Generative Adversarial Network(GAN)

GAN模型的参考网址: https://github.com/hindupuravinash/the-gan-zoo; 里面有各式各样的GAN得模型,到目前为止已经有接近300个不同的GAN了

Outline

Basic Idea of GAN

GAN as structured learning

Can Generator learn by itself?

Can Discriminator generate?

A little bit theory

(接下来的4周,李宏毅老师都在讲GAN这个技术)

Generation

这个主要任务就是生成generator

We will control what to generate latter. → Conditional Generation

Image Generation

Sentence Generation

二次元图像的生成网址:

http://mattya.github.io/chainer-DCGAN/

如下所示:

Basic Idea of GAN

如枯叶蝶进化去防止被比比鸟吃掉(最终进化成了枯叶的这种):

Brown

veins

比比乌去进化判断这个东西能不能吃:

Butterflies are not brown

Butterflies do not have veins

最后两者变得越来越强。

Basic Idea of GAN

This is where the term

"adversarial" comes from.

You can explain the process
in different ways......

Algorithm 算法

- Initialize generator and discriminator
- G D

In each training iteration:

step1:固定G,更新D的参数

Step 1: Fix generator G, and update discriminator D

Discriminator learns to assign high scores to real objects and low scores to generated objects.

Algorithm

- Initialize generator and discriminator
- G

D

In each training iteration:

step2:固定D,更新G的参数

Step 2: Fix discriminator D, and update generator G

Generator learns to "fool" the discriminator

Algorithm Initialize θ_d for D and θ_g for G

In each training iteration:

- Sample m examples $\{x^1, x^2, ..., x^m\}$ from database
- Sample m noise samples $\{z^1, z^2, ..., z^m\}$ from a distribution

- Learning Obtaining generated data $\{\tilde{x}^1, \tilde{x}^2, ..., \tilde{x}^m\}, \tilde{x}^i = G(z^i)$
 - Update discriminator parameters θ_d to maximize

$$\begin{array}{l} \bullet \ \tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log D(x^{i}) + \frac{1}{m} \sum_{i=1}^{m} log \left(1 - D(\tilde{x}^{i})\right) \\ \bullet \ \theta_{d} \leftarrow \theta_{d} + \eta \nabla \tilde{V}(\theta_{d}) \end{array}$$

Sample m noise samples $\{z^1, z^2, ..., z^m\}$ from a distribution

Learning

• Update generator parameters θ_a to maximize

•
$$ilde{V} = rac{1}{m} \sum_{i=1}^m log \left(D \left(G(z^i) \right) \right)$$
 意思是希望generator得到的图片放在discriminator里面值越大越好 • $heta_g \leftarrow heta_g + \eta \nabla ilde{V}(heta_g)$

•
$$\theta_g \leftarrow \theta_g + \eta \nabla \tilde{V}(\theta_g)$$

Why Structured Learning Challenging? 为什么Structured Learing具有挑战性?

- One-shot/Zero-shot Learning: 要让机器去输出一些其从来没有见过的东西
 - In classification, each class has some examples.
 - In structured learning,
 - If you consider each possible output as a "class"
 - Since the output space is huge, most "classes" do not have any training data.
 - Machine has to create new stuff during testing.
 - Need more intelligence (机器需要一定的智慧)

Structured Learning Approach

一个component去产生,缺点是很容易失去大局观

Generator

Learn to generate the object at the component level

Generative Adversarial Network(GAN)

Discriminator

Evaluating the whole object, and find the best one

Top Down

这个方法是基于大局去做,缺点是很难生成generation

1、Generator能否自己学习

Generator

如果只是用Generator,则需要更大的网络结构才能产生图像, 用GAN则相对轻松的产生图像

Generator的component

需要一个一个 独立的生成

code:

(where does they come from?)

Image:

$$\begin{bmatrix} 0.2 \\ -0.1 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ -0.1 \end{bmatrix}$$
 $\begin{bmatrix} 0.3 \\ 0.2 \end{bmatrix}$

As close as possible

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 \\ 0 \\ \vdots \end{bmatrix}$$

2、能否用Discriminator去生成图片?

不能,如果只用Discrimination生成图像,它看到的只有手工绘制的正样本图像,没有负样本; 再者,它本身是用来做评价的,很难用来生成好的图像。

二者的比较

Generator v.s. Discriminator

Generator

- Pros: 优点:容易生成图片
 - Easy to generate even with deep model
- Cons: 缺点: 只学到了表象, 学不到大局
 - Imitate the appearance
 - Hard to learn the correlation between components

Discriminator

- Pros: 优点:可以考虑大局
 - Considering the big picture
- Cons: 缺点: 很难生成图像
 - Generation is not always feasible
 - Especially when your model is deep
 - How to do negative sampling?

总结:主要讲了怎么直观地了解GAN

作业搜索关键词: MLDS hw3-1