1 Aspects théoriques

1.1 **SNRQ**

On utilise le facteur d'utilisation de la plage dynamique

$$a = \frac{\text{Dynamique totale}}{x_{rms}}$$

Il existe plusieurs façon de calculer le SNRQ (qui sont toutes équivalentes)

$$S_{NRQ0} = 20 \log_{10} \left(\frac{2}{a}\right) + 10 \log_{10} (3) + 20 \log (2) N$$

 $S_{NRQ0I} = -20 \log_{10}{(a)} + 20 \log_{10}{(2)} + 10 \log_{10}{(3)} + 20 \log{(2)} N$

Mais la plus importante est :

$$SNRQ = 6.02N + 10.8 - 20\log_{10}(a)$$

Si on a un **sinus** qui occupe toute la plage dynamique (bipolaire de $-V_{ref}$ à V_{ref} , la fonction devient

$$SNRQ_{sin} \approx 1.76 + 6.02N$$

1.2 Nombre de bits effectifs

A ne pas confondre avec le ENOB (qui provient d'une datasheet). C'est le nombre de bits que doit avoir un ADC pour respecter les consignes données

$$N_{\mathrm{effectif}} = \frac{\mathrm{SNRQ} - 10.8 + 20 \log_{10}(a)}{6.02}$$

Lorsqu'on a un sinus qui occupe toute la plage dynamique, on a

$$N_{\rm effectif} = \frac{{\rm SNRQ} - 1.76}{6.02}$$

1.3 Filtres

A remplir!

- 1. Réponse en fréquence du filtre CIC récursif
- 2. Emplacements des "pics" vers le bas
- 3. Analyse de la forme du Bode (sinus cardinal)

1.4 Changement du nombre de bits

Lorsqu'on change le nombre de bits, on obtient un $\Delta {\rm SNRQ}$ ce qui permet de déterminer la variation de fréquence

$$\Delta \text{SNRQ} = \text{SNRQ}_{\text{new}} - \text{SNRQ}$$

$$\Delta \text{SNRQ} = 10 \log_{10} \left(\frac{f}{f_{\text{new}}} \right)$$

$$10^{\frac{\Delta \text{SNRQ}}{10}} = \frac{f}{f_{\text{new}}}$$

- 2 Aspects technologiques
- 3 Étages d'entrée
- 4 Amplificateurs
- 4.1 Amplificateur inverseur simple

4.2 Amplificateur non-inverseur simple

4.3 Amplificateur simple non-inverseur, avec référence

$$u_{out} = \left(1 + \frac{R_2}{R_1}\right)u_{in} - \frac{R_2}{R_1}U_{ref}$$

4.4 Amplificateur simple inverseur, avec référence

1

4.5 Amplificateur simple inverseur, avec 4.8 référence (2)

4.6 Amplificateur simple non-inverseur, avec référence (2))

$$u_{out} = \frac{R_4}{R_1} \frac{R_1 + R_2}{R_3 + R_4} u_{in} + \frac{R_3}{R_1} \frac{R_1 + R_2}{R_3 + R_4} U_{ref}$$

Si
$$R_2 = R_4$$
 et $R_1 = R_3$

$$u_{out} = \frac{R_2}{R_1} u_{in} + U_{ref}$$

4.7 Différentiel \rightarrow single, sans référence

$$u_{out} = -\frac{R_2}{R_1}u_- + \left(1 + \frac{R_2}{R_1}\right)\frac{R_4}{R_3 + R_4}u_+$$

Si
$$R_4 = R_2$$
 et $R_1 = R_3$

$$G_d = \frac{R_2}{R_1}$$

$$u_{out} = \frac{R_2}{R_1} (u_+ - u_-)$$

$$G_c = 0$$

Amplificateur d'instrumentation (différentiel \rightarrow single, sans référence)

$$G_d = \left(1 + \frac{2R_1}{R_{\text{gain}}}\right) \frac{R_3}{R_2}$$

$$u_{out} = U_{ref} + G_d \left(u_+ - u_-\right)$$

$\textbf{4.9} \quad \textbf{Différentiel} \rightarrow \textbf{différentiel}$

$$u_{out} = Gu_{in}$$

$$u_{out} = \left(1 + 2\frac{R_2}{R_1}\right)u_{in}$$

4.10 différentiel \rightarrow différentiel

$$U_{out_{com}} = \frac{u_+ - u_-}{2}$$

4.11 single \rightarrow différentiel sans référence

4.12 single \rightarrow différentiel sans référence (2)

4.13 single \rightarrow différentiel sans référence (3)

4.14 single \rightarrow différentiel sans référence (4)

4.15 single \rightarrow différentiel sans référence (5)

4.16 Amplificateur balancé

4.16.1 Tension de sortie

$$U_k = U_c - I_1$$

$$U_k = U_c - R_1 \left(\frac{(U_c + U_d) - U_c}{R_3} + \frac{P - U_c}{R_2} \right)$$

$$U_k = U_c - R_1 \left(\frac{(U_c + U_d) - U_c}{R_3} + \frac{(U_c + U_d) - I_5 R_4 - U_c}{R_2} \right)$$

$$U_k = U_c - R_1 \left(\frac{(U_c + U_d) - U_c}{R_3} + \frac{(U_c + U_d) - U_c}{R_2} - \frac{I_5 R_5}{R_2} \right)$$

$$\begin{split} U_k = & U_c - R_1 \big(\frac{(U_c + U_d) - U_c}{R_3} + \frac{(U_c + U_d) - U_c}{R_2} \\ & - \frac{\big(\frac{U_{ref} - (U_c + U_d)}{R_4} - \frac{(U_c + U_d) - U_c}{R_3} \big) R_5}{R_2} \big) \end{split}$$

4.16.2 Tension au point P

$$P = (U_c + U_d) - I_5 R_5$$

$$P = (U_c + U_d) - R_5(\frac{U_{ref} - (U_c + U_d)}{R_4} - \frac{(U_c + U_d) - U_b}{R_3})$$

$$P = (U_c + U_d) - R_5(\frac{U_{ref}}{R_4} - \frac{(U_c + U_d)}{R_4} - \frac{(U_c + U_d)}{R_3} + \frac{U_c}{R_3})$$

$$P = (U_c + U_d) \left(1 + \frac{R_5}{R_4} + \frac{R_5}{R_3} \right) - R_5 \left(\frac{U_{ref}}{R_4} + \frac{U_c}{R_3} \right)$$

$$P = (U_c + U_d) \left(1 + \frac{R_5}{R_4} + \frac{R_5}{R_3} \right) - U_c \frac{R_5}{R_3} - R_5 \frac{U_{ref}}{R_4}$$

$$P = U_c \left(1 + \frac{R_5}{R_4} \right) + U_d \left(1 + \frac{R_5}{R_4} + \frac{R_5}{R_3} \right) - R_5 \frac{U_{ref}}{R_4}$$

4.16.3 CMRR

$$CMRR = \frac{G_d}{G_c}$$

$$\left. \text{CMRR} \right|_{\text{dB}} = 20 \log_{10} \left(\text{CMRR} \right)$$

Pour obtenir le **pire** CMRR dans un amplificateur différentiel, on va chercher à avoir

$$\frac{R_2}{R_1} \max \frac{R_4}{R_3} \min$$

5 Étages d'adaptation

6 Sample & Hold

$$e[n] = \begin{cases} \operatorname{clk} = 0 & U_{in_{init}} - U_{ref_{\text{COMP}}=1} + U_c[n-1] \\ \operatorname{clk} = 1 & e[n-1] \end{cases}$$

6.1 Gigue

La gigue maximale pour un sinus de fréquence f et d'amplitude \hat{U}_{in}

$$\Delta t_{max} = \frac{\text{Dyn}}{2^N 2\pi f_{in} \hat{U}_{in}}$$

$$T_j = \Delta t_{max}$$

Théorème d'échantillonnage = théorème de Shannon

7 Conversion A/N

$$q = \frac{\text{Dyn}}{2^N}$$

7.1 Intégration : double rampe

$$U_{in} = U_{ref} \frac{T_{\text{descente}}}{T_{\text{mont\'ee}}}$$

peu sensibles aux variations de température

7.2 Équilibre de charges ou "incrémental"

1. Phase 1:

$$u_{C1} = u_{in}$$
$$Q_{C1} = u_{in}C_1$$

2. Phase 2:

$$u_{C1} = 0$$

$$Q_{C1} = 0$$

$$Q_{C2} = u_{in}C_1$$

3. Phase 3:

$$\Delta u_{out} = u_{in} \frac{C_1}{C_2}$$

4. Recommencer 2^n fois, puis on intègre U_{ref}

5. Phase 1:

$$u_{C1} = 0$$
$$Q_{C1} = 0$$

6. Phase 2:

$$\begin{aligned} u_{C1} &= U_{ref} \\ Q_{C1} &= U_{ref} C_1 \\ \Delta u_{out} &= -\frac{\Delta Q_{C2}}{C_2} \\ \Delta Q_{C2} &= -U_{ref} \frac{C_1}{C_2} \end{aligned}$$

Tension de sortie (intégration de U_{in})

$$u_{out} = \sum_{2^n} \Delta u_{out} = 2^n u_{in} \frac{C_1}{C_2}$$

Tension de sortie (intégration de U_{ref})

$$U_{out} = 2^n u_{in} \frac{C_1}{C_2} - NU_{ref} \frac{C_1}{C_2} = 0$$

$$N = 2^n \frac{u_{in}}{U_{ref}} + \varepsilon \quad 0 \leqslant \varepsilon \leqslant 1$$

Il est nécessaire d'entrelacer les deux méthodes pour éviter de dépasser la tension max.

7.3 Convertisseur à approximations successives

$$u_c = \frac{U_{ref}}{2} \left(\frac{d_0}{2^{n-1}} + \frac{d_1}{2^{n-2}} + \dots + d_{n-1} \right) - u_{in}$$

7.4 Convertisseur cyclique ou algorithmique

7.5 Comparaisons

8 Conversion N/A

8.1 Potentiomètrique

$$u_{out} = \frac{1}{2^n} U_{ref} \left(d_{n-1} 2^{n-1} + d_{n-2} 2^{n-2} + \dots + d_1 2^1 + d_0 2^0 \right)$$

8.2 Résistances pondérées (commutation de tensions)

$$u_0 = -U_{ref} \frac{R_0}{R} \left(d_0 2^0 + d_1 2^1 + d_2 2^2 + \dots + d_{n-1} 2^{n-1} \right)$$
$$0 \le |u_0| \le \frac{R_0}{R} (2^n - 1)$$

8.3 Résistances pondérées (commutation de courants)

$$u_0 = -U_{ref} \frac{R_0}{R} \left(d_0 2^0 + d_1 2^1 + d_2 2^2 + \dots + d_{n-1} 2^{n-1} \right)$$
$$0 \leqslant |u_0| \leqslant U_{ref} \frac{R_0}{R} (2^n - 1)$$

Limite technologique :

$$\frac{R_{LSB}}{R_{MSB}} = 2^{n-1} = 128$$

8.4 Échelle R/2R (commutation de courant)

$$I = \frac{U_{ref}}{2R}$$

$$U_0 = -R_0 I_0$$

$$I_0 = d_0 \frac{I}{2^{n-1}} + d_1 \frac{I}{2^{n-2}} + \dots + d_{n-2} \frac{I}{2} + d_{n-1} I$$

$$U_0 = -U_{ref} \frac{R_0}{2R} \left(d_0 \frac{1}{2^{n-1}} d_1 \frac{1}{2^{n-2}} + \dots + d_{n-2} \frac{1}{2} + d_{n-1} 1 \right)$$

$$0 \leqslant |U_0| \leqslant U_{ref} \frac{R_0}{R} \left(1 - \frac{1}{2^n} \right)$$

8.4.1 Caractéristiques

- 1. Résistance de passage 20Ω
- 2. Chute de tension dans le commutateur : $10\,\mathrm{mV}$

8.5 Échelle R/2R (commutation de tension)

$$U_0 = U_{ref} \left(\frac{d_0}{2^n} + \frac{d_1}{2^{n-1}} + \dots + \frac{d_{n-2}}{2^2} + \frac{d_{n-1}}{2} \right)$$

Résolution

$$U_{LSB} = \frac{U_{ref}}{2}$$

Plage de conversion

$$0 \leqslant U_0 \leqslant U_{reF} \left(1 - \frac{1}{2^n} \right)$$

8.6 Échelle R/2R à commutation de sources 8.10 de courant

$$U_0 = RI_R \left(\frac{d_0}{2^{n-1}} + \frac{d_1}{2^{n-2}} + \dots + \frac{d_{n-2}}{2} + d_{n-1} \right)$$

Résolution

$$U_{LSB} = \frac{RI_R}{2^{n-1}}$$

Plage de conversion

$$0 \leqslant U_0 \leqslant RI_R \frac{2^n - 1}{2^{n-1}}$$

8.7 Sources de courant pondérées

$$I_0 = -\frac{2^{n/2}I}{2^n} \left(d_0 + d_1 2^2 + d_2 2^2 + d_3 2^3 + \dots + d_{n-1} 2^{n-1} \right)$$

8.8 Capacités pondérées (variante 1)

8.9 Capacités pondérées (variante 2)

$$U_0 = -U_{ref} \frac{C_1}{C_2}$$

3.10 Théorème de Shannon (échantilonnage)

$$F_e > 2F_{\text{signal}_{max}}$$

8.11 Quantification

9 Acquisition

$$SNR = 20 \log_{10} \left(\frac{U_{\text{mesurande}_{RMS}}}{U_{\text{bruit}_{RMS}}} \right)$$

SNR < 0 Bruit plus important que la valeur du mesurande

SNR = 0 Bruit et mesurande égaux

SNR > 0 mesurande plus important que le bruit

9.1 Sur-échantillonnage

Une faible augmentation sur le nombre de bits effectifs induit une très grande quantité de données additionnelle.

9.2 Dimensionnement d'un filtre anti- 11 repliement

- 1. Fréquence de coupure du filtre à la fréquence max du signal $\,$
- 2. Atténuation SNRQ à la fréquence $f_e/2$ (SNRQ déterminé par le nombre du convertisseur.

10 Conversion Sigma-Delta

Modulateur 1 ordre

$$\mathrm{SNRQ} = 10 \log_{10} \left(\frac{\sigma_x^2}{V_{ref}^2} \right) + 5.6 + 30 \log_{10} \left(N_{\mathrm{OSR}} \right)$$

$$N_{bit} \approx \frac{\text{SNRQ}}{6}$$

Avec un modulateur du 2ème ordre

$$\mathrm{SNRQ} = 10 \log_{10} \left(\frac{\sigma_x^2}{V_{ref}^2} \right) - 2.1 + 50 \log_{10} \left(N_{\mathrm{OSR}} \right)$$

10.1 Filtres

$$R = D$$

C'est juste une histoire de notation

 $D\uparrow$: upsampling $D\downarrow$: downsampling

On utilise aussi "Décimation" pour "downsampling"

$$H\left(f\right) = \left(\left|\frac{\sin\left(\pi \frac{f}{N_{osr}F_{s}}R\right)}{\pi \frac{f}{N_{osr}F_{s}}R}\right|\right)^{M}$$

Avec M l'ordre du filtre.

10.2 Atténuation minimale des harmoniques du signal

On cherche le repliement du signal le plus important se retrouvant dans notre bande utile

$$A_{max} = 20 \log_{10} \left(H \left(\frac{F_s N_{osr}}{D} - B \right) \right) \Big|_{dB}$$

11 Capacités commutées

$$\bar{i} = \Delta q = \frac{C_s}{T} \left(U_{in} - U_{out} \right)$$

La résistance équivalente est

 $\frac{T}{C_{-}}$

11.1 Filtre passe-bas

12 Protection

$$LI=UT$$

$$CU = IT$$

$U_{R_{RMS}} = \sqrt{4kTR}$

Le bruit thermique d'une résistance est donné pas

14 Performance des convertisseurs

	Unipolaire	Bipolaire				
plage	$Dyn: 0 \grave{a} V_{ref}$	$Dyn: -V_{ref} \land V_{ref}$				
q	$\frac{\mathrm{Dyn}}{2}$	$\frac{\mathrm{Dyn}}{2} = \frac{2V_{ref}}{2}$				
	Unipolar binary					
min	$000\ 000\ 000\ 000 = 0.0000\ V$					
		-				
max	$111\ 111\ 111\ 111 = 9.99976\ V$	-				
	Offset binary					
		000 000 000 000 10 000 V				
min	-	$000\ 000\ 000\ 000 = -10.000\ V$				
$_{ m milieu}$	-	$100\ 000\ 000\ 000 = 0.000\ V$				
max	-	$111\ 111\ 111\ 111 = 9.9951\ V$				
	One's complement					
min	_	$100\ 000\ 000\ 000 = -9.9951\ V$				
milieu	_	$000\ 000\ 000\ 000 = 0.000\ V$				
milieu		111 111 111 111 = 0.000 V				
	_					
max	-	$011\ 111\ 111\ 111 = 9.9951\ V$				
	Two's complement					
min	_	$100\ 000\ 000\ 000 = -10.000\ V$				
milieu		$000\ 000\ 000\ 000 = 10.000\ V$				
	-					
max	-	$011\ 111\ 111\ 111 = 9.9951\ V$				

$15 \quad INL / DNL$

Code	n	n+1	n+2	n+3	n+4	n+5	n+6
Théorique [V]	2.0000	2.0010	2.0020	2.0030	2.0040	2.0050	2.0060
Réel [V]	2.0000	2.0008	2.0016	2.0028	2.0041	2.0049	2.0062
INL [mV]	0	-0.2	-0.4	-0.2	0.1	-0.1	0.2
DNL [mV]		-0.2	-0.2	0.2	0.1	-0.2	0.3

$$\mathrm{INL}(n) = \mathrm{R\acute{e}el}(n) - \mathrm{T\acute{h\acute{e}orique}}(n)$$

$$DNL(n) = INL(n+1) - INL(n)$$

16 Comparaison A/N

	Intégration simple/double rampe	Approximations successives	FLASH
Résolution	Haute (16+ bits)	Moyenne (8 à 16 bits)	Faible (6 à 8 bits)
Précision	Haute	Moyenne	Faible
Linéarité	excellente	?	?
Temps de conversion	1 ms to 1000 ms $O(2^N)$ voir $O(2^{N+1})$	1 μs to 100 μs $O(log_2(N))$	0.5 ns to 10 ns O(1)
Technologie	CMOS	MOS	CMOS
Applications typiques	Instruments de précision, télémétrie	Télécommunications, TSA, MCU	Radar, oscillo, TSA rapide
Consommation			élevée
Capacitance d'entrée			élevée

17 Approximations successives

18 Schéma de fonctionnement filtre Sigma-Delta

