

Assessment 3: Project Plan

Due: 11:59 PM EST Wednesday week 7

Weight: 45%

Overview

During this assessment, you will produce a written report on

- reviewing a structure of convolution neural networks
- planning of a computer vision data science project utilising AWS as the primary data repository and computational resource.

Learning outcomes

- 1. Analyse real world computer vision tasks using machine learning techniques learnt in this subject
- 2. Engage AWS cloud computing services
- 3. Develop and deploy machine learning models on AWS
- 4. Tune hyperparameters for machine learning models using AWS
- 5. Construct a written communication and interpretation of machine learning methodologies
- 6. Demonstrate and apply advanced theoretical and technical knowledge of data science to an industry or research problem.

Format

You will need to submit the following:

- A PDF file clearly shows the assignment question, the associated answers, relevant Python
 outputs, analyses and discussions. The assignment must be presented in 12 font on A4 pages using
 single line spacing, double column format.
- Appendices include Jupyter Notebook or Python code or screen images of AWS console detailing the development, training and deploying the CNN model
- The task cover sheet
- The assignment should not exceed 18-A4 pages. Appendices do not form part of the page limit.

You have up to three attempts to submit your assessment, and only the last submission will be graded.

A word on plagiarism

Plagiarism is the act of using another's words, works or ideas from any source as one's own.

Plagiarism has no place in a University. Student work containing plagiarised material will be subject to formal university processes.

Part 1: Paper review

Select one of the following papers:

- Krizhevsky, A., Sutskever, I., & Hinton, G. (2017). ImageNet classification with deep convolutional neural networks. *Communications of the ACM*, 60(6), 84–90. https://doi.org/10.1145/3065386
- K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE
 Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.Deep Residual Learning for Image Recognition
- 3. C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.

Your task is to write maximum of **2- A4 pages** to review CNN architecture proposed in the selected paper. At least discuss the following aspects

- a) Describe a CNN structure proposed in the selected paper.
- b) Discuss key innovations of the CNN structure proposed in the paper.
- c) Discuss limitations of the CNN structure of the paper.
- d) Summarise key results found in the paper.

Part 2: Computer vision

Computer vision is an expanding field in data science, being led by business applications. Computer vision applications range from analysing static photographs (drone images, satellite imagery, static albums), interactive image albums and content (such as Facebook, Instagram and Twitter), to live steaming of video (cctv, drone/satellite video).

Assessment Tasks

Develop a research/project proposal for an image classification using your own dataset. The project proposal should cover the following aspects.

Note: Please note that the selected dataset **must NOT** be the one covered in collaborate sessions and AWS JupyterLab (e.g. MNIST or CIFAR-10/100, dogsvscats).

1. Research proposal/Business Understanding

a) Describe the primary objectives/questions from a research/business perspective.

2. Data

- a) Discuss the quality of the data with respect to completeness, errors and outliers, missing values.
- b) List and Justify the data cleaning tasks required for the image classification task.

3. Modelling

- a) Build your own CNN model and describe the structure of the model.
- **b)** Train the model using the training dataset. Justify the choice of parameters and hyperparameters in the model

4. Model Evaluation and Deployment

- a) Evaluate and Discuss the performance of the model for the training and test data.

 Provide the evidence of Endpoint and deployment of the CNN model.
- b) Evaluate and Discuss the degree to which the model meets your research/ business objectives and seek to determine if there is some business reason why this model is deficient.

NB: Model Deployment in this report must be conducted using AWS SageMaker.

5. Model comparison

a)Implement the CNN structure reviewed in Part 1 using the data in Part 2. Compare the performance of the model with that of your proposed model.

Marking Criteria and Rubric: MA5852 Assessment 3

Criteria	High Distinction	Pass	Fail
Review the article	Demonstrate excellent understanding on the	Demonstrate good understanding on the selected	Does not
	selected article. Provides detailed, accurate	article. Provides adequate descriptions of the	meet pass
	descriptions of the CNN structure presented in a	CNN structure presented in a paper.	criteria – See
	paper.		commentary
20% of the total grade			for specific
	Demonstrate excellent understanding on	Demonstrate general understanding on	details.
	contributions and limitations of a paper.	contributions and limitations of a paper.	
Project proposal	Project plan is coherently and logically	Project plan is structured so that with some	Does not
design. Logically	structured. Its impact is clear and well-defined.	inferences, a logically structure incorporating	meet pass
arrange, present and		adequate detail that can be deduced. Some	criteria – See
communicate the		inaccurate statements and limited justifications.	commentary
information of analysis			for specific
and comparison	Communication is clear, concise, accurate and	Communication is adequate with some	details.
	uses appropriate terminology and references to	ambiguous and inferred elements. Some	
	relevant theoretical frameworks.	replications and not all internal and external	
10% of the total grade		sources are appropriately referenced.	
			Does not
Data considerations for	Provides a detailed, accurate description of the	Provides adequate description of the data used in	meet pass
machine learning	data used in the project.	the project. Some elements of the method are	criteria - See
analysis		inferred or partially detailed.	commentary
			for specific

10% of total grade			details
			Does not
Model and Model	Provides a detailed, accurate and description of	Provides an adequate description of the	meet pass
Evaluation	the proposed model. The model is clearly	proposed model where some elements are	criteria - See
	visualised, and the visualisation is clearly and	inferred or ambiguous. The model is visualised,	commentary
35% of total grade	concisely described.	but the visualisation is not completely	for specific
		described, or elements are inferred or	details
		ambiguous.	
	Hyperparameter tuning is clearly and concisely	Hyperparameter tuning described with some	
	described with overt justifications link to model	inferred or ambiguous links to model theory or	
	theory and supporting literature.	supporting literature.	
	Model development draws upon unit	Model development draws upon unit	
	knowledge and demonstrated wider readings	knowledge and limited wider readings with	
	with clear overt links to external sources.	some links to external sources. Model	
	Model overfitting and regularisation elements	overfitting and regularisation elements are	
	are clearly and concisely justified with links to	described with limited links to model theory.	
	model theory.	Some elements are inferred or ambiguous.	
	Provide detailed explanation on performance of	Provide some explanation on performance of the	

	the model	model	
Model comparison	Provides a detailed comparison and discussion	Provide limited comparison and discussion	
	regarding performance of the proposed model	regarding performance of the proposed model	
15% of total grade	and the model proposed in the reviewed in Part	and the model proposed in the reviewed in Part	
	1.	1.	
	Provide evidence suggesting all models considered	Provide some evidence suggesting all models	Does not
Application on AWS	in the analysis are successfully trained and	considered in the analysis are successfully trained	meet pass
	deployed.	and deployed.	criteria - See
10% of total grade			commentary
	Model deployment, monitoring and maintenance	Model deployment, monitoring and maintenance is	for specific
	is clearly and concisely described using AWS Sage	clearly and concisely described using AWS Sage	details
	Maker services.	Maker services.	