C10 Nombres réels et suites

I. Rappels et compléments sur ${\mathbb R}$

1. Borne supérieure dans $\mathbb R$

- Pour $A\subset\mathbb{R}$, et $M\in\mathbb{R}$ M majore A $\Leftrightarrow \forall x\in A, x\leq M$ Pour $A\subset\mathbb{R}$:A A est majoré $\Leftrightarrow \exists M\in\mathbb{R}, \forall x\in A,\ x\leq M$
- Remarque 9 :
 - \varnothing n'a pas de borne sup car tout réel majore \varnothing et $\mathbb R$ n'admet pas de plus petit élément.
 - Une partie non majorée a pour ensemble de majorants Ø qui n'admet pas de plus petit élément
 - Dans (\mathbb{Q} , \leq), il existe des parties non vides et majorée qui n'admettent pas de borne sup : $\{q \in \mathbb{Q} | q^2 \leq 2\}$ ($\mathbb{Q} \cap [-\sqrt{2}, \sqrt{2}]$).
 - Tout corp totalement ordonné qui vérifie la propriété de la borne sup est "pareil" que $\mathbb R$ au sens ou il existe $\phi:K\to\mathbb R$ tq

$$egin{cases} orall x,y \in K, egin{cases} \phi(x+y) = \phi(x) + \phi(y) \ \phi(xy) = \phi(x)\phi(y) \ \end{cases} \$$

 ϕ est un morphisme de corp

- Proposition 12 : Démonstration On raisonne par disjonction de cas en utilisant la propriété de la borne supérieure dans $\mathbb R$
 - Si $A\subset \mathbb{R}$
 - Si $A \neq \varnothing$ et A est majoré Alors l'ensemble des majorants dans \mathbb{R} , M admet un plus petit élément et son ensemble de majorants dans $\overline{\mathbb{R}}$ est $M \cup \{+\infty\}$ (car $-\infty$ ne majore pas A puisque $A \neq \varnothing$ et

 $A\subset \mathbb{R}$) et $sup_{\mathbb{R}}(A)$ est encore le plus petit élément de $M\cup \{+\infty\}$

Donc
$$sup_{\mathbb{R}}(A) = sup_{\overline{\mathbb{R}}}(A)$$

- Si A est non majorée, l'ensemble de ses majorants dans $\overline{\mathbb{R}}$ est $\overline{\mathbb{R}}$ et $min(\overline{\mathbb{R}})=-\infty$
- Si $A \nsubseteq \mathbb{R}$
 - Si $+\infty \in A$ alors l'ensemble des majorants de A est $\{+\infty\}$ donc son plus petit élément existe $(+\infty)$
 - Si $+\infty \notin A$ Alors $-\infty \in A$
 - -> Si A = $\{-\infty\}$, $sup_{\overline{\mathbb{R}}}\{+\infty\} = -\infty$ existe
 - -> Sinon $A=\{-\infty\}\cup B$ avec $b\subset\mathbb{R}$ et $B
 eq\varnothing$

et alors l'ensemble des majorants de A est celui de B donc $sup_{\overline{\mathbb{R}}}(A)=sup_{\overline{\mathbb{R}}}(B)$ qui existe par ce qui précède.

2. Archimédianité et approximations décimales

Exercice 19 : Excalibur 1

3. Densité de $\mathbb Q$ et de $\mathbb R\setminus \mathbb Q$ dans $\mathbb R$

4. Convexité

Excalibur 2

II. Généralités sur les suites réelles

1. Définition et exemples

- Exercice 36 : Excalibur 3On conjecture :
 - 1. Si $u_0 < -1$, u_1 n'est pas définit
 - 2. Si $u_0 \in [-1; l[\ u_n o l \ \mathsf{et} \ (u_n) \uparrow]$
 - 3. Si $u_n = l \ u$ est constante de valeur l
 - 4. Si $u_n > l$, $u_n \to l$ et $(u_n) \downarrow$

Puis on e démontre :

- 1. Rien a dire
- 2. Trivial (recurrence immédiate)
- 3. Par exemple, on montre par recurrence que $(u_n) \uparrow$ On pose pour $n \in \mathbb{N}$

$$A_n : '' - 1 \le u_n < u_{n+1} < l''$$

Lemme:

$$orall x \in [-1, l[, xwf(x) < l$$

Démonstration :

Etude de fonction ou

Calcul algébrique :

Soit $x \in [-1, l[$,

$$l-f(x)=f(l)-f(x)=\sqrt{1+l}-\sqrt{1+x}=rac{l-x}{\sqrt{1+l}+\sqrt{1+x}}$$

Or

$$\sqrt{1+l} + \sqrt{1+x} \ge \sqrt{1+l} > 1$$

Comme l-x>0,

$$0 < l - f(x) < l - x$$

Donc

Initialisation:

On a $u_0 \in [-1, l[$.

et $u_1 = f(u_0)$ donc par le lemme $+1 \leq u_0 < u_1 < l$

Hérédité:

Soit n tq A_n

Alors par le lemme :

$$-1 \le u_n \le f(u_n) < l$$

Or
$$f(u_n) = u_{n+1}$$

Donc on a bien A_{n+1}

Ainsi:

 $(u_n)\uparrow$ et est majoré par l

Par le théorème de la limite monotone, (u_n) converge vers $l' \in [-1,l]$

Pour cela on admet le Théorème de la limite finie :

Si $(u_n)_{n\in\mathbb{N}}$ vérifie $orall n\in\mathbb{N}, u_{n+1}=f(u_n)$ et converge vers l' avec f continue en l', alors f(l')=l'

Ici f est continue en l' car d est continue sur [-1,l], donc l' est fixe et comme le point fixe est unique, l'=l

Ainsi

$$(u_n)\uparrow$$
 et $u_n o l$

4. Même chose

2. Propriété générales des suites

Exercice 40

$$\mathrm{u} \; \mathrm{est} \; \mathrm{major\acute{e}e} \Leftrightarrow orall n \in \mathbb{N}, \exists M \in \mathbb{R}, u_n \leq M$$
 $\mathrm{u} \; \mathrm{est} \; \mathrm{croissante} \Leftrightarrow orall n \in \mathbb{N}, u_n \leq u_{n+1} \Leftrightarrow orall n \in \mathbb{N}, (u_n) \uparrow$ $\mathrm{u} \; \mathrm{est} \; \mathrm{stationnaire} \Leftrightarrow \exists n_0 \in \mathbb{N}, orall n \geq n_0, u_n = u_{n_0}$ $\mathrm{u} \; \mathrm{est} \; \mathrm{p\acute{e}riodique} \Leftrightarrow \exists k \in \mathbb{N}^*, orall n \in \mathbb{N}, u_{n+k} = u_n$

III. Limite d'une suite réelle

1. Définition

Proposition 58 (Démonstration)

Soir $u \in \mathbb{R}^\mathbb{N}$ tendant vers $l \in \mathbb{R}$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |u_n - l| \leq \epsilon$$

En prenant " $\epsilon=1>0$ " dans cette def,

On obtiens $N\in\mathbb{N}$ tq

$$\forall n \geq N, |u_n - l| \leq 1$$

A fortiori, pour $n \geq N$,

$$|u_n|-|l|\leq 1$$

i.e.

$$|u_n| \leq 1 + |l|$$

En posant : $M=max(|u_0|,\ldots,|u_{n-1}|,1+l)\in\mathbb{R}$ On a pour tout $n\in\mathbb{N}$,

$$|u_n| \leq M$$

Ainsi u est bornée.

Exemple 64

Soit $A\in\mathbb{R}$,

On pose $N=\lceil A^2
ceil\in\mathbb{N}$

Pour tout $n \geq N$,

 $n \geq A^2$

Donc,

$$\sqrt{n} \ge \sqrt{A^2} = |A| \ge A$$

Ainsi,

$$orall A \in \mathbb{R}, \exists N \in \mathbb{N}, orall n \geq N, \sqrt{n} \geq A$$

i.e.

$$\sqrt{n} \longrightarrow +\infty$$

Corollaire 67 (Démonstration)

$$\begin{cases} (\lambda)_{n\in\mathbb{N}} \to \lambda \\ (\mu)_{n\in\mathbb{N}} \to \mu \end{cases}$$

Puis some de produits de limites.

2. Opérations sur les limites

Montrons que $(-1)^n$ n'admet pas de limite

• Si $l \in \mathbb{R}$

On suppose par l'absurde que $(-1)^n \underset{+\infty}{
ightarrow} l$

$$orall \epsilon > 0, \exists N \in \mathbb{N}, orall n \geq N, |u_n - l| \leq \epsilon$$

On a alors en prenant $\epsilon=\frac{1}{2}>0$

On obtiens $N\in\mathbb{N}$ tq

$$orall n \geq N, |u_n-l| \leq rac{1}{2}$$

On a alors

$$|2 = |u_n - u_{n+1}| = |u_n - l + l - u_{n+1}| \leq |u_n - l| + |u_{n+1} - l| \leq rac{1}{2} + rac{1}{2} = 1$$

Contradiction

• Si $l=+\infty$

On suppose par l'absurde que $(-1)^n \underset{+\infty}{\to} l$

$$\forall A \in \mathbb{R}, \exists M \in \mathbb{N}, \forall n > N, u_n > A$$

En prenant A=2 on obtiens N tq

$$\forall n > N, u_n > 2$$

Mais

$$2 \leq u_n \in \{-1,1\}$$

Contradiction

• Si $l=-\infty$

La même

Théoreme 72 Démonstration

Dans le cas ou $lim\ u=-\infty$ et l<0

• $l \in \mathbb{R}^*$

Soit $A \in \mathbb{R}_-^*$ et soit $A \in \mathbb{R}_+^*$

Par définition de $lim\ u=-\infty$ et l<0

$$orall n \geq N, u_n \leq rac{2A}{l}$$

Par déf de $\lim v = l$, comme $-\frac{l}{2} > 0$

Il existe $N \in \mathbb{N}$ tq,

$$orall n \geq N', v_n \in \left\lceil rac{3l}{2}, rac{l}{2}
ight
ceil$$

Soit N'' = max(N, N')

Pour $n \geq N''$,

$$egin{cases} u_n \leq rac{2A}{l} < 0 \ v_n \leq rac{l}{2} < 0 \end{cases}$$

Donc

$$u_nv_n\geq \frac{2A}{l}\frac{l}{2}=A$$

Ainsi

$$orall A \in \mathbb{R}_+, \exists N'' \in \mathbb{N}, orall n \geq N'', u_n v_n \geq A$$

i.e.

$$lim\ uv = +\infty$$

Propriété limites exposants et Démonstration

Soit $\alpha \in \mathbb{R}$, quand $n \to +\infty$

• Si
$$lpha < 0$$
, $n^lpha o 0^+$

• Si
$$lpha=0$$
, $n^lpha o 1$

• Si
$$\alpha > 0$$
, $n^{\alpha} \to +\infty$

Démo:

• Cas lpha=0 $(n^0)_n$ est constante de solution 1 Donc

$$n^0 \mathop{\longrightarrow}\limits_{n o +\infty} 1$$

• Cas
$$\alpha > 0$$

Soit
$$A \in \mathbb{R}_+^*$$

On pose
$$N = \lceil A^{1/lpha}
ceil$$

Soir
$$n \geq N$$
,

On a:

$$n \geq A^{1/lpha}$$

Ainsi

$$orall A \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, orall n \geq N, n^lpha \geq A$$

i.e.

$$n^{lpha} \mathop{\longrightarrow}\limits_{n o +\infty} +\infty$$

• Cas $\alpha < 0$

Comme
$$n^{-\alpha} \underset{n \to +\infty}{\longrightarrow} +\infty$$

Par inverse de la limite,

$$n^{lpha} \mathop{\longrightarrow}\limits_{n o +\infty} 0^{+}$$

3. Limites et ordre

Théorème 81 Démonstration

On raisonne par l'absurde (ordre total)

Supposons que l > l'

Montrons que u-v admet une limite appartenant a $\mathbb{R}_+^* \cup \{-\infty\}$

Par disjonction de cas :

• Si
$$l,l'\in\mathbb{R}$$
, $u-v o l-l'>0$

- Si $l=+\infty$, comme $l'<+\infty$ v est majorée donc -v est minorée et comme $u\to+\infty$, $u+(-v)\to+\infty$!!!!!!!!!!!!!!
 - i.e. $u-v o +\infty > 0$
- Si $l \in \mathbb{R}$ et $l' = -\infty$

On a
$$-v
ightarrow -\infty$$

et u est minorée (car bornée)

donc
$$u-v=u+(-v) \to +\infty>0$$

Notons $l'' = lim(u - v) \in \mathbb{R}_+^* \cup \{+\infty\}$

- Si $l''\in\mathbb{R}_+^*$ Par définition de $l'',\,u_n-v_n\geq l''-rac{l''}{2}>0$ APDC Rang N_0 Ainsi $u_n>v_n$ ce qui contredit $(orall n\in\mathbb{N}),\,u_n\leq v_n$
- Si $l''=+\infty$ APDC Rang, $u_n-v_n\geq 1$ définition de la limite Donc $u_n>v_n$ ce qui contredit $\forall n\in\mathbb{N},\,u_n\leq v_n$

Ainsi $l \leq l'$

On peut le noter aussi :

$$egin{array}{ccccc} u_n & < & v_n \ n
ightarrow + \infty & \downarrow & & \downarrow \ & l & \leq & l' \end{array}$$

Théorème 85 Démonstration

Soit $\epsilon > 0$

Comme $lim\ u=l$, il existe $N\in\mathbb{N}$ to

$$\forall n \geq N, u_n \in [l - \epsilon, l + \epsilon]$$

Comme $lim\ w=l$, il existe $N'\in\mathbb{N}$. tq

$$orall n \geq N'$$
 , $w_n \in [l-\epsilon,\ l+\epsilon]$

On pose N'' = max(N, N')

Pour $n \ge N''$

$$l - \epsilon \le u_n \le v_n \le w_n \le l + \epsilon$$

 $\operatorname{car}\, n \geq N'$

Ainsi

$$orall \epsilon > 0, \exists N'' \in \mathbb{N}, orall n \geq N'', v_n \in [l-\epsilon, l+\epsilon]$$

i.e.

$$lim v = l$$

Propriété sur les limites des suites géométriques

- Si a>1, $a^n \underset{n\to+\infty}{\longrightarrow} +\infty$
- Si $a=1, \, \forall n\in\mathbb{N}, 1^n=1 \ \mathsf{Donc}\ 1^n\to 1$
- Si $a\in]-1,1[$, $a^n\underset{n\to +\infty}{\longrightarrow} 0$
- Si a=-1, $((-1)^n)_{n\in\mathbb{N}}$ est bornée (périodique est divergente)
- Si a<-1, $(a^n)_{n\in\mathbb{N}}$ Diverge sans limite et n'est pas bornée (et même $|a^n| \underset{n\to +\infty}{\longrightarrow} +\infty$)

Démonstration:

• Cas a>1On pose $\epsilon=a-1>0$ Pour $n\in\mathbb{N}$

$$egin{aligned} a^n &= (1+\epsilon)^n \ &\stackrel{binome}{=} 1 + n\epsilon + \cdots \geq 0 \ &\leq 1 + n\epsilon &\mathop{\longrightarrow}\limits_{n o + \infty} + \infty \end{aligned}$$

Donc $a^n \to +\infty$ d'après le théorème de convergence par encadrement

- Cas a=1 trivial
- $\begin{array}{l} \bullet \ \ \mathsf{Cas} \ a \in]-1,1[/\{0\}\\ \ \ \mathsf{On} \ \mathsf{a} \ \frac{1}{|a|} > 1, \, \mathsf{donc} \left(\frac{1}{|a|}\right)^n \underset{n \to +\infty}{\longrightarrow} +\infty \\ \ \ \mathsf{Donc} \ \frac{1}{|a^n|} \underset{n \to +\infty}{\longrightarrow} +\infty \end{array}$

Donc
$$|a^n| \underset{n \to +\infty}{\longrightarrow} 0^+$$
Donc $|a^n| \underset{n \to +\infty}{\longrightarrow} 0$

- Cas a = 0 Trivial
- Cas a < -1 $\hbox{On a } |a^n|=|a|^n \mathop{\longrightarrow}\limits_{n\to +\infty} +\infty \hbox{ car } |a|>1$ et même

$$egin{aligned} a^{2k} &= (a^2)^k \mathop{\longrightarrow}_{k o +\infty} + \infty \ & \ a^{2k+1} &= a(a^2)^k \mathop{\longrightarrow}_{n o +\infty} - \infty \end{aligned}$$

Elle ne peut donc pas tendre vers $-\infty$ ou vers $+\infty$ Elle ne peut pas non plus converger car elle n'est pas bornée. Donc elle n'admet pas de limite

IV. Suites monotones

Théorème 90 Démonstration

Soit $u \in \mathbb{R}^{\mathbb{N}}$ croissante et majorée

Alors $u(\mathbb{N})$ est en partie non vide et majorée de \mathbb{R} , donc elle admet une borne supérieure :

$$l=sup(u(\mathbb{N}))\in\mathbb{R}$$

Soit $\epsilon > 0$

Comme $l-\epsilon < l$ et l'est le plus petit majorant de $u(\mathbb{N})$, alors $l-\epsilon$ ne majore pas $u(\mathbb{N})=\{u_n;n\in\mathbb{N}\}$

Donc il existe $N \in \mathbb{N}$ tq pour tout $n \in \mathbb{N}, n \geq N$ et

$$u_n > l - \epsilon$$

A fortiori $u_n \geq l - \epsilon$

Par ailleurs l majore $u(\mathbb{N})$

i.e.
$$\forall n \in \mathbb{N}$$
, $u_n \leq l$

Comme la suite est croissante, pour $n \ge N$

$$l - \epsilon \le u_N \le u_n \le l \le l + \epsilon$$

Ainsi:

$$\forall n \geq N, \ u_n \in [l-\epsilon, l+\epsilon]$$

Finalement,

$$u_n \mathop{\longrightarrow}\limits_{n o +\infty} l$$

Théorème 94 Suites adjacentes

Excalibur 4.

Démonstration:

Comme $\lim v - u = 0$

Alors (comme 1 > 0):

$$\exists N \in \mathbb{N}, orall n \geq N, |v-u| \leq 1$$

En particulier $u_N - v_N \leq |v_N - u_N| \leq 1$

Donc

$$egin{cases} u_N \leq 1 + v_N \leq 1 + v_0 & (v\downarrow) \ v_N \geq u_N - 1 \geq u_0 - 1 & (u\uparrow) \end{cases}$$

Ainsi u est croissante et majorée donc Converge par le théorème de la limite monotone et v est décroissante et minorée donc converge de même.

De plus on a alors

$$0 = lim(v - u) = lim \ v - lim \ u$$

Donc

$$\lim v = \lim u$$

Lemme 97 Démonstration

Vue dans le théorème de la limite monotone (car $l=sup(u(\mathbb{N}))$) Mais se montre aussi de manière plus élémentaire

Soit $n \in \mathbb{N}$.

Pour tout $p \ge n$, $u_n \le u_p$

En faisant tendre p vers $+\infty \ u_n \leq l$

Théorème 103

Preuve dans le cas de $l \in \mathbb{R}$:

Soit $\epsilon > 0$

Comme $lim\ u=l$, il existe $N\in\mathbb{N}$ tq

$$orall n \geq N$$
, $|u_n - l| \leq \epsilon$

Et pour $n \geq N$, $\phi(n) \geq n \geq N$

Donc $|u_{\phi(n)} - l| \leq \epsilon$

Ainsi

$$orall \epsilon > 0, \exists N \in \mathbb{N}, orall n \geq, |u_{\phi(n)} - l| \leq \epsilon$$

i.e.

$$lim u = l$$

Preuve dans le cas de $l=+\infty$ et $l=-\infty$

Théorème 106

Cas ou $l=+\infty$

Soit $A \in \mathbb{R}$

Soit $N \in \mathbb{N}$, tel que

$$orall k \geq N, u_{2k} \geq A$$

Soit N' tel que

$$\forall k > N', u_{2k+1} > A$$

Soit N'' = max(2N, 2N' + 1)

Si n est pair

$$rac{n}{2} \geq N$$

Donc

$$u_n=u_{2\left(rac{n}{2}
ight)}\geq A$$

• Si n est impair

$$\frac{n-1}{2} \geq N'$$

Donc

$$u_n=u_{2\left(rac{n-1}{2}
ight)+1}\geq A$$

Dans les 2 cas :

$$u_n \ge A$$

Ainsi

$$u_n o +\infty$$

On pose $(a_n)=(w_{2n})$ la suite extraite de w rang pair et $(b_n)=(w_{2n+1})$ la suite extraite de w de rang impair

Montrons que $(a_n) \uparrow$

Soit $n \in \mathbb{N}$

On a:

$$a_{n+1}-a_n=w_{2n+2}-w_{2n}=\sum_{k=1}^{2n+2}rac{(-1)^{k+1}}{k}\;-\sum_{k=1}^{2n}rac{(-1)^{k+1}}{k}=\sum_{k=2n+1}^{2n+2}rac{(-1)^{k+1}}{k}=rac{1}{k}$$

Donc

$$a_{n+1}-a_n\geq 0$$

Ainsi $a \uparrow$

De même, pour $n \in \mathbb{N}$

$$b_{n-1} - b_n \le 0$$

Donc $b \downarrow$

De plus pour $n \in \mathbb{N}$,

$$b_n - a_n = \sum_{k=1}^{2n+1} rac{(-1)^{k+1}}{k} \ - \sum_{k=1}^{2n} rac{(-1)^{k+1}}{k} = rac{1}{2n+1} \mathop{
ightarrow}_{n o + \infty} 0$$

i.e. :

Ainsi a et b sont adjacentes.

Par le théorème des suites adjacentes,

a et b convergent et ont la même limite I.

Par le théorème de convergence par les suites extraites des rangs pairs et de rangs impairs

w converge vers I ("
$$l=\sum_{k=1}^{+\infty}rac{(-1)^{k+1}}{k}$$
")

Théorème 108

Etape 1: Construction des 2 suites

On construit par récurrence 2 suites a et b qui vérifient :

$$1. \ orall n \in \mathbb{N}, A_n: egin{cases} b_n - a_n = rac{b-a}{2^n} \ I_n = \{i \in \mathbb{N} | u_i \in [a_n,b_n] \} \end{cases}$$

2.
$$\forall n \in \mathbb{N}^*, B_n : a_{n-1} \leq a_n \leq b_n \leq b_{n-1}$$

Initialisation :

On pose
$$egin{cases} a_0 = a \ b_0 = a \end{cases}$$

\1. est clairement vérifié

Hérédité :

Soit
$$n \in \mathbb{N}$$

Supposons avoir construit

$$a_0;\ldots;a_n$$
 et $b_0;\ldots;b_n$

$$\mathsf{tq}\ A_n$$

Comme
$$b_n-a_n=rac{b-a}{2^n}>0$$
 alors $a_n\leq rac{a_n+b_n}{2}\leq b_n$

On a 2 cas:

• Si
$$\left\{i\in\mathbb{N}|u_i\in\left[a_n,rac{a_n+b_n}{2}
ight]
ight\}$$
 est infini
On pose :

$$\left\{egin{aligned} a_{n+1} = a_n \ b_{n+1} = rac{a_n + b_n}{2} \end{aligned}
ight.$$

Sinon

Comme par H.R. I_n est infini, alors $\left\{i\in\mathbb{N}|u_i\in\left[rac{a_n+b_n}{2},b_n
ight]
ight\}$ est infini

On pose

$$egin{cases} a_{n+1} = rac{a_n + b_n}{2} \ b_{n+1} = b_n \end{cases}$$

Dans les deux cas,

$$egin{cases} b_{n+1} - a_{n+1} = rac{b_n - a_n}{2} \stackrel{H.R.}{=} rac{b - a}{2^{n+1}} \ I_{n+1} = \{i \in \mathbb{N} | u_i \in [a_{n+1}, b_{n+1}] \} ext{ est infini} \end{cases}$$

i.e.

 A_{n+1} est vérifiée

De plus par construction $a_{n+1} \leq b_{n+1}$ et $a_n \leq a_{n+1}$ et $b_{n+1} \leq b_n$ i.e.

 B_{n+1} est vérifiée

On a donc construit par recurrence deux suites $(a_n),(b_n)\in\mathbb{R}^\mathbb{N}$ tel que $a_0=a,\,b_0=b$ et

$$orall n \in \mathbb{N}, A_n \ orall n \in \mathbb{N}^*, B_n$$

Comme

$$b_n - a_n = rac{b-a}{2^n} o 0$$
 et $(a_n) \uparrow$ et $(b_n) \downarrow$

Les suites (a_n) et (b_n) sont adjacentes avec $a_0=a$ et $b_0=b$

Par le théorème des suites adjacentes et stabilité des inégalités larges par passage à la limite,

 $(a_n),(b_n)$ convergent vers une limite commune $l \in [a,b]$

Etape 2: Extraction

Comme pur tout $n \in \mathbb{N}$,

$$I_n = \{i \in \mathbb{N} | u_i \in [a_n, b_n] \}$$
 est infini

Alors on peut construire $\phi:\mathbb{N}\to\mathbb{N}$ strictement croissante par récurrence ainsi :

$$\phi=0$$
 ($\in \mathbb{N}=I_0$)

$$orall n \in \mathbb{N}, \phi(n+1) = min(I_{n+1} \cap]\phi(n); +\infty[)$$

Partie non vide de $\mathbb N$ car I_{n+1} est infini (et $\mathbb N$ n'est pas majoré) On a alors

$$orall n \in \mathbb{N}, a_n \leq u_{\phi(n)} \leq b_n$$

et par encadrement :

$$\lim_{n o +\infty}u_{\phi(n)}=l\in [a,b]$$

Donc u converge

VI. Traductions séquentielles

Définition

Soit $A\subset\mathbb{R}$

On dit que A est dense ssi elle rencontre tout intervalle ouvert non vide I

Propriété

Soit $A\subset\mathbb{R}$

A est dense dans $\mathbb R$ ssi

$$orall x \in \mathbb{R}, \exists (a_n) \in A^\mathbb{N}, a_n \underset{n o +\infty}{\longrightarrow} x$$

Propriétés

Supposons A dense dans $\ensuremath{\mathbb{R}}$

Soit $x \in \mathbb{R}$,

Excalibur 5

On pose pour tout $n\in\mathbb{N}$, $I_n=]x-rac{1}{n+1},x+rac{1}{n+1}[$ RATTRAPER

On a alors a fortiori:

$$orall n \in \mathbb{N}, x - rac{1}{n+1} \leq a_n \leq x + rac{1}{n+1}$$

Par le théorème des gendarmes

$$a_n \mathop{\longrightarrow}\limits_{n o +\infty} x$$

Supposons avoir à disposition pour tout $x\in \mathbb{R}$, une suite $(a_n)\in A^\mathbb{N}$ qui converge vers x.

Soit I un intervalle ouvert non vide de $\ensuremath{\mathbb{R}}$

Soit $x \in I$.

Comme I est ouvert, il existe $\epsilon>0$ tq $[x-\epsilon,x+\epsilon]\subset I$

Or lui aussi

RAATRAPPPPERRRRR

Propriété

Soit $A \subset \mathbb{R}$ bornée non vide et $b \in \mathbb{R}$ Alors

$$b = sup(A) \Leftrightarrow egin{cases} \mathrm{b} \ \mathrm{marjore} \ \mathrm{a} \ \exists (a_n) \in A^\mathbb{N}, a_n
ightarrow b \end{cases}$$

Démonstration:

Par double implication

Soit b = sup(A)

Par définition de la borne supérieure, b majore A

Pour $n \in \mathbb{N}, b - rac{1}{n+1} < b$

Donc ... ne majore pas A, don il existe $a_n \in]b-\frac{1}{n+1},b]$

A fortiori $b-\frac{1}{n+1} \leq a_n \leq b$

Par le théorème des gendarmes, $a_n o b$

Soit b majorant A

tel qu'il existe $(a_n) \in A^{\mathbb{N}}$ tq $a_n o b$

Soit b un majorant de A

On a

$$\forall n \in \mathbb{N}, a_n \leq b'$$

Ainsi b est le plus petit majorant de A i.e.

$$b = sup(A)$$

Propriété ("Cas infini")

Soit $A \subset \mathbb{R}$

Alors A est non majoré ssi

$$(\exists (a_n) \in A^\mathbb{N}, a_n o +\infty)$$

Démonstration en exercice

VII. Itération de fonctions

Proposition Hors Programme (Exercice 113)

Si $f \downarrow$ et $E \subset D_f$ et stable par f alors pour u vérifiant * et $u_n \in E$, les suites (u_{2k}) et (u_{2k+1}) sont de monotonies "opposées"

Démonstration :

Sous ces hypothèses,

- Si $u_0 \leq u_2$, $u_1 = f(u_0) \geq f(u_2) = u_3$ puis en ré appliquant f, $u_2 \leq u_4, u_3 \geq u_5 \dots$ Donc $(u_{2k}) \uparrow$ et $(u_{2k+1}) \downarrow$
- Si $u_0>u_2$ De même $(u_{2k})\downarrow$ et $(u_{2k+1})\uparrow$

VIII Suites a valeurs complexes

Définition 115

Excalidraw 6

Définition 123

Excalibur 7

Théorème 126

Démonstration "Extraction successive"

Soit $u\in\mathbb{C}^\mathbb{N}$ Bornée

i.e.

Il existe

$$M \in \mathbb{R}_+ ext{ tq } (orall n \in \mathbb{N}, |u_n| \leq M)$$

On a alors

$$|Re(u_n)| \le |u_n| \le M$$

 $|Im(u_n)| \le |u_n| \le M$

Comme Re(u) est bornée il existe une extractrice ϕ tq $(Re(u_{\phi(n)}))$ converge

De plus $(Im(u_{\phi(n)}))$ est bornée

Donc on peut trouver une extractrice ϕ tq $(Im(u_{\phi(n)}))$ converge

Comme $(Re(u_{(\phi \circ \psi)(n)}))$ est extraite de la suite convergente $(Re(u_{\phi(n)}))$ alors elle converge

Comme $(Re(u\circ (\phi\circ \psi))=(Re(u))\circ \phi\circ \psi$ et

 $(Im(u \circ (\phi \circ \psi)) = (Im(u)) \circ \phi \circ \psi$ convergent

Alors $u \circ (\phi \circ \psi)$ converge.

Comme c'est une suite extraite de u on a fini