Computer Organization and Architecture

3 Integer, Floating-point and Decimal Representation

Tongwei Ren

Sep. 10, 2018

Review

- A top-level view of computer
- Computer component
 - Memory: cache, memory hierarchy
 - I/O: buffer
 - CPU: interrupt
 - Bus: type

Operation In Program

• Negation: y = -x

• Addition: x = 9 + -8 How to represent the numbers?

• Subtraction: x = 5 - 3

• Multiplication: x = 2 * 5 How to do the operations?

• Division: x = 7/9

•

Binary Representation

Binary Representation

- 为了表示出多个数值,必须对多个位进行组合
 - 如果有k位, 最多能区分出2^k个不同的值
- 整数类型
 - 无符号整数
 - 有符号整数:原码,反码,补码
 - 原码和反码在进行加法运算时都会造成不必要的硬件需求, 于是就出现了补码
 - 二进制补码的运算
 - 二进制-十进制转换

Integer Representation

Complement representation vs. sign magnitude representation

	complement	sign magnitude			
9	0000 1001	0000 1001			
+ 8	+ 0000 1000	+ 0000 1000			
17	0001 0001 17	0001 0001 17			
9	0000 1001	0000 1001			
+ -8	+ 1111 1000	+ 1000 1000			
1	10000 0001 1	1001 0001 -17			

Integer Representation

Value of complement representation

$$[X]_C = X_n X_{n-1} \dots X_2 X_1$$

$$X = -X_n \times 2^{n-1} + \dots + X_2 \times 2^1 + X_1 \times 2^0$$

-128	64	32	16	8	4	2	1	
1	0	0	0	0	0	1	1	
-128						+2	+1	= -125

Value range

$$-2^{n-1} \le X \le 2^{n-1} - 1$$

Floating-point Representation

- Real number representation
- The value range of fixed-point representation is limited
- Scientific notation

$$\pm S \times B^{\pm E}$$

- ±(sign): plus or minus
- S (significand)
- B (base): implicit and need not be stored because it is the same for all numbers
- E (exponent)

Floating-point Representation (cont.)

Real number representation (cont.)

Normalized Number

• Any floating-point number can be expressed in many ways 0.110×2^5 , 110×2^2 , 0.0110×2^6

Normalized representation

$$+1.bbb...b \times 2^{\pm E}$$

- The sign is stored in the first bit of the word
- The first bit of the true significand is always 1 and need not be stored in the significand field
- The value 127 is added to the true exponent to be stored in the exponent field
- The base is 2

Normalized Number (cont.)

- Value range
 - Negative numbers between $-(2-2^{-23}) \times 2^{128}$ and -2^{-127}
 - Positive numbers between 2^{-127} and $(2-2^{-23}) \times 2^{128}$

[袁睿, 131250088]

Normalized Number (cont.)

- There is a trade-off between range and precision
 - Increase number of exponent bits: expand the range of expressible numbers, but reduce number precision
 - Increase number of significand bits: increase number precision, but reduce the range of expressible numbers
- Using a larger base
 - Achieve a greater range for the same number of exponent bits, but less precision

IEEE Standard 754

Define both a 32-bit single and a 64-bit double format

- Define two extended formats
 - Include additional bits in the exponent (extended range) and in the significand (extended precision)
 - Lessen the chance of excessive round off error and intermediate overflow

IEEE Standard 754 (cont.)

Format parameters

	Format						
Parameter	Single Single Extended Double		Double	Double Extended			
Word width (bits)	32	≥43	64	≥79			
Exponent width (bits)	8	≥11	11	≥15			
Exponent bias	127	unspecified	1023	unspecified			
Maximum exponent	127	≥1023	1023	≥16383			
Minimum exponent	-126	≤-1022	-1022	≤-16382			
Number range (base 10)	$10^{-38}, 10^{+38}$	unspecified	$10^{-308}, 10^{+308}$	unspecified			
Significand width (bits)*	23	≥31	52	≥63			
Number of exponents	254	unspecified	2046	unspecified			
Number of fractions	2^{23}	unspecified	2 ⁵²	unspecified			
Number of values	1.98×2^{31}	unspecified	1.99×2^{63}	unspecified			

IEEE Standard 754 (cont.)

Interpretation

	Single Precision (32 bits)				Double Precision (64 bits)				
	Sign	Biased exponent	Fraction	Value	Sign	Biased exponent	Fraction	Value	
positive zero	0	0	0	0	0	0	0	0	
negative zero	1	0	0	-0	1	0	0	-0	
plus infinity	0	255 (all 1s)	0	∞	0	2047 (all 1s)	0	∞	
minus infinity	1	255 (all 1s)	0	$-\infty$	1	2047 (all 1s)	0	$-\infty$	
quiet NaN	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN	
signaling NaN	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN	
positive normalized nonzero	0	0 < e < 255	f	2 ^{e-127} (1.f)	0	0 < e < 2047	f	2 ^{e-1023} (1.f)	
negative normalized nonzero	1	0 < e < 255	f	$-2^{e-127}(1.f)$	1	0 < e < 2047	f	$-2^{e-1023}(1.f)$	
positive denormalized	0	0	f ≠ 0	$2^{e-126}(0.f)$	0	0	f ≠ 0	2 ^{e-1022} (0.f)	
negative denormalized	1	0	f ≠ 0	$-2^{e-126}(0.f)$	1	0	f ≠ 0	$-2^{e-1022}(0.f)$	

IEEE Standard 754 (cont.)

Example

```
0.5 = 0.100...0B = (1.00..0)2\times2^{-1}
0.1111110 000...00 (23)
-0.4375 = -0.01110...0B = - (1.110...0)2\times2^{-2}
1.01111101 110...00 (21)
```


Decimal Representation

- Problem of floating-point arithmetic
 - Limitation in precision
 - High cost in conversion
- Application requirement
 - Calculation of long numerical string: accountancy, ...
- Solution
 - Represent 0, 1, ..., 9 with four-bits Binary-Coded Decimal (BCD), and calculate directly

Decimal Representation (cont.)

- Natural Binary Coded Decimal (NBCD, 8421 code)
 - 0 ~ 9: 0000 ~ 1001
 - Sign: Use four most significant bits
 - Positive: 1100 / 0
 - Negative: 1101 / 1
 - Examples
 - +2039: 1100 0010 0000 0011 1001 / 0 0010 0000 0011 1001
 - -1265: 1101 0001 0010 0110 0101 / 1 0001 0010 0110 0101
- Other Binary Coded Decimal
 - 2421, 5211, 4311, ...

Summary

- Integer representation
- Floating-point Representation
- Decimal representation

Thank You

rentw@nju.edu.en

