WHAT IS CLAIMED IS:

- 1. A method for radix-2 fast fourier transform on a digital series to produce signals in cyclically noncontinuous output bins, comprising the steps of:
- determining the number 2^s of FFT points, the output bin index O_s , and the input signal array;

determining the butterfly index for the last stage by

$$\Psi_{S-1} = O_S % \left(\frac{N}{2}\right) \tag{9}$$

10

determining the butterfly index for each stage other than said last stage by

$$\Psi_{\ell-1} = \Psi_{\ell} % (\frac{N}{2^{S-\ell+1}})$$
 (10)

where ℓ varies from 1 to (S-1);

15

using said butterfly index, calculating only those butterflies necessary for calculation of the output bins.

2. A method according to claim 1, wherein said step of determining the butterfly index for all later stages is performed in numerical order.

5

10

5

10

WO 01/78290 PCT/US01/08646

3. A method according to claim 2, wherein said numerical order is ascending order.

4. A method according to claim 1, further including the determination of output bins by the additional steps of:

for stage ℓ , where ℓ varies from 1 to S, executing only that butterfly in the butterfly index set $\Psi_{\ell-1}$ of that stage;

for stage ℓ , loading the twiddle factor corresponding to the butterfly index set $\Psi_{\ell-1}$ of that stage; and

repeating the steps of (a) executing only that butterfly in the butterfly index set $\Psi_{\ell-1}$ of that stage and (b) loading the twiddle factor corresponding to the butterfly index set $\Psi_{\ell-1}$ of that stage, until the required final stage butterflies are executed and the required output bins are filled.

5. A method according to claim 1, wherein said step of using said butterfly index includes the further steps of:

setting the butterfly index set Ψ_j where (1 $\leq j \leq$ S-1) and the selected output node index set ranges from O_S to $M_S{}^i$ by

(a) for $(1 \le j \le S-1)$

 $\mbox{(i) if } (k \in \Psi_j) \mbox{ or } \Psi_j \mbox{ contains index } k, \mbox{ then }$ setting $m_i^{\,k} = 1.$

(ii) if $(k \in \Psi_i)$, then setting $m_i^k = 0$.

(b) for j = S

 $\mbox{(i) if } (k \in O_s), \mbox{ or } O_s \mbox{ contains index } k, \mbox{ then } \\ \mbox{setting } m_j^{\ k} = 1.$

(ii) if $(k \notin O_s)$, then setting $m_j^k = 1$; and

Controlling of a memory pair stage j by $m_j^{~i}$ (0 $\leq i \leq 2^{j\text{-}1}\text{-}1)$ and $m_j^{~i+Y},~(Y=2^{j\text{-}1}).$

5

6. A method according to claim 4, wherein said step of setting the butterfly index includes the steps, when $0 \le i \le (2^{j-1}-1)$, of:

controlling the butterfly adder with m_j^{i} ; controlling the butterfly subtractor with m_j^{i+Y} ; and controlling the butterfly multiplier in accordance with the Boolean OR of m_j^{i} and m_j^{i+Y} .