

СНСС	ÖNG 1	Chuyên đề Tích Phân-Ứng Dụng - Các bài toán Vận Dụng Cao	5
1	Các bà	ni toán về nguyên hàm	5
	А	$f'(x)e^{f(x)} = g'(x)e^{g(x)} \Leftrightarrow f'(x)e^{f(x)-g(x)} - g'(x) = 0$	5
	В	Cho $y=f(x)>0$, $f(h)=e^k$. Biết $\frac{f'(x)}{f(x)}=ax+b$, tìm m để $f(x)=m$ có th nghiệm thực phân biệt	2 7
	C	Cho $f(a)=c$ tìm $f(b)$ biết $u(x)f'(x)=v(x)f^2(x)$	9
	D	Cho $f'(x) + g'(x)f(x) = h(x)$. Tính $f(a)$, biết $f(b) = c$	11
	E	$ \text{Cho } f'(x) = \frac{1}{x^2 - (a+b)x + ab}, f(a+c) + f(b-c) = m, \text{ v\'oi } 0 < c < b-ab \\ f(a-d) + f(b+d) = n. \text{ T\'nh } T = f(t_1) + f(t_2) + f(t_3) $	ı, 13
	F	Cho $P\left(f(x),f'(x),f''(x),x,\cdots\right)=Q(x)$, $f\left(a\right)=b$. Tính $f\left(x_{0}\right)$	16
	G	Cho $f'(x) \cdot f(x) = x^4 + x^2$, $f(0) = 2$. Tính $f^2(2)$	18
	Н	Hàm số $y=F(x)$ có bao nhiều điểm cực trị trong khoảng $(a;b)$	19
2	Tích p	hân sử dụng phương pháp đổi biến	21
	А	Cho $g(u)=x$ với $u=f(x)$, $g(u)$ đơn điệu trên $[a;b]$. Tính $I=\int\limits_a^b h(u)\mathrm{d}x$.	21
	В	Cho $f(x) + f(a - x) = g(x)$. Tính $\int_0^a f(x) dx$.	23
	С	Cho $a \cdot f(x) + b \cdot f(-x) = g(x)$, $g(x)$ là hàm số đã biết, $a+b \neq 0$. Tính	h
		$I = \int_{-n} f(x) \mathrm{d}x.$	25
	D	Cho $f(x) + kf(u(x)) = g(x), u(u(x)) = x$. Tính $I = \int_{-\infty}^{b} \frac{f(x)}{v(x)} dx$	26

2 MUCLUC

$$\hbox{E} \quad \hbox{Cho } y = f(x) \hbox{ là hàm số chẵn (hoặc lẻ), } \int\limits_b^c f(x) \, \mathrm{d}x = u \hbox{ và } \int\limits_{\frac{c}{k}}^{\frac{a}{k}} f(-kx) \, \mathrm{d}x = v \ .$$

Tính
$$\int_{b}^{a} f(x) dx$$
.

$$\mathsf{F} \qquad \int_{a}^{b} \frac{\mathrm{d}x}{(x+c)\sqrt{x+d} + (x+d)\sqrt{x+c}} = \frac{2}{c-d} \left[\sqrt{b+d} - \sqrt{b+c} - \left(\sqrt{a+d} - \sqrt{a+c} \right) \right]$$

$$\mathsf{G} \qquad \mathsf{Cho} \ f(x) \ \mathsf{là} \ \mathsf{hàm} \ \mathsf{số} \ \mathsf{chẵn}. \ \mathsf{Biết} \ \int\limits_0^b f(kx) \, \mathrm{d}x = T. \ \mathsf{Tính} \ I = \int\limits_\alpha^\beta f[u(x)] u'(x) \, \mathrm{d}x \qquad \mathbf{33}$$

H Biết
$$\int_{0}^{1} f(2x) dx = 4$$
. Tính $I = \int_{-2}^{2} f(x) dx$ 36

I Cho
$$\alpha f(x) + \beta f(u) = g(x)$$
 với $\alpha, \beta \in \mathbb{R}$. Tính $\int\limits_a^b f(x) \,\mathrm{d}x$.

J Cho
$$2f(x) + 3f(-x) = \frac{1}{x^2 + 4}$$
. Tính $I = \int_{-2}^{2} f(x) dx$.

$$\mathsf{K} \quad \mathsf{Cho} \ f(kx) = hf(x) \ (h, k \in \mathbb{R}). \ \mathsf{Bi\acute{e}t} \ \int\limits_0^1 f(x) \, \mathrm{d}x = a. \ \mathsf{Tính} \ \int\limits_1^k f(x) \, \mathrm{d}x. \tag{41}$$

L Cho y=f(x) là hàm số chẵn và liên tục trên đoạn [-a;a]. Tính tích phân $I=\int\limits_{-a}^a\frac{f(x)}{k^x+1}\,\mathrm{d}x.$ 43

$$\text{M} \quad \text{Cho } f(x) \text{ là hàm số chẵn và liên tục trên } [-a;a] \text{ thì } \int\limits_{-a}^{a} \frac{f(x)}{m^x+1} \, \mathrm{d}x = \frac{1}{2} \int\limits_{-a}^{a} f(x) \, \mathrm{d}x = \int\limits_{0}^{a} f(x) \, \mathrm{d}x \text{ với } m > 0, \ m \neq 1.$$

N Cho
$$f[u(x)] = v(x)$$
. Tính $\int_{u(a)}^{u(b)} f(x) dx$ 48

O Cho
$$y=f(x)$$
 thỏa mãn $P\left(f(x),f'(x),f''(x),x,\cdots\right)=Q(x),\ f\left(a\right)=b$ (a, b đã biết). Tính $f\left(x_{0}\right)$.

52

75

3 Tích phân sử dụng phương pháp tích phân từng phần

A Cho
$$f(x)$$
 có $f(a)=m_0$, $\int\limits_a^b \left[f'(x)\right]^2 \mathrm{d}x=m_1$ và $\int\limits_a^b g(x)\cdot f(x)\,\mathrm{d}x=m_2$. Tính tích phân $\int\limits_a^b f(x)\,\mathrm{d}x$.

B Cho
$$f(x)$$
 có $f(b) = b_0, [f'(x)]^2 = c \cdot f(x) + u(x)$. Tính tích phân $I = \int_0^b f(x) dx$. 55

C Cho
$$f(x) = f(u) \cdot u' + g(x)$$
 trong đó $u(a) = a, u(b) = c$. Tính $\int_{c}^{b} f(x) dx$. 58

D Cho
$$f(a)=1$$
 và $f(x)\cdot f(a-x)=\mathrm{e}^{x^2-ax}, \forall x\in[0;a],\ g(x)$ là một hàm số có đạo hàm liên tục trên đoạn $[0;a]$ và thỏa mãn $g'(x)=g'(a-x).$ Tính
$$I=\int\limits_0^a\frac{g(x)f'(x)}{f(x)}\,\mathrm{d}x.$$
 61

E Cho hàm số
$$y=f(x)$$
 liên tục trên $\mathbb R$ thỏa mãn $f'(x)+p(x)f(x)=q(x), \ \forall x\in\mathbb R$ và $f(x_0)=C_0.$ Xác định hàm $f.$

F Cho
$$f(x)$$
 có đạo hàm liên tục trên đoạn $[m,n]$ thỏa mãn $f(x_0)=c, x_0\in [m,n]$,
$$\int\limits_m^n \left[f'(x)\right]^2 \,\mathrm{d}x = a \text{ và } \int\limits_m^n g(x)\cdot f(x) \,\mathrm{d}x = b. \text{ Tính tích phân } \int\limits_m^n f(x) \,\mathrm{d}x. \tag{67}$$

G Tính tích phân
$$\int_{a}^{b} \frac{(Ax+B)^2 dx}{[(Ax+B)\sin x + A\cos x]^2}$$
 70

$$\mathsf{H} \quad \mathsf{bi\acute{e}t} \int_{a}^{b} \frac{f(x) \cdot t'}{t} \, \mathrm{d}x = \alpha, \ f(b) \cdot \ln b - f(a) \cdot \ln a = \beta. \ \mathsf{Tính} \ I = \int_{a}^{b} f'(x) \cdot \ln t \, \mathrm{d}x. \quad \mathsf{72}$$

 ${\cal H}$ là hình phẳng giới hạn bởi đồ thị của hàm số $y=f(x),\;x=a,\;x=b$ và trục Ox. Tìm điều kiện để đường thẳng y=k chia ${\cal H}$ thành hai phần có tỉ lệ diện tích cho trước.

4 Các bài toán đưa về dạng (uv)' hoặc (u/v)'

A Cho $h(x)[f(x)]^2-f(x)f''(x)+[f'(x)]^2=0$, biết $f(a)=\alpha>0, f(c)=\beta$ (với $a\leq c\leq b$). Tìm f(d)

B Biết
$$f'(x) \cdot g(x) + f(x) \cdot k(x) = h(x)$$
. Tính $\int_a^b f(x) dx$. 78

C Cho
$$[f'(x)]^2 + f(x) \cdot f''(x) = g(x)$$
. Tìm hàm số $y = f^2(x)$.

4 MUCLUC

D	Cho $(x-m)(x-n)f'(x)+(n-m)f(x)=(x-m)(x-n)$ (1) với mọi $x\in$	
	$\mathbb{R}\setminus\{m;n\}$ và $f(p)=r.$ Xác định $f(q)$ và các biểu thức liên quan.	81

5 Các bài toán liên quan đến đồ thị y = f(x)

83

- A Diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \mathcal{S} . Gọi x_1, x_2 lần lượt là hoành độ của A và B. Tính giá trị của $(x_1 + x_2)^2$.
- B Cho y=f(x) đạt cực trị tại x=m, có đồ thị như hình vẽ và đường thẳng Δ là tiếp tuyến của đồ thị tại điểm có hoành độ bằng n. Tính $I=\int\limits_{m}^{n}f"(ax+b)\,\mathrm{d}x$. 86
- C Tương giao hàm trùng phương bài toán diện tích

89

- D Vật chuyển động với vận tốc theo v=f(t) có đồ thị (C) đã biết. Xác định quãng đường đi.
- E \mathcal{H} là hình phẳng giới hạn bởi đồ thị của hàm số $y=f(x),\;x=a,\;x=b$ và trục Ox. Tìm điều kiện để đường thẳng y=k chia \mathcal{H} thành hai phần có tỉ lệ diện tích cho trước.
- 6 Các bài toán liên quan đến đồ thị y=f'(x)

97

94

- A Cho hàm số y=f'(x) liên tục trên $\mathscr{D}\subset\mathbb{R}$ có đồ thị giao với trục hoành tạo thành các miền S_1,S_2,\ldots Tìm giá trị nhỏ nhất hoặc lớn nhất của hàm số y=f(x) trên \mathscr{Y} 7.
- B Cho y = f'(x) được cho bởi như hình vẽ. Tính diện tích S của hình phẳng giới hạn bởi đồ thị (C) và đồ thị (C') của hàm số y = g(x).
- C Tính diện tích giới hạn bởi (C) biết đồ thị f'(x) 102
- 7 Bài toán liên quan đến bất đẳng thức tích phân

104

A Cho
$$f(a)=m_1$$
, $f(b)=m_2$ và $\int\limits_a^b \left[f'(x)\right]^2 \mathrm{d}x=A$, $\int\limits_a^b f(x)\cdot g'(x)\,\mathrm{d}x=B$. Tính tích phân $\int\limits_a^b f(x)\,\mathrm{d}x$.

- B Cho $\int_a^b f(x) = c$, $\int_a^b f(x) \cdot g(x) dx = d$. Tim min $\int_a^b f^2(x) dx$.
- C Cho f(0) = m, $\int_{0}^{1} \left[f'(x) \cdot f^{2\alpha}(x) + 1 \right] dx = 2 \int_{0}^{1} \sqrt{f'(x)} \cdot f^{\alpha}(x) dx$. Tính $\int_{0}^{1} f^{2\alpha+1}(x) dx$.

 $M \dot{\mathcal{U}} C \ L \dot{\mathcal{U}} C$ 5

D	Cho $f(b)=b_0, \int\limits_0^1g(x)\cdot f(x)\mathrm{d}x=A$ và $\int\limits_0^1\left[f'(x)\right]^2\mathrm{d}x=B.$ Tính tích	n phân
	$\int_{a}^{b} f(x) dx.$	114
Е	Cho $f(a)=m$, $\int\limits_0^a \left[f'(x)\right]^2 \mathrm{d}x=n$ và $\int\limits_0^a f(x)\cdot g(x)\mathrm{d}x=p$. Tính tích	n phân
	$\int_{0}^{a} f(x) \mathrm{d}x$	120
ích ph	ân chứa tham số	123

- 8 Tích phân chứa tham số
 - $\operatorname{Tim}\, f(x), \text{ biết } \int\limits_{x_0}^{\varphi(x)} f(t)\,\mathrm{d}t = g(x).$ 123
 - Cho y=f(x) liên tục trên khoảng K. Biết rằng $\int\limits_a^{u(x)}f(t)\,\mathrm{d}t=g(u(x)).$ Tính giá В $\mathsf{tri}\ f(b).$ 124

 $6 \hspace{3cm} \textit{MUC LUC}$

CHUYÊN ĐỀ TÍCH PHÂN-ỨNG DỤNG - CÁC BÀI TOÁN VẬN DỤNG CAO

$\S 1$. CÁC BÀI TOÁN VỀ NGUYÊN HÀM

Bài toán tổng quát

Ta có các biến đổi sau hay được sử dụng để đưa ra giả thiết cho bài toán:

$$e^{f(x)} = e^{g(x)} \Leftrightarrow f'(x)e^{f(x)} = g'(x)e^{g(x)}$$

$$\Leftrightarrow \frac{f'(x)e^{f(x)}}{g'(x)e^{g(x)}} - 1 = 0$$

$$\Leftrightarrow \frac{f'(x)e^{f(x)}}{e^{g(x)}} - g'(x) = 0$$

$$\Leftrightarrow f'(x)e^{f(x)-g(x)} - g'(x) = 0 \Leftrightarrow \cdots$$

Phương pháp giải: Các bài toán này thường đưa về phương trình dạng $e^{f(x)} = e^{g(x)} \Leftrightarrow f(x) = g(x)$ để tìm hàm số chưa biết f(x).

VÍ DỤ 1. Cho hàm số y=f(x) có đạo hàm trên $\mathbb R$ thỏa mãn $3f'(x)\cdot \mathrm{e}^{f^3(x)-x^2-1}-\frac{2x}{f^2(x)}=0$

và f(0) = 1. Tích phân $\int_{0}^{\sqrt{7}} x f(x) dx$ bằng

B
$$\frac{15}{4}$$
.

$$\bigcirc$$
 $\frac{45}{8}$.

Lời giải.

Ta có

$$3f'(x) \cdot e^{f^{3}(x) - x^{2} - 1} - \frac{2x}{f^{2}(x)} = 0$$

$$\Leftrightarrow 3f'(x) \cdot \frac{e^{f^{3}(x)}}{e^{x^{2} + 1}} - \frac{2x}{f^{2}(x)} = 0$$

$$\Leftrightarrow 3f'(x) \cdot f^{2}(x) \cdot e^{f^{3}(x)} - 2x \cdot e^{x^{2} + 1} = 0$$

$$\Leftrightarrow \left(e^{f^{3}(x)} - e^{x^{2} + 1}\right)' = 0$$

$$\Rightarrow e^{f^{3}(x)} - e^{x^{2} + 1} = C. \quad (*)$$

Thay x=0 vào (*), ta có $e^{f^3(0)} - e = C \Leftrightarrow e - e = C \Leftrightarrow C = 0$. Như vậy $e^{f^3(x)} = e^{x^2+1} \Leftrightarrow f^3(x) = x^2+1 \Leftrightarrow f(x) = \sqrt[3]{x^2+1}$.

Do đó
$$I = \int_{0}^{\sqrt{7}} x f(x) dx = \int_{0}^{\sqrt{7}} x \sqrt[3]{x^2 + 1} dx.$$

Đặt
$$u = \sqrt[3]{x^2 + 1} \Rightarrow u^3 = x^2 + 1 \Rightarrow 3u^2 du = 2x dx \Rightarrow x dx = \frac{3}{2}u^2 du$$
.

Khi x=0 thì u=1. Khi $x=\sqrt{7}$ thì u=2. Do đó

$$I = \int_{1}^{2} u \cdot \frac{3}{2} u^{2} du = \frac{3}{2} \int_{1}^{2} u^{3} du = \frac{3}{8} u^{4} \Big|_{1}^{2} = \frac{45}{8}.$$

Chọn đáp án (C)

Câu 1. Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} thỏa mãn $f'(x) \cdot e^{3f(x)-x^3-1} - x^2 = 0$ và f(0) = 1.

Tính tích phân $I = \int f(x) dx$.

(A) $\frac{64}{3}$. (D) $\frac{68}{3}$.

Lời giải.

Ta có

$$f'(x) \cdot e^{3f(x) - x^3 - 1} - x^2 = 0$$

$$\Leftrightarrow f'(x) \cdot \frac{e^{3f(x)}}{e^{x^3 + 1}} - x^2 = 0$$

$$\Leftrightarrow f'(x) \cdot e^{3f(x)} - x^2 e^{x^3 + 1} = 0$$

$$\Leftrightarrow 3f'(x) \cdot e^{3f(x)} - 3x^2 e^{x^3 + 1} = 0$$

$$\Leftrightarrow (e^{3f(x)} - e^{x^3 + 1})' = 0$$

$$\Rightarrow e^{3f(x)} - e^{x^3 + 1} = C. \quad (**)$$

Thay x = 0 vào (**), ta có $e^{3f(0)} - e^{0^3 + 1} = C \Leftrightarrow e - e = C \Leftrightarrow C = 0$.

Như vậy $e^{3f(x)} = e^{x^3+1} \Leftrightarrow 3f(x) = x^3+1 \Leftrightarrow f(x) = \frac{x^3+1}{2}$.

Do đó
$$I = \int_{0}^{4} f(x) dx = \int_{0}^{4} \frac{x^3 + 1}{3} dx = \left(\frac{1}{12}x^4 + \frac{1}{3}x\right)\Big|_{0}^{4} = \frac{68}{3}.$$

Chọn đáp án (C)

Câu 2. Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} thỏa mãn $\frac{f'(x) + 6x}{e^{x^2 - f(x) - 2019}} - 8x = 0$ và f(0) = -2019.

Tính tích phân $I = \int f(x) dx$.

(A) $I = -\frac{6064}{3}$. (B) $I = \frac{6050}{3}$. (C) $I = -\frac{6050}{3}$.

Lời giải.

Ta có

$$\frac{f'(x) + 6x}{e^{x^2 - f(x) - 2019}} - 8x = 0$$

$$\Leftrightarrow \frac{(f'(x) + 6x) \cdot e^{f(x) + 3x^2}}{e^{4x^2 - 2019}} - 8x = 0$$

$$\Leftrightarrow (f'(x) + 6x) \cdot e^{f(x) + 3x^2} - 8xe^{4x^2 - 2019} = 0$$

$$\Leftrightarrow \left(e^{f(x)+3x^2} - e^{4x^2-2019} \right)' = 0$$

$$\Rightarrow e^{f(x)+3x^2} - e^{4x^2-2019} = C. \quad (***)$$

Thay x=0 vào (* * *), ta có $e^{f(0)} - e^{-2019} = C \Leftrightarrow e^{-2019} - e^{-2019} = C \Leftrightarrow C = 0$. Như vậy $e^{f(x)+3x^2} = e^{4x^2-2019} \Leftrightarrow f(x) = x^2 - 2019$.

Do đó
$$I = \int_{1}^{2} f(x) dx = \int_{1}^{2} (x^2 - 2019) dx = \left(\frac{1}{3}x^3 - 2019x\right)\Big|_{1}^{2} = -\frac{6050}{3}.$$

Chọn đáp án C

B CHO Y = F(X) > 0, $F(H) = E^K$. BIẾT $\frac{F'(X)}{F(X)} = AX + B$, TÌM M ĐỂ F(X) = M CÓ 2 NGHIỆM THỰC PHÂN BIỆT

Bài toán tổng quát

Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có f(x) > 0, $\forall x \in \mathbb{R}$, $f(h) = e^k$ $(h, k \in \mathbb{R})$. Biết $\frac{f'(x)}{f(x)} = ax + b$ $(a, b \in \mathbb{R})$, tìm tất cả các giá trị của tham số m để phương trình f(x) = m có 2 nghiệm thực phân biệt.

Phương pháp giải:

1. Lấy nguyên hàm hai vế $\frac{f'(x)}{f(x)} = ax + b$ ta được

$$\int \frac{f'(x)}{f(x)} dx = \int (ax+b)dx \Leftrightarrow \ln|f(x)| = \frac{ax^2}{2} + bx + C$$
$$\Leftrightarrow \ln f(x) = \frac{ax^2}{2} + bx + C \text{ (do } f(x) > 0, \forall x \in \mathbb{R})$$
$$\Leftrightarrow f(x) = e^{\frac{ax^2}{2} + bx + C}.$$

- 2. Dựa vào giả thiết $f(h) = e^k$ ta tìm được giá trị $C = C_o$ trong đó $C_o = k \frac{ah^2}{2} bh$. Từ đó ta có $f(x) = e^{\frac{ax^2}{2} + bx + C_o}$.
- 3. Xét phương trình f(x) = m ta có

$$e^{\frac{ax^2}{2} + bx + C_o} = m \Leftrightarrow \begin{cases} \frac{ax^2}{2} + bx + C_o = \ln m \\ m > 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} \frac{ax^2}{2} + bx + C_o - \ln m = 0 \\ m > 0 \end{cases}.$$

4. Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi $\begin{cases} \Delta > 0 \\ m > 0 \end{cases}$

VÍ DỤ 2. Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có f(x) > 0, $\forall x \in \mathbb{R}$, f(0) = 1. Biết $\frac{f'(x)}{f(x)} = 2 - 2x$, tìm tất cả các giá trị của tham số m để phương trình f(x) = m có 2 nghiệm thực phân biệt.

A
$$1 < m < e$$
.

B
$$0 < m < e$$
.

$$\bigcirc$$
 $m > e$.

$$\bigcirc$$
 0 < $m \le 1$.

Lời giải.

Lấy nguyên hàm hai vế $\frac{f'(x)}{f(x)} = 2 - 2x$ ta được

$$\int \frac{f'(x)}{f(x)} dx = \int (2 - 2x) dx \Leftrightarrow \ln |f(x)| = 2x - x^2 + C$$
$$\Leftrightarrow \ln f(x) = 2x - x^2 + C \text{ (do } f(x) > 0, \forall x \in \mathbb{R})$$
$$\Leftrightarrow f(x) = e^{2x - x^2 + C}.$$

Theo giả thiết ta có $f(0) = 1 \Leftrightarrow e^C = 1 \Leftrightarrow C = 0 \Leftrightarrow f(x) = e^{2x-x^2}$. Xét phương trình f(x) = m ta có

$$\begin{split} e^{2x-x^2} &= m \Leftrightarrow \begin{cases} 2x - x^2 = \ln m \\ m > 0 \end{cases} \\ \Leftrightarrow \begin{cases} -x^2 + 2x - \ln m = 0 \\ m > 0 \end{cases}. \end{split}$$

Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi

$$\begin{cases} \Delta' > 0 \\ m > 0 \end{cases} \Leftrightarrow \begin{cases} 1 - \ln m > 0 \\ m > 0 \end{cases} \Leftrightarrow \begin{cases} \ln m < 1 \\ m > 0 \end{cases} \Leftrightarrow \begin{cases} m < e \\ m > 0 \end{cases} \Leftrightarrow 0 < m < e.$$

Chọn đáp án (B)

Câu 3. Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có f(x) > 0, $\forall x \in \mathbb{R}$, $f(1) = e^3$. Biết $\frac{f'(x)}{f(x)} = 2x + 1$, tìm tất cả các giá trị của tham số m để phương trình f(x) = m có 2 nghiệm thực phân biệt.

A
$$1 < m < e^{\frac{3}{4}}$$
.

(A)
$$1 < m < e^{\frac{3}{4}}$$
. (B) $0 < m < e^{\frac{3}{4}}$. (C) $m > e^{\frac{3}{4}}$. (D) $m \ge e^{\frac{3}{4}}$.

$$(C) m > e^{\frac{3}{4}}$$

$$(\mathbf{D}) \ m \ge e^{\frac{3}{4}}$$

Lấy nguyên hàm hai vế $\frac{f'(x)}{f(x)} = 2x + 1$ ta được

$$\int \frac{f'(x)}{f(x)} dx = \int (2x+1)dx \Leftrightarrow \ln|f(x)| = x^2 + x + C$$
$$\Leftrightarrow \ln f(x) = x^2 + x + C \text{ (do } f(x) > 0, \forall x \in \mathbb{R})$$
$$\Leftrightarrow f(x) = e^{x^2 + x + C}.$$

Theo giả thiết ta có $f(1) = e^3 \Leftrightarrow e^{2+C} = e^3 \Leftrightarrow C = 1 \Leftrightarrow f(x) = e^{x^2+x+1}$. Xét phương trình f(x) = m ta có

$$e^{x^2+x+1} = m \Leftrightarrow \begin{cases} x^2+x+1 = \ln m \\ m > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 + x + 1 - \ln m = 0 \\ m > 0 \end{cases}.$$

Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi

$$\begin{cases} \Delta > 0 \\ m > 0 \end{cases} \Leftrightarrow \begin{cases} 1 - 4(1 - \ln m) > 0 \\ m > 0 \end{cases} \Leftrightarrow \begin{cases} \ln m > \frac{3}{4} \\ m > 0 \end{cases} \Leftrightarrow \begin{cases} m > e^{\frac{3}{4}} \\ m > 0 \end{cases} \Leftrightarrow m > e^{\frac{3}{4}}.$$

Chọn đáp án (C)

Câu 4. Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có f(x) > 0, $\forall x \in \mathbb{R}$, $f(2) = e^4$. Biết $\frac{f'(x)}{f(x)} = 6x - 4$, tìm tất cả các giá trị của tham số m để phương trình f(x) = m có 2 nghiệm thực phân biêt. (A) $1 < m < e^{\frac{-4}{3}}$. (B) $0 < m < e^{\frac{-4}{3}}$. (C) $m > e^{\frac{-3}{4}}$. (D) $m > e^{\frac{-4}{3}}$.

$$\mathbf{A}$$
 $1 < m < e^{\frac{-4}{3}}$.

B
$$0 < m < e^{\frac{-4}{3}}$$

$$(C) m > e^{\frac{-3}{4}}$$

$$(\mathbf{D}) \ m > e^{\frac{-4}{3}}$$

Lời giải.

Lấy nguyên hàm hai vế $\frac{f'(x)}{f(x)} = 6x - 4$ ta được

$$\int \frac{f'(x)}{f(x)} dx = \int (6x - 4) dx \Leftrightarrow \ln|f(x)| = 3x^2 - 4x + C$$
$$\Leftrightarrow \ln f(x) = 3x^2 - 4x + C \text{ (do } f(x) > 0, \forall x \in \mathbb{R})$$
$$\Leftrightarrow f(x) = e^{3x^2 - 4x + C}.$$

Theo giả thiết ta có $f(2)=e^4 \Leftrightarrow e^{4+C}=e^4 \Leftrightarrow C=0 \Leftrightarrow f(x)=e^{3x^2-4x}$ Xét phương trình f(x) = m ta có

$$e^{3x^2 - 4x} = m \Leftrightarrow \begin{cases} 3x^2 - 4x = \ln m \\ m > 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} 3x^2 - 4x - \ln m = 0 \\ m > 0 \end{cases}.$$

Phương trình f(x) = m có hai nghiệm thực phân biệt khi và chỉ khi

$$\begin{cases} \Delta' > 0 \\ m > 0 \end{cases} \Leftrightarrow \begin{cases} 4 + 3 \ln m > 0 \\ m > 0 \end{cases} \Leftrightarrow \begin{cases} \ln m > \frac{-4}{3} \\ m > 0 \end{cases} \Leftrightarrow \begin{cases} m > e^{\frac{-4}{3}} \\ m > 0 \end{cases} \Leftrightarrow m > e^{\frac{-4}{3}}.$$

Chọn đáp án (D)

Bài toán tổng quát

Cho hàm số f(x) thỏa mãn f(a) = c và $u(x)f'(x) = v(x)f^2(x), \forall x \in [a;b]$. Biết rằng $f(x), v(x) \neq 0$ $0, \forall x \in [a;b].$ Tính f(b). (Hàm số $\frac{v(x)}{u(x)}$ có nguyên hàm trên [a;b].)

Phương pháp giải: Từ phương trình $u(x)f'(x) = v(x)f^2(x)$ và $f(x), v(x) \neq 0, \forall x \in [a, b]$ ta có

$$\frac{f'(x)}{f^2(x)} = \frac{v(x)}{u(x)} \Rightarrow \int \frac{f'(x)}{f^2(x)} dx = \int \frac{v(x)}{u(x)} dx \Rightarrow -\frac{1}{f(x)} = h(x) + C.$$

Trong đó h(x) là một nguyên hàm của $\frac{v(x)}{u(x)}$ trên [a;b].

Với x = a, tính C, f(b).

Cũng có thể tính trực tiếp qua tích phân

$$\frac{f'(x)}{f^2(x)} = \frac{v(x)}{u(x)} \Rightarrow \int_a^b \frac{f'(x)}{f^2(x)} dx = \int_a^b \frac{v(x)}{u(x)} dx \Rightarrow \frac{1}{f(a)} - \frac{1}{f(b)} = h(x) \Big|_a^b.$$

VÍ DỤ 3. Cho hàm số f(x) thỏa mãn f(1) = 2 và $(x^2 + 1)^2 f'(x) = [f(x)]^2 (x^2 - 1)$ với mọi $x \in [1; 2]$. Biết rằng $f(x) \neq 0, \forall x \in [1; 2]$. Giá trị của f(2) bằng

$$(\mathbf{A}) \ \frac{2}{5}.$$

$$-\frac{2}{5}$$
.

$$(\mathbf{C})^{-\frac{5}{2}}$$
.

$$\bigcirc \qquad \frac{5}{2}.$$

Lời giải.

Do $f(x) \neq 0, \forall x \in [1;2]$ nên từ giả thiết $(x^2+1)^2 f'(x) = [f(x)]^2 (x^2-1)$, ta có

$$\frac{f'(x)}{f^2(x)} = \frac{x^2 - 1}{(x^2 + 1)^2} \Rightarrow \int \frac{f'(x)}{f^2(x)} dx = \int \frac{x^2 - 1}{(x^2 + 1)^2} dx \Rightarrow -\frac{1}{f(x)} = \int \frac{x^2 - 1}{(x^2 + 1)^2} dx \tag{1}$$

Mặt khác

$$\int \frac{x^2 - 1}{(x^2 + 1)^2} dx = -\int \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} dx = -\int \frac{x'(x^2 + 1) - x(x^2 + 1)'}{(x^2 + 1)^2} dx$$
$$= -\int \left(\frac{x}{x^2 + 1}\right)' dx = -\frac{x}{x^2 + 1} + C.$$

Thay vào (1) ta được $-\frac{1}{f(x)} = -\frac{x}{x^2 + 1} + C$.

Lại có
$$f(1) = 2 \Rightarrow C = 0 \Rightarrow f(x) = \frac{x^2 + 1}{x} \Rightarrow f(2) = \frac{5}{2}$$
.

Có thể tính nhanh qua tích phân

$$\frac{f'(x)}{f^2(x)} = \frac{x^2 - 1}{(x^2 + 1)^2} \Rightarrow \int_1^2 \frac{f'(x)}{f^2(x)} dx = \int_1^2 \frac{x^2 - 1}{(x^2 + 1)^2} dx \Rightarrow -\frac{1}{f(x)} \Big|_1^2 = \int_1^2 \frac{x^2 - 1}{(x^2 + 1)^2} dx = \frac{1}{10}.$$

Do đó
$$-\frac{1}{f(2)} + \frac{1}{f(1)} = \frac{1}{10} \Rightarrow \frac{1}{f(2)} = \frac{1}{2} - \frac{1}{10} = \frac{2}{5} \Rightarrow f(2) = \frac{5}{2}.$$

Nhận xét: Bài toán gốc không chuẩn khi chỉ cho f(x) thỏa mãn f(1)=2 và $(x^2+1)^2f'(x)=$ $[f(x)]^2(x^2-1)$ với mọi $x \in \mathbb{R}$ vì hàm số f(x) tìm được không xác định tại x=0 và thiếu điều kiện để chia hai vế cho $f^2(x)$.

Câu 5. Cho hàm số f(x) thỏa mãn $x^2f'(x) = f^2(x)(x\cos x - \sin x)$ với mọi $x \in (0;\pi)$. Biết rằng $f(x) \neq 0, \forall x \in \left[\frac{\pi}{6}; \frac{\pi}{4}\right]$ và $f\left(\frac{\pi}{6}\right) = -\frac{\pi}{3}$. Giá trị của $f\left(\frac{\pi}{4}\right)$ bằng

$$(A) f\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{4}.$$

(A)
$$f\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{4}$$
. (B) $f\left(\frac{\pi}{4}\right) = -\frac{\pi\sqrt{2}}{4}$. (C) $f\left(\frac{\pi}{4}\right) = -\frac{2\sqrt{2}}{\pi}$. (D) $f\left(\frac{\pi}{4}\right) = -2\sqrt{2}\pi$.

Lời giải.

Xét trên $\left[\frac{\pi}{6}; \frac{\pi}{4}\right]$, ta có

$$x^{2}f'(x) = f^{2}(x)(x\cos x - \sin x) \Leftrightarrow \frac{f'(x)}{f^{2}(x)} = \frac{x\cos x - \sin x}{x^{2}} \Rightarrow \frac{f'(x)}{f^{2}(x)} = \left(\frac{\sin x}{x}\right)'$$

$$\Rightarrow \int \frac{f'(x)}{f^{2}(x)} dx = \int \left(\frac{\sin x}{x}\right)' dx$$

$$\Rightarrow -\frac{1}{f(x)} = \frac{\sin x}{x} + C.$$

Lại có
$$f\left(\frac{\pi}{6}\right) = -\frac{\pi}{3} \Rightarrow \frac{3}{\pi} = \frac{3}{\pi} + C \Rightarrow C = 0 \Rightarrow f(x) = -\frac{x}{\sin x} \Rightarrow f\left(\frac{\pi}{4}\right) = -\frac{\pi\sqrt{2}}{4}$$
.

Chọn đáp án (B)

Câu 6. Cho hàm số f(x) thỏa mãn $(x^2+1)^2f'(x)=(x-1)^2\mathrm{e}^xf^2(x)$ với mọi $x\in\mathbb{R}$. Biết rằng $f(x) \neq 0, \forall x \in [0, 1]$ và f(0) = -1. Giá trị của f(1) bằng

(A)
$$-\frac{2}{e}$$
. (B) $\frac{1}{2e}$. (C) $\frac{e^2}{2}$.

$$\bigcirc B = \frac{1}{2e}.$$

$$\bigcirc$$
 $\frac{e^2}{2}$.

$$-\frac{\mathrm{e}}{2}$$

Lời giải.

Xét trên [0;1], ta có

$$(x^{2}+1)^{2}f'(x) = (x-1)^{2}e^{x}f^{2}(x) \Leftrightarrow \frac{f'(x)}{f^{2}(x)} = \frac{(x^{2}+1)e^{x}-2xe^{x}}{(x^{2}+1)^{2}} \Rightarrow \frac{f'(x)}{f^{2}(x)} = \left(\frac{e^{x}}{x^{2}+1}\right)'$$

$$\Rightarrow \int \frac{f'(x)}{f^{2}(x)} dx = \int \left(\frac{e^{x}}{x^{2}+1}\right)' dx$$

$$\Rightarrow -\frac{1}{f(x)} = \frac{e^{x}}{x^{2}+1} + C.$$

Lại có
$$f(0) = -1 \Rightarrow 1 = 1 + C \Rightarrow C = 0 \Rightarrow f(x) = -\frac{x^2 + 1}{e^x} \Rightarrow f(1) = -\frac{2}{e}$$
.

Chọn đáp án (A)

CHO F'(X) + G'(X)F(X) = H(X). TÍNH F(A), BIẾT F(B) = CD

Bài toán tổng quát

Cho hàm số f(x) xác định trên \mathbb{R} thỏa mãn f'(x) + g'(x)f(x) = h(x) với g(x) xác định trên khoảng (a;b) và h(x) là hàm liên tục trên khoảng [a,b]. Tính f(a), biết rằng f(b)=c.

Phương pháp giải: Theo đề bài ta có

$$f'(x) + g'(x)f(x) = h(x) \Leftrightarrow e^{g(x)}f'(x) + e^{g(x)}g'(x)f(x) = e^{g(x)}h(x)$$

$$\Leftrightarrow \int_{a}^{b} \left[e^{g(x)}f'(x) + e^{g(x)}g'(x)f(x)\right] dx = \int_{a}^{b} e^{g(x)}h(x) dx$$

$$\Leftrightarrow \left[e^{g(x)}f(x)\right] \Big|_{a}^{b} = \int_{a}^{b} e^{g(x)}h(x) dx$$

$$\Leftrightarrow e^{g(b)}f(b) - e^{g(a)}f(a) = \int_{a}^{b} e^{g(x)}h(x) dx$$

$$\Leftrightarrow f(a) = \frac{e^{g(b)}f(b) - \int_{a}^{b} e^{g(x)}h(x) dx}{e^{g(a)}}.$$

Chú ý: trong trường hợp h(x) = 0, ta có thể giải bài toán theo cách sau:

$$f'(x) + g'(x)f(x) = 0 \Leftrightarrow \int \frac{f'(x)}{f(x)} dx = -\int g'(x) dx$$
 (Với điều kiện $f(x) > 0, \forall x \in \mathbb{R}$).

 $\mathbf{V}\hat{\mathbf{I}} \mathbf{D}\mathbf{U}$ 4. Cho hàm số f(x) xác định trên \mathbb{R} , thỏa mãn $f(x) > 0, \forall x \in \mathbb{R}$ và f'(x) + 2f(x) = 0. Tính f(-1), biết rằng f(1) = 1.

 (\mathbf{A}) \mathbf{e}^4 .

B 3.

(C) e^{-2} .

 \bigcirc e^3 .

.....

Lời giải.

Ta có
$$f'(x) + 2f(x) = 0 \Leftrightarrow e^{2x} f'(x) + e^{2x} 2f(x) = 0$$

$$\Leftrightarrow \int_{-1}^{1} \left[e^{2x} f'(x) + e^{2x} 2f(x) \right] dx = 0$$

$$\Leftrightarrow \left[e^{2x} f(x) \right]_{-1}^{1} = 0$$

$$\Leftrightarrow e^{2} f(1) - e^{-2} f(-1) = 0$$

$$\Leftrightarrow f(-1) = e^{4}.$$

Chọn đáp án A

Câu 7. Cho hàm số f(x) xác định trên \mathbb{R} , thỏa mãn f'(x) + 2f(x) = 6x - 1. Tính f(-1), biết rằng f(1) = 2.

(A) $e^{-4} - 5$.

(B) $e^4 + 5$.

(C) $e^{-4} + 5$.

 $(\mathbf{D}) e^4 - 5.$

.....

Ta có
$$f'(x) + 2f(x) = 6x - 1 \Leftrightarrow e^{2x} f'(x) + e^{2x} 2f(x) = (6x - 1)e^{2x}$$

$$\Leftrightarrow \int_{-1}^{1} \left[e^{2x} f'(x) + e^{2x} 2f(x) \right] dx = \int_{-1}^{1} (6x - 1)e^{2x} dx$$

$$\Leftrightarrow \left[e^{2x} f(x) \right] \Big|_{-1}^{1} = \left[\frac{1}{2} (6x - 1)e^{2x} \right] \Big|_{-1}^{1} - \int_{-1}^{1} 3e^{2x} dx$$

$$\Leftrightarrow \left[e^{2x} f(x) \right] \Big|_{-1}^{1} = \left[(3x - 2)e^{2x} \right] \Big|_{-1}^{1}$$

$$\Leftrightarrow 2e^{2} - e^{-2} f(-1) = e^{2} + 5e^{-2}$$

$$\Leftrightarrow f(-1) = e^{4} - 5.$$

Chọn đáp án D

Câu 8. Cho hàm số f(x) xác định trên \mathbb{R} , thỏa mãn f'(x) + (2x - 3)f(x) = 0. Tính f(-1), biết rằng f(1) = 1.

$$\bigcirc$$
 e^4 .

$$(B) -2e^{-6}$$

$$(C)$$
 -2.

$$(\mathbf{D}) e^{-6}.$$

Lời giải.

Ta có
$$f'(x) + (2x - 3)f(x) = 0 \Leftrightarrow e^{x^2 - 3x} f'(x) + e^{x^2 - 3x} (2x - 3)f(x) = 0$$

$$\Leftrightarrow \int_{-1}^{1} \left[e^{x^2 - 3x} f'(x) + e^{x^2 - 3x} (2x - 3)f(x) \right] dx = 0$$

$$\Leftrightarrow \left[e^{x^2 - 3x} f(x) \right]_{-1}^{1} = 0$$

$$\Leftrightarrow e^{-2} - e^4 f(-1) = 0$$

$$\Leftrightarrow f(-1) = e^{-6}.$$

Chọn đáp án (D)

(E) CHO
$$F'(X) = \frac{1}{X^2 - (A+B)X + AB}$$
, $F(A+C) + F(B-C) = M$, VÓI $0 < C < B - A$, $F(A-D) + F(B+D) = N$. TÍNH $T = F(T_1) + F(T_2) + F(T_3)$

Bài toán tổng quát

Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \{a; b\}$, với a < b và thỏa mãn $f'(x) = \frac{1}{x^2 - (a+b)x + ab}$. Biết rằng f(a+c) + f(b-c) = m, với 0 < c < b-a, $m \in \mathbb{R}$ và f(a-d) + f(b+d) = n, với d > 0, $n \in \mathbb{R}$. Tính $T = f(t_1) + f(t_2) + f(t_3)$, với $t_1 \in (a; b)$ và $t_2, t_3 \in (-\infty; a) \cup (b + \infty)$.

Phương pháp giải: Ta có
$$f'(x) = \frac{1}{x^2 - (a+b)x + ab} = \frac{1}{b-a} \left[\frac{1}{x-b} - \frac{1}{x-a} \right].$$

$$\Rightarrow f(x) = \frac{1}{b-a} \ln \left| \frac{x-b}{x-a} \right| + C.$$
Bảng xét dấu

x	$-\infty$		a		b		$+\infty$
$\frac{x-b}{x-a}$		+		-	0	+	

- * Khi a < x < b: Ta sử dụng giả thiết $f\left(a+c\right) + f\left(b-c\right) = m$, với $0 < c < b-a, \, m \in \mathbb{R}$ để tìm
- * Khi x<-1 hoặc x>1: Ta sử dụng giả thiết $f\left(a-d\right)+f\left(b+d\right)=n,$ với d>0, $n\in\mathbb{R}$ để tìm

Tính T.

 $\mathbf{Z} \mathbf{V} \mathbf{I} \mathbf{D} \mathbf{U} \mathbf{5}$. Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \{-1, 1\}$ và thỏa mãn $f'(x) = \frac{1}{x^2 - 1}$. Biết rằng f(-3) + f(3) = 0 và $f\left(-\frac{1}{2}\right) + f\left(\frac{1}{2}\right) = 2$. Tính T = f(-2) + f(0) + f(4).

(A)
$$T = \ln 3 + \frac{1}{2} \ln 5$$
.

B
$$T = \ln 3 + \frac{1}{2} \ln 5 + 2.$$

$$T = \ln 3 - \frac{2}{3} \ln 5 + 1.$$

$$T = \ln 3 - \frac{1}{2} \ln 5 + 2.$$

Lời giải.

Ta có
$$f'(x) = \frac{1}{x^2 - 1} = \frac{1}{2} \left[\frac{1}{x - 1} - \frac{1}{x + 1} \right].$$

$$\Rightarrow f(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C.$$

Bảng xét dấu

x	$-\infty$		-1		1		$+\infty$
$\frac{x-1}{x+1}$		+		-	0	+	

* Khi
$$-1 < x < 1$$
: $f(x) = \frac{1}{2} \ln \left(-\frac{x-1}{x+1} \right) + C_1$.

$$f\left(-\frac{1}{2}\right) + f\left(\frac{1}{2}\right) = 2 \Leftrightarrow \frac{1}{2}\ln 3 + C_1 + \frac{1}{2}\ln\frac{1}{3} + C_1 = 2.$$

$$\Rightarrow C_1 = 1 \text{ và } f(0) = 2.$$

* Khi
$$x < -1$$
 hoặc $x > 1$: $f(x) = \frac{1}{2} \ln \left(\frac{x-1}{x+1} \right) + C_2$.

$$f(-3) + f(3) = 0 \Leftrightarrow \frac{1}{2} \ln 2 + C_2 + \frac{1}{2} \ln \frac{1}{2} + C_2 = 0.$$

$$\Rightarrow C_2 = 0 \text{ và } f(4) = \frac{1}{2} \ln \frac{3}{5}, f(-2) = \frac{1}{2} \ln 3.$$

Vậy
$$T = f(-2) + f(0) + f(4) = \frac{1}{2} \ln 3 + 2 + \frac{1}{2} \ln \frac{3}{5} = \ln 3 - \frac{1}{2} \ln 5 + 2.$$

Chọn đáp án (D)

Câu 9. Cho hàm số f(x) xác định trên $\mathbb{R}\setminus\{1;3\}$ và thỏa mãn $f'(x)=\frac{1}{x^2-4x+3}$. Biết rằng $f\left(\frac{1}{2}\right)+\frac{1}{2}$ $f\left(\frac{7}{2}\right) = 4 \text{ và } f\left(\frac{3}{2}\right) + f\left(\frac{5}{2}\right) = 2. \text{ Tính } T = f(-1) + f(0) + f(2).$

(A)
$$T = \frac{1}{2} \ln 6 + 2$$
.

B
$$T = \frac{1}{2} \ln 6 + 4$$

(A)
$$T = \frac{1}{2} \ln 6 + 2$$
. (B) $T = \frac{1}{2} \ln 6 + 4$. (C) $T = \frac{1}{2} \ln 2 + 1$. (D) $T = \frac{1}{2} \ln 3 + 3$.

$$T = \frac{1}{2} \ln 3 + 3.$$

Lời giải.

Ta có
$$f'(x) = \frac{1}{x^2 - 4x + 3} = \frac{1}{2} \left[\frac{1}{x - 3} - \frac{1}{x - 1} \right].$$

$$\Rightarrow f(x) = \frac{1}{2} \ln \left| \frac{x - 3}{x - 1} \right| + C.$$

Bảng xét dấu

x	$-\infty$	-	1		3		$+\infty$
$\frac{x-3}{x-1}$		+		_	0	+	

* Khi
$$1 < x < 3$$
: $f(x) = \frac{1}{2} \ln \left(-\frac{x-3}{x-1} \right) + C_1$.

$$f\left(\frac{3}{2}\right) + f\left(\frac{5}{2}\right) = 4 \Leftrightarrow \frac{1}{2}\ln 3 + C_1 + \frac{1}{2}\ln\frac{1}{3} + C_1 = 4.$$

$$\Rightarrow C_1 = 2 \text{ và } f(2) = 2.$$

* Khi
$$x < 1$$
 hoặc $x > 3$: $f(x) = \frac{1}{2} \ln \left(\frac{x-3}{x-1} \right) + C_2$.

$$f\left(\frac{1}{2}\right) + f\left(\frac{7}{2}\right) = 2 \Leftrightarrow \frac{1}{2}\ln 5 + C_2 + \frac{1}{2}\ln\frac{1}{5} + C_2 = 2.$$

$$\Rightarrow C_2 = 1 \text{ và } f(-1) = \frac{1}{2} \ln 2 + 1, f(0) = \frac{1}{2} \ln 3 + 1.$$

Vây
$$T = f(-1) + f(0) + f(2) = \frac{1}{2} \ln 2 + 1 + \frac{1}{2} \ln 3 + 1 + 2 = \frac{1}{2} \ln 6 + 4.$$

Chọn đáp án (B)

Câu 10. Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \{-1, 3\}$ và thỏa mãn $f'(x) = \frac{1}{x^2 - 2x - 3}$. Biết rằng f(-2) + f(4) = 0 và f(0) + f(2) = 6. Tính T = f(-5) + f(-3) + f(1). $(A) T = \frac{1}{4} \ln 3 + 2. \qquad (B) T = \frac{1}{4} \ln 2 + 4. \qquad (C) T = \frac{1}{4} \ln 6 + 6. \qquad (D) T = \frac{1}{4} \ln 6 + 8.$

$$\mathbf{A}$$
 $T = \frac{1}{4} \ln 3 + 2.$

B
$$T = \frac{1}{4} \ln 2 + 4$$

$$T = \frac{1}{4} \ln 6 + 6$$

$$T = \frac{1}{4} \ln 6 + 8$$

Ta có
$$f'(x) = \frac{1}{x^2 - 2x - 3} = \frac{1}{4} \left[\frac{1}{x - 3} - \frac{1}{x + 1} \right].$$

$$\Rightarrow f(x) = \frac{1}{4} \ln \left| \frac{x - 3}{x + 1} \right| + C.$$

Bảng xét dấu

x	$-\infty$		-1		3		$+\infty$
$\frac{x-3}{x+1}$		+		-	0	+	

* Khi
$$-1 < x < 3$$
: $f(x) = \frac{1}{4} \ln \left(-\frac{x-3}{x+1} \right) + C_1$.

$$f(0) + f(2) = 0 \Leftrightarrow \frac{1}{4} \ln 3 + C_1 + \frac{1}{4} \ln \frac{1}{3} + C_1 = 0.$$

$$\Rightarrow C_1 = 0 \text{ và } f(1) = 0.$$

* Khi
$$x < -1$$
 hoặc $x > 3$: $f(x) = \frac{1}{4} \ln \left(\frac{x-3}{x+1} \right) + C_2$.

$$f(-2) + f(4) = 6 \Leftrightarrow \frac{1}{4} \ln 5 + C_2 + \frac{1}{4} \ln \frac{1}{5} + C_2 = 6.$$

$$\Rightarrow C_2 = 3 \text{ và } f(-5) = \frac{1}{4} \ln 2 + 3, f(-3) = \frac{1}{4} \ln 3 + 3.$$

Vây
$$T = f(-5) + f(-3) + f(1) = \frac{1}{4} \ln 2 + 3 + \frac{1}{4} \ln 3 + 3 + 0 = \frac{1}{4} \ln 6 + 6.$$

Chọn đáp án (C)

CHO $P(F(X), F'(X), F''(X), X, \cdots) = Q(X)$, F(A) = B. TÍNH $F(X_0)$ Ø

Cho hàm số y = f(x) thỏa mãn $P(f(x), f'(x), f''(x), x, \dots) = Q(x), f(a) = b$ (a, b) đã biết). Tính $f(x_0)$.

Phương pháp giải:

- Tim F(x) sao cho $P(f(x), f'(x), f''(x), x, \dots) = F'(x)$.
- Lấy nguyên hàm hai vế ta được

$$\int F'(x) dF(x) = \int Q(x) dx \Leftrightarrow F(x) = \int Q(x) dx.$$

- Kết hợp với giả thiết f(a) = b ta tìm được F(x), từ đó suy ra f(x).
- Tính $f(x_0)$.

 $\mathbf{Z} \mathbf{V} \mathbf{I} \mathbf{D} \mathbf{U} \mathbf{G}.$ Cho hàm số f(x) liên tục trên \mathbb{R} và có $\int f(x) dx = 2$, $\int f(x) dx = 6$. Tính

$$I = \int_{-1}^{1} f(|2x - 1|) \, \mathrm{d}x.$$

$$(\mathbf{B})$$
 $I=4.$

$$C I = \frac{3}{2}$$
.

$$\bigcirc$$
 $I=6.$

Lời giải.

Ta có $2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}$. Từ đó ta có bảng xét dấu

Do đó:
$$I = \int_{-1}^{\frac{1}{2}} f(1 - 2x) dx + \int_{\frac{1}{2}}^{1} f(2x - 1) dx.$$

Ta xét
$$I_1 = \int_{-1}^{\frac{1}{2}} f(1-2x) dx$$
. Đặt $t = 1 - 2x \Rightarrow dt = -2 dx$. Đổi cận: $\begin{cases} x = -1 \Rightarrow t = 3 \\ x = \frac{1}{2} \Rightarrow t = 0. \end{cases}$

Do đó
$$I_1 = \frac{1}{2} \int_0^3 f(t) dt = \frac{1}{2} \int_0^3 f(x) dx = \frac{1}{2} \cdot 6 = 3.$$

Ta xét
$$I_2 = \int_{\frac{1}{2}}^1 f(2x-1) \, \mathrm{d}x$$
. Đặt $t = 2x-1 \Rightarrow \mathrm{d}t = 2 \, \mathrm{d}x$. Đổi cận:
$$\begin{cases} x = \frac{1}{2} \Rightarrow t = 0 \\ x = 1 \Rightarrow t = 1. \end{cases}$$

Do đó
$$I_1 = \frac{1}{2} \int_0^1 f(t) dt = \frac{1}{2} \int_0^1 f(x) dx = \frac{1}{2} \cdot 2 = 1.$$

Vậy $I = I_1 + I_2 = 4$.

Chọn đáp án (B)

Câu 11. Cho hàm số f(x) liên tục trên \mathbb{R} và có $\int_{0}^{8} f(x) dx = 1$, $\int_{0}^{7} f(x) dx = 6$. Tính $I = \int_{-2}^{3} f(|3x - 2|) dx$.

(A) $I = \frac{7}{3}$.
(B) I = 5.
(C) $I = \frac{5}{3}$.
(D) I = 7.

(A)
$$I = \frac{7}{3}$$
.

$$\mathbf{B}$$
 $I=5$.

$$C I = \frac{5}{3}.$$

$$\bigcirc$$
 $I=7$

Lời giải.

Ta có $3x - 2 = 0 \Leftrightarrow x = \frac{2}{3}$. Từ đó ta có bảng xét dấu

x	$-\infty$		$\frac{2}{3}$		$+\infty$
3x-2		_	0	+	

Do đó:
$$I = \int_{-2}^{\frac{2}{3}} f(2-3x) dx + \int_{\frac{2}{2}}^{3} f(3x-2) dx$$
.

Ta xét
$$I_1 = \int_{-2}^{\frac{2}{3}} f(2-3x) dx$$
. Đặt $t = 2 - 3x \Rightarrow dt = -3 dx$. Đổi cận: $\begin{cases} x = -2 \Rightarrow t = 8 \\ x = \frac{2}{3} \Rightarrow t = 0. \end{cases}$

Do đó
$$I_1 = \frac{1}{3} \int_0^8 f(t) dt = \frac{1}{3} \int_0^8 f(x) dx = \frac{1}{3} \cdot 6 = 2.$$

Ta xét
$$I_2 = \int_{\frac{2}{3}}^{3} f(3x-2) dx$$
. Đặt $t = 3x-2 \Rightarrow dt = 3 dx$. Đổi cận:
$$\begin{cases} x = \frac{2}{3} \Rightarrow t = 0 \\ x = 3 \Rightarrow t = 7. \end{cases}$$

Do đó
$$I_1 = \frac{1}{3} \int_0^{7} f(t) dt = \frac{1}{3} \int_0^{7} f(x) dx = \frac{1}{3} \cdot 1 = \frac{1}{3}.$$

Vây
$$I = I_1 + I_2 = \frac{7}{3}$$
.

Chọn đáp án (A)

Câu 12. Cho hàm số f(x) liên tục trên \mathbb{R} và có $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{2} f(x) dx = -1$. Tính $I = \int_{-3}^{6} f(|x+1|) dx$.

(A)
$$I = -2$$
.

$$I = 2$$
.

$$I = -1.$$

$$I = 0.$$

Lời giải.

Ta có $x + 1 = 0 \Leftrightarrow x = -1$. Từ đó ta có bảng xét dấu

x	$-\infty$		-1		$+\infty$
x+1		_	0	+	

Do đó:
$$I = \int_{-3}^{-1} f(-x-1) dx + \int_{-1}^{0} f(x+1) dx$$
.

Ta xét
$$I_1 = \int_{-3}^{-1} f(-x-1) dx$$
. Đặt $t = -x-1 \Rightarrow dt = -dx$. Đổi cận:
$$\begin{cases} x = -3 \Rightarrow t = 2 \\ x = -1 \Rightarrow t = 0. \end{cases}$$

Do đó
$$I_1 = \int_0^2 f(t) dt = \int_0^2 f(x) dx = -1.$$

Ta xét
$$I_2 = \int_{-1}^{0} f(x+1) dx$$
. Đặt $t = x+1 \Rightarrow dt = dx$. Đổi cận:
$$\begin{cases} x = -1 \Rightarrow t = 0 \\ x = 0 \Rightarrow t = 1. \end{cases}$$

Do đó
$$I_1 = \int_0^1 f(t) dt = \int_0^1 f(x) dx = 1.$$

Vậy $I = I_1 + I_2 = 0$.

Chọn đáp án (D)

CHO $F'(X) \cdot F(X) = X^4 + X^2$, F(0) = 2. TÍNH $F^2(2)$ G

VÍ DỤ 7. Cho hàm số y = f(x) thỏa mãn $f'(x) \cdot f(x) = x^4 + x^2$, f(0) = 2. Tính $f^2(2)$. **A** $f^2(2) = \frac{302}{15}$. **B** $f^2(2) = \frac{332}{15}$. **C** $f^2(2) = \frac{324}{15}$. **D** $f^2(2) = \frac{323}{15}$.

$$(A) f^2(2) = \frac{302}{15}$$

B
$$f^2(2) = \frac{332}{15}$$

$$f^2(2) = \frac{324}{15}$$

Lời giải.

Từ giả thiết ta có

$$f'(x) \cdot f(x) = x^4 + x^2 \Rightarrow \left[f^2(x) \right]' = 2x^4 + 2x^2$$

$$\Leftrightarrow \int \left[f^2(x) \right]' dx = \int \left(2x^4 + 2x^2 \right) dx$$

$$\Leftrightarrow f^2(x) = \frac{2}{5}x^5 + \frac{2}{3}x^3 + C.$$

Ta có $f(0) = 2 \Rightarrow f^2(0) = 4 \Rightarrow C = 4$, do đó $f^2(x) = \frac{2}{5}x^5 + \frac{2}{3}x^3 + 4$. Vây $f^2(2) = \frac{332}{15}$

Chọn đáp án (B)

Câu 13. Cho hàm số y = f(x) có đạo hàm và liên lục trên \mathbb{R} , thỏa mãn $f'(x) + f(x) = e^{-x} \cdot (x^2 + 2x + 1)$ và f(0) = 1. Tính f(1).

$$\frac{10}{3e}$$
.

$$\frac{10e}{3}$$
.

$$\bigcirc$$
 $\frac{4}{3e}$

Lời giải.

Từ giả thiết ta có

$$e^{x} f(x) + e^{x} f'(x) = x^{2} + 2x + 1 \Rightarrow (e^{x} f(x))' = x^{2} + 2x + 1.$$

Suy ra

$$\int (e^x f(x))' dx = \int (x^2 + 2x + 1) dx$$

$$\Leftrightarrow e^x f(x) = \frac{1}{3}x^3 + x^2 + x + C$$

$$\Leftrightarrow f(x) = e^{-x} \left(\frac{1}{3}x^3 + x^2 + x + C\right).$$

Mà f(0) = 1 nên C = 1. Vậy $f(1) = \frac{10}{3e}$.

Chọn đáp án (A)

Câu 14. Cho hàm số f(x) thỏa mãn $[f'(x)]^2 + f(x) \cdot f''(x) = 15x^4 + 12x, \forall x \in \mathbb{R}$ và f(0) = f'(0) = 1. Tính giá trị $f^2(3)$.

(A) 844.

B 843.

(C) 840.

D 822.

Lời giải.

Ta có

$$[f'(x)]^{2} + f(x) \cdot f''(x) = 15x^{4} + 12x$$

$$\Leftrightarrow [f'(x) \cdot f(x)]' = 15x^{4} + 12x$$

$$\Leftrightarrow f'(x) \cdot f(x) = 3x^{5} + 6x^{2} + C_{1}.$$

Do f(0) = f'(0) = 1 nên ta có $C_1 = 1$. Do đó:

$$f'(x) \cdot f(x) = 3x^5 + 6x^2 + 1$$

$$\Leftrightarrow \left(\frac{1}{2}f^2(x)\right)' = 3x^5 + 6x^2 + 1$$

$$\Leftrightarrow f^2(x) = x^6 + 4x^3 + 2x + C_2.$$

Mà f(0) = 1 nên $C_2 = 1$. Do đó $f^2(x) = x^6 + 4x^3 + 2x + 1$. Vậy $f^2(3) = 844$. Chọn đáp án \bigcirc

$oldsymbol{H}$ HÀM SỐ Y=F(X) CÓ BAO NHIỀU ĐIỂM CỰC TRỊ TRONG KHOẢNG (A;B)

Bài toán tổng quát

Biết F(x) là một nguyên hàm của hàm số y = f(x). Hỏi đồ thị hàm số y = F(x) có bao nhiều điểm cực trị trong khoảng (a; b)?

Phương pháp giải:

Để tìm được số điểm cực trị của đồ thị hàm số y = F(x) thì ta chỉ cần xét dấu hàm số f(x) trên khoảng (a;b).

 $\mathbf{Z} \mathbf{V} \mathbf{I} \mathbf{D} \mathbf{U}$ 8. Biết F(x) là một nguyên hàm của hàm số $f(x) = \frac{x \cos x - \sin x}{x^2}$. Hỏi đồ thị của hàm số y = F(x) có bao nhiều điểm cực trị trong khoảng $(0; 4\pi)$?

 (\mathbf{A}) 2.

B 1.

(C) 3

 \bigcirc 0.

Lời giải.

Ta chỉ cần xét dấu của $q(x) = x \cos x - \sin x$ trên $(0; 4\pi)$. Điều này tương đương với việc đi tìm các nghiệm của g(x) mà qua mỗi nghiệm g(x) đổi dấu.

Có
$$g'(x) = -x \sin x$$
. Trên $(0; 4\pi)$, $g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = \pi \\ x = 2\pi \\ x = 3\pi \end{bmatrix}$.

Ta có bảng biến thiên của g(x)

x	0		π		2π		3π		4π
g'(x)		_	0	+	0	_	0	+	
g(x)	0 \		$-\pi$		$\sqrt{2\pi}$		-3π		4π

Từ bảng biến thiên ta thấy trong khoảng $(0; 4\pi)$ phương trình g(x) = 0 có 3 nghiệm $x_1 \in (0; 2\pi)$, $x_2 \in (2\pi; 3\pi), x_3 \in (3\pi, 4\pi).$

Do đó ta có bảng xét dấu của g(x) như sau

x	0		x_1		x_2		x_3		4π
g(x)		_	0	+	0	_	0	+	

Từ bảng xét dấu của g(x) suy ra đồ thị hàm F(x) có 3 điểm cực trị trên $(0; 4\pi)$.

Chọn đáp án (C)

Câu 15. Biết F(x) là một nguyên hàm của hàm số $f(x) = \frac{2^{x+1} - x^2 \ln 2 - x \ln 4 - 1}{4 - x^2}$. Hỏi đồ thị của

hàm số y = F(x) có bao nhiêu điểm cực trị trong khoảng (-2, 2)?

(A) 2.

Lời giải.

Do $4 - x^2 > 0$, $\forall x \in (-2, 2)$ do đó ta chỉ cần xét dấu của $g(x) = 2^{x+1} - x^2 \ln 2 - x \ln 4 - 1$ trên (-2, 2). Điều này tương đương với việc đi tìm các nghiệm của q(x) mà qua mỗi nghiệm q(x) đổi dấu.

Có $g'(x) = 2 \ln 2 \cdot (2^x - x - 1), \ g''(x) = 2 \ln 2 \cdot (2^x \ln 2 - 1).$ Ta thấy g''(x) có nghiệm duy nhất $x = -\log_2 \ln 2$ nên g'(x) có không quá 2 nghiệm trên \mathbb{R} .

Mà nhận thấy x = 0; x = 1 là 2 nghiệm của g'(x). Vậy g'(x) có hai nghiệm phân biệt.

Ta có bảng biến thiên của q(x):

x	-2		0		1		2
g'(x)		+	0	_	0	+	
g(x)	$-\frac{1}{2}$		1	3	$-3\ln 2 >$	» 0	$7 - 8 \ln 2$

Từ bảng biến thiên ta thấy trong khoảng (-2,2) phương trình g(x)=0 có 1 nghiệm g(x) đổi dấu qua

Vậy đồ thị hàm F(x) có 1 điểm cực trị trên (-2; 2).

Chọn đáp án (B)

Câu 16. Biết F(x) liên tục trên $\left(-\frac{3}{2};+\infty\right)$ là một nguyên hàm của hàm số

Lời giải.

Ta chỉ cần xét dấu của $g(x) = 2x^2 - 6x + \ln(2x+3) + 4$ trên $\left(-\frac{3}{2}; +\infty\right)$. Điều này tương đương với việc đi tìm các nghiệm của g(x) mà qua mỗi nghiệm g(x) đổi dấu.

Có $g'(x) = 4x - 6 + \frac{2}{2x+3}$. Giải phương trình $g'(x) = 0 \Leftrightarrow x = \pm \sqrt{2}$.

Ta có bảng biến thiên của g(x):

x	$-\frac{3}{2}$	_	-	/2	$\sqrt{2}$		$+\infty$
g'(x)		+	0	_	0	+	
g(x)		$-\infty$	14,	72	1,27	7	$+\infty$

Từ bảng biến thiên ta thấy trong khoảng $\left(-\frac{3}{2};+\infty\right)$ phương trình g(x)=0 có 1 nghiệm mà g(x) đổi dấu qua nó.

Vậy đồ thị hàm F(x) có 1 điểm cực trị.

Chọn đáp án (B)

$\S 2$. TÍCH PHÂN SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN

CHO G(U) = X VỚI U = F(X),G(U) ĐƠN ĐIỆU TRÊN [A;B]. TÍNH $I = \int_A^B H(U) \, \mathrm{D} X$.

Bài toán tổng quát

Cho hàm số y=f(x) liên tục trên $\mathbb R$ và thỏa mãn $g(u)=x, \ \forall x\in \mathbb R$ với u=f(x) và hàm g(u) đơn điệu trên [a;b]. Tính $I=\int\limits_a^b h(u)\,\mathrm{d}x.$

Phương pháp giải: Đặt t=u, vì g(u)=x nên x=g(t), suy ra $\mathrm{d} x=g'(t)\,\mathrm{d} t$.

Vì hàm g(t) đơn điệu trên [a;b] nên ứng với mỗi giá trị của x, phương trình g(t)=x có duy nhất một nghiệm t.

Đổi cận: $x = a \Rightarrow g(t) = a \Leftrightarrow t = c; x = b \Rightarrow g(t) = b \Leftrightarrow t = d.$

Vậy $I = \int_{a}^{d} (h(t)) \cdot (g'(t)) dt$.

VÍ DỤ 1. Cho hàm số y = f(x) liên tục trên \mathbb{R} và thỏa mãn $f^3(x) + f(x) = x$, $\forall x \in \mathbb{R}$. Tính

$$I = \int_{-\infty}^{2} f(x) \, \mathrm{d}x.$$

 $\bigcirc A \quad \frac{5}{4}$

B $\frac{4}{5}$.

- \bigcirc $-\frac{5}{4}$.
- $-\frac{4}{5}$.

···········

Lời giải.

24

Đặt t = f(x), vì $f^3(x) + f(x) = x$ nên $x = t^3 + t$, suy ra $\mathrm{d}x = (3t^2 + 1)\,\mathrm{d}t$.

Đổi cận: $x = 0 \Rightarrow t^3 + t = 0 \Leftrightarrow t = 0$; $x = 2 \Rightarrow t^3 + t = 2 \Leftrightarrow t = 1$.

Vây
$$I = \int_{0}^{1} t(3t^2 + 1) dt = \int_{0}^{1} (3t^3 + t) dt = \left(\frac{3}{4}t^4 + \frac{1}{2}t^2\right) \Big|_{0}^{1} = \frac{5}{4}.$$

Chọn đáp án (A)

Câu 1. Cho hàm số y = f(x) liên tục trên $\mathbb R$ và thỏa mãn $f^3(x) + 2f(x) = x$, $\forall x \in \mathbb R$. Tính $I = \int_0^3 \left(1 - f^2(x)\right) \, \mathrm{d}x$.

- $\bigcirc A = \frac{15}{26}$.
- $(\mathbf{B}) \frac{26}{15}.$

 \bigcirc $\frac{26}{15}$.

Lời giải.

Đặt t=f(x), vì $f^3(x)+2f(x)=x$ nên $x=t^3+2t$, suy ra d $x=(3t^2+2)\,\mathrm{d}t$.

Đổi cận: $x = 0 \Rightarrow t^3 + 2t = 0 \Leftrightarrow t = 0$; $x = 3 \Rightarrow t^3 + 2t = 3 \Leftrightarrow t = 1$.

Vây
$$I = \int_{0}^{1} (1 - t^2)(3t^2 + 2) dt = \int_{0}^{1} (-3t^4 + t^2 + 2) dt = \left(-\frac{3}{5}t^5 + \frac{1}{3}t^3 + 2t\right)\Big|_{0}^{1} = \frac{26}{15}.$$

Chọn đáp án (D)

Câu 2. Cho hàm số y = f(x) liên tục trên \mathbb{R} và thỏa mãn $f^3(x) - f^2(x) + f(x) = x$, $\forall x \in \mathbb{R}$. Tính $I = \int_0^6 f(x) \, \mathrm{d}x.$

 $\frac{12}{97}$

- $\frac{}{\mathbf{B}} \frac{97}{12}$

 $\frac{\mathbf{D}}{\mathbf{Q7}} - \frac{12}{\mathbf{Q7}}$

Lời giải.

Đặt t = f(x), vì $f^3(x) - f^2(x) + f(x) = x$ nên $x = t^3 - t^2 + t$, suy ra $dx = (3t^2 - 2t + 1) dt$.

Đổi cận: $x = 1 \Rightarrow t^3 - t^2 + t = 1 \Leftrightarrow (t - 1)(t^2 + 1) = 0 \Leftrightarrow t = 1;$

 $x = 6 \Rightarrow t^3 - t^2 + t = 6 \Leftrightarrow (t - 2)(t^2 + t + 3) = 0 \Leftrightarrow t = 2.$

Vậy
$$I = \int_{1}^{2} t(3t^2 - 2t + 1) dt = \int_{1}^{2} (3t^3 - 2t^2 + t) dt = \left(\frac{3}{4}t^4 - \frac{2}{3}t^3 + \frac{1}{2}t^2\right)\Big|_{1}^{2} = \frac{97}{12}.$$

Chọn đáp án (C)

B CHO
$$F(X) + F(A - X) = G(X)$$
. TÎNH $\int_{0}^{A} F(X) DX$.

Bài toán tổng quát

Cho hàm số f(x), g(x) liên tục trên $\mathbb R$ thỏa mãn f(x)+f(a-x)=g(x) (với a>0). Tính tích phân $\int\limits_0^a f(x)\mathrm{d}x$.

Phương pháp giải: Đặt $a - x = t \Rightarrow dt = -dx$. Bảng đổi cận

x	0	a
t	a	0

Khi đó ta có

$$I = \int_{0}^{a} f(x)dx = -\int_{a}^{0} f(a-t)dt = \int_{0}^{a} f(a-t)dt = \int_{0}^{a} f(a-t)dx.$$

Suy ra $2I = \int_{0}^{a} [f(x) + f(a - x)] dx = \int_{0}^{a} g(x) dx.$

VÍ DỤ 2. Cho hàm số f(x) liên tục trên \mathbb{R} thỏa mãn $f(x) + f(2-x) = 2x^2 - 4x + 10$. Tính tích phân $\int_{-2}^{2} f(x) dx$.

$$\frac{13}{3}$$

$$\frac{14}{3}$$

Lời giải.

Đặt $2 - x = t \Rightarrow dt = -dx$. Bảng đổi cận

x	0	2
t	2	0

Khi đó ta có

$$I = \int_{0}^{2} f(x) dx = -\int_{2}^{0} f(2-t) dt = \int_{0}^{2} f(2-t) dt = \int_{0}^{2} f(2-t) dx.$$

Suy ra
$$2I = \int_{0}^{2} [f(x) + f(2-x)] dx = \int_{0}^{2} (2x^{2} - 4x + 10) dx = \frac{52}{2} \Rightarrow I = \frac{26}{3}.$$

Chọn đáp án (A)

Câu 3. Cho hàm số f(x) liên tục trên $\mathbb R$ thỏa mãn $f(x) + (1+x^2)f(1-x) = 1-x^2f(x)$. Tính tích phân $\int_0^1 f(x) dx$.

Lời giải.

Ta có $f(x) + (1+x^2)f(1-x) = 1 - x^2f(x) \Leftrightarrow f(x) + f(1-x) = \frac{1}{1+x^2}$.

Đặt $1 - x = u \Rightarrow du = -dx$. Bảng đổi cận

x	0	1
u	1	0

Khi đó ta có

$$I = \int_{0}^{1} f(x) dx = -\int_{1}^{0} f(1-u) du = \int_{0}^{1} f(1-x) dx.$$

Suy ra $2I = \int [f(x) + f(1-x)] dx = \int \frac{dx}{1+x^2}$.

Đặt $x = \tan t \Rightarrow dx = (1 + \tan^2 t)dt$. Bảng đổi cận

x	0	1
t	0	$\frac{\pi}{4}$

Suy ra $I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{(1 + \tan^2 t) dx}{1 + \tan^2 t} = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} dt = \frac{\pi}{8}.$

Chọn đáp án (D)

Câu 4. Cho hàm số f(x), g(x) liên tục trên $\mathbb R$ thỏa mãn f(x)+f(2-x)=g'(x), g(0)=10, g(2)=8.

Tính tích phân $\int_{\Omega} f(2x) dx$.

Lời giải.

Đặt $2x = t \Rightarrow dt = 2dx$. Bảng đổi cận

x	0	1
t	0	2

Khi đó ta có

$$I = \int_{0}^{1} f(2x) dx = 2 \int_{0}^{2} f(t) dt = 2 \int_{0}^{2} f(x) dx.$$

Đặt $2 - x = u \Rightarrow du = -dx$. Bảng đổi cận

x	0	2
u	2	0

Khi đó ta có

$$J = \int_{0}^{2} f(x)dx = -\int_{2}^{0} f(2-u)du = \int_{0}^{2} f(2-x)dx.$$

Suy ra
$$2J = \int_{0}^{2} [f(x) + f(2-x)] dx = \int_{0}^{2} g'(x) dx = g(2) - g(0) = 8 - 10 = -2 \Rightarrow I = -2.$$

Chọn đáp án (B)

CHO $A \cdot F(X) + B \cdot F(-X) = G(X)$, G(X) LÀ HÀM SỐ ĐÃ BIẾT, $A + B \neq 0$. TÍNH $I = \int F(X) \, \mathrm{D}X$.

Bài toán tổng quát

Cho hàm số f(x) liên tục trên \mathbb{R} và $a \cdot f(x) + b \cdot f(-x) = g(x)$, $\forall x \in \mathbb{R}$, g(x) là hàm số đã biết, $a + b \neq 0$. Tính $I = \int f(x) dx$.

Phương pháp giải:

- Bước 1. Đặt t = -x, ta có $I = \int_{-x}^{-n} -f(-t) dt = \int_{-x}^{n} f(-t) dt = \int_{-x}^{n} f(-x) dx$.
- Bước 2. Ta có $(a+b)I = \int_{-\infty}^{n} g(x) dx$, suy ra $I = \frac{1}{a+b} \int_{-\infty}^{n} g(x) dx$, rồi tính tích phân.

 VÍ DỤ 3. Cho hàm số f(x) liên tục trên $\mathbb R$ và $f(x)+f(-x)=\cos^2 x, \ \forall x\in\mathbb R$. Tính I= $\int f(x) \, \mathrm{d}x.$ (A) $I = \frac{\pi}{2} + 2 \ln 2$. (B) $I = \frac{\pi}{4}$. (C) $I = \frac{3\pi}{4}$. (D) $I = \frac{\pi}{4} + \ln 2$.

(A)
$$I = \frac{\pi}{2} + 2 \ln 2$$

$$C I = \frac{3\pi}{4}.$$

Lời giải.

$$V_{\text{ay }}I = \frac{\pi}{4}.$$

Chon đáp án (B)

Câu 5. Cho hàm số f(x) liên tục trên \mathbb{R} và $-3f(x) + f(-x) = x^2$, $\forall x \in \mathbb{R}$. Tính $I = \int f(x) dx$.

$$(A) I = \frac{2}{3}.$$

B
$$I = -\frac{1}{3}$$

$$I = \frac{1}{3}$$

(A)
$$I = \frac{2}{3}$$
. (B) $I = -\frac{1}{3}$. (C) $I = \frac{1}{3}$.

Lời giải.

28

Đặt
$$t = -x$$
, ta có $I = \int_{1}^{-1} -f(-t) dt = \int_{-1}^{1} f(-t) dt = \int_{-1}^{1} f(-x) dx$.

Ta có
$$-2I = \int_{-1}^{1} \left[-3f(x) + f(-x) \right] dx = \int_{-1}^{1} x^2 dx = \left. \frac{x^3}{3} \right|_{-1}^{1} = \frac{2}{3}.$$

Vậy
$$I = -\frac{1}{3}$$
.

Chọn đáp án (B)

Câu 6. Cho hàm số f(x) liên tục trên \mathbb{R} và thỏa mãn $f(x) + 2f(-x) = \sqrt{2 + 2\cos 2x}$, $\forall x \in \mathbb{R}$. Tính

$$I = \int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} f(x) \, \mathrm{d}x$$

(A)
$$I = 12$$
. **(B)** $I = 4$. **(C)** $I = 6$. **(D)** $I = 0$.

$$(\mathbf{B})$$
 $I=4.$

$$(C)$$
 $I = 6.$

$$(\mathbf{D})$$
 $I=0.$

Lời giải.

Dặt
$$t = -x$$
, ta có $I = \int_{\frac{3\pi}{2}}^{-\frac{3\pi}{2}} -f(-t) dt = \int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} f(-t) dt = \int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} f(-x) dx$.

Ta có

$$3I = \int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} [f(x) + 2f(-x)] dx = \int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} \sqrt{2(1 + \cos 2x)} dx = 2 \int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} |\cos x| dx$$

$$= 2 \int_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} -\cos x dx + 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x dx + 2 \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} -\cos x dx$$

$$= 2 (-\sin x)|_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} + 2 \sin x|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + 2 (-\sin x)|_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = 2(2 + 2 + 2) = 12.$$

Vâv I=4.

Chọn đáp án (B)

CHO F(X) + KF(U(X)) = G(X), U(U(X)) = X. TÍNH $I = \int_{-\infty}^{\infty} \frac{F(X)}{V(X)} DX$

Bài toán tổng quát

Cho hàm số y = f(x) liên tục trên tập [a; b] thỏa

$$f(x) + kf(u(x)) = g(x), \forall x \in [a; b];$$

trong đó: g liên tục trên [a;b] và $u:[a;b] \to [a;b]$ thỏa mãn u(u(x))=x.

Tính $I = \int \frac{f(x)}{v(x)} dx$, với v là hàm số liên tục trên [a;b] cho trước thỏa $v(x) \neq 0$, $\forall x \in [a;b]$.

Phương pháp giải: Đặt
$$J = \int_a^b \frac{f(u(x))}{v(x)} dx$$
.

Từ giả thiết, ta có

$$\frac{f(x)}{v(x)} + k \frac{f(u(x))}{v(x)} = \frac{g(x)}{v(x)}, \forall x \in [a; b];$$

suy ra

$$\int_{a}^{b} \frac{f(x)}{v(x)} dx + k \int_{a}^{b} \frac{f(u(x))}{v(x)} dx = \int_{a}^{b} \frac{g(x)}{v(x)} dx;$$

hay
$$I + kJ = c_1$$
, với $c_1 = \int_a^b \frac{g(x)}{v(x)} dx$.

Mặt khác, đặt t = u(x), ta có x = u(u(x)) = u(t). Suy ra

$$f(u(t)) + kf(t) = g(u(t)), \forall t \in [a; b].$$

Khi đó, ta có

$$\frac{f(u(t))}{v(t)} + k\frac{f(t)}{v(t)} = \frac{g(u(t))}{v(t)}, \forall t \in [a; b].$$

Suy ra

$$\int_{a}^{b} \frac{f(u(t))}{v(t)} dt + k \int_{a}^{b} \frac{f(t)}{v(t)} dt = \int_{a}^{b} \frac{g(u(t))}{v(t)} dt;$$

hay $J + kI = c_2$, với $c_2 = \int_a^b \frac{g(u(t))}{v(t)} dt$. Giải hệ phương trình

$$\begin{cases} I + kJ &= c_1 \\ kI + J &= c_2 \end{cases};$$

ta tính được giá trị I.

VÍ DỤ 4. Cho hàm số y = f(x) liên tục và thỏa mãn

$$f(x) + 2f\left(\frac{1}{x}\right) = 3x, \quad \forall x \in \left[\frac{1}{2}; 2\right].$$

Tính
$$I = \int_{\frac{1}{2}}^{2} \frac{f(x)}{x} dx$$
.

 $-\frac{3}{2}$.

 $\bigcirc \frac{9}{2}$

 $\bigcirc -\frac{9}{2}$.

Lời giải.

Đặt
$$J = \int_{\frac{1}{2}}^{2} \frac{1}{x} f\left(\frac{1}{x}\right) dx$$
.

Từ giả thiết, ta có

$$\int_{\frac{1}{2}}^{2} \frac{f(x)}{x} dx + 2 \int_{\frac{1}{2}}^{2} \frac{1}{x} f\left(\frac{1}{x}\right) dx = \int_{\frac{1}{2}}^{2} 3 dx.$$

Suy ra $I + 2J = \frac{9}{2}$.

Mặt khác, đặt $t = \frac{1}{r}$. Khi đó, ta có

$$f\left(\frac{1}{t}\right) + 2f(t) = \frac{3}{t}, \, \forall t \in \left[\frac{1}{2}; 2\right].$$

Suy ra

$$\int_{\frac{1}{2}}^{2} \frac{1}{t} f\left(\frac{1}{t}\right) dx + 2 \int_{\frac{1}{2}}^{2} \frac{f(t)}{t} dx = \int_{\frac{1}{2}}^{2} \frac{3}{t^2} dx;$$

hay $2I + J = \frac{9}{2}$.

Ta có hệ phương trình

$$\begin{cases} I + 2J &= \frac{9}{2} \\ 2I + J &= \frac{9}{2}. \end{cases}$$

Vậy $I = \frac{3}{2}$.

Chọn đáp án (B)

Câu 7. Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa

$$f(x) + 3f(-x) = \frac{\cos x}{2 + \sin x}, \forall x \in \mathbb{R}.$$

Tính
$$I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f(x)\,\mathrm{d}x.$$
 (A) $\ln 3$. (B) $-\ln 3$. (C) $\ln \sqrt{3}$. (D) $-\ln \sqrt{3}$. Lời giải. $\frac{\pi}{2}$

$$(\mathbf{B}) - \ln 3$$

$$\bigcirc$$
 $\ln \sqrt{3}$.

$$(\mathbf{D}) - \ln \sqrt{3}$$

Đặt
$$J = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(-x) \, \mathrm{d}x.$$

Từ giả thiết, ta có

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx + 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(-x) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{2 + \sin x} dx;$$

hav $I + 3J = \ln 3$.

Mặt khác, đặt t = -x. Khi đó, ta có

$$f(-t) + 3f(t) = \frac{\cos t}{2 - \sin t}, \forall t \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right].$$

Suy ra

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(-t) dt + 3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t) dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos t}{2 - \sin t} dt;$$

hay $3I + J = -\ln 3$.

Ta có hệ phương trình

$$\begin{cases} I + 3J &= \ln 3 \\ 3I + J &= -\ln 3. \end{cases}$$

Vậy
$$I = -\frac{\ln 3}{2} = -\ln \sqrt{3}$$
.

Chọn đáp án (D

Câu 8. Cho hàm số y = f(x) liên tục trên đoạn [0; 1] thỏa

$$3f(x) + 2f(1-x) = (x^2 - 2x + 2)^2(1+x^2), \forall x \in [0;1].$$

$$Tinh I = \int_{0}^{1} \frac{f(x)}{1+x^2} dx.$$

(A)
$$\frac{11}{5}$$
. (B) $\frac{5}{11}$. (C) $\frac{11}{25}$.

$$\bigcirc$$
 $\frac{11}{25}$.

$$\bigcirc$$
 $\frac{25}{11}$

Lời giải.

Đặt
$$J = \int_{0}^{1} \frac{f(1-x)}{1+x^2} dx$$
.

Từ giả thiết, ta có

$$3\int_{0}^{1} \frac{f(x)}{1+x^{2}} dx + 2\int_{0}^{1} \frac{f(1-x)}{1+x^{2}} dx = \int_{0}^{1} (x^{2}-2x+2)^{2} dx.$$

Suy ra $3I + 2J = \frac{28}{15}$.

Mặt khác, đặt t = 1 - x. Khi đó, ta có

$$3f(1-t) + 2f(t) = (1+t^2)^2(t^2-2t+2), \forall t \in [0,1].$$

Suy ra

$$3\int_{0}^{1} \frac{f(1-t)}{1+t^{2}} dt + 2\int_{0}^{1} \frac{f(t)}{1+t^{2}} dt = \int_{0}^{1} (1+t^{2})(t^{2}-2t+2) dt;$$

hay $2I + 3J = \frac{17}{10}$.

Ta có hệ phương trình

$$\begin{cases} 3I + 2J &= \frac{28}{15} \\ 2I + 3J &= \frac{17}{10}. \end{cases}$$

Vậy $I = \frac{11}{25}$.

Chọn đáp án (C)

(B) CHO
$$Y = F(X)$$
 LÀ HÀM SỐ CHẮN (HOẶC LỂ), $\int\limits_{R}^{C} F(X) \, \mathrm{D}X = U$ VÀ

$$\int\limits_{\frac{C}{K}}^{\frac{A}{K}} F(-KX) \, \mathrm{D}X = V \; . \; \mathsf{TÍNH} \int\limits_{B}^{A} F(X) \, \mathrm{D}X.$$

Bài toán tổng quát

Cho y = f(x) là hàm số chẵn (hoặc lẻ), có đạo hàm trên đoạn $[-a;a], \int f(x) dx = u$ và

$$\int\limits_{\frac{c}{k}}^{\frac{a}{k}} f(-kx) \, \mathrm{d}x = v \text{ (với các số thực dương } b, c, k \text{ thỏa mãn } b, c, \frac{c}{k}, \frac{a}{k} \in [-a; a]). \text{ Tính } \int\limits_{b}^{a} f(x) \, \mathrm{d}x.$$

Phương pháp giải: Áp dụng phương pháp đổi biến số và vận dụng các tính chất của hàm số chẵn hoặc lẻ.

- f(-x) = f(x) với y = f(x) là hàm số chẵn.
- f(-x) = -f(x) với y = f(x) là hàm số lẻ.

VÍ DỤ 5. Cho y=f(x) là hàm số chẵn, có đạo hàm trên đoạn $[-6;6], \int f(x) \,\mathrm{d}x = 8$ và

$$\int_{1}^{3} f(-2x) dx = 3. \text{ Tính } \int_{-1}^{6} f(x) dx.$$
(A) $I = 2$. (B) $I = 5$.

Lời giải.

Đặt t=2x thì $\mathrm{d}t=2\,\mathrm{d}x$. Đổi cận: x=1 thì t=2 và x=3 thì t=6.

Khi đó $\int_{1}^{3} f(-2x) dx = \frac{1}{2} \int_{0}^{6} f(-t) dt = \frac{1}{2} \int_{0}^{6} f(t) dt = \frac{1}{2} \int_{0}^{6} f(x) dx$ (do y = f(t) là hàm số chẵn).

Suy ra
$$\int_{2}^{6} f(x) dx = 6.$$

Từ đó, ta có $\int_{1}^{6} f(x) dx = \int_{1}^{2} f(x) dx + \int_{2}^{6} f(x) dx = 14.$

Chọn đáp án (D)

Câu 9. Cho y = f(x) là hàm số chẵn, có đạo hàm trên đoạn [-8;8], $\int f(x) dx = 3$ và $\int f(-2x) dx = 6$

2. Tính
$$\int_{3}^{8} f(x) dx$$
.

(A)
$$I = 6$$
. **(B)** $I = 7$. **(C)** $I = 5$. **(D)** $I = 8$.

$$\bullet$$
 $I=7$

$$\bigcirc$$
 $I=5$

$$I = 8.$$

Lời giải.

Đặt t=2x thì $\mathrm{d}t=2\,\mathrm{d}x$. Đổi cận: x=1 thì t=2 và x=4 thì t=8.

Khi đó
$$\int_{1}^{4} f(-2x) dx = \frac{1}{2} \int_{2}^{8} f(-t) dt = \frac{1}{2} \int_{2}^{8} f(t) dt = \frac{1}{2} \int_{2}^{8} f(x) dx$$
 (do $y = f(t)$ là hàm số chẵn).

Suy ra
$$\int_{0}^{8} f(x) dx = 4$$
.

Từ đó, ta có
$$\int_{-3}^{8} f(x) dx = \int_{-3}^{2} f(x) dx + \int_{2}^{8} f(x) dx = 7.$$

Chọn đáp án (B)

Câu 10. Cho y = f(x) là hàm số lẻ, có đạo hàm trên đoạn $[-9; 9], \int f(x) dx = 4$ và $\int f(-3x) dx = 2$.

Tính $\int f(x) dx$.

$$(A)$$
 $I = -2$. (B) $I = 0$. (C) $I = 2$. (D) $I = 6$.

$$\mathbf{B}$$
 $I=0.$

$$(C)$$
 $I=2.$

$$(\mathbf{D})$$
 $I=6$

Lời giải.

Đặt t = -3x thì dt = 3 dx. Đổi cận: x = 1 thì t = 3 và x = 3 thì t = 9.

Khi đó
$$\int_{1}^{3} f(-3x) dx = \frac{1}{3} \int_{3}^{9} f(-t) dt = -\frac{1}{3} \int_{3}^{9} f(t) dt = -\frac{1}{3} \int_{3}^{9} f(x) dx \text{ (do } y = f(t) \text{ là hàm số lẻ)}.$$

Suy ra
$$\int_{-9}^{9} f(x) \, \mathrm{d}x = -6.$$

Từ đó, ta có
$$\int_{-4}^{9} f(x) dx = \int_{-4}^{3} f(x) dx + \int_{3}^{9} f(x) dx = -2.$$

Chọn đáp án (A

Bài toán tông quát

Cho a, b, c và d là các số dương. Khi đó

$$\int_{a}^{b} \frac{\mathrm{d}x}{(x+c)\sqrt{x+d} + (x+d)\sqrt{x+c}} = \frac{2}{c-d} \left[\sqrt{b+d} - \sqrt{b+c} - \left(\sqrt{a+d} - \sqrt{a+c} \right) \right]$$

Phương pháp giải:

$$\int_{a}^{b} \frac{\mathrm{d}x}{(x+c)\sqrt{x+d} + (x+d)\sqrt{x+c}} = \int_{a}^{b} \frac{1}{\sqrt{x+c}\sqrt{x+d}} \frac{1}{(\sqrt{x+c}+\sqrt{x+d})} \, \mathrm{d}x$$

$$= \frac{1}{c-d} \int_{a}^{b} \frac{\sqrt{x+c}-\sqrt{x+d}}{\sqrt{x+c}\sqrt{x+d}} \, \mathrm{d}x$$

$$= \frac{1}{c-d} \int_{a}^{b} \left(\frac{1}{\sqrt{x+d}} - \frac{1}{\sqrt{x+c}}\right) \, \mathrm{d}x$$

$$= \frac{2}{c-d} \left(\sqrt{x+d} - \sqrt{x+c}\right) \Big|_{a}^{b}$$

$$= \frac{2}{c-d} \left[\sqrt{b+d} - \sqrt{b+c} - \left(\sqrt{a+d} - \sqrt{a+c}\right)\right].$$

VÍ DỤ 6. Biết
$$\int_{1}^{2} \frac{\mathrm{d}x}{x\sqrt{x+2} + (x+2)\sqrt{x}} = \sqrt{a} + \sqrt{b} - c$$
, với $a, b, c \in \mathbb{Z}^+$. Tính $P = a + b + c$.

(A) 8.

Lời giải.

$$\int_{1}^{2} \frac{dx}{x\sqrt{x+2} + (x+2)\sqrt{x}} = \int_{1}^{2} \frac{dx}{\sqrt{x}\sqrt{x+2}(\sqrt{x} + \sqrt{x+2})} = \int_{1}^{2} \frac{\sqrt{x+2} - \sqrt{x}}{2\sqrt{x}\sqrt{x+2}} dx$$
$$= \frac{1}{2} \int_{1}^{2} \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+2}}\right) dx = \left(\sqrt{x} - \sqrt{x+2}\right) \Big|_{1}^{2}$$
$$= \sqrt{3} + \sqrt{2} - 3.$$

Suy ra a = 3, b = 2 và c = 3. Do đó P = a + b + c = 8.

Chọn đáp án (A)

Câu 11. Biết $\int_{0}^{4} \frac{dx}{(x+1)\sqrt{x+3} + (x+3)\sqrt{x+1}} = -\sqrt{a} + 2\sqrt{b} - \sqrt{c}$, với $a, b, c \in \mathbb{Z}^{+}, a > c$. Tính

P = a + b + c. (A) 15.

B 30. C 10. D 8.

Lời giải.

$$\int_{2}^{4} \frac{dx}{(x+1)\sqrt{x+3} + (x+3)\sqrt{x+1}} = \int_{2}^{4} \frac{dx}{\sqrt{x+1}\sqrt{x+3} \left(\sqrt{x+1} + \sqrt{x+3}\right)} = \int_{2}^{4} \frac{\sqrt{x+3} - \sqrt{x+1}}{2\sqrt{x+1}\sqrt{x+3}} dx$$

$$= \frac{1}{2} \int_{2}^{4} \left(\frac{1}{\sqrt{x+1}} - \frac{1}{\sqrt{x+3}}\right) dx = \left(\sqrt{x+1} - \sqrt{x+3}\right) \Big|_{2}^{4}$$

$$= -\sqrt{7} + 2\sqrt{5} - \sqrt{3}.$$

Suy ra a = 7, b = 5 và c = 3. Do đó P = a + b + c = 15.

Chọn đáp án (A)

Câu 12. Biết
$$\int_{1}^{5} \frac{dx}{(x+2)\sqrt{x+3} + (x+3)\sqrt{x+2}} = a(1-\sqrt{2}) - b\sqrt{3} + c\sqrt{7}$$
, với $a, b, c \in \mathbb{Z}^{+}$. Tính $P = a + b + c$.

(A) 8. (B) 3. (C) 6. (D) 4.

Lời giải.

$$\int_{1}^{5} \frac{dx}{(x+2)\sqrt{x+3} + (x+3)\sqrt{x+2}} = \int_{1}^{5} \frac{dx}{\sqrt{x+2}\sqrt{x+3} \left(\sqrt{x+2} + \sqrt{x+3}\right)} = \int_{1}^{5} \frac{\sqrt{x+3} - \sqrt{x+2}}{\sqrt{x+2}\sqrt{x+3}} dx$$

$$= \int_{1}^{5} \left(\frac{1}{\sqrt{x+2}} - \frac{1}{\sqrt{x+3}}\right) dx = 2\left(\sqrt{x+2} - \sqrt{x+3}\right)\Big|_{1}^{5}$$

$$= 4(1-\sqrt{2}) - 2\sqrt{3} + 2\sqrt{7}.$$

Suy ra a = b = 2 và c = 2. Do đó P = a + b + c = 8.

Chọn đáp án (A)

Câu 13. Biết $\int_{1}^{z} \frac{\mathrm{d}x}{(x+1)\sqrt{x}+x\sqrt{x+1}} = \sqrt{a}-\sqrt{b}-c$, với a, b, c là các số nguyên dương. Tính P = a + b + c.**B** P = 12. **C** P = 18. **D** P = 46.

(A)
$$P = 24$$
.

B
$$P = 12$$

$$(C)$$
 $P = 18.$

$$(D) P = 46$$

Lời giải.

Ta có

$$\frac{1}{(x+1)\sqrt{x} + x\sqrt{x+1}} = \frac{1}{\sqrt{x(x+1)}.\left(\sqrt{x+1} + \sqrt{x}\right)} = \frac{\sqrt{x+1} - \sqrt{x}}{\sqrt{x(x+1)}} = \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}}.$$

Do đó

$$\int_{1}^{2} \frac{dx}{(x+1)\sqrt{x} + x\sqrt{x+1}} = \int_{1}^{2} \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}}\right) dx = \int_{2}^{2} \left(x^{-\frac{1}{2}} - (x+1)^{-\frac{1}{2}}\right) dx$$
$$= 2\left(\sqrt{x} - \sqrt{x+1}\right)\Big|_{1}^{2} = 4\sqrt{2} - 2\sqrt{3} - 2 = \sqrt{32} - \sqrt{12} - 2.$$

Suy ra a = 32, b = 12, c = 2. Vậy P = a + b + c = 32 + 12 + 2 = 46.

Chọn đáp án (D)

Cho hàm số f(x) liên tục trên [-a;a] và là hàm số chẵn. Biết $\int f(kx) dx = T$ (với a = kb). Tính

 $I = \int f[u(x)]u'(x) dx$ (trong đó u(x) là hàm số liên tục trên $[\alpha; \beta]$ và $u(\alpha) = -a, u(\beta) = a$).

Phương pháp giải: Đặt $v = kx \Rightarrow dv = k dx$.

Đổi cận $x = 0 \Rightarrow v = 0, x = b \Rightarrow v = a$.

Do đó
$$T = \int_0^b f(kx) dx = \frac{1}{k} \int_0^a f(v) dv \Rightarrow \int_0^a f(v) dv = kT.$$

Đặt $t=u(x)\Rightarrow \mathrm{d}t=u'(x)\,\mathrm{d}x.$ Đổi cận $x=\alpha\Rightarrow t=-a,\,x=\beta\Rightarrow t=a.$

Khi đó
$$I = \int_{\alpha}^{\beta} f[u(x)]u'(x) dx = \int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt = 2kT.$$

Lưu ý:

36

Nếu f(x) liên tục trên [-a;a] và là hàm số chẵn thì $\int_a^a f(x) dx = 2 \int_a^a f(x) dx = 2 \int_a^a f(x) dx$.

Nếu f(x) liên tục trên [-a;a] và là hàm số lẻ thì $\int_{-a}^{a} f(x) dx = 0$, $\int_{-a}^{a} f(x) dx = -\int_{-a}^{0} f(x) dx$.

VÍ DỤ 7. Cho hàm số f(x) liên tục trên \mathbb{R} và thỏa mãn $\int_{\mathbb{R}}^{\mathfrak{T}} f(\tan x) \, \mathrm{d}x = 4$, $\int_{\mathbb{R}} \frac{x^2 f(x)}{x^2 + 1} \, \mathrm{d}x = 2$.

Giá trị của tích phân $I = \int f(x) dx$ thuộc khoảng nào dưới đây?

(A) (5; 9).

(B) (3; 6).

 \bigcirc $(\sqrt{2};5).$

 (\mathbf{D}) (1;4).

Lời giải.

Dặt $t = \tan x \Rightarrow dt = (1 + \tan^2 x) dx \Rightarrow dx = \frac{1}{1 + t^2} dt$.

Với $x = 0 \Rightarrow t = 0, x = \frac{\pi}{4} \Rightarrow t = 1$. Ta có

$$4 = \int_{0}^{1} \frac{f(t)}{1+t^{2}} dt = \int_{0}^{1} \frac{f(x)}{1+x^{2}} dx. \quad (1)$$

Từ giả thiết ta có $\int \frac{x^2 f(x)}{x^2 + 1} dx = 2$. (2)

Lấy (1) cộng với (2), ta có

$$4 + 2 = \int_{0}^{1} \frac{f(x)}{1+x^{2}} dx + \int_{0}^{1} \frac{x^{2} f(x)}{x^{2}+1} dx = \int_{0}^{1} \frac{f(x)(1+x^{2})}{1+x^{2}} dx = \int_{0}^{1} f(x) dx.$$

Vậy suy ra
$$I = \int_{0}^{1} f(x) dx = 6 \in (5; 9).$$

Chọn đáp án (A)

Câu 14. Cho hàm số f(x) liên tục trên \mathbb{R} và thỏa mãn $\int_{-\infty}^{2} f(\cot x) dx = m$, $\int_{-\infty}^{1} \frac{x^2 f(x)}{x^2 + 1} dx = 1$. Xác định

m để tích phân $I=\int f(x)\,\mathrm{d}x$ nhận giá trị dương. (A) m > 1. (B) m > 0. (C) m > -1. (D) m < 1.

$$(\mathbf{A})$$
 $m > 1$.

$$(\mathbf{B})$$
 $m > 0$

$$(C)$$
 $m > -1.$

$$(\mathbf{\overline{D}})$$
 $m < 1.$

Dặt $t = \cot x \Rightarrow dt = -(1 + \cot^2 x) dx \Rightarrow dx = -\frac{1}{1+t^2} dt$. Với $x = \frac{\pi}{4} \Rightarrow t = 1, x = \frac{\pi}{2} \Rightarrow t = 0.$ Ta có

$$m = -\int_{1}^{0} \frac{f(t)}{1+t^{2}} dt = \int_{0}^{1} \frac{f(t)}{1+t^{2}} dt = \int_{0}^{1} \frac{f(x)}{1+x^{2}} dx.$$
 (1)

Từ giả thiết ta có $\int \frac{x^2 f(x)}{x^2 + 1} dx = 1$. (2)

Lấy (1) cộng với (2), ta có

$$m+1 = \int_{0}^{1} \frac{f(x)}{1+x^{2}} dx + \int_{0}^{1} \frac{x^{2}f(x)}{x^{2}+1} dx = \int_{0}^{1} \frac{f(x)(1+x^{2})}{1+x^{2}} dx = \int_{0}^{1} f(x) dx.$$

Suy ra $I = \int f(x) dx = m + 1$, vậy yêu cầu bài toán $\Leftrightarrow m + 1 > 0 \Leftrightarrow m > -1$.

Chọn đáp án (C)

Câu 15. Cho hàm số f(x) liên tục trên \mathbb{R}^+ và thỏa mãn $\int_{\mathbb{R}^+}^{\mathbb{R}^2} f(e^x) dx = 1$, $\int_{\mathbb{R}^+}^{\mathbb{R}^2} \left(1 - \frac{1}{x}\right) f(x) dx = 2$. Giá

trị của tích phân $I = \int\limits_{\cdot}^{x} f(x) \,\mathrm{d}x$ thuộc khoảng nào dưới đây?

$$(B)$$
 (3;6)

B
$$(3;6)$$
. **C** $(\sqrt{2};5)$. **D** $(1;2\sqrt{2})$.

$$(1; 2\sqrt{2}).$$

Lời giải.

Đặt
$$t = e^x \Rightarrow dt = e^x dx \Rightarrow dx = \frac{1}{t} dt$$
.
Với $x = 0 \Rightarrow t = 1, x = \ln 2 \Rightarrow t = 2$. Ta có

$$1 = \int_{1}^{2} \frac{f(t)}{t} dt = \int_{1}^{2} \frac{f(x)}{x} dx. \quad (1)$$

Từ giả thiết ta có
$$\int_{-\infty}^{2} \left(1 - \frac{1}{x}\right) f(x) dx = 2. \quad (2)$$

Lấy (1) cộng với (2), ta có

$$1 + 2 = \int_{1}^{2} \frac{f(x)}{x} dx + \int_{1}^{2} \left(1 - \frac{1}{x}\right) f(x) dx = \int_{1}^{2} f(x) \left(\frac{1}{x} + 1 - \frac{1}{x}\right) dx = \int_{1}^{2} f(x) dx.$$

Vậy suy ra
$$I = \int_{-2}^{2} f(x) dx = 3 \in (\sqrt{2}; 5).$$

Chọn đáp án C

 $\mathbf{V}\mathbf{I} \mathbf{D}\mathbf{U} \mathbf{8}$. Cho hàm số f(x) liên tục trên đoạn [-2;2] và là hàm số chẵn. Biết $\int_{0}^{1} f(2x) \, \mathrm{d}x = 4$.

Tính $I = \int_{-\infty}^{2} f(x) \, \mathrm{d}x.$

$$I = 16.$$

$$B I = 4.$$

$$I = 8.$$

$$(\mathbf{D})$$
 $I=2$

Lời giải.

 $\text{D} \, \text{\'at} \, \, t = 2x \Rightarrow \, \text{d} t = 2 \, \text{d} x.$

Với $x = 0 \Rightarrow t = 0$; với $x = 1 \Rightarrow t = 2$.

Khi đó
$$4 = \int_{0}^{1} f(2x) dx = \frac{1}{2} \int_{0}^{2} f(t) dt \Rightarrow \int_{0}^{2} f(t) dt = 8.$$

Vì f(x) là hàm số chẵn trên [-2; 2] nên $I = \int_{-2}^{2} f(x) dx = 2 \int_{0}^{2} f(x) dx = 8 \cdot 2 = 16.$

Chọn đáp án (A)

Câu 16. Cho hàm số f(x) liên tục trên [-4;4] và là hàm số chắn. Biết $\int_0^1 f(4x) dx = 5$. Tính I = 6

$$\int_{-2}^{6} f(x-2) \, \mathrm{d}x.$$

$$(A)$$
 $I = 40.$

(B)
$$I = 20$$

$$(C)$$
 $I = 10$

$$(\mathbf{D}) I = 5.$$

Lời giải.

Đặt $t = 4x \Rightarrow dt = 4 dx$, đổi cận: $x = 0 \Rightarrow t = 0$, $x = 1 \Rightarrow t = 4$.

Khi đó
$$5 = \int_{0}^{1} f(4x) dx = \frac{1}{4} \int_{0}^{4} f(t) dt \Rightarrow \int_{0}^{4} f(t) dt = 20.$$

Đặt
$$u = x - 2 \Rightarrow du = dx$$
; đổi cận: $x = -2 \Rightarrow u = -4$, $x = 6 \Rightarrow u = 4$

Suy ra
$$I = \int_{-4}^{4} f(u) du = 2 \int_{0}^{4} f(u) du = 2 \cdot 20 = 40$$
 (do f là hàm số chẵn).

Chọn đáp án (A)

Câu 17. Cho hàm số f(x) liên tục trên [-2;2] và là hàm số chẵn. Biết $\int_{-1}^{1} f(2x) dx = 8$. Tính I =

$$\int_{\frac{1}{2}}^{1} f(|2 - 4x|) \, \mathrm{d}x.$$

$$(\mathbf{A}) \ I = 2.$$

$$(\mathbf{B})$$
 $I=4$

$$(C)$$
 $I = 8.$

$$I = 32.$$

Lời giải.

Đặt $t = 2x \Rightarrow dt = 2 dx$, đổi cận: $x = -1 \Rightarrow t = -2$, $x = 1 \Rightarrow t = 2$.

Khi đó
$$8 = \int_{-1}^{1} f(2x) dx = \frac{1}{2} \int_{-2}^{2} f(t) dt \Rightarrow \int_{-2}^{2} f(t) dt = 16.$$

Với
$$x \in \left[\frac{1}{2}; 1\right]$$
 thì $|2 - 4x| = 4x - 2$.

Đặt
$$u=|2-4x|=4x-2\Rightarrow \,\mathrm{d} u=4\,\mathrm{d} x,$$
 đổi cận: $x=\frac{1}{2}\Rightarrow u=0,\,x=1\Rightarrow u=2.$

Suy ra
$$I = \frac{1}{4} \int_{0}^{2} f(u) du = \frac{1}{2} \cdot \frac{1}{4} \int_{-2}^{2} f(u) du = \frac{1}{8} \cdot 16 = 2$$
 (do f là hàm số chẵn).

Chọn đáp án (A)

Bài toán tổng quát

Cho f(x), f(u) liên tục trên \mathscr{D} đồng thời thỏa mãn $\alpha f(x) + \beta f(u) = g(x)$ với $\alpha, \beta \in \mathbb{R}$. Tính $\int_{a}^{b} f(x) \, \mathrm{d}x.$

Phương pháp giải: Mấu chốt của bài toán là phải tìm ra hàm số f(x). Từ điều kiện thay x=u ta có

$$\begin{cases} \alpha f(x) + \beta f(u) = g(x) \\ \alpha f(u) + \beta f(x) = g(u). \end{cases}$$

40

Từ hệ trên ta tìm ra f(x).

 $\mathbf{Z} \mathbf{V} \mathbf{I} \mathbf{D} \mathbf{U} \mathbf{9}$. Cho hàm số y = f(x) là hàm lẻ, liên tục trên [-4;4], biết $\int_{-2}^{0} f(-x) dx = 2$ và

$$\int_{1}^{2} f(-2x) dx = 4. \text{ Tính } I = \int_{0}^{4} f(x) dx.$$

- \bigcirc -10
- $\stackrel{\circ}{\mathbf{B}}$ -6.
- **(C)** 6.

D 10.

Lời giải.

Kiến thức cần nhớ:

- ① Cho hàm số f(x) liên tục và lẻ trên đoạn [-a;a]. Ta có $I = \int_{-a}^{a} f(x) dx = 0$.
- ② Cho hàm số y = f(x) liên tục và chẵn trên đoạn [-a; a].

$$\int_{-a}^{a} f(x) dx = 2 \int_{-a}^{0} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
 (1)
$$\text{và} \int_{-a}^{a} \frac{f(x)}{1 + b^{x}} dx = \frac{1}{2} \int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx$$
 (2)

3 Giá trị tích phân không phụ thuộc vào kí hiệu biến
$$\int\limits_a^b f(x)\,\mathrm{d}x = \int\limits_a^b f(u)\,\mathrm{d}u = \int\limits_a^b f(t)\,\mathrm{d}t = \cdots$$

Xét
$$I_1 = \int_{-2}^{0} f(-x) dx = 2$$
. Đặt $t = -x \Rightarrow x = -t \Rightarrow dx = -dt$. Đổi cận

$$\begin{array}{c|ccc} x & -2 & 0 \\ \hline t & 2 & 0 \end{array}$$

Khi đó
$$I_1 = -\int_2^0 f(-t) dt = \int_0^2 f(t) dt = \int_0^2 f(x) dx \Rightarrow \int_0^2 f(x) dx = 2.$$

Xét $I_2 = \int_1^2 f(-2x) dx = -\int_1^2 f(2x) dx$
Đặt $u = 2x \Rightarrow x = \frac{u}{2} \Rightarrow dx = \frac{1}{2} du$. Đổi cận

$$\begin{array}{c|ccc}
x & 1 & 2 \\
u & 2 & 4
\end{array}$$

Khi đó
$$I_2 = -\frac{1}{2} \int_{2}^{4} f(u) du = -\frac{1}{2} \int_{2}^{4} f(x) dx \Rightarrow \int_{2}^{4} f(x) dx = -8.$$

Do đó
$$I = \int_{0}^{4} f(x) dx = \int_{0}^{4} f(x) dx + I = \int_{0}^{4} f(x) dx = 2 - 8 = -6.$$

Câu 18. Cho hàm số f(x) là hàm số chẵn, liên tục trên [-1;6]. Biết rằng $\int f(x) dx = 8$ và $\int f(-2x) dx = 6$

3. Tính tích phân $I = \int_{1}^{x} f(x) dx$.

$$(\mathbf{A})$$
 $I=2$

$$\mathbf{B}$$
 $I=5.$

$$(C)$$
 $I = 11.$

(A)
$$I = 2$$
. (B) $I = 5$. (C) $I = 11$. (D) $I = 14$.

Lời giải.

Do
$$f(x)$$
 là hàm chẵn nên $f(-x) = f(x)$ hay
$$\int_{1}^{3} f(-2x) dx = \int_{1}^{3} f(2x) dx = 3.$$

Xét
$$K = \int_{1}^{3} f(2x) dx = 3$$
. Đặt $t = 2x \Rightarrow dt = 2dx$. Đổi cận:

$$\begin{array}{c|ccc}
x & 1 & 3 \\
t & 2 & 6 \\
\end{array}$$

Khi đó
$$K = \frac{1}{2} \int_{2}^{6} f(t) dt = \frac{1}{2} \int_{2}^{6} f(x) dx \Rightarrow \int_{2}^{6} f(x) dx = 2K = 6.$$

Vậy
$$\int_{-1}^{6} f(x) dx = \int_{-1}^{2} f(x) dx + \int_{2}^{6} f(x) dx = 8 + 6 = 14.$$

Chọn đáp án (D)

Câu 19. Cho hàm số f(x) là hàm số chẵn và liên tục trên $[-\pi;\pi]$ thoả mãn $\int f(x) dx = 2018$. Giá trị

của tích phân $\int_{-\pi} \frac{f(x)}{2018^x + 1} dx$ bằng

$$(\mathbf{A}) I = 0.$$

(A)
$$I = 0$$
. (B) $I = \frac{1}{2018}$. (C) $I = 2018$. (D) $I = 4036$.

$$I = 2018$$

$$I = 4036$$

Lời giải.

Đặt $x = -t \Rightarrow \mathrm{d}x = -\mathrm{d}t$. Đổi cận:

$$\begin{array}{c|cccc} x & -\pi & \pi \\ \hline t & \pi & -\pi \end{array}$$

Khi đó
$$I = \int_{-\pi}^{-\pi} \frac{f(-t)}{2018^{-t} + 1} dt = \int_{-\pi}^{\pi} \frac{f(-t)}{2018^{-t} + 1} dt = \int_{-\pi}^{\pi} \frac{2018^t f(-t)}{2018^t + 1} dt = \int_{-\pi}^{\pi} \frac{2018^x f(-x)}{2018^x + 1} dx.$$

Vì hàm số y = f(x) là hàm số chẵn trên đoạn $[-\pi; \pi]$ nên $f(-x) = f(x) \Rightarrow I = \int \frac{2018^x f(x)}{2018^x + 1} dx$.

Vậy
$$2I = \int_{-\pi}^{\pi} \frac{f(x)}{2018^x + 1} dx + \int_{-\pi}^{\pi} \frac{2018^x f(x)}{2018^x + 1} dx = 2 \int_{0}^{\pi} f(x) dx = 2 \cdot 2018 \Rightarrow I = 2018.$$

Chọn đáp án (C)

CHO $2F(X) + 3F(-X) = \frac{1}{X^2 + 4}$. TÍNH $I = \int_{-\infty}^{\infty} F(X) \, \mathrm{D}X$.

 $extbf{V}$ Í DỤ 10. Cho f(x), f(-x) liên tục trên $\mathbb R$ và thỏa mãn $2f(x) + 3f(-x) = \frac{1}{x^2 + 4}$. Tính

$$I = \int_{0}^{2} f(x) \, \mathrm{d}x.$$

$$\frac{\mathbf{C}}{20}$$
.

$$-\frac{\pi}{10}$$
.

Lời giải.

Ta có

$$\begin{cases} 2f(x) + 3f(-x) = \frac{1}{x^2 + 4} \\ 2f(-x) + 3f(x) = \frac{1}{x^2 + 4} \end{cases} \Leftrightarrow \begin{cases} 4f(x) + 6f(-x) = \frac{2}{x^2 + 4} \\ 6f(-x) + 9f(x) = \frac{3}{x^2 + 4} \end{cases} \Leftrightarrow f(x) = \frac{1}{5} \cdot \frac{1}{x^2 + 4}.$$

Vây
$$I = \frac{1}{5} \int_{3}^{2} \frac{\mathrm{d}x}{x^2 + 4}$$
.

Đặt $x=2\tan u, u\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$, khi đó d $x=2(1+\tan^2 u)$ du. Đổi cận $x=-2\Rightarrow u=-\frac{\pi}{4}, x=2\Rightarrow u=\frac{\pi}{4}$.

Đổi cận
$$x = -2 \Rightarrow u = -\frac{\pi}{4}, x = 2 \Rightarrow u = \frac{\pi}{4}.$$

Vậy
$$I = \frac{1}{5} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{2(1 + \tan^2 u) du}{4(1 + \tan^2 u)} = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{10} du = \frac{\pi}{20}.$$

Chọn đáp án (A)

Câu 20. Cho f(x), f(1-x) liên tục trên $\mathbb R$ thỏa mãn $2f(x)+f(1-x)=3x^2-2x+1$. Tính I=

$$\int_{0}^{2} f(x)\sqrt{x^3 + 1} \, \mathrm{d}x.$$

(A)
$$I = \frac{104}{27}$$
. (B) $I = \frac{34}{9}$. (C) $I = \frac{52}{9}$. (D) $I = 10$.

B
$$I = \frac{34}{9}$$
.

$$C I = \frac{52}{9}$$

$$I = 10.$$

Lời giải.

Từ giả thiết thay x bởi 1-x ta có hệ

$$\begin{cases} 2f(x) + f(1-x) = 3x^2 - 2x + 1\\ 2f(1-x) + f(x) = 3(1-x)^2 - 2(1-x) + 1 = 3x^2 - 4x + 2. \end{cases}$$

Hệ tương đương

$$\begin{cases} 4f(x) + 2(1-x) = 6x^2 - 4x + 2 \\ 2f(1-x) + f(x) = 3x^2 - 4x + 2 \end{cases} \Rightarrow 3f(x) = 3x^2 \Leftrightarrow f(x) = x^2.$$

Vậy
$$I = \int_{0}^{2} x^2 \sqrt{x^3 + 1} \, dx$$
. Đặt $t = \sqrt{x^3 + 1} \Rightarrow 2t \, dt = 3x^2 \, dx$.

Đổi cận: $x = 0 \Rightarrow t = 1, x = 2 \Rightarrow t = 3.$

Vây
$$I = \int_{1}^{3} \frac{2}{3}t^{2} dt = \frac{2}{9}t^{3} \Big|_{1}^{3} = \frac{52}{9}.$$

Chọn đáp án (C)

Câu 21. Cho hàm số f(x) liên tục trên $\mathbb{R} \setminus \{0\}$ và $f(x) + 2f\left(\frac{1}{x}\right) = 3x$. Tính tích phân I = 1

$$\int_{\frac{1}{2}}^{2} \frac{f(x)}{x} \, \mathrm{d}x.$$

(A)
$$I = \frac{1}{2}$$
.

(A)
$$I = \frac{1}{2}$$
. (B) $I = \frac{5}{2}$. (C) $I = \frac{3}{2}$.

$$\Gamma = \frac{3}{2}$$

Từ giả thiết thay x bởi $\frac{1}{x}$ và ta có hệ

$$\begin{cases} f(x) + 2f\left(\frac{1}{x}\right) = 3x \\ f\left(\frac{1}{x}\right) + 2f(x) = 3 \cdot \frac{1}{x} \end{cases} \Leftrightarrow \begin{cases} f(x) + 2f\left(\frac{1}{x}\right) = 3x \\ 2f\left(\frac{1}{x}\right) + 4f(x) = 6 \cdot \frac{1}{x}. \end{cases}$$

Suy ra $f(x) = \frac{2}{x} - x$.

Do đó
$$I = \int_{\frac{1}{2}}^{2} \frac{f(x)}{x} dx = \int_{\frac{1}{2}}^{2} \left(\frac{2}{x^2} - 1\right) dx = \frac{3}{2}.$$

Chọn đáp án (C)

$$\text{CHO } F(KX) = HF(X) \ (H,K \in \mathbb{R}). \ \text{BIẾT} \int\limits_0^1 F(X) \ \mathrm{D}X = A. \ \text{TÍNH} \int\limits_1^K F(X) \ \mathrm{D}X.$$

Bài toán tổng quát

Cho hàm số f(x) liên tục trên \mathbb{R} thỏa mãn f(kx) = hf(x) $(h, k \in \mathbb{R}), \forall x \in \mathbb{R}$. Biết $\int f(x) dx = a$.

Tính $\int f(x) dx$.

Phương pháp giải: Đặt $x = ku \Rightarrow dx = k du$.

$$D \hat{\text{oi}} \ c \hat{\text{an}} \ \frac{x \mid 0 \quad k}{u \mid 0 \quad 1}$$

Khi đó
$$\int_{0}^{k} f(x) dx = k \cdot \int_{0}^{1} f(ku) du = k \cdot h \cdot \int_{0}^{1} f(u) du = k \cdot h \cdot a.$$

Vây
$$\int_{1}^{k} f(x) dx = \int_{0}^{k} f(x) dx - \int_{0}^{1} f(x) dx = k \cdot h \cdot a - a = a(hk - 1).$$

 $\mathbf{V}\hat{\mathbf{I}}$ Dụ 11. Cho hàm số f(x) liên tục trên \mathbb{R} thỏa mãn $f(2x)=3f(x), \forall x\in\mathbb{R}$. Biết $\int\limits_0^1 f(x)\,\mathrm{d}x=1.$ Tích phân $\int\limits_1^2 f(x)\,\mathrm{d}x$ bằng

(A) 5

 $\stackrel{\mathbf{B}}{\mathbf{B}}$ 3

(C) 8.

 \bigcirc 2.

Lời giải.

 $\text{D} \check{\mathbf{a}} \mathbf{t} \ x = 2u \Rightarrow \, \mathrm{d} x = 2 \, \mathrm{d} u.$

$$D \stackrel{\cdot}{\text{oi}} \stackrel{\cdot}{\text{cận}} \frac{x \mid 0 \quad 2}{\mid u \mid 0 \quad 1}$$

Khi đó $\int_{0}^{2} f(x) dx = 2 \cdot \int_{0}^{1} f(2u) du = 2 \cdot 3 \cdot \int_{0}^{1} f(u) du = 2 \cdot 3 \cdot 1 = 6.$

Vậy
$$\int_{1}^{2} f(x) dx = \int_{0}^{2} f(x) dx - \int_{0}^{1} f(x) dx = 6 - 1 = 5.$$

Chọn đáp án (A)

Câu 22. Cho hàm số f(x) liên tục trên \mathbb{R} thỏa mãn $f(5x) = 2f(x), \forall x \in \mathbb{R}$. Biết $\int_{0}^{1} f(x) dx = 2019$.

Tích phân $\int_{1}^{5} f(x) dx$ bằng

- **(A)** 18171.
- **B** 18173.
- **(C)** 18178
- D 18172.

Lời giải.

 $\text{Dăt } x = 5u \Rightarrow dx = 5 du.$

Đổi cận
$$\begin{array}{c|ccc} x & 0 & 5 \\ \hline u & 0 & 1 \end{array}$$

Khi đó $\int_{0}^{5} f(x) dx = 5 \cdot \int_{0}^{1} f(5u) du = 5 \cdot 2 \cdot \int_{0}^{1} f(u) du = 5 \cdot 2 \cdot 2019 = 20190.$

Vậy
$$\int_{1}^{5} f(x) dx = \int_{0}^{5} f(x) dx - \int_{0}^{1} f(x) dx = 20190 - 2019 = 18171.$$

Chọn đáp án (A)

Câu 23. Cho hàm số f(x) liên tục trên $\mathbb R$ thỏa mãn $f(3x)=2f(x), \forall x\in\mathbb R$. Biết $\int\limits_0^1 f(x)\,\mathrm{d}x=5$. Tích

phân $\int_{1}^{3} f(x) dx$ bằng

 $(A)^{1}$ 25.

B) 23.

(C) 28.

D 22.

Lời giải.

Đặt $x = 3u \Rightarrow dx = 3 du$.

Dật
$$x = 3u \Rightarrow dx = 0$$

Đổi cận $\frac{x \mid 0 \mid 3}{u \mid 0 \mid 1}$

Khi đó
$$\int_{0}^{3} f(x) dx = 3 \cdot \int_{0}^{1} f(3u) du = 3 \cdot 2 \cdot \int_{0}^{1} f(u) du = 3 \cdot 2 \cdot 5 = 30.$$

Vậy
$$\int_{1}^{3} f(x) dx = \int_{0}^{3} f(x) dx - \int_{0}^{1} f(x) dx = 30 - 5 = 25.$$

Chọn đáp án (A)

CHO Y=F(X) LÀ HÀM SỐ CHẪN VÀ LIÊN TỤC TRÊN ĐOẠN [-A;A]. TÍNH

TÍCH PHÂN
$$I = \int_{-A}^{A} \frac{F(X)}{K^X + 1} \, \mathrm{D}X.$$

Cho $a,k\in\mathbb{R}, a\neq 0, k>0$, hàm số y=f(x) là hàm số chẵn và liên tục trên đoạn [-a;a]. Tính tích phân $I = \int \frac{f(x)}{k^x + 1} dx$.

Phương pháp giải: Ta có $I = \int \frac{f(x)}{k^x + 1} dx$.

Đặt
$$x = -t$$
. Ta có $dx = -dt$ và
$$\begin{cases} x = -a \Rightarrow t = a \\ x = a \Rightarrow t = -a. \end{cases}$$

Khi đó
$$I = \int_{a}^{-a} \frac{f(-t)}{k^{-t} + 1} (-dt) = \int_{-a}^{a} \frac{f(t)k^{t}}{k^{t} + 1} dt = \int_{-a}^{a} \frac{f(x)k^{x}}{k^{x} + 1} dx.$$

Suy ra
$$2I = \int_{-a}^{a} \frac{f(x)}{k^x + 1} dx + \int_{-a}^{a} \frac{f(x)k^x}{k^x + 1} dx = \int_{-a}^{a} \frac{f(x)(k^x + 1)}{k^x + 1} dx = \int_{-a}^{a} f(x) dx.$$

Do đó
$$I = \frac{1}{2} \int_{-a}^{a} f(x) dx$$
.

VÍ DỤ 12. Biết $\int \frac{x^2}{e^x + 1} dx = 9$ trong đó $a \in \mathbb{R}$. Tính giá trị của biểu thức $T = a + \frac{1}{a}$.

(A)
$$T = -\frac{10}{3}$$
. **(B)** $T = \frac{5}{2}$. **(C)** $T = \frac{10}{3}$.

$$\mathbf{B} \ T = \frac{5}{2}.$$

$$T = \frac{10}{3}$$
.

$$(\mathbf{D})$$
 $T=0.$

Nội dung lời giải cho Bài toán gốc Ta có $9 = \int \frac{x^2}{e^x + 1} dx$.

Đặt
$$x = -t$$
. Ta có $dx = -dt$ và
$$\begin{cases} x = -a \Rightarrow t = a \\ x = a \Rightarrow t = -a. \end{cases}$$

Khi đó
$$9 = \int_{-a}^{a} \frac{(-t)^2}{e^{-t} + 1} (-dt) = \int_{-a}^{a} \frac{t^2 e^t}{e^t + 1} dt = \int_{-a}^{a} \frac{x^2 e^x}{e^x + 1} dx.$$

Suy ra
$$9 + 9 = \int_{-a}^{a} \frac{x^2}{e^x + 1} dx + \int_{-a}^{a} \frac{x^2 e^x}{e^x + 1} dx = \int_{-a}^{a} \frac{x^2 (e^x + 1)}{e^x + 1} dx = \int_{-a}^{a} x^2 dx.$$

Do đó
$$9 = \frac{1}{2} \int_{0}^{a} x^{2} dx = \frac{1}{2} \cdot \frac{x^{3}}{3} \Big|_{0}^{a} = \frac{a^{3}}{3} \Rightarrow a^{3} = 27 \Leftrightarrow a = 3.$$

Vậy
$$T = \frac{10}{3}$$
.

Chọn đáp án (C)

Câu 24. Biết
$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sin 3x \sin 2x}{1 + \pi^x} dx = a\sqrt{3} + b\sqrt{2} + c \text{ với } a, b, c \in \mathbb{Q}. \text{ Tính } T = a + b + c.$$

(A) $T = \frac{3}{5}$.
(B) 0.
(C) $T = \frac{3}{10}$.
(D) $T = -\frac{3}{10}$.

$$\bigcirc$$
 0.

$$T = \frac{3}{10}$$

$$T = -\frac{3}{10}$$

Lời giải.

$$\text{X\'et } I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{3}} \frac{\sin 3x \sin 2x}{1 + \pi^x} \, \mathrm{d}x.$$

Đặt
$$t=-x$$
. Ta được $\mathrm{d} x=-\mathrm{d} t$ và
$$\begin{cases} x=-\frac{\pi}{3}\Rightarrow t=\frac{\pi}{3}\\ x=\frac{\pi}{3}\Rightarrow t=-\frac{\pi}{3}. \end{cases}$$

Khi đó
$$I = \int_{\frac{\pi}{3}}^{-\frac{\pi}{3}} \frac{\sin(-3t)\sin(-2t)}{1+\pi^{-t}} (-dt) = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sin 3t \sin 2t \cdot \pi^t}{1+\pi^t} dt = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sin 3x \sin 2x \cdot \pi^x}{1+\pi^x} dx.$$

Suy ra
$$2I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sin 3x \sin 2x}{1 + \pi^x} dx + \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sin 3x \sin 2x \cdot \pi^x}{1 + \pi^x} dx = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sin 3x \sin 2x (1 + \pi^x)}{1 + \pi^x} dx = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sin 3x \sin 2x dx.$$

Do đó
$$I = \frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sin 3x \sin 2x \, dx = \frac{1}{4} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (\cos x - \cos 5x) \, dx = \frac{1}{4} \left(\sin x - \frac{1}{5} \sin 5x \right) \Big|_{-\frac{\pi}{3}}^{\frac{\pi}{3}} = \frac{3}{10} \sqrt{3}.$$

Suy ra
$$a = \frac{3}{10}$$
, $b = c = 0$.

$$V_{ay} T = \frac{3}{10}.$$

Chọn đáp án (C)

Câu 25. Cho số thực
$$a > 1$$
 và $\int_{-1}^{1} \frac{\sqrt{a+x} + \sqrt{a-x}}{1 + e^x} dx = \frac{2}{3} \left[(a+1)\sqrt{a+1} - 1 \right]$. Trong các khẳng

định dưới đây, khẳng định nào đúng?

$$\bigcirc$$
 1 < a <

$$(\mathbf{B})$$
 $a > 2$

(A) 1 < a < 2. (B) a > 2. (C) không tồn tại a. (D) $1 < a < \frac{5}{2}$.

(D)
$$1 < a < \frac{5}{2}$$

Lời giải.

Xét
$$I = \int_{-1}^{1} \frac{\sqrt{a+x} + \sqrt{a-x}}{1 + e^x} dx.$$

Đặt
$$t=-x$$
. Ta được $\mathrm{d} x=-\,\mathrm{d} t$ và
$$\begin{cases} x=-1\Rightarrow t=1\\ x=1\Rightarrow t=-1. \end{cases}$$

Khi đó
$$I = \int_{1}^{-1} \frac{\sqrt{a-t} + \sqrt{a+t}}{1 + e^{-t}} (-dt) = \int_{1}^{1} \frac{(\sqrt{a-t} + \sqrt{a+t}) e^{t}}{1 + e^{t}} dt = \int_{1}^{1} \frac{(\sqrt{a-x} + \sqrt{a+x}) e^{x}}{1 + e^{x}} dx.$$

Suy ra
$$2I = \int_{-1}^{1} \frac{\sqrt{a+x} + \sqrt{a-x}}{1 + e^x} dx + \int_{-1}^{1} \frac{\left(\sqrt{a-x} + \sqrt{a+x}\right) e^x}{1 + e^x} dx = \int_{-1}^{1} \left(\sqrt{a-x} + \sqrt{a+x}\right) dx.$$

Do đó

$$I = \frac{1}{2} \int_{-1}^{1} \left(\sqrt{a+x} + \sqrt{a-x} \right) dx = \frac{1}{2} \cdot \frac{2}{3} \left[(a+x)\sqrt{a+x} - (a-x)\sqrt{a-x} \right]_{-1}^{1}$$
$$= \frac{2}{3} \left[(a+1)\sqrt{a+1} - (a-1)\sqrt{a-1} \right]$$

Theo giả thiết

$$I = \frac{2}{3} \left[(a+1)\sqrt{a+1} - 1 \right]$$

$$\Leftrightarrow \frac{2}{3} \left[(a+1)\sqrt{a+1} - (a-1)\sqrt{a-1} \right] = \frac{2}{3} \left[(a+1)\sqrt{a+1} - 1 \right]$$

$$\Leftrightarrow (a-1)\sqrt{a-1} = 1$$

$$\Leftrightarrow (a-1)^3 = 1 \Leftrightarrow a-1 = 1 \Leftrightarrow a = 2.$$

Chọn đáp án (D)

CHO F(X) LÀ HÀM SỐ CHẮN VÀ LIÊN TỤC TRÊN [-A;A] THÌ $\int\limits_{-M}^{R} \frac{F(X)}{M^X+1}\,\mathrm{D}X=$

$$\frac{1}{2} \int_{-A}^{A} F(X) \, \mathrm{D}X = \int_{0}^{A} F(X) \, \mathrm{D}X \, \text{V\'ol} \, M > 0, \, M \neq 1.$$

Bài toán tổng quát

Cho hàm số f(x) là hàm số chẵn và liên tục trên [-a;a] thì $\int \frac{f(x)}{m^x+1} dx = \frac{1}{2} \int f(x) dx = \frac{1}{2} \int f(x) dx$

$$\int_{0}^{x} f(x) dx \text{ với } m > 0, m \neq 1.$$

Phương pháp giải:

• Chứng minh
$$\int_{-a}^{a} \frac{f(x)}{m^{x} + 1} dx = \int_{0}^{a} f(x) dx$$

a) Ta có
$$I = \int_{-a}^{a} \frac{f(x)}{m^x + 1} dx = \int_{-a}^{0} \frac{f(x)}{m^x + 1} dx + \int_{0}^{a} \frac{f(x)}{m^x + 1} dx$$

b) Tính
$$\int_{-a}^{0} \frac{f(x)}{m^x + 1} dx$$

Đặt
$$t = -x \Rightarrow dx = -dt$$
. Đổi cận $x = -a \Rightarrow t = a; x = 0 \Rightarrow t = 0$.

Thay vào
$$I$$
 ta được: $I = \int_0^a f(x) \cdot \frac{m^x + 1}{m^x + 1} dx = \int_0^a f(x) dx$.

• Chứng minh:
$$I = \int_{-a}^{a} \frac{f(x)}{m^x + 1} dx = \frac{1}{2} \int_{-a}^{a} f(x) dx$$

Đặt
$$t=-x \Rightarrow dx=-dt$$
. Đổi cận $x=-a \Rightarrow t=a; x=0 \Rightarrow t=0$.

$$\int_{-a}^{a} \frac{f(x)}{m^{x}+1} dx = \int_{a}^{-a} \frac{f(-t)}{m^{-t}+1} (-dt) = -\int_{a}^{-a} f(t) \cdot \frac{m^{t}}{1+m^{t}} dt = \int_{-a}^{a} \frac{f(t) \cdot m^{t}}{m^{t}+1} dt$$

$$\text{Vậy } 2I = \int_{-a}^{a} \frac{f(x)}{m^x + 1} \, \mathrm{d}x + \int_{-a}^{a} \frac{m^x f(x)}{m^x + 1} \, \mathrm{d}x = \int_{-1}^{1} f(x) \, \mathrm{d}x \Rightarrow \int_{-a}^{a} \frac{f(x)}{m^x + 1} \, \mathrm{d}x = \frac{1}{2} \int_{-a}^{a} f(x) \, \mathrm{d}x$$

VÍ DỤ 13. Cho hàm số f(x) là hàm số chẵn và liên tục trên [-1;1] thoả mãn $\int f(x) dx = 4$.

Kết quả của tích phân $I = \int \frac{f(x)}{1 + e^x} dx$ bằng

(A) I = 8.

B 4.

 (\mathbf{C}) I=2.

Lời giải.

Đổi cận:
$$\begin{cases} x = -1 \Rightarrow t = 1 \\ x = 1 \Rightarrow t = -1. \end{cases}$$

Khi đó
$$I = -\int_{1}^{-1} \frac{f(-t)}{1 + e^{-t}} dt = \int_{-1}^{1} \frac{f(-t)}{1 + e^{-t}} dt = \int_{-1}^{1} \frac{e^{t} f(-t)}{e^{t} + 1} dt = \int_{-1}^{1} \frac{e^{x} f(-x)}{e^{x} + 1} dx.$$

Vì hàm số y = f(x) là hàm số chẵn trên đoạn [-1;1] nên $f(-x) = f(x) \Rightarrow I = \int \frac{e^x f(x)}{e^x + 1} dx$.

Vậy
$$2I = \int_{-1}^{1} \frac{f(x)}{e^x + 1} dx + \int_{-1}^{1} \frac{e^x f(x)}{e^x + 1} dx = \int_{-1}^{1} f(x) dx = 4 \Rightarrow I = 2.$$

Chọn đáp án (C)

Câu 26. Cho hàm số f(x) là hàm số chẵn và liên tục trên [-1;1] thoả mãn $\int f(x) dx = 10$. Kết quả

của tích phân $I = \int \frac{f(x)}{1+7^x} dx$ bằng

(A)
$$I = 5$$
. (B) 20. (C) $I = 10$.

$$(C)$$
 $I = 10$

$$(\mathbf{D})$$
 $I=0$

Lời giải.

Ta có
$$I = \int_{-1}^{1} \frac{f(x)}{7^x + 1} dx = \int_{-1}^{0} \frac{f(x)}{7^x + 1} dx + \int_{0}^{1} \frac{f(x)}{7^x + 1} dx.$$

$$Tinh \int_{-1}^{0} \frac{f(x)}{7^x + 1} \, \mathrm{d}x$$

$$\int_{-1}^{0} \frac{f(x)}{7^{x} + 1} dx = \int_{1}^{0} \frac{f(-t)}{7^{-t} + 1} (-dt) = -\int_{1}^{0} f(t) \cdot \frac{7^{t}}{1 + 7^{t}} dt = \int_{0}^{1} \frac{f(t) \cdot 7^{t}}{7^{t} + 1} dt = \int_{0}^{1} \frac{f(x) \cdot 7^{x}}{7^{x} + 1} dx$$

Thay vào *I* ta được: $I = \int_{-1}^{1} f(x) \cdot \frac{7^{x} + 1}{7^{x} + 1} dx = \int_{-1}^{1} f(x) dx = 10.$

Chọn đáp án (C)

Câu 27. Cho hàm số f(x) là hàm số chẵn và liên tục trên $[-\pi; \pi]$ thoả mãn $\int f(x) dx = 2019$. Giá trị

của tích phân $\int_{-\pi}^{\pi} \frac{f(x)}{2020^x + 1} dx$ bằng

(A)
$$I = 0$$
. (B) $I = \frac{2019}{2}$. (C) $I = 2019$. (D) $I = 4038$.

$$I = 2019$$

$$I = 4038$$

Lời giải.

$$\text{Dăt } x = -t \Rightarrow dx = -dt.$$

Dặt
$$x = -t \Rightarrow dx = -dt$$
.
Đổi cân:
$$\begin{cases} x = -\pi \Rightarrow t = \pi \\ x = \pi \Rightarrow t = -\pi. \end{cases}$$

50

Khi đó
$$I = -\int_{\pi}^{-\pi} \frac{f(-t)}{2020^{-t} + 1} dt = \int_{-\pi}^{\pi} \frac{f(-t)}{2020^{-t} + 1} dt = \int_{-\pi}^{\pi} \frac{2020^t f(-t)}{2020^t + 1} dt = \int_{-\pi}^{\pi} \frac{2020^x f(-x)}{2020^x + 1} dx.$$

Vì hàm số y = f(x) là hàm số chẵn trên đoạn $[-\pi; \pi]$ nên $f(-x) = f(x) \Rightarrow I = \int \frac{2020^x f(x)}{2020^x + 1} dx$.

Vậy
$$2I = \int_{-\pi}^{\pi} \frac{f(x)}{2020^x + 1} dx + \int_{-\pi}^{\pi} \frac{2020^x f(x)}{2020^x + 1} dx = \int_{-\pi}^{\pi} f(x) dx = 2019 \Rightarrow I = \frac{2019}{2}.$$

Chọn đáp án (C)

CHO F[U(X)] = V(X). TÍNH $\int F(X) DX$

Cho hàm số f(x) có đạo hàm và liên tục trên $\mathbb R$ thỏa mãn f[u(x)] = v(x). Tính $\int f(x) \, \mathrm{d}x$, trong đó $u'(x) \neq 0, \forall x \in [a; b].$

Phương pháp giải: Vì $u'(x) \neq 0$, $\forall x \in [a;b]$ nên $f[u(x)] = v(x) \Leftrightarrow f[u(x)] \cdot u'(x) = v(x)$

Lấy tích phân hai vế của (*) với cận dưới là a, cận trên là b.

$$\int_{a}^{b} f[u(x)] \cdot u'(x) dx = \int_{a}^{b} v(x) \cdot u'(x) dx$$
$$= k \quad (v \acute{o}i \ k \ là hằng số).$$

 $\text{Dặt } t = u(x) \Rightarrow dt = u'(x) dx.$

Đổi cận $x = a \Rightarrow t = u(a)$ và $x = b \Rightarrow t = u(b)$. Khi đó

$$\int_{u(a)}^{u(b)} f(t) dt = k \text{ hay } \int_{u(a)}^{u(b)} f(x) dx = k.$$

VÍ DỤ 14. Cho hàm số f(x) có đạo hàm và liên tục trên \mathbb{R} thỏa mãn $f(x^3 + 2x - 2) = 3x - 1$.

Lời giải.

 $\text{Vì } 3x^2 + 2 \neq 0, \forall x \in \mathbb{R} \text{ nên } f(x^3 + 2x - 2) = 3x - 1 \Leftrightarrow f(x^3 + 2x - 2) \cdot (3x^2 + 2) = (3x - 1)(3x^2 + 2) \quad (*).$

Lấy tích phân hai vế của (*) với cận dưới là 1, cận trên là 2.

$$\int_{1}^{2} f(x^{3} + 2x - 2) \cdot (3x^{2} + 2) dx = \int_{1}^{2} (3x - 1)(3x^{2} + 2) dx$$

$$= \int_{1}^{2} (9x^{3} - 3x^{2} + 6x - 2) dx$$

$$= \left(\frac{9x^{4}}{4} - x^{3} + 3x^{2} - 2x\right) \Big|_{1}^{2}$$

$$= \frac{135}{4}.$$

Đặt $t = x^3 + 2x - 2 \Rightarrow dt = (3x^2 + 2) dx$. Đổi cận $x=1\Rightarrow t=1$ và $x=2\Rightarrow t=10.$ Khi đó

$$\int_{1}^{10} f(t) dt = \frac{135}{4} \text{ hay } \int_{1}^{10} f(x) dx = \frac{135}{4}.$$

Chọn đáp án (A)

Câu 28. Cho hàm số f(x) có đạo hàm và liên tục trên $\mathbb R$ thỏa mãn $f(x^2+3x+1)=x+1$. Tính $\int f(x) dx$.

(B) $\frac{16}{3}$. (C) $\frac{464}{3}$. (D) $\frac{3}{2}$.

Lời giải.

 $\text{Vi } 2x + 3 \neq 0, \ \forall x \in [0; 1] \ \text{nen } f(x^3 + 3x + 1) = x + 1 \Leftrightarrow f(x^3 + 3x + 1) \cdot (2x + 3) = (x + 1)(2x + 3) \quad (*)$

Lấy tích phân hai vế của (*) với cận dưới là 0, cận trên là 1.

$$\int_{0}^{1} f(x^{2} + 3x + 1) \cdot (2x + 3) dx = \int_{0}^{1} (x + 1)(2x + 3) dx$$
$$= \int_{0}^{1} (2x^{2} + 5x + 3) dx$$
$$= \left(\frac{2x^{3}}{3} + \frac{5x^{2}}{2} + 3x\right) \Big|_{0}^{1}$$
$$= \frac{37}{6}.$$

Dặt $t = x^2 + 3x + 1 \Rightarrow dt = (2x + 3) dx$. Đổi cận $x = 0 \Rightarrow t = 1$ và $x = 1 \Rightarrow t = 5$. Khi đó

$$\int_{1}^{5} f(t) dt = \frac{37}{6} \text{ hay } \int_{1}^{5} f(x) dx = \frac{37}{6}.$$

Chọn đáp án (A)

52

Câu 29. Cho hàm số f(x) có đạo hàm và liên tục trên \mathbb{R} thỏa mãn $f(\sin x + 2) = \cos x$. Tính $\int f(x) dx$.

$$\frac{\pi}{12} - \frac{\sqrt{3}}{8}$$
.

$$\frac{\pi}{12} - \frac{1}{8}$$
.

$$\frac{\pi}{12} + \frac{1}{8}$$
.

(A)
$$\frac{\pi}{12} - \frac{\sqrt{3}}{8}$$
. (B) $\frac{\pi}{12} - \frac{1}{8}$. (C) $\frac{\pi}{12} + \frac{1}{8}$. (D) $\frac{\pi}{12} + \frac{\sqrt{3}}{8}$.

Vì $\cos x \neq 0$, $\forall x \in \left[0; \frac{\pi}{6}\right]$ nên $f(\sin x + 2) = \cos x \Leftrightarrow f(\sin x + 2) \cdot \cos x = \cos^2 x$ (*). Lấy tích phân hai vế của (*) với cận dưới là 0, cận trên là $\frac{\pi}{\epsilon}$

$$\int_{0}^{\frac{\pi}{6}} f(\sin x + 2) \cdot \cos x \, dx = \int_{0}^{\frac{\pi}{6}} \cos^{2} x \, dx$$

$$= \int_{0}^{\frac{\pi}{6}} \frac{1 + \cos 2x}{2} \, dx$$

$$= \left(\frac{x}{2} + \frac{\sin 2x}{4}\right) \Big|_{0}^{\frac{\pi}{6}}$$

$$= \frac{\pi}{12} + \frac{\sqrt{3}}{8}.$$

Đặt $t = \sin x + 2 \Rightarrow dt = \cos x dx$.

Đổi cân $x = 0 \Rightarrow t = 2$ và $x = \frac{\pi}{6} \Rightarrow t = \frac{5}{2}$. Khi đó

$$\int_{2}^{\frac{5}{2}} f(t) dt = \frac{\pi}{12} + \frac{\sqrt{3}}{8} \text{ hay } \int_{2}^{\frac{5}{2}} f(x) dx = \frac{\pi}{12} + \frac{\sqrt{3}}{8}.$$

Chọn đáp án (D)

Bài toán tổng quát

Cho hàm số y=f(x) thỏa mãn $P\left(f(x),f'(x),f''(x),x,\cdots\right)=Q(x),\,f\left(a\right)=b\;(a,b\;\text{đã biết}).$ Tính $f(x_0)$.

Phương pháp giải:

- Tim F(x) sao cho $P(f(x), f'(x), f''(x), x, \dots) = F'(x)$.
- Lấy nguyên hàm hai vế ta được

$$\int F'(x) dF(x) = \int Q(x) dx \Leftrightarrow F(x) = \int Q(x) dx.$$

• Kết hợp với giả thiết f(a) = b ta tìm được F(x), từ đó suy ra f(x).

• Tính $f(x_0)$.

VÍ DỤ 15. Cho hàm số y = f(x) thỏa mãn $f'(x) \cdot f(x) = x^4 + x^2$, f(0) = 2. Tính $f^2(2)$.

(A)
$$f^2(2) = \frac{302}{15}$$
. (B) $f^2(2) = \frac{332}{15}$. (C) $f^2(2) = \frac{324}{15}$. (D) $f^2(2) = \frac{323}{15}$.

$$B f^2(2) = \frac{332}{15}.$$

$$f^2(2) = \frac{324}{15}$$

Lời giải.

Từ giả thiết ta có

$$f'(x) \cdot f(x) = x^4 + x^2 \Rightarrow \left[f^2(x) \right]' = 2x^4 + 2x^2$$

$$\Leftrightarrow \int \left[f^2(x) \right]' dx = \int \left(2x^4 + 2x^2 \right) dx$$

$$\Leftrightarrow f^2(x) = \frac{2}{5}x^5 + \frac{2}{3}x^3 + C.$$

Ta có $f(0) = 2 \Rightarrow f^2(0) = 4 \Rightarrow C = 4$, do đó $f^2(x) = \frac{2}{5}x^5 + \frac{2}{3}x^3 + 4$. Vậy $f^2(2) = \frac{332}{15}$.

Chọn đáp án (B)

Câu 30. Cho hàm số y = f(x) có đạo hàm và liên lục trên \mathbb{R} , thỏa mãn $f'(x) + f(x) = e^{-x} \cdot (x^2 + 2x + 1)$ và f(0) = 1. Tính f(1).

$$\frac{10}{3e}.$$

(B)
$$\frac{10e}{3}$$
. (C) $\frac{4}{3e}$.

$$\bigcirc$$
 $\frac{7}{3e}$

Lời giải.

Từ giả thiết ta có

$$e^{x} f(x) + e^{x} f'(x) = x^{2} + 2x + 1 \Rightarrow (e^{x} f(x))' = x^{2} + 2x + 1.$$

Suy ra

$$\int (e^x f(x))' dx = \int (x^2 + 2x + 1) dx$$

$$\Leftrightarrow e^x f(x) = \frac{1}{3}x^3 + x^2 + x + C$$

$$\Leftrightarrow f(x) = e^{-x} \left(\frac{1}{3}x^3 + x^2 + x + C\right).$$

Mà f(0) = 1 nên C = 1. Vậy $f(1) = \frac{10}{30}$.

Chọn đáp án (A)

Câu 31. Cho hàm số f(x) thỏa mãn $[f'(x)]^2 + f(x) \cdot f''(x) = 15x^4 + 12x, \forall x \in \mathbb{R} \text{ và } f(0) = f'(0) = 1.$ Tính giá trị $f^2(3)$.

Lời giải.

Ta có

$$[f'(x)]^{2} + f(x) \cdot f''(x) = 15x^{4} + 12x$$

$$\Leftrightarrow [f'(x) \cdot f(x)]' = 15x^{4} + 12x$$

$$\Leftrightarrow f'(x) \cdot f(x) = 3x^{5} + 6x^{2} + C_{1}.$$

Do f(0) = f'(0) = 1 nên ta có $C_1 = 1$. Do đó:

$$f'(x) \cdot f(x) = 3x^{5} + 6x^{2} + 1$$

$$\Leftrightarrow \left(\frac{1}{2}f^{2}(x)\right)' = 3x^{5} + 6x^{2} + 1$$

$$\Leftrightarrow f^{2}(x) = x^{6} + 4x^{3} + 2x + C_{2}.$$

Mà f(0) = 1 nên $C_2 = 1$. Do đó $f^2(x) = x^6 + 4x^3 + 2x + 1$. Vậy $f^2(3) = 844$. Chọn đáp án \bigcirc

$\S 3.$ TÍCH PHÂN SỬ DỤNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN

CHO
$$F(X)$$
 CÓ $F(A) = M_0$,
$$\int_A^B [F'(X)]^2 \, \mathrm{D}X = M_1 \, \mathrm{V} \mathring{\mathbf{A}} \int_A^B G(X) \cdot F(X) \, \mathrm{D}X = M_2.$$
 TÍNH TÍCH PHÂN
$$\int_A^B F(X) \, \mathrm{D}X.$$

Bài toán tổng quát

Cho hàm số f(x) có đạo hàm liên tục trên [a;b] thỏa mãn $f(a)=m_0,$ $\int\limits_a^b \left[f'(x)\right]^2 \mathrm{d}x=m_1$ và $\int\limits_a^b g(x)\cdot f(x)\,\mathrm{d}x=m_2.$ Tính $\int\limits_a^b f(x)\,\mathrm{d}x.$

Phương pháp giải:

• Đặt
$$\begin{cases} u = f(x) \\ \mathrm{d}v = g(x) \, \mathrm{d}x \end{cases} \Rightarrow \begin{cases} \mathrm{d}u = f'(x) \, \mathrm{d}x \\ v = \int g(x) \, \mathrm{d}x. \end{cases}$$

Áp dụng công thức tính phân từng phần tính được $\int_a^b f'(x) \cdot g(x) dx = m_3$.

- Chọn số λ sao cho $\int_a^b \left(f'(x) \lambda g(x)\right)^2 dx = 0$. Suy ra $f'(x) = \lambda g(x)$.
- Kết hợp với điều kiện ban đầu xác định được hàm số f(x). Từ đó tính $\int_a^b f(x) \, \mathrm{d}x$.

$$Arr V$$
Í Dụ 1. Cho hàm số $f(x)$ có đạo hàm liên tục trên $\left[0;\frac{\pi}{2}\right]$ thỏa mãn $f(0)=0,$

$$\int_{0}^{\frac{\pi}{2}} [f'(x)]^{2} dx = \frac{\pi}{4} \text{ và } \int_{0}^{\frac{\pi}{2}} \sin x \cdot f(x) dx = \frac{\pi}{4}. \text{ Tích phân } \int_{0}^{\frac{\pi}{2}} f(x) dx \text{ bằng}$$

$$(A) 1. \qquad (B) \frac{\pi}{4}. \qquad (C) 2. \qquad (D) \frac{\pi}{2}.$$

Lời giải.

Nội dung lời giải cho bài toán gốc.

Dặt
$$\begin{cases} u = f(x) \\ dv = \sin x \, dx \end{cases} \Rightarrow \begin{cases} du = f'(x) \, dx \\ v = -\cos x \end{cases}.$$

Khi đó
$$\frac{\pi}{4} = \int_{0}^{\frac{\pi}{2}} \sin x \cdot f(x) \, \mathrm{d}x = -f(x) \cos x \Big|_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x \cdot f'(x) \, \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} \cos x \cdot f'(x) \, \mathrm{d}x.$$

Lại có
$$\int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2x}{2} \, dx = \left. \frac{x + \frac{\sin 2x}{2}}{2} \right|_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}$$
. Ta thấy

$$\int_{0}^{\frac{\pi}{2}} [f'(x) - \cos x]^{2} dx = \int_{0}^{\frac{\pi}{2}} [f'(x)]^{2} dx - 2 \int_{0}^{\frac{\pi}{2}} \cos x \cdot f'(x) dx + \int_{0}^{\frac{\pi}{2}} \cos^{2} x dx$$
$$= \frac{\pi}{4} - 2 \cdot \frac{\pi}{4} + \frac{\pi}{4} = 0.$$

Do đó
$$f'(x) - \cos x = 0 \Rightarrow f(x) = \int \cos x \, dx = \sin x + C.$$

Mà
$$f(0) = 0$$
, suy ra $f(x) = \sin x$. Vậy $\int_{0}^{\frac{\pi}{2}} f(x) dx = \int_{0}^{\frac{\pi}{2}} \sin x dx = -\cos x \Big|_{0}^{\frac{\pi}{2}} = 1$.

Chọn đáp án (A)

Câu 1. Cho hàm số f(x) có đạo hàm liên tục trên $\left[0; \frac{\pi}{2}\right]$ thỏa mãn $f(0) = \frac{3}{2}, \int_{0}^{\frac{\pi}{2}} \left[f'(x)\right]^2 dx = \frac{\pi}{4}$ và

$$\int\limits_0^{\frac{\pi}{2}}\cos 2x\cdot f(x)\,\mathrm{d}x=\frac{\pi}{8}. \text{ Tích phân } \int\limits_0^{\frac{\pi}{2}}f(x)\,\mathrm{d}x \text{ bằng}$$

$$\bigcirc$$
 $\frac{\pi}{2}$.

Lời giải.

Đặt
$$\begin{cases} u = f(x) \\ \mathrm{d}v = \cos 2x \, \mathrm{d}x \end{cases} \Rightarrow \begin{cases} \mathrm{d}u = f'(x) \, \mathrm{d}x \\ v = \frac{\sin 2x}{2} \end{cases}$$
. Khi đó

$$\frac{\pi}{8} = f(x) \frac{\sin 2x}{2} \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{2} \cdot f'(x) \, dx = -\int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{2} \cdot f'(x) \, dx \quad \Rightarrow \int_{0}^{\frac{\pi}{2}} \sin 2x \cdot f'(x) \, dx = -\frac{\pi}{4}.$$

56

Lai có

$$\int_{0}^{\frac{\pi}{2}} \sin^2 2x \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 4x}{2} \, dx = \frac{x - \frac{\sin 4x}{4}}{2} \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

Ta thấy

$$\int_{0}^{\frac{\pi}{2}} [f'(x) + \sin 2x]^{2} dx = \int_{0}^{\frac{\pi}{2}} [f'(x)]^{2} dx + 2 \int_{0}^{\frac{\pi}{2}} \sin 2x \cdot f'(x) dx + \int_{0}^{\frac{\pi}{2}} \sin^{2} 2x dx$$
$$= \frac{\pi}{4} - 2 \cdot \frac{\pi}{4} + \frac{\pi}{4} = 0.$$

Do đó $f'(x) + \sin 2x = 0 \Rightarrow f(x) = -\int \sin 2x \, dx = \frac{\cos 2x}{2} + C.$

$$\text{Mà } f(0) = \frac{3}{2}, \text{ suy ra } f(x) = \frac{\cos 2x}{2} + 1. \text{ Vậy } \int_{0}^{\frac{\pi}{2}} f(x) \, \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} \left(\frac{\cos 2x}{2} + 1 \right) \, \mathrm{d}x = \left(\frac{\sin 2x}{4} + x \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}.$$

Chọn đáp án (D)

Câu 2. Cho hàm số f(x) có đạo hàm liên tục trên [0;3] thỏa mãn $f(0)=0, f(3)=14, \int \left[f'(x)\right]^2 dx=$

$$\frac{135}{2}, \int_{0}^{3} \frac{f(x)}{\sqrt{x+1}} dx = 11. \text{ Tính tích phân } I = \int_{0}^{3} f(x) dx.$$

$$\mathbf{A} \quad I = \frac{124}{5}. \qquad \mathbf{B} \quad I = \frac{94}{5}. \qquad \mathbf{C} \quad I = \frac{28}{3}. \qquad \mathbf{D} \quad I = \frac{508}{7}.$$

$$\mathbf{A} I = \frac{124}{5}$$

B
$$I = \frac{94}{5}$$

$$C I = \frac{28}{3}$$

$$I = \frac{508}{7}$$

Lời giải.

Đặt
$$\begin{cases} u = f(x) \\ \mathrm{d}u = \frac{1}{\sqrt{x+1}} \, \mathrm{d}x \end{cases} \Rightarrow \begin{cases} \mathrm{d}u = f'(x) \, \mathrm{d}x \\ v = 2\sqrt{x+1} \end{cases}$$
. Khi đó

$$\int_{0}^{3} \frac{f(x)}{\sqrt{x+1}} dx = 2f(x)\sqrt{x+1} \Big|_{0}^{3} - \int_{0}^{3} f'(x) \cdot 2\sqrt{x+1} dx = 56 - 2 \int_{0}^{3} f'(x)\sqrt{x+1} dx = 11.$$

Suy ra
$$\int_{0}^{3} f'(x)\sqrt{x+1} dx = \frac{45}{2}$$
. Ta thấy

$$\int_{0}^{3} \left[f'(x) - 3\sqrt{x+1} \right]^{2} dx = \int_{0}^{3} \left[f'(x) \right]^{2} dx - 6 \int_{0}^{3} f'(x)\sqrt{x+1} dx + 9 \int_{0}^{3} (x+1) dx$$
$$= \frac{135}{2} - 6 \cdot \frac{45}{2} + 9 \cdot \frac{15}{2} = 0.$$

Do đó $f'(x) - 3\sqrt{x+1} = 0 \Rightarrow f'(x) = 3\sqrt{x+1} \Rightarrow f(x) = \int 3\sqrt{x+1} \, \mathrm{d}x = 2(x+1)\sqrt{x+1} + C.$ Kết hợp với f(0) = 0, f(3) = 14 ta được $f(x) = 2(x+1)\sqrt{x+1} - 2$.

Khi đó
$$I = \int_{0}^{3} f(x) dx = \int_{0}^{3} \left[2(x+1)\sqrt{x+1} - 2 \right] dx = \left(\frac{4}{5}(x+1)^2 \sqrt{x+1} - 2x \right) \Big|_{0}^{3} = \frac{94}{5}.$$

Chọn đáp án (B)

B CHO F(X) CÓ $F(B) = B_0, [F'(X)]^2 = C \cdot F(X) + U(X).$ TÍNH TÍCH PHÂN $I = \int_0^B F(X) \mathrm{D}X.$

Bài toán tổng quát

Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;b], thỏa mãn đồng thời

$$f(b) = b_0, \quad [f'(x)]^2 = c \cdot f(x) + u(x).$$

Tính tích phân $I = \int_{0}^{b} f(x) dx$.

Phương pháp giải: Ý tưởng của phương pháp là từ giả thiết, biến đổi đưa về tích phân có dạng

$$\int_{0}^{b} \left[f'(x) - \alpha \cdot x \right]^{2} \mathrm{d}x = 0.$$

Các bước tiến hành như sau

B1. Từ đẳng thức đã cho, lấy tích phân hai vế trên đoạn [0; b], thu được

$$\int_{0}^{b} [f'(x)]^{2} dx = \int_{0}^{b} c \cdot f(x) dx + \int_{0}^{b} u(x) dx = \int_{0}^{b} c \cdot f(x) dx + A.$$

B2. Biểu diễn tích phân $\int_0^b f(x) dx$ qua tích phân của hàm f'(x). Giả sử thu được

$$\int_{0}^{b} f(x)dx = xf(x) \Big|_{0}^{b} - \int_{0}^{b} xf'(x)dx = B - \int_{0}^{b} xf'(x)dx.$$

 ${\bf B3.}\,$ Từ các kết quả ở 2 bước trên, khéo léo đưa về tích phân

$$\int_{0}^{b} \left[f'(x) - \alpha \cdot x \right]^{2} \mathrm{d}x = 0.$$

Từ đó suy ra $f'(x) = \alpha \cdot x$, kết hợp dữ kiện ban đầu để tìm f(x).

VÍ DỤ 2. Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [0;3], thỏa mãn đồng thời

$$f(3) = 4$$
, $[f'(x)]^2 = 8x^2 - 20 - 4f(x)$.

Tích phân
$$I = \int_{0}^{3} f(x) dx$$
 bằng

$$\mathbf{A}$$
 -9

$$\bigcirc B - 6$$

Lời giải.

Từ giả thiết suy ra

$$\int_{0}^{3} [f'(x)]^{2} dx = \int_{0}^{3} [8x^{2} - 20 - 4f(x)] dx = 12 - 4 \int_{0}^{3} f(x) dx.$$
 (1)

Áp dụng tích phân từng phần, ta có

$$\int_{0}^{3} f(x)dx = xf(x)\Big|_{0}^{3} - \int_{0}^{3} xf'(x)dx = 3 \cdot 4 - \int_{0}^{3} xf'(x)dx.$$
 (2)

Từ (1) và (2) suy ra

$$\int_{0}^{3} [f'(x)]^{2} dx = 12 - 4 \left(12 - \int_{0}^{3} x f'(x) dx \right)$$

$$\Leftrightarrow \int_{0}^{3} [f'(x)]^{2} dx - \int_{0}^{3} 4x f'(x) dx + \int_{0}^{3} 4x^{2} dx = 0$$

$$\Leftrightarrow \int_{0}^{3} [f'(x) - 2x]^{2} dx = 0 \Rightarrow f'(x) = 2x \Rightarrow f(x) = x^{2} + C.$$

Mà
$$f(3) = 4$$
 nên $C = -5$. Suy ra $f(x) = x^2 - 5$. Vậy $\int_{0}^{3} f(x) dx = -6$.

Chọn đáp án (B)

Câu 3. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1], thỏa mãn đồng thời

$$f(1) = 2$$
, $[f'(x)]^2 = 8x^2 + 4 - 4f(x)$.

Tích phân $I = \int f(x) dx$ bằng

$$\bigcirc B \frac{1}{3}$$
.

(B)
$$\frac{1}{3}$$
. (C) $\frac{21}{4}$.

$$\bigcirc$$
 $\frac{4}{3}$.

Lời giải.

Từ giả thiết suy ra

$$\int_{0}^{1} \left[f'(x) \right]^{2} dx = \int_{0}^{1} \left[8x^{2} + 4 - 4f(x) \right] dx = \frac{20}{3} - 4 \int_{0}^{1} f(x) dx. \tag{1}$$

Áp dụng tích phân từng phần, ta có

$$\int_{0}^{1} f(x) dx = x f(x) \Big|_{0}^{1} - \int_{0}^{1} x f'(x) dx = 2 - \int_{0}^{1} x f'(x) dx.$$
 (2)

Từ (1) và (2) suy ra

$$\int_{0}^{1} [f'(x)]^{2} dx = \frac{20}{3} - 4 \left(2 - \int_{0}^{1} x f'(x) dx \right)$$

$$\Leftrightarrow \int_{0}^{1} [f'(x)]^{2} dx - \int_{0}^{1} 4x f'(x) dx + \int_{0}^{1} 4x^{2} dx = 0$$

$$\Leftrightarrow \int_{0}^{1} [f'(x) - 2x]^{2} dx = 0 \Rightarrow f'(x) = 2x \Rightarrow f(x) = x^{2} + C.$$

Mà
$$f(1) = 2$$
 nên $C = 1$. Suy ra $f(x) = x^2 + 1$. Vậy $\int_{0}^{1} f(x) dx = \frac{4}{3}$.

Chọn đáp án (D)

Câu 4. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0; 2], thỏa mãn đồng thời

$$f(2) = 5$$
, $[f'(x)]^2 = 32x^2 - 24 - 8f(x)$.

Tích phân $I = \int f(x) dx$ bằng

(A)
$$-\frac{5}{4}$$
. **(B)** $\frac{5}{2}$. **(C)** $-\frac{2}{3}$.

$$\frac{\mathbf{B}}{2}$$
.

$$\bigcirc$$
 $-\frac{2}{3}$

Lời giải.

Từ giả thiết suy ra

$$\int_{0}^{2} [f'(x)]^{2} dx = \int_{0}^{2} [32x^{2} - 24 - 8f(x)] dx = \frac{112}{3} - 8 \int_{0}^{2} f(x) dx.$$
 (1)

Áp dụng tích phân từng phần, ta có

$$\int_{0}^{2} f(x) dx = x f(x) \Big|_{0}^{2} - \int_{0}^{2} x f'(x) dx = 10 - \int_{0}^{2} x f'(x) dx.$$
 (2)

Từ (1) và (2) suy ra

$$\int_{0}^{2} [f'(x)]^{2} dx = \frac{112}{3} - 8 \left(10 - \int_{0}^{2} x f'(x) dx \right)$$

$$\Leftrightarrow \int_{0}^{2} [f'(x)]^{2} dx - \int_{0}^{2} 8x f'(x) dx + \int_{0}^{2} 16x^{2} dx = 0$$

$$\Leftrightarrow \int_{0}^{1} [f'(x) - 4x]^{2} dx = 0 \Rightarrow f'(x) = 4x \Rightarrow f(x) = 2x^{2} + C.$$

Mà f(2) = 5 nên C = -3. Suy ra $f(x) = 2x^2 - 3$. Vậy $\int f(x) dx = -\frac{2}{3}$.

Chọn đáp án (C)

Cho f(x) liên tục trên [a,b] và thỏa mãn $f(x) = f(u) \cdot u' + g(x)$ trong đó u(x), g(x) liên tục trên [a,b], g(x) là hàm đã biết thỏa mãn $\begin{cases} u(a) = a \\ u(b) = c \in [a,b] \end{cases}$. Tính $\int f(x) dx$.

Phương pháp giải:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(u) \cdot u'dx + \int_{a}^{b} g(x)dx$$
$$= \int_{a}^{b} f(u)du + \int_{a}^{b} g(x)dx$$
$$= \int_{a}^{c} f(x)dx + \int_{a}^{b} g(x)dx$$

$$\Rightarrow \int_{a}^{b} f(x) dx - \int_{a}^{c} f(x) dx = \int_{a}^{b} g(x) dx$$
$$\Rightarrow \int_{c}^{b} f(x) dx = \int_{a}^{b} g(x) dx.$$

VÍ DỤ 3. Cho hàm số
$$y = f(x)$$
 liên tục trên [1;4] thỏa mãn $f(x) = \frac{f(2\sqrt{x} - 1)}{\sqrt{x}} + \frac{\ln x}{x}$.

Tính $I = \int f(x) dx$.

- (A) $I = 2 \ln^2 2$. (B) $I = 2 \ln 2$. (C) $I = 3 + 2 \ln^2 2$. (D) $I = \ln^2 2$.

Lời giải.

$$f(x) = \frac{f(2\sqrt{x} - 1)}{\sqrt{x}} + \frac{\ln x}{x}$$

$$\Rightarrow \int_{1}^{4} f(x) dx = \int_{1}^{4} \frac{f(2\sqrt{x} - 1)}{\sqrt{x}} dx + \int_{1}^{4} \frac{\ln x}{x} dx$$

$$= \int_{1}^{4} f(2\sqrt{x} - 1) d(2\sqrt{x} - 1) + \frac{1}{2} \ln^{2} x \Big|_{1}^{4}$$

$$= \int_{1}^{3} f(x) dx + \frac{1}{2} \ln^{2} 4$$

$$= \int_{1}^{3} f(x) dx + 2 \ln^{2} 2$$

$$\Rightarrow \int_{1}^{4} f(x) dx - \int_{1}^{3} f(x) dx = 2 \ln^{2} 2$$

$$\Rightarrow \int_{3}^{4} f(x) dx = 2 \ln^{2} 2.$$

Chọn đáp án (A)

Câu 5. Cho hàm số y = f(x) liên tục trên khoảng [1; e] thỏa mãn $f(x) = \frac{f(\ln x + 1) + \sqrt{2 + \ln x}}{x}$.

Tính
$$\int_{1}^{2} f(x) dx$$
.

(A)
$$\frac{1}{3}(3\sqrt{3}-2\sqrt{2})$$
. (B) $2\sqrt{3}-\frac{2}{3}\sqrt{2}$. (C) $2\sqrt{3}-\frac{4}{3}\sqrt{2}$. (D) $3\sqrt{3}-2\sqrt{2}$.

B
$$2\sqrt{3} - \frac{2}{3}\sqrt{2}$$

$$\bigcirc 2\sqrt{3} - \frac{4}{3}\sqrt{2}$$

Lời giải.

Ta có

$$\int_{1}^{e} f(x) dx = \int_{1}^{e} \frac{f(\ln x + 1)}{x} dx + \int_{1}^{e} \frac{\sqrt{2 + \ln x}}{x} dx$$

$$= \int_{1}^{e} f(\ln x + 1) d(\ln x + 1) + \int_{1}^{e} \sqrt{2 + \ln x} d(2 + \ln x)$$

$$= \int_{1}^{2} f(u) du + \frac{2}{3} \sqrt{(2 + \ln x)^{3}} \Big|_{1}^{e}$$

$$= \int_{1}^{2} f(x) dx + \frac{2}{3} \left(3\sqrt{3} - 2\sqrt{2} \right)$$

$$\Rightarrow \int_{1}^{e} f(x) dx - \int_{1}^{2} f(x) dx = \frac{2}{3} \left(3\sqrt{3} - 2\sqrt{2} \right).$$

$$\Rightarrow \int_{2}^{e} f(x) dx = \frac{2}{3} (3\sqrt{3} - 2\sqrt{2}) = 2\sqrt{3} - \frac{4}{3}\sqrt{2}.$$

Chọn đáp án (C)

Câu 6. Cho hàm số y = f(x) liên tục trên $\left[0; \frac{\pi}{2}\right]$ thỏa mãn

$$f(x) = f(\sin x)\cos x + e^{\sin^2 x}\sin x \cos^3 x.$$

Biết
$$\int_{1}^{\frac{\pi}{2}} f(x)dx = \frac{1}{2}(ae + b). \text{ Tính } a + b.$$

$$(A) -1. \qquad (B) 1. \qquad (C) 2.$$

Lời giải.

Ta có

$$\int_{0}^{\frac{\pi}{2}} f(x) dx = \int_{0}^{\frac{\pi}{2}} f(\sin x) \cos x dx + \int_{0}^{\frac{\pi}{2}} e^{\sin^{2} x} \sin x \cos^{3} x dx$$

$$= \int_{0}^{\frac{\pi}{2}} f(\sin x) d(\sin x) + I_{1}$$

$$= \int_{0}^{1} f(u) du + I_{1}$$

$$= \int_{0}^{1} f(x) dx + I_{1}$$

$$\Rightarrow I_{1} = \int_{0}^{\frac{\pi}{2}} f(x) dx - \int_{0}^{1} f(x) dx = \int_{1}^{\frac{\pi}{2}} f(x) dx$$

$$\Rightarrow I_{1} = \int_{1}^{\frac{\pi}{2}} e^{\sin^{2} x} \sin x \cos^{3} x dx.$$

Đặt $\sin^2 x = t \Rightarrow dt = 2\sin x \cos x$, $\cos^2 x = 1 - t$

$$I_{1} = \frac{1}{2} \int_{0}^{1} e^{t} (1 - t) dt = \frac{1}{2} \int_{0}^{1} e^{t} dt - \frac{1}{2} \int_{0}^{1} e^{t} t dt$$

$$= \frac{1}{2} e^{t} \Big|_{0}^{1} - \frac{1}{2} [e^{t} t]_{0}^{1} - \int_{0}^{1} e^{t} dt \Big]$$

$$= \frac{1}{2} (e - 1) - \frac{1}{2} e + \frac{1}{2} \int_{0}^{1} e^{t} dt$$

$$= \frac{1}{2} (e - 1) - \frac{1}{2} = \frac{1}{2} (e - 2).$$

 $\Rightarrow a = 1, b = 2 \Rightarrow a + b = -1.$

Chọn đáp án (A)

$\begin{array}{ll} \textbf{D} & \textbf{CHO } F(A)=1 \textbf{ VÅ } F(X) \cdot F(A-X)=\mathbb{E}^{X^2-AX}, \forall X \in [0;A] \text{, } G(X) \textbf{ LÅ MỘT} \\ & \textbf{HÀM SỐ CÓ ĐẠO HÀM LIÊN TỤC TRÊN ĐOẠN } [0;A] \textbf{ VÀ THỎA MẪN } G'(X)=\\ & G'(A-X) \text{. TÍNH } I=\int\limits_0^A \frac{G(X)F'(X)}{F(X)} \,\mathrm{D}X. \end{array}$

Bài toán tổng quát

Cho hàm số f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;a] sao cho f(a)=1 và $f(x)\cdot f(a-x)=\mathrm{e}^{x^2-ax}, \forall x\in[0;a],\ g(x)$ là một hàm số có đạo hàm liên tục trên đoạn [0;a] và

thỏa mãn
$$g'(x) = g'(a-x)$$
. Tính $I = \int_0^a \frac{g(x)f'(x)}{f(x)} dx$.

Phương pháp giải: Ta có $f(a) \cdot f(0) = e^{a^2 - a^2} \Rightarrow f(0) = 1$ và $\ln f(x) + \ln f(a - x) = x^2 - ax$.

Đặt
$$\begin{cases} u = g(x) \\ dv = \frac{f'(x)}{f(x)} dx \end{cases} \Rightarrow \begin{cases} du = g'(x) dx \\ v = \ln f(x). \end{cases}$$

Ta có:

$$I = \int_{0}^{a} \frac{g(x)f'(x)}{f(x)} dx$$

$$= g(x) \ln f(x) \Big|_{0}^{a} - \int_{0}^{a} g'(x) \ln f(x) dx$$

$$= g(a) \ln f(a) - g(0) \ln f(0) \int_{0}^{a} g'(x) \ln f(x) dx.$$

Đặt $x = a - t \Rightarrow dx = -dt$, đổi cận

x	0	a
u	\mathbf{a}	0

Do đó
$$I = -\int_{0}^{a} g'(a-x) \ln f(a-x) dx$$
.

Suv ra

$$2I = -\int_{0}^{a} g'(x) \ln f(x) dx - \int_{0}^{a} g'(a-x) \ln f(a-x) dx$$

$$= -\int_{0}^{a} g'(x) \ln f(x) dx - \int_{0}^{a} g'(x) \ln f(a-x) dx$$

$$= -\int_{0}^{a} g'(x) (\ln f(x) + \ln f(a-x)) dx$$

$$= -\int_{0}^{a} g'(x) \cdot (x^{2} - ax) dx.$$

64

Đến đây việc tính tích phân đã rất dễ dàng rồi.

 \checkmark VÍ DU 4. Cho hàm số f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;1] sao cho f(1) = 1 và $f(x) \cdot f(1-x) = e^{x^2 - x}, \forall x \in [0; 1].$ Tính $I = \int_0^1 \frac{(2x^3 - 3x^2)f'(x)}{f(x)} dx.$ (A) $I = -\frac{1}{60}$.
(B) $I = \frac{1}{10}$.
(C) $I = -\frac{1}{10}$.
(D) $I = \frac{1}{60}$.

$$\mathbf{A} I = -\frac{1}{60}$$

B
$$I = \frac{1}{10}$$
.

$$I = -\frac{1}{10}$$
.

$$I = \frac{1}{60}$$

Lời giải.

Từ giả thiết $f(x) \cdot f(1-x) = \mathrm{e}^{x^2-x}, \forall x \in [0;1]$ lấy logarit hai vế ta được

$$\ln f(x) + \ln f(1-x) = x^2 - x. \tag{1}$$

Đặt
$$\begin{cases} u = 2x^3 - 3x^2 \\ \mathrm{d}v = \frac{f'(x)}{f(x)} \, \mathrm{d}x \end{cases} \Rightarrow \begin{cases} \mathrm{d}u = 6(x^2 - x) \, \mathrm{d}x \\ v = \ln f(x). \end{cases}$$
 Suy ra
$$I = \int_0^1 \frac{(2x^3 - 3x^2)f(x)}{f(x)} \, \mathrm{d}x$$
$$= \left((2x^2 - 3x^2) \ln f(x) \right) \Big|_0^1 - \int_0^1 6(x^2 - x) \ln f(x) \, \mathrm{d}x$$
$$= -\int_0^1 6(x^2 - x) \ln f(x) \, \mathrm{d}x.$$
 Đặt $x = 1 - t \Rightarrow \mathrm{d}x = - \, \mathrm{d}t$. Đổi cận:

Ta có:

$$I = \int_{1}^{0} 6 ((1-t)^{2} - (1-t)) \ln f(1-t) dt$$

$$= -\int_{0}^{1} 6(t^{2} - t) \ln f(1-t) dt.$$
Suy ra

$$\begin{aligned} 2I &= -\int\limits_0^1 6(x^2-x) \ln f(x) \, \mathrm{d}x - \int\limits_0^1 6(x^2-x) \ln f(1-x) \, \mathrm{d}x \\ &= -\int\limits_0^1 6(x^2-x) \left(\ln f(x) + \ln f(1-x) \right) \, \mathrm{d}x \\ &= -6\int\limits_0^1 (x^2-x)^2 \, \mathrm{d}x, \text{(theo (1))} \\ &= -6\int\limits_0^1 (x^4-2x^3+x^2) \, \mathrm{d}x \\ &= -6\left(\frac{x^5}{5} - \frac{2x^3}{4} + \frac{x^3}{3}\right) \big|_0^1 = -\frac{1}{5}. \end{aligned}$$

$$\text{Vậy } I = -\frac{1}{10}.$$

Chọn đáp án (C)

Câu 7. Cho hàm số f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;2] sao cho f(2)=1

và
$$f(x) \cdot f(2-x) = e^{x^2-2x}, \forall x \in [0; 2].$$
 Tính $I = \int_0^2 \frac{(3x^2 - 6x + 3)f'(x)}{f(x)} dx.$

(A)
$$I = -\frac{8}{5}$$
.

B
$$I = \frac{16}{5}$$

$$C I = \frac{8}{5}.$$

(A)
$$I = -\frac{8}{5}$$
. (B) $I = \frac{16}{5}$. (C) $I = \frac{8}{5}$.

Lời giải.

Từ giả thiết $f(x) \cdot f(2-x) = e^{x^2-2x}, \forall x \in [0,2]$ lấy logarit hai vế ta được

$$\ln f(x) + \ln f(2 - x) = x^2 - 2x. \tag{1}$$

$$\operatorname{Dat} \begin{cases} u = x^3 - 6x + 3 \\ \mathrm{d}v = \frac{f'(x)}{f(x)} \, \mathrm{d}x \end{cases} \Rightarrow \begin{cases} \mathrm{d}u = 3(x^2 - 2x) \, \mathrm{d}x \\ v = \ln f(x). \end{cases}$$

$$I = \int_{0}^{2} \frac{(x^{3} - 6x + 3)f(x)}{f(x)} dx$$

$$= ((x^{3} - 6x + 3) \ln f(x)) \Big|_{0}^{2} - \int_{0}^{2} 3(x^{2} - 2x) \ln f(x) dx$$

$$= -\int_{0}^{2} 3(x^{2} - 2x) \ln f(x) dx.$$

Đặt $x = 2 - t \Rightarrow dx = -dt$. Đổi cận:

x	0	2
u	2	0

Ta có:

$$I = \int_{2}^{0} 3 \left((2-t)^{2} - 2(2-t) \right) \ln f(2-t) dt$$

$$= -\int_{0}^{2} 3(t^{2} - 2t) \ln f(2-t) dt.$$
Suy ra
$$2I = -\int_{0}^{2} 3(x^{2} - 2x) \ln f(x) dx - \int_{0}^{2} 3(x^{2} - 2x) \ln f(2-x) dx$$

$$= -\int_{0}^{2} 3(x^{2} - 2x) \left(\ln f(x) + \ln f(2-x) \right) dx$$

$$= -3 \int_{0}^{2} (x^{2} - 2x)(x^{2} - 2x) dx, \text{ (theo (1))}$$

$$= -3 \int_{0}^{2} (x^{4} - 4x^{3} + 4x^{2}) dx$$

$$= -3 \left(\frac{x^{5}}{5} - x^{4} + \frac{4x^{3}}{3} \right) \Big|_{0}^{2} = \frac{16}{5}.$$
Vây $I = \frac{8}{5}$.

Chọn đáp án (C)

Câu 8. Cho hàm số f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;1] sao cho f(1)=1và $f(x) \cdot f(1-x) = e^{x^2 - 2x + 1}, \forall x \in [0; 1].$ Tính $I = \int \frac{(4x^3 - 6x^2 + 3)f'(x)}{f(x)} dx.$

(A)
$$I = -\frac{3}{10}$$
. (B) $I = \frac{3}{5}$. (C) $I = \frac{3}{10}$. (D) $I = -\frac{3}{5}$.

B
$$I = \frac{3}{5}$$
.

$$\Gamma = \frac{3}{10}$$
.

$$I = -\frac{3}{5}$$

Lời giải.

Từ giả thiết $f(x) \cdot f(1-x) = e^{x^2-2x+1}, \forall x \in [0,1]$ lấy logarit hai vế ta được

$$\ln f(x) + \ln f(1-x) = x^2 - 2x + 1. \tag{1}$$

Đặt $x = 1 - t \Rightarrow dx = -dt$. Đổi cận:

x	0	1
u	1	0

Ta có:
$$I = \int_{1}^{0} 12 \left((1-t)^{2} - (1-t) \right) \ln f(1-t) dt$$

$$= -\int_{0}^{1} 12(t^{2}-t) \ln f(1-t) dt.$$
Suy ra
$$2I = -\int_{0}^{1} 12(x^{2}-x) \ln f(x) dx - \int_{0}^{1} 12(x^{2}-x) \ln f(1-x) dx$$

$$= -\int_{0}^{1} 12(x^{2}-x) \left(\ln f(x) + \ln f(1-x) \right) dx$$

$$= -12 \int_{0}^{1} (x^{2}-x)(x^{2}-2x+1) dx, \text{ (theo (1))}$$

$$= -12 \int_{0}^{1} (x^{4}-3x^{3}+3x^{2}-x) dx$$

$$= -12 \left(\frac{x^{5}}{5} - \frac{3x^{4}}{4} + x^{3} - \frac{x^{2}}{2} \right) \Big|_{0}^{1} = \frac{3}{5}.$$
Vậy $I = \frac{3}{10}$.

Chọn đáp án C

(E) CHO HÀM SỐ Y = F(X) LIÊN TỤC TRÊN $\mathbb R$ THỎA MẪN $F'(X) + P(X)F(X) = Q(X), \ \forall X \in \mathbb R$ VÀ $F(X_0) = C_0$. XÁC ĐỊNH HÀM F.

Bài toán tổng quát

Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn f'(x) + p(x)f(x) = q(x), $\forall x \in \mathbb{R}$ và $f(x_0) = C_0$. Xác định hàm f.

Phương pháp giải: Gọi P(x) là một nguyên hàm của p(x), $h(x) = \int \left(e^{P(x)} \cdot q(x) \right) dx$. Ta có

$$f'(x) + p(x)f(x) = q(x)$$

$$\Leftrightarrow e^{P(x)}f'(x) + e^{P(x)} \cdot p(x) \cdot f(x) = e^{P(x)} \cdot q(x)$$

$$\Leftrightarrow \left(e^{P(x)}f(x)\right)' = e^{P(x)} \cdot q(x).$$

Nguyên hàm hai vế, ta được:

$$\int \left(e^{P(x)} f(x) \right)' dx = \int \left(e^{P(x)} \cdot q(x) \right) dx$$

$$\Leftrightarrow e^{P(x)} f(x) = h(x) + C$$

$$\Leftrightarrow f(x) = \frac{h(x) + C}{e^{P(x)}}.$$

Từ $f(x_0) = C_0$ ta suy ra giá trị C và thu được hàm f(x).

VÍ DỤ 5. Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn $f'(x) + 2xf(x) = e^{-x^2}$, $\forall x \in \mathbb{R}$ và f(0) = 0. Tính f(1).

$$\frac{2}{e}$$
.

$$\bigcirc \mathbf{B} = \frac{1}{e}$$
.

$$\bigcirc$$
 $\frac{3}{e}$.

$$\bigcirc \qquad \frac{4}{e}.$$

Lời giải.

Nội dung lời giải cho Bài toán gốc Ta có $f'(x) + 2xf(x) = e^{-x^2} \Leftrightarrow e^{x^2}f'(x) + e^{x^2} \cdot 2x \cdot f(x) = 1 \Leftrightarrow$ $\left(e^{x^2}f(x)\right)' = 1.$

Nguyên hàm hai vế, ta được:

$$\int \left(e^{x^2} f(x)\right)' dx = \int 1 dx \Leftrightarrow e^{x^2} f(x) = x + C \Leftrightarrow f(x) = \frac{x + C}{e^{x^2}}.$$

Mà
$$f(0) = 1 \Rightarrow 1 = \frac{0+C}{e^0} = C \Rightarrow f(x) = \frac{x+1}{e^{x^2}} \Rightarrow f(1) = \frac{2}{e}$$
.

Chọn đáp án (A)

Câu 9. Cho hàm số y = f(x) liên tục trên $\mathbb R$ thỏa mãn $f'(x) + (2x+1)f(x) = e^{-x^2}$, $\forall x \in \mathbb R$ và f(0) = 0. Tính f(1).

$$(A) \frac{2}{e}.$$

$$\bigcirc$$
 $\frac{1}{6}$.

$$\bigcirc$$
 $\frac{4}{e}$.

Lời giải.

Ta có

$$f'(x) + (2x+1)f(x) = e^{-x^2}$$

$$\Leftrightarrow e^{x^2+x}f'(x) + e^{x^2+x} \cdot 2x \cdot f(x) = e^x$$

$$\Leftrightarrow \left(e^{x^2+x}f(x)\right)' = e^x.$$

Nguyên hàm hai vế, ta được:

$$\int \left(e^{x^2+x}f(x)\right)' dx = \int e^x dx$$

$$\Leftrightarrow e^{x^2+x}f(x) = e^x + C$$

$$\Leftrightarrow f(x) = \frac{e^x + C}{e^{x^2+x}}.$$

Mà
$$f(0) = 1 \Rightarrow 1 = \frac{1+C}{1} = C+1 \Rightarrow C = 0 \Rightarrow f(x) = \frac{\mathrm{e}^x}{\mathrm{e}^{x^2+x}} = \mathrm{e}^{-x^2} \Rightarrow f(1) = \frac{1}{\mathrm{e}}$$
. Chọn đáp án $\textcircled{\mathbf{B}}$

Câu 10. Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn $\frac{f'(x)}{3x^2 + 1} + f(x) = e^{-x^3 - x}$, $\forall x \in \mathbb{R}$ và f(0) = 0. Tính f(1).

$$(A) \frac{2}{e^2}.$$

$$\bigcirc$$
 $\frac{1}{e}$.

$$\bigcirc$$
 $\frac{2}{e}$.

Lời giải.

Ta có

$$\frac{f'(x)}{3x^2 + 1} + f(x) = e^{-x^3 - x}$$

$$\Leftrightarrow f'(x) + (3x^2 + 1)f(x) = (3x^2 + 1)e^{-x^3 - x}$$

$$\Leftrightarrow e^{x^3 + x}f'(x) + e^{x^3 + x} \cdot (3x^2 + 1) \cdot f(x) = 1$$

$$\Leftrightarrow \left(e^{x^3 + x}f(x)\right)' = 1.$$

Nguyên hàm hai vế, ta được:

$$\int (e^{x^3+x} f(x))' dx = \int 1 dx$$

$$\Leftrightarrow e^{x^3+x} f(x) = x + C$$

$$\Leftrightarrow f(x) = \frac{x+C}{e^{x^3+x}}.$$

Mà
$$f(0) = 1 \Rightarrow 1 = \frac{0+C}{1} = C+1 \Rightarrow C = 0 \Rightarrow f(x) = \frac{x}{e^{x^3+x}} \Rightarrow f(1) = \frac{1}{e^2}$$
. Chọn đáp án $\textcircled{\textbf{B}}$

CHO F(X) CÓ ĐẠO HÀM LIÊN TỤC TRÊN ĐOẠN [M,N] THỎA MÃN $F(X_0)=C,X_0\in[M,N]$, $\int\limits_M^N \left[F'(X)\right]^2\,\mathrm{D}X=A$ VÀ $\int\limits_M^N G(X)\cdot F(X)\,\mathrm{D}X=B$. TÍNH TÍCH PHÂN $\int\limits_M^N F(X)\,\mathrm{D}X$.

Bài toán tổng quát

Cho f(x) có đạo hàm liên tục trên đoạn [m,n] thỏa mãn $f(x_0)=c, x_0\in [m,n]$, $\int\limits_m^n \left[f'(x)\right]^2 \mathrm{d}x=a$ và $\int\limits_m^n g(x)\cdot f(x)\,\mathrm{d}x=b$. Tính tích phân $\int\limits_m^n f(x)\,\mathrm{d}x$.

Phương pháp giải:

- ① Từ tích phân $b = \int_{m}^{n} g(x) \cdot f(x) dx$ áp dụng tích phân từng phần và giả thiết ta đưa về tích phân $\int_{m}^{n} h(x) \cdot f'(x) dx = \beta$.
- ② Chọn α sao cho $\int_{m}^{n} [f'(x)]^2 dx + 2\alpha \int_{m}^{n} h(x) \cdot f'(x) dx + \alpha^2 \int_{m}^{n} h^2(x) dx = 0.$

③ Áp dụng tính chất
$$\int_{m}^{n} \left[f'(x) + \alpha h(x)\right]^{2} dx = 0 \Rightarrow f'(x) = -\alpha \cdot h(x).$$

4 Từ đó kết hợp với giả thiết ta tìm được f(x).

 $\mathbf{V}\hat{\mathbf{I}} \mathbf{D}\hat{\mathbf{U}} \mathbf{6}$. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn $f(1)=\frac{3}{5}$, $\int_{0}^{1} \left[f'(x)\right]^{2} dx = \frac{4}{9} \text{ và } \int_{0}^{1} x^{3} f(x) dx = \frac{37}{180}$. Tính tích phân $\int_{0}^{1} \left[f(x) - 1\right] dx$

 $\bigcirc {\bf A} \frac{1}{15}.$

 $\bigcirc B - \frac{1}{10}.$

 $C - \frac{1}{15}$.

 $\bigcirc \frac{1}{10}$.

Lời giải.

Ta có

$$\frac{37}{180} = \int_{0}^{1} x^{3} f(x) dx$$

$$= \frac{1}{4} \int_{0}^{1} f(x) d(x^{4})$$

$$= \frac{1}{4} \left[f(x) x^{4} \Big|_{0}^{1} - \int_{0}^{1} x^{4} f'(x) dx \right]$$

$$= \frac{3}{20} - \frac{1}{4} \int_{0}^{1} x^{4} f'(x) dx.$$

$$\Rightarrow \int_{0}^{1} x^{4} f'(x) dx = \frac{-2}{9}.$$
Ta có $\int_{0}^{1} |f'(x)|^{2} dx + 4 \int_{0}^{1} x^{4} f'(x) dx \int_{0}^{1} 4x^{8} dx = \frac{4}{9} + 4 \cdot \frac{-2}{9} + \frac{4}{9} = 0.$
Suy ra $\int_{0}^{1} \left[f'(x) + 2x^{4} \right]^{2} dx = 0 \Leftrightarrow f'(x) = -2x^{4} \Rightarrow f(x) = -\frac{2x^{5}}{5} + C.$
Mà $f(1) = \frac{3}{5} \Rightarrow C = 1 \Rightarrow f(x) = -\frac{2}{5}x^{5} + 1.$

$$\Rightarrow \int_{0}^{1} [f(x) - 1] dx = -\frac{1}{15}.$$

Chọn đáp án C

Câu 11. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn $f(1)=1, \int\limits_0^{\infty} \left[f'(x)\right]^2 \mathrm{d}x=9$

và
$$\int_{0}^{1} x^{3} f(x) dx = \frac{1}{2}$$
. Tích phân $\int_{0}^{1} f(x) dx$ bằng

(A) $\frac{2}{3}$.
(B) $\frac{5}{2}$.
(C) $\frac{7}{4}$.
(D) $\frac{6}{5}$.

Lời giải.

Ta có

$$\frac{1}{2} = \int_{0}^{1} x^{3} f(x) dx = \frac{x^{4} f(x)}{4} \Big|_{0}^{1} - \frac{1}{4} \int_{0}^{1} x^{4} f'(x) dx = \frac{1}{4} - \frac{1}{4} \int_{0}^{1} x^{4} f'(x) dx.$$

Suy ra
$$\int_{0}^{1} x^{4} f'(x) dx = -1, \text{ do d\'o ta c\'o}$$

$$\int_{0}^{1} \left[f'(x) + 9x^{4} \right]^{2} dx = \int_{0}^{1} \left[f'(x) \right]^{2} dx + 18 \int_{0}^{1} x^{4} f'(x) dx + 81 \int_{0}^{1} x^{8} dx$$
$$= 9 - 18 + 9 = 0.$$

Do đó
$$f'(x) = -9x^4$$
, kết hợp với $f(1) = 1$, suy ra $f(x) = -\frac{9x^5}{5} + \frac{14}{5}$. Vậy $\int_{0}^{1} f(x) dx = \frac{5}{2}$.

Chọn đáp án (B)

Câu 12. Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] và thỏa mãn f(1) = 0; $\int_{0}^{1} [f'(x)]^2 dx =$

$$\int_{0}^{1} (x+1)e^{x} f(x) dx = \frac{e^{2} - 1}{4}. \text{ Tính } \int_{0}^{1} f(x) dx.$$

$$(A) \frac{e}{2}.$$

$$(B) \frac{e - 1}{2}.$$

$$(C) \frac{e^{2}}{4}.$$

$$(D) 2 - e.$$

Lời giải.

Dăt
$$\begin{cases} u = f(x) \\ dv = (x+1)e^x dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = xe^x \end{cases}.$$

Khi đó
$$\frac{e^2 - 1}{4} = x \cdot e^x f(x) \Big|_0^1 - \int_0^1 x \cdot e^x f'(x) \, dx \Rightarrow \int_0^1 x \cdot e^x f'(x) \, dx = -\frac{e^2 - 1}{4}.$$

$$\operatorname{X\acute{e}t} \int_{0}^{1} [f'(x) + xe^{x}]^{2} dx = \int_{0}^{1} [f'(x)]^{2} dx + 2 \int_{0}^{1} x \cdot e^{x} f'(x) dx + \int_{0}^{1} x^{2} e^{2x} dx = 0.$$

$$\Rightarrow f'(x) = -xe^x \Rightarrow f(x) = -\int xe^x dx = (1-x)e^x + C.$$

Mà f(1) = 0 nên C = 0.

Do đó
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} (1-x) e^{x} dx = (2-x)e^{x} \Big|_{0}^{1} = 2 - e.$$

Chọn đáp án \bigcirc

Bài toán tổng quát

Tính tích phân
$$\int_{a}^{b} \frac{(Ax+B)^2 dx}{[(Ax+B)\sin x + A\cos x]^2}$$

Phương pháp giải: Biến đổi tích phân về dạng $I = \int_{-\infty}^{b} \frac{Ax+B}{\cos x} \cdot \frac{(Ax+B) \cdot \cos x}{[(Ax+B)\sin x + A\cos x]^2} dx$

$$\text{Dặt} \begin{cases} u = \frac{Ax + B}{\cos x} \\ dv = \frac{(Ax + B) \cdot \cos x}{[(Ax + B)\sin x + A\cos x]^2} dx \end{cases} \Rightarrow \begin{cases} du = \frac{(Ax + B)\sin x + A\cos x}{\cos^2 x} dx \\ v = \frac{-1}{(Ax + B)\sin x + A\cos x} dx \end{cases}$$

Tích phân trở thàn

$$I = -\frac{Ax + B}{\cos x \cdot [(Ax + B)\sin x + A\cos x]} \Big|_a^b + \int_a^b \frac{\mathrm{d}x}{\cos^2 x}.$$

VÍ DỤ 7. Biết
$$\int_{0}^{\frac{\pi}{3}} \frac{x^2 dx}{(x \sin x + \cos x)^2} = -\frac{a\pi}{b + c\pi\sqrt{3}} + d\sqrt{3}$$
, với a, b, c, d là các số nguyên

dương. Tính P = a + b + c + d.

(A) P = 9.
(B) P = 10.

$$(\mathbf{A}) P = 9.$$

B
$$P = 10$$

$$(C)$$
 $P=7$

$$P = 8.$$

Lời giải.

Ta có
$$I = \int_{0}^{\frac{\pi}{3}} \frac{x}{\cos x} \cdot \frac{x \cos x}{(x \sin x + \cos x)^2} dx.$$

$$\text{Dặt} \begin{cases} u = \frac{x}{\cos x} \\ dv = \frac{x \cos x}{(x \sin x + \cos x)^2} dx \end{cases} \Rightarrow \begin{cases} du = \frac{\cos x + x \sin x}{\cos^2 x} dx \\ v = \frac{-1}{x \sin x + \cos x}. \end{cases}$$

Tích phân trở thành

$$I = -\frac{x}{\cos x(x\sin x + \cos x)}\Big|_0^{\frac{\pi}{3}} + \int_0^{\frac{\pi}{3}} \frac{\mathrm{d}x}{\cos^2 x} = -\frac{\frac{\pi}{3}}{\frac{1}{2}\left(\frac{\pi}{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2}\right)} + \tan x\Big|_0^{\frac{\pi}{3}} = \frac{-4\pi}{3 + \pi\sqrt{3}} + \sqrt{3}.$$

Từ đó suy ra a = 4, b = 3, c = 1, d = 1.

Vây P = a + b + c + d = 9.

Chọn đáp án (A)

Câu 13. Biết
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{x^2 dx}{(\sin x - x \cos x)^2} = -a\pi + \frac{b\pi}{c - d\pi\sqrt{3}} + e\sqrt{3}$$
, với a, b, c, d, e là các số nguyên dương.

Tính P = 2a + b + c + d + 3e.

(A)
$$P = 16$$
. (B) $P = 15$. (C) $P = 17$.

(B)
$$P = 15$$

$$(C) P = 17$$

$$(\mathbf{D}) P = 18.$$

Lời giải.

$$\operatorname{Ta} \operatorname{co} I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{x}{\sin x} \cdot \frac{x \sin x}{(\sin x - x \cos x)^2} \, \mathrm{d}x.$$

$$\operatorname{Dat} \begin{cases} u = \frac{x}{\sin x} \\ \mathrm{d}v = \frac{x \sin x}{(\sin x + x \cos x)^2} \, \mathrm{d}x \end{cases} \Rightarrow \begin{cases} \operatorname{d}u = \frac{\sin x - x \cos x}{\sin^2 x} \, \mathrm{d}x \\ v = \frac{-1}{\sin x - x \cos x}. \end{cases}$$

Tích phân trở thành

$$I = -\frac{x}{\sin x(\sin x - x\cos x)}\Big|_{\frac{\pi}{3}}^{\frac{\pi}{2}} + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\mathrm{d}x}{\sin^2 x} = -\frac{\pi}{2} - \frac{\frac{\pi}{3}}{\frac{\sqrt{3}}{2}\left(\frac{\sqrt{3}}{2} - \frac{1}{2} \cdot \frac{\pi}{3}\right)} - \cot x\Big|_{\frac{\pi}{3}}^{\frac{\pi}{2}} = -\frac{\pi}{2} + \frac{4\pi}{9 - \pi\sqrt{3}} + \frac{\sqrt{3}}{3}.$$

Từ đó suy ra $a = \frac{1}{2}$, b = 4, c = 9, d = 1, $e = \frac{1}{3}$.

Vây P = 2a + b + c + d + 3e = 16.

Chọn đáp án (A)

Câu 14. Biết $\int_{0}^{4} \frac{x^2 dx}{(x \sin x + \cos x)^2} = \frac{a - b\pi}{a + b\pi}$, với a, b là các số nguyên dương. Tính $P = a^2 + b^2$. (A) P = 17. (B) P = 15. (C) P = 19.

(A)
$$P = 17$$
.

B
$$P = 15$$
.

$$(C)$$
 $P = 19.$

Lời giải.

Ta có
$$I = \int_{0}^{\frac{\pi}{4}} \frac{x}{\cos x} \cdot \frac{x \cos x}{(x \sin x + \cos x)^2} dx.$$

Dặt
$$\begin{cases} u = \frac{x}{\cos x} \\ dv = \frac{x \cos x}{(x \sin x + \cos x)^2} dx \end{cases} \Rightarrow \begin{cases} du = \frac{\cos x + x \sin x}{\cos^2 x} dx \\ v = \frac{-1}{x \sin x + \cos x}. \end{cases}$$

Tích phân trở thành

$$I = -\frac{x}{\cos x (x \sin x + \cos x)} \Big|_0^{\frac{\pi}{4}} + \int_0^{\frac{\pi}{4}} \frac{\mathrm{d}x}{\cos^2 x} = -\frac{\frac{\pi}{4}}{\frac{\sqrt{2}}{2} \left(\frac{\pi}{4} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\right)} + \tan x \Big|_0^{\frac{\pi}{4}} = \frac{-2\pi}{\pi + 4} + 1 = \frac{4 - \pi}{4 + \pi}.$$

Từ đó suy ra a = 4, b = 1.

Vây $P = a^2 + b^2 = 17$.

Chọn đáp án (A)

CHƯƠNG 1. CHUYÊN ĐỀ TÍCH PHÂN-ỨNG DỤNG - CÁC BÀI TOÁN VẬN DỤNG CAO 74

$$\textbf{Bl\'{E}T} \int\limits_A^B \frac{F(X) \cdot T'}{T} \, \mathrm{D}X = \alpha \text{, } F(B) \cdot \mathrm{LN} \, B - F(A) \cdot \mathrm{LN} \, A = \beta \text{. } \mathbf{T\'{I}NH} \, I = \int\limits_A^B F'(X) \cdot \mathrm{LN} \, T \, \mathrm{D}X \text{.}$$

Cho hàm số f(x) liên tục trên đoạn [a;b], t=t(x) nhận giá trị dương và có đạo hàm trên đoạn [a;b], biết $\int_{a}^{b} \frac{f(x) \cdot t'}{t} dx = \alpha$, $f(b) \cdot \ln b - f(a) \cdot \ln a = \beta$. Tính $I = \int_{a}^{b} f'(x) \cdot \ln t dx$.

Phương pháp giải:

- Xác định đúng $u = \ln t$ và phần còn lại là dv = f'(x) dx.
- Dựa vào giả thiết, ta tính kết quả của tích phân cần tìm.

 $\mathbf{Z} \mathbf{V} \mathbf{I} \mathbf{D} \mathbf{U} \mathbf{8}$. Cho hàm số f(x) liên tục trên đoạn [1; e], biết $\int \frac{f(x)}{x} dx = 1$, f(e) = 1. Tính

$$I = \int_{1}^{e} f'(x) \cdot \ln x \, dx.$$

$$\stackrel{\bullet}{\mathbf{A}} I = e.$$

$$\stackrel{\bullet}{\mathbf{B}} I = 0.$$

$$\stackrel{\bullet}{\mathbf{C}} I = 2e.$$

$$\stackrel{\bullet}{\mathbf{D}} I = 2.$$

Lời giải.

Dặt
$$\begin{cases} u = \ln x \\ dv = f'(x) dx \end{cases} \Rightarrow \begin{cases} du = \frac{1}{x} dx \\ v = f(x). \end{cases}$$

Nên
$$I = [f(x) \cdot \ln x] \Big|_{1}^{e} - \int_{1}^{e} \frac{f(x)}{x} dx = f(e) - 1 = 0.$$

Chọn đáp án (B)

Câu 15. Cho hàm số f(x) liên tục trên đoạn [0;2], biết $\int_{-\infty}^{\infty} \frac{f(x)}{x+1} dx = -1$, f(e-1) = 2. Tính tích

phân
$$I = \int_{0}^{e-1} f'(x) \cdot \ln(x+1) dx$$
.

Lời giải.

Đặt
$$\begin{cases} u = \ln(x+1) \\ dv = f'(x) dx \end{cases} \Rightarrow \begin{cases} du = \frac{1}{x+1} dx \\ v = f(x). \end{cases}$$

Nên
$$I = [f(x) \cdot \ln(x+1)] \Big|_{0}^{e-1} - \int_{0}^{e-1} \frac{f(x)}{x+1} dx = f(e-1) - (-1) = 3.$$

Chọn đáp án (C)

Câu 16. Cho hàm số f(x) liên tục trên đoạn [1;10], biết $\int \frac{f(x)}{x} dx = 1$ và $2f(e) - 4f(e^2) = 5$. Tính

tích phân $I = \int_{e}^{e^{z}} f'(x) \cdot \ln(x^{2}) dx$.

(A) -4.
(B) 3.
(C) 4.

$$\bigcirc$$
 -4

$$\bigcirc$$
 -7

Lời giải.

Dặt
$$\begin{cases} u = \ln(x^2) \\ dv = f'(x) dx \end{cases} \Rightarrow \begin{cases} du = \frac{2}{x} dx \\ v = f(x). \end{cases}$$

Nên
$$I = [f(x) \cdot \ln(x^2)]\Big|_{e}^{e^2} - 2 \int_{e}^{e^2} \frac{f(x)}{x} dx = 4f(e^2) - 2f(e) - 2 = -7.$$

Chọn đáp án (D)

 ${\cal H}$ LÀ HÌNH PHẨNG GIỚI HẠN BỞI ĐỒ THỊ CỦA HÀM SỐ $Y=F(X),\;X=$ $A,\ X=B$ VÀ TRỤC OX. TÌM ĐIỀU KIỆN ĐỂ ĐƯỜNG THẨNG Y=K CHIA ${\cal H}$ THÀNH HAI PHẦN CÓ TỈ LÊ DIÊN TÍCH CHO TRƯỚC.

Cho hàm số y = f(x) liên tục trên đoạn [a; b] và \mathcal{H} là hình phẳng giới hạn bởi đồ thị của hàm số $y = f(x), \ x = a, \ x = b$ và trực Ox. Tìm điều kiện để đường thẳng y = k chia \mathcal{H} thành hai phần có tỉ lệ diện tích cho trước.

Phương pháp giải: Ta tính diện tích của từng phần, dựa vào tỉ lệ đề bài yêu cầu ta tìm k.

🗷 VÍ DU 9.

Cho parabol (P_1) : $y = -x^2 + 4$ cắt trực hoành tại hai điểm A, Bvà đường thẳng $d: y = a \ (0 < a < 4)$. Xét parabol (P_2) đi qua A, B và có đỉnh thuộc đường thẳng y = a. Gọi S_1 là diện tích hình phẳng giới hạn bởi (P_1) và d, S_2 là diện tích hình phẳng giới hạn bởi (P_2) và trục hoành. Biết $S_1 = S_2$ (tham khảo hình vẽ bên). Tính $T = a^3 - 8a^2 + 48a$.

$$(\mathbf{A})^{'}T = 32.$$

B
$$T = 64$$
.

$$T = 72$$

A
$$T = 32$$
. **B** $T = 64$. **C** $T = 72$. **D** $T = 99$.

Lời giải.

Đường thẳng y=a cắt (P_1) tại hai điểm có hoành độ $-\sqrt{4-a}$ và $\sqrt{4-a}$. Vậy

$$S_1 = \int_{-\sqrt{4-a}}^{\sqrt{4-a}} (-x^2 + 4 - a) \, dx = \frac{4}{3} \cdot \sqrt{4-a} \cdot (4-a).$$

76

Parabol (P_2) có dạng $y = m(x^2 - 4)$. Chú ý vì nó còn đi qua điểm (0; a) nên $m = -\frac{a}{4}$. Vậy (P_2) : y = $-\frac{a}{4}x^2 + a$. Từ đó suy ra

$$S_2 = \int_{-2}^{2} \left(-\frac{a}{4}x^2 + a \right) dx = \frac{8a}{3}.$$

Từ đó ta có

$$\frac{16(4-a)^3}{9} = \frac{64a^2}{9} \Leftrightarrow a^3 - 8a^2 + 48a = 64.$$

Chọn đáp án (B)

Câu 17. Cho parabol (P): $y = -\frac{1}{16}x^2 + 4$. Gọi \mathcal{H} là hình phẳng giới hạn bởi (P) và Ox. Đường thẳng $y = a \; (0 < a < 4)$ chia hình phẳng \mathcal{H} thành hai phần bằng nhau (phần gạch chéo và phần chấm). Tính

(A)
$$a = 4 - 2\sqrt[3]{2}$$
.

B
$$a = 4 - \sqrt[3]{2}$$
.

B
$$a = 4 - \sqrt[3]{2}$$
. **C** $a = 4 + 2\sqrt[3]{2}$. **D** $a = 4 + \sqrt[3]{2}$.

$$(\mathbf{D}) \ a = 4 + \sqrt[3]{2}$$

Lời giải.

Đường thẳng y = a cắt (P) tại hai điểm có hoành độ lần lượt là $-4\sqrt{4-a}$ và $4\sqrt{4-a}$, (P) cắt trục Ox tại hai điểm có hoành độ -8 và 8.

Diện tích của hình phẳng \mathcal{H} là

$$S = 2 \int_{0}^{8} \left(-\frac{1}{16}x^{2} + 4 \right) dx = \frac{128}{3}.$$

Diện tích hình phẳng giới hạn bởi (P) và đường thẳng y = a là

$$S_2 = 2 \int_{0}^{4\sqrt{4-a}} \left(-\frac{1}{16}x^2 + 4 - a\right) dx = \frac{16}{3} \left(\sqrt{4-a}\right)^3.$$

Suy ra

$$\frac{16}{3} \left(\sqrt{4-a} \right)^3 = \frac{64}{3} \Leftrightarrow \sqrt{4-a} = \sqrt[3]{4} \Leftrightarrow a = 4 - 2\sqrt[3]{2}.$$

Chọn đáp án (A)

Cho hàm số $y = x^4 - x^2 + m$ có đồ thị là (C) cắt trục hoành tại 4 điểm phân biệt. Gọi S_1 là diện tích hình phẳng giới hạn bởi trục hoành và đồ thị (C) nằm phía trên trục hoành, S_2 là diện tích hình phẳng giới hạn bởi trục hoành và phần đồ thị (C) nằm phía dưới trục hoành. Biết rằng $S_1 = S_2$. Biết rằng giá trị của $m = \frac{a}{b}$ với $\frac{a}{b}$ là phân số tối giản. Tính $T = a^2 + b^2$.

(A) T = 25.
(B) T = 61.
(C) T = 281.
(D) T = 1321.

Lời giải.

Phương trình hoành độ giao điểm của (C) và trục hoành: $x^4 - x^2 + m =$ 0 (1). Đặt $t = x^2$, $t \ge 0$, ta được phương trình $t^2 - t + m = 0$ (2). Ta có (C) cắt trực hoành tại bốn điểm phân biệt \Leftrightarrow (2) có hai nghiệm cùng dương

$$\Leftrightarrow \begin{cases} \Delta > 0 \\ S > 0 \Leftrightarrow \begin{cases} 1 - 4m > 0 \\ 3 > 0 \\ m > 0 \end{cases} \Leftrightarrow 0 < m < \frac{1}{4}.$$

Gọi các nghiệm của phương trình (1) là $x_1 < x_2 < x_3 < x_4, x_1, x_2, x_3, x_4 \neq 0$. Do đồ thị (C) nhận trục tung là trục đối xứng nên ta có yêu cầu bài toán thỏa mãn khi và chỉ khi

$$\int_{0}^{x_4} (x^4 - 3x^2 + m) \, dx = 0 \Leftrightarrow 3x_4^4 - 5x_4^2 + 15m = 0.$$

Mặt khác x_4 là nghiệm của phương trình (1) nên ta có

$$x_4^4 - x_4^2 + m = 0.$$

Do đó ta có

$$\begin{cases} x_4^4 - x_4^2 + m = 0 \\ 3x_4^3 - 5x_4^2 + 15m = 0 \end{cases} \Leftrightarrow \begin{cases} x_4^2 = \frac{5}{6} \\ m = \frac{5}{36}. \end{cases}$$

Ta thấy $m = \frac{5}{36}$ thỏa yêu cầu bài toán.

Vây $T = 5^2 + 36^2 = 1321$.

Chọn đáp án (D)

CÁC BÀI TOÁN ĐƯA VỀ DẠNG (UV)' HOẶC (U/V)'

Bài toán tổng quát

Cho hàm số y = f(x) đồng biến, có đạo hàm cấp hai trên đoạn [a;b] và thỏa mãn $h(x)[f(x)]^2$ $f(x)f''(x) + [f'(x)]^2 = 0$ trong đó h(x) là hàm liên tục trên [a;b]. Biết $f(a) = \alpha > 0, f(c) = \beta$ (với $a \le c \le b$). Tìm f(d) (với $d \in (a; b)$).

Phương pháp giải: Ta biến đổi như sau

$$h(x) [f(x)]^{2} - f(x)f''(x) + [f'(x)]^{2} = 0$$

$$\Leftrightarrow h(x) [f(x)]^{2} = f(x)f''(x) - [f'(x)]^{2}$$

$$\Leftrightarrow h(x) = \frac{f(x)f''(x) - [f'(x)]^{2}}{[f(x)]^{2}}$$

$$\Leftrightarrow \left(\frac{f'(x)}{f(x)}\right)' = h(x)$$

$$\Rightarrow \frac{f'(x)}{f(x)} = \int h(x) dx + C_{1}$$

$$\Rightarrow \int \frac{f'(x)}{f(x)} dx = \int (g(x) + C_{1}) dx \text{ (v\'oi } g(x) \text{ là một nguyên hàm của } h(x))$$

$$\Rightarrow \ln f(x) = u(x) + C_{1}x + C_{2} \text{ (v\'oi } u(x) \text{ là một nguyên hàm của } g(x))$$

$$\Rightarrow f(x) = e^{u(x) + C_{1}x + C_{2}}.$$

Dựa vào điều kiện $f(a) = \alpha$, $f(c) = \beta$ suy ra C_1 và C_2 . Khi đó ta có f(x) rồi tìm f(d).

VÍ DỤ 1. Cho hàm số y = f(x) đồng biến và có đạo hàm cấp hai trên đoạn [0;2] và thỏa mãn $[f(x)]^2 - f(x)f''(x) + [f'(x)]^2 = 0$. Biết f(0) = 1, $f(2) = e^4$. Khi đó f(1) bằng $\stackrel{3}{\bullet}$. $\stackrel{3}{\bullet}$. $\stackrel{3}{\bullet}$. $\stackrel{3}{\bullet}$. $\stackrel{2}{\bullet}$. $\stackrel{3}{\bullet}$.

Lời giải

Do f(x) là hàm số đồng biến biến nên $f'(x) > 0, \forall x \in [0; 2]$. Suy ra $\min_{[0:2]} f(x) = f(0) = 1 > 0 \Rightarrow f(x) > 0, \forall x \in [0; 2]$. Ta thấy

$$[f(x)]^{2} - f(x)f''(x) + [f'(x)]^{2} = 0$$

$$\Leftrightarrow [f(x)]^{2} = f(x)f''(x) - [f'(x)]^{2}$$

$$\Leftrightarrow 1 = \frac{f(x)f''(x) - [f'(x)]^{2}}{[f(x)]^{2}}$$

$$\Leftrightarrow \left(\frac{f'(x)}{f(x)}\right)' = 1$$

$$\Rightarrow \frac{f'(x)}{f(x)} = x + C_{1}$$

$$\Rightarrow \int \frac{f'(x)}{f(x)} dx = \int (x + C_{1}) dx$$

$$\Rightarrow \ln f(x) = \frac{x^{2}}{2} + C_{1}x + C_{2}$$

$$\Rightarrow f(x) = e^{\frac{x^{2}}{2} + C_{1}x + C_{2}}.$$

Vì f(0) = 1 suy ra $C_2 = 0$ và $f(2) = e^4$ nên suy ra $C_1 = 1$. Do đó $f(x) = e^{\frac{x^2}{2} + x}$. Vậy $f(1) = e^{\frac{3}{2}}$.

Chọn đáp án C

Câu 1. Cho hàm số y = f(x) đồng biến và có đạo hàm cấp hai trên đoạn [0;2] và thỏa mãn $x [f(x)]^2 - f(x)f''(x) + [f'(x)]^2 = 0$. Biết f(0) = 1, f(1) = e. Khi đó f(2) bằng

A $e^{\frac{3}{2}}$.

B e.

 \bigcirc e^3 .

 \bigcirc e^2 .

Lời giải.

Do f(x) là hàm số đồng biến biến nên $f'(x) > 0, \forall x \in [0; 2]$. Suy ra $\min_{[0;2]} f(x) = f(0) = 1 > 0 \Rightarrow f(x) > 0, \forall x \in [0; 2]$. Ta thấy

$$x [f(x)]^{2} - f(x)f''(x) + [f'(x)]^{2} = 0$$

$$\Leftrightarrow x [f(x)]^{2} = f(x)f''(x) - [f'(x)]^{2}$$

$$\Leftrightarrow x = \frac{f(x)f''(x) - [f'(x)]^{2}}{[f(x)]^{2}}$$

$$\Leftrightarrow \left(\frac{f'(x)}{f(x)}\right)' = x$$

$$\Rightarrow \frac{f'(x)}{f(x)} = \frac{x^{2}}{2} + C_{1}$$

$$\Rightarrow \int \frac{f'(x)}{f(x)} dx = \int \left(\frac{x^{2}}{2} + C_{1}\right) dx$$

$$\Rightarrow \ln f(x) = \frac{x^{3}}{6} + C_{1}x + C_{2}$$

$$\Rightarrow f(x) = e^{\frac{x^{3}}{6} + C_{1}x + C_{2}}.$$

Vì f(0) = 1 suy ra $C_2 = 0$ và f(1) = e nên suy ra $C_1 = \frac{5}{6}$. Do đó $f(x) = e^{\frac{x^3}{6} + \frac{5x}{6}}$. Vậy $f(2) = e^3$.

Chọn đáp án (C)

Câu 2. Cho hàm số y = f(x) đồng biến và có đạo hàm cấp hai trên đoạn $[0;\pi]$ và thỏa mãn $\sin x \left[f(x)\right]^2 - f(x)f''(x) + \left[f'(x)\right]^2 = 0$. Biết f(0) = 1, $f(\pi) = e^{\pi}$. Khi đó f(2) bằng $\frac{e^{\pi}}{2}$. $\frac{e^{\pi}}{2}$. $\frac{e^{\pi}}{2}$.

Lời giải.

Do f(x) là hàm số đồng biến biến nên $f'(x) > 0, \forall 2 \in [0; 3]$. Suy ra $\min_{[0;3]} f(x) = f(0) = 1 > 0 \Rightarrow f(x) > 0, \forall x \in [0; 3]$. Ta thấy

$$\sin x [f(x)]^{2} - f(x)f''(x) + [f'(x)]^{2} = 0$$

$$\Leftrightarrow \sin x [f(x)]^{2} = f(x)f''(x) - [f'(x)]^{2}$$

$$\Leftrightarrow \sin x = \frac{f(x)f''(x) - [f'(x)]^{2}}{[f(x)]^{2}}$$

$$\Leftrightarrow \left(\frac{f'(x)}{f(x)}\right)' = \sin x$$

$$\Rightarrow \frac{f'(x)}{f(x)} = -\cos x + C_{1}$$

$$\Rightarrow \int \frac{f'(x)}{f(x)} dx = \int (-\cos x + C_{1}) dx$$

$$\Rightarrow \ln f(x) = -\sin x + C_{1}x + C_{2}$$

$$\Rightarrow f(x) = e^{-\sin x + C_{1}x + C_{2}}.$$

Vì f(0) = 1 suy ra $C_2 = 0$ và $f(\pi) = e^{\pi}$ nên suy ra $C_1 = 1$. Do đó $f(x) = e^{-\sin x + x}$. Vậy $f\left(\frac{\pi}{2}\right) = e^{\frac{\pi-2}{2}}$.

Chọn đáp án \bigcirc

$$\textbf{B} \quad \textbf{Bl\'{E}T} \ F'(X) \cdot G(X) + F(X) \cdot K(X) = H(X). \ \textbf{T\'{I}NH} \int\limits_A^B F(X) \, \mathrm{D}X.$$

Bài toán tổng quát

Cho hàm số y = f(x) liên tục trên đoạn [a; b]. Biết $f'(x) \cdot g(x) + f(x) \cdot k(x) = h(x), \forall x \in [a; b],$ h(x), g(x), k(x) là hàm đã biết liên tục trên $[a; b], g(x) \neq 0, \forall x \in [a; b]$ và $f(x_0) = m$ với $x_0 \in [a; b]$.

Tính
$$\int_{a}^{b} f(x) dx$$
.

Phương pháp giải: Ta tìm hàm f(x) bằng cách tìm cách biến đổi điều kiện

$$f'(x) \cdot g(x) + f(x) \cdot k(x) = h(x)$$

$$\Leftrightarrow f'(x) + f(x) \cdot \frac{k(x)}{g(x)} = \frac{h(x)}{g(x)}$$

Đưa về dạng f'(x) + p(x)f(x) = q(x) với P'(x) = p(x). Nhân cả hai vế với $e^{P(x)}$ ta được

$$f'(x) \cdot e^{P(x)} + (P(x))' \cdot e^{P(x)} \cdot f(x) = q(x) \cdot e^{P(x)}$$

$$\Leftrightarrow (f(x) \cdot e^{P(x)})' = q(x) \cdot e^{P(x)}$$

$$\Leftrightarrow f(x) \cdot e^{P(x)} = \int q(x) \cdot e^{P(x)} dx = n(x) + C.$$

Từ điều kiện $f(x_0) = m$ ta tìm được C và từ đó tìm được hàm f(x).

VÍ DỤ 2. Cho hàm số y = f(x) liên tục trên đoạn $\left[0; \frac{\pi}{6}\right]$. Biết $f'(x) \cdot \cos x + f(x) \cdot \sin x = 1$,

 $\forall x \in \left[0; \frac{\pi}{6}\right] \text{ và } f(0) = 1. \text{ Tính } I = \int_{0}^{\infty} f(x) \, \mathrm{d}x.$

(A)
$$I = \frac{2 - \sqrt{3}}{2} + \frac{\pi}{6}$$
. (B) $I = \frac{3 - \sqrt{3}}{2}$. (C) $I = \frac{2 - \sqrt{3}}{2}$. (D) $I = \frac{\sqrt{3} - 1}{2}$.

$$C I = \frac{2 - \sqrt{3}}{2}$$

Lời giải.

Ta có

$$f'(x) \cdot \cos x + f(x) \cdot \sin x = 1$$

$$\Leftrightarrow f'(x) + f(x) \cdot \frac{\sin x}{\cos x} = \frac{1}{\cos x}$$

$$\Leftrightarrow f'(x) \cdot \frac{1}{\cos x} + f(x) \cdot \frac{\sin x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

$$\Leftrightarrow \left(f(x) \cdot \frac{1}{\cos x} \right)' = \frac{1}{\cos^2 x}$$

$$\Rightarrow \int \left(f(x) \cdot \frac{1}{\cos x} \right)' dx = \int \frac{1}{\cos^2 x} dx + C$$

$$\Leftrightarrow f(x) \cdot \frac{1}{\cos x} = \tan x + C.$$

Có $f(0) = 1 \Rightarrow C = 1 \Rightarrow f(x) = \sin x + \cos x$.

Suy ra
$$I = \int_{0}^{\frac{\pi}{6}} f(x) dx = \int_{0}^{\frac{\pi}{6}} (\sin x + \cos x) dx = (\sin x - \cos x) \Big|_{0}^{\frac{\pi}{6}} = \frac{3 - \sqrt{3}}{2}.$$

Câu 3. Cho hàm số y = f(x) có đạo hàm và liên tục trên \mathbb{R} thỏa mãn $f'(x) + 2xf(x) = 2xe^{-x^2}$ và f(0) = 0. Tính f(1).

$$\bigcirc B = \frac{1}{e}$$
.

$$\bigcirc$$
 $\frac{2}{e}$.

$$\bigcirc$$
 $-\frac{2}{e}$.

Lời giải.

Từ giả thiết $f'(x) + 2xf(x) = 2xe^{-x^2}$, ta suy ra

$$e^{x^{2}} f'(x) + 2xe^{x^{2}} f(x) = 2x$$

$$\Leftrightarrow \left[e^{x^{2}} f(x) \right]' = 2x$$

$$\Leftrightarrow \int_{0}^{1} \left[e^{x^{2}} f(x) \right]' dx = \int_{0}^{1} 2x dx$$

$$\Leftrightarrow e^{x^{2}} f(x) \Big|_{0}^{1} = x^{2} \Big|_{0}^{1}$$

$$\Leftrightarrow ef(1) - f(0) = 1 \Rightarrow f(1) = \frac{1}{e}.$$

Chọn đáp án (B)

Câu 4. Cho hàm số y = f(x) liên tục trên [1;3] thỏa mãn xf'(x) + f(x) = 1 và f(1) = 2. Tính f(x) dx.

(A)
$$2 + \ln 3$$
.

B
$$1 + 2 \ln 2$$
.

$$(C)$$
 3 + ln 2.

B
$$1 + 2 \ln 2$$
. **C** $3 + \ln 2$. **D** $3 - 2 \ln 2$.

Lời giải.

Ta có $xf'(x) + f(x) = 1 \Leftrightarrow xf'(x) + x'f(x) = 1 \Leftrightarrow (xf(x))' = 1 \Leftrightarrow xf(x) = x + C.$

Mà $f(1) = 2 \Rightarrow C = 1 \Rightarrow f(x) = 1 + \frac{1}{x}$.

Khi đó $\int_{0}^{x} f(x) dx = \int_{0}^{x} \left(1 + \frac{1}{x}\right) dx = (x + \ln x) \Big|_{1}^{3} = 2 + \ln 3.$

Chọn đáp án (A)

Cho hàm số y = f(x) thỏa mãn $[f'(x)]^2 + f(x) \cdot f''(x) = g(x)$ với mọi x thuộc khoảng D. Tìm hàm số $y = f^2(x)$.

Phương pháp giải: Ta có

$$[f'(x)]^2 + f(x) \cdot f''(x) = g(x) \Leftrightarrow (f(x) \cdot f'(x))' = g(x)$$

$$\Leftrightarrow \left(\frac{1}{2}f^2(x)\right)'' = g(x)$$

$$\Leftrightarrow \frac{1}{2}f^2(x) = h(x) + C_1x + C_2$$

$$\Leftrightarrow f^2(x) = 2h(x) + 2C_1x + 2C_2.$$

Vậy $f^2(x) = 2h(x) + 2C_1x + 2C_2$ (trong đó h''(x) = g(x), C_1 , C_2 là các hằng số).

VÍ DỤ 3. Cho hàm số y = f(x) thỏa mãn $[f'(x)]^2 + f(x) \cdot f''(x) = 2e^x - 4$ và f(0) = f'(0) = 2. Giá trị của $f^2(1)$ thuộc khoảng nào sau đây?

(A) (6;7).

(B) (10; 11).

 (\mathbf{C}) (8; 9).

(D) (9; 10).

Lời giải.

Ta có

$$[f'(x)]^{2} + f(x) \cdot f''(x) = 2e^{x} - 4 \iff (f(x) \cdot f'(x))' = 2e^{x} - 4$$

$$\Leftrightarrow f(x) \cdot f'(x) = 2e^{x} - 4x + C_{1}$$

$$\Leftrightarrow \frac{1}{2}f^{2}(x) = 2e^{x} - 2x^{2} + C_{1}x + C_{2}$$

$$\Leftrightarrow f^{2}(x) = 4e^{x} - 4x^{2} + 2C_{1}x + 2C_{2}.$$

Ta có

$$\begin{cases} f(0) = 2 \\ f'(0) = 2 \end{cases} \Rightarrow \begin{cases} 2 \cdot 2 = 2e^{0} - 4 \cdot 0 + C_{1} \\ 2^{2} = 4e^{0} - 4 \cdot 0^{2} + 2C_{1} \cdot 0 + 2C_{2} \end{cases} \Leftrightarrow \begin{cases} C_{1} = 2 \\ C_{2} = 0. \end{cases}$$

Suy ra $f^2(x) = 4e^x - 4x^2 + 4x \Rightarrow f^2(1) = 4e$.

Chọn đáp án (B)

Câu 5. Cho hàm số y = f(x) thỏa mãn $[f'(x)]^2 + f(x) \cdot f''(x) = 6x - \frac{1}{4x\sqrt{x}}$ và f(1) = 0. Tính $f^2(2)$.

(A) $5 + 2\sqrt{2}$. (B) $14 + 2\sqrt{2}$. (C) $\frac{5 + 2\sqrt{2}}{2}$. (D) $\frac{14 + 2\sqrt{2}}{2}$.

Lời giải.

Ta có

$$[f'(x)]^{2} + f(x) \cdot f''(x) = 6x - \frac{1}{4x\sqrt{x}} \iff (f(x) \cdot f'(x))' = 6x - \frac{1}{4x\sqrt{x}}$$

$$\Leftrightarrow f(x) \cdot f'(x) = 3x^{2} + \frac{1}{2\sqrt{x}} + C_{1}$$

$$\Leftrightarrow \frac{1}{2}f^{2}(x) = x^{3} + \sqrt{x} + C_{1}x + C_{2}$$

$$\Leftrightarrow f^{2}(x) = 2x^{3} + 2\sqrt{x} + 2C_{1}x + 2C_{2}.$$

Ta có

$$f(1) = 0 \Rightarrow \begin{cases} 0 = 3 + \frac{1}{2} + C_1 \\ 0 = 2 + 2 + 2C_1 + 2C_2 \end{cases} \Leftrightarrow \begin{cases} C_1 = -\frac{7}{2} \\ C_2 = \frac{3}{2}. \end{cases}$$

Suy ra $f^2(x) = 2x^3 + 2\sqrt{x} - 7x + 3 \Rightarrow f^2(2) = 5 + 2\sqrt{2}$.

Chọn đáp án (A)

Câu 6. Cho hàm số y = f(x) thỏa mãn $[f'(x)]^2 + f(x) \cdot f''(x) = -8 \sin 2x$ và f(0) = 2, f'(0) = 4. Biết $f^2\left(\frac{\pi}{2}\right) = a\pi + b$, với $a, b \in \mathbb{Z}$, tính a + b.

(A) 6.

(B) 0.

(C) 8.

(**D**) 12.

Lời giải.

Ta có

$$[f'(x)]^2 + f(x) \cdot f''(x) = -8\sin 2x \quad \Leftrightarrow \quad (f(x) \cdot f'(x))' = -8\sin 2x$$

$$\Leftrightarrow \quad f(x) \cdot f'(x) = 4\cos 2x + C_1$$

$$\Leftrightarrow \quad \frac{1}{2}f^2(x) = 2\sin 2x + C_1x + C_2$$

$$\Leftrightarrow \quad f^2(x) = 4\sin 2x + 2C_1x + 2C_2.$$

Ta có

$$\begin{cases} f(0) = 2 \\ f'(0) = 4 \end{cases} \Rightarrow \begin{cases} 8 = 4 + C_1 \\ 2^2 = 2C_2 \end{cases} \Leftrightarrow \begin{cases} C_1 = 4 \\ C_2 = 2. \end{cases}$$

Suy ra $f^2(x) = 4\sin 2x + 8x + 4 \Rightarrow f^2\left(\frac{\pi}{2}\right) = 4\pi + 4 \Rightarrow a = 4, b = 4 \Rightarrow a + b = 8.$

Chọn đáp án (C)

CHO (X - M)(X - N)F'(X) + (N - M)F(X) = (X - M)(X - N)D MỘI $X \in \mathbb{R} \setminus \{M; N\}$ VÀ F(P) = R. XÁC ĐỊNH F(Q) VÀ CÁC BIỂU THỰC LIÊN QUAN.

Bài toán tổng quát

Cho hàm số f(x) liên tục trên $\mathbb{R}\setminus\{n;m\}$ với m>n, thỏa mãn (x-m)(x-n)f'(x)+(n-m)f(x)=(x-m)(x-n) (1) với mọi $x \in \mathbb{R} \setminus \{m; n\}$ và f(p) = r. Xác định f(q) và các biểu thức liên quan.

Phương pháp giải:

• Chia hai vế của (1) cho $(x-m)^2$, ta được

$$\frac{x-n}{x-m}f'(x) + \frac{n-m}{(x-m)^2}f(x) = \frac{x-n}{(x-m)^2}.$$
 (2)

• Đẳng thức (2) được viết lại như sau

$$\left[\frac{x-n}{x-m}f(x)\right]' = \frac{x-n}{(x-m)^2} \Rightarrow \frac{x-n}{x-m}f(x) = \int \frac{x-n}{(x-m)^2} dx.$$

- Tính nguyên hàm $\int \frac{x-n}{(x-m)^2} dx$.
- Chọn được hàm số y = f(x).
- Xác định f(q) và các biểu thức liên quan.

VÍ DỤ 4. Cho hàm số f(x) liên tục trên $\mathbb{R} \setminus \{-1, 0\}$, thỏa mãn $x(x+1)f'(x) + f(x) = x^2 + x$ với mọi $x \in \mathbb{R} \setminus \{-1; 0\}$ và $f(1) = -2 \ln 2$. Biết $f(2) = a + b \ln 3$ với $a, b \in \mathbb{Q}$. Tính $P = a^2 + b^2$. **B** $P = \frac{3}{4}$. **C** $P = \frac{13}{4}$. **D** $P = \frac{9}{2}$.

(A)
$$P = \frac{1}{2}$$
.

$$P = \frac{3}{4}.$$

$$P = \frac{13}{4}$$
.

Lời giải.

Từ giả thiết, ta có

$$\frac{x}{x+1}f'(x) + \frac{1}{(x+1)^2}f(x) = \frac{x}{x+1}, \forall x \in \mathbb{R} \setminus \{-1; 0\}.$$

Nhân thấy
$$\frac{x}{x+1}f'(x) + \frac{1}{(x+1)^2}f(x) = \left[\frac{x}{x+1}f(x)\right]'.$$

Do đó, từ giả thiết viết lại như sau $\left[\frac{x}{x+1}f(x)\right]' = \frac{x}{x+1}, \ \forall x \in \mathbb{R} \setminus \{-1; 0\}.$

Suy ra
$$\frac{x}{x+1}f(x) = \int \frac{x}{x+1} dx = \int \left(1 - \frac{1}{x+1}\right) dx = x - \ln|x+1| + C.$$

Mà
$$f(1) = -2 \ln 2 \Rightarrow C = -1$$
. Do đó $\frac{x}{x+1} f(x) = x - \ln|x-1| - 1$.

Cho
$$x = 2$$
 ta được $\frac{2}{3}f(2) = 2 - \ln 3 - 1 \Rightarrow f(2) = \frac{3}{2} - \frac{3}{2}\ln 3$.

Suy ra
$$a = \frac{3}{2}$$
 và $b = -\frac{3}{2}$. Vậy $P = a^2 + b^2 = \frac{9}{2}$.

Chọn đáp án \bigcirc

Câu 7. Cho hàm số f(x) liên tục trên $\mathbb{R} \setminus \{-2; 0\}$, thỏa mãn $x(x+2)f'(x) + 2f(x) = x^2 + 2x$ với mọi $x \in \mathbb{R} \setminus \{-2; 0\}$ và f(-1) = -2. Biết $f(1) = a + b \ln 3$ với $a, b \in \mathbb{Q}$. Tính $P = a^2 + b^2$.

 $\stackrel{\frown}{\mathbf{A}} P = 4.$

B P = 36.

P = 9.

P = 45

Lời giải.

Từ giả thiết, ta có

$$\frac{x}{x+2}f'(x) + \frac{2}{(x+2)^2}f(x) = \frac{x}{x+2}, \forall x \in \mathbb{R} \setminus \{-2; 0\}.$$

Nhận thấy
$$\frac{x}{x+2}f'(x) + \frac{2}{(x+2)^2}f(x) = \left[\frac{x}{x+2}f(x)\right]'$$
.

Do đó, từ giả thiết viết lại như sau $\left[\frac{x}{x+2}f(x)\right]' = \frac{x}{x+2}, \ \forall x \in \mathbb{R} \setminus \{-2; 0\}.$

Suy ra
$$\frac{x}{x+2}f(x) = \int \frac{x}{x+2} dx = \int \left(1 - \frac{2}{x+2}\right) dx = x - 2\ln|x+2| + C.$$

Mà
$$-2 = f(-1) \Rightarrow C = -1$$
. Do đó $\frac{x}{x+1} f(x) = x - 2 \ln|x+2| - 1$.

Cho x = 1 ta được $\frac{1}{3}f(1) = 1 - 2\ln 3 - 1 \Rightarrow f(1) = 0 - 6\ln 3$.

Suy ra a = 0 và b = -6. Vậy $P = a^2 + b^2 = 36$.

Chọn đáp án B

Câu 8. Cho hàm số f(x) liên tục trên $\mathbb{R} \setminus \{1; 2\}$, thỏa mãn $(x-1)(x-2)f'(x) - f(x) = x^2 - 3x + 2$ với mọi $x \in \mathbb{R} \setminus \{1; 2\}$ và f(-1) = 3. Biết $f(0) = a + b \ln 2 + c \ln 3$ với $a, b, c \in \mathbb{Z}$. Tính P = a + b + c.

 $(\mathbf{A}) P = 6.$

B P = -4.

(C) P = -2.

 $(\mathbf{D}) P = 0.$

Lời giải.

Từ giả thiết, ta có

$$\frac{x-1}{x-2}f'(x) - \frac{1}{(x-2)^2}f(x) = \frac{x-1}{x-2}, \forall x \in \mathbb{R} \setminus \{1; 2\}.$$

Nhận thấy
$$\frac{x-1}{x-2}f'(x) - \frac{1}{(x-2)^2}f(x) = \left[\frac{x-1}{x-2}f(x)\right]'$$
.

Do đó, từ giả thiết viết lại như sau $\left[\frac{x-1}{x-2}f(x)\right]' = \frac{x-1}{x-2}, \ \forall x \in \mathbb{R} \setminus \{1; 2\}.$

Suy ra
$$\frac{x-1}{x-2}f(x) = \int \frac{x-1}{x-2} dx = \int \left(1 + \frac{1}{x-2}\right) dx = x + \ln|x-2| + C.$$

Với x = -1, suy ra $\frac{2}{3}f(-1) = -1 + \ln 3 + C \Rightarrow C = 3 - \ln 3$.

Do đó
$$\frac{x-1}{x-2}f(x)=x+\ln|x-2|+3-\ln 3$$
. Cho $x=0$, ta được $\frac{1}{2}f(0)=\ln 2+3-\ln 3\Rightarrow f(0)=6+2\ln 2-2\ln 3$. Suy ra $a=6,\ b=2$ và $c=-2$. Vậy $P=a+b+c=6+2+(-2)=6$. Chọn đáp án \bigcirc

$\S {f 5}$. CÁC BÀI TOÁN LIÊN QUAN ĐẾN ĐỒ THỊ Y = F(X)

DIỆN TÍCH HÌNH PHẨNG GIỚI HẠN BỞI (P) VÀ ĐƯỜNG THẨNG AB BẰNG \mathcal{S} . GỌI X_1, X_2 LẦN LƯỢT LÀ HOÀNH ĐỘ CỦA A VÀ B. TÍNH GIÁ TRỊ CỦA $(X_1 + X_2)^2$.

Bài toán tổng quát

Cho đồ thị hàm số $y = \frac{1}{2}x^2 + c$ có đồ thị (P). Xét các điểm A, B thuộc (P) sao cho tiếp tuyến tại A và B của (P) vuông góc với nhau. Diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng S. Gọi x_1, x_2 lần lượt là hoành độ của A và B. Tính giá trị của $(x_1 + x_2)^2$.

Phương pháp giải: Ta có y' = x.

Tiếp tuyến tại điểm A và điểm B của parabol vuông góc với nhau suy ra

$$y'(x_1) \cdot y'(x_2) = -1 \Leftrightarrow x_1 x_2 = -1.$$

Điểm $A\left(x_1; \frac{1}{2}x_1^2 + c\right)$, điểm $B\left(x_2; \frac{1}{2}x_2^2 + c\right)$. Phương trình đường thẳng đi qua hai điểm A, B là

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - \frac{1}{2}x_1^2 - c}{\frac{1}{2}(x_2 - x_1)(x_2 + x_1)}$$
$$\Leftrightarrow y = \frac{1}{2}x(x_2 + x_1) - \frac{1}{2}x_2x_1 + c.$$

Không mất tổng quát giả sử $x_1 < x_2$.

Diện tích hình phẳng được giới hạn bởi (AB) và (P) là

$$S = \int_{x_1}^{x_2} \left[\frac{1}{2} x(x_2 + x_1) - \frac{1}{2} x_2 x_1 + c - \frac{1}{2} x^2 - c \right] dx.$$

Lấy tích phân và thay điều kiện $x_1x_2 = -1$ ta được

$$12\mathcal{S} = (x_2 - x_1)^3.$$

Suy ra
$$x_2 - x_1 = \sqrt[3]{12S}$$
.
Do đó, $(x_2 + x_1)^2 = (x_2 - x_1)^2 + 4x_1x_2 = (\sqrt[3]{12S})^2 - 4$.

 $\mathbf{V} \mathbf{I} \mathbf{D} \mathbf{U} \mathbf{1}$. Cho đồ thị hàm số $y = \frac{1}{2}x^2$ có đồ thị (P). Xét các điểm A, B thuộc (P) sao cho tiếp tuyến tại A và B của (P) vuông góc với nhau. Diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng $\frac{9}{4}$. Gọi x_1, x_2 lần lượt là hoành độ của A và B. Giá trị của $(x_1 + x_2)^2$ bằng

A 7.

B 5.

(C) 13.

(D) 11.

Lời giải.

Ta có y' = x.

Tiếp tuyến tại điểm A và điểm B của parabol vuông góc với nhau suy ra

$$y'(x_1) \cdot y'(x_2) = -1 \Leftrightarrow x_1 x_2 = -1.$$

Điểm $A\left(x_1;\frac{1}{2}x_1^2\right)$, điểm $B\left(x_2;\frac{1}{2}x_2^2\right)$. Phương trình đường thẳng đi qua hai điểm A,B là

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - \frac{1}{2}x_1^2}{\frac{1}{2}(x_2 - x_1)(x_2 + x_1)}$$
$$\Leftrightarrow y = \frac{1}{2}x(x_2 + x_1) - \frac{1}{2}x_2x_1.$$

Không mất tổng quát giả sử $x_1 < x_2$.

Diện tích hình phẳng được giới hạn bởi (AB) và (P) là

$$\frac{9}{4} = \int_{x_1}^{x_2} \left[\frac{1}{2} x(x_2 + x_1) - \frac{1}{2} x_2 x_1 - \frac{1}{2} x^2 \right] dx.$$

Lấy tích phân và thay điều kiện $x_1x_2 = -1$ ta được

$$27 = (x_2 - x_1)^3.$$

Suy ra $x_2 - x_1 = \sqrt[3]{27} = 3$. Do đó, $(x_2 + x_1)^2 = (x_2 - x_1)^2 + 4x_1x_2 = (3)^2 - 4 = 5$.

Chọn đáp án B

Câu 1. Cho đồ thị hàm số $y = \frac{1}{2}x^2 + 2019$ có đồ thị (P). Xét các điểm A, B thuộc (P) sao cho tiếp tuyến tại A và B của (P) vuông góc với nhau. Diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng $\frac{16}{3}$. Gọi x_1, x_2 lần lượt là hoành độ của A và B. Giá trị của $(x_1 + x_2)^2$ bằng

 $\frac{19}{3}$.

B 12.

(C) 13.

 $\bigcirc 25$.

Lời giải.

Ta có y' = x.

Tiếp tuyến tại điểm A và điểm B của parabol vuông góc với nhau suy ra

$$y'(x_1) \cdot y'(x_2) = -1 \Leftrightarrow x_1 x_2 = -1.$$

Điểm $A\left(x_1; \frac{1}{2}x_1^2 + 2019\right)$, điểm $B\left(x_2; \frac{1}{2}x_2^2 + 2019\right)$. Phương trình đường thẳng đi qua hai điểm A, B là

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - \frac{1}{2}x_1^2 - 2019}{\frac{1}{2}(x_2 - x_1)(x_2 + x_1)}$$
$$\Leftrightarrow y = \frac{1}{2}x(x_2 + x_1) - \frac{1}{2}x_2x_1 + 2019.$$

Không mất tổng quát giả sử $x_1 < x_2$.

Diện tích hình phẳng được giới hạn bởi (AB) và (P) là

$$\frac{16}{3} = \int_{x_1}^{x_2} \left[\frac{1}{2} x(x_2 + x_1) - \frac{1}{2} x_2 x_1 + 2019 - \frac{1}{2} x^2 - 2019 \right] dx.$$

Lấy tích phân và thay điều kiện $x_1x_2 = -1$ ta được

$$12 \cdot \frac{16}{3} = (x_2 - x_1)^3.$$

Suy ra $x_2 - x_1 = \sqrt[3]{64} = 4$. Do đó, $(x_2 + x_1)^2 = (x_2 - x_1)^2 + 4x_1x_2 = (4)^2 - 4 = 12$. Chọn đáp án \bigcirc

Câu 2. Cho đồ thị hàm số $y = \frac{1}{2}x^2 - \frac{26}{3}$ có đồ thị (P). Xét các điểm A, B thuộc (P) sao cho tiếp tuyến tại A và B của (P) vuông góc với nhau. Diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng $\frac{2}{3}$. Gọi x_1, x_2 lần lượt là hoành độ của A và B. Giá trị của $(x_1 + x_2)^2$ bằng

 $\bigcirc {\bf A} \quad \frac{7}{2}.$

 \bigcirc 0

(C) 1.

 \bigcirc $\frac{5}{2}$

Lời giải.

Ta có y' = x.

Tiếp tuyến tại điểm A và điểm B của parabol vuông góc với nhau suy ra

$$y'(x_1) \cdot y'(x_2) = -1 \Leftrightarrow x_1 x_2 = -1.$$

Điểm $A\left(x_1; \frac{1}{2}x_1^2 - \frac{26}{3}\right)$, điểm $B\left(x_2; \frac{1}{2}x_2^2 - \frac{26}{3}\right)$. Phương trình đường thẳng đi qua hai điểm A, B là

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - \frac{1}{2}x_1^2 + \frac{26}{3}}{\frac{1}{2}(x_2 - x_1)(x_2 + x_1)}$$
$$\Leftrightarrow y = \frac{1}{2}x(x_2 + x_1) - \frac{1}{2}x_2x_1 - \frac{26}{3}.$$

Không mất tổng quát giả sử $x_1 < x_2$.

Diện tích hình phẳng được giới hạn bởi (AB) và (P) là

$$\frac{2}{3} = \int_{x_1}^{x_2} \left[\frac{1}{2} x(x_2 + x_1) - \frac{1}{2} x_2 x_1 - \frac{26}{3} - \frac{1}{2} x^2 + \frac{26}{3} \right] dx.$$

Lấy tích phân và thay điều kiện $x_1x_2 = -1$ ta được

$$12 \cdot \frac{2}{3} = (x_2 - x_1)^3.$$

Suy ra $x_2 - x_1 = \sqrt[3]{8}$. Do đó, $(x_2 + x_1)^2 = (x_2 - x_1)^2 + 4x_1x_2 = (2)^2 - 4 = 0$.

Chọn đáp án $\stackrel{f B}{}$

B CHO Y=F(X) ĐẠT CỰC TRỊ TẠI X=M, CÓ ĐỒ THỊ NHƯ HÌNH VỀ VÀ ĐƯỜNG THẮNG Δ LÀ TIẾP TUYẾN CỦA ĐỒ THỊ TẠI ĐIỂM CÓ HOÀNH ĐỘ BẰNG N. TÍNH $I=\int\limits_{M}^{N}F"(AX+B)\,\mathrm{D}X$.

Bài toán tổng quát

Cho hàm số y=f(x) liên tục trên $\mathbb R$ và có đạo hàm đến cấp hai trên $\mathbb R$. Biết hàm số y=f(x) đạt cực trị tại x=m, có đồ thị như hình vẽ và đường thẳng Δ là tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng n.

Tính
$$I = \int_{m}^{n} f''(ax + b) dx$$
.

Dưa vào đồ thi hàm số ta có thể:

- Xác định các điểm cực trị $x=m,\ldots$ Khi đó $f'(m)=0,\ldots$
- Xác định hệ số góc của tiếp tuyến của đồ thị hàm số tại các tiếp điểm : $k_1 = f'(n), \ldots$
- Kết hợp với các phương pháp tính tích phân: đổi biến số ...

Phương pháp giải:

🗷 VÍ DŲ 2.

Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm đến cấp hai trên \mathbb{R} . Biết hàm số y = f(x) đạt cực trị tại x = -1, có đồ thị như hình vẽ và đường thẳng Δ là tiếp tuyến của đồ thị hàm số tại

điểm có hoành độ bằng 2. Tính $\int_{1}^{4} f''(x-2) dx$.

B 2

(D) 3.

Lời giải.

Nhận xét:

- Phương trình tiếp tuyến Δ của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 2 là y = 3x 3 nên f'(2) = 3.
- Hàm số y = f(x) đạt cực trị tại x = -1 nên f'(-1) = 0.

Xét tích phân
$$I = \int_{1}^{4} f''(x-2) dx$$
.
Đặt $t = x - 2$. Khi $x = 1 \Rightarrow t = -1; x = 4 \Rightarrow t = 2$.

$$I = \int_{-1}^{2} f''(t) dt = \int_{-1}^{2} f''(x) dx = [f'(x)] \Big|_{-1}^{2} = f'(2) - f'(-1) = 3.$$

Chọn đáp án D

Bài toán tổng quát

Cho đồ thị (C): $y = f(x) = ax^4 + bx^2 + c$ cắt đường thẳng y = m tại 4 điểm phân biệt tạo ra các hình phẳng có diện tích S_1 , S_2 , S_3 như hình vẽ. Tìm tất cả các giá trị của m để $S_1 + S_2 = S_3$.

Phương pháp giải:

Phương trình hoành độ giao điểm của (C) và d là

$$ax^4 + bx^2 + c - m = 0. (1)$$

Đặt $t = x^2$, phương trình (1) trở thành

$$at^2 + bt + c - m = 0.$$

Đồ thị (C) cắt d tại 4 điểm phân biệt khi phương trình (1) có 4 nghiệm phân biệt, khi đó phương trình (2) có hai nghiệm dương phân biệt

$$\Leftrightarrow \begin{cases} \Delta > 0 \\ S > 0 \\ P > 0 \end{cases}$$

Gọi t_1, t_2 là hai nghiệm dương của (2) với $t_1 < t_2$.

Khi đó (1) có 4 nghiệm phân biệt theo thứ tự là $x_1 = -\sqrt{t_1}$, $x_2 = -\sqrt{t_2}$, $x_3 = \sqrt{t_1}$, $x_4 = \sqrt{t_2}$. Do tính đối xứng của đồ thị hàm bậc 4 trùng phương, ta có

$$\int_0^{x_3} (f(x) - m) dx = \int_{x_3}^{x_4} (m - f(x)) dx \Leftrightarrow \int_0^{x_4} (f(x) - m) dx = 0.$$

Từ phương trình cuối, kết hợp với x_4 là nghiệm của phương trình $f(x_4) = 0$ ta giải hệ phương trình để tìm m.

90

VÍ DU 3.

Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm đến cấp hai trên \mathbb{R} . Biết hàm số y = f(x) đạt cực trị tại x = -2, có đồ thị như hình vẽ và đường thẳng Δ là tiếp tuyến của đồ thị hàm số tại điểm có hoành

độ bằng 1. Tính $\int_0^{\infty} f''\left(\frac{3x-4}{2}\right) dx$.

(A) -4.
(B) 6.
(C) -3.
(D) 4.

Lời giải.

Nhận xét:

- Phương trình tiếp tuyến Δ của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 1 là y = -6x + 4 \hat{n} nên f'(1) = -6.
- Hàm số y = f(x) đạt cực trị tại x = -2 nên f'(-2) = 0.

Xét tích phân $I = \int_{-\infty}^{\infty} f'''\left(\frac{3x-4}{2}\right) dx$.

Đặt $t=\frac{3x-4}{2} \Rightarrow \, \mathrm{d}x = \frac{2}{3} \cdot \, \mathrm{d}t$. Khi $x=0 \Rightarrow t=-2; x=2 \Rightarrow t=1$.

 $I = \frac{2}{3} \int_{-1}^{1} f''(t) dt = \frac{2}{3} \int_{-1}^{1} f''(x) dx = \frac{2}{3} [f'(x)] \Big|_{-2}^{1} = \frac{2}{3} (f'(1) - f'(-2)) = -4.$

Chọn đáp án (A)

VÍ DU 4.

Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm đến cấp hai trên \mathbb{R} . Biết hàm số y = f(x) đạt cực trị tại x = -1, có đồ thị như hình vẽ và đường thẳng d_1 và d_2 là hai tiếp tuyến của đồ thị hàm số tại điểm có hoành độ lần lượt bằng 1 và 4.

Tính $I = \int_{1}^{\infty} x^2 \cdot f''(x^3) dx + \int_{1}^{\infty} x \cdot f''(x^2) dx$.

Lời giải.

Nhận xét:

• Phương trình tiếp tuyến d_1 của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 1 là y = -2x+1 \hat{n} f'(1) = -2.

- Phương trình tiếp tuyến d_2 của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 4 là y = 4x 14nên f'(4) = 4.
- Hàm số y = f(x) đạt cực trị tại x = -1 nên f'(-1) = 0.

Xét tích phân
$$I = \int_{-1}^{1} x^2 \cdot f''(x^3) dx + \int_{1}^{2} x \cdot f''(x^2) dx.$$

Tính tích phân $I_1 = \int x^2 \cdot f''(x^3) dx$.

Đặt $t = x^3 \Rightarrow x^2 \cdot dx = \frac{1}{3} \cdot dt$. Khi $x = -1 \Rightarrow t = -1$; $x = 1 \Rightarrow t = 1$.

$$I_1 = \frac{1}{3} \int_{-1}^{1} f''(t) dt = \frac{1}{3} \int_{-1}^{1} f''(x) dx = \frac{1}{3} \cdot [f'(x)] \Big|_{-1}^{1} = \frac{1}{3} (f'(1) - f'(-1)) = -\frac{2}{3}.$$

Tính tích phân $I_2 = \int x \cdot f''(x^2) dx$.

Đặt $t = x^2 \Rightarrow x \cdot dx = \frac{1}{2} \cdot dt$. Khi $x = 1 \Rightarrow t = 1; x = 2 \Rightarrow t = 4$.

$$I_2 = \frac{1}{2} \int_1^4 f''(t) dt = \frac{1}{2} \int_1^4 f''(x) dx = \frac{1}{2} \cdot [f'(x)] \Big|_1^4 = \frac{1}{2} (f'(4) - f'(1)) = 3.$$

Vậy $I = I_1 + I_2 = -\frac{2}{2} + 3 = \frac{7}{2}$.

Chọn đáp án (C)

TƯƠNG GIAO HÀM TRÙNG PHƯƠNG - BÀI TOÁN DIÊN TÍCH

VÍ DU 5.

Đồ thị (C): $y = x^4 - 4x^2$ cắt đường thẳng d: y = m tại bốn điểm phân biệt và tạo ra các hình phẳng có diện tích S_1 , S_2 , S_3 như hình vẽ. Biết rằng $S_1 + S_2 = S_3$, khi đó $m = -\frac{a}{b}$ ở dạng tối giản với $a, b \in \mathbb{N}$. Tính giá trị của T = a - b.

$$(A)$$
 $T = 29$. (B) $T = 11$. (C) $T = 3$.

$$T = 3$$
.

$$(D) T = 25.$$

Lời giải.

Phương trình hoành độ giao điểm của (C) và d là

$$x^4 - 4x^2 - m = 0. (1)$$

Đặt $t = x^2$, phương trình (1) trở thành

$$t^2 - 4t - m = 0. (2)$$

Đồ thị (C) cắt d tại 4 điểm phân biệt khi phương trình (1) có 4 nghiệm phân biệt, khi đó phương trình

92

(2) có hai nghiệm dương phân biệt

$$\Leftrightarrow \begin{cases} \Delta > 0 \\ S > 0 \Leftrightarrow \begin{cases} 4 + m > 0 \\ 4 > 0 \Leftrightarrow -4 < m < 0. \\ -m > 0 \end{cases}$$

Gọi t_1, t_2 là hai nghiệm dương của (2) với $t_1 < t_2$.

Khi đó (1) có 4 nghiệm phân biệt theo thứ tự là $x_1 = -\sqrt{t_1}$, $x_2 = -\sqrt{t_2}$, $x_3 = \sqrt{t_1}$, $x_4 = \sqrt{t_2}$.

Do tính đối xứng qua trục Oy của (C) nên yêu cầu của bài toán trở thành

$$\int_{0}^{x_3} (x^4 - 4x^2 - m) dx = \int_{x_3}^{x_4} (-x^4 + 4x^2 + m) dx$$

$$\Leftrightarrow \int_{0}^{x_4} (x^4 - 4x^2 - m) dx = 0$$

$$\Leftrightarrow \left(\frac{x^5}{5} - \frac{4x^3}{3} - mx \right) \Big|_{0}^{x_4} = 0$$

$$\Leftrightarrow \frac{x_4^5}{5} - \frac{4x_4^3}{3} - mx_4 = 0$$

$$\Leftrightarrow 3x_4^4 - 20x_4^2 - 15m = 0.$$
Suy ra x_4 là nghiệm của hệ phương trình

$$\begin{cases} x_4^4 - 4x_4^2 - m = 0 \\ 3x_4^4 - 20x_4^2 - 15m = 0 \end{cases} \Leftrightarrow \begin{cases} 12x_4^4 - 40x_4^2 = 0 \\ 3x_4^4 - 20x_4^2 - 15m = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \begin{bmatrix} x_4^2 = 0 \text{ (loại)} \\ x_4^2 = \frac{10}{3} \\ 3x_4^4 - 20x_4^2 - 15m = 0 \end{cases} \Leftrightarrow \begin{cases} x_4^2 = \frac{10}{3} \\ m = -\frac{20}{9} \text{ (thỏa mãn)}. \end{cases}$$

Vậy $m = -\frac{20}{9}$. Do đó a = 20, b = 9.

Suy ra $T = \ddot{a} - b = 11$.

Chọn đáp án (B)

Câu 3.

Đồ thị (C): $y = 2x^4 - 4x^2 - 2$ cắt đường thẳng d: y = m tại bốn điểm phân biệt và tạo ra các hình phẳng có diện tích S_1, S_2, S_3 như hình vẽ. Biết rằng $S_1 + S_2 = S_3$, khi đó $m = -\frac{a}{b}$ ở dạng tối giản với $a,b\in\mathbb{N}.$ Tính giá trị của T=a+b.

$$T - 10$$

(B)
$$T = 19$$

(A)
$$T = -19$$
. (B) $T = 19$. (C) $T = 1$.

$$(\mathbf{D}) T = 37.$$

Lời giải.

Phương trình hoành độ giao điểm của (C) và d là

$$2x^4 - 4x^2 - 2 - m = 0. (1)$$

Đặt $t = x^2$, phương trình (1) trở thành

$$2t^2 - 4t - 2 - m = 0. (2)$$

Đồ thị (C) cắt d tại 4 điểm phân biệt khi phương trình (1) có 4 nghiệm phân biệt, khi đó phương trình (2) có hai nghiệm dương phân biệt

$$\Leftrightarrow \begin{cases} \Delta' > 0 \\ S > 0 \\ P > 0 \end{cases} \Leftrightarrow \begin{cases} 4 - 2(-2 - m) > 0 \\ 2 > 0 \\ -1 - \frac{m}{2} > 0 \end{cases} \Leftrightarrow -4 < m < -2.$$

Gọi t_1, t_2 là hai nghiệm dương của (2) với $t_1 < t_2.$

Khi đó (1) có 4 nghiệm phân biệt theo thứ tự là $x_1 = -\sqrt{t_1}$, $x_2 = -\sqrt{t_2}$, $x_3 = \sqrt{t_1}$, $x_4 = \sqrt{t_2}$.

Do tính đối xứng qua trục Oy của (C) nên yêu cầu của bài toán trở thành

$$\int_{0}^{x_{3}} (2x^{4} - 4x^{2} - 2 - m) dx = \int_{x_{3}}^{x_{4}} (-2x^{4} + 4x^{2} + 2 + m) dx$$

$$\Leftrightarrow \int_{0}^{x_{4}} (2x^{4} - 4x^{2} - 2 - m) dx = 0$$

$$\Leftrightarrow \left(\frac{2x^{5}}{5} - \frac{4x^{3}}{3} - (2 + m)x \right) \Big|_{0}^{x_{4}} = 0$$

$$\Leftrightarrow \frac{2x_{4}^{5}}{5} - \frac{4x_{4}^{3}}{3} - (2 + m)x_{4} = 0$$

$$\Leftrightarrow 6x_{4}^{4} - 20x_{4}^{2} - 15(2 + m) = 0.$$
Suy ra x_{4} là nghiệm của hệ phương trình

$$\begin{cases} 2x_4^4 - 4x_4^2 - 2 - m = 0 \\ 6x_4^4 - 20x_4^2 - 15(2 + m) = 0 \end{cases} \Leftrightarrow \begin{cases} 24x_4^4 - 40x_4^2 = 0 \\ 6x_4^4 - 20x_4^2 - 15(2 + m) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \begin{bmatrix} x_4^2 = 0 \text{ (loại)} \\ x_4^2 = \frac{5}{3} \\ 6x_4^4 - 20x_4^2 - 15(2 + m) = 0 \end{cases} \Leftrightarrow \begin{cases} x_4^2 = \frac{5}{3} \\ m = -\frac{28}{9} \text{ (thỏa mãn)}. \end{cases}$$

Vậy $m = -\frac{28}{9}$. Do đó a = 28, b = 9.

Suy ra T = a + b = 37.

Chọn đáp án (D)

Câu 4.

Cho đồ thị (C_m) : $y = x^4 - 3x^2 + 1 - m$ cắt trục hoành tại bốn điểm phân biệt sao cho hình phẳng giới hạn bởi (C_m) với trục hoành có diện tích phần phía trên trục hoành bằng tổng diện tích phần phía dưới trục hoành. Khi đó m thuộc khoảng nào dưới đây?

$$(A)$$
 $(-1;0).$

$$(\mathbf{B})$$
 (0; 1).

$$(C)$$
 (1; 2).

$$(-2;-1).$$

Lời giải.

Phương trình hoành độ giao điểm của (C_m) và trực hoành là

$$x^4 - 3x^2 + 1 - m = 0. (1)$$

Đặt $t = x^2$, phương trình (1) trở thành

$$t^2 - 2t + 1 - m = 0. (2)$$

Đồ thị (C_m) cắt trực hoành tại 4 điểm phân biệt khi phương trình (1) có 4 nghiệm phân biệt, khi đó phương trình (2) có hai nghiệm dương phân biệt

$$\Leftrightarrow \begin{cases} \Delta > 0 \\ S > 0 \Leftrightarrow \begin{cases} 9 - 4(1 - m) > 0 \\ 3 > 0 \\ 1 - m > 0 \end{cases} \Leftrightarrow \begin{cases} 5 + 4m > 0 \\ m < 1 \end{cases} \Leftrightarrow -\frac{5}{4} < m < 1.$$

Gọi t_1, t_2 là hai nghiệm dương của (2) với $t_1 < t_2$.

Khi đó (1) có 4 nghiệm phân biệt theo thứ tự là $x_1 = -\sqrt{t_1}$, $x_2 = -\sqrt{t_2}$, $x_3 = \sqrt{t_1}$, $x_4 = \sqrt{t_2}$.

Do tính đối xứng qua trục Oy của (C_m) nên yêu cầu của bài toán trở thành

$$\begin{cases} x_4^4 - 3x_4^2 + 1 - m = 0 \\ x_4^4 - 5x_4^2 + 5(1 - m) = 0 \end{cases} \Leftrightarrow \begin{cases} 4x_4^4 - 10x_4^2 = 0 \\ x_4^4 - 3x_4^2 + 1 - m = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \begin{bmatrix} x_4^2 = 0 \text{ (loại)} \\ x_4^2 = \frac{5}{2} \\ x_4^4 - 3x_4^2 + 1 - m = 0 \end{cases} \Leftrightarrow \begin{cases} x_4^2 = \frac{5}{2} \\ m = -\frac{1}{4} \text{ (thỏa mãn)}. \end{cases}$$

Vậy $m = -\frac{1}{4} \in (-1; 0)$. Chọn đáp án (A)

VẬT CHUYẾN ĐỘNG VỚI VẬN TỐC THEO V=F(T) CÓ ĐỒ THỊ (C) ĐÃ BIẾT. XÁC ĐỊNH QUẦNG ĐƯỜNG ĐI.

Bài toán tổng quát

Cho một vật chuyển động với vận tốc theo v=f(t) có đồ thị (C) đã biết. Xác định quãng đường đi của vật.

Phương pháp giải:

- Bước 1: Tìm phương trình của v theo dữ kiện trên hình.
- Bước 2: Áp dung tính chất vật lý s' = v từ đó tìm được s.

VÍ DU 6.

Một ô tô bắt đầu chuyển động với vận tốc $v(t) = at^2 + bt$, với t tính bằng giây, v tính bằng m/s. Sau 10 giây ô tô chuyển động với vận tốc cao nhất v(t) = 50 m/s và giữ nguyên vận tốc đó, đồ thị vận tốc như hình vẽ bên. Tính quãng đường đường ô tô đi trong 20 giây đầu.

(A)
$$s = \frac{2600}{3}$$
 m.

B
$$s = \frac{2500}{3}$$
 m.

(A)
$$s = \frac{2600}{3}$$
 m.
(C) $s = \frac{2000}{3}$ m.

$$(\mathbf{D}) \ s = 800 \text{ m}.$$

Lời giải.

• Do đồ thi hình vẽ là parabol đi đi qua điểm (0;0) và điểm (10;50) là đỉnh. Nên

$$\begin{cases} a10^2 + b10 = 50 \\ -\frac{b}{2a} = 10 \end{cases}$$

$$\Leftrightarrow \begin{cases} 100a + 10b = 50 \\ 20a + b = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} a = -\frac{1}{2} \\ b = 10. \end{cases}$$

Vậy
$$v(t) = -\frac{1}{2}t^2 + 10t$$
.

• Quãng đường ô tô đi trong 20 giây đầu

$$\int_{0}^{10} \left(-\frac{1}{2}t^{2} + 10t \right) dt + \int_{10}^{20} 50 dt$$
$$= -\frac{1}{6}t^{3} + 5t^{2} \Big|_{0}^{10} + 50t \Big|_{10}^{20} = \frac{2500}{3}.$$

Vậy
$$s = \frac{2500}{3} \text{ m.}$$

Chọn đáp án (B)

Câu 5.

Một vật chuyển động trong 3 giờ với vận tốc v(km/h) phụ thuộc thời gian t(h)có đồ thị là một phần của đường parabol có đỉnh I(2;9) và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó.

B
$$s = 25,25 \text{ km}.$$

$$(c)$$
 $s = 24,25 \text{ km}.$

$$s = 24,75 \text{ km}.$$

nên suy ra
$$\begin{cases} c = 6 \\ -\frac{b}{2a} = 2 \\ a \cdot 2^2 + b \cdot 2 + c = 9 \end{cases} \Leftrightarrow \begin{cases} c = 6 \\ a = -\frac{3}{4} \Leftrightarrow v(t) = -\frac{3}{4}t^2 + 3t + 6 \text{ m/h.} \\ b = 3 \end{cases}$$

Vậy quãng đường người đó đi được trong khoảng thời gian 3 giờ là $s = \int_{0}^{3} \left(-\frac{3}{4}t^2 + 3t + 6 \right) dt = 24,75$

km.

96

Chọn đáp án (D)

Câu 6.

Một vật chuyển động trong 4 giờ với vận tốc v(km/h) phụ thuộc thời gian t(h) có đồ thị của vận tốc như hình bên. Trong khoảng thời gian 3 giờ kể từ khi bắt đầu chuyển đông, đồ thi đó là một phần của đường parabol có đỉnh I(2;9) với truc đối xứng song song với truc tung, khoảng thời gian còn lai đồ thi là một đoan thẳng song song với trục hoành. Tính quãng đường s mà vật chuyển động trong 4 giờ đó.

A
$$s = 26.5 \text{ km}$$

(A)
$$s = 26,5 \text{ km}$$
. (B) $s = 28,5 \text{ km}$. (C) $s = 27 \text{ km}$. (D) $s = 24 \text{ km}$.

$$(\mathbf{C})$$
 $s = 27 \text{ km}$

$$\mathbf{D}$$
 $s = 24 \text{ km}.$

Lời giải.

Hàm vận tốc $v(t) = at^2 + bt + c$ có dạng là đường parabol đi qua có đỉnh I(2;9) và đi qua điểm O(0;0)

nên suy ra
$$\begin{cases} c = 0 \\ -\frac{b}{2a} = 2 \\ a \cdot 2^2 + b \cdot 2 + c = 9 \end{cases} \Leftrightarrow \begin{cases} c = 0 \\ a = -\frac{9}{4} \Leftrightarrow v(t) = -\frac{9}{4}t^2 + 9t \text{ km/h.} \\ b = 9 \end{cases}$$

Suy ra $v(3) = \frac{27}{4}$ km/h.

Vậy quãng đường người đó đi được trong khoảng thời gian 4 giờ là $s = \int\limits_{0}^{3} \left(-\frac{9}{4}t^2 + 9t\right) \mathrm{d}t + \int\limits_{2}^{4} \frac{27}{4} \, \mathrm{d}t = 27$ km.

Chọn đáp án (C)

${\cal H}$ LÀ HÌNH PHẨNG GIỚI HẠN BỞI ĐỒ THỊ CỦA HÀM SỐ $Y=F(X),\;X=$ Ø $A,\ X=B$ VÀ TRỤC OX. TÌM ĐIỀU KIỆN ĐỂ ĐƯỜNG THẨNG Y=K CHIA ${\cal H}$ THÀNH HAI PHẦN CÓ TỈ LÊ DIÊN TÍCH CHO TRƯỚC.

Cho hàm số y = f(x) liên tục trên đoạn [a; b] và \mathcal{H} là hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), x = a, x = b và trực Ox. Tìm điều kiện để đường thẳng y = k chia \mathcal{H} thành hai phần có tỉ lệ diện tích cho trước.

Phương pháp giải: Ta tính diện tích của từng phần, dựa vào tỉ lệ đề bài yêu cầu ta tìm k.

VÍ DU 7.

Cho parabol (P_1) : $y = -x^2 + 4$ cắt trực hoành tại hai điểm A, Bvà đường thẳng $d: y = a \ (0 < a < 4)$. Xét parabol (P_2) đi qua A, B và có đỉnh thuộc đường thẳng y = a. Gọi S_1 là diện tích hình phẳng giới hạn bởi (P_1) và d, S_2 là diện tích hình phẳng giới hạn bởi (P_2) và trục hoành. Biết $S_1 = S_2$ (tham khảo hình vẽ bên). Tính $T = a^3 - 8a^2 + 48a$.

B
$$T = 64$$
.

$$(C)$$
 $T = 72.$

$$T = 99.$$

Lời giải.

Đường thẳng y = a cắt (P_1) tại hai điểm có hoành độ $-\sqrt{4-a}$ và $\sqrt{4-a}$. Vậy

$$S_1 = \int_{-\sqrt{4-a}}^{\sqrt{4-a}} (-x^2 + 4 - a) \, dx = \frac{4}{3} \cdot \sqrt{4-a} \cdot (4-a).$$

Parabol (P_2) có dạng $y=m(x^2-4)$. Chú ý vì nó còn đi qua điểm (0;a) nên $m=-\frac{a}{4}$. Vậy (P_2) : y= $-\frac{a}{4}x^2 + a$. Từ đó suy ra

$$S_2 = \int_{-2}^{2} \left(-\frac{a}{4}x^2 + a \right) dx = \frac{8a}{3}.$$

Từ đó ta có

$$\frac{16(4-a)^3}{9} = \frac{64a^2}{9} \Leftrightarrow a^3 - 8a^2 + 48a = 64.$$

Chọn đáp án (B)

Câu 7. Cho parabol (P): $y = -\frac{1}{16}x^2 + 4$. Gọi \mathcal{H} là hình phẳng giới hạn bởi (P) và Ox. Đường thẳng $y = a \ (0 < a < 4)$ chia hình phẳng \mathcal{H} thành hai phần bằng nhau (phần gạch chéo và phần chấm). Tính

- (A) $a = 4 2\sqrt[3]{2}$.
 - **B** $a = 4 \sqrt[3]{2}$.
- $a = 4 + 2\sqrt[3]{2}$. $a = 4 + \sqrt[3]{2}$.

Lời giải.

Đường thẳng y=a cắt (P) tại hai điểm có hoành độ lần lượt là $-4\sqrt{4-a}$ và $4\sqrt{4-a}$, (P) cắt trục Ox tại hai điểm có hoành độ -8 và 8.

Diện tích của hình phẳng \mathcal{H} là

$$S = 2\int_{0}^{8} \left(-\frac{1}{16}x^{2} + 4 \right) dx = \frac{128}{3}.$$

Diện tích hình phẳng giới hạn bởi (P) và đường thẳng y = a là

$$S_2 = 2 \int_{0}^{4\sqrt{4-a}} \left(-\frac{1}{16}x^2 + 4 - a \right) dx = \frac{16}{3} \left(\sqrt{4-a} \right)^3.$$

Suy ra

$$\frac{16}{3} \left(\sqrt{4-a} \right)^3 = \frac{64}{3} \Leftrightarrow \sqrt{4-a} = \sqrt[3]{4} \Leftrightarrow a = 4 - 2\sqrt[3]{2}.$$

Chọn đáp án (A)

Câu 8.

Cho hàm số $y = x^4 - x^2 + m$ có đồ thị là (C) cắt trục hoành tại 4 điểm phân biệt. Gọi S_1 là diện tích hình phẳng giới hạn bởi trục hoành và đồ thị (C) nằm phía trên trục hoành, S_2 là diện tích hình phẳng giới hạn bởi trục hoành và phần đồ thị (C) nằm phía dưới trục hoành. Biết rằng $S_1 = S_2$. Biết rằng giá trị của $m = \frac{a}{b}$ với $\frac{a}{b}$ là phân số tối giản. Tính $T = a^2 + b^2$.

(A) T = 25.
(B) T = 61.
(C) T = 281.
(D) T = 1321.

$$T = 25$$

$$\stackrel{\circ}{\mathbf{B}}$$
 $\stackrel{\circ}{T} = 61$

$$T = 281$$

$$(\mathbf{D}) T = 1321$$

Lời giải.

Phương trình hoành độ giao điểm của (C) và trục hoành: $x^4 - x^2 + m =$ 0 (1). Đặt $t = x^2$, $t \ge 0$, ta được phương trình $t^2 - t + m = 0$ (2). Ta có (C) cắt trục hoành tại bốn điểm phân biệt \Leftrightarrow (2) có hai nghiệm cùng dương

Gọi các nghiệm của phương trình (1) là $x_1 < x_2 < x_3 < x_4, x_1, x_2, x_3, x_4 \neq 0$. Do đồ thị (C) nhận trục tung là trục đối xứng nên ta có yêu cầu bài toán thỏa mãn khi và chỉ khi

$$\int_{0}^{x_4} (x^4 - 3x^2 + m) \, dx = 0 \Leftrightarrow 3x_4^4 - 5x_4^2 + 15m = 0.$$

Mặt khác x_4 là nghiệm của phương trình (1) nên ta có

$$x_4^4 - x_4^2 + m = 0.$$

Do đó ta có

$$\begin{cases} x_4^4 - x_4^2 + m = 0 \\ 3x_4^3 - 5x_4^2 + 15m = 0 \end{cases} \Leftrightarrow \begin{cases} x_4^2 = \frac{5}{6} \\ m = \frac{5}{36}. \end{cases}$$

Ta thấy $m = \frac{5}{36}$ thỏa yêu cầu bài toán.

Vậy
$$T = 5^2 + 36^2 = 1321$$
.

Chọn đáp án (D)

CÁC BÀI TOÁN LIÊN QUAN ĐẾN ĐỔ THỊ $Y=F^\prime(X)$

Cho hàm số y = f'(x) liên tục trên $\mathcal{D} \subset \mathbb{R}$ có đồ thị giao với trục hoành tạo thành các miền S_1, S_2, \ldots Tìm giá trị nhỏ nhất hoặc lớn nhất của hàm số y = f(x) trên \mathscr{D} .

Phương pháp giải:

Bước 1. Từ đồ thị của hàm số y = f'(x) lập bảng biến thiên của hàm số y = f(x) trên \mathcal{D} . Dựa vào bảng thiên chọn ra các giá trị có thể là GTNN hoặc GTLN. Chú ý. Dưa vào đáp án trắc nghiêm có thể bỏ qua bước 1 và làm từ bước 2.

Bước 2. So sánh các giá trị có thể là GTNN hoặc GTLN để ra kết quả bài toán bằng cách sử dụng ý nghĩa hình học của tích phân.

Với S_1 , S_2 là diện tích miền như hình bên ta có

$$\bullet \int_{b}^{c} f'(x) dx = f(c) - f(b) =$$

$$-S_{2} < 0.$$

VÍ DU 1.

Hàm số y = f(x) có đạo hàm f'(x) xác định, liên tục trên \mathbb{R} . Đồ thị hàm số y = f'(x) là đường cong cắt trục hoành tại các điểm có hoành độ lần lượt là a,b,c và tiếp xúc với trục hoành tại điểm có hoành độ d. Gọi S_1, S_2, S_3 lần lượt là diện tích các hình phẳng giới hạn bởi đồ thị hàm số y = f'(x) và trục hoành, biết $S_1 > S_3 > S_2$ (hình vẽ bên). Tìm giá trị nhỏ nhất của hàm số y = f(x) trên \mathbb{R} .

(A) $\min f(x) = f(a)$. (B) $\min f(x) = f(b)$. (C) $\min f(x) = f(c)$.

 $(\mathbf{D}) \min f(x) = f(d).$

Lời giải.

Dựa vào đồ thị hàm số y = f'(x) ta có bảng biến thiên của y = f(x) như sau

Ta thấy min $f(x) \in \{f(a); f(c)\}$. Mặt khác ta có

•
$$\int_{a}^{b} f'(x) dx = f(b) - f(a) = S_1 \Rightarrow f(a) = f(b) - S_1.$$

•
$$\int_{b}^{c} f'(x) dx = f(c) - f(b) = -S_2 \Rightarrow f(c) = f(b) - S_2.$$

Mà $S_1 > S_2$ nên f(a) < f(c). Vậy min f(x) = f(a).

Cách khác. Dựa vào đáp án trắc nghiệm ta thấy min $f(x) \in \{f(a); f(b); f(c); f(d)\}$ nên ta so sánh các giá trị đó như sau

•
$$\int_{a}^{b} f'(x) dx = f(b) - f(a) = S_1 > 0 \Rightarrow f(b) > f(a).$$

•
$$\int_{a}^{c} f'(x) dx = f(c) - f(b) = -S_2 < 0 \Rightarrow f(b) > f(c).$$

•
$$\int_{c}^{d} f'(x) dx = f(d) - f(c) = S_3 > 0 \Rightarrow f(d) > f(c).$$

Ta thấy min $f(x) \in \{f(a); f(c)\}$, tương tự cách trên ta có min f(x) = f(a).

Chọn đáp án (A)

Câu 1.

Cho đồ thị hàm số y=f'(x) là đường cong cắt trục hoành tại các điểm có hoành độ lần lượt là a,b,c và tiếp xúc với trục hoành tại gốc tọa độ O. Gọi S_1,S_2,S_3 lần lượt là diện tích các hình phẳng giới hạn bởi đồ thị hàm số y=f'(x) và trục hoành, biết $S_2>S_1>S_3$ (hình vẽ bên). Tìm giá trị lớn nhất của hàm số y=f(x) trên \mathbb{R} .

$$(\mathbf{A}) \max f(x) = \widetilde{f}(a).$$

$$\mathbf{B} \quad \max f(x) = f(b).$$

$$(\mathbf{C})$$
 max $f(x) = f(c)$.

$$(\mathbf{D}) \max f(x) = f(0).$$

Lời giải.

Dựa vào đồ thị hàm số y=f'(x) ta có bảng biến thiên của y=f(x) như sau

Ta thấy $\max f(x) \in \{f(a); f(c)\}\$. Mặt khác ta có

•
$$\int_{a}^{b} f'(x) dx = f(b) - f(a) = -S_1 \Rightarrow f(a) = f(b) + S_1.$$

•
$$\int_{b}^{c} f'(x) dx = f(c) - f(b) = S_2 + S_3 \Rightarrow f(c) = f(b) + S_2 + S_3.$$

Mà $S_1 < S_2$ nên f(a) < f(c). Vậy max f(x) = f(c).

Cách khác. Dựa vào đáp án trắc nghiệm ta thấy $\max f(x) \in \{f(a); \ f(b); \ f(c); \ f(d)\}$ nên ta so sánh các giá trị đó như sau

•
$$\int_{a}^{b} f'(x) dx = f(b) - f(a) = -S_1 < 0 \Rightarrow f(b) < f(a).$$

•
$$\int_{b}^{0} f'(x) dx = f(0) - f(b) = S_2 > 0 \Rightarrow f(b) < f(0).$$

•
$$\int_{0}^{c} f'(x) dx = f(c) - f(0) = S_3 > 0 \Rightarrow f(0) < f(c).$$

Ta thấy $\max f(x) \in \{f(a); \ f(c)\}$, tương tự cách trên ta có $\max f(x) = f(c)$. Chọn đáp án \bigcirc

Câu 2.

Cho đồ thị hàm số y = f'(x) là đường cong cắt trục hoành tại các điểm có hoành độ lần lượt là a, b và tiếp xúc với trục hoành tại gốc tọa độ O và điểm có hoành độ là c. Gọi S_1, S_2, S_3 lần lượt là diện tích các hình phẳng giới hạn bởi đồ thị hàm số y = f'(x) và trục hoành, biết $S_1 < S_2 < S_3$ (hình vẽ bên). Đặt $M = \max_{x \in [a,c]} f(x)$, $m = \min_{x \in [a,c]} f(x)$. Tổng của M và m là

B f(b) + f(0)

$$(C)$$
 $f(b) + f(c)$.

 (\mathbf{D}) f(a) + f(c).

Lời giải.

Dựa vào đồ thị hàm số y = f'(x) ta có bảng biến thiên của y = f(x) như sau

Ta thấy m = f(b) và $M \in \{f(a); f(c)\}$. Mặt khác ta có

•
$$\int_{a}^{b} f'(x) dx = f(b) - f(a) = -S_1 \Rightarrow f(a) = f(b) + S_1.$$

•
$$\int_{b}^{c} f'(x) dx = f(c) - f(b) = S_2 + S_3 \Rightarrow f(c) = f(b) + S_2 + S_3.$$

Mà $S_1 < S_2 < S_3$ nên f(a) < f(c) do đó M = f(c). Vậy M + m = f(c) + f(b). Cách khác. Dựa vào đáp án trắc nghiệm ta thấy $M, m \in \{f(a); f(b); f(c); f(d)\}$ nên ta so sánh các giá trị đó như sau

•
$$\int_{a}^{b} f'(x) dx = f(b) - f(a) = -S_1 < 0 \Rightarrow f(b) < f(a).$$

•
$$\int_{b}^{0} f'(x) dx = f(0) - f(b) = S_2 > 0 \Rightarrow f(b) < f(0).$$

•
$$\int_{0}^{c} f'(x) dx = f(c) - f(0) = S_3 > 0 \Rightarrow f(0) < f(c).$$

Ta thấy m = f(b) và $M \in \{f(a); f(c)\}$, tương tự cách trên ta có M = f(c). Chọn đáp án \bigcirc

3 CHO Y=F'(X) ĐƯỢC CHO BỞI NHƯ HÌNH VỀ. TÍNH DIỆN TÍCH S CỦA HÌNH PHẨNG GIỚI HẠN BỞI ĐỒ THỊ (C) VÀ ĐỒ THỊ (C') CỦA HÀM SỐ Y=G(X).

Bài toán tổng quát

Cho hàm số y = f(x) xác định và liên tục trên \mathcal{D} , có đồ thị (C) và $f(x_i) = y_i, i \in \mathbb{N}$. Biết rằng đồ thị của hàm số y = f'(x) được cho bởi như hình vẽ. Tính diện tích S của hình phẳng giới hạn bởi đồ thị (C) và đồ thị (C) của hàm số y = g(x).

Phương pháp giải: Từ đồ thị của hàm số y = f'(x), ta xác định được hàm số y = f'(x). Lấy nguyên hàm của hàm y = f'(x) và điều kiện $f(x_i) = y_i$, ta xác định dược hàm số y = f(x). Từ đó, ta tính được diện tích S cần tìm.

VÍ DU 2.

Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình vẽ. Biết rằng, diện tích hình phẳng giới hạn bởi Ox, đường cong (C): y = f'(x) trên đoạn [-2;1] và [1;4] lần lượt là 9 và 12. Biết f(1) = 3, giá trị biểu thức f(-2) + f(4) bằng

 (\mathbf{A}) 21.

B 9.

(C) 3.

 \bigcirc 2.

Lời giải.

• Ta có:

$$\int_{-2}^{1} |f'(x)| dx = \int_{1}^{-2} f'(x) dx = f(-2) - f(1) = 9$$

suy ra f(-2) = 9 + f(1) = 12.

$$\int_{1}^{4} |f'(x)| \, dx = \int_{4}^{1} f'(x) dx = f(1) - f(4) = 12$$

suy ra f(4) = f(1) - 12 = -9.

• Vây f(-2) + f(4) = 3.

Chọn đáp án \bigcirc

Câu 3.

Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình vẽ. Biết rằng, diện tích hình phẳng giới hạn bởi Ox, đường cong (C): y = f'(x) trên đoạn [-2;1] và [1;4] lần lượt là S_1 và S_2 . Biết f(-2) + f(4) = kf(1) thì $S_1 = S_2$. Giá trị k là

(A) 1

 (\mathbf{B}) 2

(C) 3.

 \bigcirc 4

Lời giải.

Ta có

$$\int_{-2}^{1} |f'(x)| dx = \int_{1}^{-2} f'(x) dx = f(-2) - f(1) = S_1$$

$$\int_{1}^{4} |f'(x)| dx = \int_{4}^{1} f'(x) dx = f(1) - f(4) = S_{2}$$

• Vì $S_1 = S_2$ suy ra f(-2) + f(4) = 2f(1). Vậy k = 2.

Chọn đáp án B

Câu 4.

Cho hàm số y=f(x). Hàm số y=f'(x) có đồ thị như hình vẽ. Biết rằng, diện tích hình phẳng giới hạn bởi Ox, đường cong (C): y=f'(x) trên đoạn [-2;a] và [a;4] lần lượt là 9 và 12. Biết $\frac{f(-2)}{f(4)}=2$, giá trị biểu thức f(a) bằng

(A) 31.

B 32.

(C) 33.

D 34.

Lời giải.

• Ta có

$$\int_{-2}^{a} |f'(x)| \, dx = \int_{a}^{-2} f'(x) dx = f(-2) - f(a) = 9$$

suy ra f(-2) = 9 + f(a).

$$\int_{a}^{4} |f'(x)| dx = \int_{4}^{a} f'(x) dx = f(a) - f(4) = 12$$

suy ra f(4) = f(a) - 12.

• Vì $\frac{f(-2)}{f(4)} = 2$ suy ra $\frac{f(a) + 9}{f(a) - 12} = 2 \Leftrightarrow f(a) = 33$.

Chọn đáp án C

igcepsilon TÍNH DIỆN TÍCH GIỚI HẠN BỞI (C) BIẾT ĐỒ THỊ F'(X)

🗷 VÍ DU 3.

Cho hàm số $y=f(x)=ax^3+bx^2+cx+d, (a,b,c,d\in\mathbb{R}, a\neq 0)$ có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y=4 tại điểm có hoành độ âm và đồ thị của hàm số y=f'(x) cho bởi hình vẽ bên. Tính diện tích S của hình phẳng giới hạn bởi đồ thị (C) và trục hoành.

 \mathbf{B} $\frac{27}{4}$

(C) 9

Lời giải.

Ta có: $f'(x) = 3ax^2 + 2bx + c$. Theo đề bài, ta có hệ phương trình:

$$\begin{cases} f(-1) = 4 \\ f'(-1) = 0 \\ f'(1) = 0 \\ f'(0) = -3 \end{cases} \Leftrightarrow \begin{cases} -a+b-c+d = 4 \\ 3a+2b+c = 0 \\ 3a-2b+c = 0 \\ c = -3 \\ d = 2. \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 0 \\ c = -3 \\ d = 2. \end{cases}$$

Vậy hàm số đã cho là $y = x^3 - 3x + 2$.

Xét phương trình: $x^3 - 3x + 2 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -2. \end{bmatrix}$

$$\Rightarrow S = \int_{0}^{1} |x^3 - 3x + 2| dx = \frac{21}{4}.$$

Chọn đáp án (B)

Câu 5.

Cho hàm số $y = f(x) = ax^3 + bx^2 + cx + d$, $(a, b, c, d \in \mathbb{R}, a \neq 0)$ có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y=4 tại điểm có hoành độ âm và đồ thị của hàm số y = f'(x) cho bởi hình vẽ bên. Tính diện tích S của hình phẳng giới hạn bởi đồ thị (C) và đường thẳng y = x + 2.

Lời giải.

Ta có: $f'(x) = 3ax^2 + 2bx + c$.

Theo đề bài, ta có hệ phương trình:

$$\begin{cases} f(-1) = 4 \\ f'(-1) = 0 \\ f'(1) = 0 \\ f'(0) = -3 \end{cases} \Leftrightarrow \begin{cases} -a+b-c+d = 4 \\ 3a+2b+c = 0 \\ 3a-2b+c = 0 \\ c = -3 \\ c = -3 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 0 \\ c = -3 \\ d = 2. \end{cases}$$

Vậy hàm số đã cho là $y = x^3 - 3x + 2$.

Xét phương trình: $x^3 - 3x + 2 = x + 2 \Leftrightarrow x^3 - 4x = 0 \Leftrightarrow \begin{vmatrix} x = 0 \\ x = -2 \\ x = 2 \end{vmatrix}$

$$\Rightarrow S = \int_{-2}^{0} |x^3 - 4x| \, dx + \int_{0}^{2} |x^3 - 4x| \, dx = 8.$$

Chọn đáp án (A)

Câu 6.

Cho hàm số $y = f(x) = ax^3 + bx^2 + cx + d, (a, b, c, d \in \mathbb{R}, a \neq 0)$ có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y=4 tại điểm có hoành độ âm và đồ thị của hàm số y = f'(x) cho bởi hình vẽ bên. Tính diện tích S của hình phẳng giới hạn bởi đồ thị (C'): y = f(x-3) và trục hoành.

Lời giải.

Ta có: $f'(x) = 3ax^2 + 2bx + c$.

Theo đề bài, ta có hệ phương trình:

$$\begin{cases} f(-1) = 4 \\ f'(-1) = 0 \\ f'(1) = 0 \\ f'(0) = -3 \end{cases} \Leftrightarrow \begin{cases} -a+b-c+d = 4 \\ 3a+2b+c = 0 \\ 3a-2b+c = 0 \\ c = -3 \\ c = -3 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 0 \\ c = -3 \\ d = 2. \end{cases}$$

Vậy hàm số đã cho là $y = x^3 - 3x + 2 \Leftrightarrow y = f(x - 3) = (x - 3)^3 - 3(x - 3) + 2$. Xét phương trình: $(x - 3)^3 - 3(x - 3) + 2 = 0 \Leftrightarrow \begin{bmatrix} x - 3 = 1 \\ x - 3 = -2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 4 \\ x = 1. \end{bmatrix}$

$$\Rightarrow S = \int_{1}^{4} \left| (x-3)^3 - 3(x-3) + 2 \right| dx = \frac{27}{4}.$$

Chọn đáp án (A)

BÀI TOÁN LIÊN QUAN ĐẾN BẤT ĐẮNG THỰC TÍCH §7. **PHÂN**

CHO
$$F(A) = M_1$$
, $F(B) = M_2 \text{ VÀ} \int_A^B \left[F'(X) \right]^2 \mathrm{D}X = A$, $\int_A^B F(X) \cdot G'(X) \mathrm{D}X = B$. TÍNH TÍCH PHÂN $\int_A^B F(X) \mathrm{D}X$.

Bài toán tổng quát

Cho hàm số f(x) có đạo hàm liên tục trên [a;b] thỏa mãn $f(a)=m_1,\ f(b)=m_2$ và $\int\limits_a^b \left[f'(x)\right]^2 \mathrm{d}x = A, \int\limits_a^b f(x) \cdot g'(x) \, \mathrm{d}x = B.$ Tính tích phân $\int\limits_a^b f(x) \, \mathrm{d}x.$

Phương pháp giải:

- Sử dụng phương pháp tích phân từng phần, kết hợp với giả thiết $f(a) = m_1$, $f(b) = m_2$ để tính được $\int_{a}^{b} f'(x) \cdot g(x) dx = C$.
- Tính tích phân $\int_{a}^{b} g(x) dx = D.$
- Tìm số thực m thỏa mãn: $A + 2mC + m^2D = 0$. Từ đó suy ra

$$\int_{a}^{b} \left([f'(x)]^{2} + 2m \cdot f'(x) \cdot g(x) + m^{2} \cdot [g(x)]^{2} \right) dx = 0 \Leftrightarrow \int_{a}^{b} \left[f'(x) + m \cdot g(x) \right]^{2} dx = 0.$$

Mà $[f'(x) + m \cdot g(x)]^2 \ge 0$, $\forall x \in [a; b]$ nên suy ra $\int_a^b [f'(x) + m \cdot g(x)]^2 dx \ge 0$.

Do đó

$$\int_{a}^{b} \left[f'(x) + m \cdot g(x) \right]^{2} dx = 0 \Leftrightarrow \left[f'(x) + m \cdot g(x) \right]^{2} = 0 \Leftrightarrow f'(x) = -m \cdot g(x).$$

Suy ra $f(x) = \int (m \cdot g(x)) dx = G(x) + C$. Kết hợp với giả thiết $f(a) = m_1$, $f(b) = m_2$ ta tìm được $C = C_1$.

Do đó $f(x) = G(x) + C_1$. Từ đó tính được tích phân $\int_a^b f(x) dx$.

VÍ DỤ 1. Cho hàm số f(x) có đạo hàm liên tục trên $\left[0; \frac{\pi}{2}\right]$ thỏa mãn $f\left(\frac{\pi}{2}\right) = 0$, $\frac{\pi}{2}$

$$\int_{0}^{\frac{\pi}{2}} [f'(x)]^{2} dx = \frac{\pi}{4}, \int_{0}^{\frac{\pi}{2}} \cos x f(x) dx = \frac{\pi}{4}. \text{ Tính tích phân } \int_{0}^{\frac{\pi}{2}} f(x) dx.$$

$$\bigcirc$$
 -1

$$\bigcirc$$
 $\frac{\pi}{4}$

Lời giải.

Từ giả thiết, ta có:

•
$$\int_{0}^{\frac{\pi}{2}} [f'(x)]^{2} dx = \frac{\pi}{4}.$$
 (1)

• Đặt $\begin{cases} u = f(x) \\ dv = \cos x \, dx \end{cases} \Rightarrow \begin{cases} du = f'(x) \, dx \\ v = \sin x \end{cases}.$

$$\int_{0}^{\frac{\pi}{2}} \cos x f(x) \, \mathrm{d}x = \sin x f(x) \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x f'(x) \, \mathrm{d}x = \frac{\pi}{4} \Rightarrow \int_{0}^{\frac{\pi}{2}} \sin x f'(x) \, \mathrm{d}x = -\frac{\pi}{4}. \tag{2}$$

$$\bullet \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} \, dx = \left(\frac{1}{2}x - \frac{1}{4}\sin 2x\right) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}.$$
(3)

Từ (1), (2) và (3) suy ra

$$\int_{0}^{\frac{\pi}{2}} \left(\left[f'(x) \right]^{2} + 2\sin x f'(x) + \sin^{2} x \right) dx = \frac{\pi}{4} - 2 \cdot \frac{\pi}{4} + \frac{\pi}{4} = 0.$$

Đẳng thức trên tương đương với $\int\limits_{-\infty}^{2} \left[f'(x) + \sin x\right]^2 \, \mathrm{d}x = 0.$

Mà
$$[f'(x) + \sin x]^2 \ge 0$$
, $\forall x \in \left[0; \frac{\pi}{2}\right]$ nên suy ra $\int_0^{\frac{\pi}{2}} \left[f'(x) + \sin x\right]^2 dx \ge 0$.

Do đó

$$\int_{0}^{\frac{\pi}{2}} \left[f'(x) + \sin x \right]^{2} dx = 0 \Leftrightarrow \left[f'(x) + \sin x \right]^{2} = 0 \Leftrightarrow f'(x) = -\sin x.$$

Suy ra $f(x) = \int (-\sin x) dx = \cos x + C$.

Vì
$$f\left(\frac{\pi}{2}\right) = 0 \Rightarrow C = 0$$
 nên $f(x) = \cos x$.

Vậy
$$\int_{0}^{\frac{\pi}{2}} f(x) dx = \int_{0}^{\frac{\pi}{2}} \cos x dx = 1.$$

Chọn đáp án (C)

Câu 1. Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn $f(1) = \ln 2$, f(0) = 0 và $\int_{1}^{1} [f'(x)]^{2} dx = \frac{1}{2}, \int_{0}^{1} \frac{f(x)}{(x+1)^{2}} dx = \frac{1}{2} - \ln \sqrt{2}. \text{ Tính tích phân } \int_{0}^{1} \frac{f(x)}{x+1} dx.$ (A) $\frac{1}{2} \ln 2$. (B) $-\frac{1}{2} \ln^2 2$. (C) $\frac{1}{2} \ln^2 2$. (D) $-\frac{1}{2} \ln 2$.

$$\frac{1}{2} \ln 2.$$

$$\frac{1}{2} \ln^2 2$$

$$\frac{1}{2} \ln^2 2$$

$$\bigcirc$$
 $-\frac{1}{2}\ln 2$

Lời giải.

Từ giả thiết, ta có:

•
$$\int_{0}^{1} [f'(x)]^{2} dx = \frac{1}{2}.$$
 (1)

• Đặt
$$\begin{cases} u = f(x) \\ dv = \frac{1}{(x+1)^2} dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = -\frac{1}{x+1} \end{cases}$$
Khi đới

$$\int_{0}^{1} \frac{f(x)}{(x+1)^{2}} dx = -\frac{f(x)}{x+1} \Big|_{0}^{1} + \int_{0}^{1} \frac{f'(x)}{x+1} dx = \frac{1}{2} - \ln \sqrt{2} \Rightarrow \int_{0}^{1} \frac{f'(x)}{x+1} dx = \frac{1}{2}.$$
 (2)

•
$$\int_{0}^{1} \frac{1}{(x+1)^2} \, \mathrm{d}x = \left(-\frac{1}{x+1}\right) \Big|_{0}^{1} = \frac{1}{2}.$$
 (3)

Từ (1), (2) và (3) suy ra

$$\int_{0}^{1} \left([f'(x)]^{2} - 2\frac{f'(x)}{x+1} + \frac{1}{(x+1)^{2}} \right) dx = \frac{1}{2} - 2 \cdot \frac{1}{2} + \frac{1}{2} = 0.$$

Đẳng thức trên tương đương với $\int \left[f'(x) - \frac{1}{x+1} \right]^2 dx = 0.$

Mà
$$\left[f'(x) - \frac{1}{x+1} \right]^2 \ge 0, \ \forall x \in [0;1] \ \text{nên suy ra} \int_0^1 \left[f'(x) - \frac{1}{x+1} \right]^2 dx \ge 0.$$

Do đó

$$\int_{0}^{1} \left[f'(x) - \frac{1}{x+1} \right]^{2} dx = 0 \Leftrightarrow \left[f'(x) - \frac{1}{x+1} \right]^{2} = 0 \Leftrightarrow f'(x) = \frac{1}{x+1}.$$

Suy ra
$$f(x) = \int \frac{1}{x+1} dx = \ln|x+1| + C$$
.

$$Vi \begin{cases} f(1) = \ln 2 \\ f(0) = 0 \end{cases} \Rightarrow \begin{cases} \ln 2 = \ln 2 + C \\ 0 = \ln 1 + C \end{cases} \Rightarrow C = 0 \text{ nên } f(x) = \ln |x + 1|.$$

$$\operatorname{Vay} \int_{0}^{1} \frac{f(x)}{x+1} \, \mathrm{d}x = \int_{0}^{1} \frac{\ln|x+1|}{x+1} \, \mathrm{d}x = \int_{0}^{1} \ln(x+1) \, \mathrm{d} \left(\ln(x+1)\right) = \frac{1}{2} \ln^{2}(x+1) \Big|_{0}^{1} = \frac{1}{2} \ln^{2} 2.$$

Chọn đáp án (C)

Câu 2. Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn $f(1)=\ln 2,\ f(0)=0$ và $\int [f'(x)]^2 dx = \frac{1}{2}, \int \frac{f(x)}{(x+1)^2} dx = \frac{1}{2} - \ln \sqrt{2}. \text{ Tính tích phân } \int \frac{f(x)}{x+1} dx.$

$$\frac{1}{2} \ln 2.$$

$$\bigcirc$$
 $\frac{1}{2} \ln^2 2.$

(A)
$$\frac{1}{2} \ln 2$$
. (B) $-\frac{1}{2} \ln^2 2$. (C) $\frac{1}{2} \ln^2 2$. (D) $-\frac{1}{2} \ln 2$.

Lời giải.

Từ giả thiết, ta có:

•
$$\int_{0}^{1} [f'(x)]^{2} dx = \frac{1}{2}.$$
 (1)

• Đặt
$$\begin{cases} u = f(x) \\ dv = \frac{1}{(x+1)^2} dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = -\frac{1}{x+1} \end{cases}.$$

$$\int_{0}^{1} \frac{f(x)}{(x+1)^{2}} dx = -\frac{f(x)}{x+1} \Big|_{0}^{1} + \int_{0}^{1} \frac{f'(x)}{x+1} dx = \frac{1}{2} - \ln \sqrt{2} \Rightarrow \int_{0}^{1} \frac{f'(x)}{x+1} dx = \frac{1}{2}.$$
 (2)

•
$$\int_{0}^{1} \frac{1}{(x+1)^2} \, \mathrm{d}x = \left(-\frac{1}{x+1}\right) \Big|_{0}^{1} = \frac{1}{2}.$$
 (3)

Từ (1), (2) và (3) suy ra

$$\int_{0}^{1} \left(\left[f'(x) \right]^{2} - 2 \frac{f'(x)}{x+1} + \frac{1}{(x+1)^{2}} \right) dx = \frac{1}{2} - 2 \cdot \frac{1}{2} + \frac{1}{2} = 0.$$

Đẳng thức trên tương đương với $\int\limits_{-\infty}^{1} \left[f'(x) - \frac{1}{x+1} \right]^2 dx = 0.$

Mà
$$\left[f'(x) - \frac{1}{x+1} \right]^2 \ge 0, \ \forall x \in [0;1] \ \text{nên suy ra} \int_0^1 \left[f'(x) - \frac{1}{x+1} \right]^2 dx \ge 0.$$

Do đó

$$\int_{0}^{1} \left[f'(x) - \frac{1}{x+1} \right]^{2} dx = 0 \Leftrightarrow \left[f'(x) - \frac{1}{x+1} \right]^{2} = 0 \Leftrightarrow f'(x) = \frac{1}{x+1}.$$

Suy ra
$$f(x) = \int \frac{1}{x+1} dx = \ln|x+1| + C.$$

$$\operatorname{Vi} \begin{cases} f(1) = \ln 2 \\ f(0) = 0 \end{cases} \Rightarrow \begin{cases} \ln 2 = \ln 2 + C \\ 0 = \ln 1 + C \end{cases} \Rightarrow C = 0 \text{ nên } f(x) = \ln |x+1|.$$

Vây
$$\int_{0}^{1} \frac{f(x)}{x+1} dx = \int_{0}^{1} \frac{\ln|x+1|}{x+1} dx = \int_{0}^{1} \ln(x+1) d(\ln(x+1)) = \frac{1}{2} \ln^{2}(x+1) \Big|_{0}^{1} = \frac{1}{2} \ln^{2} 2.$$

Chọn đáp án (C)

Câu 3. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn $f(1)=1, \int [f'(x)]^2 dx = \frac{9}{5}$ và

$$\int_{0}^{1} f\left(\sqrt{x}\right) dx = \frac{2}{5}. \text{ Tính tích phân } \int_{0}^{1} f(x) dx.$$

(A) $\frac{3}{4}$. (B) $\frac{1}{5}$. (C) $\frac{1}{4}$. (D) $\frac{3}{5}$.

Đặt
$$t = \sqrt{x} \Rightarrow t^2 = x \Rightarrow 2t \, dt = dx$$
. Do đó $\int_0^1 f(\sqrt{x}) \, dx = \int_0^1 2t f(t) \, dt$.

Suy ra
$$\int_{0}^{1} 2t f(t) dt = \frac{2}{5} \Rightarrow \int_{0}^{1} 2x f(x) dx = \frac{2}{5}$$
.

Từ giả thiết, ta có:

•
$$\int_{0}^{1} [f'(x)]^{2} dx = \frac{9}{5}.$$
 (1)

• Đặt
$$\begin{cases} u = f(x) \\ \mathrm{d}v = 2x \, \mathrm{d}x \end{cases} \Rightarrow \begin{cases} \mathrm{d}u = f'(x) \mathrm{d}x \\ v = x^2 \mathrm{d}x. \end{cases}$$
Khi đó:

$$\frac{2}{5} = \int_{0}^{1} 2x f(x) dx = x^{2} f(x) \Big|_{0}^{1} - \int_{0}^{1} x^{2} f'(x) dx = 1 - \int_{0}^{1} x^{2} f'(x) dx \Rightarrow \int_{0}^{1} x^{2} f'(x) dx = \frac{3}{5}.$$
 (2)

Từ (1), (2) và (3) suy ra

$$\int_{0}^{1} \left([f'(x)]^{2} - 6 \cdot x^{2} \cdot f'(x) + 9x^{2} \right) dx = \frac{9}{5} - 6 \cdot \frac{3}{5} + 9 \cdot \frac{1}{5} = 0.$$

Đẳng thức trên tương đương với $\int \left[f'(x) - 3x^2\right]^2 \, \mathrm{d}x = 0.$

Mà
$$[f'(x) - 3x^2]^2 \ge 0$$
, $\forall x \in [0; 1]$ nên suy ra $\int_0^1 [f'(x) - 3x^2]^2 dx \ge 0$.

Do đó

$$\int_{0}^{1} \left[f'(x) - 3x^{2} \right]^{2} dx = 0 \Leftrightarrow \left[f'(x) - 3x^{2} \right]^{2} = 0 \Leftrightarrow f'(x) = 3x^{2}.$$

Suy ra $f(x) = \int 3x^2 dx = x^3 + C$. Vì $f(1) = 1 \Rightarrow C = 0$ nên $f(x) = x^3$.

$$V_{\text{a}}^{2} \int_{0}^{1} f(x) dx = \frac{1}{4}.$$

Chọn đáp án (C)

B CHO
$$\int\limits_A^B F(X) = C$$
, $\int\limits_A^B F(X) \cdot G(X) \, \mathrm{D}X = D$. TÌM MIN $\int\limits_A^B F^2(X) \, \mathrm{D}X$.

Bài toán tổng quát

Đây là nhóm các bài toán có sử dụng đến Bất đẳng thức Holder với trường hợp p = q = 2:

Cho hàm số f(x) liên tục trên đoạn [a;b] thỏa mãn $\int f(x) = c$, $\int f(x) \cdot g(x) \, \mathrm{d}x = d$. Tìm giá trị

nhỏ nhất của tích phân $\int_{-\infty}^{0} f^{2}(x) dx$.

Phương pháp giải: Đặt $\begin{cases} m = \int\limits_a^b mf(x)\,\mathrm{d}x\\ n = \int\limits_a^b n\mathrm{g}(x)\cdot f(x)\,\mathrm{d}x. \end{cases}$

Áp dụng bất đẳng thức Holder cho tích phân ta có:

$$(mc + nd)^2 = \left(\int_a^b f(x) \cdot (m \cdot g(x) + n) \, dx\right)^2 \le \int_a^b f^2(x) \, dx \cdot \int_a^b (m \cdot g(x) + n)^2 \, dx.$$

 $extbf{V}$ Í DỤ 2. Cho hàm số liên tục trên [0;1] và thỏa mãn điều kiện $\int f(x) \, \mathrm{d}x = \int \mathrm{e}^x f(x) \, \mathrm{d}x = \int \mathrm{e}^x f(x) \, \mathrm{d}x$

- 1. Gọi m là giá trị nhỏ nhất của tích phân $\int\limits_0^1 f^2(x)\,\mathrm{d}x$. Mệnh đề nào sau đây đúng? (A) 0 < m < 1. (B) 1 < m < 2. (C) 2 < m < 3. (D) 3 < m < 4.

Lời giải.

112

Từ giả thiết đặt $\begin{cases} a = \int_0^x af(x) dx \\ b = \int_0^1 be^x f(x) dx. \end{cases}$

Áp dụng bất đẳng thức Holder ta có

$$(a+b)^2 = \left(\int_0^1 (a+be^x)f(x) dx\right)^2 \le \int_0^1 (a+be^x)^2 dx \cdot \int_0^1 f^2(x) dx.$$

Lại có

$$\int_{0}^{1} (a+be^{x})^{2} dx = \int_{0}^{1} (a^{2}+2abe^{x}+be^{2x}) dx = \frac{1}{2}(e^{2}-1)a^{2}+2(e-1)ab+b^{2}.$$

Suy ra $\int\limits_0^1 f^2(x) \, \mathrm{d}x \geq \frac{(a+b)^2}{\frac{1}{2}(e^2-1)b^2+2(e-1)ab+a^2} \text{ với mọi } a,b \in \mathbb{R} \text{ và } a^2+b^2>0.$

$$\int_{0}^{1} \frac{\frac{1}{2}(e^{2}-1)b^{2}+2(e-1)ab+a^{2}}{\frac{1}{2}(e^{2}-1)b^{2}+2(e-1)ab+a^{2}}$$
Do đó
$$\int_{0}^{1} f^{2}(x) dx \ge \max \left\{ \frac{(a+b)^{2}}{\frac{1}{2}(e^{2}-1)b^{2}+2(e-1)ab+a^{2}} \right\} = -1 + \frac{1}{3-e} + \frac{1}{e-1} \approx 3, 1.$$

Đẳng thức xảy ra khi
$$f(x) = \frac{2\mathrm{e} - 4}{\mathrm{e}^2 - 4\mathrm{e} + 3} \cdot \mathrm{e}^x + \frac{\mathrm{e} - 1}{\mathrm{e} - 3}$$
. Vây $3 < m < 4$.

Câu 4. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn $\int f(x) dx = \int x f(x) dx = 1$.

$$(\mathbf{A}) \ m=1.$$

$$\bigcirc$$
 $m=2$

$$(\mathbf{C})$$
 $m=3.$

$$(\mathbf{D})$$
 $m=4.$

Lời giải.

Từ giả thiết đặt
$$\begin{cases} a = \int_0^1 af(x) \, \mathrm{d}x \\ b = \int_0^1 x f(x) \, \mathrm{d}x. \end{cases}$$

Áp dụng bất đẳng thức Holder ta có

$$(a+b)^2 = \left(\int_0^1 (a+bx) \cdot f(x) \, dx\right)^2 \le \int_0^1 (a+bx)^2 \, dx \cdot \int_0^1 f^2(x) \, dx.$$

Lại có

$$\int_{0}^{1} (a+bx)^{2} dx = \int_{0}^{1} (a^{2} + 2abx + b^{2}x^{2}) dx = a^{2} + ab + \frac{b^{2}}{3}.$$

Suy ra $\int\limits_0^{} f^2(x)\,\mathrm{d}x \geq \frac{(a+b)^2}{a^2+ab+\frac{b^2}{2}} \text{ với mọi } a,b\in\mathbb{R} \text{ và } a^2+b^2>0.$

Do đó
$$\int_{0}^{1} f^{2}(x) dx \ge \max \left\{ \frac{(a+b)^{2}}{a^{2} + ab + \frac{b^{2}}{2}} \right\} = 4.$$

Đẳng thức xảy ra khi f(x) = 6x - 2

Chọn đáp án (D)

Câu 5. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn $\int f(x) dx = \int x^2 f(x) dx = 1$.

Giá trị nhỏ nhất của tích phân $\int_{0}^{t} f^{2}(x) dx$ bằng

Lời giải.

Từ giả thiết đặt
$$\begin{cases} a = \int_0^1 af(x) \, \mathrm{d}x \\ b = \int_0^1 bx^2 f(x) \, \mathrm{d}x. \end{cases}$$

Áp dụng Bất đẳng thức Holder ta có:

$$(a+b)^2 = \left(\int_0^1 (a+bx^2) \cdot f(x) \, dx\right)^2 \le \int_0^1 (a+bx^2)^2 \, dx \cdot \int_0^1 f^2(x) \, dx.$$

Ta có
$$\int_{0}^{1} (a+bx^{2})^{2} dx = \int_{0}^{1} (a^{2}+2abx^{2}+b^{2}x^{4}) dx = a^{2} + \frac{2ab}{3} + \frac{b^{2}}{5}.$$

Suy ra
$$\int_{0}^{1} f^{2}(x) dx \ge \max \left\{ \frac{(a+b)^{2}}{a^{2} + \frac{2ab}{3} + \frac{b^{2}}{5}} \right\} = 6.$$

Đẳng thức xảy ra khi $f(x) = \frac{15}{2}x^2 - \frac{3}{2}$.

Chọn đáp án (D)

CHO
$$F(0) = M, \int_{0}^{1} \left[F'(X) \cdot F^{2\alpha}(X) + 1 \right] \mathrm{D}X = 2 \int_{0}^{1} \sqrt{F'(X)} \cdot F^{\alpha}(X) \, \mathrm{D}X.$$
 TÍNH
$$\int_{0}^{1} F^{2\alpha+1}(X) \, \mathrm{D}X.$$

Bài toán tổng quát

Cho hàm số y = f(x) liên tục trên đoạn [0;1], f'(x) > 0, f(x) > 0, $\forall x \in [0;1]$ và thỏa mãn $f(0) = m, \int\limits_0^1 \left[f'(x) \cdot f^{2\alpha}(x) + 1 \right] \mathrm{d}x = 2 \int\limits_0^1 \sqrt{f'(x)} \cdot f^{\alpha}(x) \, \mathrm{d}x. \text{ Tính } \int\limits_0^1 f^{2\alpha+1}(x) \, \mathrm{d}x.$

Phương pháp giải: Ta có
$$\int_0^1 \left[f'(x) \cdot f^{2\alpha}(x) + 1 \right] dx = 2 \int_0^1 \sqrt{f'(x)} f^{\alpha}(x) dx \Leftrightarrow$$

$$\int_{0}^{1} \left[\sqrt{f'(x)} \cdot f^{\alpha}(x) - 1 \right]^{2} dx = 0. \tag{*}$$

Do
$$\left[\sqrt{f'(x)}\cdot f^{\alpha}(x)-1\right]^2 \ge 0, \forall x \in [0;1] \Rightarrow \int_0^1 \left[\sqrt{f'(x)}\cdot f^{\alpha}(x)-1\right]^2 \mathrm{d}x \ge 0.$$

Giả sử có $x_0 \in [0; 1]$ sao cho $\sqrt{f'(x_0)} f^{\alpha}(x_0) - 1 \neq 0 \Rightarrow \left[\sqrt{f'(x_0)} \cdot f^{\alpha}(x_0) - 1 \right]^2 > 0.$

Khi đó, xét G(x) là một nguyên hàm của hàm $g(x) = \left[\sqrt{f'(x)} \cdot f^{\alpha}(x) - 1\right]^2$.

Ta có
$$\int_{0}^{1} \left[\sqrt{f'(x)} \cdot f^{\alpha}(x) - 1 \right]^{2} dx = G(1) - G(0) = S(H).$$

Trong đó S(H) là diện tích hình phẳng giới hạn bởi g(x), trực Ox và các đường thẳng x=0, x=1.

Do
$$S(H) > 0 \Rightarrow \int_{0}^{1} \left[\sqrt{f'(x)} \cdot f^{\alpha}(x) - 1 \right]^{2} dx > 0.$$

Diều này mâu thuẫn với $(*) \Rightarrow \sqrt{f'(x)} \cdot f^{\alpha}(x) - 1 = 0, \forall x \in [0; 1].$

Do đó ta có
$$f'(x) \cdot f^{2\alpha}(x) = 1 \Rightarrow \int_0^1 f'(x) \cdot f^{2\alpha}(x) dx = \int_0^1 dx \Leftrightarrow \frac{f^{2\alpha+1}(x)}{\alpha+1} = x + C.$$
Do $f(0) = m \Rightarrow C = \frac{m^{2\alpha+1}}{\alpha+1} \Rightarrow \int_0^1 f^{2\alpha+1}(x) dx = \left[\frac{\alpha+1}{2}x^2 + m^{2\alpha+1}\right]_0^1.$

 $\mathbf{Z} \mathbf{V} \mathbf{I} \mathbf{D} \mathbf{U} \mathbf{3}$. Cho hàm số y = f(x) liên tục trên đoạn [0;1], f(x) và f'(x) đều nhận giá trị dương trên đoạn [0;1] và thoả mãn f(0) = 2, $\int_{0}^{1} \left[f'(x) \cdot f^{2}(x) + 1 \right] \mathrm{d}x = 2 \int_{0}^{1} \sqrt{f'(x)} \cdot f(x) \, \mathrm{d}x.$

Tính $\int_{0}^{1} [f(x)]^{3} dx$.

- $(A)^0 \frac{15}{2}$.
- **B** $\frac{17}{2}$.
- $\bigcirc \frac{15}{4}$.

Lời giải.

Ta có
$$\int_{0}^{1} [f'(x) \cdot f^{2}(x) + 1] dx = 2 \int_{0}^{1} \sqrt{f'(x)} \cdot f(x) dx \Leftrightarrow \int_{0}^{1} [\sqrt{f'(x)} \cdot f(x) - 1]^{2} dx = 0.$$
 (1).

Ta có
$$\left[\sqrt{f'(x)}f(x) - 1\right]^2 \ge 0, \forall x \in [0; 1] \Rightarrow \int_0^1 \left[\sqrt{f'(x)} \cdot f(x) - 1\right]^2 dx \ge 0.$$
 (2).

Từ (1) và (2) suy ra
$$\int_{0}^{1} \left[\sqrt{f'(x)} \cdot f(x) - 1 \right]^{2} dx = 0 \Leftrightarrow \sqrt{f'(x)} \cdot f(x) = 1 \Leftrightarrow f'(x) \cdot f^{2}(x) = 1.$$

Ta có
$$\int f'(x) \cdot f^2(x) dx = \int dx \Leftrightarrow \frac{f^3(x)}{3} = x + C.$$

Do
$$f(0) = 2 \Rightarrow C = \frac{8}{3} \Rightarrow f^3(x) = 3x + 8$$
.

Vậy ta có
$$\int_{0}^{1} f^{3}(x) dx = \int_{0}^{1} (3x+8) dx = \left(\frac{3x^{2}}{2} + 8x\right)\Big|_{0}^{1} = \frac{19}{2}.$$

Chọn đáp án C

Câu 6. Cho hàm số y = f(x) liên tục trên đoạn [0;1], f(x) và f'(x) đều nhận giá trị dương trên đoạn

[0;1] và thỏa mãn
$$f(0) = 2$$
, $\int_{0}^{1} [f'(x) \cdot f^{4}(x) + 1] dx = 2 \int_{0}^{1} \sqrt{f'(x)} \cdot f^{2}(x) dx$. Tính $\int_{0}^{1} f^{5}(x) \cdot e^{x} dx$.

- **A** 22e 19.
- **B** 23e 17
- \bigcirc e + 17.
- \bigcirc 32e 27

Lời giải.

Ta có
$$\int_{0}^{1} \left[f'(x) \cdot f^{4}(x) + 1 \right] dx = 2 \int_{0}^{1} \sqrt{f'(x)} \cdot f^{2}(x) dx \Leftrightarrow \int_{0}^{1} \left[\sqrt{f'(x)} \cdot f^{2}(x) - 1 \right]^{2} dx = 0.$$
 (1).

Ta có
$$\left[\sqrt{f'(x)}f^2(x) - 1\right]^2 \ge 0, \forall x \in [0; 1] \Rightarrow \int_0^1 \left[\sqrt{f'(x)} \cdot f^2(x) - 1\right]^2 dx \ge 0.$$
 (2)

Từ (1) và (2) suy ra
$$\int_{0}^{1} \left[\sqrt{f'(x)} \cdot f^{2}(x) - 1 \right]^{2} dx = 0 \Leftrightarrow \sqrt{f'(x)} \cdot f^{2}(x) = 1 \Leftrightarrow f'(x) \cdot f^{4}(x) = 1.$$

Ta có
$$\int f'(x) \cdot f^4(x) dx = \int dx \Leftrightarrow \frac{f^5(x)}{5} = x + C.$$

Do
$$f(0) = 2 \Rightarrow C = \frac{32}{5} \Rightarrow f^5(x) = 5x + 32.$$

Vậy
$$\int_{0}^{1} f^{5}(x)e^{x} dx = (5x + 32) e^{x}|_{0}^{1} - 5 \int_{0}^{1} e^{x} dx = 32e - 27.$$

Chọn đáp án (D)

Câu 7. Cho hàm số y = f(x) liên tục trên đoạn [0;1], f(x) và f'(x) đều nhận giá trị dương trên đoạn [0;1] và thỏa mãn $f(0)=2,\int\limits_{0}^{1}\left[f'(x)\cdot f^{2}(x)+1\right]\mathrm{d}x=2\int\limits_{0}^{2}\sqrt{f'(x)}\cdot f(x)\,\mathrm{d}x.$ Tính hệ số góc của tiếp

tuyến của đồ thị hàm số y = f(x) tại tiếp điểm M, biết $x_M = \frac{1}{2}$.

(A)
$$\frac{\sqrt[3]{19}}{2}$$
.

$$\frac{}{\mathbf{B}} \frac{\sqrt{19}}{2}.$$

(A)
$$\frac{\sqrt[3]{19}}{2}$$
. (B) $\frac{\sqrt{19}}{2}$. (C) $\sqrt[3]{\frac{4}{1038}}$.

$$\bigcirc$$
 $\sqrt[3]{\frac{4}{361}}$.

Lời giải.

Ta có
$$\left[\sqrt{f'(x)}f(x) - 1\right]^2 \ge 0, \forall x \in [0; 1] \Rightarrow \int_0^1 \left[\sqrt{f'(x)} \cdot f(x) - 1\right]^2 dx \ge 0.$$
 (2).

Từ (1) và (2) suy ra
$$\int_{0}^{1} \left[\sqrt{f'(x)} \cdot f(x) - 1 \right]^{2} dx = 0 \Leftrightarrow \sqrt{f'(x)} \cdot f(x) = 1 \Leftrightarrow f'(x) \cdot f^{2}(x) = 1.$$

Ta có
$$\int f'(x) \cdot f^2(x) dx = \int dx \Leftrightarrow \frac{f^3(x)}{3} = x + C.$$

Do
$$f(0) = 2 \Rightarrow C = \frac{8}{3} \Rightarrow f^3(x) = 3x + 8 \Rightarrow f(x) = \sqrt[3]{3x + 8} \Rightarrow f'(x) = \frac{1}{\sqrt[3]{3x + 8}}$$
.

Hệ số góc của tiếp tuyến tại điểm có hoành độ $x = \frac{1}{2}$ là $k = f'\left(\frac{1}{2}\right) = \sqrt[3]{\frac{4}{361}}$.

Chọn đáp án (D)

CHO
$$F(B) = B_0, \int_0^1 G(X) \cdot F(X) \mathrm{D}X = A \, \mathrm{V} \grave{\mathsf{A}} \, \int_0^1 \left[F'(X) \right]^2 \mathrm{D}X = B. \, \mathrm{T} \acute{\mathsf{I}} \mathsf{N} \mathsf{H} \, \mathrm{T} \acute{\mathsf{I}} \mathsf{C} \mathsf{H}$$
 PHÂN $\int_A^B F(X) \mathrm{D}X.$

Cho hàm số y = f(x) có đạo hàm liên tục trên [a; b] thỏa mãn đồng thời

$$f(b) = b_0, \int_0^1 g(x) \cdot f(x) dx = A \text{ và } \int_0^1 [f'(x)]^2 dx = B.$$

Tính tích phân
$$\int_{a}^{b} f(x) dx$$
.

Phương pháp giải:

- Cách 1.
 - Sử dụng phương pháp tích phân từng phần, kết hợp với giả thiết $f(b) = b_0$, $\int_0^1 g(x)$.

$$f(x)\mathrm{d}x = A \text{ dể tính được } \int\limits_0^1 h(x) \cdot f'(x)\mathrm{d}x = K.$$

– Ta cần tìm α sao cho $\int_0^1 \left[f'(x) + \alpha \cdot h(x)\right]^2 \, \mathrm{d}x = 0, \text{ tức là}$

$$\int_{a}^{b} \left[f'(x) + \alpha \cdot h(x) \right]^{2} dx = 0 \Leftrightarrow \left[f'(x) + \alpha \cdot h(x) \right]^{2} = 0 \Leftrightarrow f'(x) = -\alpha \cdot h(x).$$

- Từ đó ta tính được $f(x) = \int -\alpha \cdot h(x) dx = G(x) + C$. Kết hợp với giả thiết $f(b) = b_0$ ta tìm được C. Từ đó tính được $\int\limits_a^b f(x) dx$.
- Cách 2. Dùng bất đẳng thức Holder

$$\int_a^b |f(x)g(x)| \mathrm{d}x \le \left(\int_a^b |f(x)|^p \mathrm{d}x\right)^{\frac{1}{p}} \cdot \left(\int_a^b |g(x)|^q \mathrm{d}x\right)^{\frac{1}{q}} \text{ với } p, q \text{ thỏa } \frac{1}{p} + \frac{1}{q} = 1.$$

Dấu "=" xảy ra khi và chỉ khi tồn tại hai số thực m,n không đồng thời bằng 0 sao cho $m|f(x)|^p=n|g(x)|^q$.

 $\boldsymbol{H}\boldsymbol{\hat{e}}$ $\boldsymbol{qu\dot{a}}$ Với p=q=2 thì BĐT trở thành $\left(\int f(x)\cdot g(x)\mathrm{d}x\right)^2\leq \int f^2(x)\mathrm{d}x\cdot \int g^2(x)\mathrm{d}x.$ Dấu "=" xảy ra khi và chỉ khi tồn tại hai số thực k sao cho $f(x)=k\cdot g(x).$

 $ightharpoonup ext{VÍ DU 4.}$ Cho hàm số y=f(x) có đạo hàm liên tục trên [0;1] thỏa mãn đồng thời

$$f(1) = 1, \int_{0}^{1} x f(x) dx = \frac{1}{5} \text{ và } \int_{0}^{1} [f'(x)]^{2} dx = \frac{9}{5}.$$

Tính tích phân $\int_{0}^{1} f(x) dx$.

 \bigcirc $\frac{1}{5}$.

 $\frac{4}{5}$.

Lời giải.

• Cách 1. Dùng tích phân từng phần Đăt

$$\begin{cases} u = f(x) \\ dv = x dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = \frac{x^2}{2}. \end{cases}$$

Khi đó

$$\int_{0}^{1} x f(x) dx = \frac{x^{2}}{2} \cdot f(x) \Big|_{0}^{1} - \int_{0}^{1} f'(x) \cdot \frac{x^{2}}{2} dx = \frac{1}{5} \Rightarrow \int_{0}^{1} x^{2} \cdot f'(x) dx = \frac{3}{5}$$

Bây giờ giả thiết được đưa về

$$\begin{cases} \int_{0}^{1} [f'(x)]^{2} dx = \frac{9}{5} \\ \int_{0}^{1} x^{2} \cdot f'(x) dx = \frac{3}{5} \end{cases}$$

Hàm số dưới dấu tích phân bây giờ là $[f'(x)]^2$, $x^2f'(x)$ nên ta sẽ liên kết với bình phương $[f'(x) + \alpha x^2]^2$.

Với mỗi số thực α ta có

$$\int_{0}^{1} \left[f'(x) + \alpha x^{2} \right]^{2} dx = \int_{0}^{1} \left[f'(x) \right]^{2} dx + 2\alpha \int_{0}^{1} x^{2} f'(x) dx + \alpha^{2} \int_{0}^{1} x^{4} dx = \frac{9}{5} + 2\alpha \cdot \frac{3}{5} + \frac{\alpha^{2}}{5} = \frac{1}{5} (\alpha + 3)^{2}.$$

Ta cần tìm α sao cho $\int_{0}^{1} \left[f'(x) + \alpha x^{2} \right]^{2} dx = 0, \text{ tức là } \frac{1}{5} (\alpha + 3)^{2} = 0 \text{ hay } \alpha = -3.$

Do đó
$$\int_{0}^{1} [f'(x) - 3x^{2}]^{2} dx = 0$$
, suy ra $f'(x) = 3x^{2}, \forall x \in [0; 1]$, do đó $f(x) = x^{3} + C$.

Lại có f(1) = 1 nên C = 0, tức là $f(x) = x^3$.

Vậy
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} x^{3} dx = \frac{1}{4}$$
.

 \bullet Cách 2. Dùng bất đẳng thức Holder

Dùng tích phân từng phần ta được $\int_{0}^{1} x^{2} \cdot f'(x) dx = \frac{3}{5}$

Theo bất đẳng thức Holder, ta có

$$\left(\frac{3}{5}\right)^2 = \left(\int_0^1 x^2 f'(x) \, \mathrm{d}x\right)^2 \le \int_0^1 x^4 \, \mathrm{d}x \cdot \int_0^1 \left[f'(x)\right]^2 \, \mathrm{d}x = \frac{x^5}{5} \Big|_0^1 \cdot \frac{9}{5} = \frac{9}{25}.$$

Đẳng thức xảy ra khi
$$f'(x)=kx^2$$
, thay vào
$$\int\limits_0^1 x^2 f'(x)\,\mathrm{d}x = \frac{3}{5} \text{ ta được }k=3.$$
 Suy ra $f'(x)=3x^2$, nên $f(x)=x^3+C$. Lại có $f(1)=1$ nên $C=0$, tức là $f(x)=x^3$. Vậy
$$\int\limits_0^1 f(x)\,\mathrm{d}x = \int\limits_0^1 x^3\,\mathrm{d}x = \frac{1}{4}\cdot$$

Chọn đáp án (A)

Câu 8. Cho hàm số f có đạo hàm liên tục trên [0;1], thỏa mãn đồng thời

$$f(1) = 0, \int_{0}^{1} [f'(x)]^{2} dx = 7 \text{ và } \int_{0}^{1} x^{2} f(x) dx = \frac{1}{3}.$$

Giá trị của $\int_{0}^{1} f(x) dx$ bằng

(A) 1.

 \bigcirc $\frac{7}{4}$.

D 4.

Lời giải.

• Cách 1. Dùng tích phân từng phần ta có

$$\int_{0}^{1} x^{2} f(x) dx = \frac{x^{3}}{3} f(x) \Big|_{0}^{1} - \frac{1}{3} \int_{0}^{1} x^{3} f'(x) dx.$$

Kết hợp với giả thiết f(1) = 0 ta suy ra $\int_{0}^{1} x^{3} f'(x) dx = -1.$

Bây giờ giả thiết được đưa về

$$\begin{cases} \int_{0}^{1} [f'(x)]^{2} dx = 7 \\ \int_{0}^{1} x^{3} f'(x) dx = -1. \end{cases}$$

Hàm số dưới dấu tích phân bây giờ là $[f'(x)]^2$, $x^3f'(x)$ nên ta sẽ liên kết với bình phương $[f'(x) + \alpha x^3]^2$.

Với mỗi số thực α ta có

$$\int_{0}^{1} \left[f'(x) + \alpha x^{3} \right]^{2} dx = \int_{0}^{1} \left[f'(x) \right]^{2} dx + 2\alpha \int_{0}^{1} x^{3} f'(x) dx + \alpha^{2} \int_{0}^{1} x^{6} dx = 7 - 2\alpha + \frac{\alpha^{2}}{7} = \frac{1}{7} (\alpha - 7)^{2}.$$

Ta cần tìm α sao cho $\int_{0}^{1} \left[f'(x) + \alpha x^{3} \right]^{2} dx = 0$, tức là $\frac{1}{7}(\alpha - 7)^{2} = 0$ hay $\alpha = 7$.

Do đó
$$\int_{0}^{1} \left[f'(x) + 7x^{3} \right]^{2} dx = 0$$
, suy ra $f'(x) = -7x^{3}$, $\forall x \in [0; 1]$, do đó $f(x) = -\frac{7}{4}x^{4} + C$.

Lại có
$$f(1) = 0$$
 nên $C = \frac{7}{4}$, tức là $f(x) = -\frac{7}{4}x^4 + \frac{7}{4}$. Vậy $\int\limits_0^1 f(x) \, \mathrm{d}x = \int\limits_0^1 \left(-\frac{7}{4}x^4 + \frac{7}{4}\right) \, \mathrm{d}x = \frac{7}{5}$.

• Cách 2. Dùng bất đẳng thức Holder Dùng tích phân từng phần ta có

$$\int_{0}^{1} x^{2} f(x) dx = \frac{x^{3}}{3} f(x) \Big|_{0}^{1} - \frac{1}{3} \int_{0}^{1} x^{3} f'(x) dx.$$

Kết hợp với giả thiết f(1) = 0 ta suy ra $\int x^3 f'(x) dx = -1$.

Theo bất đẳng thức Holder, ta có

$$(-1)^2 = \left(\int_0^1 x^3 f'(x) \, \mathrm{d}x\right)^2 \le \int_0^1 x^6 \, \mathrm{d}x \cdot \int_0^1 \left[f'(x)\right]^2 \, \mathrm{d}x = \frac{x^7}{7} \Big|_0^1 \cdot 7 = 1.$$

Đẳng thức xảy ra khi $f'(x) = kx^3$, thay vào $\int x^3 f'(x) dx = -1$ ta được k = -7.

Suy ra
$$f'(x) = -7x^3$$
, nên $f(x) = -\frac{7}{4}x^4 + C$.

Lại có
$$f(1) = 0$$
 nên $C = \frac{7}{4}$, tức là $f(x) = -\frac{7}{4}x^4 + \frac{7}{4}$.

Vây
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(-\frac{7}{4}x^{4} + \frac{7}{4} \right) dx = \frac{7}{5}$$

Chọn đáp án (B)

Câu 9. Cho hàm số f có đạo hàm liên tục trên [0;1], thỏa mãn đồng thời

$$f(1) = 1$$
, $\int_{0}^{1} x^{5} f(x) dx = \frac{11}{78} \text{ và } \int_{0}^{1} f'(x) d(f(x)) = \frac{4}{13}$.

Tính f(2).

(A)
$$f(2) = 2$$

B
$$f(2) = \frac{251}{7}$$

A
$$f(2) = 2$$
. **B** $f(2) = \frac{251}{7}$. **C** $f(2) = \frac{256}{7}$. **D** $f(2) = \frac{261}{7}$.

$$f(2) = \frac{261}{7}$$

Lời giải.

• Cách 1. Ta có

$$\int_{0}^{1} f'(x) d(f(x)) = \frac{4}{13} \Leftrightarrow \int_{0}^{1} [f'(x)]^{2} dx = \frac{4}{13}.$$

Dùng tích phân từng phần ta có

$$\int_{0}^{1} x^{5} f(x) dx = \frac{x^{6}}{6} f(x) \Big|_{0}^{1} - \frac{1}{6} \int_{0}^{1} x^{6} f'(x) dx.$$

Kết hợp với giả thiết
$$f(1) = 1$$
, ta suy ra $\int_{0}^{1} x^{6} f'(x) dx = \frac{2}{13}$.

Bây giờ giả thiết được đưa về

$$\begin{cases} \int_{0}^{1} [f'(x)]^{2} dx = \frac{4}{13} \\ \int_{0}^{1} x^{6} f'(x) dx = \frac{2}{13} \end{cases}$$

Hàm số dưới dấu tích phân bây giờ là $[f'(x)]^2$, $x^6f'(x)$ nên ta sẽ liên kết với bình phương $[f'(x) + \alpha x^6]^2$.

Tương tự như bài trên ta tìm được $\alpha = -2$, suy ra $f'(x) = 2x^6$, do đó $f(x) = \frac{2}{7}x^7 + C$.

Lại có
$$f(1) = 1$$
 nên $C = \frac{5}{7}$, tức là $f(x) = \frac{2}{7}x^7 + \frac{5}{7}$.

Vây
$$f(2) = \frac{2}{7} \cdot 2^7 + \frac{5}{7} = \frac{261}{7}$$
.

• Cách 2. Dùng bất đẳng thức Holder Dùng tích phân từng phần ta có

$$\int_{0}^{1} x^{5} f(x) dx = \frac{x^{6}}{6} f(x) \Big|_{0}^{1} - \frac{1}{6} \int_{0}^{1} x^{6} f'(x) dx.$$

Kết hợp với giả thiết f(1) = 1, ta suy ra $\int_{0}^{1} x^{6} f'(x) dx = \frac{2}{13}$.

Theo bất đẳng thức Holder, ta có

$$\left(\frac{2}{13}\right)^2 = \left(\int_0^1 x^6 f'(x) \, \mathrm{d}x\right)^2 \le \int_0^1 x^{12} \, \mathrm{d}x \cdot \int_0^1 \left[f'(x)\right]^2 \, \mathrm{d}x = \frac{1}{13} \cdot \frac{4}{13} = \frac{4}{169}.$$

Đẳng thức xảy ra khi $f'(x) = kx^6$, thay vào $\int_0^1 x^6 f'(x) dx = \frac{2}{13}$ ta được k = 2.

Suy ra
$$f'(x) = 2x^6$$
, nên $f(x) = \frac{2}{7}x^7 + C$.

Lại có
$$f(1) = 1$$
 nên $C = \frac{5}{7}$, tức là $f(x) = \frac{2}{7}x^7 + \frac{5}{7}$.

Vây
$$f(2) = \frac{2}{7} \cdot 2^7 + \frac{5}{7} = \frac{261}{7}$$
.

CHO
$$F(A) = M$$
,
$$\int_0^A \left[F'(X) \right]^2 \, \mathrm{D}X = N \, \text{VÀ} \int_0^A F(X) \cdot G(X) \, \mathrm{D}X = P. \, \text{TÍNH TÍCH}$$

$$\text{PHÂN} \int_0^A F(X) \, \mathrm{D}X$$

Bài toán tổng quát

Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;a] thỏa mãn f(a)=m, $\int \left[f'(x)\right]^2 \mathrm{d}x=n$ và $\int_{0}^{a} f(x) \cdot g(x) dx = p$. Tính tích phân $\int_{0}^{a} f(x) dx$. Trong đó biết g(x) là hàm tường minh biết

Phương pháp giải: Ta làm các bước sau

Bước 1. Xử lí biểu thức tích phân $\int\limits_{\Omega} f(x) \cdot g(x) \, \mathrm{d}x = p$ bằng phương pháp tích phân từng phần để xuất hiện $\int_{-a}^{a} f'(x) \cdot g_1(x) dx = p_1$. Trong đó $g_1(x) = \int_{-a}^{a} g(x) dx$.

Bước 2. Nhóm hằng đẳng thức Ta có $\begin{cases} \int\limits_0^a \left[f'(x)\right]^2 \,\mathrm{d}x = n \\ 2k \cdot \int\limits_0^a f'(x) \cdot g_1(x) \,\mathrm{d}x = 2k \cdot p_1. \end{cases}$ $k^2 \int\limits_0^a \left(g_1(x)\right)^2 \,\mathrm{d}x = k^2 \cdot q \right.$

Tìm số k sao cho $n+2kp_1+k^2q=0$ khi đó ta được $\int \left[f'(x)+kg_1(x)\right]^2 \mathrm{d}x=0$. Từ đó suy ra $f'(x) = kg_1(x)$, dựa vào điều kiện f(a) = m ta tìm được chính xác f(x).

Bước 3. Tính $\int f(x) dx$.

 VÍ DỤ 5. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;2] thỏa mãn $f(2) \, = \, 2,$ $\int_{0}^{2} [f'(x)]^{2} dx = \frac{512}{9} \text{ và } \int_{0}^{16} f(\sqrt[4]{x}) dx = -\frac{224}{9}. \text{ Tính tích phân } I = \int_{0}^{2} f(x) dx.$ $(A) I = -\frac{20}{3}. \qquad (B) I = \frac{32}{4}. \qquad (C) I = -\frac{32}{15}.$

Lời giải.

Bước 1. Xử lí tích phân
$$\int_{0}^{16} f\left(\sqrt[4]{x}\right) \,\mathrm{d}x = -\frac{224}{9}.$$
Đặt $t = \sqrt[4]{x} \Rightarrow t^4 = x \Rightarrow 4t^3 \,\mathrm{d}t = \,\mathrm{d}x.$
Đổi cận ta được $x = 0 \Rightarrow t = 0; \ x = 16 \Rightarrow t = 2.$
Khi đó
$$\int_{0}^{16} f\left(\sqrt[4]{x}\right) \,\mathrm{d}x = 4\int_{0}^{2} f(t) \cdot t^3 \,\mathrm{d}t = -\frac{224}{9} \Leftrightarrow \int_{0}^{2} f(x) \cdot x^3 \,\mathrm{d}x = -\frac{56}{9}.$$
Đặt
$$\begin{cases} u = f(x) \\ \mathrm{d}v = x^3 \,\mathrm{d}x \end{cases} \Rightarrow \begin{cases} \mathrm{d}u = f'(x) \,\mathrm{d}x \\ v = \frac{x^4}{4}. \end{cases}$$
Khi đó:
$$-\frac{56}{9} = \int_{0}^{2} x^3 f(x) \,\mathrm{d}x = \left[\frac{x^4}{4} f(x)\right] \Big|_{0}^{2} - \int_{0}^{2} \frac{x^4}{4} f'(x) \,\mathrm{d}x \Leftrightarrow \int_{0}^{2} x^4 f'(x) \,\mathrm{d}x = \frac{512}{9}.$$

Bước 2. Nhóm hằng đẳng thức

Ta có
$$\begin{cases} \int_{0}^{2} [f'(x)]^{2} dx = \frac{512}{9} \\ -2 \cdot \int_{0}^{2} x^{4} f'(x) dx = -2 \cdot \frac{512}{9} \\ \int_{0}^{2} x^{8} dx = \frac{512}{9} \end{cases}$$

Suy ra ta có
$$\int_{0}^{2} \left[f'(x) - x^4 \right]^2 dx = 0 \Rightarrow f'(x) = x^4 \Rightarrow f(x) = \frac{x^5}{5} + C$$
, mà $f(2) = 2 \Rightarrow C = -\frac{22}{5}$.
Vậy $f(x) = \frac{x^5}{5} - \frac{22}{5}$.

Bước 3. Vậy
$$I = \int_{0}^{2} f(x) dx = \int_{0}^{2} \left(\frac{x^{5}}{5} - \frac{22}{5}\right) dx = -\frac{20}{3}$$
.

Câu 10. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;2] thỏa mãn điều kiện f(2)=3,

$$\int_{0}^{2} [f'(x)]^{2} dx = 4 \text{ và } \int_{0}^{2} x^{2} f(x) dx = \frac{1}{3}. \text{ Tích phân } \int_{0}^{2} f(x) dx \text{ bằng}$$

$$\boxed{\mathbf{A}} \frac{266}{115}.$$

$$\boxed{\mathbf{B}} \frac{2}{115}.$$

$$\boxed{\mathbf{C}} \frac{562}{115}.$$

$$\frac{266}{115}$$
.

$$\bigcirc$$
 $\frac{297}{115}$.

Theo giả thiết
$$\int_{0}^{2} x^{2} f(x) dx = \frac{1}{3} \Rightarrow \int_{0}^{2} 3x^{2} f(x) dx = 1$$
 (1).

Ta có
$$I = \int_{0}^{2} 3x^{2} f(x) dx$$
. Đặt $\begin{cases} u = f(x) \\ dv = 3x^{2} dx \end{cases} \Rightarrow \begin{cases} du = f'(x) dx \\ v = x^{3} \end{cases}$

Khi đó
$$I = x^3 f(x)\Big|_0^2 - \int_0^2 x^3 f'(x) \, \mathrm{d}x = 24 - \int_0^2 x^3 f'(x) \, \mathrm{d}x \qquad (2).$$

Từ (1) và (2) suy ra $1 = 24 - \int_0^2 x^3 f'(x) \, \mathrm{d}x \Leftrightarrow \int_0^2 x^3 f'(x) \, \mathrm{d}x = 23$

$$\Leftrightarrow \frac{4}{23} \int_0^2 x^3 f'(x) \, \mathrm{d}x = 4$$

$$\Leftrightarrow \frac{4}{23} \int_0^2 x^3 f'(x) \, \mathrm{d}x = \int_0^2 \left[f'(x)\right]^2 \, \mathrm{d}x$$

$$\Leftrightarrow \int_0^2 \left[\frac{4}{23} x^3 f'(x) - \left[f'(x)\right]^2\right] \, \mathrm{d}x = 0$$

$$\Leftrightarrow \int_0^2 f'(x) \left[\frac{4}{23} x^3 - f'(x)\right] \, \mathrm{d}x = 0$$

$$\Rightarrow f'(x) = \frac{4}{23} x^3 \Rightarrow f(x) = \frac{1}{23} x^4 + C$$
Theo giả thiết $f(2) = 3 \Rightarrow C = \frac{53}{23}$. Khi đó $f(x) = \frac{1}{23} x^4 + \frac{53}{23}$.
$$\text{Vậy } \int_0^2 f(x) \, \mathrm{d}x = \int_0^2 \left(\frac{1}{23} x^4 + \frac{53}{23}\right) \, \mathrm{d}x = \left(\frac{1}{115} x^5 + \frac{53}{23}\right) \Big|_0^2 = \frac{562}{115}.$$

Chọn đáp án (C)

Câu 11. Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1] đồng thời thỏa mãn điều kiện f(1) = 2, $\int_{0}^{1} x^{4} f(x) dx = \frac{3}{11}, \int_{0}^{1} [f'(x)]^{2} dx = \frac{49}{11}.$ Tính tích phân $\int_{0}^{1} f(x) dx$.

 $\bigcirc \frac{1}{11}.$

Lời giải.

Ta có:

$$\frac{3}{11} = \frac{1}{5} \int_{0}^{1} f(x) d(x^{5}) = \frac{1}{5} x^{5} f(x) \Big|_{0}^{1} - \frac{1}{5} \int_{0}^{1} x^{5} f'(x) dx$$

$$\Leftrightarrow \frac{1}{5} \int_{0}^{1} x^{5} f'(x) dx = \frac{7}{55}$$

$$\Leftrightarrow \int_{0}^{1} x^{5} f'(x) dx = \frac{7}{11}.$$

Kết hợp
$$\begin{cases} \int_0^1 [f'(x)]^2 \, \mathrm{d}x = \frac{49}{11} \\ \int_0^1 x^5 f'(x) \, \mathrm{d}x = \frac{7}{11} \end{cases}$$
 và
$$\int_0^1 x^{10} \, \mathrm{d}x = \frac{1}{11} \text{ ta được:}$$

$$\int_{0}^{1} \left[[f'(x)]^{2} - 14x^{5}f'(x) + 49x^{10} \right] dx = \frac{49}{11} - \frac{98}{11} + \frac{49}{11} = 0 \Leftrightarrow \int_{0}^{1} [f'(x) - 7x^{5}] dx = 0 \Leftrightarrow f'(x) = 7x^{5}.$$

Khi đó
$$f(x) = \frac{7x^6}{6} + \frac{5}{6}$$
 vì $f(1) = 2$.
Do đó $\int_0^1 f(x) dx = \int_0^1 \left(\frac{7x^6}{6} + \frac{5}{6}\right) dx = 1$.

Chọn đáp án (D)

§8. TÍCH PHÂN CHỨA THAM SỐ

Bài toán tổng quát

Hàm số f(x) xác định và liên tục trên $[x_0; +\infty)$. Tìm hàm số f(x), biết $\int_{-\infty}^{\infty} f(t) dt = g(x)$.

Phương pháp giải: Gọi F(t) là nguyên hàm của hàm số f(t), ta có

$$\int_{x_0}^{\varphi(x)} f(t) dt = F(t)|_{x_0}^{\varphi(x)} = F(\varphi(x)) - F(x_0) = g(x).$$

Đạo hàm hai vế ta có

$$F'(\varphi(x)) \cdot \varphi'(x) = f(\varphi(x)) \cdot \varphi'(x) = g'(x) \Rightarrow f(\varphi(x)) = \frac{g'(x)}{\varphi'(x)}.$$

Bằng cách đặt $u = \varphi(x)$, ta rút x ra theo u thay vào ta được hàm f(u), từ đó suy ra hàm f(x).

 VÍ DỤ 1. Hàm số f(x) xác định và liên tục trên khoảng $(0; +\infty)$. Tìm f(9), biết rằng $\int f(t) \, \mathrm{d}t = x \cos(\pi x).$

(A)
$$f(9) = -\frac{1}{6}$$

B
$$f(9) = \frac{1}{6}$$

(A)
$$f(9) = -\frac{1}{6}$$
. (B) $f(9) = \frac{1}{6}$. (C) $f(9) = -\frac{1}{9}$. (D) $f(9) = \frac{1}{9}$.

$$f(9) = \frac{1}{9}$$
.

Lời giải.

Gọi F(t) là nguyên hàm của hàm số f(t) trên khoảng $(0; +\infty)$, suy ra

$$|F(t)|_1^{x^2} = F(x^2) - F(1) = x\cos(\pi x)$$

từ đó ta có

$$(F(x^2) - F(1))' = 2xf(x^2) = \cos(\pi x) - \pi x \sin(\pi x)$$

$$\Leftrightarrow f(x^2) = \frac{\cos(\pi x)}{2x} - \frac{\pi}{2}\sin(\pi x)$$

$$\Rightarrow f(x) = \frac{\cos(\pi \sqrt{x})}{2\sqrt{x}} - \frac{\pi}{2}\sin(\pi \sqrt{x}).$$

Từ đó suy ra $f(9) = -\frac{1}{6}$.

Chọn đáp án (A)

Câu 1. Hàm số f(x) xác định và liên tục trên \mathbb{R} . Tìm f(-1), biết rằng $\int_{0}^{\infty} f(t) dt = x^8 + 2x^6 - 3x^2$.

$$(A)$$
 $f(-1) = 1.$

A
$$f(-1) = 1$$
. **B** $f(-1) = -1$. **C** $f(-1) = 7$.

$$f(-1) = 7$$

$$f(-1) = -7$$

Lời giải.

Gọi F(t) là nguyên hàm của hàm số f(t) trên \mathbb{R} , suy ra

$$F(t)|_{0}^{x^{2}} = F(x^{2}) - F(0) = x^{8} + 2x^{6} - 3x^{2}$$

từ đó ta có

$$(F(x^2) - F(0))' = 2xf(x^2) = 8x^7 + 12x^5 - 6x$$

$$\Rightarrow f(x^2) = 4x^6 + 6x^4 - 3$$

$$\Rightarrow f(x) = 4x^3 + 6x^2 - 3.$$

Từ đó suy ra f(-1) = -1.

Chọn đáp án (B)

Câu 2. Hàm số f(x) xác định và liên tục trên \mathbb{R} . Tìm $f(\pi)$, biết rằng $\int_{\Omega} f(t) dt = \cos^3 x$.

A
$$f(\pi) = -3\pi^2$$
. **B** $f(\pi) = -3$. **C** $f(\pi) = -1$.

$$\mathbf{B} \quad f(\pi) = -3.$$

Lời giải.

Gọi F(t) là nguyên hàm của hàm số f(t) trên \mathbb{R} , suy ra

$$F(t)|_0^{\cos x} = F(\cos x) - F(1) = \cos^3 x$$

từ đó ta có

$$(F(\cos x) - F(1))' = -f(\cos x)\sin x = -3\cos^2 x\sin x$$

$$\Rightarrow f(\cos x) = 3\cos^2 x$$

$$\Rightarrow f(x) = 3x^2.$$

Từ đó suy ra $f(\pi) = 3\pi^2$.

Chọn đáp án (D)

CHO Y = F(X) LIÊN TỤC TRÊN KHOẢNG K. BIẾT RẰNG $\int_{-\infty}^{\infty} F(T) \, \mathrm{D}T = 0$ B G(U(X)). TÍNH GIÁ TRỊ F(B).

Bài toán tổng quát

Cho hàm số y = f(x) liên tục trên khoảng K. Biết rằng

$$\int_{a}^{u(x)} f(t) dt = g(u(x)), \forall x \in K.$$

Tính giá trị f(b).

Phương pháp giải:

PP 1: Gọi F là một nguyên hàm của hàm số f trên K, tức là F'(x) = f(x), $\forall x \in K$. Khi đó, ta có

$$\int_{a}^{u(x)} f(t) dt = F(u(x)) - F(a).$$

Từ giả thiết

$$\int_{a}^{u(x)} f(t) dt = g(u(x)), \forall x \in K,$$

suy ra F(u(x)) = g(u(x)) + F(a), hay F(x) = g(x) + F(a). Do đó, ta có

$$f(x) = F'(x) = g'(x).$$

Vậy, ta có kết quả f(b) = g'(b).

PP 2: Sử dụng công thức đạo hàm theo cận trên

$$\left(\int_{a}^{\alpha(x)} f(t) dt\right)' = \alpha'(x) f(\alpha(x)).$$

Từ giả thiết

$$\int_{a}^{u(x)} f(t) dt = g(u(x)), \forall x \in K,$$

đạo hàm 2 vế theo biến x, ta được

$$u'(x)f(u(x)) = u'(x)g'(u(x)).$$

Vậy, ta có kết quả f(b) = g'(b).

 $ightharpoonup ext{VÍ DŲ 2.}$ Cho hàm số y=f(x) liên tục trên \mathbb{R} . Biết rằng

$$\int_{0}^{x^{2}} f(t) dt = e^{x^{2}} + x^{4} - 1, \forall x \in \mathbb{R}.$$

Giá trị f(4) là

- \bullet $e^4 + 8$.
- **B** $e^4 + 4$.
- (C) $4e^4$.
- **(D)** 1.

Lời giải.

PP1: Gọi F là một nguyên hàm của f trên \mathbb{R} . Khi đó, ta có

$$F(x^2) - F(0) = \int_0^{x^2} f(t) dt = e^{x^2} + x^4 - 1.$$

Suy ra $F(x) = e^x + x^2 - 1 + F(0)$, hay $f(x) = F'(x) = e^x + 2x$. Vây

$$f(4) = F'(4) = e^4 + 8.$$

PP2: Từ giả thiết, ta có

$$\int_{0}^{x^{2}} f(t) dt = e^{x^{2}} + x^{4} - 1, \forall x \in \mathbb{R}.$$

Đạo hàm 2 về theo biến x, ta được

$$2x f(x^2) = 2xe^{x^2} + 4x^3.$$

Suy ra

$$f(x^2) = e^{x^2} + 2x^2.$$

Vây, ta có kết quả

$$f(4) = f(2^2) = e^4 + 8.$$

Chọn đáp án (A)

Câu 3. Cho hàm số y = f(x) liên tục trên $(0, +\infty)$. Biết rằng

$$\int_{x^2}^{1} f(t) dt = e^2 - x^2 e^{x^2 + \frac{1}{x^2}}, \forall x \neq 0.$$

Giá trị $\ln f(1)$ là

Lời giải.

Gọi F là một nguyên hàm của f trên \mathbb{R} . Khi đó, ta có

$$F(1) - F(x^2) = \int_{x^2}^{1} f(t) dt = e^2 - x^2 e^{x^2 + \frac{1}{x^2}}.$$

Suy ra

$$F(x) = -e^2 + xe^{x + \frac{1}{x}} + F(1).$$

Khi đó, ta có

$$f(x) = F'(x) = \left(1 + x - \frac{1}{x}\right)e^{x + \frac{1}{x}}.$$

Vậy, ta có kết quả

$$\ln f(1) = \ln e^2 = 2.$$

Chọn đáp án (A)

Câu 4. Cho hàm số y = f(x) liên tục trên $[1; +\infty)$ thỏa

$$\int_{1}^{x} \frac{f(t)}{\sqrt{t}} dt = 2\left(1 - \frac{1}{\sqrt{x}}\right), \quad \forall x > 1.$$

Tính f(4).

B $\frac{1}{2}$. **C** $\frac{1}{4}$.

Lời giải.

Theo giả thiết, ta có

$$\int_{1}^{x} \frac{f(t)}{\sqrt{t}} dt = 2\left(1 - \frac{1}{\sqrt{x}}\right), \quad \forall x > 1;$$

nên đạo hàm 2 vế theo biến x, ta được

$$\frac{f(x)}{\sqrt{x}} = \frac{1}{x\sqrt{x}}.$$

Suy ra $f(x) = \frac{1}{x}$. Vây $f(4) = \frac{1}{4}$.

Chọn đáp án (C)