Package 'CompQuadForm'

February 19, 2015

Type Package				
Title Distribu	tion function of quadratic forms in normal variables			
Version 1.4.1				
Date 2013-06	Date 2013-06-16			
Author P. Lat	faye de Micheaux			
Maintainer F	P. Lafaye de Micheaux <lafaye@dms.umontreal.ca></lafaye@dms.umontreal.ca>			
Description Computes the distribution function of quadratic forms in normal variables using Imhof's method, Davies's algorithm, Farebrother's algorithm or Liu et al.'s algorithm.				
License GPL	(>= 2)			
LazyLoad ye	s			
NeedsCompil	ation yes			
Repository C	Repository CRAN			
Date/Publication 2013-06-16 17:46:57				
R topics o	documented:			
fareb imbo	es			
Index	8			
davies	Davies method			
Description				

Distribution function (survival function in fact) of quadratic forms in normal variables using Davies's method.

2 davies

Usage

Arguments

q	value point at which distribution function is to be evaluated
lambda	the weights $\lambda_1, \lambda_2,, \lambda_n$, i.e. distinct non-zero characteristic roots of $A\Sigma$
h	respective orders of multiplicity n_j of the λs
delta	non-centrality parameters δ_j^2
sigma	coefficient σ of the standard Gaussian
lim	maximum number of integration terms. Realistic values for lim range from 1000 if the procedure is ti be called repeatedly up to 50 000 if it is to be called only occasionally
acc	error bound. Suitable values for acc range from 0.001 to 0.00005 which should

be adequate for most statistical purposes.

Details

Computes P[Q>q] where $Q=\sum_{j=1}^r \lambda_j X_j + \sigma X_0$ where X_j are independent random variables having a non-central chi^2 distribution with n_j degrees of freedom and non-centrality parameter $delta_j^2$ for j=1,...,r and X_0 having a standard Gaussian distribution.

Value

trace	vector, indicating performance of procedure, with the following components: 1. absolute value sum, 2. total number of integration terms, 3. number of integrations, 4. integration interval in main integration, 5. truncation point in initial integration, 6. standard deviation of convergence factor term, 7. number of cycles to locate integration parameters
ifault	fault indicator: 0: no error, 1: requested accuracy could not be obtained, 2: round-off error possibly significant, 3: invalid parameters, 4: unable to locate integration parameters
Qq	P[Q>q]

Author(s)

Pierre Lafaye de Micheaux (<lafaye@dms.umontreal.ca>) and Pierre Duchesne (<duchesne@dms.umontreal.ca>)

References

P. Duchesne, P. Lafaye de Micheaux, Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods, *Computational Statistics and Data Analysis*, Volume 54, (2010), 858-862

Davies R.B., Algorithm AS 155: The Distribution of a Linear Combination of chi-2 Random Variables, Journal of the Royal Statistical Society. Series C (Applied Statistics), 29(3), p. 323-333, (1980)

farebrother 3

Examples

```
# Some results from Table 3, p.327, Davies (1980)
round(1-davies(1,c(6,3,1),c(1,1,1))Qq,4)
round(1-davies(7, c(6,3,1), c(1,1,1))$Qq,4)
round(1-davies(20,c(6,3,1),c(1,1,1))$Qq,4)
round(1-davies(2,c(6,3,1),c(2,2,2))$Qq,4)
round(1-davies(20, c(6,3,1), c(2,2,2))$Qq,4)
round(1-davies(60,c(6,3,1),c(2,2,2))$Qq,4)
round(1-davies(10, c(6,3,1), c(6,4,2))$Qq,4)
round(1-davies(50, c(6,3,1), c(6,4,2))$Qq,4)
round(1-davies(120, c(6,3,1), c(6,4,2))$Qq,4)
round(1-davies(20, c(7,3), c(6,2), c(6,2))$Qq,4)
round(1-davies(100,c(7,3),c(6,2),c(6,2))Qq,4)
round(1-davies(200, c(7,3), c(6,2), c(6,2))$Qq,4)
round(1-davies(10, c(7,3), c(1,1), c(6,2))$Qq,4)
round(1-davies(60, c(7,3), c(1,1), c(6,2))$Qq,4)
round(1-davies(150,c(7,3),c(1,1),c(6,2))$Qq,4)
round(1-davies(70, c(7,3,7,3), c(6,2,1,1), c(6,2,6,2))$Qq,4)
round(1-davies(160,c(7,3,7,3),c(6,2,1,1),c(6,2,6,2))Qq,4)
round(1-davies(260,c(7,3,7,3),c(6,2,1,1),c(6,2,6,2))$Qq,4)
round(1-davies(-40, c(7, 3, -7, -3), c(6, 2, 1, 1), c(6, 2, 6, 2))$Qq,4)
round(1-davies(40, c(7, 3, -7, -3), c(6, 2, 1, 1), c(6, 2, 6, 2))$Qq, 4)
round(1-davies(140, c(7, 3, -7, -3), c(6, 2, 1, 1), c(6, 2, 6, 2))$Qq,4)
```

farebrother

Ruben/Farebrother method

Description

Distribution function (survival function in fact) of quadratic forms in normal variables using Farebrother's algorithm.

Usage

Arguments

q value point at which distribution function is to be evaluated the weights $\lambda_1, \lambda_2, ..., \lambda_n$, i.e. the distinct non-zero characteristic roots of $A\Sigma$ vector of the respective orders of multiplicity m_i of the λ s

4 imhof

delta the non-centrality parameters $delta_i$ maxit the maximum number of term K in equation below eps the desired level of accuracy mode if mode>0 then $\beta = mode * \lambda_{min}$ otherwise $\beta = \beta_B = 2/(1/\lambda_{min} + 1/\lambda_{max})$

Details

Computes P[Q>q] where $Q = \sum_{j=1}^n \lambda_j \chi^2(m_j, \delta_j^2)$. P[Q<q] is approximated by $\sum_k = 0^{K-1} a_k P[\chi^2(m+2k) < q/\beta]$ where $m = \sum_{j=1}^n m_j$ and β is an arbitrary constant (as given by argument mode).

Value

Qq
$$P[Q>q]$$

Author(s)

Pierre Lafaye de Micheaux (<lafaye@dms.umontreal.ca>) and Pierre Duchesne (<duchesne@dms.umontreal.ca>)

References

P. Duchesne, P. Lafaye de Micheaux, Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods, *Computational Statistics and Data Analysis*, Volume 54, (2010), 858-862

Farebrother R.W., Algorithm AS 204: The distribution of a Positive Linear Combination of chi-squared random variables, Journal of the Royal Statistical Society, Series C (applied Statistics), Vol. 33, No. 3 (1984), p. 332-339

Examples

```
# Some results from Table 3, p.327, Davies (1980)
farebrother(1,c(6,3,1),c(1,1,1),c(0,0,0))
```

imhof Imhof method.

Description

Distribution function (survival function in fact) of quadratic forms in normal variables using Imhof's method.

Usage

```
imhof(q, lambda, h = rep(1, length(lambda)), delta = rep(0, length(lambda)), epsabs = <math>10^{(-6)}, epsrel = 10^{(-6)}, limit = 10000)
```

imhof 5

Arguments

q value point at which the survival function is to be evaluated lambda distinct non-zero characteristic roots of $A\Sigma$ h respective orders of multiplicity of the λs delta non-centrality parameters epsabs absolute accuracy requested epsrel relative accuracy requested limit limit determines the maximum number of subintervals in the partition of the given integration interval

Details

Let $X = (X_1, \dots, X_n)'$ be a column random vector which follows a multidimensional normal law with mean vector $\mathbf{0}$ and non-singular covariance matrix $\mathbf{\Sigma}$. Let $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)'$ be a constant vector, and consider the quadratic form

$$Q = (\boldsymbol{x} + \boldsymbol{\mu})' \boldsymbol{A} (\boldsymbol{x} + \boldsymbol{\mu}) = \sum_{r=1}^{m} \lambda_r \chi_{h_r; \delta_r}^2.$$

The function imhof computes P[Q > q].

The λ_r 's are the distinct non-zero characteristic roots of $A\Sigma$, the h_r 's their respective orders of multiplicity, the $delta_r$'s are certain linear combinations of μ_1,\ldots,μ_n and the $\chi^2_{h_r;\delta_r}$ are independent χ^2 -variables with h_r degrees of freedom and non-centrality parameter $delta_r$. The variable $\chi^2_{h,\delta}$ is defined here by the relation $\chi^2_{h,\delta} = (X_1+\delta)^2 + \sum_{i=2}^h X_i^2$, where X_1,\ldots,X_h are independent unit normal deviates.

Value

Qq P[Q>q] abserr estimate of the modulus of the absolute error, which should equal or exceed abs(i-result)

Author(s)

Pierre Lafaye de Micheaux (<lafaye@dms.umontreal.ca>) and Pierre Duchesne (<duchesne@dms.umontreal.ca>)

References

- P. Duchesne, P. Lafaye de Micheaux, Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods, *Computational Statistics and Data Analysis*, Volume 54, (2010), 858-862
- J. P. Imhof, Computing the Distribution of Quadratic Forms in Normal Variables, *Biometrika*, Volume 48, Issue 3/4 (Dec., 1961), 419-426

6 liu

Examples

```
# Some results from Table 1, p.424, Imhof (1961)
# Q1 with x = 2
round(imhof(2,c(0.6,0.3,0.1))$Qq,4)
# Q2 with x = 6
round(imhof(6,c(0.6,0.3,0.1),c(2,2,2))$Qq,4)
# Q6 with x = 15
round(imhof(15,c(0.7,0.3),c(1,1),c(6,2))$Qq,4)
```

liu

Liu's method

Description

Distribution function (survival function in fact) of quadratic forms in normal variables using Liu et al.'s method.

Usage

```
liu(q, lambda, h = rep(1, length(lambda)), delta = rep(0, length(lambda)))
```

Arguments

q	value point at which the survival function is to be evaluated
lambda	distinct non-zero characteristic roots of $A\Sigma$, i.e. the λ_i 's
h	respective orders of multiplicity h_i 's of the λ 's
delta	non-centrality parameters δ_i 's

Details

New chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables.

Computes P[Q>q] where $Q = \sum_{j=1}^{n} \lambda_{j} \chi^{2}(h_{j}, \delta_{j})$.

This method does not work as good as the Imhof's method. Thus Imhof's method should be recommended.

Value

$$Qq P[Q>q]$$

Author(s)

Pierre Lafaye de Micheaux (<lafaye@dms.umontreal.ca>) and Pierre Duchesne (<duchesne@dms.umontreal.ca>)

liu 7

References

P. Duchesne, P. Lafaye de Micheaux, Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods, *Computational Statistics and Data Analysis*, Volume 54, (2010), 858-862

H. Liu, Y. Tang, H.H. Zhang, A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables, *Computational Statistics and Data Analysis*, Volume 53, (2009), 853-856

Examples

```
# Some results from Liu et al. (2009)
# Q1 from Liu et al.
round(liu(2,c(0.5,0.4,0.1),c(1,2,1),c(1,0.6,0.8)),6)
round(liu(6,c(0.5,0.4,0.1),c(1,2,1),c(1,0.6,0.8)),6)
round(liu(8,c(0.5,0.4,0.1),c(1,2,1),c(1,0.6,0.8)),6)
# Q2 from Liu et al.
round(liu(1,c(0.7,0.3),c(1,1),c(6,2)),6)
round(liu(6,c(0.7,0.3),c(1,1),c(6,2)),6)
round(liu(15,c(0.7,0.3),c(1,1),c(6,2)),6)
# Q3 from Liu et al.
round(liu(2,c(0.995,0.005),c(1,2),c(1,1)),6)
round(liu(8,c(0.995,0.005),c(1,2),c(1,1)),6)
round(liu(12,c(0.995,0.005),c(1,2),c(1,1)),6)
# Q4 from Liu et al.
round(liu(3.5,c(0.35,0.15,0.35,0.15),c(1,1,6,2),c(6,2,6,2)),6)
round(liu(8,c(0.35,0.15,0.35,0.15),c(1,1,6,2),c(6,2,6,2)),6)
round(liu(13,c(0.35,0.15,0.35,0.15),c(1,1,6,2),c(6,2,6,2)),6)
```

Index

```
*Topic distribution
davies, 1
farebrother, 3
imhof, 4
liu, 6
*Topic htest
davies, 1
farebrother, 3
imhof, 4
liu, 6

davies, 1
farebrother, 3
imhof, 4
liu, 6

ruben (farebrother), 3
```