Geometria com aplicações na gráfica computacional

Folha 5 de exercícios

csaba@mat.ufmg.br

- 1. Seja p um quatérnio unitário e $t \in \mathbb{R}$. Mostre que $(qp^t\bar{q}) = (qp\bar{q})^t$ onde \bar{q} é o conjugado de q.
- 2. Mostre, para um quatérnio unitário q e $a,b \in \mathbb{R}$ que

$$q^a q^b = q^{a+b}$$
 e $(q^a)^b = q^{ab}$.

- **3.** Verifique as seguintes igualdades para quatérnios unitários $p \in q$:
 - (1) slerp $(p, q, t) = p(\bar{p}q)^t$;
 - (2) slerp $(p,q,t) = (p\bar{q})^{1-t}q;$

 - (3) $\operatorname{slerp}(p, q, t) = (q\bar{p})^t p;$ (4) $\operatorname{slerp}(p, q, t) = q(\bar{q}p)^{1-t} q.$

Deduza que slerp(p, q, t) = slerp(q, p, 1 - t).

- 4. Mostre que a multiplicação entre dois quatérnios pode ser efetuada por apanas 8 multiplicações entre números reais. [Dica: Consulte Exercício 20 na página 112 do livro "Fundamentos da Computação Gráfica" por Gomes e Velho.]
- **5.** Assuma que r é um quatérnio puro e unitário. Considere o mapa $R: \mathbb{H} \to \mathbb{H}$ definido por $q \mapsto rqr$.
 - (1) Mostre que $\langle i, j, k \rangle$ é um subespaço R-invariante.
 - (2) Mostre que a restrição de R para o suespaço $\mathbb{R}^3 = \langle i, j, k \rangle$ pode ser vista como a reflexão de \mathbb{R}^3 em relação ao plano perpendicular a r.
- 6. Uma matriz quadrada A com entradas complexas e dita unitária se $A^*A = I$ onde A^* é a conjugada transposta de A (ou seja, A^* é obtida de A por tomar a conjugada complexa de cada entrada e depois tomar a transposta.) Denote por SU_2 o grupo de matrizes unitárias 2×2 com determinante 1. Para cada quatérnio unitário q=a+bi+cj+dk, denote por ${\cal A}_q$ a matriz

$$\begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix}.$$

- (1) Verifique que $A_q \in SU_2$.
- (2) Verifique que ψ é um homomorfismo de grupos, ou seja $\psi(q_1q_2) = \psi(q_1)\psi(q_2)$.
- (3) Demonstre que o mapa $\psi: q \mapsto A_q$ é uma bijeção entre o grupo de quatérnios unitários e SU_2 .