Summary: Parametric Curves

Parametric curves

A parametric curve (in the plane) is a curve defined by two equations

$$x = x(t)$$
,

$$y = y(t),$$

where t is called a **parameter**. For each real number t, the point (x(t), y(t)) is a point on the curve.

Eliminating parameters

To find the underlying curve, try eliminating the parameter using algebra and/or trig identities.

Tangent lines of parametric curves

The slope of a parametric curve x = x(t), y = y(t) is

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}.$$

In particular, to find the slope of the tangent line to the curve at $t=t_0$, we compute $\frac{y'(t_0)}{x'(t_0)}$.

Arc length of parametric curves

Consider a particle moving along a trajectory. The motion is described by the parametric curve

$$x = x(t)$$

$$y = y(t)$$
.

The speed of the particle is given by

$$\frac{ds}{dt} = \sqrt{(x'(t))^2 + (y'(t))^2}$$

The differential arc length element is given by

$$ds = \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$

Consider the arc length, or distance travelled by the particle from time t_0 to time t_1 . The letter s is customarily used to denote arc length. You should think of s = s(t) as a function of time, where s(t) is the distance travelled by the particle since some starting time. If $s_0 = s(t_0)$ and $s_1 = s(t_1)$, then the distance traveled by the particle from time t_0 to t_1 can be calculated by

$$s_1 - s_0 = \int_{s_0}^{s_1} ds = \int_{t_0}^{t_1} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

A note about notation

$$ds^{2} = dx^{2} + dy^{2}$$
 means $(ds)^{2} = (dx)^{2} + (dy)^{2}$
 $ds = \sqrt{dx^{2} + dy^{2}}$ means $ds = \sqrt{(dx)^{2} + (dy)^{2}}$

In particular, $dx^2 = (dx)^2$. This is the square of a differential, not the differential of the square. The differential of the square is $d(x^2) = 2x dx$, which is not the same.

Position and speed along a parametric curve

We have been thinking of a parametric curve as the description of a particle's position over time. So what is the velocity? And what about the acceleration?

- The derivative x'(t) is the velocity in the direction of the x-axis.
- The derivative y'(t) is the velocity in the direction of the y-axis.
- The speed along the curve is given by $\frac{ds}{dt} = \sqrt{(x'(t))^2 + (y'(t))^2}$.
- The notion of velocity along the curve requires considering x' and y' together in what is known as a vector. Both velocity and acceleration are vectors and you will see them in multivariable calculus.

Figure 1: Rotating a curve about the y-axis.

Surface area

Consider the parametric curve

$$x = x(t)$$
$$y = y(t).$$

Consider the surface formed by rotating the curve about the y-axis. The differential surface area element is given by

$$dA = 2\pi x \, ds$$

= $2\pi x(t) \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$.

The the surface area from time t_0 to time t_1 is given by the integral:

Surface area of parametric curve =
$$\int_{t_0}^{t_1} 2\pi x(t) \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2} \, dt$$

Consider the surface formed by rotating the curve about the x-axis. The differential surface area element is given by

$$dA = 2\pi y \, ds$$

= $2\pi y(t) \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$.

The the surface area from time t_0 to time t_1 is given by the integral:

Surface area of parametric curve =
$$\int_{t_0}^{t_1} 2\pi y(t) \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2} \, dt$$

Figure 2: Rotating a curve about the x-axis.

The (signed) area under a curve y = f(x) between x = a and x = b is given by $\int_{a}^{b} f(x) dx$.

Suppose that this curve is parameterized by the equations

$$x = x(t)$$
$$y = y(t).$$

Moreover suppose that $x(t_0) = a$ and $x(t_1) = b$. Then the (signed) area under the curve is also equal to

$$\int_{a}^{b} f(x) dx = \int_{t_0}^{t_1} f(x(t)) x'(t) dt.$$

by change of variables (or by substitution and applying the chain rule).

But note that

$$y = f(x)$$
$$y = y(t)$$
$$\implies y(t) = f(x(t))$$

hence

$$\int_{a}^{b} f(x) dx = \int_{t_0}^{t_1} y(t) x'(t) dt.$$

This formula for the (signed) area under a parametric curve holds in general!

General result for parametric curves

Given a parametric curve:

$$x = x(t)$$

$$y = y(t),$$

The signed area of the region bounded between the curve and the x-axis for $t_0 < t < t_1$ is given by the integral

Signed Area =
$$\int_{t_0}^{t_1} y(t) x'(t) dt.$$