Supplementary Figures

Figures S1-2: L1 discordant phylogenies	2
Figures S3-54: Kimura divergence plots for BovB and L1	4
Marsupialia	5
Afrotheria	7
Chiroptera	10
Perissodactyla	16
Bovidae	18
Squamata	22
Amphibia	26
Neopterygii	27
Other	29
Figure S55: Chimeric L1-BovB	31

Figures S1-2: L1 discordant phylogenies

Potential L1 HT clusters were checked using both neighbour-joining and maximum likelihood methods to confirm that the tree topology differed from expected species relationships. The best supported cross-Phylum L1 phylogenies are shown in the main text; the remaining cross-Phylum clusters are shown here. Clusters are described in detail in Table S6.

Figure S1: L1 cluster c_25

L1 nucleotide ORFs

Figure S2: L1 cluster o_-666

Figures S3-54: Kimura divergence plots for BovB and L1

RepeatMasker divergence plots represent Kimura substitution levels of TEs against the RepBase super consensus library. For example, Figure 5b in the main text shows the RepeatMasker divergence plot for the cow (*Bos taurus*), illustrating recent bursts of BovB and L1 activity in the genome with many copies sharing high identity to young, currently active elements.

The L1 superfamily includes both mammalian L1 elements (dark blue) and more diverse, froglike Tx elements (light blue). Tx are typically found in fish, frogs and primitive eukaryotes (e.g. sea urchin *Strongylocentrotus purpuratus*). BovB elements are coloured in orange.

Typically, species within a clade show consistent divergence patterns of both TEs (particularly if there has been little recent activity - see Chiroptera). Recently TE-active species, on the other hand, are likely to show bursts of seemingly random activity. Consider the plots for the two lizard species, *Pogona vitticeps* and *Anolis carolinensis. Pogona* is implicated in many of the BovB HT events listed in Table S5, and this is supported by the huge burst of recent BovB activity shown in Figure S38. This is also seen in all four snake species. In contrast, the *Anolis* plot (Figure S39) indicates that L1s have become the dominant TE lineage in the genome.

By estimating TE divergence from super consensus sequences, we can visualise the contrasting (and sometimes competing) dynamics of BovB and L1 elements over time. This is particularly important for species where BovB or L1 (or both) have taken off and accumulated quickly within the genome.

Marsupialia

Monodelphis domestica 3.0e+07■ L1 □ Tx1 BovB 2.0e+07Coverage 1.0e+0.70.0e+00 0 10 20 30 40 50 60 Kimura substitution level (CpG adjusted)

Figure S3

Monodelphis domestica (close-up)

Figure S4

Macropus eugenii

Figure S5

Sarcophilus harrisii

Figure S6

Afrotheria

Elephantulus edwardii

Figure S7

Echinops telfairi

Figure~S8

Chrysochloris asiatica

Figure S9

Orycteropus afer

Figure S10

Trichechus manatus

Figure S11

Procavia capensis

Figure S12

Loxodonta africana

Figure S13

${\bf Chiroptera}$

Pteropus alecto

Figure S14

Pteropus vampyrus

Figure S15

Eidolon.helvum

Figure S16

Figure S17

Figure S18

Pteronotus parnellii

Figure S19

Eptesicus fuscus

Figure S20

Myotis brandtii

Figure S21

Myotis davidii

Figure S22

Myotis lucifugus

Figure S23

Myotis lucifugus (close-up)

Figure S24

${\bf Perissodactyla}$

Ceratotherium simum

Figure S25

Equus przewalskii

Figure S26

Equus caballus Mongolian

Figure S27

Equus caballus Thoroughbred

Figure S28

Equus caballus Thoroughbred (close-up)

Figure S29

Bovidae

Pantholops hodgsonii

Figure S30

Capra hircus

Figure S31

Ovis aries Texel

Figure S32

Ovis aries musimon

Figure S33

Bubalus bubalis

Figure S34

Bison bison

Figure S35

Figure S36

Bos mutus

Figure S37

Squamata

Figure S38

Anolis carolinensis

Figure S39

Vipera berus

Figure S40

Vipera berus (close-up)

Figure S41

Crotalus mitchellii

Figure S42

Ophiophagus hannah

Figure S43

Figure S44

Amphibia

 $Figure \ S45$

Xenopus tropicalis (close-up)

Figure S46

Neopterygii

Cynoglossus semilaevis

Figure S47

Lepisosteus oculatus

Figure S48

Danio rerio

Figure S49

Danio rerio (close-up)

Figure S50

Other

Centruroides exilicauda

Figure S51

Helobdella robusta

Figure S52

Strongylocentrotus purpuratus

Figure S53

Figure S54

Figure S55: Chimeric L1-BovB

Figure S55: Chimeric L1-BovB in cattle genomes. Several cow ESTs overlap the L1 reverse transcriptase domain, but these may be artifacts/mismapped. No strong evidence to suggest transcription.