Clustering

Introduction à l'apprentissage machine – GIF-4101 / GIF-7005

Professeur : Christian Gagné

Semaine 13

13.1 Quantification de vecteurs

Clustering

- Apprentissage supervisé
 - Étiquettes de classe disponibles
 - Méthodes paramétriques : observations suivent une certaine densité de probabilité p(x|C_i)
- Un groupe de données par classe
 - Selon une loi normale, moyenne et covariance partagées par toutes les données
 - En pratique, les données d'une classe peuvent tenir dans plusieurs groupes
 - Écriture cursive : différentes façons de faire des 1 et des 7
 - Détecter des intrusions dans un système informatique
- Clustering
 - Identifier des groupes « naturels » dans les données

Quantification de vecteur

- Quantification de vecteurs
 - Discrétiser un espace \mathbb{R}^D , en le séparant en K régions
- Quantification possible en utilisant K vecteurs de référence **m**_i
 - Assignation d'une donnée **x**^t au vecteur de référence le plus proche

$$b_i^t = \left\{ egin{array}{ll} 1 & i = \operatorname{argmin}_j \|\mathbf{x}^t - \mathbf{m}_j\| \ 0 & \operatorname{autrement} \end{array}
ight.$$

• Partitionnement de l'espace selon un diagramme de Voronoï

Compression et reconstruction

- Compression complète de l'espace \mathbb{R}^D en K vecteurs de référence \mathbf{m}_i
 - Chaque point dans l'espace d'origine est associé à un des vecteurs de référence (valeurs discrètes)
- Exemple de la colormap
 - Couleur d'un pixel dans une image : 24 bits
 - Transmettre image de 640 × 400 pixels : plus de 6M bits
 - Compression avec une colormap de 256 couleurs différentes
 - La colormap tient sur 6144 bits
 - Pixels réfèrent à la colormap : 8 bits par pixel
 - Image encodée sur 2M bits, soit gain 3 : 1
 - Perte d'information si plus de 256 couleurs différentes dans l'image
 - Choix de couleurs minimisant un certain critère
- Erreur de reconstruction

$$E(\{\mathbf{m}_i\}_{i=1}^K | \mathcal{X}) = \sum_t \sum_i b_i^t \|\mathbf{x}^t - \mathbf{m}_i\|^2$$

Compression par clustering

13.2 *K*-means

K-means

- Calcul de l'optimum de l'erreur de reconstruction $E(\{\mathbf{m}_i\}_{i=1}^K | \mathcal{X})$ selon les \mathbf{m}_i est impossible analytiquement
 - Position optimale des centres \mathbf{m}_i dépend des étiquettes b_i^t
 - Choix optimal des étiquettes b_i^t dépend de la position des centres \mathbf{m}_i !
- Résolution itérative, par approximations successives des b_i^t et \mathbf{m}_i
 - Estimer $b_i^t(j+1)$ selon les $\mathbf{m}_i(j)$
 - Estimer $\mathbf{m}_i(j+1)$ selon les $b_i^t(j+1)$
 - Répéter jusqu'à convergence ou épuisement des ressources

Estimation des centres

- Estimation des centres \mathbf{m}_i selon les étiquettes b_i^t
 - \mathbf{m}_i avec dérivée partielle de $E(\{\mathbf{m}_i\}_{i=1}^K | \mathcal{X})$ selon \mathbf{m}_j

$$\begin{split} \frac{\partial E(\{\mathbf{m}_i\}_{i=1}^K | \mathcal{X})}{\partial \mathbf{m}_j} &= \frac{\partial \sum_t \sum_i b_i^t (\mathbf{x}^t - \mathbf{m}_i)^\top (\mathbf{x}^t - \mathbf{m}_i)}{\partial \mathbf{m}_j} = 0 \\ &= -2 \sum_t b_j^t (\mathbf{x}^t - \mathbf{m}_j) = 0 \\ \mathbf{m}_j &= \frac{\sum_t b_j^t \mathbf{x}^t}{\sum_t b_j^t}, j = 1, \dots, K \end{split}$$

Algorithme des *K*-means

- 1. Initialiser les centres \mathbf{m}_i aléatoirement
- 2. Tant que le critère d'arrêt n'est pas atteint, répéter :
 - 2.1 Estimer les étiquettes des données b_i^t selon les positions des centres \mathbf{m}_i

$$b_i^t = \left\{ egin{array}{ll} 1 & i = \mathsf{argmin}_j \, \|\mathbf{x}^t - \mathbf{m}_j\| \ 0 & \mathsf{autrement} \end{array}
ight., \ i = 1, \dots, \mathcal{K}, \ t = 1, \dots, \mathcal{N}$$

2.2 Optimiser la position \mathbf{m}_i des centres avec les nouvelles étiquettes b_i^t

$$\mathbf{m}_i = rac{\sum_t b_i^t \mathbf{x}^t}{\sum_t b_i^t}, \ i = 1, \dots, \mathcal{K}$$

3. Retourner les valeurs des centres \mathbf{m}_i

Illustration de *K*-means

 ${\sf Par\ Mquantin,\ CC-BY-SA\ 4.0,\ https://commons.wikimedia.org/wiki/File:K-means.png.}$

Initialisation et critères d'arrêt

- \bullet Approches possibles pour initialisation des centres \mathbf{m}_i
 - Sélectionner aléatoirement K instances de $\mathcal X$
 - Calculer le vecteur moyen de toutes les données et initialiser K centres autour de cette moyenne, avec légères variations aléatoires pour chacun
 - Basée sur la composante principale
 - 1. Calculer la composante principale
 - 2. Projeter les données sur la droite correspondante
 - 3. Partitionner les données sur la droite en K groupes de taille égale
 - 4. Calculer la moyenne de chacun de ces groupes dans l'espace d'origine et les utiliser comme centres de départ
- Critères d'arrêt
 - Nombre maximum d'itérations
 - Variation de la position des centres inférieure à un seuil

Propriétés des K-means

- Aucune garanti de convergence vers l'optimum global
 - Issue dépend du choix des positions initiales des centres
- Convergence relativement rapide
- Nombre de centres à utiliser fixé à l'avance
 - Nécessite une connaissance du nombre de groupes formant les données
 - Si nombre de groupes inconnu, détermination de K empirique
 - Algorithme leader cluster : ajout incrémental de centres lorsque distance d'une donnée à son centre dépasse un seuil
 - Variation : ajouter un centre lorsque le nombre de données associées à un centre dépasse un seuil

Illustration de *K*-means : 2 groupes

Illustration de *K*-means : 3 groupes

Application : compression de la colormap

13.3 Densité-mélange

Densité-mélange

• Densité-mélange : combinaison de lois de densité associées à plusieurs groupes

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x}|\mathcal{G}_i) P(\mathcal{G}_i)$$

- Lien direct avec le cas supervisé
 - Formulation similaire, mais les groupes sont connus et identifiés dans le cas supervisé
 - Peut être utilisé avec des méthodes paramétriques, lorsqu'il y a beaucoup de groupes dans chaque classe
- Densité-mélange de composantes suivant une loi normale multivariée
 - ullet Densité de composantes : $(\mathbf{x}|\mathcal{G}_i) \sim \mathcal{N}_D(oldsymbol{\mu}_i, oldsymbol{\Sigma}_i)$
 - Paramétrisation : $\Phi = \{P(\mathcal{G}_i), \mu_i, \Sigma_i\}_{i=1}^K$
- ullet Utilise des échantillons non étiquetés, $\mathcal{X} = \{\mathbf{x}^t\}_{t=1}^N$

Probabilités de la densité-mélange

Densité-mélange

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x}|\mathcal{G}_i) P(\mathcal{G}_i)$$

• Proportion du groupe G_i dans le mélange, $P(G_i)$

$$\sum_i P(\mathcal{G}_i) = 1$$

• Probabilité que x appartient au groupe \mathcal{G}_i , $P(\mathcal{G}_i|x)$

$$P(G_i|\mathbf{x}) = \frac{P(G_i)p(\mathbf{x}|G_i)}{\sum_j P(G_j)p(\mathbf{x}|G_j)}$$

Variables indicatrices cachées

- ullet Variables indicatrices cachées $\mathbf{z}^t = \{z_1^t, \dots, z_K^t\}$
 - ullet z_i^t : association de la donnée \mathbf{x}^t au groupe \mathcal{G}_i
 - ullet On ne connaît pas les « véritables » valeurs des ${\mathcal Z}$: variables cachées du problème
 - Simplification de la notation : $\pi_i = P(\mathcal{G}_i)$
 - Distribution multinomiale : $z_i^t = 1$ indique si variable \mathbf{x}^t appartient au groupe \mathcal{G}_i , et $z_i^t = 0$ autrement

$$P(\mathbf{z}^t) = \prod_{i=1}^K \pi_i^{z_i^t}$$

Vraisemblance d'observation de x^t

$$p(\mathbf{x}^t|\mathbf{z}^t) = \prod_{i=1}^K p(\mathbf{x}^t|\mathcal{G}_i)^{z_i^t}$$

• Probabilité jointe $p(\mathbf{x}^t, \mathbf{z}^t)$

$$p(\mathbf{x}^t, \mathbf{z}^t) = P(\mathbf{z}^t)p(\mathbf{x}^t|\mathbf{z}^t)$$

Fonction de vraisemblance

 Fonction de log-vraisemblance de la paramétrisation Φ selon l'association des données de X aux groupes donnés par Z

$$L(\Phi|\mathcal{X},\mathcal{Z}) = \log \prod_{t} p(\mathbf{x}^{t}, \mathbf{z}^{t}|\Phi) = \log \prod_{t} \left[P(\mathbf{z}^{t}|\Phi) p(\mathbf{x}^{t}|\mathbf{z}^{t}, \Phi) \right]$$

$$= \log \prod_{t} \prod_{i} \left[\pi_{i}^{z_{i}^{t}} p(\mathbf{x}^{t}|\mathcal{G}_{i}, \Phi)^{z_{i}^{t}} \right]$$

$$= \sum_{t} \sum_{i} \left[\log \pi_{i}^{z_{i}^{t}} + \log p(\mathbf{x}^{t}|\mathcal{G}_{i}, \Phi)^{z_{i}^{t}} \right]$$

$$= \sum_{t} \sum_{i} z_{i}^{t} \left(\log \pi_{i} + \log p(\mathbf{x}^{t}|\mathcal{G}_{i}, \Phi) \right)$$

$$= \sum_{t} \sum_{i} z_{i}^{t} \left(\log \pi_{i} + \log \frac{\pi_{i} P(\mathcal{G}_{i}|\mathbf{x}^{t}, \Phi)}{\sum_{j} \pi_{j} P(\mathcal{G}_{j}|\mathbf{x}^{t}, \Phi)} \right)$$

13.4 Algorithme

Espérance-Maximisation

Algorithme Espérance-Maximisation

- Appartenance $h_i^t \equiv P(\mathcal{G}_i | \mathbf{x}^t, \Phi)$: association à un groupe \mathcal{G}_i d'une donnée \mathbf{x}^t selon la paramétrisation Φ (observation variable cachée \mathbf{z}^t)
- Log-vraisemblance dépend de la paramétrisation Φ selon l'association des variables cachées $\mathcal Z$
 - ullet Similairement, l'association des variables cachées ${\mathcal Z}$ dépend de paramétrisation Φ
 - \bullet On ne connaît pas le vrai ${\cal Z}$ (variables aléatoires cachées) : optimisation de l'espérance de vraisemblance
 - Optimisation de l'équation analytique impossible : approche itérative
- Algorithme Espérance-Maximisation (EM)
 - Étape E : calcul de l'espérance des associations aux groupes $h_i^t \equiv P(\mathcal{G}_i|\mathbf{x}^t,\Phi)$ avec paramétrisation Φ actuelle
 - Étape M : obtenir nouvelle paramétrisation Φ^{l+1} maximisant l'espérance de vraisemblance $\mathcal{Q}(\Phi|\Phi^l)$

$$\mathcal{Q}(\boldsymbol{\Phi}|\boldsymbol{\Phi}^{\prime}) = \mathbb{E}\left[L(\boldsymbol{\Phi}|\mathcal{X},\mathcal{Z})|\mathcal{X},\boldsymbol{\Phi}^{\prime}\right], \qquad \boldsymbol{\Phi}^{\prime+1} = \operatorname*{argmax}_{\boldsymbol{\Phi}} \mathcal{Q}(\boldsymbol{\Phi}|\boldsymbol{\Phi}^{\prime})$$

Étape E

Étant donné Φ^I, quelle est l'espérance de vraisemblance d'autres paramétrisations
 Φ possibles?

$$Q(\Phi|\Phi^{I}) = \mathbb{E}\left[L(\Phi|\mathcal{X},\mathcal{Z})|\mathcal{X},\Phi^{I}\right]$$
$$= \sum_{t}\sum_{i}\mathbb{E}[z_{i}^{t}|\mathcal{X},\Phi^{I}]\left(\log \pi_{i} + \log p(\mathbf{x}^{t}|\mathcal{G}_{i},\Phi)\right)$$

• Espérance d'étiquetage $\mathbb{E}[z_i^t|\mathcal{X},\Phi^l]$ donnée par :

$$\begin{split} \mathbb{E}[z_i^t | \mathcal{X}, & \Phi^I] &= \mathbb{E}[z_i^t | \mathbf{x}^t, \Phi^I] & \mathbf{x}^t \text{ sont iid} \\ &= P(z_i^t = 1 | \mathbf{x}^t, \Phi^I) & z_i^t \text{ est booléen} \\ &= \frac{P(z_i^t = 1 | \Phi^I) p(\mathbf{x}^t | z_i^t = 1, \Phi^I)}{p(\mathbf{x}^t | \Phi^I)} & \text{règle de Bayes} \\ &= \frac{\pi_i p(\mathbf{x}^t | \mathcal{G}_i, \Phi^I)}{\sum_j \pi_j p(\mathbf{x}^t | \mathcal{G}_j, \Phi^I)} = \frac{P(\mathcal{G}_i) p(\mathbf{x}^t | \mathcal{G}_i, \Phi^I)}{\sum_j P(\mathcal{G}_j) p(\mathbf{x}^t | \mathcal{G}_j, \Phi^I)} \\ &= P(\mathcal{G}_i | \mathbf{x}^t, \Phi^I) \equiv h_i^t \end{split}$$

Espérance de vraisemblance

- Interprétation de h^t_i
 - $h_i^t \equiv \mathbb{E}[z_i^t | \mathcal{X}, \Phi^I] = P(\mathcal{G}_i | \mathbf{x}^t, \Phi^I)$ donne la probabilité a posteriori que \mathbf{x}^t appartienne au groupe \mathcal{G}_i
 - Observation probabiliste de la variable cachée z_i^t
 - Réinterprétation d'un discriminant pour le clustering
 - h_i^t est une version relaxée de l'appartenance binaire b_i^t des K-means
- Espérance de vraisemblance résultante

$$Q(\Phi|\Phi^{I}) = \sum_{t} \sum_{i} h_{i}^{t} \left[\log \pi_{i} + \log p(\mathbf{x}^{t}|\mathcal{G}_{i}, \Phi^{I})\right]$$
$$= \sum_{t} \sum_{i} h_{i}^{t} \log \pi_{i} + \sum_{t} \sum_{i} h_{i}^{t} \log p(\mathbf{x}^{t}|\mathcal{G}_{i}, \Phi^{I})$$

Étape M

• Étape M : trouver une nouvelle paramétrisation Φ^{l+1} maximisant l'espérance de vraisemblance $\mathcal{Q}(\Phi|\Phi^l)$

$$\begin{array}{rcl} \Phi^{l+1} & = & \operatorname*{argmax} \mathcal{Q}(\Phi|\Phi^l) \\ \mathcal{Q}(\Phi|\Phi^l) & = & \sum_t \sum_i h_i^t \log \pi_i + \sum_t \sum_i h_i^t \log p(\mathbf{x}^t|\mathcal{G}_i, \Phi^l) \end{array}$$

- Maximum aux dérivées partielles nulles
 - π_i est une probabilité, donc contrainte que $\sum_i \pi_i = 1$, résolution par méthode de Lagrange

$$\frac{\partial \mathcal{Q}(\Phi|\Phi^I)}{\partial \pi_j} = \frac{\partial}{\partial \pi_j} \left[\sum_t \sum_i h_i^t \log \pi_i - \lambda \left(\sum_i \pi_i - 1 \right) \right] = 0$$

Résolution de Φ spécifique à la loi de probabilité

Résolution des probabilités a priori π_i

• Résolution de $\partial \mathcal{Q}(\Phi|\Phi^I)/\partial \pi_I$

$$\frac{\partial \mathcal{Q}(\Phi|\Phi^{l})}{\partial \pi_{j}} = \frac{\partial}{\partial \pi_{j}} \left[\sum_{t} \sum_{i} h_{i}^{t} \log \pi_{i} - \lambda \left(\sum_{i} \pi_{i} - 1 \right) \right] = 0$$

$$= \sum_{t} \frac{h_{j}^{t}}{\pi_{j}} - \lambda = 0$$

$$\pi_{i} \sum_{t} \frac{h_{i}^{t}}{\pi_{i}} = \pi_{i} \lambda \quad \Rightarrow \quad \sum_{i} \frac{\pi_{i}}{\pi_{i}} \sum_{t} h_{i}^{t} = \lambda \sum_{i} \pi_{i} = \lambda$$

$$\sum_{i} \frac{\pi_{i}}{\pi_{i}} \sum_{t} h_{i}^{t} = \sum_{t} \sum_{i} h_{i}^{t} = N \quad \Rightarrow \quad \lambda = N$$

$$\frac{1}{\pi_{i}} \sum_{t} h_{i}^{t} - N \quad = \quad 0 \quad \Rightarrow \quad \pi_{i} = \frac{\sum_{t} h_{i}^{t}}{N}$$

13.5 Algorithme EM pour loi

normale multivariée

Algorithme EM pour loi normale multivariée

- Instance spécifique de l'algorithme EM, $(\mathbf{x}^t | \mathcal{G}_i, \Phi) \sim \mathcal{N}_D(\mathbf{m}_i, \mathbf{S}_i)$
- Résolution du \mathbf{m}_j de $\Phi = \{\pi_i, \mathbf{m}_i, \mathbf{S}_i\}_{i=1}^K$

$$\frac{\partial}{\partial \mathbf{m}_{j}} \sum_{t} \sum_{i} h_{i}^{t} \log \frac{1}{(2\pi)^{0.5D} |\mathbf{S}_{i}|^{0.5}} \exp \left[-\frac{1}{2} (\mathbf{x}^{t} - \mathbf{m}_{i})^{\top} \mathbf{S}_{i}^{-1} (\mathbf{x}^{t} - \mathbf{m}_{i}) \right] = 0$$

$$\frac{\partial}{\partial \mathbf{m}_{j}} \sum_{t} \sum_{i} h_{i}^{t} (\mathbf{x}^{t} - \mathbf{m}_{i})^{\top} \mathbf{S}_{i}^{-1} (\mathbf{x}^{t} - \mathbf{m}_{i}) = 0$$

$$\sum_{t} h_{j}^{t} (\mathbf{x}^{t} - \mathbf{m}_{j}) (-1) = 0$$

$$\sum_{t} h_{j}^{t} \mathbf{x}^{t} = \mathbf{m}_{j} \sum_{t} h_{j}^{t} \mathbf{x}^{t}$$

$$\mathbf{m}_{j} = \frac{\sum_{t} h_{j}^{t} \mathbf{x}^{t}}{\sum_{s} h_{i}^{t}}$$

Résolution de S_j

• Résolution du \mathbf{S}_j de $\Phi = \{\pi_i, \mathbf{m}_i, \mathbf{S}_i\}_{i=1}^K$

$$\begin{split} \frac{\partial}{\partial \mathbf{S}_j} \sum_t \sum_i h_i^t \log \frac{1}{(2\pi)^{0.5D} |\mathbf{S}_i|^{0.5}} \exp \left[-\frac{1}{2} (\mathbf{x}^t - \mathbf{m}_i)^\top \mathbf{S}_i^{-1} (\mathbf{x}^t - \mathbf{m}_i) \right] &= 0 \\ \mathbf{S}_j &= \frac{\sum_t h_j^t (\mathbf{x}^t - \mathbf{m}_j) (\mathbf{x}^t - \mathbf{m}_j)^\top}{\sum_t h_j^t} \end{split}$$

- Résolution de S_j est subtile, requiert le théorème spectral
 - Pour plus de détails, voir : http://en.wikipedia.org/wiki/Estimation_of_covariance_matrices

Récapitulatif algorithme EM pour loi normale multivariée

• Étape E : évaluation de h_i^t , $i=1,\ldots,K$, $t=1,\ldots,N$

$$h_i^t = \frac{\pi_i |\mathbf{S}_i|^{-0.5} \exp\left[-0.5(\mathbf{x}^t - \mathbf{m}_i)^\top \mathbf{S}_i^{-1} (\mathbf{x}^t - \mathbf{m}_i)\right]}{\sum_j \pi_j |\mathbf{S}_j|^{-0.5} \exp\left[-0.5(\mathbf{x}^t - \mathbf{m}_j)^\top \mathbf{S}_j^{-1} (\mathbf{x}^t - \mathbf{m}_j)\right]}$$

• Étape M : évaluation de $\Phi = \{\pi_i, \mathbf{m}_i, \mathbf{S}_i\}_{i=1}^K$

$$\pi_{i} = \frac{\sum_{t} h_{i}^{t}}{N}$$

$$\mathbf{m}_{i} = \frac{\sum_{t} h_{i}^{t} \mathbf{x}^{t}}{\sum_{t} h_{i}^{t}}$$

$$\mathbf{S}_{i} = \frac{\sum_{t} h_{i}^{t} (\mathbf{x}^{t} - \mathbf{m}_{i}) (\mathbf{x}^{t} - \mathbf{m}_{i})^{\top}}{\sum_{t} h_{i}^{t}}$$

Illustration de l'algorithme EM

Illustration de l'algorithme EM

13.6 Algorithme EM général

Algorithme EM général

- 1. Générer une configuration initiale Φ^0
- 2. Tant que le critère d'arrêt n'est pas atteint, répéter :
 - 2.1 Étape E : Évaluer les appartenances h_i^t

$$h_i^t = P(\mathcal{G}_i | \mathbf{x}^t, \Phi^l), i = 1, \dots, K, t = 1, \dots, N$$

2.2 Étape M : Évaluer nouvelle valeur de Φ'^{+1} selon $\mathcal{Q}(\Phi|\Phi')$

$$Q(\Phi|\Phi^{I}) = \mathbb{E}\left[L(\Phi|\mathcal{X},\mathcal{Z})|\mathcal{X},\Phi^{I}\right]$$

$$\Phi^{I+1} = \underset{\Phi}{\operatorname{argmax}} Q(\Phi|\Phi^{I})$$

3. Retourner le Φ de l'itération finale

Illustration de l'algorithme EM : 2 groupes

Illustration de l'algorithme EM : 3 groupes

Remarques sur l'algorithme EM

- Initialisation du Φ^0 de l'algorithme avec K-means pour $(\mathbf{x}^t | \mathcal{G}_i, \Phi) \sim \mathcal{N}_D(\mathbf{m}_i, \mathbf{S}_i)$
 - Utiliser estimation des centres par K-means comme \mathbf{m}_i initiaux
 - Calculer matrice de covariance S_i à partir des associations aux groupes G_i des données \mathbf{x}^t selon b_i^t obtenus par les K-means
 - Calculer les probabilités a priori selon $\pi_i = \sum_t b_i^t/N$
- Simplifications du modèle à dimensionnalité élevée
 - Partage de la matrice de covariance entre les groupes
 - Matrice de covariance diagonale
 - Matrice de covariance σ I

K-means comme algorithme EM

- K-means est un cas particulier de l'algorithme EM
 - Probabilités *a priori* égales pour tous les groupes, $\pi_i = \frac{1}{K}, \forall i$.
 - Matrice de covariance partagée sl

$$h_i^t = \frac{\exp\left[-0.5s^{-2}\|\mathbf{x}^t - \mathbf{m}_i\|^2\right]}{\sum_{j} \exp\left[-0.5s^{-2}\|\mathbf{x}^t - \mathbf{m}_j\|^2\right]}$$

• Associations $b_i^t \in \{0,1\}$ sont une version « dure » des $h_i^t \in [0,1]$

$$b_i^t = \left\{ egin{array}{ll} 1 & \mathsf{pour} \ i = \mathsf{argmax}_j \ h_j^t \ 0 & \mathsf{autrement} \end{array}
ight.$$

• K-means utilise des densités de probabilité circulaires, alors que EM avec loi normale multivariée utilise des ellipses de forme et orientation quelconques

13.7 Clustering hiérarchique

Clustering hiérarchique

- Agglomerations itératives des données
 - 1. Démarrer avec N groupes, un par observation
 - 2. Agglomérer les deux groupes les plus similaires et recalculer le centre moyen
 - 3. Répéter jusqu'à ce qu'un seul groupe soit obtenu
- Divisions itératives des données
 - 1. Démarrer avec un seul groupe
 - 2. Diviser en deux groupes les plus différents possibles
 - 3. Répéter jusqu'à ce que N groupes soient obtenus
- Mesures de similarité pour clustering agglomeratif
 - $\bullet \ \ \mathsf{Clustering} \ \mathsf{en} \ \mathsf{lien} \ \mathsf{simple} \ d(\mathcal{G}_i,\mathcal{G}_j) = \min_{\mathbf{x}^r \in \mathcal{G}_i, \mathbf{x}^s \in \mathcal{G}_j} D(\mathbf{x}^r, \mathbf{x}^s)$
 - Clustering en lien complet $d(\mathcal{G}_i, \mathcal{G}_j) = \max_{\mathbf{x}^r \in \mathcal{G}_i, \mathbf{x}^s \in \mathcal{G}_j} D(\mathbf{x}^r, \mathbf{x}^s)$

Exemple de clustering hiérarchique

Utilisations du clustering

- Exploration de la structure des données
 - Découvrir des similarités dans les données
 - Organiser les données par groupes similaires
- Experts peuvent nommer ces groupes selon les concepts qu'ils représentent
 - Un concept peut être représenté par différents groupes
- Prétraitement des données
 - Projection dans l'espace des h_i
 - Discrimination dans l'espace des h_i
- Mélange de densités-mélanges pour classement

$$p(\mathbf{x}|C_i) = \sum_{j=1}^{K_i} p(\mathbf{x}|G_{i,j})P(G_{i,j})$$
$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x}|C_i)P(C_i)$$

Choix du nombre de groupes

- Le choix du nombre de groupes est un paramètre crucial. Comment le déterminer?
 - Certaines applications l'imposent naturellement
 - Dans l'exemple de la *colormap*, on veut k = 256 groupes (couleurs)
 - Tracer les données en 2D, à l'aide d'une ACP, peut permettre d'identifier le nombre de groupes naturels dans les données
 - Un algorithme incrémental peut ajouter dynamiquement des centres, selon un certain critère
 - Vérification/validation des groupes par des experts peut permettre de déterminer si le nombre de groupes est approprié
 - Inspection visuelle d'images
 - Analyse des prototypes de groupes

13.8 Clustering dans scikit-learn

Scikit-learn : *K*-means

- ullet cluster.KMeans : algorithme des K-means
 - Paramètres
 - n_clusters (int) : nombre de clusters (défaut : 8)
 - max_iter (int) : nombre d'itérations maximal (défaut : 300)
 - n_init (int) : nombre de répétitions, la meilleurs solution selon l'inertie est conservée (défaut : 10)
 - init (string ou ndarray): initialisation de l'algorithme, 'k-means++' pour approche « intelligente », 'random' pour initialisation aléatoire, utiliser un ndarray pour valeurs fournies
 - tol (float) : tolérance sur l'inertie avant de déclarer une convergence
 - Attributs
 - cluster_centers_ (array) : valeurs des centres, \mathbf{m}_i (taille $N \times D$)
 - labels_ (array) : étiquettes des données, b^t
 - ullet inertia_ (float) : valeur de l'inertie, soit $\sum_t \sum_i b_i^t (\mathbf{x}^t \mathbf{m}_i)$

Scikit-learn: algorithme EM

- mixture.GaussianMixture : EM avec distributions normales multivariées
 - Paramètres
 - n_components (int) : nombre de clusters (défaut : 1)
 - covariance_type (string) : type de matrice de covariance (défaut : 'full')
 - 'full' : matrices de covariance complètes et distinctes
 - 'tied' : matrice de covariance complète et partagées
 - 'diag' : matrices de covariance diagonales et distinctes
 - 'spherical' : matrices isotropiques $(oldsymbol{\Sigma} = \sigma oldsymbol{\mathsf{I}})$ et distinctes
 - max_iter (int) : nombre maximum d'itérations (défaut : 100)
 - n_init (int) : nombre de répétitions, la meilleure solution est conservée (défaut : 1)
 - init_params (string) : méthode d'initialisation, avec K-means ('kmeans') ou aléatoirement ('random') (défaut : 'kmeans')
 - Attributs
 - ullet weights_ (array) : probabilités a priori de chaque cluster, $P(\mathcal{G}_i)$ (vecteur de taille K)
 - ullet means_ (array) : vecteurs moyens des clusters (taille $K \times D$)
 - covariance_ (array) : matrices de covariance

Scikit-learn : clustering hiérarchique

- cluster.AgglomerativeClustering : clustering hiérarchique agglomératif
 - Paramètres
 - n_clusters (int) : nombre de clusters à trouver (défaut : 2)
 - affinity (string ou callable): mesure d'affinité à utiliser, peut être 'euclidean', '11', '12', 'manhattan', 'cosine' ou 'precomputed' (défaut : 'euclidean')
 - 'linkage' (string) : critère de distance entre les clusters (défaut : 'ward')
 - 'ward' : minimiser la variance des clusters agglomérés
 - 'complete' : en lien complet, maximum de la distance entre deux paires de deux clusters
 - 'average' : moyenne des distances entre les paires de clusters
 - Attributs
 - labels_ (array) : étiquettes de clustering
 - n_leaves_ (int) : nombre de feuilles dans le dendrogramme
 - children_ (array) : structure du dendrogramme