UNIT -3

POSETS AND LATTICE

Contents

- > POSET
- ➤ Hasse Diagram
- ➤ Minimal, Maximal, Greatest and Least element
- ➤ Lattice
- ➤ Properties

Partial Orderings: Definitions

- > A relation R on a set S is called a partial order if it is
- Reflexive
- Antisymmetric
- Transitive
- ➤ A set S together with a partial ordering R is called a partially ordered set or poset and is denoted as "<" and is not to be mistaken with less than.

Hasse Diagrams

- ➤ POSET are represented with a graphical structure known as Hasse Diagrams . Consider the digraph representation of a partial order. We can simplify the graph as follows
- Remove all self loops.
- Remove all transitive edges.
- Remove directions on edges assuming that they are oriented upwards.
- > The resulting diagram is far simpler is termed as Hasse Diagram.

Examples:

For regular Hasse Diagram:

- ➤ Maximal elements are those which are not succeeded by another element.
- ➤ Minimal elements are those which are not preceded by another element.
- ➤ Greatest element (LAST ELEMENT) (if it exists) is the element succeeding all other elements.
- ➤ Least element (FIRST ELEMENT) is the element that precedes all other elements.
- ➤ It is sometimes possible to find an element that is greater than or equal to all the elements in a subset of poset. Such an element is called the **upper bound** of . Similarly, we can also find the **lower bound** also.
- ➤ The Least Upper Bound (LUB)(SUPREMUM) is the smallest element in upper bounds.
- Denoted by LUB $({a, b})$ by a v b.
- The **Greatest Lower Bound (GLB)** (INFIMUM) is the largest element in lower bounds. Denoted by GLB ($\{a, b\}$) by $a \land b$.

Example 1: Draw Hasse diagram for (D12, /).

Solution – Here, D12 means set of positive integers divisors of 12.

So, D12 =
$$\{1, 2, 3, 4, 6, 12\}$$

poset A = $\{(1 \ 2), (1 \ 3), (1 \ 4), (1 \ 6), (1 \ 12), (2 \ 4), (2 \ 6), (2 \ 12), (3 \ 6), (3 \ 12), (4 \ 12), (6 \ 12)\}$

So, now the Hasse diagram

1

Example-2: Draw Hasse diagram for ({3, 4, 12, 24, 48, 72}, /)

Solution – According to above given question first, we have to find the poset for the divisibility.

Let the set is A.

A={(3 12), (3 24), (3 48), (3 72), (4 12), (4 24), (4 48), (4 72), (12 24), (12 48), (12 72), (24 48), (24 72)}

Example – Find the least upper bound and greatest lower bound of the following subsets- {b,c},{g,e,a},{e,f}.

Solutions:

a) For the set {b,c}

Upper Bounds – e,f,h,i

LUB - e

Lower Bounds -a

GLB - a

c) For the set {g,e,a}

Upper Bounds -h.

LUB - h

Lower Bounds -a

GLB - a.

b) For the set {e,f}

Upper Bounds -f,h,i.

LUB- f.

Lower Bounds -e,c,b,a.

GLB-e

Lattices

Definition:

A lattice is a partially ordered set or POSET in which every pair of elements has both :

- i) a least upper bound(LUB) or (x V y) or (called join), and
- ii) a greatest lower bound(glb) or $(x \land y)$ or (called meet)

Example

Consider the poset (X, \le) where $X = \{1, 2, 3, 5, 30\}$ and the partial ordered relation \le is defined as "x divides y". Then show that poset (X, \le) is a lattice.

Solution: Since GLB(x, y) =
$$(x \land y) = lcm(x, y)$$
 and LUB(x, y) = $(x \lor y) = gcd(x, y)$

Now we can construct the operation table I and table II for GLB and LUB respectively and the Hasse diagram is shown in Fig.

Cont..

1->2,3,5,30

2-> 30

3-> 30

5-> 30

Table I

LUB	1	2	3	5	30
1	1	2	3	5	30
2	2	2	30	30	30
3	3	30	3	30	30
5	5	30	30	5	30
30	30	30	30	30	30

Table II

GLB	1	2	3	5	30
1	1	1	1	1	1
2	1	2	1	1	2
3	1	1	3	1	3
5	1	1	1	5	5
30	1	2	3	5	30

It's a Lattice.

Example 2:

LUB	a	b	c	d	e
a	a	c	c	d	e
b	c	b	c	d	e
c	c	c	c	e	e
d	d	d	e	d	e
e	e	e	e	e	e

GLB	a	b	c	d	e
a	a	_	a	a	a
b	_	b	b	b	b
c	a	b	С	b	c
d	a	b	b	d	d
e	a	b	С	d	e

It's not Lattice.

Properties of Lattices

1. Idempotent Properties

- a) a v a = a
- b) a Λ a = a.

2. Commutative Properties

- a) a v b = b v a
- b) a Λ b = b Λ a

3. Associative Properties

- a) a v (b v c)= (a v b) v c
- b) a Λ (b Λ c)= (a Λ b) Λ c

4. Absorption Properties

- a) a v (a Λ b) = a
- b) a Λ (a v b) = a