Rain Prediction using LR, Tree, XGBoost, NN, CNN, KNN

By: Mridul Jain, Lynne Wang, Deepak Kumar Srivastava, and Naresh Kumar Chinnathambi Kailasam

Course: MIDS Spring 2025, W207 Final Project

Objective:

The goal is to predict rainfall using historical weather data with different machine learning models: Logistic Regression, Decision Tree, Random Forest, XGBoost, and Neural Networks.

Dataset:

- Source: Kaggle Playground Series Season 5, Episode 3. https://www.kaggle.com/competitions/playground-series-s5e3
- Nature: Tabular weather dataset with features like temperature, humidity, wind speed, etc.
- Target: Binary classification (0 : No Rain, 1 : Rain).

Data Preprocessing & EDA

- **Dataset**: Contains 2,190 training records with features like pressure, temperature (max, min, average), humidity, dewpoint, wind direction/speed, sunshine, and cloud cover.
- Transformations:
 - Cyclical encoding for day and wind direction.
 - Added synthetic date, year, and month.
 - Visualized rainy days per month/year.
 - Correlation heatmap constructed.

Models Evaluated:

- 1. Logistic Regression (LR)
- 2. K-Nearest Neighbors (KNN)
- 3. **Decision Tree**
- 4. Random Forest Tree
- 5. XGBoost
- 6. Neural Network (NN)
- 7. 1D Convolutional Neural Network (CNN)
- 8. 2D Convolutional Neural Network (CNN)

Model Performance:

Model	Validation Accuracy	Test Score
Logistic Regression	0.8837	~0.89610
KNN	0.8744	~0.87163
Decision Tree	0.8676	~0.85561
Random Forest	0.8744	~0.89578
XGBoost	0.8721	~0.89975
Neural Network	0.8790	~0.90145
1D CNN	0.8833	~0.89162
2D CNN	0.8787	~0.88792
Ensemble		~0.90376

Outcome:

- The top leaderboard score was 0.90654.
- Our ensemble achieved a score of 0.90376, which would have ranked 21st out of 4,382 participants.

Conclusion:

All models achieved relatively high validation accuracy, with Neural Networks and Random Forest slightly outperforming others. The ensemble-style or deep learning-based approaches seem most promising for future refinement.

```
In [257...
          import numpy as np
          from matplotlib import pyplot as plt
          import pandas as pd
          import seaborn as sns # for nicer plots
          sns.set(style="darkgrid") # default style
          from sklearn.model_selection import train_test_split
          from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
          import matplotlib.pyplot as plt
          from sklearn.neighbors import KNeighborsRegressor
          from sklearn.metrics import mean_squared_error
          import tensorflow as tf
          from tensorflow import keras
          from keras import metrics
          from keras.datasets import fashion_mnist
          from tensorflow.keras.models import load_model
          import pandas as pd
          from sklearn.preprocessing import StandardScaler
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, accuracy_score

from xgboost import XGBClassifier
from sklearn import metrics

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

import glob

from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive. mount("/content/drive", force_remount=True).

EDA & Data Preprocessing

```
In [258... # Load the training data
PATH = '/content/drive/My Drive/Colab Notebooks/207 Final/'
train_df = pd.read_csv(PATH+'train.csv')
test_df = pd.read_csv(PATH+'test.csv')
test_df2 = pd.read_csv(PATH+'test_extra7.csv')
# Show basic info and first few rows
train_info = train_df.info()
train_head = train_df.head()
train_info, train_head
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2190 entries, 0 to 2189
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	id	2190 non-null	int64
1	day	2190 non-null	int64
2	pressure	2190 non-null	float64
3	maxtemp	2190 non-null	float64
4	temparature	2190 non-null	float64
5	mintemp	2190 non-null	float64
6	dewpoint	2190 non-null	float64
7	humidity	2190 non-null	float64
8	cloud	2190 non-null	float64
9	sunshine	2190 non-null	float64
10	winddirection	2190 non-null	float64
11	windspeed	2190 non-null	float64
12	rainfall	2190 non-null	int64
<pre>dtypes: float64(10), int64(3)</pre>			

memory usage: 222.6 KB

```
Out[258...
           (None,
               id
                  day pressure maxtemp temparature mintemp dewpoint humidity \
                    1
                                     21.2
                                                                      19.4
                                                                                87.0
               0
                          1017.4
                                                  20.6
                                                           19.9
           1
               1
                     2
                          1019.5
                                     16.2
                                                  16.9
                                                           15.8
                                                                      15.4
                                                                                95.0
           2
               2
                     3
                         1024.1
                                     19.4
                                                  16.1
                                                           14.6
                                                                      9.3
                                                                                75.0
           3
               3
                     4
                          1013.4
                                     18.1
                                                  17.8
                                                           16.9
                                                                      16.8
                                                                                95.0
               4
                     5
                                                  18.4
                                                           15.2
                          1021.8
                                     21.3
                                                                      9.6
                                                                                52.0
               cloud sunshine winddirection windspeed rainfall
           0
               88.0
                           1.1
                                         60.0
                                                    17.2
           1
               91.0
                           0.0
                                         50.0
                                                    21.9
                                                                 1
           2
               47.0
                           8.3
                                         70.0
                                                    18.1
                                                                 1
           3
               95.0
                           0.0
                                         60.0
                                                    35.6
                                                                 1
           4
               45.0
                           3.6
                                         40.0
                                                    24.8
                                                                 0
          # Create a synthetic date using day of year assuming year 2000 as base (for day to
In [259...
          train_df['date'] = pd.to_datetime(train_df['day'], format='%j', errors='coerce')
          # Add synthetic year for splitting into multiple years (e.g., assume 6 years total
          num years = 6
          train_df['year'] = (train_df.index // 365)
          train_df['month'] = train_df['date'].dt.month
          # Group by year and month to count rainy days
          rainy_days = train_df[train_df['rainfall'] == 1].groupby(['year', 'month']).size().
          # PLot
          plt.figure(figsize=(12, 7))
          rainy days.T.plot(kind='bar', figsize=(14, 7))
          plt.title('Number of Rainy Days per Month for Each Year')
          plt.xlabel('Month')
          plt.ylabel('Rainy Days')
          plt.xticks(ticks=range(0, 12), labels=[
              'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
              'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'], rotation=45)
          plt.legend(title='Year')
          plt.grid(axis='y')
          plt.tight_layout()
          plt.show()
```

<Figure size 1200x700 with 0 Axes>


```
In [260... # Transform 'day' feature
    day_frac = (train_df['day'] - 1) / 365 # range: 0 to ~1
    day_radians = 2 * np.pi * day_frac
    train_df['day_sin'] = np.sin(day_radians)

# Transform 'winddirection' feature
    wind_radians = 2 * np.pi * train_df['winddirection'] / 360
    train_df['wind_sin'] = np.sin(wind_radians)

train_info = train_df.info()
    train_head = train_df.head()
```

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 2190 entries, 0 to 2189
        Data columns (total 18 columns):
             Column
                            Non-Null Count Dtype
         ---
            -----
                            -----
         0
             id
                            2190 non-null
                                           int64
         1
             day
                            2190 non-null
                                           int64
         2
             pressure
                            2190 non-null
                                           float64
         3
                            2190 non-null
             maxtemp
                                          float64
         4
                            2190 non-null float64
             temparature
         5
                            2190 non-null
             mintemp
                                          float64
         6
             dewpoint
                            2190 non-null float64
         7
                            2190 non-null
                                           float64
             humidity
             cloud
                            2190 non-null float64
         9
             sunshine
                            2190 non-null
                                           float64
         10 winddirection 2190 non-null float64
         11 windspeed
                            2190 non-null float64
         12 rainfall
                            2190 non-null
                                           int64
         13 date
                            2190 non-null datetime64[ns]
         14 year
                            2190 non-null
                                          int64
         15 month
                            2190 non-null int32
         16 day_sin
                            2190 non-null float64
                            2190 non-null
         17 wind_sin
                                           float64
        dtypes: datetime64[ns](1), float64(12), int32(1), int64(4)
        memory usage: 299.5 KB
          (None,
Out[260...
              id day pressure maxtemp temparature mintemp dewpoint humidity \
           0
               0
                    1
                        1017.4
                                   21.2
                                                20.6
                                                        19.9
                                                                  19.4
                                                                            87.0
           1
               1
                    2
                        1019.5
                                   16.2
                                                16.9
                                                        15.8
                                                                  15.4
                                                                            95.0
           2
               2
                    3
                        1024.1
                                   19.4
                                                16.1
                                                        14.6
                                                                  9.3
                                                                            75.0
           3
               3
                                                17.8
                                                        16.9
                                                                  16.8
                    4
                        1013.4
                                   18.1
                                                                            95.0
           4
               4
                    5
                        1021.8
                                   21.3
                                                18.4
                                                        15.2
                                                                  9.6
                                                                            52.0
              cloud sunshine winddirection windspeed rainfall
                                                                      date year \
               88.0
                                       60.0
                                                  17.2
                                                              1 1900-01-01
           0
                         1.1
           1
              91.0
                         0.0
                                       50.0
                                                  21.9
                                                              1 1900-01-02
           2
              47.0
                         8.3
                                       70.0
                                                  18.1
                                                              1 1900-01-03
                                                                               0
           3
              95.0
                         0.0
                                       60.0
                                                  35.6
                                                              1 1900-01-04
                                                                               0
               45.0
                         3.6
                                       40.0
                                                  24.8
                                                              0 1900-01-05
              month
                    day sin wind sin
           0
                  1 0.000000 0.866025
           1
                  1 0.017213 0.766044
           2
                  1 0.034422 0.939693
           3
                  1 0.051620 0.866025
                  1 0.068802 0.642788 )
         # # Add a previous day's feature
In [261...
          # # Create lag features for the previous 2 days for selected columns
          # Lag features = [
                "pressure", "maxtemp", "temparature", "mintemp", "dewpoint",
                "humidity", "cloud", "sunshine", "windspeed", "day_sin", "wind_sin"
          # ]
          # # Generate Lag features for day -1 and day -2
```

```
# for lag in [1]:
# for col in lag_features:
# train_df[f"{col}_prev_{lag}"] = train_df[col].shift(lag)

# # Drop rows with NaNs introduced by shifting
# train_df = train_df.dropna().reset_index(drop=True)

# train_df
```

```
In [262...
```

```
import seaborn as sns
import matplotlib.pyplot as plt

# Calculate correlation matrix without 'id'
correlation_matrix = train_df.drop(columns='id').corr(numeric_only=True)

# Move 'rainfall' to the first row/column
cols = correlation_matrix.columns.tolist()
cols.insert(0, cols.pop(cols.index('rainfall')))
correlation_matrix = correlation_matrix.loc[cols, cols]

# Plot heatmap
plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap="coolwarm", square=True
plt.title("Correlation Heatmap of Weather Features (Rainfall First, 'id' Removed)")
plt.tight_layout()
plt.show()
```


Training Models

Logistic Regression

```
In [265... # Train Logistic regression model
    model_lr = LogisticRegression()
    model_lr.fit(X_train, y_train)
    y_train_pred = model_lr.predict(X_train)
    train_acc = accuracy_score(y_train, y_train_pred)
    print(f"Logistic Regression Training Accuracy: {train_acc:.4f}")

    y_val_pred = model_lr.predict(X_val)
    val_acc = accuracy_score(y_val, y_val_pred)
    print(f"Logistic Regression validation Accuracy: {val_acc:.4f}")
    #print(classification_report(y_val, y_pred))
```

```
train_preds = model_lr.predict_proba(X_train)
print('Training Accuracy : ', metrics.roc_auc_score(y_train, train_preds[:,1]))
val preds = model_lr.predict_proba(X_val)
print('Validation Accuracy : ', metrics.roc_auc_score(y_val, val_preds[:,1]))
print()
# Evaluate model
y_pred = model_lr.predict(X_val)
accuracy = accuracy_score(y_val, y_pred)
report = classification_report(y_val, y_pred)
print("Accuracy:", accuracy_score(y_val, y_pred))
print("\nClassification Report:\n", classification report(y val, y pred))
```

Logistic Regression Training Accuracy: 0.8670 Logistic Regression validation Accuracy: 0.8653

Training Accuracy: 0.8972769226555654 Validation Accuracy : 0.8837961799447097

Accuracy: 0.865296803652968

Classification Report:

	precision	recall	f1-score	support
0	0.73	0.57	0.64	92
1	0.89	0.95	0.92	346
accuracy			0.87	438
macro avg	0.81	0.76	0.78	438
weighted avg	0.86	0.87	0.86	438

```
In [266... # Generate confusion matrix
          cm = confusion_matrix(y_val, y_pred)
          disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model_lr.classes_
          # Plot confusion matrix
          plt.figure(figsize=(6, 6))
          disp.plot(cmap='Blues', values_format='d')
          plt.title("Confusion Matrix - Logistic Regression")
          plt.tight_layout()
          plt.grid(False)
          plt.show()
```

<Figure size 600x600 with 0 Axes>


```
# Applying the trained model to test set
In [267...
          # Create synthetic date from 'day'
          test_df['date'] = pd.to_datetime(test_df['day'], format='%j', errors='coerce')
          # Simulate year assignment just like train_df (e.g., assume up to 6 years of data)
          test_df['year'] = (test_df.index // 365)
          # Extract month from synthetic date
          test_df['month'] = test_df['date'].dt.month
          # Create cyclical features
          test_df['day_sin'] = np.sin(2 * np.pi * (test_df['day'] - 1) / 365)
          test_df['wind_sin'] = np.sin(2 * np.pi * test_df['winddirection'] / 360)
          # Select the same feature columns
          X_test = test_df[columns_to_keep]
          # Scale using the same scaler
          X_test_scaled = scaler.transform(X_test)
          print(X_test_scaled[0])
          # Predict probabilities
          test_probs = model_lr.predict_proba(X_test_scaled)[:, 1] # Probability of rainfall
          # Create submission DataFrame
          submission = pd.DataFrame({
              'id': test_df['id'],
```

K-Nearest Neighbor (KNN)

```
X_train_flat = X_train.reshape((X_train.shape[0], -1))
In [268...
          X_val_flat = X_val.reshape((X_val.shape[0], -1))
          import matplotlib.pyplot as plt
           rmse_list = []
          for k in range(1, 100):
              model = KNeighborsRegressor(n_neighbors=k)
              model.fit(X_train, y_train)
              y_pred = model.predict(X_val)
              rmse = np.sqrt(mean_squared_error(y_val, y_pred))
              rmse_list.append(rmse)
              \#print(f''k = \{k\}, RMSE = \{rmse:.4f\}'')
           # Plot results
           plt.figure(figsize=(10, 5))
           plt.plot(range(1, 100), rmse_list, marker='o')
           plt.title('Validation RMSE vs. Number of Neighbors (k)')
           plt.xlabel('k')
           plt.ylabel('RMSE')
           plt.grid(True)
           plt.show()
```



```
best_k = np.argmin(rmse_list) + 1 # +1 because range starts from 1
In [269...
          best_rmse = rmse_list[best_k - 1]
          print(f"Best k: {best_k}, Lowest RMSE: {best_rmse:.4f}")
          neigh = KNeighborsRegressor(n neighbors=13)
          neigh.fit(X_train_flat, y_train)
          # Predict and round for classification
          y_train_pred = np.round(neigh.predict(X_train_flat)).astype(int)
          y_val_pred = np.round(neigh.predict(X_val_flat)).astype(int)
          # Round true labels too (just in case)
          y_train_true = np.round(y_train).astype(int)
          y_val_true = np.round(y_val).astype(int)
          # Compute accuracy
          train_accuracy = accuracy_score(y_train_true, y_train_pred)
          val_accuracy = accuracy_score(y_val_true, y_val_pred)
          print(f"Train Accuracy: {train_accuracy:.4f}")
          print(f"Validation Accuracy: {val accuracy:.4f}")
          # Generate and display confusion matrix for validation set
          cm = confusion matrix(y val true, y val pred)
          disp = ConfusionMatrixDisplay(confusion_matrix=cm)
          disp.plot(cmap='Blues', values_format='d')
          plt.title("Validation Confusion Matrix (KNN)")
          plt.grid(False)
          plt.show()
```

Best k: 13, Lowest RMSE: 0.3091

Train Accuracy: 0.8716 Validation Accuracy: 0.8744


```
In [270... # Predict regression values (no rounding)
y_test_pred = neigh.predict(X_test_scaled)

# Prepare submission file with continuous predictions
submission = pd.DataFrame({
    'id': test_df['id'],
    'rainfall': y_test_pred
})

submission.to_csv(PATH + 'submission_knn.csv', index=False)
```

Decision Tree Model

```
In [271... # Decision Tree Model
from sklearn.tree import DecisionTreeClassifier, plot_tree
tree_model = DecisionTreeClassifier(max_depth=4, random_state=42)
tree_model.fit(X_train, y_train)

# Evaluate model
y_pred = tree_model.predict(X_val)
print("Validation Accuracy:", accuracy_score(y_val, y_pred))
print("\nClassification Report:\n", classification_report(y_val, y_pred))

# Visualize the tree
plt.figure(figsize=(20,10))
plot_tree(tree_model, feature_names=X.columns, class_names=['No Rain', 'Rain'], fil
```

```
plt.title("Decision Tree")
plt.show()
```

Validation Accuracy: 0.867579908675799

Classification Report:

	precision	recall	f1-score	support
6	0.69	0.67	0.68	92
1	0.91	0.92	0.92	346
accuracy	1		0.87	438
macro avg	g 0.80	0.80	0.80	438
weighted avg	g 0.87	0.87	0.87	438

Decision Tree


```
In [272... # Generate confusion matrix
cm = confusion_matrix(y_val, y_pred)

# Display the matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["No Rain", "Rain disp.plot(cmap=plt.cm.Oranges)
plt.title("Confusion Matrix (Validation Set) - Decision Tree")
plt.grid(False)
plt.show()
```



```
In [273... # Get predicted probabilities for the positive class
    test_probs = tree_model.predict_proba(X_test_scaled)[:, 1] # probability of class

# If there's an 'id' column in test_df
submission = pd.DataFrame({
        "id": test_df["id"],
        "rainfall": test_probs
})

# Save to CSV
submission.to_csv(PATH + "submission_tree.csv", index=False)
```

Decision Forest Model

```
# Feature Importance Visualization
importances = forest_model.feature_importances_
features = X.columns
plt.figure(figsize=(10, 5))
plt.barh(features, importances)
plt.xlabel("Feature Importance")
plt.title("Random Forest Feature Importance")
plt.show()
```

Validation Accuracy: 0.8744292237442922

Classification Report:

	precision	recall	f1-score	support
0	0.74	0.62	0.67	92
1	0.90	0.94	0.92	346
accuracy			0.87	438
macro avg	0.82	0.78	0.80	438
weighted avg	0.87	0.87	0.87	438


```
In [275... # Confusion matrix
cm = confusion_matrix(y_val, y_pred)

# Display the matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["No Rain", "Rain disp.plot(cmap=plt.cm.Greens)
plt.title("Confusion Matrix (Validation Set)")
plt.grid(False)
plt.show()
```



```
In [276... # Get predicted probabilities for the positive class
    test_probs = forest_model.predict_proba(X_test_scaled)[:, 1] # probability of clas

# If there's an 'id' column in test_df
submission = pd.DataFrame({
        "id": test_df["id"],
        "rainfall": test_probs
})

# Save to CSV
submission.to_csv(PATH + "submission_forest.csv", index=False)
```

XGBoost Classifier

```
y_train_pred = model_xgb.predict(X_train)
train_acc = accuracy_score(y_train, y_train_pred)
print(f"Training Accuracy: {train_acc:.4f}")
y_pred = model_xgb.predict(X_val)
acc = accuracy_score(y_val, y_pred)
print(f"Validation Accuracy: {acc:.4f}")
#print(classification_report(y_val, y_pred))
cm = confusion_matrix(y_val, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
# Get predicted probabilities for the positive class
test_probs = model_xgb.predict_proba(X_test_scaled)[:, 1] # probability of class 1
# If there's an 'id' column in test_df
submission = pd.DataFrame({
    "id": test_df["id"],
    "rainfall": test_probs
})
# Save to CSV
submission.to_csv(PATH + "submission_XGboost.csv", index=False)
```

Training Accuracy: 0.9886 Validation Accuracy: 0.8721


```
In [278...
          # Another XGB model
          model_xgb2 = XGBClassifier(
              max_depth=6,
              colsample_bytree=0.9,
              subsample=0.9,
              n_estimators=10_000,
              learning_rate=0.1,
              eval_metric="auc",
              early_stopping_rounds=100,
              alpha=1,
              random_state=42
          # Train the model
          model_xgb2.fit(
              X_train, y_train,
              eval_set=[(X_val, y_val)],
              verbose=100
          )
          # Predict probabilities
          oof_xgb = model_xgb2.predict_proba(X_val)[:, 1]
          # Optionally evaluate
          print("Validation ROC AUC:", roc_auc_score(y_val, oof_xgb))
          y_pred = model_xgb2.predict(X_val)
          acc2 = accuracy_score(y_val, y_pred)
```

```
print(f"Validation Accuracy: {acc2:.4f}")
#print(classification_report(y_val, y_pred))
cm = confusion_matrix(y_val, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
# Get predicted probabilities for the positive class
test_probs = model_xgb2.predict_proba(X_test_scaled)[:, 1] # probability of class
submission = pd.DataFrame({
    "id": test_df["id"],
   "rainfall": test_probs
})
# Save to CSV
submission.to_csv(PATH + "submission_XGboost2.csv", index=False)
```

[0] validation_0-auc:0.85844
[100] validation_0-auc:0.86887
[101] validation_0-auc:0.86884
Validation ROC AUC: 0.8783142749434532

Validation Accuracy: 0.7900

- 300 - 250 - 200 - 150 - 100 - 50

Predicted

1

Confusion Matrix

0

-0

Neural Network

```
In [279...
          # NN
          # Clear session
          tf.keras.backend.clear_session()
          tf.random.set_seed(0)
          # Build final model
          nn_model = keras.Sequential([
              layers.Input(shape=(X_train.shape[1],)),
              layers.Dense(112, activation='relu'), # Layer 1
              layers.Dense(224, activation='relu'), # Layer 2
              layers.Dense(160, activation='relu'), # Layer 3
              # No dropout
              layers.Dense(1, activation='sigmoid') # Output layer for binary classification
          ])
          # Compile with SGD and Lr = 0.02
          nn model.compile(
              optimizer=keras.optimizers.SGD(learning_rate=0.005),
              loss='binary_crossentropy',
              metrics=['accuracy']
          # Train the model
          history = nn model.fit(
              X_train, y_train,
              validation_data=(X_val, y_val),
              epochs=500,
              batch_size=32,
              callbacks=[tf.keras.callbacks.EarlyStopping(patience=20, restore_best_weights=T
              verbose=1
          # Plot losses
          plt.figure(figsize=(8, 5))
          plt.plot(history.history['loss'], label='Train Loss')
          plt.plot(history.history['val loss'], label='Val Loss')
          plt.title("Training & Validation Loss")
          plt.xlabel("Epoch")
          plt.ylabel("Loss")
          plt.grid(True)
          plt.legend()
          plt.show()
          # Evaluate on training and validation sets
          train_loss, train_acc = nn_model.evaluate(X_train, y_train, verbose=0)
          val_loss, val_acc = nn_model.evaluate(X_val, y_val, verbose=0)
          print(f"Training Accuracy: {train_acc:.4f}")
          print(f"Validation Accuracy: {val_acc:.4f}")
```

```
Epoch 1/500
55/55 ----
                    ---- 1s 8ms/step - accuracy: 0.7408 - loss: 0.6475 - val_accur
acy: 0.7900 - val loss: 0.5825
Epoch 2/500
55/55 ---
                    ____ 0s 4ms/step - accuracy: 0.7433 - loss: 0.5969 - val_accur
acy: 0.7900 - val_loss: 0.5396
Epoch 3/500
55/55 -----
                ______ 0s 4ms/step - accuracy: 0.7433 - loss: 0.5615 - val_accur
acy: 0.7900 - val loss: 0.5077
Epoch 4/500
55/55 -
                        — 0s 4ms/step - accuracy: 0.7433 - loss: 0.5329 - val_accur
acy: 0.7900 - val loss: 0.4815
Epoch 5/500
55/55 ---
                        — 0s 4ms/step - accuracy: 0.7438 - loss: 0.5079 - val_accur
acy: 0.7900 - val_loss: 0.4586
Epoch 6/500
                     —— 0s 4ms/step - accuracy: 0.7496 - loss: 0.4851 - val_accur
55/55 ----
acy: 0.7991 - val_loss: 0.4381
Epoch 7/500
55/55 -
                      —— 0s 4ms/step - accuracy: 0.7646 - loss: 0.4640 - val_accur
acy: 0.8105 - val_loss: 0.4197
Epoch 8/500
55/55 -----
              Os 4ms/step - accuracy: 0.8072 - loss: 0.4447 - val_accur
acy: 0.8311 - val_loss: 0.4035
Epoch 9/500
                  _____ 0s 4ms/step - accuracy: 0.8275 - loss: 0.4272 - val_accur
acy: 0.8379 - val_loss: 0.3896
Epoch 10/500
                     —— 0s 4ms/step - accuracy: 0.8400 - loss: 0.4119 - val_accur
55/55 ----
acy: 0.8493 - val_loss: 0.3779
Epoch 11/500
55/55 ---
                    ----- 0s 4ms/step - accuracy: 0.8441 - loss: 0.3989 - val accur
acy: 0.8539 - val_loss: 0.3683
Epoch 12/500
55/55 -
                    —— 0s 4ms/step - accuracy: 0.8508 - loss: 0.3879 - val_accur
acy: 0.8584 - val_loss: 0.3607
Epoch 13/500
                Os 4ms/step - accuracy: 0.8579 - loss: 0.3789 - val_accur
55/55 -----
acy: 0.8630 - val_loss: 0.3548
Epoch 14/500
               ________ 0s 4ms/step - accuracy: 0.8634 - loss: 0.3716 - val_accur
acy: 0.8607 - val_loss: 0.3503
Epoch 15/500
                  _____ 0s 4ms/step - accuracy: 0.8629 - loss: 0.3657 - val accur
acy: 0.8630 - val loss: 0.3469
Epoch 16/500
55/55 ----
                   ----- 0s 4ms/step - accuracy: 0.8611 - loss: 0.3611 - val_accur
acy: 0.8630 - val_loss: 0.3445
Epoch 17/500
                    ---- 0s 4ms/step - accuracy: 0.8620 - loss: 0.3574 - val accur
55/55 ----
acy: 0.8630 - val_loss: 0.3427
Epoch 18/500
55/55 ---
                     —— 0s 4ms/step - accuracy: 0.8616 - loss: 0.3545 - val_accur
acy: 0.8630 - val_loss: 0.3414
Epoch 19/500
55/55 -----
                   ----- 0s 4ms/step - accuracy: 0.8614 - loss: 0.3522 - val accur
```

```
acy: 0.8653 - val_loss: 0.3405
Epoch 20/500
              ______ 0s 4ms/step - accuracy: 0.8617 - loss: 0.3503 - val accur
acy: 0.8653 - val_loss: 0.3398
Epoch 21/500
                  ---- 0s 4ms/step - accuracy: 0.8605 - loss: 0.3487 - val accur
acy: 0.8630 - val_loss: 0.3392
Epoch 22/500
55/55 ----
                   ---- 0s 4ms/step - accuracy: 0.8631 - loss: 0.3474 - val accur
acy: 0.8630 - val_loss: 0.3388
Epoch 23/500
55/55 ----
                    —— 0s 4ms/step - accuracy: 0.8656 - loss: 0.3464 - val accur
acy: 0.8630 - val_loss: 0.3383
Epoch 24/500
55/55 ---
                  ---- 0s 4ms/step - accuracy: 0.8654 - loss: 0.3454 - val accur
acy: 0.8630 - val loss: 0.3380
Epoch 25/500
             Os 4ms/step - accuracy: 0.8667 - loss: 0.3446 - val_accur
55/55 -----
acy: 0.8653 - val loss: 0.3377
Epoch 26/500
              acy: 0.8653 - val loss: 0.3374
Epoch 27/500
55/55 ---
                   —— 0s 4ms/step - accuracy: 0.8664 - loss: 0.3432 - val_accur
acy: 0.8653 - val_loss: 0.3371
Epoch 28/500
55/55 ---
                  —— 0s 4ms/step - accuracy: 0.8674 - loss: 0.3426 - val_accur
acy: 0.8653 - val_loss: 0.3369
Epoch 29/500
55/55 -
              acy: 0.8653 - val loss: 0.3366
Epoch 30/500
              Os 4ms/step - accuracy: 0.8676 - loss: 0.3415 - val_accur
55/55 -----
acy: 0.8653 - val loss: 0.3363
Epoch 31/500
             Os 4ms/step - accuracy: 0.8676 - loss: 0.3411 - val_accur
55/55 -----
acy: 0.8653 - val loss: 0.3361
Epoch 32/500
                  —— 0s 4ms/step - accuracy: 0.8678 - loss: 0.3406 - val_accur
acy: 0.8653 - val_loss: 0.3358
Epoch 33/500
55/55 ----
                 ———— 0s 4ms/step - accuracy: 0.8678 - loss: 0.3401 - val_accur
acy: 0.8653 - val_loss: 0.3355
Epoch 34/500
55/55 -
                      - 0s 4ms/step - accuracy: 0.8678 - loss: 0.3397 - val_accur
acy: 0.8653 - val_loss: 0.3352
Epoch 35/500
55/55 -----
                  —— 0s 4ms/step - accuracy: 0.8676 - loss: 0.3393 - val_accur
acy: 0.8653 - val_loss: 0.3350
Epoch 36/500
55/55 -----
               ———— 0s 4ms/step - accuracy: 0.8692 - loss: 0.3389 - val_accur
acy: 0.8676 - val_loss: 0.3347
Epoch 37/500
              Os 4ms/step - accuracy: 0.8692 - loss: 0.3386 - val_accur
acy: 0.8676 - val_loss: 0.3344
Epoch 38/500
```

```
---- 0s 4ms/step - accuracy: 0.8690 - loss: 0.3382 - val_accur
acy: 0.8676 - val_loss: 0.3342
Epoch 39/500
                        - 0s 4ms/step - accuracy: 0.8690 - loss: 0.3379 - val_accur
55/55 -
acy: 0.8676 - val_loss: 0.3339
Epoch 40/500
55/55 ---
                        — 0s 4ms/step - accuracy: 0.8700 - loss: 0.3375 - val_accur
acy: 0.8676 - val_loss: 0.3336
Epoch 41/500
55/55 ---
                      —— 0s 4ms/step - accuracy: 0.8700 - loss: 0.3372 - val_accur
acy: 0.8676 - val_loss: 0.3334
Epoch 42/500
                ______ 0s 4ms/step - accuracy: 0.8699 - loss: 0.3369 - val_accur
55/55 -----
acy: 0.8676 - val_loss: 0.3331
Epoch 43/500
                        - 0s 4ms/step - accuracy: 0.8699 - loss: 0.3366 - val accur
55/55 -
acy: 0.8653 - val_loss: 0.3329
Epoch 44/500
                        — 0s 4ms/step - accuracy: 0.8699 - loss: 0.3362 - val accur
55/55 ---
acy: 0.8653 - val_loss: 0.3326
Epoch 45/500
55/55 -
                       — 0s 4ms/step - accuracy: 0.8699 - loss: 0.3359 - val accur
acy: 0.8653 - val_loss: 0.3323
Epoch 46/500
55/55 -
                        — 0s 4ms/step - accuracy: 0.8699 - loss: 0.3357 - val_accur
acy: 0.8653 - val_loss: 0.3321
Epoch 47/500
                0s 4ms/step - accuracy: 0.8700 - loss: 0.3354 - val_accur
55/55 -
acy: 0.8653 - val_loss: 0.3319
Epoch 48/500
                    ——— 0s 4ms/step - accuracy: 0.8703 - loss: 0.3351 - val accur
55/55 ----
acy: 0.8653 - val loss: 0.3316
Epoch 49/500
                        — 0s 4ms/step - accuracy: 0.8713 - loss: 0.3348 - val accur
acy: 0.8630 - val_loss: 0.3314
Epoch 50/500
55/55 -
                      — 0s 4ms/step - accuracy: 0.8713 - loss: 0.3345 - val accur
acy: 0.8630 - val loss: 0.3311
Epoch 51/500
55/55 -
                         - 0s 4ms/step - accuracy: 0.8715 - loss: 0.3343 - val_accur
acy: 0.8630 - val_loss: 0.3309
Epoch 52/500
                      — 0s 4ms/step - accuracy: 0.8715 - loss: 0.3340 - val_accur
55/55 ---
acy: 0.8630 - val_loss: 0.3307
Epoch 53/500
55/55 -----
                  ———— 0s 4ms/step - accuracy: 0.8717 - loss: 0.3337 - val_accur
acy: 0.8630 - val_loss: 0.3305
Epoch 54/500
                     —— 0s 4ms/step - accuracy: 0.8717 - loss: 0.3335 - val_accur
acy: 0.8630 - val loss: 0.3302
Epoch 55/500
                      --- 0s 4ms/step - accuracy: 0.8717 - loss: 0.3332 - val_accur
acy: 0.8630 - val_loss: 0.3300
Epoch 56/500
                        - 0s 4ms/step - accuracy: 0.8717 - loss: 0.3330 - val_accur
acy: 0.8630 - val_loss: 0.3298
```

```
Epoch 57/500
55/55 ----
                   ——— 0s 4ms/step - accuracy: 0.8717 - loss: 0.3327 - val_accur
acy: 0.8630 - val loss: 0.3296
Epoch 58/500
55/55 -----
                   ____ 0s 4ms/step - accuracy: 0.8717 - loss: 0.3325 - val_accur
acy: 0.8630 - val_loss: 0.3294
Epoch 59/500
55/55 -----
                acy: 0.8630 - val loss: 0.3291
Epoch 60/500
55/55 -
                       — 0s 4ms/step - accuracy: 0.8717 - loss: 0.3320 - val_accur
acy: 0.8630 - val_loss: 0.3289
Epoch 61/500
                       — 0s 4ms/step - accuracy: 0.8725 - loss: 0.3317 - val_accur
acy: 0.8630 - val_loss: 0.3287
Epoch 62/500
                    —— 0s 4ms/step - accuracy: 0.8725 - loss: 0.3315 - val_accur
55/55 ----
acy: 0.8630 - val_loss: 0.3285
Epoch 63/500
55/55 -
                     —— 0s 4ms/step - accuracy: 0.8731 - loss: 0.3313 - val_accur
acy: 0.8630 - val_loss: 0.3283
Epoch 64/500
55/55 -----
              Os 4ms/step - accuracy: 0.8731 - loss: 0.3310 - val_accur
acy: 0.8630 - val_loss: 0.3281
Epoch 65/500
                  ----- 0s 4ms/step - accuracy: 0.8731 - loss: 0.3308 - val_accur
acy: 0.8630 - val_loss: 0.3279
Epoch 66/500
                    —— 0s 4ms/step - accuracy: 0.8731 - loss: 0.3306 - val_accur
55/55 ----
acy: 0.8630 - val_loss: 0.3278
Epoch 67/500
55/55 ---
                   —— 0s 4ms/step - accuracy: 0.8731 - loss: 0.3303 - val_accur
acy: 0.8630 - val_loss: 0.3276
Epoch 68/500
55/55 -
                    —— 0s 4ms/step - accuracy: 0.8731 - loss: 0.3301 - val_accur
acy: 0.8653 - val_loss: 0.3274
Epoch 69/500
               Os 4ms/step - accuracy: 0.8731 - loss: 0.3299 - val_accur
55/55 -----
acy: 0.8653 - val_loss: 0.3272
Epoch 70/500
              ______ 0s 4ms/step - accuracy: 0.8729 - loss: 0.3297 - val_accur
acy: 0.8653 - val_loss: 0.3270
Epoch 71/500
                 ——— 0s 4ms/step - accuracy: 0.8729 - loss: 0.3295 - val accur
acy: 0.8653 - val loss: 0.3269
Epoch 72/500
                  _____ 0s 4ms/step - accuracy: 0.8729 - loss: 0.3293 - val accur
acy: 0.8653 - val_loss: 0.3267
Epoch 73/500
                    —— 0s 4ms/step - accuracy: 0.8729 - loss: 0.3291 - val accur
55/55 ----
acy: 0.8653 - val_loss: 0.3265
Epoch 74/500
55/55 ---
                    —— 0s 4ms/step - accuracy: 0.8729 - loss: 0.3288 - val_accur
acy: 0.8653 - val_loss: 0.3263
Epoch 75/500
55/55 -----
                  ------ 0s 4ms/step - accuracy: 0.8729 - loss: 0.3286 - val accur
```

```
acy: 0.8653 - val_loss: 0.3262
Epoch 76/500
               ______ 0s 4ms/step - accuracy: 0.8734 - loss: 0.3284 - val accur
acy: 0.8653 - val_loss: 0.3260
Epoch 77/500
                   ---- 0s 4ms/step - accuracy: 0.8734 - loss: 0.3282 - val accur
acy: 0.8676 - val_loss: 0.3259
Epoch 78/500
55/55 ----
                    ---- 0s 4ms/step - accuracy: 0.8738 - loss: 0.3280 - val accur
acy: 0.8676 - val_loss: 0.3257
Epoch 79/500
                    --- 0s 4ms/step - accuracy: 0.8724 - loss: 0.3279 - val accur
55/55 ----
acy: 0.8676 - val_loss: 0.3256
Epoch 80/500
55/55 ---
                   —— 0s 4ms/step - accuracy: 0.8724 - loss: 0.3277 - val accur
acy: 0.8699 - val loss: 0.3255
Epoch 81/500
55/55 -----
              Os 4ms/step - accuracy: 0.8724 - loss: 0.3275 - val_accur
acy: 0.8699 - val loss: 0.3253
Epoch 82/500
               ----- 0s 4ms/step - accuracy: 0.8724 - loss: 0.3273 - val_accur
55/55 -----
acy: 0.8699 - val loss: 0.3252
Epoch 83/500
55/55 ---
                     —— 0s 4ms/step - accuracy: 0.8734 - loss: 0.3271 - val_accur
acy: 0.8699 - val_loss: 0.3250
Epoch 84/500
55/55 ---
                    —— 0s 4ms/step - accuracy: 0.8734 - loss: 0.3269 - val_accur
acy: 0.8699 - val loss: 0.3249
Epoch 85/500
55/55 -
              Os 4ms/step - accuracy: 0.8734 - loss: 0.3267 - val_accur
acy: 0.8699 - val loss: 0.3248
Epoch 86/500
               Os 4ms/step - accuracy: 0.8734 - loss: 0.3265 - val_accur
55/55 -----
acy: 0.8699 - val loss: 0.3246
Epoch 87/500
              Os 4ms/step - accuracy: 0.8733 - loss: 0.3264 - val_accur
55/55 -----
acy: 0.8699 - val loss: 0.3245
Epoch 88/500
                    —— 0s 4ms/step - accuracy: 0.8733 - loss: 0.3262 - val_accur
acy: 0.8699 - val_loss: 0.3244
Epoch 89/500
55/55 ----
                 _____ 0s 4ms/step - accuracy: 0.8733 - loss: 0.3260 - val_accur
acy: 0.8699 - val_loss: 0.3243
Epoch 90/500
55/55 -
                       - 0s 4ms/step - accuracy: 0.8741 - loss: 0.3258 - val_accur
acy: 0.8699 - val_loss: 0.3241
Epoch 91/500
55/55 ----
                   —— 0s 4ms/step - accuracy: 0.8741 - loss: 0.3257 - val_accur
acy: 0.8699 - val_loss: 0.3240
Epoch 92/500
55/55 -----
               acy: 0.8699 - val_loss: 0.3239
Epoch 93/500
               ———— 0s 4ms/step - accuracy: 0.8738 - loss: 0.3253 - val_accur
acy: 0.8699 - val_loss: 0.3238
Epoch 94/500
```

```
—— 0s 4ms/step - accuracy: 0.8738 - loss: 0.3251 - val_accur
acy: 0.8699 - val_loss: 0.3237
Epoch 95/500
                        - 0s 4ms/step - accuracy: 0.8738 - loss: 0.3250 - val_accur
55/55 -
acy: 0.8699 - val_loss: 0.3235
Epoch 96/500
55/55 ---
                        — 0s 4ms/step - accuracy: 0.8738 - loss: 0.3248 - val_accur
acy: 0.8699 - val_loss: 0.3234
Epoch 97/500
                      — 0s 4ms/step - accuracy: 0.8738 - loss: 0.3246 - val_accur
55/55 ---
acy: 0.8699 - val_loss: 0.3233
Epoch 98/500
                ----- 0s 4ms/step - accuracy: 0.8740 - loss: 0.3244 - val_accur
55/55 -----
acy: 0.8699 - val loss: 0.3232
Epoch 99/500
                        - 0s 4ms/step - accuracy: 0.8740 - loss: 0.3243 - val accur
55/55 -
acy: 0.8699 - val_loss: 0.3231
Epoch 100/500
                        — 0s 4ms/step - accuracy: 0.8740 - loss: 0.3241 - val accur
acy: 0.8699 - val_loss: 0.3230
Epoch 101/500
55/55 -
                       — 0s 4ms/step - accuracy: 0.8740 - loss: 0.3239 - val accur
acy: 0.8699 - val_loss: 0.3229
Epoch 102/500
55/55 -
                        — 0s 4ms/step - accuracy: 0.8740 - loss: 0.3238 - val_accur
acy: 0.8699 - val loss: 0.3228
Epoch 103/500
                Os 4ms/step - accuracy: 0.8740 - loss: 0.3236 - val_accur
55/55 -----
acy: 0.8699 - val_loss: 0.3227
Epoch 104/500
                    —— 0s 4ms/step - accuracy: 0.8740 - loss: 0.3234 - val accur
55/55 ----
acy: 0.8699 - val loss: 0.3226
Epoch 105/500
                        — 0s 4ms/step - accuracy: 0.8740 - loss: 0.3233 - val accur
acy: 0.8699 - val_loss: 0.3225
Epoch 106/500
55/55 -
                      — 0s 4ms/step - accuracy: 0.8740 - loss: 0.3231 - val accur
acy: 0.8699 - val loss: 0.3224
Epoch 107/500
55/55 -
                        - 0s 4ms/step - accuracy: 0.8740 - loss: 0.3229 - val_accur
acy: 0.8699 - val_loss: 0.3223
Epoch 108/500
                      — 0s 4ms/step - accuracy: 0.8740 - loss: 0.3227 - val_accur
55/55 ---
acy: 0.8699 - val loss: 0.3222
Epoch 109/500
55/55 ----
                  ----- 0s 4ms/step - accuracy: 0.8740 - loss: 0.3226 - val_accur
acy: 0.8699 - val_loss: 0.3221
Epoch 110/500
                     —— 0s 4ms/step - accuracy: 0.8740 - loss: 0.3224 - val_accur
acy: 0.8699 - val loss: 0.3220
Epoch 111/500
                      —— 0s 4ms/step - accuracy: 0.8751 - loss: 0.3222 - val_accur
acy: 0.8699 - val_loss: 0.3219
Epoch 112/500
                        - 0s 4ms/step - accuracy: 0.8751 - loss: 0.3221 - val_accur
acy: 0.8699 - val_loss: 0.3218
```

```
Epoch 113/500
55/55 -----
                   ——— 0s 4ms/step - accuracy: 0.8751 - loss: 0.3219 - val_accur
acy: 0.8699 - val loss: 0.3217
Epoch 114/500
55/55 -----
                  ----- 0s 4ms/step - accuracy: 0.8751 - loss: 0.3217 - val_accur
acy: 0.8699 - val_loss: 0.3216
Epoch 115/500
55/55 -----
                acy: 0.8699 - val loss: 0.3216
Epoch 116/500
                       — 0s 5ms/step - accuracy: 0.8751 - loss: 0.3214 - val_accur
55/55 -
acy: 0.8699 - val_loss: 0.3215
Epoch 117/500
                       — 0s 4ms/step - accuracy: 0.8751 - loss: 0.3212 - val_accur
acy: 0.8699 - val loss: 0.3214
Epoch 118/500
                    —— 0s 4ms/step - accuracy: 0.8751 - loss: 0.3211 - val_accur
55/55 ----
acy: 0.8699 - val_loss: 0.3213
Epoch 119/500
55/55 -
                    —— 0s 4ms/step - accuracy: 0.8751 - loss: 0.3209 - val_accur
acy: 0.8699 - val_loss: 0.3213
Epoch 120/500
55/55 -----
               Os 4ms/step - accuracy: 0.8751 - loss: 0.3207 - val_accur
acy: 0.8699 - val_loss: 0.3212
Epoch 121/500
                  ----- 0s 4ms/step - accuracy: 0.8751 - loss: 0.3206 - val_accur
acy: 0.8699 - val_loss: 0.3211
Epoch 122/500
                    —— 0s 4ms/step - accuracy: 0.8751 - loss: 0.3204 - val_accur
acy: 0.8699 - val_loss: 0.3210
Epoch 123/500
55/55 ---
                    ----- 0s 4ms/step - accuracy: 0.8751 - loss: 0.3202 - val_accur
acy: 0.8699 - val_loss: 0.3210
Epoch 124/500
55/55 -
                  ——— 0s 4ms/step - accuracy: 0.8751 - loss: 0.3201 - val_accur
acy: 0.8699 - val_loss: 0.3209
Epoch 125/500
                Os 4ms/step - accuracy: 0.8751 - loss: 0.3199 - val_accur
55/55 -----
acy: 0.8699 - val_loss: 0.3208
Epoch 126/500
              ———— 0s 4ms/step - accuracy: 0.8751 - loss: 0.3197 - val_accur
acy: 0.8699 - val_loss: 0.3207
Epoch 127/500
                  Os 4ms/step - accuracy: 0.8751 - loss: 0.3196 - val_accur
acy: 0.8699 - val_loss: 0.3207
Epoch 128/500
                  ----- 0s 4ms/step - accuracy: 0.8751 - loss: 0.3194 - val_accur
acy: 0.8699 - val_loss: 0.3206
Epoch 129/500
                    ----- 0s 4ms/step - accuracy: 0.8751 - loss: 0.3193 - val accur
55/55 ----
acy: 0.8699 - val_loss: 0.3205
Epoch 130/500
55/55 ---
                    —— 0s 4ms/step - accuracy: 0.8751 - loss: 0.3191 - val_accur
acy: 0.8699 - val_loss: 0.3205
Epoch 131/500
55/55 -----
                 ----- 0s 4ms/step - accuracy: 0.8751 - loss: 0.3189 - val_accur
```

```
acy: 0.8699 - val_loss: 0.3204
Epoch 132/500
               ______ 0s 4ms/step - accuracy: 0.8751 - loss: 0.3188 - val accur
acy: 0.8699 - val_loss: 0.3204
Epoch 133/500
                  ----- 0s 4ms/step - accuracy: 0.8751 - loss: 0.3186 - val accur
acy: 0.8699 - val_loss: 0.3203
Epoch 134/500
55/55 ----
                    ---- 0s 4ms/step - accuracy: 0.8751 - loss: 0.3184 - val accur
acy: 0.8699 - val_loss: 0.3202
Epoch 135/500
55/55 ----
                    —— 0s 4ms/step - accuracy: 0.8751 - loss: 0.3183 - val accur
acy: 0.8699 - val_loss: 0.3202
Epoch 136/500
55/55 ---
                 ——— 0s 4ms/step - accuracy: 0.8751 - loss: 0.3181 - val accur
acy: 0.8699 - val_loss: 0.3201
Epoch 137/500
55/55 -----
              Os 4ms/step - accuracy: 0.8751 - loss: 0.3179 - val_accur
acy: 0.8699 - val loss: 0.3201
Epoch 138/500
               ----- 0s 4ms/step - accuracy: 0.8753 - loss: 0.3178 - val_accur
acy: 0.8699 - val loss: 0.3200
Epoch 139/500
                     — 0s 4ms/step - accuracy: 0.8763 - loss: 0.3176 - val_accur
55/55 ----
acy: 0.8699 - val_loss: 0.3200
Epoch 140/500
55/55 ---
                   —— 0s 4ms/step - accuracy: 0.8766 - loss: 0.3175 - val_accur
acy: 0.8699 - val_loss: 0.3199
Epoch 141/500
55/55 -
              Os 4ms/step - accuracy: 0.8766 - loss: 0.3173 - val_accur
acy: 0.8721 - val loss: 0.3199
Epoch 142/500
               Os 4ms/step - accuracy: 0.8766 - loss: 0.3172 - val_accur
55/55 -----
acy: 0.8721 - val loss: 0.3198
Epoch 143/500
              _____ 0s 4ms/step - accuracy: 0.8766 - loss: 0.3170 - val_accur
55/55 -----
acy: 0.8721 - val loss: 0.3198
Epoch 144/500
                   —— 0s 4ms/step - accuracy: 0.8766 - loss: 0.3168 - val_accur
acy: 0.8721 - val_loss: 0.3197
Epoch 145/500
                  _____ 0s 4ms/step - accuracy: 0.8766 - loss: 0.3167 - val_accur
acy: 0.8721 - val_loss: 0.3197
Epoch 146/500
55/55 -
                       - 0s 4ms/step - accuracy: 0.8766 - loss: 0.3165 - val_accur
acy: 0.8721 - val_loss: 0.3196
Epoch 147/500
55/55 -----
                 ------ 0s 4ms/step - accuracy: 0.8766 - loss: 0.3164 - val_accur
acy: 0.8721 - val_loss: 0.3196
Epoch 148/500
55/55 -----
               acy: 0.8721 - val_loss: 0.3196
Epoch 149/500
                Os 4ms/step - accuracy: 0.8766 - loss: 0.3160 - val_accur
acy: 0.8721 - val_loss: 0.3195
Epoch 150/500
```

```
—— 0s 4ms/step - accuracy: 0.8766 - loss: 0.3159 - val_accur
acy: 0.8721 - val_loss: 0.3195
Epoch 151/500
55/55 -
                        - 0s 4ms/step - accuracy: 0.8766 - loss: 0.3157 - val_accur
acy: 0.8721 - val_loss: 0.3195
Epoch 152/500
55/55 ----
                        — 0s 4ms/step - accuracy: 0.8766 - loss: 0.3155 - val_accur
acy: 0.8721 - val_loss: 0.3194
Epoch 153/500
55/55 ----
                     —— 0s 4ms/step - accuracy: 0.8768 - loss: 0.3154 - val_accur
acy: 0.8721 - val_loss: 0.3194
Epoch 154/500
                ———— 0s 4ms/step - accuracy: 0.8768 - loss: 0.3152 - val_accur
55/55 -----
acy: 0.8721 - val_loss: 0.3194
Epoch 155/500
                        - 0s 4ms/step - accuracy: 0.8768 - loss: 0.3150 - val accur
55/55 -
acy: 0.8721 - val_loss: 0.3193
Epoch 156/500
                        — 0s 4ms/step - accuracy: 0.8768 - loss: 0.3149 - val accur
acy: 0.8721 - val_loss: 0.3193
Epoch 157/500
55/55 -
                       — 0s 4ms/step - accuracy: 0.8768 - loss: 0.3147 - val accur
acy: 0.8721 - val_loss: 0.3193
Epoch 158/500
55/55 -
                        — 0s 4ms/step - accuracy: 0.8768 - loss: 0.3146 - val_accur
acy: 0.8721 - val_loss: 0.3192
Epoch 159/500
                Os 4ms/step - accuracy: 0.8771 - loss: 0.3144 - val_accur
55/55 -
acy: 0.8721 - val_loss: 0.3192
Epoch 160/500
                    ----- 0s 4ms/step - accuracy: 0.8771 - loss: 0.3142 - val accur
55/55 -----
acy: 0.8721 - val loss: 0.3192
Epoch 161/500
                        — 0s 4ms/step - accuracy: 0.8771 - loss: 0.3141 - val accur
acy: 0.8721 - val_loss: 0.3192
Epoch 162/500
55/55 -
                      — 0s 4ms/step - accuracy: 0.8771 - loss: 0.3139 - val_accur
acy: 0.8721 - val loss: 0.3191
Epoch 163/500
55/55 -
                        - 0s 4ms/step - accuracy: 0.8772 - loss: 0.3138 - val_accur
acy: 0.8721 - val_loss: 0.3191
Epoch 164/500
                      — 0s 4ms/step - accuracy: 0.8772 - loss: 0.3136 - val_accur
55/55 -
acy: 0.8744 - val loss: 0.3191
Epoch 165/500
                  _____ 0s 4ms/step - accuracy: 0.8772 - loss: 0.3135 - val_accur
55/55 -----
acy: 0.8744 - val_loss: 0.3191
Epoch 166/500
                     —— 0s 4ms/step - accuracy: 0.8772 - loss: 0.3133 - val_accur
acy: 0.8744 - val loss: 0.3191
Epoch 167/500
                      —— 0s 4ms/step - accuracy: 0.8772 - loss: 0.3131 - val_accur
acy: 0.8744 - val_loss: 0.3190
Epoch 168/500
                        - 0s 4ms/step - accuracy: 0.8772 - loss: 0.3130 - val_accur
acy: 0.8744 - val_loss: 0.3190
```

```
Epoch 169/500
55/55 -----
                   ——— 0s 4ms/step - accuracy: 0.8772 - loss: 0.3128 - val_accur
acy: 0.8744 - val loss: 0.3190
Epoch 170/500
55/55 -----
                   ----- 0s 4ms/step - accuracy: 0.8780 - loss: 0.3127 - val_accur
acy: 0.8744 - val_loss: 0.3190
Epoch 171/500
55/55 -----
                ______ 0s 4ms/step - accuracy: 0.8780 - loss: 0.3125 - val_accur
acy: 0.8744 - val loss: 0.3190
Epoch 172/500
                        — 0s 4ms/step - accuracy: 0.8780 - loss: 0.3124 - val_accur
55/55 -
acy: 0.8744 - val_loss: 0.3190
Epoch 173/500
                        - 0s 4ms/step - accuracy: 0.8780 - loss: 0.3122 - val_accur
acy: 0.8744 - val loss: 0.3189
Epoch 174/500
                     —— 0s 4ms/step - accuracy: 0.8780 - loss: 0.3120 - val_accur
55/55 ----
acy: 0.8744 - val_loss: 0.3189
Epoch 175/500
55/55 -
                    —— 0s 4ms/step - accuracy: 0.8780 - loss: 0.3119 - val_accur
acy: 0.8744 - val_loss: 0.3189
Epoch 176/500
55/55 -----
               Os 4ms/step - accuracy: 0.8780 - loss: 0.3117 - val_accur
acy: 0.8744 - val_loss: 0.3189
Epoch 177/500
                  ----- 0s 4ms/step - accuracy: 0.8780 - loss: 0.3116 - val_accur
acy: 0.8744 - val_loss: 0.3189
Epoch 178/500
                     —— 0s 4ms/step - accuracy: 0.8780 - loss: 0.3114 - val_accur
acy: 0.8744 - val_loss: 0.3188
Epoch 179/500
55/55 ---
                    ----- 0s 4ms/step - accuracy: 0.8780 - loss: 0.3112 - val accur
acy: 0.8744 - val_loss: 0.3188
Epoch 180/500
55/55 -
                  _____ 0s 4ms/step - accuracy: 0.8781 - loss: 0.3111 - val_accur
acy: 0.8744 - val_loss: 0.3188
Epoch 181/500
                Os 4ms/step - accuracy: 0.8781 - loss: 0.3109 - val_accur
55/55 -----
acy: 0.8744 - val_loss: 0.3188
Epoch 182/500
              ————— 0s 4ms/step - accuracy: 0.8781 - loss: 0.3107 - val_accur
acy: 0.8744 - val_loss: 0.3188
Epoch 183/500
                  ---- 0s 4ms/step - accuracy: 0.8781 - loss: 0.3106 - val accur
acy: 0.8744 - val_loss: 0.3187
Epoch 184/500
                  ----- 0s 4ms/step - accuracy: 0.8781 - loss: 0.3104 - val_accur
acy: 0.8744 - val_loss: 0.3187
Epoch 185/500
                    —— 0s 4ms/step - accuracy: 0.8781 - loss: 0.3103 - val accur
55/55 ---
acy: 0.8744 - val_loss: 0.3187
Epoch 186/500
55/55 ---
                     —— 0s 4ms/step - accuracy: 0.8781 - loss: 0.3101 - val_accur
acy: 0.8744 - val_loss: 0.3187
Epoch 187/500
55/55 -----
                  ----- 0s 4ms/step - accuracy: 0.8781 - loss: 0.3099 - val accur
```

```
acy: 0.8744 - val_loss: 0.3187
Epoch 188/500
               ----- 0s 4ms/step - accuracy: 0.8782 - loss: 0.3098 - val accur
acy: 0.8744 - val_loss: 0.3187
Epoch 189/500
                   ----- 0s 4ms/step - accuracy: 0.8779 - loss: 0.3096 - val accur
acy: 0.8744 - val_loss: 0.3186
Epoch 190/500
55/55 ----
                    ----- 0s 4ms/step - accuracy: 0.8779 - loss: 0.3095 - val accur
acy: 0.8744 - val_loss: 0.3186
Epoch 191/500
55/55 ----
                     —— 0s 4ms/step - accuracy: 0.8779 - loss: 0.3093 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 192/500
55/55 ----
                 ----- 0s 4ms/step - accuracy: 0.8779 - loss: 0.3091 - val accur
acy: 0.8744 - val_loss: 0.3186
Epoch 193/500
55/55 -----
              Os 4ms/step - accuracy: 0.8779 - loss: 0.3090 - val_accur
acy: 0.8744 - val loss: 0.3186
Epoch 194/500
               ———— 0s 4ms/step - accuracy: 0.8782 - loss: 0.3088 - val_accur
acy: 0.8744 - val loss: 0.3186
Epoch 195/500
55/55 ---
                     —— 0s 4ms/step - accuracy: 0.8782 - loss: 0.3087 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 196/500
55/55 -
                   ——— 0s 4ms/step - accuracy: 0.8782 - loss: 0.3085 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 197/500
55/55 -
               Os 4ms/step - accuracy: 0.8782 - loss: 0.3084 - val_accur
acy: 0.8744 - val loss: 0.3186
Epoch 198/500
                Os 4ms/step - accuracy: 0.8782 - loss: 0.3082 - val_accur
55/55 -----
acy: 0.8744 - val loss: 0.3186
Epoch 199/500
              _____ 0s 4ms/step - accuracy: 0.8782 - loss: 0.3081 - val_accur
55/55 -----
acy: 0.8744 - val loss: 0.3185
Epoch 200/500
                    —— 0s 4ms/step - accuracy: 0.8782 - loss: 0.3079 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 201/500
                  _____ 0s 4ms/step - accuracy: 0.8792 - loss: 0.3077 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 202/500
55/55 -
                       - 0s 4ms/step - accuracy: 0.8792 - loss: 0.3076 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 203/500
55/55 ----
                  ------ 0s 4ms/step - accuracy: 0.8792 - loss: 0.3074 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 204/500
                Os 4ms/step - accuracy: 0.8792 - loss: 0.3073 - val_accur
55/55 -----
acy: 0.8744 - val_loss: 0.3186
Epoch 205/500
               Os 4ms/step - accuracy: 0.8792 - loss: 0.3071 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 206/500
```

```
—— 0s 4ms/step - accuracy: 0.8807 - loss: 0.3070 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 207/500
                       - 0s 4ms/step - accuracy: 0.8807 - loss: 0.3068 - val_accur
55/55 -
acy: 0.8744 - val_loss: 0.3186
Epoch 208/500
55/55 ----
                       — 0s 4ms/step - accuracy: 0.8811 - loss: 0.3066 - val_accur
acy: 0.8744 - val_loss: 0.3185
Epoch 209/500
                    —— 0s 4ms/step - accuracy: 0.8811 - loss: 0.3065 - val_accur
55/55 -
acy: 0.8744 - val_loss: 0.3185
Epoch 210/500
               ----- 0s 4ms/step - accuracy: 0.8811 - loss: 0.3063 - val_accur
55/55 -----
acy: 0.8744 - val loss: 0.3185
Epoch 211/500
                       - 0s 4ms/step - accuracy: 0.8817 - loss: 0.3062 - val accur
55/55 -
acy: 0.8744 - val_loss: 0.3185
Epoch 212/500
                       — 0s 4ms/step - accuracy: 0.8817 - loss: 0.3060 - val accur
acy: 0.8744 - val_loss: 0.3186
Epoch 213/500
55/55 -
                       — 0s 4ms/step - accuracy: 0.8817 - loss: 0.3058 - val accur
acy: 0.8744 - val_loss: 0.3186
Epoch 214/500
55/55 -
                       — 0s 4ms/step - accuracy: 0.8817 - loss: 0.3057 - val_accur
acy: 0.8744 - val loss: 0.3186
Epoch 215/500
               Os 4ms/step - accuracy: 0.8817 - loss: 0.3055 - val_accur
55/55 -----
acy: 0.8744 - val_loss: 0.3186
Epoch 216/500
                   ----- 0s 4ms/step - accuracy: 0.8817 - loss: 0.3054 - val accur
55/55 ----
acy: 0.8744 - val loss: 0.3186
Epoch 217/500
                       — 0s 4ms/step - accuracy: 0.8833 - loss: 0.3052 - val accur
acy: 0.8744 - val_loss: 0.3186
Epoch 218/500
55/55 -
                      — 0s 4ms/step - accuracy: 0.8851 - loss: 0.3050 - val_accur
acy: 0.8744 - val loss: 0.3186
Epoch 219/500
55/55 -
                        - 0s 4ms/step - accuracy: 0.8851 - loss: 0.3049 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 220/500
                     55/55 ---
acy: 0.8744 - val loss: 0.3186
Epoch 221/500
55/55 -----
                 ——— 0s 4ms/step - accuracy: 0.8851 - loss: 0.3045 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 222/500
                    —— 0s 4ms/step - accuracy: 0.8851 - loss: 0.3044 - val_accur
acy: 0.8744 - val loss: 0.3186
Epoch 223/500
                     —— 0s 4ms/step - accuracy: 0.8851 - loss: 0.3042 - val_accur
acy: 0.8744 - val_loss: 0.3186
Epoch 224/500
                       - 0s 4ms/step - accuracy: 0.8851 - loss: 0.3040 - val_accur
acy: 0.8744 - val_loss: 0.3186
```

```
Epoch 225/500
                         - 0s 4ms/step - accuracy: 0.8851 - loss: 0.3039 - val_accur
55/55 -
acy: 0.8744 - val loss: 0.3187
Epoch 226/500
55/55 -
                       — 0s 4ms/step - accuracy: 0.8851 - loss: 0.3037 - val_accur
acy: 0.8744 - val_loss: 0.3187
Epoch 227/500
55/55 -
                       —— 0s 4ms/step - accuracy: 0.8851 - loss: 0.3035 - val_accur
acy: 0.8744 - val loss: 0.3187
Epoch 228/500
                         - 0s 4ms/step - accuracy: 0.8851 - loss: 0.3034 - val_accur
55/55 -
acy: 0.8744 - val_loss: 0.3187
Epoch 229/500
                         - 0s 4ms/step - accuracy: 0.8851 - loss: 0.3032 - val_accur
acy: 0.8744 - val_loss: 0.3187
Epoch 230/500
55/55 -
                         - 0s 4ms/step - accuracy: 0.8851 - loss: 0.3030 - val_accur
acy: 0.8744 - val_loss: 0.3187
                                 Training & Validation Loss
   0.65
```


Training Accuracy: 0.8807 Validation Accuracy: 0.8744

```
In [280... # Get predicted probabilities on validation set
    y_val_probs = nn_model.predict(X_val)

# Convert probabilities to class labels (0 or 1)
    y_val_preds = (y_val_probs > 0.5).astype("int32")

# Generate confusion matrix
    cm = confusion_matrix(y_val, y_val_preds)

# Display confusion matrix
disp = ConfusionMatrixDisplay(confusion matrix=cm, display labels=["No Rain", "Rain")
```

```
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix (Validation Set)")
plt.grid(False)
plt.show()

# Print classification report
print("\nClassification Report:")
print(classification_report(y_val, y_val_preds, target_names=["No Rain", "Rain"]))
print("Validation ROC AUC:", roc_auc_score(y_val, y_val_probs))
```

Confusion Matrix (Validation Set)

No Rain Rain Predicted label

Classification Report:

	precision	recall	f1-score	support
No Rain	0.75	0.61	0.67	92
Rain	0.90	0.95	0.92	346
266412264			0.07	420
accuracy macro avg	0.82	0.78	0.87 0.80	438 438
weighted avg	0.87	0.87	0.87	438

Validation ROC AUC: 0.8847700427243026

```
In [281... # Get predicted probabilities for the positive class
  test_probs = nn_model.predict(X_test_scaled)

submission = pd.DataFrame({
    "id": test_df["id"],
```

1D CNN

```
In [282...
          # CNN
          window size = 8
          # Function to create sequences
          def create_sequences(X, y, window_size):
              X_{seq} = []
              y_seq = []
              for i in range(len(X) - window_size + 1):
                  X_seq.append(X[i : i + window_size]) # 8-day window
                  y_seq.append(y[i + window_size - 1]) # label of last day in window
              return np.array(X_seq), np.array(y_seq)
          # Generate sequences
          X_seq, y_seq = create_sequences(X.values, y.values, window_size=window_size)
          # Reshape X_seq for scaling: (samples * window_size, num_features)
          num_samples, num_days, num_features = X_seq.shape
          X_seq_2d = X_seq.reshape(-1, num_features)
          # Scale the 2D version
          scaler = StandardScaler()
          X_seq_scaled_2d = scaler.fit_transform(X_seq_2d)
          # Reshape back to (samples, window_size, num_features)
          X_seq_scaled = X_seq_scaled_2d.reshape(num_samples, num_days, num_features)
          # Train-validation split
          # Time-based train-validation split (80% train, 20% validation)
          split_index = int(len(X_seq_scaled) * 0.8)
          X_train_seq = X_seq_scaled[:split_index]
          X_val_seq = X_seq_scaled[split_index:]
          y_train_seq = y_seq[:split_index]
          y_val_seq = y_seq[split_index:]
In [283...
          print(X_train_seq[0])
          print("X_seq shape:", X_train_seq.shape)
          print("X_seq shape:", X_val_seq.shape)
```

```
[[ 0.67397196 -0.91887634 -0.64644794 -0.45274503  0.63892102  0.68217836
           -0.73087155 -0.56263476 -0.46379094 -1.46653978 -0.02011487 0.82078886]
          [ 1.0453886 -1.80436923 -1.35564335 -1.26390571 1.66670316 0.84860842
           -1.03418993 -0.68755941 0.01144836 -1.46653978 0.00415576 0.66770424]
          [ 1.8589679 -1.23765378 -1.5089829 -1.50131859 -0.90275218 -1.59236577
            1.25448511 -0.43771011 -0.37278767 -1.46653978 0.0284192
                                                                       0.93358352]
          [-0.0334883 -1.46788193 -1.18313636 -1.04627724 1.66670316 1.07051516
           -1.03418993 -0.56263476 1.39672037 -1.46653978 0.05266826 0.82078886]
          [ 1.45217825 -0.90116648 -1.06813169 -1.38261215 -3.85762582 -1.70331915
           -0.0415116 -0.81248406 0.30468112 -1.46653978 0.07689575 0.47898105]
          [ 1.6113568 -1.02513549 -1.02979681 -1.12541486 -0.38886111 0.29384156
          -1.03418993 -1.06233336 -0.61546306 -1.46653978 0.1010945
                                                                       0.01846462]
          [ 1.62904331 -1.21994392 -1.06813169 -1.36282774 -3.34373475 -1.64784246
            1.06146433 -1.06233336 0.6686942 -1.46653978 0.12525733 0.01846462]
          [ 1.08076161 -1.87520867 -1.98816898 -1.87722232 1.79517593 1.3478986
           -1.03418993 -0.68755941 3.13589398 -1.46653978 0.14937708 0.66770424]]
         X_seq shape: (1746, 8, 12)
         X_seq shape: (437, 8, 12)
In [284... print(y_train_seq.shape)
          y_val_seq.shape
          print("X_train_seq shape:", X_seq.shape)
          print("y_train shape:", y_seq.shape)
         (1746,)
         X_train_seq shape: (2183, 8, 12)
         y_train shape: (2183,)
In [285... # Clear any existing model
          tf.keras.backend.clear_session()
          # Reshape input for Conv1D: (samples, timesteps, features)
          # If you already have X_train_seq and X_val_seq shaped appropriately:
          # (e.g., X_train_seq.shape = (num_samples, time_steps, num_features))
          # Build Conv1D model
          model_1d_cnn = tf.keras.Sequential()
          # Add 1D convolutional layer
          model_1d_cnn.add(tf.keras.layers.Conv1D(
              filters=128,
              kernel size=4,
              strides=1,
              padding='same',
              activation='relu',
              input_shape=(X_train_seq.shape[1], X_train_seq.shape[2]), # (timesteps, featur
              name='conv1d 1'
          ))
          # Add 1D max pooling
          model_1d_cnn.add(tf.keras.layers.MaxPooling1D(pool_size=2))
          # Dropout for regularization
          model 1d cnn.add(tf.keras.layers.Dropout(0.5))
          # Flatten and output
```

```
model_1d_cnn.add(tf.keras.layers.Flatten())
model_1d_cnn.add(tf.keras.layers.Dense(1, activation='sigmoid'))

# Compile model
model_1d_cnn.compile(
    optimizer=tf.keras.optimizers.Adam(learning_rate=0.0005),
    loss='binary_crossentropy',
    metrics=['accuracy']
)

# Print model summary
model_1d_cnn.summary()
```

/usr/local/lib/python3.11/dist-packages/keras/src/layers/convolutional/base_conv.py: 107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Model: "sequential"

Layer (type)	Output Shape
conv1d_1 (Conv1D)	(None, 8, 128)
max_pooling1d (MaxPooling1D)	(None, 4, 128)
dropout (Dropout)	(None, 4, 128)
flatten (Flatten)	(None, 512)
dense (Dense)	(None, 1)

Total params: 6,785 (26.50 KB)

Trainable params: 6,785 (26.50 KB)

Non-trainable params: 0 (0.00 B)

```
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Val Loss')
plt.title("Training & Validation Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.grid(True)
plt.legend()
plt.show()
```

```
Epoch 1/300
                  ---- 1s 269ms/step - accuracy: 0.4746 - loss: 0.7532 - val_accur
2/2 -----
acy: 0.4027 - val loss: 0.7406
Epoch 2/300
2/2 ----
                  Os 78ms/step - accuracy: 0.5548 - loss: 0.6897 - val_accura
cy: 0.5492 - val_loss: 0.6866
Epoch 3/300
2/2 -----
               cy: 0.6796 - val loss: 0.6416
Epoch 4/300
                     - 0s 77ms/step - accuracy: 0.6701 - loss: 0.6222 - val_accura
cy: 0.7346 - val loss: 0.6048
Epoch 5/300
                     - 0s 75ms/step - accuracy: 0.7115 - loss: 0.5906 - val_accura
cy: 0.7826 - val_loss: 0.5753
Epoch 6/300
                   —— 0s 74ms/step - accuracy: 0.7133 - loss: 0.5908 - val_accura
2/2 -----
cy: 0.7826 - val_loss: 0.5521
Epoch 7/300
2/2 -
                   —— 0s 73ms/step - accuracy: 0.7248 - loss: 0.5735 - val_accura
cy: 0.7918 - val_loss: 0.5337
Epoch 8/300
2/2 -----
             Os 73ms/step - accuracy: 0.7484 - loss: 0.5523 - val_accura
cy: 0.7941 - val_loss: 0.5193
Epoch 9/300
                 ____ 0s 75ms/step - accuracy: 0.7526 - loss: 0.5546 - val_accura
cy: 0.7941 - val_loss: 0.5078
Epoch 10/300
                  —— 0s 74ms/step - accuracy: 0.7516 - loss: 0.5392 - val_accura
cy: 0.7941 - val_loss: 0.4985
Epoch 11/300
2/2 -
                 ——— 0s 73ms/step - accuracy: 0.7540 - loss: 0.5341 - val_accura
cy: 0.7963 - val_loss: 0.4907
Epoch 12/300
2/2 -
                 ——— 0s 73ms/step - accuracy: 0.7527 - loss: 0.5469 - val_accura
cy: 0.7963 - val_loss: 0.4841
Epoch 13/300
               Os 74ms/step - accuracy: 0.7551 - loss: 0.5164 - val_accura
cy: 0.7963 - val_loss: 0.4784
Epoch 14/300
              ----- 0s 75ms/step - accuracy: 0.7552 - loss: 0.5143 - val_accura
cy: 0.7918 - val_loss: 0.4734
Epoch 15/300
                 ——— 0s 73ms/step - accuracy: 0.7548 - loss: 0.5184 - val accura
cy: 0.8032 - val loss: 0.4689
Epoch 16/300
                ----- 0s 73ms/step - accuracy: 0.7565 - loss: 0.5078 - val_accura
cy: 0.8032 - val_loss: 0.4650
Epoch 17/300
                   —— 0s 75ms/step - accuracy: 0.7628 - loss: 0.5068 - val accura
2/2 ----
cy: 0.8078 - val_loss: 0.4615
Epoch 18/300
2/2 ----
                   —— 0s 76ms/step - accuracy: 0.7608 - loss: 0.4881 - val_accura
cy: 0.8101 - val_loss: 0.4581
Epoch 19/300
2/2 -----
                 ----- 0s 74ms/step - accuracy: 0.7651 - loss: 0.4840 - val accura
```

```
cy: 0.8078 - val_loss: 0.4544
Epoch 20/300
              cy: 0.8146 - val loss: 0.4505
Epoch 21/300
                —— 0s 73ms/step - accuracy: 0.7698 - loss: 0.4789 - val accura
cy: 0.8146 - val_loss: 0.4463
Epoch 22/300
                 ——— 0s 73ms/step - accuracy: 0.7838 - loss: 0.4718 - val accura
cy: 0.8146 - val_loss: 0.4420
Epoch 23/300
                  —— 0s 75ms/step - accuracy: 0.7933 - loss: 0.4688 - val accura
2/2 -----
cy: 0.8146 - val_loss: 0.4379
Epoch 24/300
2/2 ----
               ----- 0s 74ms/step - accuracy: 0.7833 - loss: 0.4661 - val accura
cy: 0.8146 - val_loss: 0.4337
Epoch 25/300
             Os 74ms/step - accuracy: 0.7949 - loss: 0.4597 - val_accura
2/2 -----
cy: 0.8169 - val loss: 0.4298
Epoch 26/300
              Os 72ms/step - accuracy: 0.7824 - loss: 0.4710 - val_accura
cy: 0.8169 - val loss: 0.4259
Epoch 27/300
                 ---- 0s 72ms/step - accuracy: 0.7969 - loss: 0.4624 - val_accura
cy: 0.8169 - val_loss: 0.4221
Epoch 28/300
                ____ 0s 73ms/step - accuracy: 0.7870 - loss: 0.4595 - val_accura
2/2 -
cy: 0.8169 - val loss: 0.4185
Epoch 29/300
2/2 -
              _____ 0s 74ms/step - accuracy: 0.7920 - loss: 0.4488 - val_accura
cy: 0.8169 - val loss: 0.4153
Epoch 30/300
              Os 78ms/step - accuracy: 0.7773 - loss: 0.4494 - val_accura
cy: 0.8169 - val loss: 0.4120
Epoch 31/300
             Os 74ms/step - accuracy: 0.7950 - loss: 0.4452 - val_accura
cy: 0.8192 - val loss: 0.4089
Epoch 32/300
                    — 0s 74ms/step - accuracy: 0.7935 - loss: 0.4390 - val_accura
cy: 0.8192 - val_loss: 0.4061
Epoch 33/300
               ------ 0s 79ms/step - accuracy: 0.8041 - loss: 0.4390 - val_accura
cy: 0.8192 - val_loss: 0.4035
Epoch 34/300
2/2 -
                     - 0s 76ms/step - accuracy: 0.8062 - loss: 0.4373 - val_accura
cy: 0.8192 - val_loss: 0.4011
Epoch 35/300
2/2 ----
                ——— 0s 75ms/step - accuracy: 0.8082 - loss: 0.4413 - val_accura
cy: 0.8192 - val_loss: 0.3988
Epoch 36/300
              2/2 -----
cy: 0.8192 - val_loss: 0.3967
Epoch 37/300
                ——— 0s 74ms/step - accuracy: 0.8059 - loss: 0.4273 - val_accura
cy: 0.8238 - val_loss: 0.3946
Epoch 38/300
```

```
——— 0s 73ms/step - accuracy: 0.8135 - loss: 0.4377 - val_accura
cy: 0.8238 - val_loss: 0.3924
Epoch 39/300
2/2 -
                      - 0s 75ms/step - accuracy: 0.8128 - loss: 0.4197 - val_accura
cy: 0.8238 - val_loss: 0.3904
Epoch 40/300
2/2 -
                     — 0s 74ms/step - accuracy: 0.8187 - loss: 0.4166 - val_accura
cy: 0.8261 - val_loss: 0.3882
Epoch 41/300
                     — 0s 76ms/step - accuracy: 0.8138 - loss: 0.4143 - val_accura
2/2 -
cy: 0.8261 - val_loss: 0.3861
Epoch 42/300
               2/2 -----
cy: 0.8261 - val loss: 0.3840
Epoch 43/300
                      - 0s 84ms/step - accuracy: 0.8155 - loss: 0.4166 - val accura
cy: 0.8261 - val_loss: 0.3819
Epoch 44/300
                     — 0s 76ms/step - accuracy: 0.8263 - loss: 0.4080 - val accura
cy: 0.8284 - val_loss: 0.3801
Epoch 45/300
2/2 -
                     — 0s 77ms/step - accuracy: 0.8223 - loss: 0.4107 - val accura
cy: 0.8307 - val_loss: 0.3785
Epoch 46/300
2/2 -
                     — 0s 80ms/step - accuracy: 0.8207 - loss: 0.4119 - val_accura
cy: 0.8330 - val loss: 0.3772
Epoch 47/300
               Os 76ms/step - accuracy: 0.8219 - loss: 0.4064 - val_accura
2/2 -----
cy: 0.8375 - val_loss: 0.3760
Epoch 48/300
                   ---- 0s 77ms/step - accuracy: 0.8277 - loss: 0.4066 - val accura
cy: 0.8398 - val loss: 0.3746
Epoch 49/300
                     - 0s 79ms/step - accuracy: 0.8262 - loss: 0.4089 - val accura
cy: 0.8398 - val_loss: 0.3734
Epoch 50/300
                    --- 0s 83ms/step - accuracy: 0.8294 - loss: 0.4066 - val accura
cy: 0.8398 - val loss: 0.3720
Epoch 51/300
2/2 -
                      - 0s 84ms/step - accuracy: 0.8311 - loss: 0.3908 - val_accura
cy: 0.8398 - val_loss: 0.3707
Epoch 52/300
2/2 ----
                     — 0s 75ms/step - accuracy: 0.8292 - loss: 0.3876 - val_accura
cy: 0.8398 - val loss: 0.3695
Epoch 53/300
                Os 75ms/step - accuracy: 0.8216 - loss: 0.3982 - val_accura
2/2 -----
cy: 0.8444 - val_loss: 0.3684
Epoch 54/300
                    — 0s 83ms/step - accuracy: 0.8335 - loss: 0.3924 - val_accura
cy: 0.8444 - val loss: 0.3671
Epoch 55/300
                    — 0s 76ms/step - accuracy: 0.8340 - loss: 0.3879 - val_accura
cy: 0.8467 - val loss: 0.3654
Epoch 56/300
                      - 0s 77ms/step - accuracy: 0.8255 - loss: 0.3903 - val_accura
cy: 0.8467 - val_loss: 0.3638
```

```
Epoch 57/300
                 ---- 0s 76ms/step - accuracy: 0.8337 - loss: 0.3904 - val_accura
2/2 -----
cy: 0.8513 - val loss: 0.3622
Epoch 58/300
2/2 -----
                 ---- 0s 81ms/step - accuracy: 0.8348 - loss: 0.3878 - val_accura
cy: 0.8535 - val_loss: 0.3609
Epoch 59/300
               cy: 0.8558 - val loss: 0.3595
Epoch 60/300
                     - 0s 77ms/step - accuracy: 0.8400 - loss: 0.3754 - val_accura
cy: 0.8513 - val loss: 0.3583
Epoch 61/300
                     — 0s 86ms/step - accuracy: 0.8408 - loss: 0.3771 - val accura
cy: 0.8535 - val_loss: 0.3572
Epoch 62/300
                   —— 0s 79ms/step - accuracy: 0.8434 - loss: 0.3781 - val_accura
2/2 -----
cy: 0.8513 - val_loss: 0.3562
Epoch 63/300
2/2 -
                  —— 0s 87ms/step - accuracy: 0.8473 - loss: 0.3758 - val_accura
cy: 0.8513 - val_loss: 0.3553
Epoch 64/300
2/2 -----
              Os 76ms/step - accuracy: 0.8429 - loss: 0.3786 - val_accura
cy: 0.8513 - val_loss: 0.3545
Epoch 65/300
                 ——— 0s 75ms/step - accuracy: 0.8478 - loss: 0.3680 - val accura
cy: 0.8513 - val_loss: 0.3538
Epoch 66/300
                  —— 0s 75ms/step - accuracy: 0.8480 - loss: 0.3730 - val_accura
cy: 0.8513 - val_loss: 0.3532
Epoch 67/300
                 ——— 0s 75ms/step - accuracy: 0.8472 - loss: 0.3666 - val_accura
cy: 0.8513 - val_loss: 0.3525
Epoch 68/300
2/2 -
                 ——— 0s 75ms/step - accuracy: 0.8614 - loss: 0.3628 - val_accura
cy: 0.8467 - val_loss: 0.3518
Epoch 69/300
               Os 76ms/step - accuracy: 0.8493 - loss: 0.3575 - val_accura
2/2 -----
cy: 0.8467 - val_loss: 0.3508
Epoch 70/300
              ------ 0s 76ms/step - accuracy: 0.8487 - loss: 0.3707 - val_accura
cy: 0.8490 - val_loss: 0.3498
Epoch 71/300
                 ——— 0s 77ms/step - accuracy: 0.8467 - loss: 0.3609 - val accura
cy: 0.8490 - val loss: 0.3488
Epoch 72/300
                ----- 0s 76ms/step - accuracy: 0.8459 - loss: 0.3701 - val_accura
cy: 0.8513 - val_loss: 0.3478
Epoch 73/300
                  ---- 0s 74ms/step - accuracy: 0.8561 - loss: 0.3548 - val accura
2/2 ----
cy: 0.8558 - val_loss: 0.3468
Epoch 74/300
2/2 ----
                   —— 0s 74ms/step - accuracy: 0.8542 - loss: 0.3575 - val_accura
cy: 0.8558 - val_loss: 0.3459
Epoch 75/300
2/2 -----
                 ——— 0s 78ms/step - accuracy: 0.8562 - loss: 0.3660 - val_accura
```

```
cy: 0.8604 - val_loss: 0.3450
Epoch 76/300
               ----- 0s 76ms/step - accuracy: 0.8474 - loss: 0.3595 - val accura
cy: 0.8650 - val loss: 0.3443
Epoch 77/300
                 ——— 0s 75ms/step - accuracy: 0.8553 - loss: 0.3530 - val accura
cy: 0.8627 - val_loss: 0.3439
Epoch 78/300
                 ——— 0s 76ms/step - accuracy: 0.8567 - loss: 0.3503 - val accura
cy: 0.8627 - val_loss: 0.3438
Epoch 79/300
                   — 0s 76ms/step - accuracy: 0.8516 - loss: 0.3519 - val_accura
2/2 -----
cy: 0.8604 - val_loss: 0.3438
Epoch 80/300
2/2 -
                ----- 0s 77ms/step - accuracy: 0.8538 - loss: 0.3441 - val accura
cy: 0.8627 - val_loss: 0.3438
Epoch 81/300
             Os 75ms/step - accuracy: 0.8546 - loss: 0.3443 - val_accura
2/2 -----
cy: 0.8627 - val loss: 0.3434
Epoch 82/300
              _____ 0s 75ms/step - accuracy: 0.8619 - loss: 0.3452 - val_accura
cy: 0.8627 - val loss: 0.3429
Epoch 83/300
                 ---- 0s 76ms/step - accuracy: 0.8547 - loss: 0.3498 - val_accura
cy: 0.8627 - val_loss: 0.3421
Epoch 84/300
                 ——— 0s 76ms/step - accuracy: 0.8561 - loss: 0.3424 - val_accura
2/2 -
cy: 0.8673 - val loss: 0.3412
Epoch 85/300
2/2 -
               Os 76ms/step - accuracy: 0.8582 - loss: 0.3401 - val_accura
cy: 0.8696 - val loss: 0.3403
Epoch 86/300
2/2 -----
               Os 74ms/step - accuracy: 0.8588 - loss: 0.3417 - val_accura
cy: 0.8696 - val loss: 0.3396
Epoch 87/300
              _____ 0s 73ms/step - accuracy: 0.8632 - loss: 0.3367 - val_accura
cy: 0.8696 - val loss: 0.3392
Epoch 88/300
                 ---- 0s 76ms/step - accuracy: 0.8602 - loss: 0.3399 - val_accura
cy: 0.8696 - val_loss: 0.3391
Epoch 89/300
                ------ 0s 78ms/step - accuracy: 0.8617 - loss: 0.3445 - val_accura
cy: 0.8696 - val_loss: 0.3390
Epoch 90/300
2/2 -
                     - 0s 77ms/step - accuracy: 0.8650 - loss: 0.3375 - val_accura
cy: 0.8696 - val_loss: 0.3389
Epoch 91/300
2/2 ----
                 ——— 0s 76ms/step - accuracy: 0.8618 - loss: 0.3409 - val_accura
cy: 0.8696 - val_loss: 0.3386
Epoch 92/300
               2/2 -----
cy: 0.8696 - val_loss: 0.3383
Epoch 93/300
                _____ 0s 75ms/step - accuracy: 0.8590 - loss: 0.3389 - val_accura
cy: 0.8696 - val_loss: 0.3379
Epoch 94/300
```

```
——— 0s 74ms/step - accuracy: 0.8617 - loss: 0.3458 - val_accura
cy: 0.8696 - val_loss: 0.3374
Epoch 95/300
2/2 -
                      - 0s 75ms/step - accuracy: 0.8538 - loss: 0.3483 - val_accura
cy: 0.8719 - val_loss: 0.3371
Epoch 96/300
2/2 ----
                     — 0s 74ms/step - accuracy: 0.8754 - loss: 0.3269 - val_accura
cy: 0.8719 - val_loss: 0.3366
Epoch 97/300
                     — 0s 75ms/step - accuracy: 0.8538 - loss: 0.3366 - val_accura
2/2 -
cy: 0.8673 - val_loss: 0.3362
Epoch 98/300
               2/2 -----
cy: 0.8719 - val loss: 0.3359
Epoch 99/300
                      - 0s 78ms/step - accuracy: 0.8682 - loss: 0.3382 - val_accura
cy: 0.8719 - val_loss: 0.3356
Epoch 100/300
                      - 0s 75ms/step - accuracy: 0.8623 - loss: 0.3324 - val accura
cy: 0.8719 - val_loss: 0.3355
Epoch 101/300
2/2 -
                     — 0s 75ms/step - accuracy: 0.8697 - loss: 0.3293 - val_accura
cy: 0.8719 - val_loss: 0.3353
Epoch 102/300
2/2 -
                     — 0s 75ms/step - accuracy: 0.8612 - loss: 0.3467 - val_accura
cy: 0.8719 - val loss: 0.3351
Epoch 103/300
               Os 75ms/step - accuracy: 0.8711 - loss: 0.3276 - val_accura
2/2 -----
cy: 0.8719 - val_loss: 0.3350
Epoch 104/300
                   ——— 0s 74ms/step - accuracy: 0.8648 - loss: 0.3312 - val accura
cy: 0.8741 - val loss: 0.3348
Epoch 105/300
                      - 0s 74ms/step - accuracy: 0.8640 - loss: 0.3273 - val accura
cy: 0.8741 - val_loss: 0.3345
Epoch 106/300
                    --- 0s 74ms/step - accuracy: 0.8634 - loss: 0.3277 - val accura
cy: 0.8741 - val loss: 0.3341
Epoch 107/300
2/2 -
                      - 0s 76ms/step - accuracy: 0.8579 - loss: 0.3298 - val_accura
cy: 0.8719 - val_loss: 0.3335
Epoch 108/300
                    — 0s 74ms/step - accuracy: 0.8697 - loss: 0.3248 - val_accura
2/2 ----
cy: 0.8719 - val loss: 0.3328
Epoch 109/300
                Os 76ms/step - accuracy: 0.8638 - loss: 0.3267 - val_accura
2/2 -----
cy: 0.8719 - val_loss: 0.3323
Epoch 110/300
                    — 0s 74ms/step - accuracy: 0.8682 - loss: 0.3264 - val_accura
cy: 0.8741 - val loss: 0.3318
Epoch 111/300
                 ____ 0s 75ms/step - accuracy: 0.8651 - loss: 0.3325 - val_accura
cy: 0.8741 - val loss: 0.3317
Epoch 112/300
                      - 0s 74ms/step - accuracy: 0.8766 - loss: 0.3235 - val_accura
cy: 0.8719 - val_loss: 0.3318
```

```
Epoch 113/300
                 Os 74ms/step - accuracy: 0.8671 - loss: 0.3215 - val_accura
2/2 -----
cy: 0.8741 - val loss: 0.3322
Epoch 114/300
2/2 -----
                 ____ 0s 75ms/step - accuracy: 0.8687 - loss: 0.3257 - val_accura
cy: 0.8764 - val_loss: 0.3327
Epoch 115/300
2/2 -----
               ------- 0s 73ms/step - accuracy: 0.8599 - loss: 0.3231 - val_accura
cy: 0.8787 - val loss: 0.3333
Epoch 116/300
                     - 0s 76ms/step - accuracy: 0.8721 - loss: 0.3204 - val_accura
cy: 0.8810 - val loss: 0.3335
Epoch 117/300
                     — 0s 73ms/step - accuracy: 0.8655 - loss: 0.3180 - val accura
cy: 0.8810 - val loss: 0.3331
Epoch 118/300
2/2 -----
                  ---- 0s 73ms/step - accuracy: 0.8791 - loss: 0.3183 - val_accura
cy: 0.8787 - val_loss: 0.3323
Epoch 119/300
2/2 -
                 ——— 0s 73ms/step - accuracy: 0.8720 - loss: 0.3189 - val_accura
cy: 0.8787 - val_loss: 0.3316
Epoch 120/300
              Os 76ms/step - accuracy: 0.8715 - loss: 0.3189 - val_accura
2/2 -----
cy: 0.8787 - val_loss: 0.3313
Epoch 121/300
                 ——— 0s 74ms/step - accuracy: 0.8664 - loss: 0.3235 - val accura
cy: 0.8764 - val_loss: 0.3311
Epoch 122/300
                   —— 0s 73ms/step - accuracy: 0.8792 - loss: 0.3139 - val_accura
cy: 0.8764 - val_loss: 0.3309
Epoch 123/300
                 ——— 0s 75ms/step - accuracy: 0.8763 - loss: 0.3111 - val_accura
cy: 0.8764 - val_loss: 0.3307
Epoch 124/300
2/2 -
                 ——— 0s 77ms/step - accuracy: 0.8720 - loss: 0.3112 - val_accura
cy: 0.8764 - val_loss: 0.3306
Epoch 125/300
               Os 79ms/step - accuracy: 0.8754 - loss: 0.3156 - val_accura
2/2 -----
cy: 0.8764 - val_loss: 0.3306
Epoch 126/300
               cy: 0.8810 - val_loss: 0.3306
Epoch 127/300
                ----- 0s 75ms/step - accuracy: 0.8774 - loss: 0.3187 - val accura
cy: 0.8833 - val loss: 0.3309
Epoch 128/300
                ——— 0s 74ms/step - accuracy: 0.8798 - loss: 0.3112 - val_accura
cy: 0.8833 - val_loss: 0.3312
Epoch 129/300
                 ——— 0s 75ms/step - accuracy: 0.8787 - loss: 0.3105 - val accura
cy: 0.8833 - val_loss: 0.3312
Epoch 130/300
2/2 ----
                  —— 0s 76ms/step - accuracy: 0.8742 - loss: 0.3079 - val_accura
cy: 0.8833 - val_loss: 0.3308
Epoch 131/300
2/2 -----
                 ----- 0s 75ms/step - accuracy: 0.8721 - loss: 0.3136 - val accura
```

```
cy: 0.8833 - val_loss: 0.3304
Epoch 132/300
               ——— 0s 77ms/step - accuracy: 0.8698 - loss: 0.3157 - val accura
2/2 -----
cy: 0.8833 - val loss: 0.3300
Epoch 133/300
                 Os 75ms/step - accuracy: 0.8725 - loss: 0.3242 - val_accura
cy: 0.8833 - val_loss: 0.3296
Epoch 134/300
                 ——— 0s 77ms/step - accuracy: 0.8741 - loss: 0.3087 - val accura
cy: 0.8833 - val_loss: 0.3292
Epoch 135/300
                 ---- 0s 76ms/step - accuracy: 0.8676 - loss: 0.3154 - val_accura
2/2 -----
cy: 0.8833 - val_loss: 0.3290
Epoch 136/300
2/2 -
                ----- 0s 80ms/step - accuracy: 0.8787 - loss: 0.3038 - val accura
cy: 0.8833 - val loss: 0.3291
Epoch 137/300
              Os 75ms/step - accuracy: 0.8746 - loss: 0.3145 - val_accura
2/2 -----
cy: 0.8833 - val loss: 0.3294
Epoch 138/300
               _____ 0s 75ms/step - accuracy: 0.8773 - loss: 0.3062 - val_accura
cy: 0.8833 - val loss: 0.3297
Epoch 139/300
                    — 0s 74ms/step - accuracy: 0.8803 - loss: 0.3048 - val_accura
cy: 0.8833 - val_loss: 0.3304
Epoch 140/300
                Os 72ms/step - accuracy: 0.8696 - loss: 0.3058 - val_accura
2/2 -
cy: 0.8833 - val loss: 0.3311
Epoch 141/300
2/2 -
               ----- 0s 74ms/step - accuracy: 0.8742 - loss: 0.3030 - val_accura
cy: 0.8810 - val loss: 0.3318
Epoch 142/300
2/2 -----
               Os 74ms/step - accuracy: 0.8778 - loss: 0.3103 - val_accura
cy: 0.8810 - val loss: 0.3320
Epoch 143/300
            cy: 0.8810 - val loss: 0.3319
Epoch 144/300
                 ---- 0s 76ms/step - accuracy: 0.8747 - loss: 0.3092 - val_accura
cy: 0.8810 - val_loss: 0.3315
Epoch 145/300
                ----- 0s 76ms/step - accuracy: 0.8793 - loss: 0.3063 - val_accura
cy: 0.8810 - val_loss: 0.3310
Epoch 146/300
                     - 0s 72ms/step - accuracy: 0.8782 - loss: 0.3022 - val_accura
cy: 0.8810 - val_loss: 0.3305
Epoch 147/300
2/2 -----
                 ---- 0s 77ms/step - accuracy: 0.8730 - loss: 0.3166 - val_accura
cy: 0.8810 - val_loss: 0.3302
Epoch 148/300
               Os 74ms/step - accuracy: 0.8752 - loss: 0.3169 - val_accura
2/2 -----
cy: 0.8810 - val_loss: 0.3302
Epoch 149/300
                _____ 0s 75ms/step - accuracy: 0.8786 - loss: 0.3058 - val_accura
cy: 0.8810 - val loss: 0.3303
Epoch 150/300
```

```
——— 0s 76ms/step - accuracy: 0.8691 - loss: 0.3062 - val_accura
cy: 0.8810 - val_loss: 0.3306
Epoch 151/300
2/2 -
                      - 0s 75ms/step - accuracy: 0.8783 - loss: 0.2981 - val_accura
cy: 0.8810 - val_loss: 0.3309
Epoch 152/300
2/2 ----
                     — 0s 77ms/step - accuracy: 0.8743 - loss: 0.3090 - val_accura
cy: 0.8810 - val_loss: 0.3310
Epoch 153/300
                   —— 0s 76ms/step - accuracy: 0.8784 - loss: 0.3040 - val_accura
2/2 -
cy: 0.8810 - val_loss: 0.3310
Epoch 154/300
               2/2 -----
cy: 0.8810 - val loss: 0.3307
Epoch 155/300
                      - 0s 78ms/step - accuracy: 0.8759 - loss: 0.3029 - val accura
cy: 0.8833 - val_loss: 0.3305
Epoch 156/300
                     - 0s 79ms/step - accuracy: 0.8713 - loss: 0.3077 - val accura
cy: 0.8833 - val_loss: 0.3302
Epoch 157/300
2/2 -
                     — 0s 77ms/step - accuracy: 0.8848 - loss: 0.2992 - val_accura
cy: 0.8833 - val_loss: 0.3300
Epoch 158/300
2/2 -
                     — 0s 74ms/step - accuracy: 0.8836 - loss: 0.2984 - val accura
cy: 0.8833 - val loss: 0.3299
Epoch 159/300
               Os 78ms/step - accuracy: 0.8778 - loss: 0.2975 - val_accura
2/2 -----
cy: 0.8833 - val_loss: 0.3300
Epoch 160/300
                   ---- 0s 81ms/step - accuracy: 0.8792 - loss: 0.2965 - val accura
cy: 0.8833 - val loss: 0.3300
Epoch 161/300
                     — 0s 80ms/step - accuracy: 0.8810 - loss: 0.3008 - val accura
cy: 0.8833 - val_loss: 0.3299
Epoch 162/300
                    --- 0s 76ms/step - accuracy: 0.8751 - loss: 0.3068 - val accura
cy: 0.8833 - val loss: 0.3298
Epoch 163/300
2/2 -
                      - 0s 75ms/step - accuracy: 0.8811 - loss: 0.2977 - val_accura
cy: 0.8810 - val_loss: 0.3300
Epoch 164/300
2/2 ----
                     — 0s 76ms/step - accuracy: 0.8866 - loss: 0.2960 - val_accura
cy: 0.8810 - val loss: 0.3304
Epoch 165/300
                Os 83ms/step - accuracy: 0.8802 - loss: 0.3000 - val_accura
2/2 -----
cy: 0.8810 - val_loss: 0.3307
Epoch 166/300
                    — 0s 82ms/step - accuracy: 0.8761 - loss: 0.2978 - val_accura
cy: 0.8810 - val loss: 0.3312
Epoch 167/300
                 Os 76ms/step - accuracy: 0.8838 - loss: 0.3034 - val_accura
cy: 0.8810 - val loss: 0.3315
Epoch 168/300
                      - 0s 77ms/step - accuracy: 0.8844 - loss: 0.2983 - val_accura
cy: 0.8810 - val_loss: 0.3313
```

```
Epoch 169/300
                ---- 0s 80ms/step - accuracy: 0.8741 - loss: 0.2983 - val_accura
2/2 -----
cy: 0.8810 - val loss: 0.3313
Epoch 170/300
2/2 -----
                ____ 0s 78ms/step - accuracy: 0.8812 - loss: 0.2994 - val_accura
cy: 0.8810 - val_loss: 0.3310
Epoch 171/300
2/2 -----
              cy: 0.8810 - val loss: 0.3306
Epoch 172/300
                    - 0s 78ms/step - accuracy: 0.8808 - loss: 0.2887 - val_accura
cy: 0.8810 - val loss: 0.3303
Epoch 173/300
                    - 0s 81ms/step - accuracy: 0.8829 - loss: 0.2942 - val_accura
cy: 0.8833 - val loss: 0.3302
Epoch 174/300
2/2 -----
                 ---- 0s 76ms/step - accuracy: 0.8808 - loss: 0.2953 - val_accura
cy: 0.8833 - val_loss: 0.3305
Epoch 175/300
2/2 -
                ----- 0s 75ms/step - accuracy: 0.8804 - loss: 0.2949 - val_accura
cy: 0.8833 - val_loss: 0.3308
Epoch 176/300
             2/2 -----
cy: 0.8833 - val_loss: 0.3314
Epoch 177/300
                ____ 0s 76ms/step - accuracy: 0.8803 - loss: 0.3036 - val_accura
cy: 0.8833 - val_loss: 0.3317
Epoch 178/300
                  —— 0s 75ms/step - accuracy: 0.8780 - loss: 0.2954 - val_accura
cy: 0.8833 - val_loss: 0.3317
Epoch 179/300
                ____ 0s 76ms/step - accuracy: 0.8773 - loss: 0.2948 - val accura
cy: 0.8833 - val_loss: 0.3314
Epoch 180/300
2/2 -
                ——— 0s 74ms/step - accuracy: 0.8816 - loss: 0.2989 - val_accura
cy: 0.8833 - val_loss: 0.3312
Epoch 181/300
               Os 74ms/step - accuracy: 0.8782 - loss: 0.2932 - val_accura
2/2 -----
cy: 0.8833 - val_loss: 0.3310
Epoch 182/300
              cy: 0.8833 - val_loss: 0.3313
Epoch 183/300
               ----- 0s 74ms/step - accuracy: 0.8830 - loss: 0.2932 - val accura
cy: 0.8833 - val loss: 0.3317
Epoch 184/300
               _____ 0s 75ms/step - accuracy: 0.8750 - loss: 0.2943 - val_accura
cy: 0.8833 - val_loss: 0.3322
Epoch 185/300
                ——— 0s 76ms/step - accuracy: 0.8774 - loss: 0.2920 - val accura
cy: 0.8833 - val_loss: 0.3325
Epoch 186/300
2/2 ----
                 ---- 0s 78ms/step - accuracy: 0.8834 - loss: 0.2920 - val_accura
cy: 0.8833 - val_loss: 0.3329
Epoch 187/300
2/2 ----
                ----- 0s 78ms/step - accuracy: 0.8750 - loss: 0.2986 - val accura
```

```
cy: 0.8833 - val_loss: 0.3331
Epoch 188/300
               ——— 0s 74ms/step - accuracy: 0.8837 - loss: 0.2918 - val accura
cy: 0.8810 - val_loss: 0.3331
Epoch 189/300
                  ——— 0s 75ms/step - accuracy: 0.8887 - loss: 0.2892 - val accura
cy: 0.8833 - val_loss: 0.3330
Epoch 190/300
                  —— 0s 80ms/step - accuracy: 0.8864 - loss: 0.2928 - val accura
cy: 0.8833 - val_loss: 0.3329
Epoch 191/300
                  Os 78ms/step - accuracy: 0.8824 - loss: 0.2902 - val accura
2/2 -----
cy: 0.8833 - val_loss: 0.3327
Epoch 192/300
2/2 -
                ——— 0s 75ms/step - accuracy: 0.8771 - loss: 0.2955 - val accura
cy: 0.8833 - val loss: 0.3327
Epoch 193/300
              Os 74ms/step - accuracy: 0.8867 - loss: 0.2894 - val_accura
2/2 -----
cy: 0.8833 - val loss: 0.3328
Epoch 194/300
               Os 75ms/step - accuracy: 0.8741 - loss: 0.3047 - val_accura
cy: 0.8833 - val loss: 0.3328
Epoch 195/300
                    — 0s 75ms/step - accuracy: 0.8789 - loss: 0.2925 - val_accura
cy: 0.8833 - val_loss: 0.3330
Epoch 196/300
                 ____ 0s 76ms/step - accuracy: 0.8841 - loss: 0.2874 - val_accura
2/2 -
cy: 0.8833 - val loss: 0.3331
Epoch 197/300
2/2 -
                Os 74ms/step - accuracy: 0.8885 - loss: 0.2876 - val_accura
cy: 0.8833 - val loss: 0.3331
Epoch 198/300
2/2 -----
               Os 74ms/step - accuracy: 0.8834 - loss: 0.2840 - val_accura
cy: 0.8833 - val loss: 0.3332
Epoch 199/300
               ------ 0s 74ms/step - accuracy: 0.8894 - loss: 0.2856 - val_accura
cy: 0.8833 - val loss: 0.3330
Epoch 200/300
                  ---- 0s 79ms/step - accuracy: 0.8807 - loss: 0.2890 - val_accura
cy: 0.8833 - val_loss: 0.3328
Epoch 201/300
                 _____ 0s 77ms/step - accuracy: 0.8821 - loss: 0.2890 - val_accura
cy: 0.8833 - val_loss: 0.3325
Epoch 202/300
                      - 0s 74ms/step - accuracy: 0.8771 - loss: 0.2955 - val_accura
cy: 0.8833 - val_loss: 0.3323
Epoch 203/300
2/2 -----
                 ——— 0s 75ms/step - accuracy: 0.8832 - loss: 0.2905 - val_accura
cy: 0.8810 - val_loss: 0.3320
Epoch 204/300
                Os 75ms/step - accuracy: 0.8829 - loss: 0.2881 - val_accura
2/2 -----
cy: 0.8810 - val_loss: 0.3321
Epoch 205/300
                 ----- 0s 75ms/step - accuracy: 0.8824 - loss: 0.2879 - val_accura
cy: 0.8810 - val loss: 0.3326
Epoch 206/300
```

```
----- 0s 75ms/step - accuracy: 0.8842 - loss: 0.2893 - val_accura
cy: 0.8810 - val_loss: 0.3333
Epoch 207/300
2/2 -
                     - 0s 78ms/step - accuracy: 0.8847 - loss: 0.2890 - val_accura
cy: 0.8833 - val_loss: 0.3339
Epoch 208/300
2/2 ----
                     — 0s 77ms/step - accuracy: 0.8821 - loss: 0.2803 - val_accura
cy: 0.8833 - val_loss: 0.3344
Epoch 209/300
                  ---- 0s 76ms/step - accuracy: 0.8791 - loss: 0.2850 - val_accura
2/2 -
cy: 0.8856 - val_loss: 0.3346
Epoch 210/300
               2/2 -----
cy: 0.8856 - val loss: 0.3346
Epoch 211/300
                     - 0s 75ms/step - accuracy: 0.8865 - loss: 0.2788 - val_accura
cy: 0.8856 - val_loss: 0.3346
Epoch 212/300
                     — 0s 74ms/step - accuracy: 0.8842 - loss: 0.2825 - val accura
cy: 0.8856 - val_loss: 0.3347
Epoch 213/300
2/2 -
                     — 0s 77ms/step - accuracy: 0.8772 - loss: 0.2901 - val_accura
cy: 0.8856 - val_loss: 0.3344
Epoch 214/300
2/2 -
                     — 0s 74ms/step - accuracy: 0.8862 - loss: 0.2866 - val accura
cy: 0.8856 - val loss: 0.3343
Epoch 215/300
              2/2 -----
cy: 0.8856 - val_loss: 0.3341
Epoch 216/300
                  ---- 0s 75ms/step - accuracy: 0.8854 - loss: 0.2807 - val accura
cy: 0.8833 - val loss: 0.3340
Epoch 217/300
                     - 0s 74ms/step - accuracy: 0.8854 - loss: 0.2866 - val accura
cy: 0.8810 - val_loss: 0.3340
Epoch 218/300
                   — 0s 74ms/step - accuracy: 0.8933 - loss: 0.2761 - val accura
cy: 0.8810 - val loss: 0.3339
Epoch 219/300
2/2 -
                     - 0s 73ms/step - accuracy: 0.8883 - loss: 0.2762 - val_accura
cy: 0.8810 - val_loss: 0.3339
Epoch 220/300
2/2 -
                    — 0s 74ms/step - accuracy: 0.8925 - loss: 0.2856 - val_accura
cy: 0.8810 - val loss: 0.3339
Epoch 221/300
                Os 73ms/step - accuracy: 0.8801 - loss: 0.2857 - val_accura
2/2 -----
cy: 0.8810 - val_loss: 0.3344
Epoch 222/300
                   — 0s 75ms/step - accuracy: 0.8845 - loss: 0.2802 - val_accura
cy: 0.8810 - val loss: 0.3347
Epoch 223/300
                   — 0s 76ms/step - accuracy: 0.8878 - loss: 0.2783 - val_accura
cy: 0.8833 - val loss: 0.3353
Epoch 224/300
                     - 0s 75ms/step - accuracy: 0.8897 - loss: 0.2778 - val_accura
cy: 0.8833 - val_loss: 0.3359
```

```
Epoch 225/300
                   —— 0s 73ms/step - accuracy: 0.8842 - loss: 0.2808 - val_accura
2/2 -
cy: 0.8856 - val loss: 0.3362
Epoch 226/300
2/2 ----
                   ____ 0s 76ms/step - accuracy: 0.8919 - loss: 0.2685 - val_accura
cy: 0.8856 - val_loss: 0.3362
Epoch 227/300
2/2 -----
                ------ 0s 76ms/step - accuracy: 0.8858 - loss: 0.2780 - val_accura
cy: 0.8833 - val loss: 0.3360
Epoch 228/300
                      - 0s 74ms/step - accuracy: 0.8796 - loss: 0.2900 - val_accura
cy: 0.8856 - val loss: 0.3360
Epoch 229/300
                      - 0s 76ms/step - accuracy: 0.8890 - loss: 0.2822 - val_accura
cy: 0.8879 - val loss: 0.3365
Epoch 230/300
2/2 ----
                   ---- 0s 76ms/step - accuracy: 0.8828 - loss: 0.2829 - val_accura
cy: 0.8879 - val_loss: 0.3367
Epoch 231/300
2/2 -
                   —— 0s 77ms/step - accuracy: 0.8788 - loss: 0.2725 - val_accura
cy: 0.8879 - val_loss: 0.3367
Epoch 232/300
               Os 76ms/step - accuracy: 0.8839 - loss: 0.2788 - val_accura
2/2 -----
cy: 0.8879 - val_loss: 0.3363
Epoch 233/300
                  ____ 0s 74ms/step - accuracy: 0.8742 - loss: 0.2928 - val_accura
cy: 0.8879 - val_loss: 0.3364
Epoch 234/300
                   —— 0s 75ms/step - accuracy: 0.8858 - loss: 0.2819 - val_accura
cy: 0.8879 - val_loss: 0.3364
Epoch 235/300
2/2 -
                  ----- 0s 75ms/step - accuracy: 0.8797 - loss: 0.2837 - val_accura
cy: 0.8879 - val_loss: 0.3363
Epoch 235: early stopping
Restoring model weights from the end of the best epoch: 135.
```



```
# Evaluate
In [287...
          train_loss, train_acc = model_1d_cnn.evaluate(X_train_seq, y_train_seq)
          val_loss, val_acc = model_1d_cnn.evaluate(X_val_seq, y_val_seq)
          print(f"Training Accuracy: {train_acc:.4f}")
          print(f"Validation Accuracy: {val_acc:.4f}")
          # Predict probabilities
          y_val_probs = model_1d_cnn.predict(X_val_seq)
          # Convert probabilities to binary predictions
          y_val_preds = (y_val_probs > 0.5).astype("int32")
          # Generate confusion matrix
          cm = confusion_matrix(y_val_seq, y_val_preds)
          # Display
          disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["No Rain", "Rain")
          disp.plot(cmap=plt.cm.Blues)
          plt.title("Confusion Matrix (Validation Set)")
          plt.grid(False)
          plt.show()
         55/55
                                   - 0s 2ms/step - accuracy: 0.8809 - loss: 0.2992
         14/14
                                   - 0s 3ms/step - accuracy: 0.8846 - loss: 0.3343
         Training Accuracy: 0.8877
         Validation Accuracy: 0.8833
         14/14 -
                                   - 0s 6ms/step
```



```
In [288...
          # Load the test data
          test_df = pd.read_csv(PATH + 'test_extra7.csv')
          test_df['date'] = pd.to_datetime(test_df['day'], format='%j', errors='coerce')
          # Simulate year assignment just like train_df (e.g., assume up to 6 years of data)
          test_df['year'] = (test_df.index // 365)
          # Extract month from synthetic date
          test_df['month'] = test_df['date'].dt.month
          # Create cyclical features
          test_df['day_sin'] = np.sin(2 * np.pi * (test_df['day'] - 1) / 365)
          test_df['wind_sin'] = np.sin(2 * np.pi * test_df['winddirection'] / 360)
          # Step 2: Select the same feature columns
          X_test = test_df[columns_to_keep]
          # Step 3: Scale using the same scaler
          X_test_scaled = scaler.transform(X_test)
          # Create sequences
          X_test_seq, _ = create_sequences(X_test.values, np.zeros(len(X_test)), window_size=
          # Reshape for scaling
          num_samples_test, num_days_test, num_features_test = X_test_seq.shape
```

```
X_test_2d = X_test_seq.reshape(-1, num_features_test)
 # Apply the SAME scaler from training
 X_test_scaled_2d = scaler.transform(X_test_2d)
 # Reshape back to 3D for CNN
 X_test_cnn = X_test_scaled_2d.reshape(num_samples_test, num_days_test, num_features
 # Make predictions
 y_test_pred = model_1d_cnn.predict(X_test_cnn).flatten()
 # Align with correct IDs (assume ID starts from index 7 after 8-day sequences)
 submission_ids = test_df['id'].iloc[window_size - 1:].reset_index(drop=True)
 # Build submission DataFrame
 submission = pd.DataFrame({
     'id': submission_ids,
     'rainfall': y_test_pred
 })
 # Save to CSV
 submission.to_csv(PATH + 'submission_1d_cnn.csv', index=False)
23/23
                          • 0s 2ms/step
/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:2732: UserWarnin
g: X has feature names, but StandardScaler was fitted without feature names
```

2D CNN

warnings.warn(

```
In [289...
          # One Layer CNN
          tf.keras.backend.clear_session()
          # Reshape input for Conv2D: (samples, height, width, channels)
          X_train_2d = X_train_seq.reshape(-1, window_size, X.shape[1], 1)
          X_val_2d = X_val_seq.reshape(-1, window_size, X.shape[1], 1)
          # Build Conv2D model
          tf.keras.backend.clear session()
          model_2d_cnn = tf.keras.Sequential()
          # Add convolutional layer
          model_2d_cnn.add(tf.keras.layers.Conv2D(
              filters=128,
              kernel_size=(4, 4),
              strides=(1, 1),
              padding='same',
              data_format='channels_last',
              activation='relu',
              name='conv 1',
              input_shape=(window_size, X.shape[1], 1) # (height, width, channels)
          ))
          # Add max pooling layer
          model_2d_cnn.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
```

```
# Add dropout Layer
model_2d_cnn.add(tf.keras.layers.Dropout(rate=0.5))

# Add flattening Layer
model_2d_cnn.add(tf.keras.layers.Flatten())

# Add classification Layer
model_2d_cnn.add(tf.keras.layers.Dense(1, activation='sigmoid'))

# Compile model
model_2d_cnn.compile(
    optimizer=tf.keras.optimizers.Adam(learning_rate=0.0005),
    loss=tf.keras.losses.BinaryCrossentropy(),
    metrics=['accuracy']
)

# Print summary
model_2d_cnn.summary()
```

/usr/local/lib/python3.11/dist-packages/keras/src/layers/convolutional/base_conv.py: 107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Model: "sequential"

Layer (type)	Output Shape
conv_1 (Conv2D)	(None, 8, 12, 128)
max_pooling2d (MaxPooling2D)	(None, 4, 6, 128)
dropout (Dropout)	(None, 4, 6, 128)
flatten (Flatten)	(None, 3072)
dense (Dense)	(None, 1)

Total params: 5,249 (20.50 KB)

Trainable params: 5,249 (20.50 KB)

Non-trainable params: 0 (0.00 B)

```
epochs=300,
   batch_size=1024,
   callbacks=[early_stopping]
)

# Plot losses
plt.figure(figsize=(8, 5))
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Val Loss')
plt.title("Training & Validation Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.grid(True)
plt.legend()
plt.show()
```

```
Epoch 1/300
2/2 -----
                    ---- 1s 310ms/step - accuracy: 0.5480 - loss: 0.6880 - val_accur
acy: 0.7918 - val loss: 0.6048
Epoch 2/300
2/2 ----
                   ---- 0s 140ms/step - accuracy: 0.7377 - loss: 0.6296 - val_accur
acy: 0.7918 - val_loss: 0.5565
Epoch 3/300
2/2 -----
                ———— 0s 122ms/step - accuracy: 0.7483 - loss: 0.5916 - val_accur
acy: 0.7918 - val loss: 0.5319
Epoch 4/300
                      - 0s 133ms/step - accuracy: 0.7483 - loss: 0.5798 - val_accur
acy: 0.7918 - val_loss: 0.5212
Epoch 5/300
                      - 0s 130ms/step - accuracy: 0.7483 - loss: 0.5816 - val_accur
acy: 0.7918 - val_loss: 0.5157
Epoch 6/300
                    —— 0s 120ms/step - accuracy: 0.7483 - loss: 0.5757 - val_accur
2/2 -----
acy: 0.7918 - val_loss: 0.5105
Epoch 7/300
2/2 -
                     — 0s 139ms/step - accuracy: 0.7483 - loss: 0.5689 - val_accur
acy: 0.7918 - val_loss: 0.5045
Epoch 8/300
2/2 -----
              Os 130ms/step - accuracy: 0.7483 - loss: 0.5619 - val_accur
acy: 0.7918 - val_loss: 0.4985
Epoch 9/300
                   ---- 0s 119ms/step - accuracy: 0.7483 - loss: 0.5536 - val_accur
acy: 0.7918 - val_loss: 0.4934
Epoch 10/300
                    — 0s 130ms/step - accuracy: 0.7483 - loss: 0.5419 - val_accur
acy: 0.7918 - val_loss: 0.4898
Epoch 11/300
2/2 -
                   ---- 0s 120ms/step - accuracy: 0.7483 - loss: 0.5341 - val accur
acy: 0.7918 - val_loss: 0.4874
Epoch 12/300
                    — 0s 120ms/step - accuracy: 0.7490 - loss: 0.5316 - val_accur
2/2 -
acy: 0.7918 - val_loss: 0.4852
Epoch 13/300
                ——— 0s 129ms/step - accuracy: 0.7551 - loss: 0.5268 - val_accur
acy: 0.7918 - val_loss: 0.4823
Epoch 14/300
               ———— 0s 111ms/step - accuracy: 0.7545 - loss: 0.5260 - val_accur
acy: 0.7918 - val_loss: 0.4783
Epoch 15/300
                  Os 125ms/step - accuracy: 0.7562 - loss: 0.5174 - val_accur
acy: 0.7918 - val_loss: 0.4734
Epoch 16/300
2/2 ----
                 ----- 0s 121ms/step - accuracy: 0.7530 - loss: 0.5157 - val accur
acy: 0.7918 - val_loss: 0.4685
Epoch 17/300
                     — 0s 110ms/step - accuracy: 0.7563 - loss: 0.5085 - val accur
acy: 0.7918 - val_loss: 0.4641
Epoch 18/300
2/2 ----
                      - 0s 118ms/step - accuracy: 0.7585 - loss: 0.5061 - val_accur
acy: 0.7918 - val_loss: 0.4604
Epoch 19/300
2/2 -----
                  ----- 0s 112ms/step - accuracy: 0.7544 - loss: 0.5037 - val accur
```

```
acy: 0.7941 - val_loss: 0.4571
Epoch 20/300
               ----- 0s 121ms/step - accuracy: 0.7577 - loss: 0.4954 - val accur
2/2 -----
acy: 0.7941 - val_loss: 0.4541
Epoch 21/300
                  ---- 0s 120ms/step - accuracy: 0.7585 - loss: 0.4928 - val accur
acy: 0.7963 - val_loss: 0.4510
Epoch 22/300
                  ---- 0s 118ms/step - accuracy: 0.7625 - loss: 0.4902 - val accur
acy: 0.7963 - val_loss: 0.4480
Epoch 23/300
                    — 0s 112ms/step - accuracy: 0.7633 - loss: 0.4877 - val accur
2/2 -----
acy: 0.7986 - val_loss: 0.4452
Epoch 24/300
                 ——— 0s 112ms/step - accuracy: 0.7733 - loss: 0.4818 - val accur
2/2 ----
acy: 0.8032 - val_loss: 0.4424
Epoch 25/300
2/2 -----
              acy: 0.8055 - val loss: 0.4398
Epoch 26/300
               ———— 0s 116ms/step - accuracy: 0.7803 - loss: 0.4728 - val_accur
acy: 0.8055 - val loss: 0.4371
Epoch 27/300
                   — 0s 112ms/step - accuracy: 0.7802 - loss: 0.4759 - val_accur
acy: 0.8009 - val_loss: 0.4343
Epoch 28/300
2/2 -
                  —— 0s 114ms/step - accuracy: 0.7793 - loss: 0.4686 - val_accur
acy: 0.8009 - val loss: 0.4316
Epoch 29/300
2/2 -
                 Os 113ms/step - accuracy: 0.7829 - loss: 0.4666 - val_accur
acy: 0.8009 - val loss: 0.4289
Epoch 30/300
               Os 116ms/step - accuracy: 0.7867 - loss: 0.4633 - val_accur
2/2 -----
acy: 0.8032 - val loss: 0.4263
Epoch 31/300
              Os 118ms/step - accuracy: 0.7866 - loss: 0.4585 - val_accur
acy: 0.8032 - val loss: 0.4237
Epoch 32/300
                  —— 0s 114ms/step - accuracy: 0.7903 - loss: 0.4548 - val_accur
acy: 0.8032 - val_loss: 0.4211
Epoch 33/300
2/2 -
                ------ 0s 113ms/step - accuracy: 0.7947 - loss: 0.4507 - val_accur
acy: 0.8055 - val_loss: 0.4186
Epoch 34/300
2/2 -
                     - 0s 110ms/step - accuracy: 0.7915 - loss: 0.4517 - val_accur
acy: 0.8124 - val_loss: 0.4160
Epoch 35/300
2/2 ----
                   —— 0s 117ms/step - accuracy: 0.7977 - loss: 0.4458 - val_accur
acy: 0.8124 - val_loss: 0.4136
Epoch 36/300
2/2 -----
               ------- 0s 116ms/step - accuracy: 0.8068 - loss: 0.4471 - val_accur
acy: 0.8124 - val_loss: 0.4112
Epoch 37/300
                 OS 116ms/step - accuracy: 0.7996 - loss: 0.4420 - val_accur
acy: 0.8146 - val_loss: 0.4087
Epoch 38/300
```

```
—— 0s 117ms/step - accuracy: 0.8068 - loss: 0.4390 - val_accur
acy: 0.8146 - val_loss: 0.4063
Epoch 39/300
2/2 -
                       - 0s 116ms/step - accuracy: 0.8091 - loss: 0.4392 - val_accur
acy: 0.8169 - val_loss: 0.4039
Epoch 40/300
2/2 -
                       - 0s 118ms/step - accuracy: 0.8063 - loss: 0.4352 - val_accur
acy: 0.8192 - val_loss: 0.4016
Epoch 41/300
                      - 0s 119ms/step - accuracy: 0.8115 - loss: 0.4297 - val_accur
2/2 -
acy: 0.8192 - val_loss: 0.3994
Epoch 42/300
                ———— 0s 121ms/step - accuracy: 0.8039 - loss: 0.4301 - val_accur
2/2 -----
acy: 0.8192 - val loss: 0.3971
Epoch 43/300
                       - 0s 106ms/step - accuracy: 0.8121 - loss: 0.4306 - val_accur
acy: 0.8215 - val_loss: 0.3949
Epoch 44/300
                       - 0s 112ms/step - accuracy: 0.8105 - loss: 0.4242 - val accur
acy: 0.8238 - val_loss: 0.3927
Epoch 45/300
2/2 -
                      — 0s 114ms/step - accuracy: 0.8217 - loss: 0.4162 - val accur
acy: 0.8284 - val_loss: 0.3904
Epoch 46/300
2/2 -
                       - 0s 106ms/step - accuracy: 0.8175 - loss: 0.4206 - val accur
acy: 0.8307 - val_loss: 0.3881
Epoch 47/300
                Os 110ms/step - accuracy: 0.8172 - loss: 0.4145 - val_accur
2/2 -
acy: 0.8307 - val_loss: 0.3858
Epoch 48/300
                     --- 0s 111ms/step - accuracy: 0.8314 - loss: 0.4079 - val accur
acy: 0.8307 - val loss: 0.3833
Epoch 49/300
                       - 0s 115ms/step - accuracy: 0.8231 - loss: 0.4134 - val accur
acy: 0.8330 - val_loss: 0.3810
Epoch 50/300
2/2 -
                     --- 0s 111ms/step - accuracy: 0.8260 - loss: 0.4043 - val accur
acy: 0.8330 - val loss: 0.3786
Epoch 51/300
2/2 -
                       - 0s 113ms/step - accuracy: 0.8215 - loss: 0.4108 - val_accur
acy: 0.8375 - val_loss: 0.3763
Epoch 52/300
2/2 -
                       - 0s 111ms/step - accuracy: 0.8278 - loss: 0.4018 - val_accur
acy: 0.8398 - val_loss: 0.3743
Epoch 53/300
                  ---- 0s 110ms/step - accuracy: 0.8260 - loss: 0.4011 - val_accur
2/2 -----
acy: 0.8352 - val_loss: 0.3726
Epoch 54/300
                     — 0s 113ms/step - accuracy: 0.8378 - loss: 0.3982 - val_accur
acy: 0.8398 - val loss: 0.3710
Epoch 55/300
                     — 0s 119ms/step - accuracy: 0.8387 - loss: 0.3980 - val_accur
acy: 0.8398 - val_loss: 0.3696
Epoch 56/300
                       - 0s 118ms/step - accuracy: 0.8358 - loss: 0.3936 - val_accur
acy: 0.8421 - val_loss: 0.3682
```

```
Epoch 57/300
                   —— 0s 111ms/step - accuracy: 0.8370 - loss: 0.3944 - val_accur
2/2 -----
acy: 0.8444 - val loss: 0.3669
Epoch 58/300
2/2 ---
                   ____ 0s 111ms/step - accuracy: 0.8364 - loss: 0.3847 - val_accur
acy: 0.8467 - val_loss: 0.3655
Epoch 59/300
2/2 -----
                ------ 0s 111ms/step - accuracy: 0.8330 - loss: 0.3907 - val_accur
acy: 0.8467 - val loss: 0.3640
Epoch 60/300
                      - 0s 111ms/step - accuracy: 0.8480 - loss: 0.3822 - val_accur
acy: 0.8513 - val_loss: 0.3624
Epoch 61/300
                      - 0s 105ms/step - accuracy: 0.8451 - loss: 0.3859 - val accur
acy: 0.8535 - val_loss: 0.3609
Epoch 62/300
                    — 0s 116ms/step - accuracy: 0.8386 - loss: 0.3830 - val_accur
2/2 -----
acy: 0.8535 - val_loss: 0.3594
Epoch 63/300
2/2 -
                     — 0s 114ms/step - accuracy: 0.8375 - loss: 0.3823 - val_accur
acy: 0.8513 - val_loss: 0.3579
Epoch 64/300
2/2 -----
               Os 112ms/step - accuracy: 0.8473 - loss: 0.3783 - val_accur
acy: 0.8513 - val_loss: 0.3565
Epoch 65/300
                   ---- 0s 126ms/step - accuracy: 0.8443 - loss: 0.3800 - val accur
acy: 0.8513 - val_loss: 0.3551
Epoch 66/300
                   —— 0s 134ms/step - accuracy: 0.8433 - loss: 0.3750 - val_accur
acy: 0.8513 - val_loss: 0.3538
Epoch 67/300
2/2 -
                   ----- 0s 122ms/step - accuracy: 0.8388 - loss: 0.3728 - val accur
acy: 0.8513 - val_loss: 0.3525
Epoch 68/300
2/2 -
                    — 0s 116ms/step - accuracy: 0.8553 - loss: 0.3716 - val_accur
acy: 0.8535 - val_loss: 0.3515
Epoch 69/300
                ------ 0s 123ms/step - accuracy: 0.8489 - loss: 0.3691 - val_accur
acy: 0.8513 - val_loss: 0.3506
Epoch 70/300
               ———— 0s 133ms/step - accuracy: 0.8459 - loss: 0.3727 - val_accur
acy: 0.8490 - val_loss: 0.3498
Epoch 71/300
                  ----- 0s 117ms/step - accuracy: 0.8479 - loss: 0.3652 - val accur
acy: 0.8490 - val_loss: 0.3491
Epoch 72/300
2/2 -
                 ——— 0s 111ms/step - accuracy: 0.8536 - loss: 0.3627 - val_accur
acy: 0.8513 - val_loss: 0.3485
Epoch 73/300
                     — 0s 111ms/step - accuracy: 0.8566 - loss: 0.3654 - val accur
acy: 0.8513 - val_loss: 0.3479
Epoch 74/300
2/2 ----
                      - 0s 127ms/step - accuracy: 0.8534 - loss: 0.3650 - val_accur
acy: 0.8513 - val_loss: 0.3471
Epoch 75/300
2/2 ----
                  ----- 0s 124ms/step - accuracy: 0.8485 - loss: 0.3648 - val accur
```

```
acy: 0.8513 - val_loss: 0.3465
Epoch 76/300
               ——— 0s 116ms/step - accuracy: 0.8532 - loss: 0.3594 - val accur
2/2 -----
acy: 0.8535 - val_loss: 0.3460
Epoch 77/300
                   ---- 0s 118ms/step - accuracy: 0.8546 - loss: 0.3567 - val accur
acy: 0.8558 - val_loss: 0.3453
Epoch 78/300
                  ---- 0s 110ms/step - accuracy: 0.8552 - loss: 0.3572 - val accur
acy: 0.8558 - val_loss: 0.3446
Epoch 79/300
                    — 0s 114ms/step - accuracy: 0.8478 - loss: 0.3561 - val accur
2/2 -----
acy: 0.8558 - val_loss: 0.3439
Epoch 80/300
2/2 -
                 ——— 0s 117ms/step - accuracy: 0.8528 - loss: 0.3610 - val accur
acy: 0.8581 - val_loss: 0.3431
Epoch 81/300
2/2 -----
              acy: 0.8581 - val loss: 0.3424
Epoch 82/300
               ———— 0s 119ms/step - accuracy: 0.8556 - loss: 0.3522 - val_accur
acy: 0.8581 - val loss: 0.3418
Epoch 83/300
                   —— 0s 103ms/step - accuracy: 0.8564 - loss: 0.3533 - val_accur
acy: 0.8581 - val_loss: 0.3413
Epoch 84/300
2/2 -
                   —— 0s 115ms/step - accuracy: 0.8592 - loss: 0.3481 - val_accur
acy: 0.8581 - val loss: 0.3409
Epoch 85/300
2/2 -
                 ---- 0s 121ms/step - accuracy: 0.8557 - loss: 0.3450 - val_accur
acy: 0.8581 - val loss: 0.3405
Epoch 86/300
               Os 118ms/step - accuracy: 0.8607 - loss: 0.3474 - val_accur
2/2 -----
acy: 0.8581 - val loss: 0.3402
Epoch 87/300
               Os 106ms/step - accuracy: 0.8573 - loss: 0.3456 - val_accur
acy: 0.8627 - val loss: 0.3400
Epoch 88/300
                   —— 0s 109ms/step - accuracy: 0.8579 - loss: 0.3503 - val_accur
acy: 0.8650 - val_loss: 0.3397
Epoch 89/300
2/2 -
                ------ 0s 115ms/step - accuracy: 0.8618 - loss: 0.3457 - val_accur
acy: 0.8650 - val_loss: 0.3394
Epoch 90/300
2/2 -
                     - 0s 111ms/step - accuracy: 0.8527 - loss: 0.3477 - val_accur
acy: 0.8650 - val_loss: 0.3392
Epoch 91/300
2/2 ----
                   — 0s 111ms/step - accuracy: 0.8544 - loss: 0.3504 - val_accur
acy: 0.8650 - val_loss: 0.3389
Epoch 92/300
2/2 -----
                ———— 0s 103ms/step - accuracy: 0.8584 - loss: 0.3453 - val_accur
acy: 0.8650 - val_loss: 0.3386
Epoch 93/300
                  Os 107ms/step - accuracy: 0.8621 - loss: 0.3461 - val_accur
acy: 0.8673 - val_loss: 0.3384
Epoch 94/300
```

```
—— 0s 114ms/step - accuracy: 0.8588 - loss: 0.3394 - val_accur
acy: 0.8673 - val_loss: 0.3381
Epoch 95/300
2/2 -
                       - 0s 120ms/step - accuracy: 0.8588 - loss: 0.3428 - val_accur
acy: 0.8673 - val_loss: 0.3377
Epoch 96/300
2/2 -
                       - 0s 123ms/step - accuracy: 0.8601 - loss: 0.3446 - val accur
acy: 0.8673 - val_loss: 0.3373
Epoch 97/300
                      — 0s 116ms/step - accuracy: 0.8663 - loss: 0.3355 - val_accur
2/2 -
acy: 0.8673 - val_loss: 0.3370
Epoch 98/300
                ———— 0s 112ms/step - accuracy: 0.8527 - loss: 0.3411 - val_accur
2/2 -----
acy: 0.8673 - val loss: 0.3367
Epoch 99/300
                       - 0s 116ms/step - accuracy: 0.8602 - loss: 0.3415 - val_accur
acy: 0.8673 - val_loss: 0.3365
Epoch 100/300
                       - 0s 118ms/step - accuracy: 0.8666 - loss: 0.3363 - val accur
acy: 0.8696 - val_loss: 0.3363
Epoch 101/300
2/2 -
                      — 0s 116ms/step - accuracy: 0.8643 - loss: 0.3394 - val accur
acy: 0.8719 - val_loss: 0.3362
Epoch 102/300
2/2 -
                      - 0s 106ms/step - accuracy: 0.8643 - loss: 0.3354 - val_accur
acy: 0.8719 - val loss: 0.3361
Epoch 103/300
                Os 112ms/step - accuracy: 0.8557 - loss: 0.3391 - val_accur
2/2 -
acy: 0.8719 - val_loss: 0.3362
Epoch 104/300
                    --- 0s 110ms/step - accuracy: 0.8610 - loss: 0.3425 - val accur
acy: 0.8719 - val loss: 0.3363
Epoch 105/300
                       - 0s 114ms/step - accuracy: 0.8580 - loss: 0.3436 - val accur
acy: 0.8719 - val_loss: 0.3363
Epoch 106/300
                     — 0s 105ms/step - accuracy: 0.8711 - loss: 0.3365 - val_accur
acy: 0.8719 - val loss: 0.3359
Epoch 107/300
2/2 -
                       - 0s 113ms/step - accuracy: 0.8588 - loss: 0.3324 - val_accur
acy: 0.8719 - val_loss: 0.3354
Epoch 108/300
2/2 -
                       - 0s 120ms/step - accuracy: 0.8624 - loss: 0.3305 - val_accur
acy: 0.8719 - val_loss: 0.3349
Epoch 109/300
                  ____ 0s 104ms/step - accuracy: 0.8669 - loss: 0.3344 - val_accur
2/2 -----
acy: 0.8719 - val_loss: 0.3345
Epoch 110/300
                     — 0s 114ms/step - accuracy: 0.8617 - loss: 0.3309 - val_accur
acy: 0.8696 - val loss: 0.3344
Epoch 111/300
                      — 0s 120ms/step - accuracy: 0.8628 - loss: 0.3338 - val_accur
acy: 0.8696 - val_loss: 0.3345
Epoch 112/300
                       - 0s 117ms/step - accuracy: 0.8655 - loss: 0.3305 - val_accur
acy: 0.8696 - val_loss: 0.3348
```

```
Epoch 113/300
                  Os 109ms/step - accuracy: 0.8643 - loss: 0.3316 - val_accur
2/2 -----
acy: 0.8696 - val loss: 0.3349
Epoch 114/300
2/2 ----
                  ____ 0s 111ms/step - accuracy: 0.8657 - loss: 0.3310 - val_accur
acy: 0.8696 - val_loss: 0.3351
Epoch 115/300
2/2 -----
                ------ 0s 125ms/step - accuracy: 0.8607 - loss: 0.3303 - val_accur
acy: 0.8696 - val loss: 0.3353
Epoch 116/300
                      - 0s 104ms/step - accuracy: 0.8655 - loss: 0.3326 - val_accur
acy: 0.8696 - val_loss: 0.3353
Epoch 117/300
                      - 0s 115ms/step - accuracy: 0.8651 - loss: 0.3337 - val accur
acy: 0.8673 - val loss: 0.3352
Epoch 118/300
                    —— 0s 103ms/step - accuracy: 0.8631 - loss: 0.3311 - val_accur
2/2 -----
acy: 0.8673 - val_loss: 0.3351
Epoch 119/300
2/2 -
                    — 0s 112ms/step - accuracy: 0.8676 - loss: 0.3291 - val_accur
acy: 0.8673 - val_loss: 0.3350
Epoch 120/300
2/2 -----
               Os 109ms/step - accuracy: 0.8648 - loss: 0.3262 - val_accur
acy: 0.8673 - val_loss: 0.3346
Epoch 121/300
                  ____ 0s 112ms/step - accuracy: 0.8658 - loss: 0.3318 - val_accur
acy: 0.8673 - val_loss: 0.3342
Epoch 122/300
                    — 0s 114ms/step - accuracy: 0.8647 - loss: 0.3317 - val_accur
acy: 0.8696 - val_loss: 0.3338
Epoch 123/300
                   ----- 0s 112ms/step - accuracy: 0.8709 - loss: 0.3207 - val accur
acy: 0.8696 - val_loss: 0.3337
Epoch 124/300
2/2 -
                   —— 0s 110ms/step - accuracy: 0.8687 - loss: 0.3315 - val_accur
acy: 0.8696 - val_loss: 0.3338
Epoch 125/300
                ------ 0s 125ms/step - accuracy: 0.8691 - loss: 0.3234 - val_accur
acy: 0.8696 - val_loss: 0.3341
Epoch 126/300
2/2
                ———— 0s 125ms/step - accuracy: 0.8695 - loss: 0.3287 - val_accur
acy: 0.8696 - val_loss: 0.3345
Epoch 127/300
                  ——— 0s 119ms/step - accuracy: 0.8679 - loss: 0.3301 - val accur
acy: 0.8696 - val_loss: 0.3349
Epoch 128/300
2/2 -
                  ——— 0s 125ms/step - accuracy: 0.8694 - loss: 0.3242 - val_accur
acy: 0.8696 - val_loss: 0.3350
Epoch 129/300
                    — 0s 129ms/step - accuracy: 0.8706 - loss: 0.3239 - val accur
acy: 0.8696 - val_loss: 0.3350
Epoch 130/300
2/2 ----
                    — 0s 119ms/step - accuracy: 0.8712 - loss: 0.3280 - val_accur
acy: 0.8696 - val_loss: 0.3351
Epoch 131/300
2/2 ----
                  ----- 0s 120ms/step - accuracy: 0.8584 - loss: 0.3283 - val accur
```

```
acy: 0.8696 - val_loss: 0.3351
Epoch 132/300
               ——— 0s 129ms/step - accuracy: 0.8680 - loss: 0.3290 - val accur
2/2 -----
acy: 0.8696 - val_loss: 0.3352
Epoch 133/300
                   ---- 0s 124ms/step - accuracy: 0.8743 - loss: 0.3291 - val accur
acy: 0.8696 - val_loss: 0.3350
Epoch 134/300
                  ——— 0s 121ms/step - accuracy: 0.8734 - loss: 0.3214 - val accur
acy: 0.8696 - val_loss: 0.3347
Epoch 135/300
                    Os 125ms/step - accuracy: 0.8726 - loss: 0.3248 - val accur
2/2 ----
acy: 0.8696 - val_loss: 0.3343
Epoch 136/300
                 ----- 0s 123ms/step - accuracy: 0.8730 - loss: 0.3166 - val accur
2/2 -
acy: 0.8719 - val_loss: 0.3340
Epoch 137/300
              Os 120ms/step - accuracy: 0.8718 - loss: 0.3172 - val_accur
2/2 -----
acy: 0.8719 - val loss: 0.3341
Epoch 138/300
                ———— 0s 120ms/step - accuracy: 0.8715 - loss: 0.3180 - val_accur
acy: 0.8696 - val loss: 0.3342
Epoch 139/300
                    — 0s 119ms/step - accuracy: 0.8717 - loss: 0.3201 - val_accur
acy: 0.8719 - val_loss: 0.3342
Epoch 140/300
2/2 -
                   —— 0s 112ms/step - accuracy: 0.8678 - loss: 0.3291 - val_accur
acy: 0.8719 - val_loss: 0.3341
Epoch 141/300
2/2 -
                 _____ 0s 112ms/step - accuracy: 0.8690 - loss: 0.3259 - val_accur
acy: 0.8719 - val loss: 0.3339
Epoch 142/300
                Os 112ms/step - accuracy: 0.8679 - loss: 0.3234 - val_accur
2/2 -----
acy: 0.8719 - val loss: 0.3338
Epoch 143/300
               Os 112ms/step - accuracy: 0.8708 - loss: 0.3254 - val_accur
acy: 0.8719 - val loss: 0.3340
Epoch 144/300
                   —— 0s 112ms/step - accuracy: 0.8675 - loss: 0.3196 - val_accur
acy: 0.8719 - val_loss: 0.3341
Epoch 145/300
2/2 -
                  ----- 0s 114ms/step - accuracy: 0.8779 - loss: 0.3092 - val_accur
acy: 0.8719 - val_loss: 0.3342
Epoch 146/300
                      - 0s 123ms/step - accuracy: 0.8744 - loss: 0.3172 - val_accur
acy: 0.8719 - val_loss: 0.3344
Epoch 147/300
2/2 ----
                  —— 0s 110ms/step - accuracy: 0.8687 - loss: 0.3180 - val_accur
acy: 0.8719 - val_loss: 0.3341
Epoch 148/300
2/2 -----
                ———— 0s 116ms/step - accuracy: 0.8677 - loss: 0.3209 - val_accur
acy: 0.8719 - val_loss: 0.3338
Epoch 149/300
                  —— 0s 123ms/step - accuracy: 0.8827 - loss: 0.3120 - val_accur
acy: 0.8719 - val_loss: 0.3334
Epoch 150/300
```

```
—— 0s 120ms/step - accuracy: 0.8679 - loss: 0.3245 - val_accur
acy: 0.8719 - val_loss: 0.3330
Epoch 151/300
2/2 -
                       - 0s 117ms/step - accuracy: 0.8712 - loss: 0.3164 - val_accur
acy: 0.8719 - val_loss: 0.3328
Epoch 152/300
2/2 ---
                      - 0s 117ms/step - accuracy: 0.8753 - loss: 0.3120 - val_accur
acy: 0.8719 - val_loss: 0.3327
Epoch 153/300
                     — 0s 108ms/step - accuracy: 0.8666 - loss: 0.3190 - val_accur
2/2 -
acy: 0.8696 - val_loss: 0.3329
Epoch 154/300
                _____ 0s 114ms/step - accuracy: 0.8670 - loss: 0.3123 - val_accur
2/2 -----
acy: 0.8719 - val loss: 0.3331
Epoch 155/300
                       - 0s 122ms/step - accuracy: 0.8747 - loss: 0.3101 - val accur
acy: 0.8719 - val_loss: 0.3334
Epoch 156/300
                       - 0s 110ms/step - accuracy: 0.8669 - loss: 0.3172 - val accur
acy: 0.8719 - val_loss: 0.3339
Epoch 157/300
2/2 -
                      — 0s 118ms/step - accuracy: 0.8726 - loss: 0.3141 - val accur
acy: 0.8719 - val_loss: 0.3342
Epoch 158/300
2/2 -
                      - 0s 123ms/step - accuracy: 0.8746 - loss: 0.3152 - val_accur
acy: 0.8719 - val loss: 0.3344
Epoch 159/300
                Os 111ms/step - accuracy: 0.8683 - loss: 0.3174 - val_accur
2/2 -
acy: 0.8719 - val_loss: 0.3345
Epoch 160/300
                    --- 0s 123ms/step - accuracy: 0.8652 - loss: 0.3192 - val accur
acy: 0.8719 - val loss: 0.3345
Epoch 161/300
                       - 0s 114ms/step - accuracy: 0.8688 - loss: 0.3142 - val accur
acy: 0.8719 - val_loss: 0.3345
Epoch 162/300
                     — 0s 112ms/step - accuracy: 0.8680 - loss: 0.3231 - val accur
acy: 0.8719 - val loss: 0.3343
Epoch 163/300
2/2 -
                       - 0s 114ms/step - accuracy: 0.8745 - loss: 0.3104 - val_accur
acy: 0.8719 - val_loss: 0.3341
Epoch 164/300
                       - 0s 111ms/step - accuracy: 0.8716 - loss: 0.3165 - val_accur
acy: 0.8787 - val_loss: 0.3337
Epoch 165/300
                  ---- 0s 110ms/step - accuracy: 0.8689 - loss: 0.3170 - val_accur
2/2 -----
acy: 0.8764 - val_loss: 0.3336
Epoch 166/300
                     — 0s 111ms/step - accuracy: 0.8752 - loss: 0.3094 - val_accur
acy: 0.8764 - val loss: 0.3335
Epoch 167/300
                     — 0s 121ms/step - accuracy: 0.8661 - loss: 0.3219 - val_accur
acy: 0.8764 - val_loss: 0.3336
Epoch 168/300
                       - 0s 120ms/step - accuracy: 0.8672 - loss: 0.3138 - val_accur
acy: 0.8787 - val_loss: 0.3340
```

```
Epoch 169/300
                   Os 112ms/step - accuracy: 0.8733 - loss: 0.3129 - val_accur
2/2 -----
acy: 0.8787 - val loss: 0.3343
Epoch 170/300
2/2 ----
                   ---- 0s 110ms/step - accuracy: 0.8718 - loss: 0.3177 - val_accur
acy: 0.8764 - val_loss: 0.3345
Epoch 171/300
2/2 -----
                ----- 0s 111ms/step - accuracy: 0.8720 - loss: 0.3161 - val_accur
acy: 0.8764 - val loss: 0.3347
Epoch 172/300
                      - 0s 113ms/step - accuracy: 0.8667 - loss: 0.3100 - val_accur
acy: 0.8764 - val_loss: 0.3349
Epoch 173/300
                      - 0s 112ms/step - accuracy: 0.8667 - loss: 0.3145 - val accur
acy: 0.8764 - val loss: 0.3348
Epoch 174/300
                    — 0s 121ms/step - accuracy: 0.8746 - loss: 0.3098 - val_accur
2/2 -----
acy: 0.8787 - val_loss: 0.3347
Epoch 175/300
2/2 -
                    — 0s 112ms/step - accuracy: 0.8662 - loss: 0.3140 - val_accur
acy: 0.8719 - val_loss: 0.3347
Epoch 176/300
2/2 -----
               Os 110ms/step - accuracy: 0.8741 - loss: 0.3074 - val_accur
acy: 0.8719 - val_loss: 0.3345
Epoch 177/300
                   ____ 0s 107ms/step - accuracy: 0.8731 - loss: 0.3115 - val_accur
acy: 0.8764 - val_loss: 0.3340
Epoch 178/300
                    — 0s 120ms/step - accuracy: 0.8845 - loss: 0.3037 - val_accur
acy: 0.8764 - val_loss: 0.3338
Epoch 179/300
                   ----- 0s 119ms/step - accuracy: 0.8721 - loss: 0.3125 - val_accur
acy: 0.8764 - val_loss: 0.3339
Epoch 180/300
                   —— 0s 122ms/step - accuracy: 0.8783 - loss: 0.3135 - val_accur
2/2 -
acy: 0.8764 - val_loss: 0.3342
Epoch 181/300
                ------ 0s 117ms/step - accuracy: 0.8744 - loss: 0.3071 - val_accur
acy: 0.8741 - val_loss: 0.3344
Epoch 182/300
                ———— 0s 109ms/step - accuracy: 0.8675 - loss: 0.3097 - val_accur
acy: 0.8764 - val_loss: 0.3345
Epoch 183/300
                  ---- 0s 110ms/step - accuracy: 0.8738 - loss: 0.3081 - val accur
acy: 0.8741 - val_loss: 0.3345
Epoch 184/300
2/2 -
                 ------ 0s 119ms/step - accuracy: 0.8714 - loss: 0.3108 - val_accur
acy: 0.8741 - val_loss: 0.3344
Epoch 185/300
                     — 0s 110ms/step - accuracy: 0.8708 - loss: 0.3067 - val accur
acy: 0.8741 - val_loss: 0.3344
Epoch 186/300
2/2 ----
                    — 0s 115ms/step - accuracy: 0.8779 - loss: 0.3122 - val_accur
acy: 0.8741 - val_loss: 0.3343
Epoch 187/300
2/2 -
                  ----- 0s 130ms/step - accuracy: 0.8700 - loss: 0.3119 - val accur
```

```
acy: 0.8741 - val_loss: 0.3341
Epoch 188/300
               ----- 0s 121ms/step - accuracy: 0.8705 - loss: 0.3100 - val accur
2/2 -----
acy: 0.8741 - val_loss: 0.3342
Epoch 189/300
                  ---- 0s 125ms/step - accuracy: 0.8794 - loss: 0.3048 - val accur
acy: 0.8741 - val_loss: 0.3346
Epoch 190/300
                  ---- 0s 115ms/step - accuracy: 0.8760 - loss: 0.3028 - val accur
acy: 0.8741 - val_loss: 0.3348
Epoch 191/300
                    — 0s 123ms/step - accuracy: 0.8774 - loss: 0.3111 - val accur
2/2 -----
acy: 0.8741 - val_loss: 0.3350
Epoch 192/300
                ----- 0s 113ms/step - accuracy: 0.8737 - loss: 0.3084 - val accur
2/2 -
acy: 0.8764 - val_loss: 0.3353
Epoch 193/300
              _____ 0s 121ms/step - accuracy: 0.8785 - loss: 0.3030 - val_accur
2/2 -----
acy: 0.8764 - val loss: 0.3355
Epoch 194/300
               Os 123ms/step - accuracy: 0.8738 - loss: 0.3035 - val_accur
acy: 0.8741 - val loss: 0.3356
Epoch 195/300
                   — 0s 130ms/step - accuracy: 0.8793 - loss: 0.2976 - val_accur
acy: 0.8741 - val_loss: 0.3359
Epoch 196/300
2/2 -
                  —— 0s 126ms/step - accuracy: 0.8700 - loss: 0.3075 - val_accur
acy: 0.8741 - val_loss: 0.3358
Epoch 197/300
2/2 -
                _____ 0s 117ms/step - accuracy: 0.8734 - loss: 0.2980 - val_accur
acy: 0.8741 - val loss: 0.3354
Epoch 198/300
               Os 143ms/step - accuracy: 0.8887 - loss: 0.2968 - val_accur
2/2 -----
acy: 0.8741 - val loss: 0.3350
Epoch 199/300
               ------ 0s 119ms/step - accuracy: 0.8752 - loss: 0.2976 - val_accur
acy: 0.8719 - val loss: 0.3348
Epoch 200/300
                   —— 0s 119ms/step - accuracy: 0.8706 - loss: 0.3103 - val_accur
acy: 0.8741 - val_loss: 0.3350
Epoch 201/300
2/2 -
                 acy: 0.8719 - val_loss: 0.3352
Epoch 202/300
                      - 0s 119ms/step - accuracy: 0.8753 - loss: 0.3065 - val_accur
acy: 0.8719 - val_loss: 0.3355
Epoch 203/300
2/2 ----
                  —— 0s 113ms/step - accuracy: 0.8769 - loss: 0.3038 - val_accur
acy: 0.8719 - val_loss: 0.3358
Epoch 204/300
2/2 -----
                ------- 0s 111ms/step - accuracy: 0.8825 - loss: 0.2968 - val_accur
acy: 0.8741 - val_loss: 0.3359
Epoch 205/300
                  —— 0s 121ms/step - accuracy: 0.8863 - loss: 0.2989 - val_accur
acy: 0.8741 - val_loss: 0.3361
Epoch 206/300
```

```
—— 0s 121ms/step - accuracy: 0.8792 - loss: 0.2993 - val_accur
acy: 0.8741 - val_loss: 0.3364
Epoch 207/300
                       - 0s 121ms/step - accuracy: 0.8748 - loss: 0.3034 - val accur
2/2 -
acy: 0.8741 - val_loss: 0.3364
Epoch 208/300
2/2 ---
                      - 0s 121ms/step - accuracy: 0.8765 - loss: 0.3030 - val_accur
acy: 0.8741 - val_loss: 0.3362
Epoch 209/300
                     — 0s 113ms/step - accuracy: 0.8758 - loss: 0.3048 - val_accur
2/2 -
acy: 0.8741 - val_loss: 0.3360
Epoch 210/300
                ——— 0s 112ms/step - accuracy: 0.8820 - loss: 0.3062 - val_accur
2/2 -----
acy: 0.8741 - val loss: 0.3358
Epoch 211/300
                       - 0s 110ms/step - accuracy: 0.8769 - loss: 0.3013 - val accur
acy: 0.8741 - val_loss: 0.3354
Epoch 212/300
                       - 0s 110ms/step - accuracy: 0.8755 - loss: 0.2984 - val accur
acy: 0.8741 - val_loss: 0.3353
Epoch 213/300
2/2 -
                      — 0s 109ms/step - accuracy: 0.8752 - loss: 0.3062 - val accur
acy: 0.8741 - val_loss: 0.3354
Epoch 214/300
2/2 -
                       - 0s 119ms/step - accuracy: 0.8708 - loss: 0.2982 - val_accur
acy: 0.8741 - val loss: 0.3357
Epoch 215/300
                Os 117ms/step - accuracy: 0.8780 - loss: 0.3015 - val_accur
2/2 -
acy: 0.8741 - val_loss: 0.3363
Epoch 216/300
                    --- 0s 116ms/step - accuracy: 0.8737 - loss: 0.3096 - val accur
acy: 0.8741 - val loss: 0.3367
Epoch 217/300
                       - 0s 114ms/step - accuracy: 0.8805 - loss: 0.3019 - val accur
acy: 0.8741 - val_loss: 0.3371
Epoch 218/300
                     — 0s 118ms/step - accuracy: 0.8791 - loss: 0.3040 - val_accur
acy: 0.8741 - val loss: 0.3372
Epoch 219/300
2/2 -
                       - 0s 106ms/step - accuracy: 0.8835 - loss: 0.2941 - val_accur
acy: 0.8764 - val_loss: 0.3372
Epoch 220/300
2/2 -
                       - 0s 116ms/step - accuracy: 0.8784 - loss: 0.2916 - val_accur
acy: 0.8764 - val_loss: 0.3372
Epoch 221/300
2/2 -----
                  ----- 0s 124ms/step - accuracy: 0.8807 - loss: 0.2930 - val_accur
acy: 0.8764 - val_loss: 0.3373
Epoch 222/300
                     — 0s 111ms/step - accuracy: 0.8785 - loss: 0.3022 - val_accur
acy: 0.8741 - val loss: 0.3373
Epoch 223/300
                     — 0s 111ms/step - accuracy: 0.8784 - loss: 0.2948 - val_accur
acy: 0.8741 - val_loss: 0.3373
Epoch 224/300
                       - 0s 123ms/step - accuracy: 0.8794 - loss: 0.3023 - val_accur
acy: 0.8741 - val_loss: 0.3372
```

```
Epoch 225/300
                   OS 111ms/step - accuracy: 0.8773 - loss: 0.3010 - val_accur
2/2 -----
acy: 0.8741 - val loss: 0.3367
Epoch 226/300
2/2 ----
                   ____ 0s 111ms/step - accuracy: 0.8784 - loss: 0.2987 - val_accur
acy: 0.8741 - val_loss: 0.3366
Epoch 227/300
2/2 -----
                ------ 0s 105ms/step - accuracy: 0.8766 - loss: 0.2969 - val_accur
acy: 0.8764 - val loss: 0.3366
Epoch 228/300
                      - 0s 123ms/step - accuracy: 0.8818 - loss: 0.2958 - val_accur
acy: 0.8764 - val_loss: 0.3367
Epoch 229/300
                      — 0s 112ms/step - accuracy: 0.8758 - loss: 0.3063 - val accur
acy: 0.8741 - val loss: 0.3370
Epoch 230/300
                    —— 0s 111ms/step - accuracy: 0.8758 - loss: 0.3002 - val_accur
2/2 ----
acy: 0.8741 - val_loss: 0.3371
Epoch 231/300
2/2 -
                    —— 0s 112ms/step - accuracy: 0.8825 - loss: 0.2951 - val_accur
acy: 0.8741 - val_loss: 0.3370
Epoch 232/300
2/2 -----
               Os 122ms/step - accuracy: 0.8752 - loss: 0.2971 - val_accur
acy: 0.8741 - val_loss: 0.3370
Epoch 233/300
                  ---- 0s 112ms/step - accuracy: 0.8810 - loss: 0.3056 - val_accur
acy: 0.8741 - val_loss: 0.3368
Epoch 234/300
                    — 0s 110ms/step - accuracy: 0.8851 - loss: 0.3010 - val_accur
acy: 0.8741 - val_loss: 0.3367
Epoch 235/300
                   ---- 0s 112ms/step - accuracy: 0.8772 - loss: 0.2975 - val_accur
acy: 0.8764 - val_loss: 0.3367
Epoch 236/300
2/2 -
                   —— 0s 122ms/step - accuracy: 0.8797 - loss: 0.2971 - val_accur
acy: 0.8741 - val_loss: 0.3371
Epoch 237/300
                ------ 0s 122ms/step - accuracy: 0.8814 - loss: 0.2969 - val_accur
acy: 0.8741 - val_loss: 0.3374
Epoch 238/300
               ———— 0s 105ms/step - accuracy: 0.8834 - loss: 0.2911 - val_accur
acy: 0.8741 - val_loss: 0.3373
Epoch 239/300
                  ----- 0s 119ms/step - accuracy: 0.8803 - loss: 0.2947 - val accur
acy: 0.8741 - val_loss: 0.3369
Epoch 240/300
2/2 -
                 ----- 0s 122ms/step - accuracy: 0.8804 - loss: 0.2940 - val accur
acy: 0.8741 - val_loss: 0.3368
Epoch 241/300
                     — 0s 112ms/step - accuracy: 0.8820 - loss: 0.2979 - val accur
acy: 0.8741 - val_loss: 0.3370
Epoch 242/300
2/2 ----
                    — 0s 110ms/step - accuracy: 0.8860 - loss: 0.2821 - val_accur
acy: 0.8741 - val_loss: 0.3372
Epoch 243/300
2/2 ----
                  ----- 0s 112ms/step - accuracy: 0.8790 - loss: 0.2940 - val accur
```

```
acy: 0.8741 - val_loss: 0.3372
Epoch 244/300
                    ---- 0s 120ms/step - accuracy: 0.8803 - loss: 0.3004 - val accur
2/2 ----
acy: 0.8741 - val_loss: 0.3373
Epoch 245/300
2/2 -
                       - 0s 122ms/step - accuracy: 0.8757 - loss: 0.2933 - val_accur
acy: 0.8741 - val_loss: 0.3376
Epoch 246/300
                       - 0s 120ms/step - accuracy: 0.8813 - loss: 0.2931 - val accur
acy: 0.8741 - val_loss: 0.3380
Epoch 247/300
                       - 0s 104ms/step - accuracy: 0.8805 - loss: 0.2890 - val_accur
2/2 -
acy: 0.8741 - val_loss: 0.3382
Epoch 248/300
2/2 -
                       — 0s 134ms/step - accuracy: 0.8778 - loss: 0.2910 - val accur
acy: 0.8741 - val_loss: 0.3383
Epoch 249/300
2/2 -----
                 ------ 0s 123ms/step - accuracy: 0.8771 - loss: 0.2893 - val_accur
acy: 0.8741 - val_loss: 0.3383
Epoch 250/300
                     —— 0s 130ms/step - accuracy: 0.8867 - loss: 0.2980 - val_accur
acy: 0.8741 - val_loss: 0.3382
Epoch 251/300
                       - 0s 131ms/step - accuracy: 0.8833 - loss: 0.2933 - val_accur
acy: 0.8741 - val_loss: 0.3380
Epoch 252/300
                       - 0s 124ms/step - accuracy: 0.8847 - loss: 0.2908 - val_accur
2/2 -
acy: 0.8741 - val loss: 0.3378
Epoch 252: early stopping
Restoring model weights from the end of the best epoch: 152.
```



```
In [291...
          # Evaluate
          train_loss, train_acc = model_2d_cnn.evaluate(X_train_seq, y_train_seq)
          val_loss, val_acc = model_2d_cnn.evaluate(X_val_seq, y_val_seq)
          print(f"Training Accuracy: {train_acc:.4f}")
          print(f"Validation Accuracy: {val_acc:.4f}")
         55/55 -
                               —— 0s 3ms/step - accuracy: 0.8754 - loss: 0.3133
         14/14 -
                       Os 4ms/step - accuracy: 0.8715 - loss: 0.3419
         Training Accuracy: 0.8792
         Validation Accuracy: 0.8719
In [292... # Predict probabilities
          y_val_probs = model_2d_cnn.predict(X_val_seq)
          # Convert probabilities to binary predictions
          y_val_preds = (y_val_probs > 0.5).astype("int32")
          # Generate confusion matrix
          cm = confusion_matrix(y_val_seq, y_val_preds)
          # Display
          disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["No Rain", "Rain")
          disp.plot(cmap=plt.cm.Blues)
          plt.title("Confusion Matrix (Validation Set)")
          plt.grid(False)
          plt.show()
         14/14 -
                                 — 0s 6ms/step
```



```
# Two-Layer CNN model
tf.keras.backend.clear_session()
model_2d_cnn2 = tf.keras.Sequential()

# Add convolutional layer
model_2d_cnn2.add(tf.keras.layers.Conv2D(
    filters=128,
        kernel_size=(4, 8),
        strides=(1, 1),
        padding='same',
        data_format='channels_last',
        activation='relu',
        name='conv_1',
        input_shape=(window_size, X.shape[1], 1) # (height, width, channels)
```

```
))
# Add max pooling layer
model_2d_cnn2.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
# Add dropout Layer
model_2d_cnn2.add(tf.keras.layers.Dropout(rate=0.6))
model 2d cnn2.add(tf.keras.layers.Conv2D(
    filters=32,
    kernel_size=(2, 4),
    strides=(1, 1),
    padding='same',
    data_format='channels_last',
    activation='relu',
    name='conv_2') # (height, width, channels)
# Add max pooling layer
model_2d_cnn2.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
# Add dropout Layer
model_2d_cnn2.add(tf.keras.layers.Dropout(rate=0.6))
# Add flattening layer
model_2d_cnn2.add(tf.keras.layers.Flatten())
# Add classification layer
model_2d_cnn2.add(tf.keras.layers.Dense(1, activation='sigmoid'))
# Compile model
model 2d cnn2.compile(
    optimizer=tf.keras.optimizers.Adam(learning_rate=0.002),
    loss=tf.keras.losses.BinaryCrossentropy(),
    metrics=['accuracy']
)
# Print summary
model_2d_cnn2.summary()
```

/usr/local/lib/python3.11/dist-packages/keras/src/layers/convolutional/base_conv.py: 107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Model: "sequential"

Layer (type)	Output Shape
conv_1 (Conv2D)	(None, 8, 12, 128)
max_pooling2d (MaxPooling2D)	(None, 4, 6, 128)
dropout (Dropout)	(None, 4, 6, 128)
conv_2 (Conv2D)	(None, 4, 6, 32)
<pre>max_pooling2d_1 (MaxPooling2D)</pre>	(None, 2, 3, 32)
dropout_1 (Dropout)	(None, 2, 3, 32)
flatten (Flatten)	(None, 192)
dense (Dense)	(None, 1)

Total params: 37,217 (145.38 KB)

Trainable params: 37,217 (145.38 KB)

Non-trainable params: 0 (0.00 B)

```
In [295...
          # Fit the model
          history = model_2d_cnn2.fit(
              X_train_2d, y_train_seq,
              validation_data=(X_val_2d, y_val_seq),
              epochs=300,
              batch_size=1024,
              callbacks=[early_stopping]
          # Plot losses
          plt.figure(figsize=(8, 5))
          plt.plot(history.history['loss'], label='Train Loss')
          plt.plot(history.history['val_loss'], label='Val Loss')
          plt.title("Training & Validation Loss")
          plt.xlabel("Epoch")
          plt.ylabel("Loss")
          plt.grid(True)
          plt.legend()
          plt.show()
```

```
Epoch 1/300
2/2 -----
                   2s 374ms/step - accuracy: 0.6485 - loss: 0.6575 - val_accur
acy: 0.7918 - val loss: 0.5231
Epoch 2/300
2/2 ----
                  ---- 0s 161ms/step - accuracy: 0.7483 - loss: 0.6020 - val_accur
acy: 0.7918 - val_loss: 0.5444
Epoch 3/300
2/2 -----
               ———— 0s 165ms/step - accuracy: 0.7500 - loss: 0.5726 - val_accur
acy: 0.7918 - val loss: 0.5914
Epoch 4/300
                      - 0s 162ms/step - accuracy: 0.7469 - loss: 0.5745 - val_accur
acy: 0.7941 - val_loss: 0.5844
Epoch 5/300
                     - 0s 164ms/step - accuracy: 0.7557 - loss: 0.5622 - val_accur
acy: 0.7918 - val_loss: 0.5438
Epoch 6/300
                   — 0s 155ms/step - accuracy: 0.7466 - loss: 0.5452 - val_accur
2/2 -----
acy: 0.7918 - val_loss: 0.5023
Epoch 7/300
2/2 -
                    — 0s 166ms/step - accuracy: 0.7559 - loss: 0.5254 - val_accur
acy: 0.7918 - val_loss: 0.4822
Epoch 8/300
2/2 -----
              Os 157ms/step - accuracy: 0.7585 - loss: 0.5255 - val_accur
acy: 0.8055 - val_loss: 0.4808
Epoch 9/300
                  Os 160ms/step - accuracy: 0.7681 - loss: 0.5118 - val_accur
acy: 0.8055 - val_loss: 0.4914
Epoch 10/300
                    — 0s 154ms/step - accuracy: 0.7624 - loss: 0.5093 - val_accur
acy: 0.8146 - val_loss: 0.5012
Epoch 11/300
2/2 -
                  ——— 0s 166ms/step - accuracy: 0.7743 - loss: 0.5033 - val accur
acy: 0.8124 - val_loss: 0.4996
Epoch 12/300
2/2 -
                   —— 0s 156ms/step - accuracy: 0.7712 - loss: 0.4935 - val_accur
acy: 0.7941 - val_loss: 0.4862
Epoch 13/300
               ———— 0s 161ms/step - accuracy: 0.7717 - loss: 0.4964 - val_accur
acy: 0.8055 - val_loss: 0.4708
Epoch 14/300
               2/2 -----
acy: 0.8101 - val_loss: 0.4608
Epoch 15/300
                 ---- 0s 156ms/step - accuracy: 0.7754 - loss: 0.4770 - val accur
acy: 0.8192 - val loss: 0.4552
Epoch 16/300
2/2 ----
                ------ 0s 160ms/step - accuracy: 0.7889 - loss: 0.4722 - val_accur
acy: 0.8261 - val_loss: 0.4503
Epoch 17/300
                    — 0s 162ms/step - accuracy: 0.7877 - loss: 0.4673 - val accur
acy: 0.8307 - val_loss: 0.4391
Epoch 18/300
2/2 ----
                     — 0s 157ms/step - accuracy: 0.7982 - loss: 0.4503 - val_accur
acy: 0.8307 - val_loss: 0.4232
Epoch 19/300
2/2 ----
                 ----- 0s 155ms/step - accuracy: 0.8027 - loss: 0.4429 - val accur
```

```
acy: 0.8330 - val_loss: 0.4106
Epoch 20/300
              ----- 0s 162ms/step - accuracy: 0.8040 - loss: 0.4439 - val accur
2/2 -----
acy: 0.8421 - val_loss: 0.4056
Epoch 21/300
                  ---- 0s 155ms/step - accuracy: 0.8089 - loss: 0.4308 - val accur
acy: 0.8535 - val_loss: 0.4075
Epoch 22/300
                 ---- 0s 158ms/step - accuracy: 0.8269 - loss: 0.4237 - val accur
acy: 0.8650 - val_loss: 0.4052
Epoch 23/300
                   — 0s 158ms/step - accuracy: 0.8252 - loss: 0.4146 - val accur
2/2 ----
acy: 0.8673 - val_loss: 0.3981
Epoch 24/300
2/2 ----
                ——— 0s 158ms/step - accuracy: 0.8307 - loss: 0.4076 - val accur
acy: 0.8719 - val_loss: 0.3919
Epoch 25/300
2/2 -----
             acy: 0.8741 - val loss: 0.3830
Epoch 26/300
              acy: 0.8719 - val loss: 0.3791
Epoch 27/300
                 ---- 0s 162ms/step - accuracy: 0.8350 - loss: 0.3948 - val_accur
acy: 0.8787 - val_loss: 0.3791
Epoch 28/300
2/2 -
                  —— 0s 172ms/step - accuracy: 0.8468 - loss: 0.3845 - val_accur
acy: 0.8810 - val loss: 0.3729
Epoch 29/300
2/2 -
                ——— 0s 163ms/step - accuracy: 0.8438 - loss: 0.3859 - val_accur
acy: 0.8810 - val loss: 0.3652
Epoch 30/300
              Os 166ms/step - accuracy: 0.8490 - loss: 0.3811 - val_accur
2/2 -----
acy: 0.8787 - val loss: 0.3611
Epoch 31/300
              Os 180ms/step - accuracy: 0.8473 - loss: 0.3746 - val_accur
acy: 0.8787 - val loss: 0.3610
Epoch 32/300
                  —— 0s 168ms/step - accuracy: 0.8473 - loss: 0.3741 - val_accur
acy: 0.8764 - val_loss: 0.3629
Epoch 33/300
2/2 -
               ------ 0s 174ms/step - accuracy: 0.8432 - loss: 0.3855 - val_accur
acy: 0.8696 - val_loss: 0.3685
Epoch 34/300
2/2 -
                     - 0s 173ms/step - accuracy: 0.8476 - loss: 0.3671 - val_accur
acy: 0.8673 - val_loss: 0.3702
Epoch 35/300
2/2 -----
                   —— 0s 175ms/step - accuracy: 0.8480 - loss: 0.3743 - val_accur
acy: 0.8650 - val_loss: 0.3723
Epoch 36/300
2/2 -----
               ------- 0s 172ms/step - accuracy: 0.8628 - loss: 0.3674 - val_accur
acy: 0.8627 - val_loss: 0.3736
Epoch 37/300
                 Os 162ms/step - accuracy: 0.8542 - loss: 0.3626 - val_accur
acy: 0.8627 - val_loss: 0.3698
Epoch 38/300
```

```
—— 0s 163ms/step - accuracy: 0.8635 - loss: 0.3551 - val_accur
acy: 0.8650 - val_loss: 0.3656
Epoch 39/300
2/2 -
                       - 0s 155ms/step - accuracy: 0.8594 - loss: 0.3565 - val_accur
acy: 0.8719 - val_loss: 0.3652
Epoch 40/300
2/2 -
                       - 0s 165ms/step - accuracy: 0.8538 - loss: 0.3695 - val_accur
acy: 0.8696 - val_loss: 0.3668
Epoch 41/300
                      - 0s 163ms/step - accuracy: 0.8518 - loss: 0.3710 - val_accur
2/2 -
acy: 0.8719 - val_loss: 0.3688
Epoch 42/300
                 ------ 0s 154ms/step - accuracy: 0.8540 - loss: 0.3668 - val_accur
2/2 -----
acy: 0.8696 - val loss: 0.3690
Epoch 43/300
                       - 0s 160ms/step - accuracy: 0.8614 - loss: 0.3583 - val accur
acy: 0.8673 - val_loss: 0.3661
Epoch 44/300
                       - 0s 158ms/step - accuracy: 0.8523 - loss: 0.3688 - val accur
acy: 0.8696 - val_loss: 0.3596
Epoch 45/300
2/2 -
                      — 0s 164ms/step - accuracy: 0.8582 - loss: 0.3527 - val accur
acy: 0.8673 - val_loss: 0.3577
Epoch 46/300
2/2 -
                       - 0s 163ms/step - accuracy: 0.8607 - loss: 0.3526 - val_accur
acy: 0.8673 - val_loss: 0.3569
Epoch 47/300
                Os 158ms/step - accuracy: 0.8544 - loss: 0.3558 - val_accur
2/2 -
acy: 0.8696 - val_loss: 0.3544
Epoch 48/300
                     --- 0s 158ms/step - accuracy: 0.8585 - loss: 0.3529 - val accur
acy: 0.8696 - val loss: 0.3554
Epoch 49/300
                       - 0s 157ms/step - accuracy: 0.8575 - loss: 0.3580 - val accur
acy: 0.8696 - val_loss: 0.3594
Epoch 50/300
2/2 -
                     — 0s 162ms/step - accuracy: 0.8681 - loss: 0.3431 - val_accur
acy: 0.8696 - val loss: 0.3595
Epoch 51/300
2/2 -
                       - 0s 164ms/step - accuracy: 0.8600 - loss: 0.3423 - val_accur
acy: 0.8673 - val_loss: 0.3565
Epoch 52/300
2/2 -
                       - 0s 160ms/step - accuracy: 0.8560 - loss: 0.3539 - val_accur
acy: 0.8696 - val_loss: 0.3538
Epoch 53/300
2/2 -----
                   ----- 0s 157ms/step - accuracy: 0.8581 - loss: 0.3471 - val_accur
acy: 0.8719 - val_loss: 0.3576
Epoch 54/300
                     — 0s 158ms/step - accuracy: 0.8597 - loss: 0.3412 - val_accur
acy: 0.8650 - val loss: 0.3631
Epoch 55/300
                      — 0s 161ms/step - accuracy: 0.8593 - loss: 0.3514 - val_accur
acy: 0.8696 - val_loss: 0.3613
Epoch 56/300
                       - 0s 165ms/step - accuracy: 0.8671 - loss: 0.3387 - val_accur
acy: 0.8719 - val_loss: 0.3566
```

```
Epoch 57/300
2/2 -----
                   —— 0s 158ms/step - accuracy: 0.8670 - loss: 0.3374 - val_accur
acy: 0.8696 - val loss: 0.3501
Epoch 58/300
2/2 ---
                  ____ 0s 160ms/step - accuracy: 0.8717 - loss: 0.3341 - val_accur
acy: 0.8696 - val_loss: 0.3496
Epoch 59/300
2/2 -----
                ------ 0s 157ms/step - accuracy: 0.8595 - loss: 0.3423 - val_accur
acy: 0.8650 - val loss: 0.3532
Epoch 60/300
                      - 0s 152ms/step - accuracy: 0.8619 - loss: 0.3459 - val_accur
acy: 0.8673 - val_loss: 0.3576
Epoch 61/300
                      - 0s 157ms/step - accuracy: 0.8674 - loss: 0.3316 - val_accur
acy: 0.8673 - val_loss: 0.3575
Epoch 62/300
                    — 0s 157ms/step - accuracy: 0.8552 - loss: 0.3498 - val_accur
2/2 -----
acy: 0.8719 - val_loss: 0.3536
Epoch 63/300
2/2 -
                    — 0s 157ms/step - accuracy: 0.8620 - loss: 0.3342 - val_accur
acy: 0.8741 - val_loss: 0.3505
Epoch 64/300
2/2 -----
              Os 165ms/step - accuracy: 0.8620 - loss: 0.3445 - val_accur
acy: 0.8719 - val_loss: 0.3490
Epoch 65/300
                  —— 0s 159ms/step - accuracy: 0.8616 - loss: 0.3402 - val_accur
acy: 0.8741 - val_loss: 0.3489
Epoch 66/300
                   —— 0s 162ms/step - accuracy: 0.8658 - loss: 0.3381 - val_accur
acy: 0.8741 - val_loss: 0.3523
Epoch 67/300
2/2 -
                  ----- 0s 156ms/step - accuracy: 0.8597 - loss: 0.3328 - val accur
acy: 0.8696 - val_loss: 0.3572
Epoch 68/300
2/2 -
                    — 0s 170ms/step - accuracy: 0.8664 - loss: 0.3338 - val_accur
acy: 0.8627 - val_loss: 0.3583
Epoch 69/300
                ------ 0s 163ms/step - accuracy: 0.8589 - loss: 0.3435 - val_accur
acy: 0.8627 - val_loss: 0.3549
Epoch 70/300
2/2 -----
               acy: 0.8673 - val_loss: 0.3484
Epoch 71/300
                  Os 171ms/step - accuracy: 0.8672 - loss: 0.3296 - val_accur
acy: 0.8741 - val_loss: 0.3449
Epoch 72/300
2/2 -
                 ——— 0s 166ms/step - accuracy: 0.8689 - loss: 0.3247 - val accur
acy: 0.8650 - val_loss: 0.3516
Epoch 73/300
                    — 0s 166ms/step - accuracy: 0.8653 - loss: 0.3348 - val accur
acy: 0.8604 - val_loss: 0.3600
Epoch 74/300
2/2 ----
                     - 0s 175ms/step - accuracy: 0.8724 - loss: 0.3323 - val_accur
acy: 0.8627 - val_loss: 0.3569
Epoch 75/300
2/2 ----
                  ----- 0s 169ms/step - accuracy: 0.8694 - loss: 0.3286 - val accur
```

```
acy: 0.8673 - val_loss: 0.3523
Epoch 76/300
               ----- 0s 169ms/step - accuracy: 0.8566 - loss: 0.3364 - val accur
2/2 -----
acy: 0.8741 - val_loss: 0.3497
Epoch 77/300
                   ---- 0s 174ms/step - accuracy: 0.8559 - loss: 0.3385 - val accur
acy: 0.8719 - val_loss: 0.3538
Epoch 78/300
                  ——— 0s 172ms/step - accuracy: 0.8689 - loss: 0.3237 - val accur
acy: 0.8673 - val_loss: 0.3573
Epoch 79/300
                    — 0s 169ms/step - accuracy: 0.8701 - loss: 0.3272 - val accur
2/2 -----
acy: 0.8719 - val_loss: 0.3544
Epoch 80/300
2/2 -
                  ——— 0s 170ms/step - accuracy: 0.8706 - loss: 0.3260 - val accur
acy: 0.8696 - val_loss: 0.3482
Epoch 81/300
2/2 -----
               ______ 0s 173ms/step - accuracy: 0.8738 - loss: 0.3239 - val_accur
acy: 0.8696 - val loss: 0.3495
Epoch 82/300
                ———— 0s 165ms/step - accuracy: 0.8680 - loss: 0.3224 - val_accur
acy: 0.8627 - val loss: 0.3551
Epoch 83/300
                   ---- 0s 164ms/step - accuracy: 0.8648 - loss: 0.3161 - val_accur
acy: 0.8650 - val_loss: 0.3579
Epoch 84/300
2/2 -
                   —— 0s 168ms/step - accuracy: 0.8708 - loss: 0.3208 - val_accur
acy: 0.8650 - val loss: 0.3548
Epoch 85/300
2/2 -
                  ---- 0s 159ms/step - accuracy: 0.8701 - loss: 0.3270 - val_accur
acy: 0.8696 - val loss: 0.3520
Epoch 86/300
                Os 157ms/step - accuracy: 0.8677 - loss: 0.3216 - val_accur
2/2 -----
acy: 0.8673 - val loss: 0.3530
Epoch 87/300
               Os 166ms/step - accuracy: 0.8676 - loss: 0.3250 - val_accur
2/2 -----
acy: 0.8627 - val loss: 0.3543
Epoch 88/300
                   —— 0s 166ms/step - accuracy: 0.8702 - loss: 0.3153 - val_accur
acy: 0.8627 - val_loss: 0.3525
Epoch 89/300
2/2 -
                 ------ 0s 163ms/step - accuracy: 0.8672 - loss: 0.3240 - val_accur
acy: 0.8650 - val_loss: 0.3523
Epoch 90/300
2/2 -
                      - 0s 158ms/step - accuracy: 0.8734 - loss: 0.3213 - val_accur
acy: 0.8650 - val_loss: 0.3565
Epoch 91/300
2/2 ----
                    —— 0s 159ms/step - accuracy: 0.8741 - loss: 0.3088 - val_accur
acy: 0.8627 - val_loss: 0.3599
Epoch 92/300
2/2 -----
                ------- 0s 158ms/step - accuracy: 0.8639 - loss: 0.3217 - val_accur
acy: 0.8604 - val_loss: 0.3576
Epoch 93/300
                  ____ 0s 158ms/step - accuracy: 0.8710 - loss: 0.3186 - val_accur
acy: 0.8627 - val_loss: 0.3560
Epoch 94/300
```

```
—— 0s 159ms/step - accuracy: 0.8748 - loss: 0.3121 - val_accur
acy: 0.8650 - val_loss: 0.3549
Epoch 95/300
2/2 -
                       - 0s 156ms/step - accuracy: 0.8762 - loss: 0.3094 - val_accur
acy: 0.8673 - val_loss: 0.3525
Epoch 96/300
2/2 -
                       - 0s 159ms/step - accuracy: 0.8784 - loss: 0.3111 - val_accur
acy: 0.8696 - val_loss: 0.3496
Epoch 97/300
                      — 0s 157ms/step - accuracy: 0.8721 - loss: 0.3216 - val_accur
2/2 -
acy: 0.8719 - val_loss: 0.3475
Epoch 98/300
                ———— 0s 165ms/step - accuracy: 0.8731 - loss: 0.3100 - val_accur
2/2 -----
acy: 0.8719 - val loss: 0.3476
Epoch 99/300
                       - 0s 158ms/step - accuracy: 0.8755 - loss: 0.3121 - val_accur
acy: 0.8719 - val_loss: 0.3508
Epoch 100/300
                       - 0s 167ms/step - accuracy: 0.8785 - loss: 0.3107 - val accur
acy: 0.8696 - val_loss: 0.3507
Epoch 101/300
2/2 -
                      — 0s 164ms/step - accuracy: 0.8691 - loss: 0.3103 - val accur
acy: 0.8673 - val_loss: 0.3511
Epoch 102/300
2/2 -
                       - 0s 157ms/step - accuracy: 0.8763 - loss: 0.3111 - val_accur
acy: 0.8650 - val loss: 0.3554
Epoch 103/300
                Os 165ms/step - accuracy: 0.8726 - loss: 0.3140 - val_accur
2/2 -
acy: 0.8673 - val_loss: 0.3564
Epoch 104/300
                     --- 0s 155ms/step - accuracy: 0.8860 - loss: 0.3008 - val accur
acy: 0.8696 - val loss: 0.3527
Epoch 105/300
                       - 0s 164ms/step - accuracy: 0.8779 - loss: 0.3050 - val accur
acy: 0.8673 - val_loss: 0.3500
Epoch 106/300
                     — 0s 153ms/step - accuracy: 0.8734 - loss: 0.3016 - val accur
acy: 0.8673 - val loss: 0.3558
Epoch 107/300
2/2 -
                       - 0s 155ms/step - accuracy: 0.8700 - loss: 0.3271 - val_accur
acy: 0.8673 - val_loss: 0.3666
Epoch 108/300
2/2 -
                       - 0s 156ms/step - accuracy: 0.8764 - loss: 0.3071 - val_accur
acy: 0.8650 - val_loss: 0.3706
Epoch 109/300
2/2 -----
                  ----- 0s 158ms/step - accuracy: 0.8797 - loss: 0.3014 - val_accur
acy: 0.8627 - val_loss: 0.3662
Epoch 110/300
                     — 0s 155ms/step - accuracy: 0.8883 - loss: 0.2993 - val_accur
acy: 0.8673 - val loss: 0.3578
Epoch 111/300
                     — 0s 160ms/step - accuracy: 0.8821 - loss: 0.3036 - val_accur
acy: 0.8627 - val_loss: 0.3553
Epoch 112/300
                       - 0s 153ms/step - accuracy: 0.8758 - loss: 0.3158 - val_accur
acy: 0.8627 - val_loss: 0.3599
```

```
Epoch 113/300
                  ____ 0s 156ms/step - accuracy: 0.8799 - loss: 0.2983 - val_accur
2/2 -----
acy: 0.8650 - val loss: 0.3716
Epoch 114/300
2/2 ----
                   ---- 0s 189ms/step - accuracy: 0.8674 - loss: 0.3049 - val_accur
acy: 0.8650 - val_loss: 0.3700
Epoch 115/300
2/2 -----
                ------ 0s 176ms/step - accuracy: 0.8790 - loss: 0.3007 - val_accur
acy: 0.8581 - val loss: 0.3637
Epoch 116/300
                      - 0s 175ms/step - accuracy: 0.8836 - loss: 0.2955 - val_accur
acy: 0.8627 - val_loss: 0.3595
Epoch 117/300
                      — 0s 172ms/step - accuracy: 0.8784 - loss: 0.3062 - val accur
acy: 0.8650 - val loss: 0.3558
Epoch 118/300
                    —— 0s 174ms/step - accuracy: 0.8786 - loss: 0.2945 - val_accur
2/2 -----
acy: 0.8627 - val_loss: 0.3570
Epoch 119/300
2/2 -
                    — 0s 173ms/step - accuracy: 0.8804 - loss: 0.2946 - val_accur
acy: 0.8627 - val_loss: 0.3591
Epoch 120/300
2/2 -----
               Os 169ms/step - accuracy: 0.8739 - loss: 0.3023 - val_accur
acy: 0.8604 - val_loss: 0.3604
Epoch 121/300
                   ---- 0s 164ms/step - accuracy: 0.8748 - loss: 0.2949 - val accur
acy: 0.8650 - val_loss: 0.3587
Epoch 122/300
                    — 0s 173ms/step - accuracy: 0.8820 - loss: 0.3026 - val_accur
acy: 0.8627 - val_loss: 0.3594
Epoch 123/300
2/2 -
                   ----- 0s 170ms/step - accuracy: 0.8841 - loss: 0.2924 - val_accur
acy: 0.8604 - val_loss: 0.3649
Epoch 124/300
2/2 -
                   —— 0s 176ms/step - accuracy: 0.8809 - loss: 0.2972 - val_accur
acy: 0.8581 - val_loss: 0.3644
Epoch 125/300
                ------ 0s 160ms/step - accuracy: 0.8903 - loss: 0.2902 - val_accur
acy: 0.8627 - val_loss: 0.3582
Epoch 126/300
2/2 -----
                ----- 0s 162ms/step - accuracy: 0.8843 - loss: 0.2915 - val_accur
acy: 0.8650 - val_loss: 0.3552
Epoch 127/300
                  ——— 0s 159ms/step - accuracy: 0.8768 - loss: 0.2927 - val accur
acy: 0.8650 - val_loss: 0.3551
Epoch 128/300
2/2 -
                 ------ 0s 152ms/step - accuracy: 0.8751 - loss: 0.2917 - val_accur
acy: 0.8650 - val_loss: 0.3556
Epoch 129/300
                     — 0s 158ms/step - accuracy: 0.8808 - loss: 0.2839 - val accur
acy: 0.8650 - val_loss: 0.3554
Epoch 130/300
2/2 ----
                      — 0s 156ms/step - accuracy: 0.8791 - loss: 0.2958 - val_accur
acy: 0.8650 - val_loss: 0.3587
Epoch 131/300
2/2 ----
                  ----- 0s 161ms/step - accuracy: 0.8864 - loss: 0.3000 - val accur
```

```
acy: 0.8650 - val_loss: 0.3600
Epoch 132/300
               ----- 0s 164ms/step - accuracy: 0.8898 - loss: 0.2900 - val accur
2/2 -----
acy: 0.8650 - val_loss: 0.3561
Epoch 133/300
                   ---- 0s 159ms/step - accuracy: 0.8805 - loss: 0.2947 - val accur
acy: 0.8650 - val_loss: 0.3550
Epoch 134/300
                  ---- 0s 166ms/step - accuracy: 0.8918 - loss: 0.2886 - val accur
acy: 0.8627 - val_loss: 0.3601
Epoch 135/300
                    — 0s 155ms/step - accuracy: 0.8755 - loss: 0.2885 - val accur
2/2 -----
acy: 0.8650 - val_loss: 0.3599
Epoch 136/300
2/2 -
                 ----- 0s 164ms/step - accuracy: 0.8872 - loss: 0.2850 - val accur
acy: 0.8650 - val_loss: 0.3556
Epoch 137/300
              _____ 0s 157ms/step - accuracy: 0.8838 - loss: 0.2855 - val_accur
2/2 -----
acy: 0.8650 - val loss: 0.3537
Epoch 138/300
                ———— 0s 155ms/step - accuracy: 0.8797 - loss: 0.2909 - val_accur
acy: 0.8673 - val loss: 0.3585
Epoch 139/300
                   ____ 0s 158ms/step - accuracy: 0.8818 - loss: 0.2921 - val_accur
acy: 0.8650 - val_loss: 0.3664
Epoch 140/300
2/2 -
                   —— 0s 159ms/step - accuracy: 0.8797 - loss: 0.2828 - val_accur
acy: 0.8581 - val_loss: 0.3698
Epoch 141/300
2/2 -
                 _____ 0s 166ms/step - accuracy: 0.8898 - loss: 0.2814 - val_accur
acy: 0.8627 - val loss: 0.3645
Epoch 142/300
                Os 164ms/step - accuracy: 0.8824 - loss: 0.2938 - val_accur
2/2 -----
acy: 0.8627 - val loss: 0.3615
Epoch 143/300
               Os 165ms/step - accuracy: 0.8894 - loss: 0.2736 - val_accur
2/2 -----
acy: 0.8673 - val loss: 0.3639
Epoch 144/300
                   —— 0s 165ms/step - accuracy: 0.8939 - loss: 0.2829 - val_accur
acy: 0.8650 - val_loss: 0.3617
Epoch 145/300
2/2 -
                 ------ 0s 159ms/step - accuracy: 0.8918 - loss: 0.2772 - val_accur
acy: 0.8650 - val_loss: 0.3597
Epoch 146/300
                      - 0s 166ms/step - accuracy: 0.8860 - loss: 0.2699 - val_accur
acy: 0.8650 - val_loss: 0.3600
Epoch 147/300
2/2 ----
                  —— 0s 156ms/step - accuracy: 0.8915 - loss: 0.2733 - val_accur
acy: 0.8673 - val_loss: 0.3636
Epoch 148/300
2/2 -----
                ———— 0s 155ms/step - accuracy: 0.8945 - loss: 0.2696 - val_accur
acy: 0.8650 - val_loss: 0.3668
Epoch 149/300
                  Os 162ms/step - accuracy: 0.8788 - loss: 0.2843 - val_accur
acy: 0.8604 - val_loss: 0.3694
Epoch 150/300
```

```
—— 0s 166ms/step - accuracy: 0.8885 - loss: 0.2700 - val_accur
acy: 0.8650 - val_loss: 0.3694
Epoch 151/300
2/2 -
                       - 0s 167ms/step - accuracy: 0.8814 - loss: 0.2819 - val_accur
acy: 0.8650 - val_loss: 0.3653
Epoch 152/300
2/2 -
                      - 0s 162ms/step - accuracy: 0.8869 - loss: 0.2721 - val_accur
acy: 0.8673 - val_loss: 0.3619
Epoch 153/300
                     — 0s 159ms/step - accuracy: 0.8910 - loss: 0.2848 - val_accur
2/2 -
acy: 0.8673 - val_loss: 0.3644
Epoch 154/300
                ——— 0s 162ms/step - accuracy: 0.8842 - loss: 0.2790 - val_accur
2/2 -----
acy: 0.8627 - val loss: 0.3706
Epoch 155/300
                       - 0s 160ms/step - accuracy: 0.8931 - loss: 0.2650 - val_accur
acy: 0.8650 - val_loss: 0.3711
Epoch 156/300
                      - 0s 157ms/step - accuracy: 0.8880 - loss: 0.2698 - val accur
acy: 0.8673 - val_loss: 0.3667
Epoch 157/300
2/2 -
                      - 0s 160ms/step - accuracy: 0.8817 - loss: 0.2744 - val accur
acy: 0.8673 - val_loss: 0.3649
Epoch 158/300
2/2 -
                      - 0s 170ms/step - accuracy: 0.8798 - loss: 0.2809 - val_accur
acy: 0.8627 - val loss: 0.3690
Epoch 159/300
                Os 172ms/step - accuracy: 0.8916 - loss: 0.2820 - val_accur
2/2 -
acy: 0.8604 - val_loss: 0.3729
Epoch 160/300
                    —— 0s 167ms/step - accuracy: 0.8795 - loss: 0.2674 - val accur
acy: 0.8627 - val loss: 0.3682
Epoch 161/300
                       - 0s 176ms/step - accuracy: 0.8804 - loss: 0.2715 - val accur
acy: 0.8673 - val_loss: 0.3648
Epoch 162/300
                      — 0s 166ms/step - accuracy: 0.8820 - loss: 0.2712 - val accur
acy: 0.8673 - val loss: 0.3666
Epoch 163/300
2/2 -
                       - 0s 168ms/step - accuracy: 0.8822 - loss: 0.2844 - val_accur
acy: 0.8627 - val_loss: 0.3713
Epoch 164/300
2/2 -
                       - 0s 172ms/step - accuracy: 0.8893 - loss: 0.2615 - val_accur
acy: 0.8627 - val_loss: 0.3744
Epoch 165/300
                  ---- 0s 169ms/step - accuracy: 0.8919 - loss: 0.2696 - val_accur
2/2 -----
acy: 0.8604 - val_loss: 0.3742
Epoch 166/300
                     — 0s 171ms/step - accuracy: 0.8896 - loss: 0.2781 - val_accur
acy: 0.8627 - val loss: 0.3712
Epoch 167/300
                     — 0s 176ms/step - accuracy: 0.8908 - loss: 0.2707 - val_accur
acy: 0.8627 - val_loss: 0.3697
Epoch 168/300
                       - 0s 164ms/step - accuracy: 0.8878 - loss: 0.2734 - val_accur
acy: 0.8627 - val_loss: 0.3717
```

Training & Validation Loss


```
In [296...
          # Evaluate
          train_loss, train_acc = model_2d_cnn2.evaluate(X_train_2d, y_train_seq)
          val_loss, val_acc = model_2d_cnn2.evaluate(X_val_2d, y_val_seq)
          print(f"Training Accuracy: {train_acc:.4f}")
          print(f"Validation Accuracy: {val_acc:.4f}")
         55/55 -
                                  - 0s 3ms/step - accuracy: 0.8765 - loss: 0.3000
                             Os 4ms/step - accuracy: 0.8755 - loss: 0.3363
         14/14 -
         Training Accuracy: 0.8826
         Validation Accuracy: 0.8741
In [297...
         # Predict probabilities
          y_val_probs = model_2d_cnn2.predict(X_val_2d)
          # Convert probabilities to binary predictions
          y_val_preds = (y_val_probs > 0.5).astype("int32")
          # Generate confusion matrix
          cm2 = confusion_matrix(y_val_seq, y_val_preds)
```

```
# Display
disp = ConfusionMatrixDisplay(confusion_matrix=cm2, display_labels=["No Rain", "Rai
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix (Validation Set)")
plt.grid(False)
plt.show()
```

- 0s 7ms/step 14/14 -

Confusion Matrix (Validation Set)

Predicted label

```
In [298...
          # Apply to test set
          X_test_2d = X_test_cnn.reshape(-1, window_size, X.shape[1], 1)
          y_test_pred = model_2d_cnn2.predict(X_test_2d).flatten()
          submission = pd.DataFrame({
              'id': submission_ids,
              'rainfall': y_test_pred
          })
          # Save to CSV
          submission.to_csv(PATH + 'submission_2d_cnn2.csv', index=False)
         23/23 -
                              Os 3ms/step
```

```
In [299...
          model_tf3 = tf.keras.Sequential([
              tf.keras.layers.Conv2D(32, (4, 8), padding='same', activation='relu', input_sha
              tf.keras.layers.BatchNormalization(),
              tf.keras.layers.MaxPooling2D((2, 2)),
```

```
tf.keras.layers.SpatialDropout2D(0.5),
     tf.keras.layers.Conv2D(16, (2, 4), padding='same', activation='relu'),
     tf.keras.layers.BatchNormalization(),
     tf.keras.layers.MaxPooling2D((2, 2)),
     tf.keras.layers.SpatialDropout2D(0.5),
     tf.keras.layers.Conv2D(16, (2, 4), padding='same', activation='relu'),
     tf.keras.layers.BatchNormalization(),
     tf.keras.layers.MaxPooling2D((2, 2)),
     tf.keras.layers.SpatialDropout2D(0.5),
     tf.keras.layers.GlobalAveragePooling2D(),
     tf.keras.layers.Dense(1, activation='sigmoid')
 1)
 model_tf3.compile(
     optimizer=tf.keras.optimizers.Adam(learning_rate=0.005),
     loss=tf.keras.losses.BinaryCrossentropy(),
     metrics=['accuracy']
 )
 # Print summary
 model_tf3.summary()
 # Fit the model
 history = model tf3.fit(
     X_train_2d, y_train_seq,
     validation_data=(X_val_2d, y_val_seq),
     epochs=300,
     batch_size=1024,
     callbacks=[early_stopping]
 # Plot losses
 plt.figure(figsize=(8, 5))
 plt.plot(history.history['loss'], label='Train Loss')
 plt.plot(history.history['val_loss'], label='Val Loss')
 plt.title("Training & Validation Loss")
 plt.xlabel("Epoch")
 plt.ylabel("Loss")
 plt.grid(True)
 plt.legend()
 plt.show()
/usr/local/lib/python3.11/dist-packages/keras/src/layers/convolutional/base_conv.py:
107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When
using Sequential models, prefer using an `Input(shape)` object as the first layer in
the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
```

Model: "sequential_1"

Layer (type)	Output Shape
conv2d (Conv2D)	(None, 8, 12, 32)
batch_normalization (BatchNormalization)	(None, 8, 12, 32)
max_pooling2d_2 (MaxPooling2D)	(None, 4, 6, 32)
spatial_dropout2d (SpatialDropout2D)	(None, 4, 6, 32)
conv2d_1 (Conv2D)	(None, 4, 6, 16)
batch_normalization_1 (BatchNormalization)	(None, 4, 6, 16)
max_pooling2d_3 (MaxPooling2D)	(None, 2, 3, 16)
<pre>spatial_dropout2d_1 (SpatialDropout2D)</pre>	(None, 2, 3, 16)
conv2d_2 (Conv2D)	(None, 2, 3, 16)
batch_normalization_2 (BatchNormalization)	(None, 2, 3, 16)
max_pooling2d_4 (MaxPooling2D)	(None, 1, 1, 16)
spatial_dropout2d_2 (SpatialDropout2D)	(None, 1, 1, 16)
global_average_pooling2d (GlobalAveragePooling2D)	(None, 16)
dense_1 (Dense)	(None, 1)

Total params: 7,505 (29.32 KB)

Trainable params: 7,377 (28.82 KB)

Non-trainable params: 128 (512.00 B)

```
Epoch 1/300
2/2 -----
                   ---- 3s 400ms/step - accuracy: 0.4807 - loss: 1.3247 - val_accur
acy: 0.6018 - val loss: 0.6828
Epoch 2/300
2/2 ----
                   ---- 0s 116ms/step - accuracy: 0.5853 - loss: 1.0343 - val_accur
acy: 0.7872 - val_loss: 0.6283
Epoch 3/300
2/2 -----
                ———— 0s 115ms/step - accuracy: 0.6359 - loss: 0.9087 - val_accur
acy: 0.7918 - val loss: 0.5992
Epoch 4/300
                      - 0s 111ms/step - accuracy: 0.6867 - loss: 0.8377 - val_accur
acy: 0.7849 - val loss: 0.6046
Epoch 5/300
                      - 0s 111ms/step - accuracy: 0.7011 - loss: 0.7681 - val_accur
acy: 0.7735 - val_loss: 0.6199
Epoch 6/300
                    —— 0s 108ms/step - accuracy: 0.7011 - loss: 0.7697 - val_accur
2/2 -----
acy: 0.7620 - val_loss: 0.6352
Epoch 7/300
2/2 -
                     — 0s 108ms/step - accuracy: 0.7128 - loss: 0.6685 - val_accur
acy: 0.7574 - val_loss: 0.6401
Epoch 8/300
2/2 -----
               OS 113ms/step - accuracy: 0.7024 - loss: 0.6696 - val_accur
acy: 0.7529 - val_loss: 0.6317
Epoch 9/300
                   ____ 0s 109ms/step - accuracy: 0.7208 - loss: 0.6433 - val_accur
acy: 0.7666 - val_loss: 0.6186
Epoch 10/300
                    —— 0s 108ms/step - accuracy: 0.6901 - loss: 0.6362 - val_accur
acy: 0.7735 - val_loss: 0.6065
Epoch 11/300
2/2 -
                   ----- 0s 118ms/step - accuracy: 0.7238 - loss: 0.6026 - val accur
acy: 0.7872 - val_loss: 0.5951
Epoch 12/300
                    — 0s 113ms/step - accuracy: 0.7169 - loss: 0.5972 - val_accur
2/2 -
acy: 0.7918 - val_loss: 0.5844
Epoch 13/300
                ——— 0s 119ms/step - accuracy: 0.7321 - loss: 0.5849 - val_accur
acy: 0.7941 - val_loss: 0.5750
Epoch 14/300
               ----- 0s 113ms/step - accuracy: 0.7518 - loss: 0.5343 - val_accur
acy: 0.8009 - val_loss: 0.5681
Epoch 15/300
                  ----- 0s 112ms/step - accuracy: 0.7469 - loss: 0.5551 - val accur
acy: 0.8055 - val_loss: 0.5634
Epoch 16/300
2/2 -----
                 ----- 0s 112ms/step - accuracy: 0.7559 - loss: 0.5319 - val accur
acy: 0.8055 - val_loss: 0.5593
Epoch 17/300
                     — 0s 112ms/step - accuracy: 0.7502 - loss: 0.5322 - val accur
acy: 0.8032 - val_loss: 0.5543
Epoch 18/300
2/2 ----
                      - 0s 111ms/step - accuracy: 0.7562 - loss: 0.5297 - val_accur
acy: 0.8055 - val_loss: 0.5479
Epoch 19/300
2/2 ----
                  ----- 0s 112ms/step - accuracy: 0.7619 - loss: 0.5093 - val accur
```

```
acy: 0.8055 - val_loss: 0.5396
Epoch 20/300
               ----- 0s 112ms/step - accuracy: 0.7560 - loss: 0.5028 - val accur
2/2 -----
acy: 0.8055 - val_loss: 0.5290
Epoch 21/300
                   ---- 0s 112ms/step - accuracy: 0.7670 - loss: 0.4972 - val accur
acy: 0.8009 - val_loss: 0.5178
Epoch 22/300
                  ----- 0s 114ms/step - accuracy: 0.7757 - loss: 0.4924 - val accur
acy: 0.8055 - val_loss: 0.5074
Epoch 23/300
                    — 0s 121ms/step - accuracy: 0.7769 - loss: 0.4948 - val accur
2/2 -----
acy: 0.8055 - val_loss: 0.4992
Epoch 24/300
2/2 ----
                 ----- 0s 117ms/step - accuracy: 0.7843 - loss: 0.4952 - val accur
acy: 0.7986 - val_loss: 0.4915
Epoch 25/300
2/2 -----
              acy: 0.7963 - val loss: 0.4853
Epoch 26/300
               ———— 0s 122ms/step - accuracy: 0.7855 - loss: 0.4676 - val_accur
acy: 0.8009 - val loss: 0.4795
Epoch 27/300
                   — 0s 122ms/step - accuracy: 0.7885 - loss: 0.4735 - val_accur
acy: 0.8009 - val_loss: 0.4751
Epoch 28/300
2/2 -
                   —— 0s 117ms/step - accuracy: 0.8164 - loss: 0.4487 - val_accur
acy: 0.8009 - val loss: 0.4718
Epoch 29/300
2/2 -
                 ____ 0s 116ms/step - accuracy: 0.8004 - loss: 0.4665 - val_accur
acy: 0.8009 - val loss: 0.4688
Epoch 30/300
2/2 -----
               Os 116ms/step - accuracy: 0.7987 - loss: 0.4536 - val_accur
acy: 0.8009 - val loss: 0.4660
Epoch 31/300
              Os 116ms/step - accuracy: 0.8129 - loss: 0.4438 - val_accur
acy: 0.7986 - val loss: 0.4625
Epoch 32/300
                   —— 0s 115ms/step - accuracy: 0.8189 - loss: 0.4442 - val_accur
acy: 0.8009 - val_loss: 0.4572
Epoch 33/300
2/2 -
                ------ 0s 116ms/step - accuracy: 0.8204 - loss: 0.4385 - val_accur
acy: 0.8078 - val_loss: 0.4522
Epoch 34/300
2/2 -
                      - 0s 118ms/step - accuracy: 0.8147 - loss: 0.4289 - val_accur
acy: 0.8101 - val_loss: 0.4475
Epoch 35/300
2/2 ----
                   —— 0s 121ms/step - accuracy: 0.8205 - loss: 0.4262 - val_accur
acy: 0.8124 - val_loss: 0.4435
Epoch 36/300
2/2 -----
                ------- 0s 117ms/step - accuracy: 0.8233 - loss: 0.4249 - val_accur
acy: 0.8146 - val_loss: 0.4402
Epoch 37/300
                  ----- 0s 116ms/step - accuracy: 0.8247 - loss: 0.4468 - val_accur
acy: 0.8146 - val_loss: 0.4371
Epoch 38/300
```

```
—— 0s 109ms/step - accuracy: 0.8256 - loss: 0.4260 - val_accur
acy: 0.8146 - val_loss: 0.4346
Epoch 39/300
2/2 -
                       - 0s 115ms/step - accuracy: 0.8234 - loss: 0.4188 - val_accur
acy: 0.8169 - val_loss: 0.4326
Epoch 40/300
2/2 -
                       - 0s 112ms/step - accuracy: 0.8311 - loss: 0.4271 - val accur
acy: 0.8192 - val_loss: 0.4312
Epoch 41/300
                      — 0s 110ms/step - accuracy: 0.8374 - loss: 0.4058 - val_accur
2/2 -
acy: 0.8169 - val_loss: 0.4296
Epoch 42/300
                 ------ 0s 112ms/step - accuracy: 0.8255 - loss: 0.4011 - val_accur
2/2 -----
acy: 0.8169 - val loss: 0.4278
Epoch 43/300
                       - 0s 112ms/step - accuracy: 0.8351 - loss: 0.4087 - val accur
acy: 0.8215 - val_loss: 0.4251
Epoch 44/300
                       - 0s 111ms/step - accuracy: 0.8349 - loss: 0.3948 - val accur
acy: 0.8215 - val_loss: 0.4225
Epoch 45/300
2/2 -
                      - 0s 110ms/step - accuracy: 0.8408 - loss: 0.3991 - val accur
acy: 0.8192 - val_loss: 0.4200
Epoch 46/300
2/2 -
                       - 0s 111ms/step - accuracy: 0.8351 - loss: 0.4144 - val_accur
acy: 0.8238 - val_loss: 0.4173
Epoch 47/300
                Os 109ms/step - accuracy: 0.8407 - loss: 0.4053 - val_accur
2/2 -
acy: 0.8238 - val_loss: 0.4154
Epoch 48/300
                     --- 0s 114ms/step - accuracy: 0.8441 - loss: 0.3907 - val accur
acy: 0.8238 - val loss: 0.4129
Epoch 49/300
                       - 0s 112ms/step - accuracy: 0.8527 - loss: 0.3891 - val accur
acy: 0.8261 - val_loss: 0.4103
Epoch 50/300
2/2 -
                     — 0s 116ms/step - accuracy: 0.8485 - loss: 0.3900 - val accur
acy: 0.8284 - val loss: 0.4082
Epoch 51/300
2/2 -
                       - 0s 118ms/step - accuracy: 0.8411 - loss: 0.3926 - val_accur
acy: 0.8284 - val_loss: 0.4072
Epoch 52/300
2/2 -
                       - 0s 112ms/step - accuracy: 0.8461 - loss: 0.3950 - val_accur
acy: 0.8307 - val_loss: 0.4067
Epoch 53/300
                   ____ 0s 112ms/step - accuracy: 0.8514 - loss: 0.3816 - val_accur
2/2 -----
acy: 0.8330 - val_loss: 0.4050
Epoch 54/300
                     — 0s 110ms/step - accuracy: 0.8408 - loss: 0.3930 - val_accur
acy: 0.8307 - val loss: 0.4026
Epoch 55/300
                      — 0s 110ms/step - accuracy: 0.8338 - loss: 0.3841 - val_accur
acy: 0.8352 - val_loss: 0.3996
Epoch 56/300
                       - 0s 111ms/step - accuracy: 0.8430 - loss: 0.3853 - val_accur
acy: 0.8352 - val_loss: 0.3974
```

```
Epoch 57/300
                   —— 0s 110ms/step - accuracy: 0.8474 - loss: 0.3822 - val_accur
2/2 -----
acy: 0.8352 - val loss: 0.3969
Epoch 58/300
2/2 ---
                  ____ 0s 111ms/step - accuracy: 0.8437 - loss: 0.3879 - val_accur
acy: 0.8352 - val_loss: 0.3960
Epoch 59/300
2/2 -----
                ------ 0s 110ms/step - accuracy: 0.8607 - loss: 0.3758 - val_accur
acy: 0.8352 - val loss: 0.3947
Epoch 60/300
                      - 0s 113ms/step - accuracy: 0.8520 - loss: 0.3790 - val_accur
acy: 0.8375 - val_loss: 0.3937
Epoch 61/300
                      - 0s 116ms/step - accuracy: 0.8477 - loss: 0.3751 - val_accur
acy: 0.8375 - val_loss: 0.3922
Epoch 62/300
                    — 0s 113ms/step - accuracy: 0.8489 - loss: 0.3727 - val_accur
2/2 -----
acy: 0.8375 - val_loss: 0.3910
Epoch 63/300
2/2 -
                    — 0s 108ms/step - accuracy: 0.8500 - loss: 0.3697 - val_accur
acy: 0.8421 - val_loss: 0.3916
Epoch 64/300
2/2 -----
              Os 113ms/step - accuracy: 0.8502 - loss: 0.3985 - val_accur
acy: 0.8375 - val_loss: 0.3908
Epoch 65/300
                  ---- 0s 112ms/step - accuracy: 0.8459 - loss: 0.3834 - val accur
acy: 0.8375 - val_loss: 0.3890
Epoch 66/300
                    — 0s 112ms/step - accuracy: 0.8466 - loss: 0.3713 - val_accur
acy: 0.8398 - val_loss: 0.3863
Epoch 67/300
2/2 -
                  ----- 0s 113ms/step - accuracy: 0.8510 - loss: 0.3637 - val accur
acy: 0.8421 - val_loss: 0.3846
Epoch 68/300
2/2 -
                    — 0s 113ms/step - accuracy: 0.8422 - loss: 0.3786 - val_accur
acy: 0.8421 - val_loss: 0.3839
Epoch 69/300
                ———— 0s 107ms/step - accuracy: 0.8444 - loss: 0.3676 - val accur
acy: 0.8421 - val_loss: 0.3841
Epoch 70/300
               acy: 0.8467 - val_loss: 0.3837
Epoch 71/300
                  ——— 0s 113ms/step - accuracy: 0.8402 - loss: 0.3718 - val accur
acy: 0.8467 - val_loss: 0.3818
Epoch 72/300
2/2 ----
                 ——— 0s 112ms/step - accuracy: 0.8419 - loss: 0.3737 - val accur
acy: 0.8490 - val_loss: 0.3800
Epoch 73/300
                    — 0s 111ms/step - accuracy: 0.8508 - loss: 0.3805 - val accur
acy: 0.8490 - val_loss: 0.3781
Epoch 74/300
2/2 ----
                     - 0s 112ms/step - accuracy: 0.8532 - loss: 0.3624 - val_accur
acy: 0.8513 - val_loss: 0.3771
Epoch 75/300
2/2 ----
                 ----- 0s 108ms/step - accuracy: 0.8520 - loss: 0.3640 - val accur
```

```
acy: 0.8513 - val_loss: 0.3779
Epoch 76/300
              ——— 0s 110ms/step - accuracy: 0.8625 - loss: 0.3533 - val accur
2/2 -----
acy: 0.8490 - val_loss: 0.3785
Epoch 77/300
                  ---- 0s 123ms/step - accuracy: 0.8490 - loss: 0.3713 - val accur
acy: 0.8490 - val_loss: 0.3787
Epoch 78/300
                 ——— 0s 106ms/step - accuracy: 0.8608 - loss: 0.3513 - val accur
acy: 0.8513 - val_loss: 0.3779
Epoch 79/300
2/2 ----
                   — 0s 112ms/step - accuracy: 0.8503 - loss: 0.3551 - val accur
acy: 0.8490 - val_loss: 0.3760
Epoch 80/300
2/2 -
                ——— 0s 112ms/step - accuracy: 0.8522 - loss: 0.3620 - val accur
acy: 0.8467 - val_loss: 0.3743
Epoch 81/300
2/2 -----
              acy: 0.8490 - val loss: 0.3730
Epoch 82/300
              OS 112ms/step - accuracy: 0.8623 - loss: 0.3666 - val_accur
acy: 0.8490 - val loss: 0.3716
Epoch 83/300
                   — 0s 110ms/step - accuracy: 0.8488 - loss: 0.3584 - val_accur
acy: 0.8490 - val_loss: 0.3700
Epoch 84/300
2/2 -
                  —— 0s 110ms/step - accuracy: 0.8610 - loss: 0.3508 - val_accur
acy: 0.8490 - val loss: 0.3687
Epoch 85/300
2/2 -
                 ____ 0s 111ms/step - accuracy: 0.8521 - loss: 0.3617 - val_accur
acy: 0.8513 - val loss: 0.3673
Epoch 86/300
               Os 107ms/step - accuracy: 0.8624 - loss: 0.3626 - val_accur
2/2 -----
acy: 0.8535 - val loss: 0.3679
Epoch 87/300
              Os 107ms/step - accuracy: 0.8468 - loss: 0.3649 - val_accur
acy: 0.8558 - val loss: 0.3689
Epoch 88/300
                  —— 0s 113ms/step - accuracy: 0.8611 - loss: 0.3567 - val_accur
acy: 0.8581 - val_loss: 0.3680
Epoch 89/300
2/2 ----
                ------ 0s 110ms/step - accuracy: 0.8569 - loss: 0.3529 - val_accur
acy: 0.8558 - val_loss: 0.3642
Epoch 90/300
2/2 -
                     - 0s 117ms/step - accuracy: 0.8652 - loss: 0.3324 - val_accur
acy: 0.8581 - val_loss: 0.3599
Epoch 91/300
2/2 ----
                  —— 0s 118ms/step - accuracy: 0.8618 - loss: 0.3583 - val_accur
acy: 0.8581 - val_loss: 0.3574
Epoch 92/300
2/2 -----
               acy: 0.8558 - val_loss: 0.3574
Epoch 93/300
                 —— 0s 130ms/step - accuracy: 0.8618 - loss: 0.3415 - val_accur
acy: 0.8558 - val_loss: 0.3568
Epoch 94/300
```

```
—— 0s 113ms/step - accuracy: 0.8577 - loss: 0.3474 - val_accur
acy: 0.8558 - val_loss: 0.3581
Epoch 95/300
2/2 -
                       - 0s 121ms/step - accuracy: 0.8593 - loss: 0.3464 - val_accur
acy: 0.8535 - val_loss: 0.3591
Epoch 96/300
2/2 -
                      - 0s 113ms/step - accuracy: 0.8595 - loss: 0.3377 - val_accur
acy: 0.8535 - val_loss: 0.3603
Epoch 97/300
                      - 0s 123ms/step - accuracy: 0.8693 - loss: 0.3442 - val_accur
2/2 -
acy: 0.8535 - val_loss: 0.3591
Epoch 98/300
                ———— 0s 115ms/step - accuracy: 0.8659 - loss: 0.3508 - val_accur
2/2 -----
acy: 0.8604 - val loss: 0.3576
Epoch 99/300
                       - 0s 114ms/step - accuracy: 0.8615 - loss: 0.3410 - val accur
acy: 0.8627 - val_loss: 0.3531
Epoch 100/300
                      - 0s 116ms/step - accuracy: 0.8599 - loss: 0.3405 - val accur
acy: 0.8581 - val_loss: 0.3498
Epoch 101/300
2/2 -
                      - 0s 126ms/step - accuracy: 0.8584 - loss: 0.3443 - val accur
acy: 0.8604 - val_loss: 0.3492
Epoch 102/300
2/2 -
                      - 0s 119ms/step - accuracy: 0.8605 - loss: 0.3408 - val accur
acy: 0.8558 - val loss: 0.3520
Epoch 103/300
                Os 116ms/step - accuracy: 0.8652 - loss: 0.3459 - val_accur
2/2 -
acy: 0.8535 - val_loss: 0.3551
Epoch 104/300
                    —— 0s 121ms/step - accuracy: 0.8564 - loss: 0.3476 - val accur
acy: 0.8558 - val loss: 0.3551
Epoch 105/300
                      - 0s 110ms/step - accuracy: 0.8563 - loss: 0.3499 - val accur
acy: 0.8627 - val_loss: 0.3521
Epoch 106/300
                     — 0s 114ms/step - accuracy: 0.8528 - loss: 0.3437 - val accur
acy: 0.8673 - val loss: 0.3481
Epoch 107/300
2/2 -
                       - 0s 113ms/step - accuracy: 0.8627 - loss: 0.3433 - val_accur
acy: 0.8673 - val_loss: 0.3460
Epoch 108/300
2/2 -
                       - 0s 111ms/step - accuracy: 0.8625 - loss: 0.3324 - val_accur
acy: 0.8696 - val_loss: 0.3443
Epoch 109/300
                  Os 107ms/step - accuracy: 0.8529 - loss: 0.3477 - val_accur
2/2 -----
acy: 0.8650 - val_loss: 0.3454
Epoch 110/300
                     — 0s 109ms/step - accuracy: 0.8639 - loss: 0.3276 - val_accur
acy: 0.8650 - val loss: 0.3454
Epoch 111/300
                      — 0s 109ms/step - accuracy: 0.8646 - loss: 0.3364 - val_accur
acy: 0.8650 - val_loss: 0.3457
Epoch 112/300
                       - 0s 108ms/step - accuracy: 0.8608 - loss: 0.3311 - val_accur
acy: 0.8650 - val_loss: 0.3455
```

```
Epoch 113/300
                   ---- 0s 111ms/step - accuracy: 0.8678 - loss: 0.3229 - val_accur
2/2 -----
acy: 0.8650 - val loss: 0.3421
Epoch 114/300
2/2 ----
                   ---- 0s 113ms/step - accuracy: 0.8618 - loss: 0.3390 - val_accur
acy: 0.8696 - val_loss: 0.3375
Epoch 115/300
2/2 -----
                ------ 0s 111ms/step - accuracy: 0.8684 - loss: 0.3356 - val_accur
acy: 0.8673 - val loss: 0.3326
Epoch 116/300
                      - 0s 109ms/step - accuracy: 0.8626 - loss: 0.3357 - val_accur
acy: 0.8673 - val_loss: 0.3333
Epoch 117/300
                      - 0s 110ms/step - accuracy: 0.8617 - loss: 0.3383 - val accur
acy: 0.8650 - val loss: 0.3367
Epoch 118/300
                    —— 0s 107ms/step - accuracy: 0.8616 - loss: 0.3376 - val_accur
2/2 -----
acy: 0.8673 - val_loss: 0.3400
Epoch 119/300
2/2 -
                    — 0s 108ms/step - accuracy: 0.8629 - loss: 0.3371 - val_accur
acy: 0.8673 - val_loss: 0.3416
Epoch 120/300
2/2 -----
               Os 108ms/step - accuracy: 0.8600 - loss: 0.3348 - val_accur
acy: 0.8650 - val_loss: 0.3416
Epoch 121/300
                  ——— 0s 112ms/step - accuracy: 0.8645 - loss: 0.3427 - val accur
acy: 0.8673 - val_loss: 0.3398
Epoch 122/300
                    — 0s 109ms/step - accuracy: 0.8564 - loss: 0.3437 - val_accur
acy: 0.8719 - val_loss: 0.3392
Epoch 123/300
                   ----- 0s 108ms/step - accuracy: 0.8678 - loss: 0.3255 - val accur
acy: 0.8719 - val_loss: 0.3394
Epoch 124/300
2/2 -
                   —— 0s 106ms/step - accuracy: 0.8617 - loss: 0.3285 - val_accur
acy: 0.8696 - val_loss: 0.3389
Epoch 125/300
                ----- 0s 110ms/step - accuracy: 0.8692 - loss: 0.3342 - val_accur
acy: 0.8696 - val_loss: 0.3371
Epoch 126/300
2/2 -----
                ——— 0s 108ms/step - accuracy: 0.8657 - loss: 0.3238 - val_accur
acy: 0.8719 - val_loss: 0.3360
Epoch 127/300
                  ---- 0s 108ms/step - accuracy: 0.8680 - loss: 0.3282 - val accur
acy: 0.8764 - val_loss: 0.3360
Epoch 128/300
2/2 -
                  ——— 0s 109ms/step - accuracy: 0.8680 - loss: 0.3316 - val accur
acy: 0.8696 - val_loss: 0.3383
Epoch 129/300
                     — 0s 109ms/step - accuracy: 0.8674 - loss: 0.3200 - val accur
acy: 0.8650 - val_loss: 0.3408
Epoch 130/300
2/2 ----
                    — 0s 108ms/step - accuracy: 0.8731 - loss: 0.3252 - val_accur
acy: 0.8673 - val_loss: 0.3412
Epoch 131/300
2/2 ----
                  ----- 0s 108ms/step - accuracy: 0.8798 - loss: 0.3161 - val accur
```

```
acy: 0.8719 - val_loss: 0.3400
Epoch 132/300
               ----- 0s 107ms/step - accuracy: 0.8707 - loss: 0.3156 - val accur
2/2 -----
acy: 0.8696 - val_loss: 0.3400
Epoch 133/300
                   ---- 0s 111ms/step - accuracy: 0.8656 - loss: 0.3282 - val accur
acy: 0.8696 - val_loss: 0.3411
Epoch 134/300
                  ---- 0s 110ms/step - accuracy: 0.8691 - loss: 0.3275 - val accur
acy: 0.8673 - val_loss: 0.3435
Epoch 135/300
                    — 0s 107ms/step - accuracy: 0.8689 - loss: 0.3233 - val accur
2/2 ----
acy: 0.8673 - val_loss: 0.3471
Epoch 136/300
2/2 -
                 ----- 0s 108ms/step - accuracy: 0.8729 - loss: 0.3299 - val accur
acy: 0.8650 - val_loss: 0.3451
Epoch 137/300
              Os 108ms/step - accuracy: 0.8722 - loss: 0.3088 - val_accur
2/2 -----
acy: 0.8604 - val loss: 0.3458
Epoch 138/300
                ———— 0s 106ms/step - accuracy: 0.8710 - loss: 0.3129 - val_accur
acy: 0.8581 - val loss: 0.3453
Epoch 139/300
                    — 0s 107ms/step - accuracy: 0.8754 - loss: 0.3158 - val_accur
acy: 0.8696 - val_loss: 0.3382
Epoch 140/300
2/2 -
                   —— 0s 110ms/step - accuracy: 0.8654 - loss: 0.3223 - val_accur
acy: 0.8719 - val_loss: 0.3310
Epoch 141/300
2/2 -
                 _____ 0s 111ms/step - accuracy: 0.8690 - loss: 0.3161 - val_accur
acy: 0.8696 - val loss: 0.3278
Epoch 142/300
                Os 109ms/step - accuracy: 0.8741 - loss: 0.3207 - val_accur
2/2 -----
acy: 0.8696 - val loss: 0.3302
Epoch 143/300
               Os 108ms/step - accuracy: 0.8740 - loss: 0.3065 - val_accur
acy: 0.8604 - val loss: 0.3374
Epoch 144/300
                   —— 0s 107ms/step - accuracy: 0.8661 - loss: 0.3143 - val_accur
acy: 0.8581 - val_loss: 0.3425
Epoch 145/300
2/2 -
                  ---- 0s 113ms/step - accuracy: 0.8691 - loss: 0.3204 - val_accur
acy: 0.8627 - val_loss: 0.3412
Epoch 146/300
                      - 0s 111ms/step - accuracy: 0.8661 - loss: 0.3229 - val_accur
acy: 0.8696 - val_loss: 0.3348
Epoch 147/300
2/2 ----
                  —— 0s 111ms/step - accuracy: 0.8721 - loss: 0.3247 - val_accur
acy: 0.8696 - val_loss: 0.3328
Epoch 148/300
2/2 -----
                ------ 0s 106ms/step - accuracy: 0.8749 - loss: 0.2995 - val_accur
acy: 0.8696 - val_loss: 0.3350
Epoch 149/300
                  Os 112ms/step - accuracy: 0.8609 - loss: 0.3436 - val_accur
acy: 0.8696 - val_loss: 0.3386
Epoch 150/300
```

```
—— 0s 110ms/step - accuracy: 0.8714 - loss: 0.3243 - val_accur
acy: 0.8696 - val_loss: 0.3424
Epoch 151/300
2/2 -
                       - 0s 109ms/step - accuracy: 0.8720 - loss: 0.3159 - val_accur
acy: 0.8673 - val_loss: 0.3425
Epoch 152/300
2/2 ---
                       - 0s 107ms/step - accuracy: 0.8701 - loss: 0.3180 - val_accur
acy: 0.8719 - val_loss: 0.3408
Epoch 153/300
                      — 0s 108ms/step - accuracy: 0.8739 - loss: 0.3042 - val_accur
2/2 -
acy: 0.8719 - val_loss: 0.3379
Epoch 154/300
                ——— 0s 110ms/step - accuracy: 0.8720 - loss: 0.3159 - val_accur
2/2 -----
acy: 0.8764 - val loss: 0.3355
Epoch 155/300
                       - 0s 109ms/step - accuracy: 0.8747 - loss: 0.3099 - val accur
acy: 0.8741 - val_loss: 0.3370
Epoch 156/300
                       - 0s 108ms/step - accuracy: 0.8718 - loss: 0.3092 - val accur
acy: 0.8696 - val_loss: 0.3408
Epoch 157/300
2/2 -
                       - 0s 108ms/step - accuracy: 0.8670 - loss: 0.3165 - val accur
acy: 0.8696 - val_loss: 0.3442
Epoch 158/300
2/2 -
                       - 0s 123ms/step - accuracy: 0.8698 - loss: 0.3154 - val_accur
acy: 0.8696 - val loss: 0.3456
Epoch 159/300
                Os 113ms/step - accuracy: 0.8729 - loss: 0.3046 - val_accur
2/2 ----
acy: 0.8627 - val_loss: 0.3447
Epoch 160/300
                    —— 0s 112ms/step - accuracy: 0.8712 - loss: 0.3016 - val accur
acy: 0.8581 - val loss: 0.3463
Epoch 161/300
                       - 0s 114ms/step - accuracy: 0.8792 - loss: 0.2898 - val accur
acy: 0.8558 - val_loss: 0.3506
Epoch 162/300
                     — 0s 115ms/step - accuracy: 0.8772 - loss: 0.2961 - val_accur
acy: 0.8558 - val loss: 0.3524
Epoch 163/300
2/2 -
                       - 0s 115ms/step - accuracy: 0.8800 - loss: 0.2941 - val_accur
acy: 0.8581 - val_loss: 0.3502
Epoch 164/300
2/2 -
                       - 0s 114ms/step - accuracy: 0.8769 - loss: 0.3210 - val_accur
acy: 0.8650 - val_loss: 0.3469
Epoch 165/300
                  ---- 0s 121ms/step - accuracy: 0.8830 - loss: 0.3039 - val_accur
2/2 -----
acy: 0.8627 - val_loss: 0.3444
Epoch 166/300
                     — 0s 114ms/step - accuracy: 0.8718 - loss: 0.2941 - val_accur
acy: 0.8650 - val loss: 0.3451
Epoch 167/300
                      — 0s 113ms/step - accuracy: 0.8726 - loss: 0.3170 - val_accur
acy: 0.8627 - val_loss: 0.3486
Epoch 168/300
                       - 0s 114ms/step - accuracy: 0.8700 - loss: 0.3016 - val_accur
acy: 0.8604 - val_loss: 0.3534
```

```
Epoch 169/300
                  Os 120ms/step - accuracy: 0.8674 - loss: 0.3118 - val_accur
2/2 -----
acy: 0.8604 - val loss: 0.3514
Epoch 170/300
2/2 ----
                   ---- 0s 122ms/step - accuracy: 0.8761 - loss: 0.3127 - val_accur
acy: 0.8650 - val_loss: 0.3503
Epoch 171/300
2/2 -----
                ------ 0s 123ms/step - accuracy: 0.8810 - loss: 0.2969 - val_accur
acy: 0.8650 - val loss: 0.3524
Epoch 172/300
                      - 0s 113ms/step - accuracy: 0.8757 - loss: 0.3031 - val_accur
acy: 0.8627 - val_loss: 0.3554
Epoch 173/300
                      - 0s 110ms/step - accuracy: 0.8811 - loss: 0.2913 - val accur
acy: 0.8650 - val loss: 0.3560
Epoch 174/300
                    — 0s 108ms/step - accuracy: 0.8776 - loss: 0.3023 - val_accur
2/2 -----
acy: 0.8604 - val_loss: 0.3589
Epoch 175/300
2/2 -
                     — 0s 109ms/step - accuracy: 0.8692 - loss: 0.3119 - val_accur
acy: 0.8604 - val_loss: 0.3604
Epoch 176/300
2/2 -----
               Os 111ms/step - accuracy: 0.8791 - loss: 0.3096 - val_accur
acy: 0.8650 - val_loss: 0.3563
Epoch 177/300
                  ____ 0s 109ms/step - accuracy: 0.8631 - loss: 0.3023 - val_accur
acy: 0.8719 - val_loss: 0.3523
Epoch 178/300
                    — 0s 107ms/step - accuracy: 0.8734 - loss: 0.2980 - val_accur
acy: 0.8696 - val_loss: 0.3526
Epoch 179/300
                   ----- 0s 109ms/step - accuracy: 0.8831 - loss: 0.2895 - val_accur
acy: 0.8673 - val_loss: 0.3558
Epoch 180/300
                   —— 0s 109ms/step - accuracy: 0.8704 - loss: 0.3028 - val_accur
2/2 -
acy: 0.8558 - val_loss: 0.3609
Epoch 181/300
                ------ 0s 108ms/step - accuracy: 0.8843 - loss: 0.3002 - val_accur
acy: 0.8490 - val_loss: 0.3647
Epoch 182/300
2/2 -----
               ———— 0s 106ms/step - accuracy: 0.8785 - loss: 0.3026 - val_accur
acy: 0.8535 - val_loss: 0.3643
Epoch 183/300
                  ____ 0s 105ms/step - accuracy: 0.8722 - loss: 0.3118 - val_accur
acy: 0.8535 - val_loss: 0.3650
Epoch 184/300
2/2 -
                  ——— 0s 109ms/step - accuracy: 0.8749 - loss: 0.3182 - val accur
acy: 0.8535 - val_loss: 0.3682
Epoch 185/300
                    --- 0s 108ms/step - accuracy: 0.8777 - loss: 0.2946 - val accur
acy: 0.8513 - val_loss: 0.3746
Epoch 186/300
2/2 ----
                    — 0s 114ms/step - accuracy: 0.8710 - loss: 0.3023 - val_accur
acy: 0.8535 - val_loss: 0.3786
Epoch 187/300
2/2 -
                  ----- 0s 108ms/step - accuracy: 0.8791 - loss: 0.3013 - val accur
```

```
acy: 0.8535 - val_loss: 0.3776
Epoch 188/300
               ----- 0s 111ms/step - accuracy: 0.8665 - loss: 0.3075 - val accur
2/2 -----
acy: 0.8535 - val_loss: 0.3745
Epoch 189/300
                  ---- 0s 108ms/step - accuracy: 0.8732 - loss: 0.3090 - val accur
acy: 0.8558 - val_loss: 0.3692
Epoch 190/300
                  ---- 0s 108ms/step - accuracy: 0.8884 - loss: 0.2804 - val accur
acy: 0.8627 - val_loss: 0.3664
Epoch 191/300
                   Os 108ms/step - accuracy: 0.8863 - loss: 0.2976 - val accur
2/2 -----
acy: 0.8581 - val_loss: 0.3671
Epoch 192/300
                ----- 0s 109ms/step - accuracy: 0.8731 - loss: 0.3133 - val accur
2/2 -
acy: 0.8581 - val_loss: 0.3706
Epoch 193/300
              Os 108ms/step - accuracy: 0.8811 - loss: 0.3058 - val_accur
2/2 -----
acy: 0.8558 - val loss: 0.3685
Epoch 194/300
               ———— 0s 108ms/step - accuracy: 0.8798 - loss: 0.2929 - val_accur
acy: 0.8627 - val loss: 0.3657
Epoch 195/300
                   — 0s 110ms/step - accuracy: 0.8821 - loss: 0.3104 - val_accur
acy: 0.8650 - val_loss: 0.3627
Epoch 196/300
2/2 -
                  —— 0s 107ms/step - accuracy: 0.8841 - loss: 0.2777 - val_accur
acy: 0.8673 - val_loss: 0.3594
Epoch 197/300
2/2 -
                _____ 0s 111ms/step - accuracy: 0.8765 - loss: 0.3095 - val_accur
acy: 0.8673 - val loss: 0.3595
Epoch 198/300
               Os 109ms/step - accuracy: 0.8791 - loss: 0.2800 - val_accur
2/2 -----
acy: 0.8696 - val loss: 0.3629
Epoch 199/300
               Os 110ms/step - accuracy: 0.8763 - loss: 0.2831 - val_accur
acy: 0.8627 - val loss: 0.3686
Epoch 200/300
                   —— 0s 112ms/step - accuracy: 0.8770 - loss: 0.2814 - val_accur
acy: 0.8558 - val_loss: 0.3735
Epoch 201/300
2/2 -
                 ——— 0s 109ms/step - accuracy: 0.8750 - loss: 0.2995 - val_accur
acy: 0.8558 - val_loss: 0.3771
Epoch 202/300
                     - 0s 113ms/step - accuracy: 0.8756 - loss: 0.2919 - val_accur
acy: 0.8535 - val_loss: 0.3778
Epoch 203/300
2/2 ----
                  ---- 0s 109ms/step - accuracy: 0.8898 - loss: 0.2848 - val_accur
acy: 0.8535 - val_loss: 0.3801
Epoch 204/300
2/2 -----
               acy: 0.8513 - val_loss: 0.3803
Epoch 205/300
                  —— 0s 110ms/step - accuracy: 0.8797 - loss: 0.3164 - val_accur
acy: 0.8535 - val_loss: 0.3789
Epoch 206/300
```

```
—— 0s 112ms/step - accuracy: 0.8795 - loss: 0.2881 - val_accur
acy: 0.8558 - val_loss: 0.3765
Epoch 207/300
2/2 -
                       - 0s 110ms/step - accuracy: 0.8754 - loss: 0.2923 - val_accur
acy: 0.8558 - val_loss: 0.3719
Epoch 208/300
2/2 ---
                      - 0s 115ms/step - accuracy: 0.8851 - loss: 0.2933 - val_accur
acy: 0.8604 - val_loss: 0.3698
Epoch 209/300
                      — 0s 109ms/step - accuracy: 0.8800 - loss: 0.3006 - val_accur
2/2 -
acy: 0.8558 - val_loss: 0.3715
Epoch 210/300
                _____ 0s 109ms/step - accuracy: 0.8733 - loss: 0.3010 - val_accur
2/2 -----
acy: 0.8467 - val loss: 0.3760
Epoch 211/300
                       - 0s 109ms/step - accuracy: 0.8793 - loss: 0.3027 - val accur
acy: 0.8421 - val_loss: 0.3776
Epoch 212/300
                       - 0s 113ms/step - accuracy: 0.8823 - loss: 0.2818 - val accur
acy: 0.8535 - val_loss: 0.3741
Epoch 213/300
2/2 -
                      — 0s 110ms/step - accuracy: 0.8792 - loss: 0.2880 - val accur
acy: 0.8535 - val_loss: 0.3730
Epoch 214/300
2/2 -
                       - 0s 106ms/step - accuracy: 0.8859 - loss: 0.3040 - val accur
acy: 0.8604 - val loss: 0.3703
Epoch 215/300
                Os 107ms/step - accuracy: 0.8773 - loss: 0.2854 - val_accur
2/2 -
acy: 0.8650 - val_loss: 0.3691
Epoch 216/300
                    —— 0s 108ms/step - accuracy: 0.8822 - loss: 0.2938 - val accur
acy: 0.8673 - val loss: 0.3666
Epoch 217/300
                       - 0s 109ms/step - accuracy: 0.8828 - loss: 0.2753 - val accur
acy: 0.8627 - val_loss: 0.3677
Epoch 218/300
                      — 0s 108ms/step - accuracy: 0.8818 - loss: 0.2758 - val accur
acy: 0.8604 - val loss: 0.3719
Epoch 219/300
2/2 -
                       - 0s 111ms/step - accuracy: 0.8835 - loss: 0.2973 - val_accur
acy: 0.8535 - val_loss: 0.3765
Epoch 220/300
2/2 -
                       - 0s 110ms/step - accuracy: 0.8846 - loss: 0.2662 - val_accur
acy: 0.8558 - val_loss: 0.3761
Epoch 221/300
2/2 -----
                  ----- 0s 110ms/step - accuracy: 0.8751 - loss: 0.2942 - val_accur
acy: 0.8581 - val_loss: 0.3750
Epoch 222/300
                     — 0s 108ms/step - accuracy: 0.8813 - loss: 0.2829 - val_accur
acy: 0.8535 - val loss: 0.3756
Epoch 223/300
                     — 0s 109ms/step - accuracy: 0.8860 - loss: 0.2778 - val_accur
acy: 0.8581 - val_loss: 0.3718
Epoch 224/300
                       - 0s 109ms/step - accuracy: 0.8884 - loss: 0.2811 - val_accur
acy: 0.8627 - val_loss: 0.3706
```

```
Epoch 225/300
                  Os 112ms/step - accuracy: 0.8861 - loss: 0.2811 - val_accur
2/2 -
acy: 0.8604 - val loss: 0.3721
Epoch 226/300
2/2 ----
                  ____ 0s 130ms/step - accuracy: 0.8759 - loss: 0.2898 - val_accur
acy: 0.8581 - val_loss: 0.3719
Epoch 227/300
2/2 -----
                ------ 0s 115ms/step - accuracy: 0.8908 - loss: 0.2796 - val_accur
acy: 0.8581 - val loss: 0.3758
Epoch 228/300
                      - 0s 122ms/step - accuracy: 0.8730 - loss: 0.2982 - val_accur
acy: 0.8513 - val_loss: 0.3843
Epoch 229/300
                      - 0s 114ms/step - accuracy: 0.8830 - loss: 0.2875 - val accur
acy: 0.8375 - val loss: 0.3930
Epoch 230/300
                    — 0s 116ms/step - accuracy: 0.8764 - loss: 0.2836 - val_accur
2/2 ----
acy: 0.8513 - val_loss: 0.3905
Epoch 231/300
2/2 -
                    —— 0s 117ms/step - accuracy: 0.8753 - loss: 0.3000 - val_accur
acy: 0.8535 - val_loss: 0.3861
Epoch 232/300
               Os 115ms/step - accuracy: 0.8795 - loss: 0.2727 - val_accur
2/2 -----
acy: 0.8558 - val_loss: 0.3826
Epoch 233/300
                   ----- 0s 122ms/step - accuracy: 0.8854 - loss: 0.2771 - val accur
acy: 0.8604 - val_loss: 0.3794
Epoch 234/300
                    — 0s 115ms/step - accuracy: 0.8763 - loss: 0.3006 - val_accur
acy: 0.8604 - val_loss: 0.3825
Epoch 235/300
                   ---- 0s 114ms/step - accuracy: 0.8837 - loss: 0.2842 - val accur
acy: 0.8535 - val_loss: 0.3893
Epoch 236/300
2/2 -
                   —— 0s 115ms/step - accuracy: 0.8912 - loss: 0.2766 - val_accur
acy: 0.8490 - val_loss: 0.3965
Epoch 237/300
                ----- 0s 117ms/step - accuracy: 0.8794 - loss: 0.2777 - val_accur
acy: 0.8490 - val_loss: 0.3996
Epoch 238/300
2/2
                ———— 0s 116ms/step - accuracy: 0.8818 - loss: 0.2692 - val_accur
acy: 0.8490 - val_loss: 0.3945
Epoch 239/300
                  ---- 0s 118ms/step - accuracy: 0.8795 - loss: 0.2817 - val accur
acy: 0.8558 - val loss: 0.3893
Epoch 240/300
2/2 -
                  ——— 0s 123ms/step - accuracy: 0.8881 - loss: 0.2823 - val_accur
acy: 0.8558 - val_loss: 0.3861
Epoch 241/300
                     — 0s 111ms/step - accuracy: 0.8779 - loss: 0.2954 - val accur
acy: 0.8627 - val_loss: 0.3814
Epoch 241: early stopping
Restoring model weights from the end of the best epoch: 141.
```

Training & Validation Loss


```
In [301...
          from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
          import numpy as np
          import matplotlib.pyplot as plt
          # Predict probabilities
          y_val_probs = model_tf3.predict(X_val_2d)
          # Convert probabilities to binary predictions
          y_val_preds = (y_val_probs > 0.5).astype("int32")
          # Generate confusion matrix
          cm2 = confusion_matrix(y_val_seq, y_val_preds)
          # Display
          disp = ConfusionMatrixDisplay(confusion_matrix=cm2, display_labels=["No Rain", "Rai
          disp.plot(cmap=plt.cm.Blues)
          plt.title("Confusion Matrix (Validation Set)")
          plt.grid(False)
          plt.show()
```


Ensamble

```
In [303... # List of our submission files
submission_files = [
    "submission_lr.csv",
    "submission_XGboost.csv",
    "submission_XGboost2.csv",
    "submission_nn.csv",
    "submission_2d_cnn.csv",
    "submission_2d_cnn2.csv",
    "submission_2d_cnn3.csv",
    #"submission_knn.csv",
```

```
dfs = [pd.read_csv(PATH + f) for f in submission_files]

# Stack all probability columns and compute the mean
probs = pd.concat([df["rainfall"] for df in dfs], axis=1)
avg_probs = probs.mean(axis=1)

# Create final submission
ensemble_submission = pd.DataFrame({
    "id": dfs[0]["id"],
    "probability": avg_probs
})

# Save to CSV
ensemble_submission.to_csv(PATH + "submission_ensemble.csv", index=False)
```