LAB 06 EXCERCISE

2021 / 10 / 27

LECTEROR: HUAN-JUNG LEE

GALOIS FIELD (FINITE FIELD)

- Finite field $(GF(2^k))$ is a field with finite number 2^k with the set $\{0, 1, 2, ..., 2^k-1\}$, and can do addition(+), substaction(-), multiplication(*), and Division(/).
- The set can also behavior as $\{00..00, 00..01, 00..10, ..., 11..11\}$ or $\{0, 1, x, ..., x^{k-1} + x^{k-2} + ... + 1\}$
- Arithmetic under finite field always fall in the same field. And reduce the result to degree k-1 by the irreducible function f(x).
- Ex: $GF(2^k)$; k = 1 . GF(2) has finite number describe in the set $\{0, 1\}$, irreducible function f(x) = x
 - Add: (I + 0) % x = I
 - Sub : (0-1) % x = (0+(-1)) % x = (0+1) % x = (0+1) % x = (0+1) % x = (0+1)
 - Mult: (1 * 1) % x = 1
 - Div : $(0/1) \% x = (0 * 1^{-1}) = (0 * 1) \% x = 0$

ADDITION IN $GF(2^K)$; K = 2

- Set = $\{0, 1, 2, 3\} = \{0, 1, x, x + 1\}$
- Irreducible function $f(x) = x^2 + x + 1$.
- If A = 3, B = 2, A + B = ?
 - A = 3 = x + 1
 - B = 2 = x
 - A + B = (x + 1 + x) % f(x)= ((1 + 1) x + 1) % f(x)= ((0) x + 1)% f(x)= 1 % f(x) = 1

SUBSTACTION IN $GF(2^K)$; K = 2

- Set = $\{0, 1, 2, 3\} = \{0, 1, x, x + 1\}$
- Irreducible function $f(x) = x^2 + x + 1$.
- If A = 3, B = 2, A B = ?
 - A = 3 = x + 1
 - B = 2 = x
 - A B = (x + 1 x) % f(x)= ((1 - 1) x + 1) % f(x)= ((0) x + 1)% f(x)= 1 % f(x) = 1

MULTIPLICATION IN $GF(2^K)$; K = 2

- Set = { 0 , I , 2 , 3} = { 0 , I , x , x + 1}
 Irreducible function f(x) = x² + x + 1.
- If A = 3, B = 2, A * B = ?

•
$$A = 3 = x + 1$$

•
$$B = 2 = x$$
 Degree >= k!!!!(here is 2)

• A * B =
$$(x + 1) * x % f(x)$$

= $(x * x + 1 * x) % f(x)$
= $(x^2 + x) % f(x)$
= $(x^2 + x) % (x^2 + x + 1)$
= $((x + 1) + x) = 1$

Hint: modulo function can use f(x) = 0 and fill the target function with it.

ex:
$$f(x) = x^2 + x + 1 = 0$$

target function: $g(x) = (x^2 + x) \% f(x)$
 $x^2 + x + 1 = 0$
 $x^2 = x + 1$
 $g(x) = (x^2 + x) \% f(x)$
 $= (x + 1 + x) = 1$

DIVISION IN $GF(2^K)$; K = 4

- Set = $\{0, 1, ..., 15\} = \{0, 1, ..., x^3 + x^2 + x + 1\}$
- Irreducible function $f(x) = x^4 + x^3 + 1$.
- If A = 2, B = 9, A / B = ?
 - A = 2 = x
 - $B = 9 = x^3 + 1$
 - $A/B = A * B^{-1}$

Hint: how to find B^{-1} ?

DIVISION IN $GF(2^K)$; K = 4

- B^{-1} can found by extended "Euclid's algorithm" with irreducible function f(x) and B
 - $f(x) = x^4 + x^3 + 1$
 - $B = x^3 + 1$

Preview: Eucild algorithm (in positive interger field)

A = 19, B = 5 find gdc(greatest common divisor)?

A = 19

B = 5

A % B = 4 = A'

B % A' = I = B'

A' % B' = 0 (while remainder is 0 this divisor is gcd)

And we know $B \ast B^{-1} = 1$, so B , B^{-1} has gcd 1. Extended algorithm use this result.

EXTENDED EUCLID'S ALGORITHM

- Part A: Polynomial divide
- Part B : multiple quotient
- Part C : Muiltiple inverse

•
$$B = x^3 + 1$$

•
$$f(x) = x^4 + x^3 + 1$$

i	Remainder(R_i)	$Quotient(Q_{\mathtt{i}})$	division(DN _i)	divisor(DR _i)
-1	$x^4 + x^3 + 1$	-	-	-
0	$x^{3} + 1$	-	-	-

•
$$DN_1 = \mathbf{f}(\mathbf{x}) = x^4 + x^3 + 1$$

•
$$DR_1 = B = x^3 + 1$$

i	Remainder(R_i)	$Quotient(Q_{i})$	division(DN _i)	divisor(DR _i)
-1	$x^4 + x^3 + 1$	-	-	-
0	$x^{3} + 1$	-	-	-
I			$x^4 + x^3 + 1$	$x^3 + 1$

• $DN_0 / DR_0 = Q_1$

i	Remainder($\mathbf{R_i}$)	$Quotient(Q_{i})$	division(DN _i)	divisor(DR _i)
-1	$x^4 + x^3 + 1$	-	-	-
0	$x^{3} + 1$	-	-	-
I		X	$x^4 + x^3 + 1$	$x^3 + 1$

•
$$DN_1 + Q_1 * DR_1 = R_1$$

i	Remainder(R_i)	$Quotient(Q_{i})$	division(DN _i)	$divisor(DR_i)$
-1	$x^4 + x^3 + 1$	-	-	-
0	$x^{3} + 1$	-	-	-
I	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$

- If $DR_1 >= R_1 DN_2 = DR_1, DR_2 = R_1$
- else $DN_2 = R_1$, $DR_2 = DR_1$

i	Remainder(R_i)	$Quotient(Q_{i})$	division(DN _i)	$divisor(DR_i)$
-1	$x^4 + x^3 + 1$	-	-	-
0	$x^{3} + 1$	-	-	-
Ī	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2			$x^3 + x + 1$	$x^3 + 1$

• $DN_1 / DR_1 = Q_2$

i	Remainder(R_i)	$Quotient(Q_{i})$	division(DN _i)	$divisor(DR_i)$
-1	$x^4 + x^3 + 1$	-	-	-
0	$x^{3} + 1$	-	-	-
1	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2		I	$x^3 + x + 1$	$x^{3} + 1$

•
$$DN_2 + Q_2 * DR_2 = R_2$$

i	Remainder(R_i)	$Quotient(Q_{i})$	division(DN _i)	divisor(DR _i)
-1	$x^4 + x^3 + 1$	-	-	-
0	$x^{3} + 1$	-	-	-
1	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^{3} + 1$
2	X	I	$x^3 + x + 1$	$x^3 + 1$

•
$$DN_2 + Q_2 * DR_2 = R_2$$

i	Remainder(R_i)	$Quotient(Q_{i})$	division(DN _i)	divisor(DR _i)
-1	$x^4 + x^3 + 1$	-	-	-
0	$x^{3} + 1$	-	-	-
I	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2	X	I	$x^3 + x + 1$	$x^3 + 1$
3			$x^{3} + 1$	Х

- If $DR_{i-1} >= R_{i-1}$, $E_i = 0$, $DN_i = DR_{i-1}$, $DR_i = R_{i-1}$
- else $E_i = 1$, $DN_i = R_{i-1}$, $DR_i = DR_{i-1}$

i	$Remainder(R_i)$	$Quotient(Q_{i})$	division(DN _i)	divisor(DR _i)
-1	$x^4 + x^3 + 1$	-	-	-
0	$x^{3} + 1$	-	-	-
I	$x^3 + x + 1$	Х	$x^4 + x^3 + 1$	$x^3 + 1$
2	X	I	$x^3 + x + 1$	$x^3 + 1$
3		x ²	$x^{3} + 1$	X

- Until $R_i = 1$
- $R_i = DN_i + DR_i * Q_i$

i	Remainder(R_i)	$Quotient(Q_{i})$	division(DN _i)	divisor(DR _i)
-1	$x^4 + x^3 + 1$	-	-	-
0	$x^{3} + 1$	-	-	-
I	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2	X	I	$x^3 + x + 1$	$x^{3} + 1$
3	I	x ²	$x^{3} + 1$	X

- $MQ_{-1} = 0$
- $MQ_0 = 1$

i	$MQ_{i}(muliple \ quotinet)$	$mqh_{i}(MQ \ high)$	$mql_{i}(MQ\ low)$	Remainder(R_i)	Quotient(Q_i)	$\operatorname{division}(\operatorname{DN}_{i})$	$divisor(DR_i)$
-1	0	-	-	$x^4 + x^3 + 1$	-	-	-
0	I	-	-	$x^{3} + 1$	-	-	-
I				$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2				X	I	$x^3 + x + 1$	$x^3 + 1$
3				I	x ²	$x^3 + 1$	X

- $mqh_1 = MQ_{-1}$
- $mql_1 = MQ_0$

i	$MQ_{i}(muliple\ quotinet)$	$mqh_{i}(MQ \ high)$	$mql_{i}(MQ\ low)$	Remainder(R_i)	$Quotient(Q_{i})$	$division(DN_i)$	divisor(DR _i)
-1	0	-	-	$x^4 + x^3 + 1$	-	-	-
0	I	-	-	$x^3 + 1$	-	-	-
I		0	I	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2				X	I	$x^3 + x + 1$	$x^3 + 1$
3				I	x ²	$x^{3} + 1$	X

• $MQ_1 = mqh_1 + mql_1 * Q_1$

i	$MQ_{i}(muliple\ quotinet)$	$mqh_{i}(MQ \ high)$	$mql_{i}(MQ\ low)$	Remainder(R_i)	$Quotient(Q_{i})$	$division(DN_i)$	divisor(DR _i)
-1	0	-	-	$x^4 + x^3 + 1$	-	-	-
0	I	-	-	$x^3 + 1$	-	-	-
1	X	0	I	$x^3 + x + 1$	Х	$x^4 + x^3 + 1$	$x^3 + 1$
2				X	1	$x^3 + x + 1$	$x^3 + 1$
3				I	x ²	$x^3 + 1$	X

- If $DR_1 >= R_1$, $mqh_2 = mql_1$, $mql_2 = MQ_1$
- else $mqh_2 = MQ_1$, $mql_2 = mql_1$

i	$MQ_{i}(muliple \ quotinet)$	$mqh_{i}(MQ\ high)$	$mql_{i}(MQ\ low)$	Remainder(R _i)	$Quotient(Q_{i})$	$\operatorname{division}(\operatorname{DN}_{i})$	divisor(DR _i)
-1	0	-	-	$x^4 + x^3 + 1$	-	-	•
0	I	-	-	$x^3 + 1$	-	-	-
1	X	0	I	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2		X	I	X	I	$x^3 + x + 1$	$x^3 + 1$
3				I	x^2	$x^3 + 1$	X

• $MQ_2 = mqh_2 + mql_2 * Q_2$

i	$MQ_i(muliple\ quotinet)$	$mqh_{i}(MQ \ high)$	$mql_{i}(MQ\ low)$	Remainder(R_i)	$Quotient(Q_{i})$	$division(DN_i)$	divisor(DR _i)
-1	0	-	-	$x^4 + x^3 + 1$	-	-	-
0	I	-	-	$x^3 + 1$	-	-	-
1	Х	0	I	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2	x + 1	X	I	X	I	$x^3 + x + 1$	$x^3 + 1$
3				I	x ²	$x^{3} + 1$	X

- If $DR_{i-1} >= R_{i-1}$, $mqh_i = mql_{i-1}$, $mql_i = MQ_{i-1}$
- else $mqh_i = MQ_{i-1}$, $mql_i = mql_{i-1}$

i	$MQ_i(muliple\ quotinet)$	$mqh_{i}(MQ \ high)$	$mql_{i}(MQ\ low)$	Remainder(R_i)	$Quotient(Q_{i})$	$division(DN_i)$	divisor(DR _i)
-1	0	-	-	$x^4 + x^3 + 1$	-	-	-
0	I	-	-	$x^3 + 1$	-	-	-
1	Х	0	I	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2	x + 1	X	I	X	I	$x^3 + x + 1$	$x^{3} + 1$
3		I	x + 1	I	x ²	$x^{3} + 1$	X

• $MQ_i = mqh_i + mql_i * Q_i$

i	$MQ_i(muliple\ quotinet)$	$mqh_{i}(MQ \ high)$	$mql_{i}(MQ\ low)$	Remainder(R_i)	$Quotient(Q_{\mathbf{i}})$	$division(DN_i)$	divisor(DR _i)
-1	0	-	-	$x^4 + x^3 + 1$	-	-	-
0	I	-	-	$x^3 + 1$	-	-	-
1	Х	0	I	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2	x + 1	X	I	X	Ι	$x^3 + x + 1$	$x^{3} + 1$
3	$x^3 + x^2 + 1$	I	x + 1	I	x ²	$x^{3} + 1$	X

•
$$B^{-1} = x^3 + x^2 + 1$$

i	$MQ_i(muliple\ quotinet)$	$mqh_{i}(MQ \ high)$	$mql_{i}(MQ\ low)$	Remainder(R_i)	$Quotient(Q_{i})$	$division(DN_i)$	divisor(DR _i)
-1	0	-	-	$x^4 + x^3 + 1$	-	-	-
0	I	-	-	$x^3 + 1$	-	-	-
1	Х	0	I	$x^3 + x + 1$	X	$x^4 + x^3 + 1$	$x^3 + 1$
2	x + 1	X	I	X	I	$x^3 + x + 1$	$x^3 + 1$
3	$x^3 + x^2 + 1$	I	x + 1	I	x ²	$x^3 + 1$	X

EXTENDED EUCLID'S ALGORITHM PART C: MUILTIPLE INVERSE

•
$$B^{-1} = x^3 + x^2 + 1$$

•
$$A = x$$

• A / B =
$$(A * B^{-1}) \% f(x) = (x * (x^3 + x^2 + 1)) \% f(x)$$

= $(x^4 + x^3 + x) \% (x^4 + x^3 + 1)$
= $x + 1$
= 3

EXERCISE

- IP design : $GF(2^k) + */$
- Design : GF(4), GF(8), GF(16), GF(32) inverse matrix
- You need to fill the space in 02_SYN/syn.tcl by yourself

THANK YOU FOR YOUR LISTENING ~