Reading-18 Groups

Thaqib Mo.

November 14, 2020

1 Binary operators

Definition 1: Binary operation

Let S be a set. A binary operator on S is a function from $S \times S$ to S. If $*: S \times S \to S$. For any 2 $a, b \in S$ we write a*b to denote *(a,b)

Some examples of binary relations are:

Example 1 On the set \mathbb{Z} , the operations $+,-,\times$ all are binary operations. Division is not a binary operator on \mathbb{Z} since it can output a number outside \mathbb{Z} .

Example 2 For any set A, the operations \cup , \cap define binary operations on $\mathcal{P}(A)$, giving ways of taking pairs of subsets of A and defining new sets.

Definition 2: Types of Binary operators

Let S be a set and let * be a binary operation on S. The binary operation is **associative** if for $a, b, c \in S$ we have (a * b) * c = a * (b * c)

Binary operation * is **commutative** if for all $a, b \in S$ we have a * b = b * a.

The element $e \in S$ is said to be unit or identity element if a * e = e * a = a for all $a \in S$

Associative property is very powerful because it the way we bracket the operations does not matter (a*b)*(c*d) = (a*b*c)*d and many other ways. This can be formally proved.

Proposition 1

Let S be a set with a associative binary relation *. If $a_1, a_2, a_3, \dots a_n$ with $n \ge 1$ are elements of S then the product

$$a_1 * a_2 * a_3 * \cdots * a_n$$

is well defined, regardless the choice of bracketing.

Proof. Notation:

We define recursively $\langle a_1 \rangle = a_1$, $\langle a_1, a_2 \rangle = a_1 * a_2$, and for $n \geq 3$ we have

$$\langle a_1, a_2, a_3, \dots, a_n \rangle = \langle a_1, a_2, a_3, \dots, a_{n-1} \rangle * a_n$$

We prove by strong induction on n that every product on n elements is equal to the standard product. Since there is no choice of bracketing on n = 1 and n = 2 those cases hold true. Now assume that P(n) is true upto n, where $n \ge 2$. Now consider P(n+1). The product $a_1 * a_2 * a_3 * \cdots * a_n * a_{n+1}$ can be expressed as b * c which is the last application of *.

Where b is the product of some elements $a_1, a_2, a_3, \dots a_k$ and c is the rest $a_{k+1}, a_{k+2}, \dots a_{n+1}$.

If we have k = n, then $c = a_{n+1}$, by inductive hypothesis $b = \langle a_1, a_2, \dots, a_n \rangle$ is well defined. So we have $b * c = \langle a_1, a_2, \dots, a_n \rangle * a_{n+1} = \langle a_1, a_2, \dots, a_n, a_{n+1} \rangle$ by definition of the standard product. Otherwise if k < n, then $c = \langle a_{k+1}, a_{k+2}, \dots, a_{n+1} \rangle = \langle a_{k+1}, a_{k+2}, \dots, a_n \rangle * a_{n+1}$ and we have $b = \langle a_1, a_2, a_3, \dots, a_k \rangle$.

$$b * c = \langle a_1, a_2, a_3, \dots, a_k \rangle * (\langle a_{k+1}, a_{k+2}, \dots, a_n \rangle * a_{n+1})$$

$$= (\langle a_1, a_2, a_3, \dots, a_k \rangle * \langle a_{k+1}, a_{k+2}, \dots, a_n \rangle) * a_{n+1}$$

$$= \langle \langle a_1, a_2, a_3, \dots, a_n \rangle * a_{n+1} = \langle a_1, a_2, a_3, \dots, a_{n+1} \rangle$$

2 Monoids, Inverse Elements, and Groups

Definition 3: Monoid

Let S be a set with operation *. We call S a monoid if the operation * is associative and has identity element $e \in S$ with respect to *.

Theorem 1: Uniqueness of identity for monoids

The identity element of a monoid is unique.

Proof. Let S be a monoid. Suppose S has 2 identity elements, $e_1, e_2 \in S$ for any $a \in S$ we know that $e_1a = ae_1 = a$ and $e_2a = ae_2 = a$. Using $a = e_1$ for the first equality $e_1e_2 = e_2e_1 = e_2$ and applying the second with $a = e_1$ we get $e_2e_1 = e_1e_2 = e_1$. Therefore we have $e_1 = e_2$.

Definition 4: Unit

Let S be a monoid. An element $a \in S$ is called *unit* if there exits some $b \in S$ such that ab = ba = e where e is the identity element. If this is the case we call b the *inverse* of a.

Lemma 1: Uniqueness of inverse of any unit

In any monoid, the inverse of any unit is unique.

Proof. Let S be a monoid, let a be a unit. Suppose b_1 and b_2 are both inverse. Then $b_1a = ab_1 = e$ and $b_2a = ab_2 = e$. By definition of the identity element

$$b_1 = b_1 e = b_1(b_2 a) = (b_1 a)b_2 = eb_2 = b_2$$

3 Groups

Now we can define groups.

Definition 5: Groups

A set G with the binary operation * is a group if G is a monoid and every element in G is a unit. If * is also commutative then G is called an $abelian\ group$.

So a set G with operation is called a *group* if:

- # 1 For all $a, b, c \in G$ we have a(bc) = (ab)c. (Associativity).
- # 2 There is some $e \in G$ such that ae = ea = a for all $a \in G$. (Identity)
- # 3 For all $a \in G$, there is $b \in G$ such that ab = ba = e. (Inverse).
 - \bullet If G is an abelian group the optional 4th condition applies.
- # 4 For all $a, b \in G$ we have ab = ba. (Commutative).

Some examples of groups.

Example 1 The set \mathbb{Z} with the operation + is an abelian group. 0 is the identity element and -a is the inverse of any element a. Similarly the set $\{1, -1\}$ of units in \mathbb{Z} with respect to the multiplication operation \times is an example of finite abelian group.

Theorem 2

Let M be a monoid and let M^* be the units of M, then M^* is a group called the group of units of M

Proof. (Closed) Assume we have $a, b \in M^*$, we know that $a^{-1}, b^{-1} \in M^*$, by definition, $aa^{-1} = a^{-1}a = e = bb^{-1} = b^{-1}b$. Then get have

$$(ab)(b^{-1}a^{-1}) = aea^{-1} = aa^{-1} = e$$

$$(b^{-1}a^{-1})(ab) = beb^{-1} = bb^{-1} = e$$

This shows that ab has an inverse $(ab)^{-1} = a^{-1}b^{-1}$. So M^* is closed.

Associativity, and Inverse is trivial by construction of M^* and the identity element $e \in M$ is its own inverse so ee = e therefore we have $e \in M^*$.

3.1 Exponent notation for Groups

For a group G and $g \in G$ we set $g^0 = e$ the identity element, $g^1 = g$ and g^m to be the product of m copies of g.

$$g^m = \underbrace{ggg\cdots ggg}_{m \text{ coppies}}$$

Theorem 3

Let G be a group and $g, h \in G$

- (1) For all $n, m \in \mathbb{Z}$ we have $g^{n+m} = g^n g^m$
- (2) For all $n, m \in \mathbb{Z}$ $(g^n)^m = g^{mn}$
- (3) If g and h commute (gh = hg) then $(gh)^n = g^n h^n$

Proof. By induction on n

(1) P(0) $g^{0+m} = g^0 g^m = eg^m = g^m$ base case holds. Assume P(n) is true. Now consider P(n+1)

$$g^{n+1}g^m = (g \cdot g^n) \cdot g^m = g \cdot (g^n \cdot g^m) = g \cdot g^{n+m}$$

If $n+m \geq 0$ then the result is multiplying m+n copies of g with one more copy which is g^{m+n+1} by definition. If m+n=-1 then $gg^{-1}=e$ which is $g^{1-1}=0$. Finally if $n+m \leq 2$ then it is multiplying |m+n| copies of g^{-1} and one copy of g, which is |n+m|-1 copies of g^{-1} . Thus (1) holds for all $n \in \mathbb{N}$ and $m \in \mathbb{Z}$ applying the same argument for $m \in \mathbb{N}$ and $n \in \mathbb{Z}$ proves (1).

(2) For n = 0 we have $(g^m)^0 = e$, and $g^{0 \times m} = g^0 = e$. Now assume it holds for some n. Consider n + 1, we can apply (1)

$$(g^m)^{n+1} = (g^m)^n \cdot g^m = g^{mn} \cdot g^m = g^{m(n+1)}$$

If n is a negative integer let n = -l then $(g^m)^n = (g^m)^{-l}$. For any $h \in G$, h^{-l} is product of h^{-1} l times. So we have

$$(g^m)^{-l} = ((g^m)^l)^{-1} = (g^{ml})^{-1} = g^{-ml} = g^{m(-l)} = g^{mn} \qquad \blacksquare$$

(3) For n = 0 we have $(gh)^0 = e = ee = g^0h^0$, so base case holds true. Assume (3) holds for some n and Now consider P(n+1)

$$(gh)^{n+1} = (gh)^n (gh) = g^n (h^n g)h = (g^n g)(h^n h) = g^{n+1} \cdot h^{n+1}$$

If n is in the form n = -l for some $l \in \mathbb{N}$ we get

$$(qh)^n = (qh)^{-l} = ((qh)^l)^{-1} = (q^lh^l)^{-1} = h^{-l}q^{-l} = h^nq^n = q^nh^n$$

4 Orders of Elements and Cyclic Groups

Theorem 4

Let G be a group and let $g \in G$ be an element. Then

$$\langle g \rangle = \{ g^k : k \in \mathbb{Z} \}$$
 is a group

Proof. Closure, for any $g^m, g^n \in \langle g \rangle$ consider $g^m \cdot g^n$ by the above theorem we have $g^m \cdot g^n = g^{m+n} \in \langle g \rangle$. Associative is automatic since G is a group. We have $g^0 = e$ by definition so we have $g^0 \in \langle g \rangle$ therefore the identity property is also satisfied. Finally for any $g^m \in \langle g \rangle$ we also have $g^{-m} \in \langle g \rangle$ so the inverse property is also satisfied. Therefore $\langle g \rangle$ is a group.

Definition 6: Cyclic Group

If $g \in G$ is an element , the set $\langle g \rangle$ is a subgroup of G generated by g. If G = g for some element in g we say that G is a *cyclic group* and that g is a *generator* of G.

Example The set of integers modulo n. This is denoted by $\mathbb{Z}/n\mathbb{Z}$ where n is a positive integer. To define the group we take the set of equivalence classes of \mathbb{Z} under the modulo relation. Which is defined as follows

$$a \equiv b \pmod{n}$$
 if $n|a-b$

Here n|a-b means n divides a-b, if there is some $k \in \mathbb{Z}$ such that a-b=kn. The equivalence classes are $[0], [1], [2], \ldots [n-1]$. The addition can be defined via:

$$[a] + [b] = [a+b]$$

For any $a, b \in \mathbb{Z}$. We can prove this is well defined and the identity element is [0] and inverse of [a] is [-a]. We can show that this forms a *finite abelian group*.

Definition 7: Order

Given any group G and element $g \in G$, the order of g denoted by o(g) is the smallest integer $n \ge 1$ such that $g^n = e$, if such integer exists. Otherwise if $g^n \ne e$ for any $n \ge 1$ we write $o(g) = \infty$

Proposition 2

For a group G and $g \in G$ we have $o(g) = o(g^{-1})$

Proof. If we have $o(g) = \infty$ then we have no integer $n \ge 1$ such that $g^n = e$ taking the inverse on both sides $(g^{-1})^n \ne e$ so $o(g^{-1}) = \infty$. Otherwise if we have o(g) = n for some $n \ge 1$. Then we have

$$q^n = e$$

Taking the inverse of both sides $g^{-n} = e^{-1} = (g^{-1})^n = e$. Now assume there is some m < n such that $g^{-m} = e$ again taking the inverse of both sides $g^m = e^{-1} = e$ which contradicts the definition of o(g).

Theorem 5

Let G be a group and let $g \in G$ be an element of finite order n. Then:

- (1) $g^k = g^m$ if and only if $k \equiv m \mod n$
- (2) We have $\langle g \rangle = \{e, g, g^2, \dots g^{n-1}\}$, In particular the size of $\langle g \rangle$ is o(g).

Proof. Suppose $k \equiv m \mod n$ for some $k, m \in \mathbb{Z}$. By definition we have $k - m = \ell n$ for some $\ell \in \mathbb{Z}$. Since $g^n = e$ we also have $g^{\ell n} = e^{\ell} = e$. Therefore $g^{k-m} = e$. Multiplying by g^m gives $g^k = g^m$. Conversely suppose $g^k = g^m$. This implies $g^{k-m} = e$. To show that n|k-m, consider the division with remainder. We have

$$k - m = nq + r$$

But then

$$e = g^{k-m} = g^{nq+r} = g^{nq} \cdot g^r = e^q g^r = g^r$$

. Since r < n the definition of o(g) forces r = 0 therefore we have k - m = qn and $k = m \mod n$. Thus $g^k = g^m$.

To prove (2) we clearly have $\{e,g,g^2,\ldots g^{n-1}\}\subseteq \langle g\rangle$. In the other direction suppose $k\in\mathbb{Z}$, and using division by remainder to write k=nq+r we have shown $g^k=g^r$ and we must have $0\leq n< r$ which shows $g^k\subseteq \{e,g,g^2,\ldots,g^{n-1}\}$. So we have $\langle g\rangle=\{e,g,g^2,\ldots g^{n-1}\}$

5 Subgroups

Definition 8: Subgroups

If (G,*) is a group then $H \subset G$ is a subgroup if (H,*) itself is also a group.

The first example is the trivial subgroup for any group, which is $\{e\}$ just the identity element. Other examples are \mathbb{Z} is a subgroup of \mathbb{Q} under addition and \mathbb{Q} is a subgroup of \mathbb{R} under addition.

Theorem 6: Subgroup Test

Let G be a group and let H be a non empty subset of G. Then H is a subgroup of G if and only if for all $a, b \in H$ we have $ab^{-1} \in H$

Proof. Suppose H is a subgroup of G. For each $a, b \in H$ we know that $b^{-1} \in H$ since H is a group. Then since H is closed with respect to the operation we get $a \cdot b \in H$.

Conversely, suppose that for all $a, b \in H$ we have $ab^{-1} \in H$. Since H is non empty taking a = b we get $aa^{-1} \in H$ so the identity element is in H. Let $b \in H$ and let a = e then $eb^{-1} = b^{-1} \in H$ so for any $b \in H$ its inverse is also in H. The operation is associative automatically. To see the operation is closed we know that $b^{-1} \in H$ and so $a(b^{-1})^{-1} = ab \in H$.

If we let e_H to be the identity of H and e_G to be the identity of G, then we have shown that $e_G \in H$ and by uniqueness of identity we have $e_G = e_H$. Similarly let $h \in H$ we have shown that h^{-1} its inverse in G also belongs to H. So h has inverse in H. By uniqueness of inverse the inverse of h in G and H is same.

5.1 Examples of Subgroup test

Example 1 (Center of a group)

Let G be a group. We define the center of the group to be:

$$Z(G) = \{ z \in G : zg = gz \text{ for all } g \in G \}$$

We can verify that Z(G) is an abelian group. First $e \in Z(G)$ since eg = ge = g. Now suppose $a, b \in Z(G)$. We must verify $ab^{-1} \in Z(G)$. Now assume we have some $b \in Z(G)$ then gb = bg applying b^{-1} on both sides

$$b^{-1}qbb^{-1} = b^{-1}bqb^{-1}$$

$$b^{-1}g = gb^{-1}$$

Therefore $b^{-1} \in Z(G)$, now

$$(ab^{-1})g = a(b^{-1}g) = (ag)b^{-1} = (ga)b^{-1} = g(ab^{-1})$$

Hence we have $ab^{-1} \in Z(G)$ therefore Z(G) is an subgroup. To see why it is abelian, consider $a, b \in Z(G)$ then assume we have $a, b \in Z(G)$ then we also have $ab \in Z(G)$ since we know that ag = ga then set g = b to get ab = ba hence Z(G) is commutative.

Example 2 Conjugate

Suppose H is a subgroup of G, and for $g \in G$ we define the conjugate of H in G by g to be

$$gHg^{-1} = \{ghg^{-1} : h \in H\}$$

We know that gHg^{-1} is empty because H is non empty. So let $a, b \in gHg^{-1}$ then $a = gh_1g^{-1}$ and $b = gh_2g^{-1}$ for $h_1, h_2 \in H$.

$$ab^{-1} = gh_1g^{-1}(gh_2g^{-1})^{-1}$$
$$= gh_1g^{-1}(gh_2^{-1}g^{-1})$$
$$= gh_1h_2^{-1}g^{-1}$$

Since $h_1h_2^{-1} \in H$ by definition of the group we have $ab^{-1} \in gHg^{-1}$ so it is a group by the subgroup test.

Example 3

Let C_4 be the cyclic group with 4 elements. $C_4 = \{e, a, a^2, a^3\}$. The trivial subgroup $\{e\}$ is obviously a subgroup. If we construct a subgroup H, assume we have $a \in H$ then we must have $a^{-1} = a^3 \in H$ and similarly we should also have $a \cdot a = a^2 \in H$, and we must also have the identity so $H = C_4$. So H is not a proper subgroup of C_4 , it is the similar case if we start with a^3 , but if we start with a^2 , assume $a^2 \in H$ then we must also have $e \in H$ and $(a^2)^{-1} = a^{-2} = a^4 = e$ so $H = \{e, a^2\}$ is a subgroup of C_4 . Only the trivial subgroup and $\{e, a^2\}$ are subgroups of C_4 .

6 Symmetric Groups

The set of bijections from a set A to it self is a group, with compositions (\circ) as the group operation. If we restrict A to a finite set that means we have |A| = n Here we can treat the bijections from $A \to A$ as the set of bijections from $\{1, 2, 3, \dots n\}$ to itself. This is denoted by S_n and it is called the *Symmetric group of degree* n. We can represent the elements of this group using a matrix.

It is an matrix with 2 rows with the top row containing the numbers 1, 2, ... n and for $\sigma \in S_n$ the bottom row contains $\sigma(1), \sigma(2)...$ For example the identity element ε with $\varepsilon(x) = x$

$$\varepsilon = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}$$

Similarly a bijection τ that sends 1 to 2, 2 to 3 ... n to 0 can be written as:

$$\tau = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 4 & \cdots & 1 \end{pmatrix}$$

Proposition 3: Number of elements in symmetric groups

 $|S_n| = n!$

For the first element we have n choices and the next one we have n-1 then n-2 up until 1 to the total number of choices is $n \times (n-1) \times \cdots \times 1 = n!$. Another proposition that this leads to is:

Proposition 4

For $n \geq 3$, the group S_n is not non-abelian

Proof. Assume for $n \geq 3$, S_n is abelian. We define 2 bijections:

$$\tau = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 3 & 2 & 1 & \cdots & n \end{pmatrix} \qquad \sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 1 & 3 & \cdots & n \end{pmatrix}$$

So σ just swaps 1 and 2 and τ cycles through 1, 2, 3. Both the bijections leave 4, 5, 6... n fixed. So we have $(\sigma \circ \tau)(1) = \sigma(3) = 3$ but $(\tau \circ \sigma)(3) = \tau(3) = 1$ therefore we have $(\tau \circ \sigma) \neq (\sigma \circ \tau)$ therefore the group is non abelian.

7 Homomorphisms and Cosets

7.1 Group Homomorphisms

Definition 9: Group Homomorphisms

Let G_1 and G_2 be groups a function $\phi: G_1 \to G_2$ is called homomorphism if for all elements $a, b \in G_1$ we have

$$\phi(ab) = \phi(a) \cdot \phi(b)$$

Here \cdot is the binary operation in G_2

Examples

Example 1

For any 2 groups there is always a homomorphism called the trivial homomorphism $\phi: G_1 \to G_2$ given by $\phi(a) = e_{G_2}$ for all $a \in G_1$ here e_{G_2} is the identity element of G_2 .

Example 2

For any positive integer n, the "Reduction modulo n" map $\phi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ defined by $\phi(m) = [m]$ is a homomorphism with respect to + operation.

$$\phi(m_1 + m_2) = [m_1 + m_2]$$

From the example on Page 6 we know that (by definition)

$$[m_1 + m_2] = [m_1] + [m_2]$$

Here the + denotes different operations one is in \mathbb{Z} and other one is in $\mathbb{Z}/n\mathbb{Z}$

Theorem 7: Properties of Homomorphisms

Let $\phi: G_1 \to G_2$ be a homomorphism. Then

- (1) ϕ preserves the identity: $\phi(e_{G_1}) = e_{G_2}$
- (2) ϕ preserves the inverse: $\phi(g^{-1}) = \phi(g)^{-1}$
- (3) ϕ preserves the powers: $\phi(g^m) = \phi(g)^m$
- (4) The composition of 2 homomorphisms, $\psi: G_2 \to G_3$ and $\phi: G_1 \to G_2$ then $\psi \circ \phi: G_1 \to G_3$ is also an homomorphism.

Proof. (1)

$$\phi(e_{G_1}) = \phi(e_{G_1} \cdot e_{G_1}) = \phi(e_{G_1}) \cdot \phi(e_{G_1})$$

Then

$$\phi(e_{G_1})^{-1}\phi(e_{G_1}) = \phi(e_{G_1})^{-1}\phi(e_{G_1}) \cdot \phi(e_{G_1})$$
$$e_{G_2} = \phi(e_{G_1})$$

(2) For each $g \in G$ we have

$$\phi(g)\phi(g^{-1}) = \phi(gg^{-1}) = \phi(e_{G_1}) = e_{G_2}$$

Similarly we have $\phi(g^{-1})\phi(g)=e_{G_2}$. By the uniqueness of inverse this shows that $\phi(g^{-1})=\phi(g)^{-1}$

(3) For k=0 we have $\phi(g^0)=\phi(e_{G_1})=e_{G_2}=\phi(g)^0$. Now assuming it holds for some $k\in\mathbb{N}$, consider k+1

$$\phi(g^{k+1}) = \phi(g^k \cdot g) = \phi(g^k)\phi(g) = \phi(g)^k \phi(g) = \phi(g)^{k+1}$$

If k < 0 then k = -m

$$\phi(g^{-m}) = \phi(g^{-1})^m = (\phi(g)^{-1})^m = \phi(g)^{-m}$$

(4) Consider $\psi \circ \phi(g \cdot h)$ We have $\psi(\phi(g) \cdot \phi(h)) = \psi(\phi(g)) \cdot \psi(\phi(h))$ since ϕ and ψ are both homomorphisms we by definition $\psi \circ \phi$ is also an homomorphism.

Definition 10: kerne

If $\phi: G_1 \to G_2$ is a homomorphism then the kernel ker ϕ is the set

$$\ker \phi = \{ g \in G_1 : \phi(g) = e_{G_2} \}$$

Theorem 8

- (1) The set $\ker \psi$ is a subgroup of G_1
- (2) The function ψ is injective if and only if $\ker \psi = \{e_{G_1}\}$
- *Proof.* (1) We can apply the subgroup test from Theorem 6, First $\ker \phi$ is non empty because e_{G_1} always belongs to the kernel. Now if $a, b \in \ker \phi$ then we need to show that $ab^{-1} \in \ker \phi$. Using the properties of homomorphisms

$$\phi(ab^{-1}) = \phi(a)\phi(b^{-1}) = \phi(a)\phi(b)^{-1} = e_{G_2} \cdot e_{G_2} = e_{G_2}$$

(2) Suppose $\ker \phi$ is injective. Now suppose $g \in \ker \phi$ and let $\phi(g) = e_{G_2} = \phi(e_{G_1})$ since ϕ is injective we have $\phi = e_{G_2}$, so if ϕ is injective then $\ker \phi = \{e_{G_1}\}$.

Now assume that $\ker \phi = \{e_{G_1}\}$ suppose we have $a, b \in G_1$ such that $\phi(a) = \phi(b)$.

$$\phi(b)^{-1}\phi(a) = \phi(b)\phi(b)^{-1} = e_{G_2}$$

The right hand side simplifies to $\phi(ab^{-1})$ since we have $ab^{-1} \in \ker \phi$ then $ab^{-1} = e_{G_1}$ this means we have a = b. Thus if $\ker \phi = \{e_{G_1}\}$ then ϕ is injective.

7.2 Cosets

We can describe equivalence classes on group elements using homomorphisms. If we have $\phi: G_1 \to G_2$, then let

$$H = \ker \phi$$

Then for $a, b \in G$ we have $a \sim b$ if and only if $\phi(a) = \phi(b)$ but from the subgroup test we also know that $\phi(ab^{-1}) = e_{G_2}$ which is because we have $ab^{-1} \in H$.

This condition can be generalized to subgroups other than $\ker \phi$

Theorem 9

Let G be a group and let H be a subgroup of G. We define the relation \sim on G. We have $a \sim b$ if and only if $ab^{-1} \in H$. Then \sim is an equivalence relation and the equivalence class of an element $a \in G$ is the set $Ha = \{ha : h \in H\}$ which is called the right coset of H generated by a.

Proof.

• Reflexive For any $a \in G$ we have $a \sim a$ since $aa^{-1} = e \in H$ since H is subgroup.

- Symmetric Assume we have $a \sim b$, so we have $ab^{-1} \in H$. Since H is closed $(ab^{-1})^{-1} = ba^{-1} \in H$ which implies $b \sim a$.
- Transitive Assume we have $a \sim b$ and $b \sim c$ that means we have $ab^{-1} \in H$ and $bc^{-1} \in H$ since H is closed

$$ab^{-1}bc^{-1} = aec^{-1} = ac^{-1} \in H$$

Therefore we have $a \sim c$

This proves that \sim is an equivalence relation. Now choose $a \in G$ by definition we have:

$$[a] = \{g \in G : g \sim a\}$$

$$= \{g \in G : ga^{-1} \in H\}$$

$$= \{g \in G : ga^{-1} \in H\}$$

$$= \{g \in G : ga^{-1} = h \in H\}$$

$$= \{g \in G : g = ha \in H\}$$

$$= Ha$$

This shows that the equivalence class of [a] is the right coset generated by a.

We can define another relation \sim_L with $a \sim_L b$ if $b^{-1}a \in H$, resulting in the equivalence class of the form $aH = \{ah : h \in H\}$ which is called the *left coset* of a. If G is abelian, then aH = Ha.

An important fact used for proving theorems involving costs is

Proposition 5

$$Ha = Hb \iff ab^{-1} \in H$$

Proof. (\Rightarrow) Let Ha = Hb then a = hb for some $h \in H$ then applying b^{-1} leads to $ab^{-1} = h \in H$. For the (\Leftarrow) part assume we have $ab^{-1} \in H$. Then $ab^{-1} = h \rightsquigarrow a = hb \rightsquigarrow a \in Hb \Rightarrow Ha = Hb$ (Since a is arbitrary and the argument is symmetric in a, b).

Example

Let $G = \mathbb{Z}$. Let n be a positive integer, the set

$$H = n\mathbb{Z} = \{m \in \mathbb{Z} : m = nk \text{ for some } k \in \mathbb{Z}\}\$$

This is a subgroup of \mathbb{Z} . Since the group operation is + we can define the cosets as $n\mathbb{Z} + a$. Moreover, if we have $b \in n\mathbb{Z} + a$ if and only if $b \sim a$ this holds true if $b - a \in n\mathbb{Z}$ this is same as n|(b-a) so b belongs to the equivalence class of $[a] = n\mathbb{Z} + a$ if and only if $b \equiv a \mod n$, thus this equivalence class here is the equivalence class of congruence modulo n

8 Normal Subgroups and Quotient Groups

Definition 11: Normal Subgroup

Let G be a group, a subgroup H is called a normal subgroup if $gHg^{-1} = H$ defined by

$$gHg^{-1} = \{ghg^{-1} : h \in H\}$$

In this case the notation $H \triangleleft G$ is used to denote that H is a normal subgroup of G.

The conjugate subgroup shown to be a sub group in in Example 2. If G is abelian then we have the following:

Proposition 6

Every subgroup of an abelian group is normal.

Proof. Consider a subgroup H of G an abelian group. Now for any $h \in H$ consider

$$ghg^{-1} = g(hg^{-1}) = (gg^{-1})h = eh = h$$

So we have

$$qHq^{-1} = H$$

therefore H is normal and we have, $H \triangleleft G$.

Another important theorem that follows is:

Theorem 10

Let G be a group. For every subgroup H of G the product (Ha)(Hb) = Hab is well defined multiplication of cosets if and only if $H \triangleleft G$.

Proof. (\Rightarrow) Let (Ha)(Hb)=Hab. Now consider some $h\in H$ and the cosets

$$Hh = He \text{ and } Hg = Hg$$

$$\rightsquigarrow (Hg)(Hh) = (Hg)(He)$$

$$Hgh = Hge$$

Since H is a subgroup $(gh)(ge)^{-1} \in H \Rightarrow ghg^{-1} \in H$

This proves that $gHg^{-1} \subseteq H$, taking g^{-1} in place of g above we get $g^{-1}Hg \subseteq H$. This directly implies $H \subseteq gHg^{-1}$

(\Leftarrow) Conversely, assume that $H \lhd G$. Suppose we have $a, b, a_1, b_1 \in G$ such that $Ha = Ha_1$ and $Hb = Hb_1$ then we have $aa_1^{-1} \in H$ and $bb_1^{-1} \in H$. We need to show $(Ha)(Hb) = (Ha_1)(Hb_1)$. This is equivalent to $(ab)(a_1b_1)^{-1} \in H$. Then we have

$$abb_1^{-1}a_1^{-1} = a(bb_1^{-1})a_1^{-1} = (a(bb_1^{-1})a^{-1})(aa_1^{-1})$$

Now, $aHa^{-1}=H$ and $bb_1^{-1}\in H$, so we have $(a(bb_1^{-1})a^{-1})\in aHa^{-1}=H$. Also $aa_1^{-1}\in H$ then we get that $(a(bb_1^{-1})a^{-1})(aa_1^{-1})=a(bb_1^{-1})a_1^{-1}\in H$. Thus multiplication of right cosets is closed.

Some important properties of subgroups are:

Theorem 11: Properties of Quotient groups

Let G be a group and $H \triangleleft G$ then

- (1) The set G/H if right costs of H is a group under the operation (Ha)(Hb) = Hab called the quotient group of G by H.
- (2) The function $\phi: G \to G/H$ given by $\phi(g) = Hg$ is a surjective homomorphism, called the *quotient mapping*.
- (3) If G is abelian, then G/H is abelian.
- (4) If G is cyclic then G/H is cyclic.

Proof. (1) Theorem 10 tells us that the operation is well defined when H is normal. For associativity consider

$$((Ha)(Hb))(Hc) = (Hab)(Hc) = H(ab)c = Ha(bc) = (Ha)(Hbc) = (Ha)((Hb)(Hc))$$

The identity element is the coset H = He and inverse of Ha is Ha^{-1} . Thus G/H is a group.

(2) Consider

$$\phi(ab) = Hab = (Ha)(Hb) = \phi(a)\phi(b)$$

Hence, ϕ is a homomorphism. For surjective, for any coset $Ha \in G/H$ we have $\phi(a) = Ha$.

(3) If G is abelian, then consider

$$(Ha)(Hb) = Hab = Hba = (Hb)(Ha)$$

Hence the operation on G/H is commutative.

(4) If we have $G = \langle g \rangle$ for some $g \in G$ then every element of G is in the form g^k for some $k \in \mathbb{Z}$, thus given $Ha \in G/H$ we know that $a = g^k$ for some $k \in \mathbb{Z}$. Then $Ha = Hg^k = \phi(g^k) = \phi(g)^k = (Hg)^k$ where ϕ is the quotient homomorphism. Since ϕ is surjective we have $G/H = \langle Hg \rangle$, so G/H is also cyclic.

An example of quotient group is the group $\mathbb{Z}/n\mathbb{Z}$ it has elements in the form $n\mathbb{Z}+a$ which are the equivalence classes under the relation of congruence modulo n.

Example

Consider the group $(\mathbb{Q}, +)$, then \mathbb{Z} is a group. Since \mathbb{Q} is abelian, \mathbb{Z} is automatically a subgroup. The elements of the quotient group \mathbb{Q}/\mathbb{Z} are of the form $\mathbb{Z} + q$ for $q \in \mathbb{Q}$.

Every element of \mathbb{Q}/\mathbb{Z} has a unique representative of the form $\mathbb{Z} + \delta$ where $0 \leq \delta \leq 1$. For any $q \in \mathbb{Q}$ we can round down $\|$ using the floor function $\lfloor q \rfloor$ then we have

$$0 \le q - |q| \le 1$$

So we can set $\delta = q - \lfloor q \rfloor$. If we had δ' such that $\delta + \mathbb{Z} = \delta' \mathbb{Z}$ then $\delta - \delta' \in \mathbb{Z}$. but due to the given constrains on δ we have $-1 < \delta - \delta' < 1$ the only integer is 0 so we have $\delta = \delta'$.

The group is countably infinite but every element has a finite order. For any given coset $\mathbb{Z} + q$, we write $q = \frac{a}{b}$ where a, b are integers and $b \neq 0$. Note that then $b(\mathbb{Z} + q) = \mathbb{Z} + bq = \mathbb{Z} + a = \mathbb{Z} + 0$ So the order of the coset $\mathbb{Z} + \frac{a}{b}$ is at most b.

9 Lagrange's Theorem

An important definition is needed before the main theorem

Definition 12: Index

Let G be a group and let H be a subgroup. The *index* of H in G denoted by |G:H| is the number of distinct right cosets of H in G.

In particular if $H \triangleleft G$ then |G:H| is the number of elements in G/H. Now consider Lagrange's Theorem.

Theorem 12: Lagrange's Theorem

Let G be a finite group, and let H be a subgroup of G. Then |H| divides |G| and $|G:H| = \frac{|G|}{|H|}$.

Proof. Since the right cosets of H in G form a partition of G in the form $Ha_1, Ha_2, \dots Ha_n$ The union of

 Ha_1, Ha_2, \ldots is G (they are equivalence classes) and $Ha_i \cap Ha_j = \emptyset$ if $i \neq j$. For any a_i we have $|H| = |Ha_i|$ since mapping h to ha_i is a bijection.

Thus G is a disjoint union of n = |G: H| cosets, each with size |H|. So we have |G: H||H| = |G| and hence $\frac{|G|}{|H|} = |G: H|$ is an integer. In particular |G| is a multiple of |H|.

The theorem immediately leads to the following

Corollary 1

If G is finite group and $g \in G$ then o(g) divides G

Proof. Consider the subgroup $H = \langle g \rangle$ and we know that |H| = o(g) the corollary follows immediately from Lagrange's Theorem.

Corollary 2

If G is a finite group with |G| = n then for all $g \in G$ we have $g^n = e$

Proof. Let $g \in G$ and k = o(g) divides n by the above corollary. Thus $n = k\ell$ for integer ℓ then $g^n = g^{k\ell} = (g^k)^\ell = e^\ell = e$

Corollary 3

If |G| = p where p is prime then every G is cyclic. For any non-identity element we have $G = \langle g \rangle$

Proof. Let G be a group with |G|=p. Since $p\geq 2$ there is a non-identity element $g\in G$. We set $H=\langle g\rangle$. Then |H|>1 since the generator of H has order larger than 1. But |H| must divide |G| by Lagrange's Theorem. The only multiples of |G|=p are 1 and p itself since p is prime. Thus we must have |H|=p=|G|, so $H=G=\langle g\rangle$ showing G is cyclic.

10 Introduction to Rings

Definition 13: Ring

A ring is a structure equipped with two binary operations denoted by addition (+) and multiplication. With the following conditions

#1 The set (R, +) is an abelian group. (The identity is denoted by 0).

#2 The set (R,\cdot) is a monoid. (The identity of the monoid is denoted by 1).

#3 Left and right distributive laws hold. That is for all $a, b, c \in R$

$$a(b+c) = ab + ac$$

$$(a+b)c = ac + bc$$

If \cdot is commutative then R is called a *commutative ring*. Some examples are:

Example 1 The sets $\mathbb{Z}, \mathbb{R}, \mathbb{Q}$ with \times , + are all commutative rings.

Example 2 For any positive integer n, the set of integers modulo $n \mathbb{Z}/n\mathbb{Z}$. For the addition operation the previously defined addition will be used

$$[a] + [b] = [a+b]$$

For the multiplication operation it is defined as follows

$$[a] \cdot [b] = [ab]$$

Suppose we have a, a', b, b' such that [a] = [a'] and [b] = [b']. So we have a - a' = kn and $b - b' = \ell n$ we want to show [ab] = [a'b'], so ab - a'b' is a multiple of n.

$$ab - a'b' = ab - ab' + ab' + a'b' = a(b - b') + b'(a - a') = a(\ell n) + b'(kn) = n(a\ell + b'k)$$

This proves that $ab \equiv a'b' \mod n$ so [ab] = [a'b']. The identity is [1] and it is easy to check that this is commutative. We need to check for the distributive laws.

Let $[a], [b], [c] \in \mathbb{Z}/n\mathbb{Z}$. Then notice that

$$[a] \cdot ([b] + [c]) = [a] \cdot ([b+c]) = [a(b+c)] = [ab+ac] = [ab] + [ac] = [a][b] + [a][c]$$

Since \cdot is commutative the other case would be symmetric. So $\mathbb{Z}/n\mathbb{Z}$ is a commutative ring.

Example 3 Let (G, +) be a group. We let End(G) denote the set of homomorphism $G \to G$. This is called the set of **endomorphisms** of G. We can define addition on this set as follows:

$$(\phi + \psi)(g) = \phi(g) + \psi(g)$$

We can show this is closed

$$(\phi + \psi)(g + h) = \phi(g + h) + \psi(g + h)$$

$$= \phi(g) + \phi(h) + \psi(g) + \psi(h)$$

$$= (\phi(g) + \psi(g)) + (\phi(h) + \psi(h))$$

$$= (\phi + \psi)(g) + (\phi + psi)(h)$$

This uses the fact that G is abelian. The identity element is the $\mathbf{0}:G\to G$ given by $\mathbf{0}(g)=0$ since for any $\phi(g)$ we have $(\phi+\mathbf{0})(g)=\phi(g)+\mathbf{0}(g)=\phi(g)+0=\phi(g)$. For inverse the inverse is $-\phi(g)$.

$$(\phi + (-\phi))(g) = \phi(g) - \phi(g) = 0$$

For associativity consider $(\phi + \psi + \pi)(g)$

$$((\phi + \psi)(q) + \pi(q)) = (\phi(q) + \psi(q) + \pi(q)) = (\phi(q) + (\psi + \pi)(q))$$

Multiplication is defined as

$$\phi\psi = \phi \circ \phi$$

Since composition of homomorphism is a homomorphism we get $\phi\psi\in Eng(G)$. The identity is given by $\iota(g)=g$. To check for distributive law consider:

$$\phi(\psi + \pi)(g) = \phi(\psi(g) + \pi(g))$$
$$= \phi(\psi(g)) + \phi(\pi(g))$$
$$= \phi\psi(g) + \phi\pi(g)$$
$$= (\phi\psi + \phi\pi)(g)$$

10.1 Properties of Rings and Definitions

Theorem 13

Let 0 be the additive identity for any $a \in R$ we have

$$a \cdot 0 = 0 = 0 \cdot a$$

Proof.

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$$
$$a \cdot 0 - a \cdot 0 = a \cdot 0 + a \cdot 0 - a \cdot 0$$
$$0 = a \cdot 0$$

Similar argument for $0 \cdot a$ will apply.

Theorem 14

Let R be a ring and let $a, b \in R$ then

$$(-a)b = a(-b) = -(ab)$$

$$(-a)(-b) = (ab)$$

Proof. Since additive inverse of an element is unique we need show that both a(-b) and (-a)(b) are inverses of (ab).

$$(-a)(b) + (ab) = (-a+a)b = 0 \cdot b = 0$$

The same argument will apply for (a)(-b) thus by uniqueness of inverse (-a)b = a(-b) = -(ab).

Now we can apply the first part to get

$$(-a)(-b) = -(a(-b)) = -(-(ab)) = ab$$

Definition 14: Characteristic of ring

The characteristic of a ring denoted by CharR is the order of multiplicative identity 1 in the group under addition. If the order of 1 is not finite then CharR = 0

For the rings $\mathbb{Z}, \mathbb{R}, \mathbb{Q}$ all of them have characteristic 0. While any since there is no positive integer n such that $n \cdot 1 = 0$. For the ring $\mathbb{Z}/n\mathbb{Z}$ it has characteristic n since n[1] = [n] = [0].

Theorem 15

If Char(R) > 0 then for $r \in R$ we have $k \cdot r = 0$ if and only if $n \mid k$. If Char(R) = 0 then $k \cdot r = 0$ if and only if k = 0.

Proof. Suppose n = Char(R) and let k such that n|k. Let $r \in R$. We have k = mn for some m. Then $(mn) \cdot r = ((mn) \cdot 1) \cdot r$ by distributivity. Since we have $n \cdot 1 = 0$ we get

$$r((mn) \cdot 1) = r(m(n \cdot 1)) = r(m \cdot 0) = r0 = 0$$

Now suppose k is an integer such that for all $r \in R$ we have $r \cdot k = 0$. Then $k \cdot 1 = 0 = n \cdot 0$. So R must be a multiple of o(1) in the additive group. Using the Theorem 5 for groups in additive notation we have $k = 0 \mod n$ therefore n|k

Finally, suppose CharR = 0 if k = 0 then $0 \cdot r = 0$. Conversely if $k \cdot r = 0$ then $k \cdot 1 = 0$ since $o(1) = \infty$ this only happens when k = 0.

11 Subrings and Homomorphisms

Definition 15: Sub ring

Let R be a ring. S is a subring of R, if addition and multiplication on R restrict to binary operations on S, and S is a ring with respect to those operations. Moreover

$$\mathbf{1}_R = \mathbf{1}_S$$

Their multiplicative identities are the same.

The following example shows why we needed the $1_R = 1_S$ condition.

Example 1 Consider the Ring $\mathbb{Z}/6\mathbb{Z}$. The subset $S = \{[0], [2], [4]\}$ of even equivalence classes. (S, +) is an abelian group moreover it is a cyclic group generated by $\langle [2] \rangle$. It is also closed under multiplication. Here [4] acts as the identity for any $a \in S$ we have $4 \times [a] = [a]$. But this is not a subring since $\mathbf{1}_{\mathbb{Z}} \neq \mathbf{1}_{\mathbb{Z}/n\mathbb{Z}}$.

The set \mathbb{Z} is a subring of \mathbb{Q} , \mathbb{R} . It satisfies all the conditions and the multiplicative identity is same in all 2 sets.

Theorem 16: Sub-Ring Test

Let S be a sub set of $(R, +, \times)$. S is a sub ring if the following conditions hold:

- $1_R \in S$
- if $a, b \in S$ then $a b \in S$
- if $a, b \in S$ then $ab \in S$.

Proof. Assume $S \subseteq R$ satisfies all the conditions. Then by the second condition (S, +) is a group (Sub group test). Using the third condition S, \times is closed under addition. Associatively holds because it held in R. Since we have $1_R \in S$ then $1_R \cdot s = s \cdot 1_R = s$ so by uniqueness of identity element $1_R = 1_S$. The distributive law holds since it holds in R.

Conversely assume S is a sub ring of R. First since (S, +) is a subgroup by the subgroup test the condition holds. Since S is closed under multiplication the third condition holds. Finally we know that $1_S = 1_R$ so we must have $1_R \in S$ to the first condition holds as well.

Example 2 Center of a ring

11.1 Ring Homomorphisms

Definition 16: Ring Homomorphism

A function $\phi: R \to S$ for rings S, R is called a ring homomorphism if the following conditions hold:

$$\phi(a+b) = \phi(a) + \phi(b) \tag{1}$$

$$\phi(ab) = \phi(a)\phi(b) \tag{2}$$

$$\phi(\mathbf{1_R}) = \mathbf{1_S} \tag{3}$$

-EXAMPLES-

Theorem 17: Properties of Ring homomorphisms

Let $\phi: R_1 \to R_2$ be a ring homomorphism. Then the following hold:

$$\phi(0) = 0 \tag{1}$$

$$\phi(-r) = -\phi(r) \tag{2}$$

$$\phi(kr) = k\phi(r) \text{ For } k \in \mathbb{Z}$$
(3)

$$\phi(r^n) = \phi(r)^n \text{ For } n \in \mathbb{N}$$
(4)

$$\phi(r^k) = \phi(r)^k$$
 For all $k \in \mathbb{Z}$ if r is a unit (5)

12 Ideals and Quotient Rings

12.1 Quotient Rings

For defining quotient rings. We need to prove fundamental result about the relationship between kernels and normal subgroups.

Theorem 18

Let G be a group

- (1) If G_1 is any group and $\phi: G \to G_1$ is a homomorphism then $\ker \phi$ is a normal subgroup of G.
- (2) If H is a normal subgroup of G then there is a group homomorphism $\phi: G \to G_1$ such that $H = \ker \phi$.

Proof. (1) Suppose we have a homomorphism $\phi: G \to G_1$ and the set $K = \ker \phi$. We already know that K is a subgroup of G. Suppose we have $h \in gKg^{-1}$ then $h = gkg^{-1}$ for some $k \in K$. Then we get

$$\phi(h) = \phi(gkg^{-1}) = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e\phi(g^{-1}) = \phi(g)\phi(g)^{-1} = e$$

Therefore we have $h \in K$. So we know that $gKg^{-1} \subseteq K$. Taking g^{-1} in place of g we get $g^{-1}Kg \subseteq K$ this implies $K \subseteq gKg^{-1}$ hence we have $K = gKg^{-1}$ by definition $K = \ker \phi \triangleleft G$

(2) Suppose $H \triangleleft G$, let $G_1 = G/H$ and consider the quotient homomorphism $q: G \to G/H$ given by q(g) = Hg we have $g \in \ker q$ if and only if Hg = He that implies $e^{-1}g \in H$ that means we have $g \in H$. So we have $H = \ker q$

This theorem shows that normal subgroups of G same as the kernels of homomorphisms of G.

Definition 17: Kernel of Rings

Let R, S be rings and let $\phi: R \to S$ be a group homomorphism the kernel is given by

$$\ker \phi = \{ r \in R : \phi(r) = 0_S \}$$

Since the way ring homomorphisms are constructed the kernel of a ring homomorphism with domain R is automatically a additive subgroup of R.

12.2 Ideals

Definition 18: Ideals

Let R be a ring. A subset I of R is called an ideal if

#1 I is a subgroup of the additive group R.

#2 I absorbs multiplication. That is, if $r \in I$ and $a \in R$, then $ra, ar \in I$.

Example 1 If R is a ring then both R and $\{0\}$ are ideals of R. The set $\{0\}$ is the trivial subgroup of (R, +) and for any $r \in R$ we have $r \cdot 0 = 0 \cdot r = 0 \in \{0\}$. This is called the *zero ideal* of R.

Example 2 For any $n \in \mathbb{N}$ the additive groups $n\mathbb{Z}$ are ideals of \mathbb{Z} . We know that $n\mathbb{Z}$ is a subgroup. To check for the absorption property, for any $m \in n\mathbb{Z}$ we have m = nk it follows that

$$\ell m = m\ell = (nk)\ell = n(k\ell) \in n\mathbb{Z}$$

Theorem 19

Let R be a ring and $I \subseteq R$ be an ideal. Then the set of right cosets R/I can be given the structure of a ring with addition defined as (I+a)+(I+b)=I+a+b and multiplication being (I+a)(I+b)=I+ab

Proof. We know that I is an additive group of R, since (R, +) is an abelian group, every subgroup is normal and R/I is also an abelian group.

Now we need to check that multiplication is well defined, suppose $a, b, a', b' \in R$ such that I + a = I + a' and I + b = I + b', this means that we have $a - a' \in I$ and $b - b' \in I$ we have to show that I + ab = I + a'b' which means we have to show $ab - a'b' \in I$

$$ab - a'b' = ab - a'b + a'b - a'b' = (a - a')b + a'(b - b')$$

Since $a - a' \in I$ and it absorbs multiplication we have $(a - a')b \in I$ and same applies for $a'(b - b') \in I$. Finally I is closed under addition so we get $ab - a'b' \in I$

The element I+1 is the multiplicative identity since $(I+a)(I+1)=I+a\cdot 1=I+a$ we can easily check that this operation is associative. Now for the distributive property

$$((I + a) + (I + b))(I + c) = (I + a + b)(I + c)$$

$$= (I + c(a + b))$$

$$= I + ca + cb$$

$$= (I + ca) + (I + cb)$$

$$= (I + a)(I + c) + (I + b)(I + c)$$

The theorem connecting kernels with groups and normal subgroup also holds for rings and ideals.

Theorem 20

Let R be a ring

- (1) Let S be any ring and $\phi: R \to S$ be a ring homomorphism then ker ϕ is an ideal of R.
- (2) Let I be an ideal of R then there is a ring R_1 such that $\phi: R \to R_1$ is a ring homomorphism and $I = \ker \phi$
- Proof. (1) Let $K = \ker \phi$, K is closed under multiplication since we have let $a \in K$ and $b \in R$ so we get $\phi(ab) = \phi(a)\phi(b) = 0_S \cdot 0_S$ therefore $ab \in K$ absorbs multiplication. we already know that $K \triangleleft (R, +)$ so I is an ideal.
- (2) Let I be an ideal of R consider the quotient mapping $q: R \to R/I$ given by q(a) = I + a, we can check by definition of the operations on R/I that q is a ring homomorphism. Now let $a \in \ker q$ which means we have q(a) = I + a = I + 0, which holds if $a \in I$ therefore $I = \ker q$

Example The sets $n\mathbb{Z}$ are ideals for the ring \mathbb{Z} then the coset $n\mathbb{Z} + m$ corresponds to the equivalence class [m] under congruence modulo n. The multiplication

$$(n\mathbb{Z} + m_1)(n\mathbb{Z} + m_2) = n\mathbb{Z} + m_1 m_2$$

This corresponds to the multiplication $[m_1][m_2] = [m_1 m_2]$