Introduction to Bioinformatics and Computational Biology

2021-02-03

Contents

1	Course information		11
	1.1	Contributors	11
2	Inti	roduction	13
	2.1	Brief history of bioinformatics	14
	2.2	Should I take this course?	14
	2.3	Course information	14
	2.4	Lab 1	14
3	Hig	h throughput sequencing	15
	3.1	Three generations of sequencing technologies	15
	3.2	FASTQ and FASTQC	15
	3.3	Early sequence alignment (1 with 1) $\dots \dots \dots \dots$	15
	3.4	Sequence search algorihtms (1 with many)	16
	3.5	Borrow-Wheeler Aligner (many with many)	16
	3.6	Alignment output	16
4	RN	A-seq Quantification	17
	4.1	Introduction to RNA-seq experiment	17
	4.2	RNA quality control and experimental design	17
	4.3	Alignment	17
	4.4	RNA-seq QC	17
	4.5	RNA-seq expression index	17
	4 6	RSEM and Salmon	17

	4.7	RNA-seq read distribution	17
	4.8	Lab 2	17
5	Diff	erential expression, False discovery rate, Gene ontology	19
	5.1	RNA-seq NB distribution	19
	5.2	DESeq2 and variance stabilization $\ \ldots \ \ldots \ \ldots \ \ldots$	19
	5.3	Multiple hypotheses testing and FWER $\ \ldots \ \ldots \ \ldots$.	19
	5.4	FDR	19
	5.5	GO	19
6	GSI	EA, Clustering	21
	6.1	GSEA	21
	6.2	Heatmap and clustering quality	21
	6.3	H-cluster	21
	6.4	K-means	21
	6.5	Pick K and consensus clustering	21
	6.6	Batch effect removal	21
7	Din	nension Reduction	23
	7.1	MDS	23
	7.2	LDA	23
	7.3	PCA	23
8	Clas	ssification	25
	8.1	Intro to machine learning	25
	8.2	Cross validation	25
	8.3	Regression	25
	8.4	Regularization	25
	8.5	KNN	25
	8.6	Decision trees	25
	8.7	Random forest	25
	8.8	SVM	25

9	Module I Review		
	9.1	Gene Expression Module Summary	27
	9.2	Gene Expression Analysis Scenarios	27
10	Tra	nscription Factor Motif Finding	29
	10.1	Transcription regulation	29
	10.2	Motif representation	29
	10.3	$\mathrm{EM} \ldots \ldots$	29
	10.4	Gibbs sampler	29
	10.5	Gibbs intuition	29
	10.6	Motif finding in eukaryotes	29
	10.7	Known motif database	29
	GI T		0.1
11		P-seq, Expression Integration	31
	11.1	ChIP-seq	31
	11.2	BWA and MACS	31
	11.3	$\label{eq:Chip-seqQC} \text{Chip-seq QC} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	31
	11.4	TF interactions (motif) $\dots \dots \dots \dots \dots \dots \dots$	31
	11.5	TF target genes (expression integration)	31
10	т.	TONIA DE AL LA	0.0
12		genetics, DNA Methylation	33
	12.1	Epigenetics	33
	12.2	DNA methylation	33
	12.3	Promoter function	33
	12.4	Gene body function	33
	12.5	Enhancer function	33
	12.6	Repetitive region function	33
	12.7	Early cancer detection	33

6 CONTENTS

13	Hist	one Modifications, Chromatin Accessibility	35
	13.1	Nucleosome positions	35
	13.2	Histone modification	35
	13.3	Promoters (bivalent) $\dots \dots \dots \dots \dots \dots \dots$	35
	13.4	Genes (K36me3, new genes)	35
	13.5	Enhancers (K27ac)	35
	13.6	Super-enhancers	35
	13.7	DNase-seq	35
	13.8	ATAC-seq	35
14	Lon	g Range Chromatin Interactions	37
	14.1	Chromatin interactions	37
	14.2	HiC	37
	14.3	$\label{eq:hicken} \mbox{HiC contact map} \ \ldots \ $	37
	14.4	HiC normalization	37
	14.5	Fractal globule	37
	14.6	Loops	37
	14.7	Domains	37
	14.8	Compartments	37
	14.9	Phase separation	37
15	Hide	den Markov Model	39
	15.1	Intro to HMM	39
	15.2	Pb1: Forward & backward procedure	39
	15.3	Pb2: Viterbi algorithm	39
	15.4	Pb3: Parameter estimation	39
	15.5	HMM application	39
16	Mod	dule II Review	41
	16.1	Module II Review	41
	16.2	Practive Questions	41

CONTENTS	7

17 SNP and GWAS 43		
17.1 SNP and LD		43
17.2 Family-based vs case-control association studies		43
17.3 GWAS studies and catalog		43
17.4 GTEx and eQTL		43
18 GWAS and Epigenomics		45
18.1 Find tissue / cell type		45
18.2 Identify causal SNPs and genes		45
18.3 Predict phenotypes		45
19 Single-cell RNA-seq (1)		47
19.1 Intro to scRNA-seq		47
19.2 Smart, Droplet, microwell, SCI-based		47
19.3 QC		47
19.4 Normalization		47
19.5 Imputation		47
19.6 Dimension reduction		47
19.7 Clustering		47
19.8 t-SNE and UMAP		47
20 Single-cell RNA-seq (2)		49
20.1 Annotate scRNA-seq clusters		49
20.2 Differential expression		49
20.3 Batch effect removal		49
20.4 Pseudotime		49
20.5 Overload 10X		49
20.6 Other applications (CITE-seq, multi-seq, spatial transcriptom	ics)	49

8 CONTENTS

21	scATAC-seq	51
	21.1 Intro to scATAC-seq	51
	21.2 Sample and cell QC \hdots	51
	21.3 Dimension reduction, clustering & visualization	51
	21.4 Differential peaks and annotations	51
	21.5 Integration with scRNA-seq	51
22	Module III Review	53
	22.1 Module III Review	53
23	Cancer Genome Sequencing , Mutation analyses	55
	23.1 Intro to TCGA	55
	23.2 Cancer mutation characterization	55
	23.3 Cancer mutation patterns	55
	23.4 Tumor purity and clonality	55
	23.5 Interpret tumor mutations	55
	23.6 Find cancer genes	55
	23.7 Summary and future	55
24	Cancer Subtyping, Survival Analyses	57
	24.1 TCGA expression	57
	24.2 Tumor subtypes	57
	24.3 Survival analysis	57
	24.4 GoF Oncogenes and LoF TS $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	57
	24.5 Chromatin regulator mutations in cancer	57
	24.6 DNA methylation and CIMP	57
25	Targeted Therapy, Drug Resistance, Compound and Genetic Screens	59
	25.1 Hallmarks of cancer	60
	25.2 Chemo vs targeted therapy	60
	25.3 Drug resistance	60
	25.4 Synthetic lethality	60

9

	25.5	Precision medicine	60
	25.6	Tumor (bulk vs scRNA-seq), mice, cell lines	60
	25.7	Compound screens	60
	25.8	Genetic screens	60
	25.9	Tumor heterogeneity	60
26	Con	cer Immunotherapy (1)	61
20		Systemic immunotherapy	61
		Personalized immunotherapy	61
		HLA and neoantigens	61
	26.4	Tumor immune deconvolution	61
	26.5	T cell signaling (PD1/PDL1, etc)	61
	26.6	Other immune-cells (scRNA-seq) $\ \ldots \ \ldots \ \ldots \ \ldots$	61
27	Can	cer Immunotherapy (2)	63
	27.1	TCR analysis	63
	27.2	BCR analysis	63
		Microbiome	63
		Immunotherapy response biomarkers	63
	27.5	Targeted therapy as immune-modulators	63
	27.6	Epigenetic therapy as immune-modulators	63
28		SPR Screens	65
	28.1	CRISPR and KO	65
	28.2	CRISPRa and CRISPRi	65
	28.3	CRISPR design and outcome	65
	28.4	CRISPR screens & DepMap	65
	28.5	CRISPR screen analysis	65
	28.6	CRISPR screens in drug response	65
	28.7	CRISPR screens in immunology	65
	28.8	Enhancer CRISPR screen	65
	28.9	CRISPR screens + scRNA-seq	65

10	CONTENTS

29 Module IV Review and Course Review			
29.1 Module IV Review	67		
29.2 Course Review	67		

Course information

This is the course material for STAT115/215 BIO/BST282 at Harvard University.

1.1 Contributors

Xiaole Shirley Liu (lead instructor)

Joshua Starmer

Martin Hemberg

Ting Wang

Feng Yue

Ming Tang

Yang Liu

Bo Yuan

Jack Kang

Scarlett Ge

Jiazhen Rong

Phillip Nicol

Maartin De Vries

We thank many colleagues in the community, who helped Dr. Liu in prepare the STAT115/215 BIO/BST282 course over the years. Some of the lecture slides acknowledged their contributions, but these contributors are not individually acknowledged here.

Introduction

ก 1	Brief history	C	f 1: -	_
<i>.</i>	Bridt higtory	z or mini	ntormatic	C
4. L	DITCI IIISUUI V	יטנט נט י		

- 2.1.1 Protein structure wave
- 2.1.2 Gene expression wave
- 2.1.3 Genome sequencing wave
- 2.1.4 Big data challenge from sequencing
- 2.2 Should I take this course?
- 2.2.1 Bioinformatics vs computational biology
- 2.2.2 Is this class for me?

2.3 Course information

- 2.3.1 Logistics
- 2.3.2 X Shirley Liu lab introduction
- 2.4 Lab 1
- 2.4.1 Introduction
- 2.4.2 Introduction to R
- 2.4.3 Introduction to Bash
- 2.4.4 Getting started with Cannon

High throughput sequencing

3.1 Three generations of sequencing technologies

First generation sequencing is Sanger sequencing. It is the technology that was used to obtain the first human genome sequence.

Second generation sequencing is also called next generation sequencing (NGS) and is the start of high throughput sequencing. It is what scientists use most often nowadays, and Illumina is the market leader. Most of the rest of this course will cover data analysis using second generation sequencing.

Third generation sequencing is single-molecule sequencing. There are many new technologies still under active development, although none has reached market penetration.

3.2 FASTQ and FASTQC

NGS generates FASTQ files. FASTQC is an computational approach to evaluate the quality of your NGS data.

3.3 Early sequence alignment (1 with 1)

In the early days (1970s), scientists were not worried about having to align too many sequences. They wanted to find the best alignment between two sequences. Many bioinformatics courses start with learning these, although it is not the main focus of our course. We included two videos in case you are interested.

The Needlemen-Wunsch algorithm is the earliest algorithm to find the alignment between two sequences and score their similarity.

When two sequences are long, and only a portion of them can align well with each other, the Smith-Waterman algorithm can find the best local sequence alignment. It is still considered the best alignment approach, although it is slow.

3.4 Sequence search algorithms (1 with many)

With more and more sequences available in the public in the 1980s, scientists were interested in finding whether their newly sequenced string has been sequenced before in the public database. Therefore, the fast search algorithm BLAST was developed, using one sequence as the query to find similar sequences from a database.

3.5 Borrow-Wheeler Aligner (many with many)

With NGS, scientists need much faster search (aka mapping) algorithms in order to align the millions of sequences to the reference genome. The current best algorithm is called Borrow-Wheeler Aligner or BWA.

In order to understand BWA, we first need to introduce Borrows-Wheeler transformation and LF mapping

The basic idea of Borrows-Wheeler alignment

3.6 Alignment output

NGS raw data is in FASTQ. Alignment gives you SAM (alignment) or BAM (binary version of SAM) files which contain the sequence information in FASTQ and the mapping locations. BED file is the simpliest, although there is information loss.

RNA-seq Quantification

- 4.1 Introduction to RNA-seq experiment
- 4.2 RNA quality control and experimental design
- 4.3 Alignment
- 4.4 RNA-seq QC
- 4.5 RNA-seq expression index
- 4.6 RSEM and Salmon
- 4.7 RNA-seq read distribution
- 4.8 Lab 2
- 4.8.1 STAR tutorial
- 4.8.2 RSeQC tutorial
- 4.8.3 RSEM/Salmon Tutorial

Differential expression, False discovery rate, Gene ontology

- 5.1 RNA-seq NB distribution
- 5.2 DESeq2 and variance stabilization
- 5.3 Multiple hypotheses testing and FWER
- 5.4 FDR
- 5.5 GO

 $20 CHAPTER \ 5. \ DIFFERENTIAL \ EXPRESSION, FALSE \ DISCOVERY \ RATE, \ GENE \ ONTOLOGY$

GSEA, Clustering

- 6.1 **GSEA**
- 6.2 Heatmap and clustering quality
- 6.3 H-cluster
- 6.4 K-means
- 6.5 Pick K and consensus clustering
- 6.6 Batch effect removal

Dimension Reduction

- 7.1 MDS
- 7.2 LDA
- 7.3 PCA

Classification

- 8.1 Intro to machine learning
- 8.2 Cross validation
- 8.3 Regression
- 8.4 Regularization
- 8.5 KNN
- 8.6 Decision trees
- 8.7 Random forest
- 8.8 SVM

Module I Review

- 9.1 Gene Expression Module Summary
- 9.2 Gene Expression Analysis Scenarios

Transcription Factor Motif Finding

- 10.1 Transcription regulation
- 10.2 Motif representation
- 10.3 EM
- 10.4 Gibbs sampler
- 10.5 Gibbs intuition
- 10.6 Motif finding in eukaryotes
- 10.7 Known motif database

ChIP-seq, Expression Integration

- 11.1 ChIP-seq
- 11.2 BWA and MACS
- 11.3 ChIP-seq QC
- 11.4 TF interactions (motif)
- 11.5 TF target genes (expression integration)

Epigenetics, DNA Methylation

- 12.1 Epigenetics
- 12.2 DNA methylation
- 12.3 Promoter function
- 12.4 Gene body function
- 12.5 Enhancer function
- 12.6 Repetitive region function
- 12.7 Early cancer detection

Histone Modifications, Chromatin Accessibility

- 13.1 Nucleosome positions
- 13.2 Histone modification
- 13.3 Promoters (bivalent)
- 13.4 Genes (K36me3, new genes)
- 13.5 Enhancers (K27ac)
- 13.6 Super-enhancers
- 13.7 DNase-seq
- 13.8 ATAC-seq

Long Range Chromatin Interactions

- 14.1 Chromatin interactions
- 14.2 HiC
- 14.3 HiC contact map
- 14.4 HiC normalization
- 14.5 Fractal globule
- **14.6** Loops
- 14.7 Domains
- 14.8 Compartments
- 14.9 Phase separation

Hidden Markov Model

- 15.1 Intro to HMM
- 15.2 Pb1: Forward & backward procedure
- 15.3 Pb2: Viterbi algorithm
- 15.4 Pb3: Parameter estimation
- 15.5 HMM application

Module II Review

- 16.1 Module II Review
- 16.2 Practive Questions

SNP and GWAS

- 17.1 SNP and LD
- 17.2 Family-based vs case-control association studies
- 17.3 GWAS studies and catalog
- 17.4 GTEx and eQTL

GWAS and Epigenomics

- 18.1 Find tissue / cell type
- 18.2 Identify causal SNPs and genes
- 18.3 Predict phenotypes

Single-cell RNA-seq (1)

- 19.1 Intro to scRNA-seq
- 19.2 Smart, Droplet, microwell, SCI-based
- 19.3 QC
- 19.4 Normalization
- 19.5 Imputation
- 19.6 Dimension reduction
- 19.7 Clustering
- 19.8 t-SNE and UMAP

Single-cell RNA-seq (2)

- 20.1 Annotate scRNA-seq clusters
- 20.2 Differential expression
- 20.3 Batch effect removal
- 20.4 Pseudotime
- 20.5 Overload 10X
- 20.6 Other applications (CITE-seq, multi-seq, spatial transcriptomics)

scATAC-seq

- 21.1 Intro to scATAC-seq
- 21.2 Sample and cell QC
- 21.3 Dimension reduction, clustering & visualization
- 21.4 Differential peaks and annotations
- 21.5 Integration with scRNA-seq

Module III Review

22.1 Module III Review

Cancer Genome Sequencing, Mutation analyses

- 23.1 Intro to TCGA
- 23.2 Cancer mutation characterization
- 23.3 Cancer mutation patterns
- 23.4 Tumor purity and clonality
- 23.5 Interpret tumor mutations
- 23.6 Find cancer genes
- 23.7 Summary and future

Cancer Subtyping, Survival Analyses

- 24.1 TCGA expression
- 24.2 Tumor subtypes
- 24.3 Survival analysis
- 24.4 GoF Oncogenes and LoF TS
- 24.5 Chromatin regulator mutations in cancer
- 24.6 DNA methylation and CIMP

Targeted Therapy, Drug Resistance, Compound and Genetic Screens

- 25.1 Hallmarks of cancer
- 25.2 Chemo vs targeted therapy
- 25.3 Drug resistance
- 25.4 Synthetic lethality
- 25.5 Precision medicine
- 25.7 Compound screens
- 25.8 Genetic screens
- 25.9 Tumor heterogeneity

Cancer Immunotherapy (1)

- 26.1 Systemic immunotherapy
- 26.2 Personalized immunotherapy
- 26.3 HLA and neoantigens
- 26.4 Tumor immune deconvolution
- 26.5 T cell signaling (PD1/PDL1, etc)
- 26.6 Other immune-cells (scRNA-seq)

Cancer Immunotherapy (2)

- 27.1 TCR analysis
- 27.2 BCR analysis
- 27.3 Microbiome
- 27.4 Immunotherapy response biomarkers
- 27.5 Targeted therapy as immune-modulators
- 27.6 Epigenetic therapy as immune-modulators

CRISPR Screens

28.1	CRISPR	and KC
40.1	CUISEL	and NU

- 28.2 CRISPRa and CRISPRi
- 28.3 CRISPR design and outcome
- 28.4 CRISPR screens & DepMap
- 28.5 CRISPR screen analysis
- 28.6 CRISPR screens in drug response
- 28.7 CRISPR screens in immunology
- 28.8 Enhancer CRISPR screen
- 28.9 CRISPR screens + scRNA-seq

Module IV Review and Course Review

- 29.1 Module IV Review
- 29.2 Course Review