

Morpholiniocarboxylic ester salts and morpholinio alkylphenyl ether salts, methods of producing them and their use as fungicides

5 The invention relates to novel N-alkyl-2,6-dimethylmorpholiniocarboxylic ester salts and N-alkyl-2,6-dimethylmorpholinio alkylphenyl ether salts, to their preparation and to their use as fungicidal agents in agriculture and horticulture with additional plant-10 growth-regulatory properties.

It is known to use N-alkylmorpholines and their salts as well as their molecular compounds and addition compounds as fungicides (DE-PS 1 164 152,

15 DE-PS 1 173 722, DE-PS 24 61 513).

compounds

It is furthermore known that quaternary ammonium compounds of long-chain N-alkyl-2,6-dimethylmorpholines having lower alkyl, alkenyl, alkoxyalkyl or aralkyl substituents are fungicidally active (DE-PS 1 167 588;

- 20 Angewandte Chemie 77 (1965), p. 327-333). There are furthermore known compositions which contain substituted N-benzyl- or alkoxymethyl-2,6-dimethyl-morpholinium salts as active compounds for combating fungal pathogens (DD 134 037, DD 134 474, DD 140 403).
- 25 It is furthermore known that salts of morpholinocarboxylic esters with long-chain alkanesulphonic acids or alkanecarboxylic acids have fungicidal properties (DD 201 371).
- furthermore known that morpholinoalkyl alkyl It is 30 ethers, 4-alkylcyclohexyl ethers and 4-alkylaryl ethers have fungicidal properties (DE-PS 1 190 724; Angewandte Chemie 77 (1965), p. 327-333; Angewandte Chemie 92 (1980), p. 176-181). It is furthermore already known to 2,3-dihydro-6-methyl-5-phenylcarbamoyl-1,4-35 use (oxycarboxin), 4,4-dioxide N,N'-bis(1oxathiine formamido-2,2,2-trichloroethylpiperazine (triforine) or ethylenebisdithiocarbamate (zineb)

in fungicidal compositions for combating

fungal plant diseases (The Pesticide Manual, British Crop Protection Council; London, 1984).

However, the activity of the above-mentioned compounds 5 in certain fields of indication is not always fully in particular when low rates satisfactory, concentrations are applied. Moreover, they have a fairly high selectivity regarding certain species of fungal pathogens, which greatly limits the broad use of these compositions. A further disadvantage is that the plant tolerance of these compounds is not sufficient in many cases.

The invention is based on the object of providing novel N-alkyldimethylmorpholiniocarboxylic ester salts fungicidal compositions containing them which have a good activity and a broad spectrum of action and as high as possible a plant tolerance and additional plant-growth-regulatory properties.

20

25

10

15

To achieve this object there are proposed compounds which are characterized in that they contain at least N-alkyl-2,6-dimethylmorpholiniocarboxylic salt or N-alkyl-2,6-dimethylmorpholinio alkylphenyl ether salt of the general formula I,

wherein A represents the group

- CO - Z - R³ or
$$\sim 0$$
 $\stackrel{R^4}{\swarrow}$ $\stackrel{R^5}{\swarrow}$ $\stackrel{R^6}{\swarrow}$

in which

15

20

25

R¹ represents straight-chain or branched alkyl having 6 to 20 C atoms,

5 R² represents straight-chain or branched alkylene having 1 to 6 C atoms,

R³ represents straight-chain or branched alkyl having
1 to 20 C atoms,

a straight-chain or branched alkyl which has 1 to 6 C atoms and which is substituted by halogen, hydroxyl, alkoxy having 1 to 4 C atoms, dialkylamino having 2 to 16 C atoms, nitro and/or cyano,

an alkenyl which has 2 to 6 C atoms and which is optionally substituted by halogen,

alkynyl having 3 to 6 C atoms,

cycloalkyl having 3 to 12 carbon atoms, it being possible for the cycloalkyl radical optionally to be substituted by one or more alkyl radicals having 1 to 7 C atoms,

cycloalkylalkyl having 4 to 10 C atoms,

monosubstituted aryl which can be polysubstituted by identical or different from the series consisting substituents straight-chain or branched alkyl having 1 to 6 C atoms, alkoxy having 1 to 4 C atoms, aryl-loweralkyl having 7 to 12 C atoms, acyl having 1 to 4 C atoms, halogen, aryl, nitro and/or cyano,

aryl-lower-alkyl which has 7 to 12 C atoms and which can be monosubstituted or polysubstituted by identical or different substituents from the series consisting of straight-chain or branched alkyl having 1 to 6 C atoms, alkoxy having 1 to 4

C atoms, halogen, haloalkyl having 1 to 4 C atoms, nitro and/or cyano,

- R^4 , R^5 and R^6 independently of one another represent identical or different substituents from series consisting of hydrogen, straight-chain or 5 branched alkyl having 1 to 6 C atoms, having 1 to 4 C atoms, acyl having 1 to 4 C atoms, 1 4 C haloalkyl having to halogen, cycloalkyl having 3 to 7 C atoms, aryl-lower-alkyl having 7 to 12 C atoms, aryl, nitro, thiocyanato, NHCOR', COOR' and/or CONR'R" it being possible for R' and R" independently of one another to represent hydrogen, straight-chain or branched alkyl having 1 to 6 C atoms, aryl or aryl-lower-alkyl having 7 to 12 C atoms,
 - represents oxygen or sulphur and represents the anion of a nonphytotoxic acid, in addition to the customary solvents, carriers and/or formulation auxiliaries.

20

25

30

35

10

15

The compounds according to the invention can exist in two different geometric structures as N-alkyl-2,6-cisdimethylmorpholiniocarboxylic ester salt and N-alkyl-2,6-cis-dimethylmorpholinio alkylphenyl ether salt or N-alkyl-2,6-trans-dimethylmorpholinio-carboxylic N-alkyl-2,6-trans-dimethylmorpholinio salt and alkylphenyl ether salt or as the respective mixtures of these two isomers. Not only the isomer mixture as is generated by the synthesis, but also the individual isomers, can be used for the fungicidal application.

Surprisingly, it has been found that the N-alkyl-2,6dimethylmorpholiniocarboxylic ester salts and N-alkyl-2,6-dimethylmorpholinio alkylphenyl ether salts of the general formula I according to the invention have a potent fungicidal activity and a broad spectrum of action and are suitable in particular for combating phytopathogenic fungi on crop plants and on stored plant-based products. The active compounds are well tolerated at the application rates required for the combat of plant diseases. In addition, the compounds according to the invention can have a desired positive effect on crop plants, given their growth-regulatory properties.

The N-alkyl-2,6-dimethylmorpholiniocarboxylic ester salts and N-alkyl-2,6-dimethylmorpholinio alkylphenyl ether salts of the general formula I are obtained by reacting an N-alkyl-2,6-dimethylmorpholine of the formula II,

$$H_3C \longrightarrow N - R^1$$
 (II)

wherein R¹ has the meaning given in the general formula

I

with a compound of the formula III

$$X - R^2 - A \tag{III}$$

20

25

wherein R^2 and A have the meaning given in the general formula I and X represents halogen, or, alternatively, reacting a 2,6-dimethylmorpholino-carboxylic ester or 2,6-dimethymorpholino alkylphenyl ether of the formula IV,

$$\begin{array}{c|c}
H_3C \\
\hline
0 \\
N-R^2-A
\end{array}$$
(IV)

wherein R^2 and A have the meaning given in the general formula I with a compound of the formula V,

$$S R1 - X (V)$$

wherein R¹ has the meaning given in the general formula I and X represents halogen.

N-alkyl-2,6-dimethylmorpholines of the formula II are, for example, n-decyl-, n-dodecyl-, n-tridecyl-, isotridecyl-, 1,5,9-trimethyldecyl-, n-pentadecyl- or n-didecyl-2,6-dimethylmorpholine.

Halocarboxylic esters of the formula III are, for 15 C₁-C₂₀-alkyl chloroacetate, 4-chlorobutyl example, chloroacetate, 4-hydroxybutyl chloroacetate, 2-ethoxy-2-cyanoethyl chloroacetate, chloroacetate, 2-nitroethyl chloroacetate, cyclohexyl chloroacetate, 2-bromopropionate, allyl 2-bromopropionate, 20 methyl 2-bromopropionate, phenyl chloroacetate, 1-naphthyl phenyl thiochloroacetate, methyl 2-bromobutyrate, benzyl 2-bromocaproate, 4-chlorophenyl chloroacetate, 4-tert-butylphenyl chloroacetate, 3,4-dichlorophenyl chloroacetate, 2,6-dimethylphenyl chloroacetate, 2,6-25 chloroacetate, 2,6-dibromo-4dibromo-4-nitrophenyl 2,6-dichlorobenzyl cyanophenyl chloroacetate, chloroacetate, 4-cyanobenzyl chloroacetate, 4-nitrophenyl chloroacetate or the chloroacetate anion.

Haloalkylphenyl ethers of the formula III are, for example, 2-bromoethyl phenyl ether, 2-chloroethyl-4tert-butyl phenyl ether, 2-bromoethyl 4-nitrophenyl ether, 2-bromoethyl 4-cyanophenyl ether, 2-bromoethyl 2-bromoethyl 2,6-dichlorophenyl ether, 3,4-35 2-bromoethyl 2,6-dichloro-4ether, dichlorophenyl 2-bromoethyl 3,5-dichlorophenyl cyanophenyl ether, ether, 2-bromoethyl 4-benzylphenyl ether, 2-bromoethyl 4-acetamidophenyl ether, 3-bromopropyl phenyl ether, 3-

30

bromopropyl 4-tert-butylphenyl ether, 3-bromopropyl 2,6-dimethylphenyl ether or 3-bromopropyl 2,6-dibromo-4-thiocyanatophenyl ether.

- 2,6-dimethylmorpholinocarboxylic esters of the formula 5 2,6example, C_1 - C_{20} -alkyl for are, 2,6dimethylmorpholino-acetate, phenyl 2,6dimethylmorpholinoacetate, phenyl dimethylmorpholinothioacetate, 4-chlorophenyl 4-nitrophenyl 2,6-2,6-dimethylmorpholinoacetate, 10 dimethylmorpholinoacetate, 3,4-dichlorophenyl dimethylmorpholinoacetate, 2,6-dibromo-4-cyanophenyl 2,6-dimethylmorpholinoacetate, benzyl 2,6-dimethyl-2,6-dichlorobenzyl 2,6-dimethylmorpholinoacetate, 2,6-dimethylmorpholino-2morpholinoacetate, methyl 15 methyl 2,6-dimethylmorpholino-2-butyrate propionate, or, if R^3 is absent, the acetate.
- 2,6-Dimethylmorpholino alkylphenyl ethers of the formula IV are, for example, 2-(2,6-dimethyl-20 morpholino) ethyl phenyl ether, 2-(2,6-dimethylmorpholino) ethyl 4-cyanophenyl ether, 2-(2,6-dimethylmorpholino) ethyl 4-tert-butylphenyl ether, 2-(2,6dimethylmorpholino) ethyl 4-nitrophenyl ether, 2-(2,6dimethylmorpholino) ethyl 3,4-dichlorophenyl ether, 25 2-(2,6-dimethylmorpholino)ethyl 2,6-dichloro-4-cyanatophenyl ether, 3-(2,6-dimethylmorpholino)propyl phenyl 3-(2,6-dimethylmorpholino)propyl 4-tertether, ether, 3-(2,6-dimethylmorpholino)propyl butylphenyl 3-(2,6-dimethylmorphoether, 3,5-dichlorophenyl 30 3 - (2,6 lino) propyl 2,6-dimethylphenyl ether ordimethylmorpholino) propyl 2,6-dibromo-4-thiocyanatophenyl ether.
- 35 Alkyl halides of the formula V are, for example, n-decyl chloride, n-dodecyl chloride, n-tridecyl chloride, iso-tridecyl chloride, 1,5,9-trimethyldecyl chloride, pentadecyl bromide or didecyl bromide.

The starting compounds for the preparation of the compounds according to the invention are known per se or can be prepared by processes known per se.

The reaction to give the compounds of the formula I according to the invention are, if appropriate, carried out in the presence of a solvent or diluent at a temperature in the range of between 10 and 180°C, between 30 and 150°C. The starting preferably substances of the formula II or of the formula IV are 10 reacted in stoichiometric amounts with a compound of the formula III or of the formula V or preferably with an excess of 10 to 100% of a compound of the formula III or of the formula V beyond the stoichiometric amount, based on the starting materials of the formula 15 II or of the formula IV.

Preferred solvents or diluents which can be employed are, for example, aliphatic or aromatic, optionally halogenated hydrocarbons such as n-pentane, 20 chlorobenzene, cyclohexane, benzene, toluene, chloroform or methylene chloride; aliphatic ketones such as acetone, methyl ethyl ketone or cyclohexanone; ethers such as diethyl ether, tetrahydrofuran or dioxane; alcohols such as methanol, ethanol, propanols, 25 butanols or hexanols; nitriles such as acetonitrile; such as methyl acetate; amides such esters, dimethylformamide, dimethylacetamide N-methylorpyrrolidone; dimethyl sulphoxide or water, or mixtures of these solvents. 30

The isolation of the compounds of the general formula I according to the invention from the reaction mixtures is not absolutely necessary since they can also be employed for making fungicidal preparations without further purification operation.

35

The active compounds of the general formula I according to the invention have a potent activity against

microorganisms and can accordingly be used for combating fungal pathogens in agriculture and in the active it is Using compounds, horticulture. possible to combat undesired fungi which are found on plants or plant parts. The active compounds of the general formula I are furthermore suitable as seeddressing compositions for the treatment of seed and protection from planting material as a infections and can be employed against soil-borne addition, the phytopathogenic fungi. In active compounds, where employed, have a positive effect on the growth processes of crop plants.

The starting compounds for the preparation of the compounds according to the invention are known per se or can be prepared by methods known per se.

10

The active compounds according to the invention are particularly suitable for preventing and curing plant diseases which are caused by fungus, such as, for 20 example, Erysiphe graminis (powdery mildew of cereals) Erysiphe cichoracearum (powdery mildew of cucurbits), Erysiphe polygoni (powdery mildew of bean), Podosphaera leucotricha (apple mildew), Sphaerotheca (powdery mildew of rose), Uncinula necator (powdery 25 mildew of grapevine); rust diseases, such as those of Puccinia, Uromyces or Hemileia, genera particular Puccinia graminis (stem rust of cereals), Puccinia coronata (crown rust of oats), Puccinis sorghi rust), Puccinia recondita (leaf rust of (maize 30 cereals), Uromyces fabae (bean rust), Hemileia (coffee leaf rust); Botrytis cinerea vastatrix grapevines and strawberries; Monilia fructigena grapevines; Plasmopara viticola apples; on 35 Mycosphaerella musicola on bananas; Corticum Ganoderma pseudoferreum salmonicolor on Hevea; Hevea; Exobasidium vexans on tea; Phytophtora infestans and tomatoes; Alternaria solani potatoes various of these Furthermore, active tomatoes.

activity also have different against substances phytopathogenic fungi such as, for example, Ustilago avenae (loose smut of oats), Ophiobolus graminis (foot rot of cereals), Septoria nodorum (leaf spot and glume blotch of cereals), Venturia inaequalis (apple scab) and further fungal pathogens such as Rhizoctonia, Helminthosporium, Peronospora, Pythium, tilletia, Sclerotinia, Fusarium, Alternaria, Mucor. Pseudocercosporella and Cladosporium.

10

15

Of particular interest are the active compounds according to the invention for combating a multiplicity of fungal diseases on a variety of crop plants or their seeds, in particular wheat, rye, barley, oats, rice, maize, cotton, soya, coffee, bananas, sugar cane, fruit, ornamentals in horticulture, vegetables such as cucumbers, beans or cucurbits.

In addition, the active compounds according to the invention can have a positive desired effect on the development of crop plants as a result of their plant-growth-regulatory properties. The effects of the compounds depend essentially on the timing of the application based on the developmental stage of the seed or the plants, on the application rates applied to the plants or their environment, and on the type of application.

Moreover, the active compounds also afford good activity against wood-discolouring and wood-destroying fungi such as, for example, Pullaria pullulans, Aspergillus niger, Polystictus versicolor or Chaetomium globosum.

Furthermore, the active compounds of the general formula I according to the invention display good activity against moulds such as, for example, Penicillium, Fusarium or Aspergillus species, which bring about a deterioration of agricultural products

with a high water content or processed products of agricultural produce during storage or intermediate be treated in this manner storage. Products to comprise, for example, apples, oranges, tangerines, cereals and grapefruits, peanuts, cereal lemons, products or pulses and ground pulses.

5

10

In addition to having a broad fungicidal spectrum of activity, the active compounds according to the invention also display various activities against phytopathogenic bacteria such as, for example, Xanthomonas or Erwinia species.

Some of the active compounds are also active against fungi which are pathogenic for humans, such as, for example, Trichophyton and Candida species.

Some of the active compounds of the general formula I are distinguished by a systemic activity, in addition to the protective activity. Thus, they are taken up both via the root and via the leaves and are translocated in the plant tissue or supplied to the aerial parts of the plants via the seed.

The active compounds according to the invention are 25 furthermore suitable for controlling resistant strains which display symptoms fungal pathogens resistance to known fungicidal active compounds, such as, for example, active compounds from the group of the fungicides, such as, for example dicarboximide 30 5-methyl-5-vinyl-3-(3,5-dichlorophenyl)-2,4-dioxo-1,3oxazolidine (vinclozolin) or 5-methyl-5-methoxymethyl-3-(3,5-dichlorophenyl)-1,3-oxazolidine-2,4-dione (myclozolin); active compounds from the group of the benzimidazole or thiophanate fungicides such as, for 35 1-(n-butylcarbamoyl)-benzimidazol-2example, methyl ylcarbamate (benomyl), methyl benzimidazol-2ylcarbamate (carbendazim) or 1,2-bis(3-ethoxycarbonyl-2-thioureido) benzene (thiophanate); active compounds

from the group of the azole fungicides such as, for 1-(4-chlorophenoxy-3,3-dimethyl-1-(1H-1,2,4example, triazol-1-yl)butan-2-one (triadimefon) or 1-[2'-(2",4"dichlorophenyl) -2' - (propenyloxy) ethyl] -1,3-imidazole (imazalil); active compounds from the group of the fungicides containing aromatic hydrocarbons such as, 2,5-dichloro-1,4-dimethoxybenzene example, (chloroneb) or 2,6-dichloro-4-nitroaniline (dichloran); active compounds from the group of the acylalanine fungicides such as, for example, methyl DL-N-(2,6-10 dimethylphenyl) -N-(2'-methoxyacetyl)alaninate (metalaxyl) or methyl DL-N-(2,6-dimethylphenyl)-N-(2furoyl) alaninate (furalaxyl), or active compounds from the group of the pyrimidine fungicides such as, for 5-butyl-2-dimethylamino-4-hydroxy-6-methylexample, 15 pyrimidine (dimethirimol) or 2-chlorophenyl-4-chlorophenylpyrimidin-5-ylmethanol (fenarimol).

The anions X shown in the general formula I of the 20 active compounds according to the invention are not critical for the fungicidal activity.

25

30

35

The active compounds according to the invention can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusts, foams, pastes, soluble powders, granules, natural and synthetic materials impregnated with active compound, and microencapsulations in polymeric substances, and in coating compositions for seeds and in ULV cold- and hot-fogging formulations.

These formulations are produced in a known manner, for example by mixing or grinding the active compounds of the general formula I according to the invention with solvents and/or carriers, optionally with the use of surfactants, that is emulsifiers and/or dispersants.

Liquid solvents which are suitable are: aromatics such as toluene, xylene, or alkylnaphthalenes; chlorinated

aromatics and chlorinated aliphatic hydrocarbons such chloroethylenes chlorobenzenes, or methylene chloride; aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions; alcohols such as butanols or glycols as well as their esters and ethers; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone; strongly polar solvents such as water, dimethylformamide and dimethyl Likewise liquefied solvents which sulphoxide. gaseous under standard conditions, such as, for example 10 aerosol propellants, such as halohydrocarbons, propane, butane, nitrogen and carbon dioxide, may be employed. Suitable solid carriers are, for example, natural minerals such as kaolins, clays, talc, chalk, quartz, montmorillonite or diatomaceous earth, 15 ground synthetic minerals such as highly disperse alumina and silicates. Solid carriers silica, granules which can be used are, for example, crushed and fractionated natural rocks such as calcite, marble, pumice and dolomite, and synthetic granules 20 inorganic or organic meals, and granules of organic materials such as sawdust, cellulose powder, tree bark meal, and nutshell meal. Emulsifiers which can be used are, for example, nonionic and anionic emulsifiers such as alkali metal 25 salts, alkaline earth metal salts or ammonium salts of acid, naphthalenesulphonic acids, ligninosulphonic alkylarylsulphonates, phenolsulphonic acids, sulphates, alkylsulphonates, alkali metal salts and metal salts of alkaline earth 30 dibutylnaphthalenesulphonic acid, lauryl

sulphate, fatty alcohol sulphates, alkali metal salts and alkaline earth metal salts of fatty acids, salts of sulphated hexadecanols, heptadecanols or octadecanols, salts of sulphated fatty alcohol glycol ethers, condensates of sulphonated naphthalene and naphthalene derivatives with formaldehyde, condensates of naphthalene, or of the naphthalenesulphonic acids, with phenol and formaldehyde, polyoxyethylene octylphenol

35

ether, alkylphenol polyglycol ether, tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers, ethoxylated polyoxypropylene, lauryl alcohol polyglycol ether acetal and sorbitol esters. Suitable dispersants are, for example, lignin-sulphite waste liquors and methylcellulose.

Tackifiers such as carboxymethylcellulose and natural and synthetic polymers in the form of latices such as gum arabic, polyvinyl alcohol and polyvinyl acetate, may be used in the formulations.

Further additives which may be present in the formulations of the active compounds may be colorants and trace nutrients.

In general, the formulations contain between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90% by weight.

20

25

The method according to the invention for controlling fungi is characterized in that an effective amount of fungicidal compositions containing the active compounds of the general formula I according to the invention are allowed to act on fungi or on the objects to be protected from fungal attack.

In the formulations or in the various use forms, the active compounds according to the invention can be 30 mixed, and applied together, with other known active compounds such as fungicides, bactericides, insecticides, acaricides, nematicides, herbicides, plant nutrients and regulators, growth conditioners. In many cases, a mixture with fungicides 35 results in a widening of the fungicidal spectrum of action. In a number of mixtures of the active compounds according to the invention with known fungicides, synergistic effects may also be found; here, the

fungicidal activity of the combined product exceeds that of the sum of the activities of the individual components.

Fungicides which can be combined with the active compounds according to the invention, without limiting the possible combinations, are, for example: sulphur,

dithiocarbamates and their derivatives, such as iron(III) dimethyldithiocarbamate, zinc dimethyldithio-

10 carbamate, manganese ethylenebisdithiocarbamate, manganese zinc ethylenediaminebisdithiocarbamate and zinc ethylenebisdithiocarbamate,

tetramethylthiuram sulphides,

ammonia complex of zinc (N,N-ethylenebisdithio-

15 carbamate) and N,N'polyethylenebis(thiocarbamoyl)disulphide,

ammonia complex of zinc (N,N'-propylenebisdithiocarbamate) and N,N'-propylenebis(thiocarbamoyl) disulphide,

N-trichloromethylthiotetrahydrophthalimide, N-trichloromethylthiophthalimide,

N-(1,1,2,2-tetrachloroethylthio)tetrahydrophthalimide,

4,6-dinitro-2-(1-(methylheptyl)phenyl crotonate,

4,6-dinitro-2-sec-butylphenyl 3,3-dimethylacrylate,

4,6-dinitro-2-sec-butylphenyl isopropylcarbonate, methyl 1-(n-butylcarbamoyl)benzimidazol-2-ylcarbamate, methyl benzimidazol-2-ylcarbamate,

2-(fur-2-yl)benzimidazole,

2-(thiazol-4-yl)benzimidazole,

30 1,2-bis(3-methoxycarbonyl-2-thioureido)benzene,

1,2-bis(3-ethoxycarbonyl-2-thioureido)benzene,

2,3-dihydro-6-methyl-5-phenylcarbamoyl-1,4-oxathiine,

2,3-dihydro-6-methyl-5-phenylcarbamoyl-1,4-oxathiine

4,4-dioxide,

35 tetrachloroisophthalonitrile,

2,3-dichloro-1,4-napthoquinone,

2,3-dicyano-1,4-dithioanthraquinone,

N-tridecyl-2,6-dimethylmorpholine and its salts,

 $N-C_{10}-C_{14}-alkyl-2,5-and/or 2,6-dimethylmorpholine,$

```
N-cyclododecyl-2,6-dimethylmorpholine and its salts,
    N-[3-p-tert-butylphenyl)-2-methylpropyl]-2,6-cis-
    dimethylmorpholine and its salts,
    N, N'-bis(1-formamido-2, 2, 2-trichloroethyl)piperazine
  N-(1-formamido-2,2,2-trichloroethyl)-3,4-dichloro-
    aniline,
    N-(1-formamido-2,2,2-trichloroethyl) morpholine,
    5-butyl-2-ethylamino-4-hydroxy-6-methylpyrimidine,
    5-butyl-2-dimethylamino-4-hydroxy-6-methylpyrimidine,
  2,4-dichlorophenylphenylpyrimidin-5ylmethanol,
10
    2-chlorophenyl-4-chlorophenylpyrimidin-5-ylmethanol,
    bis (4-chlorophenyl) pyridin-3-ylmethanol,
    5-methyl-5-vinyl-3-(3,5-dichlorophenyl)-1,3-oxazolidine
    2,4-dione.
  5-methyl-5-methoxymethyl-3-(3,5-dichlorophenyl)-1,3-
15
    oxazolidine-2,4-dione,
    3-(3,5-dichlorophenyl)-N-isopropyl-2,4-dioxo-
    imidazolidine-1-carboxamide,
    N-(3,5-dichlorophenyl)-1,2-dimethylcyclopropane-1,2-
20 dicarboximide,
    1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-
    yl)-butan-2-one
    1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-
    yl)-butan-2-ol
25 1-[2-(2,4-dichlorophenyl)-2-(propenyloxy)ethyl]-
    imidazole
    1-[N-propyl-N-(2,4,6-trichlorophenoxy)ethyl-
    carbamoyl]imidazole
    1-[2-(2,4-dichlorophenyl)-4-ethyl-1,3-dioxolan-2-yl-
  methyl]-1H-1,2,4-triazole
30
    1-[2-(2,4-dichlorophenyl)4-n-propyl-1,3-dioxolan-2yl-
    methyl]-1H-1,2,4-triazole
    1-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-yl)-4,4-
    dimethylpentan-3-one
35 2,5-dichloro-1,4-dimethoxybenzene
    2,6-dichloro-4-nitroaniline
    diphenyl
    2-methylbenzoanilide
    2-iodobenzoanilide
```

- 2,5-dimethylfuran-3-carboxanilide
- 2,4,5-trimethylfuran-3-carboxanilide

N-cyclohexyl-N-methoxy-2,5-dimethylfuran-3-carboxamide

3-[3-(3,5-dimethyl-2-oxycyclohexyl)-2-hydroxyethyl]-

5 qlutarimide

N-dichlorofluoromethylthio-N',N'-dimethyl-N-

phenylsulphodiamide

methyl DL-N-(2,6-dimethylphenyl)-N-(2'-methoxyacetyl)-alaninate

methyl DL-N-(2,6-dimethylphenyl)-N-(2-furoyl)alaninate N-(2,6-dimethylphenyl)-N-chloroacetyl-DL-2-amino-butyrolactone

2,4-dichloro-6-(2-chloroanilino)-s-triazine

O,O-diethyl phthalimidophosphonothioate

5-amino-1-(bis(dimethylamino)phosphinyl)-3-phenyl-1,2,4-triazole

O, O-diethyl S-benzyl thiophosphate

2-thio-1,3-dithio(4,5-b)quinoxaline

4-(2-chlorophenylhydrazono)-3-methyl-5-isoxazolone

20 pyridine-2-thiol 1-oxide,

8-hydroxyquinoline and its salts, sodium 4-dimethylaminophenyldiazosulfonate

diisopropyl 5-nitroisophthalate

2-cyano-N-(ethylaminocarbonyl)-2-(methoxyimino)-

25 acetamide

2-heptadecyl-2-imidazoline acetate dodecylquanidine acetate

The active compounds as such, in the form of their formulations or in the use forms prepared therefrom by further dilution, can be applied in the usual manner, for example by pouring, dipping, spraying, atomizing, fogging, injecting, slurrying, brushing on, dusting, scattering, dry seed treatment, solvent-based liquid treatment, water-based liquid treatment, slurry treatment or incrusting.

In the treatment of plant parts, the active compound concentrations in the use forms can be varied within a

substantial range. They are, in general, between 0.0001 and 1% by weight, preferably between 0.5 and 0.01% by weight. The application rates of active compound depend on the specific purpose and are generally between 0.1 and 3 kg of active compound per hectare.

In the treatment of seed, active compound quantities of from 0.001 to 50 g or more are generally required per kilogram of seed, preferably from 0.01 to 10 g.

- 10 For the conservation or post-harvest-treatment of agricultural commodities or processed agricultural products, the active compound quantities required are from 0.01 to 100 g per kilogram of product to be treated, preferably from 0.1 to 50 g.
- 15 Active compound concentrations of from 0.0001 to 0.1% by weight, preferably from 0.001 to 0.05% by weight, are required at the site of action when treating the soil.

Without imposing any limitation, the examples which follow are intended to illustrate the invention in greater detail and to demonstrate the activity of the compounds of the general formula I according to the invention.

25 Examples

The examples which follow illustrate the preparation of the compounds according to the invention.

Example 1

30 Methyl N-isotridecyl-2,6-dimethylmorpholinio-acetate chloride

30 g of N-isotridecyl-2,6-dimethylmorpholine and 10.9 g of methyl chloroacetate are refluxed for 20 hours in 100 ml of acetonitrile with addition of a catalytic amount of sodium iodide. The mixture is cooled and the solvent is distilled off in vacuo. The product is triturated in n-hexane. After concentration in vacuo,

38 g of a yellowish-brown viscous oil are obtained (compound No. 5).

IR spectrum (film: C = 0 - absorption 1740 cm⁻¹.

5 Example 2

3,4-Dichlorophenyl N-isotridecyl-2,6-dimethyl-morpholinio-acetate chloride

30 g of N-isotridecyl-2,6-dimethylmorpholine and 24 g
10 of 3,4-dichlorophenyl chloroacetate are refluxed for 16 hours in 100 ml of n-butanol with addition of a catalytic amount of sodium iodide. The mixture is cooled and the solvent is distilled off in vacuo. The product which remains is dissolved in a little diethyl ether and treated with n-hexane until its separation as oily phase is complete. After concentration in vacuo, 48 g of a dark brown resin are obtained (compound No. 55).

IR spectrum (film): C = O - absorption 1740 cm⁻¹ C = C - absorption (aromatic) 1590 cm⁻¹

Example 3

Methyl 2-(N-isotridecyl-2,6-dimethyl-morpholinio)propionate chloride

25

30

20

20 g of methyl 2-(2,6-dimethylmorpholino)propionate and 22 g of iso-tridecyl chloride (mixture of different C₁₁-C₁₄-alkyl chlorides containing 60 to 70% of n-tridecyl chloride) in 100 ml of dimethylformamide are refluxed for 10 hours. After cooling, the solvent is distilled off in vacuo. The product is dissolved in a little acetone and treated with n-hexane until its separation as oily phase is complete. Concentration in vacuo gives 19 g of a pale brown resin (compound No. 8).

35 IR spectrum (film): C = 0 - absorption 1735 cm⁻¹

Example 4

3-(N-iso-Tridecyl-2,6-dimethylmorpholinio)propyl 2,6-dimethylphenyl ether bromide

15 g of N-iso-tridecyl-2,6-dimethylmorpholine and 12.2 g of 3-bromopropyl 2,6-dimethylphenyl ether in 50 ml of acetonitrile are refluxed for 23 hours with addition of a catalytic amount of sodium iodide. After cooling, the solvent is distilled off in vacuo. The residue is taken up in a little acetone and the solution is treated with n-hexane until separation is complete. The oily phase is separated off and freed from residue solvent in vacuo. This gives 21 g of a yellowish-brown viscose oil (compound No. 107).

Example 5

10

2-(N-iso-Tridecyl-2,6-dimethylmorpholinio)-ethyl 3,4-15 dichlorophenyl ether chloride

17 g of 2-(2,6-dimethylmorpholino)-ethyl 3,4-dichlorophenyl ether and 11 g of iso-tridecyl chloride (mixture of various C₁₁-C₁₄-alkyl halides containing 60 to 70% of n-tridecyl chloride) in 50 ml of dimethylformamide are refluxed for 10 hours. The mixture is allowed to cool and the solvent is distilled off in vacuo. The residue which remains is dissolved in a little acetone and treated with n-hexane until its complete separation as oily phase.

The product is separated off and freed from residual solvent in vacuo. This gives 19 g of a brown resin-like product (compound No. 106).

30

35

The compounds of the general formula Ι hereinbelow, which, as a rule, are yellow to brown viscous oils or resins, are readily soluble in polar solvents such as, for example, alcohols, acetone, dimethylformamide and dimethyl sulphoxide and characterized by IR spectra are prepared analogously.

No.	R ¹	R ²	Z	R ³	х
1	n-decyl	CH ₂	0	methyl	Cl
2	n-dodecyl	CH ₂	0	methyl	Cl
3	n-tridecyl	CH ₂	0	methyl	Cl
4	1,5,9-	CH ₂	0	methyl	Cl
	trimethyldecyl				
5	iso-tridecyl	CH ₂	0	methyl	Cl
6	n-pentadecyl	CH ₂	0	methyl	Br
7	n-didecyl	CH ₂	0	methyl	Br
8	iso-tridecyl	CH (CH ₃)	0	methyl	Cl
9	iso-tridecyl	CH (C ₂ H ₅)	0	methyl	Br
10	iso-tridecyl	C (CH ₃) ₂	0_	methyl	Br
11	iso-tridecyl	C (C ₂ H ₅) ₂	0	methyl	Br
12	iso-tridecyl	CH (C ₅ H ₁₁)	0	methyl	Br
13	iso-tridecyl	(CH ₂) ₃	0	methyl	Cl
14	iso-tridecyl	CH ₂	0	n-butyl	Cl
15	iso-tridecyl	CH ₂	s	n-butyl	Cl
16	iso-tridecyl	CH ₂	0	2-ethylhexyl	Cl
17	iso-tridecyl	CH ₂	0	n-dodecyl	Cl
18	iso-tridecyl	CH ₂	0	iso-octadecyl	Cl
19	iso-tridecyl	CH ₂	0	4-hydroxybutyl	Cl
20	iso-tridecyl	CH ₂	0	2-ethoxyethyl	Cl
21	iso-tridecyl	CH ₂	0	4-chlorobutyl	Cl
22	iso-tridecyl	CH ₂	0	2,2,2-trichloro-	Cl
		,,,,		ethyl	
23	iso-tridecyl	CH ₂	0	2-nitroethyl	Cl
24	iso-tridecyl	CH ₂	0	2-cyanoethyl	Cl
25	iso-tridecyl	CH ₂	0	cyclopentyl	Cl
26	iso-tridecyl	CH ₂	s	cyclohexyl	Cl
27	iso-tridecyl	CH ₂	0	2,6-dimethyl-	Cl
				cyclohexyl	

No.	R ¹	R ²	Z	R ³	х
28	iso-tridecyl	CH ₂	0	cyclooctyl	Cl
29	iso-tridecyl	CH ₂	0	cyclododecyl	Cl
30	iso-tridecyl	CH ₂	0	5-(2-ethylcyclo-	Cl
30	Iso-cridecyr	Ch ₂		hexyl)pentyl	
31	iso-tridecyl	CH ₂	0	cyclododecyl-	Cl
31	Iso-cridecyr	Ch ₂		methyl	
32	iso-tridecyl	CH ₂	0	allyl	Cl
33	iso-tridecyl	CH ₂	0	crotyl	cl
			0	propargyl	Cl
34	iso-tridecyl	CH ₂			Cl
35	iso-tridecyl	CH ₂	0	phenyl	Cl
36	iso-tridecyl	CH ₂	S	phenyl	Cl
37	iso-tridecyl	CH ₂	0	1-naphthyl	Cl
38	iso-tridecyl	CH ₂	0	4-diphenyl	Cl
39	iso-tridecyl	CH ₂	0	2-chlorophenyl	Cl
40	iso-tridecyl	CH ₂	0	3-bromophenyl	
41	iso-tridecyl	CH ₂	0	4-chlorophenyl	Cl
42	iso-tridecyl	CH ₂		4-sec-butyl-	Cl
				phenyl	Cl
43	iso-tridecyl	CH ₂	0	4-tert-butyl-	CI
		GII	-	phenyl	Cl
44	iso-tridecyl	CH ₂	0	2-methoxyphenyl	Cl
45	iso-tridecyl	CH ₂	0	4-methoxyphenyl	Cl
46	iso-tridecyl	CH ₂	0	4-	
			-	propionylphenyl	01
47	iso-tridecyl	CH ₂	0	4-benzylphenyl	Cl
48	iso-tridecyl	CH ₂	0	2-nitrophenyl	Cl
49	iso-tridecyl	CH ₂	0	4-nitrophenyl	Cl
50	iso-tridecyl	CH ₂	0	4-cyanophenyl	Cl
51	iso-tridecyl	CH ₂	0	2,3-dichloro-	Cl
				phenyl	C.
52	iso-tridecyl	CH ₂	0	2,4-dichloro-	Cl
				phenyl	
53	iso-tridecyl	CH ₂	0	2,5-dichloro-	Cl
				phenyl	-
54	iso-tridecyl	CH ₂	0	2,6-dichloro-	Cl
				phenyl	-
55	iso-tridecyl	CH ₂	0	3,4-dichloro-	Cl

56 57		R ²	Z	R ³	X
57	iso-tridecyl		1		
57	iso-tridecyl	1	_	phenyl	
*		CH ₂	0	3,5-dichloro-	Cl
*				phenyl	ļ
*	iso-tridecyl	CH ₂	0	2,6-dimethyl-	Cl
				phenyl	ļ
58	iso-tridecyl	CH ₂	0	3,4-dimethyl-	Cl
				phenyl	
59	iso-tridecyl	CH ₂	0	2,3-dimethoxy-	Cl
				phenyl	ļ
60	iso-tridecyl	CH ₂	0	2-chloro-4-	Cl
				nitrophenyl	
63	iso-tridecyl	CH ₂	0	2,4,6-trichloro-	Cl
	· .			phenyl	
62	iso-tridecyl	CH ₂	0	2,3,5-trichloro-	C1
		_		phenyl	
63	iso-tridecyl	CH ₂	0	2,3,6-trimethyl-	Cl
				phenyl	
64	iso-tridecyl	CH ₂	0	2,6-dibromo-4-	Cl
				nitrophenyl	
65	iso-tridecyl	CH ₂	0	2,6-dibromo-4-	Cl
	_			cyanophenyl	
66	iso-tridecyl	CH ₂	0	2,4-dichloro-6-	Cl
				methylphenyl	
6'	iso-tridecyl	CH ₂	0	benzyl	Cl
68	iso-tridecyl	CH ₂	S	benzyl	Cl
69	iso-tridecyl	CH ₂	0	4-chlorobenzyl	Cl
70	iso-tridecyl	CH ₂	0	4-bromobenzyl	Cl
7:	. iso-tridecyl	CH ₂	0	4-methylbenzyl	Cl
7:		CH ₂	0	4-tert-butyl-	Cl
	_			benzyl	:
7:	iso-tridecyl	CH ₂	0	3-methoxybenzyl	Cl
74		CH ₂	0	4-nitrobenzyl	Cl
75		CH ₂	0	4-cyanobenzyl	Cl
76		CH ₂	0	2,4-dichloro-	Cl
/ /				benzyl	
7	iso-tridecyl	CH ₂	0	2,6-dichloro-	Cl
'	The criticely i	C112		benzyl	

No.	R ¹	R ²	z	R ³	х
78	iso-tridecyl	CH ₂	0	2,3,4-trichloro-	Cl
				benzyl	
79	iso-tridecyl	CH ₂	0	2,3,6-trichloro-	cl
				benzyl	
80	iso-tridecyl	CH ₂	0	3-phenylpropyl	Cl
81	iso-tridecyl	CH2-CO-O			

No.	R ¹	R ²	R ⁴	R ⁵	R ⁶	х
82	n-octyl	(CH ₂) ₂	2-Cl	6-Cl	Н	Br
83	n-dodecyl	(CH ₂) ₃	4-Cl	Н	Н	Br
84	n-tridecyl	(CH ₂) ₃	4-Cl	Н	Н	Br
85	1,5,9-trimethyl-	(CH ₂) ₃	4-Cl	н	н	Br
	decyl					
86	iso-tridecyl	(CH ₂) ₂	Н	Н	Н	Br
87	iso-tridecyl	(CH ₂) ₂	4-Cl	Н	Н	Cl
88	iso-tridecyl	(CH ₂) ₂	3-F	Н	Н	Br
89	iso-tridecyl	(CH ₂) ₂	4-tert-	н	Н	Cl
			butyl			
90	iso-tridecyl	(CH ₂) ₃	4-tert-	Н	Н	Br
			butyl			
91	iso-tridecyl	(CH ₂) ₂	4-OCH ₃	Н	Н	Br
92	iso-tridecyl	(CH ₂) ₃	3-CH ₃	Н	Н	Br
93	iso-tridecyl	(CH ₂) ₂	4-CO-CH ₃	Н	Н	Br
94	iso-tridecyl	(CH ₂) ₂	3-NH-CO-	н	н	Br
			CH ₃			
95	iso-tridecyl	(CH ₂) ₂	3-CO-	Н	н	Br
			OC ₂ H ₅			
96	iso-tridecyl	(CH ₂) ₂	3-CO-	н	н	Br
			$N(C_2H_5)_2$			

No.	R ¹	R ²	R ⁴	R ⁵	R ⁶	х
97	iso-tridecyl	(CH ₂) ₂	4-NO ₂	н	н	Br
98	iso-tridecyl	(CH ₂) ₂	4-CN	Н	н	Br
99	iso-tridecyl	(CH ₂) ₂	4-phenyl	н	н_	Cl
100	iso-tridecyl	(CH ₂) ₂	4-benzyl	н	Н	Cl
101	iso-tridecyl	(CH ₂) ₂	2-Br	4-Br	Н	Br
102	iso-tridecyl	(CH ₂) ₂	2-Cl	3-Cl	Н	Br
103	iso-tridecyl	(CH ₂) ₃	2-Cl	4-Cl	н	Br
104	iso-tridecyl	(CH ₂) ₃	2-Cl	5-Cl	Н	Br
105	iso-tridecyl	(CH ₂) ₂	2-Cl	6-Cl	Н	Br
106	iso-tridecyl	(CH ₂) ₂	3-Cl	4-Cl	Н	Br
107	iso-tridecyl	(CH ₂) ₃	2-CH ₃	6-CH ₃	Н	Br
108	iso-tridecyl	(CH ₂) ₂	3-CH ₃	4-CH ₃	н	Br
109	iso-tridecyl	(CH ₂) ₂	3-Cl	5-Cl	Н	Br
110	iso-tridecyl	(CH ₂) ₂	2-Cl	4-NO ₂	н	Br
111	iso-tridecyl	(CH ₂) ₂	2-C1	4-Cl	6-Cl	Br
112	iso-tridecyl	(CH ₂) ₂	2-CH ₃	4-CH ₃	6-CH ₃	Br
113	iso-tridecyl	(CH ₂) ₂	2-CH ₃	4-Cl	6-CH ₃	Br
114	iso-tridecyl	(CH ₂) ₄	2-CH ₃	4-Cl	6-CH ₃	Br
115	iso-tridecyl	(CH ₂) ₂	2-Cl	4-CN	6-Cl	Br
116	iso-tridecyl	(CH ₂) ₂	2-C1	4-NO ₂	6-Cl	Br
117	iso-tridecyl	(CH ₂) ₃	2-Br	4-SCX	6-Br	Br
118	n-C ₁₅ H ₃₁	(CH ₂) ₂	4-Cl	Н	Н	Br
119	n-C ₂₀ H ₄₁	(CH ₂) ₂	4-Cl	н	н	Br

_	IR spectra of compounds according to the invention
No.	(film) [cm-1]
5	2945, 2915, 2860, 1740, 1445, 1390, 1360, 1310,
	1195, 1165, 1130, 1100, 1020, 860
8	2955, 29302910, 2870, 2680, 2610, 2505, 1735,
	1455, 1370, 1325, 1170, 1125, 1080, 1040, 870, 830
14	2970, 2940, 2880, 2450, 1750, 1470, 1385, 1215,
	1150, 1120, 1065, 1030, 880
16	2950, 2920, 2865, 1735, 1450, 1365, 1200, 1160,
	1070, 1070, 1025, 860
24	2970, 2940, 2885, 2260, 1755, 1470, 1390, 1220,
	1180, 890, 850
35	2950, 2925, 2865, 1735, 1595, 1585, 1490, 1460,

	
	1370, 1260, 1215, 870
41	2960, 2930, 2875, 1750, 1605, 1595, 1465, 1440,
	1385, 1270, 1225, 1095, 1030, 875, 835
49	2960, 2930, 2870, 1745, 1610, 1595, 1510, 1500,
	1460, 1380, 1335, 1290, 1230, 1165, 1110, 850,
	750, 690, 630
55	2950, 2920, 2365, 1740, 1590, 1565, 1470, 1425,
	1375, 1320, 1280, 1210, 1115, 1080, 1015, 900,
	850, 810
65	2950, 2920, 2860, 2220, 1735, 1590, 1575, 1560,
	1530, 1460, 1370, 1285, 1230, 1190, 1125, 1080,
	870
82	2945, 2920, 2850, 2615, 1555, 1440, 1365, 1320,
	1235, 1190, 1170, 1100, 1040, 1030, 980, 890, 865,
	825
86	2950, 2925, 2870, 2600, 2410, 1595, 1495, 1460,
	1380, 1330, 1240, 1175, 1150, 1130, 1080, 1010,
	920, 895, 875, 835
87	3020, 2960, 2870, 2600, 2470, 1590, 1495, 1465,
	1380, 1215, 1180, 1155, 1135, 1085, 1005, 925,
	875, 825
90	2950, 2920, 2860, 2670, 2600, 2485, 1605, 1460,
	1365, 1330, 1290, 1245, 1175, 1145, 1130, 1110,
	1030, 1050, 1020, 875, 825
98	2945, 2930, 2870, 2610, 2225, 1510, 1460, 1380,
	1300, 1255, 1170, 1115, 1085, 1050, 1010, 875, 840
105	2960 2930, 2870, 2610, 1565, 1450, 1375, 1325,
	1245, 1175, 1140, 1065, 1045, 990, 905, 870
106	2950, 2920, 2870, 2690, 2680, 2620, 2480, 1590,
	1570, 1470, 1385, 1330, 1280, 1225, 1175, 1120,
	1085, 1060, 1015, 955, 870, 860, 835, 800
107	2960, 2925, 2870, 2680, 2610, 2490, 1585, 1470,
	1380, 1325, 1260, 1195, 1175, 1130, 1085, 1050,
	870, 830
113	2955, 2920, 2865, 2680, 2610, 2490, 2225, 1525,
	1455, 1375, 1325, 1255, 1175, 1130, 1080, 1020,
	870, 830

The compounds of the general formula I according to the invention can be employed for example in the form of the following preparations:

5 Example I

Solution concentrates: 80 parts by weight of compound 5 are mixed with 20 parts by weight of n-methyl-2-pyrrolidone. This gives a solution which is suitable for use in the form of microdrops.

10

15

Example II

Emulsifiable concentrates: 25 parts by weight of compound 55 are mixed with 2.5 parts by weight of epoxidized vegetable oil, 10 parts by weight of an alkylarylsulphonate/fatty alcohol polyglycol mixture, 5 parts by weight of dimethylformamide and Emulsions of 57.5 parts by weight of xylene. desired concentration can be prepared from this concentrate by diluting it with water.

20

35

Example III

Wettable powder: 40 parts by weight of compound 65 are mixed thoroughly with 5 parts by weight of the sodium salt of a ligninsulphonic acid from a sulphite waste liquor, 1 part by weight of diisobutylnaphthalenesulphonic acid sodium salt and 54 parts by weight of silica gel, and the mixture is ground in a suitable mill. This gives a wettable powder which can be diluted with water to give suspensions of any desired concentration.

Example IV

Dust: 5 parts by weight of compound 55 are mixed intimately with 95 parts by weight of finely divided kaolin and the mixture is ground. For use, the dusts can be dusted in this form.

Example V

Granules: 5 parts by weight of compound 57 are mixed with 0.25 part by weight of epichlorohydrin and the mixture is dissolved using 6 parts by weight 3.5 Thereafter, parts by weight of acetone. polyethylene glycol and 0.25 part by weight of cetyl polyglycol ether are added. The resulting solution is kaolin. Thereafter, the acetone sprayed onto evaporated in vacuo. This give microgranules which can be employed in this form.

Without imposing any limitation, the examples which follow are intended to illustrate the invention in greater detail and to demonstrate the activity of the compounds of the general formula I:

Example A

10

15

Mycelial growth test

The fungicidal activity of the compositions against the 20 test fungi is determined in the customary manner as the inhibition of the radial mycelial growth on malt agar medium (2% malt) in Petri dishes of 9 cm diameter at an incubation temperature of 25°C. To this end, the active compounds are dissolved in dimethylformamide, diluted 25 with water and in this form admixed to the liquid agar so that the desired active compound concentration in the medium is obtained. The DMF content does not exceed After cooling, the plates by volume. inoculated. Depending on the growth rate of the fungi, 30 the plates are evaluated when the controls without added active compound show growth across 70 to 90% of diameter of the dish. The percentage growth inhibition of the active compounds is calculated (Table 35 A) .

Table A: Fungal growth inhibition in the mycelial growth test

5

		Growth i	nhibition in
		pe	ercent
		Botrytis	Phytophthora
		cinerea	cactorum
Compound No.	Active	•	
	compound	10 μg/ml	50 μg/ml
	conc.		
Oxycarboxin (known)		20	50
5		88	85
8		91	48
9		92	51
14		89	100
16		79	100
24		91	
35		78	67
41		86	100
49		84	60
55		97	100
57		94	100
64		92	100
65		95	100
81		78	
82		22	
86		90	
87		87	
90		85	
98		86	100
105		83	81
106		88	
107		80	
125		92	100

Example B

Powdery mildew of barley test (Erysiphe graminis/barley)

In tubes filled with sand, barley plants cv. "Astacus" in the one-leaf-stage are sprayed until dew-moist with active compound preparations which are prepared from 1 part by weight of active compound, 100 parts by weight of dimethylformamide and 0.25 part by weight of alkylaryl polyglycol ether and which are diluted with 10 water to the desired active compound concentration. After the spray coating has dried on, the plants are dusted with conidia of powdery mildew of barley (Erysiphe graminis var. hordei). Thereafter, the test plants are placed for a period of 2 to 3 hours into an 15 incubation cabinet at a relative atmospheric humidity of 90 to 100% and thereafter in a greenhouse at and 22°C and temperatures between 20 a relative 80%. atmospheric humidity of 75 to The mildew infestation of the barley plants is determined after 7 20 The score values obtained according to the days. system (Arch. Phytopath., Pfl.-schutz Stephan (1978), 163-175) are converted into the disease level of Krüger's system (Nachr.-Bl. Pflanzenschutz DDR 1981, 145-147). These data are used to calculate the ABBOTT 25 efficiency using the formula

EFF (in %) = diseaselevel(control)-diseaselevel(variant) x 100 diseaselevel(control)

30 The results can be seen from Table B.

Table B: Activity against Erysiphe graminis on barley
Active compound concentration: 10 mg/l

Compound No.	Efficiency
	in percent
N-Methyl-N-tridecyl-2,6-dimethyl-	
morpholine methosulphate	
(disclosed in DE-PS 11 67 588)	82
Triforine (known)	86
5	88
8	82
9	87
14	93
24	97
35	94
55	88
65	90
5	96
24	92
25	93
26	95
34	97

Example C

Powdery mildew of wheat test (Erysiphe graminis/wheat)

Pot-grown wheat plants cv. "Alcedo" in the one-leafstage are sprayed until dew-moist with active compound preparations which are prepared from 1 part by weight compound, 100 by weight active parts dimethylformamide and 0.25 part by weight of alkylaryl polyglycol ether and which are diluted with water to 10 the desired active compound concentration. After the spray coating has dried on, the plants are dusted with conidia (spores) of powdery mildew of wheat (Erysiphe graminis var. tritici). Thereafter, the test plants are placed for a period of 2 to 3 hours into an incubation 15 cabinet at a relative atmospheric humidity of 90 to 100% and thereafter in a greenhouse at temperatures between 20 and 22°C and a relative atmospheric humidity of 75 to 80%.

20

The mildew infestation of the wheat plants is determined after 5 days.

The efficacy of the compositions is calculated using the method described in Example B.

25 The results can be seen from Table C.

Table C: Activity against Erysiphe graminis on wheat Active compound concentration: 100 mg/l

Compound No.	Efficiency	
	in percent	
N-Methyl-N-tridecyl-2,6-dimethyl-	67	
morpholinium methosulphate		
(disclosed in DE-PS 11 67 588)		
5	88	

Example D

25

Cereal rust test (Puccinia recondita/wheat)

Pot-grown wheat plants cv. "Alcedo" in the two-leaf 5 stage are cut back to a length of 12 cm. The secondary leaf of the plants is removed. Then, the wheat plants are sprayed with active compound preparations which are prepared from 20 parts by weight of active compound, 10 of polyoxyethylene sorbitan weight 10 parts by monostearate (Tween 60), 5 parts by weight of glycol, 25 parts by weight polypropylene cyclohexanone and 40 parts by weight of toluene and diluted with water to the desired active compound concentration. After the spray coating has dried on, 15 the plants are inoculated with spores of leaf rust of wheat (Puccinia recondita) which are applied in the form of a slurry in water with addition of Tween 60. Thereafter, the test plants are placed into a watervapour-saturated incubation cabinet for a period of 24 20 hours and thereafter in a greenhouse at temperatures of from 20 to 22°C and a relative atmospheric humidity of 70 to 80%.

The rust infection of the wheat plants is determined after 10 days.

The efficacy of the compositions is calculated using the method described in Example B.

The results can be seen from Table D.

30 Table D: Activity against Puccinia recondita on wheat Active compound concentration: 500 mg/l

Compound No.	Efficacy in
	percent
Triforine (known)	85
105	99
107	98
5	95

Example E

Powdery mildew of cucurbits test (mixed culture of Erysiphe cichorarearum and Sphaerotheca fuliginea/cucumber)

5

10

15

20

Pot-grown cucumber plants cv. "Eva" in the four-leafstage are inoculated with a conidial suspension of a cichoracearum culture of Erysiphe mixed Sphaerotheca fuliginea. After 4 days, the plants are active dew-moist with compound until sprayed preparations which are prepared from 1 part by weight 100 by weight active compound, parts dimethylformamide and 0.25 part by weight of alkylaryl polyglycol ether and diluted with water to the desired active compound concentration. After the spray coating has dried on, the plants are placed in a greenhouse at 20°C under relative atmospheric temperature of humidity of 70 to 80%. The mildew infection of the cucumber plants is determined after 6 and 9 days. The of score values obtained by the system (Nachrichtbl. Dt. Pflanzenschutzdienst 16 (1964), 92-94) are converted into the disease level of Krüger's system and these data are used for calculating the Abbot efficiency.

25 The results can be seen from Table E.

Table E: Activity against Erysiphe cichoracearum and Sphaerotheca fuliginea (mixed culture) on cucumbers

Active compound concentration: 500 mg/l

Compound No.

Efficiency in percent

Days after application of the composition

	6	99
Tridemorph (known)	100	88
5	100	100

Example F

Botrytis test (Botrytis cinerea/field bean (Vicia faba) pinnule)

Excised pinnules of pot-grown field bean plants (Vicia faba) cv. "Fribo" in the four-leaf stage are brushed with active compound preparations which are prepared from 1 part by weight of active compound, 100 parts by weight of dimethylformamide and 0.25 part by weight of alkylaryl polyglycol ether and diluted with water to 10 the desired active compound concentration. After the spray coating has dried on, the leaves are inoculated with a conidial suspension of Botrytis cinerea which is obtained by rinsing off 12- to 16-day old fungal cultures on malt agar medium (2% malt). The field-bean 15 pinnules are kept in dishes in an incubation cabinet at temperature of 22°C under relative atmospheric humidity of 90 to 100%.

After 4 days, the Botrytis infection of the field-bean pinnules is determined. The percentage infection based on all of the leaf area is converted into the Abbot efficacy of the compositions.

The results can be seen from Table F.

25 Table F: Activity against Botrytis cinerea on field bean (Vicia faba) pinnules

Active compound concentration: 100 mg/l

Compound No.	Efficiency
	in
	percent_
Tridemorph(known)	42
5	45
14	68
55	48
105	62
106	47
107	51

Example G Phytophthora test (Phythophthora infestans/tomato)

Pot-grown tomato plants cv. "Tamina" in the three-leaf-5 stage are sprayed to dew point with active compound preparations which are prepared from 1 part by weight compound, 100 parts by weight active dimethylformamide and 0.25 part by weight of alkylaryl polyglycol ether and diluted with water to give the desired active compound concentration. After the spray 10 coating has dried on, the tomato plants are inoculated with an aqueous zoospore suspension of Phythophthora infestans. Thereafter, the test plants are placed into an incubation cabinet at temperatures of between 18 and 20°C and a relative atmospheric humidity of 95 to 100%. 15 The Phythophthora infection of the tomato plants is determined after 5 days. The scores obtained are converted into the disease level and the efficacy of the compositions as described in Example B.

20 The results are shown in Table G.

Table G: Activity against Phythophthora infestans on tomatoes

Compound No.	Active compound	efficiency in	
	concentration in	percent	
	mg/l		
Zineb (known)	100	57	
	200	61	
105	100	66	
	200	79	

Example H

15

Plant growth regulation test

Cucumber plants cv. "Eva" are grown in the greenhouse to a height of 9 cm in pots in rich humus compost. Ten plants are used for each test variant. The cucumber plants are sprayed with active compound preparations which are prepared from 1 part by weight of active compound, 100 parts by weight of dimethylformamide and 0.25 part by weight of alkylaryl polyglycol ether and diluted with water to the desired active compound concentration.

After a growth period of 14 days after the compositions have been applied, longitudinal measurements are carried out on the treated plants and the untreated control plants.

The results can be seen from Table H.

Table H: Effect of foliar treatment on the longitudinal growth of cucumber plants

Active compound concentration: 1000 mg/l

Compound No.	Plant height	
<u> </u>	in cm	relative
untreated control	23	100
5	15.6	68
105	15	65

Patent Claims

N-Alkyl-2,6-dimethylmorpholiniocarboxylic ester salt and N-alkyl-2,6-dimethylmorpholinio alkyl-phenyl ether salt of the general formula I,

wherein A represents the group

- CO - Z -
$$\mathbb{R}^3$$
 or \mathbb{R}^4

10

15

20

in which

- R¹ represents straight-chain or branched alkyl having 6 to 20 C atoms,
- ${\ensuremath{\mathsf{R}}}^2$ represents straight-chain or branched alkylene having 1 to 6 C atoms,
- ${\ensuremath{\mathsf{R}}}^3$ represents straight-chain or branched alkyl having 1 to 20 C atoms,

a straight-chain or branched alkyl which has 1 to 6 C atoms and which is substituted by halogen, hydroxyl, alkoxy having 1 to 4 C atoms, dialkylamino having 2 to 16 C atoms, nitro and/or cyano,

an alkenyl which has 2 to 6 C atoms and which is optionally substituted by halogen,

alkynyl having 3 to 6 C atoms,
cycloalkyl having 3 to 12 carbon atoms, it
being possible for the cycloalkyl radical

optionally to be substituted by one or more alkyl radicals having 1 to 7 C atoms, $\,$

cycloalkylalkyl having 4 to 10 C atoms,

5

10

15

20

25

30

35

can monosubstituted aryl which be identical polysubstituted or different by consisting of substituents from the series straight-chain or branched alkyl having 1 to 6 C atoms, alkoxy having 1 to 4 C atoms, aryllower-alkyl having 7 to 12 C atoms, acyl having 1 to 4 C atoms, halogen, aryl, nitro and/or cyano,

aryl-lower-alkyl which has 7 to 12 C atoms and which can be monosubstituted or polysubstituted by identical or different substituents from the series consisting of straight-chain or branched alkyl having 1 to 6 C atoms, alkoxy having 1 to 4 C atoms, halogen, haloalkyl having 1 to 4 C atoms, nitro and/or cyano,

- R^4 , R^5 and R^6 independently of another one represent identical or different substituents consisting of hydrogen, the series straight-chain or branched alkyl having 1 to 6 C atoms, alkoxy having 1 to 4 C atoms, acyl having 1 to 4 C atoms, halogen, haloalkyl having 1 to 4 C atoms, cycloalkyl having 3 to 7 C atoms, aryl-lower-alkyl having 7 to 12 C atoms, aryl, nitro, cyano, thiocyanato, NHCOR', COOR' and/or CONR'R" it being possible for R' independently of one another and R" represent hydrogen, straight-chain or branched alkyl having 1 to 6 C atoms, aryl or aryllower-alkyl having 7 to 12 C atoms,
 - Z represents oxygen or sulphur and X^- represents the anion of a nonphytotoxic acid, or R^3 and X^- are absent.
- 2. Compounds according to Claim 1, characterized in that R^2 is CH_2 or $CH(CH)_3$, R^3 is C_1-C_{14} -alkyl and Z is oxygen.

- 3. Compounds according to Claim 1, characterized in that R^2 is CH_2 , R^3 is halophenyl and Z is oxygen.
- 5 4. Compounds according to Claim 1, characterized in that R^2 is CH_2 , R^3 is alkylphenyl having 7 to 12 C atoms and Z is oxygen.
- 5. Process for the preparation of N-alkyl-2,6dimethylmorpholiniocarboxylic ester salts and
 N-alkyl-2,6-dimethylmorpholinio alkylphenyl ether
 salts of the general formula I, characterized in
 that
- a) an N-alkyl-2,6-dimethylmorpholine of the formula II,

$$H_3C$$

$$N - R^1$$
(II)

wherein R¹ has the meaning given in the general formula I is reacted with a compound of the formula III

$$X - R^2 - A \tag{III}$$

25

wherein R^2 and A have the meaning given in the general formula I and X represents halogen, or,

b) a 2,6-dimethylmorpholinocarboxylic ester or 2,6-dimethylmorpholino alkylphenyl ether of the formula IV,

wherein R^2 and A have the meaning given in the general formula I is reacted with a compound of the formula V,

$$R^1 - X$$
 (V)

wherein R¹ has the meaning given in the general formula I and X represents halogen.

5

15

20

25

- 6. Fungicidal compositions with additional plantgrowth-regulatory activity, containing at least one compound of the general formula I according to Claim 1.
- 7. Fungicidal compositions with additional plantgrowth-regulatory activity, containing at least one compound of the general formula I according to Claim 1 in admixture with inert additives.
- 8. Method of combating fungi, characterized in that at least one compound of the general formula I according to Claim 1 is allowed to act on fungi or on the objects to be protected from fungal infection.
- Use of compounds of the general formula I according to Claim 1 for combating fungi and/or for regulating the growth of plants.