

K-Nearest Neighbor Classifiers (KNNC)

jang@mirlab.org

http://mirlab.org/jang

MIR Lab, CSIE Dept.

National Taiwan University

2023/9/20

Concept of KNNC

o Concept: 近朱者赤、近墨者黑

• Two Steps: Quiz!

Find the first k nearest neighbors of a given point.

 Determine the class of the given point by voting among k nearest neighbors.

Flowchart for KNNC

Flowchart of classification:

KNNC:

From raw data to features

Clustering (optional)

KNNC evaluation on test dataset

Decision Boundary for 1NNC

•Voronoi diagram: piecewise linear boundary

More about Voronoi diagrams

Demos by Cleve Moler

- Cleve's Demos of Delaunay triangles and Voronoi diagram
 - books/dcpr/example/cleve/vshow.m

Natural Examples of Voronoi Diagrams (1/2)

Natural Examples of Voronoi Diagrams (2/2)

Characteristics of KNNC

Strengths of KNNC

Quiz!

- Intuitive
- No computation for model construction
- Weakness of KNNC
 - Massive computation required when dataset is big
 - No straightforward way
 - o To determine the value of K
 - To rescale the dataset along each dimension

Preprocessing of Feature Normalization

Z normalization or z score

To have zero mean and unit variance along each feature

Range normalization

To have a specific range, such as [0, 1], along each feature

Quiz!

Let $\mathbf{x} = [x_1, x_2, \dots, x_n]$ be the values of a specific feature of a dataset

Z normalization:

$$\widehat{x}_i = \frac{x_i - \mu}{\sigma}$$
, with μ and σ^2 being the sample mean and sample variance of \mathbf{x} respectively

Range normalization:

$$\hat{x}_i = \frac{x_i - \min(\mathbf{x})}{\max(\mathbf{x}) - \min(\mathbf{x})} \text{ to have a range of } [0, 1]$$

Variants for KNNC

• Many variants of KNNC:

- Nearest prototype classification
 - Single prototype for each class → Use "mean" or "average"
 - Several prototypes for each class → Use "k-means clustering"
- Distance-weighted votes
- Edited nearest neighbor classification
- k+k-nearest neighbor

1NNC Decision Boundaries

1NNC Decision boundaries

1NNC Distance/Posterior as Surfaces and Contours

Using Prototypes in KNNC

No. of prototypes for each class is 4.

Decision Boundaries of Different Classifiers

Quadratic classifier

Naive Bayes classifier

•1NNC classifier

Exercise: KNNC Decision Boundary

 Given 6 samples of two classes as shown below, plot the decision boundary based on KNNC with k=1.

• ×

0 0

Exercise: Nearest Prototype Classifier

- If we want to use the nearest prototype classifier instead of KNNC, what methods be used to find the prototype(s) for each class in the following two cases?
 - When the number of prototype is 1 for each class.
 - When the number of prototype is more than 1 for each class.