SOC Design Laboratory, 2023 Fall

Report

R11943167 謝維勝

Overview

此次 Lab 需求為人工撰寫的 FIR (Finite impulse response) filter RTL design, module 所定義的 interface 為 AXI4-Lite, AXI4-Stream, 另外實做細節規定使用一個乘法器和一個加法器, Shift register 則需使用 Block ram 代替。

Block diagram

FIR filter computation

此次 Lab 需要用到用 Bram implement 的 data & tap register, 其中計算過程中會需要大量對 data ram 做 shift,以下詳細的運算流程。

	Tap Ram											
	Coef[0]	Coef[1]	Coef[2]	Coef[3]	Coef[4]	Coef[5]	Coef[6]	Coef[7]	Coef[8]	Coef[9]	Coef[10]	
						(x)						
T = 0	0	0	0	0	0	0	0	0	0	0	0	
T = 1	X[0]	0	0	0	0	0	0	0	0	0	0	
T = 2	X[1]	X[0]	0	0	0	0	0	0	0	0	0	
T = 3	X[2]	X[1]	X[0]	0	0	0	0	0	0	0	0	Data Ram
						i						
T = 11	X[10]	X[9]	X[8]	X[7]	X[6]	X[5]	X[4]	X[3]	X[2]	X[1]	X[0]	
T = 12	X[11]	X[10]	X[9]	X[8]	X[7]	X[6]	X[5]	X[4]	X[3]	X[2]	X[1]	

實際計算只需將 data ram 和 tap ram 對應 address 的值相乘並累加後則可求得該 stream in x[n] 的 Y[n]。算完一個 Y[n]後依序從 data ram addr = 10 -> 0 shift in 後則可做新一輪的計算。

Resource usage

LUT and Flip Flop

+	+	+	+	+	++
Site Type	Used	Fixed	Prohibited	Available	Util%
+	+	+	+	+	++
Slice LUTs*	237	0	0	53200	0.45
LUT as Logic	237	0	0	53200	0.45
LUT as Memory	0	0	0	17400	0.00
Slice Registers	136	0	0	106400	0.13
Register as Flip Flop	96	0	0	106400	0.09
Register as Latch	40	0	0	106400	0.04
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+	+	+	+	+	++

Block RAM

+	+	++		+
Site Type	Used	Fixed		Available Util%
Block RAM Tile	0	0	0	140 0.00
RAMB36/FIFO*	0	0	0	140 0.00
RAMB18	0	0	0	280 0.00
+	+	++		+

Timing Report

合成的 cycle time 設定依序為 10->8->6->4ns, timing report 如下:

Timing summary

Max delay path

```
Max Delay Paths
                              0.103ns (required time - arrival time)
  Source:
                              sm_tdata_reg_reg[1]/C
   (rising edge-triggered cell FDRE clocked by axis_clk {rise@0.000ns fall@2.000ns period=4.000ns})
                              sm_tdata_reg_reg[31]/D
                               (rising edge-triggered cell FDRE clocked by axis_clk {rise@0.000ns fall@2.000ns period=4.000ns})
 Path Group:
 Path Type:
                             Setup (Max at Slow Process Corner)
                             4.000ns (axis_clk rise@4.000ns axis_clk rise@0.000ns)
3.761ns (logic 2.646ns (70.354%) route 1.115ns (29.646%))
  Requirement:
 Clock Path Skew:
   Destination Clock Delay (DCD):
Source Clock Delay (SCD):
                                         2.128ns = (6.128 - 4.000)
2.456ns
    Clock Pessimism Removal (CPR):
    Total System Jitter
                                           0.071ns
    Total Input Jitter
                                           0.000ns
```

如圖中可觀察到,max delay path 為計算 FIR 結果的累加暫存器,由於需經過乘 法與加法的 combinational 電路,因此相對整個 design 而言是 critical path。

Simulation waveform

data length & Tap coefficient write

Config register 和 Tap coefficient 由 AXI-Lite interface 輸入,每當 wready = 1, Testbench 會在下個 cycle 輸入一筆新的資料。

Coefficient read check

透過 FSM 控制,先從 Tap Ram 對取出對應的 coefficient 再透過 AXI Lite interface 輸出,當 rvalid = 1 時,testbench 可從 rdata 讀取出 coefficient。

Data stream in & Data Ram write

Data stream in,當 $ss_{tready} =$ 時,testbench 會輸入下一筆 data 做後續 data shift。

Data stream out

Fir result stream out,當 $sm_tvalid = 1$ 時,testbench 可將 sm_tdata 的結果和 golden value 進行比對。