Anticipez les besoins en consommation électrique de bâtiments

Objectif : Ville neutre en émissions de carbone

Problématiques

Relevés coûteux

- Prédiction à partir des données déclaratives
- Évaluer l'intérêt de l'Energy Star Score

Interprétation

- Valeur continue → Régression
- Impact de l'Energy Star Score

Base de donnée

Diffusée par ville de Seattle

- Contient pour ~3000 propriétés :
 - Les informations déclaratives
 - La consommation énergétique
 - Les émissions de gazs à effets de serre
 - Le Score Energy Star

Nettoyages préliminaires

- Clé primaire : OSEBuilding
- Formatage des noms de colonnes
- Différences entre les colonnes

Sélection des colonnes

- YearBuilt
- NumberofBuildings
- NumberofFloors
- LargestPropertyUseType
- LargestPropertyUseTypeGFA
- PropertyGFABuilding(s)
- Latitude
- Longitude

Valeurs aberrantes

- Pas d'expertise dans le domaine
- Boxplot
 - Valeurs extrêmes
- Affichage des distributions
 - Détection des mouvements minoritaires

NumberofBuildings

NumberofBuildings

NumberofBuildings

Valeurs manquantes

de 2015:
0.218341
2.432938
2.838428
16.094822
16.094822
46.163444
46.163444
77.386151
96.163444
96.163444

Tailles des échantillons par activité

Répartition géographique de la consommation

Corrélation : GFA et consommation

Par type de bâtiment : 0.7 - 0.94

Energy Star Score - Émissions

Energy Star Score - Émissions

Analyse par Composantes Principales

Analyse par Composantes Principales

Modèles

- Régression linéaire
- Régression Ridge, Lasso
- Algorithme des plus proches voisins
- Forêt aléatoire
- Gradient boosting

SiteEnergyUse

Régression linéaire	0.48	
Ridge	0.48	alpha =25
Lasso	0.48	alpha=1000
k-nn	0.72	k=2
Forêt aléatoire	0.80	n_estimators = 13 max_depth = 14
Gradient boosting	0.85	Learning_rate=0.4 n_estimators=50 max_depth=10
		max_depth=10

SiteEnergyUse: Optimisation

- Recherche par grille des meilleurs paramètres
- R2 = 0.87
- + Energy Star Score : R2 = 0.86

GHGEmissions

Régression linéaire	0.28	
Ridge	0.28	alpha =25
Lasso	0.28	alpha=1
k-nn	0.57	k=2
Forêt aléatoire	0.71	n_estimators = 13 max_depth = 14
Gradient boosting	0.79	Learning_rate=0.4 n_estimators=50 max_depth=10
		max_depm=10

GHGEmissions: Optimisation

- Recherche par grille des meilleurs paramètres
- R2 = 0.81
- + Energy Star Score : R2 = 0.81

Conclusion

- On fait des modèles applicables à tous les types de bâtiments / d'activité
- Avec le gradient boosting optimé :
 - SiteEnergyUse : R2 = 0.87
 - TotalGHGEmissions : R2 = 0.81

Ouverture

Des améliorations sont possibles

- Transformer les features de position
- Chercher une expertise métier pour améliorer la qualité du nettoyage
- Utiliser un réseau de neurones profond