Chapter 3: Conditional Expectation

Recall that the function $X: \Omega \to \mathbb{R}^*$ is called a random variable if $X^{-1}(B) \in \mathcal{F}$ for every $B \in \mathcal{B}$, where \mathcal{B} is the Borel σ -field. Note that to define a r.v. one only requires Ω and \mathcal{F} . The pair (Ω, \mathcal{F}) is called a measurable space (A measurable space is simply the pair (set, σ -field)). Similarly, $(\mathbb{R}^*, \mathcal{B})$ is also a measurable space.

Definition 1. Given two measurable spaces $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$, we say a function $f: \Omega_1 \to \Omega_2$ is $\mathcal{F}_1/\mathcal{F}_2$ -measurable if $f^{-1}(E) \in \mathcal{F}_1$, $\forall E \in \mathcal{F}_2$.

From the above definition, one can indeed say that a r.v. X defined on the probability space (Ω, \mathcal{F}, P) is a \mathcal{F}/\mathcal{B} -measurable function from Ω to \mathbb{R}^* . Since the co-domain of X is always \mathbb{R}^* and the Borel σ -field \mathcal{B} is the de-facto σ -field, we drop \mathcal{B} from the definition and say that X is \mathcal{F} -measurable. In this chapter, when we say X is a r.v., then it implicitly means that X is an \mathcal{F} -measurable r.v.

Definition 2. A function $s: \Omega \to \mathbb{R}_+$ is called a non-negative, $\underline{\mathcal{G}}$ -measurable simple function with non-infinity coefficients if it has the form

$$s = \sum_{i=1}^{n} a_i I_{A_i}, \text{ where } A_i \in \mathcal{G}, 0 \le a_i < \infty, 1 \le i \le n \text{ and } A_i \cap A_j = \emptyset, i \ne j.$$

The above definition is similar to the definition of simple functions from Chapter 2. However, the difference is that the individual sets A_i belong to the σ -field \mathcal{G} in the above definition.

Definition 3. Given a probability space (Ω, \mathcal{F}, P) , we say \mathcal{G} is a sub σ -field if \mathcal{G} itself is a σ -field and $\mathcal{G} \subseteq \mathcal{F}$.

A few observations:

Lemma 1. Given a r.v. X (which implies that X is \mathcal{F} -measurable) and let \mathcal{G}_1 and \mathcal{G}_2 be two sub σ -fields with $\mathcal{G}_1 \subseteq \mathcal{G}_2 \subseteq \mathcal{F}$. If X is \mathcal{G}_1 -measurable, then X is also \mathcal{G}_2 -measurable.

Proof. Since X is \mathcal{G}_1 -measurable, we have $X^{-1}(E) \in \mathcal{G}_1$, $\forall E \in \mathcal{B}$. Since $\mathcal{G}_1 \subseteq \mathcal{G}_2$, we have $X^{-1}(E) \in \mathcal{G}_2$, $\forall E \in \mathcal{B}$. Therefore, X is \mathcal{G}_2 -measurable.

The converse of the above statement is not true. For example, let $A, B \subsetneq \Omega$, $A \neq B \neq \emptyset$. Consider $\mathcal{G}_2 = \{A, B, A^c, B^c, A \cap B, A \cup B, A^c \cap B, A^c \cup B, A^c \cap B^c, A \cap B^c, A \cap B^c, A \cup B^c, \Omega, \emptyset\}$ and $\mathcal{G}_1 = \{B, B^c, \Omega, \emptyset\}$. Now note that I_A is \mathcal{G}_2 -measurable, but not \mathcal{G}_1 -measurable.

Lemma 2. Let X and Y be two r.v.s which are integrable. They are \mathcal{F} -measurable by definition. Now let $\mathcal{G} \subseteq \mathcal{F}$ be a sub σ -field. Then

- 1. If X and Y are \mathcal{G} -measurable and $\mathbb{E}[X\mathbb{I}_A] = \mathbb{E}[Y\mathbb{I}_A], \forall A \in \mathcal{G}$, then X = Y a.s. The proof is similar to Theorem 13 of Chapter 2.
- 2. If X and Y are \mathcal{G} -measurable and $\mathbb{E}[X\mathbb{I}_A] \geq \mathbb{E}[Y\mathbb{I}_A], \forall A \in \mathcal{G}$, then $X \geq Y$ a.s. The proof is similar to Theorem 14 of Chapter 2.
- 3. Also, X + Y and cY (where $c \in \mathbb{R}$) are \mathcal{G} -measurable and integrable r.v.s. The proof is similar to the proofs of Proposition 3 and Proposition 6 of Chapter 2.
- 4. If X is a non-negative r.v. which is \mathcal{G} -measurable, then there exists a sequence (s_n) , s.t. $s_n \uparrow X$, where s_n are non-negative, $\underline{\mathcal{G}}$ -measurable simple functions with non-infinity coefficients. This means that for each $\omega \in \Omega$, we have $(s_n(\omega))$ is a monotonically increasing sequence and $\lim_{n \to \infty} s_n(\omega) = X(\omega)$.
- 5. If X is a \mathcal{G} -measurable r.v. (not necessarily non-negative), then X can be decomposed as follows:

$$X = X^+ - X^-.$$

where

$$X^{+}(\omega) = \begin{cases} X(\omega), & \text{if } X(\omega) \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

and

$$X^{-}(\omega) = \begin{cases} -X(\omega), & \text{if } X(\omega) < 0, \\ 0, & \text{otherwise.} \end{cases}$$
 (2)

We have similar decomposition in Section 4.3 of Chapter 2. The difference here is that X^+ and X^- in the above case are \mathcal{G} -measurable while those in Section 4.3 of Chapter 2 are \mathcal{F} -measurable.

- 6. If X is a r.v. and $\phi : \mathbb{R} \to \mathbb{R}$ is a continuous function, then $\phi(X)$ is a r.v. Specifically, if X is a \mathcal{G} -measurable r.v. and $\phi : \mathbb{R} \to \mathbb{R}$ is a continuous function, then $\phi(X)$ is a \mathcal{G} -measurable r.v.
- 7. If X is a r.v. and $\phi : \mathbb{R} \to \mathbb{R}$ is a monotonically non-decreasing function (or a monotonically non-increasing function), then $\phi(X)$ is a r.v. Specifically, if X is a G-measurable r.v. and $\phi : \mathbb{R} \to \mathbb{R}$ is a monotonically non-decreasing function (or a monotonically non-increasing function), then $\phi(X)$ is a G-measurable r.v.

Notation: We use the following notation in this chapter: For $A \in \mathcal{B}$, we let

$$\int_{A} X dP = \mathbb{E}\left[XI_{A}\right] \tag{3}$$

Therefore, with this notation, we have $\mathbb{E}[X] = \int X dP$.

Definition 4. Given a sub σ -field $\mathcal{G} \subseteq \mathcal{F}$ and a r.v. X (\mathcal{F} -measurable by definition) which is integrable (i.e., $\mathbb{E}[|X|] < \infty$), then there exists a r.v. $\mathbb{E}[X|\mathcal{G}]$ which satisfies the following:

1. $\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measurable and integrable.

2.
$$\int_{A} X dP = \int_{A} \mathbb{E}[X|\mathcal{G}] dP, \quad \forall A \in \mathcal{G}.$$
 (4)

 $\mathbb{E}[X|\mathcal{G}]$ is called the conditional expected value of X given \mathcal{G} .

For an integrable r.v. X, the proof of the existence of $\mathbb{E}[X|\mathcal{G}]$ is given in Page 445, $[BPM]^1$. A few important remarks about the above definition:

- 1. $\mathbb{E}[X|\mathcal{G}]$ is a \mathcal{G} -measurable r.v. This means that $\mathbb{E}[X|\mathcal{G}]$ is a function from Ω to \mathbb{R}^* . Further, \mathcal{G} -measurable implies that for every $E \in \mathcal{B}$, we have $\mathbb{E}[X|\mathcal{G}]^{-1}(E) \in \mathcal{G}$.
- 2. $\mathbb{E}[X|\mathcal{G}]$ is integrable, i.e., $\int |\mathbb{E}[X|\mathcal{G}]|dP < \infty$.
- 3. $\mathbb{E}[X|\mathcal{G}]$ is only defined if X is integrable.
- 4. Let Y be any other integrable, \mathcal{G} -measurable r.v. which satisfies Definition 4, then Lemma 2(1) ensures that $Y = \mathbb{E}[X|\mathcal{G}]$ a.s. This implies that there might exist different \mathcal{G} -measurable r.v.s which satisfy Definition 4, however, they all are the same in the almost sure sense.

It is very hard in general to find $\mathbb{E}[X|\mathcal{G}]$. But in certain scenarios, one can deduce it. We illustrate those scenarios in the following theorem. The only tools we need to prove these claims are Lemmas 1 and 2.

Theorem 1. Let X and Y be a r.v.s and are integrable. Then

- 1. If X is G-measurable, then $\mathbb{E}[X|G] = X$ a.s.
- 2. $\mathbb{E}[X+Y|\mathcal{G}] = \mathbb{E}[X|\mathcal{G}] + \mathbb{E}[Y|\mathcal{G}]$ a.s. (Note that $\mathbb{E}[X+Y|\mathcal{G}]$ is well defined since X+Y is integrable (follows from Proposition 6 of Chapter 2)).
- 3. For $c \in \mathbb{R}$, we have $\mathbb{E}[cX|\mathcal{G}] = c\mathbb{E}[X|\mathcal{G}]$ a.s. (Note that $\mathbb{E}[cX|\mathcal{G}]$ is well defined since cX is integrable (follows from Proposition 6 of Chapter 2)).
- 4. If $X \geq Y$ a.s., then $\mathbb{E}[X|\mathcal{G}] \geq \mathbb{E}[Y|\mathcal{G}]$ a.s.
- 5. $|\mathbb{E}[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}]$ a.s.
- 6. $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]\right] = \mathbb{E}\left[X\right]$.

Proof. 1. Since X is \mathcal{G} -measurable, X satisfies condition 1 of Definition 4. Also, X satisfies condition 2 of Definition 4 trivially. Therefore, $\mathbb{E}\left[X|\mathcal{G}\right] = X$ a.s.

¹Patrick Billingsley, Probability and Measure

2. Since $\mathbb{E}[X|\mathcal{G}]$ and $\mathbb{E}[Y|\mathcal{G}]$ are \mathcal{G} -measurable and integrable (by definition of conditional expectation), we have $\mathbb{E}[X|\mathcal{G}] + \mathbb{E}[Y|\mathcal{G}]$ is \mathcal{G} -measurable and integrable (follows from the Lemma 2(3)). Now, for $A \in \mathcal{G}$, we have

$$\begin{split} \int_A \mathbb{E} \left[X + Y | \mathcal{G} \right] dP &= \int_A \left(X + Y \right) dP = \int_A X dP + \int_A Y dP \\ &= \int_A \mathbb{E} \left[X | \mathcal{G} \right] dP + \int_A \mathbb{E} \left[Y | \mathcal{G} \right] dP \\ &= \int_A \left(\mathbb{E} \left[X | \mathcal{G} \right] + \mathbb{E} \left[Y | \mathcal{G} \right] \right) dP. \end{split}$$

Now since the above equality is true for every $A \in \mathcal{G}$ and $\mathbb{E}[X + Y | \mathcal{G}]$ and $\mathbb{E}[X | \mathcal{G}] + \mathbb{E}[Y | \mathcal{G}]$ are \mathcal{G} -measurable r.v.s, the claim follows from Lemma 2(1).

3. Since $\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measurable and integrable (by definition of conditional expectation), we have $c\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measurable and integrable (follows from the Lemma 2(3)). Now, for $A \in \mathcal{G}$, we have

$$\int_{A} \mathbb{E}\left[cX|\mathcal{G}\right] dP = \int_{A} cX dP = c \int_{A} X dP = c \int_{A} \mathbb{E}\left[X|\mathcal{G}\right] dP$$
$$= \int_{A} c\mathbb{E}\left[X|\mathcal{G}\right] dP.$$

Now since the above equality is true for every $A \in \mathcal{G}$ and $\mathbb{E}[cX|\mathcal{G}]$ and $c\mathbb{E}[X|\mathcal{G}]$ are \mathcal{G} -measurable r.v.s., the claim follows from Lemma 2(1).

4. For $A \in \mathcal{G}$, we have

$$\int_A \mathbb{E}[X|\mathcal{G}] dP = \int_A X dP \text{ (follows from the def of cond exp)}$$

$$\geq \int_A Y dP \text{ (follows since } X \geq Y \text{ a.s. and from Prop 6(3))}$$

$$= \int_A \mathbb{E}[Y|\mathcal{G}] dP \text{ (follows from the def of cond exp)}.$$

Now since the above equality is true for every $A \in \mathcal{G}$ and $\mathbb{E}[X|\mathcal{G}]$ and $\mathbb{E}[Y|\mathcal{G}]$ are \mathcal{G} -measurable r.v.s, the claim follows from Lemma 2(2).

5. Note that $X \leq |X|$. Therefore, from part (4) of the theorem, we have

$$\mathbb{E}\left[X|\mathcal{G}\right] \le \mathbb{E}\left[|X| \mid \mathcal{G}\right] \quad a.s. \tag{5}$$

Also, $-X \leq |X|$. Therefore, again from part (4) of the theorem, we have

$$\mathbb{E}[|X| | \mathcal{G}] \ge \mathbb{E}[-X|\mathcal{G}] = -\mathbb{E}[X|\mathcal{G}].$$

$$\Rightarrow \mathbb{E}[X|\mathcal{G}] \ge -\mathbb{E}[|X| | \mathcal{G}] \quad a.s.$$
(6)

Hence, from Theorem 8(4) of Chapter 1 and Eqs. (5-6), we have

$$|\mathbb{E}[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}] \ a.s.$$

6. Indeed,

$$\begin{split} \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]\right] &= \int_{\Omega} \mathbb{E}\left[X|\mathcal{G}\right] dP \text{ (by notation)} \\ &= \int_{\Omega} X dP \text{ (by the def of conditional expectation)} \\ &= \mathbb{E}\left[X\right] \text{ (by notation)}. \end{split}$$

Theorem 2. Let (X_n) be a sequence of r.v.s. and there exists an integrable r.v. Y s.t. $|X_n| \le Y$ a.s. for every n. If $\lim_{n \to \infty} X_n = X^*$ a.s., then $\lim_{n \to \infty} \mathbb{E}[X_n | \mathcal{G}] = \mathbb{E}[X^* | \mathcal{G}]$ a.s.

Proof. First, we will verify that all the terms involved in the theorem statement are well-defined. Note the since $|X_n| \leq Y$ a.s., we have $\mathbb{E}[|X_n|] \leq \mathbb{E}[Y]$ which implies that X_n is integrable. Further, since $\lim_{n\to\infty} X_n = X^*$ a.s. we have $|X^*| \leq Y$ a.s. Therefore, by the same argument as above, we have $\mathbb{E}[|X^*|] < \infty$, i.e., X^* is integrable. Thus $\mathbb{E}[X_n|\mathcal{G}]$ and $\mathbb{E}[X^*|\mathcal{G}]$ are well-defined.

For $n \in \mathbb{N}$, let's define,

$$Z_n = \sup_{k > n} |X_k - X^*|. \tag{7}$$

Note that Z_n is a r.v. (follows from Proposition 7 of Chapter 2). The intuition behind defining Z_n is as follows: Note that the goal of the proof is to show that $\lim_{n\to\infty} |\mathbb{E}[X_n|\mathcal{G}] - \mathbb{E}[X^*|\mathcal{G}]| = 0$ a.s. To achieve that we consider the following:

$$0 \leq \left| \mathbb{E} \left[X_n | \mathcal{G} \right] - \mathbb{E} \left[X^* | \mathcal{G} \right] \right| \leq \left| \mathbb{E} \left[X_n - X^* | \mathcal{G} \right] \right| \text{ (follows from Theorem 1(2))}$$
$$\leq \mathbb{E} \left[\left| X_n - X^* \right| \middle| \mathcal{G} \right] \text{ (follows from Theorem 1(5))}$$
$$\leq \mathbb{E} \left[Z_n | \mathcal{G} \right]. \tag{8}$$

Now by applying squeeze theorem to the above inequality (assuming that the limit on the right side of the inequality exists), we get

$$0 \le \lim_{n \to \infty} \left| \mathbb{E}\left[X_n | \mathcal{G} \right] - \mathbb{E}\left[X^* | \mathcal{G} \right] \right| \le \lim_{n \to \infty} \mathbb{E}\left[Z_n | \mathcal{G} \right]. \tag{9}$$

Goal: If we could show that $\lim_{n\to\infty} \mathbb{E}[Z_n|\mathcal{G}] = 0$ a.s., then we are done.

• First we will analyze the properties of the sequence (Z_n) . It is easy to verify that

$$Z_n \ge 0 \ a.s.$$
 and $Z_{n+1} \le Z_n \ a.s., \ \forall n \in \mathbb{N}.$ (10)

Therefore (Z_n) is a monotonically decreasing sequence of non-negative r.v.s. and $\lim_{n\to\infty} Z_n = 0$ a.s. (this follows since $\lim_{n\to\infty} X_n = X^*$). Also, for $n \in \mathbb{N}$, we

have

$$|Z_n| = \sup_{k > n} |X_k - X^*| \le \sup_{k > n} |X_k| + |X^*| \le 2|Y|.$$
(11)

This further implies that

$$\mathbb{E}\left[|Z_n|\right] \le 2\mathbb{E}\left[|Y|\right] < \infty. \tag{12}$$

Hence, Z_n is integrable, $\forall n$. Therefore,

$$\lim_{n\to\infty} \mathbb{E}\left[Z_n\right] = 0 \ a.s. \text{ (follows from dominated convergence theorem)}. \tag{13}$$

• Now we will analyze the properties of the sequence ($\mathbb{E}[Z_n|\mathcal{G}]$). From Eq. (12), it follows that Z_n is integrable and therefore, $\mathbb{E}[Z_n|\mathcal{G}]$ exists.

Note that from Eq. (10) and Theorem 1(4), we have

$$0 \le \mathbb{E}\left[Z_{n+1}|\mathcal{G}\right] \le \mathbb{E}\left[Z_n|\mathcal{G}\right] \ a.s., \forall n. \tag{14}$$

Therefore $(\mathbb{E}[Z_n|\mathcal{G}])$ is a monotonically decreasing sequence of non-negative r.v.s. and therefore $\lim_{n\to\infty} \mathbb{E}[Z_n|\mathcal{G}]$ exists almost surely. Let

$$Z^* = \lim_{n \to \infty} \mathbb{E}\left[Z_n | \mathcal{G}\right]. \tag{15}$$

Since $\mathbb{E}[Z_n|\mathcal{G}] \geq 0$ a.s., we have $Z^* \geq 0$ a.s. Now we will apply dominated convergence theorem (DCT) on the sequence ($\mathbb{E}[Z_n|\mathcal{G}]$). To apply that we need to satisfy the hypothesis of DCT, *i.e.*, the sequence is bounded by an integrable r.v. In our case, we have from Eq. (12) and Theorem 1(4),

$$\mathbb{E}[|Z_n| | \mathcal{G}] \le 2\mathbb{E}[|Y| | \mathcal{G}]. \tag{16}$$

Also, $2\mathbb{E}[|Y| | \mathcal{G}]$ is integrable (by the definition of condition expectation). Therefore, $2\mathbb{E}[|Y| | \mathcal{G}]$ is the required bound required for the hypothesis of DCT. Now by appealing to DCT, we obtain the following:

$$\mathbb{E}[Z^*] = \int Z^* dP \text{ (by notation)}$$

$$= \lim_{n \to \infty} \int \mathbb{E}[Z_n | \mathcal{G}] dP \text{ (by DCT on the seq. } (\mathbb{E}[Z_n | \mathcal{G}]))$$

$$= \lim_{n \to \infty} \int Z_n dP \text{ (by def. of conditional expectation)}$$

$$= \lim_{n \to \infty} \mathbb{E}[Z_n] \text{ (by notation)}$$

$$= 0 \text{ (from Eq. (13))}.$$

This implies that $Z^* = 0$ a.s. (follows from the fact that $Z^* \ge 0$ and Theorem 12 in Chapter 2 (take $A = \Omega$ in Theorem 12 of Chapter 2)). Therefore,

$$\lim_{n \to \infty} \mathbb{E}\left[Z_n | \mathcal{G}\right] = Z^* = 0 \ a.s.$$

Thus the claim follows (see goal).

Theorem 3. Let $\mathcal{G}_1, \mathcal{G}_2$ be sub σ -fields with $\mathcal{G}_1 \subseteq \mathcal{G}_2 \subseteq \mathcal{F}$. Let X be an integrable r.v.. Then

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}_1\right]|\mathcal{G}_2\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}_2\right]|\mathcal{G}_1\right] = \mathbb{E}\left[X|\mathcal{G}_2\right]. \tag{17}$$

Proof. We will first prove that $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}_1\right]|\mathcal{G}_2\right] = \mathbb{E}\left[X|\mathcal{G}_2\right]$. For that note that $\mathbb{E}\left[X|\mathcal{G}_1\right]$ is a \mathcal{G}_1 -measurable r.v. (follows from the definition of conditional expectation). Since $\mathcal{G}_1 \subseteq \mathcal{G}_2$, we have $\mathbb{E}\left[X|\mathcal{G}_1\right]$ is also \mathcal{G}_2 -measurable (follows from Lemma 1). Therefore,

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}_1\right]|\mathcal{G}_2\right] = \mathbb{E}\left[X|\mathcal{G}_2\right]. \tag{18}$$

The above claim follows from Theorem 1(1).

Now we will prove the second part that $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}_2\right]|\mathcal{G}_1\right] = \mathbb{E}\left[X|\mathcal{G}_2\right]$. For that we make use of Lemma 2(1). Now consider, for $A \in \mathcal{G}_1$, we have

$$\int_{A} \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}_{2}\right]|\mathcal{G}_{1}\right] dP = \int_{A} \mathbb{E}\left[X|\mathcal{G}_{2}\right] dP \text{ (follows from the def. of } \mathbb{E}\left[\cdot|\mathcal{G}_{1}\right]\right) \\
= \int_{A} X dP \text{ (follows since } A \in \mathcal{G}_{1} \subseteq \mathcal{G}_{2} \text{ and def. of } \mathbb{E}\left[\cdot|\mathcal{G}_{2}\right]\right) \\
= \int_{A} \mathbb{E}\left[X|\mathcal{G}_{1}\right] dP \text{ (follows since } A \in \mathcal{G}_{1} \text{ and def. of } \mathbb{E}\left[\cdot|\mathcal{G}_{1}\right]\right)$$

Since $A \in \mathcal{G}_1$ is chosen arbitrarily, the above equality holds $\forall A \in \mathcal{G}_1$. Also, $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}_2\right]|\mathcal{G}_1\right]$ and $\mathbb{E}\left[X|\mathcal{G}_1\right]$ are \mathcal{G}_1 -measurable r.v.s. Therefore, the claim follows from Lemma 2(1).

Theorem 4. Let X, Y be r.v.s. with X and XY are integrable. Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub σ -field. Then

$$\mathbb{E}\left[XY|\mathcal{G}\right] = Y\mathbb{E}\left[X|\mathcal{G}\right] \ a.s.$$

Proof. We consider different types of \mathcal{G} -measurable Y here:

Case 1: Y is a G-measurable indicator function, *i.e.*, $Y = I_B$, where $B \in G$:

Now, for $A \in \mathcal{G}$, we have $A \cap B \in \mathcal{G}$ (since $A, B \in \mathcal{G}$) and

$$\begin{split} \int_A \mathbb{E}\left[XY|\mathcal{G}\right] dP &= \int_A \mathbb{E}\left[XI_B|\mathcal{G}\right] dP \\ &= \int_A XI_B dP \text{ (follows from the def. of conditional expectation)} \\ &= \int_{A\cap B} X dP \\ &= \int_{A\cap B} \mathbb{E}\left[X|\mathcal{G}\right] dP \text{ (since } A\cap B \in \mathcal{G} \text{ and the def. of cond. exp.)} \\ &= \int_A I_B \mathbb{E}\left[X|\mathcal{G}\right] dP = \int_A Y \mathbb{E}\left[X|\mathcal{G}\right] dP. \end{split}$$

Since $A \in \mathcal{G}$ is chosen arbitrarily, the above equality follows $\forall A \in \mathcal{G}$. Now by appealing to Lemma 2(1), we have

$$\mathbb{E}\left[XY|\mathcal{G}\right] = Y\mathbb{E}\left[X|\mathcal{G}\right] \ a.s. \tag{19}$$

Case 2: Y is a \mathcal{G} -measurable non-negative simple function with non-infinity coefficients, i.e., $Y = \sum_{i=1}^{n} b_i I_{B_i}$, where $b_i \in \mathbb{R}$ and $B_i \in \mathcal{G}$:

Now for $A \in \mathcal{G}$, we have $A \cap B_i \in \mathcal{G}$, $1 \le i \le n$ (since $A, B_i \in \mathcal{G}$) and

$$\int_{A} \mathbb{E}\left[XY|\mathcal{G}\right] dP = \int_{A} \mathbb{E}\left[X\sum_{i=1}^{n} b_{i}I_{B_{i}}\middle|\mathcal{G}\right] dP = \int_{A} b_{i}\sum_{i=1}^{n} \mathbb{E}\left[XI_{B_{i}}\middle|\mathcal{G}\right] dP$$

$$= \sum_{i=1}^{n} b_{i} \int_{A} \mathbb{E}\left[XI_{B_{i}}\middle|\mathcal{G}\right] dP \text{ (follows from Theorem 1(2))}$$

$$= \sum_{i=1}^{n} b_{i} \int_{A} XI_{B_{i}} dP = \sum_{i=1}^{n} b_{i} \int_{A \cap B_{i}} X dP = \sum_{i=1}^{n} b_{i} \int_{A \cap B_{i}} \mathbb{E}\left[X\middle|\mathcal{G}\right] dP$$

$$= \sum_{i=1}^{n} b_{i} \int_{A} I_{B_{i}} \mathbb{E}\left[X\middle|\mathcal{G}\right] dP = \int_{A} \sum_{i=1}^{n} b_{i}I_{B_{i}} \mathbb{E}\left[X\middle|\mathcal{G}\right] dP$$

$$= \int_{A} \mathbb{E}\left[X\middle|\mathcal{G}\right] \sum_{i=1}^{n} b_{i}I_{B_{i}} dP = \int_{A} Y \mathbb{E}\left[X\middle|\mathcal{G}\right] dP.$$

Since $A \in \mathcal{G}$ is chosen arbitrarily, the above equality follows $\forall A \in \mathcal{G}$. Now by appealing to Lemma 2(1), we have

$$\mathbb{E}\left[XY|\mathcal{G}\right] = Y\mathbb{E}\left[X|\mathcal{G}\right] \ a.s. \tag{20}$$

Case 3: Y is a \mathcal{G} -measurable, non-negative r.v.:

We make use of Theorem 2 and Case 2 to prove this case.

Since $Y \geq 0$, there exists a (s_n) , s.t. $s_n \uparrow Y$, where s_n are non-negative, $\underline{\mathcal{G}}$ -measurable simple functions with non-infinity coefficients (Lemma 2(4)). Since $(s_n) \uparrow Y$, we have $\lim_{n \to \infty} X s_n = XY$ and $|X s_n| \leq |XY|$. Therefore, from Theorem 2, we have

$$\lim_{n \to \infty} \mathbb{E}\left[X s_n | \mathcal{G}\right] = \mathbb{E}\left[X Y | \mathcal{G}\right]. \tag{21}$$

Now from Case 2, we have

$$\mathbb{E}\left[Xs_n|\mathcal{G}\right] = s_n\mathbb{E}\left[X|\mathcal{G}\right]. \tag{22}$$

From Eqs (21-22) and the fact that $s_n \uparrow Y$, we have

$$\mathbb{E}\left[XY|\mathcal{G}\right] = Y\mathbb{E}\left[X|\mathcal{G}\right]. \tag{23}$$

Case 4: Y is a \mathcal{G} -measurable r.v. (not necessarily non-negative):

Since Y is a \mathcal{G} -measurable r.v., we have the following decomposition for Y (Lemma 2(5)):

$$Y = Y^{+} - Y^{-} \text{ and } XY = XY^{+} - XY^{-} \text{ a.s.}$$
 (24)

Note that Y^+ and Y^- are non-negative, \mathcal{G} -measurable r.v.s and $|XY^+| \leq |XY|$ and $|XY^-| \leq |XY|$ which implies that XY^+ and XY^- are integrable. Hence, by Case 3, we have

$$\mathbb{E}\left[XY^{+}|\mathcal{G}\right] = Y^{+}\mathbb{E}\left[X|\mathcal{G}\right] \text{ and } \mathbb{E}\left[XY^{-}|\mathcal{G}\right] = Y^{-}\mathbb{E}\left[X|\mathcal{G}\right]. \tag{25}$$

Therefore,

$$\begin{split} \mathbb{E}\left[XY|\mathcal{G}\right] &= \mathbb{E}\left[XY^{+}|\mathcal{G}\right] - \mathbb{E}\left[XY^{-}|\mathcal{G}\right] \\ &= Y^{+}\mathbb{E}\left[X|\mathcal{G}\right] - Y^{-}\mathbb{E}\left[X|\mathcal{G}\right] \\ &= (Y^{+} - Y^{-})\mathbb{E}\left[X|\mathcal{G}\right] \\ &= Y\mathbb{E}\left[X|\mathcal{G}\right]. \end{split}$$

Lemma 3. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function. Then ϕ is continuous and right hand derivative of ϕ exists for every $x \in \mathbb{R}$. Further, the right hand derivative of ϕ (denoted as ϕ'_+) is a monotonically non-decreasing function of x. Also, ϕ satisfies

$$\phi(x) \ge \phi(\bar{x}) + \phi'_{\perp}(\bar{x})(x - \bar{x}) \tag{26}$$

Lemma 4. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a continuous function (or) a monotonically nondecreasing function. Then ϕ takes bounded sets to bounded sets, i.e., if $A \subset \mathbb{R}$ is bounded (there exists $0 < K < \infty$ s.t. $|x| \le K$, $\forall x \in A$), then $\phi(A)$ is also bounded, where $\phi(A) = \{\phi(x) : x \in A\}$, i.e., there exists a K' > 0 s.t. $|\phi(x)| \le K'$, $\forall x \in A$ or simply one can write as $|\phi(A)| \le K'$.

Lemma 5. If $\phi : \mathbb{R} \to \mathbb{R}$ is a continuous function and $\lim_{n \to \infty} x_n = x$, then $\lim_{n \to \infty} \phi(x_n) = \phi(x)$.

Proof. Case 1: $\mathbb{E}[X|\mathcal{G}]$ is bounded a.s.:

 $\mathbb{E}[X|\mathcal{G}]$ is bounded a.s. means that there exists a $0 \leq K < \infty$ and $N \in \mathcal{G}$ s.t. $|\mathbb{E}[X|\mathcal{G}](\omega)| \leq K$, $\forall \omega \in N$ and $P(N^c) = 0$ (follows from the definition of almost surely). This has a few implications:

1. Since ϕ is continuous and [-K,K] is a bounded set, there exists a $0 \le K' < \infty$ s.t. $|\phi([-K,K])| \le K'$ (follows from Lemma 4). Now since $|\mathbb{E}[X|\mathcal{G}](\omega)| \le K$, $\forall \omega \in N$, we have $\mathbb{E}[X|\mathcal{G}](\omega) \in [-K,K]$, $\forall \omega \in N$. Therefore, $|\phi(\mathbb{E}[X|\mathcal{G}](\omega))| \le K'$, $\forall \omega \in N$ with $P(N^c) = 0$. This means that $|\phi(\mathbb{E}[X|\mathcal{G}])| \le K'$ a.s. which further implies that $\mathbb{E}[|\phi(\mathbb{E}[X|\mathcal{G}])|] \le K'$. Thus $\phi(\mathbb{E}[X|\mathcal{G}])$ is integrable.

2. Since ϕ'_{+} is a monotonically non-decreasing function, one can similarly show that ϕ'_{+} ($\mathbb{E}[X|\mathcal{G}]$) is integrable.

Now observe that since ϕ is a convex function, we obtain the following from Lemma 3:

$$\phi(\mathbb{E}[X|\mathcal{G}]) + \phi'_{+}(\mathbb{E}[X|\mathcal{G}])(X - \mathbb{E}[X|\mathcal{G}) \le \phi(X). \tag{27}$$

First we will state some observations:

- (F1) $\phi(\mathbb{E}[X|\mathcal{G}])$ is \mathcal{G} -measurable (follows from Lemma 1(6)) and integrable (from above observation). Therefore, $\mathbb{E}\left[\phi(\mathbb{E}[X|\mathcal{G}])\middle|\mathcal{G}\right] = \phi(\mathbb{E}[X|\mathcal{G}])$ (follows from Theorem 1(1)).
- (F2) $\phi'_{+}(\mathbb{E}[X|\mathcal{G}])$ is \mathcal{G} -measurable (follows from Lemma 1(7)) and integrable (from above observation).

Now, by applying $\mathbb{E}[\cdot|\mathcal{G}]$ on both sides of the inequality (27) (inequality still holds after applying by Theorem 1(4)), we get

$$\mathbb{E}\left[\phi(\mathbb{E}\left[X|\mathcal{G}\right]) + \phi'_{+}(\mathbb{E}\left[X|\mathcal{G}\right])(X - \mathbb{E}\left[X|\mathcal{G}\right) \middle| \mathcal{G}\right] \leq \mathbb{E}\left[\phi(X)|\mathcal{G}\right]$$

$$\Rightarrow \underbrace{\mathbb{E}\left[\phi(\mathbb{E}\left[X|\mathcal{G}\right])\middle| \mathcal{G}\right]}_{||(F1)} + \underbrace{\mathbb{E}\left[\phi'_{+}(\mathbb{E}\left[X|\mathcal{G}\right])(X - \mathbb{E}\left[X|\mathcal{G}\right) \middle| \mathcal{G}\right]}_{||(F2) \text{ and Theorem 4}} \leq \mathbb{E}\left[\phi(X)|\mathcal{G}\right]$$

$$\Rightarrow \phi(\mathbb{E}\left[X|\mathcal{G}\right]) + \phi'_{+}(\mathbb{E}\left[X|\mathcal{G}\right])\underbrace{\mathbb{E}\left[(X - \mathbb{E}\left[X|\mathcal{G}\right) \middle| \mathcal{G}\right]}_{= 0} \leq \mathbb{E}\left[\phi(X)|\mathcal{G}\right]$$

$$\Rightarrow \phi(\mathbb{E}\left[X|\mathcal{G}\right]) \leq \mathbb{E}\left[\phi(X)|\mathcal{G}\right]. \tag{28}$$

Case 2: $\mathbb{E}[X|\mathcal{G}]$ is not necessarily bounded:

Let $G_n = \{ \omega \in \Omega : |\mathbb{E}[X|\mathcal{G}](\omega)| \leq n \}$. Since $\mathbb{E}[X|\mathcal{G}]$ is a \mathcal{G} -measurable r.v., we have $G_n \in \mathcal{G}$ and therefore, I_{G_n} is \mathcal{G} -measurable. So,

$$\left| \mathbb{E}\left[I_{G_n} X | \mathcal{G} \right] \right| = \left| I_{G_n} \mathbb{E}\left[X | \mathcal{G} \right] \right| \text{ (follows from Theorem 4)}$$

$$\leq n \text{ (follows from the definition of } G_n \text{)}. \tag{29}$$

Hence, $\mathbb{E}\left[I_{G_n}X|\mathcal{G}\right]$ is a bounded r.v. Therefore, by Case 1, we have

$$\phi\left(\mathbb{E}\left[I_{G_n}X|\mathcal{G}\right]\right) \le \mathbb{E}\left[\phi(I_{G_n}X)|\mathcal{G}\right]. \tag{30}$$

Since $\mathbb{E}[I_{G_n}X|\mathcal{G}] = I_{G_n}\mathbb{E}[X|\mathcal{G}]$ (follows from Theorem 4), we obtain from Eq. (30) the following:

$$\phi\left(I_{G_n}\mathbb{E}\left[X|\mathcal{G}\right]\right) \leq \mathbb{E}\left[\phi(I_{G_n}X)|\mathcal{G}\right]$$

$$= \mathbb{E}\left[I_{G_n}\phi(X) + I_{G_n^c}\phi(0)|\mathcal{G}\right]$$

$$= I_{G_n}\mathbb{E}\left[\phi(X)|\mathcal{G}\right] + I_{G_n^c}\phi(0). \tag{31}$$

Now, note that since $\mathbb{E}[X|\mathcal{G}]$ is integrable, we have $\left|\mathbb{E}[X|\mathcal{G}]\right| < \infty$ a.s. (follows from Theorem 10 of Chapter 2). Hence, $\lim_{n\to\infty}I_{G_n}\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X|\mathcal{G}]$ a.s. Therefore,

$$\lim_{n \to \infty} \phi\left(I_{G_n} \mathbb{E}\left[X|\mathcal{G}\right]\right) = \phi\left(\mathbb{E}\left[X|\mathcal{G}\right]\right) \ a.s. \tag{32}$$

The above equality follows from Lemma 5.

Also, since $\left|\mathbb{E}\left[X|\mathcal{G}\right]\right|<\infty$ a.s., we have $\lim_{n\to\infty}I_{G_n}=I_{\Omega}$ a.s. and therefore $\lim_{n\to\infty}I_{G_n^c}=I_{\emptyset}$ a.s. (\emptyset is the empty set). Hence,

$$\lim_{n \to \infty} I_{G_n} \mathbb{E}\left[\phi(X)|\mathcal{G}\right] = \mathbb{E}\left[\phi(X)|\mathcal{G}\right] \text{ a.s. and } \lim_{n \to \infty} I_{G_n^c} \phi(0) = 0 \text{ a.s.}$$
(33)

Now we can apply $\lim_{n\to\infty}$ to both sides of the inequality of Eq. (31) since the individual limits exist (Eqs. (32-33)). Thus, by applying $\lim_{n\to\infty}$ to both sides of the inequality of Eq. (31), we obtain

$$\phi\left(\mathbb{E}\left[X|\mathcal{G}\right]\right) = \lim_{n \to \infty} \phi\left(I_{G_n} \mathbb{E}\left[X|\mathcal{G}\right]\right) \le \lim_{n \to \infty} \left(I_{G_n} \mathbb{E}\left[\phi(X)|\mathcal{G}\right] + I_{G_n^c} \phi(0)\right)$$
$$= \lim_{n \to \infty} I_{G_n} \mathbb{E}\left[\phi(X)|\mathcal{G}\right] + \lim_{n \to \infty} I_{G_n^c} \phi(0)$$
$$= \mathbb{E}\left[\phi(X)|\mathcal{G}\right]$$