Calculus I, II, III

Peter Schaefer

${\bf Highschool}$ - ${\bf Kutztown}$

Contents

1	General Algebraic Concepts	2
2	Limits and their Properties	4
3	Differentiation	5
4	Applications of Differentiation	6
5	Integration	7
6	Differential Equations	8
7	Applications of Integration	9

1 General Algebraic Concepts

Order of Operations

- 1. Parenthesis
- 2. Exponents and Inverse
- 3. Functions and Roots
- 4. Multiplication and \mathbf{D} ivision
- 5. Addition and Subtraction

Properties of Exponents

Property	Symbolic Form
Product of Powers	$b^r \cdot b^s = b^{r+s}$
Quotient of Powers	$\frac{b^r}{b^q} = b^{r-s}$
Power of a Power	$(b^r)^s = b^{rs}$
Power of a Product	$(ab)^r = a^r b^r$
Power of a Quotient	$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$
Negative Exponents	$a^{-r} = \frac{1}{a^r}$ or $\frac{1}{a^{-r}} = a^r$
	$\left(\frac{a}{b}\right)^{-r} = \left(\frac{b}{a}\right)^r = \frac{b^r}{a^r}$
Fractional Exponents	$\sqrt[d]{a} = a^{\frac{1}{d}}$
	$\left(\sqrt[d]{a}\right)^n = \sqrt[d]{a^n} = a^{\frac{n}{d}}$

Ration Root Theorem

A rational root of a polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

is of the form:

$$\pm \frac{p}{q} = \pm \frac{\text{a factor of last term, } a_0}{\text{a factor of first term, } a_n}$$

Where a_{n-0} are integers.

Trigonometry

Property	Formula		
Reciprocal	$\sin \theta = \frac{1}{\csc \theta} \cos \theta = \frac{1}{\sec \theta} \tan \theta = \frac{1}{\cot \theta}$		
Pythagorean	$\sin^2 a + \cos^2 a = 1$ $1 + \tan^2 a = \sec^2 a$ $1 + \cot^2 a = \csc^2 a$		
Ratio	$\tan \theta = \frac{\sin \theta}{\cos \theta} \cot \theta = \frac{\cos \theta}{\sin \theta}$		
Opposite Angle	$\sin(-\theta) = -\sin\theta \cos(-\theta) = \cos\theta \tan(-\theta) = -\tan\theta$		
	$\csc(-\theta) = -\csc\theta \sec(-\theta) = \sec\theta \cot(-\theta) = -\cot\theta$		
Sum/Difference	$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$		
of Angles	$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$		
	$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \cdot \tan\beta} \tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \cdot \tan\beta}$		
Double Angle	$\sin(2\theta) = 2\sin\theta\cos\theta \tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$		
	$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$		
Half Angle	$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}} \cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}} \tan\frac{\theta}{2} = \frac{\sin\theta}{1+\cos\theta} = \frac{1-\cos\theta}{\sin\theta}$		

2 Limits and their Properties

3 Differentiation

4 Applications of Differentiation

5 Integration

6 Differential Equations

7 Applications of Integration