Net Ecosystem Carbon & Nitrogen

Robert Scheller Professor of Landscape Ecology

February 2021

- Total Ecosystem Carbon
 - Aboveground
 - o Belowground soil C accounting
 - o smoke emissions: flaming vs. smoldering
 - Net Ecosystem Exchange ~ flux towers
 - Net Biome Production: incorporating disturbance effects

- Total Ecosystem Nitrogen
 - O Nitrogen is very often the primary limit to growth
 - o Different tree/shrub species have varying N requirements
 - N allocation: roots, bole, foliage
 - o N allocation: seasonal resorption

- C & N tracked across many pools:
 - Cohorts
 - Dead wood and roots
 - Dead foliage and humus
 - o Three soil pools (following CENTURY model): Fast, slow, passive
 - o Mineral N

- Why NECN?
 - C & N tracked across many pools:

- Built from principles of ecosystem ecology
- Primary drivers:
 - Mass balance
 - Water budgets (AET, PET, CWD, etc.)
 - Leaf Area Index (LAI)
 - Weather and climate change (monthly)
 - Heterotrophic respiration
- Cohorts compete for light, water, N

- Functional Response of Species to Climate
 - o Regeneration and Growth
 - Temperature
 - Soil Moisture
- Other Key Species Traits
 - ∘ N fixer?
 - Leaf longevity
 - Epicormic resprouting

- Next generation design:
 - O No ecoregions!
 - Maps as inputs
 - Soil water balance and regeneration at cell-scale
 - CSV inputs
 - Tight links with disturbances
 - Tight link with climate projections
 - No cohort spin-up

Common Applications

- Carbon and Climate Change
- Nitrogen limits and N deposition
- Smoke emissions

Discussion Break

 Everyone give an example of goals / scenarios where you think NECN might be useful

Input Walkthrough

A brief tour

- From the example:
- https://github.com/LANDIS-II Foundation/Extension-NECN Succession/blob/master/testing/Core7 NECN6.6/NECN LTB landscape.txt

Common Data Sources and Challenges

- Species Inputs
- LAI and light table
- Input maps
- Functional group properties
- Disturbance effects

Species Inputs

Example on screen

LAI and Light Table

- NECN determines shade class of a cell using modeled LAI of the cell
- Probability of suitable light is determined by the shade class of the cell and the shade tolerance of the species
- Species shade tolerance defined by user in the species table, other factors are provided by the LAI table and light establishment table.

Leaf Area Index Determines Shade

MaximumLAI

Shade	Max LAI
Class	
1	2
2	4
3	6
4	8
5	10
	1 2 3 4

MaximumLAI table determines the shade class for each cell based on LAI. The left column is the minimum value of LAI for assignment to that shade class

• e.g. with the example table, a cell with modeled LAI of 7 would be assigned a shade class of 3

LightEstablishmentTable

>> Spp Shade	Probability						
>> Class	by Actual Shade						
>>							
>>	0	1	2	3	4	5	
1	0.71513961	0.14296328	0.05597292	0.02831985	0.01643340	0.04117	
2	0.48200635	0.21131895	0.10263309	0.05849241	0.03674448	0.10880	
3	0.17888790	0.31529263	0.20247909	0.11672447	0.06797111	0.11864	
4	0.02749268	0.19276773	0.23992545	0.18649094	0.12543924	0.22788	
5	0.001568513	0.051464001	0.149236027	0.188126608	0.170169509	0.43943	

LightEstablishmentTable determines the probability that a cell has a suitable light for regeneration

• e.g. the probability that a cell with shade class 3 would be a suitable light environment for a species with shade tolerance class 4 is **0.186**

Leaf Area Index Determines Shade

- How to estimate probability of suitable light?
- Old school: Expert opinion
- Cool kids: Data
- Specifically plot data that includes regeneration (<I" dbh)

Leaf Area Index Determines Shade

- Christopher Gerstle: ctgerstl@ncsu.edu
- ■FIA Data

Input Soil Maps

- You will need a good source of soils data
- Most difficult is the initial SOC, SON pools
 - First, approximately allocate C: NEED RULE OF THUMB
 - C:N ratios across pools need to be fixed in parallel so as not to fix one layer by stealing from another layer.
 - If you start N too high or low, they will be squirrelly
 - A good starting ratio is ~35C:IN (SOM3 > SOM2 > SOMI)

- Groups of trees that share common physiological traits, e.g., Northern hardwoods.
- Shape of soil temperatures effect on growth.
- LAI ~ Biomass Relationship
- Response of growth to moisture.
- Monthly wood mortality and decay
- Turn over of leaves and roots

Growth Response to soil temperature

Four parameters determine the relationship between soil moisture and relative production (ANPP).

$$k = \frac{a_3 - T_s}{a_3 - a_2}$$

$$L_t = k^{a_4} e^{\frac{a_4(1 - k^{a_5})}{a_5}}$$

Ts: Soil temperature

- LAI ~ Biomass Relationship
- Captures
 - Effect of total AGB
 - Seasonal changes in LAI
 - No seasonal changes for conifers
- LAI Determines
 - Growth and competition for light
- Calibrated against plot data of similar forest types

Example LANDISII LABiomass Relationship: Example

Northern Mesic Hardwoods: Quercus montana

Response of Growth To Soil Moisture

Control the relationship between water content, the ratio of P~ET and growth. As water is limited growth.

This creates a multiplier that controls max ANPP.

$$L_w = 1 + \frac{1}{M_1 - (M_1 * WC)} + (r - M_2)$$

r:ratio of P/ PET WC: Stored water

Disturbance Effects

- If not listed, assume all dead material on the ground
- Otherwise, need to find reasonable values for FIRE and HARVESTING
- Quick review

Climate-future-log: in approximate order

- Graph temperature and precipitation
 - Look at the units and the over long-term behavior
 - If either is far off, then likely using the wrong unit selection in the climate-generator input file

NECN-succession-log: in approximate order

- Mineral N: should vary ~2-10
 - Consider adjusting atmospheric inputs
 - Consider adjusting DenitrificationRate
- Soil Carbon: Stable without disturbance?
 - Which pool is least stable?
 - Is the CN ratio stable? If not, N input maps may be off
 - If CN stable, adjust decay rates

NECN-succession-log: in approximate order

- AGB
 - Appropriate change for landscape age?
 - Young should be increasing
 - Older should be stable or maybe even declining a bit
 - Is Mineral N too limiting or not limiting enough?

NECN-prob-establish-log: in approximate order

- What are the limiting factor for each species?
 - Are there species with Pest always 0.0?
 - Are there species with Pest always 1.0?
 - Others as expected?

SINGLE CELL with Calibrate turned on Calibrate-log: in approximate order

- What is limiting the growth of your cohorts?
- Is temperature appropriately limiting for each month? (e.g., cold winters should be ~0.0)
- Is N too limiting or not limiting enough?

Primary Literature

- Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Gilmanov, T.G., Scholes, R.J., Schimel, D.S., Kirchner, T., Menaut, J.C., Seastedt, T., Garcia Moya, E., Kamnalrut, A., Kinyamario, J.I., 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7, 785–809.
- Scheller, R.M., D. Hua, P.V. Bolstad, R. Birdsey, D.J.Mladenoff. 2011. The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in a Lake States mesic landscape. Ecological Modelling 222: 144-153.
- Lucash M.S., R.M. Scheller, A.M. Kretchun, K. Clark and J. Hom. 2014. Impacts of climate change and fire on long-term nitrogen cycling and forest productivity in the New Jersey Pine Barrens. Canadian Journal of Forest Research 44: 402-412.

Thank You!

■rschell@ncsu.edu

