Rilevazione dell'errore del bit inviato

Bit di parità $8 \rightarrow 1 = 9$

Nei 9 bit →1 devono essere pari

- Se nel byte da inviare gli 1 sono già pari → bit di parità = 0
- Se nel byte da inviare gli 1 sono dispari → bit di parità = 1

SORGENTE

DESTINAZIONE

Calcola il bit di parità

Verifica la parità degli 1

Sorgente

01 01 00 11

1 1 0 0

0 0

0

 $m_0 = 0$

 $m_1=1$

....

X ottenere il bit di parità \rightarrow XOR tra tutti

0 xor1 xor0 xor1 xor0 xor0 xor1 xor1

- Se = $\rightarrow 0$
- Se <> →1

Byte inviato

010100110

Destinazione

010100110

Fa l'xor tra i 9 bit arrivati

- Se ris = 0
- \rightarrow ok
- Se ris = 1
- → errore

Arriva giusto 010100110 -->0

Arriva sbagliato 010100111 →1

Internet Checksum \rightarrow 2 byte \rightarrow 16 bit

Riporti	0	1	1	1	1	1	0	0	0	0	1	1	1	1	1	
1	0	0	1	1	0	0	1	0	0	1	0	1	1	0	1	1
Addendo																
2	0	0	0	0	1	1	1	1	1	0	0	1	1	1	1	1
Addendo																
Risultato	0	1	0	0	0	0	0	1	1	1	1	1	1	0	1	0
Intenet	1	0	1	1	1	1	1	0	0	0	0	0	0	1	0	1
Checksum																

Correzione e Rilevazione degli errori: Codice di Hamming

Per ogni 8 bit il CdiH è costituito da 12 bit

La sorgente calcola il CdH

00110010

 $m_1=0$ $m_2=0$ $m_3=1$ $m_4=1$

 $m_5=0$ $m_6=0$ $m_7=1$ $m_8=0$

1=2 ⁰	2=21	3	4=22	5	6	7	8=2 ³	9	10	11	12
0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100
H1	H2	m ₁	H3	m ₂	M ₃	M_4	H4	M_5	M ₆	M ₇	M ₈
0	1	0	0	0	1	1	1	0	0	1	0

H1 → m1 xor m2 xor m4 xor m5 xor m7= 0 xor0 xor1 xor0 xor1=0

H2 → m1 xor m3 xor m4 xor m6 xor m7= 0 xor1 xor1 xor0 xor1=1

 $H3 \rightarrow m2$ m3 m4 m8 = 0 xor1 xor0 xor0 = 0

 $H4 \rightarrow m5$ m6 m7 m8 = $0 \times 10^{-1} \times 10^{-1}$

A destinazione

• L'OR tra tutti i bit controllati con il proprio bit controllore

```
      H1 xor
      m1 xor
      m2 xor
      m4 xor
      m5 xor
      m7=
      0 \times 000 \times 001 \times 000 \times 001 \times 0000 \times 00000 \times 0000 \times 00000 \times 00000 \times 0000 \times 00000
```

- Verifica
 - \circ Se tutti 0 \rightarrow tutto OK
 - \circ Se almeno un 1 \rightarrow errore
 - In base al valore ottenuto si capisce la posizione del bit errato
 - La correzione dell'errore si ottiene
 - Se il bit errato è un bit del messaggio → NOT
 - Se il bit errato è un bit controllore → vuol dire che i bit del messaggio sono arrivati ok... per cui si trascura l'errore

Supponiamo che nella trasmissione dati cambi 1 bit, il bit M7

1=20	2=2 ¹	3	4=2 ²	5	6	7	8=2 ³	9	10	11	12
0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100
H1	H2	m ₁	H3	m ₂	M ₃	M_4	H4	M_5	M ₆	M_7	M ₈
0	1	0	0	0	1	1	1	0	0	1	0

A destinazione si fa

• l'OR tra tutti i bit controllati con il proprio bit controllore

```
H1 xor m1 xor m2 xor m4 xor m5 xor m7=
                                          0 xor0 xor1 xor0 xor0 xor 0=1
H2 xor m1 xor m3 xor m4 xor m6 xor m7=
                                          0 xor1 xor1 xor0 xor0 xor1=1
                                          0 xor1 xor1 xor0 xor 0=0
H3 xor m2
              m3
                     m4
                            m8
H4xor m5
              m6
                     m7
                            m8
                                          0 xor0 xor0 xor0 xor 1=1
La posizione del bit errata è 1011
                                   → proprio M7
```