10 行列の階数と線形独立性

演習 10.1 次を示せ:

(1) rank
$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}$$
 = rank A + rank B

(2) rank
$$\begin{pmatrix} A & C \\ O & B \end{pmatrix} \ge \operatorname{rank} A + \operatorname{rank} B$$

演習
$${f 10.2}$$
 (1) ${m x}=\left(egin{array}{c} x_1 \\ \vdots \\ x_m \end{array}
ight)$ を m 項縦ベクトル、 ${m y}=\left(egin{array}{c} y_1 \\ \vdots \\ y_n \end{array}
ight)$ を n 項縦ベクトルと

すると,

$$A = \mathbf{x}^t \mathbf{y} = \begin{pmatrix} x_1 y_1 & \cdots & x_1 y_n \\ \vdots & \ddots & \vdots \\ x_m y_1 & \cdots & x_m y_n \end{pmatrix}$$

は $m \times n$ 行列である. $x \neq 0$, $y \neq 0$ のとき, rank A = 1 となることを示せ.

(2) 逆に, A をある $m \times n$ 行列とするとき, もし $\operatorname{rank} A = 1$ ならば, ある m 項縦ベクトル x と n 項縦ベクトル y が存在して $A = x^t y$ と書けることを示せ.

時間が余ったら、次も考えてみてください.

演習 10.3 一般に, A を $m \times n$ 行列, $\operatorname{rank} A = r$ とするとき, ある $m \times r$ 行列 X と $n \times r$ 行列 Y が存在して, $A = X^t Y$ と書けることを示せ.