سرىهاى زمانى

سری زمانی و تحلیل سری زمانی

- منظور ازیک سری رمانی مجموعهای از دادههای آماری است که در فواصل رمانی مساوی و منظمی جمع آوری شده پاشند.
 - مثّال: قروش ماهانه یک کارخانه طی سه سال گذشته
 - مثّال: میرْانْ متّوسط بارش سالیانه در کشور طی پنچاه سال گذشته
 - ◄ تعليل سرى رْمانى نير يك از روشُ هاى تعليل چِنين دادههايي است.
- مثال: تشعیص روند تغییرات ارزش سهام با توجه به دادههای جمع آوری شده در طول یک سال می تواند تعلیل سری زمانی نامیده شود.

سری زمانی و تحلیل سری زمانی

مدف:

کشف *الگو*رفتار داده ها در گذشته و پیش پیش رفتار آینده یا استفاده از دادههای سری زمانی

سری زمانی

- متغیر تصادفی: در آمار و احتمال، متغیر تصادفی متغیری است که مقدار آن از انداره گیری یک فرایندهای تصادفی بدست می آید.
- اگر فرآیند تصادفی، میزان فروش کارخانه پاشد و متغیر t نشاندهنده زمان، متغیر تصادفی X(t) میزان فروش کارخانه در ماه t را نشان می دهد.
 - سری رُمانی را می توان یا متغییر تصادفی X(t) نشان داد:
- \rightarrow X(t) t = 1, 2, 3, ...
- سری رُمانی، پرداری از دادهها که در قواصل رُمانی مشعّص دریافت و پرحسب رُمان مرتب شدهاند.

سری زمانی

X = [22,71,74, 75, 75, 70, 76, 78, 82, 83, 82, ..., 94]

t = [1, 2, 3, ..., 36]

انواع متغير سرى زماني

تک متغیرہ: یک ویٹر گی اڑ فرآیٹد تصادفی مورد پررسی قرار می گیرد، په طور مثال میٹران فروش کلی یک کارخانه، قیمت نفت

چند متغیره: پیشتر ازیک ویژگی از فرآیند تصادفی مورد بررسی قرار می کیرد، په

طور مثَّال میران فروش هریک از محصولات کارخانه، قیمت سوختهای فسیلی به

تفكيك

انواع متغير سرى زماني

انواع سرى زماني

کسسته: پرای سری رْمانی(X(t)، اگر نمونه پرداری از فرآیند تصادفی به صورت

گسسته انچام شودمثلا ساعتی، روزانه، ماهانه و ... پاشد آنگاه سری زمانی گسسته

است. (مثَّالهایی که دیدیم همگی گسسته بودند.)

پیوسته: اگر t پیوسته باشد، آنگاه سری زمانی X(t) نیر پیوسته خواهد بود. به

طور مثال دمای هوا و یا دبی رودشانه

انواع سرى زماني

کسسته: پرای سری رْمانی(X(t)، اگر نمونه پرداری از فرآیند تصادفی به صورت

گسسته انچام شودمثلا ساعتی، روزانه، ماهانه و ... پاشد آنگاه سری زمانی گسسته

است. (مثَّالهایی که دیدیم همگی گسسته بودند.)

پیوسته: اگر t پیوسته باشد، آنگاه سری زمانی X(t) نیر پیوسته خواهد بود. به

طور مثال دمای هوا و یا دبی رودشانه

مولفههای سری زمانی

- چهار ویرگی الگوی رفتاری یک سری رمانی:
 - (trend) روثد
 - (seasonal) فصلى
 - (irregular) عُیر معمول
 - (cyclic) تثاوہی

مولفههای سری زمانی-روند

◄ تمایل سری ژمائی به افرایش، کاهش یا حتی ثابت بودن، را روند سری ژمائی
 کویند.

مولفههای سری زمانی-روند

مولفههای سری زمانی-فصلی

فصلی: تغییراتی که در پاژههای کوچک و پا قواصل ژمانی یکسان تکرار میشوند.

تغییرات فصلی در سری زمانی

مولفههای سری زمانی- غیر معمول

عير معمول: تعييراتي كه قابل پيش بيني نيستند و نظم و الكوى خاصى ندارند.

مولفههای سری زمانی- تناوب

◄ تناوب: تغییرات یکسان و تکراری در مقاطع میان مدت، تناوب در سری زمانی نامیده میشود.

سری زمانی

- سری ایستا: یک سری رْمانی است که قوانین حاکم پر تغییرات مقدارها، واپسته په رْمان نباشد، قوانین احتمالی حاکم پر فرایند، پا رْمان تغییر نمی کند یا په عبارتی فرایند در تعادل آماری است.
- سری غیر ایستا؛ سری رُمانی است که تغییرات آن در طول رُمان متفاوت است و به رُمان وابسته است بنابراین اطلاعات آماری ثابتی نغواهد داشت.

پیش پینی سری ایستا ساده تر است.

سری زمانی ایستا

- میائکین ٹاپٹ
- واریانس ٹاپٹ ؛ احْتلاف ہین دادہ و میانگین واپسته به زمان نباشد.
- کوواریانس مستقل از زمان: تفاصل پین مقادیر ابتدا وانتهای پازههای تابت وابسته به زمان نباشد.

Stationary series

Non-Stationary series

Non-Stationary series

Non-Stationary series

تست ایستایی سری زمانی

- نگاه کردن په نمودار
 - الگایج آماری ▶
- کستی په نام (Augmented Dickey-Fuller (ADF) وجود دارد. ►
- تست عددی را به عنوان نتیجه به ما می دهد که اگر صفر یا نزدیک به صفر باشد به معنای ایستا بودن سری است.

مدل های تحلیل سری زمانی

- اگر (t) اگر (t) الامقدار سری زمانی باشد و (t) اثر مولفه روند، (t) اثر مولفه تناوب، (S(t) اثر مولفه فصل و (t) انیز اثر مولفه تصادفی باشد، میتوان این دو مدل سری زمانی را به صورت زیر معرفی کرد:
 - X(t)=T(t)×S(t)×C(t)×I(t) :Multiplicative Model ≪مدل ضربی ▶
 - X(t)=T(t)+S(t)+C(t)+I(t): Additive Model ≪مدل جمعی» ▶

روشهای ایستا کردن سری زمانی

- : (Moving Average) عملگر میانگین متحرک
- X'(t) = [X(t) + X(t-1) + ... + X(t-(k-1))]/k
- Y(t) = X(t) X'(t)

- :(differencing) تفاضل
- \rightarrow $d^1(t) = X(t) X(t-1)$, $d^1(t-1) = X(t-1) X(t-2)$, ...
- d^2 (t) = d^1 (t) d^1 (t-1) , d^2 (t-1) = d^1 (t-1) d^1 (t-2) , ...

ویژگی خود همبستگی (AutoCorrelation)

- هدف از تعلیل سری رُمانی، یافتن رابطه پین دادههای رُمانهای معتلف است.
 - خود همیستگی: واپستگی پین مقدار دنیالهای پرحسب رمان است.
- تابعی که خودهمیستگی را برحسی یک فاصله زمانی بین مشاهدات محاسیه می کند «تابع
 - خُورهمبِستَّكی» (Autocorrelation Function) ٹامیدہ میشود،
 - Lag ؛ قاصله پین دو داده در سری رُمانی

ابع خود همبستگی (AutoCorrelation Function-ACF)

- قرض کئید X_t مقدار سری زمانی در زمان X_t فرض کئید X_t
- X_t تابع خودهمیستگی پرای این سری زمانی، ضرایپ همیستگی پین مشاهدات X_t تابع خودهمیستگی پرای این این این این این X_t این این این این X_{t-h} و X_{t-h} را پراساس X_{t-h} با نشان می دهد؛

$$ACF = \frac{Cov(X_t, X_{t-h})}{\sigma_t \sigma_t}$$

$$ACF = \frac{Cov(X_t, X_{t-h})}{Var(X_t)}$$

خود همبستگی

خود همبستگی

خود همبستگی جزئی (Partial AutoCorrelation)

- ﴿ وایستگی مستقیم بین دو داده را بیان می کند.
- در خودهمیستگی، واپستگی های غیر مستقیم هم دخیل هستند اما در خودهمیستگی
 چرنی واپستگی غیر مستقیم حدف می شود.
 - این ویژگی رابطه پین دو داده را طوری پیان می کند که با هیچ lag کوچکتری قابل پیان نیست.

خود همبستگی جزئی (Partial AutoCorrelation)

خود همبستگی و خود همبستگی جزئی

- ارْ ویرْ گی خود همیستگی برای انتخاب مدل سری رْمانی استفاده میشود،
- ارْ ویرْ گی خودهمیستگی چرنی برای تعیین پارامترهای مدل استفاده میشود.

دادهها و تخمين پارامترهاي مدل

- داده سری رْمانی: (X(t
 - ✓ تعمین دادهها: (Y(t)
 - $Y = f(X,t,\alpha)$ مدل •
- بنابراین برای هر ۱، دو مقدار (X(t) و (Y(t) و چود دارد که اولی حاصل اندازه گیبری از فرآیند تصادفی و دومی از مدل به دست آمده،
 - این دو مقدار به دلایلی(مناسب نبودن مدل، نویرو...) با هم تفاوت دارند که به آن مانده (residual) گوینده
- r(t) = Y(t) X(t)

دادهها و تخمین پارامترهای مدل

- در یاد گیری ماشین همواره هدف این است که مانده کمینه شود.
 - بنابراین تابع هدف شکل می گیرد:

Min r(t)

- در سری رُمانی معمولا از روش کمترین مربعات استفاده می شود؛
- - هدف کمینه کردن تایع Cost هست. پارامترهای α طوری تعیین میشوند این تایع کمینه lacktriangle
- می خواهیم نقطه کمینه یک تابع را به دست آوریم: از تابع مشتق می کیریم و پراپر صفر قرار می دهیم،

دادهها و تخمین پارامترهای مدل

- یا مشعص شدن یارامترها α ، می توان Y(t) را به دست آورد.
- پرای این مرحله که فیت کردن مدل یا داده گویند از دادههای آموزش استفاده میشود.
 - پرای سنچش مدل از داده های تست استفاده می شود.
 - پسته به کارپرد، روشهای معتلقی پرای سنچش استفاده میشود.

- یک مدل موطی است (۱).
- رمائی قابل استفاده است که دادههای سری رمائی ویژگی خود همیستگی داشته
 یاشند.
 - پر اساس دادههای رُمانی قبلی، داده رُمانی فعلی را تحمین می رُند.
 - مرتبه k: پر اساس k تاخیر (لک)، تعمین صورت می گیرد.

1:1 مرتبه ▶

 $ightharpoonup Y(t) = C + \varphi_1 X(t-1)$

- → مرتبه p:
- $Y(t) = C + \varphi_1 X(t-1) + \varphi_2 X(t-2) + \dots + \varphi_p X(t-p) = C + \sum_{i=1}^p \varphi_i X(t-i)$
- r(t) = Y(t) X(t)
 - هر چه سُرایپ φ_i کوچکتر پاشند یعنی واپستگی کمتری پین داده ای که تَعْمین می رُنیم و داده های قبلی وجود دارد و پالعکس،
 - $-1 \le \varphi_i \le 1$

- mport pandas as pd
- import matplotlib.pyplot as plt
- from statsmodels.tsa.stattools import adfuller
- from statsmodels.graphics.tsaplots import plot_acf
- from statsmodels.graphics.tsaplots import plot_pacf
- from statsmodels.tsa.ar_model import AutoRegfrom statsmodels.tsa.ar_model import AutoReg

- ▶ from statsmodels.tsa.ar_model import AutoRegfrom statsmodels.tsa.ar_model import AutoReg
- df = pd.read_csv("BD.csv")
- df['Date'] = pd.to_datetime(df['Date'],)
- df.set_index('Date', inplace = True)
- size = round(len(df)*.8)
- X_tr = df.iloc[:size]
- X_te = df.iloc[size:]
- result = adfuller(X_tr)
- print(result)
- plot_acf(X_tr, lags=30)
- plot_pacf(X_tr, lags=30)
- ar = AutoReg(X_tr, lags = 3).fit()
- print (ar.summary())

مدل اتو رگرسیو (AR)

Dep. Variable: Births		hs No. (No. Observations:				
Model:		AutoReg(ikelihood		292 984.610-	
Method:	c	onditional M		of innovation	15	7.301	
Date:	Su	n, 13 Mar 20	22 AIC			4.011	
Time:		16:53:	25 BIC			4.074	
Sample:		01-04-19	59 HQIC			4.036	
		- 10-19-19	59				
	coef	std err	z	P> z	[0.025	0.975]	
intercept	28.3384	3.546	7.992	0.000	21.388	35.288	
Births.L1	0.1650	0.059	2.817	0.005	0.050	0.280	
Births.L2	0.0987	0.059	1.673	0.094	-0.017	0.214	
Births.L3	0.0593	0.058	1.015	0.310	-0.055	0.174	
			Roots				
Real		Imaginary		Modulı	.====== 15	Frequency	
AR.1	1.8339		.0000j	1.833		-0.0000	
AR.2	-1.7489		.4775j	3.032		-0.3478	
AR.3	-1.7489	+2	.4775j	3.032	26	0.3478	

مدل اتو رگرسیو (AR)

Dep. Variable:		Births	No. Ob	servations:		292
Model: AutoReg(7)		Log Likelihood			-962.973	
Method:	Co	onditional MLE	S.D. o	7.099 3.983 4.098		
Date:	Sur	n, 13 Mar 2022	AIC			
Time:		16:59:53	BIC			
Sample:		01-08-1959	HQIC	4.029		
		- 10-19-1959				
	coef	std err	z	P> z	[0.025	0.975]
intercept	18.8197	4.599	4.092	0.000	9.805	27.835
Births.L1	0.1453	0.058	2.505	0.012	0.032	0.259
Births.L2	0.0637	0.058	1.093	0.275	-0.051	0.178
Births.L3	0.0307	0.058	0.527	0.598	-0.084	0.145
Births.L4	0.0304	0.058	0.521	0.603	-0.084	0.145
Births.L5	0.0473	0.058	0.813	0.416	-0.067	0.161
Births.L6	0.0397	0.058	0.684	0.494	-0.074	0.154
Births.L7	0.1955	0.058	3.372	0.001	0.082	0.309
		R	oots			
	Real	Imagi	nary	Modulus		Frequency
AR.1	1.1371	-0.0	000j	1.1371		-0.0000
AR.2	0.7784	-0.9	854j	1.2557		-0.1436
AR.3	0.7784	+0.9	854j	1.2557		0.1436
AR.4	-1.1650	-0.5	672j	1.2958		-0.4279
AR.5	-1.1650	+0.5	672j	1.2958		0.4279
AR.6	-0.2835	-1.2	723j	1.3035		-0.2849
AR.7	-0.2835	+1.2	723 j	1.3035		0.2849

مدل اتو رگرسیو (AR)

- در این مدل تا تیر شو کهای تصادفی در نظر گرفته می شود.
- ◄ قاصله پین مقدار خودهمیستگی و مقدار سری، شوک تصادفی را نشان میدهد.
- در نمودار خود همیستگی متوجه می شدیم که داده ها حدود چند لگ تعت تا تیبر یکدیگر هستند.
 - ◄ اڑ همین ویڑگی می توان فهمید که شو کهای ٹاکهائی تا چند لک بعدی تاثیر
 می گذارند.

▲ مرتبه 1:

 $Y(t) = \mu + \theta_1 r(t-1)$

- → مرتبه p:
- $Y(t) = \mu + \theta_1 r(t-1) + \theta_2 r(t-2) + \dots + \theta_q r(t-q) = \mu + \sum_{i=1}^q \theta_i r(t-i)$
- \triangleright $\varepsilon_t = Y(t) X(t)$
 - هر چه شرایپ θ_i کوچکتر پاشند یعنی واپستگی کمتری پین داده ای که تعمین می رئیم و مانده های قبلی و جود دارد و پالعکس،
 - $-1 \le \theta_i \le 1$

- from statsmodels.tsa.arima_model import ARMA
- ma = ARMA(X_tr, order=(0,3)).fit()
- print(ma.summary())

Dep. Variable:		Births	No. Obs	ervations:		292
CO		ARMA(0, 3)			-996.002	
Method:		css-mle	S.D. of innovations		7.330	
		13 Mar 2022	AIC		2002.005	
Time:		17:16:14	BIC			2020.388
Sample:		01-01-1959	HQIC			2009.368
		- 10-19-1959				
=========	coef	std err	z	P> z	[0.025	0.975
const	41.7097	0.584	71.431	0.000	40.565	42.854
ma.L1.Births	0.1724	0.058	2.958	0.003	0.058	0.28
ma.L2.Births	0.1195	0.056	2.123	0.034	0.009	0.23
ma.L3.Births	0.0715	0.060	1.196	0.232	-0.046	0.18
		Ro	ots			
	Real	Imagin	ary	Modulus	Frequency	
MA.1	0.5134	-2.21	81i	2.2768	-0.2138	
MA.2	0.5134	+2.21		2.2768	0.2138	
MA.3	-2.6989	-0.00			-0.5000	

Dep. Variable:			No. Observations:			292	
Model:			Log Like		-991.424 7.213		
Method:		css-mle	S.D. of innovations				
Date:	Sun,	13 Mar 2022	AIC				
Time:		17:17:46	BIC				
Sample:		01-01-1959	HQIC			2014.102	
		- 10-19-1959					
	coef	std err	Z	P> z	[0.025	0.975]	
const	41.7029	0.647	64.428	0.000	40.434	42.972	
ma.L1.Births	0.1211	0.061	1.995	0.046	0.002	0.246	
na.L2.Births	0.0877	0.062	1.424	0.154	-0.033	0.208	
ma.L3.Births	0.0261	0.062	0.418	0.676	-0.096	0.148	
na.L4.Births	0.0248	0.053	0.467	0.640	-0.079	0.129	
ma.L5.Births	0.0630	0.054	1.163	0.245	-0.043	0.169	
ma.L6.Births	0.0341	0.061	0.563	0.573	-0.085	0.15	
ma.L7.Births	0.1844	0.065	2.835	0.005	0.057	0.312	
		Ro	ots				
	Real	Imagir	nary	Modulus	Frequency		
M.1	1.1028	-0.62	226j	1.2664	-0.0818		
M.2	1.1028	+0.62	226j	1.2664	0.0818		
1A.3	-1.2607	-0.00	900j	1.2607	-0.5000		
1A.4	-0.7846	-1.00	23j	1.2728	-0.3557		
1A.5	-0.7846	+1.00	23j	1.2728	0.3557		
1A.6	0.2197	-1.26	76j	1.2865		-0.2227	
MA.7	0.2197	+1.26	76j	1.2865		0.2227	

مدل ARMA

- ► ترکیبی از روش (AR(q) و AR(q) هست.
 - :ARMA(p,q)

- ► Y(t) = $\mu + \sum_{i=1}^{p} \varphi_i X(t-i) + \sum_{i=1}^{q} \theta_i r(t-i)$
- \triangleright $\varepsilon_t = Y(t) X(t)$
 - هر چه صْرایب φ_i کوچکتر پاشند یعنی واپستگی کمتری پین داده ای که تعْمین می رُنیم و داده های قبلی وجود دارد و پالعکس،
 - $-1 \le \varphi_i \le 1$

مدل ARMA

- ► ترکیبی از روش (AR(q) و AR(q) هست.
 - :ARMA(p,q)

- $ightharpoonup Y(t) = C + \sum_{i=1}^{p} \varphi_i X(t-i) + \sum_{i=1}^{q} \theta_i r(t-i)$
- $ARMA(2,1) = C + \varphi_1 X(t-1) + \varphi_2 X(t-2) + \theta_1 r(t-1)$

مدل ARMA

مدل ARIMA

Differentiation

Actual Series

Series After Differentiation

مدل ARIMA

► ترکیبی اڑ روش (AR(q) و Dif(d) و Dif(d) هست.

:ARIMA(p,d,q) >

 $ARIMA(2,0,1) = C + \varphi_1 X(t-1) + \varphi_2 X(t-2) + \theta_1 r(t-1)$