PCA with just scaling

4a

```
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import confusion_matrix
import seaborn as sns
from pathlib import Path
import os
import string
import math
     /usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnin
       import pandas.util.testing as tm
from google.colab import drive
drive.mount('/content/drive')
    Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m
path = Path('/content/drive/My Drive/ml_hw6_q4/places.txt')
cd /content/drive/My Drive/ml_hw6_q4
    /content/drive/My Drive/ml_hw6_q4
data = pd.read_csv('places.txt',delim_whitespace=True,na_values='?')
table = data[['Climate', 'HousingCost', 'HlthCare', 'Crime', 'Transp', 'Educ', 'Arts','Rec
4h
table = np.log10(table)
table.head(5)
```

_>		Climate	HousingCost	HlthCare	Crime	Transp	Educ	Art:
	Abilene,TX	2.716838	3.792392	2.374748	2.965202	3.605413	3.440437	2.998259
	Akron,OH	2.759668	3.910518	3.219060	2.947434	3.688687	3.387034	3.745387
	Albany,GA	2.670246	3.865637	2.790988	2.986772	3.403292	3.408240	2.374748
	Albany- Schenectady- Troy,NY	2.677607	3.898067	3.155640	2.785330	3.837778	3.531351	3.667920

4c

```
mean = np.mean(table,axis = 0)
print(mean)
 Climate
               2.718494
     HousingCost 3.907491
     HlthCare
                  2.955487
     Crime
                   2.951627
                  3.597202
     Transp
                   3.446607
     Educ
     Arts
                   3.206209
     Recreat
                  3.226567
     Econ
                   3.734182
     dtype: float64
table = table - mean
print(np.mean(table,axis = 0))
    Climate
                    1.915388e-15
     HousingCost
                   1.773657e-15
     HlthCare
                  6.479113e-16
     Crime
                   3.954959e-16
     Transp
                  5.007814e-16
     Educ
                   4.778346e-16
     Arts
                   1.802003e-15
     Recreat
                   2.663185e-15
                    8.706308e-16
     Econ
     dtype: float64
from sklearn.decomposition import PCA
pca = PCA()
pca.fit(table)
print(pca.components_.shape)
 \Gamma \rightarrow (9, 9)
4d and 4e
pa1 = pca.components_[0]
pa2 = pca.components_[1]
print(f"First principal axis = {pa1}")
print(f"Second principal axis = {pa2}")
    First principal axis = [0.03507288 \ 0.09335159 \ 0.40776448 \ 0.10044536 \ 0.15009714 \ 0.0321
      0.87434057 0.15899622 0.01949418]
     Second principal axis = [ 0.0088782
                                           0.00923057 -0.85853187 0.22042372 0.05920111
       0.30380632 0.33399255 0.0561011 ]
projected = pca.fit transform(table)
print(f"First principal component = \n {projected[:, 0]}")
print(f"Second principal component = \n {projected[:, 1]}")
```

First principal component =

```
[-4.36677074e-01 6.20957601e-01 -8.73256319e-01 5.02948082e-01
6.09775036e-01 -7.45633249e-01 5.09710932e-03 -3.93759635e-02
-8.93575198e-01 -1.64904064e-01 7.03776040e-01 1.43875264e-01
-6.68842631e-01 -9.77440004e-01 8.02625339e-01 -8.04526312e-01
-1.54621973e-01 -1.62389595e-02 1.39749114e-01 8.70728224e-01
-3.45375150e-01 -1.22784742e-01 3.88620116e-01 4.06486994e-01
-2.23536863e-01 1.04615102e+00 7.55859984e-02 1.94483334e-01
-5.73823216e-01 -3.97323657e-02 -1.73224976e-01 -2.71937936e-01
-1.25118019e+00 8.87047017e-01 -3.47869328e-01 -4.80455237e-01
-2.70025874e-03 4.54115136e-01 -1.76004109e-01 1.29823120e-02
-3.92728280e-02 5.86171851e-02 1.40182619e+00 4.45607287e-01
-1.07599057e+00 -2.01012631e-01 -7.83826267e-01 8.34867217e-01
-4.76777676e-01 8.23426352e-02 -1.27166483e+00 -1.31549124e-02
8.64680835e-01 -1.06223777e+00 2.20394326e-01 -3.48957580e-01
-8.00244428e-01 -2.37092714e-01 1.19494634e-01 3.75861896e-01
1.05731212e-01 4.14729759e-01 5.87183762e-02 4.00918980e-02
1.46921996e+00 -2.18986874e-01 8.91196920e-01 -1.17987103e+00
1.11024687e+00 1.92249660e-02 3.44283008e-01 2.83901534e-01
-1.84063166e-02 6.93766317e-01 -2.37017494e-02 -6.73992134e-01
9.98519103e-01 7.27347027e-01 -1.34091182e+00 -1.34432925e-01
7.08905584e-01 -2.23373259e-01 -7.08143811e-01 9.17419732e-01
1.42535024e-01 1.04390164e+00 -1.18825044e+00 -6.86455896e-01
1.95828961e-01 -3.14030152e-01 -5.14273024e-02 2.10875056e-01
-7.15495184e-01 -2.87181292e-01 -8.95039022e-01 -1.44424997e-02
1.70124686e-01 1.43223772e-02 -2.65547618e-01 8.01160662e-02
-3.00889783e-01 -4.61710478e-02 -8.37243984e-01 9.10847566e-02
-3.83591506e-01 -4.01020639e-01 -1.34803039e-03 2.14382030e-01
-5.71690587e-01 -6.50367950e-01 -1.07278923e+00 -1.24615314e+00
2.46684878e-01 6.03191003e-01 2.20624742e-01 -1.14626426e+00
3.84738101e-01 1.63914719e-01 4.62123684e-01 -9.68228206e-01
4.84604778e-02 3.28134086e-01 -5.82257012e-01 -2.47512590e-01
1.60736093e-01 4.83086418e-01 2.31865016e-01 -3.05048845e-01
1.64255820e-01 4.04451065e-01 5.67316307e-01 -8.85147349e-01
7.45412296e-01 -4.74517649e-01 9.58400062e-01 4.42203358e-02
-4.63918633e-02 7.15170403e-01 2.73352648e-01 -6.42834616e-01
3.88400207e-01 2.25356276e-01 -5.13915635e-01 -2.20975873e-01
7.02146067e-01 5.90552757e-02 -4.60254894e-01 2.95801051e-01
-1.36151672e+00 1.68070053e-01 -1.27223322e+00 -1.22108918e-02
6.61899469e-01
               3.90131912e-01 -4.39195538e-01 2.97952213e-01
-8.62682511e-01 -6.09089132e-02 5.59686422e-02 -2.30104752e-02
-2.26092458e-01 4.08707816e-01 -7.86168311e-01 -1.94288823e-01
4.55303098e-01 -1.09732465e+00 1.29501231e-01 -1.81916793e-02
1.72701448e-01
               1.66662080e-01 -2.34635545e-01 -3.56755350e-01
4.36047161e-01 -1.20759143e-01 3.84154622e-01 2.48478692e-01
-7.74989550e-01
               1.84702461e-01 1.45880138e+00 6.03877265e-01
               3.09387727e-01 -2.03607436e-01 -1.74820521e-01
2.49802093e-01
6.31670537e-01 -5.46428689e-01 -6.45100935e-01 -3.63170849e-01
-1.93844578e-01 -5.51918530e-01 5.91550774e-01 7.25312730e-01
8.09623600e-01 -2.87863626e-01 -8.57806842e-01 9.16311277e-01
               1.39018082e-01 -6.02138606e-01 8.07831941e-01
1.05484916e+00
-2.20793080e-01 -1.26198068e-01 1.49755345e-01 -4.34845843e-01
6.10066774e-02 5.31850095e-01 9.13403028e-01 -3.97461675e-01
-1.17364202e-03
               7.91065630e-01 -1.79129243e-01 8.83968980e-01
1.90808973e+00
               1.14305813e+00 -2.76472076e-01 7.35256407e-01
               7.87383240e-01 -7.46749805e-01 -9.09327628e-01
7.96101718e-01
5.49033481e-01 -4.97008531e-01 5.45365891e-01 6.56251954e-01
2.57143453e-01 -3.92757739e-01 2.43170843e-01 -5.53273869e-01
-1.19781617e+00 -1.04084099e+00 -4.16014237e-01 2.42171523e-03
1.61987331e-01
               1.26326903e+00 5.56389731e-01 -7.38200560e-01
1.00102992e+00 -8.18486519e-01 1.92951320e-01 6.35554911e-01
```

```
ML hw6 4.ipynb - Colaboratory
 -1.00201802e+00 -4.39937229e-01 7.44202681e-01 -1.59441937e-01
 -2.04341556e-01 -1.00951165e-01
                                7.63243619e-01 -1.41218735e-01
 -4.03552058e-01 1.38401285e-01 -6.36332793e-01 7.13513226e-01
 6.36725302e-01 -6.16829175e-02 -1.07183975e-01 7.50884042e-01
 -2.12246876e-01 4.78148847e-01 4.51345296e-02 -7.20695929e-02
 -5.33256733e-01 9.29574069e-01 -3.23688648e-01 3.28705914e-01
 -2.61591545e-01 6.68425320e-01 -3.66782512e-01 4.60053529e-01
 9.30384017e-01 1.26502281e+00 7.51838384e-01 2.10991448e-01
 3.94367304e-01 3.51477955e-01 -2.46996826e-01 2.26659917e-01
 4.13875595e-02 1.00664024e+00 -1.46588246e+00 -8.15199182e-01
 -1.44263438e+00 2.96734390e-01 -9.74819095e-02 -4.64467530e-01
 2.00811654e-01 1.36944066e-01 2.45945937e-01 2.84543680e-01
 -8.21374271e-02 8.22965809e-01 -2.23900740e-01 -1.12767013e+00
 -1.52885391e-01 5.22244557e-01 3.67616375e-01 -2.65257011e-03
 5.63728100e-01 -2.75359954e-01 -1.51418117e+00 5.28677604e-01
 4.00579442e-02 5.47050483e-01 5.55056446e-01 4.84355664e-01
 -1.22444819e-01 -6.50418220e-01 -4.15458981e-01 2.81234959e-01
 -1.24147552e-01 -1.37329797e+00 8.24988588e-02 -6.68710130e-01
                1.35629627e+00 -6.27926571e-01 2.19432220e-01
 -2.62072191e-01
 -3.54050250e-01 1.85975255e-01 -6.36436821e-01 2.14090133e-01
 -5.11261542e-01 -9.17309592e-01 5.09380971e-01 -9.05834040e-02
 1.08219717e-01 -3.56346894e-01 -3.27268682e-01 2.13432825e-01
 -1.29102180e+001
Second principal component =
 [ 4.20163405e-01 5.34579808e-03 -2.12103638e-01 -6.36214530e-02
 -7.23262677e-03 -1.88182770e-01 6.34964529e-02 -9.23853756e-02
 -9.78616865e-02 4.17715312e-02 -2.81482346e-02 3.31744286e-01
 -1.30163191e-01 -4.16159984e-01 -1.26636773e-01 -1.19289184e-01
 -2.43710217e-02 -1.79200140e-01 1.62881937e-01 -2.39600454e-01
 1.52141581e-01 -4.18409897e-01 1.49547326e-02 1.63683164e-01
 2.95596586e-01 -1.18783150e-01 9.32892913e-02 5.17743067e-01
 -1.89227519e-01 1.96495826e-01 -1.50352947e-01 5.46005751e-01
 -2.32845777e-01 -1.61737631e-01 1.70765147e-01 1.67705766e-01
 -1.09594695e-01 -1.35263352e-01 -7.19915014e-02 8.68256380e-02
 3.55013576e-03 3.20283407e-01 -1.90429063e-01 2.54291900e-01
 5.61431768e-02 2.20344669e-01 1.84864026e-01 -1.43944867e-01
 -3.28689170e-01 2.05840074e-02 6.37841377e-01 1.39147569e-01
 -8.86132865e-02 -5.31680867e-01 -1.90146194e-01 1.15821987e-01
 1.34387663e-01 -7.98896896e-02 1.79313677e-01 8.87178846e-03
 4.05172693e-02 9.16187640e-02 -1.71172515e-01 1.87977151e-01
 -2.28192718e-01 4.83187865e-01 -1.34115444e-02 -8.55923234e-02
 -6.24222621e-02 1.68420145e-01 -2.25372386e-01 -7.08211766e-02
 -1.68194083e-02 -3.18819372e-02 3.47510908e-01 -3.03123672e-01
 -6.47332676e-02 -2.14767324e-01 -5.02347009e-01 -1.30261614e-01
 -1.82428799e-01 1.62885681e-01 -1.96589176e-01 -5.48841882e-02
 -7.02944940e-02 -2.15876417e-01 -3.21653451e-01 -1.38114303e-01
 -1.50122003e-02 2.18086695e-01 -4.58825929e-02 2.89141196e-01
 -1.71949362e-01 6.13368534e-02 -1.88093974e-01 1.69937544e-01
 3.49322346e-01 5.98034654e-02 -7.19659545e-02 -4.08456050e-02
 -1.74736620e-01 1.30282625e-01 -2.71698966e-01 1.48463891e-01
 -6.88452176e-02 -1.57501988e-01 1.92505230e-01 2.51671233e-02
 1.20572164e-01
                 7.08265728e-02 -1.07199530e-01 -1.73280014e-01
 -3.26030439e-03 2.30513557e-01 5.79855554e-01 -4.56786320e-01
```

-7.08826226e-02 -1.18294186e-01 -2.20757551e-01 1.98489326e-02 -3.33488403e-01 4.13627206e-02 -3.12904771e-01 -3.19350407e-01

-1.37886280e-01 -4.90793941e-02 4.50640049e-03 9.62766433e-01 -1.62984833e-01 -1.69353705e-02 -5.07535050e-02 -7.38992467e-02 3.39488116e-02 -1.04347568e-01 -6.73701377e-02 -1.13026430e-01 -5.22802865e-02 -2.66799680e-01 -2.19675115e-01 -4.59672287e-01 1.91974250e-01 2.99593559e-02 -5.16627047e-02 -7.89413478e-02 6.33052945e-02 -1.20691749e-01 -3.60027991e-01 -7.59496010e-02 -1.69433664e-01 5.42222647e-02 -1.23959272e-01 2.38523412e-02

```
7.1302/2000 02
                                       J. 1270777 1C 01
                                                      -4.04386503e-02
                      9.55396016e-02 1.16432011e-01 9.85298618e-02
      -2.56233128e-01 9.33436981e-02 1.09682266e-01 2.42647819e-01
       4.16581515e-01 4.08981076e-02 2.56855934e-01 -2.71789688e-01
      -3.15204022e-02 -1.84729233e-01 2.65794122e-01 5.08405516e-01
       2.34891177e-01 -4.72514612e-02 2.30670095e-01 -5.21848073e-02
      -1.69643021e-01 1.86441810e-02 1.96051316e-01 -2.10122000e-01
      -9.27330766e-02 -6.96413177e-02 -9.40596512e-02 -1.38436777e-01
      -4.17020307e-02 1.63452896e-01 -2.56743884e-02 7.50282310e-02
      -1.57830313e-01 -2.09018127e-01 2.11720498e-01 2.03511115e-01
      4.32439425e-01 1.64082592e-01 -8.62213115e-02 3.67814052e-02
      -2.11846397e-01 -1.21062283e-01 6.95916359e-01 -1.57485502e-01
      -2.42494050e-01 -9.26277791e-02 1.39021568e-01 -7.81033111e-02
       3.60798614e-01 -6.20179845e-02 -5.36053213e-03 5.45787038e-02
      -1.88242658e-02 -1.04807171e-01 -2.65360802e-01 9.53464522e-02
      -1.80427851e-01 -1.00533459e-01 1.54711473e-01 -1.29610723e-02
      -1.07967798e-01 -2.23136346e-01 1.56035752e-01 -1.47315008e-04
      -1.72716386e-01 -6.07155780e-02 1.19396498e-01 3.85098136e-02
      -2.12550425e-02 2.21143238e-01 -2.32784964e-01 -1.06211688e-02
       2.82501390e-01 -2.03579634e-01 1.53888870e-02 5.26241156e-01
      -3.74240699e-01 -1.83131294e-01 -2.70090059e-01 2.78311945e-01
      -6.22349544e-02 -2.93029244e-01 2.50531793e-02 -1.62246125e-01
      -2.29135608e-01 -2.22457813e-01 1.80262423e-01 5.52850390e-02
      -2.38940445e-01 2.25236844e-01 -1.42814450e-01 6.27091940e-01
       2.31865891e-01 -1.84793604e-02 -3.20863232e-01 -2.11588735e-01
       4.21272294e-01 2.76046819e-01 2.19884997e-01 -1.52102000e-01
      -1.12583864e-01 -6.83447351e-02 -6.14860250e-01 -2.70876990e-02
      -1.57777329e-01 1.80186735e-01 -7.31278620e-03 7.12288471e-02
       3.97151526e-01 -1.14791103e-01 -2.11782298e-02 -3.56544700e-02
       4.11373244e-01 8.65868149e-02 4.29296789e-01 5.76265055e-03
      -1.01123550e-02 -1.64999566e-02 -7.59570084e-02 3.91551785e-01
       8.09537817e-02 8.85792852e-02 2.74666537e-02 8.85588056e-02
      -2.15594848e-01 2.11710494e-02 -5.27627721e-01 -1.86257369e-01
      -1.94651466e-01 -9.52403291e-02 -4.40487458e-02 -2.87628024e-01
       1.29222642e-01 2.91461970e-01 -2.19992461e-01 2.08507306e-01
       1.74466288e-01 -1.89349563e-01 4.96544909e-04 -2.25623567e-01
       4.08912382e-01 1.56953925e-01 4.78436248e-01 4.28046165e-01
       1.90675355e-01 1.49573982e-01 -2.26050208e-01 -7.74209330e-02
      -1.26396259e-01 2.13564946e-02 1.62935897e-01 -2.94884448e-02
       4.73525532e-02 -2.09353697e-01 1.58314906e-01 1.86789656e-02
       1.68149085e-01 6.66868160e-02 8.01305870e-02 4.90143869e-01
       1.23341651e-01 -1.98861770e-01 -4.33381307e-01 5.52505592e-02
      -1.42813807e-01 6.01392750e-01 -2.88386208e-01 1.33066022e-01
       1.86651875e-02 -4.64265137e-01 6.18652810e-03 -2.43665070e-02
      -3 67956762<sub>0</sub>-01 3 80629728<sub>0</sub>-01 -1 57682699<sub>0</sub>-01 -1 32975228<sub>0</sub>-02
plt.scatter(projected[:, 0], projected[:, 1])
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('Projection on two principal components')
plt.show()
```

C→


```
PC1_outliers = np.where(projected[:, 0]>1.5)
PC1_outliers = np.squeeze(PC1_outliers)
print(PC1_outliers)

PC2_outliers = np.where(projected[:, 1]>0.63)
PC2_outliers = np.squeeze(PC2_outliers)
print(PC2_outliers)

$\tilde{\text{C}}$
\[
\text{212} \\
\text{[50 119 194]}
\]
```

Outliers observed from the above plot

```
outliers = []
outliers.append(data.index[212])
outliers.append(data.index[50])
outliers.append(data.index[119])
outliers.append(data.index[194])
print(outliers)
     ['New-York,NY', 'Brownsville-Harlington,TX', 'Glens-Falls,NY', 'Midland,TX']
eigenvalues = pca.explained_variance_
print(eigenvalues)
     [0.37746236 0.05105221 0.02791958 0.02296708 0.01677125 0.01195269
      0.0084567 0.00393422 0.00179733]
from numpy import diag
sq_evalues = np.sqrt(eigenvalues)
evalues_diag = diag(sq_evalues)
cc = np.dot(pca.components_.T, evalues_diag)
print(cc.T[0])
print(cc.T[1])
```

С→

```
[0.02154807 0.05735332 0.2505222 0.06171159 0.09221663 0.01975427 0.53717706 0.09768404 0.01197683]
[ 0.00200601 0.00208562 -0.19398302 0.04980416 0.01337634 -0.01368983 0.06864424 0.07546474 0.0126759 ]
```

We are only interested in the top correlations with the first and second principal components, whic column of cc and select variables with highest absolute values.

- 1. For the first component:
 - From cc.T[0] we can see that PC1 appears to correlate the most with arts feature with a
- 2. For the second component:
 - From cc.T[1] we can see that PC2 appears to correlate the most with Healthcare feature

4f. PCA with standardizing

```
data = pd.read_csv('places.txt',delim_whitespace=True,na_values='?')
table = data[['Climate', 'HousingCost', 'HlthCare', 'Crime', 'Transp', 'Educ', 'Arts','Rec
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(table)
mean = scaler.mean_
table = scaler.transform(table)
mean = np.mean(table,axis = 0)
print(mean)
-2.91560089e-16 2.64563785e-16 1.07985218e-17 -1.61977827e-17
     -3.72549003e-16]
std = np.std(table,axis = 0)
print(std)

    [1. 1. 1. 1. 1. 1. 1. 1. 1.]

from sklearn.decomposition import PCA
pca = PCA()
pca.fit(table)
print(pca.components_.shape)
\Gamma \rightarrow (9, 9)
```

First principal component =

```
[-1.04176435e+00 4.40483533e-01 -1.87839614e+00 9.12128688e-01
 2.15252133e+00 -1.79068458e+00 -1.05705605e+00 -6.49308564e-01
-1.80698850e+00 -5.00327920e-01 2.97757642e+00 4.48387275e-01
-2.32871527e+00 -1.81823707e+00 1.87279151e+00 -2.00908458e+00
-1.05555704e+00 -2.58499423e-01 -1.48905552e+00 3.02961694e+00
1.37122389e+00 -1.02856279e+00 -4.96355523e-01 2.45528167e-03
-4.56453278e-01 4.30390469e+00 -3.35788992e-01 -4.79727748e-01
-1.12406189e+00 -9.83669345e-01 -1.83352844e+00 -7.64643770e-02
-1.51418554e+00 2.82394680e+00 -3.55080324e-02 -1.37552095e+00
-4.20250116e-01 2.67813903e-01 -1.57998708e+00 -1.28456459e+00
-2.23237082e-01 -3.78309402e-01 6.31065516e+00 2.03324315e+00
-9.21314225e-01 -1.44916582e+00 -1.13458718e+00 2.25647837e+00
-8.74523291e-01 -1.48039999e-01 -1.61551967e+00 -7.39241315e-01
1.87933107e+00 -2.00429375e+00 1.62177989e+00 -1.29296999e+00
-9.93463453e-01 -9.60813355e-01 7.41296452e-01 9.86604182e-01
-4.63352388e-01 6.93996248e-01 1.08467560e+00 -1.54025500e+00
6.47475906e+00 -3.66313337e-01 1.82633616e+00 -1.71053621e+00
3.59581862e+00 -1.69724310e-02 -3.95639805e-01 6.42073628e-01
-1.58745238e+00 9.07138196e-01 -5.66519308e-01 -1.29682346e+00
3.42122682e+00 1.49839943e+00 -2.24207876e+00 -5.90644608e-01
6.02348941e-01 5.23366362e-01 -1.39359647e+00 3.44166678e+00
-1.37456922e-01 3.01256732e+00 -2.79309815e+00 -1.62873097e+00
-1.01482404e+00 -3.55037492e-01 -1.72643599e+00 -7.80571606e-01
-1.93864472e+00 -1.35305628e+00 -1.42555877e+00 -7.86224125e-01
9.25976304e-01 -9.29155577e-01 -4.15035291e-01 -1.20261108e+00
-7.44252524e-01 -1.69355558e+00 -1.81435687e+00 -4.35638913e-01
-2.65113962e+00 -4.54730410e-01 -8.94018467e-03 1.17101568e+00
1.97014906e-01 1.48096683e-01 -1.65070821e+00 -1.20465895e+00
-5.44534684e-01 7.72210235e-01 4.39651767e-01 -2.91984770e+00
2.94783991e-01 7.46153137e-01 -1.91340773e-02 -2.00883516e+00
-1.36147209e+00 -4.21787936e-01 -1.19550321e+00 -1.53584268e+00
-9.87359990e-01 4.75086775e-01 1.08130271e-01 -1.01581023e+00
-6.55010216e-01 7.78898853e-01 2.84582706e+00 -1.59425875e+00
2.85703854e+00 -2.29877578e+00 2.54651818e+00 -1.41361256e+00
-1.64366335e+00 9.15341489e-01 -1.44001802e-01 -9.08920700e-01
               7.37306787e-01 -1.64804737e+00 -1.52163975e+00
2.34553627e-01
7.95905811e-01 -9.46659857e-01 -1.82120435e+00 -1.55533010e-01
-2.14728658e+00 2.67921759e-01 -1.26300001e+00 3.01067764e-01
1.32818222e+00 1.89747813e-01 -1.63923402e+00 -1.36512564e-01
-2.40380405e+00 -2.49638764e-01 -7.57844866e-01 -2.35506312e-01
-1.32333592e+00 5.68302409e-01 -7.57746339e-01 -7.68310859e-01
1.69520547e-01 -1.78816695e+00 -5.85786652e-01 1.35598074e+00
-9.51907591e-01 -1.16028849e-01 -1.62340250e+00 -1.44013632e+00
5.10221202e-01 -1.21186326e+00 -1.40588660e-01 -1.24287854e-01
-1.51666874e+00 -1.02836585e+00 7.25734433e+00 9.85045767e-01
-5.30689382e-01 5.93397133e-02 -7.82325876e-01 -1.70076192e+00
1.14564332e+00 -9.30772446e-01 -1.47134438e+00 -2.57560345e+00
-1.10635190e+00 2.02313275e-01 1.20009115e+00 3.65136374e+00
2.14153745e+00 3.62085225e-01 -1.09981474e-01 2.18794309e+00
2.51106754e+00 -2.17306021e-01 -1.44156038e+00 1.92738577e+00
-1.60414951e+00 -1.70338685e+00 -9.16896069e-01 -5.13966551e-01
-5.39656982e-01 6.72312594e-01 2.95121899e+00 -1.16265654e+00
3.86124030e-01 2.26222194e+00 3.69758463e-01 2.62091115e+00
1.24451792e+01 4.13906526e+00 -7.82142883e-01 1.38428577e+00
3.02410080e+00 3.25167512e+00 -2.68797776e-01 -9.73478242e-01
9.09812717e-01 -9.21812963e-01 1.07967830e+00 4.32406371e-01
1.35896935e+00 -2.06368018e+00 3.09447803e-01 -1.13907637e+00
-1.58540879e+00 -2.73842204e+00 -6.66542805e-02 -3.24254070e-01
-1.05245061e+00 4.77262828e+00 1.24925216e+00 -2.33192752e+00
2.69802893e+00 -8.52403317e-01 5.89913978e-01 2.47126717e+00
```

```
-9.35939773e-01 -5.77147483e-01 2.20551991e+00 -6.21485677e-01
-1.18106351e+00 -5.23591402e-01 2.62189843e+00 -7.39871134e-01
-2.80238551e-01 9.86107539e-01 -1.67896655e+00 1.79236589e+00
9.37285638e-01 -4.47033638e-01 -7.08443524e-01 2.04036596e+00
-1.29686827e+00 1.02283685e+00 -7.47715733e-01 -1.93670631e+00
-1.63514499e+00 3.01215474e+00 2.27493515e-01 3.32529932e-01
1.08321724e+00 1.46265558e+00 -1.37044969e+00 3.34850517e-01
3.67712462e+00 7.40266214e+00 2.94550853e+00 2.22070703e+00
1.34173252e+00 8.38665753e-01 -2.20380728e-01 4.50249926e-01
-8.01244642e-01 3.99021285e+00 -2.02197001e+00 -1.87721504e+00
-2.00955673e+00 -2.10301615e-02 -1.43035125e+00 -1.05211084e+00
-1.74216416e-01 -5.06013925e-01 8.72367610e-01 7.36201048e-01
-9.53694653e-01 3.45134930e+00 -1.13335135e+00 -2.45190983e+00
-6.19787271e-01 1.04988206e+00 1.04090329e+00 -1.95059103e-01
1.49865560e+00 -1.49900125e+00 -2.22760577e+00 5.05113203e-01
-4.24369002e-01 1.46841226e+00 1.20346221e+00 2.44072083e-01
-1.39090038e+00 -7.86510575e-01 -1.11144340e+00 3.74123978e-01
-9.23947445e-01 -1.61231987e+00 -4.60063989e-01 -1.12340818e+00
-1.28446737e+00 6.19589473e+00 -7.26092856e-01 -1.00098878e+00
-1.77842069e+00 2.20593284e+00 -1.82625009e+00 -2.97674980e-01
-1.34237442e+00 -1.88952256e+00 8.62551585e-01 -9.03023290e-03
-1.41197659e-01 -1.13434894e+00 -1.71080288e+00 -7.66476745e-01
-1.72858951e+001
[ 8.95130384e-01 7.51805200e-02 6.98980010e-02 -1.82035075e+00
```

```
Second principal component =
 3.29359005e-01 -7.82391621e-01 -1.07759473e+00 -7.60597247e-01
 -1.21532481e+00 1.02441832e-01 2.01834512e+00 2.23021777e+00
 -8.10935744e-01 -8.19399856e-01 -1.08764164e+00 6.19758044e-01
 -3.69075831e-01 -8.76777282e-01 6.53697547e-02 -9.32394753e-01
 3.05361972e+00 -8.35863319e-01 6.63745153e-01 1.31601459e-01
 1.45415756e+00 -9.69494406e-01 -7.73527421e-01 1.09389957e+00
 -2.68137236e-01 6.34035637e-01 -1.08281644e+00 8.42787211e-01
 -1.62251194e-02 -1.03828874e+00 -2.83984361e-01 8.49329631e-01
 -8.32393775e-01 -8.16225630e-01 -7.57402083e-01 -2.42729713e-01
 -4.01631801e-01 1.28767812e-01 -1.61119210e+00 2.11748506e+00
 1.12373610e+00 3.24147167e-01 1.47821304e+00 6.48943515e-01
 6.96876830e-02 1.03701647e+00 1.02416228e+00 8.30249578e-01
 -1.10375211e+00 1.33676976e-01 -6.22127941e-01 -5.78549442e-01
 9.71185603e-01 -5.21776414e-01 -7.30668017e-01 6.33014212e-02
 -8.42599175e-01 -4.03591022e-01 -9.93816026e-01 1.30500550e-03
 -3.09183688e+00 -2.18753663e-01 -6.51256266e-01 2.73657350e-01
 -8.69862170e-01 1.70834684e+00 1.12322589e-01 -2.16323134e-01
 -5.21183970e-01 -4.66783997e-01 8.03043090e-01 -2.01714583e+00
 1.19679766e-01 1.54409826e-01 -1.69467470e+00 -5.08274022e-01
 -1.13696284e+00 2.33413529e+00 -6.14931460e-01 -4.40643995e-02
 -4.54203867e-02 -1.40270895e+00 1.86864696e-01 -9.31238851e-01
 -1.22243726e+00 3.86985272e-01 -1.38062975e+00 5.41247095e-01
 -8.98647010e-01 -9.62660213e-01 1.07292415e+00 -7.32148807e-01
 -3.29052417e-01 -2.01339252e-01 6.60870080e-01 -1.02968363e+00
 -8.38543386e-01 5.91694587e-04 -5.14076207e-01 1.22637269e-01
 -3.47542373e-01 -9.15049634e-01 2.47002350e+00 2.03597499e+00
 1.70566036e+00 1.85044528e+00 -7.04962974e-01 4.80393963e-01
 -1.15134489e+00 1.31065143e+00 2.11354446e+00 -5.25772681e-01
 -3.57923055e-01 1.38792530e+00 -6.96621161e-01 1.32697818e-01
 -1.54870003e+00 -1.51093873e-01 -2.85193324e-01 -1.49571599e-01
 -1.40365380e-01 -8.45094532e-01 -8.10712072e-01 -9.26883345e-01
 -3.24926421e-01 -1.71202548e+00 -1.06948119e+00 -5.57930390e-01
 1.96177101e+00 1.90854112e+00 -1.44579785e-01 -6.79955192e-01
 1.11036175e+00 -6.92594127e-01 -7.23615884e-01 -4.00925057e-01
 -1.30959123e+00 1.99761196e-01 6.70001160e-01 -1.43927157e-01
 -1.30192398e-01 -5.65284665e-01 -1.40641917e+00 -7.14606048e-01
 -6.96629467e-01 -2.59202544e-01 -1.90252930e-01 -4.21261005e-01
```

```
-.------
      -5.37729759e-01 -2.62909644e-01 -8.59628338e-01
                                                      1.82945874e-01
      -1.63318354e+00 -8.54344121e-01 -1.26071912e+00 2.54572339e+00
      1.14725336e+00 1.08791733e+00 3.64412337e-01 -1.26533646e+00
      -1.05240576e+00 -5.75071177e-01 6.42982156e-01 3.34415199e+00
      -3.75817073e-02 1.25858113e+00 1.21652143e+00 -3.37573545e-01
      9.50657412e-02 -5.01204232e-01 -9.28420339e-01 7.89772263e-02
      3.85807106e-01 -8.94190247e-01 4.77878392e-01 -8.76272890e-01
                      1.21284946e+00 -5.79857434e-01 -1.84271675e-01
      7.09683019e-01
      -1.25462091e+00 1.23989300e-01 -3.90812486e-01 -4.24319811e-01
      -5.89036892e-01 2.32699565e+00 -2.96675428e-01 2.54541233e+00
      -1.32247530e+00 6.05964543e-02 3.03460743e+00 -1.04857712e+00
      -1.73772079e+00 6.90197948e-02 6.69060555e-01 1.08527545e+00
      4.22322460e-01 -1.27679267e-01 -1.47553675e+00 6.83487615e-01
      6.00623633e-01 -1.49761762e-02 3.79945810e-01 7.56648166e-01
      -2.60485406e-01 -1.49810998e+00 2.44061761e-01 8.37818144e-01
      -2.06488660e+00 -7.90926230e-01 -1.31639557e-01 3.42992540e-01
      8.85665919e-01 1.47717294e+00 1.39489625e+00 1.89665665e+00
      9.46257974e-01 3.24346041e-01 -1.07337386e+00 4.81804817e-02
      1.55343107e+00 1.13877129e-01 2.47283776e+00
                                                      1.57537259e+00
      -2.56194460e-01 1.38350743e+00 -6.33400374e-01 9.23642796e-01
      -9.09033062e-02 -3.07796833e+00 6.11955435e-01 -2.73812744e-01
      -2.45964805e+00 -1.05458215e+00 5.27203971e-01 -2.01878330e-01
      7.97011728e-01 4.28760951e-01 -1.53045430e+00 -4.82474293e-02
      9.73022024e-02 4.22705922e-02 -1.57692775e+00 -5.84522742e-01
      6.94263764e-01 1.22746454e+00 1.61694283e+00 -5.85441400e-01
      6.37931124e-01 2.28035915e-01 -1.91704833e-01 -9.87882625e-01
      -3.49441923e-01 6.66231667e-01 -4.27019194e-01 -8.44176868e-01
      -6.88925050e-02 -1.60752687e+00 -8.76249898e-01 7.95045803e-01
      2.87799507e+00 1.08842107e+00 1.06495335e+00 -1.70524706e-01
      1.40571193e+00 1.22886866e+00 1.90889911e+00 2.39512291e+00
      1.25674876e+00 1.33334621e+00 1.67655415e+00 1.11155073e+00
      -1.69905975e+00 1.58968765e+00 -1.45286841e+00 -5.10390272e-01
      5.32677975e-01 7.96625613e-02 -9.07828619e-01 -1.15696536e+00
      -5.21809497e-01 -5.73469413e-01 -8.19627764e-01 -1.38244255e+00
      3.07846964e-01 1.08992065e+00 -1.12665083e+00 -8.03220370e-01
      1.84981584e+00 -1.17801862e+00 1.86122586e+00 3.39773452e-01
      9.35758537e-01 -1.23158235e+00 -9.71465080e-01 -8.53678107e-01
      -5.59086659e-01 -3.09032076e-01 1.51030164e+00 9.63961828e-01
      -9.90738787e-02 -3.25676175e-01 -8.34416685e-01 1.25579170e+00
                      1.14093598e+00 7.40134250e-02 2.16696638e+00
      7.23051489e-01
      1.21145604e-01 -2.26832376e+00 -2.54608572e-01 -1.03741434e+00
      -1.23450513e+00 2.49801998e+00 -1.27850466e+00 -4.85748532e-02
      6.52881847e-01 -1.85784304e+00 -9.08932836e-02 8.64934812e-01
      -1 6/16/109<sub>0</sub>±00 7 /095699/<sub>0</sub>_01 _9 06311/170<sub>0</sub>_01 _1 07696/25<sub>0</sub>±00
plt.scatter(projected[:, 0], projected[:, 1])
```

```
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('Projection on two principal components')
plt.show()
```

С→

 \Box

Outliers observed from the above plot

```
PC1_outliers = np.where(projected[:, 0]>12)
PC1_outliers = np.squeeze(PC1_outliers)
print(PC1_outliers)
PC2_outliers = np.where(projected[:, 1]<-3)</pre>
PC2_outliers = np.squeeze(PC2_outliers)
print(PC2_outliers)
 Гэ
     212
     [ 64 233]
outliers = []
outliers.append(data.index[212])
outliers.append(data.index[64])
outliers.append(data.index[233])
print(outliers)
     ['New-York,NY', 'Chicago,IL', 'Philadelphia,PA-NJ']
eigenvalues = pca.explained_variance_
print(eigenvalues)
    [3.41868293 1.21767731 1.14495927 0.9237255 0.75558148 0.63248434
      0.49455091 0.31900812 0.12076916]
from numpy import diag
sq_evalues = np.sqrt(eigenvalues)
evalues_diag = diag(sq_evalues)
cc = np.dot(pca.components_.T, evalues_diag)
print(cc.T[0])
print(cc.T[1])
```

```
[0.38165281 0.65919707 0.85092219 0.52011172 0.64926658 0.50900729 0.85617297 0.60625427 0.25037293]
[ 0.24037781 0.27655962 -0.3304552 0.39211457 -0.1981907 -0.53340449 -0.21494759 0.42426168 0.52005364]
```

We are only interested in the top correlations with the first and second principal components, whic column of cc and select variables with highest absolute values.

1. For the first component:

From cc.T[0] we can see that PC1 appears to correlate the most with arts feature with a

2. For the second component:

From cc.T[1] we can see that PC2 appears to correlate the most with Education feature

The consistent outlier found in cases of scaling(mean = 0) and standardizing(mean=0, var = 1) is s

Principal component analysis will tend to give more emphasis to those variables that have hig variables that have lower variances. In effect the results of the analysis will depend on the uni measure each variable. That would imply that a principal component analysis should only be a variables have the same units of measure. And even in this case, only if you wish to give those variances more weight in the analysis.

From the above reasoning we can conclude that it is necessary to standardize the variables b above solution we can see that the outliers are different in both the cases, except for the outli

From the above plots we see that the results for standardizing and not standardizing vary. PC changes the plot this inturn changes the outliers.