

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕЛРА «П	рограммное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №2 по курсу «Моделирование»

на тему: «Изучение марковских процессов»

Студент <u>ИУ7-71Б</u> (Группа)	(Подпись, дата)	Постнов С. А. (Фамилия И. О.)
Преподаватель	(Подпись, дата)	Рудаков И. В. (Фамилия И. О.)

СОДЕРЖАНИЕ

У	Условие лабораторной работы				
1	Теоретическая часть	4			
	1.1 Марковский процесс	4			
2	Практическая часть	5			

Условие лабораторной работы

Целью лабораторной работы является написание программы с графическим интерфейсом, которая позволяет определить время пребывания сложной системы в каждом из состояний в установившемся режиме работы.

1 Теоретическая часть

1.1 Марковский процесс

Для математического описания функционирования устройств, развивающихся в форме случайного процесса, может быть применен математический аппарат, разработанный в теории вероятностей для марковских случайных процессов. Случайный процесс, протекающий в некоторой системе, называется марковским, если для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящем и не зависит от того, когда и каким образом система пришла в это состояние. В реальности таких систем не существует.

В марковском случайном процессе будущее развитие зависит только от настоящего состояния и не зависит от предыстории процесса. Для марковского случайного процесса составляют уравнения Колмогорова, представляющие собой соотношения следующего вида:

$$F(P'(t), P(t), \lambda) = 0 \tag{1.1}$$

, где P(t) — вероятность нахождения в состоянии для сложной системы, λ — коэффициенты, показывающие, с какой скоростью система переходит из одного состояния в другое (интенсивность).

2 Практическая часть

На рисунке 2.1 представлен графический интерфейс разработанной программы.

•			Лаб	ораторна	я работа	Nº2			
Соличест	во состоян	ний (≤10):							
3		,,-							
Иатрица	интенсивн	остей пер	еходов:						
0.0	0.5	0.19	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				Вычи	слить				
Состоян Состоян Состоян Время с Состоян Состоян	зированнь ие 0: 0.726 ие 1: 0.227 ие 2: 0.045 табилизаці ие 0: 1.201 ие 1: 1.201 ие 2: 0.306	64 77 59 ии для ка: 12 2			остояния:				

Рисунок 2.1 – Графический интерфейс разработанной программы

На рисунках 2.2 - 2.3 представлены результаты работы программы.

Стабилизированные вероятности для каждого состояния:
Состояние 0: 0.4722
Состояние 1: 0.1667
Состояние 2: 0.3611
Время стабилизации для каждого состояния:
Состояние 0: 0.6061
Состояние 1: 0.4040
Состояние 2: 0.6061

Рисунок 2.2 – Вычисленные значения

Рисунок 2.3 – График стабилизации вероятностей для каждого состояния