Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologias Engenharia da Computação

Thales L. A. Valente

Disciplina: Linguagens Formais e Autômatos **Código:** EECP0020

16 de março de 2024

Conteúdo programático

- Elementos de matemática discreta
- Conceitos básicos de linguagens
- Linguagens regulares e autômatos finitos
- Linguagens livres de contexto e autômatos de pilha
- Linguagens sensíveis ao contexto e Máquinas de Turing com fita limitada
- Linguagens recursivas e Máquinas de Turing com finta infinita
- Linguagens recursivamente enumeráveis

Sumário

- Contextualização
- Símbolos, cadeias e alfabetos
- Linguagens
- Gramáticas
- Linguagens, gramáticas e conjuntos
- Reconhecedores
- Hierarquia de Chomsky

Conceitos didáticos

- Segundo o dicinário Michaelis, linguagem pode ser definida como:
 - Faculdade que tem todo homem de comunicar seus pensamentos e sentimentos.
 - Conjunto de sinais falados, escritos ou gesticulados de que se serve o homem para exprimir esses pensamentos e sentimentos.
 - Faculdade inata de todo indivíduo de aprender e usar uma língua.
- Tais definições, embora nos deem uma noção intuitiva do conceito, não são precisas o suficiente para o estudo de linguagens formais.

Definições básicas

- **Símbolos**, ou **átomos**, são as entidades básicas do estudo de linguagens. São consideradas unidades atômicas e indivisíveis, não importando sua representação visual particular.
 - São símbolos (dependendo do contexto): a, abc, if, 5, 32.
- Alfabetos são conjuntos finitos não-vazios de símbolos.
 - São alfabetos: {a, b, c, ..., z}, {abc, def, ghi}, {while, for, if, else}, {0, 1, 2, ..., 9}, {2, 4, 8, 16, 32, 64}
- Cadeias, ou palavras, são sequências finitas de símbolos de um alfabeto justapostos.
 - São cadeias: abc, abcdef, ifelse, 012, 16322.

Definições básicas

- Geralmente, utilizam-se as sequintes convenções para representação:
 - Símbolos: letras minúsculas do início do alfabeto romano (a, b, c, ...).
 - Cadeias: letras minúsculas do final do alfabeto romano (r, s, x, w, ...) ou letras minúsculas do alfabeto grego $(\alpha, \beta, \gamma, ...)$.
 - Alfabetos: letras maiúsculas do alfabeto grego $(\Sigma, \Gamma, \Delta, ...)$.

- Comprimento: é a quantidade $|\alpha|$ de símbolos da cadeia α .
 - Sobre o alfabeto binário $\Sigma = \{0,1\}$, tem-se que $|0|=1,\ |01|=2$ e |101|=3.
- Cadeia elementar: é toda cadeia de comprimento 1.
 - Sobre o alfabeto binário $\Sigma = \{0,1\}$, são cadeias unitárias 0 e 1.
- Cadeia vazia: é a cadeia ϵ tal que $|\epsilon|=0$.

- Concatenação: é a operação binária realizada sobre duas cadeias α e β (elementares ou não) que resulta em uma nova cadeia $\alpha\beta$ formada pela justaposição ordenada dos símbolos que compõem os seus operandos separadamente.
 - Sobre o alfabeto $\Sigma = \{a,b,c,d\}$, as seguintes contenações são válidas para as cadeias $\alpha = abc$, $\beta = dbaca$ e $\sigma = a$: $\alpha\beta = abcdbaca$, $\beta\alpha = dbacaabc$ e $(\alpha\beta)\sigma = \alpha(\beta\sigma) = abcdbacaa$.
 - A concatenação é uma operação associativa, mas não comutativa.
 - A cadeia vazia ϵ é o elemento neutro em relação à operação de concatenação. Assim, tem-se que $\alpha\epsilon = \epsilon\alpha = \alpha$ e $|\alpha\epsilon| = |\epsilon\alpha| = |\alpha|$.

 Concatenação sucessiva: dada uma cadeia w, a concatenação sucessiva de w é definida indutivamente a partir da operação de concatenação binária, como segue:

$$w^0 = \epsilon$$
$$w^n = ww^{n-1}$$

onde n é o número de concatenações sucessivas.

- Por exemplo, seja a cadeia w = a, então:
 - $w^0 = \epsilon$
 - $w^1 = a$
 - $w^2 = aa$
 - $w^3 = aaa$
 - \bullet $w^4 = aaaa$
 - $w^5 = aaaaa$

• Conjunto de todas as cadeias: seja Σ um alfabeto. O conjunto de todas as possíveis cadeias sobre Σ é chamado de Σ^* . Formalmente, tal conjunto é definido por

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{i=0}^{\infty} \Sigma^i,$$

onde

 Σ^0 é a concatenação de todas as cadeias sobre Σ com comprimento 0 Σ^1 é a concatenação de todas as cadeias sobre Σ com comprimento 1 Σ^2 é a concatenação de todas as cadeias sobre Σ com comprimento 2 Σ^3 é a concatenação de todas as cadeias sobre Σ com comprimento 3

. . .

• Como exemplo do **conjunto de todas as cadeias**, considere $\Sigma = \{a,b,c\}$. Então Σ^* é obtido pela união dos seguintes conjuntos: $\Sigma^0 = \{\epsilon\}$ $\Sigma^1 = \{a,b,c\}$ $\Sigma^2 = \{aa,ab,ac,ba,bb,bc,ca,cb,cc\}$ $\Sigma^3 = \{aaa,aab,aac,aba,abb,abc,...,ccc\}$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

 Uma linguagem formal é um conjunto, finito ou infinito, de cadeias de comprimento finito, formadas pela concatenação de elementos de um alfabeto finito e não-vazio.

Figura: Símbolo, alfabeto, cadeia e linguagem

• Como exemplo do esquema anterior, tem-se o seguinte diagrama:

Figura: Exemplo de Símbolo, alfabeto, cadeia e linguagem

 Uma linguagem formal é um conjunto, finito ou infinito, de cadeias de comprimento finito, formadas pela concatenação de elementos de um alfabeto finito e não-vazio.

Figura: Símbolo, alfabeto, cadeia e linguagem

• Como exemplo do esquema anterior, tem-se o seguinte diagrama:

Figura: Exemplo de Símbolo, alfabeto, cadeia e linguagem

- Como ilustração, tem-se as seguintes linguagens:
 - A linguagem de todas as cadeias que consistem em n valores 0 seguidos por n valores 1: $\{\epsilon, 01, 0011, 000111, ...\}, n \ge 0$.
 - O conjunto de cadeias de valores 0 e 1 com um número igual de cada um deles: $\{\epsilon,01,10,0011,0101,1001,\ldots\}$.
 - O conjunto de números binários cujo valor é um número primo: {10, 11, 101, 111, 1011, ...}.
 - Ø, a linguagem vazia, é uma linguagem sobre qualquer alfabeto.
 - $\{\epsilon\}$, a linguagem que consiste apenas na cadeia vazia, também é uma linguagem sobre qualquer alfabeto.
 - A língua portuguesa.
 - Qualquer linguagem de programação.

 Concatenação: a concatenação de duas linguagens X e Y, denotada por XY, corresponde ao conjunto de todas as cadeias obtidas pela concatenação de qualquer elemento de X com qualquer elemento de Y, ou seja:

$$XY = \{xy | x \in X, y \in Y\}$$

.

• Como casos particulares, tem-se que:

$$L^0 = \{\epsilon\}$$

$$L^1 = L$$

• Como exemplo de **concatenação**, considere $L=\{001,10,111\}$ e $M=\{\epsilon,001\}$. Então,

$$LM = \{001, 10, 111, 001001, 10001, 111001\}$$

• Fechamento reflexivo e transitivo: o fechamento reflexivo e transitivo de uma linguagem L é denotado por L^* e representa o conjunto de cadeias que podem ser formadas tomando-se qualquer número de cadeias de L, possivelmente com repetições, e concatenando-se todas elas. Formalmente, tem-se que:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{i=0}^{\infty} L^i$$

. . .

• Como exercício de **fechamento reflexivo e transitivo**, seja *L* o conjunto de todas as cadeias de 0. Pede-se então que se calcule *L**.

- A operação de fechamento reflexivo e transitivo pode ser aplicada a um alfabeto Σ. Nesse caso, Σ* segue a mesma definição do conjunto de todas as cadeias visto anteriormente.
- Como uma linguagem qualquer L é um conjunto de cadeias sobre um alfabeto Σ e Σ^* designa o conjunto de todas as cadeias sobre Σ , então tem-se que $L \subset \Sigma^*$.

- Em relação à operação de fechamento reflexivo e transitivo pode-se fazer as seguintes observações:
 - \varnothing é o conjunto constituído por zero cadeias e corresponde à **menor** linguagem que se pode definir sobre um alfabeto Σ qualquer.
 - Σ* é o conjunto de todas as cadeias possíveis de serem construídas sobre Σ e corresponde à maior de todas as linguagens que pode ser definida sobre Σ.
 - 2^{Σ^*} é o conjunto de todos os subconjuntos possíveis de serem obtidos a partir de Σ^* , e corresponde ao conjunto formado por todas as possíveis linguagens que podem ser definidas sobre Σ . Note-se que $\varnothing \in 2^{\Sigma^*}$, e também que $\Sigma^* \in 2^{\Sigma^*}$.

- Em relação à operação de **fechamento reflexivo e transitivo**, tem-se exemplo que segue. Seja $\Sigma = \{a, b, c\}$ e P o conjunto formado pela única propriedade "todas as cadeias são iniciadas com o símbolo a". Então:
 - A linguagem $L_0 = \emptyset$ é a menor linguagem que pode ser definida sobre Σ .
 - A linguagem $L_1 = \{a, ab, ac, abc, acb\}$ é finita e observa P.
 - A linguagem $L_2 = \{a\}\{a\}^*\{b\}^*\{c\}^*$ é infinita e observa P.
 - A linguagem $L_3 = \{a\}\{a,b,c\}^*$ é infinita, observa P e, dentre todas as que observam P, trata-se da maior linguagem, pois não existe nenhuma outra cadeia sem Σ^* que satisfaça a P e não pertença a L_3 .
 - $L_0 \subseteq \Sigma^*$, $L_1 \subseteq \Sigma^*$, $L_2 \subseteq \Sigma^*$, $L_3 \subseteq \Sigma^*$.
 - $L_0 \in 2^{\Sigma^*}, \ L_1 \in 2^{\Sigma^*}, \ L_2 \in 2^{\Sigma^*}, \ L_3 \in 2^{\Sigma^*}$
 - Além de L_0 , L_1 , L_2 e L_3 , existem inúmeras outras linguagens que podem ser definidas sobre Σ .

• Fechamento transitivo: o fechamento transitivo de um alfabeto Σ , denotado por Σ^+ , é definido de maneira análoga ao fechamento reflexivo e transitivo, diferindo deste apenas por não incluir o conjunto Σ^0 :

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{i=1}^\infty \Sigma^i$$

- Como exemplo de **fechamento transitivo**, considere $\Sigma = \{n, (,), +, *, -, /\}$. Neste caso:
 - $\Sigma^* = \{\epsilon, n, n+n, -n\}, */, n(), n-(n*n), ...\}$
 - $\Sigma^+ = \{n, n+n, -n\}, */, n()\}, n-(n*n), ...\}$
 - $\Sigma^+ = \Sigma^* \{\epsilon\}$, pois $\epsilon \not\in \Sigma$.

• Complementação: a complementação de uma linguagem X sobre um alfabeto Σ é definida como:

$$\overline{X} = \Sigma^* - X$$

• Por exemplo, considere a linguagem X de cadeias de valores 0 e 1 com um número igual de cada um deles: $\{\epsilon,01,10,0011,0101,1001,\ldots\}$. Então:

$$\overline{X} = \{001, 110, 01011, 00101, 11001, ...\},\$$

representando todas as cadeias de valores 0 e 1 com número diferente de cada um deles.

• **Reversão**: diz-se que uma linguagem L_1 é o reverso de uma linguagem L_2 , denotando-se o fato por $L_1 = L_2^R$ (ou $L_2 = L_1^R$), quando as sentenças de L_1 corresponderem ao reverso das sentenças de L_2 . Formalmente:

$$L_1 = L_2^R = \{x^R | x \in L_2\}$$

• Por exemplo, seja $L_2 = \{\epsilon, a, ab, abc\}$. Então, $L_1 = L_2^R = \{\epsilon, a, ba, cba\}$.

 Prefixo (sufixo) próprio: diz-se que uma linguagem exibe a propriedade do prefixo (sufixo) próprio sempre que não houver nenhuma cadeia a ela pertencente que seja prefixo (sufixo) próprio de outra cadeia dessa mesma linguagem. Formalmente:

Prefixo próprio: não existe $\alpha \in L | \beta \neq \epsilon, \alpha \beta \in L$

Sufixo próprio: não existe $\alpha \in L | \beta \neq \epsilon, \beta \alpha \in L$

 Como exemplo de prefixo (sufixo) próprio, considere as seguintes linguagens:

$$L_1 = \{a^ib^i|i\geq 1\} = \{ab,aabb,aaabbb,...\}$$
 $L_2 = \{ab^i|i\geq 1\} = \{ab,abb,abbb,abbbb...\}$

• Neste exemplo, a linguagem L_1 exibe a propriedade do prefixo próprio, ao passo que a linguagem L_2 não a exibe. A propriedade do sufixo próprio é exibida por ambas as linguagens.

• **Quociente**: o quociente de uma linguagem L_1 por uma outra linguagem L_2 , denotado por L_1/L_2 , como sendo a linguagem:

$$L_1/L_2 = \{x | xy \in L_1, y \in L_2\}$$

• Por exemplo, considere as linguagens $L = \{a, aab, baa\}$ e $A = \{a\}$. Então, $L/A = \{\epsilon, ba\}$.

Como exercício de quociente, considere as linguagens seguintes:

$$L_{1} = \{a^{i}b|i \geq 0\}$$

$$L_{2} = \{a^{i}bc^{i}|i \geq 0\}$$

$$L_{3} = \{b\}$$

$$L_{4} = \{a^{i}b|i \geq 1\}$$

$$L_{5} = \{bc^{i}|i \geq 0\}$$

$$L_{6} = \{c^{i}b|i \geq 0\}$$

$$L_{7} = \{a^{i}|i \geq 0\}$$

- Responda os itens abaixo:
 - $L_1/L_3 = ?$
 - $L_1/L_4 = ?$
 - $L_5/L_7 = ?$
 - $L_2/L_6 = ?$

• Substituição: uma substituição s é uma função que mapeia cada elemento de um alfabeto Σ_1 em linguagens sobre um alfabeto Σ_2 . Formalmente, tem-se que:

$$s:\Sigma_1\to 2^{\Sigma_2^*}$$

• Por exemplo, considerando os alfabetos $\Sigma_1 = \{a, b, c\}$ e $\Sigma_2 = \{x, y, z\}$, tem-se a seguinte substituição:

$$s(a) = \{x\}$$

$$s(b) = \{y, yy\}$$

$$s(c) = \{z, zz, zzz\}$$

Uma substituição s pode ser aplicada também sobre uma cadeia w.
 Neste caso, a operação s(w) é definida indutivamente:

$$s(\epsilon) = \epsilon$$

 $s(a\alpha) = s(a)s(\alpha), a \in \Sigma_1, \alpha \in \Sigma_1^*$

• Por exemplo, supondo a cadeia w = abc, tem-se que:

$$s(abc) = s(a)s(bc) = s(a)s(b)s(b) = \{xyz, xyzz, xyzz, xyyz, xyyzz, xyyzz, xyyzzz\}$$

 A definição da substituição s pode ainda ser estendida para aplicá-la a uma linguagem L da seguinte forma:

$$s(L) = \{y | y = s(x) \text{ para } x \in L\},$$

• Por exemplo, para a linguagem $L = \{a^i b^i c^i | i \ge 1\}$, definida sobre o alfabeto $\Sigma_1 = \{a, b, c\}$, tem-se que:

$$s(L) = \{x^i y^j z^k \mid i \ge 1, i \le j \le 2i, i \le k \le 3i\}$$

Implementação

- Na implementação de uma linguagem de programação, devem-se observar duas questões importantes:
 - Como especificar de forma finita linguagens (eventualmente) infinitas?
 - Como identificar as sentenças de uma linguagem, descartando as demais cadeias?

Implementação

- Há três métodos mais empregados para a representação finita de linguagens:
 - Gramáticas: correspondem a especificações finitas de dispositivos de geração de cadeias. Um dispositivo desse tipo deve ser capaz de gerar toda e qualquer cadeia pertencente à linguagem definida pela gramática, e nada mais.
 - Reconhecedores: correspondem a especificações finitas de dispositivos de aceitação de cadeias. Um dispositivo desse tipo deverá aceitar toda e qualquer cadeia pertencente à linguagem por ele definido, e rejeitar todas as cadeias nãopertencentes à linguagem.
 - **Enumerações**: relacionam, de forma explícita e exaustiva, todas as cadeias pertencentes à particular linguagem a ser especificada.

 Gramáticas: Também conhecidas como dispositivos generativos, dispositivos de síntese ou dispositivos de geração de cadeias, as gramáticas constituem sistemas formais baseados em regras de substituição, através dos quais é possível sintetizar, de forma exaustiva, o conjunto das cadeias que compõem uma determinada linguagem.

 Por exemplo, em português, tem-se, dentre outras, a seguinte regra de formação de senteças: "uma sentença pode consistir de uma frase nominal seguida de um predicado". Concisamente, tem-se:

$$\langle sentenca \rangle \rightarrow \langle frase_nominal \rangle + \langle predicado \rangle$$

A definição acima pode ser mais precisa, fazendo-se:

$$\langle \mathit{frase_nominal} \rangle \rightarrow \langle \mathit{artigo} \rangle \langle \mathit{substantivo} \rangle,$$

$$\langle \mathit{predicado} \rangle \rightarrow \langle \mathit{verbo} \rangle$$

- Ao associar palavras às classes sintáticas, podem-se formar sentenças.
 - $\langle artigo \rangle$: a, o, um, uma
 - (substantivo): menino, cachorro
 - (verbo): anda, corre

 Formalmente, uma gramática G pode ser definida como sendo uma quádrupla:

$$G = (V, \Sigma, P, S)$$

onde:

- V: é o vocabulário da gramática; corresponde a um conjunto finito e não vazio de símbolos:
- Σ: é o conjunto finito e não vazio dos símbolos terminais da gramática. É o alfabeto.
- P: é o conjunto finito e não vazio de produções ou regras de substituição da gramática;
- \boldsymbol{S} : é a raiz da gramática, $S \in V$.
- N = V Σ: é o conjunto de símbolos não terminais da gramática. São as classes sintáticas.

ullet O conjunto P de produções gramaticais obedecem à forma geral:

$$\alpha \to \beta$$
, com $\alpha \in V^*NV^*$ e $\beta \in V^*$

- Portanto, α é uma cadeia constituída de quaisquer combinações de símbolos de V, contendo pelo menos um símbolo não-terminal, e β é uma cadeia qualquer, eventualmente vazia, de elementos de V.
- Sendo assim, o conjunto P pode ser expressao como uma relação:

$$P = \{(\alpha, \beta) | (\alpha, \beta) \in V^* NV^* \times V^* \}$$

- Como exemplo de especificação de gramáticas, tem-se $G_1 = (V_1, \Sigma_1, P_1, S)$, com:
 - $V_1 = \{0, 1, 2, 3, S, A\}$
 - $\Sigma_1 = \{0, 1, 2, 3\}$
 - $N_1 = \{S, A\}$
 - $P_1 = \{S \to 0S33, S \to A, A \to 12, A \to \epsilon\}$

- Forma sentencial: é qualquer cadeia obtida pela aplicação recorrente das seguintes regras de sustituição:
 - A raiz S da gramática é por definição uma forma sentencial.
 - ② Seja $\alpha \rho \beta$ uma forma sentencial, com α e β cadeias quaisquer de terminais e/ou não-terminais, e seja $\rho \to \gamma$ uma produção da gramática. Então, dessa regra àquela forma sentencial, substituindo a ocorrência de ρ por γ , produz uma nova forma sentencial $\alpha \gamma \beta$.
- Esta forma de substituição é chamada de derivação direta e é denotada por:

$$\alpha\rho\beta \implies \alpha\gamma\beta$$

- **Derivação**: é a sequência de zero ou mais derivações diretas $\alpha \implies \beta ... \implies \mu$. É denotada por $\alpha \stackrel{*}{\implies} \mu$.
- **Derivação não-trivial**: é aquela em que ocorre a aplicação de pelo menos uma produção. É denotada por $\alpha \stackrel{+}{\Longrightarrow} \mu$.

- Por exemplo, considere a gramática G_1 , definida anteriormente. Então, tem-se que:
 - S é uma forma sentecial.
 - 0*S*33 é uma forma sentencial, pois $S \implies 0S33$.
 - $S \implies 0S33$ é uma derivação direta.
 - 00S3333 e 00A3333 são formas sentenciais, pois $0S33 \implies 00S3333 \implies 00A3333$ através das produções $S \rightarrow 0S33$ e $S \rightarrow A$, aplicadas nesta ordem.

- Por exemplo, considere a gramática G_1 , definida anteriormente. Então, tem-se que:
 - $S \stackrel{+}{\Longrightarrow} 00A3333$ e $S \stackrel{+}{\Longrightarrow} 0S33$ são exemplos de derivações não-triviais.
 - 00S3333 $\stackrel{*}{\Longrightarrow}$ 00S3333 e 0S333 $\stackrel{*}{\Longrightarrow}$ 00A3333 são exemplos de derivações;
 - 12 e 00123333 são exemplos de sentenças, pois ambas são formadas exclusivamente por símbolos terminais e $S \implies A \implies 12$, ou seja, $S \stackrel{+}{\implies} 12$, e $S \implies 0S33 \implies 00S3333 \implies 00A3333 \implies 00123333$, ou seja, $S \stackrel{+}{\implies} 00123333$.

• Linguagem definida pela gramática G: é o conjunto de todas as sentenças w geradas por uma gramática G. Formalmente, a linguagem L(G) é definida como:

$$L(G) = \{ w \in \Sigma^* | S \stackrel{+}{\Longrightarrow} w \}$$

• Por exemplo, considerando-se a gramática G_1 definida a anteriormente, pode-se concluir que:

$$L_1(G_1) = \{0^m 1^n 2^n 3^{2m} | m \ge 0 \text{ e } (n = 0 \text{ ou } n = 1)\}$$

• São exemplos de sentenças pertencentes a $L1: \epsilon, 12, 033, 01233, 003333, 001233333$, etc.

- Por exemplo, considere a gramática $G_2 = (V_2, \Sigma_2, P_2, S)$, com:
 - $V_2 = \{a, b, c, S, B, C\}$
 - $\Sigma_2 = \{a, b, c\}$
 - $P_2 = \{S \rightarrow aSBC, S \rightarrow abC, CB \rightarrow BC, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$
- A linguagem definida por essa gramática é:

$$L_2(G_2) = \{a^n b^n c^n | n \ge 1\}$$

• Pergunta-se: como a sentença aabbcc foi gerada utilizando G_2 ?

- Por exemplo, considere a gramática $G_2 = (V_2, \Sigma_2, P_2, S)$, com:
 - $V_2 = \{a, b, c, S, B, C\}$
 - $\Sigma_2 = \{a, b, c\}$
 - $P_2 = \{S \rightarrow aSBC, S \rightarrow abC, CB \rightarrow BC, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$
- A linguagem definida por essa gramática é:

$$L_2(G_2) = \{a^n b^n c^n | n \ge 1\}$$

• Pergunta-se: como a sentença aabbcc foi gerada utilizando G_2 ? $S \implies aSBC \implies aabCBC \implies aabBCC \implies aabbCC \implies aabbcc \implies aabbcc$

pela aplicação das produções:

$$S \rightarrow aSBC, S \rightarrow abC, CB \rightarrow BC, bB \rightarrow bb, bC \rightarrow bc \ e \ cC \rightarrow cc$$

- Gramáticas equivalentes: quando uma mesma linguagem pode ser definida por duas ou mais gramáticas, diz-se que as gramáticas são sintaticamente equivalentes, ou simplesmente, equivalentes.
- Por exemplo, as gramáticas G_3 e G_4 são equivalentes:
 - $G_3 = (\{a, b, S\}, \{a, b\}, \{S \rightarrow aS, S \rightarrow a, S \rightarrow bS, S \rightarrow b, S \rightarrow aSb\}, S)$
 - $G_4 = (\{a, b, S, X\}, \{a, b\}, \{S \to XS, S \to X, X \to a, X \to b\}, S)$
- Pergunta-se: que linguagem G_3 e G_4 definem?

- Gramáticas equivalentes: quando uma mesma linguagem pode ser definida por duas ou mais gramáticas, diz-se que as gramáticas são sintaticamente equivalentes, ou simplesmente, equivalentes.
- Por exemplo, as gramáticas G_3 e G_4 são equivalentes:
 - $G_3 = (\{a, b, S\}, \{a, b\}, \{S \rightarrow aS, S \rightarrow a, S \rightarrow bS, S \rightarrow b, S \rightarrow aSb\}, S)$
 - $G_4 = (\{a, b, S, X\}, \{a, b\}, \{S \to XS, S \to X, X \to a, X \to b\}, S)$
- Pergunta-se: que linguagem G_3 e G_4 definem? $L_3(G_3) = L_4(G_4) = \{a,b\}^+$.

Contextualização

 A fim de prover um entendimento pleno de linguagens, é importante desenvolver a percepção de que linguagens são conjuntos. Isso facilitará o estudo de novas operações sobre linguagens, e também de suas propriedades.

Exemplos

 Por exemplo, considere as seguintes gramáticas e as respectivas linguagens por elas definidas:

$$extbf{\emph{G}}_0 = (\{ extbf{\emph{a}}, extbf{\emph{b}}, S\}, \{ extbf{\emph{a}}, extbf{\emph{b}}\}, \{ extbf{\emph{S}}
ightarrow extbf{\emph{a}}, S\}, \{ extbf{\emph{b}}, S
ightarrow e$$

$$\mathbf{G}_1 = (\{a, b, S\}, \{a, b\}, \{S \rightarrow aS, S \rightarrow bS, S \rightarrow a, S \rightarrow b\}, S)$$
$$\mathbf{L}_1(G_1) = \Sigma^+$$

$$\textbf{\textit{G}}_2 = (\{a,b,S,X\},\{a,b\},\{S\rightarrow aX,X\rightarrow aX,X\rightarrow bX,X\rightarrow \epsilon\},S)$$

 $\mathbf{L}_2(\mathcal{G}_2)$: linguagens de todas as cadeias sobre $\Sigma=\{a,b\}$ que começam com a.

$$\textbf{\textit{G}}_{3} = (\{\textit{a},\textit{b},\textit{S},\textit{X}\},\{\textit{a},\textit{b}\},\{\textit{S}\rightarrow\textit{a}\textit{X},\textit{X}\rightarrow\textit{a}\textit{X},\textit{X}\rightarrow\textit{b}\textit{X},\textit{X}\rightarrow\textit{b}\},\textit{S})$$

 $L_3(G_3)$: linguagens de todas as cadeias sobre $\Sigma = \{a, b\}$ que começam com a e terminam com b.

 $G_4 = (\{a, b, S, X\}, \{a, b\}, \{S \to XbXbX, X \to aX, X \to \epsilon\}, S)$ $L_4(G_4)$: linguagens de todas as cadeias sobre $\Sigma = \{a, b\}$ que possuem exatamente dois b.

$$G_5 = (\{a, b, S, X\}, \{a, b\}, \{S \to bX, X \to aX, X \to \epsilon\}, S)$$

 $L_5(G_5)$: linguagens de todas as cadeias sobre $\Sigma = \{a, b\}$ que possuem apenas um b, no início da cadeia.

4□ → 4周 → 4 = → 4 = → 9 Q P

Visualização

 Esquematicamente, a relação entre as linguagens L₀, L₁, L₂, L₃, L₄ e L₅ pode ser observada abaixo:

Figura: Relação entre as linguagens L₀, L₁, L₂, L₃, L₄ e L₅

 Reconhecedores: conhecidos também como dispositivos cognitivos, dispositivos de aceitação, aceitadores sintáticos ou simplesmente autômatos, os reconhecedores são sistemas formais capazes de aceitar todas as sentenças que pertençam a uma determinada linguagem, rejeitando todas as demais. Por esse motivo, constituem uma forma alternativa às gramáticas para a representação finita de linguagens.

 Um reconhecedor pode ser visto como uma abstração de um computador digital. A figura abaixo ilustra tal máquina.

Figura: Organização de um reconhecedor genérico

- Um reconhecedor apresentam quatro componentes fundamentais:
 - Fita de entrada
 - Cursor
 - Máquina de estados
 - Memória auxiliar

- Um reconhecedor apresentam quatro componentes fundamentais:
 - Fita de entrada: contém a cadeia a ser analisada pelo reconhecedor.
 Ela é dividida em células e cada célula pode conter um único símbolo da cadeia de entrada, pertencente a um dado alfabeto. A cadeia é disposta da esquerda para a direita, sendo o primeiro símbolo colocado na célula mais à esquerda da fita.
 - Pode apresentar comprimento finito ou infinito.

- Um reconhecedor apresentam quatro componentes fundamentais:
 - Cursor: A leitura dos símbolos gravados na fita de entrada é feita através de um cabeçote de acesso, normalmente denominado cursor, o qual sempre aponta o próximo símbolo da cadeia a ser processado.
 - Os movimentos do cursor são controlados pela máquina de estados, e podem, dependendo do tipo de reconhecedor, ser unidirecionais ou bidirecionais.
 - Determinados tipos de reconhecedores utilizam o cursor não apenas para lerem os símbolos da fita de entrada, mas também para escreverem sobre a fita.

- Um reconhecedor apresentam quatro componentes fundamentais:
 - Máquina de estados: A máquina de estados funciona como um controlador central do reconhecedor, e contém uma coleção finita de estados.
 - Os estados são responsáveis pelas informações colhidas no passado e consideradas relevantes para decisões futuras e transições.
 - As transições promovem as mudanças de um estado a outro, em sincronismo com as operações efetuadas através do cursor sobre a fita de entrada.
 - Pode ler e escrever em uma memória auxiliar.

- Um reconhecedor apresentam quatro componentes fundamentais:
 - Memória auxiliar: A memória auxiliar é opcional, e torna-se necessária apenas em reconhecedores de linguagens que apresentam uma certa complexidade.
 - Normalmente, ela assume a forma de uma estrutura de dados de baixa complexidade, como, por exemplo, uma pilha.
 - As informações registradas na memória auxiliar são codificadas com base em um alfabeto de memória, e todas as operações de manipulação da memória auxiliar (leitura e escrita) fazem referência apenas aos símbolos que compõem esse alfabeto.
 - Os elementos dessa memória são referenciados através de um cursor auxiliar.

Definicão

 Um reconhecedor genérico pode se apresentar de diversas formas, a saber:

Figura: Diversas formas de apresentação dos reconhecedores

- A operação de um reconhecedor baseia-se em uma seqüência de movimentos que o conduzem de uma configuração inicial única para alguma configuração de parada, indicativa do sucesso ou do fracasso da tentativa de reconhecimento da cadeia de entrada.
- Cada configuração de um autômato é caracterizada pela quádrupla:
 - Estado
 - Conteúdo da fita de entrada
 - Posição do cursor
 - Conteúdo da memória auxiliar

- A configuração inicial de um autômato é definida como sendo aquela em que as seguintes condições são verificadas:
 - Estado: inicial, único para cada reconhecedor;
 - Conteúdo da fita de entrada: com a cadeia completa a ser analisada;
 - Osição do cursor: apontando para o símbolo mais à esquerda da cadeia;
 - Onteúdo da memória auxiliar: inicial, pré-definido e único.

- A configuração final de um autômato é aquela na qual as seguintes condições são obedecidas:
 - Estado: algum dos estados finais, que não são necessariamente únicos no reconhecedor;
 - Conteúdo da fita de entrada: inalterado ou alterado, em relação à configuração inicial, conforme o tipo de reconhecedor;
 - Posição do cursor: apontando para a direita do último símbolo da cadeia de entrada ou apontando para qualquer posição da fita, conforme o tipo de reconhecedor;
 - Conteúdo da memória auxiliar: final e pré-definido, não necessariamente único ou idêntico ao da configuração inicial, ou apenas indefinido.

- A operação de um reconhecedor observa os seguinte itens:
 - A especificação de uma possibilidade de movimentação entre uma configuração e outra é denominada transição.
 - Quando há apenas uma possibilidade movimentação de uma configuração a outra, dado o estado atual da máquina, o símbolo atualmente apontado pelo cursor e o símbolo atualmente apontado pelo cursor da memória auxiliar, então diz-se que o autômato é determinístico; caso contrário, ele é não-determinítico.
 - Se a partir da configuração inicial o reconhecedor alcança uma configuração final, então diz-se que ele aceita a cadeia de entrada; caso contrário, ele rejeita a cadeia de entrada.

Contextualização

- O estudo sistemático das linguagens formais teve um forte impulso no final da década de 1950, quando o linguista Noam Chomsky publicou dois artigos apresentando o resultado de suas pesquisas relativas à classificação hierárquica das linguagens.
- Como teórico e estudioso das linguagens naturais, Chomsky se dedicava à pesquisa de modelos que permitissem a formalização de tais linguagens. Porém, seu trabalho chamou a atenção de especialistas de outras áreas, em particular os da área de computação, que viam, para suas teorias, grande aplicabilidade para a formalização e o estudo sistemático de linguagens artificiais, especialmente as de programação.

- A classificação das linguagens proposta por Chomsky é conhecida como Hierarquia de Chomsky.
- Seu principal mérito é agrupar as linguagens em classesde complexidade relativa, de tal forma que seja possível antecipar as propriedades fundamentais exibidas por uma determinada linguagem e vislumbrar os modelos de implementação mais adequados a sua realização.

• De acordo com restrições aplicadas ao formato das produções $\alpha \to \beta$ das gramáticas, Chomsky definiu a seguinte hierarquia para as linguagens geradas:

Figura: Hierarquia de Chomsky

Linguagens regulares ou do tipo 3

- As linguagens regulares ou do tipo 3 são aquelas geradas por gramáticas lineares à direita ou por gramáticas lineares à esquerda.
- Uma gramática é dita linear à direita caso todas suas regras de produção obedeçam às seguintes condições:
 - $\alpha \in N$
 - $\beta \in \Sigma, \beta \in N, \beta \in \Sigma N$ ou $\beta = \epsilon$, de forma não exclusiva.
- Por exemplo, a gramática $G_1 = (\{0,1,2,3,S,A\},\{0,1,2,3\},\{S \rightarrow 0S,S \rightarrow 1S,S \rightarrow A,A \rightarrow 2,A \rightarrow 3\},S)$ é linear à direita.

Linguagens regulares ou do tipo 3

- As linguagens regulares ou do tipo 3 s\u00e3o aquelas geradas por gram\u00e1ticas lineares \u00e0 direita ou por gram\u00e1ticas lineares \u00e0 esquerda.
- Uma gramática é dita linear à esquerda caso todas suas regras de produção obedeçam às seguintes condições:
 - $\alpha \in N$
 - $\beta \in \Sigma, \beta \in N, \beta \in N\Sigma$ ou $\beta = \epsilon$, de forma não exclusiva.
- Por exemplo, a gramática $G_2 = (\{0,1,2,3,S,A\},\{0,1,2,3\},\{S \rightarrow S2,S \rightarrow S3,S \rightarrow A,A \rightarrow 1,A \rightarrow 0\},S)$ é linear à esquerda.

Linguagens livres de contexto ou do tipo 2

- As linguagens livres de contexto ou do tipo 2 são aquelas geradas por gramáticas cujas produções possuem apenas um símbolo não-terminal em seu lado esquerdo e uma combinação qualquer de símbolos terminais e não-terminais no lado direito. Gramáticas desse tipo são chamadas livres de contexto ou do tipo 2. Formalmente:
 - $\alpha \in N$
 - $\beta \in V^*$
- Por exemplo, a gramática $G_3=(\{0,1,S\},\{0,1\},\{S\to 0S1,S\to \epsilon\},S)$ é livre de contexto.

Linguagens livres de contexto ou do tipo 2

- Deve-se notar que toda gramática do tipo 3 também se enquadra na definição de gramática do tipo 2, constituindo caso particular deste último. Logo, é correto dizer que toda gramática do tipo 3 é também uma gramática do tipo 2. Por outro lado, nem toda gramática do tipo 2 pode ser caracterizada também como gramática do tipo 3.
- Por exemplo, as gramáticas G_1 e G_2 são simultaneamente lineares e livres de contexto. A gramática G_3 é livre de contexto porém não é regular.

Linguagens sensíveis ao contexto ou do tipo 1

- As linguagens sensíveis ao contexto ou do tipo 1 são aquelas geradas por gramáticas cujas produções apresentam o comprimento da cadeia do lado direito igual ou maior do que o comprimento da cadeia do lado esquerdo. Gramáticas desse tipo são chamadas livres sensíveis ao contexto ou do tipo 1. Formalmente:
 - $\alpha \in V^*NV^*$
 - β ∈ V*
 - $|\beta| \ge |\alpha|$
- Por exemplo, a gramática $G_4 = (\{a, b, c, S, X, Y\}, \{a, b, c\}, \{S \rightarrow aXb, S \rightarrow aXa, Xa \rightarrow bc, Xb \rightarrow cb\}, S)$ é sensível ao contexto.

Linguagens sensíveis ao contexto ou do tipo 1

- Deve-se notar que nem toda gramática do tipo 2 pode ser considerada uma gramática do tipo 1. De fato, gramáticas do tipo 2 permitem a geração da cadeia vazia, ao passo que gramáticas do tipo 1 não prevêem essa possibilidade. Tem-se também que nem toda gramática do tipo 1 pode ser considerada uma gramática do tipo 2.
- Por exemplo, as gramáticas lineares G_1 e G_2 são também sensíveis ao contexto. A gramática livre de contexto G_3 , no entanto, não é sensível ao contexto, devido à presença da produção $S \to \epsilon$.

Linguagens sensíveis ao contexto ou do tipo 1

• Deve-se notar ainda que a definição de gramáticas sensíveis ao contexto não permite, a priori, que as respectivas linguagens por elas geradas incluam a cadeia vazia, justamente devido ao fato de que $|\beta| \leq |\alpha|$. No entanto, é comum se considerar L uma linguagem sensível ao contexto, ou simplesmente do tipo 1, mesmo que $\epsilon \in L$, se $L-\epsilon$ puder ser gerada por uma gramática sensível ao contexto. Em outras palavras, linguagens sensíveis ao contexto são aquelas que são geradas por gramáticas sensíveis ao contexto, com a eventual incorporação da cadeia vazia.

Linguagens irrestritas ou do tipo 0

- As linguagens irrestritas, recursivamente enumeráveis ou do tipo
 0 são aquelas geradas por gramáticas cujas produções não apresentam nenhuma restrição quanto a seu formato, exceto pelo fato de que o lado esquerdo das mesmas deva sempre conter pelo menos um símbolo não-terminal. Gramáticas desse tipo são chamadas livres irrestritas ou do tipo 0. Formalmente:
 - $\alpha \in V^*NV^*$
 - $oldsymbol{\circ}$ $eta \in V^*$
- Por exemplo, a gramática $G_5 = (\{a,b,c,S,X,Y\},\{a,b,c\},\{S \rightarrow aXb,S \rightarrow aXa,Xa \rightarrow c,Xb \rightarrow c,X \rightarrow \epsilon\},S)$ é irrestrita, porém não é sensível ao contexto, devido à presença das produções $Xa \rightarrow c,Xb \rightarrow c$ e $S \rightarrow \epsilon$. As gramáticas G_1 , G_2 , G_3 e G_4 são todas irrestritas.

Resumo

- Toda linguagem do tipo i, $0 \le i \le 3$ é gerada por uma gramática do tipo i;
- A classe das linguagens do tipo $i, 1 \le i \le 3$ está incluída propriamente na classe das linguagens i-1. Consequentemente, toda linguagem do tipo $i, 1 \le i \le 3$ é também uma linguagem do tipo i-1.

Resumo

- Toda gramática do tipo 3 é também do tipo 2.
- Nem toda gramática do tipo 2 é também do tipo 1. São do tipo 1 apenas aquelas que não possuem produções $\alpha \to \beta$ em que $\beta = \epsilon$.
- Toda gramática do tipo 1 é do tipo 0.

Conclusão

 A associação entre linguagens, gramáticas e reconhecedores é destacada na tabela abaixo:

Tipo	Classe de	Modelo de	Modelo de
	$_{ m linguagens}$	gramática	reconhecedor
0	Recursivamente enumeráveis	Irrestrita	Máquina de Turing
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita limitada
2	Livres de contexto	Livre de contexto	Autômato de pilha
3	Regulares	Linear (direita ou esquerda)	Autômato finito

Figura: Linguagens, gramáticas e reconhecedores

Bibliografia

- RAMOS, Marcus V. M. Linguagens formais: teoria, modelagem e implementação. 1ª ed. Porto Alegre: Bookman, 2009.
 - Capítulo 2.

Dúvidas?