误差与有效数字练习题

1. 有甲、乙、丙、丁四人,用螺旋测微计测量一个铜球的直径,各人所得的结果表达如下: $d_{\mp} = (1.2832)$ ± 0.0003) cm , $d_{\rm Z}$ = (1.283 ± 0.0003) cm , $d_{\rm M}$ = (1.28 ± 0.0003) cm , $d_{\rm T}$ = (1.3 ± 0.0003) cm , 问哪个人表达得正确? 其他人错在哪里? 答:

2. 一学生用精密天平称一物体的质量 m , 数据如下表所示 : Δ_{α} =0.0002g

次数	1	2	3	4	5	6
<i>m</i> /g	3. 6124	3. 6127	3. 6122	3. 6121	3. 6120	3. 6125

请计算这一测量的算术平均值,测量标准误差及相对误差,写出结果表达式。

 $\overline{m} =$

A 类分量: S=

B 类分量:

合成不确定度: U=

测量结果为:

3. 用米尺测量一物体的长度, 测得的数值为

次数	1	2	3	4	5	6	7	8	9	10
L /cm	98. 98	98. 94	98. 96	98. 97	99. 00	98. 95	98. 97	98. 96	98. 98	98. 94

试求其算术平均值, A 类不确定度、B 类不确定度、合成不确定度及相对误差, 写出结果表达式。

 $\overline{L} =$

A 类分量: S =

B 类分量: *u* =

合成不确定度: U=

相对误差: E=

结果: $\bar{L}\pm U=$

4. 在测量固体比热实验中,放入量热器的固体的起始温度为 t_1 ± S_{t1} = 99. 5 ± 0. 3℃,固体放入水中后,温度逐渐下降,当达到平衡时, t_2 ± S_{t2} = 26. 2 ± 0. 3℃,试求温度降低值 t = t_2 − t_1 的表示式及相对误差。

处理:

5. 一个铅质圆柱体,测得其直径为 $d\pm U_d$ =(2.040±0.003) cm ,高度为 $h\pm U_h$ =(4.120 ± 0.003) cm ,质量为 $m\pm U_m$ =(149.10 ± 0.05)g。试求:(1)计算铅的密度 ρ ;(2)计算铅的密度 ρ 的相对误差和不确定度;(3)表示 ρ 的测量结果。

处理:

- 6. 按照误差理论和有效数字运算规则改正以下错误:
- (1) $N = 10.8000 \pm 0.3$ cm
- (2) 有人说 0.2870 有五位有效数字,有人说只有三位,请纠正,并说明其原因。
- (3) L = 28 cm = 280 mm
- (4) $L = (28000 \pm 8000)$ mm
- 7. 试计算下列各式(在书写计算过程中须逐步写出每步的计算结果):
- (1) 已知 $y = \lg x$, $x \pm \sigma_x = 1220 \pm 4$, 求 y: 处理:
- (2) 已知 $y = \sin \theta$, $\theta \pm S_{\theta} = 45^{\circ}30' \pm 0'' 04'$,求 y : 处理:

8. 某同学在弹簧倔强系数的测量中得到如下数据:

F/g	2.00	4. 00	6. 00	8. 00	10.00	12.00	14. 00
y /cm	6. 90	10. 00	13. 05	15. 95	19. 00	22. 05	25. 10

其中F为弹簧所受的作用力,y为弹簧的长度,已知 $y-y_0=(\frac{1}{k})$ F ,用图解法处理数据(必须用直角坐标纸,不允许用代数方格纸或自行画格作图),从图中求出弹簧的倔强系数 k ,及弹簧的原长 y_0 。处理:按要求作图(见作图示意,注意注解方框里内容的正确表达,正确取轴和分度,正确画实验点和直线拟合,正确取计算針率的两点),