Environment recognition from images using more "traditional" ML techniques (updated)

Fundamentals of Data Science - Winter 2021/2022 Final Project

The starting point | Dataset & Split

The dataset is from a research paper from Oliva & Torralba (2001)¹. It contains photos of different environments.

- FORMAT: Image path Label pairs
- SPLIT: 64% Training / 16% Validation / 20% Testing
- It required some preprocessing to get the image-label pairs.
- Much of the information in the original dataset is discarded.
- UNBALANCED: we have different number of samples for each class

Feature Extraction | RGB & HSV Histograms

We should already know how this ends...

The idea here: each environment has its distinctive colors, right?

- Variable number of bins.
- As tested by a previous assignment, features are not in the colors usually.
- Quickly discarded for image classification.

RGB Histogram

Feature Extraction ORB

Get the descriptors!

Again, the number of descriptors is variable. But ORB³ is faster than SIFT!

- Included freely in the OpenCV build installed from pip.
- 32-dims instead of 128.
- (spoiler alert) not as useful as SIFT

ORB Features

Feature Extraction SIFT

Get more descriptors!

An image contains several SIFT² descriptors, we can imagine them as points of interest.

- The number of descriptors is always variable.
- Each descriptor is a 128-dim vector.
- Slower than the improved counterpart: **SURF**.

SIFT Features

There's a problem!

The number of descriptors for each image is different from the rest!

181 descriptors

543 descriptors

997 descriptors

Bag of Visual Words!

Feature mapping KMeans

How to get the bag of visual words.

A bag of visual words is a one-hot vector indicating the presence of visual "terms" (features).

- 1. Decide how many visual words to report (i.e. number of clusters).
- 2. Train a KMeans classifier on those visual terms the feature descriptors.
- 3. Now you are able to associate a visual feature to a cluster number.

Feature mapping KMeans

How to get the bag of visual words.

We will see if an image has a certain visual feature, and "tick" its box in a one-hot vector!

Side note: we actually used MiniBatch-KMeans due to memory constraints.

Prediction Logistic Reg., SVM and Ridge

SVM

Find an n-dimensional hyperplane to separate the points into k classes.

Validation: 70% | Test: 70%

RIDGE REGRESSION

A linear regression using regularization.

Validation: 39% | Test: 40%

LOGISTIC REGRESSION

Logistic model we started with.

Validation: 69% | Test: 63%

Evaluation What do we have?

Standard metrics and comparison

- Best test accuracy: 70% using SVM
- Suggested number of features: n = 2000
- Batch size for Minibatch-KMeans: c > 512
- 260 samples for each class in training

Observations:

- Some areas are easily confused: highway and street
- Execution time is approximately the same (a few minutes)
- The number of features influences heavily the accuracy
- Training split could go as low as 30% with comparable results to the rest.

What we could try

A few options...

- Thresholding by number of visual features in the BoVW?
 - Not all features could be relevant, therefore "confusing" the cluster making.

- Data augmentation?
 - We need to be careful, SIFT is scale and rotation invariant...

- More hyperparameter tuning!
 - We can't go wrong with this.

Thank you for your attention!

Bibliography

- 1. Aude Oliva, Antonio Torralba | Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. Int. J. Comput. Vis. 42(3): 145-175 (2001)
- 2. David G. Lowe: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 60(2): 91-110 (2004)
- 3. Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary R. Bradski | ORB: An efficient alternative to SIFT or SURF. ICCV 2011: 2564-2571