ESPACIOS VECTORIALES. C. Alberto Vara

ESPACIOS VECTORIALES

- I. Definiciones. Primeras propiedades.
- II. Subespacios vectoriales.
- III. Independencia lineal. Bases.

I. DEFINICIONES. PRIMERAS PROPIEDADES.

1. Estructura. Ejemplos:

- a) Definición.
- b) Notaciones.
- c) Ejemplos.

2. Reglas de cálculo:

- a) Distributividad externa respecto a la resta vectorial.
- b) $\lambda . 0 = 0$.
- c) $\lambda(-x) = -\lambda x$
- d) Distributividad externa respecto a la resta de escalares.
- e) 0x = 0
- f) $(-\lambda)x = -\lambda x$
- g) Si el producto de un escalar por un vector es el vector nulo, entonces el escalar es o ó el vector es nulo.

II. Subespacios Vectoriales.

3. Definición. Ejemplos:

Teorema 1.- "Toda parte no vacía F de un espacio vectorial E sobre K, que sea estable para la adición interna de E y la multiplicación externa, es un subespacio vectorial de E"

Teorema 2.- "Para que una parte no vacía F de un espacio vectorial E sobre K, sea un subespacio vectorial de E, es necesario y suficiente que:

(1)
$$(\forall x, y \in E)$$
 $x + y \in F$
(2) $(\forall x \in E)$ $(\forall \lambda \in K)$ $\lambda x \in F$ "

4. Intersección de subespacios vectoriales. Subespacio vectorial generado por una parte A de un espacio vectorial.:

"Toda intersección de subespacios vectoriales de E es un subespacio vectorial de E"

Definición de combinación lineal.

Teorema v definición:

"El menor subespacio vectorial F conteniendo p elementos de E, x_1 , x_2 , ..., x_p , es decir, el subespacio generado por $\{x_1, x_2, ..., x_p\}$ es el subespacio de las combinaciones lineales de x_1 , x_2 , ..., x_p . Se dice que $A = \{x_1, x_2, ..., x_p\}$ es un sistema generador de F.

Cuando el mismo espacio vectorial E está generado por un número finito de sus elementos se dice que es de dimensión finita"

ESPACIOS VECTORIALES. C. Alberto Vara

IV. INDEPENDENCIA LINEAL. BASES.

5. Independencia lineal.

a) Partes contenidas y que contienen un sistema generador.

¿Se puede hallar un sistema generador G de E al añadir un elemento (vector) cualquiera, g_i , tal que el nuevo sistema ya no genere E?

¿Se puede hallar un sistema generador G de E tal que si prescindimos de cualquiera de sus elementos (vectores), g_i , el nuevo sistema ya no genere E?

Definición de sistema generador mínimo

Definición.- "Un conjunto finito $\{x_1, x_2, ..., x_p\}$ de elementos de un espacio vectorial E es linealmente independiente (sistema libre) si :

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_p x_p = 0 \implies \lambda_1 = \lambda_2 = \dots = \lambda_p = 0$$

Un conjunto cualquiera que no es linealmente independiente es linealmente dependiente (sistema ligado)"

b) Propiedades inmediatas:

- 1. Todo subsistema de un sistema libre es libre
- 2. Todo supersistema de un sistema ligado es ligado.
- 3. Los elementos de un sistema libre son todos distintos.
- 4. Los elementos de un sistema libre son no nulos.

Como consecuencia: "Un sistema cualquiera de vectores es linealmente independiente si lo son todos sus subsistemas finitos" y "Un sistema de vectores es linealmente dependiente si hay un subsistema finito ligado"

c) **Teorema 1.-** "Un sistema es ligado si y sólo si existe un elemento en el sistema que sea combinación lineal finita de los otros elementos del sistema"

Corolario.- "Si { $x_1, x_2, ..., x_p$ } es un sistema libre de p elementos de E y { $x_1, x_2, ..., x_p, x$ } es un sistema ligado, entonces x pertenece al subespacio generado por { $x_1, x_2, ..., x_p$ } y se tiene que $x = \lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_p x_p$ de una manera única"

Teorema 2.- "Si $L = \{a_1, a_2, ..., a_m\}$ es un sistema libre con m elementos de un espacio vectorial E, $y G = \{g_1, g_2, ..., g_p\}$ es un sistema generador de E con p elementos, entonces $m \le p$ y $G' = \{a_1, a_2, ..., a_m, g_{m+1}, g_{m+2}, ..., g_p\}$ (cambiando eventualmente la numeración de los g) es también un sistema generador de E"

Corolario.- "Si G es un sistema generador, con p elementos, de un espacio vectorial E, todo conjunto de vectores de E que tenga estrictamente más de p elementos es ligado"

ESPACIOS VECTORIALES. C. Alberto Vara

6. Bases de un espacio vectorial de dimensión finita.

- **a) Teorema 3 y definición.-** "Para un sistema B no vacío de un espacio vectorial E sobre K, de dimensión finita, las tres propiedades siguientes son equivalentes:
 - 1. B es un sistema generador libre de E.
 - 2. B es un sistema generador mínimo.
 - 3. B es un sistema libre máximo.

Todo sistema $B = \{ a_1, a_2, ..., a_n \}$ que posee una de estas propiedades se le llama una **base de E**. Y Para todo vector x de E existe una única combinación de escalares tales

que: $x = \sum_{i=1}^{n} \mu_i a_i$, esos escalares reciben el nombre de coordenadas de x respecto de la base B"

b) Existencia de bases:

Teorema 4.- "Todo espacio vectorial E de dimensión finita, no reducido a $\{0\}$ admite base. De una manera más precisa, si G es un sistema generador de E y L es un sistema libre contenido en G, existe una base de E tal que $L \subset B \subset G$ "

Corolario (teorema de la base incompleta).- "Si L y G son, respectivamente, un sistema libre y un sistema generador de E, existe un subconjunto H de G tal que $L \cup H$ sea una base de E"

7. Dimensión de un espacio vectorial.

Teorema 5 y definición.- "En un espacio vectorial E de dimensión finita sobre el cuerpo K, todas las bases tienen el mismo número de elementos. Este número común se llama dimensión del espacio vectorial, se le designa por dim $_K E$ "

Teorema 6.- "En un espacio vectorial E de dimensión n sobre el cuerpo K:

- 1. Todo sistema libre tiene a lo sumo n elementos.
- 2. Todo sistema que tenga al menos n+1 elementos es ligado"

Corolario.- "Todo sistema B de un espacio vectorial E de dimensión n sobre K que posee dos de las tres propiedades siguientes (n>0):

- 1. B tiene n elementos.
- 2. Bes libre.
- 3. B es sistema generador de E.

es una base de E"

Dimensión de un subespacio vectorial.

8. Rango de un sistema de vectores.

Definición.- "Se llama rango de un sistema de vectores de un espacio vectorial E sobre K, la dimensión del subespacio F, supuesto de dimensión finita, engendrado por este sistema de vectores. Se le representa por rg(S)"