# L-2800 SERVICE MANUAL

#### 1. Equalizer Amp. Section

Adopted is an Operational I.C., RAYTHEON RC-4558-DN, which is of 8-pin Dual Inline Package Type. A built-in phase compensation capacitor for high frequency makes it impossible to adjust the value according to R & D purpose. This contributes so much to the various characteristics and sonic quality. Fundamentally, at the negative feedback amplifier, especially the equalizer amplifier, the high frequency phase compensation should be kept in proper condition. When the compensation is too weak, the circuit becomes instable and in many case oscillation is inevitable. In such state, the sonic quality is out of discussion.

On the contrary, the phase compensation is too strong, the distortion at high frequency range is much increased and at the same time it affects sonic quality to a great extent. That is the input impedance is reduced by the high frequency phase compensation (e.g., Mirror Integration), which is indispensable to the multi-stage amplifier, and linearity of the former stage is affected to deteriorate the distortion characteristic. The capacitor inserted between Q6 and Q7 is for high frequency compensation.

To comply with the unique gain distribution of the L2800, we considered a semi-conductor device which offers more inherent gain, comparing with the conventional 3-stage E-E feedback type equalizer. The I.C. offers more than 100dB of inherent gain, and the loop gain at 1KHz is approximately 37dB, which ensures sufficient amount of Negative Feedback at low frequency range. The RC-4558-DN is carefully selected to fulfill no more than 1.5uV Input-Conversion Noise Voltage. Despite that the phase compensation is included, proper compensation is realized as well as the stability, and therefore any type of cartridge can be connected. As for the load condition, the I.C. circuitry exceeds the conventional 3-stage E-E feedback Circuitry.

## 2. Power Amp Section

Adopted is the fully complementary circuit configuration, which seems to be the most ideal one at present. Signals are supplied from the equalizer amp directly to the power amp section via buffer stage. The rated output of 50 W/ch is realized at 190mV of equalizer output voltage (Input Sensitivity 2.8mV). That is the voltage gain is approximate 39dB which is higher by some 6dB than that of standard power amplifiers. And naturally various problems must be considered.

First, referring the harmonic distoriton, especially at high frequency range, it tends to be worse. In actual, distortion at 10KHz is twice as bad as that of the amplifier having some 33dB voltage gain. This is of course in the case of using the same semi-conduction device.

To compensate the lost gain caused by applying Negative Feedback, it is necessary to increase the inherent gain by delving into the inherent characteristics. At the first differential input stage, it is of utmost necessity to reduce the DC offset voltage at the output terminal, and of high high at the operational current area. For the L2800, adopted is the one of 3dB allowance between minimum and maximum. The standard high value is 500, which is very high. Also at this stage a zener diode is arranged to deal with the mains power fluctuation.

Second Differential Amp. Stage.

This stage palys an important role to decide distortion ratio, especially at high frequency range. Fundamentally transistors of high  $f_T$  and low Cob are necessary, and high load impedance should be realized since the stage makes most of the voltage gain. Therefore inherent gain is obtained sufficiently up to high frequency range thanks to constant current drive.

The  $f_T$  of the transistors is over 130MHz (Ic = 10mA), and the Cob is less than 2pF, which is far above the audio frequency band, nevertheless from the view point of fae, the fea is 75KHz in case here is determined as 200. Thus such high frequency characteristic is indispensable.

Also at the driver stage and the power stage, transistors of high  $f_T$  are necessary when good high frequency characteristic is required, but there exists close relation between  $f_T$  and breakdown of transistors: When  $f_T$  is extended, high frequency becomes unstable, and power transistors are easily damaged due to oscillation etc. And recently, this is solved by increasing VCE (sat.), the saturation voltage between collector and emitter, which deteriorates voltage utilization ratio as well as linearity of hfe at the time of huge current driving.

The power transistors adopted in the L2800 realized excellent reliability against breaddown by using larger scale pellet than that of the conventional transistors. Adopting larger scale pellet in the power transistors, the L2800 realized excellent reliability against breakdown without deteriorating high frequency characteristic. Of course the linearity of hfe is excellent.

Thus delving into the semi-conductor device, we increased the loop gain, and the high frequency characteristic is far much improved. This is because the high frequency compensation could be slighter based on the betterment of the inherent characteristics.

#### 3. Tone Control Section

Adopted is the NF type with turnover frequency selector of two steps both for bass and treble respectively.

Bass Turnover Frequency: 150Hz, 300Hz Treble Turnover Frequency: 3KHz, 6KHz

#### 4. Delay Time Muting Section

In the amplifier of Direct-Coupled configuration, the speaker loads are directly connected to the power transistors, therefore it may be possible to damage the speaker systems in case DC potential appears at the output terminal. Also a slight DC potential gives some bias to the speakers, which affects the sonic quality. Thus the protection circuit is indispensable to eliminate these situation. For the L2800, the Delay Time Muting Circuit operates as a protection circuit at the same time. Therefore the amplifier is muted 5 - 10 seconds at the time of turning the power switch on.

#### 5. Peak Indicator Circuit (PB-1067)

The output signal meets the Peak Detection circuit composed of Q801, Q802, D802 and C802, whose detected DC signal is then converted into low-impedance by current booster Q803 and Q804.

Of course different threshold level is arranged for each L.E.D. driver Q505 - Q510 to make them light up in accordance with the signal level.

## Measurement Instruments & Tools

- 1) AC Voltmeter (ACVTVM)
- 2) Milivoltmeter
- 3) DC Ammeter
- 4) DC Voltmeter (DCVTVM)
- 5) Audio Oscillator (AFO)
- 6) Distortion Meter

- 7) Synchroscope
- 8) 8-ohm Non-Induction Resistor
- 9) Frequency Counter
- 10) Small (-) driver
- 11) Short Pin-Plug
- 12) Variac



## Voltage Check & Delay Time Muting



- 1. Connect a Variac to the amplifier.
- 2. Adjust the Variac to obtain "0 V" reading.
- Confirm the 5A fuse is inserted in the fuse holder placed between the power transformer and the back panel.
- 4. Set the power switch to "ON".
- Gradually increase the voltage of the variac, confirming there is no trouble, until the precise AC mains voltage is obtained.
   Also note that the pilot lamp lights up.
- 6. Check the voltage at each terminal on PB-891.

|   | _     |                  |        |     |                 |
|---|-------|------------------|--------|-----|-----------------|
|   | P-107 | DC (+)           | around | 40V | against chassis |
|   | P-108 | Ō.               | 11     | 40V | 11              |
|   | P-709 | ( <del>+</del> ) | "      | 20V | 11              |
| 1 | P-203 | Ğ                | 11     | 15V | 11              |
|   | P-204 | l Ō              | "      | 15V | 11              |
|   |       |                  |        |     |                 |

- Check precise AC mains voltage is available at the two AC outlets on the back panel.
- 8. Shut off the power switch.
- 9. Check precise AC line voltage is available only at the extra AC outlet (UN SWITCHED).
- 10. Set the power switch to "ON" again to check the operation of the delay time muting circuit. Muting time: 6 secs (+4, -1).

#### IDLE ADJUST & ZERO DC OFFSET



- 1. Set the power switch to "OFF".
- 2. Set both of the VR101 (for Idle Adjust) on PB-891 to the extreme counter-clockwise position.
- 3. Set both of the VR102 (for Zero DC offset) at the mechanical center position.
- 4. Remove the Red lead wire from the heatsink. Connect the DC ammeter (100mA); (+) to the lead wire and (-) to the socket on the heatsink.
- 5. Connect the DC voltmeter (less than 1V at full scale) to the speaker terminals to measure DC offset. The speaker switch should be at the "main & remote" position.
- 6. Press the power switch to "ON"
- 7. After one minute, adjust VR-101 to obtain 30mA reading on the DC ammeter. (This should be applied on both channels.)
- Adjust VR-102 to obtain 0 DC offset. (This should also be applied on both channels.)
- 9. Power switch to OFF.
- 10. All the wiring should be reset as they were.



- 3. Side Plate
- 4. Knob (Function, Treble, Bass, SP Selector)
- 5. Knob (Balance, Monitor, Dubbing)
- 6. Main Volume Knob
- 7. Push SW. Knob
- 8. Lever SW. Knob
- 9. Power SW. Knob
- 10. Edge Lamp
- 11. Headphone Jack
- 12. L.E.D. PCB Ass'y
- 13. Screw 3mmø x 6
- 14. Screw 4mmø x 20
- 15. Spring Washer 4mmø
- 16. Square Washer (with Toothed Lock)



- 17. Sub Panel
- 18. Main Chasses Complete Ass'y
- 19. Voltage Selector (100-120-220-240V)
- 20. Power Transformer
- 21. Power Amp.
  Complete Ass'y
- 22. Shield Plate
- 23. PB-891 (Pre, Main P.C.B.)
- 24. Pin Jack Ass'y
- 25. Speaker Terminal
- 26. Main Cord
- 27. Back Panel
- 28. VR102 (0 DC offset-Lch)
- 29. VR102 (0 DC offset-Rch)
- 30. VR101 (Idling-Lch)
- 31. VR101 (Idling-Rch)

# L2800 REPLACEMENT PARTS LIST

# PB-891

| SE |  |  |  |
|----|--|--|--|
|    |  |  |  |
|    |  |  |  |

| SECTI                                   | ON A                                          |                                          |                                                  |                                           |                                          |              |                                     |  |
|-----------------------------------------|-----------------------------------------------|------------------------------------------|--------------------------------------------------|-------------------------------------------|------------------------------------------|--------------|-------------------------------------|--|
| R201<br>202<br>203<br>204<br>205<br>206 | 120K<br>3.3K<br>390K<br>620<br>39K<br>560K    | R207<br>208<br>209<br>R101<br>102<br>103 | 1K<br>680<br>220K<br>1M<br>4.7K<br>47            | R104<br>105<br>106<br>107<br>R110<br>R115 | 47<br>6.8K<br>6.8K<br>47K<br>8.2K<br>470 | 1/2W<br>1/2W |                                     |  |
| C201<br>202<br>205<br>206<br>207        | 2.2uF<br>22uF<br>0.47uF<br>0.047uF<br>0.047uF | 16V el<br>50V my<br>50V ce               | ntalum<br>ectrolytic<br>vlar<br>eramic<br>eramic | C101<br>102<br>103                        | 10uF<br>0.0022uF<br>100uF                | 16V<br>16V   | tantalum<br>ceramic<br>electrolytic |  |
| Q201<br>101                             | IC<br>TR                                      | RE4558<br>2SA750                         |                                                  | VR101<br>D101                             | 4.7K-B semi-fixed pot. WZ120             |              |                                     |  |

#### SECTION B

| SECTION                                  | N B                                                             |                                                                               |                                    |                                         |                                                                |
|------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|----------------------------------------------------------------|
| R108<br>109<br>R101<br>112<br>113<br>114 | 3.3K<br>3.3K<br>180<br>68 1/2W<br>47K<br>430                    | R115 1.5K  R117 33K 118 22 119 3.9K 120 1.2K 121 100                          | 1/2W<br>1/2W                       | R122<br>123<br>124<br>125<br>126        | 100 1/2W 0.33 cement MPC 71 0.33 " " 22 1/2W J metal 47 1W J " |
| C104<br>105<br>106<br>107<br>108<br>109  | 100uF 50V<br>47pF<br>47pF<br>100uF 16V<br>100uF 50V<br>0.0015uF | electrolytic<br>ceramic<br>ceramic<br>electrolytic<br>electrolytic<br>ceramic | C110<br>111<br>112<br>C114<br>C116 | 0.023uF<br>470uF<br>1uF<br>1uF<br>0.1uF | 50V mylar 6.3V electrolytic 50V electrolytic mylar             |
| Q102<br>103<br>104<br>105                | 2SA750<br>2SC1507<br>2SC1507<br>2SC945                          | Q106 2SC945<br>106 2SB536<br>108 2SD381                                       |                                    | D102<br>103<br>VR102<br>L101            | VD1221<br>VD1221<br>4.7K-B<br>2uH L02                          |

## SECTION C

| SECTIO                                                | JN C                                                                    | ·                                                                                                                 |                                         | 1                                                     | 1                                                                                                         |
|-------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Rl01<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | 1M<br>4.7K<br>47<br>47<br>6.8K 1/2W<br>6.8K 1/2W<br>47K<br>3.3K<br>3.3K | R110 8.2K<br>111 180K<br>112 68 1/2W<br>113 47K<br>114 430<br>115 470<br>115 1.5K 1/2W<br>R117 33K 1/2W<br>118 22 |                                         | R119<br>120<br>121<br>122<br>123<br>124<br>125<br>126 | 3.9K<br>180<br>100 1/2W<br>100 1/2W<br>0.33 cement MPC 71<br>0.33 " "<br>22 1/2W J metal<br>47 1W J metal |
| Cl01<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | 10uF 16V 0.0022uF 100uF 16V 100uF 50V 47pF 47pF 100uF 16V 100uF 50V     | tantalum ceramic electrolytic electrolytic ceramic ceramic electrolytic electrolytic                              | C109<br>110<br>111<br>113<br>115<br>116 | 0.00<br>0.0<br>0.0                                    | 015uF ceramic 022uF 50V mylar 470uF 6.3V electrolytic 047uF YZ ceramic 047uF YZ ceramic 0.luF K mylar     |
| Q101<br>102<br>103<br>104<br>105<br>106               | 2SA750<br>2SA750<br>2SC1507<br>2SC1507<br>2SC945<br>2SC945              | D101 WZ120<br>102 VD1221<br>103 VD1221                                                                            |                                         | VR101<br>102<br>L101                                  | 4.7K-B<br>4.7K-B<br>2uH LO2                                                                               |

## SECTION D

| PECITO                                           | ע אונ                                                       |                          |                                            |                                        |                         |                                         |              |                                      |                                        |                                                          |                              |   |           |
|--------------------------------------------------|-------------------------------------------------------------|--------------------------|--------------------------------------------|----------------------------------------|-------------------------|-----------------------------------------|--------------|--------------------------------------|----------------------------------------|----------------------------------------------------------|------------------------------|---|-----------|
| R606<br>607                                      | 3.9K<br>2.7K                                                |                          | J                                          | R703<br>705                            | 27K<br>1.2K             |                                         | I            |                                      | R707<br>709                            | 1.8k<br>4.7k                                             |                              | J | metalized |
| C602<br>603<br>604<br>C705<br>C707<br>708<br>709 | 220uF<br>220uF<br>220uF<br>220uF<br>100pF<br>100pF<br>100uF | 10V<br>10V<br>10V<br>35V | electrelectrelectrelectrenam ceram electre | rolyti<br>rolyti<br>rolyti<br>ic<br>ic | ic<br>ic<br>ic          | C710<br>711<br>712<br>713<br>714<br>715 | 1            | 00uF<br>47uF<br>47uF<br>00uF<br>00uF | 35V<br>25V<br>25V<br>25V<br>25V<br>16V | electrol<br>electrol<br>electrol<br>electrol<br>electrol | ytic<br>ytic<br>ytic<br>ytic |   |           |
| Q107<br>108<br>603                               | 2SB536<br>2SD381<br>2SA733                                  |                          | Q604<br>605<br>701                         | 2                                      | SC945<br>SC945<br>SD571 |                                         | Q702<br>D707 |                                      | B605<br>14002                          |                                                          |                              |   |           |

# SECTION E

| SECTIO                           | N L                                    |                                  |                                   |                    |                     |                                       |                         |                      |                                |
|----------------------------------|----------------------------------------|----------------------------------|-----------------------------------|--------------------|---------------------|---------------------------------------|-------------------------|----------------------|--------------------------------|
| R601<br>602<br>603<br>604<br>605 | 100 1/2W<br>56K<br>1K<br>10K<br>10K    | R608<br>609<br>701<br>702<br>704 | 18K<br>18K<br>4.7K<br>4.7K<br>27K | 31                 |                     | etalized<br>etalized                  | R706<br>708<br>710      | 3.3K<br>1.8K<br>4.7K | 1/2W<br>1/2W<br>1/2W metalized |
| C601<br>701<br>702               | 22uF 50V<br>0.01uF 250V<br>0.01uF 250V | 250V ceramic                     |                                   | C703<br>704<br>706 | 0                   | .01uF 250V<br>.01uF 250V<br>220uF 35V | ceram<br>ceram<br>elect |                      |                                |
| D601<br>602<br>603               | 1N4002<br>1N4002<br>1S1555             | 703                              | LN4002<br>LN4002<br>LN4002        |                    | D705<br>Q601<br>602 | 1N4002<br>2SD571<br>2SC945            |                         |                      |                                |



# FILTER SWITCH PCB

| Resistor    | 3.3K 2 pcs<br>12K 2 pcs | Capacitor | 0.082uF K mylar<br>0.15uF K mylar   | 1 pc<br>2 pcs  |
|-------------|-------------------------|-----------|-------------------------------------|----------------|
| Push Switch | SPZ 045A01              |           | 0.033uF K mylar<br>0.0047uF K mylar | 2 pcs<br>2 pcs |

# LEVER SWITCH PCB

| Lever Switch SLA32204 3 pcs<br>SLA32205 1 pc | Resistor | 3.3K | 2 pcs<br>4 pcs |  |
|----------------------------------------------|----------|------|----------------|--|
|----------------------------------------------|----------|------|----------------|--|

# TONE CONTROL PCB

| Capacitor 2.2uF 25V tantalum 4 pcs 4.7uF 25V tantalum 4 pcs 1.00uF 6.3V electrolytic 2 330uF 25V electrolytic 1 Capacitor 0.012uF mylar 2 pcs 0.015uF mylar 2 0.33 mylar 6 0.47uF ceramic 1 YZ | Resistor  | 100K<br>1.5K<br>5.6K<br>4.7K<br>390K<br>1K<br>220K | 2<br>2<br>4<br>2<br>4<br>2 | ocs                   | Resi | stor   | 2 | 80K<br>.3K<br>1M<br>18K<br>.7K<br>58K | 1 pc<br>2<br>4<br>4<br>2<br>1 |    |             |                |   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------|----------------------------|-----------------------|------|--------|---|---------------------------------------|-------------------------------|----|-------------|----------------|---|--|
|                                                                                                                                                                                                | Capacitor | 4.7uF<br>100uF                                     | 25V<br>6.3V                | tantalum<br>electroly | ytic | 4<br>2 |   |                                       | l<br>itor                     | 0. | 015uF<br>33 | mylar<br>mylar | 2 |  |

# PEAK INDICATOR PCB

|            |                |                  |      |     |      |             | 119.1          | ī         |         |       |
|------------|----------------|------------------|------|-----|------|-------------|----------------|-----------|---------|-------|
| R801       | 100K           | _                | F    | 810 | 2.21 | . 2         | pcs            | R819      | 1.8K    | 2 pcs |
| 802        | 22K            | _                |      | 811 | 680  | 2           |                | 820       | 1.8K    | 2     |
| 803        | 10K            |                  |      | 812 | 3.31 | 2           |                | 821       | 1.8K    | 2     |
| 804        | 180K           |                  |      | 813 | 680  | 2           |                | 822       | 1.8K    | 2     |
| 805        | 82K            |                  | j    | 814 | 4.78 | . 2         |                | 823       | 1.8K    | 2     |
| 806        | 1.5K           |                  | i    | 815 | 680  | 2           |                | 824       | 3.3K    | 2     |
| 807        | 820            | 2                |      | 816 | 15K  | 2           |                | 825       | 3.3K    | 2     |
| 808        | 1.8K           |                  |      | 817 | 680  | 2           |                |           |         |       |
| 809        | 680            | 2                |      | 818 | 1.8K | 2           |                |           |         |       |
| Q801 -     | - Q803<br>Q804 | 2SC733<br>2SA495 | 6 pc | s   |      | C801<br>802 | 4.7uF ]        |           | ntalum  | 2 pcs |
| Q805 -     |                |                  | 12   |     |      | 803         | luF            |           | ntalum  | 2     |
| (          | 4020           | 250700           |      |     |      | 804         | 100uF<br>100uF | 35V elect |         | 1     |
|            |                |                  |      |     |      | 004         | 10001          | 35V elect | rolytic | 1     |
| D809       | W02            | 1                |      |     |      | VR801       | semifix        | ked pot 1 | .00K-B  | 2 pcs |
| 801<br>802 | 15155          | - r              |      |     |      |             |                |           |         |       |
|            | 1S155          | - F              |      |     |      |             |                |           |         |       |
| 803-8      | ,  ,           | E.D. 12 p        | cs   |     |      |             | -              |           |         |       |

