Problem D: Not One Bit More

Start with an integer, N_0 , which is greater than 0. Let N_1 be the number of ones in the binary representation of N_0 . So, if $N_0 = 27$, $N_1 = 4$.

In general, let N_i be the number of ones in the binary representation of N_{i-1} . This sequence will always converge to one.

For any starting number, N_0 , let $K(N_0)$ be the minimum i such that N_i is one. For example, if $N_0 = 31$, then $N_1 = 5$, $N_2 = 2$, $N_3 = 1$, so K(31) = 3.

Given a range of consecutive numbers, and a value X, how many numbers in the range have a $K(\ldots)$ value equal to X?

Input

There will be several test cases in the data file. Each test case will consist of three integers on a single line: $1 \land clusive$ LO HI X

where LO and HI ($1 \le \text{LO} \le \text{HI} \le 10^{18}$) are the lower and upper limits of a range of integers, and X ($0 \le X \le 10$) is the target value for $K(\ldots)$.

The data file will end with a line with three 0s.

Output

For each test case, output a line with a single integer, representing the number of integers in the range from LO to HI (inclusive) which have a K(...) value equal to X in the input.

Example
$$N_1 = bindry rep$$

Input:

Given the input

 $LO \subseteq M_2 = bindry rep$
 $Lower =$

the output would be

Output:	
1	
0	
0	
3	
2	
1	