www.crackjee.xyz

Matrices

1. If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then

[2003]

(a)
$$\alpha = 2ab, \beta = a^2 + b^2$$

(b)
$$\alpha = a^2 + b^2$$
, $\beta = ab$

(c)
$$\alpha = a^2 + b^2$$
, $\beta = 2ab$

(d)
$$\alpha = a^2 + b^2$$
, $\beta = a^2 - b^2$

2. If
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of

the following holds for all $n \ge 1$, by the principle of mathematical induction [2005]

(a)
$$A^n = nA - (n-1)I$$

(b)
$$A^n = 2^{n-1}A - (n-1)I$$

(c)
$$A^n = nA + (n-1)I$$

(d)
$$A^n = 2^{n-1} A + (n-1) I$$

- If A and B are square matrices of size $n \times n$ such that $A^2 - B^2 = (A - B)(A + B)$, then which of the following will be always true? [2006]
 - (a) A = B
 - (b) AB = BA
 - (c) either of A or B is a zero matrix
 - (d) either of A or B is identity matrix

4. Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a, b \in \mathbb{N}$.

Then

[2006]

- (a) there cannot exist any B such that AB = BA
- (b) there exist more than one but finite number

of B's such that AB = BA

- (c) there exists exactly one B such that AB = BA
- (d) there exist infinitely many B's such that AB = BA
- The number of 3×3 non-singular matrices, with four entries as 1 and all other entries as 0, is

[2010]

(a) 5

- (b) 6
- (c) at least 7
- (d) less than 4
- Let A and B be two symmetric matrices of order 3. [2011]

Statement-1: A(BA) and (AB)A are symmetric matrices.

Statement-2: AB is symmetric matrix if matrix multiplication of A with B is commutative.

- (a) Statement-1 is true, Statement-2 is true; Statement-2 is **not a** correct explanation for Statement-1.
- (b) Statement-1 is true, Statement-2 is false.
- Statement-1 is false, Statement-2 is true.
- (d) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- 7. If $\omega \neq 1$ is the complex cube root of unity and

matrix
$$H = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$$
, then H^{70} is equal to

[2011RS]

(a) 0

- (b) -H
- (c) H²
- (d) H

www.crackjee.xyz

м-98

If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$ is a matrix satisfying the

equation $AA^T = 9I$, where I is 3×3 identity matrix, then the ordered pair (a, b) is equal to:

[2015]

- (a) (2,1)
- (c) (2,-1)
- (d) (-2, 1)
- 9. If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and A adj $A = A A^T$, then 5a

(a) 4 (b) 13 (c) -1

10. If $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$, then adj $(3A^2 + 12A)$ is equal to

(a) $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$ (b) $\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$

+ b is equal to:

- (c) $\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$ (d) $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$

	Answer Key														
1	2	3	4	5	6	7	8	9	10						
(c)	(a)	(b)	(d)	(c)	(a)	(d)	(b)	(d)	(c)						

LUTIONS

1. (c)
$$A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
$$= \begin{bmatrix} a^2 + b^2 & 2ab \\ 2ab & a^2 + b^2 \end{bmatrix}$$
$$\alpha = a^2 + b^2 : \beta = 2ab$$

(a) We observe that

$$A^2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$
, $A^3 = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$ and we can

prove by induction that $A^n = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$

Now
$$nA - (n-1)I = \begin{bmatrix} n & 0 \\ n & n \end{bmatrix} - \begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix} = A^n$$

$$\therefore nA - (n-1)I = A^n$$

3. **(b)**
$$A^2 - B^2 = (A - B)(A + B)$$

 $A^2 - B^2 = A^2 + AB - BA - B^2$
 $\Rightarrow AB = BA$

4. (d)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$

$$AB = \begin{bmatrix} a & 2b \\ 3a & 4b \end{bmatrix}$$

$$BA = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a & 2a \\ 3b & 4b \end{bmatrix}$$

Hence, AB = BA only when a = b

 \therefore There can be infinitely many B's for which AB = BA

www.crackjee.xyz

Matrices _____ M-99

because 6 blanks will be filled by 5 zeros and 1 one.

Similarly,
$$\begin{bmatrix} \dots & \dots & 1 \\ \dots & 1 & \dots \\ 1 & \dots & \dots \end{bmatrix}$$
 are 6 non-singular

matrices.

So, required cases are more than 7, non-singular 3×3 matrices.

6. (a) ::
$$A' = A$$

B' = B

Now (A(BA))' = (BA)'A'= (A'B')A' = (AB)A = A(BA)

Similarly ((AB)A)' = (AB)A

So, A(BA) and (AB)A are symmetric matrices.

Again
$$(AB)' = B'A' = BA$$

Now if BA = AB, then AB is symmetric matrix

7. (d)
$$H^2 = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} = \begin{bmatrix} \omega^2 & 0 \\ 0 & \omega^2 \end{bmatrix}$$

If
$$H^k = \begin{bmatrix} \omega^k & 0 \\ 0 & \omega \end{bmatrix}$$
 then H^{k+1}

$$1 = \begin{bmatrix} \omega^{k+1} & 0 \\ 0 & \omega^{k+1} \end{bmatrix}$$

So by principle of mathematical induction,

$$H^{70} = \begin{bmatrix} \omega^{70} & 0 \\ 0 & \omega^{70} \end{bmatrix} = \begin{bmatrix} \omega^{69} \omega & 0 \\ 0 & \omega^{69} \omega \end{bmatrix} = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} = H$$

8. **(b)**
$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix} \begin{bmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{bmatrix} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1+4+4 & 2+2-4 & a+4+2b \\ 2+2-4 & 4+1+4 & 2a+2-2b \\ a+4+2b & 2a+2-2b & a^2+4+b^2 \end{bmatrix} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$

$$\Rightarrow$$
 a + 4 + 2b = 0 \Rightarrow a + 2b = -4 ...(i)
2a + 2 - 2b = 0 \Rightarrow 2a - 2b = -2

$$\Rightarrow a - b = -1$$

...(ii)

On solving (i) and (ii) we get

$$-1 + b + 2b = -4$$
 ...(i)
 $-1 + 3b = -4$
 $3b = -3$
 $b = -1$

and
$$a = -2$$

$$(a, b) = (-2, -1)$$

9. (d)
$$A(adj A) = A A^{T}$$

$$\Rightarrow$$
 A⁻¹A (adj A) = A⁻¹A A^T

adj
$$A = A^{T}$$

$$\Rightarrow \begin{bmatrix} 2 & b \\ -3 & 5a \end{bmatrix} = \begin{bmatrix} 5a & 3 \\ -b & 2 \end{bmatrix}$$

$$\Rightarrow a = \frac{2}{5} \text{ and } b = 3$$

$$\Rightarrow$$
 5a + b = 5

10. (c) We have
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$

$$\Rightarrow A^2 = \begin{bmatrix} 16 & -9 \\ -12 & 13 \end{bmatrix}$$

$$\Rightarrow 3A^2 = \begin{bmatrix} 48 & -27 \\ -36 & 39 \end{bmatrix}$$

Also
$$12A = \begin{bmatrix} 24 & -36 \\ -48 & 12 \end{bmatrix}$$

$$\therefore 3A^2 + 12A$$

$$= \begin{bmatrix} 48 & -27 \\ -36 & 39 \end{bmatrix} + \begin{bmatrix} 24 & -36 \\ -48 & 12 \end{bmatrix} = \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$$

adj
$$(3A^2 + 12A) = \begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$$