EigenNet in High Dimensional Space Feature Selection Method

Rahul Barikeri, Ashutosh Modi, Rubein Shaikh

University of South Florida

December 5, 2016

Outline

- Introduction
- Peature Selection
- 3 Eigen Net
- Results

Feature

Table 1.2 Weather Data					
Outlook	Temperature	Humidity	Windy	Play	
Sunny	hot	high	false	no	
Sunny	hot	high	true	no	
Overcast	hot	high	false	yes	
Rainy	mild	high	false	yes	
Rainy	cool	normal	false	yes	
Rainy	cool	normal	true	no	
Overcast	cool	normal	true	yes	
Sunny	mild	high	false	no	
Sunny	cool	normal	false	yes	
Rainy	mild	normal	false	yes	
Sunny	mild	normal	true	yes	
Overcast	mild	high	true	yes	
Overcast	hot	normal	false	yes	
Rainy	mild	high	true	no	

1

 $^{^{1}}$ Data Mining: Practical Machine Learning Tools and Techniques: Ian H. Witten, Eibe Frank, Mark

Feature Selection Vs Extraction

$$\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \rightarrow \begin{bmatrix} X_a \\ X_b \\ \vdots \\ X_j \end{bmatrix}$$

$$f\left(\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}\right) \rightarrow \begin{bmatrix} X_1' \\ X_2' \\ \vdots \\ X_k \end{bmatrix}$$

Huges phenomenon

- Curse of Dimensionality²
- Enough examples are required to have sufficient combination of features

Challenge

For small number of instances, prediction accuracy decreases with increase in dimensionality

²Frame Hughes, Gordon. "On the mean accuracy of statistical pattern recognizers." |EEE transactions on information theory 14.1 (1968): 55-63.

Performance Curve

- Wrapper
- Filter
- Embedded

- Wrapper
 - 2^N combinations
- Filter
- Embedded

- Wrapper
 - 2^N combinations
- Filter
 - Variable ranking technique
- Embedded

- Wrapper
 - 2^N combinations
- Filter
 - Variable ranking technique
- Embedded
 - Part of training algorithm

Eigen values and Eigen Vectors

$$\overrightarrow{AV} = \lambda \overrightarrow{V}$$

 $\overrightarrow{V} = \text{Transformation matrix}$ $\overrightarrow{V} = \text{Eigen Vector}$

 $\lambda = \text{Eigen Value}$

Classification Objective

Cost function

$$\min_{\beta} J(\beta) = \frac{1}{2N} \sum_{i=1}^{N} \left(f_{\beta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

For Logistic regression

$$f_{\beta}(x) = \frac{1}{1 + e^{-\beta^{T}x}}$$

Modified Classification Objective

With constraint

$$\min_{\beta \lambda} J(\beta) = \frac{1}{2N} \sum_{i=1}^{N} \left(f_{\beta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \|\beta\|_{p}$$

p norm:

$$\|\beta\|_{p} = \left(\sum_{i=1}^{N} |\beta|^{p}\right)^{\frac{1}{p}}$$

 I_0 Norm : Pseudo Norm (Hard to optimize)

I1 Norm: LASSO

l₂ Norm : Ridge Regression

To avoid overfitting

- To avoid overfitting
- To put constraint on values of weight

- To avoid overfitting
- To put constraint on values of weight
 - Weight Decay or Parameter Shrinkage

- To avoid overfitting
- To put constraint on values of weight
 - Weight Decay or Parameter Shrinkage
- Allows model to be trained on limited data sets.

- To avoid overfitting
- To put constraint on values of weight
 - Weight Decay or Parameter Shrinkage
- Allows model to be trained on limited data sets.
- Improves prediction for new instance

Gradient Descent and Contours

L1 and L2 Norm

Figure 3.4 Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer q=2 on the left and the lasso regularizer q=1 on the right, in which the optimum value for the parameter vector ${\bf w}$ is denoted by ${\bf w}^*$. The lasso gives a sparse solution in which ${\bf w}_1^*=0$.

 \dot{w}_1

6

Pattern Recognition and Machine Learning: Christopher M. Bishop > () +

LASSO

- Least Absolute Selection and Shrinkage Operator
- L1 norm
- Advantages
 - For high dimension space coefficients tend to 0
 - Sparsification of $\overrightarrow{\beta}$
 - Which feature has real impact select them
- Feature slection in linear model
- Disadvantages
 - Fails to perform group selection
 - Total # of feature selection is bounded by # of instances

Ridge Regression

- L2 norm
- Advantages
 - For correlated features puts constraint on their weights
- Disadvantages
 - ullet Can not perform feature selection unless $\lambda o \infty$

Elastic Net

- For high dimensional data correlation between features can be high
- Correlated variable sometimes form a group
- If one is selected from this group we would want to select entire group
- Uses both I_1 and I_2 norm

Graphical Model

- Predict multiple variables that depend on each other
- Graphical models model dependencies between output variables
- We want to predict an output vector y of random variables given an observed feature vector x

$$p(a,b,c) = p(c|a,b)p(b|a)p(a)$$

Bayesian Approach

Goal is to compute posterior over model Data Likelihood

$$\rho(y|X, w) = \prod_{i=1}^{n} \sigma(y_i w^T x_i)$$

where,

$$\sigma(z) \equiv Gaussian Cumulative Distribution$$

For Laplace prior distribution elastic net regularizer

$$p(w) = \prod_{j} \exp(-\lambda_1 |w_j| - \lambda_2 w_j^2)$$

Generative and Discriminative

- Generative
 - Able to generate synthetic data points
 - e.g. Gaussian mixture model, Naive Bayes
- Discriminative
 - Uses conditional probability distribution
 - e.g. Logistic regression, Support Vectore Machines

EigenNet

- Is hybrid of conditional and generative model
- Conditional model
 - ullet Learns classifier o selecting eigen vectors
- Generative model
 - ullet captures correlation o estimation
- Eigenstructure guiding variable selection

EigenNet

$$egin{array}{ll} \lambda_{
u} \equiv & \mathsf{Hyperparameter} \ v_{j} \equiv & \mathsf{Eigen Vector} \ s_{i} \equiv & \mathsf{Scaling factor} \end{array}$$

8

⁸Qi, Yuan, and Feng Yan. EigenNet: A Bayesian hybrid of generative and conditional models for sparse learning, arXiv preprint arXiv:1102.0836 (2011).

EigenNet

When variables are uncorrelated

When variables are correlated

Data set

Microarray Datasets

	Leukemia (ALL-AML)	Ovarian
Number of Attributes	7129	15154
Number of Instances	72	253
Classes	47 (ALL)	91 (Normal)
Classes	25 (AML)	162 (Cancer)

10

• ALL : Acute Lymphoblastic Leukemia

• AML: Acute Myeloblastic Leukemia

 $^{^{10}\, {\}sf Dataset:} \ \ {\sf http://csse.szu.edu.cn/staff/zhuzx/Datasets.htm}|$

Observations

AUC and Accuracy

	Ovarian	Leukemia
Decision Tree	0.957 (95%)	0.784 (83%)
LibSVM	0.819 (87%)	0.5 (65%)
ElasticNet	1 (100%)	0.97 (96%)

Observations

Figure: Leukemia ROC curve

11

¹¹ RStudio: Library - pROC

Observations

• CV curve

12

¹² RStudio: g|mnet - plot()

Thank you

Questions!