Regression Tasks - Linear Regression

Astrini Sie

asie@seattleu.edu

Week 2

ECEGR4750 - Introduction to Machine Learning Seattle University

October 12, 2023

Recap and Updates

Tuesday

Stable Diffusion demo

Thursday

- OLS derivation, notation, and x_0
- Logistical updates: office hours, homework/lab, next week
- Communication method

Recap and Updates

- Office Hours
 - T, Th 12-1p at Bannan 224
 - W 7-9p via Zoom
 - F 9-9.45a via Zoom
- Syllabus to be posted this week
- First lab homework to be posted by Friday
- Communication: enable Canvas notifications
- Next Week: Guest Lecture

Overview

- Supervised Learning
 - Definition
 - Terminologies
- Regression
 - Case Study: Input, Model, Cost Function
 - Optimization: Ordinary Least Squares (OLS)
 - Optimization: Least Mean Squares (LMS)
 - Gradient Descent
 - Batch Gradient Descent
 - Stochastic Gradient Descent
 - Stochastic Minibatch Gradient Descent
- Case Study, Revisited
- Summary of Linear Regression

Goal of supervised learning

Given training set with known features and labels, produce a prediction function

Goal of supervised learning

Given training set with known features and labels, produce a prediction function

- During training: given input data ('training set') with features and labels, learn the relationship ('prediction function') between them
- During inference: given a brand new data with features, use the prediction function to predict the labels

Terminologies:

Input / Training Set consists of feature and label pairs:

Features: $x^{(1)}$, $x^{(2)}$, \cdots , $x^{(n)}$. $x^{(i)} \in X$. Labels: $y^{(1)}$, $y^{(2)}$, \cdots , $y^{(n)}$. $y^{(i)} \in Y$. for $i = 1, \cdots, n$, where n is the total number of training samples.

Terminologies:

Input / Training Set consists of feature and label pairs:

```
Features: x^{(1)}, x^{(2)}, \cdots, x^{(n)}. x^{(i)} \in X. Labels: y^{(1)}, y^{(2)}, \cdots, y^{(n)}. y^{(i)} \in Y. for i = 1, \cdots, n, where n is the total number of training samples.
```

• Model / Prediction Function:

A function $h_{\theta}(x): X \to Y$ that maps the input features X to the output values Y, where θ is the **parameter** or **weight** of the model. In the training process, we *learn* the values of θ that results in good predictions.

Terminologies:

Input / Training Set consists of feature and label pairs:

```
Features: x^{(1)}, x^{(2)}, \cdots, x^{(n)}. x^{(i)} \in X. Labels: y^{(1)}, y^{(2)}, \cdots, y^{(n)}. y^{(i)} \in Y. for i = 1, \cdots, n, where n is the total number of training samples.
```

• Model / Prediction Function:

A function $h_{\theta}(x): X \to Y$ that maps the input features X to the output values Y, where θ is the **parameter** or **weight** of the model. In the training process, we *learn* the values of θ that results in good predictions.

Output / Prediction:

Given an unseen data point $x^{(k)}$, predict the output $y^{(k)}$ based on prediction function h.

Terminologies

Input / Training Set consists of feature and label pairs:

Features:
$$x^{(1)}$$
, $x^{(2)}$, ..., $x^{(n)}$. $x^{(i)} \in X$.
Labels: $y^{(1)}$, $y^{(2)}$, ..., $y^{(n)}$. $y^{(i)} \in Y$.
for $i = 1$... n where n is the total numb

for $i=1,\cdots,n$, where n is the total number of training samples.

• Model / Prediction Function:

A function $h_{\theta}(x): X \to Y$ that maps the input features X to the output values Y, where θ is the **parameter** or **weight** of the model. In the training process, we *learn* the values of θ that results in good predictions.

Output / Prediction:

Given an unseen data point $x^{(k)}$, predict the output $y^{(k)}$ based on prediction function h.

- ullet if Y is continuous, it will be a regression task
- if Y is discrete, it will be a classification task

There are two types of supervised learning tasks:

Regression

if Y is continuous

- Estimating the relationships between a dependent variable ('label') and one or more independent variables ('features').
- Example: *X* is data of house dimensions and locations, predict *Y* the price of the house.

Classification

if Y is discrete

- Categorizing a given set of input data into categories ('classes') based on one or more variables ('features').
- Example: X is an image, predict if Y is a "cat" or a "dog".

There are two types of supervised learning tasks:

Regression

if Y is continuous

- Estimating the relationships between a dependent variable ('label') and one or more independent variables ('features').
- Example: *X* is data of house dimensions and locations, predict *Y* the price of the house.

Classification

if Y is discrete

- Categorizing a given set of input data into categories ('classes') based on one or more variables ('features').
- Example: X is an image, predict if Y is a "cat" or a "dog".

Input

Regression Sample Case: Predicting House Data

1) Input: feature x = size and label y = price, with n = 3 training samples.

	Size
x ⁽¹⁾	2104
$x^{(2)}$	2500
x ⁽³⁾	1600

	Price
y ⁽¹⁾	400K
$y^{(2)}$	900K
$y^{(3)}$	330K

Input

Regression Sample Case: Predicting House Data

1) Input: feature x = size and label y = price, with n = 3 training samples.

	Size
$x^{(1)}$ $x^{(2)}$ $x^{(3)}$	2104 2500 1600

	Price
$y^{(1)}$	400K
$y^{(2)}$	900K
$y^{(3)}$	330K

2) Model / Prediction Function: a linear model

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)}$$

Model

Regression Sample Case: Predicting House Data

2) Model / Prediction Function: a linear model

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)}$$

Using the convention of $x_0 = 1$, we can rewrite the prediction function as:

$$h_{\theta}(x^{(i)}) = \sum_{j=0}^{d} \theta_{j}^{(i)} x_{j}^{(i)}$$

A note on notation: the superscript (i) denotes the index of the training sample, and the subscript j denotes index of the feature. For example, $x_3^{(1)}$ means feature 3 from training sample 1.

Model

Regression Sample Case: Predicting House Data

2) Model / Prediction Function: a linear model

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)}$$

Using the convention of $x_0 = 1$, we can rewrite the prediction function as:

$$h_{\theta}(x^{(i)}) = \sum_{j=0}^{d} \theta_{j}^{(i)} x_{j}^{(i)}$$

Goal

Learn the values of θ that results in **good prediction**.

What is a good prediction?

Regression Sample Case: Predicting House Data

What is a good prediction?

Regression Sample Case: Predicting House Data

What is a good prediction?

Calculate the distance from each data point (label) $y^{(i)}$ to the regression line (prediction) $h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)}$, square it, and sum all of the squared errors together. We call this the **cost function** $J(\theta)$.

Regression Sample Case: Predicting House Data

What is a good prediction? A good prediction is the one that minimizes the cost function $J(\theta)$.

How do you define a cost function?

Regression Sample Case: Predicting House Data

What is a good prediction? A good prediction is the one that minimizes the cost function $J(\theta)$.

How do you define a cost function? Case by case basis. In this example, let's choose **sum of squared errors** as our cost function.

Regression Sample Case: Predicting House Data

What is a good prediction? A good prediction is the one that minimizes the cost function $J(\theta)$.

How do you define a cost function? Case by case basis. In this example, let's choose **sum of squared errors** as our cost function.

2a) Cost Function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

Where n is the total number of training samples. Choose θ such that:

$$\theta = \underset{\theta}{\operatorname{argmin}} J(\theta)$$

Solving the Cost Function

Regression Sample Case: Predicting House Data

How do we solve for θ that minimizes this cost function? How do we solve for this minimization / optimization problem?

- Ordinary Least Squares (OLS). Analytical solution (closed form).
- 2 Least Mean Squares (LMS). Numerical solution (approximation).

Optimization

Choose θ that minimizes $J(\theta)$ using OLS solution. This solution provides a closed form solution of θ in terms of the known variables x and y.

Cost Function:
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$
 (1)

We can simplify the expression of the cost function in matrix from using the rule $z^Tz = \sum_i z_i^2$:

Optimization

Choose θ that minimizes $J(\theta)$ using OLS solution. This solution provides a closed form solution of θ in terms of the known variables x and y.

Cost Function:
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$
 (2)

We can simplify the expression of the cost function in matrix from using the rule $z^Tz = \sum_i z_i^2$:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$
 (3)

$$J(\theta) = \frac{1}{2}(H - Y)^{T}(H - Y) \tag{4}$$

Optimization

Let's define x, y, and $h_{\theta}(x)$ in matrix forms:

Optimization

Let's define x, y, and $h_{\theta}(x)$ in matrix forms:

	Size
X ⁽¹⁾	2104
$x^{(2)}$	2500
x ⁽³⁾	1600

$$x_{0} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_{1}^{(1)} \\ x_{1}^{(2)} \\ x_{1}^{(3)} \end{bmatrix} \longrightarrow \begin{bmatrix} x_{1}^{(1)} \\ x_{1}^{(2)} \\ \vdots \\ x_{1}^{(n)} \end{bmatrix}, \qquad x_{1} = \begin{bmatrix} 2104 \\ 2500 \\ 1600 \end{bmatrix} = \begin{bmatrix} x_{1}^{(1)} \\ x_{1}^{(2)} \\ x_{1}^{(3)} \\ x_{1}^{(3)} \end{bmatrix} \longrightarrow \begin{bmatrix} x_{1}^{(1)} \\ x_{1}^{(2)} \\ \vdots \\ x_{1}^{(n)} \end{bmatrix}$$

Optimization

Let's define x, y, and $h_{\theta}(x)$ in matrix forms:

	Size	Bedrooms	Lot Size
$X^{(1)}$	2104	4	4500
$x^{(2)}$	2500	3	3000
$x^{(3)}$	1600	3	3000

$$x_{2} = \begin{bmatrix} 4 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} x_{2}^{(1)} \\ x_{2}^{(2)} \\ x_{2}^{(3)} \\ x_{2}^{(n)} \end{bmatrix} \longrightarrow \begin{bmatrix} x_{2}^{(1)} \\ x_{2}^{(2)} \\ \vdots \\ x_{2}^{(n)} \end{bmatrix}, \qquad x_{3} = \begin{bmatrix} 4500 \\ 3000 \\ 3000 \end{bmatrix} = \begin{bmatrix} x_{3}^{(1)} \\ x_{3}^{(2)} \\ x_{3}^{(3)} \end{bmatrix} \longrightarrow \begin{bmatrix} x_{3}^{(1)} \\ x_{3}^{(2)} \\ \vdots \\ x_{3}^{(n)} \end{bmatrix}$$

Optimization

Let's define x, y, and $h_{\theta}(x)$ in matrix forms:

Combining the all the x vectors:

$$X = \begin{bmatrix} | & | & | & | \\ x_0 & x_1 & \dots & x_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} - & x^{(1)} & - \\ - & x^{(2)} & - \\ - & \vdots & - \\ - & x^{(n)} & - \end{bmatrix} \in \mathbb{R}^{n \times (d+1)}$$

where:

n = number of training samples

d = number of features

Optimization

Let's define x, y, and $h_{\theta}(x)$ in matrix forms:

	Price
y ⁽¹⁾	400K
$y^{(2)}$	900K
$y^{(3)}$	890K

$$Y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times 1}$$

where:

n = number of training samples

Optimization

Let's define x, y, and $h_{\theta}(x)$ in matrix forms:

$$h_{\theta}(x^{(i)}) = \sum_{j=0}^{d} \theta_j^{(i)} x_j^{(i)}$$

In matrix form, this is equivalent to:

$$h_{\theta}(x^{(i)}) = (x^{(i)})^{\mathsf{T}}\theta \tag{5}$$

$$H = X\Theta$$
 (6)

Optimization

Now, let's plug in H (5) into the cost function (3):

Cost Function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

Optimization

Now, let's plug in H (5) into the cost function (3):

Cost Function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$
$$J(\theta) = \frac{1}{2} (H - Y)^{T} (H - Y)$$
$$J(\theta) = \frac{1}{2} (X\Theta - Y)^{T} (X\Theta - Y)$$

Optimization

Finally, let's find θ that minimizes J. To do this, find the derivative of J with respect to θ , and set it to zero.

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\Theta - Y)^{T} (X\Theta - Y)$$

Optimization

Finally, let's find θ that minimizes J. To do this, find the derivative of J with respect to θ , and set it to zero.

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\Theta - Y)^{T} (X\Theta - Y)$$

$$0 = \frac{1}{2} \nabla_{\theta} ((X\Theta)^{T} - Y^{T}) (X\Theta - Y)$$

$$0 = \frac{1}{2} \nabla_{\theta} ((X\Theta)^{T} X\Theta - (X\Theta)^{T} Y - Y^{T} (X\Theta) + Y^{T} Y)$$

$$(ab)^{T} = b^{T} a^{T} \text{ gives us } (X\Theta)^{T} = \Theta^{T} X^{T}$$

$$a^{T} b = b^{T} a \text{ gives us } (X\Theta)^{T} Y = Y^{T} (X\Theta)$$

$$0 = \frac{1}{2} \nabla_{\theta} (\Theta^{T} X^{T} X\Theta - Y^{T} X\Theta - Y^{T} X\Theta + Y^{T} Y)$$

Optimization

continued...

$$0 = \frac{1}{2} \nabla_{\theta} (\Theta^{T} X^{T} X \Theta - 2Y^{T} X \Theta + Y^{T} Y)$$

$$\nabla_{x} b^{T} x = b \text{ gives us } \nabla_{x} 2Y^{T} X \Theta = 2(Y^{T} X)^{T}$$

$$\nabla_{x} x^{T} A x = 2A x \text{ for symmetric matrix } A \text{ gives us } \nabla_{x} \Theta^{T} (X^{T} X) \Theta = 2(X^{T} X) \Theta$$

$$0 = \frac{1}{2} (2X^{T} X \Theta - 2(Y^{T} X)^{T})$$

$$0 = \frac{1}{2} (2X^{T} X \Theta - 2XY^{T})$$

$$0 = X^{T} X \Theta - X^{T} Y$$

Solving for Θ :

$$X^{T}X\Theta = X^{T}Y$$
$$\Theta = (X^{T}X)^{-1}X^{T}Y$$

Optimization

Ordinary Least Squares (OLS) Solution

The value of θ that minimizes $J(\theta)$ is given in closed form by the equation:

$$\Theta = (X^T X)^{-1} X^T Y$$
$$\Theta \in \mathbb{R}^{(1 \times (d+1))}$$

Ordinary Least Squares (OLS)

Optimization

Ordinary Least Squares (OLS) Solution

The value of θ that minimizes $J(\theta)$ is given in closed form by the equation:

$$\Theta = (X^T X)^{-1} X^T Y$$
$$\Theta \in \mathbb{R}^{(1 \times (d+1))}$$

Caveat:

• This closed form solution exists only if $(X^TX)^{-1}$ exists.

Choose θ that minimizes $J(\theta)$ using LMS algorithm. This is a search algorithm in which:

- $oldsymbol{0}$ We start with an "initial guess" heta
- 2 Repeatedly change θ to make $J(\theta)$ smaller
- **3** Converge to a value of θ that minimizes $J(\theta)$

This is called the **Gradient Descent** algorithm.

Least Mean Squares (LMS) and Gradient Descent

Optimization

Choose θ that minimizes $J(\theta)$ using LMS algorithm. This is a search algorithm in which:

- **1** We start with an "initial guess" θ
- Repeatedly performs an update:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- $oldsymbol{\circ}$ α is the **learning rate**
- The update is simultaneously performed $\forall j = 0, \dots, d$, where j is the number of training samples.
- Repeatedly takes a step in the direction of steepest decrease of J.
- **3** Converge to a value of θ that minimizes $J(\theta)$

This is called the **Gradient Descent** algorithm.

Least Mean Squares (LMS) / Widrow-Hoff Learning Rule:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Let's solve for this rule by expanding the partial derivative, considering the case of only one training sample (x, y), thereby neglecting the sum notation in the cost function $J(\theta)$.

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

$$J(\theta) = \frac{1}{2} \left(h_{\theta} \left(x \right) - y \right)^{2}$$

continued...

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

continued...

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{d} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

Substituting this into the Learning Rule results in:

$$\theta_j := \theta_j - \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

Least Mean Squares (LMS) / Widrow-Hoff Learning Rule for one training sample

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\theta_j := \theta_j - \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

A couple interesting notes:

- The magnitude of the update is proportional to the error term $(y^{(i)} h_{\theta}(x^{(i)}))$.
- If our prediction $h_{\theta}(x^{(i)})$ nearly matches the label $y^{(i)}$, there is little need to change the parameters θ .
- If the prediction $h_{\theta}(x^{(i)})$ has a larger error from the label $y^{(i)}$, then a larger change to the parameters θ is needed.

Batch Gradient Descent

Optimization

Batch Gradient Descent

$$\theta_j^{(t+1)} := \theta_j^{(t)} - \alpha \sum_{i=1}^n \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

- Within a single update, all the *n* training samples are examined.
- In modern day applications, the number of training samples could be in the order of billions or trillions.
- Updating all training samples at a time might not be desirable or computationally possible (can't load all data in memory!)
- Use Stochastic Gradient Descent

Stochastic Gradient Descent

$$\theta_j^{(t+1)} := \theta_j^{(t)} - \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

- One training sample is updated in one iteration.
- For n training samples, we needed to perform n iterations (θ is updated n times).
- This could be painfully slow! There should be a middle ground where
 we can update a batch B of training samples together. In practice B
 can be a few to a few hundreds or thousands training samples,
 depending on the size of each of your training sample.
- This is called **Stochastic Minibatch Gradient Descent**

Stochastic Minibatch Gradient Descent

Optimization

Stochastic Minibatch Gradient Descent

$$\theta^{(t+1)} := \theta^{(t)} - \alpha_B \sum_{j \in B}^n \left(y^{(j)} - h_{\theta}(x^{(j)}) \right) x^{(j)}$$

- if |B| = 1, ..., n (the whole training samples), then this becomes Batch Gradient Descent.
- if B = 1, this becomes Stochastic Gradient Descent.
- In practice, choose B proportional to what works well on modern GPUs.

More Complex Data

Regression Sample Case: Predicting House Data, Revisited

Input / Training Set: In the previous example, we only had 1 feature $x_1 = price$. Now we are adding 2 more features $x_2 = bedrooms$ and $x_3 = lotsize$.

	Size	Bedrooms	Lot Size
x ⁽¹⁾	2104	4	45K
$x^{(2)}$	2500	3	30K

	Price	
y ⁽¹⁾	400K	
$y^{(2)}$	900K	

Model / Prediction Function: a linear model

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

Output / Prediction: Given a new house with size $x_1^{(k)} = 2250$, bedrooms $x_2^{(k)} = 3$, and lot size $x_3^{(k)} = 39K$, predict the price $y^{(k)}$ of this house.

Summary

- Gather the training set training set $\{(x^{(i)}, y^{(i)} \text{ for } i = 1, ..., n\}$ where $y^{(i)} \in \mathbb{R}$.
- ② Define the prediction as $h_{\theta}(x) = \sum_{j} \theta_{j} x_{j}$, or in vector form $H(\Theta) = X\Theta$.
- **3** Solve for θ . There are two methods for solving θ
 - **o** Ordinary Least Squares (OLS): $\Theta = (X^T X)^{-1} X^T Y$. This is a closed form solution
 - **2** Least Mean Squares (LMS): $\theta_j := \theta_j \alpha \left(y^{(i)} h_{\theta}(x^{(i)}) \right) x_j^{(i)}$. This is a numerical solution
- In most cases, the OLS solution does not exist due to the inverse of the matrix not existing. As such, solve using the LMS approach.
- **5** To iterate for θ , use the gradient descent (GD) approach:
 - Batch GD: weights for all training samples are updated at once.
 - 2 Stochastic GD: weight for one training sample is updated at a time.
- **o** Given new data, calculate prediction using the final values of θ : $Y_{pred} = H(\Theta) = X\Theta$.

References

Chris Re, Andrew Ng, and Tengyu Ma (2023) CSE229 Machine Learning Stanford University