Problem Set 7

Fulin Guo

1

a

```
In [176]:
```

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split,LeaveOneOut, KFold
from sklearn.metrics import classification_report
from sklearn.linear_model import LogisticRegression
```

In [177]:

wines=pd.read_csv('/Users/fulinguo/Desktop/persp-model-econ_W19/ProblemSets/PS7/
data/strongdrink.txt')

In [178]:

In [179]:

```
y_pred=LogReg.predict(X_test)
print(classification_report(y_test, y_pred))
```

support	f1-score	recall	precision	
13	0.93	1.00	0.87	1
21	0.95	0.90	1.00	2
10	1.00	1.00	1.00	3
44	0.95	0.95	0.95	micro avg
44	0.96	0.97	0.96	macro avg
44	0.96	0.95	0.96	weighted avg

The error rate for category 1 is 0.13, for category 2 is 0, for category 3 is also 0

The model predicts category 3 best since its precision, recall, and f1-score are the highest among the three categories.

In [180]:

```
print('The number of observations with cultivar =1:',np.sum(wines['cultivar']==1
))
print('The number of observations with cultivar =2:',np.sum(wines['cultivar']==2
))
print('The number of observations with cultivar =3:',np.sum(wines['cultivar']==3
))
print('The number of observations with cultivar =1 in the training set:',sum(y_t rain==1))
print('The number of observations with cultivar =2 in the training set:',sum(y_t rain==2))
print('The number of observations with cultivar =3 in the training set:',sum(y_t rain==3))
```

```
The number of observations with cultivar =1: 59
The number of observations with cultivar =2: 71
The number of observations with cultivar =3: 46
The number of observations with cultivar =1 in the training set: 46
The number of observations with cultivar =2 in the training set: 50
The number of observations with cultivar =3 in the training set: 36
```

Therefore, the most accurately predicted category is not the one with the most observations since category 3 has the least number of observations.

```
In [181]:
```

```
MSE=np.sum((y_test!=y_pred)**2)/len(y_pred)
print('The MSE from the test set =',MSE)
```

The MSE from the test set = 0.04545454545454545454

b

In [182]:

```
Xv=X.values
yv=y.values
N_loo=len(Xv)
loo=LeaveOneOut()
loo.get_n_splits(Xv)
MSE_vec=np.zeros(N_loo)
```

In [183]:

```
yp=[]
yt=[]
for train_index, test_index in loo.split(Xv):
    X_train, X_test=Xv[train_index], Xv[test_index]
    y_train, y_test=yv[train_index], yv[test_index]
    LogReg=LogisticRegression(multi_class='multinomial',solver='newton-cg')
    LogReg.fit(X_train, y_train)
    y_pred=LogReg.predict(X_test)
    yp.append(y_pred)
    yt.append(y_test)
    MSE_vec[test_index]=(y_test!=y_pred)**2
```

In [184]:

```
print(classification_report(yt, yp))
```

	precision	recall	f1-score	support
1	0.90	0.93	0.92	59
2	0.91	0.90	0.91	71
3	0.96	0.93	0.95	46
micro avg	0.92	0.92	0.92	176
macro avg	0.92	0.92	0.92	176
weighted avg	0.92	0.92	0.92	176

The error rate for category 1 is 0.10, for category 2 is 0.09, for category 3 is 0.04

We can note that category 3 has the least error rate, which is the same as part (a). Another finding is that roughly speaking, the error rates are larger in part (b) than that in part (a). In particular, the error rates for category 2 and 3 are larger than their corresponding error rates in part (a). The error rate for category 1 is smaller than that in part(a).

```
In [185]:
```

```
MSE_loo = MSE_vec.mean()
```

```
In [186]:
```

```
print('The LOOCV estimate for the test MSE is:', MSE_loo)
```

The LOOCV estimate for the test MSE is: 0.07954545454545454

C

In [187]:

```
k=4
kf = KFold(n splits=4, shuffle=True, random state=10)
kf.get n splits(Xv)
MSE vec kf = np.zeros(k)
k ind = int(0)
ypk=[]
ytk=[]
for train index, test index in kf.split(Xv):
    X train, X test = Xv[train index], Xv[test index]
    y train, y test = yv[train index], yv[test index]
    LogReg = LogisticRegression(multi class='multinomial', solver='newton-cg')
    LogReg.fit(X_train, y_train)
    y pred = LogReg.predict(X test)
    MSE vec kf[k ind] = ((y test != y pred) ** 2).mean()
    k ind += 1
    ypk.extend(y pred)
    ytk.extend(y test)
print(classification report(ytk, ypk))
```

		precision	recall	f1-score	support
	1	0.87	0.93	0.90	59
	2	0.91	0.87	0.89	71
	3	0.96	0.93	0.95	46
micro av	vg	0.91	0.91	0.91	176
macro av	vg	0.91	0.91	0.91	176
weighted av	vg	0.91	0.91	0.91	176

The error rate for category 1 is 0.13, for category 2 is 0.09, for category 3 is 0.04

We can note that category 3 has the least error rate, which is the same as part (a) and (b). Another finding is that roughly speaking, the error rates in part (c) are larger than that in part (a), and are slightly larger than that in part (b). In particular, the error rates for the three categories in part (c) are larger than their corresponding error rates in part (a) except that category 1's error rates are the same in these two parts. The error rate for category 1 is larger than its error rate in part (b), and the error rates for category 2 and 3 in part (c) are (roughly) the same as that in part (b).

```
In [188]:
```

```
MSE_kf = MSE_vec_kf.mean()
print('The k-fold estimate for the test MSE is:', MSE_kf)
```

The k-fold estimate for the test MSE is: 0.09090909090909091

In [189]:

In [190]:

```
plt.scatter(data2['age'],data2['cool'])
plt.xlabel('age')
plt.ylabel('coolness index')
plt.title('Individuals coolness and age')
```

Out[190]:

Text(0.5, 1.0, 'Individuals coolness and age')


```
In [191]:
data2['age11']=((data2['age']>=11) & (data2['age']<22))
data2['age22']=((data2['age']>=22) & (data2['age']<40))</pre>
data2['age40']=((data2['age']>=40) & (data2['age']<59))</pre>
data2['age59']=((data2['age']>=59) & (data2['age']<77))</pre>
data2['age77']=((data2['age']>=77) & (data2['age']<=95))</pre>
data2['age11'][data2['age11']]=1
data2['age22'][data2['age22']]=1
data2['age40'][data2['age40']]=1
data2['age59'][data2['age59']]=1
data2['age77'][data2['age77']]=1
/Users/fulinguo/anaconda3/lib/python3.6/site-packages/ipykernel laun
cher.py:6: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/panda
s-docs/stable/indexing.html#indexing-view-versus-copy
/Users/fulinguo/anaconda3/lib/python3.6/site-packages/ipykernel laun
cher.py:7: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/panda
s-docs/stable/indexing.html#indexing-view-versus-copy
  import sys
/Users/fulinguo/anaconda3/lib/python3.6/site-packages/ipykernel laun
cher.py:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: http://pandas.pydata.org/panda

/Users/fulinguo/anaconda3/lib/python3.6/site-packages/ipykernel laun

See the caveats in the documentation: http://pandas.pydata.org/panda

/Users/fulinguo/anaconda3/lib/python3.6/site-packages/ipykernel laun

See the caveats in the documentation: http://pandas.pydata.org/panda

A value is trying to be set on a copy of a slice from a DataFrame

A value is trying to be set on a copy of a slice from a DataFrame

s-docs/stable/indexing.html#indexing-view-versus-copy

s-docs/stable/indexing.html#indexing-view-versus-copy

s-docs/stable/indexing.html#indexing-view-versus-copy
Remove the CWD from sys.path while we load stuff.

cher.py:9: SettingWithCopyWarning:

if name == ' main ':

cher.py:10: SettingWithCopyWarning:

```
In [192]:
```

```
import statsmodels.api as sm
reg1 = sm.OLS(endog=data2['cool'], exog=data2[['age11','age22','age40','age59','
age77']])
results = reg1.fit()
print(results.summary())
```

OLS Regression Results

:			Adj. F-sta Prob	<pre>aared: R-squared: atistic: (F-statistic): Likelihood:</pre>	
:	d, 27 Feb	2019 05:23 956	F-sta Prob Log-1	atistic: (F-statistic):	
:	d, 27 Feb	2019 05:23 956	F-sta Prob Log-1	atistic: (F-statistic):	
:	d, 27 Feb	2019 95:23	Prob Log-l	(F-statistic):	
:	d, 27 Feb	2019 95:23	Prob Log-l	(F-statistic):	
:		95 : 23	Log-l	•	
	01:0	956	J	Likelihood:	
	01:0	956	J	Likelihood:	
			AIC:		
			AIC:		
		951			
		931	BIC:		
			DIC.		
		4			
	nonro	bust			
======	=======	=====	=====	=======================================	======
	1			5 5 1 1 1	
coei	sta err		t	P> t	[0.025
.1025	0.562	3	5.746	0.000	18.999
.4758	0.431	8	0.006	0.000	33.630
.6351	0.424	8	8.814	0.000	36.804
2254	0 405	7	2 560	0.000	24 272
.2254	0.485	/	2.560	0.000	34.273
2964	0 936	2	9 175	0 000	25.460
•2504	0.550		J•175	0.000	23.400
:=====	=======	=====	======	==========	======
	0.0	100	Daniel -	in Water	
	80	.102	Durb	III-Watson:	
	0	000	Tarq	16_Bera (JB).	
	O	.000	Jarq	de-bela (Ub):	
	0	714	Prob	(JB):	
	· ·	• , _ 1	1100	(-2).	
	3	.719	Cond	. No.	
	_	-			
,	coef .1025 .4758 .6351 .2254	coef std err 0.1025	coef std err 0.1025 0.562 3 1.4758 0.431 8 1.6351 0.424 8 1.2254 0.485 7 1.2964 0.936 2 80.102 0.000	coef std err t .1025	coef std err t P> t 1.1025

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [193]:

```
pre_cool=results.predict(exog=data2[['age11','age22','age40','age59','age77']])
plt.scatter(data2['age'],data2['cool'],label='scatter')
plt.plot(data2['age'],pre_cool,'orange', lw=5,label='step function')
plt.xlabel('age')
plt.ylabel('coolness index')
plt.title('Individuals coolness and age')
plt.legend()
```

Out[193]:

<matplotlib.legend.Legend at 0x1c1a7aff60>

In [194]:

```
print('The estimated step function values for each bin:')
print(results.params)
```

The estimated step function values for each bin:

```
age11 20.102457
age22 34.475788
age40 37.635105
age59 35.225400
age77 27.296378
dtype: float64
```

In [195]:

```
pre=results.predict(exog=[0, 0, 0, 1, 0])[0]
print('The predicted coolness of a 73-year old from the stepwise function is:',p
re)
```

The predicted coolness of a 73-year old from the stepwise function i s: 35.22540004024275

In [196]:

from scipy.interpolate import LSQUnivariateSpline

In [197]:

```
t=np.array([22,40,59,77])
age0=data2['age'][0]
incre age=[age0]
incre_cool=[]
a=0
for i in range(1,len(data2['age'])):
    if data2['age'][i]!=age0:
        incre_age.append(data2['age'][i])
        incre cool.append(sum(data2['cool'][a:i])/(i-a))
        a=i
    age0=data2['age'][i]
    if i==len(data2['age'])-1:
        incre cool.append(sum(data2['cool'][a:i+1])/(i-a+1))
incre_age=np.array(incre_age)
incre_cool=np.array(incre_cool)
ans=LSQUnivariateSpline(incre age, incre cool, t,k=1)
```

In [198]:

```
plt.scatter(data2['age'],data2['cool'],label='scatter')
plt.plot(data2['age'],pre_cool,'orange', lw=5, label='step function')
plt.plot(incre_age, ans(incre_age), 'r-', lw=5,label='continuous linear spline (
k=1)')
plt.xlabel('age')
plt.ylabel('coolness index')
plt.title('Individuals coolness and age')
plt.legend()
```

Out[198]:

<matplotlib.legend.Legend at 0x1c1a672198>

In [199]:

```
pre2=ans(73)
print('The predicted coolness of a 73-year old from the stepwise function is:',p
re2)
```

The predicted coolness of a 73-year old from the stepwise function i s: 32.86784862349653

d

In [200]:

```
ans2=LSQUnivariateSpline(incre_age, incre_cool, t,k=3)
plt.scatter(data2['age'],data2['cool'],label='scatter')
plt.plot(data2['age'],pre_cool,'orange', lw=5, label='step function')
plt.plot(incre_age, ans(incre_age), 'r-', lw=5,label='continuous linear spline (k=1)')
plt.plot(incre_age, ans2(incre_age), 'b-', lw=5,label='continuous cubic spline (k=3)')
plt.xlabel('age')
plt.xlabel('age')
plt.ylabel('coolness index')
plt.title('Individuals coolness and age')
plt.legend()
```

Out[200]:

<matplotlib.legend.Legend at 0x1c1a7560f0>

In [201]:

```
pre3=ans2(73)
print('The predicted coolness of a 73-year old from the stepwise function is:',p
re3)
```

The predicted coolness of a 73-year old from the stepwise function i s: 32.642301066279764

In []: