

STAT 426

Author: Wenxiao Yang

Institute: Department of Mathematics, University of Illinois at Urbana-Champaign

All models are wrong, but some are useful.

Contents

Chapte	r 1 Bas	sic of Categorical Data	1
1.1	Variab	le Measurement	1
1.2	Statisti	ical Inference for Categorical Data	2
	1.2.1	Maximum likelihood Estimation (MLE)	2
	1.2.2	Likelihood Inference (Wald, Likelihood-Ratio, Score)	3
Chapte	r 2 Ass	sociation in Contingency Tables	6
2.1	Associ	ation in Two-Way Contingency Tables	6
	2.1.1	Distribution	6
	2.1.2	Descriptive Statistics	6
	2.1.3	Sampling Models (Examples)	7
	2.1.4	Independent / Homogeneity	7
	2.1.5	Measuring Inhomogeneity	7
	2.1.6	Delta Method	9
	2.1.7	Testing Independence by Residuals: X^2 Test (Pearson)	9
	2.1.8	Testing Independence: G^2 Test (Likelihood Ratio)	11
	2.1.9	Testing Independence: Fisher's Exact Test	11
2.2	Condit	tional Association in Three-Way Tables	12
	2.2.1	Conditional Association	12
	2.2.2	Simpson's Paradox	13
	2.2.3	Conditional Independence, Marginal Independence	13
	2.2.4	Homogeneous Association	14
Chapte	r 3 Ge	neralized Linear Models	15
3.1	Introdu	action	15
	3.1.1	Definition	15
	3.1.2	Fitting GLMs	16
3.2	Binary	and Binomial Responses	16
	3.2.1	Binary Regression	16
	3.2.2	Grouped Data: Binomial Response	17

3.3	Count	Responses	18
	3.3.1	Poisson Regression	18
	3.3.2	Rate Models	19
3.4	Coeffic	cient and Model Inferences	20
	3.4.1	Wald Inference	20
	3.4.2	Deviance and Likelihood-Ratio Test	22
	3.4.3	Nested Model Comparison	23
	3.4.4	Residuals	24
	3.4.5	Overdispersion	25
3.5	Logist	ic Regression	26
	3.5.1	Parameter Interpretation	26
	3.5.2	Inference	27
	3.5.3	Testing Goodness of Fit	28

Chapter 1 Basic of Categorical Data

1.1 Variable Measurement

Figure 1.1: Variable Type

- a) Nominal: Categories do not have a natural order. Ex. blood type, gender.
- b) Ordinal: Categories have a natural order. Ex. low/middle/high education level
- c) Interval: There is a numerical distance (difference between two different values is meaningful) between any two values. Ex. blood pressure level, 100 blood pressure doesn't mean the double degree of 50 pressure.
- d) Ratio: An interval variable where ratios are valid (presence of absolute zero, i.e. zero is meaningful). Ex. weight, 4g is double degree of 2g, distance run by an athlete.

Levels of measurements

A variable's level of measurement determines the statistical methods to be used for its analysis.

Variables hierarchy: Ratio > Interval > Ordinal > Nominal

Statistical methods applied to variables at a lower level can be used with variables at a higher level, but the contrary is not true.

1.2 Statistical Inference for Categorical Data

There is a distribution $F(\beta)$ with p.d.f. (p.m.f.) $f(x \mid \beta)$, where β a generic unknown parameter and $\hat{\beta}$ the parameter estimate.

1.2.1 Maximum likelihood Estimation (MLE)

Given a set of observations $\vec{x} = (x_1, ..., x_n)$, the likelihood function of these observations with parameter β is $l(\vec{x} \mid \beta)$. We want to find parameter $\hat{\beta}$ that maximizes the likelihood function,

$$\hat{\beta} = \arg\max_{\beta} l(\vec{x} \mid \beta)$$

which is also equivalent to maximizing the logarithm of the likelihood function $L(\vec{x} \mid \beta) = \log(l(\vec{x} \mid \beta))$,

$$\hat{\beta} = \arg\max_{\beta} L(\vec{x} \mid \beta)$$

Definition 1.1 (score function)

The score function is

$$u(\beta, \vec{x}) = \nabla_{\beta} L(\vec{x} \mid \beta) = \frac{\nabla_{\beta} l(\vec{x} \mid \beta)}{l(\vec{x} \mid \beta)}$$

Lemma 1.1 (mean of score function)

The mean of score function is 0,

$$\mathbb{E}_{\vec{x}}u(\beta,\vec{x}) = 0$$

Proof 1.1

$$\mathbb{E}_{\vec{x}}u(\beta, \vec{x}) = \int_{\vec{x}} l(\vec{x} \mid \beta) \frac{\nabla_{\beta} l(\vec{x} \mid \beta)}{l(\vec{x} \mid \beta)} d\vec{x}$$
$$= \int_{\vec{x}} \nabla_{\beta} l(\vec{x} \mid \beta) d\vec{x}$$
$$= \nabla_{\beta} \left(\int_{\vec{x}} l(\vec{x} \mid \beta) d\vec{x} \right)$$
$$= \nabla_{\beta} 1 = 0$$

Lemma 1.2 (variance of score function)

The variance of the score function is

$$\operatorname{Var}_{\vec{x}}(u(\beta, \vec{x})) = \mathbb{E}_{\vec{x}}\left(u(\beta, \vec{x})u(\beta, \vec{x})^{T}\right)$$

Proof 1.2

Prove by the zero mean.

Definition 1.2 (Fisher information)

The (Fisher) information is

$$\iota(\beta) = -\mathbb{E}_{\vec{x}} \left[\nabla_{\beta}^2 L(\vec{x} \mid \beta) \right]$$

Lemma 1.3

The Fisher information is equal to the variance of score function.

$$\operatorname{Var}_{\vec{x}}(u(\beta, \vec{x})) = \mathbb{E}_{\vec{x}}\left(u(\beta, \vec{x})u(\beta, \vec{x})^{T}\right) = -\mathbb{E}_{\vec{x}}\left[\nabla_{\beta}^{2}L(\vec{x} \mid \beta)\right] = \iota(\beta)$$

Proof 1.3

$$\mathbb{E}_{\vec{x}}\left[\nabla_{\beta}^{2}L(\vec{x}\mid\beta)\right] = \mathbb{E}_{\vec{x}}\left(\frac{\partial \frac{\nabla_{\beta}l(\vec{x}\mid\beta)}{l(\vec{x}\mid\beta)}}{\partial\beta}\right) = \mathbb{E}_{\vec{x}}\left(\frac{\nabla_{\beta}^{2}l(\vec{x}\mid\beta)}{l(\vec{x}\mid\beta)} - \frac{\nabla_{\beta}l(\vec{x}\mid\beta)\nabla_{\beta}l(\vec{x}\mid\beta)^{T}}{(l(\vec{x}\mid\beta))^{2}}\right)$$

where $\mathbb{E}_{\vec{x}}\left(\frac{\nabla_{\beta}^2 l(\vec{x}|\beta)}{l(\vec{x}|\beta)}\right) = \int_{\vec{x}} l(\vec{x} \mid \beta) \frac{\nabla_{\beta}^2 l(\vec{x}|\beta)}{l(\vec{x}|\beta)} d\vec{x} = \int_{\vec{x}} \nabla_{\beta}^2 l(\vec{x} \mid \beta) d\vec{x} = \nabla_{\beta}^2 \int_{\vec{x}} l(\vec{x} \mid \beta) d\vec{x} = \nabla_{\beta}^2 1 = 0$ Hence,

$$\mathbb{E}_{\vec{x}}\left[\nabla_{\beta}^{2}L(\vec{x}\mid\beta)\right] = -\mathbb{E}_{\vec{x}}\left(\frac{\nabla_{\beta}l(\vec{x}\mid\beta)\nabla_{\beta}l(\vec{x}\mid\beta)^{T}}{(l(\vec{x}\mid\beta))^{2}}\right) = -\mathbb{E}_{\vec{x}}\left(u(\beta,\vec{x})u(\beta,\vec{x})^{T}\right)$$

Proposition 1.1

When the sample x is made up of i.i.d. observations, the covariance matrix of the maximum likelihood estimator $\hat{\beta}$ is approximately equal to the inverse of the information matrix.

$$\operatorname{Cov}(\hat{\beta}) \approx (\iota(\beta))^{-1}$$

Hence, the covariance matrix can be estimated as $(\iota(\hat{\beta}))^{-1}$. Similarly, SE is estimated by $\sqrt{(\iota(\hat{\beta}))^{-1}}$.

1.2.2 Likelihood Inference (Wald, Likelihood-Ratio, Score)

We want to test

$$H_0: \beta = \beta_0 \qquad H_\alpha: \beta \neq \beta_0$$

or form a confidence interval (CI) for β .

Definition 1.3 (Wald Test)

The Wald statistic:

$$z_W = \frac{\hat{\beta} - \beta_0}{SE} = \frac{\hat{\beta} - \beta_0}{\sqrt{(\iota(\hat{\beta}))^{-1}}}$$

where
$$SE = \sqrt{(\iota(\hat{\beta}))^{-1}}$$
.

Usually, as $n \to \infty$, $z_W \xrightarrow{d} N(0,1)$ under $H_0: \beta = \beta_0$.

*

- (1) We reject the H_0 if $|z_W| \ge z_{\frac{\alpha}{2}}$ for a two-sided level α test.
- (2) The $(1 \alpha)100\%$ Wald (confidence) interval is

$$\{\beta_0: |z_W| = \frac{|\hat{\beta} - \beta_0|}{SE} < z_{\frac{\alpha}{2}}\} = (\hat{\beta} - z_{\frac{\alpha}{2}}SE, \hat{\beta} + z_{\frac{\alpha}{2}}SE)$$

(3) The Wald test also has a chi-squared form, using

$$z_W^2 = \frac{(\hat{\beta} - \beta_0)^2}{(\iota(\hat{\beta}))^{-1}} \sim \chi_1^2 \quad \text{(under } H_0\text{)}$$

Definition 1.4 (Likelihood Ratio Test)

Let

$$\Lambda = \frac{l(\vec{x} \mid \beta_0)}{l(\vec{x} \mid \hat{\beta})}$$

where $l(\vec{x} \mid \hat{\beta}) = \max_{\beta} l(\vec{x} \mid \beta)$, so the ratio $\Lambda \in [0, 1]$.

The likelihood-ratio test (LRT) chi-squared statistic:

$$-2\ln\Lambda = -2\left(L(\beta_0) - L(\hat{\beta})\right)$$

It has an approximate χ_1^2 distribution under $H_0: \beta = \beta_0$, and otherwise tends to be larger.

(1) Thus, reject H_0 if

$$-2\ln\Lambda \ge \chi_1^2(\alpha)$$

(2) The $(1-\alpha)100\%$ likelihood-ratio (confidence) interval is

$$\{\beta_0: -2\ln\Lambda = -2\left(L(\beta_0) - L(\hat{\beta})\right) < \chi_1^2(\alpha)\}$$

Unlike Wald, this interval is <u>not degenerate</u>. (i.e., For general case, the interval does not have an explicit form.)

Definition 1.5 (Score Test)

The score statistic:

$$z_S = \frac{u(\beta_0)}{\sqrt{\iota(\beta_0)}}$$

As $n \to \infty$, $z_S \stackrel{d}{\longrightarrow} N(0,1)$ under $H_0: \beta = \beta_0$. Otherwise, it tends to be further from zero.

- (1) Thus, reject H_0 if $|z_S| \ge z_{\frac{\alpha}{2}}$ for a two-sided level α test.
- (2) The $(1-\alpha)100\%$ score (confidence) interval is

$$\{\beta_0: |z_S| = \frac{|u(\beta_0)|}{\sqrt{\iota(\beta_0)}} < z_{\frac{\alpha}{2}}\}$$

Unlike Wald, it is not degenerate for some distributions.

(3) There is also a chi-squared form:

$$z_S^2 = \frac{u(eta_0)^2}{\iota(eta_0)} \sim \chi_1^2 \quad (\mathrm{under}\ H_0)$$

We can also use P-value to measure the probability of the statistic is more extreme under the H_0 . We can reject H_0 if the P-value is $\leq \alpha$.

All three kinds tend to be "asymptotically equivalent" as $n \to \infty$. For smaller n, the <u>likelihood-ratio</u> and <u>score</u> methods are preferred.

Chapter 2 Association in Contingency Tables

2.1 Association in Two-Way Contingency Tables

Consider joint observations of two categorical variables: X with I categories, Y with J categories.

We can summarize data in an $I \times J$ contingency table:

$$\begin{array}{c|cccc}
 & Y \\
 & 1 & \cdots & J \\
 & & & \\
 & X & \vdots & & & \\
 & I & & & & \\
\end{array}$$

Each **cell** contains a count n_{ij} .

2.1.1 Distribution

If both X and Y are random, let

$$\pi_{ij} = P(X \text{ in row } i, Y \text{ in col } j)$$

be the **joint** distribution of X and Y.

The **marginal** distribution of X is defined by

$$\pi_{i+} = P(X \text{ in row } i)$$

and similarly for Y:

$$\pi_{+j} = P(Y \text{ in col } j)$$

The **conditional** distribution of Y given that X is in row i is defined by

$$\pi_{j|i} = P(Y \text{ in col } j \mid X \text{ in row } i) = \frac{\pi_{ij}}{\pi_{i+}}$$

2.1.2 Descriptive Statistics

Let $n_{ij} = count$ in row i and col j and $n = \sum_{i} \sum_{j} n_{ij}$.

The margins of the table:

$$n_{i+} = \sum_{j} n_{ij}, \quad n_{+j} = \sum_{i} n_{ij}$$

*

Natural Estimation

- 1. Natural estimate of π_{ij} : $\hat{\pi}_{ij} = \frac{n_{ij}}{n}$
- 2. Similarly marginals: $\hat{\pi}_{i+}=\sum_j\hat{\pi}_{ij}=\frac{n_{i+}}{n};\;\hat{\pi}_{+j}=\sum_ip_{ij}=\frac{n_{+j}}{n}$
- 3. And conditionals: $\hat{\pi}_{j|i} = \frac{\hat{\pi}_{ij}}{\hat{\pi}_{i+}} = \frac{n_{ij}}{n_{i+}}$

2.1.3 Sampling Models (Examples)

Possible joint distributions for counts in $I \times J$ table:

1. Poisson (random total): $Y_{ij} = \text{count in cell } (i, j)$,

$$Y_{ij} \sim \text{Poisson}(\mu_{ij})$$

and the Y_{ij} s are independent.

2. Multinomial (fixed total n): $N_{ij} = \text{count in cell } (i, j)$,

$$\{N_{ij}\} \sim \text{multinomial}(n, \{\pi_{ij}\})$$

3. Independent Multinomial: Assume n_{i+} (row totals n_i) are fixed,

$$\{N_{1j}\}_{j=1}^{J} \sim \text{multinomial}(n_1, \{\pi_{j|1}\}_{j=1}^{J})$$

$$\vdots$$

$$\{N_{Ij}\}_{j=1}^{J} \sim \text{multinomial}(n_I, \{\pi_{j|I}\}_{j=1}^{J})$$

(When J=2, this is independent binomial sampling, for which we may just write π_i for $\{\pi_{1|i},\pi_{2|i}\}$.)

2.1.4 Independent / Homogeneity

Definition 2.1 (independent)

If both X and Y are random, they are **independent** if

$$\pi_{ij} = \pi_{i+}\pi_{+j}, \ \forall i, j$$

which implies $\pi_{j|i} = \frac{\pi_{i+}\pi_{+j}}{\pi_{i+}} = \pi_{+j}, \forall i, j$. That is, $\pi_{j|i}$ doesn't depend on i and is the same as the marginal distribution of Y. (Intuitively, knowing X tells nothing about Y.)

Definition 2.2 (homogeneity)

Even if X is <u>not really random</u>, the condition that $\pi_{j|i} = \pi_{+j}, \forall i, j$ is called **homogeneity**. This might still be relevant in a situation where X is deliberately chosen and Y is observed as a response.

2.1.5 Measuring Inhomogeneity

Homogeneity is the condition $\pi_1 = \pi_2$. We can measure inhomogeneity by three different measures:

n_{11}	n_{12}
n_{21}	n_{22}

where $Y_i \sim \text{indep. binomial}(n_i, \pi_i)$. This regards row totals as fixed.

1. difference of proportions:

$$\pi_1 - \pi_2$$

The estimation is

$$\hat{\pi}_1 - \hat{\pi}_2 = \frac{y_1}{n_1} - \frac{y_2}{n_2}$$

The approx $(1 - \alpha)100\%$ confidence interval is:

$$\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_2}}$$

(Problematic if π_1 and π_2 are near 0 or 1.)

2. relative risk:

$$RR = \frac{\pi_1}{\pi_2}$$

The estimation is

$$r = \frac{\hat{\pi}_1}{\hat{\pi}_2} = \frac{y_1/n_1}{y_2/n_2}$$

The approx $(1 - \alpha)100\%$ confidence interval of $\ln RR$ is:

$$\ln r \pm z_{\frac{\alpha}{2}} \sqrt{\frac{1 - \hat{\pi}_1}{y_1} + \frac{1 - \hat{\pi}_2}{y_2}}$$

3. odds ratio:

$$\theta = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$$

When $\theta = 1$, we can say there is no association.

The **odds** for a probability π is $\Omega = \frac{\pi}{1-\pi}$. Note $\pi = \frac{\Omega}{1+\Omega}$.

(In the multinomial model: $\theta = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}}$ ("cross-product ratio"); in Poisson model: $\theta = \frac{\mu_{11}\mu_{22}}{\mu_{12}\mu_{21}}$)

The usual (unrestricted) estimates

$$\hat{\theta} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

The approx $(1 - \alpha)100\%$ confidence interval for $\ln \theta$ is

$$\ln \hat{\theta} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$$

Useful properties of odds ratio:

- (1) Interchanging rows (or cols) changes θ to $\frac{1}{\theta}$.
- (2) Interchanging X and Y doesn't change θ .
- (3) Multiplying a row (or col) by a factor doesn't change $\hat{\theta}$.
- (4) Relationship to relative risk: $\theta = RR \cdot \frac{1-\pi_2}{1-\pi_1}$. (θ and RR are similar if both π_1 and π_2 are small.)

2.1.6 Delta Method

It is easy to obtain approximate CI for a mean based on a sample mean by using the Central Limit Theorem and a consistent estimate of standard error.

But the log Odds Ratio and log Relative Risk are transformed means. How were their CI's derived? And why take logs?

Suppose a statistic T_n and parameter θ such that

$$\sqrt{n} \left(T_n - \theta \right) \xrightarrow[n \to \infty]{d} N \left(0, \sigma^2 \right)$$

(e.g. T_n might be a sample mean from a sample of size n with population mean θ and variance σ^2)

We want a CI for $g(\theta)$, for some smooth g.

The Taylor expand at T_n is

$$g(\theta) \approx g(T_n) + g'(T_n)(\theta - T_n)$$

So,

$$\sqrt{n}(g(T_n) - g(\theta)) \approx g'(T_n)\sqrt{n}(T_n - \theta) \xrightarrow[n \to \infty]{d} N\left(0, (g'(T_n))^2\sigma^2\right)$$

(This is useful only if $g'(T_n) \neq 0$) Hence, when n is large

$$\sqrt{n} \frac{g(T_n) - g(\theta)}{|g'(T_n)|\sigma} \quad \dot{\sim} \quad N(0,1)$$

which suggests this approximate CI for $g(\theta)$:

$$g(T_n) \pm z_{\frac{\alpha}{2}} \frac{|g'(T_n)|\sigma}{\sqrt{n}}$$

2.1.7 Testing Independence by Residuals: X^2 Test (Pearson)

Let
$$\mu_{ij} = \mathbb{E}(N_{ij}) = n\pi_{ij}$$
. Under $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}, \ \forall i,j$

$$\mu_{ij} = n\pi_{ij} = n\pi_{i+}\pi_{+j}$$

Under H_0 , can show the MLEs are

$$\hat{\mu}_{ij} = n\hat{\pi}_{i+}\hat{\pi}_{+j} = n\left(\frac{n_{i+}}{n}\right)\left(\frac{n_{+j}}{n}\right) = \frac{n_{i+}n_{+j}}{n}$$

(assuming no empty rows or cols)

Residuals:

1. Raw: $n_{ij} - \hat{\mu}_{ij}$

2. Pearson: $e_{ij} = \frac{n_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}}}$. $X^2 = \sum_i \sum_j e_{ij}^2$. 3. Standardized: $r_{ij} = \frac{n_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}(1 - \hat{\pi}_{i+})(1 - \hat{\pi}_{+j})}}$

Usage: Look for Pearson or standardized residuals with absolute value exceeding 2 or 3. These suggest the reason for significant dependence.

Remark: Under independence, both Pearson and standardized residuals are asymp. normal, but only standardized has asymp. variance equal to 1.

Definition 2.3 (X^2 **Test: Pearson** χ^2 **Test (Score Test))**

$$X^{2} = \sum_{ij} \frac{(n_{ij} - \hat{\mu}_{ij})^{2}}{\hat{\mu}_{ij}} \quad \dot{\mathcal{H}}_{0} \quad \chi^{2}_{(I-1)(J-1)}$$

Note:

$$(I-1)(J-1) = (IJ-1) - ((I-1) + (J-1))$$

$$= \mbox{ total \# params. } - \# \mbox{ params. under } H_0$$

Reject H_0 if

$$X^2 > \chi^2_{(I-1)(J-1)}(\alpha)$$

(or use P-value)

Example 2.1 Testing independence is equivalent to testing homogeneity in the indep. binomial model:

$$H_0: \pi_1 = \pi_2$$

Can show

$$X^2 = z^2$$

where

$$z = \frac{\hat{\pi}_1 - \hat{\pi}_2}{\sqrt{\hat{\pi}(1-\hat{\pi})(1/n_1 + 1/n_2)}} \quad \hat{\pi} = \frac{y_1 + y_2}{n_1 + n_2}$$

2.1.8 Testing Independence: G^2 **Test (Likelihood Ratio)**

Definition 2.4 (G^2 **Test: Likelihood Ratio** χ^2 **Test)**

$$G^2 = 2 \sum_{ij} n_{ij} \ln \frac{n_{ij}}{\hat{\mu}_{ij}} \quad \overset{\sim}{\underset{H_0}{\sim}} \quad \chi^2_{(I-1)(J-1)}$$

Reject H_0 if

$$G^2 > \chi^2_{(I-1)(J-1)}(\alpha)$$

(or use P-value)

(Convention: $0 \ln 0 = 0$)

Comparison:

- 1. X^2 and G^2 are asymptotically equivalent under H_0
- 2. The X^2 tends to be better.

Remark: The X^2 and G^2 tests are not necessarily compatible with the Wald CIs. For example,

reject
$$H_0 \Leftrightarrow ext{odds ratio } \theta = rac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = 1$$
 not in Wald CI

2.1.9 Testing Independence: Fisher's Exact Test

When cell counts are small, the X^2 and G^2 independence tests are not recommended: The χ^2 approximations are poor. In this section we introduce a *Fisher's Exact Test*.

Consider a 2×2 table with row and col totals fixed:

$$X \begin{array}{|c|c|c|c|}\hline Y \\ \hline N_{11} & N_{12} & n_{1+} \\ \hline N_{21} & N_{22} & n_{2+} \\ \hline n_{+1} & n_{+2} & n \\ \hline \end{array}$$

Note: Any cell count, say N_{11} , determines the whole table.

Can show that, under H_0 : independence, N_{11} is (conditionally) hypergeometric:

$$P_{H_0}(N_{11} = t) = \frac{\binom{n_{1+}}{t} \binom{n_{2+}}{n_{+1} - t}}{\binom{n}{n_{+1}}}$$

In terms of odds ratio $\theta = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$, independence is

$$H_0: \theta = 1$$

Possible alternatives:

$$H_{\alpha}: \theta > 1 \quad \Rightarrow \quad N_{11} \text{ tends larger}$$

$$H_{\alpha}: \theta < 1 \quad \Rightarrow \quad N_{11} \text{ tends smaller}$$

$$H_{\alpha}: \theta \neq 1 \quad \Rightarrow \quad N_{11} \text{ tends larger or smaller}$$

For $H_{\alpha}: \theta > 1$, the (one-sided) p-value is P_{H_0} ($N_{11} \ge t_0$), where $t_0 = n_{11}$ is the observed value of N_{11} .

Remarks: Could use mid p-values instead; Implemented in R function fisher.test(); Can be extended to $I \times J$ tables (with some computational difficulty).

2.2 Conditional Association in Three-Way Tables

Add a third categorical variable Z.

Example 2.2 Is a drug more effective at curing a disease among younger patients than among older? X = drug or placebo; Y = disease cured or not; Z = age group (young, old).

2.2.1 Conditional Association

Z may be called a **stratification variable**. We are interested in the distribution of (X, Y) conditional on Z.

Definition 2.5 (partial table)

Each Z category defines a **partial table** for X and Y.

Example 2.3 When Z = 1, 2 and X, Y are binary $(2 \times 2 \times 2 \text{ table})$:

$$Z = 1: X \begin{bmatrix} n_{111} & n_{121} \\ n_{211} & n_{221} \end{bmatrix} \qquad Z = 2: X \begin{bmatrix} n_{112} & n_{122} \\ n_{212} & n_{222} \end{bmatrix}$$

These represent conditional associations.

Definition 2.6 (marginal table)

The **marginal table** sums the partial tables:

This represents the **marginal association** (ignoring Z).

In general, let $\mu_{ijk} = expected count in row i, col j, table k$.

The conditional odds ratios.

$$\theta_{XY(k)} = \frac{\mu_{11k}\mu_{22k}}{\mu_{12k}\mu_{21k}}$$

which are estimated by

$$\hat{\theta}_{XY(k)} = \frac{n_{11k}n_{22k}}{n_{12k}n_{21k}}$$

The marginal odds ratio

$$\theta_{XY} = \frac{\mu_{11} + \mu_{22} + \mu_{12}}{\mu_{12} + \mu_{21} + \mu_{21}}$$

is estimated from the marginal table.

2.2.2 Simpson's Paradox

Some counter-intuitive but possible situations:

- 1. There are conditional associations $(\theta_{XY(k)} \neq 1)$ but no marginal association $(\theta_{XY} = 1)$
- 2. There is a marginal association ($\theta_{XY} \neq 1$) but no conditional associations ($\theta_{XY(k)} = 1$)
- 3. Simpson's paradox: The conditional associations are in the opposite direction from the marginal, e.g. $\theta_{XY(k)} > 1, \theta_{XY} < 1$

	Full Population, ${f N}={f 52}$			Men (M), $N = 20$			Women (\neg M), $N = 32$		
	Success	Failure	Success	Success	Failure	Success	Success	Failure	Success
	(S)	(¬S)	Rate			Rate			Rate
Treatment	20	20	50%	8	5	≈ 61%	12	15	≈ 44%
(T)									
Control	6	6	50%	4	3	≈ 57%	2	3	≈ 40%
(¬T)									

Table 1: Simpson's Paradox: the type of association at the population level (positive, negative, independent) changes at the level of subpopulations. Numbers taken from Simpson's original example (1951).

Figure 2.1: Simpson's paradox

2.2.3 Conditional Independence, Marginal Independence

Definition 2.7 (conditionally independent given Z, marginal independent)

We also call X and Y are **conditionally independent given** Z = k if $\theta_{XY(k)} = 1$. If this is true for all k, X and Y are **conditionally independent given** Z. Not the same to "X and Y are **marginal independent** if $\theta_{XY} = 1$ ".

Proposition 2.1

For multinomial sampling, can show that conditional independence is

$$\pi_{ijk} = \frac{\pi_{i+k}\pi_{+jk}}{\pi_{++k}}, \quad \forall i, j, k$$

2.2.4 Homogeneous Association

Definition 2.8

Let Z have K categories. X and Y have **homogeneous association** over Z if

$$\theta_{XY(1)} = \theta_{XY(2)} = \dots = \theta_{XY(K)}$$

(Conditional independence is a special case.)

Chapter 3 Generalized Linear Models

3.1 Introduction

A linear model $Y = \alpha + \sum_{i=1}^{p} \beta_i x_i + \varepsilon$ is usually not appropriate if Y is binary or a count.

3.1.1 Definition

We seek to model independent observations $Y_1, ..., Y_n$ of a **response variable**, in terms of corresponding vectors $\vec{x}_i = (x_{i1}, ..., x_{ip}), i = 1, ..., n$ of values of p **explanatory variables**.

(1) Random component: density of Y_i from a natural exponential family

$$f(y_i; \theta_i) = a(\theta_i)b(y_i)\exp(y_iQ(\theta_i))$$

where $Q(\theta_i)$ is the **natural parameter**.

(Fact: Since Y_i is from a natural exponential family, its distribution is completely determined by its mean μ_i . In particular, $Var(Y_i)$ is a function of μ_i .)

(2) Systematic component: the linear predictor

$$\eta_i = \alpha + \beta_1 x_{i1} + \dots + \beta_n x_{in}$$

with parameters $\alpha, \beta_1, ...\beta_p$ (coefficients)

 Y_i will depend on \vec{x}_i only through η_i .

(3) **Link function:** monotonic, differentiable g such that $g(\mu_i) = \eta_i$, that is

$$g(\mu_i) = \alpha + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$
 where $\mu_i = \mathbb{E}(Y_i)$

(Note: Ordinary linear models use the identity link: $g(\mu) = \mu$, which means $\mu_i = \alpha + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$.)

Definition 3.1 (Canonical Link)

The canonical link satisfies

$$Q(\theta_i) = g(\mu_i) = \alpha + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

Let F be a continuous and invertible c.d.f. on the real line. A reasonable link might be

$$g(\pi) = F^{-1}(\pi)$$

since it transforms interval (0, 1) to the whole real line.

Definition 3.2 (Probit Regression)

Using the c.d.f. Φ for a standard normal is called **probit regression**.

*

3.1.2 Fitting GLMs

Usually by maximum likelihood: find

$$\hat{\alpha}, \hat{\beta}_1, \dots, \hat{\beta}_p$$

maximizing

$$\prod_{i=1}^{n} f\left(y_i; \theta_i\right)$$

Explicit solutions exist only in special cases, so need numerical methods: e.g. Newton-Raphson, Fisher Scoring.

3.2 Binary and Binomial Responses

3.2.1 Binary Regression

Example 3.1 (Binary Regression)

$$Y_i \sim \text{Bernoulli}(\pi_i) \quad (\theta_i = \pi_i)$$

$$f(y_i; \pi_i) = \begin{cases} 1 - \pi_i & y_i = 0 \\ \pi_i & y_i = 1 \end{cases}$$

$$= \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$= (1 - \pi_i) \left(\frac{\pi_i}{1 - \pi_i}\right)^{y_i}$$

$$= (1 - \pi_i) \exp\left(y_i \ln\left(\frac{\pi_i}{1 - \pi_i}\right)\right)$$

So $a(\pi) = 1 - \pi, b(y) = 1$, and

$$Q(\pi) = \ln\left(\frac{\pi}{1-\pi}\right) = \operatorname{logit}(\pi)$$

The natural parameter is the **log odds**.

Note: $\mu_i = E(Y_i) = \pi_i$. Hence, we can write $\pi_i(\vec{x}_i)$ as a response to

• Identity Link:

$$\pi(\vec{x}_i) = \alpha + \beta_1 x_{i1} + \dots + \beta_n x_{in}$$

• Log Link:

$$\ln(\pi(\vec{x}_i)) = \alpha + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

• Canonical link: (logistic regression)

$$logit(\pi(\vec{x}_i)) = \alpha + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

Specifically, when p = 1,

$$\operatorname{logit}(\pi(x)) = \alpha + \beta x \quad \Leftrightarrow \quad \operatorname{odds}(\pi(x)) = e^{\alpha + \beta x}$$

$$\Leftrightarrow \quad \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

Figure 3.1: $\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$

3.2.2 Grouped Data: Binomial Response

If several observations have the same \vec{x} ("replications"), then they have the same $\pi(\vec{x})$.

Summing binary (0/1) observations with the same \vec{x} gives **grouped** data:

$$Y_i \sim \text{binomial}(n_i, \pi(\vec{x}_i))$$

where "i" now refers to the i^{th} group (of n_i binary obs.).

Note: Both Y_i and n_i (or $n_i - Y_i$) must be included in the data.

Remarks:

- 1. Whether data are grouped or ungrouped, fitting with maximum likelihood gives the same results.
- 2. Technically, the binomial GLM should use $\bar{Y}_i = \frac{Y_i}{n_i}$ as the responses, and use an *exponential dispersion* family form for the density.

For 2×2 Tables

$$x = 1$$
 Y_1 $n_1 - Y_1$
 $x = 0$ Y_2 $n_2 - Y_2$

Note: Can regard as grouped data with two groups.

A binomial regression model (with x = 0 or 1) is equivalent to the independent binomial model:

$$Y_1 \sim \text{binomial}(n_1, \pi_1 = \pi(1))$$

 $Y_2 \sim \text{binomial}(n_2, \pi_2 = \pi(0))$ independent

For logistic regression:

$$logit(\pi(x)) = \alpha + \beta x$$

so the odds ratio is

$$\theta = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \exp\left(\operatorname{logit}(\pi_1) - \operatorname{logit}(\pi_2)\right)$$
$$= \exp(\alpha + \beta \cdot 1 - (\alpha + \beta \cdot 0)) = e^{\beta}$$

So β is the **log odds ratio**.

3.3 Count Responses

For binomial data, the maximum possible count is known (for each observation). What if there are no known maximum counts? Counts of independently-occurring incidents (without any maximum) are often modeled using the Poisson distribution.

3.3.1 Poisson Regression

Example 3.2 (Poisson Regression)

$$Y_i \sim \text{Poisson}(\mu_i) \quad (\theta_i = \mu_i)$$

Note: $\mu_i = E(Y_i) = \text{Var}(Y_i)$

$$f(y_i; \mu_i) = \frac{\mu_i^{y_i}}{y_i!} e^{-\mu_i}$$
$$= e^{-\mu_i} \frac{1}{y_i!} \exp(y_i \ln \mu_i)$$

So
$$a(\mu) = e^{-\mu}, b(y) = \frac{1}{y!}$$

$$Q(\mu) = \ln \mu$$

The natural parameter is the log-mean.

Canonical link:

$$\ln \mu(\vec{x}_i) = \alpha + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

which gives the (Poisson) loglinear model.

Specifically, when p=1,

$$\ln \mu(x) = \alpha + \beta x$$

$$\Leftrightarrow \mu(x) = e^{\alpha + \beta x} = e^{\alpha} (e^{\beta})^x$$

Figure 3.2: $\mu(x) = e^{\alpha}(e^{\beta})^x$

3.3.2 Rate Models

 $E\left(Y_{i}\right)=\mu_{i}$ is sometimes expected to be proportional to another observed variable $t_{i}>0$:

$$\mu_i = \lambda_i t_i$$

e.g.

 $Y_i =$ cases of rare disease in nation i

 $t_i = \text{ national population (known)}$

 $\lambda_i = \text{disease rate (unknown)}$

(t could alternatively be a temporal or spatial extent)

Canonical link:

$$\ln \mu_i = \ln \lambda_i + \ln t_i$$

$$= \alpha + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \ln t_i$$

where λ_i works as linear predictor, $\ln \lambda_i = \alpha + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$

Note: $\ln t_i$ has no coefficient. We call $\ln t_i$ an **offset**.

For 2×2 Tables

$$\begin{array}{c|cc} x_2 = 1 & x_2 = 0 \\ x = 1 & Y_{11} & Y_{12} \\ x = 0 & Y_{21} & Y_{22} \end{array}$$

$$\{Y_{ij}\} \sim \text{ indep. Poisson } (\{\mu_{ij}\})$$

The full loglinear regression model can be parameterized as

$$\ln \mu_{ij} = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

(Can solve for $\alpha, \beta_1, \beta_2, \beta_3$ in terms of the μ_{ij} .)

Recall relation to multinomial:

$$\{Y_{ij}\} \mid \sum_{ij} Y_{ij} = n \sim \text{multinomial}(n, \{\pi_{ij}\})$$

$$\pi_{ij} = \frac{\mu_{ij}}{\mu_{11} + \mu_{12} + \mu_{21} + \mu_{22}}$$

Recall odds ratio:

$$\theta = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}} = \frac{\mu_{11}\mu_{22}}{\mu_{12}\mu_{21}}$$

Can show $\theta = 1$ (i.e., no association) is equivalent to $\beta_3 = 0$ (i.e., no interaction term):

$$\ln \mu_{ij} = \alpha + \beta_1 x_1 + \beta_2 x_2$$

3.4 Coefficient and Model Inferences

Matrix Forms

We can write the linear predictor of GLM

$$\eta_i = \alpha + \beta_1 x_{i1} + \dots + \beta_p x_{ip}, \quad i = 1, \dots, N$$

in vector form:

$$\eta = X\beta$$

where $\boldsymbol{\eta} = [\eta_1, \cdots, \eta_N]^T$, $\boldsymbol{\beta} = [\alpha, \beta_1, \cdots, \beta_p]^T$, and the model matrix \mathbf{X} has i^{th} row $[1, x_{i1}, \cdots, x_{ip}]$.

Let the MLE of β be

$$\hat{\boldsymbol{\beta}} = \left[\hat{\alpha}, \hat{\beta}_1, \cdots, \hat{\beta}_p\right]^T$$

3.4.1 Wald Inference

3.4.1.1 (Fisher) Information Matrix

Definition 3.3 ((Fisher) Information Matrix)

The (Fisher) information matrix for $\beta \in \mathbb{R}^{p+1}$ is a $(p+1) \times (p+1)$ matrix

 $\mathcal J$

with element (h, j) being

$$\mathbb{E}\left(-\frac{\partial^2 L(\boldsymbol{\beta})}{\partial \beta_h \partial \beta_j}\right)$$

For a GLM, the information matrix becomes

$$\mathcal{J} = \mathbf{X}^T \mathbf{W} \mathbf{X}$$

where $\mathbf{W} = \operatorname{diag}\left(w_1, \cdots, w_N\right)$ with

$$w_i = \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2 \cdot \frac{1}{\operatorname{var}(Y_i)}$$

Recall $\mu_i = \mathbb{E}(Y_i)$.

Example 3.3 Logistic Regression

$$\mu_i = E(Y_i) = n_i \pi_i \quad \text{var}(Y_i) = n_i \pi_i (1 - \pi_i)$$
$$\eta_i = \text{logit}(\pi_i) = \ln \pi_i - \ln (1 - \pi_i)$$

Then

$$\begin{split} \frac{\partial \mu_i}{\partial \eta_i} &= \frac{\partial \mu_i}{\partial \pi_i} \cdot \frac{\partial \pi_i}{\partial \eta_i} = n_i \cdot \left(\frac{\partial \eta_i}{\partial \pi_i}\right)^{-1} \\ &= n_i \left(\frac{1}{\pi_i} + \frac{1}{1 - \pi_i}\right)^{-1} = n_i \pi_i \left(1 - \pi_i\right) \end{split}$$

Thus

$$w_i = (n_i \pi_i (1 - \pi_i))^2 \cdot \frac{1}{n_i \pi_i (1 - \pi_i)} = n_i \pi_i (1 - \pi_i)$$

3.4.1.2 Wald Inference

Under regularity conditions, as $N \to \infty$, the distribution of $\hat{\beta}$ is approximately multivariate normal with mean vector β and covariance matrix \mathcal{J}^{-1} (a proposition in MLE part):

$$\hat{\boldsymbol{\beta}} \quad \dot{\sim} \quad N\left(\boldsymbol{\beta}, \boldsymbol{\mathcal{J}}^{-1}\right)$$

So the asymptotic covariance of $\hat{\beta}$ is

$$\boldsymbol{\mathcal{J}}^{-1} = \left(\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X}\right)^{-1}$$

which is estimated as

$$\widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}}) = \left(\boldsymbol{X}^T \hat{\boldsymbol{W}} \boldsymbol{X}\right)^{-1}$$

where \hat{W} is W estimated using $\hat{\beta}$ for β .

In particular, the element $\hat{\beta}_j$ of $\hat{\boldsymbol{\beta}}$ is asymptotically normal with asymptotic variance

$$\widehat{\mathrm{var}}\left(\hat{\beta}_{j}\right)=(j+1)$$
 st diagonal element of $\widehat{\mathrm{cov}}(\hat{\pmb{\beta}})$

The Wald z statistic for testing $H_0: \beta_j = \beta_{j0}$ is

$$z_W = \frac{\hat{\beta}_j - \beta_{j0}}{SE\left(\hat{\beta}_j\right)} \quad \stackrel{\sim}{\underset{H_0}{\sim}} \quad N(0, 1)$$

where
$$SE\left(\hat{\beta}_{j}\right) = \sqrt{\widehat{\operatorname{var}}\left(\hat{\beta}_{j}\right)}$$
.

Also Wald Cls:

$$\hat{\beta}_j \pm z_{\alpha/2} \cdot SE\left(\hat{\beta}_j\right)$$

3.4.2 Deviance and Likelihood-Ratio Test

3.4.2.1 Deviance and Goodness of Fit

Then it can be shown that $\mu = y$ maximizes L. It follows that

$$L(\boldsymbol{y}; \boldsymbol{y}) \ge L(\hat{\boldsymbol{\mu}}; \boldsymbol{y})$$

where $\hat{\mu}$ is the MLE of μ (when it exists) for the GLM. The unrestricted case, in which each observation has its own mean, is called the **saturated model**.

Definition 3.4 (Deviance)

The deviance of the GLM is

$$D(\mathbf{y}; \hat{\boldsymbol{\mu}}) = -2(L(\hat{\boldsymbol{\mu}}; \mathbf{y}) - L(\mathbf{y}; \mathbf{y}))$$

Note: $D(\boldsymbol{y}; \hat{\boldsymbol{\mu}})$ is the likelihood-ratio test (LRT) chi-squared statistic G^2 for

- H_0 : the GLM is correct

- H_a : the GLM is incorrect (but the saturated model is correct)

The deviance is associated with degrees of freedom

df = # means in sat. model -# params. in GLM

$$=N-(p+1)$$
 (usually)

For a 2×2 table, for the independent binomial model under homogeneity $(\pi_1 = \pi_2)$, $D(\boldsymbol{y}; \hat{\boldsymbol{\mu}})$ is G^2 for testing homogeneity. The notion for model M's deviance is $G^2(M)$, that is a model M's deviance is

$$G^2(M) = D(\boldsymbol{y}; \hat{\boldsymbol{\mu}}) = -2(L(\hat{\boldsymbol{\mu}}; \boldsymbol{y}) - L(\boldsymbol{y}; \boldsymbol{y}))$$

3.4.2.2 Goodness of Fit Test / Likelihood-Ratio Test

Under certain asymptotic conditions,

$$D(\boldsymbol{y}; \hat{\boldsymbol{\mu}}) \stackrel{\sim}{\sim} \chi_{\mathrm{df}}^2$$

and tends larger under H_{α} .

So reject correctness of the GLM if

$$D(\boldsymbol{y}; \hat{\boldsymbol{\mu}}) > \chi_{\mathrm{df}}^2(\alpha)$$

(or use a P-value).

Warning: Chi-squared approximation can be poor. The chi-squared approximation (under H_0) is adequate if

*

all

$$\mu_i = n_i \pi_i$$
 and $n_i - \mu_i = n_i (1 - \pi_i)$

are sufficiently large.

The chi-squared approximation is never valid for binary responses ($n_i = 1$, i.e. ungrouped data). Indeed, in that case, the deviance is completely useless for model checking.

Example 3.4 Poisson Case For a (Poisson) loglinear model, $L(\mu; y) = \sum_i \ln\left(\frac{\mu_i^{y_i}}{y_i!}e^{-\mu_i}\right)$, we can show

$$D(\mathbf{y}; \hat{\boldsymbol{\mu}}) = 2\sum_{i} \left(y_i \ln \frac{y_i}{\hat{\mu}_i} - y_i + \hat{\mu}_i \right)$$
$$= 2\sum_{i} y_i \ln \frac{y_i}{\hat{\mu}_i}$$

Remark:

- The chi-squared approximation (under H_0) is adequate if all μ_i are sufficiently large.
- These formulas also apply to loglinear rate models (with rate variable t_i), for which $\mu_i = \lambda_i t_i$, $\hat{\mu}_i = \hat{\lambda}_i t_i$, where $\hat{\lambda}_i$ is the MLE of rate λ_i .

Example 3.5 Binomial Case $Y_i \sim \text{binomial}(n_i, \pi_i), L(\boldsymbol{\mu}; \boldsymbol{y}) = \sum_i \ln \left(\frac{\mu_i}{n_i}\right)^{y_i} \left(1 - \frac{\mu_i}{n_i}\right)^{n_i - y_i}$

$$D(\boldsymbol{y}; \hat{\boldsymbol{\mu}}) = 2\sum_{i} y_i \ln \frac{y_i}{\hat{\mu}_i} + 2\sum_{i} (n_i - y_i) \ln \frac{n_i - y_i}{n_i - \hat{\mu}_i}$$

where $\hat{\mu}_i = n_i \hat{\pi}_i$. (Convention: $0 \ln 0 = 0$)

Remark: If the data is $N \times 2$, this deviance is the same as the deviance for the Poisson model with 2N observations.

3.4.3 Nested Model Comparison

"Nested" means that one model is a subset of another.

Definition 3.5 (Nested Model)

Model M_0 is **nested** in Model M_1 if the parameters in Model M_0 are a subset of the parameters in Model M_1 . E.g.

$$M_0: g(\mu_i) = \alpha + \beta_1 x_{i1} + \dots + \beta_{p_0} x_{ip_0}$$

$$M_1: g(\mu_i) = \alpha + \beta_1 x_{i1} + \dots + \beta_{p_1} x_{ip_1}$$

where $p_0 < p_1$. That is, μ is more restricted under M_0 than under M_1 .

Let $\hat{\mu}_0$ be the MLE under M_0 and $\hat{\mu}_1$ be the MLE under M_1 .

For testing

$$H_0: M_0$$
 true $H_a: M_1$ true, but not M_0

the LRT chi-squared statistic is

$$\begin{aligned} &-2\left(L\left(\hat{\boldsymbol{\mu}}_{0};\boldsymbol{y}\right)-L\left(\hat{\boldsymbol{\mu}}_{1};\boldsymbol{y}\right)\right)\\ &=-2\left(L\left(\hat{\boldsymbol{\mu}}_{0};\boldsymbol{y}\right)-L(\boldsymbol{y};\boldsymbol{y})\right)-\left[-2\left(L\left(\hat{\boldsymbol{\mu}}_{1};\boldsymbol{y}\right)-L(\boldsymbol{y};\boldsymbol{y})\right)\right]\\ &=D\left(\boldsymbol{y};\hat{\boldsymbol{\mu}}_{0}\right)-D\left(\boldsymbol{y};\hat{\boldsymbol{\mu}}_{1}\right)\end{aligned}$$

which is always non-negative.

If the chi-squared approximation is adequate, reject H_0 if

$$D(\boldsymbol{y}; \hat{\boldsymbol{\mu}}_0) - D(\boldsymbol{y}; \hat{\boldsymbol{\mu}}_1) > \chi_{\mathrm{df}}^2(\alpha)$$

where

 $df = effective \# params. in M_1 - effective \# params. in M_0$

Remark: The chi-squared approximation is often adequate here even when it isn't adequate for the saturated model (provided M_1 is not too close to saturated).

Notation: For comparing null model M_0 to larger model M_1 , denote the LRT chi-squared statistic as

$$G^{2}(M_{0} \mid M_{1}) = D\left(\boldsymbol{y}; \hat{\boldsymbol{\mu}}_{0}\right) - D\left(\boldsymbol{y}; \hat{\boldsymbol{\mu}}_{1}\right) = -2\left(L\left(\hat{\boldsymbol{\mu}}_{0}; \boldsymbol{y}\right) - L\left(\hat{\boldsymbol{\mu}}_{1}; \boldsymbol{y}\right)\right)$$

Definition 3.6 (Profile Likelihood CIs)

Say we want a Cl for a parameter β in a model M_1 .

Let

$$M_0(\beta_0) = \text{ same model, except } \beta \text{ is fixed at } \beta_0$$

Then the LRT tests

$$H_0: \beta = \beta_0 \quad H_a: \beta \neq \beta_0$$

and produces a P-value (from chi-squared approximation).

Then

$$\{\beta_0 : P\text{-value} > \alpha\}$$

is an approx. $(1-\alpha)100\%$ confidence set (usually a Cl) for β .

This interval (based on the test inversion idea) is a **profile likelihood CI**.

3.4.4 Residuals

As in linear regression, residuals provide a way to examine lack of fit: patterns of departure from the model, and "outliers." Recall $\hat{\mu}_i = \text{MLE of } E\left(Y_i\right)$. The raw residuals $y_i - \hat{\mu}_i$ have unequal variances, making it difficult to use them to examine lack of fit.

Definition 3.7 (Pearson Residuals)

$$e_i = \frac{y_i - \hat{\mu}_i}{\sqrt{\nu\left(\hat{\mu}_i\right)}}$$

where $\nu(\mu) = \text{var}(Y)$.

When $var(Y) = \mu$, eg: Poisson

$$e_i = \frac{y_i - \hat{\mu}_i}{\sqrt{\hat{\mu}_i}}$$

Definition 3.8 (Deviance Residuals)

The deviance can be written in terms of the sum of contributions from each observation $D(\boldsymbol{y}; \hat{\boldsymbol{\mu}}) = \sum_{i=1}^{N} d_i$, where $d_i = -2 \left(L\left(\hat{\mu}_i; y_i\right) - L\left(y_i; y_i\right) \right)$ is non-negative.

The i^{th} deviance residual is

$$sign (y_i - \hat{\mu}_i) \cdot \sqrt{d_i}$$

Problem: Neither Pearson nor deviance residuals are truly standardized. Their variances tend to be less than 1, and often unequal. Need a type of residual that (approximately) fixes these problems.

Definition 3.9 (Standardized Residuals)

$$r_i = \frac{y_i - \hat{\mu}_i}{\sqrt{\nu\left(\hat{\mu}_i\right)\left(1 - \hat{h}_i\right)}} = \frac{e_i}{\sqrt{1 - \hat{h}_i}}$$

where \hat{h}_i is the i^{th} leverage.

The leverages are the diagonal elements of the (estimated) hat matrix

$$\hat{\boldsymbol{H}}_{at} = \hat{\boldsymbol{W}}^{1/2} \boldsymbol{X} \left(\boldsymbol{X}^T \hat{\boldsymbol{W}} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \hat{\boldsymbol{W}}^{1/2}$$

where $\hat{m{W}}^{1/2}$ is the diagonal matrix of square roots of the diagonal elements of $\hat{m{W}}$.

Remark: A leverage measures "potential influence" of its observation — how sensitively the fit depends on it.

3.4.5 Overdispersion

Recall: In our GLMs, var(Y) is a function of $\mu = E(Y)$.

Definition 3.10 (Overdispersion)

Overdispersion is when var(Y) for the data appears larger than the fitted μ predicts.

This is common in Poisson regression, and sometimes in binomial.

(**Underdispersion**, in which var(Y) is smaller than predicted, is rare.)

Overdispersion is a type of lack of fit, and may cause a goodness of fit test to reject.

Under the GLM, let $\nu^*(\mu) = \text{var}(Y)$, the **overdispersion** is when

actual
$$var(Y) > \nu^*(\mu)$$

Possible causes of overdispersion:

- 1. heterogeneity among observations (variations in μ not captured by the model)
- 2. lurking variables (unused predictors, possibly unknown)
- 3. correlations among observations (e.g. clustering)

One remedy: quasi-likelihood

Use a quasi-likelihood having an additional dispersion parameter $\phi > 0$ that scales the variance:

$$\nu_{\phi}(\mu) = \phi \nu^*(\mu)$$

E.g., for Poisson, $\nu_{\phi}(\mu) = \phi \mu$. Then $\phi > 1$ represents overdispersion.

Under quasi-likelihood, the estimate of β (and thus μ) remains unchanged: $\hat{\beta}$ is still the MLE from the original model.

Usually ϕ is estimated as

$$\hat{\phi} = \frac{X^2}{N - p'}, \quad \text{where } X^2 = \sum_i \frac{(y_i - \hat{\mu}_i)^2}{\nu^* \left(\hat{\mu}_i\right)}$$

and p' is the effective number of parameters in β (usually p + 1).

We can use the $\hat{\phi}$ to scale the GLM asymptotic covariance of $\hat{\beta}$. In particular, the new (adjusted) $SE\left(\hat{\beta}_{j}\right)$ is just the GLM version multiplied by $\sqrt{\hat{\phi}}$. Then use the new standard errors for Wald-type inference.

Remark: Similar adjustments apply to likelihood-type and score-type inferences.

3.5 Logistic Regression

3.5.1 Parameter Interpretation

Suppose we observe 0/1 (Bernoulli) response Y and quantitative explanatory variable X. Let

$$\pi(x) = P(Y = 1 | X = x) \in (0, 1) \text{ for all } x$$

The (simple) logistic regression of Y on X uses

$$\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

i.e.

$$logit(\pi(x)) = ln\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \alpha + \beta x$$

Interpretation β

Note: odds of $Y=1=\frac{\pi(x)}{1-\pi(x)}=e^{\alpha+\beta x}$

Odds ratio for Y=1 at x+1 versus at x: $\frac{e^{\alpha+\beta(x+1)}}{e^{\alpha+\beta x}}=e^{\beta}$, which doesn't depend on x.

So β is the log-odds ratio for the effect of increasing X by one unit.

We can also show

$$\frac{d}{dx}\pi(x) = \beta\pi(x)(1 - \pi(x))$$

The **median effective level** is the $x=-\frac{\alpha}{\beta}$ (if $\beta\neq 0$) at which $\pi(x)=\frac{1}{2}$ and the $\pi(x)$ is the steepest.

 β determines nature of X - Y relationship:

- $\beta > 0$: increasing X increases prob. Y = 1

- $\beta = 0$: no relationship

- $\beta < 0$: increasing X decreases prob. Y = 1 Can show

Interpretation α

Interpreting α can be more difficult: it's the log-odds when x=0.

If a mean-centered version of X is used ($\mathbb{E}X = 0$), α is the log-odds at the sample mean of the original X.

3.5.2 Inference

Assume independently-sampled data pairs $(x_i, y_i), i = 1, ..., N$. Let $\hat{\alpha}, \hat{\beta}$ be the MLEs.

We still use three testing methods: 1. Wald; 2. Likelihood ratio; 3. Score ("Rao").

Eg: Wald z-statistic for

$$H_0: \beta = 0 \quad H_a: \beta \neq 0$$

is

$$\frac{\hat{\beta}}{SE(\hat{\beta})}$$
 $\overset{\dot{\sim}}{H_0}$ $N(0,1)$

where the square of SE comes from the estimated asymptotic covariance matrix (estimated inverse information matrix).

Similarly, we can form a Wald Cl for β : (L, U).

Then, odds ratio e^{β} for increasing x by one unit is estimated by $e^{\hat{\beta}}$ and has CI (e^L, e^U) .

Estimated logistic curve:

$$\hat{\pi}(x) = \text{logit}^{-1}(\hat{\alpha} + \hat{\beta}x)$$

with estimated slope

$$\hat{\beta}\hat{\pi}(x)(1-\hat{\pi}(x))$$

So the estimated median effective level $(x \text{ such that } \hat{\pi}(x) = 1/2) \text{ is } -\frac{\hat{\alpha}}{\hat{\beta}} \text{ if } \hat{\beta} \neq 0.$

For possible X value x_0 , we estimate $\pi(x_0) = P(Y = 1 \mid X = x_0)$ with $\hat{\pi}(x_0)$.

Note: SE (logit $\hat{\pi}$ (x_0)) is the square root of

$$\widehat{\text{var}}\left(\operatorname{logit} \hat{\pi}\left(x_{0}\right)\right) = \widehat{\text{var}}\left(\hat{\alpha} + \hat{\beta}x_{0}\right)$$
$$= \widehat{\text{var}}(\hat{\alpha}) + x_{0}^{2}\widehat{\text{var}}(\hat{\beta}) + 2x_{0}\widehat{\text{cov}}(\hat{\alpha}, \hat{\beta})$$

where the estimated variances and covariance are from the estimated asymptotic covariance matrix.

The Wald Cl

logit
$$\hat{\pi}(x_0) \pm z_{\alpha/2} SE (\operatorname{logit} \hat{\pi}(x_0))$$

can be transformed (inverse logit) to a Wald Cl for π (x_0).

3.5.3 Testing Goodness of Fit

Various strategies:

• Test an added higher-order term, e.g. test $\beta_2 = 0$ in the quadratic

$$\alpha + \beta_1 x + \beta_2 x^2$$

- If there are **replicates** (repeated x values), use **grouped** (binomial) data to test using the deviance $D(y; \hat{\mu})$ Remarks on grouping:
 - 1. MLEs and likelihood-based inference for parameters remain the same, since grouping doesn't change the kernel of the likelihood.
 - 2. The deviance changes, since the saturated model for the grouped data is different.
 - 3. But deviance-based comparisons between nested sub-models do not change, since the saturated model log-likelihood cancels out.
 - 4. A deviance-based goodness of fit test may be <u>valid</u> for the grouped data, provided the values of $\mathbb{E}(Y_i)$ and $n_i \mathbb{E}(Y_i)$ are <u>not too small</u>.
 - 5. Note: "Fitted values" from R are still the probabilities $\hat{\pi}(x_i)$ (rather than estimated means $n_i\hat{\pi}(x_i)$).