TDG - ein deklarativer Grammatikformalismus für Dependenzgrammatik

Ralph Debusmann
Universität des Saarlandes
Computerlinguistik
rade@coli.uni-sb.de

Montag, 10. Dezember 2001

Kontextfreie Grammatik

- Syntax natürlicher Sprache: Formalismen bauen meist auf kontextfreier Grammatik (CFG) auf (Chomsky 57)
- Beispiele: GB (Chomsky 86), HPSG (Pollard/Sag 94), LFG (Kaplan/Bresnan 82)
- geeignet für Englisch (relativ unflexible Wortstellung), aber problematisch für die meisten anderen Sprachen (z.B. germanische Sprachen, slavische Sprachen, Hindi etc.)

Dependenzgrammatik

- alternativer Ansatz, besser geeignet für Sprachen mit freier Wortstellung
- vor allem im Ostblock vorangetrieben (Prager Schule: Sgall et al 86, Moskauer Schule: Melc'uk 1987)

• Probleme:

- mangelnde Akzeptanz im anglo-amerikanisch geprägten linguistischen Mainstream
- oft mangelnde Deklarativität und schlechte Algorithmisierung

Topologische Dependenzgrammatik (TDG)

- neuer Dependenz-basierter Grammatikformalismus
- beschrieben in Duchier/Debusmann 01 (ACL-Papier), Debusmann 01 (Diplomarbeit)
- weil Dependenz-basiert: elegante Behandlung von Sprachen mit freier Wortstellung möglich
- deklarativ
- effizientes Parsing als Lösen von Mengenconstraints in Mozart-Oz

Überblick

- 1. Dependenzbäume
- 2. Constraint-basiertes Dependenz-Parsing
- 3. Wortstellung
- 4. Stand der Kunst

Dependenzbäume (verglichen mit CFG-Parsbäumen)

• CFG

- CFG-Analyse = geordneter Baum
- Knoten mit syntaktischen Kategorien beschriftet
- terminale und nicht-terminale Knoten

DG

- DG-Analyse = ungeordneter Baum
- Ordnung durch zusätzliche Constraints
- Kanten mit grammatischen Rollen beschriftet (mehrere Kanten mit gleicher Beschriftung möglich)
- nur terminale Knoten (Knoten = Auftreten von Wörtern)

Constraint-basierte Beschreibung von Dependenzbäumen

- Denys Duchier (1999, 2000, 2001): neue Formalisierung von Dependenz-Parsing mithilfe von Constraints auf endlichen Mengen
- dabei: Dependenzbäume als gerichtete Graphen betrachtet
- Graphen charakterisiert durch Funktionen mothers, daughters, up, equp, down und eqdown von Knoten auf Knotenmengen und Knotenmenge Roots
- Constraints auf diesen Funktionen drücken Wohlgeformtheitsbedingungungen für Dependenzbäume aus

Constraints für wohlgeformte Dependenzbäume

- globale Constraints: Baumheit, Lexikon-Constraint
- lexikalisierte Constraints: Akzeptanz, Valenz

Baumheits-Constraint

- deklarative Formulierung:
 - 1. Jeder Knoten hat höchstens eine eingehende Kante.
 - 2. Ein Knoten (die Wurzel) hat keine eingehende Kante.
 - 3. Es gibt keine Zykel.
- Reduktion auf Mengenconstraints

1.

$$\forall w \in W : |\mathsf{mothers}(w)| \leq 1$$

2.

$$|\mathit{Roots}| = 1 \, \land \, W = \mathit{Roots} \, \uplus \bigcup_{w \in W} \mathsf{daughters}(w)$$

3.

$$\forall w \in W: \ w \notin \mathsf{down}(w)$$

Lexikon

- ullet Lexicon = Menge von Lexikoneinträgen <math>e
- Record-Signatur:

$$\left[egin{array}{ccc} \mathsf{in} & : & 2^R \ \mathsf{out} & : & 2^R \end{array}
ight]$$

• Zugriff auf lexikalische Attribute in Funktionsnotation geschrieben, z.B. in(e)

Lexikon-Constraint

 Funktion lex bildet jedes Wort auf Menge von möglichen Lexikoneinträgen ab (lexikalische Mehrdeutigkeit):

$$\mathsf{lex}:\ W\to 2^{\mathit{Lexicon}}$$

• Funktion entry bildet jedes Wort auf genau einen Lexikoneintrag ab:

entry:
$$W \rightarrow Lexicon$$

 Lexicon-Constraint: jedem Knoten wird genau ein Lexikoneintrag aus der Menge der möglichen zugeordnet

$$\forall w \in W :$$
 entry $(w) \in$ lex (w)

Constraints für wohlgeformte Dependenzbäume

- bisher: globale Constraints: Baumheit, Lexikon-Constraint
- lexikalisierte Constraints: Akzeptanz, Valenz.
 Benutzen lexikalische Attribute in ihrer
 Formulierung

Akzeptanz-Constraint

Constraint auf eingehenden Kanten:
 Jeder Knoten muss die Beschriftung seiner eingehenden Kante akzeptieren.

• formal:

$$\forall w, w' \in W, \rho \in Roles:$$

 $w - \rho \rightarrow w' \Rightarrow \rho \in in(entry(w'))$

Valenz-Constraint

Constraint auf ausgehenden Kanten:
 Jede ausgehende Kante eines Knotens muss durch dessen Valenz lizensiert sein.

• formal:

$$\forall w, w' \in W, \rho \in Roles:$$

 $w - \rho \rightarrow w' \Rightarrow \rho \in \text{out}(\text{entry}(w))$

Lexikalisierte Constraints: Beispiel

• Beispiel-Dependenzbaum:

Lexikoneinträge-Zuordnung:

$$\mathsf{entry}(\mathit{lacht}) \ = \ \left[\begin{array}{ccc} \mathsf{in} & : & \{\} \\ \mathsf{out} & : & \{\mathsf{subj}\} \end{array} \right]$$

$$\mathsf{entry}(Maria) \ = \ \left[\begin{array}{ccc} \mathsf{in} & : & \{\mathsf{subj}, \mathsf{obj}\} \\ \mathsf{out} & : & \{\} \end{array} \right]$$

- Akzeptanz: lacht-subj $\rightarrow Maria \Rightarrow subj \in in(entry(Maria))$
- Valenz: lacht—subj $\rightarrow Maria \Rightarrow subj \in out(entry(lacht))$

Wortstellung

- bislang: Dependenzbäume ungeordnet
- untenstehender, ungeordneter Dependenzbaum lizensiert so 5! = 120 Wortabfolgen:

- davon aber nur sieben erlaubt:
 - 1. Maria hat einen Mann geliebt.
 - 2. Einen Mann hat Maria geliebt.
 - 3. Geliebt hat Maria einen Mann.
 - 4. ? Geliebt hat einen Mann Maria.
 - 5. Einen Mann geliebt hat Maria.
 - 6. Hat Maria einen Mann geliebt?
 - 7. ?Hat einen Mann Maria geliebt?

Wortstellung: die Theorie der topologischen Felder

- beschreibt deutsche Wortstellung
- teilt Satz in zusammenhängende Wortketten ein und nennt diese topologische Felder
- topologische Felder: Vorfeld, linke Satzklammer, Mittelfeld, rechte Satzklammer, Nachfeld.

• Beispielanalysen:

Vorfeld	(Mittelfeld)	Nachfeld
Maria	hat	einen Mann	geliebt.	
Einen Mann	hat	Maria	geliebt.	
Geliebt	hat	Maria einen Mann.		
Geliebt	hat	einen Mann Maria.		
Einen Mann geliebt	hat	Maria.		
	Hat	Maria einen Mann	geliebt?	
	Hat	einen Mann Maria	geliebt?	

Topologiebäume

- repräsentieren topologische Struktur von Sätzen
- schließen unerlaubte Wortabfolgen aus
- Beispielanalyse:

Felder vf, mf und vc entsprechen Vorfeld,
 Mittelfeld und rechter Satzklammer.

Allgemeiner Constraint: Ordnung

• Beispielanalyse:

• globale Ordnung auf der Menge der Felder:

$$vf \prec mf \prec vc$$

 Ordnungs-Constraint besagt, dass Töchter im Baum analog zu dieser globalen Ordnung geordnet sein müssen:

$$Maria \prec Mann \prec geliebt$$

Verletzung des Ordnungs-Constraints

 nicht lizensiert. Globale Ordnung auf der Menge der Felder:

$$vf \prec mf \prec vc$$

ullet hier ist geliebt aber im vc vor Mann im mf.

Beziehung zwischen Dependenz- und Topologiebäumen

- TDG-Analyse besteht aus je einem Dependenzund einem Topologiebaum
- beide haben die gleiche Knotenmenge aber verschiedene Kantenmengen
- allgemeiner Constraint des Kletterns setzt beide Bäume miteinander in Beziehung

Kletter-Constraint

- Klettern: Knoten können im Topologiebaum im Vergleich zum Dependenzbaum hochklettern
- damit Topologiebaum flacher als entsprechender Dependenzbaum
- formal:

$$w \rightarrow_{\text{TOP}} w' \Rightarrow w \rightarrow_{\text{DEP}} w_1 \dots w_n \rightarrow_{\text{DEP}} w'$$

Kletter-Constraint: Beispiel

• Beispiel:

• Instanziierung des Kletter-Constraints:

 $hat \rightarrow_{\scriptscriptstyle{\mathrm{TOP}}} Mann \Rightarrow hat \rightarrow_{\scriptscriptstyle{\mathrm{DEP}}} geliebt \rightarrow_{\scriptscriptstyle{\mathrm{DEP}}} Mann$

Verletzung des Kletter-Constraints

• nicht lizensiert: Maria nicht geklettert, sondern zur Schwester geliebt bewegt

Behandelte Phänomene

• Fragen, Aussagesätze, Nebensätze

Gibt Maria dem Mann einen Korb?

Maria gibt dem Mann einen Korb.

Ich glaube, dass Maria dem Mann einen Korb gibt.

 Relativsätze (mit Extraposition, Rattenfänger-Konstruktionen)

Maria hat einen Mann, der lacht, gefunden. Maria hat einen Mann gefunden, der lacht. Maria hat einen Mann gefunden, mit dem sie lacht.

Verbalkomplex-Phänomene:

(dass) Maria den Mann lachen gesehen hat. (dass) Maria den Mann lachen hat sehen.

Scrambling, Intraposition, Fronting etc.

Was geht alles?

- Grammatik fürs Deutsche, behandelt viele sehr schwierige Phänomene
- kleines Grammatikfragment fürs Holländische
- TDG-Parser in Mozart-Oz, trotz fehlender Optimierung effizient: 20-Wort-Satz in 700ms, 50-Wort-Satz in 5s auf 700MHz-Maschine
- TDG-Entwicklungsumgebung in Mozart-Oz, mit statisch getypter Grammatik-Eingabesprache und graphischer Benutzeroberfläche
- TDG-Parser schon in anderen Projekten verwendet: NEGRA (automatische Grammatik-Generierung aus Korpus), Softwareprojekt "Computerspiel" (Englische Grammatik)

Was fehlt noch?

- Verbesserung der TDG-Entwicklungsumgebung
- Verbesserung des Grammatikformalismus: z.B. elegantere Spezifikation des Relativsatz-Constraints
- Verbesserung der Abdeckung: Phänomene und Breite
- Entwicklung einer Morphologie-Schnittstelle
- Entwicklung einer Syntax-Semantik-Schnittstelle (CHORUS)
- Ellipsen und Koordination (CHORUS)
- Einbindung von Präferenzen (CHORUS)