# U.S. Coast Guard Research and Development Center

1082 Shennecossett Road, Groton, CT 06340-6096

Report No. CG-D-02-99

An Evaluation of the International Maritime Organization's Gaseous Agents Test Protocol with Halocarbon Agents and an Inert Gas, 180° Nozzles, and Low Temperature Conditioned Cylinders



FINAL REPORT DECEMBER 1998



This document is available to the U.S. public through the National Technical Information Service, Springfield, VA 22161

# Prepared for:

U.S. Department of Transportation
United States Coast Guard
Marine Safety and Environmental Protection (G-M)
Washington, DC 20593-0001

19990322 024

# NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report reflect the views of the Coast Guard Research and Development Center. This report does not constitute a standard, specification, or regulation.

UNITED STATES CONSTITUTES ON STATES CONSTITUTES

Marc B. Mandler, Ph.D.
Technical Director
United States Coast Guard
Research & Development Center
1082 Shennecossett Road
Groton, CT 06340-6096

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         | 16                                                                                                | echnical Report Documentation Fage                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1. Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. Government Accession N                                                                                               | umber                                                                                             | 3. Recipient's Catalog No.                                                                                           |
| CG-D-02-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |                                                                                                   |                                                                                                                      |
| 4. Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |                                                                                                   | 5. Report Date                                                                                                       |
| An Evaluation of the International 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maritime Organization                                                                                                   |                                                                                                   | December 1998                                                                                                        |
| Agents Test Protocol with Halocart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on Agents and an Ine                                                                                                    |                                                                                                   | 6. Performing Organization Code                                                                                      |
| Agents Test Protocol with Halocard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oli Agents and an inc                                                                                                   | it Gas, 100                                                                                       | Project No. 3308.1.98                                                                                                |
| Nozzles, and Low Temperature Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nattionea Cylinders                                                                                                     |                                                                                                   | Floject No. 3308.1.98                                                                                                |
| 7. Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                                                   | 8. Performing Organization Report No.                                                                                |
| G.G. Back, E.W. Forssell, C.L. Beyler, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J. DiNenno, R. Hansen                                                                                                   | , and                                                                                             | D 0 DC 25/00 / HDI 102                                                                                               |
| D. Beene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                                                                                       |                                                                                                   | R&DC 25/98 / UDI 103                                                                                                 |
| 9. Performing Organization Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                                                                                                   | 10. Work Unit No. (TRAIS)                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U.S. Coast Guard                                                                                                        |                                                                                                   |                                                                                                                      |
| Hughes Associates, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Research and Devel                                                                                                      |                                                                                                   | 11. Contract or Grant No.                                                                                            |
| 3610 Commerce Drive, Suite 817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1082 Shennecossett                                                                                                      | Road                                                                                              | Contract No. DTCG39-97-F-E00150                                                                                      |
| Baltimore, MD 21227-1652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Groton, CT 06340-                                                                                                       | 4004 I                                                                                            | D.O. No. DTCG39-98-F-E000158 (DO 006)                                                                                |
| 12. Sponsoring Organization Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                                                   | 13. Type of Report & Period Covered                                                                                  |
| U.S. Department of Transportation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                                                                                   | Final Report                                                                                                         |
| United States Coast Guard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                         | i                                                                                                 | -                                                                                                                    |
| Office of Marine Safety and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         | i i                                                                                               | 14. Sponsoring Agency Code                                                                                           |
| Environmental Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         | 1                                                                                                 | Commandant (G-MSE)                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                                                   | U.S. Coast Guard Headquarters                                                                                        |
| Washington, DC 20593-0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                         |                                                                                                   | Washington, DC 20593-0001                                                                                            |
| The R&D Center's technical point of con Headquarters' Project Officer is Mr. Mat 16. Abstract (MAXIMUM 200 WORDS)  This report provides an evaluation Inergen) in full-scale machinery sevaluate the IMO's test protocol fe "inert" gaseous agent (Inergen), we discharge cylinders conditioned to requires modification to properly of the condition of t | of four gaseous halon a pace applications. The por gaseous halon alternatith discharge systems coolow temperatures. The | ulternatives (CEA-<br>primary objective of<br>tive fire extinguish<br>containing 180° (Signature) | 308, NAF-SIII, FM-200, and of this investigation was to ning systems for use with an dewall) nozzles, and with agent |
| 17. Key Words                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         | 18. Distribution State                                                                            | ement                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         | This 4s                                                                                           | is available to the IIC mublic through                                                                               |
| fire, fire tests, Halon 1301,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                   | is available to the U.S. public through                                                                              |
| Halon alternatives, gaseous agents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         | the National Te                                                                                   | chnical Information Service,                                                                                         |
| total flooding, machinery space, low to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | emperature                                                                                                              | Springfield, VA                                                                                   | 22161.                                                                                                               |
| 40. Security Class (This Penert)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 Security Class (This Pa                                                                                              |                                                                                                   | 21. No of Pages 22. Price                                                                                            |

UNCLASSIFIED

UNCLASSIFIED

# METRIC CONVERSION FACTORS

| asure                                        | Symbol         |        | 도.             | ⊆ <b>:</b>     | - <del>7</del> > | Ē             | ,    | in <sup>2</sup>                    | y <b>d</b> <sup>2</sup>      | , E               |                          |               | 20                  | đ         |                   |          |        | fl oz        | υ                    | ţ              | ₽           | gri     | ; <del>*</del> | ر<br>مور     |                   |                     | °<br>H              |             |             |                    |
|----------------------------------------------|----------------|--------|----------------|----------------|------------------|---------------|------|------------------------------------|------------------------------|-------------------|--------------------------|---------------|---------------------|-----------|-------------------|----------|--------|--------------|----------------------|----------------|-------------|---------|----------------|--------------|-------------------|---------------------|---------------------|-------------|-------------|--------------------|
| Metric Me                                    | To Find        |        | inches         | incnes<br>feet | vards            | miles         |      | square inches                      | square yards                 | square miles      | acres                    |               | onuces              | spunod    | short tons        |          |        | fluid ounces | cnbs                 | pints          | quarts      | gallons | cubic feet     | cubic yards  |                   |                     | Fahrenheit          | temperature | 212°F       | 80 100°C           |
| ons from l                                   | Multiply By    | H.     | 0.04           | 4.0            | n -              | 9.0           |      | 0.16                               |                              |                   | 2.5                      | еіднт)        | 0.035               | 2.2       |                   |          | ΛΕ.    | 0.03         | 0.125                | 2.1            | 1.06        | 0.26    | 35             | 1.3          |                   | RE (EXACT)          | 9/5 (then           | add 32)     | 98.6        | 120, 160<br>40, 60 |
| Approximate Conversions from Metric Measures | When You Know  | LENGTH | millimeters    | centimeters    | Beters           | kilometers    | AREA | square centimeters                 | square meters                | square kilometers | hectares(10,000 m²)      | MASS (WEIGHT) | grams               | kilograms | tonnes (1000 kg)  |          | VOLUME | milliliters  | liters               | liters         | liters      | liters  | cubic meters   | cubic meters |                   | TEMPERATURE (EXACT) | Celsius             | temperature | 3,2         | -40°C -20 0 20     |
| Appro                                        | Symbol         |        | E              | E              | <b>E</b> 8       | Ē             |      | cm <sup>2</sup>                    | a <sub>2</sub>               | km <sup>2</sup>   | ha                       |               | ø                   | kg        | +-                |          |        | Ξ            |                      | _              |             |         | E E            |              |                   |                     | ပ                   |             |             |                    |
|                                              | 12 0           |        | <br> <br>      | 81             |                  |               | 91   | 9                                  |                              | 14                | 3                        | 1             | <br> <br> <br> <br> | 1         |                   | Or<br>Or | 6      |              | 8                    | 12             |             | 9       |                | ;<br> <br>   | Þ                 |                     | E<br> <br>          |             | ں ۔<br>ا    | uo eu              |
| Lithihi                                      | [44]444        | irbii  | ш              | 11.1           | 1111             | 11111         |      |                                    |                              | 1111              | ш                        | 11111         |                     | 1111      | 1111              | 1111     |        | ш            | 111                  | 1111           | 111         |         | 1116           | 1111         |                   |                     |                     |             | 1 10 1 0 1  |                    |
| 9                                            | 8              | . .    | 7              |                | Ι'               | '             | 6    | .1.1                               |                              |                   | 5                        |               |                     | ٠,        | 4                 | ' i      |        | 3            | '                    | 1'             |             | ,<br>,  | 2              | '            | '                 | '''                 | 1                   | ' ''        | inch        | es                 |
| ures                                         | Symbol 8       | · ·    | 7<br>E0        | cm             | [ '<br>E         | جم<br>ا       | 6    |                                    | m <sup>2</sup>               |                   | km <sup>2</sup>          | ha            |                     |           | 4<br>6<br>3       | ' I      |        | 3            | •                    | E E            | -           | -<br>-  | 2              | <u>'</u> '   | E E               |                     | 1                   | ွ           |             | esi                |
| ures                                         | ymbol          | ·   ·  |                | •              |                  | kilometers km | 6    | square centimeters cm <sup>2</sup> | square meters m <sup>2</sup> |                   | lometers km <sup>2</sup> | nectares      | (                   |           | ıms kg            |          |        |              | •                    | milliliters mi | liters      | liters  | _              |              |                   | meters m            |                     | sn          | temperature | esi                |
| ures                                         | Symbol         | LENGTH | E              | centimeters cm | meters           |               | AREA |                                    |                              | square meters     | square kilometers km²    | nectares      | 1ASS (WEIGHT)       | 5         | 5 kilograms kg    |          | VOLUME | Ē            | Ē                    |                | 0.24 liters | liters  | ilters I       | liters       | cubic meters      | meters m            |                     | sn          |             | es                 |
| •                                            | To Find Symbol | LENGTH | centimeters cm | centimeters cm | meters           | kilometers    | ,    | square centimeters                 | 0.09 square meters           | square meters     | square kilometers km²    | nectares      | MASS (WEIGHT)       | grams     | 0.45 kilograms kg | tonnes   | VOLUME | milliliters  | is 15 milliliters ml | milliliters    | 0.24        | liters  | 0.95 liters I  | 3.8 liters   | 0.03 cubic meters | meters m            | TEMPERATURE (EXACT) | sn          | temperature | = 2.54 (exactly).  |

### EXECUTIVE SUMMARY

Four total flooding gaseous halon alternatives (CEA-308, NAF-SIII, FM-200, and Inergen) were evaluated in full-scale machinery space applications. The primary objective of this investigation was to evaluate the International Maritime Organization's (IMO) test protocol for gaseous halon alternative fire extinguishing systems for use with an "inert" gaseous agent (Inergen), with discharge systems containing 180° (Sidewall) nozzles, and with agent discharge cylinders conditioned to low temperatures. The evaluation focused on whether the protocol requires modification to properly evaluate these systems.

The Montreal Protocol, an International Treaty, established production bans on Halon fire suppression agents. The ban was based on Halon's contribution to the destruction of the earth's stratospheric ozone layer. For most of the industrial world, this production ban became effective in 1994. Halon fire suppressant agents, particularly Halon 1301, had become a common fixed fire protection choice on marine vessels. With this production ban came an important need to find acceptable alternatives for these fire suppression applications. Several alternative gaseous agents have been proposed to replace Halon 1301. The IMO drafted a test protocol for these replacements. The U.S. Coast Guard, as part of its regulatory duties, needed to evaluate the effectiveness of the test protocol across a variety of agents and configurations.

The tests were conducted in a simulated machinery space aboard the test vessel, STATE OF MAINE, at the U.S. Coast Guard Fire and Safety Test Detachment located at Little Sand Island in Mobile, AL. The agents/systems were evaluated against five fire scenarios. Two of the five scenarios consisted of small heptane pan fires (telltales) located in the corners of the space to evaluate the mixing characteristics of the system. The remaining three scenarios were large fires consisting of combinations of pan and spray fires produced using either heptane or diesel fuel. One test included a small wood crib. To meet the protocol requirements, the systems were required to extinguish all of the test fires within 30 seconds of the end of agent discharge, and limit the mass loss of the wood crib to 60% of it's original weight.

The results of these tests suggest that the protocol provides a reasonable basis for evaluating both halocarbon and inert gas extinguishing agents. The lack of a definition in the protocol for the end of agent discharge required clarification from the U.S. Coast Guard in order to judge the performance of the inert gas extinguishing agent (Inergen). It was recommended that the protocol be revised to include a uniform definition of discharge time based on 95% of the agent having been delivered to the protected space. This definition should serve for both the measurement of discharge time and to designate the end of agent discharge.

The addition of a new nozzle design/type or new nozzle spacing was fairly evaluated by the protocol using a single telltale fire test. Additional large fire tests should not be required. However, it was recommended that two additional telltales be added to the center of the space (one on the engine mockup and one in the bilge under the engine mockup). This would further validate the mixing of the agent throughout the compartment.

The effects of the low temperature discharge cylinders varied from system-to-system, and were observed to be related to a number of system parameters (i.e., fill density and percent of agent in pipe). Due to the lack of a general understanding of how these various design parameters affect the discharge characteristics of the system, a systematic study was recommended to bound the problem. Provisions (although not yet defined) should be added to the test protocol for evaluating systems that have agent storage cylinders located in unconditioned spaces.

Based on the U.S. Coast Guard's interpretation of the IMO requirements, five agent/hardware combinations successfully completed the test protocol. These agent/hardware combinations include; Inergen with Ansul hardware, CEA-308 with TEPG hardware, and FM-200 with Hygood hardware, Kidde-Fenwal hardware, and Chemetron hardware.

These results demonstrate that IMO's test protocol, with the proposed recommendations, can effectively evaluate a variety of agents and configurations. The protocol can evaluate different gases, different piping layouts, as well as systems where the agent storage cylinders are at low temperatures.

# CONTENTS

| $\cdot \mathbf{P}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | age                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| EXECUTIVE SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v                                                    |
| 1.0 INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                    |
| 2.0 OBJECTIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                    |
| 3.0 TECHNICAL CONSIDERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                    |
| 4.0 CRADA PARTICIPANTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>4                                               |
| 5.0 TEST COMPARTMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                    |
| 6.0 FIRE SCENARIOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                    |
| 7.0 AGENT DISTRIBUTION SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 12                                                 |
| 8.0 INSTRUMENTATION.  8.1 Machinery Space and Fire Monitoring Instrumentation (1 Hertz Data Set).  8.1.1 Temperature Measurements.  8.1.2 Gas Concentration Measurements.  8.1.3 Heat Flux Measurements.  8.1.4 Fire Temperature.  8.1.5 Fuel Pressure.  8.2 Discharge System Instrumentation (10 Hertz Data Set).  8.2.1 Pressure Measurements.  8.2.2 Temperature Measurements.  8.2.3 Cylinder Weight Measurements.  8.2.4 Compartment Pressure Measurements.  8.3 Agent and Hydrogen Fluoride (HF) Concentration.  8.4 Video Equipment. | .13<br>.15<br>.15<br>.15<br>.16<br>.16<br>.16<br>.17 |
| 9.0 PROCEDURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 19                                                 |
| 10.0 RESULTS AND DISCUSSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                   |
| 10.1.3 CEA-308 Extinguishing Agent, 3M CRADA, Tyco Electronic Product Group  Hardware                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |
| 10.1.4 FM-200 Extinguishing Agent, Factory Mutual Research Corporation CRADA, Sea-Fire and Hygood Hardware                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36                                                   |
| 10.1.5 FM-200 Extinguishing Agent, Kidde-Fenwal CRADA, Kidde-Fenwal Hardware                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42                                                   |

# CONTENTS (Continued)

| Page                                                                      |
|---------------------------------------------------------------------------|
| 10.1.6 FM-200 Extinguishing Agent, Chemetron CRADA, Chemetron Hardware    |
| 10.2 IMO Protocol Evaluation59                                            |
| 10.2.1 Variations in Nozzle Types                                         |
| 10.2.2 Low Temperature Conditioned Cylinders                              |
| 10.2.3 "Inert" Gaseous Agents                                             |
| 11.0 SUMMARY61                                                            |
| 12.0 RECOMMENDATIONS                                                      |
| 13.0 U.S. COAST GUARD'S INTERPRETATION OF THE RESULTS63                   |
| 13.1 Inergen Extinguishing Agent, Ansul CRADA, Ansul Hardware             |
| 13.2 CEA-308 Extinguishing Agent, 3M CRADA, TEPG Hardware                 |
| 13.3 FM-200 Extinguishing Agent, FMRC/Sea-Fire CRADA, Hygood Hardware     |
| 13.4 FM-200 Extinguishing Agent, Chemetron CRADA, Chemetron Hardware      |
| 14.0 REFERENCES                                                           |
| APPENDIX A - IMO TEST PROTOCOL                                            |
| APPENDIX B - INSTRUMENTATION AND CAMERA DETAILSB-1                        |
| APPENDIX C - INERGEN DISCHARGE TIME DETERMINATION                         |
| APPENDIX D - TEST DATAD-1                                                 |
| APPENDIX E - U.S. COAST GUARD'S INTERPRETATION OF THE IMO REQUIREMENTSE-1 |

# **FIGURES**

|                                                                                  | Page |
|----------------------------------------------------------------------------------|------|
| Figure 1. Machinery Space Configuration                                          | 7    |
| Figure 2. Diesel Engine Mockup (Section and Plan Views)                          | 8    |
| Figure 3. Fire Locations                                                         | 10   |
| Figure 4. Instrumentation                                                        | 14   |
| Figure 5. Ansul Inergen Telltale Fire Discharge System with 360E Nozzles (Short) | 24   |
| Figure 6. Ansul Inergen Telltale Fire Discharge System with 360E Nozzles (Long)  | 25   |
| Figure 7. Ansul Inergen Telltale Fire Discharge System with 180E Nozzles         | 26   |
| Figure 8. Ansul NAF-SIII Telltale Fire Discharge System                          | 30   |
| Figure 9. 3M CEA-308 Telltale Fire Discharge System                              | 34   |
| Figure 10. 3M CEA-308 Large Fire Scenario Discharge System                       | 35   |
| Figure 11. FMRC Sea-Fire Hygood Discharge System with 360E Nozzles               | 40   |
| Figure 12. FMRC Sea-Fire Hygood Discharge System with 180E Nozzles               | 41   |
| Figure 13. Kidde-Fenwal Discharge System with Four 360E Nozzles                  | 49   |
| Figure 14. Kidde-Fenwal Discharge System with Two 360E Nozzles                   | 50   |
| Figure 15. Kidde-Fenwal Discharge System with Back-to-Back 180E Nozzles          | 51   |
| Figure 16. Kidde-Fenwal Discharge System with Bulkhead 180E Nozzles              | 52   |
| Figure 17. Chemetron Discharge System with Four 360E Nozzles                     | 56   |
| Figure 18. Chemetron Discharge System with Two 360E Nozzles                      | 57   |
| Figure 19. Chemetron Discharge System with Bulkhead 180ENozzles                  | 58   |

# **TABLES**

|                                                                                 | Page |
|---------------------------------------------------------------------------------|------|
| Table 1. Extinguishing Agents Chemical and Physical Properties [5-8]            | 5    |
| Table 2. Fire Scenarios                                                         |      |
| Table 3. Spray Fire Parameters                                                  | 11   |
| Table 4. Agent and Decomposition Product Wave Numbers                           | 18   |
| Table 5. Ansul Inergen Test Parameters                                          |      |
| Table 6. Ansul Inergen Telltale Results                                         |      |
| Table 7. Ansul Inergen Fire Test Results                                        |      |
| Table 8. Ansul NAF-SIII Test Parameters                                         |      |
| Table 9. Ansul NAF-SIII Telltale Results                                        |      |
| Table 10. 3M CEA-308 System Parameters                                          |      |
| Table 11. 3M CEA-308 Telltale Fire Test Results                                 | 37   |
| Table 12. 3M CEA-308 Fire Test Results                                          |      |
| Table 13. Factory Mutual Research Corporation FM-200 System Parameters          |      |
| Table 14. Factory Mutual Research Corporation FM-200 Telltale Fire Test Results | 44   |
| Table 15. Factory Mutual Research Corporation FM-200 Fire Test Results          | 44   |
| Table 16. Kidde-Fenwal FM-200 Test Parameters                                   | 45   |
| Table 17. Kidde-Fenwal FM-200 Telltale Fire Test Results                        | 53   |
| Table 18. Chemetron FM-200 Test Parameters                                      | 54   |
| Table 19. Chemetron FM-200 Telltale Fire Test Results                           | 56   |
| Table 20. Chemetron FM-200 Fire Test Results                                    |      |
| Table 21. System Summary                                                        | 58   |

### 1.0 INTRODUCTION

The International Maritime Organization's (IMO) Maritime Safety Committee (MSC) on fire protection (FP), has developed a test protocol for evaluating the extinguishing effectiveness and critical design parameters of fixed gaseous halon alternative fire extinguishing systems [1]. The test protocol was developed to establish the extinguishing effectiveness of a gaseous halon alternative and to assure that the distribution system can achieve an extinguishing concentration of agent at all points in the space being protected.

In a previous investigation, three halocarbon agents (North American Fire Guardian Technology, Inc.'s (NAFGT) NAF-SIII, 3M Corporation's CEA-410, and Great Lakes Chemical Corporation's FM-200), one gas/powder mix (Powsus Corporation's Envirogel), and Halon 1301 for baseline comparisons were evaluated against the draft test protocol [2]. Based on these results, the protocol was revised and published as final. During that initial investigation, the agents were evaluated using discharge systems that contained 360° nozzles and cylinders stored at ambient temperatures. More recently, interest has arisen pertaining to the use of 180° nozzles and agent cylinders stored in unconditioned spaces. In addition, no inert gas agents had been tested against the protocol.

Sidewall nozzles (nozzles with 180° discharge patterns) are commonly used in machinery spaces and can provide an added degree of design flexibility. Once the system has successfully completed the IMO test protocol for a given set of hardware (nozzles), the addition of new nozzles only requires an evaluation against the telltale fire test (Fire Scenario 1). This approach assumes that a new nozzle design would only affect the ability to distribute the agent throughout the space, which is the primary objective of the telltale fire test.

Agent cylinders can be stored in areas that are either open to the weather or in unconditioned spaces. There is a concern that a low cylinder temperature and resulting lower cylinder pressure would affect the distribution/mixing characteristics of the system. This evaluation assessed the impact of low temperature cylinders on the system performance and determined whether additional tests should be included in the protocol.

The test protocol was also evaluated using the inert gaseous agent, Inergen. The inert gaseous agents are allowed longer discharge times similar to carbon dioxide (CO<sub>2</sub>) systems (120 seconds for the inerts versus 10 seconds for the halocarbon agents) because they do not decompose in the presence of fire. The longer discharge times alleviate many of the problems associated with the higher extinguishing concentrations and the gaseous discharge of these agents (i.e., enclosure overpressurization, larger pipes, and nozzles). There is a concern that these longer discharge times may allow the reduction in oxygen concentration in the compartment caused by the fire to aid in the extinguishment process. The inert gas portion of this investigation focused primarily on agent discharge times, fire extinguishment times, and the affect of oxygen depletion on the extinguishment of the fires.

This report addresses the tests conducted in accordance with the approved test plan [3].

### 2.0 OBJECTIVES

The objective of this test program was to further evaluate the IMO gaseous agent test protocol for use with systems containing 180° nozzles, low temperature agent cylinders, and inert gas extinguishing agents. Based on this evaluation, modifications to the test protocol may be recommended.

### 3.0 TECHNICAL CONSIDERATIONS

Once a system has successfully completed the IMO test protocol for a given extinguishing agent and set of distribution hardware (nozzles), the addition of a new nozzle design or installation only requires an evaluation against the telltale fire test. The rational for this approach is that the new nozzle design should only affect the distribution/mixing characteristics of the system, which is the primary objective of the telltale fire test. Consequently, during the 180° nozzle evaluation, the focus was not only to identify the mixing characteristics of the nozzles but

also to determine whether additional tests (i.e., large fire tests) should be required to evaluate new system designs and components.

There is a concern that low temperature cylinders and the resulting lower cylinder pressure may affect the distribution/mixing characteristics of the system. Since a low temperature cylinder test is currently not required by the IMO, the parameters of the test are not defined in Reference 1. The specific parameters that should be addressed are; cylinder fill density, cylinder temperature, and the percent agent in pipe. Performance criteria for discharge time and extinguishment times also need to be defined. Other standards [4] evaluate these systems using the maximum fill density and the lowest anticipated exposure temperature. These standards require fire extinguishment within 60 seconds of the end of agent discharge. Due to the lack of specific IMO performance requirements, the results of these tests will require interpretation.

There are some additional concerns with the IMO protocol applied to evaluating inert gas extinguishing agents. These concerns are the lack of definitions of discharge time and the end of agent discharge. IMO requires that inert gas extinguishing systems be designed to discharge the agent in two minutes or less. This discharge time is based on 85% of the mass of the agent being delivered to the space. The discharge time requirement for the halocarbon agents is based on 95% of the mass of the agent being delivered to the space. Typically, liquid agent runout as noted by the inflection points on the nozzle pressure plots has been used to define the end of agent discharge for the halocarbon agents. The inconsistency in discharge time definitions only becomes an issue if the definition is used as the starting point of the extinguishment time interval. The 95% definition has been used in the past to evaluate the halocarbon agents, but has not been an issue since the end of agent discharge by any definition usually occurs within seconds of liquid agent runout. The end of agent discharge for the inert gases, however, can vary by as much as 60 seconds, depending on the definition. Due to the lack of a definition for the end of agent discharge, the extinguishment times were measured and recorded from system activation and the agent discharge times were given for 85, 95, and 99.5% of the agent delivered to the space. The actual extinguishment time can be determined by subtracting the discharge time from the recorded extinguishment time based on the preferred discharge time definition.

### 4.0 CRADA PARTICIPANTS

To meet the test objectives, the project was structured to allow the participation of agent and equipment manufacturers through Cooperative Research and Development Agreements (CRADAs). Through these CRADAs, the Coast Guard provided the test facility (Fire & Safety Test Detachment, Mobile, AL), test compartment, all fuels, instrumentation, test personnel, and the final report. The CRADA participants provided the extinguishing agent, distribution system design with design calculations, all system hardware, and were responsible for installing the system. CRADAs were established with the following companies:

- Ansul Inc. using Inergen and Ansul hardware;
- Ansul Inc. Marine Division using North American Fire Guardian Technology, Inc.'s (NAFGT) agent NAF-SIII;
- Minnesota Mining and Manufacturing, 3M, using CEA-308 and distribution hardware provided by Tyco Electronic Product Group (TEPG);
- Factory Mutual Research Corporation using Great Lakes Chemical Corporation's agent FM-200 and distribution hardware provided by Hygood Ltd. and Sea-Fire;
- Kidde-Fenwal Inc. using Great Lakes Chemical Corporation's agent FM-200 and Kidde-Fenwal hardware; and
- Chemetron, Inc. using Great Lakes Chemical Corporation's agent FM-200 and Chemetron hardware.

# 4.1 Extinguishing Agents

Four agents (three halocarbons and one inert gas) were included in this evaluation. These agents include heptafluoropropane C<sub>3</sub>HF<sub>7</sub> (FM-200), perfluoropropane C<sub>3</sub>F<sub>8</sub> (CEA-308), a hydrochlorofluorocarbon blend (NAF-SIII, HCFC Blend A), and a blend of nitrogen, argon, and carbon dioxide (Inergen). FM-200 is manufactured by Great Lakes Chemical Corporation, CEA-308 by 3M, NAF-SIII by North American Fire Guardian Technologies, and Inergen by Ansul Inc. The physical/chemical characteristics of Halon 1301, for reference purposes, and the four agents

are listed in Table 1 [4-7]. Also included in Table 1 are the agents' cup burner extinguishment concentrations for n-heptane.

Table 1. Extinguishing Agents Chemical and Physical Properties [5-8]

| Trade Name                                                                       | Halon 1301 | CEA-308                       | FM-200         | NAF-SIII*                                                                                                                                                                                                | Inergen**                                                 |
|----------------------------------------------------------------------------------|------------|-------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Chemical Formula                                                                 | CF₃Br      | C <sub>3</sub> F <sub>8</sub> | C₃HF₁          | 82% CHCIF <sub>2</sub> (R-22),<br>9.5% C <sub>2</sub> HCIF <sub>4</sub> (R-124),<br>4.75% C <sub>2</sub> HCl <sub>2</sub> F <sub>3</sub><br>(R-123), and<br>3.75% (Isopropenyl-1-<br>Methyl Cyclohexene) | 52% N <sub>2</sub> ,<br>40% Ar, and<br>8% CO <sub>2</sub> |
| Molecular Weight                                                                 | 149        | 188                           | 170            | 93 (Avg)                                                                                                                                                                                                 | 34 (Avg)                                                  |
| Normal Boiling Point, °C                                                         | -57.8      | -36.7                         | -16.4          | -38                                                                                                                                                                                                      | -196                                                      |
| Vapor Pressure, MPa at 21 °C                                                     | 1.47       | 0.782                         | 0.405          | 0.853                                                                                                                                                                                                    | NA                                                        |
| Critical Temperature, °C                                                         | 67         | 71.9                          | 101.7          | 125                                                                                                                                                                                                      | 122.4                                                     |
| Critical Pressure, Mpa                                                           | 3.97       | 2.68                          | 2.91           | 6.65                                                                                                                                                                                                     | 4.33                                                      |
| Vapor Density, kg/m <sup>3</sup> At 21 °C and 0.101 Mpa                          | 6.26       | 7.87                          | 7.26           | 3.85                                                                                                                                                                                                     | 1.43                                                      |
| Liquid Density, kg/m <sup>2</sup> at 21 °C                                       | 1567       | 1315                          | 1403           | 1219                                                                                                                                                                                                     | NA                                                        |
| Agent Cylinder Pressure, MPa at 21 °C                                            | 2.58       | 2.58                          | 2.58           | 2.58                                                                                                                                                                                                     | 14.8                                                      |
| n-heptane Cup Burner<br>Extinguishment Concentration,<br>% Volume Extinguishment | 3.5        | 6.5                           | 6.7            | 9.9                                                                                                                                                                                                      | 29.1                                                      |
| Telltale Test Concentration % Volume                                             |            | 6.5                           | $6.7^1, 7.2^2$ | 10                                                                                                                                                                                                       | 31.5                                                      |
| Large Fires Test<br>Concentration % Volume                                       |            | 8.5, 9.0                      | 8.7            |                                                                                                                                                                                                          | 37.5                                                      |

Note:

All fire tests were conducted using the CRADA participant's recommended design concentration with the exception of the telltale fire tests. The telltale fires were conducted using the agents' minimum extinguishing concentration, which typically was the cup burner extinguishing concentration for n-heptane or diesel fuel. The maximum allowable concentration for use in the telltale fire tests is 83.3% of the CRADA participants recommended design concentration [1].

<sup>\*</sup> Composition by Weight, Average Properties Given

<sup>\*\*</sup> Composition by Volume, Average Properties Given

<sup>&</sup>lt;sup>1</sup> Concentration used by FMRC/Sea-Fire

<sup>&</sup>lt;sup>2</sup> Concentration used by Kidde-Fenwal and Chemetron

### 5.0 TEST COMPARTMENT

The tests were conducted in a simulated machinery space aboard the test vessel, STATE OF MAINE, at the U.S. Coast Guard Fire and Safety Test Detachment located at Little Sand Island in Mobile, AL. The machinery space was located on the fourth deck of the Number 6 cargo hold. The compartment was constructed to meet the dimensional requirements of the IMO test protocol. The compartment volume was approximately 500 m³ with nominal dimensions of 10 m x 10 m x 5 m as shown in Figure 1. The diesel engine mockup described in the test protocol was located on the fourth deck in the center of the compartment as shown in Figure 2. Air to support combustion was provided naturally through two 2 m² vent openings located on the fourth deck forward in the compartment. These two vents were equipped with remotely activated retractable doors. Products of combustion were exhausted from the compartment through a 6 m² vertical stack located in the back of the compartment (aft). The exhaust stack was equipped with a remotely activated hydraulic damper. Both the supply vents and vertical stack were open during the preburn period and closed just prior to agent discharge.

The enclosure integrity was determined prior to the previous evaluation using a door fan test [2]. The door fan tests were conducted by Brendle Inc. of Montgomery, AL. Four tests were conducted using air flow rates from 65 to 110 m³/min, which produced compartment pressures ranging from 15 to 40 Pa. Based on the results of these tests, the equivalent leakage area for the compartment was determined to be approximately 0.17 m².

A Harford Duracool, 8 m<sup>3</sup>, Model DR36788GG1MSI walk-in freezer with adjustable temperature controls was installed on the main deck of the "STATE OF MAINE" adjacent to the cylinder manifold. The agent cylinders were conditioned in the freezer for the over twelve hours prior to testing.



Figure 1. Machinery Space Configuration



(All measurements are in mm, unless otherwise noted.)

Figure 2. Diesel Engine Mockup (Section and Plan Views)

### 6.0 FIRE SCENARIOS

The fire scenarios required by the IMO test protocol [1] are listed in Table 2 and are designated as Fire Scenarios 1, 2A, 2B, 3, and 4. The locations of the fires listed in Table 2 are shown in Figure 3. Per the IMO requirements, the halocarbon agents were evaluated against fire Scenarios 1, 2A, 3, and 4; and the inert gas was evaluated against Fire Scenarios 1, 2B, 3, and 4. The inert gas(s) are evaluated against a smaller spray fire combination (Fire Scenario 2B) to reduce the effects of oxygen depletion.

Nominal Heat Location (Figure 3) Components Fire Nominal Total Scenario Heat Release Release Rates Rate (TT) ~24 kW 82 cm<sup>2</sup> heptane pan fires (telltales) ~3 kW/ea Corners Low pressure heptane spray fire 5.8 MW Top of mockup (S1)7.95 MW 2A Top of mockup (S2) High pressure diesel spray fire 1.8 MW 0.25 m<sup>2</sup> heptane pan fire Under mockup 0.35 MW (P1) 0.10 m<sup>2</sup> heptane pan fire Side of mockup (P2) 0.14 MW 2B 0.49 MW 0.35 MW Under mockup (P1) 0.25 m<sup>2</sup> heptane pan fire Side of mockup Low pressure/flow heptane spray fire 1.10 MW (S3)4.40 MW 3 Deck level (C1)Wood crib 0.30 MW 2.0 m<sup>2</sup> diesel pan fire 3.00 MW Bilge Plate (P3) (P4) 4.0 m<sup>2</sup> diesel pan fire 6.00 MW Bilge 6.00 MW \* 5 ~24 kW 82 cm<sup>2</sup> heptane pan fires (telltales) ~3 kW/ea Corners (TT)

Table 2. Fire Scenarios

Fire Scenario 5 was conducted to evaluate the effects that low temperature cylinders have on the mixing characteristics of the systems. Fire Scenario 5 was a repeat of Fire Scenario 1 with the agent cylinders conditioned to a lower temperature. The cylinder temperature used during these tests was selected by the CRADA participants.

The telltale cups were constructed of 10 cm long sections of 10 cm diameter schedule 40 steel pipe. The cups had an internal diameter of 10.23 cm and a wall thickness of 0.60 cm. The cups were filled with a 2.5 cm deep layer of water and a 5 cm deep layer of heptane, resulting in a 2.5 cm freeboard.

<sup>\*</sup> A low temperature conditioned cylinder test is not currently included in the IMO test protocol.



Figure 3. Fire Locations

The fuel pans used during these tests were square in shape and constructed of 3.2 mm steel plate with welded joints. The pans were 22.9 cm in depth with side dimensions of 31.6 cm, 50 cm, 144 cm, and 200 cm for the  $0.2 \text{ m}^2$ ,  $0.25 \text{ m}^2$ ,  $2 \text{ m}^2$ , and  $4 \text{ m}^2$  pans, respectively. These pans were filled with a 2.5 cm deep layer of water and a 5 cm deep layer of either heptane or diesel fuel. Heptane was added to the  $2 \text{ m}^2$  and  $4 \text{ m}^2$  diesel pans to initiate the fire (1.9 L and 3.8 L, respectively).

The wood crib was constructed of 4 layers of 6 members each. Each member was trade size  $5 \times 5 \times 45$  cm (actual  $3.8 \times 3.8 \times 45$  cm) fir with a moisture content between 9% and 13%. The wood crib was placed on an angle iron frame 0.3 m above the deck. The crib was ignited using a  $0.25 \text{ m}^2$  pan that was fueled with 3.8 L of heptane. The wood crib was weighed both before and after each test.

The spray fire parameters are given in Table 3. The low pressure heptane spray fires were produced using a pressurized fuel tank and a pipe network constructed of 1.2 cm stainless steel tubing. The fuel flow was controlled by both a manual quarter turn ball valve and a remotely actuated solenoid valve. The fuel tank was pressurized with nitrogen from a regulated cylinder. The high pressure diesel spray was produced using a positive displacement pump and a pipe network constructed of 1.2 cm stainless steel tubing. The fuel flow was controlled by both a manual quarter turn ball valve and a remotely actuated solenoid valve.

Table 3. Spray Fire Parameters

| Fire Type                 | Low Pressure                                  | Low Pressure,                        | High Pressure                            |
|---------------------------|-----------------------------------------------|--------------------------------------|------------------------------------------|
|                           |                                               | Low Flow                             |                                          |
| Spray nozzle              | Wide spray angle (120-<br>125) full cone type | Wide spray angle (80) full cone type | Standard angle (at 6 bar) full cone type |
| Nozzle make               | Bete Fog Nozzle                               | Bete Fog Nozzle                      | Spraying Systems                         |
| and model                 | P-120                                         | P-48                                 | LN-8                                     |
| Fuel flow                 | 0.16 ± 0.01 kg/s                              | $0.03 \pm 0.005 \text{ kg/s}$        | 0.050 ± 0.002 kg/s                       |
| Fuel temperature          | 20 ± 5 °C                                     | 20 ± 5 °C                            | 20 ± 5 °C                                |
| Nominal heat release rate | $5.8 \pm 0.6 \mathrm{MW}$                     | 1.1 ± 0.1 MW                         | 1.8 ± 0.2 MW                             |

The fires were ignited to achieve the following preburn times prior to agent discharge (wood cribs 360 seconds, pan fires 120 seconds, and spray fires 15 seconds).

The IMO protocol requires that all Class B fires must be extinguished within 30 seconds of the end of agent discharge. In addition to the extinguishment time requirement, the mass loss of the wood crib in Fire Scenario 3 cannot exceed 60% of its original weight. This implies that the wood crib must be extinguished during the test. The test protocol should be revised to state the extinguishment time requirement.

### 7.0 AGENT DISTRIBUTION SYSTEMS

Each CRADA participant was responsible for the design and installation of their respective distribution system. Each CRADA participant was required to submit both a system design and flow/discharge time calculations to the Coast Guard prior to system testing. Systems were designed in accordance with the IMO protocol. The halocarbon agent systems were designed for a maximum discharge time of 10 seconds (95% of the mass of agent delivered to the enclosure). The inert gas system (Inergen) was designed for a maximum discharge time of 120 seconds (85% of the agent delivered to the enclosure).

Each CRADA participant utilized multiple distribution system configurations during the course of this evaluation. The additional configurations were used to either employ the 180° nozzles, to increase the nozzle coverage area, or to adjust for the difference in agent quantity between the telltale and larger fire scenarios. Due to the number and variation of these systems, the specific layouts and design parameters will be discussed later with the results for each CRADA participant.

All fire tests were conducted using the manufacturers' recommended design concentration with the exception of the telltale fire tests. The telltale fires were conducted using the agents' minimum extinguishing concentration, which typically was the cup burner

extinguishing concentration for n-heptane or diesel fuel. These concentrations are listed in Table 1.

### 8.0 INSTRUMENTATION

The U.S. Coast Guard's data acquisition system was used to collect all of the data during this evaluation with the exception of the extinguishing agent and HF concentrations. These measurements were made using an FTIR (Fourier Transform Infrared Spectrometer) which has a dedicated data acquisition system. The U.S. Coast Guard's data acquisition system was used to collect data at two rates; one set sampled at a rate of 10 Hertz, and the other set at 1 Hertz. The 1 Hertz data set consisted of the machinery space and fire instrumentation and the 10 Hertz data set consisted of the agent discharge system, and compartment pressure instrumentation.

The instrumentation scheme is shown in Figure 4 and a complete list of instrumentation is found in Appendix B.

### 8.1 Machinery Space and Fire Monitoring Instrumentation (1 Hertz Data Set)

The machinery space was instrumented to measure air temperatures, fire/flame temperature (to note extinguishment time), radiant and total heat flux, fuel nozzle pressure, and O<sub>2</sub>, CO<sub>2</sub>, and CO gas concentrations. A more detailed description of the instrumentation scheme is listed as follows.

### 8.1.1 Temperature Measurements

Two thermocouple trees were installed in the compartment. Each tree consisted of eight thermocouples positioned at the following heights above the lower deck (1.0, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 4.9 m). Inconel sheathed type K thermocouples (0.32 cm diameter) (Omega Model KMOIN-125G-600) were used for this application.



Pressure Measurements (1.5 m)(1.5 m)FITR Measurements Video Cameras

Figure 4. Instrumentation

### 8.1.2 Gas Concentration Measurements

Carbon monoxide, carbon dioxide, and oxygen concentrations were sampled at two locations and three elevations in the compartment. These measurements were recorded at the center line of the space both forward and aft of the engine mockup as shown in Figure 4. Measurements were taken 1.0, 2.5, and 4.0 m above the lower deck. MSA Lira 3000 Analyzers with a full-scale range of 10% by volume were used to measure the carbon monoxide concentration. MSA Lira 303 Analyzers with a full-scale range of 25% by volume were used to monitor the carbon dioxide concentration. Rosemont 755 Analyzers were used to monitor the oxygen concentration with full-scale range of 25% by volume. These analyzers are pressure sensitive, so that concentration measurements above ambient can be recorded during agent discharge.

The gas samples were pulled through 0.95 cm stainless steel tubing and a Drierite packed filter using a vacuum sampling pump at a flowrate of 1 L/min, resulting in a 10 second transport delay.

### 8.1.3 Heat Flux Measurements

Both radiant and total heat flux measurements were recorded at four locations in the compartment. These transducers were installed on the forward and port bulkheads 2.0 m and 4.0 m above the lower deck as shown in Figure 4. These instruments were water cooled Schmidt Boelter transducers manufactured by Medtherm Co. (Medtherm 64 Series Transducers) and had a full-scale range of 0-100 kW/m². The radiometers were equipped with 150 sapphire windows.

### 8.1.4 Fire Temperature

To aid in the extinguishment time determination, one thermocouple was placed in the flame region 5 cm above telltale cups, 20 cm above the larger pan fires, and 45 cm downstream of the spray fire nozzles. Inconel sheathed, Type K thermocouples (0.32 cm diameter) (Omega Model - KMQIN-125G-600) were used for the large fires and 0.16 cm diameter (Omega Model - KMQIN-062G-600) thermocouples were used for the telltale cups.

### 8.1.5 Fuel Pressure

The fuel nozzle pressure for these spray fires was monitored approximately six meters upstream of the nozzles where the fuel lines entered the test chamber. The two low pressure spray fires were monitored using a Setra Model 205-2 pressure transducer with a full-scale range of 1.7 MPa. The high pressure spray fire was monitored using a Setra Model 205-2 pressure transducer with a full-scale range of 20.7 MPa.

# 8.2 Discharge System Instrumentation (10 Hertz Data Set)

The discharge system was instrumented to provide system pressures, fluid temperatures, and pipe wall surface temperatures during the discharge of the agent. The compartment pressure was also included in this set of data. A more detailed description of these instruments is listed as follows.

### 8.2.1 Pressure Measurements

System pressures were measured at five locations: two discharge nozzles, before each tee, and on the cylinder discharge manifold. Setra Model 205-2 pressure transducers were used for this application. These transducers have a range of 0-6.9 MPa with an accuracy of 0.01% full-scale.

# 8.2.2 Temperature Measurements

The cylinder temperature was measured using an inconel sheathed Type K thermocouple (Omega Model KMQIN-062-600) fastened to the side of the cylinder with glazing compound. As a result of this fastening/measurement technique, the actual agent temperature can vary by as much as a few degrees. Fluid temperatures were measured using fast-response, exposed junction, 0.16 cm diameter, inconel-sheathed, Type K thermocouple probes (Omega Model KMQIN-062E-300) inserted into the flow (center of the pipe) adjacent to the locations of the pressure measurements. The pipe wall surface temperatures were measured using 24 AWG Type K

thermocouples, welded to the pipe surface adjacent to the fluid temperature and system pressure measurement locations.

### 8.2.3 Cylinder Weight Measurements

During the tests conducted with Inergen, one cylinder was weighed using a load cell scale assembly. The scale assembly had a range of 0-227 kg (gross). Due to the reaction forces exerted on the load cell during discharge, the weight traces could not be used during the analysis.

### 8.2.4 Compartment Pressure Measurements

The compartment pressure was measured at the centerline of the forward and port bulkheads 1.0 m above the deck as shown in Figure 4. Setra Model 264 pressure transducers with a range of ±2.48 kPa were used for this application. These instruments have an accuracy of 0.01% full-scale. Both transducers were mounted outside of the compartment with the reference taken at the transducer location.

### 8.3 Agent and Hydrogen Fluoride (HF) Concentration

With the exception of the tests involving Inergen and NAF-SIII, the agent and hydrogen fluoride (HF) concentrations were measured using a KVB/Analect Diamond 20 Fourier Transform Infrared Spectrometer (FTIR) configured with an open path in situ measurements inside the space. This configuration employed two flat 90 mirrors (Analect Model OBE-100), two 91 cm light pipes (Axiom Model AOT-36), two 90 parabolic mirrors with 20 cm focal lengths (Analect Model OBE-108), and two 3.8 cm diameter calcium fluoride, CaF<sub>2</sub>, windows. A 40 cm active path length was used during these tests. Measurements were taken every 1.2 seconds starting 5 seconds before the agent discharge until 16 seconds after discharge. After that period, measurements were taken every 30 seconds, starting 30 seconds after the agent discharge until 9 minutes after discharge. Finally, measurements were taken every 60 seconds starting 9 minutes after discharge until the end of the test.

Agent and HF concentrations were determined by comparison with spectra obtained using known concentrations. The specific agent concentrations were determined by the absorbencies at the wave numbers shown in Table 4.

Table 4. Agent and Decomposition Product Wave Numbers

| Agent / Compound                         | Wave Number (cm <sup>-1</sup> ) |
|------------------------------------------|---------------------------------|
| FM-200 (C <sub>3</sub> HF <sub>7</sub> ) | 2034                            |
| CEA-308 (C <sub>3</sub> F <sub>8</sub> ) | 2040                            |
| Hydrogen Fluoride (HF)                   | 4003, 4041, and 4077            |

The HF concentrations implied by the absorbencies at wave numbers 4003, 4041, and 4077 cm<sup>-1</sup> were averaged together.

The calibration spectra for use in determining the agent concentration was obtained using two glass cells, one with a path length of 5 cm and one with a 10 cm path length. These cells were evacuated and then filled with agent/air mixtures corresponding to 12.5% by volume and 25% by volume.

The HF calibration spectra was obtained using two plastic cells, one with a path length of 10 cm path and one with a 88.9 cm path length. Six mixtures of known concentrations ranging from 980 ppm HF to 9000 ppm were flowed through each cell to result in 12 spectras corresponding to concentrations ranging from 245 ppm to 20,000 ppm.

Inergen concentrations were determined using the oxygen concentration measurements and Equation 1.

$$C_{Inergen} = 100 * \left(1 - \frac{O_2}{O_{2,Init}}\right)$$
 (1)

where  $C_{lnergen}$  is the Inergen Concentration (% by volume),  $O_2$  is the measured oxygen concentration, and  $O_{2, lnit}$  is the initial oxygen concentration. The Inergen concentration can also be determined by multiplying the carbon dioxide concentration by 12.5. In either case, the

determined concentration is overstated by the presence of the fire, which both consumes oxygen and generates carbon dioxide. The NAF-SIII concentration was determined using the same technique.

### 8.4 Video Equipment

Five video cameras were used to visually document the events of the test. Two video cameras were located one on each level inside the compartment as shown in Figure 4. The other three cameras were located outside the compartment primarily viewing the area around the diesel engine mockup. A microphone was also installed in the center of the space to provide the audio for the five video cameras.

### 9.0 PROCEDURES

The tests were initiated from the control room located on the second deck level forward of the test compartment. Prior to the start of the test, the pans were fueled, and the compartment ventilation condition was set. (The two 2 m² lower vents and the 6 m² stack vent were opened prior to the start of the test.) During Fire Scenario 5, the agent discharge cylinders were removed from the freezer and connected to the manifold just prior to the start of the test. The video and data acquisition systems were activated, marking the beginning of the test. One minute after the start of the data acquisition system, the fires were ignited, and the compartment was cleared of test personnel. The ignition sequence timing was driven by the compartment fires in the test scenario. Wood crib fires were ignited 360 seconds prior to agent discharge. Pan fires and the telltale cups were ignited 120 seconds prior to agent discharge. Spray fires were ignited 15 seconds prior to agent discharge. Ten seconds prior to agent discharge, the vents into the space were closed and the extinguishing system was activated. The fuel for the spray fires was secured 15 seconds after these fires were confirmed to be extinguished (either visually through the video, or by the drop in temperature measured by the fire thermocouples). The test continued for 15 minutes after discharge at which point the re-ignition test for Fire Scenario 2A was conducted.

On completion of the test, the space was ventilated to remove the remaining agent and products of combustion.

### 10.0 RESULTS AND DISCUSSION

### 10.1 Tests Conducted

A total of 39 tests were conducted during this evaluation. These 39 tests consisted of 21 telltale fire tests, and 18 large fire tests. The telltale fire tests represent a larger portion of this evaluation, in comparison to the previous evaluation, due to the greater emphasis placed upon investigating additional hardware (180° nozzles) and due to evaluating the effects of low temperature storage cylinders.

The performance requirements stated in the IMO test protocol are measured from the end of agent discharge. Due to the lack of a definition for the end of agent, the extinguishment times presented in the results section were measured from system activation. Various discharge times are also presented for each test. The 85% and 95% discharge times for Inergen were determined using the Soave-Redlich-Kwong (SRK) equation of state [9, 10] and the pressures and temperatures measured in the cylinder manifold during discharge. Details of this methodology are given in Appendix C. For the halocarbon agents, the industry standard practice defines the 95% discharge time by the inflection points on the nozzle pressure/time plots are, which indicate liquid agent runout. The 99.5% discharge times for all agents were defined as the time when the nozzle pressure dropped below 35 kPa. The use of these values for any approvals or listings is subject to the interpretation of the approving administration.

Due to variations in test set-ups and test objectives, the results of these tests will be discussed on a CRADA participant basis in the following sections. A complete set of data is found in Appendix D for each test.

### 10.1.1 Inergen Extinguishing Agent, Ansul CRADA, Ansul Hardware

The eight Inergen tests included five telltale and three large fire tests as shown in Table 5. The complete set of fire scenarios was conducted for a system containing a single 360° nozzle located in the center of the space using a short discharge time (nominally 60 seconds). These tests include: Fire Scenario 1 – Test #1, Fire Scenario 2B – Test #5, Fire Scenario 3 – Test #6, Fire Scenario 4 – Test #7, and Fire Scenario 5 – Test #2. Tests #3 and #8 evaluated a system with a longer discharge time (nominally 120 seconds) and Test #4 evaluated a system containing two 180° nozzles.

The system configurations evaluated during this investigation are shown in Figures 5 through 7 with the system parameters listed in Table 5. The longer pipe network used during the telltale tests was designed to reduce the minimum nozzle pressure.

The telltale fire tests were conducted with a 31.5% agent concentration. The results of these tests are shown in Table 6. The first test was conducted with the cylinders at ambient temperature and the remaining tests with low temperature conditioned cylinders. During the test conducted with the discharge cylinders at ambient temperature and a nominal 60 second discharge time (Test #1), all of the telltales were extinguished within 55 seconds of system activation. This was not the case when the test was repeated with the low temperature conditioned cylinders (Test #2). The low temperature conditioned cylinders resulted in longer extinguishment times with the extinguishment times increasing by 20 seconds on average. All of the telltales were extinguished during this test within 86 seconds of system activation. Two tests were also conducted with low temperature conditioned cylinders and a nominal 120 second discharge time (Test #3 and Test #8). During Test #3, all of the telltale fires were extinguished within 177 seconds of system activation. During Test #8, all the telltale fires were extinguished within 106 seconds of system activation. The remaining test consisted of low temperature conditioned cylinders and two 180° nozzles (Test #4). During this test all of the telltale fires were extinguished within 101 seconds of system activation.

Table 5. Ansul Inergen Test Parameters

|          |                            |         |             |             |             |         | _       |         | _           |
|----------|----------------------------|---------|-------------|-------------|-------------|---------|---------|---------|-------------|
|          | Height<br>(m)              | 5       | 5           | 5           | 5           | 5       | 5       | 5       | 5           |
|          | Spacing<br>(m)             | 10      | 10          | 10          | 10          | 10      | 10      | 10      | 10          |
| Nozzle   | Coverage<br>Area<br>(m²)   | 100     | 100         | 100         | 20          | 100     | 100     | 100     | 100         |
|          | Orifice<br>Area<br>(mm²)   | 1480.9  | 1480.9      | 641.0       | 791.3       | 1288.4  | 1288.4  | 1288.4  | 714.8       |
|          | Type                       | 3e0°    | 360°        | 360°        | 180°        | 360°    | 360。    | 360°    | 360。        |
| N. L.    | of<br>OZZIes               | -       | -           | _           | 2           | -       | 1       | -       | -           |
| Manifol  | d Orifice<br>Area<br>(mm²) | 475.3   | 475.3       | 273.2       | 606.1       | 791.3   | 791.3   | 791.3   | 300.7       |
| Cylinder | Temp.                      | Ambient | Conditioned | Conditioned | Conditioned | Ambient | Ambient | Ambient | Conditioned |
|          | Vol. (1)                   | 85.0    | 85.0        | 85.0        | 85.0        | 85.0    | 85.0    | 85.0    | 85.0        |
|          | Number of<br>Cylinders     | 16      | 16          | 16          | 16          | 19      | 19      | 19      | 16          |
|          | Design<br>Conc.<br>(%)     | 31.5    | 31.5        | 31.5        | 31.5        | 37.5    | 37.5    | 37.5    | 31.5        |
|          | System                     | A-1     | A-2         | A-2         | A-3         | A-4     | A-4     | A-4     | A-5         |
|          | Fire<br>Scenario           | _       | 5           | 8           | 2           | 2B      | 3       | 4       | 5           |
|          | Test#                      | -       | 2           |             | 4           | 2       | 9       | 7       | 8           |

Table 6. Ansul Inergen Telltale Results

| Telltale Fire Extinguishment Time (sec) | Low             | Forward AFT         | Port Stbd Port Stbd | 51 55 11 5 | 72 54 64 86 | 177 151 121 124 | 57 18 12 41 | 661 701 10 |
|-----------------------------------------|-----------------|---------------------|---------------------|------------|-------------|-----------------|-------------|------------|
| Fire Extingu                            | ţh              | Aft                 | Port Stbd Port Stbd | 45 28      | 19 42       | 46 76           | 101 46      | 77         |
| Telltale                                | High            | Forward             | Port Stbd           | 47 5       | 48 51       | 71 45           | 71 17       | 0,0        |
| Dis. Time (sec)                         |                 | 95% 99.5%           |                     | 73 87      | 74 87       | 128 163         | 63 78       |            |
| Dis. 7                                  |                 | 85%                 |                     | 41         | 42          | 75              | 36          |            |
|                                         | Avg.            | Nozzle<br>Pressure  |                     | 1462       | 1413        | 1902            | 1623        |            |
| Agent Concentration *                   |                 | 600 sec             | (R)                 | 30.7       | 31.2        | 30.0            | 30.5        |            |
| t Concen                                | 200             |                     | (%)                 | 32.0       | 32.6        | 31.0            | 31.8        |            |
| Agen                                    |                 | •                   | (§)<br>——           | 32.4       | 33.1        | 31.3            | 32.6        |            |
|                                         | Design          | Conc.               |                     | 31.5       | 31.5        | 31.5            | 31.5        |            |
|                                         | Cylinder Design | Temp.               | <u>)</u>            | 16         | 2           | -15             | -10         |            |
|                                         |                 | Type                |                     | 360°       | 360°        | 360°            | 180°        |            |
|                                         |                 | System Nozzles Type |                     | _          | -           | -               | 2           | -          |
|                                         |                 |                     |                     | A-1        | A-1         | A-2             | A-3         |            |
|                                         | į.              | Scenario            |                     | _          | 5           | 5               | 5           |            |
|                                         | E               | # #                 |                     | _          | 2           | 3               | 4           |            |

\* Based on measured Oxygen Concentration

# System A-4



Figure 5. Ansul Inergen Telltale Fire Discharge System with 360° Nozzles (Short)

# Systems A-1, A-2 and A-5



Figure 6. Ansul Inergen Telltale Fire Discharge System with 360° Nozzles (Long)

# System A-3



Figure 7. Ansul Inergen Telltale Fire Discharge System with 180° Nozzles

The large fire tests were conducted with a 37.5% agent concentration, which is 20% above the concentration used during the telltale fire tests. The results of these tests are shown in Table 7.

As shown in Table 7, Fire Scenarios 3 and 4 were extinguished early into the agent discharge suggesting that these fires were extinguished due to localized effects rather than a uniform homogeneous extinguishment concentration achieved throughout the space. The extinguishment times for Fire Scenario 2B were similar to the telltale extinguishment times. As expected, the smaller pan fire combination (Scenario 2B) added to the IMO test protocol after the initial investigation [2] proved to be the most challenging. The 0.25 m² heptane pan fire in Scenario 2B was extinguished 42 seconds after system activation while the smaller fire (0.1 m² heptane pan fire) was not extinguished until 74 seconds after system activation.

The machinery space was instrumented to measure the increase and/or decrease in compartment pressure resulting from the discharge of the agent. Due to the configuration of the exhaust stack damper/flapper and to problems associated with instrumentation, the compartment pressures recorded during these tests were not representative of an actual machinery space application. The concern associated with increases and/or decreases in compartment pressure still exists and should be considered when installing an inert gas system in a relatively air-tight machinery space.

10.1.2 NAF-SIII Extinguishing Agent, Ansul CRADA, North American Fire Guardian Technologies Hardware

Two tests were conducted under the Ansul CRADA using North American Fire Guardian's hardware and agent. During the previous investigation [2], a system containing two 360° nozzles successfully completed the IMO evaluation using ambient temperature cylinders. The objectives of these tests were to re-evaluate the system with cylinders conditioned to low temperatures. The discharge system used during these tests is shown in Figure 8 and was identical to one evaluated previously. The parameters for the system are given in Table 8.

Table 7. Ansul Inergen Fire Test Results

|                       |                                                                  |                                | 20                         |                               |
|-----------------------|------------------------------------------------------------------|--------------------------------|----------------------------|-------------------------------|
|                       | Mass<br>Lost                                                     |                                | 39.5%                      |                               |
| Fire 3                | Ext.<br>Time<br>(sec)                                            |                                | 18                         |                               |
| Ы                     | Ext. Time Description (sec)                                      |                                | Wood Crib                  |                               |
|                       |                                                                  | 74                             | 6                          |                               |
| Fire 2                | 100% Description Time Description (sec)                          | 0.1 m <sup>2</sup><br>heptane  | 1.1 MW<br>Heptane<br>Spray |                               |
|                       | Ext.<br>Time<br>(sec)                                            | 42                             | 7                          | 16                            |
| Fire 1                | Description                                                      | 0.25 m <sup>2</sup><br>heptane | 2 m²<br>Diesel             | 78 4 m <sup>2</sup> Diesel 16 |
| (sec)                 | 100%                                                             | 9/                             | 77                         | 78                            |
| Dis. Time (sec)       | 85% 95%                                                          | 59                             | 59                         | 59                            |
| Dis.                  |                                                                  | 34                             | 34                         | 34                            |
| tion *                | (%)                                                              | 39.4                           | 53.4                       | 55.9                          |
| Agent Concentration * | Test Fire System Nozzles Type Conc. 60 sec 300 sec 6 (%) (%) (%) | 40.7                           | 56.3                       | 57.9                          |
| Agen                  | (%)                                                              | 41.1                           | 58.5                       | 58.9                          |
|                       | Design<br>Conc.<br>(%)                                           | 360° 37.5 41.1                 | 1 360° 37.5 58.5           | 360° 37.5 58.9                |
|                       | Туре                                                             | 360°                           | 360°                       | 360°                          |
|                       | Nozzles                                                          | -                              | -                          | 1                             |
|                       | System                                                           | A-4                            | A-4                        | A-4                           |
|                       | Fire<br>Scenario                                                 | 2B                             | 8                          | 4                             |
|                       | Test<br>#                                                        | 2                              | 9                          | 7                             |

\* Based on measured Oxygen Concentration

Table 8. Ansul NAF-SIII Test Parameters

|           |           |        |                             |                        |                                   | Cylinder | ıder        |                                                |      |               | Nozzle                               |             |            |
|-----------|-----------|--------|-----------------------------|------------------------|-----------------------------------|----------|-------------|------------------------------------------------|------|---------------|--------------------------------------|-------------|------------|
| Test<br># | Test Fire | System | Design Number Conc. Cylinde | Number of<br>Cylinders | oer of Fill Iders Density (kg/m³) | Vol.     | Temp.       | Number Orifice of Type Area Nozzles Type (mm²) | Туре |               | Coverage Spacing Height Area (m) (m) | Spacing (m) | Height (m) |
| 6         | 5         | N-1    | 2                           | -                      | 883                               | 243      | Conditioned | 2                                              | 360° | 2 360° 1641.6 | 50                                   | 5           | 5          |
| 10        | 5         | N-1    | 10                          | -                      | 883                               | 243      | Conditioned | 2                                              | 360° | 2 360° 1641.6 | 50                                   | 5           | 5          |

# System N-1



Figure 8. Ansul NAF-SIII Telltale Fire Discharge System

The tests were conducted with a 10% agent concentration. The results of these tests are shown in Table 9. The agent concentrations shown in this table were based on the oxygen concentrations measured in the space. As shown in this table, one telltale fire was not extinguished in each of the two tests. In the first test, with the cylinders conditioned to -20°C, the Low-Aft-Port telltale fire was not extinguished. In the second test, with the cylinders conditioned to 0°C, the High-Forward-Port telltale was not extinguished. The remaining telltale fires were all extinguished within 40 seconds of system activation in both tests.

The low cylinder temperature significantly affected the discharge characteristics of the system. The agent mixing characteristics of the system is primarily a function of the nozzle pressure during discharge. The lower cylinder temperature reduced the average nozzle pressures from 900 kPa as measured during the previous investigation to 300 kPa measured during these tests. Since low temperature cylinders are not currently included in the IMO test protocol, these tests were conducted to provide information on the effects low temperature condition cylinders have on the discharge characteristics of the system.

#### 10.1.3 CEA-308 Extinguishing Agent, 3M CRADA, Tyco Electronic Product Group Hardware

The eight SEA-308 tests included two telltale and six large fire tests as shown in Table 10. The complete set of five fire tests was conducted for a system containing four 360° nozzles installed with a nominal 5.0 m nozzle spacing and an 8.5% design concentration. These tests include: Fire Scenario 1 – Test #11, Fire Scenario 2A – Test #20, Fire Scenario 3 – Test #16, Fire Scenario 4 – Tests #15 and #17 (Test #15 was repeated due to hardware problems which resulted in a longer discharge time), and Fire Scenario 5 – Test #12. The large fire tests were also repeated with a 9.0% design concentration in an attempt to reduce the production of decomposition products (Tests #13, #18, and #19).

Three discharge system configurations were included in this evaluation. These systems are illustrated in Figures 9 and 10 with the system parameters listed in Table 10.

Table 9. Ansul NAF-SIII Telltale Results

| Avg.         Avg.         High         Ligh         Low           Nozzle Pressure         95.8         Forward         Aft         Forward         AF           300         14.5         17         21         21         17         40         30         N/E           390         12.5         16         N/E         4         10         11         20         20         28                                                                                                                                                                                                                                                                                                                                                                                             |           |                  |        |         |      |            |        |      | Agent Concentration * | ation * |        | Dis. Time (sec) | e (sec) | Te   | Iltale I | Telltale Fire Extinguishment Time (sec) | tinguis | hmen | t Time | (sec) |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|--------|---------|------|------------|--------|------|-----------------------|---------|--------|-----------------|---------|------|----------|-----------------------------------------|---------|------|--------|-------|------|
| 60 sec     300 sec     600 sec     Nozzle     95%     99.5%       (%)     (%)     Pressure     95%     17       10.1     10.7     10.7     300     14.5     17       10.8     11.1     11.1     390     12.5     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | į                |        |         |      | Cylinder   | Design | 1    |                       |         | Avg.   |                 |         |      | Hig      | Ч                                       |         |      | Lov    |       |      |
| (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%)       (%)     (%) | lest<br># | Fire<br>Scenaric | System | Nozzles | Type | Temp.      | Conc.  |      | 300 sec               | 200 sec | Nozzle | 95%             | 99.5%   | Forw | ard      | Aft                                     |         | Forw | ard    | AF    |      |
| 5 N-1 2 360° -20 10 10.1 10.7 10.7 300 14.5 17 21 21 17 17 40 30 N/E 5 N-1 2 360° 0 10 10.8 11.1 11.1 390 12.5 16 N/E 4 10 11 20 20 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                  |        |         |      | <u>(</u> ) | (%)    |      | (%)                   |         |        |                 |         | Port | Stbd     | Port S                                  | Stbd F  | ort  | Stbd   | Port  | Stbd |
| 5 N-1 2 360° 0 10 10.8 11.1 11.1 390 12.5 16 N/E 4 10 11 20 20 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٥         | /                | Ż      |         | 360° | -20        | 2      | 10.1 | 10.7                  | 10.7    |        | 14.5            |         | 21   | 21       | 17                                      | 17      | 40   | 30     | NÆ    | 20   |
| 1 14-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \         |                  |        | - 1     | 360° |            | 10     | 10.8 | 11.11                 | 11.1    |        | 12.5            | 16      | NÆ   | 4        | 10                                      | 11      | 20   | 20     | 28    | 4    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2         | ر ا              | 1-N1   | 7       | 2    | ,          |        |      |                       |         |        |                 |         |      |          |                                         |         |      |        |       |      |

\* Based on measured Oxygen Concentration

Table 10. 3M CEA-308 System Parameters

|           |      |        |                        |                        |          | Cylinder | ıder  |                         |      |                 | Nozzle                         |             |            |
|-----------|------|--------|------------------------|------------------------|----------|----------|-------|-------------------------|------|-----------------|--------------------------------|-------------|------------|
| Test<br># | Fire | System | Design<br>Conc.<br>(%) | Number of<br>Cylinders |          | Vol.     | Тетр. | Number<br>of<br>Nozzles | Туре | Orifice<br>Area | Coverage Area Spacing (m²) (m) | Spacing (m) | Height (m) |
|           |      |        |                        |                        | (Kg/III) |          |       |                         |      | ,               |                                |             |            |
| =         | -    | 7-1    | 89                     | 3                      | 622      | 147.0    | 20.0  | 4                       | 360° | 628.0           | 25                             | 5           | 2          |
| =   =     |      | - E    | 65                     | 2                      | 622      | 147.0    | 2.0   | 4                       | 360° | 628.0           | 25                             | 5           | 5          |
| 2 ;       |      | CE     | 3                      | 2                      | 888      | 147.0    | 200   | 4                       | 360° | 1607.7          | 25                             | 5           | 5          |
| 5         |      | 1-7    | ,                      |                        | 933      | 277      | 0.00  | _                       | 360° | 10613           | 25                             | 5           | 5          |
| 16        | 3    | T-3    | 8.5                    | 5                      | 833      | 14/.0    | 70.07 |                         | 3    | 2001            | 36                             | )           | -          |
| 17        | 4    | T-3    | 8.5                    | ec                     | 833      | 147.0    | 20.0  | 4                       | 360° | 1061.3          | <b>C7</b>                      | 2           | 2          |
| 101       | V    | T-2    | 0                      | 3                      | 888      | 147.0    | 20.0  | 4                       | 360° | 1607.7          | 25                             | 2           | 5          |
| 2 2       | 2    | 7.7    | 0                      | 8                      | 888      | 147.0    | 20.0  | 4                       | 360° | 1607.7          | 25                             | 5           | 5          |
| 5         | 2A   | T-3    | 8.5                    | 6                      | 833      | 147.0    | 20.0  | 4                       | 360° | 1061.3          | 25                             | 5           | 5          |
| 3         |      | )      | 2                      |                        |          |          |       |                         |      |                 |                                |             |            |

## System T-1





Figure 9. 3M CEA-308 Telltale Fire Discharge System

### System T-2 and T-3



Figure 10. 3M CEA-308 Large Fire Scenario Discharge System

The telltale fire tests were conducted with a 6.5% agent concentration. The results of these tests are shown in Table 11. As shown in this table, all of the telltale fires were extinguished within 30 seconds of system activation. The decrease in cylinder temperature from 20°C to 2°C had little effect on the telltale fire extinguishment times.

The three large fire scenarios were conducted using two design concentrations, 8.5 % and 9.0 % by volume. These concentrations are nominally 30% and 40% above the concentration used during the telltale fire tests. The results for these tests are given in Table 12. As shown in this table, all of the fires were extinguished within the 20 seconds of system activation. The longest extinguishment times were observed for the 4 m² diesel pan in Scenario 4 and the wood crib in Scenario 3. These fires were both extinguished approximately 20 seconds after system activation.

The HF concentrations recorded during these tests follow the same trends found throughout the literature [2]. The average HF concentrations observed 300 seconds after extinguishment ranged from approximately 2500 to 4000 ppm for the 8.5% design concentration and 1600 to 3000 ppm for the 9.0% concentration. The use of the higher agent concentration reduced the amount of HF produced by an average of 30%.

10.1.4 FM-200 Extinguishing Agent, Factory Mutual Research Corporation CRADA, Sea-Fire and Hygood Hardware

Six tests were conducted under the Factory Mutual Research Corporation CRADA. These tests included three telltale and three large fire tests as shown in Table 13. The complete set of fire scenarios was conducted for a system containing four 360° nozzles installed with a nominal 5.0 m nozzle spacing. These tests include: Fire Scenario 1 – Test #21, Fire Scenario 2A – Test #24, Fire Scenario 3 – Test #23, Fire Scenario 4 – Test #25, and Fire Scenario 5 – Test #22. The system was then re-evaluated to include 180° nozzles in Test #26.

Three discharge system configurations were included in this evaluation. The discharge systems are illustrated in Figures 11 and 12 with the system parameters listed in Table 13.

Table 11. 3M CEA-308 Telltale Fire Test Results

|           |             |        |         |        |                                       |        |          |                     |                        |       |                            |               |      |        | <br> <br>                               | •       |        | į       | 1     |     |
|-----------|-------------|--------|---------|--------|---------------------------------------|--------|----------|---------------------|------------------------|-------|----------------------------|---------------|------|--------|-----------------------------------------|---------|--------|---------|-------|-----|
|           |             |        |         |        |                                       |        | Age      | Agent Concentration | ıtration               |       | Dis. Time (sec)            | ne (sec)      | Ĥ    | litale | Telltale Fire Extinguishment 1 me (sec) | tinguis | hment  | Ime     | (Sec) |     |
| E         | í           |        |         |        | Cylinder                              | Design |          |                     |                        | Avg.  |                            |               |      | High   | ų                                       |         |        | Low     |       |     |
| lest<br># | lest rife s | System | Nozzles | Type   | System Nozzles Type Temp. Conc. 60 se | Conc.  | oec 09   | 300 sec             | 60 sec 300 sec 600 sec |       | 95%                        | 99.5% Forward | Forv | ard    | Aft                                     | Aft     | orwa   | Forward | AFT   |     |
|           |             |        |         |        | <u> </u>                              | (g)    | <u>@</u> | (%) (%)             | (%)                    |       |                            |               | Port | Stbd   | Port Stbd Port Stbd Port Stbd Port Stbd | stbd Po | ort Si | bd P    | ort S | tbd |
| =         | -           | 7-1    | 1       | 4 360° | 20 6.5                                | 6.5    | 6.1      | 6.1 6.2             | 6.0                    | 900.0 | 10 15 7 5 5 3 16 24 26 10  | 15            | 7    | 5      | 5                                       | 3       | 9      | 74      | 96    | 10  |
| 12        |             | 5 T-1  |         | 4 360° | 2                                     | 6.5    | 6.2      | 6.2 6.2             | 0.9                    | 700.0 | 10 15 10 7 5 6 23 20 30 18 | 15            | 10   | 7      | 5                                       | 9       | 3 2    | 0;      | 0%    | 18  |
|           | _           |        |         |        |                                       |        |          |                     |                        |       |                            |               |      |        |                                         |         |        |         |       |     |

Table 12. 3M CEA-308 Fire Test Results

|     |                  |        |                           |      |     | Agent              | Agent Concentration |     | Dis. Ti | Dis. Time (sec) | Fire 1                             |                       | Fire 2                     |                       | Pir.                   | Fire 3                |              | Avg. HF                | Avg. HF Concentration              | ration |
|-----|------------------|--------|---------------------------|------|-----|--------------------|---------------------|-----|---------|-----------------|------------------------------------|-----------------------|----------------------------|-----------------------|------------------------|-----------------------|--------------|------------------------|------------------------------------|--------|
| ွင  | Fire<br>Scenario | System | System Nozzles Type Conc. | Туре | _   | 60 sec 300 sec (%) |                     | (%) | 95%     | 99.5%           | Description Time Description (sec) | Ext.<br>Time<br>(sec) | Description                | Ext.<br>Time<br>(sec) | Description            | Ext.<br>Time<br>(sec) | Mass<br>Lost | 60 sec   300 sec (ppm) | 60 sec 300 sec 600 sec (ppm) (ppm) | (mdd)  |
| į   | 2A               | T-3    | 4                         | 360° | 8.5 | 8.7                | 9.1                 | 8.7 | Ξ       | 14              | 0.25 m <sup>2</sup><br>Heptane     | 12                    | 5.8 MW<br>Heptane<br>Spray | 3                     | 1.8 MW<br>Diesel Spray | 3                     |              | 4338                   | 4158                               | 3425   |
| . 1 | 3                | T-3    | 4                         | 360° | 8.5 | 8.5                | 9.1                 | 7.9 | =       | 14              | 2 m² Diesel                        | 'n                    | 1.1 MW<br>Heptane<br>Spray | 15                    | Wood Crib              | 20                    | 35.0%        | 2890                   | 2509                               | 1991   |
|     | 4                | T-3    | 4                         | 360° | 8.5 | 8.8                | 8.7                 | 8.5 | 11      | 14              | 4 m <sup>2</sup> Diesel            | 16                    |                            |                       |                        |                       |              | 3842                   | 2932                               | 2308   |
|     | 2A               | T-2    | 4                         | 360° | 9.0 | 9.2                | 9.3                 | 8.7 | =       | 14              | 0.25 m²<br>Heptane                 | 15                    | 5.8 MW<br>Heptane<br>Spray | 3                     | 1.8 MW<br>Diesel Spray | 3                     |              | 4120                   | 3091                               | 2533   |
|     | 6                | T-2    | 4                         | 360° | 9.0 | 7.4                | 9.1                 | 6   |         | 13              | 2 m² Diesel                        | 10                    | 1.1 MW<br>Heptane<br>Spray | 10                    | Wood Crib              | 20                    | 40.0%        | 1531                   | 1599                               | 1353   |
|     | 4                | T-2    | 4                         | 360° | 9.0 | 9.4                | 9.2                 | 9.1 | 11      | 14              | 4 m <sup>2</sup> Diesel            | ∞                     |                            |                       |                        |                       |              | 2338                   | 2000                               | 1812   |

Table 13. Factory Mutual Research Corporation FM-200 System Parameters

|          | nacino Heioht         |                   | -                  | 5 5     | 5 5         | 5 5     | 5 5     | 5 5     | 5 5     |
|----------|-----------------------|-------------------|--------------------|---------|-------------|---------|---------|---------|---------|
| Nozzie   | Coverage Area Spacing | (m <sup>2</sup> ) | (     )            | 25      | 25          | 25      | 25      | 25      | 25      |
|          | Orifice               | Area              | (mm <sup>2</sup> ) | 509.0   | 509.0       | 1029.4  | 1029.4  | 1029.4  | 538.8   |
|          |                       | Type              |                    | 360°    | 360°        | 360°    | 360°    | 360°    | 180°    |
|          | Number                | Nozzles Type      |                    | 4       | 4           | 4       | 4       | 4       | 4       |
| ıder     | Temp                  | Temp.             |                    | Ambient | Conditioned | Ambient | Ambient | Ambient | Ambient |
| Cylinder | 10/1                  |                   | (i)                | 180.0   | 180.0       | 180.0   | 180.0   | 180.0   | 180.0   |
|          | Fill                  | Density           | (kg/m³)            | 522     | 522         | 640     | 640     | 640     | 522     |
|          | Number of             | Cylinders         |                    | 3       | 3           | 3       | 3       | 3       | 3       |
|          | Design                | Conc.             | ( <sub>9</sub> %)  | 7.2     | 7.2         | 8.7     | 8.7     | 8.7     | 7.2     |
|          | C                     | System            |                    | F-1     | F-1         | F-2     | F-2     | F-2     | F-3     |
|          | Fire                  | Scenario          |                    | _       | 5           | 3       | 2A      | 4       | 1       |
|          | Test                  | #                 |                    | 21      | 22          | 23      | 24      | 25      | 56      |

## System F-1 and F-2



Figure 11. FMRC Sea-Fire Hygood Discharge System with 360° Nozzles

# System F-3



Figure 12. FMRC Sea-Fire Hygood Discharge System with 180° Nozzles

The telltale fire tests were conducted with a 7.2% agent concentration. The results of these tests are shown in Table 14. The telltales were extinguished within 25 seconds of system activation for all three tests. The cylinder temperature had little effect on the telltale fire extinguishment times for this system configuration. The extinguishment times for the 180° nozzles were similar to the 360° nozzles for the telltales located high in the space, but produced longer extinguishment times for the lower telltale fires. During the test conducted with the 180° nozzles, two additional telltales were added in the center of the compartment (one on top and one below the diesel engine mockup). During this test, the extinguishment times for the two additional telltales were similar to the telltales located in the corners of the space (i.e., within 24 seconds of system activation).

The large fire tests were conducted with an 8.7% design concentration, which is 20% higher than the concentration used during the telltale fire tests. The results of these tests are shown in Table 15. As shown in this table, all of the test fires were extinguished within 11 seconds of system activation.

The HF concentrations recorded during these tests follow the same trends found throughout the literature [2]. The average HF concentrations observed 300 seconds after extinguishment ranged from 2200 to 5000 ppm.

### 10.1.5 FM-200 Extinguishing Agent, Kidde-Fenwal CRADA, Kidde-Fenwal Hardware

During the previous investigation [2], a Kidde-Fenwal system containing four 360° nozzles installed with a nominal 5.0 m nozzle spacing successfully completed the IMO test protocol. During these tests, the system was re-evaluated using a variety of nozzles and configurations and with low temperature conditioned cylinders.

There were six tests conducted under the Kidde-Fenwal CRADA. All six tests were telltale fire tests with four of these tests conducted with low temperature conditioned cylinders as shown in Table 16. Test #27 re-evaluated the initial system using low temperature conditioned cylinders.

Table 14. Factory Mutual Research Corporation FM-200 Telltale Fire Test Results

|                                         |                                                    |                            | × ×                                              | 1                                         |                              | 4                                        |
|-----------------------------------------|----------------------------------------------------|----------------------------|--------------------------------------------------|-------------------------------------------|------------------------------|------------------------------------------|
|                                         | Center                                             |                            | 길                                                |                                           |                              | $\dashv$                                 |
|                                         | ٽ<br>—                                             |                            | Hig                                              |                                           |                              | 4                                        |
| (၃                                      |                                                    | FT                         | Stbd                                             | 2                                         | ∞                            | 16                                       |
| me (se                                  | W                                                  | Forward AFT                | Port                                             | 2 10                                      | ∞                            | 17                                       |
| int Ti                                  | Low                                                | vard                       | Stbd                                             | 5                                         | 11                           | 21                                       |
| ishme                                   |                                                    | Forv                       | Port                                             | 12                                        | 15                           | 17                                       |
| tingn                                   |                                                    | Aft                        | Stbd                                             | 2                                         | 2                            | 8                                        |
| ire Ex                                  | h                                                  | A                          | Port                                             | 2                                         | 1                            | ∞                                        |
| Telltale Fire Extinguishment Time (sec) | High                                               | vard                       | Port Stbd Port Stbd Port Stbd Port Stbd High Low | 22                                        | 25                           | 12                                       |
| Tel                                     |                                                    | Forv                       | Port                                             | 18                                        | 8                            | 24                                       |
| Fime<br>(c)                             |                                                    | 99.5%                      |                                                  | 15                                        | 15                           | 15                                       |
| Dis. Time (sec)                         |                                                    | 95%                        |                                                  | 9.25                                      | 9.25                         | 9.5                                      |
| A 17.0                                  | Nozzle                                             | Pressure 95% 99.5% Forward |                                                  | 1100.0                                    | 825.0 9.25 15 8 25 1 2 15 11 | 1100.0 9.5 15 24 12 8 8 17 21 17 16 4 14 |
| ration                                  |                                                    | 900 sec                    | (~)                                              | 7.8 7.5 7.2 1100.0 9.25 15 18 22 2 2 12 5 | 7.2                          |                                          |
| Agent Concentration                     |                                                    | 0 sec   300 sec   (\alpha) |                                                  | 7.5                                       |                              | 7.7 7.8 7.4                              |
| Agen                                    | System Nozzles Type Temp. Conc. (%) 60 sec 600 sec |                            |                                                  | 8.7                                       | 7.8 7.5                      | 7.7                                      |
| 77.00                                   | Conc.                                              | (%)                        |                                                  | 7.2                                       | 7.2                          | 7.2                                      |
| Cylinder                                | Temp.                                              | <u>(</u> )                 |                                                  | 20                                        | 9-                           | 20                                       |
|                                         | Type                                               |                            |                                                  | 360°                                      | 360°                         | 180°                                     |
|                                         | Nozzles                                            |                            |                                                  | 4                                         | 4                            | 4                                        |
|                                         | System                                             |                            |                                                  | F-1                                       | F-1                          | F-3                                      |
|                                         | Test Fire                                          | Scenario                   |                                                  | -                                         | 5                            | 1                                        |
|                                         | Test                                               | #                          |                                                  | 21                                        | 22                           | 26                                       |

Table 15. Factory Mutual Research Corporation FM-200 Fire Test Results

|                       |                                                                 |                         |                  | _                  |                  | _                       |
|-----------------------|-----------------------------------------------------------------|-------------------------|------------------|--------------------|------------------|-------------------------|
| ıtration              | 600 sec<br>(ppm)                                                | 4217                    |                  | 2332               |                  | 1943                    |
| Avg. HF Concentration | 300 sec<br>(ppm)                                                | 5026                    |                  | 2856               |                  | 2237                    |
| Avg. F                | 60 sec<br>(ppm)                                                 | 5601                    |                  | 3021               |                  | 2492                    |
|                       | Mass<br>Lost                                                    | 38.0                    | %                |                    |                  |                         |
| e 3                   | Ext.<br>Time<br>(sec)                                           | 3                       |                  | 4                  |                  |                         |
| Fire 3                | Ext. Description Time Lost (ppm) (ppm) (ppm) (ppm)              | Wood Crib               |                  | 1.8 MW             | Heptane<br>Spray |                         |
|                       | Ext.<br>Time<br>(sec)                                           | <b>∞</b>                |                  | 4                  |                  |                         |
| Fire 2                | Description                                                     | 1.1 MW                  | Heptane<br>Spray | 5.8 MW             | Heptane<br>Spray |                         |
|                       | Ext.<br>Time<br>(sec)                                           | ∞                       |                  | =                  |                  | ∞                       |
| Fire 1                | Description Time Description (sec)                              | 2 m <sup>2</sup> Diesel |                  | $0.25  \text{m}^2$ | Heptane          | 4 m <sup>2</sup> Diesel |
| Dis. Time (sec)       | 99.5%                                                           | 15                      |                  | 15                 |                  | 15                      |
| Dis. Ti               | 95%                                                             | 10                      |                  | 10                 |                  | 10                      |
|                       | (%)                                                             | 8.8                     |                  | 8.9                |                  | 8.7                     |
| Concen                | 300 sec<br>(%)                                                  | 9.2                     |                  | 9.4                |                  | 9.1                     |
| Agent                 | (%)                                                             | 6.8                     |                  | 9.2                |                  | 9.1                     |
| Design                | Conc.<br>(%)                                                    | 360° 8.7                |                  | 360° 8.7           |                  | 360° 8.7                |
|                       | Type                                                            | 360°                    |                  | 360°               |                  | 360°                    |
|                       | System Nozzles Type Conc. (%) 60 sec 300 sec 600 se (%) (%) (%) | 4                       |                  | 4                  |                  | 4                       |
|                       | System                                                          | F-2                     |                  | F-2                | 1                | F-2                     |
|                       | Test Fire # Scenario                                            | 3                       |                  | 2.A                |                  | 4                       |
|                       | Test<br>#                                                       | 23                      |                  | 24                 |                  | 25                      |

Table 16. Kidde-Fenwal FM-200 Test Parameters

| System         Conc.         Fill (kg/m³)         Vol. (fg/m³)         Temp. (fg/m³)         Nozzles (fg/m³)         Temp. (fg/m³)         Nozzles (fg/m³)         Area (fg/m³)                                                                                                                          |          | r |        |                 |           |         | ;     |             |              |        |          | NT1.              |         |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|--------|-----------------|-----------|---------|-------|-------------|--------------|--------|----------|-------------------|---------|--------|
| Conc. Cylinders 66.7         Fill (kg/m²)         Vol. (kg/m³)         Temp. (%)         Number of children         Area (hm²)         Area (hm²) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Cylin</td> <td>nder</td> <td></td> <td></td> <td></td> <td>Nozzie</td> <td></td> <td></td> |          |   |        |                 |           |         | Cylin | nder        |              |        |          | Nozzie            |         |        |
| (%)         (kg/m³)         (1)         Nozzles         1 ype         Area         (mm²)         (m²)                                                                                                                                                                                                                                                                                                                                                       | Fire     |   | System | Design<br>Conc. | Number of |         | Vol.  | Temp.       | Number<br>of | E      | Orifice  | Coverage          | Spacing | Height |
| (%)         (kg/m³)         (H)         (mm²)         (m²)         <                                                                                                                                                                                                                                                                                                                                                 | Scenario |   |        | (8)             | Cyminers  | Density | =     |             | Nozzles      | 1 ype  | Mea      |                   | (m)     | Έ      |
| 6.7         2         923         142         Conditioned         4         360°         569.8         25           6.7         2         923         142         Conditioned         2         360°         831.8         50           6.7         2         923         142         Ambient         2         180°*         603.7         50           6.7         2         923         142         Ambient         2         180°*         603.7         50           6.7         2         923         142         Ambient         2         180°         831.8         50           6.7         2         923         142         Ambient         2         180°         831.8         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •        |   |        | <u></u>         |           | (kg/m³) | €     |             |              |        | $(mm^2)$ | (m <sup>2</sup> ) | (mm)    | (,,,,) |
| 6.7         2         923         142         Conditioned         2         360°         831.8         50           6.7         2         923         142         Conditioned         2         180°*         603.7         50           6.7         2         923         142         Ambient         2         180°*         603.7         50           6.7         2         923         142         Conditioned         2         180°         831.8         50           6.7         2         923         142         Ambient         2         180°         831.8         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        |   | K-1    | 6.7             | 2         | 923     | 142   | Conditioned | 4            | 360°   | 8.695    | 25                | 5       | 5      |
| 6.7         2         923         142         Conditioned         2         180° *         603.7         50           6.7         2         923         142         Ambient         2         180° *         603.7         50           6.7         2         923         142         Conditioned         2         180°         831.8         50           6.7         2         923         142         Ambient         2         180°         831.8         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~        |   | K-2    | 6.7             | 2         | 923     | 142   | Conditioned | 2            | 360°   | 831.8    | 50                | 5       | 5      |
| 6.7         2         923         142         Ambient         2         180° *         603.7         50           6.7         2         923         142         Conditioned         2         180°         831.8         50           6.7         2         923         142         Ambient         2         180°         831.8         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5        |   | K-3    | 6.7             | 2         | 923     | 142   | Conditioned | 2            | 180° * | 603.7    | 50                | 10      | 5      |
| 6.7         2         923         142         Conditioned         2         180°         831.8         50           6.7         2         923         142         Ambient         2         180°         831.8         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        | _ | K-3    | 6.7             | 2         | 923     | 142   | Ambient     | 2            | 180° * | 603.7    | 50                | 10      | 5      |
| 6.7 2 923 142 Ambient 2 180° 831.8 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2        | _ | K-4    | 6.7             | 2         | 923     | 142   | Conditioned | 2            | 180°   | 831.8    | 50                | 10      | 5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -        | 1 | K-4    | 6.7             | 2         | 923     | 142   | Ambient     | 2            | 180°   | 831.8    | 50                | 10      | 5      |

<sup>\*</sup> Back-to-back nozzle configuration in center of compartment.

Test #28 evaluated a system containing two 360° nozzles with twice the area coverage. Tests #29 and #30 evaluated an innovative design consisting of two back-to-back 180° nozzles and, Tests #31 and #32 evaluated these two 180° nozzles using a conventional installation (nozzles installed adjacent to compartment boundaries).

The four Kidde-Fenwal discharge system configurations included in this test series are shown in Figures 13 through 16 with the system parameters listed in Table 16.

All tests were conducted with a 6.7% agent concentration. The results of these tests are listed in Table 17. As shown in this table, all of the telltale fires were extinguished within 28 seconds of system activation with the exception of Test #29. During Test #29 (low temperature conditioned cylinders and back-to-back 180° nozzles), the high-aft-port telltale was not extinguished until 44 seconds after system activation. In comparison of the two systems utilizing 360° nozzles, the two nozzle system extinguished the telltale fires almost twice as fast as the four nozzle system (on an average 6 seconds versus 12 seconds from system activation).

Unlike the previous two CRADA participants, the lower cylinder temperature significantly affected the discharge characteristics of the Kidde-Fenwal system. This was probably the result of the higher cylinder fill densities used by Kidde-Fenwal during these tests. For the two sets of tests that were conducted using both ambient and low temperature conditioned cylinders, the average nozzle pressure was reduced by over 25%. These lower pressures resulted in longer extinguishment times for the tests conducted with 180° nozzles installed back-to-back but had little effect on the extinguishment times when the 180° nozzles were installed adjacent to the bulkhead. The effects of reduced cylinder temperatures will also be discussed in Section 9.2.2 of this report.

#### 10.1.6 FM-200 Extinguishing Agent, Chemetron CRADA, Chemetron Hardware

Seven tests were conducted under the Chemetron CRADA. These tests included four telltale and three large fire tests as shown in Table 18. The complete set of fire scenarios was conducted for a system containing four 360° nozzles installed with a nominal 5.0 m nozzle spacing. These tests include:



Figure 13. Kidde-Fenwal Discharge System with Four 360° Nozzles



Figure 14. Kidde-Fenwal Discharge System with Two 360° Nozzles



Figure 15. Kidde-Fenwal Discharge System with Back-to-Back 180° Nozzles



Figure 16. Kidde-Fenwal Discharge System with Bulkhead 180° Nozzles

Table 17. Kidde-Fenwal FM-200 Telltale Fire Test Results

|           |                                       |        |                |      |                |        | Ager  | Agent Concentration | ıtration |        | Dis. Time (sec) | ne (sec) | Te        | Iltale 1 | Fire Ex             | tingui | shmer   | Telltale Fire Extinguishment Time (sec) | (sec)     |      |
|-----------|---------------------------------------|--------|----------------|------|----------------|--------|-------|---------------------|----------|--------|-----------------|----------|-----------|----------|---------------------|--------|---------|-----------------------------------------|-----------|------|
| -         |                                       |        |                |      | Cylinder Desig | Design |       |                     |          | Avg.   |                 |          |           | High     | بع                  |        |         | Low                                     |           |      |
| Test<br># | Fire                                  | System | System Nozzles | Туре |                | Conc.  | os 09 | 60 sec 300 sec      | 9        | Nozzle | 95%             | 99.5%    | Forward   | ard      | Aft                 |        | Forward | ard                                     | AFT       |      |
|           |                                       |        |                |      | ( <u>)</u>     | (%)    |       | ( <u>%</u> )        | (%)<br>  |        |                 |          | Port Stbd | Stbd     | Port Stbd Port Stbd | Stbd   | ort     |                                         | Port Stbd | Stbd |
| 7.0       | ٧                                     | K-1    | 4              | 360° | c              | 6.7    | 7.3   | 7.5                 | 7.2      | 435    | 11.5            | 15       | 8         | 3        | 6                   | 5      | 26      | 17                                      | 15        | 10   |
| 77        | ۷                                     | K-2    | , ,            | 360° |                | 6.7    | 6.7   | 7.0                 | 8.9      | 475    | 11.5            | 15       | ∞         | 6        | 9                   | 3      | 13      | 5                                       | 4         | 3    |
| 07        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 7-11   | 1 0            | 180° | ٥              | 67     | 6.9   | 7.1                 | 6.9      | 510    | 12              | 15       | 14        | 5        | 44                  | 5      | 32      | 16                                      | ∞         | 7    |
| 67        | ^ -                                   | N-3    | 4 6            | 180° | 21             | 6.7    | 7.0   | 7.1                 | 6.9      | 700    | 11              | 15       | =         | ∞        | 8                   | ∞      | 28      | 11                                      | 3         | 9    |
| 20        | - V                                   | K-A    | 2 0            | 180° | 0              | 6.7    | 6.7   | 6.9                 | 8.9      | 450    | 11.5            | 15       | 5         | 4        | 5                   | ∞      | 14      | 4                                       | 4         | 9    |
| 3 2       | - ا                                   | K-4    | 2 6            | 180  | 20             | 6.7    | 6.8   | 7.0                 | 8.9      | 625    | =               | 14       | 9         | 5        | 5                   | 3      | 18      | 5                                       | 3         | 5    |
| 10        | 7                                     |        | _              |      |                |        |       |                     |          |        |                 |          |           |          |                     |        |         |                                         |           |      |

Table 18. Chemetron FM-200 Test Parameters

| <del></del> |                          | 7       | Ť           | -          | T       |         | 1           |             |
|-------------|--------------------------|---------|-------------|------------|---------|---------|-------------|-------------|
|             | Height<br>(m)            | 5       | 5           | 2          | 5       | 5       | 5           | 5           |
|             | Spacing (m)              | 5       | 5           | 5          | 5       | 5       | 5           | 5           |
| Nozzle      | Coverage<br>Area<br>(m²) | 25      | 25          | 25         | 25      | 25      | 50          | 50          |
|             | Orifice<br>Area<br>(mm²) | 603.7   | 603.7       | 8.695      | 831.8   | 831.8   | 831.8       | 831.8       |
|             | Type                     | 360°    | 360°        | 360°       | 360°    | 360°    | 360°        | 180°        |
|             | Number<br>of<br>Nozzles  | 4       | 4           | 4          | 4       | 7       | 2           | 2           |
| der         | Temp.                    | Ambient | Conditioned | Ambient    | Ambient | Ambient | Conditioned | Conditioned |
| Cylinder    | Vol. (1)                 | 222     | 222         | 222        | 222     | 222     | 222         | 222         |
|             | Fill Density (kg/m³)     | 586     | 586         | 779        | 622     | 779     | 586         | 586         |
|             | Number of<br>Cylinders   | 2       | 2           | 2          | 2       | 2       | 2           | 2           |
|             | Design Conc. (%)         | 6.7     | 6.7         | 8.7        | 8.7     | 8.7     | 6.7         | 6.7         |
|             | System                   | C-1     | 5 5         | <u>C-2</u> | C-3     | C-3     | C-4         | C-5         |
|             | Fire<br>Scenario         | -       | · ·         | 2 A        |         | 4       |             | 5           |
|             | Test                     | 33      | 34          | 35         | 36      | 37      | 38          | 39          |

\* Back-to-back nozzle configuration in center of compartment.

Fire Scenario 1 – Test #33, Fire Scenario 2A – Test #35, Fire Scenario 3 – Test #36, Fire Scenario 4 – Test #37, and Fire Scenario 5 – Test #34. Test #38 evaluated a system containing two 360° nozzles with greater area coverage, and Test #39 evaluated a system consisting of two 180° nozzles.

Five discharge system configurations were included in this evaluation. These systems are illustrated in Figures 17 through 19, with the corresponding parameters given in Table 18. It should be noted that during the evaluation of the 180° nozzles, the nozzles were installed adjacent to a single bulkhead as shown in Figure 19, rather than adjacent to opposing bulkheads as was done with other CRADA participants.

The telltale fire tests were conducted with a 6.7% agent concentration. The results of these tests are shown in Table 19. As shown in this table, all telltale fires were extinguished within 25 seconds of system activation. On an average, the extinguishment times were similar between system configurations. The low-forward-starboard telltale was the last fire extinguished using the four 360° nozzle system, while the high-forward-port was the last fire extinguished using either the two 360° nozzle or two 180° nozzle configurations. The low temperature conditioned cylinders had little effect on the extinguishment times for the telltale fires.

The large fire tests were conducted with a 8.7% design concentration, which is 30% higher than the concentration used during the telltale fire tests. The results of these tests are given in Table 20. After Test #35, the nozzle orifice sizes were increased in order to decrease the discharge time to below 10 seconds. Although the discharge time during Test #35 was slightly longer than that required by IMO (11.5 seconds versus 10 seconds), the test was not repeated due to the short extinguishment times observed during the test. The assumption was made that a shorter discharge time would only increase the fire suppressing capabilities of the system. During these tests, all of the fires were extinguished within 15 seconds of system activation.

The HF concentrations recorded during these tests follow the same trends found throughout the literature [2]. The average HF concentrations observed 300 seconds after extinguishment ranged from 1600 to 3400 ppm.

### Systems C-1, C-2 and C-3



Figure 17. Chemetron Discharge System with Four 360° Nozzles

# System C-4



Figure 18. Chemetron Discharge System with Two 360° Nozzles

# System C-5



Figure 19. Chemetron Discharge System with Bulkhead 180°Nozzles

Table 19. Chemetron FM-200 Telltale Fire Test Results

|            |          |        |                     |      |                 |        | Ager   | Agent Concentration | tration                      |            | Dis. Tir | Dis. Time (sec)                              | Tellt                                   | Telltale Fire Extinguishment Time (sec) | Exting | ishme | ent Tim | e (sec | <u> </u> |
|------------|----------|--------|---------------------|------|-----------------|--------|--------|---------------------|------------------------------|------------|----------|----------------------------------------------|-----------------------------------------|-----------------------------------------|--------|-------|---------|--------|----------|
|            |          |        |                     |      | Cylinder Design | Design | 3      |                     |                              | Avg.       |          |                                              |                                         | High                                    |        |       | Low     | W      |          |
| Test<br>#  | Fire     | System | System Nozzles Type | Type | Temp.           | Conc.  | eo sec | 300 sec             | Conc. 60 sec 300 sec 600 sec | Nozzle     | 95%      | 99.5%                                        | Forward                                 |                                         | Aft    | For   | Forward | AFT    | Ŀ        |
| <b>=</b>   | Sceliano |        |                     |      | <u>(</u> )      | (%)    | (%)    | (%) (%)             | (%)                          | O meco I I |          |                                              | Port Stbd Port Stbd Port Stbd Port Stbd | d Port                                  | Stbd   | Port  | Stbd    | Port   | Stbd     |
| ;          | -        | 1      |                     | 360° | 18              | 6.7    | 7.5    | 7.1                 | 8.9                          | 975        | 8        | 14                                           | 9                                       | 9                                       | 8      | 8 18  | 19      | 10     | 6        |
| ર          | -        | 5      |                     | 200  | 2               |        | 7.2    | 1                   | 8 9                          | 875        | ~        | 14                                           | 5                                       | 6                                       | 5      | 15    | 17      | 12     | 10       |
| 34         | ~        | C-1    | 4                   | 360  |                 | 0.7    | ر: /   | `                   | 25                           |            | ,        | ֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֡ | ı                                       | ١                                       | ļ.     | :     | 5       | =      | 4        |
| 38         | ٧        | C-4    | 2                   | 360° | ?               | 6.7    | 6.9    | 6.9                 | 6.7                          | 1075       | 6        | 15                                           | 22   12                                 | 8 7                                     | ø      | =     | 71      | =      | 2        |
| <u>د</u> ا |          |        | ,                   | 1000 | ,               | 67     | 7.9    | 7.4                 | 7.0                          | 1150       | 6        | 15                                           | 25 20                                   | 3 3                                     | 3      | 10    | 2       | 7      | 9        |
| 39         | c        | 3      | 7                   | 100  | 7-              | 5      | ;      |                     |                              |            |          |                                              |                                         |                                         |        |       |         |        |          |

Table 20. Chemetron FM-200 Fire Test Results

|                       | 8 0                                                          |          |                   |         |                    |       | $\Box$                     |    |
|-----------------------|--------------------------------------------------------------|----------|-------------------|---------|--------------------|-------|----------------------------|----|
| ntration              | 600 se<br>(ppm)                                              | 2715     |                   | 2689    |                    |       | 1459                       |    |
| Avg. HF Concentration | Ext. Mass 60 sec 300 sec 600 sec Time Lost (ppm) (ppm) (ppm) | 3429     |                   | 3012    |                    |       | 1579                       |    |
| Avg. I                | 60 sec<br>(ppm)                                              | 3916     | 3916              |         |                    |       | 1755                       |    |
|                       | Mass<br>Lost                                                 |          |                   | 15      | %                  |       |                            |    |
| 33                    | Ext.<br>Time<br>(sec)                                        | ~        | <b>.</b>          | 10 41 0 | 2                  |       |                            |    |
| Fire 3                | Description                                                  | 1 8 MW   | Heptane           |         | Mood Citio         |       |                            |    |
|                       | Ext.<br>Time<br>(sec)                                        | 4        | 7                 | 3       |                    |       |                            |    |
| Fire 2                | Description                                                  | S O MIXI | Heptane           | Spiay   | I.I M w<br>Heptane | Spray |                            |    |
| :                     | Ext.<br>Time<br>(sec)                                        | 14       | 3                 | 1       | 0                  |       | 12                         |    |
| Fire 1                | 99.5% Description Time Description Time Description (sec)    | 2000     | U.25 m<br>Heptane |         | 2 m² Diesel        |       | 14 4 m <sup>2</sup> Diesel |    |
| Dis. Time (sec)       | 99.5%                                                        | 1        | 9                 |         | 4                  |       | 14                         |    |
| Dis. Tir              | 95%                                                          | 1        | 11.5              |         | 0                  |       | 2                          |    |
|                       | 600 sec<br>(%)                                               | Т        | 6.8               |         | 0.6                |       | 9.2                        |    |
| Agent Concentration   | Conc. 60 sec 300 sec (%) (%)                                 |          | 9.2               |         | 9.3                |       | 9.3                        |    |
| Agent                 | 60 sec (%)                                                   |          | 8.7               |         | 6.8                |       | 9.4                        |    |
|                       | Conc.                                                        |          | 8.7               |         | 8.7                |       | 8.7                        |    |
|                       | Туре                                                         |          | 360°              |         | 360° 8.7           |       | 360°                       |    |
|                       | Test Fire System Nozzles Type Conc. 66                       |          | 4                 |         | 4                  |       | A                          |    |
|                       | System                                                       |          | C-2               |         | C-3                |       | 6.3                        | S  |
|                       | Fire<br>Scenario                                             |          | 2A                |         | 3                  |       | _                          | +  |
|                       | Test<br>#                                                    |          | 35                |         | 36                 |       | ;                          | 7, |

#### 10.1.7 Test Summary

The systems evaluated during this investigation are summarized in Table 21. Also, included in this table are the relevant design parameters of each system.

Table 21. System Summary

| CRADA<br>Participant | Hardware        | Agent    | Design<br>Conc. | Number<br>of<br>Nozzles | Nozzle<br>Type | Coverage<br>Area<br>(m²) | Height (m) | Avg.<br>Nozzle<br>Pressure<br>(kPa) |
|----------------------|-----------------|----------|-----------------|-------------------------|----------------|--------------------------|------------|-------------------------------------|
| Ansul, Inc.          | Ansul           | Inergen  | 37.5            | 1                       | 360°           | 100                      | 5          | 943                                 |
| Ansul, Inc.          | Ansul           | Inergen  | 37.5            | 2                       | 180°           | 50                       | 5          | 1062                                |
| Ansul, Inc.          | Ansul           | NAF-SIII | 10              | 2                       | 360°           | 50                       | 5          | 300                                 |
| 3M                   | TEPG/3M         | CEA-308  | 8.5             | 4                       | 360°           | 25                       | 5          | 900                                 |
| FMRC                 | Hygood/Sea-Fire | FM-200   | 8.7             | 4                       | 360°           | 25                       | 5          | 1100                                |
| FMRC                 | Hygood/Sea-Fire | FM-200   | 8.7             | 4                       | 180°           | 25                       | 5          | 1100                                |
| Kidde-Fenwal         | Kidde-Fenwal    | FM-200   | 8.7             | 2                       | 360°           | 50                       | 5          | 475                                 |
| Kidde-Fenwal         | Kidde-Fenwal    | FM-200   | 8.7             | 2                       | 180° *         | 50                       | 5          | 700                                 |
| Kidde-Fenwal         | Kidde-Fenwal    | FM-200   | 8.7             | 2                       | 180°           | 50                       | 5          | 625                                 |
| Chemetron            | Chemetron       | FM-200   | 8.7             | 4                       | 360°           | 25                       | 5          | 975                                 |
| Chemetron            | Chemetron       | FM-200   | 8.7             | 2                       | 360°           | 50                       | 5          | 1075                                |
| Chemetron            | Chemetron       | FM-200   | 8.7             | 2                       | 180°           | 50                       | 5          | 1150                                |

<sup>\*</sup> Nozzles installed back-to-back.

Each of the five CRADA participants was evaluated using systems that contained 360° nozzles. Four CRADA participants (Ansul, FMRC/Sea-Fire, Kidde-Fenwal, and Chemetron) were also evaluated using systems containing 180° nozzles. All five CRADA participants were evaluated using systems that contained low temperature conditioned cylinders. The fire extinguishment capabilities of these systems were discussed in previous sections of this report. The use of this data for any approvals or listings require interpretation of the approving administration.

#### 10.2 IMO Protocol Evaluation

This evaluation of the IMO test protocol focused on three key issues: the use of 180° nozzles, the effects of low agent cylinder temperatures, and on inert gas extinguishing agents. These issues will be discussed separately in the following sections of this report.

#### 10.2.1 Variations in Nozzle Types

The 180° nozzles were fairly evaluated by the protocol and produced similar results to the 360° nozzles. The successful extinguishment of the two additional telltales located in the center of the space, added during one of the tests involving 180° nozzles, strengthens this test in terms of ensuring that the agent is distributed evenly throughout the space. As stated in the previous investigation [2], two additional telltales should be added in the center of the space (on top of and under the engine mockup). Based on the results of these tests, when changing nozzle types or nozzle spacings, additional large fire tests beyond the telltale test should not be required.

#### 10.2.2 Low Temperature Conditioned Cylinders

The effects of low temperature discharge cylinders varied from system-to-system and were observed to be system parameter dependent. The discharge characteristics (i.e., discharge times and nozzle pressures) for all of the halocarbon agents were significantly affected by the low temperature conditioned cylinders. The low temperature conditioned cylinders had the greatest effect on the nozzle pressure of the system. Reducing the cylinder temperature by 25 C typically resulted in a decrease in nozzle pressure on the order of 20%. The magnitude of the reduction appears to be related to the fill density of the cylinders. The greatest impact was observed for the cylinders with the highest fill densities. The nozzle pressures for the inert gas (Inergen) were relatively unaffected by the lower cylinder temperatures.

Although the nozzle pressures were affected by the reduction in cylinder temperature, for a majority of the systems tested, the fire extinguishment times were not significantly affected. For example, the 3M, FMRC/Sea-Fire, and Chemetron system extinguishing times were largely unaffected by the change in temperature/pressure. However, other systems were significantly

affected. The North American Fire Guardian system using low temperature conditioned cylinder was unable to extinguish all eight telltale fires. Although the nozzle pressures and discharge times were unaffected by the reduction in temperature for the inert gas (Inergen,), the extinguishment times increased on average by over 20 seconds. The Kidde-Fenwal systems produced mixed results.

The variations in firefighting capabilities observed during the low temperature conditioned cylinder tests define the need for the inclusion of this test in the protocol or for a better understanding of how low temperatures effect the discharge characteristics of the system. There are at least two approaches to this problem.

The first approach is to include a low temperature conditioned cylinder test in the IMO test protocol and have the system parameters included in the test define the design parameters for the system. These design parameters include: maximum cylinder fill density, maximum percent agent in the pipe, and the minimum cylinder temperature.

Another approach is to modify the flow programs used to design these systems to allow the cylinder temperature to be input as a design parameter. Using these programs, the systems could then be designed to meet or exceed the minimum nozzle pressure defined during the telltale fire test (Fire Scenario 1) for the minimum expected cylinder temperature.

Although these two approaches form a sound basis for this evaluation, a systematic parameter study is required to identify the design parameters associated with these variations.

#### 10.2.3 "Inert" Gaseous Agents

The lack of a definition for the end of agent discharge prevented the data collected during these tests to be interpreted in terms of pass or fail. In general, the "inert" gas was capable of extinguishing all of the telltale fires in less than 180 seconds and all of the large fires in less than 75 seconds of system activation. The interpretation of these results is the responsibility of the approving administration.

The protocol needs to be revised to include a definition for the end of agent discharge, independent of the type of extinguishing agent (i.e., halocarbon or inert gas). If the intent was to use the discharge time definition, a uniform 95% mass delivered to the space should be used for the inert gases as well as for the halocarbons. If this was not the intent, the end of agent discharge needs to be defined as well as a technique for measuring it during the test.

#### 11.0 SUMMARY

Each of the five CRADA participants (Ansul, 3M, Kidde-Fenwal, FMRC/Sea-Fire, and Chemetron) were evaluated using systems produced with 360° nozzles. Four CRADA participants (Ansul, Kidde-Fenwal, FMRC/Sea-Fire, and Chemetron) were also evaluated using systems containing 180° nozzles. All five CRADA participants were evaluated using systems that contained low temperature conditioned cylinders. Due to a lack of a definition, of the end of agent discharge, the results of these tests require interpretation.

The addition of a new nozzle type (i.e., 180° nozzles) or nozzle spacing was fairly evaluated by the protocol using a single telltale fire test (Fire Scenario 1). Additional large fire tests should not be required.

The effects of the low temperature discharge cylinders varied from system-to-system and were observed to be system parameter dependent (i.e., fill density and percent agent in pipe). The protocol needs to be revised to include provisions for evaluating systems that have agent storage cylinders located in unconditioned spaces. Due to the lack of a general understanding on how the various design parameters effect the discharge characteristics of the system, a systematic study was recommended to bound the problem.

The lack of a definition for the end of agent discharge prevented a quantitative analysis of the firefighting capabilities/performance of the inert gas Inergen. During these tests, Inergen was capable of extinguishing all of the telltale fires in less than 180 seconds and all the large fires in less than 75 seconds of system activation.

#### 12.0 RECOMMENDATIONS.

During the initial evaluation of the IMO test protocol [2], a number of potential improvements to the protocol were identified. A limited number of these improvements were included during the last revision. The remaining improvements should still be considered. These improvements include:

Minimize the oxygen depletion that occurs during the preburn of the large fires by either reducing the fire size(s) or increasing the compartment ventilation during preburn.

Add additional telltale fires in the center of the space (at a minimum one on top of the engine mockup and one in the bilge).

Obstruct, baffle, or relocate the spray fires located on top of the engine mockup in Fire Scenario 2A.

Modify the test protocol to include an energetic long duration re-ignition source in Fire Scenario 3.

Increase the ventilation to the bilge to prevent Fire Scenario 4 from becoming ventilation limited during preburn.

It is recommended, based on this evaluation, that the IMO test protocol be revised to include a uniform definition of discharge time based upon 95% of the agent having been delivered to the protected space. This definition should serve as both the measure of discharge time and the end of agent discharge.

If it is problematic to measure the 95% discharge time, the extinguishment time requirements can be measured from system activation. For example, halocarbon agents may be required to extinguish all the test fires within 40 seconds of system activation. Inert gases may

be required to extinguish all test fires within 150 seconds of system activation. The extinguishment time requirements should be determined by the IMO.

Provision should also be added to the protocol for evaluating systems that have agent cylinders located in unconditioned spaces.

# 13.0 U.S. COAST GUARD'S INTERPRETATION OF THE RESULTS

Upon completion of the tests conducted with Inergen, Ansul requested a written interpretation of the IMO test requirements (MSC/CIRC 776) from Coast Guard Headquarters (Life Saving and Fire Safety Standards Division). Ansul specifically requested an interpretation of the discharge time requirements and the definition of the end of agent discharge. The Coast Guard's response is found in Appendix E.

The letter from the Coast Guard states that the discharge time requirements in paragraph 4 of the IMO test protocol are self explanatory and do not need further interpretation (i.e., 85% of the agent must be delivered to the space in 120 seconds or less). The Coast Guard does however, agree that the definition of the end of agent discharge is somewhat vague. The Coast Guard interprets the end of agent discharge as the time when there is "no substantial flow from the nozzles" or "when the first nozzle stops discharging," whichever comes first. This infers that all of the agent has been delivered to the space.

Using the Coast Guard's interpretation for the end of agent discharge, the results of these tests can be qualified with respect to meeting the IMO requirements. To consistently apply this interpretation to the various agents, the end of agent discharge has been defined as when the nozzle pressure drops below 35 kPa. This time is shown in the various tables as the 99.5% discharge time. In order to meet the IMO test requirements, all of the test fires must be extinguished within 30 seconds of this time.

# 13.1 Inergen Extinguishing Agent, Ansul CRADA, Ansul Hardware

All eight tests conducted using Inergen were extinguished within the time requirements stated in the IMO test protocol. In a majority of the telltale fire tests, the telltale cups were extinguished during agent discharge. During two of the tests, the telltale cups were not extinguished until after discharge was complete. Both of these tests were conducted with low temperature conditioned cylinders. All of the large fires were also extinguished before the end of agent discharge. In summary, the extinguishing agent Inergen discharged through a system produced with Ansul hardware successfully completed the IMO test protocol with a system containing one 360° nozzle and a design concentration of 37.5%. A two nozzle system design (two 180° nozzles) also met the IMO requirements by successfully extinguish the telltale fire test (Fire Scenario 1).

# 13.2 CEA-308 Extinguishing Agent, 3M CRADA, TEPG Hardware

All eight tests conducted using CEA-308 were extinguished within the time requirements stated in the IMO test protocol. All of the fires (large fires and telltales) were extinguished within 15 seconds of the end of agent discharge. In summary, the extinguishing agent CEA-308 discharged through a system produced with TEPG hardware successfully completed the IMO test protocol with a system containing four 360° nozzles and two design concentrations of 8.5 and 9.0%. The higher design concentration was used to minimize the production of HF during extinguishment.

# 13.3 FM-200 Extinguishing Agent, FMRC/Sea-Fire CRADA, Hygood Hardware

All six tests conducted using the FMRC/Sea-Fire system were extinguished within the time requirements stated in the IMO test protocol. In a majority of the tests, the fires were extinguished before the end of agent discharge. In summary, the FMRC/Sea-Fire system using FM-200 extinguishing agent successfully completed the IMO test protocol with a system containing four 360° nozzles and a design concentration of 8.7%. A system design consisting of four 180° nozzles and a design concentration of 8.7% also met the IMO requirements by successfully extinguishing the telltale fire test (Fire Scenario 1).

# 13.4 FM-200 Extinguishing Agent, Chemetron CRADA, Chemetron Hardware

All seven tests conducted using the Chemetron system were extinguished within the time requirements stated in the IMO test protocol. All of the test fires were extinguished within ten seconds of the end of agent discharge. In summary, the Chemetron system discharging FM-200 extinguish agent successfully completed the IMO test protocol with a system containing four 360° nozzles and a design concentration of 8.7%. Two additional system designs also met the requirements of the IMO test protocol by extinguishing the telltale fire test (Fire Scenario 1). These systems include a two 360° nozzle system and a two 180° nozzle system with the nozzles installed against a common bulkhead.

# 13.5 FM-200 Extinguishing Agent, Kidde-Fenwal CRADA, Kidde-Fenwal Hardware

All six tests conducted using the Kidde-Fenwal system were extinguished within the time requirements stated in the IMO test protocol. In a majority of the tests, the fires were extinguished before the end of agent discharge.

During the previous investigation [2], a Kidde-Fenwal system containing four 360° nozzles and a design concentration of 8.7% successfully completed the IMO test protocol. During this investigation, additional system designs were added by successfully extinguishing the telltale fire test (Fire Scenario 1). These systems include a two 360° nozzle system, a two 180° nozzle system with the nozzles installed at the centerline of opposing bulkheads, and a system containing two 180° nozzles positioned back-to-back in the center of the space.

### 14.0 REFERENCES

International Maritime Organization, "Guidelines for Approval of Equivalent Gas Fire-Extinguishing Systems, as Referred to in SOLAS 74, for Machinery Spaces and Cargo Pump-Rooms," Annex to IMO Maritime Safety Committee Circular 776, December 12, 1996.

- Back, G. G., Beyler, C. L., DiNenno, P. J., Forssell, E. W., Peatross, M. J., Hansen, R., Waller, D., Zalosh, R., "An Evaluation of the International Maritime Organization's Gaseous Agents Test Protocol," Final Report, Contract No. DTC639-92-D-E38K27, United States Coast Guard, Marine Fire and Safety Research Branch, February, 1997.
- 3. Hansen, R. and Beene, D., "Test Plan, Gaseous Agent Evaluation Testing," United States Coast Guard, Safety & Human Resources Division, January, 1998.
- 4. UL, "Standard for Halogenated Agent Extinguishing System Units," UL 1058, Third Edition, Underwriters Laboratories Inc, Northbrook, IL, 1995.
- ISO/14520 Draft International Standard of Gaseous Fire Extinguishing Systems, Part 1
   Annex B, Standards Association of Australia, P.O. Box 1055, Strathfield, NSW 1235,
   Australia.
- NFPA, "Standard on Clean Agent Fire Extinguishing Systems," NFPA 2001, 1994
   Edition, National Fire Protection Association, Quincy, MA, 1994.
- 7. Rivers, P., 3M Company, Personal Communications.
- NFPA, "Standard on Halon 1301 Fire Extinguishing Systems," NFPA 12A, 1980 Edition,
   National Fire Protection Association, Quincy, MA, 1980.
- 9. Henley, E. J. and Seader, J. D., Equilibrium-Stage Separation Operations in Chemical Engineering, John Wiley & Sons, New York, NY, 1981.
- 10. Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., *The Properties of Gases and Liquids*, Third Edition, McGraw-Hill Book Company, New York, NY, 1977.

# APPENDIX A - IMO TEST PROTOCOL

#### INTERNATIONAL MARITIME ORGANIZATION

**4 ALBERT EMBANKMENT** LONDON SE1 7SR

Telephone: 0171-735 7611 Fax: Telex

0171-587 3210 23588 IMOLDN G



MSC/Circ.776 12 December 1996

Ref. T4/4.01

# GUIDELINES FOR THE APPROVAL OF EQUIVALENT FIXED GAS FIRE-EXTINGUISHING SYSTEMS, AS REFERRED TO IN SOLAS 74, FOR MACHINERY SPACES AND CARGO **PUMP-ROOMS**

- The Maritime Safety Committee, at its sixty-seventh session (2 to 6 December 1996), approved Guidelines for the approval of equivalent fixed gas fire-extinguishing systems, as referred to in SOLAS 74, for machinery spaces and cargo pump-rooms, as set out in the annex.
- Member Governments are requested to apply the annexed guidelines when approving equivalent fixed gas fire-extinguishing systems for use in machinery spaces of category A and cargo pump-rooms.

### **ANNEX**

# GUIDELINES FOR THE APPROVAL OF EQUIVALENT FIXED GAS FIRE-EXTINGUISHING SYSTEMS, AS REFERRED TO IN SOLAS 74, FOR MACHINERY SPACES AND CARGO PUMP-ROOMS

### General

Fixed gas fire-extinguishing systems for use in machinery spaces of category A and cargo pump-rooms equivalent to fire-extinguishing systems required by SOLAS regulations II-2/7 and II-2/63 should prove that they have the same reliability which has been identified as significant for the performance of fixed gas fire-extinguishing systems approved under the requirements of SOLAS regulation II-2/5. In addition, the system should be shown by test to have the capability of extinguishing a variety of fires that can occur in a ship's engine-room.

## **Principal requirements**

- All requirements of SOLAS Regulations II-2/5.1, 5.3.1, 5.3.2 to 5.3.3 except as modified by these guidelines, should apply.
- The minimum extinguishing concentration should be determined by a cup burner test acceptable to the Administration. The design concentration should be at least 20 per cent above the minimum extinguishing concentration. These concentrations should be verified by full-scale testing described in the test method, as set out in the appendix.
- 4 For systems using halocarbon clean agents, 95 per cent of the design concentration should be discharged in 10 seconds or less. For inert gas systems, the discharge time should not exceed 120 seconds for 85 per cent of the design concentration.
- The quantity of extinguishing agent for the protected space should be calculated using the design concentration based on the gross volume of the protected space including the casing. If the quantity of extinguishing agent when applied to the net volume of the protected space including casing exceeds the agent's LOAEL (Lowest Observed Adverse Effect Level), the quantity of agent should be reduced, but not below the agent's design concentration based on net volume.
- No fire suppression agent should be used which is carcinogenic, mutagenic, or teratogenic at concentrations expected during use. No agent should be used in concentrations greater than the cardiac sensitization NOAEL (No Observed Adverse Effect Level), nor the ALC (Approximate Lethal Concentration), without the use of controls as provided in SOLAS 74 regulation II-2/5.1 and 5.3. In no case should an agent be used above its LOAEL (Lowest Observed Adverse Effect Level).
- The system and its components should be suitably designed to withstand ambient temperature changes, vibration, humidity, shock, impact, clogging, and corrosion normally encountered in machinery spaces or cargo pump-rooms in ships.

The system and its components should be designed and installed in accordance with international standards acceptable to the Organization<sup>1</sup> and manufactured and tested to the satisfaction of the Administration. As a minimum, the design and installation standards should cover the following elements:

\_\_\_1 safety:

toxicity; noise, nozzle discharge; and decomposition products;

.2 storage container design and arrangement:

strength requirements; maximum/minimum fill density, operating temperature range; pressure and weight indication; pressure relief; and agent identification and lethal requirements;

- .3 agent supply, quantity, quality standards;
- .4 pipe and fittings:

strength, material, properties, fire resistance; and cleaning requirements;

.5 valves:

testing requirements; corrosion resistance; and elastomer compatibility;

.6 nozzles:

height and area testing requirements; and corrosion and elevated temperature resistance;

.7 actuation and control systems:

testing requirements; and backup power requirements;

<sup>&</sup>lt;sup>1</sup>Until international standards are developed, national standards acceptable to the Administration should be used. Available national standards include, e.g., Standards Australia, United Kingdom and NFPA 2001.

.8 alarms and indicators:

predischarge alarm, agent discharge alarms as time delays; abort switches; supervisory circuit requirements; and warning signs and audible and visual alarms should be located outside each entry to the relevant space as appropriate;

.9 agent flow calculation:

approval and testing of design calculation method; and fitting losses and/or equivalent length;

.10 enclosure integrity and leakage requirements:

enclosure leakage; openings; and mechanical ventilation interlocks;

- .11 design concentration requirements, total flooding quantity;
- .12 discharge time; and
- .13 inspection, maintenance, and testing requirements.
- 9 The nozzle type, maximum nozzle spacing, maximum height and minimum nozzle pressure should be within limits tested to provide fire extinction per the proposed test method.
- Provisions should be made to ensure that escape routes which are exposed to leakage from the protected space are not rendered hazardous during or after discharge of the agent. Control stations and other locations that require manning during a fire situation should have provisions to keep HF and HCl below 5 ppm at that location. The concentrations of other products should be kept below concentrations considered hazardous for the required duration of exposure.
- Agent containers may be stored within a protected machinery space if the containers are distributed throughout the space and the provisions of SOLAS regulation II-2/5.3.3 are met. The arrangement of containers and electrical circuits and piping essential for the release of any system should be such that in the event of damage to any one power release line through fire or explosion in the protected space, i.e. a single fault concept, at least five-sixths of the fire-extinguishing charge as required by paragraph 5 of this annex can still be discharged having regard to the requirement for uniform distribution of medium throughout the space. The arrangements in respect of systems for spaces requiring less than 6 containers should be to the satisfaction of the Administration.
- 12 A minimum agent hold time of 15 minutes should be provided.
- The release of an extinguishing agent may produce significant over and under pressurization in the protected space. Measures to limit the induced pressures to acceptable limits should be provided.

MSC/Circ.776 ANNEX Page 4

14 For all ships, the fire-extinguishing system design manual should address recommended procedures for the control of products of agent decomposition. The performance of fire-extinguishing arrangements on passenger ships should not present health hazards from decomposed extinguishing agents, e.g., on passenger ships, the decomposition products should not be discharged in the vicinity of muster (assembly) stations.

### APPENDIX

# TEST METHOD FOR FIRE TESTING OF FIXED GAS FIRE-EXTINGUISHING SYSTEMS

### 1 Scope

- 1.1 This test method is intended for evaluating the extinguishing effectiveness of fixed gas fire-extinguishing systems for the protection of machinery spaces of category A and cargo pump-rooms.
- 1.2 Fire-extinguishing systems presently covered in regulation II-2/5, of SOLAS 1974, as amended, are excluded.
- 1.3 The test method covers the minimum requirements for fire-extinguishing.
- 1.4 This test method is applicable to gases, liquefied gases and mixtures of gases. The test method is not valid for extinguishant gases mixed with compounds in solid or liquid state at ambient conditions.
- 1.5 The test programme has two objectives: (1) establishing the extinguishing effectiveness of a given agent at its tested concentration, and (2) establishing that the particular agent distribution system puts the agent into the enclosure in such a way as to fully flood the volume to achieve an extinguishing concentration at all points.

# 2 Sampling

The components to be tested should be supplied by the manufacturer together with design and installation criteria, operational instructions, drawings and technical data sufficient for the identification of the components.

### 3 Method of test

### 3.1 Principle

This test procedure enables the determination of the effectiveness of different gaseous agent extinguishing systems against spray fires, pool fires and class A fires.

# 3.2 Apparatus

### 3.2.1 Test room

The tests should be performed in 100 m<sup>2</sup> room, with no horizontal dimension less than 8 m, with a ceiling height of 5 m. The test room should be provided with a closable access door measuring approximately 4 m<sup>2</sup> in area. In addition, closable ventilation hatches measuring at least 6 m<sup>2</sup> in total area should be located in the ceiling.

# 3.2.2 Integrity of test enclosure

The test enclosure is to be nominally leak tight when doors and hatches are closed. The integrity of seals on doors, hatches, and other penetrations (e.g., instrumentation access ports) must be verified before each test.

# 3.2.3 Engine mock-up

- An engine mock-up of size (width x length x height) 1 m x 3 m x 3 m should be constructed of sheet steel with a nominal thickness of 5 mm. The mock-up should be fitted with two steel tubes diameter 0.3 m and 3 m length that simulate exhaust manifolds and a solid steel plate. At the top of the mock-up a 3 m² tray should be arranged. See figures 1, 2 and 3.
- .2 A floor plate system 4 m x 6 m x 0.75 m high shall surround the mock-up. Provision shall be made for placement of the fuel trays, described in table 1, and located as described in table 2.

# 3.2.4 Instrumentation

Instrumentation for the continuous measurement and recording of test conditions should be employed. The following measurements should be made:

- .1 temperature at three vertical positions (e.g., 1, 2.5, and 4.5 m)
- .2 enclosure pressure
- .3 gas sampling and analysis, at mid-room height, for oxygen, carbon dioxide, carbon monoxide, and relevant halogen acid products, e.g., hydrogen iodide, hydrofluoric acid, hydrochloric acid
- .4 means of determining flame-out indicators
- .5 fuel nozzle pressure in the case of spray fire
- .6 fuel flow rate in the case of spray fires
- .7 discharge nozzle pressure

# 3.2.5 Nozzles

- 3.2.5.1 For test purposes, nozzles should be located within 1 m of the ceiling.
- 3.2.5.2 If more than one nozzle is used they should be symmetrically located.

# 3.2.6 Enclosure temperature

3.2.6.1 The ambient temperature of the test enclosure at the start of the test should be noted and serve as the basis for calculating the concentration that the agent would be expected to achieve at that temperature and with that agent weight applied in the test volume.

# 3.3 Test fires and programme

### 3.3.1 Fire types

The test programme, as described in table 3, should employ test fires as described in table 1.

|      |                                 | Table 1 Parameters of Test            | Fires           |            |
|------|---------------------------------|---------------------------------------|-----------------|------------|
| Fire | Туре                            | Fuel                                  | Fire Size, MW   | Remarks    |
| A    | 76 - 100 mm ID<br>Can           | Heptane                               | 0.0012 to 0.002 | Tell tale  |
| В    | 0.25 m² Tray                    | Heptane                               | 0.35            |            |
| С    | 2 m² Tray                       | Diesel /Fuel Oil                      | 3               | •          |
| D    | 4 m² Tray                       | Diesel /Fuel Oil                      | 6               |            |
| Е    | Low pressure spray              | Heptane<br>0.16 ± 0.01 kg/s           | 5.8             |            |
| F    | Low pressure,<br>low flow spray | Heptane<br>0.03 ± 0.005 kg/s          | 1.1             | ·          |
| G    | High pressure<br>spray          | Diesel /Fuel Oil<br>0.05 ± 0.002 kg/s | 1.8             |            |
| н    | Wood Crib                       | Spruce or Fir                         | 0.3             | See Note 2 |
| I    | 0.10 m² tray                    | Heptane                               | 0.14            |            |

### Notes to table 1:

- Diesel /Fuel Oil means light diesel or commercial fuel oil.
- The wood crib should be substantially the same as described in ISO/TC 21/SC5/WG 8 ISO Draft International Standard, Gaseous fire extinguishing systems, Part 1: General Requirements. The crib should consist of six, trade size 50 mm x 50 mm by 450 mm long, kiln dried spruce or fir lumber having a moisture content between 9 and 13 per cent. The members should be placed in 4 alternate layers at right angles to one another. Members should be evenly spaced forming a square structure.

Achieve ignition of the crib by burning commercial grade heptane in a square steel tray 0.25 m<sup>2</sup> in area. During the pre-burn period the crib should be placed centrally above the top of the tray a distance of 300 to 600 mm.

|                       | Tabl<br>Spray fire tes                              | - ·                                         |                                                |
|-----------------------|-----------------------------------------------------|---------------------------------------------|------------------------------------------------|
| Fire type             | Low pressure(E)                                     | Low pressure, Low flow(F)                   | High pressure(G)                               |
| Spray nozzle          | Wide spray angle<br>(120 to 125°)<br>full cone type | Wide spray<br>angle (80°)<br>full cone type | Standard angle<br>(at 6 Bar)<br>full cone type |
| Nominal fuel pressure | 8 Bar                                               | 8.5 Bar                                     | 150 Bar                                        |
| Fuel flow             | 0.16 ± 0.01 kg/s                                    | $0.03 \pm 0.005 \text{ kg/s}$               | 0.050 ± 0.002 kg/s                             |
| Fuel temperature      | 20 ± 5°C                                            | 20 ± 5°C                                    | 20 <u>+</u> 5°C                                |
| Nominal heat release  | 5.8 ± 0.6 MW                                        | 1.1 ± 0.1 MW                                | 1.8 ± 0.2 MW                                   |

# 3.3.2 Test programme

The fire test programme should employ test fires singly or in combination, as outlined in table 3.

| 1          | Table 3                                                                                               |
|------------|-------------------------------------------------------------------------------------------------------|
|            | Test Programme                                                                                        |
| Test No.   | Fire Combinations (See Table 1)                                                                       |
| 1          | A: Tell tales, 8 corners. See note 1.                                                                 |
| 2-a        | B: 0.25 m² heptane tray under engine mockup                                                           |
|            | E: Horizontal LP spray directed at 15-25 mm rod 0.5 m away                                            |
| See Note 2 | G: HP diesel/fuel oil spray on top of engine mock-up                                                  |
|            | Total Fire Load: 7.95 MW                                                                              |
| 2-b        |                                                                                                       |
| 2-0        | B: 0.25 m² heptane tray under mock-up I: 0.10 m² heptane tray on deck plate located below solid steel |
| See Note 2 | obstruction plate                                                                                     |
|            |                                                                                                       |
|            | Total Fire Load: 0.49 MW                                                                              |
| 3          | C: 2 m² diesel/fuel oil tray on deck plate located below solid steel obstruction plate                |
|            | H: Wood crib positioned as in Figure 1                                                                |
| Į          | F: Low pressure, low flow horizontal spray - concealed - with                                         |
|            | impingement on inside of engine mock-up wall.                                                         |
|            | Total Fire Load: 4.4 MW                                                                               |
| 4          | D: 4 m² Diesel tray under engine mock-up                                                              |
|            | Total Fire Load: 6 MW                                                                                 |

# Note to table 3:

- 1 Tell-tale fire cans should be located as follows:
  - (a) in upper corners of enclosure 150 mm below ceiling and 50 mm from each wall;
  - (b) in corners on floors 50 mm from walls.
- Test 2-a is for use in evaluating extinguishing systems having discharge times of 10 seconds or less.

Test 2-b is for use in evaluating extinguishing systems having discharge times greater than 10 seconds.

MSC/Circ.776 ANNEX Page 10

- 3.3.2.1 All applicable tests of table 3 should be conducted for every new fire extinguishant gas, or mixture of gases.
- 3.3.2.2 Only Test 1 is required to evaluate new nozzles and related distribution system equipment (hardware) for systems employing fire extinguishants that have successfully completed the requirements of 3.3.2.1. Test 1 should be conducted to establish and verify the manufacturer's minimum nozzle design pressure.

#### Extinguishing system 3.4

#### 3.4.1 System installation

The extinguishing system should be installed according to the manufacturer's design and installation instructions. The maximum vertical distance should be limited to 5 m.

### 3.4.2 Agent

# 3.4.2.1 Design concentration

The agent design concentration is that concentration (in volume per cent) required by the system designer for the fire protection application.

# 3.4.2.2 Test concentration

The concentration of agent to be used in the fire extinguishing tests should be the design concentration specified by the extinguishing system manufacturer, except for Test 1 which should be conducted at 83% of the manufacturer's recommended design concentration but in no case at less than the cup burner extinguishing concentration.

# 3.4.2.3 Quantity of agent

The quantity of agent to be used should be determined as follows:

# 3.4.2.3.1 Halogenated agents

C =

 $(V/S) \cdot C/(100 - C)$  where

agent mass, kg

volume of test enclosure, m3

agent vapour specific volume at temperature and pressure of the test enclosure, S =

gaseous agent concentration, volume per cent

### 3.4.2.3.2 Inert gas agents

 $Q = V [294/(273 + T)] \cdot (P/1.013) \cdot ln[100/(100 - C)]$  where

Q = volume of inert gas, measured at 294 K and 1.013 bar, discharged, m<sup>3</sup>

V = volume of test enclosure, m<sup>3</sup>

T = test enclosure temperature, Celsius

P = test enclosure pressure, bar

C = gaseous agent concentration, volume per cent

### 3.5 Procedure

### 3.5.1 Fuel levels in trays

The trays used in the test should be filled with at least 30 mm fuel on a water base. Freeboard should be  $150 \pm 10$  mm.

# 3.5.2 Fuel flow and pressure measurements

For spray fires, the fuel flow and pressure should be measured before and during each test.

### 3.5.3 Ventilation

# 3.5.3.1 Pre-burn period

During the pre-burn period the test enclosure should be well ventilated. The oxygen concentration, as measured at mid-room height, shall not be less than 20 volume per cent at the time of system discharge.

# 3.5.3.2 End of pre-burn period

Doors, ceiling hatches, and other ventilation openings should be closed at the end of the pre-burn period.

### 3.5.4 Duration of test

### 3.5.4.1 Pre-burn time

Fires should be ignited such that the following burning times occur before the start of agent discharge:

- .1 sprays 5 to 15 seconds
- .2 trays 2 minutes
- .3 crib 6 minutes

# 3.5.4.2 Discharge time

- .1 halogenated agents should be discharged at a rate sufficient to achieve delivery of 95% of the minimum design quantity in 10 seconds or less.
- .2 inert gas agents should be discharged at a rate sufficient to achieve 85% of the minimum design quantity in 120 seconds or less.

### 3.5.4.3 Soak time

After the end of agent discharge the test enclosure should be kept closed for 15 minutes.

# 3.5.5 Measurements and observations

### 3.5.5.1 Before test

- .1 temperature of test enclosure, fuel and engine mock-up
- .2 initial weights of agent containers
- .3 verification of integrity agent distribution system and nozzles
- 4 initial weight of wood crib

# 3.5.5.2 During test

- .1 start of the ignition procedure
- .2 start of the test (ignition)
- 3 time when ventilating openings are closed
- .4 time when the extinguishing system is activated
- .5 time from end of agent discharge
- time when the fuel flow for the spray fire is shut off
- .7 time when all fires are extinguished
- 8 time of re-ignition, if any, during soak period
- .9 time at end of soak period
- .10 at the start of test initiate continuous monitoring as per 3.2.4

## 3.5.6 Tolerances

Unless otherwise stated, the following tolerances should apply:

| .1 | length        | ±2% of value |
|----|---------------|--------------|
| .2 | volume        | ±5% of value |
| .3 | pressure      | ±3% of value |
| .4 | temperature   | ±5% of value |
| .5 | concentration | ±5% of value |

These tolerances are in accordance with ISO standard 6182/1, February 1994 edition [4].

### 4 Classification criteria

- 4.1 Class B fires must be extinguished within 30 seconds of the end of agent discharge. At the end of the soak period there should be no re-ignition upon opening the enclosure.
- 4.2 The fuel spray should be shut off 15 seconds after extinguishment. At the end of the soak time, the fuel spray should be restarted for 15 seconds prior to reopening the door and there should be no reignition.
- 4.3 At the end of the test fuel trays must contain sufficient fuel to cover the bottom of the tray.
- 4.4 Wood crib weight loss must be no more than 60%.

## 5 Test report

The test report should include the following information:

- .1 name and address of the test laboratory
- .2 date and identification number of the test report
- .3 name and address of client
- .4 purpose of the test
- .5 method of sampling system components
- .6 name and address of manufacturer or supplier of the product
- .7 name or other identification marks of the product
- .8 description of the tested product
  - drawings
  - descriptions
  - assembly instructions
  - specification of included materials
  - detailed drawing of test set-up
- .9 date of supply of the product
- .10 date of test
- .11 test method
- .12 drawing of each test configuration
- .13 Identification of the test equipment and used instruments
- .14 conclusions
- .15 deviations from the test method, if any
- .16 test results including measurements and observations during and after the test; and
- .17 date and signature.

Ceiling with ventilation hatches of minimum 6m<sup>2</sup>





The area should be 100m<sup>2</sup>

Figure 1





Figure 3

# APPENDIX B - INSTRUMENTATION AND CAMERA DETAILS.

|            |                         |                   |                             |                     | 20                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                |              |                     |                           |                           |                    |            |                        |                        |                        | T               |                 |                      |                      |                 |                 |                 |                      |                         |                 |                       |                 |                 |                 |                 |                       |                 |                      |
|------------|-------------------------|-------------------|-----------------------------|---------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|--------------|---------------------|---------------------------|---------------------------|--------------------|------------|------------------------|------------------------|------------------------|-----------------|-----------------|----------------------|----------------------|-----------------|-----------------|-----------------|----------------------|-------------------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|----------------------|
| -          |                         | 11 10             | 11111 CZ >                  | Ambient             | Hemarks/Notes               | Scan Interval: 0.10 and 1 sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |              | Ambient             | Ambient                   | Ambient 0° = North        | Ambient            | TC Tree 1  | TC Tree 1              | TC Tree 1              | TO Troo 4              | 10 1188         | 1C 169 1        | TC Iree 1            | TC Tree 1            | TC Tree 1       | TC Tree 2       | TC Tree 2       | TC Tree 2            | TC Tree 2               | TC Tree 2       | TC Tree 2             | TC Tree 2       | TC Tree 2       | Tell tale #1    | Tell tale #2    | Tell tale #3          | Tell tale #4    | Chnl 5-17            |
| Shoot      | 19910                   |                   | IIMe for Each Test < 25 min | Port side, 02 level | Location                    | Scan Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                |              | Port side, 02 level | Port side. Aft boat davit | Port side. Aft boat davit | Port side, ambient | (20 50 49) | (20 50 45)             | (20, 50, 40)           | (5.0, 5.0, 7.5)        | (2.0, 5.0, 3.5) | (2.0, 5.0, 3.0) | (2.0, 5.0, 2.5)      | (2.0, 5.0, 1.5)      | (2.0, 5.0, 1.0) | (8.0, 5.0, 4.9) | (8.0, 5.0, 4.5) | (8.0, 5.0, 4.0)      | (8.0, 5.0, 3.5)         | (8.0, 5.0, 3.0) | (8.0, 5.0. 2.5)       | (8.0, 5.0, 1,5) | (8.0, 5.0, 1.0) | (0.0, 0.0, 4.9) | (0.0, 0.0, 0.2) | (9.9, 0.0, 4.9)       | (9.9, 0.0, 0.2) | Near Cable Box       |
|            |                         |                   |                             | 0-100% R.H.         | Eng. Unit                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                | Outhut Randa | 01-106 kPA          | 0-44 m/s                  | 0-360°C                   | 0-50°C             | 0,4000     | 2,000,0                | 0-1000                 | D-1000 C               | 0-1000°C        | o-1000°C        | 0-1000°C             | 0-1000°C             | 0-1000°C        | 0-1000°C        | 0-1000°C        | 0-1000°C             | 0-1000°C                | 0-1000°C        | 0-1000°C              | 0-1000°C        | 0-1000°C        | 0-1000°C        | 0-1000°C        | 0-1000°C              | 0-1000°C        | 0-50°C               |
|            |                         |                   |                             |                     | Measurement                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Display &                      | Diating      | Simol               |                           |                           | 0.50%              | 20000      | 0,000                  | 0-800                  | 0-800 <sub>-C</sub>    | 0-800°C         | O-800°C         | O-800°C              | 0-800                | O-800°C         | O-800°C         | 0-800,0         | 0-800°C              | 0-800,0                 | D-800°C         | O-800°C               | O-800°C         | O-800°C         | O-800°C         | D-800°C         | 0-800°C               | O-800°C         | D-50°C               |
|            |                         | Instrument List & | Test Requirements           | 8292031             | Serial Number               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                |              |                     | 123                       | 044014                    | 04401A-U           |            | K50F I I/8In           | K50FT1/8in             | K50FT1/8in             | K50FT1/8in      | K50FT1/8in      | K50FT1/8in           | K50FT1/8in           | K50FT1/8in      | K50FT1/Rin      | KSOFT1/Rin      | K50FT1/8in           | K50FT1/8in              | KEOFT1/Rin      | K50FT1/8in            | KEOFT1/Rin      | K50FT1/8in      | K50FT1/Rin      | VENET 1/16      | KENET1/16             | K50FT1/16I      | TCS                  |
| F.I.R.E.S. | IMO Protocol Evaluation |                   | 98CD                        | Himidiv             | Instrumentation Description | Tipe direction of the state of |            |                                |              |                     | Barometer                 | Wind - Intensity          | Wind - Direction   | <b>⊆</b> ι | TC Type K 1/8 in. dia. | TC Type K 1/8 in. dfa. | TC Type K 1/8 in. dia. |                 |                 | TC Tyne K 1/8 in dia | TO Time K 1/8 in dia |                 | TO T 1/4 1/1    |                 | TO TYPE NO III. UIB. | TO Type N 1/8 III. Usa. |                 | TO TYPE N 1/8 In. Ga. |                 |                 |                 |                 | IC IVPe N 1/8 in dia. |                 | TO reference implies |
| F.I.R      | Ž                       |                   |                             | ×                   | ع د                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8          | <u>8</u>                       |              |                     | ×                         | ×                         | ×                  | ×          | ×                      |                        |                        |                 |                 |                      |                      |                 |                 |                 |                      |                         |                 |                       |                 |                 |                 |                 |                       | $\downarrow$    | $\downarrow$         |
|            |                         |                   |                             |                     | n                           | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9919.      | Project Number: 3301/3309.1.90 |              | Channel             |                           |                           |                    |            | 22                     | 25                     | 25                     | 25              | 2               | 1 4                  | 3 8                  | S S             | S)              |                 | 8 2                  | S S                     |                 | 2 1                   |                 | 2/2             | 2 1             | 2/              | 2 1                   |                 | 2/                   |
|            | ė                       | , III 6.          | ries.                       |                     | 5                           | Total Mumber of Toete:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | io ientino | NUMBer                         |              | ਰੱ                  |                           |                           |                    |            |                        |                        | L                      |                 |                 |                      |                      | 1               | -               |                 | $\downarrow$         | 1                       | 1               |                       |                 | $\downarrow$    | ;<br> -         | ×               | ×                     | <b>x</b>  ;     | <u>{</u>             |
|            | Toet Name               | 1691              | Toet Series                 | •                   | -                           | # [040]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 .        | 1000                           |              |                     | -                         | 2                         | ၉                  | 4          | 22                     | 9                      | ^                      | •               | , 0             | , ,                  | 2 ;                  | =               | 12              | <u>e</u>        | 4                    | 2                       | اع              |                       | <b>=</b>        | 2 2             | <b>R</b>        | 2               | 8                     | ន               | 2 2                  |

|                                |              | F.I.R.E.S | E.S.                        |                   |                      |              | Sheet: 2                     | 2                              |
|--------------------------------|--------------|-----------|-----------------------------|-------------------|----------------------|--------------|------------------------------|--------------------------------|
| Test Name:                     |              | OMI       | IMO Protocol Evaluation     |                   |                      |              |                              |                                |
|                                |              |           |                             | Instrument List & |                      |              | Time for Each Test: < 25 min | < 25 min                       |
| Test Series:                   |              |           | 98CD                        | Test Requirements |                      |              |                              |                                |
|                                |              |           |                             |                   |                      |              | Scan Interval                | Scan Interval: 0.10 and 1 sec. |
| Total Number of Tests:         | of Tests:    |           |                             |                   |                      |              |                              |                                |
| Project Number: 3301/3308.1.98 | er: 3301/330 | 08.1.98   |                             |                   | Disnlav &            |              |                              |                                |
|                                |              |           |                             |                   | Plotfina             | Output Range |                              |                                |
| )                              | Channel      |           |                             | O in Minmhor      | Measurement          | Eng. Unit    | Location                     | Remarks/Notes                  |
| # SP                           | E            | ٥         | Instrumentation Description | Serial Nulliber   | O <sub>o</sub> oo o  | 0-1000°C     | (9.9, 9.9, 4.9)              | Tell tale #5                   |
| Z6 X                           | 72           |           | TC Type K 1/16 in. dia.     | K50F11/101        | 2,000                | 0-1000°C     | (9.9, 9.9, 0.2)              | Tell tale #6                   |
| Z7 X                           | 72           |           | TC Type K 1/16 in. dia.     | K50F11/161        | 2,000                | 0-1000°C     | (0.0, 9.9, 4.9)              | Tell tale #7                   |
| 28 X                           | 72           |           | TC Type K 1/16 in. dia.     | K50F11/101        | 2,000                | 0-1000°C     | (0.0, 9.9, 0.2)              | Tell tale #8                   |
| X 83                           | 72           |           | TC Type K 1/16 in. dia.     | K50F11/10         | 2000                 | 0-1000°C     | (5.0, 5.0, 0.4)              | Fire B&D bilge pans            |
| 30 X                           | 72           |           | TC Type K 1/8 in. dia.      | K50F11/8IN        | 0,000                | 0-1000       | (5.0.50.0.3)                 | Fire B & D Entrainment         |
| 31                             | 72           |           | TC Type K 1/8 in. dia.      | K50FT1/8IN        | 0-100 c              | 2,000,0      | (50.40.10)                   | Fire C&I deck pans             |
| 32 ×                           | 73           |           | TC Type K 1/8 in. dia.      | K50FT1/8IN        | 0-800-0              | 0,000        | (50.40.08)                   | Fire C&I Entrainment           |
| ┞                              | 73           |           | TC Type K 1/8 in. dfa.      | K50FT1/8IN        | 0-100 <sup>-</sup> C | C.0001-0     | (50,50,33)                   | Fire E top hep spray           |
| × ×                            | ┞            |           | TC Type K 1/8 in. dia.      | K50FT1/8IN        | 0-800°C              | 0-1000 C     | (50, 44, 9.9)                | Fire F Entrainment             |
| $\vdash$                       | -            |           |                             | K50FT1/8!N        | 0-100°C              | 2000-0       | (3.0, 4.4, 3.6)              | Eiro E eide hen anrav          |
| 3 8                            | ╀            |           |                             | K50FT1/8IN        | O-800°C              | 0-1000°C     | (5.7, 5.6, 2.4)              | Ties Control                   |
| +                              | +            |           |                             | K50FT1/8IN        | 0-100°C              | o-1000°C     | (6.5, 5.6, 2.4)              |                                |
| +                              | +            |           |                             | K50FT1/8IN        | O-800°C              | 0-1000°C     | (5.0, 5.0, 3.5)              | Fire G top HP diesel spray     |
| 38<br>X                        | +            |           |                             | KSOFT1/RIN        | 0-100°C              | 0-1000°C     | (5.0, 5.0, 3.0)              | Fire G Entrainment             |
| +                              | +            |           |                             | K50FT1/8IN        | O-800°C              | 0-1000°C     | (5.0, 2.3, 0.9)              | Wood Crib Fire H               |
| 40<br>X                        | +            |           |                             | K50FT1/8IN        | 0-100°C              | 0-1000°C     | (5.0,2.3, 0.7)               | Wood Crib Fire Entrain         |
| 4                              | /3           |           | 1C 1ype N 1/0 III. dla.     | 44002             | 0-5%                 | 0-10%        | (2.0, 5.0, 4.0)              | Gas Tree #1                    |
| 42                             |              | ×ļ;       | CO Analyzer                 | 30606             | 0-15%                | 0-25%        | (2.0, 5.0, 4.0)              | Gas Tree #1                    |
| +                              |              | ×         | CO <sub>2</sub> Analyzer    | 1001451           | 0.21%                | 0-25%        | (2.0, 5.0, 4.0)              | Gas Tree #1                    |
| 44<br>×                        |              | ×         | O <sub>2</sub> Analyzer     | 44003             | 0-5%                 | 0-10%        | (2.0, 5.0, 2.5)              | Gas Tree #1                    |
| 45                             |              |           | CO Analyzer                 | 26014             | 70.450               | 0.0E%.       | (20.50.25)                   | Gas Tree #1                    |
| 46                             |              |           | CO <sub>2</sub> Analyzer    | 31334             | 4:5%                 | 8/270        | (30 60 36)                   | Gas Tree #1                    |
| X 74                           |              |           | O <sub>2</sub> Analyzer     | 2002910           | 0-21%                | 0-25%        | (2.0, 3.0, 2.3)              | Gae Troo #1                    |
| Ļ                              |              |           | CO Analyzer                 | 41094             | 0-5%                 | 0-10%        | (2.0, 5.0, 1.0)              | Goo Troo #1                    |
| 49                             |              |           | CO <sub>2</sub> Analyzer    | 31335             | 0-15%                | 0-25%        | (2.0, 5.0, 1.0)              | Cos Troo #1                    |
| >                              |              |           | O. Analyzer                 | 1001638           | 0-21%                | 0-25%        | (2.0, 5.0. 1.0)              | das itee #1                    |

|                                |           |           | FIRE | Si                             |                   |                 |              | Shoot                                    | 9                                       |
|--------------------------------|-----------|-----------|------|--------------------------------|-------------------|-----------------|--------------|------------------------------------------|-----------------------------------------|
|                                | -         |           | · ·  | MAD Protocol Evaluation        |                   |                 |              | 5000                                     |                                         |
| lest Name:                     |           | -         |      |                                | Instrument List & |                 |              | Track Took                               | , 25 min                                |
|                                | +         |           |      | 0080                           | Test Requirements |                 |              | IIMe for Each Lest.                      |                                         |
| Test Series:                   | :5        | -         |      | 0006                           |                   |                 |              |                                          | 0 40 and 4 and                          |
|                                |           |           |      |                                |                   |                 |              | Scan Interval:                           | U. 10 and 1 sec.                        |
| Total Number of Tests:         | ber of Te | sts:      |      |                                |                   |                 |              |                                          |                                         |
| Project Number: 3301/3308.1.98 | ımber: 33 | 301/3308  | 1.98 |                                |                   |                 |              |                                          |                                         |
| -                              |           |           |      |                                |                   | Dlotting        | Output Range |                                          |                                         |
|                                | Channel   | Эeг       |      |                                |                   | Moseurement     | Fna. Unit    | Location                                 | Remarks/Notes                           |
| #                              | SP        | 먪         | Q    | Instrumentation Description    | Serial Number     | INTEGRAL STREET | 7004.0       | (80, 5.0, 4.0)                           | Gas Tree #2                             |
| 2                              | -         |           |      | CO Analyzer                    | 41347             | 0-5%            | 20.0         | (80 50 40)                               | Gas Tree #2                             |
|                                |           | +         |      | CO. Analyzer                   | 34056             | 0-15%           | 0-52%        | (5:: 5:: 5:: 5:: 5:: 5:: 5:: 5:: 5:: 5:: | Con Tree #2                             |
| 35                             | +         | +         | T    | 002 70 101) 201                | 1001641           | 0-21%           | 0-25%        | (8.0, 5.0, 4.0)                          | das Hee #2                              |
| 53                             |           | -         |      | O <sub>2</sub> Analyzer        | 44244             | 0-5%            | 0-10%        | (8.0, 5.0, 2.5)                          | Gas Iree #2                             |
| 54                             |           | 1         |      | CO Analyzer                    | 41044             | ٦٠١٤%           | 0-25%        | (8.0, 5.0. 2.5)                          | Gas Tree #2                             |
| 22                             |           |           |      | CO <sub>2</sub> Analyzer       | 34057             | 2,51.0          | 0.25%        | (8.0, 5.0, 2.5)                          | Gas Tree #2                             |
| <b>9</b>                       |           |           |      | O, Analyzer                    | 2002909           | 0-21%           | 8/650        | (80.50.10)                               | Gas Tree #2                             |
|                                |           |           | ×    | CO Analyzer                    | 103495            | 0-5%            | 0-10%        | (0.0 (0.0 4.0)                           | Gas Tree #2                             |
| 3                              |           |           | Γ    | CO. Analyzer                   | 34059             | 0-15%           | 0-25%        | (5:1, 5:2, 5:3)                          | Cae Tree #2                             |
| 3                              | +         | 1         |      | O Anathras                     | 2002457           | 0-21%           | 0-25%        | (8.0, 9.0, 1.0)                          | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| 29                             | 1         |           |      | O <sub>2</sub> Allalyzel       | 040050            | 0-50 kW/m²      | 0-50 kW/m²   | (5.0, 10.0, 4.0)                         | STBD biknd                              |
| 8                              |           |           | ×    | Radiometer                     | 213030            | 0 50 M/m²       | 0-100 kW/m²  | (5.0, 10.0, 4.0)                         | STBD blkhd                              |
| 9                              | -         |           | ×    | Calorimeter                    | 72876-51          | 0-50 KW/III     | 0 400 kW/m²  | (50 10.0, 1.8)                           | STBD blkhd                              |
| 9                              |           |           |      | Radiometer                     | 682111            | 0-50 KW/m       | 0-100 KWIIII | (50 100 18)                              | STBD blkhd                              |
| 8                              |           |           |      | Calorimeter                    | 68214             | 0-50 kW/m²      | 0-100 KW/m   | (3.0, 10.0)                              | AFT hikhd                               |
| 3 2                            |           |           |      | Radiometer                     | 682112            | 0-50 kW/m²      | 0-100 KW/m   | (0.0, 0.0, 4.0)                          | AFT bikhd                               |
| æ                              |           |           |      | Calorimeter                    | 68215             | 0-50 KW/m²      | 0-100 Kw/m   | (0.0, 0.0, 0.0)                          | AFT bikhd                               |
| 98                             |           |           |      | Radiometer                     | 87621             | 0-50 kW/m²      | 0-100 kw/m   | (0.0, 0.0, 0.0)                          | ACT PICHA                               |
| 8 2                            | $\dagger$ |           |      | Calorimeter                    | 87622             | 0-50 kW/m²      | 0-100 kW/m²  | (0.0, 5.0, 1.8)                          | AT1 DINIG                               |
| ٥                              | $\dagger$ | $\dagger$ | ,    | Drawn Translation              | 490065            | +/- 1200 KPA    | +/- 1244 KPA | (5.0, 0.0, 2.5)                          | Mid Colinp. 31 BD                       |
| 88                             | 1         | 1         | {    | Pressure Ilansaduel Comp       | ABOORE            | +/- 1200 KPA    | +/- 1244 kPA | (5.0, 10.0, 2.5                          | Mid-Compt POH I                         |
| 69                             |           |           |      | Pressure Transducer comp press | 430060            | 0-1700 kPa      | 0-1723 kPa   | in fuel line, 7 hold                     | LP fuel Sys                             |
| R                              | 1         | 1         | ×    | Pressure Transducer            | 50555             | 0-20000 kPa     | 0-20658 kPa  | in fuel line, 7 hold                     | HP fuel Sys                             |
| 7                              | 1         |           | ×    | Pressure transducer            | TC3               | 0.50°C          | 0-50,0       | Near cable box                           | Chnl 18-31                              |
| 72                             |           | 1         |      | TC reference junction          | 3 3               | 0.03            | 0.50%        | Near cable box                           | Chnl 32-41                              |
| 73                             |           |           |      | TC reference junction          | 42                | 3               | 2000         |                                          |                                         |

| Under the National State of the Control of the Cont |               |              |          |                                 |                                          |                |              | 10000               |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|----------|---------------------------------|------------------------------------------|----------------|--------------|---------------------|--------------------|
| Pointing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |              | F.I.R.   | E.S.                            |                                          |                |              | Sileel              |                    |
| Piotitig    | Test Name:    | +            | <u>¥</u> | Protocol Evaluation             | Instrument List &                        |                |              | Time for Each Test: | < 25 min           |
| Display & Piotition   Display & Piotition   Display & Piotition   Display & Piotition   Display & Displa   |               | 1            |          |                                 | Test Requirements                        |                |              | The following       |                    |
| Display & Couput Range   Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test Series:  |              |          |                                 |                                          |                |              | -involution         | 0 10 and 1 sec.    |
| Display & Disp   |               |              |          |                                 |                                          |                |              | Scan interval       | 200                |
| Plotiting   Display &   Disp   | Total Number  | of Tests:    |          |                                 |                                          |                |              |                     |                    |
| Instrumentation Description   Serial Number   Measurements   Eng. Unit   Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Numbe | r: 3301/3308 | 8.1.98   |                                 |                                          | Display &      |              |                     |                    |
| SP         RE         ID         Instrumentation Description         Serial Number         Measurements         Eng, Unit         Location           SP         RE         ID         Pressure Transducer         586328         0-2000 kPA         6.6,2,5,50         Dist           Pressure Transducer         586328         0-2500 kPA         0-6900 kPA         (50,25,50)         Dist           Pressure Transducer         586329         0-2500 kPA         0-6900 kPA         (50,25,50)         Dist           Pressure Transducer         586329         0-2500 kPA         0-6900 kPA         (50,75,50)         Dist           Pressure Transducer         596329         0-2500 kPA         0-6900 kPA         (50,75,50)         Dist           Pressure Transducer         596329         0-2500 kPA         0-6900 kPA         (50,75,50)         Dist           Pressure Transducer         596329         0-2500 kPA         0-6900 kPA         (50,75,50)         Dist           Pressure Transducer         596329         0-2500 kPA         0-6900 kPA         (50,75,50)         Dist           Pressure Transducer         596211/16         -40-40°C         0-100°C         (50,75,50)         AD           R         FT Type K 1/16 in dia. Exp Tip         KS0FT1/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |              |          |                                 |                                          | Plotfing       | Output Range |                     |                    |
| SP         RE         ID         Instrumentation Description         Sela326         O-2000 kPA         0-6900 kPA         (5.0, 7.5, 5.0)           Pressure Transducer         586328         0-2000 kPA         0-6900 kPA         (5.0, 5.0, 5.0)           Pressure Transducer         586328         0-2500 kPA         0-6900 kPA         (5.0, 7.5, 5.0)           Pressure Transducer         586328         0-2500 kPA         0-6900 kPA         (5.0, 7.5, 5.0)           Pressure Transducer         586329         0-2500 kPA         0-6900 kPA         (5.0, 7.5, 5.0)           Pressure Transducer         506328         0-2500 kPA         0-6900 kPA         Main Deck         On Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | hannel       |          |                                 |                                          | of a companies | Fna Unit     | Location            | Remarks/Notes      |
| Pressure Transducer   S66326   0-2000 kPA   0-6900 kPA   (50, 25, 5.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -             | $\vdash$     | ID       |                                 | Serial Number                            | Measurements   | A-6900 kPA   | (5.0, 7.5, 5.0)     | At Dist Sys Nozzle |
| Pressure Transducer   Se6327   0-2500 kPA   0-6900 kPA   (5.0, 5.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74            |              |          | Pressure Transducer             | 586326                                   | U-ZUUU KLA     |              | (50 25 50)          | At Dist Sys Nozzle |
| Pressure Transducer   586329   0-2500 kPA   0-6900 kPA   (5.0, 7.5, 5.0)   Distributionary   0-3000 kPA   0-6900 kPA   (5.0, 7.5, 5.0)   Distributionary   0-3000 kPA   0-6900 kPA   Main Deck   Mai   | * ;           |              |          | Pressure Transducer             | 586327                                   | 0-2000 kPA     | 0-6900 KPA   | (9.0, 2.3, 0.2)     | At 1st Dist Tee    |
| Priessure Transducer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/            |              |          | Pressure Transducer             | 586328                                   | 0-2500 kPA     | 0-6900 KPA   | (5.0, 5.0, 5.0)     | At 2nd Diet Tea    |
| Pressure Transducer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76            |              |          | 1                               | 586329                                   | 0-2500 KPA     | 0-6900 kPA   | (5.0, 7.5, 5.0)     | Dist Manifold      |
| Pleasure Transducer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77            |              |          | Pressure Transducer             | Dimmy                                    | 0-3000 KPA     | 0-6900 kPA   | Main Deck           | Ulst Iwanibord     |
| Big   TC Type K 1/16 in, dia. Exp Tip   K50FT1/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78            |              |          | Pressure Transducer             | 908494                                   | 0-3000 kPA     | 0-6900 KPA   | Main Deck           | Man near cyrur     |
| 88         TC Type K 1/16 in. dia. Exp Tip         K50FT1/16 in. 40-800°C         0-1000°C         (5.0, 7.5, 5.0)           88         TC Type K 1/16 in. dia. Exp Tip         K50FT1/16 in. 40-800°C         0-1000°C         (5.0, 2.5, 5.0)           88         TC Type K 1/16 in. dia. Exp Tip         K50FT1/16 in. 40-800°C         0-1000°C         (5.0, 2.5, 5.0)           88         TC Type K 1/16 in. dia. Exp Tip         K50FT1/16 in. 40-800°C         0-1000°C         (5.0, 2.5, 5.0)           88         TC Type K 1/16 in. dia. Exp Tip         K50FT1/16 in. 40-40°C         0-1000°C         Main Deck           88         TC Type K 1/16 in. dia. Exp Tip         K50FT1/16 in. 40-40°C         0-1000°C         And in. Deck           1 C Type K 1/16 in. dia. Exp Tip         K50FT1/16 in. 40-40°C         0-1000°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld <td>79</td> <td></td> <td></td> <td>Pressure Iransducer</td> <td>VENETA/461</td> <td>-40 - 40°C</td> <td>0-1000°C</td> <td>Main Deck</td> <td>On Cylinder</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79            |              |          | Pressure Iransducer             | VENETA/461                               | -40 - 40°C     | 0-1000°C     | Main Deck           | On Cylinder        |
| Secondary   Control   Co   | 80            | 88           |          |                                 | Man 14/4                                 |                |              |                     |                    |
| 88         TC Type K 1/16 in. dia. Exp 1p         KSOFT1/161         -40-800°C         0-1000°C         (5.0, 5.0, 5.0)           88         TC Type K 1/16 in. dia. Exp Tip         KSOFT1/161         -40-800°C         0-1000°C         (5.0, 5.0, 5.0)           88         TC Type K 1/16 in. dia. Exp Tip         KSOFT1/161         -40-800°C         0-1000°C         (5.0, 5.0, 5.0)           88         TC Type K 1/16 in. dia. Exp Tip         KSOFT1/161         -40-40°C         0-1000°C         Main Deck           88         TC Type K 1/16 in. dia. Exp Tip         KSOFT1/161         -40-40°C         0-1000°C         2nd deck, 6 hold           1         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81            |              |          |                                 | N30111118                                | -40-800°C      | 0-1000°C     | (5.0, 7.5, 5.0)     | At Dist Sys Nozzie |
| 88         TC Type K 1/16 in dia. Exp Tip         K50FT1/16I         -40-800°C         0-1000°C         (5.0, 5.0, 5.0)           88         TC Type K 1/16 in dia. Exp Tip         K50FT1/16I         -40-800°C         0-1000°C         (5.0, 7.5, 5.0)           88         TC Type K 1/16 in dia. Exp Tip         K50FT1/16I         -40-40°C         0-1000°C         Main Deck           88         TC Type K 1/16 in dia. Exp Tip         K50FT1/16I         -40-40°C         0-1000°C         And deck, 6 hold           1         TC Type K velded surf temp         TCS         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82            | 88           |          |                                 | N301 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -40-800°C      | 0-1000°C     | (5.0, 2.5, 5.0)     | At Dist Sys Nozzie |
| 88         TC Type K 1/16 in. dia. Exp Tip         K50F11/161         -40-80°C         0-1000°C         (5.0, 7.5, 5.0)           88         TC Type K 1/16 in. dia. Exp Tip         K50F11/161         -40-40°C         0-1000°C         Main Deck           88         TC Type K 1/16 in. dia. Exp Tip         K50F11/161         -40-40°C         0-1000°C         And deck, 6 hold           88         TC Type K 1/16 in. dia. Exp Tip         KX6TDXWELD         -40-40°C         0-50°C         2nd deck, 6 hold           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         CA-40°C         0-400°C         Surface Weld           K         Load Cell<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83            | 88           |          |                                 | K50F11/108                               | -40-800°C      | 0-1000°C     | (5.0, 5.0, 5.0)     | At 1st Dist Tee    |
| 88         TC Type K 1/16 in. dia. Exp Tip         K50F11/16 in40-40°C         0-1000°C         Main Deck           88         TC Type K 1/16 in. dia. Exp Tip         K50F71/16 in40-40°C         0-50°C         2nd deck, 6 hold           88         TC Type K 1/16 in. dia. Exp Tip         TCS         -40-40°C         0-50°C         2nd deck, 6 hold           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         CA-40°C         0-40°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84            | 88           |          | TC Type K 1/16 in. dia. Exp Tip | K50F11/10                                | Jone OF        | 0-1000°C     | (5.0, 7.5, 5.0)     | At 2nd Dist Tee    |
| 88         TC Type K 1/16 in. dia. Exp Tip         K50F11/16 in. do. Co. Co. Co. Co. Co. Co. Co. Co. Co. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85            | 88           |          |                                 | K50F11/10                                | 40-40°C        | 0-1000°C     | Main Deck           | Dist Manifold      |
| 88         TC Type K 1/16 in. dia. Exp Tip         K50F 1/10 in. dia. Exp Tip         K50F 1/10 in. dia. Exp Tip         Co-50°C         0-50°C         2nd deck, 6 hold           88         TC Type K welded surf temp         KXFSTDXWELD         -40 - 40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           R8         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           X         Load Cell         Kall Result temp         KXFSTDXWELD         -40-400°C         Surface Weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98            | 88           |          | TC Type K 1/16 in. dia. Exp Tip | K50F11/10                                | -40 - 40°C     | 0-1000°C     | Main Deck           | Man near cyldr     |
| TC reference junction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87            | 88           |          | TC Type K 1/16 in. dia. Exp Tip | K50F11/16                                | 0.50           | 0-50°C       | 2nd deck, 6 hold    | Chrl 80-87         |
| 88         TC Type K welded surf temp         KXFSTDXWELD         -40 - 40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40 - 40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40 - 400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40 - 400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40 - 400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40 - 400°C         Surface Weld           X         Load Cell         Main Deck         Main Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88            |              |          | TC reference junction           | 3                                        | 40-40°C        | 0-400°C      | Surface Weld        | Dist Manifold      |
| 88         TC Type K welded surf temp         KXFSI DXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         0-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           R8         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           X         Load Cell         Main Deck         Main Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68            | 88           |          | TC Type K welded surf temp      | KXFSTDXWELD                              | 40-40°C        | 0-400°C      | Surface Weld        | Manifold Cycl.     |
| 88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-40°C         Surface Weld           X         Load Cell         Main Deck         Main Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8             | 88           |          | TC Type K welded surf temp      | KXFS1DXWELD                              | 2000           | 0-400°C      | Surface Weld        | At Dist Sys Nozzle |
| 88         TC Type K welded surf temp         KXFSIDXWELD         -40-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           88         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           A Load Cell         X Load Cell         Main Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16            | 88           |          | TC Type K welded surf temp      | KXFSTDXWELD                              | 40 4000        | 0-400°C      | Surface Weld        | At Dist Sys Nozzle |
| 8B         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           8B         TC Type K welded surf temp         KXFSTDXWELD         -40-400°C         Surface Weld           X         Load Celf         Main Deck         Main Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88            | 88           |          | TC Type K welded surf temp      | KXFSTDXWELD                              | -40-400 C      | 0-400°C      | Surface Weld        | At 2nd Dist Tee    |
| 88 TC Type K welded surf temp KXFSTDXWELD -40-400 C Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8             | 88           |          | TC Type K welded surf temp      | KXFSTDXWELD                              | 00000          | 0,000        | Surface Weld        | At 1st Dist Tee    |
| X Load Cell Main Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94            | 88           |          |                                 | KXFSTDXWELD                              | -40-400-C      | 200          |                     |                    |
| X Load Cell Main Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86            |              |          |                                 |                                          |                |              |                     |                    |
| X Load Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96            |              |          |                                 |                                          |                |              | Main Deck           | Under Cylinder     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76            |              | ×        | Load Cell                       |                                          |                |              |                     |                    |

# APPENDIX C - INERGEN DISCHARGE TIME DETERMINATION

Unlike the halocarbon agents, where the nozzle liquid runout time serves as an indication that 95% or more of the agent has been delivered by the discharge system, there is no pressure inflexion or other clear indication marking the end of the agent discharge for Inergen. The discharge times could be determined by monitoring the weight of the cylinders with the end of agent discharge taken as the time when the desired fraction of the initial agent mass, adjusted for the piping volume, has left the cylinder.

Measuring the weight of a cylinder during the discharge is difficult and prone to significant errors. These errors are associated with how the cylinder is attached to the pipe network. This connection is typically made using a flexible hose, which must be installed, in a level, horizontal plane in order to not interfere with the measurement of the cylinder weight during the discharge. Unfortunately, the reaction forces of the pressurized flex hose always affect the weight measurement. These reaction forces reduce the accuracy of this measurement.

The mass of the agent in the cylinders was instead estimated by utilizing the temperatures and pressures measured in the cylinder manifold and the Soave-Redlich-Kwong equation of state [C-1, C-2]. The S-R-K equation of state is used to find the density of the agent at the measured temperature and pressure. Assuming that all the agent in the discharge system is at the same density, a conservative discharge time can be estimated based on a required outage fraction.

The S-R-K equation of state is cubic in nature and takes the following working form [C-1]:

$$Z^3 - Z^2 + Z^* (A - B - B^2) - AB = 0$$

where Z is the compressibility and A and B are constants depending on the composition of the mixture, the critical pressure, the critical temperature, and pitzer acentric factor for each species as follows:

$$Z = Pv/RT$$

$$A = y_i y_j (A_i A_j)^{0.5}$$

$$B = y_i B_i$$

$$A_i = 0.4247*az_i*(P/Pc_i)/(T/Tc_i)^2$$

$$az_i = [1. + zm_i*(1. - [T/Tc_i]^{0.5})]^2$$

 $zm_i = 0.48 + 1.574w_i - 0.176w_i^2$   $B_i = 0.08664*(P/Pc_i)/(T/Tc_i)$  $p = (y_iMW_i)/v$ 

where P is the pressure, v is the molal volume, p is the density, R is the ideal gas constant, T is the temperature,  $y_i$  is the mole fraction of species I in the mixture,  $Mw_i$  is the molecular weight of species I,  $Pc_i$  is the critical pressure of species I,  $Tc_i$  is the critical temperature of species I, and  $w_i$  is the pitzer acentric factor for species I.

In practice, the density is first determined utilizing the total system volume and initial agent mass. The compressibility, Z, and the value of the S-R-K working equation are then found for two bracketing time steps. The time at which the end of the discharge occurred is found by linear interpolation between these points. This was done using an Excel Spreadsheet for each of the eight tests conducted for both 85% and 95% outages as shown in Tables C-1 through C-16.

# References.

- C-1. Henley, E. J. and Seader, J. D., Equilibrium-Stage Separation Operations in Chemical Engineering, John Wiley & Sons, New York, NY, 1981.
- C-2. Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., *The Properties of Gases and Liquids*, Third Edition, McGraw-Hill Book Company, New York, NY, 1977.

Table C1 - Test #1 - 85% Discharge time Calculations

| Agent         Introgen         Argent         CO2         Nitrogen         Argent         CO2           Agent         2.27.4desta         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)         1.341869 (1.39716)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S-R-K Equation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Outage      | 85%          |                                        | Test=    | Test=test 1 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------------|----------------------------------------|----------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|
| Integer   According to the control of the control | ]<br>[te       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |              | ,0,                                    |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 202                                     |                         |
| Colored Biology   Colored Bi |                | Inergen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -       | 27 60       | 707 07       | 1 '                                    |          | m.z         |         | 0.47370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.82524                                 |                         |
| 1.1316/char-   1.13 | Pc             | 627.74psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 492.45      | 101.01       | 547.56                                 |          | az          | 0.57673 | 0.71953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.11953                                 |                         |
| 1.341   180401710   1.431   1.434   1.197   1.00   1.20174   1.431   1.000   1.20174   1.431   1.000   1.20174   1.431   1.441   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44   1.44 | Тс             | 271.3896R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 01.777      | 771177       | יייייייייייייייייייייייייייייייייייייי |          | \ \         | 0.03114 | 0.03864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 0.0410314               |
| Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vc             | 1.3411869ft3/lbmole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 1.433644981 | 1.1997766    | 1.505/2//                              |          | 5 6         | 08000   | 0.01898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                       | 0.0214694               |
| 0.03632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 <sub>c</sub> | 0.28914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -       | 0.29        | 0.291        | 0.274                                  |          | 2           | 0.02200 | 0.010.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                       |                         |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) A            | 0.03632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 0.04        | -0.004       | 0.225                                  |          | Δ           | 0.52000 | 0.40000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00000                                 |                         |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MW             | 34 30546lb/lbmole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 28.013      | 39.95        | 44.01                                  |          |             | 100     | THE STATE OF THE S | 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Open exchange Appellage |
| 1872/Repsia   RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | End Time       | 414 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |             | Pav          |                                        | Psig     |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 1342ft lbft/lbmmole R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 473.2R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |             | 2            | 0.9742                                 |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 1545fit lpf/lbmmole R   18.322fit lpf/lbmmole   18.322fit lpf/lbmmole   18.322fit lpf/lbmmole   18.322fit lpf/lbmmole   18.322fit lpf/lbmmole   18.322fit lpf/lbm/ft3   18.72570llbm/ft3   18.7254lb   19.0393lb   19.02534lb   19.02536lb    | <u> </u>       | 270.0nsia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |             | SRK          | -0.00674                               |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 18.322ft3/lbmmole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>~</u>       | 1545ft lbf/lbmn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nole R  |             |              |                                        |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 1.8723701 bm/ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>       | 18.322ft3/lbmmo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ele     |             |              |                                        |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 626.62254  b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 1.8723701llbm/ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |             |              |                                        |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 50,200214ft3   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Minit          | 626 62254lh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             | Fill Density | 13.4                                   | lb/ft3   |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Vol      | 50 200214ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |             |              |                                        |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Misroet        | 93.993115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |             |              |                                        |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ninm Of Cul    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |             |              |                                        |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| Cyl         39.163909lb         time (s)         time (s)         time (s)         40Cylinder           sach)         2.93ft3         time (s)         time (s)         40Cylinder           sach)         282.03psia         Z         1.0173P (gauge)         267.327           sach         282.03psia         SRK         0.03715T (F)         44Cylinder           sach         246.78psia         Z         0.8914P (gauge)         44Cylinder           sach         246.78psia         Z         0.8914P (gauge)         13.068           sach         SRK         -0.0137T (F)         13.068         13.068           sach         0.47370         0.82524         End         Nitrogen         Argon         CO2           sach         0.57458         0.01981         0.02641         0.024183B         0.02086         0.01736         0.03541         0.14814           sach         0.02349         0.04032         0.16865         0.0428068A         0.01736         0.003541         0.08000         0.08000         0.08000         0.08000         0.08000         0.08000         0.08000         0.08000         0.08000         0.08000         0.08000         0.08000         0.08000         0.08000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Expanded Vol   | 439ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |             |              |                                        |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| each) 2.93ft3 (w/o dtube) time (s) time (s) 40Cylinder  3.320214ft3 (w/o dtube) time (s) time (s) 40Cylinder  3.320214ft3 (w/o dtube) time (s) time (s) 40Cylinder  282.03psia SRK 0.03715T (F) 13.729  472.768R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mass ner Cvl   | 39.163909lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             |              |                                        |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 3.320214ft3 (w/o dtube)   time (s)   40Cylinder     282.03 psia   SRK   0.03715T (F)   44Cylinder     282.03 psia   SRK   0.03715T (F)   44Cylinder     246.78 psia   SRK   0.07137T (F)   44Cylinder     246.78 psia   SRK   -0.07137T (F)   13.068     246.78 psia   SRK   -0.07137T (F)   End   Argon   CO2     0.54268   0.47370   0.82524   zm   0.54268   0.07202   1.12027     0.03249   0.04032   0.16865   0.0428068 A   0.02381   0.01736   0.002314     0.02381   0.01981   0.024183 B   0.052000   0.40000   0.080000     0.057645   0.04000   0.08000   V   0.52000   0.40000   0.080000     0.057645   0.04000   0.08000   V   0.052000   0.00000     0.057645   0.04000   0.08000   V   0.052000   0.00000     0.057645   0.04000   0.08000   V   0.052000   0.00000     0.055645   0.04000   0.08000   V   0.055000   0.00000     0.055645   0.04000   0.08000   V   0.08000     0.055645   0.04000   0.08000   V   0.08000     0.055645   0.04000   0.08000   V   0.05500   0.00000     0.055645   0.04000   0.08000   V   0.08000     0.055645  | Cvl Vol (each) | 2.93ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |             |              |                                        |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dine Vol       | 3 32021 dft 3 (w/o d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tube)   |             |              |                                        |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| (abs)         473.429R         Z         1.0173P (gauge)         267.327           abs)         282.03psia         SRK         0.03715T (F)         444Cylinder           (abs)         472.768R         Z         0.8914P (gauge)         44Cylinder           abs)         246.78psia         SRK         -0.07137T (F)         13.068           abs)         246.78psia         CO2         Argon         CO2           Nitrogen         Argon         CO2         Argon         CO2           Nitrogen         Argon         CO3         Argon         CO3           Nitrogen         Argon         Argon         CO3           Nitrogen         Argon         O.4737O         0.82524         CO3           Nitrogen         Argon         O.71928         1.11914         az         0.57728         0.72002         1.12027           O.02249         0.04032         0.16865         0.04286A         0.02086         0.01736         0.01736         0.01736         0.08000           O.57000         0.65000         0.64000         0.08000         0.08000         0.08000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ripe voi       | 20070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |             |              | time (s)                               | 4        | 0Cylinder   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| (abs)         473.429K         SRK         0.03715 T (F)         13.729         13.729           abs)         282.03psia         SRK         0.03715 T (F)         44Cylinder           (abs)         472.768R         Z         0.8914P (gauge)         44Cylinder           abs)         246.78psia         SRK         -0.07137T (F)         End         13.068           Argon         CO2         End         Nitrogen         Argon         CO2           Nitrogen         Argon         CO2         0.54268         0.47370         0.82524           0.57645         0.71928         1.11914         az         0.57728         0.72002         1.12027           0.03249         0.04032         0.16865         0.0428068A         0.02855         0.013541         0.14814           0.02381         0.02381         0.01981         0.02641         0.0224183B         0.05200         0.40000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | The state of the s |         | 7           | 1 0173       | D (galloe)                             |          | 267.32      | 7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| abs)         282.03psta         PARA         COS 14P (gauge)         44Cylinder           (abs)         472.768R         Z         0.8914P (gauge)         44Cylinder           abs)         246.78psta         SRK         -0.07137I (F)         13.068           abs)         246.78psta         SRK         -0.07137I (F)         13.068           nitrogen         Argon         CO2         CO2           Nitrogen         Argon         Argon         CO2           no.54268         0.47370         0.82524         zm         0.54268         0.47370         0.82524           no.57645         0.71928         1.11914         az         0.57728         0.72002         1.12027           no.02349         0.04032         0.16865         0.04286A         0.02086         0.01736         0.01314           no.57000         0.65000         0.60000         0.60000         0.60000         0.60000         0.60000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tpav (abs)     | 4/3.429K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | ZOV         | 0.03715      | T (F)                                  |          | 13.72       | 6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| (abs)         472.768R         Z         0.8914P (gauge)         232.082           abs)         246.78psia         SRK         -0.07137I (F)         End         13.068           mitrogen         Argon         CO2         CO2         CO2           0.54268         0.47370         0.82524         zm         0.54268         0.47370         0.82524           0.57645         0.71928         1.11914         az         0.57728         0.72002         1.12027           0.02349         0.04032         0.16865         0.0428183B         0.02086         0.01736         0.01736         0.01736         0.01736         0.08000           0.57000         0.57000         0.40000         0.08000         v         0.05200         0.40000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pav (abs)      | 282.U3psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | SIMIN       | 2000         | time (s)                               | 4        | ١           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| dabs)         472.70olk<br>246.78psia         SRK         -0.07137 F (F)         End         13.068           mitrogen         Argon         CO2         CO2         CO2         CO2           0.54268         0.47370         0.82524         zm         0.54268         0.47370         0.82524           0.57645         0.71928         1.11914         zz         0.57728         0.72002         1.12027           0.03249         0.04032         0.16865         0.0428068A         0.02855         0.03541         0.14814           0.02381         0.01981         0.02641         0.0224183B         0.02086         0.01736         0.08000           0.57000         0.40000         0.08000         y         0.52000         0.40000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1)            | DIO JE CEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 2           | 0.8914       | P (gauge)                              |          | 232.08      | 7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| Nitrogen   Argon   CO2   End   Nitrogen   Argon   CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 pav(abs)     | 246 78ncia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | SRK         | -0.07137     | T (F)                                  |          | 13.06       | 8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| Nitrogen         Argon         CO2         Zm         Nitrogen         Argon         CO2           0.54268         0.47370         0.82524         zm         0.54268         0.47370         0.82524           0.57645         0.71928         1.11914         az         0.57728         0.72002         1.12027           0.03249         0.04320         0.16865         0.0428068A         0.02855         0.03541         0.14814           0.02381         0.01981         0.02641         0.0224183B         0.02086         0.01736         0.02314           0.52000         0.4000         0.08000         y         0.52000         0.4000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r av(aus)      | 410.10psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |             |              | End                                    |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| O.54268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | State          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | ,,,,,       |              |                                        | Nitrogen | Argon       | C02     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 0.54268         0.447370         0.82524         zm         0.54268         0.747370         0.82524           0.57645         0.71928         1.11914         az         0.57728         0.72002         1.12027           0.03249         0.04032         0.16865         0.0428068A         0.02855         0.03541         0.14814           0.02381         0.01981         0.02641         0.0224183B         0.02086         0.01736         0.02314           0.05200         0.4000         0.08000         0.08000         0.04000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 707         |              |                                        | 1        |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 0.57645         0.71928         1.11914         az         0.57728         0.7202         1.12021           0.03249         0.04032         0.16865         0.0428068A         0.02855         0.03541         0.14814           0.02381         0.01981         0.02641         0.0224183B         0.02086         0.01736         0.02314           0.05200         0.4000         0.08000         0.08000         0.04000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | zm             | 0.54268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.47370 | 0.82        |              | Zm                                     | 0.5420   |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 0.03249         0.04032         0.16865         0.0428068A         0.02855         0.03341         0.14814           0.02381         0.01981         0.024183B         0.02086         0.01736         0.02314           0.02361         0.04000         0.08000         0.08000         0.08000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | az             | 0.57645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.71928 | =           |              | az                                     | 0.5772   |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |
| 0.02381 0.01981 0.0224183B 0.02086 0.01736 0.02314 0.02314 0.0224183B 0.02086 0.01736 0.02314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4              | 0.03249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04032 |             |              | A Y                                    | 0.028    |             |         | - [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                         |
| 0.52000 0.40000 0.08000 0.052000 0.40000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2            | 0.02381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01981 |             | L            | 88                                     | 0.0208   |             |         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 0.52000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4000  |             | L            | Λ                                      | 0.5200   |             |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                         |

|                                                     |                |           | 0.82524            | 1.13082        | 0.05606 0.014259 | 0.00856 0.00727     | 00080     |         |                   |            |         |          |                      |                       |                   |              |              |              |            |              |              |                |                           |            |                     |              |            |             |               |                    |          |         |         |           |            |             |
|-----------------------------------------------------|----------------|-----------|--------------------|----------------|------------------|---------------------|-----------|---------|-------------------|------------|---------|----------|----------------------|-----------------------|-------------------|--------------|--------------|--------------|------------|--------------|--------------|----------------|---------------------------|------------|---------------------|--------------|------------|-------------|---------------|--------------------|----------|---------|---------|-----------|------------|-------------|
|                                                     |                | Argon CO2 | 17370              | 0.72691        | 0.01340 0        | 0.00643 0           | 0.40000 0 |         |                   |            |         |          |                      |                       |                   |              |              |              |            |              |              |                |                           |            |                     |              |            |             |               |                    |          |         |         | 0.0124803 | 0.0062552  |             |
|                                                     |                | Nitrogen  | 1268               | 0.58502        | 0.01085          | 0.00772             | 0.52000   |         |                   |            |         |          |                      |                       |                   |              |              |              |            |              |              |                |                           |            | 2                   |              |            | S           | <b>S</b>      |                    | S        |         |         |           | 3 0.00737  | 0008000     |
| e Calculation                                       | Test=test1     |           | zm                 | az             | 4                | В                   | <u> </u>  |         |                   |            |         |          |                      |                       |                   |              |              |              |            |              |              |                |                           | 72Cylinder | 76.775              | 7.387        | 77Cylinder | 62.155      | 2.678         |                    | Argon    |         |         |           | 54 0.00553 | 0.40000     |
| Table C2 - Test #1 - 95% Discharge Time Calculation | Test=          |           | 16                 | 26             | 77.0             | 0 274               | 0.225     | 44 01   | 136 8 Peio        | 773        | 330     | 1        |                      |                       |                   | 13.4  b/ft3  |              |              |            |              |              |                |                           | 7          |                     |              | 7          |             |               |                    | Nitrogen | 0.54268 | 0.59050 | 0.00951   | 0.00664    | 0.52000     |
| st #1 - 95% ]                                       | 9/0            | 600       |                    |                | -                | 2                   |           |         |                   | 0.08063073 | 0.00330 | 30.0-    |                      |                       |                   |              |              |              |            |              |              |                |                           | time (s)   | 1.00330147P (gauge) | 0.01025T (F) | time (s)   | 57P (gauge) | -0.10246T (F) | End                |          | Zm      | Az      |           | 01B        | <u>&gt;</u> |
| able C2 - Te                                        | 95%            | A second  | 70707              | 771.07         | 1 1007766        | 0.77621.1           | 400 O     |         |                   | rav<br>7   | 7       | SKA      |                      |                       |                   | Fill Density |              |              |            |              |              |                |                           |            | 1.003301            | 0.010        |            | 0.85153357  | -0.102        |                    |          |         |         | 0.014431  | ľ          |             |
|                                                     | Outage         |           | Nitrogen<br>402 45 | 492.45         | 1 472644081      | 1.433044961         | 67.0      | 0.0     | C10.62            |            |         |          |                      |                       |                   |              |              |              |            |              |              |                |                           |            | Z                   | SRK          |            | Z           | SRK           |                    | C02      |         | L       |           |            |             |
|                                                     |                |           |                    | la             |                  | //lbmole            |           |         | Ibmole            |            |         | ia       | 1545ft lbf/lbmmole R | 3/lbmmole             | m/ft3             |              | 3            |              |            | 3            |              | 3              | 3.320214ft3 (w/o diptube) |            |                     | iia          |            |             | sia           |                    | Argon    | 0.47370 | 0.72643 | 0.01357   | 0.0065     | 0.40000     |
|                                                     |                |           | nergen             | 627.737493psia | 271.3896R        | 1.3411869ft3/Ibmole | 0.28914   | 0.03632 | 34.30546lb/lbmole | 72.5 s     |         | 90.1psia | 1545ft l             | 54.9658313ft3/lbmmole | 0.6241234  bm/ft3 | 626.62254lb  | 50.200214ft3 | 31.3311268lb | 16         | 439ft3       | 39.163909lb  | 2.93ft3        | 3.320214ft                |            | 467.087R            | 91.475psia   |            | 462.378R    | 76.855bsia    | 1                  | Nitrogen | 268     | 0.5447  | 0.01008   | 0.01030    | 00005       |
|                                                     | S-R-K Equation | Of State  | ent                | Pc             | T <sub>C</sub>   | Vc                  | Zc        | 8       | MW                | End Time   | Т       | ۵        | ~                    | >                     | 0                 | Minit        | Total Vol    | Mtarget      | Num Of Cyl | Expanded Vol | Mass per Cvl | Cyl Vol (each) | Pipe Vol                  |            | Tpay (abs)          | Pav (ahs)    | (201)      | Tnav(ahs)   | Dav(ahe)      | r av(abs)<br>Start |          |         | zm      | az        | V G        | 2           |

Table C3 - Test #2 - 85% Discharge Time Calculations

|                |                            | 10                   | I able Co - Test #2 | 9 07 60 7       |            |            |          |                        |         |           |
|----------------|----------------------------|----------------------|---------------------|-----------------|------------|------------|----------|------------------------|---------|-----------|
| S-R-K Equation |                            | Outage               | 85%                 |                 | Test=test2 | est2       |          |                        |         |           |
| <u>e</u>       |                            |                      | Argon               | 707             |            |            | Nitrogen | Argon                  | CO2     |           |
| ent            | Inergen                    | INITIOSCII<br>ADD AS | 707 07              | 107016          |            | u.z        | 1268     | 0.47370                | 0.82524 |           |
| Pc             | 627.74psia                 | 492,45               |                     | 547 56          |            | 37         | 0.57858  | 0.72119                | 1.12205 |           |
| Tc             | 271.3896K                  | 01.777               |                     | 7777777 I       |            |            | 0.03111  | 0.03856                |         | 0.0409635 |
| Vc             | 1.3411869ft3/Ibmole        | 1.433644981          | 1.1997/00           | 112000.1        |            |            | 0.0263   | 0.01883                |         | 0.0213095 |
| Zc             | 0.28914                    | 0.29                 | 167.0               | 0.274           |            |            | 0.02200  | 0.000                  |         |           |
| M              | 0.03632                    | 0.04                 | -0.004              | 0.225           |            |            | 0.32000  | 0.4000                 |         |           |
| MW             | 34.30546lb/lbmole          | 28.013               | 39.95               | 44.01           |            |            |          | Separate as Associates |         |           |
| Fnd Time       | 42.4 s                     |                      | Pav                 | 204.9           | psig       |            |          |                        |         |           |
|                | 471.7R                     |                      | Z                   | 0.96696900432   |            |            |          |                        |         |           |
| ٩              | 267 Insia                  |                      | SRK                 | -0.01319        |            |            |          |                        |         |           |
| <u></u>        | 1545ft lbf/lbmmole R       |                      |                     |                 |            |            |          |                        |         |           |
| 4              | 18.322ft3/lbmmole          |                      |                     |                 |            |            |          |                        |         |           |
| -              | 1.8723701llbm/ft3          |                      |                     |                 |            |            |          |                        |         |           |
| Minit          | 626.62254lb                |                      | Fill Density        | 13.4            | 13.4lb/ft3 |            |          |                        |         |           |
| Total Vol      | 50.200214ft3               |                      |                     |                 |            |            |          |                        |         |           |
| Mtarget        | 93.9931b                   |                      |                     |                 |            |            |          |                        |         |           |
| Nim Of Cvl     | 16                         |                      |                     |                 |            |            |          |                        |         |           |
| Expanded Vol   | 439ft3                     |                      |                     |                 |            |            |          |                        |         |           |
| Mass ner Cvi   | 39,163909lib               |                      |                     |                 |            |            |          |                        |         |           |
| Cyl Vol (each) | 2.93ft3                    |                      |                     |                 |            |            |          |                        |         |           |
| Pine Vol       | 3.320214fft3 (w/o diptube) |                      |                     |                 |            |            |          |                        |         |           |
| 101 201        |                            |                      |                     | time (s)        | 40         | 40Cylinder |          |                        |         |           |
| Tnav (abs)     | 472.31R                    | Z                    | 1.0463P             | P (gauge)       |            | 274.686    |          |                        |         |           |
| Pav (abs)      | 289.39psia                 | SRK                  | 0.07125T (F)        | T (F)           |            | 12.61      |          |                        |         |           |
|                |                            |                      |                     | time (s)        | 45         | 45Cylinder |          |                        |         |           |
| Tpav(abs)      | 471.093R                   | Z                    | 0.879               | 0.8792P (gauge) |            | 227.838    |          |                        |         |           |
| Pav(abs)       | 242.54psia                 | SRK                  | -0.07865T (F)       | T (F)           |            | 11.393     |          |                        |         |           |
| Start          |                            |                      |                     | End             |            |            |          |                        |         |           |
|                | Nitrogen Argon             | C02                  |                     |                 | Nitrogen   | Argon      | 8        |                        |         |           |
|                | 368                        | 0.82524              |                     | zm              | 0.54268    |            |          |                        |         |           |
| 93             |                            | 1.12106              |                     | az              | 0.57939    |            |          | •                      |         |           |
|                |                            | 0.17417              | 0.0442229A          | Ą               | 0.02836    |            |          |                        | 8       |           |
| واع            |                            |                      | S 0.0230578B        | 89              | 0.02058    | 0.01712    |          | 0.0193749              | 6       |           |
| : 1            |                            | 0                    |                     | Ŋ               | 0.52000    | 0.40000    | 0.08000  |                        |         |           |
| V              |                            |                      |                     |                 |            |            |          |                        |         |           |

0.0148775863 0.00722561 1.15208 0.05828 0.08000 0.00851 0.82524 C02 0.74081 0.0137536 0.00639 0.006653 0.40000 0.47370 Argon 0.05386 0.00784 0.08000 0.01136 0.00767 0.82524 0.54268 0.60066 0.52000 Nitrogen C02 0.01288 77.766 -4.425 65.482 -6.146 0.74197 0.47370 0.40000 Table C4 - Test#2 - 95% Discharge Time Calculation 76Cylinder 72Cylinder Argon Test=test2 ШZ aZ 0.54268 0.60196 0.00707 0.52000 0.01051 Nitrogen 13.4hb/ft3 32.7psig 547.56 0.274 0.225 -0.00847 0.98363593795 1070.16 1.5057277 0.9057P (gauge) 1.0405P (gauge) time (s) time (s) -0.07107T (F) 0.05202T (F) End CO2 Zm 0.0156912A 0.0076432B 271.44 -0.004 39.95 95% 707.07 1.1997766 0.291 Fill Density Argon SRK Pav 1.15079 0.06148 0.00900 0.08000 0.82524 492.45 0.29 0.04 227.16 28.013 1.433644981 Nitrogen Outage C02 SRK SRK 0.01470 0.40000 0.73997 3.320214ft3 (w/o diptube) 87.3psia 1545ft lbf/lbmmole R 54.966ft3/lbmmole .3411869ft3/Ibmole 0.03632 34.30546lb/lbmole 0.6241234lbm/ft3 Argon 92.466psia 80.182psia 626.62254lb 50.200214ft3 627.74psia 439ft3 2.93ft3 39.163909lb 31.331lb 455.275R 453.554R 454.5R Nitrogen A 0.54268 0.01198 0.59971 0.00812 0.52000 271.3896 0.28914 73.7 Inergen S-R-K Equation Expanded Vol Cyl Vol (each) Mass per Cyl Tpav(abs) [pav (abs) Pipe Vol End Time **Fotal Vol** av (abs) av(abs) Mtarget of Cyl Of State Agent Minit Start ш

Table C5 - Test #3 - 85% Discharge Time Calculation

|                |                   |                               | 140         | Table C.5 - Test #5 - 05 /0 Discutt go Time careard | DCICT 0/ CO -   | -          |            |            |           |         |              |
|----------------|-------------------|-------------------------------|-------------|-----------------------------------------------------|-----------------|------------|------------|------------|-----------|---------|--------------|
| S-R-K Equation |                   |                               | Outage      | 85%                                                 |                 | Test=test3 | st3        |            |           | -       |              |
| פַּ            |                   |                               |             |                                                     | 203             |            |            | Nitrogen A | Argon     | CO2     |              |
| ent            | inergen           |                               | 700 V       | 707 07                                              | 1070 16         | Z          | zm         | 893        | 0.47370   | 0.82524 |              |
| 7.<br>F        | 271 20060         | Sia                           | 27.77       | 271 44                                              | 547.56          | az         | 2          | 0.60091    | 0.74104   |         |              |
| 2]             | 271.3090R         | 2715                          | 1 433644081 | 1 1997766                                           | 1 5057277       | 4          |            | 0.03378    | 0.04143   | 0.17323 | 0.0442223319 |
| Vc             | 1.341180911       | S/IDITIOIE                    | 51          | 0.291                                               | 0.274           | 9          |            | 0.02279    | 0.01897   | 0.02528 | 0.021460724  |
| 37             | 0.20217           |                               | 0.04        | -0.004                                              | 0.225           | 2          |            | 0.52000    | 0.40000   | 0.08000 |              |
| W W            | 34 30546lb/lhmole | /lhmole                       | 28.013      | 39.95                                               | 44.01           |            |            |            |           |         |              |
| Fnd Time       | 751               |                               |             | Pav                                                 | 275.9psig       | sig        |            |            |           |         |              |
|                | 454.4R            |                               |             | 2                                                   | 0.9738          |            |            |            |           |         |              |
| ۵              | 259.1psia         | sia                           |             | SRK                                                 | -0.00405        |            |            |            |           |         |              |
| <u>~</u>       | 1545f             | 1545ft lbf/lbmmole R          |             |                                                     |                 |            |            |            |           |         |              |
| >              | 18.322ff          | 18.322ft3/lbmmole             |             |                                                     |                 |            |            |            |           |         |              |
| ٩              | 1.8723701 bm/ft3  | bm/ft3                        |             |                                                     |                 |            |            |            |           |         |              |
| Minit          | 626.62254lb       | 9                             |             | Fill Density                                        | 13.4lb/ft3      | b/ft3      |            |            |           |         |              |
| Total Vol      | 50.200214ft3      | છ                             |             |                                                     |                 |            |            |            |           |         |              |
| Mtarget        | 93.99316          | ь                             |             |                                                     |                 |            |            |            |           |         |              |
| Num Of Cyl     | 91                |                               |             |                                                     |                 |            |            |            |           |         |              |
| Expanded Vol   | 439ft3            | 13                            |             |                                                     |                 |            |            |            |           |         |              |
| Mass per Cyl   | 39.1639091b       | b                             |             |                                                     |                 |            |            |            |           |         |              |
| Cyl Vol (each) | 2.93ft3           | it3                           |             |                                                     |                 |            |            |            |           |         |              |
| Pipe Vol       | 3.320214          | 3.320214ft3 (without diptube) |             |                                                     |                 |            |            |            |           |         |              |
|                |                   |                               |             |                                                     | time (s)        | 72         | 72Cylinder |            |           |         |              |
| Tpav (abs)     | 455.934R          | R                             | Z           | 1.0332                                              | 1.0332P (gauge) |            | 261.151    |            |           |         |              |
| Pav (abs)      | 275.85psia        | osia                          | SRK         | 0.05847T (F)                                        | T (F)           |            | -3.766     |            |           |         |              |
|                |                   |                               |             |                                                     | time (s)        | 77         | Cylinder   |            |           |         |              |
| Tpav(abs)      | 453.403R          | <b>8</b>                      | Z           | 0.9379                                              | 0.9379P (gauge) |            | 234.319    |            |           |         |              |
| Pav(abs)       | 249.02psia        | psia                          | SRK         | -0.03520T (F)                                       | T (F)           |            | -6.297     |            |           |         |              |
| Start          |                   |                               |             |                                                     | End             |            |            |            |           |         |              |
|                | Nitrogen          | Argon                         | C02         |                                                     |                 | Nitrogen   | Argon      | CO2        |           |         |              |
| m.             | 18                | 0.47370                       |             |                                                     | zm              | 0.54268    | 0.47370    |            |           |         |              |
| 97             | 0.59885           | 0.73921                       |             |                                                     | az              | 0.60216    | 0.74214    |            |           |         |              |
|                | 0.03560           | 0.04369                       |             | 0.0466194A                                          | A               | 0.03267    |            |            | - 1       |         |              |
|                | 0.02418           |                               |             |                                                     | В               | 0.02195    |            |            | 0.0206688 | 8       |              |
| ناه            | 0.52000           |                               | -           | 1                                                   | >               | 0.52000    | 0.40000    | 0.08000    |           |         |              |
| 7              | 200               |                               |             |                                                     |                 |            | ı          |            |           |         |              |

0.007256 0.015986 0.06232 1.18195 0.00855 0.82524 0.0800 C02 0.01536 0.00820 0.0069644 0.76035 0.01491 0.40000 0.00641 0.47370 Argon 0.01228 0.62274 0.82524 1.18243 0.05987 0.08000 0.00771 0.52000 Vitrogen C02 0.76066 0.40000 66.306 0.47370 0.01433 0.00616 73.616 -21.975 -21.424 129.9Cylinder 126Cylinder Argon Test=test3 шz Table C6 - Test #3 95% Discharge Time Calculation 0.62309 0.01180 0.52000 0.54268 0.00740 Nitrogen 13.4lb/ft3 183.6psig 547.56 0.274 0.225 44.01 0.9878 1070.16 -0.00347.5057277 1.0323P (gauge) 0.9481P (gauge) time (s) ime (s) -0.03887T (F) 0.04367T (F) C02 End ШZ az 0.016687A 0.0075833B 271.44 707.07 -0.004 39.95 .1997766 0.291 Fill Density Argon SRK 720 0.06505 227.16 1.433644981 0.82524 0.00893 1.18142 492.45 0.29 0.04 0.08000 28.013 Nitrogen Outage SRK Z SRK C02 0.01556 0.76000 0.00670 0.40000 0.47370 3.320214ft3 (without diptube) 1545ft lbf/lbmmole R 54.966ft3/Ibmmole .3411869ft3/lbmole 34.30546lb/lbmole 0.6241234lbm/ft3 Argon 438.0R 84.4psia 88.316psia 81.006psia 627.74psia 439ft3 50.200214ft3 2.93ft3 31.331lb 39.163909lb 626.62254lb 437.725R 438.276R 0.01282 271.3896F 0.52000 0.28914 0.54268 0.62234 0.00805 0.03632 128.1 Nitrogen Inergen S-R-K Equation Expanded Vol Cyl Vol (each) Mass per Cyl Vum Of Cyl fpav (abs) pav(abs) End Time Fotal Vol Pipe Vol Pav (abs) av(abs) Mtarget Of State Agent Start

|   | i       | L |
|---|---------|---|
|   |         |   |
|   |         |   |
|   |         | ľ |
|   | _       |   |
| ٠ | ation   |   |
| , | alcul   |   |
| 1 | 3<br>2  |   |
| į | e Ti    |   |
|   | chare   |   |
|   | Ö       |   |
|   | 85%     |   |
|   | 4 15    |   |
|   | 7 - T   |   |
|   | [- C] a |   |
|   | Tahl    |   |
|   |         |   |
|   |         |   |
|   |         |   |
|   |         |   |
|   |         |   |
|   |         |   |

|                |                               | Labi        | 14015 C 1131 + 0.3 /0 Distrimed Times Commen | יסשוויסורו טי  | -          |                  |            |           |                                          |                                               |
|----------------|-------------------------------|-------------|----------------------------------------------|----------------|------------|------------------|------------|-----------|------------------------------------------|-----------------------------------------------|
| S-R-K Equation |                               | Outage      | 85%                                          |                | lest=fest4 | St4              |            |           |                                          |                                               |
| <u>e</u>       |                               |             |                                              | 202            |            |                  | Nitrogen A | Argon     | CO2                                      |                                               |
| ent            | Inergen                       | 141110BC11  | 707 07                                       | 1070 16        | mz         |                  | 897        | 0.47370   | 0.82524                                  |                                               |
| Pc             | 027.74psia                    | 77.70       |                                              | 547.56         | az         |                  | 0.58586    | 0.72767   | 1.13197                                  |                                               |
| Tc             | 2/1.3890R                     | 1 477544001 | -                                            | 1 5057777      | A          |                  | 0.03130    | 0.03866   | 0.16167                                  | 0.0411287328                                  |
| Vc             | 1.3411869ft3/lbmole           | 1.433044901 |                                              | 1121606.1      | <u> </u>   |                  | 0.02221    | 0.01848   | ĺ                                        | 0.020914058                                   |
| Zc             | 0.28914                       | 0.29        |                                              |                |            |                  | 00000      | 0000      | ١                                        |                                               |
| 3              | 0.03632                       | 0.04        |                                              |                | Λ          |                  | 0.32000    | 0.4000    | 0.00000                                  |                                               |
| MM             | 34.30546lb/lbmole             | 28.013      | 39.95                                        | 44.01          |            |                  |            |           | 8 (8) (8) (8) (8) (8) (8) (8) (8) (8) (8 | 100 May 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| End Time       | 36.3                          |             | Pav                                          | 235.4psig      | sig        |                  |            |           |                                          |                                               |
|                | 466.0R                        |             | 2                                            | 0.9576         |            |                  |            |           |                                          |                                               |
|                | 259 Omsia                     |             | SRK                                          | -0.02082       |            |                  |            |           |                                          |                                               |
|                | 1545ft lbf/lbmmole R          |             |                                              |                |            |                  |            |           |                                          |                                               |
| <b>\</b>       | 18.487/ft3/lbmmole            |             |                                              |                |            |                  |            |           |                                          |                                               |
|                | 1 8556474llbm/ft3             |             |                                              |                |            |                  |            |           |                                          |                                               |
| Minit          | 626 62254lh                   |             | Fill Density                                 | 13.4lb/ft3     | b/ft3      |                  |            |           |                                          |                                               |
| Total Vol      | 50.652607ft3                  |             |                                              |                |            |                  |            |           |                                          |                                               |
| Mtarget        | 93 993115                     |             |                                              |                |            |                  |            |           |                                          |                                               |
| Ni,m Of Cul    | 16                            |             |                                              |                |            |                  |            |           |                                          |                                               |
| Evnonded Vol   | 430ft3                        |             |                                              |                |            |                  |            |           |                                          |                                               |
| L'Apanian voi  | 20 122000lt                   |             |                                              |                |            |                  |            |           |                                          |                                               |
| Mass per Cyl   | 39.10390910                   |             |                                              |                |            |                  |            |           |                                          |                                               |
| Cyl vol (each) | CHICK-A                       |             |                                              |                |            |                  |            |           |                                          |                                               |
| Pipe Vol       | 3.77260/pt3 (without diptube) | 3           |                                              | (2)            | 325        | Culinder         |            |           |                                          |                                               |
|                |                               |             |                                              | time (s)       | 2          | yminer<br>200 gr |            |           |                                          |                                               |
| Tpav (abs)     | 465.912R                      | Z           | 1.0999                                       | .0999P (gauge) |            | 282./14          |            |           |                                          |                                               |
| Pav (abs)      | 297.41 psia                   | SRK         | 0.14467T (F)                                 | T (F)          |            | 6.212            |            |           |                                          |                                               |
|                |                               |             |                                              | time (s)       | 380        | 38Cylinder       |            |           |                                          |                                               |
| Tpav(abs)      | 466.043R                      | Z           | 0.883                                        | 0.883P (gauge) |            | 224.118          |            |           |                                          |                                               |
| Pav(abs)       | 238.82psia                    | SRK         | -0.07585T (F                                 | T (F)          |            | 6.343            |            |           |                                          |                                               |
| Start          |                               |             |                                              | End            |            |                  |            |           |                                          |                                               |
| 1000           | Nitrogen Argon                | C02         |                                              |                | Nitrogen   | Argon            | CO2        |           |                                          |                                               |
| III.           | 268                           |             | 4                                            | mz             | 0.54268    | 0.47370          |            |           |                                          |                                               |
| 202            |                               |             | 7                                            | az             | 0.58580    | 0.72761          |            |           |                                          |                                               |
| ar.            |                               |             | 7 0.0472586A                                 | A              | 0.02885    | 0.03564          | 0.14905    | 0.0379173 | 3                                        |                                               |
| <u> </u>       |                               |             |                                              | 9              | 0.02048    | 0.01704          | \$ 0.02272 | 0.0192845 | 5                                        |                                               |
| Q              |                               |             |                                              | >              | 0.52000    |                  |            | _         |                                          |                                               |
| у              | 0.32000                       |             | 5                                            | P              |            |                  |            |           |                                          |                                               |

| Nitrogen   Argon   CO2     Nitrogen   Argon   CO2     3/10bmole   1.433644981   1.1997766   1.5057277     3/10bmole   1.433644981   1.1997766   1.5057277     3/10bmole   0.04   0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                |             | Jable Co<br>Outage | 95%          | J /0 Lisville | Table C8 - 1 est #4 - 95% Discitation   Test=test4   Test=test5   Te | est4     |         |              |          |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|-------------|--------------------|--------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------------|----------|-------------|
| Figure 1   Figure 2   Figure 2   Figure 3   Figure 3  | Equation  |                                | <del></del> | Jurage             |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| 13411869/17/hbmmole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | Inordon                        |             | itrogen            |              | CO2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | T       | <b>Lrgon</b> | CO2      |             |
| 1.31   1.95   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15    |           | - 1                            |             | 492.45             |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zm       | 0.54268 |              | 0.82524  |             |
| 1.2411360 1310 mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 771 3806R                      |             | 227.16             |              | 547.56        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2      | 0.60557 |              |          | 100010100   |
| CASE    |           | 1 2411060ft3/lhmole            |             | 1 433644981        | -            | 1.5057277     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A        | 0.01143 |              |          | 0.014943381 |
| Cyl   Cyl  |           | 1.3411609117/1011010           |             | 0.29               |              | 0.274         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В        | 0.00759 |              |          | 0.00714869  |
| 34.03546 brild mole   28.013   39.95   44.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 0.03532                        |             | 0.04               |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y        | 0.52000 |              |          |             |
| Cyl   154.0psig   154.0psig  |           | 24.205.05<br>24.20546th/thmole |             | 28.013             |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| SS   Solgesta   SRK   0.00992   SRK   0.00992   SS   Solgesta   SRK   0.00992   SS   SS   SS   SS   SS   SS   SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eu.       | 63.1                           |             |                    | Pav          |               | psig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |         |              |          |             |
| 85.6psia   85.6psia   85.6psia   1545ft lb/Ubmmole R   1545ft lb | 2         | 450 8IR                        |             |                    | 2            | 0.9819        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| 15.45ft lbf/lbmmole R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 85 6hsia                       |             |                    | SRK          | -0.00992      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| S5.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 1545ft lbf/lbmm                | ole R       |                    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| 0.6185491   bm/ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 55.461ft3/lbmmol               | 9           |                    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| Size 5254   Desity   134    Desity   134    Desity   De |           | 0.6185491[bm/ft3               |             |                    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| So. 652607 ft3   So. 6522607 ft3     31.331 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 626.62254llb                   |             |                    | Fill Density | 13.4          | 1b/ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |         |              |          |             |
| 31.331   b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [o/       | 50.652607ft3                   |             |                    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| Cyl         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         17         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 31.33116                       |             |                    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| 1 Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )f Cyl    | 16                             |             |                    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| Cyl         39.163909 hb         time (s)         Cocylinder           each)         2.93ft3         time (s)         60 Cylinder           s)         454.278 R         Z         1.1095 P (gauge)         82.807           s)         454.278 R         Z         1.1095 P (gauge)         82.807           s)         449.756 R         Z         0.14413 T (F)         64Cylinder           s)         449.756 R         Z         0.9425 P (gauge)         67.302           r)         449.756 R         Z         0.0445 P (gauge)         67.302           r)         449.756 R         Z         0.0445 P (gauge)         64Cylinder           r)         82.002 psia         SRK         -0.04413 T (F)         -9.944           R         82.002 psia         SRK         -0.04413 T (F)         -9.944           Nitrogen         Argon         CO2         CO2           Nitrogen         Argon         0.647370         0.82524         Emd           0.60101         0.74113         1.15256         az         0.60697         0.74640         1.16063           0.00858         0.00729         0.00652         0.00869         0.00102         0.00606         0.00800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ded Vol   | 439ft3                         |             |                    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| 2.93ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er Cyl    | 39.163909lb                    |             |                    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| 3.772607 ft3 (without diptube)   time (s)   time (s)   60Cylinder     53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ol (each) | 2.93ft3                        |             |                    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| Signature   Signature   Figure   Signature   Figure   Signature   Figure   Figure  | 0.0       | 3.772607ft3 (withou            | t diptube)  |                    |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |         |              |          |             |
| SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                |             |                    |              | time (s)      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cylinder |         |              |          |             |
| 97.507   psia   SRK   0.14413f (F)   -5.424         449.756R   Z   0.9425f (gauge)   67.302       82.002   psia   SRK   -0.04413f (F)   -9.944       Nitrogen   Argon   CO2   End   Nitrogen   Argon   CO2       0.54268   0.47370   0.82524   zm   0.54268   0.47370   0.82524       0.60101   0.74113   1.15256   az   0.60697   0.74640   1.16063       0.001272   0.01560   0.06522   0.0080776B   0.00714   0.00958   0.0080776B   0.00714   0.00952   0.0080776B   0.052000   0.40000   0.08000     0.52000   0.40000   0.08000   P   0.52000   0.40000   0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | abs)      | 454.278R                       |             | Z                  | 1.1095       | P (gauge)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.80    |         |              |          |             |
| time (s)         64Cylinder           (a)         449.756R         Z         0.9425P (gauge)         67.302           (a)         67.302         67.302         67.302           (a)         (a)         67.302         67.302           (a)         (a)         67.302         67.302           (a)         (a)         (a)         67.302           (a)         (a)         (a)         67.302           (a)         (a)         (a)         (a)         67.302           (a)         (a)         (a)         (a)         (a)         (a)         (a)           (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)           (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)         (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bs)       | 97.507psia                     |             | SRK                | 0.14413      | IT (F)        | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.42    |         |              |          |             |
| (a)         449.756R         Z         0.9425P (gauge)         67.302           (a)         82.002psia         SRK         -0.04413T (F)         -9.944         CO2           (a)         (a)         (a)         (b)         (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                |             |                    |              | time (s)      | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cylinder |         |              |          |             |
| SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | he)       | 449.756R                       |             | 2                  | 0.9425       | P (gauge)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67.30    |         |              |          |             |
| Nitrogen         Argon         CO2         End         Nitrogen         Argon         CO2           0.54268         0.47370         0.82524         zm         0.54268         0.47370         0.82524           0.60101         0.74113         1.15256         az         0.60697         0.74640         1.16063           0.01272         0.01560         0.06522         0.0166499A         0.01102         0.01348         0.05635           0.00858         0.00714         0.00952         0.0080776B         0.00729         0.00606         0.00808           0.52000         0.40000         0.08000         y         0.52000         0.40000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 82.002nsia                     |             | SRK                | -0.04413     | T (F)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -9.94    | +       |              |          |             |
| Argon         CO2         Nitrogen         Argon         CO2           .54268         0.47370         0.82524         zm         0.54268         0.47370         0.82524           .60101         0.74113         1.15256         az         0.60697         0.74640         1.16063           .01272         0.01560         0.06522         0.0166499A         0.01102         0.01348         0.05635           .00858         0.00714         0.00952         0.0080776B         0.00729         0.00606         0.00808           .2007         0.4000         0.08000         y         0.52000         0.40000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e e       |                                |             |                    |              | End           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |              |          |             |
| 54268         0.47370         0.82524         zm         0.54268         0.47370         0.82524           .60101         0.74113         1.15256         az         0.60697         0.74640         1.16063           .01272         0.01560         0.06522         0.0166499A         0.01102         0.01348         0.05635           .00858         0.00714         0.00952         0.0080776B         0.00729         0.00606         0.00808           .7007         0.4000         0.08000         y         0.52000         0.40000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                |             | C02                |              |               | Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Argon    | ଥ       |              |          |             |
| 0.74113         1.15256         az         0.60697         0.74640         1.16063           0.01560         0.06522         0.0166499A         0.01102         0.01348         0.05535           0.00714         0.00952         0.0080776B         0.00729         0.00606         0.00808           0.40000         0.08000         0.08000         0.08000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 54768                          | 0.47370     |                    | #            | zm            | 0.54268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | Ì       | <del>-</del> |          |             |
| 0.01560         0.06522         0.0166499 A         0.01102         0.01348         0.05635           0.00714         0.00952         0.0080776 B         0.00729         0.00606         0.00808           0.40000         0.08000         0.08000         0.08000         0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 0.52500                        | 0.74113     |                    | V.           | az            | 0.60697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |         | -            |          |             |
| 0.00714 0.00952 0.0080776B 0.00729 0.00606 0.00808<br>0.40000 0.08000 b 0.52000 0.40000 0.08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 0.01272                        | 0.01560     |                    |              | A(            | 0.01102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | -       | -            | <b>x</b> |             |
| 0.40000 0.08000 by 0.52000 0.40000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 0.00858                        | 0.00714     |                    |              | ŚВ            | 0.00729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | ١       |              | 4        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 0.52000                        | 0.4000      |                    | C            | y             | 0.52000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |         | 0            |          |             |

|                                        |                     |                               | Iable       | Table C9 - Test #3 - 63% Discharge Time Calculation | 70 Discharge    | C IIIIC Care | alibii     |          |           |         |          |
|----------------------------------------|---------------------|-------------------------------|-------------|-----------------------------------------------------|-----------------|--------------|------------|----------|-----------|---------|----------|
| S-R-K Equation                         |                     |                               | Outage      | 85%                                                 |                 | Test=test5   | test5      |          |           |         |          |
| ايد                                    | Inorden             |                               | Nitrogen    | Argon                                               | C02             |              |            | Nitrogen | Argon     | C02     |          |
| Pr                                     | 627.74nsia          |                               | 192.45      | 707.07                                              | 1070.16         |              | zm         | 0.54268  |           | 0.82524 |          |
| 2 2                                    | 271.3896R           |                               | 227.16      | 271.44                                              | 547.56          |              | az         | 0.61274  | 0.75151   | - 1     |          |
| N.C                                    | 1.3411869ft3/lbmole | mole                          | 1.433644981 | 1.1997766                                           | 1.5057277       | 1            | A          | 0.03582  |           |         | 0.046751 |
| 70                                     | 0.28914             |                               | 0.29        | 0.291                                               | 0.274           |              | B          | 0.02323  |           | - 1     | 0.021878 |
| 3 3                                    | 0.03632             |                               | 0.04        | -0.004                                              | 0.225           |              | λ          | 0.52000  | 0.40000   | 0.08000 |          |
| MM                                     | 34.30546lb/lbmole   | nole                          | 28.013      | 39.95                                               | 44.01           |              |            |          |           |         |          |
| End Time                               | 33.3 s              |                               |             | Pav                                                 | 365.1           | psig         |            |          |           |         |          |
| E                                      | 445.4R              |                               |             | <b>Z</b>                                            | 0.9585          |              |            |          |           |         |          |
| ٩                                      | 258.9psia           |                               |             | SRK                                                 | -0.01576        |              |            |          |           |         |          |
|                                        | 1545ft lbf/         | 1545ft lbf/lbmmole R          |             |                                                     |                 |              |            |          |           |         |          |
| ^                                      | 17.69ft3/Ibmmole    | mmole                         |             |                                                     |                 |              |            |          |           |         |          |
| ٩                                      | 1.9392588llbm/ft3   | 13                            |             |                                                     |                 |              |            |          |           |         |          |
| Minit                                  | 744.11426lb         |                               |             | Fill Density                                        | 13.4            | .4lb/ft3     |            |          |           |         |          |
| Total Vol                              | 57.556597 ft3       |                               |             |                                                     |                 |              |            |          |           |         |          |
| Mtarget                                | 111.62lb            |                               |             |                                                     |                 |              |            |          |           |         |          |
| Num Of Cyl                             | 61                  |                               |             |                                                     |                 |              |            |          |           |         |          |
| Expanded Vol                           | 439ft3              |                               |             |                                                     |                 |              |            |          |           |         |          |
| Mass per Cyl                           | 39.163909lb         |                               |             |                                                     |                 |              |            |          |           |         |          |
| Cvl Vol (each)                         | 2.93ft3             |                               |             |                                                     |                 |              |            |          |           |         |          |
| Pipe Vol                               | 1.886597ft3 (w      | 1.886597ft3 (without diptube) |             |                                                     |                 |              |            |          |           |         | i<br>i   |
|                                        |                     |                               |             |                                                     | time (s)        | 30           | 30Cylinder |          |           |         |          |
| Tpav (abs)                             | 448.205R            |                               | 2           | 1.0841                                              | P (gauge)       |              | 280.007    |          |           |         |          |
| Pav (abs)                              | 294.71psia          |                               | SRK         | 0.12675                                             |                 |              | -11.495    |          |           |         |          |
|                                        |                     |                               |             |                                                     | time (s)        | 35           | 35Cylinder |          |           |         |          |
| Tpav(abs)                              | 443.96R             |                               | Z           | 0.8925                                              | 0.8925P (gauge) |              | 225.617    |          |           |         |          |
| Pav(abs)                               | 240.32psia          |                               | SRK         | -0.06600T (F)                                       | T (F)           |              | -15.74     |          |           |         |          |
| Start                                  |                     |                               |             |                                                     | End             |              |            |          |           |         |          |
|                                        | Nitrogen Argon      |                               | CO2         |                                                     |                 | Nitrogen     | Argon      | CG       |           |         |          |
| Zm                                     | 1268                | 0.47370                       | 0.82524     |                                                     | шz              | 0.54268      |            |          |           |         |          |
| az                                     | 0.60902             | 0.74822                       | 1.16341     |                                                     | az              | 0.61468      |            |          |           |         |          |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 0.04002             | 0.04889                       | 0.20440     | 0.0522776                                           | A               | 0.03357      |            |          |           |         |          |
| ھا                                     | 0.02628             | 0.02187                       | 0.02915     |                                                     | B               | 0.02163      |            |          | 0.0203708 |         |          |
| λ                                      | 0.52000             | 0.40000                       |             |                                                     | y               | 0.52000      | 0.40000    | 0.08000  |           |         |          |

|                |                       |                                         | Table         | Table C10 - Test #5 - 95% Discharge Time Calculation | - 95% Discharg  | ge Time Calcu | ılation |                                          |                    | •       |             |
|----------------|-----------------------|-----------------------------------------|---------------|------------------------------------------------------|-----------------|---------------|---------|------------------------------------------|--------------------|---------|-------------|
| S-R-K Equation |                       |                                         | Outage        | 95%                                                  |                 | Test=test5    | test5   |                                          |                    |         |             |
| Or State       | Ingreen               |                                         | Nitrogen      | Argon                                                | C02             |               |         | Nitrogen                                 |                    | CO2     |             |
| Agent          | 11151 gcii            | 0.50                                    | 497 45        | 707.07                                               | 1070.16         |               | zm      | 0.54268                                  | 0.47370            | 0.82524 |             |
| rc<br>1        | 027.740               | Jaid                                    | 27.16         |                                                      | 547.56          |               | az      | 0.60858                                  | 0.74783            | 1.16281 |             |
| <u>2</u>       | 271.26908             | 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 133644981   | -                                                    | 1 5057277       |               | V       | 0.01189                                  | 0.01453            | 0.06074 | 0.015533917 |
| ΛC             | 1.3411869/13/10/10/10 | t3/tomore                               | 10.74-00.04-1 | 1                                                    | 0.274           |               | 2       | 0.00782                                  | 0.00651            | 0.00867 | 0.00736269  |
| Zc             | 0.28914               |                                         | 0.27          |                                                      |                 |               |         | 0.52000                                  | 0.40000            | 0.08000 |             |
| м              | 0.03632               |                                         | 0.04          | •                                                    |                 |               |         | 0.02500                                  |                    |         |             |
| MM             | 34.30546lb/lbmole     | b/lbmole                                | 28.013        | 39.95                                                |                 |               |         | 2000 100 100 100 100 100 100 100 100 100 | Third Constitution |         |             |
| End Time       | 58.3                  |                                         |               | Pav                                                  | 238.0           | psigs         |         |                                          |                    |         |             |
| L              | 448.5R                | ~                                       |               | Z                                                    | 0.9677          |               |         |                                          |                    |         |             |
| ۵              | 87.8psia              | sia                                     |               | SRK                                                  | -0.02248        |               |         |                                          |                    |         |             |
|                | 1545f                 | 1545ft lbf/lbmmole R                    |               |                                                      |                 |               |         |                                          |                    |         |             |
|                | 53.07f                | 53.07ft3/lbmmole                        |               |                                                      |                 |               |         |                                          |                    |         |             |
|                | 0 6464196lhm/ft3      | hm/ft3                                  |               |                                                      |                 |               |         |                                          |                    |         |             |
| 7              | 744 11426lb           | h                                       |               | Fill Density                                         | 13.4            | 13.4lb/ft3    |         |                                          |                    |         |             |
| Minnt          | 74.1140               |                                         |               |                                                      |                 |               |         |                                          |                    |         |             |
| Total Vol      | 57.33039/113          | 51                                      |               |                                                      |                 |               |         |                                          |                    |         |             |
| Mtarget        | 37.206lb              | lb.                                     |               |                                                      |                 |               |         |                                          |                    |         |             |
| Num Of Cyl     | 19                    |                                         |               |                                                      |                 |               |         |                                          |                    |         |             |
| Expanded Vol   | 439ft3                | ft3                                     |               |                                                      |                 |               |         |                                          |                    |         |             |
| Mass per Cvl   | 39.163909lb           | q                                       |               |                                                      |                 |               |         |                                          |                    |         |             |
| Cyl Vol (each) | 2.93ft3               | ft3                                     |               |                                                      |                 |               |         |                                          |                    |         |             |
| Pine Vol       | 1.886597              | 1.886597ft3 (w/o diptube)               |               |                                                      |                 |               |         |                                          |                    |         |             |
|                |                       |                                         |               |                                                      | time (s)        | 55            | Cylin   |                                          |                    |         |             |
| Tnav (abs)     | 449.054R              | 2                                       | 2             | 1.1134                                               | 1.1134P (gauge) |               | 86.38   |                                          |                    |         |             |
| Pav (abs)      | 101.08psia            | psia                                    | SRK           | 0.15077T (F)                                         | T (F)           |               | -10.646 |                                          |                    |         |             |
|                |                       |                                         |               |                                                      | time (s)        | 09            | Cylinde |                                          |                    |         |             |
| Tnav(abs)      | 448.262R              | 8                                       | Z             | 0.8894                                               | 0.8894P (gauge) |               | 65.9    |                                          |                    |         |             |
| Pav(ahs)       | 80.6psia              | psia                                    | SRK           | -0.08095T (F)                                        | T(F)            |               | -11.438 |                                          |                    |         |             |
| Start          |                       |                                         |               |                                                      | End             |               |         |                                          |                    |         |             |
|                | Nitrogen              | Argon                                   | C02           |                                                      |                 | Nitrogen      | Argon   | 705                                      |                    |         |             |
| 2.00           | 1268                  | 0.47370                                 | 0 0.82524     | स                                                    | zm              | 0.54268       |         | 0.82524                                  |                    |         |             |
| 97             | 0.60789               | 0.74722                                 | 1.16189       | L                                                    | az              | 0.60894       |         | 1.16331                                  | - 1                |         |             |
| 4              | 0.01365               | 0.01668                                 | 8 0.06975     | 5 0.0178348A                                         | βA              | 0.01094       |         |                                          |                    |         |             |
| 1 2            | 006000                |                                         | 0.00998       | 8 0.008471                                           | В               | 0.00719       | - [     |                                          | 0.0067666          |         |             |
| نا و           | 0.52000               |                                         |               |                                                      | Δ               | 0.52000       | 0.40000 | 0.08000                                  | )                  |         |             |
| ý              | V.J. &VV.             |                                         |               |                                                      |                 |               |         |                                          |                    |         |             |

0.02180606 0.04682058 0.18285 0.08000 0.82524 1.17055 C05 0.04374 0.47370 0.75289 0.40000 Argon 0.82524 0.03589 0.02316 0.61430 0.54268 0.52000Nitrogen C02 209.965 -16.917 266.095 -14.411 0.47370 Cylinder 32Cylinder Argon Test=test6 шZ az Table C11 - test #6 - 85% Discharge Time Calculation 0.54268 Nitrogen 13.4∥b/ft3 352.8psig 547.56 0.274 0.225 44.01 0.95536958705 1070.16 .5057277 -0.01831 0.8366P (gauge) 1.0397P (gauge) time (s) ime (s) 0.06921TT (F) -0.09694T (F) CO2 Eng Zm 271.44 0.291 -0.004 39.95 85% 1.1997766 707.07 Fill Density Argon SRK Pav 0.82524 492.45 0.04 227.16 28.013 1.433644981 Nitrogen Outage CQ SRK SRK 0.47370 1.886597 (tt3 (w/o diptube) 257.4psia 1545ft lbf/lbmmole R 17.69ft3/lbmmole 1.3411869ft3/lbmole 34.30546|b/lbmole 1.9392588lbm/ft3 Argon 280.8psia 224.67psia 627.74psia 111.62lb 439ft3 2.93ft3 744.11426lb 57.556597ft3 39.16390916 442.783R 445.289R 44.<del>K</del> 271.3896F 0.28914 0.03632 Nitrogen 34.1 nergen S-R-K Equation 3yl Vol (each) Expanded Vol Mass per Cyl Num Of Cyl Tpav (abs) (pav(abs) Pav (abs) End Time Total Vol Pipe Vol av(abs) Of State Mtarget Minit Agent Start ≱ ⊠

0.0190947 0.0412453

> 0.02249 0.08000

> 0.01688 0.40000

0.02028 0.52000

0.16101

0.75462

0.616260.03163

**3**Z

1.16866 0.19821

0.75166 0.04742 0.02097 0.40000

0.61290

0.54268

EZ

0.02520 0.52000

0.0237309B 0.0507363A

> 0.02795 0.08000

|                     |                            |             | 2000          |                 | January de L | 7400       |          |           |         |                        |
|---------------------|----------------------------|-------------|---------------|-----------------|--------------|------------|----------|-----------|---------|------------------------|
|                     |                            | Outage      | 95%           |                 | l est=testo  | esto       |          |           |         |                        |
|                     |                            | Nitrogen    | Argon         | CO2             |              |            | Nitrogen | Argon     | CO2     |                        |
| 627.74psia          |                            | 492.45      | 70.707        | 1070.16         |              | mz         | 0.54268  |           | 0.82524 |                        |
| 271.3896R           |                            | 227.16      |               | 547.56          |              | az         | 0.62329  |           | 1.18270 | 010710                 |
| 1.3411869ft3/lbmole | lbmole                     | 1.433644981 | 1.1997766     | 1.5057277       |              | A          | 0.01254  |           |         | 0.016318               |
| 0.28914             |                            | 0.29        | 0.291         | 0.274           |              | В          | 0.00785  |           |         | 0.00/39                |
| 0.03632             |                            | 0.04        |               |                 |              | y          | 0.52000  | 0.40000   | 0.08000 |                        |
| 34.30546lb/lbmole   | bmole                      | 28.013      | 39.95         | 44.01           |              |            |          |           |         | COUNTY, S. CORREGOR OF |
| 58.6 s              |                            |             | Pav           | 233.3 psig      | psig         |            |          |           |         |                        |
| 437.6R              |                            |             | 2             | 0.9719          |              |            |          |           |         |                        |
| 86.0psia            | 3                          |             | SRK           | -0.01807        |              |            |          |           |         |                        |
| 1545ft lb           | 1545ft lbf/lbmmole R       |             |               |                 |              |            |          |           |         |                        |
| 53.07 ft3/lbmmole   | Ibmmole                    |             |               |                 |              |            |          |           |         |                        |
| 0.6464196lbm/ft3    | 1/ft3                      |             |               |                 |              |            |          |           |         |                        |
| 744.11426lb         |                            |             | Fill Density  | 13.4            | 13.4lb/ft3   |            |          |           |         |                        |
| 57.556597年3         |                            |             |               |                 |              |            |          |           |         |                        |
| 37.206lb            |                            |             |               |                 |              |            |          |           |         |                        |
| 19                  |                            |             |               |                 |              |            |          |           |         |                        |
| 439ft3              |                            |             |               |                 |              |            |          |           |         |                        |
| 39.163909llb        |                            |             |               |                 |              |            |          |           |         |                        |
| 2.93ft3             |                            |             |               |                 |              |            |          |           |         |                        |
| 886597ft3           | 1.886597 ft3 (w/o diptube) |             |               |                 |              |            |          |           |         |                        |
|                     |                            |             |               | time (s)        | 55           | 55Cylinder |          |           |         |                        |
| 439R                |                            | 7           | 1.1269        | .1269P (gauge)  |              | 85.318     | 80       |           |         |                        |
| 100.02psia          |                            | SRK         | 0.17249T (F)  | T (F)           |              | -20.7      | /        |           |         |                        |
|                     |                            |             |               | time (s)        | 9            | 60Cylinder |          |           |         |                        |
| 437.045R            |                            | Z           | 0.9135        | 0.9135P (gauge) |              | 66.014     | 4        |           |         |                        |
| 80.714psia          |                            | SRK         | -0.06465T (F) | T (F)           |              | -22.65     | 2        |           |         |                        |
|                     |                            |             |               | End             |              |            |          |           |         |                        |
| Nitrogen Arg        | Argon                      | 00          |               |                 | Nitrogen     | Argon      | g        |           |         |                        |
| 1268                | 0.47370                    | 0.82524     |               | mz              | 0.54268      |            |          | 4         |         |                        |
| 0.62136             | 0.75913                    | -           |               | az              | 0.62402      |            |          |           |         |                        |
| 0.01444             | 0.01755                    |             | 0.0188106A    | Ą               | 0.01181      |            |          |           |         |                        |
| 0.00911             | 0.00758                    |             | 0.0085739B    | В               | 0.00738      |            |          | 0.0069501 |         |                        |
|                     |                            | ١           |               |                 | 00000        | 00000      |          | _         |         |                        |

0.01575871 0.00868 0.06156 0.82524 0.08000 1.16877 C02 0.01473 0.00651 0.40000 0.75173 0.47370 0.0068771 0.0147272 Argon 0.00810 0.61298 0.00783 0.54268 0.05753 0.82524 1.16939 Nitrogen C02 60Cylinder 66.6 0.01376 87.66 -13.59 0.75213 0.00608 0.40000 -14.811 0.47370 55Cylinder Argon Test=test7 Table C14 - Test #7 - 95% Discharge Time Calculation шz 0.54268 0.61344 0.00730 0.52000 Nitrogen b/ft3 237.3psig 13.4It 0.225 1070.16 547.56 0.274 44.01 -0.021540.9686 .5057277 0.9039P (gauge) 1.1349P (gauge) ime (s) ime (s) 0.18465Tr (F) -0.07156T (F) C02 End ШZ az 0.0086349B 0.0183993 271.44 -0.004 95% 707.07 0.291 39.95 .1997766 Fill Density Argon SRK Pav 1.16718 0.29 0.07190 0.04 0.82524 0.01017 0.08000 492.45 227.16 1.433644981 28.013 Nitrogen Outage Z SRK C02 SRK 7 0.75069 0.00763 0.40000 0.01720 1.886597ft3 (w/o diptube) 1545ft lbf/lbmmole R 53.07 ft3/lbmmole .3411869ft3/lbmole 34.30546lb/lbmole 0.6464196lbm/ft3 Argon 87.2psia 102.36psia 81.3psia 627.74psia 57.556597ft3 2.93ft3 744.11426lb 37.206lb 39.163909lb 444.889R 446.11R 439ft 271.3896F 445.2F 0.00917 0.54268 0.52000 0.28914 0.03632 0.61181 0.01410 58.6 Nitrogen nergen S-R-K Equation Cyl Vol (each) Expanded Vol Mass per Cyl Num Of Cyl Fpav (abs) End Time Tpav(abs) Fotal Vol Pipe Vol Pav (abs) Pav(abs) Of State Mtarget Agent Start ₹ EI2

|                                                      |                | 2          | 0.82524    |           |                     | 0.02520 0.0213931 | 0.08000 |                   |          |        |           |                      |                   |                  |              |              |          |            |              |              |                |                           |            |                 |              |            |                 |                |       |          |         |         |            |            |          |
|------------------------------------------------------|----------------|------------|------------|-----------|---------------------|-------------------|---------|-------------------|----------|--------|-----------|----------------------|-------------------|------------------|--------------|--------------|----------|------------|--------------|--------------|----------------|---------------------------|------------|-----------------|--------------|------------|-----------------|----------------|-------|----------|---------|---------|------------|------------|----------|
|                                                      |                | Argon CO2  | 0.47370    | 0.75987   | 0.04389             | 0.01891           | 0.40000 |                   |          |        |           |                      |                   |                  |              |              |          |            |              |              |                |                           |            |                 |              |            |                 |                |       |          |         |         | 0.0441803  | 0.0198942  |          |
|                                                      |                | Nitrogen A | 0.54268    | 0.62220   | 0.03614             | 0.02272           | 0.52000 |                   |          |        |           |                      |                   |                  |              |              |          |            |              |              |                |                           |            |                 |              |            |                 |                |       | ပ္ပါ     |         | ١       |            | i          | 0.08000  |
| ıtion                                                | est8           |            | mz         | az        | A                   | В                 | ,       |                   |          |        |           |                      |                   |                  |              |              |          |            |              |              |                |                           | 67Cylinder | 243.665         | -20.175      | 72Cylinder | 215.817         | -23.642        |       | Ar.      | 0.47370 | 0.76266 |            |            | 0.40000  |
| Time Calcula                                         | Test=test8     |            |            |           | 7                   |                   |         |                   | psig     |        |           |                      |                   |                  | 3/ft3        |              |          |            |              |              |                |                           | 67         |                 |              | 72         |                 |                |       | Nitrogen | 0.54268 | 0.62536 | 0.03396    | 0.02113    | 0.52000  |
| Table C15 - Test #8 - 85% Discharge Time Calculation |                | CO2        | 1070.16    | 547.56    | 1.5057277           | 0.274             | 0.225   | 44.01             | 785.1₽   | 0.9708 | -0.00409  |                      |                   |                  | 13.4lb/ft3   |              |          |            |              |              |                |                           | time (s)   | 1.0038P (gauge) | T (F)        | time (s)   | 0.9027P (gauge) | T (F)          | End   |          | uz      | az      | )<br>V     | В          | y        |
| 15 - Test #8 -                                       | 85%            | Argon      | 707.07     | 271.44    | 1.1997766           | 0.291             | -0.004  | 39.95             | Pav      |        | SRK       |                      |                   |                  | Fill Density |              |          |            |              |              |                |                           | ,          | 1.0038          | 0.02869T (F) |            | 0.9027          | -0.05857[T (F) |       |          |         |         | 0.0484283A | 0.0221216B |          |
| Table C                                              | Outage         | Nitrogen A | 32.45      | 227.16    | 1.433644981         | 0.29              | 0.04    | 28.013            | L'A      | Z      | S         |                      |                   |                  | H            |              |          |            |              |              |                |                           |            | 2               | SRK          |            | 2               | SRK            |       | C02      | 0.82524 | 1.17913 | 0.18886    | 0.02606    | 0.08000  |
|                                                      | 0              |            |            |           | Ibmole              |                   |         | bmole             |          |        |           | 1545ft lbf/lbmmole R | 1bmmole           | J/ft3            |              |              |          |            |              |              |                | 3.320214ft3 (w/o diptube) |            |                 |              |            |                 |                |       | Argon    | 0.47370 | 0.75850 | 0.04519    | 0.01955    | 0.40000  |
|                                                      |                | Inergen    | 627.74psia | 271.3896R | 1.3411869ft3/lbmole | 0 28914           | 0.03632 | 34.30546lb/lbmole | 8 989    | 438.4R | 249.2psia | 1545ft II            | 18.322ft3/lbmmole | 1.8723701lbm/ft3 | 626.62254llb | 50.200214ft3 | 93.993lb | 16         | 439ft3       | 39.163909lb  | 2.93ff3        | 3.320214ft3               |            | 439.525R        | 258.37psia   |            | 436.058R        | 230.52psia     |       | Nitrogen | 0.54268 | 0.62065 | 0.03718    | 0.02349    | 0.52000  |
|                                                      | S-R-K Equation |            |            | 2         | J.A.                | 2,2               | 33      | WW                | End Time | 1      |           | _                    | >                 | 6                | Minit        | Total Vol    | Mtarget  | Num Of Cyl | Expanded Vol | Mass per Cyl | Cvi Vol (each) | Pipe Vol                  |            | Tpav (abs)      | Pav (abs)    |            | Tpav(abs)       | Pav(abs)       | Start |          | Zm      | 32      | A          | <u> </u>   | <u> </u> |

Table C16 - Test #8 - 95% Discharge Time Calculation

|                |                           |            | ١           | Table City Tool in |                 |             |             |          |           |         |            |
|----------------|---------------------------|------------|-------------|--------------------|-----------------|-------------|-------------|----------|-----------|---------|------------|
| S-R-K Equation |                           | ÷          | Outage      | 95%                |                 | Test=test8  | est8        |          |           |         |            |
| Oi State       | Inergen                   |            | Nitrogen    | Argon              | C02             |             |             | Nitrogen | Argo      | C02     |            |
| Ageiii.<br>De  | 627 74nsia                |            | 492.45      | 707.07             | 1070.16         |             | mz          | 0.54268  |           | 0.82524 |            |
| 1              | 271 3896R                 |            | 227.16      | 271.44             | 547.56          |             | az          | 0.64050  |           |         |            |
| ν.             | 1.3411869ft3/lbmole       | ole        | 1.433644981 | 1.1997766          | 1.5057277       |             | A           | 0.01299  |           |         | 0.01684338 |
| Žc             | 0.28914                   |            | 0.29        | 0.291              | 0.274           |             | В           | 0.00769  |           |         | 0.0072452  |
| 3 3            | 0.03632                   |            | 0.04        | '                  |                 |             | ٨           | 0.52000  | 0.40000   | 0.08000 |            |
| MW             | 34.30546lb/lbmole         | ole        | 28.013      | 39.95              | 44.01           |             |             |          |           |         |            |
|                |                           |            |             |                    |                 |             |             |          |           |         | :          |
| End Time       | 115.4 s                   |            |             | Pav                | 188.8psig       | psig        |             |          |           | X X     |            |
|                | 425.1R                    |            |             | Z                  | 0.9863          |             |             |          |           |         |            |
| اما            | 81.8psia                  |            |             | SRK                | -0.00403        |             |             |          |           |         |            |
| 2              | 1545ft lbf/lbmmole R      | mmole R    |             |                    |                 |             |             |          |           |         |            |
| >              | 54.966ft3/lbmmole         | mole       |             |                    |                 |             |             |          |           |         |            |
|                | 0.6241234lbm/ft3          |            |             |                    |                 |             |             |          |           |         |            |
| Minit          | 626.62254lb               |            |             | Fill Density       | 13.4            | 13.4llb/ft3 |             |          |           |         |            |
| Total Vol      | 50.200214ft3              |            |             |                    |                 |             |             |          |           |         |            |
| Mtarget        | 31.331lb                  |            |             |                    |                 |             |             |          |           |         |            |
| Num Of Cyl     | 16                        |            |             |                    |                 |             |             |          |           |         |            |
| Expanded Vol   | 439ft3                    |            |             |                    |                 |             |             |          |           |         |            |
| Mass per Cyl   | 39.163909lb               |            |             |                    |                 |             |             |          |           |         |            |
| Cyl Vol (each) | 2.93ft3                   |            |             |                    |                 |             |             |          |           |         |            |
| Pipe Vol       | 3.320214ft3 (w/o diptube) | o diptube) |             |                    |                 |             |             |          |           |         |            |
|                |                           |            |             |                    | time (s)        | 113         | 113Cylinder |          |           |         |            |
| Tpav (abs)     | 425.125R                  |            | 2           | 1.0404             | P (gauge)       |             | 71.634      |          |           |         |            |
| Pav (abs)      | 86.334psia                |            | SRK         | 0.05404T (F)       | T (F)           |             | -34.575     |          |           |         |            |
|                |                           |            |             |                    | time (s)        | 117         | Slinde      |          |           |         |            |
| Tpav(abs)      | 425.068R                  |            | Z           | 0.9488             | 0.9488P (gauge) |             | 64.02       |          |           |         |            |
| Pav(abs)       | 78.72psia                 |            | SRK         | -0.03753 T (F)     | T (F)           |             | -34.632     | 5        |           |         |            |
| Start          |                           |            |             |                    | End             |             |             |          |           |         |            |
|                | Nitrogen Argon            |            | CO2         |                    |                 | Nitrogen    | Argon       | C02      |           |         |            |
| mz.            | 0.54268                   | 0.47370    | 0.82524     |                    | zm              | 0.54268     |             |          |           |         |            |
| az             | 0.64045                   | 0.77594    | 1.20581     |                    | az              | 0.64053     |             |          |           |         |            |
| Ą              | 0.01370                   | 0.01651    | 0.06898     | 0.0177643A         | Α               | 0.01250     |             |          |           |         |            |
| e e            | 0.00812                   | 0.00675    | 0.00900     | 0.0076424B         | В               | 0.00740     | 0.00616     |          | 0.0069694 |         |            |
| 2              | 0.52000                   | 0.40000    | 0.08000     |                    | y               | 0.52000     | 0.40000     | 0.08000  |           |         |            |
|                |                           |            |             |                    |                 |             | 100         |          |           |         |            |

## APPENDIX D - TEST DATA

| Test # | CRADA         | Agent    | System     | Fire Scenario | Page  |
|--------|---------------|----------|------------|---------------|-------|
| 1      | Ansul         | Inergen  | 1 - 360°   | 1             | D-3   |
| 2      | Ansul         | Inergen  | 1 - 360°   | 5             | D-6   |
| 3      | Ansul         | Inergen  | 1 - 360°   | 5             | D-9   |
| 4      | Ansul         | Inergen  | 2 - 180°   | 5             | D-12  |
| 5      | Ansul         | Inergen  | 1 - 360°   | 2B            | D-15  |
| 6      | Ansul         | Inergen  | 1 - 360°   | 3             | D-18  |
| 7      | Ansul         | Inergen  | 1 - 360°   | 4             | D-21  |
| 8      | Ansul         | Inergen  | 1 - 360°   | 5             | D-24  |
| 9      | Ansul         | NAF-SIII | 4 - 360°   | 5             | D-27  |
| 10     | Ansul         | NAF-SIII | 4 - 360°   | 5             | D-30  |
| 11     | 3M            | CEA-308  | 4 - 360°   | 1             | D-33  |
| 12     | 3M            | CEA-308  | 4 - 360°   | 5             | D-36  |
| 13     | 3M            | CEA-308  | 4 - 360°   | 3             | D-39  |
| 14     | 3M            | CEA-308  | 4 - 360°   | 4             | D-42  |
| 15     | 3M            | CEA-308  | 4 - 360°   | 4             | D-45  |
| 16     | 3M            | CEA-308  | 4 - 360°   | 3             | D-48  |
| 17     | 3M            | CEA-308  | 4 - 360°   | 4             | D-51  |
| 18     | 3M            | CEA-308  | 4 - 360°   | 4             | D-54  |
| 19     | 3M            | CEA-308  | 4 - 360°   | 2A            | D-57  |
| 20     | 3M            | CEA-308  | 4 - 360°   | 2A            | D-60  |
| 21     | FMRC/Sea-Fire | FM-200   | 4 - 360°   | 1             | D-63  |
| 22     | FMRC/Sea-Fire | FM-200   | 4 - 360°   | 5             | D-66  |
| 23     | FMRC/Sea-Fire | FM-200   | 4 - 360°   | 3             | D-69  |
| 24     | FMRC/Sea-Fire | FM-200   | 4 - 360°   | 2A            | D-72  |
| 25     | FMRC/Sea-Fire | FM-200   | 4 - 360°   | 4             | D-75  |
| 26     | FMRC/Sea-Fire | FM-200   | 4 - 180°   | 1             | D-78  |
| 27     | Kidde-Fenwal  | FM-200   | 4 - 360°   | 5             | D-81  |
| 28     | Kidde-Fenwal  | FM-200   | 2 - 360°   | 5             | D-84  |
| 29     | Kidde-Fenwal  | FM-200   | 2 - 180° * | 5             | D-87  |
| 30     | Kidde-Fenwal  | FM-200   | 2 - 180° * | 1             | D-90  |
| 31     | Kidde-Fenwal  | FM-200   | 2 - 180°   | 5             | D-93  |
| 32     | Kidde-Fenwal  | FM-200   | 2 - 180°   | 1             | D-96  |
| 33     | Chemetron     | FM-200   | 4 - 360°   | 1 1           | D-99  |
| 34     | Chemetron     | FM-200   | 4 - 360°   | 5             | D-102 |
| 35     | Chemetron     | FM-200   | 4 - 360°   | 2A            | D-105 |
| 36     | Chemetron     | FM-200   | 4 - 360°   | 3             | D-108 |
| 37     | Chemetron     | FM-200   | 4 - 360°   | 4             | D-111 |
| 38     | Chemetron     | FM-200   | 2 - 360°   | 5             | D-114 |
| 39     | Chemetron     | FM-200   | 2 - 180°   | 5             | D-117 |

<sup>\*</sup> Back to back nozzles.





001--00100

EEE





-est #1









1000 □







12.5

EEEE

Fest #2



12.5

10.0

Time [min]

0.4.0 0.2.5 0.1.0 0.1.0

0-40 0-255 T 0 10 m

Fest #2

15.0

12.5

10.0

7.5



Test #2





1000 L

800



Test #2

8

8

200

Fire Temperature [C]







0-4.0 m 0-2.5 m











12.5

□0▶

EEEE

0000

400₽

15.0



Time [min]

0-4.0 0-2.5 7-1.0

Fest #4









\*- High FWD Port -- High FWD STBD -- High AFT Port -- High AFT STBD

1000 □

800

Fire Temperature [C]



Fest #4

8

೪

Time [sec]





10.0

5.0

Time [min]

000

Carbon Dioxide Concentration AFT [%]









D-26









D-28



12.5

0-4-0 0-250

0.4-0 0.2:5 m







20

Time [sec]

8

9

400

009

Fire Temperature [C]



Fest #6





0-4-0 0-2:5 m





D-35



D-36





EEE

15.0



Time [min]



-est #8



ř





D-42





0-4.0 m 0-2:5 m

12.5

10.0

Time [min]

0.4.0 0.1.5 0.1.0 0.1.0 0.1.0

Past #9

15.0

12.5







D-46











Fest #10





Fire Temperature [C]



Fest #10





10.0

7.5

Time [min]

DOD



Det #11





D-56





D-57

Test #12



0-4-0 0-2:5 m

12.5

EEE

0-2.5 0-1.0 0-1.0









Fire Temperature [C]



Test #12





Time [min]

000



oct #13



D-65



D-66





Test #13



**Fest #14** 



Time [min]

0-2.5 m

Carbon Dioxide Concentration AFT [%]



Fest #14



Test #14











Carbon Dioxide Concentration AFT [%]



est #15



D-75



D-76





D-78



0-4-0 0-2:5 0-1:0

10.0

0-4-0 0-2:5 m

Fest #16





o - Heptane Spray

800

900

Fire Temperature [C]

400

200



Test #16

30

೪

우





10.0

0-4-0 0-1-0 1-0-1-0 0.2.5 m

Pest #17

15.0

10.0







D-86





S 22

0.00.00

EEE

- 2.5 - 1.0

15.0

12.5

10.0







est #18

Fest #18









Time [min]

0-4.0 0-255 0-1.0

Carbon Dioxide Concentration AFT [%]

0-4-0 0-2:5 m

Carbon Monoxide Concentration AFT [%]



15.0

12.5

Time [min]





Flux STBD Low [ $kM/m_{\rm S}$ ]

25

20

Flux STBD High [ $KM/m_S$ ]



D-96







12.5

7.5

EEEE 4446 00000

×◇□▷

15.0

12.5

10.0

7.5







Test #20



D-100





Time [sec]

ଯ



o - Diesel Spray

1000口

800

900

Fire Temperature [C]









**10.0** 

5.0

2.5

0-4.0 0-2:5 0-1:0



Time [min]







D-106







0.0.0.0 EEEE 15.0



0-4.0 0-2:5 0-1:0

12.5

**Test #22** 



est #22





800

Fire Temperature [C]



**Test #22** 



D-113



0-4-0 0-2:5 0-1:0 0-4-0 0-2:5 0-1:0

Fest #23

15.0







D-116







Fire Temperature [C]



D-118



0-4.0 m 0-2.5 m 0-1.0 m

10.0

0-4-0 0-2:5 0-1:0

10.0



est #24







Test

Time [sec]

20

9

400

Fire Temperature [C]







Carbon Monoxide Concentration AFT [%]

0-4.0 0-2.5 7-1.0

Carbon Dioxide Concentration AFT [%]

est #25

Time [min]











D-126



Test #



0.4.0 0.2.5 0.0.1

Fest #26





8

Time [sec]

\*-Low FWD Port >-Low FWD STBD -Low AFT Port -Low AFT STBD

Test #26





Fact #27







D-136









0-4.0 0-2:5 ∇-1.0

0-4.0 m 0-2.5 m

**Test #28** 







est #28

Time [sec]

8

**4**00

Fire Temperature [C]





est #29



D-145

25 디

20

Elnx STBD Fom  $[kM/m_{S}]$ 

• - Total • - Radiant

22

8

• - Total o - Radiant

Flux AFT High [kW/m<sup>2</sup>]

15

 ${\rm Flux}~{\rm STBD}~{\rm High}~{\rm [kW/m^2]}$ 

20

25

9



D-146









Ordino

601--

15.0

12.5



0-4-0 0-25 0-1-0

0-4-0 0-2:5 m

Test #30

Fest #30









0-4-0 0-2:5 0-1:0

Time [min]

0-4-0 0-2:50 0-1:0

est #31

Time [min]





 $EInx SIBD Fow [kM/m_5]$ 

20

Elnx STBD High  $[kM/m_5]$ 



D-156







15.0

. . . .



0-4.0 0-2.5 0-1.0

0-4-0 ∇-10-7



Fest #32







Test #32

200

800

Fire Temperature [C]





0-4-0 0-2:57

7.5 Time [min]

000

Fest #33

Time [min]







D-166







12.5

000--

15.0

12.5



0-4-0 0-2:57

12.5

0-4.0 0-2.5 7-1.0

D-170





800

Fire Temperature [C]



**Test #3**<sup>2</sup>

Time [sec]

8









est #35













D-176







D-178



15.0

Time [min]

0-4-0 0-2:57



12.5



**Test #36** 







D-182







0-25 0-25 0-10 0-10 0-10

Time [min]

5.0

0-4:0 m









D-186







0-4.0 0-2:5 0-1.0



-est #38



est #38





D-192





0-4.0 0-2.5 0-1.0

Fest #39

10.0

Time [min]







D-196





## APPENDIX E U.S. COAST GUARD'S INTERPRETATION OF THE IMO REQUIREMENTS



Lifesaving and Fire Safety Standards Division United States Coast Guard Headquarters 2100 Second Street, S.W. Washington, DC 20593-0001 Staff Symbol: G-MSE-4 Phone: (202) 267-1444 FAX: (202) 267-4816

16714/162.162Ansul

Mr. John P Goudreau
Director, Marine/Government Division
Ansul Incorporated
One Stanton Street
Marinette, Wisconson 54143-2542

JUN - 4 1998

**RESPONSE TO ANSUL LETTER OF 27 APRIL 98** 

Dear Mr. Goudreau:

This letter is in response to your inquiry of April 27, 1998 regarding design requirements and fire tests for inert gas halon alternative fire extinguishing systems. Specifically, your letter asked for our interpretation of certain requirements of the International Maritime Organization's (IMO) Maritime Safety Committee Circular number 776 (MSC/Circ. 776).

We require all gaseous halon alternative fire extinguishing systems to be tested in accordance with IMO MSC/Circ. 776. One of the provisions of the circular is that inert gas fire extinguishing systems must comply with the requirement of Paragraph 4 of the circular's Guidelines. This requires the system to be arranged such that 85% of the agent design concentration will be achieved in 120 seconds or less. This 120 second time limit corresponds to the time when 85% of the required quantity of agent must be expelled from the nozzles in the protected space. Additionally, the required agent quantity must be determined from the concentration described in the manufacturer's approved marine system design manual. We infer that extinguishment of large fires is expected to occur soon after 85% of the required agent quantity is discharged and that all fires will be extinguished as soon as an extinguishing concentration of the agent is thoroughly mixed in the space. Paragraph 4 of the IMO Guidelines is a clear system design requirement for systems being installed. There is little room for interpretation of Paragraph 4.

For the fire tests described in the Appendix of MSC/Circ.776, we require compliance with paragraph 4.1 of the appendix which requires all of the test fires to be extinguished within 30 seconds of the end of the agent discharge. We interpret the end of agent discharge to be the time when there is no substantial flow from the nozzles. If flow is uneven, it is the time when the first nozzle stops discharging. For Test Number 1 of Table 3 we require complete extinguishment of all of the tell-tale fires within 30 seconds after 100% of the agent used during the test stops substantially discharging from the nozzles. While this allows an unspecified time from the beginning of agent discharge until complete fire extinguishment, the scenario may be the most challenging case for agent mixing because this scenario may have the least nozzle turbulence.

## **RESPONSE TO ANSUL LETTER OF 27 APRIL 98**

We believe that our requirements and interpretations reflect the intent of the IMO committee that developed the halon alternative gaseous agent design guidelines and test protocols. In fact, we considered the deliberation that occurred at IMO when we developed our interpretations. We reserve the right to reject test results or impose additional requirements if we believe that test fires are not being extinguished by the principle extinguishing mechanism of the inert agent. This could include cases where fires are being extinguished by their own oxygen depletion, separation of the flame from the fuel by agent velocity or by some other unanticipated mechanism.

If you have additional questions please contact Mr. Matthew Gustafson at 202-267-0170.

VV //

Chief, Lifesaving and

Fire Safety Standards

By direction of the Commandant

cc: USCG R&D Center - Marine Fire & Safety