Elliptic Curve Cryptography in Bitcoin

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

August 8, 2019

Group Theory Recap

Definition

A set G with a binary operation \star defined on it is called a group if

Definition

A set G with a binary operation \star defined on it is called a group if

• the operation \star is associative,

Definition

A set G with a binary operation \star defined on it is called a group if

- the operation * is associative,
- there exists an identity element $e \in G$ such that for any $a \in G$

$$a \star e = e \star a = a$$
,

Definition

A set G with a binary operation \star defined on it is called a group if

- the operation * is associative,
- there exists an identity element $e \in G$ such that for any $a \in G$

$$a \star e = e \star a = a$$
,

• for every $a \in G$, there exists an element $b \in G$ such that

$$a \star b = b \star a = e$$
.

Definition

A set G with a binary operation \star defined on it is called a group if

- the operation * is associative,
- there exists an identity element $e \in G$ such that for any $a \in G$

$$a \star e = e \star a = a$$
,

• for every $a \in G$, there exists an element $b \in G$ such that

$$a \star b = b \star a = e$$
.

Example

• Modulo n addition on $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$

Definition

A finite group is a group with a finite number of elements.

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g, g \star g, g \star g \star g, \ldots\}$$

for some particular element $g \in G$, which is called a generator of G.

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g, g \star g, g \star g \star g, \ldots\}$$

for some particular element $g \in G$, which is called a generator of G.

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g, g \star g, g \star g \star g, \ldots\}$$

for some particular element $g \in G$, which is called a generator of G.

Examples

• For an integer $n \ge 1$, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g, g \star g, g \star g \star g, \ldots\}$$

for some particular element $g \in G$, which is called a generator of G.

- For an integer $n \ge 1$, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$
 - Operation is addition modulo n

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g, g \star g, g \star g \star g, \ldots\}$$

for some particular element $g \in G$, which is called a generator of G.

- For an integer $n \ge 1$, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$
 - Operation is addition modulo n
 - \mathbb{Z}_n is cyclic with generator 1

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g, g \star g, g \star g \star g, \ldots\}$$

for some particular element $g \in G$, which is called a generator of G.

- For an integer $n \ge 1$, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$
 - Operation is addition modulo n
 - \mathbb{Z}_n is cyclic with generator 1
- For an integer $n \ge 2$, $\mathbb{Z}_n^* = \{i \in \mathbb{Z}_n \setminus \{0\} \mid \gcd(i, n) = 1\}$

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g, g \star g, g \star g \star g, \ldots\}$$

for some particular element $g \in G$, which is called a generator of G.

- For an integer $n \ge 1$, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$
 - Operation is addition modulo n
 - \mathbb{Z}_n is cyclic with generator 1
- For an integer $n \ge 2$, $\mathbb{Z}_n^* = \{i \in \mathbb{Z}_n \setminus \{0\} \mid \gcd(i, n) = 1\}$
 - Operation is multiplication modulo n

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g, g \star g, g \star g \star g, \ldots\}$$

for some particular element $g \in G$, which is called a generator of G.

- For an integer $n \ge 1$, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$
 - Operation is addition modulo n
 - \mathbb{Z}_n is cyclic with generator 1
- For an integer $n \ge 2$, $\mathbb{Z}_n^* = \{i \in \mathbb{Z}_n \setminus \{0\} \mid \gcd(i, n) = 1\}$
 - Operation is multiplication modulo n
 - \mathbb{Z}_n^* is cyclic if n is a prime

 Definition: If G is a group, a nonempty subset H ⊆ G is a subgroup of G if H itself forms a group under the same operation associated with G.

- Definition: If G is a group, a nonempty subset H ⊆ G is a subgroup of G if H itself forms a group under the same operation associated with G.
- Example: Consider the subgroups of $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}.$

- Definition: If G is a group, a nonempty subset H ⊆ G is a subgroup of G if H itself forms a group under the same operation associated with G.
- Example: Consider the subgroups of $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}.$
- Lagrange's Theorem: If H is a subgroup of a finite group G, then |H| divides |G|.

- Definition: If G is a group, a nonempty subset H ⊆ G is a subgroup of G if H itself forms a group under the same operation associated with G.
- Example: Consider the subgroups of $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}.$
- **Lagrange's Theorem:** If *H* is a subgroup of a finite group *G*, then |*H*| divides |*G*|.
- Example: Check the cardinalities of the subgroups of Z₆.

- Definition: If G is a group, a nonempty subset H ⊆ G is a subgroup of G if H itself forms a group under the same operation associated with G.
- Example: Consider the subgroups of $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}.$
- Lagrange's Theorem: If H is a subgroup of a finite group G, then |H| divides |G|.
- Example: Check the cardinalities of the subgroups of Z₆.
- **Corollary:** If a group has prime order, then every non-identity element is a generator.

Elliptic Curves Over Real Numbers

Elliptic Curves over Reals

The set E of real solutions (x, y) of

$$y^2 = x^3 + ax + b$$

along with a "point of infinity" $\mathcal{O}.$ Here $4a^3+27b^2\neq 0.$

Elliptic Curves over Reals

The set E of real solutions (x, y) of

$$y^2 = x^3 + ax + b$$

along with a "point of infinity" \mathcal{O} . Here $4a^3 + 27b^2 \neq 0$.

Point Addition (1/3)

$$P = (x_1, y_1), Q = (x_2, y_2)$$

 $x_1 \neq x_2$
 $P + Q = R$

Point Addition (1/3)

Point Addition (2/3)

$$P = (x_1, y_1), Q = (x_2, y_2)$$

 $x_1 = x_2, y_1 = -y_2$
 $P + Q = \mathcal{O}$

Point Addition (3/3)

$$P = (x_1, y_1), Q = (x_2, y_2)$$

 $x_1 = x_2, y_1 = y_2 \neq 0$
 $P + Q = R$

Point Addition (3/3)

Elliptic Curves Over Finite Fields

Fields

Definition

A set F together with two binary operations + and * is a field if

Fields

Definition

A set F together with two binary operations + and * is a field if

F is an abelian group under + whose identity is called 0

Fields

Definition

A set F together with two binary operations + and * is a field if

- F is an abelian group under + whose identity is called 0
- $F^* = F \setminus \{0\}$ is an abelian group under * whose identity is called 1

Fields

Definition

A set F together with two binary operations + and * is a field if

- F is an abelian group under + whose identity is called 0
- $F^* = F \setminus \{0\}$ is an abelian group under * whose identity is called 1
- For any $a, b, c \in F$

$$a*(b+c)=a*b+a*c$$

Fields

Definition

A set F together with two binary operations + and * is a field if

- F is an abelian group under + whose identity is called 0
- $F^* = F \setminus \{0\}$ is an abelian group under * whose identity is called 1
- For any $a, b, c \in F$

$$a*(b+c)=a*b+a*c$$

Definition

A finite field is a field with a finite cardinality.

• $\mathbb{F}_{p} = \{0, 1, 2, \dots, p-1\}$ where p is prime

- $\mathbb{F}_p = \{0, 1, 2, ..., p-1\}$ where p is prime
- + and * defined on \mathbb{F}_p as

$$x + y = x + y \mod p$$
,
 $x * y = xy \mod p$.

- $\mathbb{F}_p = \{0, 1, 2, ..., p-1\}$ where p is prime
- + and * defined on \mathbb{F}_p as

$$x + y = x + y \mod p$$
,
 $x * y = xy \mod p$.

• F₅

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

*	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

- $\mathbb{F}_p = \{0, 1, 2, \dots, p-1\}$ where *p* is prime
- + and * defined on \mathbb{F}_p as

$$x + y = x + y \mod p$$
,
 $x * y = xy \mod p$.

• F₅

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

*	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

In fields, division is multiplication by multiplicative inverse

$$\frac{x}{y} = x * y^{-1}$$

Definition

Let *F* be a field with multiplicative identity 1.

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\cdots+1+1}_{p \text{ times}}=0$$

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\cdots+1+1}_{p \text{ times}} = 0$$

Examples

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\cdots+1+1}_{p \text{ times}}=0$$

Examples

F₂ has characteristic 2

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\cdots+1+1}_{p \text{ times}}=0$$

Examples

- F₂ has characteristic 2
- F₅ has characteristic 5

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\cdots+1+1}_{p \text{ times}}=0$$

Examples

- \mathbb{F}_2 has characteristic 2
- F₅ has characteristic 5
- R has characteristic 0

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\cdots+1+1}_{p \text{ times}}=0$$

Examples

- \mathbb{F}_2 has characteristic 2
- F₅ has characteristic 5
- R has characteristic 0

Theorem

The characteristic of a finite field is prime

Elliptic Curves over Finite Fields

For char(F) \neq 2, 3, the set E of solutions (x, y) in \mathbb{F}^2 of

$$y^2 = x^3 + ax + b$$

along with a "point of infinity" \mathcal{O} . Here $4a^3 + 27b^2 \neq 0$.

Elliptic Curves over Finite Fields

For char(F) \neq 2, 3, the set E of solutions (x, y) in \mathbb{F}^2 of

$$y^2 = x^3 + ax + b$$

along with a "point of infinity" \mathcal{O} . Here $4a^3 + 27b^2 \neq 0$.

$$y^2 = x^3 + 10x + 2$$
 over \mathbb{F}_{11}

$$y^2 = x^3 + 9x$$
 over \mathbb{F}_{11}

Point addition formulas derived for reals are used

- Point addition formulas derived for reals are used
- Example: $y^2 = x^3 + 10x + 2$ over \mathbb{F}_{11}

- Point addition formulas derived for reals are used
- Example: $y^2 = x^3 + 10x + 2$ over \mathbb{F}_{11}

+	0	(3,2)	(3,9)	(5, 1)	(5, 10)	(6,5)	(6,6)	(8,0)
0	0	(3,2)	(3,9)	(5, 1)	(5, 10)	(6,5)	(6,6)	(8,0)
(3,2)	(3, 2)	(6, 6)	\mathcal{O}	(6, 5)	(8,0)	(3, 9)	(5, 10)	(5,1)
(3,9)	(3, 9)	0	(6, 5)	(8,0)	(6,6)	(5,1)	(3, 2)	(5, 10)
(5, 1)	(5, 1)	(6,5)	(8,0)	(6, 6)	\mathcal{O}	(5, 10)	(3, 9)	(3, 2)
(5, 10)	(5, 10)	(8,0)	(6,6)	0	(6, 5)	(3, 2)	(5,1)	(3,9)
(6,5)	(6,5)	(3,9)	(5,1)	(5, 10)	(3, 2)	(8,0)	0	(6,6)
(6,6)	(6, 6)	(5, 10)	(3, 2)	(3,9)	(5,1)	0	(8,0)	(6,5)
(8,0)	(8,0)	(5,1)	(5, 10)	(3, 2)	(3,9)	(6, 6)	(6,5)	O

- Point addition formulas derived for reals are used
- Example: $y^2 = x^3 + 10x + 2$ over \mathbb{F}_{11}

+	0	(3,2)	(3,9)	(5,1)	(5, 10)	(6,5)	(6,6)	(8,0)
0	0	(3,2)	(3,9)	(5, 1)	(5, 10)	(6,5)	(6,6)	(8,0)
(3, 2)	(3, 2)	(6, 6)	\mathcal{O}	(6, 5)	(8,0)	(3, 9)	(5, 10)	(5,1)
(3,9)	(3,9)	\mathcal{O}	(6, 5)	(8,0)	(6, 6)	(5,1)	(3, 2)	(5, 10)
(5, 1)	(5, 1)	(6,5)	(8,0)	(6, 6)	\mathcal{O}	(5, 10)	(3, 9)	(3, 2)
(5, 10)	(5, 10)	(8,0)	(6,6)	0	(6,5)	(3,2)	(5,1)	(3,9)
(6,5)	(6,5)	(3,9)	(5,1)	(5, 10)	(3, 2)	(8,0)	0	(6,6)
(6,6)	(6, 6)	(5, 10)	(3, 2)	(3,9)	(5,1)	0	(8,0)	(6,5)
(8,0)	(8,0)	(5,1)	(5, 10)	(3, 2)	(3,9)	(6,6)	(6,5)	0

• The set $E \cup \mathcal{O}$ is closed under addition

- Point addition formulas derived for reals are used
- Example: $y^2 = x^3 + 10x + 2$ over \mathbb{F}_{11}

+	0	(3,2)	(3,9)	(5,1)	(5, 10)	(6,5)	(6,6)	(8,0)
0	0	(3,2)	(3,9)	(5, 1)	(5, 10)	(6,5)	(6,6)	(8,0)
(3, 2)	(3, 2)	(6, 6)	\mathcal{O}	(6, 5)	(8,0)	(3, 9)	(5, 10)	(5,1)
(3,9)	(3, 9)	0	(6, 5)	(8,0)	(6,6)	(5,1)	(3, 2)	(5, 10)
(5, 1)	(5, 1)	(6,5)	(8,0)	(6,6)	0	(5, 10)	(3,9)	(3,2)
(5, 10)	(5, 10)	(8,0)	(6,6)	0	(6,5)	(3, 2)	(5,1)	(3,9)
(6,5)	(6,5)	(3,9)	(5,1)	(5, 10)	(3, 2)	(8,0)	0	(6,6)
(6,6)	(6, 6)	(5, 10)	(3, 2)	(3,9)	(5,1)	0	(8,0)	(6,5)
(8,0)	(8,0)	(5,1)	(5, 10)	(3, 2)	(3,9)	(6,6)	(6,5)	O

- The set $E \cup \mathcal{O}$ is closed under addition
- In fact, its a group

•
$$y^2 = x^3 + 7$$
 over \mathbb{F}_p where

$$p = \underbrace{\text{FFFFFFF}}_{48 \text{ hexadecimal digits}} \text{ FFFFFFFE} \text{ FFFFFC2F}$$

$$= 2^{256} - 2^{32} - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1$$

• $y^2 = x^3 + 7$ over \mathbb{F}_p where

$$p = \underbrace{\text{FFFFFFF}}_{48 \text{ hexadecimal digits}} \text{ FFFFFFFE FFFFFC2F}$$

$$= 2^{256} - 2^{32} - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1$$

• $E \cup \mathcal{O}$ has cardinality n where

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF BAAEDCE6 AF48A03B BFD25E8C D0364141

• $y^2 = x^3 + 7$ over \mathbb{F}_p where

$$p = \underbrace{\text{FFFFFFF}}_{\textbf{48 hexadecimal digits}} \text{ FFFFFFFE FFFFFC2F}$$

$$= 2^{256} - 2^{32} - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1$$

• $E \cup \mathcal{O}$ has cardinality *n* where

• Private key is $k \in \{1, 2, ..., n-1\}$

• $y^2 = x^3 + 7$ over \mathbb{F}_p where

$$\rho = \underbrace{\text{FFFFFFF}}_{\textbf{48 hexadecimal digits}} \text{ FFFFFFFE FFFFFC2F}$$

$$= 2^{256} - 2^{32} - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1$$

- $E \cup \mathcal{O}$ has cardinality n where
 - n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF BAAEDCE6 AF48A03B BFD25E8C D0364141
- Private key is $k \in \{1, 2, ..., n-1\}$
- Public key is kP where P = (x, y)
 - x = 79BE667E F9DCBBAC 55A06295 CE870B07
 029BFCDB 2DCE28D9 59F2815B 16F81798,
 y = 483ADA77 26A3C465 5DA4FBFC 0E1108A8
 FD17B448 A6855419 9C47D08F FB10D4B8.

• Point multiplication: kP calculation from k and P

- Point multiplication: kP calculation from k and P
- Let $k = k_0 + 2k_1 + 2^2k_2 + \cdots + 2^mk_m$ where $k_i \in \{0, 1\}$

- Point multiplication: kP calculation from k and P
- Let $k = k_0 + 2k_1 + 2^2k_2 + \cdots + 2^mk_m$ where $k_i \in \{0, 1\}$
- Double-and-Add algorithm

- Point multiplication: kP calculation from k and P
- Let $k = k_0 + 2k_1 + 2^2k_2 + \cdots + 2^mk_m$ where $k_i \in \{0, 1\}$
- Double-and-Add algorithm
 - Set N = P and $Q = \mathcal{O}$

- Point multiplication: kP calculation from k and P
- Let $k = k_0 + 2k_1 + 2^2k_2 + \cdots + 2^mk_m$ where $k_i \in \{0, 1\}$
- Double-and-Add algorithm
 - Set N = P and $Q = \mathcal{O}$
 - for i = 0, 1, ..., m
 - if $k_i = 1$, set $Q \leftarrow Q + N$
 - Set N ← 2N
 - Return Q

Why ECC?

Why ECC?

• For elliptic curves $E(\mathbb{F}_q)$, best DL algorithms are exponential in $n = \lceil \log_2 q \rceil$

$$C_{EC}(n)=2^{n/2}$$

 For elliptic curves E(F_q), best DL algorithms are exponential in n = [log₂ q]

$$C_{EC}(n)=2^{n/2}$$

• In \mathbb{F}_p^* , best DL algorithms are sub-exponential in $N = \lceil \log_2 p \rceil$

 For elliptic curves E(F_q), best DL algorithms are exponential in n = [log₂ q]

$$C_{EC}(n)=2^{n/2}$$

- In \mathbb{F}_p^* , best DL algorithms are sub-exponential in $N = \lceil \log_2 p \rceil$
 - $L_p(v,c) = \exp\left(c(\log p)^v(\log\log p)^{(1-v)}\right)$ with 0 < v < 1

• For elliptic curves $E(\mathbb{F}_q)$, best DL algorithms are exponential in $n = \lceil \log_2 q \rceil$

$$C_{EC}(n)=2^{n/2}$$

- In \mathbb{F}_p^* , best DL algorithms are sub-exponential in $N = \lceil \log_2 p \rceil$
 - $L_p(v,c) = \exp\left(c(\log p)^v(\log\log p)^{(1-v)}\right)$ with 0 < v < 1
- Using GNFS method, DLs can be found in $L_p(1/3, c_0)$ in \mathbb{F}_p^*

$$C_{CONV}(N) = \exp\left(c_0 N^{1/3} \left(\log\left(N\log2\right)\right)^{2/3}\right)$$

• For elliptic curves $E(\mathbb{F}_q)$, best DL algorithms are exponential in $n = \lceil \log_2 q \rceil$

$$C_{EC}(n)=2^{n/2}$$

- In \mathbb{F}_{ρ}^* , best DL algorithms are sub-exponential in $N = \lceil \log_2 \rho \rceil$
 - $L_p(v,c) = \exp\left(c(\log p)^v(\log\log p)^{(1-v)}\right)$ with 0 < v < 1
- Using GNFS method, DLs can be found in $L_p(1/3, c_0)$ in \mathbb{F}_p^*

$$C_{CONV}(N) = \exp\left(c_0 N^{1/3} \left(\log\left(N\log2\right)\right)^{2/3}\right)$$

Best algorithms for factorization have same asymptotic complexity

 For elliptic curves E(F_q), best DL algorithms are exponential in n = ⌈log₂ q⌉

$$C_{EC}(n)=2^{n/2}$$

- In \mathbb{F}_p^* , best DL algorithms are sub-exponential in $N = \lceil \log_2 p \rceil$
 - $L_p(v,c) = \exp\left(c(\log p)^v(\log\log p)^{(1-v)}\right)$ with 0 < v < 1
- Using GNFS method, DLs can be found in $L_p(1/3, c_0)$ in \mathbb{F}_p^*

$$C_{CONV}(N) = \exp\left(c_0 N^{1/3} \left(\log\left(N\log2\right)\right)^{2/3}\right)$$

- Best algorithms for factorization have same asymptotic complexity
- · For similar security levels

$$n = \beta N^{1/3} (\log (N \log 2))^{2/3}$$

 For elliptic curves E(F_q), best DL algorithms are exponential in n = ⌈log₂ q⌉

$$C_{EC}(n)=2^{n/2}$$

- In \mathbb{F}_p^* , best DL algorithms are sub-exponential in $N = \lceil \log_2 p \rceil$
 - $L_p(v,c) = \exp\left(c(\log p)^v(\log\log p)^{(1-v)}\right)$ with 0 < v < 1
- Using GNFS method, DLs can be found in $L_p(1/3, c_0)$ in \mathbb{F}_p^*

$$C_{CONV}(N) = \exp\left(c_0 N^{1/3} \left(\log\left(N\log 2\right)\right)^{2/3}\right)$$

- Best algorithms for factorization have same asymptotic complexity
- · For similar security levels

$$n = \beta N^{1/3} (\log (N \log 2))^{2/3}$$

 Key size in ECC grows slightly faster than cube root of conventional key size

 For elliptic curves E(F_q), best DL algorithms are exponential in n = ⌈log₂ q⌉

$$C_{EC}(n)=2^{n/2}$$

- In \mathbb{F}_p^* , best DL algorithms are sub-exponential in $N = \lceil \log_2 p \rceil$
 - $L_p(v,c) = \exp\left(c(\log p)^v(\log\log p)^{(1-v)}\right)$ with 0 < v < 1
- Using GNFS method, DLs can be found in $L_p(1/3, c_0)$ in \mathbb{F}_p^*

$$C_{CONV}(N) = \exp\left(c_0 N^{1/3} \left(\log\left(N\log 2\right)\right)^{2/3}\right)$$

- Best algorithms for factorization have same asymptotic complexity
- For similar security levels

$$n = \beta N^{1/3} (\log (N \log 2))^{2/3}$$

- Key size in ECC grows slightly faster than cube root of conventional key size
 - 173 bits instead of 1024 bits, 373 bits instead of 4096 bits

Digital signatures prove that the signer knows private key

- Digital signatures prove that the signer knows private key
- · Interactive protocols are not feasible in practice

- Digital signatures prove that the signer knows private key
- Interactive protocols are not feasible in practice

- Digital signatures prove that the signer knows private key
- Interactive protocols are not feasible in practice

· Based on the Schnorr identification scheme

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
- Signer:

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
- Signer:
 - 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
- Signer:
 - 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
 - 2. Sets $I := g^k$

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
- Signer:
 - 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
 - 2. Sets $I := g^k$
 - 3. Computes r := H(I, m)

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
- Signer:
 - 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
 - 2. Sets $I := g^k$
 - 3. Computes r := H(I, m)
 - 4. Computes $s = rx + k \mod q$

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
- Signer:
 - 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
 - 2. Sets $I := g^k$
 - 3. Computes r := H(I, m)
 - 4. Computes $s = rx + k \mod q$
 - 5. Outputs (r, s) as signature for m

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
- Signer:
 - 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
 - 2. Sets $I := g^k$
 - 3. Computes r := H(I, m)
 - 4. Computes $s = rx + k \mod q$
 - 5. Outputs (r, s) as signature for m
- Verifier

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
- Signer:
 - 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
 - 2. Sets $I := g^k$
 - 3. Computes r := H(I, m)
 - 4. Computes $s = rx + k \mod q$
 - 5. Outputs (r, s) as signature for m

Verifier

1. On input m and (r, s)

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$

Signer:

- 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
- 2. Sets $I := g^k$
- 3. Computes r := H(I, m)
- 4. Computes $s = rx + k \mod q$
- 5. Outputs (r, s) as signature for m

- 1. On input m and (r, s)
- 2. Compute $I := g^s \cdot h^{-r}$

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$

Signer:

- 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
- 2. Sets $I := g^k$
- 3. Computes r := H(I, m)
- 4. Computes $s = rx + k \mod q$
- 5. Outputs (r, s) as signature for m

- 1. On input m and (r, s)
- 2. Compute $I := g^s \cdot h^{-r}$
- 3. Signature valid if $H(I, m) \stackrel{?}{=} r$

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$

Signer:

- 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
- 2. Sets $I := g^k$
- 3. Computes r := H(I, m)
- 4. Computes $s = rx + k \mod q$
- 5. Outputs (r, s) as signature for m

- 1. On input m and (r, s)
- 2. Compute $I := g^s \cdot h^{-r}$
- 3. Signature valid if $H(I, m) \stackrel{?}{=} r$
- Example of Fiat-Shamir transform

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$

Signer:

- 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
- 2. Sets $I := g^k$
- 3. Computes r := H(I, m)
- 4. Computes $s = rx + k \mod q$
- 5. Outputs (r, s) as signature for m

- 1. On input m and (r, s)
- 2. Compute $I := g^s \cdot h^{-r}$
- 3. Signature valid if $H(I, m) \stackrel{?}{=} r$
- Example of Fiat-Shamir transform
- Patented by Claus Schnorr in 1988

Part of the Digital Signature Standard issued by NIST in 1994

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Digital Signature Algorithm
 - 1. Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Digital Signature Algorithm
 - 1. Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
 - 2. Let $F: G \mapsto \mathbb{Z}_q$ be a function, not necessarily CHF

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Digital Signature Algorithm
 - 1. Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
 - 2. Let $F: G \mapsto \mathbb{Z}_q$ be a function, not necessarily CHF
 - 3. Signer:

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Digital Signature Algorithm
 - 1. Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
 - 2. Let $F: G \mapsto \mathbb{Z}_q$ be a function, not necessarily CHF
 - 3. Signer:
 - 3.1 On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q^*$ and sets $r := F(g^k)$

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Digital Signature Algorithm
 - 1. Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
 - 2. Let $F: G \mapsto \mathbb{Z}_q$ be a function, not necessarily CHF
 - 3. Signer:
 - 3.1 On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q^*$ and sets $r := F(g^k)$
 - 3.2 Computes $s := [k^{-1} \cdot (H(m) + xr)] \mod q$

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Digital Signature Algorithm
 - 1. Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
 - 2. Let $F: G \mapsto \mathbb{Z}_q$ be a function, not necessarily CHF
 - 3. Signer:
 - 3.1 On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q^*$ and sets $r \coloneqq F(g^k)$
 - 3.2 Computes $s := [k^{-1} \cdot (H(m) + xr)] \mod q$
 - 3.3 If r = 0 or s = 0, choose k again

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Digital Signature Algorithm
 - 1. Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
 - 2. Let $F: G \mapsto \mathbb{Z}_q$ be a function, not necessarily CHF
 - 3. Signer:
 - 3.1 On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q^*$ and sets $r \coloneqq F(g^k)$
 - 3.2 Computes $s := [k^{-1} \cdot (H(m) + xr)] \mod q$
 - 3.3 If r = 0 or s = 0, choose k again
 - 3.4 Outputs (r, s) as signature for m

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Digital Signature Algorithm
 - 1. Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
 - 2. Let $F: G \mapsto \mathbb{Z}_q$ be a function, not necessarily CHF
 - 3. Signer:
 - 3.1 On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q^*$ and sets $r \coloneqq F(g^k)$
 - 3.2 Computes $s := [k^{-1} \cdot (H(m) + xr)] \mod q$
 - 3.3 If r = 0 or s = 0, choose k again
 - 3.4 Outputs (r, s) as signature for m
 - 4. Verifier

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Digital Signature Algorithm
 - 1. Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
 - 2. Let $F: G \mapsto \mathbb{Z}_q$ be a function, not necessarily CHF
 - 3. Signer:
 - 3.1 On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q^*$ and sets $r := F(g^k)$
 - 3.2 Computes $s := [k^{-1} \cdot (H(m) + xr)] \mod q$
 - 3.3 If r = 0 or s = 0, choose k again
 - 3.4 Outputs (r, s) as signature for m
 - 4. Verifier
 - 4.1 On input m and (r, s) with $r \neq 0, s \neq 0$ checks

$$F\left(g^{H(m)s^{-1}}h^{rs^{-1}}\right)\stackrel{?}{=} r$$

• Signer: Has private key k and message m

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)

- **Signer:** Has private key *k* and message *m*
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = j^{-1}(e + kr) \mod n$. If s = 0, go to step 2.

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = j^{-1}(e + kr) \mod n$. If s = 0, go to step 2.
 - 6. Output (r, s) as signature for m

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = i^{-1}(e + kr) \mod n$. If s = 0, go to step 2.
 - 6. Output (r, s) as signature for m
- Verifier: Has public key kP, message m, and signature (r, s)

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = j^{-1}(e + kr) \mod n$. If s = 0, go to step 2.
 - 6. Output (r, s) as signature for m
- Verifier: Has public key kP, message m, and signature (r, s)
 - 1. Calculate e = SHA-256(SHA-256(m))

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = i^{-1}(e + kr) \mod n$. If s = 0, go to step 2.
 - 6. Output (r, s) as signature for m
- **Verifier:** Has public key kP, message m, and signature (r, s)
 - 1. Calculate e = SHA-256(SHA-256(m))
 - 2. Calculate $j_1 = es^{-1} \mod n$ and $j_2 = rs^{-1} \mod n$

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = j^{-1}(e + kr) \mod n$. If s = 0, go to step 2.
 - 6. Output (r, s) as signature for m
- **Verifier:** Has public key kP, message m, and signature (r, s)
 - 1. Calculate e = SHA-256(SHA-256(m))
 - 2. Calculate $j_1 = es^{-1} \mod n$ and $j_2 = rs^{-1} \mod n$
 - 3. Calculate the point $Q = j_1 P + j_2(kP)$

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = j^{-1}(e + kr) \mod n$. If s = 0, go to step 2.
 - 6. Output (r, s) as signature for m
- **Verifier:** Has public key kP, message m, and signature (r, s)
 - 1. Calculate e = SHA-256(SHA-256(m))
 - 2. Calculate $j_1 = es^{-1} \mod n$ and $j_2 = rs^{-1} \mod n$
 - 3. Calculate the point $Q = j_1 P + j_2(kP)$
 - 4. If $Q = \mathcal{O}$, then the signature is invalid.

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = j^{-1}(e + kr) \mod n$. If s = 0, go to step 2.
 - 6. Output (r, s) as signature for m
- **Verifier:** Has public key kP, message m, and signature (r, s)
 - 1. Calculate e = SHA-256(SHA-256(m))
 - 2. Calculate $j_1 = es^{-1} \mod n$ and $j_2 = rs^{-1} \mod n$
 - 3. Calculate the point $Q = j_1 P + j_2(kP)$
 - 4. If $Q = \mathcal{O}$, then the signature is invalid.
 - 5. If $Q \neq \mathcal{O}$, then let $Q = (x, y) \in \mathbb{F}_p^2$. Calculate $t = x \mod n$. If t = r, the signature is valid.

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = j^{-1}(e + kr) \mod n$. If s = 0, go to step 2.
 - 6. Output (r, s) as signature for m
- **Verifier:** Has public key kP, message m, and signature (r, s)
 - 1. Calculate e = SHA-256(SHA-256(m))
 - 2. Calculate $j_1 = es^{-1} \mod n$ and $j_2 = rs^{-1} \mod n$
 - 3. Calculate the point $Q = j_1 P + j_2(kP)$
 - 4. If $Q = \mathcal{O}$, then the signature is invalid.
 - 5. If $Q \neq \mathcal{O}$, then let $Q = (x, y) \in \mathbb{F}_p^2$. Calculate $t = x \mod n$. If t = r, the signature is valid.
- As *n* is a 256-bit integer, signatures are 512 bits long

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{Z}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = j^{-1}(e + kr) \mod n$. If s = 0, go to step 2.
 - 6. Output (r, s) as signature for m
- **Verifier:** Has public key kP, message m, and signature (r, s)
 - 1. Calculate e = SHA-256(SHA-256(m))
 - 2. Calculate $j_1 = es^{-1} \mod n$ and $j_2 = rs^{-1} \mod n$
 - 3. Calculate the point $Q = j_1 P + j_2(kP)$
 - 4. If $Q = \mathcal{O}$, then the signature is invalid.
 - 5. If $Q \neq \mathcal{O}$, then let $Q = (x, y) \in \mathbb{F}_p^2$. Calculate $t = x \mod n$. If t = r, the signature is valid.
- As n is a 256-bit integer, signatures are 512 bits long
- As *j* is randomly chosen, ECDSA output is random for same *m*

References

- Sections 10.3, 11.4, 12.5 of Introduction to Modern Cryptography, J. Katz, Y. Lindell, 2nd edition
- Section 19.1 of A Graduate Course in Applied Cryptography,
 D. Boneh, V. Shoup, www.cryptobook.us
- Chapter 2 of *An Introduction to Bitcoin*, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html