Polynomial Approximations of Functions

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference your lecture notes and the relevant chapters in a textbook/online resource.

EXPECTED SKILLS:

- Find and use the local linear and local quadratic approximations of a function f(x) at a specified $x = x_0$.
- Determine the Maclaurin polynomials of various degrees for a function f(x), and use sigma notation to write the n-th Maclaurin polynomial.
- Determine the Taylor polynomials of various degrees for a function f(x) at a specified $x=x_0$, and use sigma notation to write the n-th Taylor polynomial.

PRACTICE PROBLEMS:

- 1. Consider the function $f(x) = \sqrt{x}$.
 - (a) Find the local linear approximation $p_1(x)$ and the local quadratic approximation $p_2(x)$ to f(x) at x = 4.
 - (b) Approximate $\sqrt{4.1}$ using your answers in part (a).

For problems 2-4, use the appropriate local linear and local quadratic approximations to approximate the following values.

- $2. \sin 0.1$
- 3. $\sqrt[3]{28}$
- $4. \tan 44^{\circ}$
- 5. Suppose that the values of f(x) and its first four derivatives at x=0 are as follows:

$$f(0) = 5$$
 $f'(0) = -2$ $f''(0) = 0$ $f'''(0) = -1$ $f^{(4)}(0) = 12$

Based on this information, list out as many Maclaurin polynomials for f(x) as possible.

6. Find the 4th Maclaurin polynomial $p_4(x)$ for the function $f(x) = 2x^4 - x^3 + 6$.

For problem 7, find the Macluarin polynomials $p_0(x), p_1(x), p_2(x), p_3(x)$, and $p_4(x)$. Then write the *n*-th Maclaurin polynomial $p_n(x)$ using sigma notation.

1

7.
$$f(x) = \ln(1+x)$$

For problems 8 & 9, find the Taylor polynomials $p_0(x), p_1(x), p_2(x), p_3(x)$, and $p_4(x)$ about $x = x_0$. Then write the *n*-th Taylor polynomial $p_n(x)$ at $x = x_0$ using sigma notation.

8.
$$f(x) = \frac{1}{1-x}$$
; $x_0 = 2$

9.
$$f(x) = e^{2x}$$
; $x_0 = \ln 3$