UAV interface development for countering dangerous drones

Midterm Presentation

Team: BTT

Soonchan Kwon, Gihwan Kim, Nawon Kim, Nahyeong Kim, Karteikay Dhuper, Prakshi Chander

Contents

- 1. Introduction
- 2. Related Works
- 3. Methodology
- 4. Progress
- 5. Future Plans

INTRODUCTION

- Team members
- The reason why we choose this project
- Subject

Team members

Nawon Kim

Drone Detection
Chonnam Nat'l Univ.
Computer Engineering

Networking
Chungnam Nat'l Univ.
Computer Science & Engineering

Nahyeong Kim

Prakshi Chander

Networking

Purdue Univ.

Cybersecurity

Soonchan Kwon

Team Leader Networking Chonnam Nat'l Univ. Software Engineering

Gihwan Kim

Paper
Drone Detection
Chungnam Nat'l Univ.
Computer Science & Engineering

Karteikay Dhuper

Drone Detection
Purdue Univ.
Computer and Information
Technology

The reason why we choose this subject

- UAVs are now more easily accessible to the public with reduced cost and device miniaturization.
- UAVs are used in various fields with new services.

The reason why we choose this subject

[2]

Russia launches 'kamikaze' drone attack on Kyiv, killing 4 and hitting civilian infrastructure

By Victoria Butenko, Olga Voitovych and Yulia Kesaieva, CNN Updated 3:09 PM EDT, Mon October 17, 2022

- A lot of issues about safety of UAVs, which accelerate the development of anti-drone technology.
- Anti-drone is a system designed to protect us from drone accidents or terrorism.

Subject

Developing the UAV interface for countering dangerous drones

RELATED WORKS

- Existing projects
- Challenge
- Solution

Existing projects

To increase the accuracy of drone detection -> detection model in GCS -> video streaming

"Wi-Fi mesh networking"

high bandwidth
Propose Wi-Fi mesh network for military situation.
Transmit images in real time at a distance of 60m.

Challenge

Figure 1. Secnario of the proposed system. (Military environment).

Wi-Fi mesh

- high power consumption
- Limited on-board energy is major limitation of UAV systems.

can be a problem in a situation where both networking and detection are needed.

Solution

LoRa

- Low power consumption
- Long range communication
- Low bandwidth

Solution

Low bandwidth

- It doesn't provide video streaming.
- Detecting drones in GCS is impossible.

On-device detection

12

METHODOLOGY

- Novelty
- How to implement network part
- How to implement detection part

Novelty

Our project's novelties

Low Power & Long Range

Networking

Mesh Network and LoRa

Detection

Tiny Machine Learning (Tiny ML)

How to implement network part

Mesh Network

- A type of communication in radio networks
- Equipped with a wireless communication system each drone
- Communicated with each other using a suitable protocol

Flow of Mesh Network

[7]

How to implement network part

Advantages of Mesh Network

- Enables drones to cover larger areas
- Operates in environments where direct communication is not possible

Our first task is to construct long range network between UAVs for sending detection result.

How to implement network part

LoRa Mesh Network

- Sends small amount of data reliably over very long distance
- Uses digital modulation technology called CSS(Chirp Spread Spectrum)
- Has advantage of low power and long range
- Operate in the range of 5~15km at data rates between 0.3kbps to 50kbps [8]

Other Protocols

Wi-Fi is usually used in U2U communication, but it has limited ranges.

How to implement detection part

"Our second task is to develop an on-board detection method, which consumes low power by using TinyML"

How to implement detection part

Tiny ML Frameworks and Platforms

Provides a broad set of tools and libraries

Project goal

- Some observer UAVs connected by LoRa Mesh Network
- Observer UAVs detect unidentified UAV using TFLM with live streaming.
- If detection result is YES (Drone detected), the result is sent to other UAVs through LoRa mesh network.

PROGRESS

- Networking
- Drone detection

Networking

Networking

- Implemented LoRa mesh network with open-source library based on Arduino
- Each board is a node of network.

Networking

Drone detection

Application TFLM on ESP32 board

- 1. Train prediction model with IRIS dataset in Colab
- 2. Convert the model to the TensorFlow Lite format
- 3. Save model in HEX file format to move into Arduino
- 4. Connect ESP32 board with Arduino and run source code

Drone detection

Application TFLM on ESP32 board

FUTURN PLANS

- Finding deep learning model
- Field experiment networking
- Field experiment detection

Future plans

Finding deep learning model

- 1. Find pre-trained deep learning model that is suitable for our project
- 2. Run our model on ESP32 board
- 3. Send the result of detection using LoRa mesh network

Future plans

Field experiment - networking

- Maximum distance
- How many kilometers of communication can be made when three drones are arranged?
- Optimal route
- Verify that our system routes the optimal route when drones are arranged in complex form
- Power consumption
- Attach the power quality analyzer to the power supply

Future plans

Field experiment - detection

- Accuracy
- Concentrate on verifying it is possible to detect enemy drones
- Memory usage
- Check how much of the memory is used by both parts (networking, detection)
- Inference time
- Measure the inference time which means the time taken to determine drones

Q&A

Thank You

Team. BTT

Soonchan Kwon, Gihwan Kim, Nawon Kim, Nahyeong Kim, Karteikay Dhuper, Prakshi Chander

polytechnic.purdue.edu

/ TechPurdue

