Course Code	Course Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC601	Electromagnetics and Antenna	03		-	03	-		03

Course	Course Name	Examination Scheme									
Code		Theory Marks				Exam.	Term	Practical	Total		
		Internal assessment End			End	Duration	Work	and Oral			
		Test 1	Test 2	Avg. of Test 1 and Test 2	Sem. Exam	(in Hrs))				
ECC601	Electromagnetics and Antenna	20	20	20	80	03			100		

Pre-requisites:

- 1. Vector Calculus
- 2. Fundamental concepts of electricity and magnetism

Course Objective: The objective of the course is to make student familiar with Maxwell's equation and its usefulness to describe different electromagnetic phenomena such as wave propagation, radiations from antenna etc.

Course Outcome: Student will be able to:

- Students will be able to describe electromagnetics field including static and dynamic in terms of Maxwell's
 equations.
- Students will be able to apply Maxwell's equation to solve various electromagnetic phenomenon such as electromagnetic wave propagation in different medium, power in EM wave.
- Students will derive the field equations for the basic radiating elements and describe basic antenna parameters like radiation pattern, directivity, gain etc.
- Students will be able to implement different types of the antenna structures such as Antenna arrays, Microstrip
 antenna and reflector antenna etc.

Module No.	Unit No.	Topics	Hrs.		
1.0	140.	Introduction to Static fields			
1.0	1.1	Charge, Coulomb's law, Charge configurations, Electric field intensity, Electric flux density, Gauss's law and applications, Current density, and Continuity equation			
	1.2	Scalar Electric Potential, Potential gradient, Laplace's and Poison's equations			
	1.3	Biot Savart Law, Ampere Circuit law, Gauss's law for magnetic field, Vector magnetic potential			
2.0		Electromagnetic Field and Maxwell's Equations	09		
2.0	2.1	Faraday's Law, Displacement current density, Maxwell's equation for time varying filed,			
	2.2	EM wave propagation through lossy, perfect dielectric and conducting medium.			
	2.3	Power in EM Wave: Poynting theorem and Poynting vector			
3.0		Basic of Antennas	08		
0.0	3.1	Basic concepts: Radiation mechanism, Near field and far field radiation, retarded potential			
	3.2	Antenna Parameters: Isotropic antenna, Radiation pattern, radiation intensity, Beamwidth, directivity, Gain, beam efficiency, bandwidth, polarization, Input impedance, Antenna efficiency, Radiation resistance, Loss resistance, aperture concept, FRII's transmission formula			
	3.3	Wire Elements: Infinitesimal dipole, Wire dipole, Monopole antennas: radiation field derivations and related parameters, Introduction to loop antenna			
4.0		Antenna Arrays	06		
	4.1	Linear arrays of two isotropic point sources, linear arrays of N elements, Principle of pattern multiplication			
	4.2	Introduction to Planner and circular arrays Introduction to array synthesis using Binomial array			
5.0		Types of antennas	06		
	5.1	Yagi antenna, Broadband antenna like Helical and Log Periodic antenna Horn Antennas: E-Plane Sectoral Horn, H-Plane Sectoral Horn, Pyramidal Horn and Conical Horn			
	5.2	Reflector Antennas: Plane Reflectors, Corner Reflectors and Parabolic Reflector			
	5.3	Patch Antenna: Microstrip antenna, Feeding Techniques, Introduction to design of Microstrip antenna (Rectangular and circular patch)			
6.0		Electromagnetic Wave Propagation	04		
	6.1	Ground Wave Propagation, Sky Wave Propagation and Space Wave Propagation			
		Total	39		

Textbooks:

- 1. Electromagnetic Waves and Radiating Systems- Jordan and Balmain, PHI, 2nd edition
- Principles of Electromagnetics Engineering- Matthew N. O.Sadiku , S.V.Kulkarni, Oxford university press, 6th edition
- Antenna Theory: Analysis and Design, Costantine A. Balanis, John Wiley Publication, 4th edition
- 4. Antenna and wave Propagation, John D Kraus, A S Khan, McGraw Hill, 4th edition
- 5. Antenna Theory and Design. Stutzman, Theile, John Wiley and Sons, 3rd edition

Reference Books:

- Engineering Electromagnetics, William H Hayt and John A Buck, Tata McGraw-Hill Publishing Company Limited, 7th edition
- 2. Antennas and Radio Wave Propagation, R. E. Collin, McGraw Hill, International Student Edition

Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-1). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Total 04 questions need to be attempted.