

Machine Learning for Large-Scale Data Analysis and Decision Making (MATH80629A) Fall 2021

Week #4 - Summary

Announcement

Hybrid classroom: Mondays 8:30 am - 11:30 am
 Class room: Manuvie. This classroom is located on the 1st
 floor of Côte-Sainte-Catherine building.
 Zoom: Zoom link.

• Hybrid office hour: Mondays 11:30 am - 1 pm

Office:4.834

Zoom: Zoom link.

• Lab session on week #5 (September 27)

Lab room: Laboratoire Lachute

Today

- Second Quiz on Gradescope!
- Summary of Machine learning fundamental
- Q&A
- Hands-on session

Quiz 1

Login to your Gradescope account

Models for supervised learning

- (Mostly) linear models
- Focus on classification
- 1. Non-Probabilistic Models
 - Nearest Neighbor, Support Vector Machines (SVMs)
- 2. Probabilistic Models
 - Naive Bayes

Supervised learning

Train Data

	Nb.bed.	Area	Neigh.	•	•		Sell-ability	
x ₀	1	0	0	0	0	y _o [1	7
x ₁	1	100	1	.2	.5	y 1	2	
X ₂	3	200	0	.1	.2	y ₂	0	
X3	1	150	1	.4	.1	y 3	2	
X4	2	210	2	.5	1.1	У4	1	
	-	X			_		Y	

Task

$$f:\mathbb{R}^n \to \{0,1,2\}$$

Test Data

Laurent Charlin & Golnoosh Farnadi — 80-629

Supervised learning

Train Data

	Nb.bed.	Area	Neigh.	•	•		Sell-ability
x _o	1	0	0	0	0	y o [1]
X 1	1	100	1	.2	.5	y 1	2
X ₂	3	200	0	.1	.2	y ₂	0
X3	1	150	1	.4	.1	y 3	2
X4	2	210	2	.5	1.1	У4 [1
		X					Y

Task

Models
$$f \mathbb{R}^n \to \{0,1,2\}$$

Test Data

Laurent Charlin & Golnoosh Farnadi — 80-629

Instance classified according to its nearest neighbor

$$\begin{aligned} i' &= \arg\min_{i} dist(x_i, x_j) \\ y_j &= y_{i'} \end{aligned}$$

Instance classified according to its nearest neighbor

$$\begin{aligned} i' &= \arg\min_{i} dist(x_i, x_j) \\ y_j &= y_{i'} \end{aligned}$$

Instance classified according to its nearest neighbor

$$\begin{aligned} \textbf{i}' &= \arg\min_{\textbf{i}} \textbf{dist}(\textbf{x}_{\textbf{i}},\textbf{x}_{\textbf{j}}) \\ \textbf{y}_{\textbf{j}} &= \textbf{y}_{\textbf{i}'} \end{aligned}$$

Instance classified according to its nearest neighbor

K-NN

$$\begin{aligned} i' &= \arg\min_{i} dist(x_i, x_j) \\ y_j &= y_{i'} \end{aligned}$$

 X_2

k = 5 (assumption)

 $i = \arg \operatorname{sort}_i \operatorname{dist}(x_i, x_j)$

 $y_j = majority(i_{:5})$

• 1-NN

Instance classified according to its nearest neighbor

K-NN

$$i' = \underset{i}{\operatorname{arg\,min}\,dist}(x_i, x_j)$$
 $y_j = y_{i'}$

X₂

k = 5 (assumption)

 $i = \arg \operatorname{sort}_i \operatorname{dist}(x_i, x_j)$

 $y_j = majority(i_{:5})$

• 1-NN

Instance classified according to its nearest neighbor

K-NN

$$\begin{aligned} \textbf{i}' &= \arg\min_{\textbf{i}} \textbf{dist}(\textbf{x}_{\textbf{i}},\textbf{x}_{\textbf{j}}) \\ \textbf{y}_{\textbf{j}} &= \textbf{y}_{\textbf{i}'} \end{aligned}$$

 X_2

k = 5 (assumption)

 $i = \arg \operatorname{sort}_i \operatorname{dist}(x_i, x_j)$

 $y_j = majority(i_{:5})$

• 1-NN

Instance classified according to its nearest neighbor

K-NN

$$\begin{aligned} i' &= \arg\min_{i} dist(x_i, x_j) \\ y_j &= y_{i'} \end{aligned}$$

 X_2

k = 5 (assumption)

 $i = arg sort_i dist(x_i, x_j)$

 $y_j = majority(i_{:5})$

X₁

• 1-NN

Instance classified according to its nearest neighbor

K-NN

Instance classified according to the majority of its K nearest neighbors

weighted-NN
Instance classified
according to all neighbors.
The contribution of each
neighbor is weighted by its
distance.

Linear Classification

decision boundary: y(x) = 0 take two points on the boundary: x_a, x_b

then:
$$\mathbf{w}^{\top}\mathbf{x}_{a} + \mathbf{w}_{0} = \mathbf{w}^{\top}\mathbf{x}_{b} + \mathbf{w}_{0}$$

$$\implies \mathbf{w}^{\top}(\mathbf{x}_{a} - \mathbf{x}_{b}) = \mathbf{0}$$

w is perpendicular to the decision boundary w represents the orientation of the decision boundary

$$\mathbf{y}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_{\mathbf{0}}$$

Decision

$$(\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w_0}) > \mathbf{0} \implies \mathbf{0}$$

$$(\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w_0}) < \mathbf{0} \implies \mathbf{0}$$

Linear Classification

$$\mathbf{y}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_{\mathbf{0}}$$

Decision

$$(\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_{0}) > \mathbf{0} \implies \mathbf{0}$$

 $(\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_{0}) < \mathbf{0} \implies \mathbf{0}$

w₀ is a scalar

you can think of it like an intercept

take x' as the closest point on the decision boundary to the origin

$$\mathbf{x}' = \beta \mathbf{w}$$

$$\implies \mathbf{y}(\mathbf{x}') = \mathbf{w}^{\top}\mathbf{x}' + \mathbf{w_0}$$

$$\implies \mathbf{y}(\mathbf{x}') = \mathbf{w}^{\top}(\beta \mathbf{w}) + \mathbf{w_0}$$

$$\implies$$
 0 = $\beta \parallel \mathbf{w} \parallel^2 + \mathbf{w_0}$

$$\implies \beta = \frac{-\mathsf{W_0}}{\parallel \mathsf{w} \parallel^2}$$

Then you know that the distance from the origin to x' is:

$$\| \mathbf{x}' \| = \| \beta \mathbf{w} \|$$

$$\Rightarrow \| \mathbf{x}' \| = \beta \| \mathbf{w} \|$$

$$\Rightarrow \| \mathbf{x}' \| = \frac{-\mathbf{W}_0}{\| \mathbf{w} \|^2} \| \mathbf{w} \|$$

$$-\mathbf{W}_0$$

$$\implies \parallel \mathbf{x}' \parallel = \frac{-\mathbf{w_0}}{\parallel \mathbf{w} \parallel}$$

X

HEC MONTREAL

$$\hat{\mathbf{y}} = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x})$$

X

The objective is to find the separating boundary that maximizes the margin

The objective is to find the separating boundary that maximizes the margin

Probabilistic Models for Classification

Probabilistic Models separate Decision and Inference

Non-Probabilistic Modelling

Probabilistic Modelling

Probabilistic Model

$$\longrightarrow$$
 P(y = k|x) \longrightarrow

Decision Rule

Probabilistic models

1. Model the conditional directly:

$$P(y = k|x)$$

2. Model the joint (or the prior and the class conditionals):

Bayes' Theorem

$$\begin{array}{cccc} \underline{P(y=k|x)} \propto \underline{P(y=k,x)} \\ & \text{posterior} & \text{joint} \\ & = & \underline{P(x\mid y=k)} & \underline{P(y=k)} \\ & \text{class conditional densities class prior} \end{array}$$

Probabilistic Modelling

- 1. Posit a model: P(X, Y)
 - How the data is generated
- 2. Parametrize the distributions: P(X, Y I Parameters)
- 3. Set the objective (e.g., MLE)
- 4. Learn the parameters of the model:
 - E.g., Naive Bayes: learn the parameters of the class conditional P(XIV) and of the prior P(Y)
- 5. Use the model (e.g., for predictions)