Introduction
Approach
Experiments
Results
Conclusion

Align Before Fuse: Vision and Language Representation Learning with Momentum Distillation (2021)

- Junnan Li, Ramprasaath R. Selvaraju, Akhilesh D. Gotmare, Shafiq Joty, Caiming Xiong, Steven C.H. Hoi

> Presentation Author MATHIEU RAVAUT

Nanyang Technological University

Table of content

- 1 Introduction
- 2 Approach
- 3 Experiments
- 4 Results
- 6 Conclusion

Introduction

- Vision and Language Pre-training (VLP) aims to learn representations from image-text pairs (in an unsupervised manner).
- The goal is to improve downstream vision and language tasks: visual question answering (VQA), natural language for vision reasoning (NLVR), etc.

Introduction

Current challenges in Vision and Language:

- Image and text (token embeddings) features live in very different spaces. How to get a unique multimodal encoding?
- In vision, the **object detector** is typically computationally intensive, and requires **annotations** (bounding boxes) which are expensive to collect, especially for a large-scale pre-training purpose.
- Datasets are collected from the web and are **noisy**: mismatch between the image content and the text description.

ALBEF: Align BEFore Fuse

- Encode image and text independently.
- Use a detector-free image encoder.
- Fuse image and text features with a multimodal encoder using cross-modal attention.
- Multiple training objectives :
 - 1 Image-text contrastive loss (ITC) on unimodal representations.
 - 2 Masked Language Modeling (MLM) with both image and text context.
 - 3 Image-Text Matching (ITM)
- Noisy supervision with Momentum Distillation.

Model architecture:

[1] Image-Text Contrastive learning (ITC):

- Learn better quality unimodal (image, text) representations by matching parallel image-text pairs.
- MoCo approach: maintain 2 queues of size M, one for each encoder.
- $s(I,T) = g_v(\mathbf{v}_{cls})^T.g_w'(\mathbf{w}_{cls}'), \ s(T,I) = g_w(\mathbf{w}_{cls})^T.g_v'(\mathbf{v}_{cls}')$ where g_v , g_w are the vision, text encoders; $g_w'(\mathbf{w}_{cls}'),$ $g_v'(\mathbf{v}_{cls}')$ are the normalized CLS representations.
- Apply softmax, then for each data point (I,T), we have :

$$p_m^{i2t}(I) = \frac{e^{\frac{s(I,T_m)}{\tau}}}{\sum_{m=1}^{M} e^{\frac{s(I,T_m)}{\tau}}}, p_m^{t2i}(T) = \frac{e^{\frac{s(T,I_m)}{\tau}}}{\sum_{m=1}^{M} e^{\frac{s(T,I_m)}{\tau}}}$$

The final ITC loss becomes:

$$\mathcal{L}_{itc} = \frac{1}{2} \mathbb{E}_{(I,T) \sim D} [H(p^{i2t}(I), y^{i2t}(I)) + H(p^{t2i}(T), y^{t2i}(T))]$$

where H is the cross-entropy, $y^{i2t}(I)$ and $y^{t2i}(T)$ are the ground-truth one-hot similarities.

[2] Masked Language Modeling (MLM):

- Mask out 15% of text tokens (like in BERT), and predict them with the other tokens and the image as well.
- The associated loss is:

$$\mathcal{L}_{mlm} = \mathbb{E}_{(I,\hat{T}) \sim D} H(p^{msk}(I,\hat{T}), y^{msk})$$

where y^{msk} is the ground-truth one-hot vocabulary distribution.

[3] Image-Text Matching (ITM):

- Predict whether an image-text pair is positive (matched) or negative (non-matched).
- The associated loss is:

$$\mathcal{L}_{itm} = \mathbb{E}_{(I,T)\sim D} H(p^{itm}(I,T), y^{itm})$$

where y^{itm} is the 2-D ground-truth one-hot vector.

• To get hard negatives (ITM_{hard}) : sample from the current mini batch, according to the contrastive similarity in [1].

Momentum distillation (MoD):

- Positive pairs are only weakly correlated.
- However, the one-hot labels for ITC and MLM penalize all negative predictions regardless of correctness.
- Momentum model: exponential-moving-average of the unimodal and multimodal encoders.
- Constrain the base model to match predictions from the momentum model.

New ITC loss function:

- $s'(I,T) = g_v^{'}(\mathbf{v}_{cls}^{'})^T.g_w^{'}(\mathbf{w}_{cls}^{'}), \ s(T,I) = g_w^{'}(\mathbf{w}_{cls}^{'})^T.g_v^{'}(\mathbf{v}_{cls}^{'})$ where $g_v^{'}, g_w^{'}$ are the momentum model unimodal encoders.
- $\bullet \ \ q_m^{i2t}(I) = \frac{e^{\frac{s'(I,T_m)}{\tau}}}{\Sigma_{m=1}^M e^{\frac{s'(I,T_m)}{\tau}}}, \ q_m^{t2i}(T) = \frac{e^{\frac{s'(T,I_m)}{\tau}}}{\Sigma_{m=1}^M e^{\frac{s'(T,I_m)}{\tau}}}$
- New loss function:

$$\mathcal{L}^{KL}_{itc} = \frac{1}{2}\mathbb{E}_{(I,T)\sim D}[KL(p^{i2t}(I),q^{i2t}(I)) + KL(p^{t2i}(T),q^{t2i}(T))]$$

Similarly, new MLM loss function :

$$\mathcal{L}_{mlm}^{KL} = \mathbb{E}_{(I,\hat{T}) \sim D} KL(p^{msk}(I,\hat{T}), q^{msk}(I,\hat{T}))$$

The final training objective is:

$$\mathcal{L} = (1 - \alpha)\mathcal{L}_{itc} + \alpha\mathcal{L}_{itc}^{KL} + (1 - \alpha)\mathcal{L}_{mlm} + \alpha\mathcal{L}_{mlm}^{KL} + \mathcal{L}_{itm}$$

ALBEF from a Mutual Information (MI) perspective :

- ALBEF maximizes a lower bound on the mutual information between different views of an image-text pair.
- ITC, MLM and MoD are mechanisms generating the different views.
- ITC and MLM generate views by taking partial information: modality separation (ITC), word masking (MLM).
- MoD performs data augmentation to the original views.

ITC can be re-written as:

$$\mathcal{L}_{\text{itc}} = -\frac{1}{2} \mathbb{E}_{p(I,T)} \big[\log \frac{\exp(s(I,T)/\tau)}{\sum_{m=1}^{M} \exp(s(I,T_m)/\tau)} + \log \frac{\exp(s(T,I)/\tau)}{\sum_{m=1}^{M} \exp(s(T,I_m)/\tau)} \big]$$

which is of the form of the NCE loss:

$$\mathcal{L}_{ ext{NCE}} = -\mathbb{E}_{p(a,b)} \left[\log \frac{\exp(s(a,b))}{\sum_{\hat{b} \in \hat{B}} \exp(s(a,\hat{b}))} \right]$$

which maximizes the MI between a and b.

Experiments

Implementation and training details:

- Text encoder: BERT-base (124M parameters).
- Image encoder : ViT-B/16 (86M parameters).
- 30 epochs, batch size 512, 8 NVIDIA A100 GPUs.
- Cosine schedule, with warmup from lr = 1e 5 to lr = 1e 4 for 1,000 iterations.
- In the contrastive learning : m = 0.995, M = 65,536 (maximum M size introduced in the MoCo paper).

Experiments

Pre-training data is built from several datasets:

- Conceptual Captions (web).
- SBU Captions (web).
- Conceptual 12M (web)
- COCO (in-domain).
- Visual Genome (in-domain).

Leading to a total of 14.1M images, 5.1M image-text pairs.

Experiments

To fine-tune on each downstream task:

- Use the task's loss.
- Also use the KL-divergence between the model's predictions and the momentum model's predictions. α is set to 0.4

Image-to-text retrieval:

- Tasks: Retrieve the corresponding text/image from a given text/image.
- Datasets: Flickr30K and COCO.
- Zero-shot retrieval on Flickr30K using the model fine-tuned on COCO.
- Fine-tuning with the ITC and ITM losses.
- Since there are multiple ground truth texts for each image, relax the ground-truth label of ITC to have several positives.

SOTA in zero-shot image-text retrieval on Flickr30K when pre-trained with just 4M images, further gains when pre-trained with 14M images.

Method	# Pre-train	Flickr30K (1K test set)							
Method	Images		TR		IR				
		R@1	R@5	R@10	R@1	R@5	R@10		
UNITER [2]	4M	83.6	95.7	97.7	68.7	89.2	93.9		
CLIP [6]	400M	88.0	98.7	99.4	68.7	90.6	95.2		
ALIGN [7]	1.2B	88.6	98.7	99.7	75.7	93.8	96.8		
ALBEF	4M	90.5	98.8	99.7	76.8	93.7	96.7		
ALBEF	14M	94.1	99.5	99.7	82.8	96.3	98.1		

Table 3: Zero-shot image-text retrieval results on Flickr30K.

SOTA in image-text retrieval on Flickr30K and COCO when pre-trained with 14M images.

Method	Flickr30K (1K test set)					MSCOCO (5K test set)							
Memod	Images		TR			IR			TR			IR	
		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
UNITER	4M	87.3	98.0	99.2	75.6	94.1	96.8	65.7	88.6	93.8	52.9	79.9	88.0
VILLA	4M	87.9	97.5	98.8	76.3	94.2	96.8	-	-	-	-	-	-
OSCAR	4M	-	-	-	-	-	-	70.0	91.1	95.5	54.0	80.8	88.5
ALIGN	1.2B	95.3	99.8	100.0	84.9	97.4	98.6	77.0	93.5	96.9	59.9	83.3	89.8
ALBEF	4M	94.3	99.4	99.8	82.8	96.7	98.4	73.1	91.4	96.0	56.8	81.5	89.2
ALBEF	14M	95.9	99.8	100.0	85.6	97.5	98.9	77.6	94.3	97.2	60.7	84.3	90.5

Visual question answering (VQA):

- Task: Predict an answer given an image and a question.
- Datasets : VQA.
- Add a 6-layer autoregressive answer decoder, initialized with the multimodal encoder weights.
- Only generate from the 3,192 answer candidates (for fair comparison).

Natural language for visual reasoning (NLVR):

- Task: Predict whether a text describes a pair of images.
- Datasets : NLVR.
- Extend the multimodal encoder to enable reasoning over 2 images.
- Append a MLP classifier on the multimodal encoder.
- Additional pre-training task: given a pair of images and a text, predict whether the text describes the first image, the second, or none of them.

Visual entailment:

- Task: Predict whether the relationship between an image and a text is entailment, neutral, or contradictory.
- Dataset : SNLI-VE.
- Add a 3-way MLP classifier on top of the multimodal encoder.

SOTA on VQA, NLVR and SNLI-VE:

Method	VO	QA	NL	VR^2	SNLI-VE	
Method	test-dev	test-std	dev	test-P	val	test
VisualBERT [13]	70.80	71.00	67.40	67.00	-	-
VL-BERT [10]	71.16	-	-	-	-	-
LXMERT [1]	72.42	72.54	74.90	74.50	-	-
12-in-1 [12]	73.15	-	-	78.87	-	76.95
UNITER [2]	72.70	72.91	77.18	77.85	78.59	78.28
VL-BART/T5 [51]	-	71.3	-	73.6	-	-
ViLT [21]	70.94	-	75.24	76.21	-	-
OSCAR [3]	73.16	73.44	78.07	78.36	-	-
VILLA [8]	73.59	73.67	78.39	79.30	79.47	79.03
ALBEF (4M)	74.54	74.70	80.24	80.50	80.14	80.30
ALBEF (14M)	75.84	76.04	82.55	83.14	80.80	80.91

Visual grounding:

- Task: Localize the region in an image related to the text description.
- Dataset : RefCOCO+.

SOTA on visual grounding:

Method	Val	TestA	TestB
ARN [54]	32.78	34.35	32.13
CCL [55]	34.29	36.91	33.56
$ALBEF_{\mathrm{itc}}$	51.58	60.09	40.19
$ALBEF_{\mathrm{itm}} \\$	58.46	65.89	46.25

Ablation study:

#Pre-train Images	Training tasks	TR (flick	IR r test)	SNLI-VE (test)	NLVR ² (test-P)	VQA (test-dev)
	MLM + ITM	93.96	88.55	77.06	77.51	71.40
	ITC + MLM + ITM	96.55	91.69	79.15	79.88	73.29
4M	$ITC + MLM + ITM_{hard}$	97.01	92.16	79.77	80.35	73.81
4101	$ITC_{MoD} + MLM + ITM_{hard}$	97.33	92.43	79.99	80.34	74.06
	$Full (ITC_{MoD} + MLM_{MoD} + ITM_{hard})$	97.47	92.58	80.12	80.44	74.42
	ALBEF (Full + MoD _{Downstream})	97.83	92.65	80.30	80.50	74.54
14M	ALBEF	98.70	94.07	80.91	83.14	75.84

Conclusion

Takeaways:

- Contrastive learning is elegantly leveraged :
 - To align image-text representations (ITC).
 - To sample negatives for the Image-Text matching (ITM) pre-training obejctive.
 - Use the momentum model from MoCo to relax one-hot labels from ITC and MLM (momentum distillation).
- Very efficient pre-training objective, leading to new SOTA on a wide diversity of vision-text tasks (image-text retrieval, visual question answering, natural language for visual reasoning, visual grounding) and datasets (Flickr30K, COCO, VQA, NLVR, SNLI-VE, RefCOCO+).