Getting Started with RYSTAL23: From Geometry to Single-Point Calculations

Andreha Gelli – PhD student andreha.gelli@unito.it

MSSC2025
TORINO 8-12 SEP 2025

What you will learn today

AFTERNOON SE MONDAY 8th Time Hands-On Kickoff BEGINNERS Davide Mitoli 14.30 - 16:00 Geometry Input Andreha Gelli 16:00 - 16:30 Cofee Break Basis Set, SCF and 16:30 - 18:00 Single-Point Energy Andreha Gelli

- Understand CRYSTAL input structure
- Explore geometry, basis set and functionals initialization
- Run a first single-point calculation

Please note: coffee break from 16:00 to 16:30

Usefull links

General resources:

- Website
- <u>Manual</u>
- Forum

Tutorials

Getting started:

- A quick tour of CRYSTAL
- **►** Introduction

Tutorials

Input details:

- **Geometry**
- **Basis Set**
- Functionals & Others
- Total energy calculation

General structure of a CRYSTAL input

Please log to the Virtual Machine and navigate to the following folder:

► MSSC2025/Basic/Day1/1_single_point_example

```
$ cd MSSC2025/Basic/Day1/1_single_point_example
$ ls
diis_Fg diis_Fia2 fort.10 fort.21 fort.62 fort.9
fort.98 mgo_input.out
diis_Fia1 diis_Sk fort.11 fort.61 fort.8 fort.95
mgo_input.d12
$ vi mgo_input.d12
```

MgO bulk CRYSTAL 0 0 0 225 4.21 2 12 0. 0. 0.	Geometry	Title Dimensionality of the system Crystallographic information Space group Lattice parameters Number of atoms in the cell Atomic position
8 0.5 0.5 0.5 END 12 3 1 0 3 2. 0. 1 1 3 8. 0. 1 1 3 2. 0. 8 2 1 0 3 2. 0.	Basis set	End of the block For each atom: atomic number and the number of shells. For each shell: type of basis set (0-1-2), type of shell (0-1-2-3-4), number of primitives GTF, shell electronic charge, scale factor.
1 1 3 6. 0. 99 0 END SHRINK 8 8 END	SCF & Co	End of the block Sampling of k points in reciprocal space End of the block

Deep dive: Geometry block

- MgO bulk
- CRYSTAL 0 0 0 225
- 4.21

2

12 0. 0. 0. 8 0.5 0.5 0.5

END

- **2. Dimensionality** of the system: CRYSTAL, SLAB; POLYMER and MOLECULE, for 3D, 2D, 1D and 0D, respectively.
- **3.** Crystallographic information (3D only), three integer numbers for:
- convention for the space group identification: sequential number (0) or alphanumeric code (1).
- type of cell for rhombohedral groups: hexagonal (0) or rhombohedral (1).
- setting of the origin.

1. **Title** section.

- 4. Space group, check Symmetry groups p. 418 of the manual.
- **5. Lattice parameters**: the *minimal* set of crystallographic cell parameters is indicated (in Angstrom and degrees). For cubic system a=b=c. Note that CRYSTAL works on the primitive cell.
- **6.** Number of non-equivalent atoms in the cell and **atomic position** (coordinates in fractional units).
- 7. Closing the geometry input section.

Constructing the geometry

CRYSTAL inputs can be built starting from common structure files. Most used formats: .xyz (molecules) and .cif (crystals).

From .xyz to .d12:

```
Water
                                                MOLECULE
3
                                                            ! C_{2v}
                                                 15
Water molecule
   0.000000
             0.000000
                       0.000000
                                                    0.000000
                                                             0.000000
                                                                       0.000000
   0.758602
             0.000000
                       0.504284
                                                    0.758602
                                                             0.000000
                                                                       0.504284
   -0.758602
            0.000000
                       0.504284
                                                 1 -0.758602
                                                             0.000000
                                                                       0.504284
                                                 END
```

Constructing the geometry

From .cif to .d12:

```
data_MgO
_symmetry_space_group_name_H-M Fm-3m
_cell_length_a 4.19400279
_cell_length_b 4.19400279
cell length c 4.19400279
_cell_angle_alpha 90.00000000
_cell_angle_beta 90.00000000
_cell_angle_gamma 90.00000000
_symmetry_Int_Tables_number 225
_chemical_formula_structural MgO
_chemical_formula_sum 'Mg4 O4'
cell volume 73.77108036
_cell_formula_units_Z
4loop
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
1 'x, y, z'
2 2 '-x, -y, -z'
```

```
loop
_atom_type_symbol
_atom_type_oxidation_number
Mg2+ 2.0
02 - 2.0
loop_
_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
Mg2+ Mg0 4 0.00000000 0.00000000 0.00000000 1
02- 01 4 0.00000000 0.00000000 0.50000000 1
```

MgO bulk
CRYSTAL
0 0 0
225
4.19400279
2
12 0. 0. 0.
8 0. 0. 0.5
END

Constructing the geometry

From The Materials Project:

Atomic Positions				
Wyckoff	Element	x	у	z
4a	Mg	0	0	0
4b	0	0	0	1/2

Symmetry	
Crystal System	Cubic
Lattice System	Cubic
Hall Number	-F 4 2 3
International Number	225
Symbol	Fm3m
Point Group	m3m

Run a geometry test

Before running a full calculation, it's good practice to check the geometry. CRYSTAL provides the keyword:

TESTGEOM → stops after checking the input geometry

```
$ cd MSSC2025/Basic/Day1/2_first_block_geometry/1_testgeom

$ ls

0D 1D 2D 3D

$ cd 0D

$ ls

1_benzene 2_methane

$ cd 1_benzene

$ runCRY23 benzene_testgeom
```

Analyze the .out file

\$ vi benzene_testgeom.out

How to visualize

CRYSPLOT

From the file: .out

CRYSPL

Make a plot **▼**

What is

Sample files

Band structure

Band structure plot

Density of states

Density of states plot

Crystal orbital overlap population

Crystal orbital Hamiltonian population

Unified plot of band structure and density of states

Vibrational spectra & animations

Electron charge density and Electrostatic potential

Electrostatic potential map

Electron charge density map

Difference map from a single file

Difference map from multiple files

Electron charge density profile

Electron momentum density

Compton profiles

Autocorrelation function

Elastic properties

Vibrational spectra

Infrared spectra

Infrared spectra comparison

Raman spectra

Raman spectra comparison

Raman and infrared spectra

Reflectance spectra

Complex dielectric function

Phonon dispersion

Phonon band structure

Phonon density of states

Volumetric data

Transport properties

Electron conductivity

Seebeck coefficient

Electron thermal conductivity

Seebeck ² σ

TOPOND

Topological analysis map

Topological analysis difference map

Geometry optimization

Geometry structure

How to visualize

	File format	PROS	CONS
Moldraw	.out .f98 .d12	Integrated with CRYSTAL; can visualize MOs and densities	Outdated GUI
JMol	.cif .xyz .out	Cross-platform, lightweight, Java-based	Limited for advanced density visualization
<u>OVITO</u>	.cif .xyz	Great for extended systems and animations	Not designed for molecular orbitals
<u>VESTA</u>	.cif	Excellent for crystals, densities, isosurfaces	Requires some setup

Supercells

The keyword **SUPERCEL** creates a supercell by transforming the lattice vector of the primitive cell, while **SUPERCON** creates a supercell by transforming the lattice vector of the conventional cell.

SUPERCEL

rec	variable	meaning
• *	Е	expansion matrix E (IDIMxIDIM elements, input by rows: 9 reals (3D); 4 reals
		(2D); 1 real (1D)

```
$ cd MSSC2025/Basic/Day1/2_first_block_geometry/2_supercells
$ ls
1_supercell 2_supercon
$ cd 1_supercell/
$ vi diamond_supercell_testgeom.d12
```

SUPERCELL 2 0 0 0 2 0 0 0 2

Other keywords

Geometry keywords

Symmetry inform	nation		
ATOMSYMM	printing of point symmetry at the atomic positions	43	_
MAKESAED	F ()	54	_
PRSYMDIR	ry	69	_
SYMMDIR	F	78	_
SYMMOPS	P	78	_
TENSOR	print tensor of physical properties up to order 4	78	Ι
Symmetry inform	nation and control		
BREAKELAS	symmetry breaking according to a general distortion	44	Ι
BREAKSYM	allow symmetry reduction following geometry modifications	44	_
KEEPSYMM	maintain symmetry following geometry modifications	54	_
MODISYMM	removal of selected symmetry operators	55	I
PURIFY	cleans atomic positions so that they are fully consistent with the group	69	-
SYMMREMO	removal of all symmetry operators	78	_
TRASREMO	removal of symmetry operators with translational components	78	_
Modifications wi	thout reduction of symmetry		
ATOMORDE	reordering of atoms in molecular crystals	41	_
NOSHIFT	no shift of the origin to minimize the number of symmops with	64	_
	translational components before generating supercell		
ORIGIN	shift of the origin to minimize the number of symmetry operators with translational components	64	-
PRIMITIV	crystallographic cell forced to be the primitive cell	68	_
ROTCRY	rotation of the crystal with respect to the reference system cell	70	I

Atoms and cell m	anipulation - possible symmetry reduction (BREAKSYMM)		
ATOMDISP	displacement of atoms	41]
ATOMINSE	addition of atoms	41]
ATOMREMO	removal of atoms	42]
ATOMROT	rotation of groups of atoms	42]
ATOMSUBS	substitution of atoms	43]
ELASTIC	distortion of the lattice	47	I
POINTCHG	point charges input	68	I
SCELCONF	generation of supercell for configuration counting	73]
SCELPHONO	generation of supercell for phonon dispersion	73	I
SUPERCEL	generation of supercell - input refers to primitive cell	75	1
SUPERCON	generation of supercell - input refers to conventional cell	75	1
USESAED	given symmetry allowed elastic distortions, reads δ	78	I
From crystals to	slabs $(3D\rightarrow 2D)$		
SLABINFO	definition of a new cell, with $xy \parallel$ to a given plane	72]
SLABCUT	generation of a slab parallel to a given plane (3D \rightarrow 2D)	71	I
From slabs to sin	gle and multi-wall nanotubes $(2D\rightarrow 1D)$		
NANOTUBE	building a nanotube from a slab	59	I
SWCNT	building a nanotube from an hexagonal slab	77	1
NANOMULTI	building a multi-wall nanotube from a slab	62	I
From periodic str	ructures to clusters		
CLUSTER	cutting of a cluster from a periodic structure (3D→0D)	45	
CLUSTSIZE	maximum number of atoms in a cluster	46	
FULLE	building a fullerene from an hexagonal slab $(2D\rightarrow 0D)$	52	
HYDROSUB	border atoms substituted with hydrogens $(0D\rightarrow 0D)$	54	

Deep dive: Basis set block

CRYSTAL performs ab initio calculations on periodic systems within the linear combination of atomic orbitals (LCAO) approximation. That is, the crystalline orbitals (CO) are treated as linear combinations of Bloch functions (BF):

$$\psi_i(\mathbf{r};\mathbf{k}) = \sum_{\mu} a_{\mu,i}(\mathbf{k}) \phi_{\mu}(\mathbf{r};\mathbf{k})$$

$$\phi_{\mu}(\mathbf{r};\mathbf{k}) = \sum_{\mathbf{g}} arphi_{\mu}(\mathbf{r} - \mathbf{A}_{\mu} - \mathbf{g}) \ e^{i\mathbf{k}\cdot\mathbf{g}}$$

defined in terms of local functions, hereafter indicated as atomic orbitals (AO). Those local functions are expressed as linear combination of a certain number of Gaussian type functions

$$arphi_{\mu}(\mathbf{r}-\mathbf{A}_{\mu}-\mathbf{g})=\sum_{j}^{n_{G}}d_{j}\;G(lpha_{j};\mathbf{r}-\mathbf{A}_{\mu}-\mathbf{g})$$

The AOs belonging to a given atom are grouped into shells.

Goal: define AO expansions grouped in shells

For **each atom**: atomic number and the number of shells.

For **each shell**: type of basis set, type of shell, number of primitives GTF, shell electronic charge, scale factor.

	Basis set types
0	general: exponent and contraction coefficients defined in input
1	Pople STO-nG type
2	Pople 3(6)-21G type

	Shells				
Code	Type	AO	AO order	Max charge	
0	S	1	s	2	
1	sp	4	s, x, y, z	8	
2	p	3	x, y, z	6	
3	d	5	$2z^2-x^2-y^2$, xz, yz,	10	
4	f	7	$(2z^2-3x^2-3y^2)z$, $(4z^2-x^2-y^2)x$, $(4z^2-x^2-y^2)y$, $(x^2-y^2)z$,	0 - polarization only	
3	d	5	$2z^2-x^2-y^2$, xz, yz, x^2-y^2 , xy $(2z^2-3x^2-3y^2)z$, $(4z^2-x^2-2z^2-2z^2-3z^2-3z^2)z$	10 0 - polarization	

The formal **shell electronic charge** is the number of electrons attributed to each shell as initial electronic configuration.

Goal: define AO expansions grouped in shells

Back to our first example - MgO

```
123
                                 Magnesium – 3 shells
1 0 3 2. 0.
                                  Pople STO-nG bs – shell s – 3 primitives GTF – 2e<sup>-</sup> – scale factor
1 1 3 8. 0.
                                  Pople STO-nG bs – shell sp – 3 primitives GTF – 8e<sup>-</sup> – scale factor
1 1 3 2. 0.
                                  Pople STO-nG bs – shell sp – 3 primitives GTF – 2e – scale factor
82
                                  standard Pople value for STO-nG is used when the scale factor value is 0
1 0 3 2. 0.
                                 Oxygen -2 shells
1 1 3 6. 0.
                                  Pople STO-nG bs – shell s – 3 primitives GTF – 2e<sup>-</sup> – scale factor
99 0
                                  Pople STO-nG bs – shell sp – 3 primitives GTF – 6e<sup>-</sup> – scale factor
END
```

Using this basis set we have:

```
3 shells for Mg -> s(1AO), sp (4AO), sp(4AO) => 9 AO for Mg atom in MgO 2 shells for O -> s(1AO), sp (4AO) => 5 AO for O in MgO For a total of 14 AO.
```

Info on the BS in the .out file

```
$ cd MSSC2025/Basic/Day1/1_single_point_example
$ vi mgo_input.out
```

```
$ cd MSSC2025/Basic/Day1/3_second_block_basis_set
$ ls
1_MgO_bs 2_Si_bs

Si with different basis sets

Ionic and neutral MgO
```

Other options

A set of pre-defined basis sets are available by using the keyword **BASISSET**. Note that when specifying this keyword, the **END** to close the GEOMETRY input section and the keywords **99 0** and **END** are no more necessary.

Keyword	Description
STO-3G	Pople's STO-3G minimal basis set (153)
STO-6G	Pople's STO-6G minimal basis set (136)
POB-DZVP	POB double- ζ valence + polarization set for solid state systems (135, 49, 74)
POB-DZVPP	POB double- ζ valence basis set + a double set of polarization functions for solid state systems (135, 49, 83)
POB-TZVP	POB triple- ζ valence + polarization basis set for solid state systems (135, 49, 83)

The shell charge may correspond to a neutral atom, as in this case, or to an ion (for MgO, Mg and O, or Mg⁺⁺ and O⁻⁻), but the net charge in the cell must be zero, the cell must be neutral.

Remember:

- Basis for each element in the geometry ✓
- Balanced across species ✓
- End with 99 0 and END 🗸

Where to look for BS

Reliable sources for ready-to-use basis sets in CRYSTAL format or easily convertible formats:

- 1. EMS Database (Stuttgart/Cologne)
 - Wide selection of Pseudopotentials for many elements.
- 2. Basis Set Exchange (BSE)
 - Modern, comprehensive database; export in various formats.
- 3. CRYSTAL Basis Set Library (CRYSTAL Solutions)
 - Official database with basis sets already in CRYSTAL format.

Deep dive: Method block

The third input section allows choice of Hamiltonian, of truncation criteria of Coulomb and exchange infinite sums, and of the type of run. All the choices of the third input block are **optional**, but the **END** keyword must be inserted in the input stream to close the section.

The simplest case: **END**, for 3D: calculation (default).

SHRINK n n END

corresponds to a **Hartree-Fock** energy

Anyway an Unrestricted Hartree-Fock Hamiltonian can be defined adding UHF.

UHF END

For Density Functional Theory simulations the keyword **DFT** must be used followed by the chosen functional and the END keyword to close the DFT block.

DFT B3LYP END END DFT
B3LYP
END
SHRINK
n n
END

Hamiltonian

Summary of available Hamiltonian:

Single	particle	Hamiltonian
--------	----------	-------------

RHF Restricted Hartree Fock (Default)

UHF Unrestricted Hartree-Fock

ROHF Restricted Open Shell Hartree-Fock

DFT DFT Hamiltonian

SPIN spin-polarized solution

DFT functionals

Some of the available functionals for DFT calculations are:

Global Hybri	d functionals	Range-Separa	ated Hybrid functionals
Standalone key	words	Short-range Co	prrected RSH functionals
B3PW	B3PW parameterization	HSE06	Screened-Coulonb PBE XC functi
B3LYP	B3LYP parameterization	HSESOL	Screened-Coulomb PBESOL XC
PBE0	Adamo and Barone [5]	SC-BLYP	SC-RSH BLYP functional based
PBESOL0	Derived from PBE0	271]	
B1WC	see [25]	,	Corrected RSH functionals
WC1LYP	see [60]	HISS	MC based on PBE XC functional
B97H	see [4, 101]		rrected RSH functionals
PBE0-13	see [42]	RSHXLDA	LC LDA XC functional [1, 151]
SOGGA11X	see [215]	wB97	Chai/Head-Gordon LC functional
mPW1PW91	see [6]	wB97X	Chai/Head-Gordon SC/LC functi
mPW1K	see [175]	LC-wPBE	LC hybrid based on PBE XC fun
			v
			LLC hybrid based on PBESOL XC
		LC-wBLYP	LC hybrid based on BLYP XC fu

You can loook for a specific functional in the CRYSTAL manual.

SHRINK

Defines how the Brillouin Zone is sampled with k-points.

rec	variable	value	meaning
			if the system is periodic insert II
• *	IS		Shrinking factor in reciprocal space (Section 18.7, page 406)
	ISP		Shrinking factor for a denser k point net (Gilat net) in the
			evaluation of the Fermi energy and density matrix.

- $IS \rightarrow Pack$ —Monkhorst shrinking factor: controls the k-point grid used to diagonalize the Hamiltonian.
- **ISP** → Gilat shrinking factor: denser grid used to compute the density matrix and Fermi energy (important for metals).

In short: SHRINK controls the accuracy vs. cost of reciprocal space integration.

TOLINTEG

The 5 ITOL parameters control the accuracy of the calculation of the bielectronic Coulomb and exchange integrals. Selection is performed according to overlap-like criteria: when the overlap between two Atomic Orbitals is smaller than 10^{-ITOL}, the corresponding integral is disregarded or evaluated in a less precise way.

	rec	variable	meaning
•	*	ITOL1	overlap threshold for Coulomb integrals- page 402 [7]
		ITOL2	penetration threshold for Coulomb integrals-page 403 7
		ITOL3	overlap threshold for HF exchange integrals-page 403 7
		ITOL4	pseudo-overlap (HF exchange series-page 403) 7
		ITOL5	pseudo-overlap (HF exchange series-page 403) 14

TOLDEE

By default the SCF iterations stop when the change in the absolute value of the total energy is less than 1·10⁻⁶ Ha, or the number of cycles exceeds 50. In geometry optimization the tolerance on total energy change is set to 1·10⁻⁷ Ha by default. You can change it through TOLDEE.

			meaning
•	*	ITOL	10^{-ITOL} threshold for convergence on total energy

FMIXING

Can be used to facilitate the convergence of the SCF iteration. Represents the % of Hamiltonian matrix mixing. The Hamiltonian matrix (Fock/KS matrix) at cycle i is defined as :

(F_i matrix computed from the eigenvectors and density matrix of cycle i-1)

$$F'_{i} = (1 - p) F_{i} + p F'_{i-1}$$

IPMIX = p = 30 by default.

rec	variable	meaning
• *	IPMIX	percent of Fock/KS matrices mixing 30

Running a single-point calculation

```
$ cd MSSC2025/Basic/Day1/4_third_block_method
$ ls
1_HF 2_PBE 3_B3LYP 4_other_parameters
$ cd 4_other_parameters
$ ls
1_shrink 2_tolinteg 3_toldee 4_fmixing
```

\$ runCRY23 input

STOP	execution stops immediately	73
TESTPDIM	stop after symmetry analysis	129
TEST[RUN]	stop after integrals classification and disk storage estimate	130

Wrap-up

Take-home messages:

- Inputs in CRYSTAL are modular
- You need all 3 blocks to run a calculation (Geometry + Basis + Method)
- You can already run your first job!

DIY

The Materials Project

Harnessing the power of supercomputing and state-of-the-art methods, Project provides open web-based access to computed information on kn predicted materials as well as powerful analysis tools to inspire and designaterials.

Login or Register

See a Random Material

Browse Apps

Click here