Partial Evaluation of (Quantum) Circuits

Jacques Carette, Amr Sabry, Gerardo Ortiz

WG 2.11, Odense, Denmark

Quantum Circuit

Introduction

Legend:

$$|0\rangle = \text{false} = 0$$

 $|1\rangle = \text{true} = 1$

Examples part I

Introduction

Examples part II

Figure: Classical core

Real Examples

- 1 Deutsch
- 2 Deutsch-Jozsa
- 3 Bernstein-Varizani
- 4 Simon
- 6 Grover
- 6 Shor

Real Examples

- Deutsch
- 2 Deutsch-Jozsa
- Bernstein-Varizani
- 4 Simon
- 6 Grover
- 6 Shor

caveat: Black-Box vs White Box

Deutsch

Introduction

Problem

Given $f : \mathbb{B} \to \mathbb{B}$, decide if f is constant or balanced.

Deutsch

Introduction

Problem

Given $f: \mathbb{B} \to \mathbb{B}$, decide if f is constant or balanced.

Definition

A boolean function is **balanced** if it outputs the same number of 0/1 outputs.

Deutsch

Introduction

Problem

Given $f : \mathbb{B} \to \mathbb{B}$, decide if f is constant or balanced.

Definition

A boolean function is **balanced** if it outputs the same number of 0/1 outputs.

$$|x\rangle |y\rangle \rightarrow |x\rangle |f(x) \oplus y\rangle$$

Deutsch-Josza

Introduction

Problem

Given $f: \mathbb{B}^n \to \mathbb{B}$, where f is known to be constant or balanced, decide which one it is.

Deutsch-Josza

Introduction

Problem

Given $f: \mathbb{B}^n \to \mathbb{B}$, where f is known to be constant or balanced, decide which one it is.

Sample outputs:

- 0 = 0
- $x_0 = 0$,
- $x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 = 0$, and
- $1 \oplus x_3x_5 \oplus x_2x_4 \oplus x_1x_5 \oplus x_0x_3 \oplus x_0x_2 \oplus x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_1x_3x_5 \oplus x_0x_3x_5 \oplus x_0x_1x_4 \oplus x_0x_1x_2 \oplus x_2x_3x_4x_5 \oplus x_1x_3x_4x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_2x_3x_5 \oplus x_0x_3x_4x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_3x_5 \oplus x_0x_1x_4x_5 \oplus x_0x_1x_3x_5 \oplus x_0x_1x_3x_4 \oplus x_0x_1x_2x_4 \oplus x_0x_1x_2x_4x_5 \oplus x_0x_1x_2x_3x_5 \oplus x_0x_1x_2x_3x_4 = 0.$

But how to *decide*? Easy: if it mentions a variable, it's balanced.

Bernstein-Varizani, Simon

Bernstein-Varizani

Problem

Given $f: \mathbb{B}^n \to \mathbb{B}$, where f is known to be of the shape $\sum_i s_i x_i \mod 2$ for some $s \in \mathbb{B}^n$ and s_i is its bit decomposition. Find s.

Bernstein-Varizani, Simon

Introduction

Bernstein-Varizani

Problem

Given $f: \mathbb{B}^n \to \mathbb{B}$, where f is known to be of the shape $\sum_i s_i x_i \mod 2$ for some $s \in \mathbb{B}^n$ and s_i is its bit decomposition. Find s.

Simon

Problem

Given $f: \mathbb{B}^n \to \mathbb{B}$, where it is known that there exist a such that $\forall x. f(x) = f(x + a)$. Find a.

Grover

Introduction

Problem

Given $f : \mathbb{B}^n \to \mathbb{B}$ where there exists a unique x such that f(x) = 1. Find x.

Problem

Given $f: \mathbb{B}^n \to \mathbb{B}$ where there exists a unique x such that f(x) = 1. Find x.

```
n = 4, w in the range \{0..15\}
```

```
\mu = 0
                1 \oplus x_3 \oplus x_2 \oplus x_1 \oplus x_0 \oplus x_2x_3 \oplus x_1x_3 \oplus x_1x_2 \oplus x_0x_3 \oplus x_0x_2 \oplus x_0x_1 \oplus x_1x_2x_3 \oplus x_0x_2x_3
                   \oplus X_0X_1X_3 \oplus X_0X_1X_2 \oplus X_0X_1X_2X_3
u = 1 x_0 \oplus x_0 x_3 \oplus x_0 x_2 \oplus x_0 x_1 \oplus x_0 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3
u = 2 x_1 \oplus x_1 x_3 \oplus x_1 x_2 \oplus x_0 x_1 \oplus x_1 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3
u = 3 x_0x_1 \oplus x_0x_1x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3
11 = 4
              X_2 \oplus X_2 X_3 \oplus X_1 X_2 \oplus X_0 X_2 \oplus X_1 X_2 X_3 \oplus X_0 X_2 X_3 \oplus X_0 X_1 X_2 \oplus X_0 X_1 X_2 X_3
u = 5
              X_0X_2 \oplus X_0X_2X_3 \oplus X_0X_1X_2 \oplus X_0X_1X_2X_3
u = 6 X_1 X_2 \oplus X_1 X_2 X_3 \oplus X_0 X_1 X_2 \oplus X_0 X_1 X_2 X_3
u = 7 x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3
u = 8 x_3 \oplus x_2x_3 \oplus x_1x_3 \oplus x_0x_3 \oplus x_1x_2x_3 \oplus x_0x_2x_3 \oplus x_0x_1x_3 \oplus x_0x_1x_2x_3
u = 9
              X_0X_3 \oplus X_0X_2X_3 \oplus X_0X_1X_3 \oplus X_0X_1X_2X_3
u = 10 x_1 x_3 \oplus x_1 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 x_3
u = 11
             x_0x_1x_3 \oplus x_0x_1x_2x_3
u = 12
             x_2x_3 \oplus x_1x_2x_3 \oplus x_0x_2x_3 \oplus x_0x_1x_2x_3
\mu = 13
             X_0X_2X_3 \oplus X_0X_1X_2X_3
u = 14 x_1 x_2 x_3 \oplus x_0 x_1 x_2 x_3
\mu = 15
              X_0 X_1 X_2 X_3
```


Problem

Factor a given N. Do this by using $f(x) = a^x \mod N$ for suitable a and $f : \mathbb{B}^Q \to \mathbb{B}^Q$ with $Q = \lceil \log_2(N^2) \rceil$.

	base		Equations			Solution
a	= 11	$x_0 = 0$				$x_0 = 0$
а	a = 4, 14	$1 \oplus x_0 = 1$	$x_0 = 0$			$x_0 = 0$
а	a = 7, 13	$1 \oplus x_1 \oplus x_0x_1 = 1$	$x_0 x_1 = 0$	$x_0 \oplus x_1 \oplus x_0 x_1 = 0$	$x_0 \oplus x_0 x_1 = 0$	$x_0=x_1=0$
а	= 2, 8	$1 \oplus x_0 \oplus x_1 \oplus x_0 x_1 = 1$	$x_0 x_1 = 0$	$x_1 \oplus x_0 x_1 = 0$	$x_0 \oplus x_0 x_1 = 0$	$x_0 = x_1 = 0$

Auto-generated circuits: 56,538 generalized Toffoli gates. For 3*65537=196611 (4,328,778 gates), 16 small equations that refer to just the four variables x_0 , x_1 , x_2 , and x_3 constraining them to be all 0, i.e., asserting that the period is 16.