EQUATION SHEET

First-Order RL or RC Circuit Response

$$v_{C}(t) \text{ or } i_{L}(t) = (IV - FV)e^{-t/\tau} + FV, t \ge 0$$

Second-Order Differential Equation

Nonhomogeneous	Homogeneous
$\frac{d^2y_N(x)}{dx^2} + 2\zeta\omega_0 \frac{dy_N(x)}{dx} + \omega_0^2 y_N(x) = g(x)$	$\frac{d^2y_N(x)}{dx^2} + 2\zeta\omega_o \frac{dy_N(x)}{dx} + \omega_o^2 y_N(x) = 0$

General Forms of Particular Responses

deneral Forms of Larticular Responses		
g(x)	Form of y _P (x)	
1 (any constant)	A	
5x+7	Ax+B	
$3x^2-2$	Ax²+Bx+C	
x ³ -x+1	Ax^3+Bx^2+Cx+D	
sin(4x)	Acos(4x)+Bsin(4x)	
cos(4x)	$A\cos(4x)+B\sin(4x)$	
e ^{5x}	Ae^{5x}	

Series RLC ODE

$\frac{d^{2}v_{CN}(t)}{dt^{2}} + \frac{R_{T}}{L}\frac{dv_{CN}(t)}{dt} + \frac{1}{LC}v_{CN}(t) = \frac{v_{T}(t)}{LC}$	$\zeta = \frac{R_T}{2} \int_{-L}^{L} \omega_o = \frac{1}{\sqrt{L_C}}$
	Z √L 'VLC

Parallel RLC ODE

$$\frac{d^2 i_{LN}(t)}{dt^2} + \frac{1}{R_T C} \frac{d i_{LN}(t)}{dt} + \frac{1}{LC} i_{LN}(t) = \frac{i_N(t)}{LC}$$

$$\zeta = \frac{1}{2R_T} \sqrt{\frac{L}{C}} \quad \omega_o = 1/\sqrt{\frac{L}{LC}}$$

General Roots of Characteristic Equation and Natural Response

$s_{1,2} = \omega_o(-\zeta \pm \sqrt{\zeta^2 - 1})$	$y_N(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}, t \ge 0$

Case A

	$V_{1}(t) = V_{1}(t) + V_{2}(t) = 0$
$s_{1,2}=-\alpha_1,-\alpha_2$	$y_N(t) = K_1 e^{-\alpha_1 t} + K_2 e^{-\alpha_2 t}, t \ge 0$

Case B

$s_{1,2} = -\alpha$	$y_{N}(t) = K_{1}e^{-\alpha t} + K_{2}te^{-\alpha t}$, $t \ge 0$
Casa C	

$$\begin{split} s_{1,2} &= -\alpha \pm j\beta \\ &\alpha = \zeta \omega_o \text{ and } \beta = \omega_d = \omega_o \sqrt{1-\zeta^2} \end{split} \qquad \qquad y_N(t) = K_1 e^{-\alpha t} \cos(\beta t) + K_2 e^{-\alpha t} \sin(\beta t) \text{ , } t \geq 0 \end{split}$$

Some ways to represent the characteristic equation of second-order circuits

$s^2 + 2\zeta\omega_0 s + \omega_0^2 = 0$	$(s+\alpha)^2+\beta^2=0$	$(s - p_1)(s - p_2) = 0$
$s^2 + Bs + \omega_0^2 = 0$	$s^2 + 2\alpha s + \omega_o^2 = 0$	$s^2 + \frac{\omega_0}{Q}s + \omega_0^2 = 0$

How to determine parameters from a response plot

now to determine parameters from a response plot			
$\omega_d = \beta = 2\pi \frac{1}{T}$	$\delta = \ln\left(\frac{y_1 - y_{\infty}}{y_2 - y_{\infty}}\right)$	$\zeta = \frac{1}{\sqrt{1 + \frac{4\pi^2}{\delta^2}}}$	

Initial and Final Value Theorems

$\lim f(t) = \lim sF(s)$	$\lim f(t) = \lim sF(s)$
t→0 `´ s→∞ `´	t→∞ `´ s→0

Device/Model	Resistance - R	Inductance - L	Capacitance - C	
Units	ohms, Ω	Henrys, H	Farads, F	
Circuit Symbol	+ V _R − → R i _R	↑ V, -	+ V _C - C	
Voltage Equation	$v_R = i_R R$	$v_L = L di_L/dt$	$v_C = v_C(0^+) + (1/C) \int_{0}^{\infty} i_C dt$	
Current Equation	$i_R = v_R G = v_R / R$	$i_L = i_L(0^+) + (1/L) \int v_L dt$	$i_C = C dv_C/dt$	
Power Equation	$p_R = i_R \times v_R$	$p_L = i_L \times v_L$	$p_C = i_C \times v_C$	
Energy Equation	$w_R = \int p_R dt$	$w_L = \frac{1}{2} L i_L^2$	$w_{\rm C} = \frac{1}{2} {\rm C} {\rm V}_{\rm C}^2$	
Energy Storage	None	Magnetic Field	Electric Field	
Continuity Equation	N/A	$i_L(\tau^-) = i_L(\tau^+)$	$v_{C}(\tau^{-}) = v_{C}(\tau^{+})$	
Typical Range	$1 \mathrm{k}\Omega$ – $10 \mathrm{M}\Omega$	1 μH – 10 H	10 pF – 100 μF	
Series	R _{EQ} =R ₁ +R ₂ +	L _{EQ} =L ₁ +L ₂ +	$C_{EQ} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \cdots}$	
Parallel	$R_{EQ} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \cdots}$	$L_{EQ} = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \cdots}$	C _{EQ} =C ₁ +C ₂ +	
Impedance	Z=R	Z=1/(jωC)	Z=jωL	
Impedance @ ω=0 (dc)	R	behaves like a short	behaves like an open	
Impedance @ $\omega = \infty$ (very high freq)	R	behaves like an open	behaves like a short	

T A B L E 9-2 basic Laplace transform pairs

Signal	Waveform $f(t)$	Transform $F(s)$
Impulse	$\delta(t)$	1
Step function	u(t)	$\frac{1}{s}$
Ramp	tu(t)	$\frac{1}{s^2}$
Exponential	$[e^{-\alpha t}]u(t)$	$\frac{1}{s+\alpha}$
Damped ramp	$[te^{-\alpha t}]u(t)$	$\frac{1}{(s+\alpha)^2}$
Sine	$[\sin \beta t]u(t)$	$\frac{\beta}{s^2 + \beta^2}$
Cosine	$[\cos \beta t]u(t)$	$\frac{s}{s^2 + \beta^2}$
Damped sine	$[e^{-\alpha t}\sin\beta t]u(t)$	$\frac{\beta}{\left(s+\alpha\right)^2+\beta^2}$
Damped cosine	$[e^{-\alpha t}\cos\beta t]u(t)$	$\frac{\beta}{(s+\alpha)^2 + \beta^2}$ $\frac{(s+\alpha)}{(s+\alpha)^2 + \beta^2}$

T A B L E 9-1 BASIC LAPLACE TRANSFORMATION PROPERTIES

Properties	TIME DOMAIN	Frequency Domain
Independent variable	t	S
Signal representation	f(t)	F(s)
Uniqueness	$\mathcal{L}^{-1}\{F(s)\}(=)[f(t)]u(t)$	$\mathscr{L}{f(t)} = F(s)$
Linearity	$Af_1(t) + Bf_2(t)$	$AF_1(s) + BF_2(s)$
Integration	$\int_0^t \! f(\tau) d\tau$	$\frac{F(s)}{s}$
Differentiation	$\frac{df(t)}{dt}$	sF(s) - f(0-)
	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0-) - f'(0-)$
	$\frac{d^3f(t)}{dt^3}$	$s^3F(s) - s^2f(0-) - sf'(0-) - f''(0-)$
s-Domain translation	$e^{-\alpha t}f(t)$	$F(s+\alpha)$
t-Domain translation	f(t-a)u(t-a)	$e^{-as}F(s)$

Form of F(s)	Technique	Residues
real distinct roots	PFE	$k_i = (s - p_i)F(s) _{s = p_i}$
complex roots	determine residue k using PFE	$f(t) = 2 k e^{-\alpha t}\cos(\omega t + \angle k)$
real repeated roots	factor repeated root then PFE	$k_i = (s - p_i)F(s) _{s = p_i}$
improper function	long division then PFE	$k_i = (s - p_i)F(s) _{s = p_i}$

Passive RLC Filter Topologies

Series RLC Circuit (Output across R)

Series RLC Circuit (Output across L and C)

$$\omega_{\rm o} = \frac{1}{\sqrt{LC}}$$

$$\omega_{c1}, \omega_{c2} = \mp \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$B = \frac{R}{L}$$

$$Q = \frac{\omega_o}{B} = \frac{1}{R} \sqrt{\frac{L}{C}}, \quad \zeta = \frac{1}{2Q} = \frac{R}{2} \sqrt{\frac{C}{L}}$$

$$\omega_{\rm o} = \frac{1}{\sqrt{\rm LC}}$$

$$\omega_{c1}, \omega_{c2} = \mp \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$B = \frac{R}{L}$$

$$Q = \frac{\omega_o}{B} = \frac{\sqrt{L/C}}{R}, \ \zeta = \frac{1}{2Q} = \frac{R}{2} \sqrt{\frac{C}{L}}$$

Parallel RLC Circuit (Output thru R)

$$\omega_{\rm o} = \frac{1}{\sqrt{\rm LC}}$$

$$\omega_{c1}, \omega_{c2} = \mp \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$$

$$B = \frac{1}{RC}$$

$$Q = \frac{\omega_o}{B} = R\sqrt{\frac{C}{L}}, \quad \zeta = \frac{1}{2Q} = \frac{1}{2R}\sqrt{\frac{L}{C}}$$

Parallel RLC Circuit (Output thru L or C)

$$\omega_{o} = \frac{1}{\sqrt{LC}}$$

$$\omega_{c1}, \omega_{c2} = \mp \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$$

$$Q = \frac{\omega_o}{B} = R \sqrt{\frac{C}{L}}, \quad \zeta = \frac{1}{2Q} = \frac{1}{2R} \sqrt{\frac{L}{C}}$$

BASIC OP AMP MODULES

