Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання практичної роботи №3 з дисципліни: «Твердотільна електроніки-1»

Виконавець: Студент 3-го курсу	(підпис)	А.С. Мнацаканов
Превірив:	(пілпис)	Л. М. Королевич

1. Завдання

Побудувати графіки розподілу електричного поля, елеткричного потенціалу та енергетичні діаграми ідеалізованого p-n переходу. Розрахувати відстань між металургійною і реальною межами поділу pn переходу. Розрахунки і побудови робити в рівноважному стані, а також при двох прикладених зовнішній напругах: $(0,8) \cdot \varphi_0$ та $(-2) \cdot \varphi_0$ (побудови для всіх трьох випадків робити на одному графіку з однаковим масштабом).

2. Розрахунки та побудова графіків

Для того щоб побудувати графік розподілу електричного поля я буду користуватися формулами які я отримав у практичній роботі №2, ось перша пара:

$$E_p(x) = \frac{qN_A'}{2\varepsilon\varepsilon_0} \cdot (x^2 - l_p^2) \tag{1}$$

$$E_n(x) = \frac{qN_D'}{2\varepsilon\varepsilon_0} \cdot (x^2 - l_n^2) \tag{2}$$

Рис. 1: Графіки розподілу електричного поля

Наступні графіки (Рис. 2) були побудовані з використанням формул, які теж були виведені в попередній роботі:

$$\varphi_p(x) = \frac{qN_A'}{6\varepsilon\varepsilon_0} \cdot (3l_p^2 x - x^3 + 2l_p^3) \tag{3}$$

$$\varphi_n(x) = \varphi_0 + \frac{qN_D'}{6\varepsilon\varepsilon_0} \cdot (3l_n^2 x - x^3 - 2l_n^3) \tag{4}$$

Рис. 2: Графіки розподілу електричного потенціалу

Для того щоб отримати схожу діаграму як в книжці та зробити все як прийнято, тобто зона провідності зверху а валентна зона знизу, то я до функції що описує потенціал приставив знак мінус, тобто перевенув їх та оримав графіки як на Рис. 5. Також для знаходження δ я знайшов положення рівня Фермі та його точку перетину ідеалізованим графіком, відстань від цієї точки до нуля і буде відстань між металургійною і реальною межами поділу рп переходу, а що стосується висоти потенціального бар'єру, то її я розраховував наступним чином: $\varphi = \varphi_0 - U$ (де U в свою чергу дорівнює або $\varphi_0 \cdot 0.8$ або $\varphi_0 \cdot (-2)$), таким же чином я застосовував цю формулу для побудови кривих у нерівноважному стані (тобто з прикладеними напругами 0.8 та (-2))

Для того щоб знайти функцію за допомогою якої можна описати енергетичну діаграму p-n переходу я знайшовши E_{F_i} за формулою:

$$E_{F_i} = \frac{E_C + E_V}{2},\tag{5}$$

де $E_C = 0.7099 \; \mathrm{eB} \; \mathrm{Ta} \; E_V = -0.71 \; \mathrm{eB} \; \mathrm{які} \; \mathrm{я} \; \mathrm{заздалегідь} \; \mathrm{визначив} \; \mathrm{зі} \; \mathrm{своїх} \; \mathrm{графіків} \; \mathrm{підставивши} \; \mathrm{отримав} \; \mathrm{наступнe} :$

$$E_{F_n} = E_{F_i} - k \cdot T \cdot ln\left(\frac{N_D}{n_i}\right),\tag{6}$$

де $k=8.6173\cdot 10^{-5}eB\cdot K^{-1}$; T=300~K; $N_D'=3.8\cdot 10^{18}~cm^{-4}$; $n_i=1.79\cdot 10^6~cm^{-3}$ а для того щоб знайти максимальне значення поля E_{max} я подивився на графіки та зрозумів, що найбільше значення досягається на межі областей, тому замість х у формулу для знаходження розподілу електричного поля я підставив 0 і отримав шукане значення для рівноважного значення.

Рис. 3: Енергетична діаграма ідеалізованого р-п переходу (з книги)

Рис. 4: Енергетична діаграма ідеалізованого р-п переходу

Рис. 5: Енергетичні діаграми ідеалізованого р-п переходу

4. Таблиці контрольних величин

Основні параметри для розподілу електричного поля

	l_p , cm	l_n , cm	$E_{max}, \mathrm{B/cm}$
рівноважний стан	0.0009185	7.502e-05	-1475.8692
$U = (0.8) \cdot \varphi_0$	0.0005	4.188e-05	-295.17384
$U = (-2) \cdot \varphi_0$	0.0013	1.0328e-04	-4427.6067

Основні параметри для розподілу електричного потенціалу

	l_p , см	l_n , cm
рівноважний стан	0.0009	7.5e-05
$U = (0.8) \cdot \varphi_0$	0.0005	4.188e-05
$U = (-2) \cdot \varphi_0$	0.0013	1.0328e-04

Основні параметри для енергетичних діаграм ідеалізованого p-n переходу

	l_p , cm	l_n , cm	φ_0 , eB	$E_F \leftrightarrow E_V$, eB	$E_F \leftrightarrow E_C$, eB	δ , cm
рівноважний стан	0.0009	$7.5 \cdot 10^{-5}$	1.0442			
$U = (0.8) \cdot \varphi_0$	0.0005	$4.188 \cdot 10^{-5}$	1.8796	0.2883	1.1316	0.00039
$U = (-2) \cdot \varphi_0$	0.0013	$1.0328 \cdot 10^{-4}$	3.1328			