## Architecture de réseau de neurones

Le Transformer

**Guillaume Bourmaud** 

#### **PLAN**

- I. Histoire du "Transformer"
- II. Couche d'attention à softmax
- III. Équivariance par permutation et encodage de la position
- IV. Application à des images
- V. Limites et tendances actuelles

## I) Histoire du "Transformer"

"Attention is All You Need", NIPS 2017

I)

## Sequence-to-sequence



"the cat sat on the mat" -> [Seq2Seq model] -> "le chat etait assis sur le tapis"

#### Architecture encodeur-décodeur



- ou Transformer

I)

# Exemple avec un RNN

#### Apprentissage (en "Teacher-Forcing")



## Exemple avec un RNN (suite)

#### Inférence



# Exemple avec un RNN (suite)

# Calcul séquentiel Apprentissage lent Comment paralléliser ? Limites Encoder LIMITES Apprentissage lent LISTM L

Difficile d'apprendre de longues dépendances avec un RNN.

Coronavirus pandemic is spread across 175 countries, it is a serious problem especially in Italy, Spain and US as of March 2020.

I)

#### Transformer vs RNN





I)

# Transformer: vue globale



#### Transformer: encodeur

**ENCODER #2 ENCODER #1** r1 dépend de z1 **Feed Forward** Feed Forward **Neural Network Neural Network** Self-Attention

**Machines** 

**Thinking** 

r2 dépend de z2

z1 dépend de x1 et x2

z2 dépend de x1 et x2

# II) Couche d'attention à softmax

Entrées

 ${f x}$  : vecteur de dimension 1 imes D

 $\{\mathbf y_i\}_{i=1...N_y}$  : ensemble de vecteurs de dimension 1 imes D

## Attention utilisant la fonction softmax

Entrées  $\begin{array}{c} \mathbf{x} & \text{: vecteur de dimension} & 1 \times D \\ \{\mathbf{y}_i\}_{i=1...N_y} \text{ : ensemble de vecteurs de dimension} & 1 \times D \end{array}$ 

# Fonction $\exp(\mathbf{x}\mathbf{y}_j^{ op})$

Produit scalaire + exp :

$$\gg 1$$
 si  ${\bf X}$  est "attiré" par  ${\bf y}_j$   $= 1$  si  ${\bf X}$  orthogonal à  ${\bf y}_j$   $pprox 0$  si  ${\bf X}$  est "repoussé" par  ${\bf y}_j$ 

#### Attention utilisant la fonction softmax

Entrées  $\begin{array}{c} \mathbf{x} & \text{: vecteur de dimension} & 1 \times D \\ \{\mathbf{y}_i\}_{i=1...N_y} \text{: ensemble de vecteurs de dimension} & 1 \times D \end{array}$ 

# Fonction

$$\exp(\mathbf{x}\mathbf{y}_j^ op)$$

Produit scalaire + exp :

$$\gg 1$$
 si  ${f x}$  est "attiré" par  ${f y}_j$ 

=1 si  ${f x}$  orthogonal à  ${f y}_j$  pprox 0 si  ${f X}$  est "repoussé" par  ${f y}_j$ 

 $\mathbf{y}_j$  "attire l'attention de"  $\mathbf{X}_j$ 

#### Attention utilisant la fonction softmax

Entrées

X

: vecteur de dimension

 $1 \times D$ 

 $\{\mathbf y_i\}_{i=1...N_y}$  : ensemble de vecteurs de dimension 1 imes D

**Fonction** 

$$rac{\exp(\mathbf{x}\mathbf{y}_j^{ op})}{\sum_{k=1}^{N_y} \exp(\mathbf{x}\mathbf{y}_k^{ op})}$$
 — Softmax

**Entrées** 

: vecteur de dimension

 $1 \times D$ 

 $\{\mathbf y_i\}_{i=1...N_y}$  : ensemble de vecteurs de dimension 1 imes D

**Fonction** 

$$\mathbf{x}' = \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x}\mathbf{y}_j^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x}\mathbf{y}_k^\top)} \mathbf{y}_j$$

Combinaison linéaire des  $\{\mathbf y_i\}_{i=1...N_y}$ 

Les poids les plus élevés de cette combinaison linéaire correspondent aux vecteurs ayant le plus "attiré l'attention" de  ${f X}$ 

**Entrées** 

: vecteur de dimension

 $1 \times D$ 

 $\{\mathbf y_i\}_{i=1...N_u}$  : ensemble de vecteurs de dimension 1 imes D

**Fonction** 

$$\mathbf{x}' = \sum_{j=1}^{N_y} rac{\exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_j \mathbf{K})^{ op})}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_k \mathbf{K})^{ op})} \mathbf{y}_j$$

Pour pouvoir apprendre à "attirer l'attention" - introduction de paramètres à optimiser

Paramètres V

: matrice "query" de taille

: matrice "key" de taille

 $D \times L$  $D \times L$ 

**Entrées** 

: vecteur de dimension

 $1 \times D$ 

 $\{\mathbf y_i\}_{i=1...N_y}$  : ensemble de vecteurs de dimension 1 imes D

**Fonction** 

$$\mathbf{x}' = \mathbf{x} + \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_j \mathbf{K})^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_k \mathbf{K})^\top)} \mathbf{y}_j \mathbf{V}$$

En pratique, la combinaison linéaire est elle-même transformée linéairement, et suivie d'une connection résiduelle.

**Paramètres** 

: matrice "query" de taille : matrice "key" de taille

 $D \times L$  $D \times L$ 

: matrice "value" de taille

22

 $1 \times D$ : vecteur de dimension **Entrées**  $\{\mathbf y_i\}_{i=1...N_u}$  : ensemble de vecteurs de dimension 1 imes D

**Fonction** 

$$\mathbf{x}' = \mathbf{x} + \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_j \mathbf{K})^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_k \mathbf{K})^\top)} \mathbf{y}_j \mathbf{V}$$

**Paramètres**  $D \times L$ : matrice "key" de taille  $D \times D$ : matrice "value" de taille

: matrice "query" de taille

23

 $D \times L$ 

## Couche d'inter-attention softmax ("Cross-attention")

 $\begin{aligned} & \{\mathbf{x}_i\}_{i=1...N_x} \text{ : vecteurs de dimension } D & \longrightarrow \mathbf{X} \text{ : matrice de taille } N_x \times D \\ & \{\mathbf{y}_i\}_{i=1...N_y} \text{ : vecteurs de dimension } D & \longrightarrow \mathbf{Y} \text{ : matrice de taille } N_y \times D \end{aligned}$ 

# Couche d'inter-attention softmax ("Cross-attention")

Sorties  $\{\mathbf{x}_i'\}_{i=1...N_x}$  : vecteurs de dimension  $D \longrightarrow \mathbf{X}'$ : matrice de taille  $N_x \times D$ 

# Couche d'inter-attention softmax ("Cross-attention")

Sorties  $\{\mathbf{x}_i'\}_{i=1...N_x}$ : vecteurs de dimension  $D \longrightarrow \mathbf{X}'$ : matrice de taille  $N_x \times D$  $\mathtt{M} = \mathtt{XQ}(\mathtt{YK})^{\top}$ S = softmax(M, dim=1)X' = X + SYVmatriciel Produit Calcul réalisé en parallèle sur les vecteurs  $\{\mathbf{x}_i\}_{i=1...N_r}$ matriciel 28

# Couche d'inter-attention softmax ("Cross-attention") (suite)

$$\mathtt{X}:N_x imes D$$
  $\mathtt{Y}:N_u imes D$   $\mathtt{X}':N_x imes D$ 

$$\mathbf{M} = \mathbf{XQ}(\mathbf{YK})^{\top} : N_x \times N_y \qquad \mathbf{S} = \mathbf{softmax}(\mathbf{M}, \mathbf{dim} = 1) : N_x \times N_y$$

#### Calcul

- Nombre d'opérations potentiellement très élevé
- + Parallélisable

#### **Stockage**

- Mémoire requise pour stocker M et S potentiellement très élevée

# Couche d'inter-attention softmax ("Cross-attention") (suite)

$$\mathtt{X}:N_x imes D$$
  $\mathtt{Y}:N_y imes D$   $\mathtt{X}':N_x imes D$ 

$$\mathtt{M} = \mathtt{XQ}(\mathtt{YK})^{\top} : N_x \times N_y$$
  $\mathtt{S} = \mathtt{softmax}(\mathtt{M}, \mathtt{dim} = 1) : N_x \times N_y$ 

# Calcul

- Nombre d'opérations potentiellement très élevée potentiellement très élevé Exemple :  $N_x = N_y = 640 imes 480 pprox 3.10^5$  pixels + Parallélisable

Stockage - Mémoire requise pour stocker M et S

 $N_x imes N_u pprox 9.10^{10}$  flottants (32 bits)  $osherow 360 {
m Go}$ 

# Cas particulier : Couche d'auto-attention ("Self-attention")

Entrées  $\{\mathbf{x}_i\}_{i=1...N_x}$  : vecteurs de dimension  $D \longrightarrow \mathbf{X}$  : matrice de taille  $N_x \times D$ 

Sorties 
$$\{\mathbf{x}_i'\}_{i=1...N_x}$$
 : vecteurs de dimension  $D \longrightarrow \mathbf{X}'$ : matrice de taille  $N_x \times D$ 

$$egin{aligned} \mathbf{M} &= \mathbf{XQ}(\mathbf{XK})^{ op} : N_x imes N_x \ \mathbf{S} &= \mathrm{softmax}(\mathbf{M}, \mathrm{dim}{=}1) : N_x imes N_x \ \mathbf{X}' &= \mathbf{X} + \mathbf{SXV} : N_x imes D \end{aligned}$$

Transfert d'information depuis X vers lui-même le tout stocké dans X'

# Attention softmax à têtes multiples "Multi-head dot-product attention"

Entrées

x : vecteur de dimension

 $\times D$ 

 $\{\mathbf y_i\}_{i=1...N_y}$  : ensemble de vecteurs de dimension 1 imes D

$$\mathbf{x}' = \mathbf{x} + \sum_{j=1}^{N_y} rac{\exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_j \mathbf{K})^{ op})}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q} (\mathbf{y}_k \mathbf{K})^{ op})} \mathbf{y}_j \mathbf{V}$$

$$\mathbf{x}' = \mathbf{x} + \sum_{h=1}^{H} \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x} \mathbf{Q}_h (\mathbf{y}_j \mathbf{K}_h)^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q}_h (\mathbf{y}_k \mathbf{K}_h)^\top)} \mathbf{y}_j \mathbf{V}_h$$

# Attention softmax à têtes multiples (suite) "Multi-head dot-product attention"

**Entrées** 

: vecteur de dimension  $\{\mathbf y_i\}_{i=1...N_u}$  : ensemble de vecteurs de dimension 1 imes D

**Fonction** 

Paramètres  $\begin{cases} \mathbb{Q}_h \\ h = 1 \dots H \end{cases} : \text{matrices "query" de taille} \\ \mathbb{K}_h \\ h = 1 \dots H \end{cases} : \text{matrices "key" de taille} \\ \mathbb{V}_h \\ h = 1 \dots H \end{cases} : \text{matrices "value" de taille} \\ \mathbb{W}_h \\ h = 1 \dots H \end{cases} : \text{matrices "output" de taille}$ 

 $D \times L$ 

 $\mathbf{x}' = \mathbf{x} + \sum_{h=1}^{H} \sum_{j=1}^{N_y} \frac{\exp(\mathbf{x} \mathbf{Q}_h (\mathbf{y}_j \mathbf{K}_h)^\top)}{\sum_{k=1}^{N_y} \exp(\mathbf{x} \mathbf{Q}_h (\mathbf{y}_k \mathbf{K}_h)^\top)} \mathbf{y}_j \mathbf{V}_h \mathbf{W}_h$ 

 $D \times L$ 33

 $D \times L$ 

# Bloc d'attention "classique"

Transformation non-linéaire de chaque ligne



#### Vue détaillée du Transformer



# III) Équivariance par permutation et encodage de la position

# Non-équivariance par permutation



## Non-équivariance par permutation



# Non-équivariance par permutation



# Équivariance par permutation



# Équivariance par permutation



# Équivariance par permutation



# Encodage de la position



# Encodage de la position



47

# Encodage de la position



# IV) Application à des images

#### IV)

## "An image is worth 16x16 words", ICLR 2021



### IV)

## "Segmenter: Transformer for Semantic Segmentation", ICCV 2021



## IV)

"DETR: End-to-End Object Detection With Transformers", ECCV 2020



En pratique, il y a 100 "object queries", donc 100 boîtes englobantes prédites.

53

# "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021



# V) Limites et tendances actuelles

V)

## Limites des couches d'attention à softmax

$$\mathtt{M} = \mathtt{XQ}(\mathtt{YK})^{\top} : N_x \times N_y$$
  $\mathtt{S} = \mathtt{softmax}(\mathtt{M}, \mathtt{dim} = 1) : N_x \times N_y$ 

Problème : Inapplicable pour des ensembles de grandes tailles.

#### Solutions:

- Appliquer des couches d'attention à softmax en cherchant à réduire Nx et/ou Ny
- Modifier la couche d'attention softmax

# Exemple de modification de la couche d'attention softmax : couche d'attention linéaire

"Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention", ICML 2020

$$\mathbf{x}' = \mathbf{x} + \left(\sum_{j=1}^{N_y} \frac{\phi(\mathbf{x}\mathbf{Q})\phi(\mathbf{y}_j\mathbf{K})^\top}{\sum_{k=1}^{N_y} \phi(\mathbf{x}\mathbf{Q})\phi(\mathbf{y}_k\mathbf{K})^\top} \mathbf{y}_j\right) \mathbf{V} \qquad \text{Remplacement du noyau exponentiel par un noyau linéaire}$$

Se simplifie en  $\mathbf{x}' = \mathbf{x} + \phi(\mathbf{x}\mathbf{Q}) \frac{\left|\sum_{j=1}^{N_y} \phi(\mathbf{y}_j\mathbf{K})^\top \mathbf{y}_j\mathbf{V}\right|}{\phi(\mathbf{x}\mathbf{Q})\left|\sum_{k=1}^{N_y} \phi(\mathbf{y}_k\mathbf{K})^\top\right|} \qquad \begin{array}{c} \text{Indépendant de x, plus besoin de calculer ni stocker explicitement les matrices M et S} \end{array}$ 

Indépendant de x, plus les matrices M et S

# Exemple de réduction de Nx et/ou Ny : PerceiverIO

"Perceiver IO: A General Architecture for Structured Inputs & Outputs." arXiv, 2021

