A Comprehensive Procedure for Personalized Happiness Recommender System

: Using Multi-Faceted Signal Processing with Holistic Quantified Self (HQS)

Things to Make Clear

	X	0
Research Purpose	-Our purpose is not to make a system that define happiness . -Our purpose is not to find an universal algorithm that predicts happiness.	-Our purpose is to make a system that boosts happiness based on the collected 4 status and happiness level. -Our purpose is to find a factor that affects the individual user's happiness , and use the factor to recommend activities.
Happiness Measurement	Our system does not predicts happiness based on the 4 factors	Our system directly measure happines s by using existing Subjective Well-Being questionnaire (self-reporting)
Equation Purpose	Not to define happiness	To use it as a recommendation basis
Application	Our system does not apply the same algorithm to all users.	-Each user has different algorithm to be used to recommend activities. -Our system discovers the most relevant factors to the happiness level for each user because factors that are related to happiness is different depending on each person.
Duration	Not only real time	Both long-term & real time -Long-term tracking to find a factor -Real time recommendation (feedback) based on the factor

Research Objective

- Personalized Happiness Enhancing System
 - Support user with activity recommendation in real time
 - Analyze main factors that enhance happiness of each user
 - Recommend personalized activities based on that main factors

Implementation Detail(1/8)

- Definition of Happiness [1]
 - Subjective Well-Being = Positive Affect + Negative Affect + Life Satisfaction
 - Affect: pleasant and unpleasant mood and emotions
 - Life Satisfaction: a cognitive sense of satisfaction with life.
- Measurement of SWB

- [2
- PANAS (Positive and Negative Affect Scale)
 - 7 point scale
 - 10-10 items each affect
- SWLS (The Satisfaction With Life scale)
 - 5 point scale
 - 5 items

^[1] Diener, E. (2009). Assessing subjective well-being: Progress and opportunities. Assessing well-being, 25-65.

^[2] Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of personality and social psychology, 54(6), 1063.

^[3] Diener, E. D., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The satisfaction with life scale. Journal of personality assessment, 49(1), 71-75.

Implementation Detail(2/8)

Sensor Types / System Configuration Social activity ➤ Visual Google glass MINI HD recognition logs Smart glasses & face recognition Facial expression, alertness Interior camera Heartbeat rate PPG sensor Apple watch Smart watch & Sleep monitoring microphone Actigraphy **Pedometer** Step counter Fore/background Smart phone usage time Social state application Usage manager Cognitive-emotional state Physical condition Digital consumption behavior

Implementation Detail(3/8)

Data Acquisition Process

Sensor	Data type	Acquisition process	
Google glass	Visual recognition logs	Every 10 mins.Waking hour	
MINI HD	MINI HD Facial image		
	Heartbeat rate	• 10~20 mins.	
Apple watch	Sleep state logs (Autosleep)	• Every 15 mins	
	Pedometer	Waking hour	
Smart phone	Fore/background usage time	Analysis of accumulated data	

Implementation Detail(4/8)

Flow Chart of Happiness Recommender System

Implementation Detail(5/8)

Implementation Detail(6/8)

Research Process

Multifaceted tracking

Category	Fundamental index	Sensors		
	Pedometer	Step counter		
Physical condition	Heartbeat rate	PPG sensor		
	Sleep	Actigraphy		
Compline another all state	Alertness	Camera		
Cognitive-emotional state	Facial expression	Camera		
Social state	Interaction frequency	Visual recognition logs		
Digital consumption behavior	Foreground usage time	Foreground activity logs		
Digital consumption behavior	Background usage time	Background service logs		

Implementation Detail(7/8)

- Multivariable Linear regression/ Correlation
 - Find factors that affect the user's happiness the most among 4 factors

 - Ex. Participant 1: Happiness = 45 + 0.1Cognitive + 0.2Physical +0.3Social + 0.1Behavior

Implementation Detail(8/8)

- Use the equation obtained to create a recommendation system
- If the user's happiness level decreases below a certain point, the agent recommend several related activity of the main factor.

Technical Evaluation & User Study(1/3)

Technical Evaluation & User Study(2/3)

Research Process

Design

- 2 Independent variable
 - Whether the user use the Happiness Recommender (Non-using group, App-using group)
 - Time (Before-using condition, After-using condition)
- 1 Dependent variable: Happiness level
- Between subject design (Compare happiness level between Non-using group & App-using group)
- Within subject design (Compare happiness level between Before using the app & After using the app)

Hypothesis

H1: (between-subject difference)
 Happiness level of those who use Happiness Recommender will be significantly higher than those who do not use.

H2: (within-subject difference)

For those who use Happiness Recommender, the user's happiness level will be significantly enhanced after using the app, compared to before.

Participant

Clinically non-impared university students (Sample size = 40)

Technical Evaluation & User Study(3/3)

Research Process

(1)Tracking (2)Analysis (3)Application (4)Evaluation

Statistical Analysis

- Independent t-test (for comparison between Non-using group & App-using group)
- Repeated Paired t-test (for comparison between Before-using condition & After-using condition)

Expected Results

Independent t-test (Non-using group & App-using group)					
① Happiness level of Non-use	3	1	2	1	2
② Recommendation	Walk	Call	Nap	SNS	Sleep
③ Happiness level of App-use	5	4	4	3	5
Difference between Non-use and App-use	2	3	2	2	3
⑤ Independent t-test					
6 Significance	p < .05				

Paired t-test (Before-using condition & After-using condition)					
① Pre- Happiness level	3	1	2	1	2
② Recommendation	Walking	Call	Nap	SNS	Sleep
③ Post- Happiness level	5	4	4	3	5
Difference between Pre and Post	2	3	2	2	3
⑤ Paired t-test					
Significance	p > .05	p < .05	p > .05	p < .05	p > .05

Literature Review (1/4)

Comparison between Related Works

HQS Framework, 2018

/Augmented Smart coach, 2014

High SWB user

Latitude

Low SWB user

Literature Review (2/4)

Subjective Well-Being

[1] Rhim, S., Lee, U., & Han, K. (2020, July). Tracking and modeling subjective well-being using smartphone-based digital phenotype. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization (pp. 211-220).

Literature Review (3/4)

Recommendation

HQS Framework, 2018 [1] Augmented Smart coach, 2014 [2] First suggested the concept of HQS Suggested a framework for augmented smart coach Describing overall process of generating HQS Proposed a coaching processor based on HQS generator Application scenarios **Augmented Smart Coach Framework** - Addiction prevention - Virtual life coaching - Happiness pursuer Concept Limited to a conceptual framework Limited to a conceptual framework Limitation Limited to just a broad concept Goal / Role Model Made a prototype using just available trackers No specific procedure for happiness pursuer • A step further toward a practical application from the framework • Suggested a specific procedure for the happiness pursuer scenario Noveltv • Make a prototype using available trackers based on careful of Ours • Evaluate how the augmented smart coach is effective in real life consideration in order to represent the user's digital self

Literature Review (4/4)

Multimodal Sensor

	Closed Loop System, 2019 ^[1]		
Concept	Wearables and immersive system supporting user with cognitive issues in real-time Sense what he is doing and what state he is in with all sorts of physiological sensing Analyze the data and help him with goals in terms of behavior change Give him real time feedback and intervention to help him develop cognitive skills Physiological sensing		
Limitation	Limited to tracking and solving only cognitive issues Unpractical EEG sensor based		
Novelty of Ours	 Track not only cognitive state of the user, but also physical, emotional, social and behavioral state Use the holistic user data to give him real time recommendation Use practical sensors of smartphone for daily use with smart glasses, rather than unpractical EEG 		

Contributions

- The first application utilizing HQS user modeling
- Realize an augmented happiness assistant enhancing human ability
- Propose a comprehensive procedure for generating personalized happiness recommender
- Solve disadvantages of conventional intervention
 - Eg. reading self-help books, watching courses, seeing a therapist or coach, and resorting to drugs
- In align with future Augmented Humans research directions
 - An interaction as integration, how could a system integrate with us in our daily life so it can help us
 - A system more as something that is always running and where the interaction can be initiated automatically by the state of the user and the context of the user
 - The systems could change over time and adapt with us and change with us the longer we use them.

Potential Application (1/2)

Management of In-work Benefits & Team Building

- Enhancing efficiency of work
 - Managing workload according to SWB
 - Elimination of main harmful factors
- Designing building facilities
 - Arranging practical accommodation
 - Optimal illumination for enhancing SWB
- Organizing team for optimal operation
 - Grouping similar chars. and business style
 - Deciding sustenance based on SWB variation

Enthusiastic Flexible Systematic

Potential Application (2/2)

- Commercial Dating Application
 - Collecting HQS database of date partners
 - Analyzing social interaction pattern
 - Grouping well matched characters
 - Blind-date matching system
 - To prevent break-up, classifying similar charcs.
 - Predicting probability of accomplishment
 - Couple management
 - Diagnosing relation by SWB state
 - Analysis of factors for break-up
 - Giving a feedback for sustenance

Thank you

