Lista de Repetição

Prof. Msc. Elias Batista Ferreira Prof. Dr. Gustavo Teodoro Laureano Profa. Dra. Luciana Berretta Prof. Dr. Thierson Rosa Couto

Sumário

1	Conversão de temperatura (+)	2
2	Quadrado de pares (+)	3
3	Série de pares (+)	4
4	Somatório simples (+)	5
5	Fatorial (++)	6
6	Maior segmento crescente de uma sequência (++)	7
7	Média de pares e ímpares (++)	8
8	Número de finais (++)	9
9	Cálculo da raiz quadrada (+++)	10
10	Índices da matriz inferior (+++)	11
11	José (+++)	12
12	Hipotenusas inteiras (+++)	13
13	N ao cubo (+++)	14
14	Número perfeito (+++)	15
15	Procura por número amigo (++++)	16
16	Série de Taylor para a função cosseno (++++)	17
17	Série de Taylor para a função e^x (++++)	18
18	Decomposição em fatores primos (+++++)	19

Conversão de temperatura (+) 1

(+)

Escreva um programa que imprima uma tabela de conversão de graus Fahrenheit para graus Celsius. Dado um valor de temperatura F medida na escala Fahrenheit, seu valor equivalente C na escala Celsius é dado pela seguinte equação:

$$C = \frac{5(F - 32)}{9}$$

Entrada

A entrada conterá várias linhas. A primeira delas contém o número n de temperaturas em Fahrenheit a serem convertidas para Celsius. Cada uma das n linhas seguintes contém um valor real (double) com a medida de uma temperatura em graus Fahrenheit.

Saída

O programa deve imprimir n linhas cada uma no seguinte formato x FAHRENHEIT EQUIVALE A y CELSIUS, onde x corresponde a um valor de temperatura em Fahrenheit e y corresponde ao valor equivalente em graus Celsius. Logo após a palavra CELSIUS em cada linha de saída deve ser impresso o caractere de quebra de linha. Os valores de x e y devem ser impressos com duas casas decimais.

Entrada
3
8
60
-20
Saída
8.00 FAHRENHEIT EQUIVALE A -13.33 CELSIUS
60.00 FAHRENHEIT EQUIVALE A 15.56 CELSIUS
-20.00 FAHRENHEIT EQUIVALE A -28.89 CELSIUS

Quadrado de pares (+)

Escreva um programa para ler um valor inteiro N e que gere o quadrado de cada um dos valores pares, de 1 até N, inclusive N, se for o caso.

Entrada

A entrada conterá uma linha com um valor inteiro N, 5 < N < 2000.

Saída

A saída deve conter, uma linha para cada quadrado computado. Em cada linha deve constar uma expressão do tipo $x^2 = y$, onde x é um número par e y é o seu valor elevado ao quadrado. Imediatamente após o valor de y deve aparecer o caractere de quebra de linha: '\n'.

Exemplo

Entrada					
6					
Saíd	a				
2^2	=	4			
4^2	=	16			
6^2	=	36			

¹Fonte: Site do URI - https://www.urionlinejudge.com.br/judge/pt/problems/view/1073.

3 Série de pares (+)

(+)

Escreva um programa para ler uma linha com dois números inteiros x e y. O programa deve verificar se x é um número par. Se for, o programa deve imprimir uma sequência de y números pares, iniciando com x. Se x não for par, o programa deve imprimir uma linha com a mensagem: O PRIMEIRO NUMERO NAO E PAR.

Entrada

A entrada conterá uma linha com dois números inteiros separados entre si por um caractere de espaço. Após o segundo número na entrada há um caractere de quebra de linha (\n).

Saída

Se o primeiro número for par, o programa deve imprimir uma linha contendo a sequência de números pares, com um espaço entre cada número par. Após o último número da serie, o programa deve imprimir um espaço seguido de um caractere de quebra de linha ('\n'). Se o primeiro número não for par, o programa deve imprimir a mensagem O PRIMEIRO NUMERO NAO E PAR e logo em seguida, o caractere de quebra de linha.

Ent	rada	ı								
20	10									
Saí	Saída									
20	22	24	26	28	30	32	34	36	38	

Eı	ntrada				
3	20				
Sa	ıída				
0	PRIMEIRO	NUMERO	NAO	Ε	PAR

4 Somatório simples (+)

Faça um programa que leia um valor n, inteiro e positivo, calcule e mostre a seguinte soma:

$$S = \sum_{k=1}^{n} = \frac{1}{k} = 1 + 1/2 + 1/3 + 1/4 + \dots + 1/n$$
 (1)

Entrada

O programa deve ler um número inteiro positivo e maior que 1.

Saída

O programa deve apresentar uma linha contendo o valor final do somatório com 6 casas decimais. Caso o número lido não atenda as especificações da entrada, o programa deve apresentar a mensagem: "Numero invalido!".

Observações

Use precisão dupla para o cálculo de S.

Entrada		
10		
Saída		
2.928968		

5 Fatorial (++)

Dado um número inteiro n, calcule seu fatorial n!. O fatorial de um número é dado pela equação: $n! = n(n-1)(n-2)\dots 1$. Por definição, 0! = 1.

Entrada

O programa deve ler um número inteiro n.

Saída

O programa deve apresentar uma linha com a mensagem: "n! = f", onde n é o número lido e f o seu fatorial.

Observações

O fatorial de um número é resultado de uma operação de produtório que pode levar a valores incrivelmente grandes. Lembre-se de usar tipos de dados apropriados ao problema proposto.

Entrada				
2				
Saída				
2!	= 2			

Entrada				
4				
Saída				
4!	= 24			

6 Maior segmento crescente de uma sequência (++)

(++) (POLI 89) Dados n e uma sequência de n números inteiros, determinar o comprimento

de um segmento crescente de comprimento máximo.

Entrada

O programa deve ler um número inteiro maior que zero n e uma sequência de n números inteiros em qualquer ordem.

Saída

O programa deve apresentar a mensagem "O comprimento do segmento crescente maximo e: k n", onde k é o tamanho do maior segmento crescente encontrado.

Entrada						
9						
5 10 3 2 4 7 9 8	5					
Saída						
O comprimento do	segmento	crescente	maximo	e:	4	
Entrada	Entrada					
5						
10 8 7 5 2						
Saída						
O comprimento do	segmento	crescente	maximo	e:	1	

7 Média de pares e ímpares (++)

Faça um programa que leia uma sequência de números inteiros diferente de zero e apresente a média nos números pares e a média nos números ímpares.

Entrada

O programa deve ler uma sequência de números inteiros diferentes de zero.

Saída

O programa deve apresentar duas linhas, a primeira contendo a mensagem: "MEDIA PAR = mp"e a segunda com a mensagem: "MEDIA IMPAR = mi", onde mp e mi são os valores das médias dos números pares e ímpares respectivamente.

Entrada	Saída
1 5 8 7 6 3 0	MEDIA PAR: 7.000000
	MEDIA IMPAR: 4.000000

8 Número de finais (++)

Em um campeonato de futebol os times são nomeados como Time1, Time2, ..., TimeN. A organização do campeonato deseja saber quais são as finais possíveis dado a quantidade N de times. Para resolver esse problema, você foi contratado para fazer um programa de computador que, dada a quantidade N de times, imprima todas as configurações possíveis de finais.

Entrada

O programa deve ler um número N, inteiro e positivo, referente à quantidade de times do campeonato.

Saída

O programa deve apresentar na tela a sequência de finais com cada linha no formato: Final k: Time i X Time i, onde k é um contador de finais, i e j são as denominações de cada time. Caso o número de times informado for menor que 2, então o programa deve imprimir a mensagem: "Campeonato invalido!".

Entrada					
3					
Saída					
Final	1:	Time1	Χ	Time2	
Final	2:	Time1	Χ	Time3	
Final	3 :	Time2	Χ	Time3	

Entrada	
1	
Saída	
Campeonato	invalido!

9 Cálculo da raiz quadrada (+++)

Os Babilônios utilizavam um algoritmo para aproximar uma raiz quadrada de um número qualquer, da seguinte maneira:

Dado um número n, para calcular $r=\sqrt{n}$ assume-se uma aproximação inicial $r_0=1$ e calcula-se r_k para $k=1,\ldots,\infty$ até que $r_k^2\approx n$. O algoritmo deve realizar a aproximação enquanto $|n-r_k^2|>e$. O método babilônico é dado pela seguinte equação:

$$r_k = \frac{r_{k-1} + \frac{n}{r_{k-1}}}{2} \tag{2}$$

Entrada

O programa deve ler um número **double** n, cuja raiz quadrada deseja-se obter, e o erro e que deverá ser considerado pelo algoritmo.

Saída

A saída deve apresentar cada iteração do algoritmo, sendo cada linha composta pelo valor aproximado da raiz quadrada de *n* com 9 casas decimais, seguido do erro, também com 9 casas decimais.

Ent	rada		
2			
0.0	0001		
Saíd	la		
r:	1.500000000,	err:	0.250000000
r:	1.416666667,	err:	0.006944444
r:	1.414215686,	err:	0.000006007

10 Índices da matriz inferior (+++)

Faça um algoritmo em linguagem C que apresente os pares de índices inferiores à diagonal principal de uma matriz $m \times n$. A diagonal principal corresponde aos elementos $a_{i,i}$.

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$
(3)

Entrada

O programa deve ler as dimensões m e n da matriz, onde m é o número de linhas e n o número de colunas.

Saída

O programa deve apresentar em cada linha os pares de índices de uma mesma linha. Os pares devem ser apresentados entre parênteses e separados por um ífen.

Entrada	
3	
3	
Saída	
(2,1)	
(3,1) - (3,2)	

Entrada
6
3
Saída
(2,1)
(3,1)-(3,2)
(4,1)-(4,2)-(4,3)
(5,1)-(5,2)-(5,3)
(6,1)-(6,2)-(6,3)

77
Entrada
5
2
Saída
(2,1)
(3,1)-(3,2)
(4,1)-(4,2)
(5,1)-(5,2)

11 José (+++)

João tem um irmão mais novo, José, que começou a ir à escola e já está tendo problemas com números. Para ajudá-lo a pegar o jeito com a escala numérica, sua professora escreve dois números de três dígitos e pede a José para comparar esses números. Mas em vez de interpretá-los com o dígito mais significativo à esquerda, ele deve interpretá-lo com o dígito mais significativo à direita. Ele tem que dizer à professora qual o maior dos dois números. Escreva um programa que irá verificar as respostas de José.

Entrada

A entrada conterá um inteiro T, o número de casos de testes, e, para cada caso de teste, uma única linha com dois números de três dígitos, A e B, os quais não serão iguais e não conterão zeros.

Saída

A saída deve conter, numa linha para cada caso de teste, com o maior dos números na entrada, comparados como descrito no enunciado da tarefa. O número deve ser escrito invertido, para mostrar a José como ele deve lê-lo.

Entr	ada
3	
734	893
221	231
839	237
Saída	a
437	
132	
938	

12 Hipotenusas inteiras (+++)

(IME-USP) Dado um número inteiro positivo *n*, determinar todos os inteiros entre 1 e *n* que são comprimento da hipotenusa de um triângulo retângulo com catetos inteiros. Para cada valor de hipotenusa válido no intervalo de 1 a *n*, imprimir todos os pares de catetos que formam um triângulo retângulo distinto com aquele valor de hipotenusa.

Entrada

O programa deve ler um valor inteiro n maior que zero.

Saída

O programa deve apresentar uma linha com o texto: "hipotenusa = h, catetos c_1 e c_2 ", onde h é uma hipotenusa inteira, c_1 e c_2 são seus catetos inteiros, de modo que $c_1 \le c_2$. No caso de haver mais de um par de catetos válidos para um mesmo valor de hipotenusa, por exemplo $(c_1, c_2), (c_3, c_4), \dots (c_k, c_{k+1})$, imprima os pares de tal modo que o valor do primeiro cateto seja menor ou igual ao valor do segundo cateto de um mesmo par e que o valor do primeiro cateto de um par seja menor que o valor do primeiro cateto do par de subsequente. Por exemplo, para um valor de hipotenusa igual a 85, existem os seguintes pares de catetos: (13,84), (40,75), (36,77)e(51,68). Nesse caso a saída deve ser a seguinte:

hipotenusa = 85, catetos 13 e 84 hipotenusa = 85, catetos 36 e 77 hipotenusa = 85, catetos 40 e 75 hipotenusa = 85, catetos 51 e 68

Entrada				
5				
Saída				
hipotenusa = 5,	catetos	3	е	4

Entrada		
15		
Saída		
hipotenusa	=	5, catetos 3 e 4
hipotenusa	=	10, catetos 6 e 8
hipotenusa	=	13, catetos 5 e 12
hipotenusa	=	15, catetos 9 e 12

13 N ao cubo (+++)

(IME-USP) Sabe-se que um número da forma n^3 é igual a soma de n ímpares consecutivos. Exemplo: $1^3 = 1$, $2^3 = 3 + 5$, $3^3 = 7 + 9 + 11$ e $4^3 = 13 + 15 + 17 + 19$. Dado m, determine os ímpares consecutivos cuja soma é igual a n^3 para n assumindo valores de 1 a m.

Entrada

O programa deve ler um número inteiro maior que zero.

Saída

O programa deve apresentar m linhas com a seguinte mensagem: " $k * k * k = x_1 + x_2 + ... + x_k$ ", onde k = 1, 2, ..., m e x_i é a sequência de números ímpares consecutos.

Entrada									
4									
Saída									
1*1*1	=	1							
2*2*2	=	3+5							
3*3*3	=	7+9+11							
4 * 4 * 4	=	13+15+17+19							

14 Número perfeito (+++)

Dado um número n inteiro e positivo, dizemos que n é perfeito se n for igual à soma de seus divisores positivos diferentes de n. Construa um programa que leia um número inteiro n, apresenta a soma dos divisores de n e verifica se o número informado é perfeito ou não.

Entrada

O programa deve ler um número inteiro n.

Saída

O programa deve apresentar uma linha contendo o texto: "n = d1 + d2 + d3 + ... + dk = x (MENSAGEM)", onde n é o número lido, d_i são os divisores de n em ordem crescente, x é a soma dos divisores e MENSAGEM é a mensagem "NUMERO PERFEITO" ou "NUMERO NAO E PERFEITO".

Observações

Suponha que o usuário sempre fornecerá um número maior que 1.

Eı	ntr	ada	a							
6										
Sa	aída	a								
6	=	1	+	2	+	3	=	6	(NUMERO	PERFEITO)

Entra	da												
12													
Saída													
12 =	1	+	2	+	3	+	4	+	6	=	16	(NUMERO NAO E PERFEITO)	

15 Procura por número amigo (++++)

Números amigos são números onde cada um deles é a soma dos divisores do outro. Por exemplo, o par (220,284) são números amigos porque a soma dos divisores de 220 (1, 2, 4, 5, 10, 11, 20, 22, 44, 55 e 110) é igual a 284 e a soma dos divisores de 284 (1, 2, 4, 71 e 142) é igual a 220. Faça um programa que encontre os *n* primeiros números amigos do conjunto dos números naturais. O programa deve encontrar somente números amigos diferentes. Por exemplo, o par (220,284) tem o par de números amigos correspondente (284,220), no entanto, o par é formado pelos mesmos números. O programa deve apresentar somente o primeiro par (220,284), de modo que o primeiro número amigo sempre é menor que o segundo.

Entrada

O programa deve ser um número inteiro positivo n.

Saída

Os pares de números devem ser apresentados em linhas separadas, entre parênteses, separados pos vírgula e sem espaços entre si. Ex: "(x,y)".

Observações

A procura por números amigos pode demorar muito tempo. Limite seus testes para n < 9.

Entrada							
2							
Saída							
(220, 284)							
(1184,1210)							

16 Série de Taylor para a função cosseno (++++)

Escreva um programa que dado um número real x e a quantidade de termos N, calcule o valor da função cos(x), a partir da série:

$$\cos(x) = \sum_{n=0}^{N} \frac{(-1)^n x^{2n}}{(2n)!} = \frac{x^0}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^N x^{2N}}{(2N)!}$$
(4)

, onde x é o ângulo em radianos e N a quantidade de termos da série menos 1.

Entrada

O programa deve ler o valor de x e N.

Saída

O programa deve apresentar uma linha contendo o texto " $cos(x) = y \n$ ", onde $x \notin o$ ângulo fornecido pelo usuário e y o seno do ângulo. x deve ser impresso com 2 casas decimais e y com 6 casas decimais.

Observações

Neste tipo de problema, a quantidade de termos pode gerar números muito grandes por conta da operação de fatorial e potenciação de x. Atente-se aos tipos de dados usados nas declarações das variáveis e não use valores de N maiores que 9. Lembre-se que um ângulo qualquer sempre pode ser representado por um valor entre 0 e 2π . Use a constante M_PI da biblioteca <math.h>. Como sugestão de desafio à solução do problema, tente escrever um algoritmo que use apenas um laço de repetição.

Entrada	
2	
9	
Saída	
cos(2.00)	= -0.416147
Entrada	
3.14	
6	
Saída	
cos(3.14)	= -0.999899
Entrada	
1	
4	
Saída	
cos(1.00)	= 0.540303

17 Série de Taylor para a função e^x (++++)

Escreva um programa que dado um número real x e a quantidade de termos N, calcule o valor da função e^x , a partir da série:

$$e^{x} = \sum_{n=0}^{N} \frac{x^{n}}{(n)!} = \frac{x^{0}}{0!} + \frac{x^{1}}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{N}}{(N)!}$$
 (5)

, onde x é o expoente da função e N a quantidade de termos da série menos 1.

Entrada

O programa deve ler o valor de x e N.

Saída

O programa deve apresentar uma linha contendo o texto "e^x = y\n", onde x é o expoente fornecido pelo usuário e y o valor da função. x deve ser impresso com 2 casas decimais e y com 6 casas decimais.

Observações

Neste tipo de problema, a quantidade de termos pode gerar números muito grandes por conta da operação de fatorial e potenciação de x. Atente-se aos tipos de dados usados nas declarações das variáveis e não use valores de N maiores que 9. Como sugestão de desafio à solução do problema, tente escrever um algoritmo que use apenas um laço de repetição.

Entrada		
2		
9		
Saída		
e^2.00	=	7.388713
Entrada		
3.14		
6		
Saída		
e^3.14	=	22.155058
Entrada		
1		
9		
Saída		
e^1.00	=	2.718282

18 Decomposição em fatores primos (+++++)

Todo número natural maior que 1 pode ser escrito na forma de uma multiplicação em que todos os fatores são números primos. Por exemplo, o número 36 pode ser representado pela multiplicação $2 \times 2 \times 3 \times 3$. A essa representação multiplicativa dá-se o nome de Decomposição em Fatores Primos ou Fatoração, que é um produto de fatores primos. O processo de fatoração de N segue um método prático de divisões sucessivas pelo seu menor fator primo. A cada passo, deve-se encontrar o menor divisor primo do quociente da divisão anterior. A Figura 1 mostra dois exemplos d efatoração em números primos.

Faça um programa que leia um número inteiro maior que 1 e apresente sua fatoração em números primos. Uma vez executado, o programa deve sempre apresentar uma fatoração. Caso o número lido seja inválido, o programa deve lê-lo novamente.

36	2	120	2
18	2	60	2
9	3	30	2
3	3	15	3
1		5	5
		1	

Figura 1: Exemplo de fatoração dos números 36 e 120.

Entrada

O programa deve ler um número inteiro N.

Saída

O programa deve apresentar a mensagem "Fatoracao nao e possivel para o numero x!" sempre que o número lido não é válido. Caso o número lido seja válido, então o programa deve apresentar sua fatoração no seguinte formato: $N = f1 \times f2 \times \ldots \times fk$.

Entr	ada	ì			
554					
Saída					
554	=	2	Х	277	

Entrada		
-1		
0		
120		
Saída		
Fatoracao	nao e	possivel para o numero -1!
Fatoracao	nao e	possivel para o numero 0!
120 = 2 x	2 x 2	x 3 x 5

Eı	ntr	ada
2		
Sa	ıída	a
2	=	2