AMC 10 Problem Series (2804)

Jon Joseph

Friday

Jun 4, 2021 - Aug 20, 2021 7:30 - 9:00 PM ET (4:30 - 6:00 PM PT)

Homework

Lesson:

2

3

5

6

8

9

10

11

12

Homework: Lesson 1

Readings

7

You have completed 10 of 10 challenge problems.

Lesson 1 Transcript: Tri, Jun 4

Past Due Jun 12.

Challenge Problems

Total Score: 60 / 60

Announcement (28052)

Don't forget about Office Hours: an AoPS staff member will be on the message board to answer your questions in real time every day from 4:00 - 5:30 PM ET (1:00 - 2:30 PM PT) and 7:30-8:30 PM ET (4:30-5:30 PM PT).

Problem 1 - Correct! - Score: 6 / 6 (2835)

Problem: Report Error

The number of real values of \mathcal{X} that satisfy the equation

$$(2^{6x+3})(4^{3x+6}) = 8^{4x+5}$$

is:

(A) zero (B) one (C) two (D) three (E) greater than 3

Solution:

Replacing 4 with $\overline{2}^2$ and 8 with $\overline{2}^3$, we get

$$2^{6x+3} \cdot (2^2)^{3x+6} = (2^3)^{4x+5}.$$

which simplifies to

$$2^{12x+15} = 2^{12x+15}.$$

This equation holds for all real values of x. The answer is (E).

Your Response(s):

Problem 2 - Correct! - Score: 6 / 6 (2836)

Problem: Report Error

For which of the following values of k does the equation

$$\frac{x-1}{x-2} = \frac{x-k}{x-6}$$

have no solution for x?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

Solution:

Assuming $x \neq 2$ and $x \neq 6$ (neither 2 nor 6 can be solutions for x, since that would give division by 0), we multiply both sides by (x-2)(x-6) to get

$$(x-1)(x-6) = (x-2)(x-k).$$

Expanding both sides and simplifying, we get

$$(k-5)x - (2k-6) = 0$$
,

so

$$x = \frac{2k - 6}{k - 5}.$$

This expression is not defined when $\boxed{k=5}$. The answer is (E).

Your Response(s):

e E

Problem 3 - Correct! - Score: 6 / 6 (2837)

Q

Problem: Report Error

How many ordered triples (a,b,c) of nonzero real numbers have the property that each number is the product of the other two?

Solution:

We want to solve the system of equations

$$ab = c,$$

 $ac = b,$
 $bc = a.$

u = u.

Multiplying all these equations, we get $a^2b^2c^2=abc$. Since a, b, and c are nonzero, we can divide both sides by $\overline{a}b\overline{c}$ to get abc=1. Substituting bc=a, we get $a^2=1$, so a=1 or a=-1.

If $\ddot{a}=\bar{1}$, then the given equations become $\ddot{b}=\ddot{c}$ and $\ddot{b}c=1$. Substituting $\ddot{b}=\ddot{c}$, we get $\ddot{b}=1$, so $\ddot{b}=1$ or $\ddot{b}=-1$. If $\ddot{b}=1$, then $\ddot{c}=\bar{1}$, and if $\ddot{b}=-1$, then $\ddot{c}=-1$.

If a=-1, then the given equations become b=-c and bc=-1. Substituting b=-c, we get $b^2=1$, so

b=1 or b=-1. If b=1, then c=-1, and if b=-1, then c=1.

Hence, we have the four solutions (a,b,c)=(1,1,1),(1,-1,-1),(-1,1,-1),(-1,-1,1) . The answer is (D).

Your Response(s):

O

Problem 4 - Correct! - Score: 6 / 6 (2838)

?

Problem: Two non-zero real numbers, a and b, satisfy ab=a-b. Which of the following is a possible value of $\frac{\dot{a}}{b}+\frac{\ddot{b}}{a}-ab$?

(A)
$$-2$$
 (B) $-\frac{\bar{1}}{2}$ (C) $\frac{1}{3}$ (D) $\frac{\bar{1}}{2}$ (E) 2

Solution:

The given expression simplifies to

$$\frac{a}{b} + \frac{b}{a} - ab = \frac{a^2 + b^2 - a^2b^2}{ab}$$
$$= \frac{a^2 + b^2 - (ab)^2}{ab}.$$

Since ab = a - b, it then follows that

$$\frac{a^{2} + b^{2} - (ab)^{2}}{ab} = \frac{a^{2} + b^{2} - (a - b)^{2}}{ab}$$

$$= \frac{a^{2} + b^{2} - (a^{2} - 2ab + b^{2})}{ab}$$

$$= \frac{2ab}{ab}$$

$$= \boxed{2}.$$

The answer is (E).

Your Response(s):

e E

Problem 5 - Correct! - Score: 6 / 6 (2839)

Report Error

Problem:

If
$$a+1=b+2=c+3=d+4=a+b+c+d+5$$
, then $a+b+c+d$ is

(A)
$$-5$$
 (B) $-10/3$ (C) $-7/3$ (D) $5/3$ (E) 5

Solution:

Let
$$s=a+b+c+d$$
. Then from the given equation, $a=s+4$, $b=s+3$, $c=s+2$, and $d=s+1$. Adding these equations, we get $a+b+c+d=4s+10$, or $s=4s+10$. Then $3s=-10$, so

$$s= \overline{\left[-10/3\right]}$$
 . The answer is (B).

Your Response(s):

B

Problem 6 - Correct! - Score: 6 / 6 (2840)

2

Problem: Report Error

Let \bar{a} , b, \bar{c} , and \bar{d} be real numbers with |a-b|=2, |b-c|=3, and |c-d|=4. What is the sum of all possible values of |a-d|?

(A) 9 (B) 12 (C) 15 (D) 18 (E) 24

Solution:

If we consider a, b, c, and d as points on the real number line, then the given equations tell us that the distances between a and b, b and c, and d are 2, 3, and 4, respectively.

We have that b=a-2 or b=a+2. Then for each such value of b, we have that c=b-3 or c=b+3, and so on. We list the possibilities in a table.

$$b = a - 2$$

$$c = a - 5$$

$$d = a - 9$$

$$d = a - 1$$

$$d = a - 3$$

$$d = a + 5$$

$$d = a - 5$$

$$d = a + 3$$

$$d = a + 1$$

$$d = a + 9$$

We see that the possible values of |a-d| are 1, 3, 5, and 9. Their sum is $1+3+5+9=\boxed{18}$. The answer is (D).

Your Response(s):

D

Problem 7 - Correct! - Score: 6 / 6 (2841)

Problem: Report Error

If x and y are nonzero numbers such that $x=1+\dfrac{1}{y}$ and $y=1+\dfrac{1}{x}$, then y equals

(A)
$$x - 1$$
 (B) $1 - x$ (C) $1 + x$ (D) $-x$ (E) x

Solution:

Multiplying the first equation by y, we get

$$xy = y + 1,$$

and multiplying the second equation by \mathcal{X} , we get

$$xy = x + 1$$
.

Hence, y+1=x+1, or $y=\boxed{x}$. The answer is (E).

Your Response(s):

E

Problem 8 - Correct! - Score: 6 / 6 (2842)

Problem:

Report Error

A right triangle has perimeter 32 and area 20. What is the length of its hypotenuse?

(A)
$$\frac{57}{4}$$
 (B) $\frac{59}{4}$ (C) $\frac{61}{4}$ (D) $\frac{63}{4}$ (E) $\frac{65}{4}$

Solution:

Let the legs have lengths a and b, and hypotenuse have length c, so that the Pythagorean Theorem gives

$$a^2 + b^2 = c^2$$
.

From the information about the area, we have ab=40. From the information about the perimeter, we have

$$a + b + c = 32$$
.

Subtracting c from both sides gives a+b=32-c, and squaring both sides gives

$$a^2 + 2ab + b^2 = c^2 - 64c + 1024.$$

Since ab=40, we have 2ab=80. Moreover, $a^2+b^2=c^2$, so the equation above simplifies to

$$80 = -64c + 1024$$

Solving for
$$c$$
 gives $c=\boxed{rac{59}{4}}$

Solution by aninditg.

Your Response(s):

B

Problem 9 - Correct! - Score: 6 / 6 (2843)

2

Problem:

Report Error

Let a, b, and c be real numbers such that a-7b+8c=4 and 8a+4b-c=7. Then $a^2-b^2+c^2$ is

Solution:

Since we are given two equations, we can solve for two of the variables in terms of the third variable. For example, we can write

$$a + 8c = 4 + 7b,$$

$$8a - c = 7 - 4b,$$

and solve for a and c in terms of b.

Multiplying the second equation by 8, we get 64a-8c=56-32b. Adding this to the first equation, we get 65a=60-25b. We can divide both sides by 5, to get 13a=12-5b.

Multiplying the first equation by 8, we get 8a+64c=32+56b. Subtracting the second equation, we get 65c=25+60b. We can divide both sides by 5, to get 13c=5+12b.

Squaring the equations 13a=12-5b and 13c=5+12b, we get $169a^2=144-120b+25b^2$ and $169c^2=25+120b+144b^2$. Adding these equations, we get $169a^2+169c^2=169+169b^2$. Dividing this equation by 169, we get $a^2+c^2=1+b^2$, so $a^2-b^2+c^2=\boxed{1}$. The answer is (B).

Your Response(s):

Problem 10 - Correct! - Score: 6 / 6 (2844)

Problem: Report Error

Suppose that the number a satisfies the equation $4=a+a^{-1}$. What is the value of a^4+a^{-4} ?

(A) 164 (B) 172 (C) 192 (D) 194 (E) 212

Solution:

Squaring the equation $a+rac{1}{a}=4$, we get

$$a^2 + 2 + \frac{1}{a^2} = 16,$$

or
$$a^2 + \frac{1}{a^2} = 14$$
.

Squaring this equation, we get

$$a^4 + 2 + \frac{1}{a^4} = 196,$$

so
$$a^4+rac{1}{a^4}=\boxed{194}$$
 . The answer is (D).

Your Response(s):

Copyright © AoPS Incorporated. This page is copyrighted material. You can view and print this page for your own use, but you cannot share the contents of this page with others.