Goal of the Project

- Simulate and perform layout of an operational transconductance amplifier.
- Note: Read the classic neural amplifier paper to understand the process of designing an amplifier.
- Schematic of the OTA is shown below.

Figure 1. Schematic of an OTA.

- Using the widths and lengths given in the table below, you will find the... (*using AC analysis*) for both schematic and layout. For frequency = 1k Hz...
 - Open loop gain (dB) = -337.6 dB
 - F-3db frequency (Hz) = 14.19 Hz
 - Unity gain frequency (Hz) = 0 Hz

Transistors	W/L (um) 2.8575	W/L (lamda)
M1, M2	200/4	572/11
M3, M4, M5, M6	12/4	34/11
M7, M8, M9, M10	24/4	69/11
Ibias	8 uA	

- Overall area = $((228*277.5)+(30*234))/(2.8575)^2 = 8608.4 \text{ um}^2$
- Overall power consumption = $6.15 * 10^{-5} W$

Schematic

Testbench

Layout

Extracted

Elick D'Rozario ENEE 408D

AC Analysis

