r2knowle: 2023-11-28

Exercise # 3

Q3a) For this question, we will be using our VG11 NN trained for the last assignment. The test accuracy is 98.99% and the model summary is:

Model: "sequential"	

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 32, 32, 64)	640
batch_normalization	(None, 32, 32, 64)	256
(BatchNormalization)		
max_pooling2d	(None, 16, 16, 64)	0
(MaxPooling2D)		
conv2d_1 (Conv2D)	(None, 16, 16, 128)	
batch_normalization_1 (BatchNormalization)	(None, 16, 16, 128)	512
max_pooling2d_1	(None, 8, 8, 128)	0
(MaxPooling2D)		
conv2d_2 (Conv2D)	(None, 8, 8, 256)	295168
batch_normalization_2	(None, 8, 8, 256)	1024
(BatchNormalization)		
conv2d_3 (Conv2D)	(None, 8, 8, 256)	590080
batch_normalization_3	(None, 8, 8, 256)	1024
(BatchNormalization)		
max_pooling2d_2	(None, 4, 4, 256)	0
(MaxPooling2D)		
conv2d_4 (Conv2D)	(None, 4, 4, 512)	1180160
${\tt batch_normalization_4}$	(None, 4, 4, 512)	2048
(BatchNormalization)		
conv2d_5 (Conv2D)	(None, 4, 4, 512)	2359808
batch_normalization_5	(None, 4, 4, 512)	2048
(BatchNormalization)		
max_pooling2d_3	(None, 2, 2, 512)	0
(MaxPooling2D)		
conv2d_6 (Conv2D)	(None, 2, 2, 512)	2359808
batch_normalization_6	(None, 2, 2, 512)	2048
(BatchNormalization)		
conv2d_7 (Conv2D)	(None, 2, 2, 512)	2359808
batch_normalization_7	(None, 2, 2, 512)	2048
(BatchNormalization)	.	
max_pooling2d_4	(None, 1, 1, 512)	0
(MaxPooling2D)	(
flatten (Flatten)	(None, 512)	0
dense (Dense)	(None, 4096)	2101248
dropout (Dropout)	(None, 4096)	0
dense_1 (Dense)	(None, 4096)	16781312
dropout_1 (Dropout)	(None, 4096)	0
dense_2 (Dense)	(None, 10)	40970

Total params: 28153866 (107.40 MB)
Trainable params: 28148362 (107.38 MB)
Non-trainable params: 5504 (21.50 KB)

Q3b) Below are 9 samples of test images for the 3 degrees of epsilon in adversary training. The left column denotes $\epsilon = 0.1$, the middle column denotes $\epsilon = 0.2$ and finally the last column denotes $\epsilon = 0.5$:

With our base model we receive the following test accuracies for the perturbed test set:

Test Accuracy on $\epsilon = 0.1$	Test Accuracy on $\epsilon = 0.2$	Test Accuracy on $\epsilon = 0.5$
76.82%	42.63%	33.88%