Examples and Solutions: bases, subspaces, lin. indep, spanning, dimensions etc.

Example 1

The standard basis of $M_{2\times 2}(\mathbb{R})$ is $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

1. Is
$$\alpha = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \right\}$$
 a basis of $M_{2\times 2}(\mathbb{R})$?

2. Is
$$\gamma = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right\}$$
 a basis of $M_{2\times 2}(\mathbb{R})$?

3. Is
$$\beta = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \right\}$$
 a basis of $M_{2\times 2}(\mathbb{R})$?

4. Extend the set
$$\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \right\}$$
 to a basis (call it $\tilde{\beta}$).

5. If
$$\vec{v} = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$$
 what is $[\vec{v}]_{\tilde{\beta}}$?

6. Let
$$\vec{b}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
, the second basis vector of $\tilde{\beta}$. What is $\begin{bmatrix} \vec{b}_2 \end{bmatrix}_{\tilde{\beta}}$?

Example 2

Let
$$W = \left\{ \begin{bmatrix} w+2x+y & w+x+2y+z \\ x-y-z & w+3x-z \end{bmatrix} : w, x, y, z \in \mathbb{R} \right\}$$

1. When we take w = 4, x = 1, y = 2 and z = -3, what element of W do we get?

2. Is
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in W$$
?

3. Is
$$\begin{bmatrix} 2 & -2 \\ 4 & 6 \end{bmatrix} \in W$$
?

4. Is W all of
$$M_{2\times 2}(\mathbb{R})$$
?

5. Explain why
$$W = \left\{ w \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + x \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} + y \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} + z \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} : w, x, y, z \in \mathbb{R} \right\}.$$

6. Explain why
$$W = \operatorname{span}\left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}\right).$$

7. Is W a subspace of
$$M_{2\times 2}(\mathbb{R})$$
? (i.e. $W \sqsubseteq M_{2\times 2}(\mathbb{R})$?)

8. Find a basis for W.

- **9.** What is $\dim(W)$?
- **10.** Let $\beta = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \right\}$. Check that β is a basis for W.
- **11.** Let $\vec{w} = \begin{bmatrix} 2 & -2 \\ 4 & 6 \end{bmatrix}$. Find $[\vec{w}]_{\beta}$.
- **12.** Let $\gamma = \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \right\}$. Check that γ is also a basis for W.
- **13.** Let $\vec{w} = \begin{bmatrix} 2 & -2 \\ 4 & 6 \end{bmatrix}$. Find $[\vec{w}]_{\gamma}$.

The standard basis of $P_2(\mathbb{F}_4)$ is $S = \{t^2, t, 1\}$

- **1.** Is $\alpha = \{ t^2 + at + b, at^2 + t + 1, at^2 + 1, at^2 + t + 1, t^2 + t + 1 \}$ a basis of $P_2(\mathbb{F}_4)$?
- **2.** If not, prune the set to get a basis for $P_2(\mathbb{F}_4)$.
- 3. Let $\beta = \{t^2 + at + b, at^2 + t + 1, t^2 + t + 1\}$. Check that β is a basis for $P_2(\mathbb{F}_4)$.
- **4.** Let $\vec{v} = at^2 + bt + 1$. Find $[\vec{v}]_S$ and $[\vec{v}]_{\beta}$.
- **5.** Let $\vec{w} = t^2 + bt + 1$. Find $[\vec{w}]_S$ and $[\vec{w}]_{\beta}$.
- **6.** Is $\gamma = \{ t^2 + at + 1, t^2 + b \}$ a basis of $P_2(\mathbb{F}_4)$?
- 7. If not extend it to obtain a basis for $P_2(\mathbb{F}_4)$. Call it δ .
- **8.** Find $[\vec{v}]_{\delta}$ and $[\vec{w}]_{\delta}$ where $\vec{v} = at^2 + bt + 1$ and $\vec{w} = t^2 + bt + 1$.

Example 4

Let $W = \text{span} \{ t^2 + t + a, bt^2 + 1, at^2 + t + b, at \}.$

- **1.** Is $t \in W$?
- **2.** Is $at^2 + bt + b \in W$?
- **3.** Is $at^2 + at + a \in W$?
- **4.** Is $W \sqsubseteq P_2(\mathbb{F}_4)$?

- **5.** What is $\dim(W)$?
- **6.** Is $\beta = \{ t^2 + t + a, bt^2 + 1 \}$ a basis for W?
- 7. Is $\gamma = \{t, t^2 + a\}$ a basis for W?
- **8.** Let $\vec{v} = t^2 + at + a$. Compute $[\vec{v}]_{\beta}$ and $[\vec{v}]_{\gamma}$.
- **9.** Let $\vec{w} = at^2 + bt + b$. Compute $[\vec{w}]_{\beta}$ and $[\vec{w}]_{\gamma}$

Let
$$W = \begin{cases} v + 2w + 2x + y + 2z \\ 2v + 4w + 4x + 2y + 4z \\ 3v + 3x + 6y + 4z \\ v + 5w + 3y + 3z \\ w + 4x + 3y + 5z \end{cases}$$
 : $v, w, x, y, z \in \mathbb{F}_7$

- 1. When we take v = 5, w = 4, x = 1, y = 2 and z = 3, what element of W do we get?

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

- 2. Is $\begin{bmatrix} 6 \\ 5 \\ 2 \\ 0 \\ 5 \end{bmatrix} \in W$?

 3. Is $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$
- **4.** Is W all of \mathbb{F}_7^5 ?
- 5. Explain why $W = \text{span} \begin{bmatrix} 1 & 2 & 2 & 1 & 2 \\ 2 & 4 & 4 & 2 & 4 \\ 3 & 0 & 3 & 6 & 4 \\ 1 & 5 & 0 & 3 & 3 \\ 0 & 1 & 4 & 3 & 5 \end{bmatrix}$.
- **6.** Is W a subspace of \mathbb{F}_7^5 ? (i.e. $W \sqsubseteq \mathbb{F}_7^5$?)
- **7.** Find a basis for W.

8. What is
$$\dim(W)$$
?

9. Let
$$\beta = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 4 \\ 0 \\ 5 \\ 1 \end{bmatrix}$. Check that β is a basis of W .

10. let
$$\gamma = \begin{cases} \begin{vmatrix} 1 \\ 2 \end{vmatrix} & \begin{vmatrix} 4 \\ 1 \\ 3 \end{vmatrix}, & 6 \\ \begin{vmatrix} 1 \\ 0 \end{vmatrix} & 0 \end{vmatrix}$$
. Check that γ is a basis for W .

11. Let
$$\vec{v} = \begin{bmatrix} 6 \\ 5 \\ 2 \\ 0 \\ 5 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 4 \\ 1 \\ 0 \\ 3 \\ 2 \end{bmatrix}$ Compute $[\vec{v}]_{\beta}$, $[\vec{v}]_{\gamma}$, $[\vec{w}]_{\beta}$ and $[\vec{w}]_{\gamma}$

12. If
$$[\vec{w}]_{\gamma} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 then what is \vec{w} ?

13. In part 3 we found that
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \notin W$$
. What element
$$\begin{bmatrix} ?? \\ ?? \\ ?? \\ 4 \\ 5 \end{bmatrix} \in W$$
? [Use part 9]

14. Notice that
$$\delta = \begin{cases} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3 \\ 1 \end{bmatrix} \end{cases}$$
 is also a basis of W . What element $\begin{bmatrix} 2 \\ ?? \\ ?? \\ ?? \\ 3 \end{bmatrix} \in W$?

15. Can you find and element
$$\begin{vmatrix} 4 \\ ?? \\ ?? \\ ?? \end{vmatrix} \in W ?$$

Solutions

Example 1

The standard basis of $M_{2\times 2}(\mathbb{R})$ is $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

1. Is
$$\alpha = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \right\}$$
 a basis of $M_{2\times 2}(\mathbb{R})$?

No. $M_{2\times 2}(\mathbb{R})$ is 4 dimensional, hence this set is too small to be a basis. [Also see part 3. This set is not even linearly independent]

2. Is
$$\gamma = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right\}$$
 a basis of $M_{2\times 2}(\mathbb{R})$?

No. $M_{2\times 2}(\mathbb{R})$ is 4 dimensional, hence this set is too large to be a basis. [Also see part 3. This set is not linearly independent]

3. Is
$$\beta = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \right\}$$
 a basis of $M_{2\times 2}(\mathbb{R})$?

No. This set is **not** linearly independent.

e.g.
$$3 \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$
 \Rightarrow $rref \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ 1 & 3 & 0 & -1 \end{bmatrix}$ \Rightarrow $\begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

4. Extend the set
$$\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \right\}$$
 to a basis (call it $\tilde{\beta}$).

Take e.g.
$$\tilde{\beta} = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$$

5. If
$$\vec{v} = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$$
 what is $[\vec{v}]_{\tilde{\beta}}$?

$$[\vec{v}]_{\tilde{\beta}} = \begin{bmatrix} -13\\3\\8\\12 \end{bmatrix} \quad \Leftarrow \quad$$

6. Let
$$\vec{b}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
, the second basis vector of $\tilde{\beta}$. What is $\begin{bmatrix} \vec{b}_2 \end{bmatrix}_{\tilde{\beta}}$? $\begin{bmatrix} \vec{b}_2 \end{bmatrix}_{\tilde{\beta}} = \begin{bmatrix} \vec{b}_1 \end{bmatrix}_{\tilde{\beta}} = \begin{bmatrix} \vec{b}_2 \end{bmatrix}_{\tilde{\beta}}$

Let
$$W = \left\{ \begin{bmatrix} w+2x+y & w+x+2y+z \\ x-y-z & w+3x-z \end{bmatrix} : w, x, y, z \in \mathbb{R} \right\}$$

1. When we take w = 4, x = 1, y = 2 and z = -3, what element of W do we get?

$$\begin{bmatrix} w + 2 \cdot x + y & w + x + 2 \cdot y + z \\ x - y - z & w + 3 \cdot x - z \end{bmatrix}$$

$$\begin{bmatrix} w + 2 \cdot x + y & w + x + 2 \cdot y + z \\ x - y - z & w + 3 \cdot x - z \end{bmatrix}$$

$$\begin{bmatrix} w + 2 \cdot x + y & w + x + 2 \cdot y + z \\ x - y - z & w + 3 \cdot x - z \end{bmatrix}$$

$$\begin{bmatrix} w + 2 \cdot x + y & w + x + 2 \cdot y + z \\ x - y - z & w + 3 \cdot x - z \end{bmatrix}$$

$$\begin{bmatrix} 8 & 6 \\ 2 & 10 \end{bmatrix}$$

2. Is
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in W$$
? No
3. Is $\begin{bmatrix} 2 & -2 \\ 4 & 6 \end{bmatrix} \in W$? Yes
$$\Leftarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 1 & 2 \\ 1 & 1 & 2 & 1 & 1 & -2 \\ 0 & 1 & -1 & -1 & 1 & 4 \\ 1 & 3 & 0 & -1 & 1 & 6 \end{bmatrix} \qquad
\begin{bmatrix} 1 & 0 & 3 & 2 & 0 & -6 \\ 0 & 1 & -1 & -1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- **4.** Is W all of $M_{2\times 2}(\mathbb{R})$? No
- **5.** Explain why $W = \left\{ w \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + x \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} + y \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} + z \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} : w, x, y, z \in \mathbb{R} \right\}.$

$$w \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + x \cdot \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} + y \cdot \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} + z \cdot \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \qquad \begin{bmatrix} w + 2 \cdot x + y & w + x + 2 \cdot y + z \\ x - y - z & w + 3 \cdot x - z \end{bmatrix}$$

- **6.** Explain why $W = \text{span}\left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}\right)$. This follows from **5**.
- **7.** Is W a subspace of $M_{2\times 2}(\mathbb{R})$? (i.e. $W \sqsubseteq M_{2\times 2}(\mathbb{R})$?) Yes, since it is a span.
- **8.** Find a basis for W.

e.g.
$$\beta = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \right\}$$

$$\operatorname{rref} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ 1 & 3 & 0 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

9. What is
$$\dim(W)$$
? $\dim(W) = 2$

10. Let
$$\beta = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \right\}$$
. Check that β is a basis for W .

Then rref in 8. shows they are linearly independent (and they are spanning all of W).

11. Let
$$\vec{w} = \begin{bmatrix} 2 & -2 \\ 4 & 6 \end{bmatrix}$$
. Find $[\vec{w}]_{\beta}$. $[\vec{w}]_{\beta} = \begin{bmatrix} -6 \\ 4 \end{bmatrix}$

$$\operatorname{rref} \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & -2 \\ 0 & 1 & 4 \\ 1 & 3 & 6 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & -6 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\
-6 \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + 4 \cdot \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \qquad \begin{bmatrix} 2 & -2 \\ 4 & 6 \end{bmatrix}$$

12. Let
$$\gamma = \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \right\}$$
. Check that γ is also a basis for W .

Both
$$\left\{ \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \right\}$$
 are in $W \Leftarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ 1 & 3 & 2 & 1 \end{bmatrix}$
$$\begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \right\}$$
 linearly indep. \Leftarrow
$$rref \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}$$

A linearly independent set of two vectors in a 2 dimensional space is a basis of that space.

13. Let
$$\vec{w} = \begin{bmatrix} 2 & -2 \\ 4 & 6 \end{bmatrix}$$
. Find $[\vec{w}]_{\gamma}$.

$$\left[\stackrel{\rightarrow}{w} \right]_{\gamma} = \left[\begin{array}{c} 2 \\ 2 \end{array} \right] \quad \Leftarrow$$

$$[\vec{w}]_{\gamma} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \qquad \Leftarrow \qquad \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 1 & 1 & 4 \\ 2 & 1 & 6 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$2 \cdot \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} + 2 \cdot \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 2 & -2 \\ 4 & 6 \end{bmatrix}$$

The standard basis of $P_2(\mathbb{F}_4)$ is $S = \{t^2, t, 1\}$

- **1.** Is $\alpha = \{t^2 + at + b, at^2 + t + 1, at^2 + 1, at^2 + t + 1, t^2 + t + 1\}$ a basis of $P_2(\mathbb{F}_4)$? **No**, $P_2(\mathbb{F}_4)$ is 3 dimensional. This set contains too many vectors. There will be dependencies.
- **2.** If not, prune the set to get a basis for $P_2(\mathbb{F}_4)$.

3. Let $\beta = \{t^2 + at + b, at^2 + t + 1, t^2 + t + 1\}$. Check that β is a basis for $P_2(\mathbb{F}_4)$.

Since this is a subset of α with three elements (note that any basis must have 3 elements, since the basis we found in **2**. has 3 elements), hence we only have to check if they are linearly independent:

$$rref4\begin{bmatrix} 1 & a & 1 \\ a & 1 & 1 \\ b & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
4. Let $\vec{v} = at^2 + bt + 1$. Find $[\vec{v}]_S$ and $[\vec{v}]_{\beta}$. $[\vec{v}]_S = \begin{bmatrix} a \\ b \\ 1 \end{bmatrix} \qquad [\vec{v}]_{\beta} = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}$

5. Let $\vec{w} = t^2 + bt + 1$. Find $[\vec{w}]_S$ and $[\vec{w}]_{\beta}$.

- **6.** Is $\gamma = \{ t^2 + at + 1, t^2 + b \}$ a basis of $P_2(\mathbb{F}_4)$? No, only two elements.
- 7. If not extend it to obtain a basis for $P_2(\mathbb{F}_4)$. Call it δ .

E.g.
$$\delta = \{ t^2 + at + 1, t^2 + b, t^2 + t + 1 \}$$

8. Find
$$[\vec{v}]_{\delta}$$
 and $[\vec{w}]_{\delta}$ where $\vec{v} = at^2 + bt + 1$ and $\vec{w} = t^2 + bt + 1$.

$$[\vec{v}]_{\delta} = \begin{bmatrix} 1 \\ a \\ 1 \end{bmatrix} \qquad [\vec{w}]_{\delta} = \begin{bmatrix} b \\ 0 \\ a \end{bmatrix} \qquad \boxed{rref4} \begin{bmatrix} 1 & 1 & 1 & a & 1 \\ a & 0 & 1 & b & b \\ 1 & b & 1 & 1 & 1 \end{bmatrix} } \qquad \qquad \begin{bmatrix} 1 & 0 & 0 & 1 & b \\ 0 & 1 & 0 & a & 0 \\ 0 & 0 & 1 & 1 & a \end{bmatrix}$$

Let
$$W = \text{span} \{ t^2 + t + a, bt^2 + 1, at^2 + t + b, at \}.$$

One **rref4** will answer questions 1-6

$$rref4 \begin{bmatrix} 1 & b & a & 0 & 0 & a & a \\ 1 & 0 & 1 & a & 1 & b & a \\ a & 1 & b & 0 & b & a \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 1 & a & 1 & b & 0 \\ 0 & 1 & 1 & b & a & a & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- **1.** Is $t \in W$?
- Yes. -
- **2.** Is $at^2 + bt + b \in W$? **Yes.**
- **3.** Is $at^2 + at + a \in W$? **No.**
- **4.** Is $W \sqsubseteq P_2(\mathbb{F}_4)$? **No.** (only 2 dimensional)
- 5. What is $\dim(W)$? $\dim(W) = 2$
- **6.** Is $\beta = \{ t^2 + t + a, bt^2 + 1 \}$ a basis for W? **Yes**.
- 7. Is $\gamma = \{t, t^2 + a\}$ a basis for W?

Both
$$\{t, t^2 + a\}$$
 are in $W \Leftarrow \begin{bmatrix} 1 & b & 0 & 1 \\ 1 & 0 & 1 & 0 \\ a & 1 & 0 & a \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & a & a \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\{t, t^2 + a\}$ linearly indep. $\Leftarrow \begin{bmatrix} t & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & a \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & a & a \\ 0 & 0 & 0 & 0 \end{bmatrix}$

A linearly independent set of two vectors in a 2 dimensional space is a basis of that space.

The next two questions can be answered with the following rref4

$$rref4 \begin{bmatrix} 1 & b & 1 & a \\ 1 & 0 & a & b \\ a & 1 & a & b \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & a & b \\ 0 & 1 & 1 & a \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$rref4 \begin{bmatrix} 0 & 1 & 1 & a \\ 1 & 0 & a & b \\ 0 & a & a & b \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & a & b \\ 0 & 1 & 1 & a \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

8. Let
$$\vec{v} = t^2 + at + a$$
. Compute $\begin{bmatrix} \vec{v} \end{bmatrix}_{\beta}$ and $\begin{bmatrix} \vec{v} \end{bmatrix}_{\gamma}$. $\begin{bmatrix} \vec{v} \end{bmatrix}_{\beta} = \begin{bmatrix} a \\ 1 \end{bmatrix}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\gamma} = \begin{bmatrix} a \\ 1 \end{bmatrix}$

8. Let
$$\vec{v} = t^2 + at + a$$
. Compute $\begin{bmatrix} \vec{v} \end{bmatrix}_{\beta}$ and $\begin{bmatrix} \vec{v} \end{bmatrix}_{\gamma}$. $\begin{bmatrix} \vec{v} \end{bmatrix}_{\beta} = \begin{bmatrix} a \\ 1 \end{bmatrix}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\gamma} = \begin{bmatrix} a \\ 1 \end{bmatrix}$
9. Let $\vec{w} = at^2 + bt + b$. Compute $\begin{bmatrix} \vec{w} \end{bmatrix}_{\beta}$ and $\begin{bmatrix} \vec{w} \end{bmatrix}_{\gamma}$ $\begin{bmatrix} \vec{w} \end{bmatrix}_{\beta} = \begin{bmatrix} b \\ a \end{bmatrix}$ $\begin{bmatrix} \vec{w} \end{bmatrix}_{\gamma} = \begin{bmatrix} b \\ a \end{bmatrix}$

Example 5

Let
$$W = \begin{cases} v + 2w + 2x + y + 2z \\ 2v + 4w + 4x + 2y + 4z \\ 3v + 3x + 6y + 4z \\ v + 5w + 3y + 3z \\ w + 4x + 3y + 5z \end{cases}$$
 : $v, w, x, y, z \in \mathbb{F}_7$

1. When we take v = 5, w = 4, x = 1, y = 2 and z = 3, what element of W do we get?

Solution:
$$\begin{bmatrix} 2\\4\\0\\5\\1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 2 & 1 & 2\\2 & 4 & 4 & 2 & 4\\3 & 0 & 3 & 6 & 4\\1 & 5 & 0 & 3 & 3\\0 & 1 & 4 & 3 & 5 \end{bmatrix} \begin{bmatrix} v\\w\\x\\y\\z \end{bmatrix}$$

$$\begin{bmatrix} v+2 \cdot w+2 \cdot x+y+2 \cdot z\\2 \cdot v+4 \cdot w+4 \cdot x+2 \cdot y+4 \cdot z\\3 \cdot v+3 \cdot x+6 \cdot y+4 \cdot z\\v+5 \cdot w+3 \cdot y+3 \cdot z\\w+4 \cdot x+3 \cdot y+5 \cdot z \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 2 & 1 & 2\\2 & 4 & 4 & 2 & 4\\3 & 0 & 3 & 6 & 4\\1 & 5 & 0 & 3 & 3\\0 & 1 & 4 & 3 & 5 \end{bmatrix} \begin{bmatrix} 5\\4\\0\\5\\1 \end{bmatrix}$$

2. Is
$$\begin{bmatrix} 6 \\ 5 \\ 2 \\ 0 \\ 5 \end{bmatrix}$$

3. Is $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$
4. Is W all of \mathbb{F}_7^5 ?

- **4.** Is W all of \mathbb{F}_7^5 ? **No**, W is only 2 dimensional.
- 5. Explain why $W = \text{span} \begin{bmatrix} 1 & 2 & 2 & 1 & 2 \\ 2 & 4 & 4 & 2 & 4 \\ 3 & 0 & 3 & 6 & 4 \\ 1 & 5 & 0 & 3 & 3 \\ 0 & 1 & 4 & 3 & 5 \end{bmatrix}$.

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 0 \end{bmatrix} + w \cdot \begin{bmatrix} 2 \\ 4 \\ 0 \\ 5 \\ 1 \end{bmatrix} + x \cdot \begin{bmatrix} 2 \\ 4 \\ 3 \\ 0 \\ 4 \end{bmatrix} + y \cdot \begin{bmatrix} 1 \\ 2 \\ 6 \\ 3 \\ 3 \end{bmatrix} + z \cdot \begin{bmatrix} 2 \\ 4 \\ 4 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} v + 2 \cdot w + 2 \cdot x + y + 2 \cdot z \\ 2 \cdot v + 4 \cdot w + 4 \cdot x + 2 \cdot y + 4 \cdot z \\ 3 \cdot v + 3 \cdot x + 6 \cdot y + 4 \cdot z \\ v + 5 \cdot w + 3 \cdot y + 3 \cdot z \\ w + 4 \cdot x + 3 \cdot y + 5 \cdot z \end{bmatrix}$$

- **6.** Is W a subspace of \mathbb{F}_7^5 ? (i.e. $W \sqsubseteq \mathbb{F}_7^5$?) **Yes**, since $W = \text{span} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \\ 3 \\ 5 \\ 0 \end{bmatrix}$
- 7. Find a basis for W. e.g. $\beta = \begin{cases} \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}, \begin{vmatrix} 2 \\ 4 \\ 3 \end{vmatrix}, \begin{vmatrix} 2 \\ 4 \\ 5 \\ 0 \end{vmatrix} \end{cases}$

8. What is
$$\dim(W)$$
? $\dim(W) = 2$

9. Let
$$\beta = \begin{cases} \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}, \begin{vmatrix} 2 \\ 4 \\ 0 \\ 1 \end{vmatrix} \end{cases}$$
. Check that β is a basis of W .

10. let
$$\gamma = \begin{cases} \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}, \begin{vmatrix} 4 \\ 1 \\ 0 \\ 0 \end{vmatrix} \end{cases}$$
. Check that γ is a basis for W .

A linearly independent set of two vectors in a 2 dimensional space is a basis of that space.

11. Let
$$\vec{v} = \begin{bmatrix} 6 \\ 5 \\ 2 \\ 0 \\ 5 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 4 \\ 1 \\ 0 \\ 3 \\ 2 \end{bmatrix}$ Compute $[\vec{v}]_{\beta}$, $[\vec{v}]_{\gamma}$, $[\vec{w}]_{\beta}$ and $[\vec{w}]_{\gamma}$

$$\left[\vec{v}\right]_{\beta} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \qquad \left[\vec{w}\right]_{\beta} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \qquad \Leftarrow$$

$$\left[\vec{v} \right]_{\gamma} = \left[\begin{matrix} 0 \\ 5 \end{matrix} \right] \qquad \left[\vec{w} \right]_{\gamma} = \left[\begin{matrix} 3 \\ 2 \end{matrix} \right] \qquad \Leftarrow$$

12. If
$$[\vec{w}]_{\gamma} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 then what is \vec{w} ?

$$\vec{w} = \begin{bmatrix} x+4y \\ 2x+y \\ 3x+6y \\ x \\ y \end{bmatrix}$$

$$\vec{w} = \begin{bmatrix} x+4y \\ 2x+y \\ 3x+6y \\ x \\ y \end{bmatrix}$$

$$\vec{w} = \begin{bmatrix} x+4y \\ 2x+y \\ 3x+6y \\ x \\ y \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 \\ 2 & 1 \\ 3 & 6 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ y \end{bmatrix}$$

$$\begin{bmatrix} x+4\cdot y \\ 2\cdot x+y \\ 3\cdot x+6\cdot y \\ x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x+4\cdot y \\ 2\cdot x+y \\ 3\cdot x+6\cdot y \\ x \\ y \end{bmatrix}$$

13. In part 3 we found that
$$\begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \not\in W$$
. What element $\begin{bmatrix} ?? \\ ?? \\ 4 \\ 5 \end{bmatrix} \in W$? [Use part 9]

Note that if
$$\vec{w} = \begin{bmatrix} ?? \\ ?? \\ 4 \\ 5 \end{bmatrix} \in W$$
 then $[\vec{w}]_{\gamma} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ i.e. $\vec{w} = \begin{bmatrix} x+4y \\ 2x+y \\ 3x+6y \\ x \\ y \end{bmatrix}_{\substack{x=4 \\ y=5}} = \begin{bmatrix} 3 \\ 6 \\ 0 \\ 4 \\ 5 \end{bmatrix}$

$$s7 \begin{bmatrix} x+4 \cdot y \\ 2 \cdot x+y \\ 3 \cdot x+6 \cdot y \\ x \\ y \end{bmatrix} | x=4 \text{ and } y=5$$

$$\begin{bmatrix} 3 \\ 6 \\ 0 \\ 4 \\ 5 \end{bmatrix}$$

14. Notice that
$$\delta = \begin{cases} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \end{cases}$$
 is also a basis of W . What element $\begin{bmatrix} 2 \\ ?? \\ ?? \\ ?? \\ 3 \end{bmatrix} \in W$?

then
$$\vec{w} = \begin{bmatrix} x \\ 2x \\ 3x + y \\ x + 3y \\ y \end{bmatrix}$$
 so that
if $[\vec{w}]_{\delta} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ then $\vec{w} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$

Note that if
$$\begin{bmatrix} \vec{w} \end{bmatrix}_{\delta} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 then $\vec{w} = \begin{bmatrix} x \\ 2x \\ 3x + y \\ x + 3y \\ y \end{bmatrix}$ so that $\vec{w} = \begin{bmatrix} x \\ 2x \\ 3x + y \\ x + 3y \\ y \end{bmatrix}$ then $\vec{w} = \begin{bmatrix} 2 \\ 4 \\ 2 \\ 4 \\ 3 \end{bmatrix}$ then $\vec{w} = \begin{bmatrix} 2 \\ 4 \\ 2 \\ 4 \\ 3 \end{bmatrix}$ then $\vec{w} = \begin{bmatrix} 2 \\ 4 \\ 2 \\ 4 \\ 3 \end{bmatrix}$

15. Can you find and element
$$\begin{vmatrix} 4 \\ ?? \\ ?? \\ ?? \end{vmatrix}$$
 $\in W$? **No**, the second coordinate is always twice the first $\begin{vmatrix} 2 \\ ?? \\ ?? \end{vmatrix}$

in W (See **14**.)