Introduction aux événements récurrents en grande dimension

Journées de Biostatistique

Le 18 novembre 2022

Juliette Murris, doctorante à HeKA (Inria – Inserm), Sous l'encadrement de Sandrine Katsahian et Audrey Lavenu

Agenda

1. Contexte

- Objectifs
- 3. Analyser des événements récurrents
- 4. Traiter la grande dimension
- 5. Discussion/Conclusion

- Plusieurs événements pour chaque individu
- Evolution des facteurs au cours du temps

Approche classique avec le modèle de Cox

- Modèles statistiques pour les événements récurrents
 - Extensions de modèles de Cox : Andersen-Gill, Prentice-William & Petersen, Wei-Lin & Weissfeld
 - Modèles de comptage : processus de Poisson, Binomial négatif

La grande dimension

p>n avec p le nombre de facteurs et n le nombre d'individus

Recours habituel pour traiter ce problème

- Réduction de dimension : ACP, regressions pénalisées (Lasso, Enet, Ridge)
- Machine learning : forêts aléatoires, SVM, reseaux de neurones

Les objectifs aujourd'hui

- Comment analyser les événements récurrents?
- Comment les traiter dans un contexte de grande dimension?

Notations

 $\mathbf{X} \in \mathbb{R}^{n * p}$ la matrice des facteurs

 β les coefficients associés

 $\lambda_0(t)$ la function de risque de base

 $Y_i(t)$ une indicatrice pour définir si l'individu i est à risque au temps t

 $T_i = E_i \wedge C_i$ le temps minimal entre l'évenement et la censure

 η_i le risque d'apparition de l'événement

 $N_i^*(t)$ le nombre total d'événements sur l'intervalle [0, t]

	AG	PWP	WLW	Poisson	NB
Temps jusqu'aux événements	х	х	Х		
Temps entre chaque événement		x			
Nombre total d'événements				x	
Taux d'apparition (pour chaque unité de temps)					x

	AG	PWP	WLW	Poisson	NB
Temps jusqu'aux événements	Х	х	х		
Temps entre chaque événement		x			
Nombre total d'événements				x	
Taux d'apparition (pour chaque unité de temps)					x

Take home message

La méthodologie pour l'analyse des événements récurrents repose essentiellement sur l'objectif de l'étude / la question scientifique.

	AG	PWP	WLW	Poisson	NB
Temps jusqu'aux événements	х	Х	Х		
Temps entre chaque événement		x			
Nombre total d'événements				X	
Taux d'apparition (pour chaque unité de temps)					Х

	AG	PWP	WLW
Temps jusqu'aux événements	х	Х	Х
Temps entre chaque événement		Х	

AG – Les événements récurrents au sein des individus sont indépendants et partagent une fonction de risque de base commune

$$\lambda_i(t) = Y_i(t) \times \lambda_0(t) \times \exp(\beta^t X_i)$$

Possibilité de prendre en compte les covariables variant dans le temps et les intervalles de temps à risque discontinus

Mais

L'omission d'une covariable importante pourrait induire une dépendance

	AG	PWP	WLW
Temps jusqu'aux événements	Х	X	Х
Temps entre chaque événement		x	

PWP = AG stratifié – La strate k considère les k^{èmes} événements de l'individu i

$$\lambda_{ik}(t) = Y_i(t) \times \lambda_{0k}(t) \times \exp(\beta_k^t X_i)$$

Recommandé lorsque l'on suppose que la survenue du premier événement augmente la probabilité d'une récurrence

Mais

Estimations instables si les risques pour les événements ultérieurs décroissent

	AG	PWP	WLW
Temps jusqu'aux événements	Х	X	Х
Temps entre chaque événement		X	

WLW – Modèle marginal avec une échelle de temps calendaire

$$\lambda_{ik}(t) = Y_i(t) \times \lambda_{0k}(t) \times \exp(\beta_k^t X_i)$$

La dépendance intra-patient prise en compte dans l'estimation de la variance

Mais

Besoin de limiter le nombre d'événements par patient

Dans la littérature

Applications

Très souvent la récurrence est évitée :

Classifieur

Recurrence-free

Temps jusqu'au premier événement

1 seule application avec un réseau de neurones WT-RTT

Méthode issue d'un mémoire de master & non publiée dans un journal à comité de lecture

Dans la littérature

Applications

Très souvent la récurrence est évitée :

Classifieur

Recurrence-free

Temps jusqu'au premier événement

1 seule application avec un réseau de neurones WT-RTT

Take home message

En l'absence de recommandations, la revue de la littérature illustre la prudence des auteurs/investigateurs lorsqu'ils traitent des événements récurrents en grande dimension.

Dans la littérature

4 méthodes publiées

Dans la littérature

4 méthodes publiées

Source de données

n = 100

p = 25, 50, 100, 150, 200

c = 20% (taux de censure)

sp = 25%, 50% (taux de variables actives)

 $N_{sim} = 100$

Plan de simulation

Inspiration du package simrec avec introduction du contrôle de la multicolinéarité et de sp

Evaluation

C-index de Harrell

$$\widehat{\mathbb{C}} = \frac{\sum_{i \neq j} I\{\eta_i < \eta_j\} \times I\{T_i > T_j\} \times \delta_j}{\sum_{i \neq j} I\{T_i > T_j\} \times \delta_j}$$

C-index de Kim

$$\hat{\mathbb{C}}_{rec} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} I\{N_{i}^{*}(T_{i} \wedge T_{j}) > N_{j}^{*}(T_{i} \wedge T_{j})\} \times I\{\beta^{t}X_{i} > \beta^{t}X_{j}\}}{\sum_{i=1}^{n} \sum_{j=1}^{n} I\{N_{i}^{*}(T_{i} \wedge T_{j}) > N_{j}^{*}(T_{i} \wedge T_{j})\}}$$

Evaluation

C-index de Harrell

$$\widehat{\mathbb{C}} = \frac{\sum_{i \neq j} I\{\eta_i < \eta_j\} \times I\{T_i > T_j\} \times \delta_j}{\sum_{i \neq j} I\{T_i > T_j\} \times \delta_j}$$

C-index de Kim

$$\hat{\mathbb{C}}_{rec} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} I\{N_{i}^{*}(T_{i} \wedge T_{j}) > N_{j}^{*}(T_{i} \wedge T_{j})\} \times I\{\beta^{t}X_{i} > \beta^{t}X_{j}\}}{\sum_{i=1}^{n} \sum_{j=1}^{n} I\{N_{i}^{*}(T_{i} \wedge T_{j}) > N_{j}^{*}(T_{i} \wedge T_{j})\}}$$

Take home message

Il ne semble pas exister de critère unique pour évaluer les méthodes qui traitent les événements récurrents (avec une approche time-to-event)

Résultats – p = 150, sp = 25%

Résultats – p = 150, sp = 25%

Résultats – p = 150, sp = 25%

Discussion

Forces

- Identification des dernières approches pour répondre à la problématique des événements récurrents en grande dimension
- ▶ 1e confrontation de méthodes standard, d'algorithmes de sélection de variables et d'un réseau de neurones

Limites

- Les hyperparamètres de la méthode de pénalité BAR n'ont pas pu être optimisés
- D'autres mesures d'évaluation pourraient être utilisées

Conclusion

- > Aucune méthode ML disponible ne semble plus performante
- Aucune application des méthodes à sélection de variables dans la littérature
- > Pas de recommandation en regard de la métrique

Conclusion

- > Aucune méthode ML disponible ne semble plus performante
- Aucune application des méthodes à sélection de variables dans la littérature
- > Pas de recommandation en regard de la métrique

Final take home message

L'analyse des événements récurrents dans un contexte de grande dimension semble encore à explorer

Références

Amorim LDAF, Cai J. Modelling recurrent events: a tutorial for analysis in epidemiology. Int J Epidemiol. 2015;44(1):324–33.

Andersen PK, Gill RD. Cox's Regression Model for Counting Processes: A Large Sample Study. Ann Stat. 1982;10(4):1100-20.

Cox DR. Regression Models and Life-Tables. J R Stat Soc Ser B Methodol. 1972;34(2):187–202.

Gupta G, Sunder V, Prasad R, Shroff G. CRESA: A Deep Learning Approach to Competing Risks, Recurrent Event Survival Analysis. In: Advances in Knowledge Discovery and Data Mining. Cham: Springer International Publishing; 2019. p. 108–22.

Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the Yield of Medical Tests. JAMA. 1982;247(18):2543-6.

Kim S, Schaubel DE, McCullough KP. A C-index for recurrent event data: Application to hospitalizations among dialysis patients. Biometrics. 2018;74(2):734–43.

Jing B, Zhang T, Wang Z, Jin Y, Liu K, Qiu W, et al. A deep survival analysis method based on ranking. Artif Intell Med. 2019;98:1–9.

Prentice RL, Williams BJ, Peterson AV. On the regression analysis of multivariate failure time data. Biometrika. 1981;68(2):373–9.

Wei LJ, Lin DY, Weissfeld L. Regression Analysis of Multivariate Incomplete Failure Time Data by Modeling Marginal Distributions. J Am Stat Assoc. 1989;84(408):1065–73.

Wu TT. Lasso penalized semiparametric regression on high-dimensional recurrent event data via coordinate descent. J Stat Comput Simul. 2013;83(6):1145–55.

Zhao H, Sun D, Li G, Sun J. Variable selection for recurrent event data with broken adaptive ridge regression. Can J Stat. 2018;46(3):416–28.

Merci pour votre attention