VE281

Data Structures and Algorithms

Review Class

Oct. 29 2018

VE281 TA Group

Asymptotic Algorithm Analysis

- Best, Worst, Average Case
 - Best case: least number of steps required, corresponding to the ideal input
 - Worst case: most number of steps required, corresponding to the most difficult input.
 - Average case: average number of steps required, given any input.

Specific input. Not specific size!

Consider Large Input Size

Asymptotic Algorithm Analysis

- Big-Oh, Big Omega, Theta
 - Big-Oh:
 - T(n) = O(f(n)) if only if it exists two positive constants c and n_0 such that $T(n) \le cf(n)$ for all $n > n_0$.
 - If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c < \infty$, then f(n) is O(g(n)).
 - Big Omega: $T(n) \ge cg(n)$
 - Theta: $c_1g(n) \le T(n) \le c_2g(n)$

$$n! \gg 2^n \gg n^{c+\varepsilon} \gg n^3 \gg n^{2+\varepsilon} \gg n^2 \gg n \log n \gg n^{1+\varepsilon} \gg n$$

 $\gg \sqrt{n} \gg \log n \gg \frac{\log n}{\log \log n} \gg \log \log n \gg \alpha(n) \gg 1$

Asymptotic Algorithm Analysis

Analyzing Time Complexity of Programs

```
sum = 0;
for(i = 1; i <= n; i *= 2)
  for(j = 1; j <= i; j++)
    sum++;</pre>
```

• The number of times that the statements sum++ / j<=i / j++ occur is

$$1 + 2 + 4 + 8 + \dots 2^{\log n} \approx 2n - 1$$

• The time complexity is $\Theta(n)$.

- Sorting Basics
 - In place: requires O(1) additional memory
 - Stability: whether the algorithm maintains the relative order of records with equal keys
 - Comparison sort:

	Worst Case Time	Average Case Time	In Place	Stable	
Insertion	$O(N^2)$	$O(N^2)$	Yes	Yes	
Selection	$O(N^2)$	$O(N^2)$	Yes	No	
Bubble	$O(N^2)$	$O(N^2)$	Yes	Yes	
Merge Sort	$O(N \log N)$	$O(N \log N)$	No	Yes	
Quick Sort	$O(N^2)$	$O(N \log N)$	Weakly	No	

• Master Method: $T(n) \le aT(\frac{n}{b}) + O(n^d)$

$$T(n) = egin{cases} O(n^d \log n) & if \ a = b^d \ O(n^d) & if \ a < b^d \ O(n^{log_b a}) & if \ a > b^d \end{cases}$$

- Merge Sort
- Quick Sort
 - divide-and-conquer
 - a = 2, b = 2, d = 1

- Counting Sort O(N + k)
- 1. Allocate an array C[k+1].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
 C[i] now contains number of items less than or equal to i.
- 4. For i=n down to 1, put A[i] in new position c[A[i]] and decrement c[A[i]].

A[i] is put in correct position since c[A[i]] items less than or equal to A[i]

- Bucket Sort O(N)
- 1. Set up an array of initially empty "buckets".
- 2. Scatter: Go over the original array, putting each object in its bucket.
- 3. Sort each non-empty bucket by a comparison sort.
- 4. Gather: Visit the buckets in order and put all elements back into the original array.

• Radix Sort O(kN).

Given an array of integers, from the least significant bit (LSB) to the most significant bit (MSB), repeatedly do **stable** bucket sort according to the current bit

Sort 815, 906, 127, 913, 098, 632, 278.

0	1	2	3	4	5	6	7	8	9
		63 <u>2</u>	91 <u>3</u>		81 <u>5</u>	90 <u>6</u>	12 <u>7</u>	09 <u>8</u> 27 <u>8</u>	

0	1	2	3	4	5	6	7	8	9
9 <u>0</u> 6	9 <u>1</u> 3	1 <u>2</u> 7	6 <u>3</u> 2				2 <u>7</u> 8		0 <u>9</u> 8
	8 <u>1</u> 5								

0	1	2	3	4	5	6	7	8	9
<u>0</u> 98	<u>1</u> 27	<u>2</u> 78				<u>6</u> 32		<u>8</u> 15	906 913

Linear Time Selection

- Selection Problem:
 - <u>Input</u>: array *A* with *n* distinct numbers and a number *i*
 - Output: *i*-th smallest element in the array
- Solution:
 - Reduction to sorting $O(n \log n)$
 - Randomized selection algorithm O(n)
 - Deterministic selection algorithm O(n)

Linear Time Selection

- Randomized selection algorithm
 - Worst case: $O(n^2)$
 - Best case: O(1)
 - Average case: O(n)

$$E[N] = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (1 + E[N])$$

$$E[runtime] \le E\left[\sum_{j} X_{j} \cdot c \cdot \left(\frac{3}{4}\right)^{j} n\right]$$

$$=cn\sum_{j}\left(\frac{3}{4}\right)^{j}E[X_{j}] \leq 2cn\sum_{j}\left(\frac{3}{4}\right)^{j}\leq 2cn\frac{1}{1-\frac{3}{4}}$$

$$=8cn=O(n)$$

Linear Time Selection

Deterministic selection algorithm
 ChoosePivot(A, n)

Time complexity: O(n)

$$T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) \le 10n$$

Recursively find the median

reduce 30% of the size in each recursion

Not as good as Rselect in practice

Hash Basics

- Dictionary
 - (key, value)
 - Different pairs have different keys
 - Sorted/Unsorted array
 - find()
 - insert()
 - remove()

Hash Basics

- Hashing Basics
 - Pick an array A (hash table) of *n* buckets.
 - n = c|S|: a small multiple of |S|.
 - Choose a hash function $h: U \to \{0,1,...,n-1\}$
 - Store item k in A[h(k)]
 - Runtime: *O*(1)

Hash Basics

- Hashing Function
 - Must compute a bucket for every key in the universe.
 - Must compute the same bucket for the same key.
 - Should be easy and quick to compute.
 - Minimizes collision

Hashing by Modulo

The bias in the keys does not result in a bias toward home buckets.

Ideally, choose the hash table size *n* as a **large prime number**.

Hash Collision

- Collision:
 - Separate chaining: Link list (easy to remove())
 - Open addressing (save space)
 - Linear probing: $h_i(x) = (h(x) + i) % n$
 - Quadratic probing: $h_i(x) = (h(x) + i^2) \% n$
 - $L = \frac{m}{n} = \frac{\text{\#objects in hash table}}{\text{\#buckets in hash table}} \le 0.5$ (find an empty slot)
 - Double hashing: $h_i(x) = (h(x) + i*g(x)) % n$

Hash Collision

- Performance of Open Addressing:
 - Linear Probing
 - Find(): in sequence until find the key or find an empty slot
 - Remove(): rehash the cluster/remark "deleted"

$$U(L) = \frac{1}{2} \left[1 + \left(\frac{1}{1 - L} \right)^2 \right]$$
$$S(L) = \frac{1}{2} \left[1 + \frac{1}{1 - L} \right]$$

• Quadratic Probing $U(L) = \frac{1}{1 - L}$ $S(L) = \frac{1}{L} \ln \frac{1}{1 - L}$