Chapter 4

Continuity

4.1 Notes

11/8:

- Consider a function $f: X \to Y$ whose domain and codomain are, respectively, the metric spaces (X, d_X) and (Y, d_Y) .
- **Limit** (of f at p): A point $q \in Y$ such that for all $\epsilon > 0$, there exists δ such that $d_X(x, p) < \delta$ implies $d_Y(q, f(x)) < \epsilon$, where p is a limit point of X (otherwise, $x \not\to p$).
- Continuous (function f at p): A function f such that $\lim_{x\to p} f(x) = f(p)$.
- f is continuous on X if it is continuous at every $p \in X$.
- Uniformly continuous (function f): A function f such that for every $\epsilon > 0$, there exists a $\delta > 0$ such that $d_X(x,y) < \delta$ implies $d_Y(f(x),f(y)) < \epsilon$ for all $x,y \in X$.

4.2 Chapter 4: Continuity

From Rudin (1976).

- Limit (of f at p): The point $q \in Y$, if it exists, such that for every $\epsilon > 0$, there exists a $\delta > 0$ such that $d_Y(f(x), q) < \epsilon$ for all points $x \in E$ for which $0 < d_X(x, p) < \delta$, where $(X, d_X), (Y, d_Y)$ are metric spaces, $E \subset X$, $f: E \to Y$, and $p \in E'$. Denoted by $\lim_{x \to p} f(x)$.
 - Note that we do not require that $p \in E$; only that some elements of the domain E approach p.
 - We also write $f(x) \to q$ as $x \to p$.
- Theorem 4.2: Let X, Y, E, f, and p be as specified above. Then $\lim_{x\to p} f(x) = q$ iff $\lim_{n\to\infty} f(p_n) = q$ for every sequence $\{p_n\}$ in E such that $p_n \neq p$ for any n and $\lim_{n\to\infty} p_n = p$.
- Rudin (1976) proves the sum, product, and quotient rules of limits from the analogous properties of series.
- Continuity is defined.
 - Note that f does have to be defined at p to be continuous at p (in comparison to the fact that it can have a limit at a point p' at which it is not defined).
 - Thus, for proofs concerning continuity (as opposed to limits), we will consider functions f the domains of which are metric spaces, not subsets of metric spaces.
 - It follows from the definition that if $p \in E$ is isolated, then every possible f defined on E is continuous at p.
- Theorem 4.7: Compositions of continuous functions are continuous.

- Theorem 4.8: Preimage definition of continuity.
- Theorem 4.9: If f, g are complex continuous functions on X, f + g, fg, and f/g are continuous on X.
- Theorem 4.10: **f** continuous implies f_1, \ldots, f_k continuous. Also, $\mathbf{f}, \mathbf{g} : X \to \mathbb{R}^k$ continuous implies $\mathbf{f} + \mathbf{g}$ and $\mathbf{f} \cdot \mathbf{g}$ continuous.
- 11/9: Theorem 4.14: f continuous and X compact implies f(X) compact.
 - Theorem 4.15: $\mathbf{f}: X \to \mathbb{R}^k$ continuous and X compact implies f(X) closed and bounded.
 - Theorem 4.16: f continuous and X compact implies f attains its minimum and maximum.
 - Theorem 4.17: $f: X \to Y$ continuous, 1-1 for X, Y compact implies $f^{-1}: Y \to X$ continuous.
 - \bullet Theorem 4.19: f continuous and X compact implies f uniformly continuous.
 - Theorem 4.20: Compactness is a necessary condition in Theorems 4.14, 4.15, 4.16, and 4.19.
 - Theorem 4.22: $f: X \to Y$ continuous and $E \subset X$ connected implies f(E) connected.
 - Theorem 4.23: Intermediate value theorem.
 - Right-hand limit (of f at x): Denoted by f(x+).
 - Left-hand limit (of f at x): Denoted by f(x-).
 - Discontinuity of the first kind (of f at x): A discontinuity of f at x such that f(x+) and f(x-) exist. Also known as simple discontinuity.
 - Discontinuity of the second kind (of f at x): A discontinuity of f at x that is not of the first kind (i.e., a discontinuity such that at least one of f(x+) and f(x-) does not exist).
 - Theorem 4.29: If f is monotonic on (a,b), then f(x+), f(x-) exist at every $x \in (a,b)$.
 - Corollary: Monotonic functions have no discontinuities of the second kind.
 - Theorem 4.30: If f is monotonic on (a, b), then the set of points of (a, b) at which f is discontinuous is at most countable.