KONTROL SISTEMLERI

1. YILİÇİ SINAVI

1.

Şekilde gösterilen çift tanklı seviye kontrol sisteminde, ikinci tanktaki $\mathbf{h_2}$ seviyesi kontrol edilmek istenmektedir. Birinci tankta sıvı girişini sağlayan valfin \mathbf{x} konumu, bir doğru akım motoru, dişli ve doğrusal hareket düzeneği tarafından sağlanmaktadır. İki tank arasındaki ara geçiş debisi $\mathbf{q_1} = \frac{\mathbf{h_1} - \mathbf{h_2}}{\mathbf{R_{12}}}$ ilişkisiyle verildiğine göre,

- a) Herbir elemanı gösterecek şekilde, o elemana ilişkin, zaman tanım bölgesinde diferansiyel denklemleri yazınız.
- b) Sistemin genel blok şemasını çıkartıp açık ve kapalı çevrim transfer fonksiyonlarını yazınız.

R₁₂: İki tank arasındaki seviyeye bağlı geçiş direnci

 \mathbf{R}_2 : İkinci tankın seviyeye bağlı direnci

A₁: Birinci tankın yüzey alanı [m²]

h₁: Birinci tanktaki sıvı yüksekliği

A₂: İkinci tankın yüzey alanı [m²]

H₂: İkinci tanktaki sıvı yüksekliği

112. Ikmer tanktaki sivi yaksekiigi

q_i: Birinci tanka akış debisi [m³/s]

q₁: İki tank arasındaki akış debisi [m³/s]

q₀: İkinci tanktan çıkış debisi [m³/s]

n: $x(t)/\theta(t)$ [m/rad]

K: Kuvvetlendirici kazancı [V/V]

 $\mathbf{K}_{\mathbf{v}}$: Valf sabiti $[(\mathbf{m}^3/\mathbf{s})/\mathbf{m}]$

 K_a : Motor moment katsayısı

K_b: Ters e.m.k. katsayısı

 \mathbf{K}_s : Seviye/gerilim dönüştürücü katsayısı [V/m]

 J_{me} : Motor miline indirgenmiş atalet momenti

 \mathbf{B}_{me} : Motor miline indirgenmiş viskoz sürtünme

Şekil 1'de doğru akım motorlu bir konum kontrol sisteminin şeması verilmiştir. Bu şemada e hata gerilimi, θ_r referans konumu, θ_L yük konumu, K_A kuvvetlendirici kazancı, e_a armatür gerilimi, e_b zıt elektromotor gerilimi, i_a armatür akımı, T_m motor momenti, $\theta_e = \theta_r - \theta_L$ açısal konum hatasıdır. Sistem parametreleri

 $J_m = 0.21 \ 10^{-3} \ [Kg-m^2] \ \text{motor eylemsizliği,}$ $B_m = 70.57 \ 10^{-3} \ [N-m-s] \ \text{motor viskoz}$ sürtünme katsayısı,

 $K_L = 352.85 \quad [N-m/rad]$ burulma yay sabiti, $J_L = 0.35 \cdot 10^{-3} \quad [kg-m^2]$ yük eylemsizliği, $K_i = 0.148 \quad [N-m/A]$ motor moment sabiti,

olarak verilmiştir.

 $K_b = 0.148 \quad [V/(rad/s)]$ Zit elektromotor katsayısı,

 $K_s = E/2\pi$ hata belirleyici katsayısı,

 $E = 2\pi$ [V] hata belirleyiciye uygulanan gerilim

 $R_a = 1.15 \ [\Omega]$ armatür direnci,

