add_20241214

Eleanor Jiang 305002785

2024-12-14

```
## Rows: 448
## Columns: 34
## $ name
                          <chr> "A'donte Washington", "Aaron Rutledge", "Aaron Si~
## $ age
                          <dbl> 16, 27, 26, 25, 29, 29, 22, 35, 44, 31, 76, 40, 3~
## $ gender
                          <fct> Male, Male, Male, Male, Male, Male, Male, Male, Ma
## $ raceethnicity
                          <fct> Black, White, White, Hispanic/Latino, White, Whit~
                          <chr> "February", "April", "March", "March", "March", "~
## $ month
                          <int> 23, 2, 14, 11, 19, 7, 27, 26, 28, 7, 26, 12, 25, ~
## $ day
## $ year
                          <int> 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2~
## $ streetaddress
                          <chr> "Clearview Ln", "300 block Iris Park Dr", "22nd A~
## $ city
                          <chr> "Millbrook", "Pineville", "Kenosha", "South Gate"~
                          <chr> "AL", "LA", "WI", "CA", "OH", "AZ", "CA", "CA", "~
## $ state
## $ latitude
                          <dbl> 32.52958, 31.32174, 42.58356, 33.93930, 41.14857,~
                          <dbl> -86.36283, -92.43486, -87.83571, -118.21946, -81.~
## $ longitude
                          <int> 1, 22, 55, 6, 39, 4, 6, 6, 48, 26, 6, 6, 18, 18, ~
## $ state fp
## $ county_fp
                          <int> 51, 79, 59, 37, 153, 13, 29, 37, 41, 81, 31, 59, ^
## $ tract_ce
                          <int> 30902, 11700, 1200, 535607, 530800, 111602, 700, ~
## $ geo_id
                          <dbl> 1051030902, 22079011700, 55059001200, 6037535607,~
                          <int> 1051, 22079, 55059, 6037, 39153, 4013, 6029, 6037~
## $ county_id
                          <chr> "Census Tract 309.02", "Census Tract 117", "Censu~
## $ namelsad
## $ lawenforcementagency <chr> "Millbrook Police Department", "Rapides Parish Sh~
                          <chr> "Gunshot", "Gunshot", "Gunshot", "Gunshot", "Guns-
## $ cause
## $ armed
                          <fct> No, No, No, Yes, No, No, Yes, Yes, Yes, Yes, Yes,~
                          <int> 3779, 2769, 4079, 4343, 6809, 4682, 5027, 5238, 4~
## $ pop
## $ share_white
                          <dbl> 60.5, 53.8, 73.8, 1.2, 92.5, 7.0, 50.8, 8.6, 14.6~
## $ share black
                          <dbl> 30.5, 36.2, 7.7, 0.6, 1.4, 7.7, 0.3, 0.2, 17.7, 7~
## $ share_hispanic
                          <dbl> 5.6, 0.5, 16.8, 98.8, 1.7, 79.0, 44.2, 84.1, 66.3~
## $ p_income
                          <dbl> 28375, 14678, 25286, 17194, 33954, 15523, 25949, ~
## $ h_income
                          <int> 51367, 27972, 45365, 48295, 68785, 20833, 58068, ~
                          <int> 54766, 40930, 54930, 55909, 49669, 53596, 48552, ~
## $ county income
                          <dbl> 0.9379359, 0.6834107, 0.8258693, 0.8638144, 1.384~
## $ comp_income
                          <int> 3, 2, 2, 3, 5, 1, 4, 4, 2, 3, 4, 5, 4, 3, 1, 3, 1~
## $ county bucket
## $ nat_bucket
                          <int> 3, 1, 3, 3, 4, 1, 4, 4, 1, 2, 3, 5, 2, 2, 1, 3, 2~
                          <dbl> 14.1, 28.8, 14.6, 11.7, 1.9, 58.0, 17.2, 12.2, 37~
## $ pov
                          <dbl> 0.09768638, 0.06572379, 0.16629314, 0.12482727, 0~
## $ urate
                          <dbl> 0.16850951, 0.11140236, 0.14731227, 0.05013293, 0~
## $ college
```


Age Distribution

Unemployment Rate Distribution

The demographic analysis shows that the deceased had a mean age in their 30s, with the age range extending to over 80. The unemployment rate in their residential tracts averaged 10%, reaching a maximum of 51%. The gender distribution was heavily skewed, with 428 males and 20 females.

Economic Conditions and Racial Composition

Correlation Plot of Economic Related Indicators

Due to sample size limitations, the racial composition analysis was restricted to three main groups: White

(52%), Black, and Hispanic/Latino, with Asian and Native American groups (each <5%) with less than 30 people being excluded from the analysis. For our **research question 1**, it is clear that a multinomial logistic regression is proficient in this case. The box plot reveals distinct income disparities across racial groups, suggesting relative income as a potentially significant predictor. Analysis of economic indicators showed high correlations among most variables, with tract-level unemployment rate being the exception. Based on this correlation analysis, we selected unemployment rate and one additional economic indicator for the final model.

```
library(nnet)
library(pander)
# Data preprocessing
rq1_data$raceethnicity <- droplevels(rq1_data$raceethnicity[</pre>
  !rq1 data$raceethnicity %in% c("Asian/Pacific Islander", "Native American")
])
# Model fitting
rq1_model <- multinom(
 raceethnicity ~ comp_income + urate + college + pop + age + share_black*pov,
  data = rq1_data
## # weights: 30 (18 variable)
## initial value 476.797733
## iter 10 value 345.193804
## iter 20 value 325.104151
## final value 325.086555
## converged
# Model summary and statistics
summary_model <- summary(rq1_model)</pre>
coef <- summary model$coefficients</pre>
se <- summary model$standard.errors</pre>
z_scores <- coef / se</pre>
p_values <- 2 * (1 - pnorm(abs(z_scores)))</pre>
summary_table <- data.frame(</pre>
 Estimate = as.vector(coef),
  `Std.Error` = as.vector(se),
 `z value` = as.vector(z_scores),
  `Pr(>|z|)` = as.vector(p_values)
)
# Display using pander
library(pander)
pander(summary_table)
```

Estimate	Std.Error	z.value	$\Pr{\dots z}$
0.8195	0.0001909	4293	0
1.267	0.0003199	3963	0
-1.1	0.0001554	-7080	0
-0.6648	0.0002588	-2569	0
2.255	3.446e-05	65457	0
1.327	4.421e-05	30014	0
2.501	3.931e-05	63608	0

Estimate	Std.Error	z.value	Prz
-1.182	9.798 e - 05	-12068	0
-7.902e-05	5.11e-05	-1.546	0.122
-8.661e-06	5.639 e-05	-0.1536	0.8779
-0.0426	0.008538	-4.989	6.061 e-07
-0.07276	0.01134	-6.416	1.399e-10
0.04169	0.01369	3.045	0.002328
0.01525	0.02649	0.5756	0.5649
-0.01369	0.01341	-1.021	0.3074
0.04703	0.01441	3.263	0.001101
0.0002493	0.0004544	0.5488	0.5832
-0.001571	0.001032	-1.523	0.1277

```
# Model accuracy
predicted_classes <- predict(rq1_model, rq1_data)
accuracy <- mean(predicted_classes == rq1_data$raceethnicity)
cat("Model Accuracy:", round(accuracy, 4), "\n")

## Model Accuracy: 0.7028

# AIC comparison
null_model <- multinom(raceethnicity ~ 1, data = rq1_data)

## # weights: 6 (2 variable)
## initial value 476.797733
## final value 425.765085
## converged
cat("Null Model AIC:", null_model$AIC, "\n")

## Null Model AIC: 855.5302
cat("Full Model AIC:", rq1_model$AIC, "\n")</pre>
```

Full Model AIC: 686.1731

The difference in AIC between the null model and rq1_model is:855.5302 - 686.1731 = 169.3571. This substantial reduction in AIC (169.36 points) indicates that rq1_model provides a much better fit compared to the null model, as lower AIC values suggest better model fit. A difference greater than 10 points is typically considered strong evidence for the superior model. The model also has an accuracy of 0.7, indicating a fair performance of inference of our outcome variable.