ФГАУ ВПО «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра общей физики

Пассивные электрические цепи

Выполнил: Корепанов Г.М.

512 группа

Преподаватель: Данилин Валерий Алексеевич

Интегрирующие и дифференцирующие звенья

Интегрирующая цепочка

АЧХ

Рис. 1: Интегрирующая цепочка с экспериментальными параметрами

Для данной цепочки получаем постоянную времени $\tau = RC \simeq 0, 1$ мс.

f/f_0	0.25	0.5	1	2	4	8	16
K(f)	0.95	0.89	0.75	0.53	0.31	0.17	0.09

Таблица 1: Зависимость коэффициента передачи от частоты, опорная частота $f_0=1600~\Gamma$ ц

Рис. 2: Амплитудно-частотная характеристика

Рис. 3: Соответсутвующий граф Боде

По графикам оцениваем граничную частоту:

$$f_{\rm rp} = 1680 \, \Gamma$$
ц,

что практически совпадает с теоретической $f_0 = \frac{1}{2\pi RC} = 1600~\Gamma$ ц.

Постоянная времени

Рис. 4: Иллюстрация к определению постоянной времени

В случае интегрирующей цепочки постоянная времени равна времени нарастания фронта до уровня 1-1/e. По осциллограмме находим $\tau=0,085$ мс. Проверяем сходимость результатов:

$$\frac{1}{2\pi\tau}\simeq 1872$$
 Гц

, отлично сходится с предыдущими измерениями (при данной точности эксперимента).

Дифференцирущая цепочка

Выполняя все действия по аналогии, получаем значения

$$f_0 = 1765 \; \Gamma$$
ц,

$$\tau = 0,091 \text{ Mc}.$$

Из-за того, что напряжение в данном случае снимается с резистора, график переходной характеристики (отклик на воздействие – функцию Хевисайда) «инвертируется», и поэтому в данном случае τ - время спада вершины импульса до уровня 1/e.

Рис. 5: Иллюстрация к определению постоянной времени

МісгоСар – интегрирующая цепочка

Рис. 6: Иллюстрация к определению верхней частоты

Из графика частотной харакетристики получаем граничную частоту $f_{\rm rp}=10~{\rm k}\Gamma$ ц, что хорошо сходится со значением, посчитанным по формуле $\frac{1}{2\pi\tau}$. Из графика для переходной характеристики получаем $\tau_{\rm эксп}=15,88~{\rm mkc}$.

МісгоСар – дифференцирующая цепочка

Повторяем все действия. получаем граничную частоту $f_{\rm rp}=10~{\rm k\Gamma u}$, постоянную времени $au_{\rm эксп}=16~{\rm mkc}$.

На этот раз частотные характеристики «переворачиваются»:

Рис. 7: Иллюстрация к определению нижней частоты

МісгоСар – распредление мощностей

На граничной частоте активная и рективная мощности, вы деляющиеся в схеме, равны по модулю и противоположны по знаку:

Рис. 8: Закон сложения мощностей

RC-звенья второго порядка

Рис. 9: Схема изучения звеньев второго порядка

$$f_0 = \frac{1}{2\pi RC} = 9947 \; \Gamma$$
ц.

На частоте f_0 для всех трех фильтров затухание одинаково и равно $K=-9,5\ dB.$

Скорость нарастания затухания:

 ${f \Phi H H}$: $40dB/{
m дек},\,{f \Pi \Phi}$: $20dB/{
m дек},\,{f \Phi B H}$: $40dB/{
m дек}.$

Сдвиг фаз на разных частотах

ω	0	f_0	∞
ФНЧ	0°	-90°	-180°
ПФ	90°	0°	-90°
ФВЧ	180°	90°	0°

Таблица 2: Сдвиги фаз

Двусторонняя полоса пропускания между точками со сдвигом фаз $\pm \pi/4$:

$$\Delta f = 29$$
 к Γ ц $\simeq 3 f_0$.

Рис. 10: Анализ звеньев второго порядка

Переходная характеристика

Время спада выброса до уровня 1/e: $\tau_-=4,9$ мкс (ФВЧ); время нарастания фронта до уровня 1-1/e: $\tau_+=48$ мкс (ФНЧ).

$$\tau_+/\tau_- \simeq 10$$
.

Рис. 11: Анализ звеньев второго порядка – переходная характеристика

Фазовращатели

Наибольший диапазон перестройки фазы $\Delta \varphi = 121^\circ$ при f = 25 к Γ ц:

Рис. 12: Фазовращатель

Двойной Т-образный мост

Рис. 13: К измерению ширины полосы режекции

Ширина полосы режекции по уровню -3~dB равна $\Delta f=39~\mathrm{k}\Gamma$ ц. $\Delta f\simeq 4f_0$.

Переходная характеристика

Время спада первого пика до уровня 1/e: $\tau_+=4$ мкс; время нарастания вершины до уровня 1-1/e: $\tau_+=55$ мкс. Теоретические значения: $\tau_+=4,2$ мкс, $\tau_-=59$ мкс, что хорошо согласуется с экспериментом.

Рис. 14: Степпинг переходной харатеристики, R = [3k, 7k|2k]

Частоты и добротности нулей передачи при разных R

Определим добротности нулей передачи, измеряя полосы Δf по интервалам изменения фазы на $\pm \pi/4$:

R	4,9k	5,0k	5,1k
Δf , Γ ц	51	0	50
Q	200	∞	200
f_0 , Γ ц	10048	9997	9948

Таблица 3: Добротности нулей передачи

Последовательный резонанс

Соберём полосовой фильтр с параметрами C=1000 пФ, L=220 мк Γ н, r=91 Ом:

Рис. 15: Схема полосовго фильтра

Резонансная частота:

$$f_{ ext{ iny reop}} = rac{1}{2\pi\sqrt{LC}} = 340 \ ext{ iny K} \Gamma_{ ext{ iny I}},$$
 $f_{ ext{ iny SKCII}} = 376 \ ext{ iny K} \Gamma_{ ext{ iny I}}.$

Коэффициент предачи на резонансной частоте $K(f_0) = \frac{U_{\text{вых}}}{U_{\text{вх}}} = 0,86$ Ширина пика по уровню -3~dB:

$$\Delta f = |309~\mathrm{k}\Gamma\mathrm{u} - 441~\mathrm{k}\Gamma\mathrm{u}| = 132~\mathrm{k}\Gamma\mathrm{u}$$

$$Q_{\mathrm{теор}} = \frac{1}{r}\sqrt{\frac{L}{C}} = 5, 15$$

$$Q_{\mathrm{эксп}} = \frac{f_0}{\Delta f} = 2, 8$$

Расхождение, очевидно, вызвано неучтённым сопротивлением катушки и проводов.

Переходная характеристика

Рис. 16: переходная характеристика резонансной цепочки

Время затухания до уровня 1/e: $\tau=2,9$ мкс. Период колебаний T=2,9 мкс.

$$au=rac{2L}{R}=rac{QT}{\pi}
ightarrow Q=rac{\pi au}{T}\simeq 3,$$
 $f_0=1/T\simeq 344$ кГц

Как видим, и таким методом получаем отличное схождение с экспериментом.

Изучение резонансных цепочек в МісгоСар

Графики и зависимости, полученные теоретически в программе моделированием, отлично сходятся с экспериментами, поставленными выше на реальных цепях.

Зависимость групповых хадержек полосового фильтра от R

R, OM	τ_g , MC
10	444
20	277
40	156
100	64

Таблица 4: Групповые задержки

Получаем хорошую сходимость с теоретической формулой, которая легко модет быть получена из определения групповой задержки:

$$\tau_g = -\frac{d\varphi}{d\omega} = \frac{Q}{\pi f_0}$$

Выводы

Были получены навыки работы с простейшими электричискими цепями, изучены основные методы обработки сигналов, коэффициентов передачи и прочих характеристик линейных цепей. Изучены основные понятия электротехники.