Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по практическим работам

Дисциплина: Теория вероятностей и математическая статистика

Выполнил студент гр. 3530901/10001	(подпись)	Д.Л. Симоновский
Руководитель	(подпись)	К.В. Никитин

"<u>02</u>" <u>май </u>2023 г.

Санкт-Петербург 2023

Оглавление

1.	Задания	2
2.	Решение	2
a.	Задача 1.7	2
b.	Задача 2.6	3
c.	Задача 3.22	4
d.	Задача 4.23	5
e.	Задача 5.3	5
f.	Задача 6.14	6
g.	Задача 7.16	7
3.	Моделирование	7
a.	Задача 2.6	
b.	Задача 3.22	8
c.	Задача 4.23	9
d.	Задача 5.3	11
e.	Задача 6.14	12
f.	Задача 7.16	13
1	Columbia	1.1

1. Задания

Задания для теоретического решения: 1.7, 2.6, 3.22, 4.23, 5.3, 6.14, 7.16, 8.40, 9.20, 10.7, 11.16, 12.17, 13.1, 14.4, 15.6, 16.6, 17.8, 18.10, 19.4, 20.34, 21.10, 22.17, 23.12, 35.19, 36.25, 37.5, 38.17, 39.30.

Задания для моделирования: 2.6, 3.22, 4.23, <mark>5.3, 6.14, 7.16</mark>, 8.40, 9.20, 10.7, 11.16, 12.17, 13.1, 14.4, 15.6, 17.8, 19.4, 21.10, 22.17.

2. Решение

а. Задача 1.7 THO 139 Pelles Ogno as unesusuxca бракованных argemi elletile Ознагает, гто Hmue I um 2 una 3 un bal Ump Ожагает Doumue uno OZKaralm. Sparo Barn ore DIKATALM Spanobarnoux Umbem: DOGNOBA HHERIX MIDO Hem.

b. Задача 2.6 Dano: 20 kgn З монеты 3 Kon. Fuorem bepemea workernor, вторая Uselm Hamman 20 веродтность, emo u nepeas 11 prema Ullem HOMELHAY 20 Perrene. Jalobuar 60009 mx0cm6 UZBRERRIUR REPBORT nou your suro 20 KON Woklemou bmapag Монета 20 non: P(20+20) (1) P(3+20)+P(20+20) EDOG MHO CMG, IMO ode HO MUKASOL whemer kon: (20-20) = 10 90 beposimuacióno, umo CHARala golmakym Hamkai nomou 20 11090 ma bude 90 27

с. Задача 3.22

1 1	дача 3.22 Уловие
	LOCKOCIMO PAZGELERIA NAPALIELIENENIA APALIOCICI, OMEMORIZARIA
- Dyl	la om apploes na pacimogrece to inpegetions begogninoms moro
Kak	10 naygary Exouvernax na niocnocimo una guinoù l (leli) repeient
Pa	werever
1	Проведем через центр игим пранцю в, параменную
	горизонтанной прямой.
2.	Обозначим бинастичь к ней парамельную шкию
10 10 10 10 10 10 10 10 10 10 10 10 10 1	cepez la
3	Пусть х-дасстаяние от нентра илы до бизнайшей
	праной
Ü	у-угол метру прямой в, и той састью шил, которах
	Sunce K &
	Outract in 22
	en -
	Esinus L
T-	Therence barrowness married
2	Область возможных значения X и 4
	$X \in [0; \frac{L}{2}]$ $Y \in [0; M]$
	Bu boznomensia znarenia.
	$\frac{1}{2}$
6.	Область Елагогериятин значений
	Una nepecerer normyo, en parimornie om normoù l, go mas unos
	Sue mai mero K la Double X: lsing x &
7,	Prousage mon obracmu: S= \$\frac{\length{\sin \psi}}{2} d\psi = \frac{\length{\sin \psi}}{2} (1-(-1)) = l Uckorca & beyon muccine \begin{aligned} P(A) = \frac{\sin 2}{5} = \frac{2}{\psi L} \end{aligned}
2	Ucunias beyog muocini PIA) = 5 2 26
O.	S Ma

d. Задача 4.23

	1.
423 Mubble	
O someter us coposa mais a duemos bensive bourpounce	nagapt
Ha man Surema Onpegerers:	
а верогтность получения хога бы очного изетого выпрыша на	
б) сколько необходино приобрести билегов, тобы палугить вероятность получен	ula
иенного выпроша была не шенее 0.5.	
Thuence	
Perille 11 11000 Marie Manuelle Mariane Description Talman	24 100 HT/10
Peuven ucrossages applyly amnowalessage racmon	est colling.
W(A)= m m- wwo noebserui p-ruccio winoimanen	
29903/1000/39000/ 39993/39000/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/4
	10000
0) = 50.5 = 400001 [A. (40000=n) = 05 = 39998 .39999 40000	50.00
10000	
=> N = 8252	

f. Задача 6.14

6.14 Danos
В яшине 15 теншескых мягый, 9 из них новые.
Для первой игры наугад берутся три мяга.
После шры они возвращаютья в ящих
Для г шры наугад берутся 3 илга.
Maimu:
Вероятность, то все мм, взятые для 2 игры повые.
В коробке 15 мяги в старых, 9 новых
lunomezu:
H1 = D12 ! игра 3 нов мага. Станет 9 старых и 6 новых мягей.
Hz = De 1 wyper Inoborx u 1 cmap user. Cmarem 8 cmaperx u 7 robber we
H3= Dia 1 urpa 1 nobbex u2 cmap use, makem 7 cmap u 8 nob use.
Ну = Для ! шры 3 старых иля. Станет в стар и 9 нов. ияг.
Вероатность гипотез:
$P(H_1) = \frac{C_9^3}{C_{15}^3} = \frac{84}{455}$ $P(H_2) = \frac{C_9^4}{C_{15}^3} = \frac{216}{455}$
0 4 135 Dr. 6 - 20
$P(H_3) = \frac{C_0^2 C_0^2}{C_{15}^2} = \frac{135}{455}$ $P(H_4) = \frac{C_0^2}{C_{15}^2} = \frac{20}{455}$
Н-919 2 игры 3 новых мяга
$P(A H) = \frac{C_6}{C_3^2} = \frac{20}{955}$ $P(A H_0) = \frac{C_7}{C_3^2} = \frac{35}{455}$
P(A/H3) = C3 = 56 P(A/H4) = C3 = 89
вероятность А:
P=P(A1H,)P(H,)+P(A1H2)P(H2)+P(A1H3)P(H3)+P(A1H4)P(H4)-0.089
Ombem: 0.089

g. Задача 7.16 ny (K=1,2,3) - Ha K-ou надрагу выбранием 2-х студентов $P(H_1) = \frac{n_2}{n-1} - cmygenm, romophin ynimas gouballe, yeumas 2 rog.$ $P(H_2) = \frac{n_3}{n-1} - cniygenm, который учится даний учитая <math>3209$ A - ogun uz emigenmob yeuma gaiseue gpyroro. $P(A \mid H_1) = \frac{n}{n-1} \cdot 1001$ emig. nensure 2, rom. yeumax 2 rog neobx. $P(A \mid H_2) = \frac{n_1 \cdot n_2}{n-1} - 2mo\delta + cmyg$ wenseue 2, komop yr. 3 rog neo $\delta \times$

3. Моделирование

а. Задача 2.6

Условие:

В кошельке лежат три монеты достоинством по 20 коп. и семь монет по 3 коп. Наудачу берется одна монета, а затем извлекается вторая монета, оказавшаяся монетой в 20 коп. Определить вероятность того, что и первая извлеченная монета имеет достоинство в 20 коп.

 $z = (n_1 + n_2) \cdot n_3$ - beportmoons, 2mo coegu gby x betopartioex m. $\cdot n_1 + (n_1 + n_2) \cdot n_3$ chargennos (ogun uz komopoix yr-gaesau) ogun yumes mpemut rog.

Решение:

Создадим функцию для получения количества 20-ок и 3-ек:

```
def get_input_data():
    count_20 = 3
    count_3 = 7
    return count_20, count_3
```

Далее необходимо сделать функцию, которая будет возвращать результат броска, принимая на вход общее количество монет, количество 20-ок и 3-ек:

Также реализуем функцию одной итерации вытягивания двух монет, если вторая монета не 20-ка, вернем None, иначе результат первого броска:

```
def one_iteration(count_20, count_3):
    """
    Oдна итерация вытягивания двух монет
    """
    first_coin = get_random_coin(count_20, count_3)
    if first_coin == 20:
        count_20 -= 1
    else:
        count_3 -= 1
    second_coin = get_random_coin(count_20, count_3)
    if second_coin != 20:
        return
    return 1 if first_coin == 20 else 0
```

Ну и последнее – основной цикл программы на 1 000 000 итераций одиночной программы:

```
def main():
   Основной цикл, запускающий одну итерацию несколько раз
    count_20, count_3 = get_input_data()
   iteration_counter = 0
   event counter = 0
    while iteration counter < 1 000 000:
        iteration = one_iteration(count_20, count_3)
        if iteration is None:
            continue
        event_counter += iteration
        iteration counter += 1
    print(f'Количество 20-ок: {count_20}, количество 3-ек: {count_3}\n'
          f'Количество попыток, когда второй раз выпала 20: {iteration_counter}\n'
          f'Количество выпадений двух 20 подряд: {event_counter}\n'
          f'Итоговая вероятность: {event_counter / iteration_counter}\n'
          f'Ожидаемая вероятность: {(count_20 - 1) / (count_20 + count_3 - 1)}')
if __name__ == '__main_ ':
   main()
```

Выполним запуск программы и посмотрим на результат:

```
Количество 20-ок: 3, количество 3-ек: 7
Количество попыток, когда второй раз выпала 20: 1000000
Количество выпадений двух 20 подряд: 223004
Итоговая вероятность: 0.223004
Ожидаемая вероятность: 0.2222222222222
```

Таким образом результат моделирования близок к результатам моделирования.

b. Задача 3.22

Условие:

Плоскость разграфлена параллельными прямыми, отстоящими одна от другой на расстояние L. Определить вероятность того, что наудачу брошенная на плоскость игла длинной l (l<L) пересечет какую-либо прямую (задача Бюффона).

Решение:

Создадим функцию для получения начальных данных (расстояние между отстоящими прямыми и длина иглы):

Далее необходимо сделать функцию, которая будет возвращать результат броска иглы, как расстояние до ближайшей прямой и угол между прямой и «горизонтом».

```
def get_random_x_fi(L):
    """
    Получение результата броска иголки
    """
    x = random() * L / 2
    fi = random() * math.pi
    return x, fi
```

Также реализуем функцию одной итерации броска иголки, которая будет возвращать результат броска и подставлять в условие попадания, полученное в ходе аналитического решения $(\frac{lsin(fi)}{}>x)$:

```
def one_iteration(L, 1):

Одна итерация

"""

x, fi = get_random_x_fi(L)
return 1 * math.sin(fi) / 2 > x
```

Ну и последнее – основной цикл программы на 1 000 000 итераций одиночной программы:

```
def main():
    Основной цикл, запускающий одну итерацию несколько раз
    1, L = get_input_data()
    event_counter = 0
    count_iterations = 1_000_000
    for i in range(0, count_iterations):
        iteration = one_iteration(L, 1)
        event_counter += iteration
    print(f'Paccтояние между прямыми: {L}, длина прямой: {1}\n'
          f'Количество падений иглы на прямую: {event counter}\n'
         f'Количество падений иглы мимо прямой: {count_iterations - event_counter}\n'
          f'Смоделированная вероятность падения иглы на прямую: {event_counter /
count iterations}\n'
          f'Расчетная вероятность падения иглы на прямую: \{2 * 1 / (math.pi * L)\}')
if __name__ == '__main__':
    main()
```

Выполним запуск программы и посмотрим на результат:

```
Расстояние между прямыми: 7, длина прямой: 3
Количество падений иглы на прямую: 273378
Количество падений иглы мимо прямой: 726622
Смоделированная вероятность падения иглы на прямую: 0.273378
Расчетная вероятность падения иглы на прямую: 0.272837045300392
```

Таким образом результат моделирования близок к результатам моделирования.

с. Задача 4.23

Условие:

В лотерее из сорока тысяч билетов ценные выигрыши падают на три билета, определить:

- а) Вероятность получения хотя бы одного ценного выигрыша на тысячу билетов
- b) Сколько необходимо приобрести билетов, чтобы вероятность получения ценного выигрыша была не менее 0.5

Решение:

Создадим функцию для получения начальных данных (общее число билетов и количество выигрышных):

```
def get_input_data():
    """
    Haчальные данные
    """
    N = 40000
    win = 3
    return N, win
```

Далее необходимо сделать функцию, которая будет возвращать результат одной покупки в лотерее, причем нужно учесть, что несколько одинаковых билетов быть не может, для этого воспользуемся set()

```
def one_iteration(x, win, n, N):
    """
    Oдна покупка n билетов
    """
    x = set()
    while len(x) < n:
        m = randint(0, N)
        if m < win:
            return True
        x.add(m)
    return False</pre>
```

Эта функция достаточно долгая, поэтому необходимо воспользоваться многопоточностью для ускорения подсчетов. Вот как будет выглядеть функция для вызова one_iteration много раз:

```
def do_iterations(N, win, n, count_iterations):
    """
        Функция для выполнения нескольких покупок
        """
        with Pool(processes=8) as pool:
            one_iteration_partial = partial(one_iteration, win=win, n=n, N=N)
            results = pool.map(one_iteration_partial, range(count_iterations))
        return results
```

Вместо 8 необходимо указать количество ядер процессора, которые вы собираетесь задействовать для расчетов.

В функции main() получим данные, используя get_input_data()

```
N, win = get_input_data()
```

После этого решим пункт а:

Для решения пункта в уменьшим точность подсчетов до 1000. Считать будем вероятность от 1000 и до 20000 с шагом 500, чтоб получить график изменения погрешности:

```
count_iterations = 1_000
chance = []
real_chance = []
points = list(range(1000, 20000, 500))
for n in points:
    event_counter = sum(do_iterations(N, win, n, count_iterations))
    chance.append(event_counter / count_iterations)
    real_chance.append(1 - math.comb(N - win, n) / math.comb(N, n))
plt.plot(points, chance, label='Model', linestyle='--', color='r', marker='o', markersize=3)
plt.plot(points, real_chance, label='Real', linestyle='--', color='g', marker='o',
markersize=3)
plt.savefig(f"Chance.jpg")
plt.show()
```

Выполним запуск программы и посмотрим на результат:

Пункт а:

```
Пункт а:Количество билетов: 40000, количество победных: 3
Количество покупок с выигрышным билетом: 737
Количество покупок без выигрышного билета: 9263
Смоделированная вероятность получения билета: 0.0737
Расчетная вероятность получения билета: 0.07314240749538414
```

Видно, что результат моделирования близок к теоретическому. Пункт b:

Как видно из графика искомое значение равно примерно 8110, что достаточно близко к ответу при теоретическом решении, точность можно повысить путем увеличения количества итераций.

d. Задача 5.3

Условие:

Квадрат разделен на n^2 одинаковых квадратов.

 P_{ij} ($\sum_{j=1}^{n} P_{kj} = 1$) — вероятность попадания шарика в пересечение і-й горизонтальной и ј-й вертикальной полосы.

Запача

Найти вероятность попадания в к-ю горизонтальную полосу.

Решение:

Создадим функцию для получения входных данных – в данной задаче это лишь размерность n:

```
def get_input_data():
    # Размерность массива
    n = 10
    return n
```

Создадим массив вероятностей P_{ij} , сумма элементов этого массива n на n равна единице:

```
def generate_array(n):

"""

Cos∂aem массив случайных чисел, сумма которых равна 1, размерности n на n

"""

random_nums = np.random.rand(n, n)

total_sum = np.sum(random_nums)

result_array = random_nums / total_sum

return result_array
```

Получим входные данные и массив n на n, так же номер горизонтали k и количество итераций:

```
n = get_input_data()
P = generate_array(n)
k = randint(0, n - 1)
count_in_k = 0
count_iterations = 1000000
```

Создадим основной цикл программы:

```
for i in range(count_iterations):
    chance = random()
    sum_chance = 0
    counter = 0
    while chance > sum_chance:
        sum_chance += P[counter // n][counter % n]
        counter += 1
    if (counter - 1) // n == k:
        count_in_k += 1
```

Выведем итоговый результат:

```
print(f'Teopeтическая вероятность: {np.sum(P[k, :])}\n'
    f'Полученная вероятность: {count_in_k / count_iterations}')
```

Полученный вывод:

```
Теоретическая вероятность: 0.098022
Полученная вероятность: 0.09798
```

Как видно из вывода программа работает корректно.

е. Задача 6.14

Условие:

В ящике находятся 15 теннисных мячей, из которых 9 новых. Для первой игры наугад берутся три мяча, которые после игры возвращаются в ящик. Для второй игры также наугад берутся три мяча.

Задача:

Найти вероятность того, что все мячи, взятые для второй игры, новые.

Решение:

Создадим функцию для получения входных данных – в данной задаче это состав коробки и количество вытаскиваемых шаров:

```
def get_input_data():
   box = [1] * 9 + [0] * 6
   count_to_taken = 3
   return box, count_to_taken
```

Далее создадим симуляцию одной игры:

```
def simulate_game(box, count_to_taken):
    random.shuffle(box)
    first_game = random.sample(box, count_to_taken) # выбираем 3 мяча для первой игры
    for ball in first_game:
        box.remove(ball) # удаляем выбранные мячи из ящика
    box.extend([0] * count_to_taken)
    second_game = random.sample(box, count_to_taken) # выбираем 3 мяча для второй игры
    return all(ball == 1 for ball in second_game) # проверяем, все ли мячи новые
```

Напишем основную функцию, вызывая симуляцию множество раз:

```
def main():
    box, count_to_taken = get_input_data()
    num_experiments = 1000000 # количество экспериментов
    num_successes = 0 # количество успешных экспериментов

for _ in range(num_experiments):
    if simulate_game(box.copy(), count_to_taken):
        num_successes += 1

probability = num_successes / num_experiments
    print(f'Bepoятность того, что все мячи для второй игры будут новыми: {probability}\n'
        f'Teopeтическая вероятность: 0.089 для коробки 9 новых мячей и 6 старых')
```

Полученный вывод:

```
Вероятность того, что все мячи для второй игры будут новыми: 0.089452
Теоретическая вероятность: 0.089 для коробки 9 новых мячей и 6 старых
```

Как видно результат моделирования совпадает с теоретическими ожиданиями.

f. Задача 7.16

Условие:

n – студентов

 n_k (k = 1, 2, 3) – на k-ом году обучения

Залача

Наудачу берут 2 студента, один из которых учится дольше второго.

Какова вероятность, что этот студент учится 3-й год

Решение:

Создадим функцию для получения начальных данных – сколько студентов на каждом году обучения:

```
def get_input_data():
    n1 = 3
    n2 = 4
    n3 = 3
    return n1, n2, n3
```

После этого создадим основной цикл, где выбираем двух студентов случайным образом:

```
first_student = random.randint(0, n - 1)
second_student = random.randint(0, n - 1)
while students[second_student] == students[first_student]:
    second_student = random.randint(0, n - 1)
if students[first_student] == 3 or students[second_student] == 3:
    count += 1
```

Будем делать это множество раз:

```
n = n1 + n2 + n3
print("n =", n)
print("n1 =", n1)
print("n2 =", n2)
print("n3 =", n3)
N = 100000
count = 0
students = [1 for _ in range(n1)] + [2 for _ in range(n1, n1 + n2)] + [3 for _ in range(n1 + n2, n)]
for j in range(N):
    first_student = random.randint(0, n - 1)
    second_student = random.randint(0, n - 1)
    while students[second_student] == students[first_student]:
        second_student = random.randint(0, n - 1)
    if students[first_student] == 3 or students[second_student] == 3:
        count += 1
```

Выведем результат на экран:

Полученный вывод:

```
n = 10
n1 = 3
n2 = 4
n3 = 3
Вероятность того, что среди двух выбранных студентов
(один из которых учится дольше другого) один учится третий год:
Моделирование: P = 0.63178
Аналитически: P = 0.63636
```

Видно, что полученный результат вполне соответствует ожиданиям.

4. Ссылки

Ссылка на репозиторий с моделированием: github.com