1. Let $X \sim \mathbb{N}(0,1)$ and $Y = \begin{cases} X & -1 \leq X \leq 1 \\ -X & \text{otherwise} \end{cases}$ Prove that $Y \sim N(0,1)$. Show that (X,Y) do not follow a bivariate normal distribution.

2. Let $X \sim \mathbb{N}_3(\underline{0}, \Sigma)$, where $\Sigma = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, and $X = (X_1, X_2, X_3)^T$.

Show that X_1 and X_2 are not independently distributed; (X_1, X_2) and X_3 are independently distributed; $2.5X_1 + X_2X_3$ and X_2 are not independently distributed. Determine a vector $\tilde{a} \in \mathbb{R}^3$ such that $a_1X_1 + a_2X_2 + a_3X_3$ and (X_2, X_3) are independent.

3. Let X_i , i = 1, ..., 4, be independent $\mathbb{N}_p(\mu, \Sigma)$ random vectors. Define

$$V_1 = 0.25X_1 - 0.25X_2 + 0.25X_3 - 0.25X_4$$

$$V_2 = 0.25X_1 + 0.25X_2 - 0.25X_3 - 0.25X_4.$$

Find the marginal distributions of V_1 and V_2 . Find the joint density of vectors V_1 and V_2 .

4. Let X and Y have the joint pdf

$$f(x,y) = \exp(c + 4x + 4y - 0.5x^2 - 0.5y^2 - 0.5x^2y^2), -\infty < x, y < \infty,$$

where c is a constant. Determine the marginal pdfs of X and Y. Using them find the conditional pdfs of X given Y = yand Y given X = x. Notice that the joint pdf is not normal distributed but the two conditional pdfs are normally distributed.

- 5. Let $X \sim \mathbb{N}_2\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right), \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}\right)$. Compute the conditional distribution of $(X_1 + X_2)|(X_1 X_2)$.
- 6. Let X_i , i = 1, ..., 50, be $\mathbb{N}_4(\mu, \Sigma)$. Specify the distributions of the following:

$$\underline{\tilde{X}}; \qquad (\underline{\tilde{X}}_1 - \underline{\tilde{\mu}})^T \Sigma^{-1} (\underline{\tilde{X}}_1 - \underline{\tilde{\mu}}); \qquad 50 (\underline{\tilde{X}} - \underline{\tilde{\mu}})^T \Sigma^{-1} (\underline{\tilde{X}} - \underline{\tilde{\mu}}).$$

7. Let X_i , i = 1, ..., 25, be $\mathbb{N}_6(\mu, \Sigma)$. Specify the distributions of the following:

$$(\underline{X}_1 - \underline{\mu})^T \Sigma^{-1} (\underline{X}_1 - \underline{\mu}); \qquad 5(\underline{\bar{X}} - \underline{\mu}), \qquad 24 S$$

- 8. Let D be a positive definite of order p. Show that maximum of the function $f(G) = n \log |G| trace(G^{-1}D)$ with respect to $p \times p$ positive definite matrices G exists. Find the maximum value
- 9. Let x_1 be body weight (in Kg) and x_2 be heart weight (in gm) of cats. In a sample of 47 cats, it is observed that

$$\sum x_i = \begin{pmatrix} 110.9 \\ 432.5 \end{pmatrix}, \qquad \sum x_i x_i^T = \begin{pmatrix} 265.13 & 1029.62 \\ 1029.62 & 4064.71 \end{pmatrix}.$$

Find $\hat{\mu}$, S, $\hat{\Sigma}$, \hat{rho} , where hat symbol means MLE.

10. Prove that $(1/n) \sum_{i=1}^{n} (X_i - \mu)(X_i - \mu)^T$ is an unbiased estimator of σ when μ is known.