

WATER QUALITY MODELING

Barry Bunch, DE, PE

U.S. Army Engineer Research and Development Center, **Environmental Laboratory**

CE-QUAL-W2 Workshop

July 18-20, 2023

Outline

- 1. Concept/Background
- 2. Schematic
- 3. Assumptions
 - Mass Balance
 - Conservative
 - Complete Process
 Representation
- 4. Water quality capabilities
 - State variables
 - Derived variables
 - WQ processes

//CUI// and proceed the control of t

Water Quality

- Water quality is agglomeration of physical, chemical, and biological components of water column that determine its overall "condition."
- Physical components include temperature and suspended solids and conservative dissolved substances.
- Chemical components include dissolved substances whose levels are impacted by physical, chemical, and biological processes.
- Biological components are living organisms whose normal biological processes are impacted by and have impacts on the conditions present in the water column.

//CUI//

3

Conceptual Water Quality Model

change in mass over time

total inflow of mass

total outflow of mass

kinetic transformations

CE-QUAL-W2 Water Quality

Mass Balance

- Mass of all substances in model is conserved, not created nor destroyed.
- Mass can be transformed from one form to another (i.e., Nitrogen from NH4 to NO2/NO3 to N2)
- Mass can enter and leave model by specified processes and means.
- Important that our representation of process is thorough and complete as possible

Conservation

- The mass of all substances in model is conserved, not created nor destroyed.
- Assumption is crucial to our use of model and interpretation of its results.
- Important that our representation of process is thorough and complete as possible.
- Specified process rates should be supported by data or from technical literature.

CE-QUAL-W2 Water Quality

- Arbitrary Constituents
- Inorganic suspended solids groups
- CH₄, H₂S
- N₂, DGP, TDG
- Labile and refractory dissolved organic matter groups (DOM, DOC, DON, DOP)
- Labile and refractory particulate organic matter fractions (POM, POC, PON, POP)
- Dissolved and particulate silica
- Alkalinity, Total inorganic carbon (TIC), PH
- Different algal groups
- NH₄-N, NO₃-N+NO₂-N
- PO₄-P
- Fe, Mn
- CBOD groups
- Sediment diagenesis model
- SYSTDG

CE-QUAL-W2 DOM

US Army Corps of Engineers • Engineer Research and Development Center

CE-QUAL-W2 POM

//CUI//

CE-QUAL-W2 Ammonium

US Army Corps of Engineers • Engineer Research and Development Center

//CUI//

11

CE-QUAL-W2 Nitrate/Nitrite

//CUI// and proceedings of the control of the contr

12

CE-QUAL-W2 Phosphate

US Army Corps of Engineers • Engineer Research and Development Center

CE-QUAL-W2 DO

US Army Corps of Engineers • Engineer Research and Development Center

CE-QUAL-W2 Algae

US Army Corps of Engineers • Engineer Research and Development Center

CE-QUAL-W2 Bed Sediment – First Order Approach

US Army Corps of Engineers • Engineer Research and Development Center

CE-QUAL-W2 Bed Sediment – Sediment Diagenesis Model

US Army Corps of Engineers • Engineer Research and Development Center

Conversions between CE-QUAL-W2 State Variables and Commonly Used Field Data

Dissolved organic carbon: $\delta_{\it C}\Phi_{\it LDOM}+\delta_{\it C}\Phi_{\it RDOM}$

Particulate organic carbon: $\delta_{\it C}\Phi_{{
m det}\,{\it ritus}} + \delta_{\it C}\Phi_{a\,{
m lg}\,ae}$

Total organic carbon: $\delta_C \Phi_{\det ritus} + \delta_C \Phi_{a \lg ae} + \delta_C \Phi_{LDOM} + \delta_C \Phi_{RDOM}$

Dissolved organic nitrogen: $\delta_{N}\Phi_{LDOM}+\delta_{N}\Phi_{RDOM}$

Particulate organic nitrogen: $\delta_N \Phi_{\det ritus} + \delta_N \Phi_{a \lg ae}$

Total organic nitrogen: $\delta_N \Phi_{LDOM} + \delta_N \Phi_{RDOM} + \delta_N \Phi_{\det ritus} + \delta_N \Phi_{a \lg ae}$

Total nitrogen: $\delta_N \Phi_{LDOM} + \delta_N \Phi_{RDOM} + \delta_N \Phi_{\det ritus} + \delta_N \Phi_{a \lg ae} + \Phi_{NH4} + \Phi_{NO3}$

Total Kheldahl Nitrogen (TKN): $\delta_N \Phi_{LDOM} + \delta_N \Phi_{RDOM} + \delta_N \Phi_{\det ritus} + \delta_N \Phi_{a \lg ae} + \Phi_{NH4}$

Dissolved organic phosphorus: $\delta_{P}\Phi_{LDOM}+\delta_{P}\Phi_{RDOM}$

Particulate organic phosphorus: $\delta_P \Phi_{\det ritus} + \delta_P \Phi_{a \lg ae}$

Total organic phosphorus: $\delta_P \Phi_{LDOM} + \delta_P \Phi_{RDOM} + \delta_P \Phi_{\det ritus} + \delta_P \Phi_{a \lg ae}$

Total phosphorus: $\delta_P \Phi_{LDOM} + \delta_P \Phi_{RDOM} + \delta_P \Phi_{\det ritus} + \delta_P \Phi_{a \lg ae} + \Phi_{PO4} + \delta_{PISS} \Phi_{ISS}$

Carbonaceous BOD, CBOD: $\delta_{\mathit{OM}}\Phi_{\mathit{RDOM}}+\delta_{\mathit{OM}}\Phi_{\mathit{LDOM}}+\delta_{\mathit{OM}}\Phi_{\mathit{alg}\mathit{ae}}+\delta_{\mathit{OM}}\Phi_{\mathit{det}\mathit{ritus}}$

Nitrogenous BOD, NBOD:

$$\delta_{\scriptscriptstyle N}\delta_{\scriptscriptstyle NH4}\Phi_{\scriptscriptstyle RDOM}+\delta_{\scriptscriptstyle N}\delta_{\scriptscriptstyle NH4}\Phi_{\scriptscriptstyle LDOM}+\delta_{\scriptscriptstyle N}\delta_{\scriptscriptstyle NH4}\Phi_{\scriptscriptstyle a\lg ae}+\delta_{\scriptscriptstyle N}\delta_{\scriptscriptstyle NH4}\Phi_{\scriptscriptstyle det\,ritus}+\delta_{\scriptscriptstyle NH4}\Phi_{\scriptscriptstyle NH4}$$

Questions?

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED