UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS, 2025-II

Organización y Arquitectura de Computadoras

TAREA 03:

Lógica digital

Baños Mancilla Ilse Andrea - 321173988

Rivera Machuca Gabriel Eduardo 321057608

Preguntas

1. Demuestra que x(yz) = (xy)z

$$x(yz) = (xy)z$$
 T6b
 $\therefore x(yz) = (xy)z$

2. Demuestra si la siguiente igualdad es válida $x(\overline{x} + y) = xy$

```
x(\overline{x} + y) = x\overline{x} + xy Por distributividad

x\overline{x} + xy = 0 + xy Por complemento

0 + xy = xy Por neutro en +
```

3. Demuestra si la siguiente igualdad es válida $(x+y)(\overline{x}+z)(y+z)=(x+y)(\overline{x}+z)$

$$(x+y)(\overline{x}+z)(y+z)$$

$$= [(x+y)(\overline{x}+z)](y+z)$$

$$= [(x+y)\overline{x}+(x+y)z](y+z) \text{ P4a}$$

$$= [\overline{x}(x+y)+z(x+y)](y+z) \text{ P4a}$$

$$= [(\overline{x}x+\overline{x}y)+(zx+zy)](y+z) \text{ P4a}$$

$$= [(x\overline{x}+\overline{x}y)+(zx+zy)](y+z) \text{ P4a}$$

$$= [(x\overline{x}+\overline{x}y)+(zx+zy)](y+z) \text{ P3b}$$

$$= [(0+\overline{x}y)+(zx+zy)](y+z) \text{ P5b}$$

$$= [\overline{x}y+zx+zy](y+z) \text{ P2a}$$

$$= (\overline{x}y+zx+zy)y+(\overline{x}y+zx+zy) \text{ P4a}$$

$$= y(\overline{x}y+zx+zy)+z(\overline{x}y+zx+zy) \text{ P3b}$$

$$= y\overline{x}y+yzx+yzy+z\overline{x}y+zzx+zzy \text{ P4a}$$

$$= \overline{x}yy+yzx+yzy+yz\overline{x}+xzz+yzz \text{ P3b}$$

$$= \overline{x}y+yzx+yz+yz+yzx+yz\overline{x} \text{ T1b}$$

$$= \overline{x}y+xz+yz+yz+yzx+yz\overline{x} \text{ T1a}$$

$$= \overline{x}y+xz+yz+yz+yz(x+\overline{x}) \text{ P4a}$$

$$= \overline{x}y+xz+yz+yz \text{ P2b}$$

$$= \overline{x}y+xz+yz+yz \text{ P2b}$$

$$= \overline{x}y+xz+yz+yz \text{ P2b}$$

$$= \overline{x}y+xz+yz+yz \text{ P2b}$$

$$= \overline{x}y+xz+yz+yz \text{ P3b}$$

$$= \overline{x}(x+y)+z(x+y) \text{ P4a}$$

$$= (x+y)\overline{x}+(x+y)z \text{ P3b}$$

$$= (x+y)(\overline{x}+z) \text{ P4a}$$

4. Demuestra si la siguiente igualdad es válida $\overline{xy} = \overline{x} \cdot \overline{y}$ Vamos a hacerlo con una tabla de verdad:

 $\therefore (x+y)(\overline{x}+z)(y+z) = (x+y)(\overline{x}+z)$

x	y	\overline{x}	\overline{y}	xy	\overline{xy}	$\overline{x} \cdot \overline{y}$
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	0	1	0
1	1	0	0	1	0	0

Como podemos ver $\overline{xy} \neq \overline{x} \cdot \overline{y}$

- ∴ La igualdad no es válida.
- 5. Verifica la siguiente igualdad usando los postulados de Huntington

$$F(x, y, z) = x + x(\overline{x} + y) + \overline{x}y = x + y$$

$$x + x(\overline{x} + y) + \overline{x}y$$

$$= x + x\overline{x} + xy + \overline{x}y \text{ P4a}$$

$$= x + 0 + xy + \overline{x}y \text{ P5b}$$

$$= x + xy + \overline{x}y \text{ P2a}$$

$$= x + yx + y\overline{x} \text{ P3b}$$

$$= x + y(x + \overline{x}) \text{ P4a}$$

$$= x + y(1) \text{ P5a}$$

$$= x + y \text{ P2b}$$

$$\therefore x + x(\overline{x} + y) + \overline{x}y = x + y$$

6. Obten los mintérminos y reduce la siguiente función

$$F(x, y, z) = \overline{x} \cdot \overline{y} \cdot \overline{z} \cdot x + \overline{z} \cdot x + z \cdot x + x \cdot \overline{y} + \overline{z}$$

Primero vamos a reducir la función:

$$\begin{split} &(\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot x) + (\overline{z} \cdot x) + (z \cdot x) + (x \cdot \overline{y}) + \overline{z} = (\overline{z} \cdot x) + (z \cdot x) + (x \cdot \overline{y}) + \overline{z} \\ &(\overline{z} \cdot x) + (z \cdot x) + (x \cdot \overline{y}) + \overline{z} = x \cdot (\overline{z} + z) + (x \cdot \overline{y}) + \overline{z} \\ &x \cdot (\overline{z} + z) + (x \cdot \overline{y}) + \overline{z} = x \cdot (1) + (x \cdot \overline{y}) + \overline{z} \\ &x \cdot (1) + (x \cdot \overline{y}) + \overline{z} = x + (x \cdot \overline{y}) + \overline{z} \\ &x \cdot (x \cdot \overline{y}) + \overline{z} = x \cdot (1 + \overline{y}) + \overline{z} \\ &x \cdot (1 + \overline{y}) + \overline{z} = x \cdot 1 + \overline{z} \\ &x \cdot 1 + \overline{z} = x + \overline{z} \end{split}$$

Ahora tenemos que $F(x, y, z) = x + \overline{z}$

Ahora buscaremos los mintérminos con una tabla de verdad:

a	c	y	z	\overline{z}	$x + \overline{z}$	Mintérminos
()	0	0	1	1	m_1
()	0	1	0	0	
()	1	0	1	1	m_2
()	1	1	0	0	
1	L	0	0	1	1	m_3
1	Ĺ	0	1	0	1	m_4
1	L	1	0	1	1	m_5
1	L	1	1	0	1	m_6

7. Simplifica la siguiente función usando su tabla de verdad asociada y mapas de Karnaugh.

$$F(x, y, z) = \overline{xyz} + \overline{xy}z + \overline{xy}z + \overline{xy}z + x\overline{yz} + \overline{xy}z + x\overline{y}z + xyz$$

Tabla de verdad

X	у	\mathbf{Z}	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Mapa de Karnaugh

x \yz	00	01	11	10
0	1	1	1	1
1	1	1	1	0

- \therefore la expresión reducida es $\overline{x} + \overline{y} + z$
- 8. Reduce la siguiente función y da sus maxitérminos

$$F(x, y, z) = (x + \overline{x}z) \cdot (\overline{y} + \overline{z})z$$

Primero vamos a reducir la función:

$$(x + \overline{x}z) = (x + \overline{x})(x + z)$$

$$(x + \overline{x})(x + z) = (1)(x + z)$$

$$(1)(x + z) = x + z$$

$$(\overline{y} + \overline{z})z = (\overline{y}z + \overline{z}z)$$
$$(\overline{y}z + \overline{z}z) = (\overline{y}z + 0)$$
$$(\overline{y}z + 0) = \overline{y}z$$

Ahora tenemos que $F(x,y,z) = (x+z)\cdot (\overline{y}z)$ Entonces:

$$(x+z) \cdot (\overline{y}z) = x\overline{y}z + z\overline{y}z$$

$$x\overline{y}z + z\overline{y}z = x\overline{y}z + \overline{y}z$$

$$x\overline{y}z + \overline{y}z = \overline{y}z \cdot (x+1)$$

$$\overline{y}z \cdot (x+1) = \overline{y}z \cdot (1)$$

$$\overline{y}z \cdot (1) = \overline{y}z$$

Así $F(x, y, z) = \overline{y}z$

Ahora buscaremos los maxitérminos con una tabla de verdad:

\boldsymbol{x}	y	z	\overline{y}	$\overline{y}z$	Maxitérminos
0	0	0	1	0	M_1
0	0	1	1	1	
0	1	0	0	0	M_2
0	1	1	0	0	M_3
1	0	0	1	0	M_4
1	0	1	1	1	
1	1	0	0	0	M_5
1	1	1	0	0	M_6

9. Utilizando Mapas de Karnaugh simplifica la función.

$$F(x_0, x_1, x_2, x_3) = \overline{x_0 x_1 x_2 x_3} + \overline{x_0 x_1 x_2} x_3 + \overline{x_0 x_1} x_2 x_3 + x_0 \overline{x_1} x_2 x_3 + x_0 x_1 \overline{x_2} x_3 + \overline{x_0} x_1 \overline{x_2} x_3 + x_0 x_1 x_2 x_3$$

$x_0x_1 \setminus x_2x_3$	00	01	11	10
00	1	1	1	0
01	1	0	0	0
11	1	0	1	0
10	0	0	1	0

- \therefore la expresión reducida es $x_0x_2x_3 + x_1\overline{x_2x_3} + \overline{x_0x_1x_2} + \overline{x_0x_1}x_3$
- 10. Para realizar una Mapa de Karnaugh con más de 5 variables se mencionó que existe más de una forma de representarlo.

Investiga ambos métodos y utiliza el que más se te acomode para reducir la siguiente función.

$$F(x_0, x_1, x_2, x_3, x_4) = \overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_1 x_2} x_3 \overline{x_4} + \overline{x_0 x_1} x_2 x_3 \overline{x_4} + x_0 \overline{x_1} x_2 x_3 x_4 + x_0 \overline{x_1} x_3 x_4 + x_0$$

11. Utilizando el algoritmo de Quine-McCluskey realiza la siguiente reducción.

$$F(x_0, x_1, x_2, x_3, x_4) = \overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_1 x_2} x_3 \overline{x_4} + \overline{x_0} x_1 x_2 x_3 \overline{x_4} + \overline{x_0} x_1 \overline{x_2} x_3 \overline{x_4} + x_0 x_1 \overline{x_2} x_3 \overline{x_4} + x_0 x_1 \overline{x_2} x_3 x_4 + x_0 x_1 \overline{x_2} x_3 x_4 + x_0 x_1 \overline{x_2} x_3 x_4 + x_0 x_1 x_2 x_3 x_4 + x_0 x_1 \overline{x_2} x_3 x_4 + x_0$$

Agrupamos los números binarios según su índice.

Termino	Binario	Decial	Índice (# 1s)
$\overline{x_0x_1x_2x_3x_4}$	00000	0	0
$\overline{x_0x_1x_2}x_3\overline{x_4}$	00010	2	1
$\overline{x_0}x_1x_2x_3\overline{x_4}$	01110	14	3
$\overline{x_0}x_1\overline{x_2}x_3\overline{x_4}$	01010	10	2
$x_0\overline{x_1}x_2x_3x_4$	10111	23	4
$x_0x_1\overline{x_2x_3}x_4$	11001	25	3
$\overline{x_0}x_1\overline{x_2}\overline{x_3}x_4$	01001	9	2
$x_0x_1x_2\overline{x_3}x_4$	11101	29	4
$x_0x_1x_2x_3x_4$	11111	31	5

D: .	D 1 1	ź 1.
Binario	Decial	Índice
00000	0	0
00010	2	1
01001	9	2
01010	10	2
01110	14	3
11001	25	3
10111	23	4
11101	29	4
11111	31	5

Obtenemos las adyacencias

Nombramos las adyacencias

12. Utilizando el algoritmo de Quine-McCluskey realiza la siguiente reducción.

$$F(x_0, x_1, x_2, x_3, x_4) = \frac{F(x_0, x_1, x_2, x_3, x_4) =}{\overline{x_0 x_1 x_2 x_3 x_4} + \overline{x_0 x_$$

Adyacencia de orden I	Binario
0,2	000-0
2,10	0-010
9,25	-1001
10,14	01-10
25,29	11-01
23,31	1-111
29,31	111-1

Adyacencia	Nombre
0,2	Pl1
2,10	Pl2
9,25	Pl3
10,14	Pl4
25,29	Pl5
23,31	Pl6
29,31	Pl7

Termino	Binario	Decial	Índice (# 1s)
$\overline{x_0x_1x_2x_3x_4}$	00000	0	0
$\overline{x_0x_1x_2}x_3\overline{x_4}$	00010	2	1
$\overline{x_0x_1}x_2x_3\overline{x_4}$	00110	6	2
$\overline{x_0x_1}x_2x_3x_4$	00111	7	3
$\overline{x_0}x_1x_2x_3\overline{x_4}$	01110	14	3
$\overline{x_0}x_1\overline{x_2}x_3\overline{x_4}$	01010	10	2
$x_0\overline{x_1}x_2x_3x_4$	10111	23	4
$x_0x_1\overline{x_2x_3}x_4$	11001	25	3
$\overline{x_0}x_1\overline{x_2}\overline{x_3}x_4$	01001	9	2
$x_0x_1x_2\overline{x_3}x_4$	11101	29	4
$x_0x_1x_2x_3x_4$	11111	31	5

Agrupamos los números binarios según su indice:

Binario	Decial	Índice
00000	0	0
00010	2	1
00110	6	2
01010	10	2
01001	9	2
00111	7	3
01110	14	3
11001	25	3
10111	23	4
11101	29	4
11111	31	5

	0	2	9	10	14	23	25	29	31
Pl1	X	X							
Pl2		X		X					
Pl3			X				X		
Pl4				X	X				
Pl5							X	X	
Pl6						X			X
Pl7								X	X