Co-Debruijn: Everybody's Got To Be Somewhere^[2] From Debruijn to co-Debruijn using Category Theory

Marius Weidner

Chair of Programming Languages, University of Freiburg

January 14, 2024

Outline

- Getting Started: Scopes and Binders Categorically
 - The Category of Scopes
 - Intrinsically Scoped Debruijn Syntaxes

The Category of Scopes: Δ^X_{\perp}

Definition

Let Δ_{\perp}^{X} be the category of scopes.

- Objects: $\bar{x} \in |\Delta_+^X| = X^*$
- Morphisms: $f \in \Delta_+^X(\bar{x}, \bar{y})$ for $\bar{x}, \bar{y} \in |\Delta_+^X|$ are inductively defined:

$$\varepsilon \sqsubseteq \varepsilon$$
 .

$$\frac{x \sqsubseteq y}{\bar{x}x \sqsubseteq \bar{y}x} \ 1$$

$$\frac{\bar{x} \sqsubseteq \bar{y}}{\bar{x}x \sqsubseteq \bar{y}x} \ 1 \qquad \qquad \frac{\bar{x} \sqsubseteq \bar{y}}{\bar{x} \sqsubseteq \bar{y}y} \ 0$$

Remark

Morphisms in Δ_+^X can be represented by bit vectors $\bar{b} \in \{0,1\}^*$ with one bit per variable of the target scope telling whether it has been mapped to or skipped by the source scope.

Objects & Morphisms in Δ_+^{\top}

Example

Let $X = \top$ (where \top is the set with exactly one element $\langle \rangle$).

Thus, Objects $\bar{x} \in X^*$ represents numbers.

Identity and Composition in Δ_+^\top

Δ_+^X is in Fact a Category

Lemma

In Δ_+^X every object $\bar{x} \in X^*$ has an identity morphism, i.e. we can construct an identity morphism for \bar{x} using the inference rules.

Proof.

$$\begin{array}{ll} id & : \; (\bar{x}:X^*) \to \bar{x} \sqsubseteq \bar{x} \\ id \; \varepsilon & = \cdot \\ id \; \bar{x}x \; = \; (\mathrm{id} \; \bar{x})1 \end{array}$$

Corollary

$$id - l$$
 : $id; f = f$
 $id - r$: $f; id = f$

Lemma

In Δ_+^X two morphisms $f: \bar x \sqsubseteq \bar y$ and $g: \bar y \sqsubseteq \bar z$ compose to a morphism $f; g: \bar x \sqsubseteq \bar z$, i.e. we can construct a morphism f; g from f and g using the inference rules.

Proof.

$$\begin{array}{lll} \underline{};\underline{} & : \; \bar{x} \sqsubseteq \bar{y} \to \bar{y} \sqsubseteq \bar{z} \to \bar{x} \sqsubseteq \bar{z} \\ \hline \cdot \; ; \; \cdot & = \; \cdot \\ f1 \; ; \; g1 \; = \; (f;g)1 \\ f0 \; ; \; g1 \; = \; (f;g)0 \\ f \; ; \; g0 \; = \; (f;g)0 \end{array}$$

Corollary

$$\begin{array}{ll} \mathit{assoc} & : & f; (g;h) = (f;g); h \\ \mathit{antisym} & : & (f:\bar{x} \sqsubseteq \bar{y}) \to (g:\bar{y} \sqsubseteq \bar{z}) \to \bar{x} = \bar{y} \land f = g = \mathit{id} \; \bar{x} \end{array}$$

Intrinsically Scoped Debruijn Syntax via $\Delta_+^{ op}$

Definition

Let $Tm: |\Delta_+^\top| \to Set$ be inductively defined:

$$\frac{\langle\rangle\sqsubseteq\bar{x}}{Tm\;\bar{x}}\;Var$$

$$\frac{Tm~\bar{x}~Tm~\bar{x}}{Tm~\bar{x}}~App$$

$$rac{Tm \; ar{x}\langle
angle}{Tm \; ar{x}} \; Abs$$

Example