CSC 5451, Professor E. Gethner Assignment 0: All About Induction 18 August 2015

Quiz related to this homework in class on Thursday, 3 September 2015

Please feel free to collaborate with one another on this assignment. Consider writing up the solutions on your own for quiz practice. Important information regarding the quizzes: Be neat, write complete sentences, and show all of your work. The way you communicate the solution to your answer is as important as the answer itself. Good luck!

- 1. Find a closed form formula for $\sum_{i=1}^{n} i^2$ and prove by induction that your formula is correct for all $n \in \mathbb{Z}^+$.
- 2. Prove by induction that $5^n + 3$ is divisible by 4 for all $n \in \mathbb{Z}^+$.
- 3. Derive a formula for the number of subsets of an n-element set and prove that your formula is correct (for all $n \in \mathbb{Z}^+$) by induction. For example, $\{1, a, \operatorname{chocolate}, \pi\}$ is a 4 element set. Note also that the empty set (denoted by $\{\}$ or \varnothing) is a valid subset of any set.
- 4. Second Principle of Mathematical Induction:
 - Suppose $P(n_0)$ is true.
 - If for any integer $k \ge n_0$, $P(n_0)$, $P(n_0 + 1)$, $P(n_0 + 2)$, ..., P(k) are true imply that P(k + 1) is true, then P(n) is true for all $n \ge n_0$.

Prove by the Second Principle of Mathematical Induction that any postage charges of greater than or equal to 5 cents can be made using only 2- and 5-cent stamps.

5. If a and r are real numbers (that is, $a, r \in \mathbb{R}$) such that $r \neq 1$, then prove by induction on n that

$$a + ar + ar^{2} + \dots + ar^{n} = \frac{ar^{n+1} - a}{r - 1}.$$

Note that the formula above is the summation formula for a finite geometric series with first term a, ratio r, and with n+1 terms. We'll need this formula later in the semester.