.....

000000000

0000

00

00000000

.....

0000

00

......

00 00 000000000000

000

......

.......

0000000 00000

00 0000 000

ExynosAuto V9 Hypervisor Solution

0000000

................

------0000000000000 0000000000 -----......... 0.0 ------..... 00 00000000 00 000000 000000 00000

00 000

0000

0000000

2018.07.10

SW R&D Center

HPT: H/W assisted PT

RTE: Runtime Environment

Virtualization on ExynosAuto9 for HCP3

- Type-I "bare-metal" hypervisor (Redbend hypervisor)
- Para-Virtualization(PV) and Pass-Through(PT)/HPT drivers
- CPU and memory pinning supported

Type-1(baremetal) Hypervisor

Xen	Redbend		
D0	Server OS		
Dom0	(I/O Domain)		
DomU	Guest OS		
Dom0S	Server OS		
(System partition)	(System partition)		
Doml	IVI Guest OS		
(IVI partition)	(IVI partition)		
DomA	Android Guest OS		
(Android partition)	(Android partition)		

Virtualization on ExynosAuto9

Category	H/W IP	Descriptions		
Virtualization - Support of ARM cores -	ARM CA-76(Enyo) cores	Hypervisor Mode (Exception Level2, EL2)	By HyperVisor Call(HVC) CPU virtualization	
	ММИ	2-Stage Page Translation	VA <-> IPA <->PA translation Memory virtualizatio	
	Interrupt	Virtual interrupt Injection	ARM GIC400	
Para- Virtualization (PV)	Shared Peripherals	Split Device Driver Model across Guest OSes	FE(Front End) drivers in DomU VM <-> BE(BackEnd) drivers in Server OS IO virtualization	
Device Dedicated Peripherals (PT)		DomU can access directly	Some devices are dedicated to a certain VM. (GPU)	
Passthrough - (PT)	**IOV Peripherals(HPT)	to SFR of ExynosAuto9.	Some H/W logic for IOV is embedded into the peripheral to make more than two VMs to access the same peripheral at the same time. (e.g UFS/PCIe SR-IOV).	

^{*} MMU: Memory Management Unit

* HPT: H/W assisted PT

^{*} GPU: Graphic Processing Unit

^{*} SFR : Special Function Register.

^{*} GIC: Generic Interrupt Controller

^{*} VM : Virtual Machine

^{*}IOV : IO Virtualized

^{*} VA : Virtual Address

^{*} PA : Physical Address

^{*} IPA : Intermediate Physical Address

SOS REVERENCE TENTE

How PV & PT drivers work

PT and PV drivers From a Guest OS point of view

		PT driver			
	PV driver		DMAable		
		Non-DMAable	w/o H/W support for virtualization	w/ H/W support for virtualization	
	Frontend driver	PT driver	PT drivers	HPT drivers	
e.g.	Network frontend driver	I2C PT driver	USB device PT driver	*UFS-IOV VF driver **PCIe-IOV VF driver	
How physical memory access is controled	By backend driver of Server OS	By Hypervisor using the 2 nd -stage address translation of ARM MMU		sing the 2-stage memory ion unit(S2MPU)	

^{*:} RX/TM DMA is done by a DMA engine of UFS Host Controller.

^{** :} RX/TM DMA is done by a DMA engine of a PCIe EP(End Point).

HW-assisted Pass Through Driver (HPT)

(e.g) Appl2 in Guest OS reads from a device.

PCIe (SR-IOV)

UFS (UFS-IOV)

[HPT in detail] S/W Block Diagram for PCIe SR-IOV

(e.g.) IVI partition reads from one of VFs of the SR-IOVable EP.

S2MPU: Stage-2 Memory Protection Unit

GIC: Generic Interrupt Controller

SR: Single Root

MSI: Message Signalled Interrupt
PF: Physical Function (for serve OS)
VF: Virtual Function (for guest OS)
VGEN: VID Generator/Detector
VID: ID of a virtual machine

who is using the device

- A SR-PCI controller driver sets common configurations for 3 Functions PF and 2 VFs.
- ② The SR-PCI controller driver configures a VF assigned to the IVI partition.
- ③ A EP driver of IVI partition requests Read DMA from the VF, and the VF starts TX DMA which carrys the VMID(2) information of IVI partition.
- A PCIe RC of ExynosAuto9 identifies the VMID from the DMAed data through VGEN.
- It is checked by S2MPU whether the DRAM area for TX DMA is valid for IVI partition by walking a page table which the hypervisor has made up for the relevant VF.
- (6) When the DMA is done, the VF sends a MSI to RC. The MSI is routed by GIC into the hypervisor.
- The hypervisor parses the MSI to find out the EP relevant driver to the interrupt, then inject a Virtual interrupt to the EP driver of the Guest OS(IVI partition).

[HPT in detail] S/W Block Diagram for UFS-IOV

(e.g.) IVI partition reads from a UFS storage.

S2MPU: Stage-2 Memory Protection Unit

PF: Physical Function (for server OS)

VF: Virtual Function (for guest OS)

VGEN: VID Generator/Detector

who is using the device

Configuration (Full)

Configuration (Partial)

- A PF driver sets common configurations for 3 Host-Ifs of a UFS controller.
- The UFS VF driver of IVI partition configure its own Host-IF.
- The UFS VF driver issues a command to Host-IF to read data from a IVI storage partition.
- The UFS VF driver starts Read DMA tagged with a VMID(1) from a FIFO to a part of DRAM.
- It is checked by S2MPU whether the DRAM area is eligible for Read DMA by walking a page table which the hypervisor has made up for the relevant Host-IF of the UFS controller.
- If the DMA request is valid, the DMA starts up and ends up triggering a SPI(Shared Peripheral interrupt) dedicated to the Host-IF for the IVI partition to notify the DMA is done to the UFS VF driver.

To-be-confirmed points

- Please fill in driver distribution table in the next page.
- SR-IOVable EP will be used in HCP3 project? If not, don't we need to develop PCIe RC driver supporting SR-IOV?
- NPU is not under control of hypervisor ?

Device Driver Distribution Across Domains

**Native and PVB drivers exist in the same domain.

(E): Driver needed to support early functions

(E) . Driver fiee	ded to support early	TUTICUOTIS				
Device OS		Cluster	IVI	Android	Remarks	
		partition	partition	partition	Remarks	
		Linux	Linux	Android		
Display	MIPI-DSI/DP					
	PCIe #0 (4 Lane)				Inter-SoC Communication *In case of SR-IOV EP, HPT is available.	
PCIe	PCIe #1 (2 Lane)					
	PCIe #2 (2 Lane)					
Ethernet	Eth #0					
Ethernet	Eth #1					
I2C	I2C #0 to #4	PT	PT	PT		
SPI	SPI #0 to #1	PT	PT			
UART	UART #1 to #5	PT(E)	PT	PT		
UART_console	UART #0	PVF	PVF	PVF	Native and PVB driver exist in HV	
I2S	I2S					
ADC						
GPIO	GPIO					
USB	USB 2.0/3.1					
UFS	UFS HS-G3	HPT	HPT	HPT	H/W assisted virtual function for DomU	
Clock	Clock control	PVB	PVF	PVF		
Power	Power domain	PVB	PVF	PVF		
Regulator	Buck control	PVB	PVF	PVF		
Audio	Audio decoder					
Video Codec	Multi-Format Codec					
3D Graphics	GPU0 #0 (MP3)	PT			Native Linux/Android support are required	
	GPU0 #1 (MP3)			PT		
	GPU0 #2 (MP12)		PT			
Thermal	TMU	PT				

