Anatomy of Neural Networks and Design Choices

Pavlos Protopapas

Outline

- Anatomy of a NN
- Design choices
 - Activation function
 - Loss function
 - Output units
 - Architecture

Outline

- Anatomy of a NN
- Design choices
 - Activation function
 - Loss function
 - Output units
 - Architecture

Graphical representation of simple functions

We build complex functions by composing simple functions of the form:

$$h_w(x) = f(XW + b)$$

where f is the activation function.

Like sigmoid!

We represent our simple function as a graph

Each edge in this graph represents multiplication by a different constant W_d

We call each W_d a weight.

The zoo of neural network architectures

Different architectures result into functions with very different properties.

Larger networks can express more complex functions

Design Choices

Activation function

- Loss function
- Output units
- Architecture

Activation Function

- Activation functions are like traffic officers, managing the flow of information in neural networks.
- They assess if a signal is strong enough to proceed, ensuring only relevant data moves forward.
- Acting as gatekeepers, they determine whether a neuron activates or stays silent based on incoming signals.

Quiz Time

According to you, how should an activation function be structured? (Select all that apply)

- A. It should be non-linear
- B. It should be simple
- C. It should ensure that the gradients remain large
- D. It should restrict the range of the outputs

Quiz Time

According to you, how should an activation function be structured? (Select all that apply)

- A. It should be non-linear
- B. It should be simple
- C. It should ensure that the gradients remain large
- D. It should restrict the range of the outputs

Activation function for hidden layers (not for the output unit)

$$h = f(W^T X + b)$$

The activation function should:

- Simple (non-complex).
- Provide non-linearity.
- Ensure gradients remain large through hidden units.

Common choices are

- sigmoid, tanh
- ReLU, leaky ReLU, Generalized ReLU, Exponential ReLU
- softplus
- swish • •

Swish is called SiLU in Pytorch

Sigmoid, σ () (aka logistic) and tanh

Derivative is zero for much of the domain. This leads to "vanishing gradients" in backpropagation.

Rectified Linear Unit, ReLU(), Exponential ReLU (ELU)

Two major advantages:

- 1. No vanishing gradient when x > 0
- 2. Provides sparsity (regularization) since

$$y = 0$$
 when $x < 0$

Less vanishing gradients and easy to calculate.

Note: Graph above is shown from α =1

Softplus and Swish

The derivative of the softplus is the sigmoid

the derivative of the softplus is continuous.

logistic function, which is a smooth

Swish tends to work better than ReLU on deeper models across several challenging datasets.

Activation Function Demo!

Visualising Activation Functions in Neural Networks - David Sheehan

Design Choices

Activation function

Loss function

Output units

Architecture

Loss Function

TL;DR

Regression: MSE

$$\mathcal{L}(W; X, Y) = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$$

Binary Classification: Binary Cross Entropy

$$\mathcal{L}(W; X, Y) = -\frac{1}{n} \sum_{i} [y_i \log p_i + (1 - y_i) \log(1 - p_i)]$$

Multi-class Classification: Cross Entropy

$$\mathcal{L}(W; X, Y) = -\frac{1}{n} \sum_{i} \sum_{k} I(y_i = k) \log p_{ik}$$

Design Choices

Activation function

Loss function

Output units

Architecture

Output Units

- Think of a neural network as a master chef preparing a donut.
- The output units are like the finished donuts that are served to the customers.

Output Units

Output Type	Output Distribution	Output layer	Loss Function
Binary	Bernoulli	?	Binary Cross Entropy

PROTOPAPAS

29

Output Units - Binary Classification

Output Units - Binary Classification

P(Y=1) must be [0,1]

$$\hat{Y} = P(y = 1)$$

Output Units - Binary Classification

Output Units

Output Type	Output Distribution	Output layer	Loss Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy

Protopapas

33

Output Units

Output Type	Output Distribution	Output layer	Loss Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinouli	?	Cross Entropy

Protopapas

34

Output Units - Multiclass Classification (ex: 3 classes)

Output Units - Multiclass Classification (ex: 3 classes)

NOTE: In the case of multiclass classification, the number of output units will always be the same as the number of classes in the response variable. 37

Output Units

Output Type	Output Distribution	Output layer	Loss Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy

Protopapas 38

Output Units

Output Type	Output Distribution	Output layer	Loss Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous	Gaussian	?	MSE

Protopapas

39

Output Units - Regression

Output Units - Regression

Output Units

Output Type	Output Distribution	Output layer	Loss Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous	Gaussian	Linear	MSE

Protopapas

Design Choices

Activation function

Loss function

Output units

Architecture

Architecture

Number of nodes

Number of nodes

Layers

Layers

Neural Networks as Universal Approximators

We have seen that neural networks can represent complex functions, but are there limitations on what a neural network can express?

Theorem:

For any continuous function f defined on a bounded domain, we can find a neural network that approximates f with an arbitrary degree of accuracy.

Layers

One hidden layer is enough to represent an approximation of any function to an arbitrary degree of accuracy.

So, the question in your mind must be:

Quiz Time

Why do you think we need more layers?

- A. To avoid overfitting
- B. To enable the network to learn complex patterns through a hierarchical learning process step by step.
- C. It is computationally faster
- D. It works prof! I do not need to know why

Quiz Time

Why do you think we need more layers?

- A. To avoid overfitting
- B. To enable the network to learn complex patterns through a hierarchical learning process step by step.

52

- C. It is computationally faster
- D. It works prof! I do not need to know why

Protopapas

Why layers?

Representation matters!

Neural networks can **learn useful representations** for the problem. This is another reason why they can be so powerful!

Depth Intuition

PROTOPAPAS

57

Depth helps, and it's not just because of more parameters

The **11-layer net** generalizes better on the test set when controlling for number of parameters.

Depth helps, and it's not just because of more parameters

The **11-layer net** generalizes better on the test set when controlling for number of parameters.

The 3-layer nets perform worse on the test set, even with similar number of total parameters.

Depth helps, and it's not just because of more parameters

The **11-layer net** generalizes better on the test set when controlling for number of parameters.

The 3-layer nets perform worse on the test set, even with similar number of total parameters.

Don't worry

It's just a

images.

about this word

"convolutional".

special type of

neural network,

often used for

Thank you!