Sports Analytics
Group 1

MLB Field Positioning

Colin Montie, Nicholas Thomas, Albert Jojo, Nathan Wright 4/17/25

Confidential

Copyright ©

Brainstorming

- Correlation between fielders switching and effectiveness against batters.
- Batters
 - Difference in wOBA vs different fielding adjustments.
 - Spray charts of recorded hitting locations.
- Fielders
 - Heatmaps of regular vs shifted fielder positioning.
 - How extreme certain players shift when out of regular alignment

Data Sources

- Positioning
 - Player name with different positions played
 - \circ Includes distance and angle for facing batters (R vs. L)
 - Standard vs Shifted Alignment
- Fielder Data
 - Fielder Data pulled through PyBaseball
 - Alignment type, Fielder names, wOBA values

Methodology

- 1. Data Collection & Preprocessing
 - a. Pybaseball API & Situational Fielding Dataset
 - b. Data Cleaned both the datasets
- 2. Feature Engineering
 - a. Numerically encoded fielding alignments
 - b. Calculated the depth of the fielders for each alignments
- 3. Visualization & Analysis
 - a. Heatmaps: Showed how defensive alignment impacted offensive performance (wOBA)
 - b. Positioning Charts: Shows the average fielder positions for each batter at bat.

Most Pull/Oppo Heavy Hitters

- These are the hitters with the highest Pull% and Oppo% from 2023-2024
- A pulled ball is one that is hit to the same side that a hitter is standing
 - e.g., a right-handed
 batter hitting a ball to
 left field
- Both of these batters are right-handed

Most Pull-Heavy Batter: Isaac Paredes

Most Oppo-Heavy Batter: Bo Bichette

Batter Effectiveness

- In general, neither right-handed nor left-handed hitters are significantly impacted by defensive positioning
- Individual players, however, can be significantly impacted both positively and negatively by the shift

Batter Effectiveness

- Batters in the red are hurt the most when the defense is shifted
- Batters in the blue perform the best compared to their typical performance against the shift

- Batters on the left are the least impacted by the shift
- Batters on the right are the most impacted by the shift

Pitcher Effectiveness

- Pitchers in the red benefit the most from defensive positioning
- Pitchers in the blue are hurt the most by their defense's positioning

- Pitchers on the left are the most impacted by the shift
- Pitchers on the right are the least impacted by the shift

Team Tendencies

Shiny App

Limitations

- Shift rule changes in 2022
 - Data is from 2023-2024
- Team errors influences wOBA
- Not including game situation
 - Potential runners on base
- Different parks affect outfielder and hit charts
- Slight changes through pitch count

Application/Future Expansion

- Comparison before vs after shift rule changes
- Further limitations on what players to account for (starters only, 100+ at bats)
- Combining data with game situation
- Integrating pitching type
 - Differences in wOBA
- General expansion of savant data

References

MLB Situational Fielder Positioning | baseballsavant.com

Statcast Search CSV Documentation | baseballsavant.com

2024 Major League Baseball Standard Fielding | Baseball-Reference.com

MLB Database | Baseball Statistics Data | SportsDataIO

Shifts | Glossary | MLB.com

Thank You!