UNIVERSITY OF WOLLONGONG

DOCTORAL THESIS

Thesis Title

Author:

Supervisors: Dr. Jenny FISHER

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

in the

Centre of Atmospheric Chemistry Chemistry Department

Declaration of Authorship

I, Jesse Greenslade, declare that this thesis titled, "Thesis Title" and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:		
Date:		

"Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism."

Dave Barry

Contents

Declaration of Authorship iii						
Abstract						
A	knov	vledge	ments	ix		
1	Intro	oductio	on and Literature Review	1		
	1.1	The at	mosphere	1		
		1.1.1	Structure	2		
		1.1.2	Composition and chemistry	3		
		1.1.3	Radiative Forcing	3		
	1.2	Ozone	2	4		
		1.2.1	Stratospheric ozone	4		
		1.2.2	Tropospheric ozone	7		
		1.2.3	Stratosphere to troposphere transport	9		
		1.2.4	Chemical production	10		
	1.3	Volati	le Organic Compounds	11		
		1.3.1	Emissions	13		
		1.3.2	Isoprene	14		
		1.3.3	Isoprene chemistry	15		
			Oxidation	15		
			High NOx pathway	17		
			Low NOx pathway	17		
			Night time processes	18		
	1.4	Forma	aldehyde	19		
		1.4.1	Sources and sinks	19		
		1.4.2	Measurement techniques	20		
			Satellite measurements	21		
	1.5	Atmos	spheric Chemistry Modelling	23		
		1.5.1	Box models	23		
		1.5.2	Chemical transport models	23		
		1.5.3	Emissions	25		
		1.5.4	Uncertainties	25		
			Emissions Inventories	26		
			Resolution	26		
			Chemistry mechanisms	26		
			Clouds	27		
			Soil Moisture	27		
	16	Anctr	alia and the couthern homisphere	27		

		1.6.1	Ozone	29
		1.6.2	VOCs	30
		1.6.3	Measurements	30
	1.7	Aims		31
2			Modelling	33
	2.1		uction	33
	2.2	Datase		
		2.2.1	Daintree	
		2.2.2	Marine and Urban MBA ? (MUMBA)	
		2.2.3	Sydney Particle Studies (SPS1, SPS2)	
		2.2.4	Satellite	
			OMNO2	
			OMHCHO	38
			OMAERUVd	41
			MOD14A1	
		2.2.5	Drought Index	
		2.2.6	NPI	41
	2.3		-Chem	
		2.3.1	Outline	
		2.3.2	Running GEOS-Chem (before isop?)	
			Installation and requirements	
		2.3.3	GEOS-Chem isoprene modelling	
			Outline	
		2.3.4	Chemical Mechanisms	
		2.3.5	Emissions from MEGAN	45
		2.3.6	Rescaling NOx	
		2.3.7	GEOS-Chem simulations	
			Run comparisons	
		2.3.8	GEOS-Chem outputs	
	2.4		arement Techniques	
		2.4.1	DOAS	
		2.4.2	Satellites	
			OMI	64
			Air mass factor (AMF)	
	0.5	D 1	Uncertainties	67
	2.5		culation of OMI HCHO	69
		2.5.1	Outline	70
		2.5.2	Reading satellite data	
		2.5.3	Scattering weight and the shape factor	
			Normalised vertical shape factor	76
		0.5.4	Sigma coordinate conversion	
		2.5.4	Recalculating the AMF using PP code	
		2.5.5	Reference sector correction	78
		2.5.6	Binning the results daily	82
	0 1	2.5.7	Difference between new and old OMI HCHO columns	83
	2.6	Filteri	ng Data	83

		2.6.1	Fire and smoke	
			Checking that fire masks are influencing pyrogenic HCHO.	
		2.6.2	NOx	
		2.6.3	Summary of filters effects on HCHO	
	2.7	Data 1	Access	 92
3	Bio	zenic Is	soprene emissions in Australia	95
	3.1	_	duction	
		3.1.1	Top-down emissions estimates	
			Linear	
			Bayesian	97
		3.1.2	Aims	97
	3.2	Metho	o <mark>ds</mark>	98
		3.2.1	Outline	 98
		3.2.2	Satellite inversion	 99
		3.2.3	Calculation of Emissions	
		3.2.4	Emissions drivers	 105
		3.2.5	HCHO Products and yield	 105
		3.2.6	Accounting for smearing	 106
	3.3	Resul	ts	 109
		3.3.1	Emissions comparisons	 109
		3.3.2	Emissions affect on GEOS-Chem	 110
		3.3.3	Comparison with in-situ measurements	 110
	3.4	Uncer	rtainty	
		3.4.1	Model Uncertainty	 110
		3.4.2	Satellite Uncertainty	 111
		3.4.3	Fire Filtering	
		3.4.4	MEGAN	 112
4	Stra	tosphe	eric ozone intrusions	115
	4.1		luction	
	4.2		and Methods	
		4.2.1	Ozonesonde record in the Southern Ocean	 117
		4.2.2	Model description	
		4.2.3	Characterisation of STT events and associated fluxes	 121
		4.2.4	Biomass burning influence	 123
		4.2.5	Classifying synoptic conditions during STT events	 124
	4.3	STT e	vent climatologies	
	4.4	Simul	ated ozone columns	 128
	4.5	Strato	sphere-to-troposphere ozone flux from STT events	 132
		4.5.1	Method	
		4.5.2	Results	 134
		4.5.3	Comparison to literature	 134
	4.6	Sensit	tivities and limitations	 139
		4.6.1	Event detection	 139
		4.6.2	Flux calculations	 140
	4.7	Concl	usions	 141

	4.8	Contri	ibutions and Acknowledgements	 142
A	Sup	plemer	ntary Notes	143
	A.1	Measu	arement Techniques	 143
			MAX-DOAS	
	A.2	Data s	sets	 143
		A.2.1	SPEI	 143
		A.2.2	GOME	 143
	A.3	Chem	istry	 145
			SOA	 145
		A.3.1	Relationship to Glyoxyl TODO: remove if never used	 146
	A.4	CAAE	BA/MECCA	 149
			CAABA/MECCA outputs	 150
		A.4.1	CAABA/MECCA Box model: isoprene source classifications	 150
	A.5	Satelli	ite Stuff	 151
		A.5.1	OMI Algorithm BOAS	 151
		A.5.2	AMF recaulculation using 72 level output	 153
		A.5.3	Old Fire Product MYD14C8H	 155
В	App	endix A	A	159
	B.1	Grid F	Resolution	 159
C	Free	uently	Asked Questions	161
	C.1	How	do I change the colors of links?	 161
Bi	bliog	raphy		163

Chapter 1

Introduction and Literature Review

1.1 The atmosphere

The atmosphere is made up of gases held to the earth's surface by gravity. These gases undergo transport on all scales, from barbecue smoke being blown about the garden, to smoke plumes from forest fires travelling across the world and depositing in the Antarctic snow. They take part in innumerable chemical reactions along the way, largely driven by solar input and interactions with each other. Many gases are lofted into the atmosphere by soil, trees, factories, cars, seas and oceans. They are also deposited back to the surface both directly and in rainfall.

The atmosphere is made up of nitrogen (N_2 : \sim 78%), oxygen (O_2 : \sim 21%), and argon (Ar: \sim 1%), along with water (H_2O) and *trace gases* (those that make up less than 1% of the atmosphere). Water (H_2O) ranges from 0.001 to 1% depending on evaporation and precipitation. Beyond these major constituents the atmosphere has a vast number of trace gases, including carbon dioxide (CO_2 : \sim 0.4%), ozone (O_3 : .000001 to 0.001%), and methane (CH_4 : \sim 0.4%) (Brasseur and Jacob 2017, Ch. 2). Trace gases in the atmosphere can have a large impact on living conditions. They react in complex ways with other elements (anthropogenic and natural), affecting all surface ecosystems upon which life depends.

One important trace gas is ozone (O_3) , which affects climate, human health, and ecosystem productivity. This thesis will focus on ozone in the troposphere, which is relatively uncertain over Australia.

Ozone in the lower atmosphere is a serious hazard that causes health problems (Hsieh and Liao 2013), damages agricultural crops worth billions of dollars (Avnery et al. 2013; Yue et al. 2017), and increases the rate of climate warming (Myhre and Shindell 2013). Around 5 to 20 percent of all air pollution related deaths are due to ozone (Monks et al. 2015), roughly .8 million deaths per year (Lelieveld et al. 2013). In the short term, ozone concentrations of ~50-60 ppbv over eight hours or ~80 ppbv over one hour are agreed to constitute a human health hazard (Ayers and Simpson 2006; Lelieveld et al. 2009). Long term exposure causes problems with crop loss and ecosystem damage (Ashmore, Emberson, and Murray Frank 2003), and concentrations may get worse in the future (Lelieveld et al. 2009; Stevenson et al. 2013). Further tropospheric ozone enhancements are projected to drive reductions in global crop yields equivalent to losses of up to \$USD₂₀₀₀ 35 billion per year by 2030 (Avnery et al. 2013), along with detrimental health outcomes equivalent to ~\$USD₂₀₀₀ 11.8 billion per year

FIGURE 1.1: Pressure (red) logarithmically decreasing, shown with percentage of atmosphere below at several points. Temperature (green) changes throughout the atmosphere. Figure edited from https://climate.ncsu.edu/edu/Structure.

by 2050 (Selin et al. 2009). Recently Yue et al. (2017) showed that the net effect of near-surface ozone on is a \sim 14% decrease in net primary productivity in China. They state that reducing this decrease by \sim 70% before 2030 would require drastic measures.

1.1.1 Structure

Most of the atmosphere (\sim 85%) is within 10 km of the earth's surface. This is due to air pressure, which decreases logarithmically with altitude. Any entity is subjected to the weight of all the air above it, and the density of the atmosphere is driven by this pressure.

The atmosphere extends above the earth's surface to the edges of space. This is split into various layers, defined by the *lapse rate*: the decrease in temperature (T) with increasing altitude (z), or $\frac{-dT}{dz}$. Figure 1.1 shows the pressure and temperature profiles against altitude through the atmosphere. The first layer is the troposphere, which extends to roughly 10 km and is characterised by positive lapse rate (or decreasing temperature with altitude). At the top of the troposphere (the tropopause) the temperature stops decreasing, and then the stratosphere is defined by a negative lapse rate. This is due to UV radiation being absorbed by ozone, and leads to a very vertically stable environment.

In addition to these atmospheric layers, the troposphere can be subset into the boundary layer and the free troposphere. The boundary layer is the lowest layer and involves increased atmospheric mixing due to ground heating and friction effects. It generally extends anywhere from 200 - 1000 m, above which the ground effects have

fewer direct impacts. The *free troposphere* is the remainder of the troposphere and is more affected by transport, both horizontally and from the stratosphere.

1.1.2 Composition and chemistry

There are a myriad of trace gases in the atmosphere, emitted by plants, animals, earth, and water. These gases react with one another and over time they either deposit back onto the earth or form more stable compounds such as CO₂. Oxidation and photolysis (the process of being broken apart by photons) are the two main processes whereby compounds are broken down in the atmosphere.

OH and HO_2 concentrations largely determine the oxidative capacity of the atmosphere. Concentration of the OH radical drives many processes in the atmosphere, especially during the day when photolysis of ozone produces OH (Atkinson 2000). OH is a key species which reacts with nearly all the organic compounds in the troposphere, with only a few exceptions (Atkinson 2000). Over land, isoprene ($\mathrm{C}_5\mathrm{H}_8$) and monoterpenes ($\mathrm{C}_{10}\mathrm{H}_{16}$) account for 50% and 30% of the OH reactivity respectively (Fuentes et al. 2000).

Since radicals are involved in all oxidative chemistry in the atmosphere it is important for models to accurately represent them (eg. **Travis2014**). This is difficult as they are coupled with so many other species and measurements of OH are not readily available on a global scale. In the late 90's it was thought that OH radicals were formed exclusively from photolysis of O_3 , HONO, HCHO, and other carbonyls ($R_2C=O$) (Atkinson 2000). It has been shown since that OH is recycled in various processes. Isoprene (C_5H_8) was thought to be a sink of OH until it was shown by Paulot et al. (2009b) that the radicals are recycled. This recycling process is discussed in more detail in section 1.3.3.

Ozone is an important precursor to OH, as excited oxygen atoms (O(¹D) are created through its photolysis, which then go on to react with water to form OH, as shown in this reaction sequence (Atkinson 2000; Atkinson and Arey 2003):

$$O_3 + \text{hv} \to O_2 + O(^1D) \quad (\lambda \le 350 \text{nm})$$
 $O(^1D) + M \to O(^3P) + M \quad (M = N_2, O_2)$
 $O(^3P) + O_2 + M \to O_3 + M$
 $O(^1D) + H_2O \to 2OH$

$$(1.1)$$

Where hv represents radiation and M is an inert molecule. This shows that some of the $O(^1D)$ recycles back to ozone, while some forms OH.

1.1.3 Radiative Forcing

One of the larger uncertainties in atmospheric modelling is how particles in the atmosphere affect radiative forcing. For 12 years it has been understood that aerosols overall cool the atmosphere, with smaller particles having a larger effect as they matching the wavelengths of visible light (Kanakidou et al. 2005). Aerosol products from gas phase emissions (or the children thereof) play an indirect and complex role in cloud properties, with a net cooling effect (Kanakidou et al. (2005), Stocker et al. (*IPCC*, 2013:

Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 7,8)).

Transport and indirect effects complicate matters further, with cloud creation and modification of cloud properties being quite difficult to accurately predict. In the third IPCC report (*Intergovernmental Panel on Climate Change (IPCC): Climate Change: The Scientific Basis* 2001), the uncertainty involved if OA forcing was a factor of 3 times the estimated effect. This has since been improved however OA and cloud formation still remains a large uncertainty in more recent IPCC reports (Forster et al. 2007). Figure 1.2 shows the radiative forcing (RF) of various atmospheric constituents, it is clear that OA uncertainty dominates. Figure 1.3 shows the same summary updated in chapter 8 of the fifth report, where the SOA uncertainty remains quite large.

In order to improve understanding of processes involved in radiative forcing, Kanakidou et al. (2005) highlight the need for improving VOC emissions and flux measurements. They also advocate utilising satellite data in models as a means of improving the emissions inventories. VOCs can lead to changes in cloud formation, as nucleation can arise from the subsequent SOA. Kanakidou et al. (2005) concluded that it is very likely that organics contribute to particle growth and formation rates.

1.2 Ozone

Ozone (O_3) is an important greenhouse gas and oxidant. It is mostly located in the stratosphere and prevents much of the shorter wavelength (UV) solar radiation from reaching the earth's surface. Ozone in the troposphere is less beneficial, leading to health issues, radiative forcing (Stevenson et al. 2013), and crop death. Understanding and accurately portraying ozone concentrations in the troposphere is important to allow accurate predictions of future climate. This will become even more important as projections of future climate changes suggest altered vertical mixing rates, ultra violet index (UVI) and ozone RF (Hegglin and Shepherd 2009).

1.2.1 Stratospheric ozone

In the stratosphere ozone production is driven by the Chapman mechanism, as high energy radiation (with wavelengths $\lambda < 242$ nm) photolyses the molecular oxygen (O₂) in the atmosphere (Brasseur and Jacob 2017, Chapter 3, section 2). The Chapman mechanism involves several reactions which lead to rough equilibrium of O, O₂, O₃ and pressure, as follows:

$$O_2 + hv \rightarrow O + O \qquad \lambda < 242nm$$

$$O + O_2 + M \rightarrow O_3 + M$$

$$O_3 + hv \rightarrow O + O_2 \qquad \lambda < 1180nm$$

$$O + O_3 \rightarrow O_2 + O_2$$

$$(1.2)$$

The high energy photons (λ < 242 nm) are present from the top of the atmosphere but are mostly removed before reaching the troposphere as their energy is used to split the O_2 molecules. The lifetime of O against loss by O_2 is less than a second in the troposphere, and produced O_3 quickly returns to O and O_2 , as low energy (λ < 1180 nm)

1.2. Ozone 5

FIGURE 1.2: The overall radiative forcings and uncertainties of several atmospheric constituents This is an image taken from Forster et al. (2007), found at https://www.ipcc.ch/publications_and_data/ar4/wg1/en/faq-2-1.html.

Radiative Forcing (watts per square metre)

FIGURE 1.3: The overall radiative forcings and uncertainties of several atmospheric constituents This is an image taken from Stocker et al. (IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change), chapter 8.

1.2. Ozone 7

photons and M are abundant. The reduced light penetration towards the surface, in addition to the logarithmic increase in atmospheric pressure (which affects M abundance) drives the vertical profile of ozone into what is called the *ozone layer*. This is a layer of relative ozone abundance within the stratosphere. The Chapman mechanism requires radiation so only takes place during the daytime, during the night this process slows to a halt, and the ozone concentrations remain stable unless pollution intrudes (Jacob 1999, Chapter 10).

Since the Montreal Protocol on Substances that Deplete the Ozone Layer was established in August 1987, and ratified in August 1989, several satellites and many measurement stations were set up to monitor ozone in the stratosphere. However, in the southern hemisphere there are relatively few records of ozone (Huang et al. 2017). This affects our ability to accurately determine sources of ozone in the troposphere.

1.2.2 Tropospheric ozone

Figure 1.4, copied from Young et al. (2017), shows summary of the major processes and emissions affecting tropospheric ozone. This thesis involves improving the highly uncertain natural emissions of volatile organic compounds (VOCs) from Australia, and estimating impacts from STEs.

Generally there are two main drivers of tropospheric ozone concentrations; transport from the stratosphere and chemical production due to emissions of precursors. Tropospheric ozone is regulated by NO and NO₂ concentrations, which form an equilibrium (Cape 2008; Young et al. 2017). At small to medium scales, pyrogenic (fire) and anthropogenic (man-made) emissions can be important. Smoke plumes from biomass burning can carry ozone precursors, creating higher ozone concentrations downwind of the plume's source. Emissions of precursors from large cities (primarily traffic and power production) can impact ozone concentrations. These impacts are not always straightforwards due to the nonlinear relationship between ozone and its precursors.

 NO_X ($\equiv NO_2 + NO$) is another important chemical family in the atmosphere which interacts with ozone and regulates the atmospheric oxidative capacity. NO_X or VOC emissions affect the tropospheric ozone equilibrium and can lead to enhanced ozone formation, shown in figure 1.4. NO_X compounds are short lived, with emissions (Power generation and combustion transport) being the main driver of concentrations (Delmas, Serca, and Jambert 1997). NO_X is removed primarily by conversion to nitric acid (HNO₃) followed by wet or dry deposition (Ayers and Simpson 2006).

 NO_X and O_3 relative concentrations during the day are regulated by the following reactions (Sillman 1999; Atkinson 2000):

$$NO + O_3 \rightarrow NO_2 + O_2$$

$$NO_2 + \text{hv} \rightarrow NO + O(^3P)$$

$$O(^3P) + O_2 \rightarrow O_3$$
(1.3)

This process with and without the influence of VOCs (panel A and B respectively) is summarised in figure 1.5.

FIGURE 1.4: Tropospheric ozone processes, Figure 1 in Young et al. (2017). DOI: https://doi.org/10.1525/elementa.265.f1

1.2. Ozone 9

FIGURE 1.5: Figure showing NO, NO₂, and Ozone photoequilibrium cycle with and without (B, A respectively) influence from VOCs. Figure copied from Atkinson (2000).

1.2.3 Stratosphere to troposphere transport

Historically, ozone transported down from the stratosphere was thought to contribute 10-40 ppb to tropospheric ozone levels, matching tropospheric production (Atkinson 2000; Stohl et al. 2003). The proportion of tropospheric ozone due to transport from the stratosphere was revised down to around 10% over the years as measurement and modelling campaigns improved our understanding of global scale transport, mixing, and chemistry (Guenther et al. 2006; Monks et al. 2015). Intrusions of stratospheric air into the troposphere are often called Stratosphere to Troposphere Transport (STT) events. Although most tropospheric ozone comes from production, STT enhancements of ozone are measurable and can be regionally important (eg. Jacobson and Hansson 2000; Lelieveld et al. 2009; Kuang et al. 2017), and upper tropospheric ozone can be transported long distances (Cooper et al. 2004). An analysis of the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP) simulations by Young et al. (2013) found STT is responsible for $540 \pm 140 \, \text{Tg yr}^{-1}$, equivalent to $\sim 11\%$ of the tropospheric ozone column (Monks et al. 2015).

Ozone transported to the troposphere from the stratosphere can occur through diffusion (relatively slowly) or direct mixing (as STT). STT often occur as tongues of stratospheric air descend and get disconnected from the stratosphere, potentially due to low pressure systems and jet streams (Sprenger, Croci Maspoli, and Wernli 2003). Recently global chemical transport models (CTMs) have been used to trace how much ozone is being transported to the troposphere in this manner. There are a few methods of doing this, such as modeling ozone formed in (and transported from) the stratosphere (Ojha et al. 2016). Model based estimates require validation against

actual measurements, such as those from ozonesondes or satellites. Hegglin and Shepherd (2009) estimate that climate change will lead to increased STT. They posit that this is due to an acceleration in the Brewer Dobson circulation; which is the global scale model of transport of air in the troposphere and stratosphere. They estimate ~ 30 , and ~ 121 Tg yr $^{-1}$ increases by 2095 (relative to 1965) in the southern and northern hemispheres respectively, up by 23% globally.

Liu et al. (2017) examine southern hemispheric ozone and the processes which control its inter-annual variability (IAV). IAV is the standard deviation of ozone anomalies from the monthly mean. They show that ozone transported from the stratosphere plays a major role in the upper troposphere, especially over the southern Indian ocean during austral winter. STT mostly impacts the upper troposphere, although some areas are impacted right down to the surface. Kuang et al. (2017) found a measurable impact of STT ozone enhancement in the south east US using several different instruments. They also show how ozone depends on both the local topography, weather systems, and trace gases emitted and transported into the region. Liu et al. (2017) examined modelled tropospheric ozone sensitivity to various meteorological parameters. They found tropospheric ozone sensitivity to emissions from South America (0–20°S, 72.5–37.5°W), southern Africa (5–10°S, 12-38°E), and South to South east Asia (70-125°E, 10°S–40°N). In the US recent work by Lin et al. (2015) suggests that intrusions during spring are increasing surface ozone levels. They recommend improvements to understanding of the frequency and cause of STT are needed effectively implement air quality standards.

1.2.4 Chemical production

Ozone produced in the troposphere from precursors and radiation drive ozone levels, especially in the lower (near-surface) troposphere. The main processes involved are shown in figure 1.4, with ozone regulated by reactions 1.3. As discussed above STTs source $\sim 11\%$ of the tropospheric column of ozone, with the remainder produced photochemically (Monks et al. 2015). A recent summary by Young et al. (2017) estimates ozone production and loss in the troposphere to be \sim 4900 Tg yr $^{-1}$, and \sim 4500 Tg yr $^{-1}$ respectively. These numbers are at the global scale, and it should be noted that meteorology and topography can play massive roles due to large spatial variability in ozone (eg. Kuang et al. 2017).

Tropospheric ozone concentrations require climate and ozone precursor emissions; including NO, NO₂, CO, and VOCs such as HCHO (Atkinson 2000; Young et al. 2013; Marvin et al. 2017). Ozone predictions are uncertain and changing climate affects transport, deposition, destruction, and plant based precursor emissions. All of these processes are tightly coupled and difficult to accurately model, as they depend on uncertain assumptions such as CO₂ dependency (Young et al. 2013). Even with all the work done over the prior decades there remain large uncertainties about ozone precursors in the troposphere (Mazzuca et al. 2016).

Ozone is formed in the troposphere through oxidation of VOCs (described in Section 1.3) in the presence of NO_X . Net formation or loss of O_3 is determined by interactions between VOCs, NO_X , and HO_X , and is a complicated system of positive and negative feedbacks (Atkinson 2000). Figure 1.6 shows an example of this non-linear relationship between NO_X , VOCs, and ozone production as modelled in Mazzuca et al.

FIGURE 1.6: Ozone production rate dependent on NO_X and VOC concentrations (Mazzuca et al. 2016).

(2016). This non-linear relationship is examined in more detail in the following section (1.3). Recently the relationship has been examined on the intradiel timescale showing that ozone production can be more or less sensitive to VOCs at different hours (Mazzuca et al. 2016). This shows how important it is to correctly determine the precursors concentrations in order to estimate ozone levels and production.

Tropospheric ozone is lost via chemical destruction and dry deposition, estimated to be 4700 ± 700 Tg yr⁻¹ and 1000 ± 200 Tg yr⁻¹, respectively (Stevenson et al. 2006; Young et al. 2017). The main loss channel is through equation 1.1, where photolysis and collisions (increasing with pressure) create OH from the O_3 .

1.3 Volatile Organic Compounds

The least well understood precursors to tropospheric ozone production belong to a class of organic compounds. Organic compounds are members of a large class of chemicals whose molecules contain carbon, with the exception of a few compounds such as carbides, carbonates, and simple oxides of carbon and cyanide. Organic compounds can be categorised based on their vapour pressure, which is the tendency of a liquid or solid to vaporise. Compounds with high vapour pressures at standard temperature are classed as volatile, and have a felicity to evaporate at low temperatures. Plants contain tens of thousands of organic compounds, with fewer than 40 having high enough volatility to be emitted (Guenther et al. 2000). Gas phase emissions with higher vapour pressures can be oxidised into lower vapour pressure products which will partition between gas and particle phase, often called semi or non-volatile.

Atmospheric organic compounds are legion and differ by orders of magnitude with respect to their fundamental properties, such as volatility, reactivity, and cloud

droplet formation propensity, etc. Volatile organic compounds (VOCs) have vapour pressure greater than 10^{-5} atm, and are mostly generated naturally by plants, which emit around 1000 Tg yr⁻¹(Guenther et al. 1995; Glasius and Goldstein 2016). Due to their high volatility these compounds generally exist in the gas phase. Organic compounds with a lower volatility are classed as semi-volatile (SVOCs: vapour pressure between 10^{-5} and 10^{-11} atm) are found in both gas and particle phase depending on temperature and pressure. Organic compounds with even lower vapour pressure are generally found in the particle phase in aerosol particulate matter (Glasius and Goldstein 2016). Understanding the drivers of trends in biogenic VOC emissions (BVOCs) is required in order to estimate future carbon fluxes, changes in the water cycle, ozone production, air quality, and other climate responses (Yue, Unger, and Zheng 2015). In the last 20 years anthropogenic emissions of VOCs have been increasing while biogenic VOC emissions have decreased, due to rapid economic growth and lower annual temperatures (Stavrakou et al. 2014; Kwon et al. 2017).

Methane (CH₄) is one of the more abundant VOCs, however it is often classified separately and compared against non-methane VOCs (NMVOCs). NMVOCs include alkanes, alkenes, and aromatic hydrocarbons, with isoprene (an alkene) being the most abundant (Guenther et al. 1995). Methane is relatively long lived (years) and is well mixed in the atmosphere while other VOC levels are spatially diverse due to their shorter lifetimes. In this thesis I work towards a better understanding of the isoprene emissions coming from Australia.

VOCs are an important driver of atmospheric processes, especially near forests. VOCs are broken down into HCHO, O₃, CO₂ and many other species, mainly through oxidation by OH. VOC emissions result in radical cycling, acid deposition, production of tropospheric ozone, and secondary organic aerosols (SOAs) (Atkinson 2000; Kanakidou et al. 2005). VOC emissions affect surface pollution levels, potentially enhancing particulate matter (PM) and ozone levels. A regional-model study in Europe (Aksoyoglu et al. 2017) has also shown VOCs impact secondary inorganic aerosol concentrations. These have impacts on climate (through radiative forcing) and air quality (from ozone and SOA enhancements), affecting both human health and crop yields (Forster et al. 2007; Avnery et al. 2013; Lelieveld et al. 2015).

Ozone in rural areas is often higher than in populous cities, due to titration of ozone by NO in polluted areas (Cooper, Gilge, and Shindell 2014; Monks et al. 2015). In areas with high VOC concentrations, ozone production may be enhanced through the following reaction sequence (Sillman 1999):

$$VOC + OH + O_2 \rightarrow RO_2 + H_2O$$

 $RO_2 + NO + O_2 \rightarrow R'CHO + HO_2 + NO_2$ (1.4)

with R and R' representing organic species. The reactions of VOCs or CO with OH convert NO to NO_2 , which leads to ozone formation as NO_2 production in reaction 1 of 1.3 is bypassed.

One aspect associated with VOC emissions is the production of aerosols. Aerosols are suspended particulates and liquid compounds in the atmosphere, often called particulate matter (PM). PM in the atmosphere is a major problem, causing an estimated 2-3 million deaths annually (Hoek et al. 2013; Krewski et al. 2009; Silva et al. 2013; Lelieveld et al. 2015). Fine particulate matter ($PM_{2.5}$) penetrates deep into the lungs

and is detrimental to human health. Some PM comes from small organic aerosols (OA) emitted in the particulate phase and referred to as primary OA (POA).

A substantial amount of PM is due to gaseous organic compounds transforming in the troposphere leading to what is known as secondary OA (SOA) (Kroll and Seinfeld 2008). Formation of SOA is generally due to VOC oxidation and subsequent reactions, while removal from the atmosphere is largely due to wet or dry deposition, and cloud scavenging (Kanakidou et al. 2005). It can be difficult to attribute the formation of SOA, in part due to the complex relationship between NO_X , OH, O_3 , and the uncertainty surrounding precursor emissions. Most of the tropospheric SOA comes from biogenic precursors, the evidence for this has grown over the last two decades (Guenther et al. 1995; Kanakidou et al. 2005; Guenther et al. 2012). Improved concentration estimates of these precursors requires a better understanding of their emissions, which is one of the foci in this thesis.

Photolysis and oxidation of many VOCs initially form alkyl radicals (*R*). VOCs are removed mainly by photolysis and oxidation, but also by wet and dry deposition, reaction with NO₃, and ozonolysis (at night time or in polluted areas) (Atkinson and Arey 2003; Brown et al. 2009). The process of deposition only accounts for a small fraction of the VOC loss, with the possible exception of the long lived methane compound (Atkinson and Arey 2003).

1.3.1 Emissions

VOC emissions are often classified as either anthropogenic, biogenic, or pyrogenic. There are ten times the mass of NMVOCs from natural sources as there are from anthropogenic sources (Guenther et al. 2006; Kanakidou et al. 2005; Millet et al. 2006). Methane and isoprene each comprise around a third of the global total emissions of VOCs (Guenther et al. 2006). Major emitters are broadleafs (notably eucalypts), and shrubs (Guenther et al. 2006; Arneth et al. 2008; Niinemets et al. 2010; Monks et al. 2015). TODO: why do plants emit? increased canopy light penetration? Emissions are affected by various factors such as temperature, sunlight, soil moisture, etc. The ocean also plays a role in VOC emissions, with the Oceanic Niño Index (ONI) showing positive VOC emission anomalies associated with neighbouring countries (Stavrakou et al. 2014).

Globally around 710 - 1150 Tg C yr $^{-1}$ of BVOCs are emitted (**Lathiere2016**; Guenther et al. 1995; Lathière et al. 2006; Guenther et al. 2012). 90% of these emissions come from plants and trees, with the most dominant species being isoprene (C_5H_8) (\sim 50%), monoterpenes (C_10H_16), methanol (CH_3OH), ethanol (C_2H_6O), acetaldehyde (CH_3CHO), acetone ((CH_3)2CO), ethene (C_2H_4) and propene (C_3H_6) (together making up \sim 30%) (Guenther et al. 2012). Many of these estimates come from MEGAN, a bottom-up biogenic emissions model which is highly sensitive to several parameters including soil moisture and plant functional type. MEGAN has recently been analysed using 30 years of meteorological reanalysis information by Sindelarova et al. (2014). They estimate emissions of Biogenic VOCs (BVOCs) to be 760 Tg C yr $^{-1}$, 70% (532 Tg C yr $^{-1}$) of which is isoprene. This is similar to isoprene emission estimates from MEGAN itself, of 400-600 Tg C yr $^{-1}$ (Guenther et al. 2006). Another model (OR-CHIDEE, with inputs similar to MEGAN) estimates 752 \pm 16 Tg C yr $^{-1}$, sensitive to terrestrial vegetation variations (Lathière et al. 2006). MEGAN emissions estimates are

termed bottom-up, as opposed to top-down which are derived from satellite measurements of the products of various VOCs. Using GOME satellite HCHO and a Beyesian inversion technique to derive isoprene emissions, Shim et al. (2005) estimated global isoprene emissions to be ~ 566 Tg C yr $^{-1}$. This estimate is decreases simulated OH concentrations by $\sim 10\%$, to 9.5e5 molec cm $^{-3}$.

Global VOC levels are estimated at 85 %, 13 %, and 3 % from biogenic, anthropogenic, and pyrogenic sources respectively (Kanakidou et al. 2005; Kefauver, Filella, and Peñuelas 2014). Methane makes up a third of atmospheric VOCs and is relatively ubiquitous due to its longer lifetime. The main non-methane BVOC emissions are isoprene (44%) and monoterpenes (11%) (Guenther et al. 2000; Kefauver, Filella, and Peñuelas 2014). Land use changes can drastically affect isoprene sources, for instance in the tropics where large scale deforestation has converted forest into crop lands (Kanakidou et al. 2005). Due to the lack of in-situ ground based measurements, estimates of VOC emissions are uncertain, with large scale extrapolation required (Millet et al. 2006). In this thesis I'll be focusing on emissions of isoprene.

1.3.2 Isoprene

Isoprene, or 2-methylbuta-1,3-diene, is a VOC with the chemical formula C_5H_8 . It is of major importance to the atmosphere, as it is involved in various processes which alter the oxidative capacity of the atmosphere. Isoprene affects NO_X and HO_X cycling, see for example formulae 1.1, 1.3. In the presence of NO_X , isoprene forms tropospheric ozone and SOAs (Wagner 2002; Millet et al. 2006). It has a short lifetime during the day, roughly an hour due to OH oxidation (Atkinson and Arey 2003)).

Guenther et al. (1995), and subsequent updates (Guenther et al. 2000; Guenther et al. 2006; Guenther et al. 2012), have been used ubiquitously by the atmospheric community as a global estimate of isoprene emissions, at roughly 500-600 Tg yr $^{-1}$, emitted mostly during the day. Recently an estimate of global isoprene emissions, of around 465 Tg C yr $^{-1}$, has been made using a completely different model (Messina et al. 2016). The global emission factors used to derive both these estimates are based on modelling emissions from different plant species (phenotypes), and relatively few Australian species are used when forming in these estimates.

Measurements of isoprene are often uncertain or difficult to make accurately. Chamber experiments are used to determine how isoprene behaves once it is emitted into the atmosphere, however reaction rates may be unsuitable to the natural atmosphere which is often very different (Kanakidou et al. 2005; Nguyen et al. 2014). Improving chamber study methods could improve understanding of ambient atmospheric oxidation mechanisms of biogenic hydrocarbons (such as isoprene), which could reduce some of the high uncertainties involved with VOC chemistry (Nguyen et al. 2014). Uncertainties in emissions however require different techniques and measurements in order to be improved.

Isoprene emissions estimates are still fairly uncertain, as global measurements are difficult and regional emissions can be very different. The global uncertainty of isoprene emission was estimated to be a factor of 2 to 5 (250-750 Tg yr $^{-1}$) (Kanakidou et al. 2005). Improvements over the years have been incremental, and generally localised to regions of particular interest for air quality such as China and the USA TODO: find recent uncertainty estimate improvements examples. The lack of accuracy in BVOC

emissions estimates prevents accurate determinations of the sources and distribution of pollutants including ozone and organic aerosols. Accuracy in VOC measurements is important: it has been shown that even the diurnal pattern of isoprene emissions has an effect on modelling ground level ozone (Hewitt et al. 2011; Fan and Zhang 2004).

1.3.3 Isoprene chemistry

Isoprene forms many products with various lifetimes, here I will present an overview of some important mechanisms and products. Isoprene is emitted and enters the atmosphere in the gas phase, where it reacts quickly with OH and other radicals. One common compound which is produced by these reactions is HCHO, which is easier to measure and often used to estimate how much isoprene is being emitted. Alkenes (VOCs with double bonded carbon, such as isoprene) react with OH, ozone, or NO_3 , leading to organic peroxy radicals (ROO). These go on to form many products and lead to (amongst other things) aerosol, formaldehyde, and ozone formation, depending on sunlight and NO_X concentrations (Atkinson 2000). Reactions with NO can lead to ozone production within environments rich in isoprene or other NMVOCs (PATCHEN et al. 2007; Atkinson and Arey 2003).

Figure 1.7 shows the first stages of oxidation of isoprene by OH. Isoprene reactions are important to understand due to their impacts on air quality, ozone, and physical properties in the lower troposphere. The primary first step for atmospheric isoprene is photooxidation, reacting with OH to form isoprene hydroxyperoxy radicals (ISOPOO - a subset of ROO)) (Patchen2017; Wolfe et al. 2016; Marvin et al. 2017). This is largely split into two types of ISOPOO, based on which carbon the OH adducts to (see figure 1.7).

$$C_5H_8 + OH(+O_2) \rightarrow C_5\dot{H_9}O_3$$
 (1.5)

The many children processes and products which begin with isoprene oxidation are often called the isoprene (photochemical) cascade (**Paulot2012**; eg. Crounse et al. 2012; Wolfe et al. 2016).

Oxidation

The primary sink for isoprene is oxidation by OH. First isoprene has its double bond replaced by OH, as summarised by the equation from PATCHEN et al. (2007): $R-CH=CH-R'+OH\longrightarrow R-CH(OH)CH-R'$ where R and R' represent hydrocarbons. Ozonolysis and photolysis are lesser oxidation pathways for volatile alkenes, involving the splitting of carbon chains by ozone molecules or photons respectively:

$$VOC + (O_3/hv) \rightarrow RO_2$$

(Nguyen et al. 2016; Wolfe et al. 2016). Ozonolysis also leads to HCHO, with yields depending on subsequent reactions.

After oxidation by OH, the adducted OH then reacts with O_2 to produce ISOPOO, which can be any of six different isomers (PATCHEN et al. 2007). ISOPOO reacts with HO_2 or NO, producing stable products (often called oxidised VOCs or OVOCs). One important product produced (with varying yields) through each oxidation pathway is

Figure 1.7: Isoprene products following oxidation by OH, figure from Mao et al. (2013)

HCHO:

$$ISOPOO + (NO, HO_2, isomerisation) \rightarrow HCHO$$

During the day HCHO has a lifetime of 1-2 hrs, while ROO lasts ~ 100 s, making reaction 1.5 a rate limiting factor in HCHO production (Wolfe et al. 2016). ISOPOO also can isomerise and produce HPALDS (see figure 1.7), which also leads to HCHO.

There is uncertainty about which pathways are most important following ISOPOO production, affecting predictions by atmospheric models (Nguyen et al. 2014). This limits understanding of the relative importance of some chemical processes, such as auto-oxidation (of ISOPOO and other ROO) (Crounse et al. 2013). The reaction pathways depend on local concentrations of NO_X : the high and low NO_X pathways are dominated by NO and HO_2 reactions respectively. HO_2 reactions predominantly produce hydroxyhydroperoxides (ISOPOOH), while NO reactions produce isoprene nitrates (ISOPN) (Crounse et al. 2006). If measured, first generation ISOPN and ISOPOOH products can be used to determine the portion of isoprene oxidation following each pathway (eg. Yu et al. 2016). Globally around one third of ISOPOO react with HO_2 , and two thirds react with NO (Paulot et al. 2009b). Most of these reaction pathways produce HCHO, however this along with methyl vinyl ketone (MVK), and methacrolein (MACR) are formed at different yields between the two pathways (Marais et al. 2012; Liu et al. 2016b; Wolfe et al. 2016).

High NOx pathway

In the presence of NO_X , ISOPOO reacts with NO and forms ISOPN, which affect levels of both HO_X (H, OH, peroxy radicals) and NO_X . ISOPN generally act as a sink of HO_X , and can be a sink or reservoir for NO_X (Mao et al. 2013). A portion of the ISOPN are recycled back to NO_X , serving as a reservoir of nitrogen and allow its transport to the boundary layer of remote regions (PATCHEN et al. 2007; Paulot et al. 2009a; Yu et al. 2016). The nitrates can also build up in the winter, when removal processes are not as dominant (Lelieveld et al. 2009). Reactions of OH with NO_2 are the main radical sink in high- NO_X systems (Wolfe et al. 2012).

First generation ISOPN produce MVK($\sim 40\%$), MACR($\sim 26\%$), and HCHO($\sim 60\%$) at higher yields than is produced by ISOPOOH (Liu et al. 2013; Mao et al. 2013). The MVK and MACR products form additional HCHO within a few hours due to oxidation by OH (Palmer et al. 2006). Under high NO_X conditions there is a higher and faster yield of HCHO, with most of the ultimate HCHO production occurring within one day (Palmer et al. 2006).

Low NOx pathway

In low NO_X environments, ISOPOOH is formed in yields > 70%, while MACR, MVK, and HCHO are formed at $\sim 5\%$, $\sim 7\%$, and $\sim 12\%$ respectively (Paulot et al. 2009b; Mao et al. 2013). This ISOPOOH mostly reacts with OH to form IEPOX while regenerating OH (Mao et al. 2013). This pathway has lower and slower ultimate yields of HCHO from isoprene emissions when compared to the high-NO_X pathway (Palmer et al. 2006).

Isoprene oxidation and subsequent reactions are less well understood when lower concentrations of NO are present in the atmosphere. It was thought that in low NO

environments, like those far from anthropogenic pollution and fires, oxidation of isoprene would create ISOPOOH and reduce local concentrations of OH and HO₂ (Guenther et al. 2000; Paulot et al. 2009b). However this reduction was not seen in measurements and HO_X levels have been shown to be largely unaffected by isoprene concentrations (Paulot et al. 2009b). HO_X is recycled through dihydroxyperoxides (IEPOX), formed from ISOPOOH oxidation, and some HO_X is produced in the formation of MACR and MVK (Paulot et al. 2009b). Paulot et al. (2009b) estimated that 95 ± 45 Tg yr⁻¹ of IEPOX was being created in the atmosphere, which (at the time) was not modelled by CTMs. Peeters and Muller (2010) suggested that the work of Paulot et al. (2009b) only partially bridges the gap between clean air OH concentration measurements and models. They suggested four new mechanisms for OH recycling in these pristine conditions. These can be summarised as OH regenerating reactions which occur during photolysis of hydroperoxy-methyl-butenals (HPALDs), and resulting photolabile peroxy-acid-aldehydes (PACALDs). These reactions are highly non-linear and subject to large uncertainty, however they were shown to improve modeled HO_X concentrations against several campaigns. Peeters and Muller (2010) showed that HO₂ is produced at near unity yields following isoprene oxidation initiated by OH. Their results were backed up by observations of OH recycling observed in low NO conditions (Crounse et al. 2012).

Uncertainties and bias from measurements have made it more difficult to understand what happens in low NO_X conditions as many observations of OH were still quite under-predicted in models (Mao et al. 2012). Due to OVOC interference, measurements in low NO_X environments can lead to massively overestimated MVK and MACR yields (Nguyen et al. 2014). Nguyen et al. (2014) show preliminary estimates of low-NO yields of MVK and MACR to be $6\pm3\%$ and $4\pm2\%$ respectively, consistent with TODO:Liu et al. (2013), but only when cold-trapping methods are employed. Mao et al. (2012) showed that many instruments were generating OH internally. Model and measurement corrections have helped closed the gap between model predictions and detected concentrations of VOCs and OH (Mao et al. 2012).

Even with the recent boom in isoprene analysis, uncertainties remain in the isoprene oxidation mechanisms. Examples (taken from Nguyen et al. (2014)) include isoprene nitrate yields, which range from 4-15% (Paulot et al. 2009a), 90% disagreements in MACR and MVK yields (Liu et al. 2013), various possible sources for SOA (Chan et al. 2010; Surratt et al. 2010; Lin et al. 2013), unknown HPALD fates, incomplete O₂ incorporation (Peeters, Nguyen, and Vereecken 2009; Crounse et al. 2013), and under-characterised RO₂ lifetime impacts (Wolfe et al. 2012).

Night time processes

At night when OH concentrations have dropped, isoprene can remain in the atmosphere. Typically less than half of this night time isoprene is removed through ozonolysis (Atkinson and Arey 2003), however, in polluted areas where high levels of NO_X exist, isoprene is consumed by nitrate radicals (NO₃), which joins to one of the double bonds and produces organic nitrates in high yield (65% to 85%) (Mao et al. 2013). (todo: read mao2013 para 3 cites) NO₃ are largely formed through ozone reactions, as in equation 1.3. A build up of NO₃ radicals can be seen at night, when photolysis is not removing them (Atkinson 2000; Brown et al. 2009).

In areas with high NO_X levels, greater than 20% of the isoprene emitted late in the day ends up being oxidised by the NO_3 radical overnight (Brown et al. 2009). At night isoprene affects on both NO_X concentrations and ozone levels, and can form harmful organic nitrates and SOAs (Brown et al. 2009; Mao et al. 2013). These nitrates go on to produce further SOAs, largely due to NO_3 reacting with first generation isoprene oxidation products (Rollins et al. 2009). The night-time concentrations of OH and ozone also have a complex effect on NO_X removal in high latitude winters, when photolysis and NO reactions are reduced (Ayers and Simpson 2006).

1.4 Formaldehyde

formaldehyde (HCHO), aka methanal, methyl aldehyde, or methylene oxide, is of the aldehyde family. HCHO is an OVOC which is toxic, allergenic, and a potential carcinogen. In this thesis HCHO is used to estimate isoprene emissions over Australia. One of the major products of isoprene chemistry is HCHO. HCHO is important both for its own atmospheric impacts, and as a proxy for determination of isoprene emissions. Given a modelled yield of HCHO from isoprene, it is possible to work backwards from measured HCHO concentrations to determine the isoprene emissions. HCHO production does depend on NO_X concentrations, as it affects the yield from isoprene oxidation. HCHO yield is higher in the high- NO_X pathway (compared to the low- NO_X pathway) from isoprene reactions (Marais et al. 2012).

1.4.1 Sources and sinks

Background levels of HCHO in the atmosphere are driven by the oxidation of methane (CH₄) by the hydroxyl radical (OH), which produces \sim 970 Tg yr⁻¹(Fortems-Cheiney et al. 2012). Atkinson (2000) summarised the background formation of HCHO with the following reaction:

$$OH + CH_4(+h\nu) + 2NO + 2O_2 \rightarrow OH + HCHO + H_2O + 2O_3$$

which shows that photolysis and oxidation of methane forms HCHO and ozone in a process that regenerates the OH radicals. CH₄ concentrations are relatively well constrained in models, with the ACCMIP comparison showing only \sim 3% inter-quartile range (Young et al. 2013). There is a complex relationship between VOCs, HO_X, and NO_X: with higher levels of NO_X increasing the rate at which VOCs are converted into HCHO (Wolfe et al. 2016).

Within the continental boundary layer (CBL), HCHO is enhanced above background HCHO levels, due to NMVOC emissions reacting with OH radicals in the presence of NO_X (Wagner 2002; Millet et al. 2006; Kefauver, Filella, and Peñuelas 2014). The total contribution from NMVOC oxidation is ~ 358 Tg yr $^{-1}$ (Fortems-Cheiney et al. 2012). Enhancements to regional and continental HCHO are largely driven by isoprene emissions (Guenther et al. 1995; Palmer 2003; Shim et al. 2005; Kefauver, Filella, and Peñuelas 2014). This is true except near fires or anthropogenic sources of HCHO and precursors (Guenther et al. 1995; Kefauver, Filella, and Peñuelas 2014; Wolfe et al. 2016). Biomass burning (BB) can be a source of HCHO, and various

other pollutants, precursors, and aerosols (Guenther et al. 1995; Andreae 2001). Additionally HCHO is emitted into the atmosphere directly through fossil fuel combustion, natural gas flaring, ethanol refining, and agricultural activity (Wolfe et al. 2016).

Other terpenoids (monoterpenes, sesquiterpenes, etc.) can also produce HCHO, although generally to a lesser extent than isoprene, methane and biomass burning (Guenther et al. 2012). Many of the HCHO yields from terpenoids are estimated through chamber studies which examine molecular mass and charge after mixing the compound of choice into a known volume of air (eg. Nguyen et al. 2014). These conditions generally don't match those of the real world, where ambient air will have a cocktail of these compounds and other reactants. One issue with chamber studies is the difficulty they have trying to accurately reproduce ambient outside air, which limits the scope to which the studies may be applied (Nguyen et al. 2014).

Anthropogenic sources of HCHO are largely negligible, however in very large cities or by using oversampling techniques an anthropogenic signal can be found (Millet et al. 2008; Zhu et al. 2014). If the population centres and industrial districts are large enough they can emit huge amounts of VOCs into the atmosphere (Fu et al. 2007), leading to increased surface ozone levels (Zhu et al. 2014) In Australia this is not yet a major issue, however anthropogenic sources of pollution can be detected (see section 2.6.2.

In the past, HCHO levels were underestimated by models, often with large discrepancies, due to the poor understanding of methyl peroxy radical (CH₃OO) chemistry (Wagner 2002). Nowadays HCHO concentrations are better understood, however precursor emissions are one of the main unknowns (eg. Emmerson et al. 2016; Marvin et al. 2017). Marvin et al. (2017) found that discrepancies in modelled HCHO concentrations are primarily due to second and later generation isoprene oxidation chemistry.

HCHO has two major sinks, reactions with OH (oxidation), and photolysis (adding up to $\sim 1210~Tg~yr^{-1}$) (Levy 1972; CRUTZEN, LAWRENCE, and PÖSCHL 1999; Wagner 2002; Fortems-Cheiney et al. 2012; Kefauver, Filella, and Peñuelas 2014). These reactions lead to a daytime lifetime of a few hours (Atkinson 2000; Millet et al. 2006). Both these loss processes (photolysis, oxidation) form CO and hydroperoxyl radicals (HO₂), and have global significance to radiative forcing and oxidative capacity (Franco et al. 2015). The other major sinks are wet and dry deposition, although these are not as significant ($\sim 32~Tg~yr^{-1}$) (Atkinson 2000; Fortems-Cheiney et al. 2012).

1.4.2 Measurement techniques

There are a few ways to measure HCHO, including Fourier Transform Infra-Red (FTIR) Spectrometry and Differential Optical Absorption Spectroscopy (DOAS). FTIR examines the Fourier transform of a measured spectrum in order to detect things which affect that spectrum. DOAS methods are based on light interference and absorption through air masses.

The DOAS technique takes advantage of the optically thin nature of HCHO in order to linearise the radiance differential through air masses with and without HCHO, using the Beer-Lambert intensity law. This method is used both on the ground, and from space, globally for HCHO detection (Guenther et al. 1995; Gonzalez Abad et al. 2015; Davenport et al. 2015). As a trace gas HCHO interferes with light over a

FIGURE 1.8: HCHO spectrum, with a typical band of wavelengths used for DOAS path measurements. This is a portion of an image from Davenport et al. (2015).

few wavelength bands, which allows instruments to detect concentrations between a known light source and a detector. Figure 1.8 shows the interference spectrum of HCHO along with a typical band used to examine interference in the DOAS technique. One difficulty is that this interference is relatively small (HCHO is optically thin) and other compounds absorb light at similar wavelengths (Davenport et al. 2015).

FTIR and DOAS measurements have a range of uncertainties, including systematic and random measurement errors and uncertain apriori shape factors and water profiles (eg: Franco et al. (2015)). Other types of measurement involve directly measuring the air, and determining chemical compounds through their physical properties such as by mass spectrometry analysis of mass to charge ratios (m/z) of ionised air masses. Two examples of this include proton transfer reaction mass spectrometers (PTR-MS), and gas chromatography mass spectrometers (GC-MS). These instruments can be used to determine gas phase evolution of isoprene and monoterpene products such as HCHO (eg. Lee et al. 2006a; Nguyen et al. 2014; Wolfe et al. 2016; Lerner et al. 2017).

Other measurement techniques include chromatographic and fluorimetric methods, both of which differ widely from each other and the spectroscopic methods (Hak et al. 2005). Hak et al. (2005) examine a single air mass with 8 instruments using the four techniques (MAX-DOAS, FTIR, chromatographic, and flourimetric), and show that reasonable agreements can be achieved. Generally the measurements were close, the five Hantzsch instruments agreeing to within 11% (after removing two potentially faulty measurements), although different calibration standards were used. Titration for the different calibration solutions could not be resolved, which may account for absolute offsets up to 30%. These differences and non-uniformities between measurements (even among identical instruments) are part of the reason HCHO does not have a consistent network for global measurements like those for greenhouse gases or ozone (Fortems-Cheiney et al. 2012).

Satellite measurements

Satellites remotely sense atmospheric HCHO through irradiance measurements of solar light which has reflected off the earth's surface. These irradiances are affected by

FIGURE 1.9: An example spectrum showing interferences used for species concentration measurements by GOME-2. Image by EUMET-SAT and ESA (EUMETSAT 2015).

gases which exist along the reflected path of light between the detector, earth, and sun. The irradiance is then used to estimate how much of a particular gas exists along this path, which gives us an estimate which is called a slant column (SC). The retrieved SC of a particular gas (or species) can be transformed into a vertical column (VC) by scaling the path length in conjunction with accounting for the trace gas' light scattering properties. The scaling coefficient created to transform from SC to VC is called the Air Mass Factor (AMF).

Several satellites provide long term trace gas observations with near complete global coverage, including the ERS-2 launched in April 1995 which houses the GOME ultraviolet and visible (UV-Vis) spectrometer, the AURA launched in July 2004 which houses the OMI UV-Vis spectrometer, the MetOp-A and B launched in October 2006 and September 2012 respectively both housing a GOME-2 UV-Vis spectrometer. These satellites are on Low Earth Orbit (LEO) trajectories and overpass any area up to once per day. Satellites use DOAS techniques with radiative transfer calculations on solar radiation absorption spectra to measure column HCHO . An example of a spectrum retrieved from the GOME-2 instrument is given in figure 1.9.

In conjunction with atmospheric chemistry and radiative models, satellite measurements quantify the abundance of HCHO in the atmosphere. Isoprene is hard to measure directly due to its short lifetime and weak spectral absorption, instead HCHO is often used as a proxy (Millet et al. 2006; Fu et al. 2007; Dufour et al. 2008; Marais et al. 2012; Bauwens et al. 2013; Kefauver, Filella, and Peñuelas 2014; Bauwens et al. 2016; Surl, Palmer, and González Abad 2018). This leads to a method of isoprene

emissions estimation termed top-down (as opposed to bottom-up estimates). The existence of satellite data covering remote areas provides an opportunity to improve VOC emissions estimates leading to more robust models of global climate and chemistry. Satellite data gives us another way to estimate large scale isoprene emissions, and their subsequent chemistry. This method is described in detail in section 3.2.

1.5 Atmospheric Chemistry Modelling

Models can fill the gaps (both spatial and temporal) in measurement records, and can help us improve our understanding of the natural world. They are used to examine future outcomes resulting from changing our emissions, from small to large scales. They can be used to increase measurement accuracy (for instance in satellite measurements) and determine where we lack information, while also checking the performance of new instruments. Precisely representing various chemicals and reactions in the atmosphere allows efficient mitigation of pollution, since we can compare scenarios against one another. Models can always be expanded to include new compounds or processes, however validation is always necessary. Currently they require improved isoprene emissions and subsequent chemistry understanding for effective air quality determination (Marvin et al. 2017).

1.5.1 Box models

Box models are much smaller scale than global CTMs, examining one uniform environment with many parametrisations such as transport and emissions. Box models can be used to check chemical mechanisms in specific scenarios, such as high or low NO_X environments. For example: Marvin et al. (2017) use a box model matching conditions in southeast USA to evaluate isoprene mechanisms from several models. A box model involves modelling chemistry in a singular set of conditions without transport or any spatial gradients.

By allowing for interactions between boxes this concept can be extended to multiple-box models. These are simply multiple instances of single boxes with the addition of transport between them, which requires meteorological fields such as wind velocities and turbulence. The meteorology fields can be modelled, and/or input as parameters.

1.5.2 Chemical transport models

Chemical transport models (CTMs) provide a simulation of chemical densities and transport over time, through the atmosphere. They require many inputs (such as wind velocities) in order to accurately represent scenarios or regions on earth. Models of emissions are often used as drivers for atmospheric chemistry models, which require initial and boundary conditions in order to run. Chemistry in the atmosphere is a complex system of coupled reactions and dynamics, which can be solved using numerical partial differential equation solvers.

CTMs simulate production, loss, and transport of chemical species. This is generally calculated using one or both of the Eulerian (box) or Lagrangian (puff) frames of reference. CTMs normally solve continuity equations simultaneously for many coupled species. The continuity equations describe transport of a conserved quantity such

FIGURE 1.10: Standard box model parameters, image taken from Jacob (1999).

as mass or energy, which, solved together with production and loss of a chemical can provide detailed simulations of natural processes.

The general continuity equation links a quantity of a substance (q) to the field in which it flows and can be described by the formula:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot j = \sigma$$

where ρ is density of q in the field, t is time, ∇ is divergence, j is the flux (q per unit area per unit time entering or leaving the field), and σ is the generation or loss of q per unit volume per unit time.

The type of model best suited to modelling the entire earth uses the Eulerian frame of reference, where the atmosphere is broken up into 3-D boxes with densities and transport calculated and stored for sequential steps in time at each location. The mass balance equation must be satisfied in any realistic long term model and is as follows:

$$\frac{dm}{dt} = \sum sources - \sum sinks$$
$$= F_{in} + E + P - F_{out} - L - D$$

where m is mass of a chemical, E and D are emission and deposition, P and L are production and loss, and F is chemical transport in and out, as shown in figure 1.10. Many chemical species interact with each other through production and loss. Any large chemical model will solve this mass balance equation over highly coupled arrays of partial differential equations, which becomes computation time expensive as complexity increases.

Contemporary models generally use mathematical differential solving tools of various complexity (often called chemical mechanisms) to solve chemical equations in order to predict chemical species evolutions over time. Different solvers may be slower or faster and more suited to particular situations based on the stability of the equations and systems involved, and chemical mechanisms may vary in how many reactions and chemicals are listed and grouped together. For example: Since $[O] << [O_3]$ the

chemical family O_X ($O_X \equiv O + O_3$) can be used to simplify chemistry simulations and approximate O_3 concentrations (Brasseur and Jacob 2017, Chapter 3). Different chemical mechanisms may find different solutions to the same problems, due to how the numerical solvers are implemented, which can affect model output (Zhang et al. 2012).

1.5.3 Emissions

There are two commonly used ways of estimating isoprene emissions, top-down or bottom-up. Bottom-up emission estimates generally model the flora which emit isoprene, along with the rates of emissions and things which affect these rates. Isoprene is emitted by trees or shrubs, depending on several parameters such as leaf area index (LAI), emission factors (EF), plant functional type (PFT), and light density fraction (LDF). Models use these properties of the emitters in order to estimate how much isoprene is being produced (eg. Guenther et al. 1995; Guenther et al. 2006). Understanding how much isoprene is emitted, when and by what, is complicated. One frequently used bottom up emissions model is the Model of Emissions of Gases and Aerosols from Nature (MEGAN, Guenther et al. (1995)). Since little data exists with which to verify many of these bottom-up emission inventories, they can be uncertain on a large scale.

Bottom up models of VOC emissions are sensitive to parameters. For example Stavrakou et al. (2014) examined modelled Asian emissions and altered model parameters for temperature, plant type emission factors, incoming solar radiation (insolation) intensity, land use changes, and palm tree forest expansion. Changes were constrained by a network of radiation measurements and some experiments with south east Asian forest emissions - and led to reduction in apriori isoprene emissions by a factor of two over the region in 2005. Sensitivity to these factors is pervasive in bottom up emissions models (eg. Marais et al. 2014; Miller et al. 2014; Messina et al. 2016). One of the important uncertainties seen in MEGAN is the isoprene emissions due to PFTs. If one plant species is emitting heavily near a measuring instrument, possible overestimations may occur due to extrapolation over the entire forest. Global emissions inventories like MEGAN often have large areas based on extrapolations which introduces uncertainties (Miller et al. 2014). Current emissions estimates require more validation against observations, and recently a comparison of two major VOC models (MEGAN and ORCHIDEE) was undertaken by Messina et al. (2016) reiterating this requirement. In their work they examine model sensitivities and show that the most important parameters are LAI, EF, PFT, and LDF. There is high uncertainty in LAI and EF, which require more or improved measurements at the global scale, as well as more PFTs and improved LDF parameterisation (Messina et al. 2016).

1.5.4 Uncertainties

Here I will attempt to list and partially explain the major uncertainties models have in relation to VOCs, and ozone. TODO: Move these uncertainties to the sections where they are applicable.

Emissions Inventories

Using different emissions inventories in a CTM can have large impacts on the simulation. Natural (biogenic or pyrogenic) and human driven (anthropogenic) emissions often drive a large fraction of atmospheric oxidation and radical chemistry, especially in the continental boundary layer. Emissions inventories have been found to be generally OK at larger (regional to global) scales, as long as they are derived from accurate input measurements (Zeng et al. 2015).

It is important to note that many estimates of isoprene emission are based on a few algorithms which can depend greatly on input parameters (Arneth et al. 2008; Niinemets et al. 2010). Arneth et al. (2008) argue that this monopoly of emissions estimates may be leading us to an incorrect understanding of isoprene chemistry. Yue, Unger, and Zheng (2015) has shown that this is still a problem by looking at land carbon fluxes and modelling the sensitivity to VOC emissions estimates using two independent models of VOC emission. One model is photosynthesis based and estimates isoprene emissions using electron transfer energies and leaf physiology (Niinemets et al. 1999), while the other (MEGAN) uses the light and canopy temperature ((Guenther et al. 1995; Arneth et al. 2007) TODO: Read Arneth et al., 2007; Unger et al., 2013). Both are sensitive to light and temperature parameterisations.

Resolution

todo: Yu2016 paper.

GEOS-Chem simulations are somewhat sensitive to the gridbox resolution. For example: Wild and Prather (2006) show that reduced resolution increases OH concentrations and ozone production rates. Christian, Brune, and Mao (2017) find small changes in OH (< 10%) in OH, HO₂ and ozone concentrations local to the north american arctic, when changing from 4 by 5 to 2 by 2.5° resolution.

For many global scale analyses, errors from resolution are less important than those from chemistry, meteorology, and emissions (Christian, Brune, and Mao 2017). Many models lack in-situ measurements with which to verify their chemical mechanisms, leading to large discrepancies, as seen in Marvin2017a TODO: briefly talk about Marvin2017a takeaways.

Chemistry mechanisms

There is still much work to be done in models to correctly simulate emissions and processes which lead to HCHO and ozone. Often HCHO is used as a way of checking if precursors are correctly modelled since HCHO measurements are more readily available (for instance from satellites). GEOS-Chem has recently been analysed for ozone and oxidant (OH and HO₂) sensitivity to the processes within the model along with inputs which drive it (Christian, Brune, and Mao 2017). Christian, Brune, and Mao (2017) found that GEOS-Chem ozone was most sensitive to NO₂ photolysis, the $NO_2 + OH$ reaction rate, and precursor emissions such as VOCs.

Marvin et al. (2017) suggest that isoprene mechanisms in several contemporary models (including GEOS-Chem) are inadequate. They show that for a specific measurement campaign, the HCHO concentrations are underestimated in a way that can

not be easily fixed through rate constant changes. Recently Marvin et al. (2017) compared five global CTMs isoprene mechanisms by evaluating simulated HCHO mixing ratios compared to in situ measurements from the Southeast Nexus (SENEX) aircraft campaign (in southeastern USA). They compared five models (GEOS-Chem, CB05, CB6r2, MCMv3.2, and MCMv3.3.1) and found all of them underestimated the HCHO concentrations (by 15-30%).

Another important factor in determining the yield of HCHO and ozone from BVOCs is the local concentration of NO_X . Travis et al. (2016) show how modelled surface ozone is overestimated due to high estimates of NO_X emissions, which affect oxidative capacity and VOC reactions in the US.

Clouds

One of the major uncertainties in chemical, climate, radiation, and weather models is cloud formation and dynamics. Clouds are remarkably complex at a much finer scale than can be accurately modelled by global chemistry models (with current processing power). Globally over half (50-60%) of the world is covered by clouds, with $\sim 10\%$ of them being rain-clouds (Kanakidou et al. 2005). Wet scavenging performed in clouds not only depends on large scale cloud processes, but also on the microphysics of aerosols being scavenged, differing between aerosol sizes and hygroscopic properties. Cloud filtering is performed on both OMHCHO and OMNO2d products, as those measurements are too uncertain or do not capture enough information. This has been seen to introduces a clear-sky bias - as monthly averages do not include cloudy conditions (Surl, Palmer, and González Abad 2018).

Soil Moisture

Modelled emissions are sensitive to soil moisture, especially near the wilting point, below which trees stop emitting isoprene and other VOCs completely as they can no longer draw water (Bauwens et al. 2016). MEGAN can account for soil moisture by applying it as an emission factor which scales the emission rate of various species. Many environmental parameters are affected by soil moisture, which all play a role at fine scales to surface emissions (Rowntree and Bolton 1983; Chen and Dudhia 2001). Droughts effects can be difficult to measure, as they are a multi-scale problem which affects various aspects of the land-air interface including plant emissions and dry deposition (Wang et al. 2017).

1.6 Australia and the southern hemisphere

Australia has a unique climate, along with soil moisture, clay content and other important properties which affect VOC emissions. These properties are only sparsely measured in Australia due to the spread out distribution of population centres, which make many areas very difficult or expensive to reach. In Australia most long term air quality or composition measurements are performed in or near large cities. Australia is dominated by areas with little anthropogenic influence and few ground based measurements of the natural emissions taking place (VanDerA et al. 2008). Since many

FIGURE 1.11: Forest types in Australia (http://www.agriculture.gov.au/abares/forestsaustralia/australias-forests)

Australian cities are on the edge of regions with rich VOC emissions, it is very important to clarify the quantity, type, and cause of VOC emissions. Understanding of emissions from these areas is necessary to inform national policy on air pollution levels.

The vegetation in Australia is diverse, a summary is provided by ABARES using the national forest inventory at http://www.agriculture.gov.au/abares/forestsaustralia/australias-forests. Figure 1.11 shows the different forest types and their locations within Australia, highlighting that much of our forested lands are near population centres along the east coast. 16% of Australia is covered by forest, most (75%) of which is Eucalyptus.

Fire emissions include a range of chemical compounds and particulates and each year the effects of fire or burning seasons blanket the northern and southern hemispheres independently. Biomass burning in southern Africa and South America has previously been shown to have a major influence on atmospheric composition in Australia (Oltmans et al. 2001; Gloudemans et al. 2007; Edwards et al. 2006), particularly from July to December (Pak et al. 2003; Liu et al. 2016a).

It has been estimated by MEGAN that the Australian outback is among the worlds' strongest isoprene emitters with forests in SE Australia having emission factors greater than 16 mg m $^{-2}$ h $^{-1}$ (see figure 1.12) (Guenther et al. 2006; Guenther et al. 2012). Measurement campaigns in SE Australia have since cast doubt on the emission factors used by MEGAN, potentially due to poor characterisation of Eucalyptus trees and soil

Fig. 2. Global distribution of landscape-average isoprene emission factors (mg isoprene m⁻² h⁻¹). Spatial variability at the base resolution (\sim 1 km) is shown by regional images of the southeastern U.S. and southeastern Australia.

FIGURE 1.12: Part of a figure from Guenther et al. (2006) showing global isoprene emission factors.

moisture (Emmerson et al. 2016). These emissions factor estimates are not well verified and measurements of isoprene (or other BVOC) emissions are sparse and infrequent in Australia (Sindelarova et al. 2014; Bauwens et al. 2016).. In addition, monoterpene emissions are 2-4 times too low, which may be due to underestimated emission rates for many Eucalypt species (Winters et al. 2009; Emmerson et al. 2016).

1.6.1 Ozone

Surface ozone levels over Australia are relatively low (\sim 20 ppb) (Young et al. 2017), however it remains unclear how much we would expect this to change in the future as relatively little is known about precursors and influx for the continent. Australian air quality is monitored independently within each state, using several metrics. These metrics are measured by varying numbers of monitoring stations in each state. Measurement stations are generally located in population centres, and don't regularly measure isoprenoid emissions. This is an important omission as these naturally emitted precursor gases often get transported into cities where they affect air quality through production of O_3 and other pollutants.

Generally STT over Australia affects the upper troposphere only, however ozone enhancements can reach quite low during heavy storms and cyclonic weather patterns (Alexander et al. 2013). TODO: More on Australian ozone STT Ozone enhancements over the southern ocean signify either transported pollution or stratospheric influx, due to lack of precursor emissions TODO:cite. Analysis over this region is relatively sparse TODO:cite, and quantification is difficult without large scale extrapolations.

1.6.2 VOCs

Bottom up inventories of VOCs remain largely uncertain due to extensive extrapolation over plant functional types, changing land cover, and parameterised environmental stressors (Guenther et al. 2000; Kanakidou et al. 2005; Millet et al. 2006). Müller et al. (2008) show how isoprene is poorly captured by the MEGAN model and analyse the affect of changing the soil moisture parameter. Sindelarova et al. (2014) show reductions in modelled Australian isoprene emissions of 50% when incorporating soil moisture in MEGAN estimates. Uncertainties in isoprene emissions could explain why models of HCHO over Australia are poor at reproducing satellite measurements (Stavrakou et al. 2009).

Australia suffers from poor characterisation of plant emissions, partly because emission factors are based on northern hemispheric data. Many plant emissions rates have not been published, such as those for any Australian acacias. Some Eucalypt emissions are based on samples from young trees, which may emit more isoprene than older trees (Emmerson et al. 2016). Additionally soil moisture is not well quantified which has a large effect on emissions. Soil type and moisture, along with drought threshholds, have poorly understood effects on plant emissions in Australia Changes in parameterisation of soil moisture in the MEGAN lead to massive changes in Australian isoprene emission estimates (Sindelarova et al. 2014). Over Australia MEGAN suffers from a lack of studied plant functional types and their emissions (eg. Müller et al. 2008). Emission rates from various species of eucalypt and other flora are highly complex, depending on current and recent weather, temperature, tree age, health, etc. (Guenther et al. 2012). With this complexity added to the diversity of tree species in Australia as well as sparse rural data collections it is hard to model and verify emissions.

Emmerson et al. (2016) analysed isoprene and monoterpene emissions sensitivities in a regional model of atmospheric chemistry over southeast Australia, using four campaigns which are also examined in this thesis. They show that modelled emissions require spatially and temporally resolved changes. Emmerson et al. (2016) suggest that monoterpenes may be emitted in similar quantites to isoprene, with more measurements required to determine if this is so. They compare emissions estimates from MEGAN against field campaign data and see overestimated isoprene emissions, as well as underestimated monoterpene emissions. Their work suggests that MEGAN estimates of isoprene emissions may be 2-6 times too high, and monoterpene emissions ~ 3 times too low over southeast Australia.

Improvements to emissions models require improved understanding of regions and their behaviour. Satellite measurements can be used to improve understanding of Australian emissions. As HCHO is produced with relatively high yield after isoprene is emitted, we can use satellite measurements to estimate isoprene emissions (Palmer et al. 2001; Millet et al. 2006; Bauwens et al. 2016, e.g.).

1.6.3 Measurements

TODO: Brief overview of all the measurement campaigns, pointing to Modelling and Data chapter for more details. There are relatively few measurements of isoprene in the southern hemisphere, including MUMBA(TODO CITE), SPSS(cite), Tumbarumba

1.7. Aims 31

(Emmerson et al. 2016), and that girl from Macquarie University with an instrument in the daintree rainforest(TODO CITE, DESCRIBE). For details on the MUMBA campaign see Section 2.2.2. An airflight campaign (HIPPO) measuring isoprene was also performed in 2009-2011? TODO: ask Jenny re this one.

A particulate and air quality measurement campaign took place in Sydney using PTR-MS and GC-FID, for details see Section 2.2.3.

One method of measuring ozone in the troposphere and stratosphere is by releasing weather balloons (with attached ozone detectors) which take readings as they rise up to around 30 km, giving a vertical profile of concentrations. Since 1986, Lauder, New Zealand (45°S, 170°E) has released ozonesondes allowing a multi-decadal analysis of ozone concentrations over the city (Brinksma et al. 2002). Kerguelan Island (49.2°S, 70.1°E), also has a record of ozonesonde profiles, which are directly in the path of biomass burning smoke plumes transported off shore from Africa (Baray et al. 2012). SHADOZ is the southern hemispheric additional ozone project, which have released sondes from 15 sites at different times http://tropo.gsfc.nasa.gov/shadoz/.

A smaller network of ozonesonde release sites is operated by TODO: get details for sondes I use in ozone chapter.

1.7 Aims

In this thesis I aim to improve understanding of natural contributions to ozone over Australia and the southern ocean. The two largest contributors to tropospheric ozone concentrations are chemical production (driven by precursor emissions) and stratospheric transport. I aim to improve understanding of both of these sources using existing satellite and ground-based datasets along with GEOS-Chem modelled outputs.

Calculation of isoprene to HCHO yields over Australia is required to create top-down estimates. This requires among other things an idea of which VOCs are present and their yields of HCHO. The technique of determining isoprene emissions from satellite detected HCHO is called satellite inversion. I aim to determine isoprene to HCHO yield over Australia, and the importance of relevant parameters using GEOS-Chem. This includes an examination of how well GEOS-Chem simulates several species such as NO_X , isoprene, and HCHO compared to campaign and satellite data that exists for Australia. TODO: summary of stuff in modelling chapter. Work to complete this aim is in Chapter 2.

One of the aims in this thesis is to use available satellite measurements to improve the estimates of isoprene emissions in Australia. Satellites which overpass daily record reflected solar (and emitted terrestrial) radiation, and give us measurements over all of Australia. Combining satellite data with model outcomes provides a platform for the understanding of natural processes which is especially useful over Australia. Due to the low availability of in-situ data over most of the Australian continent, a combination of the models with satellite can fill the gap of understanding of emissions from Australian landscapes. Improved emissions estimates will in turn improve the accuracy of CTMs, providing better predictions of atmospheric composition and its response to ongoing environmental change. The work done to complete this aim is in Chapter 3.

To improve understanding of ozone transported to the troposphere from the stratosphere in Australia and the southern ocean. Stratospheric transport is the second largest driver of tropospheric ozone concentrations, and an improved understanding of transported ozone can be determined from ozonesonde measurements. Ozonesondes provide a glimpse of the vertical ozone profile up to ~ 30 km, and we use a Fourier filter to determine how often stratospheric transport is occuring at three sites: Melbourne, Macquarie Island, and Davis Station. Combining transport event frequency analysis with modelled ozone distributions is used to derive a new method of detection and quantification of transported ozone in Chapter 4.

TODO: conclusions chapter aims? I aim to describe relative importance of sources of tropospheric ozone in Australia, as well as seasonality.

Bibliography

- Brasseur, Guy P and Daniel J Jacob (2017). *Modeling of Atmospheric Chemistry*. Cambridge University Press. DOI: 10.1017/9781316544754.
- Hsieh, Nan-Hung and Chung-Min Liao (2013). "Fluctuations in air pollution give risk warning signals of asthma hospitalization". In: *Atmospheric Environment* 75, pp. 206–216. DOI: 10.1016/j.atmosenv.2013.04.043. URL: http://dx.doi.org/10.1016/j.atmosenv.2013.04.043.
- Avnery, Shiri et al. (2013). "Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O 3 pollution". In: *Atmospheric Environment* 71.13, pp. 408–409. ISSN: 13522310. DOI: 10.1016/j.atmosenv.2012.12.045. URL: http://dx.doi.org/10.1016/j.atmosenv.2011.01.002.
- Yue, Xu et al. (2017). "Ozone and haze pollution weakens net primary productivity in China". In: *Atmospheric Chemistry and Physics* 17.9, pp. 6073–6089. ISSN: 1680-7324. DOI: 10.5194/acp-17-6073-2017. URL: https://www.atmos-chem-phys.net/17/6073/2017/.
- Myhre, G and D Shindell (2013). Chapter 8: Anthropogenic and Natural Radiative Forcing, in Climate Change 2013: The Physical Science Basis, Working Group 1 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013. Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.
- Monks, P. S. et al. (2015). "Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer". In: *Atmospheric Chemistry and Physics* 15.15, pp. 8889–8973. ISSN: 1680-7324. DOI: 10.5194/acp-15-8889-2015. URL: http://www.atmos-chem-phys.net/15/8889/2015/.
- Lelieveld, J. et al. (2013). "Model calculated global, regional and megacity premature mortality due to air pollution". In: *Atmospheric Chemistry and Physics* 13.14, pp. 7023–7037. ISSN: 16807324. DOI: 10.5194/acp-13-7023-2013.
- Ayers, James D and William R Simpson (2006). "Measurements of N2O5 near Fairbanks, Alaska". In: *Journal of Geophysical Research: Atmospheres* 111.D14, n/a–n/a. ISSN: 2156-2202. DOI: 10.1029/2006JD007070. URL: http://dx.doi.org/10.1029/2006JD007070.
- Lelieveld, J. et al. (2009). "Severe ozone air pollution in the Persian Gulf region". In: *Atmospheric Chemistry and Physics* 9, pp. 1393–1406. ISSN: 1680-7324. DOI: 10.5194/acp-9-1393-2009.
- Ashmore, M R, Lisa. Emberson, and Murray Frank (2003). *Air pollution impacts on crops and forests : a global assessment*. Ed. by Lisa Emberson, Mike Ashmore, and Frank Murray. Imperial College Press London; River Edge, NJ, xiii, 372 p.: ISBN: 186094292.

Stevenson, D. S. et al. (2013). "Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)". In: *Atmospheric Chemistry and Physics* 13.6, pp. 3063–3085. ISSN: 16807316. DOI: 10.5194/acp-13-3063-2013.

- Selin, N E et al. (2009). "Global health and economic impacts of future ozone pollution". In: *Environmental Research Letters* 4.4, p. 044014. ISSN: 1748-9326. DOI: 10. 1088/1748-9326/4/4/044014.
- Atkinson, Roger (2000). "Atmospheric chemistry of VOCs and NO(x)". In: *Atmospheric Environment* 34.12-14, pp. 2063–2101. ISSN: 13522310. DOI: 10.1016/S1352-2310(99) 00460-4.
- Fuentes, J. D. et al. (2000). "Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review". In: *Bulletin of the American Meteorological Society* 81.7, pp. 1537–1575. ISSN: 00030007. DOI: 10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO; 2. arXiv: arXiv: 1011.1669v3. URL: http://journals.ametsoc.org/doi/abs/10.1175/1520-0477(2000)081%3C1537%3ABHITAB%3E2.3.CO%3B2.
- Paulot, Fabien et al. (2009b). "Unexpected Epoxide Formation in the". In: *Science* 325.2009, pp. 730–733. ISSN: 0036-8075. DOI: 10.1126/science.1172910.
- Atkinson, Roger and Janet Arey (2003). "Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review". In: *Atmospheric Environment* 37.SUPPL. 2. ISSN: 13522310. DOI: 10.1016/S1352-2310(03)00391-1.
- Kanakidou, M et al. (2005). "Physics Organic aerosol and global climate modelling: a review". In: *Atmospheric Chemistry and Physics* 5, pp. 1053–1123.
- Stocker, T.F. et al. *IPCC*, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Tech. rep. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. DOI: 10.1017/CB09781107415324.
- Intergovernmental Panel on Climate Change (IPCC): Climate Change: The Scientific Basis (2001). Tech. rep. Cambridge University Press. URL: http://www.ipcc.ch/ipccreports/tar/.
- Forster, P. et al. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[Solomon, S., D. Qin, M. Man. URL: https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2.html (visited on 01/14/2016).
- Hegglin, Michaela I and Theodore G Shepherd (2009). "Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux". In: *Nature Geoscience* 2.10, pp. 687–691. DOI: 10.1038/ngeo604. URL: http://dx.doi.org/10.1038/ngeo604.
- Jacob, Daniel J (1999). Introduction to Atmospheric Chemistry. Ed. by Daniel J Jacob. Princeton University Press. URL: http://acmg.seas.harvard.edu/people/faculty/djj/book/index.html.
- Huang, Guanyu et al. (2017). "Validation of 10-year SAO OMI Ozone Profile (PROFOZ) Product Using Aura MLS Measurements". In: *Atmospheric Measurement Techniques Discussions*, pp. 1–25. ISSN: 1867-8610. DOI: 10.5194/amt-2017-92. URL: https://www.atmos-meas-tech-discuss.net/amt-2017-92/.

Young, P J et al. (2017). "Tropospheric Ozone Assessment Report (TOAR): Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends". In: *Elementa: Science of the Anthropocene*, pp. 0-84. ISSN: 2325-1026. DOI: 10.1525/elementa.265. URL: http://eprints.lancs.ac.uk/88836/1/TOAR_Model_Performance_07062017.pdf%OAhttp://www.igacproject.org/sites/default/files/2017-05/TOAR-Model_Performance_draft_for_open_comment.pdf.

- Cape, J. N. (2008). "Surface ozone concentrations and ecosystem health: Past trends and a guide to future projections". In: *Science of the Total Environment* 400.1-3, pp. 257–269. ISSN: 00489697. DOI: 10.1016/j.scitotenv.2008.06.025. URL: http://dx.doi.org/10.1016/j.scitotenv.2008.06.025.
- Delmas, R, D Serca, and C Jambert (1997). "Global inventory of NOx sources". In: Nutrient cycling in agroecosystems 48.x, pp. 51–60. ISSN: 1385-1314. DOI: 10.1023/A:1009793806086. URL: http://link.springer.com/article/10.1023/A:1009793806086.
- Sillman, Sanford (1999). "The relation between ozone, NO and hydrocarbons in urban and polluted rural environments". In: *Atmospheric Environment* 33. DOI: https://doi.org/10.1016/S1352-2310(98)00345-8. URL: http://www-personal.umich.edu/\$\sim\$sillman/web-publications/Sillmanreview99.pdfhttps://www.sciencedirect.com/science/article/pii/S1352231098003458.
- Stohl, Andreas et al. (2003). "A new perspective of stratosphere-troposphere exchange". In: *Bulletin of the American Meteorological Society* 84.11, pp. 1565–1573+1473. ISSN: 00030007. DOI: 10.1175/BAMS-84-11-1565.
- Guenther, A et al. (2006). "Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)". In: *Atmospheric Chemistry and Physics* 6.11, pp. 3181–3210. DOI: 10.5194/acp-6-3181-2006. URL: http://dx.doi.org/10.5194/acp-6-3181-2006.
- Jacobson, M C and H Hansson (2000). "Organic atmospheric aerosols: Review and state of the science". In: *Reviews of Geophysics* 38.38, pp. 267–294. ISSN: 87551209. DOI: 10.1029/1998RG000045. URL: http://dx.doi.org/10.1029/1998RG000045.
- Kuang, Shi et al. (2017). "Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere-to-troposphere transport and biomass burning: Simultaneous ground-based lidar and airborne measurements". In: *Journal of Geophysical Research: Atmospheres* 122.2, pp. 1293–1311. ISSN: 21698996. DOI: 10.1002/2016JD026078. URL: http://doi.wiley.com/10.1002/2016JD026078.
- Cooper, O. et al. (2004). "On the life cycle of a stratospheric intrusion and its dispersion into polluted warm conveyor belts". In: *Journal of Geophysical Research* 109.23, pp. 1–18. ISSN: 01480227. DOI: 10.1029/2003JD004006.
- Young, P. J. et al. (2013). "Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)". In: *Atmospheric Chemistry and Physics* 13.10, pp. 5277–5298. ISSN: 16807316. DOI: 10.5194/acp-13-5277-2013.
- Sprenger, Michael, Mischa Croci Maspoli, and Heini Wernli (2003). "Tropopause folds and cross-tropopause exchange: A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001". In: *Journal of Geophysical*

- Research 108.D12. ISSN: 2156-2202. DOI: 10.1029/2002JD002587. URL: http://dx.doi.org/10.1029/2002JD002587.
- Ojha, Narendra et al. (2016). "Secondary ozone peaks in the troposphere over the Himalayas". In: *Atmospheric Chemistry and Physics Discussions* 17. November, pp. 1–25. ISSN: 1680-7375. DOI: 10.5194/acp-2016-908. URL: http://www.atmos-chemphys-discuss.net/acp-2016-908/.
- Liu, Junhua et al. (2017). "Causes of interannual variability over the southern hemispheric tropospheric ozone maximum". In: *Atmos. Chem. Phys* 17.5, pp. 3279–3299. ISSN: 1680-7324. DOI: 10.5194/acp-17-3279-2017. URL: www.atmos-chem-phys.net/17/3279/2017/http://www.atmos-chem-phys.net/17/3279/2017/.
- Lin, Meiyun et al. (2015). "Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions." In: *Nature communications* 6.May, p. 7105. ISSN: 2041-1723. DOI: 10.1038/ncomms8105. URL: http://www.nature.com/ncomms/2015/150512/ncomms8105/full/ncomms8105.html.
- Marvin, Margaret R. et al. (2017). "Impact of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from SENEX". In: Atmospheric Environment 164, pp. 325–336. ISSN: 13522310. DOI: 10. 1016/j.atmosenv.2017.05.049. URL: https://ac.els-cdn.com/S1352231017303618/1-s2.0-S1352231017303618-main.pdf?_tid=3de7eaaa-06ff-11e8-99a9-00000aacb360&acdnat=1517455576_09d7334af609ed43470155c1c42fad5fhttp://www.sciencedirect.com/science/article/pii/S1352231017303618.
- Mazzuca, Gina M. et al. (2016). "Ozone production and its sensitivity to NOx and VOCs: Results from the DISCOVER-AQ field experiment, Houston 2013". In: *Atmospheric Chemistry and Physics* 16.22, pp. 14463–14474. ISSN: 16807324. DOI: 10.5194/acp-16-14463-2016.
- Stevenson, D S et al. (2006). "Multimodel ensemble simulations of present-day and near-future tropospheric ozone". In: *Journal of Geophysical Research* 111.D8. DOI: 10. 1029/2005jd006338. URL: http://dx.doi.org/10.1029/2005JD006338.
- Guenther, Alex et al. (2000). "Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America". In: *Atmospheric Environment* 34.12-14, pp. 2205–2230. ISSN: 13522310. DOI: 10.1016/S1352-2310(99)00465-3.
- Guenther, Alex et al. (1995). "A global model of natural volatile organic compound emissions". In: Journal of Geophysical Research 100.D5, pp. 8873–8892. ISSN: 0148-0227. DOI: 10.1029/94JD02950. URL: http://onlinelibrary.wiley.com/doi/10.1029/94JD02950/full%5Cnhttp://doi.wiley.com/10.1029/94JD02950http://onlinelibrary.wiley.com/doi/10.1029/94JD02950/full.
- Glasius, Marianne and Allen H. Goldstein (2016). "Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry". In: *Environmental Science and Technology* 50.6, pp. 2754–2764. ISSN: 15205851. DOI: 10.1021/acs.est.5b05105.
- Yue, X., N. Unger, and Y. Zheng (2015). "Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades". In: *Atmospheric Chemistry and Physics* 15.20, pp. 11931–11948. ISSN: 16807324. DOI: 10.5194/acp-15-11931-2015.

Stavrakou, T. et al. (2014). "Isoprene emissions over Asia 1979-2012: Impact of climate and land-use changes". In: *Atmospheric Chemistry and Physics* 14.9. ISSN: 16807324. DOI: 10.5194/acp-14-4587-2014.

- Kwon, Hyeong-Ahn et al. (2017). "Sensitivity of formaldehyde (HCHO) column measurements from a geostationary satellite to temporal variation of the air mass factor in East Asia". In: *Atmospheric Chemistry and Physics* 17.7, pp. 4673–4686. ISSN: 1680-7324. DOI: 10.5194/acp-17-4673-2017. URL: http://www.atmos-chemphys.net/17/4673/2017/.
- Aksoyoglu, Sebnem et al. (2017). "Secondary inorganic aerosols in Europe: sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate". In: *Atmospheric Chemistry and Physics* 17.12, pp. 7757–7773. ISSN: 1680-7324. DOI: 10.5194/acp-17-7757-2017. URL: https://www.atmos-chem-phys.net/17/7757/2017/.
- Lelieveld, J et al. (2015). "The contribution of outdoor air pollution sources to premature mortality on a global scale". In: *Nature* 525.7569, pp. 367–371. DOI: 10.1038/nature15371. URL: http://dx.doi.org/10.1038/nature15371.
- Cooper, O R, S Gilge, and D T Shindell (2014). "Global distribution and trends of tropospheric ozone: An observation-based review". In: pp. 1–28. DOI: 10.12952/journal.elementa.000029. URL: https://www.elementascience.org/articles/10.12952/journal.elementa.000029/.
- Hoek, Gerard et al. (2013). "Long-term air pollution exposure and cardio- respiratory mortality: a review". In: *Environmental Health* 12.1, p. 43. DOI: 10.1186/1476-069x-12-43. URL: http://dx.doi.org/10.1186/1476-069x-12-43.
- Krewski, D et al. (2009). "Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality". In: *Res Rep Health Eff Inst* 140, pp. 5–36. ISSN: 1041-5505 (Print) 1041-5505 (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/19627030.
- Silva, Raquel A et al. (2013). "Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change". In: *Environ. Res. Lett.* 8.3, p. 34005. DOI: 10.1088/1748-9326/8/3/034005. URL: http://dx.doi.org/10.1088/1748-9326/8/3/034005.
- Kroll, Jesse H. and John H. Seinfeld (2008). "Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere". In: *Atmospheric Environment* 42.16, pp. 3593–3624. ISSN: 13522310. DOI: 10.1016/j.atmosenv.2008.01.003. URL: http://www.sciencedirect.com.ezproxy.uow.edu.au/science/article/pii/S1352231008000253.
- Guenther, A. B. et al. (2012). "The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions". In: *Geoscientific Model Development* 5.6, pp. 1471–1492. ISSN: 1991959X. DOI: 10.5194/gmd-5-1471-2012.
- Brown, S. S. et al. (2009). "Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol". In: *Atmospheric Chemistry and Physics* 9.9, pp. 3027–3042. ISSN: 16807316. DOI: 10.5194/acp-9-3027-2009.

Millet, Dylan B et al. (2006). "Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission". In: *J. Geophys. Res.* 111.D24. DOI: 10.1029/2005jd006853. URL: TODO.

- Arneth, A et al. (2008). "Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?" In: *Atmos. Chem. Phys* 8.x, pp. 4605–4620. ISSN: 1680-7375. DOI: 10.5194/acpd-8-7017-2008.
- Niinemets, U. et al. (2010). "The emission factor of volatile isoprenoids: Stress, acclimation, and developmental responses". In: *Biogeosciences* 7.7, pp. 2203–2223. ISSN: 17264170. DOI: 10.5194/bg-7-2203-2010.
- Lathière, J et al. (2006). "Impact of climate variability and land use changes on global biogenic volatile organic compound emissions". In: *Atmospheric Chemistry and Physics* 6.2003, pp. 2129–2146. ISSN: 16807324. DOI: 10.5194/acp-6-2129-2006. URL: www.atmos-chem-phys.net/6/2129/2006/.
- Sindelarova, K. et al. (2014). "Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years". In: *Atmospheric Chemistry and Physics* 14.17, pp. 9317–9341. ISSN: 16807324. DOI: 10.5194/acp-14-9317-2014. arXiv: arXiv:1011.1669v3.
- Shim, Changsub et al. (2005). "Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde column measurements". In: *Journal of Geophysical Research Atmospheres* 110.24, pp. 1–14. ISSN: 01480227. DOI: 10.1029/2004JD005629.
- Kefauver, Shawn C., Iolanda Filella, and Josep Peñuelas (2014). "Remote sensing of atmospheric biogenic volatile organic compounds (BVOCs) via satellite-based formaldehyde vertical column assessments". en. In: *International Journal of Remote Sensing*. URL: http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.968690#.VkqEubNM61M.
- Wagner, V (2002). "Are CH2O measurements in the marine boundary layer suitable for testing the current understanding of CH4 photooxidation?: A model study". In: *Journal of Geophysical Research* 107.D3, p. 4029. ISSN: 0148-0227. DOI: 10.1029/2001JD000722. URL: http://doi.wiley.com/10.1029/2001JD000722.
- Messina, Palmira et al. (2016). "Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters". In: *Atmospheric Chemistry and Physics* 16.22, pp. 14169–14202. ISSN: 16807324. DOI: 10. 5194/acp-16-14169-2016. URL: http://www.atmos-chem-phys.net/16/14169/2016/acp-16-14169-2016.pdf.
- Nguyen, T. B. et al. (2014). "Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): Mechanistic chamber studies on the oxidation of biogenic compounds". In: *Atmospheric Chemistry and Physics* 14.24. ISSN: 16807324. DOI: 10.5194/acp-14-13531-2014.
- Hewitt, C N et al. (2011). "Ground-level ozone influenced by circadian control of isoprene emissions". In: *Nature Geoscience* 4.10, pp. 671–674. DOI: 10.1038/ngeo1271. URL: http://dx.doi.org/10.1038/ngeo1271.
- Fan, Jiwen and Renyi Zhang (2004). "Atmospheric oxidation mechanism of isoprene". In: *Environmental Chemistry* 1.3, pp. 140–149. ISSN: 14482517. DOI: 10.1071/EN04045. URL: http://dx.doi.org/10.1071/en04045.

PATCHEN, AMIE K. et al. (2007). "Direct Kinetics Study of the Product-Forming Channelsof the Reaction of Isoprene-Derived Hydroxyperoxy Radicals with NO". In: *International journal of Chemical Kinetics* 31.5, pp. 493–499. ISSN: 13000527. DOI: 10. 1002/kin. URL: http://onlinelibrary.wiley.com/wol1/doi/10.1002/kin. 20248/full.

- Mao, Jingqiu et al. (2013). "Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry". In: *Journal of Geophysical Research Atmospheres* 118.19, pp. 11256–11268. ISSN: 21698996. DOI: 10.1002/jgrd.50817.
- Wolfe, G. M. et al. (2016). "Formaldehyde production from isoprene oxidation across NOx regimes". In: *Atmospheric Chemistry and Physics* 16.x, pp. 2597–2610. ISSN: 16807324. DOI: 10.5194/acp-16-2597-2016. URL: www.atmos-chem-phys.net/16/2597/2016/.
- Crounse, John D et al. (2012). "Atmospheric Fate of Methacrolein. 1. Peroxy Radical Isomerization Following Addition of OH and O2". In: *Physical Chemistry* m.
- Nguyen, Tran B. et al. (2016). "Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene". In: *Phys. Chem. Chem. Phys.* 18.15, pp. 10241–10254. ISSN: 1463-9076. DOI: 10.1039/C6CP00053C. URL: http://xlink.rsc.org/?DOI=C6CP00053C.
- Crounse, John D. et al. (2013). "Autoxidation of organic compounds in the atmosphere". In: *Journal of Physical Chemistry Letters* 4.20, pp. 3513–3520. ISSN: 19487185. DOI: 10.1021/jz4019207. URL: http://pubs.acs.org/doi/abs/10.1021/jz4019207.
- Crounse, John D. et al. (2006). "Measurement of gas-phase hydroperoxides by chemical ionization mass spectrometry". In: *Analytical Chemistry* 78.19, pp. 6726–6732. ISSN: 00032700. DOI: 10.1021/ac0604235. URL: https://pubs.acs.org/doi/abs/10.1021/ac0604235.
- Yu, Karen et al. (2016). "Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions". In: *Atmospheric Chemistry and Physics* 16.7, pp. 4369–4378. ISSN: 16807324. DOI: 10.5194/acp-16-4369-2016. URL: http://acmg.seas.harvard.edu/publications/2016/Yu_ACP_2016.pdf.
- Marais, E A et al. (2012). "Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns". In: *Atmospheric Chemistry and Physics* 12.3, pp. 7475–7520. DOI: 10.5194/acp-12-6219-2012. URL: http://dx.doi.org/10.5194/acp-12-6219-2012.
- Liu, Yingjun et al. (2016b). "Isoprene photochemistry over the Amazon rainforest". In: *Proceedings of the National Academy of Sciences* 113.22, pp. 6125–6130. ISSN: 0027-8424. DOI: 10.1073/pnas.1524136113. URL: http://www.pnas.org/content/113/22/6125.abstract.
- Paulot, F. et al. (2009a). "Isoprene photooxidation: new insights into the production of acids and organic nitrates". In: *Atmospheric Chemistry and Physics* 9.4, pp. 1479–1501. ISSN: 1680-7324. DOI: 10.5194/acp-9-1479-2009.
- Wolfe, Glenn M. et al. (2012). "Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs)". In: *Physical Chemistry Chemical Physics* 14.20, p. 7276. ISSN: 1463-9076. DOI: 10.1039/c2cp40388a. URL: http://xlink.rsc.org/?DOI=c2cp40388a.

Liu, Y. J. et al. (2013). "Production of methyl vinyl ketone and methacrolein via the hydroperoxyl pathway of isoprene oxidation". In: *Atmospheric Chemistry and Physics* 13.11, pp. 5715–5730. ISSN: 1680-7324. DOI: 10.5194/acp-13-5715-2013. URL: http://www.atmos-chem-phys.net/13/5715/2013/.

- Palmer, Paul I et al. (2006). "Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column". In: *J.Geophys.Res.* 111, p. D12315. ISSN: 0148-0227. DOI: 10.1029/2005JD006689. URL: http://dx.doi.org/10.1029/2005JD006689.
- Peeters, Jozef and Jean-Francis Muller (2010). "HOx radical regeneration in isoprene oxidation via peroxy radical isomerisations. II: experimental evidence and global impact". In: *Physical Chemistry Chemical Physics* 12.42, p. 14227. ISSN: 1463-9076. DOI: 10.1039/c0cp00811g. URL: http://pubs.rsc.org/en/content/articlepdf/2010/cp/c0cp00811g.
- Mao, J. et al. (2012). "Insights into hydroxyl measurements and atmospheric oxidation in a California forest". In: *Atmospheric Chemistry and Physics* 12.17, pp. 8009–8020. ISSN: 16807316. DOI: 10.5194/acp-12-8009-2012.
- Chan, A. W. H. et al. (2010). "Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation". In: *Atmospheric Chemistry and Physics* 10.15, pp. 7169–7188. ISSN: 1680-7324. DOI: 10.5194/acp-10-7169-2010. URL: http://www.atmos-chem-phys.net/10/7169/2010/.
- Surratt, Jason D et al. (2010). "Reactive intermediates revealed in secondary organic aerosol formation from isoprene". In: *PNAS* 107.15, pp. 6640–6645. DOI: 10.1073/pnas.0911114107. URL: http://www.pnas.org/content/107/15/6640.full.pdf.
- Lin, Ying-Hsuan et al. (2013). "Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides". In: DOI: 10.1073/pnas.1221150110. URL: http://www.pnas.org/content/110/17/6718.full.pdf.
- Peeters, J., T. L. Nguyen, and L. Vereecken (2009). "HOx radical regeneration in the oxidation of isoprene". In: *Physical Chemistry Chemical Physics* 11.28, p. 5935. ISSN: 1463-9076. DOI: 10.1039/b908511d. URL: http://xlink.rsc.org/?DOI=b908511d.
- Rollins, A W et al. (2009). "Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields". In: *Atmos. Chem. Phys. Atmospheric Chemistry and Physics* 9, pp. 6685–6703. URL: www.atmos-chem-phys.net/9/6685/2009/.
- Fortems-Cheiney, A. et al. (2012). "The formaldehyde budget as seen by a global-scale multi-constraint and multi-species inversion system". In: *Atmospheric Chemistry and Physics* 12.15, pp. 6699–6721. ISSN: 16807316. DOI: 10.5194/acp-12-6699-2012. URL: http://www.atmos-chem-phys.net/12/6699/2012/acp-12-6699-2012.pdf.
- Palmer, Paul I (2003). "Mapping isoprene emissions over North America using formaldehyde column observations from space". In: *J. Geophys. Res.* 108.D6. DOI: 10.1029/2002jd002153. URL: http://dx.doi.org/10.1029/2002jd002153.
- Andreae, M O (2001). "Emission of trace gases and aerosols from biomass burning". In: *Biogeochemistry* 15.4, pp. 955–966. URL: http://onlinelibrary.wiley.com/doi/10.1029/2000GB001382/epdf.

Millet, Dylan B. et al. (2008). "Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor". In: *Journal of Geophysical Research Atmospheres* 113.2, pp. 1–18. ISSN: 01480227. DOI: 10.1029/2007JD008950.

- Zhu, Lei et al. (2014). "Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns". In: *Environmental Research Letters* 9.11, p. 114004. ISSN: 1748-9326. DOI: 10.1088/1748-9326/9/11/114004. URL: http://stacks.iop.org/1748-9326/9/i=11/a=114004?key=crossref.3d2869ee02fd4f0792f831ac8cbec117.
- Fu, Tzung-may et al. (2007). "Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone". In: 112, pp. 1–15. DOI: 10.1029/2006JD007853.
- Emmerson, Kathryn M. et al. (2016). "Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia". In: *Atmospheric Chemistry and Physics* 16.11, pp. 6997–7011. ISSN: 1680-7324. DOI: 10.5194/acp-16-6997-2016. URL: http://www.atmos-chem-phys.net/16/6997/2016/.
- Levy, Hiram (1972). "Photochemistry of the lower troposphere". In: *Planetary and Space Science* 20.6, pp. 919–935. ISSN: 00320633. DOI: 10.1016/0032-0633(72)90177-8.
- CRUTZEN, PAUL J, MARK G LAWRENCE, and ULRICH PÖSCHL (1999). "On the background photochemistry of tropospheric ozone". In: *Tellus A* 51.1, pp. 123–146. ISSN: 1600-0870. DOI: 10.1034/j.1600-0870.1999.t01-1-00010.x. URL: http://dx.doi.org/10.1034/j.1600-0870.1999.t01-1-00010.x.
- Franco, B. et al. (2015). "Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations". In: *Atmospheric Measurement Techniques* 8.4, pp. 1733–1756. ISSN: 18678548. DOI: 10.5194/amt-8-1733-2015.
- Gonzalez Abad, G. et al. (2015). "Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval". In: *Atmospheric Measurement Techniques* 8.1, pp. 19–32. ISSN: 18678548. DOI: 10.5194/amt-8-19-2015.
- Davenport, J. J. et al. (2015). "A measurement strategy for non-dispersive ultra-violet detection of formaldehyde in indoor air: spectral analysis and interferent gases". In: *Measurement Science and Technology* 015802. December 2015, p. 15802. ISSN: 0957-0233. DOI: 10.1088/0957-0233/27/1/015802. URL: http://dx.doi.org/10.1088/0957-0233/27/1/015802.
- Lee, Anita et al. (2006a). "Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes". In: 111.Ci, pp. 1–18. DOI: 10.1029/2005JD006437.
- Lerner, Brian M. et al. (2017). "An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere". In: *Atmospheric Measurement Techniques* 10.1, pp. 291–313. ISSN: 18678548. DOI: 10.5194/amt-10-291-2017. URL: https://www.atmos-meas-tech.net/10/291/2017/amt-10-291-2017.pdf.
- Hak, C. et al. (2005). "Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air". In: *Atmospheric Chemistry and Physics Discussions* 5.3, pp. 2897–2945. ISSN: 1680-7316. DOI: 10.5194/acpd-5-2897-2005.

EUMETSAT (2015). GOME2. URL: http://www.eumetsat.int/website/home/ Satellites/CurrentSatellites/Metop/MetopDesign/GOME2/index.html.

- Dufour, G. et al. (2008). "SCIAMACHY formaldehyde observations: constraint for isoprene emissions over Europe?" In: *Atmospheric Chemistry and Physics* 8.6, pp. 19273–19312. ISSN: 1680-7324. DOI: 10.5194/acpd-8-19273-2008.
- Bauwens, M et al. (2013). "Satellite-based isoprene emission estimates (2007–2012) from the GlobEmission project". In: *Proceedings of the ACCENT-Plus Symposium, Atmospheric Composition Change-Policy Support and Science, Urbino*, pp. 17–20.
- Bauwens, Maite et al. (2016). "Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations". In: *Atmospheric Chemistry and Physics Discussions* March, pp. 1–45. ISSN: 1680-7375. DOI: 10.5194/acp-2016-221. URL: http://www.atmos-chem-phys-discuss.net/acp-2016-221/.
- Surl, Luke, Paul I Palmer, and Gonzalo González Abad (2018). "Which processes drive observed variations of HCHO columns over India?" In: *Atmospheric Chemistry and Physics* 18.March, pp. 4549–4566. DOI: 10.5194/acp-18-4549-2018. URL: https://doi.org/10.5194/acp-18-4549-2018.
- Zhang, Yang et al. (2012). "Impact of gas-phase mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) predictions: Mechanism implementation and comparative evaluation". In: *Journal of Geophysical Research: Atmospheres* 117.D1, n/a–n/a. DOI: 10.1029/2011JD015775. URL: http://doi.wiley.com/10.1029/2011JD015775.
- Marais, E A et al. (2014). "Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter". In: *Atmospheric Chemistry and Physics* 14.15, pp. 7693–7703. DOI: 10.5194/acp-14-7693-2014. URL: http://dx.doi.org/10.5194/acp-14-7693-2014.
- Miller, C. et al. (2014). "Glyoxal retrieval from the Ozone Monitoring Instrument". In: *Atmospheric Measurement Techniques* 7.11, pp. 3891–3907. ISSN: 1867-8548. DOI: 10. 5194/amt-7-3891-2014. URL: http://www.atmos-meas-tech.net/7/3891/2014/.
- Zeng, G. et al. (2015). "Multi-model simulation of CO and HCHO in the Southern Hemisphere: comparison with observations and impact of biogenic emissions". In: *Atmospheric Chemistry and Physics* 15.13, pp. 7217–7245. ISSN: 1680-7324. DOI: 10.5194/acp-15-7217-2015. URL: http://www.atmos-chem-phys.net/15/7217/2015/
- Niinemets, U. et al. (1999). "A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus". In: *Plant, Cell and Environment* 22.11, pp. 1319–1335. ISSN: 01407791. DOI: 10.1046/j.1365-3040.1999.00505.x.
- Arneth, Almut et al. (2007). "CO2 inhibition of global terrestrial isoprene emissions: Potential implications for atmospheric chemistry". In: *Geophysical Research Letters* 34.18, p. L18813. DOI: 10.1029/2007GL030615. URL: http://doi.wiley.com/10.1029/2007GL030615.
- Wild, Oliver and Michael J. Prather (2006). "Global tropospheric ozone modeling: Quantifying errors due to grid resolution". In: *Journal of Geophysical Research Atmospheres* 111.11, pp. 1–14. ISSN: 01480227. DOI: 10.1029/2005JD006605.

Christian, Kenneth E, William H Brune, and Jingqiu Mao (2017). "Global sensitivity analysis of the GEOS-Chem chemical transport model: ozone and hydrogen oxides during ARCTAS (2008)". In: *Atmos. Chem. Phys* 17, pp. 3769–3784. DOI: 10.5194/acp-17-3769-2017. URL: www.atmos-chem-phys.net/17/3769/2017/.

- Travis, Katherine R et al. (2016). "Why do models overestimate surface ozone in the Southeast United States?" In: *Atmos. Chem. Phys* 16, pp. 13561–13577. DOI: 10. 5194/acp-16-13561-2016. URL: www.atmos-chem-phys.net/16/13561/2016/.
- Rowntree, P. R. and J. A. Bolton (1983). "Simulation of the atmospheric response to soil moisture anomalies over Europe". In: *Quarterly Journal of the Royal Meteorological Society* 109.461, pp. 501–526. ISSN: 00359009. DOI: 10.1002/qj.49710946105. URL: http://doi.wiley.com/10.1002/qj.49710946105.
- Chen, Fei and Jimy Dudhia (2001). "Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity". In: Monthly Weather Review 129. URL: https://journals.ametsoc.org/doi/pdf/10.1175/1520-0493%282001%29129%3C0569%3ACAALSH%3E2.0.C0%3B2.
- Wang, Yuxuan et al. (2017). "Adverse effects of increasing drought on air quality via natural processes". In: *Atmos. Chem. Phys* 175194, pp. 12827–12843. DOI: 10.5194/acp-17-12827-2017. URL: https://www.atmos-chem-phys.net/17/12827/2017/acp-17-12827-2017.pdf.
- VanDerA, R J et al. (2008). "Trends seasonal variability and dominant NO x source derived from a ten year record of NO 2 measured from space". In: *J. Geophys. Res.* 113.D4. DOI: 10.1029/2007jd009021. URL: http://dx.doi.org/10.1029/2007jd009021.
- Oltmans, J et al. (2001). "Ozone in the Pacific tropical troposphere from ozonesonde observations". In: *Journal of Geophysical Research* 106.D23, pp. 32503–32525.
- Gloudemans, Annemieke et al. (2007). "Evidence for long-range transport of carbon monoxide in the Southern Hemisphere from SCIAMACHY observations". In: *European Space Agency, (Special Publication)* 33.SP-636, pp. 1–5. ISSN: 03796566. DOI: 10.1029/2006GL026804.
- Edwards, D. P. et al. (2006). "Satellite-observed pollution from Southern Hemisphere biomass burning". In: *Journal of Geophysical Research* 111.14, pp. 1–17. ISSN: 01480227. DOI: 10.1029/2005JD006655.
- Pak, B.C.a et al. (2003). "Measurements of biomass burning influences in the troposphere over southeast Australia during the SAFARI 2000 dry season campaign". In: Journal of Geophysical Research 108.13, pp. 1–10. ISSN: 0148-0227. DOI: 10.1029/2002JD002343. URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0742322536&partnerID=40&md5=cafaeef03b948fb456696583ed3ab9a5.
- Liu, Junhua et al. (2016a). "Causes of interannual variability of tropospheric ozone over the Southern Ocean". In: *Atmospheric Chemistry and Physics Discussions* October, pp. 1–46. ISSN: 1680-7316. DOI: 10.5194/ACP-2016-692.
- Winters, Anthony J et al. (2009). "Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia". In: *Atmospheric Environment* 43.19, pp. 3035–3043. ISSN: 13522310. DOI: 10.1016/j.atmosenv. 2009.03.026.

Alexander, S. P. et al. (2013). "High resolution VHF radar measurements of tropopause structure and variability at Davis, Antarctica (69 S, 78 E)". In: *Atmospheric Chemistry and Physics* 13.6, pp. 3121–3132. ISSN: 16807324. DOI: 10.5194/acp-13-3121-2013. URL: http://www.atmos-chem-phys.net/13/3121/2013/.

- Müller, J.-F. et al. (2008). "Global isoprene emissions estimated using MEGAN ECMWF analyses and a detailed canopy environment model". In: *Atmospheric Chemistry and Physics Discussions* 7.6, pp. 15373–15407. DOI: 10.5194/acpd-7-15373-2007. URL: http://dx.doi.org/10.5194/acpd-7-15373-2007.
- Stavrakou, T et al. (2009). "Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns". In: *Atmospheric Chemistry and Physics* 9.3, pp. 1037–1060. DOI: 10.5194/acp-9-1037-2009. URL: http://dx.doi.org/10.5194/acp-9-1037-2009.
- Palmer, Paul I et al. (2001). "Air mass factor formulation for spectroscopic measurements from satellites' Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment". In: *Journal of Geophysical Research* 106.D13.
- Brinksma, E. J. et al. (2002). "Five years of observations of ozone profiles over Lauder , New Zealand". In: *Journal of Geophysical Research* 107.D14, pp. 1–11. ISSN: 0148-0227. DOI: 10.1029/2001JD000737. URL: http://doi.wiley.com/10.1029/2001JD000737.
- Baray, Jean-Luc et al. (2012). "One year ozonesonde measurements at Kerguelen Island (49.2S, 70.1E): Influence of stratosphere-to-troposphere exchange and long-range transport of biomass burning plumes". In: *Journal of Geophysical Research* 117.D6. ISSN: 2156-2202. DOI: 10.1029/2011JD016717. URL: http://dx.doi.org/10.1029/2011JD016717.
- Dunne, Erin et al. (2017). "Comparison of VOC measurements made by PTR-MS, Adsorbent Tube/GC-FID-MS and DNPH-derivatization/HPLC during the Sydney Particle Study, 2012: a contribution to the assessment of uncertainty in current atmospheric VOC measurements". In: *Atmospheric Measurement Techniques Discussions*, pp. 1–24. ISSN: 1867-8610. DOI: 10.5194/amt-2016-349. URL: https://www.atmos-meas-tech-discuss.net/amt-2016-349/.
- Kurosu, T and K Chance (2014). OMIReadme. URL: https://www.cfa.harvard.edu/atmosphere/Instruments/OMI/PGEReleases/READMEs/OMHCHO_README_v3.0.pdf.
- Chen, D. et al. (2009). "Regional CO pollution in China simulated by the high-resolution nested-grid GEOS-Chem model". In: *Atmospheric Chemistry and Physics Discussions* 9.2, pp. 5853–5887. ISSN: 1680-7324. DOI: 10.5194/acpd-9-5853-2009. URL: http://dx.doi.org/10.5194/acp-9-3825-2009.
- Giglio, Louis, James T. Randerson, and Guido R. Van Der Werf (2013). "Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4)". In: *Journal of Geophysical Research* 118.1, pp. 317–328. ISSN: 21698961. DOI: 10.1002/jgrg.20042.
- Horowitz, Larry W. et al. (1998). "Export of reactive nitrogen from North America during summertime: Sensitivity to hydrocarbon chemistry". In: *Journal of Geophysical Research* 103.D11, pp. 13451–13476. ISSN: 0148-0227. DOI: 10.1029/97JD03142. URL: http://doi.wiley.com/10.1029/97JD03142http://www.agu.org/pubs/crossref/1998/97JD03142.shtml.

Crounse, John D et al. (2011). "Peroxy radical isomerization in the oxidation of isoprene". In: *Physical Chemistry Chemical Physics* 13.30, pp. 13607–13613. ISSN: 1463-9076. DOI: doi:10.1039/c1cp21330j. URL: http://dx.doi.org/10.1039/C1CP21330J.

- Taraborrelli, D. et al. (2012). "Hydroxyl radical buffered by isoprene oxidation over tropical forests". In: *Nature Geoscience* 5.3, pp. 190–193. ISSN: 17520894. DOI: 10. 1038/ngeo1405. URL: http://dx.doi.org/10.1038/ngeo1405https://www.nature.com/articles/ngeo1405.pdf.
- Jozef, Peeters et al. (2014). "Hydroxyl Radical Recycling in Isoprene Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism". In: *Journal of Physical Chemistry*.
- Guenther, Alex (2016). MEGAN. URL: http://lar.wsu.edu/megan/.
- Jin, Xiaomeng et al. (2017). "Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends". In: *Journal of Geophysical Research: Atmospheres* 122.19, pp. 10439–10461. ISSN: 21698996. DOI: 10.1002/2017JD026720.
- Martin, Randall V et al. (2002). "Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations". In: 107. DOI: 10. 1029/2001JD001480.
- Leue, C et al. (2001). "Quantitative analysis of NO x emissions from Global Ozone Monitoring Experiment satellite image sequences". In: *J. Geophys. Res.* 106.D6, p. 5493. DOI: 10.1029/2000jd900572. URL: http://dx.doi.org/10.1029/2000jd900572.
- Schenkeveld, V. M. Erik et al. (2017). "In-flight performance of the Ozone Monitoring Instrument". In: *Atmospheric Measurement Techniques* 10.5, pp. 1957–1986. ISSN: 1867-8548. DOI: 10.5194/amt-10-1957-2017. URL: http://www.atmos-meas-tech-discuss.net/amt-2016-420/https://www.atmos-meas-tech.net/10/1957/2017/.
- Lorente, Alba et al. (2017). "Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals". In: *Atmospheric Measurement Techniques* 2, pp. 1–35. ISSN: 1867-8610. DOI: 10.5194/amt-10-759-2017. URL: https://www.atmos-meas-tech.net/10/759/2017/amt-10-759-2017.htmlhttp://www.atmos-meas-tech-discuss.net/amt-2016-306/.
- Instrument, O M I (2002). "OMI Algorithm Theoretical Basis Document Volume I". In: I.August, pp. 1–50.
- Eskes, H J and K F Boersma (2003). "Averaging kernels for DOAS total-column satellite retrievals". In: *Atmospheric Chemistry and Physics* 3.1, pp. 1285–1291. ISSN: 1680-7324. DOI: 10.5194/acp-3-1285-2003. URL: http://dx.doi.org/10.5194/acpd-3-895-2003.
- Lamsal, L N et al. (2014). "Evaluation of OMI operational standard NO 2 column retrievals using in situ and surface-based NO 2 observations". In: *Atmos. Chem. Phys* 14, pp. 11587–11609. DOI: 10.5194/acp-14-11587-2014. URL: www.atmos-chemphys.net/14/11587/2014/.

Vasilkov, A et al. (2017). "Accounting for the effects of surface BRDF on satellite cloud and trace-gas retrievals: a new approach based on geometry-dependent Lambertian equivalent reflectivity applied to OMI algorithms". In: *Atmospheric Measurement Techniques* 10.1, pp. 333–349. DOI: 10.5194/amt-10-333-2017. URL: http://www.atmos-meas-tech.net/10/333/2017/.

- Vigouroux, C. et al. (2009). "Ground-based FTIR and MAX-DOAS observations of formaldehyde at Réunion Island and comparisons with satellite and model data". In: *Atmospheric Chemistry and Physics Discussions* 9, pp. 15891–15957. ISSN: 1680-7316. DOI: 10.5194/acpd-9-15891-2009.
- Abad, Gonzalo González et al. (2016). "Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval". In: *Atmospheric Measurement Techniques* 9.7, pp. 2797–2812. ISSN: 18678548. DOI: 10.5194/amt-9-2797-2016.
- De Smedt, I. et al. (2012). "Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues". In: *Atmospheric Measurement Techniques* 5.11, pp. 2933–2949. ISSN: 18671381. DOI: 10.5194/amt-5-2933-2012.
- De Smedt, I. et al. (2015). "Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations". In: *Atmospheric Chemistry and Physics* 15.21, pp. 12519–12545. ISSN: 16807324. DOI: 10.5194/acp-15-12519-2015. URL: http://www.atmos-chem-phys-discuss.net/15/12241/2015/acpd-15-12241-2015.pdf.
- Zhu, Lei et al. (2016). "Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the Southeast US". In: *Atmospheric Chemistry and Physics* 0, pp. 1–24. ISSN: 1680-7375. DOI: 10.5194/acp-2016-162. URL: http://www.atmos-chem-phys.net/16/13477/2016/acp-16-13477-2016.pdf.
- Barkley, Michael P. et al. (2013). "Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns". In: *Journal of Geophysical Research Atmospheres* 118.12, pp. 6849–6868. ISSN: 21698996. DOI: 10.1002/jgrd.50552. URL: http://dx.doi.org/10.1002/jgrd.50552.
- Wikipedia (2016). Solar zenith angle. DOI: 10.1016/B978-012369407-2/50005-X.. URL: http://sacs.aeronomie.be/info/sza.php.
- Spurr, R. J D (2002). "Simultaneous derivation of intensities and weighting functions in a general pseudo-spherical discrete ordinate radiative transfer treatment". In: *Journal of Quantitative Spectroscopy and Radiative Transfer* 75.2, pp. 129–175. ISSN: 00224073. DOI: 10.1016/S0022-4073(01)00245-X.
- Martin, Randall V et al. (2003). "Global inventory of nitrogen oxide emissions constrained by space-based observations of NO 2 columns". In: 108.2, pp. 1–12. DOI: 10.1029/2003JD003453.
- De Smedt, I et al. (2008). "Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors". In: *Atmos. Chem. Phys.* 8.16, pp. 4947–4963. ISSN: 1680-7324. DOI: 10.5194/acp-8-4947-2008. URL: http://www.atmos-chem-phys.net/8/4947/2008/.

Miller, Christopher Chan et al. (2016). "Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data". In: *Atmospheric Chemistry and Physics Discussions* x, pp. 1–25. ISSN: 1680-7375. DOI: 10.5194/acp-2016-1042. URL: http://www.atmos-chem-phys-discuss.net/acp-2016-1042/.

- Zhu, Lei et al. (2013). "Variability of HCHO over the Southeastern United States observed from space: Implications for VOC emissions". In: vol. 1.
- Shao, Yaping et al. (2007). "Numerical simulation of the October 2002 dust event in Australia". In: *J. Geophys. Res.* 112.D8. DOI: 10.1029/2006jd007767. URL: http://dx.doi.org/10.1029/2006jd007767.
- Stavrakou, T. et al. (2015). "How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?" English. In: *Atmospheric Chemistry and Physics* 15.20, pp. 11861–11884. ISSN: 1680-7324. DOI: 10.5194/acp-15-11861-2015. URL: http://www.atmos-chem-phys.net/15/11861/2015/acp-15-11861-2015.html.
- Abbot, Dorian S. (2003). "Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space". In: *Geophysical Research Letters* 30.17, pp. 1999–2002. ISSN: 0094-8276. DOI: 10.1029/2003GL017336. URL: http://doi.wiley.com/10.1029/2003GL017336.
- Curci, G. et al. (2010). "Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument". In: *Atmospheric Chemistry and Physics* 10.23, pp. 11501–11517. ISSN: 16807316. DOI: 10.5194/acp-10-11501-2010.
- Thomas, W et al. (1998). "Detection of biomass burning combustion products in Southeast Asia from backscatter data taken by the GOME spectrometer". In: *Geophysical Research Letters* 25.9, pp. 1317–1320. DOI: 10.1029/98GL01087. URL: http://onlinelibrary.wiley.com/doi/10.1029/98GL01087/epdf.
- Lee, Anita et al. (2006b). "Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes". In: *Journal of Geophysical Research Atmospheres* 111.17, pp. 1–18. ISSN: 01480227. DOI: 10.1029/2006JD007050.
- Pegoraro, E. et al. (2004). "Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill." In: *Atmospheric Environment* 38.36, pp. 6149–6156. ISSN: 13522310. DOI: 10.1016/j.atmosenv.2004.07.028. URL: http://linkinghub.elsevier.com/retrieve/pii/S1352231004007198.
- Škerlak, B, M Sprenger, and H Wernli (2014). "A global climatology of stratosphere-troposphere exchange using the ERA-Interim data set from 1979 to 2011". In: *Atmospheric Chemistry and Physics* 14.2, pp. 913–937. DOI: 10.5194/acp-14-913-2014. URL: http://www.atmos-chem-phys.net/14/913/2014/.
- Liu, Junhua et al. (2015). "Origins of tropospheric ozone interannual variation over Réunion: A model investigation". In: *Journal of Geophysical Research*, pp. 1–19. DOI: 10.1002/2015JD023981. URL: http://onlinelibrary.wiley.com/doi/10.1002/2015JD023981/abstract.
- Thompson, A. M. et al. (2014). "Tropospheric ozone increases over the southern Africa region: Bellwether for rapid growth in Southern Hemisphere pollution?" In: *Atmospheric Chemistry and Physics* 14.18, pp. 9855–9869. ISSN: 16807324. DOI: 10.5194/acp-14-9855-2014.

Danielsen, Edwin F. (1968). Stratospheric-Tropospheric Exchange Based on Radioactivity, Ozone and Potential Vorticity. DOI: 10.1175/1520-0469(1968)025<0502:STEBOR>2.0.C0;2.

- Lefohn, Allen S. et al. (2011). "The importance of stratospheric-tropospheric transport in affecting surface ozone concentrations in the western and northern tier of the United States". In: *Atmospheric Environment* 45.28, pp. 4845–4857. ISSN: 13522310. DOI: 10.1016/j.atmosenv.2011.06.014. URL: http://dx.doi.org/10.1016/j.atmosenv.2011.06.014.
- Langford, A. O. et al. (2012). "Stratospheric influence on surface ozone in the Los Angeles area during late spring and early summer of 2010". In: *Journal of Geophysical Research* 117.3, pp. 1–17. ISSN: 01480227. DOI: 10.1029/2011JD016766.
- Zhang, L et al. (2014). "Sources contributing to background surface ozone in the US Intermountain West". In: *Atmospheric Chemistry and Physics* 14.11, pp. 5295–5309. DOI: 10.5194/acp-14-5295-2014. URL: http://dx.doi.org/10.5194/acp-14-5295-2014.
- Lin, Meiyun et al. (2012). "Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions". In: *Journal of Geophysical Research* 117.19, pp. 1–20. ISSN: 01480227. DOI: 10.1029/2012JD018151.
- Galani, E. (2003). "Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system". In: *Journal of Geophysical Research* 108.D12, pp. 1–10. ISSN: 0148-0227. DOI: 10.1029/2002JD002596. URL: http://www.agu.org/pubs/crossref/2003/2002JD002596.shtml.
- Terao, Yukio et al. (2008). "Contribution of stratospheric ozone to the interannual variability of tropospheric ozone in the northern extratropics". In: *Journal of Geophysical Research* 113.D18. DOI: 10.1029/2008jd009854. URL: http://dx.doi.org/10.1029/2008jd009854.
- Tang, Q. and M. J. Prather (2012). "Five blind men and the elephant: What can the NASA Aura ozone measurements tell us about stratosphere-troposphere exchange?" In: *Atmospheric Chemistry and Physics* 12.5, pp. 2357–2380. ISSN: 16807316. DOI: 10. 5194/acp-12-2357-2012. URL: http://dx.doi.org/10.5194/acpd-11-26897-2011.
- Frey, W. et al. (2015). "The impact of overshooting deep convection on local transport and mixing in the tropical upper troposphere/lower stratosphere (UTLS)". In: *Atmospheric Chemistry and Physics* 15.11, pp. 6467–6486. ISSN: 1680-7324. DOI: 10.5194/acp-15-6467-2015. URL: http://www.atmos-chem-phys.net/15/6467/2015/.
- Das, Siddarth Shankar et al. (2016). "Influence of tropical cyclones on tropospheric ozone: possible implications". In: *Atmospheric Chemistry and Physics* 16, pp. 4837–4847. DOI: 10.5194/acp-16-4837-2016. URL: www.atmos-chem-phys.net/16/4837/2016/.
- Mihalikova, M et al. (2012). "Observation of a tropopause fold by MARA VHF wind-profiler radar and ozonesonde at Wasa, Antarctica: comparison with ECMWF analysis and a WRF model simulation". In: *Annales Geophysicae* 30.9, pp. 1411–1421. DOI: 10.5194/angeo-30-1411-2012. URL: http://www.ann-geophys.net/30/1411/2012/.

Vaughan, G., J. D. Price, and A. Howells (1993). "Transport into the troposphere in a tropopause fold". In: *Quarterly Journal of the Royal Meteorological Society* 120.518, pp. 1085–1103. ISSN: 00359009. DOI: 10.1002/qj.49712051814.

- Beekmann, M. et al. (1997). "Regional and global tropopause fold occurrence and related ozone flux across the tropopause". In: *Journal of Atmospheric Chemistry* 28.1-3, pp. 29–44. ISSN: 01677764. DOI: 10.1023/A:1005897314623.
- Baray, J. L. et al. (2000). "Planetary-scale tropopause folds in the southern subtropics". In: *Geophysical Research Letters* 27.3, pp. 353–356. ISSN: 00948276. DOI: 10.1029/1999GL010788.
- Zanis, P. et al. (2014). "Summertime free-tropospheric ozone pool over the eastern Mediterranean/middle east". In: *Atmospheric Chemistry and Physics* 14.1, pp. 115–132. ISSN: 16807316. DOI: 10.5194/acp-14-115-2014.
- Akritidis, Dimitris et al. (2016). "On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East". In: *Atmospheric Chemistry and Physics* 16.21, pp. 14025–14039. DOI: 10.5194/acp-16-14025-2016. URL: http://www.atmos-chem-phys.net/16/14025/2016/.
- Tyrlis, Evangelos et al. (2014). "On the linkage between the Asian summer monsoon and tropopause fold activity over the eastern Mediterranean and the Middle East". In: *Journal of Geophysical Research* 119.6, pp. 3202–3221. ISSN: 2169897X. DOI: 10.1002/2013JD021113. URL: http://doi.wiley.com/10.1002/2013JD021113.
- Price, J. D. and G. Vaughan (1993). "The potential for stratosphere-troposphere exchange in cut-off-low systems". In: *Quarterly Journal of the Royal Meteorological Society* 119.510, pp. 343–365. DOI: 10.1002/qj.49711951007. URL: http://onlinelibrary.wiley.com/doi/10.1002/qj.49711951007/abstract.
- Wirth, Volkmar (1995). "Diabatic heating in an axisymmetric cut-off cyclone and related stratosphere-troposphere exchange". In: *Quarterly Journal of the Royal Meteorological Society* 121.521, pp. 127–147. ISSN: 00359009. DOI: 10.1002/qj.49712152107. URL: http://doi.wiley.com/10.1002/qj.49712152107.
- Trickl, T. et al. (2014). "How stratospheric are deep stratospheric intrusions?" In: *Atmospheric Chemistry and Physics* 14.18, pp. 9941–9961. ISSN: 16807324. DOI: 10.5194/acp-14-9941-2014.
- Mze, N. et al. (2010). "Climatology and comparison of ozone from ENVISAT/GOMOS and SHADOZ/balloon-sonde observations in the southern tropics". In: *Atmospheric Chemistry and Physics* 10.16, pp. 8025–8035. ISSN: 16807316. DOI: 10.5194/acp-10-8025-2010.
- Smit, Herman G J et al. (2007). "Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE)". In: *Journal of Geophysical Research* 112.19, pp. 1–18. ISSN: 01480227. DOI: 10.1029/2006JD007308.
- WMO, World Meteorological Organization (1957). "Meteorology A Three-Dimensional Science". In: *Geneva, Second Session of the Commission for Aerology* 4, pp. 134–138.
- Bethan, S., G. Vaughan, and S. J. Reid (1996). "A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere". In: *Quarterly Journal of the Royal Meteorological Society* 122.532, pp. 929–944. ISSN: 00359009. DOI: 10.1002/qj.49712253207. URL: http://doi.wiley.com/10.1002/qj.49712253207.

Tomikawa, Yoshihiro, Yashiro Nishimura, and Takashi Yamanouchi (2009). "Characteristics of Tropopause and Tropopause Inversion Layer in the Polar Region". In: *SOLA* 5, pp. 141–144. DOI: 10.2151/sola.2009-036. URL: http://dx.doi.org/10.2151/sola.2009-036.

- Lelieveld, Jos and Frank J. Dentener (2000). "What controls tropospheric ozone?" In: *Journal of Geophysical Research* 105.D3, pp. 3531–3551. ISSN: 01480227. DOI: 10.1029/1999JD901011. URL: http://doi.wiley.com/10.1029/1999JD901011.
- Struthers, H. et al. (2004). "Past and future simulations of NO2 from a coupled chemistry-climate model in comparison with observations". In: *Atmospheric Chemistry and Physics* 4.8, pp. 2227–2239. ISSN: 1680-7324. DOI: 10.5194/acp-4-2227-2004. URL: http://www.atmos-chem-phys.net/4/2227/2004/.
- Bey, Isabelle et al. (2001). "Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation". In: *Journal of Geophysical Research* 106, pp. 73–95. ISSN: 0148-0227. DOI: 10.1029/2001JD000807.
- Eastham, Sebastian D., Debra K. Weisenstein, and Steven R H Barrett (2014). "Development and evaluation of the unified tropospheric-stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem". In: *Atmospheric Environment* 89, pp. 52–63. ISSN: 13522310. DOI: 10.1016/j.atmosenv.2014.02.001. URL: http://dx.doi.org/10.1016/j.atmosenv.2014.02.001.
- Rienecker, Michele (2007). "File Specification for GEOS-5 DAS Gridded Output". In: pp. 1-54. URL: https://gmao.gsfc.nasa.gov/products/documents/GEOS-5.1.0_File_Specification.pdf.
- Press, William H et al. (1992). *Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing*. New York, NY, USA: Cambridge University Press. ISBN: 0-521-43108-5.
- Tang, Q. and M. J. Prather (2010). "Correlating tropospheric column ozone with tropopause folds: The Aura-OMI satellite data". In: *Atmospheric Chemistry and Physics* 10.19, pp. 9681–9688. ISSN: 16807316. DOI: 10.5194/acp-10-9681-2010.
- Jaffe, Daniel a. and Nicole L. Wigder (2012). "Ozone production from wildfires: A critical review". In: Atmospheric Environment 51, pp. 1–10. ISSN: 13522310. DOI: 10. 1016/j.atmosenv.2011.11.063. URL: http://dx.doi.org/10.1016/j.atmosenv.2011.11.063.
- Texeira, Joao (2013). AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS-only) 1 degree x 1 degree V006: Accessed 2/Dec/2015. DOI: doi:10.5067/AQUA/AIRS/DATA303.
- Edwards, D. P. (2003). "Tropospheric ozone over the tropical Atlantic: A satellite perspective". In: *Journal of Geophysical Research* 108.D8, p. 4237. ISSN: 0148-0227. DOI: 10.1029/2002JD002927. URL: http://doi.wiley.com/10.1029/2002JD002927.
- Sinha, Parikhit et al. (2004). "Transport of biomass burning emissions from southern Africa". In: *Journal of Geophysical Research* 109, p. D20204. ISSN: 01480227. DOI: 10. 1029/2004JD005044.
- Mari, C H et al. (2008). "Tracing biomass burning plumes from the Southern Hemisphere during the AMMA 2006 wet season experiment, Atmos". In: *Atmospheric Chemistry and Physics* 8, pp. 3951–3961. ISSN: 1680-7324. DOI: 10.5194/acpd-7-17339-2007.
- Dee, D P et al. (2011). "The ERA-Interim reanalysis: configuration and performance of the data assimilation system". In: Quarterly Journal of the Royal Meteorological

- Society 137.656, pp. 553-597. ISSN: 1477-870X. DOI: 10.1002/qj.828. URL: http://dx.doi.org/10.1002/qj.828.
- Reutter, P. et al. (2015). "Stratosphere-troposphere exchange (STE) in the vicinity of North Atlantic cyclones". In: *Atmospheric Chemistry and Physics* 15.19, pp. 10939–10953. ISSN: 16807324. DOI: 10.5194/acp-15-10939-2015.
- Škerlak, Bojan et al. (2015). "Tropopause folds in ERA-Interim: Global climatology and relation to extreme weather events". In: *Journal of Geophysical Research* 120.10, pp. 4860–4877. ISSN: 21698996. DOI: 10.1002/2014JD022787.
- Wauben, Wiel M F, J Paul F Fortuin, and Peter F J Van Velthoven (1998). "Comparison of modeled ozone distributions observations". In: *Journal of Geophysical Research* 103, pp. 3511–3530.
- Hu, Lu et al. (2017). "Global budget of tropospheric ozone: evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations". In: *Atmospheric Environment*, pp. 1–36. DOI: 10.1016/j.atmosenv.2017.08.036.
- Roelofs, Geert Jan and Jos Lelieveld (1997). *Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levels*. DOI: 10.1034/j.1600-0889.49.issue1.3.x.
- Elbern, H, J Hendricks, and A Ebel (1998). "A Climatology of Tropopause Folds by Global Analyses". In: *Theoretical and Applied Climatology* 59.3, pp. 181–200. ISSN: 1434-4483. DOI: 10.1007/s007040050023. URL: http://dx.doi.org/10.1007/s007040050023.
- Olsen, Mark a. (2003). "A comparison of Northern and Southern Hemisphere cross-tropopause ozone flux". In: *Geophysical Research Letters* 30.7, p. 1412. ISSN: 0094-8276. DOI: 10.1029/2002GL016538. URL: http://doi.wiley.com/10.1029/2002GL016538.
- Lee, Hanlim et al. (2015). "Investigations of the Diurnal Variation of Vertical HCHO Profiles Based on MAX-DOAS Measurements in Beijing: Comparisons with OMI Vertical Column Data". In: *Atmosphere*. URL: 10.3390/atmos6111816.
- Schreier, Stefan F. et al. (2016). "Estimates of free-Tropospheric NO2 and HCHO mixing ratios derived from high-Altitude mountain MAX-DOAS observations at midlatitudes and in the tropics". In: *Atmospheric Chemistry and Physics* 16.5. ISSN: 16807324. DOI: 10.5194/acp-16-2803-2016.
- SPEI Drought Index. URL: http://spei.csic.es/home.html (visited on 12/19/2017).
- Chance, K. et al. (2000). "Satellite observations of formaldehyde over North America from GOME". In: *Geophysical Research Letters* 27.21, pp. 3461–3464. ISSN: 00948276. DOI: 10.1029/2000GL011857. URL: http://dx.doi.org/10.1029/2000gl011857.
- Bei, N, G Li, and L T Molina (2012). "Uncertainties in SOA simulations due to meteorological uncertainties in Mexico City during MILAGRO-2006 field campaign". In: *Atmospheric Chemistry and Physics* 12.23, pp. 11295–11308. DOI: 10.5194/acp-12-11295-2012. URL: http://www.atmos-chem-phys.net/12/11295/2012/.
- Cao, Hansen et al. (2018). "Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and gly-oxal". In: *Atmospheric Chemistry and Physics (Discussions)*. DOI: 10.5194/acp-2017-1136. URL: https://www.atmos-chem-phys-discuss.net/acp-2017-1136/acp-2017-1136.pdf.

Müller, J. F., J. Peeters, and T. Stavrakou (2014). "Fast photolysis of carbonyl nitrates from isoprene". In: *Atmospheric Chemistry and Physics* 14.5, pp. 2497–2508. ISSN: 16807316. DOI: 10.5194/acp-14-2497-2014.

- Sander, R et al. (2005). "Technical note: The new comprehensive atmospheric chemistry module MECCA". In: *Atmospheric Chemistry and Physics* 5.2, pp. 445–450. ISSN: 1680-7324. DOI: 10.5194/acp-5-445-2005. URL: http://www.atmos-chem-phys.net/5/445/2005/.
- Sandu, A and R Sander (2006). "Technical note: Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1". In: *Atmospheric Chemistry and Physics* 6.1, pp. 187–195. DOI: 10.5194/acp-6-187-2006. URL: http://www.atmos-chem-phys.net/6/187/2006/.
- Jöckel, P et al. (2006). "The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere". In: *Atmospheric Chemistry and Physics* 6.12, pp. 5067–5104. DOI: 10.5194/acp-6-5067-2006. URL: http://www.atmos-chem-phys.net/6/5067/2006/.
- Jöckel, Patrick, Rolf Sander, and Jos Lelieveld (2004). "Technical Note: The Modular Earth Submodel System (MESSy) a new approach towards Earth System Modeling". In: *Atmospheric Chemistry and Physics Discussions* 4.6, pp. 7139–7166. ISSN: 1680-7324. DOI: 10.5194/acpd-4-7139-2004.
- Giglio, Louis, Ivan Csiszar, and Christopher O. Justice (2006). "Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors". In: *Journal of Geophysical Research: Biogeosciences* 111.2, pp. 1–12. ISSN: 01480227. DOI: 10.1029/2005JG000142.