I. Lorentzian geometry

C. Bär, N. Ginoux, F. Pfäffle

<u>Lorentzian manifold (M,g)</u>: the metric g_x on T_xM is of signature (-++...+) for every $x \in M$, i.e.: \exists basis $(e_0,e_1,...,e_{n-1})$ of T_xM s.t.

$$g_x = -e_0^* \otimes e_0^* + \sum_{j=1}^{n-1} e_j^* \otimes e_j^*.$$

1. Causality relation

- In Minkowski space $(V, \langle \langle \cdot, \cdot \rangle \rangle)$: a vector X is
 - spacelike iff $\langle\langle X, X \rangle\rangle > 0$,
 - lightlike iff $\langle \langle X, X \rangle \rangle = 0$,
 - timelike iff $\langle\langle X, X \rangle\rangle$ < 0,
 - causal iff $\langle\!\langle X, X \rangle\!\rangle \leq 0$.

Choice of a time-orientation = choice of one of both connected components of $\{\langle\langle X, X \rangle\rangle < 0\}$.

• On a Lorentzian manifold:

- spacelike (resp. timelike,...) tangent vectors, submanifolds (e.g. curves)
- time-orientation is given by a (C^{∞}) timelike vector field on M (does not always exist)

From now on all Lorentzian manifolds will be (connected and) time-oriented ("spacetimes")

• Causality relation: $x, y \in M$,

 $x \le y :\Leftrightarrow \exists$ future-directed causal curve from x to y (resp. $x < y :\Leftrightarrow \exists \ldots$ timelike...)

- Futures/Pasts: $x \in M$
 - causal future (resp. past) of x in M:

$$J_+^M(x) := \{y \in M, x \le y\}$$
 (resp. $J_-^M(x) := \{y \in M, y \le x\}$)

- chronological future (resp. past) of x in M:

$$I_+^M(x) := \{ y \in M, x < y \}$$
 (resp. $I_-^M(x) := \{ y \in M, y < x \}$)

- future (past) of a subset A of M:

$$J_{\pm}^{M}(A) := \bigcup_{x \in A} J_{\pm}^{M}(x)$$

Topological properties:

- $I_{\pm}^{M}(A)$ is open $\subset J_{\pm}^{M}(A)$ which is not always closed.

But: A compact and " \leq " closed $\Rightarrow J_{\pm}^{M}(A)$ closed

2. Convex subsets

• $\Omega \subset M$ is geodesically starshaped w.r.t. $x \in \Omega : \iff \exists \Omega' \subset T_x M$ starshaped w.r.t. 0 s.t. $\exp_x : \Omega' \longrightarrow \Omega$ is a diffeomorphism.

- \bullet $\Omega \subset M$ is convex : $\iff \Omega$ is geodesically starshaped w.r.t. all of its points.
- Convexity and causality: let $\Omega \subset M$ be geodesically starshaped w.r.t. $x \in \Omega$:
 - $\exp_x(J_{\pm}^{\Omega'}(0)) = J_{\pm}^{\Omega}(x)$
 - $dV_g = \mu_x \cdot (\exp_x^{-1})^* d\text{vol}_{g_x} \ (\mu_x = \sqrt{|\det(g_{ij})|}$ in normal coordinates about x)

3. Subsets and causality

• $\Omega \subset M$ is causally compatible iff

$$J_{\pm}^{\Omega}(x) = J_{\pm}^{M}(x) \cap \Omega$$

for every $x \in \Omega$.

- ex.: $\Omega \subset M$ convex

- c-ex.:

 Ω is *not* causally compatible in M

- ullet $\Omega\subset M$ is causal iff $\exists\,U\subset M$ convex with
 - $\overline{\Omega} \subset U$
 - $J_+^U(x)\cap J_-^U(y)$ is compact and contained in $\overline{\Omega}$ for all $x,y\in\overline{\Omega}$.

ex. and c-ex.:

• $A \subset M$ is past-compact iff $J_{-}^{M}(x) \cap A$ is compact for every $x \in M$.

Lemma: A past-compact $\Rightarrow \overline{A \cap J_-^M(K)}$ compact for every $K \subset M$ compact

4. Cauchy hypersurfaces and globally hyperbolic manifolds

• $S \subset M$ is achronal (resp. acausal) iff every inextendible timelike (resp. causal) curve hits S at most once.

Note: S acausal $\Rightarrow S$ achronal (" \Leftarrow " true if e.g. S is a spacelike hypersurface)

• $S \subset M$ is a Cauchy-hypersurface iff every inextendible timelike curve hits S exactly once.

• Ex. and c-ex. in Minkowski space:

- Properties of Cauchy-hypersurfaces: let S be a Cauchy-hypersurface of M, then:
 - S is an achronal topological hypersurface of M and is hit by any inextendible causal curve,
 - any further Cauchy-hypersurface is homeomorphic to \mathcal{S} ,
 - for every $K \subset M$ compact, $J_{\pm}^M(S) \cap J_{\mp}^M(K)$ is compact.

- M is globally hyperbolic iff
 - $J_+^M(x) \cap J_-^M(y)$ is compact for all $x, y \in M$,
 - there is <u>no almost closed causal curve</u> in M: $\forall x \in M$ and \forall neighbourhood V of x, \exists neighbourhood $U \subset V$ of x s.t. every causal curve starting and ending in U lies in V.

- \bullet Equivalently: M is globally hyperbolic iff one of the following holds:
 - i) M admits a Cauchy-hypersurface,
 - ii) $(M,g) \stackrel{\mathsf{isom.}}{\simeq} (\mathbb{R} \times S, -\beta dt^2 + g_t)$ where β is a smooth positive function, g_t is a Riemannian metric on S depending smoothly on $t \in \mathbb{R}$ and each $\{t\} \times S$ is a smooth spacelike Cauchy hypersurface in M,
- iii) there exists a time-function on M.

• Important property: on any globally hyperbolic manifold M the causality relation \leq is closed (in particular $J^M_+(K) \cap J^M_-(K')$ is compact for all $K, K' \subset M$ compact).

• Examples:

- the Minkowski space is globally hyperbolic,
- every causal domain is globally hyperbolic,
- the *anti-deSitter space* is *not* globally hyperbolic.

5. Normally hyperbolic operators

Let E be a complex vector bundle over M.

ullet A normally hyperbolic operator is a second-order differential operator P on E of which symbol is given by minus the metric.

In local coordinates:

$$P = -\sum_{i,j=1}^{n} g^{ij}(x) \frac{\partial^2}{\partial x^i \partial x^j} + \sum_{j=1}^{n} A_j(x) \frac{\partial}{\partial x^j} + B_1(x)$$

where A_j and B_1 are matrix-valued coefficients depending smoothly on x.

• Example: the d'Alembert operator is defined on smooth functions by

$$\Box f := -\mathsf{tr}(\mathsf{Hess}(f)),$$

where $\operatorname{Hess}(f)(X,Y) := \langle \nabla_X \operatorname{grad} f, Y \rangle$. In normal coordinates:

$$\Box f = -\mu_x^{-1} \sum_{i=1}^n \frac{\partial}{\partial x^i} (\mu_x(\operatorname{grad} f)_i)$$

• Lemma: for every normally hyperbolic operator P on E there exists a unique connection ∇ (called the P-compatible one) on E and a unique endomorphism field B of E such that

$$P = \Box^{\nabla} + B$$
,

where

$$\Box^{\nabla} := -\operatorname{tr}(\nabla^{2})$$

$$= -\sum_{i,j=1}^{n} g^{ij} \left(\nabla_{\frac{\partial}{\partial x^{i}}} \nabla_{\frac{\partial}{\partial x^{j}}} - \nabla_{\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}} \right).$$

• Aim in the following: solve, for some given $f \in C^{\infty}(M,E)$,

$$Pu = f$$

with "adapted" initial conditions.