

Apresentação

Nesta aula, começaremos resolvendo o exercício sobre contingência deixado e então trataremos da implicação lógica.

Objetivos

- Identificar e representar uma Implicação;
- Analisar uma Implicação usando Tabela verdade.

Introdução

Estamos de volta com as duas tabelas da última aula.

Na tabela abaixo temos uma contingência, pois a última coluna é constituída de valores lógicos V e F, isto é, não é nem uma tautologia, nem uma contradição.

$$p \rightarrow \neg p$$

р	¬р	p → ¬ p
V	F	F
F	V	V

р	q	p∨q	p ∨ q ↔ p
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	V

Você já deve ter percebido que tudo fica mais simples quando você constrói seu próprio conhecimento, não?

I Implicação lógica

Uma proposição **P(p,q,r,...)** implica logicamente ou apenas implica uma proposição **Q(p,q,r,...)** , se **Q(p,q,r,....)** é **verdadeira (V)** todas as vezes que **P(p,q,r,....)** é **verdadeira (V)**.

Vamos construir em uma mesma tabela as proposições p Λ q , p V q, p \leftrightarrow q. observe:

р	q	p∧q	p∨q	q ↔ p
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

Para facilitar o nosso trabalho ,observe que destacamos em negrito na primeira linha da tabela os primeiros elementos das colunas 3,4 e 5. Claro que nos objetivamos com isso reforçar o fato de que a proposição p Λ q só é verdadeira na primeira linha e que as outras duas proposições p V q acompanham o valor lógico , ou seja , também são verdadeiras, isso significa que a primeira proposição implica cada uma das outras duas.

Podemos escrever da seguinte forma o que foi mencionado acima:

$$p \land q \Rightarrow p \lor q e p \land q \Rightarrow p \leftrightarrow q$$

Você deve ter notado que utilizamos o símbolo => para indicar implicação lógica. Como temos certeza ,que como nós você está cada vez mais motivado , aprofundaremos mais um pouco os nossos conhecimentos , procurando aproveitar tudo o que a tabela nos proporciona.

As mesmas tabelas-verdade também demonstram as importantes Regras de inferência:

$p \Rightarrow p \lor q e q \Rightarrow p \lor q$	

Gostaríamos de chamar a atenção para não perdermos de vista que, quando p é V, p v q é V e, quando q é V, p v q também é V.

Simplificação

$$p \land q \Rightarrow p e p \land q$$

Vamos, agora, em uma única tabela, considerar as seguintes proposições:

$$p \leftrightarrow q, p \rightarrow q, q \rightarrow p$$

р	q	p ↔ q	p → q	q → p
V	V	V	V	V
V	F	F	F	V
F	V	F	V	F
F	F	V	V	V

Quais foram as suas conclusões? Temos certeza que você já está apto para indicar que :

$$p \leftrightarrow q \Rightarrow p \rightarrow q \ e \ p \leftrightarrow q \Rightarrow q \rightarrow p$$

Vamos formar a tabela-verdade da proposição : (p v q) \wedge ¬p e aumentar , ainda mais, nossos conhecimentos:

р	q	p∨q	¬p	(p ∨ q) ∧ ¬p
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

Agora fica fácil, não? Observamos que a proposição composta acima é verdadeira somente na terceira linha e então subsiste a implicação lógica:

 $(p \lor q) \land \neg p \Rightarrow q e (p \lor q) \land \neg q \Rightarrow p (denominadas$ **Regra do Silogismo disjuntivo**)

Nesse momento faremos mais um pouco de esforço para aumentar ainda mais nossos conhecimentos, uma vez que estamos caminho firme e certo na aquisição do conhecimento necessário ao êxito do curso.

Considere a tabela da seguinte proposição : $(p \rightarrow q) \land p$

р	q	p → q	(p → q) ∧ p
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	F

Está ficando cada vez mais fácil, não?

Então você observou que a proposição dada só é verdade na primeira linha e aí, nesta linha, a proposição "q" também é verdadeira (V). Logo, temos a seguinte implicação lógica conhecida pelo nome de Regra Modus ponens <> , não estranhe os nomes, procure lembrar que esses nomes são oriundos do Latim, e que logo estaremos familiarizados com eles.

$$(p \rightarrow q) \land p \Rightarrow q$$

Vamos a mais uma das implicações lógicas essa conhecida pelo nome de Regra Modus tollens.

Para tal vamos construir as tabelas-verdade das proposições:

$$(p \rightarrow q) \land \neg q e \neg p$$

р	q	p → q	¬q	(p → q) ∧ ¬q)	¬р
V	V	V	F	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

Com certeza acertou outra vez, não? Claro que a implicação lógica é:

$$(p \rightarrow q) \land \neg q \Rightarrow \neg p$$

Essa tabela nos mostra que:

$$\neg p$$
 implica $p \rightarrow q$, isto é: $\neg p \Rightarrow p \rightarrow q$

Leia com atenção as **principais regras de implicação.**

$p \Rightarrow p \lor q$	Adição
$p \land q \Rightarrow p \text{ ou } p \land q \Rightarrow q$	Simplificação
$(p \lor q) \land \neg p \Rightarrow q \text{ ou } (p \lor q) \land \neg q \Rightarrow p$	Silogismo Disjuntivo
$(p \to q) \wedge p \Longrightarrow q$	Modus ponens
$(p \to q) \land \neg q \Rightarrow \neg p$	Modus tolens
$(p \to q) \wedge (q \to r) \Longrightarrow p \to r$	Silogismo hipotético
$p \land \neg p \rightarrow f$	Principio da inconsistência

Notas

Regra Modus tollens

Não estranhe os nomes, procure lembrar que são oriundos do Latim e que, logo, você estará familiarizado com eles.

Título modal ¹

Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos.

Referências

T CTCT CTTCTG5

SOUZA, João. Lógica para ciência da computação. Ed. Elsevier.

Próxima aula

• Equivalência Lógica.

Explore mais

Pesquise na internet sites, vídeos e artigos relacionados ao conteúdo visto. Se ainda tiver alguma dúvida, fale com seu professor online, utilizando os recursos disponíveis no ambiente de aprendizagem.