Regression

Regression Model

Linear Regression

Decision Tree Regression

Random Forest Regression

Machine Learning A-Z

ogog.	informations about relevance of features	, , , , , , , , , , , , , , , , , , ,
Polynomial Regression	Works on any size of dataset, works very well on non linear problems	Need to choose the right polynomial degree for a good bias/variance tradeoff
SVR	Easily adaptable, works very well on non linear problems, not biased by outliers	Compulsory to apply feature scaling, not well known, more difficult to understand

Interpretability, no need for feature scaling,

works on both linear / nonlinear problems

Powerful and accurate, good performance

on many problems, including non linear

Pros

Works on any size of dataset, gives

Cons

The Linear Regression Assumptions

Poor results on too small datasets,

overfitting can easily occur

No interpretability, overfitting can easily

occur, need to choose the number of trees

© SuperDataScience