

Sun-Yuan Hsieh 謝孫源 教授 成功大學資訊工程學系

2.1 Insertion sort

- **Example:** Sorting problem
 - ightharpoonup Input: A sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$
 - Output: A permutation $\langle a_1, a_2, ..., a_n \rangle$ of the input sequence such that $a_1 \leq a_2 \leq \cdots \leq a_n$

▶ The number that we wish to sort are known as the *keys*.

Pseudocode

Insertion sort

Insertion-sort(*A*)

- **1. for** $j \leftarrow 2$ **to** length[A]
- **2. do** key $\leftarrow A[j]$
- *Insert A[j] into the sorted sequence A[1,...,j-1]
- 4. $i \leftarrow j-1$
- **5. while** i > 0 and A[i] > key
- **6. do** $A[i+1] \leftarrow A[i]$
- 7. $i \leftarrow i 1$
- **8.** $A[i+1] \leftarrow \text{key}$

The operation of Insertion-Sort

	1	2	3	4	5	6	
(b)	2	5	4	6	1	3	

						О
(d)	2	4	5	6	1	3

Sorted in place:

 \triangleright The numbers are rearranged within the array A, with at most a constant number of them sorted outside the array at any time.

Loop invariant:

At the start of each iteration of the for loop of line 1-8, the subarray A[1,...,j-1] consists of the elements originally in A[1,...,j-1] but in sorted order.

2.2 Analyzing algorithms

- ▶ Analyzing an algorithm has come to mean predicting the resources that the algorithm requires.
 - Resources: memory, communication, bandwidth, logic gate, time.
 - ▶ **Assumption:** one processor, *RAM*
 - constant-time instruction: arithmetic (add, subtract, multiply, divide, remainder, floor, ceiling); data movement (load, store, copy); control (conditional and unconditional bramch, subroutine call and return)
 - Date type: integer and floating point
 - Limit on the size of each word of data

2.2 Analyzing algorithms

- ► The best notion for **input size** depends on the problem being studied.
- ► The **running time** of an algorithm on a particular input is the number of primitive operations or "steps" executed. It is convenient to define the notion of step so that it is as machine-independent as possible.

Analysis of insertion sort

Insertion-sort(<i>A</i>)		cost	cost
1.	for $j \leftarrow 2$ to length[A]	$\boldsymbol{c_1}$	n
2.	do key ← $A[j]$	$\boldsymbol{c_2}$	n-1
3.	*Insert $A[j]$ into the sorted		
	sequence $A[1,,j-1]$	0	
4.	$i \leftarrow j - 1$	C ₄	n-1
5.	while $i > 0$ and $A[i] > \text{key}$	c_{5}	$\sum_{j=2}^{n} t_j$
6.	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	C ₆	$\sum_{j=2}^{n} (t_j - 1)$
7.	$i \leftarrow i - 1$	c ₇	$\sum_{j=2}^{n} (t_j - 1)$
8.	$A[i+1] \leftarrow \text{key}$	C ₈	n-1

t_j: the number of times the while loop test in line 5 is executed for the value of j.

Analysis of insertion sort

▶ The running time

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

 $ightharpoonup t_j = 1$, for j = 2, 3, ..., n: Linear function on n

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$
$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

Analysis of insertion sort

成功大學

Worst-case and average-case analysis

- Usually, we concentrate on finding only on the worstcase running time.
- Reason:
 - ▶ It is an upper bound on the running time.
 - ▶ The worst case occurs fair often.
 - ▶ The average case is often as bad as the worst case. For example, the insertion sort. Again, quadratic function.

Order of growth

► In some particular cases, we shall be interested in *average-case*, or *expect* running time of an algorithm.

▶ It is the *rate of growth*, or *order of growth*, of the running time that really interests us.

2.3 Designing algorithms

- ▶ There are many ways to design algorithms:
 - ▶ **Incremental approach:** insertion sort
 - **Divide-and-conquer:** merge sort
 - **-** recursive:
 - divide
 - conquer
 - combine

Pseudocode

Merge sort

Merge(A, p, q, r)

- 1. $n_1 \leftarrow q p + 1$
- 2. $n_2 \leftarrow r q$
- **3.** create array $L[1,..., n_1 + 1]$ and $R[1,..., n_2 + 1]$
- **4. for** $i \leftarrow 1$ **to** n_1
- **5. do** L[i] ← A[p + i 1]
- **6.** for $j \leftarrow 1$ to n_2
- 7. **do** $R[j] \leftarrow A[q+j]$
- **8.** $L[n_1+1] \leftarrow \infty$
- **9.** $R[n_2 + 1] \leftarrow \infty$

Pseudocode

10.
$$i \leftarrow 1$$

11.
$$j \leftarrow 1$$

12. for
$$k \leftarrow p$$
 to r

13. do if
$$L[i] \leq R[j]$$

14. then
$$A[k] \leftarrow L[i]$$

15.
$$i \leftarrow i + 1$$

16. else
$$A[k] \leftarrow R[j]$$

17.
$$j \leftarrow j + 1$$

Pseudocode

MERGE-SORT(A, p, r)

- 1. if p < r
- 2. then $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MERGE-SORT(A, p, q)
- **4.** MERGE-SORT(A, q + 1, r)
- 5. MERGE(A, p, q, r)

The operation of Merge sort

Analysis of Merge sort

Analyzing divide-and-conquer algorithms

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

- ▶ See Chapter 4.
- Analysis of merge sort if n = 1 $T(n) = \begin{cases} 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$

$$\triangleright T(n) = \Theta(n \log n)$$

Analysis of Merge sort

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

where the constant *c* represents the time require to solve problem of size 1 as well as the time per array element of the divide and combine steps.

The construction of a recursion tree

(c)

Outperforms insertion sort!