PSALTer results panel

$$S = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - \frac{1}{2} \alpha_{0} (\mathcal{A}_{\alpha\chi\beta} \ \mathcal{A}^{\alpha\beta\chi} + \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta} + 2 \ f^{\alpha\beta} \ \partial_{\beta}\mathcal{A}^{\chi}_{\alpha\chi} - 2 \ \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2 \ f^{\alpha\beta} \ \partial_{\chi}\mathcal{A}^{\chi}_{\alpha\beta} + 2 \ f^{\alpha}_{\alpha} \ \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) - \alpha_{1} (\partial_{\chi}\mathcal{A}^{\delta}_{\beta} \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\alpha} + (\partial_{\alpha}\mathcal{A}^{\alpha\beta\chi} - 2 \ \partial^{\chi}\mathcal{A}^{\alpha\beta}_{\alpha}) \partial_{\delta}\mathcal{A}^{\delta}_{\beta\chi}) + 4 \alpha_{1} \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} \partial_{\delta}\mathcal{A}^{\chi\delta}_{\chi} - \alpha_{2} (\partial_{\chi}\mathcal{A}^{\delta}_{\beta\chi} \partial^{\delta}\mathcal{A}^{\beta\chi}_{\beta} + (\partial_{\beta}\mathcal{A}^{\beta\chi\delta} - 2 \ \partial^{\delta}\mathcal{A}^{\beta\chi}_{\beta\chi}))[t, x, y, z] dz dy dx dt$$

Wave operator

Saturated propagator

	$0.^+\sigma^{\parallel}$	O.+ _τ ∥	$0.^+ \tau^{\perp}$	$0^{-}\sigma^{\parallel}$										
^{0,+} σ †	0	$-\frac{i\sqrt{2}}{\alpha.k}$	0	0										
o. ⁺ τ [∥] †	$\frac{i \sqrt{2}}{\alpha \cdot k}$	$-\frac{4(\alpha_1+\alpha_2+3\alpha_3)+\frac{\alpha_3}{k}}{\alpha_1^2}$	<u>o</u> 0	0										
0. ⁺ τ [⊥] †	0	0	0	0										
⁰⁻ σ †	0	0	0	$\frac{2}{\alpha_{\cdot}}$	$^{1^{+}}\sigma^{\parallel}{}_{lphaeta}$	$\overset{1,^{+}}{\cdot}\sigma^{^{\perp}}{}_{\alpha\beta}$	$^{1.^{+}}\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}{}_{lpha}$	$\frac{1}{2}\sigma^{\perp}_{\alpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	$\frac{1}{2}\tau^{\perp}_{\alpha}$			
				$^{1.^{+}}\sigma^{\parallel}$ † lphaeta	0	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$\frac{2i\sqrt{2}k}{\alpha + \alpha k^2}$	0	0	0	0			
						$-\frac{2(\alpha_{0}+2(\alpha_{1}-\alpha_{2})k^{2})}{\alpha_{0}^{2}(1+k^{2})^{2}}$		0	0	0	0			
				$1.^+ \tau^{\parallel} + ^{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{\alpha_0+\alpha_0k^2}$	$\frac{2 i k (\alpha_{0} + 2 (\alpha_{1} - \alpha_{1}) k^{2})}{\alpha_{0}^{2} (1 + k^{2})^{2}}$	$-\frac{2 k^2 (\alpha .+2 (\alpha\alpha .) k^2)}{0 \frac{\alpha .^2 (1+k^2)^2}{0}}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel}\uparrow^{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0k^2}$	0	$-\frac{4ik}{\alpha + 2} \frac{\alpha \cdot k^2}{0}$			
				$\frac{1}{2}\sigma^{\perp} + \alpha$	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0k^2}$	$-\frac{2(\alpha_{.}+4\alpha_{.}k^{2})}{(\alpha_{.}+2\alpha_{.}k^{2})^{2}}$	0	$-\frac{2i \sqrt{2} k(\alpha.+4 \alpha. k^2)}{(\alpha.+2 \alpha. k^2)^2}$			
				$1^{-}\tau^{\parallel} +^{\alpha}$	0	0	0	0	0	0	0			
				$1^{-}\tau^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{4 i k}{\alpha_0 + 2 \alpha_0 k^2}$	$\frac{2 i \sqrt{2} k (\alpha_{0} + 4 \alpha_{1} k^{2})}{(\alpha_{0} + 2 \alpha_{0} k^{2})^{2}}$	0	$-\frac{4 k^2 (\alpha + 4 \alpha k^2)}{(\alpha + 2 \alpha k^2)^2}$	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}{}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
											$2.^{+}\sigma^{\parallel}$ † $^{\alpha\beta}$		$\frac{2i \sqrt{2}}{\alpha \cdot k}$	0
											$2^+_{\cdot} \tau^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{a.k\atop 0}$	$\frac{2(\alpha2(\alpha.+\alpha.)k^{2})}{\alpha.^{2}k^{2}}$	0
											2 - μ.αβχ		•	<u> 4</u>

Source constraints

Spin-parity form	Covariant form	Multiplicities			
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1			
$2 i k 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
$\frac{1}{\tau} \eta^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3			
$\overline{i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0}$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3			
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$				
Total expected gauge generators:					

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$\frac{p^2}{\alpha_0^2} > 0$
Polarisations:	2

Unitarity conditions

 $\alpha_0 > 0$