Optimalizace investičních prostředků z hlediska výnosu fotovoltaických elektráren

Petr Kotlan

Přírodovědecká fakulta Univerzita J. E. Purkyně

Anotace

Cílem bakalářské práce je vyvinout aplikaci, která pomocí lineárního programování (simplexová metoda) optimalizuje rozdělení investičních prostředků pro instalaci fotovoltaických elektráren na daných objektech. Optimalizace bude provedena na základě následujících hledisek:

- Typu střechy rovná, sedlová, valbová, atd.
- Spotřeby v daném místě.
- Ceně energie definované odkupem dle spotových cen OTE.
- Optimalizace uložiště.
- Výpočet předpokládaného ročního výkonu dle osvitových hodin

Osnova

- 1. Úvod
- 2. Současné modely výnosů fotovoltaických elektráren v ČR
- 3. Teoretická část
 - Přehled ekonomických pojmů
 - Základní modely matematické optimalizace
- 4. Praktická část
 - Popis aplikace
 - Případové studie
- 5. Zhodnocení výsledků
- 6. Závěr

Lineární programování

Účelová funkce

Min
$$c_1x_1 + c_2x_2 + ... + c_nx_n$$

Omezující podmínky

$$Ax \le b$$

 $x > 0$

Porovnání

- dluhopisy
- spořící účty
- NPV čistá současná hodnota
- IRR vnitřní výnosové procento

Čistá současná hodnota

$$NPV = \frac{P_1}{(1+i)} + \frac{P_2}{(1+i)^2} + \ldots + \frac{P_N}{(1+i)^N} - K$$

- NPV = čistá současná hodnota
- P_n = peněžní příjem z investice v jednotlivých letech její životnosti
- *i* = požadovaná výnosnost
- N = doba životnosti
- K = kapitálový výdaj

Vnitřní výnosové procento

$$\frac{P_1}{(1+i)} + \frac{P_2}{(1+i)^2} + \ldots + \frac{P_N}{(1+i)^N} = K$$

- *IRR* = vnitřní výnosové procento
- P_n = peněžní příjem z investice v jednotlivých letech její životnosti
- N = doba životnosti
- K = kapitálový výdaj
- *i* = hledaný úrokový koeficient