The amount of arithmetic required in the analysis of a general $n \times n$ system may be prohibitive to do by hand even if n is no greater than 3 or 4. Consequently, suitable computer software should be used routinely in most cases. This does not overcome all difficulties by any means, but it does make many problems much more tractable. Finally, for a set of equations arising from modeling a physical system, it is likely that some of the elements in the coefficient matrix \mathbf{A} result from measurements of some physical quantity. The inevitable uncertainties in such measurements lead to uncertainties in the values of the eigenvalues of \mathbf{A} . For example, in such a case it may not be clear whether two eigenvalues are actually equal or are merely close together.

Problems

In each of Problems 1 through 3:

- **a.** Draw a direction field and sketch a few trajectories.
 - **G** b. Describe how the solutions behave as $t \to \infty$.
- **c.** Find the general solution of the system of equations.

$$\mathbf{1.} \quad \mathbf{x}' = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \mathbf{x}$$

$$2. \quad \mathbf{x}' = \begin{pmatrix} 4 & -2 \\ 8 & -4 \end{pmatrix} \mathbf{x}$$

3.
$$\mathbf{x}' = \begin{pmatrix} -\frac{3}{2} & 1\\ -\frac{1}{4} & -\frac{1}{2} \end{pmatrix} \mathbf{x}$$

In each of Problems 4 and 5, find the general solution of the given system of equations.

4.
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \mathbf{x}$$

5.
$$\mathbf{x}' = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \mathbf{x}$$

In each of Problems 6 through 8:

- **a.** Find the solution of the given initial value problem.
- **b.** Sketch the trajectory of the solution in the x_1x_2 -plane, and also sketch the graph of x_1 versus t.

6.
$$\mathbf{x}' = \begin{pmatrix} 1 & -4 \\ 4 & -7 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

7.
$$\mathbf{x}' = \begin{pmatrix} -\frac{5}{2} & \frac{3}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

8.
$$\mathbf{x}' = \begin{pmatrix} 3 & 9 \\ -1 & -3 \end{pmatrix} \mathbf{x}$$
, $\mathbf{x}(0) = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$

In each of Problems 9 and 10:

- **a.** Find the solution of the given initial value problem.
- **G** b. Draw the corresponding trajectory in $x_1x_2x_3$ -space.
- **c.** Sketch the graph of x_1 versus t.

9.
$$\mathbf{x}' = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 3 & 6 & 2 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} -1 \\ 2 \\ -30 \end{pmatrix}$$

10.
$$\mathbf{x}' = \begin{pmatrix} -\frac{5}{2} & 1 & 1\\ 1 & -\frac{5}{2} & 1\\ 1 & 1 & -\frac{5}{2} \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 2\\ 3\\ -1 \end{pmatrix}$$

In each of Problems 11 and 12, solve the given system of equations by the method of Problem 13 of Section 7.5. Assume that t > 0.

$$\mathbf{11.} \quad t\mathbf{x}' = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \mathbf{x}$$

$$12. \quad t\mathbf{x}' = \begin{pmatrix} 1 & -4 \\ 4 & -7 \end{pmatrix} \mathbf{x}$$

13. Show that all solutions of the system

$$\mathbf{x}' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mathbf{x}$$

approach zero as $t \to \infty$ if and only if a + d < 0 and ad - bc > 0. Compare this result with that of Problem 28 in Section 3.4.

14. Consider again the electric circuit in Problem 21 of Section 7.6. This circuit is described by the system of differential equations

$$\frac{d}{dt} \begin{pmatrix} I \\ V \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{L} \\ -\frac{1}{C} & -\frac{1}{RC} \end{pmatrix} \begin{pmatrix} I \\ V \end{pmatrix}.$$

- **a.** Show that the eigenvalues are real and equal if $L = 4R^2C$.
- **b.** Suppose that $R = 1 \Omega$, C = 1 F, and L = 4 H. Suppose also that I(0) = 1 A and V(0) = 2 V. Find I(t) and V(t).
- **15.** Consider again the system

$$\mathbf{x}' = \mathbf{A}\mathbf{x} = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \mathbf{x} \tag{36}$$

that we discussed in Example 2. We found there that **A** has a double eigenvalue $r_1 = r_2 = 2$ with a single independent eigenvector $\boldsymbol{\xi}^{(1)} = (1,-1)^T$, or any nonzero multiple thereof. Thus one solution of the system (36) is $\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}^{(1)}e^{2t}$ and a second independent solution has the form

$$\mathbf{x}^{(2)}(t) = \boldsymbol{\xi} t e^{2t} + \boldsymbol{\eta} e^{2t},$$

where ξ and η satisfy

$$(\mathbf{A} - 2\mathbf{I})\boldsymbol{\xi} = \mathbf{0}, \quad (\mathbf{A} - 2\mathbf{I})\boldsymbol{\eta} = \boldsymbol{\xi}. \tag{37}$$

In the text we solved the first equation for ξ and then the second equation for η . Here, we ask you to proceed in the reverse order.