الآليات المحدودة

FINITE AUTOMATA

FINITE AUTOMATON آلية محدودة

أساليب تعرف محلل المفردات على نمط بطاقة token

- عند فشل مخطط ما في التعرف على بطاقة token تستدعى الدالة ()fail، ويعاد مؤشر القراءة للبداية, يوجد عدّة أساليب للتعامل مع هذا الموقف:
- 1. يتم التنسيق لتجربة البطاقات الفاشلة failed على المخططات الانتقالية الواحد تلو الآخر حتى نتحصل على المخطط الصحيح
 - 2. تنفيذ المخططات على التوازي، وتغذية الرمز التالي لهم جميعاً.
 - كيف التصرف عندما يتعرف مخطط على نمط المفردة قبل بقية المخططات؟

 - يمكن أن تكون المفردة كلمة محجوزة أو قد تكون جزء من معرف ما then قد يظنها مخطط أنها الأمر thenext وفي الواقع هي اسم متغير!
 - يمكن تفضيل المخططات التي تميز أطول مفردة من السلسة المدخلة

تعرف محلل المفردات على مخطط انتقالي لبطاقة token

- 3. الأسلوب المفضل هو دمج كل مخططات الانتقال كمخطط واحد
 - يقرأ المخطط المدخلات إلى أن لا يوجد حالة تالية
 - ثم يأخذ أطول مفردة تتوافق مع أي نمط
 - طبعاً لهذا الأسلوب تعقيداته

خطط انتقالي يضم مخططات التعرف على عدد موجب صحيح 123, وعدد عشري 1.23, وعدد حقيقي 1.2E3 (1.2x10³)

مخططات التعرف على المعرفات والكلمات المحجوزة

- تمييز الكلمات المحجوزة keywords و المعرفات identifiers يحتاج لخطة
 - الكلمات المحجوزة مثل if أو then تشبه اسماء متغيرات (المعرفات)

• هذا المخطط الانتقالي يتعرف على مفردات (lexemes) المعرفات وأيضاً يمكنه التعرف على الكلمات المحجوزة مثل if أو then أو else أو ...

طريقتين للتعرف على المعرفات والكلمات المحجوزة

- 1. في جدول الرموز symbol table أو جدول
- 2. على مخططات الانتقال بدلاً من جدول الرموز

طريقتين للتعرف على المعرفات والكلمات المحجوزة

- 1. منذ البداية يتم إدراج install الكلمات المحجوزة في جدول الرموز symbol table أو جدول مخصص للكلمات المحجوزة
 - يحدد حقل قي الجدول ليوضح أن هذه الكلمات ليست معرفات
 - عندما يعثر مخطط انتقالي على مفردة ما ,
 - ✓ أولاً يجرى بحث في الجدول هل توجد كلمة محجوزة باسمها في جدول الرموز؟
 - √ لو نعم: فهذه المفردة هي كلمة محجوزة
- الدالة (get Token ترد باسم البطاقة المناسبة keyword token حسب الكلمة المحجوزة
 - ✓ لو لا: فهذه المفردة هي معرف وتمنح لبطاقة bi
 - الدالة () get Token ترد باسم البطاقة المناسبة id token الدالة
 - ثم الدالة () installID تعمل على إدراج المعرف في جدول الرموز

طريقتين للتعرف على المعرفات والكلمات المحجوزة

2. هذه الطريقة تعتمد على مخططات الانتقال بدلاً من جدول الرموز
لكل كلمة مجوزة يوجد مخطط انتقالي يميز نمطها

- يوجد حالات تمثل موقف/حالة المخطط بعد كل حرف من حروف الكلمة
 - يلي حالات حروف الكلمة المحجوزة اختبارٌ عن وجود أرقام أو رموز أخرى nonletter-or-digit لا تكون عادة جزء من كلمة محجوزة؟
 - ✓ لا يوجد حرف أو رقم: إذن هذه مفردة كلمة محجوزة
 - ✓ نعم يوجد حرف أو رقم: هذه مفردة ليست كلمة محجوزة
- في هذا الأسلوب يكون الأولوية لاختبار أنماط الكلمات المحجوزة ثم تأتي الأنماط الأخرى

DESCRIPTING FINITE STATE AUTOMATA

وصف آليات الحالات المحدودة

- عرفنا أن آلية الحالات المحدودة finite state automaton هي عبارة عن جهاز معالجة معلومات ينقل المدخلات ويحولها لمخرجات
 - مدخلات: نغة من هجائية input alphabet A
 - مخرجات: نعم أو لا
 - نعم: المدخلات مقبولة accepted
 - لا: المدخلات غير مقبولة not accepted

finite acceptors لذلك تسمى أيضاً بآلات القبول المحدودة

EXPRESSING FINITE STATE AUTOMATA

التعبير عن آليات الحالات المحدودة

- المخطط الانتقالي، كما رأينا سلفاً...
 - تعبير جبري
 - الجدول الانتقالية

EXPRESSING FINITE STATE AUTOMATA

التعبير عن آليات الحالات المحدودة

• يعبر عن آلة قبول محدودة A بخمس معلومات في تعبير جبري كالتالي:

$$\mathbf{A} = (S, A, i, \delta, T)$$

- حيث 5 فئة محدودة لجميع حالات الآلية
 - و A جميع المدخلات المحدودة
 - و i تعبر عن الحالة الابتدائية للآلية
- $\delta: S \times A \to S$ و δ دلتا هي دالة انتقالية لتحويل المدخلات من حالة لأخرى
 - S و T تعبر عن الحلات النهائية final states, وهي فئة جزئية من T

مثال: التعبير عن آليات الحالات المحدودة

باستخدام التعبير الجبري, ما هي قيم عوامل A لآلية قبول تعبيرات الشرط

$$\mathbf{A} = (S,A,i,\delta,T)$$
 التالية, حيث

$$S = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$
 فئة الحالات

$$A = \{<, >, =\}$$
 المدخلات

$$i=0$$
 الحالة الابتدائية

$$T = \{2, 3, 4, 5, 7, 8\}$$
 فئة الحالات النهائية

$$\delta: S \times A \to S$$
 الدالة الانتقالية

$$\delta(0,<) \rightarrow 1, \delta(1,=) \rightarrow 2, \delta(1,>) \rightarrow 3, \delta(1,other) \rightarrow 4, \delta(0,=) \rightarrow 5,$$

$$\delta(0,>) \rightarrow 6, \delta(6,=) \rightarrow 7, \delta(6,other) \rightarrow 8,$$

باستخدام التعبير الجبري, ما هي قيم عوامل A للآلية التالية,

$$\mathbf{A} = (S,A,i,\delta,T)$$
 حيث

$$S = \{s, t\}$$
 فئة الحالات

$$A = \{a, b\}$$
 المدخلات

- الحالة الابتدائية s
- $\{t\}$ فئة الحالات النهائية ullet

حواف المخطط الانتقالي تعبر عن الدوال الانتقالية

$$\delta: S \times A \to S$$
 lie الدالة الانتقالية \bullet

$$\delta(s,a) \to s$$
, $\delta(s,b) \to t$, $\delta(t,a) \to s$, and $\delta(t,b) \to t$

DESCRIPTING FINITE STATE **AUTOMATA**

وصف آليات الحالات المحدودة

باستخدام الجدول الانتقالية:

	علات	المدخ
الحالات	a	b
$\rightarrow s$	s	\overline{t}
$\leftarrow t$	s	t

- يعبر عن الحالة الابتدائية بسهم داخل →
 - والحالات النهائية بسهم خارج >
- إذا كانت الحالة الابتدائية هي حالة نهائية أيضاً فتوضح بسهم مزدوج ب

كيف تصف لغة ما

- $\mathbf{A} = (S, A, i, \delta, T)$ بالتعبير الجبري
 - $S = \{s, t\}$ فئة الحالات
 - $A = \{a, b\}$ المدخلات
 - الحالة الابتدائية s
 - فئة الحالات النهائية {t}
 - $\delta: S \times A \to S$ like the like $\delta: S \times A \to S$

$$\delta(s,a) \to s$$
, $\delta(s,b) \to t$,

 $\delta(t,a) \to s$, and $\delta(t,b) \to t$

وصف آليات الحالات المحدودة

• ما هي المفردات التي تتعرف عليها الآلية التالية؟

وصف آليات الحالات المحدودة

وما هو الجدول الانتقالي ؟

states	inputs		
States	а	b	
\rightarrow s ₀	{s ₀ , s ₁ }	{s ₀ }	
S ₁	-	{s ₂ }	
S ₂	-	{s ₃ }	
← s ₃	-	-	

المعاظرة التالية:

أمثلة عن الآلات المحدودة