

Natural Space Environment

Mod01a Exercise

Justin J. Likar

The Johns Hopkins University Applied Physics Laboratory (JHU / APL)

240-592-1090 | 240-583-9375 justin.likar@jhuapl.edu | jlikar1@jhu.edu

Purpose and objectives

- Introduce the SPENVIS online tool kit
- Use SPENVIS to generate charged particle environments for several reference missions
 - Trapped particles
 - Solar Energetic Particles
 - Galactic Cosmic Rays
- Review resultant environments (compare & contrast)
 - Make observations
- Discuss how these environments will influence SEE test planning

Sign in to SPENVIS

https://www.spenvis.oma.be/

Use the Coordinate Generator to create a trajectory

Use the Coordinate Generator to create a trajectory

Use the Coordinate Generator to create a trajectory

Explore the outputs

Explore the outputs

Modeling charged particle populations

SPENVIS Project: A4RES Orbit generator Results

- 1. Click UP and return to Main Menu
- 2. Click RADIATION SOURCES AND EFFECTS
- 3. Let's start with Trapped Particles

Run AP8 / AE8

- SPENVIS includes options for Trapped Particles
 - IRENE (Ver. 1.50), SSREM, CRRESPRO, ...
- AP8 / AE8 is fast for illustrative purposes

Explore the outputs

- Generate a Proton spectra for this mission (flux vs. energy)
 - Review the Report file [What sort of information is available here?]
- Generate a Time plot of proton flux >200 MeV for this mission
- Generate a World map of proton flux >200 MeV for this mission
 - [Why 200 MeV?]
 - [What sort of observations can you make?]

Explore the outputs

Modeling charged particle populations

SPENVIS Project: A4RES Orbit generator Results

- 1. Click UP and return to Main Menu
- 2. Click RADIATION SOURCES AND EFFECTS
- 3. Let's add Solar particles

Run CREME-96 Worst Day (WD)

- Other options available (SAPPHIRE, CREME-86, ...)
- Why CREME-96?
 - Compatibility with SIRE-2, CREME-MC, ...
- Leave the Magnetic shielding as defaults

Explore the outputs

- Generate a Heavy Ion spectra for Xe (Z=54) for this mission (flux vs. energy)
- Generate a World map of proton attenuation factor for >200 MeV for this mission
 - [Why 200 MeV?]
 - [What sort of observations can you make?]

Explore the outputs

Modeling charged particle populations

SPENVIS Project: A4RES Orbit generator Results

- 1. Click UP and return to Main Menu
- 2. Click RADIATION SOURCES AND EFFECTS
- 3. Let's add GCRs

Run CREME-96

- Other options available (ISO 15390, CREME-86, Nymmik, ...)
- Why CREME-96?
 - Compatibility with SIRE-2, CREME-MC, ...
- Leave the Magnetic shielding as defaults

```
Ion range: H v to U v

GCR model at 1 AU: CREME96 v

CREME-96 Sol. Min (1977)

Magnetic shielding: on (quiet magn.) edit
```


Explore the outputs

- 1. Generate a Heavy Ion spectra for Xe (Z=54) for this mission (flux vs. energy)
- 2. Generate a Heavy Ion spectra for protons (Z=1) for this mission (flux vs. energy)

Next steps ... on your own

- As of now we've generated charged particle environments for a notional mid latitude
 Starlink-like mission –
 - Trapped protons
 - SEP protons and ions
 - GCR protons and ions
- Repeat this process for a notional high latitude Starlink-like mission (see right)
 - Generate the same outputs and save so we can compare

Trajectory

Trapped protons

Comparisons (Trapped Protons)

- Make some observations about
 - Mission / orbit average >200 MeV protons
 - Peak >200 MeV protons

Comparisons (Trapped Protons)

- Make some observations about
 - Mission / orbit average >200 MeV protons
 - Peak >200 MeV protons

Worst Day

Comparisons (Worst Day)

- Make some observations about
 - Fluxes and energies of Xe ions

Comparisons (Worst Day)

- Make some observations about
 - Access of >200 MeV protons
 - Is the mission susceptible in a WD environment?

Comparisons (GCRs)

- Make some observations about
 - Fluxes and energies of Xe ions

Comparisons (GCRs)

- Make some observations about
 - Fluxes and energies of Xe ions

Discussion questions

- These are both LEO missions (same 530 km altitude)
 - But inclinations are quite different
- What are the major differences in
 - SAA passage(s)?
 - Orbit averaged trapped protons?
 - Accessibility of SEP protons / ions?
 - Accessibility of GCR protons / ions?
- How might these environments (and differences therein) drive SEE test planning?
 - For a Class A (exquisite) mission?
 - For a Class D (risky) mission?
- How are these differences likely to impact error rates?
 - For a RT / RH device with onset LET of >30 MeV-cm²/mg
 - For a non-RT / RH device with onset LET <1 MeV-cm²/mg

Natural Space Environment

Mod01a Homework / Assignment

Justin J. Likar

The Johns Hopkins University Applied Physics Laboratory (JHU / APL)

240-592-1090 | 240-583-9375 justin.likar@jhuapl.edu | jlikar1@jhu.edu

Consider a different reference mission

- Missions to GEO, L1 / L2, the lunar surface or cis-lunar space operate either entirely, or mostly, outside of the magnetosphere
- Use SPENVIS to define charged particle environments for such a mission (for ease of SPENVIS operations suggest GEO)
 - Trapped particles
 - Solar Energetic Particles
 - Galactic Cosmic Rays
- Compare / contrast with the reference missions we studied in class
- How might these environments (and differences therein) drive SEE test planning?
 - For a Class A (exquisite) mission?
 - For a Class D (risky) mission?
- How are these differences likely to impact error rates?
 - For a RT / RH device with onset LET of >30 MeV-cm²/mg
 - For a non-RT / RH device with onset LET <1 MeV-cm²/mg

- 1. Navigate to https://www.spenvis.oma.be/
- 2. Click REGISTER

- 1. Supply the requested registration information
- 2. Wait a few days

SPENVIS Registration

- · The entries marked with * are mandatory.
- E-mail addresses should be linked to your affiliation, in particular hotmail, yahoo and similar accounts are not allowed.

Username*		
Email*		
Title*	Select One ✔	
First Name*		
Last Name*		
Phone Number		
Fax Number		
City*		
Affiliation*		
Affiliation Type*	Select One ✓	
Affiliation URL*		
Country*	Select One ✓	
Agreement*	☐ I have read and I fully accept the <u>Term</u>	s and Conditions

Next

1. Once access is approved, sign in and navigate to your profile (icon below)

1. Set your Level to ADVANCED

My Account

• The entries marked with * are mandatory.

Jsername	likar
Email*	justin.likar@jhuapl.edu
Password	
Verify Password	
Γitle *	Mr. 🗸
First Name*	Justin
_ast Name*	Likar
Phone Number	+00-1-267-664-0473
Fax Number	
City*	Laurel, MD
Affiliation*	Johns Hopkins APL
Affiliation Type	University/Institute
Affiliation URL*	https://www.jhuapl.edu/
Country*	United States V
_evel*	Advanced 🕶
	Update

