Discussion 8

Jiyeon Song

University of Connecticut jiyeon.song@uconn.edu

March 13, 2020

Sufficiency

- A statistic $U = U(X_1, X_2, ..., X_n)$ is a sufficient statistic for a parameter θ if it contains "all of the information" about θ that is available in the sample.
- **Def.** The statistic U is said to be *sufficient* for θ if

$$f_{\mathbf{X}|U}(\mathbf{x}|u) = \frac{f(x_1, x_2, \dots, x_n, U; \theta)}{f(u; \theta)}$$

is free of θ .

Factorization Thm The statistic U is said to be *sufficient* for θ if and only if

$$L(x_1,x_2,\ldots,x_n|\theta)=g(u;\theta)\times h(x_1,x_2,\ldots,x_n),$$

where $g(u, \theta)$ is a function only of u and θ and $h(x_1, x_2, \dots, x_n)$ is free of θ .

MVUE: minimum-variance unbiased estimator

► The Rao-Blackwell Theorem

Let $\hat{\theta}$ be an unbiased estimator for θ such that $\mathbb{V}[\hat{\theta}] < \infty$. If T is a sufficient statistic for θ , define $\hat{\theta}^* = \mathbb{E}[\hat{\theta}|T]$. Then,

- 1. $\hat{\theta}^*$ is an unbiased estimator for θ .
- 2. The variance of $\hat{\theta}^*$ is no greater than the variance of $\hat{\theta}$, i.e., $\mathbb{V}[\hat{\theta}^*] \leq \mathbb{V}[\hat{\theta}]$.
- ▶ R.B. Thm implies that an unbiased estimator for θ with a small variance is function of the sufficient statistic.

$$\hat{\theta}^* = g(T)$$

- 1. $E(\hat{\theta}^*) = \theta$
- 2. $\hat{\theta}^*$ has the smallest variance among all unbiased estimators.

Practice

Let X_1, X_2, \ldots, X_n be i.i.d. $\mathcal{N}(\mu, 1)$.

- 1. Find a sufficient statistic for μ .
- 2. Find the MVUE for μ .

Practice

Let X_1, X_2, \ldots, X_n be i.i.d. $Gam(\alpha, \beta)$.

- 1. If $Gam(\alpha, 4)$ and α is unknown, find a sufficient statistic for α .
- 2. If $Gam(2, \beta)$ and β is unknown, find a sufficient statistic and the MVUE for β .

Practice

Let $X_1, X_2, ..., X_n$ be i.i.d. Geo(p). $f(x; p) = (1 - p)^{x-1}p$, x = 1, 2, 3...

- 1. Find a sufficient statistic for p.
- 2. Find the MVUE for p.