SHAIKH SHAWON AREFIN SHIMON

1) a.
$$P(Z \le 0.57) = 0.7156612$$
 b.
$$P(Z \le -0.32) = 0.3744842$$
 c.
$$P(Z \ge 2.10) = 0.01786442$$
 d.
$$P(-0.32 \le Z \le 1.55) = 0.5649451$$
 e.
$$Z = -0.4399132$$
 f.
$$Z = 0.2567134$$

2)
$$Y \sim N (\mu = 6, s = 0.8)$$

a.

$$P(Y \le 7) = 0.8943502$$

b.

$$P(Y > 5.4) = 0.7733726$$

c.

$$P(6 \le Y \le 7.2) = 0.4331928$$

d.

$$y = 6.829147$$

3)

a.

b.

$$df=9$$
, $P(-t, $t = 2.262$$

c.

4)

a.

As the distribution of Y is skewed, empirical rule for normal distribution can't be applied. In this case, Chebyshev's rule should be applied for determining 75% interval.

From Chebyshev's rule,

$$\begin{split} & P(\mu\text{-}2\frac{\sigma}{\sqrt{n}} \leq \overline{y} \leq \mu + 2\frac{\sigma}{\sqrt{n}}\,) = 0.75 \\ \text{Or,} & P(90\text{-}2 \leq \overline{y} \leq 90\text{+}2\,) = 0.75 \\ \text{Or,} & P(88 \leq \overline{y} \leq 92\,) = 0.75 \end{split}$$

Where \overline{y} is the sample mean of n=100 samples.

SHAIKH SHAWON AREFIN SHIMON

b.

According to the Central Limit Theorem, the distribution of \overline{Y} is close to normal as n is large (n=100). So the shape of the distribution will follow normal distribution (bell shaped curve) $[\overline{Y} \sim (\mu, \frac{\sigma}{\sqrt{n}})]$

Mean = μ = 90

Standard deviation $s = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{100}} = 1$

5)

a.

Sample mean $\overline{y} = 526.12$

Sample sd , s= 113.7279

b.

From the histogram, the sample data looks like a normal distribution. So from the empirical rule, 95% (α = 0.05) confidence interval for μ is = ($\overline{y} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$)

Now, $t_{\alpha/2} = t_{0.05/2} = t_{0.025}$, and df = n-1 = 25-526.121 = 24.

From Student's t-distribution, $t_{0.025}$ for df = 24 is 2.064.

So, confidence interval = $(\overline{y} \pm t_{\alpha/2} \frac{s}{\sqrt{n}})$ = (526.12 ± (2.064) $\frac{113.7279}{\sqrt{25}}$ = (526.12 ± 46.95) = (479.17 , 573.07)

C.

We can be 95% confident that population mean seed weight is contained in the 95% confidence interval (479.17, 573.07).