2. SUJETS DE L'OPTION ÉCONOMIQUE

Exercice principal E3

- Question de cours : Définition d'une série convergente. Pour quels réels x > 0, la série de terme général (ln x)ⁿ est-elle convergente ? Calculer alors sa somme.
- Pour tout entier n supérieur ou égal à 1, on note f_n la fonction définie sur l'intervalle]0,+∞[, à valeurs réelles, par : f_n(x) = (ln x)ⁿ − x.
- a) Calculer les dérivées première et seconde f'_n et f''_n de la fonction f_n.
- b) Montrer que la fonction f₁ ne s'annule jamais.
- e) Justifier l'existence d'un réel $a\in]0,1[$ vérifiant l'égalité : $f_2(a)=0.$
- On suppose désormais que n est un entier supérieur ou égal à 3, et on s'intéresse aux solutions de l'équation f_n(x) = 0 sur l'intervalle]1, +∞[. On donne : ln 2 ≈ 0,693.
- a) Dresser le tableau de variations de f_n sur $]1, +\infty[$ et montrer que l'équation $f_n(x) = 0$ admet deux racines, notées u_n et v_n , sur $]1, +\infty[$ (u_n désigne la plus petite de ces deux racines).
- b) Calculer $\lim_{n\to+\infty} v_n$.
- Montrer que la suite (u_n)_{n≥3} est convergente et calculer sa limite.

Exercice sans préparation E3

Soit p un réel de]0,1[et q=1-p. Soit $(X_n)_{n\in\mathbb{N}}$, une suite de variables aléatoires indépendantes définies sur un espace probabilisé (Ω, \mathcal{A}, P) , de même loi de Bernoulli telle que :

 $\forall k \in \mathbb{N}^*$, $P([X_k = 1]) = p$ et $P([X_k = 0]) = q$. Pour n entier de \mathbb{N}^* , on définit pour tout $k \in [1, n]$ la variable aléatoire $Y_k = X_k + X_{k+1}$.

- 1.a) Calculer pour tout $k \in [1, n]$, $Cov(Y_k, Y_{k+1})$.
- b) Montrer que $0 < Cov(Y_k, Y_{k+1}) \le \frac{1}{4}$.
- 2. Calculer pour tout couple (k, l) tel que $1 \le k < l \le n$, $Cov(Y_k, Y_l)$.
- 3. On note ε un réel strictement positif fixé. Montrer que $\lim_{n \to +\infty} P\left(\left[\left|\frac{1}{n}\sum_{k=1}^n Y_k 2p\right| > \varepsilon\right]\right) = 0.$

- 1. Question de cours : Formule des probabilités totales.
- 2. Pour tout couple (n, p) d'entiers naturels, on pose : $I_{n,p} = \int_{0}^{1} x^{n} (1-x)^{p} dx$.
- a) Calculer $I_{n,0}$.
- b) Exprimer $I_{n,p+1}$ en fonction de $I_{n+1,p}$.
- e) En déduire l'expression de $I_{n,p}$ en fonction de n et p.

On dispose de N urnes $(N \geqslant 1)$ notées U_1, U_2, \dots, U_N . Pour tout $k \in [\![1,N]\!]$, l'urne U_k contient k boules rouges et N-k boules blanches.

On choisit au hasard une urne avec une probabilité proportionnelle au nombre de boules rouges qu'elle contient ; dans l'urne ainsi choisie, on procède à une suite de tirages d'une seule boule avec remise dans l'urne considérée. On suppose que l'expérience précédente est modélisée par un espace probabilisé (Ω, \mathcal{A}, P) .

3. Pour tout $k \in \llbracket 1, N \rrbracket$, calculer la probabilité de choisir l'urne U_k .

Soit n un entier fixé de \mathbb{N}^* . On note E_n et R_{2n+1} les événements suivants : E_n —"au cours des 2n premiers tirages, on a obtenu n boules rouges et n boules blanches"; R_{2n+1} —"on a obtenu une boule rouge au (2n+1)-ième tirage".

- 4.a) Exprimer P(E_n) sous forme d'une somme.
- b) Donner une expression de la probabilité conditionnelle $P_{E_n}(R_{2n+1})$.
- 5. Montrer que $\lim_{N\to +\infty} P_{E_n}(R_{2n+1}) = \frac{I_{n+2,n}}{I_{n+1,n}} = \frac{n+2}{2n+3}$

Exercice sans préparation E4

On note $\mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées réelles d'ordre 2.

- Donner une base de M₂(R).
- 2. Peut-on trouver une base de M₂(R) formée de matrices inversibles?
- 3. Peut-on trouver une base de $\mathcal{M}_2(\mathbb{R})$ formée de matrices diagonalisables ?

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, A, P) , à valeurs dans $[0, \theta]$ où θ est un paramètre réel strictement positif inconnu. Une densité f de X est donnée par : $f(x) = \begin{cases} \frac{2x}{\theta^2} & \text{si } x \in]0, \theta] \\ 0 & \text{sinon} \end{cases}$

- 1. Question de cours : Estimateur sans biais ; risque quadratique d'un estimateur.
- 2. Calculer l'espérance et la variance de X.

Pour n entier de \mathbb{N}^* , soit (X_1, X_2, \dots, X_n) un n-échantillon de variables aléatoires indépendantes et de même loi que X. On pose pour tout $n \in \mathbb{N}^*$: $\overline{X}_n = \frac{1}{n} \sum_{t=1}^n X_t$.

- 3.a) Déterminer la fonction de répartition F de X.
- b) Tracer dans un repère orthogonal, l'allure de la courbe représentative de F.
- 4.a) Déterminer un estimateur T_n de θ, sans biais et de la forme cX̄_n, où c est un réel que l'on précisera.
- b) Quels sont les risques quadratiques respectifs associés aux estimateurs \overline{X}_n et T_n de θ ?
- 5. On pose pour tout $n \in \mathbb{N}^*$: $M_n = \max(X_1, X_2, ..., X_n)$.
- a) Déterminer la fonction de répartition G_n et une densité g_n de M_n .
- b) Calculer l'espérance de M_n . En déduire un estimateur sans biais W_n de θ .
- e) Entre T_n et W_n , quel estimateur doit-on préférer pour estimer θ ?
- Soit α un réel donné vérifiant 0 < α < 1.
- a) Établir l'existence de deux réels a et b tels que 0 < a < 1 et 0 < b < 1, vérifiant P(M_n ≤ a θ) = α/2 et P(b θ ≤ M_n ≤ θ) = α/2.
- b) En déduire un intervalle de confiance pour le paramètre θ au niveau de confiance $1-\alpha$.

Exercice sans préparation E6

Pour $n \in \mathbb{N}^*$, soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ vérifiant : $A^3 + A^2 + A = 0$ (matrice nulle). On note I la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

- 1. On suppose que A est inversible. Déterminer A^{-1} en fonction de A et I.
- 2. On suppose que A est symétrique. Montrer que A=0.

1. Question de cours : Définition de l'indépendance de deux variables aléatoires finies.

Une puce fait une suite de sauts de longueur 1 dans un plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) ; chaque saut est effectué au hasard et avec équiprobabilité dans l'une des quatre directions portées par les axes $O\vec{i}$ et $O\vec{j}$. Pour tout $n \in \mathbb{N}$, on note M_n la position de la puce après n sauts et X_n (resp. Y_n) l'abscisse (resp. l'ordonnée) du noint M_n .

On suppose qu'à l'instant initial 0, la puce est à l'origine O du repère, c'est-à-dire que $M_0 = O$. L'expérience est modélisée par un espace probabilisé (Ω, A, P) .

- 2. Pour tout $n\geqslant 1$, on pose : $T_n=X_n-X_{n-1}$. On suppose que les variables aléatoires T_1,T_2,\ldots,T_n sont indépendantes.
- a) Déterminer la loi de T_n . Calculer l'espérance $E(T_n)$ et la variance $V(T_n)$ de T_n .
- b) Exprimer pour tout $n \in \mathbb{N}^*$, X_n en fonction de T_1, T_2, \dots, T_n .
- e) Que vaut E(X_n)?
- d) Calculer E(X²_n) en fonction de n.
- 3. Pour tout $n \in \mathbb{N}$, on note Z_n la variable aléatoire égale à la distance OM_n .
- a) Les variables aléatoires X_n et Y_n sont-elles indépendantes?
- b) Établir l'inégalité : E(Z_n) ≤ √n.
- Pour tout n ∈ N*, on note p_n la probabilité que la puce soit revenue à l'origine O après n sauts.
- a) Si n est impair, que vaut p_n ?
- b) On suppose que n est pair et on pose : n-2m $(m \in \mathbb{N}^*)$. On donne la formule : $\sum_{k=0}^{m} {m \choose k}^2 = {2m \choose m}$.

Établir la relation : $p_{2m} = {2m \choose m}^2 \times \frac{1}{4^{2m}}$.

Exercice sans préparation E7

On définit la suite $(v_n)_{n\in\mathbb{N}^*}$ par : $\forall n\in\mathbb{N}^*, v_n=\sum_{i=1}^{+\infty}\frac{1}{k^3}$

- Montrer que la suite (v_n)_{n∈N*} est convergente et calculer sa limite.
- 2.a) Montrer que pour tout entier $m \ge 1$, on $a : \sum_{k=n}^{n+m} \frac{1}{(k+1)^3} \le \int_n^{n+m+1} \frac{dx}{x^3} \le \sum_{k=n}^{n+m} \frac{1}{k^3}$.
- b) En déduire un équivalent de v_n lorsque n tend vers $+\infty$.

1. Question de cours : Définition de deux matrices semblables.

Soit E un espace vectoriel réel de dimension 3 muni d'une base B = (i, j, k). Soit f l'endomorphisme de E défini par : f(i) = i - j + k, f(j) = i + 2j et f(k) = j + k. On note Id l'application identité de E, f^0 —Id et pour tout $k \in \mathbb{N}^*$, $f^k = f \circ f^{k-1}$.

- 2.a) Montrer que $(2 \operatorname{Id} f) \circ (f^2 2f + 2 \operatorname{Id}) = 0$ (endomorphisme nul de E).
- b) L'endomorphisme f est-il un automorphisme?
- e) Déterminer les valeurs propres de f ainsi que les sous-espaces propres associés.
- d) L'endomorphisme f est-il diagonalisable?
- 3. Soit P un sous-espace vectoriel de E défini par : $P = \{(x,y,z) \in E/ax + by + cz = 0 \text{ dans la base } \mathcal{B}\}$, où $(a, b, c) \neq (0, 0, 0).$

Soit U, V et W trois vecteurs de E dont les composantes dans la base B sont : (-b, a, 0) pour U, (0, c, -b) pour V et (-c, 0, a) pour W.

- a) Montrer que le sous-espace vectoriel engendré par (U,V,W) est de dimension 2.
- b) En déduire tous les sous-espaces vectoriels P de E qui vérifient $f(P) \subset P$.

Exercice sans préparation E8

Soit X une variable aléatoire qui suit la loi normale centrée réduite, de fonction de répartition Φ .

Montrer pour tout réel a > 1 et pour tout réel x > 0, l'encadrement suivant :

$$0 \le x(1 - \Phi(ax)) \le \sqrt{\frac{2}{\pi}}e^{-ax^2/2}$$

2. En déduire que $\lim_{a\to +\infty} \int_{a}^{+\infty} x(1-\Phi(ax))dx = 0$.

Question de cours : Convexité d'une fonction définie sur un intervalle de R.

2.a) Justifier que $\forall x \in \mathbb{R}$, l'intégrale $\int_{0}^{x} e^{t^2} dt$ est convergente. On pose : $f(x) = \int_{0}^{x} e^{t^2} dt = \int_{0}^{x} \exp(t^2) dt$.

b) Montrer que f est de classe C^2 sur $\mathbb R$. Étudier la parité et la convexité de f.

e) Étudier les variations de f sur $\mathbb R$ et tracer l'allure de la courbe représentative de f dans un repère orthogonal du plan.

3.a) Établir pour tout $n \in \mathbb{N}^*$, l'existence d'un unique réel u_n vérifiant $f(u_n) = \frac{1}{n}$.

b) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante et convergente.

e) Déterminer lim_{n→+∞} u_n.

4.a) Établir pour tout $u \in [0, \ln 2]$, l'encadrement : $1 + u \leqslant e^u \leqslant 1 + 2u$.

b) En interprétant le résultat de la question 3.e), en déduire qu'il existe un entier naturel n₀ tel que pour tout $n \ge n_0$, on $a : \int_0^{u_n} (1 + t^2) dt \le \frac{1}{n} \le \int_0^{u_n} (1 + 2t^2) dt$. e) Montrer que $\lim_{n \to +\infty} n u_n^3 = 0$ et en déduire un équivalent de u_n lorsque n tend vers $+\infty$.

Exercice sans préparation E10

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, A, P) , suivant la loi géométrique de paramètre $p \in]0,1[$ (d'espérance $\frac{1}{p}$) et Y une variable aléatoire telle que :

$$Y = \begin{cases} 0 & \text{si } X \text{ est impair} \\ \frac{X}{2} & \text{si } X \text{ est pair} \end{cases}$$

Déterminer la loi de Y, puis calculer l'espérance de Y.

- 1. Question de cours : Loi d'un couple de variables aléatoires discrètes ; lois marginales et lois conditionnelles.
- Soit X et Y deux variables aléatoires définies sur un espace probabilisé (Ω, A, P) . Soit p un réel de]0,1[. On pose : q=1-p.

On suppose que

- X suit une loi de Poisson de paramètre λ > 0;
 Y(Ω) = N;
- pour tout $n \in \mathbb{N}$, la loi conditionnelle de Y sachant [X = n] est une loi binomiale de paramètres n et p.
- Déterminer la loi du couple (X,Y).
- 3. Montrer que Y suit une loi de Poisson de paramètre λp .
- 4. Déterminer la loi de X Y.
- 5.a) Établir l'indépendance des variables aléatoires Y et X-Y.
- b) Calculer le coefficient de corrélation linéaire de X et Y.

Exercice sans préparation E11

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ diagonalisable $(n\geqslant 1)$. On suppose qu'il existe $k\in\mathbb{N}^*$ tel que $A^k=I_n$ (matrice identité de $M_n(\mathbb{R})$).

Montrer que $A^2 - I_n$.

1. Question de cours : Définition et propriétés des fonctions de classe C^p $(p \in \mathbb{N})$.

Soit α un réel non nul et soit f_1 et f_2 les fonctions définies sur $\mathbb R$ par : $\forall x \in \mathbb R$, $f_1(x) = e^{\alpha x}$ et $f_2(x) = x \, e^{\alpha x}$. On note E le sous-espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$ engendré par f_1 et f_2 .

Soit Δ l'application qui, à toute fonction de E, associe sa fonction dérivée.

- 2.a) Montrer que (f_1, f_2) est une base de E.
- b) Montrer que Δ est un endomorphisme de E. Donner la matrice A de Δ dans la base (f_1, f_2) .
- e) L'endomorphisme Δ est-il bijectif? diagonalisable?
- 3. Calculer A^{-1} . En déduire l'ensemble des primitives sur $\mathbb R$ de la fonction f définie par : $f(x) = (2x-3)e^{\alpha x}$.
- 4.a) Calculer pour tout n ∈ N, la matrice Aⁿ.
- b) En déduire la dérivée n-ième $f^{(n)}$ de la fonction f définie dans la question 3.

Exercice sans préparation E21

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, A, P) qui suit la loi de Poisson de paramètre $\lambda > 0$. On pose : $Y = (-1)^X$.

- 1. Déterminer $Y(\Omega)$. Calculer l'espérance E(Y) de Y.
- 2. Trouver la loi de Y.