Komunikacja człowiek komputer - sprawozdania z aplikacji Mask Detector

Gorgoń Adam - 145278 Grochowska Paulina - 145284

4 grudnia 2021

- 1 Wstęp
- 2 Prezentacja aplikacji
- 3 Dane
- 4 Użyte modele

Do wykrywania twarzy użyliśmy wytrenowanego modelu z biblioteki OpenCV w frameworku Caffe[2]. Do klasyfikacji, czy osoba posiada maskę stworzyliśmy własną się konwolucyjną zbudowaną na technologi tensorflow[1]. Model trenował się na cpu 3 godziny. Wczytywał zdjęcia z wcześniej wspomnianej bazy. Proporcje zbioru treningowego do testowego, wynosiły 0.8/0.2. Do lepszego wytrenowania model generował sobie zdjęcia, obracając zdjęcia o maksymalnie 15 stopni, robiąc lustrzane odbicie oraz przesuwając w pionie lub poziomie o 0.1 zdjęcia.

5 Działanie programu

5.1 Przygotowanie zdjęcia do modelu

Wczytane zdjęcie jest zmieniane na tablicę jako RBG. Następnie układ jest zmieniany na BGR. Wynika to z faktu, że podczas trenowania dane były wczytywane

(a) Zdjęcie bez obróbki z źle wczytanymi (b) Zdjęcie bez obróbki z dobrze wczytakolorami nymi kolorami

Rysunek 1: Wczytywanie zdjęcia

za pomocą biblioteki OpenCV(wczytuje bgr), a w aplikacji przez Pillow(wczytuje rgb).

Następnie rozjaśniamy obraz za pomocą korekcji gamma, by zmniejszyć efekt cienia na zdjęciu.

5.2 Detekcja twarzy

Model sprawdza na zdjęciu czy znajduję się twarz. Jeśli pewność algorytmu na to, że w przeszukiwanym w tym momencie prostokącie znajduje się twarz, wynosi ponad 0.5, to program przechodzi do klasyfikacji.

5.3 Klasyfikacja twarzy

Jeśli program znajdzie twarz, to "wycina" prostokąt uznany za twarz, zmienia jego rozmiar na 124×124 i wysyła do sieci konwolucyjnej. Sieć wyrzuca liczbę w zakresie [0,1]. Jeśli liczba jest mniejsza od 0.5, to twarz ma na sobie założoną maskę, w przeciwnym razie algorytm uznaje, że na twarzy nie ma maseczki.

(a) Przed

(b) Po

Rysunek 2: Korekcja gamma

(a) Algorytm znalazł twarz

(b) Algorytm sklasyfikował twarz

Rysunek 3: Działanie modelu

6 Podsumowanie

Literatura

- [1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems.
- [2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional Architecture for Fast Feature Embedding.