Uniform cost search vs. A* graph search

Essentially, we have replaced the path function g(n) in Uniform cost search with the evaluation function f(n).

Uniform cost search vs. A* graph search

- Essentially, we have replaced the path function g(n) in Uniform cost search with the evaluation function f(n).
- Can we be sure that when the goal state is popped out of the priority queue in A^* graph search the function f(n) will be minimized?

1. Consistent heuristic:

$$h(n) \leq c(n, a, n') + h(n')$$

1. Consistent heuristic:

$$h(n) \leq c(n, a, n') + h(n')$$

$$f(n') = g(n') + h(n')$$

1. Consistent heuristic:

$$h(n) \leq c(n, a, n') + h(n')$$

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$

1. Consistent heuristic:

$$h(n) \leq c(n, a, n') + h(n')$$

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
 $\geq g(n) + h(n)$

1. Consistent heuristic:

$$h(n) \le c(n, a, n') + h(n')$$

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$\geq f(n)$$

A* graph search optimality

► For any node n, when n is popped out of the priority queue, we have found minimum value for f(n). Is the above sentence correct?

A* graph search optimality

- For any node n, when n is popped out of the priority queue, we have found minimum value for f(n). Is the above sentence correct?
- ► For any node n, when n is popped out of the priority queue, we have found minimum value for g(n).

 Is the above sentence correct?

A* graph search optimality

- ► For any node n, when n is popped out of the priority queue, we have found minimum value for f(n).

 Is the above sentence correct?
- ► For any node n, when n is popped out of the priority queue, we have found minimum value for g(n).

 Is the above sentence correct?
- ▶ Will A* graph search give minimum path length to goal state?

Properties of heuristic function

1. Consistent heuristic:

$$h(n) \leq c(n, a, n') + h(n')$$

Properties of heuristic function

1. Consistent heuristic:

$$h(n) \leq c(n, a, n') + h(n')$$

- 2. Admissibility
 - ▶ Consistency ⇒ Admissibility

Is A* search better than Uniform cost search?

Is A* search better than Uniform cost search?

Figure 3.25 Map of Romania showing contours at f=380, f=400, and f=420, with Arad as the start state. Nodes inside a given contour have f-costs less than or equal to the contour value.

► A* search is complete.

- ► A* search is complete.
- ► A* search is optimally efficient.

- ► A* search is complete.
- A* search is optimally efficient.
- In the worst case, A* search will expand all nodes with f(n) ≤ C*.
 (Time complexity analysis is difficult.)

- ► A* search is complete.
- A* search is optimally efficient.
- In the worst case, A* search will expand all nodes with f(n) ≤ C*.
 (Time complexity analysis is difficult.)
- Number of nodes generated is still exponential in *d*.

Further Improvements

► Iterative deepening A* (IDA*)

Further Improvements

- ► Iterative deepening A* (IDA*)
- Recursive best-first search (RBFS)
- ► Memory-bounded A* (MA*)

Heuristic Functions for 8-puzzle problem

Start State

Goal State

Heuristic Functions for 8-puzzle problem

Start State

Goal State

1. Number of misplaced tiles (h_1)

Heuristic Functions for 8-puzzle problem

 1
 2

 3
 4
 5

 6
 7
 8

Start State

Goal State

- 1. Number of misplaced tiles (h_1)
- 2. Manhattan distance (h_2)