

Image processing project report

Team 16

Used Algorithms:

Required	Algorithm	
Binarization	Adaptive thresholding	
Corner detection	Harries	
Staff line detection	Hough	
Feature extraction	HOG	
Classifier	SVM	

Work Division:

Name	Sec	BN	Work
Adel Mohamed Abdelhamid Rizq	1	31	- Staff line detection and removal
			- Segmentation
			- Classification
			- writing output
Ahmed Mohamed Mohmed	1	6	- Binarization
Mahmoud Mahboub	_		- Geometric transformation
			- Classification
			- Writing output
			- Writing report
Abdullah Ahmed Hemdan	2	1	- Staff line detection and removal
			- Segmentation
			- Classification
			- Writing output
			- Recording video
Kareem Mohammed Mohamed	2	10	- Binarization
Mohamed			- Geometric transformation
			- Classification
			- Auto grading with docker

Experiment results and analysis:

We have run our experiment on 12 buckets (which is a clef contains five staff lines) and each clef contains 16 symbols on average passing through the following steps:

- 1. Remove the noise.
- 2. Binarize the image using adaptive method.
- 3. Detect the staff lines, line spacing, reference lines and their positions.
- 4. Remove the staff lines from the image.
- 5. Segment all symbols and detect their relative distances to reference line.
- 6. Predict the symbol type.
- 7. Classify the note.

And we reached the following results:

Average time per bucket = 0.61515366

Accuracy and performance:

Accuracy	Training: 99.2831
Performance	0.61515366

Conclusion and references:

Conclusion:

- 1. For the whole project we used this paper "Optical music recognition State of the art and ope"[1].
- 2. For binarization we tried to implement algorithm in this paper "Music Score Binarization Based on Domain Knowledge" [2]. But we did not complete this as the adaptive thresholding gave a good result.
- 3. For rotated images we applied corner detection and then mathematical transformation to make the image horizontal but the image still not perfectly horizontal.
- 4. For staff line detection we used famous Hough algorithm
- 5. For line removal we iterate over the rows and select the blackest rows in each bucket and remove if and only if there is a symbol in this section and cut every bucket alone
- 6. Then we apply segmentation and cut every symbol in this bucket extract features from it.
- 7. Then we send it to the model to predict it
- 8. Then we start to write the output files.

References:

[1] Optical music recognition State of the art and ope.

[2] Music Score Binarization Based on Domain Knowledge.						