Due Date: Mar 7, 2018, Beginning of the class How to submit: Hard copy in the Class

- 2.1 Show that $f(x) = e^{\alpha x^T A x}$ is convex, where A is a positive semidefinite symmetric $n \times n$ matrix and α is a positive scalar.
- 2.2 Show that $f(x,t) = -\log(t^2 x^T x)$ with **dom** $f = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} | t > ||x||_2\}$ is convex. Hint: you can use composition rules here and use convexity of the quadratic over linear function.

2.3 Show that
$$f(x) = \frac{x^T x}{(\prod_{i=1}^n x_i)^{\frac{1}{n}}}$$
 is convex **dom** $f = \mathbb{R}^n_{++}$.

Hint: Perspective Composition Rule. Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a closed proper convex function satisfying $f(0) \leq 0$ and $g: \mathbb{R}^m \to \mathbb{R}$ be a closed proper concave function which is nonnegative on its effective domain, the function h(x) = g(x)f(x/g(x)) is convex with $\operatorname{dom} h = \{x \in \operatorname{dom} g \mid x/g(x) \in \operatorname{dom} f\}$.

- 2.4 Show the following:
- (a) If f and g are convex, both nondecreasing (or nonincreasing), and positive functions on an interval, then fg is convex.
- (b) Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is nonnegative and convex, and $g: \mathbb{R}^n \to \mathbb{R}$ is positive and concave. Show that the function $\frac{f^2}{g}$, with domain $\operatorname{dom} f \cap \operatorname{dom} g$ is convex.