Spectroscope a Réseau

Vérification de la formule des réseaux

Il s'agit de vérifier la formule des réseaux en se plaçant sous incidence normale:

$$sin(\theta) = pn\lambda$$

1ère expérience

Dans cette expérience, on cherche a vérifier la dépendance de $sin(\theta)$ et fonction de p pour un λ fixé.

On a choisi de mesurer l'angle de la première feinte jaune, qui a une longueur d'onde $579.1 imes 10^{-6} m$ et $n=100 imes 10^3$.

Р	heta
0	0
1	$2.5\degree51'$
2	6.5°10′
3	9.5°36'
-1	$-2.5\degree10'$
-2	$-6.7\degree15'$
-3	$-10.5\degree6'$

Le programme suivant permet de tracer la courbe de $sin(\theta)$ en fonction de p ainsi que la régression linéaire de celle-ci:

```
import matplotlib.pyplot as plt
import numpy as np
from math import pi
p = np.array([-3, -2, -1, 0, 1, 2, 3])
theta_degre = np.array([-11.5-54/60, -7.7-45/60, -3.5-10/60, 0, 2.5+51/60, 6.5+10/60, -7.7-45/60, -3.5-10/60, 0, 2.5+51/60, 6.5+10/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -7.7-45/60, -
9.5+36/])
theta_rad = pi/180 *theta_degre
y = np.sin(theta_rad)
plt.plot(p, y, 'k+:')
plt.xlabel("ordre p")
plt.ylabel("sin theta")
plt.grid()
#plt.show()
# Vérification du modèle
[a, b] = np.polyfit(p, y, 1)
print(a, b)
ymodel = a* p
plt.plot(p, ymodel, 'r-')
plt.show()
print("La pente vaut ", round(a, 4))
```


On remarque que les grandeurs sont bien proportionnelles, comme attendu.

2ème expérience

Maintenant, on cherche a vérifier la dépendance de $sin(\theta)$ en focntion de λ , pour cela on va fixer cette fois-ci p=1 et on garde $n=100\times 10^3 m$.

	λ
166°28′	
169°10′	
170°50′	
171°53′	

De même, avec python on peut tracer les points, et la droite correspondante:

```
import matplotlib.pyplot as plt
import numpy as np
from math import pi
1 = np.array([404.7, 491.6, 546.1, 577.0])
theta_degre = [166 + 28/60, 169 + 10/60, 170 + 50/60, 171 + 53/60]
theta_degre = np.array([a-(150.5) for a in theta_degre])
theta_rad = pi/180 *theta_degre
y = np.sin(theta_rad)
plt.plot(1, y, 'k+:')
plt.xlabel("longueur d'onde lambda en nm")
plt.ylabel("sin theta")
plt.grid()
#plt.show()
# Vérification du modèle
[c, d] = np.polyfit(1, y, 1)
print(c, d)
ymodel = c*1 + d
plt.plot(1, ymodel, 'r-')
plt.show()
print("La pente vaut ", round(c, 4))
```


Conlusion: On a vérifié la dépendance de $sin(\theta)$ en fonction de p et de λ , et dans tout les cas, les grandeurs étaient proportionnels, donc la formule est bien vérifié.

Détermination du pas du réseau

La précision de la mesure de lambda va être de l'ordre de quelques minutes d'angles.

On va pouvoir utiliser la méthode de Monte-Carlo pour estimer la fréquence spatiale du réseau (soit le nombre de traits par mm). Le programme python suivant permet de faire exactement cela:

```
import matplotlib.pyplot as plt
import numpy as np
import numpy.random as rd
from math import pi
1 = np.array([404.7, 491.6, 546.1, 577.0])
theta_degre = [166 + 28/60, 169 + 10/60, 170 + 50/60, 171 + 53/60]
theta degre = np.array([a-(150.5) for a in theta degre])
dtheta degre =2/30 # imprécision sur la mesure des angles de 2 min
N = 10000
aMC = []
for i in range(N):
   theta_degreMC = theta_degre + dtheta_degre * rd.uniform(-1, 1, len(theta_degre))
   theta_radMC = pi/180 *theta_degreMC
   yMC = np.sin(theta radMC)
    [a, b] = np.polyfit(1, yMC, 1)
   aMC.append(a)
amoy =np.average(aMC)
ua = np.std(aMC)
print(amoy, ua)
pas_moy = amoy * 10**6
upas = ua * 10**6
print(pas_moy, upas)
print("Le pas vaut ", round(pas_moy, 0), "traits par mm")
print("Incertitude-type sur le pas: ", round(upas, 0), "traits par mm")
```

On trouve alors que le pas vaut $\boxed{517.0~traits~par~mm}$ avec une incertitude-type sur le pas de $\boxed{5.0~traits~par~mm}$ (valeur largement en dehors de la tolérance de 5% normale...).

Etalonnage et mesure d'une longueur d'onde inconnue

On propose ici de trouver, grâce a la formule précédente, la longueur d'onde d'une raie spécifique. Tout d'abord, on change de lampe, pour une lampe où l'on observe 2 raies jaunes. On a mesurer l'angle de l'une de celles-ci et on a trouvé $\theta=37\,^\circ25'$ pour p=2. Donc d'après la formule précédente:

$$sin(\theta) = \lambda np$$
 (1)

$$\iff \lambda = \frac{\sin(\theta)}{np}$$

$$= \frac{0.606}{1034}$$
(2)

$$=\frac{0.606}{1034}\tag{3}$$

$$=587nm\tag{4}$$

Mesure au minimum de déviation

On a, car $\theta = -i$:

$$sin(\theta) - sin(i) = \lambda np \tag{5}$$

$$\iff \theta = \arcsin(\frac{\lambda np}{2}) \tag{6}$$

$$D_m = 2\theta \tag{7}$$

$$= 2arcsin(\frac{\lambda np}{2})$$
 (8)

(On a pas pu finir la partie pratique..)