14)
$$a^{10} + b^{10} + c^{12} + d^{10} + e^{10} + e^{10} = 0$$
 (11)

if $x = 0$ (11) $\Rightarrow x^{10} = 0$ (11)

The sum of the remainders is divisible by 11 when all of them are zeros thus, a, b, c, d, e, f is divisible by 11, and their product is divisible by 14.

18) $19x + 22y = -21$
 $gcd(19, 24) = 1 \Rightarrow 1|-21 \Rightarrow blue$ has infinitely many solutions. Let's find one of them.

By Euclidean algorithm:

 $19 = 22 \cdot 0 + 19$
 $22 = 13 \cdot 1 + 3$
 $19 = 3 \cdot 6 + 1$
 $3 = 1 \cdot 3 + 0$
 $1 = 19 - 6 \cdot 22 + 6 \cdot 19$
 $1 = 4 \cdot 13 - 6 \cdot 22$

From this $x = 4$, $y = -6$, but we're not done

 $13 \cdot (4) + 22 \cdot (6) = 1[-21]$
 $13 \cdot (-144) + 22 \cdot (6) = -21$

$$X = -1$$
 44 $\frac{1}{3}$ \Rightarrow $y = -1$ 44 -22 r $r \neq Z$
 $y = -1$ 26 $\frac{1}{3}$ \Rightarrow $y = -1$ 26 $+1$ 9 r $r \neq Z$

19) $3.9 \times = 1.0.9 (2.91)$
 $d = 9 \text{ cd}(3.9, 2.2.1) = 1.3 [1.0.9] = 1.3 \text{ distinct Solutions.}$

Edin't read the task properly and proceeded to look for Ass. x_0 is a solution:

 $3.9 \times 0 - 1.0.9 = 2.2.19_0$, $y \in Z$
 $3.9 \times 0 - 2.2.19_0 = 1.0.9 [1.3]$
 $3.0 \times 0 - 1.9 \times 0 + 3$
 $-1.9 \times 0 + 3$

20)
$$\begin{cases} k = -14 & (12) \\ x \ge 6 & (14) \end{cases} = \begin{cases} x \ge 6 & (14) \\ x \ge 79 & (5) \end{cases} = \begin{cases} x \ge 6 & (14) \\ x \ge 19 & (5) \end{cases} = \begin{cases} x \ge 6 & (14) \\ x \ge 19 & (5) \end{cases} = \begin{cases} 12u + 11v = 1 \\ x \ge 6 \cdot 12 \cdot 1 + 10 \cdot 11 \cdot (-1) = -38 \end{cases} = \begin{cases} 38 = 226 & (11 \cdot 12 = 264) \\ (132) \\ x \ge 4 & (5) \end{cases} = \begin{cases} 132u + 5v = 1 \\ 132 = 5 \cdot 26 + 2 \end{cases} = \begin{cases} 132u + 5v = 1 \\ 132 = 5 \cdot 26 + 2 \end{cases} = \begin{cases} 132 - 5 \cdot 26 \\ 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \\ 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \\ 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \\ 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \\ 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \\ 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \\ 1 = 5 - 2 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 \cdot (132 - 5 \cdot 26) \\ 1 = 5 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 \cdot (132 - 5 \cdot 26) \\ 1 = 5 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 \cdot (132 - 5 \cdot 26) \\ 1 = 5 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 \cdot (132 - 5 \cdot 26) \\ 1 = 5 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 \cdot (132 - 5 \cdot 26) \\ 1 = 5 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 \cdot (132 - 5 \cdot 26) \\ 1 = 5 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 \cdot (132 - 5 \cdot 26) \\ 1 = 5 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 \cdot (132 - 5 \cdot 26) \\ 1 = 5 \cdot (132 - 5 \cdot 26) \end{cases} = \begin{cases} 1 = 5 \cdot (132 - 5 \cdot$$

22)
$$3^{3} = ?(46)$$
 $3^{3} = 24 (46)$
 $3^{4} = 13 (46)$
 $3^{13} = 9 (46)$
 $3^{13} = 9 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 $3^{13} = 19 (46)$
 3^{13}