STA 255 Tutorial 6

David Veitch

University of Toronto daveveitch.github.io

July 30, 2019

Agenda

- Mahoot
- Change of Variables (pg 221 Devore & Berk)
- 3 Change of Variables (pg 221 Devore & Berk)
- 4 Chg of Variables Example
- **5** Chg of Variables Example
- 6 Joint Probability Example (Exercise 5.1.1 Devore & Berk)

Kahoot

Change of Variables (pg 221 Devore & Berk)

Where
$$y = g(x)$$
 and $x = h(y) = g^{-1}(y)$
$$F_Y(y) = P(Y \le y) = P[g(X) \le y] = P[X \le h(y)] = F_x[h(y)]$$

$$F_Y(y) = F_x[h(y)]$$

Now differentiate both sides!

Change of Variables (pg 221 Devore & Berk)

Where
$$y=g(x)$$
 and $x=h(y)=g^{-1}(y)$
$$F_Y(y)=P(Y\leq y)=P[g(X)\leq y]=P[X\leq h(y)]=F_x[h(y)]$$

$$F_Y(y)=F_x[h(y)]$$

Now differentiate both sides!

$$\frac{d}{dy}F_Y(y) = \frac{d}{dy}F_X[h(y)]$$

$$f_Y(y) = \left[\frac{d}{dx}F_X(x)\right]\left|\frac{d}{dy}h(y)\right|$$

$$f_Y(y) = f_X(x)|h'(y)|$$

$$f_Y(y) = f_X[h(y)]|h'(y)|$$

Chg of Variables Example

Let X be a random variable, where $0 \le x \le 1$ with pdf $f_X(x) = 2x$. Let Y = 3x + 3. What is the pdf of Y? Draw it and compare it to X's pdf.

Chg of Variables Example

Let X be a random variable, where $0 \le x \le 1$ with pdf $f_X(x) = 2x$. Let Y = 3x + 3. What is the pdf of Y? Draw it and compare it to X's pdf.

Joint Probability Example (Exercise 5.1.1 Devore & Berk)

A service station has both self-service and full service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation.

p(x, y)		0	у 1	2
	0	.10	.04	.02
x	1	.08	.20	.06
	2	.06	.14	.30

- Find $P(X = 1 \cap Y = 1), P(X \le 1 \cap Y \le 1), P(X \ne 0 \cap Y \ne 0)$
- Compute the marginal pmf of X and Y