ECON 147 Homework 3

Answer Keys

Review Questions

- 1. Let Y_1, Y_2, Y_3 and Y_4 be iid (μ, σ^2) . Let $\bar{Y} = \frac{1}{4} \sum_{t=1}^4 Y_t$.
 - What are the expected value and variance of \bar{Y} ? **Answers:** μ and $\frac{\sigma^2}{4}$.
 - Now, consider a different estimator of μ :

$$W = \frac{1}{8}Y_1 + \frac{1}{8}Y_2 + \frac{1}{4}Y_3 + \frac{1}{2}Y_4,$$

What are the expected value and variance of W? **Answers:** still μ , and variance is $\frac{11}{32}\sigma^2$.

- Which estimator of μ do you prefer? Fully justify your answer. **Answers:** since both estimators are unbiased, we just choose the one with lower variance (recall MSE criteria), so \bar{Y} .
- 2. Let $Y_1, Y_2, Y_3, \dots, Y_n \sim (\mu, \sigma^2)$ and let $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$
 - Define the class of linear estimator of μ by

$$W_a = \sum_{i=1}^n a_i Y_i$$

where $a_i's$ are constants. What restriction on the $a_i's$ is need for W_a to be an unbiased estimator of μ ? **Answer:** We need $\sum_{i=1}^n a_i = 1$

• Find $Var(W_a)$. **Answer:** $(\sum_{i=1}^n a_i^2) \sigma^2$.

• For any numbers a_i , i = 1, ..., n, the following inequality holds

$$\left(\sum_{i=1}^n a_i\right)^2 \le n \sum_{i=1}^n a_i^2.$$

Use this (and above results) to show \bar{Y} is the best linear unbiased estimator (BLUE). **Answer:** for any linear unbiased estimator,

$$Var\left(\bar{Y}\right) = \frac{\sigma^2}{n} \le \left(\sum_{i=1}^n a_i^2\right) \sigma^2 = Var\left(W_a\right)$$

so \bar{Y} is the *best* in MSE sense.

3. Consider the constant expected return model

$$r_{it} = \mu_i + \epsilon_{it}$$
 $t = 1, \dots, T$; $i = 1$ (GS), 2 (AIG),
 $\epsilon_{it} \sim \text{iid } N(0, \sigma_i^2)$, $\text{cov}(\epsilon_{1t}, \epsilon_{2t}) = \sigma_{12}$, $\text{cor}(\epsilon_{1t}, \epsilon_{2t}) = \rho_{12}$

for the monthly cc returns on GS (Goldman Sachs) and AIG (American International Group). The estimates (rounded for computations) are given (T = 100 months):

• For both GS and AIG cc returns, compute (asymptotic) 95% CI for μ_i and σ_i^2 . **Answers:** use the formula:

$$\hat{\mu}_i \pm 1.96 \frac{\hat{\sigma}_i}{\sqrt{T}}$$
 and $\hat{\sigma}_i^2 \pm 1.96 \frac{\sqrt{2}\hat{\sigma}_i^2}{\sqrt{T}}$

• Compute (asymptotic) 95% confidence interval for ρ_{12} (You will use $SE(\hat{\rho}_{12}) = \sqrt{\frac{1-\hat{\rho}_{12}^2}{T}}$). **Answer:** use $\hat{\rho}_{12} \pm 1.96\sqrt{\frac{1-\hat{\rho}_{12}^2}{T}}$.

$$\begin{array}{ccc} GS & AIG \\ \mu & (-0.0096, 0.0296) & (-0.0888, 0.0288) \\ \sigma^2 & (0.0072, 0.0127) & (0.0651, 0.1149) \\ \rho & (0.2204, 0.5796) & (0.2204, 0.5796) \end{array}$$

• Test the hypothesis (significance tests) for i = 1, 2, with 5% confidence level,

$$H_0: \mu_i = 0$$
 v.s. $H_1: \mu_i \neq 0$.

Are expected returns of these assets (statistically) different from zero? Justify your answer. **Answers:** First calculate the test statistics:

$$\left| \frac{\hat{\mu}_i - 0}{\hat{\sigma}_i / \sqrt{T}} \right| = \left\{ \begin{array}{ll} 1, & \text{GS} \\ 1, & \text{AIG} \end{array} \right.$$

Since the critical value is $q_{0.975}^{T(99)}=1.9842$, the alternative hypothesis H_1 is rejected for both GS and AIG.

• Test the hypothesis for i = 1, 2, with 5% confidence level,

$$H_0: \sigma_i^2 = 0.0225$$
 v.s. $H_1: \sigma_i^2 \neq 0.0225$.

Answers: First calculate the test statistics:

$$\left| \frac{\hat{\sigma}_i^2 - 0.0225}{\sqrt{2} \hat{\sigma}_i^2 / \sqrt{T}} \right| = \begin{cases} 8.8388, & \text{GS} \\ 5.3033, & \text{AIG} \end{cases}.$$

Since the critical value is $q_{0.975}^Z=1.96$, the null hypothesis H_0 is rejected for both GS and AIG.