

Machine Learning: What's The Challenge?

Goals of the course

- Identify a machine learning problem
- Use basic machine learning techniques
- Think about your data/results

What is Machine Learning?

- Construct/use algorithms that learn from data
- More information
 Higher performance
- Previous solutions
 Experience

Example

- Label squares: size and edge color
- Earlier observations (labeled by humans):

• Task for computer = **label** unseen square:

Result: right or wrong!

Input Knowledge

In example: pre-labeled squares

Observations

In R — use data.frame()

Data Frame Functions

> dim(squares) #Observations, #Features

Formulation

ML: What It Is Not

- Determining most occurring color
- Calculating average size

Goal: Building models for prediction!

Regression

INPUT: WeightOUTPUT: Height

Estimated function:

More Applications!

- Shopping basket analysis
- Movie recommendation systems
- Decision making for self-driving cars
- and many more!

Let's practice!

Classification Regression Clustering

Common ML Problems

- Classification
- Regression
- Clustering

Classification Problem

Goal: predict category of new observation

Classification Applications

- Medical Diagnosis
 Sick and Not Sick
- Animal Recognition Dog, Cat and Horse

Important:

- Qualitative Output
- Predefined Classes

Regression

PREDICTORS

REGRESSION FUNCTION

RESPONSE

- Relationship: Height Weight?
- Linear?
- Predict: Weight Height

Regression Model

Fitting a linear function

Height $\approx \beta_0 + \beta_1 \times \text{Weight}$

• Predictor: Weight

Response: Height

• Coefficients: β_0, β_1

Estimate on previous input-output

> lm(response ~ predictor)

Regression Applications

- Payments —— Credit Scores
- TimeSubscriptions
- Grades
 Landing a Job

- Quantitative Output
- Previous input-output observations

Clustering

- Clustering: grouping objects in clusters
 - Similar within cluster
 - Dissimilar between clusters
- Example: Grouping similar animal photos
 - No labels
 - No right or wrong
 - Plenty possible clusterings

k-Means

Cluster data in k clusters!

Let's Practice

Supervised vs. Unsupervised

Machine Learning Tasks

- Classificationquite similarRegression
- Clustering

Supervised Learning

Find: function **f** which can be used to assign a **class** or **value** to **unseen observations**.

Given: a set of labeled observations

Supervised Learning

Unsupervised Learning

- Labeling can be tedious, often done by humans
- Some techniques don't require labeled data
- Unsupervised Learning
 - Clustering: find groups observation that are similar
 - Does not require labeled observations

Performance of the model

- Supervised Learning
 - Compare real labels with predicted labels
 - **Predictions** should be similar to **real** labels
- Unsupervised Learning
 - No real labels to compare
 - Techniques will be explained in this course

Semi-Supervised Learning

- A lot of unlabeled observations
- A few labeled
- Group similar observations using clustering
- Use clustering information and classes of labeled observations to assign a class to unlabelled observations
- More labeled observations for supervised learning

Let's practice!