Отчет по лабораторной работе №3 по Мат Моделированию

1-2. Содержательная постановка задачи

Объект исследования:

Объект исследования - многоступенчатая ракета (конкретно двух- и трехступенчатая). Практическая задача - определение исследовать зависимость скорости двухступенчатой ракеты от соотношения масс топлива в каждой ступени; исследовать зависимость скорости движения трехступенчатой ракеты от времени для разных масс топлива в каждой ступени.

Модель должна давать количественный ответ - скорость многоступенчатой ракеты, в зависимости от соотношения масс топлива в каждой ступени; и скорость ракеты в зависимости от времени для разных масс топлива в каждой ступени.

Исходные данные:

- ullet m_p масса ракеты;
- тин масса нагрузки;
- $m_{\scriptscriptstyle \Gamma}$ масса топлива в каждой ступени;
- V_{Γ} скорость движения газов;
- V_0 начальная скорость ракеты.

3. Концептуальная постанока задачи

Рассмотрим ракету в упрощенной форме, аналогично изображению на рисунке 3. При этом масса ракеты включает в себя два компонента: массу конструкции ракеты $m_{\rm p}$ и массу выбрасываемых газов $m_{\rm r}$. В некоторый момент времени ракета движется с определенной скоростью $V_{\rm p}$ в то время как отработавшие газы выбрасываются со скоростью $V_{\rm r}$. Предполагаем, что движение ракеты происходит в вакууме, то есть без учета сопротивления воздуха. Продукты сгорания покидают сопла ракеты в системе отсчета, связанной с неподвижной ракетой. При этом будем считать ракету материальной точкой.

4. Математическая постановка задачи

Рассмотрим движение двухступенчатой ракеты (для трехступенчатой аналогично).

Примем, что
$$V_0=0$$
. Для первой ступени $V_{p_1}=V_0+V_{_\Gamma}*ln(\frac{m_0}{m(t)})=V_{_\Gamma}*ln(\frac{m_0}{m(t)}),$ где $m_0=m_p+m_{_\Gamma 1}+m_{_\Gamma 2}+m_n.$ Пусть топливо в первой ступени израсходавоно, тогда максимальная скорость для первой ступени будет $V_{p1_{max}}=V_{_\Gamma}*ln(\frac{m_0}{m_p+m_{_\Gamma 2}+m_{_H}}).$ Для второй ступени $V_{p2}=V_{p1_{max}}+V_{_\Gamma}*ln(\frac{m_p+m_{_\Gamma 2}+m_{_H}}{m_1(t)})$ и $V_{p2_{max}}=V_{p1_{max}}+V_{_\Gamma}*ln(\frac{m_p+m_{_\Gamma 2}+m_{_H}}{m_p+m_{_H}})$

```
## 5. Реализация
```python
import numpy as np
import matplotlib.pyplot as plt
def rocket_two_stages(V_g, m_p, m_n, m_t, fuel_step=1000):
 """двухступенчатая ракета
 Args:
 V_g (float): скорость истекания газов.
 m_p (float): масса полезной нагрузки.
 m_n (float): масса несгоревшей конструкции (включая ступени).
 m_t (float): общая масса топлива.
 fuel_step (float): шаг уменьшения массы топлива (по умолчанию 1000).
 11 11 11
 m_{total} = m_{p} + m_{n} + m_{t}
 VO = 0
 mt1 = 0.7 * m_t
 fuel_mass1, Vp1_list = [], []
 #первая ступень
 while mt1 > 0:
 Vp1 = V0 + V_g * np.log(m_total / (m_p + m_n + 0.3 * m_t + mt1))
 fuel_mass1.append(0.3 * m_t + mt1)
 Vp1_list.append(Vp1)
 mt1 -= fuel_step
 #вторая ступень
 mt2 = 0.3 * m_t
 fuel_mass2, Vp2_list = [], []
 while mt2 > 0:
 Vp2 = Vp1 + V_g * np.log((m_p + m_n + 0.3 * m_t) / (m_p + m_n + mt2))
 fuel_mass2.append(mt2)
 Vp2_list.append(Vp2)
 mt2 -= fuel_step
 plt.figure()
 plt.grid(True)
 plt.plot(fuel_mass1, Vp1_list, 'r*', label="Первая ступень")
 plt.plot(fuel_mass2, Vp2_list, 'b*', label="Вторая ступень")
 plt.xlabel('Macca оставшегося топлива, кг')
 plt.ylabel('Скорость ракеты, м/с')
 plt.title('Скорость двухступенчатой ракеты от массы топлива')
```

```
plt.legend()
 plt.show()
def rocket_three_stages(V_g, m_p, m_n, m_t, fuel_step=1000):
 """трехступенчатая ракета
 args:
 V_g (float): скорость истекания газов.
 m_p (float): масса полезной нагрузки.
 m_n (float): масса несгоревшей конструкции (включая ступени).
 m_t (float): общая масса топлива.
 fuel_step (float): шаг уменьшения массы топлива (по умолчанию 1000).
 11 11 11
 m_{total} = m_{p} + m_{n} + m_{t}
 VO = 0
 count = 0
 #первая ступень
 mt1 = 0.6 * m_t
 time1, Vp1_list = [], []
 while mt1 > 0:
 count += 1
 Vp1 = V0 + V_g * np.log(m_total / (m_p + m_n + 0.4 * m_t + mt1))
 time1.append(count)
 Vp1_list.append(Vp1)
 mt1 -= fuel_step
 #вторая ступень
 mt2 = 0.2 * m_t
 time2, Vp2_list = [], []
 while mt2 > 0:
 count += 1
 Vp2 = Vp1 + V_g * np.log((m_p + m_n + 0.4 * m_t) / (m_p + m_n + 0.2 * m_t + mt2))
 time2.append(count)
 Vp2_list.append(Vp2)
 mt2 -= fuel_step
 #третья ступень
 mt3 = 0.2 * m_t
 time3, Vp3_list = [], []
 while mt3 > 0:
 count += 1
 Vp3 = Vp2 + V_g * np.log((m_p + m_n + 0.2 * m_t) / (m_p + m_n + mt3))
 time3.append(count)
```

```
Vp3_list.append(Vp3)
mt3 -= fuel_step

plt.figure()
plt.grid(True)
plt.plot(time1, Vp1_list, 'r*', label="Первая ступень")
plt.plot(time2, Vp2_list, 'b*', label="Вторая ступень")
plt.plot(time3, Vp3_list, 'g*', label="Третья ступень")
plt.xlabel('Время, с')
plt.ylabel('Скорость ракеты, м/с')
plt.title('Скорость трехступенчатой ракеты от времени')
plt.legend()
plt.show()
```

#### 6. Качественный анализ задачи

Выполним контроль размерности задач:

$$V_p = V_0 + V_{\scriptscriptstyle \Gamma} * ln(rac{m_0}{m(t)}) => \left[rac{\mathtt{M}}{\mathtt{C}}
ight] + \left[rac{\mathtt{M}}{\mathtt{C}}
ight] * ln(\left[rac{\mathtt{K} \Gamma}{\mathtt{K} \Gamma}
ight]) = \left[rac{\mathtt{M}}{\mathtt{C}}
ight] + \left[rac{\mathtt{M}}{\mathtt{C}}
ight] = \left[rac{\mathtt{M}}{\mathtt{C}}
ight]$$

#### 7. Численное иследование модели

При исследовании задачи были получены следующие решения Для задачи двухступенчатой ракеты:

```
V_g = 3000
m_p = 300000
m_n = 34000
m_t = 274000
rocket_two_stages(V_g, m_p, m_n, m_t)
```



Для задачи трехступенчатой ракеты:

rocket\_three\_stages(V\_g, m\_p, m\_n, m\_t)

