Отчет по лабораторной работе №1

Операционные системы

Дворкина Ева Владимировна

Содержание

1	Цель работы	6		
2 Задание				
3	Выполнение лабораторной работы 3.1 Создание виртуальной машины	8 13 20 27		
4	Выводы	28		
5	5 Ответы на контрольные вопросы			
6	Выполнение дополнительного задания	31		
Сп	исок литературы	34		

Список иллюстраций

3.1	Окно Virtualbox	8
3.2	Создание виртуальной машины	9
3.3	Указание объема памяти	9
3.4	Жесткий диск	10
3.5		10
3.6	Размер жесткого диска	11
3.7	Формат хранения жесткого диска	12
3.8		12
3.9		13
3.10		13
3.11		14
		15
		15
3.14	Выбор раскладки клавиатуры	16
3.15		16
3.16	Выбор места установки	17
	Задание сетевого имени компьютера	17
		18
3.19	Создание пользователя	19
3.20	Завершение установки операционной системы	19
3.21	Просмотр оптического диска	20
	, ,	20
3.23	Вход в ОС	21
3.24	Запуск терминала	21
3.25		22
		22
3.27	Установка программного обеспечения для автоматического обнов-	
	ления	22
3.28	Запуск таймера	23
3.29	Поиск файла	23
3.30		24
3.31	Перезагрузка виртуальной машины	24
		24
		25
3.34		25
		25
3 36	Установка прайвера	2.5

3.37	Перезагрузка виртуальной машины				•	26
3.38	Поиск файла, вход в тс					26
3.39	Редактирование файла					26
3.40	Перезагрузка виртуальной машины					26
3.41	Переключение на роль супер-пользователя					27
3.42	Установка pandoc					27
3.43	Установка расширения pandoc					27
3.44	Установка texlive					27
<i>(</i> 1	A					31
6.1	Анализ последовательности загрузки системы					
6.2	Поиск версии ядра	•	•		•	31
6.3	Поиск частоты процессора					32
6.4	Поиск модели процессора					32
6.5	Поиск объема доступной оперативной памяти					32
6.6	Поиск типа обнаруженного гипервизора					32
6.7	Поиск типа файловой системы корневого раздела					33

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задания

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины

Virtualbox я устанавливала и настраивала при выполнении лабораторной работы в курсе "Архитектура компьютера и Операционные системы (раздел"Архитектура компьютера")", поэтому сразу открываю окно приложения (рис. 3.1).

Рис. 3.1: Окно Virtualbox

Нажимая "создать", создаю новую виртуальную машину, указываю ее имя, путь к папке машины по умолчанию меня устраивает, выбираю тип ОС и версию (рис. 3.2).

Рис. 3.2: Создание виртуальной машины

Указываю объем основной памяти виртуальной машины размером 4096MБ (рис. 3.3).

Рис. 3.3: Указание объема памяти

Выбираю создание нового виртуального жесткого диска (рис. 3.4).

Рис. 3.4: Жесткий диск

Задаю конфигурацию жесткого диска: загрузочеый VDI (рис. 3.5).

Рис. 3.5: Тип жесткого диска

Задаю размер диска - 80 ГБ, оставляю расположение жесткого диска по умолчанию, т. к. работаю на собственной технике и значение по умолчанию меня устраивает (рис. 3.6).

Рис. 3.6: Размер жесткого диска

Выбираю динамический виртуальный жесткого диска при указании формата хранения (рис. 3.7).

Рис. 3.7: Формат хранения жесткого диска

Выбираю в Virtualbox настройку своей виртуальной машины. Перехожу в "Носители", добавляю новый привод привод оптических дисков и выбираю скачанный образ операционной системы Fedora (рис. 3.8).

Рис. 3.8: Выбор образа оптического диска

Скачанный образ ОС был успешно выбран (рис. 3.9).

Рис. 3.9: Выбранный образ оптического диска

3.2 Установка операционной системы

Запускаю созданную виртуальную машину для установки (рис. 3.10).

Рис. 3.10: Окно загрузчика

Вижу интерфейс начальной конфигурации. Нажимаю Enter для создания кон-

фигурации по умолчанию, далее нажимаю Enter, чтобы выбрать в качестве модификатора кливишу Win (рис. 3.11).

Рис. 3.11: Интерфейс начальной конфигурации

Нажимаю Win+Enter для запуска терминала. В терминале запускаю liveinst (рис. 3.12).

Рис. 3.12: Запуск терминала

Чтобы перейти к раскладке окон с табами, нажимаю Win+w. Выбираю язык для использования в процессе установки русски (рис. 3.13).

Рис. 3.13: Выбор языка интерфейса

Раскладку клавиатуры выбираю и русскую, и английскую (рис. 3.14).

Рис. 3.14: Выбор раскладки клавиатуры

Корректирую часовой пояс, чтобы время на виртуальной машине совпадало с временем в моем регионе (рис. 3.15).

Рис. 3.15: Выбор часового пояса

Проверяю место установки и сохраняю значение по умолчанию (рис. 3.16).

Рис. 3.16: Выбор места установки

Задаю сетевое имя компьютера в соответствии с соглашением об именовании (рис. 3.17).

Рис. 3.17: Задание сетевого имени компьютера

Создаю аккаунт администратора и создаю пароль для супер-пользователя (рис. 3.18).

Рис. 3.18: Создание аккаунта администратора

Создаю пользователя, добавляю административные привилегии для этой учетной записи, чтобы я могла свободно выполнять команды как супер-пользователь (рис. 3.19).

Рис. 3.19: Создание пользователя

Далее операционная система устанавливается. После установки нажимаю "завершить установку" (рис. 3.20).

Рис. 3.20: Завершение установки операционной системы

Диск не отключался автоматически, поэтому отключаю носитель информации с образом (рис. 3.21).

Рис. 3.21: Просмотр оптического диска

Носитель информации с образом отключен (рис. 3.22).

Рис. 3.22: Отключение оптического диска

3.3 Работа с операционной системой после установки

Запускаю виртуальную машину. Вхожу в ОС под заданной мной при установке учетной записью (рис. 3.23).

Рис. 3.23: Вход в ОС

Нажимаю Win+Enter для запуска терминала и переключаюсь на роль суперпользователя(рис. 3.24).

Рис. 3.24: Запуск терминала

Обновляю все пакеты (рис. 3.25).

```
[sudo] пароль для evdvorkina:
[root@evdvorkina ~]# dnf -y update
```

Рис. 3.25: Обновления

Устанавливаю программы для удобства работы в концсоли: tmux для открытия нескольких "вкладок" в одном терминале, mc в качестве файлового менеджера в терминале (рис. 3.26).

[root@evdvorkina ~]# dnf install tmux mc Последняя проверка окончания срока действия метаданных: 0:12:51 назад, Вс 12 фев 2023 14:19:33. Пакет tmux-3.3a-1.fc37.x86_64 уже установлен. Зависимости разрешены.									
Пакет	Архитектура	Версия	Репозиторий	Размер					
=====================================									
mc	x86_64	1:4.8.28-3.fc37	fedora	1.9 M					
Установка заві gpm-libs	исимостей: x86_64	1.20.7-41.fc37	fedora	20 k					

Рис. 3.26: Установка tmux и mc

Устанавливаю программы для автоматического обновления (рис. 3.27).

Рис. 3.27: Установка программного обеспечения для автоматического обновления

Запускаю таймер (рис. 3.28).

[root@evdvorkina ~]# systemctl enable --now dnf-automatic.timer Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.timer → /usr/lib/systemd/system/dnf-automatic.timer.

Рис. 3.28: Запуск таймера

Перемещаюсь в директорию /etc/selinux, открываю md, ищу нужный файл (рис. 3.29).

Рис. 3.29: Поиск файла

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive (рис. 3.30).

Рис. 3.30: Изменение файла

Перезагружаю виртуальную машину (рис. 3.31).

[root@evdvorkina selinux]# reboot

Рис. 3.31: Перезагрузка виртуальной машины

Снова вхожу в ОС, снова запускаю терминал, запускю терминальный мультиплексор (рис. 3.32).

Рис. 3.32: Запуск терминального мультиплексора

Переключаюсь на роль супер-пользователя (рис. 3.33).

```
Терминал - evdvorkina@evdvorkina:~
Файл Правка Вид Терминал Вкладки Справка
[evdvorkina@evdvorkina ~]$ sudo -i
[sudo] пароль для evdvorkina:
[root@evdvorkina ~]#
```

Рис. 3.33: Переключение на роль супер-пользователя

Устанавливаю пакет dkms (рис. 3.34).

```
[root@evdvorkina ~]# dnf install dkms
```

Рис. 3.34: Установка пакета dkms

В меню виртуальной машины подключаю образ диска гостевой ОС и примонтирую диск с помощью утилиты mount (рис. 3.35).

```
[root@evdvorkina ~]# mount /dev/sr0 /media
mount: /media: WARNING: source write-protected, mounted read-only.
```

Рис. 3.35: Примонтирование диска

Устанавливаю драйвера (рис. 3.36).

```
[root@evdvorkina ~]# /media/VBoxLinuxAdditions.run
Verifying archive integrity... All good.
Uncompressing VirtualBox 6.1.38 Guest Additions for Linux.....
VirtualBox Guest Additions installer
Copying additional installer modules ...
Installing additional modules ...
```

Рис. 3.36: Установка драйвера

Перезагружаю виртуальную машину (рис. 3.37).

the system is restarted [root@evdvorkina ~]# reboot

Рис. 3.37: Перезагрузка виртуальной машины

Перехожу в директорию /tc/X11/xorg.conf.d, открываю mc для удобства, открываю файл 00-keyboard.conf (рис. 3.38).

```
[evdvorkina@evdvorkina ~]$ sudo -i
[sudo] пароль для evdvorkina:
[root@evdvorkina ~]# cd /etc/X11/xorg.conf.d/
[root@evdvorkina xorg.conf.d]# mc
```

Рис. 3.38: Поиск файла, вход в тс

Редактирую конфигурационный файл (рис. 3.39).

```
Герменал - evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evolvarkinate-evol
```

Рис. 3.39: Редактирование файла

Перезагружаю виртуальную машину (рис. 3.40).

```
[root@evdvorkina xorg.conf.d]# reboot
```

Рис. 3.40: Перезагрузка виртуальной машины

3.4 Установка программного обеспечения для создания документации

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя (рис. 3.41).

```
[evdvorkina@evdvorkina ~]$ sudo -i
[sudo] пароль для evdvorkina:
[root@evdvorkina ~]# dnf -i install pandoc
```

Рис. 3.41: Переключение на роль супер-пользователя

Устанавливаю pandoc с помощью утилиты dnf и флага -у, который автоматически на все вопросы системы отчевает "yes" (рис. 3.42).

```
[root@evdvorkina ~]# dnf -y install pandoc
Последняя проверка окончания срока действия метаданных: 0:38:54 назад, Вс 12 фев 2023 14:39:15.
Зависимости разрешены.

Пакет Архитектура Версия

Установка:
рапdос X86_64 2.14.0.3-18.fc
Установка зависимостей:
рапdос-совшоп поагсh 2.14.0.3-18.fc
```

Рис. 3.42: Установка pandoc

Устанавливаю необходимые расширения для pandoc (рис. 3.43).

Рис. 3.43: Установка расширения pandoc

Устанавливаю дистрибутив texlive (рис. 3.44).

```
[root@evdvorkina ~]# dnf -y install texlive texlive-\*
Последняя проверка окончания срока действия метаданных: 0:52:55 назад, Вс 12 фев 2023 14:39:15.
```

Рис. 3.44: Установка texlive

4 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: –help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выполнение дополнительного задания

Ввожу в терминале команду dmesg, чтобы проанализировать последовательность загрузки системы (рис. 6.1).

Рис. 6.1: Анализ последовательности загрузки системы

С помощью поиска, осуществляемого командой 'dmesg | grep -i ', ищу версию ядра Linux: 6.1.10-200.fc37.x86_64 (рис. 6.2).

Рис. 6.2: Поиск версии ядра

К сожалению, если вводить "Detected Mhz processor" там, где нужно указывать, что я ищу, то мне ничего не выведется. Это происходит потому, что запрос не предусматривает дополнительные символы внутри него (я проверяла, будет ли работать он с маской - не будет). В таком случае я оставила одно из ключевых

слов (могла оставить два: "Mhz processor") и получила результат: 1992 Mhz (рис. 6.3).

```
[evdvorkina@evdvorkina ~]$ dmesg | grep -i "Detected Mhz processor"
[evdvorkina@evdvorkina ~]$ dmesg | grep -i "processor"
[    0.000012] tsc: Detected 1992.000 MHz processor
[    0.236538] smpboot: Total of 1 processors activated (3984.00 BogoMIPS)
[    0.284426] ACPI: Added _OSI(Processor Device)
[    0.284428] ACPI: Added _OSI(Processor Aggregator Device)
```

Рис. 6.3: Поиск частоты процессора

Аналогично ищу модель процессора (рис. 6.4).

```
[evdvorkina@evdvorkina ~]$ dmesg | grep -i "CPU0"
[ 0.236431] smpboot: <mark>CPU0</mark>: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz (family: 0x6, model: 0x8e, stepping: 0xa)
```

Рис. 6.4: Поиск модели процессора

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и там (рис. 6.5).

```
[evdvorkina@evdvorkina ~]$ dmesg | grep -i "Memory: "
[ 0.027952] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000ff]
[ 0.027955] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000ff]
[ 0.027956] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000fff]
[ 0.027958] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000ffff]
[ 0.027960] PM: hibernation: Registered nosave memory: [mem 0x00000000-0xdffffff]
[ 0.027960] PM: hibernation: Registered nosave memory: [mem 0x00ff00000-0xdffffff]
[ 0.027961] PM: hibernation: Registered nosave memory: [mem 0xe00000000-0xfebfffff]
[ 0.027963] PM: hibernation: Registered nosave memory: [mem 0xfec0000000-0xfebfffff]
[ 0.027963] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfedfffff]
[ 0.027965] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027965] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027965] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027965] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027965] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027965] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027965] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027965] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027966] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027966] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027966] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027966] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027966] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbffff]
[ 0.027966] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbfff]
[ 0.027966] PM: hibernation: Registered nosave memory: [mem 0xfec01000-0xfffbfff]
[ 0
```

Рис. 6.5: Поиск объема доступной оперативной памяти

Нахожу тип обнаруженного гипервизора (рис. 6.6).

```
[evdvorkina@evdvorkina ~]$ dmesg | grep -i "Hypervisor detected"

[0.000000] Hypervisor detected: KVM
```

Рис. 6.6: Поиск типа обнаруженного гипервизора

Тип файловой системы корневого раздела можно посомтреть с помощью утилиты fdisk (рис. 6.7).

```
evdvorkina@evdvorkina ~]$ sudo fdisk -l
[sudo] пароль для evdvorkina:
Диск /dev/sda: 80 GiB, 85899345920 байт, 167772160 секторов
Disk model: VBOX HARDDISK
Единицы: секторов по 1 * 512 = 512 <u>бай</u>т
...
Размер сектора (логический/физический): 512 байт / 512 байт
Размер I/O (минимальный/оптимальный): 512 байт / 512 байт
.
Тип метки диска: gpt
Идентификатор диска: DAB00C34-381C-4EC1-9930-B40C01551F8D
Устр-во
                                Секторы Размер Тип
            начало
                        Конец
/dev/sda1
             2048
                        4095
                                 2048
                                             1M BIOS boot
/dev/sda2
              4096 2101247 2097152
                                              1G Файловая система Linux
dev/sda3 2101248 167770111 165668864
                                             79G Файловая система Linux
Диск /dev/zram0: 3,83 GiB, 4108320768 байт, 1003008 секторов
Единицы: секторов по 1 * 4096 = 4096 байт
Размер сектора (логический/физический): 4096 байт / 4096 байт
Размер I/O (минимальный/опт<u>и</u>мальный): 4096 байт / 4096 байт
```

Рис. 6.7: Поиск типа файловой системы корневого раздела

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату dmesg слово mount (рис. 6.8).

Рис. 6.8: Последовательность монтирования файловых систем

Список литературы

- Dash P. Getting started with oracle vm virtualbox. Packt Publishing Ltd, 2013. 86
 p.
- 2. Colvin H. Virtualbox: An ultimate guide book on virtualization with virtualbox. CreateSpace Independent Publishing Platform, 2015. 70 p.
- 3. van Vugt S. Red hat rhcsa/rhce 7 cert guide : Red hat enterprise linux 7 (ex200 and ex300). Pearson IT Certification, 2016. 1008 p.
- 4. Робачевский А., Немнюгин С., Стесик О. Операционная система unix. 2-е изд. Санкт-Петербург: БХВ-Петербург, 2010. 656 р.
- 5. Немет Э. et al. Unix и Linux: руководство системного администратора. 4-е изд. Вильямс, 2014. 1312 р.
- 6. Колисниченко Д.Н. Самоучитель системного администратора Linux. СПб.: БХВ-Петербург, 2011. 544 р.
- 7. Robbins A. Bash pocket reference. O'Reilly Media, 2016. 156 p.