

METODOLOGÍA DE PUNTOS DE CONTROL EXTRAIDOS DE LIDAR

CONTRATO CP-PR-2023-088 CELEBRADO ENTRE ALIANZA PUBLICA PARA EL DESARROLLO INTEGRAL -ALDESARROLLO Y GEOMATICA MONCALEANO SÁENZ S.A.S.

TABLA DE CONTENIDO

1	INT	RODUCCIÓN3
2	ALC	CANCE
3	ME	TODOLOGÍA 5
	3.1 georr	Verificación de la precisión obtenida de la nube de puntos LiDAR eferenciados y clasificados 5
	3.2 de Lil	Selección de los sectores donde se extraerán los puntos de control a partir DAR 14
		Generación de imágenes de intensidad de cada uno de los sectores donde traerán los puntos de control a partir de LiDAR 16
	3.4	Corte de la nube de puntos LiDAR en cada sector seleccionado 16
	3.5 contro	Obtención de detalles y coordenadas tridimensionales de los puntos de ol extraídos de LiDAR 16
	3.6 aerot	Incorporación de los puntos de control extraídos de LiDAR al bloque de riangulación 16
		Prueba de calidad posicional de los bloques aerotriangulados utilizando los s extraídos de LiDAR 16
4	CO	NCLUSIONES17

ÍNDICE DE ILUSTRACIONES

Ilustración 1 Ejemplo de una imagen de intensidad con punto de control	7
Ilustración 2 Fotografía del posicionamiento del punto de control	7
Ilustración 3 Ejemplo de una nube de puntos LiDAR recortados en dos d	limensiones
	8
Ilustración 4 Nube de puntos LiDAR para visión estereoscópica	8
Ilustración 5 Conformación de los bloques de aerotriangulación Norte, C	Centro y Sur
	15

1 INTRODUCCIÓN

Debido a que en la zona Urbana y rural de Buenaventura se presentaron condiciones de orden público y a su vez de acceso a la zona que impiden parcialmente las labores de campo toma como son la toma de puntos de fotocontrol, GMS S.A.S adelanto el levantamiento de 20 puntos de fotocontrol en el casco urbano y 144 puntos de fotocontrol en 12 centros poblados que se habían planeado inicialmente, teniendo en cuenta que se diseñaron más puntos de fotocontrol para realizar los respectivos ajustes de los bloques de aerotriangulación (34 bloques de centros poblados, 1 casco urbano, X bloques en el área rural).

Al conformar los bloques de aerotriangulación y a manera de reforzar su apoyo se optó por extraer detalles del terreno a partir de la información de la nube de puntos LiDAR georreferenciada y clasificada reduciendo las visitas a campo y asegurando la precisión requerida por el proyecto a sus diferentes escalas.

2 ALCANCE

La metodología propuesta para la extracción de puntos de foto control a través de datos LIDAR constituye una alternativa que asegura cumplir con las precisiones esperadas en los procesos de foto control convencionales que se llevan a cabo en campo directamente. Su aplicación se extenderá a aquellas áreas que aún no han sido objeto de actividades de foto control en campo. A continuación, se precisan en que zona se aplicara esta metodología:

ZONA	METODO FOTOCONTROL
CENTRO POBLADO	
BAJO CALIMA	FOTOCONTROL CONVENCIONAL
BENDICIONES	FOTOCONTROL CONVENCIONAL
CAMINO VIEJO - KM 40	FOTOCONTROL CONVENCIONAL
CISNEROS	FOTOCONTROL CONVENCIONAL
CÓRDOBA	FOTOCONTROL CONVENCIONAL
EL SALTO	FOTOCONTROL CONVENCIONAL
KATANGA	FOTOCONTROL CONVENCIONAL
LA DELFINA	FOTOCONTROL CONVENCIONAL
QUEBRADA PERICOS	FOTOCONTROL CONVENCIONAL
TRIANA	FOTOCONTROL CONVENCIONAL
VILLA ESTELA	FOTOCONTROL CONVENCIONAL

	ZARAGOSA	FOTOCONTROL CONVENCIONAL
	AGUACLARA	FOTOCONTRO METODOLOGIA LIDAR
	BARRIO BUENOS AIRES	FOTOCONTRO METODOLOGIA LIDAR
AEROPUERTO	CALLE LARGA -	FOTOCONTRO METODOLOGIA LIDAR
	CAMPO HERMOSO	FOTOCONTRO METODOLOGIA LIDAR
	EL CRUCERO	FOTOCONTRO METODOLOGIA LIDAR
	EL LIMONES	FOTOCONTRO METODOLOGIA LIDAR
	GUAIMIA	FOTOCONTRO METODOLOGIA LIDAR
	LA BALASTRERA	FOTOCONTRO METODOLOGIA LIDAR
	LA BOCANA	FOTOCONTRO METODOLOGIA LIDAR
	LA CONTRA	FOTOCONTRO METODOLOGIA LIDAR
	LAS PALMAS	FOTOCONTRO METODOLOGIA LIDAR
	LLANO BAJO	FOTOCONTRO METODOLOGIA LIDAR
	PIANGUITA	FOTOCONTRO METODOLOGIA LIDAR
	PUNTA SOLDADO	FOTOCONTRO METODOLOGIA LIDAR
	SABALETA	FOTOCONTRO METODOLOGIA LIDAR
	SAN CIPRIANO	FOTOCONTRO METODOLOGIA LIDAR
	SAN MARCOS	FOTOCONTRO METODOLOGIA LIDAR
	UMANE	FOTOCONTRO METODOLOGIA LIDAR
	ZACARÍAS	FOTOCONTRO METODOLOGIA LIDAR
	JUANCHACO	FOTOCONTRO METODOLOGIA LIDAR
	LA BARRA	FOTOCONTRO METODOLOGIA LIDAR
	LADRILLEROS	FOTOCONTRO METODOLOGIA LIDAR
ZONA URBANA	CABECERA MUNICIPAL	FOTOCONTROL CONVENCIONAL
ZONA RURAL		FOTOCONTRO METODOLOGIA LIDAR

En las áreas previamente citadas para la implementación de esta metodología, se llevará a cabo la adquisición de datos mediante un escaneo LIDAR con una densidad de muestreo de 4 puntos por metro cuadrado. Esto se traduce en la captura de 40,000 puntos por hectárea, garantizando así la obtención de una cantidad suficiente de datos LIDAR. La captura de datos a alta densidad no solo proporcionará una base sólida para el análisis posterior, sino que también permitirá la identificación precisa de elementos y características dentro de la zona de estudio. Al foto identificar elementos en combinación con los datos LIDAR, se posibilita una correlación efectiva entre los puntos LIDAR y los elementos foto identificados en las fotografías.

Los elementos a seleccionar en las fotografías aéreas para tomarlos como puntos de foto control deben tener una identificación lo más precisa en las fotografías, se requiere que los elementos a reconocer estén preferiblemente situados al nivel de la superficie del suelo. En consecuencia, resulta imperativo llevar a cabo una selección minuciosa de los puntos capturados mediante LIDAR que se encuentren alineados con dicha superficie. En este sentido, se llevará a cabo una clasificación de los puntos LIDAR en dos categorías: "ground" y "no ground".

La distinción entre estos dos grupos es esencial para asegurar la calidad y fiabilidad de los resultados. Los puntos "ground" constituyen aquellos que efectivamente se encuentran en contacto con la superficie terrestre, lo que significa que proporcionan información valiosa sobre la topografía y la configuración del terreno.

3 METODOLOGÍA

La metodología que se desarrollara para la extracción de los puntos de control a partir de la nube de puntos LiDAR georreferenciados y clasificados se basa en los siguientes aspectos técnicos:

- ✓ Verificación de la precisión obtenida de la nube de puntos LiDAR georreferenciados y clasificados.
- ✓ Selección de los sectores donde se extraerán los puntos de control a partir de LiDAR
- ✓ Generación de imágenes de intensidad de cada uno de los sectores donde se extraerán los puntos de control a partir de LiDAR.
- ✓ Corte de la nube de puntos LiDAR en cada sector seleccionado.
- ✓ Obtención de detalles y coordenadas tridimensionales (X, Y, Z) de los puntos de control extraídos de LiDAR.
- ✓ Incorporación de los puntos de control extraídos de LiDAR al bloque de aerotriangulación.
- ✓ Verificación de coordenadas de los puntos extraídos de LiDAR en el bloque aerotriangulado.

3.1 Verificación de la precisión obtenida de la nube de puntos LiDAR georreferenciados y clasificados

En la toma de datos aéreos se tienen dos sensores montados (cámara y LiDAR) sobre una sola plataforma física, a pesar de ello los dos sensores trabajan de manera independiente y sus procesos difieren uno del otro debido a su naturaleza.

La información LiDAR es georreferenciada mediante el apoyo de una base en tierra que captura la información GPS haciendo uso de un receptor geodésico de doble

frecuencia ubicado sobre un punto con coordenadas tridimensionales (X, Y, Z) conocidas, el registro de los tres ángulos registrados por los sensores inerciales y la información capturada del GPS instalado en la aeronave.

La información fotogramétrica es georreferenciada también mediante el apoyo de una base en tierra que captura la información GPS haciendo uso de un receptor geodésico de doble frecuencia ubicado sobre un punto con coordenadas tridimensionales (X, Y, Z) conocidas, el registro de los tres ángulos registrados por los sensores inerciales (Omega, phi, Kappa) y los puntos de fotocontrol levantados en campo, proceso que se llama aerotriangulación.

La información LiDAR después de su procesamiento se someterá a un control de calidad efectuando varias pruebas, entre las cuales está la exactitud posicional tridimensional (X, Y, Z), para esta prueba se procederá de la siguiente forma:

Se tomaran los puntos de fotocontrol levantados en campo y calculados por el método GPS estático diferencial, se recortara la nube de puntos LiDAR con un radio de 50 metros alrededor de cada punto y se visualizara esta nube en estación fotogramétrica digital mediante la observación estereoscópica de dicha nube, se extraerán las coordenadas de los detalles de los puntos de fotocontrol y se compararan con las obtenidas del cálculo de GPS de campo, también se usaran las imágenes de intensidad generadas a partir de la nube de puntos y que pudieran ser visualizadas con claridad, de éstas se pueden utilizar las coordenadas planimétricas y las altura se obtienen del DTM generado, es decir se tienen dos tipos de métodos para obtener las coordenadas tridimensionales (X, Y, Z) de los puntos.

A continuación, se presenta un ejemplo de una imagen de intensidad:

Ilustración 1 Ejemplo de una imagen de intensidad con punto de control

En campo corresponde a la siguiente imagen:

Ilustración 2 Fotografía del posicionamiento del punto de control

A continuación, se presenta un ejemplo de una nube de puntos LiDAR recortados en dos dimensiones.

Ilustración 3 Ejemplo de una nube de puntos LiDAR recortados en dos dimensiones

A continuación, se presenta una imagen de la nube de puntos LiDAR recortada del mismo punto, pero conformando un modelo estereoscópico

Ilustración 4 Nube de puntos LiDAR para visión estereoscópica

A continuación, se presentan los resultados de la verificación de la exactitud posicional tridimensional de la nube de puntos LiDAR con respecto a los puntos de fotocontrol levantados en campo para un proyecto en Bogotá con lo cual se comprobó la metodología a utilizar en Buenaventura.

1-1								CONTROL EXACT	TITUD POSICIONA	L LIDAR								
ideca																		
LA IDE DE ECGOTÁ			PROYECTO:		TRATO 235 de 20			ESCALA:	1:20	00	-	SISTEMA DE RI		MAGNA Origen Bogotá Central Cundinamarca / Bogotá Rural (Sumapaz)				
TINCIGE .			ENTIDAD:	Unidad Administ	ativa Especial de Ca	atastro Distrital		AREA (Ha):			-				inamarca / Bo	gota Rural (Sur	napaz)	
In particular Conty Street and SALS.			BLOQUE:					GSD Ortoimagen:			-	FECH	A:	05/06/2020	-			
				CALCU	LO DE EXACTITUE	ABSOLUTA DI	E POSICION HO	RIZONTAL					1	CALCULO DE E	XACTITUD ABS	OLUTA DE POSI	CION VERTICAL	
		Coordenada	Coordenada	Coordenada	Coordenada	_				Error en	Error en posicion al			Cota Leida	Lectura en	Error en Cota	Error en cota	
No. Modelo	No. Punto	Este Terreno	Norte Terreno	Este Lectura Modelo AT	Norte Lectura Modelo AT	ΔE	ΔN	(6 E)2	(6 N)2	Posición (XI)	cuadrado (X,)*	(Xi - X)*	Cota Terreno	Estereo	Cota	(Z,)	al cuadrado (Z,)*	(Z, - Z)*
UAECD-006	UAECD-006	991285.363	981468.950	991285.347	981468.876	0.016	0.074	0.000	0.006	0.076	0.006	0.020	3046.207	3046.237	SUPERIOR	0.030	0.001	0.033
UAECD-017	UAECD-017	986103.193	971955.281	986103.252	971955.349	-0.059	-0.068	0.003	0.005	0.090	0.008	0.016	3434.208	3434.088	NFERIOR	0.120	0.014	0.008
UAECD-018	UAECD-018	988569.037	971235.789	988568.975	971235.806	0.062	-0.017	0.004	0.000	0.064	0.004	0.023	3414.667	3414.727	NFERIOR	0.060	0.004	0.023
UAECD-012	UAECD-012	990400.688	974689.877	990400.657	974689.924	0.031	-0.047	0.001	0.002	0.056	0.003	0.026	3359.685	3359.794	SUPERIOR	0.109	0.012	0.010
UAECD-013	UAECD-013	992985.800	973864.482	992986.183	973864.121	-0.383	0.361	0.147	0.130	0.526	0.277	0.095	3209.945	3209.975	NFERIOR	0.030	0.001	0.033
UAECD-014	UAECD-014	998652.874	973955.325	998652.807	973955.319	0.067	0.006	0.004	0.000	0.067	0.005	0.023	3111.558	3111.755	SUPERIOR	0.197	0.039	0.000
UAECD-028	UAECD-028	987564.257	963197.639	987564.426	963197.288	-0.169	0.351	0.029	0.123	0.390	0.152	0.030	3583.306	3583.516	SUPERIOR	0.210	0.044	0.000
UAECD-034	UAECD-034	988509.582	955274.784	988509.681	955274.717	-0.099	0.067	0.010	0.004	0.120	0.014	0.010	3226.536	3226.666	SUPERIOR	0.130	0.017	0.007
UAECD-042	UAECD-042	985255.876	954869.530	985255.785	954869.499	0.091	0.031	0.008	0.001	0.096	0.009	0.015	3471.234	3471.354	NFERIOR	0.120	0.014	0.008
UAECD-041	UAECD-041	983113.890	954363.660	983113.944	954363.718	-0.054	+0.058	0.003	0.003	0.079	0.006	0.019	3589.753	3589.843	NFERIOR	0.090	0.008	0.015
UAECD-035	UAECD-035	991540.625	955787.304	991540.824	955787.347	-0.199	+0.043	0.040	0.002	0.204	0.041	0.000	3354.582	3354.692	SUPERIOR	0.110	0.012	0.010
UAECD-057	UAECD-057	973226.708	943112.889	973226.890	943113.132	-0.182	-0.243	0.033	0.059	0.304	0.092	0.007	3366.592	3366.992	SUPERIOR	0.401	0.160	0.036
UAECD-067	UAECD-067	972208.877	939928.245	972208.845	939928.119	0.032	0.126	0.001	0.016	0.130	0.017	0.008	3319.767	3320.187	NFERIOR	0.420	0.177	0.044
UAECD-078	UAECD-078	975157.763	934896.222	975157.670	934896.211	0.093	0.011	0.009	0.000	0.094	0.009	0.015	3411.886	3412.006	SUPERIOR	0.120	0.014	0.008
UAECD-083	UAECD-083	968213.764	932515.279	968213.464	932515.117	0.300	0.162	0.090	0.026	0.341	0.116	0.015	2687.020	2687.920	NFERIOR	0.900	0.810	0.475
UAECD-085	UAECD-085	970000.778	931740.750	970000.118	931740.714	0.660	0.036	0.436	0.001	0.661	0.437	0.197	3110.617	3111.107	SUPERIOR	0.490	0.240	0.078
UAECD-086	UAECD-086	972949.585	930651.162	972949.793	930651.101	-0.208	0.061	0.043	0.004	0.217	0.047	0.000	3378.556	3378.556	NFERIOR	0.000	0.000	0.044
UAECD-090	UAECD-090	969651.964	925386.921	969651.641	925386.744	0.323	0.177	0.104	0.031	0.368	0.136	0.023	3269.989	3270.179	SUPERIOR	0.190	0.036	0.000
UAECD-105	UAECD-105	965945.104	914361.479	965945.043	914361.687	0.061	+0.208	0.004	0.043	0.217	0.047	0.000	3388.801	3389.101	NFERIOR	0.301	0.090	0.008
UAECD-112	UAECD-112	959299.448	906503.057	959299.574	906503.002	-0.126	0.055	0.016	0.003	0.137	0.019	0.006	3748.850	3749.005	SUPERIOR	0.156	0.024	0.003
UAECD-007	UAECD-007	993542.533	980655.783	993542.539	980655.706	-0.006	0.077	0.000	0.006	0.077	0.006	0.020	3035.013	3034.874	NFERIOR	0.139	0.019	0.005
UAECD-010	UAECD-010	986598.976	976104.844	986599.388	976105.193	-0.412	-0.349	0.170	0.122	0.540	0.292	0.104	3477.459	3477.411	NFERIOR	0.048	0.002	0.026
UAECD-016	UAECD-016	984400.889	972496.470	984400.940	972496.289	-0.051	0.181	0.003	0.033	0.188	0.035	0.001	3756.805	3756.720	SUPERIOR	0.085	0.007	0.016
UAECD-038	UAECD-038	983987.568	949721.281	983987.497	949721.433	0.071	+0.152	0.005	0.023	0.168	0.028	0.002	3764.612	3764.842	NFERIOR	0.230	0.053	0.000
UAECD-048	UAECD-048	985748.978	947212.274	985748.650	947212.087	0.328	0.187	0.108	0.035	0.378	0.143	0.026	3280.960	3280.718	NFERIOR	0.242	0.059	0.001
UAECD-055	UAECD-055	980475.543	945277.984	980475.638	945278.036	-0.095	-0.052	0.009	0.003	0.109	0.012	0.012	3763.090	3762.605	NFERIOR	0.485	0.235	0.075
UAECD-068	UAECD-068	974816.667	939503.080	974816.749	939502.886	-0.082	0.194	0.007	0.038	0.210	0.044	0.000	3620.830	3620.479	NFERIOR	0.351	0.123	0.020
UAECD-079	UAECD-079	978823.885	933701.457	978823.809	933701.291	0.076	0.166	0.006	0.028	0.183	0.034	0.001	3802.364	3802.500	NFERIOR	0.136	0.018	0.006
												ļ				-		\vdash
																		\vdash
										0.217	2.039	0.714		1		0.211	2.235	0.993
											L			<u> </u>		<u> </u>		
	_		RES	BULTADOS						OBSERVACI	ONES GENERALES				KESULTADOS	: ALTIMETRI		
NÚMERO DE PUNTOS (n) =						28		puntos					NÚMERO DE PL	NTOS (n) =		28		ntos
MEDIA =						0.217		metros					MEDIA =			0.211	me	tros
ERROR MEDIO CUADRATICO						0.270		metros					ERROR MEDIO			0.283		tros
DESV. ESTANDARD =						0.163		metros					DESV. ESTAND	ARD =		0.192	me	tros
ERROR ESTANDARD =						0.031		metros					ERROR ESTAN	DARD =		0.036	me	tros
Z =						1.960							Z =			1.960		
INT. DE CONFIANZA PARA UN	95% =				0.157	0.278		metros					NT. DE CONFIAN	(ZA DE 95% =	0.140	0.282	me	tros

Además de las anteriores pruebas se determinaron en campo 5 grillas de puntos sobre superficies duras y planas con el fin de corroborar la consistencia altimétrica de los datos LiDAR, a continuación, se presentan los resultados mediante las siguientes tablas:

Zona	Este	Norte	Cota Ortométrica	Cota DTM	Diferencia en cota
	981949.723	950297.207	3818.624	3818.696	-0.072
	981947.265	950297.666	3818.733	3818.827	-0.094
	981944.961	950298.044	3818.525	3818.648	-0.123
	981944.043	950293.013	3818.568	3818.692	-0.124
	981946.494	950292.610	3818.761	3818.853	-0.092
	981949.381	950292.169	3818.584	3818.677	-0.093
	981947.928	950287.011	3818.664	3818.770	-0.106
	981945.265	950287.528	3818.802	3818.889	-0.087
	981942.732	950288.022	3818.550	3818.729	-0.179
	981941.641	950282.971	3818.606	3818.777	-0.171
	981944.307	950282.487	3818.810	3818.885	-0.075
	981947.018	950281.851	3818.658	3818.762	-0.104
	981945.950	950276.538	3818.609	3818.757	-0.148
	981943.149	950277.231	3818.795	3818.905	-0.110
	981940.381	950277.812	3818.626	3818.789	-0.163
	981939.557	950272.823	3818.650	3818.789	-0.139
CALCERO	981942.150	950272.127	3818.759	3818.890	-0.131
CAICEDO	981944.572	950271.575	3818.608	3818.751	-0.143
	981943.224	950266.510	3818.676	3818.781	-0.105
	981940.648	950267.154	3818.837	3818.913	-0.076
	981938.222	950267.589	3818.722	3818.824	-0.102
	981937.294	950262.689	3818.816	3818.895	-0.079
	981939.427	950262.234	3818.889	3818.965	-0.076
	981941.888	950261.651	3818.780	3818.845	-0.065
	981950.574	950281.429	3818.561	3818.731	-0.170
	981955.381	950279.383	3816.477	3816.617	-0.140
	981963.225	950276.975	3814.016	3814.160	-0.144
	981973.122	950274.149	3812.514	3812.670	-0.156
	981936.134	950284.154	3823.616	3823.774	-0.158
	981933.849	950284.831	3824.496	3824.692	-0.196
	981930.863	950284.895	3822.050	3822.220	-0.170
	981920.741	950287.328	3823.309	3823.442	-0.133
	981915.227	950288.546	3827.421	3827.327	0.094
	981934.870	950257.383	3818.887	3818.729	0.158

Zona	Este	Norte	Cota Ortométrica	Cota DTM	Diferencia en cota
	986507.281	954891.849	3408.431	3408.570	-0.139
	986505.314	954894.273	3408.640	3408.796	-0.156
	986503.828	954896.088	3408.585	3408.731	-0.146
	986500.122	954892.787	3408.865	3409.032	-0.167
	986501.703	954890.619	3408.970	3409.126	-0.156
	986503.205	954888.613	3408.823	3409.002	-0.179
	986499.564	954885.510	3409.111	3409.322	-0.211
	986497.920	954887.574	3409.285	3409.446	-0.161
	986496.329	954889.528	3409.217	3409.429	-0.212
	986492.526	954886.364	3409.494	3409.753	-0.259
	986494.117	954884.356	3409.670	3409.804	-0.134
	986495.479	954882.612	3409.524	3409.719	-0.195
	986491.600	954879.831	3409.852	3410.013	-0.161
	986490.002	954881.292	3409.959	3410.142	-0.183
	986488.755	954883.093	3409.886	3410.085	-0.199
DDIMAN/FDA	986485.080	954879.839	3410.253	3410.409	-0.156
PRIMAVERA	986486.239	954878.277	3410.266	3410.439	-0.173
	986487.440	954876.805	3410.153	3410.323	-0.170
	986483.581	954873.790	3410.483	3410.645	-0.162
	986482.157	954875.157	3410.594	3410.740	-0.146
	986481.184	954876.863	3410.543	3410.727	-0.184
	986490.811	954888.702	3412.317	3412.292	0.025
	986486.905	954893.236	3414.749	3414.963	-0.214
	986484.145	954897.266	3416.742	3417.060	-0.318
	986480.786	954902.125	3420.011	3420.233	-0.222
	986477.417	954906.432	3421.924	3422.182	-0.258
	986496.743	954881.002	3409.292	3409.514	-0.222
	986499.166	954877.902	3407.973	3408.259	-0.286
	986502.449	954873.726	3406.305	3406.567	-0.262
	986504.854	954870.281	3405.284	3405.446	-0.162
	986508.947	954864.808	3402.210	3402.471	-0.261
	986501.561	954874.318	3406.576	3406.755	-0.179

Zona	Este	Norte	Cota Ortométrica	Cota DTM	Diferencia en cota
	992530.773	976832.915	3006.875	3007.030	-0.155
	992527.458	976835.131	3006.910	3007.059	-0.149
	992524.090	976837.319	3006.903	3007.065	-0.162
	992520.753	976839.512	3006.875	3007.054	-0.179
	992517.403	976841.676	3006.867	3007.050	-0.183
	992514.028	976843.838	3006.869	3007.058	-0.189
	992508.965	976846.991	3006.864	3007.049	-0.185
	992512.584	976852.822	3006.940	3007.125	-0.185
	992516.299	976858.627	3006.824	3007.000	-0.176
	992521.273	976855.387	3006.884	3007.035	-0.151
DECADEDA	992517.811	976849.540	3006.994	3007.169	-0.175
REGADERA	992520.899	976847.384	3006.998	3007.169	-0.171
	992524.674	976853.224	3006.893	3007.044	-0.151
	992528.067	976851.119	3006.891	3007.050	-0.159
	992524.458	976845.314	3006.996	3007.183	-0.187
	992527.758	976843.075	3006.996	3007.178	-0.182
	992531.391	976848.911	3006.859	3007.023	-0.164
	992534.776	976846.778	3006.840	3006.999	-0.159
	992531.179	976840.955	3006.988	3007.166	-0.178
	992534.453	976838.750	3006.959	3007.114	-0.155
	992538.180	976844.694	3006.794	3006.933	-0.139
	992523.530	976845.803	3006.997	3007.185	-0.188

Zona	Este	Norte	Cota Ortométrica	Cota DTM	Diferencia en cota
	974424.198	938448.971	3587.202	3587.301	-0.099
	974421.443	938449.798	3587.053	3587.175	-0.122
	974418.764	938450.739	3586.849	3586.943	-0.094
	974420.153	938455.658	3586.780	3586.898	-0.118
	974422.722	938454.702	3586.951	3587.062	-0.111
	974425.515	938453.828	3587.067	3587.188	-0.121
	974426.589	938458.735	3586.921	3587.034	-0.113
	974423.757	938459.526	3586.809	3586.930	-0.121
	974421.178	938460.543	3586.685	3586.785	-0.100
	974422.046	938465.410	3586.561	3586.631	-0.070
	974424.725	938464.707	3586.657	3586.787	-0.130
	974427.649	938463.833	3586.732	3586.859	-0.127
	974428.497	938468.926	3586.530	3586.647	-0.117
	974425.591	938469.656	3586.493	3586.615	-0.122
	974422.900	938470.399	3586.440	3586.536	-0.096
SAN JUAN	974423.760	938475.377	3586.253	3586.357	-0.104
	974426.421	938474.569	3586.305	3586.421	-0.116
	974429.354	938474.061	3586.311	3586.441	-0.130
	974430.095	938479.317	3586.066	3586.208	-0.142
	974427.239	938479.723	3586.128	3586.245	-0.117
	974424.421	938480.274	3586.099	3586.207	-0.108
	974429.362	938463.876	3586.561	3586.750	-0.189
	974435.235	938462.198	3585.112	3585.269	-0.157
	974440.398	938460.790	3584.861	3585.010	-0.149
	974445.556	938459.541	3584.025	3583.796	0.229
	974449.271	938458.642	3583.281	3583.421	-0.140
	974419.268	938466.036	3586.628	3586.755	-0.127
	974412.529	938467.750	3587.260	3587.404	-0.144
	974405.770	938469.493	3587.884	3588.060	-0.176
	974398.616	938471.314	3588.769	3588.971	-0.202
	974427.378	938457.846	3587.237	3587.086	0.151

Zona	Este	Norte	Cota Ortométrica	Cota DTM	Diferencia en cota
	986418.585	972663.245	3398.719	3398.888	-0.169
	986418.990	972667.248	3398.753	3398.886	-0.133
	986419.660	972671.102	3398.726	3398.829	-0.103
	986420.396	972675.039	3398.646	3398.789	-0.143
	986421.137	972678.927	3398.578	3398.714	-0.136
	986421.804	972682.835	3398.533	3398.649	-0.116
	986422.477	972686.825	3398.487	3398.598	-0.111
	986419.353	972687.483	3398.585	3398.733	-0.148
	986417.159	972687.823	3398.524	3398.671	-0.147
SANTA	986416.411	972684.036	3398.532	3398.705	-0.173
HELENA	986418.980	972683.557	3398.647	3398.808	-0.161
HELENA	986418.529	972679.483	3398.701	3398.876	-0.175
	986416.133	972679.982	3398.668	3398.827	-0.159
	986415.563	972676.038	3398.750	3398.882	-0.132
	986417.956	972675.522	3398.747	3398.954	-0.207
	986416.941	972671.828	3398.840	3399.029	-0.189
	986414.979	972672.074	3398.819	3398.909	-0.090
	986414.255	972668.172	3398.865	3398.968	-0.103
	986416.193	972667.822	3398.883	3399.051	-0.168
	986413.581	972664.259	3398.911	3398.960	-0.049
	986415.662	972663.824	3398.947	3399.061	-0.114

3.2 Selección de los sectores donde se extraerán los puntos de control a partir de LiDAR

Para la utilización adecuada de los puntos que se extraerán de LiDAR se conformaran bloques de aerofotografías, ya que el manejo de un número muy de grande de fotografías por bloque hace que los procesos siguientes como triangulación y restitución se tornen muy demorados para los sistemas.

Ilustración 5 Conformación de los bloques de aerotriangulación Norte, Centro y Sur

Una vez se conformaron los bloques se superpondrán los puntos de fotocontrol levantados en campo con el fin de ubicar los sectores donde se deben extraer puntos de control extraídos de LiDAR.

3.3 Generación de imágenes de intensidad de cada uno de los sectores donde se extraerán los puntos de control a partir de LiDAR

Una vez se ubiquen los sectores de los puntos a extraer de LiDAR se procederá a generar las respectivas imágenes de intensidad en formato .img para cada uno de los sectores de cada punto.

3.4 Corte de la nube de puntos LiDAR en cada sector seleccionado

Se procederá a efectuar el corte de la nube de puntos LiDAR para cada sector diseñado con un radio de 50 metros alrededor de cada sector, esta información en formato DGN.

Estos archivos contendrán la nube puntos LiDAR y adicionalmente los elementos restituidos en estación fotogramétrica digital que se interpretaran dentro de esa nube, se restituirán vectores en 3D para elementos de área como vértices de construcciones, de piedras y se digitalizara una sola línea para elementos puntuales que se encuentran en uno de los extremos de esa línea.

3.5 Obtención de detalles y coordenadas tridimensionales de los puntos de control extraídos de LiDAR

Utilizando la observación estereoscópica de la nube de puntos LiDAR recortada, se adquirirán las coordenadas tridimensionales de cada detalle junto con su respectiva descripción, que posteriormente se incorporará en una imagen de una ortofoto preliminar.

3.6 Incorporación de los puntos de control extraídos de LiDAR al bloque de aerotriangulación

Una vez se cuenten con las coordenadas y descripciones de los puntos extraídos mediante LiDAR, se procederá a incorporarlos a las mediciones dentro del proceso de aerotriangulación. Esto permitirá realizar ajustes precisos en cada bloque, asegurando que cumplan con las especificaciones requeridas para las diferentes escalas, ya sea 1:1.000 o 1:5.000.

3.7 Prueba de calidad posicional de los bloques aerotriangulados utilizando los puntos extraídos de LiDAR

Se verificará la triangulación generada para cada bloque de dos maneras. En primer lugar, se compararán las coordenadas leídas en la estación digital fotogramétrica

de cada modelo estereoscópico con las obtenidas del fotocontrol levantado en campo y calculado mediante GPS. En segundo lugar, se realizará una comparación entre las coordenadas leídas en la estación digital fotogramétrica de cada modelo estereoscópico y las obtenidas de los puntos extraídos mediante LiDAR.

4 CONCLUSIONES

LiDAR (Light Detection and Ranging) es una tecnología de percepción remota que utiliza pulsos láser para medir distancias y crear representaciones tridimensionales de los elementos del área de la superficie terrestre capturada. La precisión en posición de los datos LiDAR puede variar ampliamente según el tipo de sistema utilizado, la calidad del equipo, las condiciones ambientales y la aplicación específica.

Los sistemas LiDAR aerotransportados de alta precisión, utilizados en aplicaciones de cartografía, topografía y modelado 3D de alta resolución, pueden lograr una precisión posicional en el rango de centímetros a pocos centímetros. Estos sistemas suelen estar equipados con sistemas de navegación por satélite de alta precisión (GNSS) y unidades de medición inercial (IMU) altamente precisas para garantizar una ubicación y orientación precisas de los datos LiDAR.

Dicho lo anterior, los datos LiDAR del proyecto fueron capturados con el sensor Leica ALS70-HP (Airborne Laser Scanner 70 - High Performance), que es un sistema de escaneo láser aerotransportado desarrollado por Leica Geosystems, una reconocida empresa en el campo de la tecnología geoespacial y sistemas de medición.

Las principales características de este sensor son:

Tecnología de Escaneo Láser: El sistema utiliza pulsos láser para medir las distancias entre el sensor en el avión y los objetos en la superficie terrestre. El láser emite pulsos que rebotan en la superficie y se reciben nuevamente en el sensor, lo que permite calcular la distancia y la posición tridimensional de los objetos.

Alta Densidad de Puntos: El ALS70-HP puede capturar una densidad significativamente alta de puntos en el suelo, lo que proporciona una representación detallada y precisa del terreno y los objetos. Esto es especialmente útil en áreas con topografía compleja o en aplicaciones que requieren un alto nivel de detalle.

Doble Pulso (Dual Pulse): Una característica distintiva de este sistema es su capacidad de utilizar un doble pulso láser. Esto significa que se emiten dos pulsos láser muy cercanos entre sí, lo que mejora la capacidad de penetrar el dosel forestal y capturar datos en áreas densamente arboladas.

Sistema Inercial de Medición (IMU) y GNSS: El ALS70-HP está equipado con una unidad de medición inercial y sistemas de navegación por satélite de alta precisión (GNSS). Estos componentes permiten la medición precisa de la orientación y la posición del sensor durante el vuelo, lo que es esencial para calcular con precisión las coordenadas tridimensionales de los puntos capturados.

Software de Procesamiento de Datos: Los datos capturados por el ALS70-HP se procesan utilizando software especializado que permite la creación de modelos digitales del terreno (DTM), nubes de puntos tridimensionales y otros productos cartográficos.

Precisión Posicional: El sistema produce datos después del posprocesamiento con una precisión de ubicación horizontal de 5 a 38 cm y vertical de 7 a 16 cm (una desviación estándar) a partir de objetivos que llenan todo el campo con una reflectividad difusa del 10 % o más con visibilidad atmosférica de 23,5 km o mejor para alturas de vuelo de hasta 3500 m AGL (modo SPiA) y FOV nominal de 40 grados.

Dadas las dificultades en las diferentes zonas para la captura de puntos de control con fines de ajuste y chequeo de los productos fotogramétricos generados, y tomando como base el cumplimiento de factores que tienen relación directa con la exactitud en posición y altura de los datos LiDAR obtenidos, como calidad y precisión de la unidad de medición inercial (IMU) y del sistema de navegación por satélite (GNSS) del sensor utilizado, densidad de puntos LiDAR con numerosos datos de referencia en la nube de puntos para realizar las comparaciones y alineaciones necesarias, y calidad en el procesamiento con una metodología rigurosa utilizada para el ajuste, con algoritmos avanzados de registro y filtrado que mejoran la precisión del ajuste directo, es posible obviar el levantamiento de puntos de control y de chequeo, tomando como definitiva la coordenada XY de cada dato y realizando un proceso de ajuste por nivelación GPS para obtener alturas ortométricas de las zonas voladas.

Dicho proceso estará basado en la generación de una grilla distribuida a nivel de terreno en la nube de puntos clasificada en altura elipsoidal. Se tratarán las coordenadas de dichos puntos como datos GPS a los cuales se les determinará una altura ortométrica por metodología de nivelación GPS, tomando como bases de ajuste un par de vértices geodésicos de la red pasiva del IGAC con alturas niveladas y posición calculada. Este método vincula las alturas elipsoidales con el modelo geoidal para trasladar el control vertical a nuevos puntos de referencia ajustando las alturas por el método de mínimos cuadrados.

Una vez obtenidas las alturas ortométricas, se efectúa un control de cotas entre los puntos calculados y el LiDAR clasificado, con la finalidad de obtener la diferencia

entre los dos datos. Finalmente, con dichas diferencias de alturas obtenidas en cada punto, se genera el modelo local de ajuste que se aplica a los datos LiDAR para que se fijen a los puntos calculados.

Como método de verificación, se realizará un comparativo de la nube de puntos LiDAR procesada en altura elipsoidal, con los vértices geodésicos de la red pasiva del IGAC existentes en la zona y de igual forma con altura elipsoidal, para validar que las diferencias entre las dos fuentes de datos están dentro de las precisiones requeridas para el proyecto.

La información LiDAR es una valiosa fuente de datos confiable para respaldar procesos de georreferenciación, especialmente en casos especiales en los que no se puede llevar a cabo trabajo de campo. Esta tecnología cumple con las especificaciones necesarias para producir productos cartográficos a escala 1:1.000 y 1:5.000, como aerotriangulaciones y ortofotografías.