National University of Computer and Emerging Sciences, Lahore Campus

Course: Statistical Pattern Recog & Learning Course Code: CS 557 Program: MS(Computer Science) Semester: Fall 2016 180 Minutes **Duration: Total Marks:** Paper Date: 29-Dec-16 Weight

60 40 Section: 5 ALL Page(s): Exam: **Final exam Solutions** Roll No:

FINAL EXAM SOLUTIONS Instruction/Notes:

QUESTION 1 (Marks: 2+2+2+2+2)

Suppose we have the following specifications of an HMM with 4 states and 3 observation symbols x,y,z. A is the transition probability matrix, B is the emission probability matrix and π is the initial probability vector. (time starts at t=1)

$$A = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 1/2 & 0 & 1/4 \\ 0 & 0 & 1/4 & 3/4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $\pi = [1 \ 0 \ 0]^{T}$

a. How many possible paths lead to state S_3 at time t=5. List them down.

4 paths:

1. S1 S1 S1 S1 S3

2. S1 S1 S1 S3 S3

3. S1 S1 S3 S3 S3

4. S1 S3 S3 S3 S3

- b. What is the probability of being in state S_3 at time t=5? $4*(1/4)^4$
- c. What is the probability of being in state S_4 at time t=2?
- d. What is the state sequence that generates: xxyzx S1 S1 S1 S2 S2
- e. What is $P(xxyzxyz|q_5=S_1)$? Give a one line explanation. Zero as state S1 is not possible at time t=5
- f. Fill the table for alpha values (forward variable) when using the forward algorithm for generating xxyzx

	<mark>51</mark>	<mark>52</mark>	<mark>S3</mark>	<mark>54</mark>
x (t=1)	<mark>1/3</mark>	0	0	0
x (t=2)	<mark>1/36</mark>	<mark>1/36</mark>	0	0
y (t=3)	<mark>1/216</mark>	0	1/432	0
z (t=4)	0	<mark>1/1296</mark>	1/216*1/4*2/3+	1/216*1/4*1
			1/432*1/4*2/3=.0	+
			<mark>0157</mark>	1/432*3/4*1
				=.00289
x (t=5)	0	1/7776	0	0

QUESTION 2

(MARKS: 3)

Give a possible mapping of the following points a,b,c in 2D that preserves Manhatten distance (City block distance): a: (1,1,2,1), b: (0,0,1,1), c: (1,0,0,0).Indicate a,b,c in the new mapping.

Roll Number:

ANSWER:	a = (0,0)	b = (3,0)	c = (2,2)

QUESTION 3 (MARKS: 3)

Given the following training data:

Point →	0	1	2	3	4	5	6
Label →	+1	+1	-1	+1	+1	-1	-1

and the following test data:

Point →	0.5	1	2	5
Label →	+1	+1	-1	-1

Give the balanced error rate of the test data in terms of a percentage when 3-nearest neighbor is applied.

ANSWER: BER = $\frac{1}{2}(0/2+1/2)*100 =$

QUESTION 4 (Marks: 2+2+2)

Suppose we use the following non-parametric density function to estimate the density of any point in R²:

$$p(x) = \frac{1}{Nh} \sum_{t=1}^{N} w(\frac{x-x^t}{h})$$
, Where $N = \text{total points and } h = 2$

The weight function *w* is given by:

$$w(x) = ||x||_1 \text{ if } ||x||_1 \le 2 \text{ (here } ||x||_1 \text{ is the L}_1 \text{ norm of } x)$$

$$w(x) = 0$$
 otherwise

We have the following training points:

* * * * * * * * * * * * * * * * * * * *	7 10110 11111	9 6 6 6 6 7 6 7	, 0 111101			
$X_1 \rightarrow$	+1	4	-4	3	4	1
$X_2 \rightarrow$	1	-2	2	3	0	2
Class →	-1	-1	-1	-1	+1	+1

Given the training points, determine the following:

a.
$$p(x=(1,1) \mid class = +1)$$

 $\frac{1}{2} \frac{1}{2} \frac{2}{(2+1/2)} = \frac{5}{8}$

b.
$$p(x=(1,1) | class = -1)$$

 $1/8*(0+0+0+0+2) = 1/4$

c. Determine the classification of (1,1) using MAP and the above density function it belongs to +1 class.

QUESTION 5 (Marks: 4+4)

a. Suppose that the probability of getting a job when being a good student (CGPA>= 3.0) is 0.9 and in case the student's performance is not very good (CGPA < 3.0) then the probability of getting a job is 1/d. In a situation where a student gets a job, what is the probability that the student is a good student? The probability of getting a job is assumed to be q. Give an expression in terms of q and d.

We need P(good student) which can be computed from the above P(good) = (q-1)/(.9d-1)P(good|job) = 0.9/1*(q-1)/(.9d-1)

b. For the above scenario make the confusion matrix for the predictions regarding getting a job when the student is a good student and find the precision and recall.

Roll Number:

	good	<mark>~good</mark>
<mark>job</mark>	<mark>.9</mark>	<mark>1/d</mark>
<mark>~job</mark>	<mark>.1</mark>	<mark>1-1/d</mark>

recall = 0.9

precision = 0.9/(.9+1/d) = .9d/(.9d+1)

OUESTION 6

(MARKS 3)

Given the following data in 2D:

• • • • •							
X 1	\rightarrow	0	0	0	1	1	1
<i>X</i> ₂	\rightarrow	2	1	0	2	1	0
labe		+1	+1	+1	-1	-1	-1

Using LDA, give w that separates the two labels

ANSWER $\mathbf{w} = (1,0)$

OUESTION 7 (MARKS 3)

Given the following data for 3 attributes A,B,C

A →	0	1	0	1	0
B →	0	1	1	1	1
C →	1	0	1	0	1

a. Give P(A=0 and B=1 and C=0) when Bernoulli distribution is applied to the

above data

ANSWER: 3/5*4/5*2/5

(Marks: 3.5+3.5+3) QUESTION 8

Given the following initial SOM grid at iteration 0:

	0	1	2
0	$\mathbf{w}_{00} = [-1, -1]^{T}$	$\mathbf{w}_{01} = [1,1]^{T}$	$\mathbf{w}_{02} = [1,5]^{T}$
1	$\mathbf{w}_{10} = [0,0]^{T}$	$W_{11} = [2,2]^T$	$\mathbf{w}_{12} = [0,0]^{T}$
2	$\mathbf{w}_{20} = [4,1]^{T}$	$\mathbf{w}_{21} = [1,1]^{T}$	$\mathbf{w}_{22} = [3,1]^{T}$

Suppose the learning rate =1 and the neighborhood function e is given by:

$$e(k, l, i, j) = 0.5 \text{ if } |k-i| < 1$$

$$e(k,l,i,j) = 0$$
, otherwise

In the above (i,i) are the coordinates of the best matching unit and (k,l) are the coordinates of the unit to update. Use **Euclidean distance** to determine BMU and show working for all parts along with the mathematical expressions you are using.

- a. Show the updated grid when the training point (3,3) is presented to the above grid at iteration 0.
- b. Show the updated grid when the training point (-1,0) is presented to the grid at iteration 0.
- c. Show the mapping of the test points (4.5,1), (1,4.5), (-1,-5) when the grid **at** iteration 0 is used.

 $\mathbf{w}_{21} = [1,1]^{\mathsf{T}}$

b. If BMU is (0,0)

 $\mathbf{w}_{20} = [4,1]^{\mathsf{T}}$

2

	0	<u>1</u>	2
0	$\mathbf{w}_{00} = [-1,0]^{T}$	$\mathbf{w}_{01} = [0, 1/2]^{T}$	$\mathbf{w}_{02} = [0, 5/2]^{T}$
1	$\mathbf{w}_{10} = [0,0]^{T}$	$\mathbf{w}_{11} = [2,2]^{T}$	$\mathbf{w}_{12} = [0,0]^{T}$
2	$\mathbf{w}_{20} = [4,1]^{T}$	$\mathbf{w}_{21} = [1,1]^{T}$	$\mathbf{w}_{22} = [3,1]^{T}$

c. The mapping would be: (2,0), (0,2), (0,0)

QUESTION 9 (Marks: 4)

Suppose we have 5 points in R^3 given by (1,0,1),(1,2,0),(1,1,1),(1,1,3),(2,0,3):

 $\mathbf{w}_{22} = [3,1]^{\mathsf{T}}$

Suppose the data is projected onto $z = \mathbf{w}^T \mathbf{x}$ with $\mathbf{w} = 1/\text{sqrt}(6)^*[1\ 1\ 2]^T$. Find the data points after projection and what is the variance of z?

 $z = [1/sqrt(6) * 3 1/sqrt(6) * 3 1/sqrt(6) * 4 1/sqrt(6) * 8 1/sqrt(6) * 8]^T$ var(z) = 1/6*134/25