

ĆWICZENIE 29

WYZNACZANIE WSPÓŁCZYNNIKA ROZSZERZALNOŚCI TERMICZNEJ ORAZ BADANIE PROCESÓW PRZEKAZYWANIA CIEPŁA

Instrukcja wykonawcza

1. Wykaz przyrządów

- Czujnik mikrometryczny do pomiaru wydłużenia drutu
- Zasilacz prądu stałego: wydajność prądowa = 5A , U_{wy}= min. 10V
- Woltomierz
- Cyfrowy miernik temperatury.

2. Cel ćwiczenia

Wyznaczenie współczynnika rozszerzalności liniowej metalu.

3. Schemat układu pomiarowego

Rys. 1. Układ pomiarowy do wyznaczania współczynnika rozszerzalności liniowej metalu

Rys.2. Stanowisko pomiarowe

4. Przygotowanie zestawu pomiarowego do pracy:

- **4.1.** Sprawdzić zgodność elementów układu pomiarowego z powyższą listą.
- **4.2.** Ustawić czujnik mikrometryczny tak, by jego duża wskazówka pokrywała się z cyfrą "0" jego skali na obwodzie. W tym celu należy ostrożnie przekręcić pierścień czujnika.

W trakcie pomiarów nie dotykamy czujnika mikrometrycznego !!!

4.3. Włączyć miernik temperatury i odczytać jego wskazanie – temperaturę początkową (pokojową) t_0 . Przyjąć, że długość początkowa L_0 badanego drutu w temperaturze początkowej t_0 wynosi:

```
L_{01} = (0.885 \pm 0.004) [m] L_{05} = (0.880 \pm 0.004) [m] L_{02} = (0.915 \pm 0.004) [m] L_{06} = (0.875 \pm 0.004) [m] L_{07} = (0.875 \pm 0.004) [m] L_{07} = (0.875 \pm 0.004) [m] L_{04} = (0.875 \pm 0.004) [m]
```

5. Przebieg pomiarów:

- **5.1** W obecności prowadzącego zajęcia pokrętło regulacji ograniczenia prądowego ustawić w lewym skrajnym położeniu (co odpowiada wartości I = 0 A), a pokrętło regulacji napięcia ustawić na max. (co odpowiada wartości U = 15 V). Włączyć zasilacz.
- **5.2** Wartość prądu w obwodzie zmieniać co 0,1A lub 0,2A do chwili osiągnięcia temperatury ok. 150 °C.
- **5.3** Dla zadanej wartości natężenia prądu notować wartości napięcia zasilającego układ pomiarowy.
- **5.4** Po każdorazowym ogrzaniu drutu odczekać około 5 min., aby ustabilizowała się temperatura. Zanotować uzyskaną temperaturę t i wskazanie ΔL czujnika mikrometrycznego.
- 5.5 Pomiary przeprowadzać do temperatury drutu nie większej niż 150 °C.
- **5.6** Otworzyć przednią ściankę komory pomiarowej i wykonać czynności z pkt. 5.2 do pkt. 5.5, wyniki pomiarów zanotować w oddzielnej tabeli.

6. Opracowanie wyników:

- **6.1** Sporządzić wykres zależności względnego wydłużenia drutu od przyrostu temperatury ΔT , gdzie $\Delta T = t t_o$. Dla wszystkich punktów eksperymentalnych zaznaczyć pola niepewności (prostokaty niepewności).
- **6.2** Metodą regresji liniowej wyznaczyć, równanie prostej $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{B}$ (gdzie: $\mathbf{y} = \Delta L/L_o$, $\mathbf{x} = \Delta T$, $\mathbf{A} = \alpha$, niepewność $u(\mathbf{A}) = u(\alpha)$) otrzymanej z aproksymacji liniowej części wykresu.
- **6.3** Wyniki pomiarów i obliczeń umieścić w tabelce.
- **6.4** Znając wartość α ocenić z jakiego materiału wykonany był badany w doświadczeniu drut.
- **6.5** Znając wartości natężenia prądu oraz napięcia obliczyć moc P i jej niepewność $u_c(P)$.
- **6.6** Sporządzić wykres zależności mocy od różnicy temperatur $P=f(\Delta T)$ dla obydwu przypadków tj. zamkniętej i otwartej komory pomiarowej. Dla wszystkich punktów eksperymentalnych zaznaczyć pola niepewności (prostokąty niepewności).
- **6.7** Wyjaśnić dlaczego wykres zależności mocy od temperatury jest nieliniowy, a moc potrzebna do utrzymania zadanej temperatury jest większa w przypadku otwartej komory pomiarowej.

7. Proponowane tabele (do zatwierdzenia u prowadzącego)

Tabela 1. Wartości parametrów wyznaczanych podczas pomiarów: L_0 – początkowa długość drutu, t_0 – temperatura początkowa drutu, I – natężenie prądu przepływającego przez drut, U – napięcie zasilania, P – moc wydzielona w drucie, ΔT – przyrost temperatury drutu, ΔL – przyrost długości drutu, $\Delta L/L_0$, – względne wydłużenie drutu, α – wartość współczynnika rozszerzalności termicznej drutu.

Tabela 1. Tabela wartości wielkości fizycznych związanych z wyznaczaniem współczynnika rozszerzalności termicznej drutu a.

lp.	L _o [m]	t ₀ [°C]	t [°C]	Δ Τ	ΔL 10 ⁻³ [m]	$\frac{\Delta L}{L_0}$	$u_{C}\left(\frac{\Delta L}{L_{0}}\right)$	α [1/°C]
1					[]			
2								
3								
:								
n								
$\Delta_{ m p} X$								
<i>u</i> (<i>X</i>)								
$u_c(X)$								

Tabela 2. Tabela wartości wielkości fizycznych potrzebnych do sporządzenia wykresu zależności mocy od różnicy temperatur, tj. $P(\Delta T)$.

lp.	t ₀ [°C]	I [A]	υ [V]	P [W]	t [°C]	Δ Τ [°C]
1						
2						
3						
i						
n						
$\Delta_{ m p} X$						
<i>u</i> (X)						
$u_c(X)$						

 $\Delta_{p}X$ - niepewność przyrządu pomiarowego, np. niepewność długości drutu, wydłużenia drutu, temperatury itp.

u(X) - niepewność standardowa dla danej wielkości fizycznej X, np. natężenia prądu I, napięcia U itp.

 $u_c(X)$ - niepewność złożona dla danej wielkości fizycznej X, np. $u_c(\Delta T)$, $u_c(\alpha)$ itp.

Temperaturę mierzono za pomocą miernika typu,

Niepewność wyznaczenia temperatury przyjąć ± 1 K. Wyjaśnić dlaczego ta niepewność jest znacznie większa niż to wynika z niepewności miernika temperatury.

Napięcie i natężenie prądu wyznaczano za pomocą mierników cyfrowych zamontowanych w zasilaczu typu

08.2017