@asi1024

Kyoto Univ. Informatics and Mathematical Science 2nd

March 10, 2014

- はじめに
- ② 予備知識
- ③ いろいろなプライオリティキュー
- 4 ヒープを用いたアルゴリズム
- 5 最後に

- はじめに
 - 自己紹介
 - この講座の目的

はじめに

ID: asi1024

Position: 前会計 Twitter: asi1024

● KMC での活動: 競技プログラミングなど

- ICPC のチームメイトを求めて京都大学にやってきた
- ICPC のチームメイトを求めて KMC にやってきた
- 本当は大学に入ったら弓道をやるつもりだった

はじめに

- データ構造「ヒープ」について知ってもらう
 - 半分は実用性
 - 半分は理論的興味

- ② 予備知識
 - グラフの定義と性質
 - 木の定義
 - 計算量

グラフ

graph

グラフは有限集合 V, E と関数 Ψ の 3 つ組で定義され,

無向グラフの場合,

$$\Psi: E \to \{X \subset V: |X| = 2\}$$

有向グラフの場合,

$$\Psi: E \to V \times V$$

グラフの例

左が有向グラフ,右が無向グラフ

単純グラフ

simple graph

自己ループと多重辺を持たないグラフを**単純グラフという**. 通常,eと $\Psi(e)$ を同一視して,

無向グラフの場合,

$$E(G) \subset \{X \subset V(G) : |X| = 2\}$$

有向グラフの場合,

$$E(G) \subset \{(v, w) \in V(G) \times V(G) : v \neq w\}$$

を用いて,G = (V(G), E(G))と書く.

単純グラフの例

左が有向グラフ,右が無向グラフ

部分グラフ

subgraph

グラフ
$$G = (V(G), E(G))$$
に対して,

$$V(H) \subset V(G)$$
 and $E(H) \subset E(G)$

となる H = (V(H), E(H)) を G の $\frac{\mathbf{n}}{\mathbf{n}}$ のとき G は H を含むともいう .

左が有向グラフ,右が無向グラフ

頂点の次数

degree

無向グラフGと $X,Y \subset V(G), v \in V(G)$ に対して,

$$E(X,Y) := \{ \{x,y\} \in E(G) : x \in X \backslash Y, y \in Y \backslash X \}$$

$$\delta(X) := E(X, V(G) \backslash X)$$

$$\delta(v) = \delta(\{v\})$$

と定義し, $|\delta(v)|$ の値を点v の次数という.

degree

有向グラフGと $X,Y \subset V(G), v \in V(G)$ に対して,

$$E^+(X,Y) := \{\{x,y\} \in E(G) : x \in X \backslash Y, y \in Y \backslash X\}$$

$$\delta^+(X) := E^+(X,V(G)\backslash X)$$

$$\delta^-(X) = \delta^+(V(G)\backslash X)$$

$$\delta(X) = \delta^+(X) \cup \delta^-(X)$$

と定義し, $|\delta(v)|$ の値を点v の次数という.

グラフの定義と性質

例のグラフの次数

左が有向グラフ,右が無向グラフ

walk

グラフGに対して,Gの頂点と辺の有限個の交差系列

$$W = v_1, e_1, v_2, \cdots, v_k, e_k, v_{k+1} \ (k \ge 0)$$

が全ての $i=1,\cdots k$ で $e_i=(v_i,v_{i+1})\in E(G)$ (無向グラフの場合は $e_i=\{v_i,v_{i+1}\}\in E(G)$) を満たすとき,W を G の歩道という.

path

グラフGに対して,Gの歩道Wの頂点がすべて異なるとき,WをGの道という.

道の例

左が有向グラフ,右が無向グラフ

グラフの定義と性質

閉路

circuit

グラフGの歩道 $W=v_1,e_1,v_2,\cdots,v_k,e_k,v_{k+1}$ が $v_1=v_{k+1}$ を満たすとき,WをGの閉路という.

グラフの定義と性質

連結

connected

無向グラフGの任意の頂点の組v, wについて, $v \geq w$ を結ぶ道が存在するとき, G は連結であるという.

[、]連結グラフと非連結グラフ

左が連結グラフ、右が非連結グラフ

木の定義

木

tree

無向グラフGが連結であり閉路が存在しないとき,Gを無向木という.

arborescence

有向グラフGに閉路が存在せず,1つの頂点を除いて他の全ての頂点の入次数が1のとき,Gを無向木という.

木の例

左が無向木,右が有向木

木の定義

これが有向木だ!!!! 11

有向木

根が1つだけ存在する. 根以外の頂点は,親を1つだけ持つ. ループは存在しない

ランダウの記号

$$f(x) \in O(g(x)) \Leftrightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} < \infty$$

$$f(x) \in \Omega(g(x)) \Leftrightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} > 0$$

$$f(x) \in \Theta(g(x)) \Leftrightarrow 0 < \lim_{x \to \infty} \frac{f(x)}{g(x)} < \infty$$

$$f(x) \in o(g(x)) \Leftrightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

計算量

ランダウの記号

$$f(x) \in O(g(x))$$
 を $f(x) = O(g(x))$ と書く事がある!!

- いろいろと便利
- しかしこれはどうなんだ

- 3 いろいろなプライオリティキュー
 - プライオリティキュー
 - 2分ヒープ
 - 2項ヒープ
 - フィボナッチヒープ

Priority Queue

全順序集合 $P(C, \leq)$ について, C 上の要素からなるプライオリティキューは以下の操作が実行できる.

push: C の要素 x を追加する

• pop: ヒープの最大値をもつ要素を削除する

top: ヒープの最大値を求める

Priority Queue

全順序集合 $P(C, \leq)$ について, C 上の要素からなる プライオリティキューは以下の操作が実行できる.

push: C の要素 x を追加する

pop: ヒープの最大値をもつ要素を削除する

● top: ヒープの最大値を求める

様々なアルゴリズムに応用できる!!

プライオリティキュ

ナイーブな実装

リストによる実装

- push: O(1) で *C* の要素 *x* を追加する
- pop: O(n)でヒープの最大値をもつ要素を削除する
- top: O(n) でヒープの最大値を求める

リストによる実装

前もって最大値を計算しておけば?

- push: O(1) で C の要素 x を追加する
- pop: O(n) でヒープの最大値をもつ要素を削除する
- top: O(1) でヒープの最大値を求める

リストによる実装

前もって最大値を計算しておけば?

- push: O(1) で *C* の要素 *x* を追加する
- pop: O(n) でヒープの最大値をもつ要素を削除する
- top: O(1) でヒープの最大値を求める

こんなもん使えるか!!

前もって最大値を計算しておけば?

- push: O(1) で *C* の要素 *x* を追加する
- pop: O(n) でヒープの最大値をもつ要素を削除する
- top: O(1) でヒープの最大値を求める

こんなもん使えるか!! ここで,人類は「ヒープ」を発明したのだ

2分ヒープ

Binary Heap

全順序集合 $P(C,\leq)$ について,C 上の要素からなるヒープは以下の操作が実行できる

- ullet push : $O(\log N)$ で C の要素 x を追加する
- replace : $O(\log N)$ で C の要素 x でヒープの最大値をもつ要素を置き換える
- ullet pop : $O(\log N)$ でヒープの最大値をもつ要素を削除する
- delete : $O(\log N)$ で与えられたポインタの先の要素を消去する
- top: O(1) でヒープの最大値を求める ヒープ条件を満たす完全二分木の構造 (二分木: 出次数が高々2の有向木)
 - (完全二分木:出次数が0か2で,全ての葉が同じ深さ)

2 分ヒープ

2分ヒープ

ヒープ条件

全ての要素の値はその親の要素の値より小さいか等しい

例

key, parent, left, right

2分ヒープAについて

key(i)

- 1. If i < size(A)
- **Then** return key[i]2.
- 3. **Else** return $-\infty$

parent(i)

1. return (i-1)/2

left(i)

1. return 2i+1

right(i)

1. return 2i+2

push(A, k)

- 1. $i \leftarrow size[A]$
- $2. \ size[A] \leftarrow size[A] + 1$
- 3. While i > 0 かつ key(parent(i)) < k do
- 4. $key[i] \leftarrow key(parent(i))$
- 5. $i \leftarrow parent(i)$
- 6. $key[i] \leftarrow k$

push

push

 $O(\log N)$ で C の要素 x を追加する

push

push

 $O(\log N)$ で C の要素 x を追加する

push

push

 $O(\log N)$ で C の要素 x を追加する

replace

replace(A, k)

- 1. $key[0] \leftarrow k$
- 2. $i \leftarrow 0$
- 3. While key(i) < key(left(i)) or key(i) < key(right(i)) do
- 4. If key(left(i)) > key(right(i))
- 5. Then $child \leftarrow left(i)$
- 6. Else $child \leftarrow right(i)$
- 7. $key[i] \leftrightarrow key[child]$
- 8. $i \leftarrow child$

replace

 $O(\log N)$ で C の要素 x ヒープの最大値をもつ要素を置き換える

replace

replace

 $O(\log N)$ で C の要素 x ヒープの最大値をもつ要素を置き換える

最後に

replace

replace

 $O(\log N)$ で C の要素 x ヒープの最大値をもつ要素を置き換える

pop(A, k)

- 1. $x \leftarrow key(size[A] 1)$
- 2. $size[A] \leftarrow size[A] 1$
- 3. replace(A, x)

pop

pop

 $O(\log N)$ でヒープの最大値をもつ要素を削除する

delete

delete

 $O(\log N)$ で与えられたポインタの先の要素を消去する

top(A)

- 1. **If** size(A) > 0
- 2. **Then** return key(0)
- 3. **Else** return *undefined*

Binary Heap

- ullet push : $O(\log N)$ で C の要素 x を追加する
- replace : $O(\log N)$ で C の要素 x でヒープの最大値をもつ要 素を置き換える
- ullet pop : $O(\log N)$ でヒープの最大値をもつ要素を削除する
- ullet delete : $O(\log N)$ で与えられたポインタの先の要素を消去 する
- top: O(1) でヒープの最大値を求める

ヒープは便利!!

ヒープを始めとする高速な優先度付きキューはあらゆる場面で活 躍する

Binary Heap

- \bullet push : $O(\log N)$ で C の要素 x を追加する
- replace : $O(\log N)$ で C の要素 x でヒープの最大値をもつ要 素を置き換える
- ullet pop : $O(\log N)$ でヒープの最大値をもつ要素を削除する
- ullet delete : $O(\log N)$ で与えられたポインタの先の要素を消去 する
- top: O(1) でヒープの最大値を求める

ヒープは便利!!

ヒープを始めとする高速な優先度付きキューはあらゆる場面で活 躍する

しかしこれだけでは終わらない

Binomial Heap

全順序集合 $P(C,\leq)$ について,C 上からなる要素の二項ヒープは以下の操作が実行できる

- ullet top : $O(\log N)$ でヒープの最大値を求める
- merge: $O(\log(N+M))$ で2つのヒープを併合する
- ullet push $: O(\log N)$ で C の要素 x を追加する
- ullet pop : $O(\log N)$ でヒープの最大値をもつ要素を削除する
- delete : $O(\log N)$ で与えられたポインタの先の要素を消去する
- replace : $O(\log N)$ で C の要素 x ヒープの最大値をもつ要素 を置き換える
 - ヒープ条件を満たす2項木の集合

2項木

Binomial Tree

 B_0 は 1 個の頂点から構成される . B_k は 2 つの B_{k-1} から構成され , 片方の根がもう一方の根の最も左の子になるように連結される .

2項木

Binomial Tree

各接点は,親を指すポインタ,最も左の子を指すポインタ, 直接右の兄弟を指すポインタを含んでいる.

Binomial Tree

各接点は,親を指すポインタ,最も左の子を指すポインタ, 直接右の兄弟を指すポインタを含んでいる.

例

Binomial Heap

2項ヒープは2項木を小さい順に左から並べた集合として 表現される.

Binomial Heap

2項ヒープは2項木を小さい順に左から並べた集合として 表現される.

例

$\mathsf{top}(H)$

- 1. $y \leftarrow \mathsf{nil}$
- 2. $x \leftarrow head(H)$
- 3. $max \leftarrow -\infty$
- 4. While $x \neq \text{nil do}$
- 5. If key[x] > max
- 6. Then $max \leftarrow key[x]$
- 7. $y \leftarrow x$
- 8. $x \leftarrow sibling[x]$
- 9. return y

top

各 2 項木の根の中で最大値を探す . $O(\log N)$

例

$merge(H_1, H_2)$

- 1. 各 2 項木を小さい順に mix
- 2. $x \leftarrow head(H)$
- 3. While $sibling(x) \neq nil$ do
- 4. If $deg[x] = deg[sibling(x)] \neq deg[sibling(sibling(x))]$
- 5. **Then** $x \ge sibling(x)$ の 2 つの二項木を merge
- 6. Else $x \leftarrow sibling(x)$

元の H_1, H_2 は破壊される

merge

merge

2つの2項ヒープを併合する

merge

2項木を小さい順に併合する

小さい順に同じサイズのヒープがあれば併合する

例 28 22 18 12 14 16 21 27 11 7 13 10 9 3 5

merge

小さい順に同じサイズのヒープがあれば併合する

例 38 25 19 29 31 28 18 12 14 16 21 27 11 22 7 13 10 9 3

merge

小さい順に同じサイズのヒープがあれば併合する

merge

merge

小さい順に同じサイズのヒープがあれば併合する

push

push

1要素のみからなる二項ヒープを merge する

pop(H)

- 1. $x \leftarrow top(H)$
- 2. *H* から接点 *x* 以下の 2 項木を除く
- 3. x の子の sibling のリストを逆順に繋ぎ, 出来た2項ヒープを H'とする
- 4. merge (H, H')

元の H_1, H_2 は破壊される

最大値の要素を調べる

例

最大値を消す

例

最大値を消す

例

最大値の要素の子だったものを小さい順に併合する

例

最大値の要素の子だったものを小さい順に併合する

例

残った2つの二項ヒープを merge する

例

delete(H, x)

- 1. $x \leftarrow \infty$
- 2. While $parent(x) \neq nil$ do
- 3. $key[x] \leftrightarrow key[parent(x)]$
- 4. $x \leftarrow parent(x)$ 5. pop(H)

元の H_1, H_2 は破壊される

delete

値を $-\infty$ に置き換える

delete

ヒープ条件を満たすよう調整する

pop

例

2 項ヒープ

replace

$\mathsf{replace}(H,k)$

- 1. pop(H)
- 2. push (H, k)

Binomial Heap

全順序集合 $P(C,\leq)$ について,C 上からなる要素の二項ヒープは以下の操作が実行できる

- ullet top : $O(\log N)$ でヒープの最大値を求める
- merge: $O(\log(N+M))$ で2つのヒープを併合する
- ullet push $: O(\log N)$ で C の要素 x を追加する
- ullet pop : $O(\log N)$ でヒープの最大値をもつ要素を削除する
- delete : $O(\log N)$ で与えられたポインタの先の要素を消去する
- replace : $O(\log N)$ で C の要素 x ヒープの最大値をもつ要素 を置き換える すっげえ強い!!

全順序集合 $P(C, \leq)$ について, C 上からなる要素の二項ヒープは 以下の操作が実行できる

- top : O(log N) でヒープの最大値を求める
- merge: $O(\log(N+M))$ で2つのヒープを併合する
- ullet push: $O(\log N)$ で C の要素 x を追加する
- ullet pop : $O(\log N)$ でヒープの最大値をもつ要素を削除する
- delete : $O(\log N)$ で与えられたポインタの先の要素を消去 する
- ullet replace : $O(\log N)$ で C の要素 x ヒープの最大値をもつ要素 を置き換える すっげえ強い!!

しかし人間の探究心はとどまるところを知らない・・・

Fibonacci Heap

全順序集合 $P(C,\leq)$ について,C 上からなる要素のフィボナッチヒープは 以下の操作が実行できる

- top: O(1) でヒープの最大値を求める
- ullet push : O(1) で C の要素 x を追加する
- merge: O(1) で2つのヒープを併合する
- ullet pop : $O(\log N)$ でヒープの最大値をもつ要素を削除する
- decrease key : O(1) でポインタの先の要素の値を増やす
- ullet delete : $O(\log N)$ でポインタの先の要素を消去する

ならし計算量(1回あたりの平均)による値

フィボナッチヒープ

Fibonacci Heap

ヒープ条件を満たす木の集合 2分ヒープや2項ヒープよりも条件が弱い

フィボナッチヒープ

Fibonacci Heap

ヒープ条件を満たす木の集合 2分ヒープや2項ヒープよりも条件が弱い

フィボナッチヒープ

Fibonacci Heap

ヒープ条件を満たす木の集合 2分ヒープや2項ヒープよりも条件が弱い

push

push(H, k)

- 1. k を値に持つ接点 x を作る
- 2. insert(head[H], x)
- 3. If k > key[head[H]]
- 4. Then $head[H] \leftarrow right[head[H]]$

push

push

根リストに接点を挿入する

push

根リストに接点を挿入する

merge

merge(H, H')

- 1. $left[right[head[H]]] \leftrightarrow left[right[head[H']]]$
- 2. $right[head[H]] \leftrightarrow right[head[H]]$
- 3. If key[head[H']] > key[head[H]]
- 4. Then $head[H] \leftarrow head[H']$

merge

merge

2つの根リストを結合する

pop

pop(H)

- 1. *head*[*H*] を *H* の根リストから削除する
- 2. head[H] の子を全て根リストに追加する
- 3. $head[H] \leftarrow child[head[H]]$
- 4. 根リストに含まれる全ての接点の次数が異なるように整理する
- 5. 根リストから最大値を持つ接点を探し, それを head にする

decreaseKey

decreaseKey(H, x, k)

- 1. **If** k < key[x]
- 2. Then error
- 3. $key[x] \leftarrow k$
- 4. $y \leftarrow parent[x]$
- 5. If $y \neq \text{nil}$ かつ key[x] > key[y]
- 6. **Then** cut(H, x)
- 7. $\mathsf{cascadingCut}(H, y)$
- 8. If key[x] > key[head[H]]
- 9. Then $head[H] \leftarrow x$

cut(H, x)

- 1. $y \leftarrow parent[x]$
- 2. y の子リストから x を取り除き, $deg[y] \leftarrow deg[y] 1$
- 3. *x* を *H* の値リストに加える
- 4. $parent[x] \leftarrow \mathsf{nil}$
- 5. $mark[x] \leftarrow \mathsf{FALSE}$

$\mathsf{cascadingCut}(H, y)$

- 1. If $parent[y] \neq nil$
- 2. Then If mark[y] = FALSE
- 3. **Then** $mark[y] \leftarrow FALSE$
- 4. Else cut(H, y)
- ${\tt 5.} \qquad {\tt cascadingCut}(H,parent[y])$

フィボナッチヒ<u>ープ</u>

decreaseKey

decreaseKey

接点が親から切り離されるのは,2つの子を失った直後である.

フィボナッチヒープの計算量

Fibonacci Heap の計算量

- top : O(1) でヒープの最大値を求める
- ullet push : O(1) で C の要素 x を追加する
- merge: O(1) で2つのヒープを併合する
- ullet pop : $O(\log N)$ でヒープの最大値をもつ要素を削除する
- ullet decrease key : O(1) でポインタの先の要素の値を増やす
- ullet delete : $O(\log N)$ でポインタの先の要素を消去する

ならし計算量(1回あたりの平均)による値

Fibonacci Heap の計算量

- top : O(1) でヒープの最大値を求める
- push : *O*(1) で *C* の要素 *x* を追加する
- merge: O(1) で2つのヒープを併合する
- ullet pop : $O(\log N)$ でヒープの最大値をもつ要素を削除する
- ullet decrease key : O(1) でポインタの先の要素の値を増やす
- ullet delete : $O(\log N)$ でポインタの先の要素を消去する

ならし計算量(1回あたりの平均)による値

本当にそんな計算量で実現可能なのか?

償却計算量

償却計算量

操作を複数回行った時の1回あたりのならし計算量

ポテンシャル関数

ポテンシャル関数 Φ $\Phi(H)$ はヒープ H が遅延させている計算回数

ポテンシャル関数を用いて償却計算量を計算するここでは, $\Phi(H)=t(H)+2m(H)$ とする $t(H)=|\{x\in V:parent(x)=null\}|$ $m(H)=|\{x\in V:mark[x]=true\}|$

push

push の償却計算量

$$O(1) + (t(H) + 1 + 2m(H)) - (t(H) + 2m(H)) = O(1)$$

merge

merge の償却計算量

ポテンシャルの増加は、

$$O(1) + (t(H) + 2m(H)) - (t(H_1) + 2m(H_1)) - (t(H_2) + 2m(H_2))$$

= $O(1)$

decrease key

decrease key の償却計算量

cascading cut が呼び出される回数を c 回とすると ,

$$O(c) + ((t(H) + c) + 2(m(H) - c + 2)) - (t(H) + 2m(H))$$

$$= O(c) + 4 - c$$

$$= O(1)$$

pop の償却計算量

$$\begin{split} D(n) &:= \max_{parent[x] = nil} deg[x] \text{ LUT ,} \\ O(D(n) + t(H)) + ((D(n) + 1) + 2m(H)) - (t(H) + 2m(H)) \\ &= O(D(n)) + O(t(H)) - t(H) \\ &= O(D(n)) \end{split}$$

pop の償却計算量

$$\begin{split} D(n) := \max_{parent[x] = nil} deg[x] & \ \, \text{LCT}, \\ O(D(n) + t(H)) + ((D(n) + 1) + 2m(H)) - (t(H) + 2m(H)) \\ &= O(D(n)) + O(t(H)) - t(H) \\ &= O(D(n)) = O(\log N) \end{split}$$

最大次数の評価

最大次数の評価

x を根とした木の接点の数を size(x) として, $size(x) = \Omega(\phi^{deg[x]})$ であることを示す.

フィボナッチ数を用いた証明!!

ようやくフィボナッチヒープの名の由来を語る時が来た

定義

 $k \in \mathbb{N}$ に対して, k 番目のフィボナッチ数は漸化式

$$F_k = \begin{cases} 0 & (k=0) \\ 1 & (k=1) \\ F_{k-1} + F_{k-2} & (k \ge 2) \end{cases}$$

によって定義される.

フィボナッチ数の性質

補題

すべての整数 k > 0 に対して,

$$F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$

補題

すべての整数 $k \ge 0$ に対して,

$$F_{k+2} \ge \phi^k$$

ただし, ϕ は黄金比であり, $\phi=(1+\sqrt{5})/2$ である.

証明略.

フィボナッチヒーブ

最大次数の評価

補題

xをフィボナッチヒープ内の任意の接点とし,deg[x]=kとする.xの子 y_1,y_2,\cdots,y_k が,この順番で x に連結されたと仮定する.このとき,2 以上の整数 i に対し, $deg[y_i]\geq i-2$ が成り立つ.

 y_i が x に連結された時点で,deg[x]=i を満たす.接点 y_i が x に連結されるのは $deg[x]=deg[y_i]$ のときであるので, y_i が x に連結された時点で, $deg[y_i]=i-1$ を満たす.接点は 2 つの子を失った時点で切断されるはずなので,x に k 個の接点が連結されている時点で $deg[i] \geq i-2$

補題

x をフィボナッチヒープの任意の接点としたとき, k = deg[x] として, $size(x) \geq F_{k+2} \geq \phi^k$ が成り立つ.

 s_k を deg[z]=k となる全ての接点 z の size(z) の最小値とする . $s_0=1, s_1=2, s_2=3$ は明らか . 3 以上の整数 k について , 以下が成り立つ .

$$s_k \ge 2 + \sum_{i=2}^k s_{i-2}$$

ここで $k \in \mathbb{N}$ について $s_k \geq F_{k+2}$ となることを示す.

k に関する帰納法により証明する.

k=0とk=1については自明.

 $k \ge 2$ として, $i \in \{0, 1, \dots, k-1\}$ を仮定したとき,

$$s_k \ge 2 + \sum_{i=2}^k s_{i-2}$$

$$\ge 2 + \sum_{i=2}^k F_i$$

$$= 1 + \sum_{i=0}^k F_i = F_{k+2}$$

系

n 接点フィボナッチヒープの接点の最大次数は $O(\log n)$ である.

補題より,

$$size(x) > s_k > F_{k+2} > \phi^k$$

を得る.つまり, $n \geq \phi^k$ であるので, $k \leq \log_{\phi} n$ である.

よって,最大次数 $D(n) = O(\log n)$ である.

- 4 ヒープを用いたアルゴリズム
 - 最短経路問題

最短経路問題

- ullet インスタンス 有向グラフG,重み関数 $c: E(G)
 ightarrow \mathbb{R}$,2 点 $s,t \in V$
- タスク 最短 *s - t - パス P* or *s* から *t* が到達不可能であることの決定

単一始点全点間最短距離を求めるアルゴリズム

Dijkstra のアルゴリズム

- 入力 重み付き有向グラフG重み関数 $c:E(G)
 ightarrow \mathbb{R}_+$ 始点 $s\in V(G)$
- 出力s から全ての t ∈ V(G) へのパスとその距離

Dijkstra のアルゴリズム

- 1. $d(s) \leftarrow 0, \forall v \in V(G) \{s\} \ d(v) \leftarrow \infty, R \leftarrow \emptyset$ で初期化
- 2. $d(v) = \min_{w \in V(G) R}$ となる $v \in V(G) R$ を 1 つ求める
- 3. $R \leftarrow R \cup \{v\}$ とする
- 4. For $(v,w) \in E$ を満たす全ての $w \in V(G) R$ do If d(w) > d(v) + c((v, w)) then $d(w) \leftarrow d(v) + c((v,w)), p(w) \leftarrow v$ とする
- 5. If $R \neq V(G)$ then 2 に行く

Rは最短路が確定した頂点

2~5のループは高々 |V(G)|回

Dijkstra のアルゴリズム

- 1. $d(s) \leftarrow 0, \forall v \in V(G) \{s\} \ d(v) \leftarrow \infty, R \leftarrow \emptyset$ で初期化
- $2. \ d(v) = \min_{w \in V(G) R}$ となる $v \in V(G) R$ を 1 つ求める

ナイーブな実装ではO(V)

- 3. $R \leftarrow R \cup \{v\}$ とする
- 4. For $(v,w) \in E$ を満たす全ての $w \in V(G) R$ do If d(w) > d(v) + c((v,w)) then $d(w) \leftarrow d(v) + c((v,w)), \ p(w) \leftarrow v$ とする
- 5. If $R \neq V(G)$ then 2 に行く
- $2 \sim 5$ のループは高々 |V(G)| 回計算量は $O(V^2)$

Dijkstra のアルゴリズム

- 1. $d(s) \leftarrow 0, \forall v \in V(G) \{s\} \ d(v) \leftarrow \infty, R \leftarrow \emptyset$ で初期化
- 2. $d(v) = \min_{w \in V(G) R}$ となる $v \in V(G) R$ を 1 つ求める

ナイーブな実装ではO(V)

- 3. $R \leftarrow R \cup \{v\}$ とする
- 4. For $(v,w) \in E$ を満たす全ての $w \in V(G) R$ do If d(w) > d(v) + c((v, w)) then $d(w) \leftarrow d(v) + c((v,w)), p(w) \leftarrow v$ とする
- 5. If $R \neq V(G)$ then 2 に行く
- $2 \sim 5$ のループは高々 |V(G)| 回 計算量は $O(V^2)$ ここでヒープを使う!!!

Dijkstra のアルゴリズム

- 1. $d(s) \leftarrow 0, \forall v \in V(G) \{s\} \ d(v) \leftarrow \infty, R \leftarrow \emptyset$ で初期化
- $2. \ d(v) = \min_{w \in V(G) R}$ となる $v \in V(G) R$ を 1 つ求める

 $\mathsf{top},\mathsf{pop}$ にかかる時間は $O(\log V)$

- 3. $R \leftarrow R \cup \{v\}$ とする
- 4. For $(v,w) \in E$ を満たす全ての $w \in V(G) R$ do If d(w) > d(v) + c((v,w)) then $d(w) \leftarrow d(v) + c((v,w)), \ p(w) \leftarrow v \ とする$ push で $O(\log V)$
- 5. If $R \neq V(G)$ then 2 に行く
- $2 \sim 5$ のループは高々 |V(G)| 回 計算量は $O((E+V)\log V)$ 二分ヒープを使った場合

Dijkstra のアルゴリズム

- 1. $d(s) \leftarrow 0, \forall v \in V(G) \{s\} \ d(v) \leftarrow \infty, R \leftarrow \emptyset$ で初期化
- 2. $d(v) = \min_{w \in V(G) R}$ となる $v \in V(G) R$ を 1 つ求める

 $\mathsf{top},\mathsf{pop}$ にかかる時間は $O(\log V)$

- 3. $R \leftarrow R \cup \{v\}$ とする
- 4. For $(v,w) \in E$ を満たす全ての $w \in V(G) R$ do If d(w) > d(v) + c((v,w)) then $d(w) \leftarrow d(v) + c((v,w)), \ p(w) \leftarrow v$ とする

push, decreasing Key $\mathcal{C}O(1)$

- 5. If $R \neq V(G)$ then 2 に行く
- $2 \sim 5$ のループは高々 |V(G)| 回計算量は $O(E+V\log V)$ フィボナッチヒープを使った場合

Dijkstra のアルゴリズムの利用例

カーナビの経路探索や鉄道の経路案内において利用されている. ゲームの AI とか作るのにも使うかも

まとめ

ヒープは便利.

まとめ

- ヒープは便利.
- 償却計算量
- ポテンシャル関数

まとめ

- ヒープは便利.
- 償却計算量
- ポテンシャル関数
- こういう理論っぽい講座は映えない
- せめて実演とか出来るような内容ならば・・・
- 時間調整も難しいね

参考文献

- アルゴリズムイントロダクション 第1巻 第2巻
- 組み合わせ最適化 第2版

ご清聴ありがとうございました