Examenul de bacalaureat național 2020

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Test 6

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{180} = 6\sqrt{5}$, $\sqrt{125} = 5\sqrt{5}$	2p
	$\sqrt{180} - \left(\sqrt{125} + \sqrt{5}\right) = 6\sqrt{5} - \left(5\sqrt{5} + \sqrt{5}\right) = 6\sqrt{5} - 6\sqrt{5} = 0$	3 p
2.	$f(x) = g(x) \Leftrightarrow 4x - 3 = x^2 \Leftrightarrow x^2 - 4x + 3 = 0$	3 p
	x = 1, x = 3	2 p
3.	$7^{4x-2} = 7^2 \Leftrightarrow 4x - 2 = 2$	3 p
	x = 1	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre, numerele 16, 25, 36, 49, 64 și 81 sunt pătrate ale unor numere naturale, deci sunt 6 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{90} = \frac{1}{15}$	1p
5.	AB = 3	2p
	$BC = 3$, deci $\triangle ABC$ este isoscel	3p
6.	$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$, $\sin 30^{\circ} = \frac{1}{2}$	2p
	$(\cos 30^{\circ} - \sin 30^{\circ})^{2} + \cos 30^{\circ} = 1 - 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

1	2020 4 2020 4 2(2020 4) 12	_
1.	$2020 \circ 4 = 2020 \cdot 4 - 3(2020 + 4) + 12 =$	3р
	=8080-6060-12+12=2020	2p
2.	$3 \circ x = 3x - 3(3+x) + 12 = 3x - 9 - 3x + 12 =$	3p
	=-9+12=3, pentru orice număr real x	2p
3.	$x \circ y = xy - 3x - 3y + 9 + 3 =$	2 p
	= x(y-3)-3(y-3)+3=(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
4.	$x \circ x = (x-3)^2 + 3$, pentru orice număr real x	2p
	$(x-3)^2 + 3 = x \Leftrightarrow (x-3)(x-4) = 0$, deci $x = 3$ sau $x = 4$	3 p
5.	$x \ge 3$ şi $y \ge 3$, deci $x - 3 \ge 0$ şi $y - 3 \ge 0$	2p
	$(x-3)(y-3) \ge 0 \Rightarrow (x-3)(y-3) + 3 \ge 3 \Rightarrow x \circ y \ge 3$, pentru orice $x \ge 3$ şi $y \ge 3$	3 p
6.	$x \circ 3 = 3$ şi $3 \circ y = 3$, unde x şi y sunt numere reale	3p
	$\sqrt{1} \circ \sqrt{2} \circ \dots \circ \sqrt{2020} = \left(\left(\sqrt{1} \circ \sqrt{2} \circ \dots \circ \sqrt{8} \right) \circ 3 \right) \circ \sqrt{10} \circ \dots \circ \sqrt{2020} = 3 \circ \left(\sqrt{10} \circ \dots \circ \sqrt{2020} \right) = 3$	2p

SUBIECTUL al III-lea (30 de puncte)

	(So de pa	
1.	$\det A = \begin{vmatrix} 0 & 3 \\ 6 & 9 \end{vmatrix} = 0.9 - 3.6 =$	3p
	=0-18=-18	2p
2.	$A \cdot B(0) - B(0) \cdot A = \begin{pmatrix} 0 & 3 \\ 6 & 9 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 2 & 4 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 6 & 9 \end{pmatrix} = \begin{pmatrix} 6 & 12 \\ 30 & 36 \end{pmatrix} - \begin{pmatrix} 0 & 6 \\ 24 & 42 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 6 & 6 \\ 6 & -6 \end{pmatrix} = 6 \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ $\det(B(x)) = \begin{vmatrix} 2 & x \\ 2+x & 4 \end{vmatrix} = 8 - x(x+2) =$	2p
3.	$\det(B(x)) = \begin{vmatrix} 2 & x \\ 2+x & 4 \end{vmatrix} = 8 - x(x+2) =$	3p
	$=-x^2-2x+8=(2-x)(x+4)$, pentru orice număr real x	2p
4.	$B(2) = \begin{pmatrix} 2 & 2 \\ 4 & 4 \end{pmatrix} \Rightarrow A + B(2) = \begin{pmatrix} 2 & 5 \\ 10 & 13 \end{pmatrix}, \text{ deci det}(A + B(2)) = -24$	3p
	Cum $\det(B(2)) = 0$ și $\det A = -18$, obținem $\det(A + B(2)) < \det A + \det(B(2))$	2p
5.	$B(x) \cdot B(y) = \begin{pmatrix} xy + 2x + 4 & 4x + 2y \\ 2x + 4y + 12 & xy + 2y + 16 \end{pmatrix}, \ B(y) \cdot B(x) = \begin{pmatrix} xy + 2y + 4 & 2x + 4y \\ 4x + 2y + 12 & xy + 2x + 16 \end{pmatrix},$	2p
	pentru orice numere reale x și y	
	$\begin{pmatrix} xy + 2x + 4 & 4x + 2y \\ 2x + 4y + 12 & xy + 2y + 16 \end{pmatrix} = \begin{pmatrix} xy + 2y + 4 & 2x + 4y \\ 4x + 2y + 12 & xy + 2x + 16 \end{pmatrix} \Leftrightarrow x = y$	3p
6.	$B(1) + B(2) + B(3) + \dots + B(n) = \begin{pmatrix} 2n & \frac{n(n+1)}{2} \\ 2n + \frac{n(n+1)}{2} & 4n \end{pmatrix}, \text{ unde } n \text{ este număr natural nenul}$	3р
		2p