KLE TECHNOLOGICAL UNIVERSITY, Bhoomaraddi Campus, Hubballi Page No: Date:
DE GATE QUESTIONS
4. A three bit pseudo random number generator is shown. Initially the value of output $Y = Y_2 Y_1 Y_0$ is set to III. The value of output Y after three clock cycles is. You you you you you will the second of
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Yaster 3rd dock is 100
Two D-Slip-flops, as shown below are to be connected as a synchronous counter that goes through the following 9,90 sequence
The inputs Do & P, respectively should be connected as. Do Qo D, aspectively should be connected as.
CIK 90 TOR 91

the sising clock edge

at Give the squence generators at Qo till sepects

by litheat is the repetition rate of the generated sequence?

PS Plent state

90 91 92 90 91 91

0 1 0 1 0

KLE TECHNOLOGICAL UNIVERSITY, Bhoomaraddi Campus, Hubballi	Page No.: Date :
(a) 90-, 01110, 01110	
b) Phependialion takes place every 5 clock (pulse) $5 \text{ tpr} = 250 \text{ ns}$ repetation rote = $\frac{1}{5 \text{ tpr}} = \frac{1}{250 \text{ ns}} = \frac{1}{4 \times 10^6}$	
The Ligis shown a mod-k counter, here K is equa	l to
1- K Q 2- K Q UK	
5 K Q 50 9 5 9 7	
-> MOD-3 (aunter (0,1,2,0) k=3//	

4) The mod 5 (aunter is shown in the figure counts through statics $Q_2Q_1Q_0 = 000,001,010,011$ & 100 a) Will the counter clock out if it happen to be in any one of the unused states?

b) Find the maximum sate at which the counter will operate satisfactorily. Issume the propogation delays of flip-flop & AND

The circuit diagram of an synchronous counter is shown in the given sigure. Determine the sequence of states of the counter assuming that the initial state is 000. Give your answer in a tabular sorm showing the present state QA, QB, 9c, J-K inputs (JA, KA, JB, KB, Jc, Kc) & the next state QA+ QB+ QC+. From the table, determine the modulus of the counter.

JA = QB	KA = 1
JB = 9A	了B=1
TC = PB TH	Kc = QB QA

Besent State	Inputs (Hin Hon)	Next state
9H 9B 9C	Inputs (Stip Stop) JAKA JBKB JCKC	9t 9t 9t
0 0 0 b 0 0	11 01 00	0 0
0 1 0	0 0 1	0 1 0
0 0		0 0 1
1 0 1	1 1 1 0 0	0 1 1
0	0 0 1	0 0 0
()	→4->2->1->5->3	

Micden

it is Mod 6 country

In the modulo - 6 sipple counter shown in the given sig. the output of the 2 input gate is used to clear the Jk slip. Hops.

57 NOR gate CT OR Gate d) AND gate

0 10 0 0

3 was unused states

wedstates

	2 ignut	.0
D	1 0000	
B	112	

Ans- OR Gate

	The gillog	iven ps t's n	Jigure If the ext sta	shou pres	13 a 12 or	sipple count state of the So will be	es usig	ny edge nter is 9:	tiggere 20100 :	d=011,
		70	90		$-\widehat{\Gamma}_{i}$	9,	1,2	92		
	-[> (k	90		>	91	7	g_n		
		7	state 1 90			Next state 97 91	0			
I.		\	then c			of the				Sequence
10	8 Une	U8CI	D2	0		P1 01			4.	
			>			> ,	.*		1	
Q.7	00, 01,									
]	00,01,	11,0	0,01-		O :		21 90)	1015	
	0	0		90	0		0 0	7		
		0			0		O	1		
	O	1		0			1	0		
-	0	0	7	O	0			0		
	1	0		1	0		ther	repeats		

-- Prisuer-10010