Fin	ite Markov	Decision	Process		
	ite Markov (MD	BI			
Levaluative	teedback				
			Herent	action	5
associative	aspect (in diff	event si	tuations	,)
MDP3: 529	vertial d	acisisn Ma	aking		
bandit:	9x(a)	い、た、た、	action	a	
A < 00					
MOPS:	- 9x(5,0	v) W.Y.t.	(actio	na	
			L Stats	2 5	
	L V* (2)	W.Y.t.			
		optimal	action	52 (ec	tions

Agent-Environment Interface

Sequence / trajectory:

So, Ao, Ri, Si, Ai, Rz, Sz, Az, Rz, ...

P: Sx RxSxA -> [0,1]

 $P(s', r | s, a) = P_r \{ S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a \}$

> = P(5', r | 5, a) = 1

for all SES, a EA(5)

Markov Property

"State-transition"

probabilities p: Sx5xA > [0,1]

 $P(s'|s,a) = Pr\{S_{t-1} = s, A_{t-1} = a\}$

Expected remails

for state-action pairs

r: S×A -> R

r(s, a) = [[Re | Still = s, Ate = a]

$$= \sum_{Y \in R} Y \sum_{S' \in S} p(S', Y \mid S, \alpha)$$

Expected Vewards

for State-action-next-state triples

Y(5, a, s') = E[Rx | Sx=s, A+==a, Sx=s']

$$= \frac{P(s', r|s, a)}{P(s'|s, a)}$$

Reward
$R_{\star} \in \mathbb{R}$
Goal: Maximize cumulative reward in the long is
Expected return 6t
$G_{t} \doteq R_{t+1} + R_{t+2} + \cdots + R_{T}$
Subsequences — pisades Starting terminal Leate State
episodie task
); sounted Return:
Gt = Rter + V Rter + V2 Rter +
= \frac{1}{2} \fra

V: discount rate Ve[0,1]

V=0; Agent "myopic" immodiate rewards"

Gz = Rxx1 + V Rxx2 + V2 Rxx3 + V3 Rxx4 + ...

= Pxx1 + V (Pxx2 + VPxx3 + ···)

= R ++1 + Y G x+1

 $G_{k} = \frac{8}{2} V^{k} = \frac{1}{1 - V}$

defined w.r.t. particular ways of acting

called Dolicy_

Value Functions

policy: a mapping from states to probabilities of

To Setecting each possible action

T(a(s): the probability that A==a if S+=s

Value function of a State & under a policy to State-value function for policy to

 $V_{\kappa}(s) \doteq \left[\left[G_{\kappa} \left| S_{\kappa} = s \right] \right]$ $= \left[\left[\left[\frac{2}{\kappa^{2}} \right] \right]^{k} \left| S_{\kappa} = s \right] \right]$

action-value function for policy 7

9x(5,0)=E[Gx | Sx=5, Ax=0]

= Ex [= YKRtekki | Sx = S, Ax = a]

Vx (51

Optimal Policies / Optimal Value Functions
optimal policy: Tx
optimal state-value function Vx
$V_*(s) = Max V_*(s)$
optimal action-value function 94
$Q_*(5,a) = \max_{\pi} Q_{\pi}(5,a)$
= [R+++ Y V*(S+++) St=5, At=a
Bellman Optimality Equation
$V_*(s) = \max_{\alpha \in A(s)} Q_{X_*}(s, \alpha)$
$= \max_{\alpha} \left[G_* \mid S_* = S, A_* = \alpha \right]$
= Max [R++ VGt+1 St=5, At=a]
1/4(5) = Max E R+++ V V* (S++1) S+=5, A+=a7

Beuman sptimality equation for 94