МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

Факультет ФИЗИЧЕСКИЙ	
Кафедра _ ФИЗИКО-ТЕХНИЧЕСКО	ОЙ ИНФОРМАТИКИ
Направление подготовки 03.03.02 ФИЗ	
Образовательная программа МАГИСТ	ГРАТУРА
ВЫПУСКНАЯ КВА	ЛИФИКАЦИОННАЯ РАБОТА
	з Андрей Андреевич
(Фамилия	, Имя, Отчество автора)
Тема работы Блок упаковки данных д	для системы FEX модуля LASP жидкоаргонового
калориме	тра детектора ATLAS
«К защите допущена»	
Заведующий кафедрой	Научный руководитель
канд. физмат. наук с.н.с ИЯФ СО РАН	канд. техн. наук зав. сек. 3-12 ИЯФ СО РАН
с.н.с илф со гап Кроковный П. П. /	Жуланов В.В.
(фамилия, И., О.) (подпись, МП) «	
	Дата защиты: «»2022 г.

Содержание

B	веде	ние		3
1	Экс	сперим	иент ATLAS	4
	1.1	Калор	риметрическая система	4
		1.1.1	Электромагнитный калориметр	5
		1.1.2	Торцевой адронный калориметр	8
		1.1.3	Форвард калориметр	8
	1.2 Считывающая электроника		10	
		1.2.1	Модуль FEB2	11
		1.2.2	Система подготовки данных для триггера	12
		1.2.3	Калибровочная система	13
2		SP)	ный процессор жидкоаргонового калориметра	15
3 Цель и задачи работы		адачи работы	26	
4	Mo	дуль к	конфигурируемой перестановки (Remap)	27
	4.1 Архитектура модуля		27	
		4.1.1	Архитектура со специальным модулем синхрониза-	
			ции тактовых доменов	27
		4.1.2	Архитектура, основанная на FIFO	27
	4.2	Конф	игурирование через интерфейс медленного контроля	27
	4.3	Реали	изация	27
5	Модуль упаковки данных (Packer)			28
			окол передачи данных fFEX	28
За	клю	очение		29
\mathbf{C}_{1}	писо	к лите	ературы	30

Введение

1 Эксперимент ATLAS

Эксперимент ATLAS является одним из четырёх основных экспериментов на Большом адронном коллайдепре(БАК). Он проводится на одноимённом детекторе общего назначения, предназначенном для изучения протон-протонных столкновений, а также столкновений тяжелых ионов. С помощью детектора ATLAS проводится широкий спектр исследований в области физики элементарных частиц от поиска бозона Хиггса, до попыток обнаружения частиц, которые могут составлять тёмную материю. Кроме того, одним из важных направлений является поиск новых физических явлений, которые не описываются стандартной моделью.

1.1 Калориметрическая система

Калориметрическая система детектора ATLAS имеет ключевую роль в измерении энергии и положения электронов, фотонов и заряженных адронов. Система калориметров является составной и состоит из четырёх основных частей [1] (рис. 1):

- электномагнитная цилиндрическая;
- электромагнитная торцевая;
- адронная торцевая;
- форвард калориметр.

Важной характеристикой системы калориметров является диапазон покрытия псевдобыстроты $|\eta|$. Эта величина показывает насколько направление движения элементарной частицы отличается от оси пучка и определяется как:

$$\eta = -\ln(\tan(\frac{\Theta}{2})),\tag{1}$$

где Θ – угол между направлением импульса частицы и осью пучка. В физике коллайдеров зачастую используют именно этот показатель вместо простого полярного угла Θ в силу той особенности, что плотность числа рождённых частиц приблизительно постоянна в единицу $|\eta|$. По этой причине калориметры обычно сегментируют по псевдобыстроте, а не по телесному углу. Калориметрическая система ATLAS охватывает диапазон $|\eta|$ до 4.9.

Рис. 1: Схема калориметрической системы ATLAS

1.1.1 Электромагнитный калориметр

Для прецезионного детектирования и измерения электронов и фотонов калориметрическая система ATLAS включает в себя электромагнитный калориметр. Он состоит из центрального (баррельного) блока (EMB – electromagnetic barrel), покрывающего диапазон псевдобыстрот $|\eta| < 1,475$ и пары торцевых частей (EMEC – electromagnetic end-cap), соответствующих области $1,375 < |\eta| < 3,2$. Электромагнитные калориметры ATLAS построены по гетерогенному принципу, то есть в них разделены функции поглощения и детектирования. В качестве активного вещества служит жидкий аргон, находящийся при температуре около 90K, а для поглощающего материала используется свинец. Между пластинами поглотителя также располагаются медно-каптоновые электроды, по которым происходит снятие сигнала.

Заряженная частица, попадая в калориметр, порождает в нём электромагнитный ливень(рис. 2)[2], который детектируется по принципу ионизационной камеры: под воздействем электрического поля между заземлённым поглотителем и электродом, находящимся под высоким напряжением, ионы и электроны дрейфуют, причём последние индуцируют треугольный импульс на электроде(рис. 3)(в действительности, сигнал является более сложным, чем просто треугольник – в силу поглощения

электронов загрязняющими примесями в активном веществе, такими как кислород или хлор, результирующий сигнал падает, а его форма домножается на небольшую экспоненту). Высота индуцированного импульса пропорциональна энергии, накопленной в ячейке калориметра. Время пика импульса используется для определения времени появления частицы.

Рис. 2: Схема электромагнитного ливня

Рис. 3: Форма импульса тока электромагнитного калориметра и выходного сигнала после формирования

Электромагнитный калориметр имеет сложную геометрию в фор-

ме гармошки (аккордеон). Это позволяет достичь полную симметрию калориметра по азимутальному углу, а также обеспечить высокую гранурилованность детектора и увеличить его быстродействие за счёт малого зазора между пластинами. Толщина EMB составляет более 24 радиационных длин (X_0 , расстояние, на котором интенсивность потока электронов высокой энергии и гамма-излучения падает в е раз). Каждый модуль калориметра имеет ячеистую структуру и поделён на несколько слоёв по глубине, как, например, модуль центрального блока на рис. 4. Калориметр сконструирован таким образом, что наибольшая часть энергии собирается в среднем слое, задний слой собирает лишь хвост электромагнитного потока. Передний слой сегментирован таким образом, чтобы с его помощью можно было максимально точно определить направление падающих частиц. Таким образом, используя измерение энергии и положения всех ячеек во всех слоях калориметра можено восстановить энегрию и траекторию рождённых частиц.

Рис. 4: Схема разделения модуля ЕМВ по слоям

1.1.2 Торцевой адронный калориметр

Торцевой адронный калориметр(HEC – hadronic end-cap) детектора ATLAS состоит из двух независимых колёс, которые установлены за блоками торцевого электромагнитного калориметра. Он обеспечивает адронное покрытие псевдобыстроты в диапазоне $1, 5 < |\eta| < 3, 2$. По принципу действия торцевой адронный калориметр похож на электромагнитный, но имеет плоскопараллельную структуру внутренней геометрии с медными пластинами-поглотителями, а в качестве адсорбера в нём используется железо.

Оба колеса калориметра состоят из 32 одинаковых по азимуту модулей. Переднее колесо разделено по глубине на две секции считывания, которые суммарно содержат 24 слоя поглотителя. Заднее колесо выполнено из 16 слоёв поглотителя, объединённых в один сегмент считывания. С каждой полученной ячейки регистрируется отдельный сигнал. Для обеспечения наилучшего отношения сигнала и шума предусилители считывающей электроники калориметра находятся в среде с низкой температурой и расположены по внешнему радиусу модулей.

Важным аспектом адронного калориметра является его способность обнаруживать мюоны, а также измерять их любые ионизационные потери и треки.

1.1.3 Форвард калориметр

Форвард калориметр находится ближе всего к пучку и обеспечивает электромагнитную и адронную калориметрию в диапазоне $3, 2 < |\eta| < 4.9$. Из-за своего расположения он подвергается очень сильному воздействию дозы облучения мощностью до 10^6 $^{\Gamma p}/_{\rm rog}$ и потока нейтронов с кинетической энергией более 100 кэВ до 109 см $^{-2}{\rm c}^{-1}[3]$. С учётом этих условий форвард калориметр разрабатывался с использованием следующих принципов:

- механическая простота из небольшого набора материалов;
- использование радстойких материалов;
- использование материалов с высоким значением Z;
- достижение максимальной проективной толщины (вдоль проектив-

ных лучей от точки столкновения частиц);

• достижение максимальной средней плотности.

Калориметр состоит из трёх модулей: электромагнитного и двух адронных. В электромагнитной секции в качестве материала адсорбера используется медь, тогда как в адронных — вольфрам. Номинальные внешние размеры у всех трёх модулей равные. Внутренняя структура представляет собой матрицу шестигранных трубок, расположенных вдоль пучка, изготовленных из материала поглотителя, в которые концентрично установлены медные электроды(рис. 5). Пространство между стенками трубок и электродами заполнено жидким аргоном, выполняющим роль активного вещества. Конструкция позволяет точно контроллировать зазор между электродами.

Рис. 5: Схема внутренней структуры форвард калориметра[3]

В итоге, форвард калориметр способен работать в очень радиационно нагруженных условиях, но при этом имеет сравнительно низкое разрешение. Однако, учитывая тот факт, что проходящие через него частицы имеют одни из наибольших абсолютных энергий, относительная точность остаётся достаточно высокой и такого разрешения вполне хватает для решения существующих физических задач.

1.2 Считывающая электроника

Считывающая электроника жидкаргоновых калориметров детектора ATLAS имеет сложную структуру, но в самом верхнем уровне её можно разделить на 2 части: фронтенд и бэкенд(или как её ещё называют, задетекторная электроника). На рис. 6 изображена общая схема устройства считывающей электроники системы жидкоаргоновы калориметров.

Рис. 6: Схема считывающей электроники жидкоаргоновых калориметров ATLAS

Фронтенд часть располагается в непосредственной близости с ускорителем, поэтому на неё налагаются определённые требования по радиационной стойкости и отказоустойчивости. В рамках второй фазы обновления электроники на детектор будут установлены новые платы считывания FEB2(FEB – Front-End Board), а также платы калибровки.

Задетекторная часть удалена от радиационной зоны и принимает оцифрованные данные с фронтенда через оптические каналы связи. Имен-

но в этой части выполняется цифровая фильтрация сигналов по каждой ячейке калориметра, их буферихация до появления сигнала триггерной системы и передача соответствующих данных в систему сбора данных DAQ (Data Acquisition).

1.2.1 Модуль FEB2

Платы FEB2 принимают сигналы от калориметрических ячеек и выполняют их аналоговую обработку, включая усиление, формирование и разделение на две перекрывающиеся шкалы линейного усиления. Обе шкалы усиления оцифровываются при помощи аналогово-цифрового преобразователя(АЦП), после чего цифровые синалы сериализуются и отправляются через оптический канал связи. Для этого используется несколько специализированных интегральных микросхем, а также системы управления и синхронизации. Оцифровка данных производится на частоте 40 МГц, равной частоте столкновения частиц. Каждая плата FEB2 способна обрабатывать 128 калориметрических каналов, а для считывания всей системы жидкоаргоновых калориметров требуется 1524 таких устройств.

Аналоговая обработка данных выполнеяется в 2 этапа: на первом предусилитель обеспечивает активное завершение входных кабелей и усиливает сигналы калориметра, которые имеют динамический диапазон до 16 бит. Второй каскад — формирователь, имеет 2 цели. Вопервых, он необходим для преобразования выходного сигнала схемы предварительного усилителя в дифференциальный выходной сигнал с несколькими коэффициентами усиления, а во-вторых, для получения по крайней мере одного этапа формирования в соответствии с требованиями к обработке сигнала. При необходимости могут быть добавлены несколько эквивалентных этапов формирования с минимальными затратами энергии. Как предусилитель, так и формирователь реализовываются в одной специализированной интегральной микросхеме, способной обрабатывать 4 либо 8 калориметрических сигналов.

В дополнение к усилению и формированию сигнала необходимы некоторые переферийные схемы, такие как генератор тестовых импульсов, схема смещения, датчик температуры, а также регистры конфигурации

всего модуля.

Далее аналоговый сигнал от каждой калориметрической ячейки оцифровывается с частотой 40 МГц, синхронно с частотой соударения пучков в Большом Адронном коллайдере. Для охвата 16-битного динамического диапазона сигнал оцифровывается с двумя шкалами усиления с помощью 14-битных АЦП. Затем каждый выходной сигнал АЦП форматируется в 16-битное слово и сериализуется со скоростью передачи данных 640 Мбит/с. Каждое такое слово помимо 14 бит данных АЦП содержит бит четности для обеспечения проверки ошибок. Учитывая, что каждая плата FEB2 обрабатывает 128 калориметрических каналов, результирующая скорость передачи данных составляет 163,84 Гбит/с (256 потоков по 640 Мбит/с каждый).

Для реализации корректной синхронизации данных калориметра в модуле FEB2 предусмотрена генерация идентификатора соударения пучков (BCID – Bunch Crossing Identifier). Данный идентификатор представлен в виде 12-битного счётчика, который инкрементируется с частотой возникновения событий в коллайдере и сбрасывается после каждого завершения цикла столкновений пучков частиц на орбите. Значение BCID, как и данные АЦП сериализуются и передаются в систему задетекторной электроники через оптический канал.

Кроме основного тракта данных в модуле FEB2 присутствует подсистема, которая обеспечивает формирование входных данных для платы LTDB(LAr Trigger Digitizer Board). Данная плата обрабатывает аналоговые суммы сигналов для максимально быстрого принятия решения триггерной системы, но с более грубой детализацией, чем обеспечивается основным считыванием. Модуль FEB2 имеет набор сумматоров, которые формируют требуемые аналоговые сигналы сумм по соседним ячейкам калориметра.

1.2.2 Система подготовки данных для триггера

В целях получения как можно более быстрого решения триггерной системы, пусть даже и менее точного, в считывающей электронике жидкоаргоновых калориметров ATLAS предусмотрена система подготовки и передачи энергетических сумм по частям детектора в триггер. Такие сигналы генерируются в модуле FEB2, после чего в аналоговом виде отправляются на плату оцифровки триггера LTDB. Каждая такая плата способна обрабатывать до 320 сигналов, оцифровывая их с помощью 80 12-битных четырёхканальных АЦП[4]. Далее эти значения передаются на двадцать сериализаторов, реализованных в виде интегральных схем специального назначения, которые формируют 40 выходных потоков с объёмом данных 5,12 Гбит/с каждый для их отправки по волоконнооптическим каналом связи в систему LDPS (LAr Digital Processing System). Всего в системе считывающей электроники предусмотренно 124 модуля LTDB, которые, соответственно, суммарно генерируют поток данных со скоростью примерно 25 Тбит/с.

Управление и мониторинг системы оцифровки данных триггера осуществляется по каналам связи 5 Гбит/с, подключенным через интерфейс обмена данными между фронтенд подключениями FELIX (Front-End LInks eXchange) в систему сбора данных и триггера ATLAS TDAQ (Trigger and Data Acquisition).

Обработанные в LTDB данные затем передаются в систему цифровой обработки LDPS, которая преобразует измерения АЦП в откалиброванные значения энергии в режиме реального времени. Система построена с использованием мезонинных плат расширений AMC (Advansed Mezzanine Card), которые выполняют точное восстановление энергии и определение настоящего времени столкновения пучков. Для реализации данных функций в платах расширения применяются программируемые логические интегральные схемы (ПЛИС) Altera Arria-10.

1.2.3 Калибровочная система

Важной частью фронтенд электроники является калибровочная система. С помощью специальных плат реализуется подача точных калибровочных сигналов непосредственно на ячейки жидкоаргонового калориметра. Форма калибровочного сингала максимально приближена к импульсу ионизации, генерируемому электромагнитным ливнем в детекторе. В силу того, что получить истинно треугольный сигнал с помощью электронной схемы достаточно трудно, первоначально создаётся экспоненциальный импульс, у которого обрезается область затухания для максимального

приближения к желаемой треугольной форме, по крайней мере, в начальной части импульса. Для компенсации остаточной разницы в форме между физическим импульсом ионизации и калибровочным сигналом производится непосредственное измерение свойств последнего для их учёта в процедуре калибровки.

2 Сигнальный процессор жидкоаргонового калориметра (LASP)

Основным элементом задетекторной считывающей электроники жидкоаргонового калориметра детектора ATLAS в рамках второй фазы обновления являются модули сигнального процессора LASP (Liquid Argon Signal Processor). Они предназначены для принятия оцифрованных данных с модулей FEB2 и применения к ним цифровой фильтрации, их буферизации до появления сигнала триггера и последующей передачи в систему сбора данных DAQ. Также система LASP обеспечивает подготовку входныз данных для таких систем, как глобальный триггер и fFEX(forward Feature EXtractor). Система глобального триггера будет получать значения энергий только от тех ячеек, которые превышают заданный порог, определённый относительно общего шума. Таким образом, полосой пропускания данных можно управлять, сохраняя при этом достаточную количество информации для кластеризации событий.

Сигнальные процессоры рассчитаны на приём непрерывного потока оцифрованных данных с плат FEB2 на частоте соударения пучков частиц в Большом Адронном коллайдере (фактическая частота составляет 40.07897 МГц) для всех 182486 ячеек жидкоаргонового калориметра. Каждый модуль будет получать исходные данные с 8 плат FEB2, то есть с 1024 калориметрических ячеек. В настоящее время ведётся активная разработка этой системы.

Модули LASP требуют высокой пропускной способности ввода и вывода, а также возможности гибкого программирования алгоритмов обработки данных, цифровой фильтрации и сокращения объёма данных, поэтому в качестве основных вычислительных блоков LASP предусмотрены программируемые интегральные микросхемы. На плате каждого модуля будет располагаться 2 таких чипа для увеличения пропускной способности. Внутренняя структура дизайна программируемой логики представлена на рисунке 7.

Основными модулями сигнального процессора LASP являются:

- интерфейс нижнего уровня lolli;
- система медленного контроля sctrl;

Рис. 7: Блок схема архитектуры сигнального процессора LASP

- генератор тестовых сигналов patgen;
- выравниватель входных данных ialign;
- модуль конфигурируемой перестановки remap;
- ядро обработки данных dacore;
- процессор онлайн светимости olump;
- упаковщик триггерных данных packer;
- блок буферов buffs;
- модуль форматирования данных fbuild;
- модуль мониторинга данных damon;
- монитор состояния аппаратуры bomon.

Для работы сигнального процессора используется целый набор различных тактовых сигналов. Среди основных можно выделить:

- f_{feb} тактовая частота, синхронно с которой поступают входные данные с системы FEB2. Имеет фиксированное значение 320 МГц;
- f_{core} тактовая частота, синхронно с которой происходит непосредственная обработка данных. В зависимости от конфигурации может быть либо 320 МГц так называемая медленная опция, либо 480

МГц − быстрая опция;

- f_{sctrl} тактовая частота, на которой функционирует интерфейс медленного контроля. Непосредственное значение составляет 100 МГ $_{\rm II}$.
- f_{xgbe} тактовая частота, необходимая для приёма и отправки данных через 10 Гбит Ethernet порт(X Gigabit Ethernet). Является стендартной для такого порта и составляет 156,25 МГц.

Интерфейс нижнего уровня lolli

Также в системе присутствует ещё несколько вспомогательных тактовых сигналов, необходимых для работы DDR4 интерфейса и TTC RX.

Базовым модулем системы LASP, с помощью которого осуществляется взаимодействие с внешним миром, является интерфейс нижнего уровня lolli. Данная подсистема содержит реализации всех необходимых низкоуровневых внешних интерфейсов:

- FEB2;
- Gigabit Ethernet;
- 10 Gigabit Ethernet;
- DDR4 SDRAM;
- I2C;
- Custom BUS;
- fFEX;
- FELIX;
- Global Trigger.

При возможности, все интерфейсы из lolli в программируемую логику спроектированы с использованием стандартных потокового интерфейса Avalon Stream (AVST) и интерфейса, отображаемого на память Avalon Memory Mapped (AVMM). Это позволяет иметь четко определённые и документированные стандартные интерфейсы между каждым компонентом LASP.

Система медленного контроля sctrl

Для реализации возможности управления всеми компонентами сигнального процессора, а также их соединения с внешним миром предусмотрена система медленного контроля sctrl. Она позволяет пользователю загружать или изменять все доступные пользователю параметры кон-

фигурации, а также иметь доступ ко всем регистрам мониторинга и состояния любого модуля в режиме реального времени.

Компонент sctrl использует внешний канал связи Gigabit Ethernet, реализованный в интерфейсе lolli. Для общения с внутренними модулями используется AVMM интерфейс. Специально для интерфейса медленного контроля каждый модуль имеет набор выделенных регистров, в которых хранятся либо какие-нибудь параметры, либо данные о состоянии или некоторая статистика. Между этими регистрами есть глобальное разделение адресного пространства, через которое sctrl и способно доступаться к конкретным модулям.

Генератор тестовых данных patgen

В целях отладки системы в общей структуре релизован генератор тестовых данных patgen. С его помощью можно осуществлять ввод определяемых пользователем значений АЦП для обработки вместо данных, поступающих от FEB2. Такая возможность используется для тестирования системы и проверки основного функционала независимо от реальных данных с FEB2. Для корректной отладки с помощью pathen в него заложены следующие свойства:

- данные, генерируемые patgen имеют ту же структуру, что и данные из FEB2;
- patgen способен иммитировать рассинхронизацию между каналами данных (сдвиг по идентификатору пучка);
- каждый канал имеет независмый источник данных;
- имеется возможность выбирать между двумя возможными источниками данных(patgen или FEB2) для каждого канала данных в отдельности;
- данные генерируются непрерывно циклическим образом, повторение происходит синхронизованно с циклом пучков на орбите.

Для снижения влияния на процесс компиляции системы целиком в проектирование генератор тестовых сигналов заложен принцип минимизации занимаемых логических ресурсов. В следствие этого, patgen имеет две версии реализации:

• на основе оперативной памяти: в этой версии используются данные, хранимые во внутренней операвтивной памяти ПЛИС, записанные

- через интерфейс медленного контроля. Такой подход даёт большую гибкость, но занимает большой объём памяти;
- на основе функции генерации: в этой версии данные генерируются на лету, используя определённый алгоритм.

Выравниватель входных данных ialign

Первым модулем, который непосредственно принимает входные данные, является ialign. Он предназначен для осуществления выравнивания по времени поступающей информации с FEB2. Входной поток организован в виде кадров, содержащих данные АЦП и два идентификатора столкновения пучков для соответствующих шкал усиления, которые могут быть как идентичными, так и различными. В ходе обработки все данные АЦП выравниваются по одинаковому ВСІD. При этом порядок оцифрованных значений в рамках каждого отдельного канала может изменяться, однако он не предопределён заранее — его можно настраивать индивидуально для любого потока, но идентично для парных значений по шкалам усиления.

Важная особенность обработки данных модулем ialign — это расширение данных по временным ячейкам. То есть, по всем каналам с низкого уровня поступает по 6 значений АЦП для каждого идентификатора столкновения пучков, но данный модуль добавляет везде по 2 дополнительных невалидных значения, тем самым увеличивая число временных ячеек с данными АЦП до 8. На рисунке 8 схематично изображён выходной интерфейс компонента. Рабочей тактовой частотой для ialign является f_{feb} , соответствующая поступающим с FEB2 данным.

Модуль конфигурируемой перестановки гетар

Следующий элемент тракта данных жидкоаргонового сигнального процессора LASP – модуль гетар. Он служит для изменения порядка данных в соответствии с геометрией детектора, ведь в силу ряда технических ограничений, информация от калориметрических ячеек, поступающая через FEB2, находится в перемешанном виде. Путём переупорядочивания данных упрощается задача вычисления сумм энергии ячеек жидкоаргонового калориметра. Такие суммы необходимы для уменьшения полосы пропускания данных в системе fFEX. Как и в случае модуля ialign схема перестановки не является предопределённой — каждый выходной ка-

Puc. 8: Выходной интерфейс модуля ialign

нал может быть гибко сконфигурирован согласно требованиям. Важной особенностью является то, что помимо всего прочего, компонент конфигурируемой перестановки необходим для реализации перехода данных из тактового домена f_{feb} в домен сигнала f_{core} .

Сигнальный процессор LASP может иметь одну из двух конфигураций, так называемые медленную и быструю опции. В случае медленной опции гетар принимает входной поток данных, состоящий из 88 каналов, в которых содержится по 8 значений АЦП для каждого идентификатора соударения пучка и преобразовывыет его в аналогичный поток, но имеющий лишь 64 точно таких же канала. При этом тактовые частоты f_{feb} и f_{core} совпадают по величине 320 МГц, однако могут быть сдвинутыми по фазе. Реальный объём полезных данных не уменьшается, как это может показаться на первый взгяд, поскольку четверть входного трафика составляют невалидные значения, добавленные модулем ialign, а также присутствуют сигналы, поступающие с неподключных разъёмов FEB2. В конфигурации быстрой опции та же структура входных данных преобразовывается в 43 выходных канала, каждый из которых имеет целых 12

оцифрованных величин. Поскольку в любом варианте интервал между соседними моментами соударения пучков не изменяется и составляет 25 наносекунд, то в таком режиме тактовая частота выходной шины f_{core} пропорционально увеличена и составляет 480 МГц для обеспечения необходимой плотности данных во времени.

Ядро обработки данных dacore

Основным обрабатывающим компонентом процессора LASP является ядро обработки данных dacore. Оно преобразовывает поступающие от модуля конфигурируемой перестановки исходные значения АЦП в соответствующие энергетические величины с помощью специальных алгоритмов. Задачи обработки можно разделить на четыре основных функции:

- определение оптимального коэффициента усиления;
- коррекция пъедистала;
- вычисление энергии, временной характеристики, а также параметра качества с оптимальным разрешением для системы хранения данных (однако вычисление параметра качества и временной характеристики выполняется только для калориметрических ячеек с выделившейся в них энергией выше заданного порога);
- вычисление энергии с уменьшенным разрешением для триггерной системы.

Следовательно, компонент dacore обеспечивает 2 отдельных выходных потока:

- 1. поток для модуля упаковки данных packer, который содержит грубые энергетические значения и флаги превышения порога;
- 2. поток для блока буферов, содержащий для каждой калориметрической ячейки энергетической значений, бит оптимального коэффициента усиления и флаг превышения порога. Для высокоэнергетических ячеек добавляется время импульса и значение качества импульса.

Для повышения точности данных, направляемых в систему хранения, используется дополнительная стадия обработки, реализующая алгоритмы цифровой фильтрации. С их помощью достигается восстановление энергии с точностью 1 МэВ, которая затем кодируется многолинейным способом. Для триггерных данных также предусмотрена цифровая филь-

трация, предназначенная для подавления шумов и вычисление значений энергии с достаточной точностью для всех модулей принятия триггерных решений, подключенных к задетекторной электронике. Также для этих данных формируется по три бита превышения порогов, количественно описывающие переполнения фонового уровня энергии.

Процессор онлайн светимости olump

Одним из важнейших показателей работы коллайдера является светимость. Для его рассчёта в системе жидкоаргонового сигнального процессора предусмотрен модуль процессора онлайн светимости оlump. Этот компонент усредняет необработанные оцифрованные значения АЦП, получаемые напрямую с модуля конфигурируемой перестановки гетар, по каждому столкновению частиц. Его задачи можно разделить на 4 основных части:

- 1. вычисление суммы и суммы квадратов измерений АЦП по шкале высокого коэффициента усиления для настраиваемого набора из 8 каналов. Эти величины вычисляются для каждого столкновения пучков и накапливаются по каждому набору;
- 2. буферизация данных АЦП по шкале высокого коэффициента усиления в течение одного полного оборота пучков на орбите Большого Адронного коллайдера. Производится это по тем же наборам каналов, которые были определены выше;
- 3. вычисление оценки мгновенной светимости для этих же подмножеств каналов. Эта оценка может быть использована в ядре обработки данных dacore для компенсации влияния светимости на восстановление энергетических и временных величин;
- 4. сжатие без потерь значений сумм и сумм квадратов оцифрованных сигналов АЦП.

Упаковщик триггерных данных packer

Подготовка энергетических значений для их последующей передачи в триггерные системы задетекторной электроники осуществляется силами упаковщика триггерных данных раскег. Задачи этого компонента заключаются в следующем:

- группировка данных, полученных с ядра обработки данных;
- кодирование энергий с использованием многолинейного кодирова-

ния и их передача в системы глобального триггера и fFEX;

- отправка данных в блок буфферов;
- отправка данных в модуль damon.

Поток выходных данных для систем глобального триггера и fFEX состоит из кадров, которые содержат информацию о текущем соударении пучков. Помимо этого, в выходном канале требуется отправка служебных кадров, которые не содержат непосредственно полезные данные, а несут различную идентификационную информацию, необходимую, например, для синхронизации.

Блок буферов buffs

После обработки данные не сразу отправляются в систему хранения, а некоторое время ожидают соответствующего им триггерного сигнала в блоке буферов buffs. Буферизации подлежат все имеющиеся данные: изначальные значения АЦП, обработанные энергетические величины и триггерные данные, полученные от компонентов конфигурируемой перестановки гетар, ядра обработки dacore и упаковщика раскег соответственно. Время хранения информации требуется не меньшее, чем задержка триггера, которая составляет около 10 мкс.

Модуль форматирования данных fbuild

Последний этап обработки данных – формирование из готовых значений фрагментов, пригодных к отправке в FELIX через интерфейс нижнего уровня lolli. Эта задача выполняется с помощью модуля форматирования данных fbuild. Генерируемый формат данных может варьироваться в зависимости от назначения:

- сбор данных;
- калибровка;
- отладка;
- тестирование системы;
- ввод в эксплуатацию.

Данные, содержащиеся во фрагментах, представляют собой исходные данные АЦП или энергетические значения и связанные с ними биты валидности и качества, а также данные, отправляемые в системы глобального триггера и fFEX. Формат кадра может потребовать отправки определённых или всех этих типов данных. Кроме того, можно выбирать

один или несколько потоков выходных данных, хотя обычно используются все.

Модуль мониторинга данных damon

Кроме системы хранения данных результаты обработки могут передаваться на модуль мониторинга данных damon. Он обеспечивает низкоскоростной канал мониторинга исходных, обработанных и триггерных данных. Эти собранные значения буферизируются до тех пор, пока не будет принято решение о тои, отправлять ли их для мониторинга или нет. В конечном итоге, отобранная информация форматируется в Ethernet кадры, которые отправляются на порт XGbE интерфейса нижнего уровня lolli. Компонент damon предполагает реализацию двух возможных режимов работы:

- 1. режим мониторинга: в этом режиме осуществляется полный сбор всех входящих данных всех ячеек, которые передаются лишь по определённому условию, например, получению сигнала триггера. Частота передачи этой информации ограничена пропускной способностью внешнего интерфейса(XGbE);
- 2. режим прямой трансляции: в этом режиме производится непрерывные сбор и отправка всех входных данных, но лишь для небольшого числа ячеек. Ячейки, которые транслируются в текущий момент, определяются конфигурацией. Количество ячеек, участвующих в режиме трансляции ограничено пропускной способностью внешнего интерфейса(XGbE).

Монитор состояния аппаратуры bomon

Отдельным модулем, который не является частью тракта обработки данных жидкоаргоновых калориметров детектора ATLAS, однако имеет очень важное значение в функционировании жидкоаргонового сигнального процессора LASP можно выделить монитор состояния аппаратуры bomon. Модуль взаимодействует с устройствами, подключенным к ПЛИС через интерфейс I2C и микросхемой контроллера управления платформой IPMC (Intelligent Platform Management Controller). Вото собирает и передаёт информацию о состоянии внутреннего оборудования ПЛИС LASP, такую как температуру, токи и напряжения, а также считываеь информацию с каждого из подключенных электрооптических модулей.

Стоит отметить, что представленная на рисунке 7 блок схема является не совсем точной, поскольку в реальности структура прошивки жидкоаргонового сигнального процессора более сложная и состоит из целого набора таких систем. Полная схема архитектуры модуля LASP изображена на рисунке 9.

Рис. 9: Полная блок схема архитектуры сигнального процессора LASP

3 Цель и задачи работы

Главной целью данной работы является разработка блока упаковки данных для системы FEX модуля сигнального процессора LASP жидкоаргонового калориметра детектора ATLAS.

4 Модуль конфигурируемой перестановки (Remap)

Рис. 10: Здесь могла быть ваша реклама

- 4.1 Архитектура модуля
- 4.1.1 Архитектура со специальным модулем синхронизации тактовых доменов
- 4.1.2 Архитектура, основанная на FIFO
- 4.2 Конфигурирование через интерфейс медленного контроля
- 4.3 Реализация

- 5 Модуль упаковки данных (Packer)
- 5.1 Протокол передачи данных fFEX

Заключение

Список литературы

- ATLAS Liquid Argon Calorimeter Phase-II Upgrade Technical Design Report. — https://cds.cern.ch/record/2285582/files/ATLAS-TDR-027.pdf.
- 2. Particle shower, Wikipedia. https://en.wikipedia.org/wiki/Particle_shower.
- 3. Liquid Argon Calorimeter Technical Design Report. https://cds.cern.ch/record/331061/files/CERN-LHCC-96-41.pdf.
- 4. Design and Evaluation of LAr Trigger Digitizer Board in ATLAS Phase-I Upgrade. https://arxiv.org/pdf/1806.08046.pdf.