CSE530: Algorithms & Complexity Exercise Set 1

Antoine Vigneron

February 28, 2018

Question 1. For each function f(n) below, give a tight bound using the $\Theta(\cdot)$ notation. Your answer should be chosen from the following list: $\Theta(1)$, $\Theta(n)$, $\Theta(\log n)$, $\Theta(n \log n)$, $\Theta(n!)$, $\Theta(n!)$, $\Theta(n^2)$, $\Theta(2^n)$, $\Theta(n^3)$, $\Theta(\sqrt{n})$, $\Theta(n \log^2 n)$, $\Theta(3^n)$. No justification is needed.

	f(m)	Anguron
	$\frac{f(n)}{10(n+1)(n-5)}$	Answer
(a)	10(n+1)(n-5)	
(b)	$n^2 + 2^n$	
(c)	$n\log(n^2)$	
(d)	$\sqrt{n} + \log n$	
(e)	$10^{23} + \log n$	
(f)	$n\log_9 n + n^2$	
(g)	$(\sqrt{n}\log n)^2$	
(h)	$(n+1)^3 - (n-1)^3$	
(i)	$\frac{n+\sqrt{n}}{n+1}$	
(j)	$2n + n\sin(n)$	

- **2.** Let f(n) and g(n) be two functions that are nonnegative for every $n \ge n_0$, where n_0 is a constant. Using the basic definition of the Θ -notation, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.
- **3.** Suppose that f(n) = O(g(n)), and that there exists a constant n_1 such that $n \ge n_1$ implies that $f(n) \ge 2$ and $g(n) \ge 2$. Prove that $\log f(n) = O(\log g(n))$. (Remember that in this course, log means \log_2 .)

4. Given an input array A[1...n] and a key x, the searching problem is to decide whether x is stored in A and if so, return i such that x = A[i]. The brute force approach for searching, which scans through the whole input array, is called *linear search*.

Write the pseudocode for linear search, and prove that your algorithm is correct. Make sure that your loop invariant fulfills the three necessary properties

- **5.** Consider the problem of adding two n-bit binary integers, stored in two n-element arrays A and B. The sum of the two integers should be stored in binary form in an (n+1)-element array C. State the problem formally and write pseudocode for adding the two integers.
- 6. How can we modify almost any algorithm to have a good best-case running time?