# Kaggle Competition: Bristol-Myers Squibb Molecular Translation 3rd place solution

Team: kyamaro (KF + lyakaap + camaro)

2021.06. DS輪講

Kazuki Fujikawa 株式会社ディー・エヌ・エー + 株式会社 Mobility Technologies



# **AGENDA**

- コンペティション概要
- ベースライン
- Solution

# **AGENDA**

- コンペティション概要
- ベースライン
- Solution

# コンペティション概要: 背景

- 薬品などに有用な化学構造は論文・特許で公開される
  - 古い出版物にはInChlなどの機械で読める記述が無く、検索が困難
  - 検索が可能になると、車輪の再発明を防げたり、データマイニング で新たな化学構造を見つける助けになる
- 既存の構造式OCRツールは性能に課題がある
  - 古い出版物は画像に破損が含まれている場合が多い

破損が含まれる画像に対しても適用可能な化合物OCRを作りたい

# ■ 与えられた化学構造画像に対するInChlを推定する

入力: モノクロ画像



出力: InChIテキスト(改行は不要)

InChI=1S /C13H20OS /c1-9(2)8-15-13-6-5-10(3)7-12(13)11(4)14 /h5-7,9,11,14H,8H2,1-4H3

# ■ 与えられた化学構造に対するInChlを推定する

入力: モノクロ画像



出力: InChIテキスト(改行は不要)

#### InChI=1S

InChIの規格を表すレイヤー "1": version "S": standard

■ 与えられた化学構造に対するInChlを推定する

入力: モノクロ画像



出力: InChIテキスト(改行は不要)

/C13H20OS

化学式レイヤー 分子を構成する原子とその個数を記述

■ 与えられた化学構造に対するInChlを推定する

入力: モノクロ画像



出力: InChIテキスト(改行は不要)

InChl=1S /C13H20OS /c1-9(2)8-15-13-6-5-10(3)7-12(13)11(4)14

原子の結合情報を表すレイヤー 一貫するルールに基づいて原子に番号を振り、 分岐は括弧書きで表しながら1列の文字列で表す e.g. 1番の次は9番、分岐して2番、戻って8番、...

# ■ 与えられた化学構造に対するInChlを推定する

入力: モノクロ画像



出力: InChIテキスト(改行は不要)

InChI=1S /C13H20OS /c1-9(2)8-15-13-6-5-10(3)7-12(13)11(4)14 /h5-7,9,11,14H,8H2,1-4H3

各原子が保有する水素の数を表すレイヤー /hは接頭語、5-7, 9, 11, 14番の原子は1個の水素、 8番に2個の水素、1-4番に3個の水素が付いている ことを表す

# ■ 与えられた化学構造に対するInChlを推定する

#### 入力: モノクロ画像



出力: InChIテキスト(改行は不要)

InChI=1S /C13H20OS /c1-9(2)8-15-13-6-5-10(3)7-12(13)11(4)14 /h5-7,9,11,14H,8H2,1-4H3

# コンペティション概要: 評価

- 編集距離(Levenshtein distance)で評価
  - 推定InChIからGT InChIへ変換するのに必要な最小の編集回数
    - 編集: "置換", "削除", "追加"
    - ex. kitten → sitting: 編集距離3
      - 1. kitten  $\rightarrow$  sitten (replace k  $\rightarrow$  s)
      - 2. sitten  $\rightarrow$  sittin (replace  $\rightarrow$  i)
      - 3. sittin  $\rightarrow$  sitting (append g)

# **AGENDA**

- コンペティション概要
- ベースライン
- Solution

# ベースライン: Image captioning framework

- 一般的な Image captioning タスクのフレームワークで、 InChlを単なる文字列と考えて系列生成
  - レイヤー毎に意味合いは異なるが、予想以上に上手くいく
  - EffnetなどのCNNベースよりも、TransformerベースのEncoderの方が 明確に性能が良かった(弊チーム調べ)
    - 今回のタスクは、"何が" "どこに" 写っているのかを Decoder に伝える 必要があったので、TransformerベースのEncoderの方が有利だった?



### ベースライン: TNT Encoder

- Transformer in Transformer (TNT) をEncoderとして利用する ことが有効であることがシェアされていた(<u>by hengck23</u>)
  - TNT: 通常のViTのフレームワークに加え、ピクセル間の関係性も Transformerでエンコードする(ViTは線形写像)



# ベースライン: TNT Encoder with variable patches (CV:1.30, LB:2.35)

- 今回のタスクでは、"何も写っていない領域"を抽出しやすい
  - 何か写ったパッチに絞ってTNTを適用(by hengck23)
  - → 計算コスト・GPUメモリ削減に繋がり、解像度拡大を容易にした



# ベースライン: RDKit normalization (後処理)

- 生成したInChIをRDKitで標準化(<u>by nofreewill</u>)
  - MolToInchi(MolFromInchi(inchi)) を実行
  - 原子に対する番号振り間違い程度であれば、この処理で標準化が可能



InChI=1S /C9F5NO /c10-4-5(11)7(13)9(15-2-1-3-16)8(14)6(4)12

InChI=1S /C9F5NO /c10-4-5(11)7(13)9(8(14)6(4)12)15-2-1-3-16

# **AGENDA**

- コンペティション概要
- ベースライン
- Solution

#### Solution: Overview

### Phase1: Image Captioning学習

- Swin Transformer
- Salt & pepper noise
- Focal loss
- Train longer

#### Phase2: InChI候補生成

- Beam search
- Logit ensemble

#### Phase3: InChl候補リランキング

- RDKit標準化の利用
- 複数モデルで再評価



#### Solution: Overview

### Phase1: Image Captioning学習

- Swin Transformer
- Salt & pepper noise
- Focal loss
- Train longer

#### Phase2: InChI候補生成

- Beam search
- Logit ensemble

#### Phase3: InChI候補リランキング

- RDKit標準化の利用
- 複数モデルで再評価



# Phase1: Swin Transformer Encoder (LB:2.18→LB:1.43)



- CV-LBギャップが大幅に改善(CV: 1.23, LB: 1.43)
  - TNT(CV: 1.30, LB: 2.18)と比較すると顕著
  - ちょうど論文読み会の順番が回ってきたので、Swin Transformerを 勉強してみたが、原因はよくわからず



https://www.slideshare.net/DeepLearningJP2016/dlswin-transformer-hierarchical-vision-transformer-using-shifted-windows

# Phase1: Swin ⇔ TNT 間の生成結果の比較



- SwinはCV-LBが一貫していたため、Swinの生成結果をGTだと 考えた時の、TNTとのLevenshteinを比較
  - Valid: 1.02 · Test: 2.16と、2モデル間でもギャップがあることを確認
- Levenshteinが大きい順に、Valid / Test を見比べた
  - (当然だが) Valid / Test 共に、サイズの大きい化合物が目立つ
  - Testの方は、ごま塩ノイズが特に目立っていた

#### Levenshtein最大化合物(valid)



#### Levenshtein最大化合物(test)



# Phase1: ごま塩をデノイズして予測 (LB: 2.18→1.26)



- 同じ学習済みモデルに対し、testをデノイズして予測させる
  - ある点を中心とする正方形中に、一つも黒点がなければ白に置き換える
  - 再訓練していないにも関わらず、CV-LB Gapが激減
  - ただし、デノイズで重要な点を削ってしまうこともあり、CVも少し 悪化していた

#### デノイズフィルタ (k=5) 概要



| Model          | CV   | LB   |
|----------------|------|------|
| TNT            | 1.13 | 2.18 |
| +denoise (k=3) | 1.69 | 1.71 |
| +denoise (k=5) | 1.22 | 1.26 |
| +denoise (k=7) | 1.17 | 1.32 |

Phase1: 訓練時にごま塩追加(+解像度拡大)(LB: 1.26→1.06)



- 訓練時、ごま塩をランダムに追加して学習
  - (解像度拡大も同時にしたので差分がわかりづらいが) デノイズ無しでも CV-LB Gap が解消された



### Phase1: CE Loss → Focal Loss



- 今回のタスクでは、大多数のサンプルが完全一致で当てられており、 一部のサンプルで大きなLossが生じる状態になっていた
  - 参考: Swin Transformer (CV: 0.98, LB: 0.99)
    - Levenshtein=0: 87%
    - Levenshtein=1: 7%
    - · · · ·
- Focal Lossで、簡単なサンプルに対するLoss の影響を小さくすることで、学習効率が向上
  - $FL(p_t) = -(1-p_t)^{\gamma} \log(p_t).$

#### Levenshtein分布(Logスケール)



# Phase1: Train longer



- Camaroさんとチームマージした際、CVの差に衝撃を受けた
  - Best single (Camaro): CV=0.66, LB=0.87
  - Best single (KF): CV=0.98, LB=0.99
- 主要因はepoch数ではないかと推測
  - Camaro: 25-50 epoch (TPU 7days?)
  - KF: 10 epoch (A100 7days)
  - Train/Valid lossが共通して単調減少していたので未学習気味とは 思っていたが、他モデルの検証を優先して試せていなかった
- 3 epoch追加学習するとCV=0.98 → 0.91に改善
  - もっと長くするともっと伸びそう...
  - とはいえ計算コスト的に辛いので、TPU使っておけばよかったか...

# Phase1: lyakaap part



- Encoder:
  - Swin-transformer (size=384x384)
  - EfficientNet-v2の後段にViTをくっつけたもの(size=448x448)
    - Patch embeddingにCNNを使うイメージ
- Decoder:
  - 三層のtransformer
    - これ以上深くすると学習が不安定に
- 画像のresizeにPIL.Image.resizeを使う
  - cv2.resizeなどよりもPILの方が劣化が少ないらしい(<u>参考</u>)
- Pseudo labelを使ったfine tuning
  - CV/LBのギャップを埋めるのに貢献。CV/LBも0.3ほどスコア向上。
- Sequence bucketingによる学習の高速化

### Solution: Overview

#### Phase1: Image Captioning学習

- Swin Transformer
- Salt & pepper noise
- Focal loss
- Train longer

#### Phase2: InChl候補生成

- Beam search
- Logit ensemble

#### Phase3: InChl候補リランキング

- RDKit標準化の利用
- 複数モデルで再評価



### Phase2: Beam Search

- Phase3でリランキングを行うため、Phase2では良質で多様な 候補を生成する必要があった
  - 一つの手段としてBeam Searchを利用
  - 候補が格段に増え、Greedyの生成結果と組み合わせて Phase3 の ロジックを適用することで、スコアが大きく改善された
  - 特に難しいサンプルに対してビーム幅を広げて(Beam=32など) 生成することで、効率的に候補追加を行うことができた(by Iyakaap)



InChI=1S/C13H20OS··· InChI=1S/C13H21OS··· InChI=1S/C11H21OS··· InChI=1S/C12H20OS...

| Model           | CV   |  |  |  |
|-----------------|------|--|--|--|
| Swin (beam=1)   | 0.98 |  |  |  |
| Swin (beam=4)   | 0.93 |  |  |  |
| Swin (beam=1+4) | 0.87 |  |  |  |

# Phase2: Logit ensemble

- 各トークン予測に使うロジットをアンサンブル
  - Swin, TNT の2モデルだけでも割と多様性があり、アンサンブル しながら系列生成することで、より正確に予測できるようになった
  - ただし、全てのモデルが単一のプログラムで動作する必要があり、 チーム内でモデルをシェアするのは難易度が高かった



| Model             | CV   |
|-------------------|------|
| Swin (beam=1)     | 0.98 |
| TNT (beam=1)      | 1.04 |
| Swin+TNT (beam=1) | 0.83 |

#### Solution: Overview

#### Phase1: Image Captioning学習

- Swin Transformer
- Salt & pepper noise
- Focal loss
- Train longer

#### Phase2: InChl候補生成

- Beam search
- Logit ensemble

#### Phase3: InChI候補リランキング

- RDKit標準化の利用
- 複数モデルで再評価



# Phase3: RDKit標準化の利用

- RDKit標準化も活用し、結果をリランキングする
  - InChI生成時、基本的には尤度が大きくなるように生成しているものの、 1文字など些細なミスに対して尤度は甘く出がち
  - RDKitで標準化すると逆に尤度が低くなるものも存在
  - 1文字ミスなどはInChI文法エラーになる場合も多く、RDKitでパースできるかどうか(is\_valid={0,1})も含めた以下ロジックが強力だった※ score: cross entropy loss or focal loss

```
df = df.sort_values(
    by=["is_valid", "score"],
    ascending=[False, True],
).groupby("image_id").first()
```

# Phase3: 複数モデルで再評価

- 複数モデルの生成結果を相互レビューさせる
  - 全InChI候補に対して各モデルでlossを計算し、平均値を利用する
  - loss値のスケールが合わないモデルに対しては、一度値をランク化した上で平均を取るようにすることで解決
  - 各サンプルに対する尤度を各モデルが推定できれば良いので、 実装が異なっていても活用しやすい



|                      | Model (CE) |     |      | Model (Focal) |      |      | Average |      |      |
|----------------------|------------|-----|------|---------------|------|------|---------|------|------|
| InChI Candidates     | Α          | В   | Mean | Rank          | С    | D    | Mean    | Rank | Rank |
| InChI=1S/C13H20OS··· | 0.1        | 0.9 | 0.5  | 3             | 0.03 | 0.05 | 0.04    | 2    | 2.5  |
| InChI=1S/C13H21OS··· | 0.2        | 0.2 | 0.2  | 1             | 0.02 | 0.02 | 0.02    | 1    | 1    |
| InChI=1S/C12H20OS    | 0.3        | 0.5 | 0.4  | 2             | 0.01 | 0.09 | 0.05    | 3    | 2.5  |

※ この例では同一のimageに対してRankを取っているが、実際には全imageに対するRankを取っている

# 最終モデル (一部)

| Member  | Model                                                  | cv   | LB (greedy) | LB (reranked) |
|---------|--------------------------------------------------------|------|-------------|---------------|
| KF      | Swin large (384x384) + PL                              | 0.90 | 0.89        | 0.79          |
|         | TNT (512x1024) + PL                                    | 0.97 | 0.99        | 0.87          |
| lyakaap | Swin base (384x384) + PL                               | 0.92 | 0.85        | 0.74          |
|         | Swin base (384x384) + PL + focal loss                  | 0.87 | 0.78        | 0.70          |
|         | EffNet-v2 >> ViT (448x448) + PL + focal loss           | 0.86 | 0.81        | 0.70          |
| Camaro  | EffNetB4 Transformer Decoder (416x736)                 | 0.67 | 0.87        | 0.67          |
|         | EffNetB4 Transformer Decoder (416x736) + PL            | 0.67 | 0.73        | 0.62          |
|         | EffNetB4 Transformer Decoder (416x736) + Noise         | 0.65 | 0.84        | 0.62          |
|         | EffNetB4 Transformer Decoder (416x736) + Noise/Denoise | 0.83 | 0.77        | 0.61          |

# まとめ

- Train/Test Gapの発見が一つの鍵だった
  - 意外と上位でも見抜いているチームは少なかったぽい?
- データ規模が大きい場合は特にTPUが有効
  - Pytorchで不自由無く使える世の中になってほしい...
- 多様なモデルで候補生成 + リランキングの形式が上手くいった
  - 基本的に、候補・モデル共に、足せば足すほど伸びていった。
  - 特にcamaroさんと混ぜた時に急激に伸びた。多様性重要。
- ビームサーチで尤度最大になる経路(InChI)を探しているはずだが、別モデルの出力を持ってきた方が尤度的にも優れていた
  - 枝刈りが強すぎて有望なパスを見落としている可能性?
  - 計算コスト的に難しいが、MCTS的に探索できるとより良かったかも?