Die Brachistochrone Eine Einführung in die Variationsrechung

W-Seminar Mathematische Optimierung

2022-24

A. Gaugler

Weihnachtsübung zur Analysis III

Prof. Dr. Marc Nieper-Wißkirchen Lukas Stoll, M. Sc.

06. Dezember 2022 – 12. Januar 2023 *

294. Es muß wohl kurz vor Weihnachten und nach einem sehr langen Arbeitstag gewesen sein, als die Oberbürgermeisterin der Stadt Augsburg beschloß: "Augsburg braucht ein neues Schwimmbad! Und zwar soll es die schnellste Rutschbahn haben, die möglich ist!"

Funktionale

Wir sind Funktionen gewöhnt wie z.B. $f(x) = x^2$, oder auch:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2$$

Jetzt nehmen wir eine Funktion, die als Input eine andere Funktion nimmt und uns als Output eine reelle Zahl gibt.

$$J: \{Funktionen\} \to \mathbb{R}$$

$$f \mapsto \int_{x_0}^{x_1} F(x, f(x), f'(x)) dx$$

Idee:

Wenn bei einer kleinen Veränderung der Funktion eine bessere Zeit herauskommt, nehmen wir diese als unsere neue optimale Funktion, und zwar so lange, bis wir eine bessere finden. Diesen Vorgang wird so häufig wiederholt, bis man eine perfekte Funktion gefunden hat.

⇒perfekte Funktion

$$G'_{\eta}(0) = \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \bigg|_{\varepsilon=0} \int_{x_0}^{x_1} F(x, f(x) + \varepsilon \eta, f'(x) + \varepsilon \eta') \, \mathrm{d}x$$

Ableitung nach &:

G hängt von der Änderung E ab

$$G'_{\eta}(0) = \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \bigg|_{\varepsilon=0} \int_{x_0}^{x_1}$$

für perfekte f brauchen wir keine Veränderung E Addition ron En bzw. En'
für veränderung

$$\int_{\alpha_0}^{\alpha_1} F(x, f(x) + \varepsilon \eta, f'(x) + \varepsilon \eta') dx$$

kommt vom
Funktional]

Gleitzeit (Mechanik)

Inverses,
$$T = \int_{x_0}^{x_1} \sqrt{\frac{2g \cdot (y_0 - f(x(t))}{1 + f'(x(t))^2}} dx = :F.$$

Gleitzeit (Mechanik)
$$x'(t) = \sqrt{\frac{2g(y_0 - f(x(t))}{1 + f'(x(t))^2}}$$
 Inverses,
$$T = \int_{x_0}^{x} \sqrt{\frac{1 + f'(x)^2}{2g \cdot (y_0 - f(x))}} \, \mathrm{d}x =: F \quad \text{was wir in J einsetzen}$$

Differentialgleichung?

Differentialgleichungen

Gleichungen, in denen Ableitungen der gesuchten Variable (Differentiale) im Term vorkommen.

$$z.B. y' = x \cdot y'$$

Euler-Lagrange-Formalismus

Schon wieder helfen uns Ergebnisse der theoretischen Physik. Hier ist ein Formalismus für das Vereinfachen von Differentialgleichungen:

Einsetzen von Tin Euler-Lagrange

Nach sehr vielen Umformungen:

$$(y_0 - f)(1 + (f')^2) = \text{const.}$$

Differential gleichung

Lösung

$$x = r \cdot (\varphi - \sin \varphi)$$
 hat ctwas mit $y = r \cdot (-1 + \cos \varphi)$ Kreisen zu tun $r = \frac{2 \cdot y_0}{\pi}$ Radius

Equations [edit]

The cycloid through the origin, generated by a circle of radius r rolling over the x-axis on the positive side ($y \ge 0$), consists of the points (x, y), with

$$x = r(t - \sin t)$$

 $y = r(1 - \cos t)$,

where t is a real parameter corresponding to the angle through which the rolling circle has rotated. For given t, the circle's centre lies at (x, y) = (rt, r).

Article Talk

Read

Edit View history

Tools ∨

From Wikipedia, the free encyclopedia

For other uses, see Cycloid (disambiguation).

In geometry, a **cycloid** is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve.

The cycloid, with the cusps pointing upward, is the curve of fastest descent under uniform gravity (the brachistochrone curve). It is also the form of a curve for which the period of an object in simple harmonic motion (rolling up and down repetitively) along the curve does

not depend on the object's starting position (the tautochrone curve). In physics, when a charged particle at rest is put under a uniform electric and magnetic field perpendicular to one another, the particle's trajectory draws out a Mittwoch 7 leebruar 2024

- (k) Warum wurden die Pläne der Augsburger Oberbürgermeisterin trotz allem nicht realisiert?
 - (i) Man kann sich am Anfang der Rutschbahn nicht hinsetzen.
 - (ii) Rutschen macht Spaß; deshalb sollte es lange dauern.
 - (iii) Die Stadt Augsburg spart, indem sie die Materialkosten minimiert.
 - (iv) Um dafür Sorge zu tragen, daß die Reibungskräfte vernachlässigt werden können, wird zuviel Schmierseife benötigt.

Weiterführendes

- Seminararbeit und zusätzliches Material online
 - ⇒github: @august-gaugler
- Formalisierung der Beweisführung in Lean/Agda
- Seminare zu Inhalt und Entstehungsprozess
 - WIP: Uni Augsburg, Zirkel auf dem Mathecamp 2025/26
 - Evtl. Vortrag auf 38c3

