Corriente Alterna

Ejercicios Resueltos

1) Suponga que se desea que la amplitud de la corriente de un inductor de un receptor de radio sea 250µA cuando la amplitud del voltaje es 3,60 V a una frecuencia de 1,60 MHz a) ¿Cuál es la reactancia inductiva que se necesita? b) Si la amplitud el voltaje se mantiene constante ¿cuál será la amplitud de la corriente a través de este inductor a 16,0 MHz? ¿y a 160 kHz?

Datos del problema				
$I = 250 \mu A$	$V_L = 3,60 V$	f = 1,60 MHz	$f_1 = 16 MHz$	$f_2 = 160 KHz$

a)
$$V_L = X_L I \Longrightarrow X_L = \frac{V_L}{I} \Longrightarrow X_L = \frac{3,60 \text{ V}}{250 \text{ uA}}$$

$X_L = 14400 \,\Omega$

$$X_L = 2\pi f L \Longrightarrow L = \frac{X_L}{2\pi f}$$

$$L = \frac{14400 \Omega}{2\pi \cdot 1,60.10^6 Hz} \Longrightarrow L = 1,43 mH$$

Para $f_1 = 16 MHz$

$$X_{L1} = 2\pi f_1 L \Longrightarrow X_{L1} = 2\pi \cdot 16.10^6 Hz \cdot 14,3.10^{-3} H$$

$$X_{L1} = 144000 \Omega$$

$$V_L = X_{L1} I_1 \Longrightarrow I_1 = \frac{V_L}{X_{L1}} \Longrightarrow I_1 = \frac{3,60 V}{144000 \Omega}$$

$$I_1 = 25 \mu A$$

Para $f_2 = 160 \, KHz$

$$X_{L2} = 2\pi f_2 L \Longrightarrow X_{L2} = 2\pi \cdot 160.10^3 Hz \cdot 1,43.10^{-3} H$$

$$X_{L2} = 1437,59 \Omega$$

$$V_L = X_{L2} I_2 \Longrightarrow I_2 = \frac{V_L}{X_{L2}} \Longrightarrow I_2 = \frac{3,60 V}{1437,59 \Omega}$$

$$I_2 = 2,5 mA$$

2. Un condensador de $20\mu F$ se conecta a un generador de corriente alterna que proporciona una caída de potencial de amplitud $100\ V$ (valor máximo). Hallar la reactancia capacitiva y la corriente máxima cuando la frecuencia es a) 60Hz y b) $6000\ Hz$.

3. Un circuito RLC en serie tiene $R=425~\Omega$; L=1,24~H; $C=350~\mu F$. Está conectado a una fuente de CA con $f=60~Hz~y~V_{max}=150~V~a)$ Determinar la reactancia inductiva, la reactancia capacitiva y la impedancia del circuito b) Encuentre la corriente máxima del circuito, c) Encuentre el ángulo de fase entre la corriente y el voltaje d) Encuentre el voltaje máximo a través de cada elemento.

a.
$$X_L = 2\pi f L \Rightarrow X_L = 2\pi \cdot 60Hz \cdot 1,24H$$

$$X_L = 467,46\Omega$$

$$X_C = \frac{1}{2\pi f C} \Rightarrow X_C = \frac{1}{2\pi \cdot 60Hz \cdot 350.10^{-6}F}$$

$$X_C = 7,57\Omega$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2} \Rightarrow Z = \sqrt{(425\Omega)^2 + (467,46\Omega - 7,57\Omega)^2}$$

$$Z = 626,19\Omega$$

$$b.I = \frac{V_{max}}{Z} \Longrightarrow I = \frac{150 V}{626,19 \Omega}$$

I = 0.24 A

c.
$$\tan \varphi = \frac{X_L - X_C}{R} \Longrightarrow \varphi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$$

$$\varphi = \tan^{-1} \left(\frac{467,46 \Omega - 7,57 \Omega}{425 \Omega} \right) \Longrightarrow \varphi = 47,26^{\circ}$$

d.
$$V_R = IR \implies V_R = 0.24 A \cdot 425 \Omega \implies V_R = 102 V$$

$$V_L = IX_L \Longrightarrow V_L = 0.24 A \cdot 467.46 \Omega \Longrightarrow V_L = 112.19 V$$

$$V_C = IX_C \Longrightarrow V_C = 0.24 A \cdot 7.57 \Omega \Longrightarrow V_C = 1.82 V$$

4. Una fuente de corriente alterna cuyo valor máximo es $V_{M\acute{a}x}$ = 311 V y su frecuencia es f= 50 Hz, se conecta en serie con una resistencia y un capacitor cuyos valores son: R= 40 Ω , C= 100 μ F; a) Determinar la amplitud y la fase de la corriente respecto de la tensión de la fuente; b) La diferencia de potencial en la resistencia y en el capacitor; c) Hacer un diagrama fasorial

Datos del problema			
$V_{M\acute{a}r} = 311 V$	f = 50 Hz	$R=40~\Omega$	$C = 100 \mu F$

a.
$$X_C = \frac{1}{2\pi fC} \Rightarrow X_C = \frac{1}{2\pi \cdot 50 \, Hz \cdot 100.10^{-6} F} \Rightarrow X_C = 31,83 \,\Omega$$

$$Z = \sqrt{R^2 + X_C^2} \Rightarrow Z = \sqrt{(40 \,\Omega)^2 + (31,83 \,\Omega)^2} \Rightarrow Z = 51,12 \,\Omega$$

$$V_{ef} = \frac{V_{M\acute{a}x}}{\sqrt{2}} = 220 \,V$$

$$I_{ef} = \frac{V_{ef}}{Z} \Rightarrow I_{ef} = \frac{220 \, V}{51,12 \,\Omega} \Rightarrow I_{ef} = 4,3 \,A$$

$$I = I_{ef}\sqrt{2} \Rightarrow I = 4,3 \,A\sqrt{2} \Rightarrow I = 6,08 \,A$$

$$\varphi = \tan^{-1}\left(\frac{X_L - X_C}{R}\right) \Rightarrow \varphi = \tan^{-1}\left(\frac{-31,83 \,\Omega}{40 \,\Omega}\right)$$

 $\varphi = -38,5^{\circ}$ se adelanta respecto de la tensión

b.
$$V_C = IX_C \implies V_C = 6,08 A \cdot 31,83 \Omega \implies V_C = 193,53 V$$

$$V_R = IR \implies V_R = 6.08 A \cdot 40 \Omega \implies V_R = 243.2 V$$

С.

