Methods	Complexity
Our method	Mild (closed-form solution with known ε , ρ ; otherwise estimate them by solving 1-D
	OT problems)
CP under covariate shift	Moderate (requires density estimation in high-dimension, which can be expensive)
(Tibshirani et. al, 2019)	
CP under label shift	Moderate (requires density estimation in high-dimensions, which can be expensive)
(Podkopaev & Ramdas, 2021)	
* CP under f-divergence shift	Mild (closed-form solution with known ρ , but requires absolute continuity of density; estimating ρ requires minimizing a non-convex function over a
(Cauchois et. al, 2024)	
	d-dimensional domain)
* Adversarial CP with randomized	Moderate (needs vast repeated forward model evaluations with noisy inputs)
smoothing (Gendler et. al, 2022)	
* Wasserstein-regularized CP	Heavy (requires training neural network model)
(Xu et. al, 2025)	
* Identifiable X-shift and $Y X$ -shift	Moderate (requires density estimation in high-dimension, which can be expensive)
(Ai & Ren, 2024)	
CP beyond exchangeability	Mild (requires re-weighting scheme, which is not trivial to get and needs additional
(Barber et. al, 2023)	computation based on the design)

Table 1: Additional complexity comparison with other methods, * marks important papers mentioned by the reviewers; Complexity: Light, Mild, Moderate, Heavy;

Orange: CP under different shift models