Spectral Analysis

chanhl@mail.cgu.edu.tw

Joseph Fourier lived from 1768 to 1830

Fourier studied the mathematical theory of heat conduction. He established the partial differential equation governing heat diffusion and solved it by using infinite series of trigonometric functions.

Fourier transform

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$
Spectrum at frequency f Basis function for frequency f

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Inverse Fourier transform

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

Example

$$x(t) = 10 + 14\cos(2\pi(100)t - \pi/3) + 8\cos(2\pi(250)t + \pi/2)$$

Magnitude and phase

$$X(f) = |X(f)| e^{j\phi(f)}$$

where magnitude and phase spectra

$$|X(f)| = \sqrt{\{\text{Re}[X(f)]\}^2 + \{\text{Im}[X(f)]\}^2}$$

$$\phi(f) = \tan^{-1} \left\{ \frac{\operatorname{Im}[X(f)]}{\operatorname{Re}[X(f)]} \right\}$$

```
% Generating two sinusoids and one DC component
fs=2000; % sampling at 2 kHz
t=0:1/fs:0.1;
x=10 + 14*cos(2*pi*100*t-pi/3) + 4*cos(2*pi*250*t-pi/2);
subplot(2,2,1)
plot(t,x)
ylabel('x(n)')
xlabel('Time, s')
title('Two sinusoids + DC')
axis([min(t) max(t) min(x)*1.1 max(x)*1.1])
% Spectral analysis
Xf = fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_mag = abs(Xf); % magnitude of spectrum
subplot(2,2,2)
plot(f,Xf_mag)
xlabel('Frequency, Hz')
ylabel('Magnitude')
title('Spectrum')
axis([min(f) max(f) 0 max(Xf_mag)*1.1])
```

```
Xf_phase = angle(Xf);
                              % phase of spectrum
subplot(4,2,6)
plot(f,Xf_phase)
xlabel('Phase, rad'); ylabel('Phase');
axis([min(f) max(f) min(Xf_phase)*1.1 max(Xf_phase)*1.1])
Xf_phase = unwrap(Xf_phase); % Unwrap phase angle
subplot(4,2,8)
plot(f,Xf_phase)
xlabel('Phase, rad'); ylabel('Unwrap phase');
axis([min(f) max(f) min(Xf_phase)*1.1 max(Xf_phase)*1.1])
% Shift zero-frequency component to center of spectrum
Xf_center=fftshift(Xf);
Xf_phase = phase(Xf_center); % phase of spectrum
subplot(2,2,3)
f=f-fs/2:
plot(f,Xf_mag)
xlabel('Frequency, Hz'); ylabel('Magnitude');
title('Spectrum')
axis([min(f) max(f) 0 max(Xf_mag)*1.1])
```


Discrete Fourier transform

Decomposion of signal

Modified from "Matlab Wavelet Toolbox Manual"

Effect of data points on spectral analysis

```
fs = 500;
t=0:1/fs:0.3;
x = cos(2*pi*25*t) + cos(2*pi*35*t+pi/10);
Xf = fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_power = Xf.*conj(Xf); % power spectral density
index=1:length(Xf)/4;
stem(f(index), Xf_power(index))
% Improve resolution by increase data length
t=0:1/fs:0.3*5:
x = cos(2*pi*25*t) + cos(2*pi*35*t+pi/10)
Xf = fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_power = Xf.*conj(Xf); % power spectral density
index=1:length(Xf)/4;
stem(f(index), Xf power(index))
```


Data length: truncation

Window functions

Rectangular:

$$w(n) = 1$$

Blackman:

$$w(n) = 0.42 - 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right)$$

Hamming:

$$w(n) = 0.54 - 0.46\cos\left(\frac{2\pi n}{N - 1}\right)$$

Bartlett (Triangular):

Hanning:

$$w(n) = 0.5 - 0.5\cos\left(\frac{2\pi n}{N-1}\right)$$


```
fs = 500;
t=0:1/fs:0.3;
x = cos(2*pi*25*t) + cos(2*pi*35*t+pi/10);
Xf = fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_power = Xf.*conj(Xf); % power spectral density
index=1:length(Xf)/4;
stem(f(index),Xf_power(index))
% Using Hanning window
x=x.*hanning(length(x))';
Xf = fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_power = Xf.*conj(Xf); % power spectral density
index=1:length(Xf)/4;
stem(f(index), Xf_power(index))
```

```
% Zero padding
x_ZP=zeros(1,length(x)*5);
x_{ZP}(1:length(x)) = x;
t_ZP = (0:length(x_ZP)-1)*1/fs;
Xf = fft(x, length(x)*5);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_power = Xf.*conj(Xf); % power spectral density
index=1:length(Xf)/4;
stem(f(index),Xf_power(index))
```


Spectrogram of C-Scale

Spectrogram of LAB SONG

From J.H. McClellan, R.W. Schafer, Signal Processing First, Prentice-Hall, 2003.

Recorded sound

<mark>"s" "i</mark>" "gn" "al"

Fourier transform of signals

Averaged periodogram

- A signal is divided into non-overlapping segments
 - Reducing variance of spectral analysis at the sacrifice with frequency resolution
- Welch periodogram
 - Using overlapping segments.
 - Widely use in spectral estimation

Characterization of EEG Alpha Rhythms


```
fs = 5000;
t=0:1/fs:1;
x = \sin(2*pi*200*t) + 2*\sin(2*pi*350*t) + randn(size(t));
Xf = fft(x);
resolution=fs/length(Xf);
f=(0:length(Xf)-1)*resolution;
Xf_power = Xf.*conj(Xf); % power spectral density
Xf_dB=10*log10(Xf_power);
index=1:length(Xf_power)/2;
plot(f(index), Xf_dB(index))
NFFT=512; % length of window
[P1,f] = pwelch(x,hanning(NFFT),NFFT/2,NFFT);
% PWELCH(X, WINDOW, NOVERLAP, NFFT)
f=f/pi*fs/2;
P1_dB = 10*log10(P1);
plot(f,P1_dB)
```


Cross spectral density and coherence

Cross spectrum

$$S_{xy}(f) = X(f) \cdot Y^*(f)$$

Transfer function

$$H(f) = Y(f) / X(f)$$

Coherence function

$$\gamma_{xy}^{2}(f) = \frac{\left|\frac{1}{K}\sum_{k=1}^{K}X_{k}(f)Y_{k}^{*}(f)\right|^{2}}{\frac{1}{K}\sum_{k=0}^{K}X_{k}(f)\cdot X_{k}^{*}(f) \times \frac{1}{K}\sum_{k=0}^{K}Y_{k}(f)\cdot Y_{k}^{*}(f)}$$
where $0 \le \gamma_{xy}^{2}(f) \le 1$

```
% Generate two sinudoids with the same frequency
fs = 5000;
t=0:1/fs:1:
x = sin(2*pi*500*t) + randn(size(t));
y = \sin(2*pi*500*t+pi/10) + randn(size(t));
% Welch periodogram
NFFT=512:
[P1,f] = pwelch(x,hanning(NFFT),NFFT/2,NFFT);
f=f/pi*fs/2;
plot(f,P1)
[P2,f] = pwelch(y,hanning(NFFT),NFFT/2,NFFT);
f=f/pi*fs/2;
plot(f,P2)
% Cross spectral analysis
[Pxy,f] = cpsd(x,y,hanning(NFFT),NFFT/2,NFFT);
f=f/pi*fs/2;
plot(f,Pxy)
% Coherence
[Cxy,f] = mscohere(x,y,hanning(NFFT),NFFT/2,NFFT);
f=f/pi*fs/2;
plot(f,Cxy)
```

Cross spectrum and coherence of two sinusoids with identical frequency

Cross spectrum and coherence of two sinusoids with different frequency

Analysis of auditory evoked potentials

SM. Reddy, RL. Kirlin, Spectral analysis of auditory evoked potentials with pseudorandom random noise excitation, IEEE Trans. Biomed Eng, 26(8):479-487, 1979.

Pseudorandom noise (PSN)

Narrow-band burst stimulus at 600 Hz in one normal subject

Narrow-band burst stimulus at 600 Hz in one patient with hearing loss

Power spectral density and coherence using 600-Hz stimulus

Cross spectral density and transfer function

Reference

- J.H. McClellan, R.W. Schafer, M.A. Yoder, Signal Processing First, Prentice Hall, 2003.
- R. Rangayyan, Biomedical Signal Analysis, John Wiely & Sons, 2002.
- J. Semmlow, Circuits, Signals, and Systems for Bioengineers: A MATLAB-Based Introduction, Academic Press, 2005.
- M.J. Roberts, Signals and Systems: Analysis of Signals Through Linear Systems, McGraw-Hill, 2003.