

India's Best Institute for IES, GATE & PSUs

Corporate Office (Delhi): 44-A/1 Kalu Sarai (Sarvapriya Vihar), New Delhi-16, Ph: 011-45124612, 9958995830

Visit us at: www.madeeasy.in | E-mail us at: info@madeeasy.in

Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Open Lockdown Period Practice Series for GATE

(Also useful for ESE & Other Exams)

EC : ELECTRONICS ENGINEERING

TEST No. - 01 | NETWORK THEORY

Read the following instructions carefully

1. This question paper contains 33 MCQ's & NAQ's. Bifurcation of the questions are given below:

Subjectwise Test Pattern							
Questions	Question Type		No. of Questions	Marks	Total Marks	Negative Marking	
1 to 10	Multiple Choice Ques.		10	1	10	0.33	
11 to 16	Numerical Answer Type Ques.		6	1	6	None	
17 to 26	Multiple Choice Ques.		10	2	20	0.66	
27 to 33	Numerical Answer Type Ques.		7	2	14	None	
Total Questions : 33		Total Marks : 50		T	Total Duration : 90 min		

2. Choose the closest numerical answer among the choices given.

Multiple Choice Questions: Q.1 to Q.10 carry 1 mark each

Q.1 For the circuit shown below, if the voltage (V) across the current source of 5 A is 25 V, then the value of 'R' is

- (a) 1Ω
- (c) 3 Ω

(b) 2Ω (d) 4Ω

1. (b)

Applying Nodal analysis

$$\Rightarrow \frac{V_1 - 3i_x}{R} + i_x = 5 \text{ A}$$

Also
$$\begin{aligned} V_1 &= 2i_x = 20 \text{ V} \\ i_x &= 10 \text{ A} \end{aligned}$$

$$\therefore \frac{2i_x - 3i_x}{R} + i_x = 5 \text{ A}$$

$$\frac{20 - 30}{R} + 10 = 5 \text{ A}$$

$$R = 2 \Omega$$

Q.2 For the circuit shown below, the admittance parameter matrix [Y] will be

- (a) $\begin{bmatrix} \frac{2}{3} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{2}{3} \end{bmatrix}$
- (c) $\begin{bmatrix} \frac{2}{3} & 0 & -1 \\ -1 & \frac{2}{3} & 0 \end{bmatrix}$

(d) $\begin{bmatrix} \frac{2}{3} & 0 & 1 \\ 1 & \frac{2}{3} & 0 \end{bmatrix}$

2. (b)

 $\text{for }\Pi\text{-network}$

$$Y_b = \frac{1}{2} \Im$$
$$Y_c = \frac{1}{6} \Im$$

$$\therefore \qquad [Y] = \begin{bmatrix} \frac{2}{3} \mho & -\frac{1}{2} \mho \\ -\frac{1}{2} \mho & \frac{2}{3} \mho \end{bmatrix}$$

- If $V(t) = 2\cos(10t)(1 + 2\cos 5t)$ V, then the rms value of $(V(t) + \sqrt{3})$ is Q.3
 - (a) $3\sqrt{3} \text{ V}$

(b) $3\sqrt{2} \text{ V}$

(c) 3 V

(d) 4 V

3. (c)

$$f(t) = V(t) + \sqrt{3}$$

$$V(t) = 2\cos 10t + 4\cos 10t \cdot \cos 5t$$

= 2\cos 10t + 2\cos 15t + 2\cos 5t

$$f(t) = \sqrt{3} + 2\cos 10t + 2\cos 15t + 2\cos 5t$$

rms
$$\{f(t)\}\ = \sqrt{(\sqrt{3})^2 + \left(\frac{2}{\sqrt{2}}\right)^2 + \left(\frac{2}{\sqrt{2}}\right)^2 + \left(\frac{2}{\sqrt{2}}\right)^2}$$

$$= \sqrt{3 + \frac{4}{2} + \frac{4}{2} + \frac{4}{2}}$$

$$= \sqrt{3 + 6} = \sqrt{9} = 3 \text{ V}$$

Q.4 For the tank circuit shown below, the time period of oscillations is

- (a) 2π seconds
- (c) 6π seconds

- (b) 4π seconds
- (d) 8π seconds

4. (c)

Time period
$$(T) = \frac{2\pi}{\omega}$$

where

$$\omega = \frac{1}{\sqrt{LC}}$$

thus,

$$T = 2\pi\sqrt{LC}$$

In figure

$$L_{\text{eq}} = L_1 + L_2 + L_3 - 2M_{12} + 2M_{23} - 2M_{13}$$

= 4 + 5 + 6 - 2(2) + 2(2) - 2(3) = 9 H
$$C = 1 \text{ F}$$

$$T = 2\pi\sqrt{9} = 6\pi \sec \theta$$

Q.5 For the circuit shown below, the steady state voltage 'V' across the current source is _____?

- (a) 35 V
- (c) 15 V

- (b) 25 V
- (d) none of these

5. (b)

The circuit can be redrawn by short circuiting inductor and open circuiting capacitor as DC sources are used.

Applying KVL

$$V - 10 - 10 + 10 - 15 = 0$$

$$V = 25 \text{ V}$$

Match List-I with List-II and select the correct answer using the codes given below the lists: **Q.6**

A. S = 10 kVA, pf = 0.5 (lagging)

1.
$$(5+j5\sqrt{3})$$
kVA

List-II

B.
$$S = 13 \text{ kVA}, Q = 5 \text{ VAR (capacitative)}$$

2.
$$(5 - j5\sqrt{3})$$
kVA

C.
$$P = 5$$
 kW, $pf = 0.5$ (inductive)

Codes:

for A:
$$S = 10 \text{ kVA}; \cos \phi = \text{pf} = 0.5$$

$$s = 10[\cos\phi + j\sin\phi] \text{ kVA} = (5 + j5\sqrt{3}) \text{kVA}$$

for B:
$$S = 13 \text{ kVA}$$
; $Q = 5 \text{ VAR}$

$$\sin \phi = \frac{Q}{S} = \frac{5}{13} \implies \cos \phi = \frac{12}{13}$$

$$s = 13\left(\frac{12}{13} - j\frac{5}{13}\right) \text{kVA} = (12 - j5) \text{ kVA}$$

 $P = 5 \text{ kW}; \quad \cos\phi = \text{pf} = 0.5$

for C:
$$P = 5 \text{ kW}$$
; $\cos \phi = \text{pf} = 0.5$

$$S = \frac{P}{pf} = 10 \text{ kVA}; \quad \sin\phi = \frac{\sqrt{3}}{2}$$

$$S = 10\left(\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) \text{kVA} = \left(5 + j5\sqrt{3}\right) \text{kVA}$$

For the following phasor diagram of the circuit as shown, the unknown element 'z' is Q.7

(a) R

(b) C

(c) L

(d) combination of RC

- 7. (c)
 - Since only *L* can result in lagging of current with respect to voltage.

Q.8 The Y-parameter matrix of the circuit shown below is

(a) $\begin{bmatrix} 2R & 2R \\ 2R & 2R \end{bmatrix}$

(c) $\begin{bmatrix} \frac{1}{2R} & \frac{1}{2R} \\ \frac{1}{2R} & \frac{1}{2R} \end{bmatrix}$

(d) doesn't exist

8. (d)

$$[Y] = [Y_1] + [Y_2]$$
$$[Z_1] = \begin{bmatrix} R & R \\ R & R \end{bmatrix}$$

Since determinant is zero,

therefore 'Y' parameter doesn't exist.

[Y] =
$$[Z]^{-1} = \frac{1}{0} \begin{bmatrix} R & R \\ R & R \end{bmatrix} \Rightarrow \text{Not possible}$$

- as $[Y_1]$ doesn't exist, [Y] also doesn't exist.
- The unit of $\frac{R}{2}\sqrt{\frac{L}{C}}$ is Q.9
 - (a) Ω

(b) Ω^2

(c) no unit

(d) Ω H rad

9. (b)

$$\frac{R}{2}\sqrt{\frac{L}{C}} \Rightarrow \frac{R}{2}\sqrt{\frac{L\omega}{C\omega}} = \frac{R}{2}\sqrt{X_L X_C}$$

Unit of R_1 is Ω Unit of ' X_L ' and ' X_C ' is Ω

Unit of
$$\frac{R}{2}\sqrt{\frac{L}{C}}$$
 is $\Omega \times \sqrt{\Omega \times \Omega} \Rightarrow (\Omega)^2$

Q.10 Which of the following graphs, represents an ACTIVE element.

10. (c)

Numerical Answer Type Questions: Q. 11 to Q. 16 carry 1 mark each

- **Q.11** A parallel R, L, C circuit has R=2 k Ω , L=240 mH, C=54 μ F. The quality factor of the circuit at resonance is _____.
- 11. (30)

For parallel resonant circuit

$$Q_0 = R\sqrt{\frac{C}{L}}$$

$$Q_0 = 2000\sqrt{\frac{54 \times 10^{-6}}{240 \times 10^{-3}}}$$

$$Q_0 = 2000\sqrt{\frac{9}{4} \times 10^{-4}}$$

$$Q_0 = \frac{2000}{100} \times \frac{3}{2}$$

Q.12 If both the circuits shown below are equivalent, then the value of RC is _____ sec.

12. (4)

compairing with given diagram

$$R_{\rm eq} = 3\,\Omega = \frac{3R}{2} \ \ {\rm and} \ \ C_{\rm eq} = 4\,{\rm F} = 2\,{\rm C}$$
 so,
$$R = 2\,\Omega$$

$$C = 2\,{\rm F}$$

$$RC = 4\,{\rm sec}$$

Q.13 If L_{eq} of the circuit shown below is $\left(\frac{L}{3}\right)$ H, then the coupling coefficient (k) is ______.

13. 0.75 (0.70 to 0.80)

Q.14 For the circuit shown below, the value of Z_{in} is _____

14. (2)

The circuit can be modified as

$$R_1 = \left(\frac{2}{1}\right)^2 \times 1\Omega = 4\Omega$$

$$R' = 4 | 8 = \frac{4 \times 8}{12} = \frac{8}{3} \Omega$$

$$R'' = \frac{8}{3} \times \frac{9}{4} = \frac{72}{12} = 6 \Omega$$

$$Z_{\text{in}} = R'' || 3 \Omega = 6 \Omega || 3 \Omega$$
$$Z_{\text{in}} = 2 \Omega$$

$$Z_{\rm in} = 2 \, \Omega$$

Q.15 For a series RLC circuit shown below, the poles of the transfer function $\left(\frac{V_C(s)}{V_i(s)}\right)$ are plotted as shown. If

 $\frac{R}{C} = 2\sqrt{3}$, then the value of *R* is _____ ohms.

15. 1.73 (1.60 to 1.80)

$$\frac{V_C(s)}{V_i(s)} = \frac{\frac{1}{sC}}{sL + R + \frac{1}{sC}} = \frac{\frac{1}{sC}}{\frac{s^2LC + sRC + 1}{sC}} = \frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

The characteristic equation : $s^2 + \frac{R}{L}s + \frac{1}{LC}$...(i) as per graph

$$C(s) = (s + \sqrt{3} + j1)(s + \sqrt{3} - j1)$$

$$C(s) = s^2 + 2\sqrt{3}s + 3 + 1$$

= $s^2 + 2\sqrt{3}s + 4$...(ii)

On comparison

$$\frac{R}{L} = 2\sqrt{3} \qquad \dots(iii)$$

$$\frac{1}{LC} = 4 \qquad \dots (iv)$$

$$\frac{R}{C} = 2\sqrt{3}$$
 given ...(v)

from (ii) and (iii)

$$\frac{\frac{R}{L}}{\frac{1}{LC}} = RC = \frac{\sqrt{3}}{2}$$

$$\frac{R}{C} = 2\sqrt{3}$$

multiplying

$$R^2 = \frac{\sqrt{3}}{2} \times 2\sqrt{3} = 3$$

$$R = \sqrt{3}$$

$$R = 1.732 \Omega$$

Q.16 In the circuit shown below, the average power dissipated by 1 Ω resistor is ______ Watts.

16. (4)

Applying KCL at node A

$$i = 2\angle 90^{\circ} - 2\angle 0^{\circ}$$

 $i = 2j - 2 = -2 + 2j$
 $i = 2\cos t - 2\sin t$
 $p(t) = i^{2}R$
 $p(t) = (2\cos t - 2\sin t)^{2} \times 1$
 $p(t) = 4\cos^{2}t + 4\sin^{2}t - 8\sin t\cos t$
 $p(t) = 4 - 4\sin 2t$
 $p_{avg} = 4$ Watts

Multiple Choice Questions: Q.17 to Q.26 carry 2 marks each

Delhi |

Q.17 The equivalent resistance between the terminals *A* and *B* is

- (a) 1.2Ω
- (c) 4.8Ω

- (b) 3.6Ω
- (d) 6Ω

17. (c)

Since two Wheatstone bridges are connected parallelly, no current flows through 2 Ω resistors.

Q.18 A periodic sawtooth current wave is passed through an inductor of 1 H as shown below. The value of $V_L(t)$ at t=3 msec is

18. (a)

(a) 1 V

(c) 3 V

$$V_L(t) = \frac{Ldi(t)}{dt} = \frac{di(t)}{dt}$$
 $\therefore L = 1 \vdash$

Differentiating i(t), we get

 $V_L(t)$ at t = 3 msec = 1 V

Q.19 For the circuit shown below, the value of R (in ohms) is

- (a) 2
- (c) 6

 \Rightarrow

- (b) 4
- (d) none of these

19. (d)

$$V_1 = -\frac{4}{R} - 1\left(\frac{2}{R} - 2\right)$$

$$V_1 = -\left(\frac{4}{R} + \frac{2}{R} - 2\right) = -\left(\frac{6}{R} - 2\right) = 2 - \frac{6}{R}$$

$$V_2 = \frac{6}{R} + 2$$

 $V_2 = \frac{6}{R} + 2$ $V_1 = V_2$ (: for parallel branches voltage is same)

$$2 - \frac{6}{R} = \frac{6}{R} + 2$$

$$\frac{12}{R} = 0$$

$$R = \infty$$
 (open circuit)

Q.20 The power absorbed by 200 m Ω resistance in the given circuit is

- (a) 0.2 Watts
- (c) 0.6 Watts

(b) 0.4 Watts(d) 0.8 Watts

20. (d)

The circuit can be redrawn as

$$I = \frac{10}{5} = 2 \text{ A}$$

$$P_{\text{absorbed}} = (0.2)(2)^2$$

= 0.2 \times 4 = 0.8 Watts

Q.21 For the circuit shown below, if $i(t) = 2e^{-t}\cos t \, u(t)$ A, then the voltage across the capacitor $V_C(t)$ will be

(a) $2e^{-t}\cos t \, u(t) \, V$

(b) $e^{-t} \cos t u(t)$

(c) $e^{-t} \sin t u(t) V$

(d) $2e^{-t} \sin t \, u(t) \, V$

21. (d)

$$V_C(s) = I(s) \times \frac{1}{1 + \frac{1}{s}} \times \frac{1}{s} = I(s) \times \frac{1}{s+1}$$

$$I(s) = \frac{2(s+1)}{(s+1)^2+1}$$

$$V_C(s) = \frac{2(s+1)}{(s+1)^2+1} \times \frac{1}{1+s} = \frac{2}{(s+1)^2+1}$$

$$V_C(t) = 2e^{-t} \sin t \, u(t) \, V$$

GTOEC17

Q.22 The current flowing through a series *LC* circuit excited by a step voltage is sinusoidal as shown below. Find the values of *L* and *C*

- (a) L = 10 H, C = 25 mF
- (b) L = 100 H, C = 2.5 mF
- (c) L = 100 H, C = 25 mF
- (d) L = 10 H, C = 2.5 mF

22. (b)

from the given diagram

$$i(t) = 10\sin 2t \, u(t) \, \text{mA}$$

...(iii)

 \Rightarrow

$$I(s) = \frac{\frac{2}{s}}{sL + \frac{1}{sC}}$$

$$I(s) = \frac{\frac{2}{s}}{\frac{s^2LC+1}{sC}} = \frac{2C}{s^2LC+1}$$

$$I(s) = \frac{\frac{2}{L}}{s^2 + \frac{1}{LC}} \qquad \dots (ii)$$

From equation (i)

$$I(s) = 10 \times 10^{-3} \left(\frac{2}{s^2 + 4} \right)$$

:.

$$\frac{1}{LC} = 4$$
 and $\frac{2}{100} = \frac{2}{L}$
 $L = 100 \text{ H}$
 $C = 2.5 \text{ mF}$

Delhi | Noida | Bhopal | Hyderabad | Jaipur Indore Lucknow | Pune | Bhubaneswar Kolkata

Q.23 Consider the network shown below.

If the hybrid parameter matrix of the Network 'N' is $[h] = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, then the maximum power that can be transferred to R_L is _____.

(a) 8.33 W

(b) 16.66 W

(c) 25 W

(d) 50 W

23. (a)

to determine $V_{\rm th}$:

$$I_1 = \frac{10 - 5V_2}{3} = \frac{10 - 5V_{th}}{3}$$

$$V_{\text{th}} = -\frac{I_1}{2} = \frac{5V_{th} - 10}{6}$$

$$6V_{\text{th}} = 5V_{\text{th}} - 10$$

 $V_{\text{th}} = -10 \text{ V}$

$$V_{th} = -10 \text{ V}$$

to determine R_{th} :

$$I_2 = 2V_2 + I_1$$

1 A = $2V_2 + I_1$
0 = $3I_1 + 5V_2$

$$I_1 = -\frac{5}{3}V_2$$

$$1 A = 2V_2 - \frac{5}{3}V_2$$

$$V_2 = 3 \text{ V}$$

$$R_{\rm th} = \frac{V_2}{1 \, \text{A}} = 3 \, \Omega$$

$$P_{L \text{ max}} = \frac{V_{th}^2}{4R_{th}} = \frac{100}{12} \text{ W} = 8.33 \text{ W}$$

GTOEC17

Q.24 If the maximum energy stored in a capacitor shown below is finite, then the possible current source charging the capacitor is

- (a) Impulse
- (c) Unit step

- (d) Parabolic

24. (a)

Maximum energy stored in a capacitor is given as

$$E_{\text{max}} = \frac{1}{2}CV_{\text{max}}^2$$

option (a) Impulse current

$$i(t) = \frac{Cdv}{dt}$$

$$V_C(t) = \frac{1}{C} \int_{-\infty}^{t} i(t) dt$$

$$i(t) = \delta(t)$$

$$V_C(t) = \frac{1}{C} u(t)$$

$$V_{\text{max}} = \frac{1}{C}$$

$$E_{\text{max}} = \frac{1}{2} C \left(\frac{1}{C}\right)^2 = \frac{1}{2C}$$

option (b) Ramp

$$V_C(t) = \frac{1}{C} \int \text{Ramp} = \text{parabolic}$$

 $V_{\text{max}} = \infty$

option (c) unit step

$$V_{C}(t) = \frac{1}{C} \int_{-\infty}^{t} u(t) dt = \frac{1}{C} r(t) = \frac{1}{C} t u(t)$$

$$V_{\text{max}} = \infty$$

$$V_{\rm max} = \infty$$

option (d) parabolic

$$V_{\rm max} = \infty$$

Thus option (a) is the correct choice.

GTOEC17

Q.25 If $V_{\text{rms}} = 120 \angle 60^{\circ}$ and Z = 60 - j80, then the complex power 'S' is

(a) (90 - i120) VA

(b) (86.4 + j115.2) VA

(c) (86.4 – j115.2) VA

(d) (90 + j120) VA

25. (c)

Complex power 'S' =
$$\frac{|V_{\text{rms}}|^2}{Z^*} = \frac{|120|^2}{60 + j80} = \frac{14400 \times (60 - j80)}{100 \times 100} = 1.44(60 - j80)$$

= $(86.4 - j115.2) \text{ VA}$

Q.26

If the switch is at position '1' for a long time and at (t = 0) it is moved to position '2', then the current i(t) for t > 0 will be

(a) $(5e^{-t} + 25e^t)$ A

(b) $(5 + 25te^{-t})$ A

(c) $(5te^{-t})$ A

(d) $(25te^{-t} + 5) A$

26. (c) At $(t = 0^{-})$

At $(t = 0^+)$

Numerical Answer Type Questions: Q.27 to Q.33 carry 2 marks each

Q.27 For the circuit shown below, the current i(t) and the voltage $v_i(t)$ are given as respectively

$$i(t) = A(1 - e^{-Bt}) u(t) A$$

$$v_L(t) = Ce^{-Bt} u(t) V$$

The value of expression $\frac{AB}{C}$ is _____.

27. (200)

For a series RL circuit with DC excitation,

$$i(t) = \frac{V_s}{R} \left(1 - e^{-\frac{Rt}{L}} \right) u(t) A$$

$$v(t) = V_s \left(e^{-\frac{Rt}{L}}\right) u(t) A$$

$$A = \frac{V_s}{R}$$

$$B = \frac{R}{L}$$
$$C = V_s$$

$$C = V_s$$

$$\frac{AB}{C} = \frac{\frac{V_s}{R} \times \frac{R}{L}}{V_s} = \frac{1}{L}$$

$$= \frac{1}{5 \times 10^{-3}} = 200$$

GTOEC17

Q.28 Consider the circuit shown below.

If L = C, then the minimum value of $R_1 + R_2$ is _____ Ω

28. 2.63 (2.50 to 2.80)

From phasor, we can write

$$\tan 30^{\circ} = \frac{X_C}{R_2}$$

$$\Rightarrow R_2 = X_C \sqrt{3} = \frac{\sqrt{3}}{\omega C}$$

$$\tan 45^{\circ} = \frac{X_L}{R_1}$$

$$\Rightarrow R_1 = X_C = \omega L$$

$$R_1 R_2 = \frac{\sqrt{3}}{\omega C} \times \omega L = \frac{L}{C} \sqrt{3}$$

$$R_1 R_2 = \sqrt{3} = 1.732$$

we know

$$\frac{R_1 + R_2}{2} \geq \sqrt{R_1 R_2}$$

as arithmetic mean \geq geometric mean; (for non-negative real numbers)

$$R_1 + R_2 \ge 2\sqrt{\sqrt{3}}$$

$$R_1 + R_2 \ge 2(3)^{1/4}$$

Minimum value of $R_1 + R_2 = 2.63 \Omega$

Q.29 For the circuit shown below, if *R* is increased by 10%, then the change in current *I* will be _____ mA.

29. -58.14 (-58.50 to -57.50)

$$I_{\text{initial}} = 2.5 \text{ A}$$

 $I_{1} = 1.25 \text{ A}$

Using compansation theorem

$$\Delta R = 1 \Omega$$

$$-\Delta I_1' = \frac{1.25}{(10||5)+11} = \frac{1.25}{14.33} = 0.08721 \,\text{A}$$

$$\Delta I' = -\Delta I_1' \times \frac{10}{15} = \frac{-2}{3} \Delta I_1' = -0.05814 \text{ A} = -58.14 \text{ mA}$$

Q.30 For the circuit shown below, the current *I* is _____ Amp.

30. 1.33 (1.30 to 1.40)

Applying Millman's Theorem

$$\frac{1}{R_{eq}} = \frac{1}{10} + \frac{1}{30} + \frac{1}{90} + \dots$$

$$\frac{1}{R_{eq}} = \frac{1}{10} \left(1 + \frac{1}{3} + \frac{1}{9} + \dots \right)$$

$$\frac{1}{R_{eq}} = \frac{1}{10} \left(\frac{1}{1 - \frac{1}{3}} \right) = \frac{3}{10 \times 2} = \frac{3}{20}$$

$$R_{eq} = \frac{20}{3} \Omega$$

$$V_{eq} = \frac{\frac{E_1}{R_1} + \frac{E_2}{R_2} + \frac{E_3}{R_3} + \dots}{\frac{1}{R_{eq}}}$$

$$= \frac{1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots}{\frac{3}{20}} = \frac{\frac{1}{1 - \frac{1}{2}}}{\frac{3}{20}} = \frac{20}{3} \times 2$$

$$V_{eq} = \frac{40}{3} \text{ V}$$

$$I = \frac{\frac{40}{3}}{\frac{20}{3} + \frac{10}{3}} = \frac{\frac{40}{3}}{\frac{30}{3}} = \frac{4}{3} A$$

$$I = 1.33 \, A$$

Q.31 For the circuit shown below,

If $i(0^-) = 5$ A and $i(t)|_{t=3 \text{ msec}} = 2.5$ A, then the value of C is _____ mF.

31. 4.328 (4.20 to 4.50)

at $t = 0^-$:

$$\Rightarrow$$

$$V_R - V_C = 0$$

 $V_R = V_C = 5 \text{ V}$
 $V_C(0^-) = 5 \text{ V} = V_C(0^+)$

thus Taking Laplace domain

$$I(s) = \frac{\frac{5}{s}}{1 + \frac{1}{sC}}$$

$$I(s) = \frac{\frac{5}{s}}{\frac{sC+1}{sC}}$$

$$I(s) = \frac{5C}{1+sC} = \frac{5}{s+\frac{1}{C}}$$

$$i(t) = 5e^{-t/C} u(t)$$

 $i(t)|_{3 \text{ msec}} = 2.5$

$$2.5 = 5e^{-\frac{3 \times 10^{-3}}{C}}$$

$$\frac{1}{2} = e^{-\frac{3 \times 10^{-3}}{C}}$$

$$-ln2 = \frac{-3 \times 10^{-3}}{C}$$

$$C = \frac{3 \times 10^{-3}}{ln2}$$

$$C = \frac{3}{ln2} \, \text{mF}$$

$$C = 4.328 \, \text{mF}$$

Delhi | Noida | Bhopal | Hyderabad | Jaipur Pune | Bhubaneswar

Q.32 For the circuit shown below, the switch S_1 and S_2 are open for a long time. At t = 0, S_1 is closed, while S_2 is open. At $t = 2 \sec$, S_2 is also closed.

The value of current i at t = 3 sec is __ (Take appropriate approximations).

32. 4.594 (4.40 to 4.70)

At $(t = 0^-)$, both the switches are opened.

L is initially uncharged $i_1(0^-) = 0$

At $(t = 0^+)$

$$i(t) = i(\infty) + (i(0^{+}) - i(\infty)) e^{-\frac{R_{eq} t}{L_{eq}}}$$

$$R_{eq} = 5 \Omega$$

$$L_{eq} = 1 H$$

$$i(0^{+}) = 0 A$$

$$i(0^+) = 0 A$$

$$i(t) = 2 + (0-2)e^{-\frac{5t}{1}} A$$
; for $t > 0$

At $(t = 2^{-})$

$$i(2^{-}) = 2 - 2e^{-\frac{10}{1}} A$$

$$i(2^{-}) \approx 2 A$$

At $(t = 2^+)$

$$i(2^{-}) = i(2^{+}) = 2 A$$

for t > 2 sec

$$i(t) = i(\infty) + (i(2^{+}) - i(\infty)) e^{-\frac{1}{L}}$$
; for $t > 2$
 $i(t)|_{t=3s} = 5 + (2-5)e^{-\frac{2}{1}(3-2)} = 5 - 3e^{-2}$
 $= 4.594 \text{ A}$

GTOEC17

Q.33 If the circuit shown below has zero transient response, then the value of *L* is _____ mH.

33. (5)

$$V = 2\cos(2t + 135^\circ)$$

In AC transients, for transient free response

$$\theta = \tan^{-1}\left(\frac{\omega L}{R}\right) + \frac{\pi}{2}$$

$$135^{\circ} = \tan^{-1}\left(\frac{\omega L}{R}\right) + 90^{\circ}$$

$$\tan(45^{\circ}) = \frac{\omega L}{R}$$

$$\omega L = R$$

$$R = 2L$$

$$\frac{R}{2} = L = \frac{0.01}{2}$$

$$L = 5 \text{ mH}$$

0000