25 октября 2023 г.

Функции

<u>Определение</u>. Пусть X, Y – произвольные множества. Их прямое произведение $X \times Y$ – это множество всех упорядоченных наборов вида (x, y), где $x \in X$, $y \in Y$. Типичный пример прямого произведения множеств – числовая плоскость $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.

Любое подмножество F множества $X \times Y$ называется отношением между множествами X и Y. Если X = Y, говорят о бинарном отношении на множестве X. Например, на множестве натуральных чисел можно рассмотреть бинарное отношение "быть делителем", обычно обозначаемое символом |.

Если аргументами функции являются элементы множества X, а значениями – элементы множества Y, то можно рассмотреть отношение между X и Y, состоящее из пар вида (x, f(x)). По аналогии с графиками функций на плоскости такое множество можно назвать графиком функции f. С формальной точки зрения, однако, удобнее не вводить отдельного неопределяемого понятия функции, а вместо этого отождествить функцию с её графиком.

Отношение $F \subset X \times Y$ называется функцией из X в Y, если оно не содержит пар с одинаковым первым членом и разными вторыми. Другими словами, это означает, что для каждого $x \in X$ существует не более одного $y \in Y$, при котором $(x,y) \in F$.

Те элементы $x \in X$, для которых такое y существует, образуют область определения функции F. Она обозначается $\mathrm{Dom}\, F$ (от английского слова domain). Для любого элемента $x \in \mathrm{Dom}\, F$ можно определить значение функции F на аргументе x ("в точке a", как иногда говорят), как тот единственный элемент $y \in Y$, для которого $(x,y) \in F$. Этот элемент записывают как F(x). Все такие элементы y образуют множество значений функции F, которое обозначается $\mathrm{Val}\, F$.

<u>Определение</u>. Пусть X,Y – произвольные множества. Функция $f:X\to Y$ – подмножество $X\times Y$, в котором каждому элементу x сопоставляет только один элемент $y\in Y$. В частности, такое определение позволяет утверждать, что любая функция на $\mathbb R$ задаётся своим графиком, т.е., например, разные записи $f(x)=\frac{x}{2}$ и $f(x)=\frac{2x}{4}$ соответствуют одной и той же функции.

Определение. Пусть f функция из множества X в множество Y.

- (i) Функция f называется инъективной если $f(x_1) = f(x_2)$ влечет $x_1 = x_2$, для $x_1, x_2 \in X$;
- (ii) Функция f называется сюръективной если для любого $y \in Y$ существует $x \in X$ такой, что f(x) = y;
- (iii) Функция f называется биективной если она одновременно инъективна и сюръективна.

Определение. Пусть f функция из множества X в множество Y. Функция f называется обратимой если существует функция g из Y в X такая, что $g\big(f(x)\big)=x$, для всех $x\in X$ и $f\big(g(y)\big)=y$, для всех $y\in Y$. Функция g называется обратной функцией к f.

Предложение. Пусть f функция из множества X в множество Y.

- (i) Функция f обратима тогда и только тогда, когда f биективна.
- (ii) Пусть g_1 и g_2 функции из Y в X. Если g_1 и g_2 обе являются обратными K f, тогда $g_1=g_2$; то есть, $g_1(y)=g_2(y)$, для всех $y\in Y$.
- (ііі) Пусть g функция из Y в X. Тогда g является обратной функцией к f тогда и только тогда, когда f является обратной к g.

Задача. Дробные-линейные преобразования – это функции из \mathbb{R} в \mathbb{R} вида

$$f(x) = \frac{ax+b}{cx+d},$$

где a, b, c и d – числовые коэффициенты. Докажите, что через любые три точки на плоскости, у которых различаются абсциссы и ординаты, проходит уникальная дробно-линейная функция (ДЛ Φ).

<u>Решение</u>. Предположим, что точки $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ не лежат на одной прямой линии (в обратном случае c = 0 и задача является тривиальной).

Докажем сначала существование такой функции: заметим, что обратная функция к произвольной ДЛФ f(x)=y, доопределённой на расширенной числовой прямой \mathbb{R} , сама является ДЛФ. Кроме того, композиция двух ДЛФ является ДЛФ. Искомая функция может быть выражена как композиция $f(x)=g^{-1}(h(x))$, где $h(\cdot)$ переводит точки x_1,x_2,x_3 в 0,1 и $+\infty$, а $g(\cdot)$ делает то же самое с точками y_1,y_1,y_3 . Каждая из этих функций легко может быть выражена, например

$$h(x) = \frac{x - x_1}{x - x_3} \frac{x_2 - x_3}{x_2 - x_1}.$$

Уникальность решения: предположим, что существуют две различные ДЛФ $f_1(x)$ и $f_2(x)$, такие, что $f_1(x_i) = y_i$ и $f_2(x_i) = y_i$ для $i \in \{1,2,3\}$. Тогда $S(x) = f_1^{-1}(f_2(x))$ является ДЛФ, у которой есть три различных точки стационарности x_i , т.е. такие точки, для которых $S(x_i) = x_i$. Но это невозможно, так как $\frac{ax+b}{cx+d} = x$ задаёт квадратное уравнение, у которого не может быть больше двух корней.

Числовые последовательности, пределы

<u>Определение</u>. Функция $f: \mathbb{N} \to \mathbb{R}$, областью определения которой является множество натуральных чисел, называется (числовой) последовательностью.

Значения f(n) функции f называются членами последовательности. Их принято обозначать символом элемента того множества, в которое идет отображение, наделяя символ соответствующим индексом аргумента, $x_n := f(n)$. Саму последовательность в связи с этим обозначают символом $\{x_n\}$, а также записывают в виде $x_1, x_2, \ldots, x_n, \ldots$ и называют последовательностью в X или последовательностью элементов множества X.

Определение (топологическое). Число $a \in \mathbb{R}$ называется пределом числовой последовательности $\{x_n\}$, если для любой открытой окрестности точки a, то есть, произвольного открытого множества, содержащего элемент a, существует такой номер N (выбираемый в зависимости от выбранной окрестности), что все члены последовательности, номера которых больше N, содержатся в указанной окрестности точки a. Запись: $\lim_{n\to\infty} x_n = a$.

 $n\to\infty$ Такое определение является наиболее общим, однако часто удобнее пользоваться определеним, задаваемое в терминах "расстояний" до предельной точки. ¹

 $^{^1}$ Понятие расстояния (метрики), заданной на множестве X, всегда определяет понятие открытых множеств в нём. Если $\rho(x,y)$ – расстояние между произвольными двумя точками X, то $\forall \varepsilon > 0$, $B_\varepsilon(x) = \{y \in X : \rho(y,x) < \varepsilon\}$ – открытый шар в X. Такие множества образуют базис топологии на X, то есть любое открытое множество в X можно представить как объединение открытых шаров. Например, на конечных или счётных множествах X стандартно используется дискретная метрика $\rho(x,y) = \begin{cases} 0 & y = x \\ 1 & y \neq x, \end{cases}$ которая приводит к тому, что открытыми шарами с радиусом < 1 являются одноточечные множества, а следовательно, любое подмножество X является открытым – так называемая дискретная топология на X. В то же время, мы видели, что на множестве можно задать топологию, не вводя метрики.

Определение. Число a называется пределом последовательности $\{x_n\}$ при $n \to \infty$, если

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) \in \mathbb{N} \quad \forall n > N(\varepsilon) \Rightarrow |x_n - a| < \varepsilon.$$

Пример. Докажите, что

$$\lim_{n \to \infty} \frac{n^3 + 7n + 3}{2n^3 + 5n + 4} = \frac{1}{2}.$$

<u>Решение</u>. По определению предела последовательности надо к любому числу $\varepsilon > 0$ найти такое число N, чтобы для всех n > N выполнялось неравенство

$$\left| \frac{n^3 + 7n + 3}{2n^3 + 5n + 4} - \frac{1}{2} \right| < \varepsilon.$$

Преобразуем его левую часть:

$$\left| \frac{n^3 + 7n + 3}{2n^3 + 5n + 4} - \frac{1}{2} \right| = \left| \frac{2n^3 + 14n + 6 - 2n^3 - 5n - 4}{4n^3 + 10n + 8} \right| = \frac{9n + 2}{4n^3 + 10n + 8}.$$

Заметим, что

ε

$$\frac{9n+2}{4n^3+10n+8} \leqslant \frac{11n}{4n^3} = \frac{11}{4n^2}.$$

Если число N выбрать так, чтобы для n>N выполнялось неравенство $\frac{11}{4n^2}<\varepsilon$, то тем более для этих n будет выполняться неравенство $\frac{9n+2}{4n^3+10n+8}<\varepsilon$.

Неравенство $\frac{11}{4n^2}<\varepsilon$ справедливо, начиная с $n>\sqrt{\frac{11}{4\varepsilon}}$. Таким образом, в качестве N можно взять целую часть числа $\sqrt{\frac{11}{4\varepsilon}}$.

Последовательность, имеющая предел, называется сходящейся.

Предложение. Если последовательность $\{x_n\}$ сходится, то ее предел единственный.

Доказательство проведем от противного. Пусть

$$\lim_{n \to \infty} x_n = a < b = \lim_{n \to \infty} x_n.$$

Возьмем $\varepsilon = \frac{b-a}{3} > 0$, тогда $O_{\varepsilon}(a) \cap O_{\varepsilon}(b) = \emptyset$ в силу выбора ε . По определению сходимости, для выбранного

 $\exists N_1: \forall n > N_1 \quad x_n \in O_{\varepsilon}(a),$

$$\exists N_2: \forall n > N_2 \quad x_n \in O_{\varepsilon}(b).$$

Следовательно, для $n>N_1+N_2$ $x_n\in O_{\varepsilon}(a)\cap O_{\varepsilon}(b)$, что означает непустоту этого пересечения. Получено противоречие.

Определение. Последовательность $\{x_n\}$ называется ограниченной, если

$$\exists M > 0 \quad \forall n \in \mathbb{N} \quad |x_n| \leqslant M.$$

Предложение. Если последовательность сходится, то она ограничена.

Доказательство. Пусть

$$\lim_{n \to \infty} x_n = a.$$

Возьмем $\varepsilon=1.$ Тогда существует номер N такой, что при всех n>N

$$|x_n - a| < 1$$

Так как

$$|x_n| = |x_n - a + a| \le |x_n - a| + |a|,$$

то $|x_n| < 1 + |a|$, если n > N. Положим

$$M = |x_1| + \ldots + |x_N| + 1 + |a|$$
.

Тогда

$$\forall n \in \mathbb{N} \quad |x_n| \leqslant M,$$

что означает ограниченность $\{x_n\}$.

Предложение. Если $x_n \leqslant y_n \leqslant z_n$ для всех nu

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a, \quad \text{mo} \quad \lim_{n \to \infty} y_n = a.$$

Доказательство. Возьмем любое $\varepsilon > 0$. Тогда из условия $\lim_{n \to \infty} x_n = a$ следует, что

$$\exists N_1 \quad \forall n > N_1 \quad a - \varepsilon < x_n < a + \varepsilon,$$

а из условия $\lim_{n\to\infty}z_n=a$ следует, что

$$\exists N_2 \quad \forall n > N_2 \quad a - \varepsilon < z_n < a + \varepsilon.$$

Следовательно, при всех $n > N_1 + N_2$

$$a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon$$
,

то есть,

$$a - \varepsilon < y_n < a + \varepsilon$$
,

а это и означает, что $\lim_{n\to\infty} y_n = a$.

<u>Предложение</u>. Если последовательности $\{x_n\}$ и $\{y_n\}$ сходятся, то сходится последовательность $\{x_n+y_n\}$ u

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n.$$

Доказательство. Пусть $\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n = b$. Возьмем любое $\varepsilon > 0$. Тогда из первого условия следует, что

$$\exists N_1 \quad \forall n > N_1 \quad |x_n - a| < \frac{\varepsilon}{2},$$

а из второго:

$$\exists N_2 \quad \forall n > N_2 \quad |y_n - a| < \frac{\varepsilon}{2}.$$

Учитывая, что при всех n

$$|x_n + y_n - (a+b)| \le |x_n - a| + |y_n - b|$$
,

при $n > N_1 + N_2$ получим

$$|x_n + y_n - (a+b)| < \varepsilon$$
,

а это означает, что

$$\lim_{n \to \infty} (x_n + y_n) = a + b = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n.$$

<u>Предложение</u>. Если последовательности $\{x_n\}$ и $\{y_n\}$ сходятся, то сходится последовательность $\{x_ny_n\}$ u

$$\lim_{n \to \infty} (x_n y_n) = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} y_n.$$

Доказательство. Произведем оценку модуля разности x_ny_n и ab:

$$|x_n y_n - ab| = |x_n y_n - x_n b + x_n b - ab| =$$

$$= |x_n (y_n - b) + (x_n - a) b| \le |x_n| |y_n - b| + |x_n - a| |b|.$$

Из сходимости $\{x_n\}$ следует ее ограниченность, т. е.

$$\exists M > 0 \quad \forall n \in \mathbb{N} \quad |x_n| \leqslant M.$$

Таким образом,

$$|x_n y_n - ab| \le M |y_n - b| + |x_n - a| |b|.$$

Возьмем любое $\varepsilon > 0$. Из условия $\lim_{n \to \infty} x_n = a$ следует, что

$$\exists N_1 \quad \forall n > N_1 \quad |x_n - a| < \frac{\varepsilon}{2(|b| + 1)},$$

а из условия $\lim_{n\to\infty}y_n=b$ следует, что

$$\exists N_2 \quad \forall n > N_2 \quad |y_n - b| < \frac{\varepsilon}{2M}.$$

Тогда для $n > N_1 + N_2$

$$|x_n y_n - ab| < \varepsilon$$
,

а это означает, что

$$\lim_{n \to \infty} (x_n y_n) = ab = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} y_n.$$

<u>Предложение</u>. Если последовательности $\{x_n\}$ и $\{y_n\}$ сходятся,

$$\lim_{n \to \infty} x_n = a, \quad \lim_{n \to \infty} y_n = b \neq 0,$$

то сходится последовательность $\left\{\frac{x_n}{y_n}\right\}u$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

Доказательство аналогично предыдущим.

Определение. Последовательность $\{x_n\}$ называется бесконечно малой, если $\lim_{n\to\infty}x_n=0$.

Развернутое определение:

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) \in \mathbb{N} \quad \forall n > N(\varepsilon) \Rightarrow |x_n| < \varepsilon.$$

<u>Свойство</u>. Сумма бесконечно малых последовательностей есть бесконечно малая последовательность.

<u>Доказательство</u>. Пусть $\{x_n\}$ и $\{y_n\}$ – бесконечно малые последовательности. Возьмем произвольное $\varepsilon > 0$. Для него

$$\exists N_1 \quad \forall n > N_1 \quad |x_n| < \frac{\varepsilon}{2},$$

$$\exists N_2 \quad \forall n > N_2 \quad |y_n| < \frac{\varepsilon}{2}.$$

Тогда при $n>N_1+N_2$

$$|x_n + y_n| \le |x_n| + |y_n| < \varepsilon.$$

Свойство. Произведение $\{x_ny_n\}$ бесконечно малой последовательности $\{x_n\}$ на ограниченную последовательность $\{y_n\}$ есть бесконечно малая последовательность.

Доказательство. Из ограниченности $\{y_n\}$ следует, что

$$\exists M > 0 \quad \forall n \in \mathbb{N} \quad |y_n| \leqslant M.$$

Из условия $\lim_{n\to\infty}x_n=0$ следует, что при любом $\varepsilon>0$

$$\exists N \in \mathbb{N} \quad \forall n > N \quad |x_n| < \frac{\varepsilon}{M}.$$

Тогда

$$\forall n > N \quad |x_n y_n| = |x_n| \cdot |y_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon,$$

т. е. $\{x_ny_n\}$ — бесконечно малая последовательность.

Определение. Последовательность $\{x_n\}$ называется бесконечно большой, если

$$\forall M > 0 \quad \exists N(M) \in \mathbb{N} \quad \forall n > N(M) \Rightarrow |x_n| > M.$$

Этот факт записывается так:

$$\lim_{n \to \infty} x_n = \infty$$

<u>Свойство</u>. Последовательность $\left\{\frac{1}{x_n}\right\}$, обратная к бесконечно большой последовательности $\{x_n\}$, есть бесконечно малая последовательность.

<u>Доказательство</u>. Поскольку последовательность $\{x_n\}$ – бесконечно большая, все ее элементы, начиная с некоторого номера n_0 , не равны нулю. Для $n>n_0$ рассмотрим последовательность $y_n=\frac{1}{x_n}$. Возьмем $\varepsilon>0$ и рассмотрим $M=\frac{1}{\varepsilon}>0$. Для него по определению бесконечно большой последовательности найдется номер N(M) такой, что

$$|x_n| > E$$
, при $n > N(M)$.

Возьмем теперь $n > \max\{n_0, N(M)\}$ и рассмотрим

$$|y_n| = \frac{1}{|x_n|} < \frac{1}{M} = \varepsilon,$$

т. е. по определению последовательность $\{y_n\}$ – бесконечно малая.

<u>Свойство</u>. Пусть $\{x_n\}$ – бесконечно малая последовательность и такая, что $x_n \neq 0$ при $n > n_0$. Тогда

последовательность $\left\{\frac{1}{x_n}\right\}$, обратная $\kappa\left\{x_n\right\}$, есть бесконечно большая последовательность.

<u>Доказательство</u>. Положим $y_n = \frac{1}{x_n}$ при $n > n_0$. Возьмем M > 0 и рассмотрим $\varepsilon = \frac{1}{M} > 0$. Для него по определению бесконечно малой последовательности найдется номер $N(\varepsilon)$ такой, что

$$|x_n| < \varepsilon$$
, при $n > N(\varepsilon)$.

Возьмем теперь $n > \max\{n_0, N(\varepsilon)\}$ и рассмотрим

$$|y_n| = \frac{1}{|x_n|} > \frac{1}{\varepsilon} = M,$$

т. е. по определению последовательность $\{y_n\}$ – бесконечно большая.

Монотонные последовательности

Определение. Последовательность $\{x_n\}$ называется возрастающей, если $x_n \leqslant x_{n+1}$ при любом $n \in \mathbb{N}$.

Последовательность $\{x_n\}$ называется убывающей, если $x_n \geqslant x_{n+1}$ при любом $n \in \mathbb{N}$.

Возрастающие и убывающие последовательности называют монотонными.

Справедливы следующие утверждения о пределе монотонной последовательности.

<u>Теорема</u>. Если последовательность возрастает и ограничена сверху, то она сходится. Если последовательность убывает и ограничена снизу, то она сходится.

<u>Доказательство</u>. Пусть $\{x_n\}$ возрастает и ограничена сверху. Тогда, по теореме о существовании точных граней, она обладает супремумом: $\exists \sup \{x_n\} = M$. Покажем, что $\lim_{n\to\infty} x_n = M$. Из монотонности $\{x_n\}$ и определения супремума следует, что

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \quad \forall n > N(\varepsilon)$$

$$M - \varepsilon < x_N \leqslant x_n \leqslant M < M + \varepsilon,$$

откуда получаем определение предела:

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) \quad \forall n > N(\varepsilon) \quad |x_n - M| < \varepsilon,$$

Вторая часть утверждения: если $\{x_n\}$ убывает и ограничена снизу, то

$$\lim_{n \to \infty} x_n = m = \inf \{x_n\}$$

доказывается аналогично.

<u>Теорема.</u> Если последовательность монотонна и неограничена, то она является бесконечно большой. Причем если она неограничена сверху, то $\lim_{n\to\infty} x_n = +\infty$, а если она неограничена снизу, то $\lim_{n\to\infty} x_n = -\infty$.

<u>Замечание</u>. Утверждения двух предыдущих теорем можно сформулировать следующим образом: возрастающая последовательность сходится к своему супремуму (конечному или бесконечному), а убывающая последовательность сходится к своему инфимуму (конечному или бесконечному).

Первый замечательный предел.

Рассмотрим последовательность

$$y_n = \left(1 + \frac{1}{n}\right)^n.$$

Докажем, что она возрастает и ограничена сверху – а значит имеет предел. Для этого удобно использовать

неравенство между арифметическим и геометрическим средним из n+1 чисел:

$$x_1 = 1, x_2 = x_3 = \ldots = x_{n+1} = 1 + \frac{1}{n},$$

тогда

$$x_{n+1} / x_1 x_2 \cdots x_{n+1} < \frac{x_1 + x_2 + \dots + x_{n+1}}{n+1}$$

(неравенство строгое, поскольку не все элементы одинаковы),

$$\left(1 + \frac{1}{n}\right)^{\frac{n}{n+1}} < \frac{1 + n\left(1 + \frac{1}{n}\right)}{n+1} = 1 + \frac{1}{n+1} \Rightarrow \left(1 + \frac{1}{n}\right)^{n} < \left(1 + \frac{1}{n+1}\right)^{n+1},$$

поэтому $y_n < y_{n+1}$.

Ограниченность такой последовательности можно доказать, используя разложение y_n по биному Ньютона:

$$\left(1+\frac{1}{n}\right)^n = \sum_{j=0}^n C_n^j \frac{1}{n^j} = \sum_{j=0}^n \frac{n(n-1)\dots(n-j+1)}{n^j k!} \le \sum_{j=0}^n \frac{1}{j!} \le 1 + \sum_{j=0}^n \frac{1}{2^j} < 3.$$

В построении ограничения использовалось то, что j! растёт быстрее, чем 2^j при $j \ge 2$.

Из полученных соображений следует, что y_n имеет предел, который оказывается равным числу e.

Определение. Пусть задана последовательность $\{x_n\}$. Последовательность $\{y_k\}$:

$$y_k = x_{n_k},$$
 где $n_1 < n_2 < \ldots < n_k < \ldots,$

называется подпоследовательностью последовательности $\{x_n\}$. Если последовательность $\{x_n\}$ сходится, то и любая ее подпоследовательность сходится к тому же пределу.

<u>Теорема</u> (теорема Больцано-Вейерштрасса для последовательностей). Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство. Из ограниченности $\{x_n\}$ следует, что

$$\exists M > 0 \quad \{x_n\} \subset [-M, M] = \Delta_0.$$

Разделим отрезок Δ_0 пополам и обозначим через Δ_1 любую половину, содержащую бесконечно много элементов последовательности $\{x_n\}$; возьмем $x_{n_1} \in \Delta_1$. Разделим отрезок Δ_1 пополам и обозначим через Δ_2 любую половину, содержащую бесконечно много элементов последовательности $\{x_n\}$. Тогда найдется элемент $x_{n_2} \in \Delta_2$ и $n_2 > n_1$. Процесс деления отрезка пополам, выбора одной из половин отрезка и элементов в ней продолжим по индукции. Получим систему вложенных вложенных отрезков $\Delta_1 \supset \Delta_2 \supset \Delta_3 \supset \ldots \supset \Delta_n \supset \ldots$ и последовательность x_{n_k} такую, что

$$\forall k \in \mathbb{N} \quad n_{k+1} > n_k, \quad x_{n_k} \in \Delta_k = [a_k, b_k].$$

Тогда по теореме Кантора о вложенных отрезках существует единственная точка c, принадлежащая всем отрезкам и $a_k \to c, b_k \to c$. Переходя к пределу по $k \to \infty$ в неравенствах $a_k \leqslant x_{n_k} \leqslant b_k$, получим $x_{n_k} \to c$.

<u>Определение</u>. Последовательность $\{x_n\}$ называется фундаментальной (или последовательностью Коши), если для любого числа $\varepsilon > 0$ найдется такой номер $N \in \mathbb{N}$, что из n > N и m > N следует $|x_m - x_n| < \varepsilon$.

<u>Теорема</u> (критерий Коши сходимости последовательности). Числовая последовательность сходится тогда и только тогда, когда она фундаментальна.

<u>Доказательство</u>. Пусть последовательность $\{x_n\}$ сходится к пределу x. Тогда она является фундаментальной в силу оценки сверху

$$|x_n - x_m| \le |x_n - x| + |x_m - x|$$
.

В обратную сторону: предположим, что последовательность $\{x_n\}$ является фундаментальной. Тогда она ограничена – поскольку для любого $\varepsilon > 0$ существует номер N, начиная с которого хвост последовательности лежит в ε -окрестности элемента x_N . Используя теорему Больцано-Вейерштрасса, обозначим за $x \in \mathbb{R}$ предельную точку (какой-то) сходящейся подпоследовательности $\{x_n\}$, которую обозначим за $\{x_{n_k}\}$. Проверим, что $\{x_n\}$ тоже сходится к x.

Зафиксируем $\varepsilon > 0$ и $N \in \mathbb{N}$, такое, что $\forall n,m>N \ |x_n-x_m|<\frac{\varepsilon}{2}$. Рассмотрим хвост $\{x_{n_k}\}$, такой, что $\forall k \ n_k>N$ и $|x_{n_k}-x|<\frac{\varepsilon}{2}$. Тогда выполняется

$$|x_n - x| \le |x_n - x_{n_k}| + |x_{n_k} - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Из полученного соотношения следует сходимость последовательности.

<u>Определение.</u> Верхний предел числовой последовательности $\{x_n\}$ – наибольшая из точек в \mathbb{R} , в любой ε -окрестности которой есть бесконечно много точек последовательности. Нижний предел числовой последовательности определяется аналогично.

Обозначения: $\limsup_{k\to\infty} x_k$, $\varlimsup_{n\to\infty} x_n$ – для верхнего предела; $\liminf_{k\to\infty} x_k$, $\varliminf_{n\to\infty} x_n$ – для нижнего предела.

<u>Пример.</u> У числовой последовательности $x_n = (-1)^n$ нет предела, но существуют верхний и нижний пределы, равные 1 и -1 соответственно.

Предел функции

Определение (определение предела функции по Коши). Функция $f:E\to\mathbb{R}$ стремится к A при x, стремящемся к a, или что то же самое, A является пределом функции f при x, стремящемся к a, если для любого числа $\varepsilon>0$ существует число $\delta>0$ такое, что для любой точки $x\in E$ такой, что $0<|x-a|<\delta$, выполнено соотношение $|f(x)-A|<\varepsilon$. В логической символике сформулированные условия запишутся в виде

$$\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0 : \; \forall x \in (a,b) \; \text{из} \; 0 < |x - x_0| < \delta \; \text{следует} \; \Rightarrow |f(x) - A| < \varepsilon.$$

В этом случае пишут

$$\lim_{x \to x_0} f(x) = A.$$

<u>Определение</u> (определение предела функции по Гейне). Число A называется пределом функции f при стремлении x к x_0 , если для любой последовательности $\{x_n\}$ такой, что $\{x_n\} \subset (a,b) \setminus \{x_0\}$ и $x_n \xrightarrow[n \to \infty]{} x_0$, последовательность $f(x_n)$ значений функции f сходится к A при $n \to \infty$:

Теорема. Определения предела функции по Гейне и по Коши эквивалентны.

<u>Доказательство</u>. Докажем, что из определения по Гейне следует определение по Коши. Проведем доказательство методом от противного. Пусть $\lim_{x\to x_0} f(x) = A$ по Гейне, но не по Коши, т.е.

$$\exists \varepsilon > 0: \ \forall \delta(\varepsilon) > 0 \ \exists x_{\delta} \in (a,b): \ x_{\delta} \in O_{\delta}(x_{0}) \ \text{ho} \ |f(x_{\delta}) - A| \geqslant \varepsilon.$$

Пусть $\delta = \frac{1}{n}$. Тогда найдутся $x_n \in (a,b)$ такие, что

$$0 < |x_n - x_0| < \frac{1}{n}, \quad |f(x_n) - A| \geqslant \varepsilon.$$

Отсюда $x_n \neq x_0, x_n \to x_0$, но $f(x_n) \nrightarrow A$, что противоречит тому, что $f(x_n) \to A$ по Гейне.

Теперь докажем, что из определения предела по Коши следует определение предела по Гейне.

Пусть $\lim_{x\to x_0} f(x) = A$ по Коши. Возьмем любую последовательность $\{x_n\} \subset (a,b), x_n \to x_0, x_n \neq x_0$. Возьмем любое $\varepsilon > 0$. Тогда из определения предела по Коши найдется $\delta > 0$, для которого, в силу сходимости $x_n \to x_0$, найдется номер N такой, что $|x_n - x_0| < \delta$ при n > N. Тогда из определения предела по Коши следует, что $|f(x_n)-A|<\varepsilon$, что означает, что $f(x_n)\to A$, т. е. $\lim_{x\to x_0}f(x)=A$ в смысле определения Гейне.

Функция имеет односторонний предел (правый или левый), если в приведённом выше определении условие $(0<|x-a|<\delta)$ заменить на $x\in(a,a+\delta)$ для предела справа, и на $x\in(a-\delta,a)$ для предела слева. Обозначения: $\lim_{x \to a+0} f(x)$, $\lim_{x \to a-0} f(x)$ или $\lim_{x \downarrow a} f(x)$, $\lim_{x \uparrow a} f(x)$.

Определение. Функция f(x) называется непрерывной в точке a, если её предел в этой точке существует (в частности, в этом случае правый и левый пределы должны быть равны), и $\lim f(x) = f(a)$.

Определение. Функция f(x) непрерывна на множестве E, если она непрерывна в каждой точке множества E.

Другое определение (топологическое) непрерывности функции, $f:X\to Y$ называется непрерывной, если прообраз любого открытого множества в Y является открытым множеством в X. Так, если $f(\cdot)$ определена на числовой прямой, и её областью значений является \mathbb{R} , то для непрерывности $f(\cdot)$ необходимо и достаточно, чтобы прообразом интервала всегда являлся интервал.

Теорема. Монотонная функция на \mathbb{R} может иметь не более чем счётное множество точек разрыва.

Доказательство. Предположим обратное. Для каждой точки разрыва x_i в силу монотонности функции выполняется $\lim_{x \to x_i = 0} f(x) < \lim_{x \to x_i + 0} f(x)$. По свойству (плотности) рациональных чисел, существует $y_i \in \mathbb{Q}$: $\lim_{x \to x_i \to 0} f(x) \le y_i \le \lim_{x \to x_i + 0} f(x)$. Однако в таком случае получаем, что множество рациональных чисел является несчётным, что противоречит ранее доказанному факту, что Q счётно.

Свойства предела функции

Пусть функиии f и g определены на интервале (a,b), кроме, быть может, точки x_0 . Если существуют пределы $\lim_{x\to x_0} f(x)$, $\lim_{x\to x_0} g(x)$, то существуют пределы суммы, произведения и отношения этих функий, и имеют место равенства:

- 1) $\lim_{x\to x_0} [f(x) + g(x)] = \lim_{x\to x_0} f(x) + \lim_{x\to x_0} g(x)$;
- 2) $\lim_{x\to x_0} [f(x)\cdot g(x)] = (\lim_{x\to x_0} f(x))\cdot (\lim_{x\to x_0} g(x));$ 3) $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x\to x_0} f(x)}{\lim_{x\to x_0} g(x)},$ при условии $\lim_{x\to x_0} g(x)$ при условии $\lim_{x\to x_0} g(x) \neq 0$.

Эти свойства вытекают из соответствующих свойств сходящихся последовательностей и определения предела функции по Гейне.

Определение. Функция α называется бесконечно малой функцией при $x \to x_0$, если $\alpha(x) \to 0$ при $x \to x_0$. Определение. Функция γ называется бесконечно большой функцией при $x \to x_0$, если

$$\lim_{x \to x_0} \gamma(x) = \infty$$

или, в развернутой форме,

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0 \quad \forall x \in \check{O}_{\delta}(x_0) \Rightarrow |\gamma(x)| > \varepsilon.$$

Теорема.

1. Если α и β – бесконечно малые функции при $x \to x_0$, то $\alpha + \beta$ – также бесконечно малая функция при $x \to x_0$.

- 2. Если α бесконечно малая функция при $x \to x_0$, а функция f ограничена в некоторой проколотой окрестности точки x_0 , то αf бесконечно малая функция при $x \to x_0$.
- 3. $(f(x) \to A$ при $x \to x_0) \Leftrightarrow (f(x) = A + \alpha(x),$ где α некоторая бесконечно малая функция при $x \to x_0)$.
- 4. Если α бесконечно малая функция при $x \to x_0 u$ $\alpha(x) \neq 0$ в некоторой проколотой окрестности точки x_0 , то $\frac{1}{\alpha}$ бесконечно большая функция при $x \to x_0$.
- 5. Если γ бесконечно большая функция при $x \to x_0$, то $\frac{1}{\gamma}$ бесконечно малая функция при $x \to x_0$.

<u>Доказательство</u> следует из определения Гейне предела функции и соответствующих свойств бесконечно малых последовательностей.

Производная функции

Определение. Производной функиии y = f(x) в точке x называется число

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$$

если такой предел существует.

Задача о проведении касательной к графику функции y = f(x) в точке x тоже приводит к необходимости совершить подобного рода предельный переход.

Теорема. Если функция f(x) имеет производную в точке x, то она непреривна в этой точке.

Доказательство. Из существования f'(x) следует, что разность

$$\frac{\Delta f(\Delta x)}{\Delta x} - f'(x) = \varepsilon(\Delta x)$$

есть бесконечно малая функция при $\Delta x \to 0$. Отсюда приращение функции

$$\Delta f(\Delta x) = f'(x)\Delta x + \varepsilon(\Delta x)\Delta x$$

есть бесконечно малая функция при $\Delta x \to 0$. Отсюда

$$\lim_{\Delta x \to 0} \Delta f(\Delta x) = \lim_{\Delta x \to 0} [f(x + \Delta x) - f(x)] = 0,$$

т.е. $\lim_{\Delta x\to 0} f(x+\Delta x) = f(x)$, что означает непрерывность функции f(x) в точке x.

<u>Пример</u>. Функция f(x) = |x| непрерывна в точке x = 0, но производная в точке x = 0 не существует, так как не существует предел $\lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}$ (предел справа равен 1, а предел слева равен -1).

Производная и арифметические операции связаны следующими правилами.

Теорема. Пусть функции f и g имеют производнъе в точке x. Тогда имеют место соотношения:

- 1. $(\alpha f(x))' = \alpha f'(x)$.
- 2. (f(x) + g(x))' = f'(x) + g'(x).
- 3. (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).

4.
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{g(x)f'(x) - g'(x)f(x)}{g(x)^2}$$
, если $g(x) \neq 0$.

Производные элементарных функций

1.
$$(x^{\alpha})' = \alpha x^{\alpha - 1}, \alpha \in \mathbb{R}$$
.

$$2. (\sin x)' = \cos x.$$

$$3. (\cos x)' = -\sin x.$$

4.
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$
.

5.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$
.

6.
$$(e^x)' = e^x, (a^x)' = a^x \ln a$$
.

7.
$$(\sinh x)' = \cosh x$$
.

8.
$$(\operatorname{ch} x)' = \operatorname{sh} x$$
.

Примеры вычисления производных функций

Вычислите производные функций

1.
$$y = \frac{2x}{1-x^2}$$
;

2.
$$y = \frac{(1-x)^p}{(1+x)^q}$$
;

$$3. \ y = \sqrt{x + \sqrt{x + \sqrt{x}}};$$

4.
$$y = \sin\left[\cos^2\left(\operatorname{tg}^3 x\right)\right];$$

5.
$$y = e^{-x^2}$$
;

6.
$$y = \left(\frac{a}{b}\right)^x \left(\frac{b}{x}\right)^a \left(\frac{x}{a}\right)^b \quad (a > 0, b > 0);$$

7.
$$y = \arcsin \frac{x}{2}$$
;

8. Найти производную функции

$$y = \ln\left(\cos^2 x + \sqrt{1 + \cos^4 x}\right)$$

вводя промежуточное переменное $u = \cos^2 x;$

9.
$$y = |(x-1)^2(x+1)^3|$$
;

10.
$$y = |\sin^3 x|$$
;

<u>Теорема</u> (теорема Ферма). Если функция f определена на интервале (a,b), в точке $\xi \in (a,b)$ принимает наибольшее (наименьшее) значение и имеет в этой точке производнуюо $f'(\xi)$, то $f'(\xi) = 0$.

<u>Доказательство</u>. Рассмотрим случай наибольшего значения. По условию теоремы для всех $x \in (a,b)$ выполняется неравенство $f(x) \leqslant f(\xi)$. Тогда

если
$$x < \xi$$
, то $\frac{f(x) - f(\xi)}{x - \xi} \geqslant 0$,

если
$$x > \xi$$
, то $\frac{f(x) - f(\xi)}{x - \xi} \leqslant 0$.

Так как существует производная

$$f'(\xi) = \lim_{x \to \xi} \frac{f(x) - f(\xi)}{x - \xi},$$

то существуют и односторонние производные, и они равны производной $f'(\xi)$. Поэтому получаем $f'_{-}(\xi) = f'(\xi) \ge 0$, а следовательно $f'_{+}(\xi) = f'(\xi) \le 0$. Отсюда имеем $f'(\xi) = 0$.

Теорема (теорема Ролля). Пусть функиия f:

- 1) непрерывна на отрезке [a,b];
- 2) имеет в каждой точке интервала (a,b) производную;
- 3) имеет на кониах отрезка равные значения:

$$f(a) = f(b)$$
.

Тогда существует точка $\xi \in (a,b)$ такая, что $f'(\xi) = 0$.

<u>Доказательство</u>. Как известно, непрерывная функция f(x) на отрезке [a,b] принимает наибольшее и наименьшее значения в некоторых точках отрезка [a,b]. Пусть

$$M = \max_{x \in [a,b]} f(x), \quad m = \min_{x \in [a,b]} f(x).$$

Если m=M, то $f(x)\equiv {\rm const}$, поэтому $f'(x)\equiv 0$ на (a,b).

Если $m \neq M$, т. е. m < M, то из условия f(a) = f(b) следует, что одно из значений, m или M, функцией f(x) не принимается на концах отрезка [a,b], а принимается внутри интервала (a,b). Пусть, для определенности, значение M принимается внутри интервала (a,b), т. е. существует точка $\xi \in (a,b)$ такая, что

$$\max_{x \in [a,b]} f(x) = f(\xi) = M \geqslant f(x)$$
 для всех $x \in (a,b)$.

Так как производная функции f(x) существует в точке ξ , то по теореме Ферма $f'(\xi) = 0$.

<u>Теорема</u> (теорема Лагранжа). Пусть функция f(x) непрерывна на отрезке [a,b] и имеет производную в каждой точке интервала (a,b). Тогда существует точка $\xi \in (a,b)$ такая, что

$$f(b) - f(a) = f'(\xi)(b - a)$$

<u>Доказательство</u>. Рассмотрим функцию $F(x) = f(x) - \lambda x$, где параметр λ выберем так, чтобы F(a) = F(b), т. е. $f(a) - \lambda a = f(b) - \lambda b$. Отсюда

$$\lambda = \frac{f(b) - f(a)}{b - a}.$$

Для функции F выполнены все условия теоремы Ролля:

- 1) F(x) непрерывна на [a,b];
- 2) существует $F'(x) = f'(x) \lambda$ в (a, b);
- 3) F(b) = F(a).

Тогда по теореме Ролля существует $\xi \in (a, b)$ такая, что $F'(\xi) = 0$, т. е. $f(\xi) = \lambda$. Следовательно,

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

 $\underline{\mathrm{Замечание}}$. При $a=x_0, b=x, b-a=\Delta x$ (т. е. при $b=a+\Delta x$) получаем формулу конечных приращений

Лагранжа:

$$f(x) - f(x_0) = f'(\xi)(x - x_0), \quad \xi = x + \theta \Delta x, \quad 0 < \theta < 1,$$

или

$$\Delta y = f'(x + \theta \Delta x) \Delta x$$

Дифференциал функции

<u>Определение</u>. Пусть функции φ и ψ – бесконечно малые в точке x_0 , причем $\psi(x) \neq 0$ в некоторой проколотой окрестности точки x_0 . Если

 $\lim_{x \to x_0} \frac{\varphi(x)}{\psi(x)} = 0,$

то говорят, что функция φ есть бесконечно малая более высокого порлдка, чем ψ , в точке x_0 , и обозначают

$$\varphi(x) = o(\psi(x)).$$

Определение. Рассмотрим приращение функции f в точке x:

$$\Delta f(x) = f(x + \Delta x) - f(x).$$

Если это приращение может быть записано в виде

$$\Delta f(x) = A\Delta x + o(\Delta x),$$

где A – некоторая константа, а $o(\Delta x)$ – бесконечно малая более высокого порядка, чем Δx , при $\Delta x \to 0$, то функция f называется дифференцируемой в точке x.

<u>Теорема.</u> Функция $f: \mathbb{R} \to \mathbb{R}$ дифференцируема в точке x тогда и только тогда, когда она имеет производную в этой точке.

Доказательство. Необходимость: из определения дифференцируемости f следует, что

$$\frac{\Delta f(x)}{\Delta x} = A + \frac{o(\Delta x)}{\Delta x}.$$

По определению $o(\Delta x)$ имеем $\frac{o(\Delta x)}{\Delta x} \to 0$ при $\Delta x \to 0$. Тогда

$$\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = A = f'(x).$$

Достаточность: из существования f'(x) следует, что разность

$$\frac{\Delta f(\Delta x)}{\Delta x} - f'(x) = \varepsilon(\Delta x)$$

есть бесконечно малая функция при $\Delta x \to 0$. Отсюда приращение функции имеет вид:

$$\Delta f(x) = f'(x)\Delta x + \varepsilon(\Delta x)\Delta x.$$

Определение. Если функция y=f(x) дифференцируема в точке x, то линейная часть $A\Delta x=f'(x)\Delta x$

приращения $\Delta f(x)$ называется дифференциалом функции f в точке x и обозначается

$$df(x) = f'(x)dx.$$

Здесь $\Delta x = dx$.

Экстремумы функций

<u>Определение</u>. Пусть функция f(x) определена в некоторой окрестности точки x_0 . Говорят, что функция f(x) имеет в этой точке локальный максимум (минимум), если существует такая окрестность точки x_0 , в которой для всех $x \neq x_0$ выполняется неравенство

$$f(x) \leqslant f(x_0)$$
 или $f(x) \geqslant f(x_0)$.

Если для всех $x \neq x_0$ из некоторой окрестности точки x_0 выполняется строгое неравенство

$$f(x) < f(x_0)$$
 или $f(x) > f(x_0)$,

тогда точка x_0 называется точкой строгого максимума (минимума) функции.

Точки максимума и минимума функции называются точками экстремума, а значения функции в этих точках называются экстремумами функции.

<u>Теорема</u> (необходимое условие точки экстремума). Если точка x_0 является точкой экстремума функции f(x), то либо $f'(x_0) = 0$, либо $f'(x_0)$ не существует.

Доказательство. Пусть x_0 – точка минимума. Тогда

$$f(x) - f(x_0) \geqslant 0$$

в некоторой окрестности этой точки. Если существует производная в точке x_0 , то существуют правая и левая производные и они равны. Поскольку $f(x) - f(x_0) \ge 0$, то $f'_-(x_0) \le 0$, а $f'_+(x_0) \ge 0$, т. е. $f'(x_0) = 0$.

Точки, в которых производная равна нулю или не существует, называют точками, подозрительными на экстремум (или точками возможного экстремума). Точки экстремума функции следует искать только среди точек, подозрительных на экстремум.

<u>Теорема</u> (достаточное условие точки экстремума через первую производную). Если существует производная в окрестности точки x_0 и при переходе через эту точку она меняет знак, то точка x_0 является точкой экстремума функции f(x), причём если

$$f'(x) \leq 0$$
 при $x < x_0$ и $f'(x) \geq 0$ при $x > x_0$,

то x_0 – точка минимума, а если

$$f'(x) \geqslant 0$$
 при $x < x_0$ и $f'(x) \leqslant 0$ при $x > x_0$,

то x_0 – точка максимума.

Доказательство. Пусть $x < x_0$. По теореме Лагранжа

$$f(x) - f(x_0) = f'(c)(x - x_0),$$

где $c \in [x, x_0]$. Если $f'(c) \le 0$, то в силу того, что $x - x_0 < 0$, получим $f(x) - f(x_0) \ge 0$. Аналогично для всех x справа от точки x_0 получаем $f(x) - f(x_0) \ge 0$, т. е. x_0 – точка минимума.

Пределы функций от нескольких переменных

Вычислите или докажите, что указанный предел не существует:

$$\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2 + y^2},$$

$$f(x,y) = \begin{cases} \frac{x^5 - 2y^5}{x^4 + y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Представление тригонометрических функций в виде рядов

Формула Эйлера связывает экспоненту с тригонометрическими функциями следующим соотношением:

$$e^{ix} = \cos x + i \sin x$$

где i – мнимая единица, т.е. $i^2 = -1$.

Используя представление экспоненциальной функции в виде ряда и формулу Эйлера, легко получить аналогичное представление для $\sin(x)$ и $\cos(x)$:

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \dots = 1 + ix + \frac{i^2x^2}{2!} + \frac{i^3x^3}{3!} + \dots$$

$$= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} + \dots = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots\right).$$

I $\cos x + i \sin x$, then the real part must be $\cos x$, and the

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!},$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}.$$

Представление функции e^x в виде длинного полинома позволяет проанализировать приближение истинной функции последовательностью полиномов в окрестности заданной точки:

$$f_0(x) = 1$$

$$f_1(x) = 1 + x$$

$$f_2(x) = 1 + x + \frac{x^2}{2}$$

$$f_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$
:

16

Рис. 1: Приближение e^x последовательностью полиномов в окрестности точки x=0.

Ряды Тейлора

Рядом Тейлора для функции f(x) около точки x=0 называется полином

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!}x^k,$$
 (1)

где $f^{(k)}(0)$ — значение k-й производной f в точке 0, т.е. $\frac{f^{(k)}(0)}{k!} = \frac{1}{k!} \cdot \frac{d^k f}{dx^k} \Big|_0$.

Уравнение (1) можно рассматривать как оператор, превращающий функцию в полиномиальный ряд. Это удобно, поскольку это помогает анализировать свойства потенциально сложных функций с помощью полиномиального разложения. Полиномиальный ряд для функций в общем случае получается бесконечным (счётным), но на практике достаточно вычислить только несколько первых членов, чтобы получить хорошее локальное приближение функции; чем больше членов разложения включено, тем лучше полином приближает исходную функцию.

<u>Пример.</u> Найдите разложение в ряд Тейлора в окрестности точки x = 0 функции $f(x) = x^2 - 5x + 3$. <u>Решение</u>. Нужно найти производные f(x) в точке x = 0 и воспользоваться определением ряда Тейлора.

$$f(x) = x^2 - 5x + 3$$
 $f(0) = 3$
 $f'(x) = 2x - 5$ $f'(0) = -5$
 $f''(x) = 2$ $f''(0) = 2$
 $f'''(x) = 0$ $f'''(0) = 0$

Получаем

$$f(x) = 3 - 5x + \frac{2}{2!}x^2 = 3 - 5x + x^2,$$

поскольку все последующие производные равны нулю. Таким образом, ряд Тейлора для f(x) совпадает с исходной функцией, что неудивительно, поскольку идея этого ряд заключается в нахождении лучшего приближения требуемой функции с помощью полиномов, и если f(x) исходно являлась полиномом, то она сама является лучшим приближением для себя.

Вычисление рядов Тейлора

Нередко для вычисления ряда Тейлора удобно использовать комбинации рядов для более простых функций. Нередко разложение напрямую, используя уравнение (1) требует большого количества вычислений, особенно для функций наподобие $f(x) = \sin\left(x^2\right)e^{x^3}$. В таких случаях гораздо удобнее использовать т.н. метод замены.

Пример. Построим ряд Тейлора для функции

$$f(x) = \frac{1}{x}\sin\left(x^2\right).$$

Подставляя x^2 в полиномиальный ряд для $\sin x$ и умножая полученное на $\frac{1}{x}$, легко получить

$$\frac{1}{x}\sin(x^2) = \frac{1}{x}\left((x^2) - \frac{1}{3!}(x^2)^3 + \frac{1}{5!}(x^2)^5 - \cdots\right)$$

$$= \frac{1}{x} \left(x^2 - \frac{1}{3!} x^6 + \frac{1}{5!} x^{10} - \dots \right) = x - \frac{1}{3!} x^5 + \frac{1}{5!} x^9 - \dots$$

Заметим, что прямое вычисление аналогичной конструкции потребовало бы расчет 9 производных исходной функции. Чтобы получить более полный ряд, можно использовать запись для $\sin x$ в виде суммы и снова проделать замену:

$$\frac{1}{x}\sin(x^2) = \frac{1}{x}\sum_{k=0}^{\infty} (-1)^k \frac{(x^2)^{2k+1}}{(2k+1)!}$$

$$=\frac{1}{x}\sum_{k=0}^{\infty}(-1)^k\frac{x^{4k+2}}{(2k+1)!}=\sum_{k=0}^{\infty}(-1)^k\frac{x^{4k+1}}{(2k+1)!}.$$

Пример. Найдите первые два ненулевых члена ряда Тейлора для $f(x) = 1 - 2xe^{\sin x^2}$.

Решение. Использование полиномиального ряда для e^x даёт

$$e^{\sin x^2} = 1 + \left(x^2 - \frac{1}{6}x^6 + o(x^6)\right) + \frac{1}{2!}\left(x^2 + o(x^2)\right)^2 + \frac{1}{3!}\left(x^2 + o(x^2)\right)^3 + o(x^6) =$$

$$= 1 + x^2 + \frac{1}{2}x^4 + \left(-\frac{1}{6} + \frac{1}{6}\right)x^6 + o(x^6)$$

$$= 1 + x^2 + \frac{1}{2}x^4 + o(x^6).$$

Подставляя полученный результат в исходную функцию, получаемс

$$f(x) = 1 - 2x(1 + x^2 + \frac{1}{2}x^4 + o(x^4)) = 1 - 2x - 2x^3 - x^5 + o(x^3).$$

Сходимость рядов Тейлора

Бесконечный полиномиальный ряд может быть расходящимся. В таком случае

- функция может вообще не иметь ряда Тейлора;
- ряд Тейлора для функции может сходиться не везде на её области определения.

Пример. Найдите разложение в ряд Тейлора около точки x=0 для функции $f(x)=\frac{1}{1-x}$.

Решение.

$$f(x) = \frac{1}{1-x} \qquad f(0) = 1$$

$$f'(x) = \frac{1}{(1-x)^2} \qquad f'(0) = 1$$

$$f''(x) = \frac{2}{(1-x)^3} \qquad f''(0) = 2$$

$$f'''(x) = \frac{6}{(1-x)^4} \qquad f'''(0) = 6.$$

Можно заметить общий шаблон

$$f^{(k)}(x) = \frac{k!}{(1-x)^{k+1}}$$

по крайней мере для нескольких первых элементов. Чтобы доказать, что последующие производные имеют такую же структуру, можно воспользоваться методом индукции: покажем, что если утверждение верно для k-й производной, то k+1-я производная имеет аналогичную структуру. Если $f^{(k)}(x) = \frac{k!}{(1-x)^{k+1}}$, то

$$f^{(k+1)}(x) = \frac{(k+1)k!}{(1-x)^{k+2}} = \frac{(k+1)!}{(1-x)^{k+2}},$$

как и предполагалось. Тогда $f^{(k)}(0) = k!$, поэтому по определению рядов Тейлора выполняется

$$\frac{1}{1-x} = 0! + 1!x + \frac{2!}{2!}x^2 + \frac{3!}{3!}x^3 + \cdots$$
$$= 1 + x + x^2 + x^3 + \cdots$$

Полученный результат можно использовать для вычисления ряда Тейлора для $\ln(1+x)$. Для этого удобно использовать свойство $\frac{\partial}{\partial x} \ln(1+x) = \frac{1}{1+x}$.

Заметим, что

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 - x + x^2 - x^3 + x^4 - \dots$$
 (2)

Поэтому ряд для $\ln(1+x)$ должен быть устроен так, что при дифференциировании он образует (2):

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + C = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k} + C.$$

Подставляя x = 0, получаем C = 0, поэтому

$$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} \qquad \text{при} \quad |x| < 1.$$

Заметим, что поскольку ряд $\sum_{k=1}^{\infty} (-x)^k$ является суммой геометрической прогрессии, он сходится только при |x| < 1, и поэтому аналогичное ограничение накладывается на ряд Тейлора для $\ln(1+x)$.

Использование рядов Тейлора для вычисления пределов

Пример. Найти предел $\lim_{x\to 0} \frac{1-\cos(x)}{x}$.

<u>Решение</u>. Заменяя $\cos x$ на полиномиальный ряд (для разложения функции в ряд около x=0), получаем

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{1 - \left(1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \cdots\right)}{x} = \lim_{x \to 0} \frac{\frac{1}{2!}x^2 - \frac{1}{4!}x^4 + \cdots}{x} = \lim_{x \to 0} \frac{1}{2!}x - \frac{1}{4!}x^3 + \cdots = 0.$$

Правило Лопиталя для вычисления пределов

Иногда использование рядов Тейлора не очень удобно для вычисления пределов. Например, такое возможно, если предел вычисляется в точке, в которой ряд Тейлора еще неизвестен, или предел стремится к бесконечности. В таких ситуациях может пригодиться правило Лопиталя (случай $\frac{0}{0}$):

Если f и g – непрерывные функции такие, что $\lim_{x\to a} f(x) = 0$ и $\lim_{x\to a} g(x) = 0$, то $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$, при условии, что этот предел существует. Если после взятия производных предел всё ещё имеет вид $\frac{0}{0}$, то можно взять производные снова, и так далее.

<u>Пример</u>. Используем правило Лопиталя для вычисления $\lim_{x\to\pi} \frac{\sin(x)}{e^x\cos(x/2)}$

Поскольку \sin, \cos, \exp – непрерывные функции, и $\sin(\pi) = e^{\pi}\cos(\pi/2) = 0$, то выполнены условия для применения правила Лопиталя. Таким образом, получаем

$$\lim_{x \to \pi} \frac{\sin(x)}{e^x \cos(x/2)} = \lim_{x \to \pi} \frac{[\sin(x)]'}{[e^x \cos(x/2)]'} = \lim_{x \to \pi} \frac{\cos(x)}{e^x \cos(x/2) - (1/2)e^x \sin(x/2)} = \frac{-1}{0 - (1/2)e^\pi \sin(\pi/2)} = 2e^{-\pi}.$$

Заметим, что хотя мы знаем ряды Тейлора для этих функций в точке x=0, предел здесь берется при $x \to \pi$. Таким образом, мы не можем использовать подход с рядами Тейлора, потому что ряд Тейлора около x=0 плохо аппроксимирует значение, когда x далеко от 0.

Формула Тейлора для функции нескольких переменных

<u>Пример</u>. Пусть $f(u,v) = \cos(uv)$. Найдите полиномиальное приближение для f около $(u,v) = \left(\frac{1}{2}\sqrt{\pi}, \frac{1}{2}\sqrt{\pi}\right)$ до квадратичного члена (включительно).

Решение.

$$f(u,v)|_{\frac{1}{2}\sqrt{\pi},\frac{1}{2}\sqrt{\pi}} = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}\frac{\partial f}{\partial u} = -v\sin(uv), \quad \frac{\partial f}{\partial v} = -u\sin(uv)$$

поэтому

$$\left.\frac{\partial f}{\partial u}\right|_{\frac{1}{3}\sqrt{\pi},\frac{1}{3}\sqrt{\pi}} = \left. \quad \frac{\partial f}{\partial v}\right|_{\frac{1}{3}\sqrt{\pi},\frac{1}{3}\sqrt{\pi}} = -\frac{1}{2}\sqrt{\pi}\sin\frac{\pi}{4} = -\frac{1}{2}\sqrt{\pi/2}$$

Далее,

$$\frac{\partial^{2} f}{\partial u^{2}}\Big|_{\frac{1}{2}\sqrt{\pi}, \frac{1}{2}\sqrt{\pi}} = \left(-v^{2}\cos(uv)\right)\Big|_{\frac{1}{2}\sqrt{\pi}, \frac{1}{2}\sqrt{\pi}} = -\frac{\pi}{4\sqrt{2}}$$

$$\frac{\partial^{2} f}{\partial v^{2}}\Big|_{\frac{1}{2}\sqrt{\pi}, \frac{1}{2}\sqrt{\pi}} = \left(-u^{2}\cos(uv)\right)\Big|_{\frac{1}{2}\sqrt{\pi}, \frac{1}{2}\sqrt{\pi}} = -\frac{\pi}{4\sqrt{2}}$$

$$\frac{\partial^{2} f}{\partial u \partial v}\Big|_{\frac{1}{2}\sqrt{\pi}, \frac{1}{2}\sqrt{\pi}} = \left(-\sin(uv) - vu\cos(uv)\right)\Big|_{\frac{1}{2}\sqrt{\pi}, \frac{1}{2}\sqrt{\pi}} = -\frac{1}{\sqrt{2}} - \frac{\pi}{4\sqrt{2}}$$

В итоге, разложение в ряд Тейлора до квадратичных членов имеет вид

$$f\left(\frac{1}{2}\sqrt{\pi} + h, \frac{1}{2}\sqrt{\pi} + k\right) = \frac{1}{\sqrt{2}} - (h+k)\frac{1}{2}\sqrt{\pi/2}$$
$$-\frac{h^2 + k^2}{2}\frac{\pi}{4\sqrt{2}} - \frac{hk}{\sqrt{2}}\left(1 + \frac{\pi}{4}\right) + o\left(h^2 + k^2\right).$$

Методы Лагранжа и Куна-Таккера решения оптимизационных задач с ограничениями

Методы Лагранжа и Куна-Таккера применяются для поиска экстремумов функции $g(x), x \in \mathbb{R}^n$, при условии выполнения ограничений, заданных одной или несколькими функциями $\phi_i(x)$, $i \in \{1, \dots, m\}$. Если ограничения заданы в форме равенств $\phi_i(x) = 0$, то метод называется методом Лагранжа; если ограничения заданы в форме неравенств $\phi_i(x) \geq 0$ – то метод поиска экстремумов называется методом Куна-Таккера.

В обоих случаях для решения оптимизационной задачи нужно построить функцию Лагранжа:

$$\mathcal{L}(x,\lambda) = g(x) + \sum_{i=1}^{m} \lambda_i \phi_i(x). \tag{3}$$

Дальнейший стандартный алгоритм решения включает в себя следующие действия:

• Вычисление *п* условий первого порядка:

$$\frac{\partial \mathcal{L}(x,\lambda)}{\partial x_j} = \frac{\partial g(x)}{\partial x_j} + \sum_{i=1}^m \lambda_i \frac{\partial \phi_i(x)}{\partial x_j} = 0.$$
 (4)

• Запись m уравнений ограничений – в случае, когда условия на $\phi_i(x)$ заданы в форме равенств, то дополнительных действий не требуется:

$$\phi_i(x) = 0; \tag{5}$$

В случае, если условия на $\phi_i(x)$ заданы в форме неравенств, то ограничения записываются в форме "условий дополняющей нежесткости":

$$\lambda_i \phi_i(x) = 0. \tag{19.1}$$

Если для некоторой точки x^* и некоторого ограничения ϕ_i выполняется $\phi_i(x^*) = 0$, то такое ограничение называется "активным" в этой точке; если $\phi_i(x^*) > 0$, то ограничение называется "несдерживающим".

- Решение получившейся системы n+m уравнений с n+m неизвестными $x_1, \ldots, x_n, \lambda_1, \ldots, \lambda_m$. Поскольку условия первого порядка являются необходимыми, но не достаточными для максимума/минимума целевой функции с заданными ограничениями, то найденные решения нужно дополнительно проанализировать на оптимальность, вместе с точками "нерегулярности" ограничений.
- Проверка градиентов ограничений на коллинеарность: если для какой-то точки $x_0 \in \mathbb{R}^n$, в которой набор ограничений $\phi_j(x_0)$, $j \in \{1, \dots, k\}$ является активным, икоэффициентов $\alpha_1, \dots, \alpha_k$, среди которых есть ненулевые, выполняется равенство $\sum_{i=1}^m \alpha_j \nabla \phi_j(x_0) = 0$, то такую точку нужно отдельно проанализировать на поведение оптимизируемой функции в ней. Это нужно из-за того, что оптимизационные методы, основанные на условиях первого порядка, "не умеют" проверять оптимальность точек, наподобие тч. A на рис. (2), в которой градиенты двух ограничений становятся коллинеарными:

Пример: $\min_x g(x) = x$ при условии $x^2 \le 0$. Стандартный алгоритм действий приводит к $\mathcal{L}(x,\lambda) = x - \lambda x^2 \xrightarrow{\frac{\partial}{\partial x}} \lambda x = 0.5$. При этом условие дополняющей нежесткости даёт $\lambda x^2 = 0$ – и получившаяся система уравнений является несовместной. В то же время, градиент к ограничению равен 2x – и принимает нулевое значение при x = 0. Поэтому точка x = 0 (которая является единственной доступной при таком ограничении) является возможным решением оптимизационной задачи.

 $^{^2}$ Поскольку поиск экстремумов будет связан с вычислением производных, нужно чтобы функции g(x) и $\phi_i(x)$ были непрерывно дифференциируемы в некоторой открытой области в \mathbb{R}^n .

Рис. 2: Точка A(0;4) — нерегулярная для области, ограниченной неравенствами $\phi_1(x)=x\geq 0$ и $\phi_2(x)=(4-y)^3-2x\geq 0$.

• Проверка всех полученных подозрительных значений на локальный/глобальный минимум/максимум и на удовлетворение ограничениям – обычно для этого проще всего вычислить целевую функцию и $\phi(x)$ в них. Иногда также используются условия второго порядка (в случае существования у g(x) и $\phi_i(x)$ вторых производных) для проверки вида экстремума.

Графическая интерпретация методов

Методы Лагранжа и Куна-Таккера заключаются в поиске точек $x_0 \in \mathbb{R}^n$, в которых градиент целевой функции $g(x_0)$ можно представить как линейную комбинацию (с весами, равными λ) градиентов ограничений – это видно, если переписать все условия первого порядка (4) в векторном виде:

$$\nabla g(x_0) = \sum_{i=1}^{m} \lambda_i \nabla \phi_i(x_0)$$

Это условие является необходимым для экстремума g(x) при заданном ограничении, так как в обратном случае в точке x_0 линия/поверхность³ активного ограничения пересекает линию уровня целевой функции $g(x) = g(x_0)$. Для функции двух аргументов g(x,y) и одного активного ограничения $\phi(x,y) = 0$ эта ситуация проиллюстрирована на рис. (3):

Сдвиг из точки A в какую-то из сторон вдоль активного ограничения даёт возможность перейти на новые линии уровня g(x), как с более высокими, так и с более низкими значениями целевой функции – то есть точка A не является её экстремумом при заданных ограничениях. Если в другой точке $x^* \in \mathbb{R}^n$ градиент $g(x^*)$ выражается как линейная комбинация градиентов активных ограничений, $\nabla g(x_0) = \sum_{i=1}^m \lambda_i \nabla \phi_i(x_0)$ – то линия уровня $g(x) = g(x^*)$ совпадает в малой окрестности точки x^* с линией, задаваемой $\sum_j \lambda_j \phi_j(x) = 0$, и поэтому небольшое смещение в любом направлении вдоль активных ограничений из x^* не изменяет значения

 $^{^3}$ Более точным было бы использовать термин "гиперплоскость" - по определению, подпространство с размерностью, на единицу меньшей, чем объемлющее пространство. Тем не менее, для простоты далее будем использовать термины "линия ограничения" и "линия уровня", применимые для задач в \mathbb{R}^3 .

 $^{^4}$ Градиенты функций по построению ортогональны к их линиям уровня, и поэтому если у двух функций в некоторой точке x_0 не коллинеарны градиенты – то у них так же не совпадут и линии уровней, проходящие через x_0 .

Рис. 3: Градиенты целевой функции и ограничения разнонаправлены в тч. A, но коллинеарны в тч. B

целевой функции. В точке B на рис. (3) линия уровня g(x,y) = const касается линии ограничения, и смещение из B в любом направлении вдоль ограничения $\phi(x,y) = 0$ приводит к росту целевой функции (поскольку её градиент направлен вверх, а линия уровня g(x,y) расположена снизу от линии ограничения) – поэтому она является точкой локального минимума для g(x,y).

В случаях, когда все ограничения $\phi_i(x)$ заданы в форме равенств, в любой точке решения они все будут активными, и вышеприведенные рассуждения полностью описывают метод поиска решения – метод Лагранжа. Однако, чаще ситуация, подобная рис. (3), встречается, когда только одно ограничение выполняется в виде равенства $\phi_1(x) = 0$. Если ограничений-равенств несколько, то, как правило, можно сначала решить систему ограничений, получив набор точек, удовлетворяющих им всем одновременно, – что во многих случаях приводит к конечному набору точек и сводит задачу к вычислению значений целевой функции в них.

Метода Куна-Таккера можно назвать обобщенным методом Лагранжа, поскольку принцип решения – нахождение точек, в которых градиент целевой функции выражается через линейную комбинацию градиентов ограничений, – остаётся прежним, но имеет две важные особенности.

Первая из них заключается в том, что накладываемые неравенствами ограничения могут не влиять на экстремум функции:

<u>Пример</u>. Максимизация функции p(1-p) при ограничении $p \in [0,1]$.

Оптимизационная задача записывается следующим образом:

$$\max_{p} p(1-p),$$
s.t. $p \ge 0,$

$$p < 1.$$

Функция Лагранжа для неё: $\mathcal{L}(p,\lambda) = p(1-p) + \lambda_1 p + \lambda_2 (1-p)$.

Условие первого порядка: $1 - 2p + \lambda_1 - \lambda_2 = 0$.

Условия дополняющей нежесткости: $\lambda_1 p = 0, \ \lambda_2 (1-p) = 0.$

Решая полученную систему уравнений, находим три возможных решения:

$$(p, \lambda_1, \lambda_2) \in \{(0, -1, 0), (1, 0, -1), (0.5, 0, 0)\}$$

Подставляя найденные значения p в целевую функцию, видим, что её максимум достигается в третьем случае, при p=0.5 – когда оба наложенных ограничения являются неактивными.

Вторая особенность метода Куна-Таккера заключается в том, что все точки, в которых несколько ограничений являются активными одновременно, автоматически рассматриваются как кандидаты на оптимум целевой функции — если ранг матрицы, построенной на этих ограничениях, равен числу независимых переменных n. Это обусловлено тем, что линейной комбинацией градиентов таких ограничений можно построить любой вектор в \mathbb{R}^n .

Пример 2.

$$\max_{x,y} g(x,y) = x + y,$$
 s.t. $4x^2 - 24x + 9y^2 - 72y + 144 \ge 0,$ $x \le 3,$ $x \ge 0,$ $y \ge 0.$

Функция Лагранжа:

$$\mathcal{L}(x,y,\lambda) = x + y + \lambda_1(4x^2 - 24x + 9y^2 - 72y + 144) + \lambda_2(3-x) + \lambda_3x + \lambda_4y$$

Условия первого порядка:

$$\frac{\partial \mathcal{L}(x, y, \lambda)}{\partial x} = 1 + \lambda_1 (8x - 24) - \lambda_2 + \lambda_3 = 0, \tag{6}$$

$$\frac{\partial \mathcal{L}(x, y, \lambda)}{\partial y} = 1 + \lambda_1 (18y - 72) + \lambda_4 = 0. \tag{7}$$

Условия дополнительной нежесткости

$$\lambda_1(4x^2 - 24x + 9y^2 - 72y + 144) = 0, (8)$$

$$\lambda_2(3-x) = 0, (9)$$

$$\lambda_3 x = 0, \tag{10}$$

$$\lambda_4 y = 0. \tag{11}$$

Решая систему уравнений (6)-(11), получаем следующие наборы "подозрительных" точек:

$$(3 - 9/\sqrt{13}, 4 - 4/\sqrt{13}, \sqrt{13}/72, 0, 0, 0), (3 + 9/\sqrt{13}, 4 + 4/\sqrt{13}, -\sqrt{13}/72, 0, 0, 0), (3, 6, -1/36, 1, 0, 0))$$

Проверяя условия регулярности, можно найти, что в точке (0,4) градиенты к ограничениям x=0 и $4x^2-24x+9y^2-72y+144=0$ коллинеарны⁵.

 $^{^{5}}$ Второе ограничение задаёт все точки, не лежащие внутри эллипса $\frac{(x-3)^{2}}{9}+\frac{(y-4)^{2}}{4}=1$ с центром в тч. (3,4).

Точки E(3,0,0,1,0,-1) и F(3,6,-1/36,1,0,0) не являются точками экстремума функции при заданных ограничениях. Это видно из того, что множители Лагранжа в них имеют разные знаки – то есть при движении вдоль активных ограничений в окрестности заданных точек целевая функция может как расти, так и убывать. Также видно, что точка $G(3+9/\sqrt{13},4+4/\sqrt{13},-\sqrt{13}/72,0,0,0)$ является недоступной (поскольку для неё не выполняется $x \leq 3$).

Проверяя условия второго порядка, можно показать, что точка A(0,4) не является экстремальной, точки $C(3-9/\sqrt{13},4-4/\sqrt{13},\sqrt{13}/72,0,0,0)$ и D(0,0,0,0,-1,-1) являются точками локального минимума задачи, а точка B - точкой локального максимума.

Однако, даже такой анализ не позволяет сказать что-либо о глобальных экстремумах задачи. Действительно, из рис. (4) видно, что у рассматриваемой задачи нет решения – целевая функция принимает бесконечно большие значения при $x \in [0,3], y = \infty$. Достаточным условием, при котором можно утверждать о том, что среди найденных методом Куна-Таккера "подозрительных" точек имеются глобальные экстремумы, является компактность множества доступных точек – в соответствии с теоремой Вейерштрасса 6 .

Рис. 4: Графическое представление метода Куна-Таккера. Точки B-G являются решениями системы уравнений (6)-(11) — в них градиент к целевой функции можно выразить как линейную комбинацию градиентов к активным ограничениям. В точках B, D, E, F с помощью градиентов к активным ограничениям можно выразить любой вектор в \mathbb{R}^2 . То же самое работает в выколотой окрестности точки A (точка нерегулярности ограничений).

Задачи

1. Функция f(x) задана равенствами

$$f(x) = \begin{cases} x^3, & \text{если } x \leqslant 2, \\ ax^2 + b, & \text{если } x > 2, \end{cases}$$

и дифференцируема на всей прямой. Найдите a, b.

⁶См. Теорема Вейерштрасса об экстремальных значениях.

- 2. Дана функция двух переменных $f(x,y)=x^2+y^2$ и множество $M=\{(x,y):\sqrt{|x|}+2\sqrt{|y|}==2\}.$ Найдите локальные минимумы и максимумы.
- 3. Найдите разложение функции $f(x)=rac{x^3}{1+x^2}$ в окрестности точки $x_0=0$ в ряд Тейлора.
- 4. Дана функция двух переменных $f(x,y) = \min\{x,y\}$ и множество $M = \{(x,y): (x-2)^2 + +(y-1)^2 = 5\}$. Найдите локальные минимумы и максимумы.
- 5. Найдите предел $\lim_{n\to\infty} n \left(\sqrt[5]{n^5 + 5n^4} \sqrt{n^2 + 2n} \right)$.
- 6. Вычислите определённый интеграл

$$\int_0^2 \frac{5dx}{x^2 - 3x - 4}$$

7. Найдите предел

$$\lim_{x \to 0} \frac{\sin(\pi/2 - 10\sqrt{x}) \ln \cos 2x}{(2^x - 1)((x+1)^5 - (x-1)^5)}.$$

8. Найдите предел

$$\lim_{x \to 0} \frac{\cos x - \sqrt{1 - x^2}}{x^4}.$$

9.

$$\lim_{x \to +\infty} \frac{e^{2x}}{x^3 + 3x^2 + 4}$$

10.

$$\lim_{x\to +\infty} \frac{e^{3x}}{e^{x^2}}$$

11.

$$\lim_{x \to +\infty} \frac{e^x(x-1)!}{x!}$$

12.

$$\lim_{x \to +\infty} \frac{2^x + 1}{(x+1)!}$$

Для решения можно показать, что $\ln n! \sim n \ln n$, используя теорему Штольца-Чезаро о пределе отношения двух последовательностей. Пусть $b_n = \ln n!$, $c_n = n \ln n$, тогда $b_{n+1} - b_n = \ln(n+1)$, тогда как $c_{n+1} - c_n = (n+1) \ln(n+1) - n \ln n = \ln(n+1) + n \ln \left(1 + \frac{1}{n}\right)$.

$$\lim_{n \to \infty} \frac{b_{n+1} - b_n}{c_{n+1} - c_n} = \lim_{n \to \infty} \frac{\ln(n+1)}{\ln(n+1) + n \ln\left(1 + \frac{1}{n}\right)} = 1,$$

откуда следует, что $\lim_{n \to \infty} \frac{b_n}{c_n} = 1$.

13.

$$\lim_{x \to +\infty} \frac{(3\ln x)^n}{(2x)^n}$$

- 14. Найдите асимптотику функции $f(x) = \left(x x^2 + O\left(x^3\right)\right) \cdot \left(1 + 2x + O\left(x^3\right)\right)$ при $x \to 0$.
- 15. Найдите асимптотику функции $f(x) = \left(x^3 + 2x^2 + O(x)\right) \cdot \left(1 + \frac{1}{x} + O\left(\frac{1}{x^2}\right)\right)$ при $x \to \infty$.

16. Какие из перечисленных функций являются $O\left(x^{2}\right)$ при $x \to 0$?

$$x \ln(1+x)$$

$$5x^2 + 6x + 1$$

$$1 - e^{-x}$$

$$x\sqrt{x^2 + 4x^3 + 5x^6}$$

$$x \sinh^2(3x)$$

$$\frac{x^2}{\ln(1+x)}$$

Задача. Разложите в ряд Тейлора до второго порядка функцию

$$f(x,y) = e^{-\left(x^2 + y^2\right)}$$

около точек (0,0) и (1,2)

<u>Решение</u>. Ряд Тейлора (до второго порядка) функции двух переменных около точки (a,b) имеет вид

$$p_2(x,y) = f(a,b) + Df(a,b) \begin{bmatrix} x-a \\ y-b \end{bmatrix} + \frac{1}{2} \begin{bmatrix} x-a & y-b \end{bmatrix} Hf(a,b) \begin{bmatrix} x-a \\ y-b \end{bmatrix}$$

Найдём требуемые производные:

$$\frac{\partial f}{\partial x}(x,y) = -2xe^{-(x^2+y^2)}$$

$$\frac{\partial f}{\partial y}(x,y) = -2ye^{-(x^2+y^2)}$$

$$\frac{\partial^2 f}{\partial x^2}(x,y) = (-2+4x^2)e^{-(x^2+y^2)}$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) = (-2+4y^2)e^{-(x^2+y^2)}$$

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y) = 4xye^{-(x^2+y^2)}$$

B точке (a, b) = (0, 0)

$$f(0,0) = e^{0} = 1$$

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$$

$$\frac{\partial^{2} f}{\partial x^{2}}(0,0) = -2$$

$$\frac{\partial^{2} f}{\partial y^{2}}(0,0) = -2$$

$$\frac{\partial^{2} f}{\partial x \partial y}(0,0) = 0$$

Ряд Тейлора функции f(x,y) до второго порядка около точки (0,0) имеет вид

$$p_2(x,y) = f(0,0) + Df(0,0) \begin{bmatrix} x - 0 \\ y - 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 \\ y - 0 \end{bmatrix} = 1 + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \frac{1}{2} \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} = 1 + \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} = 1 + \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} = 1 + \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} = 1 + \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} = 1 + \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} = 1 + \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) Hf(0,0) \begin{bmatrix} x - 0 & y - 0 \end{bmatrix} Hf(0,0) Hf$$

$$+\frac{1}{2} \left[\begin{array}{cc} x & y \end{array} \right] \left[\begin{array}{cc} -2 & 0 \\ 0 & -2 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] = 1 - x^2 - y^2$$

В точке (a,b) = (1,2) потребуется больше вычислений:

$$f(1,2) = e^{-5}$$

$$\frac{\partial f}{\partial x}(1,2) = -2e^{-5}$$

$$\frac{\partial f}{\partial y}(1,2) = -4e^{-5}$$

$$\frac{\partial^2 f}{\partial x^2}(1,2) = 2e^{-5}$$

$$\frac{\partial^2 f}{\partial y^2}(1,2) = 14e^{-5}$$

$$\frac{\partial^2 f}{\partial x \partial y}(1,2) = \frac{\partial^2 f}{\partial y \partial x}(1,2) = 8e^{-5}$$

Ряд Тейлора функции f(x,y) до второго порядка около точки (1,2) имеет вид

$$p_2(x,y) = f(1,2) + Df(1,2) \begin{pmatrix} x-1 \\ y-2 \end{pmatrix} + \frac{1}{2}(x-1, y-2)Hf(1,2) \begin{pmatrix} x-1 \\ y-2 \end{pmatrix} = e^{-5} + \left[-2e^{-5} - 4e^{-5}\right] \begin{pmatrix} x-1 \\ y-2 \end{pmatrix} + \frac{1}{2}(x-1, y-2) \begin{pmatrix} 2e^{-5} & 8e^{-5} \\ 8e^{-5} & 14e^{-5} \end{pmatrix} \begin{pmatrix} x-1 \\ y-2 \end{pmatrix} = e^{-5} - e^{-5}(2(x-1) + 4(y-2)) + e^{-5}(x-1)^2 + e^{-5}8(x-1)(y-2) + e^{-5}7(y-2)^2 = e^{-5} \left(1 - 2(x-1) - 4(y-2) + (x-1)^2 + 8(x-1)(y-2) + 7(y-2)^2\right).$$