Machine Learning Final Project

組別:第32組

組員:

0459604蕭義橙 0556150王強毅 A023140楊博翔

目錄

Introduction	3
Idea & Data Preprocessing	3
Face detect	3
Gray scale	3
Shifting (照片平移,加黑邊)	3
Model Design-CNN	4
Model Structure	4
Based Model	5
Unbalanced Data	5
Faster Converging	5
Model Design-SVM	6
Experiment	6
CNN	6
SVM	8
Conclution	9
CNN is better than SVM	9
Other Discussion	9
Rotation	9
Blur	9
Gaussian derivatives	10
Reference	11

1. Introduction

先利用 [face detect] 將人臉萃取出來,並且轉成 [64 x 64灰階],利用 [平移 Shifting] 的方式增加data數量,再餵入我們的 model [CNN為主,SVM為輔]。

2. Idea & Data Preprocessing

a. Face detect

利用 OpenCV 將人臉擷取出來,若無法辨識人臉的話,則使用原圖片。

b. Gray scale

將人臉 (或原圖) downsize 成 64 X 64, 並轉成灰階。

c. Shifting (照片平移,加黑邊)

為了解決 data 數量不足的問題,我們採用 Shifting 的方式,將照片隨機 平移,並加入黑邊 。

3. Model Design-CNN

a. Model Structure

Layer Index	Input Size	Output Size	Layer	Activation Function
1	64*64*3	64*64*192	CNN(5*5,192)	ReLU
2	64*64*192	64*64*160	CNN(1*1,160)	ReLU
3	64*64*160	64*64*96	CNN(1*1,96)	ReLU
4	64*64*96	32*32*96	Maxpool(3*3)	-
5	32*32*96	32*32*96	Dropout(0.5)	-
6	32*32*96	32*32*192	CNN(5*5,192)	ReLU
7	32*32*192	32*32*192	CNN(1*1,192)	ReLU
8	32*32*192	32*32*192	CNN(1*1,192)	ReLU
9	32*32*192	16*16*192	Maxpool(3*3)	-
10	16*16*192	16*16*192	Dropout(0.5)	-
11	16*16*192	16*16*192	CNN(5*5,192)	ReLU
12	16*16*192	16*16*192	CNN(1*1,192)	ReLU
13	16*16*192	16*16*192	CNN(1*1,8)	ReLU
14	16*16*8	1*1*8	Avgpool(16*16)	-

首先我們先餵入64*64*3 的灰白相片,可以注意到我們雖然用的是灰白相片,但是為了方便未來有可能會想用彩色照片來訓練model,於是我們將灰白相片的一層layer複製成三層,這樣 model 的自由度更高。

最後的layer會output出八個值,經過 softmax 過後即為一張照片屬於任一個類別的機率值了,之後在 demo predict 時,就是基於這個機率值去做預測。

b. Based Model

在 CNN 的 model 設計上,我們主要是參考 NIN(Network in Network) 這篇論文提出的架構,我們會選擇以這個 model 做為參考的原因主要是 因為這個架構有兩個對我們來說很重要的特點:

第一點是需要的參數比較少,在這個架構中有三分之二的 CNN layer 的 kernal size 使用 1*1 的大小,這樣大幅地減少了需要訓練的參數量,由 於我們的資料量比較少,所以若參數量過大,則有可能訓練不起來:

第二點是由於資料量少容易 overfitting 的問題,而這篇論文利用了 dropout 以及在最後一層使用 average pool 而非一般其他架構會用的 fullyconnected 這兩種方法降低 overfitting 的發生率,因此我們選擇以這 個model為基礎去做修改。

c. Unbalanced Data

另外一個資料的問題是,有的類別資料量較多,有的類別資料量較少,也就是資料不平衡的問題,可能會導致model最後訓練出來完全放棄某一個類別,對於這個問題我們的解決方法是,在 gradient 前做 loss 計算時,若是在 資料量較少的類別 時判斷錯誤,則會有較高的 penalty weight,這樣可以提高資料量較少的類別對model訓練的影響。

d. Faster Converging

最後我們為了讓model可以更快的收斂,在每一層CNN layer加上了
Batch Normalization。

4. Model Design-SVM

老師課堂上有提到,目前人臉辨識的冠軍是使用 CNN,但幾年前是用 SVM, 所以我們想試試看 SVM 與 CNN 的差別。

根據 HW4 的設置,我們嘗試使用 Linear、Polynomial (degree 2 to 4)、radial 這幾種 kernel function。

5. Experiment

a. CNN

● Test Data:每一組類別的 前100張 做為test data,總共800張。

● Training Data:剩餘的照片,要注意的是我們擔心若使用助教幫我們翻轉好的照片,每一類會有100張 training images只是該類testing images的翻轉照片,對於某些照片來說,可能翻轉前後根本差不多(例如短頭髮的男性正面照片,或者是中分髮型女性的正面照片),這樣會導致training data與testing data產生重複的問題,所以我們只取用翻轉前的部分,在針對training data自己去做data augmentation,包括水平翻轉與先在周圍加黑邊再重新random crop回64*64大小的照片。

Batch Size : 64

• Epoch: 200

Learning rate:

o epoch 1~100 : 0.1

o epoch 101~180 : 0.01

o epoch 181~200 : 0.001

Optimization

- SGD with momentum 0.9
- o For Comparison we also try to use Adam optimizer

Results

curve's color	model調整描述
藍色	我們 最終選擇的model ,以此架構為基礎
橘色	將藍色的optimizer由SGD改為Adam
灰色	將藍色的後面6層CNN的filter numbers為192的部分減少至100
黃色	把藍色的網絡架構再加深

可以看到不管哪一種設法的結果都差不多,而我們最後取用最佳的組合(藍色的曲線)作為我們最終的model設定,最後的 testing accuracy 为 59.3%。

b. SVM

kernel	Accuracy (加黑邊)	Accuracy (不加黑邊)
linear	21.8 %	25.8 % 🗀
poly_2	27.8 %	28.5 % 🗀
ploy_3	35.2 %	30.8 %
poly_4	26.6 %	28.1 % 🗀
radial	34.4 %	37.9 % 🛱

整體而言,加了黑邊反而會讓準確率下降(只有 poly_3 上升), 猜測是因為加了黑邊後,讓很多照片反而產生類似的區塊 (黑邊),導致 SVM的準確率下降。

而在本次實驗中,表現最好的是採用 radial (不加黑邊), accuracy 達到 **37.9%**,雖然已經是SVM中表現最好的,但還是輸給CNN一大截,與上課提及的比賽結果一致。

6. Conclution

a. CNN is better than SVM

在本次實驗中,CNN 的準確率遠高於 SVM (59.3% > 37.9%) ,與老師上課提及的比賽結果一致。

b. Shifting 不適合 SVM

平移並加黑邊後,會造成SVM準確率下降,猜測原因可能為:這些黑邊導致許多圖片產生類似的區塊,因而誤導 SVM 的判斷。

然而,CNN 是一小塊一小塊來學的,因此黑邊的影響就不大。平 移後可以增加 data 數量,就有更多資源可以來學 (學習眼睛、嘴....等)。

7. Other Discussion

a. Rotation

可以利用 眼睛、嘴吧 來定位,就可以把每個人臉都固定在同一個位置。

b. Blur

為了增加data量,而把原圖加入noise,讓照片變模糊,但發現效果並不好。

c. Gaussian derivatives

為了增加data量,使用Gaussian derivatives(一階、二階),但發現效果並不好。

8. Reference

- a. NIN paper (https://arxiv.org/abs/1312.4400)
- b. Batch Normalization (https://arxiv.org/abs/1502.03167)
- c. TensorFlow Website (https://www.tensorflow.org/)
- d. face detection

(http://cn.mathworks.com/matlabcentral/fileexchange/36855-face-parts-detection?stid=srchtitle#userconsent#)