Reducts of finitely bounded structures, and lifting tractability from finite-domain constraint satisfaction

Antoine Mottet

May 11, 2016, PhDs in Logic

lacktriangledown Relational structure: $\mathcal{A}=(A,R_1^{\mathcal{A}},\ldots,R_k^{\mathcal{A}})$ with $R_i^{\mathcal{A}}\subseteq A^{r_i}$

- ▶ Relational structure: $A = (A, R_1^A, ..., R_k^A)$ with $R_i^A \subseteq A^{r_i}$
- ▶ A homomorphism $f: A \to B$ is a function such that

$$\forall R_i, \forall (a_1, \ldots, a_{r_i}) \in R_i^{\mathcal{A}}, \ (f(a_1), \ldots, f(a_{r_i})) \in R_i^{\mathcal{B}}$$

- ▶ Relational structure: $A = (A, R_1^A, ..., R_k^A)$ with $R_i^A \subseteq A^{r_i}$
- ▶ A homomorphism $f: A \to B$ is a function such that

$$\forall R_i, \forall (a_1, \ldots, a_{r_i}) \in R_i^{\mathcal{A}}, \ (f(a_1), \ldots, f(a_{r_i})) \in R_i^{\mathcal{B}}$$

Let \mathcal{A} be a relational structure, in a fixed finite signature τ . We consider the following problem:

Definition (Hom(A))

Input: a finite τ -structure \mathcal{B}

Question: decide the existence of a homomorphism $\mathcal{B} \to \mathcal{A}$.

Input: a finite graph \mathcal{B}

Question:

Input: a finite graph \mathcal{B}

Question: Is \mathcal{B} 3-colourable?

Input: a finite graph \mathcal{B}

Question: Is **B** 3-colourable? **Complexity:** NP-complete

Input: a finite graph \mathcal{B}

Question: Is \mathcal{B} 3-colourable? **Complexity:** NP-complete

Example $(Hom(\mathbb{Z},<))$

Input: a finite directed graph \mathcal{B}

Question:

Input: a finite graph \mathcal{B}

Question: Is \mathcal{B} 3-colourable? **Complexity:** NP-complete

Example $(Hom(\mathbb{Z},<))$

Input: a finite directed graph \mathcal{B}

Question: Is \mathcal{B} acyclic?

Input: a finite graph \mathcal{B}

Question: Is \mathcal{B} 3-colourable? **Complexity:** NP-complete

Example $(Hom(\mathbb{Z},<))$

Input: a finite directed graph \mathcal{B}

Question: Is \mathcal{B} acyclic? Complexity: linear time

Definition (CSP(A))

Input: a first-order sentence ϕ of the form

$$\exists x_1 \ldots \exists x_k \bigwedge_i R_i(x_{i1}, \ldots, x_{is_i}) \qquad (R_i \in \tau)$$

Question: $A \models \phi$?

Definition (CSP(A))

Input: a first-order sentence ϕ of the form

$$\exists x_1 \ldots \exists x_k \bigwedge_i R_i(x_{i1}, \ldots, x_{is_i}) \qquad (R_i \in \tau)$$

Question: $A \models \phi$?

Example (CSP(\mathbb{Z} ; +, ×))

Input: polynomials f_1, \ldots, f_m

Question:

Definition (CSP(A))

Input: a first-order sentence ϕ of the form

$$\exists x_1 \ldots \exists x_k \bigwedge_i R_i(x_{i1}, \ldots, x_{is_i}) \qquad (R_i \in \tau)$$

Question: $A \models \phi$?

Example (CSP(\mathbb{Z} ; +, ×))

Input: polynomials f_1, \ldots, f_m

Question: do f_1, \ldots, f_m have a common integer root?

Complexity:

Definition (CSP(A))

Input: a first-order sentence ϕ of the form

$$\exists x_1 \ldots \exists x_k \bigwedge_i R_i(x_{i1}, \ldots, x_{is_i}) \qquad (R_i \in \tau)$$

Question: $A \models \phi$?

Example (CSP($\mathbb{Z}; +, \times$))

Input: polynomials f_1, \ldots, f_m

Question: do f_1, \ldots, f_m have a common integer root?

Complexity: undecidable.

Definition (CSP(A))

Input: a first-order sentence ϕ of the form

$$\exists x_1 \ldots \exists x_k \bigwedge_i R_i(x_{i1}, \ldots, x_{is_i}) \qquad (R_i \in \tau)$$

Question: $A \models \phi$?

Example (CSP($\mathbb{Z}; +, \times$))

Input: polynomials f_1, \ldots, f_m

Question: do f_1, \ldots, f_m have a common integer root?

Complexity: undecidable.

CSP(A) and Hom(A) are equivalent.

structures of size up to 5 (Schaefer '78, Bulatov '06, Zhuk '16)

- structures of size up to 5 (Schaefer '78, Bulatov '06, Zhuk '16)
- undirected graphs (Hell-Nešetřil '90)

- structures of size up to 5 (Schaefer '78, Bulatov '06, Zhuk
 '16)
- undirected graphs (Hell-Nešetřil '90)
- ► smooth digraphs (Barto-Kozik-Niven '09)

- structures of size up to 5 (Schaefer '78, Bulatov '06, Zhuk '16)
- undirected graphs (Hell-Nešetřil '90)
- smooth digraphs (Barto-Kozik-Niven '09)
- **•** ...

- structures of size up to 5 (Schaefer '78, Bulatov '06, Zhuk '16)
- undirected graphs (Hell-Nešetřil '90)
- ► smooth digraphs (Barto-Kozik-Niven '09)
- **.**..

Main tool: universal-algebraic approach.

A k-ary polymorphism of A is a homomorphism $A^k \to A$.

A k-ary polymorphism of A is a homomorphism $A^k \to A$.

Polymorphisms are used to combine homomorphisms: if $h_1, \ldots, h_k \colon \mathcal{B} \to \mathcal{A}$ then $f(h_1, \ldots, h_k) \colon \mathcal{B} \to \mathcal{A}$ is (hopefully) a better homomorphism.

A k-ary polymorphism of A is a homomorphism $A^k \to A$.

Polymorphisms are used to combine homomorphisms: if $h_1, \ldots, h_k \colon \mathcal{B} \to \mathcal{A}$ then $f(h_1, \ldots, h_k) \colon \mathcal{B} \to \mathcal{A}$ is (hopefully) a better homomorphism.

Example

Suppose that \mathcal{A} has $f(x_1,\ldots,x_k)=a$ as a polymorphism for some $a\in\mathcal{A}$. If $h\colon\mathcal{B}\to\mathcal{A}$ is a homomorphism, then $f(h,\ldots,h)\colon x\mapsto a$ is also a homomorphism.

A k-ary polymorphism of A is a homomorphism $A^k \to A$.

Polymorphisms are used to combine homomorphisms: if $h_1, \ldots, h_k \colon \mathcal{B} \to \mathcal{A}$ then $f(h_1, \ldots, h_k) \colon \mathcal{B} \to \mathcal{A}$ is (hopefully) a better homomorphism.

Example

Suppose that \mathcal{A} has $f(x_1,\ldots,x_k)=a$ as a polymorphism for some $a\in\mathcal{A}$. If $h\colon\mathcal{B}\to\mathcal{A}$ is a homomorphism, then $f(h,\ldots,h)\colon x\mapsto a$ is also a homomorphism.

Concrete example: a group G, $f: x \mapsto e_G$.

Conjecture (Bulatov-Jeavons-Krokhin '05)

Let A be a finite structure. Then:

► A has a cyclic polymorphism – something satisfying

$$f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1),$$

- and CSP(A) is in P,
- \triangleright or CSP(\mathcal{A}) is NP-complete.

Conjecture (Bulatov-Jeavons-Krokhin '05)

Let A be a finite structure. Then:

► A has a cyclic polymorphism – something satisfying

$$f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1),$$

- and CSP(A) is in P,
- \triangleright or CSP(\mathcal{A}) is NP-complete.

▶ Goal: if \mathcal{A} is an infinite structure, try to find a finite structure \mathcal{A}' such that $\mathsf{CSP}(\mathcal{A})$ reduces to $\mathsf{CSP}(\mathcal{A}')$.

- ▶ Goal: if \mathcal{A} is an infinite structure, try to find a finite structure \mathcal{A}' such that $\mathsf{CSP}(\mathcal{A})$ reduces to $\mathsf{CSP}(\mathcal{A}')$.
- ► Why:

- ▶ Goal: if \mathcal{A} is an infinite structure, try to find a finite structure \mathcal{A}' such that $\mathsf{CSP}(\mathcal{A})$ reduces to $\mathsf{CSP}(\mathcal{A}')$.
- ► Why:
 - ► The powerful results of universal algebra only hold for finite structures,

- ▶ Goal: if \mathcal{A} is an infinite structure, try to find a finite structure \mathcal{A}' such that $\mathsf{CSP}(\mathcal{A})$ reduces to $\mathsf{CSP}(\mathcal{A}')$.
- ► Why:
 - ► The powerful results of universal algebra only hold for finite structures.
 - ► hopefully allows to reduce the combinatorial difficulties to the "finite blackbox".

- ▶ Goal: if \mathcal{A} is an infinite structure, try to find a finite structure \mathcal{A}' such that $\mathsf{CSP}(\mathcal{A})$ reduces to $\mathsf{CSP}(\mathcal{A}')$.
- ► Why:
 - ► The powerful results of universal algebra only hold for finite structures.
 - hopefully allows to reduce the combinatorial difficulties to the "finite blackbox".
- ► How:

- ▶ Goal: if \mathcal{A} is an infinite structure, try to find a finite structure \mathcal{A}' such that $\mathsf{CSP}(\mathcal{A})$ reduces to $\mathsf{CSP}(\mathcal{A}')$.
- Why:
 - ► The powerful results of universal algebra only hold for finite structures.
 - hopefully allows to reduce the combinatorial difficulties to the "finite blackbox".
- ► How:
 - structures for which the CSP is "manageable": finitely bounded structures,

- ▶ Goal: if \mathcal{A} is an infinite structure, try to find a finite structure \mathcal{A}' such that $\mathsf{CSP}(\mathcal{A})$ reduces to $\mathsf{CSP}(\mathcal{A}')$.
- Why:
 - ► The powerful results of universal algebra only hold for finite structures.
 - hopefully allows to reduce the combinatorial difficulties to the "finite blackbox".
- ► How:
 - structures for which the CSP is "manageable": finitely bounded structures,
 - structures for which finite substructures can move around: homogeneity

Homogeneous structures

Idea: build a countably infinite structures by gluing finite structures from some class \mathcal{K} .

Lifting tractability

Example

 $\mathcal{K}=$ class of finite simple graphs.

Example

 $\mathcal{K}=$ class of finite simple graphs. By induction, one can glue all those graphs together to obtain a countable graph: the random graph \mathcal{G} .

Example

 $\mathcal{K}=$ class of finite simple graphs. By induction, one can glue all those graphs together to obtain a countable graph: the random graph \mathcal{G} .

All we need for the induction is the following:

Definition

A class $\mathcal K$ of finite structures is said to be an amalgamation class if for every $\mathcal A,\mathcal B_1,\mathcal B_2\in\mathcal K$

$$\mathcal{A}$$
 \mathcal{B}_1

Example

 $\mathcal{K}=$ class of finite simple graphs. By induction, one can glue all those graphs together to obtain a countable graph: the random graph \mathcal{G} .

All we need for the induction is the following:

Definition

A class K of finite structures is said to be an amalgamation class if for every $A, B_1, B_2 \in K$ and every embedding $e_i : A \to B_i$,

Example

 $\mathcal{K}=$ class of finite simple graphs. By induction, one can glue all those graphs together to obtain a countable graph: the random graph \mathcal{G} .

All we need for the induction is the following:

Definition

A class \mathcal{K} of finite structures is said to be an amalgamation class if for every $\mathcal{A}, \mathcal{B}_1, \mathcal{B}_2 \in \mathcal{K}$ and every embedding $e_i : \mathcal{A} \to \mathcal{B}_i$, there exists $\mathcal{C} \in \mathcal{K}$

Example

 $\mathcal{K}=$ class of finite simple graphs. By induction, one can glue all those graphs together to obtain a countable graph: the random graph \mathcal{G} .

All we need for the induction is the following:

Definition

A class $\mathcal K$ of finite structures is said to be an amalgamation class if for every $\mathcal A, \mathcal B_1, \mathcal B_2 \in \mathcal K$ and every embedding $e_i \colon \mathcal A \to \mathcal B_i$, there exists $\mathcal C \in \mathcal K$ and embeddings $f_i \colon \mathcal B_i \to \mathcal C$ with $f_1 \circ e_1 = f_2 \circ e_2$.

Finitely bounded structures

Lifting tractability

Idea: only work with classes $\mathcal K$ which can be finitely represented. A Fraïssé class $\mathcal K$ is finitely bounded if. . .

Idea: only work with classes $\mathcal K$ which can be finitely represented. A Fraïssé class $\mathcal K$ is finitely bounded if... it has finitely many bounds (see board).

Idea: only work with classes \mathcal{K} which can be finitely represented. A Fraïssé class \mathcal{K} is finitely bounded if... it has finitely many bounds (see board).

Lemma

Let $\mathcal A$ be a finitely bounded homogeneous structure, and let $\mathcal B$ be first-order definable in $\mathcal A$. Then $\mathsf{CSP}(\mathcal B)$ is in NP.

Definition

A function $f: A^k \to A$ is canonical with respect to \mathcal{A} if for every finite $S \subset A$ and $\alpha_1, \ldots, \alpha_k \in \operatorname{Aut}(\mathcal{A})$, there exists $\beta \in \operatorname{Aut}(\mathcal{A})$ such that

$$\forall x_1,\ldots,x_k\in S, f(\alpha_1x_1,\ldots,\alpha_kx_k)=\beta f(x_1,\ldots,x_k).$$

Definition

A function $f: A^k \to A$ is canonical with respect to \mathcal{A} if for every finite $S \subset A$ and $\alpha_1, \ldots, \alpha_k \in \operatorname{Aut}(\mathcal{A})$, there exists $\beta \in \operatorname{Aut}(\mathcal{A})$ such that

$$\forall x_1,\ldots,x_k\in\mathcal{S}, f(\alpha_1x_1,\ldots,\alpha_kx_k)=\beta f(x_1,\ldots,x_k).$$

Example

Let $\mathcal G$ be the countable random graph. There is an infinite clique in $\mathcal G$, say K_∞ . Then an injection $f\colon \mathcal G\to K_\infty$ is canonical with respect to $\mathcal G$.

Let A be first-order definable in a finitely bounded homogeneous structure B.

Let A be first-order definable in a finitely bounded homogeneous structure B. There exists a finite structure $T_B(A)$ such that:

Let A be first-order definable in a finitely bounded homogeneous structure B. There exists a finite structure $T_B(A)$ such that:

▶ if f is a polymorphism of A which is canonical with respect to B, it induces a polymorphism of $T_B(A)$,

Let A be first-order definable in a finitely bounded homogeneous structure B. There exists a finite structure $T_B(A)$ such that:

- ▶ if f is a polymorphism of \mathcal{A} which is canonical with respect to \mathcal{B} , it induces a polymorphism of $T_{\mathcal{B}}(\mathcal{A})$,
- ▶ there is a polynomial-time reduction from CSP(\mathcal{A}) to CSP($\mathcal{T}_{\mathcal{B}}(\mathcal{A})$).

Let A be first-order definable in a finitely bounded homogeneous structure B. There exists a finite structure $T_B(A)$ such that:

- ▶ if f is a polymorphism of \mathcal{A} which is canonical with respect to \mathcal{B} , it induces a polymorphism of $T_{\mathcal{B}}(\mathcal{A})$,
- ▶ there is a polynomial-time reduction from CSP(\mathcal{A}) to CSP($\mathcal{T}_{\mathcal{B}}(\mathcal{A})$).

Question: Is $CSP(T_{\mathcal{B}}(\mathcal{A}))$ reducible to $CSP(\mathcal{A})$?

Let A be first-order definable in a finitely bounded homogeneous structure B. There exists a finite structure $T_B(A)$ such that:

- ▶ if f is a polymorphism of A which is canonical with respect to B, it induces a polymorphism of $T_B(A)$,
- ▶ there is a polynomial-time reduction from CSP(\mathcal{A}) to CSP($\mathcal{T}_{\mathcal{B}}(\mathcal{A})$).

Question: Is $CSP(T_{\mathcal{B}}(\mathcal{A}))$ reducible to $CSP(\mathcal{A})$?

Proposition

No

Let A be first-order definable in a finitely bounded homogeneous structure B. There exists a finite structure $T_B(A)$ such that:

- ▶ if f is a polymorphism of A which is canonical with respect to B, it induces a polymorphism of $T_B(A)$,
- ▶ there is a polynomial-time reduction from CSP(A) to CSP($T_B(A)$).

Question: Is $CSP(T_{\mathcal{B}}(\mathcal{A}))$ reducible to $CSP(\mathcal{A})$?

Proposition

No (in general).

equality constraints,

- equality constraints,
- structures definable over the random graph (in fact, over any homogeneous undirected graph),

- equality constraints,
- structures definable over the random graph (in fact, over any homogeneous undirected graph),
- some structures definable over the random partially-ordered set.

- equality constraints,
- structures definable over the random graph (in fact, over any homogeneous undirected graph),
- some structures definable over the random partially-ordered set,
- **>** . . .

Let \mathcal{A} be a finite-signature structure that is first-order definable in $\mathcal{B} = (\mathbb{N}; 0, 1, \dots)$. Then $\mathsf{CSP}(\mathcal{A})$ and $\mathsf{CSP}(\mathcal{T}_{\mathcal{B}}(\mathcal{A}))$ are polynomial-time equivalent.

Let \mathcal{A} be a finite-signature structure that is first-order definable in $\mathcal{B} = (\mathbb{N}; 0, 1, ...)$. Then $\mathsf{CSP}(\mathcal{A})$ and $\mathsf{CSP}(\mathcal{T}_{\mathcal{B}}(\mathcal{A}))$ are polynomial-time equivalent.

Corollary

The algebraic conjecture for finite-domain CSPs is equivalent to the statement: if A is definable in $(\mathbb{N}, 0, 1, ...)$, then:

- if A has a cyclic polymorphism modulo endomorphisms, then CSP(A) is in P,
- ightharpoonup or CSP(\mathcal{A}) is NP-hard.

Proof based on clone homomorphisms.

Conclusion

Open problem: can we lift hardness for all structures \mathcal{A} that are first-order interpretable over $(\mathbb{N}; 0, 1, \dots)$? So-called structures definable with atoms.

Conclusion

Open problem: can we lift hardness for all structures \mathcal{A} that are first-order interpretable over $(\mathbb{N}; 0, 1, \dots)$? So-called structures definable with atoms. In fact we make the following conjecture:

Conjecture

Let $\mathcal A$ be a finite-signature structure such that $\mathsf{CSP}(\mathcal A)$ is definable in ${\color{blue} {\sf MMSNP}}.$ Then there is a polynomial-time reduction from $\mathsf{CSP}(\mathcal T(\mathcal A))$ to $\mathsf{CSP}(\mathcal A).$

Orbits

Let A be a structure. There is a natural partition of A^n for all n:

 A^n

Let A be a structure. There is a natural partition of A^n for all n:

Example

Let $\mathcal{A} = (\mathbb{Q}; <)$. Aut (\mathcal{A}) is the group of increasing bijections on \mathbb{Q} .

- ightharpoonup n = 1: only one orbit
- ightharpoonup n = 2: three orbits given by x < y, x = y, x > y.

The domain of $T_{\mathcal{B}}(\mathcal{A})$ is the set of orbits of \mathcal{A}^m under $\operatorname{Aut}(\mathcal{B})$. The relations of $T_{\mathcal{B}}(\mathcal{A})$ are:

- "the tuples of the orbit x is in the relation R of A", for each relation of A.
- ▶ "the tuples of the orbits x and y are in the same orbit, if we restrict them to I and J", for each $I, J \subseteq \{1, ..., m\}$.