Networks, Internet and Protocols

Network Fundamentals, Network Services

SoftUni Team
Technical Trainers

Software University

https://about.softuni.bg

Table of Contents

- 1. Basic networking concepts
- 2. OSI Model, MAC address, IP address, TCP and ports
- 3. Domains and DNS, WWW
- 4. HTTP, GET, POST
- 5. Browser DevTools
- 6. Email

Have a Question?

Network Fundamentals

OSI Model, MAC address, IP address, TCP and ports

What is a Network Protocol?

- A set of rules that determine how data is transmitted between different devices in the same network
- Enable standardized communication between devices
- Govern aspects of data transmission, addressing, routing, and error handling
- Work in conjunction to facilitate communication

Layering Models

- Organize network protocols into a structured framework
- Facilitate the understanding, design, and management of complex networks
- Simplifies network communication and troubleshooting
- Encourages protocol interoperability and modularity
- Examples:
 - OSI Model
 - TCP/IP Model

OSI Model Overview

- The OSI Model /Open Systems Interconnection Model/
- Developed by the International Organization for Standardization (ISO) in the 1970s
- Framework for understanding and designing network protocols and communication
- 7 layers of OSI model Application **End User Layer** Presentation Syntax layer Session Synch and send to Port Transport End to End connection **Packets** Network Frames Data Link Physical structure • Physical

- 7 layers
- Key concept Each layer adds functionality to the data transmitted

OSI Model Layers

- Physical Layer (Layer 1)
 - Converts digital data into electrical, radio, or optical signals for transmission

- Devices Hubs, switches, routers, modems, network interface cards (NICs)
- Standards Ethernet, Wi-Fi, Bluetooth, USB, DSL
- Data Link Layer (Layer 2)
 - Manages data transmission between nodes, error detection / correction
 - MAC Address Unique identifier for network interfaces
 - Protocols Ethernet, Point-to-Point Protocol (PPP), Frame Relay
 - Devices Switches, bridges

OSI Model Layers (2)

- Network Layer (Layer 3)
 - Routing algorithms Shortest Path First (SPF), Distance Vector (DV), Link State (LS)

- Devices Routers, Layer 3 switches
- Protocols Internet Protocol (IP), Internet Control Message Protocol (ICMP), Ipsec
- Transport Layer (Layer 4)
 - Error checking, flow control, congestion control, multiplexing
 - TCP Ensures data is received in order, guarantees delivery using ACKs and retransmissions

UDP - Fast, best-effort delivery without connection setup or error recovery

OSI Model Layers (3)

- Session Layer (Layer 5)
 - Functions Dialog control, token management, synchronization
 - Protocols Remote Procedure Call (RPC), Session
 Initiation Protocol (SIP), Network File System (NFS)
- Presentation Layer (Layer 6)
 - Functions Data representation, encryption, decryption, compression, decompression
 - Standards Secure Sockets Layer (SSL), Transport Layer
 Security (TLS), ASCII, Unicode, JPEG, MPEG

OSI Model Layers (4)

- Application Layer (Layer 7)
 - User interface for networked applications
 - Protocols
 - Hypertext Transfer Protocol (HTTP)
 - File Transfer Protocol (FTP)
 - Simple Mail Transfer Protocol (SMTP)
 - Domain Name System (DNS)
 - Telnet
 - Secure Shell (SSH)

TCP/IP Model

- Transmission Control Protocol / Internet Protocol Model
- Developed by the Department of Defense (DoD) in the 1970s as part of the ARPANET project, the precursor to the modern internet
- 4 layers Simplified version with fewer layers
- Designed with a focus on robustness, resilience, and scalability

TCP/IP Layers

Link Layer

- Combines the functionalities of OSI Physical and Data Link layers
- Transmission and reception of data packets over a physical medium
- Management of data link connections
- Internet Layer
 - Corresponds to the OSI Network Layer
 - Handling the logical addressing and routing of data packets

TCP/IP Layers

- Transport Layer
 - Closely resembles the OSI Transport Layer
- Application Layer
 - Merges the functionalities of OSI Session, Presentation, and Application layers

MAC Address

- Media Access Control (MAC) address is a unique hardware identifier assigned to network interface cards (NICs)
- Facilitate communication at the Data Link Layer (Layer 2) in the OSI Model and the Link Layer in the TCP/IP Model
- Format
 - 48-bit (6-byte) or 64-bit (8-byte) hexadecimal number
 - Typically represented as six pairs of hexadecimal digits separated by colons or hyphens (e.g., 01:23:45:67:89:AB)
- Generally hardcoded by the manufacturer
- Can be manually changed in some cases

IP Address

- Internet Protocol (IP) address numerical identifier assigned to devices in a network for routing and addressing purposes
- Facilitate the identification and location of devices on a network
- Used at the Network Layer (Layer 3) in the OSI Model and the Internet Layer in the TCP/IP Model

- Types:
 - IPv4: 32-bit addresses, four decimal numbers separated by periods
 - IPv6: 128-bit addresses
- Assigned statically (manually) or dynamically (using DHCP)

Networking Summary

Networking and Internet Protocols Summary

- Communication in Internet uses networking protocols
 - The OSI model defines 7 layers of networking protocols
 - The TCP/IP protocol suite

Key Network Protocols

- IP (Internet Protocol): Handles addressing and communication between devices
- TCP (Transmission Control Protocol): Complements IP, focuses on the reliable transport of data packets; uses ports to distinguish connections
- UDP (User Datagram Protocol): Similar to TCP, connectionless, faster, has no error checking; uses ports for communication
- ICMP (Internet Control Message Protocol): Used by networking devices,
 e.g. routers for error reporting and diagnostics
- QUIC (Quick UDP Internet Connections): Developed by Google, TCP alternative, combines features of TCP and UDP to reduce latency and improve security; often used with HTTP

Ports Overview

- Numerical identifiers used to distinguish specific processes or services running on a device within a network
- Facilitate end-to-end communication between applications on different devices
- Types of Ports
 - TCP ports Used for connection-oriented communication, ensuring reliability and data integrity
 - UDP ports Used for connectionless communication, providing faster data transmission with minimal overhead

Port Numbers

- Used to identify a network service
- Network services registry in /etc/services
- Some of them are:
 - 22 SSH, 53 DNS,
 80 HTTP, 110 POP3,
 123 NTP, 143 IMAP

tcpmux	1/tcp	
echo	7/tcp	
echo	7/udp	
discard	9/tcp	sink null
discard	9/udp	sink null
systat	11 /tcp	users

Ports	Port Numbers
Well-known (or system) ports	0 – 1023
Registered (or user) ports	1024 – 49151
Dynamic (and / or private) ports	49152 – 65535

Web Fundamentals

WWW, Domains, DNS, URL

WWW

- A global, interconnected system of documents, images, and other resources, accessed through the internet using web browsers
- Invented by Sir Tim Berners-Lee in 1989 at CERN
- How the Web Works
 - Hyperlinks Connect resources across the web, allowing users to navigate between them
 - Web Servers Host and serve resources, making them accessible to web browsers
 - Web Browsers Retrieve and display resources, allowing users to interact with the web

Domain Names

- A unique, human-readable name that identifies a website
- Simplify navigation and accessibility to websites, making it easier to remember and share
- Structure
 - Top-Level Domains (TLDs) domain extensions, e.g., .com, .org, .net,
 .us, .uk, .de
 - Second-Level Domains (SLDs) website's name, e.g., "example" in example.com
 - Subdomains additional sections of a website, e.g., "blog" in blog.example.com

Domain Name System (DNS)

- A hierarchical, distributed database that translates domain names into IP addresses
- Facilitates the resolution of human-readable domain names to machine-readable IP addresses

What is a URL?

- A URL, short for a uniform resource locator is a web address pointing to a specific website, a web page, or a document on the internet.
- Structure-wise, a URL consists of multiple elements
 - Communication protocol
 - Subdomain
 - Domain name
 - Domain extension
 - Path to the resource
 - Parameters, etc.

Uniform Resource Locator (URL) Example


```
http://mysite.com:8080/demo/index.php?id=27&lang=en#slides

Protocol Host Port Path Query string Fragment
```

- Network protocol (http, ftp, https...) HTTP in most cases
- Host, Domain or IP address (softuni.org, gmail.com, 127.0.0.1, web)
- Port (the default port is 80) integer in the range [0...65535]
- Path (/forum, /path/index.php)
- Query string (?id=27&lang=en)
- Fragment (#slides) navigate to some section in the page

What is Web Service?

- Web services implement communication between software systems or components of over the network
 - Using standard protocols, such as HTTP, JSON and XML
 - Exchanging messages, holding data and operations

HTTP Protocol – Basics

HTTP Basics

- HTTP (HyperText Transfer Protocol)
 - Text-based client-server protocol for the Internet
 - For transferring Web resources (HTML files, images, styles, etc.)
 - Request-response based

Web Server Work Model

Web Client

HTTP request

Server Resources

Web Server

HTML, CSS, JPG, PDF, ...

Database

Network Layers and HTTP

HTTP Request Methods

 HTTP request methods specify the desired action to be performed on the requested resource (identified by URL)

Method		Description	CRUD == the four	Other
GET	$lack \Psi$	Retrieve a resource	main functions of persistent storage	Wiethans
POST		Create / store a resource		CONNECT
PUT		Update (replace) a reso	OPTIONS	
DELETE	X	Delete (remove) a resource		TRACE
PATCH		Update resource partially (modify)		
HEAD		Retrieve the resource's headers		

HTTP Response Status Codes

Status Code	Action	Description
200	ОК	Successfully retrieved resource
201	Created	A new resource was created Success
204	No Content	Request has nothing to return
301 / 302	Moved	Moved to another location (redirect) Redirect
400	Bad Request	Invalid request / syntax error
401 / 403	Unauthorized	Authentication failed / access denied
404	Not Found	Invalid resource requested - Error
409	Conflict	Conflict detected, e.g. duplicated email
500 / 503	Server Error	Internal server error / service unavailable

HTTP Developer Tools: Network Inspector

- Chrome Developer Tools
 - Press [F12] in Chrome
 - Open the [Network] tab
 - Inspect the HTTP traffic

Requests Demo

https://api.zippopotam.us/us/90222

Requests Demo (2)

https://restcountries.com/v2/name/Bulgaria

How does Email work?

SMTP and IMAP/POP

- SMTP (Simple Mail Transfer Protocol)
- Sending and receiving email messages between servers
- Ensures message is delivered to the correct server / format readable by the recipient's email client
- SMTPS (secure SMTP) uses additional SSL or TLS cryptographic protocol for increased security

IMAP/POP

- IMAP (Internet Message Access Protocol)
 - Retrieving email messages from servers
 - Allows management of email messages on the server from different devices /sync and delete/
 - More popular and flexible
- POP (Post Office Protocol)
 - Once downloaded to a client, the message is removed from the server /download and delete/
 - Difficult to access email messages from different devices or locations

Email Forwarding

- Redirect incoming emails to another email address
- Useful for managing multiple email accounts
 - Server-based forwarding Servers configured to automatically forward incoming messages to another email address
 - Client-based forwarding setting up email forwarding using email client settings
 - Email filters setting up filters to forward messages that match specific criteria

Spam Filters

- Detect and filter out unwanted or harmful email messages
- Rule-based filtering and Machine learning-based filtering
- Some filtering is usually conducted automatically by an SMTP
- Reject, redirect, or quarantine an email depending on the contents
- Customizable for individual needs and preferences
- Setting up rules to block/allow emails from specific senders or domains

Summary

- Basic networking concepts
- Layer Models: OSI Model, TCP/IP
- MAC address, IP address, Ports
- Domains and DNS, WWW
- HTTP requests GET, POST
- Browser Dev Tools Web Debugging
- How does an Email work? SMPT/IMAP

Questions?

SoftUni Diamond Partners

SUPER HOSTING .BG

Coca-Cola HBC Bulgaria

a **Flutter** International brand

Educational Partners

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

