САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчёт по лабораторной работе №2
«Классические регуляторы для дискретных систем»
по дисциплине
«Дискретные системы управления»
Вариант 9

Выполнили: студенты потока 1.2

Дюжев В. Д. Лалаянц К. А.

Преподаватель:

Краснов А.Ю.

ОГЛАВЛЕНИЕ

Вве	дение	1
1	Цель работы	1
2	Данные варианта	1
Осн	овная часть	2
1	Проектирование дискретных стабилизирующих регуляторов	2
2	Проектирование дискретных следящих регуляторов	3
	2.1 Построение задающего воздействия	3
Выволы		5

Введение

Цель работы

Ознакомиться с методами синтеза классических регуляторов для дискретных систем.

Данные варианта

• Тип ОУ: 2 (рис. 1);

Puc. 1. Tun OY

- k_1 : 7.29
- a_0^1 : 1
- T_1 : 0.38
- ξ: 0
- k₂: 9.46
- a_0^2 : 1
- T_2 : 1
- T: 0.25
- $g(k) = 7.68 \sin(0.3kT)$

ДСУ Основная часть

Основная часть

Проектирование дискретных стабилизирующих регуляторов

Дискретный вариант имеет вид:

$$A = \begin{bmatrix} 0.3581 & -0.2104 \\ 0.3198 & 0.9387 \end{bmatrix}, \quad B = \begin{bmatrix} 1.279 \\ 0.3728 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 11.34 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \end{bmatrix}$$

и имеет собственные числа 0.5179 и 0.7788.

В качестве эталонной модели возьмем оптимальную по быстродействию дискретную систему, т.е. $z_i^*=0,\ i=\overline{1,n}.$ Тогда введем эталонную модель:

$$\begin{cases} \eta(m+1) = \Gamma \eta(m) \\ \nu(m) = -H \eta(m) \end{cases}$$

$$\Gamma = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 1 \end{bmatrix},$$

Известно, что F = A - BK и Γ подобны. Следовательно $F = M\Gamma M^{-1}$. Для получения дополнительного матричного уравнения потребуем, чтобы выход эталонной модели совпадал бы с желаемым управляемым воздействием. Из этого:

$$\begin{cases} AM - M\Gamma = BH \\ K = HM^{-1} \end{cases} \rightarrow \begin{cases} K = \begin{bmatrix} 0.6122 & 1.3780 \end{bmatrix} \\ A - BK = \begin{bmatrix} -0.4250 & -1.9729 \\ 0.0915 & 0.4250 \end{bmatrix} \\ \sigma(A - BK) = \begin{bmatrix} -0.54 & 0.54 \end{bmatrix} * 10^{-8} \end{cases}$$

Видно, что из-за неточности численного решения уравнения Сильвестра в Matlab, собственные числа незначительно отличаются от 0. Это повышает время сходимости, которое должно было быть равным одному периоду дискретизации благодаря 0 собственным числам. Результаты представлены на рис. 2.

Рис. 2. График состояния объекта при использовании модального регулятора.

Проектирование дискретных следящих регуляторов

2.1 Построение задающего воздействия

Для построения задающего воздействия были выбраны матрицы непрерывной системы:

$$A = \begin{bmatrix} 0 & \omega_g \\ -\omega_g & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} A_g & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \\ 1 \end{bmatrix};$$

После дискретизации был получен их дискретный вариант. Сравнение линейного и непрерывного генераторов представлен на рис. 3.

Рис. 3. График сравнения дискретного и непрерывного генераторов

Выводы

В ходе выполнения работы ознакомились с принципом синтеза дискретных систем, анализом устойчивости, а также управления ими. Теоретические выкладки, сделанные в соответствующей секции были подтверждены во время про ведения экспериментов, что можно наблюдать на графиках моделирования.