

TEST REPORT

For

Orpyx Medical Technologies Inc.

#214-1235 26 Ave. SE Calgary, Alberta T2G 1R7, Canada

Date: August 19, 2013

Report No.: 11404-1E

Revision No.: 0

Project No.: 11404

Equipment: SurroSense Rx Lite

Model No.: SSV1

ONE STOP GLOBAL CERTIFICATION SOLUTIONS

3133-20800 Westminster Hwy, Richmond, BC V6V 2W3, Canada Phone: 604-247-0444 Fax: 604-247-0442 www.labtestcert.com

Prepared by: LabTest Certification Inc.

Date Issued: August 19, 2013 Project No: 11404 Client: Orpyx Medical Technologies Inc.
Report No.: 11404-1E

Revision No.:

0

TABLE OF CONTENTS

TEST REPORT	4
SurroSense Rx TM	
General product information:	
Frequencies	6
List of ancillary and/or support equipment provided by the applicant	6
Description of Interface Cables for Testing	
Software and Firmware	6
Worst-case configuration and mode of operation during testing	6
Modifications Required for Compliance	
Test Equipment Verified for function	7
Measurement Uncertainty	
Markings	
Test Summary	9
6dB Bandwidth	10
Test Limits	10
Test Setup	10
Setup Block Diagram	10
Test Results:	
Test Limits	13
Test Setup	13
Setup Block Diagram	13
Test Results:	14
Antenna Gain	16
Test Limits	16
Test Results:	
Unwanted Emission: Antenna-port Conducted Emissions	17
Test Limits	17
Test Setup	
Setup Block Diagram	18
Test Results:	
Unwanted Emission: Radiated Emissions into Non-Restricted Frequency Bands	
Test Limits	22
Test Setup	22
Setup Block Diagram	23
Test Setup in Chamber	24
Test Result	24
Unwanted Emission: Radiated Emissions into Restricted Frequency Bands	28
Test Limits	
Test Setup	29
Setup Block Diagram	30
Test Setup in Chamber	30
Test Result	
Band-Edge Compliance	
Test Limits	
Test Setup	41
Setup Block Diagram	42

Prepared by:	LabTest Certification Inc.	Client:	Orpyx Medical Technologies Inc.
Date Issued:	August 19, 2013	Report No.:	11404-1E
Project No:	11404	Revision No.:	0
Test Results	::		42
	ll Density		
Setup Block	Diagram		44
Test Results	::		45
	nission		
	on Table		
	Diagram		
	Test Equipment Used		
APPENDIX B:	EUT photos		55
	Test setup photos		
	ISO 17025:2005 Accreditation Cert		

TEST REPORT		
FCC15.247:2010 / RSS-210, Issue 8		
Report reference No:	11404-1E	
Report Revision History:	✓ Rev. 0: August 19, 2013	
Tested by (printed name and signature):	Jeremy Lee	
Approved by (printed name and signature):	Kavinder Dhillon, Eng.L Kavinder Dhillon	
Date of issue:	August 19, 2013	
1.) Statement of Independence # 3014 (LabTest E	9, clause 11 (Engineering Service Subcontractors), or	
Testing Laboratory Name:	LabTest Certification Inc.	
Address:	3133 – 20800 Westminster Hwy, Richmond, B.C. V6V 2W3 Canada	
FCC Site Registration No:	373387	
IC Site Registration No:	5970A-2	
Test Location Name:	LabTest Certification Inc.	
Address:	3133 – 20800 Westminster Hwy, Richmond, B.C. V6V 2W3 Canada	
Applicant's Name:	Orpyx Medical Technologies Inc.	
Address:	#214-1235 26 Ave. SE Calgary, Alberta T2G 1R7, Canada	
Manufacturer's Name:	Same as Applicant	
Address:	Same as Applicant	
Test specification		
Standards:	FCC15.247:2010 / RSS-210, Issue 8, December 2010	
Testing		
Date of receipt of test item:	July 09, 2013	
Date(s) of performance of test:	July 10 to Aug. 02, 2013	
Test item description:		
Trademark:	SurroSense Rx™	
Model and/or type reference:	SSV1 FCC ID: 2AAH8-SSV1, IC ID:10789A-SSV1	
Serial numbers:		
Electrical Rating(s):	5.0VDC	

Product descriptions		
Type of Emission:	Digital Transmission System(DTS)	
No. of Channels:	70 Channels, 1 for Beacon and 69 for Data Exchange	
Operating Frequency Range:	2406 to 2475 MHz	
Frequency Resolution:	1MHz	
Modulation:	GFSK	
Data Rates:	1 Mbps on-air data rate	
Dwell time:	≤ 200us	
Application for:	2.4GHz ISM Band Data Transceiver Module	
Equipment mobility:	Yes.	
Nominal Voltages for:	_X stand-alone equipment combined (or host) equipment test jig	
Supply Voltage:	AC AmpsHz 5.0V DCAmps	
If DC Power:	Internal Power Supply _X USB Battery	
Size of equipment(H X D X W, inches):		
Mass of equipment (g):	N/A	
Operating Temperature Range:	-20 °C to +55 °C	
Test case verdicts		
Test case does not apply to the test object:	N/A	
Test item does meet the requirement:	Pass	
Test item does not meet the requirement:	Fail	
General remarks "This report is not valid as a CB Test Report unless appended by an approved CB Testing Laboratory and appended to a CB Test Certificate. The test result presented in this report relate only to the object(s) tested. This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory. "(see Enclosure #)" refers to additional information appended to the report. "(see appended table)" refers to a table appended to the report. Throughout this report a comma is used as the decimal separator.		
Throughout this report a period is used as the decimal separator.		

General product information:

The EUT is a system designed to restore feedback to those with decreased, or absent plantar pressure to help avoid associated complications such as infection, ulceration and amputation. The system collects pressure data over time from the bottom of the feet through specialized sensor-embedded insoles, wirelessly sending that information to the user via their smartphone. The SurroSense Rx mobile app alerts the user when excessive pressure is detected so that behavior can be changed to help avoid associated complications.

Frequencies

Module	Description	Frequences
Crystal	Clock	16MHz
Crystal	Clock	32.768kHz

List of ancillary and/or support equipment provided by the applicant

Model No.	Description	Manufacturer	Approvals/Standards
LFS0503100D-A8S	Travel Charger	RAV Power	FCC
N/A	Foot Sensor	Orpyx	N/A

Description of Interface Cables for Testing

Description	Cable Type	Cable length	Ferrite
Power Charging via USB Port	General USB Mini Cable	1.2meter	N/A

ARRANGEMENT OF INTERFACE CABLES: All interface cables were positioned for worst-case maximum emissions within the manner assumed to be a typical operation condition (please reference photographs).

Software and Firmware

Description	Version
SurroSense Rx	V 1.0.2

Worst-case configuration and mode of operation during testing

The worst case was described at each test description.

Modifications Required for Compliance

None.

Page 6 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

Test Equipment Verified for function

Model #	Description	Checked Function	Results
E7405	Spectrum Analyzer	Frequency and Amplitude	Connected 50MHz and - 20dBm Cal_siganl and checked OK.
PAM-0202	Pre-Amplifier, 20 to 2,000MHz	Gain at 30 and 1,000MHz	Gains are normal.
8449B	Pre-Amplifier, 1 to 26.5GHz	Gain at 1 to 4GHz	Gains were normal.
JB1	Anatenna, 30 MHz to 2 GHz	Checked structure	Normal – no damage
SAS-571	Anatenna, 1 to 18GHz	Checked structure	Normal – no damage
SAS-572	Anatenna, 18 to 26.5GHz	Checked structure	Normal – no damage
SAC-26G-3	RF Cable, SMA(m) to SMA(m)	Insertion Loss at 1 to 4GHz	Insertion Losses are normal
OC-LMR195-2	RF Cable, SMA(m) to SMA(m)	Insertion Loss at 30 MHz to 4GHz	Insertion Losses are normal
VAT-3+	Attenuator	Insertion Loss at 30 MHz to 4GHz	Insertion Losses are normal

Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests:

Parameter	Uncertainty(dB)
Radiated Emission, 30 to 1,000MHz	4.67
Radiated Emission, 1 to 26.5GHz	4.65
Conducted Measurements	3.59

Uncertainty figures are valid to a confidence level of 95%.

Markings

You should refer to the clause of FCC Part 2 Section 2.295 & 2.296 and FCC Part 15 Section 15.19 for

information to be contained on the label as well as information about the label. Any other statements or labelling requirements may appear on a separate label at the option of the applicant/grantee. The label has to be including FCC IC/IC ID, Product Number and Manufacturer Info.

According to FCC Section 2.925(a),

(a) Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following:

Page 7 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

(1) FCC Identifier consisting of the two elements in the exact order specified in §2.926. The FCC Identifier shall be preceded by the term *FCC ID* in capital letters on a single line, and shall be a type size large enough to be legible without the aid of magnification.

Example: FCC ID XXX123. XXX-Grantee Code 123-Equipment Product Code"

According to FCC Section 15.19(a)(3),

This device shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

<u>Note:</u> Some jurisdictions in Canada require Cautions and Warnings to also be in French. It is the responsibility of the Customer to provide bilingual marking, where applicable, in accordance with the requirements of the local regulatory authorities. It is the responsibility of the Customer to determine this requirement and have bilingual wording added to the "Markings".

Test Summary

When configured and operated as specified in this report, the product was found to comply with the requirements as indicated below.

Test Type	Regulation	Measurement Method	Result
6dB Bandwidth	15.247(a)(2) & RSS-210	KDB 558074 D01 v03r01	PASS
Maximum Peak Conducted Output Power	15.247(b)(3) & RSS-210	KDB 558074 D01 v03r01	PASS
Antenna Gain	15.247(b)(4) & RSS-210	N/A	PASS
Unwanted Emission: Antenna- port Conducted Emissions	15.247(d) & RSS-210	KDB 558074 D01 v03r01	PASS
Unwanted Emission: Radiated Emissions into Non-Restricted Frequency Bands	15.247(d) & RSS-210	KDB 558074 D01 v03r01	PASS
Unwanted Emission: Radiated Emissions into Restricted Frequency Bands	15.247(d) & RSS-210	KDB 558074 D01 v03r01	PASS
Band Edge	15.247(d) & RSS-210	KDB 558074 D01 v03r01	PASS
Power Spectral Density	15.247(e) & RSS-210	KDB 558074 D01 v03r01	PASS
AC Power Line Conducted Emission	15.207(a) RSS-Gen	ANSI C63.4:2009 & ANSI C63.10:2009	PASS

6dB Bandwidth

Temperature	26.4 °C
Relative Humidity	49.0 %
Barometric Pressure:	101.7 kPa
Test Date	July 31, 2013
Sample Number	1150940, 1150941, 1150942
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID) (Calibration not required)	N1, N3
Tested By	Jeremy Lee

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/cabc0248

Test Limits

15.247(a)(2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Setup

The test was performed in accordance with FCC 15.247:2010, FCC 15.31:2010 and KDB 558074 D01 v03r01.

- > The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer via attenuator.
- The EUT was measured at three differrent transmitting frequencies, low-end, middle, and high-end.
- The transmitter was set-up as its maximum power.
- The following measurements were made with
 - Set resolution bandwidth (RBW) = 1-5% or DTS BW, not to exceed 100 kHz.
 - Set the video bandwidth (VBW) ≥ 3 x RBW.
 - Detector = Peak.
 - Trace mode = max hold.
 - Sweep = auto couple.
 - Allow the trace to stabilize.
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Setup Block Diagram

Test Results:

Page 10 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

Carrier Frequency(MHz)	6dB BW(kHz)	Limit(kHz)	Pass/Fail
2406	596.25	≥ 500	Pass
2441	577.50	≥ 500	Pass
2475	513.75	≥ 500	Pass

X Pass Fail N/A

- 6dB Bandwidth of Low End; centre frequency is 2441 MHz

- 6dB Bandwidth of Low End; centre frequency is 2475 MHz

Page 12 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

Maximum Peak Conducted Output Power

Tamananatura	00.4.00
Temperature	26.4 °C
Relative Humidity	49.0 %
Barometric Pressure:	101.7 kPa
Test Date	July 31, 2013
Sample Number	1150940, 1150941, 1150942
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID)	N1. N3
(Calibration not required)	111,110
Tested By	Jeremy Lee

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/cabc0248

Test Limits

15.247(b)

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

Test Setup

The test was performed in accordance with FCC 15.247:2010 & FCC 15.31:2010 and KDB 558074 D01 v03r01.

- The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer via attenuator.
- > The EUT was measured at three differrent transmitting frequencies, low-end, middle, and high-end.
- > The transmitter was set-up as its maximum power.
- The following measurements were made with
 - Set the RBW ≥ DTS bandwidth.
 - Set VBW ≥ RBW.
 - Set span ≥ RBW.
 - Sweep time = auto couple.
 - Detector = peak.
 - Trace mode = max hold.
 - Allow trace to fully stabilize.
 - Use peak marker function to determine the peak amplitude level.
- The indicated level is the peak conductyed output power(with the addition of the cable loss).

Setup Block Diagram

Page 13 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

LabTest Certification Inc. Prepared by:

Date Issued: August 19, 2013

Report No.: 11404-1E Project No: 11404 Revision No.: 0

Client:

Orpyx Medical Technologies Inc.

Test Results:

Channel Frequency(MHz)	Peak Power(dBm)	Limit(W/dBm)	Pass/Fail
2406	-0.137	≤ 1 / + 30	Pass
2441	0.907	≤ 1 / + 30	Pass
2475	1.034	≤ 1 / + 30	Pass

X **Pass Fail** N/A

- Conducted maximum power at the Carrier Frequency is 2406 MHz

- Conducted maximum power at the Carrier Frequency is 2441 MHz

- Conducted maximum power at the Carrier Frequency is 2475 MHz

Page 15 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

Antenna Gain

Test Date	July 31, 2013
Sample Number	1150937, 1150938, 1150939
Tested By	Jeremy Lee

Test Limits

15.247(b)

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Results:

Antenna description	Peak Antenna Gain(dBi)	Limit(dBi)	Pass/Fail
2.4 GHz Inverted F Antenna	3.3 ¹⁾	≤ 6.0	Pass

Note 1) The Gain was referenced by the PDF file of Antenna Design note, DN0007 by TI.

X Pass Fail N/A

Unwanted Emission: Antenna-port Conducted Emissions

Temperature	25.9 °C
Relative Humidity	49.0 %
Barometric Pressure:	101.8 kPa
Test Date	July 31, 2013
Sample Number	1150940, 1150941, 1150942
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID)	N1, N3
(Calibration not required)	N1, N3
Tested By	Jeremy Lee

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/cabc0248

Test Limits

15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Setup

The test was performed in accordance with FCC 15.247:2010, FCC 15.31:2010 and KDB 558074 D01 v03r01.

- > The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer.
- > The EUT was set-up in three different transmiting modes, low-end, middle, and high-end.
- The transmitter was set to output its maximum power.
- The following measurements were made with
 - Span = wide enough to capture the peak level of the in-band emission and all spurious emissions(e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.
 - RBW = 100kHz up to 1GHz, 1MHz over 1GHz.
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
 - Allowed the trace to stabilize.
- > Set the marker on the peak of any spurious emission recorded.

Prepared by: LabTest Certification Inc. Client: Orpyx Medical Technologies Inc. Date Issued: August 19, 2013 Report No.: 11404-1E 0

Project No: 11404 Revision No.:

Setup Block Diagram

Test Results:

Difference(dB) = Measured Carrier Level(dBm) - Measured Spurious Level(dBm)

Description	Frequency (MHz)	Measured (dBm)	Difference (dB)	Limit (dB)	Pass/Fail
Carrier_Low End	2406	-0.32	-	-	-
Spurious	1202.95	-49.17	48.85	> 20	Pass
2 nd Harmonic	4811.66	-48.07	47.75	> 20	Pass
3 rd Harmonic	7218	Under noise floor	Over 40	> 20	Pass
4 th Harmonic	9625.06	-49.74	49.42	> 20	Pass
5 th Harmonic	12030			> 20	Pass
6 th Harmonic	14436			> 20	Pass
7 th Harmonic	16842		Over 40	> 20	Pass
8 th Harmonic	19248	Under noise floor	Over 40	> 20	Pass
9 th Harmonic	21654			> 20	Pass
10 th Harmonic	24060			> 20	Pass
Carrier_Middle	2441	0.83	-	-	-
Spurious	1220.68	-48.50	49.33	> 20	Pass
2 nd Harmonic	4882.04	-49.35	50.18	> 20	Pass
3 rd Harmonic	7323	Under noise floor	Over 40	> 20	Pass
4 th Harmonic	9764.82	-51.29	52.12	> 20	Pass
5 th Harmonic	12205			> 20	Pass
6 th Harmonic	14646			> 20	Pass
7 th Harmonic	17087		0	> 20	Pass
8 th Harmonic	19528	Under noise floor	Over 40	> 20	Pass
9 th Harmonic	21969			> 20	Pass
10 th Harmonic	24410			> 20	Pass

Carrier_High End 2475 0.86 1237.51 49.81 > 20 **Spurious** -48.95 **Pass** 2nd Harmonic 4950.43 -49.74 50.60 > 20 Pass 3rd Harmonic 7425 Under noise floor Over 40 > 20 Pass 4th Harmonic 9901.60 -54.91 55.77 > 20 **Pass** 5th Harmonic 12375 > 20 Pass 6th Harmonic > 20 14850 **Pass** 7th Harmonic > 20 17325 **Pass** Under noise floor Over 40 8th Harmonic 19800 > 20 Pass 9th Harmonic 22275 > 20 **Pass** 10th Harmonic 24750 > 20 **Pass**

X Pass Fail N/A

- Antenna-port Conducted Emissions; 30MHz to 2.5GHz.

Page 20 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

- Antenna-port Conducted Emissions: 2.4 to 25 GHz.

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

Unwanted Emission: Radiated Emissions into Non-Restricted Frequency Bands

Temperature	28.8 to 29.1 °C
Relative Humidity	34.3 to 34.6 %
Barometric Pressure:	101.0 kPa
Test Date	July 16, 2013
Sample Number	1150935
Calibrated Test Equipment (ID)	241, 266, 272, 371
Reference Equipment (ID) (Calibration not required)	374
Tested By	Jeremy Lee

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/cabc0284

Test Limits

15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

15.209(a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measure- ment dis- tance (meters)
0.009–0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30–88	100 **	3
88–216	150 **	3
216–960	200 **	3
Above 960	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

Test Setup

The test was performed in accordance with FCC 15.247:2010, 15.209:2010, FCC 15.31:2010, FCC 15.33:2010, FCC 15.35:2010, and KDB 558074 D01 v03r01.

Test procedure is based on the FCC15.31(a)(3) – Other intentional and unintentional radiators are to be measured for compliance using the following procedure excluding sections 4.1.5.2, 5.7, 9 and 14: ANSI C63.4–2009: "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" (incorporated by reference, see § 15.38). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51.

Page 22 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

NOTE to Paragraph (a)(3): Digital devices tested to show compliance with the provisions of §§ 15.107(e) and 15.109(g) must be tested following the ANSI C63.4 procedure described in paragraph (a)(3) of this section.[As stated in the adopting R&O, ANSI C63.4 is not used for measurements below 30 MHz.]

The EUT was placed on a 1 meter by 1.5 meters wide and 0.8-meter high nonconductive table that was placed directly onto a flush mounted turntable. The EUT was connected to its support equipment with any excess I/O cabling bundled to approximately 1 meter. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter. It is measured with a receiver – the spectrum analyzer, was software controlled. The antennas were balanced dipoles. For frequencies of 80 MHz or above, the antennas were resonant in length, and for frequencies below 80 MHz it had a length equal to the 80 MHz resonant length.

Tests were performed to determine the emissions with Transmit mode, Hopping mode. Antenna was connected to output port. The EUT was positioned emissions from the unit were maximized by manipulating the cables, and by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

- > The EUT was set-up Normal Beacon mode.
- > The transmitter was set-up as its maximum power with Antenna.
- The following measurements were made with
 - Span = wide enough to fully capture the emission being measured.
 - RBW = 9kHz & 120 kHz
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = Peak an QP, there was no strong signal in range to use the Averaging detector
 - Trace = Single trace up to capturing the whole range of signal

Setup Block Diagram

Test Setup in Chamber

Test Result

Radiated Emission (dBuV/m) = Measured Emission (dBuV) + Antenna Factor(1/m) + Cable Loss(dB)- Pre-Amplifier Gain(dB)

X Pass Fail N/A

- Graph of Radiated Emissions, Beacon Mode: 9kHz to 30MHz, Peak Detecting, Antenna was used AL-160.

Page 25 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

- Graph of Radiated Emissions, Beacon Mode: 30 to1000MHz, Peak Detecting, Antenna was used JB1, the polarization of Antenna was Horizontal.

Page 26 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

- Graph of Radiated Emissions, Beacon Mode: 30 to1000MHz, Peak Detecting, Antenna was used JB1, the polarization of Antenna was Vertical.

Page 27 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

Unwanted Emission: Radiated Emissions into Restricted Frequency Bands

Temperature	24.2 to 24.3 °C
Relative Humidity	41.0 %
Barometric Pressure:	101.7 kPa
Test Date	Aug. 02, 2013
Sample Number	1150937, 1150938, 1150939
Calibrated Test Equipment (ID)	227-3, 227-4, 266, 272, 273
Reference Equipment (ID) (Calibration not required)	374, N1, N2
Tested By	Jeremy Lee

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/cabc0284

Test Limits

15.247(d)

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

15.205(a)

Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5–5.15
1 0.495–0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125–4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725–4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215–6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36–13.41.			, ,

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

15.209(a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

² Above 38.6

Client: LabTest Certification Inc. Prepared by: Orpyx Medical Technologies Inc. Date Issued: August 19, 2013 Report No.: 11404-1E

Project No: 11404 Revision No.:

Frequency (MHz)	Field strength (microvolts/meter)	Measure- ment dis- tance (meters)
0.009–0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100 **	3
88–216	150 **	3
216–960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

Test Setup

The test was performed in accordance with FCC 15.247:2010, FCC 15.31:2010, FCC 15.33:2010, FCC 15.35:2010, and KDB 558074 D01 v03r01.

Test procedure is based on the FCC15.31(a)(3) - Other intentional and unintentional radiators are to be measured for compliance using the following procedure excluding sections 4.1.5.2, 5.7, 9 and 14: ANSI C63.4-2003: "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" (incorporated by reference, see § 15.38). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51.

NOTE to Paragraph (a)(3): Digital devices tested to show compliance with the provisions of §§ 15.107(e) and 15.109(g) must be tested following the ANSI C63.4 procedure described in paragraph (a)(3) of this section.[As stated in the adopting R&O, ANSI C63.4 is not used for measurements below 30 MHz.]

The EUT was placed on a 1 meter by 1.5 meters wide and 0.8-meter high nonconductive table that was placed directly onto a flush mounted turntable. The EUT was connected to its support equipment with any excess I/O cabling bundled to approximately 1 meter. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter. It is measured with a receiver - spectrum analyzer, was software controlled. The antennas were Horn Antennas.

The tests were performed to determine the "worst-case" orientation of the EUT. With the EUT positioned in the "worst case" orientation, emissions from the unit were maximized, and by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

- The EUT was measured in three diferrent transmiting frequencies, low-end, middle, and high-end.
- The transmitter was set-up as its maximum power.
- The following measurements were made with
 - Span = wide enough to fully capture the emission being measured.
 - RBW = 1MHz
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = Averaging and Peak
 - Trace = Single trace up to capturing the whole range of signal
- Test was repeated with three different Orthogonals.

Page 29 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

Prepared by: LabTest Certification Inc. Client: Orpyx Medical Technologies Inc.

 Date Issued:
 August 19, 2013
 Report No.:
 11404-1E

 Project No:
 11404
 Revision No.:
 0

Setup Block Diagram

Test Setup in Chamber

Test Result

Radiated Emission (dBuV/m) = Measured Emission (dBuV) + Antenna Factor(1/m) + Cable Loss(dB)- Pre-Amplifier Gain(dB)

Frequency (GHz)	Radiated Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Orthogonal (X/Y/Z)	Detector (AVG/PK)	Pol(H/V)	Results
Low End, Fc	: 2406 MHz						
4812	55.98	73.98	18.00	Y	PK	V	Pass
12030	41.71	53.98	12.27	X	AVG	Н	Pass
19248	41.51	55.96	12.47	Y	AVG	V	Pass
Middle, Fc: 2	2441 MHz						
4882	34.62		19.36	X	AVG	V	Pass
7323	39.07	F2 00	14.91	X	AVG	V	Pass
12205	41.75	53.98	12.23	X	AVG	V	Pass
19528	41.81		12.17	Y	AVG	V	Pass
High End, Fo	c: 2475 MHz						
4950	34.47		19.51	Υ	AVG	V	Pass
7425	38.97		15.01	X	AVG	V	Pass
12375	42.51	53.98	11.47	Х	AVG	V	Pass
19800	41.75		12.23	Х	AVG	Н	Pass
22275	44.13		9.85	Х	AVG	Н	Pass

X Pass Fail N/A

LabTest Certification Inc. Prepared by:

Date Issued: August 19, 2013

Project No: 11404

Client: Report No.:

Revision No.:

Orpyx Medical Technologies Inc.

11404-1E

0

- Table of Radiated Harmonic Emissions of LowEnd, Fc=2406MHz, Orthogonal X, Antenna was used SAS-571 & SAS-572.

LabTest Certification Inc.

Intentional Radiated Emission-Harmonics FCC15.247, 205 & 209, 3 meters, Peak Detector_Low End_Orthogonal X_Horizontal

11:06:46 PM, Friday, August 02, 2013

Operator: Jeremy Lee

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

requency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dΒ	Degree	cm	111
4.812 GHz	47.38	33.00	-28.14	52.24	73.98	21.74	204.5	201.9	Н
2.030 GHz	41.18	39.59	-26.59	54.17	73.98	19.81	204_5	201.9	H
9.248 GHz	42.63	37.60	-25.80	54.43	73.98	19,55	204.5	201.9	Н
roject # : 1140	4. Sample #: 1	150937			-				-

LabTest Certification Inc.

Intentional Radiated Emission-Harmonics
FCC15.247. 205 & 209, 3 meters, Peak Detector_Low End_Orthogonal X_Vertical

Operator: Jeremy Lee

11:06:46 PM. Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

requency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	CITI	
4.812 GHz	48.38	33.18	-28.14	53.42	73.98	20.56	76.5	180.0	V
12,030 GHz	41,40	39.67	-26.59	54,47	73.98	19.51	76.5	180.0	V
19,248 GHz	41,94	37.60	-25.80	53.74	73.98	20.24	76.5	180.0	V
Project # : 1140 Temp.: 24.3 C. Barometer Pres.:	Hum.: 41.0 %	150937							

LabTest Certification Inc.

Intentional Radiated Emission-Harmonics
FCC15,247, 205 & 209, 3 meter, Averaging Detector_Low End_Orthogonal X_Horizontal

Operator: Jeremy Lee

11:06:46 PM, Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

requency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	d8	dBuV/m	dBuV/m	dB	Degree	cm	- 54
4.812 GHz	29.48	33.00	-28,14	34,34	53.98	19.64	204.5	201.9	H
2.030 GHz	28.72	39.59	-26.59	41.71	53.98	12.27	204.5	201.9	Н
19.248 GHz	29.65	37_60	-25_80	41.45	53.98	12.53	204.5	201.9	Н
Project # = 114	104. Sample #: 11	50937							
Temp.: 24.3 C.	Hum. = 41.0 %								
Barometer Pres.	:101.7 kPa								

LabTest Certification Inc.

Intentional Radiated Emission-Harmonics
FCC15,247, 205 & 209, 3 meters. Averaging Detector_Low End_Orthogonal X_Vertical

Operator: Jeremy Lee

11:06:46 PM, Friday, August 02, 2013

Model #: SSVI Contact: Marcel Groenland Company: Orpyx Medical Tech, Inc.

Frequency	Measured+AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4.812 GHz	29.53	33.18	-28.14	34.57	53.98	19.41	76.5	180.0	N
12.030 GHz	28.59	39.67	-26.59	41_66	53,98	12.32	76.5	180.0	V
19,248 GHz	29.56	37.60	-25.80	41.36	53,98	12.62	76.5	180.0	V
Project # : 1140 Temp.: 24.3 C. Barometer Pres.:	Hum.: 41.0 %	50937							

- Table of Radiated Harmonic Emissions of LowEnd, Fc=2406MHz, Orthogonal Y, Antenna was used SAS-571 & SAS-572.

LabTest Certification Inc.
Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209, 3 meters, Peak Detector_Low End_Orthogonal Y_Horizontal

Operator: Jeremy Lee

11:09:56 PM, Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	Cm	
4.812 GHz	51.02	33,00	-28.14	55.88	73.98	18.10	28.5	120.0	H
12.030 GHz	41.37	39,59	-26.59	54.36	73.98	19.62	28.5	120.0	H
19.248 GHz	41.37	37.60	-25.80	53.17	73.98	20.81	28.5	120.0	Н
Project # 114	04. Sample #: 1	150937							
	Hum.: 41.0 %								
Barometer Pres.	101.7 kPa								

LabTest Certification Inc. Intentional Radiated Emission-Harmonics

FCC15.247, 205 & 209. 3 meters. Peak Detector_Low End_Orthogonal Y_Vertical

Operator: Jeremy Lee

11:09:56 PM, Friday, August 02, 2013

Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
50.94	33.18	-28.14	55.98	73.98	18.00	360.0	180.0	V
40.78	39.67	-26.59	53.85	73.98	20.13	360.0	180.0	V
42.74	37.60	-25.80	54.54	73.98	19.44	360.0	180.0	V
	150937							
	dBuV 50,94 40,78 42,74	dBuV dB/m 50,94 33,18 40,78 39,67 42,74 37.60 4. Sample #: 1150937 Hum.: 41.0 %	dBuV dB/m dB 50,94 33,18 -28.14 40.76 39.67 -26.59 42.74 37.60 -25.80 4. Sample #: 1150937 Hum.: 41.0 %	dBuV dB/m dB dBuV/m 50,94 33,18 -28.14 55.98 40,76 39.67 -26.59 53,85 42.74 37.60 -25.80 54.54 4. Sample #: 1150937 Hum.: 41.0 %	dBuV dB/m dB dBuV/m dBuV/m 50,94 33,18 -28.14 55,98 73.98 40,76 39.67 -26.59 53,85 73.98 42.74 37.60 -25.80 54.54 73,98 42.74 37.60 -25.80 54.54 73,98 44. Sample #: 1150937	dBuV dB/m dB dBuV/m dBuV/m dB 50,94 33,18 -28,14 55,98 73,98 18,00 40,78 39,67 -26,59 53,85 73,98 20,13 42,74 37,60 -25,80 54,54 73,98 19,44 4, Sample #: 1150937	dBuV dB/m dB dBuV/m dB Degree 50,94 33,18 -28.14 55.98 73.98 18.00 360,0 40.76 39.67 -26.59 53.85 73.98 20.13 360.0 42.74 37.60 -25.80 54.54 73.98 19.44 360.0 44. Sample #: 1150937 Hum.: 41.0 %	dBuV dB/m dB dBuV/m dB Degree cm 50,94 33,18 -28.14 55.98 73.98 18.00 360,0 180,0 40,78 39.67 -26.59 53.85 73.98 20.13 360,0 180.0 42.74 37.60 -25.80 54.54 73.98 19.44 360.0 180.0 4. Sample #: 1150937

LabTest Certification inc. Intentional Radiated Emission-Harmonics

FCC15.247, 205 & 209, 3 meter. Averaging Detector_Low End_Orthogonal Y_Horizontal

Operator: Jeremy Lee

11:09:56 PM, Friday_ August 02, 2013

Model #: SSV1

Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

requency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4.812 GHz	29.85	33.00	-28.14	34.71	53.98	19.27	28.5	120.0	H
12.030 GHz	28.64	39.59	-26.59	41.63	53.98	12.35	28.5	120.0	Н
19.248 GHz	29.58	37.60	-25.80	41.38	53.98	12.60	28.5	120.0	Н
Project # = 114	404. Sample #: 11	50937							
Temp. 24.3 C.	. Hum. = 41.0 %	1-							
Parometer Pres	101 7 LDa								

LabTest Certification Inc.

Intentional Radiated Emission-Harmonics FCC15.247, 205 & 209, 3 meters, Averaging Detector_Low End_Orthogonal Y_Vertical

Operator: Jeremy Lee

11:09:56 PM_ Friday_ August 02, 2013

Model #: SSV1

Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Frequency	Measured+AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	CM	
4.812 GHz	29.71	33.18	-28.14	34.75	53.98	19.23	360.0	180.0	V
12.030 GHz	28.61	39.67	-26.59	41.68	53.98	12.30	360.0	180.0	V
19.248 GHz	29.71	37.60	-25.80	41.51	53.98	12_47	360.0	180.0	V
Project # : 114	104. Sample #: 11	50937							
Temp.: 24.3 C.	Hum = 41.0 %								
Barometer Pres.	:101.7 kPa								

Page 33 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

LabTest Certification Inc. Prepared by: Client: Orpyx Medical Technologies Inc. Report No.: 11404-1E Date Issued: August 19, 2013 Project No: Revision No.: 11404 0

- Table of Radiated Harmonic Emissions of LowEnd, Fc=2406MHz, Orthogonal Z, Antenna was used SAS-571 & SAS-572.

LabTest Certification Inc.

Intentional Radiated Emission-Harmonics FCC15.247, 205 & 209, 3 meters. Peak Detector_Low End_Orthogonal Z_Horizontal

Operator: Jeremy Lee

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc. 11:12:45 PM, Friday, August 02, 2013

requency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	αB	Degree	¢m	
4.812 GHz	48.26	33.00	-28.14	53,12	73.98	20.86	279.0	180.0	H
12.030 GHz	41.97	39.59	-26.59	54.96	73.98	19.02	279.0	180.0	Н
19.248 GHz	41.51	37.60	-25.80	53.31	73.98	20.67	279.0	180.0	Н
Project # : 114	04. Sample #: 1	150937					+		
Temp.: 24.3 C.	Hum.: 41.0 %								
Barometer Pres.	: 101 7 kPa								

LabTest Certification Inc.

Intentional Radiated Emission-Harmonics
FCC15,247, 205 & 209, 3 meters, Peak Detector_Low End_Orthogonal Z_Vertical

Operator: Jeremy Lee

11:12:45 PM. Friday. August 02. 2013 Company: Orpyx Medical Tech. Inc.

Model #: SSV1 Contact: Marcel Groenland

Model #: SSV1

Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL	
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	om		
4.812 GHz	48.88	33.18	-28.14	53.92	73,98	20.06	148.0	180_0	V	
12.030 GHz	41.09	39.67	-26.59	54.16	73.98	19.82	148.0	180.0	V	
19.248 GHz	42.43	37.60	-25.80	54.23	73.98	19.75	148.0	180.0	V	
Project # : 11404 Temp.: 24,3 C. H Barometer Pres.:1	fum. = 41.0 %	150937								

LabTest Certification Inc.
Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209, 3 meter. Averaging Detector_Low End_Orthogonal Z_Horizontal

Operator: Jeremy Lee

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech: Inc. 11:12:45 PM, Friday, August 02, 2013

requency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4.812 GHz	29.39	33.00	-28.14	34.25	53.98	19.73	279.0	180.0	Н
12.030 GHz	28.53	39.59	-26.59	41.52	53,98	12.46	279.0	180.0	Н
19.248 GHz	29.69	37.60	-25.80	41.49	53,98	12.49	279.0	180.0	Н
Project # = 11404 Temp.: 24.3 C. H Barometer Pres.:1	lum.: 41.0 %	50937							

LabTest Certification Inc.
Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209, 3 meters, Averaging Detector_Low End_Orthogonal Z_Vertical

Operator: Jeremy Lee

Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc. 11:12:45 PM, Friday, August 02, 2013

requency	Measured+AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4,812 GHz	29.33	33.18	-28.14	34.37	53.98	19.61	148.0	180.0	V
12.030 GHz	28.64	39.67	-26.59	41.71	53.98	12.27	148.0	180.0	V
19,248 GHz	29,56	37,60	-25.80	41,36	53.98	12.62	148.0	180_0	V
		50937							
	Hum.: 41.0 %								
Barometer Pres.	-101_7 kPa								

Page 34 of 65

- Table of Radiated Harmonic Emissions of LowEnd, Fc=2441MHz, Orthogonal X, Antenna was used SAS-571 & SAS-572.

LabTest Certification Inc. Intentional Radiated Emission-Harmonics
FCC15,247, 205 & 209, 3 meters, Peak Detector_Middle_Orthogonal X_Horizontal

Operator: Jeremy Lee

11:25:22 PM, Friday, August 02, 2013 Company: Orpyx Medical Tech. Inc. Frequency Emission_PK Measured_PK AntFactor PathLoss Limit PK Margin_Pk Tower POL dBuV/m dBuV dB/m dB aBuV/m dB Hz Degree CIT 110.0

Model #: SSV1 Contact: Marcel Groenland

4.882 GHz 7.323 GHz 42.03 33.22 -28.12 -27.64 47.12 51.43 73.98 26,86 22,55 170.0 110.0 54,25 54.39 12.205 GHz 40.38 40,43 26,56 73,98 19,73 170.0 110.0 19.59 19.528 GHz 42.82 37.36 25.79 73.98 170.0 110.0 Project # - 11404, Sample #: 1150938 Temp.: 24,3 C, Hum.: 41.0 % Barometer Pres.:101.7 kPa

LabTest Certification Inc. Intentional Radiated Emission-Harmonics

FCC15.247.. 205 & 209, 3 meters, Peak Detector_Middle_Orthogonal X_Vertical

Operator: Jeremy Lee Model #: SSV1

Contact: Marcel Groenland 11:25:22 PM, Friday, August 02, 2013 Company: Orpyx Medical Tech. Inc.

Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL	
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm		
4.882 GHz	42.29	33,26	-28.12	47.42	73.98	26.56	330.0	110.0	V	
7.323 GHz	41.18	37.48	-27.64	51.03	73.98	22.95	330.0	110.0	V.	
12.205 GHz	40.41	40.51	-26.56	54.36	73.98	19.62	330.0	110.0	V	
19.528 GHz	43.82	37.36	-25.79	55.39	73:98	18.59	330.0	110.0	V	
Project # : 114	04. Sample #: 1	150938								
Temp.: 24.3 C.	Hum.: 41.0 %				1111					
Barometer Pres.	101_7 kPa									

LabTest Certification Inc. Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209, 3 meter, Averaging Detector_Middle_Orthogonal X_Horizontal

Operator: Jeremy Lee

Model #: SSV1 Contact: Marcel Groenland 11:25:22 PM. Friday, August 02, 2013 Company: Orpyx Medical Tech. Inc.

AntFactor requency Measured_AVG PathLoss Emission_AVG Limit AVG Margin_AVG dBuV/m dBuV/m dBuV dB/m dB dB Degree Hz 29.39 33.22 -28.12 -27.64 4.882 GHz 34.48 53.98 19,50 170.0 110.0 38.88 53.98 7.323 GHz 15.10 170.0 110.0 12.205 GHz 27,39 40,43 26.56 41.26 53,98 12.72 12.29 110.0 41.69 30.12 37.36 25.79 53.98 170.0 110.0

19.528 GHz Project # : 11404, Sample #: 1150938 Temp.: 24,3 C. Hum.: 41.0 % Barometer Pres.: 101.7 kPa

> LabTest Certification Inc. Intentional Radiated Emission-Harmonics
> FCC15.247, 205 & 209, 3 meters. Averaging Detector_Middle_Orthogonal X_Vertical

Operator: Jeremy Lee Contact: Marcel Groenland

11:25:22 PM, Friday, August 02, 2013 Company: Orpyx Medical Tech. Inc.

Frequency Limit_AVG Measured+AVG AntFactor PathLoss Emission_AVG Margin_AVG dBuV/m dBuV/m dBuV dB dB Hz dB/m Degree **cm** 4.882 GHz 7.323 GHz 12.205 GHz 29.49 33.26 -28.12 34.62 53.98 19.36 330.0 110.0 39.07 53.98 29,22 37,48 27.64 14.91 330.0 110.0 27.80 40.51 26.56 53.98 12.23 19.528 GHz 30.12 37.36 25.79 41.69 53.98 12,29 330.0 110.0 Project # = 11404, Sample #: 1150938 Temp.: 24.3 C. Hum.: 41.0 % Barometer Pres.:101.7 kPa

Page 35 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

LabTest Certification Inc. Prepared by: Client: Orpyx Medical Technologies Inc. 11404-1E Date Issued: August 19, 2013 Report No.: Project No: Revision No.: 11404 0

- Table of Radiated Harmonic Emissions of LowEnd, Fc=2441MHz, Orthogonal Y, Antenna was used SAS-571 & SAS-572.

LabTest Certification Inc.
Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209, 3 meters, Peak Detector_Middle_Orthogonal Y_Horizontal

Operator: Jeremy Lee

11:25:51 PW. Friday, August 02, 2013

Model #: SSV1 Contact- Marcel Groenland Company: Orpyx Medical Tech. Inc.

requency	Measured_Pk.	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	d₿	dBuV/m	dBuV/m	dB	Degree	cm	
4.882 GHz	42.46	33.22	-28.12	47,55	73.98	26.43	0.0	110.0	H
7,323 GHz	41.67	37.44	-27.64	51.47	73.98	22.51	0.0	110.0	Н
12.205 GHz	40.36	40.43	-26.56	54.23	73.98	19.75	0.0	110.0	H
19.528 GHz	42.42	37.36	-25,79	53.99	73.98	19.99	0.0	110.0	Н
Project # : 11	404. Sample #: 1	150938				-			
Temp.: 24,3 C	. Hum 41.0 %								
Barometer Pres	.:101.7 kPa								

LabTest Certification inc. Intentional Radiated Emission-Harmonics FCC15.247_205 & 209, 3 meters, Peak Detector_Middle_Orthogonal Y_Vertical

Operator: Jeremy Lee

11:25:51 PM, Friday, August 02, 2013

Model #: SSV1

Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

requency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	QM	
4.882 GHz	41,95	33.26	-28.12	47.08	73.98	26.90	145.0	110.0	V
7.323 GHz	41.78	37.48	-27.64	51.63	73.98	22.35	145.0	110.0	V
12.205 GHz	40.00	40.51	-26.56	53.95	73.98	20.03	145.0	110.0	V
19.528 GHz	42,63	37.36	-25.79	54.20	73.98	19.78	145.0	110.0	V
Project # : 1140	4. Sample #: 1	150938							
	Hum.: 41.0 %								
Barometer Pres :	101.7 kPa								

LabTest Certification Inc.

Intentional Radiated Emission-Harmonics
FCC15.247. 205 & 209. 3 meter, Averaging Detector_Middle_Orthogonal Y_Horizontal

Operator: Jeremy Lee

11:25:51 PM, Friday, August 02, 2013

Model #: SSV1

Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

requency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	aBuV/m	dBuV/m	dB	Degree	cm	
4.882 GHz	29,38	33,22	-28.12	34.47	53.98	19,51	0.0	110.0	H
7.323 GHz	29.07	37.44	-27.64	38.87	53.98	15, 11	0.0	110.0	Н
12.205 GHz	27.42	40.43	-26.56	41.29	53.98	12.69	0.0	110.0	H
19.528 GHz	30.23	37.36	-25.79	41.80	53.98	12.18	0.0	110.0	Н
Project # : 1140)4. Sample #: 11	50938							
Temp.: 24.3 C.	Hum = 41.0 %								
Barometer Pres.:	101.7 kPa								

LabTest Certification Inc.
Intentional Radiated Emission-Harmonics
FCC15.247. 205 & 209, 3 meters, Averaging Detector_Middle_Orthogonal Y_Vertical

11:25:51 PM, Friday, August 02, 2013

Operator: Jeremy Lee

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Measured+AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	7.5
29.46	33.26	-28.12	34.59	53.98	19,39	145.0	110.0	V
29.00	37.48	-27.64	38.85	53.98	15.13	145.0	110.0	V
27.64	40.51	-26.56	41.59	53.98	12.39	145.0	110.0	V
30.24	37.36	-25.79	41.81	53.98	12, 17	145.0	110.0	V
	50938							
	dBuV 29.46 29.00 27.64 30.24	dBuV dB/m 29.46 33.26 29.00 37.48 27.64 40.51 30.24 37.36 4. Sample #: 1150938	dBuV dB/m dB 29.46 33.26 -28.12 29.00 37.48 -27.64 27.64 40.51 -26.56 30.24 37.36 -25.79 4. Sample #: 1150938	dBuV dB/m dB dBuV/m 29.46 33.26 -28.12 34.59 29.00 37.48 -27.64 38.85 27.64 40.51 -26.56 41.59 30.24 37.36 -25.79 41.81 4. Sample #: 1150938	dBuV dB/m dB dBuV/m dBuV/m 29.46 33.26 -28.12 34.59 53.98 29.00 37.48 -27.64 38.85 53.98 27.64 40.51 -26.56 41.59 53.98 30.24 37.36 -25.79 41.81 53.98 4. Sample #: 1150938	dBuV dB/m dB dBuV/m dBuV/m dB 29.46 33.26 -28.12 34.59 53.98 19.39 29.00 37.48 -27.64 38.85 53.98 15.13 27.64 40.51 -26.56 41.59 53.98 12.39 30.24 37.36 -25.79 41.81 53.98 12.17 4. Sample #: 1150938 http://dx.db/db/db/db/db/db/db/db/db/db/db/db/db/d	dBuV dB/m dB dBuV/m dBuV/m dB Degree 29.46 33.26 -28.12 34.59 53.98 19.39 145.0 29.00 37.48 -27.64 38.85 53.98 15.13 145.0 27.64 40.51 -26.56 41.59 53.98 12.39 145.0 30.24 37.36 -25.79 41.81 53.98 12.17 145.0 4. Sample #: 1150938	dBuV dB/m dB dBuV/m dB Degree cm 29.46 33.26 -28.12 34.59 53.98 19.39 145.0 110.0 29.00 37.48 -27.64 38.85 53.98 15.13 145.0 110.0 27.64 40.51 -26.56 41.59 53.98 12.39 145.0 110.0 30.24 37.36 -25.79 41.81 53.98 12.17 145.0 110.0 4. Sample #: 1150938

Page 36 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

- Table of Radiated Harmonic Emissions of LowEnd, Fc=2441MHz, Orthogonal Z, Antenna was used SAS-571 & SAS-572.

LabTest Certification Inc.
Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209, 3 meters. Peak Detector_Middle_Orthogonal Z_Horizontal Operator: Jeremy Lee

11:26:11 PM. Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

requency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PVC	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	Ċm	
4.882 GHz	42.09	33.22	-28.12	47.18	73.98	26.80	180.0	110.0	Н
7.323 GHz	41.24	37.44	-27.64	51.04	73.98	22.94	180.0	110.0	H
12.205 GHz	40.09	40.43	-26.56	53.96	73.98	20.02	180.0	110.0	Н
19.528 GHz	42.67	37.36	-25.79	54.24	73.98	19.74	180.0	110.0	Н
Project # = 1140	4. Sample #: 1	150938							
Temp.: 24.3 C. Barometer Pres.:							-		

LabTest Certification Inc.
Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209, 3 meters, Peak Detector_Middle_Orthogonal Z_Vertical

Operator: Jeremy Lee

11:26:11 PM, Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Frequency	Measured_PK	AntFactor	PathLoss	Emission_Pk	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB.	dBuV/m	dBuV/m	dB	Degree	cm	
4.882 GHz	41.35	33.26	-28.12	46.48	73.98	27.50	240.0	110.0	V
7.323 GHz	41.62	37.48	-27.64	51.47	73.98	22.51	240.0	110.0	V
12,205 GHz	40.10	40.51	-26.56	54.05	73.98	19.93	240.0	110.0	V
19.528 GHz	42.38	37.36	-25.79	53.95	73,98	20.03	240.0	110.0	V
Project # : 1140	4. Sample #: 1	150938							
Temp.: 24.3 C.)	Hum.: 41.0 %								
Barometer Pres.	101.7 KPa								

LabTest Certification Inc. Intentional Radiated Emission-Harmonics FCC15.247, 205 & 200. 3 meter. Averaging Detector_Middle_Orthogonal Z_Horizontal

Operator: Jeremy Lee

11:26:11 PM, Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

7.323 GHz 29.09	AVG AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	1/1	Tower	POL
7.323 GHz 29.09	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
	33.22	-28.12	34.38	53.98	19.60	180.0	110.0	H
12,205 GHz 27,56	37.44	-27.64	38.89	53.98	15.09	180.0	110.0	H
	40_43	-26.56	41.43	53.98	12.55	180.0	110.0	H
19.528 GHz 30.08	37.36	-25.79	41.65	53.98	12.33	180.0	110.0	H
Project # : 11404, Sample #	1150938							
Temp : 24.3 C. Hum : 41.0	0/4							
Barometer Pres,:101.7 kPa								

LabTest Certification Inc. Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209, 3 meters. Averaging Detector_Middle_Orthogonal Z_Vertical

Operator: Jeremy Lee

11:26:11 PM, Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Measured+AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
dBuV	dB/m	dΒ	dBuV/m	dBuV/m	dB	Degree	CM	
29.27	33.26	-28.12	34.40	53.98	19.58	240.0	110.0	V
28.94	37.48	-27.64	38.79	53.98	15.19	240.0	110.0	V
27.48	40.51	-26.56	41.43	53.98	12.55	240.0	110.0	N
30.22	37.36	-25.79	41,79	53.98	12.19	240.0	110.0	V
Hum.: 41.0 %	50938							
	0BuV 29.27 28.94 27.48 30.22	oBuV dB/m 29.27 33.26 28.94 37.48 27.48 40.51 30.22 37.36 4. Sample #: 1150938 dum.: 41.0 %	dBuV dB/m dB 29.27 33.26 -28.12 28.94 37.48 -27.64 27.48 40.51 -26.56 30.22 37.36 -25.79 4. Sample #: 1150938 dum.: 41.0 %	dBuV dB/m dB dBuV/m 29.27 33.26 -28.12 34.40 28.94 37.48 -27.64 38.79 27.48 40.51 -26.56 41.43 30.22 37.36 -25.79 41.79 4. Sample #: 1150938	oBuV dB/m dB dBuV/m dBuV/m 29.27 33.26 -28.12 34.40 53.98 28.94 37.48 -27.64 38.79 53.98 27.48 40.51 -26.56 41.43 53.98 30.22 37.36 -25.79 41.79 53.98 4. Sample #: 1150938 41.79 41.79 53.98	oBuV dB/m dB dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dB 29.27 33.26 -28.12 34.40 53.98 19.58 28.94 37.48 -27.64 38.79 53.98 15.19 27.48 40.51 -26.56 41.43 53.98 12.55 30.22 37.36 -25.79 41.79 53.98 12.19 4. Sample #: 1150938 12.19 13.41 13.42 13.	oBuV dB/m dB dBuV/m dBuV/m dB UV/m dB Degree 29.27 33.26 -28.12 34.40 53.98 19.58 240.0 28.94 37.48 -27.64 38.79 53.98 15.19 240.0 27.48 40.51 -26.56 41.43 53.98 12.55 240.0 30.22 37.36 -25.79 41.79 53.98 12.19 240.0 4. Sample #: 1150938 Hum.: 41.0 % 41.79	oBuV dB/m dB dBuV/m dBuV/m dB Degree cm 29.27 33.26 -28.12 34.40 53.98 19.58 240.0 110.0 28.94 37.48 -27.64 38.79 53.98 15.19 240.0 110.0 27.48 40.51 -26.56 41.43 53.98 12.55 240.0 110.0 30.22 37.36 -25.79 41.79 53.98 12.19 240.0 110.0 4. Sample #: 1150938 10.00 10.00 10.00 10.00 10.00 10.00

Page 37 of 65

- Table of Radiated Harmonic Emissions of LowEnd, Fc=2475MHz, Orthogonal X, Antenna was used SAS-571 & SAS-572.

LabTest Certification Inc. Intentional Radiated Emission-Harmonics

FCC15,247, 205 & 209, 3 meters, Peak Detector_High End_Orthogonal_X_Horizontal

Operator: Jeremy Lee

11:17:17 PM, Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech Inc.

requency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4.950 GHz	47.20	33,37	-28.11	52.46	73.98	21,52	205.0	189.0	H
7.425 GHz	41.84	37.19	-27.61	51.41	73.98	22.57	205.0	189.0	H
12.375 GHz	40:27	40.80	-26.52	54.55	73.98	19.43	205.0	189.0	Н
19.800 GHz	42.75	37.20	-25.74	54.21	73.98	19.77	205.0	189.0	H
22.275 GHz	43.42	37.61	-25.45	55.59	73,98	18,39	205.0	189.0	H
Project # : 11404	Sample #: 11	150939							
Temp.: 24.2 C. Hu	um. = 41.0 %								
Barometer Pres. 110	01.7 kPa								

LabTest Certification Inc

Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 208. 3 meters, Peak Detector_High End_Orthogonal_X_Vertical

Operator: Jeremy Lee

11:17:17 PM, Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

	Measured_PK.	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	CM	
4.950 GHz	43.52	33.39	-28.11	48.80	73.98	25.18	0.0	100.0	V
7,425 GHz	41.87	37.22	-27,61	51.47	73.98	22.51	0.0	100.0	V
12.375 GHz	40.78	40.89	-26.52	55, 15	73.98	18.83	0.0	100.0	V
19.800 GHz	42,76	37.20	-25.74	54.22	73.98	19.76	0.0	100.0	V
22.275 GHz	44.24	37.61	-25.45	56.41	73.98	17.58	.0.0	100.0	V
Project # : 11404.	Sample #: 1	150939							
	m.= 41.0 %								
Barometer Pres.:10	1.7 kPa								

Lablest Certification Inc. Intentional Radiated Emission-Harmonics

FCC15.247, 205 & 209, 3 meter. Averaging Detector_High End_Orthogonal_X_Horizontal

Operator: Jeremy Lee

11:17:17 PM, Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Frequency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4.950 GHz	29.12	33.37	-28, 11	34.38	53.98	19.60	205.0	189.0	H
7,425 GHz	29.19	37.19	-27.61	38.76	53.98	15.22	205.0	189.0	H
12.375 GHz	27.99	40.80	-26.52	42.27	53.98	11.71	205.0	189.0	H
19.800 GHz	30.29	37.20	-25.74	41.75	53.98	12.23	205.0	189.0	H
22,275 GHz	31.96	37.61	-25.45	44.13	53.98	9.85	205:0	189.0	Н
Project # : 1140	4. Sample #: 11	50939							
Temp.; 24.2 C.	Hum 41.0 %	-							
Barometer Pres.:	101.7 KPa								

Lablest Certification Inc.
Intentional Radiated Emission-Harmonics

FCC15,247, 205 & 209, 3 meters. Averaging Detector_High End_Orthogonal_X_Vertical

Operator: Jeremy Lee

11:17:17 PM, Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Frequency	Measured+AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4.950 GHz	29.08	33.39	-28.11	34.36	53.98	19.62	0.0	100.0	V
7.425 GHz	29,37	37.22	-27.61	38.97	53.98	15.01	0.0	100.0	V
12.375 GHz	28.14	40_89	-26.52	42.51	53.98	11.47	0.0	100.0	V.
19,800 GHz	30.08	3720	-25.74	41.54	53.98	12.44	0.0	100.0	V
22.275 GHz	31.78	37.61	-25.45	43.95	53.98	10.03	0.0	100.0	V
Project # : 11	404. Sample #: 11	50939					-		
	. Hum.: 41.0 %								
Barometer Pres	-101-7 I/Pa								

Page 38 of 65

LabTest Certification Inc. Prepared by: Client: Orpyx Medical Technologies Inc. Report No.: Date Issued: August 19, 2013 11404-1E Project No: Revision No.: 11404 0

- Table of Radiated Harmonic Emissions of LowEnd, Fc=2475MHz, Orthogonal Y, Antenna was used SAS-571 & SAS-572.

LabTest Certification inc.
Intentional Radiated Emission-Harmonics
FCC15.247. 205 & 209. 3 meters. Peak Detector_High End_Orthogonal_Y_Horizontal

Operator: Jeremy Lee

11:20:41 PM. Friday, August 02, 2013

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4,950 GHz	48.10	33,37	-28.11	53.36	73.98	20.62	0.0	117.0	Н
7:425 GHz	41.89	37.19	-27.61	51.46	73,98	22.52	0.0	117.0	Н
12.375 GHz	40.20	40 80	-26.52	54.48	73.98	19.50	0.0	117.0	H
19.800 GHz	42.63	37.20	-25.74	54.09	73.98	19.89	0.0	117.0)+
22.275 GHz	43.80	37_61	-25.45	55.97	73.98	18.02	0.0	117.0	Н
Project # = 1140	14. Sample #: 1	150939					1		
	Hum. 41.0 %								
Barometer Pres.:	101.7 kPa								

LabTest Certification Inc. Intentional Radiated Emission-Harmonics

FCC15.247, 205 & 209, 3 meters, Peak Detector_High End_Orthogonal_Y_Vertical

Operator: Jeremy Lee

11:20:41 PM, Friday, August 02, 2013

Model #: SSV1

Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4.950 GHz	47.14	33.39	-28.11	52.42	73.98	21.56	0.0	185.0	V
7.425 GHz	41.42	37.22	-27.61	51.02	73,98	22.96	0.0	185.0	V
12.375 GHz	41.67	40.89	-26.52	56.04	73.98	17.94	0.0	185.0	V
19.800 GHz	42.61	37.20	-25.74	54.07	73.98	19.91	0.0	185.0	V
22.275 GHz	44.36	37.61	-25.45	56,53	73.98	17.45	0.0	185.0	V
Project # : 114	04, Sample #: 1	150939					_		
Temp.: 24.2 C.	Hum. 41.0 %								
Barometer Pres.	1101.7 kPa								

LabTest Certification Inc.
Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 208, 3 meter, Averaging Detector_High End_Orthogonal_Y_Horizontal

Operator: Jeremy Lee

Operator: Jeremy Lee

11:20:41 PM, Friday, August 02, 2013

Model #: SSV1

Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

requency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	1/1	Tower	POL
Hz	dBu\/	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4.950 GHz	29.16	33.37	-28.11	34.42	53.98	19.56	0.0	117.0	H -
7.425 GHz	29.14	37.19	-27.61	38.71	53.98	15.27	0.0	117.0	H
12.375 GHz	28.07	40.80	-26.52	42.35	53.98	11.63	0.0	117.0	H
19.800 GHz	30.17	37,20	-25,74	41.63	53.98	12.35	0.0	117.0	H
22.275 GHz	31.93	37.61	-25.45	44.09	53.98	9.88	0.0	117.0	H
Project # : 17	404. Sample #: 11	50939							
	Hum.: 41.0 %								
Barometer Pres	IUI./ KPa								

Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209. 3 meters, Averaging Detector_High End_Orthogonal_Y_Vertical

11:20:41 PM, Friday, August 02, 2013

Model #: SSV1

Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

requency	Measured+AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB.	dBuV/m	dBuV/m	dB	Degree	OM	
4.950 GHz	29.19	33.39	-28.11	34.47	53.98	19.51	0.0	185.0	V
7.425 GHz	29.33	37.22	-27.61	38.93	53.98	15.05	0.0	185.0	V
12.375 GHz	28.12	40.89	-26.52	42.49	53.98	11.49	0.0	185.0	V
19.800 GHz	30.17	37.20	-25.74	41.63	53.98	12.35	0.0	185.0	V
22.275 GHz	31.83	37.61	-25.45	44.00	53:98	9.98	0.0	185.0	V
Project # : 1140	04. Sample #: 11	50939							
Temp.: 24.2 C.	Hum.: 41.0 %								
Barometer Pres.	101.7 kPa								

Page 39 of 65

- Table of Radiated Harmonic Emissions of LowEnd, Fc=2475MHz, Orthogonal Z, Antenna was used SAS-571 & SAS-572.

LabTest Certification Inc. Intentional Radiated Emission-Harmonics FCC15.247, 205 & 209, 3 meters, Peak Detector_High End_Orthogonal_Z_Horizontal

Operator: Jeremy Lee

Model #7 SSV1 Contact: Marcel Groenland

11:24:53 PM, Friday, August 02, 2013 Company: Orpyk Medical Tech. Inc.

Frequency	Measured_PK	AntFactor	PathLoss	Emission_Pk	Limit_PK	Margin_PK.	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4.950 GHz	44.41	33.37	-28.11	49.67	73.98	24.31	0.0	100.0	Н
7 425 GHz	41.62	37.19	-27.61	51.19	73.98	22.79	0.0	100.0	Н
12.375 GHz	40.30	40,80	-26.52	54.58	73.98	19.40	0.0	100.0	Н
19.800 GHz	42.45	37.20	-25.74	53.91	73.98	20,07	0.0	100.0	H
22.275 GHz	43.92	37.61	-25.45	56.09	73.98	1789	0.0	100.0	Н
Project # : 1140	4. Sample #: 1	150939							11
emp.: 24.2 C.	Hum. = 41.0 %								
Barometer Pres.	101.7 kPa								

Lablest Certification Inc.
Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209, 3 meters. Peak Detector_High End_Orthogonal_Z_Vertical

Operator: Jeremy Lee

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc. 11:24:53 PM, Friday, August 02, 2013

Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	aB	Degree	cm	
4.950 GHz	47.19	33.39	-28.11	52.47	73.98	21.51	330.0	170.0	V
7.425 GHz	41, 18	37.22	-27.61	50.78	73.98	23.20	330.0	170.0	V
12.375 GHz	40.15	40.89	-26.52	54.52	73.98	19.46	330.0	170.0	V
19.800 GHz	42.90	37.20	-25.74	54.36	73.98	19.62	330.0	170.0	V
22,275 GHz	43, 15	37,61	-25.45	55.31	73.98	18.67	330.0	170.0	V
Project # : 112	404. Sample #: 1	150939					+		
Temp.: 24.2 C.	Hum.: 41.0 %								
Barometer Pres.	-101.7 KPa								

LabTest Certification Inc.

Intentional Radiated Emission-Harmonics
FCC15.247, 205 & 209. 3 meter. Averaging Detector_High End_Orthogonal_Z_Horizontal

Operator: Jeremy Lee

Model #: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc. 11:24:53 PM, Friday, August 02, 2013

requency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/I	Tower	POL
Hz	dBuV	dB/m	d₿	dBuV/m	dBuV/m	dB	Degree	CIII	
4.950 GHz	29.06	33.37	-28.11	34.32	53.98	19.66	0.0	100.0	Н
7.425 GHz	29.28	37.19	-27.61	38.85	53.98	15.13	0.0	100.0	H
12.375 GHz	28.07	40.80	-26.52	42.35	53.98	11.63	0.0	100.0	Н
19.800 GHz	30.17	37.20	-25.74	41.63	53.98	12.35	0.0	100.0	H
22.275 GHz	31.80	37.61	-25,45	43.97	53.98	10.01	0.0	100.0	Н
roject # = 11	404. Sample #: 11	50939							
Temp : 24.2 G	. Hum : 41.0 %								
Barometer Pres	.:101.7 kPa								

LabTest Certification Inc.
Intentional Radiated Emission-Harmonics
FCC15_247, 205 & 209, 3 meters, Averaging Detector_High End_Orthogonal_Z_Vertical

Operator: Jeremy Lee Model #: SSV1 Contact: Marcel Groenland

11:24:53 PM, Friday, August 02, 2013 Company: Orpyx Medical Tech. Inc.

Frequency	Measured+AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
4.950 GHz	29.16	33.39	-28, 11	34.44	53.98	19.54	330.0	170.0	V
7,425 GHz	29,18	37,22	-27.61	38.78	53.98	15,20	330.0	170.0	V
12.375 GHz	28.08	40.89	-26.52	42.45	53.98	11.53	330.0	170.0	V
19.800 GHz	30.16	37,20	-25.74	41.62	53.98	12.36	330.0	170.0	V
22,275 GHz	31.82	37.61	-25.45	43,98	53,98	9.99	330.0	170.0	V
Project # : 114	104. Sample #: 11	50939							
Temp.: 24.2 C.	Hum : 41.0 %								
Barometer Pres.	=101.7 kPa								

Page 40 of 65

Band-Edge Compliance

Temperature	25.9 °C
Relative Humidity	48.0 %
Barometric Pressure:	101.9 kPa
Test Date	July 30, 2013
Sample Number	1150940, 1150941, 1150942
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID) (Calibration not required)	N1, N3
Tested By	Jeremy Lee

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/cabc0284

Test Limits

15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Setup

The test was performed in accordance with FCC 15.247:2010, FCC 15.31:2010 and KDB 558074 D01 v03r01.

This procedure is applicable for determining compliance at authorized band edges, but not at restricted band edges.

- > The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer via attenuator.
- The transmitter was transmitting at its maximum power.
- > The following measurements were made with
 - Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - RBW ≥ 1% of spectrum analyzer display span
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Max Hold
 - Allowed the trace to stabilize.
- > Set the marker on the emission at the bandedge, or on the highest modulation product outside of band, if this level is greater than that at the band edge.
- Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.

Setup Block Diagram

Test Results:

X Pass Fail N/A

Channel Frequency(MHz)	Band-edge(dB)	Limit(dB)	Pass/Fail
Low end	48.76	≥ 20	Pass
High end	49.93	≥ 20	Pass

- Band-edge compliance at low-end, the Carrier Frequency is 2406 MHz

- Band-edge compliance at High-end, the Carrier Frequency is 2475 MHz

Page 43 of 65

Power Spectral Density

Temperature	26.4 °C
Relative Humidity	49.0 %
Barometric Pressure:	101.7 kPa
Test Date	July 31, 2013
Sample Number	1150940, 1150941, 1150942
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID) (Calibration not required)	N1, N3
Tested By	Jeremy Lee

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/cabc0248

Test Limits

15.247(e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Setup

The test was performed in accordance with FCC 15.247:2010, FCC 15.31:2010 and KDB 558074 D01 v03r01.

- > The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer via attenuator.
- > The EUT was measured at three differrent transmitting frequencies, low-end, middle, and high-end.
- > The transmitter was set-up as its maximum power.
- The following measurements were made with
 - Set analyzer center frequency to DTS channel center frequency.
 - Set the span to 20MHz.
 - Set the RBW ≥ 3 kHz.
 - Set the VBW ≥ 3 x RBW.
 - Detector = peak.
 - Sweep time = auto couple.
 - Trace mode = max hold.
 - Allow trace to fully stabilize.
 - Use the peak marker function to determine the maximum amplitude level.
 - If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Setup Block Diagram

Page 44 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

Test Results:

Centre Frequency(MHz)	Power Spectral Density (dBm)	Limit(dBm)	Pass/Fail
2406	- 9.054	≤ 8	Pass
2441	- 6.949	≤ 8	Pass
2475	- 6.628	≤ 8	Pass

X Pass Fail N/A

- Power Spectral Density; centre frequency is 2406 MHz.

Page 46 of 65

- Power Spectral Density; centre frequency is 2441 MHz.

Page 47 of 65

Page 48 of 65

Conducted Emission

Temperature	25.5 ℃
Relative Humidity	49.0 %
Barometric Pressure:	101.2 kPa
Test Date	July 16, 2013
Sample Number	1150935
Calibrated Test Equipment (ID)	127, 128, 266, 272
Reference Equipment (ID) (Calibration not required)	059, 215
Tested Voltages	110VAC, 60Hz, Single Phase
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/cabc0248

Test Limits

FCC 15.207(a):

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of emis-	Conducted I	imit (dBμV)
Frequency of emis- sion (MHz)	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5 5–30	56 60	46 50

^{*}Decreases with the logarithm of the frequency.

The test was performed in accordance with FCC 15.107:2010 and ANSI C63.4, 2009.

The EUT was placed on the table, referenced by ANSI C63.4, shown in Figure-1, and 0.4 meters from the conducting wall with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

The EUT was set up as per the test configuration to simulate typical actual usage per the user's manual. The AC power line of EUT was connected to LISN for maximum conducted interference. The EUT was set on the maximum operating; the EUT was setup to continuing operating as a worst case.

Initially a scan was made with an EMC Analyzer from 150 kHz to 30 MHz on each phase with the receiver in the peak mode. The measuring bandwidth was set up 9 kHz. Measurements were then made using CISPR16-1 quasi peak and averaging detectors when the peak readings were within 20dB of the Quasipeak limit line.

Test Setup on Table

Setup Block Diagram

Test Result

Conducted Emission (dBuV) = Measured Emission (dBuV) + Cable Loss(dB)+LISN(dB)

X Pass Fail N/A

Page 50 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

LabTest Certification Inc. Client: Prepared by: Orpyx Medical Technologies Inc. Date Issued: Report No.: 11404-1E August 19, 2013

Project No: 11404 Revision No.: 0

- Table of Conducted Emissions: Hot Line

LabTest Certification Inc. Conducted Emission FCC15.207. AVG_Hot_110Vac/60

Operator: Jeremy LEE

Model Number: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc. 12:30:28 PM. Tuesday, July 16, 2013

Frequency Measured_AVG CableLoss ISN Emission_AVG Limit_AVG Margin_AVG MHz 164.279 KHz dBuV 20.54 21.97 dBuV 55.59 22.60 20.43 dBuV 32.99 dB 2.55 2.28 2.16 2.03 0.01 199.827 KHz 216.670 KHz 234.922 KHz 54.58 54.10 53.57 0.01 34.15 19.85 19.12 10.77 8.49 22.17 22.51 0.01 34.25 0.01 34.45 24.92 545.926 KHz 642.335 KHz 0.01 0.39 35.23 46.00 0.33 37.51 46.00 0.03 Project#: 11404. Sample#: 1150935 Temp.: 25.5 C. Hum.: 49.0 % B.P.:101.2 kPa

- Table of Conducted Emissions: Neutral Line

LabTest Certification Inc. Conducted Emission FCC15.207, AVG_Neutral_110Vac/60Hz

Operator: Jeremy LEE

12:30:28 PM, Tuesday, July 16, 2013

Model Number: SSV1 Contact: Marcel Groenland Company: Orpyx Medical Tech. Inc.

Frequency	Measured_AVG	CableLoss	LISN	Emission_AVG	Limit_AVG	Margin_AVG	
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
165.672 KHz	20.49	0.01	2.38	32.78	55,55	22.77	
170,315 KHz	19.16	0.01	2.35	31,43	55.42	23.99	
204.131 KHz	21.55	0.01	2.12	33.57	54.45	20.88	
273.967 KHz	22.43	0.02	1.64	34.00	52.46	18.46	
537.666 KHz	25.29	0.01	0.39	35.60	46.00	10.40	
645.762 KHz	26,81	0.03	0.33	37_07	46_00	8.93	
Project#: 1140	4. Sample#: 11	50935					
Temp.: 25.5 C.	Hum.: 49.0 %						
B.P.: 101.2 kPa							

- Graph of Conducted Emissions: Hot Line

Page 52 of 65

- Graph of Conducted Emissions: Neutral Line

Page 53 of 65

APPENDIX A: Test Equipment Used

ID No.	Description	Manufacturer	Model	Serial No.	Calibration Date	Calibration Due Date	Calibration Certificate No:	Calibration Laboratory
059	AC Power Source	California Instrument	5000i	HK51870	N/A	N/A	N/A	N/A
127	LISN	Com-Power	LI-200	12054	28-Nov-2012	28-Nov-2013	200812022639 9	Micro Precision
128	LISN	Com-Power	LI-200	12216	28-Nov-2012	28-Nov-2013	200812022634 4	Micro Precision
227-3	Horn Antenna	A.H. Systems	SAS-571	936	12-Jul-2012	12-Jul-2014	2012062215	Liberty Labs
227-4	Horn Antenna	A.H. Systems	SAS-572	233	12-Jul-2012	12-Jul-2014	2012062215	Liberty Labs
241	Active Loop Antenna	AL-130	Com- Power	17075	01-Nov-2011	01-Nov-2013	071075A	Com-Power
266	Humidity/ Temperature Logger	Onset HOBO	U14-001	2436907	02-Jan-2013	02-Jan-2014	345135	Wescan
272	EMC Analyzer	Agilent	E7405A	US41110263	06-May-2013	06-May-2014	1-5114979997- 1	Agilent
273	RF Preamplifier	Agilent	8449B	3008A02264	01-May-2013	01-May-2014	220081212669 8	Micro Precision
371	EMC Broadband Antenna	Sunol	JB1	A022012	07-Mar-2012	07-Mar-2014	2012022808	Liberty Labs
374	EMC Shielded Enclosure	USC	USC-26	111811	N/A	N/A	N/A	N/A
N1	Coaxial RF Cable	Belden	OC- LMR195-2	N/A	N/A	N/A	N/A	N/A
N2	Coaxial RF Cable	A.H. Systems	SAC-26G- 3	N/A	N/A	N/A	N/A	N/A
N3	3dB Attenuator	Mini-circuits	VAT-3+	N/A	N/A	N/A	N/A	N/A

Prepared by: LabTest Certification Inc.

Date Issued: August 19, 2013

Project No: 11404

Client: Orpyx Medical Technologies Inc. Report No.:

11404-1E Revision No.:

APPENDIX B: EUT photos

- EUT: Top View

- EUT: Bottom View

- EUT with Foot Sensor

Page 55 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

APPENDIX C: Test setup photos

- Test configuration for Conducted measurement

- Test configuration for Radiated measurement, over 1 GHz for Harmonics

- Test configuration for Radiated measurement, 30 MHz to1 GHz for Spurious and Receive Mode

Page 58 of 65

- Test configuration for Radiated measurement, under 30MHz for Intentional Emissions

- Table setup for Radiated measurement, Orthogonal X

- Table setup for Radiated measurement, Orthogonal Y

- Table setup for Radiated measurement, Orthogonal Z

Page 60 of 65

This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

APPENDIX D: ISO 17025:2005 Accreditation Certificate

Page 61 of 65

Prepared by:

LabTest Certification Inc.

Date Issued: Project No:

August 19, 2013

11404

Client: Report No.:

Revision No.:

Orpyx Medical Technologies Inc.

11404-1E

0

Page 62 of 65

Page 63 of 65

Page 64 of 65

END OF REPORT

Page 65 of 65