2021大物B1期末 (张卫华)

选择题

略。

解答题

- 1. A与B相向运动,A的速度 $v_A=20m/s$ 。A向外发出 $v_0=800Hz$ 的声波,并接收到 v=936Hz 的反射波。已知波速 u=340m/s,求B的速度 v_B 。
- 2. 镜头上镀了一层介质A制成的膜。现用一束频率可连续调节的光照射镜头。当光的频率为 ω_1 时,膜恰为最小厚度的增反膜。调节光的频率至 ω_2 ,膜第一次变成了增透膜。已知光在介质A中的传播速度为 v_A 。
 - (1) 求膜的厚度 d (用 ω_1, v_A 表示)。
 - (2) 求 ω_2 (用 ω_1 表示)。
- 3. 已知Maxwell速率分布:, 求最概然动能。

4.
$$dN/N = Av^2 dv \quad (0 \leq v \leq v_m)$$

$$= 0 \quad (v > v_m)$$

- (1) 求A。
- (2) 求 v_m 。
- 5. 双原子分子气体,沿 p=V准静态膨胀。初始体积为 V_0 。
 - (1) 求吸热量 Q关于温度 T的函数Q = f(T)。
 - (2)求此过程的热容C。
- 6.-10 °C ,10g的冰放入+10 °C ,50g的水中。不考虑与外界的热交换。已知冰的比热容: $2.10kJ/(kg\cdot$ °C),水的比热容: $4.19kJ/(kg\cdot$ °C),冰的熔化热:6.03kJ/mol。求系统的总熵变。
- 7. 共计2mol同种双原子分子气体放在一绝热容器中。容器中间有一绝热隔板将其分出左右两部分,初始体积分别为 V_1,V_2 ,初始温度分别为 T_1,T_2 。 $V_1/V_2=T_1/T_2=3/2$ 。现撤去隔板,直至达到平衡。求这一过程中系统的总熵变。