

Course schedules

	AE3212-I
Week 3.1	Lectures
Week 3.2	Lectures
Week 3.3	Lectures
Week 3.4	Lectures
Week 3.5	Lectures
Week 3.6	Lectures
Week 3.7	Lectures

Flight Test
Test flights
Test flights
Test flights

Admission to the flight test

- Good progress in SVV Structures Assignment
- Currently taking AE3212-I FD
- Not flown flight test before
- Sign the attendance list!

Simulation, Verification and Validation

Theoretical analysis, computer simulation and measuring or testing are used to evaluate, verify and validate observed performance or failure of aerospace vehicles and phenomena

AE3212-II Flight Dynamics Assignment

- New aircraft design
- Limited data available
- Predict dynamic behavior
- Adjust design to improve behavior

Model development

ROC = 4500 ft / min

$$C_{m\alpha} = 1.435 \quad 1.327$$
 $G_m = 7 B \quad 5$
 $ROC = 4500 \, ft \, / \, min \quad 4250$

VALIDATE

Model validation test method

- Build a mathematical model
- Predict performance and behavior of the aircraft
- Flight test the model
- Adjust the mathematical model

Flight Simulation purposes

- Fly before you build
- Testing dangerous conditions
- Training simulators
- Future modifications

Stationary measurements series 1

To determine a number of aerodynamic coefficients

Stationary measurements series 2

- To determine a number of stability derivatives
- To determine longitudinal stability

Dynamic measurements

- To determine Eigenmotion characteristics
- To validate simulation results

First measurement series

- Steady, horizontal, symmetrical flight
- Constant altitude, varying thrust
- ullet Data for speedrange $V_S \longrightarrow V_{MO}$
- One configuration
 - Gear up, flaps up

Aerodynamic coefficients

Steady, horizontal flight Vertical equilibrium:

$$C_{L} = \frac{W}{\frac{1}{2}\rho V^{2}S} = C_{L_{\alpha}}(\alpha - \alpha_{0}) \approx C_{N_{\alpha}}(\alpha - \alpha_{0})$$

- → We can measure H, V_{ias} and α, $W_{fuel\,used}$, T (temperature).....
- \rightarrow and determine ρ , V_{tas} and W

payload computations			mass and balance computations							
	crew and pax	[inches]	mass [lbs]	moment [llsinches]	item	mass [lbs]	moment [lbsnches]			/
	seat 1	131			basic empty mass					
	seat 2	131			x _{cg} at_BEM =					<u></u>
	seat3	214								
	seat 4	214			payload					
	seat 5	251								[W] [4]
	seat 6	251			zero fuel mass					
	seat 7	288			^х .at.ZFM=					
	seat 8	288							oin ge	
	seat 10	170			fuel load				aft cabin baggage area	
	baggage							v		
	nose	74			ramp mass			x_{ref}	•	
	aft cabin	321			^X ್ಡ್ಡ್ಡ್ಡ್ at RM =					
		338								
	payload							D Assignr	ment	17
										±,

Aerodynamic coefficients

Steady, horizontal flight: Horizontal equilibrium:

$$C_D = \frac{T}{\frac{1}{2}\rho V^2 S} = C_{D_0} + \frac{C_L^2}{\pi A e}$$

 \rightarrow T, V, C_{D₀} and e can be determined from flight test data

Second measurement series

- Quasi-steady, horizontal flight
- Constant thrust, varying altitude
- ullet Small speedrange around $\,V_{TR}\,$
- One configuration
 - Gear up, flaps up

Forces and moments in symmetric flight

$$M = C_{m\frac{1}{2}} \rho V^2 S \overline{c}$$

Moment equilibrium

$$C_{m} = C_{m_{0}} + C_{m_{\alpha}} \left(\alpha - \alpha_{0} \right) + C_{m_{\delta}} \delta_{e} + C_{m_{\delta_{f}}} \delta_{f} + C_{m_{T_{c}}} T_{c} + C_{m_{\lg} \lg down} = 0$$

$$C_{m_{\alpha}} = \frac{dC_{m}}{d\alpha} < 0$$

$$C_{m_{\delta}} = \frac{dC_{m}}{d\delta_{e}} < 0$$

Elevator trim curve $\delta - \alpha$

Equilibrium, landing gear up, flaps up

$$C_{m} = C_{m_{0}} + C_{m_{\alpha}} \left(\alpha - \alpha_{0} \right) + C_{m_{\delta}} \delta_{e} + C_{m_{\delta_{f}}} \delta_{f} + C_{m_{T_{c}}} T_{c} + C_{m_{\lg} \lg down} = 0$$

Rewrite:

$$\delta_{e_{eq}} = -\frac{1}{C_{m_0}} \left\{ C_{m_0} + C_{m_\alpha} \left(\alpha - \alpha_0 \right) + C_{m_{Tc}} T_c \right\} = f(\alpha)$$

Slope:

$$\frac{d\delta_e}{d\alpha} = -\frac{1}{C_{m_\alpha}} C_{m_\alpha} \qquad \frac{d\delta_e}{d\alpha} < 0$$
Static stab

$$\frac{d\boldsymbol{\delta_e}}{d\boldsymbol{\alpha}} < 0$$

Static stability

Elevator trim curve $\delta_e - \alpha$

Equilibrium, landing gear up, flaps up

$$C_{m} = C_{m_{0}} + C_{m_{\alpha}} (\alpha - \alpha_{0}) + C_{m_{\delta}} \delta_{e} + C_{m_{T_{c}}} T_{c} = 0$$

Rewrite:

$$\delta_{e_{eq}} = -\frac{1}{C_{m_0}} \left\{ C_{m_0} + C_{m_\alpha} \left(\alpha - \alpha_0 \right) + C_{m_{Tc}} T_c \right\} = f(\alpha)$$

Slope:

$$\frac{d\delta_e}{d\alpha} = -\frac{1}{C_{m_{\delta}}} C_{m_{\alpha}}$$

$$\frac{d\boldsymbol{\delta_e}}{d\boldsymbol{\alpha}} < \mathbf{0}$$

Static stability

Test condition

Equilibrium, landing gear up, flaps up, constant thrust

$$C_{m_0} = C_{m_0} + C_{m_0} \left(\alpha - \alpha_0 \right) + C_{m_0} \delta_e + C_{m_{0c_f}} \delta_c + C_{m_{T_c}} T_c + C_{m_{lg}} \Big|_{lg \text{ down}} = 0$$

Rewrite:

$$\delta_{e_{eq}} = -\frac{1}{C_{m_0}} \left\{ C_{m_0} + C_{m_\alpha} \left(\alpha - \alpha_0 \right) + C_{m_{Tc}} T_c \right\} = f(\alpha)$$

Using Force Equilibrium W=N:

$$C_N \approx C_{N_\alpha} \left(\alpha - \alpha_0 \right) \approx \frac{W}{\frac{1}{2} \rho V^2 S} \implies \left(\alpha - \alpha_0 \right) = \frac{1}{C_{N_\alpha}} \frac{W}{\frac{1}{2} \rho V^2 S}$$

Elevator trim curve $\delta_e - V$

$$\delta_{e_{eq}} = -\frac{1}{C_{m_0}} \left\{ C_{m_0} + \frac{C_{m_{\alpha}}}{C_{N_{\alpha}}} \frac{W}{\frac{1}{2} \rho V^2 S} + C_{m_{T_c}} T_c \right\} = f(V)$$

Slope:

$$\frac{d\delta_e}{dV} = \frac{4W}{\rho V^3 S} \frac{1}{C_{m_\delta}} \frac{C_{m_\alpha}}{C_{N_\alpha}}$$

 $\delta_{e}(-) \qquad C_{m_{\alpha}} < 0$ $C_{m_{\alpha}} < 0$ $C_{m_{\alpha}} = 0$

Static stability (
$$C_{m_{\alpha}} < 0$$
) for: $\frac{d\delta_{e_{\rm eq}}}{dV} > 0$

Elevator trim curve

Static stability for:
$$\frac{d\delta_{e_{eq}}}{d\alpha} < 0$$
 $\frac{d\delta_{e_{eq}}}{dV} > 0$

 \rightarrow We can measure $V_{r} \alpha$ and δ_{e}

Elevator Trim Curve Measurements

Quasi-steady, horizontal flight

Moment equilibrium:

Slope:
$$\frac{d\delta_e}{d\alpha} = -\frac{1}{C_{m_{\alpha}}} C_{m_{\alpha}}$$

Stable if:
$$\frac{dC_m}{d\alpha} = C_{m_\alpha} < 0$$

Long. stability:
$$C_{m_{\alpha}} = -\frac{d\delta_{e}}{d\alpha}C_{m_{\delta}}$$

Determining elevator effectiveness C_{m_s}

$$C_{m} = C_{m_{0}} + C_{m_{\alpha}} (\alpha - \alpha_{0}) + C_{m_{\delta}} \delta_{e} + C_{m_{\delta_{f}}} \delta_{f} + C_{m_{T_{c}}} T_{c} + C_{m_{\lg} \lg down} = 0$$

$$\Delta C_{m} = C_{m_{\delta}} \cdot \Delta \delta_{e}$$

$$\Delta C_{m} = C_{N} \frac{x_{cg2} - x_{cg1}}{\overline{c}}$$

$$C_{m_{\delta}} = -\frac{1}{\Delta \delta_{e}} C_{N} \frac{\Delta x_{cg}}{\overline{c}}$$
with $C_{N} = \frac{W}{\frac{1}{2} \rho V^{2} S}$

Determining elevator effectiveness $C_{m_{\delta}}$

$$C_{m} = C_{m} \Big|_{\delta_{e}=0} + C_{m_{\delta}} \delta_{e}$$

$$\Delta C_{m} = C_{m_{\delta}} \cdot \Delta \delta_{e}$$

$$\Delta C_{m} = C_{N} \frac{x_{cg2} - x_{cg1}}{\overline{c}}$$

$$C_{m_{\delta}} = -\frac{1}{\Delta \delta_{e}} C_{N} \frac{\Delta x_{cg}}{\overline{c}}$$

with
$$C_N = \frac{W}{\frac{1}{2}\rho V^2 S}$$

payload computations			mass and balance computations							
	crew and pax	[inches]	mass [lbs]	moment [llsinches]	item	mass [lbs]	moment [lbsnches]			/
	seat 1	131			basic empty mass					
	seat 2	131			x _{cgat.} BEM =					5
	seat3	214								
	seat 4	214			payload					100
	seat 5	251								15 T
	seat 6	251			zero fuel mass					
	seat 7	288			^х сат. <mark>Z</mark> FM=					2 2 2 8 Q
	seat 8	288							oin ge	
	seat 10	170			fuel load				aft cabin baggage area	
	baggage							r	,	
	nose	74			ramp mass			x_{ref}	•	
	aft cabin	321			^X cg₄ at RM =					
		338								
	payload							D Assign	nent	30

Data reduction

Test conditions

Uncontrollable variables air temperature, density

Adjustable variables mass, cg

Controllable variables altitude, airspeed, angle of attack

In order to compare results, data must be adjusted with respect to standard conditions

Reduced Airspeed

- V_i ≈ V_c when instrument and position errors are discarded
- By converting V_c to the equivalent airspeed V_e, the atmospheric variables are reduced to ISA values.
- V_e is the airspeed that gives the same dynamic pressure at Sea Level ISA, as the true airspeed V_t at altitude

$$\frac{1}{2}\rho_0 V_e^2 = \frac{1}{2}\rho V_t^2$$

Reduced elevator trim curve $\delta_{_{\!\!e}}^{^*}$ – $\tilde{V_{_{\!\!e}}}$

$$\delta_{e_{\text{eq}}} = -\frac{1}{C_{m_{\delta}}} \left\{ C_{m_{0}} + \frac{C_{m_{\alpha}}}{C_{N_{\alpha}}} \frac{W}{\frac{1}{2} \rho V^{2} S} + C_{m_{T_{c}}} T_{c} \right\}$$

Data points for V = 120 m/s:

$$\delta_e$$
m = 6200 kg -0.4
m = 4742 kg -0.6

Reduced (or corrected) EAS:

$$\tilde{V_e} = V_e \sqrt{\frac{W_s}{W}}$$

Building the mathematical model

- Based on flight dynamics theory
- Use parameters derived from flight test data
- Test the model
- Predict dynamic behavior

State Space Representation

General Form:

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

x - state vector A - state matrix

y - output vector B - input matrix

u - input vector C - output matrix

D - direct matrix

State Space Representation

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

- very compact notation
- we can apply linear algebra
- computers can easily work with matrices

Solution of the equations

$$\dot{x} = Ax$$

General solution:

$$\overline{x}(t) = ce^{\lambda t}\overline{v}$$

System behavior (λ is real):

Eigenvalues and stability

$$\overline{x}(t) = ce^{\lambda t}\overline{v}$$

Complex eigenvalues:

$$\lambda = a + ib$$

$$\Rightarrow \overline{x}(t) = ce^{(a+ib)t}\overline{v} = ce^{at}(\cos b + i\sin b)\overline{v}$$

System behavior real part:

Eigenvalues and stability

$$Ax = \lambda x$$

Positive real part	undamped
Negative real part	damped
Imaginary part	oscillatory

Longitudinal EOM

Linearized, homogenous, deviation equations for symmetric motions:

$$\begin{bmatrix} C_{X_{u}} - 2\mu_{c}D_{c} & C_{X_{\alpha}} & C_{Z_{0}} & 0 \\ C_{Z_{u}} & C_{Z_{\alpha}} + \left(C_{Z_{\dot{\alpha}}} - 2\mu_{c}\right)D_{c} & -C_{X_{0}} & C_{Z_{q}} + 2\mu_{c} \\ 0 & 0 & -D_{c} & 1 \\ C_{m_{u}} & C_{m_{\alpha}} + C_{m_{\dot{\alpha}}}D_{c} & 0 & C_{m_{q}} - 2\mu_{c}K_{Y}^{2}D_{c} \end{bmatrix} \begin{bmatrix} \hat{u} \\ \alpha \\ \theta \\ \frac{q\bar{c}}{V} \end{bmatrix} = \underline{0}$$

Eigenvalues describe stability of short period and phugoid

Lateral EOM

$$\begin{bmatrix} C_{Y_{\beta}} + \left(C_{Y_{\dot{\beta}}} - 2\mu_b \right) D_b & C_L & C_{Y_p} & C_{Y_r} - 4\mu_b \\ 0 & -\frac{1}{2}D_b & 1 & 0 \\ C_{\ell_{\beta}} & 0 & C_{\ell_p} - 4\mu_b K_X^2 D_b & C_{\ell_r} + 4\mu_b K_{XZ} D_b \\ C_{n_{\beta}} + C_{n_{\dot{\beta}}} D_b & 0 & C_{n_p} + 4\mu_b K_{XZ} D_b & C_{n_r} - 4\mu_b K_Z^2 D_b \end{bmatrix} \begin{bmatrix} \beta \\ \varphi \\ \frac{pb}{2V} \\ \frac{rb}{2V} \end{bmatrix} = \underline{0}$$

- Eigenvalues describe stability of dutch roll, aperiodic roll and spiral
- Derivation will be treated in coming weeks

Eigenmotions

Symmetric

- Short period
- Phugoid

Asymmetric

- A-periodic roll
- Spiral
- Dutch roll

Checking the model

Compare model properties with observed behaviour

Checking the model

Compare predicted behaviour to test data

Improving the model

Change model parameters to get a better match

Pointers for the report

- Correct usage of units
- Use only relevant measurements
- Significant digits

How not to present your data

How not to present your data

