

Week 6

FIT5202 Big Data Processing

Classification Models

Week 6 Agenda

- Week 5 Review
- Classification Algorithms
 - Decision Trees
 - Random Forest
 - Logistic Regression
- Model Evaluation
 - Confusion Matrix
 - ROC Curve
- Tutorial Use Case
 - Bank: Will customers subscribe?

Random Forest

- Use ensemble approach
 - The outcome of the model
 - Majority voting (mode) (for classification)
 - Mean of all outcomes (for regression)
- Generalise the model
 - Build multiple different (uncorrelated) trees
 - Avoid overfitting issue found in decision tree
- Use generalisation technique
 - Bagging (bootstrapping) Randomise (with replacement) a different dataset (from the training dataset) used for training each tree.
 - Each tree uses a random subset of features for splitting nodes.

image: https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

Logistic Regression

- Based on linear model approach
 - Instead of predicting continuous target variable,
 - Logistic regression predicts categorical target variable (e.g. binary classification)
- Define the hyperplane (decision boundary) used to classify data (e.g. to separate the two classes in the data in case of binary classification)

image: https://www.quora.com/What-is-a-hyperplane-in-machine-learning?top_ans=198420733

Example: Logistic Regression

2 classes: Passed and Failed

$$z = W_0 + W_1 Studied + W_2 Slept$$

$$P(class = 1) = \frac{1}{1 + e^{-z}}$$

https://ml-cheatsheet.readthedocs.io/en/latest/logistic regression.html

Evaluating Classifiers

- Threshold Metrics
 - Confusion Matrix
 - True Positive, True Negative, False Positive, False Negative
 - Accuracy, Precision, Recall (sensitivity) and F1-score
- Ranking Metrics
 - ROC Curve

Classification accuracy is almost universally inappropriate for imbalanced classification.

Choosing the right model?

- Understand characteristics of your data?
- Understand characteristics of the model?
- Meets business goals?
- How accurate is the model?
- How explainable is the model?
- How fast is the model?
- How scalable is the model?

https://hackernoon.com/choosing-the-right-machine-learning-algorithm-68126944ce1f

Bank Use Case: Will the customers subscribe?

Thank You!

See you next week.