

More Advanced GA Concepts

Seth Bullock

bristol.ac.uk

This lecture covers a number of Evolutionary Computation concepts:

- Premature Convergence
- Neutrality
- Quasi-Species
- Epistasis
- Problem Modularity
- No Free Lunch
- Evolvability

The Problem of Local Optima

- Hill-climbers get stuck on local optima; Exhaustive search does not
- GAs are less likely to get stuck on local optima than hill-climbers:
 - ...because they maintain and evolve a population of solutions
 - ...because genetic operators may generate a wider range of neighbours
 - These reasons exploit and rely on *diversity* in the evolving population
- Local optima are still a problem as pop diversity is not guaranteed
- Should a population of solutions end up converged within one basin of attraction they can find it difficult to escape
 - Getting stuck like this is called: premature convergence

- Neighbouring genotypes with equal fitness are 'selectively neutral'
 - ...even if their phenotypes are different.
 - Evolution cannot choose between them...
 - ...which results in 'evolutionary drift'
- Neutrality is often easy to overlook and hard to visualize, but it can be key...
 - E.g., 'neutral networks' that percolate the search space may allow converged populations to escape "local optima"

Barnett (2002). Explorations in Evolutionary Visualisation

bristol.ac.uk

The Invisible Needle

- Recall the "needle" fitness landscape we saw in a previous lecture
- The needle is hard to find because there's no gradient to climb
- But even if we start the pop on the needle, we still might not find it...
 - Notice: it's very rare for an offspring to be an exact copy of their parent
 - So a perfect solution will tend to have unfit offspring...

The Quasi-Species Concept

- Manfred Eigen & Peter Schuster developed the quasi-species concept to explain what's happening here:
 - High GA mutation rates (much higher than for DNA) mean that the evolving population is a *cloud* of points on the landscape: a *quasi-species*
 - If the selection pressure on the population to reward good solutions...
 - ...is overcome by the mutation pressure that constantly corrupts them...
 - ...then the population effectively cannot even "see" the needle.
- Conversely: if an evolving population is able to find a good solution, and stay there, we can infer that the solution must be surrounded by other pretty good solutions – it is robust

- If we're very lucky, fitness is a *linear function* of the gene alleles:
 - The contribution of each gene to fitness is *independent* of other genes
 - 1-max is a linear fitness function: fitness = the number of 1s in a bitstring
 - Trivial to optimize: optimize each gene independently
- But almost always, fitness is a non-linear function of gene alleles:
 - The contribution of genes to fitness is *interdependent* to some extent
 - The best allele choice at one gene *depends* on the alleles at other genes
 - E.g., baby skull size \leftrightarrow size of birth canal; weapon range \leftrightarrow visual range
 - This is *epistasis*: more epistasis makes a search problem harder

- The presence of epistasis
 ⇔ the existence of local optima.
 - Epistasis / local optima are different ways of describing the same thing:
 - Non-linearities in the mapping of fitness onto the search space
- Epistasis means we can't optimize each gene independently
 - Instead our algorithm must co-optimize the alleles of multiple genes
- How big is the set of interacting genes? (the 'order' of interaction)
- How many sets of interacting genes? How do they overlap?
- More generally, what is the structural modularity of the problem?

Modular Decomposability

• Herb Simon introduces a nice way of thinking about problem modularity in his book *The Sciences of the Artificial* (1969): trying to crack a safe

A bank safe has N dials, each with 100 different settings

Only one setting is correct on each dial

• All dials need to be correct to open the safe

 (Recall that Dawkins uses the same example in his *Horizon* episode...)

How hard is it to open the safe?

Herbert A. Simon

Modular Decomposability

The answer depends on the *modularity* of the safe

- For a safe with perfectly silent dials: we must search all 100^N possibilities
 - We can expect to have to check $\frac{1}{2}$ of them => $100^{N}/2$ to crack the safe
 - No modularity; no useful problem structure; solution has strong epistasis
- But if each dial gives a little *click* only when it is at the correct setting:
 - We can expect to have to check ½ of the 100 possibilities for each dial
 - => 100N/2 tries to crack the whole safe (much less time)
 - Full modularity; useful problem structure; solution has zero epistasis
 - The same as the "Methinks it is like a weasel" & 1-max problems

Partial Decomposability

- But real problems tend to lie somewhere in between:
 - Partial modularity; useful problem structure; solution has some epistasis
 - Compare: "Methinks..." vs. evolving any correct English sentence
 - English sentences have modules (words) that depend on each other
- Watson (2006): consider a safe with dials that are sensitive to each other. For each dial, *n* settings (including the correct one) give a little click:
 - n=1 (full modularity); n=100 (no modularity); n=20 (some modularity)
 - We must try $n^N/2$ combinations (much less than $100^N/2$) to crack the safe
 - (After we find which are the *n* clicky settings on each dial: 100N tries)
 - What if n is halved for every dial that is in the correct setting?

No Free Lunches

- Wolpert and Macready (1997): No Free Lunch for Optimization:
 - When algorithm performance is averaged across all possible problems:
 - Any two optimization algorithms will exhibit equivalent performance
 - i.e., no optimization algorithm can do better than blind random search
- The insight here is that every search algorithm other than random search has a *search bias*: it works on a hunch, gamble, or heuristic
- For every time the hunch pays off, there's a time where it doesn't
- Perhaps need to shift focus to satisficing rather than optimising...
- Algorithm quality depends on the problem structure that it faces

Learning How to Search

- Recall that the structure of S (including it's modularity) is influenced by our choice of representation and genetic operators
- So, we can restructure the space by making different choices
- Good choices could be the difference between success and failure
 - Might it be possible to learn which operators to use when?
 - Or to learn a good genetic representation?
 - ..either for a whole class of different, related problems (e.g., timetables)?
 - ..or online for one problem as we are trying to solve it
 - Could a GA implement evolution that gets more + more powerful?

The Evolution of Evolvability

- Natural evolution has got more powerful over time:
 - cf. the 'major transitions' in evolution (Maynard Smith and Szathmáry)
 - E.g., Single=>Multi-cellularity; A-sex=>Sex; Non-Social=>Social/Cultural
- In fact, Dawkins' paper at the first Artificial Life conference is on what his *Biomorphs* tell us about "the Evolution of Evolvability".
 - 'The ability of a population to generate adaptive genetic diversity'
 - (Here adaptive means 'well adapted' to the problem at hand)
 - i.e., evolvability is: how good is a population at evolving
 - A poor GA has low evolvability; Nature exhibits high evolvability

The Evolution of Evolvability

- More subtle mechanisms in nature:
 - DNA repair maintains some parts of the genome more carefully
 - Chromosome Organisation nearby genes less likely to be disrupted
- Genetic Algorithms can look to exploit similar tricks:
 - Analyse how fitness varies in the current population build a model
 - Use this model to predict what type of genotypic variation will be best
 - Effectively learning the structure of the problem during evolution
- E.g., "How can evolution learn?" (Watson & Szathmáry, 2015)
 - http://www.bbc.com/earth/story/20170301-life-may-actually-be-getting-better-at-evolving

Example Questions

- Complete the missing fitness entries in the two tables of genotypes and their associated fitness values, below, such that there is (i) no epistasis, (ii) some epistasis. [2 marks]
- Give an example of two aspects of a real-world problem that are linked epistatically. Explain your answer. [4 marks]
- A problem comprises two complex but almost independent sub-problems. How should a GA's genotype be structured, and what type of crossover should be used?[6 marks]

Thank you!