Problem 1

a)

$$mK = (\alpha, \alpha^2) \begin{pmatrix} \alpha^2 & \alpha + 1 \\ \alpha^2 + 1 & 1 \end{pmatrix} = (1, \alpha).$$

b) If K is not invertible, unique decryption is not possible.

c)

$$|\mathcal{K}| = (q^2 - 1)(q^2 - q),$$

where $q = 2^3$. It gives H(K) = 11.78, and $N_0 = \lceil 11.78/1 \rceil = 12$.

Problem 2

This is exactly the last exercise of Laboratory 1!

We construct two sequences, one over \mathbb{Z}_2 and one over \mathbb{Z}_5 , which are combined through the Chinese remainder theorem to give a sequence over \mathbb{Z}_{10} .

We will receive a de Bruijn sequence if both sequences are de Bruijn. Let's start with the one over \mathbb{Z}_2 . A de Bruijn sequence is obtained if we take a maximal length sequence (primitive feedback polynomial) and add the all zero state into the cycle. Take the primitive polynomial $x^4 + x + 1$ over \mathbb{Z}_2 as feedback polynomial. Then we have a state transition $1000 \to 0001$ which should be changed to the state transition $1000 \to 0000 \to 0001$. This is done by adding a nonlinear part f to the feedback. Let the LFSR state be denoted by s_3, s_2, s_1, s_0 . Then $f(s_3, s_2, s_1, s_0) = s'_2 s'_1 s'_0$, where s'_i means inversion of the s_i variable.

Then we do the same for the sequence over \mathbb{Z}_5 . Finally, we combine them. Let **u** be the de Bruijn sequence over \mathbb{Z}_5 . The resulting sequence w over \mathbb{Z}_{10} is given by

$$w_i = 5 \cdot u + v$$
.

DRAW A PICTURE, choose two starting states for the LFSRs, and produce 10 symbols of the sequence.

Problem 3

a)

$$P_I = \frac{1}{2}$$

For all C we can find a ciphertext C' such that P(C'valid|C) = 1, e.g., C = (0,0,0), C' = (1,1,0). Thus, we get $P_S = 1$.

b) Since k=3 the secret polynomial is of the form $a(x)=a_0+a_1x+a_2x^2$. The three shares

give the following three equations,

$$a_0 + a_1 + a_2 = 6,$$

 $a_0 + 3a_1 + 9a_2 = 8,$
 $a_0 + 5a_1 + 12a_2 = 12.$

Solving this system of equations gives $a(x) = 9 + 10x^2$ and $K = a_0 = 9$.

Problem 4

- a) Correct.
- **b)** Correct, $p_2(z)$ primitive.
- c) Wrong, $\mathbf{s_1} = [2]^{\infty}$.
- d) Wrong, $L(\mathbf{s_1} + \mathbf{s_2}) \le L(\mathbf{s_1}) + L(\mathbf{s_2}) = 1 + 3 = 4 < 6$.
- e) Wrong, since $p_1(z)$ is not irreducible.

Problem 5

a) Two possible primes are p = 4007, q = 4013 giving n = 16080091. Since $gcd(3, \phi(n)) = 1$, we can choose e = 3.

public parameters: (n, e) = (16080091, 3)

b)
$$\phi(n) = (p-1)(q-1) = 16072072$$

If we choose e=3, then by using Euklides algorithm and Bezouts identity we get d=10714715. **trapdoor parameters:** $(\phi(n), d, p, q) = (16072072, 10714715, 4007, 4013)$

c)

$$D(E(M)) = C^d = (M^e)^d = M^{ed} = M^{1+k\phi(n)} = M \cdot (M^k)^{\phi(n)} = [\text{Euler}] = M \mod n.$$