AN 4 - Equations différentielles linéaires

Dans ce chapitre n désigne un entier naturel non nul, I un intervalle de \mathbb{R} , et \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Systèmes différentiels

1.1 Cas général

Notation:

Si
$$\forall i \in [1, n], y_i \in \mathcal{C}^k(I, \mathbb{K})$$
, (avec $k \in \mathbb{N}$) on note $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathcal{C}^k(I, M_{n,1}(\mathbb{K}))$.

Proposition 1

L'ensemble $\mathcal{C}^1(I, M_{n,1}(\mathbb{K}))$ muni des lois usuelles est un \mathbb{K} -espace vectoriel.

Définition 1

Soient $\forall (i,j) \in [1,n]^2, a_{i,j} \in \mathcal{C}(I,\mathbb{K})$ et $b_i \in \mathcal{C}(I,\mathbb{K})$ des applications continues sur I.

On note
$$A(t) = (a_{i,j}(t)) \underset{1 \le i \le n}{\underset{1 \le i \le n}{\text{otherwise}}} \in M_n(\mathbb{R}) \text{ et } B(t) = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in M_{n,1}(\mathbb{R}).$$

Si
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathcal{C}^1(I, M_{n,1}(\mathbb{K}))$$
 on note $Y' = \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}$.

On appelle système différentiel linéaire du premier ordre toute équation différentielle de la forme :

$$(L): Y' = A(t)Y + B(t)$$

Le système différentiel :

$$(H): Y' = A(t)Y$$

est appelée système différentiel linéaire homogène associé.

La fonction
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 est solution de (L) si : $\forall i \in [1, n], \forall t \in I, y_i'(t) = \sum_{k=1}^n a_{i,k}(t)y_k(t) + b_i(t)$

Théorème 1 théorème de Cauchy

Etant donnés un système linéaire du premier ordre Y' = A(t)Y + B(t), et $(t_0, Y_0) \in I \times M_{n,1}(\mathbb{K})$, le problème de Cauchy:

$$\begin{cases} Y' = A(t)Y + B(t) \\ Y(t_0) = Y_0 \end{cases}$$

admet une unique solution sur I.

Remarque 1

• La condition $Y(t_0) = Y_0$ s'appelle la condition initiale du problème de Cauchy.

Proposition 2

L'ensemble S_H des solutions du système différentiel linéaire homogène du premier ordre (H): Y' = A(t)Y est un sous-espace vectoriel de $\mathcal{C}^1(I, M_{n,1}(\mathbb{K}))$ de dimension n.

Proposition 3

Si Y_1 est une solution particulière du système différentiel linéaire du premier ordre (L): Y' = A(t)Y + B(t), alors toute solution de (L) s'écrit comme la somme de Y_1 et d'une solution quelconque du système homogène associé (H): Y' = A(t)Y.

1.2 Equations différentielles linéaires scalaires d'ordre n

Définition 2

On appelle équation différentielle linéaire scalaire d'ordre n toute équation différentielle de la forme :

$$(E): y^{(n)} + a_{n-1}(t)y^{(n-1)} + \dots + a_1(t)y' + a_0(t)y = b(t)$$

où $\forall i \in [1, n], a_i \in \mathcal{C}(I, \mathbb{K}), b \in \mathcal{C}(I, \mathbb{K})$. L'équation

$$(H): y^{(n)} + a_{n-1}(t)y^{(n-1)} + \dots + a_1(t)y' + a_0(t)y = 0$$

est appelée équation différentielle homogène associée.

Proposition 4

Avec les notations de la définition : y est solution de (E) sur I si, et seulement si

$$\begin{pmatrix} y' \\ y'' \\ \vdots \\ y^{(n-1)} \\ y^{(n)} \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -a_0(t) & -a_1(t) & \cdots & -a_{n-2}(t) & -a_{n-1}(t) \end{pmatrix}}_{=M} \begin{pmatrix} y \\ y' \\ \vdots \\ y^{(n-2)} \\ y^{(n-1)} \end{pmatrix} + \underbrace{\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ b(t) \end{pmatrix}}_{=B}$$

Ainsi, en notant $Y = \begin{pmatrix} y \\ y' \\ \vdots \\ y^{n-1} \end{pmatrix}$, y est solution de (E) si, et seulement si Y est solution de Y' = MY + B.

Théorème-Définition 1

Le polynôme caractéristique de M est : $P = X^n + \sum_{k=0}^{n-1} a_k X^k$.

L'équation P(x) = 0 est appelée équation caractéristique de l'équation différentielle (E).

1.3 Systèmes différentiels à coefficients constants

Dans ce paragraphe, on considère des systèmes différentiels (L): Y' = AY + B(t) ou (H): Y' = AY avec $A \in M_n(\mathbb{K})$ (à coefficients constants) et $B \in \mathcal{C}^1(I, M_{1,n}(\mathbb{K}))$.

On suppose que A est diagonalisable; alors, il existe une matrice inversible P telle que :

$$P^{-1}AP = D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$$

On effectue le changement de fonction inconnue : $Z = P^{-1}Y$

Le système différentiel devient : $(L_1): Z' = DZ + P^{-1}B(t)$

Chaque ligne du système (L_1) est une équation différentielle linéaire du premier ordre, dont les solutions sont de la forme :

$$z_i = C_i e^{\lambda_i t} + \gamma_i(t)$$

La solution générale de (L) s'obtient en calculant Y = PZ.

Remarque 2

• Si la matrice A est à coefficients réels, diagonalisable dans \mathbb{C} avec des valeurs propres non réelles, on résout le système homogène dans \mathbb{C} .

Les parties réelles et imaginaires des solutions obtenues sont elles-mêmes solutions du système homogène.

Pour obtenir une famille génératrice réelle du sev des solutions du système homogène, il suffit de choisir une famille libre de n solutions parmi elles.

2 Equations différentielles linéaires scalaires d'ordre 2

2.1 Généralités

Théorème 2 théorème de Cauchy

Soient a,b et c trois fonctions continues de I dans $\mathbb{K},$ $(t_0,y_0,y_0')\in I\times\mathbb{K}^2.$ Alors, le problème de Cauchy :

$$\begin{cases} y'' + a(t)y' + b(t)y = c(t) \\ y(t_0) = y_0 \\ y'(t_0) = y'_0 \end{cases}$$

admet une unique solution sur I.

Proposition 5

Soient a,b et c trois fonctions continues de I dans $\mathbb{K}.$ On considère l'équation différentielle linéaire homogène d'ordre 2

$$(H): y'' + a(t)y'(t) + b(t)y(t) = 0$$

L'ensemble S_H des solutions de (H) est un sous-espace vectoriel de $\mathcal{C}^2(I,\mathbb{K})$ de dimension 2.

Proposition 6

Soient a, b et c trois fonctions continues de I dans \mathbb{K} . On considère l'équation différentielle linéaire d'ordre 2

$$(L): y'' + a(t)y' + b(t)y = c(t)$$

Si y_1 est une une solution particulière de (L), alors toute solution y de (L) est la somme de y_1 et d'une solution quelconque de l'équation homogène associée.

Proposition 7 Principe de superposition

Soient a, b, c_1 et c_2 quatre fonctions continues de I dans \mathbb{K} .

- Si y_1 est solution sur I de : $y'' + a(t)y' + b(t)y = c_1(t)$;
- si y_2 est solution sur I de : $y'' + a(t)y' + b(t)y = c_2(t)$;

alors $y_1 + y_2$ est solution sur I de : $y'' + a(t)y' + b(t)y = c_1(t) + c_2(t)$.

2.2 Recherche de solutions particulières

Soient α, β, γ et δ trois fonctions continues de I dans \mathbb{K} , α ne s'annulant pas sur I. On note

$$(L): \alpha(t)y'' + \beta(t)y' + \gamma(t)y = \delta(t) \qquad \text{et} \qquad (H): \alpha(t)y'' + \beta(t)y' + \gamma(t)y = 0$$

une équation différentielle linéaire du second ordre et son équation homogène associée.

L'ensemble des solutions de l'équation homogène étant déterminé $(S_H = \text{Vect}\{h_1, h_2\})$ où h_1 et h_2 sont deux solutions indépendantes de (H)), il reste à trouver une solution particulière de (L) pour avoir l'ensemble des solutions de (L). Pour cela, il existe différentes stratégies :

2.2.1 En se ramenant à une équation du premier ordre (méthode de Lagrange)

S'il existe une fonction $h \in S_H$ solution de l'équation homogène **ne s'annulant pas sur** I, alors il existe une solution y_1 de (L) de la forme $y_1 = \lambda h$, avec $\lambda \in \mathcal{C}^2(I, \mathbb{K})$, qui vérifie :

$$\lambda'' + \lambda' \left(2 \frac{h'(t)}{h(t)} + \frac{\beta(t)}{\alpha(t)} \right) = \frac{\delta(t)}{\alpha(t)h(t)}$$

Ainsi, λ' vérifie une équation différentielle linéaire du premier ordre que l'on sait résoudre. En intégrant la fonction obtenue, on obtient λ et par suite y_1 .

2.2.2 En recherchant une solution polynomiale

Dans le cas où α, β, γ , et δ sont des fonctions polynomiales, on peut procéder par analyse/synthèse selon la méthode suivante :

- \hookrightarrow On suppose qu'il existe une fonction polynomiale non nulle $y_1: t \mapsto \sum_{k=0}^d a_k t^k$ solution de (L) (avec $\forall k \in [\![0,d]\!], a_k \in \mathbb{K}$ et $a_d \neq 0$).
- $\hookrightarrow y_1$ étant polynomiale, elle est de classe \mathbb{C}^2 ; on exprime ses dérivées : $y_1'(t) = \sum_{k=1}^d k a_k t^{k-1}$ et

$$y_1''(t) = \sum_{k=2}^{d} k(k-1)a_k t^{k-2}.$$

 \hookrightarrow On reporte ces expressions dans l'équation différentielle (L), et on obtient une équation polynomiale de la forme P(t) = 0 où $P \in \mathbb{K}[X]$. On détermine les coefficients a_k par identification.

2.2.3 Par la variation des constantes

Deux solutions indépendantes h_1 et h_2 de (H) étant connues, les solutions de (H) s'écrivent :

$$y_0: t \mapsto C_1 h_1(t) + C_2 h_2(t)$$

On considère alors C_1 et C_2 comme des fonctions de la variable t.

On impose la condition
$$C'_1h_1 + C'_2h_2 = 0$$

En reportant dans (L), on obtient le système :

$$\begin{cases} C_1'h_1 + C_2'h_2 = 0\\ C_1'h_1' + C_2'h_2' = \frac{\delta(t)}{\alpha(t)} \end{cases}$$

La résolution de ce système permet d'obtenir une solution (unique) (C'_1, C'_2) . En intégrant, on obtient C_1 et C_2 , et par suite une solution particulière de (L).

2.2.4 En utilisant les séries entières

Dans le cas où α, β, γ , et δ sont des fonctions développables en série entière sur un intervalle I de la forme $]-r,r[\ (r>0),$ on peut procéder par analyse/synthèse selon la méthode suivante :

- \hookrightarrow On suppose qu'il existe une série entière $\sum a_n t^n$ de rayon de convergence R non nul, telle que sa somme y_1 soit solution de (L) sur I.
- $\hookrightarrow y_1$ étant développable en série entière, elle est de classe \mathcal{C}^2 sur]-R,R[; on exprime ses dérivées y_1' et y_1'' sous forme de séries entières.
- \hookrightarrow On reporte ces expressions dans l'équation différentielle (L), et on obtient une unique somme de série entière, nulle.
- \hookrightarrow On invoque l'unicité du DSE de 0, et on identifie chaque coefficient à 0 pour obtenir des relations pour les coefficients a_n .
- \hookrightarrow On synthétise les résultats en vérifiant que la série entière ainsi déterminée a un rayon de convergence non nul, et que sa somme est solution de (L)