数值分析第三次上机练习实验报告

——矩阵特征值问题求解

huangyf15

一、问题描述

设 A 为以下形式的三对角矩阵(取适当阶数计算)

$$A = \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}.$$

- (a) 用 Jacobi 方法计算其特征值;
- (b) 用 QR 算法计算其特征值.

要求精度达到10-3.

二、方法描述——Jacobi 方法和 QR 算法

1.矩阵特征值问题求解策略概述

幂法和反幂法适用于最大(小)模分离矩阵的特征值的求解.值得注意的是: Aitken 加速思想仍可适用;反幂法可以用于精确"打靶",即求解某个值 p 附近的特征值,也可以用于求解给定特征值的特征向量.对于 Hermite 矩阵,由于各特征子空间正交,利用Rayleigh 商加速可以更快地收敛到模最大且分离的特征值(三阶收敛).

为了求得矩阵的全部特征值,考虑到特征值为相似变换下的不变量,我们可以利用涉及酉(正交)阵的矩阵分解以及某些简易的相似变换,这种方法可以同时获得对应的特征向量. 其中比较具有代表性的正是题干所述的两者:适用于 Hermite 阵、应用 Givens 变换的 Jacobi 方法及其变式,适用于特征值之模分离的矩阵、应用 Householder 变换和 QR 分解的 QR 算法及其延伸.

2.Jacobi 方法

Jacobi 方法适用于求解 Hermite 矩阵的特征值问题,这类矩阵可实对角化的性质为 Jacobi 方法提供了理论基础. 题干中矩阵显然满足要求. 概括地说,Jacobi 方法的主要思想是通过一系列 Givens 变换,利用变换的旋转性质每次都精准地将"冒尖"的非对角元消成零,使得矩阵非对角元逐步趋于零,从而实现实对角化,并求得特征值和特征向量. 需要说明的是,将所有非对角元同时消为零的情况几乎不可能做到,因此实际上只要各非对角元绝对值足够小即可.

经典 Jacobi 方法每次全矩阵搜索只对最大非对角元做一次 Givens 变换,效率太低; 经过改进的 Jacobi 过关法为每次搜索更新阈值,只要某非对角元绝对值超过阈值,便对其做一次 Givens 变换,从而很大地提高了效率.后者在实际应用中,有至少两点需要注意:

(1) Givens 矩阵的确定,即变换系数的确定.由于对于给定的 $\tan 2\theta =: \alpha$,可求出不止一个 θ ,从而 $\cos 2\theta$, $\sin 2\theta$, $\cos \theta$, $\sin \theta$ 等等.为了避免正负号的取舍麻烦,这里我们采取先求出 $\tan \theta$, $\tan \frac{\theta}{2}$,再利用万能公式求出其他三角函数值的策略.对于上面 $\tan \theta =: \beta$ 的解算 $(\tan \frac{\theta}{2} =: \gamma$ 类似),通过半角公式易反解出

$$\beta = \frac{\sqrt{1 + \alpha^2} - 1}{\alpha}.$$

选择这一解是为了充分利用 α 的值. 但是这同时又带来了一个问题,即当 $|\alpha| \ll 1$ 时, $\beta \doteq 0$,出现了奇异现象. 因此在算法中,考虑到计算机存储与计算的有效位数,设置了 $m = 10^{-10}$ 的阈值,即当且仅当 $|\alpha| > m$ 时,应用上述公式;否则应用一阶近似公式

$$\beta \doteq \frac{\alpha}{2}$$
.

应用该近似公式相对误差不超过 $|m^3| \approx 10^{-30}$,完全符合计算的精度要求.

(2) 计算结果精度的阈值设定,即非对角元上界以及对角元收敛精度.这种双重阈值的设定对结果带来的影响,由于属于后验的经验,因此将在结果分析一段中进行稍详细的分析.

3.OR 算法

- QR 算法的核心思想是利用一般矩阵的 QR 分解结果对矩阵不断做正交变换,使其收敛于 Schur 分解上三角形式,从而求得特征值和特征向量. 为了达到上述目的,也为了节约计算量,常常在 QR 算法之前利用 Householder 变换将一般矩阵化为 Hessenberg 矩阵,这类矩阵能够关于该算法保持形式不变.
- QR 算法的适用范围受到其收敛性定理的限制. 在最简单的特征值按模分离的实矩阵情形,且特征向量构成的矩阵逆 $X^{-1} = LU$ 成立时,上述算法产生的矩阵序列 $\{A_k\}_{k=1}^{+\infty}$ 基本收敛于上三角阵. 对于特征值按模分离的复矩阵情形,还需要加上一定的子空间正交条件;对于等模特征值情况, $X^{-1} = LU$ 仍是一个重要的充分条件,只是由于特征值并不按模相互分离,只能基本收敛于分块对角阵形式,相当于矩阵成为可约形式,可以进一步求解规模较小的子问题.

由于题干中的矩阵本身可以实对角化,其 Schur 形式即为对角阵,因此可以应用 QR 算法.

三、方案设计

本次实验针对题干中的两小问各编写了一个 Matlab 程序,分别保存为 eig_Jacobi.m, eig_QR.m,其中第一个文件中包含主函数 eig_Jacobi 和子函数 Givens.需要说明的有三点:

- (1)阈值的设置:上述两个程序中均根据 Cauchy 收敛准则的形式设置了特征值的精度 阈值 eps 作为形参之一. 另外,Jacobi 方法的程序还设置了非对角元绝对值的上界阈值 ubound 作为形参,并在其子程序 Givens 中设置了可调参数 *m* 作为一阶近似计算的阈值.
- (2)误差表征量的设置:在 Jacobi 方法中,为了对比起见,还设置了表征对角元矩阵误差 2-范数的 lamda 变量,以及表征计算结果的非对角元平方和的 sum 变量.
 - (3)扫描(分解)次数跟踪:上述两个程序均设置变量 tic 用来跟踪次数.

在实验中将重点探求上面设置的各种参数、阈值之间的制约关系,以求计算出有效位数较多、精确度较高的特征值.

四、计算结果及其分析

通过上述程序的运行以及过程中参数、阈值的不断调整,我们获得了如下结果:

表格 1: Ja	icobi 方法参数选取对计算结果的影响
----------	----------------------

维数 n	ubound	eps	lambda	sum	等价 tic
10	1.0E-03	1.0E-03	3.2058E-07	1.9660E-06	3*1=3
	1.0E-07	1.0E-14	1.0848E-08	6.1162E-15	7*1=7
20	1.0E-03	1.0E-03	1.0267E-04	4.2212E-05	3*4=12
	1.0E-07	1.0E-11	1.5186E-07	1.5672E-13	5*4=20

- (1)表格 1 给出了 Jacobi 方法调整参数过程中比较有代表性的例子,其中对角元矩阵的误差是同相对准确的特征值矩阵(表格 2 中 QR 算法求得)而言的;第 2、4 行给出的是该维数下 Jacobi 方法程序所能给出的最优参数.从中可以清楚地看出,随着所设非对角元上界、特征值精度阈值的缩小,结果的精确程度不断提高,这是预料之中的.根据表格 1 以及上机实践的经验,需要指出以下几点:
- a.上述过程的顺利进行有赖于一阶近似计算的阈值 m的适当设置.若无此设置,经验指出,最终将会出现近似于"0/0"的情况,这将带来 NaN 的错误,该参数设置过小情况类似;若该参数设置过大,将产生较大的截断误差,致使结果误差较大.

表格 2: 两种方法求出的特定阶数矩阵特征值及若干指标

n	5	10	20	40	
sum	9.4152E-17	6.1162E-15	1.5672E-13		5E-06
Sum	0.2679491924	0.0810140528	0.0223383	0.0059	3.5430
	3.7320508076	3.9189859472	3.9776617	3.9474	3.4410
	3.0000000000	3.6825070657	3.9111456	3.9941	3.3307
	1.0000000000	0.6902785321	1.2693180	1.3240	0.3641
	2.0000000000	0.3174929343	0.1980623	0.0234	0.4570
		3.3097214679	2.7306820	2.8181	0.5590
		2.8308300260	3.2469796	3.0871	2.3808
		2.2846296765	3.8019377	3.7191	3.2125
		1.1691699740	0.0888544	3.9766	2.9554
Jacobi 方法 特		1.7153703235	0.3475225	0.0932	1.9234
征值列阵	1 1 Hz 10 - 7		1.5549581	1.0446	0.6693
			0.5338963	0.9129	0.7875
	ubound 取 10^{-7} eps 取 $10^{-14\sim-10}$		3.4661037	0.0526	1.4700
	eps 4x 10		3.6524775	3.8550	2.5300
		\	0.7530204	3.7923	2.6760
			1.0000000	3.6359	2.2294
			1.8505398	3.9068	1.1819
			3.0000000	0.1450	1.6192
			2.4450419	0.2809	1.7706
			2.1494602	0.2077	2.0766
tic	83	273	929	3250	
	3.7320508076	3.9189859472	3.9776616525	3.994132	1.923395
	3.0000000000	3.6825070657	3.9111456116	3.976561	1.770633
	2.0000000000	3.3097214679	3.8019377358	3.947391	1.619218
QR 算法 特 征值列阵	1.0000000000	2.8308300260	3.6524775486	3.906793	1.470037
	0.2679491924	2.2846296765	3.4661037437	3.855005	1.323966
	eps 取10 ⁻²⁰	1.7153703235	3.2469796037	3.792331	1.181863
		1.1691699740	3.0000000000	3.719139	1.044560
		0.6902785321	2.7306820487	3.635859	0.912865
		0.3174929343	2.4450418679	3.542978	0.787549
		0.0810140528	2.1494601872	3.441043	0.669349
		\	1.8505398128	3.330651	0.558957
			1.5549581321	3.212451	0.457022
			1.2693179513	3.087135	0.364141
			1.0000000000	2.955440	0.280861
			0.7530203963	2.818137	0.207669
			0.5338962563	2.676034	0.144995
			0.3475224514	2.529963	0.093207
			0.1980622642	2.380782	0.052609
			0.0888543884	2.229367	0.023439
			0.0223383475	2.076605	0.005868

b. 非对角元绝对值的上界阈值 ubound 设置不能过小,而是应该与特征值的精度阈值 eps 以及一阶近似计算的阈值 m相适应. 否则,在对角元已经明显收敛的情况下,非对角元仍未达到要求,上述 Jacobi 程序便会继续循环,使得对角元偏离特征值. 在实际计算中,当 ubound 参数设置得很大时,对角元会出现异常现象,即最后的对角元矩阵恰巧是初始矩阵的对角元,猜测可能有截断误差积累、Givens 矩阵最终接近单位阵等方面的原因.

(2)表格 2 给出了两种方法下的维数为 5,10,20,40 的题干三对角矩阵的特征值计算结果,40 阶矩阵的精度至少可达10⁻⁶. 首先,我们看到随着维数的增大,非对角元平方和最终值也随之增大,这也使得求得的对角元相对的有效位数减少. 其次,我们可以看到 QR 算法对于 eps 的下界要求相对比较宽松,因此可以获得更加准确的特征值. 但是,随着矩阵阶数的增大,QR 分解所需次数不断增多,所耗费的时间也近似以比值为 3.5 的速度几何增长,这是其比较大的局限性.

五、结论

本次实验采用 Jacobi 和 QR 两种算法求解题给对称正定三对角矩阵的特征值,从中我们可以获得如下经验:

Jacobi 算法由于其利用的 Givens 变换简单,因此速度较快. 但在具体操作中,受到计算机舍入误差的制约,并且随着矩阵阶数的不断增加,各类阈值的细致优化是一个比较大的工程. 相比之下,QR 算法操作简便,Hessenberg 矩阵的使用也大大减少了计算量,其计算精度也更高. 其不足之处在于 QR 分解相较于 Givens 变换复杂了许多,随着矩阵阶数增高其求解时间大幅增加.

如果要考虑高阶矩阵的特征值求解,如果追求比较快的收敛速度且精度要求不高, Jacobi 算法可以满足要求;如果追求比较高的收敛精度,则可以选择 QR 分解并考虑其进一步优化以缩短时间.