Tuesday • September 28, 2020

Neural Networks and Language

Yale

LING 380/780
Neural Network Models of Linguistic Structure

Full Neural Network Algorithm

Input:

- Training set
- Validation set
- Test set
- Neural network architecture $f(\cdot, \theta)$ (multi-layer perceptron)

Full Neural Network Algorithm

Hyperparameters:

- Batch size *b*
- Learning rate η
- Sizes of neural network layers
- Max number of epochs

Full Neural Network Algorithm

- Choose a set of hyperparameter values to try.
- For each hyperparameter configuration:
 - Train a model using the training set and validation set.
 - Test the model using the validation set.
- Find the model with the best performance on the validation set.
- Test this model using the test set.

Training Subroutine

- Initialize θ to a random value, where the number of parameters is based on the hyperparameter settings (neural network layer sizes).
- Partition the training data into mini-batches \mathbb{B}_1 , \mathbb{B}_2 , ..., \mathbb{B}_k of size h.

Training Subroutine

- Repeat for the max number of epochs:
 - For each mini-batch \mathbb{B}_i :
 - Form the computation graph for \mathcal{L} .
 - Set all gradients of the computation graph to 0.
 - Use backpropagation to compute $\nabla_{\theta} \mathcal{L}$.
 - Set $\theta \leftarrow \theta \eta \nabla_{\theta} \mathcal{L}$.
- Set θ to be the parameter values that resulted in the best validation performance.

Variations: Hyperparameter Tuning

- Hyperparameter tuning is the process of trying different combinations of hyperparameter values.
- Grid search: Choose some range of values for each hyperparameter, and try all combinations of hyperparameters.

Variations: Hyperparameter Tuning

Grid Search Example:

- Batch size = 16, 32, 64
- Learning rate = 1.0, .1, .01
- Layer size = 50, 100, 200
- Train a network with all 27 combinations of hyperparameters and keep the model with the best performance.

Variations: Hyperparameter Tuning

- Occasionally other methods of hyperparameter tuning are used as well, mainly because grid search requires too many trials.
- Random search: Randomly choose combinations of hyperparameter values.
- Bayesian tuning: Use a statistical model to choose new hyperparameter values based on previous results.

Variations: SGD Algorithms

- Learning rate adaptation: Change the learning rate throughout training.
- Annealing: Start out with a high learning rate, and gradually decrease it as the model improves.
 - A high learning rate causes the algorithm to "search the parameter space" by trying out a wide range of parameters
 - A low learning rate causes the algorithm to hone in on a local/global minimum

"hone" means to gradually and precisely approach towards a specific target

Variations: SGD Algorithms

- SGD typically uses an annealing schedule.
- Step-Based Decay: Every k epochs, multiply η by a decay factor d between 0 and 1
- Patience-Based Decay: If the max validation performance was not achieved within the last p epochs, multiply η by d

Variations: SGD Algorithms

- Momentum: Allow $\Delta\theta$ to depend on the $\Delta\theta$ from the previous time step.
- $\Delta \boldsymbol{\theta} = -\eta \nabla_{\boldsymbol{\theta}} \mathcal{L} + \mu \Delta \boldsymbol{\theta}'$
 - $\Delta \theta'$ is $\Delta \theta$ from the previous time step
 - $\mu > 0$ is the momentum factor
- Helps speed up SGD during the "parameter search" phase

Variations: Advanced SGD Algorithms

- AdaGrad (Adaptive Gradient)
- RMSProp (Root Mean Squared Propagation)
- Adam (Adaptive Moment)
 - Adam is the most popular. We will exclusively use Adam and SGD.

- Regularization is any technique designed to prevent overfitting.
- A model overfits if it achieves high training performance but poor testing performance.
 - The model "memorizes" but does not generalize.

• L^2 Regularization: Tries to reduce the norm of θ by adding a penalty term to the objective.

$$\mathcal{L} = \sum_{x,y \in \mathbb{D}} (L(f(x; \boldsymbol{\theta}), y) + \lambda ||\boldsymbol{\theta}||^2)$$

• L^2 Regularization: Tries to reduce the norm of θ by adding a penalty term to the objective.

$$\mathcal{L} = \sum_{x,y \in \mathbb{D}} (L(f(x; \boldsymbol{\theta}), y) + \lambda \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\theta})$$

- Occam's Razor: "simpler" models are better.
- Supposedly, L^2 Regularization makes models "simpler."

- Dropout: During each SGD iteration, temporarily set a random sample of weights to 0.
- The dropout rate is the percentage of weights to set to 0.
- The full neural network approximates the average of models obtained by dropping out units.

- Early Stopping: If the max validation performance was not achieved within the last *p* epochs, stop training immediately.
- p is the patience.
- Overfitting often occurs when training has gone on for too long.

Applying Neural Networks to Language

Applying Neural Networks to Language

- We have now finished learning the basic technology behind neural networks.
- This lecture (and the rest of the course): Apply neural networks to language!

Word2Vec Revisited

Skip-Gram with Negative Sampling (SGNS):

$$y = \sigma(\langle c \rangle^{\mathsf{T}} \llbracket w \rrbracket)$$

- [w] = the word embedding for $w \in V$
- $\langle c \rangle$ = the context embedding for $c \in \mathbb{V}$
- y = the probability that w and c "occur together"

Word2Vec Revisited

Skip-Gram without Negative Sampling (SG):

$$y = \operatorname{softmax}(\boldsymbol{C}[\![w]\!])$$

- [w] = the word embedding for $w \in V$
- C =the matrix of all context embeddings as row vectors
- y = the probability that w and c "occur together" for all context words c

The Softmax Function

Softmax turns vectors into probability vectors:

$$\operatorname{softmax}(\mathbf{x}) = \frac{e^{\mathbf{x}}}{\mathbf{1}^{\mathsf{T}} e^{\mathbf{x}}}$$

- NumPy:np.exp(x) / np.exp(x).sum()
- SciPy: scipy.special.softmax(x)
- PyTorch: F.softmax(x)

Softmax vs. Sigmoid

- Sigmoid is used for binary classification.
 - $y = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$ is the probability of class 1
 - 1 y is the probability of class 0
- Softmax is used for multinomial classification (more than 2 classes).
 - y = softmax(Wx + b) contains the probability of all classes

Softmax vs. Sigmoid

• Sigmoid is softmax when the confidence (logit) score of class 0 is always 0.

$$\operatorname{softmax}\left(\begin{bmatrix} x \\ 0 \end{bmatrix}\right)_0 = \frac{e^x}{e^x + e^0} = \frac{e^x}{e^x + 1} = \sigma(x)$$

Multinomial Classification

Binary Cross-Entropy Loss Function:

$$L_{CE}(\hat{y}, y) = -y \ln(\hat{y}) - (1 - y) \ln(1 - \hat{y})$$

where $0 < \hat{y} < 1$ and $y \in \{0, 1\}$

Multinomial Cross-Entropy Loss Function:

$$L_{CE}(\widehat{\boldsymbol{y}}, \boldsymbol{y}) = -\mathbf{1}^{\mathsf{T}}(\boldsymbol{y} \odot \ln(\widehat{\boldsymbol{y}}))$$

where \hat{y} and y are both probability vectors

Multinomial Classification

Simplified Cross-Entropy Loss Function:

$$L_{CE}(\widehat{\boldsymbol{y}}, y) = -\ln(\widehat{y}_y)$$

where $\hat{y} \in \mathbb{R}^n$ is a probability vector and $y \in \{1, 2, ..., n\}$ is a class label

Multinomial Classification

- Skip-Gram with Negative Sampling: Do words w and c occur together? (Yes or No)
- Skip-Gram without Negative Sampling: Which word is most likely to occur with w?
- SGNS classifies; SG predicts.

Dataset Preparation

Text: Brazil's health minister has tested positive for the coronavirus while in New York for the United Nations General Assembly, where President Jair Bolsonaro spoke on Tuesday.

- Dataset Cleaning: Remove metadata, formatting, non-linguistic characters, etc.
- Optional: Make everything lowercase, remove common "stopwords," remove morphological affixes, etc.

Dataset Preparation

 Tokenization: Convert the text into a sequence of tokens from a fixed vocabulary.

```
['[BOS]', '[BOS]', 'Brazil', "'", 's', 'health',
'minister', 'has', 'tested', 'positive', 'for', 'the',
'co', '##rona', '##virus', 'while', 'in', 'New', 'York',
'for', 'the', 'United', 'Nations', 'General',
'Assembly', ',', 'where', 'President', 'Jai', '##r',
'Bo', '##lson', '##aro', 'spoke', 'on', 'Tuesday', '.',
'[EOS]', '[EOS]']
```

Dataset Preparation

• Indexation: Assign each vocabulary item an integer index.

```
[101, 101, 3524, 112, 188, 2332, 3907, 1144, 7289, 3112, 1111, 1103, 1884, 15789, 27608, 1229, 1107, 1203, 1365, 1111, 1103, 1244, 3854, 1615, 2970, 117, 1187, 1697, 19183, 1197, 9326, 15590, 14452, 2910, 1113, 9667, 119, 102, 102]
```

Embedding Layer

The **embedding layer** contains a lookup table that maps indices to their word embeddings.

- forward(x) = ?
 - x: array of indices of shape (number of tokens,)
 - forward(x): an array of shape (number of tokens, embedding size) where each index has been replaced with its embedding
- backward(δ) = None, but the gradient of the word embedding is δ