微分中值定理

费马引理:f(x) 在 $U(x_0, \delta)$ 有定义, 并在 x_0 可导, 如果 $f(x_0)$ 是极大 (小) 值, 则 f(x) = 0

罗尔定理: 如果 f(x) 满足:

- 1. 在 [a,b] 上连续
- 2. 在 (a,b) 内可导
- 3.f(a) = f(b) 或 f(a) = f(c), a < c < b 则在 (a,b) 内至少有一点 ξ , 使 $f'(\xi) = 0$

若 f(x) 在 (a,b) 内有二阶导数,且 $f(x_1) = f(x_2) = f(x_3)$,其中 $a < x_1 < x_2 < x_3 < b$,则在 (x_1,x_3) 内至少有一点 ξ ,使 $f^{''}(\xi) = 0$ 推论:

两个点相等,则二阶导为0

三个点相等,则三阶导为0

.

拉格朗日中值定理: 如果 f(x) 满足:

- 1. 在 [a,b] 上连续
- 2. 在 (a, b) 内可导

则在 (a,b) 内至少有一点 ξ , 使 $\frac{f(b)-f(a)}{b-a}=f^{'}(\xi)$

若函数 f(x) 在区间 I 上连续, 在 I 内可导且导数恒为 0, 则 f(x) 在 I 上是一个常数

当 x > 0 时, $\frac{x}{1+x} < ln(1+x) < x$ 柯西中值定理: 若 f(x) 和 F(x) 满足:

- 1. 在 [a, b] 上连续
- 2. 在 (a, b) 内可导
- 3. 对 $\forall x \in (a, b), F(x) \neq 0$

则在 (a,b) 内至少有一点 ξ , 使 $\frac{f(b-f(a))}{F(b)-F(a)} = \frac{f(\xi)}{F'(\xi)}$

洛必达法则

若满足:

- 1. 求 $\frac{0}{0}$ 型或 $\frac{\infty}{\infty}$ 型的极限
- $2.\lim_{x\to a} \frac{f(x)}{F(x)}$ 存在或为 ∞

 $\text{III} \lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f^{'}(x)}{F^{'}(x)}$

重要的等价

当
$$x \to 0$$
 时, $x - \sin x \sim \frac{1}{6}x^3$ $\sin(\arcsin x) = x$
当 $x \to 0$ 时, $\arcsin x - x \sim \frac{1}{6}x^3$
当 $x \to 0$ 时, $\tan x - x \sim \frac{1}{3}x^3$
当 $x \to 0$ 时, $\tan x - x \sim \frac{1}{3}x^3$

当
$$x \to +\infty$$
 时, $lnx << x^n$
当 $x \to +\infty$ 时, $x^n << e\lambda x$, $(\lambda, n > 0)$
当 $x \to +\infty$ 时,对数函数 << 幂函数 << 指数函数

泰勒公式

泰勒公式 1: 如果 f(x) 在 x_0 处有 n 阶导数,则对 $\forall x \in U(x_0,\delta), \text{ f } f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o[(x - x_0)^n]$ 其中 $o[(x - x_0)^n]$ 叫做佩亚诺余项

,

泰勒公式 2: 如果 f(x) 在 $U(x_0, \delta)$ 内有 n+1 阶导数, 则对 $\forall x \in U(x_0, \delta)$, 有

$$\begin{split} f(x) &= f(x_0) + f^{'}(x_0)(x-x_0) + \frac{f^{''}(x_0)}{2!}(x-x_0)^2 + \\ \dots &+ \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} \\ & \\ \sharp \, \dot{\mathbf{p}} \, \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} \, \, \mathbf{U} \, \dot{\mathbf{b}} \, \dot{\mathbf{b}} \, \dot{\mathbf{B}} \, \mathbf{B} \, \mathbf{f} \, \dot{\mathbf{s}} \, \dot{\mathbf{m}} \end{split}$$

若 $x_0 = 0$, 则上述泰勒公式又叫麦克劳林公式

重要的麦克劳林公式

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + o(x^{3})$$

$$\sin x = x - \frac{1}{3!}x^{3} + o(x^{3})$$

$$\cos x = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} + o(x^{4})$$

$$\ln(1+x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} + o(x^{3})$$

$$(1+x)^{a} = 1 + ax + \frac{a(a-1)}{2!}x^{2} + o(x^{2})$$

导数与函数的单调性

一阶导大于 0, 则函数单调增

L

一阶导小于 0, 则函数单调减

驻点:导数为0的点

只有驻点和不可导的点才能成为单调区间的分界点

导数与曲线的凹凸性

- 二阶导大于 0, 则曲线是凹的
- 二阶导小于 0, 则曲线是凸的

拐点: 连续曲线凹与凸的分界点

拐点的二阶导为0或不存在

拐点的第一判别法: 若在 $\mathring{U}(x_0)$ 内二阶可导,则: $f^{''}(x)$ 在 x_0 两侧变号,则 $(x_0,f(x_0))$ 是拐点 $f^{''}(x)$ 在 x_0 两侧不变号,则 $(x_0,f(x_0))$ 不是拐点

拐点的第二判别法: 若 $f'(x_0) = 0$, 则:

,

$$f^{'''}(x_0) \neq 0$$
,则 $(x_0, f(x_0))$ 是拐点 $f^{'''}(x_0) = 0$,则没有结论

凹曲线的切线在曲线下面 凸曲线的切线在曲线上面

导数与极值

极值点的一阶导为 0 或不存在

极值点的第一判别法:

- 1.f(x) 在 x_0 两侧变号,则 $(x_0,f(x_0))$ 是极值点
 - f(x) 由正变负,则 $f(x_0)$ 是极大值
 - f(x) 由负变正,则 $f(x_0)$ 是极小值
- 2.f(x) 在 x_0 两侧不变号,则 $(x_0, f(x_0))$ 不是极值点

极值点的第二判别法: 若 $f'(x_0) = 0$, 则:

 $1.f^{''}(x_0) \neq 0$,则 $(x_0, f(x_0))$ 是极值点 $f^{''}(x_0) > 0$,则 $f(x_0)$ 是极小值

$$f''(x_0) < 0$$
, 则 $f(x_0)$ 是极大值

 $2.f''(x_0) = 0$, 则没有结论

若 $f'(x_0)$ 到 $f^{(n-1)}(x_0)$ 都为 0, 且 $f^{(n)} \neq 0$, 则:

- 1. 若 n 为奇数,则 $f(x_0)$ 不是极值
- 2. 若 n 为偶数,则 $f(x_0)$ 是极值 $f^{(n)}(x_0) > 0$,则 $f(x_0)$ 是极小值 $f^{(n)}(x_0) < 0$,则 $f(x_0)$ 是极大值

导数与最值

连续函数在闭区间内必由最值

求最值:

- 1. 求出 f(x) 在 (a,b) 内的所有驻点和不可导的点
- 2. 计算 f(x) 在驻点, 不可导的点和端点 a 和 b 处的函数值
- 3. 比较这些函数值, 最大的为最大值, 最小的为最小值

若连续函数 f(x) 在 (a,b) 内有唯一的极值点 x_0 , 则

这个点就是最值点

渐近线

$$x=a$$
 是铅直渐近线 $\Leftrightarrow \lim_{x \to a^+} f(x) = \infty$ 或
$$\lim_{x \to a^-} f(x) = \infty$$

当
$$x \to +\infty$$
 时, $y = b$ 是水平渐近线 $\Leftrightarrow \lim_{x \to +\infty} f(x) = b$

当
$$x \to +\infty$$
 时, $y = kx + b$ 是斜渐近线
$$\Leftrightarrow \lim_{x \to +\infty} \frac{f(x)}{x} = k \neq 0, \text{ 且 } \lim_{x \to +\infty} [f(x) - kx] = b$$

曲率

若曲线由直角坐标方程 y = y(x) 给出, 则曲率 $k = \frac{|y'|}{(1+y'^2)^{\frac{3}{2}}}$

若曲线由参数方程
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 给出,则曲率

$$k = \frac{|y^{''}x^{'} - y^{'}x^{''}|}{(x^{'2} + y^{'2})^{\frac{3}{2}}}$$

曲率半径
$$R = \frac{1}{K}$$