Minimum kérdések a Lineáris algebra vizsga beugró részéhez

Az Rⁿ vektortér

1. Lineáris kombináció, triviális lineáris kombináció fogalma

Legyenek $\underline{a}_1, \underline{a}_2, \dots, \underline{a}_k$ n-dimenziós vektorok és $\lambda_1, \lambda_2, \dots, \lambda_k$ skalárok.

Ekkor a $\lambda_1 \cdot \underline{a}_1 + \lambda_2 \cdot \underline{a}_2 + \ldots + \lambda_k \cdot \underline{a}_k \in \mathbb{R}^n$ vektort az $\underline{a}_1, \ldots, \underline{a}_k$ vektorok $\lambda_1, \ldots, \lambda_k$ skalárokkal vett **lineáris kombináció**jának nevezzük.

Ha a lineáris kombinációban az összes skalár nulla, akkor **triviális lineáris kombináció**ról beszélünk.

Triviális lineáris kombináció eredménye (bármilyen $\underline{a}_1, ..., \underline{a}_k$ vektorok esetén) mindig nullvektor.

2. Lineáris függetlenség, lineáris összefüggőség fogalma

Az $\underline{a_1}, ..., \underline{a_k} \in \mathbb{R}^n$ vektorokat **lineárisan függetlenek**nek nevezzük, ha belőlük csak triviális lineáris kombinációval (csupa nulla együtthatóval) állítható elő a nullvektor.

Az $\underline{a_1}, ..., \underline{a_k} \in \mathbb{R}^n$ vektorokat **lineárisan összefüggőek**nek hívjuk, ha belőlük nem triviális lineáris kombinációval is előállítható a nullvektor.

3. Vektorhalmaz rangjának fogalma

Az $\{\underline{a}_1, ..., \underline{a}_k\} \subseteq R^n$ vektorhalmaz rangja r, ha a vektorok közül kiválasztható r darab lineárisan független vektor, de bármely r+1 darab vektor már lineárisan összefüggő.

4. Generátorrendszer, bázis fogalma

Legyen $G \subseteq R^n$ egy vektorhalmaz. G **generátorrendszer** az R^n vektortérben, ha G elemeiből lineáris kombinációval az R^n vektortér bármely vektora előállítható.

Legyen $B \subseteq R^n$ egy vektorhalmaz, amely lineárisan független és generátorrendszer. Ekkor a B-t az R^n vektortér egy **bázis**ának hívjuk.

5. Altér fogalma

A $H \subseteq R^n$ vektorhalmazt **altér**nek hívjuk az R^n vektortérben, ha bármely $\underline{a}, \underline{b} \in H$ vektorok és bármely $\lambda \in R$ esetén $\underline{a} + \underline{b} \in H$ és $\lambda \cdot \underline{a} \in H$ is teljesül. (H zárt a vektorműveletekre.)

Mátrixok

1. Mátrix transzponáltjának fogalma

Az A m x n-es mátrix **transzponáltjá**n azt az n x m-es mátrixot értjük, amelynek (i,j)-edik eleme egyenlő az A mátrix (j,i)-edik elemével. Jel.: A^T (A transzponált mátrixot az eredeti A mátrixból a sorok és oszlopok felcserélésével kapjuk.)

2. Speciális mátrixok (négyzetes, diagonális, egységmátrix, szimmetrikus, nullmátrix) fogalma

Négyzetes mátrix: $n \times n$ -es mátrix

Diagonális mátrix: olyan négyzetes mátrix, amelynek a főátlón kívüli elemei mind nullák.

Egységmátrix: olyan diagonális mátrix, amelynek főátlójában egyesek állnak.

Szimmetrikus mátrix: olyan $A=(a_{ij})_{n\times n}$ négyzetes mátrix, melyben $a_{ij}=a_{ji}$ i,j=1,...,n.

Nullmátrix: olyan *m* x *n* mátrix, amelynek minden eleme nulla.

3. Mátrixműveletek (összeadás, skalárral való szorzás, mátrixszorzás) definíciója

Mátrixok összeadása:

Legyen $A = (a_{ij})_{m \times n}$ és $B = (b_{ij})_{m \times n}$ két azonos méretű mátrix. Ekkor A és B összege:

$$A + B = (a_{ii} + b_{ii})_{m \times n}$$

Mátrix skalárral való szorzása:

Legyen $A = (a_{ii})_{m \times n}$ és $\lambda \in R$. Ekkor az A mátrix λ -szorosa: $\lambda \cdot A = (\lambda \cdot a_{ii})_{m \times n}$

Mátrixok szorzása:

Legyenek $A = (a_{ij})_{m \times n}$ és $B = (b_{jk})_{n \times p}$ mátrixok. Ekkor az A és B mátrixok szorzata az a C $m \times p$ -s mátrix, amelynek (i,k)-adik eleme:

$$c_{ik} = a_{i1} \cdot b_{1k} + a_{i2} \cdot b_{2k} + \dots + a_{in} \cdot b_{nk}$$

Két mátrix összeszorozhatóságának feltétele, hogy az első mátrix oszlopainak száma megegyezzen a második mátrix sorainak számával.

4. Mátrix rangjának fogalma

Egy mátrix **oszloprang**ján az oszlopvektoraiból álló vektorhalmaz rangját értjük, míg egy mátrix **sorrang**ján a sorvektoraiból álló vektorhalmaz rangját értjük

Igazolható, hogy bármely mátrix esetén a sor- és oszloprang megegyezik. Ezt a közös értéket röviden a mátrix **rang**jának nevezzük:

$$r(A) = r_s(A) = r_o(A)$$

5. Négyzetes mátrix invertálhatósága, az inverz mátrix fogalma

Legyen A egy nxn-es négyzetes mátrix. A-t **invertálható**nak nevezzük, ha van olyan X nxn-es mátrix, melyre $A \cdot X = X \cdot A = E_{nxn}$. Ekkor X-t az A mátrix **inverzé**nek hívjuk és A^{-1} -gyel jelöljük.

6. Mi a szükséges és elégséges feltétele annak, hogy egy négyzetes mátrix invertálható legyen?

Az A nxn-es mátrix invertálható $\Leftrightarrow r(A) = n$.

Az A nxn-es mátrix invertálható $\Leftrightarrow det(A) \neq 0$.

7. Részmátrix fogalma

Legyen $A = (a_{ij})$ $n \times n$ -es mátrix. Az A mátrix a_{ij} elemhez tartozó **részmátrixá**n azt az $(n-1) \times (n-1)$ -es mátrixot értjük, amelyet az A mátrixból annak i-edik sorát és j-edik oszlopát elhagyva kapunk. Jel.: A_{ij} .

8. Négyzetes mátrix determinánsának fogalma

- (1) Legyen $A = [a_{11}] 1x1$ -es mátrix. Ekkor A determinánsa: $det(A) = a_{11}$.
- (2) Legyen $A = (a_{ii})$ nxn-es mátrix, ahol $n \ge 2$. Ekkor A determinánsa: (első sor szerinti kifejtés)

$$\det(A) = \sum_{i=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j})$$

9. Ismertesse a szinguláris és a nemszinguláris mátrixok jellemzőit!

Szinguláris mátrixokra az alábbi állítások ekvivalensek:

- oszlopvektorok lineárisan összefüggőek
- $r(A_{n \times n}) < n$ (a mátrix nem teljes rangú)
- nem invertálható
- det(A) = 0

Nemszinguláris mátrixokra az alábbi állítások ekvivalensek:

- oszlopvektorok lineárisan függetlenek
- $r(A_{n \times n}) = n$ (a mátrix teljes rangú)
- invertálható
- $det(A) \neq 0$

Lineáris egyenletrendszerek

1. Írja fel a lineáris egyenletrendszerek általános alakját részletes formában, vektoregyenlet formájában, illetve mátrixos írásmóddal!

Részletes alak:

$$a_{11} \cdot x_1 + \dots + a_{1n} \cdot x_n = b_1$$

$$a_{21} \cdot x_1 + \dots + a_{2n} \cdot x_n = b_2$$

$$\vdots$$

$$a_{m1} \cdot x_1 + \dots + a_{mn} \cdot x_n = b_m$$

Vektoregyenlet forma:

$$\underline{a}_1 \cdot x_1 + \underline{a}_2 \cdot x_2 + \dots + \underline{a}_n \cdot x_n = \underline{b}$$

ahol:

$$\underline{a}_{1} = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \ \underline{a}_{2} = \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, \underline{a}_{n} = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}, \quad \underline{b} = \begin{pmatrix} b_{1} \\ \vdots \\ b_{m} \end{pmatrix}$$

Mátrixos forma:

ahol:
$$A \cdot x = 1$$

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

2. Homogén és inhomogén egyenletrendszer fogalma

Az $A \underline{x} = \underline{b}$ lineáris egyenletrendszert **homogén**nek nevezzük, ha $\underline{b} = \underline{o}$.

Az $A \underline{x} = \underline{b}$ lineáris egyenletrendszert **inhomogén**nek nevezzük, ha $\underline{b} \neq \underline{o}$.

3. Mi a lineáris egyenletrendszerek megoldhatóságának szükséges és elégséges feltétele?

Az $A \cdot \underline{x} = \underline{b}$ lin. egyenletrendszer megoldható \Leftrightarrow r (A) = r $([A,\underline{b}])$, ahol $[A,\underline{b}]$ az egyenletrendszer kibővített mátrixa:

$$[A,\underline{b}] = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}_{m \times (n+1)} .$$

4. Mit tudunk egy homogén lineáris egyenletrendszer megoldásvektorainak számáról?

- Az $A \cdot \underline{x} = \underline{o}$ homogén lineáris egyenletrendszer mindig megoldható, az $\underline{x} = \underline{o}$ megoldásvektort triviális megoldásnak nevezzük.
- Az $A \cdot \underline{x} = \underline{o}$ homogén lin. egyenletrendszernek csak triviális megoldásvektora van \Leftrightarrow r(A) = n, ahol n az ismeretlenek száma.
- Az $A \cdot \underline{x} = \underline{o}$ homogén lin. egyenletrendszernek végtelen sok megoldásvektora van \Leftrightarrow r(A) $\leq n$, ahol n az ismeretlenek száma.

5. Mit tudunk egy inhomogén lineáris egyenletrendszer megoldásvektorainak számáról?

- Az $A \cdot \underline{x} = \underline{b}$ inhomogén lin. egyenletrendszer nem oldható meg \Leftrightarrow r (A) < r $([A,\underline{b}])$.
- Az $A : \underline{x} = \underline{b}$ inhomogén lin. egyenletrendszernek egy darab megoldásvektora van \Leftrightarrow r(A) = r ($[A,\underline{b}]$) = n, ahol n az ismeretlenek száma.
- Az $A \cdot \underline{x} = \underline{b}$ inhomogén lin. egyenletrendszernek végtelen sok megoldásvektora van \Leftrightarrow r(A) = r ($[A,\underline{b}]$) < n, ahol n az ismeretlenek száma.

6. Ismertesse a Cramer szabályt!

Tekintsük az $A \cdot \underline{x} = \underline{b}$ lin. egyenletrendszert, ahol az A együtthatómátrix négyzetes:

$$A = [\underline{a}_1 \ \underline{a}_2 \ \dots \ \underline{a}_n]_{n \times n}$$
.

Legyen

$$D = \det(A),$$

$$D_1 = \det([\underline{b} \ \underline{a}_2 \ \dots \ \underline{a}_n]),$$

$$D_2 = \det([\underline{a}_1 \ \underline{b} \ \dots \ \underline{a}_n]),$$

. . .

$$D_n = \det([\underline{a}_1 \ \underline{a}_2 \ \dots \ \underline{b}]).$$

Ekkor:

$$D \cdot x_k = D_k$$
, $k = 1, \ldots, n$.

Lineáris leképezések

1. Lineáris leképezés, lineáris transzformáció fogalma

Az $A: R^m \to R^n$ típusú fv.-t **lineáris leképezés**nek nevezzük, ha bármely $\underline{x}, \underline{y} \in R^m$, $\lambda \in R$ esetén:

$$A(\underline{x} + \underline{y}) = A(\underline{x}) + A(\underline{y})$$
 additív

$$A(\lambda \underline{x}) = \lambda \cdot A(\underline{x})$$
 homogén

Ha speciálisan m = n, akkor **lineáris transzformáció**ról beszélünk.

2. Magtér, képtér fogalma

Legyen $A: \mathbb{R}^m \to \mathbb{R}^n$ lineáris leképezés. Az A leképezés **magter**e olyan \mathbb{R}^m -beli vektorokból áll, amelyekhez A az \mathbb{R}^n nullvektorát rendeli:

$$ker(A) = \{ \underline{x} \in R^m | A(\underline{x}) = \underline{o} \}$$

Lineáris leképezés **képter**e: a képvektorok halmaza: $im(A) = \{A(\underline{x}) \in R^n | \underline{x} \in R^m \}$

3. Lineáris leképezés mátrixának fogalma

Legyen $A: \mathbb{R}^m \to \mathbb{R}^n$ lineáris leképezés, $\underline{e}_1, \dots, \underline{e}_m$ a kanonikus bázis \mathbb{R}^m -ben. Az A lin. leképezés (kanonikus bázisokra vonatkozó) mátrixán azt az n x m-es mátrixot értjük, amelynek oszlopvektorai az $A(\underline{e}_1), \dots, A(\underline{e}_m)$ képvektorok. Jel.: M(A), A

4. Mi a szükséges és elégséges feltétele egy lineáris leképezés injektivitásának?

Az $A: \mathbb{R}^m \to \mathbb{R}^n$ lineáris leképezés injektív (invertálható) $\Leftrightarrow ker(A) = \{o\}$.

5. Lineáris transzformáció sajátértékének, sajátvektorának fogalma

Az A lineáris transzformáció **sajátérték**ének nevezzük a $\lambda \in R$ számot, ha van olyan $\underline{v} \in R^n$, $\underline{v} \neq \underline{o}$ vektor, amelyre $A(\underline{v}) = \lambda \cdot \underline{v}$ teljesül. Ekkor a $\underline{v} \in R^n$ vektort a λ sajátértékhez tartozó **sajátvektor**nak nevezzük.

6. Négyzetes mátrix sajátértékének, sajátvektorának fogalma

Legyen $A n \times n$ -es mátrix. Az A mátrix **sajátérték**ének nevezzük a $\lambda \in R$ számot, ha van olyan \underline{v} $n \times 1$ -es oszlopvektor, ahol $\underline{v} \neq \underline{o}$, és amelyre $A \cdot \underline{v} = \lambda \cdot \underline{v}$ teljesül. Ekkor a \underline{v} oszlopvektort a λ sajátértékhez tartozó **sajátvektor**nak nevezzük.

7. Karakterisztikus polinom, karakterisztikus egyenlet fgalma

Legyen A $n \times n$ -es mátrix. Az A négyzetes mátrix **karakterisztikus polinom**ján a $P(\lambda) = det(A - \lambda \cdot E)$ polinomot, **karakterisztikus egyenlet**én a $P(\lambda) = det(A - \lambda \cdot E) = 0$ egyenletet értjük.

Lineáris transzformáció karakterisztikus polinomján mátrixának karakterisztikus polinomját értjük. Lineáris transzformáció karakterisztikus egyenletén mátrixának karakterisztikus egyenletét értjük.

Skaláris szorzatos terek

1. Skaláris szorzat fogalma R^n -ben

Legyen $\underline{a} = (a_1, a_2, \dots, a_n)$ és $\underline{b} = (b_1, b_2, \dots, b_n)$ két R^n -beli vektor. Ekkor az \underline{a} és \underline{b} vektorok skaláris szorzatán (skalárszorzatán) az alábbi számot értjük:

$$a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n$$

Jelölés: $\underline{a} \cdot \underline{b}$, $\langle \underline{a}, \underline{b} \rangle$

2. Vektor normájának és egységre normált vektornak a fogalma

Legyen $\underline{x} \in \mathbb{R}^n$. Ekkor az \underline{x} vektor **normá**ja (hossza):

$$\sqrt{\langle \underline{x}, \underline{x} \rangle} = \sqrt{x_1^2 + \dots + x_n^2}$$

Jelölés: |x|, ||x||

Egy $x \in \mathbb{R}^n$ vektort **egységre normált**nak (egységvektornak) nevezünk, ha ||x||=1

3. Ortogonális vektorok, ortogonális vektorhalmaz, ortonormált vektorhalmaz fogalma

Legyen <u>a</u> és <u>b</u> két R ⁿ-beli vektor. Az <u>a</u> és <u>b</u> vektorokat ortogonálisaknak nevezzük, ha skaláris szorzatuk nulla.

Egy $H \subseteq \mathbb{R}^n$ vektorhalmaz **ortogonális**, ha páronként ortogonális, nullvektortól különböző vektorok alkotják.

Egy $H \subseteq R^n$ vektorhalmaz ortonormált, ha ortogonális és vektorai egységre normáltak.

4. Vektorhalmaz ortogonális komplementerének fogalma

Legyen $S \subseteq R^n$, $S \neq \emptyset$.

Az $\underline{x} \in \mathbb{R}^n$ vektort S-re ortogonálisnak hívjuk, ha \underline{x} ortogonális az S vektorhalmaz minden vektorára.

Az S vektorhalmaz **ortogonális komplementere** az S-re ortogonális vektorok összessége:

$$S^{\perp} = \{ \underline{x} \in \mathbb{R}^n \mid \text{bármely } \underline{s} \in S \text{ esetén } \langle \underline{x}, \underline{s} \rangle = 0 \}$$
.

5. Altérre vonatkozó ortogonális projekció fogalma

Legyen H altér az R "vektortérben. Tekintsük a következő leképezést:

$$\pi: R^n \to R^n, x \mapsto h,$$

ahol $\underline{x} = \underline{h} + \underline{h}^{\perp}$ és $\underline{h} \in H$, $\underline{h}^{\perp} \in H^{\perp}$. A fenti leképezést a H altérre való **ortogonális projekción**ak (merőleges vetítésnek) nevezzük. A $\pi(\underline{x})$ vektort az \underline{x} vektor H altérre eső ortogonális vetületvektorának hívjuk.

Absztrakt vektorterek

1. Absztrakt vektortér fogalma

Legyen V egy halmaz, Γ egy test (pl. valós vagy komplex számtest), és legyenek adottak a $+: V \times V \to V$ és a $: \Gamma \times V \to V$ műveletek. Tegyük fel, hogy bármely $a, b, c \in V$, $\lambda, \mu \in \Gamma$ esetén

V1:
$$(a+b)+c=a+(b+c)$$
 (asszociativitás)

V2:
$$a + b = b + a$$
 (kommutativitás)

V3: Létezik olyan $o \in V$ elem, hogy bármely $a \in V$ esetén a + o = a. (nullelem létezése)

V4: Bármely $a \in V$ esetén létezik olyan $a' \in V$, hogy a + a' = o, ahol $a' = (-1) \cdot a$, az a ellentettje. (ellentett létezése)

V5:
$$(\lambda + \mu) \cdot a = \lambda \cdot a + \mu \cdot a$$

V6:
$$\lambda \cdot (a+b) = \lambda \cdot a + \lambda \cdot b$$

V7:
$$\lambda \cdot (\mu \cdot a) = (\lambda \cdot \mu) \cdot a$$

V8:
$$1 \cdot a = a$$

Ekkor V-t a Γ test feletti vektortérnek, V elemeit vektoroknak, Γ elemeit skalároknak hívjuk.

 $\Gamma = R$ esetén valós vektortérről, $\Gamma = C$ esetén komplex vektortérről beszélünk.

2. Absztrakt vektorterek közti lineáris leképezés fogalma

Legyenek V és W azonos test (Γ) feletti vektorterek.

Az $A: V \rightarrow W$ leképezést **lineáris**nak nevezzük, ha bármely $x,y \in V$ és $\lambda \in \Gamma$ esetén

$$A(x+y)=A(x)+A(y)$$
 additiv

$$A(\lambda \cdot x) = \lambda \cdot A(x)$$
 homogén

3. Lineáris izomorfizmus és izomorf vektorterek fogalma

A bijektív lineáris leképezéseket lineáris izomorfizmusoknak nevezzük.

A V és W vektorterek **izomorf**ak, ha létezik $A: V \rightarrow W$ lineáris izomorfizmus. Jel.: $V \cong W$