Pubic Symphysis-Fetal Head Segmentation and Angle of Progression

Grand Challenge Review

Anna Putina

Facultat d'Informàtica de Barcelona, Universtat Politècnica de Catalunya

November 28th, 2023

- Clinical Background and Data
- Challenge Results
- FH-PSSNet Model
- 4 References

- Clinical Background and Data
- Challenge Results
- FH-PSSNet Model
- 4 References

Clinical Background and Data

Figure 1. Assessment of FD in the birth canal by measurement AoP

Data [4]: 4000 MHA files for image data (3 × 256 × 256) and for labels (256 × 256, pixels labeled as 0 - bg, 1 - PS, or 2 - FH).

Goal: Segmentation algorithms, predicting images (256 × 256) containing labeled pixels.

- Risk: maternal and perinatal morbidity
- Pathology: longer labor duration (slow progression of fetal descent(FD))
- Accurate assessment of FD by monitoring the FH station remains challenge in guiding obstetric management
- Manual segmentation of SP-FH from transperineal US (TPU) images is the most reliable, but extremely time-consuming
- Automatic measurement algorithms based on AI are expected to be efficient, reproducible and objective

- Clinical Background and Data
- Challenge Results
- FH-PSSNet Model
- References

Metrics and Results

Team	AoP	HD_{FH}	HD_{PS}	MSD_{FH}	MSD_{PS}	HD_{ALL}	MSD_{ALL}	DICEFH	DICE _{PS}	DICEALL	Score
Gregor Koe	6.544	12.631	7.638	3.896	2.409	13.448	3.486	0.930	??	0.924	0.9418
Marawan Elbatel	7.970	10.699	7.559	3.307	2.995	12.059	2.981	0.940	??	0.935	0.9416
Yaoyang Qiu	7.647	12.459	7.661	3.616	2.257	13.615	3.238	0.936	??	0.930	0.939
Gongping Chen	8.558	14.011	9.051	3.869	2.620	15.334	3.517	0.931	0.860	0.924	0.931
Fangyijie Wang	8.719	14.009	10.829	3.984	2.982	15.809	3.579	0.931	0.858	0.925	0.928
Hongkun Sun	9.276	15.795	11.536	4.723	3.114	17.560	4.265	0.918	0.831	0.910	0.923
Pengzhou Cai	12.199	20.031	14.068	7.099	4.208	21.873	6.058	0.879	0.804	0.872	0.897
YuboTan	14.048	16.041	16.023	5.199	7.260	20.251	5.106	0.910	??	0.894	0.892

^{*}The participants for whom model information is available are highlighted in color

- Dice Coefficient $DC = \frac{2 \times |I_P \cap I_L|}{|I_P| + |I_L|}$, where I_P is the model prediction, I_L is the ground truth, and $|\cdot|$ is the number of pixels belonging to the object.
- Hausdorf Distance $HD = \max \left\{ \sup_{x \in I_P} \inf_{y \in I_L} d(x,y), \sup_{y \in I_L} \inf_{x \in I_P} d(x,y) \right\}$, where d(x,y) is the distance between points x and y.
- Mean Surface Distance $MSD = \frac{1}{|I_P| + |I_L|} \left(\sum_{x \in I_P} d(x, I_L) + \sum_{y \in L} d(y, I_P) \right)$
- $\triangle AoP = |AoP_P AoP_L|$, where AoP_P represents the predicted magnitude, and AoP_L is the magnitude of the labeled AoP.

$$\begin{split} \bullet & \ \, \mathbf{Score} = 0.5 \left(1 - \frac{\Delta AoP}{180} \right) + 0.25 \frac{DICE_{FH} + DICE_{PS} + DICE_{ALL}}{3} + \\ & \ \, 0.25 \left[0.5 \left(1 - \frac{HD_{FH} + HD_{PS} + HD_{ALL}}{3 \times 100} \right) + 0.5 \left(1 - \frac{MSD_{FH} + MSD_{PS} + MSD_{ALL}}{3 \times 100} \right) \right] \end{split}$$

Methods and Results

Team	AoP	HD_{FH}	HD_{PS}	MSD_{FH}	MSD _{PS}	HD_{ALL}	MSD _{ALL}	DICEFH	DICE _{PS}	DICEALL	Score
Gregor Koe	6.544	12.631	7.638	3.896	2.409	13.448	3.486	0.930	??	0.924	0.9418
Marawan Elbatel	7.970	10.699	7.559	3.307	2.995	12.059	2.981	0.940	??	0.935	0.9416
Yaoyang Qiu	7.647	12.459	7.661	3.616	2.257	13.615	3.238	0.936	??	0.930	0.939
Gongping Chen	8.558	14.011	9.051	3.869	2.620	15.334	3.517	0.931	0.860	0.924	0.931
Fangyijie Wang	8.719	14.009	10.829	3.984	2.982	15.809	3.579	0.931	0.858	0.925	0.928
Hongkun Sun	9.276	15.795	11.536	4.723	3.114	17.560	4.265	0.918	0.831	0.910	0.923
Pengzhou Cai	12.199	20.031	14.068	7.099	4.208	21.873	6.058	0.879	0.804	0.872	0.897
YuboTan	14.048	16.041	16.023	5.199	7.260	20.251	5.106	0.910	??	0.894	0.892

^{*}The participants for whom model information is available are highlighted in color

- Marawan Elbatel [3]: pre-trained Segment Anything Model (SAM) by Meta AI
 (freezing the model and performing low-ranked fine-tuning of the image encoder)
- Fangyijie Wang [6]: U-Net-based segmentation model from the Segmentation Models SPM library
- Hongkun Sun [5]: Custom NN model which is a combination of several architectural components, including ResNet, Multi-Scale Attention Blocks, ViT (Vision Transformer) blocks, and various convolutional and transposed convolutional layers
- Pengzhou Cai [1]: Custom method, named BRAU-Net, adopting a U-Net-like pure Transformer architecture with bi-level routing attention and skip connections

- Clinical Background and Data
- Challenge Results
- § FH-PSSNet Model
- 4 References

Architecture

The FH-PSSNet model [2] is based on an encoder-decoder framework, incorporating a dual attention module, a multi-scale feature screening module and a direction guidance block.

Figure 2. The overall framework of the model

Performance and Comparison with Other Models

Figure 3. The performance of the FH-PSSNet model

Image

Ground truth

Ours

The best performance of challenge participants:

PS

HD ↓

4.011

4.020

3.699

3.852

3.570

3.560

3.574

3.562

F	H	PS			
DC ↑	HD ↓	DC ↑	HD ↓		
0.940	10.699	0.860	7.559		

- Clinical Background and Data
- Challenge Results
- FH-PSSNet Model
- 4 References

References

- [1] Pengzhou Cai et al. "Pubic Symphysis-Fetal Head Segmentation Using Pure Transformer with Bi-level Routing Attention". In: (2023). arXiv: 2310.00289 [eess.IV].
- Zhensen Chen et al. "Direction-Guided and Multi-Scale Feature Screening for [2] Fetal Head-Pubic Symphysis Segmentation and Angle of Progression Calculation". In: (Jan. 2023). DOI: 10.2139/ssrn.4530477.
- Marawan Elbatel. MICCAI 2023 FH-PS-AOP Challenge. [3] https://github.com/marwankefah/PS-FH-MICCAI-23. 2023.
- [4] Yaosheng Lu et al. "The JNU-IFM dataset for segmenting pubic symphysis-fetal head". In: Data in Brief 41 (2022), p. 107904. ISSN: 2352-3409. DOI: https://doi.org/10.1016/j.dib.2022.107904. URL: https: //www.sciencedirect.com/science/article/pii/S2352340922001160.
- [5] Hongkun Sun. MICCAI 2023 FH-PS-AOP Challenge. https://github.com/HongkunSun/PS-FH-MICCAI-2023/tree/master. 2023.
- Fangyijie Wang. MICCAI 2023 FH-PS-AOP Challenge. [6] https://github.com/13204942/FetalAopMICCAI. 2023.

FH-PS-AoP Challenge 12 / 13 Anna Putina November 28th, 2023

Thank you for your attention! Any questions?