Towards a Mostly-Automated Prover for Bit-Vector Arithmetic

lago Abal

High-Assurance Software Laboratory INESC TEC & Universidade do Minho Braga, Portugal iagoabal@di.uminho.pt

July 11, 2013

- The SATisfiability problem.
- Fixed-size bit-vector arithmetic.
- Bit-blasting & clause explosion.

- The SATisfiability problem.
 - Does a model for this formula exist?
- Fixed-size bit-vector arithmetic.
- Bit-blasting & clause explosion.

- The SATisfiability problem.
 - Does a model for this formula exist?
- Fixed-size bit-vector arithmetic.
 - ▶ Encoding of hardware circuits, crypto algorithms, etc.
- Bit-blasting & clause explosion.

- The SATisfiability problem.
 - ▶ Does a model for this formula exist?
- Fixed-size bit-vector arithmetic.
 - ► Encoding of hardware circuits, crypto algorithms, etc.
- Bit-blasting & clause explosion.
 - Multiplication on large bit-vectors.

Deciding Bit-Vector Arithmetic

$$\begin{aligned} a_{[32]}[31:16] \cdot a_{[32]}[15:0] &> 0_{[32]} \\ &\equiv \{a[j:t+1] \cdot a[t:i] \to a[j:i]\} \\ a_{[32]}[31:0] &> 0_{[32]} \\ &\equiv \{a_{[n]}[n-1:0] \to a_{[n]}\} \\ a_{[32]} &> 0_{[32]} \end{aligned}$$
 Is $\bigvee_{0 \leq i < 32} a_i$ satisfiable?

Previous Work

Benchmark	TR(+Z3)	Z 3	Yices	CVC3
DES encrypt	0.68	0.31	1.62	25.53
SHA-1	4.93	MOO	T/0	T/0
SHA-2	T/0	MOO	T/0	MOO
Peasant multiplication 32-bit	0.01	T/0	T/0	MOO
Interleaving multiplication 32-bit	ООМ	T/0	T/0	MOO
Binary exponentiation 128-bit	0.25	MOO	OOM	MOO

EasyBV

Testing Powered by SMT

$$(a_{[32]} \mod b_{[32]}) \mod b_{[32]} = a_{[32]} \mod b_{[32]}$$

Testing Powered by SMT

$$(k \mod b_{[32]}) \mod b_{[32]} = k \mod b_{[32]}, \ k \in [0, 2^{32})$$

6 / 8

Proof Tactics

(auto-)rewrite

Apply (installs) rewriting rules.

Distributivity.

orelse
$$t_1 \dots t_n$$

Backtracks on failure.

par $t_1 \dots t_n$

Picks the best alternative.

lift-if

Performs (conservative) if-lifting.

simpl

Global simplifications and contextual rewriting.

- Constant propagation.
- Unconstrained terms.
- . . .

smt

Off-the-shelf SMT solver.

auto

Heuristic search.

Towards a Mostly-Automated Prover for Bit-Vector Arithmetic

lago Abal

High-Assurance Software Laboratory INESC TEC & Universidade do Minho Braga, Portugal iagoabal@di.uminho.pt

July 11, 2013