Quadrotor for Indoor Surveillance and Reconnaissance

Steven Viska, Scott Kline, Callie Chen, Giuseppe Tonini, Harsh Shah
Department of Aerospace Engineering
Cal Poly Pomona

AIAA Research Conference

Overview

- Unmanned Aerial Vehicles (UAVs)
- Motivations
- Research Objectives
- Simultaneous Localization and Mapping
- Hardware
- Software
- Obstacle Avoidance
- Autonomous Flight
- Conclusion
- Future Work

Unmanned Aerial Vehicles

- Unmanned Aerial Vehicle
 - Remotely piloted by human or autonomous (using autopilot)
- Replace manned operations to reduce human risk, cost, and expand capabilities
- Used for: surveillance, target strike, search and rescue missions, precision agriculture, etc.

Motivations

- Autonomous navigation in GPS denied indoor environments
- Aerial reconnaissance for assessment of indoor environments
 - Investigate unknown environments
 - Evaluate hazardous or inaccessible environments
 - Minimize human risk
- Promote usability of indoor UAVs

Research Objectives

- Implementation of Simultaneous Localization and Mapping (SLAM) for navigation in indoor environments
- Develop a quadrotor capable of supporting the system.
 - Minimal size and weight
 - Payload capacity and integration
 - 3D imaging
 - Real-time mapping using a 3D Imaging Camera
 - Design a portable power plant
 - Wireless capabilities
 - Data acquisition from 3D Imaging Camera

SLAM

- "Simultaneous localization and mapping"
- Use of 3D Imaging Camera sensors for 3D mapping
 - Infrared (IR) projector
 - RGB camera
 - IR monochrome camera
- Use of FARO ScenectTM software for 3D image integration

SLAM (cont.)

- Technique used by autonomous vehicles to build/update map of an environment, while keeping track of current location
- Use of many different sensors: 1D to 3D
 - 3D Imaging Camera sensors utilize 3D image reconstruction based on depth perception information
 - 3D vision describes not only shape, texture, and color but depth and distance

3D Imaging Cameras

- Microsoft Kinect and Asus Xtion Live Pro sensors used for 3D image reconstruction:
 - Infrared (IR) projector
 - RGB camera
 - IR monochrome camera

Camera Comparison

	Asus Xtion Live Pro	Microsoft Kinect
Price	≈\$150	≈\$150
Power Consumption	<2.5 W	12 W
Distance of use	0.8 m < x < 3.5 m	0.8 m < x < 4 m
Field of View	58° H; 45° V; 70° D	57.5° H; 43.5° V
Depth Image Size	VGA (640 x 480) 30 fps; QVGA (320 x 240) 60 fps	VGA (640 x 480) 30 fps
Resolution	SXVGA (1280*1024)	SXVGA (1280*960)
Software	Open NI SDK bundled	Kinect for Windows SDK
Dimensions	18 x 3.5 x 5 cm	28 x 8 x 8 cm

3D Mapping Process

- Signals are emitted from the IR projector
- Reflected infrared signals are retrieved on the IR monochrome camera
- 3D depth map is generated
- Chromatic and 3D depth images can be obtained simultaneously with texture from the RGB camera
- Camera provides automatic calibration based on physical environment
 - Accommodates for the presence of obstacles

Architecture for 3D Mapping

Raspberry Pi

- Possible solution for wireless data transmission
- Description:
 - Single board computer
- Considered due to its small size, light weight and Wi-Fi capability
- Method: 802.11abgnAC interface can be used to transmit images compressed or device native/raw

Camera Hardware Architecture

Black – Signal Red – Power

Quadrotor Vehicle

Autopilot and Sensors

Ultrasonic Range Finder

- LV-MaxSonar EZ0TM
- Range: 6 in 254 in (6.45 m)
- 2.5V to 5.5V with 2mA current draw
- Readings can occur every 50ms (20 Hz rate)
- Serial, Analog, and Pulse width

Range Finder Assembly

- Daisy chaining multiple sonars due to current software restrictions
- Allows to constantly loop in sequence and provide latest range reading

Overall System Architecture

Flight Control Software

- Runs on ArduCopter V3.1.2
 Quad Configuration
- Works in conjunction with APM Mission Planner
 - -Simple configuration and calibration
 - -Displays vehicle status
 - -Displays and monitors various sensor data

Software (cont.)

Vehicle Status

SCENECT

- The SCENE software family is a comprehensive 3D point cloud processing and managing software for users
- SCENECT by Faro allows the use of 3D Imaging Camera sensor to capture objects and environments in 3D in real-time
- Allows the users to view, process and analyze recordings
 - Can export to different formats for use in third party applications, like CAD programs

3D Reconstructed Room

- Using SCENECT, 3D image reconstruction of a room was mapped

Obstacle Avoidance

- Use of rangefinder sensors to detect obstructions within the vehicle's path.
 - Reflected signals from the rangefinder discovers the position and distance
- Six rangefinders will be implemented within the system
 - Aligned within half angles of each other to retrieve a clear resolution of an obstacle

Obstacle Avoidance (cont.)

Autonomous Flight

- Can be used in any environment
- Uses barometer, magnetometer, gyroscope, accelerometer, and range finder to follow the assigned path

Conclusion

- Obstacle avoidance allows for the safe navigation of autonomous UAV systems in various environments
- Implementation of SLAM into UAV systems provides ground work for future applications.
 - Mapping of unknown environments
 - Creating virtual models of large regions or objects

Future Work

- Refinement of Obstacle Avoidance system
- Weight reduction of overall system
- Improvement of overall flight endurance

Acknowledgements

- Aerospace Engineering
 - Dr. Subodh Bhandari
 - Hovig V. Yaralian

Questions?