Exer	Exercices							
1.	 Cochez les réponses correctes. Une diode Zener ne peut être utilisée que da Il existe des LED de couleurs bleue, verte, ro Plus la lumière est intense, plus grande est la photo résistance (LDR). Le courant dans un thyristor ne peut circuler Un triac permet de contrôler le passage du controller le passage du controll	uge e a résis que da ourant	t bland tance ans ur dans	che. d'une n sens		Faux	3	
2.	Analyse d'un circuit logique de commande LOGO : Déterminer l'état (1 ou 0) des sorties Q1 et Q2 du circuit, pour chaque combinaison possible des 3 entrées I1, I2 et I3. Complétez la table de vérité.							
		l1	12	13	Q1	Q2		
		0	0	0				
		0	0	1				
		0	1	0				
		0	1	1				
		1	0	0				
		1	0	1				
		1	1	0				
		1	1	1				

Exer	Exercices							
3.	Dans un couloir de 2,5m de largeur, les supports pour un éclairage LED sont montés à une hauteur de 0,3 m du sol. Les supports sont répartis à gauche et à droite du couloir de sorte que le rayon produit par une lampe effleure le rayon produit par la lampe suivante. L'angle d'ouverture des lampes est de 35 ° (voir le croquis). A quelle distance x, les lampes doivent-elle être montées? Mur gauche Distance x Mur droite	3						
4.	Cochez les réponses correctes. - Un champ magnétique est produit par un électro-aimant dont l'alimentation est coupée. - Un champ magnétique est produit par la circulation d'un courant dans un conducteur. - Un champ électrique est produit par deux électrodes de charges différentes. - Un champ électrique est produit par la circulation d'un courant dans un conducteur.	2						

3	
3	

Exer	cices	Nombre d maximal	e points obtenus
7.	Une partie de l'énergie renouvelable sera produite dans le futur par des cellules photovoltaïques. Dans notre région, on compte une énergie lumineuse de 4'130 MJ par m² de cellules et par année. Calculez l'énergie électrique moyenne en kWh produite annuellement par une installation de 5m². Le rendement de l'installation d'énergie est de 17%.	2	
8.	Un chauffe-eau a un corps de chauffe dont la résistance est de R = $26,45 \Omega$. Il est branché au le réseau $230 V$. Six litres d'eau sont portés à ébullition ($100 ^{\circ} C$) en $25 $ minutes. Quelle est la température de l'eau froide, sachant que le chauffe-eau a un rendement de 75% ? $c_{eau} = 4190 \frac{J}{kg \cdot K}$	3	

Exer	cices	Nombre o	e points obtenus
9.	Un installateur électricien reçoit le mandat de remplacer les cinq lampes à incandescence installées dans un bar par des ampoules LED.	3	
	<u>Caractéristique des lampes :</u>		
	Lampe à incandescence : $P_{Linc} = 40 \text{ W}$, $\Phi_{Linc} = 430 \text{ Im}$.		
	Lampe LED: BIOLEDEX® VEO 8 W E27 600 lm, 230 V.		
	a) Combien d'ampoules LED doivent être installées pour obtenir au moins le même flux lumineux des ampoules à incandescence?		
	b) Quelle est l'efficacité lumineuse des 2 types de lampes?		

Exer	Exercices					
1.	Nommez trois moyens permettant de produire une tension électrique et expliquez pour chacun d'eux le principe utilisé.	maximal 3	obtenus			
2.	Quelle est l'énergie consommée par une plaque de cuisson vitrocéramique absorbant une puissance moyenne de 1500W sachant que la préparation d'un repas pour quatre personnes dure exactement 99 minutes ?	2				
	repae pour quaire personnes dure exactement de minutes.					

Exer	cices	Nombre of maximal	le points obtenus			
3.	Un courant électrique circule dans une spire. Celle-ci est placée dans un champ magnétique.	3				
	a) Dessinez le sens du flux magnétique produit par les pôles.					
	 b) Dessinez le sens du flux magnétique produit par chaque conducteur de la spire. 					
	 c) Indiquez à l'aide de flèches les zones présentant un renforcement ou un affaiblissement du champ magnétique. 					
	d) Indiquez le sens de rotation de la spire sachant que celle-ci est montée sur un axe.					
	e) Comment peut-on augmenter la force sur les conducteurs de la spire?f) Quel type de moteur fonctionne selon ce principe?					
	N • S					

Exer	cices	Nombre d maximal	e points obtenus
4.	Le mât d'une construction provisoire est assuré avec un câble de 5m de longueur. A quelle distance par rapport au sommet du mât de 7 m doit-on fixer le câble de sorte à avoir un angle de 60° entre le sol et le câble?	2	
5.	Une ligne de cuivre de 75 m est chargée par un courant maximum de 12 A. La chute de tension en ligne ne doit pas dépasser 4% de la tension de départ (230 V / 50 Hz). Calculez la section normalisée minimale que vous devez utiliser pour cette ligne afin de respecter la chute de tension maximale. $\rho_{\text{Culvre}} = 0,0175 \frac{\Omega \cdot \text{mm}^2}{\text{m}}$	3	

ices									maximal
		une canalisati							3
		it un courant i conducteurs e				ench	ement co	orrespondant	
ia Sect	ion des (onuucieurs (zi au III00	e ue po	JSC.				
xtrait d	น tableaเ	u 5.2.3.1.1.15	5.2.2						
		ere pour les m							
		PVC / ligne à empérature ar			e cuivre	char	gés / tem	pérature de	
i ligite <i>i</i>	0 0/16	imperature ai	iibiaiile 3						
Mode de oose de	Nombre de	Courant de déc la canalisation	lenchement	assigné [/	A] du coup	e surinte	ensité inséré	en amont de	
éférence	circuits	10 13	16 20		32 40	50	63 80		
A1 A2	1		2,5 4 2,5 4		6 10 10	16 16	25 35 25 35		
B1	1	1,5	2,5	6		10	16 25		
B2	1	1,5	2,5	4	6	10	16 25		
	2	1,5	2,5 4	6	10	16	25 35	5 50 95	
) Déter	minez e	en fonction du	ı tahleau	la sect	ion à uti	licer r	our les c	COLING-	
		suivants. Le n							
		ement la dens				•			
	Г		D- "	<u> </u>					
Prote		Section	Densit coura						
[A	7]	[mm ²]	[A/mi	_					
16	3			-					
	-								
50)								
Pour	quoi les	densités de c	courant su	ır les d	eux lign	es so	nt-elles s	i différentes?	
Pour	quoi les	densités de c	courant su	ır les d	eux lign	es so	nt-elles s	i différentes?	
Pour	quoi les	densités de c	courant su	ır les d	eux lign	es so	nt-elles s	i différentes?	,
Pour	quoi les	densités de c	courant su	ır les d	eux lign	es so	nt-elles s	i différentes?	,
Pour	quoi les	densités de c	courant su	ır les d	eux lign	es so	nt-elles s	i différentes?	,
) Pour	quoi les	densités de c	courant su	ır les d	eux lign	es so	nt-elles s	i différentes?	,
) Pour	quoi les	densités de c	courant su	ır les d	eux lign	es so	nt-elles s	i différentes?	,
) Pour	quoi les	densités de c	courant su	ır les d	eux lign	es so	nt-elles s	i différentes?	,
) Pour	quoi les	densités de c	courant su	ır les d	eux lign	es so	nt-elles s	i différentes?	,
) Pour	quoi les	densités de d	courant su	ır les d	eux lign	es so	nt-elles s	i différentes?	,

Exer	cices	Nombre of maximal	le points obtenus
7.	Un monte-charge de bâtiment s'élève de 18 m en 23 secondes. La cage du monte-charge pèse 0,7 tonne et peut transporter une charge de 1,4 tonne. Calculez la puissance électrique absorbée (en kW) sachant que le monte-charge complet (moteur et système de levage) a un rendement de 75%?	3	
8.	Un accumulateur Ni-MH (Nickel-Hydrure métallique) a les caractéristiques suivantes: $E=1,2\ V;\ R_i=0,36\ \Omega;\ Q=1'200\ mAh.$ Trois accumulateurs sont couplés en parallèle et produisent ensemble un courant de 1,5 A. a) Calculez la tension aux bornes du couplage.	3	
	b) Calculez le temps de décharge complet de ce couplage (hypothèse : le courant de décharge est constant).		

Exer	cices	Nombre d maximal	e points obtenus
9.	Nommez quatre grandeurs physiques pouvant être contrôlées par des capteurs en technique du bâtiment.	2	

Exer	cices	Mombre d maximal	obtenus
1.	Un conteneur de forme cylindrique est rempli de 10 litres d'eau. Quelle est la hauteur du cylindre, sachant que son diamètre intérieur est de 220 mm ?	2	
2.	Le rotor d'un générateur (symbolisé par le conducteur) coupe les lignes de forces du champ magnétique produit par l'aimant permanent.	3	
	a) Dessinez la direction du déplacement du rotor (Effet générateur).		
	lacksquare		
	 Dessinez le sens du courant dans le conducteur (un point ou une croix) sachant qu'il se déplace dans la direction indiquée par le vecteur (Effet générateur). 		
	S N		
	c) Indiquez la polarité des pôles (Effet générateur).		

Exer	Exercices					maximal			
3.	Une charge a une puis Calculez la puissance supérieure à la tension	de cette charge						2	
4.	La résistance, la bobir une tension de 12 V / Pour chacun des trois Déterminez l'évolution Sur chacune des ligne	50 Hz et à une t composants, ur du courant pou	ension de 12 V n courant a été n r la deuxième m	DC. nesure esure	é. (?A)		nent à	3	
				Le courant augmente	Le courant diminue	Le courant reste le même	ll n'y a pas de courant		
		12 V/50 Hz 1 A	12 V DC ? A						
		12 V/50 Hz ? A	12 V DC 0,5 A						
		12 V/50 Hz ? A	12 V DC 0 A						

Exer	cices	Nombre d	e points obtenus
5.	a) Quel est le nom du circuit représenté ? b) Citez un exemple d'application utilisant ce circuit.	2	
6.	Une pompe refoule 3 m³ d'eau par minute d'une profondeur de 50 m. Calculer la puissance utile du moteur électrique relié à la pompe sachant que le rendement de la pompe est de 75%.	3	

Exer	cices	Nombre d maximal	le points obtenus
0	◆ 8 m →	•	
9.		3	
	Pour la salle à manger illustrée, un client désire un éclairage sur chacune des six tables. Il désire utiliser comme moyen d'éclairage une ampoule économique par table (fluocompacte) de 20 W / 1'150 lm. Le rendement de cet éclairage est de 40%.		
	a) Quel sera l'éclairement moyen obtenu compte tenu des désirs du client ?		
	 b) Comment évaluez-vous le niveau d'éclairage de la pièce ? Cochez une réponse. 		
	L'éclairement moyen est bien choisi.		
	L'éclairement moyen est trop faible.		
	L'éclairement moyen est trop grand.		
	c) Par quel facteur se modifie l'éclairement moyen, si sur chaque table on installe deux ampoules économiques?		

Exer	cices	Nombre maximal	de points obtenus
3.	Une plaque de protection rectangulaire avec quatre perçages est réalisée en acier. Ses dimensions sont 200 mm x 120 mm et elle a une épaisseur de 2,5 mm. Calculez la masse exacte de cette plaque en kg. ((p = 7,2 \frac{kg}{dm^3})	3	
4.	En quelle forme d'énergie utile les appareils suivants transforment-t-ils l'énergie électrique consommée ?	2	
	 a) Perceuse →		

Exer	cices			Nombre of maximal	de points obtenus
5.	Répon	dez aux questions suivantes.		2	
	a)	Comment nomme-t-on l'induction re ferromagnétique lorsque le champ			
	b)	On fait une distinction entre les mat matériaux magnétiques durs. Indique magnétiques doux ou durs pour les	uez si l'on utilise des matériaux		
		Noyau de transformateur →			
		Aimant permanent →			
		Electroaimant →			
6.	60 m p d'une d La pon absorb		ation montante sont de 10 % (il s'agit rendement de la pompe est de 80 %.	3	

Exer	cices	Nombre maximal	de points obtenus
7.	Une clé dynamométrique est réglée sur 120 Nm. Quelle force doit être appliquée sur la clé sachant que son bras de levier a une longueur de 430 mm ?	2	
8.	Un réparateur a installé, il y a 10 ans, un éclairage composé de 12 lampes halogènes basse tension de 35 W. L'efficacité lumineuse des lampes halogènes basse tension est de 21 lm/W. Il désire remplacer cet éclairage par des lampes LED pour économiser de l'énergie. Les lampes LED ont une puissance de 7 W et une efficacité lumineuse de 70 lm/W. Combien de lampes LED doit-il installer si le flux lumineux doit rester le même ? Le facteur de vieillissement est négligé.	3	

Exer	cices	Nombre maximal	de points obtenus
5.	Une plaque de cuivre a une largeur de 17 cm, une longueur de 270 mm et une épaisseur de 10 mm. Elle a un trou de fixation de 12 mm de diamètre, dans chacun des quatre coins. Masse volumique du cuivre : $8.9 \frac{kg}{dm^3}$ Calculez la masse de cette plaque de cuivre.	3	
6.	Soulignez la bonne réponse. Pour un signal électrique alternatif, le temps d'une période correspond au temps : a) d'une alternance négative. b) entre la valeur maximale positive et la valeur maximale négative. c) d'une alternance positive. d) de l'écoulement d'une oscillation complète.	1	

Exercices	Nombre maximal	de points obtenus
7. Quelle est la longueur maximale d'une ligne de cuivre de 1,5 mm² de sorte de pour un courant de charge de 8 A, la chute de tension en ligne ne dépasse par 4 % de la tension de réseau (230 V) ?	que 3 pas	
8. Un signal sinusoïdal est appliqué à un redresseur en pont (redresseur à doualternance). a) Tracez le signal de sortie (tension aux bornes de la résistance de charge b) Calculez la valeur maximale de la tension de sortie si le signal d'entrée a valeur efficace de 6 V. (Remarque : La tension de seuil des diodes de redressement au silicium est de 0,7 V) a) b)	e). i une	

Exer	cices	Nombre maximal	de points obtenus
3.	Calculez dans le circuit suivant:	3	
	a) le courant total I	1	
	b) la tension aux bornes de R ₃	1	
	c) la résistance R₁	1	
	$\begin{array}{c c} & 0.8 \text{ A} \\ \hline & 1.2 \text{ A} \\ \hline & R_1 \end{array}$		
4.	A l'aide d'un ohmmètre, un installateur-électricien mesure la résistance de boucle d'un câble dont les conducteurs en cuivre ont une section de 1,5 mm². L'ohmmètre indique 1,2 Ω entre L et N. $ (\rho = 0.0175 \ \frac{\Omega \cdot mm^2}{m}) $	2	
	Calculez:		
	a) la longueur du câble	1	
	b) la chute de tension en volts lorsqu'un courant de 8,5 A circule dans le câble	1	

Exer	cices	Nombre of maximal	de points obtenus
5.	Le graphique ci-dessous montre la caractéristique d'une résistance non-linéaire. Quelle affirmation est correcte?	1	
	Graphique R/D 10 ² 10 ¹ R _R R _R R _A T _E T/'C Affirmations juste		
	Caractéristique d'une thermistance NTC		
	Caractéristique d'une thermistance PTC		
6.	Sur une batterie de piles 4,5 V, la tension aux bornes chute à 4,3 V lorsque la batterie débite un courant de 0,6 A. Calculez:	2	
	a) la chute de tension aux bornes de la résistance interne R _i	1	
	b) la résistance interne R _i	1	

Exer	cices	Nombre maximal	de points obtenus
7.	Une grue soulève une charge de 120 kg en 6 secondes à une hauteur de 8 m. g = 9,81 $\frac{m}{s^2}$; g = 9,81 $\frac{N}{kg}$	3	
	Calculez:		
	a) la puissance utile (puissance mécanique)	2	
	b) la puissance absorbée sur le réseau électrique, sachant que le système de levage a un rendement de 71 % et le moteur a un rendement de 81 %.	1	
8.	Un local de bricolage de 18 m² de surface au plancher est éclairé avec 3 lampes halogène à basse tension ayant chacune les caractéristiques suivantes: $P=50~W,~\Phi=950~lm$	2	
	Le rendement de l'éclairage est de 45 %.		
	Calculez l'éclairement moyen E _M .		

Exer	cices	Nombre maximal	de points obtenus
4.	Sur la plaquette signalétique d'une bouilloire, on trouve les informations suivantes : 700 W / 230 V. La tension effective est inférieure de 5% par rapport à la tension nominale.	3	
	Calculez:		
	a) la tension effective.	1	
	b) la puissance effective.	1	
	c) la diminution de puissance en watts.	1	
5.	Le courant de fuite lors d'un coup de foudre est de 18,3 kA. Le parafoudre se compose d'un conducteur d'un diamètre de 4,8 mm.	2	
	Quelle est la densité de courant dans ce parafoudre ?		

Exer	cices	Nombre of maximal	de points obtenus	
6.	Deux parois parallèles sont distantes l'une de l'autre de 6,5 m. Une paroi a une hauteur de 7 m et l'autre de 4,08 m.	3		
	Calculez la longueur du canal d'installation nécessaire à relier les deux parois (longueur indiquée en gras sur le dessin).			
	7,00 m Canal d'installation 6,50 m 4,08 m			
7.	La résistance de boucle d'un câble TT LNPE d'une longueur de 75 m ne doit pas dépasser 1,12 Ω .	3		
	a) Calculez la section du conducteur. b) Calculez la chute de tension en ligne si un courant de 8 A parcourt le câble.			
	c) Quelle section normalisée doit être choisie pour cette ligne?	1		

Exer	Exercices			
4.	Une grue de construction soulève une charge de 600 kg à une hauteur de 15 m en 10 secondes. Calculez la puissance utile de cette grue.	1		
5.	Un câble 3 x 1,5 mm² Cu (LNPE) mesure 65 m. Calculez le courant de ligne maximum sachant que la tension d'alimentation est de 230 V et que la chute de tension en ligne ne doit pas dépasser 4 %. $\rho = \ 0.0175 \ \frac{\Omega \cdot mm^2}{m}$	3		
6.	Une tension est-elle induite dans le conducteur lorsque celui-ci se déplace dans le sens de la flèche ?	1		
	□ OUI □ NON			

Exer	cices		Nombre maximal	de points obtenus	
7.	Complétez ce tableau.		2		
	Symbole	Description			
		Diode Zener			
		Thyristor	0,5		
			0,5		
	-\$		0,5		
		Diac	0,5		
8.	Une batterie génère une tension à vi Lorsque celle-ci produit un courant d 6,1 V.	3			
	$R_{i} = 0$ $R_{i} = 0$ $R_{i} = 0$ $R_{i} = 0$				
	Calculez : a) la résistance interne de la batterie. b) la tension aux bornes de la batterie lorsqu'elle produit un courant de 2 A. c) le courant de court-circuit.				