



# Circuitos Sequenciais

Prof. Thiago Felski Pereira, MSc.

Adaptado: Frank Vahid (Digital Design) e Paulo Roberto Valim



# Introdução

- Circuitos Sequenciais
  - A saída depente não apenas das entradas atuais (como em um circuito combinacional), mas nas sequências passadas das entradas
    - Armazenamento de bits, também conhecido como ter um estado
  - Exemplo: um circuito contador binário



Devemos saber a sequência passada para saber a saída

### Armazenando 1 bit - Flip-Flops

- Exemplo que requer armazenamento
- Chamar comissária de bordo
  - Apertar chamar: luz acende
    - Permanece acesa após soltar o botão
  - Apertar cancelar: luz apaga
    - Permanece apagada após soltar o botão
  - Uma porta lógica resolve esse problema?



Não funciona. Q=1 quando Call=1, mas não permanece em um quando solto

Precisa de uma forma de lembrar



1. Call button pressed – light turns on



2. Call button released – light stays on



3. Cancel button pressed – light turns off



#### Primeira tentativa de armazenar um bit

- Necessidade de armazenamento
  - O circuito da direita faz o que precisamos?
    - Não: Assim que Q torna-se 1 (quando S=1), Q fica 1 para sempre – nenhum valor de S pode mudar Q novamente para 0





#### Armazenamento com Latch SR

- O circuito à direita, portas NOR cruzadas, faz o que queremos?
  - Sim! Como alguém teve essa ideia? Possivelmente com tentativa e erro e um pouco de lógica.





### Exemplo usando Latch SR

- O Latch SR pode server como armazenamento para o exemplo anterior do botão de chamada da comissária de voo
  - Call=1 : define Q para 1
    - Q fica em 1 mesmo após Call=0
  - Cancel=1 : reinicia Q para 0
- Mas, existe um problema...





#### Problema com o Latch SR

Problema

condição de corrida.

Se S=1 e R=1 simultaneamente, não saberemos que valor Q irá tomar



#### Problema com o Latch SR

- O projetista pode tentar evitar o problema usando um circuito externo
  - O circuito deve proteger SR contra 11
  - Mas 11 pode ocorrer por duas latências diferentes



Assumindo 1 ns de latência por porta. O caminho é mais longo de Call para R do que de Call para S, causando 11 por um curto período de tempo – podendo ser longo o bastante para causar a oscilação





#### Problema com o Latch SR

 Pico(Glitch) pode causar uma mudança indesejada no S ou R



Considere uma latência de 4 ns no fio



### Solução: Latch SR sensível ao nível

- Adiciona-se uma porta de habilitação "C"
- S e R só mudam quando C=0
  - Protege o circuito para nunca ter SR=11, exceto por atrasos de canal
  - Coloca C=1 após S e R ficarem estáveis
  - Quando C vai para 1, os valores estáveis de S e R passam juntos pela porta AND e definem S e R ao mesmo tempo.





Level-sensitive SR latch



#### Exercícios

- Também é possível fazer um Latch SR com portas NAND ao invés de NOR?
- Ele funcionaria do mesmo jeito?

#### Latch D sensível ao nível

 O latch SR necessita de um projeto cuidadoso para que SR=11 nunca ocorra

O latch D alivia o projetista desse fardo.

 Um inversor inserido no R garante que S nunca seja igual a R.







D latch symbol



#### Problema com Latch D sensível ao nível

- O latch D ainda tem problema (assim como o latch SR)
  - Quando C=1, por quantos latches o C vai viajar?
  - Depende quão longo C=1
    - Clk\_A o sinal deve viajar por muitos latches
    - Clk\_B o sinal deve viajar por menos latches



#### Problema com Latch D sensível ao nível



### Flip-Flop D

Podemos projetar um armazenamento que só ocorra na borda de subida de um sinal de clock?

rising edges

- Flip-flop: o armazenamento ocorre na borda do clock
- Projeto mastre-escravo
  - Clk = 0 Mestre habilitado, carrega D, aparece em Qm. Escravo desabilitado.
  - Clk = 1 Mestre desabilitado, Qm permanece. Latch Escravo habilitado, carrega Qm, aparece em Qs.
  - O valor D fica armazenado em Qm e quando o clock muda de 0 para 1 é armazenado no Escravo





Note: Hundreds of different flip-flop designs exist



### Flip-Flop D

- Soluciona o problema de não saber por quantos latches um sinal viaja quando C=1
  - Na figura abaixo, o sinal viaja por exatamente 1 flip-flop para Clk\_A ou Clk\_B
  - Porque? Porque na borda de subida (rising\_edge) de Clk, todos os 4 flip-flops são carregados simultaneamente em seguida todos deixam de prestar atenção até a próxima borda de subida não importando por quando tempo Clk fique em 1.



### D Flip-Flop





# Latch D x Flip-Flop D

- O latch é sensível ao nível
  - Armazena D quando C=1
- O Flip-flop sensível a borda
  - Armazena D quando C muda de 0 para 1
- OBS: Dizer que um latch é sensível ao nível ou que um flip-flop é sensível a borda é redundante
- Comparando os comportamentos de um latch e de um flip-flop:



Latch follows D
while Clk is 1
Flip-flop only loads D
during Clk rising edge



#### Atividade

- Descubra como um oscilador com cristal de quartzo pode ser usado para gerar um sinal de relógio.
- Descreva seu funcionamento e recomende um vídeo que fale sobre o assunto.

Botão de chamada para Comissária de Bordo com D Flip-Flop

flip-flop D irá armazenar o bit

As entradas são Call, Cancel, Q (valor atual do flip-flop)

Tabela verdade, a seguir

| a                               | D              | Q | Cancel | Call                   |
|---------------------------------|----------------|---|--------|------------------------|
| Preserve value: if              | 0              | 0 | 0      | 0                      |
| Q=0, make D=0; if Q=1, make D=1 | 1              | 1 | 0      | 0                      |
| Cancel make                     | 0              | 0 | 1      | 0                      |
| D=0                             | 0              | 1 | 1      | 0                      |
|                                 | 1              | 0 | 0      | 1                      |
| Call make D=1                   | 1              | 1 | 0      | 1                      |
| Let's give priority             | 1              | 0 | 1      | 1                      |
| to Call make                    | 1              | 1 | 1      | 1                      |
| D=1                             | 11-211-211-211 |   |        | - 510 - 510 - 510 - 51 |



Comb.

Cncl Circuit

Blue

light

Call

button

Cancel button

Circuito derivado da tabela verdade, usando o processo de projeto combinacional

### Registrador Básico

- Tipicamente armazenamos valores de múltiplos bits
  - ex., armazenando um número de 4-bits
- Registrador: multiplos flip-flops armazenando sinal de clock





### Exemplo: Display de Temperatura

- Mostrador de histórico de temperatura
  - Saídas de temperatura número binário de 5-bits
  - O temporizador pulsa a cada hora
  - Registra a temperatura a cada pulso, mostra os últimos 3 valores registrados



# Exemplo: Display de Temperatura

Use three 5-bit registers





#### Latch RS controlado

- Surgiu da necessidade de criar uma entrada que controlasse a habilitação do latch
  - Evitando a necessidade de escrita constante



| С | R | S | Q <sub>t+1</sub> |
|---|---|---|------------------|
| 0 | X | X | Q <sub>t</sub>   |
| 1 | 0 | 0 | Q <sub>t</sub>   |
| 1 | 0 | 1 | Estado<br>set    |
| 1 | 1 | 0 | Estado<br>reset  |
| 1 | 1 | _ | proibido         |



#### Atividade

Desenhar as formas de onda para as saídas do latch RS abaixo, a partir das formas de onda fornecidas para as entradas C, R e S





#### Latch D

Surgiu da necessidade de evitar a ocorrência do estado proibido



Porque esse Latch evita a ocorrência de um estado proibido?

#### Latch D

- f O inversor entre as entradas S e R assegura que nunca ocorrerá o estado S=1 e R=1
  - Responsáveis pelo estado proibido



| С | D | Q <sub>t+1</sub> |  |
|---|---|------------------|--|
| 0 | X | Qt               |  |
| 1 | 0 | 0                |  |
| 1 | 1 | 1                |  |

#### Atividade

 Desenhar as formas de onda para as saídas do latch D abaixo, a partir das formas de onda fornecidas para as entradas





### Flip-Flop D mestre-escravo

- Composto de 2 latches D conectados em cascata
  - Funcionam de forma complementar:
    - Se Controle = 1 então o mestre é ativado e o escravo mantém o estado anterior
    - Se Controle = 0 então o mestre mantém o estado anterior e o escravo é ativado



### Flip-Flop D mestre-escravo



- t<sub>dM</sub> = Atraso do latch mestre
- t<sub>dE</sub> = Atraso do latch escravo
- O último valor de D amostrado pelo latch mestre antes da borda descendente fica armazenado
  - Aparecendo na saída Q do latch escravo após a borda descendente



#### Atividade 1

 Traçar as formas de onda para as saídas de cada um dos latches do circuito que segue, a partir das formas de onda fornecidas



#### Atividade 1





### Flip-flop D sensível a borda ascendente



| С  | D | Q <sub>t+1</sub> |
|----|---|------------------|
| ≠↑ | X | Qt               |
| 1  | 0 | 0                |
| 1  | 1 | 1                |





#### Atividade 2

traçar as formas de onda para as saídas do flip-flop D, a partir das formas de onda fornecidas





# Flip-Flop JK

- Construído a partir de *latchs RS controlados* 
  - Exceto que a combinação J=K=1 não leva a um estado proibido
  - J = K = 1 resulta em  $\overline{Q_t}$



| С  | J | K | Q <sub>t+1</sub> |                             |
|----|---|---|------------------|-----------------------------|
| ≠↑ | X | X | Qt               | Mantém estado anterior      |
| 1  | 0 | 0 | Qt               | Mantém estado anterior      |
| 1  | 0 | 1 | 0                | Estado reset                |
| 1  | 1 | 0 | 1                | Estado set                  |
| 1  | 1 | 1 | $\overline{Q_t}$ | Complementa estado anterior |



### Construção do flip-flop JK

- Visão simplificada do flip-flop JK a partir de latchs RS controlados
  - Eletrônica: eletrônica digital. São Paulo: Fundação Padre Anchieta, 2011. (Coleção Técnica Interativa. Série Eletrônica, v. 4)
    - Fornecida pelo acadêmico Leandro



### Flip-flop D a partir do JK

 Conforme mostra a figura da literatura da disciplina, o flip-flop D pode ser construído a partir de um flip-flop JK



# Obrigado pela atenção



