Equivalence of DFA & NFA

Thm 2.9 Every NFA has an equivalent DFA.

Proof: Let $N=(Q,\Sigma,\delta,q_0,F)$ be the NFA recognizing A. Construct a DFA $M=(Q',\Sigma,\delta',q_0',F)$ recognizing A. (Let

 $E(R) = \{q \in Q | q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \epsilon \text{ arrows} \}$

Define M as follows:

1.
$$Q' = P(Q)$$

2. For $R \in Q'$ and $a \in \Sigma$, let

$$egin{aligned} \delta'(R,a) &= \{q \in Q | q \in E(\delta(r,a)) \ for \ some \ r \in R \} \ &= \cup_{r \in R} \ E(\delta(r,a)) \end{aligned}$$

3.
$$q_0' = E(\{q_0\})$$

4.
$$F'=\{R\in Q'|R\cap F\neq \phi\}$$

Cor 2.10 A language is regular ⇔ Some NFA recognizes it.

(Cor 2.10 can be used to prove Thm 2.5: The class of regular languages is closed under union.)

Thm 2.11 The class of regular languages is closed under concatenation.

Proof: Assume that L_1 and L_2 are two regular languages, and NFA N_1 and N_2 recognizes them respectively. Construct a new NFA to accept L_1L_2 by using multiple $\stackrel{\epsilon}{\to}$ to connect the accept state(s) of N_1 and the start state of N_2 . The constructed NFA N recognizes L_1L_2 .

Thm 2.12 The class of regular languages is closed under Kleene Star.

Proof: Assume that L is a regular language recognized by N. Construct a new NFA to accept L^* by adding a new start state before N's start state, and use multiple $\stackrel{\epsilon}{\to}$ to connect the accept state(s) of N and the added start state. The constructed NFA N' recognizes L^* .

Thm 2.13 The class of regular languages is closed under complement.

Proof: Let DFA $M=(Q,\Sigma,\delta,q_0,Qaccept)$ be a DFA recognizing A. Construct $M'=(Q,\Sigma,\delta,q_0,Q'_{accept})$, where

$$Q'_{accept} = Q \setminus Q_{accept}$$

It is easy to verify $L(Q')=ar{A}$.

Regular Expressions

Odd numbers	$(0 \cup 1 \cup \ldots \cup 9)^*(1 \cup 3 \cup 5 \cup 7 \cup 9)$
Strings that start with 0 or 1, then append zero or more 0s	$(0\cup 1)0^*$
Σ^*	$(0\cup 1)^*$
Strings that start with a 0 or end with a 1	$(0\Sigma^*) \cup (\Sigma^*1)$

${\it Def 2.14}\ R$ is a regular expression if R is:

- 1. a for some $a \in \Sigma$
- 2. *ϵ*
- 3. *ф*
- 4. $(R_1 \cup R_2)$, where R_1, R_2 are regular expressions
- 5. (R_1R_2) , where R_1, R_2 are regular expressions
- 6. (R^*) , where R is a regular expression

eg.

- 1. $0*10* = \{w \in \{0,1\}^* | w \text{ contains a single } 1\}$
- 2. $\Sigma^* 1 \Sigma^* = \{w | w \text{ contains at least one } 1\}$
- 3. $\Sigma^*001\Sigma^* = \{w|w \ has \ a \ substring \ 001\}$
- 4. $1^*(01^+)^* = \{w| every \ 0 \ in \ w \ is \ followed \ by \ at \ least \ one \ 1\}$
- 5. $(\Sigma\Sigma)^* = \{w | the length of w is even\}$
- 6. $01 \cup 10 = \{01, 10\}$
- 7. $(0 \cup \epsilon)1^* = 01^* \cup 1^*$
- 8. $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}$
- 9. $1^*\phi = \phi$
- 10. $\phi^* = \{\epsilon\}$

Thm 2.15 A language is regular ⇔ some regular expression describes it.

Lem 2.16 If a language is described by a regular expression, it's regular.

Proof:

1.
$$R = a, a \in \Sigma, L(R) = \{a\}$$

$$ightarrow q_{start} {egin{array}{c} a \ q_{accept} \ \end{array}}$$

2.
$$R = \epsilon$$

$$ightarrow q_{accept}$$

3.
$$R=\phi$$

4. $R=R_1\cup R_2$ (Thm 2.5)

5. $R=R_1R_2$ (Thm 2.6)

6. $R=R_1^st$ (Thm 2.11)