Assignment No.1

```
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
df = pd.read_csv('Wine.csv')
      Customer_Segment Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols Flavanoids
                                                                                                      Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue
  0
                            14.23
                                        1.71 2.43
                                                           15.6
                                                                        127
                                                                                      2.80
                                                                                                 3.06
                                                                                                                       0.28
                                                                                                                                        2.29
                                                                                                                                                        5.64
                                                                                                                                                             1.04
                            13.20
                                        1.78 2.14
                                                           11.2
                                                                        100
                                                                                      2.65
                                                                                                 2.76
                                                                                                                       0.26
                                                                                                                                        1.28
                                                                                                                                                        4.38 1.05
  2
                            13.16
                                        2.36 2.67
                                                           18.6
                                                                        101
                                                                                      2.80
                                                                                                 3.24
                                                                                                                       0.30
                                                                                                                                        2.81
                                                                                                                                                        5.68 1.03
                            14.37
                                        1.95 2.50
                                                           16.8
                                                                        113
                                                                                      3.85
                                                                                                 3.49
                                                                                                                       0.24
                                                                                                                                        2.18
                                                                                                                                                        7.80 0.86
  4
                            13.24
                                        2.59 2.87
                                                           21.0
                                                                        118
                                                                                      2.80
                                                                                                 2.69
                                                                                                                       0.39
                                                                                                                                        1.82
                                                                                                                                                        4.32 1.04
173
                            13.71
                                        5.65 2.45
                                                           20.5
                                                                         95
                                                                                      1.68
                                                                                                 0.61
                                                                                                                       0.52
                                                                                                                                        1.06
                                                                                                                                                        7.70 0.64
174
                            13.40
                                        3.91 2.48
                                                           23.0
                                                                        102
                                                                                      1.80
                                                                                                 0.75
                                                                                                                       0.43
                                                                                                                                        1.41
                                                                                                                                                        7.30 0.70
175
                            13.27
                                        4.28 2.26
                                                           20.0
                                                                        120
                                                                                      1.59
                                                                                                 0.69
                                                                                                                       0.43
                                                                                                                                        1.35
                                                                                                                                                       10.20 0.59
176
                            13.17
                                        2.59 2.37
                                                           20.0
                                                                        120
                                                                                      1.65
                                                                                                 0.68
                                                                                                                       0.53
                                                                                                                                        1.46
                                                                                                                                                        9.30 0.60
177
                            14.13
                                        4.10 2.74
                                                           24.5
                                                                         96
                                                                                      2.05
                                                                                                 0.76
                                                                                                                       0.56
                                                                                                                                        1.35
                                                                                                                                                        9.20 0.61
178 rows × 14 columns
df.keys()
Index(['Customer_Segment', 'Alcohol', 'Malic_Acid', 'Ash', 'Ash_Alcanity',
        'Magnesium', 'Total_Phenols', 'Flavanoids', 'Nonflavanoid_Phenols',
        'Proanthocyanins', 'Color_Intensity', 'Hue', 'OD280', 'Proline'],
       dtype='object')
print(df.isnull().sum())
Customer_Segment
Alcohol
Malic_Acid
Ash
Ash_Alcanity
                          0
Magnesium
Total_Phenols
Flavanoids
Nonflavanoid_Phenols
Proanthocyanins
Color_Intensity
                          0
                          0
Hue
0D280
                          0
Proline
                          0
dtype: int64
X = df.drop('Customer_Segment', axis=1) # Features
y = df['Customer_Segment']
sc = StandardScaler() #Standardize features by removing the mean and scaling to
Stddeviation=1
X[col] = sc.fit_transform(X[[col]])
X.head(5)
```

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phenols	Proanthocyanins	Color_Intensity	Hue	OD280	Proline
0	1.518613	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	0.246290	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	0.196879	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1.691550	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	0.295700	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

```
pca = PCA()
X_pca = pca.fit_transform(X)

explained_variance_ratio = pca.explained_variance_ratio_
plt.plot(range(1, len(explained_variance_ratio) + 1), explained_variance_ratio.cumsum(), marker='o',
linestyle='--')
plt.xlabel('Number of Principal Components')
plt.ylabel('Cumulative Explained Variance')
plt.title('Explained Variance Ratio')
plt.show()
```



```
n_components = 12 # Choose the desired number of principal components you want to reduce a dimention to
pca = PCA(n_components=n_components)
X_pca = pca.fit_transform(X)
X_pca.shape
X.shape
red_indices = y[y == 1].index
white_indices = y[y == 2].index
```

```
plt.scatter(X_pca[red_indices, 0], X_pca[red_indices, 1], c='red', label='Red Wine')
plt.scatter(X_pca[white_indices, 0], X_pca[white_indices, 1], c='blue', label='White Wine')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend()
plt.title('PCA: Red Wine vs. White Wine')
plt.show()
```

