

CHƯƠNG 4: PHÉP TÍNH TÍCH PHÂN

- 1. Nguyên hàm của hàm số
- 2. Tích phân bất định
- 3. Nguyên hàm của các hàm sơ cấp cơ bản
 - 4. Hai phương pháp cơ bản tính tích phân bất định
- 5. Tích phân của các hàm hữu tỉ

CHƯƠNG 4: PHÉP TÍNH TÍCH PHÂN

§1. TÍCH PHÂN BẤT ĐỊNH

1. Nguyên hàm của hàm số

Định nghĩa:

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên khoảng X nếu:

$$F'(x) = f(x), \ \forall x \in X$$

Ví dụ: Hàm số $\sin x$ là một nguyên hàm của hàm số $\cos x$ trên \mathbb{R} . **Định lí:**

Nếu F(x) là một nguyên hàm của f(x) trên khoảng X thì

- 1) F(x) + C là một nguyên hàm của f(x) trên X.
- 2) Mọi nguyên hàm của f(x) đều có dạng F(x) + C

2. Tích phân bất định

Định nghĩa: Tập hợp tất cả các nguyên hàm của hàm số f(x)

trên khoảng X được gọi là tích phân bất định của hàm số f(x),

kí hiệu là
$$\int f(x) dx$$

 Vậy $\int f(x) dx = F(x) + C$

trong đó F(x) là một nguyên hàm của f(x) trên X,

Tính chất:

Nếu hàm số f(x) liên tục trên [a, b] thì f(x) có nguyên hàm trên [a, b] và

$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$
$$\int \lambda f(x) dx = \lambda \int f(x) dx \quad (\lambda \in \mathbb{R})$$

$$\left(\int f(x)dx\right)' = f(x)$$
$$d\left(\int f(x)dx\right) = f(x)dx$$

- •Nếu $\int f(x)dx = F(x) + C$ thì $\int f(u)du = F(u) + C$ với u = u(x) là hàm số của x (u có đạo hàm liên tục).
- 3. Nguyên hàm của các hàm sơ cấp cơ bản

$$\int 0 dx = C$$

$$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int e^x dx = e^x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot gx + C$$

$$\int \frac{1}{1+x^2} dx = \arctan x + C = -\arctan x + K$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C = -\arccos x + K$$

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 + a}} = \ln\left|x + \sqrt{x^2 + a}\right| + C$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

$$\int \sqrt{x^2 + a} \, dx = \frac{x}{2} \sqrt{x^2 + a} + \frac{a}{2} \ln \left| x + \sqrt{x^2 + a} \right| + C$$

4. Hai phương pháp cơ bản tính tích phân bất định A. Phương pháp đổi biến số:

* $X ext{\'et} \int f(x) dx$ (f là hàm số liên tục)

Đặt $x = \varphi(t)$ $(\varphi(t)$ là hàm số đơn điệu, có đạo hàm liên tục)

$$\Rightarrow \int f(x)dx = \int f(\varphi(t)).\varphi'(t)dt$$

* Nếu $\int f(x)dx = \int g(\phi(x)).d(\phi(x))$ thì có thể đặt $t = \phi(x)$

$$\Rightarrow \int f(x)dx = \int g(t)dt$$

* Chú ý: Sau khi đổi biến, kết quả phải đưa về dạng chứa biến ban đầu.

Ví dụ: Tính
$$I = \int \sqrt{a^2 - x^2} dx$$
 $(a > 0)$

Đặt
$$x = a \sin t \Rightarrow dx = a \cos t dt$$
 $\left(-\frac{\pi}{2} \le t \le \frac{\pi}{2}\right)$

$$I = \int \sqrt{a^2 - a^2 \sin^2 t} \cdot a \cos t dt = a^2 \int \cos^2 t dt$$

$$= \int a^2 \frac{1 + \cos 2t}{2} dt = \frac{a^2}{2} \left(t + \frac{1}{2} \sin 2t \right) + C$$

Có
$$t = \arcsin \frac{x}{a}$$

$$\sin 2t = 2\sin t \cos t = 2\frac{x}{a}\sqrt{1 - \frac{x^2}{a^2}} = 2\frac{x}{a^2}\sqrt{a^2 - x^2}$$

$$\Rightarrow I = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C.$$

Ví dụ: Tính
$$I = \int \frac{e^{2x} dx}{e^x + 3}$$
.

Đặt
$$t = e^x$$

$$\Rightarrow I = \int \frac{e^x d(e^x)}{e^x + 3} = \int \frac{t dt}{t + 3} = \int \left(1 - \frac{3}{t + 3}\right) dt =$$

$$t-3\ln|t+3|+C$$

$$\Rightarrow I = e^x - 3\ln(e^x + 3) + C.$$

Ví dụ: Tính
$$I = \int \frac{x^3}{\sqrt{2 + x^2}} dx$$
 Giải:

$$I = \int \frac{x^3}{\sqrt{2+x^2}} dx = \frac{1}{2} \int \frac{(x^2+2-2)d(x^2+2)}{\sqrt{2+x^2}}$$

Đặt
$$2 + x^2 = t$$

$$I = \frac{1}{2} \int \frac{(t-2)dt}{\sqrt{t}} = \frac{1}{2} \int \left(\sqrt{t} - \frac{2}{\sqrt{t}} \right) dt = \frac{1}{2} \left(\frac{2}{3} t^{\frac{3}{2}} - 4\sqrt{t} \right) + C$$

$$= \frac{1}{3}(2+x^2)\sqrt{2+x^2} - 2\sqrt{2+x^2} + C = \frac{1}{3}(x^2-4)\sqrt{2+x^2} + C.$$

B. Phương pháp tích phân từng phần

Công thức:

$$\int u dv = uv - \int v du \quad (u, v \text{ c\'o d̄ao h\`am liên tục})$$

Phương pháp này thường dùng khi tính các tích phân dạng

$$\int P(x)e^{\alpha x}dx, \int P(x)\cos\alpha xdx, \int P(x)\sin\alpha xdx... (1)$$

$$\int P(x) \arcsin x dx, \int P(x) \arctan x dx, \int P(x) \ln x dx... (2)$$

Đối với các tích phân dạng (1) nên đặt u=P(x)

Đối với các tích phân dạng (2) nên đặt dv = P(x)dx

Ví dụ: Tính
$$I = \int 3^{\sqrt{2x+1}} dx$$
 Giải:

Đặt
$$\sqrt{2x+1} = t \Rightarrow 2x+1 = t^2 \Rightarrow 2dx = 2tdt$$

$$I = \int 3^t .t dt$$

Đặt
$$u = t, dv = 3^t dt \implies du = dt, v = \frac{3^t}{\ln 3}$$

$$I = t \cdot \frac{3^{t}}{\ln 3} - \int \frac{3^{t}}{\ln 3} dt = t \cdot \frac{3^{t}}{\ln 3} - \frac{3^{t}}{(\ln 3)^{2}} + C$$

$$= \frac{3^{\sqrt{2x+1}}}{\ln 3} \left(\sqrt{2x+1} - \frac{1}{\ln 3} \right) + C.$$

Ví dụ: Tính
$$I = \int x \operatorname{arctg} x dx$$

Đặt
$$u = \operatorname{arctg} x, dv = x dx \implies du = \frac{1}{1+x^2} dx, v = \frac{x^2}{2}$$

$$I = \frac{x^2}{2} \arctan x - \int \frac{x^2}{2} \cdot \frac{1}{1 + x^2} dx$$

$$= \frac{x^2}{2} \arctan \left(1 - \frac{1}{1 + x^2} \right) dx$$

$$= \frac{x^2}{2} \arctan x - \frac{1}{2}x + \frac{1}{2} \arctan x + C.$$

Ví dụ: Tính
$$I = \int x^3 \ln x dx$$

Giải:

Đặt
$$u = \ln x, dv = x^3 dx$$

$$\Rightarrow du = \frac{1}{x}dx, v = \frac{x^4}{4}$$

$$I = \frac{x^4}{4} \ln x - \frac{1}{4} \int x^3 dx = \frac{x^4}{4} \ln x - \frac{x^4}{16} + C.$$

Ví dụ: Tính
$$I = \int \frac{xe^x}{(x+1)^2} dx$$
 Giải:

Đặt
$$u = xe^x, dv = \frac{1}{(x+1)^2}dx$$

$$\Rightarrow du = (x+1)e^{x}dx, v = -\frac{1}{x+1}$$

$$I = -\frac{xe^{x}}{x+1} + \int e^{x} dx = -\frac{xe^{x}}{x+1} + e^{x} + C.$$

$$\begin{aligned} & \text{Vi du:} \quad \text{Tinh } I_n = \int \frac{1}{\left(x^2 + a^2\right)^n} dx \quad (a > 0) \\ & \text{Giải:} \\ & \text{Đặt } u = \frac{1}{\left(x^2 + a^2\right)^n}, dv = dx \Rightarrow du = -\frac{2nx}{\left(x^2 + a^2\right)^{n+1}} dx, v = x \\ & I_n = \frac{x}{\left(x^2 + a^2\right)^n} + 2n\int \frac{x^2}{\left(x^2 + a^2\right)^{n+1}} dx \\ & = \frac{x}{\left(x^2 + a^2\right)^n} + 2n\int \left(\frac{1}{\left(x^2 + a^2\right)^n} - \frac{a^2}{\left(x^2 + a^2\right)^{n+1}}\right) dx \\ & I_n = \frac{x}{\left(x^2 + a^2\right)^n} + 2nI_n - 2na^2I_{n+1} \end{aligned}$$

$$I_{n} = \frac{x}{\left(x^{2} + a^{2}\right)^{n}} + 2nI_{n} - 2na^{2}I_{n+1}$$

$$\Rightarrow I_{n+1} = \frac{1}{2na^{2}} \left[\frac{x}{\left(x^{2} + a^{2}\right)^{n}} + \left(2n - 1\right)I_{n} \right]$$
 (*)

Nhờ công thức truy hồi (*), ta tính I_2 từ I_1 , tính I_3 từ I_2 ...

Chẳng hạn:
$$I_1 = \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$$

$$\Rightarrow I_2 = \frac{1}{2a^2} \left[\frac{x}{x^2 + a^2} + \frac{1}{a} \operatorname{arctg} \frac{x}{a} \right] + C.$$

5. Tích phân của các hàm hữu tỉ

A. Tích phân của các hàm hữu tỉ

Tính $\int f(x)dx$ với f(x) là phân thức hữu tỉ. * Viết $f(x) = P(x) + \frac{Q(x)}{R(x)}$

* Viết
$$f(x) = P(x) + \frac{Q(x)}{R(x)}$$

P(x), Q(x), R(x) là các đa thức, bậc Q(x) <bậc R(x)

- * Viết $\frac{Q(x)}{R(x)}$ thành tổng các phân thức tối giản.
- * Tính các tích phân dạng $\int \frac{Adx}{\left(x-a\right)^n}, \int \frac{Bx+C}{\left(x^2+px+q\right)^m}dx$ với $p^2 - 4q < 0$

Có
$$* \int \frac{A}{(x-a)^n} dx = \begin{cases} \frac{-A}{(n-1)(x-a)^{n-1}} + C & \text{khi } n \neq 1 \\ A \ln|x-a| + C & \text{khi } n = 1 \end{cases}$$

$$* \int \frac{Bx + C}{\left(x^2 + px + q\right)^m} dx = \int \frac{(2x + p)\frac{B}{2} + C - \frac{Bp}{2}}{\left(x^2 + px + q\right)^m} dx$$

$$= \frac{B}{2} \int \frac{d(x^{2} + px + q)}{(x^{2} + px + q)^{m}} + \left(C - \frac{Bp}{2}\right) \int \frac{dx}{(x^{2} + px + q)^{m}}$$

$$*\int \frac{dx}{\left(x^2 + px + q\right)^m} = \int \frac{dx}{\left[\left(x + \frac{p}{2}\right)^2 + q - \frac{p^2}{4}\right]^m}$$

$$= \int \frac{dt}{(t^2 + a^2)^m} \quad \text{v\'oi } t = x + \frac{p}{2}, \ a = \sqrt{\frac{4q - p^2}{4}}.$$

Ví dụ: Tính
$$I = \int \frac{1}{(x^2+3)(x^2-1)} dx$$
.
Giải:

$$\frac{1}{\left(x^2+3\right)\left(x^2-1\right)} = \frac{1}{4} \left[\frac{1}{x^2-1} - \frac{1}{x^2+3} \right] = \frac{1}{4} \left[\frac{1}{2} \left(\frac{1}{x-1} - \frac{1}{x+1} \right) - \frac{1}{x^2+3} \right]$$

$$=\frac{1}{8}\cdot\frac{1}{x-1}-\frac{1}{8}\cdot\frac{1}{x+1}-\frac{1}{4}\cdot\frac{1}{x^2+3}$$

$$\Rightarrow I = \frac{1}{8} \int \frac{1}{x - 1} dx - \frac{1}{8} \int \frac{1}{x + 1} dx - \frac{1}{4} \int \frac{1}{x^2 + 3} dx$$

$$= \frac{1}{8} \ln \left| \frac{x-1}{x+1} \right| - \frac{1}{4\sqrt{3}} \operatorname{arctg} \frac{x}{\sqrt{3}} + C.$$

Ví dụ: Tính
$$I = \int \frac{dx}{x^5 - x^2}$$

Có
$$\frac{1}{x^5 - x^2} = \frac{1}{x^2(x^3 - 1)} = \frac{1}{x^2(x - 1)(x^2 + x + 1)}$$

Viết
$$\frac{1}{x^5 - x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x - 1} + \frac{Dx + E}{x^2 + x + 1}$$

$$\Rightarrow Ax(x^3-1)+B(x^3-1)+Cx^2(x^2+x+1)+(Dx+E)x^2(x-1)=1$$

Lấy
$$x = 0 \Rightarrow B = -1$$

Lấy
$$x = 1 \Rightarrow C = \frac{1}{3}$$

Cân bằng các hệ số của x^4, x^3, x ta có:

$$\begin{cases} A+C+D=0\\ B+C-D+E=0 \Leftrightarrow \begin{cases} A=0\\ D=-\frac{1}{3}\\ E=\frac{1}{3} \end{cases}$$

$$\Rightarrow \frac{1}{x^5 - x^2} = -\frac{1}{x^2} + \frac{1}{3} \cdot \frac{1}{x - 1} - \frac{1}{3} \cdot \frac{x - 1}{x^2 + x + 1}$$

$$\Rightarrow \int \frac{dx}{x^5 - x^2} = -\int \frac{dx}{x^2} + \frac{1}{3} \int \frac{dx}{x - 1} - \frac{1}{3} \int \frac{x - 1}{x^2 + x + 1} dx$$

$$= \frac{1}{x} + \frac{1}{3} \ln|x - 1| - \frac{1}{3} \int \frac{x - 1}{x^2 + x + 1} dx$$

Có
$$\int \frac{x-1}{x^2+x+1} dx = \int \frac{(2x+1) \cdot \frac{1}{2} - \frac{3}{2}}{x^2+x+1} dx$$

$$= \frac{1}{2}\ln(x^2 + x + 1) - \frac{3}{2}\int \frac{dx}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}}$$

$$= \frac{1}{2} \ln \left(x^2 + x + 1 \right) - \frac{3}{2} \cdot \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{x + \frac{1}{2}}{\frac{\sqrt{3}}{2}} + C$$

$$= \frac{1}{2} \ln \left(x^2 + x + 1 \right) - \sqrt{3} \operatorname{arctg} \frac{2x + 1}{\sqrt{3}} + C$$

$$\forall \hat{\mathbf{a}} \quad I = \frac{1}{x} + \frac{1}{3} \ln |x - 1| - \frac{1}{6} \ln \left(x^2 + x + 1 \right) + \frac{\sqrt{3}}{3} \operatorname{arctg} \frac{2x + 1}{\sqrt{3}} + C.$$

- B. Một số dạng tích phân có thể đưa về tích phân hữu tỉ
 - a. Tích phân của một số hàm lượng giác

Xét tích phân dạng
$$\int R(\sin x, \cos x) dx$$

(R là hàm hữu tỉ đối với các đối số trong ngoặc)

- * Phương pháp chung: Đặt tg $\frac{x}{2} = t$
- * Một số trường hợp đặc biệt:

Nếu hàm dưới dấu tích phân lẻ đối với $\sin x$ thì đặt $\cos x = t$

Nếu hàm dưới dấu tích phân lẻ đối với $\cos x$ thì đặt $\sin x = t$

Nếu hàm dưới dấu tích phân chẵn đối với $\sin x$ và $\cos x$ thì đặt tgx = t

Ví dụ: Tính
$$I = \int \frac{dx}{a + \cos x}$$
 $(a > 1)$

Đặt
$$tg\frac{x}{2} = t \implies x = 2arctgt \implies dx = \frac{2}{1+t^2}dt$$

$$I = \int \frac{\frac{2}{1+t^2}dt}{a + \frac{1-t^2}{1+t^2}} =$$

$$=2\int \frac{dt}{a+1+(a-1)t^2} = \frac{2}{a-1}\int \frac{dt}{\frac{a+1}{a-1}+t^2}$$

$$= \frac{2}{a-1} \sqrt{\frac{a-1}{a+1}} \operatorname{arctg}\left(\sqrt{\frac{a-1}{a+1}}t\right) + C = \frac{a-1}{\sqrt{a^2-1}} \operatorname{arctg}\left(\sqrt{\frac{a-1}{a+1}}.\operatorname{tg}\frac{x}{2}\right) + C$$

Ví dụ: Tính
$$I = \int \frac{\sin^3 x}{2 + \cos x} dx$$

Giải:

Hàm dưới dấu tích phân lẻ đối với $\sin x$

Đặt
$$\cos x = t \Rightarrow dt = -\sin x dx$$

$$I = \int \frac{\left(1 - \cos^2 x\right) \cdot \sin x dx}{2 + \cos x} =$$

$$\int \frac{(t^2 - 1)dt}{t + 2} = \int \left(t - 2 + \frac{3}{t + 2}\right)dt = \frac{t^2}{2} - 2t + 3\ln|t + 2| + C$$

$$= \frac{\cos^2 x}{2} - 2\cos x + 3\ln(\cos x + 2) + C.$$

Ví dụ: Tính
$$I = \int \sin^2 x \cos^4 x dx$$

$$I = \int \frac{\sin^2 2x}{4} \cdot \cos^2 x dx = \frac{1}{8} \int \sin^2 2x (1 + \cos 2x) dx$$

$$= \frac{1}{8} \int \frac{1 - \cos 4x}{2} dx + \frac{1}{8} \int \sin^2 2x \cdot \cos 2x dx$$

$$= \frac{1}{16} \left(x - \frac{1}{4} \sin 4x \right) + \frac{1}{16} \int \sin^2 2x . d \left(\sin 2x \right)$$

$$= \frac{1}{16}x - \frac{1}{64}\sin 4x + \frac{1}{48}\sin^3 2x + C.$$

b. Tích phân của một số hàm vô tỉ

1. Xét tích phân dạng:

$$\int R \left(x, \left(\frac{ax+b}{cx+d} \right)^{\frac{m}{n}}, \dots, \left(\frac{ax+b}{cx+d} \right)^{\frac{r}{s}} \right) dx \qquad (m, n, \dots, r, s \in \mathbb{Z}^*)$$

(R là hàm hữu tỉ đối với các đối số trong ngoặc)

Cách giải: Gọi k là BCNN của các số n,..., s

Đặt
$$t = \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{k}}$$

2. Xét tích phân dạng $\int R\left(x, \sqrt{a^2 - x^2}\right) dx$

(Rlà hàm hữu tỉ đối với các đối số trong ngoặc)

Có thể đặt $x = a \sin t$

3. Xét tích phân dạng $\int R(x, \sqrt{x^2 + a^2}) dx$

(Rlà hàm hữu tỉ đối với các đối số trong ngoặc)

Có thể đặt x = a t g t

Ví dụ: Tính
$$I = \int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}$$

Đặt
$$x^{\frac{1}{6}} = t \Rightarrow x = t^6 \Rightarrow dx = 6t^5 dt$$

$$I = \int \frac{6t^5 dt}{t^3 + t^2} = 6\int \frac{t^3}{t+1} dt = 6\int \frac{t^3 + 1 - 1}{t+1} dt = 6\int \left(t^2 - t + 1 - \frac{1}{t+1}\right) dt$$

$$= 6\left(\frac{t^3}{3} - \frac{t^2}{2} + t - \ln|t+1|\right) + C$$

$$= 6 \left(\frac{\sqrt{x}}{3} - \frac{\sqrt[3]{x}}{2} + \sqrt[6]{x} - \ln(\sqrt[6]{x} + 1) \right) + C$$

Ví dụ: Tính
$$I = \int \frac{dx}{1 + \sqrt[3]{(x-2)^2}}$$

Đặt
$$\sqrt[3]{x-2} = t \Rightarrow x-2 = t^3 \Rightarrow dx = 3t^2 dt$$

$$I = \int \frac{3t^2 dt}{1+t^2} = 3\int \left(1 - \frac{1}{1+t^2}\right) dt = 3(t - \arctan t) + C$$

$$=3(\sqrt[3]{x-2} - \arctan(\sqrt[3]{x-2}) + C$$

Ví dụ: Tính
$$I = \int x^2 \sqrt{4 - x^2} \, dx$$

Đặt
$$x = 2\sin t$$
, $\left(-\frac{\pi}{2} \le t \le \frac{\pi}{2}\right) \Longrightarrow dx = 2\cos t dt$

$$I = \int 4\sin^2 t \cdot 2\cos t \cdot 2\cos t dt = 4\int \sin^2 2t dt = 4\int \frac{1 - \cos 4t}{2} dt$$

$$=2t-\frac{1}{2}\sin 4t+C$$

$$= 2\arcsin\frac{x}{2} - \frac{1}{2}\sin\left(4\arcsin\frac{x}{2}\right) + C.$$

Ví dụ: Tính
$$\int \frac{dx}{\sqrt{x^2 + 3x + 4}}$$

Giải:

$$\int \frac{dx}{\sqrt{x^2 + 3x + 4}} = \int \frac{dx}{\sqrt{\left(x + \frac{3}{2}\right)^2 + \frac{7}{4}}} = \ln\left|x + \frac{3}{2} + \sqrt{x^2 + 3x + 4}\right| + C$$

Ví dụ: Tính
$$\int \frac{dx}{\sqrt{3+2x-x^2}}$$

$$\int \frac{dx}{\sqrt{3+2x-x^2}} = \int \frac{dx}{\sqrt{4-(x-1)^2}} = \arcsin\frac{x-1}{2} + C.$$

§1. TÍCH PHÂN BẤT ĐỊNH

c. Tích phân hàm hữu tỉ đối với $e^{\alpha x}$, $\alpha \in \mathbb{R}$

Xét $\int R(e^{\alpha x})dx$ trong đó R là hàm hữu tỉ đối với $e^{\alpha x}$, $\alpha \in \mathbb{R}$

Đặt
$$t = e^{\alpha x} \Rightarrow dt = \alpha e^{\alpha x} dx$$

Khi đó
$$\int R(e^{\alpha x})dx = \frac{1}{\alpha} \int \frac{R(t)}{t} dt$$

CHƯƠNG 4: PHÉP TÍNH TÍCH PHÂN

§2. TÍCH PHÂN XÁC ĐỊNH

- 1. Khái niệm tích phân xác định
- 2. Điều kiện khả tích
- 3. Tính chất của tích phân xác định
- 4. Liên hệ với tích phân bất định
- 5. Hai phương pháp cơ bản tính tích phân xác định
- 6. Ứng dụng của tích phân xác định

CHƯƠNG 4: PHÉP TÍNH TÍCH PHÂN

§2. TÍCH PHÂN XÁC ĐỊNH

1. Khái niệm tích phân xác định

Định nghĩa:

Cho hàm số f(x) xác định trên [a, b]. Chia [a, b] thành n đoạn nhỏ

tùy ý bởi các điểm chia $a = x_0 < x_1 < ... < x_n = b$.

Trên mỗi đoạn $[x_{i-1}, x_i]$ chọn một điểm ξ_i tùy ý.

Đặt
$$\Delta x_i = x_i - x_{i-1}$$
 $(i = \overline{1,n})$
$$\sigma_n = \sum_{i=1}^n f(\xi_i).\Delta x_i$$

Nếu $\lim_{\max \Delta x_i \to 0} \sigma_n = I$ tồn tại hữu hạn, không phụ thuộc phép chia [a, b],

phép chọn các điểm $\xi_i \in [x_{i-1}, x_i]$ thì giới hạn đó được gọi là tích

phân xác định của hàm số f(x) trên [a,b], kí hiệu là $\int_a^b f(x) dx$

Khi đó ta nói f khả tích trên [a, b].

Định nghĩa:

* Nếu
$$b < a$$
 thì $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$

$$* \int_{a}^{a} f(x) dx = 0$$

Chú ý:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$$

* Ý nghĩa hình học của tích phân xác định là :

 $\int_{a}^{b} f(x)dx$ là diện tích hình phẳng giới hạn bởi các đường

$$x = a, x = b, y = 0, y = f(x) \ge 0$$

2. Điều kiện khả tích

- * Nếu f khả tích trên [a, b] thì f bị chặn trên [a, b].
- * Nếu f liên tục trên [a, b] thì f khả tích trên [a, b].
- * Nếu f bị chặn và có hữu hạn điểm gián đoạn trên [a, b] thì f khả tích trên [a, b].
- * Nếu f đơn điệu và bị chặn trên [a, b] thì f khả tích trên [a, b].
- * Nếu f, g khả tích trên [a, b] thì $f \pm g$, λ . f, f. g, |f| cũng khả tích trên [a, b].
- * Nếu f khả tích trên [a, b] thì f khả tích trên mọi đoạn $[\alpha, \beta] \subset [a, b]$. Ngược lại nếu f khả tích trên [a, b], [b, c] thì f khả tích trên [a, c].

Ví dụ: Bằng định nghĩa, tính $\int_{0}^{1} x dx$ Giải:

Hàm số f(x) = x liên tục trên [0, 1] nên khả tích trên [0, 1].

 $\Rightarrow \int_{0}^{1} x dx$ tồn tại hữu hạn, không phụ thuộc cách chia [0, 1] và cách chọn các điểm ξ_i . Ta chia [0, 1] thành n đoạn bằng nhau bởi các

điểm chia
$$x_0 = 0, x_1 = \frac{1}{n}, ..., x_i = \frac{i}{n}, ..., x_n = 1$$

Trên mỗi đoạn $\left[x_{i-1},x_i\right]$, chọn một điểm $\xi_i=x_i$

Lập tổng
$$\sigma_n = \sum_{i=1}^n f(\xi_i) \Delta x_i = \sum_{i=1}^n \frac{i}{n} \cdot \frac{1}{n} = \frac{1+2+...+n}{n^2} = \frac{(1+n)n}{2n^2}$$

Có
$$\lim_{n\to\infty} \sigma_n = \frac{1}{2}$$
. Vậy $\int_0^1 x dx = \frac{1}{2}$

3. Tính chất của tích phân xác định

$$* \int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$* \int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx \qquad (\lambda \in \mathbb{R})$$

$$* \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

$$* N\text{\'e} u f(x) \leq g(x) \text{ v\'oi moi } x \in [a,b] \text{ thì } \int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$$

$$* \left[\int f(x) dx \right] \leq \int f(x) \right] dx \quad (a < b)$$

- * Nếu $m \le f(x) \le M$, $\forall x \in [a,b]$ và f khả tích trên [a,b] thì $m(b-a) \le \int_b^b f(x) dx \le M(b-a)$
- * Nếu $m \le f(x) \le M$, $\forall x \in [a,b]$ và f khả tích trên [a,b] thì $\exists \mu \in [m,M]$ sao cho $\int_{a}^{b} f(x) dx = \mu(b-a)$
- * Đặc biệt, nếu f liên tục trên [a, b] thì $\exists c \in [a, b]$ sao cho

$$\int_{a}^{b} f(x)dx = f(c)(b-a)$$

4. Liên hệ với tích phân bất định

A. Hàm theo cận trên

Định nghĩa:

Giả sử hàm số f khả tích trên [a, b], khi đó f khả tích trên [a, x] với mọi $x \in [a, b]$.

$$F(x) = \int_{a}^{x} f(x)dx = \int_{a}^{x} f(t)dt$$

là hàm số xác định trên [a,b], gọi là hàm theo cận trên.

Định lí: Nếu hàm số f liên tục trên [a,b] thì hàm số $F(x) = \int_a^x f(t) dt$ khả vi trên [a,b] và $F'(x) = f(x), \ \forall x \in [a,b]$

Định lí: Nếu hàm số f liên tục trên [a,b] thì hàm số $F(x) = \int_a^b f(t)dt$ khả vi trên [a,b] và $F'(x) = f(x), \ \forall x \in [a,b]$

Chứng minh:

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$F(x+h) - F(x) = \int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt$$

$$= \int_{a}^{x+h} f(t)dt = f(c_x)h \qquad \text{v\'oi} \quad c_x \in [x, x+h]$$

$$\Rightarrow F'(x) = \lim_{h \to 0} \frac{f(c_x) \cdot h}{h} = \lim_{h \to 0} f(c_x) = f(x)$$

Nhận xét: Nếu f liên tục trên [a, b] thì f có nguyên hàm trên [a, b]

Ví dụ: Cho
$$F(x) = \int_0^x \cos^2(2t+3)dt$$

Ta có $F'(x) = \cos^2(2x+3)$

B. Công thức Niutơn – Lepnit (Newton - Leibnitz)

Định lí: Giả sử f(x) liên tục trên $\begin{bmatrix} a,b \end{bmatrix}$ và có một nguyên hàm là F(x)

trên
$$[a,b]$$
, khi đó

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)\Big|_{a}^{b}$$

Ví dụ:
$$\int_{0}^{1} x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} \Big|_{0}^{1} = \frac{1}{\alpha + 1} \qquad (\alpha \neq -1)$$

Ví dụ: Tính
$$I = \int_{0}^{\frac{\pi}{4}} \frac{x dx}{\cos^2 x}$$

Giải:

Trước hết, ta tìm một nguyên hàm của hàm số $f(x) = \frac{x}{\cos^2 x}$

Đặt
$$u = x, dv = \frac{1}{\cos^2 x} dx \Rightarrow du = dx, v = \operatorname{tg} x$$

$$\Rightarrow \int \frac{x}{\cos^2 x} dx = x \operatorname{tg} x - \int \operatorname{tg} x dx = x \operatorname{tg} x + \ln|\cos x| + C$$

Vậy
$$I = \left(x \lg x + \ln\left|\cos x\right|\right)\Big|_0^{\frac{\pi}{4}} = \frac{\pi}{4} + \ln\frac{\sqrt{2}}{2} = \frac{\pi}{4} - \frac{1}{2}\ln 2$$

Ví dụ: Tìm giới hạn của dãy số

$$u_n = \frac{1}{n^{\alpha+1}} \sum_{k=1}^n k^{\alpha} \quad (\alpha \ge 0)$$

Giải:

$$u_n = \sum_{k=1}^n \left(\frac{k}{n}\right)^\alpha \frac{1}{n}$$

Xét hàm số $f(x) = x^{\alpha}$

f(x) liên tục trên $[0, 1] \Rightarrow f$ khả tích trên [0, 1].

Chia [0, 1] thành n đoạn bằng nhau bởi các điểm chia $x_i = \frac{i}{n}$ (i = 0,...,n)

Đặt
$$\Delta x_i = x_i - x_{i-1} = \frac{1}{n}$$

Trên mỗi đoạn $[x_{i-1}, x_i]$, chọn một điểm $\xi_i = x_i$

$$\Rightarrow \sigma_n = \sum_{i=1}^n f(\xi_i) \Delta x_i = \sum_{i=1}^n \left(\frac{i}{n}\right)^{\alpha} \cdot \frac{1}{n} = \sum_{k=1}^n \left(\frac{k}{n}\right)^{\alpha} \cdot \frac{1}{n}$$

Có
$$\lim_{n\to\infty} \sigma_n = \int_0^1 x^{\alpha} dx = \frac{1}{\alpha+1}$$

Vậy $\lim_{n\to\infty} u_n = \frac{1}{\alpha+1}$.

Vậy
$$\lim_{n\to\infty} u_n = \frac{1}{\alpha+1}$$
.

Nhận xét: Nếu
$$F(x) = \int_{u(x)}^{v(x)} f(t)dt$$

thì
$$F'(x) = f(v(x)).v'(x) - f(u(x)).u'(x)$$
.

Thật vậy, gọi G(t) là một nguyên hàm của f(t). Ta có:

$$\int_{u(x)}^{v(x)} f(t)dt = G(t)\Big|_{u(x)}^{v(x)} = G(v(x)) - G(u(x))$$

$$\Rightarrow F'(x) = G'(v(x)).v'(x) - G'(u(x)).u'(x) =$$

$$= f(v(x)).v'(x) - f(u(x)).u'(x)$$

Ví dụ:
$$F(x) = \int_{0}^{x^3} (2t^2 + 1)dt$$

$$\Rightarrow F'(x) = (2x^6 + 1) \cdot 3x^2 - (2x^2 + 1) = 6x^8 + x^2 - 1.$$

5. Hai phương pháp cơ bản tính tích phân xác định

A. Phương pháp đổi biến số

Định lí:

$$X\acute{e}t\int\limits_{a}^{b}f(x)dx$$

Giả sử f là hàm số liên tục trên khoảng $X, [a, b] \subset X$

Đặt
$$x = \varphi(t)$$
 sao cho:

* $\varphi(t)$ là hàm số có đạo hàm liên tục trên $[\alpha, \beta]$

*
$$\varphi(\alpha) = a, \varphi(\beta) = b$$

$$*\varphi([\alpha,\beta]) \subset X$$
 Khi đó
$$\int_{b}^{b} f(x)dx = \int_{a}^{\beta} f[\varphi(t)].\varphi'(t)dt$$

Định lí:

Xét
$$\int_{a}^{b} f(x)dx$$
 (f liên tục trên [a, b])

Đặt $t = \varphi(x)$ sao cho:

* $\varphi(x)$ là hàm số đơn điệu ngặt, có đạo hàm liên tục trên [a, b].

$$* f(x)dx = g(t)dt$$

*g(t) liên tục trên $\left[\varphi(a), \varphi(b)\right]$

Khi đó
$$\int_{a}^{b} f(x)dx = \int_{\varphi(a)}^{\varphi(b)} g(t)dt$$

B. Phương pháp tích phân từng phần

Giả sử u, v là các hàm số có đạo hàm liên tục trên [a,b]

Khi đó:
$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du$$

Ví dụ:

a) Cho f là hàm số liên tục trên [-a,a], chứng minh rằng:

$$\int_{-a}^{a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx & \text{nou } f \text{ ch} \text{/a} \\ 0 & \text{nou } f \text{ li} \end{cases}$$

b) Chof là hàm số liên tục trên $\mathbb R$, tuần hoàn với chu kì T.

Chứng minh rằng:
$$\int_{a}^{a+T} f(x) dx = \int_{b}^{b+T} f(x) dx \quad (\forall a, b \in \mathbb{R})$$

Giải:

$$a) \int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx \quad (*)$$

$$X \text{ \'et } \int_{-a}^{0} f(x)dx$$

$$D \text{ \'et } x = -t \Rightarrow dx = -dt$$

$$x = -a \Rightarrow t = a$$

$$x = 0 \Rightarrow t = 0.$$

$$\int_{-a}^{0} f(x)dx = -\int_{a}^{0} f(-t)dt = \int_{0}^{a} f(-t)dt = \begin{cases} \int_{0}^{a} f(t)dt = \int_{0}^{a} f(x)dx & \text{n\'ou} f \text{ chi/a} \\ -\int_{0}^{a} f(t)dt = -\int_{0}^{a} f(x)dx & \text{n\'ou} f \text{ l\'ou} \end{cases}$$

Thay vào (*), ta có điều phải chứng minh.

b) Trước hết, ta chứng minh
$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx$$
 $(\forall a \in \mathbb{R})$

$$\int_{a}^{a+T} f(x)dx = \int_{a}^{0} f(x)dx + \int_{0}^{T} f(x)dx + \int_{T}^{a+T} f(x)dx (*)$$

$$Xét \int_{a}^{T} f(x)dx$$
Đặt $x = t + T \Rightarrow dx = dt$

$$x = T \Rightarrow t = 0$$

$$x = a + T \Rightarrow t = a$$

$$\int_{T}^{a+T} f(x)dx = \int_{0}^{a} f(t + T)dt = \int_{0}^{a} f(t)dt = -\int_{a}^{0} f(t)dt = -\int_{a}^{0} f(x)dx$$
Thay vào (*), ta có: $\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx$ $(\forall a \in \mathbb{R})$

Ví dụ: Tính
$$I = \int_{0}^{\frac{\pi}{2}} \sin^3 x \cos^8 x dx$$
 Giải:

Đặt
$$t = \cos x \Rightarrow dt = -\sin x dx$$

$$x = 0 \Rightarrow t = 1$$

$$x = \frac{\pi}{2} \Longrightarrow t = 0$$

$$I = \int_{0}^{\frac{\pi}{2}} (1 - \cos^{2} x) \cos^{8} x \cdot \sin x dx = \int_{0}^{1} (1 - t^{2}) t^{8} dt$$

$$= \int_{0}^{1} \left(t^{8} - t^{10}\right) dt = \left(\frac{t^{9}}{9} - \frac{t^{11}}{11}\right) \Big|_{0}^{1} = \frac{1}{9} - \frac{1}{11} = \frac{2}{99}.$$

Ví dụ: Tính
$$I = \int_{0}^{1} x^{2} \operatorname{arctg} x dx$$

Giải:

Đặt
$$u = \arctan x, dv = x^2 dx$$

$$\Rightarrow du = \frac{1}{1+x^2} dx, v = \frac{x^3}{3}$$

$$I = \frac{x^3}{3} \arctan \left| \frac{1}{0} - \frac{1}{3} \int_{0}^{1} \frac{x^3}{1 + x^2} dx = \frac{1}{3} \cdot \frac{\pi}{4} - \frac{1}{3} \int_{0}^{1} \left(x - \frac{x}{x^2 + 1} \right) dx$$

$$= \frac{\pi}{12} - \frac{1}{3} \left(\frac{x^2}{2} - \frac{1}{2} \ln \left(x^2 + 1 \right) \right) \Big|_{0}^{1} = \frac{\pi}{12} - \frac{1}{3} \left(\frac{1}{2} - \frac{1}{2} \ln 2 \right) = \frac{\pi}{12} - \frac{1}{6} + \frac{1}{6} \ln 2.$$

Ví dụ: Tính

a)
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$$
 b) $J_n = \int_0^{\frac{\pi}{2}} \cos^n x dx$ $(n \in \mathbb{N}^*)$

Giải:

a) Đặt
$$u = \sin^{n-1} x, dv = \sin x dx$$

$$\Rightarrow du = (n-1)\sin^{n-2} x \cos x dx, v = -\cos x$$

$$I_n = -\sin^{n-1} x \cos x \Big|_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$$

$$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^2 x) dx \quad (\forall n > 1)$$

$$= (n-1)(I_{n-2} - I_n) \Longrightarrow nI_n = (n-1)I_{n-2}$$

$$\Rightarrow I_n = \frac{n-1}{n}I_{n-2}$$

* Có
$$I_0 = \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{2}$$

$$\Rightarrow I_2 = \frac{1}{2} \cdot \frac{\pi}{2}$$

$$I_4 = \frac{3}{4}.I_2 = \frac{3}{4}.\frac{1}{2}.\frac{\pi}{2}$$

$$I_6 = \frac{5}{6} I_4 = \frac{5}{6} \frac{3}{4} \frac{1}{2} \frac{\pi}{2}$$

. . .

$$I_{2n} = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2}$$

trong đó
$$(2n-1)!!=1.3.5...(2n-1)$$

 $(2n)!!=2.4.6...2n$

$$(2n)!! = 2.4.6...2n$$
* Có $I_1 = \int_0^{\frac{\pi}{2}} \sin x dx = \cos x \Big|_{\frac{\pi}{2}}^0 = 1$

$$\Rightarrow I_3 = \frac{2}{3}.1$$

$$I_5 = \frac{4}{5}I_3 = \frac{4}{5}.\frac{2}{3}.1$$

$$I_7 = \frac{6}{7}I_5 = \frac{6}{7}.\frac{4}{5}.\frac{2}{3}.1$$

. . .

$$\Rightarrow I_{2n+1} = \frac{(2n)!!}{(2n+1)!!}$$

Vậy
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx = \begin{cases} \frac{(n-1)!!}{n!!} \cdot \frac{\pi}{2} & \text{nown chi/o} \\ \frac{(n-1)!!}{n!!} \cdot \frac{\pi}{2} & \text{nown chi/o} \end{cases}$$

b) Đặt
$$x = \frac{\pi}{2} - t \Rightarrow dx = -dt$$

$$x = 0 \Longrightarrow t = \frac{\pi}{2}$$

$$x = \frac{\pi}{2} \Longrightarrow t = 0$$

$$J_n = \int_{\frac{\pi}{2}}^{0} \cos^n \left(\frac{\pi}{2} - t\right) \left(-dt\right) = \int_{0}^{\frac{\pi}{2}} \sin^n t dt = I_n.$$

Chẳng hạn
$$\int_{0}^{\frac{\pi}{2}} \cos^{5} x dx = \frac{4!!}{5!!} = \frac{2.4}{1.3.5} = \frac{8}{15}$$

6. Ứng dụng của tích phân xác định

- a. Tính diện tích hình phẳng
 - * Diện tích hình phẳng giới hạn bởi các đường

$$y = f(x), y = g(x), a \le x \le b$$
 là:

$$S = \int_{a}^{b} |f(x) - g(x)| dx$$

* Nếu hình phẳng giới hạn bởi các đường

$$x = g(y), x = h(y), c \le y \le d$$

thì diện tích hình phẳng là:

$$S = \int_{c}^{d} |g(y) - h(y)| dy$$

* Nếu hình phẳng giới hạn bởi đường có phương

tham số:
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \qquad (t_1 \le t \le t_2)$$

thì diện tích hình phẳng là:

$$S = \int_{t_1}^{t_2} |y(t).x'(t)| dt$$

* Nếu hình phẳng giới hạn bởi đường có phương trình trong tọa độ cực là:

$$r = r(\varphi), \quad (\alpha \le \varphi \le \beta)$$

thì diện tích hình phẳng là:

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) d\varphi$$

Ví dụ: Tính diện tích của hình elip

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Giải:

PT tham số của elip là: $\begin{cases} x = a \cos t \\ y = b \sin t \end{cases} \quad (0 \le t \le 2\pi)$

$$S = \int_{0}^{2\pi} |b\sin t.(-a\sin t)| dt = ab \int_{0}^{2\pi} \sin^{2}t. dt$$
$$= ab \int_{0}^{2\pi} \frac{1 - \cos 2t}{2} dt = \frac{ab}{2} \left(t - \frac{1}{2} \sin 2t \right) \Big|_{0}^{2\pi} = \pi ab \text{ (dvdt)}$$

b. Tính độ dài đường cong

* Nếu đường cong cho bởi phương trình

$$y = f(x), \quad a \le x \le b$$

thì độ dài đường cong là:

$$l = \int_{a}^{b} \sqrt{1 + f'^2(x)} dx$$

* Nếu đường cong cho bởi phương trình tham số

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \qquad (t_1 \le t \le t_2)$$

thì độ dài đường cong là:

$$l = \int_{t_1}^{t_2} \sqrt{x'^2(t) + y'^2(t)} dt$$

* Nếu đường cong cho bởi PT trong tọa độ cực là

$$r = r(\varphi), \quad (\alpha \le \varphi \le \beta)$$

thì độ dài đường cong là:

$$l = \int_{\alpha}^{\beta} \sqrt{r^2(\varphi) + r'^2(\varphi)} \ d\varphi$$

Ví dụ: Tính độ dài đường axtrôit cho bởi PT

$$\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases} \quad (0 \le t \le 2\pi, \ a \ge 0)$$

Giải:

Đường cong có tính đối xứng qua các trục Ox, Oy.

$$l = 4 \int_{0}^{\pi} \sqrt{x'^{2}(t) + y'^{2}(t)} dt$$

$$l = 4 \int_{0}^{\frac{\pi}{2}} \sqrt{x'^{2}(t) + y'^{2}(t)} dt$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \sqrt{(-3a\cos^{2}t \cdot \sin t)^{2} + (3a\sin^{2}t \cdot \cos t)^{2}} dt$$

$$= 12a \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2}t \cdot \sin^{2}t} dt = 12a \int_{0}^{\frac{\pi}{2}} \sin t \cdot \cos t dt$$

$$= 6a \cdot \sin^{2}t \Big|_{0}^{\frac{\pi}{2}} = 6a \text{ (dvdd)}$$

c. Tính thể tích vật thể

· Tính thể tích vật thể theo thiết diện đã biết

Nếu S(x) là diện tích thiết diện tạo bởi mặt phẳng

vuông góc với trục Ox tại x $(a \le x \le b)$

thì thể tích vật thể là:

$$V = \int_{a}^{b} S(x) dx$$

Tính thể tích vật thể tròn xoay

Thể tích vật thể tròn xoay do hình thang cong giới hạn bởi các đường y = 0, y = f(x), x = a, x = b quay xung quanh trục Ox tạo ra là:

$$V = \pi \int_{a}^{b} f^{2}(x) dx$$

d. Tính diện tích mặt tròn xoay

Gọi S là diện tích mặt tròn xoay do cung AB quay quanh trục Ox tạo ra.

* Nếu AB có phương trình $y = f(x) \ge 0$, $(a \le x \le b)$ thì

$$S = 2\pi \int_{a}^{b} f(x)\sqrt{1 + f'^{2}(x)}dx$$

* Nếu AB có phương trình tham số

$$\begin{cases} x = x(t) \\ y = y(t) \ge 0 \end{cases} \qquad (t_1 \le t \le t_2)$$

thì
$$S = 2\pi \int_{t_1}^{t_2} y(t) \sqrt{x'^2(t) + y'^2(t)} dt$$

 * Nếu AB có phương trình trong tọa độ cực là

$$r = r(\varphi), \quad (\alpha \le \varphi \le \beta, \sin \varphi \ge 0)$$

thì
$$S = 2\pi \int_{\alpha}^{\beta} r(\varphi) \sin \varphi \sqrt{r^2(\varphi) + r'^2(\varphi)} d\varphi$$

Ví dụ: Tính diện tích mặt tròn xoay do đường $r = a(1 + \cos \varphi)$ (a > 0)

quay quanh trục Ox tạo ra.

Giải:

Đường cong có tính đối xứng qua trục Ox

$$S = 2\pi \int_{0}^{\pi} r(\varphi) \sin \varphi \sqrt{r^{2}(\varphi) + r'^{2}(\varphi)} d\varphi$$

$$=2\pi\int_{0}^{\pi}a(1+\cos\varphi)\sin\varphi\sqrt{a^{2}(1+\cos\varphi)^{2}+(-a\sin\varphi)^{2}}d\varphi$$

$$= 2\pi a^2 \int_{0\pi}^{\pi} (1 + \cos\varphi) \sin\varphi \sqrt{2 + 2\cos\varphi} \ d\varphi$$

$$= 2\pi a^2 \int_{0\pi}^{\pi} (1 + \cos\varphi) \sin\varphi . 2 \left| \cos\frac{\varphi}{2} \right| d\varphi$$

$$= 2\pi a^2 \int_{0\pi}^{\pi} 2\cos^2\frac{\varphi}{2} . 2\sin\frac{\varphi}{2}\cos\frac{\varphi}{2} . 2\cos\frac{\varphi}{2} d\varphi$$

$$= -2\pi a^2 \int_{0\pi}^{\pi} 16\cos^4\frac{\varphi}{2} . d\left(\cos\frac{\varphi}{2}\right) = \frac{1}{5} . 32\pi a^2 \cos^5\frac{\varphi}{2} \Big|_{\pi}^{0\pi}$$

$$= \frac{32\pi a^2}{5} \text{ (dvdt)}$$

CHƯƠNG 4: PHÉP TÍNH TÍCH PHÂN

§3. TÍCH PHÂN SUY RỘNG

- 1. Tích phân suy rộng với cận vô hạn
 - A. Định nghĩa
 - B. Tính chất
 - C. Nhận xét (Cách tính)
 - D. Điều kiện hội tụ
 - 2. Tích phân suy rộng của hàm số không bị chặn
 - A. Định nghĩa
 - B. Tính chất
 - C. Nhận xét (Cách tính)
 - D. Điều kiện hội tụ

CHƯƠNG 4: PHÉP TÍNH TÍCH PHÂN

§3. TÍCH PHÂN SUY RỘNG

1.Tích phân suy rộng với cận vô hạn (TPSR loại 1)

A. Định nghĩa:

Định nghĩa: Cho hàm số f xác định trên $[a,+\infty)$, f khả tích trên mọi đoạn [a,A] , $A\geq a$.

Nếu
$$\lim_{A\to +\infty}\int\limits_a^A f(x)dx=I$$
 trong đó $I\in\mathbb{R}$ hoặc $I=\pm\infty$ thì giới hạn đó được gọi là tích phân suy rộng của hàm số $f(x)$ trên $\begin{bmatrix} a,+\infty \end{pmatrix}$

Kí hiệu
$$\int_{a}^{+\infty} f(x) dx$$
.

Nếu I là hữu hạn thì ta nói $\int_{a}^{+\infty} f(x)dx$ hội tụ.

Tích phân không hội tụ gọi là tích phân phân kì.

Định nghĩa: Cho hàm số f xác định trên $(-\infty, a]$, f khả tích trên mọi đoạn [A, a], $A \le a$.

Nếu $\lim_{A\to -\infty}\int\limits_A^a f\left(x\right)dx=I$ trong đó $I\in\mathbb{R}$ hoặc $I=\pm\infty$ thì giới hạn đó được gọi là tích phân suy rộng của hàm số f(x) trên $(-\infty,a]$ Kí hiệu $\int\limits_A^a f(x)dx$

Nếu I là hữu hạn thì ta nói $\int_{-\infty}^{a} f(x)dx$ hội tụ.

Tích phân không hội tụ gọi là tích phân phân kì.

 $extbf{Dinh nghĩa:}$ Cho hàm số f xác định trên $\mathbb R$

f khả tích trên [A,B] với mọi $A,B\in\mathbb{R}$

Tích phân suy rộng của f trên $(-\infty, +\infty)$ kí hiệu là $\int_{-\infty}^{\infty} f(x) dx$

$$\int_{-\infty}^{+\infty} f(x) dx \text{ hội tụ nếu } \int_{-\infty}^{a} f(x) dx \text{ và } \int_{a}^{+\infty} f(x) dx \text{ cùng hội tụ với mọi } a \in \mathbb{R}$$

Khi đó:
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx$$

B. Tính chất

$$* \int_{a}^{+\infty} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{+\infty} f(x)dx$$

$$* \int_{a}^{+\infty} (f(x) \pm g(x))dx = \int_{a}^{+\infty} f(x)dx \pm \int_{a}^{+\infty} g(x)dx$$

$$* \int_{a}^{+\infty} \lambda f(x)dx = \lambda \int_{a}^{+\infty} f(x)dx \quad (\lambda \in \mathbb{R})$$

* Giả sử f khả tích trên mọi $[a,A], A \ge a$.

Khi đó
$$\int_{a}^{+\infty} f(x)dx$$
 hội tụ $\Leftrightarrow \int_{b}^{+\infty} f(x)dx$ hội tụ với $\forall b > a$.

C. Nhận xét (Cách tính):

• Giả sử f(x) liên tục trên $[a,+\infty)$ và có một nguyên hàm là F(x)

trên
$$[a,+\infty)$$

Khi đó:
$$\int_a^{+\infty} f(x) dx = F(x) \Big|_a^{+\infty} = F(+\infty) - F(a)$$

* Tương tự:
$$\int_a^a f(x) dx = F(x) \Big|_{-\infty}^a = F(a) - F(-\infty)$$

trong đó $F(-\infty) = \lim_{x \to -\infty} F(x)$

$$\int_{-\infty}^{+\infty} f(x) dx = \lim_{B \to +\infty} F(B) - \lim_{A \to -\infty} F(A)$$

Ví dụ: Tính các tích phân suy rộng sau:

a)
$$\int_{0}^{+\infty} \frac{dx}{1+x^2}$$
 Giải:

b)
$$\int_{-\infty}^{0} \frac{dx}{1+x^2}$$

c)
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$$

a)
$$\int_{0}^{+\infty} \frac{dx}{1+x^2} = \arctan |x|_{0}^{+\infty} = \lim_{x \to +\infty} \arctan |x| - \arctan |x| = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

b)
$$\int_{-\infty}^{0} \frac{dx}{1+x^2} = \left| \arctan x \right|_{-\infty}^{0} = \left| \arctan x \right|_{-\infty}^{0} = \left| \arctan x \right|_{x \to -\infty}^{0} \arctan x = 0 - \left(-\frac{\pi}{2} \right) = \frac{\pi}{2}$$

c)
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = \int_{-\infty}^{0} \frac{dx}{1+x^2} + \int_{0}^{+\infty} \frac{dx}{1+x^2} = \pi$$

Ví dụ: Xét sự hội tụ của tích phân suy rộng sau:

$$\int_{a}^{+\infty} \frac{dx}{x^{\alpha}} \qquad (a > 0, \alpha \in \mathbb{R})$$

Nếu
$$\alpha = 1$$
 thì $\int_a^{+\infty} \frac{dx}{x^{\alpha}} = \ln|x||_a^{+\infty} = +\infty$. Tích phân phân kì.

Nếu
$$\alpha \neq 1$$
 thì $\int\limits_a^{+\infty} \frac{dx}{x^{\alpha}} = \frac{1}{1-\alpha} x^{1-\alpha} \Big|_a^{+\infty} = \frac{1}{1-\alpha} \Big[\lim\limits_{x \to +\infty} x^{1-\alpha} - a^{1-\alpha}\Big]$
Khi $\alpha > 1$ thì $\lim\limits_{x \to +\infty} x^{1-\alpha} = 0 \Rightarrow \int\limits_a^{+\infty} \frac{dx}{x^{\alpha}} = \frac{1}{\alpha - 1} a^{1-\alpha} \in \mathbb{R}$. Tích phân hội tụ. Khi $\alpha < 1$ thì $\lim\limits_{x \to +\infty} x^{1-\alpha} = +\infty \Rightarrow \int\limits_a^{+\infty} \frac{dx}{x^{\alpha}} = +\infty$. Tích phân phân kì.

Khi
$$\alpha > 1$$
 thì $\lim_{x \to +\infty} x^{1-\alpha} = 0 \implies \int \frac{dx}{x^{\alpha}} = \frac{1}{\alpha - 1} a^{1-\alpha} \in \mathbb{R}$. Tích phân hội tụ

Khi
$$\alpha < 1$$
 thì $\lim_{x \to +\infty} x^{1-\alpha} = +\infty \Rightarrow \int_{\alpha} \frac{dx}{x^{\alpha}} = +\infty$. Tích phân phân kì

Vậy
$$\int_{-\infty}^{+\infty} \frac{dx}{x^{\alpha}}$$
 hội tụ nếu $\alpha > 1$, phân kì nếu $\alpha \le 1$.

D. Điều kiện hội tụ của tích phân suy rộng

Định lí: Giả sử $f(x) \ge 0$ và khả tích trên [a,A] với mọi $A \ge a$

Điều kiện cần và đủ để $\int_a^+ f(x) dx$ hội tụ là hàm số $\phi(A) = \int_a^A f(x) dx$

bị chặn trên trên khoảng $[a,+\infty)$.

Định lí (Tiêu chuẩn so sánh): Cho f(x), g(x) là các hàm số không

âm trên
$$[a,+\infty)$$
, khả tích trên mọi đoạn $[a,A], A \ge a$ và

$$f(x) \le g(x)$$
 với mọi $x \ge b \ (b \ge a)$

Khi đó:

Nếu
$$\int_{a}^{+\infty} g(x)dx$$
 hội tụ thì $\int_{a}^{+\infty} f(x)dx$ hội tụ.

Nếu
$$\int_{a}^{+\infty} f(x)dx$$
 phân kì thì $\int_{a}^{+\infty} g(x)dx$ phân kì.

Định lí: Cho f(x), g(x) là các hàm số **dương** trên $[a, +\infty)$, khả tích trên mọi đoạn $[a, A], A \ge a$ và $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k$

Khi đó:

- * Nếu $0 < k < +\infty$ thì $\int_{a}^{\infty} f(x) dx$ và $\int_{a}^{+\infty} g(x) dx$
 - cùng tính chất hội tự hoặc phân kì.
- * Nếu k=0 và $\int g(x)dx$ hội tụ thì $\int f(x)dx$ hội tụ.
- * Nếu $k = +\infty$ và $\int g(x)dx$ phân kì thì $\int f(x)dx$ phân kì

Nhận xét:

Khi xét sự hội tụ của tích phân suy rộng (loại 1) của các hàm số không âm, ta thường so sánh với các tích phân dạng

$$\int_{a}^{+\infty} \frac{dx}{x^{\alpha}} \qquad (a > 0, \alpha \in \mathbb{R})$$

Định lí: Nếu
$$\int_{a}^{+\infty} |f(x)| dx$$
 hội tụ thì $\int_{a}^{+\infty} f(x) dx$ hội tụ.

Khi đó, ta nói $\int_{a}^{\infty} f(x)dx$ hội tụ tuyệt đối.

* Nếu
$$\int_{a}^{+\infty} f(x)dx$$
 hội tụ nhưng $\int_{a}^{+\infty} |f(x)|dx$ phân kì thì ta

nói $\int f(x)dx$ bán hội tụ.

Ví dụ: Xét sự hội tụ của tích phân suy rộng sau:

$$\int_{1}^{+\infty} \frac{dx}{x\sqrt{1+x^2}}$$

Giải:

Có
$$\frac{1}{x\sqrt{1+x^2}} < \frac{1}{x^2}$$
 với mọi $x \ge 1$

Có
$$\frac{1}{x\sqrt{1+x^2}} < \frac{1}{x^2}$$
 với mọi $x \ge 1$ mà $\int_{1}^{+\infty} \frac{dx}{x^2}$ hội tụ (do $\alpha = 2 > 1$) nên $\int_{1}^{+\infty} \frac{dx}{x\sqrt{1+x^2}}$ hội tụ.

Ví dụ: Xét sự hội tụ của tích phân suy rộng sau:

$$\int_{2}^{+\infty} \frac{e^{x}}{x^{2}} dx$$

Giải:

$$\lim_{x \to +\infty} \left(\frac{e^x}{x^2} : \frac{1}{x} \right) = \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

mà
$$\int_{2}^{+\infty} \frac{dx}{x}$$
 phân kì nên $\int_{2}^{+\infty} \frac{e^{x}}{x^{2}} dx$ phân kì

Ví dụ: Xét sự hội tụ của tích phân suy rộng sau:

$$\int_{3}^{+\infty} x^{r} e^{-x} dx \qquad (0 \le r \in \mathbb{R})$$

Giải:

$$\lim_{x \to +\infty} \left(\frac{x^r}{e^x} : \frac{1}{x^2} \right) = \lim_{x \to +\infty} \frac{x^{r+2}}{e^x} = 0$$

mà
$$\int_{3}^{+\infty} \frac{dx}{x^2}$$
 hội tụ nên $\int_{3}^{+\infty} \frac{x^r}{e^x} dx$ hội tụ

$$\int_{0}^{+\infty} \frac{x^{\frac{3}{2}}}{1+x^{2}} dx = \int_{0}^{1} \frac{x^{\frac{3}{2}}}{1+x^{2}} dx + \int_{1}^{+\infty} \frac{x^{\frac{3}{2}}}{1+x^{2}} dx$$

Có
$$\int_{0}^{1} \frac{x^{2}}{1+x^{2}} dx \in \mathbb{R}$$

VD: Xét sự hội tụ của TPSR:
$$\int_{0}^{+\infty} \frac{x^{\frac{3}{2}}}{1+x^{2}} dx$$
Giải:
$$\int_{0}^{+\infty} \frac{x^{\frac{3}{2}}}{1+x^{2}} dx = \int_{0}^{1} \frac{x^{\frac{3}{2}}}{1+x^{2}} dx + \int_{1}^{+\infty} \frac{x^{\frac{3}{2}}}{1+x^{2}} dx$$

$$Có \int_{0}^{1} \frac{x^{\frac{3}{2}}}{1+x^{2}} dx \in \mathbb{R}$$

$$\frac{x^{\frac{3}{2}}}{1+x^{2}} \sim \frac{1}{x^{\frac{1}{2}}} khi \ x \to +\infty \text{ mà } \int_{1}^{+\infty} \frac{dx}{x^{\frac{1}{2}}} \text{ phân kì nên } \int_{1}^{+\infty} \frac{x^{\frac{3}{2}}}{1+x^{2}} dx$$

phân kì. Vậy tích phân đã cho phân kì.

VD: Xét sự hội tụ của TPSR: $\int_{0}^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}}$

$$\int_{0}^{+\infty} \frac{xdx}{\sqrt{e^{2x}-1}}$$

Giải:

$$\int_{0}^{+\infty} \frac{xdx}{\sqrt{e^{2x} - 1}} = \int_{0}^{a} \frac{xdx}{\sqrt{e^{2x} - 1}} + \int_{a}^{+\infty} \frac{xdx}{\sqrt{e^{2x} - 1}} \qquad (a > 0)$$

Hàm số $f(x) = \frac{x}{\sqrt{e^{2x} - 1}}$ xác định trên (0, a]

$$v\grave{a} \lim_{x \to 0^+} \frac{x}{\sqrt{e^{2x} - 1}} = \lim_{x \to 0^+} \sqrt{\frac{x^2}{e^{2x} - 1}} = 0 \in \mathbb{R} \ \text{nen} \ \int_0^a \frac{x dx}{\sqrt{e^{2x} - 1}} \in \mathbb{R}.$$

$$X\acute{e}t \int_{a}^{+\infty} \frac{xdx}{\sqrt{e^{2x}-1}}$$

Có
$$\lim_{x \to +\infty} \left(\frac{x}{\sqrt{e^{2x} - 1}} : \frac{1}{x^2} \right) = \lim_{x \to +\infty} \sqrt{\frac{x^6}{e^{2x} - 1}} = 0$$

mà
$$\int_{a}^{+\infty} \frac{1}{x^{2}} dx$$
 hội tụ nên
$$\int_{a}^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}}$$
 hội tụ.

Vậy tích phân đã cho hội tụ

Giải:

§3. TÍCH PHÂN SUY RỘNG

VD: Xét sự hội tụ của tích phân suy rộng:

$$\int_{0}^{+\infty} \frac{\cos ax}{k^{2} + x^{4}} dx$$

$$(a \in \mathbb{R}, k \in \mathbb{R}^{*})$$

$$\int_{0}^{+\infty} \frac{\cos ax}{k^{2} + x^{4}} dx = \int_{0}^{1} \frac{\cos ax}{k^{2} + x^{4}} dx + \int_{1}^{+\infty} \frac{\cos ax}{k^{2} + x^{4}} dx \qquad (a \in \mathbb{R}, k \in \mathbb{R}^{*})$$

$$\int_{0}^{1} \frac{\cos ax}{k^{2} + x^{4}} dx$$
 hội tụ (là tích phân xác định)

Có
$$\left| \frac{\cos ax}{k^2 + x^4} \right| \le \frac{1}{x^4}$$
 với mọi $x \in [1, +\infty)$

Có
$$\left| \frac{\cos ax}{k^2 + x^4} \right| \le \frac{1}{x^4}$$
 với mọi $x \in [1, +\infty)$ mà $\int_{1}^{+\infty} \frac{dx}{x^4}$ hội tụ nên $\int_{1}^{+\infty} \left| \frac{\cos ax}{k^2 + x^4} \right| dx$ hội tụ $\int_{1}^{+\infty} \cos ax$

$$\Rightarrow \int_{1}^{+\infty} \frac{\cos ax}{k^2 + x^4} dx \quad \text{hội tụ.} \quad \text{Vậy } \int_{0}^{+\infty} \frac{\cos ax}{k^2 + x^4} dx \quad \text{hội tụ.}$$

2. Tích phân suy rộng của hàm số không bị chặn

```
( Hàm dưới dấu tích phân có cực điểm )
A. Định nghĩa:
```

- * Định nghĩa cực điểm:
- * Cho hàm số f xác định trên (a,b)
 - a được gọi là cực điểm của hàm số f nếu $\lim_{x \to a^+} f(x) = +\infty ho \mathcal{A} \bar{c} \infty$
 - b được gọi là cực điểm của hàm số f nếu $\lim_{x\to b^-} f(x) = +\infty ho \mathcal{H} \infty$
 - Cho hàm số f xác định trên $[a,b] \setminus \{x_0\}, x_0 \in (a,b)$
 - x_0 được gọi là cực điểm của hàm số f nếu $\lim_{x \to x_0} f(x) = +\infty ho \mathcal{H} = -\infty$

Định nghĩa: Cho hàm số f xác định trên [a, b), có cực điểm là b,

f khả tích trên mọi đoạn [a, c] với $a \le c < b$

Nếu
$$\lim_{c \to b^-} \int_a^c f(x) dx = I$$
 trong đó $I \in \mathbb{R}$ hoặc $I = \pm \infty$

thì giới hạn đó được gọi là tích phân suy rộng của hàm số f(x)

trên
$$[a, b)$$
, kí hiệu $\int_a^b f(x)dx$

Nếu I là hữu hạn thì ta nói $\int\limits_a^b f(x) dx$ hội tụ.

Tích phân không hội tụ gọi là tích phân phân kỳ.

Định nghĩa: Cho hàm số f xác định trên (a, b], có cực điểm là a.

f khả tích trên mọi đoạn [c, b] với $a < c \le b$.

Nếu $\lim_{c\to a^+}\int\limits_c^v f(x)dx=I$ trong đó $I\in\mathbb{R}$ hoặc $I=\pm\infty$ thì giới hạn

đó được gọi là tích phân suy rộng của hàm số f(x) trên (a, b],

kí hiệu
$$\int_{a}^{b} f(x)dx$$

kí hiệu $\int\limits_a^b f(x)dx$ Nếu I là hữu hạn thì ta nói $\int\limits_a^b f(x)dx$ hội tụ.

Tích phân không hội tụ gọi là tích phân phân kì.

Định nghĩa: Cho $f:[a,b] \setminus \{x_0\} \to \mathbb{R}, \ x_0 \in (a,b)$ là cực điểm của hàm số f

f khả tích trên mọi đoạn [a,c],[d,b] với $a \le c < x_0, \, x_0 < d \le b$

Tích phân suy rộng của hàm số f(x) trên $\begin{bmatrix} a,b \end{bmatrix}$ kí hiệu là $\int\limits_{a}^{b} f(x) dx$

$$\int_{a}^{b} f(x)dx \text{ hội tụ nếu } \int_{a}^{x_{0}} f(x)dx \text{ và } \int_{x_{0}}^{b} f(x)dx \text{ cùng hội tụ.}$$

Khi đó:

$$\int_{a}^{b} f(x)dx = \int_{a}^{x_{0}} f(x)dx + \int_{x_{0}}^{b} f(x)dx$$

B. Nhận xét (Cách tính):

Nếu hàm số f(x) liên tục trên [a, b] trừ tại các cực điểm của nó và f(x) có một nguyên hàm là F(x) thì:

$$\int_{a}^{b} f(x)dx = \lim_{x \to b^{-}} F(x) - F(a) \quad \text{(n\'eu cực điểm là } b\text{)}$$

$$\int_{a}^{b} f(x)dx = F(b) - \lim_{x \to a^{+}} F(x) \quad \text{(n\'eu cực điểm là } a\text{)}$$

Ví dụ: Tính các tích phân suy rộng sau:

a)
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$$
 b) $\int_{-1}^{0} \frac{dx}{\sqrt{1-x^2}}$ c) $\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}$

Giải:

a) Cực điểm: x = 1

$$\int_{0}^{1} \frac{dx}{\sqrt{1 - x^{2}}} = \lim_{c \to 1^{-}} \int_{0}^{c} \frac{dx}{\sqrt{1 - x^{2}}} = \lim_{c \to 1^{-}} \left[\arcsin x \Big|_{0}^{c} \right] = \lim_{c \to 1^{-}} \arcsin c = \frac{\pi}{2}$$

b) Cực điểm: $\chi = -1$

$$\int_{-1}^{0} \frac{dx}{\sqrt{1-x^2}} = \arcsin 0 - \lim_{x \to -1^+} \arcsin x = 0 - \left(-\frac{\pi}{2}\right) = \frac{\pi}{2}$$

c) Cực điểm: x = 1, x = -1

$$\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}} = \int_{-1}^{0} \frac{dx}{\sqrt{1-x^2}} + \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

Ví dụ: Xét sự hội tụ của tích phân suy rộng sau:

$$I = \int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} \qquad (\alpha > 0)$$

Giải:

Cực điểm:
$$x = a$$

$$I = \lim_{c \to a^{+}} \int_{c}^{b} \frac{dx}{(x-a)^{\alpha}}$$

* Nếu $\alpha = 1$

$$I = \lim_{c \to a^{+}} \left(\ln |x - a|^{b}_{c} \right) = \ln |b - a| - \lim_{c \to a^{+}} \ln |c - a| = +\infty$$

Tích phân phân kì.

* Nếu $\alpha \neq 1$

$$I = \lim_{c \to a^{+}} \left[\frac{1}{1 - \alpha} (x - a)^{1 - \alpha} \Big|_{c}^{b} \right] = \frac{1}{1 - \alpha} \left[(b - a)^{1 - \alpha} - \lim_{c \to a^{+}} (c - a)^{1 - \alpha} \right]$$

$$= \begin{cases} \frac{(b-a)^{1-\alpha}}{1-\alpha} \in \mathbb{R} & \text{khi } \alpha < 1 \\ +\infty & \text{khi } \alpha > 1 \end{cases}$$

Vậy
$$I = \int_{a}^{b} \frac{dx}{(x-a)^{\alpha}}$$
 hội tụ nếu $\alpha < 1$, phân kì nếu $\alpha \ge 1$

• Tương tự, $\int_{a}^{b} \frac{dx}{(b-x)^{\alpha}}$ hội tụ nếu $\alpha < 1$, phân kì nếu $\alpha \ge 1$.

C. Điều kiện hội tụ của tích phân suy rộng

Định lí: Cho f(x) là hàm số không âm trên [a,b), có cực điểm là b,

f(x) khả tích trên mọi đoạn $\left[a,c\right]$ với $a \le c < b$.

Điều kiện cần và đủ để tích phân suy rộng $\int_a^b f(x)dx$ hội tụ là hàm

$$\phi(c) = \int_{a}^{c} f(x)dx$$
 bị chặn trên trên $[a,b)$.

Định lí: (Tiêu chuẩn so sánh) Cho f(x), g(x) là các hàm số không

âm trên [a,b), có cực điểm là b, khả tích trên mọi đoạn [a,c] với

$$a \le c < b$$
 và

$$f(x) \le g(x)$$
 với mọi $x \in [d,b)$ $(a \le d < b)$

Khi đó:

Nếu
$$\int_{a}^{b} g(x)dx$$
 hội tụ thì $\int_{a}^{b} f(x)dx$ hội tụ.

Nếu
$$\int_{a}^{b} f(x)dx$$
 phân kì thì $\int_{a}^{b} g(x)dx$ phân kì.

Định lí: Cho f(x),g(x) là các hàm số dương trên [a,b), có cực điểm là b, khả tích trên mọi đoạn [a,c] với $a \le c < b$ và

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = k$$

Khi đó:

- * Nếu $0 < k < +\infty$ thì $\int\limits_a^b f(x) dx$ và $\int\limits_a^b g(x) dx$ cùng tính chất hội tụ hoặc phân kì.
- * Nếu k = 0 và $\int_{a}^{b} g(x)dx$ hội tụ thì $\int_{a}^{b} f(x)dx$ hội tụ.
- * Nếu $k = +\infty$ và $\int_a^b g(x)dx$ phân kì thì $\int_a^b f(x)dx$ phân kì.

Định lí: Nếu
$$\int_a^b |f(x)| dx$$
 hội tụ thì $\int_a^b f(x) dx$ hội tụ. Khi đó ta nói $\int_a^b f(x) dx$ hội tụ tuyệt đối.

Nếu
$$\int_a^b f(x) dx$$
 hội tụ nhưng $\int_a^b |f(x)| dx$ không hội tụ thì ta nói $\int_a^b f(x) dx$ bán hội tụ.

 Các định lí trên được phát biểu tương tự trong trường hợp hàm số có cực điểm là a.

Nhận xét:

Khi xét sự hội tụ của tích phân suy rộng (loại 2) của các hàm số không âm, ta thường so sánh với các tích phân dạng

$$\int_{a}^{b} \frac{dx}{(b-x)^{\alpha}} \quad \text{hoặc } \int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} \qquad (\alpha > 0)$$

Ví dụ: Xét sự hội tụ của tích phân suy rộng sau:

$$\int_{0}^{1} \frac{dx}{e^{\sqrt{x}} - 1}$$

Giải:

Cực điểm: x = 0

Có
$$e^{\sqrt{x}} - 1 \sim \sqrt{x}$$
 khi $x \to 0^+$ $\Rightarrow \frac{1}{e^{\sqrt{x}} - 1} \sim \frac{1}{\sqrt{x}}$ khi $x \to 0^+$

mà
$$\int_{0}^{1} \frac{dx}{\sqrt{x}} = \int_{0}^{1} \frac{dx}{(x-0)^{\frac{1}{2}}}$$
 hội tụ nên $\int_{0}^{1} \frac{dx}{e^{\sqrt{x}} - 1}$ hội tụ.

Ví dụ: Xét sự hội tụ của tích phân suy rộng sau: $\int_{0}^{1} \frac{dx}{\ln x}$

Giải:

$$\int_{0}^{1} \frac{dx}{\ln x} = \int_{0}^{a} \frac{dx}{\ln x} + \int_{a}^{1} \frac{dx}{\ln x} \quad (0 < a < 1)$$

Hàm số $f(x) = \frac{1}{\ln x}$ xác định trên (0, a] và

$$\lim_{x \to 0^+} \frac{1}{\ln x} = 0 \quad \text{nen } \int_0^a \frac{dx}{\ln x} \in \mathbb{R} \quad \text{(là tích phân xác định)}$$

* Xét
$$\int_{a}^{1} \frac{dx}{\ln x}$$

Cực điểm: x = 1

Trên
$$[a,1)$$
, có $\frac{-1}{\ln x} > 0$ và $\frac{1}{1-x} > 0$

$$\lim_{x \to 1^{-}} \left(\frac{-1}{\ln x} : \frac{1}{1-x} \right) = \lim_{x \to 1^{-}} \frac{x-1}{\ln x} = \lim_{x \to 1^{-}} \frac{1}{1} = 1$$

$$\lim_{x \to 1^{-}} \left(\frac{dx}{\ln x} : \frac{1}{1-x} \right) = \lim_{x \to 1^{-}} \frac{1}{1-x} = \lim_{x \to 1^{-}} \frac{1}{1-x} = 1$$

mà
$$\int_{a}^{1} \frac{dx}{1-x}$$
 phân kì nên $\int_{a}^{1} \frac{-1}{\ln x} dx$ phân kì

$$\Rightarrow \int \frac{dx}{\ln x}$$
 phân kì. Vậy tích phân đã cho phân kì.

Ví dụ: Xét sự hội tụ của tích phân suy rộng sau: $\int_{0}^{\infty} \frac{ax}{\sqrt[3]{x(e^x - e^{-x})}}$

$$\int_{0}^{1} \frac{dx}{\sqrt[3]{x(e^x - e^{-x})}}$$

Giải:

Cực điểm: $\chi = 0$

$$e^{x} - e^{-x} \sim 2x \text{ khi } x \to 0 \quad \text{(vì } \lim_{x \to 0} \frac{e^{x} - e^{-x}}{2x} = \lim_{x \to 0} \frac{e^{x} + e^{-x}}{2} = 1)$$

$$\Rightarrow \frac{1}{\sqrt[3]{x(e^{x} - e^{-x})}} \sim \frac{1}{\sqrt[3]{2x^{2}}} \text{ khi } x \to 0^{+}$$

mà $\int_{0}^{1} \frac{1}{\sqrt[3]{2x^2}} dx = \frac{1}{\sqrt[3]{2}} \int_{0}^{1} \frac{1}{(x-0)^{\frac{2}{3}}} dx$ hội tụ nên TP đã cho hội tụ.

Ví dụ: Xét sự hội tụ của tích phân suy rộng sau: $\int_{0}^{\infty} x^{p-1}e^{-x}dx.$ Giải:

$$\int_{0}^{+\infty} x^{p-1}e^{-x}dx = \int_{0}^{1} x^{p-1}e^{-x}dx + \int_{1}^{+\infty} x^{p-1}e^{-x}dx$$

* Xét
$$\int_{1}^{+\infty} x^{p-1}e^{-x}dx$$

$$\lim_{x \to +\infty} \left(\frac{x^{p-1}}{e^x} : \frac{1}{x^2} \right) = \lim_{x \to +\infty} \frac{x^{p+1}}{e^x} = 0$$

mà
$$\int\limits_{1}^{+\infty} \frac{1}{x^2} dx$$
 hội tụ nên $\int\limits_{1}^{+\infty} x^{p-1} e^{-x} dx$ hội tụ.

$$\begin{split} & * \operatorname{X\acute{e}t} \ \int\limits_0^1 x^{p-1} e^{-x} dx \\ & + \operatorname{N\acute{e}u} \ p - 1 \geq 0 \quad \text{th} \ i \int\limits_0^1 x^{p-1} e^{-x} dx \quad \text{hội tụ (là tích phân xác định)} \\ & + \operatorname{N\acute{e}u} \ p - 1 < 0 \\ & \operatorname{C\acute{o}} \ x^{p-1} e^{-x} = \frac{1}{x^{1-p}} \cdot \frac{1}{e^x} \sim \frac{1}{x^{1-p}} \ khi \ x \to 0^+ \\ & \operatorname{m\grave{a}} \ \int\limits_0^1 \frac{1}{x^{1-p}} dx = \int\limits_0^1 \frac{1}{(x-0)^{1-p}} dx \quad \text{hội tụ} \ \Leftrightarrow 1-p < 1 \Leftrightarrow p > 0. \\ & \Rightarrow \int\limits_0^1 x^{p-1} e^{-x} dx \quad \text{hội tụ} \ \Leftrightarrow p > 0. \\ & \operatorname{Vậy tích phân đã cho hội tụ n\acute{e}u} \ p > 0, \text{ phân kì n\'eu} \ p \leq 0. \end{split}$$

Chú ý:

- Tích phân suy rộng (cả hai loại) có các tính chất tương tự tích phân xác định.
- Khi xét sự hội tụ hoặc tính tích phân suy rộng (cả hai loại), có thể dùng phương pháp đổi biến số và phương pháp tích phân từng phần.

Ví dụ:

Xét sự hội tụ và tính (trong trường hợp hội tụ), tích phân suy rộng sau:

$$I = \int_{-\infty}^{0} x e^{x} dx.$$

Giải:

Đặt
$$x = -t \Rightarrow dx = -dt$$

$$I = \int_{+\infty}^{0} (-t)e^{-t}(-dt)$$

$$I = -\int_{0}^{+\infty} t e^{-t} dt.$$

$$C\acute{o} \int_{0}^{+\infty} t e^{-t} dt = \int_{0}^{1} t e^{-t} dt + \int_{1}^{+\infty} t e^{-t} dt$$

$$*\int_{0}^{1} t e^{-t} dt \quad \text{hội tụ (là tích phân xác định)}$$

$$* X\acute{e}t \int_{1}^{+\infty} t e^{-t} dt$$

$$\lim_{t \to +\infty} \left(t e^{-t} : \frac{1}{t^2} \right) = \lim_{t \to +\infty} \frac{t^3}{e^t} = 0$$

mà
$$\int_{1}^{+\infty} \frac{1}{t^2} dt$$
 hội tụ nên $\int_{1}^{+\infty} te^{-t} dt$ hội tụ.

Vậy $\int_{0}^{\infty} te^{-t}dt$ hội tụ. Suy ra tích phân đã cho hội tụ.

* Tính
$$I = \int_{-\infty}^{0} xe^{x} dx$$
.

$$I = (x-1)e^{x}\Big|_{-\infty}^{0} = -1 - \lim_{x \to -\infty} \frac{(x-1)}{e^{-x}} = -1.$$