Running ECO-PTM

ECO-PTM Training, April 16, 2024

Brad Tom, DWR Delta Modeling Section

Overview

- 1. Overview of the ECO-PTM Installation
- 2. ECO-PTM input files
- 3. Hands-on exercises: Run a simulation for each particle type:

Overview of the DSM2 Installation

Folders in dsm2 folder

• bin\: dsm2 executables

common_input\: shared dsm2 input files

documentation\: dsm2 documentation

extras\: software you may find useful

scripts\: vscript scripts for input/output processing

• studies\: create your studies here

study_templates\: Copy these folders to create new studies

• timeseries\: shared dss timeseries input data

tutorials\: dsm2 tutorials

vista\: the DSM2 Vista application

Legend

Folders we will modify

Folders we will not modify

Overview of the DSM2 Installation

The historical_ECO-PTM folder

Folders in studies/historical_ECO-PTM folder

- studies\:
 - historical_ECO-PTM\:
 - np\
 - pp\
 - sp\

create your studies here
The ECO-PTM historical study folder
neutrally-buoyant particles
position-oriented particles
salmon particles

Overview

- 1. Overview of the ECO-PTM Installation
- 2. ECO-PTM input files
- 3. Hands-on exercises: Run a simulation for each particle type:

ECO-PTM Glossary

Term	Definition
DSM2	Delta Simulation Model 2
Environment variable	Operating system level variable, used by DSM2 to store some of its model configuration information
Tidefile	A binary file (.h5) containing hydrodynamics output from the DSM2 Hydro model. Used as input to DSM2 Qual and ECO-PTM models
NP	Neutrally-Buoyant particle, typically used to represent delta smelt larvae
PP	Position-Oriented particle, typically used to represent longfin smelt larvae
SP	Salmon particle, typically used to represent chinook salmon smolts

CONFIGURATION

config.inp

TIDEFILE

runtime

as well.

END

START_DATE

END

ptm.inp: CONFIGURATION, SCALAR, IO_FILE, TIDEFILE

END_DATE

length

FILE

\${HYDROTIDEFILE}

same for all study types

Input and output file specifications

Uses environment variable to specify path to input tidefile

```
SCALAR
NAME
            VALUE
END
IO_FILE
MODEL
                        INTERVAL FILE
                             ${DSM2OUTPUTDIR}/trace.out # Trace output file. This file is necessary to calculate the
                   none
       trace
              out
number of particles.
                             ${PTMOUTFILE}
                                                     #Echoed run status
       output out
                    none
ptm
                             ${DSM2OUTPUTDIR}/ptm_echo_${DSM2MODIFIER}.inp #Echoed input
       echo
               out
                    none
ptm
                              "ptm behavior inputs.inp"
       behavior in
                     none
ptm
END
```

Hydrodynamics file from DSM2 hydro. This file provides grid information

config.inp: same for all particle types

ENVVAR NAME **VALUE** #Study name used for DSM2 output DSM2MODIFIER hist v822 Start and end date PTM START DATE 08Mar2012 #01JAN2007 END DATE 15Aug2012 #01MAR2007 of simulation END TIME 0000 **TEMPDIR** N/A #Input envvars STUDYDIR N/A **TSINPUTDIR** #Output \${STUDYDIR}/output DSM2OUTPUTDIR ../tidefile DSM2SHAREDDIR **OUTPUTFILE** Path to tidefile N/A #Hydro (output from **HYDROTIDEFILE** \${DSM2SHAREDDIR}/\${DSM2MODIFIER}.h5 DSM2-hydro) #PTM **PTMOUTFILE** \${DSM2OUTPUTDIR}/\${DSM2MODIFIER}.pof \${DSM2OUTPUTDIR}/ptmout.txt **#PTMOUTPUTFILE** \${DSM2OUTPUTDIR}/ptmout.dss PTMOUTPUTFILE **END**

Particle Flux Output

<u>Cumulative percentage</u> of all particles in system passing each location

ptm.inp: Particle Group Output: same for all particle types

Particle Group Output: Number of particles passing through a location during each time interval

GROUP
NAME
SUT
STM
GS
RIO_UP
RIO
chipps_east
chipps_west
ag_div
swp
cvp
mtz
franks
whole
END

GROUP_MEMBER		
GROUP_NAME	MEMBER_TYPE	PATTERN
SUT	channel	(379)
STM	channel	(383)
GS	channel	(366)
RIO_UP	channel	(387 398 429)
RIO	channel	(430)
chipps_east	channel	(288 294 291)
chipps_west	channel	(442 437)
ag_div	qext	dicu_div*
ag_div	qext	bbid.*
swp	qext	swp
cvp	qext	cvp
mtz	stage	mtz.*
franks	reservoir	franks_tract
whole	channel	*
whole	reservoir	*
END		

PARTICLE	_GROUP_OUTPUT		
NAME	GROUP_NAME	INTERVAL	FILE
GS	GS	15min	\${PTMOUTPUTFILE}
SUT	SUT	15min	\${PTMOUTPUTFILE}
STM	STM	15min	\${PTMOUTPUTFILE}
RIO	RIO	15min	\${PTMOUTPUTFILE}
franks	franks	15min	\${PTMOUTPUTFILE}
whole	whole	15min	\${PTMOUTPUTFILE}
END			
			10
			10

ptm.inp: Particle Flux Output, Particle Insertion (not used for sp studies)

Particle Flux Output: Cumulative percentage of all particles in system passing each location

Particle_Insertion specified here for np and pp studies

```
PARTICLE_FLUX_OUTPUT
          FROM_WB
                          TO_WB
NAME
                                         INTERVAL FILE
          chan:418
SUT flux
                        chan:379
                                             ${PTMOUTPUTFILE}
                                      15min
STM flux
                                              ${PTMOUTPUTFILE}
          chan:419
                        chan:383
                                      15min
GS flux
                       chan:366
         chan:422
                                             ${PTMOUTPUTFILE}
                                      15min
         group:RIO_UP
                                               ${PTMOUTPUTFILE}
                          chan:430
pass_rio
export_swp res:clifton_court group:swp
                                        15min ${PTMOUTPUTFILE}
export_cvp chan:216
                                              ${PTMOUTPUTFILE}
                                       15min
                        group:cvp
                                              ${PTMOUTPUTFILE}
past mtz
          chan:441
                        group:mtz
                                      15min
                                             15min ${PTMOUTPUTFILE}
past_chipps group:chipps_east_group:chipps_west_
                                              ${PTMOUTPUTFILE}
diversion_ag group:all
                                       15min
                        group:ag div
END
```

PARTICLE_INSERTION NODE NPARTS DELAY DURATION 332 1000 10day 1day # release info stored in ptm_behavior_inputs.inp END

ptm_behavior_inputs.inp: Input sections for each particle type

Neutrally-Buoyant	Position-Oriented	Salmon
Particle_Type_Inputs	Particle_Type_Inputs	Particle_Type_Inputs
Random_Sequence_Inputs	Random_Sequence_Inputs	Random_Sequence_Inputs
No Swim_Inputs	Swim_Inputs	Swim_Inputs
Route_Inputs	Route_Inputs	Route_Inputs
		Travel_Time_Output
		Fish_Release_Inputs
		Survival_Inputs

Commonly Changed Variables

Variable	Input File Changed
Time period	config.inp
Type of particles	ptm_behaviors_input.inp
# of partialog	np and pp ptm.inp
# of particles and/or	Delta or longfin smelt larvae
Insertion locations	sp ptm_behaviors_input.inp Chinook salmon smolts
Flow conditions	config.inp and maybe tidefile*

*The tidefile provided in this training is for Mar-Aug 2011
A longer historical tidefile is available on CNRA Open Data under DSM2

Direct link to zipfile

DSM2 2022.01 Historical Update Output
DSS output files for 2022.01 Historical Update

Studies/historical_ECO-PTM

📜 np

<mark>I</mark> рр

_ sp

tidefile

In np, pp, and sp

output

a config.inp

ptm.inp

ptm_behavior_inputs.inp

In tidefile

hist_v822.h5

Questions? Please type them into Teams chat

Include slide # if possible

Brad Tom (Bradley.Tom@water.ca.gov)

Overview

- 1. Overview of the ECO-PTM Installation
- 2. ECO-PTM input files
- 3. Hands-on exercises: Run a simulation for each particle type:

DISCLAIMER

Hands-on Exercise Materials Should ONLY BE USED FOR TRAINING

ECO-PTM model for this class is the same one used for applications

ECO-PTM Hands-on Exercise

Exercise Description

- Flow Conditions:
 - 2011 wet year, high flow
- Insert location:
 - San Joaquin River at Vernalis (Delta and Longfin smelt larvae)
 - Sacramento River at Freeport (Chinook salmon smolts)
- Number of particles:
 - 1,000 (Delta and Longfin smelt larvae)
 - 10,000 (Chinook salmon smolts)

ECO-PTM Studies Setup

study folders

- delta/dsm2/studies/historical_ECO-PTM/
 - np
 - pp
 - sp

Open Windows Explorer

2. Enter "explorer" into the search box

3. Click the "File Explorer" icon

Click the
 Windows icon

Opening a command prompt window

2. Enter "command" into the search box

3. Click the "Command Prompt" icon

Click the
 Windows icon

Running The Studies

Open command prompt window, navigate to np folder

Method #2:

Delta smelt larvae

1. Open a command prompt window

2a. If your study is in a different drive change to the drive that contains your study folders, by entering the drive letter followed by a colon.

C:\Users\btom>d:

2b. If your study is in the same drive, navigate to the top level of that drive by entering "cd\"

Microsoft Windows [Version 10.0.22631.3296]
(c) Microsoft Corporation. All rights reserved

3. Change the directory to the np study folder np (press "enter")

Run ECO-PTM for each of the 3 studies

..\..\bin\ptm.bat ptm.inp (press "enter")

Run ECO-PTM for each of the 3 studies

A successful run looks like this:

```
Command Prompt
                                                                                                            Model date: 03AUG2011 time: 2400
Model date: 04AUG2011 time: 2400
Model date: 05AUG2011 time: 2400
Model date: 06AUG2011 time: 2400
Model date: 07AUG2011 time: 2400
                                                       Model time step
Model date: 08AUG2011 time: 2400
Model date: 09AUG2011 time: 2400
                                                       being run
Model date: 10AUG2011 time: 2400
Model date: 11AUG2011 time: 2400
Model date: 12AUG2011 time: 2400
Model date: 13AUG2011 time: 2400
Model date: 14AUG2011 time: 2400
Model date: 15AUG2011 time: 2400
Model date: 16AUG2011 time: 2400
Model date: 17AUG2011 time: 2400
Model date: 18AUG2011 time: 2400
Model date: 19AUG2011 time: 2400
Model date: 20AUG2011 time: 2400
Model date: 21AUG2011 time: 2400
    -----DSS----ZOPEN: Existing File Opened, File: ./output/ptmout.dss
                     Unit: 71; DSS Versions - Software: 6-WE, File: 6-WE
   -----DSS----ZCLOSE Unit: 71, File: ./output/ptmout.dss
              Pointer Utilization: 0.25
              Number of Records:
                                              Simulation
              File Size: 1191.8 Kbytes
              Percent Inactive:
                                               complete
done simulation
D:\delta\DSM2v822\studies\historical ECO-PTM\np high>
```

Running The Studies

Run ECO-PTM for the other 2 particle types

Repeat for the pp run

Step 1: Change directory to the pp study folder

cd ...\pp (press "enter")

Step 2: Run ECO-PTM

..\..\bin\ptm.bat ptm.inp (press "enter")

Running The Studies

Run ECO-PTM for the other 2 particle types

Repeat for the sp run

Step 1: Change directory to the sp study folder

cd ..\sp (press "enter")

Step 2: Run ECO-PTM

..\..\bin\ptm.bat ptm.inp (press "enter")

Questions? Please type them into Teams chat

Include slide # if possible

Brad Tom (Bradley.Tom@water.ca.gov)

Go to next slide to start the break timer

10 minute break

10:00

DSM2 Learning Series

Follow-Up Survey

DSM2 Releases

DSM2 code

DSM2 documentation

Extra slides

Setting up ECO-PTM Studies

Create study folders

- Copy the study_templates/historical_ECO-PTM/ folder to the studies/ folder
- In the studies/historical_ECO-PTM/ folder, create 3 copies of each study folder
 - np
 - pp
 - sp

Setting up an ECO-PTM Study: Copy tidefile (.h5)

- From
 - Delta\DSM2v822\studies\historical\output\
- To
- Delta\DSM2v822\studies\historical_ECO-PTM\tidefile\

Setting up an ECO-PTM Study:

Configure study folders

For all 3 studies, open each config.inp file and set the start/end dates

Time Period	Start Date	End Date
High	15MAR2011	22AUG2011
Medium	08MAR2012	15AUG2012
Low	21APR2015	28SEP2015

10 days after

- For the Salmon Particle (sp) study only:
 - Open the ptm_behavior_inputs.inp file, and set insertion (Release) dates to 10 days after beginning of simulation

Time Period	Release_Date
High	25MAR2011
Medium	18MAR2012
Low	01MAY2015