Traffic Light

Logic Design for a T-Junction Traffic light system.

The Problem

Traffic jams

Accidents

Long commute time

Goals

01

interrupts the heavy traffic at intersections to allow other vehicles or pedestrians to cross it. 02

help in reducing the severity and frequency of various types of accidents or crashes. 03

help in providing a continuous movement of traffic at a certain speed in a given route or way.

Before Trafic light With Traffic light

Common traffic jams

Continuous flow of traffic

Very high risk of accidents

Very little accidents

Longer commute times

Shorter commute times

Design model

State Diagram

Controller

DataPath

DataPath & Controller Connections

State Tables, Truth Tables & K-Maps

StateTable

State	encoding	P1	P2	P3	Delay
S0	000	Green	Red	Red	27 sec
S1	001	Yellow	Red	Red	5 sec
S2	010	Red	Green	Red	27 sec
S3	011	Red	Yellow	Red	5 sec
S4	100	Red	Red	Green	27 sec
S5	101	Red	Red	Yellow	5 sec

State Transition Table

ps	Ne St	Output		
	T =0			
s0	s0	s1	p1g p2r p3r	
s 1	s1	s2	p1y p2r p3r	
s2	s2	s3	p1r p2g p3r	
s3	s3	s 4	p1r p2y p3r	
s4	s 4	s5	p1r p2r p3g	
s 5	s 5	s0	p1r p2r p3y	

pre	sent sta	ate	Input		Next State	
а	b	С	Т	a^	b^	c^
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	0
0	1	0	1	0	1	1
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	1	0	0
1	0	0	1	1	0	1
1	0	1	0	1	0	1
1	0	1	1	0	0	0

Next State

$$a^* = BCT + A\overline{C} + A\overline{T}$$

$$b^{-} = \overline{A}\overline{B}CT + B\overline{C} + B\overline{T}$$

$$C^{=} \overline{c} + c \overline{T}$$

pre	sent sta	ate	Input	f	lip-flop	
а	þ	С	Т	d1	d2	d3
0	0	0	0	0	0	1
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	0	1	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	0	1
1	0	0	1	1	0	1
1	0	1	0	0	0	0
1	0	1	1	0	0	0

Flip-flop

$$b1 = BC + A\overline{C}$$

$$b2 = \overline{ABC} + B\overline{C}$$

	Inp	out		Output				
а	b	С	Т	p1r	p1y	p1g		
0	0	0	0	0	0	1		
0	0	0	1	0	0	1		
0	0	1	0	0	1	0		
0	0	1	1	0	1	0		
0	1	0	0	1	0	0		
0	1	0	1	1	0	0		
0	1	1	0	1	0	0		
0	1	1	1	1	0	0		
1	0	0	0	1	0	0		
1	0	0	1	1	0	0		
1	0	1	0	1	0	0		
1	0	1	1	1	0	0		

signal 1

C, T

00 01 11 10

	Inp	out			Output	
а	b	С	Т	p2r	p2y	p2g
0	0	0	0	1	0	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	0	0
1	0	1	1	1	0	0

signal 2

	Inp	out		Output				
а	b	С	Т	p3r	рЗу	p3g		
0	0	0	0	1	0	0		
0	0	0	1	1	0	0		
0	0	1	0	1	0	0		
0	0	1	1	1	0	0		
0	1	0	0	1	0	0		
0	1	0	1	1	0	0		
0	1	1	0	1	0	0		
0	1	1	1	1	0	0		
1	0	0	0	0	0	1		
1	0	0	1	0	0	1		
1	0	1	0	0	1	0		
1	0	1	1	0	1	0		

signal 3

Truth Table

pres	sent st	ate	Input	Nε	ext Sta	ite		output				flip flop						
а	b	С	Т	a^	b^	C^	p1r	p1y	p1g	p2r	p2y	p2g	p3r	рЗу	p3g	d1	d2	d3
0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1
0	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0
0	0	1	1	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	0	1	1
0	1	0	1	0	1	1	1	0	0	0	0	1	1	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	1	0	1	0	0	1	0	0
0	1	1	1	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0
1	0	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	1
1	0	0	1	1	0	1	1	0	0	1	0	0	0	0	1	1	0	1
1	0	1	0	1	0	1	1	0	0	1	0	0	0	1	0	0	0	0
1	0	1	1	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0

Circuit & Logic

Circuit Design

Logic Design

The Simulation

The Code

Meet the Group

Rayyan Zafar 442007362

Hussein Al-Jifri 442002930

Basel Genedy 442016631

THANK YOU!

Do you have any questions for us?