Lecture – 11 CS 372 (Computer Graphics)

Course Instructure : Dr. S. K. Maji
Asst. Prof.(CSE)

PROJECTION

Projection of a 3D object can be defined by straight projection rays (projectors) emanating from the object, passing / intersection through the projection blane and meeting / converging to the center of projection (COP).

Broadly classified into 247 pes

1. Pavallel projection — Ja. Orthographic
b. Oblique

2. Perspective projection.

COP is a finite point in 3D space.

PARALLEL PROJECTION Distance between COP and projection plane (PP) is infinite. (0-ordinate position of COP at the object are transflored to the PP along parallel lines. So, u convey true size of the object Obliane projections: Projectors are at an angle to the PP.

Orthographie projections: Projectors ove perpendicular to PP.

SOLUTION

betithe STEP1: Translate so that (20, 40, 30) becomes the new origin=T1 (20, yor30).

STEP2: Rotate such that the PP gets aligned to the XY Rotate s.t. l, m, n coincèdes with the X7 plane. = T2 Rotate S.t. it coincides with I-axis. = T3 STEP3: Project (214,3) on to the XY plane 1.2, but 3=0 T4 = 0100 00000

STEP4: Reverse STEP2 & STEPJ.

PARAMETRIC EQUATION OF A LINE

given 2 points (24/71/31)} and (22/2, 32) and we want to locate any point P(24,3) on this line, we can write its powametric P1(21,7,131) eauation as. $P = (z_{11}y_{11}y_{1}) + (P_2 - P_1)t = P_1 + (P_2 - P_1)t.$ where 't' is a scalar anantity.

Note: Since P1P2 and P1P are parallel, P1P is simply a scalar multiple of P1P2.

Direction cosines are the cosines of the angle between the vector and each of the axes.

GENERAL PARALLEL PROJECTION P(x,y,3) we want to soo ject 7 (273) it on the XY plane. 1 2, m, n My projecting direction in given by (e, mm). So. if 9 Project in the direction of × / 2,3,3' (limin) I will get some point in-the X & plane, say (2/19/3/). What will be the co-ordinates of 2', 1/3'? We are talking about general parallel projection, not necessarily arthographic.

SOLUTION

We know the initial position of the line as well as the direction cosines. So, we can write the canation of the line I are know the eauation of the plane. Intersection of the two will give us the co-ordinates.

Any point 'P' on this line will be given by x+tl, y+tra.

For intersection with XY blane 3+tn=0 => t=-3/n 2'=2-l3/n, y'=y-m3/n, 3'=0.

[21]	[10-4n0][2]	
x' -	0 1 -m/n 0 7	
31	00003	
W	0 0 0 1 1	

PERSPECTIVE PROJECTION We try to draw an object the way our eye sees it. For ex, the orthographic view of a cube will be a nectangle. But when we view a cube from our eyes we see the sides also. Because projectors are not parrallel, they one Orthographie Perspective going to be focussed on the leve (COP). Hence a point X will get transformed to X' on the PP. Y-

CONLINOED Hence in perspective projection, we always define the cop and the PP. Y 183=0 E (0,0,-&) XY plane is the projecting plane, so here 3=0. cop'is located at (0,0, - (e) where 'd' is the distance between origin and cop. 9 Want to project any arbitrary point (x, y, 3) on the xy blame. What will be the co-ordinates of the transformed points?

CONTINUED $\frac{2}{2} = \frac{d}{d+3} \Rightarrow x' = 2. \frac{d}{3+d} \Rightarrow x' = \frac{2}{1+8/d}$ Smilarly y'= \frac{7}{1+3/2} and 3'=0. Co, the transformations matrix will be 2/=2 3' 0 0 0 0 3 7'=7 3/=0 W] 0 0 1/2 1] W = 1+3/d We set the 'w' coordinate = 1+3/d, to convert to cartesian you will get the desired values.

End