

ПРОГНОЗ ПОГОДЫ

YOUR 5-MONTH FORECAST

YOUR 5-YEAR FORECAST

YOUR 5-MILLION-YEAR FORECAST

YOUR 5-BILLION-YEAR FORECAST

YOUR 5-TRILLION-YEAR FORECAST

-452°F

-453°F

ФОРМИРОВАНИЕ ЗВЕЗДЫ

• Звёздообразование запускается при достижении облаком джинсовской массы:

$$M_I \propto T^{3/2} \rho^{-1/2}$$

- По ходу сжатия возможна (и скорее наступает) фрагментация облака из-за повышения плотности.
- Условие возможности фрагментации: показатель адиабаты < 4/3

ЗВЁЗДНЫЕ СКОПЛЕНИЯ

ЕЩЕ РАЗ О Г-Р...

$$M = m + 5(1 - \log D_{\text{nk}})$$

$$M_{\text{bol}} = -2.5 \log L_{W,\text{bol}} + 71.197$$

$$M_{\text{bol},\odot} = M_{\odot} + B.C. = +4.75$$

НАЧАЛЬНЫЕ СТАДИИ ЭВОЛЮЦИИ

Стадия Хаяши (полностью конвективная звезда)

Первые термоядерные реакции ${}_{1}^{2}\text{H} + {}_{1}^{2}\text{H} \rightarrow {}_{2}^{3}\text{He} + \text{n} + 3.26 \text{ МэВ}$

1 млн лет

Стадия Хеньи (начало горения водорода)

ПРОТОЗВЕЗДА И ЕЁ ОКРЕСТНОСТИ

Main difference: massive stars affect their surroundings

High-mass SF

Low-mass SF

ОТ ГЛАВНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ДО БЕЛЫХ КАРЛИКОВ

Pасчеты проведены с помощью программы SSE (Single Star Evolution).

http://astronomy.swin.edu.au/~jhurley/stellar.html

Наиболее употребимый на сегодня код MESA (Modules for Experiments in Stellar Astrophysics)

http://www.astro.wisc.edu/~townsend/static.php? ref=mesa-web

ЭВОЛЮЦИЯ

- За свою жизнь звезда переживает несколько эпох «главной последовательности», во время которых в ядре горя разные элементы.
- Чем тяжелее ядра горючего, тем быстрее оно сгорает.
- Горение более тяжелого элемента сопровождается бОльшим энерговыделением.

ТЕРМОЯДЕРНОЕ ГОРЕНИЕ: РР-ЦИКЛ

- $M > 0.08 M_{\odot}$
- Характерное время реакции р+р $\sim 10^{10}\,$ лет
- Реакция идёт благодаря квантовому туннелированию
- p-p доминирует при температурах $\sim 10-14\,$ MK
- Удельное энерговыделение $\varepsilon \propto T^{3..4}$
- \sim Эффективность $\sim 0.007 Mc^2$

ВРЕМЯ ЖИЗНИ ЗВЕЗДЫ НА ГП

СОЛНЦЕ В БЛИЖАЙШИЕ МИЛЛИАРДЫ ЛЕТ

100 млн лет

Закончился водород в ядре

ТЕРМОЯДЕРНОЕ ГОРЕНИЕ: CNO-ЦИКЛ

ВЫРОЖДЕНИЕ ВЕЩЕСТВА

 $T_F \sim n^{2/3} m^{-1} h^2$ -- Температура Ферми. Вырождение наступает при $T < T_F$ при заданной плотности (или при повышении плотности при заданной температуре).

В центре Солнца: $ho_{\odot,c} \sim 160~{
m r}~{
m cm}^{-2}$ и $T_{F,e} \sim 3 \cdot 10^6~{
m K} < T_{\odot,c} \sim 10^7~{
m K}$

– электроны не вырождены.

 $P_e \sim
ho v_e^2 \propto n_e^{5/3}$ и не зависит от температуры.

(для релятивистских фермионов, когда $E_F = kT_F > mc^2$ давление слабее зависит от концентрации: $P \propto n^{4/3}$)

ЭВОЛЮЦИЯ СОЛНЦА

- 1 ZAMS (Zero Age Main Sequence)
- 1-4 Горение водорода в ядре (главная последовательность).
- 5-7 Горение водорода в слоевом источнике (провал Герцшпрунга)
- 8 Расширение внешней конвективной оболочки
- (8-9) Образование красного гиганта (ветвь красных гигантов)
- 9 Гелиевая вспышка (загорается гелий в вырожденном ядре)
- 9-10 Исчезновение конвективной оболочки
- 10 Горизонтальная ветвь
- (10 13) Спокойное горение гелия в ядре и водорода в слоевом

источнике

- 14 Исчерпание гелия в ядре
- 14-15 Вторичное расширение внешней
- конвективной оболочки
- 15 Начало тепловой неустойчивости
- сверхгиганта, пульсации

ТРОЙНОЙ АЛЬФА-ПРОЦЕСС

ЭВОЛЮЦИЯ ЗВЕЗДЫ С $M=5M_{\odot}$

- 1 ZAMS (Zero Age Main Sequence)
- 1-3 Горение водорода в ядре (ГП)
- 4 Исчерпание водорода в ядре
- 4-5 Гравитационное сжатие звезды
- 5-6 Возгорание водорода в слоевом источнике
- 6-7 Горение водорода в толстом слое
- (5-7) Провал Герцшпрунга, стадия субгиганта
- 8 Возникновение обширной конвективной оболочки
- 7-9 Ветвь красных гигантов
- 9 Загорание гелия в центре (спокойное)
- 9-10 Исчезновение конвективной оболочки
- 10-11 Горизонтальная ветвь
- (9-13) Горение гелия в ядре и водорода в слоевом источнике
- 14 Исчерпание гелия
- 15 К асимптотической ветви гигантов, тепловые пульсации.

ДИАГРАММА КИППЕНХАЙНА ДЛЯ $M=5M_{\odot}$

ПРОВАЛ ГЕРЦШПРУНГА

Гелиевое ядро с массой ниже некоторой находится в равновесии и не вырождено. Водород горит в слоевом источнике. Это стадия субгиганта. Растет масса ядра. Это приводит к резкому сжатию — начинается RGB.

При массе >2 солнечных предельная масса (предел Шенберга-Чандрасекара) достигается быстро. Ядро сжимается — начинается стадия гиганта. Т.о., у таких звезд стадия субгиганта короткая. Поэтому возникает «провал Герцшпрунга» - звезды очень быстро пересекают эту часть диаграммы.

ЭВОЛЮЦИЯ ЗВЕЗД РАЗНЫХ МАСС

РЕАКЦИИ В МАССИВНЫХ ЗВЕЗДАХ

$$^{12}\mathrm{C} + ^{12}\mathrm{C} \rightarrow \left\{ \begin{array}{l} ^{24}\mathrm{Mg} + \gamma \ , \\ ^{23}\mathrm{Mg} + n \ , \\ ^{23}\mathrm{Na} + p \ , \\ ^{20}\mathrm{Ne} + ^{4}\mathrm{He} \ , \\ ^{16}\mathrm{O} + 2 \, ^{4}\mathrm{He} \ . \end{array} \right.$$

Первая стадия — горение углерода. Углеродное ядро при $M>10 M_{\odot}$ невырожденное.

$$^{16}\text{O} + ^{16}\text{O} \rightarrow \begin{cases} ^{32}\text{S} + \gamma , \\ ^{31}\text{P} + p , \\ ^{31}\text{S} + n , \\ ^{28}\text{Si} + ^{4}\text{He} , \\ ^{24}\text{Mg} + 2 \, ^{4}\text{He} . \end{cases}$$

При миллиарде градусов начинается горение кислорода.

$$^{28}\mathrm{Si} + ^{4}\mathrm{He} \stackrel{\longrightarrow}{\longleftarrow} ^{32}\mathrm{S} + \gamma$$

$$^{32}\text{S} + ^{4}\text{He} \quad \rightleftharpoons \quad ^{36}\text{Ar} + \gamma ,$$
 $^{36}\text{Ar} + ^{4}\text{He} \quad \rightleftharpoons \quad ^{40}\text{Ca} + \gamma ,$
 $\vdots \qquad \qquad \vdots$
 $^{52}\text{Fe} + ^{4}\text{He} \quad \rightleftharpoons \quad ^{56}\text{Ni} + \gamma .$

Фотодиссоциация приводит к Появлению альфа-частиц.

Наконец, начинаются реакции, доходящие до элементов группы железа.

25 масс Солнца

ЭВОЛЮЦИЯ МАССИВНЫХ ЗВЕЗД

nonburning hydrogen hydrogen fusion

helium fusion

carbon fusion

oxygen fusion

neon fusion

XAPAKTEPHЫЕ BPEMEHA

(2012)		1 масса Солнца	3 массы Солнца	20 масс Солнца	120 масс Солнца
et al.	Исчерпание водорода в ядре	1.05 10 ¹⁰ лет	3.98 10 ⁸ лет	8.6 10 ⁶ лет	2.77 10 ⁶ лет
Bressan	Исчерпание гелия в ядре		4.8 10 ⁸ лет	9.34 10 ⁶ лет	3.12 10 ⁶ лет

Стадии горения более тяжелых элементов продолжаются все меньшее и меньшее время.

Mass	MS (GYrs)	SR (MYrs)	RGB	RGB _{foot}			RGB _{end}				
(M _⊙)			(MYrs)	Core mass (M _☉)	T _{eff} (K)	Radius (R _☉)	Luminosity (L_{\odot})	Core mass (M _☉)	T _{eff} (K)	Radius (R _⊙)	Luminosity (L _⊙)
0.6	58.8	5,100	2,500	0.10	4,634	1.2	0.6	0.48	2,925	207	2,809
1.0	9.3	2,600	760	0.13	5,034	2.0	2.2	0.48	3,140	179	2,802
2.0	1.2	10	25	0.25	5,220	5.4	19.6	0.34	4,417	23.5	188
5.0	0.1	0.4	0.3	0.83	4,737	43.8	866.0	0.84	4,034	115	3,118

Interval $(i-Mass (M_{\odot}))$	-j) (1-2)	(2-3)	(3-4)	(4–5)	(5-6)
15 9 5 3 2.25 1.5 1.25 1.0	4.802 (8) 1.553 (9)	6.053 (5) 2.173 (6) 1.042 (7) 1.647 (7) 8.10 (7) 1.824 (8)	9.113 (4) 1.372 (6) 1.033 (7) 3.696 (7) 3.490 (8) 1.045 (9) 1.20 (9)	7.532 (5) 4.505 (6) 1.310 (7) 1.049 (8) 1.463 (8)	4.857 (5) 4.238 (6) 3.829 (7) ≥2 (8) ≥4 (8)
Interval (i-j) Mass (M _☉) 15	(6–7) 7.17 (5)	(7–8) 6.20 (5)	(8-9)	(5) 3	(9–10)
9 5 3	4.90 (5) 6.05 (6) 2.51 (7)	9.50 (4) 1.02 (6) 4.	3.28 (9.00 (08 (7)	(6) 9	.55 (5) .30 (5) .00 (6)

ГОРИЗОНТАЛЬНАЯ ВЕТВЬ И ПОЛОСА НЕСТАБИЛЬНОСТИ

- На горизонтальной ветви идет горение гелия в ядре звезды.
- Массы ядер у разных звезд примерно одинаковы, поэтому светимость отличается слабо.
- А вот температура зависит от массы водородной оболочки. И этот параметр отличается сильно.
- Типичное время жизни на горизонтальной ветви - 100 млн. лет.

ТЕПЛОВЫЕ ПУЛЬСАЦИИ

ТРЕКИ MESA: 50 MACC СОЛНЦА

МЕТАЛЛИЧНОСТЬ

ЛИТЕРАТУРА К ЛЕКЦИИ

- А.В. Засов, К.А. Постнов, «Общая астрофизика», Гл. 5-6
- С.А. Ламзин, «Физика и эволюция звёзд»
- O.R. Pols «Stellar structure and evolution», https://www.ucolick.org/~woosley/ay112-14/texts/pols11.pdf