$\mathcal{B}([a,b]) = ?$

赖睿航 518030910422 March 30, 2020

Let (\mathbb{R}, τ) be the usual topology of \mathbb{R} .

According to the definition of Borel σ -algebra, $\mathcal{B}(\mathbb{R})$ is the σ -algebra generated by all sets in τ .

But consider interval [a, b]. We want to ask what is $\mathcal{B}([a, b])$?

We need to know the definition of **Subspace Topology**:

Given the usual topology space (\mathbb{R}, τ) and a subset S of \mathbb{R} , the subspace topology on S is defined by:

$$\tau_S = \{ S \cap U \mid U \in \tau \} \tag{1}$$

So according to the definition above, the subspace topology on [a, b] is:

$$\tau_{[a,b]} = \{[a,b] \cap U \mid U \in \tau\}$$

$$(2)$$

Therefore, let $U_1:=(a-1,b+1), U_2:=(a-1,x), U_3:=(y,b+1)$ with $x,y\in (a,b)$. Obviously $U_1,U_2,U_3\in \tau$. Then we have:

$$egin{aligned} [a,b] &= [a,b] \cap U_1 \Rightarrow [a,b] \in au_{[a,b]} \ [a,x) &= [a,b] \cap U_2 \Rightarrow [a,x) \in au_{[a,b]} \ (y,b] &= [a,b] \cap U_3 \Rightarrow (y,b] \in au_{[a,b]}. \end{aligned}$$

It means that we can regard [a,b],[a,x),(y,b] as "open sets" on [a,b]. And $\mathcal{B}([a,b])$ is the σ -algebra generated by all sets in $\tau_{[a,b]}$, which includes [a,b],[a,x),(y,b] as well.