Introduction to Statistical inference

Procedure of statistical analysis

- Set the goal of statistical analysis
- Collect data
- Make a model
- Fit the model using collected data
- Make statistical inference

Some terminologies

- Unit: A single unit, usually an object or person, whose characteristics are of interest
- Population: The complete collection of units about which information is sought
- Random variable: A numerical summary of the characteristics of a unit in the population
- (parametric) model for random variable X: $\mathcal{F} = \{f(x; \theta) : \theta \in \Omega\}$
- ullet Parameter space Ω : a set of plausible values of parameter heta
- Random sample: a set of independent and identically distributed random variables, X_1, \ldots, X_n

Goal of statistical inference

- Statistical model contains unknown parameter which represents the information we want to know.
- Unless we collect all pupulation data, we never know the true parameter θ .
- We only have a finte random sample from the population.
- ullet Statistical inference includes how we can draw information for the unknown true heta from the random sample

Estimation

- How to find or estimate the true θ from a given random sample?
- Statistic: Suppose that n random variables X_1,\ldots,X_n constitute a sample from the distribution of a random variables X. Then any function $T=T(X_1,\ldots,X_n)$ of the sample is called a Statitic.
- ullet Point estimator: A statistic to make a guess for heta
- ullet Interval estimator: a plausible interval for the true parameter heta
- What is the best way to estimate θ ? In what sense?
- We need to consider Bias and Variance of our estimator
- The most ideal estimator for θ is the estimator that is unbiased and has the smallest variance among all unbiased estiamtor.

Hypothesis testing

- Sometimes we need to make decision between two choices based on a given random sample
- Similar to the estimation, we should handle the uncertainty of a random sample
- Our question is how to make the most scientifically ideal decision and how to explain the uncertainty of your decision

Motivating example

- Suppose that we have a coin and we want to test whether or not this coin is fair. To get sample, we flip a coin six times and get results.
 - Suppose we have three Heads and three Tails. Can we say a given coin is fair?

Suppose we have six Heads. Can we say a given coin is fair?

Terminologies

- Hypothesis: A statement about parameter
- Null hypothesis (H_0) : A hypothesis that the parameter takes a particular value.
- Alternative hypothesis (H_1) : A hypothesis that the parameter falls in some alternative range of values.
- Type I error: H_0 is rejected when H_0 is true
- Type II error: H_0 is not rejected when H_0 is true
- Type I error probability (α): Probability that Type I error occurs
- Type II error probability (β): Probability that Type II error occurs

Type I error and Type II error

- Type I error probability (α): The probability that we reject H_0 when H_0 is true.
- Type II error probability (β): The probability that we accept H_0 when H_0 is not true.

			True	
		H_0		H_1
	H_0	No error		Type II error
Decision				
	H_1	Type I error		No error

Now our question is

- What is the best test?
- How to construct the best test?

