Chapter 9 The Laplace Transform

Why Laplace Transform?

Name after Pierre-Simon Laplace (1749–1827)

 Laplace transform is a generalization of continuous-time Fourier transform

- It provides additional tools and insights on signals and systems
 - ► E.g., poles and zeros

- It can be applied to the scenarios where Fourier transform does not exist
 - E.g., instable system

Laplace Transform

• *e*st is the eigenfunction of LTI system:

$$e^{st} \longrightarrow H(s)e^{st}$$
 where $H(s) = \int_{-\infty}^{+\infty} h(t)e^{-st}dt$

- In Fourier transform, we let $s = j\omega$ (pure imaginary)
- In Laplace transform, s is general complex number $s = \sigma + j\omega$

Laplace Transform:
$$X(s) = \int_{-\infty}^{+\infty} x(t)e^{-st}dt$$

Fourier transform:
$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$$

 Question: How to calculate Laplace transform from knowledge of Fourier transform. with s expressed as $s = \sigma + j\omega$,

$$X(s) = X(\sigma + j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-(\sigma + j\omega)t} dt$$

$$X(\sigma + j\omega) = \int_{-\infty}^{+\infty} [x(t)e^{-\sigma t}]e^{-j\omega t} dt$$

The Laplace transform of x(t) can be interpreted as the Fourier transform of x(t) after multiplication by a real exponential signal.

Laplace Transform: Example

• $x(t) = e^{-at}u(t)$:

$$X(s) = X(\sigma + j\omega) = \int_0^{+\infty} e^{-at} e^{(-\sigma - j\omega)t} dt = \int_0^{+\infty} e^{-(a+\sigma)t} e^{-j\omega t} dt$$
$$= \frac{1}{s+a} \quad Re\{s\} > -a \quad (or \quad \sigma > -a)$$

• $x(t) = -e^{-at}u(-t)$:

$$X(s) = X(\sigma + j\omega) = -\int_{-\infty}^{0} e^{-at} e^{(-\sigma - j\omega)t} dt$$
$$= \frac{1}{s+a} Re\{s\} < -a \text{ (or } \sigma < -a)$$

 Laplace transform should be specified by both algebraic expression and region of convergence (ROC)

Pole-Zero Plot

•
$$3e^{-2t}u(t) - 2e^{-t}u(t) \longleftrightarrow \frac{s-1}{s^2+3s+2}$$
 $Re\{s\} > -1$

 To within a scale factor, a rational Laplace transform can be specified by the pole-zero plot and its ROC

Region of Convergence (ROC)

Property (1)

The ROC of X(s) consist of strips parallel to the $j\omega$ -axis in the s-plane

•
$$X(s) = \mathcal{F}\{x(t)e^{-\sigma t}\}$$

Property (2)

For rational Laplace transform, the ROC does not contain any poles

• Poles: $X(s) \to \infty$

$$X(s) = \int_{-\infty}^{+\infty} x(t)e^{-st}dt$$

Property (3)

If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s-plane

Figure 9.4 Finite-duration signal.

Figure 9.5 (a) Finite-duration signal of Figure 9.4 multiplied by a decaying exponential; (b) finite-duration signal of Figure 9.4 multiplied by a growing exponential.

$$\int_{T_1}^{T_2} |x(t)| dt < \infty. \qquad \int_{T_1}^{T_2} |x(t)| e^{-\sigma t} dt < \infty.$$
For $\sigma > 0$,
$$\int_{T_1}^{T_2} |x(t)| e^{-\sigma t} dt < e^{-\sigma T_1} \int_{T_1}^{T_2} |x(t)| dt.$$
if $\sigma < 0$,
$$\int_{T_1}^{T_2} |x(t)| e^{-\sigma t} dt < e^{-\sigma T_2} \int_{T_1}^{T_2} |x(t)| dt.$$

Property (4,5)

If x(t) is left sided (right sided), and if the line $Re\{s\} = \sigma_0$ is in the ROC, then all values of s for which $Re\{s\} < \sigma_0$ ($Re\{s\} > \sigma_0$) will also be in the ROC

$$\int_{T_1}^{+\infty} |x(t)| e^{-\sigma_0 t} dt < \infty.$$

Figure 9.6 Right-sided signal.

Then if
$$\sigma_1 > \sigma_0$$
,
$$\int_{T_1}^{\infty} |x(t)| e^{-\sigma_1 t} dt = \int_{T_1}^{\infty} |x(t)| e^{-\sigma_0 t} e^{-(\sigma_1 - \sigma_0)t} dt$$
$$\leq e^{-(\sigma_1 - \sigma_0)T_1} \int_{T_1}^{\infty} |x(t)| e^{-\sigma_0 t} dt.$$

Property (6)

If x(t) is two sided, and if the line $Re\{s\} = \sigma_0$ is in the ROC, then the ROC will consist of a strip in the s-plane that include the line $Re\{s\} = \sigma_0$

How to derive it from Property 4 and 5?

Figure 9.9 Two-sided signal divided into the sum of a right-sided and left-sided signal: (a) two-sided signal x(t); (b) the right-sided signal equal to x(t) for $t > T_0$ and equal to 0 for $t < T_0$; (c) the left-sided signal equal to x(t) for $t < T_0$ and equal to 0 for $t < T_0$.

Figure 9.10 (a) ROC for $x_R(t)$ in Figure 9.9; (b) ROC for $x_L(t)$ in Figure 9.9; (c) the ROC for $x(t) = x_R(t) + x_L(t)$, assuming that the ROCs in (a) and (b) overlap.

ROC: null, left-half plane, right-half plane, single strip, s-plane

Property (7)

If X(s) is rational, then its ROC is bounded by poles or extends to infinity.

Property (8)

If X(s) is rational, then if x(t) is right sided (left sided), the ROC is the region in the s-plane to the right (left) of the rightmost (leftmost) pole

ROC: Example

•
$$X(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s+1} - \frac{1}{s+2}$$
 has two poles $s = -1, -2$

- $X(s) = \frac{1}{s+1}$: $e^{-t}u(t)$ or $-e^{-t}u(-t)$?
- $X(s) = \frac{1}{s+2}$: $e^{-2t}u(t)$ or $-e^{-2t}u(-t)$?

Inverse Laplace Transform

Inverse Laplace transform:

$$s = \sigma + j\omega$$

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds$$

- Another approach: partial fraction expansion
 - Algebraic expression:

$$X(s) = \sum_{i=1}^{m} \frac{A_i}{s + a_i}$$

▶ ROC: ROC of each term should contain the ROC of X(s)

LTI Systems

Time Domain: $y(t) = h(t) * x(t) \longleftrightarrow S-Domain: Y(s) = H(s)X(s)$

- \bullet H(s): system function or transfer function
- Causality: impulse response is right sided
 - The ROC of causal system is a right-half plane (How about the inverse?)
 - For rational system function, causality is equivalent to the ROC being the right-half plane to the right of rightmost pole
 - ▶ Question: How about anticausal (h(t) = 0, t > 0)?
- Stability: An LTI system is stable if and only if the ROC of its system function H(s) include the $j\omega$ -axis
 - ► Example: $H(s) = \frac{s-1}{(s+1)(s-2)}$
 - Unstable systems have Laplace transform
- Question:What's the ROC of causal stable LTI system with rational system function?

LTI System: Differential Equation

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$\left(\sum_{k=0}^{N} a_k s^k\right) Y(s) = \left(\sum_{k=0}^{M} b_k s^k\right) X(s)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$H(s) = \left(\sum_{k=0}^{M} b_k s^k\right) / \left(\sum_{k=0}^{N} a_k s^k\right)$$

- ROC: stable, causal ...
- Reading Assignment: Necessary knowledge of Laplace transform in Section 9.0-9.3 9.4.1 9.5-9.7

Chapter 10 The z Transform

Z-Transform

Discrete-time system:

$$z^n \to H(z)z^n$$
 where $H(z) = \sum_{n=-\infty}^{+\infty} h[n]z^{-n}$

- In Fourier transform, $z = e^{j\omega}$ (unit magnitude)
- In z-transform, z is general complex number $z = re^{j\omega}$

z-transform:
$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

 Question: What's the relation between z-transform and discrete-time Fourier transform?

Z-Transform: Example

• $x[n] = a^n u[n]$:

$$X(z) = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| > |a|$$

• $x[n] = -a^n u[-n-1]$:

$$X(z) = -\sum_{n=-\infty}^{+\infty} a^n u[-n-1] z^{-n} = 1 - \sum_{n=0}^{\infty} (a^{-1}z)^n = 1 - \frac{1}{1-a^{-1}z}$$
$$= \frac{z}{z-a}, \quad |z| < |a|$$

 Z-transform should be specified by both algebraic expression and region of convergence (ROC)

Pole-Zero Plot

 $a^{n}u[n](|a|<1)$ -aⁿu[-n-1] (|a|<1) **Fourier Transform Diverge Fourier Transform Exists** In 9m Unit Circle Unit Circle z-plane z-plane Pole Zero Re Re Shaded Area: ROC --- Ring

Region of Convergence (1/3)

Property (1)

The ROC of X(z) consists of a ring in the z-transform centered about the origin

 $X(z) = \mathcal{F}\{x[n]r^{-n}\}$

Property (2)

The ROC does not contain any pole

Property (3)

If x[n] is of finite duration, then the ROC is the entire z-plane, except possible z=0 and/or $z=\infty$

$$X(z) = \sum_{n=N_1}^{N_2} x[n]z^{-n}.$$

• Question: When is z = 0 or $z = \infty$ in ROC?

ROC: Example

$$x[n] = a^n \quad 0 \le n \le N - 1, a > 0$$

$$X(z) = \sum_{n=0}^{N-1} a^n z^{-n} = \frac{1}{z^{N-1}} \frac{z^N - a^N}{z - a}$$

Region of Convergence (2/3)

Property (4,5)

If x[n] is a right-sided (left-sided) sequence, and if the circle $|z| = r_0$ is in the ROC, then all finite value of z for which $|z| > r_0$ ($0 < |z| < r_0$) will also be in the ROC

Property (6)

If x[n] is a two-sided sequence, and if the circle $|z| = r_0$ is in the ROC, then the ROC will consist of a ring including the circle $|z| = r_0$

Region of Convergence (3/3)

Property (7)

If X(z) is rational, then its ROC is bounded by poles or extends to infinity

Property (8,9)

If X(z) is rational and x[n] is right sided (left sided), then the ROC is the region outside the outmost pole (inside the innermost nonzero pole, possibly including z=0)

ROC: Example

$$X(z) = \frac{1}{(1 - \frac{1}{3}z^{-1})(1 - 2z^{-1})} = \frac{z^2}{(z - \frac{1}{3})(z - 2)}$$

Inverse Z-Transform

Approach I: via Fourier Transform

$$X(re^{j\omega}) = \mathcal{F}\{x[n]r^{-n}\} \Rightarrow x[n] = r^n \mathcal{F}^{-1}\{X(re^{j\omega})\}\$$

Approach II: via definition

$$x[n] = \frac{1}{2\pi i} \oint X(z)z^{n-1}dz$$
 Integration around a counter-clockwise circle

Approach III: partial fraction expansion

$$X(z) = \sum_{i=1}^{m} \frac{A_i}{1 - a_i z^{-1}}$$

Approach IV: power-series expansion

E.g.,
$$X(z) = 4z^2 + 2 + 3z^{-1}$$

LTI Systems

$$y[n] = h[n] * x[n] \longleftrightarrow Y(z) = H(z)X(z)$$

- \bullet H(z) is the system function or transfer function
- Causality:
 - the ROC is the exterior of a circle, including infinity
 - Rational: (a) the ROC is the exterior of a circle outside the outermost pole; (b) order of numerator cannot be greater than the order of denominator
- Stability:
 - ▶ The ROC includes |z| = 1
 - Causal & Rational: all the poles lie inside the unit circle

LTI Systems: Difference Equation

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H(z) = \left(\sum_{k=0}^{M} b_k z^{-k}\right) / \left(\sum_{k=0}^{N} a_k z^{-k}\right)$$

- ROC: causal, stable, ...
- Reading Assignment: Necessary knowledge of z-transform in Section 10.0-10.3 10.4.1 10.5-10.7

Wish all of you 'high-pass'!

