# **LEC8 Binary Heaps**

3.25 https://github.com/GUMI-21/MIT6.006\_note

# **Priority queue interface (Subset of Set)**

-build(x): init to items in x-insert(x): add item x-delete\_max(): delete & return max-key item

Set AVL

add augmentation O(1) find max()

-find-max(): return max key item

### **Today: Heaps**

-priority queue interface & sorting Alg -set AVL tree ->Avl Sort -array -> selection/insertion sort -binary heap -> heap sort ~ *inplace* 

Array insert O(1) delete\_max() O(n) find\_max() O(n)

sorted Array
 delete\_max(): O(1) am.
 insert: O(n)
 find\_max: O(1)

#### Priority queue sort:

-insert(x) for x in A (build A)
-repeatedly deletemax()

#### $T{build}(n) + n\cdot T{delete\_max} \le n(T{insert} + T_{dete\_max})$

| Discovity Onone      | Operations $O(\cdot)$ |                |                | Priority Queue Sort |           |                |
|----------------------|-----------------------|----------------|----------------|---------------------|-----------|----------------|
| Priority Queue       |                       |                | delete_max()   | Time                | In-place? |                |
| Data Structure       | build(A)              | insert(x)      |                | $n^2$               | Y         | Selection Sort |
| Dynamic Array        | n                     | $1_{(a)}$      | n              |                     | V         | Insertion Sort |
|                      | $n \log n$            | n              | $1_{(a)}$      | $n^2$               | 1         | AVL Sort       |
| Sorted Dynamic Array |                       | logn           | $\log n$       | $n \log n$          | N         | AVLSOIT        |
| Set AVL Tree         | $n \log n$            | $\log n$       |                | 1                   | V         | Heap Sort      |
| SCITI 2              | 22                    | $\log n_{(a)}$ | $\log n_{(a)}$ | $n \log n$          | 1         | Treap 554      |
| Goal                 | n                     | 108 (4)        |                |                     |           |                |
|                      |                       |                |                |                     |           |                |

## Heap

- complete binary tree
  - $-2^i$  nodes at depth i
  - -except at max depth where nodes are left-justified
  - =>height  $\lceil \log n \rceil$



• the depth order of complete binary tree

for every complete binary tree, there is only one projection unique arrary, and for any array there is on unique projection complete binary tree too.

- Implicit data structure
  - -no pointers, just store array of n items.
  - -left\_child(i)=2i+1 see in tree

```
-right_child(i)=2i+2
-parent =(i-1) / 2
```

### Binary heap Q

array representing a complete binary tree where every node i satisfy Max-Heap Property at i: Q[i] >= Q[j] for  $j \in \{left(i), right(i)\}$ 



Lemma

=>Q[i]>=Q[j] for node j in subtree(i)

the property queue just need to delete max

### Alg

insert(x)

-Q insert\_last(x)

-max\_heapify\_up(|Q| - 1)

 $max\_heapify\_up(i)$ : if Q[parent(i)].key < Q[i].key: swapQ[parent(i)] & Q[I], recurse on parent.

nad if i = 0: return.

-runtime: O(logn)

delete\_max():

what we need to do: delete root item.

-swap Q[0] with Q[|Q| -1 ]

-Q.delete\_last()

### -max\_heapify\_down(0)

max-heapify\_down(i):

-if i leaf: done

-let  $\mathbf{j} \in \{left(i), right(i)\}$ ,maximizing Q[j].key

-if Q[i] < Q[j]: swap Q[i] - Q[j]

-recurse on j



-runtime: O(logn)

### In place

-insert: increament |Q|

-delete-max: decreamtn |Q|