ELEN-6893 Big Data Analysis

Final Project:
Automatic Image Labelling System

Group #3: Jing Peng, Jiashu Chen, Yi Yang

Date Performed: December 19rd, 2021

Methods - Algorithm

Faster-RCNN:

- Region-based classification and detection
- ResNet: Feature map extractor
- Region Proposal Network: Two-stage detector to generate region proposals
- Non-Maximum Suppression: Merge candidate region boxes
- Rol Head branches: Classification and Bounding-box regression
- Implement our experiments in PyTorch and visualize via OpenCV

Methods - Software

Across platform application:

- > Front-end:
 - Framework: Electron + React + Semantic UI
 - Data interaction: Axios + React Hooks
 - Package: NPM
- Back-end:
 - > API: Flask
 - Deep-Learning Model
 - Database: MySQL8.0

Current Results

ResNet34 + RPN:

Our model can detect targets in different colors, shapes and sizes

All training is done on GCP with one Tesla T4 GPU. Finished 20000 iterations in approximately 2 hours.

AP	AP50	AP75	APs	APm	APl
32.494	64.792	26.677	20.755	36.286	42.568

Current Results

- Upload your image to be labelled through our software user interface.
- Wait for annotations generated by our deep-learning model.
- Make modifications to achieve a better result if necessary.
- □ Confirm your labels and put it into training dataset.

Problems

- Model divergence
 - Non-ideal initiation
 - Adjustment on learning rate
 - Warm-up training
- Model Under-fitting
 - ResNet-18 seems to under-fit
 - Use a deeper net: ResNet-34/50
 - More epochs in the training process
- Lack of variety in training dataset
 - Detect some specific types of targets
 - Enlarge the training dataset
 - Ensure that training data contains targets of different shapes and color, etc.

Evaluation

- Deep-learning Model
 - Accuracy: AP as the most important criteria
 - Speed: How long it takes to process each image
 - Availability: Applicable to different targets and tasks

Software

- Performance: Using Lazyload for images and components in the page.
- Functions:
 - Annotations of uploaded images
 - Change of the annotations
 - add
 - delete
 - update

Future Work

- Deep-learning Model
 - Model training function interface
 - Parameters tuning for better performance
 - Training dataset variety

Software

- Display real-time change of bounding box
- Periodically training of the deep-learning model
- Optimization of the front-end UI
- Log system

Reference

- Ren S, He K, Girshick R, et al. Faster r-cnn: Towards realtime object detection with region proposal networks[J].
 Advances in neural information processing systems, 2015, 28: 91-99.
- He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.