Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Навчально-науковий інститут атомної та теплової енергетики

Кафедра інженерії програмного забезпечення в енергетиці

ДОМАШНЯ РОБОТА №5

з дисципліни «Математичне моделювання та оптимізація процесів і систем»

тема «Моделювання динамічних систем на основі марківських процесів з дискретними станами та дискретним часом»

Варіант № 13

Виконала:
Студентка 3 курсу, групи TI-01
<u> Круть Катерина</u>
(прізвище ім'я)
Дата здачі <u>16.04.2023</u>

Завдання:

В приміщені для переговорів відділ технічної безпеки здійснює пошук закладних пристроїв. За агентурними даними відомо, що зловмисники заклали 4 електроакустичних прилади. Фахівці відділу планують здійснити п'ять послідовних тестів. Визначити імовірності перебування системи з чотирьох приладів у наступних станах:

S1 – всі прилади цілі;

S2 – виявлено один прилад;

S3 – виявлено два прилади;

S4 – виявлено три прилади;

S5 – виявлено чотири прилади.

Вважається, що відомі перехідні імовірності – імовірності виявлення одного, або двох, або трьох, або чотирьох електроакустичних приладів при переході із стану до стану в процесі здійснення тестів (вибрати із таблиці 1):

$$P_{12}=0,25$$
; $P_{13}=0,20$; $P_{14}=0,10$; $P_{15}=0,05$; $P_{23}=0,30$;

$$P_{24}=0.25$$
; $P_{25}=0.10$; $P_{34}=0.40$; $P_{35}=0.15$; $P_{45}=0.60$.

Вважається, що система починає працювати із стану S1.

Побудувати математичну модель системи на основі марковського процесу з дискретними станами та дискретним часом, знайти ймовірності перебування системи в зазначених станах.

№ вар	P_{12}	P_{13}	P_{14}	P_{15}	P_{23}	P_{24}	P_{25}	P_{34}	P_{35}	P_{45}
3	0,20	0,20	0,15	0,15	0,30	0,20	0,10	0,30	0,10	0,55

Розв'язання:

1. Граф станів та переходів системи:

Із графа станів:

$P_{11}=1 - (P_{12} + P_{13} + P_{14} + P_{15}) = 0,30$	$P_{12}=0,20$	$P_{13}=0,20$	$P_{14}=0,15$	$P_{15}=0,15$
$P_{21} = 0$	$P_{22} = 0,40$	$P_{23}=0,30$	$P_{24}=0,20$	$P_{25}=0,10$
$P_{31} = 0$	$P_{32}=0$	$P_{33}=0,60$	$P_{34}=0,30$	$P_{35}=0,10$
$P_{41}=0$	$P_{42} = 0$	$P_{23}=0$	$P_{44} = 0,45$	P ₄₅ =0,55
$P_{51} = 0$	$P_{52} = 0$	$P_{53} = 0$	$P_{54} = 0$	$P_{55}=1$

2. Матриця перехідних імовірностей:

$$\|P_{ij}\| = \begin{vmatrix} 0.30 & 0.20 & 0.20 & 0.15 & 0.15 \\ 0 & 0.40 & 0.30 & 0.20 & 0.10 \\ 0 & 0 & 0.60 & 0.30 & 0.10 \\ 0 & 0 & 0 & 0.45 & 0.55 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$

3. Розрахунок імовірностей станів

Початкові імовірності станів:

$$p_1(0) = 1$$
; $p_2(0) = 0$; $p_3(0) = 0$; $p_4(0) = 0$; $p_5(0) = 0$;

після 1-го тесту:

$$(1 \quad 0 \quad 0 \quad 0 \quad 0) \bullet \begin{pmatrix} 0,30 & 0,20 & 0,20 & 0,15 & 0,15 \\ 0 & 0,40 & 0,30 & 0,20 & 0,10 \\ 0 & 0 & 0,60 & 0,30 & 0,10 \\ 0 & 0 & 0 & 0,45 & 0,55 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = (0,30 \quad 0,20 \quad 0,20 \quad 0,15 \quad 0,15)$$

$$p_1(1)=0.30$$
; $p_2(1)=0.20$; $p_3(1)=0.20$; $p_4(1)=0.15$; $p_5(1)=0.15$;

після 2-го тесту:

$$(0,30 \quad 0,20 \quad 0,20 \quad 0,15 \quad 0,15) \bullet \begin{pmatrix} 0,30 \quad 0,20 \quad 0,20 \quad 0,15 \quad 0,15 \\ 0 \quad 0,40 \quad 0,30 \quad 0,20 \quad 0,10 \\ 0 \quad 0 \quad 0,60 \quad 0,30 \quad 0,10 \\ 0 \quad 0 \quad 0 \quad 0,45 \quad 0,55 \\ 0 \quad 0 \quad 0 \quad 0 \quad 1 \end{pmatrix} = (0,09 \quad 0,14 \quad 0,24 \quad 0,21 \quad 0,32)$$

$$p_1(2)=0.09$$
; $p_2(2)=0.14$; $p_3(2)=0.24$; $p_4(2)=0.21$; $p_5(2)=0.32$;

після 3-го тесту:

$$(0,09 \quad 0,14 \quad 0,24 \quad 0,21 \quad 0,32) \bullet \begin{pmatrix} 0,30 & 0,20 & 0,20 & 0,15 & 0,15 \\ 0 & 0,40 & 0,30 & 0,20 & 0,10 \\ 0 & 0 & 0,60 & 0,30 & 0,10 \\ 0 & 0 & 0 & 0,45 & 0,55 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = (0,03 \quad 0,07 \quad 0,2 \quad 0,21 \quad 0,49)$$

$$p_1(3)=0.03$$
; $p_2(3)=0.07$; $p_3(3)=0.2$; $p_4(3)=0.21$; $p_5(3)=0.49$;

після 4-го тесту:

$$(0,03 \quad 0,07 \quad 0,2 \quad 0,21 \quad 0,49) \bullet \begin{pmatrix} 0,30 & 0,20 & 0,20 & 0,15 & 0,15 \\ 0 & 0,40 & 0,30 & 0,20 & 0,10 \\ 0 & 0 & 0,60 & 0,30 & 0,10 \\ 0 & 0 & 0 & 0,45 & 0,55 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = (0,01 \quad 0,04 \quad 0,15 \quad 0,17 \quad 0,63)$$

 $p_1(4)=0.01$; $p_2(4)=0.04$; $p_3(4)=0.15$; $p_4(4)=0.17$; $p_5(4)=0.63$;

після 5-го тесту:

$$(0,01 \quad 0,04 \quad 0,15 \quad 0,17 \quad 0,63) \bullet \begin{pmatrix} 0,30 & 0,20 & 0,20 & 0,15 & 0,15 \\ 0 & 0,40 & 0,30 & 0,20 & 0,10 \\ 0 & 0 & 0,60 & 0,30 & 0,10 \\ 0 & 0 & 0 & 0,45 & 0,55 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = (0 \quad 0,02 \quad 0,1 \quad 0,13 \quad 0,75)$$

 $p_1(5)=0$; $p_2(5)=0.02$; $p_3(5)=0.1$; $p_4(5)=0.13$; $p_5(5)=0.75$;

Результат роботи програмного продукту:

```
runfile('/Users/katiakrut/PycharmProjects/mathModeling/project_5/project_5.py',
matrix =
  0.3 0.2 0.2 0.15 0.15
  0.0 0.4 0.3 0.2 0.1
  0.0 0.0 0.6 0.3 0.1
  0.0 0.0 0.0 0.45 0.55
  0.0 0.0 0.0 0.0 1.0
1 крок
(1 0 0 0 0) * matrix = (0.3 0.2 0.2 0.15 0.15)
p1(1) = 0.3 p2(1) = 0.2 p3(1) = 0.2 p4(1) = 0.15 p5(1) = 0.15
2 крок
(0.3 0.2 0.2 0.15 0.15) * matrix = (0.09 0.14 0.24 0.21 0.32)
p1(2) = 0.09 p2(2) = 0.14 p3(2) = 0.24 p4(2) = 0.21 p5(2) = 0.32
3 крок
(0.09 0.14 0.24 0.21 0.32) * matrix = (0.03 0.07 0.2 0.21 0.49)
p1(3) = 0.03 p2(3) = 0.07 p3(3) = 0.2 p4(3) = 0.21 p5(3) = 0.49
4 крок
(0.03 0.07 0.2 0.21 0.49) * matrix = (0.01 0.04 0.15 0.17 0.63)
p1(4) = 0.01 p2(4) = 0.04 p3(4) = 0.15 p4(4) = 0.17 p5(4) = 0.63
5 крок
(0.01 0.04 0.15 0.17 0.63) * matrix = (0.0 0.02 0.1 0.13 0.75)
p1(5) = 0.0 p2(5) = 0.02 p3(5) = 0.1 p4(5) = 0.13 p5(5) = 0.75
```

Код програми:

```
import numpy as np
  def get matrix(arr):
      return '\n'.join([''.join(['{:6}'.format(item) for item in row]) for row
in arr])
  def get vector(arr):
      return f''(\{'',join([f'\{round(x, 2)\}'' for x in arr])\})"
  p_temp = np.array([])
  def get result(n, p, P):
      for i in range(n):
          global p_temp
          p temp = p
          p = np.dot(p, P)
          print(f"{i + 1} \kappa pok")
          print(get_vector(p_temp) + " * matrix = " + get_vector(p))
          print("".join([f"p{j + 1}({i + 1}) = {np.round(p[j], 2)}" for j in
range(len(p))]) + "\n")
  iterations = 5
  p arr = np.array([1, 0, 0, 0, 0])
  P = np.array([[0.3, 0.2, 0.2, 0.15, 0.15],
                     [0, 0.40, 0.30, 0.20, 0.10],
                     [0, 0, 0.60, 0.30, 0.10],
                     [0, 0, 0, 0.45, 0.55],
                     [0, 0, 0, 0, 1]])
  print(f"matrix = \n{get matrix(P arr)}\n\n")
  get result(iterations, p arr, P arr)
```

Перевірка:

Transition matrix

Transition matrix - P, and the initial state vector.

From\To	State-1	State-2	State-3	State-4	State-5
State-1	0.30	0.20	0.20	0.15	0.15
State-2	0	0.40	0.30	0.20	0.10
State-3	0	0	0.60	0.30	0.10
State-4	0	0	0	0.45	0.55
State-5	0	0	0	0	1
Initial State (S	1	0	0	0	0

Calculate Clear Insert state

Delete state

Load example

Markov chain calculator results

The probability vector after 5 steps:

State-1	State-2	State-3	State-4	State-5
0.00243	0.01562	0.10212	0.13159	0.74824

The probability to be in **State-1** after **5** steps is: **0.00243**.

The probability to be in State-2 after 5 steps is: 0.01562.

The probability to be in State-3 after 5 steps is: 0.10212.

The probability to be in **State-4** after **5** steps is: **0.13159**.

The probability to be in State-5 after 5 steps is: 0.74824.

The steady-state vector:

State-1	State-2	State-3	State-4	State-5
0	0	0	0	1

The probability vector in each step:

Step	State-1	State-2	State-3	State-4	State-5	Formula
S ₀	1	0	0	0	0	Initial State
S ₁	0.3	0.2	0.2	0.15	0.15	$S_0 \times P = S_0 \times P^1$
S_2	0.09	0.14	0.24	0.2125	0.3175	$S_1 \times P = S_0 \times P^2$
S_3	0.027	0.074	0.204	0.20913	0.48588	$S_2 \times P = S_0 \times P^3$
S ₄	0.0081	0.035	0.15	0.17416	0.63274	$S_3 \times P = S_0 \times P^4$
S ₅	0.00243	0.01562	0.10212	0.13159	0.74824	$S_4 \times P = S_0 \times P^5$

Висновки про перебування системи в різних станах:

Таким чином за результатами маємо:

- всі прилади цілі після 5-ти тестів з імовірністю $p_1(5) = 0$;
- виявлено один прилад після 5-ти тестів з імовірністю $p_2(5) = 0.02$;
- виявлено два прилади після 5-ти тестів з імовірністю $p_3(5) = 0.1$;
- виявлено три прилади після 5-ти тестів з імовірністю $p_4(5) = 0.13$;
- виявлено чотири прилади після 5-ти тестів з імовірністю $p_5(5) = 0.75$.

Висновки:

Під час виконання роботи було зроблено такі кроки:

- змодельовано динамічну систему на основі марковських процесів з дискретним часом;
- побудовано граф станів системи;
- складено матрицю перехідних імовірностей;
- розроблено програмний продукт для розрахунку імовірностей станів на кожному кроці;
- проведено тестування програмного продукту методом порівняння результатів програми з онлайн-калькулятором.
- на основі отриманих даних було зроблено висновки про перебування системи в різних станах.