KU LEUVEN

Multi-Agent Systems Based Solution for Pickup-And-Delivery

Thierry Deruyttere (r0660485) Armin Halilovic (r0679689) KU Leuven - Multi-Agent Systems

- 1 Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- 6 Multi-Agent System Design
- **6** Experiments
- Conclusions

- 1 Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- 6 Experiments
- Conclusions

1 Problem definition - Setting

- Pizzeria chain RoboPizza
- Pizza delivery using robots (AGVs)
- ► RoboPizza receives pizza delivery requests (tasks), robots deliver the pizzas

1 Problem definition - Environment

- Grid city system
- AGVs can go in both directions on streets
- AGVs can pass each other
- Dynamism:
 - · Road works cause streets to be closed off
- Efficiency measure:
 - Total waiting time for tasks

1 Problem definition - Robots

- Can move from and to any position in the city
- Have static maps and can compute paths between locations
- Can carry up to 5 pizzas at once
- Can only communicate with entities that are close to them (i.e. city node they are on)
- Run on batteries which need to be recharged
 - Can charge at charging station
 - Station supports limited amount of robots at once
- Potential crash:
 - Can run out of battery ightarrow reset battery after time delay as simulation of manual replacement

1 Problem definition - Tasks

- Consist of picking up (multiple) pizzas and delivering them to a destination in the city
- ▶ If there are more than 5 pizzas in a task, it has to be split up
- Pizzas have no preparation time and can be picked up instantly
- Created each simulation tick with low probability that scales with city size:
 - Amount of pizzas by Gaussian distribution
 - Delivery position uniformly random in city

- 2 Objectives

2 Objectives

- Develop a BDI & Delegate MAS algorithm for the described setting
- ▶ Analyze the performance for certain parameter settings

- Problem definition
- Objectives
- **3** Research Questions and Hypotheses
- 4 Variables
- 6 Multi-Agent System Design
- 6 Experiments
- Conclusions

3 Research Questions and Hypotheses I

- ▶ What is the relation between the amount of requests that RoboPizza receives and the waiting time for customers?
 - H_1 : The waiting time increases with the amount of requests.
 - H₀: The waiting time does **not** increase with the amount of requests.
- Do robots drive more (non-idle time) when there are more requests in the system?
 - H₁: Robots drive more when there are more requests in the system.
 - H_0 : Robots do **not** driving more when there are more requests in the system.

3 Research Questions and Hypotheses II

- ▶ Does increasing the amount of robots decrease customer waiting time when there are many requests?
 - H_1 : Increasing the amount of robots decreases customer waiting time when there are many requests.
 - H₀: Increasing the amount of robots does not decrease customer waiting time when there are many requests.
- How do waiting times change as the amount of road works changes (dynamism)?
 - H_1 : Waiting times increase as the amount of road works increase.
 - H₀: Waiting times do **not** increase as the amount of road works increase.

- Problem definition
- Objectives
- Research Questions and Hypotheses
- 4 Variables
- 6 Multi-Agent System Design
- 6 Experiments
- Conclusions

4 Independent Variables

- $ightharpoonup n_{robots} = ext{amount of delivery robots (4)}$
- $p_{request} = \text{probability for a new request (0.001*city size)}$
- μ_{pizza} , σ_{pizza} = Gaussian distribution parameters for amount of pizzas (4, 0.75)
- $ightharpoonup p_{road_works_start} = \text{probability for road works to start (0)}$
- city size = the size of the city (20)
- timeRoadWorks = the time a roadwork takes ((city size * city size * node distance) * 1000)
- chargingStationCapacity = the amount of robots that can charge at the same time (2)

4 Dependent Variables

- lacktriangledown $t_{wait} = ext{total}$ waiting time for customers
- $ightharpoonup t_{robots_driving} = ext{total time robots spent driving}$
- $t_{robots_idle} = total time robots were idle$
- lacktriangledown $t_{robots_charging} = ext{total time robots were charging}$
- $ightharpoonup n_{robots_distance}$ = the cumulative distance all robots have traveled
- $lacktriangleright n_{requests} = {
 m amount\ of\ requests\ in\ the\ system}$
- $n_{road_works} =$ amount of road works
- $ightharpoonup n_{deliveries} = \text{amount of finished deliveries}$
- $avg_{pizzas} =$ average amount of pizzas carried by robots

4 Other Variables

- $ightharpoonup v_{robots} = ext{moving speed of the robots (1)}$
- $ightharpoonup c_{robots} =$ the amount of pizzas a robot can carry (5)
- $t_{pizza} =$ the baking time of a pizza (0)
- lacktriangledown $t_{simulation} =$ the total length of the simulation (10 hours)
- robot_charge = amount by which a battery will be recharged in one tick (0.01 * battery capacity)
- battery_capacity = the pizzas of a robot's battery (city size * city size * node distance)
- ▶ node distance = the length between two nodes (2 * robot length)
- robot length = the length of the robot (1)
- paths to explore = amount of paths explored by A* (3)

4 Other Variables

- battery rescue delay = The time it takes before a robot without battery is saved (5 * (battery capacity / robot_charge) * tick length)
- tick length = the length of one tick (1000L)
- ▶ $t_{intentionRefresh}$ = the amount of time it takes before a robot resends intention ants (0.5 * intention reservation lifetime)
- ▶ $t_{intentionReservation}$ = the amount of time an intention reservation lasts (4 * city size * node distance / robot speed) * 1000)
- ▶ $t_{explorationRefresh}$ = the amount of time it takes before a robot resends intention ants (0.4 * intention reservation lifetime)

- Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- 6 Experiments
- Conclusions

5 Multi-Agent System Design: Overview

- Agents
 - Robot Agent for each robot
 - Resource Agent for each node on world graph
- Ant-based Delegate MAS
 - Desire Ants
 - Find delivery tasks
 - Exploration Ants
 - Find paths towards destinations
 - Intention Ants
 - Choose path and create reservation
- Buildings
 - 1 Pizzeria
 - 1 Charging Station
 - Random Road Works

5 Multi-Agent System Design: Robot Strategy

strategy

- Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- **6** Experiments
- Conclusions

6 Experiments

- Different parameter settings for each hypothesis
- Each experiment is run 50 times
- Experiment end statistics are written to files
- Test method: two-sample t-test
- Significance level: 0.05
- Hypotheses entail one-tailed tests. Null hypothesis will be rejected if the mean difference between sample means is too small.
- Could not experiment with varying dynamism because of an error with RinSim Experiment repeats we couldn't fix

6 Experiments: Question 1 (1)

- ► What is the relation between the amount of requests that RoboPizza receives and the waiting time for customers?
 - H_1 : The waiting time increases with the amount of requests.
 - H_0 : The waiting time does **not** increase with the amount of requests.
- ▶ TODO: Hypotheses in termen van $H_0: \mu_1 \ge \mu_2$ en $H_1: \mu_1 < \mu_2$
- http://stattrek.com/hypothesis-test/difference-in-means.aspx

6 **Experiments: Question 1 (2)**

▶ grafieken ofzo

6 Experiments: Question 2 (1)

- ▶ Do robots drive more (non-idle time) when there are more requests in the system?
 - H_1 : Robots drive more when there are more requests in the system.
 - H_0 : Robots do **not** driving more when there are more requests in the system.
- ▶ TODO: Hypotheses in termen van $H_0: \mu_1 \ge \mu_2$ en $H_1: \mu_1 < \mu_2$
- http://stattrek.com/hypothesis-test/difference-in-means.aspx

6 **Experiments: Question 2 (2)**

▶ grafieken ofzo

6 Experiments: Question 3 (1)

- ▶ Does increasing the amount of robots decrease customer waiting time when there are many requests?
 - H₁: Increasing the amount of robots decreases customer waiting time when there are many requests.
 - H_0 : Increasing the amount of robots does **not** decrease customer waiting time when there are many requests.
- ▶ TODO: Hypotheses in termen van $H_0: \mu_1 \ge \mu_2$ en $H_1: \mu_1 < \mu_2$
- http://stattrek.com/hypothesis-test/difference-in-means.aspx

6 Experiments: Question 3 (2)

► grafieken ofzo

- Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- 6 Experiments
- Conclusions

Conclusions

conclude our Conclusions

