A non parametric PLSDA

matthieu.lesnoff@cirad.fr

Seminar ChemHouse Montpellier 19 June 2023

"PLSDA" PLS discriminant analysis

Step 1) Dimension reduction

Step 2) Several alternatives

A) Regression Y_{dummy} on $T \Rightarrow PLSR-DA = usual "PLSDA"$

~ **unbounded** estimates of class-membership probabilities

(**Rk:** The same prediction table is usually returned by deep learning pipelines. In general, they transform the predictions by applying a final softmax function to come back to the scale of a probability [0, 1] but, in principle, it is not mandatory)

B) or Probabilistic DA on **T**

Objective: $\hat{P}(y_i = Class \ j \mid x_i)$

- a) Parametric hypothesis on the distribution of **T**
 - e.g. Gaussian distribution(s)
 - LDA ⇒ PLS-LDA
 - QDA \Rightarrow PLS-QDA
- b) Non parametric: No hypothesis on the distribution of **T**
 - e.g. Kernel density estimation (KDE) \Rightarrow PLS-KDE-DA

a) Parametric Gaussian probability density

PDF
$$(2\pi)^{-k/2}\det(\mathbf{\Sigma})^{-1/2}\,\exp\!\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^\mathsf{T}\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right),$$
 exists only when $\mathbf{\Sigma}$ is positive-definite

 $\Sigma = X$ covariance matrix

- LDA Same Σ for all classes
- **QDA** One Σ per class

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Univariate KDE

$$\hat{f}_K(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right) = \frac{1}{n} \sum_{i=1}^n K_h(x - x_i),$$

Density estimate at obs. **x**

Bandwidth (= smoothing) Parameter to tune Kernel function ~ similarity index to **x** (integral sums to 1) e.g. Gaussian pdf

Scott DW, Sain SR. - Multidimensional Density Estimation. In: Rao CR, Wegman EJ, Solka JL, eds. Handbook of Statistics. Vol 24. Data Mining and Data Visualization. Elsevier; 2005:229-261. doi:10.1016/S0169-7161(04)24009-3.

$$fh(t) = the sum of (K(t-x_i)/h)/(nh) from i = 1...n$$

where n denotes the sample size. The choice of kernel function K is not very critical for the resulting estimate fh(t) and so a Gaussian kernel is used.

The following graph showing the sum of the normal kernels at 5 data points illustrates the ideas behind the kernel density estimation.

Univariate KDE

Source: https://genstat.kb.vsni.co.uk/knowledge-base/kernel-density-estimation

Gaussian univariate KDE

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h\sqrt{2\pi}} exp\left\{-\frac{1}{2} \left(\frac{x - x_i}{h}\right)^2\right\}$$

$$= \frac{1}{nh} \sum_{i=1}^{n} K(u_i)$$

with
$$u_i = \frac{x - x_i}{h}$$
 and $K(u_i) = \frac{1}{\sqrt{2\pi}} exp\left\{-\frac{1}{2} u_i^2\right\}$ pdf Normal(0, 1)

Gaussian multivariate KDE

The extension of the kernel estimator to vector-valued data, $\mathbf{x} \in \mathbb{R}^d$, is straightforward for a normal kernel, $K \sim N(0, \Sigma)$:

$$\hat{f}(\mathbf{x}) = \frac{1}{n(2\pi)^{d/2} |\Sigma|^{1/2}} \sum_{i=1}^{n} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{x}_i)' \Sigma^{-1} (\mathbf{x} - \mathbf{x}_i)\right].$$
 (16)

Bandwidth matrix

 $p \times p$ Positive-definite, symmetric **To tune**

Scott & Sain 2005

$$\hat{f}(\mathbf{x}) = \frac{1}{n(2\pi)^{d/2} |\Sigma|^{1/2}} \sum_{i=1}^{n} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{x}_i)' \Sigma^{-1} (\mathbf{x} - \mathbf{x}_i)\right].$$
 (16)

Assuming Σ to be diagonal in (16) simplifies a lot the computations and tuning

- ⇒ Multiplicative Gaussian KDE
- = product of univariate KDEs

Illustration on iris data

X

Row	sepal_length Float64	sepal_width Float64	petal_length Float64	<pre>petal_width Float64</pre>
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2

y: 3 classes

PLS2(
$$X$$
, Y_{dummy}) nb. LVs = 2

$$\Rightarrow$$
 T $(n \times 2)$

Probabilistic DA

 \Rightarrow Estimate the multivariate probability density function (pdf) of **7** in each class

New observation to predict

= which class? \Leftrightarrow where is located the new obs. compared to the class pdf

QDA

Multiplicative Gaussian KDE

Smoothing level a = 1

Another illustrationNIR Forages

```
ntot = 485
ntrain = 323 (CV)
ntest = 162
```



```
y: 3 classes
```

```
"Legume forages"
"Forage trees"
"Cereal and grass forages"
```

PLS-LDA

PLS-KDE-DA

 $ERR_{Test} = 8\%$

 $ERR_{Test} = 7\%$

Often, PLS-KDE-DA has a performance close to those of parametric methods, but it can overperform if some classes have clear internal multimodal distributions (eg. when a class contains several sub-groups that do not span the same sub-spaces of the PLS space)

Function **plskdeda** available in package Jchemo https://github.com/mlesnoff/JchemoDemo

```
model = plskdeda(nlv = 15, a = .5)
fit!(model, Xtrain, ytrain)
pred = predict(model, Xtest).test
```