

Automated Construction Site Safety Violation Detection using Object Detection and Convolutional Neural Networks

Introduction

Construction sites are high-risk areas where many accidents and fatalities occur due to human error, safety violations, and lack of proper PPE like helmets and vests, according to OSHA and NIOSH.

Motivation

Manual monitoring is inefficient and error-prone. Automated systems can enhance safety by detecting violations in real-time.

Metric	Manual Monitoring	Automated Al Monitoring	
Detection Speed	Slow (lag from human review)	Real-time	
Accuracy	70–80% (human error)	90–95% (Al model accuracy)	
Coverage	Limited (small teams)	Full camera coverage 24/7	
Cost Over Time	High (labor-intensive)	Lower (after deployment)	

Proposed Solution

CNN-LSTM for classification whether the Construction Site is Safe or Not

Object Detection for Detecting PPEs from the Workers

Data Set

For the CNN-LSTM network dataset we collected video then we separated it into frames for the sequence data

For the Object Detection, the dataset was retrieved from the roboflow

Results

In the three CNN models the Custom CNN-LSTM model have reached the highest Validation Accuracy whereas the two models did not pass the 90% threshold

Validation Metric	Models			
	Custom CNN-LSTM	CNN-Bidirectional LSTM	NASNetMobile	
Train Accuracy	94.37%	97.08%	96.33%	
Validation Accuracy	92.05%	85.17%	83.53%	

Results

Validation Metric -	Models		
	YOLOv8n	RTDETR-L	RetinaNET
mAP50	91.7%	94.2%	89.1%
mAP50-95	71.2%	73.4%	57.5%

The three object detection models were compared using validation mAP50 and mAP50-95 scores. RTDETR-L achieved the highest mAP50 of 94.2% and mAP50-95 of 73.4%. This suggests that the RTDETR-L is overall better at pinpointing each PPE item class.

StreamLit Deployment

StreamLit Deployment

Links:

Dataset:

https://drive.google.com/drive/folders/10zQvW GMcO5UQeQbbR5v6c3hk-d2cEBvt? usp=sharing

StreamLit:

https://model1sadatasci.streamlit.app/

Colab Ntbks:

https://colab.research.google.com/drive/17cnys mh2xG5ZgLHQB92St4Zz_ef_950U?usp=sharing https://colab.research.google.com/drive/1EdtvP w6tPhIHh5EcYOaLBQ2DQqUyTbGZ?

<u>usp=sharing</u>

https://colab.research.google.com/drive/13gLrR JZFmMASfvnN-FMJ1FnctUyhzOnY?usp=sharing

Dataset:

https://universe.roboflow.com/randomlangyan/ ppe-project-7brvs/dataset/1

StreamLit:

https://final-project---cpe313a8mavqjcnymnlzcvetqzmh.streamlit.app/

Colab Ntbks:

https://drive.google.com/file/d/1XpVrkPxEUTex
2XFIC-gz2Z7wbz84aQcM/view?usp=sharing