

An interjection not found in the book

Peano Arithmetic

- Axioms of natural arithmetic made by Giuseppe Peano
- The natural numbers with addition and multiplication
 AKA Th(N, +, ×)
- ► Later used by Gödel, Church, and Turing to cause mathematical mayhem

Implicit Functions and Iteration in Peano Arithmetic

- \blacktriangleright We are limited to two relations: + and \times
- ▶ However, we can use these to construct more!
 - Even recursive ones
 - They just have to be implicit

Ex:

$$\forall a, b[(Square(a) = b) \leftrightarrow (b = a \cdot a)]$$

- ▶ Similar to "we say..." as a colloquialism
- "We say b is the square of a iff $b = a \cdot a$ "

Preliminary Functions

- We can add and multiply, but we need a lot more!
- We can implicitly define subtraction, exponentiation, division, modulo
- ► As well as some special encoding functions Get₂ and Set₂
- ► These can get and set bits from an arbitrary-length binary integer

Let $\phi_{preliminary}$ be the equation describing these functions.

Preliminary Functions (Formally)

$$\phi_{preliminary} = \forall a, b, c([(a - b = c) \leftrightarrow (a = c + b)])$$

$$\wedge \left[\left(\frac{a}{b} = c \right) \leftrightarrow (a = bc) \right]$$

$$\wedge \left[(Rem(a, b) = c) \leftrightarrow \exists d[db + c = a] \right]$$

$$\wedge \left[(a^{0} = 1) \wedge (b > 0 \rightarrow (a^{b} = a \cdot a^{b-1})) \right]$$

$$\wedge \left[Log(b^{a}, b) = a \right]$$

$$\wedge \left[Get_{2}(a, b) = \frac{Rem(a, 2^{b+1}) - Rem(a, 2^{b-1})}{2^{b}} \right]$$

$$\wedge \left[Set_{2}(a, b, c) = a + 2^{b}(c - Get_{2}(a, b)) \right])$$

We could bring this to prenex normal form, but it doesn't really matter

Gödel Numberings of TMs

- We previously gave a configuration as $w_l q_i w_r$ for some state q_i and tape content $w_l w_r$
- ► This will be too clunky for Gödel numbering!
- Let $n = |w_l|$, let w be a binary integer encoding $w_l w_r$

Def: A Gödel TM encoding. For configuration $C = w_l q_i w_r$ where $n = |w_l|$, let w be a positive binary integer encoding of $w_l w_r$. Then, a Gödel encoding of C is given by $2^i 3^n 5^w$.

Encoding the Transition Function

- We want to create some implicit function T which takes us from one configuration to the next
- For all state indices i, j, R/W head position n, string content encoding w, binary tape character z, and $D \in \{-1, 1\}$:
 - ▶ If $\delta(q_i, Get_2(w, n)) = (q_i, z, D)$, then
 - $T(2^{i}3^{n}5^{w}) = 2^{j}3^{n+D}5^{Set_{2}(w,n,z)}$
 - → T can be encoded in Peano arithmetic as a large piecewise function

Let ϕ_T be the formula describing T.

An Algorithm for ϕ_T

Given TM T, the following algorithm creates ϕ_T .

- 1. Let p be the logic string $\forall a \exists i, n, w[[a = 2^i 3^n 5^w]]$
- 2. For each $q_i \in Q$
 - 2.1 For each $\sigma \in \Sigma$
 - 2.1.1 Let $\delta(q_i,\sigma)=(q_j,\gamma,D)$ (for $q_j\in Q,\gamma\in \Sigma,D\in \{-1,1\}$, where D=-1 represents leftward movement and D=1 rightward)
 - 2.1.2 Append to p the string

$$\land [[[i = \%_1] \land [Get(w, n) = \%_2]] \rightarrow [T(a) = 2^{\%_3} 3^{n+\%_4} 5^{Set_2(w, n, \%_5)}]]$$

Where $\%_1$ is replaced by i , $\%_2$ by σ , $\%_3$ by j , $\%_4$ by D , and $\%_5$ by γ

- 3. Append the string "]" to p
- 4. Return p as ϕ_T

Encoding TM Simulation

- ► Here's where loops come in
- ▶ For every configuration C_t :

$$\ldots \wedge \forall t[C_{t+1} = T(C_t)]$$

We can then specify some initial configuration on the input string encoding in binary as w: $C_0 = 2^0 3^0 5^w$

 $Th(\mathcal{N},+,\times)$ is Turing complete!

The Acceptance Problem in Peano Arithmetic

▶ If we let the index of the accepting state q_A be A, we can ask "Does this TM T accept binary string w?" as:

$$\phi_{\mathcal{T},w} = \phi_{\textit{preliminary}}$$

$$\land \phi_{\mathcal{T}}$$

$$\land \forall t[C_{t+1} = \mathcal{T}(C_t)]$$

$$\land [C_0 = 2^0 3^0 5^w]$$

$$\land \exists h, \mu, \omega[C_h = 2^A 3^\mu 5^\omega]$$

$$\phi_{P,0}$$
 vs $\exists c[\phi_{P,0}]$

- $ightharpoonup \phi_{P,0}$ means " $\phi_{P,0}$ is true\$
- $ightharpoonup \exists c[\phi_{P,0}]$ means "there is a proof for $\phi_{P,0}$ "

Note: Peano arithmetic without implicit function definition is called **Presburger arithmetic** and is equivalent to DFA.

Next up: Whatever we were doing before

Sing us a song you're the Peano man Sing us a song tonight Cuz we're all in the mood for arithmetic And you've got us feelin alright -Billy Joel