Simulation et Optimisation – TP2

Introduction

Dans ce travail pratique, il nous est demandé de mettre en œuvre et de comparer plusieurs méthodes de Monte-Carlo :

- 1. Méthode d'intégration par échantillonnage uniforme,
- 2. Méthode d'intégration par échantillonnage préférentiel,
- 3. Méthode d'intégration par échantillonnage uniforme avec variable de contrôle.

Ces méthodes seront utilisées dans le but de déterminer l'aire de la fonction

$$\left(25 + \frac{x(x-6)(x-8)(x-14)}{25}\right)e^{\sqrt{1+\cos\left(\frac{x^2}{10}\right)}}$$

Sur l'intervalle [0,15].

Dans un premier temps, nous testerons l'implémentation des différentes méthodes en générant un certain nombre de données et en analysant les résultats obtenus. Une fois ceci fait, nous passerons à la comparaison des performances de chacune de ces méthodes en utilisant une approche de comparaison des largeurs des intervalles de confiance obtenus après un temps de calcul fixé.

Notes préalables

- Le code a été compilé en C++11 en utilisant mingw 4.8.1.
- Les mesures ont été effectuées avec un processeur Intel®Core™ i7-2760QM CPU @ 2.40GHz.

Description de l'implémentation

- Le code a été réalisé en C++11.
- Les générateurs de variables aléatoires ont été repris du premier travail pratique.
- Les points de la fonction affine par morceaux à utiliser dans les méthodes 2 et 3 sont créés dans la classe Stats (reprise du premier TP et complétée). Nous reparlerons du choix de création de ces points plus tard.

L'architecture du code est la suivante :

- Les méthodes de Monte-Carlo sont représentées par une classe MonteCarloMethod, qui met à disposition plusieurs manières différentes de générer des échantillons : taille de l'échantillon fixé (sampleWithSize), échantillonnage jusqu'à une largeur d'intervalle de confiance maximale donnée (sampleWithMaxWidth) et échantillonnage jusqu'à un temps minimum donné (sampleWithMinTime). En plus de leurs paramètres respectifs, les deux dernières prennent un paramètre step, représentant le nombre de valeurs à générer avant de revérifier les conditions d'arrêt.
- Les trois méthodes à implémenter dans ce travail pratique (échantillonnage uniforme, préférentiel et uniforme avec variable de contrôle) sont représentées par des classes héritant de la classe MonteCarloMethod.
- La classe MonteCarloMethod garde en interne les différentes statistiques. Il est donc plus lisible et plus pratique d'effectuer divers calculs dans différentes fonctions sans devoir passer toutes les statistiques d'une fonction à l'autre.
- Pour la méthode d'échantillonnage uniforme avec variable de contrôle, une méthode setSamplingSize est mise à disposition afin de changer la taille « M » du « petit échantillon » à générer dans la première phase de la méthode. Avoir la taille du petit échantillon séparée des paramètres des trois méthodes sample (au lieu de sampleWithSize(M,N), par exemple) permet de respecter la signature de ces dernières dans la classe MonteCarloMethod.

Le schéma UML de l'architecture (très simplifié) représentant les explications ci-dessus est le suivant:

Par souci de simplicité et de clarté, aucun des membres et méthodes privés n'ont été affichés et sampleWithSize, sampleWithMaxWidth et sampleWithMinTime n'ont pas été affichés dans les sous-classes de MonteCarloMethod.

Choix de subdivision de l'intervalle d'intégration

L'intervalle d'intégration est subdivisé en sous-intervalles de largeurs égales. Autrement dit, lorsque nous voulons créer une fonction affine par morceaux comprenant un certain nombre de points P à partir de notre fonction dont on veut calculer l'aire entre deux bornes a et b, on aura pour chaque sous-intervalle une largeur de $\frac{b-a}{P-1}$. Pour notre fonction, nous obtenons par exemple, pour 15 points :

x	f(x)			
0	102.831259			
1.07142857	24.9472802			
2.14285714	8.0826406			
3.21428571	22.2737654			
4.28571429	33.9732808			
5.35714286	26.4666183			
6.42857143	51.5447711			
7.5	100.891916			
8.57142857	75.3294967			
9.64285714	16.3370198			
10.7142857	23.4235276			
11.7857143	6.51684889			
12.8571429	9.54768305			
13.9285714	90.1969334			
15	89.6486364			

Pour la suite de l'analyse, cette fonction par morceaux de 15 points sera utilisée pour les méthodes 2 et 3.

Validation de l'implémentation

Avant tout, mentionnons que la valeur de l'aire de cette fonction peut être calculée au préalable (au moyen de wolfram alpha, par exemple), et vaut **601.971**. Nous nous y réfèrerons par **G**.

Sauf mention du contraire, les méthodes 1, 2 et 3 dans les tables et graphiques suivants font respectivement référence à l'échantillonnage uniforme, préférentiel et uniforme avec variable de contrôle.

Méthode	N	$\widehat{m{G}}$	IC	$\sqrt{N}\widehat{\sigma}_{\widehat{G}}$	Δ_{IC}	Temps [s]
	100000	601.0275	[598.240,603.815]	449.67011	5.57417	0.015
1	1000000	602.15816	[601.275,603.042]	450.71304	1.7668	0.172
	10000000	601.97038	[601.691,602.250]	450.88017	0.55892	1.797
	100000	601.86313	[601.370,602.356]	79.55771	0.98621	0.031
2	1000000	601.86825	[601.713,602.023]	79.20599	0.31049	0.25
	10000000	601.93762	[601.888,601.987]	79.31759	0.09832	2.497
	100000	602.09849	[601.549,602.648]	88.61924	1.09854	0.015
3	1000000	601.87316	[601.698,602.048]	89.1828	0.3496	0.187
	10000000	601.97101	[601.916,602.026]	88.97629	0.1103	2.047

Table 1 : génération d'échantillons de tailles 10^5 , 10^6 , 10^7 pour les 3 méthodes.

Nous pouvons tout d'abord constater sur la table 1 que, pour chacune des méthodes, l'estimateur de l'aire (\widehat{G}) semble converger vers la valeur théorique (G) lorsque l'on augmente la taille de l'échantillon (N). Nous remarquons que G se trouve dans chacun des intervalles de confiance (IC).

Nous remarquons que le produit $\sqrt{N}\hat{\sigma}_{\hat{G}}$ est bien stable (tend approximativement vers la même valeur) pour une méthode donnée, qu'importe le **N**. La largeur de l'IC (Δ_{IC}) diminue et le temps augmente lorsque **N** augmente.

Tout ceci (principalement la convergence de \hat{G}) peut nous amener à penser que l'implémentation des différentes méthodes est a priori correcte.

Analyse des résultats obtenus

Pour tous les résultats qui suivent, nous prendrons pour la méthode d'échantillonnage uniforme avec variable de contrôle une taille d'échantillon M de 10000 (l'échantillon étant utile pour trouver le coefficient utilisé par la suite lors de cette méthode).

L'approche de comparaison des performances que nous utiliserons ici consiste à comparer les temps de calculs nécessaires à l'obtention d'un IC d'une largeur ne dépassant pas une largeur fixée.

Voici ci-après les différents tableaux de mesures obtenus selon les différentes méthodes.

Temps min [s]	N	$\widehat{\textbf{\textit{G}}}$	IC	$\sqrt{N}\widehat{\sigma}_{\widehat{G}}$	Δ_{IC}	Temps [s]
1	5900000	601.78811	[601.424,602.152]	450.64632	0.72727	1
2	11600000	602.03329	[601.774,602.293]	450.74111	0.51878	2.016
4	23600000	602.0821	[601.900,602.264]	450.86187	0.36381	4.004
8	48000000	601.84245	[601.715,601.970]	450.78704	0.25506	8.008
16	95000000	602.03278	[601.942,602.123]	450.84561	0.18132	16.002
32	191800000	601.97847	[601.915,602.042]	450.81739	0.1276	32.002
64	380200000	601.99911	[601.954,602.044]	450.82847	0.09063	64.012
128	712300000	601.98141	[601.948,602.015]	450.81263	0.06621	128.014
256	1435400000	601.96767	[601.944,601.991]	450.8291	0.04665	256.012
512	3028600000	601.9682	[601.952,601.984]	450.82485	0.03211	512.012
1024	6106500000	601.97381	[601.963,601.985]	450.82516	0.02262	1024.015

Tableau 2 : mesures obtenues pour l'échantillonnage uniforme

Temps min [s]	N	$\widehat{\textbf{\textit{G}}}$	IC	$\sqrt{N}\widehat{\sigma}_{\widehat{G}}$	Δ_{IC}	Temps [s]
1	3600000	601.95608	[601.874,602.038]	79.30804	0.16385	1
2	7300000	601.98993	[601.932,602.047]	79.2974	0.11505	2.016
4	14900000	601.96597	[601.926,602.006]	79.2751	0.08051	4
8	30400000	601.97972	[601.952,602.008]	79.2915	0.05637	8.001
16	61300000	601.96757	[601.948,601.987]	79.29188	0.0397	16.011
32	121600000	601.96613	[601.952,601.980]	79.29016	0.02819	32.011
64	241500000	601.97398	[601.964,601.984]	79.28433	0.02	64.002
128	480500000	601.97079	[601.964,601.978]	79.29256	0.01418	128.006
256	971800000	601.97064	[601.966,601.976]	79.29196	0.00997	256.045
512	1871300000	601.97294	[601.969,601.977]	79.29049	0.00719	512.005
1024	3614900000	601.97083	[601.968,601.973]	79.29093	0.00517	1024.015

Tableau 3 : mesures obtenues pour l'échantillonnage préférentiel

Temps min [s]	N	Ĝ	IC	$\sqrt{N}\widehat{\sigma}_{\widehat{G}}$	Δ_{IC}	Temps [s]
1	4610000	601.96771	[601.886,602.049]	89.04094	0.16256	1.02
2	8810000	601.97264	[601.914,602.031]	88.97818	0.11751	2.02
4	17210000	601.94721	[601.905,601.989]	89.04082	0.08414	4.008
8	34810000	601.98283	[601.953,602.012]	89.01051	0.05914	8.001
16	69910000	601.9516	[601.931,601.972]	89.03619	0.04174	16.003
32	135510000	601.97177	[601.957,601.987]	89.01703	0.02998	32.006
64	282310000	601.96949	[601.959,601.980]	89.01301	0.02077	64.003
128	574410000	601.9697	[601.962,601.977]	88.99723	0.01456	128.007
256	1148710000	601.97506	[601.970,601.980]	88.99557	0.01029	256.018
512	2317310000	601.97005	[601.966,601.974]	88.99452	0.00725	512.015
1024	4595510000	601.97029	[601.968,601.973]	88.9946	0.00515	1024.013

Tableau 4 : mesures obtenues pour l'échantillonnage uniforme avec variable de contrôle

Graphique 5 : représentation des trois méthodes

En observant le graphique (notons l'échelle logarithmique pour l'axe des ordonnées), nous pouvons constater que la méthode d'échantillonnage uniforme est la moins performante, alors que les deux autres méthodes semblent être aussi performantes l'une que l'autre. En effet, les graphes de ces dernières sont pratiquement confondus.

Ceci peut s'expliquer par le fait que la première méthode utilise une approche relativement simple (il s'agit d'une uniforme, après tout), alors que les deux dernières utilisent une fonction affine par morceaux (qui utilise 15 points, au lieu de 2 pour l'uniforme), afin de converger plus rapidement vers **G**.

Nous pouvons également noter que, bien que les deux dernières méthodes convergent aussi vite l'une que l'autre, il faut, d'après les mesures, plus de valeurs générées (un N plus grand) pour que la troisième méthode converge. Une génération est donc effectuée plus rapidement que dans la deuxième méthode, ce qui est logique car la troisième utilise un générateur uniforme alors que la deuxième un générateur de fonction inverse, vu au premier travail pratique.

Conclusion

Nous avons pu voir que les deux dernières méthodes étaient apparemment aussi performantes l'une que l'autre et convergeaient bien plus rapidement que la première méthode. Il faudra donc favoriser une de ces méthodes lors d'un usage futur.