Renormalization in piecewise isometries

MathFest 2014 @ CUNY Graduate Center

Pat Hooper City College of New York and CUNY Graduate Center

Dynamical systems and renormalization

A *dynamical system* is a space together with a time independent update rule.

So, a map $T: X \to X$ is a dynamical system.

Dynamical systems and renormalization

A *dynamical system* is a space together with a time independent update rule.

So, a map $T:X\to X$ is a dynamical system.

Renormalization is an approach to understanding certain dynamical systems. It is used to study:

- Complex dynamics (e.g., iteration of polynomials- Julia sets, Mandlebrot set)
- Flows on symmetric spaces

★ Piecewise isometries

A self-similar dynamical system of Arek Goetz:

(from "A self-similar example of a piecewise isometric attractor")

A self-similar dynamical system of Arek Goetz:

(from "A self-similar example of a piecewise isometric attractor")

A self-similar dynamical system of Arek Goetz:

(from "A self-similar example of a piecewise isometric attractor")

Return maps:

Let $T:X \rightarrow X$ be a map.

The **forward orbit** of $x \in X$ is the sequence:

$$\{T(x), T^2(x)=T\circ T(x), T^3(x)=T\circ T\circ T(x), \ldots\}.$$

Return maps:

Let $T:X \rightarrow X$ be a map.

The **forward orbit** of $x \in X$ is the sequence:

$$\{T(x), T^2(x)=T\circ T(x), T^3(x)=T\circ T\circ T(x), \ldots\}.$$

Let A be a subset of X. The **first return** of $a \in A$ to A is the first point in the forward orbit of a which lies in A.

Let $A' \subset A$ be the set of points with a first return to A.

The **return map** to A is the map $T_A:A' \rightarrow A$ which sends a point $a \in A'$ to its first return $T_A(a)$.

Triangles with the same

return map up to a similarity: $\triangle A_0 A_1 B$ $\triangle A_1 A_2 B$ $\triangle A_2 A_3 B$

Each of these gives

rise to a periodic

pentagon.

return map up to a similarity: $\triangle A_0 A_1 B$ $\triangle A_1 A_2 B$ $\triangle A_2 A_3 B$ Each of these gives rise to a periodic pentagon's orbit.

Triangles with the same

The aperiodic points: The set of aperiodic points

is a self-similar fractal, and is (roughly) the set of points in the compliment

where $\phi = \frac{1+\sqrt{5}}{2}$.

This set has Hausdorff dimension

The square pillowcase in its natural environment.

Let *P* be the square pillowcase.

Let *P* be the square pillowcase.

Let α be a real number with $0 < \alpha < \frac{1}{2}$.

rotate by α cut

resew

Then, we can define a map $H_{\alpha}: P \longrightarrow P$:

We can do the same in the vertical direction.

We define $V_{\beta}: P \longrightarrow P$, with $0 < \beta < \frac{1}{2}$.

Let $0 < \alpha < \frac{1}{2}$ and $0 < \beta < \frac{1}{2}$. We define $T_{\alpha,\beta}=H_{\alpha}\circ V_{\beta}:P\longrightarrow P.$ $T_{lpha,eta}$

A renormalization theorem:

For $x \in \mathbb{R}$, let nint(x) denote the nearest integer.

For $0 < \alpha < \frac{1}{2}$ and $0 < \beta < \frac{1}{2}$ irrational, define:

$$R(\alpha, \beta) = \left(\left| \frac{\alpha}{1 - 2\alpha} - nint\left(\frac{\alpha}{1 - 2\alpha}\right) \right|, \left| \frac{\beta}{1 - 2\beta} - nint\left(\frac{\beta}{1 - 2\beta}\right) \right| \right).$$

Theorem. Let α and β be irrationals satisfying $0 < \alpha < \frac{1}{2}$ and $0 < \beta < \frac{1}{2}$. Then, there is a rectangle Q in the pillowcase P so that the return map of $T_{\alpha,\beta}$ to Q is the same as $T_{R(\alpha,\beta)}$ up to an affine coordinate change and sewing up Q to make a pillowcase.

Illustration of the Renormalization Theorem:

Philosophy of Renormalization:

Corollary. Let α and β be irrationals satisfying $0 < \alpha < \frac{1}{2}$ and $0 < \beta < \frac{1}{2}$. Consider the forward R-orbit of (α, β) : $\{R(\alpha, \beta), R^2(\alpha, \beta) = R \circ R(\alpha, \beta), \dots\}.$

For every integer n>0, there is a rectangle Q_n so that the return map of $T_{\alpha,\beta}$ to Q_n is affinely conjugate to $T_{R^n(\alpha,\beta)}$.

Philosophy of Renormalization:

Corollary. Let α and β be irrationals satisfying $0 < \alpha < \frac{1}{2}$ and $0 < \beta < \frac{1}{2}$. Consider the forward R-orbit of (α, β) : $\{R(\alpha, \beta), R^2(\alpha, \beta) = R \circ R(\alpha, \beta), \dots\}.$

For every integer n>0, there is a rectangle Q_n so that the return map of $T_{\alpha,\beta}$ to Q_n is affinely conjugate to $T_{R^n(\alpha,\beta)}$.

Philosophy. The dynamical behavior of $T_{\alpha,\beta}$ is related to the dynamics of the forward R-orbit of (α, β) .

If (α, β) is periodic under R, then $T_{\alpha,\beta}$ is self-similar.

If (α, β) is periodic under R, then $T_{\alpha,\beta}$ is self-similar.

If the orbit of (α, β) avoids a certain collection of rectangles in the (α, β) -plane, then the aperiodic points of $T_{\alpha,\beta}$ form a curve.

Let $(\alpha_n, \beta_n) = R^n(\alpha, \beta)$.

If $limsup\ min(\alpha_n, \beta_n)>0$, then the aperiodic points have zero area.

But there are examples with positive area:

