Decision Tree (Entropy)

Class	Gender	Stay in hostel
9	M	Yes
10	F	No
8	F	Yes
8	F	No
9	M	Yes
10	M	No
11	F	Yes
11	M	Yes
8	F	Yes
9	M	No
11	M	No
11	M	Yes
10	F	No
10	M	Yes

-			
Class	Stay in Hostel	Total	
8	Y=2 N=1	3	
9	Y= → N=1	3	
10	Y=1 N=3	Ч	
	Y= 3 N=1	4	

Information Gain

larget		Probabi
Y	8	8/14
N	6	6/14

$$E(8) = -\frac{2}{3} \log_{1} \frac{1}{3} - \frac{1}{3} \log_{1} \frac{1}{3$$

Entropy - Entropy before after

Entropy =
$$-\frac{\pi}{2}$$
 Pilogp;
(Laber) = $-\frac{8}{19}$ 109 $\frac{8}{19}$ - $\frac{6}{19}$ 109 $\frac{6}{19}$

$$E(10) = -\frac{1}{4} \frac{\log_2 \frac{1}{4} - 3_4 \log_2 \frac{3}{4}}{10} = 0.811$$

$$E(11) = -\frac{3}{4} \frac{\log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{3}{4}}{10} = 0.811$$

Entropy (c1au) =
$$\frac{3}{14} \times 0.916 + \frac{3}{14} \times 0.918 + \frac{3}{14} \times 0.918 + \frac{3}{14} \times 0.811 + \frac{3}{14} \times 0.811$$

Entropy (Gender) =
$$8/\times 0.954 + 6/4 \times 1$$

= 0.974

$$IG(Gerder) = 0.98522 - 0.979$$

= 0.01

$$\operatorname{Enhopy} = -10/10 | 10/10 - 0 \times 10/10
 = 0$$

