

Supervised Topic Segmentation of Email Conversations

Shafiq Joty, Giuseppe Carenini, Gabriel Murray, and Raymond Ng

Motivation

Email conversations often discuss multiple topics

e.g. a conversation about arranging a conference may cover:

Location and time, Registration, Food menu, Workshops

Two subtasks:

- Segmentation: Grouping sentences into coherent clusters
- Identification: Assigning topic labels to the clusters

Prerequisite for:

- Higher-level conversation analysis (e.g., speech act tagging).
- Text summarization and Automatic question answering.
- Intelligent user interfaces for emails.

Challenge

Topics in emails do not change in a sequential way

Models in monolog and synchronous dialog not so effective

Our Supervised Graph-theoretic Approach

(1) Sentence Pair

Classification

- (2) GraphConstruction
- (3) Graph

Partitioning

Integrates lexical and topic features with conversational ones.

Results

 Our sup approach achieves better accuracy than unsupervised method of [Joty et al. 2010] with very limited amount of training data.

Step1 Sentence Pair Classification

- A binary classifier marks each pair of sentences of a conversation as 'same' or 'different' topics.
- A conversation of n sentences produces O(n²) training examples.
- Comparison of classifiers:

Classifier	Regularizer	Train error	Test error	
KNN	_	47.7%	46.7%	
SVM (lin)	_	33.2%	32.6%	
SVM (rbf)	_	26.4%	34.3%	
LR		30.6%	30.9%	
LR	I ₁	32.1%	33.3%	
RMLR (rbf)		10.8%	38.9%	

Features with average performance:

Lexical	Acc: 59.6 Pre: 59.7 Rec: 99.8							
TF.IDF1	TF.IDF similarity (k=1).							
TF.IDF2 TF.IDF similarity (k=2).								
Cue Words Either one contains a cue word.								
QA x asks a question explicitly using '?'								
	& y contains any of (yes, yea, ok, etc.)							
Greet	Either one has a greeting word.							
Topic	Acc: 65.2 Pre: 64.4 Rec: 79.6							
LSA1	LSA function for x & y (k=1).							
LSA2	LSA function for x & y (k=2).							
LDA	LDA decision on x & y.							
LCSeg	LCSeg decision on x & y.							
LexCoh Lexical cohesion function of x & y.								
Conv	Acc: 65.3 Pre: 66.7 Rec: 85.1							
Gap	The gap between y & x in # of sent.							
Speaker	x & y have the same sender.							
FQG1 Dist. between x & y in Dir. FQG (frag. ld).								
FQG2	Dist. between x & y in Dir. FQG (#edges).							
FQG3 Dist. between x & y in Undir. FQG (#edges)								
Reply-to	Reply-to Both are in the same email or one is a reply							
Name x mentions y or vice versa.								
AII	Acc: 69.1 Pre: 68.4 Rec: 81.5							

Relative importance of the features:

Accuracy vs. amount of labeled data:

Step2&3 Graph Construction and Partitioning

- > Construct the graph:
 - Nodes => Sentences
 - Edge-weights => Probability ('same' class)
- > Partition the graph by optimizing the 'normalized cut' criterion.

Evaluation of our Sup. Topic Segmenter

P (u, v)

Dataset: BC3 email corpus. See [Joty et al. 2010] for corpus stats.

Base		line		Models				Human
			Unsupervised				Super.	
Scores	Speaker	Block 5	LDA	LDA+FQG	LCSeg	LCSeg+FQG		
Mean 1-1	0.52	0.38	0.57	0.62	0.62	0.68	0.70	0.80
Mean loc ₃	0.64	0.57	0.54	0.61	0.72	0.71	0.75	0.83

Reference Joty, S.; Carenini, G.; Murray, G.; Ng, R. Exploiting conversation structure in unsupervised topic segmentation for emails. In *EMNLP-2010*.