Определение 1. (Дифференциальное уравнение k-того порядка) на неизвестную функцию y=y(x) переменной x — это соотношение вида $F(x,y,y',y'',\ldots,y^{(k)})=0$, в которое входит x,y и первые k производных $y',y'',\ldots,y^{(k)}$ от y по x. Его решением называется всякая функция y=f(x), при подстановке которой в F вместо y получается тождественно нулевая функция от x.

Задача 1. Пусть c= const, дифференцируемые функции y=f(x), y=g(x) являются решениями уравнения y'=cy на некотором интервале и $g(x)\neq 0$ на этом интервале. Чему может быть равно отношение f(x)/g(x)?

Задача 2. Найдите все решения дифференциального уравнения y' = cy на любом интервале.

Задача 3. Найдите все функции $(0,1) \to^f \mathbb{R}$, такие что f' = -2f всюду на (0,1) и f(1/2) = 1.

Задача 4. Пусть на некотором интервале ненулевая функция y=y(x) удовлетворяет уравнению y'-cy=0, а функция z=z(x) — уравнению z'-cz=h(x), где $c={\rm const}$, а h(x) — данная функция. Выразите z/y через c и h и найдите все решения обоих уравнений.

Задача 5. Найдите все решения уравнений: **a)** y'-2y=x **6)** $y'+y=e^{2x}$ **в)** $y'+3y=\cos(2x)$

Задача 6°. Пусть l_1, l_2, \dots, l_k — это все корни многочлена $l^k + a_{k-1}l^{k-1} + \dots + a_1l + a_0$. Верно ли, что $y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = \left(\frac{d}{dx} - l_1\right)\left(\frac{d}{dx} - l_2\right)\dots\left(\frac{d}{dx} - l_k\right)y$?

Задача 7. Найдите все решения уравнений: **a)** y'' = y **б)** y'' - y' = 2y **в)** y'' + y = 2y'.

Задача 8. Выделите в предыдущей задаче те решения, которые удовлетворяют условиям:

a) y(0) = 1, y'(0) = 0 **6)** y(-1) = y(1) = 1

Определение 2. (Комплекснозначные функции) Любая функция $f: \mathbb{R} \to \mathbb{C}$ однозначно записывается в виде f(x) = u(x) + iv(x), где $u, v: \mathbb{R} \to \mathbb{R}$ суть вещественнозначные функции, называемые вещественной и мнимой частями f. Положим, по определению, f' = u' + iv' и $\int f \, dx = \int u \, dx + i \int v \, dx$.

Задача 9. Найдите вещественную и мнимую части функций $z=e^{(2+3i)x}$ и $z=e^{(2-3i)x}$.

Задача 10. Докажите, что комплекснозначная функция тогда и только тогда удовлетворяет дифференциальному уравнению вида $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_1y' + a_0y = 0$ с постоянными $a_{\nu} \in \mathbb{R}$, когда её вещественная и мнимая части удовлетворяют этому уравнению.

Задача 11. Найдите все комплекснозначные функции z=z(x), удовлетворяющие уравнениям (константа $l \in \mathbb{C}$ и комплекснозначная функция h(x) заданы): **a)** z'-lz=0 **6)** z'-lz=h(x)

Задача 12. Найдите все вещественные решения дифференциального уравнения y'' = -y.

Задача 13. Найдите все вещественные решения дифференциального уравнения y'' = -2y, удовлетворяющие условиям: **a)** y(0) = 1, y'(0) = 2 **b)** y(0) = 1, $y(\pi) = 0$.

Задача 14*. Найдите все вещественные решения дифференциального уравнения $y'' + y = e^{4x}$ с y(0) = 4, y'(0) = -3.

Задача 15. (разделённые переменные) Докажите, что дифференцируемая функция y тогда и только тогда удовлетворяет дифференциальному уравнению h(y)y'=g(x) с заданными непрерывными функциями h(y), g(x), когда при некотором постоянном c она удовлетворяет обычному (не дифференциальному) уравнению H(y)=G(x)+c, в котором H и G суть какие-либо первообразные от h и g.

Задача 16. Найдите все решения дифференциальных уравнений:

a) (x+1)y' = xy 6) $y' = y \sin x$ B) yy' + x = 1

Задача 17. Найдите все решения дифференциального уравнения $y' \operatorname{ctg} x + y = 2 \operatorname{c} y(0) = -1$.

1	2	3	4	5 5 a 6	5 B	6	7 a	7 6	7 B	8 a	8 6	9	10	11 a	11 б	12	13 a	13 б	14	15	16 a	16 б	16 B	17