1 SQL

Abbildung 4 Erzeugen neuer Tabellen	_ 1
Abbildung 5 Datentypen	_ 1
Abbildung 6 Erzeugen der Tabellen PLAYERS, TEAMS, PENALTIES und MATCHES	_2
Abbildung 7 Copying Tables	_2
Abbildung 8 Dropping Tables	_2
Abbildung 9 Altering Tables	_2
Abbildung 10 Add Column	_2
Abbildung 11 Synonyms	_2
Abbildung 12 Literals	_2
Abbildung 13 Skalarfunktionen	_ 3
Abbildung 14 Datumsfunktionen	_3
Abbildung 15 Klauseln eines SELECT Statements	_3
Abbildung 16 statistische Funktionen	3
Abbildung 17 BETWEEN Operator	_3
Abbildung 18 IN Operator	⁻ 3
Abbildung 19 LIKE Operator	_ 4
Abbildung 20 NULL Operator	- 4
Abbildung 21 Beispiele NULL Operator	
Abbildung 22 Lösung	_ 4
Abbildung 23 Lösung	
Abbildung 24 Lösung	
Abbildung 25 Lösung	4
Abbildung 26 Lösung	_ 5
Abbildung 27 Lösung	_5
Abbildung 28 Lösung	_ ₅
Abbildung 29 Connect by	_ 5
	_6
Abbildung 31 INSERT	_ 7
Abbildung 32 INSERT-Hinweis	_ <i>.</i> 7
Abbildung 33 Masseninsert	_ <i>.</i> 7
Abbildung 34 Beispiel - update	_ , 7
Abbildung 35 DELETE	_ , 7
<u> </u>	_ · _ 7
Abbildung 37 Variante 1 – max	
Abbildung 38 Variante 2 – eigene Nummerntabelle	- 8
Abbildung 39 Variante 2a - eigene Nummerntabelle für sämtliche Tabellen mit Surrogaten	- 8
Abbildung 40 Variante 3 - eigene Sequence	
Abbildung 41 Variante 3 - eigene Sequence (Beispiel)	
Abbildung 42 Sequence (Beispiel)	
Abbildung 43 Bearbeiten einer Sequenz	
Abbildung 44 Löschen einer Sequenz	
Abbildung 45 Integritätsbedingungen	
Abbildung 46 Entity Integrity	
Abbildung 47 Referential Integrity	
Abbildung 48 DML Operationen	
Abbildung 49 Check Integrity	
Abbildung 50 Löschen von Integritätsbedingungen	
Abbildung 51 Indexes	10
· · · · · · · · · · · · · · · · · · ·	- U

Abbildung 52 Indexes	10
Abbildung 53 Faustregeln für Indexerstellung	11
Abbildung 54 Warum werden Views verwendet	11
Abbildung 55 Syntax einer View	11
Abbildung 56 Beispiele einer View	
Abbildung 57 Zwei Kategorien von Datenbanksicherheit	
Abbildung 58 Arten von Datenbanksicherheit	
Abbildung 59 Zugriffsbestimmungen	12
Abbildung 60 User SYS und SYSTEM	12
Abbildung 61 Anlegen von Usern und Vergabe von Rechten	13
Abbildung 62 Beispiele für typische Systemprivilegien des DBA	13
Abbildung 63 Beispiele für typische Systemprivilegien von Benutzern	
Abbildung 64 User Rechte zurücknehmen	13
Abbildung 65 User entfernen	13
Abbildung 66 Was ist eine Rolle	13
Abbildung 67 eine Rolle anlegen	14
Abbildung 68 OPS\$user	14
Abbildung 69 Objektprivilegien	14
Abbildung 70 Objektrechte vergeben	14
Abbildung 71 Objektrechte zurücknehmen	14
Abbildung 72 Zugriffskontrolle mit Views	15
Abbildung 73 Data-Dictionary-Tabelle	15

Abbildung 1 Erzeugen neuer Tabellen

numerische Datentypen		
NUMBER (P, S)	P Gesamtanzahl	
	S Anzahl der Nachkommastellen	
	z.B. NUMBER(6,2) \rightarrow 0000,00	
DECIMAL(P,S)	entspricht NUMBER(P,S)	
INT	Ganzzahl; entspricht NUMBER(38,0)	
alphanumerische Datentypen		
CHAR(n)	Zeichenfolge mit max. Länge n	
VARCHAR2(L)	wie CHAR, jedoch var. Speicherung	
LONG	speichert Daten vom Typ VARCHAR; <= 2GB (Variable lang)	
Datum		
DATE	es wird Datum und Zeit gespeichert	
für Binärdaten, die nicht interpretiert werden		
RAW	uninterpretiert (Sound, Grafik,)	
LONG RAW	uninterpretiert (Sound, Grafik,) <=2GB	
Große Objekte		
BLOB	Große Binärdaten vom Typ RAW <= 4GB	
CLOB	Große Zeichendaten <=4GB	
identifiziert eindeutig eine Zeile in einer Tabelle		
ROWID	Pseudospalte, "Datensatznummer" jeder Zeile; in allen Tabellen	
	enthalten	

Abbildung 2 Datentypen

	Datentyp	Attribut	Nullability	Defaulting
Players	Number (4)	PlayerNo	Not NULL	
	Varchar2 (15)	Name		
	Number (4)	Year_of_Birth		
	Varchar2 (4)	LeagueNo		
Teams	Number (2)	TeamNo	Not NULL	
	Number (4)	PlayerNo		
	Varchar2 (6)	Division		
Penalties	Number (4)	PaymentNo	Not NULL	
	Number (4)	PlayerNo		
	Date	Pen_Date		aktuelles Dat.
	Number(7,2)	Amount		2000,00

Matches	Number (5)	MatchNo	Not NULL	
	Number (2)	TeamNo		
	Number (4)	PlayerNo		
	Number (1)	Won		
	Number (1)	Lost		

Abbildung 3 Erzeugen der Tabellen PLAYERS, TEAMS, PENALTIES und MATCHES

```
CREATE TABLE table_name
      [(column_name [column integrity rule]
      [, column_name ....,
       ....])]
      AS SELECT column_name [, column_name ...,...]
          FROM table_name
                              Abbildung 4 Copying Tables
DROP TABLE table name
                              Abbildung 5 Dropping Tables
ALTER TABLE table name MODIFY (
      column name [data type] [column integrity rule]
      [, column name ....,
       . . . . ]
      )
                              Abbildung 6 Altering Tables
ALTER TABLE table name ADD (
      column_name data_type [default expression] [column integrity rule]
      [, column name ....,
       . . . . ]
      )
                               Abbildung 7 Add Column
CREATE [PUBLIC] SYNONYM synonym_name
      FOR table_name
```

Abbildung 8 Synonyms

Abbildung 8 Synonyms		
Numerische Literale:	SELECT *	
Integer	FROM matches WHERE won = 3	
Decimal	SELECT * FROM penalties	
Floating Daint	WHERE amount > 99.9 SELECT *	
Floating Point	FROM penalties WHERE amount > 0.999E2	
	WHERE AMOUNT > 0.999E2	
Alphanumerische Literale:	ORI DOM +	
 Begrenzt durch Hochkommas 	SELECT *	
	FROM players	
	WHERE name = 'Baker'	
 Darstellung eine Hochkommas in einer 	z.B. 'Müller''s Büro'	
Zeichenkette		
Datumsliterale:	SELECT *	
	FROM penalties	
	WHERE pen_date > '01-Apr-1982'	

Abbildung 9 Literals

LENGTH	Länge einer Zeichenkette	
	SELECT name, LENGTH(name), FROM players; Ergebnis: BAKER 5	

DECODE	ermöglicht die Vertextung bzw. Umsetzung eines Feldes:	
	$decode(<\!cn\!>,<\!strfrom_1\!>,<\!strto_1\!>,<\!strfrom_2\!>,<\!strto_2\!>,\ldots,<\!strto_n\!>,<\!str_{else}\!>)$	
	ersetzt in Spalte <cn> die Werte <strfrom<sub>i> durch die Werte <strto<sub>i>; wenn keiner</strto<sub></strfrom<sub></cn>	
	davon zutrifft und <strelse> angegeben ist, dann dadurch.</strelse>	
SUBSTR	herausschneiden einer beliebigen Zeichenfolge aus einer anderen Zeichenfolge:	
	SUBST(<cn>, <numbbeginpos>, <numblength>)</numblength></numbbeginpos></cn>	
INSTR	zum Finden eines Zeichens oder einer Zeichenkette in einer anderen Zeichenkette:	
	SUBSTR(<cn>, <strsearch>, <numbbeginsearch>)</numbbeginsearch></strsearch></cn>	
UPPER	wandelt übergebene Zeichenfolge in Großbuchstaben um	
LOWER	wandelt übergebene Zeichenfolge in Kleinbuchstaben um	

Abbildung 10 Skalarfunktionen

FormatString	Bemerkung
DD, Dy, Day	Tage
MM, Mon, Month	Monat:
	Mon (3-stellige Kodierung, zB JAN, FEB)
	Month (in englisch geschriebene Monatsnamen)
YY, YYYY	Jahr (2 oder 4-stellig)
HH, HH12, HH24	Stunden (12 oder 24 Stunden)
MI	Minute
SS	Sekunden

Abbildung 11 Datumsfunktionen

```
SELECT ....

FROM ....

[WHERE ....]

[CONNECT BY ....]

[GROUP BY ....

[HAVING ....]]

[ORDER BY ....]
```

Abbildung 12 Klauseln eines SELECT Statements

COUNT	Anzahl von Zeilen bzw. Anzahl von Werten (ungleich NULL)
MIN	Minimum
MAX	Maximum
SUM	Summe
AVG	Durchschnitt
STDDEV	Standardabweichung
VARIANCE	Varianz

Abbildung 13 statistische Funktionen

```
expr1 [NOT] BETWEEN expr2 AND expr3
Abbildung 14 BETWEEN Operator

expr1 [NOT] IN expr2
Abbildung 15 IN Operator

expr1 [NOT] LIKE expr2
```

Abbildung 16 LIKE Operator

expr IS [NOT] NULL

Abbildung 17 NULL Operator

If a is:	Condition	Evaluates to:
10	a IS NULL	FALSE
10	a IS NOT NULL	TRUE
NULL	a IS NULL	TRUE
NULL	a IS NOT NULL	FALSE
10	a = NULL	UNKNOWN
10	a != NULL	UNKNOWN
NULL	a = NULL	UNKNOWN
NULL	a != NULL	UNKNOWN
NULL	a = 10	UNKNOWN
NULL	a != 10	UNKNOWN

Abbildung 18 Beispiele NULL Operator

Ausgabe von Spielernummer und -name derjenigen Spieler, die mindestens eine Strafe erhalten haben:

```
SELECT * FROM players
WHERE EXISTS (SELECT * FROM penalties WHERE playerno=players.playerno);
Abbildung 19 Lösung
```

Ausgabe der Spieler mit den 4 höchsten Strafen:

Ausgabe der Spieler, die mindestens eine Strafe über 50,00 erhalten haben:

• Ausgabe der Spieler, für die jede Strafe über 50,00 war (keine Strafe unter 50,00):

Allerdings werden dabei auch die Spieler ausgegeben, die überhaupt keine Strafe erhalten haben.

Daher:

Ausgabe sämtlicher Spieler mit ihren Strafen.

```
SELECT name, initials, amount FROM players pl, penalties pe
WHERE pl.playerno = pe.playerno
UNION
SELECT name, initials, 0 FROM players pl
WHERE NOT EXISTS
(SELECT * FROM penalties pe WHERE pe.playerno=pl.playerno)
Abbildung 24 Lösung
```

Ausgabe sämtlicher Spieler mit ihren Strafensummen

Syntax:

```
CONNECT BY [PRIOR] condition [START WITH condition]

Abbildung 26 Connect by
```

Folgende Tabelle PARTS:

SUB	SUP	PRICE
P1		130
P2	P1	15
P3	P1	65
P4	P1	20
P9	P1	45
P5	P2	10
Р6	P3	10
P7	P3	20
P8	P3	25
P12	P7	10
P10	P9	12
P11	Р9	21

Abbildung 27 Tabelle PARTS

Hinweise

- Angabe der Spaltennamen: Spalten nicht notwendig; wenn sie weggelassen werden, müssen allerdings die Werte für alle Spalten in der richtigen Reihenfolge angegeben werden
- NULL Werte: können eingefügt werden, indem
 - a) die Spalte nicht belegt wird (unter Angabe des Spaltennamens)

```
INSERT INTO dept (deptno, dname)
   VALUES (60, 'MIS');
```

oder

b) das Schlüsselwort NULL verwendet wird (in beiden Fällen)

Abbildung 30 Masseninsert

Beispiele:	
Preis von P05 auf ATS 100,- setzen.	
Preis von P05 um 10% erhöhen.	
Alle Preise über ATS 60,- um 10%	
herabsetzen.	
Alle Preise unter dem Durchschnitt um	
20% erhöhen.	

Abbildung 31 Beispiel - update

```
DELETE FROM table_name [WHERE condition]
```

Abbildung 32 DELETE

- Beginn einer Transaktion:
 - 1. mit der ersten ausführbaren DML-Anweisung
 - 2. mit SAVEPOINT

savepoint updtsal;

update emp

set sal=sal*1.1;

rollback to updtsal;

- Ende einer Transaktion:
- 1. COMMIT oder ROLLBACK
- 2. DDL oder DCL-Anweisung wird ausgeführt (implizites bzw. automatisches COMMIT)
- 3. Bestimmte Fehler, Exit oder Systemabsturz

Abbildung 33 Hinweis - Transaktionen

```
SELECT MAX(teamno)+1 FROM teams;
INSERT INTO team VALUES (...);
                              Abbildung 34 Variante 1 – max
SELECT MAX(teamno) +1 FROM team;
INSERT INTO team VALUES (...);
INSERT INTO teamNo VALUES (...);
                       Abbildung 35 Variante 2 – eigene Nummerntabelle
Anlegen einer Tabelle: seq(Tablename, NextFreeID)
SELECT NextFreeID FROM Seq WHERE tablename = 'TEAMS';
UPDATE seq SET NextFreeID+1 WHERE tablename = 'TEAMS';
INSERT INTO teams VALUES (...);
         Abbildung 36 Variante 2a - eigene Nummerntabelle für sämtliche Tabellen mit Surrogaten
 CREATE SEQUENCE seq name
 [START WITH integer]
 [INCREMENT BY integer]
 [{MAXVALUE integer | NOMAXVALUE}]
 [{MINVALUE integer | NOMINVALUE}]
 [{CYCLE | NOCYCLE}]
 [{ORDER] | NOORDER}]
 [{CACHE integer | NOCACHE}]
                          Abbildung 37 Variante 3 - eigene Sequence
 Beispiel:
 create sequence seq teamno start with 3;
 INSERT INTO teams (teamno, playerno, division)
 VALUES (seq teamno.NEXTVAL, 104, 'first');
                      Abbildung 38 Variante 3 - eigene Sequence (Beispiel)
 - Erstellen einer Nummernfolge:
CREATE SEQUENCE dept_deptno
   INCREMENT BY 1
   START WITH 91
   MAXVALUE 100
   NOCACHE
   NOCYCLE;
 - Sequenz verwenden:
INSERT INTO dept(deptno, dname, loc)
VALUES (dept deptno.NEXTVAL, 'MARKETING', 'SAN DIEGO');
 - Aktuellen Wert anzeigen:
SELECT dept deptno.CURRVAL
FROM dual;
                             Abbildung 39 Sequence (Beispiel)
 ALTER SEQUENCE seq name
 [INCREMENT BY integer]
 [{MAXVALUE integer | NOMAXVALUE}]
 [{MINVALUE integer | NOMINVALUE}]
 [{CYCLE | NOCYCLE}]
 [{ORDER | NOORDER}]
 [{CACHE integer | NOCACHE}]
                           Abbildung 40 Bearbeiten einer Sequenz
```

DROP SEQUENCE seq name

Abbildung 41 Löschen einer Sequenz

```
CREATE TABLE table name (
     column name
                         data type
                                          [DEFAULT
                                                           expression]
[column constraint]
     [, column name ...]
     [, table constraint, ....]
bei nachträglichen Erstellen eines Constraint
     ALTER TABLE table name
     ADD (table constraint)
wobei table constraint:
     [CONSTRAINT constraint name]
     constraint type (column name1 [,column name2, ....]))
                        Abbildung 42 Integritätsbedingungen
• column integrity
 column name .... [CONSTRAINT constraint name] PRIMARY KEY
• table integrity
 . . . .
 column name ....,
 [CONSTRAINT constraint name]
 PRIMARY KEY(column name1 [,column name2,...]),
                          Abbildung 43 Entity Integrity
• column integrity
 column name .... [CONSTRAINT constraint name]
     REFERENCES table name[(column name1[,column name2,....])]
      [ON DELETE CASCADE]
• table integrity
 . . . .
 column name ....,
 [CONSTRAINT constraint name]
 FOREIGN KEY (column name1[,column name2,....])
 REFERENCES table name [(column name1[,column name2,....])]
 [ON DELETE CASCADE],
                        Abbildung 44 Referential Integrity
```

Folgende Tabelle zeigt die DML Operationen, die auf dem Primärschlüssel der PARENT Table (z.B. PLAYERS) und auf dem Fremdschlüssel der CHILD Table (z.B. TEAMS) erlaubt sind. Angenommen wird, dass für den Fremdschlüssel NOT NULL gilt:

DML Statement	Gegen die PARENT Table	Gegen die CHILD Table	
INSERT	Immer OK, falls PK-Wert	Nur OK, falls der FK-Wert im	
	eindeutig	PK existiert	
UPDATE (Restrict)	OK, falls keine Zeilen der CHILD	Nur OK, falls der neue FK-	
	Table auf den PK-Wert verweisen	Wert im PK existiert	
DELETE (Restrict)	OK, falls keine Zeilen der	Immer OK	
	CHILD Table auf den PK-Wert		
	verweisen		

DELETE (Cascade) Immer OK	Immer OK
---------------------------	----------

Abbildung 45 DML Operationen

column integrity

column name [CONSTRAINT constraint name] CHECK condition

• table integrity

• • • •

column name,

[CONSTRAINT constraint_name] CHECK condition,

. . . .

Abbildung 46 Check Integrity

ALTER TABLE table_name DROP CONSTRAINT constraint_name Abbildung 47 Löschen von Integritätsbedingungen

Abbildung 48 Indexes

CREATE [UNIQUE] INDEX index_name
ON table_name (column_name1[,column_name2,...])
DROP INDEX index name

Abbildung 49 Indexes

Es ist sinnvoll	Es ist nicht sinnvoll
aus Integritätsgründen einen unique index zu	über ein Attribut einen Index zu
erstellen.	definieren, das nur wenige
	unterschiedliche Werte enthält.
auf Fremdschlüssel einen Index zu	eine Abfrage auf <> durch einen Index
definieren, da die meisten Joins über die	zu unterstützen.
Beziehung Primärschlüssel <> Fremdschlüssel	
laufen.	
über Attribute einen Index zu definieren, wenn	über ein Attribut einen Index zu
nach diesen oft abgefragt wird.	definieren, das sehr oft Null enthält.
über Attribute einen Index zu definieren, wenn	
nach diesen oft sortiert wird.	

Abbildung 50 Faustregeln für Indexerstellung

- o Um den Datenbankzugriff einzuschränken.
- Um komplexe Abfragen einfacher zu machen (Verknüpfung mehrerer Tabellen)
- o Um Datenunabhängigkeit zu ermöglichen (z.B. für ad-hoc-Benutzer)
- o Um verschiedene Sichten derselben Daten darzustellen.

Abbildung 51 Warum werden Views verwendet

Abbildung 52 Syntax einer View

Erstellen Sie eine View V_PLAYERS mit PLAYERNO, NAME und die Gesamtsumme der Strafen der einzelnen Spieler (Spalte AMOUNT_TOTAL). Die Spielerdaten sollen auch über die View gesehen werden können, wenn ein Spieler noch keine Strafen erhalten hat.

```
CREATE VIEW v_players AS

SELECT p.playerno,name,sum(amount) AS amount_total

FROM players p, penalties pe

WHERE p.playerno = pe.playerno(+)

GROUP BY p.playerno,name;
```

Geben Sie sämtliche Spalten der View v_p aus.

```
Select * From v_players;
```

Geben Sie die Gesamtsumme der Strafen aus.

```
Select Sum(amount_total) From v_players;
```

Welche Views haben Sie bereits angelegt?

```
SELECT view_name From user_views;

Abbildung 53 Beispiele einer View
```

Die **Datenbanksicherheit** kann in zwei Kategorien klassifiziert werden:

- 1. Systemsicherheit
- 2. Datensicherheit

Systemsicherheit deckt den Zugriff auf und die *Nutzung der Datenbank auf Systemebene* ab (z.B. Benutzername und Passwort) und weist den Benutzern Speicherplatz und Systemoperationen zu (die der Benutzer durchführen darf).

Datensicherheit deckt den Zugriff auf und die *Nutzung der Datenobjekte* ab, sowie die Aktionen, welche der Benutzer mit diesen Objekten durchführen darf.

Abbildung 54 Zwei Kategorien von Datenbanksicherheit

Aus dem Begriff der Datenbanksicherheit leiten sich zwei Arten von Privilegien ab: **Systemprivilegien** (system privileges): Zugriff auf die Datenbank erhalten **Objektprivilegien** (schema object privileges): Den Inhalt der Datenbankobjekte manipulieren.

Abbildung 55 Arten von Datenbanksicherheit

Ein identifizierter Benutzer hat also nur auf bestimmte Daten Zugriff:

- Daten von Tabellen und Views, die er selbst erstellt hat
- Daten von Tabellen und Views, für die er Zugriffsrechte (z.B. SELECT, UPDATE,) erhalten hat

Abbildung 56 Zugriffsbestimmungen

```
GRANT CONNECT

TO system

IDENTIFIED BY neupwd

oder

ALTER USER system

IDENTIFIED BY neupwd (DBA Rechte erforderlich)

Abbildung 57 User SYS und SYSTEM
```

```
CREATE USER user
IDENTIFIED BY password

GRANT system privilege [, system privilege...]
```

TO user [, user...]
[WITH ADMIN OPTION]

Abbildung 58 Anlegen von Usern und Vergabe von Rechten

Systemprivileg	Operationen. für die die Berechtigung gilt
CREATE USER	Es dürfen andere Benutzer angelegt werden
DROP USER	Ein anderer Benutzer darf gelöscht werden
DROP ANY TABLE	Eine Tabelle darf in beliebigen Schema gelöscht werden
BACKUP ANY TABLE	Eine beliebige Tabelle in einem beliebigen Schema darf mit der
	Export Utility gesichert werden.

Abbildung 59 Beispiele für typische Systemprivilegien des DBA

Systemprivileg	Operationen. für die die Berechtigung gilt
CREATE SESSION	Verbindung zur Datenbank herstellen
CREATE TABLE	Tabellen im Schema des Benutzers erstellen
CREATE SEQUENCE	Eine Sequenz im Schema des Benutzers erstellen
CREATE VIEW	Eine View im Schema des Benutzers erstellen
CREATE	Eine Stored Procedure, Funktion oder Package im Schema des
PROCEDURE	Benutzers erstellen.

Abbildung 60 Beispiele für typische Systemprivilegien von Benutzern

```
REVOKE {system_privilege [,system_privilege]|ALL}
FROM user [, user, ....]
```

Abbildung 61 User Rechte zurücknehmen

DROP USER user [CASCADE]

Abbildung 62 User entfernen

Abbildung 63 Was ist eine Rolle

CREATE ROLE role

```
GRANT role [, role]
      user [,user, ....]
[IDENTIFIED BY password [, password, ....]]
                        Abbildung 64 eine Rolle anlegen
```

Es gibt in ORACLE zwei Arten von User-Accounts

1. User-Accounts, die an das Betriebssystem gebunden sind. z.Bsp.: Windows-Login: D3BH08 ergibt einen ORACLE account OPS\$D3BH08

2. Gewöhnliche Accounts wie SCOTT/TIGER

Abbildung 65 OPS\$user

Objektprivileg	Tabelle	View	Sequenz	Prozedur
ALTER	✓		✓	
DELETE	✓	✓		
EXECUTE				✓
INDEX	✓			
INSERT	✓	✓		
REFERENCES	✓			
SELECT	✓	✓	✓	
UPDATE	✓	✓		

Abbildung 66 Objektprivilegien

```
GRANT
       objekt priv [(column1 [, column2])]
  ON
       objekt
   TO
      {user|role|PUBLIC} [, user, ....]
[WITH GRANT OPTION]
```

wobei objekt_priv folgende Werte annehmen kann:

```
ALTER
DELETE
INDEX
INSERT
REFERENCES
SELECT
UPDATE [(column name1 [,column name2,....])]
ALL
```

Abbildung 67 Objektrechte vergeben

```
REVOKE {privilege [, privilege...] | ALL }
ON
       object
       {user [, user, ....] | role | PUBLIC}
FROM
[CASCADE CONSTRAINTS]
```

Abbildung 68 Objektrechte zurücknehmen

Beispiel:

- Tabelle ANGESTELLTER (AngNr, AngName, AngJob, AngGehalt)
- Tabelle wurde vom DB-Administrator (User DBMAN) erstellt.
- Alle Angestellten dürfen lesend auf AngNr, AngName und AngJob zugreifen
- Nur der Präsident mit dem Benutzernamen KING darf alle Operationen auf den Daten durchführen.

Folgende Schritte sind durchzuführen:

- 1. GRANT ALL ON ANGESTELLTER TO KING
- 2. CREATE VIEW ANG AS
 SELECT ANGNR, ANGNAME, ANGJOB
 FROM ANGESTELLTER
- 3. GRANT SELECT ON ANG TO PUBLIC
- KING muss beim Zugriff DBMAN.ANGESTELLTER angeben, alle anderen Benutzer DBMAN.ANG.
- Wird zusätzlich ein Synonym mit

CREATE PUBLIC SYNONYM ANGESTELLTER FOR DBMAN.ANG

erzeugt, dann kann jeder mit dem Namen ANGESTELLTER zugreifen.

- Will jedoch KING auf ANGGEHALT zugreifen, so muss er DBMAN.ANGESTELLTER angegeben.

Abbildung 69 Zugriffskontrolle mit Views

Data-Dictionary-Tabelle	Beschreibung	
ROLE_SYS_PRIVS	an Rollen vergebene Systemprivilegien	
ROLE_TAB_PRIVS	an Rollen vergebene Tabellenprivilegien	
USER_ROLE_PRIVS	Rollen, die für Benutzer zugänglich sind	
USER_TAB_PRIVS_MADE	an Benutzerobjekte vergebene Objektprivilegien	
USER_TAB_PRIVS_RECD	erhaltene Objektprivilegien	
USER_COL_PRIVS_MADE	an Spalten von Benutzerobjekten vergebene	
	Objektprivilegien	
USER_COL_PRIVS_RECD	Objektprivilegien, die der Benutzer für bestimmte Spalten	
	erhalten hat.	

Abbildung 70 Data-Dictionary-Tabelle