INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL: LOS SISTEMAS EXPERTOS

ÍNDICE

- 1. INTRODUCCIÓN. EVOLUCIÓN HISTÓRICA
- 2. DEFINICIÓN Y CARACTERÍSTICAS DE LOS SE.
- 3. TIPOS Y DESARROLLO DE LOS SISTEMAS EXPERTOS.
- 4. APLICACIONES DE LOS SISTEMAS EXPERTOS.
- 5. SIMULACIÓN Y SISTEMAS EXPERTOS

1.-Introducción. Evolución Histórica.

DESDE LOS AÑOS 50: NOTABLE AVANCE DE LA INTELIGENCIA ARTIFICIAL (RAMA DE COMPUTACIÓN).

ESTUDIO Y CREACIÓN DE SISTEMAS COMPUTARIZADOS CON CIERTA FORMA DE INTELIGENCIA:

- APRENDEN NUEVOS CONCEPTOS Y TAREAS
- PUEDEN COMPRENDER UN LENGUAJE NATURAL O PERCIBIR Y ENTENDER UNA ESCENA VISUAL
- PUEDEN RAZONAR Y DERIVAR CONCLUSIONES ÚTILES
- SISTEMAS QUE REALIZAN OTRO TIPO DE ACTIVIDADES QUE REQUIEREN DE INTELIGENCIA HUMANA.

IA: <u>COMPRENSIÓN</u> DE LA INTELIGENCIA Y <u>DISEÑO</u> DE MÁQUINAS INTELIGENTES: ESTUDIO Y SIMULACIÓN ACTIVIDADES INTELECTUALES HOMBRE (MANIPULACIÓN, RAZONAMIENTO, CREACIÓN,...)

EXPLICAR Y <u>EMULAR</u> COMPORTAMIENTO <u>INTELIGENTE</u> EN TÉRMINOS DE <u>PROCESOS COMPUTACIONALES</u>

IA INGENIERÍA: OBJETIVO→RESOLVER PROBLEMAS REALES, ACTUANDO COMO CONJUNTO DE IDEAS SOBRE CÓMO REPRESENTAR Y UTILIZAR EL CONOCIMIENTO, Y DESARROLLO SISTEMAS INFORMÁTICOS

IA CIENCIA: OBJETIVO → BUSCAR LA EXPLICACIÓN DE DIVERSAS CLASES DE INTELIGENCIA A TRAVÉS DE REPRESENTACIÓN CONOCIMIENTO Y APLICACIÓN QUE SE DA A ÉSTE EN SISTEMAS INFORMÁTICOS

SISTEMAS EXPERTOS: CAMPO DE INVESTIGACIÓN DENTRO DE LA IA. EL DE MAYOR ÉXITO.

1.2. EVOLUCIÓN HISTÓRICA:

1950: EN AUTOMÁTICA WIENER: PRINCIPIO DE LA RETROALIMENTACIÓN (BASE SISTEMAS CONTROL)

1955: NEWELL Y SIMON TEORÍA DE LÓGICA: PROGRAMA EXPLORA SOLUCIÓN BUSCANDO EN ÁRBOL.

1956: CONFERENCIA EN VERMONT (USA): JOHN McCarthy término "Inteligencia Artificial"

1957: "The General Problem Solver" (GPS), programa para resolver problemas sentido común.

1958: McCarthy: LENGUAJE LISP (LIST PROCESSING) PARA DESARROLLADORES INMERSOS EN IA.

1963: MIT RECIBE SUBVENCIÓN ALTA PARA INVESTIGACIÓN EN EL CAMPO DE LA IA.

1965-75: DENDRAL: PRIMER SE → ESTUDIA COMPUESTO QUÍM. DESCUBRIR ESTRUCTURA GLOBAL.

1972: MYCIN: SISTEMA EXPERTO DIAGNÓSTICO DE ENFERMEDADES INFECCIOSAS EN LA SANGRE.

DESPUÉS MYCIN PRESCRIBÍA UNA MEDICACIÓN ADAPTADA A LAS CARACTERÍSTICAS DE LA PERSONA.

1972: LENGUAJE PROLOG BASADO EN LAS TEORÍAS DE MINSKY.

1973: TIERESIAS: SISTEMA EXPERTO INTÉRPRETE ENTRE MYCIN Y ESPECIALISTAS (APRENDER).

1979: XCON: PRIMER PROGRAMA QUE SALE DEL LABORATORIO. USUARIO: DEC. COMETIDO: CONFIGURAR TODOS LOS ORDENADORES QUE SALIESEN DE LA DEC.

1980 A 85: REVOLUCIÓN DE LOS SISTEMAS EXPERTOS: DIVERSOS SISTEMAS EXPERTOS Y EMPRESAS DEDICADAS A ELLOS → "HERRAMIENTAS DE DESARROLLO DE SISTEMAS EXPERTOS".

1987: FIN DEL LISP

A PARTIR DE LOS 90: AMPLIO DESARROLLO EN EL CAMPO DE LA IA Y LOS SISTEMAS EXPERTOS.

AÑOS 60: REGLAS A PARTIR DE LOS 70: INCERTIDUMBRE, DIFUSOS,...

Introducción a los Sistemas Expertos_

2. DEFINICIÓN Y CARACTERÍSTICAS DE LOS SE

2.1. DEFINICIÓN DE SISTEMA EXPERTO.

SISTEMA EXPERTO: PROGRAMA DE ORDENADOR QUE RESUELVE PROBLEMAS QUE REQUIEREN EXPERIENCIA HUMANA, MEDIANTE EL USO DE REPRESENTACIÓN DEL CONOCIMIENTO Y PROCEDIMIENTOS DE DECISIÓN (KASTNER Y HONG, 1984).

SISTEMA BASADO EN LOS CONOCIMIENTOS QUE IMITA EL PENSAMIENTO DE UN EXPERTO.

BASADOS EN REGLAS: CONTIENEN UNOS CONOCIMIENTOS PREDEFINIDOS PARA TOMAR DECISIONES.

RAZONAR SIGUIENDO LOS PASOS QUE SEGUIRÍA UN ESPECIALISTA → HAY QUE IDENTIFICAR Y RECOGER DEL EXPERTO LOS CONOCIMIENTOS QUE UTILIZA, SOBRE TODO EMPÍRICOS (PRÁCTICA).

FUNDAMENTAL: PROGRAMACIÓN DEL CONOCIMIENTO \rightarrow USO DE REPRESENTACIÓN EXPLÍCITA DEL CONOCIMIENTO Y SU INTERPRETACIÓN Y MANIPULACIÓN LÓGICA POR MÉTODOS DE INFERENCIA.

EJ.: UN SE EN DIAGNÓSTICO MÉDICO REQUIERE COMO DATOS LOS SÍNTOMAS DEL PACIENTE, LOS RESULTADOS DE ANÁLISIS CLÍNICOS Y OTROS HECHOS RELEVANTES, Y, BUSCA EN BASE DE DATOS.

NO PRETENDE REPRODUCIR EL PENSAMIENTO HUMANO, SINO LA PERICIA DE UN EXPERTO.

SE SEGUNDA GENERACIÓN: EL CONOCIMIENTO SE ESTRUCTURA EN DOS NIVELES.

PRIMER NIVEL: DE CONTROL (METACONOCIMIENTO Y SUS REGLAS METARREGLAS), SIRVE PARA DETERMINAR LA FORMA DE UTILIZAR EL SEGUNDO NIVEL.

SEGUNDO NIVEL: CONTIENE EL CONOCIMIENTO DE LOS EXPERTOS.

2.2. CARACTERÍSTICAS DE LOS SISTEMAS EXPERTOS.

DEBE TENER EN LO POSIBLE, LO MÁS IMPORTANTE DE LAS CARACTERÍSTICAS DE UN EXPERTO:

- HABILIDAD PARA ADQUIRIR CONOCIMIENTO.
- FIABILIDAD, PARA PODER CONFIAR EN SUS RESULTADOS O APRECIACIONES.
- SOLIDEZ EN EL DOMINIO DE SU CONOCIMIENTO.
- CAPACIDAD PARA RESOLVER PROBLEMAS.

DADA LA COMPLEJIDAD DE LOS PROBLEMAS PUEDE EXISTIR CIERTA DUDA SOBRE LA VALIDEZ DE RESPUESTA OBTENIDA: INDISPENSABLE QUE SEA CAPAZ DE EXPLICAR SU PROCESO DE RAZONAMIENTO O DAR RAZÓN DEL POR QUÉ SOLICITA TAL O CUAL INFORMACIÓN O DATO.

2.3. COMPONENTES DE UN SISTEMA EXPERTO.

• BASE DE CONOCIMIENTO:

POSEE EL CONOCIMIENTO DEL EXPERTO HUMANO FORMALIZADO Y ESTRUCTURADO

FORMADO POR LA DESCRIPCIÓN DE LOS OBJETOS Y SUS RELACIONES, Y CASOS PARTICULARES,...

ALGUNOS INCLUYEN METACONOCIMIENTO: CRITERIOS CON LOS QUE EL SISTEMA DECIDE LA

ESTRATEGIA DE BÚSQUEDA A UTILIZAR.

EL CONOCIMIENTO SE PUEDE REPRESENTAR MEDIANTE CÁLCULO DE PREDICADOS, LISTAS, <u>OBJETOS</u>, REDES SEMÁNTICAS Y/O <u>REGLAS DE PRODUCCIÓN</u>.

LA ELECCIÓN DE LAS TÉCNICAS DE REPRESENTACIÓN DEPENDERÁ DEL TIPO DE PROBLEMA.

• MOTOR DE INFERENCIA

TAMBIÉN INTÉRPRETE DE REGLAS, SE ENCARGA DE LAS OPERACIONES DE BÚSQUEDA Y SELECCIÓN DE LAS REGLAS A UTILIZAR EN EL PROCESO DE RAZONAMIENTO.

POR EJEMPLO, AL TRATAR DE PROBAR UNA HIPÓTESIS DADA, EL MOTOR DE INFERENCIA IRÁ DISPARANDO REGLAS QUE IRÁN DEDUCIENDO NUEVOS HECHOS HASTA LA APROBACIÓN O RECHAZO DE LA HIPÓTESIS OBJETIVO.

• BASE DE HECHOS O DE DATOS

TAMBIÉN MEMORIA DE TRABAJO, MEMORIA TEMPORAL QUE ALMACENA LOS DATOS DEL USUARIO, DATOS INICIALES DEL PROBLEMA, Y LOS RESULTADOS INTERMEDIOS OBTENIDOS A LO LARGO DEL PROCESO DE RESOLUCIÓN.

A TRAVÉS DE ELLA SE PUEDE SABER NO SÓLO EL ESTADO ACTUAL DEL SISTEMA SINO TAMBIÉN CÓMO SE LLEGÓ A ÉL.

• INTERFAZ DE USUARIO

GOBIERNA EL DIÁLOGO ENTRE EL SISTEMA Y EL USUARIO.

PARA EL DESARROLLO DE ESTAS INTERFACES ALGUNAS HERRAMIENTAS DE DESARROLLO INCORPORAN GENERADORES DE INTERFAZ DE USUARIO O BIEN SE UTILIZAN HERRAMIENTAS DE DESARROLLO DE INTERFACES GRÁFICAS EXISTENTES EN EL MERCADO.

• MÓDULO DE COMUNICACIONES

PARA INTERACTUA CON OTROS SISTEMAS NO SOLAMENTE CON EL EXPERTO (PARA RECOGER INFORMACIÓN O CONSULTAR BASES DE DATOS)

• MÓDULO DE EXPLICACIONES

IMPORTANTE EN LA ETAPA DE DESARROLLO YA QUE APORTA UNA AYUDA CONSIDERABLE AL INGENIERO DEL CONOCIMIENTO PARA REFINAR EL FUNCIONAMIENTO DEL MOTOR DE INFERENCIA, Y AL EXPERTO A LA HORA DE CONSTRUIR Y VERIFICAR LA COHERENCIA DE LA BASE DE CONOCIMIENTO.

PARA EXPLICAR AL USUARIO LAS REGLAS USADAS Y EL CONOCIMIENTO APLICADO EN LA RESOLUCIÓN.

• MÓDULO DE ADQUISICIÓN DE CONOCIMIENTO

PERMITE LA CONSTRUCCIÓN Y ACTUALIZACIÓN DE LA BASE DE CONOCIMIENTOS FORMA SENCILLA.

SHELLS: HERRAMIENTA SOFTWARE PARA EL DESARROLLO DE SE, VIENE IMPLEMENTADO EL MOTOR DE INFERENCIA Y LAS INTERFACES (INTERFAZ DE USUARIO, MÓDULO DE EXPLICACIONES Y MÓDULO DE ADQUISICIÓN DEL CONOCIMIENTO) QUE FORMAN EL ESQUELETO.

2.4. ARQUITECTURA DE UN SISTEMA EXPERTO.

ENTRADA: UNA ENTRADA DE DATOS REALIZADA POR USUARIO PARA EFECTUAR LA CONSULTA; EL APRENDIZAJE DEL SISTEMA Y LAS CONDICIONES ESPECIFICAS DEL PROBLEMA.

ADMINISTRACIÓN DEL SISTEMA: INTERFAZ DEL MANEJO DE LA SINTAXIS DEL LENGUAJE Y DE LA MÁQUINA DE INFERENCIAS, HACE LA BÚSQUEDA EN BASE DE CONOCIMIENTOS Y EN BASE DE DATOS RESULTADOS.

3. TIPOS DE SISTEMAS EXPERTOS.

3.1. TIPOS DE SISTEMAS EXPERTOS

PROBLEMAS CON LOS QUE PUEDEN TRATAR LOS SISTEMAS EXPERTOS:

DETERMINISTAS Y ESTOCÁSTICOS (EN LAS REGLAS).

EJEMPLO ESTOCÁSTICOS: MEDICINA, RELACIONES ENTRE SÍNTOMAS Y ENFERMEDADES SÓLO CON UN GRADO DE CERTEZA (UN CONJUNTO DE SÍNTOMAS NO SIEMPRE IMPLICA CIERTA ENFERMEDAD).

- LOS PROBLEMAS DE TIPO DETERMINISTA PUEDEN SER FORMULADOS USANDO UN CONJUNTO DE REGLAS QUE RELACIONEN VARIOS OBJETOS BIEN DEFINIDOS: SISTEMAS BASADOS EN REGLAS.
- EN SITUACIONES INCIERTAS, ES NECESARIO INTRODUCIR ALGUNOS MEDIOS PARA TRATAR LA INCERTIDUMBRE (REGLAS CON UNA MEDIDA ASOCIADA A LA INCERTIDUMBRE DE LAS REGLAS Y A LA DE SUS PREMISAS; LA LÓGICA DIFUSA; LA TEORÍA DE LA PROBABILIDAD → SISTEMAS EXPERTOS PROBABILÍSTICOS;...)

Introducción a los Sistemas Expertos 14

3.3. DESARROLLO DE UN SISTEMA EXPERTO.

FASES DESARROLLO SISTEMA EXPERTO:

- 1) IDENTIFICACIÓN DE LA APLICACIÓN Y CONCEPCIÓN DE LA SOLUCIÓN.
- 2) DESARROLLO DEL (DE LOS) PROTOTIPO(S).
- 3) EJECUCIÓN Y CONSTRUCCIÓN DEL SISTEMA COMPLETO.
- 4) INTEGRACIÓN DEL NUEVO SISTEMA CON OTROS Y ASIMILACIÓN DEL USO DE NUEVA TECNOLOGÍA.

CLASIFICACIÓN DE HERRAMIENTAS DE DESARROLLO SEGÚN ETAPA DE PROYECTO EN QUE SE USAN:

• ESTUDIO DE VIABILIDAD:

¿PROBLEMA APROPIADO PARA SE? -> HERRAMIENTAS FLEXIBLES Y USO SENCILLO, NO ESPECÍFICAS

- DESARROLLO DEL PROTOTIPO: HERRAMIENTAS CON UNA SERIE DE CARACTERÍSTICAS A NIVEL DE ESTRUCTURAS DE CONTROL → PROBAR Y COMPARAR LOS DIFERENTES ENFOQUES DE LA RESOLUCIÓN DEL PROBLEMA Y FACILIDADES A LOS INGENIEROS DEL CONOCIMIENTO.
- DESARROLLO DEL SISTEMA: ¡EFICIENCIA! ADEMÁS, MÓDULOS EXPLICATIVOS EVOLUCIONADOS.

TIPOS DE REPRESENTACIÓN DEL CONOCIMIENTO (ELEGIR SEGÚN PROBLEMA):

- LA REPRESENTACIÓN PROCEDURAL: EXPRESA EXPLÍCITAMENTE LAS RELACIONES ENTRE LOS FRAGMENTOS DE CONOCIMIENTO, SON COMPLEJAS DE MODIFICAR.
- LA REPRESENTACIÓN DECLARATIVA: CÁLCULO DE PREDICADOS, REGLAS DE PRODUCCIÓN Y REDES SEMÁNTICAS. EL CONOCIMIENTO QUEDA ESTRUCTURADO EN FRAGMENTOS INDEPENDIENTES UNOS DE OTROS, ASÍ SON FÁCILMENTE MODIFICABLES. SE COMBINAN CON UN MECANISMO GENERAL.
- LA REPRESENTACIÓN MIXTA: OBJETOS Y MARCOS. EMPLEA LOS DOS MÉTODOS ANTERIORES.

ALGUNOS EJEMPLOS DE REPRESENTACIÓN:

• REGLAS DE PRODUCCIÓN: REPRESENTACIÓN DE UNA RELACIÓN, UNA INFORMACIÓN SEMÁNTICA O UNA ACCIÓN CONDICIONAL. ES LO MÁS HABITUAL (INTUITIVO, RÁPIDO Y FLEXIBLE).

SI PREMISA ENTONCES CONSECUENCIA

CUANTAS MÁS REGLAS MÁS POTENTE ES (IOJO!: MUCHAS REGLAS RIESGO DE PERDER COHERENCIA)

Tratamiento incertidumbre en reglas: Factores de Certeza, lógica de Dempster Shafer, Lógica Difusa, Redes Bayesianas (más moderno).

• LÓGICA PROPOSICIONAL: SIMILAR A REGLAS DE PRODUCCIÓN, PERO SEPARA LOS ELEMENTOS QUE COMPONEN LA BASE DE CONOCIMIENTO DE LOS QUE CONTROLAN LA OPERACIÓN DEL SISTEMA.

- REDES SEMÁNTICAS: REPRESENTAR EL CONOCIMIENTO EN FORMA DE REDES O GRAFOS; LOS NODOS REPRESENTAN CONCEPTOS U OBJETOS, Y LOS ARCOS DESCRIBEN RELACIONES ENTRE ELLOS.
- MARCOS: ASOCIAR PROPIEDADES A LOS NODOS QUE REPRESENTAN LOS CONCEPTOS U OBJETOS.
 LAS PROPIEDADES SON DESCRITAS EN TÉRMINOS DE ATRIBUTOS Y LOS VALORES ASOCIADOS.
- OBJETOS: A DIFERENCIA DE LOS MARCOS, EN UN ENTORNO DE PROGRAMACIÓN ORIENTADA A OBJETOS, PUEDEN ACTUAR COMO ENTIDADES INDEPENDIENTES. ASÍ, EL CONTROL DEL SISTEMA SE CONSIGUE ENVIANDO MENSAJES DEL SISTEMA A LOS OBJETOS Y ENTRE ELLOS MISMOS.
- REPRESENTACIONES MÚLTIPLES: COMBINAR DOS O MÁS FORMAS DE REPRESENTAR EL CONOCIMIENTO EN EL MISMO SISTEMA.

Una herramienta de desarrollo de SE debe admitir más de una forma de representación.

MOTOR INFERENCIA: MECANISMO DE INFERENCIA O RAZONAMIENTO (REGLAS, LÓGICA FORMAL)

MODOS DE RAZONAMIENTO DE LÓGICA FOMAL:

- ENCADENAMIENTO HACIA ADELANTE: PARTE DE LOS HECHOS PARA LLEGAR A LOS RESULTADOS →
 SELECCIONA LAS REGLAS QUE VERIFIQUEN LAS CONDICIONES DE LA IZQUIERDA (PREMISAS).
- ENCADENAMIENTO HACIA ATRÁS: PARTE DE LOS RESULTADOS Y TRATA DE VOLVER A LOS HECHOS PARA COMPROBAR SI ENCAJAN CON EL PROBLEMA PLANTEADO.
- ENCADENAMIENTO MIXTO: COMBINA ENCADENAMIENTO HACIA ADELANTE Y HACIA ATRÁS.
- ALGORITMOS DE BÚSQUEDA HEURÍSTICA: BASE DE CONOCIMIENTO ESTRUCTURA DE ÁRBOL →
 PROBLEMA DE BÚSQUEDA EN UN ÁRBOL (DIVERSOS MÉTODOS).
- HERENCIA: ES EL MÉTODO UTILIZADO EN ENTORNOS ORIENTADOS A OBJETOS (UN OBJETO HIJO HEREDA PROPIEDADES Y HECHOS DE SUS PADRES)

3.4. LENGUAJES Y GENERADORES DE SISTEMAS EXPERTOS.

LENGUAJES DE PROPÓSITO GENERAL (C, PASCAL, ETC.).

LISP (EL MÁS ANTIGUO): ESTRUCTURAS DE DATOS: LISTAS

IMPLANTACIÓN RÁPIDA DE MODELOS Y FÁCIL MODIFICACIÓN.

DESVENTAJA: LENTITUD.

PROLOG: LENGUAJE DECLARATIVO (NO DESCRIBE SECUENCIALMENTE EL ALGORITMO).

A PARTIR DE DATOS DEDUCE NUEVOS HECHOS Y RESUELVE PROBLEMA (INCLUYE MOTOR INFERENCIA)

PRINCIPAL APLICACIÓN: MANEJO DE BASES DE DATOS RELACIONALES.

LENGUAJES ORIENTADOS A OBJETOS (C++): AHORA MUY HABITUALES POR SU BUEN RENDIMIENTO.

CARACTERÍSTICAS O UTILIDADES DE UNA HERRAMIENTA PARA LA CONSTRUCCIÓN DE SE:

- POSIBILIDADES PARA EL DESARROLLO DE PROTOTIPOS.
- UN MOTOR DE INFERENCIA.
- UN MÉTODO O VARIOS PARA LA REPRESENTACIÓN DEL CONOCIMIENTO.
- UNA O VARIAS TÉCNICAS PARA EL MANEJO DE LA INCERTIDUMBRE.
- UN GENERADOR DE INTERFACES GRÁFICOS (NO SIEMPRE).

3.5. INTEGRACIÓN Y MIGRACIÓN DE LOS SISTEMAS EXPERTOS.

DOS TIPOS BÁSICOS DE ARQUITECTURA DE INTEGRACIÓN:

- 1) EL SE FORMA PARTE DE OTRO SISTEMA PRINCIPAL (COMUNICACIÓN CON EL SE DIRECTA O RED).
- 2) EL SE ES EL SISTEMA PRINCIPAL Y ESTÁ CONECTADO A OTROS SISTEMAS QUE LE AYUDAN (EJEMPLO: SUBSISTEMAS DE COMPLEJOS CÁLCULOS MATEMÁTICOS NECESARIOS EN RAZONAMIENTO) COMUNICACIÓN FLUIDA (CRÍTICO EN SE EN TIEMPO REAL).

ESPECIAL RELEVANCIA CONEXIÓN CON BASES DE DATOS

PORTABILIDAD DE LA HERRAMIENTA (HERRAMIENTAS MULTIPLATAFORMA).

3.6. TENDENCIAS FUTURAS DE LOS SISTEMAS EXPERTOS.

CLASIFICACIÓN DE LAS HERRAMIENTAS DE DESARROLLO DE SE:

- SEGÚN EL ALCANCE DE LA HERRAMIENTA:
- HERRAMIENTAS PROPÓSITO GENERAL. NO ESPECIALMENTE PARA PROBLEMAS ESPECÍFICOS.
- ORIENTADAS A DOMINIOS Y PROBLEMAS ESPECÍFICOS: ABORDAN PROBLEMAS ESPECÍFICOS.
- SEGÚN LENGUAJE O TÉCNICA PARA EL QUE SIRVE LA HERRAMIENTA:
- HERRAMIENTAS CBR (CASE-BASED REASONING): BASADAS EN CASOS, PARA A PARTIR DE ELLOS INDUCIR LAS REGLAS Y CRITERIOS POR SIMILITUD.
- HERRAMIENTAS PARA LISP, PROLOG, C++: SON ENTORNOS DE DESARROLLO; PROPORCIONAN LAS UTILIDADES NECESARIAS PARA PROGRAMAR CÓMODAMENTE EN ESTOS LENGUAJES.
- SHELLS: ENTORNOS DE DESARROLLO COMPLETOS Y PARTICULARES. CLIPS, ART, G2.
 - INCLUYEN MOTOR DE INFERENCIA Y USAN MÉTODOS PROPIOS DE REPRESENTACIÓN DEL CONOCIMIENTO CERCANOS A LISP O PROLOG. ESPECIALMENTE PARA PROTOTIPOS.

CAMPOS ACTUALES DE INVESTIGACIÓN Y DE APLICACIÓN:

- APRENDIZAJE: QUE EL PROPIO ORDENADOR ADQUIERA EL CONOCIMIENTO.
- REDES NEURONALES: NODOS CONECTADOS CON OTROS MEDIANTE ENLACES SIMULANDO CONEXIONES NEURONAS (VISIÓN ARTIFICIAL, RAZONAMIENTO, APRENDIZAJE, LENGUAJE)
- REDES BAYESIANAS: TÉCNICA PARA TRATAR EL RAZONAMIENTO CON INCERTIDUMBRE. UNA RED DONDE LOS NODOS SON HECHOS CIERTOS O NO Y LOS ENLACES ENTRE LOS NODOS SON LAS PROBABILIDADES CONDICIONADAS DE UNOS HECHOS CON OTROS. PROPAGANDO LAS PROBABILIDADES, SE PUEDEN OBTENER LOS RESULTADOS MÁS PROBABLES A PARTIR DE LOS HECHOS
- ALGORITMOS GENÉTICOS: MÉTODOS DE APRENDIZAJE INSPIRADOS EN LA EVOLUCIÓN NATURAL.

 USAN NOCIONES DE INDIVIDUOS, APAREAMIENTO, RECOMBINACIÓN DE CROMOSOMAS, MUTACIÓN

 GENÉTICA, ADAPTACIÓN Y SELECCIÓN NATURAL. BASE DE INVESTIGACIONES EN VIDA ARTIFICIAL.

OTROS: DATA MINING PARA OBTENER CONOCIMIENTO EN BASES DE DATOS

AGENTES INTELIGENTES PARA RECUPERAR INFORMACIÓN EN INTERNET.

4. APLICACIONES DE LOS SISTEMAS EXPERTOS.

4.1. FACTORES QUE JUSTIFICAN EL DESARROLLO DE UN SISTEMA EXPERTO:

- COSTE PARA FORMAR NUEVOS EXPERTOS MUY ALTO.
- RIESGO DE PERDER LOS CONOCIMIENTOS Y LA EXPERIENCIA EN POSESIÓN DE LOS EXPERTOS.
- LOS EXPERTOS SON ESCASOS.
- DISPONER DE EXPERTOS SIN RESTRICCIONES DE TIEMPO Y LUGAR.
- LOS EXPERTOS TIENEN QUE TRABAJAR EN AMBIENTES HOSTILES.

4.2. TIPO DE PROBLEMAS QUE HACEN APROPIADO EL DESARROLLO DE UN SISTEMA EXPERTO.

- SE REQUIERE PRINCIPALMENTE TRATAMIENTO Y RAZONAMIENTO SIMBÓLICO.
- LAS TAREAS ADMITEN EL USO DE MÉTODOS HEURÍSTICOS.
- LAS TAREAS NO SON DEMASIADO FÁCILES.
- LAS TAREAS TIENEN UN VALOR EMINENTEMENTE PRÁCTICO.
- El número de conceptos a ser manejados es limitado y no requiere saber de muchas áreas diferentes.

4.3. CAMPO DE APLICACIONES DE LOS SE.

SEGÚN EL TIPO DE PROBLEMA A RESOLVER:

- SISTEMAS DE AYUDA A LA TOMA DE DECISIONES: PARA CIERTA PROBLEMÁTICA SUGIEREN LA SOLUCIÓN QUE CONSIDERAN MÁS IDÓNEA A PARTIR DEL CONOCIMIENTO INCLUIDO EN EL SISTEMA
- CONFIGURACIÓN: SELECCIONAR Y PLANIFICAR LOS COMPONENTES NECESARIOS EN UN PROCESO.
- DIAGNÓSTICO: A PARTIR DE UNOS "SÍNTOMAS" DETERMINAN LAS CAUSAS QUE LO PRODUCEN.
- PLANIFICACIÓN: ESTABLECEN ETAPAS Y RECURSOS NECESARIOS PARA ALCANZAR UN OBJETIVO.
- Interfaces inteligentes: hacen de puente entre las personas y equipos complejos y de difícil utilización (interfaces inteligentes de acceso a base de datos)
- **DISEÑO**: EFECTÚAN PLANIFICACIÓN O TRAZADO DE UN OBJETO O SISTEMA SEGÚN REQUISITOS.

 SUELEN DAR DIFERENTES SOLUCIONES DE FORMA QUE EL USUARIO PUEDA ELEGIR.
- INTERPRETACIÓN Y ANÁLISIS: PARA TRATAR GRANDES VOLÚMENES DE INFORMACIÓN.
- MONITORIZACIÓN: MONITORIZAR PROCESOS DANDO UNA SALIDA DE CONTROL (TIEMPO REAL).

5. SIMULACIÓN Y SISTEMAS EXPERTOS

MÉTODO DE LAS TRES FASES: EN UN SISTEMA SE LLEVAN A CABO ACTIVIDADES DE DOS TIPOS:

- ACTIVIDADES B (INCONDICIONALES): SE PUEDE DECIR EN QUÉ INSTANTE HAN DE COMENZAR (PUEDEN PROGRAMARSE). PUEDEN SER TRATADAS POR EL EJECUTIVO CADA VEZ QUE LLEGA SU INSTANTE.
- ACTIVIDADES C (CONDICIONADAS): SU REALIZACIÓN DEPENDE DE CONDICIONES EN CADA INSTANTE (COOPERATIVAS) SU EJECUCIÓN PUEDE DEPENDER DE LA COOPERACIÓN DE DIFERENTES ENTIDADES O DE LA SATISFACCIÓN DE CONDICIONES ESPECÍFICAS.

COLA SIMPLE:

- LLEGADA DE UN CLIENTE → ACTIVIDAD B (ENCADENANDO LLEGADAS PUEDE HACERSE QUE LA LLEGADA N-ÉSIMA SE PRODUZCA AL FINAL DEL INTERVALO ENTRE EL CLIENTE N-1 Y EL N)
- FINAL DE SERVICIO → ACTIVIDAD B (CUANDO SE INICIA UN SERVICIO PUEDE DETERMINARSE A
 PARTIR DE LA DISTRIBUCIÓN DE PROBABILIDAD SU FINALIZACIÓN Y LAS ACTIVIDADES
 CONSECUENTES (ABANDONO SISTEMA Y LIBERACIÓN DE SERVIDOR) OCURRIRÁN ENTONCES.

• INICIO DEL SERVICIO \rightarrow ACTIVIDAD C (SÓLO SI SE SATISFACEN DOS CONDICIONES O REGLAS: DEBE HABER AL MENOS UN CLIENTE ESPERANDO Y EL SERVIDOR DEBE ESTAR LIBRE).

EJECUTIVO DEL PLANTEAMIENTO DE LAS TRES FASES:

FASE A: EXPLORACIÓN DEL TIEMPO

DETERMINA CUÁNDO DEBE OCURRIR EL SIGUIENTE SUCESO B, CUÁL DEBE EJECUTARSE, AVANZA EL RELOJ A ESE INSTANTE, SE MANTIENE ALLÍ HASTA COMPLETAR B Y C.

FASE B: LLAMADA A LAS ACTIVIDADES B.

VERIFICA QUÉ ACTIVIDAD B DEBE EJECUTARSE Y LA REALIZA (VARIAS: TODAS Y PRIORIDADES).

FASE C: EXPLORACIÓN DE LAS ACTIVIDADES C.

Intenta activar cada actividad C y realiza las que se satisfacen condiciones.

COMO SISTEMA EXPERTO:

- LA BASE DE CONOCIMIENTOS: ACTIVIDADES C (REGLAS) Y ACTIVIDADES B ("DEMONS")
- LA BASE DE DATOS O BASE DE HECHOS: INFORMACIÓN SOBRE EL ESTADO ACTUAL DEL SISTEMA.
 HECHOS: ESTADOS DE LAS ENTIDADES (USADOS POR LAS REGLAS PARA EXTRAER INFERENCIAS).
 METAS: ELEMENTOS DE MECANISMO TEMPORAL Y REPRESENTAN PROGRAMACIÓN ACTIVIDADES B.
 SE: METAS DIRECCIÓN PARA PROCESAR EL SISTEMA DANDO EL ESTADO QUE DEBE SER ALCANZADO.
 PROPIEDADES METAS: TIEMPO (INSTANTE ACTIVIDAD B) Y PRIORIDADES.
- EL MOTOR DE INFERENCIA: EJECUTIVO→ CONTROLA TIEMPO, LAS CONDICIONES DE INTERRUPCIÓN PROCESO, LLAMADAS A LOS "DEMONS" B Y VERIFICACIÓN DE LAS REGLAS C.
 ENCONTRAR REGLAS SATISFECHAS POR LOS DATOS DE LA BASE DE HECHOS EN ESE MOMENTO Y APLICAR UNA ESTRATEGIA DE SELECCIÓN → APLICACIÓN SECUENCIAL DE METARREGLAS:
- 1. METARREGLA FASE A: AVANZA EL TIEMPO HASTA EL INSTANTE EN QUE ALGO DEBE OCURRIR.
- 2. METARREGLA DE INTERRUPCIÓN (COMÚN A TODOS LOS SE): VERIFICA CONDICIONES DE PARADA.
- 3. METARREGLA FASE B: EJECUTA TODOS LOS SUCESOS B IDENTIFICADOS POR METARREGLA FASE A
- 4. METARREGLA FASE C: VERIFICA TODAS LAS REGLAS C Y EJECUTA LAS QUE SATISFACEN LOS DATOS

