

4th International Conference on Electrical, Computer and Communication.

Automated Vehicle Number Plate Detection and Recognition using YOLOv8.

Paper ID: 1092

Abdullah Al Noman

Daffodil International University, Dhaka, Bangladesh.

Contents

Introduction	Easy-OCR Framework
Objectives	Results & Discussions
Literature Review	Conclusion
Methodology	Acknowledgments
Dataset and Preprocessing	Questions
YOLOv8 Model	

01

Introduction

Introduction

O1 Problem
Statement

- Fast urbanization of Bangladesh really causes heavy traffic congestion as well as poor law enforcement.
- Automated license plate recognition is important for toll collection, parking management, and traffic surveillance.

02 | Challenges

- ✓ Multilingual Bangla-English plates.
- ✓ Skewed angles, varying lighting, and noisy inputs.

02 Objective

Objectives

O1 | Primary Goal

 Create a system for real-time detection and recognition of Bangla vehicle license plates.

02 Key Objectives

- Develop a custom dataset for Bangla license plates.
- ✓ Integrate YOLOv8 for detection and Easy-OCR for recognition.
- ✓ Achieve high accuracy in detection and recognition under challenging conditions.

03 Literature Review

Literature Review

Key Findings from Existing Works

- ☐ Most systems focus on Latin-based plates, not Bangla.
- ☐ The challenges include poor lighting, skewed plate, and impending noise pollution.

Gaps in Research

- ☐ Limited datasets for Bangla license plates.
- $\hfill \square$ Lack of robust systems for multilingual scripts.

Our Contribution

- ☐ Custom dataset for Bangla plates.
- ☐ Integration of YOLOv8 and Easy-OCR for superior performance.

04

Methodology

Overview

- YOLOv8 for license plate detection.
- Easy-OCR for character recognition.

Detection (YOLOv8)

Preprocessing

Image acquisition

Recognition (Easy-OCR).

Key Features

- Real-time processing.
- Robustness to skewed plates, occlusions, and varying lighting.

05 Dataset and Preprocessing

Dataset and Preprocessing

Dataset

- 393 images (276 training, 79 validation, 38 testing).
- Collected from Dhaka city, focusing on diverse vehicle types and plate designs.

Preprocessing

- Resizing, cropping, noise removal.
- Annotation using Roboflow.
- Data augmentation: flipping, rotation, contrast adjustments.

O6 YOLOv8 - Model

YOLOv8 Model

Architecture

CSPNet backbone, FPN/PAN neck, anchor-free detection head.

Training Details

200 epochs, batch size 16, learning rate 0.01.

High detection accuracy (93–96%).

Real-time processing capabilities.

Key Advantages

07 Easy-OCR Framework

Easy-OCR Framework

Initialize EasyOCR reader
reader = easyocr.Reader(['bn', 'en'])

08 Results & Discussions

Results & Discussions

□ Detection Accuracy

93–96% accuracy in detecting Bangla/English license plates.

□ Recognition Performance

• CER: 1.52%, WER: 5.53%.

□ Comparison with Baseline

• Outperforms YOLOv4 + Tesseract (88.5% accuracy, 5.10% CER, 12.50% WER).

■ Visual Results

Showcase detected plates under varying conditions (skewed, occluded, low lighting).

09 Conclusion

Conclusion

Key Contributions

- ✓ Custom dataset for Bangla license plates.
- ✓ High detection and recognition accuracy.
- ✓ Robust performance in real-world conditions.

Applications

Automated toll collection, parking management, traffic monitoring.

- ✓ Improve recognition accuracy under challenging conditions.
- ✓ Enhance generalization for diverse plate formats.
- Owner Identification and Low enforcement.

Future Work

Thanks!

Conference Organizers:

The organizers of the 4th International Conference on Electrical, Computer and Communication Engineering (ECCE) for providing this platform to present our work.

Collaborators and Advisors:

Md. Hasan Imam Bijoy (Daffodil International University) for his invaluable guidance and support throughout this research.

My teammates, Abrar Hameem Bornil and Nushrat Jahan Mila, for their dedication and contributions to this research.

Institutions:

Daffodil International University

(DIU) for providing the resources and infrastructure necessary for this research.

