CSC 611: Analysis of Algorithms

Lecture 9

Red-Black Trees, OS Trees, and Interval Trees

Binary Search Trees

• Tree representation:

 A linked data structure in which each node is an object

- Node representation:
 - Key field
 - Satellite data
 - Left: pointer to left child
 - Right: pointer to right child
 - p: pointer to parent (p [root [T]] = NIL)
- Satisfies the binary search tree property

Binary Search Tree Example

- Binary search tree property:
 - If y is in left subtree of x,
 then key [y] ≤ key [x]
 - If y is in right subtree of x,
 then key [y] ≥ key [x]

CSC611/Lecture09

Binary Search Trees

- Support many dynamic set operations
 - SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, DELETE
- Running time of basic operations on binary search trees
 - On average: Θ(lgn)
 - The expected height of the tree is Ign
 - In the worst case: $\Theta(n)$
 - The tree is a linear chain of n nodes

Red-Black Trees

- "Balanced" binary trees guarantee an O(lgn) running time on the basic dynamicset operations
- Red-black tree
 - Binary tree with an additional attribute for its nodes: color which can be red or black
 - Constrains the way nodes can be colored on any path from the root to a leaf
 - Ensures that no path is more than twice as long as another ⇒ the tree is balanced
 - The nodes inherit all the other attributes from the binary-search trees: key, left, right, p

CSC611/ Lecture09

Red-Black Trees Properties

- 1. Every node is either red or black
- 2. The root is black
- 3. Every leaf (NIL) is black
- 4. If a node is red, then both its children are black
 - No two red nodes in a row on a simple path from the root to a leaf
- For each node, all paths from the node to descendant leaves contain the same number of black nodes

Example: RED-BLACK TREE

- For convenience we use a sentinel NIL[T] to represent all the NIL nodes at the leafs
 - NIL[T] has the same fields as an ordinary node
 - Color[NIL[T]] = BLACK
 - The other fields may be set to arbitrary values
 CSC611/ Lecture09

Black-Height of a Node

- **Height of a node:** the number of edges in a longest path to a leaf

Properties of Red-Black Trees

Claim

- Any node with height h has black-height ≥ h/2

Proof

 By property 4, there are at most h/2 red nodes on the path from the node to a leaf

CSC611/ Lecture09

Properties of Red-Black Trees

Claim

The subtree rooted at any node x contains at least $2^{bh(x)} - 1$ internal nodes

Proof: By induction on height of x

Basis: height[x] = $0 \Rightarrow$

x is a leaf (NIL[T]) \Rightarrow

 $bh(x) = 0 \Rightarrow$

of internal nodes: $2^0 - 1 = 0$

Properties of Red-Black Trees

Inductive step:

- Let height(x) = h and bh(x) = b
- Any child **y** of **x** has:
 - bh (y) = b (if the child is red), or
 - bh (y) = b 1 (if the child is black)

CSC611/ Lecture09

Properties of Red-Black Trees

- Want to prove:
 - The subtree rooted at any node x
 contains at least 2^{bh(x)} 1 internal nodes
- Assume true for children of x:
 - Their subtrees contain at least 2^{bh(x)-1} 1
 internal nodes
- The subtree rooted at x contains at least:

$$(2^{bh(x)-1}-1)+(2^{bh(x)-1}-1)+1=$$
 $2\cdot(2^{bh(x)-1}-1)+1=$
 $2^{bh(x)}-1$ internal nodes

Properties of Red-Black Trees

Lemma: A red-black tree with **n** internal nodes has height at most 2lg(n + 1). height(root) = h(root)

Proof:

$$\geq 2^{b} - 1 \qquad \geq 2^{h/2} - 1$$

since b ≥ h/2

Add 1 to all sides and then take logs:

$$n + 1 \ge 2^b \ge 2^{h/2}$$

$$\lg(n + 1) \ge h/2 \Rightarrow$$

$$h \le 2 \lg(n + 1)$$

CSC611/Lecture09

Operations on Red-Black Trees

- The non-modifying binary-search tree operations MINIMUM, MAXIMUM, SUCCESSOR, PREDECESSOR, and SEARCH run in O(h) time
 - They take O(Ign) time on red-black trees
- What about TREE-INSERT and TREE-DELETE?
 - They will still run in O(Ign)
 - We have to guarantee that the modified tree will still be a red-black tree

Insertion

- Goal:
 - Insert a new node z into a red-black tree
- Idea:
 - Insert node z into the tree as for an ordinary binary search tree
 - Color the node red
 - Restore the red-black tree properties
 - Use an auxiliary procedure RB-INSERT-FIXUP

CSC611/Lecture09

INSERT

INSERT: what color to make the new node?

- Red? Let's insert 35!
 - Property 4: if a node is red, then both its children are black
- Black? Let's insert 14!
 - Property 5: all paths from a node to its leaves contain the same number of black nodes

DELETE

30 41 30 38 50

DELETE: what color was the node that was removed? Red?

- 1. Every node is either red or black OK!
- 2. The root is black OK!
- 3. Every leaf (NIL) is black OK!
- 4. If a node is red, then both its children are black

OK! Does not change OK! Does not create / any black heights two red nodes in a row

 For each node, all paths from the node to descendant leaves contain the same number of black nodes

CSC611/Lecture09

DELETE

DELETE: what color was the node that was removed? Black?

- (17) (41) (30) (47) (38) (50)
- Every node is either red or black OK!
- 2. The root is black Not OK! If removing
- 3. Every leaf (NIL) is black OK! that replaces it is red
- 4. If a node is red, then both its children are black

Not OK! Could change the black heights of some nodes

Not OK! Could create two red nodes in a row

 For each node, all paths from the node to descendant leaves contain the same number of black nodes

Rotations

- Operations for restructuring the tree after insert and delete operations on red-black trees
- Rotations take a red-black tree and a node within the tree and:
 - Together with some node re-coloring they help restore the red-black tree property
 - Change some of the pointer structure
 - Do not change the binary-search tree property
- Two types of rotations:
 - Left & right rotations

CSC611/Lecture09

Left Rotations

- Assumption for a left rotation on a node x:
 - The right child of x(y) is not NIL

- Idea:
 - Pivots around the link from x to y
 - Makes y the new root of the subtree
 - x becomes y's left child
 - y's left child becomes x's right child

Example: LEFT-ROTATE

LEFT-ROTATE(T, x)

1. $y \leftarrow right[x]$ ►Set y 2. $right[x] \leftarrow left[y]$ > y's left subtree becomes x's right subtree 3. if left[y] ≠ NIL **then** $p[left[y]] \leftarrow x \triangleright$ Set the parent relation from left[y] to x 4. 5. $p[y] \leftarrow p[x]$ ▶ The parent of x becomes the parent of y 6. if p[x] = NILthen $root[T] \leftarrow y$ Left-Rotate(T, x) **7**. else if x = left[p[x]]8. then $left[p[x]] \leftarrow y$ 9. else right[p[x]] \leftarrow y 10.

▶ Put x on y's left

CSC611/Lecture09

y becomes x's parent

11. $left[y] \leftarrow x$

12. $p[x] \leftarrow y$

Right Rotations

- Assumption for a right rotation on a node x:
 - The left child of y(x) is not NIL

- Idea:
 - Pivots around the link from y to x
 - Makes x the new root of the subtree
 - y becomes x's right child
 - x's right child becomes y's left child

 CSC611/Lecture09

Insertion

- Goal:
 - Insert a new node z into a red-black tree
- Idea:
 - Insert node z into the tree as for an ordinary binary search tree
 - Color the node red
 - Restore the red-black tree properties
 - Use an auxiliary procedure RB-INSERT-FIXUP

RB-INSERT(T, z)

- 1. **y** ← **NIL**
- Initialize nodes x and y
- Throughout the algorithm y points to the parent of x
- 3. while x ≠ NIL
- 4. do $y \leftarrow x$
- **5**. if key[z] < key[x]
- then $x \leftarrow left[x]$ 6.
- else $x \leftarrow right[x]$ **7**.
- Go down the tree until reaching a leaf
- At that point y is the parent of the node to be inserted
- 8. $p[z] \leftarrow y$ } Sets the parent of z to be y

CSC611/Lecture09

RB-INSERT(T, z)

- 9. if y = NIL
- then $root[T] \leftarrow z$

The tree was empty: set the new node to be the root

- else if key[z] < key[y] 11.
- then $left[y] \leftarrow z$ **12**.
- else right[y] \leftarrow z **13**.

Otherwise, set z to be the left or right child of y, depending on whether the inserted node is smaller or larger than y's key

- 14. $left[z] \leftarrow NIL$

15. $right[z] \leftarrow NIL$ > Set the fields of the newly added node

- 16. $color[z] \leftarrow RED$
- 17. RB-INSERT-FIXUP(T, z)

Fix any inconsistencies that could have been introduced by adding this new red

RB Properties Affected by Insert

1. Every node is either red or black

OK!

2. The root is black

If z is the root \Rightarrow not OK

- 3. Every leaf (NIL) is black OK!
- 4. If a node is red, then both its children are black—

If p(z) is red \Rightarrow not OK z and p(z) are both red

OKI

5. For each node, all paths from the node to descendant leaves contain the same number of black nodes

26 38 47 50

CSC611/Lecture09

RB-INSERT-FIXUP - Case 1

z's "uncle" (y) is red

Idea: (z is a right child)

- p[p[z]] (z's grandparent) must be black: z and p[z] are both red
- Color p[z] black
- Color y black
- Color p[p[z]] red
 - Push the **red** node up the tree
- Make z = p[p[z]]

RB-INSERT-FIXUP - Case 1

z's "uncle" (y) is red

Idea: (z is a left child)

 p[p[z]] (z's grandparent) must be black: z and p[z] are both red

Color[p[z]] ← black
 color[y] ← black
 color p[p[z]] ← red
 z = p[p[z]] Case1
 Push the red node up the tree

he tree

CSC611/ Lecture09 β

RB-INSERT-FIXUP - Case 3

Case 3:

- z's "uncle" (y) is black
- z is a left child

Idea:

- $color[p[z]] \leftarrow black$
- color[p[p[z]]] ← red
- RIGHT-ROTATE(T, p[p[z]]) Case3
- No longer have 2 reds in a row
- p[z] is now black

RB-INSERT-FIXUP - Case 2

Case 2:

- z's "uncle" (y) is black
- z is a right child

Idea:

- z ← p[z]
 LEFT-ROTATE(T, z) Case2
- \Rightarrow now z is a left child, and both z and p[z] are red \Rightarrow case 3

CSC611/Lecture09

RB-INSERT-FIXUP(T, z)

```
while color[p[z]] = RED
                                The while loop repeats only when
1.
                                       case1 is executed: O(Ign) times
          do if p[z] = left[p[p[z]]]
2.
                                         Set the value of x's
              then y \leftarrow right[p[p[z]]]
3.
                                         "uncle"
                    if color[y] = RED
4.
                      then Case1
5.
                     else if z = right[p[z]]
6.
                             then Case2
7.
8.
                          Case 3
              else (same as then clause with "right"
9.
                            and "left" exchanged)
                                         We just inserted the root, or
10. color[root[T]] ← BLACK ←
                                         the red node reached the
                          CSC611/Lecture09
                                         root
```

Example

Analysis of RB-INSERT

- Inserting the new element into the tree
 O(Ign)
- RB-INSERT-FIXUP
 - The while loop repeats only if CASE 1 is executed
 - The number of times the while loop can be executed is O(Ign)
- Total running time of RB-INSERT: O(Ign)

Red-Black Trees - Summary

Operations on red-black trees:

- SEARCH	O(h)
- PREDECESSOR	O(h)
- SUCCESOR	O(h)
- MINIMUM	O(h)
- MAXIMUM	O(h)
- INSERT	O(h)
- DELETE	O(h)

 Red-black trees guarantee that the height of the tree will be O(Ign)

CSC611/Lecture09

Augmenting Data Structures

- Let's look at two new problems:
 - Dynamic order statistic
 - Interval search
- It is unusual to have to design all-new data structures from scratch
 - Typically: store additional information in an already known data structure
 - The augmented data structure can support new operations
- We need to correctly maintain the new information without loss of efficiency

Dynamic Order Statistics

- \mathcal{D} ef.: the i-th order statistic of a set of **n** elements, where $i \in \{1, 2, ..., n\}$ is the element with the i-th smallest key.
- We can retrieve an order statistic from an unordered set:

- Using: RANDOMIZED-SELECT

- In: O(n) time

- We will show that:
 - With red-black trees we can achieve this in O(lgn)
 - Finding the rank of an element takes also O(Ign)

CSC611/Lecture09

Order-Statistic Tree

- Def.: Order-statistic tree: a red-black tree with additional information stored in each node
- Node representation:
 - Usual fields: key[x], color[x], p[x], left[x], right[x]
 - Additional field: size[x] that contains the number of (internal) nodes in the subtree rooted at x (including x itself)
- For any internal node of the tree:

Example: Order-Statistic Tree

CSC611/Lecture09

OS-SELECT

Goal:

 Given an order-statistic tree, return a pointer to the node containing the i-th smallest key in the subtree rooted at x

Idea:

• size[left[x]] = the number of nodes that are smaller than x

- rank'[x] = size[left[x]] + 1
 in the subtree rooted at x
- If i = rank'[x] Done!
- If i < rank'[x]: look left
- If i > rank'[x]: look right

OS-SELECT(x, i)

- 1. $r \leftarrow size[left[x]] + 1$ \blacktriangleright compute the rank of x within the subtree rooted at x
- 2. if i = r
- 3. then return \times
- 4. elseif i < r
- 5. then return OS-SELECT(left[x], i)
- 6. else return OS-SELECT(right[x], i r)

Initial call: OS-SELECT(root[T], i)

Running time: O(Ign)

CSC611/Lecture09

Example: os-select

OS-RANK

8

3

Goal:

 Given a pointer to a node x in an order-statistic tree, return the rank of x in the linear order determined by an inorder walk of T

Its parent plus the left subtree if x is a right child

Idea:

 Add elements in the left. subtree

• Go up the tree and if a right child: add the elements in the left subtree of the parent + 1 CSC611/ Lecture 09

The elements in the left subtree

OS-RANK(T, x)

1. $r \leftarrow size[left[x]] + 1$

Add to the rank the elements in its left subtree + 1 for itself

2. y ← x

Set y as a pointer that will traverse the tree

3. while y ≠ root[T]

do if y = right[p[y]] 4.

then $r \leftarrow r + size[left[p[y]]] + 1$ 5.

 $y \leftarrow p[y]$

7. return r

Running time: O(Ign)

If a right child add the size of the parent's left subtree + 1 for the parent

Example: OS-RANK

Maintaining Subtree Sizes

- We need to maintain the size field during
 INSERT and DELETE operations
- Need to maintain them efficiently
- Otherwise, might have to recompute all size fields, at a cost of $\Omega(n)$

Maintaining Size for OS-INSERT

- Insert in a red-black tree has two stages
 - 1. Perform a binary-search tree insert
 - Perform rotations and change node colors to restore red-black tree properties

CSC611/Lecture09

OS-INSERT

Idea for maintaining the **size** field during insert Phase 1 (going down):

OS-INSERT

Idea for maintaining the **size** field during insert Phase 2 (going up):

- During RB-INSERT-FIXUP there are:
 - O(Ign) changes in node colors
 - At most two rotations Rotations affect the subtree sizes!!

Augmenting a Data Structure

- 1. Choose an underlying data structure
 - ⇒ Red-black trees
- 2. Determine additional information to maintain
 - \Rightarrow size[x]
- 3. Verify that we can maintain additional information for existing data structure operations ⇒ Shown how to maintain size during modifying operations
- 4. Develop new operations
 - ⇒ Developed OS-RANK and OS-SELECT

Augmenting Red-Black Trees

Theorem: Let f be a field that augments a redblack tree. If the contents of f for a node can be computed using only the information in x, left[x], right[x] ⇒ we can maintain the values of f in all nodes during insertion and deletion, without affecting their O(lgn) running time.

CSC611/Lecture09

Examples

- Can we augment a RBT with size[x]?
 Yes: size[x] = size[left[x]] + size[right[x]] + 1
- Can we augment a RBT with height[x]?
 Yes: height[x] = 1 + max(height[left[x]], height[right[x]])
- Can we augment a RBT with rank[x]?
 No, inserting a new minimum will cause all n rank values to change

Interval Trees

Def.: Interval tree = a red-black tree that maintains a dynamic set of elements, each element x having associated an interval int[x].

- Operations on interval trees:
 - INTERVAL-INSERT(T, x)
 - INTERVAL-DELETE(T, x)
 - INTERVAL-SEARCH(T, i)

CSC611/Lecture09

Interval Properties

Intervals i and j overlap iff:
 low[i] ≤ high[j] and low[j] ≤ high[i]

Intervals i and j do not overlap iff:
 high[i] < low[j] or high[j] < low[i]

Interval Trichotomy

- Any two intervals i and j satisfy the interval trichotomy: exactly one of the following three properties holds:
 - a) i and j overlap,
 - b) i is to the left of j (high[i] < low[j])
 - c) i is to the right of j (high[j] < low[i])

CSC611/Lecture09

Designing Interval Trees

___ int

max

[21,23]

[17,19]

23

[15,18]

[5,11]

[7,10]

10

- 1. Underlying data structure
 - Red-black trees
 - Each node x contains: an interval int[x], and the key: low[int[x]]
 - An inorder tree walk will list intervals sorted by their low endpoint
- 2. Additional information
 - max[x] = maximum endpoint value in subtree rooted at x
- 3. Maintaining the information $\frac{[4,8]}{8}$

max[x] = max $\begin{cases} high[int[x]] \\ max[left[x]] \\ max[right[x]] \end{cases}$

Constant work at each node, so still *O*(*lgn*) time

Designing Interval Trees

- 4. Develop new operations
- INTERVAL-SEARCH(T, i):
 - Returns a pointer to an element x in the interval tree T, such that int[x] overlaps with i, or NIL otherwise

Example

INTERVAL-SEARCH(T, i)

- 1. $x \leftarrow root[T]$
- 2. while $x \neq nil[T]$ and i does not overlap int[x]
- 3. do if left[x] ≠ nil[T] and
 max[left[x]] ≥ low[i]
- 4. then $x \leftarrow left[x]$
- 5. else $x \leftarrow right[x]$
- 6. return x

CSC611/Lecture09

Theorem

At the execution of interval search: if the search goes right, then either:

- There is an overlap in right subtree, or
- There is no overlap in either subtree
- Similar when the search goes left
- It is safe to always proceed in only one direction

Theorem

- Proof: If search goes right:
 - If there is an overlap in right subtree, done
 - If there is no overlap in right ⇒ show there is no overlap in left
 - Went right because:

left[x] = nil[T] \Rightarrow no overlap in left, or max[left[x]] < low[i] \Rightarrow no overlap in left

CSC611/Lecture09

Theorem - Proof

If search goes left:

- If there is an overlap in left subtree, done
- If there is no overlap in left, show there is no overlap in right
- Went left because:

 $low[i] \le max[left[x]] = high[j]$ for some j in left subtree

