EECS 445

Project 2 Quickstart

October 26, 2023

P2 Intro

Problem: Classifying landmarks in images. Specifically, we care about distinguishing the Pantheon from Hofburg Imperial Palace.

Approach: Build a CNN using PyTorch, experiment with *Transfer Learning* and *Data Augmentation*

Project Logistics

Due on Tuesday, 11/7 at 10:00pm

Submit write-up to Gradescope

Submit challenge CSV to Canvas

Coding questions are highlighted in green, questions with written answers are highlighted in blue.

Sections

Section	Points	Recommended Completion Date
Data Preprocessing	10 pts	Friday, 10/27
Convolutional Neural Networks	30 pts	Tuesday, 10/31
Visualizing what the CNN has learned	10 pts	Tuesday, 10/31
Transfer Learning & Data Augmentation	25 pts	Saturday, 11/4
Challenge	15 pts	Tuesday, 11/7
Code Appendix	10 pts	Tuesday, 11/7

Dataset

- 5,152 PNG Images
- Located in data/images/
- Each image: 3 x 64 x 64 (RGB color channels)
- 10 landmarks
- 4 partitions: training, validation, test, held-out
- 2 tasks (target and source)
 - Target: Classify the Pantheon and Hofburg Imperial Palace
 - Source: Classify many other landmarks
- metadata found in data/landmarks.csv

Training CNNs

- You will implement the architecture of the CNN using layer classes in PyTorch and the parameter values given in the spec appendix
- You will also implement the weight initialization of the layers and forward pass through the network
 - This defines the order of operations an input datapoint goes through in your model
- Note that PyTorch automatically handles the backpropagation calculations.
 You just need to fill in the train_epoch function
 - Hint: Look at the PyTorch documentation examples!
- You will also implement early stopping
 - This is used to prematurely stop training at a certain epoch when you observe validation loss
 has not decreased for a predetermined number of epochs (called the patience!)

Training CNNs Cont.

- The *Criterion* in the appendix refers to the **loss function** we use
 - We use Cross Entropy Loss

$$\mathcal{L}(ar{y}, \hat{y}) = -\sum_c ar{y}_c \log \hat{y}_c$$
 True label \hat{y}
Predicted label \hat{y}

- The Optimizer in the appendix refers to the tool we use to minimize the loss function
 - We use the Adam technique, which is a form of stochastic gradient descent

Target Architecture

- Task: build CNN architecture for target task as specified in Appendix B
- Architecture (target.py)
 - __init__(): construct each layer of the convolutional neural network
 - init_weights(): initialize parameters (weights + bias)
 for each layer
 - forward(x): define forward propagation for a batch of input examples
- Model parameters: criterion, optimizer, learning rate, patience, batch size

Layer 0: Input image

Layer 1: Convolutional Layer 1

Layer 2: Max Pooling Layer

Layer 3: Convolutional Layer 2

Layer 4: Max Pooling Layer

Layer 5: Convolutional Layer 3

Layer 6: Fully connected layer 1

Torch.nn documentation: https://pytorch.org/docs/stable/nn.html

Example Layers

Training Parameters

- Criterion: torch.nn.CrossEntropyLoss
- Optimizer: torch.optim.Adam
- Learning rate: 10^{-3}
- Patience: 5
- Batch Size: 32

Layer 2: Max Pooling Layer

- Kernel size: 2×2
- Stride: 2×2
- Padding: none

Layer 1: Convolutional Layer 1

- Number of filters: 16
- Filter size: 5×5
- Stride size: 2 × 2
- · Padding: SAME
 - Nata Cana
 - Note: Conv2D doesn't allow the argument padding='same' if stride size is not 1, so you
 have to calculate the padding manually.
- Activation: ReLU
- Weight initialization: normally distributed with $\mu = 0.0$, $\sigma = \frac{1}{\sqrt{5 \times 5 \times num_input_channels}}$
- Bias initialization: constant 0.0
- Output: $16 \times 32 \times 32$

Layer 6: Fully connected layer 1 (Output layer)

- Input: 32
- · Activation: None
- Weight initialization: normally distributed with $\mu = 0.0$, $\sigma = \frac{1}{\sqrt{input.size}}$
- Bias initialization: constant 0.0
- Output: 2 (number of classes)

Grad-CAM

- Tool to help us visualize which areas of the image contribute the most to each class prediction
- You will use this paper to answer the questions for this section
 - You will manually calculate the heatmap produced by this tool for one class label
 - Intuitively, the highlighted areas of the image show characteristics that are highly correlated with a certain class label. This means you will find useful areas of the image at a particular step for predicting a certain class label

Figure 3: Grad-CAM for the 'dog' label

Figure 4: Grad-CAM for the 'cat' label

Transfer Learning

Transfer Learning

- Sometimes a certain task is related to other classification tasks such that the model parameters learned for one task are informative to the other
- We call the task we want to learn the target task and the task we already have a model for the source task
- The idea is to use the layers/weights from the **source** task in the model of the **target** task in the hopes that similar features will be extracted and used from the input

Transfer Learning Cont.

- Recall that the target task is classifying the Pantheon and Hofburg Imperial Palace
- The source task you will use in this project is classifying 8 different landmarks besides the Pantheon and Hofburg Imperial Palace
- We hypothesize that the features we learn in the source task (i.e. features of different landmarks) will be useful in our target task
- The concept of freezing layers allows us to control the extent to which we leverage the source task in our training of the target task

Data Augmentation

Data Augmentation

- We may also observe that our training data is not entirely representative of the possible inputs to our model
- We can introduce new training data by altering the existing training data slightly and adding it to the training set
- Alterations include rotating and grayscaling the images in this project
 - Can you think of more? Try them in the Challenge section!

Challenge

Train a CNN to solve the target task (classifying the Pantheon and Hofburg Imperial Palace)

Consider:

- Regularization (weight decay, dropout, etc.)
- Feature Selection
- Model Architecture
- Hyperparameters
- Transfer Learning
- Data Augmentation

PyTorch Tutorial

Pytorch Tensors

```
import torch

A = torch.rand((3,5))
B = torch.rand((3,5))

print(A+B)  # prints element-wise sum of matrices
print(A.sum(dim=1)) # prints sum of each row of A
```


Defining a Neural Net

```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__() # call superclass constructor
        # Step 1. Define fully-connected layers for the neural network
        self.hidden1 = nn.Linear(2, 3)
        self.hidden2 = nn.Linear(3, 2)
        self.output = nn.Linear(2, 2)
   def forward(self, x):
        # Step 2. Override the forward function to define the forward pass
        z2 = self.hidden1(x)
       h2 = F.sigmoid(z2)
        z3 = self.hidden2(h2)
       h3 = F.sigmoid(z3)
        z4 = self.output(h3)
        return z4
```


Defining Model Architectures

To define the layers that are part of your architecture, PyTorch requires that you instantiate each layer object as a member variable of your neural network class. This is done in the constructor of the new class.

```
def __init__(self):
    super(Net, self).__init__() # call superclass constructor

# Step 1. Define fully-connected layers for the neural network
    self.hidden1 = nn.Linear(2, 3)
    self.hidden2 = nn.Linear(3, 2)
    self.output = nn.Linear(2, 2)
```

Implementing the Forward Pass

```
def forward(self, x):
    # Step 2. Override the forward function to define the forward pass
    z2 = self.hidden1(x)
    h2 = F.sigmoid(z2)
    z3 = self.hidden2(h2)
    h3 = F.sigmoid(z3)
    z4 = self.output(h3)
    return z4
```


The Dataset Class

```
from torch.utils.data import Dataset

class ExampleDataset(Dataset):
    def __init__(self, features, labels):
        self.features = features
        self.labels = labels

def __len__(self):
    return self.features.shape[0]

def __getitem__(self, index):
    return self.features[index], self.labels[index]
```


The DataLoader Class

Constructing a DataLoader requires passing in a subclass of Dataset to create batches from, along with the batch size required. Assuming that we use the train_dataset and test_dataset variables defined in the last code snippet, we can define wrapping data loaders as follows (where we use a mini-batch size of 32 examples for both):

```
from torch.utils.data import DataLoader

train_loader = DataLoader(train_dataset, batch_size=32)
test_loader = DataLoader(test_dataset, batch_size=32)
```


Training Neural Networks

1. Create an instance of our neural network using the definition from Section 2.

```
net = Net()
```

2. Create training and testing datasets and data loaders using the definitions from Section 3.

```
train_dataset = ExampleDataset(X_train, y_train)
test_dataset = ExampleDataset(X_test, y_test)

train_loader = DataLoader(train_dataset, batch_size=32)
test_loader = DataLoader(test_dataset, batch_size=32)
```

3. Define your loss function (criterion) and your optimization algorithm (optimizer). Here we're using cross entropy loss and SGD with our learning rate of $\eta = 0.01$.

```
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)
```


Training Neural Networks

4. Define the PyTorch training loop as seen below:

```
for epoch in range(10): # loop over the dataset multiple times
    total_train_loss = 0.0
   for i, data in enumerate(train_loader, 0):
        # get the inputs
        inputs, labels = data
        # zero the parameter gradients
        optimizer.zero_grad()
        # forward + backward + update step
        outputs = net(inputs)
        loss = criterion(outputs, labels)
       loss.backward()
        optimizer.step()
        # print statistics
        total_train_loss += loss.item()
   # the following line disables gradient calculations
   with torch.no_grad():
        # print the average test loss for the model after training on this epoch
        total_test_loss = 0
       for inputs, labels in test_loader:
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            total_test_loss += loss
   print(
        "Epoch %d: Train Loss: %.3f, Test Loss: %.3f"
       % (
            epoch + 1,
            total_train_loss / len(train_loader),
            total_test_loss / len(test_loader),
   running loss = 0.0
print("Finished Training")
```

Thank you!