Vorlesungsmitschrift

Algorithmen und Berechenbarkeit

Vorlesung 12

Letztes Update: 2017/12/10 - 17:41 Uhr

Beispiele für Turingmaschinen

Beispiel 1

Gegeben sei die Sprache L_1 , die aus allen Wörtern über 0 und 1 besteht, und deren Wörter auf 0 enden:

$$L = \{w0 \mid w \in \{0, 1\}^*\}$$

Eine TM, die L_1 entscheidet, könnte folgendermaßen aussehen:

$$M_1 = (\{q_0, q_1, \bar{q}\}, \{0, 1\}, \{0, 1, B\}, B, q_1, \bar{q}, \delta)$$

Die Übergangsfunktionen sind dabei

Zu lesen ist zum Beispiel die unterstrichene Übergangsfunktion wie folgt: Man befindet sich in Zustand q_0 und ließt eine 0 ein, dann bleibt man in Zustand q_0 , schreibt eine 0 an die Stelle, an der vorher schon eine 0 war, und bewegt den SLK nach rechts.

Oftmals ist es ratsam, dass man sich klarmacht, was die Zustände bedeuten:

- $\rightarrow q_0$ bedeutet, man hat als letztes Zeichen eine 0 gelesen
- $\rightarrow q_1$ bedeutet, man hat als letztes Zeichen keine 0 gelesen

Für das Wort $w_1 = 010101$ ergibt sich der folgende Ablauf:

$$\Rightarrow q_1010101 \vdash 0q_010101 \vdash 01q_10101 \vdash 010q_0101$$

 $\vdash 0101q_101 \vdash 01010q_01 \vdash 010101q_1B \vdash 010101\bar{q}0$

Da der letzte Zustand erreicht ist und w_1 mit einer 1 endet, schreibt die TM in der letzten Konfiguration eine 0.

Beispiel 2

Gegeben sei die Sprache L_2 :

$$L_2 = \{0^n 1^n \mid n \ge 1\}$$

Eine TM, die L_2 entscheidet, könnte folgendermaßen aussehen:

$$M_2 = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, \bar{q}\}, \{0, 1\}, \{0, 1, B\}, B, q_0, \bar{q}, \delta)$$

Die Übergangsfunktionen sind dabei

δ	0	1	В
$\overline{q_0}$	$\{q_0, 0, R\}$	$\{q_1, 1, R\}$	$\{ar{q},0,N\}$
q_1	$\{ar{q},0,N\}$	$\{q_1,1,R\}$	$\{q_2, B, L\}$
$\overline{q_2}$	$\{ar{q},0,N\}$	$\{q_3, B, L\}$	$\{ar{q},0,N\}$
q_3	$\{q_3,0,L\}$	$\{q_3, 1, L\}$	$\{q_4, B, R\}$
q_4	$\{q_5, B, R\}$	$\{ar{q},0,N\}$	$\{ar{q},0,N\}$
q_5	$\{q_6, 0, R\}$	$\{q_6, 1, R\}$	$\{ar{q},1,N\}$
q_6	$\{q_6,0,R\}$	$\{q_6, 1, R\}$	$\{q_2, B, L\}$

- $\rightarrow q_0$ bedeutet, man hat bis jetzt keine 1 gelesen
- $\rightarrow q_1$ bedeutet, man hat 0^i und danach mindestens eine 1 gelesen
- $\rightarrow q_2$ bedeutet, der SLK steht auf dem letzten Zeichen (also nicht B)
- $\rightarrow q_3$ bedeutet, der SLK wird nach ganz links bewegt
- $\rightarrow q_4$ bedeutet, der SLK steht auf dem ersten Zeichen (also nicht B)
- $\rightarrow q_5$ bedeutet, man überprüft, ob man schon fertig ist
- $\rightarrow q_6$ bedeutet, der SLK wird nach ganz rechts bewegt

Die Entscheidung, ob ein Wort in der Sprache liegt, läuft in zwei Phasen ab:

- 1. In dieser Phase überprüft man, ob die Eingabe der Form $0^i 1^j$ mit $i \geq 0, j \geq 1$ entspricht
- 2. Zu Beginn dieser Phase steht der SLK auf dem letzten Zeichen der Eingabe. In dieser zweiten Phase überprüft man durch abwechselndes Löschen der jeweils äußeren Zeichen, ob i = j.

Beispielhaft wird die zweite Phase für das Wort $w_2 = 000111$ aufgezeigt:

$$\Rightarrow 00011q_{2}1 \vdash 0001q_{3}1B \vdash \cdots \vdash q_{3}B00011 \\ \vdash Bq_{4}00011 \vdash Bq_{5}0011 \vdash 0q_{5}011 \vdash \cdots \\ \vdash 0011q_{6}B \vdash 001q_{2}1 \vdash \cdots \vdash Bq_{5}BBB \\ \vdash \bar{q}1$$

Da der letzte Zustand erreicht ist und für w_2 gilt i = j, schreibt die TM in der letzten Konfiguration eine 1.

Programmierung einer TM

Die *Programmierung* einer TM ist relativ mühsam, dennoch können alle Sprachkonstrukte aus normalen Programmiersprachen dargestellt werden:

• Eine boolsche Variable im Programm kann folgendermaßen in den Zustandsraum kodiert werden

Zustände alt: Q

Zustände neu: $Q \times \{0, 1\}$

• Eine Variable x mit konstant vielen Zuständen $\{0,1,2,3,\cdots,k\}$ kann ebenfalls in den Zustandsraum kodiert werden.

$$Q_{\text{neu}} = \{Q \times \{0, 1, 2, 3, \cdots, k\}\}$$

ullet Man kann mit einer einspurigen TM auch eine k-spuringe TM simulieren mit jeweils einem Bandalphabet für ein k-Tupel.

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \implies \text{Neues Bandalphabt } |\Gamma_{\text{neu}}| = |\Gamma_{\text{alt}}|^n$

Das ist zum Beispiel dann nützlich, wenn zwei Binärzahlen miteinander addiert werden. Anstatt auf bin(a)#bin(b) zu operieren, kopiert man bin(b) auf die zweite Spur und berechnet in der dritten Spur das Ergebnis.

- \bullet Konstant viele Variablen mit nicht konstantem Wertebereich \to jeweils eine Spur pro Variable
- ullet Unterprogramm und Rekursion o Reservierung einer Spur pro Prozeduraufruf

• ...

Mehrband TM

Eine Mehrband TM hat für jede Spur einen unabhängigen SLK. Die Zustandsübergänge haben die Form

$$\delta: (Q \setminus \{\bar{q}\} \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, N\}^k)$$

Das erste Band enthält die Ein- bzw. Ausgabe, alle anderen Bänder sind initial mit Bs gefüllt.

Satz: Eine k-Band TM \mathcal{M} , die mit einer Rechenzeit von f(n) und einem Platzverbrauch von s(n) auskommt, kann von einer 1-Band TM \mathcal{M}' mit der Rechenzeit von $\mathcal{O}(f^2(n))$ und einem Platzbedarf von $\mathcal{O}(s(n))$ simuliert werden.

Beweisidee: Man simuliert eine k-Band TM durch eine 2k-Band TM. Zum Beispiel wird die folgende 2-Band TM

	В	0	1	2	1	2	1	В	В	
• • •	В	В	1	1	3	2	В	В	В	

durch

 В	0	1	2	1	2	1	В	В	
 В	В	В	#	В	В	В	В	В	
 В	В	1	1	3	2	В	В	В	
 В	0 B B	В	В	В	В	#	В	В	

simuliert.

Für einen Rechenschritt der k-Band TM wird über den beschriebenen Teil der 2k-Band TM gelaufen und die Zeichen unter den SLK der k-Bänder werden eingesammelt (und im Zustand gespeichert). In einem zweiten Durchlauf über die Bänder werden die Zeichen und Kopfpositionen upgedatet.

Anzahl beschriebener Zellen $\leq f(n)$

 \Rightarrow Ein Schritt der k-Band TM kostet $\mathcal{O}(f(n))$ Schritte auf der 2k-Band TM

$$\Rightarrow \mathcal{O}(f^2(n))$$