18.5 注释

张志聪

2025年5月28日

说明 1. 证明:

$$g^{-1}((a, +\infty]) = \bigcup_{n \ge 1} f_n^{-1}((a, +\infty])$$

证明:

这是上确界函数, 书中没找到明确定义的地方, 这里先说明一下:

 $\sup_{n\geq 1} f_n$ 表示一系列函数 f_n (其中 $n\geq 1$) 的上确界函数。具体来说,对于每一个自变量 x,这个函数的值是所有函数 f_n 在 x 处的上确界(即最小的上界)。数学表达式为:

$$\left(\sup_{n>1} f_n\right)(x) = \sup(f_1(x), f_2(x), \cdots)$$

• 从右到左

设任意 $x_0 \in g^{-1}((a, +\infty])$,那么 $g(x_0) \in (a, +\infty]$,由上确界函数的定义可知,存在 $f_n(x_0) = g(x_0)$,从而 $g^{-1}((a, +\infty]) \subseteq \bigcup_{n \ge 1} f_n^{-1}((a, +\infty])$ 。

• 从左到右

设任意 $x_0 \in \bigcup_{n\geq 1} f_n^{-1}((a,+\infty])$,那么存在某个 n,使得 $f_n(x_0) \in (a,+\infty]$,于是我们有

$$g(x_0) \ge f_n(x_0) > a$$

所以
$$x_0 \in g^{-1}((a,+\infty])$$
,从而 $\bigcup_{n \geq 1} f_n^{-1}((a,+\infty]) \subseteq g^{-1}((a,+\infty])$ 。