Отчет по первой лабораторной работе

При проведении экспериментов, если отдельно не указано, длина и радиус диполя написаны в длинах волн

1) Сравним распределения тока от z и распределенение мощности в дБ от угла для разных толщин диполя:

Для длины диполя 1.5 и радиуса 0.0001:

Аналитическое решение

1 0.9 0.8 0.8 0.5 0.5 0.4 0.5 0.2 0.4 0.6 0.8 2'/\lambda

Elevation plane normalized power pattern (dB $^{\circ}_{0}$ $^{\circ}_{0}$

Для длины диполя 1.5 и радиуса 0.001:

Аналитическое решение

Численное решение

Численное решение

Elevation plane normalized power pattern (dB)

Для длины диполя 1.5 и радиуса 0.01:

Аналитическое решение

Численное решение

Elevation plane normalized power pattern (dB)

Видно, что графики зависимости тока похожи, однако в численном решении амплитуда в несколько раз больше, и не достигается 0 при z=0.3. В аналитическом решении от толщины при постоянной длине зависимость не меняется, в численном значение при z=0.3 стремится к 0 при уменьшении толщины. При этом, графики зависимости мощности от угла расходятся, при том что и в аналитическом и в численном решениях учитывается распределение тока.

2) Посмотрим на графики напраленности и графики тока:

Для длины 1.5 и радиуса 0.0001:

Распределение тока:

Графики направленности:

В прямоугольных:

В полярных:

Elevation plane directivity pattern (dB) in polar 0.3,4756

Elevation plane directivity pattern in polar 0 2.2262

Для длины 4.5 и радиуса 0.0003:

Распределение тока:

Графики направленности:

В прямоугольных:

В полярных:

Elevation plane directivity pattern (dB) in polar $\overset{\circ}{0}$ 6.659

Elevation plane directivity pattern in polar 0.4.6334

Для длины 7 и радиуса 0.005:

Распределение тока:

Графики направленности:

В прямоугольных:

levation plane directivity pattern (dB) in cartes

Elevation plane directivity pattern in cartesian

В полярных:

Elevation plane directivity pattern (dB) in polar $0.7.0791\,$

Elevation plane directivity pattern in polar 0.5.104

Из графиков видно, что количество лепестков в одной полуплоскости в графике направленности совпадает с количеством уложившихся периодов в графике тока, если график несимметричен относительно нуля, и половине уложившихся периодов, если он симметоричен относительно нуля.

Боковые лепестки начинают проявляться при длине диполя больше единицы:

Распределение тока при длине равной единице:

Построим график зависимости максимального значения направленности от длины диполя

Видно, что с увеличением длины диполя, максимальное значение направленности растет, но не монотонно: наблюдаются периодические максимумы: примерный период данных максимумов равен $\pi/4$ (данная величина получена просто из данного графика)

3) Построим зависимоть КПД от длины:

Формула для КПД:

$$\eta = \frac{R_{_{\mathit{излучения}}}}{R_{_{\mathit{излучения}}} + R_{\mathit{nomepb}}}$$

$$R_{nomepb} = \frac{\rho l}{S} = \frac{\rho l}{\pi r^2}$$

Посмотрим, какая величина должна получатся по порядку: В нашем случае и радиус и длины выражаются как коэффициент на длину волны: $l\!=\!\beta\lambda, r\!=\!\alpha\lambda$ Получаем:

$$R_{nomepb} = \frac{\rho l}{\pi r^2} = \frac{\rho \beta}{\pi \alpha^2 \lambda}$$

Оценим R_{nomepb} по порядку величины: $\alpha \sim 10^{-3}$, $\beta \sim 10^{0}$, $\rho = 3 \cdot 10^{-8}$, $\lambda = \frac{C}{V} = 3$, получаем: $R_{nomepb} \sim 10^{-2}$, что мало, по сравнению с $R_{usnyuehus}$, который по порядку не меньше 10^{0} Поэтому КПД стремится к единице при данном удельном сопротивлении. Однако, при увеличении удельного сопротивления, КПД будет падать:

