Theorem (1.6.8). If n is a perfect square, then n + 2 is not a perfect square.

Proof. Let n be a perfect square. Assume n+2 is a perfect square for the purpose of contradiction. By the definition of perfect square, \sqrt{n} has to be an integer, and by our assumption there exists an integer m such that $m^2=n+2$. So the equivalence $m^2-(\sqrt{n})^2=2$ must be the difference of squares $(m+\sqrt{n})(m-\sqrt{n})=2$. Since the sum or difference of integers is an integer it follows that the factors of 2, $(m+\sqrt{n})$ and $(m-\sqrt{n})$, have to be integers. Because 2 is prime those integer factors can only be elements in $\{-2,-1,1,2\}$. Thus, there are exactly two possibilities:

(i)
$$m^2 - (\sqrt{n})^2 = (2)(1)$$
,
or (ii) $m^2 - (\sqrt{n})^2 = (-1)(-2)$.

In case (i), without loss of generality, we have a system of linear equations in two variables m and \sqrt{n} :

$$m + \sqrt{n} = 2$$

$$m - \sqrt{n} = 1$$

The matrix of coefficients $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, the inverse for which is $A^{-1} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{bmatrix}$. The product of A^{-1} and the matrix of solutions yields m = 1.5, which is not in \mathbb{Z} ; contradicting the assumption that m^2 was a perfect square.

In case (ii), we are presented with a similar system of linear equations. The only difference in this system compared to (i) is the matrix of solutions $S = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$. $A^{-1}S$ yields m = -1.5, which is not in \mathbb{Z} , a contradiction. The assumption that m^2 was a perfect square must be false in this case, as well.

Since the assumption proves false in all possible cases, it is not possible that both $m^2 = n + 2$, and n are perfect squares.