# Chapitre 4 : Polynômes de degré 2 et 3

#### Définition : Polynôme de degré 2

Une fonction polynôme de degré 2 est une fonction pouvant s'écrire sous la forme

$$f(x) = ax^2 + bx + c$$

Où a, b et c sont des nombres constants.

#### **Définition: Racines**

Une fonction de degré 2 peut parfois (mais pas tout le temps) s'écrire sous la forme

$$f(x) = a \times (x - r_1) \times (x - r_2)$$

Dans ce cas, on dit que  $r_1$  et  $r_2$  sont les **racines** de f.

# **Exemple**

Si on développe l'expression (x+2)(x-1), on obtient  $x^2+x-2$ . On dit que la fonction  $f(x)=x^2+x-2$  s'écrit aussi f(x)=(x+2)(x-1), et a pour racines -2 et 1.

# **Propriété**

Si  $r_1$  et  $r_2$  sont les racines d'une fonction de degré 2 f, on a  $f(r_1) = f(r_2) = 0$ .



graphe de la fonction f(x) = (x + 2)(x - 1)

# Propriété: Courbe d'une fonction de degré 2

Si  $f(x) = ax^2 + bx + c$  est une fonction de degré 2, on peut trouver certaines propriétés de sa courbe :

- Si a>0, les "bras" de la courbe sont dirigés vers le haut. Sinon, ils sont dirigés vers le bas.
- Le point le plus bas (si a > 0) ou haut (si a < 0) de la courbe a pour abscisse  $-\frac{b}{2a}$ .
- La courbe est symétrique par rapport à l'axe  $x = -\frac{b}{2a}$ .

Si on a de plus la forme factorisée de la fonction  $f(x) = a(x - r_1)(x - r_2)$ , on sait que les points  $(r_1;0)$  et  $(r_2;0)$  font partie de la courbe.

### **Propriété**

Pour résoudre l'équation  $x^2 = a$ :

- Si a > 0, il y a deux solutions :  $x = \sqrt{a}$  ou  $x = -\sqrt{a}$ .
- Si a = 0, il n'y a qu'une solution : x = 0.
- Si a < 0, il n'y a pas de solution.

#### **Propriété**

L'unique solution de l'équation  $x^3=a$  est  $x=\sqrt[3]{a}$ , appelée la **racine troisième de** a. De plus,

- Si a > 0, x > 0
- Si a = 0, x = 0
- Si a < 0, x < 0