Natural Language Processing

Assignment 7 Type of Question: MCQ

Number of Questions: 7	
Question 1:	[1 mark]
Suppose you have a raw text corpus and you compute we from there. Which of the following algorithm(s) can you ut representations? (Choose all that apply)	
a. CBOW b. SVD c. PCA d. GloVe	
Answer: a, b, c, d Solution:	
Question 2:	[1 mark]
What is the method for solving word analogy questions lik such that A:B::C:D, using word vectors?	
a. $v_c = v_a + (v_b - v_d)$, then use cosine similarity to find the	he closest word of v_c .
b. $v_c = v_a + (v_d - v_b)$ then do dictionary lookup for v_c c. $v_c = v_d + (v_a - v_b)$ then use cosine similarity to find the d. $v_c = v_d + (v_a - v_b)$ then do dictionary lookup for v_c . e. None of the above	ne closest word of v_c .
Answer: c	
Solution: $v_d - v_c = v_b - v_a$ $v_c = v_d + v_a - v_b$ then use cosine similarity to find the close	est word of v_c .

Question 3: [1 mark]

What is the value of $PMI(w_1, w_2)$ for $C(w_1) = 100$, $C(w_2) = 2500$, $C(w_1, w_2) = 320$, N = 50000? N: Total number of documents.

 $C(w_i)$: Number of documents, w_i has appeared in.

 $C(w_i, w_i)$: Number of documents where both the words have appeared in.

Note: Úse base 2 in logarithm.

- a. 4
- b. 5
- c. 6
- d. 5.64

Answer: c

Solution:

PMI = log2 [(320*50000) / (100*2500)] = log2(64) = 6

Question 4: [2 marks]

Given two binary word vectors w_1 and w_2 as follows:

 $w_1 = [1010011010]$ $w_2 = [0011111100]$

Compute the Dice and Jaccard similarity between them.

- a. 6/11, 3/8
- b. 10/11, 5/6
- c. 4/9, 2/7
- d. 5/9, 5/8

Answer: a

Dice coefficient =
$$\frac{2 \times 3}{5+6} = \frac{6}{11}$$

Jaccard coefficient = $\frac{3}{8}$

Solution:

Question 5: [2 marks]

Consider two probability distributions for two words be p and q. Compute their similarity scores with KL-divergence.

p = [0.20, 0.75, 0.50]

q = [0.90, 0.10, 0.25]

Note: Use base 2 in logarithm.

a. 4.704, 1,720

b. 1.692, 0.553

c. 2.246, 1.412

d. 3.213, 2.426

Answer: c Solution:

$$\begin{aligned} \text{KL-div}(p,q) &= \sum_{i} p_{i} \log_{2} \frac{p_{i}}{q_{i}} \\ &= 0.2 \log \frac{0.2}{0.9} + 0.75 \log \frac{0.75}{0.1} + 0.5 \log \frac{0.5}{0.25} \\ &\approx 2.246 \\ \text{KL-div}(q,p) &= 0.9 \log \frac{0.9}{0.2} + 0.1 \log \frac{0.1}{0.75} + 0.25 \log \frac{0.25}{0.5} \\ &\approx 1.412 \end{aligned}$$

Question 6: [2 marks]

Consider the following word co-occurrence matrix given below. Compute the cosine similarity between

(i) w1 and w2, and (ii) w1 and w3.

	w4	w5	w6
w1	2	8	5
w2	4	9	7
w3	1	2	3

- a. 0.773, 0.412
- b. 0.881, 0.764
- c. 0.987, 0.914
- d. 0.897, 0.315

Answer: c Solution:

$$\text{cosine-sim } (\overrightarrow{p}, \overrightarrow{q}) = \frac{\overrightarrow{p} \cdot \overrightarrow{q}}{\|\overrightarrow{p}\| \cdot \|\overrightarrow{q}\|}$$

Cosine-sim (w1, w2) = $(2*4 + 8*9 + 5*7) / (\sqrt{(2*2 + 8*8 + 5*5)} * \sqrt{(4*4 + 9*9 + 7*7)}) = 0.987$

Cosine-sim (w1, w3) = $(2*1 + 8*2 + 5*3) / (\sqrt{2*2 + 8*8 + 5*5}) * \sqrt{(1*1 + 2*2 + 3*3)} = 0.914$

Question 7: [1 marks]

Which of the following types of relations can be captured by word2vec (CBOW or Skipgram)?

- 1. Analogy (A:B::C:?)
- 2. Antonymy
- 3. Polysemy
- 4. All of the above

Answer: 1

Solution: Word vectors learnt using CBOW or Skipgram models can't disambiguate between Antonyms or Polysemous words.