

The Dataset

١	Age	Gender	Education Level	Country	Ethnicity	Nscore	Escore	Oscore	Ascore	Cscore	Impulsiveness	Sensation Seing
0	-0.07854	-0.48246	1.98437	0.96082	-0.31685	-0.67825	1.93886	1.43533	0.76096	-0.14277	-0.71126	-0.21575
1	0.49788	-0.48246	-0.05921	0.96082	-0.31685	-0.46725	0.80523	-0.84732	-1.62090	-1.01450	-1.37983	0.40148
2	-0.95197	0.48246	1.16365	0.96082	-0.31685	-0.14882	-0.80615	-0.01928	0.59042	0.58489	-1.37983	-1.18084
3	0.49788	0.48246	1.98437	0.96082	-0.31685	0.73545	-1.63340	-0.45174	-0.30172	1.30612	-0.21712	-0.21575
4	2.59171	0.48246	-1.22751	0.24923	-0.31685	-0.67825	-0.30033	-1.55521	2.03972	1.63088	-1.37983	-1.54858

	Alcohol	Amphetamines	Amyl nitrite	Benzodiazepine	Caffeine	Cannabis	Chocolate	Cocaine	Crack	Ecstasy	Heroin	Ketamine	Legal highs	LSD	Methadone	Magic mushrooms	Nicotine	Volatile substance abuse
	5	2	2	0	6	4	6	3	0	4	0	2	0	2	3	0	4	0
	6	0	0	0	6	3	4	0	0	0	0	0	0	0	0	1	0	0
ı	4	0	0	3	5	2	4	2	0	0	0	2	0	0	0	0	2	0
ı	4	1	1	0	6	3	6	0	0	1	0	0	1	0	0	2	2	0
ı	2	0	0	0	6	0	4	0	0	0	0	0	0	0	0	0	6	0

Visualizations

Distribution of variables

Left school at 16 years

Left school at 18 years

14%

Masters degree

Professional certificate/ diploma

Ethnicity

Visualizations

Our focus:

How to predict drug use, and more specifically Cannabis use in a population according to certain parameters?

Alcohol	Amphetamines	Amyl nitrite	Benzodiazepine	Caffeine	Cannabis
5	2	2	0	6	4
6	0	0	0	6	3
4	0	0	3	5	2
4	1	1	0	6	3
2	0	0	0	6	0

		Alcohol_user	Amphetamines_user	Amyl nitrite_user	Benzodiazepine_user	Caffeine_user	Cannabis_user
ı	0	User	Non-user	Non-user	Non-user	User	User
	1	User	Non-user	Non-user	Non-user	User	User
ı	2	User	Non-user	Non-user	User	User	Non-user
	3	User	Non-user	Non-user	Non-user	User	User
	4	Non-user	Non-user	Non-user	Non-user	User	Non-user

User vs nonuser

Correlations:

Correlations:

Machine Learning:

```
svr = svm.SVR()
cross val score(svr, X train, y train)
#instantiation
model_SVC = SVC( kernel = 'linear', gamma = 'scale', shrinking = False,)
#training
model SVC.fit(X train, y train)
#precision calculation
print(model SVC.score(X test, y test))
#Prediction
prediction = model SVC.predict(X test)
#display of results
result = "Result : "
if prediction[0] == 0:
  result = result + "Non-User"
if prediction[0] == 1:
  result = result + "User"
print(result)
0.8016129032258065
Result : Non-User
```

```
GB=GradientBoostingClassifier()
GB.fit(X train,y train)
#precision calculation
print(GB.score(X test, y test))
#Prediction
prediction = GB.predict(X test)
result = "Result : "
if prediction[0] == 0:
 result = result + "Non-User"
if prediction[0] == 1:
 result = result + "User"
print(result)
0.8209677419354838
Résultat : Non-User
```

```
RFC=RandomForestClassifier()
RFC.fit(X_train,y_train)
#precision calculation
print(RFC.score(X test, y test))
#Prediction
prediction = RFC.predict(X test)
#display of results
result = "Result : "
if prediction[0] == 0:
  result = result + "Non-User"
if prediction[0] == 1:
  result = result + "User"
print(result)
0.8080645161290323
Result : User
```

(ExtraTreesClassifier(), 0.8451612903225807)

Best model:

Conclusion:

How to predict drug use, and more specifically Cannabis use in a population according to certain parameters?