Problemas 5

Introdução à Física Quântica (continuação)

Os enunciados dos problemas identificados com 'Scarani' devem ser consultados no livro *Six Quantum Pieces*, Valerio Scarani, World Scientific (2010). As resoluções dos problemas deste livro encontram-se no final dos capítulos. Os ficheiros PDF dos primeiros dois capítulos deste livro podem ser descarregados em https://www.worldscientific.com/worldscibooks/10.1142/7965

Sobreposição de estados e entrelaçamento

1. Um protão encontra-se no estado de spin descrito por

$$|\psi\rangle = 0.5|\uparrow\rangle + 0.866|\downarrow\rangle$$

Qual é a probabilidade de, ao efetuar uma medida, encontrar o protão no estado $|\uparrow\rangle$ e qual a probabilidade de o encontrar no estado $|\downarrow\rangle$? [Sol.: $P_{\uparrow} = 0.25$; $P_{\downarrow} = 0.75$]

2. Uma determinada partícula está num estado quântico definido pelo vetor estado

$$|\psi\rangle = 0.1|\leftarrow\rangle + 0.3i|\uparrow\rangle + 0.5|\rightarrow\rangle - 0.4|\downarrow\rangle + a|\leftrightarrow\rangle$$

Qual é a probabilidade de a partícula, ao se efetuar uma medida, ficar no estado $|\leftrightarrow\rangle$? [Sol.: 0.49]

- 3. Scarani, Cap. 1, Ex. 1.3 [Sol.: $P(\alpha|\beta) = \cos^2(\alpha \beta)$; $P(\alpha^{\perp}|\beta) = \sin^2(\alpha \beta)$]
- 4. Scarani, Cap. 1, Ex. 1.4

[Sol.: estado não entrelaçado,
$$|\psi_1\rangle = \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle) \otimes \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle) = |\alpha = \pi/4\rangle \otimes |\beta = \pi/4\rangle$$
]

- **5.** Scarani, Cap. 1, Ex. 1.5
- **6.** Se tivermos duas partículas em que uma pode estar nos estados $|A\rangle$ ou $|B\rangle$, e a segunda pode estar nos estados $|\uparrow\rangle$, $|\downarrow\rangle$, $|\leftarrow\rangle$ ou $|\rightarrow\rangle$, quais são os estados possíveis das duas partículas? [Sol.: $|A\uparrow\rangle$, $|A\downarrow\rangle$, $|A\leftarrow\rangle$, $|A\rightarrow\rangle$, $|B\uparrow\rangle$, $|B\downarrow\rangle$, $|B\rightarrow\rangle$]
- 7. Considere um trio de partículas que podem, cada uma, estar num estado $|0\rangle$ ou $|1\rangle$.

O seu vetor estado é dado por:

$$|\psi\rangle = 0.1|000\rangle + 0.3535(1+i)|001\rangle + 0.2|010\rangle - 0.1|100\rangle + 0.5|011\rangle - 0.361|101\rangle + 0.55|111\rangle$$

- a) Qual é o estado mais provável, após uma medida?
- b) Se fizer 200 medidas em 200 sistemas idênticos a este, quantas vezes espera obter o estado |010\?
- c) Se fizer 20 medidas no mesmo sistema, quantas vezes espera obter o estado $|010\rangle$?
- d) Qual é a probabilidade de, ao medir apenas a primeira das três partículas, a encontrar no estado $|0\rangle$?
- e) Há alguma combinação de medidas que nunca aconteça?

[Sol.: a) |111\rangle; b) 8; c) 20 ou zero; d) 0.55; e) sim: |110\rangle]