Made By: Kenan Gazwan

Complexity Analysis

ICS202-Summary

King Fahd University of Petroleum and Minerals

Telegram: @KenanGazwan

(Complexity Analysis)

✓ Efficiency:

The efficiency of any algorithm can be measured according to the:

- Time Efficiency, and
- Space Efficiency

To evaluate the efficiency of an algorithm, we use logical units that express a relationship such as:

- $(n) \rightarrow$ the size of an array or file
- $T \rightarrow$ the amount of time required to process the data

Hence, the relationship between [n] and [T] is T(n)

✓ Basic Operations (Counted as One)

- Arithmetic operations: (*), (/), (%), (+), (-)
- Boolean operations: &&, ||,!
- Assignment statements
- Reading of primitive types
- Writing of primitive types
- Simple conditionals: if (x<12)
- Method calls (Note: Execution time of a method itself may not be constant)
- Return statement
- Memory access (such array indexing)
- ++, +=, or *= consist of two basic operations

✓ Asymptotic Complexity

Since counting the exact number of basic operations takes a lot of time and sometimes impossible, we can always focus on **Asymptotic Complexity.**

Asymptotic Complexity is used by <u>disregarding</u> lower order terms of a function to express the efficiency of an algorithm.

Example: For the following function \rightarrow $T(n) = n^2 + 100n + 100$ We need just the dominant term $[n^2]$, and the rest of terms are <u>disregarded</u>. Hence, $T(n) \approx n^2$

Why are the lower terms disregarded?

This is because for very large values of n, the lower terms are insignificant:

	Dominant term	Total	Lower terms	Contribution of lower terms
N	n ²	$n^2 + 4n + 4$	4n + 4	Lower Terms Contribution in %
10	100	144	44	30.55 %
100	10,000	10,404	404	3.88 %
1,000	1,000,000	1,004,004	4004	0.39 %
10,000	100,000,000	100,040,004	40,004	0.039 %

Large Value! →

← Insignificant Contribution!

$$1 < logn < \sqrt{n} < n < n \ logn < n^2 < n^3 < \dots < 2^n < 3^n < \dots < n^n$$

✓ Big-O Notation (Upper Bounds of Functions)

It specifies asymptotic complexity that estimates the rate of function growth.

Definition: f(n) is O(g(n)) if there exists positive numbers c and N such that:

$$f(n) \le cg(n) \text{ for all } n \ge N$$

Types Of Time Functions: -

0(1)	Constant
O(logn)	Logarithmic
0(n)	Linear
$O(n^2)$	Quadratic
$O(n^3)$	Cubic
$O(2^n)$	Exponential

Properties of Big-O Notation: -

If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n))

If f(n) is O(h(n)) and g(n) is O(h(n)), then (f(n) + g(n)) is O(h(n))

The function an^k is $O(n^k)$, where a is a constant

The function n^k is $O(n^{k+\epsilon})$ for any $\epsilon \ge 0$

If f(n) = cg(n), then f(n) is O(g(n)), where c is a constant

If f(n) = g(n) + h(n), then f(n) is $O(\max\{g(n), h(n)\})$

If f(n) = g(n)*h(n), then f(n) is O(g(n)*h(n))

The function $\log_a n$ is $O(\log_b n)$ for any positive numbers a>1 and b>1

 $\log_a n$ is $O(\lg n)$ for any positive number a>1, where $\lg n$ is $\log_2 n$

Warnings about O-Notation: -

- Big-O notation cannot compare algorithms in the same complexity class.
- Big-O notation only gives sensible comparisons of algorithms in different complexity classes when n is large.

\checkmark Big-Ω [Big-Omega] Notation (Lower Bounds of Functions)

Definition: f(n) is O(g(n)) if there exists positive numbers c and N such that:

$$f(n) \ge cg(n)$$
 for all $n \ge N$

✓ The difference between this definition and the definition of big-O notation is the direction of inequality.

One definition can be turned into the other by replacing "≥" with "≤"

 \checkmark There is an **interconnection** between O and Ω notations expressed by the equivalence:

$$f(n)$$
 is $\Omega(g(n))$ if and only if $g(n)$ is $O(f(n))$

✓ Big-O [Big-Theta] Notation (Average)

Definition: f(n) is $\Theta(g(n))$ if there exist positive numbers c_1 , c_2 , and N such that c1 $g(n) \le f(n) \le c2$ g(n) for all $n \ge N$

\checkmark Finding c and n given a function: -

Ex:
$$f(n) \le cg(n)$$

- 1. Divide both sides of the inequality by $g(n) \rightarrow \frac{f(n)}{g(n)} \le c$
- 2. Choose any value you want for n, and substitute it in the inequality.
- 3. Evaluating the inequality, the value of **c** must be found $\rightarrow resultNumber \leq c$
- 4. Finally,
 - n = The value chosen in step 2.
 - $c = resultNumber \underline{or} c > resultNumber$

✓ Best, Worst, and Average Case Complexities: -

Best-Case: The smallest number of operations carried out by the algorithm for given input **Worst-Case:** The largest number of operations carried out by the algorithm for a given input **Average-Case:** The number of operations carried out by the algorithm on average for all inputs.

$$\sum\nolimits_{\textit{for each input } i} (\textit{Probability of input } i * \textit{Cost of input } i)$$

✓ We are usually interested in the worst-case complexity.

✓ Finding Asymptotic Complexity (Some Common Loops): -

for (int i = 1; i <= n; i++) → O(n)</pre>

$$\sum_{i=1}^{n} 1 = n \approx O(n)$$

• for (int i = 0; i <= n; i=i+2) $\rightarrow 0(n)$

Notice: we cannot use *i* as an iterator because it does not increase by 1, so we must find another iterator that increases by 1.

i: 0, 2, 4, ..., 2R (R = number of iterations) \rightarrow n = 2R \rightarrow R = n/2

$$\sum_{S=0}^{R} 1 = (R - S) + 1 = \left(\frac{n}{2} - 0\right) + 1 \approx O(n)$$

The General Formula for This Case:

Finding an Iterator that increases by 1:

i: k, k + m, k + 2m, ..., k + mR (R = number of iterations, k = starting value) \rightarrow n = k + mR \rightarrow R = (n - k) / m

$$\sum_{S=0}^{R} 1 = (R - S) + 1 = \left(\frac{n - k}{m} - 0\right) + 1 \approx O(n)$$

for (int i = 1; i <= n; i=i*2) → O(log(n))</pre>

Notice: we cannot use i as an iterator because it does not increase by 1, so we must find another iterator that increases by 1.

i: 2^0 , 2^1 , 2^2 , 2^3 , 2^4 , ..., 2^R (R = number of iterations) \rightarrow n = $2^R \rightarrow R = logn$

$$\sum_{S=0}^{R} 1 = (R - S) + 1 = (\log n - 0) + 1 \approx O(\log(n))$$

```
• for (int i = 1; i <= n; i++) {
	for (int j = 1; j <= n; j++) {
	STATEMENT;
	}

}

\sum_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} n = n \sum_{i=1}^{n} 1 = n^{2} = \approx O(n^{2})

• for (int i = 1; i <= n; i++) {
	for (int j = 1; j <= i; j++) {
	STATEMENT;
	}

}

\sum_{i=1}^{n} \sum_{j=1}^{i} 1 = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \approx O(n^{2})
```

Summary: -