Exercícios de Analise de Fourier

		Sinal	
		Periódica	Aperiódica
	Valor contínuo $x \in \mathbb{R}$	Series de Fourier de Tempo Continuo (CTFS)	Transformada de Fourier de Tempo Continuo (CTFT)
Тетро	Valor Discreto $x \in \mathbb{Z}$	Series de Fourier de Tempo Discreto (DTFS)	Transformada de Fourier de Tempo Discreto (DTFT)

Professor

Dr. Jorge Leonid Aching Samatelo jlasam001@gmail.com

Avaliação

- ☐ Método de Avaliação
 - Cada grupo (2 alunos) apresentara em aula a solução de um problema proposto pelo professor.
 - Cada problema terá um determinado valor em pontos que serão somados a nota da prova parcial correspondente.
 - ❖ Mínimo valor em pontos para um problema: 0,25
 - ❖ Máximo valor em pontos para um problema: 0,5
- ☐ Critérios para a avaliação da apresentação
 - > Solução
 - **♦** Correta: 100%
 - ❖Incorreta: 0%
 - Simulação em MATLAB (plus)
 - **♦** Correta: +0,1
 - ❖Incorreta: 0,0

Indicações

☐ Prazo:

Envio das soluções: Domingo 25/06/2018 - (20:00 hrs)

☐ Procedimento para o envio da solução:

Silva da solução de cada exercício devem ser enviados ao email <u>jlasam001@gmail.com</u> com o assunto: EXERCICIO_SINAIS_ANALISE_FOURIER_2018_1. O nome do arquivo .PPT (ou PPTX) deve iniciar com o rotulo ANALISE_FOURIER seguido pelo numero do exercício e as iniciais dos nomes dos integrantes de cada dupla (por exemplo, a dupla conformada pelos alunos Pedro Farias e Joao Silva que solucionaram o exercício 3 enviariam o arquivo ANALISE FOURIER 3 PF JS.ppt).

Recomendações para a elaboração dos slides

O formato dos slides deve ser simples (fundo branco).
O primeiro slide deve conter o numero de exercício e os nomes dos integrantes
de cada dupla.
O segundo slide deve conter o enunciado do problema.
Os slides restantes devem conter os critérios e os procedimentos usados na
solução. É importante indicar que devem ser didáticos na explicação da solução
do problema.
Em relação as equações matemáticas, usar o editor de equações:
➤ MATHTYPE
http://mathtype.softonic.com.br/
No caso, que sejam usados programas editores de equações que trabalham com
notação LATEX, incluir ao final da apresentação, como um anexo, o código
TEX das equações.
IMPORTANTE: Não é aceitável, incluir unicamente as imagens das equações
(menos colar imagens de equações de material de referência).

Exercícios por dupla

Integrantes	N ^{ro} de Exercício
LUCAS BATISTA LEITE & MATHEUS BELOTI MARIANI	4
RHUAN SOUZA CAETANO & FRANCO SCHMIDT ROSSI	15
BRUNO GAMA NUNES DE OLIVEIRA & LUCAS SANTANA DA CUNHA	2
KEVIN BENFIQUES BORGES & ANDRE FELIPE SANTOS PEREIRA	16
MATHEUS DE ABREU BOZZI & MATHEUS BONGIOVANI SATHLER	3
BRUNO FRIGERI PIRAJA & GABRIEL THEBALDI DA SILVA	18
MATHEUS FRANCO GRACIANO & MARCELO SANTOS HONORATO	20
TADEU ALVES HASTENREITER & EITEL ALEX EBONGUE NG	1
ANATELLI ANNE FAGUNDES HERINGER & GABRIEL CARLOS FAVERO CHAGAS	22
MATHEUS LIMA DE ASSIS BERNARDINO & FABRICIO NUNES PAIVA	19
DEBORA CRISTINA FORTUNA LOPES & MARIANNE PONTARA MARINHO	23
ISABEL MARIA ROCHA BUSTAMANTE & MATUSALEM MANSUR	21
DIEGO RODRIGO PEREZ PACHECO & TASSIO SANTUCHI	17
ORIEL DILSON FERREIRA & CLEIDSON ALVES FAVALESSA	11
LUCAS VALENTIM VIDOTO & VITOR MONTENEGRO DE OLIVEIRA SABBAGH	5
LUIZ CLAUDIO CAMPISTA JUNIOR & RODRIGO MANZOLI DOS SANTOS	14
RAFAEL FRICKS DOS SANTOS & LUANY TONIATO OLIVEIRA	10
JHEMES PARMA MIRANDA & LEONARDO MARTINS DA SILVA	6
SANDOR FERREIRA DA SILVA & MELINA SCHNEIDER CAMPO	13
JONAS MENDES FIORINI & GUSTAVO DE ANDRADE GARCIA	7
HAYLANDER GOMES LOPES	9
RAYANE NASCIMENTO & BRENO SCALZER COIMBRA	8
BERNARDO FIGUEIREDO DE A CAMPOS & GLAUCIANE SOUZA DA SILVA	12

CTFS

Exercício 1

0,5 PT

- ☐ Considere o sinal quadrado periódico x(t) mostrado na figura.
 - A. Determinar a forma exponencial complexa da série de Fourier de x(t).
 - B. A partir da CTFS determinada em (A) obter a forma trigonométrica da serie de Fourier de x(t).

CTFS

Exercício 2

0,5 PT

☐ Encontrar os coeficientes das séries de Fourier para cada um das seguintes sinais:

A.
$$x(t) = \sin\left(10\pi t + \frac{\pi}{6}\right)$$

B.
$$x(t) = 1 + \cos(2\pi t)$$

C.
$$x(t) = (1 + \cos(2\pi t))\sin\left(10\pi t + \frac{\pi}{6}\right)$$

Dica para o item (C): você pode primeiro multiplicar os termos e depois usar a identidade de Euler.

CTFS

Exercício 3

0,5 PT

☐ Determine as séries de Fourier dos seguintes sinais.

A.

B.

CTFS

Exercício 4

0,5 PT

 \square Para o circuito da Figura abaixo, determine a serie de Fourier da tensão de saída $v_0(t)$ quando a entrada é a tensão $v_g(t)$.

CTFS

Exercício 5

0,5 PT

Para o circuito da Figura abaixo, determine os termos da série de Fourier da tensão $v_i(t)$ até o 5° (quinto) harmônico, e com isso, determine cada termo da tensão $v_0(t)$. Assuma:

$$V_m = 100\pi \text{V}$$
 $T = 2\pi 10^{-3} \text{ sg}$ $R_1 = 1\text{K}\Omega$ $R_2 = 9\text{K}\Omega$ $C = 1\mu\text{ F}$

DTFS

Exercício 6

0,5 PT

 \square Considerar as sequências periódicas x[n] mostradas nas Figuras abaixo. Determine os coeficientes da Serie de Fourier c_k e desenhe a representação espectral da magnitude $|c_k|$.

A.

В.

C.

DTFS

Exercício 7

0,5 PT

☐ Considere um sistema LTI com resposta ao impulso

$$h[n] = \begin{cases} 1, & 0 \le n \le 2 \\ -1, & -2 \le n \le -1 \\ 0 & otherwise \end{cases}$$

 \square Encontre a representação da série de Fourier da saída $y^*[n]$ para cada uma das seguintes entradas.

A.
$$x*[n] = \sin\left(\frac{3\pi n}{4}\right)$$

B.
$$x*[n] = \sum_{k=0}^{\infty} \delta[n-4k]$$

C. $x*[n] = \begin{cases} 1, & n = 0, \pm 1 \\ 0, & n = \pm 2, \pm 3, \pm 4 \end{cases} x*[n] = x*[n+6]$

$$x * [n] = j^n + (-1)^n$$

DTFS

Exercício 8

0,5 PT

☐ Considere um sistema LTI com resposta ao impulso

$$h[n] = \left(\frac{1}{2}\right)^{|n|}$$

 \square Encontre a representação da série de Fourier da saída $y^*[n]$ para cada uma das seguintes entradas.

A.
$$x*[n] = \sin\left(\frac{3\pi n}{4}\right)$$

B.
$$x*[n] = \sum_{k=0}^{\infty} \delta[n-4k]$$

C. $x*[n] = \begin{cases} 1, & n = 0, \pm 1 \\ 0, & n = \pm 2, \pm 3, \pm 4 \end{cases} x*[n] = x*[n+6]$

$$x * [n] = j^n + (-1)^n$$

DTFS

Exercício 9

0,5 PT

Nos itens (A), (B), (C) e (D) especificamos os coeficientes das series de Fourier de um sinal que é periódico com período igual a 8. Determine o sinal x[n] para cada caso.

A.
$$a_k = \cos\left(k\frac{\pi}{4}\right) + \sin\left(3k\frac{\pi}{4}\right)$$

В.

$$a_k = \begin{cases} \sin\left(\frac{k\pi}{3}\right) & 0 \le k \le 6 \\ 0, & k = 7 \end{cases}$$

C. a_k como na seguinte Figura.

D. a_k como na seguinte Figura.

DTFS

Exercício 10

0,5 PT

☐ Considerar um sistema de tempo discreto com resposta ao impulso

$$h[n] = \left(\frac{1}{2}\right)^n u[n]$$

 \square Determine a saída y[n] para cada uma das seguintes entradas periódicas:

A.

$$x[n] = (-1)^n = e^{j\pi n}$$
 para todo n

В.

$$x[n] = e^{j(\pi n/4)}$$
 para todo n

C.
$$x[n] = \cos\left(\frac{\pi n}{4} + \frac{\pi}{8}\right) \quad para \ todo \ n$$

CTFT

Exercício 11

0,5 PT

- \square Considere o sinal x(t) com CTFT X(w), suponha que são conhecidos os seguintes fatos:
 - \triangleright O sinal x(t) é real e não negativa.
 - > é valido o seguinte par da transformada de Fourier

$$Ae^{-2t}u(t) \longleftrightarrow (1+jw)X(w)$$

Onde A é independente de t.

 \triangleright X(w) tem energia finita:

$$\int_{-\infty}^{+\infty} ||X(w)||^2 dw = 2\pi$$

 \square Então, determine a expressão fechada para x(t).

CTFT

Exercício 12

0,5 PT

☐ Considere o par da transformada de Fourier

$$e^{-|t|} \longleftrightarrow \frac{CTFT}{1+w^2}$$

A. Use as apropriadas propriedades da CTFT para determinar a CTFT do sinal:

$$x(t) = te^{-|t|}$$

B. Use o resultado item (A), e a propriedade dual para determinar a CTFT do sinal:

$$x(t) = \frac{4t}{(1+t^2)^2}$$

CTFT

Exercício 13

0,5 PT

- \square Dado $x(t) \xleftarrow{CTFT} X(w)$, expresse o CTFT dos sinais listadas embaixo em termos de X(w).
 - A.

$$x_1(t) = x(1-t) + x(-1-t)$$

В.

$$x_2(t) = x(3t - 6)$$

$$x_2(t) = x(3t - 6)$$

 $x_3(t) = \frac{d^2}{dt^2}x(t - 1)$

CTFT

Exercício 14

0,5 PT

☐ Determine a CTFT de cada um das seguintes sinais periódicas:

$$x(t) = \sin\left(2\pi t + \frac{\pi}{4}\right)$$

$$x(t) = \sin\left(2\pi t + \frac{\pi}{4}\right)$$
$$x(t) = 1 + \cos\left(6\pi t + \frac{\pi}{8}\right)$$

CTFT

Exercício 15

0,5 PT

 \Box O sinal $x(t) = e^{bt}u(-t)$ é um exemplo de um sinal exponencial real de lado esquerdo. Desenhar o sinal para b > 0 e mostrar que a CTFT de x(t) é:

$$X(w) = \frac{1}{b - jw}$$

 \square se b > 0, Também, mostre que a CTFT não existe se $b \le 0$.

CTFT

Exercício 16

0,5 PT

☐ Para a função ímpar real

$$x(t) = e^{at}u(-t) - e^{-at}u(t)$$

☐ Mostre que a CTFT é:

$$X(w) = \frac{j2w}{a^2 + w^2}$$

DTFT

Exercício 17

0,5 PT

Considere a sequência x[n] cuja DTFT é mostrado abaixo para $-\pi \le \Omega \le \pi$. Desejamos determinar se no domínio do tempo x[n] é periódico, real, par e/ou de energia finita.

DTFT

Exercício 18

0,5 PT

☐ Derivar o DTFT do degrau unitário

$$x[n] = u[n]$$

DTFT

Exercício 19

0,5 PT

☐ Considere o sistema causal LTI descrito pela equação de diferenças

$$y[n] + \frac{1}{2}y[n-1] = x[n]$$

- ☐ Usando a DTFT, determine:
 - A. A resposta de frequência $H(\Omega)$ do sistema.
 - B. A resposta ao impulso h[n] do sistema.

DTFT

Exercício 20

0,5 PT

☐ Determine a DTFT dos seguintes sinais.

A.
$$x[n] = u[n] - u[n-6]$$

$$x[n] = u[n] - u[n-6]$$
 E. $x[n] = |\alpha|^n \sin(\omega_0 n), |\alpha| < 1$

$$B. x[n] = 2^n u[-n]$$

F.
$$x[n] = \begin{cases} 2 - \left(\frac{1}{2}\right)^n, & |n| \le 4 \\ 0, & elsewhere \end{cases}$$

C.
$$x[n] = \left(\frac{1}{4}\right)^n u[n+4]$$
 G. $x[n] = \{-2, -1, 0, 1, 2\}$

G.
$$x[n] = \{-2, -1, 0, 1, 2\}$$

D.
$$x[n] = \alpha^n \sin(\omega_0 n) u[n]$$
$$|\alpha| < 1$$

H.
$$x[n] = \begin{cases} A(2M+1-|n|) & |n| \le M \\ 0 & |n| > M \end{cases}$$

DTFT

Exercício 21

0,5 PT

 \Box Determine o sinal tendo as seguintes DTFT⁻¹.

A.

$$X(\Omega) = \begin{cases} 0 & 0 \le |\Omega| \le \Omega_0 \\ 1 & \Omega_0 < |\Omega| \le \pi \end{cases}$$

B.

$$X(\Omega) = \cos^2(\Omega)$$

 \mathbf{C}

$$X(\Omega) = \begin{cases} 1 & \Omega_0 - \Delta\Omega / 2 \le |\Omega| \le \Omega_0 + \Delta\Omega / 2 \\ 0 & elsewhere \end{cases}$$

D. O sinal mostrado na seguinte Figura

DTFT

Exercício 22

0,5 PT

☐ Considere o sinal

$$x[n] = \{-1, 2, -3, 2, -1\}$$

- \square Cuja transformada de Fourier é $X(\Omega)$. Calcule as seguintes quantidades, sem calcular explicitamente $X(\Omega)$:
 - A.

B. $|X(\mathbf{Q})|$

C.
$$\int_{-\pi}^{\pi} X(\Omega) d\Omega$$

D. $X(\pi)$

E.
$$\int_{-\pi}^{\pi} |X(\Omega)|^2 d\Omega$$

DTFT

Exercício 23

0,5 PT

☐ Considere o sinal

$$x[n] = \{-1, -2, -3, 2, -1\}$$

 \Box Determine a DTFT de x[n].

Bom Trabalho!!!

