MATH 420 - FALL 2019 ASSIGNMENT 1

Note: Most of these problems are taken from *Partial Differential Equations*, by L.C. Evans. In the following you may assume that U is a bounded open subset of \mathbb{R}^n unless otherwise stated.

- (1) We say $v \in C^2(\overline{U})$ is subharmonic if $\Delta v \ge 0$ in U.
 - (a) Show that if v is subharmonic then the Mean Value Inequality

$$(*) \hspace{1cm} v(x) \leqslant \int_{B(x,r)} v dy, \quad \text{for all } B(x,r) \subset U$$

holds.

- (b) Show that $\max_{\overline{U}} v = \max_{\partial U} v$.
- (c) Let $\phi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. If u is harmonic show that $\phi(u)$ is subharmonic.
- (d) If u is harmonic show that $|Du|^2$ is subharmonic.
- (e) Show that if $v, w \in C^2(\overline{U})$ are subharmonic then $\max(v, w)$ satisfies the Mean Value Inequality (*).
- (2) Let $u \in C^2(\overline{U})$ solve

$$-\Delta u = f$$
 in U , $u = g$ on ∂U .

Show that

$$\max_{\overline{U}}|u| \leqslant C(\max_{\partial U}|g| + \max_{\overline{U}}|f|),$$

for C depending only on U.

(Hint:
$$-\Delta(u + \frac{|x|^2}{2n}\lambda) \leq 0$$
 for $\lambda := \max_{\overline{U}} |f|$.)

(3) (Reflection Principle) Let U^+ denote the open half-ball $\{x \in \mathbb{R}^n \mid |x| < 1, x_n > 0\}$. Assume $u \in C^2(U^+) \cap C(\overline{U^+})$ is harmonic in U^+ with u = 0 on $\partial U^+ \cap \{x_n = 0\}$. Define

$$v(x) = \begin{cases} u(x) & x_n \geqslant 0 \\ -u(x_1, \dots, x_{n-1}, -x_n) & x_n < 0 \end{cases}$$

for x in the open ball $U = \{|x| < 1\}$. Use the Poisson formula for the ball to show that v is harmonic within U.

(4) (a) Consider $u,v\in C^2(U)\cap C^0(\overline{U})$ with u harmonic and v subharmonic. Show that if $v\leqslant u$ on ∂U then $v\leqslant u$ on U.

(b) Let U be the annulus $\{x \in \mathbb{R}^2 \mid R_1 < |x| < R_2\} \subset \mathbb{R}^2$ for constants $R_2 > R_1 > 0$. Let $u \in C^2(U) \cap C^0(\overline{U})$ be subharmonic on U. Show that $\max_{|x|=r} u(x)$ is convex as a function of $\log r$, when $R_1 < r < R_2$.

Hint: recall that $\log |x|$ is a harmonic function on $\mathbb{R}^2 \setminus \{0\}$.

- (c) Let u be C^2 and subharmonic on $\{x \in \mathbb{R}^2 \mid |x| < R\}$ for some R > 0. Show that $\max_{|x|=r} u(x)$ is nondecreasing in r for $0 \le r < R$.
- (d) Show that if $u \in C^2(\mathbb{R}^2)$ is subharmonic and

$$\frac{u(x)}{\log|x|} \to 0$$
, as $|x| \to \infty$,

then u is constant. (In particular, a bounded subharmonic function on \mathbb{R}^2 is constant.)

(5) (Kelvin transform) The Kelvin transform $\mathcal{K}u$ of a function $u:\mathbb{R}^n\to\mathbb{R}$ is defined by

$$\mathcal{K}(u) = u(\overline{x})|\overline{x}|^{n-2},$$

where $\overline{x} = x/|x|^2$. Show that if u is harmonic then so is $\mathcal{K}u$.