Class	Test No. 11	Friday 03 rd Oct 2019	Duration: 10 Minutes	Closed notes
Name:			Roll No	
	Choose on	ly one option which is the r	nost appropriate for questio	ns 1 - 5.
l. Pha	se lag, employ	ed for calculation of phase	margin, is positive when mea	sured
		wise from positive real axis		
	(b) clockwise	from negative real axis		
	(c) clockwise	from positive real axis		
	(d) anti-clock	wise from negative real axis		
2. If th	e gain of a sta	ble minimum phase plant is	s increased, phase margin no	rmally will
	(a) increase			
	(b) decrease			
	(c) remain una			
	(d) be undefin	ned		
3. Syst	ems with infin	ite phase margin always ha	ve	
	(a) no phase of	rossover		
	(b) no gain cr	<u>ossover</u>		
	(c) zero gain	margin		
	(d) infinite ga	in margin		
	•		s defined as the angle between	n the phasor from
he ori		e to -1+j0 and the phasor fro		
		e plot intersection point with		
		ne plot intersection point with		
		rigin to the plot intersection		
	(d) G-plane of	rigin to the plot intersection	point with the negative real ax	iis
5. In th	he context of N	Nyquist plot, gain margin is	determined from location of t	its
		n with negative real axis in r		
		n with negative imaginary a		
		n with positive real axis in re		
	(d) intersection	on with negative real axis in i	relation to unit circle	
Give s	hort (1 - 2 line	es) answer to the questions	6-10	
6. Who lant?	•	hat the gain and phase ma	rgins are positive for a stable	e minimum phase
		ain and phase margins are po	ositive when at GCO the phases than 1.	e angle magnitude
				2 (PTO)

7. How do the gain and phase margins relate in an overall sense, to the real part ' σ ' of 2	^{2nd} orde	r
dominant poles of a closed loop system?		

In an overall sense, gain margin relates to ω_n while phase margin relates to ζ , where $\sigma = \zeta \omega_n$.

8. What is the basic advantage and main drawback of systems having infinite gain margin?

Basic advantage of infinite gain margin is that we can significantly improve the tracking performance by increasing gain, while drawback is the worsening of transient response.

9. Define gain margin in the Nyquist context.

Gain margin, in Nyquist context, is the reciprocal of the length of the phasor from origin to the intersection point of Nyquist plot with negative real axis.

10. Give the gain and phase margins of the plant given alongside.
$$G(s) = \frac{(s-1)}{(s+1)}$$

GM = 0, PM = 0 (Both PCO and GCO are '0').