Algorithme CYK & Lemme de la pompe

Corrigé partiel de la feuille de travaux dirigés nº10

D'où : $0102011 \notin L(G)$.

Remarque : Ce résultat n'est pas surprenant; la grammaire engendre $L(G) = \{w2w^{-1}|w\in(0+1)^*\}$. Ainsi, les variables désignent :

- S les palindromes impairs sur $\{0,1\}$ avec 2 comme séparateur de milieu. - Y les palindromes impairs sur $\{0,1\}$ avec 2 comme séparateur de milieu, suivis d'un 1. - V les palindromes impairs sur $\{0,1\}$ avec 2 comme séparateur de milieu, suivis d'un 0. - Z 0 (comme zéro).

- U 1 (comme un).

On peut vérifier ainsi les résultats du tableau de l'algorithme CYK.

D'où : $01211 \in L(G)$.

Remarque : La grammaire engendre le complémentaire du langage de l'exercice précédent.

Ainsi, les variables désignent :

- S les mots non palindromes impairs sur $\{0,1\}$ avec 2 comme séparateur de milieu.
- Y les mots de S, suivis d'un 1. V les mots de S, suivis d'un 0.
- W mots quelconges, qui ne se terminent pas par un 0.
- X mots quelconqes, qui ne se terminent pas par un 1.
- L mots quelconges, non vides.
- Z 0 (comme zéro).
- U 1 (comme un).
- D 2 (comme deux).

On peut vérifier ainsi les résultats du tableau de l'algorithme CYK.

a) Supposons $L_1 = \{a^i b^j c^k \mid i < j < k\}$ algébrique, donc il existe n du lemme. Soit $z = a^n b^{n+1} c^{n+2}$. Par le lemme z s'écrit sous la forme uvwxy. Soit p (resp. q et r) le nombre de a (resp. b et c) dans vx.

Fait : p = 0 ou r = 0 (à cause de la longueur de vwx).

On distingue les quatre cas suivants :

- $\begin{array}{l} \ q \neq 0, \ p = 0 : |uv^0wx^0y|_a = n \ \text{et} \ |uv^0wx^0y|_b \leq n \ \text{donc} \ uv^0wx^0y \not\in L_1. \\ \ q \neq 0, \ p \neq 0 : r = 0 \ \text{et} \ \text{donc} \ |uv^2wx^2y|_c = n + 2 \ \text{et} \ |uv^2wx^2y|_b \geq n + 2 \ \text{donc} \ uv^2wx^2y \not\in L_1. \\ \ q = 0, \ p \neq 0 : |uv^2wx^2y|_a \geq n + 1 \ \text{et} \ |uv^2wx^2y|_b = n + 1 \ \text{donc} \ uv^2wx^2y \not\in L_1. \\ \ q = 0, \ p = 0 : r \neq 0 \ (\text{sinon} \ vx = \varepsilon) \ \text{donc} \ |uv^0wx^0y|_c \leq n + 1 \ \text{et} \ |uv^0wx^0y|_b = n + 1 \ \text{donc} \end{array}$ $uv^0wx^0y \not\in L_1.$

Donc L_1 n'est pas algébrique.

Autre preuve. Supposons $L_1 = \{a^i b^j c^k \mid i < j < k\}$ algébrique, donc il existe n du lemme de l'étoile. Soit $z = a^n b^{n+1} c^{n+2}$. Par le lemme z s'écrit sous la forme uvwxy. Soit p (resp. q et r) le nombre de a (resp. b et c) dans vx. $|uv^iwx^iy|_a = n + (i-1)p$, $|uv^iwx^iy|_b = n + 1 + (i-1)q$ et $|uv^iwx^iy|_c = n + 2 + (i-1)r$. Pour i=0, on a $p\geq q\geq r$ et, pour $i=2,\,p\leq q\leq r$. On a donc p=q=r. Mais on doit avoir p=0 ou q=0, sinon |vwx| > n + 3. Donc $p = q = r = 0 \Rightarrow |vx| = 0$, une contradiction.

b) Supposons $L_2 = \{a^i b^j \mid j = i^2\}$ algébrique, donc il existe n du lemme de l'étoile. Soit $z = a^n b^{n^2}$. Par le lemme z s'écrit sous la forme uvwxy. Soit k (resp. l) le nombre de a (resp. b) dans vx. Comme on doit avoir $uv^iwx^iy \in L_2$, on doit avoir $\forall i \geq 0: ((n-k)+ik)^2=(n^2-l)+il$, ce qui implique $\forall i \geq 0:$

 $2kn+(i-1)k^2=l$ ce qui est impossible. Donc ${\cal L}_2$ n'est pas algébrique.

c) Supposons $L_3 = \{a^k b^k c^l | k \le l \le 2k\}$ algébrique, donc il existe n du lemme de l'étoile. Soit $z = a^n b^n c^n$. Par le lemme z s'écrit sous la forme uvwxy. Soit p (resp. q et r) le nombre de a (resp. b et c) dans vx.

Fait : p = 0 ou r = 0 (à cause de la longueur de vwx).

- $\begin{array}{lll} & -r=0:|uv^2wx^2y|_a>n \text{ ou }|uv^2wx^2y|_b>n \text{ alors que }|uv^2wx^2y|_c=n \text{ donc }uv^2wx^2y\not\in L_3.\\ & -r\neq 0: \text{donc }p=0 \text{ et ainsi }|uv^0wx^0y|_a=n \text{ et }|uv^0wx^0y|_c< n \text{ donc }uv^0wx^0y\not\in L_3. \end{array}$

Donc L_1 n'est pas algébrique.

- **d)** $L_5 = \bar{L_1} \cap a^{\star}b^{\star}c^{\star}$. On observe que $L_5 = \{a^ib^jc^k \mid i \geq j \text{ ou } j \geq k\} = \{a^ib^j \mid i \geq j\}c^{\star} \cup a^{\star}\{b^jc^k \mid j \geq k\}$ ce qui prouve (c.f. propriétés de clôture) que ce langage **est algébrique** (l'intersection avec $a^{\star}b^{\star}c^{\star}$ ne sert que pour le tri des lettres).
- e) Supposons $L_6 = \{ww^{-1}w \mid w \in (a+b)^*\}$ algébrique. Soit R le langage rationnel $a^*b^*a^*b^*$. Soit $L_6' =$ $L_6 \cap R$, i.e. le langage $\{a^ib^{2j}a^{2i}b^j \mid i \geq 0, j \geq 0\}$. On montre donc que L_6' n'est pas algébrique. Supposons L_6' algébrique, donc il existe n du lemme de l'étoile. Soit $z=a^nb^{2n}a^{2n}b^n$. Par le lemme, z=uvwxy ou z = ABCD avec $A = a^n B = b^{2n} C = a^{2n} D = b^n$.
 - vx contient un a: comme $|vwx| \le n$, vwx ne peut pas intersecter à la fois A et C. Ainsi $uv^0wx^0y \notin L_6'$ car on supprime au moins un a du coté A ou du coté C.
 - vx contient un b: comme $|vwx| \le n$, vwx ne peut pas intersecter à la fois B et D. Ainsi $uv^0wx^0y \notin L_6'$ car on supprime au moins un b du coté B ou du coté D.

Donc L'_6 n'est pas algébrique et L_6 n'est pas algébrique.

f) $L_7 = \{w \in (a+b+c)^* : |w|_a = |w|_b = |w|_c\}$. Soit $R = a^*b^*c^*$ rationnel. $L_7 \cap R = \{a^nb^nc^n : n \ge 0\}$ est non algébrique. Donc L_7 n'est pas algébrique.