Roll Number:	
Thapar Institute	of Engineering and Technology Patiala
Computer Sci	ience and Engineering Department
	END Sem Test
BE COE & CSE (7th Semester)	UCS802: Compiler Construction
14thDecember 2023, 2:00PM	Coordinators: Dr. Shalini Batra, Dr. Sunita
Time: 3 Hours, Max Marks:35	Garhwal
	erma, Sunita Garhwal, Rupali Bhardwaj, Geeta Kasana,

Note: Attempt any 5 questions. Attempt all questions(subparts) in sequence at one place. Assume missing data, if, any, suitably.

Q1	Consider the following grammar:		
	 X → YZ g Y → gY h Z → kZ є a) Construct LR(1) items for the given grammar. b) Construct the ACTION and GOTO table from the derived set of items. c) Show a trace of parsing for string ghk 	3 3 1	
Q2	 Consider the following grammar for simple arithmetic expressions: exp → exp + term exp − term term term → term * factor factor factor → (exp) number a) Compute the attribute equations for the val attribute. b) Draw the parse tree for (34-3)*42 showing val attribute computation for the attribute grammar. c) Eliminate Left Recursion from the obtained translation scheme. 		
Q3	Consider the following expression: -(s*t)+(u+w)-(s+t+u+w) a) Represent the above expression in the form of: i) Syntax tree ii) Directed Acyclic Graph iii) Quadruple iv) Triples v) Indirect triples b) Differentiate between L-attributed definitions and S-attribute definitions with	5	
Q4	suitable example. Consider the following pseudo code for Fibonacci series: int Fibonacci (int n) { if (n=0)		
	fibonacci(4); }	4	

	 a) Draw possible organisation (in stack form) for the r pseudo code. 	run time environment of the above	
	b) Discuss the structure of Activation Record in brief		3
Q5	Consider the following C code segment:		
	a=1, c=2;		
	b=c*d;		
	x=c+a;		
	for (int e=x; e<5; e++)		
	{ printf("compiler design");		
	3		
	a) Name various code optimization techniques which	can be applied to the code given	
	above and write the final optimized code.		4
	b) Explain the following optimization techniques with		577
	i) Code Movement	*	3
	ii) Strength Reduction		
Q6	Consider the following grammar G:		
	$A \rightarrow B C$		
	$B \rightarrow C A \mid b$		
	$C \rightarrow AA \mid a$		
	a) Remove the left recursion, if any.		2
	b) Compute FIRST and FOLLOW for the obtained gr	rammar in Q6(a).	2
	c) Construct LL(1) table for the obtained grammar in	Q6(a).	3