Digital-electronics-1

Labs/03-vivado

Dominik Grenčík, 220815

Digital-electronics-1

1. Figure or table with connection of 16 slide switches and 16 LEDs on Nexys A7 board

SWITCH	BOARD	LED	BOARD
SW0	J15	LD0	H17
SW1	L16	LD1	K15
SW2	M13	LD2	J13
SW3	R15	LD3	N14
SW4	R17	LD4	R18
SW5	T18	LD5	V17
SW6	U18	LD6	U17
SW7	R13	LD7	U16
SW8	Т8	LD8	V16
SW9	U8	LD9	T15
SW10	R16	LD10	U14
SW11	T13	LD11	T16
SW12	Н6	LD12	V15
SW13	U12	LD13	V14
SW14	U11	LD14	V12
SW15	V10	LD15	V11

- 2. Two-bit wide 4-to-1 multiplexer
 - Listing of VHDL architecture from source file mux_2bit_4to1.vhd

architecture Behavioral of mux_2bit_4to1 is
begin

Listing of VHDL stimulus process from testbench file tb_mux_2bit_4to1.vhd

```
p_stimulus : process
  begin
       -- Report a note at the begining of stimulus process
       report "Stimulus process started" severity note;
              <= "00"; s_c <= "00"; s_b <= "00"; s_a <= "00";</pre>
       s_d
       s_sel <= "00"; wait for 50 ns;</pre>
              <= "01"; wait for 50 ns;
       s_a
       s_b
              <= "01"; wait for 50 ns;
       s_sel <= "01"; wait for 50 ns;</pre>
             <= "00"; wait for 50 ns;
       S C
       s_b
              <= "11"; wait for 50 ns;
       s_d
              <= "10"; s_c <= "11"; s_b <= "01"; s_a <= "00";</pre>
       s_sel <= "10"; wait for 50 ns;</pre>
              <= "00"; s_c <= "00"; s_b <= "00"; s_a <= "01";
       s_d
       s_sel <= "10"; wait for 50 ns;</pre>
              <= "10"; s c <= "11"; s b <= "01"; s a <= "00";
       s d
       s sel <= "11"; wait for 50 ns;
       -- Report a note at the end of stimulus process
       report "Stimulus process finished" severity note;
      wait;
  end process p_stimulus;
```

Simulated time waveforms

3. Vivado tutorial

1. Vytvorenie projektu

• Spustíme Vivado, klikneme na "File" > "Project" > "New" a potvrdíme "Next"

• Nazveme projekt, zvolíme lokáciu projektu a potvrdíme "Next"

• Zvoilíme typ projektu RTL, potvrdíme "Next"

1.1 Pridanie zdrojového súboru

 Klikneme na "Create File", "File type" zvolíme VHDL a pomenujeme súbor. Potvrdíme "OK" a následne "Next"

1.2 Pridanie XDC constraints súboru

• Klikneme na "Create File", "File type" zvolíme XDC a pomenujeme constraints súbor. Potvrdíme "OK" a následne "Next"

1.3 Pridanie dosky

• V ľavom hornom rohu prepneme na "Boards" a vyberieme danú dosku, potvrdíme "Next". Ďalej potvrdíme "Finish" a projekt sa vytvorí.

1.4 Pridanie testbench súboru

• Klikneme "File" > "Add Sources" > "Add or create simulation sources". Klikneme "Create File", "File type" zvolíme VHDL a pomenujeme súbor. Potvrdíme "OK" a následne "Finish"

2. Spustenie simulácie

• Klikneme "Flow" > "Run" > "Run Behavioral Simulation"

