Übungen zu Funktionentheorie 2

Sommersemester 2020

Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 4 Abgabe auf Moodle bis zum 4. Dezember

Die obere Halbebene ist $\mathbb{H}=\{z\in\mathbb{C}\mid \mathrm{Im}(z)>0\}$. Darauf operiert $\mathrm{SL}(2,\mathbb{R})$ und insbesondere auch die Modulgruppe $\mathrm{SL}(2,\mathbb{Z})$ durch Möbius-Transformationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \langle \tau \rangle = \frac{a\tau + b}{c\tau + d} \ .$$

Die besten vier Aufgaben werden gewertet.

- **14. Aufgabe:** (2+2=4 Punkte, 2 Bonuspunkte) Für eine natürliche Zahl $N \ge 1$ definieren wir $\Gamma(N) = \{M \in \mathrm{SL}(2,\mathbb{Z}) \mid M \equiv E_2 \pmod{N}\}$. Zeigen Sie:
 - (a) $\Gamma(N)$ ist eine Untergruppe von $SL(2, \mathbb{Z})$.
 - (b) $\Gamma(N)$ ist ein Normalteiler in $SL(2, \mathbb{Z})$.
 - (c) (Bonusaufgabe) Der Quotient $SL(2,\mathbb{Z})/\Gamma(N)$ ist isomorph zur Gruppe $SL(2,\mathbb{Z}/N\mathbb{Z})$.
- **15. Aufgabe:** (2+2=4 Punkte) Sei $\mathcal{F} \subseteq \mathbb{H}$ der Fundamentalbereich wie in der Vorlesung definiert. Seien $\tau \in \mathcal{F}$ und $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in der Modulgruppe $\mathrm{SL}(2,\mathbb{Z})$ sodass

$$\operatorname{Im}(M\langle \tau \rangle) \ge \operatorname{Im}(\tau)$$
.

Zeigen Sie für die folgenden beiden Fälle

- (a) |c| = |d| = 1,
- (b) |c| = 1 und d = 0.

die Aussage: Falls $\tau' := M \langle \tau \rangle \in \mathcal{F}$, dann gilt $\tau' = \tau$. Bestimmen Sie jeweils M und τ .

- **16. Aufgabe:** (2+2=4 Punkte) Sei $M \in SL(2,\mathbb{R})$. Zeigen Sie: Es gilt $M\langle z\rangle = z$ für exakt ein $z \in \mathbb{H}$ genau dann, wenn $|\operatorname{Spur}(M)| < 2$.
- 17. Aufgabe: (4 Punkte) Sei $q \in \mathbb{Q}$ eine rationale Zahl und $(\tau_n)_n$ eine Folge in \mathbb{H} , deren Imaginärteil gegen Unendlich konvergiert. Dann gibt es ein $M \in SL(2, \mathbb{Z})$ mit

$$\lim_{n\to\infty} M\tau_n = q .$$

Hinweis: Aus der elementaren Zahlentheorie können Sie benutzen: "Zwei ganze Zahlen a, b sind teilerfremd genau dann wenn es ganze Zahlen r, s gibt mit ra + sb = 1."

18. Aufgabe: (4 Punkte) Sei \wp_{Γ} die Weierstraß- \wp -Funktion zum Gitter $\Gamma = \mathbb{Z} \oplus \mathbb{Z}\tau$. Seien $e_1(\tau) = \wp_{\Gamma}(1/2)$ und $e_2(\tau) = \wp_{\Gamma}(\tau/2)$. Zeigen Sie:

$$\lim_{\tau \to i\infty} e_1(\tau) \neq \lim_{\tau \to i\infty} e_2(\tau)$$

.