Linear Algebra Hw8

Aamod Varma

October 29, 2024

Problem 1

Proof. (1). We have T^2 has eigenvalue 9. Which means that

$$T^2v = 9v$$

$$(T^2 - 9I)v = 0$$

$$(T+3I)(T-3I)v = 0$$

So we have either Tv=3Iv=3v which implies that 3 is an eigenvalue or Tv=-3Iv=-3v which implies that -3 is an eigenvalue.

(2). Assume eigenvalue is either 3 or -3. So we have,

$$Tv = 3v$$

$$T(Tv) = T(3v) = 3T(v)$$

$$T^2v = 9v$$

which means that 9 is an eigenvalue of T^2 Similarly we have if -3 is an eigenvalue of T,

$$Tv = -3v$$

$$T(Tv) = T(-3v) = -3T(v)$$

$$T^2v = -3 \cdot -3v = 9v$$

Problem 6

Proof. Let e_1, e_2 be the standard basis, so we have, $T(e_1) = e_2$ and $T^2e_1 = -e_1$.

Now we know that,

$$c_0e_1 + c_1Te_1 = -T^2e_1$$

 $e_0 e_1 + c_1 e_1 = e_1$

has the unique sol of $c_0 = 1$ and $c_1 = 0$. So the minimum polynomial would be,

$$p(t) = 1 + t^2$$