

CAFCR Functional View Functional, non-Functional requirements & Constraints

System Engineering (TCTI-V2SYEN-16) week 3

Marius Versteegen

Auteur: Joost Schalken-Pinkster

Terugblik

Key driver graph

Application

Functional Conceptional

al Realisation

Voordelen van goed geschreven requirement

- Vormt de basis voor overeenstemming tussen de stakeholders en de ontwikkelteam over wat het product moet doen.
- Vermindert de ontwikkelingsinspanning omdat er minder herstel nodig is vanwege slecht beschreven, ontbrekende en onbegrepen eisen.
- Biedt een basis voor het schatten van kosten en planningen.

Function	Behaviour	Structure
Systeem Context	Functional Requirements	Logische view
Stakeholders	Non-functional requirements	Development view
Key drivers	Constraints	Beslissingsmatrices
Application drivers		FMEA
		Process View
		Physical View
Key	∕-driver graph	
	Tracability diagram	

Requirements

De requirements moeten **toepasbaar** zijn, **testbaar**, gerelateerd aan **identificeerbare bedrijfsbehoefte** of kansen, en gedefinieerd op een niveau dat voldoende gedetailleerd is voor het systeemontwerp.

Inhoudsopgave

Requirements opstellen

Functional Requirements

Non Functional Requirements

Constraints

Conclusies

Requirements Attributen

Naam	< Naam van de vereiste>
Omschrijving	<pre><formulering smart=""></formulering></pre>
ID	<identificatie> = <type requirements><nr></nr></type </identificatie>
Rationale	<verklaring></verklaring>
Business prioriteit	<moscow></moscow>

Een voorbeeld

F01 - Houvast	
Omschrijving	Gebruikers moeten zich ergens aan vast kunnen houden.
Rationale	De gebruikers moeten zich vast kunnen houden, zodat zij niet vallen als ze hun evenwicht verliezen.
Business Priority	Must have

U

SMART Requirements

Zijn de requirements ...

- Specifiek Is de requirement eenduidig?
- Meetbaar Onder welke meetbare voorwaarden of vorm is het te bereiken?
- Acceptabel Is het acceptabel voor de opdrachtgever/gebruiker?
- Realiseerbaar is het haalbaar?
- Tijdgebonden wanneer moet het bereikt worden?

Rationale

 Rationale is een verklaring van de redenering achter een beslissing.

Bijvoorbeeld:

Als een requirement een methode kiest, moet in de Rationale vermeld worden waarom die keuze is gemaakt.

Business Prioriteit

Must Have → Essentieel

Deze vereisten moeten in het eindresultaat terugkomen, Het niet halen van deze vereisten betekent dat het systeem niet voldoet aan de key drivers en is niet bruikbaar.

Should Have → Belangrijk

deze vereisten zijn zeer gewenst, maar zonder is het product wel bruikbaar. Het weglaten van deze vereisten kan klant tevredenheid beïnvloeden.

Could Have

Deze vereisten zullen alleen aan bod komen als er tijd genoeg is.

Won't Have

deze eisen zullen in dit project niet aan bod komen maar kunnen in de toekomst, bij een vervolgproject, interessant zijn.

Tips requirements opstellen

- Maak actieve zinnen
- Vermijd onduidelijke woorden
- ✓ Kwantificeer waar mogelijk (meetbaar)
- Geen onnodige keuzes voor implementatie of keuzes die alleen een sub-systeem aangaan.

Tracability

- ✓ ledere requirement heeft een eigenaar
- ✓ Requirements zijn achterwaarts traceerbaar naar application drivers en key drivers en voorwaarts traceerbaar naar ontwerp, code en testcases

Inhoudsopgave

Requirements opstellen

Functional Requirements

Non Functional Requirements

Constraints

Conclusies

Functional requirements

- Definiëren WAT het systeem voor de gebruikers moet doen.
- Zijn acties die het systeem moet kunnen uitvoeren.
- Dragen direct bij aan het bereiken van het doel van de klant.

Functional Requirements

Voorbeelden

"Applicatie stuurt een email wanneer een gebruiker zicht aanmeldt"

F01 – Camerabeel	den OK
Omschrijving	De robot moet actuele beelden terug kunnen geven aan de robotoperator.
Rationale	De operator moet actuele beelden ontvangen, zodat deze hierop acties kan uitvoeren.
Business Priority	Must have

F03 – Rupsbandenbesturing		
Omschrijving	De robot moet met zijn rupsbanden kunnen voortbewegen.	
Rationale	Rupsbanden geven meer grip in moeilijk begaanbaar terrein dan andere alternatieven.	
Business Priority	Must have kan misschien beter	
	KAII IIIISSEHIPII DPIPI	

Opdracht Functional Requirements: Schrijf je Functional Requirements uit in blokken als onderstaand:

F01 – Camerabeelden	
Omschrijving	De robot moet actuele beelden terug kunnen geven aan de robotoperator.
Rationale	De operator moet actuele beelden ontvangen, zodat deze hierop acties kan uitvoeren.
Business Priority	Must have

- Definiëren WAT het systeem voor de gebruikers moet doen.
- Zijn acties die het systeem moet kunnen uitvoeren.
- Ze dragen direct bij aan het bereiken van het doel van de klant.

- Actieve zinnen
- Kwantificeer waar mogelijk
- Requirement bevat geen aanwijzingen over de implementatie

Inhoudsopgave

Requirements opstellen

Functional Requirements

Non Functional Requirements

Constraints

Conclusies

Customer objectives	A pplication	Functional	Conceptional	Realisation
		Functional		

Non-Functional requirements

- Beschrijven HOE het systeem werkt en zich moet gedragen
- Specificeren de kwaliteitsattributen en kenmerken van het systeem (eigenschappen of kwaliteiten die het systeem moet hebben)
- Specificeren de criteria's om de kwaliteit van de werking van het systeem te beoordelen
- Ze worden ook Architecturally Significant
 Requirements genoemd en gaan vaak over de
 kwaliteit van een systeem (daarom ook wel
 kwaliteitseisen genaamd).

Non-Functional requirements

- Ze bevatten informatie over:
 - Betrouwbaarheid van het systeem
 - Bruikbaarheid van het systeem
 - Informatiebeveiliging van het systeem
 - Performance van het systeem
 - Onderhoudbaarheid van het systeem

Voorbeelden:

- De maximale tijd die nodig is om een uitgevallen onderdeel van het systeem te vervangen is 3 uur.
- Het duurt maximum 5 minuten tot de gebruiker een mail ontvangt nadat die zich heeft aangemeld.

ISO 25010 - Kwaliteit kenmerken

Productkwaliteit

- Betrouwbaarheid (Reliability)
- Bruikbaarheid (Usability)
- Beveiligbaarheid (Security)
- Prestatie-efficiëntie (Performance efficiency)
- Uitwisselbaarheid (Compatibility)
- Onderhoudbaarheid (Maintainability)
- Overdraagbaarheid (Portability)

Kwaliteit tijdens gebruik

- Effectiviteit (Effectiveness)
- Efficientie (Efficiency)
- Voldoening (Satisfaction)
- Vrijwaring tegen risico (Freedom from risk)
- Context dekking (Context coverage)

ISO_25010, Wikipedia. https://nl.wikipedia.org/wiki/ISO_25010

Productkwaliteit

Functionele geschiktheid	Prestatie- efficiëntie	Uitwisselbaarheid	Bruikbaarheid
Functionele compleetheid Functionele correctheid Functionele toepasbaarheid	Snelheid Middelenbeslag Capaciteit	Beïnvloedbaarheid Koppelbaarheid	Herkenbaarheid van geschiktheid Leerbaarheid Bedienbaarheid Voorkomen gebruikersfouten Volmaaktheid gebruikersinteractie Toegankelijkheid

Betrouwbaarheid	Beveiligbaarheid	Onderhoudbaarheid	Overdraagbaarheid
		_	
Volwassenheid	Vertrouwelijkheid	Modulariteit	Aanpasbaarheid
Beschikbaarheid	Integriteit	Herbruikbaarheid	Installeerbaarheid
Foutbestendigheid	Onweerlegbaarheid	Analyseerbaarheid	Vervangbaarheid
Herstelbaarheid	Verantwoording	Wijzigbaarheid	
	Authenticiteit	Testbaarheid	

Effectiviteit Efficiëntie Vo	oldoening	Vrijheid van risico	Context dekking
Ve Te	ertrouwen evredenheid	Economisch risico beperking Gezond- en veiligheidsrisico beperking Omgevingsrisico beperking	Context compleetheid Flexibiliteit

FURPS – software kwaliteit eigenschappen

- Functionality Features, mogelijkheden, beveiliging
- Usability Menselijke factoren, esthetisch eigenschappen, consistentie, documentatie
- Reliability Faalfrequentie, betrouwbaarheid, faalimpact, herstelbaarheid, voorspelbaarheid, nauwkeurigheid, mean time to failure
- Performance Snelheid, efficiëntie, resourceverbruik, throughput, responsetijd
- Supportability Testbaarheid, uitbreidbaarheid, aanpasbaarheid, onderhoudbaarheid, compatibiliteit, configureerbaarheid, serviceability, installeerbaarheid, localizability, overdraagbaarheid

Functional & non-Functional ijsberg

Specificeren gedrag of functie van het systeem.

Beschrijf hoe het systeem moet werken en zich gedragen

Resource: https://kenscourses.com/tc1019fall2016/syndicated/the-functional-and-non-functional-iceberg/

Opdracht Non-Functional Requirements:

Noteer de non-functional requirements uit het ISO25010:2011 document die van toepassing zijn voor je project

NF01 – Onderhoud Interval	
Omschrijving	De robot moet drie keer achter elkaar ingezet kunnen worden zonder enige vorm van onderhoud.
Rationale	De robot moet betrouwbaar zijn in een operatie.
Business Priority	Should have

Inhoudsopgave

Requirements opstellen

Functional Requirements

Non Functional Requirements

Constraints

Conclusies

Constraints

Constraint

- Is een voorwaarde van buitenaf aan het systeem opgelegd die het aantal mogelijke oplossingen beperkt
- Toont de grenzen waarbinnen het systeem moet worden gerealiseerd.

Bijvoorbeeld: Een zeker apparaat mag vanwege wetgeving niet meer dan 80dB aan geluid produceren.

Constraints

- Constraints kunnen economische, politiek, technisch of milieutechnisch aard zijn
- Constraints kunnen betrekking hebben op projectplan, project resources en het systeem zelf.

Functional

U

Requirements vs Constraints

Requirements

Wat moet systeem doen

Constraints

Voorwaardes die de oplossing beperken.

Opdracht Constraints:

Must have

Business Priority

Leg de belangrijkste constraints vast zoals op onderstaande manier (voeg een rationale toe indien nodig)

Na het gesprek met de klant, is er een budget vastgesteld van wat de robot uiteindelijk mag gaan kosten. Dit is hieronder vastgelegd in constraints.

C00 – Productiekosten		
Omschrijving	Productiekosten moeten onder €25.000 per unit vallen.	
Business Priority	Business Priority Must have	
C01 – Onderhoudskosten		
Omschriivina	Onderhoudskosten moeten onder de €2,000 per onderhoudsbeurt vallen	

- Constraints kunnen economische, politiek, technisch of milieutechnisch aard zijn
- Constraints kunnen betrekking hebben op projectplan, project resources en het systeem zelf.

Referenties

Hoofdstuk 7 van Muller (2013) Architectural Reasoning Explained.

http://www.gripoprequirements.nl/downloads/iso-25010-2011-een-introductie-v1_0.pdf