An Overview of Modern Data Analysis Strategies

Rob Cribbie Quantitative Methods Program Department of Psychology York University

What's the plan ...

- We are going to scratch the surface in terms of modern issues related to data analysis in the behavioral sciences
- There will less of a focus on the actual methods used to conduct the analyses (i.e., less of the "how", and more of a focus on the "why"), although we will also dabble in some applied work

Day One

- Part 1: History of Null Hypothesis Significance Testing
- Part 2: Problems with Null Hypothesis Significance Testing
- Part 3: Multiplicity Issue and Null Hypothesis Significance Testing

Part 1: History of NHST

- Modern Null Hypothesis Significance Testing can be traced back to:
 - Fisher's Significance Testing
 - Neyman-Pearson Hypothesis Testing

Fisher's Significance Testing

- Ronald Aylmer Fisher was a biologist and statistician
- He was the main force behind tests of significance and can be considered the most influential figure in modern data analytic techniques

Main Goal of Fisherian Testing

- The primary motivation behind Fisher's approach to significance testing was to find the probability of the data, given the null hypothesis
 - This is our usual p-value
- Highlights
 - There is no alternative hypothesis
 - Power is of no interest
 - There is no alpha (α) level (a priori Type I error rate)

- Let's use as an example comparing two independent populations
 - Step 1: Select an appropriate test
 - Independent Samples t-test
 - Step 2: State H₀
 - H_0 : $\mu_1 = \mu_2$
 - Could also be a directional hypothesis
 - E.g., H_0 : $\mu_1 \ge \mu_2$
 - Could also test differences other than 0 (nil hypothesis)
 - E.g., H_0 : $\mu_1 \mu_2 = 5$ or H_0 : $\mu_1 \mu_2 \le 5$

- Step 3: Calculate the p-value, assuming H₀ is true
 - p-value: probability of finding a test statistic more extreme than that found, assuming H_0 is true

- Step 4: Statistical Decision
 - Is the p-value small enough to conclude that the results were highly unlikely if H₀ is true?
 - Typically made relative to some cutoff (e.g., .01, .05), however cutoffs need not be specified
 - What's important is that p-values of .049 and .051 are very similar probabilistically
 - Exact p-values are important since the magnitude of the probability is of utmost importance
 - The p-value provides information regarding the plausibility of H_0
 - Smaller p-values provide greater evidence against H₀

- Step 5: Interpret the Findings
 - If a result is deemed statistically noteworthy, one of two statements is true
 - A rare mistake has occurred
 - H₀ does not accurately represent the true state of affairs
 - Non-noteworthy results provide useful information, such as whether results were in the expected direction and the magnitude of the effects
 - Non-noteworthy results can even provide information that can be used to strengthen support for H_0

Neyman and Pearson's Hypothesis Testing Approach

- Jerzy Neyman and Egon Pearson sought to improve Fisher's approach to statistical significance testing
- Their approach greatly expanded on the principles and procedures outlined by Fisher

Jerzy Neyman and Egon Pearson

- Step 1: State the Research Hypothesis
 - State what result is expected, including the minimally meaningful effect size (MMES)
 - This is used to establish appropriate hypotheses and conduct power analyses
- Step 2: Select an Appropriate Test Statistic
 - Note that since "power" is a concept in the Neyman and Pearson framework, tests can be compared based on differences in power (e.g., parametric vs nonparametric, one-tailed vs two-tailed)

- Step 3: State the Main (Null) Hypothesis
 - Similar in nature to Fisher's H_0 (e.g., H_0 : $\mu_1 = \mu_2$)
 - Also central to the Neyman-Pearson approach is the minimization of the risk of Type I errors (rejecting H₀ when it is true)
- Step 4: State the nominal Type I error rate (α)
 - \circ A new concept is the idea of an α level
 - Under Neyman-Pearson only a single α level is chosen, where Fisher was more flexible (concern was the magnitude of p)

- Step 5: State the Alternate Hypothesis (H_A)
 - The concept of H_A is novel under the Neyman– Pearson approach
 - H_A : $\mu_1 \neq \mu_2$ could be used, but in the Neyman-Pearson framework we can also think of the alternate hypothesis with respect to the minimum meaningful effect size (e.g., H_A : $\mu_1 \mu_2 = 3$)
 - The presence of H_A permits power analyses and introduces the concept of a Type II error (β , not rejecting H_0 when it is false)
 - Neyman and Pearson proposed 20% ($\beta=.20$) as an upper ceiling for β , and the value of alpha ($\beta=\alpha$) as its lower floor

Neyman-Pearson Hypothesis Testing

THE DECISION
THE
ANALYST MAKES

	INE IKUIN	
	The null hypothesis	The null hypothesis
	(H _o) is true	(H _o) is not true
	(H _a is false)	(H _a is true)
Reject H _o	TYPE I (a) error/	Correct Decision
	Alpha Risk/	(1 - β)
(support H _a)	p – value	
		Power of the test
	Overreacting	
	(1 - α) = the Confidence	
	level of the test	
Fail to Reject H _o	Correct Decision	TYPE II (β) error/
		Beta Risk
(do not support Ha)		
		Underreacting

THE TRUTH

Minimum Meaningful Effect Size, Power and the Alternate Hypothesis

Proposed distributions under H_0/H_M and H_A

Minimum Meaningful Effect Size, Power and the Alternate Hypothesis

- Step 6: Conduct a Power Analysis
 - What sample size is required to ensure that $\beta < .20$ (1 $\beta = .80$)?
 - There is no reason to conduct a low-power study (i.e., $1-\beta < .80$)
 - β should fall between α and .20
 - If it is desired to have β less than α , than the hypotheses should be reversed (N&P)
 - Controlling for errors in the long run is very important!

- Step 6: Conduct a Power Analysis
 - Power analyses based on the MMES were also to be conducted
 - In other words, from a power analysis perspective, important effects should be found with a high probability

- Step 7: Determine the Critical Value for the Test Statistic
 - The effect size (d = .8), along with α/β , determine N, N determines the df, and the df and α determine the CV

- Step 8: Compare the test statistic to the critical value or the p-value to α
- ▶ Step 9: Make a decision regarding H_0/H_A
 - Reject or retain H₀
 - Unlike Fisher, the hypothesis decision is most important, not the magnitude of the p-value
- To summarize, the Neyman-Pearson approach emphasizes a priori decisions, including the MMES, error rates, power/sample size, etc., and focuses more on decisions regarding hypotheses than the magnitude of p-values

Modern NHST

- Modern null hypothesis significance testing borrows from both Fisher and Neyman-Pearson
 - Procedurally, most researchers follow Neyman-Pearson
 - Philosophically, however, many researchers are more in favour of Fisher's approach in terms of evaluating evidence against H₀ through quantifying the magnitude of the p-value

Discussion Point

What do you like or not like about either of the methods (Fisher vs Neyman-Pearson)?