Data Analysis Week 6 Task Solutions

Tasks

1. Assess the model assumptions for the parallel regression lines model. Do they appear valid?

```
par.model <- lm(score ~ age + gender, data = eval.score)
regression.points <- get_regression_points(par.model)</pre>
```

```
Warning: package 'bindrcpp' was built under R version 3.4.4
```

```
ggplot(regression.points, aes(x = age, y = residual)) +
  geom_point() +
  labs(x = "age", y = "Residual") +
  geom_hline(yintercept = 0, col = "blue", size = 1) +
  facet_wrap(~ gender)
```



```
ggplot(regression.points, aes(x = score_hat, y = residual)) +
geom_point() +
labs(x = "Fitted values", y = "Residual") +
geom_hline(yintercept = 0, col = "blue", size = 1) +
facet_wrap(~ gender)
```



```
ggplot(regression.points, aes(x = residual)) +
geom_histogram(binwidth = 0.25, color = "white") +
labs(x = "Residual") +
facet_wrap(~gender)
```


2. Return to the Credit data set and fit a multiple regression model with Balance as the outcome variable, and Income and Age as the explanatory variables, respectively. Assess the assumptions of the multiple regression model.

```
Cred <- Credit %>%
  select(Balance, Income, Age)
\# skim\_with(integer = list(hist = NULL)) \# This supresses the histograms
# Cred %>%
    skim()
Cred$Balance <- as.numeric(Cred$Balance)</pre>
Cred$Age <- as.numeric(Cred$Age)</pre>
skim_with(numeric = list(hist = NULL, missing = NULL, complete = NULL))
Cred %>%
  skim_to_list() %>%
  .$numeric %>%
  kable(col.names = c("Variable", "n", "Mean", "SD", "Minimum", "1st quartile", "Median",
                      "3rd quartile", "Maximum"), caption =
          '\\label{tab:summary} Summary statistics on Credit Card Balance, Income and Age.',
        booktabs = TRUE, format = "latex") %>%
  kable_styling(font_size = 10, latex_options = "hold_position")
```

Table 1: Summary statistics on Credit Card Balance, Income and Age.

Variable	n	Mean	SD	Minimum	1st quartile	Median	3rd quartile	Maximum
Age Balance	400 400	55.67 520.01	17.25 459.76	23 0	41.75 68.75	$ 56 \\ 459.5 $	70 863	98 1999
Income	400	45.22	35.24	10.35	21.01	33.12	57.47	186.63

Table 2: Correlation Coefficients between Credit Card Balance, Income and Age.

	Balance	Income	Age
Balance Income Age	$\begin{array}{c} 1.0000000 \\ 0.4636565 \\ 0.0018351 \end{array}$	$\begin{array}{c} 0.4636565 \\ 1.00000000 \\ 0.1753384 \end{array}$	$\begin{array}{c} 0.0018351 \\ 0.1753384 \\ 1.0000000 \end{array}$

```
ggplot(Cred, aes(x = Age, y = Balance)) +
geom_point() +
labs(x = "Age (in years)", y = "Credit card balance (in $)",
    title = "Relationship between balance and age") +
geom_smooth(method = "lm", se = FALSE)
```

Relationship between balance and age

Table 3: Estimated Coefficients from the fitted model Balance = Age + Income

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	359.673	70.358	5.112	0.000	221.351	497.994
Age	-2.185	1.199	-1.823	0.069	-4.542	0.172
Income	6.236	0.587	10.628	0.000	5.082	7.389

```
regression.points <- get_regression_points(Balance.model)

ggplot(regression.points, aes(x = Income, y = residual)) +
    geom_point() +
    labs(x = "Income (in $1000)", y = "Residual", title = "Residuals vs income") +
    geom_hline(yintercept = 0, col = "blue", size = 1)</pre>
```

Residuals vs income 1000 500 -500 100 150 Income (in \$1000)

```
ggplot(regression.points, aes(x = Age, y = residual)) +
  geom_point() +
  labs(x = "Age (in years)", y = "Residual", title = "Residuals vs age") +
  geom_hline(yintercept = 0, col = "blue", size = 1)
```



```
ggplot(regression.points, aes(x = residual)) +
geom_histogram(color = "white") +
labs(x = "Residual")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

3. Return to the Credit data set and fit a parallel regression lines model with Balance as the outcome variable, and Income and Student as the explanatory variables, respectively. Assess the assumptions of the fitted model.

Table 4: Numbers of students and non-students

Student	n
No	360
Yes	40

Table 5: Summary statistics on Credit Card Balance and Income.

Variable	n	Mean	SD	Minimum	1st quartile	Median	3rd quartile	Maximum
Balance	400	520.01	459.76	0	68.75	459.5	863	1999
Income	400	45.22	35.24	10.35	21.01	33.12	57.47	186.63

```
ggplot(Cred, aes(x = Income, y = Balance, color = Student)) +
  geom_jitter() +
  labs(x = "Income (in $1000)", y = "Credit card balance (in $)", color = "Student") +
  geom_smooth(method = "lm", se = FALSE)
```


Table 6: Estimated Coefficients from the fitted model Balance = Income + Student

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	211.143	32.457	6.505	0	147.333	274.952
Income	5.984	0.557	10.751	0	4.890	7.079
StudentYes	382.671	65.311	5.859	0	254.272	511.069

```
regression.points <- get_regression_points(par.model)

ggplot(regression.points, aes(x = Income, y = residual)) +
    geom_point() +
    labs(x = "Income (in $1000)", y = "Residual") +
    geom_hline(yintercept = 0, col = "blue", size = 1) +
    facet_wrap(~ Student)</pre>
```



```
ggplot(regression.points, aes(x = Balance_hat, y = residual)) +
geom_point() +
labs(x = "Fitted values", y = "Residual") +
geom_hline(yintercept = 0, col = "blue", size = 1) +
facet_wrap(~ Student)
```



```
ggplot(regression.points, aes(x = residual)) +
geom_histogram(color = "white") +
labs(x = "Residual") +
facet_wrap(~Student)
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Trickier

4. Load the library datasets and look at the iris data set of Edgar Anderson containing measurements (in centimetres) on 150 different flowers across three different species of iris. Fit an interaction model with Sepal.Width as the outcome variable, and Sepal.Length and Species as the explanatory variables. Assess the assumptions of the fitted model.

Table 7: Numbers of different species

Species	n
setosa	50
versicolor	50
virginica	50

Table 8: Summary statistics on Iris variables.

Variable	n	Mean	SD	Minimum	1st quartile	Median	3rd quartile	Maximum
Sepal.Length Sepal.Width			0.83 0.44	_	5.1 2.8	5.8 3	6.4 3.3	7.9 4.4

Table 9: Correlation Coefficient bewteen Sepal.Width and Sepal.Length

correlation -0.1175698

```
ggplot(Irs, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +
  geom_point() +
  labs(x = "Sepal length (in centimetres)", y = "Sepal width (in centimetres)",
      color = "Species") +
  geom_smooth(method = "lm", se = FALSE)
```


 $\begin{tabular}{ll} Table 10: Estimated Coefficients from the fitted model Sepal.Width = Sepal.Length \ . Species \\ \end{tabular}$

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	-0.569	0.554	-1.028	0.306	-1.664	0.525
Sepal.Length	0.799	0.110	7.235	0.000	0.580	1.017
Speciesversicolor	1.442	0.713	2.022	0.045	0.032	2.851
Speciesvirginica	2.016	0.686	2.938	0.004	0.660	3.372
Sepal.Length:Speciesversicolor	-0.479	0.134	-3.582	0.000	-0.743	-0.215
Sepal.Length:Speciesvirginica	-0.567	0.126	-4.490	0.000	-0.816	-0.317

```
regression.points <- get_regression_points(int.model)

ggplot(regression.points, aes(x = Sepal.Length, y = residual)) +</pre>
```

```
geom_point() +
labs(x = "Sepal length (in centimetres)", y = "Residual") +
geom_hline(yintercept = 0, col = "blue", size = 1) +
facet_wrap(~ Species)
```



```
ggplot(regression.points, aes(x = Sepal.Width_hat, y = residual)) +
  geom_point() +
  labs(x = "Fitted values", y = "Residual") +
  geom_hline(yintercept = 0, col = "blue", size = 1) +
  facet_wrap(~ Species)
```



```
ggplot(regression.points, aes(x = residual)) +
  geom_histogram(color = "white") +
  labs(x = "Residual") +
  facet_wrap(~ Species)
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

