1. Introducción

En esta práctica estudiaremos el sistema dinámico discreto $x_{n+1} = f(x_n)$ dominado por la función logística f(x) = rx(1-x). Buscaremos los conjuntos atractores para valores diferentes de r y x y después buscaremos el intervalo de valores de r para los cuales el conjunto atractor tiene un número determinado de elementos.

2. Material empleado

2.1. Encuentra dos conjuntos atractores diferentes para $r \in (3,3,5)$ con $x \in [0,1]$

Para el primer apartado definimos las siguientes funciones:

- logistica: dados el parámetro r y un punto x_0 devuelve el valor de la función f(x) definida en la introdución en el punto x_0 .
- fn: dados un punto x_0 , la función f(x) y un entero n devuelve el resultado de aplicar la función f(x) en el punto x_0 n veces.
- atractor: dados el parámetro r y un punto x_0 pinta la órbita y devuelve el cardinal de esta. A continuación entraremos más en profundidad en esta función para explicarla detalladamente.

La función atractor primero calcula los n primeros términos del sistema dinámico discreto $x_{n+1} = f(x_n)$. El número n debe ser un valor lo suficientemente grande para que la órbita se estabilice. A continuación pintamos una gráfica con el valor de n en el eje de abscisas y el valor de x_n en el eje de ordenadas, con el fin de hacernos una idea de si la órbita se estabiliza.

Para calcular cúal es el periodo de esta órbita, tomamos los últimos k valores de la órbita y los recorremos desde el final hasta encontrar dos elementos iguales (no son exactamente iguales, si no que distan menos de un ϵ muy pequeño). La distancia entre estos dos elementos es el periodo de la órbita.

2.2. Estima el valor de $r \in (3,4)$ para el cual el conjunto atractor tiene 8 elementos

Para el segundo apartado no hemos tenido que definir ninguna función, únicamente hemos modificado la función *atractor* para que devolviera el cardinal de la órbita (que coincide con el periodo).

Tomamos un punto aleatorio $x_0 \in [0,1]$ y hacemos una búsqueda binaria entre los extremos del intervalo (3,4) hasta encontrar un valor de r en el cúal el cardinal de la órbita sea 8. Podemos utilizar el algoritmo de búsqueda binaria porque la función que dado un valor de r devuelve el cardinal de su órbita es monótona creciente.

Una vez tenemos este punto realizamos dos búsquedas binarias en paralelo a la iz-

quierda y a la derecha de este valor para encontrar los valores de r más a la izquierda y a la derecha, respectivamente que cumplen que el cardinal de su órbita es 8. Estas búsquedas las realizamos con 20 iteraciones para que la longitud de los intervalos sea del orden de 2^{20} y así minimizar el error.

- 3. Resultados
- 4. Conclusión
- 5. Código