PART III : SEQUENCES AND SERIES

LECTURE IN : SERIES OF REALS

1. SEQUENCES OF REALS :

DEFINITION: A reguerace is a map from the discrete set M^* to R (82 Nome office).

Apace). $(\alpha_m)_{m\in M^*}$ $m\in M^*$ $M\ni m$

3>12-mal sward swn (3) N3 mt tooth Rown *M3 (3) NE 0<34

DEFINITION: $(a_m)_{m \in \mathbb{N}^*}$ is called fundamental (or Cauchy) sequence if: $(3) \times (3) \times (3$

THEOREM: In R every comony sequence converges.

REMARK: Any convergent requence is Causely. However, the converse does not always hold.

2. SERIES OF REALS :

Let $(a_m)_{m\in\mathbb{N}^*}$ a sequence of reals $(a_m\in\mathbb{R})$ and define $(s_m)_{m\in\mathbb{N}^*}$ a sequence of partial sums by $s_m:=a_1+a_2+\ldots+a_m$.

DEFINITION: A socies is a pair ((am)ment > (sm)ment) and is donoted by $\sum_{m=1}^{\infty} a_m$.

DEFINITION: $\sum_{m=1}^{\infty} a_m$ is convergent if $(\Lambda_m)_{m \in \mathbb{N}^n}$ is convergent.

If Am → SER we write ∑am = S and we say that S is the sum of

the stries.

DEFINITION: $\sum_{m=1}^{\infty} a_m$ is divergent if $a_m \longrightarrow \pm \infty$ or the limit does not exist.

THEOREM (Cauchy's general convergence out)

If (sm)ment convergent =) (sm)ment is caucity

if $a_m \longrightarrow 0 \implies \sum_{m=1}^{\infty} a_m$ divergent.

3. SERIES OF POSITIVE REALS:

THEOREM (Cauchy's Integral crist):

Define
$$(f_m)_{m \in \mathbb{N}^+}$$
 by $f_m := f(m)$

1)
$$\sum_{w=1}^{\infty} t^{w}$$
 convergent $(=)$ if $(x) dx$ convergent

4. APPLICATIONS OF CAUCHY'S INTEGRAL CRIT:

a) The gravement series:
$$\sum_{m=1}^{\infty} \frac{1}{m}$$
 is divergent (because $1 \pm dx$ is divergent)

b) The generalised harmonic series:
$$\sum_{m=1}^{\infty} \frac{1}{m^2}$$
 is convergent (because $1 \times 2^{-1} dx$

c) The geometric series:
$$\sum_{m=1}^{\infty} q^m$$
 is convergent if $|q| < 1$ divergent if $|q| > 1$

5. CONVERGENCE TESTS FOR (NUMERICAL) SERIES:

A SERIES OF POSITIVE NUMBERS

$$\sum_{m=1}^{\infty} a_m \text{ divergent} \Rightarrow \sum_{m=1}^{\infty} b_m \text{ divergent}$$

$$\sum_{m=1}^{\infty} b_m \text{ convergent} \Rightarrow \sum_{m=1}^{\infty} a_m \text{ convergent}$$

if L #0 both
$$\sum_{m=1}^{\infty} a_m$$
 and $\sum_{m=1}^{\infty} b_m$ behave the same may (both convergent or divergent)

if
$$L=0$$
 $\sum_{m=1}^{\infty} b_m$ convergent => $\sum_{m=1}^{\infty} a_m$ convergent

CAUCHY'N ROOT CRIT . THEOREM :

1) if "Tam < ge(0,1), 4 m>No EM* then \(\sum_{m=1}^{\infty} a_m \) convergent

2) if \$\frac{1}{\alpha_{m_e}} > 1 for some subsequence (\alpha_{m_e})_{\overline{k} \in \text{N}} \subsequent.

D'ALEMBERT RATIO TEST THEOREM:

1) if $\frac{\alpha_{m+1}}{\alpha_m} \le g \in (0,1)$ $\forall m \ge N_0 \in \mathbb{N}^*$ then $\sum_{m=1}^{\infty} \alpha_m$ convergent

2) if $\frac{\alpha_{m+1}}{\alpha_m} \gg 1$ $\forall m \gg m_0 \in \mathbb{N}$ then $\sum_{m=1}^{\infty} \alpha_m$ divergent

RAABE - DUHAMEL THEOREM :

* If 3 g>1 and NoEN* such that m(an -1)>g, 4m>NoEN*

then $\sum_{m=1}^{\infty} a_m$ convergent 2) if $\exists g > 1$ and $N \circ \in \mathbb{N}^{\times}$ such that $m \cdot (\frac{\alpha_e}{\alpha_{m+1}} - 1) < g \cdot \forall m > N \circ \in \mathbb{N}^{\times}$ then $\sum_{m=1}^{\infty} \alpha_m$ divergent

B. ALTERNATE SERIES

Now an can also be <0.

ABEL-DIRICHLET THEOREM:

(Qm)ment* distraining and with an moss o (Dm)ment*, Tm = b1 + ... + bm and Tm is bounded (Tm/<M, 4 ment*)

then $\sum_{m=1}^{\infty} a_m b_m$ convergent

THEOREM: $(a_{n})_{m \in \mathbb{N}^{+}}$ decreasing and $a_{n} \xrightarrow{n \to \infty} 0$ then $\sum_{u=1}^{\infty} (-1)^{u} a_{n}$ convergent

LECTURE 12: SEQUENCES AND SERIES OF FUNCTIONS

1. SEQUENCES OF FUNCTIONS:

POINTWISE CONVERGENCE DEFINITION: Im m >00> f

For any fixed $x \in [a, b]$ we have $\lim_{m \to \infty} f_m(x) = f(x)$. + E > 0 $\exists N = N(E, x) \in \mathbb{N}^x$ such that $\forall m > N(E, x)$ we have $|f_n(x) - f(x)| < E$

UNITORH CONVERGENCE DETINITION: Im m=0 + 1

eval sun (x. +. H. en mothinu) (3) N < M+ tant hour (3) N = NE 0 < 3 +

1 fm(x)-f(x)1<E for txela, &

CONTINUITY THEOREM:

fm: [a, b] → R all continuous and fm m > 2 , then f is continuous

INTEGRABILITY THEOREM: by the continuous and $f_n \xrightarrow{\alpha} f$, then f integrable and $\lim_{n \to \infty} \int_{\alpha}^{\alpha} f_n(x) dx = \int_{\alpha}^{\alpha} f(x) dx$ DIFFERENTIABILITY THEOREM:

for all differentiable and:

1)
$$f_m \xrightarrow{p,n_0} f$$
 from f is differentiable and $f'=g$.
2) $f_m \xrightarrow{u} g$

2. POWER SERIES:

I for a series of functions (for) ment a seguence of functions

 $S_m(x) = f_1(x) + ... + f_m(x)$, $(S_m)_{m \in \mathbb{N}^+} \rightarrow seguence of partial sums$

DEFINITION:

DEFIN

WEIERSTRASS THEOREM : (Im) mEN* seguence of functions, fu: [a,6] > R, (am) ment seguence of positive heals and 1) $\sum_{m=1}^{\infty} a_m$ convergent $\sum_{m=1}^{\infty} f_m$ convergent $\sum_{m=1}^{\infty} f_m$ convergent

LECTURE 13 : FOURIER SERIES

1. OSCILLATIONS:

$$u(t) = A \cdot \cos(\omega t + 1)$$

$$u(t)$$

2. TRIGONOMETRIC SERIES:

$$\frac{a_o}{2} + \sum_{m=1}^{\infty} a_m \cos m x + b_m \sin m x \quad \text{is the Fowier series associated to}$$

$$4: [-11, 11] \longrightarrow \mathbb{R} \quad \text{integrable if} \quad \begin{cases} a_m = \frac{1}{T} \int_{-T}^{T} f(x) \cos m x \, dx \\ b_m = \frac{1}{T} \int_{-T}^{T} f(x) \sin m x \, dx \end{cases}$$

3. CONVERGENCE OF FOURIER SERIES

$$4m(x) = \frac{1}{\pi} \int_{0}^{\pi} \frac{1}{2} \frac{$$

4. APPLICATION OF THE FOURIER SERIES:

$$\sum_{m=1}^{\infty} \frac{1}{m^2} = ?$$

$$\Omega_{m} = 0$$

$$\delta_{m} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{x}{2} \sin mx \, dx = \frac{(-1)^{m+1}}{m}$$

$$\frac{\Omega_0^2}{2} + \sum_{m=1}^{\infty} (\alpha_m^2 + b_m^2) = \frac{0}{11} \int_{-\pi}^{\pi} f^2(x) dx$$

$$(=) \sum_{m=1}^{\infty} \frac{1}{m^2} = \frac{1}{\pi} \cdot 2 \int_{0}^{\pi} \frac{x^2}{4} dx = \frac{1}{\pi} \cdot \frac{x^3}{6} \Big|_{0}^{\pi} = \frac{\pi^2}{6}$$

5. GIBBS PHENOMENON:

There is a price to pay for discontinuity (in the rignal); manely the \mp -approx will oscilate close to the discontinuity.