

$R_1 = \frac{R_b R_c}{}$	D —	$R_1R_2 + R_2R_3 + R_3$	R_1R_3
$R_1 - \frac{1}{R_a + R_b + R_c}$	$\kappa_a =$	R_1	-

equivalence

		Can Circuit Contain Dependent Sources?	Relationship	
υ _{Th} Open-circuit υ		Yes	$v_{\mathrm{Th}} = v_{\mathrm{oc}}$	
v_{Th} S	Short-circuit i (if R_{Th} is known)	Yes	$v_{\mathrm{Th}} = R_{\mathrm{Th}} i_{\mathrm{sc}}$	
R _{Th} O	Open/short	Yes	$R_{\text{Th}} = v_{\text{oc}}/i_{\text{s}}$	
R_{Th} E	Equivalent R	No	$R_{\mathrm{Th}} = R_{\mathrm{eq}}$	
$R_{\rm Th}$ E	External source	Yes	$R_{\rm Th} = v_{\rm ex}/i_{\rm e}$	

RLC transient responses

RLC & vars

