AVL Ağaçları: Motivasyon

- İkili arama ağaçları üzerindeki tartışmalarımızı hatırlarsak
 - Ağacın yüksekliği ekleme sırasına bağımlıdır.
 - Ö.g., 1, 2, 3, 4, 5, 6, 7 sayılarını boş bir ağaca eklersek
 - Problem: Dengenin bozulması Ağaç bağlantılı liste seklinde bozulur.
 - Tüm operasyonların karmaşıklığı O(h) olduğunda, log N <= h <= N-1, İkili arama ağacı operasyonlarının en kötü çalışma zamanı O(N) olur.
- Soru: Ekleme sırasına bakmadan BST nin yüksekliği log(n) olabilir mi? Bir başka deyişle, BST'yi dengeli bir şekilde tutabilir miyiz.

Yükseklik Dengeli Ağaçlar

- BST operasyonlarını daha kısa sürede gerçekleştirmek için pek çok BST dengeleme algoritması vardır.
 - Adelson-Velskii ve Landis (AVL) ağaçları (1962)
 - Splay ağaçları (1978)
 - B-ağacı ve diğer çok yönlü arama ağaçları (1972)
 - Red-Black ağaçları (1972)
 - Ayrıca Simetrik İkili B-Ağaçları(Symmetric Binary B-Trees) şeklinde de bilinir

AVL Ağaçları: Tanım

- 1. Tüm boş ağaç AVL ağacıdır.
- 2. Eğer T boş olmayan T_L ve T_R şeklinde sol ve sağ alt ağaçları olan ikili arama ağacı ise, T ancak ve ancak aşağıdaki şartları sağlarsa AVL ağacı şeklinde isimlendirilir.
 - 1. Tı ve Tr AVL ağaçları ise
 - 2. hl ve hr Tl ve Tr nin yükseklikleri olmak üzere | hl hr | <= 1 olmak zorundadır.

AVL Ağaçları

- AVL ağaçları dengeli ikili arama ağaçlarıdır.
- Bir düğümdeki denge faktörü = yükseklik(sol altağaç) yükseklik(sağ altağaç)
- AVL ağaçlarında balans faktörü sadece -1, 0, 1 olabilir.
- Her bir düğümün sol ve sağ alt ağaçlarının yükseklikleri arasındaki fark en fazla 1 olabilir.

AVL Ağacı

Kırmızı numaralar balans fartörüdür.

AVL Ağaçları: Örnekler

AVL Ağacı

AVL Ağacı Değildir

AVL Ağacı Değildir

AVL Ağacı

AVL Ağacı

AVL Ağacı Değildir

Kırmızı numaralar balans faktörüdür.

AVL Ağacı: Gerçekleştirim

 AVL ağacının gerçekleştirimi için her x düğümünün yüksekliği kaydedilir.


```
class AVLDugumu{
   int deger;
   int yukseklik;
   AVLTDugumu sol;
   AVLDugumu sag;
}
```

- x'in balans faktörü = x'in sol alt ağacının yüksekliği - x'in sağ alt ağacının yüksekliği
- AVL ağaçlarında, "bf" sadece {-1, 0, 1} değerlerini alabilir.

AVL Ağaçları

 N düğümlü bir AVL ağacının yüksekliği daima O(log N) dir.

AVL Ağacı

· Peki nasıl?

Kırmızı numaralar balans fartörüdür.

AVL Ağaçları: Güzel ve Çirkin

- Güzel:
 - Arama süresi O(h) = O(logN)
- Çirkin
 - Ekleme ve silme işlemleri ağacın dengesiz olmasına neden olabilir.

Artık AVL ağacı değil

AVL Ağacında Dengenin Sağlanması

- Problem: Ekleme işlemi bazı durumlarda ekleme noktasına göre kök olan bölgelerde balans faktörün 2 veya -2 olmasına neden olabilir.
- Fikir: Yeni düğümü ekledikten sonra
 - 1. Balans faktörü düzelterek köke doğru çık.
 - Eğer düğümün balans faktörü 2 veya -2 ise ağaç bu düğüm üzerinde döndürülerek düzeltilir.

Denge Sağlama: Örnek

- Yeni düğümü ekledikten sonra
 - Balans faktörü düzelterek köke doğru çık.
 - Eğer düğümün balans faktörü 2 veya -2 ise ağaç bu düğüm üzerinde döndürülerek düzeltilir.

AVL Ağacı - Ekleme (1)

- P düğümünün dengeyi bozan düğüm olduğu düşünülürse.
 - P pivot düğüm şeklinde isimlendirilir.
 - Eklemeden sonra köke doğru çıkarken bf'nin 2 veya 2 olduğu ilk düğümdür.

AVL Ağacı - Ekleme (2)

- 4 farklı durum vardır:
 - Dış Durum (tek döndürme gerektiren):
 - 1. P'nin sol alt ağacının soluna eklendiğinde (LL Dengesizliği).
 - 2. P'nin sağ alt ağacının sağına eklendiğinde (RR Dengesizliği)
 - İç Durum (2 kez döndürme işlemi gerektiren):
 - 3. P'nin sol alt ağacının sağına eklendiğinde (RL Dengesizliği)
 - 4. P'nin sağ alt ağacının soluna eklendiğinde(LR Dengesizliği)

LL Dengesizliği & Düzeltme

- LL Dengesizliği: P'nin sol alt ağacının soluna eklendiğimizde (A alt ağacınına)
 - P'nin bfsi 2
 - L'nin bfsi 0 veya 1
- Düzeltme: P etrafında sağa doğru dönderme.

LL Dengesizliği Düzeltme Örneği (1)

LL Dengesizliği Düzeltme Örneği (2)

RR Dengesizliği & Düzeltme

- RR Dengesizliği: P'nin sağ alt ağacının sağına eklendiğinde (D alt ağacına eklendiğinde)
 - $P \rightarrow bf = -2$
 - $R \rightarrow bf = 0 \text{ veya } -1$
- Düzeltme: P etrafında sala doğru dönderme

RR Dengesizliği Düzeltme Örneği (1)

40 eklendikten sonra ağacın durumu

Balans faktörü düzelterek köke doğru ilerle Pivotun belirlenmesi

Dengesizliğin türünün belirlenmesi

- RR Dengesizliği:
 - $P(20) \rightarrow bf = -2$
 - $R(30) \rightarrow bf = 0 \text{ veya } -1$

AVL ağacı

RR Dengesizliği Düzeltme Örneği (2)

40 eklendikten sonra ağacın durumu

RR Düzeltmesi yapıldıktan sonra AVL ağacı

Balans faktörü düzelterek köke doğru ilerle ve 10'u pivot olarak belirle Dengesizliğin türünün belirlenmesi

- RR Dengesizliği:
 - $P(10) \rightarrow bf = -2$
 - $R(20) \rightarrow bf = 0 \text{ veya } -1$

LR Dengesizliği & Düzeltme

Eklemeden sonra ağaç

1. Döndürmeden sonra ağaç

LR Düzeltmesinden sonra

- LR Dengesizliği: P'nin sol alt ağacının sağına eklendiğinde (LR ağacına)
 - $P \rightarrow bf = 2$
 - $L \rightarrow bf = -1$
- Düzeltme: L & P etrafında 2 kez döndürme

LR Dengesizliği Düzeltme Örneği

Balans faktörü düzelterek köke doğru ilerle ve 10'u pivot olarak belirle Dengesizliğin türünün belirlenmesi

ağacın durumu

• LR Dengesizliği:

-
$$P(10) \rightarrow bf = 2$$

-
$$L(4) \rightarrow bf = -1$$

RL Dengesizliği & Düzeltme

- RL Dengesizliği: P'nin sağ alt ağacının soluna eklendiğinde (RL alt ağacına)
 - $P \rightarrow bf = -2$
 - $-R \rightarrow bf = 1$
- Düzeltme: R & P etrafında 2 kez döndürme.

RL Dengesizliği Düzeltme Örneği

Balans faktörü düzelterek köke doğru ilerle ve 10'u pivot olarak belirle

Dengesizliğin türünün belirlenmesi

- RL Dengesizliği:
 - $P(10) \rightarrow bf = -2$
 - $R(20) \rightarrow bf = 1$

Silme

- Silme işlemi ekleme işlemi ile benzerlik gösterir.
- Öncelikle ikili arama ağacındaki gibi normal silme işlemi yapılır.
- Düğüm silindikten sonra, ağaçta köke doğru ilerleyin ve balans faktörünü güncelleyin.
 - Eğer dengesiz bir düğüm tespit edilirse, uygun döndürme işlemlerini yapın.
 - Bu işlem sırasında birden fazla döndürme işlemi yapılabilir.

23

Silme Örneği (1)

Başlangıçtaki AVL Ağacı 20 silindikten sonra Ağacın durumu 10'un pivot olarak belirlenmesi LL Düzeltmesinden Sonra AVL Ağacı

Balans faktörü düzelterek köke doğru ilerle Dengesizliğin türünün belirlenmesi

- LL Dengesizliği:
 - **P(10)**'ün **bf**si 2
 - **L(4)**'ün **bf**si 0 veya 1

Silme Örneği (2)

Başlangıçtaki AVL Ağacı 20 silindikten sonra Ağacın durumu 10'un pivot olarak belirlenmesi

Balans faktörünü düzelterek köke doğru ilerle Dengesizliğin türünün belirlenmesi

- LR Dengesizliği:
 - $P(10) \rightarrow bf = 2$
 - $L(4) \rightarrow bf = -1$

Silme Örneği (3)

Balans faktörü düzelterek köke doğru ilerle

Silme örneği (3) - devam

Dengesizliğin türünü belirle

RR Dengesizliği:

- $P(20) \rightarrow bf = -2$
- $R(30) \rightarrow bf = 0 \text{ veya } -1$

Yukardaki AVL ağacı mıdır?

Balans faktörü düzelterek köke doğru ilerle.

Silme Örneği (3) - devam

Dengesizliğin türünü belirle

- LL Dengesizliği:
 - $P(15) \rightarrow bf = 2$
 - $L(5) \rightarrow bf = 0 \text{ veya } 1$

15'in pivot olarak belirlenmesi

Düzeltilmiş AVL ağacı

Arama (Bul)

- AVL ağacı bir tür İkili Arama Ağacı (BST)
 olduğundan arama algoritması BST ile aynıdır.
- · O(logN) de çalışması garantidir.

AVL Ağaçları - Özet

- AVL Ağaçlarının Avantajları
 - 1. AVL ağacı devamlı dengeli olduğu için Arama/Ekleme/Silme işlemi O(logN) yapılır.
 - 2. Düzeltme işlemi algoritmaların karmaşıklığını etkilemez.

- AVL Ağaçlarının Dezavantajları:
 - 1. Balans faktörü için ekstra yer gereklidir.
 - 2. Arı dengeli ağaçlarda AVL ağaçları kadar iyi performans verir ayrıca bu tür algoritmalarda balans faktör kullanılmaz
 - Splay ağaçları