Aufgabe 1: Raytracing

Teilaufgabe 1a

Abbildung 1: Reflexionsstrahl, Schattenstrahlen und Transmissionstrahl

Teilaufgabe 1b

Wie nennt man das physikalische Gesetz oder Prinzip, welches die Richtungsänderung eines Lichtstrahls beim Übergang in ein anderes Medium beschreibt?

Snellsches Gesetz $(\eta_0 \cdot \sin \theta_0 = \theta_1 \cdot \sin \delta_1)$

Teilaufgabe 1c

Welche Bedingung muss gelten, damit beim Übergang eines Lichtstrahls von einem Medium mit Refraktionsindex η_0 in ein Medium mit Refraktionsindex η_1 Totalreflexion auftreten kann?

Der Einfallswinkel muss einen Grenzwinkel $\theta = \arcsin \frac{\eta_1}{\eta_0}$ überschreiten (also besonders flach auf das Material sein).

Aussage	Wahr	Falsch
Von den drei Grundfarben der additiven Farbmischung sind Menschen	Ø	
gegenüber blau in der Regel am unempfindlichsten.		
Es gibt keine zwei unterschiedlichen Lichtspektren im sichtbaren Bereich,		Ø
die der Mensch als dieselbe Farbe wahrnimmt.		
Genau drei Grundgrößen reichen (nach Graßmann) aus, um einen mensch-		
lichen Farbeindruck zu beschreiben.		
Es entspricht nicht der menschlichen Farbempfindlichkeit, wenn die		
Helligkeit (Luminanz) einer Farbe als das arithmetische Mittel der RGB-		
Anteile berechnet wird.		
Gammakorrektur mit dem Parameter γ wird üblicherweise durch die		Ø
Abbildung $L' = \gamma^L$ beschrieben.		

Aufgabe 2: Beleuchtung und Wahrnehmung

Teilaufgabe 2a

- $\bullet\,$ Bild 1: Nicht mögliche Kombination aus Bild 2 und Bild 3.
- Bild 2: Komplett spekular
- \bullet Bild 3: Entspricht einem Glanzlicht in Richtung N,aber das ist nur in Richtung R_L möglich.
- Bild 4: Komplett diffus.

Teilaufgabe 2b

Aufgabe 3

TODO

Aufgabe 4

TODO

Aufgabe 5

TODO

Aufgabe 6	
TODO	
Aufgabe 7	
TODO	
Aufgabe 8	
TODO	
Aufgabe 9	
TODO	
Aufgabe 10	
TODO	
Aufgabe 11	
whatever shader.frag —	
Aufgabe 12	
TODO	