

Younghoon Kim

(nongaussian@hanyang.ac.kr)

COVID-19 Dataset

- Download (also available in LMS)
 - https://www.kaggle.com/datasets/sudalaira jkumar/novel-corona-virus-2019dataset?select=covid_19_data.csv
 - -22.54MB

Attributes

#	날짜	도시	나라	업데이트	확진자	사망
# SNo =	ObservationDate Observation date in mm/dd/yyyy	A Province/State == Province or State	▲ Country/Region == Country or region	Last Update Last update date time in UTC	# Confirmed == Cumulative number of confirmed cases	# Deaths = Cumulative number of deaths cases
1 306k	22Jan20 29May21	[null] 25% Unknown 1% Other (224206) 73%	Russia 10% US 9% Other (249438) 81%	23Jan20 30May21	-303k 5.86m	-178 112k
1	01/22/2020	Anhui	Mainland China	1/22/2020 17:00	1.0	0.0
2	01/22/2020	Beijing	Mainland China	1/22/2020 17:00	14.0	0.0
3	01/22/2020	Chongqing	Mainland China	1/22/2020 17:00	6.0	0.0
4	01/22/2020	Fujian	Mainland China	1/22/2020 17:00	1.0	0.0

Upload Files on Colab


```
import pandas as pd
import os, sys
from google.colab import drive
drive.mount('/content/drive')

df = pd.read_csv('drive/MyDrive/covid_19_data.csv')
df
```

Recall..


```
import pandas as pd
import os, sys
from google.colab import drive
drive.mount('/content/drive')
```

노트북에서 Google Drive 파일에 액세스하도록 허용하시겠습니까?

이 노트북에서 Google Drive 파일에 대한 액세스를 요청합니다. Google Drive에 대한 액세스 권한을 부여하면 노트북에서 실행되는 코드가 Google Drive의 파일을 수정할 수 있게 됩니다. 이 액세스를 허용하기 전에 노트북 코드를 검토하시기 바랍니다.

아니요

Google Drive에 연결

```
import pandas as pd
import os, sys
from google.colab import drive
drive.mount('/content/drive')
```

df = pd.read_csv('

Google Drive for desktop 앱을 신뢰할 수 있는지 확인

민감한 정보가 이 사이트 또는 앱과 공유될 수 있습니다. 언제든지 Google 계정에서 액세스 권한을 확인하고 삭 제할 수 있습니다.

Google이 데이터를 안전하게 공유하는 방법을 알아보세요.

Google Drive for desktop의 개인정보처리방침 및 서비스 약관을 확인하세요.

취소 허용


```
import pandas as pd
import os, sys
from google.colab import drive
drive.mount('/content/drive')

df = pd.read_csv('drive/MyDrive/covid_19_data.csv')
df
```

	SNo	ObservationDate	Province/State	Country/Region	Last Update	Confirmed	Deaths	Recovered
0	1	01/22/2020	Anhui	Mainland China	1/22/2020 17:00	1.0	0.0	0.0
1	2	01/22/2020	Beijing	Mainland China	1/22/2020 17:00	14.0	0.0	0.0
2	3	01/22/2020	Chongqing	Mainland China	1/22/2020 17:00	6.0	0.0	0.0
3	4	01/22/2020	Fujian	Mainland China	1/22/2020 17:00	1.0	0.0	0.0
4	5	01/22/2020	Gansu	Mainland China	1/22/2020 17:00	0.0	0.0	0.0

Index

DataFrame

- A table
 - Column
 - Row

A column

				A column	name			
	SNo	ObservationDate	Province/State	Country/Region	Last Update	Confirmed	Deaths	Recovered
0	1	01/22/2020	Anhui	Mainland China	1/22/2020 17:00	1.0	0.0	0.0
1	2	01/22/2020	Beijing	Mainland China	1/22/2020 17:00	14.0	0.0	0.0
2	A 3	01/22/2020	Chongqing	Mainland China	1/22/2020 17:00	6.0	0.0	0.0
3	4	01/22/2020	Fujian	Mainland China	1/22/2020 17:00	1.0	0.0	0.0
4	5	01/22/2020	Gansu	Mainland China	1/22/2020 17:00	0.0	0.0	0.0

DataFrame

- 2-dim table = DataFrame
- 1-dim vector = Series

A series

				! ! !				
	SNo	ObservationDate	Province/State	Country/Region	Last Update			
0	1	01/22/2020	Anhui	Mainland China	1/22/2020 17:00		0.0	0.0
1	2	01/22/2020	Beijing	Mainland China	1/22/2020 17:00	14.0	0.0	0.0
2	3	01/22/2020	Chongqing	Mainland China	1/22/2020 17:00	6.0	0.0	0.0
3	4	01/22/2020	Fujian	Mainland China	1/22/2020 17:00	1.0	0.0	0.0
4	5	01/22/2020	Gansu	Mainland China	1/22/2020 17:00	0.0	0.0	0.0

DataFrame

Accessing DataFrame

- Index
- Range of indice
- List of True/False for selecting each row

- Column name
- Range of column names
- List of column names to select

Accessing DataFrame

• Index = 0

 $df.loc[\circ , :]$

Range of columns = all columns

 df.loc[1:6, ["title", "age"]]

 title age
 기

 1
 짜장면
 3

 2
 짜장면
 3

 3
 짜장면
 3

 4
 짜장면
 3

 5
 짜장면
 3

Range of indices: From 1 to 6

```
df.loc[ 1:6 , ["title", "age"]]
```

 Select two columns "title" and "age"

6 짜장면

Practice

- Read covid_19_data.csv file
- Access the dataframe

Goal of Today's Pandas Study

Change Column Name

```
Target
      Source
    = df.rename(columns={
      'ObservationDate': 'Date',
     'Province/State': 'City',
     'Country/Region': 'Country'
 })
                   Column list
df.columns
Index(['SNo', 'Date', 'City', 'Country', 'Last Update',
'Confirmed', 'Deaths', 'Recovered'], dtype='object')
```


Drop Columns

Columns to remove

```
df = df.drop(columns=['Last Update'])

df.columns

Index(['SNo', 'Date', 'City', 'Country',
  'Confirmed', 'Deaths', 'Recovered'], dtype='object')
```

Add A New Column

- Active
 - Confirmed Death Recovered

df['Recovered']

df['Death']

	SNo	ObservationDate	Province/State	Country/Re	Confirmed']	Confirmed	Deaths	Recovered
0	1	01/22/2020	Anhui	Mainland Cnina		1.0	0.0	0.0
1	2	01/22/2020	Beijing	Mainland China	1/22/2020 17:00	14.0	0.0	0.0
2	3	01/22/2020	Chongqing	Mainland China	1/22/2020 17:00	6.0	0.0	0.0
3	4	01/22/2020	Fujian	Mainland China	1/22/2020 17:00	1.0	0.0	0.0
4	5	01/22/2020	Gansu	Mainland China	1/22/2020 17:00	0.0	0.0	0.0

Add A New Column

```
df['Active'] = df['Confirmed'] - df['Deaths'] - df['Recovered']
df
```

df['Active']

	SNo	Date	City	Country	Confirmed	Deaths	Recovered	Active
0	1	01/22/2020	Anhui	Mainland China	1.0	0.0	0.0	1.0
1	2	01/22/2020	Beijing	Mainland China	14.0	0.0	0.0	14.0
2	3	01/22/2020	Chongqing	Mainland China	6.0	0.0	0.0	6.0
3	4	01/22/2020	Fujian	Mainland China	1.0	0.0	0.0	1.0
4	5	01/22/2020	Gansu	Mainland China	0.0	0.0	0.0	0.0
306424	306425	05/29/2021	Zaporizhia Oblast	Ukraine	102641.0	2335.0	95289.0	5017.0

Element-wise Operation

 Operation between series is computed by elementwise

```
df['Active'] = df['Confirmed'] - df['Deaths'] - df['Recovered']
```

	SNo	Date	City	Country	Confirmed	Deaths	Recovered	Active
0	1	01/22/2020	Anhui	Mainland China	1.0	0.0	0.0	1.0
1	2	01/22/2020	Beijing	Mainland China	14.0	0.0	0.0	14.0
2	3	01/22/2020	Chongqing	Mainland China	6.0	0.0	0.0	6.0
3	4	01/22/2020	Fujian	Mainland China	1.0	0.0	0.0	1.0
4	5	01/22/2020	Gansu	Mainland China	0.0	0.0	0.0	0.0
306424	306425	05/29/2021	Zaporizhia Oblast	Ukraine	102641.0	2335.0	95289.0	5017.0

Practice

- Change the long column names
- Drop columns
- Add columns

Exercise

Retrieve the records of South Korea

Exercise

Retrieve the records of South Korea

```
df_korea = df.loc[df['Country'] == 'South Korea']
df_korea
```

	SNo	Date	City	Country	Confirmed	Deaths	Recovered	Active
37	38	01/22/2020	NaN	South Korea	1.0	0.0	0.0	1.0
77	78	01/23/2020	NaN	South Korea	1.0	0.0	0.0	1.0
125	126	01/24/2020	NaN	South Korea	2.0	0.0	0.0	2.0
168	169	01/25/2020	NaN	South Korea	2.0	0.0	0.0	2.0
216	217	01/26/2020	NaN	South Korea	3.0	0.0	0.0	3.0
302749	302750	05/25/2021	NaN	South Korea	137682.0	1940.0	127582.0	8160.0

Grouping Data Using Gro

Given a DataFrame as

```
import pandas as pd

df = pd.DataFrame({
   'X1': ['K0', 'K0', 'K0', 'K1', 'K2', 'K2'],
   'X2': ['K0', 'K1', 'K0', 'K1', 'K2', 'K2'],
   'A': [1, 2, 3, 4, 5, 6]}
)
```

```
      x1
      x2
      A

      0
      K0
      K0
      1

      1
      K0
      K1
      2

      2
      K0
      K0
      3

      3
      K1
      K1
      4

      4
      K2
      K2
      5

      5
      K2
      K2
      6
```

- Answer the data frames the following two lines would return
 - df.groupby(['X1'], as_index=False).sum()
 - df.groupby(['X1', 'X2'], as_index=False).sum()

Groupby

```
df.groupby(['X1'], as_index=False).sum()
```


	X1	Α
0	КО	6
1	K1	4
2	K2	11

Groupby

```
df.groupby(['X1', 'X2'], as_index=False).sum()
```


	X1	X2	Α
0	КО	K0	4
1	K0	K1	2
2	K1	K1	4
3	K2	K2	11

- Plot Confirmed / Death / Recovered by countries
 - Data = 05/29/2021

See Data

Retrieve data of the last date for US

```
df.loc[(df['Date'] == '05/29/2021') & (df['Country'] == 'US')]
```

Data is by city for US

	SNo	Date		City	Country	Confirmed	Deaths	Recovered	Active
305842	305843	05/29/2021		Alabama	US	543405.0	11146.0	0.0	532259.0
305844	305845	05/29/2021		Alaska	US	70208.0	369.0	0.0	69839.0
305869	305870	05/29/2021		Arizona	US	880466.0	17628.0	0.0	862838.0
305870	305871	05/29/2021		Arkansas	US	341290.0	5830.0	0.0	335460.0
305913	305914	05/29/2021		California	US	3788713.0	63236.0	0.0	3725477.0
305948	305949	05/29/2021		Colorado	US	542405.0	6576.0	0.0	535829.0
305949	305950	05/29/2021		Connecticut	US	347341.0	8238.0	0.0	339103.0
305959	305960	05/29/2021		Delaware	US	108770.0	1661.0	0.0	107109.0
205062	202083	NE /20 /2N21	Diamond Brings	cruico chin	ПС	10 N	00	0.0	10 N

Group By Country

 Group by countries and sum the figures with the data of date '05/29/2021'

Group By Country

 Group by countries and sum the values with the data of date '05/29/2021'

	Country	SNo	Confirmed	Deaths	Recovered	Active
0	Afghanistan	305665	70111.0	2899.0	57281.0	9931.0
1	Albania	305666	132297.0	2449.0	129215.0	633.0
2	Algeria	305667	128456.0	3460.0	89419.0	35577.0
3	Andorra	305668	13693.0	127.0	13416.0	150.0
4	Angola	305669	34180.0	757.0	27646.0	5777.0

Correlation Between Confirmed and Death

Plot a graph to see the correlation between confirmed and death (Date: 05/29/2021)

Scatter graph

Group By Country

	Country	SNo	Confirmed	Deaths	Recovered
0	Afghanistan	305665	70111.0	2899.0	57281.0
1	Albania	305666	132297.0	2449.0	129215.0
2	Algeria	305667	128456.0	3460.0	89419.0
3	Andorra	305668	13693.0	127.0	13416.0
4	Angola	305669	34180.0	757.0	27646.0
190	Vietnam	305832	6908.0	47.0	2896.0
191	West Bank and Gaza	305833	307838.0	3492.0	300524.0

Plotting Scatter Graphs

```
import plotly.express as px
fig = px.scatter(df_lastday, x='Confirmed', y='Deaths')
fig.show()
```


Log-scale for x- and y-axis

Plotting Labels

Labelling by Mouse Hover

JOIN TWO DATAFRAMES

- The positive correlation between Confirmed and Death
- Q: Does a country with large income shows lower death rate, compared those with small income, in terms of GDP?
- Need to combine GDP with the COVID-10 data

Correlations between Three Variables

- The most efficient graph to show the correlation between 3 variables in a 2-dim plane
 - → Bubble chart

- Join DataFrames test1 and test 2
 - Want to append B values with test1 data frame where test1.k
 ey is identical to test2.key

test1.join(test2.set_index('key'), on= key')

The value in test1 to join (join on)

	key	A	В
0	КО	A0	ВО
1	K1	A1	B1
2	K2	A2	B2
3	К3	А3	NaN
4	K0	A4	ВО
5	K5	A5	NaN

Test the join operation with toy data

GDP Data

Download from LMS

Size: 44KB

Country

gdp = pd.read_csv('drive/MyDrive/GDP.csv')
gdp

	Country	Code	1990	1991	1992	1993	1994	1995	1996	
0	Aruba	ABW	24101.109430	25870.755940	26533.343900	27430.752400	28656.520210	28648.990020	28499.089430	30215
1	Afghanistan	AFG	NaN							
2	Angola	AGO	3089.683369	3120.356148	2908.160798	2190.768160	2195.532289	2496.199493	2794.896906	2953
3	Albania	ALB	2549.473022	1909.114038	1823.307673	2057.449657	2289.873135	2665.764906	2980.066288	2717
4	Arab World	ARB	6808.206995	6872.273195	7255.328362	7458.647059	7645.682856	7774.207360	8094.149842	8397
•••										
255	Kosovo	XKX	NaN							
256	Yemen, Rep.	YEM	2223.028771	2325.263661	2443.920401	2472.188808	2569.648739	2657.813447	2730.145147	2829
257	South	745	0404 500045	0444057000	0004 740404	0004 777500	0500 000004	6740 500045	7000 004 040	747/

Drop Columns

Will use Country and 2018 columns only

```
gdp = gdp.loc[:, ['Country', '2018']]
gdp
```

	Country	2018
0	Aruba	NaN
1	Afghanistan	1955.006208
2	Angola	6452.355165
3	Albania	13364.155400
4	Arab World	17570.137600
255	Kosovo	11348.363450
256	Yemen, Rep.	2575.126385

Data Preprocessing

• We already has df_lastday

	Country	SNo	Confirmed	Deaths	Recovered	Active
0	Afghanistan	305665	70111.0	2899.0	57281.0	9931.0
1	Albania	305666	132297.0	2449.0	129215.0	633.0
2	Algeria	305667	128456.0	3460.0	89419.0	35577.0
3	Andorra	305668	13693.0	127.0	13416.0	150.0
4	Angola	305669	34180.0	757.0	27646.0	5777.0
190	Vietnam	305832	6908.0	47.0	2896.0	3965.0
191	West Bank and Gaza	305833	307838.0	3492.0	300524.0	3822.0

 Add 2018 (=gdp) into df_lastday by joining on Country columns

	!	<u> </u>				
	Country	SNo	Confirmed	Deaths	Recovered	Active
0	Afghanistan	305665	70111.0	2899.0	57281.0	9931.0
1	Albania	305666	132297.0	2449.0	129215.0	633.0
2	Algeria	305667	128456.0	3460.0	89419.0	35577.0
3	Andorra	305668	13693.0	127.0	13416.0	150.0
4	Angola	305669	34180.0	757.0	27646.0	5777.0
190	Vietnam	305832	6908.0	47.0	2896.0	3965.0
191	West Bank and Gaza	305833	307838.0	3492.0	300524.0	3822.0
100	٧,	205024	6734.0	13100	2200.0	2012.0

•		
į	Country	2018
0	Aruba	NaN
1	Afghanistan	1955.006208
2	Angola	6452.355165
3	Albania	13364.155400
4	Arab World	17570.137600
25	Kosovo	11348.363450
25	Yemen, Rep.	2575.126385
25	' South Africa	13686.882360
ļ		

	Country	SNo	Confirmed	Deaths	Recovered	Active	2018
0	Afghanistan	305665	70111.0	2899.0	57281.0	9931.0	1955.006208
1	Albania	305666	132297.0	2449.0	129215.0	633.0	13364.155400
2	Algeria	305667	128456.0	3460.0	89419.0	35577.0	15481.787620
3	Andorra	305668	13693.0	127.0	13416.0	150.0	NaN
4	Angola	305669	34180.0	757.0	27646.0	5777.0	6452.355165
190	Vietnam	305832	6908.0	47.0	2896.0	3965.0	7447.814334
191	West Bank and Gaza	305833	307838.0	3492.0	300524.0	3822.0	5157.568578
192	Yemen	305834	6731.0	1319.0	3399.0	2013.0	NaN
193	Zambia	305835	94751.0	1276.0	91594.0	1881.0	4223.906936

Bubble Chart

Cleansing with NaN

df_lastday_with_gdp = df_lastday_with_gdp.dropna()

	Country	SNo	Confirmed	Deaths	Recovered		elete a row if any field has NaN
0	Afghanistan	305665	70111.0	2899.0	57281.0	9931.0	1955.006208
1	Albania	305666	132297.0	2449.0	129215.0	633.0	13364.155400
2	Algeria	305667	128456.0	3460.0	89419.0	35577.0	15481.787620
4	Angola	305669	34180.0	757.0	27646.0	5777.0	6452.355165
5	Antigua and Barbuda	305670	1259.0	42.0	1206.0	11.0	26868.133520
188	Vanuatu	305830	4.0	1.0	3.0	0.0	3221.149823
190	Vietnam	305832	6908.0	47.0	2896.0	3965.0	7447.814334
101	Wast Rank and Gaza	205022	2079290	3/102 N	2005240	2022 N	5157 560570

Bubble Chart

Summary

- DataFrame selection
 - **–** .loc
- DataFrame manipulation
 - groupby
 - .join