General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

DRL NO. 191/DRD NO.SE5 Line Item No.7 DOE/JPL-956369-83/01 Distribution Category UC-63

(NASA-CR-172979) MICHOCRYSTALLINE SILICON N83-33328
GROWTH FOR HETEROJUNCTION SOLAR CELLS
Quarterly Report, 1 Nov. 1982 - 31 Mar. 1983
(Applied Solar Energy Corp.) 51 p Unclas
HC A04/MF A01 CSCL 10A G3/44 28572

MICROCRYSTALLINE SILICON GROWTH FOR HETEROJUNCTION

SOLAR CELLS

FIRST QUARTERLY REPORT

For Period Covering
1 November 1982 to 31 March 1983

By:

P.A. Iles and D.C. Leung

and

P.H. Fang Boston College

JPL Contract No. 956369

APPLIED SOLAR ENERGY CORPORATION
15251 E. Don Julian Road
City Of Industry, California 91746

MICROCRYSTALLINE SILICON GROWTH FOR HETEROJUNCTION SOLAR CELLS

FIRST QUARTERLY REPORT

For Period Covering 1 November 1982 to 31 March 1983

By:

P.A. Iles and D.C. Leung

and

P.H. Fang Boston College

JPL Contract No. 956369

APPLIED SCLAR ENERGY CORPORATION 15251 E. Don Julian Road City Of Industry, California 91746 "This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their Employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, produce or process disclosed, or represents that its use would not infringe privately owned rights".

ABSTRACT

A total of sixteen runs of e-beam vaccum deposition of p-type microcrystalline Si (m-Si) films were attempted on n-type or p-n junction single crystalline Si (C-Si) substrates. The m-Si film thickness varied from .15 to .7um and metal contacts were deposited after plasma hydrogenation. The p-m-Si on n-c-Si structure had a Voc of up to 490mV while no Voc improvements were observed in the p-m-Si on p-n C-Si structure against p-n controls. Both CFF and Jsc were lower than control. Possible problem areas were interfaced between m-Si and C-si and the back contacts due to lack of sintering for fear of dehydrogenation.

Some methods of improvement in these areas are outlined.

TABLE OF CONTENTS

		PAGE
	ABSTRACT	1
	TABLE OF CONTENTS	ii
	LIST OF FIGURES	ili
	LIST OF TABLES	iv
I.	INTRODUCTION	1
II.	CURRENT STATUS OF m-Si	1
III.	VACUUM DEPOSITION SYSTEM AND PREPARATION PROCEDURE	9
IV.	SOLAR CELL RESULTS	14
٧.	CONCLUSION	18
VI.	WORK PLANNED	24
VII.	REFERENCES	24
	APPENDIX	
	I. Individual Cell Data II. Time Schedule	

LIST OF FIGURES

		PAGE
1	THE TWO TYPES OF STRUCTURE OF THIS PROGRAM	2
2	OPTICAL ABOSRPTION OF MICROCRYSTAL SI	5
3	EVAPORATION ASSEMBLY	11

LIST OF TABLES

		PAGE
1	SUMMARY OF EVAPORATION AND SOLAR CELL DATA	19-22
2	SUMMARY OF RESULTS OF CONTROL P/N CELLS (NO BSF, NO AR)	23

I. INTRODUCTION

The objective of this program is to exploit the utility of microcrystal silicon (m-si) for solar cell applications. Under a certain preparation procedure, this m-si has been found to have a dominant optical band gap of 1.7 eV. Hence a possible application of this material is either as a component of the heterojunction of a silicon substrate of opposite type of conduction, or as a window of a junction solar cell, thereby to improve the solar cell performance. Figure 1 demonstrates the two possible structures.

This program is a joint venture of ASEC and Boston College. The role of Boston College is to deposit and hydrogenate m-Si films on samples and to analyze the films. The role of ASEC is to prepare samples and to fabricate and test cells after m-Si films are deposited on the samples.

In the following sections, the current understanding of m-Si fabrication procedures and results of the first sixteen runs will be presented.

II. CURRENT STATUS OF m-Si

During the last few years, there is a rapid growth of interest on m-Si. This growth is reflected in the forthcoming Tenth International Conference on Amorphous and Liquid Semiconductors (Aug. 1983, Tokyo) where microcrystals will form a topic of the conference. Boston College has been studying polycrystalline silicon since the early seventies. Various methods of deposition have been studied initially, including the electron beam vaporization in vacuum. By a comparison of these methods, work has been concentrated on the electron beam evaporation method. (Ater several years experience.) In most of the experiments, steel coated with either silicon oxide or titanium was used as

FIGURE 1

THE TWO TYPES OF STRUCTURE OF THIS PROGRAM

1)	H	-	D	\cap	Ħ	IN	j	CT	T	Λ	٨	ĺ
エノ	П		Λ	U١	JĻ	"	١	しょ	1	U	ľ	Į

P-TYPE	M-SI
N-TYPE	C-SI

2) HETEROFACE

N-TYPE C-SI

substrate. The resulting film of several microns thick shows, at a sufficiently high substrate temperature, an x-ray diffraction pattern of polycrystal silicon. Under optical microscopy, gross grains of several microns in cross-section have been observed. Later study under scanning electron microscope with high magnificantion proves that these grains actually consist of plumose crystals of about 0.1 micron in cross-section. A correlated photovoltaic study shows that better photovoltaic performance is obtained from films without a distinct grainy appearance where the plumose structure becomes obscure. An x-ray determination indicates that these crystals have sizes of several hundred angstroms. Another interesting observation is that solar cells made of this material are improved by a hydrogenation treatment, very similar to the behavior of the solar cells made of amorphous silicon (a-Si). Based on those results, a paper was published with a title of submicron polycrystal silicon solar cells. S

In the meantime, many papers began to appear, principally by Japanese scientists engaged in a-Si research: by increasing the rf power in silane glow discharge, silicon crystalets mixed with a-Si are obtained and the crystalline phase is referred to as microcrystals in spite of the fact that the size is actually much less than one micron in dimension. In the current usage, this concise work, microcrystal is adapted instead of an accurate, but cumbersome submicrocrystal as suggested originally.

In the following, some properties of m-Si pertinent to the present program will be reviewed and discussed.

- 1. Methods Of Preparing m-Si. A discussion of different preparation methods is important because of the different properties obtained depending on the preparation methods. There are three methods presently studied:
 - i. Glow discharge of silane, similar to the process to prepare a-si, but at a higher rf power. 4-5
 - ii. Chemical transport between a solid silicon charge and the substrate, all in a hydrogen plasma.^{7,8}
 - III. Electron beam evaporation of solid silicon in vacuum at a substrate temperature above 500°C.^{3,9}

The size of these microgrystals is variable but generally is in the order of 100A. This size can be modulated by the change of deposition parameters available in different preparation methods.

2. Optical Absorption Spectrum. The wavelength dependence of the absorption coefficient is shown in Figure 2. The main part of this figure is a reproduction from the reference 8, superimposed on which are the data from glow discharge and electron beam evaporation. The data from glow discharge are available only in a limited photon energy region and are reproduced as a shaded area with upper edge for lower rf power and the lower edge higher rf power. The data from electron beam evaporation are closer to those of glow discharge than those of chemical transport.

In the () vs hv plot, the chemical transport case gives an optical band gap of 1.1 eV, closer to that of single crystal. On the other hand, the optical band gap values from both glow discharge and e-beam evaporation are very similar, both give 1.7eV. An interpretation of this 1.7 eV gap as a

Fig. 2 Optical absorption of microcrystal Si grown by chemical transport ("c-si). Vacuum evaporation (0) and high rf power glow discharge (---). For comparison, amorphous Si:H and crystalline Si also are shown.

manifestation of the second indirect transition of silicon has been presented elsewhere. 11

There are two points to be observed in the absorption spectrum away from 1.7eV: the mixing effect of m-Si with a-si and the relation between m-Si with single crystal silicon (c-Si). As shown in Figure 1, there is a transition energy below which of m-Si is higher than that of a-Si and above this transition energy vice versa. The value of this transition energy, about 2 eV, is an important region of photon abundance in the solar spectrum and in this respect, m-Si has a more desirable property than a-Si for photovoltaic applications. (2) in comparison with c-Si, in spite of the existence of a prominently higher band gap of 1.7 eV, has a tail in the low photon energy region which is higher than that of single crystals and presumably also that of large grain polycrystals. Therefore, an m-Si solar cell can be made thinner than c-Si but still produce the same number of electron hole pairs.³

3. <u>Doping Effectiveness.</u> Similar to a-S, m-Si can be doped by the same impurities as those used in the doping of c-Si, but there is a quantitative difference: the effectiveness of a dopant in the host material is described by the ratio of ionized dopant to the total dopant concentration which includes besides the ionized, those not ionized either because of the thermodynamical distribution for a given ionization energy, or because the impurity is located near lattice or electrical defects. Denoting by C the impurity concentration to produce a desired electrical conductivity, it was reported that C_a/C_m C_m/C_c 10^3 as a first order approximation 1^2 . When taking the difference of the carrier mobility of these three states, a-, m- and c-, into account, these values of 10^3 would be somewhat smaller. One

benefit of the good effectiveness of doping impurity is the high electrical conductivity and consequently when devices are made with an electrode contact through a m-Si layer, an ohmic contact can be realized more easily.

Ü

- Transition Region For Growth Of m-Si. In most investiations of m-Si, a 4. foreign substrate such as glass, quartz^{10,13} or metal surface^{9,11} is used. On the foreign substrate, the growth would be a heterogeneous system and a spontaneous growth is required. The initial growth according to these observations indicates an amorphous state and a transition region, as much as 500A before a full growth of m-Si. In the present work, single crystal silicon is the substrate, and there are three possibilities: i) an epitaxial growth of single crystal, ii) an amorphous initial state followed by m-Si, and iii) an instantaneous growth of m-Si. The consequence is important, but an isolation of the actual happening is not an easy experimental problem. The problem is important because in the present application, the thickness of m-Si is contemplated to be from 1000 to 3000A. transition region of 500A is involved, this interfacial state, which would have different properties from that of m-Si, would have a strong influence on the solar cell performance. One experimental approach to verify this problem is an in-situ Raman spectroscoic observation during the growth. 14 Such a complicated arrangement is beyond our scope of investigation at present.
- 5. Morphology Of m-Si Film. As stated in the beginning of this section, we have observed that under some conditions, a columnar growth of m-Si in specimens deposited by electron beam evaporation. A similar morphology

is also observed by a glow discharge deposition. There are two interpretations of this morphology: the first is a suggestion that m-Si is surrounded by SiH₂ group which acts as a hindrance against a later growth. This clearly is not applicable to our case since in our growth, there is no hydrogen involvement. The second suggestion is that there is a surrounding a-Si network forming the columnar wall. In our system, we have observed that there is a narrow temperature region between 500 and 525°C where a-Si and m-Si are coexisting, but near 600°C where most of the present work is conducted, we believe that thermodynamically a-Si is no longer stable. There are other factors which control the morphology, such as the substrate temperature and the deposition rate which could modify the Si-Si network. In conclusion, the network of our system is conceivably different from the widely studied Si-H and Si-H-F systems but little is known at present.

Window Material. To complete this section on the present status of m-Si, we include here a reference by Uchida et al 18 which was published very shortly after our publication covering the same subject, a doped m-Si window on a-Si solar cell. The principal consideration of these two works are quite similar except the structure and the method of fabrication of the solar cells. In the work of Uchida, m-Si is phosphorous doped, i.e. n-type, while ours is boron doped p-type and the method of fabrication in the case of Uchida is high rf power glow discharge. More recently, Uchida and his coworkers have developed a tandem structure with two p-i-n cells of different band gap materials with i-regions which are amorphous, but p and n regions are microcrystals. A photovoltaic conversion efficiency exceeding 10% has been reported. 19

It will be useful to summarize first previous experience in Boston College on four types of solar cells, all made by e-beam evaporation on steel substrate and treated by a post-hydrogenation:

		PHOTOVOLTAGE(m V	PHOTOCURRENT
1)	p-i-n (a-Si)	300	Low
2)	p-i-n (m-Si)	300	High
3)	p (m-Si)-i-n (a-Si)	500	Low
4)	p (m-Si)-p-i-n (a-Si)	630	High

In all these cells, prior to the hydrogenation, photovoltage is limited to at most a few mv. The photocurrent has been measured by a point contact without grid lines. Therefore only a qualitative description can be made.

We should add that an important step after the hydrogenation is necessary, that is, a light surface etching. Prior to the surface etching the photovoltage in type 4) cells for example, shows about 0 to 200 mV only. The role of etching could be an elimination of the shunt or the removal of the plasma radiation damage. We have not made a verification yet.

From the above results a comparison between 3), 4) and 1), 2), the effectiveness of a p (m-Si) front layer is evident among these four types of solar cells.

In this program, p-m-Si is deposited either on n-type or p-n single crystal substrate. The results will be compared with -Si results above.

III. VACUUM DEPOSITION SYSTEM AND PREPARATION PROCEDURE

The process to prepare m-Si in the present program is by an electron beam

evaporation of solid silicon in vacuum. A schematic figure of the deposition system is shown in Figure 3. The legends are:

- (0) Substrates
- (1) Steel substrate holder.
- (2) Heater made of ceramic plate with molybdenum resistance wire.
- (3) Electromagnetic deflector for electron beam.
- (4) Tungsten filament for electron emission.
- (5) Titanium crucible.
- (6) Intrinsic silicon crucible.
- (7) p-doped silicon crucible.
- (8) Boron source boat (graphite).
- (9) Antimony source boat (tantalum).
- (10) Shutter
- (11) Thermocouple for substrate temperature measurement.
- (12) Electrical lead for 2.
- (13) Electrical lead for 4 and electron acceleration voltage.
- (14) Water cooler for electron beam assembly.
- (15) Heat shield cage with port to insert or remove substrates.
- (16) Steel belljar.
- (17) Plasma generating rod.

This system has been used for a number of years to make silicon thin film solar cells on steel and glass substrates. In the present program, the substrate (0) is single crystal silicon. The crystal has been cleaned by several procedures, and we have found that a convenient as well as an effective method is by a plasma cleaning. The complete procedure is detailed below.

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3 EVAPORATION ASSEMBLY

Silicon, supplied by ASEC is placed on a steel substrate holder (1). This substrate holder has five recess frames of 1x2 inch and each an opening window area of 1.5 x 4.6cm² for m-Si deposition. In general, in these five frames, four are used for silicon crystal and fifth normally saved for glass slides from which optical studies are made.

After the specimen is placed on (1), the part of the heat shield cage (15) is closed and the bell jar (16) is closed. After a pump down to 1×10^{-5} torr by mechanical and oil diffusion pump, electrical power to heater (2) is connected. The temperature is measured by a thermocouple attached to (1) near one substrate (0). There is an uncertainty on the exact value of the substrate temperature because of the radiation heat loss from the substrate surface facing downward, the heat reflection from the substrate surfaced facing upward to the heater (2), and a peripheral contact between the substrate 0 and the frame of the substrate holder (1). However, when this temperature is used as a reference temperature, the measurement can be made with a good repeatability and precision with an actual value of about 5 to 25°C lower than that from the thermocouple reading.

There is some degassing during the temperature rise. After the temperature reaches an equilibrium and the vacuum reaches 10^{-5} torr again, hydrogen is leaked into the system to about 100 microns pressure and a plasma is started by a dc voltage of 3 kV with a current of about 10 ma. This plasma cleaning procedure is mostly for cleaning the oxide or silicon crystal surface and a possible residue of organic materials most of which presumably have been removed by the preceeding heating in the vacuum.

After 15 minutes of plasma treatment, the hydrogen lead is closed. Liquid nitrogen is intorudced into a Meisner trap in the system and the vacuum is reduced to 2×10^{-6} torr in about 15 minutes. m-Si deposition is then commenced.

In the present program, the required m-Si is p-doped with a sufficient dopant concentration. The dopant we use is boron which can be introduced by coevaporation of intrinsic silicon (16) and boron from a graphite boat (18). This graphite boat is a rod of 6mm diameter with a reduction in the central portion to about 4mm. In the center, a recess hole of about 2mm depth and 3mm diameter is made to receive a small boron grain. The two ends of the rod of 5cm in length are tightly wrapped with tantalum foil and are then connected to heavy electrodes. In the operation, the ac voltage is about 6 volts and the current about 120 amperes. The temperature near the hole where boron is placed is about 1800°C, depending on the desired dopant concentration, or more practically, the desired electrical conductivity. An in situ monitoring of boron concentration for the minute amount of boron is not possible. In practice, therefore, the electrical power for boron boat is determined empiricially by correlating with the final surface electrical conductivity.

Returning now to m-Si deposition. After the temperature monitored at the substrate holder reaches a predecided value which is in the range of 580 to 620°C, the deposition is commenced with a deposition rate of about 500 Angstroms per minute. The total thickness or the deposition rate is monitored by a Sloan quartz thickness monitor located from the source at the same distance as that between the substrate and the source, but maintained a distance from the cage to minimize the heat radition from the cage-heater assembly.

After the deposition is completed, the electrical power to the substrate heater is either disconnected or lowered. In the disconnected case, after about 15 minutes as the temperature is lowered to about 200°C, the system is opened and the specimen removed for post hydrogenation treatment. In the case of lowered power, when temperature has dropped to 400°C, a dc plasma of 3 kv, and 10 ma is introduced through the discharge rod (17). More recently, a discharge ring was introduced between shutter (10) and substrate holder (1), instead of the rod (17). A better plasma uniformity is obtained in this way. The pressure in the system during the plasma treatment is maintained between 120 and 100 microns. The treatment time is one hour and after that period, first, heater is disconnected and the temperature is reduced to 250°C in about five minutes, the plasma is then stopped and this in situ hydrogenation is completed. The case of hydrogenation outside the vacuum system is a pyrex tube capacitance coupled to a 13.6 Mc microwave power source. The pyrex tube is connected to a vacuum pump on the one end and a hydrogen source on the other end. The discharge power, the temperature and the pressure is about the same as the in situ do plasma case. The result from the microwave treatment is generally better than the dc case at present.

IV. SOLAR CELL RESULTS

In this reporting period, a total of 16 runs were completed. 1-3 ohm-cm n-type single crystalline silicon substrates or diffused p-n junction substrates were prepared at ASEC. The wafers were polished and cleaned and in the case of p-n junction, a relatively shallow junction was diffused (2 hr. 92°C BN wafer diffusion).

ORIGINAL PAGE IS OF POOR QUALITY

The wafers were cut to 1"x 2" in size and were sent to Boston College. After m-Si films were deposited in each run a preliminary measurement of AM1 photovoltage based on metal point contact without electrodes was made at Boston College. Even though this measurement is not precise the advantage for this measurement is to evaluate the effects of hydrogenation, as well as a quick evaluation of the run. After a number of runs, samples were sent back to ASEC for cell fabrications. In each 1" x 2" sample, only an area of 4.8cm x 1.55cm was covered by the m-Si film. A number of small cells were fabricated on each sample. There were a total of three lots of samples sent to ASEC in this period. For the first lot, eight 0.7cm x 1cm cells were fabricated on each sample. For the subsequent lots, only four 1cm x 1cm cells were made on each sample. The 3rd lot included samples which had metal contacts in the back on both n-Si substrates and p-n substrates. These metal contact samples were fabricated separately from the rest of the lot. Fo all lots only low temperature (220°C) contact sintering was used to reduce the chance of dehydrogenation. Table 1 summarizes the condition of all the runs and also the resultant solar cell data. Individual cell data can be found in Appendix I.

Several explanations are to be made on Table 1.

- 1) The run numbers follow a chronological sequence.
- 2) The position indicates the substrate position on the substrate holder.

- 3) The blank positions in some runs are for glass or steel substrates for monitoring purpose.
- 4) The thickness is monitored by a shift of a quartz crystal resonance frequency in kc units of 1 kc corresponds to about 0.3 microns.
- 5) The value of the thickness and temperature is measured at a representative point, and a deviation of 5% from the five positions A through D is expected.
- 6) The value of the preliminary photovoltage is not uniform throughout each substrate, therefore, the listed value shows the a higher values.
- 7) For samples used in cell fabrication, the range of Voc and Jsc of resultant cells for each sample are listed alongside.
- 8) The * sign signifies samples with pre-deposited back contacts. Table 2 lists results of control p/n cells with the same digfusion of the p/n substrates made at ASEC for comparison.

The following observations can be made from the results.

- 1) For a substrates, the best Voc was obtained in runs 4,5, and 6 in Table 1 where the m-Si film is thicker (0.5 mm). Also appreciable improvement from hydrogenation is only observed for these runs. These results are not consistent with experience at Boston College of m-Si on a-Si cells where the optimum thickness was .05 to .1 um and hydrogenation had large improvement as mentioned in Section 2. This indicates a basic difference in m-Si on a-Si and m-Si on single crystalline Si.
- 2) The etching step monitored in Section 2 for m-Si on -Si had no effects here for m-Si on single crystalline Si.

- 3) From the Appendix, the cell CFF is generally low in general. From the original I-V curves (not shown here) we could find two potential problems. One was that shunting occured in most of the samples which had Voc of 200mV or below. For the better Voc samples, some had no observable shunting, but a large curvature of I-V occurred. This indicated a interface problem between m-Si and single crystal Si.
- 4) The second potential problem arose because we sintered our metal contacts at low temperature (220°C) for fear of dehydrogenation. We were not sure if truly ohmic contacts were achieved in the back. That would reduce Voc even though we don't believe that this is the major reason for low Voc.
- The motivation for predepositing a back contact <u>before</u> m-Si deposition was to by-pass the back contact problem. However, the m-Si deposition temperature of above 600°C for a fairly long period of time (not in H₂ or forming gas) may not be suitable for the contacts. Therefore, the results were not very consistent. The back contact was slightly discolored. However, the low voltage of some of the samples may be due more to shunting problems of the films than the back contacts. In the future, instead of predepositing metal contact, a diffused n+ back is going to be used, applied before m-Si deposition.
- 6) For the p-n junction substrates, so far no voltage gain over the control p/n was observed. In fact there was a voltage drop rangeing from 15mV up to more than 100mV, possibly caused by back contact effects. Of course, a drop in Jsc due to absorption in the m-Si film had an effect on the Voc too. These, however, cannot account for all the drop of Voc. In the future a p-nn+structure will be used.

. .

7) SIMs study by T. Daud and K. Stika of JPI indicated high carbon contamination in some of the samples. We don't know if this has any effect on the interface properties.

From these observations, one can conclude that there is a difference between m-Si on a-Si and m-Si on single-crystal Si structure. One possible explanation of the widespread shunting in thinner films is the presence of pinholes. Also in the early runs, some improvement in Voc was observed after rehydrogenation of some completed cells. Therefore, either the first hydrogenation was not completed or dehydrogenation occured in cell fabrication (no record of preliminary Voc on those samples). However, in later runs, the preliminary Voc and the Voc of the finished cell match reasonably well and there is no strong evidence that dehydrogenation occured. However, further tests will be done in this area.

V. CONCLUSION

So far there is no voltage gain in either the hetrojunction or heteroface structures (see Figure 1) over the control diffused P/N junction cells. In the heterojunction case interface problems and possible back contact problems have limited Voc to 490mV. In the heteroface case, the solution is also not yet clear. Use of a n+ back on all the samples will eliminate the back contact problem and a better judgement can be made.

Another potential problem is the high carbon contained in the film. This should be reduced by modifying the deposition source.

TABLE 1

r	T	7			Nel : 1			
IIs	\$ E		 (-			222	2226
Control Cells	Jsc(mA) Range		1.3-11.3	1.4-18.6	4.4-15.1 3.9-7.5 9.5-19.0		13.9-14.1 12.9-13.1 9.8-13.3 12.6-12.9	8.6-13.3 14.3 8.8-14.1 148-15.1
ASEC	Voc(mV) Range		EI	26	30 4 38-107		210-298 198-344 254-460 414-482	20-202 340-426 20-60 402-428 322-356
age (mV)	Posthydro- generation			OI OI		PAGE 15 QUALITY	180 450 486 487 417	361 471 370 381 316
Photovoltage (mV)	Prehydro- generation						130 260 200 336 168	118 132 134 133 147
osition	Thickness (kc)	1.10		1.35		2.40	2.70	2.80
m-Si Deposition	Temperature (^O C)	616		249		635	647	642
	Туре	c	מבם	c	ccc		2222	
	ASEC #	2	31 32 1	M	33		37 33 40 42	7 8 9 10 11
	Position	A	O D EI	Υď	ED C	A C E D	A C E D	EDCBA
	Run	grand)		2		د	#	2

cont'd.	
e 2 - Table 1	
Page	

1	7		The second secon	*********	-				-		
IIs	3.6 5.	2223		8		7		m		m	* *
Control Cells	Jsc(mA) Range	14.5-14.7 2.4-8.4 0.8-14.3 0.9-8.2		10.4-14.1		17.2-17.7		2			0.5-2.4
ASEC	Voc(mV) Range	376-410 40-111 20-414 20-116		114-216		60-84		260-275	all the second of the second	48-308	20-80
age (inV)	Posthydro- generation	ORIGI OF P	NAL PAG OOR QU/	RE 18 ALITY		260 270	1.70		280		
Photovoltage (mV)	Prehydro- generation			55 135		226 230	630	130	180	180	180
osnijon	Thickness (kc)	2.30	09.0		0.50		1.70	The second second		1.90	
m-Si Deposition	Temperature (^O C)	635	929		602		630	- The state of the		##9	
	Type			c c		c c	*	c *	.		c * * c
	ASEC #	£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £		13		48 14	M3	JPL M4	JPL	c	JPL M8 M7
	Position	ABOUR	Κuc	O E	Υď	а () О в	Αa	200	ш	Α¤	DO E
	Run	9	7		. 00	·	6			01	

Page 3 - Table 1 Contd.

-

U

ran e		years was versa		Yene minoria		·					
Is	<u> </u>	m	m m	m	m m	m	m m *	m	mm*	m	m m *
ASEC Centrol Cells	Jsc(mA) Range	Part and the second sec	5° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°		manufacture of the second seco	han	percel second started	13.7-17.9	2.2 19.5-16.9 13.5	13.9-16.3	13.1-13.2
ASEC	Voc(mV) Range	201-216	20-161 140-182	121-134	91-149 77-91	123-189	197-225 73-166 73-166	530-550	158-254 546-538 526	506-532	134-296 428-476 538-544
Photovoltage (mV)	Posthydro- generation	220	135 80		ORIGINA OF POO	S. PAG R QU	GE IS	565	229 560 549	583	76 240
Photovol	Prehydro- generation	Q/	129 60 170	C.)	Companies accordances of the companies o	79	2	550	730 730 735		550
osition	Thickness (kc)		COMES DESCRIPTIONS OF EXPLOSIVE PROPERTY OF THE STATE OF	2.49	and in principal section of the sect	66.1	alaka da Al-Addi Tabbi C Baya say yang arawa	.54		09-	
m-Si Deposition	Temperature (^O C)	652		979		<i>G</i> 49		652		652	
	Туре	in the second	c c	G	c c *	G	4 4	8.	= & &	S.	= & *
	ASEC #	NAME OF THE PROPERTY OF THE PR	25 JP	64	17 18 M6	NO.	19 J	اسا اسا	52 312 328	land American American	53 313 327
	Position	⊄ ¢	らりら	×€ c	арды	≪(' (どりひ目	< 0	вООш	M. C.	аООш
	Run	**************************************	umqeestilaatistikatigestistektyseere e	17		~	Carrier Street		mini and his distribution described and an angular	in the second	ga Alva de Traj Meri (a Alva Talourus) de Los maior Majorius (a

Page 4 - Table I Cont'd.

	<u> </u>	1			
S	S to		m	w.c	→
ASEC Control Cells	Voc(mV) Jsc(mA) Range Range		16.4-16.5	2.0	13.1-15.3
ASEC	Voc(mV) Range		528-546	204-232	338-544
Photovoltage (mV)	Posthydro- generation		562	500	240
Photovol	Prehydro- generation			188	550
Deposition	Thickness (kc)	43			
m-Si Depo	Temperature (°C)	649	·		
	Type		ud	⊏ 6	* rd
	ASEC #		310	54	327
	Position		Αď	ם ט ב) tr
	Run	16		- 	

ORIGINAL PAGE 15 OF POOR QUALITY

, u

13.

*These samples had metal back contact before m-Si film deposition.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 2

SUMMARY OF RESULTS OF CONTROL P/N CELLS

(NO BSF, NO AR)

	Voc (mV)	Jsc (mA/cm ²)	CFF (%)	EFF (%)
AVERAGE	558	20.5	73	8.3
S.D.	<u>+</u> 5	<u>+</u> 0.5	<u>+</u> 3	<u>+</u> .4
RANGE	546-562	19.7-21.2	67-76	7.4-8.8

TOTAL NO. OF CELLS = 12

VI. WORK PLANNED

- o n-n⁺ and p-n-n⁺ samples are being prepared.
- o p-Si wafers are being prepared to study the p-m-3i-p-Si structure for verification of the heterojunction concept (i.e. a voltage generated mainly by bandgap differences rather than by doping differences)..
- o The independent boron source (in graphite boat) is a potential carbon source. Instead of the present co-evaporation a highly boron doped Si source as the only evaporation source will be used.

VII. REFERENCES

- 1. P.H. Fang, L. Ephrath and W.B. Nowak, Appl. Phys. Lett. 25, 583 (1974).
- 2. J.I. Pankove, Appl. Phys. Lett. 32, 439 (1978).
- P.H. Fang, C.C. Schubert, J.H. Kinnier and Dawen Pang, Appl. Phys. Lett.
 256 (1981).
- 4) Y. Nagarta, A. Kunioka and S. Yamazaki, Appl. Physa. Lett. 38, 142 (1981).
- Y. Uchida, T. Ichimura, M. Ueno and M. Ohsawa, <u>Proc. 9th Intern. Conf. Amorphous and Liquid Semiconductors</u> (Grenoble, France 1981, B.K. Chakraverty and D. Kaplan, Eds.) p. C4-265.
- 6) R.A. Forman, W.R. Thurber and D.E. Aspness, Solid State Comm. 14, 1007 (1974).
- 7) Z. Iqbal, A.P. Webb and S. Veprek, Appl. Phys. Lett. 36, 163 (1980).
- 8) R. Richter and L. Ley, J. Appl. Phys. <u>52</u>, 7281 (1981).
- 9) P.H. Fang, C.C. Schubert, Peiguang Bai and J.H. Kinnier, Appl. Phys. Lett. 41, 356 (1982).
- 10) A. Matsuda, K. Kumagai and K. Tanaka, Jpn. J.A.P. Letters <u>22</u>, 34 (1983).
- 11) P.H. Fang, Peiguang Bai, C.C. Schubert and J.H. Kinnier, Jpn. J. Appl. Phys. (To appear.).

- 12) T. Hamasaki, H. Kurata, M. Hirose and Y. Osaka, Appl. Phys. Lett. <u>37</u>, 1984 (1980).
- 13) J. Gonzalex-Hernandez and Raphael Tsu, Appl. Phys. Lett. 42, 90 (1983).
- 14) H. Richter and L. Ley, J. Physique, Coll. Cl, Suppl. 10, 43, 247 (1982).
- 15) J.C. Knights, G. Lucovsky and R.I. Nemanick, J. Non-Crys. Solids, 32, 393 (1979).
- 16) A Matsuda, T. Yoshida, S. Yamaskai and K. Tanaka, Jpn. J. Appl. Phys. 20 L183 (1981).
- 17) Y. Mishima, S. Miyazaki, M. Hirose and Y. Osaka, Phil. Mag. B46, 1 (1982).
- 18) Y. Uchida, T. Ichimura, M. Ueno and H. Haruki, Jpn. J. Appl. Phys. Lett. 21, 586 1982.
- 19) H. Sakai, M. Kamiyaya, M. Ueno, K. Yamuda and Y. Uchida, SPIE-Int. Soc. Opt. Eng. Tech. Symp. East 183 (Arlington, VA, April 5-6, 1983).

APPENDIX I INDIVIDUAL CELL DATA

SOLAR CELL ELECTRICAL DATA

ORIGINAL PAGE IS OF POOR QUALITY

CELL	DESCRIPTION:,	ms: / bcs.	15+	Lot	
TEST	CONDITION:	ER AMI			
TEMPS	ERATURE:	287			

	v _{oc}	J _{SC}	P _{Max}	CFF	η	AREA
NO.	m\	mA/cm ²	mW	%	%	cm ²
3-1	65	14.1				
<u> </u>		13.1				
323	7	15-6				
3.4	8	14.7				
3-5	15	18.3				47
7-6	16	16.4		<i>'</i>		
3-1	. 26	18.6				
7-8	23	16.7				
4-1	78	16.9				
4-2	79	18-4				
4-3	92	18.1	,			
4-4	94	19.3				
4-5	92	18.0				
4.6	/07	19.1				
4-7	94	16.1				
4.8	103	17.3				
5-1	22(14.9 16.4 HS\$				
5.4	203	H55				

LL DESCRIPTION:	msi/c·si	,	ist Lot	
ST CONDITION:	AMI			
EMPERATURE:	256	,		

	v _{oc} J _s	J _{sc}	SC P _{Max}	CFF	η	AREA
NO.	m√	mA/cm ²	mW	%	*	cm ²
5-7	19	14.0				
5-4	2/	15-0				
5.5	3	76				
5.6	4	7-6		•	· ,	
5-7	`3	9.6				
5-8	3	9 9.1		, ;		
	. •	,	:			
6-1	2	3-7		,	,	
6-2	Z	5-9				
6.3	ユ	2.6				
6-4	2	2.3				
6-5		4.1	•			
6-6	2	4.1			·	
6-7	2	8-1				
6-8	2	8.4				
32-1	8	1:3				
?a-1	1>	4.4				
32-3	4	3		•		
324	10	7.3				

CELL	DESCRIPTION:	· st let
	CONDITION:	
TEMP	ERATURE:	

	Voc	Jsc	P _{Max}	CFF	n	AREA
NO.	m\	mA/cm ²	mW	%	%	cm ²
325	73	4.4				
72 (9	11.3				
32-1	1	1.4				
32.9	g	9.0				
33-1	25	14.1				
35.2	. 29	14.0				
35-3	24	14.9				
3.2-14	24	15.1	A			
33-5	17	14.9				
7:5-6	14	14.4				
337	21	12.4	•			
33.8	14	10.6			·	
•	* ************************************					
34.1	2	3.9				
342	5	7.6				,
34.7	Z	4.7				
34.4	2	6.4			•	
34.5	2 ·	5-3				
1.90	2	5-7				

		Lat 1 of
.L	DESCRIPTION:	. 157 607
T	CONDITION:	
ADS	PATURF:	,

	Voc	Jsc	P _{Max}	CFF	η	AŖĒĀ
NO.	m√	mA/cm ²	mW	%	%	cm ²
34.7	1-3	6.9 7.6				
34.8	1.6	7.6				
					. ,	
35-1	88	10./				
75-2	94	14.9		. ;		
75-3	95	11.1				
35-4	. 110	15-7				
35.5	103	7.6				
35-6	(17	14.7				
71-1	108	9.3				
75-∂	57	6.1				
36-1	4	11.1			•	
· 76·2	4	9.3				
36-3	8	10.9				
36-4	6	6.9				
76.5	Ь	(d) 3				
36-6	ط	8.9		,		
76-7	5	11.(•		
36-8	4	109				

CELL DE	SCRIPTION:	M - Si	and lit	
TEST CO	NDITION: TURE:	Amı	NO AR	

	Voc	^J sc	P _{Max}	CFF	η	AREA
NO.	mV	mA/cm ²	mW	x	*	cm ²
7-1	20	8-6				
7-2	40	12.5				
7-3	140	13.3		3.5	0-7	
7-4	202	13.0		32	0.8	
8-1	344	14.3		37	1.8	
3-2	390	14.3		139	2.2	
8-3	. 426	14.3		46	2.8	
. 8-4	340	14.3		3,2	1.6	
9-1	20	8-8				
9-2	20	8-3				
9-3	20	11.9				
9.4	60	14:1	•			
12-1	314	14-3		35	1.6	
12-2	86	14.8		30	0.2	
12-3	200	14-7		29	0.8	
12-4	374	15.(Linux held gank firm de kombet him generature program per part part per hanning mode	@ 35	2.0	and the state of t
13.1	146	12.7		22	0.4	
132	114	10.4		21	0.5	
13-3	148	12-6	•	23	0.4	
13.4	216	141		23	0-7	

L DESCRIPTION:	; nd wt.
ST CONDITION:	
MPERATURE:	

	^V ос	^J sc	P _{Max}	CFF	η	AREA
NO	mV	mA/cm ²	mW	ž	%	cm ²
144	60	17.4		22	0.2	
142	60'	17.7		24	0-3	
143	80	176		27	0.4	
144	84	172		35	.0.5	
384	242	12.9		32	1.0	
78-3	344	13.1		138	1.7	
38-4	. 198	13.1		29	0.8	
39-1	430	12-7		* . 35 .	1.9	
392	460	13.3	-	44	2-7	,
393	3 378	12-9		39	1.9	
394	254	9.8		26	07	
404	414	12.6		34	1.8	
402	470	12.8		42	2.5	<i></i>
403	452	12.8		39	2.2	
404	482	12.9		49	3.0	
444	40	2.0				•
442	60	4.1				
443	40	7.1				
C+L+L+	106	7-4		23	0.2	
374	286	13.9		36	1.5	

CELL	DESCRIPTION:	2 nd	lot.	
	CONDITION: RATURE:			

	v _{oc}	J _{SG}	P _{Max}	CFF	η	AREA
NO.	mV	mA/cm ² ·	mW	*	*	cm ²
372	298	14.1		40	1.7	
373	210	14.1		33	1.0	
374	244	14.1		37	1.3	minimum ye karamanin manakinin
441	40	2.4		•		
442	60	5.2				
443	40	8-7		i		
444	. 110	8-4.		22	0.2	
451.	20	0-8			•	
452	40	<i>3-5</i>				
453	282	13.7		27	1.0	
454	414	143		38	2-3	
461	116	8-2	•	R\$ 2/	0-2	
462	. 98	6.8		21	0.1	
463	80	46				
464	20	0-9				
						•
					.•	
			•			
		<u>, </u>				

CELL DESCRIPTION:, _	M-Si or	N-C-Si.	ard Lot.	
TEST CONDITION: TEMPERATURE:	<u> Ami</u>	no AR		

	v _{oc}	J _{SC}	PMax	CFF	η	AREA
NO.	mV	mA/cm ²	mW	%	*	cm ²
10-1	402	15-/		5=4	3.3	
10-2	418	14.8		61	3.8	
10-3	428	14.9		62	7.9	
10-4	4 08	14.9		. 56	. 3.4	
1 ((722	/3.7		i 5-4	2.4	
11-2	. 344	14.5		5-4	2.7	
11-3	356	14.7		57'	3.0	
11-4	356	11-7		45	1.9	
15-1	201	1.5				
15-2	214	1.7	•			
15-3	2-16	1.4				
16-1	182	7.9		22	0-3	
16-2	160	6.7		19	02	•
16-3	140	3-7		20	0.1	
164	144	1.8	*	31	0.1.	
			*			,

CELL	DESCRIPTION:	m-s./esi 3rd ht
TEST	CONDITION:	
	RATURE:	

	v _{oc}	^J sc	P _{Max}	CFF	n	AREA
NO.	Vm	mA/cm ²	mW	*	%	cm ²
17-1	91	0.5				
17.2	115	0-4				
17.3	137	0.6				
17-4	149	1.1		•	·	
18-1	82	1.1		i		
18-2	. 91	1.3.				
18-3	91	0.5			·	
18.4	77	1.0				
19-1	197	0-4				
19-2	219	0.4	•			
19-3	207	0-3				
19-4	225	0-3				
43-1	390	14.5	,	5-1	2.9	·
43-2	388	14.5		50	28	
43-3	376	14.5		47	2-5.	
43-4	410	14.7	•	51	31/	

OF POOR QUALITY

		S 1 14
711	DESCRIPTION:	masi /c-si. 3rd lot
a ta le	Dancier (a con ,	
EST	CONDITION:	
FMP	RATHRE:	

	Voc	Jsc	P _{Max}	CFF	η	AREA
NO.	mV	mA/cm ²	mW	2	*	cm ²
49-1	121	0.5				
49.2	134.	0.6	The second s			,
49-3	125	6.8				
49.4	126	0-7				
57-1	179	0-2		i		
51-2	. 180	.0.7				
51-3	118	0メ			<u> </u>	
5:14	123	0.1				
50-1	20	0				
502	-	O				
ד-טיל	. 106	0.2				
50-4	161	0-2	W ₁ ,			
52-1	254	22				
らみみ	226	0.6				
52-3	158			,	•	

CELL	DESCRIPTION:	msi/c-si	3rd	Lut	
TEST	CONDITION:				
	RATURE:	*	 		-

	^V ос	Jsc	P _{Max}	CFF	η	AREA
NO.	mV	mA/cm ²	mW	*	%	cm ²
53.1	134	0.9				
532	200	0-4				
53.3	274	0.8				
534	296	7 -0				
5-4-1	204	0.2		i		
5 4-Z	. 232	./-2			·	
54-3	201	2.0			•	
54-4	204	1./				
			•			
					,	
			•			
			- Marie - Mari			•

ORIGINAL PAGE IS OF POOR OUALITY

ELL DESCRIPTION: m5:/ P-n c-s: 3rd lot

TEST CONDITION:

TEMPERATURE:

TEMPERATURE:

TEMPERATURE:

TEMPERATURE:

	v _{oc}	^J sc	P _{Max}	CFF	η	AREA
NO.	mV	mA/cm ²	п.Ж	2	%	cm ²
710-1	540	16.2		28	2.5	
ブロ・ス	546	16-5		29	2.6	
J10-3	544	16.2		28	2.5	Lon D
510-4	528	16.1		29	. 2.5	
J11-1	514	16. 7		37	3.2	
JII-2	. 522	16.9		35	3.1	
J11-3	528	16.7		36	3.2	
J11-4	508	14.1		27	1.9	
	1-70	16.1		36	3.1	
ブロ-1 ブロ-2	528 526	14:5		29	るよ	
JU- 4	538	16.9		30	2.7	
•						
J13-1	476	132		27	1-7	
J13-2	438	10.0		25	1.1	·
J13-3	428	11.4		26	1-3	
J13-4	428	12.2		26	1-3.	
						•

OR	GINAL	PAGE	18
OF	POOR	OHALE	T

CELL	DESCRIPTION:	msi/rin junction . 3rd lot OF POOR QUALITY
	CONDITION:	
TEMP	RATURE:	

	v _{oc}	^J sc	P _{Max}	CFF	n	AREA
NO.	mV	mA/cm ²	mW	9,	%	cm ²
J14-1	506	16-2		72	2.6	
514-2	530	16.3		31	2.7	
J14-3	5-32	13.9		28	1.7	
J15-1	550	16.8		34	3.2	
グルン	546	170		; 44	4.1	
J15-3	. 530	13-7		27	1.7	
J15-4	532	16.3		29	2.5	
		()				
	· · · · · · · · · · · · · · · · · · ·					
		CALUMA AND PROPERTY OF THE PARTY OF THE PART				
•						
			·			
			·			
	,					•

CELL DESCRIPTIO	N:, _	TPL	Sumples	M-S, /c-Si	3rd lot.	
	_					
TEST CONDITION:						
TEMPERATURE:						
the state of the s	_					

	Voc	Jsc	P _{Max}	CFF	n	AREA
NO.	m\	mA/cm ²	mW	%	X	cm ²
4C-1	260	/-3				
96.7	,275 ⁻	1.8				
91-3	27.2	1.7				
ŸC-4	235	1.1		ļ.		
					70)	
IOAI	256	0.8				
10/12	. 281	O. 5°·				
1.0/13	78	0.4			<u> </u>	
10114	305	0-7	•			
13171	166	0.1				
BOL	90	υ	•			
1303	104	٥			·	
13124	73	ð				
						•

CELL	DESCRIPTION:	(mutal	back)	Trackers	tringer	msi/p-n	<u> 20</u>	
	CONDITION:	AMI						

The Secretary Control of Secretary and Control of Secretary and Secretary and Control of Secreta	v _{oc}	J _{SC}	P _{Max}	CFF	n	AREA
NO.	mV	mA/cm ²	mW	%	%	cm ²
J26-1	5-44	12.0		70	4.9	
T-26-2	5-44	128		7/	4.9	
J26- }	546	12-7		74	5-1	•
J26·4	544	12-9		72	5./	
727-1	544	<i>i</i> 3、2		. 71	5./	
727-2	538	13.3		٤/	4.3	
T27- 3	5-42	13.1		68	49	
727-4	542.	13-1		64	45	
728-1	5-26	13.5		56	3-7	
	·			•		
			.*	·		
					•	

CELL	DESCRIPTION:	metal back	ms: . 380/ s.	·····
	A > 11 A Z M Z A 11			
TEST	CONDITION:	Ami		
TEMP	ERATURE:) { }		

	v _{oc}	^J sc	P _{Max}	CFF	ŋ	AŖĒĀ
NO.	mV	mA/cm ²	mW	%	%	cm ²
m71	92	2.4		29		
2	90	0.9		33		4)
3	80	0.6		26		
4	80	0.5		24		
W181	40	i /.0		· @#1/		
2	90	. 1. 0		70		
3	20	1.2				
4	20	0-8				
				,		
	;					
		7				
		<u> </u>	.,			

APPENDIX II TIME SCHEDULE

TIME SCHEDULE

	NOV	DEC	JAN	FEB	MAR	APR	MAY	NUC	JUL	AUG	SEP	DCT	NOV
SAMPLE							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
PREPARATION													
(ASEC)													
M-Si DEPOSITION													
TEST (BOSTON COLLEGE)													
CELLS FABRICATION AND													
MONTHLY			4.	4	4		٧	Ą.		V	V	δ	
QUARTERLY REPORT						4			∅.				
FINAL REPORT													٧