CSCE 222-200, Discrete Structures for Computing, Honors Fall 2021

Homework 5 Aakash Haran

Instructions:

- The exercises are from the textbook. MAKE SURE YOU HAVE THE CORRECT EDITION! You are encouraged to work extra problems to aid in your learning; remember, the solutions to the odd-numbered problems are in the back of the book.
- Each exercise is worth 5 points.
- Grading will be based on correctness, clarity, and whether your solution is of the appropriate length.
- Always justify your answers.
- Don't forget to acknowledge all sources of assistance on the cover sheet, and write up your solutions on your own.
- Turn in your pdf file on Canvas by 3:00 PM, Wednesday, November 10.

LaTeX hints: Read this .tex file for some explanations that are in the comments.

Math formulas are enclosed in \$ signs, e.g., x + y = z becomes x + y = z.

Logical operators: \neg , \land , \lor , \oplus , \rightarrow , \leftrightarrow .

Here is a truth table using the "tabular" environment:

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ \hline F & T \\ \end{array}$$

** Delete the instructions and the LaTeX hints in your solution. **

Exercises for Section 6.1 (pp. 416-420):

22 (b), (c), (d), (e), (f):

130, 12, 220, 208, 780

32 (a), (b), (c), (d), (e):

 26^8 , $26 \times 25 \times 24 \times 23 \times 22 \times 21 \times 20 \times 19$, $26 \times 25 \times 24 \times 23 \times 22 \times 21 \times 20$, $25 \times 24 \times 23 \times 22 \times 21 \times 20 \times 19$.

Exercises for Section 6.2 (pp. 426–428):

4 (a) and (b):

5, 13

12: ** YOUR ANSWER GOES HERE **

Exercises for Section 6.3 (pp. 435-437):

10: 6!

12a: C(12,3)

12b: C(12,0) + C(12,1) + C(12,2) + C(12,3)

12c:

$$\sum_{n=4}^{12} C(12, n)$$

12d: C(12, 6)

34 (a), (b), (c) and (d): For (a), interpret as "at least one a"; for (b), interpret as "at least one a and at least one b".

34a: $C(6,1) \times 26^5$

34b: $C(6,1) \times C(5,1) \times 26^4$

34c: $C(5,1) \times 24 \times 23 \times 22 \times 21$

34d: $15 \times 24 \times 23 \times 22 \times 21$

Exercises for Section 6.4 (pp. 443–445):

6: 330

14: $C(100, \frac{k}{2})$

18: Each term in the sequence can be written by $a_n = a_{n-1} \times \frac{n-k}{k+1}$ and the value of k increases by 1 for each next term. While $k < \frac{n}{2}$ the value of $\frac{n-k}{k+1}$ is greater than 1, so each next term is increasing and when $k=\frac{1}{2}$, the values of the term and the previous is equal. When $k>\frac{1}{2}$ the value of the multiplicative constant is less than 1 and the sequence starts decreasing.

20a: Using the result from exercise 18, we know that the largest term in the sequence is $C(n, \lfloor n/2 \rfloor)$ and that there are n terms. The sum of all the terms is upper bounded by $sum = C(n, \lfloor n/2 \rfloor) \times n$. We can then say that $\frac{sum}{n} \leq C(n, \lfloor n/2 \rfloor).$

20b: We can adjust the result from question 18, $\sum_{k=0}^{2n} C(2n,k) = 2^{2n} = 4^n$. The upper bound for the sum of the terms is $sum = C(2n, n) \times n$. Thus, $\frac{sum}{2n} \leq C(2n, n)$.

36:

Attempting to prove the statement for all values of n through regular induction.

Statement: P(n) says $(x+y)^n = \sum_{k=0}^n C(n,k) x^{n-k} y^k$ Base case: $(x+y)^0 = C(0,0) x^{0-0} y^0 = 1$. The statement is true for the base case.

Inductive Step: Assume P(0) to P(n) is true.

Attempting to prove P(n+1) which is $(x+y)^{n+1} = \sum_{k=0}^{n+1} C(n+1,k) x^{n+1-k} y^k$

 $(x+y)^{n+1}$ can be expressed as $(x+y)^n(x+y)$. $(x+y)^n$ follows the binomial expansion properly from the inductive hypothesis.

Looking at the first few terms in the expansion $C(n,0)x^n + C(n,1)x^{n-1}y^1 + C(n,2)x^{n-2}y^2 + \cdots$ it becomes to easy that in each term after the first, multiplying that term by x and the previous term by y ensures that they are capable of being added. Multiplying $(x+y)^n$ by x+y does exactly this and makes each consecutive term capable of being added together. Using the property of Pascal's Triangle that consecutive elements added create a new row following the pattern of binomial expansion, we know that that is exactly what's happening in this expansion.

Hence, the statement P(n) is true for all n.

Exercises for Section 6.5 (pp. 454–457):

10 a: 6¹²

10 b: 6³⁶

10 c:

18: $20! \div 2! \div 4! \div 3! \div 2! \div 3! \div 2! \div 3!$

24: C(17, 12)

26: $C(15,5) \times C(10,4) \times C(6,3) \times C(3,2)$

48: $7! \times 2!$

Exercises for Section 9.1 (pp. 608–610):

6d: Vacuously antisymmetric.

6e: Symmetric, reflexive, transitive

6f: Symmetric, transitive

6h Symmetric, transitive

30a: $\{(1, 2), (2, 3), (3, 4), (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)\}$

30b: {(1, 2), (2, 3), (3, 4)}

32: {(1, 1), (1, 2), (2, 1), (2, 2)}

52b: Both relations should have (a, a) for every a in A. Therefore they are included in the intersec-

tion.

52e: If (a, a) is in R then (a, a) is in S and hence the composite will contain (a, a).

Exercises for Section 9.2 (pp. 619–621):

8a: ISBN

8b: If the title and publication date pair for every book is unique.

8c: If the title and number of pages pair for every book is unique.

12 ** YOUR ANSWER GOES HERE **

16 ** YOUR ANSWER GOES HERE **

Exercises for Section 9.3 (pp. 629–627):

14a:

0	1	0
1	1	1
1	1	1

14b

0	1	0
0	1	1
1	0	0

14c

0	1	1
1	1	1
0	1	0

14d

1	1	1
1	1	1
0	1	0

22

 $\boldsymbol{26} \; \big\{ (a,a), (b,b), (c,c), (d,d), (a,b), (b,a), (c,a), (c,d) \big\}$

32 (only for the graph in 26 and only for reflexive, symmetric, antisymmetric, and transitive) The graph represents reflexive relation.

Exercises for Section 9.4 (pp. 637–638):

22 ** YOUR ANSWER GOES HERE **

26 (c) ** YOUR ANSWER GOES HERE **