Discrete Mathematics (2025) Mandatory Assignment 1

1. Solve for x in the following equations.

(a)
$$\frac{5}{3}x + \frac{2}{9} = 3$$

(b)
$$3x - \frac{3}{7} = \frac{x}{3} + 2$$

(c)
$$\left| \frac{5}{3} x \right| = \frac{3}{4}$$

(d)
$$\frac{7(1-3x)}{4} = \frac{4}{3}x + 1$$

NB: You need to show how you obtained the solution. It is not enough to simply give the solution for x.

- 2. Consider the compound proposition $(p \land \sim q) \to (p \lor q)$.
 - (a) Construct the truth table of $(p \land \sim q) \to (p \lor q)$.
 - (b) Is $(p \land \sim q) \to (p \lor q)$ a tautology, a contradiction, or neither a tautology nor a contradiction? Give a justification for your answer.
 - (c) Give a compound proposition that is a contradiction and contains at least \wedge , \vee , \sim , p, and q.
- 3. Use the logical equivalences in Figure 1 on the next page to verify the following logical equivalences step by step. Supply a reason for each step, i.e. state which of the logical equivalences from Figure 1 you used.

(a)
$$\sim (\sim p \vee \sim q) \equiv p \wedge q$$

(b)
$$p \wedge (q \vee \sim p) \equiv q \wedge p$$

(c)
$$(q \land p) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$$

(d)
$$p \leftrightarrow q \equiv (\sim p \land \sim q) \lor (p \land q)$$

For example, to verify the equivalence $(p \wedge q) \wedge q \equiv p \wedge q$, you would write:

$$(p \wedge q) \wedge q$$

$$\equiv p \wedge (q \wedge q) \qquad (2)$$

$$\equiv p \wedge q \qquad (7)$$
or
$$(p \wedge q) \wedge q$$

$$\stackrel{(2)}{\equiv} p \wedge (q \wedge q)$$

$$\stackrel{(7)}{\equiv} p \wedge q$$

Given any statement variables $p,\,q,$ and r, a tautology ${\bf t}$ and a contradiction ${\bf c},$ the following logical equivalences hold:

1. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p\vee q\equiv q\vee p$
2. Associative laws:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p\vee q)\vee r\equiv p\vee (q\vee r)$
3. Distributive laws:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
4. Identity laws:	$p \wedge \mathbf{t} \equiv p$	$p ee \mathbf{c} \equiv p$
5. Negation laws:	$p \lor {\sim} p \equiv {f t}$	$p \wedge {\sim} p \equiv {f c}$
6. Double negative law:	$\sim (\sim p) \equiv p$	
7. Idempotent laws:	$p \wedge p \equiv p$	$p\vee p\equiv p$
8. Universal bound laws:	$p\vee \mathbf{t}\equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
9. De Morgan's laws:	${\sim}(p \wedge q) \equiv {\sim}p \vee {\sim}q$	${\sim}(p\vee q)\equiv{\sim}p\wedge{\sim}q$
10. Absorption laws:	$p \vee (p \wedge q) \equiv p$	$p \land (p \lor q) \equiv p$
11. Negations of \mathbf{t} and \mathbf{c} :	$\sim\!\!{f t}\equiv{f c}$	$\sim\!\!\mathbf{c}\equiv\mathbf{t}$
12. Conditional:	${\sim}p \vee q \equiv p \to q$	$p \to q \equiv {\sim} q \to {\sim} p$
13. Biconditional:	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	$p \leftrightarrow q \equiv \sim p \leftrightarrow \sim q$

Figure 1: Logical equivalences.