departamento de matemática

universidade de aveiro

- 1. Indique, justificando, qual ou quais dos seguintes subconjuntos são subespaços vectoriais do espaço vectorial real indicado na respectiva alínea.
 - (a) em \mathbb{R}^2 :

i.
$$S = \{(a, b) \in \mathbb{R}^2 : a + b = 0\};$$

ii.
$$S = \{(a, b) \in \mathbb{R}^2 : (a, b) \neq (1, 1)\};$$

iii.
$$S = \{(x, y) \in \mathbb{R}^2 : y = 1\};$$

iv.
$$S = \{(x, y) \in \mathbb{R}^2 : |x| < 3\}.$$

(b) em \mathbb{R}^3 :

i.
$$V = \{(x, y, z) \in \mathbb{R}^3 : 2x - y = 0\};$$

ii.
$$V = \{(x, y, z) \in \mathbb{R}^3 : 2x - y = 1 \land z = 0\};$$

iii.
$$V = \{(x, y, 1) : x, y \in \mathbb{R}\};$$

iv.
$$V = \{(x, y, z) \in \mathbb{R}^3 : x + y - 4z = 0\};$$

v.
$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\};$$

vi.
$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 = y^2\};$$

vii.
$$V = \{(x, y, z) \in \mathbb{R}^3 : xz = 0\}$$

- 2. Averigúe se os seguintes conjuntos são subespaços vectoriais dos espaços vectoriais indicados:
 - (a) no espaço vectorial real \mathbb{R}^4 , o conjunto

$$S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y = 2z - w = 0\}:$$

(b) no espaço vectorial real $P_2[x]$, o conjunto dos polinómios $ax^2 + bx + c \in P_2[x]$ tais que

i.
$$c = 0$$
; ii. $b = 1$; iii. $c = -a$; iv. $bc = 0$.

- (c) no espaço vectorial real $M_{n\times n}(\mathbb{R})$, o conjunto das matrizes $X\in M_{n\times n}(\mathbb{R})$ tais que
 - i. $\det X = 1$;
 - ii. X é simétrica;
 - iii. X é invertível;
 - iv. $AX = 0_{n \times n}$, para alguma matriz $A \in M_{n \times n}(\mathbb{R}) \setminus \{0_{n \times n}\}$;
 - v. $AX = I_n$, para alguma matriz $A \in M_{n \times n}(\mathbb{R}) \setminus \{0_{n \times n}\}.$
- (d) no espaço vectorial real $\mathcal{F}(\mathbb{R})$, o conjunto das funções $f \in \mathcal{F}(\mathbb{R})$ tais que

i.
$$f(x) < 0$$
, para todo $x \in \mathbb{R}$;

ii.
$$f(0) = 0$$
.

3. No espaço vectorial real \mathbb{R}^3 , considere o conjunto $A = \{(x, y, k) : x, y \in \mathbb{R}\}$, onde k é uma constante real. Que valores pode tomar k para que A seja um subespaço vectorial de \mathbb{R}^3 ? Verifique.

4.1. subespaços vectoriais

página 2/2

- 1. são subespaços vectoriais as alíneas (a) i.; (b) i., iv..
- 2. são subespaços vectoriais as alíneas (a) ; (b) i., iii.; (c) ii., iv.; (d) ii..
- 3. k = 0