Билет 92

Автор1, ..., АвторN

22 июня 2020 г.

Содержание

0.1 Билет 92: Задача Коши для дифференциального уравнения. Теорема Пикара . . . 1

Билет 92 СОДЕРЖАНИЕ

0.1. Билет 92: Задача Коши для дифференциального уравнения. Teoрема Пикара

Определение 0.1.

Задачей Коши называется задача нахождения функции y(x), удовлетворяющей следующим условиям:

 $\begin{cases} \frac{dy}{dx} = f(x, y(x)) \\ y(x_0) = y_0 \end{cases}$

Первое условие значит, что если продиффренировать функцию y(x), то получим выражение, которе зависит от x и от y(x). Например $y=\frac{dy}{dx}\implies \frac{dy}{dx}=2x\frac{dy}{dx}=2xy(x)$ Второе условие нужно, так как функций, подходящих под первое условие может быть много, поэтому можно ограничить таким образом.

Теорема 0.1 (Пикара).

 $D \subset \mathbb{R}^2$ - открытое. Если $f: D \mapsto \mathbb{R}$ непрерывна, $(x_0, y_0) \in D$ и $|f(x, y) - f(x, \tilde{y})| \leqslant M|y - \tilde{y}| \quad \forall (x, y)$ и (x, \tilde{y}) , то при некотором $\delta > 0$ на отрезке $[x_0 - \delta, x_0 + \delta]$ существует единственная функция φ , являющаяся решением задачи Коши, то есть

$$\begin{cases} \varphi(x_0) = y_0 \\ \varphi'(x) = f(x, \varphi(x)) \end{cases}$$
 для $x \in [x_0 - \delta, x_0 + \delta]$

Замечание.

Почему $f: \mathbf{D} \to \mathbb{R}$, то есть почему бы не писать $f: \mathbb{R}^2 \to \mathbb{R}$? Потому что существуют такие f, что решение на отрезке есть, а на всей прямой нет.

Пример.

Задача Коши:

$$y(x) = 1/x$$

$$\begin{cases} y' = -y^2 \\ y(1) = 1 \end{cases}$$

Как бы мы ни старались подобрать x_0 и y_0 у нас не получится получить решение, такое чтобы оно включало точку 0. То есть в данной теореме важна локальность.

$$1/0 = wtf$$

Доказательство.

Перейдем от системы к немного другому уравнению, а именно:

$$\varphi(x) = y_0 + \int_{x_0}^{x} f(t, \varphi(t)) dt$$

Действительно, если мы докажем существование такой $\varphi(x)$, то мы решим задачу Коши, так как

$$\begin{cases} \varphi(x_0) = y_0 + \int_{x_0}^{x_0} f(t, \varphi(t)) dt = y_0 \\ \varphi'(x) = 0 + \left(\int_{x_0}^x f(t, \varphi(t)) dt\right)' = f(x, \varphi(x)) \end{cases}$$

Выберем такое $r \in \mathbb{R}$, что $B_r(x_0,y_0) \subset \overline{B}_r(x_0,y_0) \subset D$. Так можно выбрать, так как D - открытое. Так как $\overline{B}_r(x_0,y_0)$ - компакт, и f - непрерывна, то f - ограничена на $\overline{B}_r(x_0,y_0)$. Пусть $|f(x,y)| \leqslant K$ на $\overline{B}_r(x_0,y_0)$.

Теперь выберем δ . Оно должно соответствовать двум условиям.

Билет 92 COДEРXАHИE

1. хочется, чтобы прямоугольник $[-\delta, \delta] \times [-K\delta, K\delta]$ с центром (точка пересечения диагоналей) в (x_0, y_0) полностью лежал внутри $B_r(x_0, y_0)$. Более формально:

Если
$$|x - x_0| < \delta$$
 и $|y - y_0| < K\delta$, то $(x, y) \in B_r(x_0, y_0)$

2. хочется, чтобы $M\delta < 1$, M - из условия теоремы.

Оба эти условия несложно удовлетворить.

 $C^* := \{ \varphi \in C[x_0 - \delta, x_0 + \delta] : |\varphi(x) - y_0| \leqslant K\delta \}$. В данном пространстве зададим стандартную для непрерывных функций метрику - максимум модуля разности. Докажем, что данное пространство полное. Данне пространство является подпространсвтом полного, надо доказать, что такое пространство - замкнуто. Оно замкнуто, так как если есть последовательность функций из C^* , то и их предел, будет лежать в C^* , так как в переделе нестрогое неравенство сохраняется.

В данном пространстве возьмем отображение $T(\varphi)=\psi$, где $\psi(x)=y_0+\int\limits_{x_0}^x f(t,\varphi(t))\,dt$ Докажем, что $T:C^*\mapsto C^*$ и T - сжатие. Если это доказать, то по Теореме Бонаха T будет имееть единственную неподвижную точку, значит $\exists \varphi(x)=y_0+\int\limits_x^x f(t,\varphi(t))\,dt$.

При действии такого отображения на непрерывную функцию получится также непрерывная функция. Теперь докажем, что

Если
$$|\varphi(x) - y_0| \leqslant K\delta \implies |\psi(x) - y_0| \leqslant K\delta$$

 $|\psi(x)-y_0|=\left|\int\limits_{x_0}^x f(t,\varphi(t))\,dt\right|\leqslant \{\text{максимум функции}\}\cdot \{\text{длина отрезка}\}\leqslant K\delta$ $f(t,\varphi(t))\leqslant K, \text{ так как } (t,\varphi(t))\in B_r(x_0,y_0).$ Теперь проверим, что T - сжатие. $T(\varphi)=\psi, T(\tilde\varphi)=\tilde\psi$

$$|\psi(x) - \tilde{\psi}(x)| = \left| \int_{x_0}^x f(t, \varphi(t)) dt - \int_{x_0}^x f(t, \tilde{\varphi}(x)) dt \right| \le \int_{x_0}^x |f(t, \varphi(t)) - f(t, \tilde{\varphi}(x))| dt$$

Вспомним, что в условии сказано: $|f(x,y)-f(x,\tilde{y})|\leqslant M|y-\tilde{y}|$. Значит можно продолжить цепочку неравенств.

$$|\psi(x) - \tilde{\psi}(x)| \leqslant \int_{x_0}^x M|\varphi(t) - \tilde{\varphi}(t)| \, dt \leqslant M\delta \max\{|\varphi(x) - \tilde{\varphi}(x)|\} = M\delta||\varphi - \tilde{\varphi}||$$

С левой стороны неравенства также рассмотрим максимум разностей и получим, что

$$||\psi(x) - \tilde{\psi}(x)|| \le \underbrace{M\delta}_{cosnt < 1} ||\varphi(x) - \tilde{\varphi}(x)||$$

Получается T - сжатие по определению, значит существует единственная $\varphi(x)$, удовлетворяющая условиям задачи Коши на отрезке $[x_0 - \delta, x_0 + \delta]$.