Condensé de la MPSI Mathématiques

Ewen Le Bihan MPSI – Daudet

Contents

1	\mathbf{Pro}	cessus de démonstration 3
	1.1	Processus élémentaires
		1.1.1 Quantification universelle \forall
		1.1.2 Quantification existentielle \exists
		1.1.3 Quantification existentielle unique $\exists !$
		1.1.4 Implication $P \implies Q$
		1.1.5 Équivalence $P \iff Q \dots \dots$
		1.1.6 Inclusion $E \subset F$
		1.1.7 Égalité ensembliste
		1.1.8 Égalité entre applications
	1.2	Processus de démonstration
		1.2.1 Récurrence
		1.2.2 Contraposée
		1.2.3 l'Absurde
		1.2.4 Disjonction des cas
		1.2.5 Analyse-Synthèse
2	Dá.	rivation 5
4	2.1	Nombre dérivé en un point
	$\frac{2.1}{2.2}$	Dérivée de f
	2.2	Dérivée usuelles
	$\frac{2.3}{2.4}$	Dérivées de composées
	2.4	Derivees de composees
3	Trig	gonométrie 6
	3.1	Cercle trigonométrique ou unité $\mathcal C$
	3.2	Congruence $\cdot \equiv \cdot [\cdot]$
		3.2.1 Propriétés
	3.3	cos, sin, tan, cotan
		3.3.1 Théorème de Pythagore
		3.3.2 Théorème de Thalès
		3.3.3 Propriétés
		3.3.4 Limite de $\frac{\sin}{id}$ en 0
	3.4	acos, asin, atan
	3.5	Équations trigonométriques
	3.6	Amplitude C & déphasage ϕ
	3.7	Identités remarquables
	т.	•
4	4.1	;ique Table de vérité
	$4.1 \\ 4.2$	Connecteurs $\land \lor \neg$, relations $\Longrightarrow \longleftrightarrow \ldots \qquad \qquad$
	4.2	Égalité sémantique
	4.4	Propriétés des connecteurs $\land \lor \lnot$
	4.5	Quantification existentielle unique $\exists !$
	4.6	Négation ¬
	4.0	4.6.1 Négation de quantificateurs \exists , \forall
		4.6.2 Négation de connecteurs ou lois de De Morgan
		4.6.3 Identités
	4.7	Formules
	1.1	Tormuics
5	Équ	uations différentielles 10
	5.1	Recherche de la solution particulière y_p
		5.1.1 Forme du second membre
		5.1.2 Second membre nul
	5.2	Premier ordre $y' + ay$
	5.3	Second ordre $ay'' + by' + cy$
	5.4	Problème de Cauchy

6	$\mathbf{E}\mathbf{x}\mathbf{p}$	oonentielle imaginaire	11		
	6.1	Décomposition des fonctions à valeurs complexes $f = f_1 + if_2 \dots \dots \dots \dots$	11		
	6.2	Relation fonctionnelle	11		
	6.3	Euler	11		
	6.4	De Moivre	11		
	6.5	Linéarisation $\cos^n(\theta) = \sum_{n=0}^{\infty} \frac{?}{2} \cos(?\theta) \dots$	11		
	6.6	Arc-moitié $e^{i\cdots} + e^{i\cdots} = \overline{e^{i\cdots}}(e^{i\cdots} + e^{i\cdots})$	11		
	6.7	Forme exponentielle $re^{i\theta}$	11		
		6.7.1 Égalité	11		
	6.8	Propriétés de arg	11		
	6.9	Racines n -ième de l'unité \mathbb{U}_n	12		
	6.10	Résolution de $z^n = c$			
	6.11	Résolution de $e^z = c$	12		
	6.12	Module de l'exponentielle imaginaire	12		
			13		
7	Intégration \int				
	7.1	Théorème fondamental de l'analyse, version renversée	13		
	7.2	Théorème fondamental de l'analyse	13		
	7.3	Linéarité	13		
	7.4	Croissance	13		
	7.5	Inégalité triangulaire	13		
	7.6	Intégration par parties	13		
	7.7	Intégration par identification de motif	13		
	7.8	Intégration par changement de variables	13		
		7.8.1 Normal	13		
		7.8.2 Bijectif			
		7.8.3 Primitivation			
	7.9	Sommes de Riemann			

1 Processus de démonstration

1.1 Processus élémentaires

1.1.1 Quantification universelle \forall

Soit $a \in E$

1.1.2 Quantification existentielle \exists

Posons $a = \ldots \in E$

1.1.3 Quantification existentielle unique \exists !

Existence cf. 1.1.2

Unicité Posons $b \in E$. Démonstration de b = a

1.1.4 Implication $P \implies Q$

Supposons P(a). Montrons Q(a)

1.1.5 Équivalence $P \iff Q$

Procédons par double implication.

 \implies : Démonstration de $P \implies Q$

 $\Leftarrow=: D\'{e}monstration de P \Leftarrow= Q$

1.1.6 Inclusion $E \subset F$

 $D\acute{e}montrer \ \forall x \in \mathbb{E}, x \in E \implies x \in F.$

1.1.7 Égalité ensembliste

Procédons par double inclusion.

 \subset : Démonstration de $E \subset F$

 \supset : Démonstration de $E\supset F$

1.1.8 Égalité entre applications

Démontrer $\forall x \in E, \ f(x) = g(x)$

1.2 Processus de démonstration

On commence chaque démonstration utilisant un de ces processus par « Procédons par $nom\ du\ processus$ »

1.2.1 Récurrence

Pour montrer une propriété vraie dans $E \subseteq \mathbb{N}$

Initialisation Démontrer la propriété au premier rang

Hérédité Démontrer $\forall n \in E, P(n) \implies P(n+1)$

Conclusion La propriété étant initialisée et héréditaire, elle est vraie pour tout $n \in E$.

1.2.2 Contraposée

Pour montrer $P \implies Q$ quand l'implication directe est trop compliquée $D\acute{e}montrer \neg Q \implies \neg P$

1.2.3 l'Absurde

```
\begin{array}{c} Pour\ montrer\ P\\ \text{Supposons}\ \neg P\\ \vdots\\ \text{On obtient une contradiction.}\\ \text{On a donc}\ P \end{array}
```

1.2.4 Disjonction des cas

```
      1er cas: ...

      2ème cas: ...

      :

      n-ième cas: ...
```

1.2.5 Analyse-Synthèse

Conclusion ...

Pour trouver les solutions d'une équation, inéquation, ...

Analyse Soit $a \in E$. Supposons P(a). Réduire le nombre de candidats possibles pour a

Synthèse Testons nos candidats

Conclusion Les solutions sont ...

2 Dérivation

Attention aux hypothèses!

2.1 Nombre dérivé en un point

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

2.2 Dérivée de f

$$f' = \begin{cases} I \to \mathbb{R} \\ a \mapsto f'(a) \end{cases}$$

2.3 Dérivée usuelles

•
$$\forall n \in \mathbb{N}, \quad (\mathrm{id}^n)' = n\mathrm{id}^{n-1}$$

•
$$\forall n \in \mathbb{N}, \quad \sqrt[n]{\prime} = \frac{1}{n \sqrt[n]{\prime}}$$

•
$$\ln' = \frac{1}{id}$$

•
$$\exp' = \exp$$

•
$$(a^{\mathrm{id}})' = x \mapsto \ln(a)a^x$$

•
$$\sin' = \cos$$

•
$$\cos' = -\sin$$

•
$$\tan' = \frac{1}{\cos^2} = 1 + \tan^2$$

•
$$sh' = ch$$

•
$$ch' = sh$$

•
$$th' = \frac{1}{ch^2} = 1 + th^2$$

•
$$a\cos' = \frac{-1}{\sqrt{1-id^2}}$$

•
$$a\sin' = \frac{1}{\sqrt{1-id^2}}$$

•
$$atan' = \frac{1}{1+id^2}$$

2.4 Dérivées de composées

•
$$\forall (\lambda, \mu) \in \mathbb{R}^2$$
, $(\lambda u + \mu v)' = \lambda u' + \mu v'$

•
$$(uv)' = u'v + v'u$$

$$\bullet \quad (\frac{1}{v})' = \frac{-v'}{v^2}$$

•
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

•
$$(u \circ v)' = v' \cdot (u' \circ v)$$

•
$$(u^{-1})' = \frac{1}{u' \circ u^{-1}}$$

3 Trigonométrie

3.1 Cercle trigonométrique ou unité $\mathcal C$

Cercle de centre (0; 0) et de rayon 1.

$$C = \{(x; y) \in \mathbb{R}^2, x^2 + y^2 = 1\} = \{(\cos x; \sin x), x \in \mathbb{R}\}\$$

3.2 Congruence $\cdot \equiv \cdot [\cdot]$

$$a \equiv b \ [t] \iff \exists k \in \mathbb{Z}, \ a = b + kt$$

3.2.1 Propriétés

•
$$\forall a, b, c, d \in \mathbb{R}, \begin{cases} a \equiv b \ [t] \\ c \equiv d \ [t] \end{cases} \implies a + c \equiv c + d \ [t]$$

•
$$\forall a, b, \lambda \in \mathbb{R}, \ a \equiv b \ [t] \implies \lambda a \equiv \lambda b \ [\lambda t] \ \text{et} \ \begin{cases} \lambda a \equiv \lambda b \ [t] \\ \lambda \in \mathbb{Z} \end{cases}$$

• $\, \cdot \equiv \cdot \, [\cdot]$ est une relation d'équivalence

3.3 cos, sin, tan, cotan

3.3.1 Théorème de Pythagore

$$\cos^2 + \sin^2 = 1$$

3.3.2 Théorème de Thalès

$$\tan = \frac{\sin}{\cos}$$
 $\cot = \frac{\cos}{\sin}$

Ce qui permet de trouver \mathcal{D}_{tan} et \mathcal{D}_{cotan}

3.3.3 Propriétés

	périodicité	positif sur 1	parité	domaine de définition
cos	2π	$\left[-rac{\pi}{2},rac{\pi}{2} ight]$	paire	\mathbb{R}
\sin	2π	$[0,\pi]$	impaire	\mathbb{R}
tan	π	$[0, \frac{\pi}{2}[$	impaire	$\bigcup_{k\in\mathbb{Z}}]-\tfrac{\pi}{2}+k\pi,\tfrac{\pi}{2}+k\pi[$
cotan	π	$]0,\tfrac{\pi}{2}]\cup[-\tfrac{\pi}{2},\pi[$	impaire	$\bigcup_{k\in\mathbb{Z}}]k\pi,\pi+k\pi[$

Table 1: Propriétés des quatres fonctions trigonométriques

3.3.4 Limite de $\frac{\sin}{id}$ en 0

$$\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1$$

3.4 acos, asin, atan

$$\begin{cases} \forall x \in [-1,1], & \exists ! y \in [0,\pi], \ \cos y = x \\ \forall x \in [-1,1], & \exists ! y \in [-\frac{\pi}{2},\frac{\pi}{2}], \ \sin y = x \\ \forall x \in \mathbb{R}, & \exists ! y \in]-\frac{\pi}{2},\frac{\pi}{2}[, \ \tan y = x \end{cases}$$

3.5 Équations trigonométriques

$$\begin{cases} \cos x = a &\iff \begin{cases} a \in \{ \cos a + 2k\pi, \ k \in \mathbb{Z} \} \cup \{ \cos a + 2k\pi, \ k \in \mathbb{Z} \} &\text{si } a \in [-1, 1] \\ \emptyset &\text{sinon} \end{cases} \\ \sin x = a &\iff \begin{cases} a \in \{ \sin a + 2k\pi, \ k \in \mathbb{Z} \} \cup \{ \pi - \sin a + 2k\pi, \ k \in \mathbb{Z} \} &\text{si } a \in [-1, 1] \\ \emptyset &\text{sinon} \end{cases} \\ \tan x = a &\iff a \in \{ \cot a + k\pi, k \in \mathbb{Z} \} \end{cases}$$

3.6 Amplitude C & déphasage ϕ

$$\forall A, B \in \mathbb{R}, \ \exists C, \phi \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ A\cos x + B\sin x = C\cos(x - \phi)$$

7

$$\begin{cases} C > 0 \implies & C \text{ est l'amplitude} \\ & \phi \text{ est le déphasage} \end{cases}$$

3.7 Identités remarquables

- $\forall x \in [-1, 1], \ a\cos x + a\sin x = \frac{\pi}{2}$
- $\forall x \in \mathbb{R}^*$, $atan x + atan <math>\frac{1}{x} = \frac{\pi}{2}$

4 Logique

4.1 Table de vérité

Variable 1		Variable n	Formule
v		v	
:	(2^n lignes)		
f		f	•••

Table 2: Table de vérité pour une formule à n variables

4.2 Connecteurs $\land \lor \neg$, relations $\implies \iff$

P	Q	$P \wedge Q$	$P \vee Q$	$P \implies Q$	$P \iff Q$
v	v	v	v	v	v
v	f	f	v	f	f
f	v	f	v	v	f
f	f	f	f	v	v

Table 3: Table de vérité pour \land , \lor , \Longrightarrow et \Longleftrightarrow

$$\begin{array}{c|c}
P & \neg P \\
\hline
v & f \\
f & v
\end{array}$$

Table 4: Table de vérité pour \neg

4.3 Égalité sémantique

 $(P=Q) \iff P$ a la même table de vérité que Q

4.4 Propriétés des connecteurs $\land \lor \neg$

 $Pour \lor et \land$

Idempotence $P \stackrel{\wedge}{\vee} P = P$

Commutativité $P \stackrel{\wedge}{\vee} Q = Q \stackrel{\wedge}{\vee} P$

Associativité $P\stackrel{\wedge}{\vee}(Q\stackrel{\wedge}{\vee}R)=(P\stackrel{\wedge}{\vee}Q)\stackrel{\wedge}{\vee}R$

Distributivités $P \overset{\vee}{\wedge} (Q \overset{\wedge}{\vee} R) = (P \overset{\wedge}{\vee} Q) \overset{\vee}{\wedge} (P \overset{\wedge}{\vee} R)$

 $Pour \lnot$

Involutivité $\neg \neg P = P$

4.5 Quantification existentielle unique \exists !

$$[\exists! x \in E, \ P(x)] = \underbrace{[\exists x \in E, \ P(x)}_{\text{existence}} \land \underbrace{\forall \gamma_1, \gamma_2 \in E, \ P(\gamma_1) \land P(\gamma_2) \implies \gamma_1 = \gamma_2}_{\text{unicit\'e}}]$$

- 4.6 Négation ¬
- 4.6.1 Négation de quantificateurs \exists , \forall

$$\neg(\exists x \in E, \ P(x)) = \forall x \in E, \ \neg P(x)$$

4.6.2 Négation de connecteurs ou lois de De Morgan

$$\neg (P \overset{\vee}{\wedge} Q) = \neg P \overset{\wedge}{\vee} \neg Q$$

- 4.6.3 Identités
 - $P \wedge \neg P = f$
 - $P \vee \neg P = v$
- 4.7 Formules
 - $P \implies Q = \neg P \lor Q$
 - $[\forall x \in \emptyset, P(x)] = v$
 - $[\exists x \in \emptyset, P(x)] = f$

5 Équations différentielles

5.1 Recherche de la solution particulière y_p

- 1. Identifier la forme du second membre
- 2. Exprimer y_p avec des constantes inconnues
- 3. Développer $y' + ay = \dots$ avec $y = y_p$
- 4. Trouver les constantes inconnues
- 5. Exprimer y_p

5.1.1 Forme du second membre

- Combinaisaon linéaire at + b
- Constante k^2
- Polynôme du second degré $at^2 + bt + c$
- Exponentielle $ke^{\gamma t}$ (chercher k)
- "Trigonométrique" $\alpha \cos(\omega t) + \beta \sin(\omega t)$ (chercher α et β)

5.1.2 Second membre nul

Second membre =
$$0 \implies \begin{cases} \text{\'equation dite homog\`ene} \\ y_p = t \mapsto 0 \end{cases}$$

5.2 Premier ordre y' + ay

$$\{t \mapsto ke^{-at} + y_p(t), \ k \in \mathbb{R}\}$$

5.3 Second ordre ay'' + by' + cy

Équation caractéristique $ar^2 + br + c$

$$\begin{array}{c|cccc} \Delta > 0 & \Delta = 0 & \Delta < 0 \\ \hline Ae^{r_1t} + Be^{r_2t} & (At + B)e^{r_0t} & e^{\operatorname{Re}(r_1)t}(A\cos(\operatorname{Im}(r_1)t) + B\sin(\operatorname{Im}(r_1)t)) \end{array}$$

Table 5: Forme des solutions d'une équadiff homogène du second ordre selon le signe de Δ

Forme des solutions selon Δ

Ensemble des solutions

$$\{t \mapsto \text{ forme des solutions, } (A, B) \in \mathbb{R}^2\}$$

5.4 Problème de Cauchy

$$\begin{cases} y' + ay = k \\ y'(b) = c \end{cases}$$
 (premier ordre)
$$\begin{cases} ay'' + by' + cy = k \\ y''(\alpha) = \beta \end{cases}$$
 (second ordre)
$$\begin{cases} y' + ay = k \\ y''(\alpha) = \delta \end{cases}$$

- 1. Résoudre l'équadiff
- 2. Résoudre l'équation ou le système en remplaçant y par la forme des solutions

²Ici l'expression de y_p devient évidente: $y_p = t \mapsto \frac{k}{a}$

6 Exponentielle imaginaire

6.1 Décomposition des fonctions à valeurs complexes $f = f_1 + if_2$

Soit $I \subseteq \mathbb{R}$

$$\forall f \in \mathbb{C}^I, \ \exists f_1, f_2 \in \mathbb{R}^I, \ f = f_1 + i f_2$$

6.2 Relation fonctionnelle

- $\forall \theta_1, \theta_2 \in \mathbb{R}, \ e^{i(\theta_1 + \theta_2)} = e^{i\theta_1} e^{i\theta_2}$
- $\forall \theta \in \mathbb{R}, \ e^{-i\theta} = \frac{1}{e^{i\theta}}$

6.3 Euler

$$\forall \theta \in \mathbb{R}, \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \text{ et } \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

6.4 De Moivre

$$\forall \theta \in \mathbb{R}, \ \forall n \in \mathbb{Z}, \ e^{in\theta} = (e^{i\theta})^n$$

6.5 Linéarisation $\cos^n(\theta) = \sum \frac{?}{?} \cos(?\theta)$

On cherche à linéariser \cos^3

1. Euler
$$= \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^3$$

2. Binôme de newton
$$=1\left(\frac{e^{i\theta}}{2}\right)^{0}\left(\frac{e^{-i\theta}}{2}\right)^{3}+3\left(\frac{e^{i\theta}}{2}\right)^{1}\left(\frac{e^{-i\theta}}{2}\right)^{2}+3\left(\frac{e^{i\theta}}{2}\right)^{2}\left(\frac{e^{-i\theta}}{2}\right)^{1}+1\left(\frac{e^{i\theta}}{2}\right)^{3}\left(\frac{e^{-i\theta}}{2}\right)^{0}$$

3. Moivre
$$= \frac{e^{-3i\theta}}{2^3} + 3\frac{e^{i\theta}}{2}\frac{e^{-2i\theta}}{2^2} + 3\frac{e^{2i\theta}}{2^2}\frac{e^{-i\theta}}{2} + \frac{e^{3i\theta}}{2^3}$$

$$= \frac{1}{2^2}\frac{e^{3i\theta} + e^{-3i\theta}}{2} + \frac{3}{2^2}\frac{e^{i\theta} + e^{-i\theta}}{2}$$

4. Euler (réciproque)
=
$$\frac{1}{4}\cos(3\theta) + \frac{3}{4}\cos(\theta)$$

6.6 Arc-moitié $e^{i...} + e^{i...} = e^{i...}(e^{i...} + e^{i...})$

$$\forall \theta_1, \theta_2 \in \mathbb{R}, \ e^{i\theta_1} + e^{i\theta_2} = e^{i\frac{\theta_1 + \theta_2}{2}} (e^{i\frac{\theta_1 - \theta_2}{2}} + e^{i\frac{\theta_2 - \theta_1}{2}})$$

6.7 Forme exponentielle $re^{i\theta}$

$$\forall z \in \mathbb{C}^*, \ z = |z| \exp(i \arg z)$$

6.7.1 Égalité

$$\forall z_1, z_2 \in \mathbb{C}_+^*, \ z_1 = z_2 \iff \begin{cases} |z_1| &= |z_2| \\ \arg z_1 &\equiv \arg z_2 \ [2\pi] \end{cases}$$

6.8 Propriétés de arg

Identiques à celle de ln, mais avec $[2\pi]$ et \mathbb{C}^* à la place de \mathbb{R}_+^*

6.9 Racines n-ième de l'unité \mathbb{U}_n

$$\mathbb{U}_n = \{ \omega \in \mathbb{C}, \ \omega^n = 1 \} = \{ e^{\frac{2ik\pi}{n}}, \ k \in [0, n-1] \}$$

6.10 Résolution de $z^n = c$

$$\forall c \in \mathbb{C}_+^*, \ \forall n \in \mathbb{N}^*, \ \{z \in \mathbb{C}, \ z^n = c\} = \left\{ \sqrt[n]{|c|} \exp\left(i\frac{\arg c + 2k\pi}{n}\right), \ k \in \llbracket 0, n - 1 \rrbracket \right\}$$

6.11 Résolution de $e^z = c$

Soit $c \in \mathbb{C}$

$$\{z \in \mathbb{C}, \ e^z = c\} = \begin{cases} \emptyset & \text{si } c = 0 \\ ?^3 & \text{sinon} \end{cases}$$

6.12 Module de l'exponentielle imaginaire

$$\forall z \in \mathbb{C}, |e^z| = e^{\operatorname{Re} z}$$

Le reste des propriétés de $\exp: \mathbb{C} \to \mathbb{C}$ sont identiques à celles de $\exp: \mathbb{R} \to \mathbb{R}$

³Trouver module et argument

7 Intégration 5

Pour les théorèmes de primitivation, on enlève les bornes, on rajoute $+\mathbb{R}$ à l'expression de la primitive et on update les quantificateurs si besoin

7.1 Théorème fondamental de l'analyse, version renversée

$$\forall f \in \mathcal{C}([a,b],\mathbb{R}), \ \forall F \in \mathcal{D}([a,b],\mathbb{R}), \ F' = f \implies \int_a^b f = [F]_a^b$$

7.2 Théorème fondamental de l'analyse

$$\forall f \in \mathcal{C}([a,b],\mathbb{R}), \forall \alpha \in [a,b], \ \exists ! F \in \mathcal{D}([a,b],\mathbb{R}), \ \begin{cases} F' & = f \\ F(\alpha) & = 0 \end{cases} \ \text{et} \ F = x \mapsto \int_{\alpha}^{x} f(a,b) da$$

7.3 Croissance

7.4 Inégalité triangulaire

$$\forall a < b \in \mathbb{R}, \ \left| \int_a^b f \right| = \int_a^b |f|$$

7.5 Intégration par parties

$$\forall u, v \in \mathcal{C}^1(I, J), \ \forall a, b \in I, \ \int_a^b uv' = [uv]_a^b - \int_a^b u'v$$

7.6 Intégration par identification de motif

$$\forall \phi \in \mathcal{C}^1([a,b],I), \ \forall F \in \mathcal{C}^1(I,\mathbb{R}), \ \int_a^b F' \circ \phi = [F \circ \phi]_a^b = [F]_{\phi(a)}^{\phi(b)}$$

- 7.7 Intégration par changement de variables
- 7.7.1 Normal

$$\forall \phi \in \mathcal{C}^1([a,b],I), \ \forall f \in \mathcal{C}(I,\mathbb{R}), \ \int_{\phi(a)}^{\phi(b)} f = \int_a^b f \circ \phi \cdot \phi'$$

7.7.2 Bijectif

$$\forall \phi \in \mathcal{C}^1(I,J), \ \forall f \in \mathcal{C}(J,\mathbb{R}), \ \forall a,b \in J, \ \phi \text{ a une réciproque } \phi^{-1} \implies \int_a^b f = \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f \circ \phi \cdot \phi'$$

7.7.3 Primitivation

$$\forall \phi \in \mathcal{C}^1(I,J), \ \forall f \in \mathcal{C}(J,\mathbb{R}), \phi \text{ a une réciproque } \phi^{-1} \implies \int f = \phi^{-1} \circ \left(\int f \circ \phi \cdot \phi' \right)$$

7.8 Sommes de Riemann

$$\forall f \in \mathcal{C}([a,b], \mathbb{R}), \forall n \in \mathbb{N}^*, \int_a^b f \xleftarrow[n \to \infty]{} \left\{ S_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k\frac{b-a}{n}\right) \right\} \\ \left\{ R_n = \frac{b-a}{n} \sum_{k=1}^n f\left(a+k\frac{b-a}{n}\right) \right\}$$

13