## CARNEGIE MELLON UNIVERSITY

## ROBOTICS CAPSTONE PROJECT

# System Design and Development Document

Friction Force Explorers:

Don Zheng Neil Jassal Yichu Jin Rachel Holladay

supervised by Dr. Cameron RIVIERE

## Contents

| 1            | Bui | ld Progress                                                                           | <b>2</b> |
|--------------|-----|---------------------------------------------------------------------------------------|----------|
|              | 1.1 | Electromechnical Updates                                                              | 2        |
|              | 1.2 | Software Update                                                                       |          |
| <b>2</b>     | Pro | ject Management                                                                       | 4        |
|              | 2.1 | Work Breakdown Schedule                                                               | 4        |
|              | 2.2 | Schedule                                                                              | 11       |
| $\mathbf{L}$ | ist | of Figures                                                                            |          |
|              | 1   | Full System Comparison, old (left) versus new (right)                                 | 2        |
|              | 2   | Painting Mechanism Changes, old (left) versus new (right)                             |          |
|              | 3   | A comparison of the old (left) versus new (right) chassis with the painting mechanism |          |
|              |     | exposed                                                                               | 3        |
|              | 4   | Full WBS for the project                                                              | 5        |
|              | 5   | Electromechanical WBS section                                                         | 6        |
|              | 6   | Software WBS section                                                                  |          |
|              | 7   |                                                                                       | 8        |
|              | 8   | Cantt Chart of the semester schedule                                                  | 11       |

### 1 Build Progress

We chronicle our build progress thus far, splitting up efforts into electromechanical updates and software updates. This corresponds to the bases of our tree, excluding the integration branch which happens as a final step.

#### 1.1 Electromechnical Updates

As shown below in Fig.1.1, we have made three changes to the electromechanical system since the critical design review. 1) Chassis material is changed from acrylic to plywood. Since we plan to use laser cutting as main fabrication method, fabricating wood would generate less hazardous fume then fabricating acrylic does. Also, wood has higher strength to density ratio, which could make the robots more lightweight. 2) Raspberry Pi is now located above the chassis, instead of below it, so that the robot has space to stack multiple motor HATs. 3) Painting mechanism is redesigned to reduce mechanical complexity.



Figure 1: Full System Comparison, old (left) versus new (right)

Fig.1.1 and Fig.1.1 compare the improved painting mechanism to the old design. Instead of a screw type of actuation, the robot now uses a lever mechanism to press the chalk marker on drawing surfaces. The driving motor is fixed to the chassis via an off-the-shelf motor case. This motor then rotates a 3D printed marker holder with the chalk marker installed. By control the rotation direction and voltage input of the motor, the robot can either lift up or down the marker. This design change reduces painting mechanism's number of components from 5 to 3 and dramatically reduced the amount of material that needs to be 3D printed, which reduce fabrication cost and fabrication time. To secure the chalk marker better, we may add internal ribs in the marker holder or design it into a snap-fit component. This design decision will be made when we receive the ordered chalk markers. Almost electromechanical components are ordered. We expect to start fabrication later this week.



Figure 2: Painting Mechanism Changes, old (left) versus new (right)



Figure 3: A comparison of the old (left) versus new (right) chassis with the painting mechanism exposed

#### 1.2 Software Update

In our software development process, our first step was to design a software architecture. Like most robotic systems, our robots involve several interlocking pieces of software that need to be well organized in order to function. We took our psuedo-code developed last semester and converted it into interlocking code skeletons that serves as the groundwork for the rest of our software development. Having determined how to separate the work between modules we can now develop each one independently.

We have begun by focusing in on the communication and SDP (scheduling, distribution and planning) modules.

The communication module has taken the roles of establishing connections, sending and receiving messages, and generating messages. The subsystem will keep track of TCP connections to each robot, and monitor them for any changes that could signal loss of connection. It will also manage receiving and parsing data from the onboard controllers. The onboard controllers send any motor encoder and error data, which the communication subsystem parses into data usable by other subsystems. Motor encoder data is passed into the localization subsystem, and error data is processed to determine if the system should be paused or shut down. Finally, the communication subsystem will take data from the locomotion and writing modules, and parse them into proto3 messages to be sent to the onboard controllers via TCP.

In our SDP module, we have edited our work distribution method to take advantage of a more greedy approach. We define the cost of the work for each robot, with the goal of keeping these costs as equal as possible. When iterating through our set of lines, we add the next new line to the robot with the smaller total cost work thus far. We then update that robot's work to account for the cost to get from it's current position to the start of the line and the cost of drawing the line. As we progress through, we eagerly reorder and reorient the lines to optimize cost. This is in contrast to our previous method, which reodered only at the end and separated the lines greedily with respect to spatial dimension.

In developing the SDP module, we have begun a framework for the UI module, adding the capability to read in assignments. We expect to continue to develop much of the UI module in tandem with the other pieces, as UI visualization serves as a vital tool in development.

### 2 Project Management

We present our project management plan for the project, include a Work Breakdown Schedule of our tasks and Gantt chart or scheduling.

#### 2.1 Work Breakdown Schedule

In this section, we present the Work Breakdown Schedule for the project.



Figure 4: Full WBS for the project



Figure 5: Electrome@nanical WBS section



Figure 6: Software WBS section



Figure 7: Integration WBS section

## The WBS dictionary entries include more information on each of the work elements of the project.

| WBS#:              | 1.1.3.1                                                       | Task:              | Fabricate Chassis                      | WBS#:              | 1.1.3.2                                                                                                     | Task:              | Fabricate Writing Tool  |
|--------------------|---------------------------------------------------------------|--------------------|----------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
| Est. Effort (hrs): | 4                                                             | Owner:             | Eric                                   | Est. Effort (hrs): | 4                                                                                                           | Owner:             | Eric                    |
| Resources:         | CAD designs,<br>MechE shop                                    | Work products:     | Chassis components                     | Resources:         | CAD designs,<br>MechE shop                                                                                  | Work products:     | Writing tool components |
| Description:       | Use the Mechan components nec                                 |                    | machine shop to fabricate<br>e chassis | Description:       | Use the Mechanical Engineering machine shop to fabrical components necessary to build the writing implement |                    |                         |
| Input:             | CAD designs, pa                                               | CAD designs, parts |                                        |                    | CAD designs, parts                                                                                          |                    |                         |
| Dependencies:      | Obtain parts                                                  |                    |                                        | Dependencies:      | : Obtain parts                                                                                              |                    |                         |
| Risks:             | Machine shop is not available, injury from operating machines |                    |                                        | Risks:             | Machine shop is machines                                                                                    | not available, inj | ury from operating      |

| WBS#:              | 1.1.4.1                                                                               | Task:          | Assemble Camera Rig       | WBS#:              | 1.1.4.2                                                               | Task:           | Assemble Robot Agents      |
|--------------------|---------------------------------------------------------------------------------------|----------------|---------------------------|--------------------|-----------------------------------------------------------------------|-----------------|----------------------------|
| Est. Effort (hrs): | 3                                                                                     | Owner:         | Don                       | Est. Effort (hrs): | 5                                                                     | Owner:          | Eric                       |
| Resources:         | Scrap wood                                                                            | Work products: | Camera rig                | Resources:         | Tools, fasteners                                                      | Work products:  | Two robot agents           |
| Description:       | Build the rig used above the drawing                                                  |                | era for the vision system | Description:       | Use fabricated components to build the two robot agents in the system |                 |                            |
| Input:             | Measurements fi                                                                       | rom demo space |                           | Input:             | Fabricated comp                                                       | onents          |                            |
| Dependencies:      | Confirmation of demo space location                                                   |                |                           | Dependencies:      | : Fabricate chassis and fabricate writing tool                        |                 | riting tool                |
| Risks:             | No extra wood is available, demo space does not have adequate room for the camera rig |                |                           | Risks:             | Parts are broken<br>are needed                                        | during assembly | , extra parts or fasteners |

| WBS#:              | 1.1.5                                                                                     | Task:          | Mechanical Testing          | WBS#:              | 1.2.1                                                                                  | Task:               | Software Arch. Design |
|--------------------|-------------------------------------------------------------------------------------------|----------------|-----------------------------|--------------------|----------------------------------------------------------------------------------------|---------------------|-----------------------|
| Est. Effort (hrs): | 3                                                                                         | Owner:         | All ▼                       | Est. Effort (hrs): | 3                                                                                      | Owner:              | All                   |
| Resources:         | Tools, fasteners                                                                          | Work products: | Two robot agents            | Resources:         | None                                                                                   | Work products:      | Function headers      |
| Description:       | Perform mechan<br>our testing guide                                                       | •              | e robots in accordance with | Description:       | Design function I/O, and create function headers for all file we will use in the robot |                     |                       |
| Input:             | Mechanically complete robots                                                              |                |                             | Input:             | Software flowcha                                                                       | art, decisions on s | software libraries    |
| Dependencies:      | Assemble robot agents                                                                     |                |                             | Dependencies:      | Complete design                                                                        | ı review            |                       |
| Risks:             | Tests are failed, and significant time or extra resources are needed to correct the tests |                |                             | Risks:             | Selected softwar                                                                       | e libraries have c  | compatability issues  |

| WBS#:              | 1.2.2.1                                                             | Task:          | Localization Subsystem                           | WBS#:              | 1.2.1                                                                                         | Task:               | Locomotion Subsystem                           |
|--------------------|---------------------------------------------------------------------|----------------|--------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------|---------------------|------------------------------------------------|
| Est. Effort (hrs): | 6                                                                   | Owner:         | Neil                                             | Est. Effort (hrs): | 5                                                                                             | Owner:              | Don                                            |
| Resources:         | AprilTag library                                                    | Work products: | Working localization                             | Resources:         | Adafruit Motor controller library                                                             | Work products:      | Control system for motors, robust motion model |
| Description:       |                                                                     |                | localization system to n solution for the robots | Description:       | Create a complete set of functions that can be used to direct the robots around the workspace |                     |                                                |
| Input:             | Function headers and design for localization system                 |                |                                                  | Input:             | Software flowcha                                                                              | art, decisions on s | software libraries                             |
| Dependencies:      | Software architecture design                                        |                |                                                  | Dependencies:      | Software archite                                                                              | cture design        |                                                |
| Risks:             | Localization system or library is unable to perform to expectations |                |                                                  | Risks:             | Interfacing issue hardware, unrelia                                                           |                     | manged electronics<br>els                      |

| WBS#:              | 1.2.1                                               | Task:          | User Interface Subsystem                           | WBS#:              | 1.2.2.4                                                                                       | Task:               | Comunication                                           |
|--------------------|-----------------------------------------------------|----------------|----------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------|
| Est. Effort (hrs): | 4                                                   | Owner:         | Rachel                                             | Est. Effort (hrs): | 8                                                                                             | Owner:              | Neil                                                   |
| Resources:         | Various UI<br>libraries                             | Work products: | User interface including calls to other subsystems | Resources:         | Wireless comm. libraries                                                                      | Work products:      | Functions for sending info. back and forth from robots |
| Description:       | Create a visually the robot system                  |                | ituitive user interface for                        | Description:       | Create a reliable communication system between the robot and the central data processing unit |                     |                                                        |
| Input:             | Software flowchart, decisions on software libraries |                |                                                    | Input:             | Software flowcha                                                                              | art, decisions on s | software libraries                                     |
| Dependencies:      | Software architecture design                        |                |                                                    | Dependencies:      | Software archite                                                                              | cture design        |                                                        |
| Risks:             | Libraries are not available                         |                |                                                    | Risks:             | Wireless hardwa other software or                                                             |                     | r interfaces poorly with                               |

| WBS#:              | 1.2.2.5                                                      | Task:               | SDP Subsystem                           | WBS#:              | 1.2.3                                                                                                       | Task:          | Subsystem Testing            |
|--------------------|--------------------------------------------------------------|---------------------|-----------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------|----------------|------------------------------|
| Est. Effort (hrs): | 15                                                           | Owner:              | Rachel                                  | Est. Effort (hrs): | 4                                                                                                           | Owner:         | All                          |
| Resources:         | SDP research, implementations                                | Work products:      | Complete SDP functions                  | Resources:         | Software subsystems                                                                                         | Work products: | Complete software subsystems |
| Description:       | Create a flexible subsystem that e                           |                     | ibution, and planning<br>work to robots | Description:       | Test all software subsystems to ensure that they give the expected output when provided with testing inputs |                |                              |
| Input:             | Software flowcha                                             | art, decisions on s | software libraries                      | Input:             | Completed softw                                                                                             | are subsystems |                              |
| Dependencies:      | Software architecture design                                 |                     |                                         | Dependencies:      | All software subs                                                                                           | system tasks   |                              |
| Risks:             | SDP algorithms are not efficient enough to meet requirements |                     |                                         | Risks:             | Software subsys                                                                                             | •              | mented incorrectly and do    |

| WBS#:              | 1.3.1                                     | Task:                                                   | Software Integration                         | WBS#:              | 1.3.2                           | Т    |
|--------------------|-------------------------------------------|---------------------------------------------------------|----------------------------------------------|--------------------|---------------------------------|------|
| Est. Effort (hrs): |                                           | Owner:                                                  | All                                          | Est. Effort (hrs): | 3                               | ļ    |
| Resources:         | Software subsystems                       | Work products:                                          | Complete software pipeline                   | Resources:         | S.W. and H.W. subsystems        |      |
| Description:       | Test integration of<br>to end pipeline co |                                                         | onents by creating an end<br>ware subsystems | Description:       | Complete integra                | a    |
| Input:             | Completed and in                          | Completed and individually verified software subsystems |                                              |                    | Completed and i subsystems      | nc   |
| Dependencies:      | Subsystem testing                         | 9                                                       |                                              | Dependencies:      | Software integra                | tior |
| Risks:             | Subsystems cann                           | ot integrate with e                                     | ach other                                    | Risks:             | Software and ha models do not w |      |

| WBS#:              | 1.3.3                                                                                      | Task:          | Requirements Testing           |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------|----------------|--------------------------------|--|--|--|
| Est. Effort (hrs): | 5                                                                                          | Owner:         | All                            |  |  |  |
| Resources:         | Working robot                                                                              | Work products: | Complete, working robot system |  |  |  |
| Description:       | Verify the reliability and effectiveness of the robot by conducting our full testing suite |                |                                |  |  |  |
| Input:             | Unverified but working robot system                                                        |                |                                |  |  |  |
| Dependencies:      | Full system integration                                                                    |                |                                |  |  |  |
| Risks:             | Robot fails tests, need to rework some subsystems                                          |                |                                |  |  |  |

#### 2.2 Schedule

Scheduling for the semester has been split into three main sections, as outlined in the wbs (Sec. 2.1). These sections were determined into electromechanical, software, and integration. Both electromechanical and software development can be implemented and built simultaneously, with integration following once both pieces are complete. By developing hardware and software at the same time, the team can make adjustments to both systems based on changes to the other. We planned the schedule to allow the last month for integration and testing, which will help us to ensure the full system works for the final demo.

We chose to represent the schedule as a Google Calendar, which allows us to integrate it with our schedules for other classes, as well as giving us convenient access and use. This can also be represented as a Gantt Chart, as in Fig.8.



Figure 8: Gantt Chart of the semester schedule