中三級 期終試卷

數學科 (卷一)

建議題解及評卷參考

一般指引:

(1) 錯別字,不扣分。

(2) 算式表達或計算過程表達欠佳、欠設題或欠文字解說,扣 1 分。 (全卷最多只扣 2 分)

(3) 單位錯漏,扣 1 分。 (全卷最多只扣 1 分)

甲部 (40 分)

1. (a) 該棱錐的體積 = $\frac{1}{3} \times (12 \times 12) \times 8 \text{ cm}^3$ 1M = $\frac{384 \text{ cm}^3}{}$ 1A

(b) 設底的對角線 AC 與 BD 的交點為 O,及 $VE \perp AB$ 。

考慮直角三角形 VOE。

$$EO = \frac{1}{2}BC$$

$$= \frac{1}{2} \times 12 \text{ cm}$$

$$= 6 \text{ cm}$$

$$VE^2 = VO^2 + EO^2 \quad (畢氏定理)$$

$$VE = \sqrt{8^2 + 6^2}$$
 cm

$$=10 \,\mathrm{cm}$$

 $\triangle VAB$ 的面積 = $\frac{1}{2} \times AB \times VE$ = $\frac{1}{2} \times 12 \times 10 \text{ cm}^2$ = 60 cm^2

1M

1M

1A

2. (a)
$$\left(\frac{\text{小球體的半徑}}{\text{大球體的半徑}}\right)^2 = \frac{\text{小球體的表面面積}}{\text{大球體的表面面積}}$$

$$= \frac{4}{25}$$

 $\frac{$ 小球體的半徑 $=\frac{2}{5}$

... 小球體的半徑與大球體的半徑之比是2:5。1A

(b)
$$\frac{$$
 大球體的體積 $= \left(\frac{5}{2}\right)^3$ 1M $\frac{$ 大球體的體積 $= \left(\frac{5}{2}\right)^3 = \frac{125}{8}$ 1M $\Leftrightarrow \left(\frac{5}{2}\right)^3 = \frac{125}{8}$

∴ 大球體的體積 =
$$\frac{125}{8} \times 64 \text{ cm}^3$$

= $\frac{1000 \text{ cm}^3}{1 \text{ A}}$

3. (a)
$$\therefore$$
 AB 的斜率 = $-\frac{12}{5}$
 $\therefore \frac{7 - (-5)}{-2 - a} = -\frac{12}{5}$
 $-\frac{12}{2 + a} = -\frac{12}{5}$
 $2 + a = 5$
 $a = 3$

(b)
$$AB = \sqrt{(-2-3)^2 + [7-(-5)]^2}$$
 單位 1M
$$= \sqrt{(-5)^2 + 12^2}$$
 單位 1A

<u>佔分</u> 建議題解 注意事項

(a) 根據中點公式,可得:

$$h = \frac{3 + (-4)}{2}$$

$$= -\frac{1}{2}$$

$$\nearrow 2 = \frac{k+6}{2}$$

$$4 = k+6$$

$$k = -2$$

(b) ∴ *L // CD* ∴ *L* 的斜率 = *CD* 的斜率 $=\frac{6-(-2)}{-4-3}$ $=-\frac{8}{7}$

1A

1A

如圖所示,建立 $\triangle ABC$,使 $\cos \theta = \frac{1}{5}$ 。 $BC = \sqrt{AC^2 - AB^2}$ (畢氏定理) $=\sqrt{5^2-1^2}$ $=\sqrt{24}$

根據定義,可得:

$$\sin \theta = \frac{BC}{AC} = \frac{\sqrt{24}}{5}$$

$$\tan \theta = \frac{BC}{AB} = \frac{\sqrt{24}}{1} = \sqrt{24}$$

1A

1A

$$\therefore 2\sin\theta - \tan\theta = 2 \times \frac{\sqrt{24}}{5} - \sqrt{24}$$

$$= \sqrt{24} \left(\frac{2}{5} - 1\right)$$

$$= -\frac{3\sqrt{24}}{5} \left(\frac{2}{5} - \frac{6\sqrt{6}}{5} \right)$$
1A

6. 考慮 △*ACD*。

$$\sin 30^{\circ} = \frac{CD}{AC}$$

$$\frac{1}{2} = \frac{4}{x}$$

$$x = 8$$
1M

考慮 △ABC。

$$\cos 45^{\circ} = \frac{AC}{AB}$$

$$\frac{1}{\sqrt{2}} = \frac{8}{y}$$

$$y = 8\sqrt{2}$$
1M

7. $\angle QPR = 270^{\circ} - 232^{\circ}$

 $QR = 70 \sin 38^{\circ} \text{ km}$

Q P 232°

1M

1A

該艘船由碼頭 R 行駛至 Q 點所需的時間

$$=\frac{70\sin 38^{\circ}}{18}\,\mathrm{h}$$

 $\approx 2.3942 \text{ h}$

< 2.5 h

 \therefore 該艘船會在同一日下午 2:30 前到達 Q 點。

8. (a)

(*)					
候車時間 (分鐘)	1 - 4	5 – 8	9 – 12	13 – 16	17 – 20
組中點 (分鐘)	<u>2.5</u>	<u>6.5</u>	<u>10.5</u>	<u>14.5</u>	<u>18.5</u>
乘客人數	4	6	12	8	5

2A 給全部正確

(b) 候車時間的平均數

$$= \frac{2.5 \times 4 + 6.5 \times 6 + 10.5 \times 12 + 14.5 \times 8 + 18.5 \times 5}{4 + 6 + 12 + 8 + 5}$$
 分鐘
$$= \frac{11.0 \, \text{分鐘}}{12 + 12 + 12 + 12} \, \text{(準確至三位有效數字)}$$

候車時間的眾數組是 9 分鐘 - 12 分鐘。

1A 1A 9.

		 袋子 B						
		4	5	6	7			
袋子	1	(1, 4)	(1, 5)	(1, 6)	(1, 7)			
	2	(2, 4)	(2, 5)	(2, 6)	(2, 7)			
A	3	(3, 4)	(3, 5)	(3, 6)	(3, 7)			

根據上表,共有 12 個可能結果。

(a) 兩個數字都是奇數的結果有 4 個。

:.
$$P(兩個數字都是奇數) = \frac{4}{12}$$
 1M $= \frac{1}{3}$ 1A

(b) 數字之和大於 7 的結果有 6 個。

$$P(數字之和大於 7) = \frac{6}{12}$$

$$= \frac{1}{2}$$
1A

乙部 (40 分)

10. (a)
$$\widehat{AC} = \frac{240^{\circ}}{360^{\circ}} \times 2 \times \pi \times 18 \text{ cm}$$
 1M
= $24\pi \text{ cm}$

設容器 X 的底半徑為 r cm。

11. (a)
$$A'$$
的坐標 = $(-(-2),3)$
= $(2,3)$
 B' 的坐標 = $(-5,-4)$ 1A

(b)
$$AA' = \sqrt{(2-3)^2 + [3-(-2)]^2}$$
 單位
$$= \sqrt{(-1)^2 + 5^2}$$
 單位
$$= \sqrt{26}$$
 單位
$$= \sqrt{26}$$
 單位
$$= \sqrt{(-5-2)^2 + (4-3)^2}$$
 單位
$$= \sqrt{(-7)^2 + 1^2}$$
 單位
$$= \sqrt{50}$$
 單位
$$= \sqrt{50}$$
 單位
$$= \sqrt{(-8)^2 + 6^2}$$
 單位
$$= 10$$
 章 10
 = 10 章 10
 = 10
 = 10
 = 10 章 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10
 = 10

(c)
$$AB$$
 的斜率 = $\frac{4 - (-2)}{-5 - 3} = \frac{6}{-8} = -\frac{3}{4}$
 $A'B'$ 的斜率 = $\frac{-4 - 3}{-5 - 2} = \frac{-7}{-7} = 1$

∴ $\triangle AA'B$ 不是一個等腰三角形。

 $AB 的斜率 \times A'B' 的斜率 = -\frac{3}{4} \times 1$ $= -\frac{3}{4}$ $\neq -1$

 $\neq -1$ \therefore AB 並不平行於 A'B'。

12. (a) 考慮 △*CBD*。

$$\tan \angle CBD = \frac{CD}{BD}$$

$$\tan 35^\circ = \frac{36 \text{ m}}{x \text{ m}}$$

$$x = \frac{36}{\tan 35^\circ}$$

$$= 51.4 (準確至三位有效數字)$$

∴ 兩幢大廈之間的距離是 51.4 m。 1A

(b) 如圖標明, 考慮 △*ACE*。

$$\tan \angle CAE = \frac{EC}{AE}$$

$$\tan 25^\circ = \frac{EC}{\frac{36}{\tan 35^\circ}}$$

$$EC = \frac{36 \tan 25^\circ}{\tan 35^\circ}$$
 m

1A

1M

大厦 AB 的高度=EC+CD

$$= \left(\frac{36 \tan 25^{\circ}}{\tan 35^{\circ}} + 36\right) m$$
 1M
$$\approx 59.9744 m$$
 = 60.0 m (準確至三位有效數字) 1A

(c) 連接 *AD*。 考慮 △*ABD*。

$$\tan \angle ADB = \frac{AB}{BD}$$

$$\approx \frac{59.9744 \text{ m}}{\frac{36}{\tan 35^{\circ}} \text{ m}}$$
1M

∠ADB = 49.4°(準確至三位有效數字)

$$\therefore$$
 由 D 測得 A 的仰角是 49.4°。

1A

13. (a) (i)
$$\therefore$$
 $P(每星期閱讀 3 本圖書) = \frac{1}{7}$
 \therefore $\frac{k}{13+4+k+(k+6)+7} = \frac{1}{7}$
 $\frac{k}{30+2k} = \frac{1}{7}$
 $7k = 30+2k$
 $5k = 30$
 $k = \frac{6}{2}$
1A

(ii) 從棒形圖可得,該組的學生總人數
$$=13+4+6+(6+6)+7=42$$
 每星期最多閱讀 3 本圖書的學生人數 $=13+4+6=23$ $\therefore P(每星期最多閱讀 3 本圖書)=\frac{23}{42}$

(b) 每星期閱讀圖書的數目的期望值

$$=1 \times \frac{13}{42} + 2 \times \frac{4}{42} + 3 \times \frac{6}{42} + 4 \times \frac{12}{42} + 5 \times \frac{7}{42}$$

$$= 2.90 (準確至三位有效數字)$$
1M

(c) 由於眾數 (1) 是最小的數據,因此眾數偏向數據組中數值較小的一方。 所以平均值 (2.90) 是較適合用作反映該組學生每星期

14. (a) ∵ 中位數 = 58 kg

$$\therefore \frac{(50+b)+58}{2} = 58$$

$$108+b=116$$

$$b=\underline{8}$$
1A

∵ 眾數 = 66 kg

∵ 平均數 = 55.5 kg

$$41 + 42 + (40 + a) + 44 \times 2 + 50 + 51 + 52 +$$

$$\therefore \frac{58 \times 2 + 59 \times 2 + 61 + 62 + 66 \times 3 + 77}{18} = 55.5$$
 1M

$$996 + a = 999$$

$$a = \underline{3}$$
1A

1M

1M

1

(b) (i) 設美寶和俊榮的體重分別為 $x \lg n y \lg n$

: 該組學生的平均體重維持不變。

$$\frac{18 \times 55.5 - 41 - 42 - (x + y)}{14} = 55.5$$

$$916 - (x + y) = 777$$

$$x + y = 139$$

(ii) :
$$x + y = 139$$

∴ 從觀察可得,
$$x = 62$$
, $y = 77$ 或 $x = 77$, $y = 62$ 。

該組學生體重的中位數 = $\frac{58+58}{2}$ kg = 58 kg