Exercice 1:

- 1. Soit $\alpha \in \mathbb{R}^*$. Démontrer $(1+x)^{\alpha} 1 \underset{x \to 0}{\sim} \alpha x$.
- 2. Calculer les limites ci-dessous :

a)
$$\lim_{x \to 0} \sqrt{x} \sin\left(\frac{1}{x}\right)$$
, b) $\lim_{x \to +\infty} x(\ln(5+x) - \ln x)$, c) $\lim_{x \to 0} \frac{e^{3x} - 1}{\sqrt{x} \cos\left(\frac{\pi}{2} + \sqrt{x}\right)}$, d) $\lim_{x \to -1} \frac{\ln(3+2x)}{\sqrt{2+x} - 1}$.

Exercice 2:

Pour $x \in \mathbb{R}^*$, on pose $f(x) = \frac{\arctan(x)}{x}$.

1. Établir que, pour tout réel x strictement positif,

$$\frac{x}{1+x^2} \leqslant \arctan(x) \leqslant x.$$

Quel encadrement de arctan(x) avons-nous si x est strictement négatif?

En déduire que f est prolongeable par continuité en 0 (on notera encore f le prolongement obtenu).

- 2. Montrer que f est dérivable en 0 et calculer f'(0).
- 3. Déterminer le tableau de variation de f sur \mathbb{R} en précisant les limites en $-\infty$ et $+\infty$.

Exercice 3:

Pour tout entier naturel n et tout réel positif x, on pose $f_n(x) = \int_0^x t^n e^{-t} dt$.

- 1. Soit $n \in \mathbb{N}$.
 - (a) Calculer $\lim_{t\to +\infty} t^{n+2}e^{-t}$. En déduire l'existence d'un réel A positif tel que :

$$\forall t \in [A, +\infty[\,,\, t^n e^{-t} \leqslant \frac{1}{t^2}.$$

(b) Avec A défini comme précédemment, montrer :

$$\forall x \in [A, +\infty[, \int_A^x t^n e^{-t} dt \leqslant \frac{1}{A}]$$

puis justifier que f_n est majorée sur \mathbb{R}_+ .

- (c) Quel est le sens de variation de f_n sur \mathbb{R}_+ ? En déduire l'existence de $\lim_{x\to+\infty} f_n(x)$. On notera désormais I_n cette limite (aussi notée $\int_0^{+\infty} t^n e^{-t} dt$.).
- (d) Calculer I_0 .
- 2. (a) Établir :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}_+, \ f_{n+1}(x) = -x^{n+1}e^{-x} + (n+1)f_n(x).$$

- (b) En déduire une relation entre I_{n+1} et I_n valable pour tout entier naturel n.
- (c) En déduire : $\forall n \in \mathbb{N}, I_n = n!$.