Contents

1

Sets and Classes

1.1 Classes

Russell's Paradox states the following:

Russell's Paradox

Let *X* be the set of all sets which do not contain themselves, i.e.,

$$X = \{S : S \notin S\}.$$

Now consider X. If $X \in X$, it means that X contains itself and should not be a member of X, i.e., $X \in X \implies X \notin X$. If $X \notin X$, it means that X does not contain itself and therefore should be a member of X, i.e. $X \notin X \implies X \in X$. Hence, we have a paradox and such a set X does not exist.

However, in some cases it is still useful to consider the "set" of all sets for practical reasons. Therefore, we introduce the notion of a *class* to avoid Russell's Paradox.

Definition 1.1.1 ▶ Class

Let ϕ be some formula and \boldsymbol{u} be a vector, the collection

$$\mathbb{C} = \{X : \phi(X, \boldsymbol{u})\}\$$

is called a **class** of all sets satisfying $\phi(X, \mathbf{u})$, where \mathbb{C} is said to be **definable** from \mathbf{u} . Equivalently, we say that

$$X \in \mathbb{C} \iff \phi(X, \boldsymbol{u}).$$

In particular, if $\mathbb{C} = \{X : \phi(X)\}$, i.e., ϕ only has one free variable, then we say that \mathbb{C} is **definable**.

Remark. It is easy to see that every set *X* is a class given by $\{x: x \in X\}$.

Intuitively, two classes are equal if they contain exactly the same members. We are able to give the following rigorous version of the notion of equality:

Definition 1.1.2 ▶ Equality between Classes

Let $\mathbb{C} = \{X : \phi(X, \mathbf{u})\}\$ and $\mathbb{D} = \{X : \psi(X, \mathbf{v})\}\$, we say that $\mathbb{C} = \mathbb{D}$ if for all X,

$$\phi(X, \mathbf{u}) \iff \psi(X, \mathbf{u}).$$

There are clearly two types of classes — the ones which are also sets and the ones which are not. Formally, this is put as follows:

Definition 1.1.3 ▶ **Proper Class**

A class \mathbb{C} is said to be a **proper class** if $\mathbb{C} \neq X$ for all sets X.

Like sets, we can define subclasses:

Definition 1.1.4 ▶ **Subclass**

Let A and B be classes. We say that A is a **subclass** of B if every member of A is also a member of B, i.e.,

$$\mathbb{A}\subseteq\mathbb{B}\iff(X\in\mathbb{A}\implies X\in\mathbb{B}).$$

We shall also define the operations applicable to classes:

Definition 1.1.5 ► **Intersection, Union and Difference**

Let $\mathbb A$ and $\mathbb B$ be classes. The **intersection**, **union** and **difference** between $\mathbb A$ and $\mathbb B$ are given by

$$A \cap B := \{X : X \in A \land X \in B\},\$$

$$\mathbb{A} \cup \mathbb{B} \coloneqq \{X : X \in \mathbb{A} \lor X \in \mathbb{B}\},\$$

$$\mathbb{A} - \mathbb{B} := \{ X : X \in \mathbb{A} \land X \notin \mathbb{B} \}$$

respectively.

Finally, we shall introduce the universal class:

Definition 1.1.6 ▶ Universal Class

The universal class is the class of all sets, denoted by

$$V \coloneqq \{X : X = X\}.$$

Remark. It is easy to prove that the universal class is **unique**.

2

Axiomatic Set Theory

2.1 Axioms of Zermelo-Fraenkel (ZF)

In Naïve Set Theory, we define a set as "a collection of mathematical objects which satisfy certain definable properties". However, such a definition is problematic (e.g. it leads to the Russell's Paradox). Thus, instead of viewing a set as a clearly defined mathematical object, we can think a set as an object entirely defined by a set of axioms to which it complies. In this sense, we avoid paradoxes by making the notion of a set undefined but only specify rigorously the axioms a set must satisfy. The following sections discuss each of the axioms in ZF set theory.

2.2 Extensionality

Axiom 2.2.1 ▶ Extensionality

Let X and Y be sets, then X = Y if for all $u, u \in X$ if and only if $u \in Y$.

An immediate result from Axiom ?? is that there exists a set X such that X = X, i.e. every set equals itself. Moreover, we can also prove the following:

Theorem 2.2.2 ▶ The Empty Set

The set which has no elements is unique.

Proof. Let *X* be a set with no elements. Note that this means that for all $u, u \notin X$.

Let Y be another set. Note that the statement $u \in X \implies u \in Y$ is vacuously true. Suppose that Y has no elements, then similarly for all u, the statement $u \in Y \implies u \in X$ is also vacuously true.

Therefore, for all u, we have proven that $u \in X$ if and only if $u \in Y$. By Axiom ??, this means that X = Y, i.e. the set with no elements is unique.

This set with no elements is known as the **empty set**, denoted by \emptyset .

2.3 Pairing

Axiom 2.3.1 ▶ Pairing

For all u and v, there exists a set X such that for all $z, z \in X$ if and only if z = u or z = v.

Remark. Note that Axiom ?? essentially says that given any sets u and v, there exists a set whose elements are exactly u and v.

This allows us to formally define the notion of a *pair* as follows:

Definition 2.3.2 ▶ Pair

For all a, b, the pair $\{a,b\}$ is defined to be the set C such that for all x, $x \in C$ if and only if x = a or x = b.

Remark. In particular, we can define the singleton $\{a\}$ to be the pair $\{a, a\}$.

Furthermore, given any a and b, we can prove by Extensionality that the pair $\{a,b\}$ is unique:

Theorem 2.3.3 ▶ Uniqueness of Pairs

For all a, b, the pair $\{a, b\}$ is unique.

Proof. Let $C := \{a, b\}$ and $D := \{a, b\}$. Suppose $x \in C$, then x = a or x = b, which means $x \in D$. Similarly, suppose $y \in D$, we can prove that $y \in C$. Therefore, for all x, we have $x \in C$ if and only if $x \in D$. By Axiom ??, this means that C = D, i.e., the pair $\{a, b\}$ is unique.

We can further define the notion of an *ordered pair*:

Definition 2.3.4 ▶ Ordered Pair

For all a and b, the **ordered pair** (a, b) is defined to be the set $\{\{a\}, \{a, b\}\}$.

Again, one can use Extensionality to prove that such an ordered pair is always unique and that (a, b) = (c, d) if and only if a = c and b = d. The notions of pair and ordered pair can be extended to ordered and un-ordered n-tuples, which will have similar properties as we have proven as above. Recursively, we can write the following definition:

Definition 2.3.5 ▶ Ordered n-tuple

The *n*-tuple is defined as

$$(a_1, a_2, \dots, a_n) = ((a_1, a_2, \dots, a_{n-1}), a_n).$$

By Extensionality, we can similarly prove that two ordered *n*-tuples (a_1, a_2, \dots, a_n) and (b_1, b_2, \dots, b_n) if and only if $a_i = b_i$ for $i = 1, 2, \dots, n$.

2.4 Separtion

Axiom 2.4.1 ▶ **Axiom Schema of Separation**

If P is a property with parameter p, then for all X and p there exists a set

$$Y := \{u \in X : P(u, p)\}.$$

The above axiom justifies our set-builder notation

$$\{x: \varphi(x, \boldsymbol{p})\},\$$

where φ is some formula and \boldsymbol{p} is an ordered n-tuple of parameters.

Alternatively, we can write Axiom Schema ?? in the following form:

Let $\mathbb{C} = \{u : \varphi(u, \mathbf{p})\}\$ be a class, then for all sets X there exists a set Y such that $\mathbb{C} \cap X = Y$.

Consequently, the intersection and the difference between two sets is a set, which can be defined as

$$X \cap Y := \{u \in X : u \in Y\}$$
 and $X - Y := \{u \in X : u \notin Y\}$.

Suppose that there exists some set X such that X = X, we can use Separtion to define the empty set as

$$\emptyset := \{u : u \neq u\}.$$

We shall define other notions related to Separation Axioms:

Definition 2.4.2 ▶ **Disjoint**

Two sets *X* and *Y* are called **disjoint** if $X \cap Y = \emptyset$.

Definition 2.4.3 ► **Unary Intersection**

Let $\mathbb C$ be a non-empty class of sets, we define the **unary intersection** of $\mathbb C$ to be

$$\bigcap \mathbb{C} := \{u : u \in X \text{ for all } X \in C\}.$$

Note that the unary intersection helps us define the intersection of two sets as

$$X \cap Y = \bigcap \{X, Y\}.$$

2.5 Union

Axiom 2.5.1 ► Axiom of Union

For all X, there exists a set $Y = \bigcup X$ whose elements are all the elements of all elements of X, i.e.

$$Y := \{ u \in U : U \in X \}.$$

Remark. We often call $\bigcup X$ the unary union of X.

The unary union defines the union of two sets as

$$X \cup Y = \bigcup \{X, Y\}.$$

One can prove that union between sets is associative. In general, we can also see that

$${a_1, a_2, \cdots, a_n} = \bigcup_{i=1}^n {a_i}.$$

In addition, we can also define the notion of symmetric difference:

Definition 2.5.2 ► Symmetric Difference

The **symmetric difference** between two sets *X* and *Y* is defined as

$$X \triangle Y := \{u : u \in X \cup Y, u \notin X \cap Y\} = (X - Y) \cup (Y - X).$$

2.6 Power Set

Axiom 2.6.1 ▶ Axiom of Power Set

For all X, there exists a set $Y = \mathcal{P}(X)$, known as the **power set** of X, such that

$$Y := \{U : U \subseteq X\}.$$

This allows us to define the notion of the *Cartesian product* (or simply the *product*) of two sets:

Definition 2.6.2 ► Cartesian Product

Let *X* and *Y* be sets. The Cartesian product of *X* and *Y* is defined as the set

$$X \times Y := \{(x, y) : x \in X, y \in Y\}.$$

Remark. Note that $X \times Y$ is a set because $X \times Y \subseteq \mathcal{P}(X \cup Y)$.

The above offers a new way to define n-tuples, as we can define Cartesian products of countably many sets recursively.

Definition 2.6.3 ► Cartesian Product of Countably Many Sets

et $n \in \mathbb{N}^+$ and let X be a set, we define

$$X^n := \prod_{i=1}^n X = \left(\prod_{i=1}^{n-1} X\right) \times X.$$

2.6.1 Relations

Colloquially, we may want to express the idea that a collection of n objects are related by some rules. Observe that such a *relation* between n objects can be precisely abstracted as an ordered n-tuple, which motivates the following definition:

Definition 2.6.4 ▶ **Relation**

An *n*-ary relation R is a set of *n*-tuples. We say that R is an *n*-ary relation on X if $R \subseteq X^n$. Conventionally, to say that x_1, x_2, \dots, x_n are related by the rules defined by R, we use the notation $R(x_1, x_2, \dots, x_n)$. Note that this notation is equivalent to

$$(x_1, x_2, \cdots, x_n) \in R$$
.

Remark. In the case where R is a binary relation, we can also use the notation xRy to express that $(x, y) \in R$.

If *R* is a binary relation, then we define the *domain* of *R* to be

$$dom(R) = \{u : \exists v \text{s.t.}(u, v) \in R\},\$$

and the *range* of *R* to be

$$ran(R) = \{v : \exists u \text{s.t.}(u, v) \in R\}.$$

Note that

$$dom(R) \subseteq \bigcup (\bigcup R)$$
 and $ran(R) \subseteq \bigcup (\bigcup R)$,

so the domain and range of a relation are sets. Additionally, we define the *field* of *R* to be the set

$$field(R) = dom(R) \cup ran(R)$$
.

2.6.2 Functions

Given a binary relation R, we can see R as a **mapping** which corresponds each $u \in \text{dom}(R)$ with some $v \in \text{ran}(R)$. From this, we are able to derive the following definition for a *function*:

Definition 2.6.5 ▶ Function

Let X be a set. A binary relation f on X is a **function** if $(x, y) \in f$ and $(x, z) \in f$ implies that y = z, i.e. for all $x \in X$ there exists a unique y such that $(x, y) \in f$. This unique y is called the **value** of f at x. We may use the notations

$$y = f(x)$$
 or $f: x \mapsto y$

to express that $(x, y) \in f$.

Remark. If dom $(f) = X^n$, we also say that f is an n-nary function on X.

We denote a function *f* from *X* to *Y* by

$$f: X \to Y$$
.

where dom(f) = X and $ran(f) \subseteq Y$. The set of all functions from X to Y is denoted as Y^X , which is a set because

$$Y^X \subseteq \mathcal{P}(X \times Y).$$

If ran(f) = Y, we say that f is *onto* Y or that f is *surjective*. A function f is *one-to-one* or *injective* if

$$f(x) = f(y) \implies x = y$$
.

Additionally, we may call the function $f: X^n \to X$ an *n-nary operation* on X.

We may also define new functions from some existing function(s).

Definition 2.6.6 ▶ **Restriction**

Let *f* be a function. The **restriction** of *f* to a set *X* is defined to be the function

$$f|_X := \{(x, y) \in f : x \in X\}.$$

Definition 2.6.7 ► Extension

Let f, g be functions. g is called an **extension** of f if $f \subseteq g$, i.e.,

$$dom(f) \subseteq dom(g)$$
 and $g(x) = f(x)$ for all $x \in dom(f)$.

Definition 2.6.8 ▶ **Composition**

Let f and g be functions such that $ran(g) \subseteq dom(f)$. The **composition** of f and g is the function denoted by $f \circ g$ with $dom(f \circ g) = dom(g)$ such that

$$(f \circ g)(x) = f(g(x))$$
 for all $x \in \text{dom}(g)$.

Note that a function provides a mapping from one set to another set, and so we can define the notion of an *image*.

Definition 2.6.9 ► **Image and Inverse Image**

Let f be a function and X be a set. The **image** of X by f is the set

$$\{y: \exists x \in X \text{ s.t. } y = f(x)\},\$$

denoted by f[X]. The **inverse image** of X by f is the set

$${x: f(x) \in X},$$

denoted by $f^{-1}[X]$.

Remark. Trivially, if $X \cap \text{dom}(f) = \emptyset$, then $f[X] = \emptyset$.

For injections, we can also define their *inverses*.

Definition 2.6.10 ► **Inverse**

Let f be an injective function, then we denote the **inverse** of f by f^{-1} , which is defined by

$$f^{-1}(x) = y$$
 if and only if $x = f(y)$.

The above definitions for functions can be applied similarly with respect to classes.

Axiom 2.6.11 ► **Axiom of Infinity**

There exists an infinite set.

Axiom 2.6.12 ▶ Axiom Schema of Replacement

If a class F is a function, then for all X there exists a set $Y = F(X) = \{F(x) : x \in X\}$.

Axiom 2.6.13 ► Axiom of Regularity

For every non-empty set X, there exists some $Y \in X$ such that $Y \cap X = \emptyset$.

Remark. Axiom ?? is sometimes known as the Axiom of Foundation. A direct result from it is that for all sets X, there exists some $x \in X$ such that $x \not\subseteq X$.

Furthermore, we can use Axiom ?? to prove the following seemingly trivial result:

Theorem 2.6.14

There is no set A such that $A \in A$.

Proof. If $A = \emptyset$, it is immediate that $A \notin A$ by definition.

Suppose that there exists a non-empty set A such that $A \in A$. Note that $A \in \{A\}$, so

$$A \cap \{A\} = A$$
.

However, by Axiom ??, since A is the only member of $\{A\}$, we have

$$A \cap \{A\} = \emptyset$$
,

which is a contradiction. Therefore, there exists no set A such that $A \in A$.

Additionally, we also introduce the Axiom of Choice:

Axiom 2.6.15 ► Axiom of Choice

For every X with $\emptyset \notin X$, there exists a choice function

$$f:X\to\bigcup X$$

such that for all $S \in X$, we have $f(S) \in S$.

Remark. Essentially, the choice function maps every set which is a member of some family of sets to one and only one element in that set.