Prouct Developments

Swayam Chube

Last Updated: May 23, 2025

§1 The Space of Holomorphic Functions

THEOREM 1.1. If $\Omega \subseteq \mathbb{C}$ is open, then there is a sequence $(K_n)_{n\geq 1}$ of compact subsets of Ω such that $\Omega = \bigcup_{n=1}^{\infty} K_n$. Moreover, the sets K_n can be chosen to satisfy the following conditions:

- (i) $K_n \subseteq K_{n+1}^{\circ}$.
- (ii) If $K \subseteq \Omega$ is compact, then $K \subseteq K_n$ for some $n \ge 1$.
- (iii) For every $n \ge 1$, each component of $\mathbb{C}_{\infty} \setminus K_n$ contains a component of $\mathbb{C}_{\infty} \setminus \Omega$.

§2 Product Developments

§§ Generalities

DEFINITION 2.1. If $(z_n)_{n\geqslant 1}$ is a sequence of complex numbers, then $z\in\mathbb{C}$ is said to be the *infinite product* of the sequence $(z_n)_{n\geqslant 1}$ if

$$z = \lim_{n \to \infty} \prod_{k=1}^{n} z_k.$$

Suppose $z_n \neq 0$ for all $n \geq 1$ and $z \neq 0$. Then, setting

$$p_n = \prod_{k=1}^n z_k,$$

we have, by definition that $p_n \to z \neq 0$ in $\mathbb C$. But since $z_n = p_n/p_{n-1}$ with the convention that $p_0 = 1$, we see that $z_n \to 1$ as $n \to \infty$.

PROPOSITION 2.2. Let $(z_n)_{n\geqslant 1}$ be a sequence of complex numbers with $\operatorname{Re} z_n > 0$ for all $n\geqslant 1$. Then $\prod_{n=1}^{\infty} z_n$ converges to a *non-zero* complex number if and only if the series $\sum_{n=1}^{\infty} \log z_n$ converges.

Proof.

DEFINITION 2.3. If $(z_n)_{n\geqslant 1}$ is a sequence of complex numbers with $\operatorname{Re} z_n > 0$ for all n, then the infinite product $\prod_{n=1}^{\infty} z_n$ is said to *converge absolutely* if the series $\sum_{n=1}^{\infty} \log z_n$ converges absolutely.

LEMMA 2.4. If $|z| < \frac{1}{2}$, then

$$\frac{1}{2}|z| \leq |\log(1+z)| \leq \frac{3}{2}|z|.$$

Proof. Using the power series expansion of log(1+z) about z=0, we get

$$\left|1 - \frac{\log(1+z)}{z}\right| = \left|\frac{1}{2}z - \frac{1}{3}z^2 + \cdots\right| \le \frac{1}{2}\left(|z| + |z|^2 + \cdots\right) = \frac{1}{2}\frac{|z|}{1 - |z|} < \frac{1}{2},$$

whence the conclusion follows.

PROPOSITION 2.5. Let $(z_n)_{n\geq 1}$ be a sequence of complex numbers with $\operatorname{Re} z_n > -1$ for all $n \geq 1$. Then the series $\sum_{n=1}^{\infty} \log(1+z_n)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_n$ converges absolutely.

Proof.

COROLLARY 2.6. If $(z_n)_{n\geq 1}$ is a sequence of complex numbers with $\operatorname{Re} z_n > 0$ for all $n \geq 1$, then the product $\prod_{n=1}^{\infty} z_n$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} (z_n - 1)$ converges absolutely.

Proof.

PROPOSITION 2.7. Let X be a set, and $(f_n)_{n\geqslant 1}$ be a sequence of complex-valued functions on X converging uniformly to $f: X \to \mathbb{C}$. Suppose there exists $a \in \mathbb{R}$ such that $\operatorname{Re} f_n(x) \leq a$ for all $x \in X$ and $n \geqslant 1$, then the sequence of functions $(\exp(f_n))_{n\geqslant 1}$ converges uniformly to $\exp(f)$.

Proof.

LEMMA 2.8. Let X be a compact topological space and $(g_n)_{n\geqslant 1}$ a sequence of complex-valued continuous functions on X such that $\sum_{n=1}^{\infty} |g_n(x)|$ converges uniformly on X. Then the product

$$f(x) = \prod_{n=1}^{\infty} (1 + g_n(x))$$

converges uniformly for all $x \in X$. Further there is an integer $n_0 \ge 1$ such that f(x) = 0 if and only if $g_n(x) = -1$ for some $1 \le n \le n_0$.

Proof. Since $\sum_{n=1}^{\infty} |g_n(x)|$ converges uniformly on X, there is a positive integer $n_0 \ge 1$ such that $|g_n(x)| < \frac{1}{2}$ for all $x \in X$ and $n > n_0$. Thus $\text{Re}(1 + g_n(x)) > 0$ for all $x \in X$ and $n > n_0$, and hence due to Lemma 2.4

$$|\log(1+g_n(x))| \le \frac{3}{2}|g_n(x)| \qquad \forall \ x \in X, \ \forall n > n_0.$$

Thus, the sum

$$h(x) := \sum_{n=n_0}^{\infty} \log(1 + g_n(x))$$

converges uniformly on X so that h is a continuous function. Since X is compact, there is an $a \in \mathbb{R}$ such that $\operatorname{Re} h(x) \leq a$ for all $x \in X$. In view of Proposition 2.7,

$$\exp h(x) = \prod_{n=n_0}^{\infty} (1 + g_n(x))$$

converges uniformly on X. In particular, the product on the right is non-zero for all $x \in X$.

Finally, since

$$f(x) = (1 + g_1(x)) \cdots (1 + g_{n_0}(x)) \exp h(x),$$

it follows that if f(x) = 0, then $g_n(x) = -1$ for some $1 \le n \le n_0$.

THEOREM 2.9. Let $\Omega \subseteq \mathbb{C}$ be a region and let $(f_n)_{n\geqslant 1}$ be a sequence of holomorphic functions such that no f_n is identically zero. If $\sum_{n=1}^{\infty} |f_n(z)-1|$ converges uniformly on compact subsets of Ω , then $\prod_{n=1}^{\infty} f_n(z)$ converges uniformly on compact subsets of Ω to a holomorphic function f(z).

If $a \in \Omega$ is a zero of f, then a is a zero of only a finite number of functions f_n , and the multiplicity of the zero of f at a is the sum of the multiplicities of the zeros of the functions f_n at a.

§3 Runge's Theorem

THEOREM 3.1 (RUNGE). Let $K \subseteq \mathbb{C}$ be a compact set and let E be a subset of $\mathbb{C}_{\infty} \setminus K$ meeting each connected component of $\mathbb{C}_{\infty} \setminus K$. If f is a function holomorphic in an open set $\Omega \supseteq K$ and $\varepsilon > 0$, then there exists a rational function R(z) whose only poles lie in E such that

$$|f(z) - R(z)| < \varepsilon$$

for all $z \in K$.

Let C(K) denote the Banach space of all complex-valued continuous functions on K equipped with the supremum norm on K, that is,

$$||f||_{\infty} := \sup\{|f(z)| : z \in K\} \quad \forall f \in C(K).$$

Let $B(E) \subseteq C(K)$ denote the set of all functions $f \in C(K)$ such that for every $\varepsilon > 0$, there is a rational function R(z) with poles only in E such that

$$||f-R||_{\infty} < \varepsilon$$
.

Theorem 3.1 essentially states that $f|_K \in B(E)$ for every holomorphic function in a neighborhood of K.

LEMMA 3.2. B(E) is a closed \mathbb{C} -subalgebra of C(K) containing every rational function with all poles in E.

Proof. The latter part of the assertion is clear. To see that B(E) is a subalgebra, suppose $f,g \in B(E)$ and $\alpha,\beta \in \mathbb{C}$. Let $\varepsilon > 0$ and choose rational functions R(z),S(z) such that

$$\|f-R\|_{\infty} < \frac{\varepsilon}{|\alpha|+|\beta|+1}$$
 and $|g-S| < \frac{\varepsilon}{|\alpha|+|\beta|+1}$.

Then

$$\|(\alpha f + \beta g) - (\alpha R + \beta S)\|_{\infty} < \frac{|\alpha| + |\beta|}{|\alpha| + |\beta| + 1} \varepsilon < \varepsilon,$$

whence $\alpha f + \beta g \in B(E)$. Next, we shall show that $fg \in B(E)$. Indeed, let $\varepsilon > 0$, and choose positive real numbers $M_1, M_2 > 0$ such that $\|f\|_{\infty} < M_1$ and $\|g\|_{\infty} < M_2$. Choose rational functions R(z), S(z) such that

$$\|f-R\|_{\infty} < \frac{\varepsilon}{M_1 + M_2}$$
 and $\|g-S\|_{\infty} < \frac{\varepsilon}{M_1 + M_2}$.

Then R(z)S(z) is a rational function with poles only in E, and

$$||fg - RS||_{\infty} \le ||g(f - R) + R(g - S)||_{\infty} \le M_2 ||f - R||_{\infty} + M_1 ||g - S||_{\infty} < \varepsilon$$

as desired. Thus B(E) is a subalgebra of C(K).

It remains to show that B(E) is closed in the topology of C(K). Indeed, let $f_n \to f$ in C(K) and $\varepsilon > 0$. There is a positive integer N such that $\|f - f_N\|_{\infty} < \frac{\varepsilon}{2}$, and further, a rational function R(z) with poles only in E such that $\|f_N - R\|_{\infty} < \frac{\varepsilon}{2}$. Thus

$$||f - R||_{\infty} < ||f - f_N||_{\infty} + ||f_N - R||_{\infty} < \varepsilon$$

whence $f \in B(E)$, thereby completing the proof.

The outline of the rest of the proof is as follows:

- First, we show that $\frac{1}{z-a} \in B(E)$ for each $a \in \mathbb{C} \setminus K$.
- Since B(E) is an algebra containing all polynomials, using partial fractions, we conclude that every rational function with poles only in $\mathbb{C} \setminus K$ belongs to B(E).
- Finally, using Cauchy's integral formula, we show that every holomorphic function can be approximated arbitrarily well by rational functions with poles only in $\mathbb{C} \setminus K$.

LEMMA 3.3. Let V and U be open subsets of $\mathbb C$ with $V \subseteq U$ and $\partial V \cap U = \emptyset$. If H is a component of U with $H \cap V \neq \emptyset$, then $H \subseteq V$.

Proof. Let $a \in H \cap V$ and let G be the connected component of V containing a; then $H \cup G$ is connected and contained in U. But since H is a connected component, $H \cup G = H$, that is, $G \subseteq H$. Note that $\partial G \subseteq \partial V^1$ and so $\partial G \cap H = \emptyset$, whence

$$H \setminus G = H \cap (\mathbb{C} \setminus G) = H \cap \left[(\mathbb{C} \setminus \overline{G}) \cup \partial G \right] = H \cap (\mathbb{C} \setminus \overline{G}),$$

whence $H \setminus G$ is open in H. But since G is open, $H \setminus G$ is both closed and open in H, and since H is connected and $G \neq \emptyset$, it follows that $H = G \subseteq V$, as desired.

PROPOSITION 3.4. Let $a \in \mathbb{C} \setminus K$. Then $\frac{1}{z-a} \in B(E)$.

Proof. We split our analysis into two cases.

CASE 1. $\infty \notin E$. Let $U = \mathbb{C} \setminus K$ and let

$$V = \left\{ a \in \mathbb{C} : \frac{1}{z - a} \in B(E) \right\},\,$$

so that $E \subseteq V \subseteq U$. We first claim that V is open. Indeed, suppose $a \in V$ and |b-a| < d(a,K). Then there exists 0 < r < 1 such that |b-a| < r|z-a| for all $z \in K$. But

$$\frac{1}{z-b} = \frac{1}{z-a} \frac{1}{1 - \frac{b-a}{z-a}},$$

and since |(b-a)/(z-a)| < r < 1 for all $z \in K$, we note that the series

$$\frac{1}{1 - \frac{b - a}{z - a}} = \sum_{n=0}^{\infty} \left(\frac{b - a}{z - a}\right)^n$$

converges uniformly on K due to the Weierstraß M-test. Set

$$Q_n(z) = \sum_{n=0}^{\infty} \left(\frac{b-a}{z-a}\right)^n,$$

¹This is because \mathbb{C} is locally connected.

then $\frac{1}{z-a}Q_n(z) \in B(E)$ since $a \in V$ and B(E) is an algebra. Since B(E) is closed, the uniform convergence of $\frac{1}{z-a}Q_n(z)$ to $\frac{1}{z-b}$ yields that the latter lies in B(E), so that V is open.

Now suppose $b \in \overline{V} \setminus V = \partial V$ and let $(a_n)_{n \ge 1}$ be a sequence in V converging to b. We have that $|b - a_n| \ge d(a_n, K)$ and taking $n \to \infty$ and using the continuity of $d(\cdot, K)$, one obtains d(b, K) = 0, that is, $b \in K$. Thus $\partial V \cap U = \emptyset$. If H is a component of U, then $H \cap E \ne \emptyset$, so $H \cap V \ne \emptyset$. By Lemma 3.3, $H \subseteq V$. But since H was arbitrary, we have that $U \subseteq V$, i.e., U = V.

CASE 2. $\infty \in E$. Let d_{∞} denote the metric on \mathbb{C}_{∞} . Choose a_0 in the unbounded component of $\mathbb{C} \setminus K$ (i.e., the component containing ∞) such that $d_{\infty}(a_0,\infty) \leq \frac{1}{2}d_{\infty}(\infty,K)$ and $|a_0| > 2\max\{|z|: z \in K\}$. Let $E_0 = (E \setminus \{\infty\}) \cup \{a_0\}$. Then E_0 meets each component of $\mathbb{C}_{\infty} \setminus K$, and $\infty \notin E_0$.

 $E_0 = (E \setminus \{\infty\}) \cup \{a_0\}$. Then E_0 meets each component of $\mathbb{C}_\infty \setminus K$, and $\infty \notin E_0$.

If $a \in \mathbb{C} \setminus K$, then due to CASE 1, $\frac{1}{z-a} \in B(E_0)$. We shall show that $\frac{1}{z-a_0} \in B(E_0)$. Once this is shown, we could approximate rational functions with poles only in E_0 by rational functions with poles only in E_0 , since $E_0 \setminus E = \{a_0\}$. This would then immediately give us that $\frac{1}{z-a} \in B(E_0) \subseteq B(E)$, as desired.

Note that for all $z \in K$, $|z/a_0| \le \frac{1}{2}$ and so

$$\frac{1}{z - a_0} = -\frac{1}{a_0} \frac{1}{1 - \frac{z}{a_0}} = -\frac{1}{a_0} \sum_{n=0}^{\infty} \left(\frac{z}{a_0}\right)^n$$

converges uniformly on K due to the Weierstraß M-test. Set

$$Q_n(z) = -\frac{1}{a_0} \sum_{k=0}^{n} \left(\frac{z}{a_0}\right)^k,$$

which is a sequence of polynomials converging uniformly to $\frac{1}{z-a_0}$ on K. Since $Q_n \in B(E)$ for each $n \ge 1$, we have shown that $\frac{1}{z-a_0} \in B(E)$, thereby completing the proof.

LEMMA 3.5. Let Ω be a region contianing K. Then there are straight line segments $\gamma_1, \ldots, \gamma_n$ in $\Omega \setminus K$ such that for every holomorphic function f on Ω ,

$$f(z) = \frac{1}{2\pi \iota} \sum_{k=1}^{n} \int_{\gamma_k} \frac{f(w)}{w - z} \ dw$$

for all $z \in K$. The line segments form a finite number of closed polygons in Ω .

Proof. Covering K by finitely many compact disks (contained in Ω), we can replace K with the union of these disks and suppose that $K = \overline{K^{\circ}}$. Let $0 < \delta < \frac{1}{2}d(K, \mathbb{C} \setminus \Omega)$ and place a "grid" of horizontal and vertical lines in the plane with consecutive lines less than a distance δ apart. Let R_1, \ldots, R_m be the resulting rectangles intersecting K. These rectangles are finite in number because K is compact. Consider ∂R_j , the boundary of R_j as a polygon oriented in the counter-clockwise direction.

If $z \in R_j$ for some $1 \le j \le m$, then $d(z,K) \le \operatorname{diam} R_j = \sqrt{2}\delta$, and hence $z \in \Omega$. This shows that every R_j is contained in Ω . Next, suppose R_j and R_j intersect in an edge σ . With respect to the two rectangles, σ will have opposite orientations, and hence, for any continuous function φ on σ , the sum of the integrals will cancel out.

Let $\gamma_1, ..., \gamma_n$ be those directed line segments that constitute an edge of exactly one of the R_j 's. Then

$$\sum_{k=1}^{n} \int_{\gamma_k} \varphi = \sum_{j=1}^{m} \int_{\partial R_j} \varphi \tag{1}$$

for any continuous function φ on $\bigcup_{j=1}^m \partial R_j$. We contend that each γ_k lies in $\Omega \setminus K$. Indeed, if one of the γ_k intersects K, then there are two rectangles in the grid with γ_k as a side, both of which intersect K, whence both of these rectangles must lie in the set $\{R_1, \dots, R_m\}$, which is absurd, since γ_k is a side of exactly one of those rectangles.

Now, if $z \in K \setminus \bigcup_{j=1}^m \partial R_j$, then for any holomorphic function f on Ω ,

$$\varphi(w) = \frac{1}{2\pi \iota} \frac{f(w)}{w - z}$$

is continuous on $\bigcup_{j=1}^{m} \partial R_{j}$. From (1), it follows that

$$\sum_{j=1}^{m} \frac{1}{2\pi \iota} \int_{\partial R_j} \frac{f(w)}{w - z} \ dw = \sum_{k=1}^{n} \frac{1}{2\pi \iota} \int_{\gamma_k} \frac{f(w)}{w - z} \ dw.$$

But z belongs to the interior of exactly one of the R_j 's whence the sum on the left is precisely f(z)whenever $z \in K \setminus \bigcup_{j=1}^{m} \partial R_j$. But both sides are continuous functions on K (since f(z) is clearly continuous and every γ_k misses K) and because $K = \overline{K^{\circ}}$, the set $K \setminus \bigcup_{j=1}^{m} \partial R_j$ is dense in K; it follows that both sides must be equal for all $z \in K$, as desired.

Now that we have an integral representation of f(z), we shall approximate it using rational functions having poles on the $\{\gamma_k\}$'s.

LEMMA 3.6. Let γ be a rectifiable curve and K a compact set such that $K \cap \{\gamma\} = \emptyset$. If f is a continuous function on $\{\gamma\}$, and $\varepsilon > 0$, then there is a rational function R(z) having all its poles on $\{\gamma\}$ such that

$$\left| \int_{\gamma} \frac{f(w)}{w - z} \ dw - R(z) \right| < \varepsilon$$

for all $z \in K$.

Proof. We may assume that $\gamma: [0,1] \to \mathbb{C}$. First, since K and $\{\gamma\}$ are disjoint, there is a real number $0 < r < d(\lbrace \gamma \rbrace, K)$. For $0 \le s < t \le 1$ and $z \in K$,

$$\begin{split} \left| \frac{f(\gamma(t))}{\gamma(t) - z} - \frac{f(\gamma(s))}{\gamma(s) - z} \right| &= \left| \frac{\gamma(s)f(\gamma(t)) - \gamma(t)f(\gamma(s)) - z \left(f(\gamma(t)) - f(\gamma(s)) \right)}{(\gamma(t) - z)(\gamma(s) - z)} \right| \\ &\leq \frac{1}{r^2} \left| \gamma(s)f(\gamma(t)) - \gamma(t)f(\gamma(s)) - z \left(f(\gamma(t)) - f(\gamma(s)) \right) \right| \\ &\leq \frac{1}{r^2} \left| f(\gamma(t)) \left(\gamma(s) - \gamma(t) \right) + \gamma(t) \left(f(\gamma(t)) - f(\gamma(s)) \right) - z \left(f(\gamma(t)) - f(\gamma(s)) \right) \right| \\ &\leq \frac{1}{r^2} \left| f(\gamma(t)) \right| \left| \gamma(s) - \gamma(t) \right| + \frac{1}{r^2} \left| \gamma(t) - z \right| \left| f(\gamma(t)) - f(\gamma(s)) \right|. \end{split}$$

Using the compactness of $\{\gamma\}$ and K, there is a constant C > 0 such that $d(x,z) \le C$ for all $x \in \{\gamma\}$ and $z \in K$, and $f(x) \le C$ for all $x \in \{\gamma\}$. Thus

$$\left|\frac{f(\gamma(t))}{\gamma(t)-z} - \frac{f(\gamma(s))}{\gamma(s)-z}\right| \leq \frac{C}{r^2} \left(\left|\gamma(s) - \gamma(t)\right| + \left|f(\gamma(t)) - f(\gamma(s))\right|\right).$$

Finally, using the uniform continuity of the functions $\gamma, f \circ \gamma \colon [0,1] \to \mathbb{C}$, there is a $\delta > 0$ such that whenever $|s-t| < \delta$,

$$\left|\frac{f(\gamma(t))}{\gamma(t)-z} - \frac{f(\gamma(s))}{\gamma(s)-z}\right| < \frac{\varepsilon}{2V(\gamma)}$$

for all $z \in K$. Choose a partition $0 = t_0 < t_1 < \dots < t_n = 1$ of [0,1] such that $|t_j - t_{j-1}| < \delta$ for $1 \le j \le n$. Set

$$R(z) = \sum_{i=1}^{n} \frac{f(\gamma(t_{j-1})) \left(\gamma(t_j) - \gamma(t_{j-1}) \right)}{\gamma(t_{j-1}) - z}.$$

Now, there is a partition $0 = s_0 < s_1 < \cdots < s_m = 1$ of [0,1] such that

$$\left| \int_{\gamma} \frac{f(w)}{w - z} \ dw - \sum_{j=1}^{m} \frac{f(\gamma(s_j))}{\gamma(s_j) - \gamma(s_{j-1})} \right| < \frac{\varepsilon}{2}.$$

Thus

$$\left|\int_{\gamma} \frac{f(w)}{w-z} \ dw - R(z)\right| \leq \left|\int_{\gamma} \frac{f(w)}{w-z} \ dw - \sum_{j=1}^{m} \frac{f(\gamma(s_{j}))}{\gamma(s_{j}) - \gamma(s_{j-1})}\right| + \left|\sum_{j=1}^{m} \frac{f(\gamma(s_{j}))}{\gamma(s_{j}) - \gamma(s_{j-1})} - \sum_{j=1}^{n} \frac{f(\gamma(t_{j-1}))\left(\gamma(t_{j}) - \gamma(t_{j-1})\right)}{\gamma(t_{j-1}) - z}\right|.$$

Taking a union of both partitions \underline{s} and \underline{t} and using the triangle inequality, it is clear that both terms are smaller than $\varepsilon/2$, therefore,

$$\left| \int_{\gamma} \frac{f(w)}{w - z} \ dw - R(z) \right| < \varepsilon,$$

for all $z \in K$.

Proof of Theorem 3.1. Due to Proposition 3.4 and the fact that B(E) contains all polynomials, using partial fractions it follows that B(E) contains all rational functions with all poles in $\mathbb{C} \setminus K$. Finally, using Lemma 3.5 and Lemma 3.6, it follows that $f \in B(E)$, as desired.

§§ Simply connected regions

THEOREM 3.7. Let $\Omega \subseteq \mathbb{C}$ be a region. Then the following are equivalent:

- (1) Ω is simply connected.
- (2) $n(\gamma;a) = 0$ for every closed rectifiable curve γ in Ω and every point $a \in \mathbb{C} \setminus \Omega$.
- (3) $\mathbb{C}_{\infty} \setminus \Omega$ is connected.
- (4) For any $f \in \mathcal{O}(\Omega)$, there is a sequence of polynomials that converges to f in $\mathcal{O}(\Omega)$.
- (5) For any $f \in \mathcal{O}(\Omega)$ and any closed rectifiable curve γ in Ω , $\int_{\gamma} f = 0$.
- (6) Every function $f \in \mathcal{O}(\Omega)$ has a primitive.
- (7) For any nowhere-vanishing function $f \in \mathcal{O}(\Omega)$, there is a $g \in \mathcal{O}(\Omega)$ such that $f = \exp g$.
- (8) For any nowhere-vanishing function $f \in \mathcal{O}(\Omega)$, there is a $g \in \mathcal{O}(\Omega)$ such that $f = g^2$.
- (9) Ω is homeomorphic to the unit disk.
- (10) If $u: \Omega \to \mathbb{R}$ is harmonic, then there is a harmonic function $v: \Omega \to \mathbb{R}$ such that $f = u + \iota v$ is holomorphic on Ω .

§§ Mittag-Leffler's Theorem

THEOREM 3.8 (MITTAG-LEFFLER). Let $\Omega \subseteq \mathbb{C}$ be a region and $(a_n)_{n \ge 1}$ a sequence of distinct points in Ω with no limit point in Ω . Let $(S_n(z))_{n \ge 1}$ be a sequence of rational functions of the form

$$S_n(z) = \sum_{j=1}^{m_n} \frac{c_{nj}}{(z - a_n)^j},$$

where m_n is a positive integer and $c_{nj} \in \mathbb{C}$ for all $n \ge 1$ and $1 \le j \le m_n$. Then there exists a meromorphic function f on Ω which is holomorphic on $\Omega \setminus \{a_1, a_2, \ldots\}$ and whose singular part at each a_n is given by $S_n(z)$.

Proof. Choose an exhaustion $(K_n)_{n\geq 1}$ of Ω as in Theorem 1.1 and as such, every component of $\mathbb{C}_{\infty}\setminus K_n$ contains a component of $\mathbb{C}_{\infty}\setminus \Omega$. Next, since each K_n is compact, and $(a_k)_{k\geq 1}$ has no limit point in Ω , only finitely many of the a_k 's can lie in each K_n . Define

$$I_n := \{k : \alpha_k \in K_n \setminus K_{n-1}\}$$

with the convention that $K_0 = \emptyset$. Define the functions

$$f_n(z) = \sum_{k \in I_n} S_k(z).$$

This is clearly a meromorphic function on Ω with all its poles in $K_n \setminus K_{n-1}$. Using Theorem 3.1 with $E = \mathbb{C}_{\infty} \setminus \Omega$, there exists a rational function $R_n(z)$ with all its poles in $\mathbb{C}_{\infty} \setminus \Omega$ such that

$$|f_n(z) - R_n(z)| < \frac{1}{2^n}$$

for all $z \in K_{n-1}$ and $n \ge 2$. For n = 1, we set $R_1 = 0$. Define

$$f(z) = \sum_{n=1}^{\infty} (f_n(z) - R_n(z)).$$

We contend that this is our desired meromorphic function. We must first show that f is holomorphic on $\Omega \setminus \{a_1, a_2, \ldots\}$ and then show that its singular part at each a_k is $S_k(z)$.

Indeed, let $K \subseteq \Omega \setminus \{a_1, a_2, ...\}$ be a compact set. Then there is a positive integer $N \ge 1$ such that $K \subseteq K_N$. For all $n \ge N + 1$, and $z \in K_N$, we have that

$$|f_n(z)-R_n(z)|<\frac{1}{2^n}.$$

Due to the Weierstraß M-test, the sum converges uniformly on K, whence the limiting function f is a holomorphic function on $\Omega \setminus \{a_1, a_2, \ldots\}$.

Let $k \ge 1$. Since the sequence $(a_n)_{n \ge 1}$ has no limit point, there is an r > 0 such that $|a_j - a_k| > r$ for all $j \ne k$. Then, the sum for $f(z) - S_k(z)$ converges uniformly on $\overline{B}(a_k, r)$ to a holomorphic function there, again due to the Weierstraß M-test. As a result, f(z) has singular part $S_k(z)$ at a_k . This completes the proof.

PROPOSITION 3.9. Let $\Omega \subseteq \mathbb{C}$ be a region. If $(a_n)_{n \ge 1}$ is a sequence of distinct points in Ω with no limit point in Ω , and $(c_n)_{n \ge 1}$ is a sequence of complex numbers, then there is a holomorphic function $f \in \mathcal{O}(\Omega)$ such that $f(a_n) = c_n$ for all $n \ge 1$.

Proof. Let $g \in \mathcal{O}(\Omega)$ be a holomorphic function with simple zeros at only the a_n 's. Then we can write $g(z) = (z - a_n)g_n(z)$ for some holomorphic function $g_n \in \mathcal{O}(\Omega)$ with $g_n(a_n) \neq 0$. Using Theorem 3.8 let h be a meromorphic function on Ω , holomorphic on $\Omega \setminus \{a_1, a_2, \ldots\}$, and having singular part

$$\frac{c_n}{g_n(a_n)} \frac{1}{z - a_n}$$

at a_n for each $n \ge 1$. Clearly f(z) = g(z)h(z) has removable singularities at each a_n and $f(a_n) = c_n$.

A significantly more general statement is true; instead of just specifying values of a function at countably many points, we can specify the tail of its power series representation at those points:

THEOREM 3.10. Let $\Omega \subseteq \mathbb{C}$ be a region. Let $(a_n)_{n\geqslant 1}$ be a sequence of distinct points in Ω with no limit point in Ω . For each $n\geqslant 1$, associate a non-negative integer $m_n\geqslant 0$, and complex numbers w_{nj} for $0\leqslant j\leqslant m_n$. Then there exists a holomorphic function $f\in \mathcal{O}(\Omega)$ such that

$$f^{(j)}(a_n) = j! w_{nj}$$

for all $n \ge 1$ and $0 \le j \le m_n^2$.

Proof. Let $g \in \mathcal{O}(\Omega)$ have zeros at only the a_n 's with multiplicity $m_n + 1$ respectively. We shall use Theorem 3.8 to find a meromorphic function h on Ω , which is holomorphic on $\Omega \setminus \{a_1, a_2, \ldots\}$ and has singular part

$$S_n(z) = \frac{b_{n1}}{z-a} + \frac{b_{n2}}{(z-a)^2} + \dots + \frac{b_{n,m_n+1}}{(z-a)^{m_n+1}}$$

at each a_n , where $b_{nj} \in \mathbb{C}$ are complex numbers to be chosen later. Consider the power series expansion of g(z) about $z - a_n$:

$$g(z) = (z - a_n)^{m_n + 1} (c_{n0} + c_{n1}(z - a_n) + c_{n2}(z - a_n)^2 + \dots),$$

for some complex numbers c_{nj} , $j \ge 0$. Note that $c_{n0} \ne 0$. Then

$$g(z)S_n(z) = (b_{n,m_n+1} + b_{n,m_n}(z-a) + \dots + b_{n1}(z-a)^{m_n})(c_{n0} + c_{n1}(z-a_n) + \dots).$$

We would like to choose $b_{n1}, \dots, b_{n,m_n+1}$ such that the above product expands to

$$w_{n0} + w_{n1}(z - a_n) + w_{n2}(z - a_n)^2 + \dots$$

The b_{nj} 's can be chosen inductively since $c_{n0} \neq 0$, so that we begin by setting $b_{n,m_n+1} = w_{n0}c_{n0}^{-1}$. And at each stage, one obtains a linear equation in b_{nj} with coefficient c_{n0} , which is again non-zero, and so that equation has a (unique) solution.

Finally, using Theorem 3.8 to choose a meromorphic function h on Ω having poles at precisely the a_n 's with singular parts $S_n(z)$ respectively, it is clear that f(z) = g(z)h(z) has the desired power series expansion at each a_n , thereby completing the proof.

THEOREM 3.11. Let $\Omega \subseteq \mathbb{C}$ be a region. Then $\mathcal{O}(\Omega)$ is a Bézout domain, that is, every finitely generated ideal in $\mathcal{O}(\Omega)$ is principal.

$$f(z) = w_{n0} + w_{n1}(z - a_n) + \dots$$

²That is, the power series representation of f about a_n is of the form

Proof. Inductively, it suffices to show that (f,g) is a principal ideal for $f,g \in \mathcal{O}(\Omega)$. First, we shall show that if f and g have no common zeros, then (f,g)=(1). Let $a_1,a_2,...$ be the distict zeros of f with multiplicities $m_1,m_2,...$ respectively (note that these zeros can be finite in number). We contend that there exists $\varphi \in \mathcal{O}(\Omega)$ such that $1-\varphi g$ has zeros $a_1,a_2,...$ with multiplicities $m'_1,m'_2,...$ respectively such that $m'_j \ge m_j$ for all $j \ge 1$.

Let $k \ge 1$ and consider the power series representation of g about a_k :

$$g(z) = b_{k0} + b_{k1}(z - a_k) + b_{k2}(z - a_k)^2 + \dots,$$

where $b_{k0} \neq 0$ since f and g do not share a zero. We want the power series representation of φ about a_k

$$\varphi(z) = w_{k0} + w_{k1}(z - a_k) + w_{k2}(z - a_k)^2 + \dots$$

to be such that

$$\varphi(z)g(z) = 1 + c_{m_k}(z - a_k)^{m_k} + \dots$$

for some $c_{m_k} \in \mathbb{C}$. This can clearly be done inductively just as in the proof of Theorem 3.10 since $b_{k0} \neq 0$. Further, the existence of such a $\varphi \in \mathcal{O}(\Omega)$ is guaranteed by Theorem 3.10. By construction, it is clear that there exists a holomorphic function $h \in \mathcal{O}(\Omega)$ such that $h(z)f(z) = 1 - \varphi(z)g(z)$, i.e., $1 \in (f,g)$, as desired.

Finally, suppose f and g are arbitrary holomorphic functions in $\mathcal{O}(\Omega)$. Let a_1, a_2, \ldots be the common zeros of f and g with

$$m_n = \min\{m(f; a_n), m(g; a_n)\} \ge 1,$$

for all $n \ge 1$. Let $\varphi \in \mathscr{O}(\Omega)$ be a holomorphic function with zeros at precisely the a_n 's with multiplicities m_n respectively. Then there exist holomorphic functions $\widetilde{f}, \widetilde{g} \in \mathscr{O}(\Omega)$ such that $f = \varphi \widetilde{f}$ and $g = \varphi \widetilde{g}$; further f and g do not have common zeros. As a result,

$$(f,g) = (\varphi \widetilde{f}, \varphi \widetilde{g}) = (\varphi)(\widetilde{f}, \widetilde{g}) = (\varphi),$$

thereby completing the proof.