2. APRENDIZAJE SUPERVISADO

	X	X ₂	C
À	7	1	N
Ĵ2	3	2	5
ĺз	4	ч	N
Äų	3	Ч	5
1,5	2	3	5
15	3	5	5

2.1 Linealmente separable?

2.2		×	X ₂	C
	À	7	7	N
	Ĵ2	3	2	5
	ĺз	4	Ч	N
	λų	3	Ч	5
	15	2	3	D
	16	3	5	D

1 Primer elemento

$$a_1 = \theta^{-1} \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{4} \\ 1 \end{pmatrix} \rightarrow a_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{4} \\ 1 \end{pmatrix} \rightarrow a_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $a_2 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{4} \\ 1 \end{pmatrix} \rightarrow a_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{4} \\ 1 \end{pmatrix} \rightarrow a_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{4} \\ 1 \end{pmatrix} \rightarrow a_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{4} \\ 1 \end{pmatrix} \rightarrow a_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{4} \\ 1 \end{pmatrix} \rightarrow a_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 \end{pmatrix} \rightarrow a_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 \end{pmatrix} \rightarrow a_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $a_1 = \delta \cdot x_1^{-1}$

2. Segundo elemento

$$a_{2} = e^{T} \cdot X_{2} = \begin{pmatrix} -4 & -4 & -4 \\ 4 & 4 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} -6 \\ 6 \\ 0 \end{pmatrix}$$

$$2_{2} = softmax \left(\begin{bmatrix} -6 \\ 6 \end{bmatrix} \right) = \sum e^{i} = e^{-6} + e^{-4} + e^{-6} = 404'43$$

$$\frac{e^{-6} = 2'478}{e^{-6} = 403'42} = \frac{e^{-6} + 478}{e^{-6} = 478} = \frac{e^{-6} + 478}{e^{-6} = 403'42} = \frac{e^{-6} + 478}{e^{-6} = 403'42} = \frac{e^{-6} + 478}{e^{-6} = 403'42} = \frac{e^{-6} + 478}{e^{-6} = 478} = \frac{e^{-6} + 478}{e^{-6} = 478} = \frac{e^{-6} + 478}{e$$

 $w_1 = w_1 - f(x) = (-1, -2, -1)$

W2 = W2 = (0,0,0)

3. Tercer elemento

$$a_3 = \Theta^{T} \cdot x_3 = \begin{pmatrix} 0 & 2 & \Delta \\ -\Delta & -2 & -\Delta \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 12 \\ -13 \\ 0 \end{pmatrix}$$

$$2_3 = Softmax \left(\begin{bmatrix} 12 \\ -13 \\ 0 \end{bmatrix} \right) = 2e^{i} = 162755$$

$$\hat{G} = S \wedge Y = N$$

$$e^{12} = \text{grande}$$

$$e^{0} = 1$$

$$w_0 = w_0 - f(x) = (-1, -2, -3)$$

 $w_1 = w_1 + f(x) = (0, 2, 3)$

4. Cuarto elemento

$$a_{4} = \Theta^{T} \cdot \times_{4} = \begin{pmatrix} -1 & -2 & -3 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -19 \\ 18 \\ 0 \end{pmatrix}$$
 Este e

$$w_0 = w_0 + f(x)$$
 $w_0 = (0,1,1)$
 $w_1 = w_1 - f(x)$ $w_2 = (-1, -2, -2)$
 $w_2 = w_2$ $w_2 = (0,0,0)$

5. Quinto elemento

$$\Delta_{5} = \Theta^{+} \cdot \lambda_{5} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ -8 \\ 0 \end{pmatrix}$$

$$w_1 = w_1 - f(x)$$
 $w_2 = w_2$
 $(-1, -2, -3)$
 $(-1, -3, -3)$
 $(-1, -3, -3)$
 $(-1, -3, -3)$