LECTURE 3

ENTITY-RELATIONSHIP MODELING

Muhammad Hamiz Mohd Radzi Faiqah Hafidzah Halim

Content

- Entity Types
- Relationship Types
- Attributes
- Strong and Weak Entities
- Attributes on Relationship
- Structural Constraints
- Enhanced ER Modeling
- Specialization/Generalization

Objectives

- At the end of this lesson, you should be able to:
 - Define entity, entity types and entity occurrence
 - Describe relationship types, occurrence, degree of relationship types, and recursive relationship.
 - Explain attribute, attribute domain, simple, composite, single, multivalued and derived attributes.
 - Describe the strong and weak entities.
 - Explain attribute on relationship

- Explain the multiplicity, cardinality and participation
- Describe fan and chasm trap
- Define the enhance ER Modeling
- Explain the concept of superclass/subclass, its relationship, specialization and generalization process, and the constraint of specialization/generalization.

The entity relationship model

- ERM is existed as to explore the different ways that entities can relate to each other as they always do in the real world.
- ERM also is used to devise a way of recording, of diagramming, the entities and the ways in which they interrelate in the business environment.
- The things that you need to know in order to construct the ERM are:
 - Entity
 - Attribute

Entity

- Entity a "thing" or "object" in our environment that we want to keep track of.
- Entity set A collection of entities of the same type (e.g., all of the company's employees).
- Entity type A group of objects with the same properties, which are identified by the enterprise as having an independent existence.
- Entity occurrence A uniquely identifiable object of an entity type.

- Entity is in rectangular shape
- Name of entity is in caps above the separator line.
- For example:
 - Entity type = SALESPERSON

Relationship Types

 Set of meaningful associations among entity types.
 Each relationship type is given a name that describes its function.

Relationship occurrence

 Uniquely identifiable association, which includes one occurrence from each participating entity type

Degree of Relationship

- It is defined as number of participating entities in relationship.
- Relationship of degree :
 - two is binary
 - three is ternary
 - four is quaternary.

Recursive Relationship

➤ Recursive relationship - A relationship type where the same entity type participates more than once in different roles.

Entities associated through two distinct relationships with role names

Attribute

- Attribute a property of, a characteristic of, or a fact that we know about an entity.
- Some attributes have unique values within an entity set which we called as Primary Key (PK)
- Attribute domain The set of allowable values for one or more attributes.
 - Each attributes have its own domain of values, for example, Room Number must be an Integer range from 1000-1999

- Simple attribute An attribute composed of a single component with an independent existence.
 - It cannot be further subdivided into smaller components. For example Salary.
- Composite attribute An attribute composed of multiple components, each with an independent existence.
 - Some attributes can be further divided to yield smaller components. For example, address can be divided into Street, City, Postcode.
- Single-valued attribute An attribute that holds a single value for each occurrence of an entity type.
 - For example, Salesperson Number. Only one value can be attached to the attribute.

- Multi-valued attribute An attribute that holds multiple values for each occurrence of an entity type.
 - for example, branch number B003 has telephone numbers 0141-339-2178 and 0141-339-4439
- Derived attribute An attribute that represents a value that is derivable from the value of a related attribute or set of attributes, not necessarily in the same entity type.
- For example, the total number of staff (totalStaff) attribute of the Staff entity type can be calculated by counting the total number of Staff entity occurrences.

Strong and Weak Entity Types

■ **Strong entity type:** An entity type that is *not* existence-dependent on some other entity type.

Attributes on Relationship

Structural Constraints

- Main type of constraint on relationships is called multiplicity.
- Multiplicity number (or range) of possible occurrences of an entity type that may relate to a single occurrence of an associated entity type through a particular relationship.
- Represents policies (called business rules) established by user or company.
- The most common degree for relationships is binary.

- Binary relationships are generally referred to as being:
 - one-to-one (1:1)
 - one-to-many (1:*)
 - many-to-many (*:*)

Semantic net of Staff *Manages*Branch relationship type

Multiplicity of Staff *Manages* Branch (1:1) relationship

Semantic net of Staff Oversees PropertyForRent relationship type

Multiplicity of Staff Oversees PropertyForRent (1:*) relationship type

Semantic net of Newspaper *Advertises* PropertyForRent relationship type

Multiplicity of Newspaper *Advertises*PropertyForRent (*:*) relationship

Structural Constraints

- Multiplicity for Complex Relationships
 - Number (or range) of possible occurrences of an entity type in an nary relationship when other (n-1) values are fixed.

Semantic net of ternary Registers relationship with values for Staff and Branch entities fixed

Multiplicity of ternary Registers relationship

Summary of Multiplicity Constraints

Alternative ways to represent multiplicity constraints	Meaning
01 11 (or just 1) 0* (or just *) 1* 510 0, 3, 6–8	Zero or one entity occurrence Exactly one entity occurrence Zero or many entity occurrences One or many entity occurrences Minimum of 5 up to a maximum of 10 entity occurrences Zero or three or six, seven, or eight entity occurrences

Structural Constraints

Multiplicity is made up of two types of restrictions on relationships: cardinality and participation.

Multiplicity as cardinality and participation constraints

Problems with ER Modeling

 Problems may arise when designing a conceptual data model called connection traps.

- Often due to a misinterpretation of the meaning of certain relationships.
- Fan Traps: Where a model represents a relationship between entity types, but pathway between certain entity occurrences is ambiguous.

 Chasm Trap: Where a model suggests the existence of a relationship between entity types, but pathway does not exist between certain entity occurrences.

Fan Trap

At which branch office does staff number SG37 work?

Solution of Fan Trap

SG37 works at branch B003.

Chasm Trap

At which branch office is property PA14 available?

Solution of Chasm Trap

The Enhanced Entity-Relationship Model

- Since 1980s there has been an increase in emergence of new database applications with more demanding requirements.
- Basic concepts of ER modeling are not sufficient to represent requirements of newer, more complex applications.
- Response is development of additional 'semantic' modeling concepts.
- Semantic concepts are incorporated into the original ER model and called the Enhanced Entity-Relationship (EER) model.
- Examples of additional concept of EER model is called specialization / generalization.

Specialization / Generalization

- An entity type that includes one or more distinct subgroupings of its occurrences.
- Subclass A distinct subgrouping of occurrences of an entity type.
- Superclass/subclass relationship is one-to-one (1:1).
- Superclass may contain overlapping or distinct subclasses.
- NOT ALL members of a superclass need be a member of a subclass.

Specialization / Generalization

Attribute Inheritance

 An entity in a subclass represents same 'real world' object as in superclass, and may possess subclass-specific attributes, as well as those associated with the superclass.

Specialization

 Process of maximizing differences between members of an entity by identifying their distinguishing characteristics.

Generalization

 Process of minimizing differences between entities by identifying their common characteristics.

AllStaff relation holding details of all staff

Specialization/generalization of Staff entity into subclasses representing job roles

Specialization/generalization of Staff entity into job roles and contracts of employment

EER diagram with shared subclass and subclass with its own subclass

Constraints on Specialization / Generalization

Participation constraint

- Determines whether every member in superclass must participate as a member of a subclass.
- May be mandatory or optional.

Disjoint constraint

- Describes relationship between members of the subclasses and indicates whether member of a superclass can be a member of one, or more than one, subclass.
- May be disjoint or nondisjoint.

Constraints on Specialization / Generalization

- There are four categories of constraints of specialization and generalization:
 - mandatory and disjoint (or)
 - optional and disjoint
 - mandatory and nondisjoint (and) → overlap
 - optional and nondisjoint.

DreamHome worked example - Staff Superclass with Supervisor and Manager subclasses

DreamHome worked example - Owner Superclass with PrivateOwner and BusinessOwner subclasses

DreamHome worked example - Person superclass with Staff, PrivateOwner, and Client subclasses

References

Database Systems: A Practical Approach to Design, Implementation, and Management, Thomas Connolly and Carolyn Begg, 5th Edition, 2010, Pearson.