

Departamento de Matemática, Universidade de Aveiro

Cálculo I - Agrupamento II — 1ª Prova de Avaliação Discreta

5 de Novembro de 2014 Duração: **2h**

Classificação:	
C1MSS1114W3WC1	Valores

N.° Mec.:	Nome:			
(Declaro que desisto:)	N.° folhas suplementares:	

- Justifique todas as respostas e indique os cálculos efetuados -

1. Sejam α um parâmetro real fixo e $f: \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \begin{cases} \arctan(\alpha x) & se \quad x < 0 \\ xe^{-x} & se \quad x \ge 0. \end{cases}$$

15 Pontos 25 Pontos

05

Pontos 20

Pontos 17 Pontos

23 Pontos

08 Pontos

07

Pontos
10
Pontos

15

Pontos

- (a) Mostre que f é contínua em x=0 independentemente do valor de α .
- (b) Averigúe se existe algum valor de α para o qual a função f é diferenciável em x=0.
- 2. Considere a função g definida por $g(x) = x + 2 \arctan\left(\frac{1}{x}\right)$.
 - (a) Indique o domínio da função q.
 - (b) Estude g quanto à monotonia e existência de extremos locais.
 - (c) Mostre que existe pelo menos um $c \in]1, \sqrt{3}[$ tal que $g'(c) = 1 \frac{\pi}{6(\sqrt{3}-1)}.$
 - (d) Determine, caso existam, as assíntotas do gráfico de g.
- 3. Considere a função h definida por $h(x) = \frac{\pi}{2} + \arcsin(e^x 1)$.
 - (a) Indique o domínio de h.
 - (b) Determine, caso existam, os zeros de h.
 - (c) Escreva uma equação da reta tangente ao gráfico de h no ponto de abcissa x=0.
 - (d) Caracterize a função inversa de h, indicando o domínio, o contradomínio e a expressão analítica que a define.
- 4. Calcule o seguinte limite:

$$\lim_{x\to 0^+} (\cos(x^2))^{\frac{1}{2x}}$$

12 Pontos 5. Determine a primitiva da função $f(x)=\operatorname{tg} x$ cujo gráfico passa pelo ponto de coordenadas $(\pi,3).$

ontos

6. Determine o seguinte integral: $\int \left(x^2 \cos(x^3+1) + 4e^{-2x}\right) \, dx$.

Pontos

15
Pontos

13

7. Seja $f:[0,1]\to\mathbb{R}$ uma função contínua cujo contradomínio, CD_f , verifica a condição $CD_f\subseteq]0,1[$. Mostre que existe um $x\in [0,1]$ tal que f(x)=x. (Sugestão: aplique o Teorema de Bolzano-Cauchy à função g(x)=f(x)-x).