ГЕНЕРАЦИЯ ТЕСТОВ ДЛЯ СИНТАКСИЧЕСКОГО АНАЛИЗА МЕТОДАМИ СУПЕРКОМПИЛЯЦИИ

Студент: Головань С. М.

Руководитель ВКР: Коновалов А. В.

МГТУ им. Н.Э. Баумана

Пусть имеется некоторая LL(1)-грамматика, распознаваемая синтаксическим анализатором - автоматом с магазинной памятью.

Необходимо построить конечный набор тестов, покрывающих всю логику работы синтаксического анализатора для заданной LL(1)-грамматики.

Методы тестирования парсеров

Позитивные тесты – предложения языка

- Стохастические алгоритмы
- Критерий Пардома
- Критерий покрытия всех пар

Негативные тесты – содержат одну синтаксическую ошибку

- Метод мутации позитивных тестов
- Метод мутации грамматики

Распознавание LL(1)-грамматик

$$E ::= TE';$$

$$E' ::= '+' TE' \mid \varepsilon;$$

$$T ::= FT';$$

$$T' ::= '*' FT' \mid \varepsilon;$$

$$F ::= n \mid '('E')';$$

	+	*	n	()	\$
E	+E	* <i>E</i>	<u>T E'</u>	<u>T E'</u>	ε	ε
E'	<u>+ T E'</u>	* E'	n E'	(E'	<u>E</u>	<u>E</u>
T	8	* T	<u>F T'</u>	<u>F T'</u>	ε	${\cal E}$
T'	<u>£</u>	* F T '	n T'	(T'	<u>E</u>	<u>£</u>
F	3	ε	<u>n</u>	(E)	ε	${\cal E}$

Граф состояний анализатора

В общем случае граф состояний является бесконечным.

Суперкомпиляция – процесс анализа и преобразования программ, основанный на схеме метасистемного перехода.

Этапы:

- 1. Построение дерева конфигураций
- 2. Свертка дерева в граф конфигураций (вложение, обобщение)
- 3. Построение остаточной программы

Применительно к синтаксическому анализу, **граф конфигураций** есть **свернутый граф состояний** автомата с магазинной памятью при использовании **расширенных правил восстановления**.

Вложение

Обобщение

С учетом сказанного ранее, сформулируем критерий полноты тестирования:

Тестирование предсказывающего синтаксического анализатора является полным тогда и только тогда, когда в процессе вывода цепочек из тестового набора окажутся посещены все ребра графа конфигураций.

В процессе выполнения данной работы был реализован генератор позитивных и негативных тестов, принимающий на вход описание LL(1)-грамматики.

При реализации использовался язык JavaScript спецификации ECMAScript 2016 на базе платформы Node.js.

Были разработаны следующие компоненты:

- **Анализатор грамматики** (на основе работы Михаила Макарова, ИУ9)
- Построитель графа конфигураций
- Генератор позитивных тестов
- Генератор негативных тестов

Тестирование

Тестирование проводилось для различных входных грамматик: Арифметические выражения и операторы, JSON, определения функций Pascal...

Также был успешно проведен тест самоприменимости.

Пример. Грамматика арифметических выражений:

Описание позитивного теста	Состояние ребер в графе конфигураций		
1. $x + x * x$ Путь в графе: $[0] \to' x' \to [1] \to' +' \to [4] \to' x' \to$ $[1] \to' *' \to [5] \to' x' \to [1] \to \emptyset$	$\begin{array}{c} \text{down} & \begin{array}{c} \text{3} \cdot [\texttt{x}) > \texttt{,T,E'} \end{array} \\ \text{0} \cdot [\texttt{E}] & \begin{array}{c} \text{x} \\ \text{4} \cdot [\texttt{T,E'}] \end{array} \end{array}$		
2. $(x + (x * (x)))$ Путь в графе: $[0] \rightarrow '(' \rightarrow [0,3] \rightarrow 'x' \rightarrow [1,3] \rightarrow '+' \rightarrow [4,3] \rightarrow ' (' \rightarrow [0,3,3] \rightarrow \cdots \rightarrow [3,3,3] \rightarrow ')'$ $\rightarrow [1,3,3] \rightarrow [3,3] \rightarrow ')' \rightarrow [1,3] \rightarrow [3] \rightarrow ')'$ $\rightarrow [1] \rightarrow \emptyset$	$\frac{x}{6}$ \frac{x}		

Результатом выполнения данной работы является генератор тестов для синтаксических анализаторов LL(1)-грамматик.

Были изучены и применены основные методы суперкомпиляции, техники построения и тестирования синтаксических анализаторов.

В дальнейшем возможно применить использованные приемы для более широких классов грамматик, накладывая дополнительные требования к анализатору грамматики, а также корректируя построение и обход графа конфигураций.

Выражаю благодарность руководителю ВКР **Александру Владимировичу Коновалову**, а также **Антонине Николаевне Непейвода** за помощь и наставления при написании данной работы.

Благодарю за внимание!