RTG4 Macro Library Guide For Libero SoC v11.7 SP1

Table of Contents - All Macros

AND2	. 12
AND3	. 12
AND4	. 13
ARI1	. 18
BIBUF	. 39
BIBUF_DIFF	. 39
BUFD	
BUFD_DELAY	. 14
BUFF	. 13
CLKBIBUF	40
CLKBUF	
CLKBUF DIFF	
CLKINT	
CLKINT PRESERVE	15
DDR_IN	
DDR OUT	
DFN1	
DFN1C0	
DFN1E1	
DFN1E1C0	
DFN1E1P0	
DFN1P0	
FCEND_BUFF	. 20
FCINIT_BUFF	
GRESET	
INBUF	_
INBUF DIFF	
INV	
INVD	
MACC	
MX2	
MX4	
NAND2	
NAND3	
NAND4	
NOR2	
NOR3.	
NOR4	
OR2	
OR3	
OR4	
OUTBUF	
OUTBUF DIFF	
RAM1K18_RT	
RAM64x18_RT	
RCOSC_50MHz	. 16
RGRESET	. ∠1 16
13.713.1 .35 1	117

SLE
SYSCTRL_RESET_STATUS 22
SYSRESET 2 ⁻
TRIBUFF 44
TRIBUFF_DIFF
UJTAG
XOR2 33
XOR334
XOR4
XOR8

Table of Contents - Combinatorial Logic

AND2	12
AND3	12
AND4	13
ARI1	18
BUFD	14
BUFD_DELAY	14
BUFF	13
INV	27
INVD	27
MX2	28
MX4	28
NAND2	29
NAND3	29
NAND4	30
NOR2	30
NOR3	31
NOR4	31
OR2	32
OR3	32
OR4	33
XOR2	33
XOR3	34
XOR4	35
XOR8	36

Table of Contents - Sequential Logic

DFN1													. 22	2
DFN1C0													. 23	3
DFN1E1													. 23	3
DFN1E1C0													. 24	4
DFN1E1P0													2	5
DFN1P0													20	ć
SLE	 												. 1	7

Table of Contents - RAM Blocks

RAM1K18_	_RT													49
RAM64x18	_RT	٠.												56

Table of Contents - Math Blocks

MACC 62

Table of Contents - I/Os

BIBUF	39
BIBUF_DIFF	39
CLKBIBUF	40
CLKBUF	40
CLKBUF_DIFF	41
DDR_IN	
DDR_OUT	47
INBUF	42
INBUF_DIFF	42
OUTBUF	43
OUTBUF_DIFF	43
TRIBUFF	44
TRIBUFF DIFF	44

Table of Contents - Clocking

CLKBIBUF	10
CLKBUF	40
CLKBUF_DIFF	41
CLKINT	14
CLKINT_PRESERVE	15
GRESET	15
RCLKINT	16
RCOSC_50MHz	21
RCRESET	16

Table of Contents - Special

FCEND_BUFF	20
FCINIT_BUFF	21
SYSCTRL_RESET_STATUS	22
SYSRESET	21
UJTAG	37

Introduction

This macro library guide supports the RTG4 family. See the Microsemi website for macro guides for other families

This guide follows a naming convention for sequential macros that is unambiguous and extensible, making it possible to understand the function of the macros by their name alone.

The first two mandatory characters of the macro name will indicate the basic macro function:

• DF - D-type flip-flop

The next mandatory character indicates the output polarity:

- I output inverted (QN with bubble)
- N output non-inverted (Q without bubble)

The next mandatory number indicates the polarity of the clock or gate:

- 1 rising edge triggered flip-flop or transparent high latch (non-bubbled)
- 0 falling edge triggered flip-flop or transparent low latch (bubbled)

The next two optional characters indicate the polarity of the Enable pin, if present:

- E0 active low enable (bubbled)
- E1 active high enable (non-bubbled)

The next two optional characters indicate the polarity of the asynchronous Preset pin, if present:

- P0 active low asynchronous preset (bubbled)
- P1 active high asynchronous preset (non-bubbled)

The next two optional characters indicate the polarity of the asynchronous Clear pin, if present:

- C0 active low asynchronous clear (bubbled)
- C1 active high asynchronous clear (non-bubbled)

All sequential and combinatorial macros (except MX4 and XOR8) use one logic element in the RTG4 family.

As an example, the macro DFN1E1C0 indicates a D-type flip-flop (DF) with a non-inverted (N) Q output, positive-edge triggered (1), with Active High Clock Enable (E1) and Active Low Asychronous Clear (C0). See Figure 1.

Figure 1 • Naming Convention

AND2

2-Input AND

Figure 2 • AND2

Inputs	Output
A, B	Υ

Truth Table

Α	В	Υ
Х	0	0
0	Χ	0
1	1	1

AND3

3-Input AND

Figure 3 • AND3

Input	Output
A, B, C	Υ

Α	В	С	Υ
Х	Χ	0	0
Х	0	Χ	0
0	X	X	0
1	1	1	1

AND4

4-Input AND

Figure 4 • AND4

Input	Output
A, B, C, D	Υ

Truth Table

Α	В	С	D	Υ
Х	Χ	Χ	0	0
Х	Χ	0	Χ	0
Х	0	Χ	Χ	0
0	Χ	Χ	Χ	0
1	1	1	1	1

BUFF

Buffer

Figure 5 • BUFF

Input	Output
Α	Υ

Α	Υ
0	0
1	1

BUFD

Buffer. Note that Compile optimization will not remove this macro.

Figure 6 • BUFD

Input	Output
Α	Y

Truth Table

Α	Y
0	0
1	1

BUFD_DELAY

Buffer. Note that Compile optimization will not remove this macro.

Figure 7 • BUFD

Input	Output
Α	Υ

Truth Table

Α	Υ
0	0
1	1

CLKINT

Macro used to route an internal fabric signal to global network.

Figure 8 • CLKINT

Input	Output
Α	Υ

Truth Table

Α	Υ
0	0
1	1

CLKINT_PRESERVE

Macro used to route an internal fabric signal to global network. It has the same functionality as CLKINT, except that this clock always stay on the global clock network and will not be demoted during design implementation.

Figure 9 • CLKINT_PRESERVE

Input	Output
А	Υ

Truth Table

Α	Υ
0	0
1	1

GRESET

Macro used to connect an I/O or route an internal fabric signal to the global reset network. The connection to the GRESET is hardened for radiation only if the driver is an I/O fixed at a package pin with "GRESET" in its function name.

Figure 10 • GRESET

Α	Υ
0	0
1	1

RCLKINT

Macro used to route an internal fabric signal to a row global buffer, thus creating a local clock.

Figure 11 • RCLKINT

Input	Output
Α	Υ

Truth Table

Α	Υ
0	0
1	1

RGRESET

Macro used to route a triplicated fabric signal to a row global buffer and create a local reset. The three input bits must be driven by three separate logic cones replicating the paths from the source registers.

Figure 12 • RGRESET

A[2]	A[1]	A[0]	Υ
Х	0	0	0
0	Χ	0	0
0	0	X	0
Х	1	1	1
1	X	1	1
1	1	Χ	1

SLE

Sequential Logic Element.

Figure 13 • Sequential Logic Element (SLE)

	Input		
Name	Function		
D	Data input		
CLK	Clock input		
EN	Active High CLK enable		
ALn	Asynchronous Load. This active low signal either sets the register or clears the register depending on the value of ADn.		
ADn*	Static asynchronous load data. When ALn is active, Q goes to the complement of ADn.		
SLn	Synchronous load. This active low signal either sets the register or clears the register depending on the value of SD.		
SD*	Static synchronous load data. When SLn is active (i.e.low), Q goes to the value of SD at the rising edge of CLK.		
LAT*	LAT is always tied to low. Q output is invalid when LAT=1.		

^{*}Note: ADn, SD and LAT are static signals defined at design time and need to be tied to 0 or 1.

ALn	ADn	LAT	CLK	EN	SLn	SD	D	Q _{n+1}
0	ADn	Х	Х	Х	Х	Х	Χ	!ADn
1	Х	0	Not rising	Х	Х	Х	Χ	Qn
1	Х	0	↑	0	Х	Х	Χ	Qn
1	Х	0	↑	1	0	SD	Χ	SD
1	Х	0	↑	1	1	Χ	D	D
Х	Х	1	Х	Х	Х	Х	Х	Invalid

ARI1

The ARI1 macro is responsible for representing all arithmetic operations in the pre-layout phase

Figure 14 • ARI1

Input	Output
A, B, C, D, FCI	Y, S, FCO

The ARI1 cell has a 20bit INIT string parameter that is used to configure its functionality. The interpretation of the 16 LSB of the INIT string is shown in the table below. F0 is the value of Y when A = 0 and F1 is the value of Y when A = 1.

Table 1 • Interpretation of 16 LSB of the INIT String for ARI1

ADCB	Y	
0000	INIT[0]	F0
0001	INIT[1]	
0010	INIT[2]	
0011	INIT[3]	
0100	INIT[4]	
0101	INIT[5]	
0110	INIT[6]	
0111	INIT[7]	
1000	INIT[8]	F1
1001	INIT[9]	
1010	INIT[10]	
1011	INIT[11]	
1100	INIT[12]	
1101	INIT[13]	
1110	INIT[14]	
1111	INIT[15]	

Table 2 • Truth Table for S

Υ	FCI	S
0	0	0
0	1	1
1	0	1
1	1	0

Figure 15 • ARI1 Logic

The 4 MSB of the INIT string controls the output of the carry bits. The carry is generated using carry propagation and generation bits, which are evaluated according to the tables below.

Table 3 • ARI1 INIT[17:16] String Interpretation

INIT[17]	INIT[16]	G
0	0	0
0	1	F0
1	0	1
1	1	F1

Table 4 • ARI1 INIT[19:18] String Interpretation

INIT[19]	INIT[18]	Р
0	0	0
0	1	Y
1	Х	1

Table 5 • FCO Truth Table

Р	G	FCI	FCO
0	G	Х	G
1	Х	FCI	FCI

FCEND_BUFF

Buffer, driven by the FCO pin of the last macro in the Carry-Chain.

Figure 16 • FCEND_BUFF

Input	Output
Α	Υ

Α	Υ
0	0
1	1

FCINIT_BUFF

Buffer, used to initialize the FCI pin of the first macro in the Carry-Chain.

Figure 17 • FCINIT_BUFF

Input	Output
А	Y

RCOSC 50MHz

The RCOSC_50MHz oscillator is an RC oscillator that provides a free running clock of 50MHz at CLKOUT.

Figure 18 • RCOSC_50MHz

SYSRESET

SYSRESET is a special-purpose macro. The Output POWER_ON_RESET_N goes low at power up and when DEVRST_N goes low.

Figure 19 • SYSRESET

Input	Output	
DEVRST_N	POWER_ON_RESET_N	

Truth Table

DEVRST_N	POWER_ON_RESET_N
0	0
1	1

SYSCTRL_RESET_STATUS

This is a special-purpose macro to check the status of the System Controller. The output port RESET_STATUS goes high if the System Controller is in reset. This macro is enabled by selecting the "Enable System Controller Suspend Mode" option in the "Configure Programming Bitstream Settings" tool within Libero. After programming, the device will enter "System Controller Suspend Mode" if TRSTB is tied low during device power up.

This macro is not supported in simulation.

Figure 20 • SYSCTRL_RESET_STATUS

DFN1

D-Type Flip-Flop

Figure 21 • DFN1

Input	Output
D, CLK	Q

CLK	D	Q _{n+1}
not Rising	Х	Q _n
↑	D	D

DFN1C0

D-Type Flip-Flop with active low Clear

Figure 22 • DFN1C0

Input	Output
D, CLK, CLR	Q

Truth Table

CLR	CLK	D	Q_{n+1}
0	X	Х	0
1	not Rising	Х	Q _n
1	↑	D	D

DFN1E1

D-Type Flip-Flop with active high Enable

Figure 23 • DFN1E1

Input	Output
D, E, CLK	Q

E	CLK	D	Q _{n+1}
0	Х	Х	Q _n
1	not Rising	X	Q _n
1	↑	D	D

DFN1E1C0

D-Type Flip-Flop, with active high Enable and active low Clear.

Figure 24 • DFN1E1C0

Input	Output
CLR, D, E, CLK	Q

CLR	E	CLK	D	Q _{n+1}
0	Х	Х	Х	0
1	0	X	X	Q_n
1	1	not Rising	Х	Q _n
1	1	1	D	D

DFN1E1P0

D-Type Flip-Flop with active high Enable and active low Preset.

Figure 25 • DFN1E1P0

Input	Output	
D, E, PRE, CLK	Q	

PRE	Е	CLK	D	Q _{n+1}
0	X	Х	Х	1
1	0	X	X	Q_n
1	1	not Rising	Х	Q_n
1	1	↑	D	D

DFN1P0

D-Type Flip-Flop with active low Preset.

Figure 26 • DFN1P0

Input	Output	
D, PRE, CLK	Q	

PRE	CLK	D	Q _{n+1}
0	Х	Х	1
1	not Rising	X	Qn
1	↑	D	D

Inverter

Figure 27 • INV

Input	Output
Α	Y

Truth Table

Α	Y
0	1
1	0

INVD

Inverter; note that Compile optimization will not remove this macro.

Figure 28 • INVD

Input	Output
A	Υ

Α	Υ
0	1
1	0

MX2

2 to 1 Multiplexer

Figure 29 • MX2

Input	Output
A, B, S	Y

Truth Table

Α	В	S	Y
Α	Х	0	Α
Х	В	1	В

MX4

4 to 1 Multiplexer

This macro uses two logic modules.

Figure 30 • MX4

Input	Output
D0, D1, D2, D3, S0, S1	Υ

D3	D2	D1	D0	S1	S0	Υ
Χ	Χ	Χ	D0	0	0	D0
Х	Х	D1	Х	0	1	D1
Х	D2	Х	Х	1	0	D2
D3	Х	Х	Х	1	1	D3

NAND2

2-Input NAND

Figure 31 • NAND2

Input	Output
A, B	Υ

Truth Table

Α	В	Y
Х	0	1
0	Χ	1
1	1	0

NAND3

3-Input NAND

Figure 32 • NAND3

Input	Output
A, B, C	Y

Α	В	С	Υ
Х	Х	0	1
Х	0	Χ	1
0	Х	Х	1
1	1	1	0

NAND4

4-input NAND

Figure 33 • NAND4

Input	Output
A, B, C, D	Υ

Truth Table

Α	В	С	D	Y
Х	Х	Χ	0	1
Х	Х	0	Χ	1
X	0	Χ	Χ	1
0	X	X	X	1
1	1	1	1	0

NOR₂

2-input NOR

Figure 34 • NOR2

Input	Output
A, B	Υ

Α	В	Y
0	0	1
Х	1	0
1	Х	0

NOR₃

3-input NOR

Figure 35 • NOR3

Input	Output
A, B, C	Υ

Truth Table

Α	В	С	Υ
0	0	0	1
Х	Х	1	0
Х	1	Χ	0
1	Х	Х	0

NOR4

4-input NOR

Figure 36 • NOR4

Input	Output
A, B, C, D	Y

Α	В	С	D	Y
0	0	0	0	1
1	Х	Χ	Х	0
Х	1	Χ	Х	0
Х	Х	1	Х	0
Х	Х	Х	1	0

OR₂

2-input OR

Figure 37 • OR2

Input	Output
A, B	Υ

Truth Table

Α	В	Υ
0	0	0
Х	1	1
1	Х	1

OR3

3-input OR

Figure 38 • OR3

Input	Output
A, B, C	Υ

Α	В	С	Υ
0	0	0	0
Х	Χ	1	1
Х	1	Χ	1
1	Χ	Χ	1

OR4

4-input OR

Figure 39 • OR4

Input	Output
A, B, C, D	Υ

Truth Table

Α	В	С	D	Υ
0	0	0	0	0
1	Х	Χ	Χ	1
Х	1	Х	Х	1
Х	Х	1	Χ	1
Х	Х	Х	1	1

XOR2

2-input XOR

Figure 40 • XOR2

Input	Output
A, B	Υ

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

XOR3

3-input XOR

Figure 41 • XOR3

Input	Output
A, B, C	Υ

Α	В	С	Υ
0	0	0	0
1	0	0	1
0	1	0	1
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	0
1	1	1	1

XOR4

4-input XOR

Figure 42 • XOR4

Input	Output
A, B, C, D	Υ

Α	В	С	D	Υ
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

XOR8

8-input XOR

This macro uses two logic modules.

Figure 43 • XOR8

Input	Output	
A, B, C, D, E, F, G, H	Y	

Truth Table

If you have an odd number of inputs that are High, the output is High (1).

If you have an even number of inputs that are High, the output is Low (0).

For example:

Α	В	С	D	E	F	G	Н	Υ
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	1	0

UJTAG

The UJTAG macro is a special purpose macro. It allows access to the user JTAG circuitry on board the chip. You must instantiate a UJTAG macro in your design if you plan to make use of the user JTAG feature. The TMS, TDI, TCK, TRSTB and TDO pins of the macro must be connected to top level ports of the design.

Figure 44 • UJTAG

Table 6: Ports and Descriptions

Port	Direction	Polarity	Description
UIREG[7:0]	Output	_	This 8-bit bus carries the contents of the JTAG instruction register of each device. Instruction values 16 to 127 are not reserved and can be employed as user-defined instructions
URSTB	Output	Low	URSTB is an Active Low signal and is asserted when the TAP controller is in Test-Logic-Reset mode. URSTB is asserted at power-up, and a power-on reset signal resets the TAP controller state.
UTDI	Output	-	This port is directly connected to the TAP's TDI signal
UTDO	Input	_	This port is the user TDO output. Inputs to the UTDO port are sent to the TAP TDO output MUX when the IR addess is in user range.
UDRSH	Output	High	Active High signal enabled in the Shift_DR TAP state.
UDRCAP	Output	High	Active High signal enabled in the Capture_DR_TAP state.
UDRCK	Output	-	This port is directly connected to the TAP's TCK signal.
UDRUPD	Output	High	Active High signal enabled in the Update_DR_TAP state.

Table 6: Ports and Descriptions (Continued)

Port	Direction	Polarity	Description
ТСК	Input	_	Test Clock Serial input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/pull- down resistor. Connect TCK to GND or +3.3 V through a resistor (500-1 KΩ) placed closed to the FPGA pin to prevent totem-pole current on the input buffer and TMS from entering into an undesired state. If JTAG is not used, connect it to GND.
TDI	Input	_	Test Data in. Serial input for JTAG boundary scan. There is an internal weak pull-up resistor on the TDI pin.
TDO	Output	_	Test Data Out. Serial output for JTAG boundary scan. The TDO pin does not have an internal pull-up/pull-down resistor.
TMS	Input	_	Test mode select. The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, and TRST). There is an internal weak pullup resistor on the TMS pin.
TRSTB	Input	Low	Test reset. The TRSTB pin is an active low input . It synchronously initializes (or resets) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRSTB pin. To hold the JTAG in reset mode and prevent it from entering into undesired states in critical applications, connect TRSTB to GND through a 1 $K\Omega$ resistor (placed close to the FPGA pin).

BIBUF

Bidirectional Buffer

Figure 45 • BIBUF

Input	Output
D, E, PAD	PAD, Y

Truth Table

MODE	E	D	PAD	Y
OUTPUT	1	D	D	D
INPUT	0	Х	Z	Х
INPUT	0	Х	PAD	PAD

BIBUF_DIFF

Bidirectional Buffer, Differential I/O

Figure 46 • BIBUF_DIFF

Input	Output	
D, E, PADP, PADN	PADP, PADN, Y	

MODE	Е	D	PADP	PADN	Υ
OUTPUT	1	0	0	1	0
OUTPUT	1	1	1	0	1
INPUT	0	Х	Z	Z	Х
INPUT	0	Х	0	0	Х
INPUT	0	Х	1	1	Х
INPUT	0	Х	0	1	0
INPUT	0	Х	1	0	1

CLKBIBUF

Bidirectional Buffer with Input to global network.

Figure 47 • CLKBIBUF

Input	Output	
D, E, PAD	PAD, Y	

Truth Table

D	E	PAD	Υ
Х	0	Z	Х
Х	0	0	0
Х	0	1	1
0	1	0	0
1	1	1	1

CLKBUF

Input Buffer to global network

Figure 48 • CLKBUF

Input	Output
PAD	Υ

PAD	Y
0	0
1	1

CLKBUF_DIFF

Differential I/O macro to global network, Differential I/O

Figure 49 • INBUF_DIFF

Input	Output	
PADP, PADN	Y	

PADP	PADN	Y
Z	Z	Y
0	0	Х
1	1	Х
0	1	0
1	0	1

INBUF

Input Buffer

Figure 50 • INBUF

Input	Output
PAD	Υ

Truth Table

PAD	Y
Z	Х
0	0
1	1

INBUF_DIFF

Input Buffer, Differential I/O

Figure 51 • INBUF_DIFF

Input	Output
PADP, PADN	Y

PADP	PADN	Υ
Z	Z	Χ
0	0	Х
1	1	Х
0	1	0
1	0	1

OUTBUF

Output buffer

Figure 52 • OUTBUF

Input	Output	
D	PAD	

Truth Table

D	PAD	
0	0	
1	1	

OUTBUF_DIFF

Output buffer, Differential I/O

Figure 53 • OUTBUF_DIFF

Input	Output	
D	PADP, PADN	

D	PADP	PADN
0	0	1
1	1	0

TRIBUFF

Tristate output buffer

Figure 54 • TRIBUFF

Input	Output
D, E	PAD

Truth Table

D	Е	PAD
Х	0	Z
D	1	D

TRIBUFF_DIFF

Tristate output buffer, Differential I/O

Figure 55 • TRIBUFF_DIFF

Input	Output	
D, E	PADP, PADN	

D	E	PADP	PADN
Х	0	Z	Z
0	1	0	1
1	1	1	0

DDR_IN

The DDR_IN macro is available for both pre-layout and post-layout simulation flows. It consists of two SLE macros and a latch.

The iinput D must be connected to an I/O.

Figure 56 • DDR_IN

Input	Output
D, CLK, EN, ALn, ADn, SLn, SD	QR, QF

Input		Output	
Name	Function	Name	Function
D	Data	QR	Q (Rising Edge)
CLK	Clock	QF	Q (Falling Edge)
EN	Enable		
ALn	Asynchronous Load (Active Low)		
ADn*	Asynchronous Data (Active Low)		
SLn	Synchronous Load (Active Low)		
SD*	Synchronous Data		

^{*}Note: ADn and SD are static inputs defined at design time and need to be tied to 0 or 1.

ALn	CLK	EN	SLn	df (Internal Signal)	QR _(n+1)	QF _(n+1)
1	Not rising	Х	Х	df	QR _n	QF _n
1	↑	0	Х	df	QR _n	QF _n
1	↑	1	1	df	D	df _n
1	→	Х	Х	D	QR _n	QF _n
1	↑	1	0	df	SD	SD
0	Х	Х	Х	!AD _n	!AD _n	!AD _n

DDR_OUT

The DDR_OUT macro is an output DDR cell and is available for pre-layout simulation. It consists of two SLE macros. The output Q must be connected to an I/O.

Figure 57 • DDR_OUT

	Input		
Name	Function		
DR	Data (Rising Edge)		
DF	Data (Falling Edge)		
CLK	Clock		
EN	Enable	0	
AL _n	Asynchronous Load (Active Low)	Q	
AD _n *	Asynchronous Data (Active Low)		
SL _n	Synchronous Load (Active Low)		
SD*	Synchronous Data		

*Note: ADn and SD are static inputs defined at design time and need to be tied to 0 or 1.

ALn	CLK	EN	SLn	Q _{n+1}
1	not rising	Х	Х	Q _n
1	1	0	Х	Q _n
1	↑	1	1	DR _n
1	\downarrow	1	1	DF _n
1	\uparrow	1	0	SD
0	X	Х	X	!AD _n

RAM1K18_RT

The RAM1K18_RT block contains 24,576 (18,432 with ECC) memory bits and is a true dual-port memory. The RAM1K18_RT memory can also be configured in two-port mode. All read/write operations to the RAM1K18_RT memory are synchronous. To improve the read-data delay, an optional pipeline register at the output is available. Besides the feed-through write mode option to enable immediate access to the write-data, RAM1K18_RT has a Read-before-write option in the dual-port mode. RAM1K18_RT also adds a Read-enable control to both dual-port and two-port modes. The RAM1K18_RT memory has two data ports which can be independently configured in any combination shown below.

- 1. ECC Dual-Port RAM with the following configuration:
 - 1Kx18 on both ports
- 2. Non-ECC Dual-Port RAM with the following configurations:
 - Any of 1Kx18 or 2Kx9 on each port
 - 2Kx12 on both ports
- 3. ECC Two-Port RAM with the following configurations:
 - Any of 512x36 or 1Kx18 on each port
- 4. Non-ECC Two-Port RAM with the following configurations:
 - Any of 512x36, 1Kx18 or 2Kx9 on each port
 - 2Kx12 on both ports

Functionality

The main features of the RAM1K18_RT memory block are as follows:

- A RAM1K18_RT block has 18,432 bits with ECC and 24,576 bits without ECC.
- A RAM1K18 RT block provides two independent data ports A and B.
- RAM1K18_RT has an ECC dual-port mode, for which both ports have word widths equal to 18 bits.
 - 1Kx18/1Kx18
- In non-ECC dual-port mode, each port can be independently configured to any of the following depth/width:
 1Kx18 or 2Kx9. In addition, both ports can be configured to 2Kx12. There are 4 unique combinations of non-ECC dual-port aspect ratios:
 - 1Kx18/1Kx18
 - 1Kx18/2Kx9
 - 2Kx9/1Kx18
 - 2Kx12/2Kx12
- RAM1K18_RT also has a two-port mode. In this case, Port A will become the read port and Port B becomes the
 write port.
- RAM1K18_RT has an ECC two-port mode, for which both ports have word widths equal to either 36 or 18 bits.
 There are 4 unique combinations of ECC two-port aspect ratios:
 - 512x36/512x36
 - 512x36/1Kx18
 - 1Kx18/512x36
 - 1Kx18/1Kx18
- In non-ECC two-port mode, each port can be independently configured to any of the following depth/width: 512x36, 1Kx18, or 2Kx9. In addition, both ports can be configured to 2Kx12. There are 9 unique combinations of non-ECC two-port aspect ratios:
 - 512x36/512x36
 - 512x36/1Kx18
 - 512x36/2Kx9
 - 1Kx18/512x36
 - 1Kx18/1Kx18

- 1Kx18/2Kx9
- 2Kx9/512x36
- 2Kx9/1Kx18
- 2Kx12/2Kx12
- RAM1K18_RT performs synchronous operation for setting up the address as well as writing and reading the data.
- RAM1K18_RT has a Read-enable control to both dual-port and two-port modes.
- · The address, data, block-port select, write-enable and read-enable inputs are registered.
- An optional pipeline register with a separate enable and synchronous-reset is available at the read-data port to improve the clock-to-out delay.
- The registers in RAM1K18_RT block have an option to mitigate Single-event transients.
- · There is an independent clock for each port. The memory will be triggered at the rising edge of the clock.
- The true dual-port mode supports an optional Read-before-write mode or a feed-through write mode, where the write-data also appears on the corresponding read-data port.
- · Read from both ports at the same location is allowed.
- Read and write on the same location at the same time results in unknown data to be read. There is no
 collision prevention or detection. However, correct data is expected to be written into the memory.
- When ECC is enabled, each port of the RAM1K18_RT memory can raise flags to indicate single-bit-correct and double-bit-detect.

Figure 58 shows a simplified block diagram of the RAM1K18_RT memory block and Table 8 gives the port descriptions. The simplified block illustrates the two independent data ports, the read-data pipeline registers, read-before-write selection and feed-through multiplexors.

Figure 58 • Simplified Block Diagram of RAM1K18_RT

Table 7 • Port List for RAM1K18_RT

Pin Name	Pin Direction	Туре	Description	Polarity
A_ADDR[10:0]	Input	Dynamic	Port A address	
A_BLK[2:0]	Input	Dynamic	Port A block selects	High
A_CLK	Input	Dynamic	Port A clock	Rising
A_DIN[17:0]	Input	Dynamic	Port A write-data	
A_DOUT[17:0]	Output	Dynamic	Port A read-data	
A_WEN[1:0]	Input	Dynamic	Port A write-enables (per byte)	High
A_REN	Input	Dynamic	Port A read-enable	High
A_WIDTH[1:0]	Input	Static	Port A width/depth mode select	
A_WMODE[1:0]	Input	Static	Port A Read-before-write and Feed-through write selects	High
A_DOUT_BYPASS	Input	Static	Port A pipeline register select	Low
A_DOUT_EN	Input	Dynamic	Port A pipeline register enable	High
A_DOUT_SRST_N	Input	Dynamic	Port A pipeline register synchronous-reset	Low
B_ADDR[10:0]	Input	Dynamic	Port B address	
B_BLK[2:0]	Input	Dynamic	Port B block selects	High
B_CLK	Input	Dynamic	Port B clock	Rising
B_DIN[17:0]	Input	Dynamic	Port B write-data	
B_DOUT[17:0]	Output	Dynamic	Port B read-data	
B_WEN[1:0]	Input	Dynamic	Port B write-enables (per byte)	High
B_REN	Input	Dynamic	Port B read-enable	High
B_WIDTH[1:0]	Input	Static	Port B width/depth mode select	
B_WMODE[1:0]	Input	Static	Port B Read-before-write and Feed-through write selects	High
B_DOUT_BYPASS	Input	Static	Port B pipeline register select	Low
B_DOUT_EN	Input	Dynamic	Port B pipeline register enable	High
B_DOUT_SRST_N	Input	Dynamic	Port B pipeline register synchronous-reset	Low
ARST_N	Input	Global	Pipeline registers asynchronous-reset	Low
ECC	Input	Static	Enable ECC	High
ECC_DOUT_BYPASS	Input	Static	ECC pipeline register select	Low
A_SB_CORRECT	Output	Dynamic	Port A single-bit correct flag	High
A_DB_DETECT	Output	Dynamic	Port A double-bit detect flag	High

Table 7 • Port List for RAM1K18_RT (Continued)

Pin Name	Pin Direction	Туре	Description	Polarity
B_SB_CORRECT	Output	Dynami	Port B single-bit correct flag	High
B_DB_DETECT	Output	Dynami	Port B double-bit detect flag	High
DELEN	Input	Static	Enable SET mitigation	High
SECURITY	Input	Static	Lock access to SII	High
BUSY	Output	Dynami	Busy signal from SII	High

Note: Static inputs are defined at design time and need to be tied to 0 or 1.

Port Description

A_WIDTH and B_WIDTH

Table 8 lists the width/depth mode selections for each port. Two-port mode is in effect when the width of at least one port is 36, and A_WIDTH indicates the read width while B_WIDTH indicates the write width.

Table 8 • Width/Depth Mode Selection

Depth x Width	A_WIDTH/B_WIDTH
2Kx9, 2Kx12	00
1Kx18	01
512x36 (Two-port)	10

A_WEN and B_WEN

Table 9 lists the write/read control signals for each port. Two-port mode is in effect when the width of at least one port is 36, and read operation is always enabled.

Table 9 • Write/Read Operation Select

Depth x Width	A_WEN/B_WEN	Result
2Kx9, 2Kx12,	00	Perform a read operation
2Kx9, 2Kx12	11	Perform a write operation
1Kx18	01	Write [8:0]
	10	Write [17:9]
	11	Write [17:0]
	B_WEN[0] = 1	Write B_DIN[8:0]
512x36 (Two-port write)	B_WEN[1] = 1	Write B_DIN[17:9]
(Two port mile)	A_WEN[0] = 1	Write A_DIN[8:0]
	A_WEN[1] = 1	Write A_DIN[17:9]

A_ADDR and B_ADDR

Table 10 lists the address buses for the two ports. 11 bits are needed to address the 2K independent locations in x9 mode. In wider modes, fewer address bits are used. The required bits are MSB justified and unused LSB bits must be tied to 0. A_ADDR is synchronized by A_CLK while B_ADDR is synchronized to B_CLK. Two-port mode is in effect when the width of at least one port is 36, and A_ADDR provides the read-address while B_ADDR provides the write-address.

Table 10 • Address Bus Used and Unused Bits

	A_ADDR/B_ADDR		
Depth x Width	Used Bits	Unused Bits (must be tied to 0)	
2Kx9, 2Kx12	[10:0]	None	
1Kx18	[10:1]	[0]	
512x36 (Two-port)	[10:2]	[1:0]	

A_DIN and B_DIN

Table 11 lists the data input buses for the two ports. The required bits are LSB justified and unused MSB bits must be tied to 0. Two-port mode is in effect when the width of at least one port is 36, and A_DIN provides the MSB of the write-data while B_DIN provides the LSB of the write-data.

Table 11 • Data Input Buses Used and Unused Bits

	A_DIN/B_DIN			
Depth x Width	Used Bits	Unused Bits (must be tied to 0)		
2Kx9	[8:0]	[17:9]		
2Kx12	[11:0]	[17:12]		
1Kx18	[17:0]	None		
512x36 (Two-port write)	A_DIN[17:0] is [35:18] B_DIN[17:0] is [17:0]	None		

A DOUT and B DOUT

Table 12 lists the data output buses for the two ports. The required bits are LSB justified. Two-port mode is in effect when the width of at least one port is 36, and A_DOUT provides the MSB of the read-data while B_DOUT provides the LSB of the read-data.

Table 12 • Data Output Buses Used and Unused Bits

	A_DOUT/B_DOUT		
Depth x Width	Used	Unused Bits	
2Kx9	[8:0]	[17:9]	
2Kx12	[11:0]	[17:12]	
1Kx18	[17:0]	None	
512x36 (Two-port read)	A_DOUT[17:0] is [35:18] B_DOUT[17:0] is [17:0]	None	

A BLK and B BLK

Table 13 lists the block-port select control signals for the two ports. A_BLK is synchronized by A_CLK while B_BLK is synchronized to B_CLK. Two-port mode is in effect when the width of at least one port is 36, and A_BLK controls the read operation while B_BLK controls the write operation.

Table 13 • Block-port Select

Block-port		
Select Signal	Value	Result
A_BLK[2:0]	111	Perform read or write operation on Port A. In 36 width mode, perform a read operation from both ports A and B.
A_BLK[2:0]	Any one bit is 0	No operation in memory from Port A. Port A read-data will be forced to 0. In 36 width mode, the read-data from both ports A and B will be forced to 0.
B_BLK[2:0]	111	Perform read or write operation on Port B. In 36 width mode, perform a write operation to both ports A and B.
B_BLK[2:0]	Any one bit is 0	No operation in memory from Port B. Port B read-data will be forced to 0, unless it is a 36 width mode and write operation to both ports A and B is gated.

A_WMODE and B_WMODE

In true dual-port write mode, each port has a feed-through write option:

- Logic 00 = Read-data port holds the previous value.
- Logic 01 = Feed-through, i.e. write-data appears on the corresponding read-data port. This setting is invalid when the width of at least one port is 36 and the two-port mode is in effect.
- Logic 10 = Read-before-write, i.e. previous content of the memory appears on the corresponding read-data port before it is overwritten. This setting is invalid when the width of at least one port is 36 and the two-port mode is in effect.

A CLK and B CLK

All signals in ports A and B are synchronous to the corresponding port clock. All address, data, block-port select, write-enable and read-enable inputs must be set up before the rising edge of the clock. The read or write operation begins with the rising edge. Two-port mode is in effect when the width of at least one port is 36, and A_CLK provides the read clock while B_CLK provides the write clock.

A REN and B REN

Enables read operation from the memory on the corresponding port.

Read-data Pipeline Register Control signals

A_DOUT_BYPASS and B_DOUT_BYPASS

A_DOUT_EN and B_DOUT_EN

A_DOUT_SRST_N and B_DOUT_SRST_N

Two-port mode is in effect when the width of at least one port is 36, and the A_DOUT register signals control the MSB of the read-data while the B_DOUT register signals control the LSB of the read-data.

Table 14 describes the functionality of the control signals on the A_DOUT and B_DOUT pipeline registers.

Table 14 • Truth Table for A_DOUT and B_DOUT Registers

ARST_N	_BYPASS	_CLK	_EN	_SRST_N	D	Qn+1
0	Х	Х	Х	Х	Х	0
1	0	Not rising	Х	Х	Х	Qn

Table 14 • Truth Table for A_DOUT and B_DOUT Registers (Continued)

ARST_N	_BYPASS	_CLK	_EN	_SRST_N	D	Qn+1
1	0	↑	0	Х	Х	Qn
1	0	↑	1	0	Х	0
1	0	↑	1	1	D	D
1	1	Х	Х	Х	D	D

ARST N

Connects the Read-data pipeline registers to the global Asynchronous-reset signal.

ECC and ECC_DOUT_BYPASS

Controls ECC operation.

- ECC = 0: Disable ECC.
- ECC = 1, ECC_DOUT_BYPASS = 0: Enable ECC Pipelined.
 - ECC Pipelined mode inserts an additional clock cycle to Read-data.
 - In addition, Write-feed-thru and Read-before-write modes add another clock cycle to Read-data.
- ECC = 1, ECC_DOUT_BYPASS = 1: Enable ECC Non-pipelined.

A SB CORRECT and B SB CORRECT

Output flag indicates single-bit correction was performed on the corresponding port.

A DB DETECT and B DB DETECT

Output flag indicates double-bit detection was performed on the corresponding port.

DFI FN

Enable Single-event Transient mitigation.

SECURITY

Control signal, when 1 locks the entire RAM1K18_RT memory from being accessed by the SII.

RUSY

This output indicates that the RAM1K18_RT memory is being accessed by the SII.

RAM64x18 RT

The RAM64x18_RT block contains 1,536 (1,152 with ECC) memory bits and is a three-port memory providing one write port and two read ports. Write operations to the RAM64x18_RT memory are synchronous. Read operations can be asynchronous or synchronous for setting up the address and reading out the data. Enabling synchronous operation at the read-address port improves setup timing for the read-address and its enable signals. Enabling synchronous operation at the read-data port improves clock-to-out delay. Each data port on the RAM64x18_RT memory can be independently configured in any combination shown below.

- 1. ECC Three-Port RAM with the following configuration:
 - 64x18 on all three ports
- 2. Non-ECC Three-Port RAM with the following configurations:
 - Any of 64x18 or 128x9 on each port
 - 128x12 on all three ports

Functionality

The main features of the RAM64x18_RT memory block are as follows.

- There are two independent read-data ports A and B, and one write-data port C.
- The write operation is always synchronous. The write-address, write-data, C block-port select and write-enable inputs are registered.
- For both read-data ports, setting up the address can be synchronous or asynchronous.
- The two read-data ports have address registers with a separate enable and synchronous-reset for synchronous mode operation, which can also be bypassed for asynchronous mode operation.
- The two read-data ports have output registers with a separate enable and synchronous-reset for pipeline mode operation, which can also be bypassed for asynchronous mode operation.
- Therefore, there are four read operation modes for ports A and B:
 - Synchronous read-address without read-data pipeline registers (sync-async)
 - Synchronous read-address with read-data pipeline registers (sync-sync)
 - Asynchronous read-address without read-data pipeline registers (async-async)
 - Asynchronous read-address with read-data pipeline registers (async-sync)
- In ECC mode, all ports have word widths equal to 18 bits.
- In non-ECC mode, each port can be independently configured to any of the following depth/width: 64x18 or 128x9. In addition, all the ports can be configured to 128x12.
- The registers in RAM64x18_RT block have an option to mitigate Single-event transients.
- · There is an independent clock for each port. The memory will be triggered at the rising edge of the clock.
- · Read from both ports A and B at the same location is allowed.
- Read and write on the same location at the same time results in unknown data to be read.
- There is no collision prevention or detection. However, correct data is expected to be written into the memory.
- When ECC is enabled, each port of the RAM64x18_RT memory can raise flags to indicate single-bit-correct and double-bit-detect.

Figure 59 shows a simplified block diagram of the RAM64x18_RT memory block and Table 9 gives the port descriptions.

The simplified block diagram illustrates the three independent read/write ports and the pipeline registers on the read port.

Figure 59 • Simplified Block Diagram of RAM64x18_RT

Table 15 • Port List for RAM64x18_RT

Pin Name	Pin Direction	Туре	Description	Polarity
A_ADDR[6:0]	Input	Dynamic	Port A read-address	
A_BLK[1:0]	Input	Dynamic	Port A block selects	High
A_WIDTH	Input	Static	Port A width/depth mode	
A_DOUT[17:0]	Output	Dynamic	Port A read-data	
A_DOUT_EN	Input	Dynamic	Port A read-data pipeline	High
A_DOUT_BYPASS	Input	Static	Port A read-data pipeline	Low
A_DOUT_SRST_N	Input	Dynamic	Port A read-data pipeline register synchronous-reset	Low
A_CLK	Input	Dynamic	Port A registers clock	Rising
A_ADDR_EN	Input	Dynamic	Port A read-address register	High

Table 15 • Port List for RAM64x18_RT (Continued)

Pin Name	Pin Direction	Туре	Description	Polarity
A_ADDR_BYPASS	Input	Static	Port A read-address register	Low
A_ADDR_SRST_N	Input	Dynamic	Port A read-address register synchronous-reset	Low
B_ADDR[6:0]	Input	Dynamic	Port B read-address	
B_BLK[1:0]	Input	Dynamic	Port B block selects	High
B_WIDTH	Input	Static	Port B width/depth mode	
B_DOUT[17:0]	Output	Dynamic	Port B read-data	
B_DOUT_EN	Input	Dynamic	Port B read-data pipeline	High
B_DOUT_BYPASS	Input	Static	Port B read-data pipeline	Low
B_DOUT_SRST_N	Input	Dynamic	Port B read-data pipeline register synchronous-reset	Low
B_CLK	Input	Dynamic	Port B registers clock	Rising
B_ADDR_EN	Input	Dynamic	Port B read-address register	High
B_ADDR_BYPASS	Input	Static	Port B read-address register	Low
B_ADDR_SRST_N	Input	Dynamic	Port B read-address register synchronous-reset	Low
C_ADDR[6:0]	Input	Dynamic	Port C address	
C_CLK	Input	Dynamic	Port C clock	Rising
C_DIN[17:0]	Input	Dynamic	Port C write-data	
C_WEN	Input	Dynamic	Port C write-enable	High
C_BLK[1:0]	Input	Dynamic	Port C block selects	High
C_WIDTH	Input	Static	Port C width/depth mode	
ARST_N	Input	Global	Read-address and Read-data pipeline registers asynchronous-	Low
ECC	Input	Static	Enable ECC	High
ECC_DOUT_BYPAS	Input	Static	ECC pipeline register select	Low
A_SB_CORRECT	Output	Dynamic	Port A single-bit correct flag	High
A_DB_DETECT	Output	Dynamic	Port A double-bit detect flag	High
B_SB_CORRECT	Output	Dynamic	Port B single-bit correct flag	High
B_DB_DETECT	Output	Dynamic	Port B double-bit detect flag	High
DELEN	Input	Static	Enable SET mitigation	High
SECURITY	Input	Static	Lock access to SII	High
BUSY	Output	Dynamic	Busy signal from SII	High

Note: Static inputs are defined at design time and need to be tied to 0 or 1.

Port Description

A_WIDTH, B_WIDTH and C_WIDTH

Table 16 lists the width/depth mode selections for each port.

Table 16 • Width/Depth Mode Selection

Depth x Width	A_WIDTH/B_WIDTH/C_WIDTH
128x9, 128x12	0
64x16, 64x18	1

C WEN

This is the write-enable signal for port C.

A_ADDR, B_ADDR and C_ADDR

Table 17 lists the address buses for each port. 7 bits are required to address 128 independent locations in x9 mode. In wider modes, fewer address bits are used. The required bits are MSB justified and unused LSB bits must be tied to 0.

Table 17 • Address Buses Used and Unused Bits

Depth x	A_ADDR/B_ADDR/C_ADDR				
Width	Used Bits	Unused Bits (must be tied to zero)			
128x9,	[6:0]	None			
64x18	[6:1]	[0]			

C DIN

Table 18 lists the write-data input for port C. The required bits are LSB justified and unused MSB bits must be tied to 0.

Table 18 • Data Input Bus Used and Unused Bits

	C_DIN			
Depth x Width	Used Bits	Unused Bits (must be tied to 0)		
128x9	[8:0]	[17:9]		
128x12	[11:0]	[17:12]		
64x18	[17:0]	None		

A_DOUT and B_DOUT

Table 19 lists the read-data output buses for ports A and B. The required bits are LSB justified.

Table 19 • Data Output Used and Unused Bits

Donah v Width	A_DOUT/B_DOUT				
Depth x Width	Used Bits	Unused Bits			
128x9	[8:0]	[17:9]			
128x12	[11:0]	[17:12]			
64x18	[17:0]	None			

A_BLK, B_BLK and C_BLK

Table 20 lists the block-port select control signals for the ports.

Table 20 • Block-port Select

Block-port Select Signal	Value	Result
A_BLK[1:0]	Any one bit is 0	Port A is not selected and its read-data will be forced to zero.
	11	Perform read operation from port A.
B_BLK[1:0]	Any one bit is 0	Port B is not selected and its read-data will be forced to zero.
	11	Perform read operation from port B.
C DI K[4.0]	Any one bit is 0	Port C is not selected.
C_BLK[1:0]	11	Perform write operation to port C.

C CLK

All signals on port C are synchronous to this clock signal. All write-address, write-data, C block-port select and write-enable inputs must be set up before the rising edge of the clock. The write operation begins with the rising edge.

Read-address and Read-data Pipeline Register Control signals
A_DOUT_BYPASS, A_ADDR_BYPASS, B_DOUT_BYPASS and B_ADDR_BYPASS
A_DOUT_EN, A_ADDR_EN, B_DOUT_EN and B_ADDR_EN
A_DOUT_SRST_N, A_ADDR_SRST_N, B_DOUT_SRST_N and B_ADDR_SRST_N

Table 21 describes the functionality of the control signals on the A_ADDR, B_ADDR, A_DOUT and B_DOUT registers.

Table 21 • Truth Table for A_ADDR, B_ADDR, A_DOUT and B_DOUT Registers

ARST_N	_BYPASS	_CLK	_EN	_SRST_N	D	Qn+1
0	Χ	Χ	Х	Х	Х	0
1	0	Not rising	Х	X	Х	Qn
1	0	↑	0	Х	Х	Qn
1	0	↑	1	0	Х	0
1	0	↑	1	1	D	D
1	1	Х	Х	Х	D	D

ARST N

Connects the read-address and read-data pipeline registers to the global Asynchronous-reset signal.

ECC and ECC_DOUT BYPASS

Controls ECC operation.

- ECC = 0: Disable ECC.
- ECC = 1, ECC_DOUT_BYPASS = 0: Enable ECC Pipelined.
 - ECC Pipelined mode inserts an additional clock cycle to Read-data.
- ECC = 1, ECC_DOUT_BYPASS = 1: Enable ECC Non-pipelined.

A SB CORRECT and B SB CORRECT

Output flag indicates single-bit correction was performed on the corresponding port.

A DB DETECT and B DB DETECT

Output flag indicates double-bit detection was performed on the corresponding port.

DELEN

Enable Single-event Transient mitigation.

SECURITY

Control signal, when 1 locks the entire RAM64x18_RT memory from being accessed by the SII.

BUSY

This output indicates that the RAM64x18_RT memory is being accessed by the SII.

MACC

18 bit x 18 bit multiply-accumulate MACC block

The MACC block can accumulate the current multiplication product with a previous result, a constant, a dynamic value, or a result from another MACC block. Each MACC block can also be configured to perform a Dot-product operation. All the signals of the MACC block (except CDIN and CDOUT) have optional registers.

Figure 60 • MACC Ports

Table 22 • Ports

Port Name	Direction	Туре	Polarity	Description
DOTP	Input	Static	High	Dot-product mode. When DOTP = 1, MACC block performs Dot-product of two pairs of 9-bit operands. When DOTP = 0, it is called the normal mode.
SIMD	Input	Static		Reserved. Must be 0.
CLK [1:0]	Input	Dynamic	Rising edge	 Input clocks. CLK[1] is the clock for A[17:9], B[17:9], C[43:18], P[43:18], OVFL_CARRYOUT, ARSHFT17, CDSEL, FDBKSEL and SUB registers. CLK[0] is the clock for A[8:0], B[8:0], C[17:0], CARRYIN and P[17:0]. In normal mode, ensure CLK[1] = CLK[0].
A [17:0]	Input	Dynamic	High	Input data A.
A_BYPASS[1:0]	Input	Static	High	 Bypass data A registers. A_BYPASS[1] is for A[17:9]. Connect to 1, if not registered. A_BYPASS[0] is for A[8:0]. Connect to 1, if not registered. In normal mode, ensure A_BYPASS[0] = A_BYPASS[1].
A_ARST_N[1:0]	Input	Dynamic	Low	Asynchronous reset for data A registers. Connect both A_ARST_N[1] and = A_ARST_N[0] to 1 or to the global Asynchronous reset of the design
A_SRST_N[1:0]	Input	Dynamic	Low	 Synchronous reset for data A registers. A_SRST_N[1] is for A[17:9]. Connect to 1, if not registered. A_SRST_N[0] is for A[8:0]. Connect to 1, if not registered. In normal mode, ensure A_SRST_N[1] = A_SRST_N[0].
A_EN[1:0]	Input	Dynamic	High	 Enable for data A registers. A_EN[1] is for A[17:9]. Connect to 1, if not registered. A_EN[0] is for A[8:0]. Connect to 1, if not registered. In normal mode, ensure A_EN[1] = A_EN[0].

Table 22 • Ports (Continued)

Port Name	Direction	Туре	Polarity	Description
B [17:0]	Input	Dynamic	High	Input data B.
B_BYPASS[1:0]	Input	Static	High	 Bypass data B registers. B_BYPASS[1] is for B[17:9]. Connect to 1, if not registered. B_BYPASS[0] is for B[8:0]. Connect to 1, if not registered. In normal mode, ensure B_BYPASS[0] = B_BYPASS[1].
B_ARST_N[1:0]	Input	Dynamic	Low	Asynchronous reset for data B registers. In normal mode, ensure Connect both B_ARST_N[1] and B_ARST_N[0] to 1 or to the global Asynchronous reset of the design.
B_SRST_N[1:0]	Input	Dynamic	Low	 Synchronous reset for data B registers. B_SRST_N[1] is for B[17:9]. Connect to 1, if not registered. B_SRST_N[0] is for B[8:0]. Connect to 1, if not registered. In normal mode, ensure B_SRST_N[1] = B_SRST_N[0].
B_EN[1:0]	Input	Dynamic	High	 Enable for data B registers. B_EN[1] is for B[17:9]. Connect to 1, if not registered. B_EN[0] is for B[8:0]. Connect to 1, if not registered. In normal mode, ensure B_EN[1] = B_EN[0].
				Describ data
P [43:0]	Output		High	Result data. Normal mode P = D + (CARRYIN + C) + (A * B), when SUB = 0 P = D + (CARRYIN + C) - (A * B), when SUB = 1 Dot-product mode P = D + (CARRYIN + C) + 512 * ((A _L * B _H) + (A _H * B _L)), when SUB = 0 P = D + (CARRYIN + C) - 512 * ((A _L * B _H) + (A _H * B _L)), when SUB = 1 Notation: A _L = A[8:0], A _H = A[17:9] B _L = B[8:0], B _H = B[17:9] Refer to Table 25 on page 70 to see how operand D is obtained from P, CDIN or 0.

Table 22 • Ports (Continued)

Port Name	Direction	Туре	Polarity	Description
OVFL_CARRYOUT	Output		High	Overflow or CarryOut Overflow when OVFL_CARRYOUT_SEL = 0 OVFL_CARRYOUT = (SUM[45] ^ SUM[44]) (SUM[44] ^ SUM[43]) CarryOut when OVFL_CARRYOUT_SEL = 1 OVFL_CARRYOUT = C[43] ^ D[43] ^ SUM[44]
P_BYPASS[1:0]	Input	Static	High	 Bypass result P registers. P_BYPASS[1] is for P[43:18] and OVFL_CARRYOUT. Connect to 1, if not registered. P_BYPASS[0] is for P[17:0]. Connect to 1, if not registered. In normal mode, ensure P_BYPASS[0] = P_BYPASS[1].
P_ARST_N[1:0]	Input	Dynamic	Low	Asynchronous reset for result P registers. Connect both P_ARST_N[1] and P_ARST_N[0] to 1 or to the global Asynchronous reset of the design
P_SRST_N[1:0]	Input	Dynamic	Low	 Synchronous reset for result P registers. P_SRST_N[1] is for P[43:18] and OVFL_CARRYOUT. Connect to 1, if not registered. P_SRST_N[0] is for P[17:0]. Connect to 1, if not registered. In normal mode, ensure P_SRST_N[1] = P_SRST_N[0].
P_EN[1:0]	Input	Dynamic	High	 Enable for result P registers. P_EN[1] is for P[43:18] and OVFL_CARRYOUT. Connect to 1, if not registered. P_EN[0] is for P[17:0]. Connect to 1, if not registered. In normal mode, ensure P_EN[1] = P_EN[0].
CDOUT [43:0]	Output	Cascade	High	Cascade output of result P. CDOUT is the same as P. The entire bus must either be dangling or drive an entire CDIN of another MACC block in cascaded mode.
CARRYIN	Input	Dynamic	High	CarryIn for operand C.

Table 22 • Ports (Continued)

Port Name	Direction	Туре	Polarity	Description		
C [43:0]	Input	Dynamic	High	Routed input for operand C. In Dot-product mode, connect C[8:0] to the CARRYIN.		
C_BYPASS[1:0]	Input	Static	High	Bypass data C registers. C_BYPASS[1] is for C[43:18]. Connect to 1, if not registered. C_BYPASS[0] is for C[17:0] and CARRYIN. Connect to 1, if not registered. In normal mode, ensure C_BYPASS[0] = C_BYPASS[1].		
C_ARST_N[1:0]	Input	Dynamic	Low	Asynchronous reset for data C registers. • Connect both C_ARST_N[1] and C_ARST_N[0] to 1 or to the global Asynchronous reset of the design.		
C_SRST_N[1:0]	Input	Dynamic	Low	 Synchronous reset for data C registers. C_SRST_N[1] is for C[43:18]. Connect to 1, if not registered. C_SRST_N[0] is for C[17:0] and CARRYIN. Connect to 1, if not registered. In normal mode, ensure C_SRST_N[1] = C_SRST_N[0]. 		
C_EN[1:0]	Input	Dynamic	High	 Enable for data C registers. C_EN[1] is for C[43:18]. Connect to 1, if not registered. C_EN[0] is for C[17:0] and CARRYIN. Connect to 1, if not registered. In normal mode, ensure C_EN[1] = C_EN[0]. 		
CDIN[43:0]	Input	Cascade	High	Cascaded input for operand D. The entire bus must be driven by an entire CDOUT of another MACC block. In Dot- product mode the CDOUT must also be generated by a MACC block in Dot-product mode. Refer to Table 25 on page 70 to see how CDIN is propagated to operand D.		
ARSHFT17	Input	Dynamic	High	Arithmetic right-shift for operand D. When asserted, a 17-bit arithmetic right-shift is performed on operand D going into the accumulator. Refer to Table 25 on page 70 to see how operand D is obtained from P, CDIN or 0.		
ARSHFT17_BYPASS	Input	Static	High	Bypass ARSHFT17 register. Connect to 1, if not registered.		

Table 22 • Ports (Continued)

Port Name	Direction	Туре	Polarity	Description
ARSHFT17_AL_N	Input	Dynamic	Low	Asynchronous load for ARSHFT17 register. Connect to 1 or to the global Asynchronous reset of the design. When asserted, ARSHFT17 register is loaded with ARSHFT17_AD.
ARSHFT17_AD	Input	Static	High	Asynchronous load data for ARSHFT17 register.
ARSHFT17_SL_N	Input	Dynamic	Low	Synchronous load for ARSHFT17 register. Connect to 1, if not registered. See Table 23 on page 68.
ARSHFT17_SD_N	Input	Static	Low	Synchronous load data for ARSHFT17 register. See Table 23 on page 68.
ARSHFT17_EN	Input	Dynamic	High	Enable for ARSHFT17 register. Connect to 1, if not registered. See Table 23 on page 68.
CDSEL	Input	Dynamic	High	Select CDIN for operand D. When CDSEL = 1, propagate CDIN. When CDSEL = 0, propagate 0 or P depending on FDBKSEL. Refer to Table 23 on page 68 to see how operand D is obtained from P, CDIN or 0.
CDSEL_BYPASS	Input	Static	High	Bypass CDSEL register. Connect to 1, if not registered.
CDSEL_AL_N	Input	Dynamic	Low	Asynchronous load for CDSEL register. Connect to 1 or to the global Asynchronous reset of the design. When asserted, CDSEL register is loaded with CDSEL_AD.
CDSEL_AD	Input	Static	High	Asynchronous load data for CDSEL register.
CDSEL_SL_N	Input	Dynamic	Low	Synchronous load for CDSEL register. Connect to 1, if not registered. See Table 23 on page 68.
CDSEL_SD_N	Input	Static	Low	Synchronous load data for CDSEL register. See Table 23 on page 68.
CDSEL_EN	Input	Dynamic	High	Enable for CDSEL register. Connect to 1, if not registered. See Table 23 on page 68.
FDBKSEL	Input	Dynamic	High	Select the feedback from P for operand D. When FDBKSEL = 1, propagate the current value of result P register. Ensure P_BYPASS[1] = 0 and CDSEL = 0. When FDBKSEL = 0, propagate 0. Ensure CDSEL = 0. Refer to Table 25 on page 70 to see how operand D is obtained from P, CDIN or 0.

Table 22 • Ports (Continued)

Port Name	Direction	Туре	Polarity	Description
FDBKSEL_BYPASS	Input	Static	High	Bypass FDBKSEL register. Connect to 1, if not registered.
FDBKSEL_AL_N	Input	Dynamic	Low	Asynchronous load for FDBKSEL register. Connect to 1 or to the global Asynchronous reset of the design. When asserted, FDBKSEL register is loaded with FDBKSEL_AD.
FDBKSEL_AD	Input	Static	High	Asynchronous load data for FDBKSEL register.
FDBKSEL_SL_N	Input	Dynamic	Low	Synchronous load for FDBKSEL register. Connect to 1, if not registered. See Table 23 on page 68.
FDBKSEL_SD_N	Input	Static	Low	Synchronous load data for FDBKSEL register. See Table 23 on page 68.
FDBKSEL_EN	Input	Dynamic	High	Enable for FDBKSEL register. Connect to 1, if not registered. See Table 23 on page 68.
SUB	Input	Dynamic	High	Subtract operation.
SUB_BYPASS	Input	Static	High	Bypass SUB register. Connect to 1, if not registered.
SUB_AL_N	Input	Dynamic	Low	Asynchronous load for SUB register. Connect to 1 or to the global Asynchronous reset of the design. When asserted, SUB register is loaded with SUB_AD.
SUB_AD	Input	Static	High	Asynchronous load data for SUB register.
SUB_SL_N	Input	Dynamic	Low	Synchronous load for SUB register. Connect to 1, if not registered. See Table 23.
SUB_SD_N	Input	Static	Low	Synchronous load data for SUB register. See Table 23.
SUB_EN	Input	Dynamic	High	Enable for SUB register. Connect to 1, if not registered. See Table 23.

Table 23 • Truth Table for Control Registers ARSHFT17, CDSEL, FDBKSEL and SUB

_AL_N	_AD	_BYPASS	_CLK	_EN	_SL_N	_SD_N	D	Q _{n+1}
0	AD	X	X	Х	Х	Х	Х	AD
1	Х	0	Not rising	Х	Х	Х	Х	Q _n
1	Х	0	↑	0	Х	Х	Х	Q _n
1	Х	0	↑	1	0	SD _n	Х	!SD _n

Table 23 • Truth Table for Control Registers ARSHFT17, CDSEL, FDBKSEL and SUB (Continued)

_AL_N	_AD	_BYPASS	_CLK	_EN	_SL_N	_SD_N	D	Q _{n+1}
1	Х	0	\uparrow	1	1	Х	D	D
1	Х	1	Х	0	Х	Х	Х	Q _n
1	Х	1	X	1	0	SD _n	Х	!SD _n
1	Х	1	Х	1	1	Х	D	D

Table 24 • Truth Table - Data Registers A, B, C, CARRYIN, P and OVFL_CARRYOUT

_ARST_N	_BYPASS	_CLK	_EN	_SRST_N	D	Q _{n+1}
0	Х	X	Х	Х	Х	0
1	0	Not rising	Х	Х	Х	Q _n
1	0	\uparrow	0	Х	Х	Q _n
1	0	\uparrow	1	0	Х	0
1	0	↑	1	1	D	D
1	1	X	0	Х	Х	Q _n
1	1	X	1	0	Х	0
1	1	X	1	1	D	D

Table 25 • Truth Table - Propagating Data to Operand D

FDBKSEL	CDSEL	ARSHFT17	Operand D
0	0	х	44'b0
х	1	0	CDIN[43:0]
х	1	1	{{17{CDIN[43]}},CDIN[43:17]}
1	0	0	P[43:0]
1	0	1	{{17{P[43]}},P[43:17]}

A - Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call **800.262.1060**From the rest of the world, call **650.318.4460**Fax, from anywhere in the world, **650.318.8044**

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support.

Website

You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group home page, at www.microsemi.com/soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office.

Visit About Us for sales office listings and corporate contacts.

Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select **Yes** in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

©2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; Enterprise Storage and Communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.