合同式の性質と剰余類環

1. 用語の定義

 ● Z:整数の集合

N:自然数の集合

- 素数:1より大きい自然数で1とその数自 身以外の正の約数を持たないもの
- 合成数:1より大きい自然数で素数でない もの
- $a|b:a\in\mathcal{Z}$ が $b\in\mathcal{Z}$ を割り切る
- (a,b): a と b の最大公約数

(a,b) = 1 であるとき、a と b は互いに素であるという。

2. 合同関係の定義

定義 1 整数 a、bと自然数 m について、

$$m|(a-b) \tag{1}$$

が成りたつ時、

$$a \equiv b \mod m$$

と表す。

式 (2) は、任意の $a \in \mathcal{Z}$ について $a \equiv a \mod m$ が成り立つ (反射律) こと、 $a \equiv b \mod m$ ならば $b \equiv a \mod m$ が成り立つ (対称律) こと、 $a \equiv b \mod m$ かつ $b \equiv c \mod m$ ならば $a \equiv c \mod m$ が成立する (推移律) ことを容易に確かめることができ、数学的な同値関係であることがわかる。以下では、特に誤解が生じなければ、式 (2) を通常の等号記号を用いて $a = b \mod m$ と表記することもある。

なお、式(2)のような式を合同式とよび、数mのことを法という。

3. 合同式の性質

合同式に関して以下の定理が成り立つ。

定理 1

 $a \equiv a' \bmod m$, かつ $b \equiv b' \bmod m$

であるとき、

$$a+b \equiv a'+b' \mod m,$$

 $a \cdot b \equiv a' \cdot b' \mod m$

が成り立つ。

(証明) 合同式の定義より、a-a'=mr、b-b'=ms と表すことができるので (a+b)-(a'+b')=m(r+s) であり証明できた。乗算についても同様。 Q.E.D.

定理1は、例えば、123 × 456 を 7で割った 余りを求めたい場合に、123 × 456 = 56088 を 計算した後に 56088 ≡ 4 mod 7 を求めても、 123 ≡ 4 mod 7 および、456 ≡ 1 mod 7 を先に (1) 求めておき、これらの結果を乗じて余り4を求めても同じ結果が得られることを表している。 前者の方法で計算をすると、一般に、途中の計 (2) 算結果が大きくなるために計算効率が悪くなってしまうため、後者の方法で計算をする方が望 ■ ましいことがわかる。

定理 2

 $ac \equiv bc \mod m$

であるとき、(c,m)=1ならば

 $a \equiv b \mod m$

である。

(証明) 合同式の定義より、ac-bc=mt が成り立つ。この式は、m|(a-b)c を意味しているが、条件より (c,m)=1 であるので、m|(a-b)がいえる。 Q.E.D.

この定理は、合同式の計算においては、法加 と互いに素な数であれば両辺をその数で割るこ あるような数cで両辺を割ると、一般に合同関 係が成りたたなくなってしまうので注意が必要 である。

剰余類 4.

自然数 m を一つ決めると、前節の合同関係 を用いて、整数 \mathcal{Z} を以下のような m 個の集合 $C_0, C_1, \ldots, C_{m-1}$ に分類することができる。

$$C_i = \{x | x \equiv i \bmod m, x \in \mathcal{Z}\}$$

すなわち、集合 C_i は、mを法としてiと合同な 整数の集合である。明らかに、 $\bigcup_i C_i = \mathcal{Z}$ かつ、 $C_i \cap C_i = \phi(i \neq j)$ であることがわかる。 $C_i(i = j)$ $(0,1,\ldots,m-1)$ を m を法とする \mathcal{Z} の剰余類と 呼び、剰余類からなる集合 $\{C_0, C_1, \ldots, C_{m-1}\}$ を \mathcal{Z}_m と表記することにする。

また、m 個の剰余類の各々からその要素 $a_i \in$ C_i を一つづつ選んで得られる集合

$$\{a_0, a_1, \dots, a_{m-1}\}$$

を完全代表系と呼ぶことにする。例えば、m=3 であるとき、 $\{0,1,2\}$ や $\{-3,1,5\}$ はいずれも 完全代表系である。完全代表系について、以下 の定理が成り立つ。

定理 3 $\{a_0, a_1, \ldots, a_{m-1}\}$ を m を法とする完全 代表系とする。このとき、(a,m)=1ならば、 $\{a \cdot a_0, a \cdot a_1, \ldots, a \cdot a_{m-1}\}$ も完全代表系である。

(証明) ある $i \neq j$ について、 $a \cdot a_i \equiv a \cdot a_i \mod$ m であったと仮定する。すると、(a,m)=1 で あるのでこの両辺をaで割ることができて、

$$a_i \equiv a_j \bmod m$$

となる。これは、 $\{a_0, a_1, \ldots, a_{m-1}\}$ が完全代表 系であることに矛盾する。よって定理が証明で きた。 Q.E.D.

いま、 $x \in C_i$ と $y \in C_i$ に対して z = x + yを考える。このとき、 $z \in C_k$ であったとすれ とができることを意味している。(c,m) > 1で ば、k は i と j のみによって決定し、x と y の 選び方にはよらないことをすぐに確かめること ができる。そこで、 C_i と C_i の加算を

$$C_i + C_j = C_k$$

と定めることにする。同様にして、剰余類同士 の乗算も定めることができる。

 $\mathbf{M} \mathbf{1} m = 3$ とすると、剰余類は、

$$C_0 = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$$

$$C_1 = \{\ldots, -5, -2, 1, 4, 7, \ldots\}$$

$$C_2 = \{\ldots, -4, -1, 2, 5, 8, \ldots\}$$

となる。そして、

$$C_1 + C_2 = C_0$$

や、

$$C_2 \times C_2 = C_1$$

等を確認することができる。

剰余類同士の演算を考えるとき、表記を簡単 にするために、 C_i を単にiと表記する。この表 記を用いれば、例えば、 $\mathcal{Z}_3 = \{0,1,2\}$ となる。

例 2 $\mathcal{Z}_5 = \{0,1,2,3,4\}$ について、その要素 間の加算および乗算の演算表は以下のように なる。

 \mathcal{Z}_5 の加算

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

%の乗覧

$\sim 5 \text{ WAP}$								
×	0	1	2	3	4			
0	0	0	0	0	0			
1	0	1	2	3	4			
2	0	2	4	1	3			
3	0	3	1	4	2			
4	0	4	3	2	1			

剰余類環 **5.**

前節で述べた \mathcal{Z}_m の演算について、整数 \mathcal{Z} の 演算と同様に以下で述べる性質が成り立ってい ることを確かめることができる。

性質 G1(閉性) 任意の $2 \pi a, b \in \mathcal{Z}_m$ に対し

性質 G2(結合則) 任意の元 $a, b, c \in \mathcal{Z}_m$ に対し て、a + (b + c) = (a + b) + cが成立する。

性質 G3(単位元) 任意の元 $a \in \mathcal{Z}_m$ に対して、 a+e=e+a=aとなる単位元 (零元) $e\in$ \mathcal{Z}_m が存在する。

性質 G4(逆元) 任意の元 $a \in \mathcal{Z}_m$ に対して、a+ 性質 F2 任意の元 $a \in \mathcal{F}$ に対して、 $a \times u =$ b = b + a = e となる逆元 $b \in \mathcal{Z}_m$ が存在 する。

一般に、ある集合 G の要素間に演算 + が定 義され、性質 G1~G4を満たすとき、この集合 \mathcal{G} を群 (Group) と呼ぶ。集合 \mathcal{Z}_m は演算 + に 関して群になっている。例えば、*2*5の場合、単 位元は0であり、元1の逆元は4であることが わかる。

なお、性質 G1~G4 に加えて、交換則 (任意 O2元 $a,b \in G$ に対して、a+b=b+aであ る) が成り立つ場合は、可換群と呼ばれる。明 らかに、 \mathcal{Z}_m は演算 + に関して可換群である。 群では1種類の演算(+)しか考えていない が、2種類の演算 $(+,\times)$ を考慮すると、 \mathcal{Z}_m は 以下のような性質を有していることがわかる。

性質 $\mathbf{R}\mathbf{1} \mathcal{Z}_m$ は、演算 + に対して可換群であ る。

て、 $a \times b \in \mathcal{Z}_m$ である。

性質 R3(結合則) 任意の元 $a, b, c \in \mathcal{Z}_m$ に対し て、 $a \times (b \times c) = (a \times b) \times c$ が成立する。

性質 R4(分配則) 任意の元 $a,b,c \in \mathcal{Z}_m$ に対し て、 $a \times (b+c) = a \times b + a \times c$ および $(b+c) \times a = b \times a + c \times a$ が成立する。

一般に、ある集合 R の要素間に演算 + と × が定義され、性質R1~R4を満たすとき、この 集合 \mathcal{R} を環 (Ring) と呼ぶ。集合 \mathcal{Z}_m は演算 + と×に関して環になっており、この環を剰余 類環と呼ぶ。 \mathcal{Z}_m が環であることを明示するた め、 \mathcal{R}_m と表記することもある。

なお、性質R1~R4に加えて、演算×に関し て交換則 (任意の $2 \pi a, b \in \mathcal{R}$ に対して、 $a \times b =$ $b \times a$ である) が成り立つ場合は、**可換環**と呼ば れる。 \mathcal{Z}_m は可換環である。

ある集合 \mathcal{F} が以下の性質 $F1\sim F3$ を有する 時、 \mathcal{F} は体 (Field) と呼ばれる。

性質 F1 \mathcal{F} は、可換環である。

 $u \times a = a$ となる単位元 $u \in \mathcal{F}$ が存在する。

性質 $\mathbf{F3}$ 零元でない任意の元 $a \in \mathcal{F}$ に対して、 $a \times b = b \times a = u$ となる元 $b \in \mathcal{F}$ が存在 する。

集合 \mathcal{Z}_m は、m が素数の場合にのみ体とな る。例えば、 \mathcal{Z}_5 は体である。素数pに対して、 \mathcal{Z}_{p} が体であることを明示するため、 \mathcal{F}_{p} と表記 することもある。

既約剰余類 6.

定義 2 $\mathcal{Z}_m = \{0, 1, \dots, m-1\}$ について

$$\tilde{\mathcal{Z}}_m = \{i | (i, m) = 1, i \in \mathcal{Z}_m\}$$

により定義される集合 $\tilde{\mathcal{Z}}_m$ の要素を**既約剰余類** と呼ぶ。

性質 $\mathbf{R2}$ (閉性) 任意の $2 \, \overline{\pi} \, a, b \in \mathcal{Z}_m$ に対し 例 $\mathbf{3} \, m = 10$ であるとき、既約剰余類 $\tilde{\mathcal{Z}}_m$ は、

$$\tilde{\mathcal{Z}}_m = \{1, 3, 7, 9\}$$

であり、m=7のときは、

$$\tilde{\mathcal{Z}}_m = \{1, 2, 3, 4, 5, 6\}$$

である。