ÍNDICE ÍNDICE

Análisis Funcional

FINAL AXEL SIROTA

Índice

1.	Problemas																							2
	Ejercicio 1.														 									2
	Ejercicio 2.																							2
	Ejercicio 3.																							2
	Ejercicio 4.																							2
	Ejercicio 5.														 									2
	Ejercicio 6.														 									2
	Ejercicio 7.														 									2
	Ejercicio 8.																							3
	Ejercicio 9.																							3
	Ejercicio 10.																							3
	Ejercicio 11.																							3
	Ejercicio 12.																							3
	Ejercicio 13.																							3
	Ejercicio 14.														 									3
	Ejercicio 15.														 									4
	Ejercicio 16.																							4
	Ejercicio 17.														 									4
	Ejercicio 18.														 									4
	Ejercicio 19.														 									4
	Ejercicio 20.																							5
2.	Soluciones																							5
	Solución 20.																							5
	Solución 20.																							6
	Solución 20.																							7
	Solución 20.														 									8
	Solución 20.																							8
	Solución 20.																							9

1. Problemas

Ejercicio 1.

Probar que los siguientes conjuntos tienen una estructura de variedad diferencial, exhibir un atlas y hallar la dimensión en cada caso.

- 1. Un espacio vectorial V sobre \mathbb{R} .
- 2. La esfera $S^n \subseteq \mathbb{R}^{n+1}$.
- 3. El espacio proyectivo $\mathbb{P}^n(\mathbb{R}) = S^n / \sim$, donde $x \sim y$ si x = -y.
- 4. El toro $T_n = S^1 \times \cdots \times S^1$.
- 5. El cilindro $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$.
- 6. El grupo general lineal $GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : \det(A) \neq 0\}.$
- 7. El grupo especial lineal $SL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : \det(A) = 1\}.$
- 8. El grupo ortogonal $O_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : A \cdot A^{\mathsf{T}} = 1\}.$
- 9. El grupo especial ortogonal $SO_n(\mathbb{R}) = \{A \in O_n(\mathbb{R}) : \det(A) = 1\}.$

Ejercicio 2.

Sea M una variedad diferencial de dimensión d y sea $U \subseteq M$ abierto.

- 1. Probar que U hereda una estructura de variedad con $\dim(U) = \dim(M)$ y que la inclusión $U \hookrightarrow M$ es diferenciable para esa estructura.
- 2. Probar que un subconjunto $S \subseteq M$ (con la topología subespacio) es una variedad de dimensión d si y sólo si S es abierto en M.

Ejercicio 3.

Sea M una variedad diferencial conexa. Probar que para cada par de puntos $p, q \in M$ existe un camino suave $c : [0,1] \to M$ que los une (es decir, c es una función continua en [0,1], diferenciable en (0,1), y c(0) = p, c(1) = q).

Ejercicio 4.

Sean M,N variedades diferenciales. Probar que una función $f:M\to N$ es diferenciable si y sólo si $g\circ f:M\to\mathbb{R}$ es diferenciable para toda $g:N\to\mathbb{R}$ diferenciable.

Ejercicio 5.

Sea M una variedad diferencial y $\pi: S^n \to \mathbb{P}^n(\mathbb{R})$ la proyección canónica. Probar que $f: \mathbb{P}^n(\mathbb{R}) \to M$ es diferenciable si y sólo si $f \circ p: S^n \to M$ es diferenciable. Comparar el rango de f con el de $f \circ p$.

Ejercicio 6.

Sea M una variedad diferencial de dimensión d y (U, ϕ) una carta de M.

- 1. Probar que si $V \subseteq U$ es un abierto, entonces $(V, \phi|_V)$ es una carta compatible de M.
- 2. Probar que si $f:\phi(U)\to V\subseteq\mathbb{R}^d$ es un difeomorfismo, $(U,f\circ\phi)$ es una carta compatible de M.

Ejercicio 7.

Sea M una variedad diferencial de dimensión d.

- 1. Probar que M admite un atlas $\mathscr{A} = \{(U_i, \phi_i) : i \in I\}$ tal que para todo $i \in I$ se tiene que $\phi_i(U_i)$ es un abierto acotado de \mathbb{R}^d .
- 2. Probar que M admite un atlas $\mathscr{B} = \{(V_j, \psi_j) : j \in J\}$ tal que para todo $j \in J$ se tiene que $\psi_j(V_i) = \mathbb{R}^d$.

Ejercicio 8.

Considerar en \mathbb{R} las cartas (\mathbb{R}, id) y (\mathbb{R}, ϕ) donde $\phi(t) = t^3$. Probar que las dos cartas no son compatibles pero que las variedades definidas por el atlas formado por cada una de las cartas son difeomorfas.

Ejercicio 9.

Sea M la imagen de la función $f:(0,2\pi)\to\mathbb{R}^2$ donde $f(t)=(\sin(t),\sin(2t))$ con la estructura inducida por la carta (M,f^{-1}) . Probar que la función $F:M\to M$ definida por F(x,y)=(x,-y) no es diferenciable.

Ejercicio 10.

Probar que $SO_3(\mathbb{R})$ es difeomorfo al espacio proyectivo $\mathbb{P}^3(\mathbb{R})$.

Ejercicio 11.

Probar que \mathbb{R} y S^1 son las únicas variedades diferenciales conexas de dimensión 1 salvo difeomorfismo.

Ejercicio 12.

Preimagen de valor regular: Sean $U \subseteq \mathbb{R}^n$ un abierto y $F: U \to \mathbb{R}^m$ $(n \ge m)$ una función diferenciable tal que $c \in \mathbb{R}^m$ es un valor regular de F (es decir, para cada punto $x \in U$ con F(x) = c el rango de DF(x) es m). Probar que $M = F^{-1}(c)$ es una variedad de dimensión n - m y la inclusión $M \hookrightarrow U$ es diferenciable.

Ejercicio 13.

Producto cartesiano: Sean M y N variedades diferenciales.

- 1. Probar que el producto cartesiano $M \times N$ es naturalmente una variedad diferencial con $\dim(M \times N) = \dim(M) + \dim(N)$ y que las proyecciones canónicas $\pi_1 : M \times N \to M$ y $\pi_2 : M \times N \to N$ son diferenciables.
- 2. El producto de variedades diferenciales está caracterizado por la siguiente propiedad universal: Si P es una variedad diferencial junto con funciones diferenciables $p_1: P \to M, p_2: P \to N$ entonces existe una única función diferenciable $f: P \to M \times N$ tal que $\pi_1 \circ f = p_1$ y $\pi_2 \circ f = p_2$.

Ejercicio 14.

Pegado de variedades: Sea $(M_i)_{i \in I}$ una familia numerable de variedades diferenciales, todas de dimensión n. Supongamos que para cada par $i \neq j$ están dados: dos abiertos $U_{ij} \subseteq M_i$ y $U_{ji} \subseteq M_j$, y un difeomorfismo $f_{ij}: U_{ij} \to U_{ji}$ que no puede extenderse continuamente a ningún punto de ∂U_{ij} , tales que se satisfacen las siguientes propiedades:

- $f_{ji} = f_{ij}^{-1}$.
- $f_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$.
- $f_{ik} = f_{jk} \circ f_{ij}$ en $U_{ij} \cap U_{ik}$.

Mostrar que existe una variedad diferencial M y morfismos $\psi_i: M_i \to M$ tales que ψ_i es un difeomorfismo entre M_i y un abierto de M y

1. los abiertos $\psi_i(M_i)$ cubren M,

- 2. $\psi_i(U_{ij}) = \psi_i(M_i) \cap \psi_j(M_j)$,
- 3. $\psi_i = \psi_j \circ f_{ij}$ en U_{ij} .

Ejercicio 15.

Suma conexa de variedades: Sean M y N dos variedades conexas de la misma dimensión d. Se consideran cartas (U, ϕ) y (V, ψ) de M y N respectivamente tales que $\phi(U) = \psi(V) = B(0, 1)$ y pongamos $p = \phi^{-1}(0)$ y $q = \psi^{-1}(0)$. Definimos una nueva variedad M # N como el pegado de $M \setminus \{p\}$ y $N \setminus \{q\}$ por los abiertos U y V a través del difeomorfismo $f: U \to V$ determinado por la ecuación

$$\psi f \phi^{-1}(x) = \frac{1 - \|x\|}{\|x\|} x \ \forall x \in B(0, 1) \setminus \{0\}.$$

La variedad M#N se llama la suma conexa de M y N. Convencerse de que esta construcción no depende de las cartas utilizadas.

Probar que $M\#S^d$ es difeomorfa a M y que la operación # es conmutativa y asociativa.

Observación: Se puede probar que cualquier variedad compacta de dimensión 2 es difeomorfa a la esfera S^2 , a la suma de n toros $T \# \cdots \# T$ o a la suma de n planos proyectivos $\mathbb{P}(\mathbb{R})^2 \# \cdots \# \mathbb{P}(\mathbb{R})^2$. Es más, estas variedades no son homeomorfas entre sí.

Ejercicio 16.

Cociente por la acción de un grupo: Sea M una variedad diferencial y G un grupo que actúa en M por difeomorfismos: para cada $g \in G$ se tiene $\phi_g : M \to M$ difeomorfismo de modo que $\phi_{1_G} = 1_M$ y $\phi_g \phi_h = \phi_{gh}$. Supongamos además que la acción es propiamente discontinua (es decir, todo $p \in M$ está contenido en un abierto U tal que $\phi_g(U) \cap U = \emptyset$ para todo $g \neq 1_G$) y para todos $p, q \in M$ en distintas órbitas existen abiertos U y V que los contienen respectivamente tales que $\phi_g(U) \cap V = \emptyset$ para todo $g \in G$.

- 1. Probar que el conjunto de órbitas M/G es una variedad diferencial con la estructura inducida por M, la proyección canónica $M \to M/G$ es diferenciable y $\dim(M) = \dim(M/G)$.
- 2. Expresar el espacio proyectivo $\mathbb{P}^n(\mathbb{R})$ y el toro n-dimensional T_n como cocientes S^n/G y \mathbb{R}^n/H para grupos y acciones convenientes.

Álgebras de funciones

Ejercicio 17.

Probar que $\mathscr{C}^{\infty}(M,\mathbb{R}) = \{f : M \to \mathbb{R} : f \text{ es diferenciable}\}\$ es un anillo con la suma y el producto punto a punto. Probar que si $g : M \to N$ es diferenciable, entonces $g^* : \mathscr{C}^{\infty}(N,\mathbb{R}) \to \mathscr{C}^{\infty}(M,\mathbb{R})$ es un morfismo de anillos.

Ejercicio 18.

Dadas M y N variedades diferenciales compactas, probar que:

1. Los ideales maximales de $\mathscr{C}^{\infty}(M,\mathbb{R})$ son de la forma

$$\mathfrak{m}_p = \{ f \in \mathscr{C}^{\infty}(M, \mathbb{R}) : f(p) = 0 \}.$$

2. Todo morfismo de \mathbb{R} -álgebras $\mathscr{C}^{\infty}(N,\mathbb{R}) \to \mathscr{C}^{\infty}(M,\mathbb{R})$ viene de una función diferenciable $M \to N$.

Observación: Por **a.** podemos recuperar la variedad M como conjunto a partir de $\mathscr{C}^{\infty}(M,\mathbb{R})$, por **b.** también recuperamos su estructura diferenciable. ¿Qué pasa si M y N no son compactas? ¿Vale **b.** si sólo pedimos morfismo de anillos?

Ejercicio 19.

Probar que el conjunto $\mathscr{D}_p(M)$ de gérmenes de funciones diferenciables a valores reales alrededor de un punto $p \in M$ es un anillo y si $g: M \to N$ es diferenciable entonces $g^*: \mathscr{D}_{g(p)}(N) \to \mathscr{D}_p(M)$ es un morfismo de anillos.

Ejercicio 20.

Dado $p \in M$ probar que la aplicación cociente $f \mapsto \overline{f}$ da un isomorfismo de \mathbb{R} -álgebras

$$\mathscr{C}^{\infty}(M,\mathbb{R})/\mathfrak{m}_p^0 \to \mathscr{D}_p(M)$$

donde $\mathfrak{m}_p^0 = \{ f \in \mathscr{C}^{\infty}(M, \mathbb{R}) : f \text{ se anula en un entorno de } p \}.$

Observación: Las \mathbb{R} -álgebras $\mathscr{D}_p(M)$ son anillos locales cuyo único ideal maximal son los gérmenes de funciones que se anulan en p. Más aún, $\mathscr{D}_p(M)$ es la localización de $\mathscr{C}^{\infty}(M,\mathbb{R})$ en el complemento del ideal maximal \mathfrak{m}_p .

2. Soluciones

Solución a la pregunta 1

Vayamos por partes:

- 1. Sea d la dimensión de V, luego fijada una base $\mathcal{B} = \{v_1, \dots, v_d\} \subset V$ existe un isomorfismo $T: V \to \mathbb{R}^d$ dado por $T(x^1v_1 + \dots + x^dv_d) = (x^1, \dots, x^d)$, por la tanto notemos que $\mathcal{A} = \{(V, T)\}$ es una atlas sobre V por álgebra lineal. Finalmente como $V \simeq \mathbb{R}^d$ como espacios topológicos entonces V es Haussdorf y tiene base numerable. Concluímos que V es una variedad de dimensión d
- 2. Por ser subespacio de \mathbb{R}^{n+1} sabemos que S^n es Haussdorf y tiene base numerable por lo que debemos exhibir un conjunto de cartas diferencialmente compatibles.

Pensando en esto, consideremos $f_i^+ = (x^1, \dots, x^{i-1}, \sqrt{1-(x^1)^2-\dots-(x^n)^2}, x^{i+1}, \dots, x^n)$ y $f_i^- = -f_i^+, U_i^+ = \{x \in B_1(0) : x_i > 0\}, U_i^- = \{x \in B_1(0) : x_i < 0\}, \pi_i(x^1, \dots, x^{n+1}) = (x^1, \dots, x^{i-1}, x^{i+1}, \dots, x^{n+1})$ y finalmente $V_i^+ = f_i^+(U_i^+)$ y $V_i^- = f_i^-(U_i^-)$. Afirmo que $\mathcal{A} = \{(V_i^+, \pi_i), (V_i^-, \pi_i) : 1 \le i \le n+1\}$ es un atlas para S^n .

En efecto, fijado V_i^j $(j \in \{+, -\})$ entonces $\pi_i : V_i^j \to U_i^j$ es homeomorfismo con inversa f_i^j y finalmente donde tenga sentido como todas las funciones son suaves la composicion $\pi_k \circ f_i^j$ es suave.

3. Notemos que si \mathcal{B} es la base contable de bolas de centro y radio racional en \mathbb{R}^{n+1} entonces sabemos que $\mathcal{B} \cap S^n$ es una base contable de S^n . Finalmente es un ejrcicio de topología ver que $q(\mathcal{B} \cap S^n)$ es una base contable de \mathbb{P}^n .

Por otro lado, si $[x] \neq [y] \in \mathbb{P}^n$ entonces notemos que $q^{-1}([x]) = \{x, -x\}, q^{-1}([y]) = \{y, -y\}$, como S^n es Haussdorf entonces existe $U \ni x, V \ni y$ tal que $U \cap V = \emptyset$. Notemos que como $y \neq \pm x$ entonces existe $\tilde{V} \subset V, \tilde{U} \subset U$ tal que $\{x, -x\} \subset \tilde{U} \cup -\tilde{U}, \{y, -y\} \subset \tilde{V} \cup -\tilde{V}$ pero que ambos son entornos disjuntos. Concluímos que $[U] \ni [x], [V] \ni [y]$ son entornos abiertos disjuntos pues su preimagen es la unión de abiertos.

Para encontrar un atlas, sea $U_i = \{x \in \mathbb{P}^n : x^i \neq 0\}$ que es un entorno abierto de \mathbb{P}^n y consideremos $\phi_i : U_i \to \mathbb{R}^n$ dado por $\phi_i([x^1 : \cdots : x^i \cdots : x^{n+1}]) = (\frac{x^1}{x^i}, \dots, \frac{x^{i-1}}{x^i}, \frac{x^{i+1}}{x^i}, \dots, \frac{x^{n+1}}{x^i})$ con inversa $\psi_i : \mathbb{R}^n \to U_i$ dada por $\psi_i(x^1, \dots, x^{i-1}, x^{i+1}, \dots, x^n) = [x^1 : \cdots : x^{i-1} : 1 : x^{i+1} : \cdots : x^n]$. Es muy simple ver usando la propiedad universal del cociente y a mano para el otro lado que estas son inversas y continuas, por lo cual son homeomorfismos y falta ver la compatibilidad suave.

En pos de esto, sea i < j y consideremos $\phi_i \circ \psi_j : \phi_j(U_i \cap U_j) \to \phi_i(U_i \cap U_j)$:

$$\begin{split} \phi_i \circ \psi_j(x^1, \dots, x^{i-1}, x^i, x^{i+1}, \dots, x^{j-1}, x^{j+1}, \dots, x^n) = & \phi_i([x^1 : \dots : x^{i-1} : x^i : x^{i+1} : \dots : x^{j-1} : 1 : x^{j+1} : \dots : x^n]) \\ = & (\frac{x^1}{x^i}, \dots, \frac{x^{i-1}}{x^i}, \frac{x^{i+1}}{x^i}, \dots, \frac{x^j - 1}{x^i}, \frac{1}{x^i}, \frac{x^{j+1}}{x^i}, \dots, \frac{x^n}{x^i}) \end{split}$$

Que es trivialmente diferenciable.

- 4. Va a ser trivial consecuencia que producto de variedades es variedad
- 5. Idem antes
- 6. Es trivial que $GL_n(\mathbb{R}) \subset M_n(\mathbb{R})$ pues $det: M_n(\mathbb{R}) \to \mathbb{R}$ es continua y $GL_n(\mathbb{R}) = det^{-1}(\mathbb{R}^*)$, por lo tanto esto quedara probado cuando en el proximo ejercicio veamos que los abiertos son variedades de la misma dimensión.
- 7. Asumamos el resultado del problema 12 por ahora, entonces afirmo que si consideramos det : $GL_n(\mathbb{R}) \to \mathbb{R}$ entonces afirmo que 1 es un valor regular de det, con lo que concluímos que $SL_n(\mathbb{R})$ es variedad de dimensión $n^2 1$

En efecto, si $A \in \mathrm{GL}_n(\mathbb{R})$ notemos que:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{i,1} M_{i,1}$$

$$\implies \frac{\partial \det(A)}{\partial a_{i,j}} = (-1)^{i+1} M_{i,1}$$

Por lo tanto concluímos que $D(\det)(A) = 0$ si y sólo si $M_{i,1} = 0$ para todo i si y sólo si $\det(A) = 0$

8. Sea $f: M_n(\mathbb{R}): S_n(\mathbb{R})$ dada por $f(A) = AA^t$ que es trivialmente una aplicacion diferenciable entre espacios vectoriales; nuevamente si asumimos el ejercicio 12 para probar que $O_n(\mathbb{R})$ es una variedad de dimensión $n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$ tenemos que ver que Id_n es una valor regular de f.

En efecto, sea $A \in f^{-1}(Id_n)$ y $B \in M_n(\mathbb{R})$, luego:

$$d_{A}(f)(B) = \lim_{h \to 0} \frac{f(A+hB) - f(A)}{h}$$

$$= \lim_{h \to 0} \frac{(A+hB)(A+hB)^{t} - AA^{T}}{h}$$

$$= \lim_{h \to 0} \frac{(A+hB)(A^{t} + hB^{t}) - AA^{T}}{h}$$

$$= \lim_{h \to 0} \frac{AA^{t} + hBA^{t} + hAB^{t} + h^{2}BB^{t} - AA^{T}}{h}$$

$$= AB^{t} + BA^{t}$$

Es claro que esta aplicación es suryectiva pues dado $C \in S_n(\mathbb{R})$ entonces si $B = \frac{CA}{2}$ entonces $d_A(f)(B) = AB^t + BA^t = \frac{AA^tC^t}{2} + \frac{CAA^t}{2} = \frac{C+C^t}{2} = \frac{2C}{2} = C$; luego Id_n es un valor regular de f.

9. Es claro que $\mathrm{SL}_n(\mathbb{R}) \subset \mathrm{O}_n(\mathbb{R})$ es un conjunto abierto pues es $\det^{-1}(\mathbb{R}^*) \cap \mathrm{O}_n(\mathbb{R})$, luego si asumimos el ejercicio siguiente concluímos que $\mathrm{SL}_n(\mathbb{R})$ es una variedad de dimensión $\frac{n(n-1)}{2}$

Solución a la pregunta 2

Vayamos de a uno:

1. Dado que $U \subset M$ es subespacio entonces de topología sabemos que U es Haussdorf y admite base numerable; es más notemos que si $\mathcal{A} = \{(U_i, \phi_i)\}_{i \in I}$ es un atlas para M entonces $\{(U_i \cap U, \phi_i|_U)\}_{i \in I}$ es un atlas para U.

En efecto, como $\bigcup_{i\in I}U_i=M$ entonces $\bigcup_{i\in I}U_i\cap U=U$ y ademas como ϕ_i son homeomorfismos entonces $\phi_i|_U$ también lo son. Finalmente como $\phi_j\circ\phi_i^{-1}:\phi_i(U_i\cap U_j)\to\phi_j(U_i\cap U_j)$ es suave entonces $\phi_j|_U\circ\phi_i^{-1}|_U=\phi_j\circ\phi_i^{-1}:\phi_i(U_i\cap U_j\cap U)\to\phi_j(U_i\cap U_j\cap U)$ también lo es.

Finalmente, para ver que $i: U \hookrightarrow M$ es diferenciable tenemos que ver que $\phi_j \circ i \circ (\phi_i|_U)^{-1}$ es diferenciable para todos i, j, pero:

$$\phi_j \circ i \circ (\phi_i|_U)^{-1} = \phi_j \circ i \circ (\phi_i)^{-1} = \phi_j \circ (\phi_i)^{-1}$$

Que ya era diferenciable por ser \mathcal{A} atlas.

2. Recíprocamente, supongamos que S es una variedad de dim =d, luego si $S = \{s_i\}$ es un atlas de S y $A = \{\phi_i\}$ es un atlas de M entonces $\phi_j \circ i \circ s_i^{-1} : U \subset \mathbb{R}^n \to V \subset \mathbb{R}^n$ es una función continua e inyectiva, luego por invariance de dominio es abierta por lo que i(S) = S es abierto. (Notemos que lo demostramos para una variedad topológica arbitraria, en el caso suave podemos recurrir a que rk(i) es completo y por teorema de la funci on inversa tenemos un difeomorfismo local)

Solución a la pregunta 3

Veamos primero el siguiente resultado útil:

Proposición 2.0.1 Sea M una variedad diferenciable de dimensión d, luego existe una base $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ con la propiedad que para cada B_n existe una carta ϕ tal que $\phi(B_n) = B_r(0)$ para algún r. Es más dicha base se la puede tomar de modo que dado B_n existe una carta (B', ϕ) con $B' \supset \overline{B_n}$ y r < r' tal que:

$$\phi(B) = B_r(0)$$
 $\phi(\overline{B}) = \overline{B_r(0)}$ $\phi(B') = B_{r'}(0)$

Demostración Supongamos primero que existe una única carta $\phi:M\to \tilde{U}$ y consideremos:

$$\mathcal{B} = \left\{ B_r(x) : r \in \mathbb{Q}, \ x \in \mathbb{Q}^d, \ B_{r'}(x) \subset \tilde{U} \right\}$$

Notemos entonces que $\phi^{-1}(\mathcal{B})$ cumple que es una base contable que cumple lo pedido pues ϕ es un homeomorfismo.

Ahora sea M una variedad arbitraria y consideremos $\mathcal{A} = \{(U_i, \phi_i)\}_{i \in I}$ su atlas, luego como M admite base numerable existe un subcubrimiento abierto $\mathcal{A}' = \{U_n, \phi_n\}_{n \in \mathbb{N}}$ de M y por lo anteriormente demostrado cada U_i (que ya probamos que era variedad) admite una base numerable \mathcal{B}_n^k con las características pedidas. Consideremos $\mathcal{B} = \bigcup_{n,k \in \mathbb{N}} \mathcal{B}_n^k$ que es base numerable luego si $V \in \mathcal{B}$ entonces $V \subset U_n$ para algún n y concluímos que existe (B,ϕ) carta con los requerimientos; concluímos que \mathcal{B} es la base pedida.

Ahora si notemos que como cada $V \in \mathcal{B}$ es localmente conexa (por ser homeomorfa a una bola de \mathbb{R}^n) entonces es conexa por el arco si y sólo si es conexa.

A continuación, dados $x \neq y \in M$ entonces existe γ camino continuo y como [0,1] es compacto existe finitos $V_1, \ldots, V_n \in \mathcal{B}$ tal que $\gamma([0,1]) \subset \bigcup_{1 \leq i \leq n} V_i$; como $V_i \in \mathcal{B}$ podemos tomar $\tilde{V}_i \subset V_i$ para todo i tal que $\gamma([0,1]) \subset \bigcup_{1 \leq i \leq n} \tilde{V}_i$ y $\tilde{V}_i \cap \tilde{V}_{i+1} = \{x_i\}$ pues los achico en el sentido de tomar los que en su imagen den bolas de radio menor.

Finalmente notemos que dados x_i, x_{i+1} existe un camino suave α_i entre $\phi_{i+1}(x_i), \phi_{i+1}(x_{i+1}) \in \mathbb{R}^d$ por teorema de existencia y unicidad de curvas, por lo que $\phi_{i+1}^{-1}(\alpha)$ es un camino trivialmente suave (componiendo con la carta queda la misma α) entre x_i, x_{i+1} . Concatenando las curvas obtenidasd obtenemos el camino suave entre $x = x_1$ e $y = x_{n+1}$.

Solución a la pregunta 4

Supongamos que f es diferenciable, entonces dado $p \in M$ existe (U,ϕ) carta en M y (V,ψ) carta en N con $f(U) \subset V$ tal que $\psi \circ f \circ \phi - 1 : \phi(U) \to \psi(V)$ es diferenciable. Asimismo por ser g diferenciable entonces dada (V,ψ) sabemos que $g \circ \psi^{-1} : \psi(V) \to \mathbb{R}$ es diferenciable, por lo tanto $g \circ \psi^{-1} \circ \psi \circ f \circ \phi - 1 = g \circ f \circ \phi - 1$ es diferenciable y concluímos que $g \circ f$ es diferenciable. Notemos que usamos el resultado de la teorica que es equivalente pedir que existan un par de cartas conla condición de diferenciabilidad a que para todos las cartas valga.

Recíprocamente, como $g \circ f$ para toda $g: N \to \mathbb{R}$ diferenciable, podemos tomar $\pi_i: N \to \mathbb{R}$ dada por $\pi_i(x^1, \dots, x^d) = x^i$ y como esta es diferenciable sabemos que $\pi_i \circ f = f^i$ es diferenciable. Como f^i es diferenciable para cada $1 \le i \le d$ entonces f es diferenciable.

Solución a la pregunta 5

Veamoslo en dos partes, primero veamos que $\pi: S^n \to \mathbb{P}^n(\mathbb{R})$ es una submersión survectiva.

Lema 2.0.2 $\pi: S^n \to \mathbb{P}^n(\mathbb{R})$ es una submersión suryectiva

Demostración Es trivial que es suryectiva y si consideramos una carta (V_j^i, π_i) de S^n y (U_k, ϕ_k) donde k es tal que $\pi \circ \pi_i^{-1}(U_j^i) \subset U_k$, entonces $\phi_k \circ \pi \circ \pi_i^{-1}: U_j^i \to \phi_k(U_k)$ esta dada por (supongamos j = +):

$$\begin{split} \phi_k \circ \pi \circ \pi_i^{-1}(x^1, \dots, x^n) = & g \circ \pi \circ \left(f_+^i \right) (x^1, \dots, x^{i-1}, x^{i+1}, \dots, x^n) \\ = & \phi_k \circ \pi \left(x^1, \dots, x^{i-1}, \sqrt{1 - (x^1)^2 - \dots - (x^n)^2}, x^{i+1}, \dots, x^n \right) \\ = & \phi_k([x^1 : \dots : x^{i-1} : \sqrt{1 - (x^1)^2 - \dots - (x^n)^2} : x^{i+1} : \dots : x^n]) \\ = & \left(\frac{x^1}{x^k}, \dots, \frac{x^{i-1}}{x^k}, \frac{\sqrt{1 - (x^1)^2 - \dots - (x^n)^2}, x^{i+1}}{x^k}, \dots, \frac{x^{k-1}}{x^k}, \frac{x^{k+1}}{x^k}, \dots, \frac{x^n}{x^k} \right) \in \mathscr{C}^{\infty}(\mathbb{R}^n) \end{split}$$

Finalmente de lo mismo notemos que:

$$D(\pi)(x) = \begin{bmatrix} \frac{1}{x_k} & \dots & \dots & -\frac{x_1}{x_k^2} & \dots & 0\\ 0 & \frac{1}{x_k} & \dots & -\frac{x_2}{x_k^2} & \dots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & \dots & \dots & -\frac{x_n}{x_1^2} & \dots & \frac{1}{x_k} \end{bmatrix}.$$

Que tiene rango n, por lo tanto resulta que $\pi:S^n\to\mathbb{P}^n(\mathbb{R})$ es una submersión suryectiva.

Recordemos el siguiente resultado:

Teorema 2.0.3 (Teorema del Rango constante) Sean M,N de dimensiones m,n respectivamente y sea $F: M \to N$ una función suave de rango constante r. Entonces para cada $p \in M$ existen cartas (U, ϕ) de M centrada en p y (V, ψ) de N centrada en F(p) tal que $F(U) \subset V$ y:

$$\psi \circ F \circ \phi^{-1}(x^1, \dots, x^r, x^{r+1}, \dots, x^m) = (x^1, \dots, x^r, 0 \dots, 0)$$

Ahora veamos la existencia local de secciones:

Proposición 2.0.4 Sean M,N variedades $y \pi: M \to N$ suave, luego π es una submersión si y sólo si para todo $p \in M$ existe una sección local

Demostración Si π es una submersión dado $p \in M$ sea $q = \pi(p)$, luego por 2.0.3 existen cartas (U, ϕ) de M centrada en p y (V, ψ) de N centrada en q tal que:

$$\psi \circ \pi \circ \phi^{-1}(x^1, \dots, x^n, x^{n+1}, \dots, x^m) = (x^1, \dots, x^n)$$

Luego tomemos $\epsilon > 0$ tal que $C_{\epsilon} = \{x : |x^i| < \epsilon \ 1 \le i \le m\} \subset U$ sea un entorno de p que cumpla que $\pi(C_{\epsilon}) = C'_{\epsilon} = \{y : |y^i| < \epsilon \ 1 \le i \le n\} \subset V$ sea un entorno de q. Con estos entornos sea $\sigma : C'_{\epsilon} \to C_{\epsilon}$ dada por:

$$\sigma(x^1, \dots, x^n) = (x^1, \dots, x^n, 0, \dots, 0)$$

y es claro que es suave, de rango constante y cumple que $\pi \circ \sigma = Id_{C_{\epsilon}}$.

Recíprocamente si $\pi \circ \sigma = Id_U$ entonces es claro que (veremos mas tarde) $d\pi_p \circ d\sigma_q = Id_q$ con lo que $d\pi_p$ es survectiva. (Lo usaremos en el caso real donde basta usar $D(\pi)$ la diferencial total peor el resultado es abstracto tomando en cuesta la diferencial entre espacios tangentes.)

Finalmente probemos la siguiente proposición

Proposición 2.0.5 (Propiedad universal de las submerciones survectivas) Sean M, N variedades diferenciables $y \pi_M \to N$ una submersión survectiva, entonces para toda variedad diferenciable P una función $F: N \to P$ es suave si y sólo si $F \circ \pi$ es suave.

Demostración Si F es suave entonces $F \circ \pi$ es suave.

Recíprocamente, si $F \circ \pi$ es suave, sea $q \in N$ y sea $p \in \pi^{-1}(q)$, luego por el resultado previo existe $U \ni q$ entorno abierta y $\sigma : U \to M$ suave tal que $\sigma(q) = p$ y $\pi \circ \sigma = Id_U$; finalmente notemos que:

$$F|_U = F|_U \circ Id_U = F \circ \pi \circ \sigma = (F \circ \pi) \circ \sigma$$

Que es composición de suaves, por lo tanto F es suave en todo entorno U, concluímos que F es suave.

Por todo lo visto queda resuelto el punto. Finalmente es trivial usando la regla de la cadena $F(f \circ p)(q) = D(f)(p) \circ \underbrace{D(p)}_{ra(p)=n}(q)$ por lo que el rango de f es el mismo que el rango de $f \circ p$ pues p es submersión.

Solución a la pregunta 6

Vayamos por partes:

- 1. Resuelto arriba
- 2. Trivial

Solución a la pregunta 7

Notemos que resolvimos arriba ambos en 2.0.1 si consideramos luego que existe el obvio difeomorfismo $f: B_r(x) \to \mathbb{R}^d$ para todos r > 0 y $x \in \mathbb{R}^d$.