Modelling Microstructure during Phase Change - Beckermann-Wang Model

Objective

This testcase tests the accuracy of the Beckermann-Wang model for microstructure formation during solidification. One-way coupling is employed and results compared to golden output.

Definition

We model the solidification of the Al-7Si alloy in a pseudo-1D rod of dimension $100 \times 1 \times 1$. Material properties (conductivity, specific heat and density) are assumed constant in the solid and liquid phases. Microstructure formation during solidification is implemented using the Beckermann-Wang model. In this model dendritic crystals are assumed spherical (dendritic envelope) with uniform radius. This grain radius, R is given by

$$\frac{\partial R}{\partial t} = \omega^2 \left(\frac{D_l m(\kappa - 1) C_e}{\pi^2 \Gamma} \right) \tag{1}$$

where D_l is the diffusion in the liquid, κ the partition coefficient, m the liquidus slope, Γ the Gibbs-Thomson coefficient, C_e the concentration of the liquid in the dendritic envelope and ω is the dimensionless solutal undercooling at the dendrite tip

$$\omega = \frac{C_e - C_l}{C_e(1 - \kappa)} \tag{2}$$

Temperatures calculated at the microstructure scale are not fed back to the macro-scale. However, macro-scale temperatures are used to initialise the evolution of the microstructure at the start of each macro-scale time step. This is a one-way coupling solution technique.

Metrics

We compare the grain radius at various times at cells 1, 2, 3 with golden output. A percentage error is used for this comparison.

Truchas Model

To run this example in Truchas, we select the heat conduction model and $grain_growth_bw$ phase-change model. The time-step grows from an initial timestep $dt_0 = 0.0001$, heat conduction is implicitly solved. An orthogonal pseudo-1D mesh of dimensions $[0,0,0] \Rightarrow [0.1,0.01,0.012]$ on a $100 \times 1 \times 1$ grid is employed. A homogenous Neumann temperature boundary condition is employed at both ends of the rod. The liquid initially occupies the entire volume with initial temperature $T_0 = 670K$. We run the simulation to t = 3.0s.

Results

The results of these runs are compared to a golden solution.