CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2025

Outline for today

Continuous features

Introduction to logistic regression

Cost function and SGD for logistic regression

Outline for today

Continuous features

Introduction to logistic regression

Cost function and SGD for logistic regression

Continuous Features

(do this for the TRAIN only!)

1) Sort examples based on given feature

2	3	7	7	8	10	12 Y
Υ	Υ	Υ	Ν	Ν	Υ	Υ

X	Υ
10	Υ
7	Υ
8	N
3	Υ
7	N
12	Υ
2	Υ

Continuous Features

(do this for the TRAIN only!)

1) Sort examples based on given feature

2	3	7	7	8	10 Y	12
Υ	Υ	Υ	Ν	Ν	Υ	Υ

2) Different label with same feature value, collapse to "None"

X	Υ
10	Υ
7	Υ
8	N
3	Υ
7	N
12	Υ
2	Υ

Continuous Features

(do this for the TRAIN only!)

1) Sort examples based on given feature

2	3	7	7	8	10	12
Υ	Υ	Υ	Ν	Ν	Υ	Υ

2) Different label with same feature value, collapse to "None"

3) Whenever label changes, make a feature (use avg)

Continuous Features (Handout 13)

(do this for the TRAIN only!)

temp	Υ
80	Υ
48	Υ
60	N
48	N
40	N
48	Υ
90	Υ
90	Y

1) Sort examples based on feature "temp"

2) Different label with same feature value, collapse to "None"

3) Whenever label changes, make a feature (use avg)

Continuous Features (Handout 13)

(do this for the TRAIN only!)

3 new

columns

1) Sort examples based on feature "temp"

2) Different label with same feature value, collapse to "None"

3) Whenever label changes, make a feature (use avg)

Outline for today

Continuous features

Introduction to logistic regression

Cost function and SGD for logistic regression

Case Study: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode y to make it real-valued?

2) What issues arise with making y real-valued?

3) What if you just had two outcomes (e.g. stroke and drug overdose) -- why is linear regression still not a good choice?

Case Study: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode y to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

3) What if you just had two outcomes (e.g. stroke and drug overdose) -- why is linear regression still not a good choice?

Case Study: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode y to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

Assumes some *ordering* of the outcomes that is probably not there!

3) What if you just had two outcomes (e.g. stroke and drug overdose) -- why is linear regression still not a good choice?

Case Study: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode y to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

Assumes some *ordering* of the outcomes that is probably not there!

3) What if you just had two outcomes (e.g. stroke and drug overdose) -- why is linear regression still not a good choice?

The range of a linear function (i.e. y values) is $[-\infty, \infty]$, but we want [0, 1]

Challenger **Explosion**

3/22/82 **Data** 6/27/82 NA 01/11/1982 04/04/1983 6/18/83 8/30/83 11/28/83 02/03/1984 10/30/85 11/26/85 01/12/1986 1/28/86 **Challenger Accident**

Date

04/12/1981

11/12/1981

Temperature

Damage Incident

Image: NASA

Logistic (sigmoid) function

Transforms a continuous real number into a range of (0, 1)

Logistic Regression

- Binary classification $y \in \{0,1\}$
- Model will be

$$h_{\vec{w}}(\vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}} = p(y = 1 | \vec{x})$$

• Classification (already have \vec{w})

if
$$\vec{w} \cdot \vec{x} \ge 0 \Rightarrow \hat{y} = 1$$

 $\vec{w} \cdot \vec{x} < 0 \Rightarrow \hat{y} = 0$

Logistic regression example

If p=1 (one feature), can solve for x directly

$$w_0 + w_1 x \ge 0$$

$$w_1 x \ge -w_0$$

$$x \ge -\frac{w_0}{w_1}$$

•
$$\underline{\mathsf{Ex}} : \overrightarrow{w} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$x \le \frac{3}{2}$$
 means predict $\hat{y} = 1$

Outline for today

Continuous features

Introduction to logistic regression

Cost function and SGD for logistic regression

How to find \overrightarrow{w} ?

- Need a cost function
- Can measure model performance with likelihood

$$L(\overrightarrow{w}) = \prod_{i=1}^{n} h_{\overrightarrow{w}}(\overrightarrow{x_i})^{y_i} \left(1 - h_{\overrightarrow{w}}(\overrightarrow{x_i})\right)^{(1-y_i)}$$
want high prob of y=1 prob of y=0

Cost function for logistic regression

$$J(\overrightarrow{w}) = -\log(L(\overrightarrow{w}))$$
minimize negative log-likelihood

$$J(\overrightarrow{w}) = -\sum_{i=1}^{n} \left[y_i \log(h_{\overrightarrow{w}}(\overrightarrow{x_i})) + (1 - y_i) \log(1 - h_{\overrightarrow{w}}(\overrightarrow{x_i})) \right]$$

• Single example \vec{x} , y

$$J(\vec{w}) = \begin{cases} -\log(h_{\vec{w}}(\vec{x})) & \text{if } y = 1\\ -\log(1 - h_{\vec{w}}(\vec{x})) & \text{if } y = 0 \end{cases}$$

Single data point

$$J(\vec{w}) = \begin{cases} -\log(h_{\vec{w}}(\vec{x})) & \text{if } y = 1\\ -\log(1 - h_{\vec{w}}(\vec{x})) & \text{if } y = 0 \end{cases}$$

Stochastic Gradient Descent for Logistic Regression (binary classification)

```
set \vec{w} = \vec{0}
while cost J(\vec{w}) is still changing:
      shuffle data points
      for i = 1,...,n:
             \overrightarrow{w} \leftarrow \overrightarrow{w} - \alpha \nabla J_{\overrightarrow{x_i}}(\overrightarrow{w})
      store J(\overrightarrow{w}) derivative of J(\overrightarrow{w}) wrt x_i
```

3 important pieces to SGD

Hypothesis function (prediction)

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = p(y = 1|\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}\cdot\boldsymbol{x}}}$$

3 important pieces to SGD

Hypothesis function (prediction)

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = p(y = 1|\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}\cdot\boldsymbol{x}}}$$

Cost function (want to minimize)

$$J(\boldsymbol{w}) = -\sum_{i=1}^{n} y_i \log h_{\boldsymbol{w}}(\boldsymbol{x_i}) + (1 - y_i) \log(1 - h_{\boldsymbol{w}}(\boldsymbol{x_i}))$$

3 important pieces to SGD

Hypothesis function (prediction)

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = p(y = 1|\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}\cdot\boldsymbol{x}}}$$

Cost function (want to minimize)

$$J(\boldsymbol{w}) = -\sum_{i=1}^{n} y_i \log h_{\boldsymbol{w}}(\boldsymbol{x_i}) + (1 - y_i) \log(1 - h_{\boldsymbol{w}}(\boldsymbol{x_i}))$$

Gradient of cost wrt single data point x_i

$$\nabla J_{\boldsymbol{x}_i}(\boldsymbol{w}) = (h_{\boldsymbol{w}}(\boldsymbol{x_i}) - y_i)\boldsymbol{x_i}$$