演習1

PK/PD解析を用いた用法・用量設定

- Introduction -

演習1のゴール

PK/PDモデルに基づいて最適なstep-up dosing を提案する

最後に発表会を実施いたします

演習1の題材

- 非小細胞肺がんに対するT-cell engagerである Drug Xの開発
- Cytokine release syndrome (CRS) 発現の抑制 が期待されるstep-up dosingの提案

演習1の内容

課題1: Drug X投与後の主たる放出サイトカイン (IL6) 推移を記述するPK/PDモデルを構築する

課題2: PK/PDモデルに基づいてIL6推移をシミュレートし、最適なstep-up dosingを提案する

Drug Xの開発状況

• DE part stage 1が終了

DE part stage1の概要

項目	内容		
デザイン	Open-label, multiple dose, first-in-human study		
対象	非小細胞肺がん患者		
被験者数	24 (3~6 patients/cohort)		
用法・用量	0.15, 0.5, 1.5, 3, 6, 10 mg Q3W (3週間に1回投与)1時間かけて持続静注		
血漿中濃度測定時点 (Drug X、IL6)	 Cycle 1~3: pre, 1, 2, 4, 8, 24, 48, 72, 96, 168, 336h Cycle 4, 5: pre, 1, 2h Cycle 6: pre 		

10 mgで2例の用量制限毒性(DLT: CRS grade 3)が認められ、6 mgが最大耐用量(MTD)となった

各コホートのCRS発現例数(いずれもサイクル1で発現)

Cohort (n)	Grade 1	Grade 2	Grade 3
0.15 mg (3)	0	0	0
0.5 mg (3)	0	0	0
1.5 mg (3)	1	0	0
3 mg (3)	2	0	0
6 mg (6)	2	1	1
10 mg (6)	1	2	2

・ IL6濃度は反復投与により減衰

・サイクル1のIL6 maxとCRS発現の関連が示唆

・サイクル1のIL6 maxとCRS発現:ロジスティック回帰

PK/PDモデル開発の目的

• DE part stage 2におけるstep-up dosingの提案

DE part stage 2の計画

CRS発現の抑制が期待される step-up dosingの提案

- CRS発現の抑制にはstep-up dosingが有効である
- CRS発現と関連するIL6のPK/PDモデルを構築し、シミュレーションからstep-up dosingを提案したい
- (ER解析では検討していない用法・用量の提案は難しい)

DE part stage 2の検討事項

プロジェクトチームからの質問・要望

CRS G3は絶対に避けたい、G2もできれば避けたい、G1は許容できるだろう

6 mgがMTDとなったが、step-up dosingを行うことでtarget doseを高用量に設定できるのか?

Stage 2で組み入れ可能な患者数は15~20例程度なので、最大3コホート程度だろう

演習1の内容

課題1: Drug X投与後の主たる放出サイトカイン (IL6) 推移を記述するPK/PDモデルを構築する

課題2: PK/PDモデルに基づいてIL6推移をシミュレートし、最適なstep-up dosingを提案する

PK/PDモデル概要

• Chen (2019) のモデルを一部改変

Chen et al. Clin Transl Sci. 2019

PK/PDモデル概要

PPKモデルパラメータ

- PKモデルは構築済み
- ・演習ではIPP法を用いてPK/PDモデルを構築する

Parameter	Estimate	RSE
TVCL (L/h)	0.022	0.077
TVV1 (L)	3.028	0.075
TVQ (L/h)	0.046	0.076
TVV2 (L)	2.910	0.065
Proportional error (%)	0.103	0.029
OMEGA CL (variance)	0.142	0.227
OMEGA V1 (variance)	0.132	0.225
OMEGA Q (variance)	0.094	0.310
OMEGA V2 (variance)	0.084	0.274

shrinkage : CL = 0.1%, V1 = 0.4%, Q = 15%, V2 = 6%, ϵ = 5%

配布ファイル

EX1フォルダ

- 01_data
 - pkpd01.csv; PPK解析用データセット
 - pkpd02.csv; PKPD解析用データセット
- 02_model
 - run000.mod; PPK解析用コントロールファイル(実行済み)
 - run001.mod; PKPD解析用コントロールファイル
- 03_summary
 - nonmem_summary.R;パラメータ推定値、GOF・individualプロット作成用コード
- 04 simulation
 - 04_simulation.Rproj; Rプロジェクトファイル
 - 00_mrgsolve_model / mod_template_pkpd.cpp; template model object (mrgsolve)
 - 01_mrgdolve_update.R; model objectをfinal modelの推定値にアップデートするコード(※シミュレーション前に実行する必要あり)
 - simulation_flat-dosing.R;シミュレーション用Rプログラム
 - simulation_1step-up.R
 - simulation_2step-up.R
 - ui.R; Shinyアプリ用プログラム
 - global.R; Shinyアプリ用プログラム
 - server.R; Shinyアプリ用プログラム

課題1で使用するプログラム

課題2で使用するプログラム

データセット (pkpd02.csv)

Variable	Description		
ID	ID number		
DOSE	Planned dose level (mg)		
CYCLE	Dosing cycle		
TIME	Time after first dose (h)		
DAY	Time after first dose (day)		
DVID	Dependent variable ID (0=dosing, 1=Drug X, 2=IL6)		
DV	Dependent variable		
MDV	Missing data value (0=No, 1=Yes)		
EVID	Event ID (0=observation event, 1=dose event)		
AMT	Drug X dose (mg)		
RATE	Infusion rate (mg/h)		
DUR	Infusion duration (h)		
ADDL	Additional dose		
II	Dose interval (h)		
IL6BSL	IL6 baseline value (pg/mL)		
BSLFL	IL6 baseline flag (0=No, 1=Yes);B2法でのベースラインモデルに使用		
ICL, IV1, IQ, IV2	Individual PK parameter for CL, V1, Q, and V2;IPP法でのモデル構築に使用		

課題1の手順

- ・PK/PDモデリング
 - NONMEM コントロールファイルを完成させる

```
run001.mod
$DATA ../pkpd02.csv IGNORE=@ IGNORE(DVID.EQ.1) IGNORE(BSLFL.EQ.1)
...
$DES
; PD--------
IL6 = A(11); IL6 concentration
IL6AUC = A(4); cumulative IL6 AUC
RL = ; Stimulation effect on IL6 release
IH = ; Inhibition effect (negative feedback) on IL6 release
```

DADT(4) = ; Cumulative IL6 AUC
DADT(5) = ; IL6 release
DADT(6) = ; Transit compartment 1
DADT(7) = ; Transit compartment 2
DADT(8) = ; Transit compartment 3
DADT(9) = ; Transit compartment 4
DADT(10) = ; Transit compartment 5

DADT(11) = ; Plasma IL6

データセットのディレクトリを指定する「PK/PDモデル概要」スライドを参照して数式を記述する

課題1の手順

- ・モデル評価
 - パラメータ推定値を出力する
 - GOF individual プロットを作成する

nonmem_summary.R

pathにディレクトリを指定する
run.noにNONMEMコントロールファイルの番号を指定する

演習1の内容

課題1: Drug X投与後の主たる放出サイトカイン (IL6) 推移を記述するPK/PDモデルを構築する

課題2: PK/PDモデルに基づいてIL6推移をシミュレートし、最適なstep-up dosingを提案する

課題2の手順

- ・シミュレーションの準備(1)
 - 最初に「04_simulation.Rproj」ファイルを開く (作業ディレクトリを変更し、シミュレーション用Rプログラムが 動作するように設定)

課題2の手順

- ・シミュレーションの準備(2)
 - シミュレーションには「mrgsolve」パッケージを用いる
 - mrgsolveのtemplate model objectファイルを構築したPK/PDモデルの推定値にアップデートする

01_mrgdolve_update.R

run.noにNONMEMコントロールファイルの番号を指定する

課題2の手順

- ・シミュレーション
 - 任意の用法・用量におけるL6推移をシミュレートする

simulation_flat-dosing.R, simulation_1step-up.R, simulation_2step-up.R

set run number of final PKPD model run.no <- ""

```
# ---- Simulation settings ----
step1 <- c() # 1st step-up dose (mg)
step2 <- c() # 2nd step-up dose (mg)
target <- c() # target dose (mg)
```

```
step1.time <- # dosing time of 1st step-up dose (h) step2.time <- # dosing time of 2nd step-up dose (h) target.time <- # dosing time of 1st target dose (h) target.interval <- # dose interval (h) target.addl <- # additional dose of target dose
```

シミュレーションの条件を指定する

- Step-up doseの用法・用量
- Target doseの用法・用量、投与回数
- シミュレーション数

※ 設定したStep-up dose、Target dose の全ての組み合わせで実行される

nsim <- # number of patients/regimen

課題2の検討ポイント

- IL6の目標値はどうするか?
 - DE part stage 1のIL6濃度とCRSの関係から目標値を検討する
- Target doseはどうするか?
 - 非臨床データから推定されたDrug X目標濃度(0.3 μg/mL)から検討する
- Step-up dosingはどうするか?
 - シミュレーションで任意の用法・用量を提案

• ...

IL6の目標値

サイクル1のIL6 maxとCRS発現 (再掲)

Target dose

• 固定用量(0.15~10 mg) Q3W投与時の血中濃度

定常状態のC_{min} (µg/mL)

Dose	Median	5th pctl	95th pctl
0.15	0.0049	0.0010	0.015
0.50	0.0159	0.0030	0.049
1.50	0.0461	0.0096	0.153
3.00	0.0969	0.0222	0.285
6.00	0.1942	0.0370	0.587
10.00	0.3279	0.0768	0.968

点線:非臨床データから推定されたDrug X目標濃度 (0.3 μg/mL)

参考資料:Shinyによる作図

- Shiny: webアプリケーションを作成するパッケージ
 - ui.Rファイルを開き「Run App」で実行

