

THROUGH MODELING THE PATHWAYS OF DISEASE AND MULTIPLE RISK FACTORS

Yihe Yang, Noah Lorincz-Comi, Xiaofeng Zhu, Ph.D.

Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University

IMPROVING THE ACCURACY AND INTERPRETATION OF POLYGENIC RISK SCORE

ABSTRACT

Motivation

PRS has become a standard tool for quantifying the genetic risk of complex diseases.

- Traditional PRS typically only explains a limited amount of disease heritability.
- Despite several improvements to the PRS, the gap between PRS-explained variance and disease heritability remains significant.
- Minimax risk theory also implies that the existing PRS methods cannot be improved without additional information on the disease's biological mechanism.

Method

- Genetic variants can influence a disease via the "genetic variants risk factors disease" pathway.
- Substantial portion of the genetic associations with complex diseases may be due to intermediary associations with risk factors.
- Using the pathway's information can theoretically increase the accuracy and interpretability of a PRS
- We build a composite PRS with direct and indirect genetic effects, which can increase the accuracy and interpretability of a PRS.

Conclusion

- Composite PRS is epidemiologically interpretable and can improve disease prediction accuracy.
- The significant improvement in prediction accuracy over a traditional PRS can be attributed to the leveraging of information on multiple risk factors for the disease of interest.
- Composite PRS also has a clear interpretation of risk factors affecting an outcome.
- We will apply the new composite PRS method to the prediction of cardiovascular disease outcomes in UK Biobank data and compare our method to existing alternatives.

Step I: Construction of CAD Pathway

Chromosome 1 position (CELSR2 locus)

Step II: Estimation of Exposure PRS

Step III: Selection of Significant PRS

Step IV: Inference of Composite PRS

Gaussian Outcome (Stacked C+T)

Model

- $x_{i1}, ..., x_{ip}$ are p exposures and y_i is an outcome.
- The model for x_{ij} is

$$x_{ij} = \eta_{ij} + u_{ij},$$

where $\eta_{ij} = \sum_{s=1}^{m} g_{is} \beta_{js}$ is the PRS for x_{ij} .

- The model of y_i is

$$y_i = \eta_{i0}\theta_0 + \sum_{j=1}^p x_{ij}\theta_j + \mathbf{W}_i^{\mathsf{T}} \mathbf{\gamma} + u_{i0}$$
$$= \sum_{j=0}^p \eta_{ij}\theta_j + \mathbf{W}_i^{\mathsf{T}} \mathbf{\gamma} + u_j^*$$

where \mathbf{W}_i is a vector of covariate.

PRS Estimation

- Let **G** is the sample matrix of G_i , \mathbf{x}_j is the sample vector of x_{ij} . Then

$$\widehat{b}_{\mathbf{j}} = (\widehat{b}_{1\mathbf{j}}, \dots, \widehat{b}_{m\mathbf{j}})^{\mathsf{T}} = \widehat{\mathbf{D}}^{-1} \mathbf{G}^{\mathsf{T}} \mathbf{x}_{\mathbf{j}} / n$$

where $\widehat{\mathbf{D}}$ is the diagonal variance matrix of \mathbf{G} .

- PRS methods estimate the effect size β by

$$\widehat{b}_{j} = \mathbf{D}^{-\frac{1}{2}} \mathbf{R} \mathbf{D}^{\frac{1}{2}} \beta_{j} + \boldsymbol{\epsilon}_{j},$$

where

$$\epsilon_{\rm j} \sim \mathcal{N}\left(0, \sigma_{u_{\rm j}u_{\rm j}}^2 \mathbf{D}^{-\frac{1}{2}} \mathbf{R} \mathbf{D}^{-1\frac{1}{2}}\right).$$

- The PRS estimate of x_i is $\widehat{\boldsymbol{\eta}}_j = \mathbf{G}_i^{\mathsf{T}} \widehat{\boldsymbol{\beta}}_j.$

Coefficient Selection

- Suppose we have obtained the estimated PRS $\widehat{\boldsymbol{\eta}}_0, \widehat{\boldsymbol{\eta}}_1, ..., \widehat{\boldsymbol{\eta}}_p$.
- For normalization, we reweight each PRS by $\widehat{\boldsymbol{\eta}}_j = \frac{\widehat{\boldsymbol{\eta}}_j}{se(\widehat{\boldsymbol{\eta}}_i)}.$
- We apply a penalized likelihood to estimate $\boldsymbol{\vartheta} = \left(\theta_0, \theta_1, \dots, \theta_p, \boldsymbol{\gamma}^{\mathsf{T}}\right)^{\mathsf{T}}$:

$$\widehat{\boldsymbol{\vartheta}} = \operatorname{argmin} \left\{ \sum_{i=1}^{n} -\log(l_i(\boldsymbol{\vartheta})) + \sum_{i=1}^{p} \lambda_i |\vartheta_i| \right\},\,$$

where $l_i(\vartheta)$ is the likelihood function.

Inference

- The variant weights of the novel composite PRS is

$$\widehat{\boldsymbol{\beta}}_{com} = \sum_{j=0}^{p} \widehat{\boldsymbol{\beta}}_{j} \, \widehat{\theta}_{j}$$

The risk prediction of y_i is yielded by the conditional probability

$$p(y_i|\mathbf{G}_i, \mathbf{W}_i) = \frac{\exp(\mathbf{G}_i^{\mathsf{T}}\widehat{\boldsymbol{\beta}}_{com} + \mathbf{W}_i^{\mathsf{T}}\widehat{\boldsymbol{\gamma}})}{\exp(\mathbf{G}_i^{\mathsf{T}}\widehat{\boldsymbol{\beta}}_{com} + \mathbf{W}_i^{\mathsf{T}}\widehat{\boldsymbol{\gamma}}) + 1}.$$

The contribution of each exposures can be model by the Pratt index:

$$PI(\mathbf{x}_j) = \hat{\theta}_j \times \hat{r}_j$$

where \hat{r}_j is the marginal regression coefficient between $\widehat{\boldsymbol{\eta}_j}$ and \mathbf{y} .

xxz110@case.edu