الهندسة الفضائية

القدرات المنتظرة

- *- تعرف وتمثيل أجزاء في الفضاء على المستوى.
- *- إدراك حالات المماثلة وحالات اللامماثلة بين مفاهيم وخاصيات في المستوى ونظيراتها في الفضاء.
 - *- توظيف خاصيات الهندسة الفضائية في حل مسائل مستقاة من الواقع.

التوازي في الفضاء

I- تذكير

1<u>- التمثيل المستوى للأشكال في الفضاء</u>

* الرسومات في الفضاء لا تحترم طبيعة الأشكال

- * لرسم أشكال في الفضاء نتبع التقنية التالية
- الخطوط المرئية في الواقع نرسمها بخطوط متصلة
- الخطوط الغير المرئية في الواقع نمثلها بخطوط متقطعة
- المستقيمات المتوازية في الواقع نمثلها بمستقيمات متوازي في الرسم
 - النقط المستقيمية تمثل بنقط مستقيمية في الرسم.
- قطعتان متقايستان حاملاهما متوازيان نمثلهما بقطعتين متقايستين حامليهما متوازيين

2- موضوعات و تعاریف

الفضاء مجموعة عناصرها تسمى نقط نرمز لها بالرمز(E) المستقيمات و المستويات أجزاء فعلية من الفضاء

أ- موضوعة1

(AB) کل نقطتین مختلقتین A و B في الفضاء تحدد مستقیما وحید نرمز له بـ

تعريف

نقول عن عدة نقط أنها مستقيمية في الفضاء إذا كانت تنتمي إلى نقس المستقيم

- موضوعة!

(P) كل ثلاث نقط غير مستقيمية A و B و C في الفضاء تحدد مستوى وحيد نرمز له بـ (ABC) أو

<u>تعریف</u>

- * نقول عن عدة نقط أنها مستوائية في الفضاء إذا كانت تنتمي إلى نقس المستوى.
- * نقول عن مستقیمین (أو مستقیمات) أنهما مستوئیین (أو مستوائیة) إذا كانا (أو كانوا) ضمن نفس المستوى.

ج- موضوعة3

إذا انتمت نقطتان مختلفتان من مستقيم (D) إلى مستوى (P) فان (D) ضمن (P).

ملاحظة هامة

جميع خاصيات الهندسة المستوية تبقى صالحة في كل مستوى من مستويات الفضاء و كل مستقيم من مستقيماته.

د- موضوعة4

إذا اشترك مستويان مختلفان في نقطة فانهما يتقاطعان وفق مستقيم يمر من هذه النقطة.

ذ- نتائج

<u>نتىحة1</u>

كل مستقيم ونقطة خارجه يحددان مستوى وحيدا في الفضاء

كل مستقيمين متقاطعين في الفضاء يحددان مستوى وحيد في الفضاء

3- الأوضاع النسبية لمستقيم ومستوى

ليكن (D) مستقيم و (P) مستوى من الفضاء

لدينا ثلاث وضعيات ممكنة

الوضعية1: (D) يخترق (P)

الوضعية3: (D) و(P) منفصلان (أي ليست لهما أية نقطة مشتركة)

ليكن (Q) و (Q) مستويين في الفضاء. لدينا ثلاث حالات

و (Q) و پتقاطعان وفق مستقیم (P)

و (Q) منفصلان (P) و رائع ليست لهما أية نقطة مشتركة)

و (Q) منطبقان (P)

<u>5- الأوضاع النسبية لمستقيمين مختلفين</u>

ليكن (Δ) و (Δ) مستقيمين مختلفين. هناك ثلاث حالات

و (Δ) و مستوئيان ومنفصلان (D)

و (Δ) و ستوئيان ومتقاطعان (D)

و $\left(\Delta
ight)$ غير مستوئيين $\left(D
ight)$ *

<u>:مرىن</u>

ليكن EFGH رباعي الأوجه النقطة I من FG مخالفة عن

H و E مخالفة عن E و النقطة E من E مخالفة عن E و النقطة E من E مخالفة عن E و E و النقطة E من E مخالفة عن E و E

هل (EI) و (JK) متقاطعان

<u>:مرىن</u>

ABCDEFGH مکعب

 $\left(BDG\right)$ و $\left(ACG\right)$ حدد تقاطع

للبرهنة على استقامية نقط في الفضاء ، نبحث غالبا على مستويين متقاطعين و نبين أن هذه النقط مشتركة يمرين ABCD رباعي الأوجه و P و Q و P نقط من P رباعي الأوجه و P و P و P بقط من

Iو [AC] و [AC] حيث (PR) يقطع (PR) في I و (PQ) يقطع (PR) في I و [AC] و [AC] في I و

<u>التوازي في الفضاء</u>

1- المستقيمات المتوازية

<u>ا- تعریف</u>

نقول إن مستقيمين (Δ) و (Δ) متوازيان في الفضاء إذا تحقق الشرطان التاليان

- أن يكون ig(Dig) و $ig(\Deltaig)$ مستوائيين
- ان یکون ig(Dig) و $ig(\Deltaig)$ منفصلان أو منطبقان -
 - $(\Delta)//(D)$ نکتب

لا يكفي أن يكون (D) و (Δ) منفصلين لكي يكون متوازيين

مثال

و (BC) و منفصلان و لكن غير متوازيين.

(BC)//(AD)

(EF)//(DC)

ں- میرهنة

من نقطة معلومة خارج مستقيم يمر مستقيم وحيد يوازيه في الفضاء

<u>البرهان</u>

 (Δ) (P)

لدينا $A \notin (D)$ و بالتالي يوجد مستوى

(D) وحید (P) یحتوي علی

وحسب موضوعة اقليدس في المستوى (P) ، يمر مستقيم وحيد

(D)يوازي (Δ)

إذن (Δ) و (Δ) متوازيان في الفضاء

<u>ج- مبرهنة</u>

كل مستقيمين متوازيين قطعا في الفضاء يحددان مستوى وحيدا

·- ميرهنة (نقبلها)

إذا احتوى مستويان متقاطعان على مستقيمين متوازيين قطعا فان تقاطعهما هو مستقيم مواز لهذين المستقيمين.

<u>ذ- مىرھنة</u>

إذا كان مستقيمان متوازيين في الفضاء فن كل مستقيم يوازي أحدهما يوازي الآخر

<u>ملاحظة</u>

إذا كان مستقيمان متوازيين فكل مستوى يقطع أحدهما يقطع الآخر

<u>ىمرىن</u>

ليكن ABCDE هرما قاعدته متوازي أضلاع لتكن B و ' B منتصفي AC و AC و التوالي. أنشئ الشكل

(DE)//(B'C') أتبث أن -1

(ADE) و (ABC) عاطع المستويين (Δ) و 2-

 $(\Delta)//(B'C')$ بين أن

<u>2- توازی مستقیم و مستوی</u>

اً-تعریف

(P) يكون مستقيم(D) موازيا لمستوى (P) إذا و فقط إذا كان (D) و (P) منفصلان أو (D) ضمن (D) نكتب(D)

<u>ى- مىرھنە</u>

(D) يكون مستقيم (D) موازيا لمستوى (P) إذا و فقط إذا وجد مستقيم ضمن

يدور

igl[ABigr] ليكن ABCDEFGH مكعبا . ا و I و منتصفات

و [HG] و [EF] على التوالي

 $(J\!KC)$ أتبث أن $(H\!I)$ يوازي المستوى

<u>5- توازی مستوسن</u>

<u>تعریف</u>

يكون مستويان (P) و (Q) متوازيين في الفضاء إذا و فقط إذا كانا منطبقين أو منفصلين.

(P)//(Q) نکتب

ملاحظة

إذا كان $(P)/\!/(Q)$ فان كل مستقيم ضمن أحدهما يوازي المستوى الآخر.

<u>ں- میرهنة</u>

يكون مستويان متوازيين في الفضاء إذا و فقط إذا اشتمل أحدهما على مستقيمين متقاطعين يوازيين المستوى الآخر

ج- ميرهنة

إذا وازى مستويان مستوى ثالثا فانهما يكونان متوازيين

<u>د- مبرهنه</u>

من نقطة في الفضاء يمر مستوى و حيد مواز لمستوى معلوم

البرهان

ليكن (P) مستوى و A نقطة في الفضاء

(P) نعتبر (Δ) و (Δ) متقاطعین ضمن المستوی

(D) يوجد مستقيم وحيد (D') مار من A و يوازي

 (Δ) يوجد مستقيم وحيد (Δ') مار من A و يوازي

(Q) يحدان مستوى وحيد (Δ')

(P) يوازي (Q)

<u>ذ- نتائج</u>

- إذا توازى مستويان فان كل مستقيم يخترقٍ أحدهما يخترقِ الآخر

- إذا توازى مستويان فان كل مستوى يقطع أحدهما يقطع الآخر

- إذا توازي مستويان فان كل مستقيم يوازي احدهما يوازي الآخر

<u>تمرين</u>

 $A \in (P)$ مستویین متوازیین قطعا . نعتبر (Q) و (P)

و BCD و AC و AC و AC و AC و AC و التوالي. المستقيم BCD و التوالي. المستقيم BCD و AC مثلث ضمن AC في AC في AC المستقيم AC

1- أنشئ الشكل

(P) يوازي (IJK) يوازي -2

(CD)//(AR) أتبث أن -3

تمرين

igl[GH]متوازي المستطيلات و ABCDEFGH ليكن

 $(EI) \cap (FH) = \{M\}$ لتكن -1

 $(AM\)$ بين أن المستويين $(AEI\)$ و $(AFH\)$ يتقاطعان وفق

و C و D و F و E مستوائية C ا- بين أن (CF)//(DE)

3- بين أن (*CFH*)//(*BDE*)

 $(ADH\,)$ يخترق المستوى $(CI\,)$ 4-

التعامد في الفضاء

I- تعامد مستقيمين في الفضاء

1- تعرىف

نقول إن مستقيمين D و Δ متعامدان في الفضاء إذا و فقط إذا كان الموازيان لهما و الماران من نقطة D في الفضاء متعامدين. نكتب Δ

مثاك ABCDEFGH مكعب

- $(AD) \perp (AE)$
- $(AD) \perp (CG)$
- $(EF) \perp (DH)$

ملاحظة

مستقيمان متعامدان يمكن أن يكونا غير مستوائيين

تمرين

رباعي الأوجه حيث DD = DC و DC و DC منتصفات و DB و DC على التوالي ABCD بين أن DD = DC و DC

2- خاصيات

<u>----</u> خاصىة1

إذا كان مستقيمان متوازيين فكل مستقيم عمودي على أحدهما يكون عموديا على الآخر

خاصىة2

إذا كان مستقيمان متعامدين فكل مستقيم مواز لأحدهما يكون عموديا على الآخر

ملاحظة

يمكن لمستقيمين أن يكون عموديين على مستقيم ثالث دون أن يكونا متوازيين.

<u>II- تعامد مستقيم و مستوى في الفضاء</u>

:- مىرھنة

إذا كان مستقيم (D) عمودي على مستقيمين متقاطعين ضمن مستوى (P) فان (P) عمودي على جميع مستقيمات المستوى (P)

<u>2- تعرىف</u>

نقول إن المستقيم (D) عمودي على المستوى (P) إذا و فقط (D) عموديا على جميع مستقيمات المستوى (P).

3- <u>مىرھنة</u>

يكون مستقيم (D) عمودي على مستوى (P) إذا و فقط إذا كان المستقيم (D) عمودي على مستقيمين متقاطعين ضمن المستوى (P)

ABCDEFGH مکعب $(AD) \perp (ABE)$

 $(AD) \perp (CHG)$

4- خاصيات

<u> خاصىة1</u>

إذا كان مستويان متوازيين فان كل مستقيم عمودي على أحدهما يكون عموديا على الآخر

<u>خاصىة2</u>

إذا كان مستقيمان متوازيين فان كل مستوى عمودي على أحدهما يكون عموديا على الآخر

<u>خاصىة4</u>

يكون مستقيمان متعامدين إذا و فقط إذا كان أحدهما عمودبا على مستوى يتضمن الآخر

<u>خاصىة5</u>

يكون مستويان متوازيين إذا وفقط إذا كانا عموديين على نفس المستقيم

<u>تمرىن</u>

ABCDEFGH مكعب

 $(\mathit{EBG}\,)\,\bot(\mathit{DF}\,)$ أتبث أن $(\mathit{EB}\,)\,\bot(\mathit{DF}\,)$ ثم أتبث أن

<u>تمرين</u>

A ليكن (C) دائرة من المستوى (P). نعتبر (AB) قطرا لـ (C)و (AB) العمودي على (C)

 $M \neq B$; $M \in (C)$ و $S \neq A$ حيث $S \in (\Delta)$

 $(MB) \perp (SM)$ أتبث أن

5- <u>مىرھنات</u>

مىرھنة1

من كل نقطة في الفضاء يمر مستوى وحيد عمودي على مستقيم معلوم.

(D) المسقط العمودي للنقطة M على المستقيم H

<u>مىرھنة2</u>

من كل نقطة في الفضاء يمر مستقيم وحيد عمودي على مستوى معلوم.

 $(P\,)$ المسقط العمودي للنقطة M على المستوى H

<u>III- تعامد مستوس</u>

تعريف

نقول ان المستویین (P) و (Q) متعامدان اذا و فقط اذا کان أحدهما يتضمن مستقيما عموديا على الآخر نكتب $(P) \pm (Q)$

D C G G F G

 $egin{array}{ll} oldsymbol{lpha} & ABCDEFGH & oldsymbol{lpha} \ & (ADC ig) oldsymbol{oldsymbol{oldsymbol{oldsymbol{ADF}}} ig) oldsymbol{oldsymbol{oldsymbol{oldsymbol{BCDF}}} ig)} & ABCDEFGH & oldsymbol{lpha} \ & (ADF ig) oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{BCDEFGH}}}} ig) \end{array}$

<u>ملاحظة</u>

إذا تعامد مستويين في الفضاء فلا يعني أن كل مستقيم ضمن أحدهما عمودي على المستوى الآخر.

تمرين

ليكن ABC مثلثا متساوي الساقين في A ضمن مستوى Pو I منتصف I لتكن S نقطة من S نقطة من S ليكن S حيث S

 $(SAI) \perp (SCI)$ أتبث أن -1

 $\left(SI\,
ight)$ على طلى المسقط العمودي لـ A

 $(AH) \perp (SC)$ أتبث أن

<u>تمرين</u>

مكعب ABCDEFGHأتبث أن ABCDEFGH

<u>تمرىن</u>

في الفضاء نعتبر ABC مثلثا قائم الزاوية في A ضمن مستوى

لتكن B مماثلة B بالنسبة لـ A ، و S نقطة خارج P حيث SB=SD. لتكن B و A بالنسبة لـ B

على التوالي [DC] و

$$ig(Pig)ot(\mathit{SAC}ig)$$
 استنتج أن $ig(\mathit{AB}ig)ot(\mathit{SAC}ig)$ -1

$$(AB)ot(IJ)$$
 بين أن -2

المساحات و الحجوم

1- متوازى المستطيلات

ليكُن a و b و c طول و عرض و ارتفاع متوازي المستطيلات

$$S = 2(ab + bc + ca)$$
 : المساحة

$$V = abc$$
 :الحجم

2**- المكعب**

ليكن a طول حرف المكعب

$$S = 6a^2$$
 المساحة الكلية

$$V = a^3$$
 الحجم

3 - الموشور القائم

أ- ليكن h ارتفاع موشور قائم و l و B محيط و مساحة قاعدته

على التوالي.

$$S_T = l \times h + 2B$$

$$V = B \times h$$
 الحجم*

S ارتفاع هرما رأسه أ- ليكن h

مساحة قاعدة الهرم.

 $V = \frac{1}{3} B . h$ حجم الهرم:

<u>5 - رباعي الأوجه المنتظم</u>

ليكن a طول حرف رباعي الأوجه منتظم

$$S = \frac{3\sqrt{3}}{4}a^3$$
 المساحة الجانبية

$$V = \frac{\sqrt{2}}{12}a^3$$
 الحجم

6 - الأسطوانة القائمة

ليكن h ارتفاع الاسطوانة و R شعاع قاعدتها

 $S_L = 2\pi R h$ المساحة الجانبية هي

$$V=\pi R^2 h$$
 الحجم هو

о _{'R}----

 $S=4\pi R^2$ المساحة هي: $V=rac{4}{3}\pi R^3$ الحجم هو: هي

7 - المخروطي الدوراني

ليكن R شعاع الفلك

ليكن R شعاع القاعدة لمخروط دوراني

 $S_L = \pi R \cdot SH$ المساحة الجانبية هي

$$V = \frac{1}{3}\pi R^2 h$$
 الحجم

h = OS

6- الفلكة

يمرين ABCD رباعي الأوجه حيث BD = DC و BD = DC و ABCD منتصفات و ABCD يا على التوالي

 $(IJ) \perp (DK)$ بين أن

<u>تمرين</u> ABCDEFGH مكعب

 $\left(EBG \right) \perp \left(DF \right)$ أتبث أن $\left(EB \right) \perp \left(DF \right)$ ثم أتبث أن

A في (P) في على (C) في العمودي على (P) في العمودي على (P) في العمودي على (P) في العمودي على (P)

 $M \neq B$; $M \in (C)$ و $S \neq A$ حيث $S \in (\Delta)$

 $.(MB) \perp (SM)$ أتبث أن

نقطة S نقطة [BC] مثلثا متساوي الساقين في A ضمن مستوى (P)و I منتصف (BC) . لتكن S نقطة S نقطة من المستقيم العمودي على (P) في $S \neq A$ حيث $S \neq A$

 $(SAI) \perp (SCI)$ أتبث أن -3

(SI) على H المسقط العمودي لـ A على H

 $(AH) \perp (SC)$ أتبث أن

تمرین ABCDEFGH مکعب

 $(HEB) \perp (AGF)$ أتبث أن

مستوى مستوى في الفضاء نعتبر ABC مثلثا قائم الزاوية في A ضمن مستوى

لتكن D مماثلة B بالنسبة لـ A ، و S نقطة خارج P حيث SB = SD. لتكن D و SD على التوالي SD على التوالي

 $(P) \perp (SAC)$ استنتج أن $(AB) \perp (SAC)$ استنتج أن -3

 $(AB) \perp (IJ)$ بين أن -4

SA = 8cm على (P) في A حيث المستقيم العمودي على

أحسب حجم الهرم SABCD

 $1m^2$ أحسب حجم فلكة مساحتها تساوي أحسب

