2019年全國大專校院智慧創新暨跨域整合創作競賽企劃書

競賽主題:

- 1. 物聯網組
- 2. 智慧機器組
- 3. 數位永續科技組
- □ 4. 體感互動科技組
- □ 5. 電商與金融科技組
- 一、 創作主題
- 1. 題目

智慧分類垃圾桶(Intelligent Trash Can)

2. 實用功能描述

作品簡介:

根據聯合國公佈的報告顯示,人類每年製造九十億噸塑膠且回收率僅 只有百分之九。在科技日新月異的現今,能運用科技創造環保綠色城 市更是值得關注的議題。大多數的無法被大自然分解的垃圾往往被送 往焚化爐,或是倒往海裡造成不少空氣與垃圾汙染。其受害者不僅僅 是生活在焚化爐周遭的居民們,也危害到其生活在大海中的動物們, 尤其是塑膠袋影響最為甚遠。而本專題採用樹莓派為系統的主要核 心,搭配 Pi Camera 圖像擷取,以及結合 OpenCV 與 TensorFlow 所訓練 出來的圖像分類技術,來完成自動辨識垃圾種類,本專題可分類項目 分為紙類、厚紙板、塑膠類、玻璃類、鐵鋁罐共五種分類項目。而本 專題所配置的裝載桶為三個,其儲存方式為紙類與厚紙板、塑膠類與 玻璃類、鐵鋁罐分別放置於個別桶中,透過 Python 強大的功能完成 Firebase 資料庫的建立,使得資料記錄得更加完整,並且結合 IFTTT 與 LINE 提醒清潔人員分類桶內的狀況方便安排時間將回收垃圾進一步集 中處理。再來藉由樹莓派中 GPIO 接腳控制帶動外部的齒輪軸以及馬 達,進而讓垃圾分類功能實體化。最後透過 MIT App Inventor 2 讓使用 者可以隨時觀看垃圾桶的分類紀錄。

作品內容:

一、影像輸入與處理:

我們使用 Raspberry Pi 3B+ 如圖二、表二所示。作為主控制板以及 Raspberry Pi Camera Module V2 如圖一、表一所示。將分類平台上的 影像儲存於 Raspberry Pi 指定位置中。影像輸入進入 Raspberry Pi 之後,需先經過 OpenCV 將其輸入影像最佳化之後,再交由 TensorFlow 判斷其類別。

圖 — Raspberry Pi Camera

圖二 Raspberry Pi 3 Model B

表一 Raspberry Pi Camera 規格說明 表二 Raspberry Pi 3 B+規格說明

8MP Raspberry Pi Camera Module(v2)	規格
Image Sensor	Sony IMX219 image sensor in a fxed-focus module with integral IR filter
Resolution Still picture resolution	800 萬像素 3280×2464
Max image transfer rate	1080p30: 720p60; 640x480p90
Interface	15 Pin MIPI Camera Serial Interface (CSI-2)
Lens size Dimensions	1/4" 23 x 25 x 9mm

二、影像分類處理:

Raspberry Pi	規格
3 Model B	250-10
SoC	Broadcom BCM2837
CPU	1.2 GHz 64-bit quad-core
	ARM Cortex-A53
GPU	Dual Core VideoCore IV®
	Multimedia Co-Processor;
	Open GL ES 2.0;
	hardware-accelerated
	OpenVG; 1080p60 H.264
	high-profie decode
記憶體	1GB LPDDR2 (和 GPU
	共享)
視訊輸出	Composite RCA; HDMI
音訊輸出	3.5 mm jack; HDMI(1.3 &
	1.4)
儲存	microSD
USB	USB 2.0 x 4
Ethernet	10/100 RJ45
Wireless	802.11n
Bluetooth	Bluetooth 4.1; Bluetooth
	Low Energy(BLE)
GPIO	40-pin 2.54 mm (100 mil)
	expansion header: 2×20
	strip
工作電流	800 mA
尺寸	85mm x 56mm x 17mm
重量	429

我們利用將近五千多筆回收物與非回收物的影像資料送入 TensorFlow 中完成資料的分類如圖三所示。分類的項目因應本專題主要訴求(拯救海洋生物)主要分別為「金屬類」、「塑膠類」、「厚紙類」、「紙類」、「塑膠類」、「玻璃類」這五大類,未來將透過將藉由複數顆的樹莓派組成運算叢集的方式,增加訓練 Data,並透過再次訓練加深 Tensorflow 的運算效能,使得影像辨識的精準度更上一層樓如圖四所示。

圖三 TensorFlow 訓練數據圖檔

圖四整體系統 I/O 圖

三、傳動機構(分類功能實體化):

平台的移動方式為在整體機構後方增加一直流馬達底座以及軸承底座。透過直流馬達如圖五、圖七、表三所示、軸承如圖十五所示、皮帶輪、時規皮帶如圖十六所示、皮帶固定夾如圖十六所示五者相互結合完成了水平軸的移動方程式如圖十四所示,再透過 Raspberry Pi 的控制與感測器如圖所示回傳定位。使得直流馬達既可以精確地到達指定位置如圖所示。還能夠透過乘載物體的重量來控制速度的快慢。以高效率來為地球的能源盡一分心力。

圖五795直流馬達 圖六馬達驅動模組 圖

圖七、H橋馬達驅動模組

表三H橋馬達驅動模組規格表

表四 L298N 馬達驅動模組規格表

11.0.0	-70 12 (1—770 1— 70
	規格
輸入電壓	DC5V~27V
額定輸出電流	可以保持 5A 以
	內的持續電流
静態待機電流	只有 3mA 左右
PWM 信號頻率	20KHZ 以內

V V	C 1227 1211 - 7312 7
	規格
輸入電壓	DC5V~35V
額定輸出電流	2A/橋
静態待機電流	0∼36mA
最大功耗	20W

四、使用者介面:

我們透過 Python—Tkinter 強大的功能來利用物件導向的觀念進而完成及撰寫出淺顯易懂之使用者介面如圖八、圖九所示。讓第一次使用的使用者也能在短短時間內了解並成功的完成垃圾分類。

圖八、使用者介面(主畫面)

圖九、使用者介面(使用畫面)

圖十、本專案之系統架構圖

伍、作品功能統整

(一)、分類入桶

- 1.可圖像辨識分類項目有:
 - (1)塑膠類、(2)金屬類、(3)紙類、(4)厚紙類、(5)玻璃類
- 2.判斷物品是否在平台上:
 - (1)是:開啟相機,暫存目前畫面,並運作圖像辨識功能
 - (2)否:不做任何動作
- 3.放置正確回收桶/垃圾桶內:
 - (1) 將平台移動至該類的桶子上方
 - (2)放開閘門,使物品掉落於該桶子
- (二)、紀錄/統計分類狀態
 - 1.紀錄每次收取物品:
 - (1)收取物品類型
 - (2)收取物品時間
 - 2.統計總收取物品量
 - 3.統計總成功分類量
 - 4.統計各成功分類量
- (三)、使用者操作介面
 - 1.可以透過手機 APP 來讓使用者可以隨時觀看垃圾桶的分類紀錄。
 - 2.可以透過智慧垃圾桶上的觸控螢幕
 - (1)觀看本次的回收紀錄
 - (2)可以查詢過去紀錄
- 3. 作品與市場相關產品差異

在本專題之中,整體的核心架構全由 TensorFlow 的 Deep Learning 與 Machine Learning 完成,其中最重要的數據輸入只單單運用一顆 Raspberry Pi Camera 來決定其判斷資訊。這是本專題的賣點,因為我們不依藉其他感測器的輔助,只運用影像辨識來完成正確的垃圾分類。

二、 創意構想

1. 理論基礎

影像辨識對於機器學習而言是一項重要的任務。視覺是我們人生來就具有的能力,這對我們來說不需要對其進行任何努力輕易就可以達成,但對於電腦而言卻是一件難事。事實上,它對我們來說也不是那麼容易,我們大腦的一半以上的功能似乎直接或間接地參與了影像的轉換,只是不知道它有進行了多麼龐大運算將神經信號在腦中轉換成一張張圖片,要如何將大腦中繁雜的運算化為實體又是一項重大的挑戰。然而機器學習的目標是讓電腦能夠在沒有明確告知如何操作的情況下做某事,而我們只是提供某種一般結構,讓電腦可以有機會在運算中不斷從經驗中學習,類似於我們人類從經驗中學習的方式。

我們使用了 Google Cloud Vision API 來協助我們完成影像的辨識, 我們利用 Google Cloud Vision API 中的 labels 將圖片中的元素標籤化, 然後從中找尋這些標籤中是否有包含「紙」、「厚紙板」等常見的可回 收分類項目,但是, Cloud Vision 的結果並不像預期的那樣準確。這很 可能是因為 GCV API 是一種通用 API,只在區分許多不同環境中的數千 種不同的可能對象。但是對於我們的智慧分類垃圾桶來說,我們只需 要知道現在存在於影像中的物品,是否可以回收(也就是垃圾的材 質),狀且我們分類的環境並不會有多大的改變,甚至是一直維持一樣 的環境。因此我們需要改變其精神網路架構。我們將一個修改過的搽 **積神經網絡,根據自己的自定義數據進行訓練。具體來說,我們使用** 了 Inception-v3 架構在我們自己的訓練集和標籤上重新訓練了最後一 層。這個訓練集包括我們自己拍攝的照片以及我們在網上找到的其他 垃圾與可回收物品的訓練集。我所收集的訓練資料皆是普羅大眾常見 的可回收物,其分類如下:金屬、紙、厚紙板、玻璃、塑膠。而我們 的結果輸出判斷依據為在上述五種標籤中的任何一個的相似度大於給 定的數值,我們就知道該項目是可回收的,也可以知道該分往哪一 類。這讓我們可以利用強大的 Inception-V3 架構,充分利用其強大功 能,同時還可以針對我想要的環境進行專門的訓練。 我們使用 tensorflow 來訓練模型。

2. 設計創新說明

我們透過 Raspberry Pi 3 結合 camera 以及直流馬達實踐了垃圾自動分類,我們透過 Raspberry Pi 進行影像辨識,將其判斷結果將透過直流馬達、皮帶等傳輸結構依照原本設定的路線將該垃圾投入其指定的分類桶中,再將其結果上傳至 Filebase 以利使用者可以隨時隨地的查詢自己的分類紀錄。

3. 特殊功能描述

- 1. 垃圾自動分類至垃圾桶中
- 2. 透過Tensorflow影像辨識分辨出投入的垃圾種類
- 3. 將資料上傳至Filebase以利使用者可以觀看自己的分類紀錄

三、 系統架構

1. 架構說明

2. 「人機介面設計」(UI)與「使用者體驗」(UX)設計

四、計劃管理

工作階段	工作日數	工作內容
1		
2		
3		
4		
5		
6		

周	次	1	2	3	4	5	6	7	8
起始日期									
	1								
エ	2								
作	3								
階	4								
段	5								
	6								

五、 修改舊作參賽說明

- □ 本專案開發之作品未使用團隊成員曾獲競賽獎勵之作品。
- □ 本專案開發之作品採用團隊成員曾獲競賽獎勵之作品,至少應有50%差 異,請說明(參考切結書第十點之規定)。

六、 軟體清單

- 1. 作業系統環境
- □ Windows □ FreeBSD Linux

□ MacOSX □ MacOS Classic □其他
2. 主要開發程式語言
\square Assembly \square C \square C++ \square Java \square Perl
□ PHP ■ Python □ Ruby □ .NET □ 其他
3. 專案支援語言(可複選)
□ 中文 □ 英文 □ 其他
4. 開發環境
(1) C++ Builder(例)
(2) Arduino IDE(例)
(3) OpenCV(例)
七、權力分配
□ 依著作權法第 40 條之規定,由參賽學生與指導教授均等共有。
□ 其他比例分配表,請說明。