Chương 1

Giải gần đúng phương trình

1.1 Mở đầu

Sự tăng trưởng của dân số thường có thể được mô hình hóa trong khoảng thời gian ngắn bằng cách giả định rằng dân số tăng liên tục theo thời gian tỷ lệ thuận với con số hiện tại vào thời điểm đó. Giả sử N(t) biểu thị số dân tại thời điểm t và λ biểu thị tỷ lệ sinh không đổi của cộng đồng. Khi đó dân số thỏa mãn phương trình vi phân:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \lambda N(t)$$

Nghiệm của phương trình là $N(t) = N_0 e^{\lambda t}$, ở đây N_0 là dân số ban đầu. Mô hình hàm mũ này chỉ có giá trị khi dân số bị cô lập, không có người nh

Mô hình hàm mũ này chỉ có giá trị khi dân số bị cô lập, không có người nhập cư. Nếu nhập cư được phép ở tốc độ không đổi v thì phương trình vi phân trở thành:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \lambda N(t) + v$$

Nghiệm của nó là:

$$N(t) = N_0 e^{\lambda t} + \frac{v}{\lambda} (e^{\lambda t} - 1)$$

Giả sử ban đầu có $N(0)=1\,000\,000$ người, và có tới 435 000 người nhập cư vào cộng đồng trong năm đầu tiên, vậy $N(1)=1\,564\,000$ người có mặt vào cuối năm đầu tiên. Để xác định tỷ lệ sinh của cộng đồng dân số này, chúng ta cần tìm λ trong phương trình:

$$1564\,000 = 1\,000\,000e^{\lambda} + \frac{435\,000}{\lambda}(e^{\lambda} - 1)$$

Không thể giải một cách chính xác giá trị λ trong phương trình này, nhưng các phương pháp tính được thảo luận trong chương này có thể được sử dụng để tính gần đúng nghiệm của các phương trình loại này với độ chính xác cao tùy ý.

1.2 Phương pháp chia đôi

Giả sử f là hàm số xác định và liên tục trên khoảng [a,b], với f(a) và f(b) trái dấu. Định lý giá trị trung gian nói rằng tồn tại một số $p \in (a,b)$ với f(p) = 0.

Định lí 1.1. Định lý giá trị trung gian (Intermediate Value Theorem).

Nếu f liên tục trên [a,b] và K nằm giữa f(a) và f(b), tồn tại $c \in (a,b)$ sao cho f(c) = K.

Cụ thể hơn, do f(a) và f(b) trái dấu, do đó 0 nằm giữa f(a) và f(b), do đó tồn tại nghiệm $p \in (a,b)$.

Kết quả trên là một trường hợp đặc biệt (f(a), f(b)) trái dấu, K = 0) của đinh lý giá trị trung gian, còn được gọi là đinh lý Bolzano.

Mặc dù có thể tồn tại nhiều hơn một nghiệm trong khoảng (a,b), nhưng để thuận lợi, chúng ta giả thiết chỉ có duy nhất một nghiệm trong khoảng này. Khi đó, ta có thể dùng phương pháp sau:

Phương pháp. Phương pháp chia đôi (Bisection method)

Phương pháp này cho phép tìm nghiệm p của f(p) = 0 trong khoảng [a, b], với f(a) và f(b) trái dấu.

 $D\vec{e}$ bắt đầu, ta đặt $a_1=a$ và $b_1=b$, và đặt p_1 là điểm giữa của [a,b]; nghĩa là:

$$p_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2}$$

- $N\hat{e}u \ f(p_1) = 0 \ thi \ p = p_1$.
- $N\hat{e}u \ f(p_1) \neq 0 \ thì \ f(p_1) \ cùng \ d\hat{a}u \ với \ f(a_1) \ hoặc \ f(b_1)$.
 - $-N\acute{e}u\ f(p_1)\ cùng\ d\acute{a}u\ với\ f(a_1)\ thì\ p\in[p_1,b_1].\ Dặt\ a_2=p_1,\ b_2=b_1.$
 - $-N\acute{e}u\ f(p_1)\ cùng\ d\acute{a}u\ với\ f(b_1)\ thì\ p\in [a_1,p_1].\ Dặt\ a_2=a_1,\ b_2=p_1.$

sau đó làm tiếp phương pháp trên với khoảng $[a_2, b_2]$.

Các cách dừng khác (còn gọi là $ti\hat{e}u$ chí dừng) có thể được áp dụng trong phương pháp trên hoặc trong bất kỳ các kỹ thuật lặp lại trong chương này. Ví dụ, chúng ta có thể chọn một dung sai $\varepsilon > 0$ và tạo dãy $p_1, ..., p_N$ cho đến khi đáp ứng một trong các điều kiện sau:

$$|p_N - p_{N-1}| < \varepsilon, \tag{1.1}$$

$$\frac{|p_N - p_{N-1}|}{|p_N|} < \varepsilon, \, p_N \neq 0 \text{ hoặc}$$
(1.2)

$$|f(p_N)| < \varepsilon \tag{1.3}$$

Không may, khó khăn có thể phát sinh với bất kỳ tiêu chí dừng nào. Ví dụ, có các chuỗi $\{p_n\}_{n=1}^\infty$ mà hiệu p_n-p_{n-1} hội tụ về 0 trong khi dãy đó lại phân

kỳ. Cũng có thể có $f(p_n)$ gần bằng 0 trong khi p_n khác đáng kể so với p. Nếu không có kiến thức bổ sung về f hoặc p, bất đẳng thức 1.2 là tiêu chuẩn dừng tốt nhất để áp dụng vì nó sát nhất với sai số tương đối.

Khi dùng máy tính để tính xấp xỉ, nên thiết lập một giới hạn trên về số lần lặp lại. Điều này giúp tránh vòng lặp vô hạn, một tình huống có thể phát sinh khi chuỗi $\{p_N\}_{n=0}^{\infty}$ phân kỳ (và cả khi chương trình sai).

Ví dụ 1.1. Chứng minh rằng $f(x) = x^3 + 4x^2 - 10 = 0$ có nghiệm trong khoảng [1,2], và dùng phương pháp chia đôi để xác định nghiệm đúng đến 10^{-4} .

 $Vi\ f(1) = -5\ và\ f(2) = 14,\ f(x) = 0\ chắc\ chắn có nghiệm trong khoảng [1,2].$

Ta có bảng sau:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1,0	2,0	1,5	2,375
2	1,0	1,5	1,25	-1,79687
3	1,25	1,5	1,375	$0,\!16211$
4	1,25	1,375	1,3125	-0,84839
5	1,3125	1,375	1,34375	$-0,\!35098$
6	$1,\!34375$	1,375	1,359375	-0,09641
7	$1,\!359375$	1,375	1,3671875	0,03236
8	$1,\!359375$	$1,\!3671875$	1,36328125	$-0,\!03215$
g	$1,\!36328125$	$1,\!3671875$	1,365234375	0,000072
10	$1,\!36328125$	$1,\!365234375$	1,364257813	-0,01605
11	$1,\!364257813$	$1,\!365234375$	1,364746094	-0,00799
12	$1,\!364746094$	$1,\!365234375$	1,364990234	-0,00396
13	$1,\!364990234$	1,365234375	1,365112305	-0,00194

Sau 13 lần lặp, $p_{13} = 1,365\,112\,305$ xấp xỉ nghiệm p với sai số:

$$|p - p_{13}| < |b_{14} - a_{14}| = |1,365\,234\,375 - 1,365\,112\,305| = 0,000\,122\,070$$

 $Do |a_{14}| < |p|$ (khoảng đang xét dương), ta có:

$$\frac{|p - p_{13}|}{|p|} < \frac{|b_{14} - a_{14}|}{|a_{14}|} \le 9 \times 10^{-5}$$

Cần chú ý rằng, p_9 thực sự gần với p hơn kết quả cuối cùng p_{13} , tuy nhiên khi thực hiện thuật toán ta không thể biết đều này. Hơn nữa, $|f(p_9)| < |f(p_{13})|$ cũng không liên quan đến việc p_9 sát với p hơn.

Phương pháp chia đôi có hai điểm yếu lớn:

- Cần số vòng lặp N lớn
- Vô tình bỏ qua các xấp xỉ tốt

Dù vậy, phương pháp này lại có một ưu điểm lớn là đảm bảo dãy $\{p_N\}_{n=0}^{\infty}$ hội tụ đến một nghiệm. Do ưu điểm này, phương pháp chia đôi thường được dùng để tìm điểm bắt đầu cho các phương pháp khác hiệu quả hơn mà sẽ được giới thiêu sau.

Định lí 1.2. Cho hàm $f \in [a,b]$ và $f(a)\dot{f}(b) < 0$. Phương pháp chia đôi tạo ra một chuỗi $\{p_n\}_{n=1}^{\infty}$ xấp xỉ nghiệm p của f với sai số như sau:

$$|p_n - p| \le \frac{b - a}{2^n}, \ n \ge 1$$

Chứng minh. Với mọi $n \ge 1$, ta có:

$$b_n - a_n = \frac{1}{2^{n-1}}(b-a)$$
 và $p \in (a_n, b_n)$

Do

$$p_n = \frac{1}{2}(a_n + b_n)$$

ta suy ra được

$$\frac{1}{2}(a_n + b_n) - b_n \le p_n - p \le \frac{1}{2}(a_n + b_n) - a_n$$

$$\iff \frac{1}{2}(a_n - b_n) \le p_n - p \le \frac{1}{2}(b_n - a_n)$$

$$\iff |p_n - p| \le \frac{1}{2}(b_n - a_n) = \frac{b - a}{2^n}$$

đpcm.

1.3 Phương pháp điểm bất động

1.3.1 Điểm bất động và bài toán tìm nghiệm

Điểm bất động (fixed point) của một hàm là số mà tại đó giá trị của hàm số bằng đúng giá trị của đối số.

Định nghĩa 1. Số p
 được gọi là điểm bất động của hàm số g nếu g(p)=p.

Trong phần này, chúng ta xét việc đưa bài toán tìm nghiệm về bài toán tìm điểm bất động và tìm sự liên hệ giữa chúng.

Các bài toán tìm nghiệm và các bài toán tìm điểm cố định là các lớp tương đương theo nghĩa sau đây:

• Từ bài toán tìm nghiệm của phương trình f(p) = 0, ta có thể xác định hàm g với điểm bất động tại p theo một số cách, ví dụ,

$$g(x) = x - 3f(x)$$

vì khi thay p vào, g(p) = p - 3f(p) = p.

5

- Ngược lại, nếu hàm g có một điểm bất định tại p, thì hàm f xác định bởi

$$f(x) = x - g(x)$$

có nghiệm tại p.

Mặc dù các bài toán ta muốn giải quyết là dạng tìm nghiệm, nhưng dạng điểm bất động dễ thực hiện hơn và có một số lựa chọn điểm bất động dẫn tới kỹ thuật tìm nghiệm rất hiệu quả. Trước hết ta cần đi đến dạng bài toán mới này một cách thoải mái, và đưa ra quyết định khi nào hàm số có điểm bất động và điểm bất động được xấp xỉ với đô chính xác bao nhiêu.

Các điểm bất động xuất hiện trong nhiều lĩnh vực toán học khác nhau, và là công cụ chính của các nhà kinh tế dùng để chứng minh các kết quả liên quan đến tính cân bằng. Mặc dù ý tưởng đằng sau kỹ thuật là cũ, nhưng thuật ngữ được sử dụng lần đầu bởi nhà toán học Hà Lan L. E. J. Brouwer (1882 - 1962) trong đầu những năm 1900.

1.3.2 Điều kiện cho điểm bất động

Ví dụ 1.2. Hãy xác định điểm bất động của hàm $g(x) = x^2 - 2$. Điểm bất động p của g có tính chất:

$$p = g(p) \iff p = p^2 - 2$$

Suy ra

$$p^2 - p - 2 = (p+1)(p-2) = 0$$

Điểm bất động xảy ra đúng khi khi đồ thị của hàm số y = g(x) cắt đồ thị hàm số y = x, vì vậy g có 2 điểm bất động là -1 và 2. Điều này được minh họa bởi hình 1.1.

Hình 1.1: Điểm bất động của $y = x^2 - 2$

Định lý sau cho điều kiện đủ để hàm số có ít nhất một và có duy nhất một điểm bất động.

Định lí 1.3.

- 1. Nếu $g \in [a, b]$, và $g(x) \in [a, b] \forall x \in [a, b]$, khi đó g có ít nhất một điểm bất động trên [a, b].
- 2. Hơn nữa, nếu g'(x) tồn tại trên (a,b) và $|g'(x)| < 1 \forall x \in [a,b]$, khi đó, tồn tai duy nhất một điểm bất động trên [a,b].

Trước khi chứng minh định lí trên, ta cần biết định lí giá trị trung bình.

Định lí 1.4. Định lí giá trị trung bình (Mean Value Theorem).

Nếu f liên tục trên [a,b] và khả vi trên (a,b), tồn tại một điểm $c \in (a,b)$ sao cho tiếp tuyến tại c song song với cát tuyến qua hai điểm mút (a, f(a)) và (b, f(b)), hay nói cách khác:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Chứng minh Định lí 1.3.

1. Nếu g(a)=a hoặc $g(b)=b,\ g$ có điểm bất động a hoặc b. Nếu không, g(a)>a và đồng thời g(b)< b; ta sẽ xét trường hợp này.

Hàm h(x) = g(x) - x liên tục trên [a, b] với:

$$h(a) - a > 0$$
 và $h(b) - b > 0$

Định lý giá trị trung gian khẳng định rằng tồn tại $p \in (a, b)$ sao cho h(p) = 0. Điểm p này là điểm bất động của q vì:

$$0 = h(p) = q(p) - p \iff q(p) = p$$

2. Giả sử g có hai điểm bất động p, q trên [a,b]. Không mất tính tổng quát, giả sử p < q. Theo định lí giá trị trung bình, tồn tại $\xi \in (p,q)$ sao cho:

$$g'(\xi) = \frac{g(p) - g(q)}{p - q}$$

Ta có:

$$|p-q| = |g(p) - g(q)| = |g'(\xi)||p-q| < |p-q|$$
 (vô lí)

Giả thuyết g có hai điểm bất động trên [a,b] sai. Vậy với điều kiện ban đầu, chỉ có duy nhất một điểm bất động trên [a,b].

đpcm.

7

1.3.3 Phương pháp điểm bất động

Xét chuỗi sau:

$$\{p_n\}_{n=0}^{\infty} \mid p_n = g(p_{n-1}) \, \forall n \ge 1$$

 $Gi\mathring{a} s\mathring{u}$ chuỗi này hội tụ tới p, và g liên tục, thì:

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g(\lim_{n \to \infty} p_{n-1}) = g(p)$$

Khi này p chính là điểm bất động của g. Đây chính là tiền đề cho phương pháp điểm bất động.

Cần chú ý rằng phương pháp này chỉ đúng khi chuỗi $\{p_n\}_{n=0}^{\infty}$ hội tụ về p.

Phương pháp. Phương pháp điểm bất động

Phương pháp này cho phép tìm điểm bất động p của g, khi biết một điểm bắt đầu p_0 .

 $D \check{q} t p = g(p_0).$

- $N\hat{e}u|p-p_0|$ đủ nhỏ, thì ta có p cần tìm.
- $N\acute{e}u |p-p_0|$ chưa đủ nhỏ, ta đặt $p_0=p$ rồi làm tiếp phương pháp trên.

Cũng như với phương pháp chia đôi, có thể dùng nhiều điều kiện dừng khác nhau. Ví dụ trên sử dụng điểu kiện $|p-p_0|$ nhỏ hơn một mốc ϵ nào đó thì dừng lai.

Ta cần nhắc lại rằng điểm quan trọng nhất của phương pháp trên là giả sử $\{p_n\}_{n=0}^{\infty}$ hội tụ về p, tức ta phải chọn hàm g một cách phù hợp, chứ không áp dụng được cho mọi hàm g. Ví dụ sau cho ta thấy sự quan trọng của hàm này.

Ví dụ 1.3. Thử tìm và biện luận cho cách tìm nghiệm của phương trình $x^3 + 4x^2 - 10 = 0$ trong [1, 2] bằng phương pháp điểm bất động.

Ta có một số lựa chọn về hàm g, được chọn ngẫu nhiên:

(a)
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 (b) $x = g_2(x) = \left(\frac{10}{x} - 4x\right)^{0.5}$
(c) $x = \frac{1}{2}(10 - x^3)^{0.5}$ (d) $x = g_4(x) = \left(\frac{10}{x+4}\right)^{0.5}$
(e) $x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$

 $V\acute{o}i \ p_0 = 1.5$, ta có bảng sau:

\overline{n}	(a)	(b)	(c)	(d)	(e)
0	1,5	1,5	1,5	1,5	1,5
1	-0,875	0,8165	$1,\!286953768$	1,348399725	1,373333333
2	6,732	2,9969	1,402540804	1,367376372	1,365262015
3	-469,7	$(-8,65)^{0.5}$	1,345458374	$1,\!364957015$	1,365230014
4	$1,03 \times 10^{8}$		$1,\!375170253$	1,365264748	1,365230013
5			1,360094193	1,365225594	
6			1,367846968	1,365230576	
γ			$1,\!363887004$	1,365229942	
8			1,365916734	1,365230022	
g			$1,\!364878217$	1,365230012	
10			1,365410062	1,365230014	
15			1,365223680	1,365230013	
20			1,365230236		
25			1,365230006		
30			$1{,}365230013$		

Với nghiệm thực 1,365 230 013, ta thấy lựa chọn (c), (d), (e) có tiềm năng nhất. Phương pháp chia đôi cần 27 lần lặp để đạt được kết quả này, tuy nhiên (d) chỉ cần 15 lần, còn (e) thậm chí chỉ cần 4. Ngược lại, (a) thì phân kì còn (b) thậm chí không xác định (căn của số âm).

1.3.4 Tìm g phù hợp

Tiếp tục nhắc lại điểm quan trọng nhất để làm được phương pháp điểm bất động là chọn được g phù hợp. Định lí sau và hệ quả của nó cho ta một số gợi ý về việc chọn những hàm phù hợp, hay quan trọng hơn, loại bỏ những hàm không phù hợp.

Định lí 1.5. Định lí điểm bất định

Cho hàm g liên tục trên [a,b] sao cho $g(x) \in [a,b] \, \forall x \in [a,b]$. Giả sử thêm rằng g khả vi trên (a,b) và

$$|g'(x)| < 1 \,\forall x \in (a,b)$$

Thì với mọi $p_0 \in [a,b]$, chuỗi

$$p_n = g(p_{n-1}) \,\forall n \ge 1$$

 $h\hat{o}i tu v \hat{e} di \hat{e}m b \hat{a}t d\hat{o}ng duy nh \hat{a}t p tr \hat{e}n [a, b].$

Chứng minh. Dựa vào 1.3, có một điểm bất định duy nhất p trong khoảng [a,b]. Do $g(x) \in [a,b] \, \forall x \in [a,b]$, ta chắc chắn dãy $\{p_n\}_{n=0}^{\infty}$ tồn tại. Theo điều kiện $|g'(x)| < 1 \, \forall x \in (a,b)$, tồn tại 0 < k < 1 thỏa mãn:

$$|g'(x)| \le k \, \forall x \in (a,b)$$

9

Kết hợp điều trên với định lí giá trị trung bình, ta có:

$$|p_n - p| = |g(p_{n-1}) - g(p)| = |g'(\xi_n)||p_{n-1} - p| \le |p_{n-1} - p|$$

với $\xi_n \in (a,b)$. Quy nạp kết quả này ta có:

$$|p_n - p| \le k^n |p_0 - p|$$

$$\iff \lim_{n \to \infty} |p_n - p| \le \lim_{n \to \infty} k^n |p_0 - p| = 0$$

Vậy ta thấy $\{p_n\}_{n=0}^{\infty}$ hội tụ về p.

đpcm.

Ta tiếp tục xem xét một số hệ quả hữu dụng của định lí trên.

Hệ quả 1.1. Hệ quả của định lí điểm bất động

Nếu g thỏa mãn các điều kiện trong định lí điểm bất động, ta có cận trên của sai số tuyệt đối khi ước lượng p bằng p_n :

$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$$
(1.4)

 $v\grave{a}$

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0| \ \forall n \ge 1$$
 (1.5)

với k như đã định nghĩa trong chứng minh của định lí điểm bất động.

Chứng minh. Ta có:

$$|p_n - p| \le k^n |p_0 - p|$$

Vì $p \in [a, b]$ nên ta suy ra được bất đẳng thức 1.4:

$$|p_n - p| \le k^n |p_0 - p| \le k^n \max\{p_0 - a, b - p_0\}$$

Xét khi $n \ge 1$, bằng quy nạp và định lí giá trị trung bình, ta có:

$$|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})| \le k^n |p_1 - p_0|$$

Do đó với m > n > 1:

$$|p_m - p_n| = |p_m - p_{m-1} + p_{m-1} - \dots - p_{n+1} + p_{n+1} - p_n|$$

$$\leq |p_m - p_{m-1}| + \dots + |p_{n+1} - p_n|$$

$$\leq k^{m-1}|p_1 - p_0| + \dots + k^n|p_1 - p_0|$$

$$= |p_1 - p_0| \sum_{i=n}^{m-1} k^i$$

$$= |p_1 - p_0| \frac{k^m - k^n}{k - 1}$$

Lấy giới hạn hai vế với $m \to \infty$, ta có được bất đẳng thức 1.5:

$$\lim_{m \to \infty} |p_m - p_n| = |p_1 - p_0| \lim_{m \to \infty} \frac{k^m - k^n}{k - 1}$$

$$\iff |p_n - p| = \frac{k^n}{1 - k} |p_1 - p_0|$$

đpcm.

Qua các kết quả trên, ta rút ra một quy tắc chọn hàm $g\colon$ đạo hàm của g càng nhỏ càng tốt.