., Totmenin, A. V., and Sandakhchiev, L. S. (1993a). Analysis of the nucleotide sequence of a 43 kbp segment of the genome of variola virus India-1967 strain. Virus Res. 30, 239–258.
- Shchelkunov, S. N., Blinov, V. M., and Sandakhchlev, L. S. (1993b). Ankyrin-like proteins of variola and vaccinia viruses. FEBS Lett. 319, 163–165.
- Shchelkunov, S. N., Blinov, V. M., Totmenin, A. V., Marennikova, S. S., Kolykhalov, A. A., Frolov, I. V., Chizhikov, V. E., Gytorov, V. V., Gashikov, P. V., and Belanov, E. F. (1993c). Nucleotide sequence analysis of variola virus Hindlll M, L, I genome fragments. *Virus Res.* 27, 25–35.
- Shchelkunov, S. N., Marennikova, S. S., Blinov, V. M., Resenchuk, S. M., Totmenin, A. V., Chizhikov, V. E., Guturov, V. V., Safronov, P. F., Kurmanov, R. K., and Sandakhchiev, L. S. (1993d). Entire coding sequence of the variola virus. *Dokl. Akad. Nauk.* 328, 629–632.
- Shchelkunov, S. N., Massung, R. F., and Esposito, J. J. (1995). Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. Virus Res. 36, 107–118.
- Shida, H. (1986). Nucleotide sequence of the vaccinta virus hemagglutinin gene. Virology 150, 451–462.
- Shuman, S. (1992). Vaccinia virus RNA helicase: An essential enzyme related to the DE-H family of RNA-dependent NTPases. Proc. Natl. Acad. Sci. USA 89, 10935–10939.
- Shuman, S., and Moss, B. (1987). Identification of a vaccinia virus gene encoding a type I DNA topoisomerase. Proc. Natl. Acad. Sci. USA 84, 7478–7482.
- Skimmer, M. A., Moore, J. B., Binns, M. M., Smith, G. L., and Boursneil, M. E. (1994). Deletion of fowlpox virus homologues of vaccinia virus genes between the 3 beta-hydroxysteroid dehydrogenase (A44L) and DNA ligase (A50R) genes. J. Gen. Virol. 75, 2495–2498.
- Slabaugh, M., Roseman, N., Davis, R., and Mathews, C. (1988). Vaccinia virus-encoded ribonucleotide reductase: Sequence conservation of the gene for the small subunit and its amplification in hydroxyurearesistant mutants. J. Virol. 62, 519–527.
- Smith, G. L., and Chan, Y. S. (1991). Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. J. Gen. Virol. 72, 511–518.
- Smlth, G. L., Chan, Y. S., and Howard, S. T. (1991). Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. J. Gen. Virol. 72, 1349–1376.
- Smith, G. L., Howard, S. T., and Chan, Y. S. (1989). Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. J. Gen. Virol. 70, 2333–2343.
- Spehner, D., Gillard, S., Drillien, R., and Kirn, A. (1988). A cowpox virus gene required for multiplication in Chinese hamster ovary cells. J. Virol. 62, 1297–1304.
- Spriggs, M. K., Hruby, D. E., Maliszewski, C. R., Pickup, D. J., Sims, J. E., Buller, R. M., and VanSlyke, J. (1992). Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. *Cell* 71, 145– 152.
- Stamencovic, I., Clark, E. A., and Seed, B. (1989). A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. *EMBO J.* 8, 1403–1410.
- Strayer, D. S., Jerng, H. H., and O'Connor, K. (1991). Sequence and analysis of a portion of the genomes of Shope fibroma virus and malignant rabbit fibroma virus that is important for viral replication in lymphocytes. *Virology* 185, 585–595.
- Stroobant, P., Rice, A. P., Gullick, W. J., Cheng, D. J., Kerr, I. M., and Waterfield, M. D. (1985). Purification and characterization of vaccinia virus growth factor. *Cell* 42, 383–393.
- Sullivan, J. T., Fleming, S. B., Robinson, A. J., Mercer, A. A. (1995a).

- Sequence and transcriptional analysis of a near-terminal region of the orf virus genome. Virus Genes 11, 21–29.
- Sullivan, J. T., Fraser, K. M., Fleming, S. B., Robinson, A. J., and Mercer, A. A. (1995b). Sequence and transcriptional analysis of an orf virus gene encoding ankyrin- like repeat sequences. *Virus Genes* 9, 277– 282.
- Sullivan, J. T., Mercer, A. A., Fleming, S. B., and Robinson, A. J. (1994). Identification and characterization of an orf virus homologue of the vaccinia virus gene encoding the major envelope antigen p37K. Virology 202, 968–973.
- Sung, T. C., Roper, R. L., Zhang, Y., Rudge, S. A., Ternel, R., Hammond, S. M., Morris, A. J., Moss, B., Engebrecht, J., and Frohman, M. A. (1997). Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. *EMBO J.* 16, 4519–4530.
- Sutter, G., and Moss, B. (1992). Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sci. USA 89, 10847–10851.
- Sutter, G., Wyatt, L. S., Foley, P. L., Bennink, J. R., and Moss, B. (1994). A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. *Vaccine* 12, 1032–1040.
- Symons, J. A., Alcami, A., and Smith, G. L. (1995). Vaccinia virus encodes a soluble type I Interferon receptor of novel structure and broad species specificity. Cell 81, 551–560.
- Takahashi, R., Ole, M., and Ichihashi, Y. (1994). N-terminal amino acid sequences of vaccinia virus structural proteins. Virology 202, 844– 852.
- Takahashi-Nishimaki, F., Funahashi, S., Miki, K., Hashizume, S., and Sugimoto, M. (1991). Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. *Virology* 181, 158–164.
- Talbott, R. L., Sparger, E. E., Lovelace, K. M., Fitch, W. M., Pedersen, N. C., Luciw, P. A., and Elder, J. H. (1989). Nucleotide sequence and genomic organization of feline immunodeficiency virus. *Proc. Natl. Acad. Sci. USA* 86, 5743–5747.
- Tamin, A., Esposito, J., and Hruby, D. (1991). A single nucleotide substitution in the 5'-untranslated region of the vaccinia N2L gene is responsible for both alpha-amanitin-resistant and temperature-sensitive phenotypes. Virology 182, 393–396.
- Tan, J. L., and Spudich, J. A. (1990). Developmentally regulated proteintyrosine kinase genes in *Dictyostelium discoideum*, *Mol. Cell. Biol.* 10, 3578–3583.
- Tartaglia, J., Perkus, M. E., Taylor, J., Norton, E. K., Audonnet, J. C., Cox, W. I., Davis, S. W., van der Hoeven, J., Meignier, B., Riviere, M., Languet, B., and Paoletti, E. (1992). NYVAC: A highly attenuated strain of vaccinia virus. Virology 188, 217–232.
- Tartaglia, J., and Paoletti, E. (1985). Physical mapping and DNA sequence analysis of the rifamplein resistance locus in vaccinia virus. Virology 147, 394–404.
- Tartaglia, J., Winslow, J., Goebel, S., Johnson, G. P., Taylor, J., and Paoletti, E. (1990). Nucleotide sequence analysis of a 10.5 kbp Hindlll fragment of fowlpox virus: Relatedness to the central portion of the vaccinia virus Hindlll D region. J. Gen. Virol. 71, 1517–1524.
- Tengelsen, L. A., Slabaugh, M. B., Bibler, J. K., and Hruby, D. E. (1988). Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. Virology 164, 121–131.
- Tomley, F., Binns, M., Campbell, J., and Boursnell, M. (1988). Sequence analysis of an 11.2 kilobase, near-terminal, BamHI fragment of fowlpox virus. J. Gen. Virol. 69, 1025–1040.
- Twardzik, D. R., Brown, J. P., Ranchalis, J. E., Todaro, G. J., and Moss, B. (1985). Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. *Proc. Natl. Acad. Sci. USA* 82, 5300–5304.
- Ueda, Y., Morikawa, S., and Matsuura, Y. (1990). Identification and nucleotide sequence of the gene encoding a surface antigen induced by vaccinia virus. Virology 177, 588–594.

- Upton, C., DeLange, A. M., and McFadden, G. (1987). Tumorigenic poxviruses: genomic organization and DNA sequence of the telomeric region of the Shope fibroma virus genome. *Virology* 160, 20–30.
- Upton, C., Macen, J. L., Schreiber, M., and McFadden, G. (1991a). Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor family that contributes to viral virulence. Virology 184, 370–382.
- Upton, C., Macen, J. L., Wishart, D. S., and McFadden, G. (1990a).
 Myxoma virus and malignant rabbit fibroma virus encode a serpin-like protein important for virus virulence. Virology 179, 618–631.
- Upton, C., Mossman, K., and McFadden, G. (1992). Encoding of a homolog of the IFN-g receptor by myxoma virus. Science 258, 1369– 1372.
- Upton, C., Opgenorth, A., Traktman, P., and McFadden, G. (1990b).
 Identification and DNA sequence of the Shope fibroma virus DNA topoisomerase gene. *Virology* 176, 439-447.
- Upton, C., Stuart, D., and McFadden, G. (1991b). Identification and DNA sequence of the large subunit of the capping enzyme from Shope fibroma virus. Virology 183, 773–777.
- Upton, C., Stuart, D. T., and McFadden, G. (1993). Identification of a poxvirus gene encoding a uracil DNA glycosylase. *Proc. Natl. Acad.* Sci. USA 90, 4518–4522.
- Van Meir, E., and Wittek, R. (1988). Fine structure of the vaccinla virus gene encoding the precursor of the major core protein 4a. Arch. Virol. 102, 19–27.
- Vanslyke, J. K., Whitehead, S. S., Wilson, E. M., and Hruby, D. E. (1991). The multistep proteolytic maturation pathway utilized by vaccinia virus P4a protein: A degenerate conserved cleavage motif within core proteins. Virology 183, 467–478.
- Vassalli, J. D., Huarte, J., Bosco, D., Sappino, A. P., Sappino, N., Velardi, A., Wohlwend, A., Erno, H., Monard, D., and Belin, D. (1993). Proteasenexin 1 as an androgen-dependent secretory product of the murine seminal vesicle. *EMBO J.* 12, 1871–1898.
- Venkatesan, S., Gershowitz, A., and Moss, B. (1982). Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition. J. Virol. 44, 637–646.
- Vos, J. C., Sasker, M., and Stunnenberg, H. G. (1991). Vaccinia virus capping enzyme is a transcription initiation factor. *EMBO J.* 10, 2553–2558.
- Vydelingum, S., Baylis, S. A., Bristow, C., Smith, G. L., and Dixon, L. K. (1993). Duplicated genes within the variable right end of the genome of a pathogenic isolate of African swine fever virus. *J. Gen. Virol.* 74, 2125–2130.
- Wang, S., and Shuman, S. (1995). Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in the F10 gene, which encodes protein kinase 2. *J. Virol.* 69, 6376–6388.
- Way, M., Sanders, M., Chafel, M., Tu, Y. H., Knight, A., and Matsudaira, P. (1995). Beta-scruin, a homolog of the actin crosslinking protein scruin, is localized to the acrosomal vesicle of Limulus sperm. J. Cell. Sci. 108, 3155–3162.
- Wei, Y. F., Robins, P., Carter, K., Caldecott, K., Pappin, D. J. C., Yu, G. L., Wang, R. P., Shell, B. K., Nash, R., Schar, P., Barnes, D. E., Haseltine,

- W. A., and Lindahl, T. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. *Mol. Cell. Biol.* 15, 3206–3216.
- Weinrich, S. L., and Hruby, D. E. (1986). A tandemly-oriented late gene cluster within the vaccinia virus genome. *Nucleic Acids Res.* 14, 3003–3016.
- Weir, J. P., and Moss, B. (1983). Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutation. J. Virol. 46, 530–537.
- Whayeb, S. H., Yamamoto, K., Tojo, H., and Honda, T. (1996). Genetic analysis of the chromosomal region encoding lysophospholipase L2 of Vibrio cholerae O1. *Biochim. Biophys. Acta* 1300, 1–4.
- Wilson, R., Ainscough, R., Anderson, K., Baynes, C., Berks, M., Bonfield, J., Burton, J., Connell, M., Copsey, T., Cooper, J., Coulson, A., Craxton, M., Dear, S., Du, Z., Durbin, R., Favello, A., Fulton, L., Gardner, A., Green, P., Hawkins, T., Hiller, L., Jier, M., Johnston, L., Jones, M., Kershaw, J., Kirsten, J., Laister, N., Latreille, P., Lightning, J., Lloyd, C., McMurray, A., Mottimore, B., O'Callaghan, M., Parsons, J., Percy, C., Rifken, L., Roopra, A., Saunders, D., Shownkeen, R., Smaldon, N., Smith, A., Sonnhammer, E., Staden, R., Sulston, J., Thierry-Mieg, J., Thomas, K., Vaudin, M., Vaughan, K., Waterston, R., Watson, A., Weinstock, L., Wilkinson-Sproat, J., and Wohldman, P. (1994). 2.2 Mb of contiguous nucleotide sequence from chromosome lil of *C. elegans. Nature* 368, 32–38.
- Wolffe, E. J., Katz, E., Weisberg, A., and Moss, B. (1997). The A34R glycoprotein gene is required for induction of specialized actincontaining microvilli and efficient cell-to-cell transmission of vaccinia virus. J. Virol. 71, 3904–3915.
- Wolffe, E. J., Moore, D. M., Peters, P. J., and Moss, B. (1996). Vaccinia virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. J. Virol. 70, 2797–2808.
- Wright, C. F., Keck, J. G., Tsai, M. M., and Moss, B. (1991). A transcription factor for expression of vaccinia virus late genes is encoded by an intermediate gene. *J. Virol.* 65, 3715–3720.
- Xue, F., and Cooley, L. (1993). Kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72, 681-693.
- Yanez, R. J., Rodriquez, J. M., Nogal, M. L., Yuste, L., Enriques, C., Rodriguez, J. F., and Vinuela, E. (1993). Analysis of the complete nucleotide sequence of African Swine Fever Virus. *Virology* 208, 249–278.
- Yang, W. P., and Bauer, W. R. (1988). Purification and characterization of vaccinia virus structural protein VP8. *Virology* **167**, 578–584.
- Yuen, L., Noiseux, M., and Gomes, M. (1991). DNA sequence of the nucleoside triphosphate phosphohydrolase I (NPH I) of the Choristoneura blennis entomopoxvirus. Virology 182, 403–406.
- Zantinge, J. L., Krell, P. J., Derbyshire, J. B., and Nagy, E. (1996). Partial transcriptional mapping of the fowlpox virus genome and analysis of the EcoRl L fragment. J. Gen. Virol. 77, 603–614.
- Zhang, H., Scheirer, D. C., Fowle, W. H., and Goodman, H. M. (1992).
 Expression of antisense gene blocks chloroplast differentiation in Arabidopsis. *Plant Cell* 4, 1575–1588.