Диелектрични свойства на материалите

Въпрос 6

Загуби в диелектриците

Съдържание

1	Основни понятия
2	Еквивалентни схеми
3	Релаксационни загуби
4	Загуби от електропроводимост

1. Дефиниция

Диелектрични загуби се нарича тази част от енергията на полето, която се отделя в диелектрика във вид на топлина.

Електрическата мощност, изразходвана за нагряването на диелектрика.

Загубите се дължат на: бавни поляризации, електропроводимост, примеси и други.

2. Загуби при постоянно поле

$$P = U.I_{\text{yT}} = \frac{U^2}{R_{\text{M3}}}$$

активни загуби

3. Загуби при променливо поле

3.1. Еквивалентна схема на диелектрик без загуби

3. Загуби при променливо поле

3.2. Паралелна еквивалентна схема

$$I_{R} = \frac{U}{R}$$

$$I_{C} = \omega C_{P} U$$

Ъгълът на диелектричните загуби δ допълва до 90° фазовия ъгъл между тока и напрежението.

$$\delta \approx tg\delta$$

$$tg\delta = \frac{I_R}{I_C} = \frac{U}{R} \cdot \frac{1}{\omega C_P U} = \frac{1}{\omega R C_P}$$

$$P = UI_R = \frac{U^2}{R} = U^2 \omega C_P tg\delta$$

3. Загуби при променливо поле

3.3. Последователна (серийна) еквивалентна схема

$$P = I.U_r = I^2.r = \frac{U^2 \omega C_S tg\delta}{1 + (tg\delta)^2}$$

$$tg\delta = \frac{U_R}{U_C} = \frac{I.r}{\frac{I}{\omega C_S}} = \omega r C_S$$

3. Загуби при променливо поле

$$(tg\delta)_{\Pi AP} = (tg\delta)_{\Pi OCJ}$$

 $P_{\Pi AP} = P_{\Pi OCJ}$

Диелектричните загуби се определят от структурата на материалите и от околните условия и **не зависят** от избора на еквивалентна схема

4. Специфични загуби (загуби в единица обем)

$$P_{V} = \frac{P}{V} = \frac{\omega t g \delta C U^{2}}{S d} = \frac{\omega t g \delta}{S d} \cdot \frac{\varepsilon_{0} \varepsilon_{r} S}{d} \cdot E^{2} \cdot d^{2} = E^{2} \omega \varepsilon_{0} \varepsilon_{r} t g \delta$$

1. Поляризационни (релаксационни) загуби

1.1. Честотна зависимост

$$tg\delta = \frac{\text{Im}[\dot{\varepsilon}_r]}{\text{Re}[\dot{\varepsilon}_r]} = \frac{\text{Im}[\dot{\varepsilon}_r]}{\varepsilon_r}$$

$$\operatorname{Im}[\dot{\varepsilon}_r] = \varepsilon_r tg\delta = \frac{N\alpha_0 \omega \tau}{\varepsilon_0 (1 + \omega^2 \tau^2)}$$

С $tg\delta$ се оценяват загубите само при променливо поле

1.1. Честотна зависимост

$$\varepsilon_r tg\delta = \frac{N\alpha_0\omega\tau}{\varepsilon_0(1+\omega^2\tau^2)}$$

$$\omega \to 0 \Rightarrow \varepsilon_r tg\delta \to 0 \Rightarrow tg\delta \to 0$$

$$\omega \to \infty \Rightarrow \epsilon_r tg\delta \to 0 \Rightarrow tg\delta \to 0$$

При високи честоти ($\omega >> \omega_0$) няма поляризация \Rightarrow поляризационните загуби не са дефинирани

$$\omega = \omega_0 = \frac{1}{\tau}$$

$$tg\delta = (tg\delta)_{\text{max}} = \frac{N\alpha_0}{N\alpha_0 + 2\epsilon_0}$$

1. Поляризационни (релаксационни) загуби

1.1. Честотна зависимост

При високи честоти ($\omega >> \omega_0$) няма поляризационни загуби, но частиците продължават да трептят \Rightarrow отделената топлина (или P) наства

1.2. Температурна зависимост

При по-висока температура се увеличава топлинното движение на частиците $\Rightarrow \omega_{01}$ наства (или τ намалява)

1. Поляризационни (релаксационни) загуби

1.2. Температурна зависимост

$$\omega_2 < \omega_0$$

С нарастване на T се увеличава топлинното движение на частиците \Rightarrow нараства $tg\delta$

При много високи температури ($T > T_1$) това движение е толкова голямо, че пречи на поляризацията \Rightarrow tg $\delta \to 0$

При по-високи честоти на полето, външната енергия е по-голяма \Rightarrow частиците се поляризират до по-високи температури ($T_2 > T_1$)

2. Загуби от електропроводимост

Малки при добрите диелектрици и не зависят от честотата, защото изолационното съпротивление е омично

$$P = \frac{U^2}{R_{\text{M3}}}$$
 $R_{\text{M3}} = \frac{1}{\sigma} \cdot \frac{d}{S}$ $\sigma = A \exp\left(-\frac{b}{T}\right)$

$$P = \frac{U^2.S.\sigma}{d} = \frac{U^2.S}{d} A \exp\left(-\frac{b}{T}\right) = A_1 \exp\left(-\frac{b}{T}\right)$$

2. Загуби от електропроводимост

$$P = A_1 \exp\left(-\frac{b}{T}\right)$$

Загубите нарастват по експоненциален закон с увеличаването на температурата, докато изолационното съпротивление намалява по експоненциален закон.

3. Йонизационни загуби

Наблюдават се в газообразни и твърди диелектрици с газова фаза (керамики)

Получават се при $U > U_{\mathsf{MOH}}$:

$$P_{\text{MOH}} = B.f.(U - U_{\text{MOH}})^3$$

където B е коефициент;

f – честота на приложеното напрежение;

U – приложеното напрежение;

 $U_{reve{\mathsf{MOH}}}$ – йонизационното напрежение.

При високи честоти тези загуби могат да нарастнат много и да предизвикат недопустимо нагряване на материала

4. Загуби от нееднородност

Проявяват се както в диелектрици с голямо количество случайни примеси (влага, оксиди), така и в композиционни диелектрици (керамики, пластмаси и др.)

5. Резонансни загуби

Проявяват се при много висока честота, когато тя съвпадне с честотата на собствените колебания на градивните частици. Те са максимални за строго определена честота и не зависят от температурата.

Важно! На практика в реален диелектрик могат да се проявят повече от един вид загуби.