BỘ MÔN TOÁN CƠ BẢN

VIỆN TOÁN ỨNG DỤNG VÀ TIN HỌC ĐẠI HỌC BÁCH KHOA HÀ NỘI

SAMI (HUST) - version 2023

- Bài 1: MỞ ĐẦU
- 2 Bài 2: PHƯƠNG TRÌNH VI PHÂN CẤP 1
- 3 Bài 3: PHƯƠNG TRÌNH VI PHÂN CẤP 2
- 4 Bài 4: HỆ PHƯƠNG TRÌNH VI PHÂN

Bài 1: MỞ ĐẦU

Bài 1: Mở đầu

Phương trình vi phân (PTVP) là phương trình có dạng

$$F(x, y, y', y'', \dots, y^{(n)}) = 0,$$

trong đó x là biến số độc lập, y=y(x) là hàm số phải tìm và $y',y'',\cdots,y^{(n)}$ là các đạo hàm của nó.

- ullet Cấp của phương trình vi phân là cấp cao nhất của đạo hàm của y có mặt trong phương trình.
- ullet Nghiệm của phương trình vi phân là các hàm số y thỏa mãn phương trình trên.
- Giải phương trình vi phân là tìm tất cả các nghiệm của nó.
- Phương trình vi phân tuyến tính là phương trình có dạng

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = b(x),$$

trong đó $a_1(x), a_2(x), \dots, a_n(x)$ và b(x) là các hàm số cho trước.

Bài 1: Mở đầu

Phương trình vi phân (PTVP) là phương trình có dạng

$$F(x, y, y', y'', \dots, y^{(n)}) = 0,$$

trong đó x là biến số độc lập, y=y(x) là hàm số phải tìm và $y',y'',\cdots,y^{(n)}$ là các đạo hàm của nó.

- ullet Cấp của phương trình vi phân là cấp cao nhất của đạo hàm của y có mặt trong phương trình.
- Nghiệm của phương trình vi phân là các hàm số y thỏa mãn phương trình trên.
- Giải phương trình vi phân là tìm tất cả các nghiệm của nó.
- Phương trình vi phân tuyến tính là phương trình có dạng

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = b(x),$$

trong đó $a_1(x), a_2(x), \dots, a_n(x)$ và b(x) là các hàm số cho trước.

Ví dụ: Giải các PTVP sau:

$$\overline{(a)}y' - \sin x = 0$$
 $(y = -\cos x + C)$ $b)y'' - xe^x = 0$ $(y = xe^x - 2e^x + C_1x + C_2)$.

Bài 2: PHƯƠNG TRÌNH VI PHÂN CẤP 1

I. Đại cương về PTVP cấp 1

1. Định nghĩa: PTVP cấp 1 là phương trình có dạng F(x,y,y')=0 hoặc y'=f(x,y).

I. Đại cương về PTVP cấp 1

- 1. Định nghĩa: PTVP cấp 1 là phương trình có dạng F(x, y, y') = 0 hoặc y' = f(x, y).
- 2. **Bài toán Cauchy:** là PTVP cấp 1 có dạng y'=f(x,y) thỏa mãn $y(x_0)=y_0$. Điều kiện $y(x_0)=y_0$ được gọi là điều kiện Cauchy hay điều kiện ban đầu của bài toán. **Ví dụ:** $y'=x+\cos 2x$ với $y(\pi)=1$.

I. Đại cương về PTVP cấp 1

- 1. **Định nghĩa:** PTVP cấp 1 là phương trình có dạng F(x, y, y') = 0 hoặc y' = f(x, y).
- 2. **Bài toán Cauchy:** là PTVP cấp 1 có dạng y'=f(x,y) thỏa mãn $y(x_0)=y_0$. Điều kiện $y(x_0)=y_0$ được gọi là điều kiện Cauchy hay điều kiện ban đầu của bài toán. **Ví dụ:** $y'=x+\cos 2x$ với $y(\pi)=1$.
- 3. Định lý về sự tồn tại và duy nhất nghiệm: Cho PTVP cấp 1 sau: y' = f(x, y). Nếu các giả thiết sau thỏa mãn:
 - f(x,y) liên tục trên miền $\mathcal{D} \subset \mathbb{R}^2$.
 - $(x_0, y_0) \in \mathcal{D}$.

Khi đó: Trong một lân cận nào đó của x_0 , tồn tại ít nhất một nghiệm y=y(x) của phương trình trên sao cho $y_0=y(x_0)$. Hơn nữa, nếu $\frac{\partial f}{\partial y}(x,y)$ tồn tại và liên tục trên \mathcal{D} , thì nghiệm đó là duy nhất.

Chú ý:

- ullet Nếu f(x,y) không liên tục trên $\mathcal D$, thì bài toán có thể vô nghiệm. **Ví dụ:** xy'=y với y(0)=1.
- Nếu $\frac{\partial f}{\partial y}(x,y)$ không liên tục trên \mathcal{D} , thì nghiệm có thể không duy nhất. **Ví dụ:** $y'=2\sqrt{y}$ với y(0)=0.

Chú ý:

- Nếu f(x,y) không liên tục trên \mathcal{D} , thì bài toán có thể vô nghiệm. **Ví dụ:** xy'=y với y(0)=1.
- Nếu $\frac{\partial f}{\partial y}(x,y)$ không liên tục trên \mathcal{D} , thì nghiệm có thể không duy nhất. **Ví dụ:** $y'=2\sqrt{y}$ với y(0)=0.
- 4. Các cách gọi nghiệm của bài toán: Cho PTVP cấp 1 sau: y' = f(x,y). Khi đó:
 - Nghiệm tổng quát (TQ) là hàm số có dạng y=g(x,C), trong đó C là một hằng số bất kì, thỏa mãn:
 - i) y = g(x, C) thỏa mãn phương trình với mọi C.
 - ii) Với mọi $(x_0,y_0)\in\mathcal{D}$, tồn tại duy nhất hằng số $C=C_0$ sao cho $g(x_0,C_0)=y_0.$

Ví dụ: Nghiệm TQ của PT
$$y'=x+\cos 2x$$
 là $y=\int (x+\cos 2x)dx=\frac{x^2}{2}+\frac{\sin 2x}{2}+C.$

- ullet Nghiệm riêng là hàm số có dạng $y=g(x,C_0)$, trong đó y=g(x,C) là nghiệm TQ.
 - **Ví dụ:** Với C=-2, nghiệm riêng là $y=\frac{x^2}{2}+\frac{\sin 2x}{2}-2$.
- Nghiệm kì dị là nghiệm không nằm trong họ nghiệm TQ.

- 5. **Chú ý:** Cách viết nghiệm trên được gọi là dạng tường minh. Ngoài ra, nghiệm TQ còn được viết dưới dạng sau:

 - Dạng tham số: $\begin{cases} x = f(t,C), \\ y = g(t,C). \end{cases}$

- 5. Chú v: Cách viết nghiệm trên được gọi là dạng tường minh. Ngoài ra, nghiệm TQ còn được viết dưới dang sau:

• Dạng tham số: $\begin{cases} x = f(t, C), \\ y = a(t, C) \end{cases}$

Ví du: Giải phương trình $2y'^2 + 3y' - x = 0$. Đặt y' = t. PT $\Rightarrow x = 2t^2 + 3t = f(t)$. Ta có:

$$dy = y'dx = t(4t+3)dt \Rightarrow y'_t = 4t^2 + 3t$$
$$\Rightarrow y = \int (4t^2 + 3t)dt = \frac{4}{3}t^3 + \frac{3}{2}t^2 + C = g(t).$$

KL: Nghiệm TQ của PT là $\begin{cases} x=2t^2+3t,\\ y=\frac{4}{2}t^3+\frac{3}{2}t^2+C. \end{cases}$

II. Các phương trình khuyết

- 1. PT khuyết y: F(x, y') = 0
 - Nếu tìm được y'=f(x), thì $y=\int f(x)dx$.
 - Nếu tìm được x=f(y'), thì đặt y'=t ta có $\begin{cases} x=f(t) \\ y=\int tf'(t)dt. \end{cases}$

Thật vậy:
$$dy = y'dx = td\big(f(t)\big) = tf'(t)dt \Rightarrow y'_t = tf'(t) \Rightarrow y = \int tf'(t)dt.$$

II. Các phương trình khuyết

- 1. PT khuyết y: F(x, y') = 0
 - Nếu tìm được y'=f(x), thì $y=\int f(x)dx$.
 - Nếu tìm được x=f(y'), thì đặt y'=t ta có $\begin{cases} x=f(t)\\ y=\int tf'(t)dt. \end{cases}$

Thật vậy: $dy = y'dx = td\big(f(t)\big) = tf'(t)dt \Rightarrow y'_t = tf'(t) \Rightarrow y = \int tf'(t)dt$.

Ví dụ: Giải PTVP cấp 1 sau: $y'^2 - y' - x + 2 = 0$.

Giải: Đặt t=y', ta có $x=t^2-t+2$. Khi đó:

$$dy = y'dx = t(2t-1)dt = (2t^2 - t)dt \Rightarrow y = \int (2t^2 - t)dt = \frac{2}{3}t^3 - \frac{1}{2}t^2 + C.$$

KL: Nghiệm TQ của PT là $\begin{cases} x=t^2-t+2,\\ y=\frac{2}{3}t^3-\frac{1}{2}t^2+C. \end{cases}$

- 2. PT khuyết x: F(y, y') = 0
 - Nếu tìm được y'=f(y) tức là $\frac{dy}{dx}=f(y)$, thì $x=\int \frac{1}{f(y)}dy$.

Thật vậy:
$$x'=\dfrac{dx}{dy}=\dfrac{1}{f(y)}\Rightarrow x=\int\dfrac{1}{f(y)}dy.$$

- 2. PT khuyết x: F(y, y') = 0
 - Nếu tìm được y'=f(y) tức là $\frac{dy}{dx}=f(y)$, thì $x=\int \frac{1}{f(y)}dy$. Thật vậy: $x'=\frac{dx}{dy}=\frac{1}{f(y)}\Rightarrow x=\int \frac{1}{f(y)}dy$.
 - • Nếu tìm được y=f(y'), thì đặt y'=t ta có $\begin{cases} x=\int \frac{f'(t)}{t}dt \\ y=f(t). \end{cases}$

Thật vậy:
$$dy = y'dx \Rightarrow dx = \frac{1}{y'}dy = \frac{1}{t}d\big(f(t)\big) = \frac{f'(t)}{t}dt.$$

- 2. PT khuyết x: F(y, y') = 0
 - Nếu tìm được y'=f(y) tức là $\frac{dy}{dx}=f(y)$, thì $x=\int \frac{1}{f(y)}dy$. Thật vậy: $x'=\frac{dx}{dy}=\frac{1}{f(y)}\Rightarrow x=\int \frac{1}{f(y)}dy$.
 - Nếu tìm được y=f(y'), thì đặt y'=t ta có $\begin{cases} x=\int \frac{f'(t)}{t}dt \\ y=f(t). \end{cases}$

Thật vậy:
$$dy=y'dx\Rightarrow dx=\frac{1}{y'}dy=\frac{1}{t}d\big(f(t)\big)=\frac{f'(t)}{t}dt.$$

• Nếu tìm được dạng tham số $\begin{cases} y=f(t) \\ y'=g(t) \end{cases}$ thì $x=\int \frac{f'(t)}{g(t)}dt.$

Thật vậy:
$$dy=y'dx\Rightarrow dx=\frac{1}{y'}dy=\frac{1}{g(t)}d\big(f(t)\big)=\frac{f'(t)}{g(t)}dt.$$

Ví dụ: Giải PTVP cấp 1 sau: $y'^2 + y^2 = 4$.

Giải: PT
$$\Leftrightarrow y' = \pm \sqrt{4 - y^2} \Leftrightarrow \frac{dy}{dx} = \pm \sqrt{4 - y^2}$$
 $\Leftrightarrow x' = \frac{dx}{dy} = \pm \frac{1}{\sqrt{4 - y^2}}$ với $y \neq \pm 2$.

Khi đó:
$$x=\pm\int\frac{1}{\sqrt{4-y^2}}dy=\pm\arcsin\frac{y}{2}+C$$
 (Nghiệm TQ) và $y=\pm2$ (Nghiệm kì dị).

Ngoài ra, ta có thể giải PT trên bằng cách tham số hóa (đặt $y=2\sin t$ và $y'=2\cos t$).

Giải: PT
$$\Leftrightarrow y' = \pm \sqrt{4-y^2} \Leftrightarrow \frac{dy}{dx} = \pm \sqrt{4-y^2}$$
 $\Leftrightarrow x' = \frac{dx}{dy} = \pm \frac{1}{\sqrt{4-y^2}}$ với $y \neq \pm 2$.

Khi đó:
$$x=\pm\int \frac{1}{\sqrt{4-y^2}}dy=\pm \arcsin\frac{y}{2}+C$$
 (Nghiệm TQ) và $y=\pm 2$ (Nghiệm kì dị).

Ngoài ra, ta có thể giải PT trên bằng cách tham số hóa (đặt $y=2\sin t$ và $y'=2\cos t$).

III. Các dạng điển hình của PTVP cấp 1

- 1. PT phân ly biến số: f(x)dx = g(y)dy
 - <u>Cách giải</u>: Lấy tích phân 2 vế ta có: $\int f(x)dx = \int g(y)dy \Leftrightarrow F(x) = G(y) + C$.
 - Ví dụ: a) y' = 1 + x + y + xy b) $\tan y dx x \ln x dy = 0$ c) $(xy^2 + x) dx + (y x^2y) dy = 0$ d) $y'y = x^2 + 2$.

Giải: PT
$$\Leftrightarrow y' = \pm \sqrt{4 - y^2} \Leftrightarrow \frac{dy}{dx} = \pm \sqrt{4 - y^2}$$
 $\Leftrightarrow x' = \frac{dx}{dy} = \pm \frac{1}{\sqrt{4 - y^2}}$ với $y \neq \pm 2$.

Khi đó:
$$x=\pm\int \frac{1}{\sqrt{4-y^2}}dy=\pm \arcsin\frac{y}{2}+C$$
 (Nghiệm TQ) và $y=\pm 2$ (Nghiệm kì dị).

Ngoài ra, ta có thể giải PT trên bằng cách tham số hóa (đặt $y=2\sin t$ và $y'=2\cos t$).

III. Các dang điển hình của PTVP cấp 1

- 1. PT phân ly biến số: f(x)dx = q(u)du
 - <u>Cách giải</u>: Lấy tích phân 2 vế ta có: $\int f(x)dx = \int g(y)dy \Leftrightarrow F(x) = G(y) + C$.

• Ví dụ:
$$a)$$
 $y' = 1 + x + y + xy$ $b)$ $\tan y dx - x \ln x dy = 0$ $c)$ $(xy^2 + x)dx + (y - x^2y)dy = 0$ $d)$ $y'y = x^2 + 2$.

Giải: a) PT $\Leftrightarrow \frac{dy}{dx} = y' = (1+x)(1+y) \Leftrightarrow \frac{dy}{1+y} = (1+x)dx$ với $y \neq -1$. Tích phân 2 vế ta có:

$$\ln |y+1| = x + \frac{x^2}{2} + C$$
. Với $y = -1$ cũng là 1 nghiệm của PT.

- 2. PT đẳng cấp: $y' = F\left(\frac{y}{x}\right)$
 - Cách giải: Đặt $u = \frac{y}{x} \Rightarrow y = u.x \Rightarrow y' = u'.x + u$. Thay vào PT đã cho ta có:

$$u'.x + u = F(u) \Leftrightarrow x \frac{du}{dx} = F(u) - u.$$
 (PT phân ly)

• Ví dụ:
$$a) y' = \frac{4x^2 + 3y^2}{2xy}$$
 $b) y' = \frac{y}{x} + \frac{x}{y} + 1$ $c) (x + 2y)dx - xdy = 0$ $d) xy' = x \sin \frac{y}{x} + y$.

$$b) y' = \frac{y}{x} + \frac{x}{y} +$$

$$c)\left(x+2y\right)dx - xdy = 0$$

$$d) xy' = x \sin \frac{y}{x} + y$$

- 2. PT đẳng cấp: $y' = F\left(\frac{y}{x}\right)$
 - Cách giải: Đặt $u = \frac{y}{x} \Rightarrow y = u.x \Rightarrow y' = u'.x + u$. Thay vào PT đã cho ta có:

$$u'.x + u = F(u) \Leftrightarrow x \frac{du}{dx} = F(u) - u.$$
 (PT phân ly)

• Ví dụ:
$$a) y' = \frac{4x^2 + 3y^2}{2xy}$$
 $b) y' = \frac{y}{x} + \frac{x}{y} + 1$ $c) (x + 2y)dx - xdy = 0$ $d) xy' = x \sin \frac{y}{x} + y$.

Giải: a) PT
$$\Leftrightarrow y'=2\frac{x}{y}+\frac{3}{2}\frac{y}{x}=F\Big(\frac{y}{x}\Big)$$
. Ta có: $F(u)=\frac{2}{u}+\frac{3}{2}u$. PT phân ly thu được là:

$$x\frac{du}{dx} = \frac{2}{u} + \frac{1}{2}u \Leftrightarrow \frac{2u}{u^2 + 4}du = \frac{dx}{x}.$$

Tích phân 2 vế ta có: $\ln(u^2+4) = \ln|x| + \ln|C| \Leftrightarrow u^2+4 = Cx$.

Khi đó:
$$\frac{y^2}{x^2} + 4 = Cx \Leftrightarrow y^2 = (Cx - 4)x^2 \Leftrightarrow y^2 - (Cx - 4)x^2 = 0.$$

- 3. PT tuyến tính: y' + p(x)y = q(x)
 - Cách giải:
 - ▶ **B1:** Xét PT (thuần nhất) y' + p(x)y = 0 (1). Ta thấy: y = 0 là 1 nghiệm của PT (1). Với $y \neq 0$, ta có: PT (1) $\Leftrightarrow \frac{dy}{y} = -p(x)dx$ (PT phân ly) $\Leftrightarrow y = Ce^{-\int p(x)dx}$.

- 3. PT tuyến tính: y' + p(x)y = q(x)
 - Cách giải:
 - ▶ **B1:** Xét PT (thuần nhất) y' + p(x)y = 0 (1). Ta thấy: y = 0 là 1 nghiệm của PT (1). Với $y \neq 0$, ta có:

PT (1)
$$\Leftrightarrow \frac{dy}{y} = -p(x)dx$$
 (PT phân ly) $\Leftrightarrow y = Ce^{-\int p(x)dx}$.

▶ **B2:** Xét PT (không thuần nhất) y' + p(x)y = q(x) (2). Ta coi C là 1 hàm số C(x) để tìm nghiệm của PT (2) có dạng $y = C(x)e^{-\int p(x)dx}$.

Tính
$$y'=C'(x)e^{-\int p(x)dx}-C(x)e^{-\int p(x)dx}p(x)$$
, thay vào PT (2) ta được $C'(x)e^{-\int p(x)dx}=q(x)\Leftrightarrow C'(x)=q(x)e^{\int p(x)dx}$.

$$\Leftrightarrow C(x) = \int q(x)e^{\int p(x)dx}dx + K.$$

KL: Nghiệm TQ của PT đã cho là:

$$y = Ke^{-\int p(x)dx} + e^{-\int p(x)dx} \cdot \int q(x)e^{\int p(x)dx}dx.$$

$$\begin{array}{ll} \bullet \ \ \underline{\text{V\'i d\psi:}} & a) \ y' - \frac{y}{x} = x \cos x & b) \ y' - y = \frac{e^x}{x}, \ y(1) = e. \\ c) \ y' = \frac{e^x}{x+1} - \frac{y}{x+1} & d) \ xy' - \frac{y}{x+1} - x = 0, \ y(1) = 0. \\ \\ \text{Giải: b) Ta c\'o: } p(x) = -1 \ \text{và} \ q(x) = \frac{e^x}{x}. \ \text{\'Ap dụng CT nghiệm TQ ta được} \\ \end{array}$$

$$y = Ke^{-\int p(x)dx} + e^{-\int p(x)dx} \cdot \int q(x)e^{\int p(x)dx}dx$$
$$= Ke^{x} + e^{x} \cdot \int \frac{e^{x}}{x}e^{-x}dx = Ke^{x} + e^{x}\ln|x|.$$

Theo giả thiết y(1) = e ta có: $e = K.e + e \ln 1 \Rightarrow K = 1$. KL: Nghiêm của PT là $y = e^x + e^x \ln |x|$.

- 4. PT Bernoulli: $y' + p(x)y = q(x)y^{\alpha}$ với $\alpha \neq 0$ và $\alpha \neq 1$ (1).
 - <u>Cách giải</u>: Ta thấy: y=0 là 1 nghiệm của PT(1) nếu $\alpha>0$ và không là nghiệm của PT (1) nếu $\alpha<0$. Với $y\neq 0$, chia cả 2 vế cho y^{α} ta có:

$$y^{-\alpha}y' + p(x)y^{1-\alpha} = q(x)$$
 (2).

Đặt $u=y^{1-\alpha}$. Tính $u'=(1-\alpha)y^{-\alpha}y'$, thay vào PT (2) ta được

$$u' + (1 - \alpha)p(x)u = (1 - \alpha)q(x)$$
. (PT tuyến tính)

- 4. PT Bernoulli: $y' + p(x)y = q(x)y^{\alpha}$ với $\alpha \neq 0$ và $\alpha \neq 1$ (1).
 - Cách giải: Ta thấy: y=0 là 1 nghiệm của PT(1) nếu $\alpha>0$ và không là nghiệm của PT (1) nếu $\alpha<0$. Với $y\neq 0$, chia cả 2 vế cho y^{α} ta có:

$$y^{-\alpha}y' + p(x)y^{1-\alpha} = q(x)$$
 (2).

Đặt $u=y^{1-\alpha}.$ Tính $u'=(1-\alpha)y^{-\alpha}y'$, thay vào PT (2) ta được

$$u' + (1 - \alpha)p(x)u = (1 - \alpha)q(x)$$
. (PT tuyến tính)

- Chú ý: PT (1) $\Leftrightarrow \begin{cases} y'+p(x)y=q(x) & \text{n\'eu } \alpha=0, \\ y'+\left(p(x)-q(x)\right)y=0 & \text{n\'eu } \alpha=1. \end{cases}$ (PT tuyến tính)
- Ví dụ: $a) \frac{dy}{dx} \frac{3}{2x}y = \frac{2x}{y}$ $b) y' + \frac{xy}{1 x^2} = x\sqrt{y}$ $c) 3dy + (1 + 3y^3)y \sin x dx = 0, y(\frac{\pi}{2}) = 1$ $d) xy' + (y - x^3y^4) = 0, y(1) = 1.$

Giải: b) PT
$$\Leftrightarrow y' + \frac{x}{1 - x^2}y = xy^{\frac{1}{2}}$$
. (1)

Ta thấy y=0 là 1 nghiệm của PT (1). Với $y\neq 0$, chia 2 vế cho $y^{\frac{1}{2}}$ PT (1) $\Leftrightarrow y^{-\frac{1}{2}}y'+\frac{x}{1-x^2}y^{\frac{1}{2}}=x$. (2)

Đặt
$$u=y^{\frac{1}{2}}\Rightarrow u'=\frac{1}{2}y^{-\frac{1}{2}}y'.$$
 Thay vào PT (2) ta có
$$2u'+\frac{x}{1-x^2}u=x\Leftrightarrow u'+\frac{x}{2(1-x^2)}u=\frac{x}{2}. \quad (3)$$

PT (3) là PT tuyến tính với $p(x)=\frac{x}{2(1-x^2)}$ và $q(x)=\frac{x}{2}$. Áp dụng CT nghiệm TQ ta có

$$u = Ke^{-\int p(x)dx} + e^{-\int p(x)dx} \int q(x)e^{\int p(x)dx}dx$$

= $Ke^{\frac{1}{4}\ln|x^2-1|} + e^{\frac{1}{4}\ln|x^2-1|} \int \frac{x}{2}e^{-\frac{1}{4}\ln|x^2-1|}dx = K\sqrt[4]{|x^2-1|} + \frac{1}{3}(x^2-1).$

KL: Nghiệm của PT là $\sqrt{y}=K\sqrt[4]{|x^2-1|}+rac{1}{3}(x^2-1)$ và y=0.

- 5. PTVP toàn phần: P(x,y)dx + Q(x,y)dy = 0 (1)
 - Dịnh nghĩa: PT (1) được gọi là PTVP toàn phần nếu tồn tại hàm u(x,y) thỏa mãn: $du(x,y) = P(x,y)dx + Q(x,y)dy \quad (2).$

- 5. PTVP toàn phần: P(x,y)dx + Q(x,y)dy = 0 (1)
 - **Dịnh nghĩa:** PT (1) được gọi là PTVP toàn phần nếu tồn tại hàm u(x,y) thỏa mãn: $du(x,y) = P(x,y)dx + Q(x,y)dy \quad (2).$
 - ullet Cách nhận biết: Kiểm tra các hàm P, Q cùng các đạo hàm riêng cấp 1 là liên tục và điều kiện

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

- 5. PTVP toàn phần: P(x,y)dx + Q(x,y)dy = 0 (1)
 - **Dịnh nghĩa:** PT (1) được gọi là PTVP toàn phần nếu tồn tại hàm u(x,y) thỏa mãn: $du(x,y) = P(x,y)dx + Q(x,y)dy \quad (2).$
 - ullet Cách nhận biết: Kiểm tra các hàm P, Q cùng các đạo hàm riêng cấp 1 là liên tục và điều kiện

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

• Cách giải: Tích phân 2 vế của PT (2) ta được

$$u(x,y) = \int_{x_0}^{x} P(t,y_0)dt + \int_{y_0}^{y} Q(x,t)dt = C,$$

hoặc

$$u(x,y) = \int_{x_0}^{x} P(t,y)dt + \int_{y_0}^{y} Q(x_0,t)dt = C,$$

trong đó (x_0, y_0) được chọn là một điểm thuộc miền liên tục của hàm P và Q.

• Ví dụ:
$$a) (6xy - y^3) dx + (4y + 3x^2 - 3xy^2) dy = 0$$
 $b) e^{-y} dx + (1 - xe^{-y}) dy = 0$ $c) 2x \cos^2 y dx + (2y - x^2 \sin 2y) dy = 0$ $d) x dx + y dy = \frac{x dy - y dx}{x^2 + y^2}.$

Giải: b) Ta có: $P(x,y)=e^{-y}$, $Q(x,y)=1-xe^{-y}\Rightarrow \frac{\partial P}{\partial y}=-e^{-y}=\frac{\partial Q}{\partial x}\Rightarrow$ PT đã cho là PTVP toàn phần. Khi đó: Chọn $(x_0,y_0)=(0,0)$, nghiệm TQ của PT là

$$u(x,y) = \int_0^x P(t,0)dt + \int_0^y Q(x,t)dt = C$$

$$\Leftrightarrow \int_0^x 1.dt + \int_0^y (1 - xe^{-t})dt = C$$

$$\Leftrightarrow x + y + xe^{-y} - x = C \Leftrightarrow y + xe^{-y} - C = 0.$$

6. PTVP với thừa số tích phân:

$$P(x,y)dx + Q(x,y)dy = 0 \quad (1) \quad \text{ v\'oi } \quad \frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}.$$

• Cách giải: Tìm hàm số h(x,y) để PT (1) trên trở thành PTVP toàn phần, tức là:

PT (1)
$$\Leftrightarrow h(x,y)P(x,y)dx + h(x,y)Q(x,y)dy = 0$$
 (2) với $\frac{\partial}{\partial y}(hP) = \frac{\partial}{\partial x}(hQ)$ (*).

Khi đó: Hàm số h(x,y) được gọi là thừa số tích phân.

6. PTVP với thừa số tích phân:

$$P(x,y)dx + Q(x,y)dy = 0 \quad (1) \quad \text{ v\'oi } \quad \frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}.$$

• Cách giải: Tìm hàm số h(x,y) để PT (1) trên trở thành PTVP toàn phần, tức là:

$$\mathsf{PT} \ (1) \Leftrightarrow h(x,y)P(x,y)dx + h(x,y)Q(x,y)dy = 0 \quad (2) \quad \mathsf{v\'oi} \ \frac{\partial}{\partial y}(hP) = \frac{\partial}{\partial x}(hQ) \ (*).$$

Khi đó: Hàm số h(x,y) được gọi là thừa số tích phân.

- Cách tìm μ :
 - $lackbox{Nếu} \; rac{P_y'-Q_x'}{Q}=f(x) \; {
 m th} i \; h(x)=e^{\int f(x)dx}$, tức là hàm chỉ phụ thuộc vào x.
 - $\qquad \qquad \textbf{N\'eu} \ \frac{P_y' Q_x'}{P} = g(y) \ \text{thì} \ h(y) = e^{-\int g(y) dy}, \ \text{tức là hàm chỉ phụ thuộc vào } y.$
 - $\qquad \qquad \textbf{Trường hợp tổng quát: } h(x,y) \text{ thỏa mãn } (*) \text{ tức là } \frac{Q}{P'_y-Q'_x}h'_x \frac{P}{P'_y-Q'_x}h'_y = h.$
- Ví dụ: $a)(x+y^2)dx 2xydy = 0$ $b)(e^{2x} - y^2)dx + ydy = 0$ $c)2x\tan ydx + (x^2 - 2\sin y)dy = 0.$

Giải: b) Ta có: $P(x,y)=e^{2x}-y^2$, $Q(x,y)=y\Rightarrow \frac{\partial P}{\partial y}=-2y\neq 0=\frac{\partial Q}{\partial x}\Rightarrow$ ta tìm thừa số tích phân như sau:

$$f(x) = \frac{P'_y - Q'_x}{Q} = -2 \Rightarrow h(x) = e^{\int f(x)dx} = e^{-2x}.$$

Nhân 2 vế PT đã cho với h(x) ta có:

$$(1 - e^{-2x}y^2)dx + e^{-2x}ydy = 0 \quad \text{(PTVP toàn phần) với } \begin{cases} P^*(x,y) = 1 - e^{-2x}y^2, \\ Q^*(x,y) = e^{-2x}y. \end{cases}$$

Khi đó: Chọn $(x_0,y_0)=(0,0)$, nghiệm TQ của PT là

$$u(x,y) = \int_0^x P^*(t,0)dt + \int_0^y Q^*(x,t)dt = C$$

$$\Leftrightarrow \int_0^x 1.dx + \int_0^y e^{-2x}tdt = C \Leftrightarrow x + \frac{e^{-2x}y^2}{2} = C \Leftrightarrow x + \frac{e^{-2x}y^2}{2} - C = 0.$$

Chương 2: PHƯƠNG TRÌNH VI PHÂN

Bài 3: PHƯƠNG TRÌNH VI PHÂN CẤP 2

I. Đại cương về PTVP cấp 2

- 1. Định nghĩa: PTVP cấp 2 là phương trình có dạng F(x,y,y',y'')=0 hoặc y''=f(x,y,y').
- 2. Định lý về sự tồn tại và duy nhất nghiệm: Cho PTVP cấp 2: y'' = f(x, y, y'). Nếu các giả thiết sau thỏa mãn:
 - f(x,y,y'), $\frac{\partial f}{\partial y}(x,y,y')$ và $\frac{\partial f}{\partial y'}(x,y,y')$ liên tục trên miền $\mathcal{D}\subset\mathbb{R}^3$.
 - $(x_0, y_0, y_0') \in \mathcal{D}$.

Khi đó: Trong một lân cận nào đó của x_0 , tồn tại duy nhất một nghiệm y=y(x) của phương trình trên sao cho $y_0=y(x_0)$ và $y_0'=y'(x_0)$.

I. Đại cương về PTVP cấp 2

- 1. Định nghĩa: PTVP cấp 2 là phương trình có dạng F(x,y,y',y'')=0 hoặc y''=f(x,y,y').
- 2. Định lý về sự tồn tại và duy nhất nghiệm: Cho PTVP cấp 2: y'' = f(x, y, y'). Nếu các giả thiết sau thỏa mãn:
 - f(x,y,y'), $\frac{\partial f}{\partial y}(x,y,y')$ và $\frac{\partial f}{\partial y'}(x,y,y')$ liên tục trên miền $\mathcal{D}\subset\mathbb{R}^3$.
 - $(x_0, y_0, y_0') \in \mathcal{D}$.

Khi đó: Trong một lân cận nào đó của x_0 , tồn tại duy nhất một nghiệm y=y(x) của phương trình trên sao cho $y_0=y(x_0)$ và $y_0'=y'(x_0)$.

3. **Bài toán Cauchy:** là PTVP cấp 2 có dạng y''=f(x,y,y') thỏa mãn $y(x_0)=y_0$ và $y'(x_0)=y'_0$. Điều kiện $y(x_0)=y_0$ và $y'(x_0)=y'_0$ được gọi là điều kiện Cauchy hay điều kiện ban đầu.

- 4. Các cách gọi nghiệm của bài toán: Cho PTVP cấp 2: y'' = f(x, y, y'). Khi đó:
 - Nghiệm tổng quát (TQ) là hàm số có dạng $y=g(x,C_1,C_2)$, trong đó C_1,C_2 là các hằng số bất kì, thỏa mãn:
 - i) $y = g(x, C_1, C_2)$ thỏa mãn phương trình với mọi C_1 và C_2 .
 - ii) Với mọi $(x_0,y_0,y_0')\in\mathcal{D}$, tồn tại duy nhất hai hằng số $C_1=C_1^0$ và $C_2=C_2^0$ sao cho $g(x_0,C_1,C_2)=y_0$ và $g'(x_0,C_1,C_2)=y_0'$.
 - Nghiệm riêng là hàm số có dạng $y=g(x,C_1^0,C_2^0)$, trong đó $y=g(x,C_1,C_2)$ là nghiệm TQ.
 - Nghiệm kì dị là nghiệm không nằm trong họ nghiệm TQ.

- 4. Các cách gọi nghiệm của bài toán: Cho PTVP cấp 2: y'' = f(x, y, y'). Khi đó:
 - Nghiệm tổng quát (TQ) là hàm số có dạng $y=g(x,C_1,C_2)$, trong đó C_1,C_2 là các hằng số bất kì, thỏa mãn:
 - i) $y = g(x, C_1, C_2)$ thỏa mãn phương trình với mọi C_1 và C_2 .
 - ii) Với mọi $(x_0,y_0,y_0')\in\mathcal{D}$, tổn tại duy nhất hai hằng số $C_1=C_1^0$ và $C_2=C_2^0$ sao cho $g(x_0,C_1,C_2)=y_0$ và $g'(x_0,C_1,C_2)=y_0'$.
 - Nghiệm riêng là hàm số có dạng $y = g(x, C_1^0, C_2^0)$, trong đó $y = g(x, C_1, C_2)$ là nghiệm TQ.
 - Nghiệm kì dị là nghiệm không nằm trong họ nghiệm TQ.
- 5. **Chú ý:** Cách viết nghiệm trên được gọi là dạng tường minh. Ngoài ra, nghiệm TQ còn được viết dưới dạng sau:
 - Dạng ẩn (Tích phân TQ): $\phi(x, y, C_1, C_2) = 0$.
 - Dạng tham số: $\begin{cases} x = f(t, C_1, C_2), \\ y = g(t, C_1, C_2). \end{cases}$

II. Các phương trình khuyết

- 1. PT khuyết y: F(x, y', y'') = 0
 - Đặt u = y', ta đưa về PTVP cấp 1: F(x, u, u') = 0.
 - Giả sử PT trên có nghiệm TQ: u = f(x, C). Giải PTVP cấp 1: y' = f(x, C).

II. Các phương trình khuyết

- 1. PT khuyết y: F(x, y', y'') = 0
 - Đặt u=y', ta đưa về PTVP cấp 1: F(x,u,u')=0.
 - Giả sử PT trên có nghiệm TQ: u = f(x, C). Giải PTVP cấp 1: y' = f(x, C).

Giải: d) PT
$$\Leftrightarrow y'' - \frac{3}{x}y' = -\frac{x}{2}$$
. (1)

Đặt
$$u=y'$$
, ta có: $u'-\frac{3}{x}u=-\frac{x}{2}$ $\qquad (2)\Rightarrow$ Nghiệm TQ của (2) là

$$\begin{split} u &= K e^{-\int p(x) dx} + e^{-\int p(x) dx}. \int q(x) e^{\int p(x) dx} dx \\ &= K e^{3\ln|x|} - e^{3\ln|x|} \int \frac{x}{2} e^{-3\ln|x|} dx = C x^3 - x^3 \int \frac{x}{2} x^{-3} dx \quad (\text{v\'oi } C = \pm K) \\ &= C x^3 + \frac{1}{2} x^2. \end{split}$$

Theo giả thiết $y'(1) = 1 \Rightarrow u(1) = 1 \Rightarrow C = \frac{1}{2}$. Ta có:

$$y' = \frac{1}{2}x^3 + \frac{1}{2}x^2 \Leftrightarrow y = \int \left(\frac{1}{2}x^3 + \frac{1}{2}x^2\right)dx = \frac{1}{8}x^4 + \frac{1}{6}x^3 + D.$$

Vì đk ban đầu y(1) = 0 nên $D = -\frac{7}{24} \Rightarrow \text{KL: } y = \frac{1}{8}x^4 + \frac{1}{6}x^3 - \frac{7}{24}.$

Theo giả thiết $y'(1)=1\Rightarrow u(1)=1\Rightarrow C=\frac{1}{2}.$ Ta có:

$$y' = \frac{1}{2}x^3 + \frac{1}{2}x^2 \Leftrightarrow y = \int \left(\frac{1}{2}x^3 + \frac{1}{2}x^2\right)dx = \frac{1}{8}x^4 + \frac{1}{6}x^3 + D.$$

Vì đk ban đầu y(1) = 0 nên $D = -\frac{7}{24} \Rightarrow \text{KL: } y = \frac{1}{8}x^4 + \frac{1}{6}x^3 - \frac{7}{24}.$

- 2. PT khuyết x: F(y, y', y'') = 0
 - Đặt u=y', ta có $y''=\dfrac{dy'}{dx}=\dfrac{dy'}{dy}\cdot\dfrac{dy}{dx}=u\dfrac{du}{dy}.$

Thay vào PT đã cho ta có PTVP cấp 1: $F\left(y,u,u\frac{du}{dy}\right)=0$.

• Giả sử PT trên có nghiệm TQ: u=f(y,C). Giải PTVP cấp 1: y'=f(y,C).

$$\text{Giải: b) Dặt } u=y' \text{, ta có } y''=u\frac{du}{dy} \text{, thay vào PT ta có: } yu\frac{du}{dy}=u^2-u^3. \ \, (*)$$

Ta thấy: u=0, tức là $y=C_1$ là 1 nghiệm của PT. Với $u\neq 0$, ta có:

$$\mathsf{PT} \ (*) \Leftrightarrow y \frac{du}{dy} = u - u^2 \Leftrightarrow \frac{du}{u - u^2} = \frac{dy}{y} \ \mathsf{v\'oi} \ u \neq 1.$$

Tích phân 2 vế ta có:
$$-\ln\left|\frac{u-1}{u}\right| = \ln|y| + \ln|C_2| \Leftrightarrow \left|\frac{u-1}{u}\right| = \frac{1}{|C_2y|}$$

$$\Leftrightarrow \frac{u-1}{u} = \frac{C_3}{y} \Rightarrow u = \frac{y}{y - C_3}.$$

Khi đó:

$$y' = \frac{y}{y - C_3} \Leftrightarrow \frac{y - C_3}{y} dy = dx \Leftrightarrow x = \int \left(1 - \frac{C_3}{y}\right) dy = y - C_3 \ln|y| + C_4.$$

Ta thấy: u=1, tức là y=x+C cũng là nghiệm của PT.

KL: Nghiệm là $y=C_1$, y=x+C và $x=y-C_3\ln|y|+C_4$.

3. PT khuyết y' (và y): F(x, y'') = 0

Từ PT ta rút ra được y''=g(x), thì ta chỉ cần lấy tích phân 2 lần sẽ có nghiệm TQ. Nếu từ F(x,y'')=0 ta rút ra được x=f(y''), thì ta sẽ tham số hóa nghiệm như sau:

- Đặt t=y'', ta có x=f(t). Để tìm y', ta có dy'=y''dx=tf'(t)dt. Lấy nguyên hàm 2 vế, ta tính được $y'=f_1(t,C_1)$ với C_1 là hằng số.
- Để tìm y, ta biến đổi $dy=y'dx=f_1(t,C_1)f'(t)dt\Rightarrow y=f_2(t,C_1,C_2)$ với C_2 là hằng số.

Ví dụ: Giải PTVP sau: $x = (y'')^2 + y'' + 1$.

3. PT khuyết y' (và y): F(x, y'') = 0

Từ PT ta rút ra được y''=g(x), thì ta chỉ cần lấy tích phân 2 lần sẽ có nghiệm TQ. Nếu từ F(x,y'')=0 ta rút ra được x=f(y''), thì ta sẽ tham số hóa nghiệm như sau:

- Đặt t=y'', ta có x=f(t). Để tìm y', ta có dy'=y''dx=tf'(t)dt. Lấy nguyên hàm 2 vế, ta tính được $y'=f_1(t,C_1)$ với C_1 là hằng số.
- ullet Để tìm y, ta biến đổi $dy=y'dx=f_1(t,C_1)f'(t)dt\Rightarrow y=f_2(t,C_1,C_2)$ với C_2 là hằng số.

Ví dụ: Giải PTVP sau: $x = (y'')^2 + y'' + 1$.

Giải: Đặt t=y'', từ PT đã cho ta có $x=t^2+t+1$.

Ta thấy:
$$dy' = y'' dx = t(2t+1) dt = (2t^2+t) dt$$
. Nguyên hàm 2 vế ta có $y' = \frac{2}{3}t^3 + \frac{1}{2}t^2 + C_1$.

Khi đó:
$$dy = y'dx = \left(\frac{2}{3}t^3 + \frac{1}{2}t^2 + C_1\right)(2t+1)dt = \left(\frac{4}{3}t^4 + \frac{5}{3}t^3 + \frac{1}{2}t^2 + 2C_1t + C_1\right)dt$$

và lấy nguyên hàm 2 vế ta được:
$$y = \frac{4}{15}t^5 + \frac{5}{12}t^4 + \frac{1}{6}t^3 + C_1t^2 + C_1t + C_2$$
.

Kết luận: Nghiệm TQ của PT là
$$\begin{cases} x=t^2+t+1,\\ y=\frac{4}{15}t^5+\frac{5}{12}t^4+\frac{1}{6}t^3+C_1t^2+C_1t+C_2. \end{cases}$$

- III. PTVP tuyến tính cấp 2 tổng quát: y'' + p(x)y' + q(x)y = f(x), trong đó p(x), q(x) và f(x) là các hàm số cho trước.
 - 1. PTVP tuyến tính cấp 2 thuần nhất: y'' + p(x)y' + q(x)y = 0 (1).
 - **Dịnh lý 1**: Nếu y_1 và y_2 là các nghiệm của PT (1), thì $C_1y_1 + C_2y_2$ cũng là nghiệm của PT (1) với mọi $C_1, C_2 \in \mathbb{R}$.

- III. PTVP tuyến tính cấp 2 tổng quát: y'' + p(x)y' + q(x)y = f(x), trong đó p(x), q(x) và f(x) là các hàm số cho trước.
 - 1. PTVP tuyến tính cấp 2 thuần nhất: y'' + p(x)y' + q(x)y = 0 (1).
 - Định lý 1: Nếu y_1 và y_2 là các nghiệm của PT (1), thì $C_1y_1 + C_2y_2$ cũng là nghiệm của PT (1) với mọi $C_1, C_2 \in \mathbb{R}$.
 - C/M: Ta có: $y_1'' + p(x)y_1' + q(x)y_1 = 0$ và $y_2'' + p(x)y_2' + q(x)y_2 = 0$ $\Rightarrow (C_1y_1 + C_2y_2)'' + p(x)(C_1y_1 + C_2y_2)' + q(x)(C_1y_1 + C_2y_2) = 0$, tức là ta có đpcm.

- III. PTVP tuyến tính cấp 2 tổng quát: y'' + p(x)y' + q(x)y = f(x), trong đó p(x), q(x) và f(x) là các hàm số cho trước.
 - 1. PTVP tuyến tính cấp 2 thuần nhất: y'' + p(x)y' + q(x)y = 0 (1).
 - Định lý 1: Nếu y_1 và y_2 là các nghiệm của PT (1), thì $C_1y_1 + C_2y_2$ cũng là nghiệm của PT (1) với mọi $C_1, C_2 \in \mathbb{R}$.

C/M: Ta có:
$$y_1'' + p(x)y_1' + q(x)y_1 = 0$$
 và $y_2'' + p(x)y_2' + q(x)y_2 = 0$ $\Rightarrow (C_1y_1 + C_2y_2)'' + p(x)(C_1y_1 + C_2y_2)' + q(x)(C_1y_1 + C_2y_2) = 0$, tức là ta có đpcm.

ullet Định nghĩa $oldsymbol{1}$: Hai hàm số $y_1(x)$ và $y_2(x)$ được gọi là độc lập tuyến tính trên [a,b] nếu

$$\frac{y_2(x)}{y_1(x)} \neq \text{ hằng số với } \forall x \in [a,b].$$

Ngược lại, ta nói hai hàm đó là phụ thuộc tuyến tính.

Ví dụ: a)
$$e^x$$
, e^{2x} (DLTT) b) $x^2 + 2x + 1$, $x + 1$ (DLTT) c) $\tan x$, $2 \tan x$. (PTTT)

- <u>Dịnh nghĩa 2</u>: Định thức Wronsky của hai hàm $y_1(x)$ và $y_2(x)$ là $W(y_1,y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$.
- Định lý 2: Nếu y_1 và y_2 là phụ thuộc tuyến tính trên [a,b] thì $W(y_1,y_2)=0$ với $\forall\,x\in[a,b].$

- <u>Dịnh nghĩa 2</u>: Định thức Wronsky của hai hàm $y_1(x)$ và $y_2(x)$ là $W(y_1,y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$.
- Định lý 2: Nếu y_1 và y_2 là phụ thuộc tuyến tính trên [a,b] thì $W(y_1,y_2)=0$ với $\forall\,x\in[a,b]$.

C/M: Vì
$$y_1$$
 và y_2 là phụ thuộc tuyến tính nên $\frac{y_2(x)}{y_1(x)} = C$ là hằng số.
$$\Rightarrow y_2 = Cy_1 \Rightarrow y_2' = Cy_1' \Rightarrow y_1y_2' = y_1'y_2 \Rightarrow \text{dpcm}.$$

- Định lý 2: Nếu y_1 và y_2 là phụ thuộc tuyến tính trên [a,b] thì $W(y_1,y_2)=0$ với $\forall\,x\in[a,b].$

C/M: Vì y_1 và y_2 là phụ thuộc tuyến tính nên $\frac{y_2(x)}{y_1(x)} = C$ là hằng số. $\Rightarrow y_2 = Cy_1 \Rightarrow y_2' = Cy_1' \Rightarrow y_1y_2' = y_1'y_2 \Rightarrow \text{dpcm}.$

Chú ý: Nếu tồn tại $x_0 \in [a,b]$ mà $W(y_1,y_2) \neq 0$ tại $x=x_0$, thì hai hàm đó là độc lập tuyến tính.

- <u>Dịnh nghĩa 2</u>: Định thức Wronsky của hai hàm $y_1(x)$ và $y_2(x)$ là $W(y_1,y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$.
- Định lý 2: Nếu y_1 và y_2 là phụ thuộc tuyến tính trên [a,b] thì $W(y_1,y_2)=0$ với $\forall\,x\in[a,b].$

 $\overline{\text{C/M: Vì }y_1} \text{ và }y_2 \text{ là phụ thuộc tuyến tính nên } \frac{y_2(x)}{y_1(x)} = C \text{ là hằng số.}$

 $\Rightarrow y_2 = Cy_1 \Rightarrow y_2' = Cy_1' \Rightarrow y_1y_2' = y_1'y_2 \stackrel{\circ}{\Rightarrow} \mathsf{dpcm}.$

Chú ý: Nếu tồn tại $x_0 \in [a,b]$ mà $W(y_1,y_2) \neq 0$ tại $x=x_0$, thì hai hàm đó là độc lập tuyến tính.

• Định lý 3: Cho p(x) và q(x) liên tục trên [a,b]. Nếu y_1 và y_2 là các nghiệm của PT (1) thỏa mãn: $\overline{W(y_1,y_2)} \neq 0$ tại $x=x_0 \in [a,b]$, thì $W(y_1,y_2) \neq 0$ với $\forall \, x \in [a,b]$.

- <u>Dịnh nghĩa 2</u>: Định thức Wronsky của hai hàm $y_1(x)$ và $y_2(x)$ là $W(y_1,y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$.
- $\underline{\text{Dịnh lý 2:}}$ Nếu y_1 và y_2 là phụ thuộc tuyến tính trên [a,b] thì $W(y_1,y_2)=0$ với $\forall\,x\in[a,b].$

 $\overline{\text{C/M: Vì }y_1} \text{ và }y_2 \text{ là phụ thuộc tuyến tính nên } \frac{y_2(x)}{y_1(x)} = C \text{ là hằng số.}$

 $\Rightarrow y_2 = Cy_1 \Rightarrow y_2' = Cy_1' \Rightarrow y_1y_2' = y_1'y_2 \Rightarrow \mathsf{dpcm}.$

Chú ý: Nếu tồn tại $x_0 \in [a,b]$ mà $W(y_1,y_2) \neq 0$ tại $x=x_0$, thì hai hàm đó là độc lập tuyến tính.

- Định lý 3: Cho p(x) và q(x) liên tục trên [a,b]. Nếu y_1 và y_2 là các nghiệm của PT (1) thỏa mãn: $\overline{W(y_1,y_2)} \neq 0$ tại $x=x_0 \in [a,b]$, thì $W(y_1,y_2) \neq 0$ với $\forall \, x \in [a,b]$.
 - C/M: Ta có: $y_1''+p(x)y_1'+q(x)y_1=0$ và $y_2''+p(x)y_2'+q(x)y_2=0$ $\Rightarrow y_1''y_2+p(x)y_1'y_2+q(x)y_1y_2=0$ và $y_1y_2''+p(x)y_1y_2'+q(x)y_1y_2=0$, tức là

$$(y_1y_2'' - y_1''y_2) + p(x)(y_1y_2' - y_1'y_2) = 0.$$
 (*)

 $\mbox{Vi } W = y_1 y_2' - y_1' y_2 \ \mbox{nen } W' = y_1' y_2' + y_1 y_2'' - y_1'' y_2 - y_1' y_2' = y_1 y_2'' - y_1'' y_2.$

PT (*) trở thành:
$$\frac{dW}{dx} = -p(x)W \Leftrightarrow \frac{dW}{W} = -p(x)dx \Leftrightarrow \left|\frac{W(x)}{W(x_0)}\right| = e^{-\int_{x_0}^x p(x)dx} \text{ do giả thiết } W(x_0) \neq 0. \text{ Khi đó: } W(x) = \pm W(x_0)e^{-\int_{x_0}^x p(x)dx} \neq 0 \text{ với } \forall x \in [a,b].$$

PT (*) trở thành:
$$\frac{dW}{dx} = -p(x)W \Leftrightarrow \frac{dW}{W} = -p(x)dx \Leftrightarrow \left|\frac{W(x)}{W(x_0)}\right| = e^{-\int_{x_0}^x p(x)dx} \text{ do giả thiết } W(x_0) \neq 0. \text{ Khi đó: } W(x) = \pm W(x_0)e^{-\int_{x_0}^x p(x)dx} \neq 0 \text{ với } \forall x \in [a,b].$$

- Định lý 4: Nếu y_1 và y_2 là các nghiệm độc lập tuyến tính của PT (1), thì
 - $W(y_1,y_2) \neq 0$ với $\forall x \in [a,b].$
 - ightharpoonup nghiệm TQ của PT (1) có dạng: $y=C_1y_1+C_2y_2$ với mọi hằng số C_1,C_2 .

PT (*) trở thành:
$$\frac{dW}{dx} = -p(x)W \Leftrightarrow \frac{dW}{W} = -p(x)dx \Leftrightarrow \left|\frac{W(x)}{W(x_0)}\right| = e^{-\int_{x_0}^x p(x)dx} \text{ do giả thiết } W(x_0) \neq 0. \text{ Khi đó: } W(x) = \pm W(x_0)e^{-\int_{x_0}^x p(x)dx} \neq 0 \text{ với } \forall x \in [a,b].$$

- **Định lý 4:** Nếu y_1 và y_2 là các nghiệm độc lập tuyến tính của PT (1), thì
 - $ightharpoonup W(y_1,y_2) \neq 0$ với $\forall x \in [a,b].$
 - lacksquare nghiệm TQ của PT (1) có dạng: $y=C_1y_1+C_2y_2$ với mọi hằng số C_1,C_2 .

Chú ý: Muốn tìm nghiệm TQ của PT (1), ta chỉ cần xác định được hai nghiệm độc lập tuyến tính của nó. Cách tìm như sau:

- **B1:** Nhẩm 1 nghiệm $y_1 \neq 0$ thỏa mãn PT (1).
- **B2:** Xác định nghiệm y_2 bằng cách đặt $y_2 = y_1.u$. Thay vào PT (1) ta tính được

$$u = \int \frac{1}{y_1^2} e^{-\int p(x)dx} dx. \quad (CT \text{ Liouville})$$

Ví dụ: a)
$$x^2y'' + xy' - y = 0$$
 b) $(2x+1)y'' + 4xy' - 4y = 0$.

Giải: a) PT
$$\Leftrightarrow y'' + \frac{1}{x}y' - \frac{1}{x^2}y = 0.$$

Ta thấy: $y_1 = x$ là nghiệm của PT. Đặt $y_2 = y_1.u = u.x$, theo CT Liouville ta có:

$$u = \int \frac{1}{y_1^2} e^{-\int p(x)dx} dx = \int \frac{1}{x^2} e^{-\int \frac{1}{x} dx} dx = \int \frac{1}{x^2 |x|} dx = \pm \frac{1}{2x^2}.$$

Khi đó, ta có thể chọn $u=\frac{1}{2x^2}$ để có $y_2=\frac{1}{2x}$.

KL: Nghiệm TQ là $y = C_1 x + \frac{C_2}{2x}$.

- 2. PTVP tuyến tính cấp 2 không thuần nhất: y'' + p(x)y' + q(x)y = f(x). (2)
 - Dịnh lý 1: Nghiệm TQ của PT (2) luôn có dạng $y = \bar{y} + Y$, trong đó \bar{y} là nghiệm TQ của PT (1) và Y là 1 nghiệm riêng của PT (2).

Chú ý: Nghiệm \bar{y} đã được xác định ở phần trước, nên để tìm nghiệm TQ của PT (2) ta chỉ cần tìm 1 nghiệm riêng Y của PT (2) là đủ.

- 2. PTVP tuyến tính cấp 2 không thuần nhất: y'' + p(x)y' + q(x)y = f(x). (2)
 - Dịnh lý 1: Nghiệm TQ của PT (2) luôn có dạng $y = \bar{y} + Y$, trong đó \bar{y} là nghiệm TQ của PT (1) và Y là 1 nghiệm riêng của PT (2).

Chú ý: Nghiệm \bar{y} đã được xác định ở phần trước, nên để tìm nghiệm TQ của PT (2) ta chỉ cần tìm 1 nghiệm riêng Y của PT (2) là đủ.

- Dịnh lý 2: (Phương pháp biến thiên hằng số Lagrange)
 - ▶ **B1:** Xác định nghiệm TQ của PT (1) có dạng $\bar{y} = C_1y_1 + C_2y_2$.
 - ightharpoonup B2: Coi C_1 và C_2 là các hàm số để tìm 1 nghiệm riêng Y của PT (2) có dạng

$$Y = C_1(x)y_1 + C_2(x)y_2$$

bằng cách xét HPT sau:
$$\begin{cases} C_1'(x)y_1+C_2'(x)y_2=0\\ C_1'(x)y_1'+C_2'(x)y_2'=f(x). \end{cases}$$
 Giải HPT trên tìm $C_1'(x)$ và $C_2'(x)\Rightarrow C_1(x)$ và $C_2(x)$.

Ví dụ: a)
$$y'' - y' = \frac{2-x}{x^3}e^x$$
 b) $x^2y'' + xy' - y = x^2$.

 $Y = C_1(x)y_1 + C_2(x)y_2$ bằng cách xét HPT sau:

$$\begin{cases} C_1'(x)x + C_2'(x)\frac{1}{x} = 0 \\ C_1'(x) - C_2'(x)\frac{1}{x^2} = 1 \end{cases} \Leftrightarrow \begin{cases} C_1'(x) = \frac{1}{2} \\ C_2'(x) = -\frac{x^2}{2} \end{cases} \Rightarrow \begin{cases} C_1(x) = \frac{x}{2} \\ C_2(x) = -\frac{x^3}{6}. \end{cases}$$

$$\text{KL: } Y = \frac{x^2}{3} \Rightarrow \text{Nghiệm TQ của PT đã cho là } y = \frac{x^2}{3} + C_1 x + \frac{C_2}{x}.$$

Ví dụ: a)
$$y'' - y' = \frac{2-x}{x^3}e^x$$
 b) $x^2y'' + xy' - y = x^2$.

 $Y = C_1(x)y_1 + C_2(x)y_2$ bằng cách xét HPT sau:

$$\begin{cases} C_1'(x)x + C_2'(x)\frac{1}{x} = 0 \\ C_1'(x) - C_2'(x)\frac{1}{x^2} = 1 \end{cases} \Leftrightarrow \begin{cases} C_1'(x) = \frac{1}{2} \\ C_2'(x) = -\frac{x^2}{2} \end{cases} \Rightarrow \begin{cases} C_1(x) = \frac{x}{2} \\ C_2(x) = -\frac{x^3}{6}. \end{cases}$$

$$\text{KL: } Y = \frac{x^2}{3} \Rightarrow \text{Nghiệm TQ của PT đã cho là } y = \frac{x^2}{3} + C_1 x + \frac{C_2}{x}.$$

- Đinh lý 3: (Nguyên lý chồng nghiêm)
 - Nếu Y_1 là một nghiệm riêng của PT $y'' + p(x)y' + q(x)y = f_1(x)$,

 Y_2 là một nghiệm riêng của PT $y'' + p(x)y' + q(x)y = f_2(x)$, thì $Y_1 + Y_2$ là một nghiệm riêng của PT sau:

$$y'' + p(x)y' + q(x)y = f_1(x) + f_2(x).$$

- IV. PTVP tuyến tính cấp 2 có hệ số không đổi: y'' + py' + qy = f(x), trong đó p,q là các hằng số và f(x) là hàm số cho trước.
 - 1. PT thuần nhất: y'' + py' + qy = 0 (1).

 $\mbox{ X\'et PT d\'ac trung: } \qquad \lambda^2 + p\lambda + q = 0. \qquad (*)$

• TH1: Nếu PT (*) có 2 nghiệm thực phân biệt $\lambda_1 \neq \lambda_2$, thì nghiệm TQ của PT (1) là

$$\bar{y} = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}.$$

• TH2: Nếu PT (*) có nghiệm kép $\lambda_1 = \lambda_2 = \lambda_0$, thì nghiệm TQ của PT (1) là

$$\bar{y} = C_1 e^{\lambda_0 x} + C_2 x e^{\lambda_0 x}.$$

• **TH3**: Nếu PT (*) có 2 nghiệm phức $\lambda_{1,2}=a\pm bi$, thì nghiệm TQ của PT (1) là

$$\bar{y} = e^{ax}(C_1 \cos bx + C_2 \sin bx).$$

Ví dụ:
$$a) y'' + 3y' + 2y = 0$$
 $b) 4y'' + 4y' + y = 0$ $c) y'' + y' + 3y = 0$.

Giải: a) Xét PT đặc trưng: $\lambda^2+3\lambda+2=0$. PT có 2 nghiệm phân biệt $\lambda_1=-1$ và $\lambda_2=-2$. Nghiệm TQ của PT là

$$\bar{y} = C_1 e^{-x} + C_2 e^{-2x}.$$

b) Xét PT đặc trưng: $4\lambda^2+4\lambda+1=0$. PT có nghiệm kép $\lambda_1=\lambda_2=-\frac{1}{2}$. Nghiệm TQ của PT là

$$\bar{y} = C_1 e^{-\frac{1}{2}x} + C_2 x e^{-\frac{1}{2}x}.$$

c) Xét PT đặc trưng: $\lambda^2+\lambda+3=0$. PT có 2 nghiệm phức $\lambda_{1,2}=-1\pm\sqrt{11}i$. Nghiệm TQ của PT là

$$\bar{y} = e^{-x} (C_1 \cos \sqrt{11}x + C_2 \sin \sqrt{11}x).$$

2. PT không thuần nhất: y'' + py' + qy = f(x) (2).

<u>Cần nhớ</u>: Nghiệm TQ của PT (2) luôn có dạng $y=\bar{y}+Y$, trong đó \bar{y} là nghiệm TQ của PT (1) và Y là 1 nghiệm riêng của PT (2). Nghiệm \bar{y} đã được xác định ở phần trước, nên để tìm nghiệm TQ của PT (2) ta chỉ cần tìm 1 nghiệm riêng Y của PT (2) là đủ.

2. PT không thuần nhất: y'' + py' + qy = f(x) (2).

Cần nhớ: Nghiệm TQ của PT (2) luôn có dạng $y=\bar{y}+Y$, trong đó \bar{y} là nghiệm TQ của PT (1) và Y là 1 nghiệm riêng của PT (2). Nghiệm \bar{y} đã được xác định ở phần trước, nên để tìm nghiệm TQ của PT (2) ta chỉ cần tìm 1 nghiệm riêng Y của PT (2) là đủ.

- 2.1. $f(x)=e^{\alpha x}P_n(x)$ với $\alpha\in\mathbb{R}$ và $P_n(x)$ là đa thức bậc n.
 - **TH1**: Nếu α không là nghiệm của PT (*), thì nghiệm riêng Y của PT (2) có dạng $Y = e^{\alpha x} Q_n(x)$.
 - TH2: Nếu α là nghiệm đơn của PT (*), thì nghiệm riêng Y của PT (2) có dạng $Y = xe^{\alpha x}Q_n(x)$.
 - TH3: Nếu α là nghiệm kép của PT (*), thì nghiệm riêng Y của PT (2) có dạng $Y = x^2 e^{\alpha x} Q_x(x)$.

 $\mathring{\mathsf{O}}$ đó $Q_n(x)$ là đa thức bậc n cần tìm.

Ví du:

$$\overline{a)y''} - 3y' + 2y = x$$
 $b)y'' + 4y' + 3y = (x+2)e^{-x}$ $c)y'' - 2y' + y = 2xe^{x}$.

Giải: b) Xét PT đặc trưng: $\lambda^2 + 4\lambda + 3 = 0$ (*).

PT có 2 nghiệm phân biệt $\lambda_1=-1$ và $\lambda_2=-3$. Nghiệm TQ của PT thuần nhất là

$$\bar{y} = C_1 e^{-x} + C_2 e^{-3x}.$$

Ta thấy: $f(x)=(x+2)e^{-x}$ mà -1 là nghiệm đơn của PT (*) nên ta tìm nghiệm riêng Y của PT đã cho có dạng

$$Y = xe^{-x}(Ax + B) = e^{-x}(Ax^2 + Bx).$$

Giải: b) Xét PT đặc trưng: $\lambda^2 + 4\lambda + 3 = 0$ (*).

PT có 2 nghiệm phân biệt $\lambda_1=-1$ và $\lambda_2=-3$. Nghiệm TQ của PT thuần nhất là

$$\bar{y} = C_1 e^{-x} + C_2 e^{-3x}.$$

Ta thấy: $f(x)=(x+2)e^{-x}$ mà -1 là nghiệm đơn của PT (*) nên ta tìm nghiệm riêng Y của PT đã cho có dạng

$$Y = xe^{-x}(Ax + B) = e^{-x}(Ax^2 + Bx).$$

Ta có:
$$Y' = e^{-x}(-Ax^2 - Bx) + e^{-x}(2Ax + B) = e^{-x}(-Ax^2 + (2A - B)x + B)$$
. $Y'' = e^{-x}(Ax^2 - (4A - B)x + 2A - 2B)$.

Thay vào PT đã cho:

$$e^{-x}(Ax^2 - (4A - B)x + 2A - 2B) + 4e^{-x}(-Ax^2 + (2A - B)x + B) + 3e^{-x}(Ax^2 + Bx) = (x + 2)e^{-x}(Ax^2 + Bx) = (x + 2)e^$$

$$\Leftrightarrow 4Ax + (2A + 2B) = x + 2 \Leftrightarrow \begin{cases} 4A = 1 \\ 2A + 2B = 2 \end{cases} \Leftrightarrow \begin{cases} A = \frac{1}{4} \\ B = \frac{3}{4}. \end{cases}$$

KL: Nghiệm TQ của PT đã cho là $y=\left(\frac{1}{4}x^2+\frac{3}{4}x\right)e^{-x}+C_1e^{-x}+C_2e^{-3x}$.

- 2. PT không thuần nhất: y'' + py' + qy = f(x) (2).
 - 2.2. $f(x) = P_m(x)\cos\beta x + P_n(x)\sin\beta x$ với $\beta \in \mathbb{R}$ và $P_m(x), P_n(x)$ là đa thức bậc m, n.
 - TH1: Nếu $\pm i\beta$ không là nghiệm của PT (*), thì nghiệm riêng Y của PT (2) có dạng $Y = Q_{\ell}(x)\cos\beta x + R_{\ell}(x)\sin\beta x.$
 - TH2: Nếu $\pm i\beta$ là nghiệm của PT (*), thì nghiệm riêng Y của PT (2) có dạng $Y = x \left(Q_{\ell}(x) \cos \beta x + R_{\ell}(x) \sin \beta x \right).$
 - Ở đó $Q_\ell(x)$ và $R_\ell(x)$ là hai đa thức bậc $\ell = \max\{m,n\}$ cần tìm.

- 2. PT không thuần nhất: y'' + py' + qy = f(x) (2).
 - 2.2. $f(x) = P_m(x)\cos\beta x + P_n(x)\sin\beta x$ với $\beta \in \mathbb{R}$ và $P_m(x), P_n(x)$ là đa thức bậc m, n.
 - TH1: Nếu $\pm i\beta$ không là nghiệm của PT (*), thì nghiệm riêng Y của PT (2) có dạng $Y = Q_{\ell}(x)\cos\beta x + R_{\ell}(x)\sin\beta x.$
 - TH2: Nếu $\pm i\beta$ là nghiệm của PT (*), thì nghiệm riêng Y của PT (2) có dạng $Y = x \left(Q_{\ell}(x) \cos \beta x + R_{\ell}(x) \sin \beta x \right).$
 - \rotalget{O} đó $Q_\ell(x)$ và $R_\ell(x)$ là hai đa thức bậc $\ell=\max\{m,n\}$ cần tìm.
 - $2.3. \ f(x) = e^{\alpha x} \big(P_m(x) \cos \beta x + P_n(x) \sin \beta x \big) \ \text{v\'oi} \ \alpha, \beta \in \mathbb{R} \ \text{v\'a} \ P_m(x), P_n(x) \ \text{l\`a d̄a thức bậc } m, n.$

<u>Cách giải</u>: Đặt $y=e^{\alpha x}.z$. Tính y' và y'' và thay vào PT (2) ta thu được PT mới, trong đó hàm số vế phải có dạng 2.2 ở trên.

- 2. PT không thuần nhất: y'' + py' + qy = f(x) (2).
 - 2.2. $f(x) = P_m(x) \cos \beta x + P_n(x) \sin \beta x$ với $\beta \in \mathbb{R}$ và $P_m(x), P_n(x)$ là đa thức bậc m, n.
 - **TH1:** Nếu $\pm i\beta$ không là nghiệm của PT (*), thì nghiệm riêng Y của PT (2) có dạng $Y = Q_{\ell}(x) \cos \beta x + R_{\ell}(x) \sin \beta x.$
 - **TH2:** Nếu $\pm i\beta$ là nghiệm của PT (*), thì nghiệm riêng Y của PT (2) có dạng $Y = x(Q_{\ell}(x)\cos\beta x + R_{\ell}(x)\sin\beta x).$
 - O đó $Q_{\ell}(x)$ và $R_{\ell}(x)$ là hai đa thức bậc $\ell = \max\{m, n\}$ cần tìm.
 - 2.3. $f(x) = e^{\alpha x} (P_m(x) \cos \beta x + P_n(x) \sin \beta x)$ với $\alpha, \beta \in \mathbb{R}$ và $P_m(x), P_n(x)$ là đa thức bậc m, n.

Cách giải: Đặt $y = e^{\alpha x} \cdot z$. Tính y' và y'' và thay vào PT (2) ta thu được PT mới, trong đó hàm số về phải có dang 2.2 ở trên.

Ví du:

$$a) y'' + 3y' + 2y = e^x \cos 2x$$

$$b) y'' + y = 2x \cos x \cos 2x$$

c)
$$y'' - 3y' + 2y = (x+1)\cos x$$
 d) $y'' - 6y' + 9y = 3x - 8e^{3x}$.

$$d)y'' - 6y' + 9y = 3x - 8e^{3x}.$$

Giải: c) Xét PT đặc trưng: $\lambda^2 - 3\lambda + 2 = 0$ (*). PT có 2 nghiệm phân biệt $\lambda_1 = 1$ và $\lambda_2 = 2$. Nghiệm TQ của PT thuần nhất là

 $ar{y}=C_1e^x+C_2e^{2x}$.

Ta thấy: $f(x) = (x+1)\cos x = (x+1).\cos x + 0.\sin x$ mà $\pm i$ không là nghiệm của PT (*) nên ta tìm nghiệm riêng Y của PT đã cho có dạng

$$Y = (Ax + B)\cos x + (Cx + D)\sin x.$$

Giải: c) Xét PT đặc trưng: $\lambda^2 - 3\lambda + 2 = 0$ (*).

PT có 2 nghiệm phân biệt $\lambda_1=1$ và $\lambda_2=2$. Nghiệm TQ của PT thuần nhất là $\bar{y}=C_1e^x+C_2e^{2x}$.

Ta thấy: $f(x) = (x+1)\cos x = (x+1).\cos x + 0.\sin x$ mà $\pm i$ không là nghiệm của PT (*) nên ta tìm nghiệm riêng Y của PT đã cho có dạng

$$Y = (Ax + B)\cos x + (Cx + D)\sin x.$$

Ta có:
$$Y' = (Cx + A + D)\cos x + (-Ax - B + C)\sin x$$
.
 $Y'' = (-Ax - B + 2C)\cos x - (Cx + 2A + D)\sin x$.

Thay vào PT đã cho:

$$((A-3C)x - 3A + B + 2C - 3D)\cos x + ((3A+C)x - 2A + 3B - 3C + D)\sin x = (x+1)\cos x$$

$$\Leftrightarrow \begin{cases} A - 3C = 1, -3A + B + 2C - 3D = 1 \\ 3A + C = 0, -2A + 3B - 3C + D = 0 \end{cases} \Leftrightarrow \begin{cases} A = \frac{1}{10}, B = \frac{-1}{50} \\ C = \frac{-3}{10}, D = \frac{-16}{25}. \end{cases}$$

KL:
$$y = \left(\frac{1}{10}x - \frac{1}{50}\right)\cos x - \left(\frac{3}{10}x + \frac{16}{25}\right)\sin x + C_1e^x + C_2e^{2x}$$
.

- 3. PT Euler: $x^2y'' + axy' + by = 0$ với $a, b \in \mathbb{R}$.
 - Cách giải: Đặt $t = \ln |x|$, tức là $|x| = e^t$, ta có:

$$\overline{y' = y'_x = \frac{dy}{dx}} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{1}{x} \cdot \frac{dy}{dt} = \frac{1}{x} \cdot y'_t$$

- 3. PT Euler: $x^2y'' + axy' + by = 0$ với $a, b \in \mathbb{R}$.

• Cách giải: Đặt
$$t=\ln|x|$$
, tức là $|x|=e^t$, ta có:
$$y'=y_x'=\frac{dy}{dx}=\frac{dy}{dt}\cdot\frac{dt}{dx}=\frac{1}{x}\cdot\frac{dy}{dt}=\frac{1}{x}\cdot y_t'$$

$$y''=y_{xx}''=\frac{dy'}{dx}=\frac{d}{dx}\left(\frac{1}{x}\cdot y_t'\right)=-\frac{1}{x^2}\cdot y_t'+\frac{1}{x}\cdot\frac{dy_t'}{dx}$$

$$=-\frac{1}{x^2}\cdot y_t'+\frac{1}{x}\cdot\frac{dy_t'}{dt}\cdot\frac{dt}{dx}=-\frac{1}{x^2}\cdot y_t'+\frac{1}{x^2}\cdot y_{tt}'$$
 Thay vào PT đã cho ta được

$$-y'_t + y''_{tt} + ay'_t + by = 0 \Leftrightarrow y''_{tt} + (a-1)y'_t + by = 0.$$

- 3. PT Euler: $x^2y'' + axy' + by = 0$ với $a, b \in \mathbb{R}$.
 - Cách giải: Đặt $t = \ln |x|$, tức là $|x| = e^t$, ta có:

$$\begin{array}{l} \bullet \ \, \underline{\mathbf{C\acute{a}ch\ gi\acute{a}i}} \colon \text{D\~{a}t}\ t = \ln|x|,\ \text{t\'{u}c\ l\~{a}}\ |x| = e^t,\ \text{ta\ c\'{o}} \colon \\ y' = y_x' = \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{1}{x} \cdot \frac{dy}{dt} = \frac{1}{x} \cdot y_t' \\ y'' = y_{xx}'' = \frac{dy'}{dx} = \frac{d}{dx} \left(\frac{1}{x} \cdot y_t'\right) = -\frac{1}{x^2} \cdot y_t' + \frac{1}{x} \cdot \frac{dy_t'}{dx} \\ = -\frac{1}{x^2} \cdot y_t' + \frac{1}{x} \cdot \frac{dy_t'}{dt} \cdot \frac{dt}{dx} = -\frac{1}{x^2} \cdot y_t' + \frac{1}{x^2} \cdot y_{tt}'' \end{array}$$
 They vào PT đã cho ta được

Thay vào PT đã cho ta được

$$-y'_t + y''_{tt} + ay'_t + by = 0 \Leftrightarrow y''_{tt} + (a-1)y'_t + by = 0.$$

• Ví dụ: a)
$$x^2y'' + 2xy' - 6y = 0$$
 b) $x^2y'' - 2xy' + 2y = 2x^3 - x$ c) $x^2y'' - 9xy' + 21y = 0$ d) $x^2y'' + xy' + y = x$.

Giải: c) Đặt $t = \ln |x|$ và lặp lại bước tính như trên để thay vào PT đã cho thu được

$$y_t'' - 10y_t' + 21y = 0.$$

PT đặc trưng $\lambda^2-10\lambda+21=0$ có 2 nghiệm phân biệt $\lambda_1=3$ và $\lambda_2=7$. Nghiệm TQ của PT trên là: $\bar{y} = C_1 e^{3t} + C_2 e^{7t} \Rightarrow \text{Nghiêm TQ}$ của PT đã cho là $\bar{y} = C_1 e^{3 \ln|x|} + C_2 e^{7 \ln|x|} = C_1 |x|^3 + C_2 |x|^7$.

Chương 2: PHƯƠNG TRÌNH VI PHÂN

Bài 4: HỆ PHƯƠNG TRÌNH VI PHÂN CẤP 1

I. Đại cương về hệ PTVP cấp 1

1. Định nghĩa: Hệ PTVP chuẩn tắc cấp 1 có dạng

$$\begin{cases} y_1' = f_1(x, y_1, y_2, \cdots, y_n) \\ y_2' = f_2(x, y_1, y_2, \cdots, y_n) \\ \vdots \\ y_n' = f_n(x, y_1, y_2, \cdots, y_n). \end{cases}$$

$$(1) \quad \text{Vi dụ: } \begin{cases} y_1' = x + 2y_1 - 3y_2 \\ y_2' = -x - 3y_1 + 4y_2. \end{cases}$$

2. Định lý về sự tồn tại và duy nhất nghiệm:

Nếu các giả thiết sau thỏa mãn:

- Các hàm $f_i(x,y_1,y_2,\cdots,y_n)$ và $\frac{\partial f_i}{\partial y_j}(x,y_1,y_2,\cdots,y_n)$ liên tục trên miền $\mathcal{D}\subset\mathbb{R}^{n+1}$.
- $(x_0, y_1^0, y_2^0, \cdots, y_n^0) \in \mathcal{D}$.

Khi đó: Trong một lân cận nào đó của x_0 , tồn tại duy nhất một nghiệm (y_1, y_2, \dots, y_n) của HPT (1) sao cho $y_i^0 = y_i(x_0)$ với mọi $i = \overline{1, n}$.

3. Các cách gọi nghiệm của bài toán:

- Nghiệm tổng quát: Ta nói một bộ n hàm số (y_1,y_2,\cdots,y_n) , trong đó $y_i=g_i(x,C_1,C_2,\cdots,C_n)$ với $i=\overline{1,n}$ và C_1,C_2,\cdots,C_n là các hằng số bất kì, là nghiệm TQ của HPT (1) nếu:
 - i) (y_1, y_2, \dots, y_n) thỏa mãn HPT (1) với mọi C_1, C_2, \dots, C_n .
 - ii) Với mọi $(x_0,y_1^0,y_2^0,\cdots,y_n^0)\in\mathcal{D}$, tồn tại $C_1=C_1^0$, $C_2=C_2^0$ và $C_n=C_n^0$ sao cho $g_i(x_0,C_1^0,C_2^0,\cdots,C_n^0)=y_i^0$ với mọi $i=\overline{1,n}$.
- Nghiệm riêng là nghiệm nhận được từ nghiệm TQ khi cho các hằng số C_1, C_2, \cdots, C_n các giá trị cụ thể.

3. Các cách gọi nghiệm của bài toán:

- Nghiệm tổng quát: Ta nói một bộ n hàm số (y_1,y_2,\cdots,y_n) , trong đó $y_i=g_i(x,C_1,C_2,\cdots,C_n)$ với $i=\overline{1,n}$ và C_1,C_2,\cdots,C_n là các hằng số bất kì, là nghiệm TQ của HPT (1) nếu:
 - i) (y_1,y_2,\cdots,y_n) thỏa mãn HPT (1) với mọi C_1,C_2,\cdots,C_n .
 - ii) Với mọi $(x_0,y_1^0,y_2^0,\cdots,y_n^0)\in\mathcal{D}$, tồn tại $C_1=C_1^0$, $C_2=C_2^0$ và $C_n=C_n^0$ sao cho $g_i(x_0,C_1^0,C_2^0,\cdots,C_n^0)=y_i^0$ với mọi $i=\overline{1,n}$.
- Nghiệm riêng là nghiệm nhận được từ nghiệm TQ khi cho các hằng số C_1, C_2, \cdots, C_n các giá trị cụ thể.

4. Đưa PTVP cấp cao về hệ PTVP chuẩn tắc cấp 1 và ngược lại

• Xét PTVP cấp n: $y^{(n)}=f(x,y,y',y'',\cdots,y^{(n-1)}).$ Đặt $y_1=y,\ y_2=y',$ $\cdots,$ $y_{n-1}=y^{(n-2)},\ y_n=y^{(n-1)},$ PT trên trở thành

```
\begin{cases} y_1'=y_2\\y_2'=y_3\\ \vdots\\ y_{n-1}'=y_n\\y_n'=f(x,y_1,y_2,\cdots,y_n). \end{cases} \longrightarrow \text{ Hệ PTVP chuẩn tắc cấp 1}
```

 Ngược lại, một hệ PTVP chuẩn tắc cấp 1 đưa được về PTVP cấp cao bằng cách khử những hàm số chưa biết từ các PT của hệ (Phương pháp khử).

$$\begin{cases} y_1'=y_2\\y_2'=y_3\\ \vdots & \longrightarrow \text{ Hệ PTVP chuẩn tắc cấp 1}\\ y_{n-1}'=y_n\\y_n'=f(x,y_1,y_2,\cdots,y_n). \end{cases}$$

• Ngược lại, một hệ PTVP chuẩn tắc cấp 1 đưa được về PTVP cấp cao bằng cách khử những hàm số chưa biết từ các PT của hệ (Phương pháp khử).

II. Phương pháp khử giải hệ PTVP cấp 1

1. **Cách giải:** Từ (n-1) PT của hệ, ta rút (n-1) hàm số theo 1 hàm số và thay vào PT còn lại của hệ. Giải PT thu được, từ đó xác định được nghiệm TQ của HPT.

2. Ví dụ:
$$a)$$

$$\begin{cases} \frac{dx}{dt} = 2x + y \\ \frac{dy}{dt} = 3x + 4y \end{cases} \qquad b)$$

$$\begin{cases} y' = y - 5z \\ z' = 2y - z \end{cases}$$

Giải: a) HPT
$$\Leftrightarrow$$

$$\begin{cases} x' = 2x + y & (1) \\ y' = 3x + 4y & (2). \end{cases}$$

Từ (1) ta có: y = x' - 2x, thay vào PT (2) ta được:

$$(x'-2x)' = 3x + 4(x'-2x) \Leftrightarrow x'' - 6x' + 5x = 0. \quad (*)$$

PT đặc trưng của PT (*) là: $\lambda^2-6\lambda+5=0$. Vì PT đặc trưng có 2 nghiệm phân biệt $\lambda_1=1$ và $\lambda_2=5$, nên nghiệm TQ của PT (*) là $x=C_1e^t+C_2e^{5t}$.

Khi đó: $y = x' - 2x = C_1 e^t + 5C_2 e^{5t} - 2C_1 e^t - 2C_2 e^{5t} = -C_1 e^t + 3C_2 e^{5t}$

KL: Nghiệm của HPT đã cho là
$$\begin{cases} x = C_1 e^t + C_2 e^{5t} \\ y = -C_1 e^t + 3C_2 e^{5t}. \end{cases}$$

The end

Chúc các em học tốt!