考试题型及说明

- 一、简述题、名词解释 内容参考"期末复习 1. 《计算机系统结构》重点知识总结. docx"
- 二、判断正误题,并改正 内容参考"期末复习1.《计算机系统结构》重点知识总结.docx"
- 三、计算题
- 1、IEE754
- 2、根据寻址方式寻找操作数
- 3、扩展操作码计算
- 4、1位原码乘法运算
- 5、1 位原码不恢复余数除法运算
- 6、写出并行加法器中, 进位链的逻辑表达式: 串行进位链结构: Cn = Gn + PnCn-1 并行进位链结构: Cn = Gn + PnGn-1+ ··· + Pn···P1C0
- 7、8259 中控制器计算
 - (1) ISR、IRR、IMR 寄存器与 INT 信号的关系/8086 输入输出接口状态判断
- (2)向量地址计算:(IBM PC:向量地址=中断类型号 x 4; 模型机:向量地址=中断类型号+2),根据向量地址查找中断向量表,获得中断服务程序的入口地址。(IT 周期完成过程)
 - (3) 中断屏蔽字设计
 - (4) 8259 中断响应过程
 - (5) 中断服务程序: 单级中断和多重中断流程

四、设计题

- 1、CPU 指令流程和微命令
- 2、存储器的主存设计

具体知识点

一、IEEE754

1、采用IEEE754 短浮点数格式,请将十进制数37.25 写成浮点数,并且写出其二进制代码序列。

解: 将十进制数37.25 转换为二进制数100101.01,按IEEE754 标准的短实数浮点格式要求,将100101.01 表示为1.0010101×25,故浮点数阶码的真值e=5。于是,按IEEE754

标准,得:

数符S0=0, 阶码(移码表示)E=(e+127)10=(5+127)10=(132)10=(10000100)2, M=001010100000···00。

最后得到32 位浮点数的二进制数代码序列为:

2、某一个标准的IEEE754 格式的短浮点数,表示为十六进制形式为2AB03700H,请将 其转化成对应的十进制数,要求写出主要的转化步骤。

解: IEEE754 格式: 1位数符S, 8位阶码E, 23位尾数M, 而 2AB03700H=0010 1010 1011 0000 0011 0111 0000 0000 符号位S=0;

阶码E=010 1010 1=85, e=85-127=-42;

M=011 0000 0011 0111 0000 0000

M真.值= $(1+2^{-2}+2^{-3}+2^{-10}+2^{-11}+2^{-13}+2^{-14}+2^{-15})$

所以十进制数= $+(1+2^{-2}+2^{-3}+2^{-10}+2^{-11}+2^{-13}+2^{-14}+2^{-15}) \times 2^{-42}$

二、寻址方式

【例】某主存储器部分单元的地址码与存储器内容对应关系如下:

地址码	存储内容
1000H	A307H
1001H	0B3FH
1002H	1200H
1003H	F03CH
1004H	D024H

- (1) 若采用寄存器间址方式读取操作数,指定寄存器R0 的内容为1002H,则操作数是多少?
- (2) 若采用自增型寄存器间址方式(R0)+读取操作数,R0 内容为1000H,则操作数是多少?指令执行后R0 的内容是多少?
- (3) 若采用自减型寄存器间址方式 (R1) 读取操作数,R1 内容为1003H,则操作数是多少?指令执行后R1 的内容是多少?
- (4) 若采用变址寻址方式X(R2)读取操作数,指令中给出形式地址d=3H,变址寄存器R2内容为1000H,则操作数是多少?

解:

- (1) 操作数是1200H。
- (2) 操作数是A307H, 指令执行后R0 的内容变为1001H。
- (3) 操作数是1200H, 指令执行后R1 的内容为1002H。
- (4) 操作数为F03CH。

三、扩展操作码

1、设某指令系统的指令字为16位,每个地址码为6位。若二地址指令15条,单地址指令34条,则剩下的零地址指令最多有多少条?

解答:操作码是16-12=4bit,零地址指令条数 = $[(2^4-15) \times 2^6-34] \times 2^6$

- 2、某计算机按字节编址,指令字长固定且只有两种指令格式,其中三地址指令29条,二地址指令107条,每个地址字段6位,则指令字长至少应该是?(至少要多少次访存)
 - 解答: (1) 三地址指令有29条,则操作码至少为5位。
 - (2) 如果三地址刚好是5位,则有32-29=3条可以用于二地址指令扩展。地址码为6位,则二地址指令最多可以有 3×2^6 =192条>107条。所以指令字长至少是 $5+3\times6$ =23。
 - (3) 计算机按字节编址, $23 \mod 8 \neq 0$ 。
 - (4) 指令字长至少是24位。
- 3、某种计算机的算术逻辑运算指令,请问最多能表示多少条指令?

解答: 2³×2×2²×2×2=256

四、1位原码计算步骤

【例】0.1101×1.1011

设置寄存器:

- A: 存放部分积累加和、乘积高位
- B: 存放被乘数
- C: 存放乘数、乘积低位

步数	条件	操作	Α	C Cn
			00.0000	. 1011
1)	Cn=1	+B	+ 00. 1101	
			00. 1101	
		\rightarrow	00. 0110	1. 101
2)	C _n =1	+B	+ 00. 1101	
			01.0011	
		\rightarrow	00. 1001	11. 10
3)	Cn=0	+0	+ 00.0000	
			00. 1001	
		→	00.0100	111.1
4)	C _n =1	+B	+ 00. 1101	
			01.0001	
		-	00. 1000	1111
X原	$\times Y_{\mathbb{R}} = 1$. 10001	111	

(1) 运算规则

- (a) 操作数、运算结果用原码表示;
- (b) 绝对值参与运算,符号单独处理;
- (c)被乘数(B)、累加和(A)取双符号位;
- (d) 乘数末位(Cn) 为判断位, 其状态决定下一步操作;
- (e) 作n次循环(累加、右移)。

五、原码不恢复余数除法

1、运算规则

- A、B取双符号位, X、Y取绝对值运算, |X|<|Y|
- 根据余数的正负决定商值及下一步操作:

$$r_{i+1}=2r_i+(1-2Q_i)Y$$

- r;为正,则Q;为1, 第i+1步作 2r;-Y;
- ri为负,则Qi为0,第i+1步作 2ri+Y。
- 求n位商,作n步操作;若第n步余数为负,则第 n+1步恢复余数,不移位。

2、实例:

X=0.10110, Y=-0.11111, 求 X/Y, 给出商 Q 和余数 R

初值: A=|X|= 00.10110, B=|Y|=00.11111, -B= 11.00001, C=|Q|= 0.00000

六、写出并行加法器中,进位链的逻辑表达式:

串行进位链结构: Cn = Gn + PnCn-1

并行进位链结构: Cn = Gn + PnGn-1+ ··· + Pn···P1C0

【例】已知操作数 Ai、Bi, 初始进位 CO。试写出 C6 的逻辑式。

串行进位: C6 = G6+P6C5

并行进位: C6 = G6+P6G5+P6P5G4+...+P6P5...P1C0

 $Pi=Ai \oplus Bi$

分级同时进位, 4 位一组:

C6 = G6 + P6G5 + P6P5CI

CI=GI+PIC0

GI=G4+P4G3+P4P3G2+P4P3P2G1

PI=P4P3P2P1

Gi=AiBi

七、指令流程和操作时间表(MOV指令和双操作数)

1、模型机寻址方式

寄存器寻址 000		R	(R)为操作数
寄存器间址	001	(R)	(R)为操作数地址
自减型寄存器间址	010	-(R)	(R)-1为操作数地址
		-(SP)	(SP)-1为栈顶地址
立即/自增型寄存器		(R)+	(R)为操作数地址,访问后(R)+1
立即/日本至奇行器 间址	011	(SP)+	(SP)为栈顶地址,出栈后(SP)+1
The MI		(PC)+	(PC)为立即数地址,取数后(PC)+1
直接/自增型 10 双间址	0	@(R)+	(R)为间接地址,访问后(R)+1
以问址		@(PC)+	(PC)为间接地址,取数后(PC)+1
变址 1	.01	X(R)	(R)+d为有效地址
		X(PC)	(PC)+d为有效地址
跳步 :	110	SKP	跳过下条指令执行

2、模型机的结构(数据单向流动、寄存器级)

【例1】MOV (RO), (SP)+;

FTO: M→IR EMAR, R, SIR

PC+1 \rightarrow PC

PC \rightarrow A、A+1、DM、CPPC、1 \rightarrow ST、CPT(P)、CPFT(P)、

CPST(P)、CPDT(P)、CPET(P)

STO: SP→MAR SP→A、输出A、DM、CPMAR、T+1、CPT(P)

ST1: M→MDR→C EMAR、R、SMDR、MDR→B、输出B、DM、CPC、T+1、CPT(P)

ST2: $SP+1 \rightarrow SP$ $SP \rightarrow A$, A+1, DM, CPSP, $1 \rightarrow DT$, CPT(P), CPFT(P), CPST(P), CPDT(P), CPET(P);

ETO: C→MDR C→A、输出A、DM、CPMDR、T+1、CPT(P)

<mark>PC→MAR</mark> PC→A、输出A、DM、CPMAR、1→FT、CPT(P)、CPFT(P)、

CPST(P), CPDT(P), CPET(P)

【例2】ADD (R1)+, X(R0);

FT0: ...

STO: PC→MAR PC→A、输出A、DM、CPMAR、T+1、CPT(P)

ST1: M→MDR→C EMAR、R、SMDR、MDR→B、输出B、DM、CPC、T+1、

CPT(P)

 $ST2: C+ RO \rightarrow MAR$ $C \rightarrow A$ 、 $RO \rightarrow B$ 、A+B、DM、CPMAR、T+1、CPT(P), $ST3: M \rightarrow MDR \rightarrow C$ EMAR、R、SMDR、 $MDR \rightarrow B$ 、输出B、DM、CPC、T+1、

ST4: $PC+1 \rightarrow PC$ $PC \rightarrow A$, A+1, DM, CPPC, $1 \rightarrow DT$, CPT(P), CPFT(P), CPST(P), CPDT(P), CPET(P)

DTO: R1→MAR R1→A、输出A、DM、CPMAR、T+1、CPT(P)

DT1: M→MDR→D EMAR、R、SMDR、MDR→B、输出B、DM、CPD、T+1、

CPT (P)

DT2: $R1+1 \rightarrow R1$ $R1 \rightarrow A$, A+1, DM, CPR1, $1 \rightarrow ET$, CPT(P), CPFT(P),

CPST(P), CPDT(P), CPET(P)

ETO: $C+D \rightarrow MDR$ $C \rightarrow A$, $D \rightarrow B$, A+B, DM, CPMDR, T+1, CPT(P)

ET1: MDR→M EMAR, W, T+1, CPT(P)

ET2: PC→MAR PC→A、输出A、DM、CPMAR、1→FT、CPT(P)、CPFT(P)、

CPST(P), CPDT(P), CPET(P)

【例3】根据模型机结构,回答下列问题

(1) 补充下面源操作ST的指令流程对应的微命令

STO: PC→MAR PC→A, 直通A, DM, CPMAR, T+1、CPT(P)

ST1: M→MDR→C <u>EMAR、R、SMDR、MDR→B,直通 B,DM,CPC、</u>

T+1, CPT (P)

ST2: $PC+1 \rightarrow PC$ $PC \rightarrow A$, A+1, DM, CPPC, T+1, CPT(P)

ST3: $C+RO \rightarrow MAR$ $RO \rightarrow A$, $C \rightarrow B$, $A \not\!\!\!\!\perp B$, DM, CPMAR, T+1, CPT(P)

ST4: M→MDR→C EMAR、R、SMDR、MDR→B, 直通 B, DM, CPC

CPT(P), CPFT(P), CPST(P), CPDT(P), CPET(P)

(2)补充目的操作DT和执行操作ET的微命令对应的指令流程

DTO: RO→MAR RO→B, 直通B, DM, CPMAR

DT1: M→MDR→D EMAR, R (SMDR), MDR→B, 直通B, DM, CPD

ETO: $C-D \rightarrow MDR$ $C \rightarrow A$, $D \rightarrow B$, A-B, DM, CPMDR

ET1: MDR→M W (EMDR)

ET2: PC→MAR PC→A, 直通 A, DM, CPMAR

(3) 写出上述指令流程对应的机器指令

SUB (RO), X (RO)

八、主存设计

- 1、存储芯片型号
- (1) 存储单元数(芯片地址引脚数)
- 1K (2¹⁰=400H, 0-3FFH) 芯片地址线10条, A0-A9
- 2K (2¹¹=800H, 0-7FFH) 芯片地址线11条, A0-A10
- 4K (2¹²=1000H, 0-FFFH) 芯片地址线12条, A0-A11
- 8K (2¹³=2000H, 0-1FFFH) 芯片地址线13条, A0-A12

16K(2¹⁴=4000H,0-3FFFH)芯片地址线14条,A0-A13 32K(2¹⁵=8000H,0-7FFFH)芯片地址线15条,A0-A14

(2) 存储单元位(bit)数

通常有4bit和8bit。若用4bit的芯片,则两块芯片为1组(8bit的存储单元),例如:某种芯片为1Kx4,则选两块芯片构成容量为1Kx8。

2、注意事项

- (1) 计算芯片数量
- (2) 画图时,必须画R/W,芯片地址线、数据线(若由两块4bit芯片构成1组的话,一片数据线接总线的D0-D3,另一片数据线连总线的D4-D7)
- (3) 片选信号(全译码)

74LS138	译码器	8		输	λ						输	出			
G1	V. 000	G1	G2	G3	A2	A1	A0	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
——— G1 G2	$\frac{1}{V_1}$ 001.	1	0	0	0	0	0	1	1	1	1	1	1	1	0
———	\overline{Y}_{2} 010	1	0	0	0	0	1	1	1	1	1	1	1	0	1
	$\overline{Y}_{2} = 011$	1	0	0	0	1	0	1	1	1	1	1	0	1	1
	\overline{Y}_4 0 100	1	0	0	0	1	1	1	1	1	1	0	1	1	1
A ₀	\overline{Y}_{5} 0 101	1	0	0	1	0	0	1	1	1	0	1	1	1	1
$ A_1$	\overline{Y}_{c} o $\frac{110}{}$	1	0	0	1	0	1	1	1	0	1	1	1	1	1
	$\frac{1}{Y_7}^6$ 0 111	1	0	0	1	1	0	1	0	1	1	1	1	1	1
2	- /	1	0	0	1	1	1	0	1	1	1	1	1	1	1

- 【例1】用2Kx4b的若干芯片构成一个12KB的存储器,其地址范围在 $C0000H^{\sim}C2FFFH$ 和 $C4000H^{\sim}C6FFFH$ 之间,数据总线 $D0^{\sim}D7$,地址总线是 $A0^{\sim}A19$,芯片读写控制信号R/W,且片选信号为3-8译码器输出。
- (1) 需要2Kx4b的芯片多少片?每组芯片地址线如何分配?(12片, $A0^{\sim}A10$)
- (2) 哪些地址线作3-8译码器的使能端,哪些做3-8译码器输入端?(使能端: $A19^{\sim}A15$,片选: $A11^{\sim}A13$)
- (3) 画出存错逻辑电路图(3-8译码器使能端、输入端、输出连线,以及组成12KB存储芯片电路图)

【例2】设CPU有16根地址线,8根数据线,用MREQ作为访存控制信号(低电平有效),用WR作为读写控制信号(高电平读,低电平写)。现有下列芯片: $1K\times4$ 的RAM, $2K\times4$ 的RAM, $4K\times4$ 的RAM, $2K\times8$ 的ROM, $4K\times8$ 的ROM,以及74LS138译码器。其中存储芯片引脚 RW(高电平读,低电平写),片选引脚CS 。仅选用上述芯片(不增加其他门电路和芯片),要求地址空间分配 6000H-67FFH为系统程序区(ROM芯片),6800H-77FFH为用户程序区(RAM芯片)。

(1) 需要选用哪几种存储芯片?各需要多少片?并写出各个存储芯片的地址范围。 需要一片2K×8的ROM;四片2K×4的RAM。

2K×8的ROM的地址范围: 6000H-67FFH;

第1组(两片2K×4) RAM的地址范围: 6800H-6FFFH;

第2组(两片2K×4) RAM的地址范围: 7000H-77FFH

(2) 画出CPU、74LS138和存储芯片之间的连接图。(7分)

九、中断计算

1、计算向量地址

IBM PC: 向量地址=中断类型号 x 4

模型机: 向量地址=中断类型号+2

2、根据中断优先级,判断中断控制器8259是否发出INT信号

7 0
IRR: 00010100
IMR: 00000100
ISR: 00001000

,中断控制器8259不发INT信号

7 0 IRR:00010100 IMR:00000000 ISR:00001000

中断控制器8259发出INT信号

3、中断响应过程

4、CPU获取中断服务程序入口地址过程(IT周期)

5、单级/多重中断服务流程

6、多重中断服务程序

7、多重中断程序的执行情况

十、判断题

- 1. 与定点数相比,在位数相同的情况下,浮点数表示范围大、精度高。 (v)
- 2. 若8位补码表示的机器数01001010,则该机器数的真值为74。 (v)
- 3. 原码加减运算比补码加减运算简单。 (x)
- 4. 原码乘法运算比补码乘法运算简单。 (v)
- 5. 进位制中的基数是: 一个数位中允许使用的最大数码值。 (x)
- 6. 压栈操作是指:将内容写入堆栈指针SP内。 (x)
- 7. 为减少指令中地址的数目,可以采用隐地址方式。 (v)

8. CPU是计算机的核心部件,包括寄存器组、控存、缓存和 <mark>主存</mark> 等部件。	(x)
9. 模型机中的程序计数器PC对汇编程序员可见。 (v)
10. PSW寄存器的特征位是程序员设置的(x)	
11. 暂存器C用于存放源操作数或者源操作数地址,暂存器D存放目的操作数或者	音目的操作数
地址 (v)	
12. IR寄存器适用于存放当前指令地址(x)	
13. 现代微处理器缓存采用三级缓存L1、L2和L3,三级缓存都部署与CPU内部。	(_V)
14. 晶体振荡器产生的时钟频率低于CPU的主频 (v)	
15. 在计算机系统中, <mark>可能</mark> 同时采用同步控制方式与异步控制方式。 (v)	
16. 在同步控制方式中,各指令的执行时间并不一定都相同。	v)
17. 扩展同步总线是指允许时钟周期数可变。	(v)
18. 同步控制的同一时序信号都由CPU产生 (x)	
19. 同步控制的时钟周期长度固定不变 (v)	
20. 扩展同步控制根据实际时间分配时钟周期数,时钟周期长度不变(v)	
21. 并行加法器中的进位链,必定是并行进位链。	(x)
22. 串行加法器的进位信号是通过串行链逐位形成的,并行加法器的进位信号是	是同时形成
的。	(x)
23. 并行加法器的运算速度取决于全加器单元的速度。	(X)
24. 串行进位链是串行加法器中的进位链。	(X)
25. 运算器实现移位操作,必须使用移位线路。	(X)
26. 并行加法器中的进位链,必定是并行进位链。 (x)	
27. 若采用并行进位链,则 $C_{3=}G_{3+}P_{3}C_{2}$ 。 (x)
28. 中断周期结束后,CPU应进入主程序的下一条指令取指周期。	(x)
29. 在中断方式中,数据传送由中断控制器控制。	(x)
30. DMA控制方式下,外设传送信息到内存,其传送途径为外设→CPU→内存。	(x)
31. 采用DMA方式传送信息,一旦开始传送后,CPU必须停止执行程序一段时间,	直到批量传
送结束,才能恢复工作。 (x) 32. CM 属于 CPU 的一部分 (v)	
33. 微程序控制方式下,微程序存放在主存中。	(x)
34. CPU访问主存储器的时间是由存储体的容量决定的,存储容量越大,访问存	储器所需要
的时间就越长。	(x)
35. 存储器包括主存和辅存,全部都在CPU外部	(x)
36. 主设备发送数据,从设备接收数据(X)	
37. 串行接口与系统总线串行传送,接口与外设串行传送(X)	