# Санкт-Петербургский Национальный Исследовательский Университет ИТМО

Факультет программной инженерии и компьютерной техники

# Лабораторная работа №4

По "Основы профессиональной деятельности"
Вариант 14071

Выполнила:

Брель Мария Владимировна Р3107

Преподаватель:

Вербовой Александр Александрович

#### Оглавление

| Задание                          | 3 |
|----------------------------------|---|
| Основные этапы вычисления        |   |
| 1.1 Таблица команд               |   |
| 1.2 Описание программы           |   |
| 1.3 Область представления        |   |
| 1.4 Область допустимых значений  |   |
| 1.5 Расположение данных в памяти |   |
| 2.0 Таблица трассировки          |   |
| Вывод                            |   |
|                                  |   |

# Задание

| 493: + | F 0200 | 1 | <b>4A1:</b> | 4E0C |      |      | 1 | 6B1: | FAD4 |
|--------|--------|---|-------------|------|------|------|---|------|------|
| 494:   | EE19   | ĺ | 4A2:        | EE0B | 6A4: | AC01 | ĺ | 6B2: | 003C |
| 495:   | AE16   | ĺ | 4A3:        | AE07 | 6A5: | F303 | Ī |      |      |
| 496:   | 0C00   | ĺ | 484:        | OCOO | 6A6: | 7E0A | ĺ |      |      |
| 497:   | D6A4   | Ì | 4A5:        | D6A4 | 6A7: | F201 | ĺ |      |      |
| 498:   | 0800   | ĺ | 4A6:        | 0800 | 6A8: | CE05 | ĺ |      |      |
| 499:   | 0740   | 1 | 4A7:        | 0700 | 6A9: | 0500 | 1 |      |      |
| 49A:   | 4E13   | 1 | 4A8:        | 6E05 | 6AA: | 0500 | 1 |      |      |
| 49B:   | EE12   | 1 | 4A9:        | EE04 | 6AB: | 4C01 | 1 |      |      |
| 49C:   | AE10   | 1 | 4AA:        | 0100 | 6AC: | 4E05 | 1 |      |      |
| 49D:   | 0700   | 1 | 4AB:        | ZZZZ | 6AD: | CE01 | 1 |      |      |
| 49E:   | 0C00   | 1 | 4AC:        | YYYY | 6AE: | AE02 | 1 |      |      |
| 49F:   | D6A4   | 1 | 4AD:        | XXXX | 6AF: | EC01 | 1 |      |      |
| 4A0:   | 0800   | 1 | 4AE:        | FFC1 | 6B0: | 0A00 | 1 |      |      |

### Основные этапы вычисления

# 1.1 Таблица команд

| Адрес | Код команд | Мнемоника   | Комментарии                                                        |
|-------|------------|-------------|--------------------------------------------------------------------|
| 493   | 0200       | CLA         | Обнуление АС                                                       |
| 494   | EE19       | ST (IP+19)  | Прямая относительная загрузка из АС в 4АЕ                          |
| 495   | AE16       | LD (IP+16)  | Прямая относительная загрузка из 4АС в АС                          |
| 496   | 0C00       | PUSH        | AC → -(SP)                                                         |
| 497   | D6A4       | CALL 6A4    | $SP-1 \rightarrow SP, IP \rightarrow MEM(SP), 6A4 \rightarrow IP$  |
| 498   | 0800       | РОР         | $(SP)^+ \rightarrow AC$                                            |
| 499   | 0740       | DEC         | AC - 1                                                             |
| 49A   | 4E13       | ADD (IP+13) | AC + 4AE                                                           |
| 49B   | EE12       | ST (IP+12)  | Прямая относительная загрузка из АС в 4АЕ                          |
| 49C   | AE10       | LD (IP+10)  | Прямая относительная загрузка из 4AD в AC                          |
| 49D   | 0700       | INC         | AC + 1                                                             |
| 49E   | 0C00       | PUSH        | $AC \rightarrow -(SP)$                                             |
| 49F   | D6A4       | CALL 6A4    | $SP-1 \rightarrow SP$ , $IP \rightarrow SP$ , $6A4 \rightarrow IP$ |
| 4A0   | 0800       | POP         | $(SP)+ \rightarrow AC$                                             |
| 4A1   | 4E0C       | ADD (IP+C)  | AC + 4AE                                                           |
| 4A2   | EE0B       | ST (IP+B)   | Прямая относительная загрузка из АС в 4АЕ                          |
| 4A3   | AE07       | LD (IP+7)   | Прямая относительная загрузка из 4AB в AC                          |
| 4A4   | 0C00       | PUSH        | $AC \rightarrow -(SP)$                                             |
| 4A5   | D6A4       | CALL 6A4    | $SP-1 \rightarrow SP$ , $IP \rightarrow SP$ , $6A4 \rightarrow IP$ |
| 4A6   | 0800       | РОР         | (SP)+ → AC                                                         |
| 4A7   | 0700       | INC         | AC + 1                                                             |
| 4A8   | 6E05       | SUB (IP+5)  | AC - 4AE                                                           |
| 4A9   | EE04       | ST (IP+4)   | Прямая относительная загрузка из АС в 4АЕ                          |

| 4AA | 0100 | HLT         | Останов                                                      |
|-----|------|-------------|--------------------------------------------------------------|
| 4AB | ZZZZ | Z           | Значение Z                                                   |
| 4AC | YYYY | Y           | Значение Ү                                                   |
| 4AD | XXXX | X           | Значение X                                                   |
| 4AE | FFC1 | R           | результат                                                    |
|     |      | Под         | цпрограмма                                                   |
| 6A4 | AC01 | LD (SP+1)   | Косвенная относительная загрузка<br>(7FF → AR, MEM(AR) → AC) |
| 6A5 | F303 | BPL 3       | Если AC >= 0 переход 6A9 (N==0)                              |
| 6A6 | 7E0A | CMP (IP+A)  | Если Q > AC переход 6A9                                      |
| 6A7 | F201 | BMI 1       | (N==1)                                                       |
| 6A8 | CE05 | JUMP (IP+5) | Прямой относительный прыжок(6АЕ)                             |
| 6A9 | 0500 | ASL         | AC * 4                                                       |
| 6AA | 0500 | ASL         |                                                              |
| 6AB | 4C01 | ADD (SP+1)  | AC = AC + MEM(7FF)                                           |
| 6AC | 4E05 | ADD (IP+5)  | AC = AC + K                                                  |
| 6AD | CE01 | JUMP (IP+1) | Прямой относительный прыжок(6АF)                             |
| 6AE | AE02 | LD (IP+2)   | Прямая относительная загрузка(Q → AC)                        |
| 6AF | EC01 | ST (SP+1)   | AC → 7FF                                                     |
| 6B0 | 0A00 | RET         | Возврат из подпрограммы                                      |
| 6B1 | FAD4 | Q           | Q = -1324                                                    |
| 6B2 | 003C | K           | K = 60                                                       |

### 1. 1.2 Описание программы

Находит значение функции:

$$R = -f(X+1) - f(Y) + f(Z) + 2$$

$$f(x) = \begin{cases} -1324, ecnu - 1324 \le x < 0\\ 5x + 60, ecnu x < -1324 unu x \ge 0 \end{cases}$$



## 1.3 Область представления

Х, Ү, Z, R, Q, К — целые знаковые шестнадцатиричные числа

### 1.4 Область допустимых значений

$$Q = FAD4_{16} = -1324_{10}$$
  
 $K = 003C_{16} = 60_{10}$ 

Для того чтобы определить одз, проанализируем данную функцию. При значении аргумента функции в промежутке [-1324; 0), функция вернет значение выражения Q. При использовании любого значения из заданного промежутка в функции не возникнет переполнения.

При оставшихся значениях аргумента функция вернет выражение 5\*х+60, что означает, что функция не переполняется на промежутке [-6541, 6541], а в других случаях будет переполнение.

$$f_{min} = f(-6541) = -32645$$
  
 $f_{max} = f(6541) = 32765$ 

Так как основная программа вычисляет следующее выражение:

$$R = -f(Y) - f(X+1) + f(Z) + 2$$

то минимально мы можем получить  $-32765 - 32765 - 32645 + 2 = -98173 < -2^15$  а максимально:  $32645 + 32645 + 32645 + 2 = 98057 > 2^15 - 1$ 

В обоих случаях переполнение возможно. Значит крайние значения нужно поделить еще на 3 т.к. идет сложение результатов трех программ.

В функцию как аргументы мы передаем значения Z, Y, X+1. Значит, одз:

$$\begin{cases}
-2180 - 1 \le X \le 2180 - 1 \\
-2180 \le Y \le 2180 \\
-2180 \le Z \le 2180
\end{cases}$$

Если Q и K можно менять, то:

при [-2<sup>15</sup>,Q) [0;2<sup>15</sup>-1]:

$$\frac{-32768 - K}{5*3} - 1 \le X \le \frac{32767 - K}{5*3} - 1$$

$$\frac{-32767 - K}{5*3} \le Y \le \frac{32767 - K}{5*3}$$

$$\frac{-32768 - K}{5*3} \le Z \le \frac{32767 - K}{5*3}$$

при [Q; 0):

$$R = Q$$

Q [-2<sup>15</sup>/3, 2<sup>15</sup>] K [-2<sup>12</sup>,2<sup>12</sup>]

### 1.5 Расположение данных в памяти

Основная программа:

493-4АА - команды

4AB – 4AD- исходные данные

4АЕ – итоговый результат

Подпрограмма:

6А4-6В0 - команды

6В1,6В2 - константы

# 2.0 Таблица трассировки

|     |      |     | _    |     | -    |     |      |      |      |     |      |
|-----|------|-----|------|-----|------|-----|------|------|------|-----|------|
| Адр | Знчн | IP  | CR   | AR  | DR   | SP  | BR   | AC   | NZVC | Адр | Знчн |
| 493 | 0200 | 494 | 0200 | 493 | 0200 | 000 | 0493 | 0000 | 0100 |     |      |
| 494 | EE19 | 495 | EE19 | 4AE | 0000 | 000 | 0019 | 0000 | 0100 | 4AE | 0000 |
| 495 | AE16 | 496 | AE16 | 4AC | 07FF | 000 | 0016 | 07FF | 0000 |     |      |
| 496 | 0C00 | 497 | 0C00 | 7FF | 07FF | 7FF | 0496 | 07FF | 0000 | 7FF | 07FF |
| 497 | D6A4 | 6A4 | D6A4 | 7FE | 0498 | 7FE | D6A4 | 07FF | 0000 | 7FE | 0498 |
| 6A4 | AC01 | 6A5 | AC01 | 7FF | 07FF | 7FE | 0001 | 07FF | 0000 |     |      |
| 6A5 | F303 | 6A9 | F303 | 6A5 | F303 | 7FE | 0003 | 07FF | 0000 |     |      |
| 6A9 | 0500 | 6AA | 0500 | 6A9 | 07FF | 7FE | 06A9 | 0FFE | 0000 |     |      |
| 6AA | 0500 | 6AB | 0500 | 6AA | OFFE | 7FE | 06AA | 1FFC | 0000 |     |      |
| 6AB | 4C01 | 6AC | 4C01 | 7FF | 07FF | 7FE | 0001 | 27FB | 0000 |     |      |
| 6AC | 4E05 | 6AD | 4E05 | 6B2 | 0013 | 7FE | 0005 | 280E | 0000 |     |      |
| 6AD | CE01 | 6AF | CE01 | 6AD | 06AF | 7FE | 0001 | 280E | 0000 |     |      |
| 6AF | EC01 | 6B0 | EC01 | 7FF | 280E | 7FE | 0001 | 280E | 0000 | 7FF | 280E |
| 6B0 | 0A00 | 498 | 0A00 | 7FE | 0498 | 7FF | 06B0 | 280E | 0000 |     |      |
| 498 | 0800 | 499 | 0800 | 7FF | 280E | 000 | 0498 | 280E | 0000 |     |      |
| 499 | 0740 | 49A | 0740 | 499 | 0740 | 000 | 0499 | 280D | 0001 |     |      |
| 49A | 4E13 | 49B | 4E13 | 4AE | 0000 | 000 | 0013 | 280D | 0000 |     |      |
| 49B | EE12 | 49C | EE12 | 4AE | 280D | 000 | 0012 | 280D | 0000 | 4AE | 280D |
| 49C | AE10 | 49D | AE10 | 4AD | F7C0 | 000 | 0010 | F7C0 | 1000 |     |      |
| 49D | 0700 | 49E | 0700 | 49D | 0700 | 000 | 049D | F7C1 | 1000 |     |      |
| 49E | 0C00 | 49F | 0C00 | 7FF | F7C1 | 7FF | 049E | F7C1 | 1000 | 7FF | F7C1 |
| 49F | D6A4 | 6A4 | D6A4 | 7FE | 04A0 | 7FE | D6A4 | F7C1 | 1000 | 7FE | 04A0 |
| 6A4 | AC01 | 6A5 | AC01 | 7FF | F7C1 | 7FE | 0001 | F7C1 | 1000 |     |      |
| 6A5 | F303 | 6A6 | F303 | 6A5 | F303 | 7FE | 06A5 | F7C1 | 1000 |     |      |
| 6A6 | 7E0A | 6A7 | 7E0A | 6B1 | FE0C | 7FE | 000A | F7C1 | 1000 |     |      |

| 6A7 | F201 | 6A9 | F201 | 6A7 | F201 | 7FE | 0001 | F7C1 | 1000 |     |      |
|-----|------|-----|------|-----|------|-----|------|------|------|-----|------|
| 6A9 | 0500 | 6AA | 0500 | 6A9 | F7C1 | 7FE | 06A9 | EF82 | 1001 |     |      |
| 6AA | 0500 | 6AB | 0500 | 6AA | EF82 | 7FE | 06AA | DF04 | 1001 |     |      |
| 6AB | 4C01 | 6AC | 4C01 | 7FF | F7C1 | 7FE | 0001 | D6C5 | 1001 |     |      |
| 6AC | 4E05 | 6AD | 4E05 | 6B2 | 0013 | 7FE | 0005 | D6D8 | 1000 |     |      |
| 6AD | CE01 | 6AF | CE01 | 6AD | 06AF | 7FE | 0001 | D6D8 | 1000 |     |      |
| 6AF | EC01 | 6B0 | EC01 | 7FF | D6D8 | 7FE | 0001 | D6D8 | 1000 | 7FF | D6D8 |
| 6B0 | 0A00 | 4A0 | 0A00 | 7FE | 04A0 | 7FF | 06B0 | D6D8 | 1000 |     |      |
| 4A0 | 0800 | 4A1 | 0800 | 7FF | D6D8 | 000 | 04A0 | D6D8 | 1000 |     |      |
| 4A1 | 4E0C | 4A2 | 4E0C | 4AE | 280D | 000 | 000C | FEE5 | 1000 |     |      |
| 4A2 | EE0B | 4A3 | EE0B | 4AE | FEE5 | 000 | 000B | FEE5 | 1000 | 4AE | FEE5 |
| 4A3 | AE07 | 4A4 | AE07 | 4AB | 0864 | 000 | 0007 | 0864 | 0000 |     |      |
| 4A4 | 0C00 | 4A5 | 0C00 | 7FF | 0864 | 7FF | 04A4 | 0864 | 0000 | 7FF | 0864 |
| 4A5 | D6A4 | 6A4 | D6A4 | 7FE | 04A6 | 7FE | D6A4 | 0864 | 0000 | 7FE | 04A6 |
| 6A4 | AC01 | 6A5 | AC01 | 7FF | 0864 | 7FE | 0001 | 0864 | 0000 |     |      |
| 6A5 | F303 | 6A9 | F303 | 6A5 | F303 | 7FE | 0003 | 0864 | 0000 |     |      |
| 6A9 | 0500 | 6AA | 0500 | 6A9 | 0864 | 7FE | 06A9 | 10C8 | 0000 |     |      |
| 6AA | 0500 | 6AB | 0500 | 6AA | 10C8 | 7FE | 06AA | 2190 | 0000 |     |      |
| 6AB | 4C01 | 6AC | 4C01 | 7FF | 0864 | 7FE | 0001 | 29F4 | 0000 |     |      |
| 6AC | 4E05 | 6AD | 4E05 | 6B2 | 0013 | 7FE | 0005 | 2A07 | 0000 |     |      |
| 6AD | CE01 | 6AF | CE01 | 6AD | 06AF | 7FE | 0001 | 2A07 | 0000 |     |      |
| 6AF | EC01 | 6B0 | EC01 | 7FF | 2A07 | 7FE | 0001 | 2A07 | 0000 | 7FF | 2A07 |
| 6B0 | 0A00 | 4A6 | 0A00 | 7FE | 04A6 | 7FF | 06B0 | 2A07 | 0000 |     |      |
| 4A6 | 0800 | 4A7 | 0800 | 7FF | 2A07 | 000 | 04A6 | 2A07 | 0000 |     |      |
| 4A7 | 0700 | 4A8 | 0700 | 4A7 | 0700 | 000 | 04A7 | 2A08 | 0000 |     |      |
| 4A8 | 6E05 | 4A9 | 6E05 | 4AE | FEE5 | 000 | 0005 | 2B23 | 0000 |     |      |
| 4A9 | EE04 | 4AA | EE04 | 4AE | 2B23 | 000 | 0004 | 2B23 | 0000 | 4AE | 2B23 |

| 4AA | 0100 | 4AB | 0100 | 4AA | 0100 | 000 | 04AA | 2B23 | 0000 |  |
|-----|------|-----|------|-----|------|-----|------|------|------|--|
|     |      |     |      |     |      |     |      |      |      |  |

### Вывод

Во время выполнения данной лабораторной работы я познакомилась с работой со стеком и подпрограммами, а так же вновь преисполнилась в познании, находя ОДЗ.