再レポート

1610581 堀田 大地

2018/5/24

1 実験項目

1.1 順序回路

1.1.1 D ラッチ回路

1. 考察

- (a) ストローブ信号が H のとき,Data 信号を Q に出力していた.
- (b) ストローブ信号が L のとき,Data 信号を Q は出力しなかった.
- (c) Data 信号が動いているときに、ストロー ブ信号を H から L にしたとき、Data 信号 の動きに関わらず出力 Q の状態は変わら なかった.
- (d) 以上の (a)-(b) より、ストローブ信号の機能は、Data 信号を出力に伝える機能であった. ラッチ機能は、 \overline{Stb} が L のときに、Data 信号を Q に伝えないようにするための機能であったと考えられた.

1.1.2 フリップフロップ回路

1. 実験

図 1 に、g イムチャートに従って入力端子を操作したときの出力 Q, \overline{Q} を示した.

図1 J-K フリップフロップ回路のタイムチャート

2. 考察

出力 Q, \overline{Q} は, \overline{CLR} が H で \overline{PR} が L になった とき, \overline{H} ,L になった. 逆に, \overline{PR} が H の状態で

 \overline{CLR} が L になったとき,L,H になった.つまりこの 2 点から, \overline{CLR} は L になると,Q を L に, \overline{Q} を H に変え、 \overline{PR} は L になると,Q を H に, \overline{Q} を L に変えていると考えられた. \overline{CLR} , \overline{PR} を H のまま,J を H,K を L の状態にして, \overline{CLK} を L にすると,Q が H, \overline{Q} が L になったことより,タイムチャート前半の \overline{PR} の機能と同じ機能を持つと考えられた.また,その状態のまま J を L,K を H にして, \overline{CLK} を L にすると, \overline{CLR} の機能と同じ機能を持つと考えられた.J,K を 両方 H にすると, \overline{CLK} を L にする度,前の状態が復元されると考えられた.

1.1.3 D フリップフロップ回路 (74HC74) を用い た 1/2 分周器

1. 実験

D フリップフロップのタイムチャートを図 2 に示した.

図 2 D フリップフロップを用いた 1/2 分周器の タイムチャート

2. 考察

- (a) *CLR* が H のときのみ,CLK の立ち上がり の時, 出力 Q が反転した.
- (b) \overline{CLK} の 2 周期分が Q の 1 周期に相当していたので、出力 Q は \overline{CLK} の倍の周期であった.
- (c) 周波数は、周期の逆数なので、出力 Q は

 \overline{CLK} の 1/2 倍の周期であった.

(d) 以上の3点より,分周器の分周機能とは,周 波数を分割する機能であると考えられた.

1.2 カウンタ回路

1.2.1 非同期 16 進力ウンタ回路

非同期 16 進カウンタ回路とは,J-K フリップフロップ回路を 4 つ用いた回路である. タイムチャートを図 3 に示した.

図 3 非同期 16 進カウンタのタイムチャート

1. 考察

- (a) \overline{CLR} を L にすると, \overline{CLK} に関わらず 4 つ の出力 A,B,C,D は H に,NLED1 は F に なった.
- (b) \overline{CLR} を H にした後, 入力 \overline{CLK} に立下り 信号を入力すると, 4 つの出力は全て L に なり,NLED1 は 0 になった
- (c) さらに、*CLK* をに立下り信号を入力し続けると、最初の1回はどの出力もLのままだったが、2回目以降は、出力Aは、*CLK*が立下がりで毎回、出力Bは、2回に1回、出力Cは、4回に1回、出力Dは、8回に1回、NLED1は、16進数表記で1ずつ加算されているように変化していた。
- (d) 4 つの出力を H を 1,L を 0 とし、 2^3D + $2^2C + 2^1B + 2^0A$ を計算すると、この和が NLED1 を 10 進数に変換したものに等しかった。
- (e) 入力 \overline{CLK} と出力 A の周期の間には、1: $2=\overline{CLK}:A$ の関係があった。また、出力 A と B,B と C,C と D の間には、1:2=A:B,1:2=B:C,1:2=C:D の関係

- があると考えられた. さらに, 入力 \overline{CLK} 信号の周期を基準とすると, 各周期の大き さの比は $1:2:4:8:16=\overline{CLK}:A:B:C:D$ であった.
- (f) 入力 \overline{CLK} と出力 A の周波数の間には、周波数は周期の逆数なことを考慮すると、 $1:1/2=\overline{CLK}:A$ の関係があると考えられた。また、出力 A と B,B と C,C と D の間には、1:1/2=A:B, 1:1/2=B:C, 1:1/2=C:D の関係があると考えられた。さらに、入力 \overline{CLK} 信号の周期を基準とすると、各周波数の大きさの比は $1:1/2:1/4:1/8:1/16=\overline{CLK}:A:B:C:D$ であった。