第1節 確率分布 53

4 確率変数の和と期待値

ここでは2つの確率変数X,Yの確率分布について考えてみよう。

2つの確率変数 X, Yについて,X=a かつ Y=b となる確率を

P(X=a, Y=b) で表すことにする。

例 1,2の数が書かれたカードが,それぞ 6 れ5枚,3枚ある。この8枚のカード から1枚を引き、カードに書かれた数 をXとする。引いたカードをもとに戻 さずにもう1回引き,カードに書かれ た数をYとする。このとき,

2	X	1	2	il i
i Z	1	$\frac{5}{8} \cdot \frac{4}{7}$	$\frac{5}{8} \cdot \frac{3}{7}$	3 5
į	2	$\frac{3}{8} \cdot \frac{5}{7}$	$\frac{3}{8} \cdot \frac{2}{7}$	2 5
l	計	35 56	<u>21</u> 56	1

P(X=a, Y=b) (a, b=1, 2) の値を求めると、上の表のようになる。

一般に、2つの確率変数X、Yについて、

 $X=x_i$ かつ $Y=y_j$ となる確率を

 $P(X=x_i, Y=y_j)=p_{ij}$ $(i=1, 2, \cdots, m, j=1, 2, \cdots, n)$ とおくと、右の表のように、すべての組

	(x_i, y_i) に対して、確率 p_{ij} が定まる。	この
0	対応関係を <i>XとYの</i> 同時分布 という。	
	右の表から、各 x_i 、 y_i に対して、	

	X^{Y}	y_1	y_2	 y_n	計口
,	x_1	p ₁₁	p ₁₂	 p_{1n}	þ
!)	x_2	p ₂₁	p 22	 p_{2n}	þ
₽	:	:	:	:	:
の	x_m	p_{m1}	p_{m2}	 p_{mn}	p,
	計	q_1	q_2	 q_n	1

 $P(X=x_i) = \sum_{i=1}^{n} p_{ij} = p_i, \quad P(Y=y_j) = \sum_{i=1}^{m} p_{ij} = q_j$

となる。したがって、X、Yの確率分布は、それぞれ次の表のようになる。

X	x_1	x_2	 x_m	計	Y	y ₁	<i>y</i> ₂	 y_n	計
P	p_1	p_2	 p_m	1	P	q_1	q_2	 q_n	1

Y	y_1	<i>y</i> ₂	 y_n	計
P	<i>a</i> .	a.	 <i>a.</i> .	1

これらの対応関係をそれぞれ **X の周辺分布**,**Y の周辺分布** という。

例 6

1,2の数が書かれたカードが、それぞれ5枚、3枚ある。この8枚のカードから1枚 を引き、カードに書かれた数を X とする。引いたカードをもとに戻さずにもう 1回引き、カードに書かれた数を Y とする。

※ ステップを踏みながら例6を理解しよう。

(1). 確率 P(X = 1, Y = 1) を求めよう。

X=1 8 枚のカードから 1 枚引いたときに 1 が出るのは $\frac{5}{8}$

Y=1 残り 7 枚のカードから 1 枚引いたときに 1 が出るのは $\frac{4}{7}$ よって, $P(X=1,Y=1)=\frac{5}{8}\times\frac{4}{7}=\frac{20}{56}$

(2). 確率 P(X = 1, Y = 2) を求めよう。

(3). 確率 P(X = 2, Y = 1) を求めよう。

(4). 確率 P(X = 2, Y = 2) を求めよう。

(5). ここまでの結果を利用して、下の表を埋めよう。

	Y = 1	Y=2	計
X = 1	<u>20</u> 56		
X = 2			
計			

※ この表を X と Y の同時分布という。

(6). X と Y の同時分布から、X,Y の確率分布を探して表を埋めよう。

X	1	2	計			
p						
 ※ <i>X</i> の周辺分布 = <i>X</i> の確率分布						

Y	1	2	計
p			
		* Y о)	周辺分布

54 第2章 統計的な推測

確率変数の和の期待値

2つの確率変数 X, Yの和 X+Y もまた確率変数である。 X+Y の確 率分布と期待値について考えてみよう。

たとえば、X、Yの確率分布が、それぞれ次の表で与えられたとする。

λ	ζ.	x_1	x_2	計	
F	0	p_1	p ₂	1	

			_
Y	y_1	y_2	計
P	q_1	q_2	1

このとき、X、Y の期待値は、それぞれ次のようになる。

 $E(X) = x_1p_1 + x_2p_2,$ $E(Y) = y_1q_1 + y_2q_2$

また、確率変数 X、Y を同時に考えた とき, その同時分布が右の表のようにな っているとすると,

> $p_{11}+p_{12}=p_1, \quad p_{21}+p_{22}=p_2$ $p_{11}+p_{21}=q_1, p_{12}+p_{22}=q_2$

X	y_1	y_2	計	
x_1	p ₁₁	p ₁₂	p_1	
x_2	p ₂₁	p ₂₂	p ₂	10
計	q_1	q_2	1	

このとき、X、Y の和 X+Y の確率分布は、次の表のようになる。

X+Y	$x_1 + y_1$	$x_1 + y_2$	$x_2 + y_1$	$x_2 + y_2$	計
P	p ₁₁	p ₁₂	p ₂₁	⊅ 22	1

これより、X+Yの期待値は、次のように計算できる。

 $E(X+Y)=(x_1+y_1)p_{11}+(x_1+y_2)p_{12}+(x_2+y_1)p_{21}+(x_2+y_2)p_{22}$

 $= x_1(p_{11}+p_{12})+x_2(p_{21}+p_{22})+y_1(p_{11}+p_{21})+y_2(p_{12}+p_{22})$

 $= x_1 p_1 + x_2 p_2 + y_1 q_1 + y_2 q_2$

=E(X)+E(Y)

一般に、確率変数の和の期待値について、次のことが成り立つ。

確率変数の和の期待値

E(X+Y)=E(X)+E(Y)

第1節 確率分布 55

表に2または10, 裏に3または 6 の数が書かれたカードが 13 枚 あり、その表と裏の内訳は、次の 表のようになっているとする。

(主)	数	2	10	計
(衣)	枚数	6	7	13

(mr)	数	3	6	計
(裏)	枚数	8	5	13

この 13 枚のカードの中から 1 枚を引くとき、表に書かれた数Xと裏 に書かれた数Yの和X+Yの期待値を求めてみよう。

X, Yの確率分布と期待値は、それぞれ次のようになる。

X	2	10	計
P	<u>6</u> 13	$\frac{7}{13}$	1

Y	3	6	計
P	<u>8</u> 13	<u>5</u> 13	1

 $E(X) = 2 \times \frac{6}{13} + 10 \times \frac{7}{13} = \frac{82}{13}, \quad E(Y) = 3 \times \frac{8}{13} + 6 \times \frac{5}{13} = \frac{54}{13}$

よって, $E(X+Y)=E(X)+E(Y)=\frac{82}{13}+\frac{54}{13}=\frac{136}{13}$

えるとき,確率 p11, p12, p21, p22 は定 まらない。このように, XとYの同時 分布が定まらない場合でも, X の周辺 10 p₂₁ p₂₂ 分布とYの周辺分布だけからX+Yの期待値を求めることができる。

□ 1個のさいころを2回投げるとき,出る目の和の期待値を求めよ。

3つ以上の確率変数についても、前ページと同様の性質が成り立つ。 20 たとえば, 3つの確率変数 X, Y, Z に対して,

E(X+Y+Z)=E(X)+E(Y)+E(Z)

▶問 500 円硬貨 1 枚, 100 円硬貨 1 枚, 10 円硬貨 1 枚を投げるとき,表が出た 硬貨の金額の和の期待値を求めよ。

例 7

表に2または10、裏に3または6の数が書かれたカードが13枚あり、その表と裏 の内訳は、次の表のようになっているとする。

数 2 10 計 枚数 6 7 13 数 3 6 計

この 13 枚のカードの中から 1 枚を引くとき、表に書かれた数 X と裏に書かれた数 Y の和 X + Y の期待値を求めてみよう。

※ ステップを踏みながら例7を理解しよう。

(1). X + Y の取りうる値を下の表を使って求めよう。

	Y = 3	Y = 6
X = 2		
X = 10	13	

(2). 下の表を利用して X + Y の確率分布を求めよう。

X + Y	5	8	13	16	計
p					1

と思ったけど,何もわかりません。orz