Subgroups!

Spencer Bagley

With many thanks to Matthew Macauley, http://www.math.clemson.edu/~macaule/

10 Feb 2025

 ${\bf 1.} \ \ {\sf Define} \ {\sf what} \ {\sf subgroups} \ {\sf are}$

- 1. Define what subgroups are
- 2. See some examples

- 1. Define what subgroups are
- 2. See some examples
- 3. Figure out all the subgroups of all the groups of order 4

- 1. Define what subgroups are
- 2. See some examples
- 3. Figure out all the subgroups of all the groups of order 4
- 4. ... of order 6

- 1. Define what subgroups are
- 2. See some examples
- 3. Figure out all the subgroups of all the groups of order 4
- 4. ... of order 6
- 5. of order 8

Here is the definition of a subgroup.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

Here is the definition of a subgroup.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

Okay, but remind me what's the definition of a group?

Here is the definition of a subgroup.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

Okay, but remind me what's the definition of a group?

Definition

A group (G, \star) is a set of elements together with a binary operation \star satisfying the following properties:

Here is the definition of a subgroup.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

Okay, but remind me what's the definition of a group?

Definition

A group (G,\star) is a set of elements together with a binary operation \star satisfying the following properties:

1. The operation is associative.

Here is the definition of a subgroup.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

Okay, but remind me what's the definition of a group?

Definition

A group (G,\star) is a set of elements together with a binary operation \star satisfying the following properties:

- 1. The operation is associative.
- 2. G contains the identity element.

Here is the definition of a subgroup.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

Okay, but remind me what's the definition of a group?

Definition

A group (G, \star) is a set of elements together with a binary operation \star satisfying the following properties:

- 1. The operation is associative.
- 2. G contains the identity element.
- 3. Every element in G has an inverse element.

Here is the definition of a subgroup.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

Okay, but remind me what's the definition of a group?

Definition

A group (G, \star) is a set of elements together with a binary operation \star satisfying the following properties:

- 1. The operation is associative.
- 2. G contains the identity element.
- 3. Every element in G has an inverse element.
- 4. *G* is closed under the binary operation.

Here is the definition of a subgroup.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

Okay, but remind me what's the definition of a group?

Definition

A group (G, \star) is a set of elements together with a binary operation \star satisfying the following properties:

- 1. The operation is associative.
- 2. G contains the identity element.
- 3. Every element in G has an inverse element.
- 4. *G* is closed under the binary operation.

Trivial subgroups

Every group G has the following two boring subgroups: $G \leq G$, and $\{e\} \leq G$.

S. Bagley (Westminster) Subgroups! 10 Feb 2025

Here is the definition of a subgroup.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

Okay, but remind me what's the definition of a group?

Definition

A group (G, \star) is a set of elements together with a binary operation \star satisfying the following properties:

- 1. The operation is associative.
- 2. G contains the identity element.
- 3. Every element in G has an inverse element.
- 4. *G* is closed under the binary operation.

Trivial subgroups

Every group G has the following two boring subgroups: $G \leq G$, and $\{e\} \leq G$.

Definition

A proper subgroup H < G is a subgroup that's not equal to the whole group.

S. Bagley (Westminster) Subgroups! 10 Feb 2025

We've previously looked at the orbit of an element:

We've previously looked at the orbit of an element:

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g| := |\langle g \rangle|$.

We've previously looked at the orbit of an element:

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g| := |\langle g \rangle|$.

In particular, if |g| = n is finite, this is the set $\{g^0 = 1, g, g^2, \dots, g^{n-1}\}$.

We've previously looked at the orbit of an element:

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g|:=|\langle g\rangle|$. In particular, if |g|=n is finite, this is the set $\{g^0=1,g,g^2,\ldots,g^{n-1}\}$.

This is a subgroup:

We've previously looked at the orbit of an element:

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g| := |\langle g \rangle|$. In particular, if |g| = n is finite, this is the set $\{g^0 = 1, g, g^2, \dots, g^{n-1}\}$.

This is a subgroup:

Cyclic subgroups are subgroups

For any element $g \in G$, $\langle g \rangle < G$.

10 Feb 2025

We've previously looked at the orbit of an element:

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g|:=\left|\langle g\rangle\right|$. In particular, if |g|=n is finite, this is the set $\{g^0=1,g,g^2,\ldots,g^{n-1}\}$.

This is a subgroup:

Cyclic subgroups are subgroups

For any element $g \in G$, $\langle g \rangle < G$.

But we need not restrain ourselves to generating by one element:

We've previously looked at the orbit of an element:

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g| := |\langle g \rangle|$. In particular, if |g| = n is finite, this is the set $\{g^0 = 1, q, q^2, \dots, q^{n-1}\}$.

This is a subgroup:

Cyclic subgroups are subgroups

For any element $g \in G$, $\langle g \rangle < G$.

But we need not restrain ourselves to generating by one element:

Definition

Let S be a subset of G.

We've previously looked at the orbit of an element:

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g| := |\langle g \rangle|$. In particular, if |g| = n is finite, this is the set $\{g^0 = 1, q, q^2, \dots, q^{n-1}\}$.

This is a subgroup:

Cyclic subgroups are subgroups

For any element $g \in G$, $\langle g \rangle \leq G$.

But we need not restrain ourselves to generating by one element:

Definition

Let S be a subset of G. A word in S is a finite product of finite powers of elements of S or their inverses.

We've previously looked at the orbit of an element:

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g|:=\left|\langle g\rangle\right|$. In particular, if |g|=n is finite, this is the set $\{g^0=1,g,g^2,\ldots,g^{n-1}\}$.

This is a subgroup:

Cyclic subgroups are subgroups

For any element $g \in G$, $\langle g \rangle < G$.

But we need not restrain ourselves to generating by one element:

Definition

Let S be a subset of G. A word in S is a finite product of finite powers of elements of S or their inverses.

 $\langle S \rangle = \{ \text{words in } S \} \text{ is a subgroup of } G, \text{ and it's called the subgroup generated by } S.$

We've previously looked at the orbit of an element:

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g|:=\left|\langle g\rangle\right|$. In particular, if |g|=n is finite, this is the set $\{g^0=1,g,g^2,\ldots,g^{n-1}\}$.

This is a subgroup:

Cyclic subgroups are subgroups

For any element $g \in G$, $\langle g \rangle \leq G$.

But we need not restrain ourselves to generating by one element:

Definition

Let S be a subset of G. A word in S is a finite product of finite powers of elements of S or their inverses.

 $\langle S \rangle = \{ \text{words in } S \} \text{ is a subgroup of } G, \text{ and it's called the subgroup generated by } S.$

And in fact every subgroup looks like this.

Writing $C_2 \leq D_3$ means there is a copy of C_2 sitting inside of D_3 as a subgroup.

Writing $C_2 \leq D_3$ means there is a copy of C_2 sitting inside of D_3 as a subgroup.

Question

How many ways can you find C_2 sitting inside of D_3 ?

Writing $C_2 \leq D_3$ means there is a copy of C_2 sitting inside of D_3 as a subgroup.

Question

How many ways can you find C_2 sitting inside of D_3 ?

Remark

It's more precise to express a subgroup by its generator(s).

Writing $C_2 < D_3$ means there is a copy of C_2 sitting inside of D_3 as a subgroup.

Question

How many ways can you find C_2 sitting inside of D_3 ?

Remark

It's more precise to express a subgroup by its generator(s).

$$C_2 \cong \langle f \rangle < D$$

$$C_2 \cong \langle f \rangle < D_3$$
 $C_2 \cong \langle rf \rangle < D_3$

$$C_2 \cong \langle r^2 f \rangle < D_3$$

Question

How about $C_3 < D_3$?

Writing $C_2 < D_3$ means there is a copy of C_2 sitting inside of D_3 as a subgroup.

Question

How many ways can you find C_2 sitting inside of D_3 ?

Remark

It's more precise to express a subgroup by its generator(s).

$$C_2 \cong \langle f \rangle < D_3$$

$$C_2 \cong \langle f \rangle < D_3$$
 $C_2 \cong \langle rf \rangle < D_3$

$$C_2 \cong \langle r^2 f \rangle < D_3$$

Question

How about $C_3 < D_3$? There's only one!

Groups of order 4

Let's start by considering the subgroups of the two groups of order 4.

Let's start by considering the subgroups of the two groups of order 4.

8 / 24

■ Proper subgroups of V_4 : $\langle h \rangle = \{e, h\}$, $\langle v \rangle = \{e, v\}$, $\langle r \rangle = \{e, r\}$, $\langle e \rangle = \{e\}$.

Let's start by considering the subgroups of the two groups of order 4.

- Proper subgroups of V_4 : $\langle h \rangle = \{e, h\}$, $\langle v \rangle = \{e, v\}$, $\langle r \rangle = \{e, r\}$, $\langle e \rangle = \{e\}$.
- Subgroups of C_4 : $\langle r \rangle = \{1, r, r^2, r^3\} = \langle r^3 \rangle$, $\langle r^2 \rangle = \{1, r^2\}$, $\langle 1 \rangle = \{1\}$.

Let's start by considering the subgroups of the two groups of order 4.

- Proper subgroups of V_4 : $\langle h \rangle = \{e, h\}$, $\langle v \rangle = \{e, v\}$, $\langle r \rangle = \{e, r\}$, $\langle e \rangle = \{e\}$.
- Subgroups of C_4 : $\langle r \rangle = \{1, r, r^2, r^3\} = \langle r^3 \rangle$, $\langle r^2 \rangle = \{1, r^2\}$, $\langle 1 \rangle = \{1\}$.

It is illustrative to arrange these in a subgroup lattice:

Groups of order 6

Subgroups of \mathbb{Z}_6

What subgroups can you find in \mathbb{Z}_6 ? I've drawn the Cayley diagram two different ways.

Hello I am secretly also the cycle graph

Let's figure out all the subgroups of D_3 .

Let's figure out all the subgroups of D_3 .

Here are the non-trivial proper subgroups of D_3 :

$$\langle r \rangle = \{1, r, r^2\} = \langle r^2 \rangle, \quad \langle f \rangle = \{1, f\}, \quad \langle rf \rangle = \{1, rf\}, \quad \langle r^2 f \rangle = \{1, r^2 f\}$$

Let's figure out all the subgroups of D_3 .

Here are the non-trivial proper subgroups of D_3 :

$$\langle r \rangle = \{1, r, r^2\} = \langle r^2 \rangle, \quad \langle f \rangle = \{1, f\}, \quad \langle rf \rangle = \{1, rf\}, \quad \langle r^2 f \rangle = \{1, r^2 f\}, \quad \langle \mathbf{1} \rangle = \{\mathbf{1}\}.$$

Let's figure out all the subgroups of D_3 .

Here are the non-trivial proper subgroups of D_3 :

$$\langle r \rangle = \{1, r, r^2\} = \langle r^2 \rangle, \quad \langle f \rangle = \{1, f\}, \quad \langle rf \rangle = \{1, rf\}, \quad \langle r^2 f \rangle = \{1, r^2 f\}, \quad \langle \mathbf{1} \rangle = \{\mathbf{1}\}.$$

Observations:

■ The cycle graph helps us spot cyclic subgroups.

Let's figure out all the subgroups of D_3 .

Here are the non-trivial proper subgroups of D_3 :

$$\langle r \rangle = \{1, r, r^2\} = \langle r^2 \rangle, \quad \langle f \rangle = \{1, f\}, \quad \langle rf \rangle = \{1, rf\}, \quad \langle r^2 f \rangle = \{1, r^2 f\}, \quad \langle \mathbf{1} \rangle = \{\mathbf{1}\}.$$

Observations:

- The cycle graph helps us spot cyclic subgroups.
- \blacksquare For small groups like D_3 , the cyclic subgroups may be the only proper subgroups.

Let's figure out all the subgroups of D_3 .

Here are the non-trivial proper subgroups of D_3 :

$$\langle r \rangle = \{1, r, r^2\} = \langle r^2 \rangle, \quad \langle f \rangle = \{1, f\}, \quad \langle r f \rangle = \{1, r f\}, \quad \langle r^2 f \rangle = \{1, r^2 f\}, \quad \langle 1 \rangle = \{1\}, r f \rangle$$

Observations:

- The cycle graph helps us spot cyclic subgroups.
- \blacksquare For small groups like D_3 , the cyclic subgroups may be the only proper subgroups.
- There might, however, be more complicated things that are harder to clock.

Groups of order 8

See if you can figure out all the subgroups of D_4 .

See if you can figure out all the subgroups of D_4 .

What do you think is a reasonable way to, like, arrange them?

A lattice is a partially ordered set such that every pair of elements x, y has a unique:

A lattice is a partially ordered set such that every pair of elements x, y has a unique:

■ join, or sup, or least upper bound x∨y

A lattice is a partially ordered set such that every pair of elements x, y has a unique:

■ join, or sup, or least upper bound $x \lor y$

■ meet, or inf, or greatest lower bound $x \wedge y$.

A lattice is a partially ordered set such that every pair of elements x, y has a unique:

■ join, or sup, or least upper bound $x \lor v$

■ meet, or inf, or greatest lower bound $x \wedge v$.

Examples you may have seen previously are subset lattices and divisor lattices.

This seems like a good way to organize subgroups, because:

A lattice is a partially ordered set such that every pair of elements x, y has a unique:

■ join, or sup, or least upper bound $x \lor v$

■ meet, or inf, or greatest lower bound $x \wedge y$.

Examples you may have seen previously are subset lattices and divisor lattices.

This seems like a good way to organize subgroups, because:

Theorem

If $H \leq G$ and $K \leq G$ are two subgroups, then $H \cap K$ is a subgroup.

A lattice is a partially ordered set such that every pair of elements x, y has a unique:

ioin, or sup, or least upper bound $x \lor v$

meet, or inf, or greatest lower bound $X \wedge V$.

Examples you may have seen previously are subset lattices and divisor lattices.

$$x \lor y = x \cup y \qquad \begin{cases} 1, 2 & 3 \\ 1 & 3 \end{cases} \\ x \land y = x \cap y \qquad \begin{cases} 1, 2 & 3 \\ 1 & 3 \end{cases} \\ \begin{cases} 2, 3 \\ 1 \end{cases} \\ \begin{cases} 2 & 3 \end{cases} \end{cases}$$

This seems like a good way to organize subgroups, because:

Theorem

If H < G and K < G are two subgroups, then $H \cap K$ is a subgroup. (Indeed, it's the largest subgroup that's contained in both H and K.)

A lattice is a partially ordered set such that every pair of elements x, y has a unique:

■ join, or sup, or least upper bound $x \lor y$

■ meet, or inf, or greatest lower bound $x \wedge y$.

Examples you may have seen previously are subset lattices and divisor lattices.

$$x \lor y = x \cup y \qquad \begin{cases} 1, 2 & 3 \\ 1 & 3 \end{cases} \\ x \land y = x \cap y \qquad \begin{cases} 1, 2 & 3 \\ 1 & 3 \end{cases} \\ \begin{cases} 2, 3 \\ 3 \end{cases} \end{cases}$$

14 / 24

This seems like a good way to organize subgroups, because:

Theorem

If $H \leq G$ and $K \leq G$ are two subgroups, then $H \cap K$ is a subgroup. (Indeed, it's the largest subgroup that's contained in both H and K.)

Theorem

 $\langle H, K \rangle$ is the smallest subgroup containing both H and K.

A lattice is a partially ordered set such that every pair of elements x, y has a unique:

- join, or sup, or least upper bound x∨y
- meet, or inf, or greatest lower bound $x \wedge y$.

14 / 24

Examples you may have seen previously are subset lattices and divisor lattices.

$$x \lor y = x \cup y$$

$$x \land y = x \cap y$$

$$\begin{cases} \{1, 2, 3\} \\ \{1, 3\} \\ \{2, 3\} \\ \{3\} \end{cases}$$

$$\begin{cases} \{3, 3\} \end{cases}$$

$$\begin{cases} \{3, 3\} \\ \{3\} \end{cases}$$

$$\begin{cases} \{3, 3\} \end{cases}$$

$$\begin{cases} \{3, 3\}$$

This seems like a good way to organize subgroups, because:

Theorem

If $H \leq G$ and $K \leq G$ are two subgroups, then $H \cap K$ is a subgroup. (Indeed, it's the largest subgroup that's contained in both H and K.)

Theorem

 $\langle H, K \rangle$ is the smallest subgroup containing both H and K. (Note that $H \cup K$ is not in general a subgroup. Why not?)

Subgroup lattices

 $H \lor K$: "smallest subgroup above both H and K"

 $H \wedge K$: "largest subgroup below both H and K"

Subgroup lattices

 $H \lor K$: "smallest subgroup above both H and K"

 $H \wedge K$: "largest subgroup below both H and K"

Examples:

Subgroup lattices

 $H \vee K$: "smallest subgroup above both H and K"

 $H \wedge K$: "largest subgroup below both H and K"

Examples:

The subgroups of D_4 are:

The subgroups of D_4 are:

■ The entire group D_4 , and the trivial group $\langle 1 \rangle$

The subgroups of D_4 are:

- The entire group D_4 , and the trivial group $\langle 1 \rangle$
- 4 subgroups generated by reflections: $\langle f \rangle$, $\langle rf \rangle$, $\langle r^2 f \rangle$, $\langle r^3 f \rangle$.

The subgroups of D_4 are:

- The entire group D_4 , and the trivial group $\langle 1 \rangle$
- 4 subgroups generated by reflections: $\langle f \rangle$, $\langle rf \rangle$, $\langle r^2 f \rangle$, $\langle r^3 f \rangle$.
- lacksquare 1 subgroup generated by a 180° rotation, $\langle r^2 \rangle \cong \mathcal{C}_2$

The subgroups of D_4 are:

- The entire group D_4 , and the trivial group $\langle 1 \rangle$
- 4 subgroups generated by reflections: $\langle f \rangle$, $\langle rf \rangle$, $\langle r^2 f \rangle$, $\langle r^3 f \rangle$.
- 1 subgroup generated by a 180° rotation, $\langle r^2 \rangle \cong C_2$
- 1 subgroup generated by a 90° rotation, $\langle r \rangle \cong C_4$

The subgroups of D_4 are:

- The entire group D_4 , and the trivial group $\langle 1 \rangle$
- 4 subgroups generated by reflections: $\langle f \rangle$, $\langle rf \rangle$, $\langle r^2 f \rangle$, $\langle r^3 f \rangle$.
- 1 subgroup generated by a 180° rotation, $\langle r^2 \rangle \cong C_2$
- 1 subgroup generated by a 90° rotation, $\langle r \rangle \cong C_4$
- 2 subgroups isomorphic to V_4 : $\langle r^2, f \rangle$, $\langle r^2, rf \rangle$.

The subgroups of D_4 are:

- The entire group D_4 , and the trivial group $\langle 1 \rangle$
- 4 subgroups generated by reflections: $\langle f \rangle$, $\langle rf \rangle$, $\langle r^2f \rangle$, $\langle r^3f \rangle$.
- lacksquare 1 subgroup generated by a 180° rotation, $\langle r^2 \rangle \cong \mathcal{C}_2$
- 1 subgroup generated by a 90° rotation, $\langle r \rangle \cong C_4$
- 2 subgroups isomorphic to V_4 : $\langle r^2, f \rangle$, $\langle r^2, rf \rangle$.

The subgroups of D_4 are:

- The entire group D_4 , and the trivial group $\langle 1 \rangle$
- 4 subgroups generated by reflections: $\langle f \rangle$, $\langle rf \rangle$, $\langle r^2 f \rangle$, $\langle r^3 f \rangle$.
- 1 subgroup generated by a 180° rotation, $\langle r^2 \rangle \cong C_2$
- 1 subgroup generated by a 90° rotation, $\langle r \rangle \cong C_4$
- 2 subgroups isomorphic to V_4 : $\langle r^2, f \rangle$, $\langle r^2, rf \rangle$.

Let's determine all subgroups of the quaternion group

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

Let's determine all subgroups of the quaternion group

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

Let's determine all subgroups of the quaternion group

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

Every element generates a cyclic subgroup:

$$\langle 1 \rangle = \{1\},$$

Let's determine all subgroups of the quaternion group

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

Every element generates a cyclic subgroup:

$$\langle 1 \rangle = \{1\}, \qquad \langle -1 \rangle = \{\pm 1\},$$

Let's determine all subgroups of the quaternion group

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

Every element generates a cyclic subgroup:

$$\langle 1 \rangle = \{1\}.$$

$$\langle -1 \rangle = \{\pm 1\}.$$

$$\langle 1 \rangle = \{1\}, \qquad \langle -1 \rangle = \{\pm 1\}, \qquad \langle i \rangle = \langle -i \rangle = \{\pm 1, \pm i\},$$

Let's determine all subgroups of the quaternion group

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

Every element generates a cyclic subgroup:

$$\langle 1 \rangle = \{1\}.$$

$$\langle -1 \rangle = \{\pm 1\}.$$

$$\langle 1 \rangle = \{1\}, \qquad \langle -1 \rangle = \{\pm 1\}, \qquad \langle i \rangle = \langle -i \rangle = \{\pm 1, \pm i\},$$

$$\langle j \rangle = \langle -j \rangle = \{\pm 1, \pm j\},\$$

Let's determine all subgroups of the quaternion group

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

Every element generates a cyclic subgroup:

$$\langle 1 \rangle = \{1\}, \qquad \langle -1 \rangle = \{1\},$$

$$\langle 1 \rangle = \{1\}, \qquad \langle -1 \rangle = \{\pm 1\}, \qquad \langle i \rangle = \langle -i \rangle = \{\pm 1, \pm i\},$$

$$\langle j \rangle = \langle -j \rangle = \{\pm 1, \pm j\}, \qquad \langle k \rangle = \langle k \rangle = \{\pm 1, \pm k\}.$$

$$\langle k \rangle = \langle k \rangle = \{\pm 1, \pm k\}.$$

Let's determine all subgroups of the quaternion group

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

Every element generates a cyclic subgroup:

$$\langle 1 \rangle = \{1\}, \qquad \langle -1 \rangle = \{\pm 1\}, \qquad \langle i \rangle = \langle -i \rangle = \{\pm 1, \pm i\},$$

$$\langle j \rangle = \langle -j \rangle = \{ \pm 1, \pm j \}, \qquad \langle k \rangle = \langle k \rangle = \{ \pm 1, \pm k \}.$$

Are there any other proper subgroups?

Let's determine all subgroups of the quaternion group

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle.$$

Every element generates a cyclic subgroup:

$$\langle 1 \rangle = \{1\}, \qquad \langle -1 \rangle = \{\pm 1\}, \qquad \langle i \rangle = \langle -i \rangle = \{\pm 1, \pm i\},$$

$$\langle j \rangle = \langle -j \rangle = \{\pm 1, \pm j\}, \qquad \langle k \rangle = \langle k \rangle = \{\pm 1, \pm k\}.$$

Are there any other proper subgroups?

We've seen the subgroup lattices of two groups of order 8:

We've seen the subgroup lattices of two groups of order 8:

 \blacksquare D_4 has five elements of order 2, and 10 subgroups.

We've seen the subgroup lattices of two groups of order 8:

- \blacksquare D_4 has five elements of order 2, and 10 subgroups.
- \blacksquare Q_8 has one element of order 2, and 6 subgroups.

We've seen the subgroup lattices of two groups of order 8:

- lacksquare D₄ has five elements of order 2, and 10 subgroups.
- lacksquare Q8 has one element of order 2, and 6 subgroups.
- \blacksquare \mathbb{Z}_2^3 has seven *elements* of order 2.

We've seen the subgroup lattices of two groups of order 8:

- \blacksquare D_4 has five elements of order 2, and 10 subgroups.
- lacksquare Q₈ has one element of order 2, and 6 subgroups.
- \blacksquare \mathbb{Z}_2^3 has seven *elements* of order 2.

Rule of thumb

Groups with elements of small order tend to have more subgroups than those with elements of large order.

We've seen the subgroup lattices of two groups of order 8:

- \blacksquare D_4 has five elements of order 2, and 10 subgroups.
- lacksquare Q_8 has one element of order 2, and 6 subgroups.
- \blacksquare \mathbb{Z}_2^3 has seven *elements* of order 2.

Rule of thumb

Groups with elements of small order tend to have more subgroups than those with elements of large order.

The following Cayley graphs show three different subgroups of order 4 in \mathbb{Z}_2^3 .

We've seen the subgroup lattices of two groups of order 8:

- $lue{D}_4$ has five elements of order 2, and 10 subgroups.
- lacksquare Q_8 has one element of order 2, and 6 subgroups.
- \blacksquare \mathbb{Z}_2^3 has seven *elements* of order 2.

Rule of thumb

Groups with elements of small order tend to have more subgroups than those with elements of large order.

The following Cayley graphs show three different subgroups of order 4 in \mathbb{Z}_2^3 .

We've seen the subgroup lattices of two groups of order 8:

- $lue{D}_4$ has five elements of order 2, and 10 subgroups.
- Q₈ has one element of order 2, and 6 subgroups.
- \blacksquare \mathbb{Z}_2^3 has seven *elements* of order 2.

Rule of thumb

Groups with elements of small order tend to have more subgroups than those with elements of large order.

The following Cayley graphs show three different subgroups of order 4 in \mathbb{Z}_2^3 .

All 7 non-identity elements generate a subgroup isomorphic to C_2 .

All $\binom{7}{2}=21$ pairs of non-identity elements generate a subgroup isomorphic to V_4 .

All 7 non-identity elements generate a subgroup isomorphic to C_2 .

All $\binom{7}{2}=21$ pairs of non-identity elements generate a subgroup isomorphic to V_4 .

But this triple-counts all such subgroups.

All 7 non-identity elements generate a subgroup isomorphic to C_2 .

All $\binom{7}{2}=21$ pairs of non-identity elements generate a subgroup isomorphic to V_4 .

But this triple-counts all such subgroups. In summary, the subgroups of \mathbb{Z}_2^3 are:

■ The subgroups G and $\{000\}$,

All 7 non-identity elements generate a subgroup isomorphic to C_2 .

All $\binom{7}{2} = 21$ pairs of non-identity elements generate a subgroup isomorphic to V_4 .

But this triple-counts all such subgroups. In summary, the subgroups of \mathbb{Z}_2^3 are:

- The subgroups G and $\{000\}$,
- 7 subgroups isomorphic to C_2 ,

All 7 non-identity elements generate a subgroup isomorphic to C_2 .

All $\binom{7}{2}=21$ pairs of non-identity elements generate a subgroup isomorphic to V_4 .

But this triple-counts all such subgroups. In summary, the subgroups of \mathbb{Z}_2^3 are:

- The subgroups G and $\{000\}$,
- \blacksquare 7 subgroups isomorphic to C_2 ,
- 7 subgroups isomorphic to V_4 .

All 7 non-identity elements generate a subgroup isomorphic to C_2 .

All $\binom{7}{2} = 21$ pairs of non-identity elements generate a subgroup isomorphic to V_4 .

But this triple-counts all such subgroups. In summary, the subgroups of \mathbb{Z}_2^3 are:

- The subgroups G and $\{000\}$,
- \blacksquare 7 subgroups isomorphic to C_2 ,
- 7 subgroups isomorphic to V₄.

Draw the Cayley diagram of Z_8 and find all its subgroups. Arrange them in a lattice.

Draw the Cayley diagram of Z_8 and find all its subgroups. Arrange them in a lattice.

Draw the Cayley diagram of \mathcal{Z}_8 and find all its subgroups. Arrange them in a lattice.

Draw the Cayley diagram of Z_8 and find all its subgroups. Arrange them in a lattice.

Theorem

Every subgroup of a cyclic group is cyclic.

There is one more group of order 8, which is $\mathbb{Z}_4 \times \mathbb{Z}_2$.

There is one more group of order 8, which is $\mathbb{Z}_4 \times \mathbb{Z}_2$.

There is one more group of order 8, which is $\mathbb{Z}_4 \times \mathbb{Z}_2$.

There is one more group of order 8, which is $\mathbb{Z}_4 \times \mathbb{Z}_2$.

Let's summarize the sizes of the subgroups of the groups of order 8 that we have seen.

	C ₈	Q_8	$C_4 \times C_2$	D_4	C_{2}^{3}
# elts. of order 8	4	0	0	0	0
# elts. of order 4	2	6	4	2	0
# elts. of order 2	1	1	3	5	7
# elts. of order 1	1	1	1	1	1
# subgroups	4	6	8	10	16

There is one more group of order 8, which is $\mathbb{Z}_4 \times \mathbb{Z}_2$.

Let's summarize the sizes of the subgroups of the groups of order 8 that we have seen.

	C_8	Q_8	$C_4 \times C_2$	D_4	C_{2}^{3}
# elts. of order 8	4	0	0	0	0
# elts. of order 4	2	6	4	2	0
# elts. of order 2	1	1	3	5	7
# elts. of order 1	1	1	1	1	1
# subgroups	4	6	8	10	16

Observations?

There is one more group of order 8, which is $\mathbb{Z}_4 \times \mathbb{Z}_2$.

23 / 24

Let's summarize the sizes of the subgroups of the groups of order 8 that we have seen.

	C_8	Q_8	$C_4 \times C_2$	D_4	C_{2}^{3}
# elts. of order 8	4	0	0	0	0
# elts. of order 4	2	6	4	2	0
# elts. of order 2	1	1	3	5	7
# elts. of order 1	1	1	1	1	1
# subgroups	4	6	8	10	16

Observations?

- Groups that have more elements of small order tend to have more subgroups.
- \blacksquare In all of these cases, the order of each subgroup divides |G|.

The end!