Дата:19.01.2024

Клас: 9а

Вчитель: Родіна Алла Олегівна (rodinallo4ka@gmail.com)

Тема: Гомологія. Гомологи метану (перші десять), їхні молекулярні і структурні формули та назви.

Мета: наочно зрозуміти, що таке гомологічний ряд сполук, які вуглеводні є гомологами метану, вміти називати гомологи метану і складати їх формули, а також дізнатися про фізичні властивості метану і його гомологів.

Вуглеводні - орг. сполуки, які складаються <u>тільки</u> з атомів Карбону і Гідрогену . Залежно від характеру карбонових зв'язків і співвідношенням атомів С і Н вони поділяються на кілька груп.

С – Карбон валентність = 4 Н – Гідроген валентність = 1

Насичені вуглеводні (алкани) - сполуки, у молекулах яких атоми Карбону сполучені між собою простим одинарним зв'язком, а всі інші валентності насичені атомами Гідрогену.

Найпростіший представник алканів - метан. Молекулярна формула - СН4 Будова тетраедрична

Формула вуглеводню, яка містить два атоми Карбону:

Якщо в молекулі метану один атом Гідрогену замінити на метильну групу (-СН₃), то ми отримуємо наступний представник гомологічного ряду - етан

Молекулярна **фо**рмула:

Структурная формула:

Кулестрижнева модель молекули

Масштабна модель молекули:

Структуру кожного наступного гомолога можна вивести з попередньою аналогічною операцією – заміною Гідрогену в попередній одиниці на метильну групу. Таким чином, з етану одержуємо пропан – C_3H_8

Порівнюючи формули вуглеводнів між собою, легко помітити, що кожний наступний представник ряду відрізняється від попереднього на одну і ту ж групу $-CH_2$, яка називається гомологічною різницею.

Сполуки, подібні за будовою, а отже властивостями, і відрізняються одна від одної на одну або кілька груп -СН₂, називаються гомологами (від грецького "homologos", "homos" - подібний, схожий та "logos" - слово, закон).

Ряд гомологів, розташованих у порядку зростання атомів Карбону утворюють гомологічний ряд.

Гомологічний ряд метану

Алкани, парафіни, насичені вуглеводні

$$CH_4$$
 — метан C_6H_{14} — гексан C_2H_6 — етан C_7H_{16} — гептан C_3H_8 — пропан C_8H_{18} — октан C_4H_{10} — бутан C_9H_{20} — нонан C_5H_{12} — пентан $C_{10}H_{22}$ — декан

 $C_n H_{2n+2}$ (загальна формула алканів)

Алкани - гомологи метану C_nH_{2n+2} С H_4 метан C_2H_6 етан C_3H_8 пропан C_4H_{10} бутан

пентан

гекс*ан*

гепт<u>ан</u>

OKT<u>ah</u>

HOHaH

дек<u>ан</u>

Перші чотири представники гомологічного ряду алканів мають історичні (емпіричні) назви. Починаючи з 5 представника назва утворюється від грецьких або латинських числівників, які вказують на кількість атомів Карбону в ланцюгу. В числівнику замість закінчення -а дається суфікс -ан.

додека - 12
тридека - 13
тетрадека - 14
пентадека - 15
гексадека - 16
гептадека - 17
октадека - 18
нонадека-19 (лат.мова)
ейкоза - 20

ундека - 11 (лат.мова)

У французів

- Антуан де Сент Екзюпері
- Оноре де Бальзак

 C_5H_{12}

 C_6H_{14}

 C_7H_{16}

C₈H₁₈

 C_9H_{20}

 $C_{10}H_{22}$

- Ги де Мопассан
- Шарль де Голь

Закінчення в українських прізвищах

- •Петренко
- Шевченко
- шевченко
- Іваненко
- Григоренко

У голландців

- Вінсент ван Гог
- Людвіг ван Бетховен
- Пол ван Дайк
- ПОЛВИН ДИИК
- Рууд ван Ністелрой
- Антоні ван Левенгук

Насичені вуглеводні, молекули яких мають відкритий ланцюг із атомів Карбону – алкани. Відомо, що молекула метану має форму тетраедра.

Молекули пропану і наступних гомологів метану мають зигзагоподібний карбоновий ланцюг, а не лінійний, як ми звикли зображувати їх.

Фізичні ВЛАСТИВОСТі

СН_{4...}С₄Н₁₀- гази **Т кипіння**:

-161,6...-0,5 °C

Т плавлення:

-182,5..-138,3 °C

С₅Н₁₂... С₁₅Н₃₂ - рідини

Т кипіння:

36,1...270,5°C

Т плавлення:

-129,8...10 °C

С16Н34та решта - тверді речовини

Т кипіння:

287,5°C

Т плавлення:

20 °C

Метилмераптан CH₃SH

• **Меркаптани** – органічні похідні сірководню з загальною формулою RSH, де R – вуглеводневий радикал.

Метан при тривалому вдиханні спричиняє отруєння, яке іноді призводить до смерті. Для виявлення його витоку з плити, негерметичного або пошкодженого трубопроводу в газову магістраль додають невелику кількість речовин з дуже неприємним сильним запахом. Це меркаптани, а саме метилмеркаптан .

Ізомерія алканів

Метан, етан, пропан ізомерів не мають. Алкани, що містять в своєму складі 4 і більше атомів Карбону можуть мати карбоновий ланцюг нерозгалуженої і розгалуженої будови. Чим більша кількість атомів Карбону в карбоновому ланцюзі, тим більшу кількість ізомерів має сполука: C_7H_{16} - 9 ізомерів, C_8H_{18} - 18, $C_{10}H_{22}$ - 75, $C_{20}H_{42}$ - 366 319.

н-пентан 2-метилбутан

2,2-диметилпропан

При відщепленні одного атома Гідрогену від молекули будь – якого насиченого вуглеводню утворюються одновалентні радикали – R

Вуглеводні з розгалуженими карбоновими ланцюгами називаються **ізосполуками**

Назва одновалентних радикалів походить від назв відповідних вуглеводнів, однак суфікс -ан змінюємо на -ил (-іл):

- 1. метан (CH₄) метил (- CH₃)
- 2. етан (CH₃-CH₃) етил (CH₃-CH₂-)

н-Бутан

Радикал - це частинка, яка має неспарені електрони.

Число	0	Назва числа	Формула радикала	Назва радикалу
1		Моно-	-CH ₃	Метил
2		Ди-	-C ₂ H ₅	Етил
3		Три-	-C ₃ H ₇	Пропіл
4		Тетра-	-C4H9	Бутіл
5		Пента-	-C ₅ H ₁₁	Пентил

Як давати назви ізомерам?

Номенклатура - створення назв органічних сполук

Тривіальна - Традиційні назви Систематична (за IUPAC)

2,2,5,5-tetramethylhexane

Загальноприйнятими є назви на основі міжнародної систематичної номенклатури IUPAC (International Union of Pure and Applied Chemistri) - I Ю П А К. 1979 року.

Назви будуються на основі назв насичених вуглеводнів ряду метану. Тому назви і формули вуглеводнів, а також, назви відповідних вуглеводневих радикалів (найпростіших), необхідно знати напам'ять.

Ознайомлення з міжнародною номенклатурою органічних сполук IUPAC

Для утворення назв слід дотримуватися наступних принципів:

1. У структурній формулі вуглеводню знаходимо головний ланцюг. Головний ланцюг — це найдовша чи найскладніша (з найбільшою кількістю розгалужень) безперервна послідовність атомів Карбону.

 Частинки, що не ввійшли до головного ланцюга, — замісники (тут - СН₃). За наявності двох чи декількох ланцюгів однакової довжини за головний обирають ланцюг з найбільшою кількістю розгалужень. 2. Після встановлення головного ланцюга атоми Карбону нумерують таким чином, щоб початок нумерації був ближче до замісника й де більше замісників.

3. Називають вуглеводневі радикали, які утворюють бічні ланцюги. Перед назвою радикалу ставлять цифру, яка вказує його місцезнаходження в ланцюгу (біля якого атома Карбону знаходиться) у послідовності зростання числа, а після цифри дефіс.

Якщо вуглеводень має в своєму складі кілька однакових радикалів, то їх записують в порядку зростання № атомів Карбону, з якими зв'язані ці радикали. Якщо біля атома Карбону два однакові замісники, то цифру пишуть двічі. Цифри відділяють одну від одної комами. Після цифр записують префікси: ди (якщо однакових радикалів 2), три- (якщо однакових радикалів 3), тетра- (якщо однакових радикалів 4), пента- і т. д.

CH₃ -CH - CH - CH₂ - CH₃ CH₃ CH₃

- 4. При наявності розгалужених замісників, їх розглядають як одновалентні радикали, одержані від відповідних насичених розгалужень вуглеводнів. Якщо є кілька замісників, то їх називають в алфавітному порядку.
- 5. Назву останнього замісника пишуть разом з назвою головного карбонового ланцюга.

3-етил-4-ізопропіл-2-метилгептан

Насичені вуглеводні нормальної будови мають температури кипіння вищі порівняно з їхніми ізомерами розгалуженої будови.

$$egin{array}{c} {
m CH}_3 \\ {
m CH}_3 - {
m CH} - {
m CH} - {
m CH}_3 \\ {
m CH}_3 - {
m CH}_3 \\ {
m CH}_3 \end{array}$$
 $\begin{array}{c} {
m CH}_3 \\ {
m CH}_3 \end{array}$ $\begin{array}{c} {
m CH}_3 \end{array}$

Увага! Слід уважно перевіряти правильність вибору головного ланцюга.

Наприклад: у сполуці

$$\begin{array}{cccc}
\mathbf{CH}_{3} - \mathbf{CH} - \mathbf{CH} - \mathbf{CH}_{3} \\
& & & & & \\
\mathbf{CH}_{3} & \mathbf{C}_{2}\mathbf{H}_{5}
\end{array}$$

вибираночи головний ланцюг, слід урахувати, що радикал C_2H_5 містить два атоми Карбону, і лише після цього вибирати головний ланцюг.

Складаючи структурну формулу за назвою, спочатку слід написати головний ланцюг, потім пронумерувати його (у довільному порядку), потім до головного ланцюга «приєднати» замісники.

ДАЙТЕ НАЗВИ ВУГЛЕВОДНЯМ

2,4 - ди метил - 3 -етилпентан

НАПИШІТЬ ФОРМУЛИ АЛКАНІВ ЗА НАЗВОЮ

Напишіть всі можливі ізомери гомолога метану, молекула якого містить удвічі більше атомів Гідрогену, ніж молекула бутану.

2,2-диметилбутан

Домашне завдання

1. 3 презентації зробіть конспект у робочому зошиті

