Homework3

21307099 liyingjun

2023.11.1

1 Problem 1

1.1 Correlating Branch Predictor

Branch PC	Entry	Prediction	Outcome	Wrong	
2	4	Т	Т	NO	
3	6	NT	NT	NO	
1	2	NT	NT	NO	
3	7	NT	NT	MO	
1	3	Т	NT	YES	
2	4	Т	Т	NO	
1	3	Т	NT	YES	
2	4	Т	Т	NO	
3	7	NT	Т	YES	

表 1: P1-1

error rate = $\frac{3}{9} \times 100\% \approx 33.3\%$

1.2 Local Predictor

Branch PC	Entry	Prediction	Outcome	Wrong	
0	0	Т	Т	NO	
1	4	Т	NT	YES	
1	1	NT	NT	MO	
1	3	Т	NT	YES	
1	3	Т	NT	YES	
0	0	Т	Т	NO	
1	3	NT	NT	NO	
0	0	Т	Т	NO	
1	5	Т	Т	NO	

表 2: P1-2

error rate = $\frac{3}{9} \times 100\% \approx 33.3\%$

2 Problem 2

Op	dest	j	k	Issue	Read Oper	Exec Comp	Write Result
LD	F6	34	R2	1	2	3	4
LD	F2	45	R3	5	6	7	8
MULD	F0	F5	F2	6	9	19	20
MULD	F7	F2	F6	6	9	19	20
ADDD	F6	F8	F7	6	21	23	24

表 3: P2(a)

Time	Name	Busy	Op	F_i	F_j	F_k	Q_{j}	Q_k	R_{j}	R_k
9	Integer	No								
9	Mult1	Yes	MULD	F0	F5	F2		Integer	Yes	Yes
9	Mult2	Yes	MULD	F7	F2	F6	Integer	Integer	Yes	Yes
9	Add	Yes	ADDD	F6	F8	F7		Mult2		No

表 4: P2(b)

3 Problem 3

1. Cost of BTB miss:

The cost for BTB miss events, which occur for the 15% of branch instructions not hit in the BTB:

BTB miss cost = Branch frequency \times Miss rate \times Miss penalty

 $=20\% \times 15\% \times 3$ cycles =0.09 cycles/instruction

2. Cost for hits with wrong prediction:

The cost for cases where BTB hits but the prediction is wrong, which happens for 10% of the 85% of branch instructions where the BTB hits:

Hit but wrong prediction cost = Branch frequency×Hit rate×Wrong prediction rate×Misprediction penalty

$$=20\%\times85\%\times10\%\times4$$
 cycles = 0.068 cycles/instruction

3. Total CPI including branch prediction:

The total CPI including branch prediction consists of the base CPI plus the additional CPI due to branch prediction overhead:

Total CPI = Base CPI + BTB miss cost + Hit but wrong prediction cost

$$= 1 + 0.09 + 0.068 = 1.158$$
 cycles/instruction

4. CPI for processor without BTB:

For a processor without a BTB, there is a fixed two-cycle penalty for each branch instruction:

CPI without BTB = Base CPI + Branch frequency
$$\times$$
 Fixed branch penalty
$$= 1 + 20\% \times 2 = 1.4 \text{ cycles/instruction}$$

5. Speedup:

The speedup is the ratio of the CPI without BTB to the CPI with BTB:

Speedup =
$$\frac{\text{CPI without BTB}}{\text{CPI with BTB}}$$

 $\approx \frac{1.4}{1.158} \approx 1.209$

4 Problem 4

(a)

When a hit occurs, it directly leads to executing the next instruction without any delay, effectively decreasing the cycle count by one per branch instruction. Therefore, the penalty adjustment for a buffer hit with an unconditional branch is:

Penalty adjustment for buffer hit = -1 clock cycle per unconditional branch instruction

(b)

Assuming an 80% hit rate for unconditional branches and a frequency of 10% occurrence in instruction set, the calculation for performance improvement from branch folding is as follows:

- For buffer hits (80% of the time), the enhancement saves one clock cycle per hit.
- For buffer misses (20% of the time), the standard penalty is two clock cycles per miss.

The expected improvement from branch folding can therefore be calculated by:

Expected improvement = Frequency of unconditional branches×

(Hit rate × Improvement per hit + Miss rate × Penalty per miss)

= $10\% \times (80\% \times (-1 \text{ cycle}) + 20\% \times 2 \text{ cycles})$ = $10\% \times (-0.8 \text{ cycles} + 0.4 \text{ cycles})$ = -0.04 cycles per instruction

The negative sign indicates a reduction in the total cycle count per instruction, which is a performance gain. For conditional branches with an assumed two-cycle buffer miss penalty and the same calculation method, the cost would be:

Penalty for conditional branches storing target address = $10\% \times (80\% \times 0 + 20\% \times 2 \text{ cycles})$

= 0.04 cycles per instruc

The overall performance gain due to the BTB enhancement is:

Overall performance gain = (0.04-(-0.04)) cycles per instruction = 0.08 cycles per instruction improvement

5 Problem 5

Iteration	Instructions	Issue	Executes	Memory access	Write CDB	Comment
1	LD F2,0(R1)	1		2	3	1st instruction
1						Awaiting F2; 3-
	MUL.D F4,F2,F0	2	4		19	4: Reservation Station; 5-
						18: Multiply execution
	L.D F6,0(R2)	3		4	5	4: Load buffer
						Awaiting F4; 5-
	ADD.D F6,F4,F6	4	20		30	20: Reservation Station; 21-
						29: Add execution
	S.D F6,0(R2)	5		31		Awaiting F6; 6-
	S.D F0,0(K2)	Э		91		31: Store buffer
	DADDIU R1,R1,#8	6	7		8	
	DADDIU R2,R2,#8	7	8		9	
	DSLTU R3,R1,R4	8	9		10	Awaiting R3
	BNEZ R3,foo	9	11			Awaiting BNEZ;
	L.D F2,0(R1)	10		12	13	Awaiting BNEZ;
2	L.D 1 2,0(101)	10		12	10	11-12: Load buffer
	MUL.D F4,F2,F0		19			Awaiting F2; 13-
		11			34	19: Reservation Station; 20-
						33: Multiply execution
	L.D F6,0(R2)	12		13	14	13: Load buffer
						Awaiting F4; 14-
	ADD.D F6,F4,F6	13	35		45	35: Reservation Station; 36-
						44: Add execution
	S.D F6,0(R2)	14		46		Awaiting F6; 15-
	0.10 1 0,0(102)			40		46: Store buffer
	DADDIU R1,R1,#8	15	16		17	
	DADDIU R2,R2,#8	16	17		18	
	DSLTU R3,R1,R4	17	18		20	Awaiting R3
	BNEZ R3, foo	18	20			AWaiting R3

表 5: P5