Predicting Home Selling Prices with Historical Data

Derry Li

Problem Statement

In light of the *Zillow incident*, we will build a **predictive** model containing a multitude of input features to help robustly predict future housing prices.

Data

- Ames Housing Data
- 2930 observations, 82 features
- 20 features with nulls
- 22% observations have nulls

Feature types

categorical	23
ordinal	23
discrete	14
continuous	20
id	2

Data Cleaning

- drop Id's
- column rename
 - Lot Area → lot_area
- more meaningful features

Base Model

Base Model - Simple Linear Regression

- Input features
 - lot_area (ft ²)
 - overall qual (1-10)
- Output feature : saleprice (\$)
- StandardScaler

Base Model - Simple Linear Regression

log

Log transform

saleprice distribution

log(saleprice) distribution

Base Model - Simple Linear Regression

Performance

	train	test
R ² score	0.7247	0.7288
RMSE	0.2169	0.2111
CV score	0.7161	0.7341

Robust Model

Ordinal Encoding

Finished	3
Rough Finished	2
Unfinished	1
No Garage	0

Ordinal Encoding

Finished	3
Rough Finished	2
Unfinished	1
No Garage	0

Ex	5
Gd	4
TA	3
Fa	2
Ро	1
NA	0

Log transform

- on all numeric input features with skew > 0.6
- on output feature (saleprice)

Log transform

- on all numeric input features with skew > 0.6
- on output feature (saleprice)

1e-6 8 7 6 3 2 100000 200000 400000 500000 saleprice

saleprice distribution

Log transform

- on all numeric input features with skew > 0.6
- on output feature (saleprice)

One Hot Encoding

- on all categorical feature
- + selected ordinal features

GridSearch

- Standard scaling
- Missing values KNN Imputer $\rightarrow k = 5$
- Feature selection Lasso $\rightarrow \alpha = 0.001$

Once again - more granular

GridSearch

- Standard scaling
- Missing values KNN Imputer $\rightarrow k = 5$
- Feature selection Lasso $\rightarrow \alpha = 0.0031$
 - feature reduction: $217 \rightarrow 93$

More Data Preprocessing

Outlier removal

standardized residuals

More Data Preprocessing

Outlier removal

- standardized residuals
 - if > 3
 - if < -3
- Dropped 17 outliers

Modeling - LASSO, Ridge, ElasticNet, MLR

	LASSO		Ridge		ElasticNet		MLR	
	train	test	train	test	train	test	train	test
R² score	0.957	0.926	0.956	0.925	0.957	0.926	0.957	0.924
RMSE	15895	21053	15883	21163	15898	21057	15853	21132
CV score	0.949	0.913	0.949	0.909	0.949	0.912	negative	negative

Modeling - LASSO, Ridge, ElasticNet, MLR

	LASSO		Ridge		ElasticNet		MLR	
	train	test	train	test	train	test	train	test
R ² score	0.957	0.926	0.956	0.925	0.957	0.926	0.957	0.924
RMSE	15895	21053	15883	21163	15898	21057	15853	21132
CV score	0.949	0.913	0.949	0.909	0.949	0.912	negative	negative

Recap

Data Cleaning

 \downarrow

Ordinal Encoding + Log Transform

 \downarrow

One Hot Encoding

Recap

Grid Search (for k and α)

Standard Scaling

KNN Imputer

Feature Selection (LASSO)

 $\times 2$

Recap

Scale, Impute, Feature Selection **Outlier Removal** LASSO

Results + Future Work

• 95% train, 92% test set can be explained (5-fold CV)

- Test the effect of train-test-split ratio
- Further feature reduction → clustering on OHE features
- Other advanced models...