

Sûreté Aérienne 1

Ilias SAGHIR – Salaheddine ELKADIRI

Objectifs

• Probabilité de conflit :

- Trajectoires parallèles et croisées
- Avec et sans incertitude *along-track*
- Distribution du temps de conflit
- Distribution de la position de conflit

Modèle

- R.A. Paielli and H. Erzberger (1997)
- Coordonnées along/cross-track
- Processus gaussiens : incertitudes
- Unités et valeurs d'usage
- Trajectoires discrétisées

$$x_{a,t} = vt + M_{a,t}, \quad x_{c,t} = M_{c,t},$$

 $K_a(t,s) = \mathbb{C}\text{ov}(M_{a,t}, M_{a,s}) = r_a^2 t^2,$
 $K_c(t,s) = \mathbb{C}\text{ov}(M_{c,t}, M_{c,s}) = \sigma_c^2 (1 - e^{-2\frac{r_c}{\sigma_c}vt})e^{-\frac{r_c}{\sigma_c}v(s-t)}.$

Probabilité de conflit

Probabilité de conflit

• Trajectoires parallèles, $r_a=0$

• $\mathbb{P}(Conflit) = f(d)$

• Méthode : Monté-Carlo naïf

• Constat : Décroissance rapide avec la distance

Echantillonnage préférentiel : Moyenne

- Changement de probabilité : simulation sous une distance entre trajectoires plus réduite
- Décalage par la même quantité
- Distance plus petite : Probabilité plus élevée
- Monte-Carlo : $\mathbb{P}(A) pprox rac{1}{N} \sum\limits_{i=1}^{N} f(Z^{(i)}) rac{g(Z^{(i)})}{g^*(Z^{(i)})}$
- Choix de d^* de manière à minimiser la variance

Echantillonnage préférentiel : Variance

- Changement de probabilité : simulation sous un variance plus élevée
- Multiplication par la même quantité α
- Variance plus élevée : incertitude plus importante
- Choix de α de manière à minimiser la variance

$$\mathbb{C}ov_c \to \alpha \mathbb{C}ov_c$$

Résultats préliminaires

- Plus performant qu'un Monté-Carlo classique
- Mais limité :
 - Agir uniformément (≠ localement) entraîne une variance élevée
 - Potentiel d'amélioration de l'implémentation

Changement de moyenne adaptatif

- Changement gaussien standard
- Estimation du changement optimal
- Algorithme de Lelong et Jourdain
- Implémentation effective pour $d \leq 3$
- Peu utile pour les distances plus grandes

$$\mathbb{E}[h(X)] = \mathbb{E}\left[h(X + \theta) e^{-\langle \theta, X \rangle - \|\theta\|^2/2}\right]$$

$$G_n(\theta) := \frac{1}{n} \sum_{k=1}^n f^2(X_k)(\theta - X_k) e^{-\langle \theta, X_k \rangle + \|\theta\|^2/2},$$

$$H_n(\theta) := \frac{1}{n} \sum_{k=1}^n f^2(X_k) \left(I_d + (\theta - X_k)(\theta - X_k)' \right) e^{-\langle \theta, X_k \rangle + \|\theta\|^2/2}$$

$$t_{k+1} = t_k - (H_n(t_k))^{-1} G_n(t_k)$$

Changement de moyenne amélioré

• Constat de l'algorithme Lelong-Joudain :

 Changement plus accentué vers la fin de trajectoire

• Où les collisions sont plus probables ?

Changement de moyenne amélioré

Changement de moyenne amélioré

- Meilleurs résultats
- À grande distance pour $r_a \neq 0$, moins de probabilité de collision (Incertitude along-track)

La méthode de Monte Carlo par Chaîne de Markov

- Renouvellement d'un instant à l'autre
- Le théorème Ergodique
- Les niveaux de splitting

$$X_{ki}^{A} := \begin{cases} \rho(X_{k(i-1)}^{A} - 2\mu_{k}) + \sqrt{1 - \rho^{2}}(Y_{ki} - 2\mu_{k}) + 2\mu_{k} & \text{si dans } A \\ X_{k(i-1)}^{A} & \text{sinon} \end{cases}$$

$$\frac{1}{n} \sum_{i=1}^{n} 1_{X_{ki}^{A} \in B} \quad \underset{n \to \infty}{\longrightarrow} \quad \mathbb{P}(Z \in B \mid Z \in A)$$

 $seuil = a_0 < a_1 < \dots < a_m = distance initiale$

$$\mathbb{P}(Z \in A) = \prod_{\ell=1}^{k} \mathbb{P}(Z \in A_{\ell} \mid Z \in A_{\ell-1})$$

Probabilités avec MCMC pour $r_a=0.25$

- Ordre de grandeur de 1E-20
- Difficultés pour calculer l'erreur
- Difficulté pour les trajectoires croisées
- Accord avec les probabilités calculées précédemment

Trajectoires croisées

• Perpendiculaires et inclinées :

ullet Distance de séparation minimale d

 Changement de moyenne localement accentué

Trajectoires croisées

•
$$r_a = 0$$
:

- Le changement demeure efficace
- Limité pour des trajectoires inclinées

- Beaucoup moins efficace.
- Rapprochement local inefficace à cause des incertitudes *along-track*

Distribution conditionnelle

Temps de conflit

Trajectoires parallèles

• Probabilité conditionnelle

$$\frac{\mathbb{P}(T=k)}{\mathbb{P}(T\leq 20)} = \mathbb{P}(T=k|T\leq 20)$$

•
$$r_a = 0$$
 et $r_a = 0.25$

• Distribution du temps de conflit en fonction de d

Temps de conflit $r_a = 0$

- Pour les petites distances la probabilité est importante au début
- Dépendance de la distance initiale

Temps de conflit $r_a = 0$

 Grandes distances : Echantillonnage d'importance

• Distributions :

Temps de conflit $r_a = 0.25$

• Petites distances (MC Naïf):

Figure 18 – Distribution conditionnelle du temps de conflit, de gauche à droite : $d=1,\,d=1.5,\,d=2$

• Grandes distances (Echantillonnage d'importance) :

▶ Présence d'un maximum

Position du conflit

 $r_a = 0$:

Collisions concentrées en fin de trajectoire

FIGURE 21 – Distribution conditionnelle de la position du conflit, de gauche à droite : d = 1, d = 3, d = 5 ($r_a = 0$), les traits représentent les trajectoires nominales des avions.

 $r_a \neq 0$:

Présence d'un maximum

FIGURE 22 – Distribution conditionnelle de la position du conflit, de gauche à droite : d = 1, d = 2, d = 3 ($r_a = 0.25$), les traits représentent les trajectoires nominales des avions.

Conclusion

Efficacité numérique Intuition visà-vis du modèle

Améliorations