

Video Lecture 2 From combinational to sequential logic

ENGN 4213/6213

Digital Systems and Microprocessors

What's in this lecture

- Evolving from combinational circuits to sequential circuits:
 - feedback, bistability and metastability
 - combinational latches
 - flip-flops
 - synchronous vs asynchronous

Resources

- Wakerly (5th edition) 10.1 10.2.6 for latches and flipflops
- The old reading brick if you like the way it is written (I will stop mentioning it from now on)

Bistability and metastability

- We said that feedback in combinational circuits is bad and should be avoided. We will now add a bit more sophistication to this reasoning.
- The following circuit is **bistable**, i.e. there are two voltages which can determine a stable configuration.
 - we can see this from the transfer functions of the two inverters

Bistability and metastability (2)

- The curves show that there are three equilibrium points.
- The middle point represents an unstable equilibrium condition, called metastability.
- A minimal shift (e.g. electric noise) from the metastability point will
 cause the system to converge to one of the stable points. A bit like a
 ball on top of a hill.

If a system enters a metastable state it is not possible to know (stochastic analysis):

- How long it will take to resolve
- Which way it will resolve

Set-Reset (S-R) Latch

- Two equivalent realisations shown. The NANDbased one is more common in CMOS logic.
- The S=1, R=1 combination has different output for the two realisations. It is meaningless and should be disallowed. It carries a risk of metastability upon release.

	QN	Q	R	S
	Last QN	Last Q	0	0
	0	1	0	1
	1	0	1	0
(a)	0	0	1	1
(b)	1	1	1	1

SR Latch (2)

 The standard circuit symbol for the S-R latch

Risk of metastability

- If the system is switched from the inputs S=1 R=1 to S=0 R=0 what happens to the output?
- It is impossible to predict accurately.
 It will depend on the slightest asynchrony between the two changing signals.
 This is called a race condition.

R=0 before $S=0 \rightarrow Q=1$ S=0 before $R=0 \rightarrow Q=0$

Sequential logic

- The S-R latch is our first example of sequential logic.
- In a combinational logic circuit (the ones we have studied so far) the output is a direct function of the input.
- In a sequential logic circuit the output depends on both the current and past inputs.
- In the case of the latch, once the circuit has been "set", changes in the values of the input S have no impact on the output until the "reset" input R=1 is applied. (typical use: raising a "flag" when an event occurs)
- Can you see how this circuit has some sort of memory behaviour?

D Latch

• D stands for "Data". It is an extension of the SR latch and is typically used to store data bits as required.

- The D input determines both set and reset events and is gated so that S and R can't equal 1 at the same time.
- The E input acts as an "Enable" function, i.e., the set and reset functions can only be activated if E=1.

D Latch (2)

Standard schematic symbol for a D latch

An example of (ideal) timing diagram for the D latch

 Note that Q responds to changes in D only while E is active - this is called transparency. i.e., the output Q is transparent with respect to the input D on the condition that E=1.

Edge-triggered D Flip-Flop

 A basic circuit made up of two D Latches in a master-slave configuration. Often called simply D Flip-Flop.

 Note that a clock signal has been connected to the enable inputs. A clock is a periodic square wave signal.

Edge-triggered D Flip-Flop (2)

 Below is a timing diagram for a D flip-flop (propagation delays are essential here)

 A D flip-flop stores the data presented at the D input as the active edge of the clock occurs (falling edge here).

Edge-triggered D Flip-Flop (3)

Symbols for rising and falling edge-triggered D flip-flops.

- Flip-flops are extremely important as they can be used to synchronise circuit events with a precise timing event such as the almost-instantaneous rising/falling edge of a periodic square wave. They are an essential component in sequential designs.
- There are other types of flip-flops but we will only learn about D flip-flops in this course.

ENGN4213/6213 Week 2

D flip-flops and metastability

- The D flip flop is a device with some complexity
 - several gates and two latches inside.
 - it has internal dynamics and propagation delays
- The description a flip-flop samples the input at the time of the active edge is convenient to remember but must be used with care
- Flip-flops have timing requirements which must be met in order to ensure proper operation
- If requirements are not met, metastability may occur, resulting in an undefined / unpredictable output voltage

D flip-flops and metastability (2)

Essential timing for a D f-f

- t_{su} set up time: the minimum time period immediately prior to an active clock edge during which D must remain stable.
- t_h hold time: the minimum time period immediately after an active clock edge during which D must remain stable.
- t_w *pulse width*: width of the clock pulse.
- t_p **propagation delay**: time taken for Q to stabilize after each active clock edge.
- The **sampling interval** $t_{su}+t_h$: D should be stable for this whole time period.

 Flip flop data sheets specify the values for these (and other) parameters which the designer must take into account.

D flip-flops and metastability (3)

- If the setup and hold time requirements are not met, correct operation of the f-f cannot be guaranteed.
 - The example below shows a violation of set-up time

- The late arriving data can push Q half-way from LOW to HIGH, i.e., somewhere in the invalid range of voltages
- t_m refers to the *metastability time*, which is of unknown and uncertain duration. Metastability will resolve by itself but the next output of the f-f is unknown (could be either 0 or 1)

Synchronous VS Asynchronous

- Synchronous (from Greek syn + chronos = same time)
 - Systems in which signal transitions occur in a periodic/precisely timed manner. A typical example is "clocked" systems.
 - Sequential digital designs are often synchronous as this makes it easier to deal with timing constraints and propagation delays: as long as successive clock cycles are far enough apart, the system will work.
 - We will focus on synchronous designs in this course.
- Asynchronous systems do not have precise timing
 - Timing of transitions is determined by changes in the input(s) and the internal propagation delays, not by the clock signal.
 - Purely combinational circuits are asynchronous.
- Synchronous systems are an artificial construct. Real-world inputs are most likely to be asynchronous, and will need to be synchronised in order to be used effectively in synchronous designs.
 - We will return on this concept (synchronisation) in the next lectures.

Synchronous VS Asynchronous (2)

Synchronous circuit example (delay circuit - register)

ENGN4213/6213 Week 2 18

D Flip-Flop with asynchronous Preset and Clear

Logic schematic

Circuit symbol

D Flip-Flop with clock enable (CE)

Enable = signal which determines whether a block is active or not

Out of the two possible implementations below, which do you think is best (and why)?

ENGN4213/6213 Week 2

Summing up

- We have described some "acceptable" combinational logic systems with feedback
 - Latches: S/R and D
 - Use in creating a memory feature in a circuit
- We have met our first sequential logic component: the D flip-flop
 - Derived from the D latch
 - Samples the value of the input as the active edge of an enable signal (clock) occurs
 - Has specific timing requirements
 - Some DFF versions have additional inputs
- We also learned more about metastability and the difference between synchronous and asynchronous designs