Глоссарий

по теме «Производные»

O	ГЛ	aBJ	тен	ие
\sim	101	COL	101	

Производная функции	3
Дифференцирование	3
Логарифмическая производная	3
Нормаль	3
Производная	3
Производная высшего порядка	3
Производная неявной функции	4
Производная сложной функции	4
Производная функций, заданных параметрически	4
Дифференциал	5
Дифференциал	5
Дифференциал второго (высшего) порядка	5
Теоремы о среднем. Правила Лопиталя. Формулы Тейлора	6
Второе правило Лопиталя	6
Первое правило Лопиталя	6
Теорема Коши	6
Теорема Лагранжа	7
Теорема Ролля	7
Формула Маклорена	7
Формула Тейлора (с остаточным членом в форме Лагранжа)	7
Формула Тейлора (с остаточным членом в форме Пеано)	8
Частные производные. Полный дифференциал	9
Линеаризация функции	9
Полное приращение функции	9
Полный дифференциал функции	9
Теорема о дифференцируемости функции	10
Частное приращение функции	10
Частная производная функции	10
Дифференцирование сложных и неявных функций	11
Дифференциал неявной функции двух переменных	11
Дифференциал неявной функции одной переменной	11
Дифференциал сложной функции	11
Случай нескольких независимых переменных	12

Случай одной независимой переменной	
Частные производные и дифференциалы высших порядков	13
Дифференциал второго порядка	13
Дифференциал высшего порядка	13
Теорема Шварца	13
Частные производные второго порядка	13
Частная производная порядка п от функции двух переменных	14

Производная функции

Дифференцирование

Вычисление производной называется *дифференцированием* функции.

Логарифмическая производная

Логарифмической производной от функции y = f(x) называется производная от логарифма этой функции:

Нормаль

Прямая, проходящая через точку касания, перпендикулярно касательной, называется *нормалью* к кривой и имеет уравнение

$$y-y_0=-\frac{1}{f'(x_0)}\cdot(x-x_0).$$

(см. Геометрический смысл в теоретической части)

Производная

Пусть функция y=f(x) определена в некоторой окрестности точки x_0 . Предел отношения приращения Δy функции в этой точке (если он существует) к приращению Δx аргумента, когда $\Delta x \to 0$, называется производной функции f(x) в точке x_0 .

Производная высшего порядка

Производная f'(x) от функции f(x) называется также производной первого порядка. В свою очередь производная от функции f'(x) называется производной второго порядка от функции f(x) (или второй производной) и обозначается f''(x).

Производная n-го порядка обозначается $f^{(n)}(x)$.

Производная неявной функции

Пусть функция y = y(x), обладающая производной в точке x, задана неявно уравнением F(x,y) = 0. (1.1)

Тогда производную y'(x) этой функции можно найти, продифференцировав уравнение (1.1) (при этом y считается функцией от x) и разрешая затем полученное уравнение относительно y'.

Производная сложной функции

Пусть функция $u = \phi(x)$ имеет производную в точке x_0 , а функция y = f(u) - в точке $u_0 = \phi(x_0)$. Тогда функция $y = f(\phi(x))$ называется сложной функцией и также имеет производную в точке x_0

Производная функций, заданных параметрически

Пусть функция y = f(x) определена параметрически функциями x = x(t) и y = y(t). Тогда если функции x(t) и y(t) имеют производные в точке t_0 , причем $x'(t_0) \neq 0$, а функция y = f(x) имеет производную в точке $x_0 = x(t_0)$, то эта производная находится по формуле

$$y'(x_0) = rac{y_t'(t_0)}{x_t'(t_0)}$$
 или $y_x' = rac{y_t'}{x_t'}.$

Вторая производная y''(x) находится по формуле

$$y_{xx}'' = \frac{y_t'' \cdot x_t' - x_t'' \cdot y_t'}{(x_t')^3}.$$

Дифференциал

Дифференциал

Пусть функция y = f(x) определена в некоторой окрестности точки x_0 . Тогда если существует такое число A, что приращение Δy этой функции в точке x_0 , соответствующее приращению Δx аргумента, представимо в виде:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x, \tag{2.1}$$

при этом главная, линейная относительно Δx , часть этого приращения, т.е. $A \cdot \Delta x$, называется дифференциалом функции в точке x0 и обозначается dy или df(x0).

Дифференциал второго (высшего) порядка

 \mathcal{L}_{u} ференциалом второго порядка (или вторым дифференциалом) от функции y = f(x) в точке $x \in (a,b)$ называется дифференциал от дифференциала первого порядка функции f(x) в этой точке.

$$d^2y = f''(x)(dx)^2$$
, или, более кратко, $d^2y = f''(x)dx^2$.

Аналогично определяются дифференциалы третьего и более высоких порядков: $d^3y = d(d^2y), d^4y = d(d^3y), \dots$ В общем случае, дифференциалом n-го порядка от функции f(x) в точке x называется дифференциал от дифференциала (n-1)-го порядка функции f(x) в этой точке:

$$d^n y = d(d^{n-1}y),$$

Теоремы о среднем. Правила Лопиталя. Формулы Тейлора

Второе правило Лопиталя

Второе правило Лопиталя. Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности $U(x_0)$ точки x_0 , кроме, быть может, самой этой точки, и $g'(x) \neq 0$ для $\forall x \in U(x_0), x \neq x_0$. Тогда если $\lim_{x \to x_0} f(x) = \lim_{x \to 0} g(x) = \infty$ (т. е. в точке x_0 имеет место неопределенность

вида $\frac{\infty}{\infty}$) и существует $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$, то существует и $\lim_{x\to x_0} \frac{f(x)}{g(x)}$, причем

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}.$$

Первое правило Лопиталя

Первое правило Лопиталя. Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности $U(x_0)$ точки x_0 , кроме, быть может, самой этой точки, и $g'(x) \neq 0$ для всех $x \in U(x_0)$, $x \neq x_0$. Тогда если $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ (в этом случае говорят, что в точке x_0 имеет

место неопределенность вида $\frac{0}{0}$) и существует $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$, то существует

и
$$\lim_{x\to x_0} \frac{f(x)}{g(x)}$$
, причем

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Теорема Коши

Теорема 7.3 (Коши). Пусть функции f(x) и g(x) непрерывны на отрезке [a;b] и дифференцируемы на интервале (a;b), причем $g'(x) \neq 0$ для всех $x \in (a;b)$. Тогда найдется такая точка c на этом интервале, что

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}.$$

Теорема 7.2 (Лагранжа). Пусть функция f(x) непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b). Тогда на интервале (a;b) найдется такая точка c, что

$$f(b) - f(a) = f'(c)(b - a).$$

Теорема Ролля

Теорема 7.1 (Ролля). Пусть функция f(x) непрерывна на отрезке [a;b], дифференцируема на интервале (a;b) и принимает на концах отрезка равные значения (т. е. f(a)=f(b)). Тогда существует по крайней мере одна точка c на интервале (a;b), для которой f'(c)=0.

Формула Маклорена

(см. Формула Тейлора (с остаточным членом в форме Пеано))

В случае $x_0 = 0$ формула Тейлора принимает вид

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n), \quad x \to 0$$

и называется формулой Маклорена.

Формула Тейлора (с остаточным членом в форме Лагранжа) (см. Формула Тейлора (с остаточным членом в форме Пеано))

Последнее слагаемое (т. е. остаточный член) в формуле Тейлора иногда записывают в виде $\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$ (в этом случае надо дополни-

тельно предполагать существование $f^{(n+1)}(x)$ в данной окрестности точки x_0). Соответствующая формула тогда называется формулой Тейлора c остаточным членом в форме Лагранжа.

Формула Тейлора (с остаточным членом в форме Пеано)

Пусть функция f(x) имеет в некоторой окрестности точки x_0 производные $f', f'', \ldots, f^{(n)}$. Тогда для любой точки x из этой окрестности имеет место равенство

$$f(x)=f(x_0)+rac{f'(x_0)}{1!}(x-x_0)+rac{f''(x_0)}{2!}(x-x_0)^2+\dots \ \cdots+rac{f^{(n)}(x_0)}{n!}(x-x_0)^n+oig((x-x_0)^nig)$$
 при $x o x_0.$

Эта формула называется формулой Тейлора с остаточным членом в форме Пеано.

Частные производные. Полный дифференциал

Линеаризация функции

Сравнивая Δz и dz, заключаем, что они являются величинами одинакового порядка малости при $\Delta x \to 0$ и $\Delta y \to 0$, т.е. $\Delta z \approx dz$ ($\Delta x \sim 0$, $\Delta y \sim 0$). Это приближенное равенство (тем точнее, чем меньше Δx и Δy), записанное в виде

$$f(x_0+\Delta x;y_0+\Delta y)pprox f(x_0;y_0)+f_x'(x_0;y_0)\Delta x+f_y'(x_0;y_0)\Delta y$$
 называется линеаризацией функции $z=f(x;y)$ в окрестности точки $M_0(x_0;y_0).$

Полное приращение функции

Рассмотрим функцию двух переменных z=f(x;y), определенную и непрерывную в некоторой области D. Считаем, что точки с координатами $(x;y),\,(x+\Delta x;y),\,(x;y+\Delta y),\,(x+\Delta x;y+\Delta y)$, где $\Delta x,\Delta y$ — приращения аргументов, также принадлежат области D.

Полным приращением функции z = f(x; y), соответствующим приращениям аргументов Δx и Δy , называется разность $\Delta z = f(x + \Delta x; y + \Delta y) - f(x; y)$.

Полный дифференциал функции

Если функция f(x;y) обладает частными производными f'_y и f'_x , непрерывными в точке $M_0(x_0;y_0)$, то теорема Лагранжа (конечных приращений) для функции одной переменной позволяет получить приближенное равенство:

$$f_x'(x_0;y_0)\Delta x + f_y'(x_0;y_0)\Delta y.$$

Это выражение представляет собой главную, линейную часть приращения функции и называется дифференциалом этой функции в данной точке.

Как правило, под дифференциалом функции будем понимать полный дифференциал

Теорема о дифференцируемости функции

Если полное приращение Δz функции z=f(x,y) в точке $M_0(x_0;y_0)$ можно представить в виде $\Delta z=A\cdot\Delta x+B\cdot\Delta y+$ $+\varepsilon_1\cdot\Delta x+\varepsilon_2\cdot\Delta y$, где A и B не зависят от Δx и Δy , а $(\varepsilon_1;\varepsilon_2)\to(0,0)$ при $(\Delta x;\Delta y)\to(0;0)$, то функция f(x;y) называется дифференцируемой в точке M_0 .

Теорема 11.8. Для того, чтобы функция z = f(x; y) была дифференцируемой в данной точке, достаточно, чтобы она обладала частными производными, непрерывными в этой точке.

Частное приращение функции

Рассмотрим функцию двух переменных z=f(x;y), определенную и непрерывную в некоторой области D. Считаем, что точки с координатами $(x;y),\,(x+\Delta x;y),\,(x;y+\Delta y),\,(x+\Delta x;y+\Delta y)$, где $\Delta x,\Delta y$ — приращения аргументов, также принадлежат области D.

Частными приращениями функции z = f(x; y) по независимым переменным x и y называются разности $\Delta_x z = f(x + \Delta x; y) - f(x; y)$, $\Delta_y z = f(x; y + \Delta y) - f(x; y)$.

Частная производная функции

Рассмотрим функцию двух переменных z=f(x;y), определенную и непрерывную в некоторой области D. Считаем, что точки с координатами $(x;y),\,(x+\Delta x;y),\,(x;y+\Delta y),\,(x+\Delta x;y+\Delta y)$, где $\Delta x,\Delta y$ — приращения аргументов, также принадлежат области D.

Частной производной функции z = f(x;y) по переменным x и y называется предел отношения соответствующего частного приращения $\Delta_x z$ или $\Delta_y z$ к приращению данной переменной, при условии, что приращение переменной стремится к нулю:

$$z'_x = \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x}, \quad z'_y = \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}.$$

Дифференцирование сложных и неявных функций

Дифференциал неявной функции двух переменных

Функция z = z(x; y) называется неявной функцией переменных x и y, если она определяется уравнением F(x; y; z) = 0, неразрешенным относительно z.

Теорема 11.12. Если функция F(x;y;z) дифференцируема по переменным x,y,z в некоторой пространственной области D и $F_z'(x;y;z) \neq 0$, то уравнение F(x;y;z)=0 определяет однозначную неявную функцию z(x;y), также дифференцируемую и

$$\frac{\partial z}{\partial x} = -\frac{F_x'(x;y;z)}{F_z'(x;y;z)}, \quad \frac{\partial z}{\partial y} = -\frac{F_y'(x;y;z)}{F_z'(x;y;z)}.$$

Дифференциал неявной функции одной переменной

Теорема 11.11. Если F(x;y) — дифференцируемая функция переменных x и y в некоторой области D и $F_y'(x;y) \neq 0$, то уравнение F(x;y) = 0 определяет однозначно неявную функцию y(x), также дифференцируемую, и ее производная находится по формуле

$$y' = \frac{dy}{dx} = -\frac{F_x'(x;y)}{F_y'(x;y)}.$$

В частности.

$$y'(x_0) = -\frac{F'_x(x_0; y_0)}{F'_y(x_0; y_0)}.$$

Дифференциал сложной функции

Дифференциал сложной функции z=z(x;y), где x=x(u;v), y=y(u;v), можно получить, если в формуле дифференциала

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

заменить $dx = \frac{\partial x}{\partial u}du + \frac{\partial x}{\partial v}dv$ и $dy = \frac{\partial y}{\partial u}du + \frac{\partial y}{\partial v}dv$.

В результате подстановки и перегруппировки членов при du и dv приходим к формуле

 $dz = \frac{\partial z}{\partial u} du + \frac{\partial z}{\partial v} dv,$

Случай нескольких независимых переменных

Если аргументы x и y функции z=f(x;y) являются функциями двух переменных, скажем, x=x(u;v), y=y(u;v), то z=f[x(u;v);y(u;v)] также является функцией двух переменных u и v.

Теорема 11.10. Пусть $z=f(x;y),\ x=x(u;v),\ y=y(u;v)$ — дифференцируемые функции своих агрументов. Имеют место формулы

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial u} \qquad \text{if} \qquad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial v}.$$

Структура этих формул сохраняется и при большем числе переменных.

Случай одной независимой переменной

Предположим, что z = f(x;y) — дифференцируемая функция двух переменных x и y в некоторой области D, а аргументы x и y являются дифференцируемыми функциями некоторой переменной t, т. е. x = x(t), y = y(t). Тогда $z = f[x(t);y(t)] = \varphi(t)$ — функция одной переменной t.

Теорема 11.9. Имеет место равенство

$$z' = \frac{dz}{dt} = \frac{d\varphi}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}.$$

Если t совпадает с одним из аргументов, скажем, t=x, то

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \frac{dy}{dx}$$

и $\frac{dz}{dx}$ называется полной производной функции z по x.

Частные производные и дифференциалы высших порядков

Дифференциал второго порядка

Выражение

$$d^{2}z = d(dz) = \frac{\partial^{2}z}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}z}{\partial x\partial y}dx dy + \frac{\partial^{2}z}{\partial y^{2}}dy^{2}$$

называется вторым дифференциалом или дифференциалом второго порядка для функции z.

Дифференциал высшего порядка

Дифференциалы высших порядков определяются по аналогии:

$$d^3z = d(d^2z) = \frac{\partial^3z}{\partial x^3}dx^3 + 3\frac{\partial^3z}{\partial x^2\partial y}dx^2\,dy + 3\frac{\partial^3z}{\partial x\partial y^2}dx\,dy^2 + \frac{\partial^3z}{\partial y^3}dy^3.$$

Выражение для $d^n z$ формально можно записать в виде

$$d^n z = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^n(z),$$

Теорема Шварца

Теорема 11.13 (Шварца). Если смешанные частные производные второго порядка непрерывны, то они равны между собой. Другими словами, результат смешанного дифференцирования не зависит от порядка.

Частные производные второго порядка

Если задана функция z=f(x;y) и вычислены ее частные производные $\frac{\partial f}{\partial x}(x;y)$ и $\frac{\partial f}{\partial y}(x;y)$, то они, вообще говоря, могут быть также дифференцируемыми функциями двух независимых переменных x и y. Приняты обозначения:

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2}$$
 — вторая частная производная по x ;

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial x \partial y}$$
 и $\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y \partial x}$ — смешанные частные производные второго порядка;

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y^2}$$
 — вторая частная производная по y .

Частная производная порядка п от функции двух переменных

Число разных частных производных порядка n от функции двух переменных равно n+1:

$$\frac{\partial^n z}{\partial x^n},\,\frac{\partial^n z}{\partial x^{n-1}\partial y},\,\frac{\partial^n z}{\partial x^{n-2}\partial y^2},\ldots,\frac{\partial^n z}{\partial x^2\partial y^{n-2}},\,\frac{\partial^n z}{\partial x\partial y^{n-1}},\,\frac{\partial^n z}{\partial y^n}.$$