Adaptive Piecewise Polynomial Estimation via Trend Filtering

Presenter: Yandi Shen

April 4, 2017

Introduction

Regression problems:

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\epsilon}$$
 $E(\boldsymbol{\epsilon}) = \mathbf{0}, Cov(\boldsymbol{\epsilon}) = \sigma^2 \mathbb{I}_n$

How to estimate **f**?

- Nonparametric regression v.s. Parametric regression
- Parametric: fixed form of f,
 e.g. linear regression, GLM, regularized regression
- Nonparametric: No fixed form of ${\bf f}$, constrained to some function class ${\cal F}$

Motivation

- Parametric: easy to compute and interpret, require less data, but prior information
- Nonparametric: more adaptive, larger sample size
- Trend filtering (TF) falls into the category of nonparametric regression
- Nonparametric regression has a long history and a well-developed toolbox

Why do we want to add TF into this toolbox?

1. Piecewise Polynomials/Splines([De Boor et al., 1978])

- Fit piecewise polynomials instead of a global polynomial, more adaptivity
- In practice, we tend to use splines more often because splines are more "smooth" than piecewise polynomials
- Pros: easy to compute and interpret (using basis)
 Cons: Pre-specified knots, less adaptivity

Splines are smoother than piecewise polynomials!

2. Smoothing Splines([Wahba, 1990, Green and Silverman, 1993])

$$\underset{f \in \mathcal{W}_{(k+1)/2,2}}{\text{minimize}} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int_0^1 (f^{((k+1)/2)}(t))^2 dt$$

where $\mathcal{W}_{(k+1)/2,2}$ is the Sobolev space

- Can be recast into a generalized ridge regression (ℓ_2^2) , solution is piecewise polynomials with knots at distinct values of $\{x_1, \ldots, x_n\}$
- **Pros**: Better flexibility, nice computation cost $\mathcal{O}(n)$ **Cons**: Still not flexible enough, global shrinkage

Cubic smoothing splines (k = 3) with 15 degrees of freedom

3. Locally Adaptive Splines([Mammen et al., 1997])

$$\underset{f \in \mathcal{G}_K}{\text{minimize}} \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \cdot \mathsf{TV}(f^{(k)})$$

where G_k is the set of splines with knots as a subset of $\{x_1, \ldots, x_n\}$, $TV(\cdot)$ is the total variation penalty

- Less well-known, can be recast as a (generalized) Lasso
- Extremely similar to TF (solution & convergence rate)
- Pros: Nice adaptivity, minimax convergence rate under mild assumptions

Cons: Computationally intensive (slow at 10,000 points)

- Trend Filtering(TF) is a method that is adaptive, computationally easy, and also enjoys nice theoretical properties (minimax rate under mild assumptions)!
- Originally proposed in [Kim et al., 2009]

minimize
$$\frac{1}{2} ||y - u||_2^2 + \lambda \sum_{i=2}^{n-1} |u_{i-1} - 2u_i + u_{i+1}|$$

- It's important in the setup that $\{x_1, \ldots, x_n\}$ are **evenly** spaced (e.g. $x_i = i/n$ on [0,1])
- Because of the sparsity of ℓ_1 norm, the solution is piecewise linear (actually linear splines)

• A more general form:

$$\underset{u \in \mathbb{R}^n}{\mathsf{minimize}} \, \frac{1}{2} \|y - u\|_2^2 + \lambda \|D^{(k+1)}u\|_1$$

where $D^{(k+1)}$ is the (k+1)-st discrete difference operator.

• For k = 0,

$$D^{(1)} = \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix} \in \mathbb{R}^{(n-1) \times n}$$

• For higher orders, $D^{(k+1)} \equiv D^{(1)} \cdot D^{(k)}$

• For k = 1 (same problem in [Kim et al., 2009]),

$$D^{(2)} = \begin{bmatrix} 1 & -2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & -2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -2 & 1 \end{bmatrix} \in \mathbb{R}^{(n-2) \times n}$$

- Under the setup of evenly-spaced $\{x_1, \ldots, x_n\}$, $D^{(k+1)}u$ is a **discrete** version of the derivative of order (k+1)
- Compare with smoothing splines, we may ask:

Will the solution of TF be piecewise polynomials/splines?

TF fit for k = 0, k = 1 and k = 2:

 Remark: the original problem is discrete, we need a continuous-time representation of TF (if such exists) to actually make the claim

One Application of TF

• For k = 0,

minimize
$$\frac{1}{2} ||y - u||_2^2 + \lambda \sum_{i=1}^{n-1} |u_{i+1} - u_i|$$

- This is total-variation denoising([Rudin et al., 1992])
- Equivalently, 1-d fused Lasso problem with only the fuse penalty term([Tibshirani et al., 2005])
- Total Variation denoising has wide applications in signal processing

Computation

$$\underset{u \in \mathbb{R}^n}{\mathsf{minimize}} \, \frac{1}{2} \|y - u\|_2^2 + \lambda \|D^{(k+1)}u\|_1$$

Two algorithms:

- Single tuning λ : use the primal-dual interior point algorithm introduced in [Kim et al., 2009], worst $\mathcal{O}(n^{3/2})$
- A path algorithm for all λ : consider the generalized Lasso problem with general penalty matrix D

$$\underset{\beta \in \mathbb{R}^p}{\mathsf{minimize}} \, \frac{1}{2} \| y - X\beta \|_2^2 + \lambda \| D\beta \|_1$$

use the algorithm proposed in [Tibshirani et al., 2011], order $\mathcal{O}(n)$ for each critical point of the solution path

Summary of Results

Nice Adaptivity

- A continuous-time representation for TF does exist
- For k = 0, 1, solution is constant/linear splines, and exactly the same as locally adaptive splines
- For $k \ge 2$, solution is piecewise polynomials

Nice Computation

- Two efficient algorithms to solve single λ or all λ
- Not much worse than smoothing splines $(\mathcal{O}(n^{3/2})$ v.s. $\mathcal{O}(n)$, much faster than locally adaptive splines

Nice Convergence Rate

 Under mild conditions, TF has same convergence rate as locally adaptive splines, thus achieves minimax rate

References

De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., and De Boor, C. (1978).

A practical guide to splines, volume 27.

Springer-Verlag New York.

Green, P. J. and Silverman, B. W. (1993).

Nonparametric regression and generalized linear models: a roughness penalty approach.

CRC Press.

Kim, S.-J., Koh, K., Boyd, S., and Gorinevsky, D. (2009).

 ℓ_1 trend filtering.

SIAM review, 51(2):339–360.

Mammen, E., van de Geer, S., et al. (1997).

Locally adaptive regression splines.

The Annals of Statistics, 25(1):387–413.

References

Rudin, L. I., Osher, S., and Fatemi, E. (1992).

Nonlinear total variation based noise removal algorithms.

Physica D: Nonlinear Phenomena, 60(1-4):259-268.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005).

Sparsity and smoothness via the fused lasso.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(1):91–108.

Tibshirani, R. J., Taylor, J. E., Candes, E. J., and Hastie, T. (2011). *The solution path of the generalized lasso.*

Stanford University.

Wahba, G. (1990).

Spline models for observational data.

SIAM.

Thank you for listening!

Questions?