

104192 - REDES DE COMPUTADORES AULA 3 - TRANSFERÊNCIA DE DADOS

Luis Rodrigo - <u>luis.goncalves@ucp.br</u> - <u>http://lrodrigo.sgs.lncc.br</u>

REDE DE COMPUTADORES:

Processo de Transmissão

Processo de Comunicação

Geração da Informação

Descrição usando Símbolos Codificação dos Símbolos

Reconstrução da Informação

Decodificação dos Símbolos Transmissão dos Símbolos

Codificação Digital: PCM (Pulse Code Modulation)

Fontes de Distorção dos Sinais

- Ruídos:
 - térmicos (branco);
 - de intermodulação;
 - crostalk;
 - impulsivo.

Atenuação

Perda da qualidade do sinal.

Fontes de Distorção dos Sinais

- Ecos
 - Alteração da Impedância do meio.
- Colisões
 - Duas estações transmitindo ao mesmo tempo.

REDE DE COMPUTADORES:

Processo de Multiplexação

É a técnica que consiste em estabelecer vários canais através de um mesmo meio físico.

A divisão de canais pode ser feita em frequência ou por tempo.

MULTIPLEXAÇÃO NA FREQUÊNCIA

Multiplexação na Frequência (FDM):

- Filtrar Sinais;
- Modulação dos Sinais;
- Envio dos Sinais.

MULTIPLEXAÇÃO NA FREQUÊNCIA

MULTIPLEXAÇÃO NA FREQUÊNCIA

Multiplexação no Tempo (TDM)

- Divisão do tempo em Slots;
- Só pode transmitir quando chegar o slot;
- O sinal é enviado sem ser alterado.

- TDM Síncrono

- TDM Assíncrono

- TDM Assíncrono

REDE DE COMPUTADORES:

Processo de Comutação

TRANSFERÊNCIA COMUTAÇÃO

Os principais tipos de comutação são:

- Comutação por Circuitos;
- Comutação por Mensagens;
- Comutação por Pacotes;

A questão fundamental da comutação é determinar como os dados serão transferidos pela rede.

- A comutação de **circuitos** usa um **canal dedicado** para cada conexão.
 - Ex: rede telefônica

 Na comutação de pacotes dados são enviados em "blocos" discretos, na base FIFO

TRANSFERÊNCIA COMUTAÇÃO DE CIRCUITOS

- Alocação exclusiva de um meio de transmissão
- Ocorre, por exemplo, na **telefonia tradicional**, onde o ramal fica "**ocupado**" quando o assinante está utilizando
- A comutação de circuitos pode ocorrer na comunicação de dados

TRANSFERÊNCIA COMUTAÇÃO DE **CIRCUITOS**

- Dividido em **Fases** (**Estabelecimento**, **Transferência** e **Desconexão**);
- Alocação de uma canal dedicado;
- Gera desperdício.

Recursos fim-a-fim são reservados por "chamada"

- taxa de transmissão, capacidade dos comutadores
- recursos dedicados: não há compartilhamento
- desempenho análogo aos circuitos físicos (QOS garantido)
- exige estabelecimento de conexão

Recursos da rede (ex., capacidade de transmissão) dividida em "pedaços"

- pedaços **alocados às chamadas**
- pedaço do recurso desperdiçado se não for usado pelo dono da chamada (sem divisão)
- formas de divisão da capacidade de transmissão em "pedaços"
 - divisão em frequência
 - divisão temporal

TRANSFERÊNCIA COMUTAÇÃO DE CIRCUITOS

TRANSFERÊNCIA COMUTAÇÃO DE CIRCUITOS

TRANSFERÊNCIA COMUTAÇÃO POR **MENSAGENS**

- Não há alocação de Canal;
- Geração de filas;
- Memória para armazenamento das mensagens

TRANSFERÊNCIA COMUTAÇÃO POR MENSAGENS

TRANSFERÊNCIA COMUTAÇÃO DE PACOTES

- Aproveita ao máximo o meio de transmissão pois permite várias ligações simultâneas
- Consiste em:
- dividir as mensagens em partes,
- atribuir um cabeçalho, com endereço, a cada um e
- enviar para o meio compartilhado

TRANSFERÊNCIA COMUTAÇÃO DE PACOTES

- Cada parte PACOTE vai circular pela rede até seu destino final orientado pelo endereço de destino do seu cabeçalho
- Não há alocação de canal;
- Menor necessidade de memória;
- Pacotes podem chegar fora de ordem.

- Cada fluxo de dados fim-a-fim é dividido em pacotes
 - os recursos da rede são compartilhados em bases estatísticas
 - cada pacote usa toda a banda disponível ao ser transmitido
 - recursos são usados na medida do necessário

Banda passante é dividida em "slots"

Alocação fixa

Reserva de recursos

TRANSFERÊNCIA COMUTAÇÃO DE PACOTES

Contenção de recursos:

- a demanda agregada por recursos pode exceder a capacidade disponível
- congestão: filas de pacotes, aumento do tempo de envio, perda de apcotes
- store and forward: pacotes se movem de um roteador para o outro antes de serem retransmitidos
 - transmite no enlace
 - espera vez no enlace

TRANSFERÊNCIA COMUTAÇÃO DE PACOTES

Packet-switching:

 comportamento do store and forward

Utilizando um enlace de 1mbps (Mbits/s)

- Cada usuário:
 - 100kbps (quando ativo)
 - fica ativo 10% do tempo

- Na comutação por Circuitos
 - Conseguimos manter 10 usuários (1M/100k)

Utilizando um enlace de 1mbps (Mbits/s)

- Cada usuário:
 - 100kbps (quando ativo)
 - fica ativo 10% do tempo

- Na comutação por Pacotes
 - Verificou-se que, em redes com 35 usuários a probabilidade de mais de 10 usuários estarem ativos ao mesmo tempo é menor que 0,04%

Logo, a Comutação de Pacotes permite que mais usuários usem a mesma rede!

A comutação de pacotes é melhor sempre?

- Excelente para dados esporádicos
 - melhor compartilhamento de recursos
 - não há estabelecimento de chamada
- Congestão excessiva: atraso e perda de pacotes
 - protocolos são necessários para transferência confiável, controle de congestionamento

A comutação de pacotes é melhor sempre?

- Como obter um comportamento semelhante ao de um circuito físico?
 - garantias de taxa de transmissão são necessárias para aplicações de áudio/vídeo
 - problema ainda sem solução

"Mover pacotes entre os roteadores desde a origem até o destino."

Redes datagrama:

- o endereço de destino determina o próximo salto
- rotas podem mudar durante uma sessão
- analogia: dirigir perguntando o caminho

Rede de Circuitos Virtuais:

- cada pacote leva um número (virtual circuit
 ID), o número determina o próximo salto;
- o caminho é fixo e escolhido no instante de estabelecimento da conexão, permanece fixo durante toda a conexão
- routers maintain per-call state

REDE DE COMPUTADORES:

Tipos de Serviços(Borda da Rede)

TRANSFERÊNCIA SERVIÇO COM CONEXÃO

Visa realizar a transferência de dados entre sistemas finais.

- Handshaking: estabelece as condições para o envio de dados antes de envia-los atualmente
 - Alô: protocolo humano
 - estados de "conexão" controlam a troca de mensagens entre dois hosts
- TCP Transmission Control Protocol
 - realiza o serviço orientado à conexão da Internet

TRANSFERÊNCIA SERVIÇO COM CONEXÃO

Serviço TCP: [RFC 793]

- Transferência de dados confiável e sequencial, orientada a cadeia de bytes
 - perdas: reconhecimentos e retransmissões
- Controle de fluxo:
 - evita que o transmissor afogue o receptor
- Controle de congestão:
 - transmissor reduz sua taxa quando a rede fica congestionada

TRANSFERÊNCIA SERVIÇO SEM CONEXÃO

Permite a transferência de dados entre sistemas finais

- UDP User Datagram Protocol [RFC 768]:
 Oferece o serviço sem conexão da Internet
 - transferência de dados não confiável
 - sem controle de fluxo
 - sem controle de congestão

TRANSFERÊNCIA SERVIÇO COM E SEM CONFXÃO

Aplicações usando TCP:

 HTTP (WWW), FTP (file transfer), Telnet (rem ote login), SMTP (email)

Aplicações usando UDP:

streaming media, teleconferência, telefonia IP

Luis Rodrigo – <u>luis.goncalves@ucp.br</u> – http://lrodrigo.sgs.lncc.br

