Subject: Convert New Orleans Parcel JSON to Shapefile

Name: Parvin Momenian

LSUID: 895384980

Course: 2025 Spring GEOG 4057 for Lei Wang

Problem Statement

Urban planners, tax assessors, and policymakers require spatial datasets that represent land parcel boundaries and their associated values to support urban development and decision-making. The 2018 Market Value Analysis dataset from New Orleans is provided in JSON format with geometries encoded as WKT (Well-Known Text), making it unusable directly in ArcGIS. The goal of this project is to develop an automated GIS solution that converts this JSON data into a usable shapefile format, enabling geospatial analysis and map visualization within ArcGIS Pro.

Summary

This project demonstrates how to convert a JSON file containing land parcel data for New Orleans (in WKT format) into a shapefile using a Python Toolbox integrated with ArcGIS Pro. The final output is a shapefile visualized and exported as a professional layout map.

Data Sources

Dataset: Market Value Analysis 2018

• Source: data.nola.gov

 Format: JSON with meta (field metadata) and data (attribute and geometry values) sections

• Geometry Type: MULTIPOLYGON in WKT format

Tools and Technologies

• Python 3 (within ArcGIS Pro environment)

ArcGIS Pro + Python Toolbox (.pyt)

Libraries used:

- o arcpy for ArcGIS integration
- pandas and json for data handling
- geopandas and shapely for spatial data processing

Preprocessing Steps:

- Download and inspect the JSON file
- Parse JSON to extract records and field names
- Convert WKT geometries into valid geospatial objects
- o Create a shapefile with appropriate attribute fields

Steps

Jupyter Notebook Testing

```
import json
# Define the path to your JSON file
json_path = "C:/Users/pmomen1/GIS Projects/Project 1/data/no_tax.json"
# Open and load the JSON content
with open(json_path, 'r', encoding='utf-8') as f:
    data = json.load(f)
# Print top-level keys to understand the structure
print("Top-level keys:", data.keys())
```

```
# Extract metadata and data records
meta = data.get('meta')
records = data.get('data')
# Print number of records and preview the first record
print(f"Number of records: {len(records)}")
print("First record:", records[0])
```

```
# Extract field names from metadata

columns = [col['name'] for col in meta['view']['columns']]

print("Field names:", columns)
```

import pandas as pd import geopandas as gpd from shapely import wkt # Extract field names again (optional but safe) field_names = [col['name'] for col in meta['view']['columns']] # Convert records to a list of dictionaries dict_list = [dict(zip(field_names, rec)) for rec in records] # Create a DataFrame from the list of records df = pd.DataFrame(dict_list) # Convert WKT geometries in 'the_geom' to shapely geometry df['geometry'] = df['the_geom'].apply(wkt.loads) # Create GeoDataFrame gdf = gpd.GeoDataFrame(df, geometry='geometry', crs="EPSG:4326") # WGS 84 # Save to shapefile output_path = "C:/Users/pmomen1/GIS Projects/Project 1/data/parcels.shp" gdf.to_file(output_path) print("Shapefile created successfully at:", output_path)

Python Toolbox Development


```
import arcpy
import json
import pandas as pd
import geopandas as gpd
from shapely import wkt
class Toolbox(object):
 def __init__(self):
   self.label = "JSON to Shapefile Toolbox"
   self.alias = "json2shp"
   self.tools = [JsonToShapefile]
class JsonToShapefile(object):
 def __init__(self):
   self.label = "Convert JSON to Shapefile"
   self.description = "Converts a JSON file with WKT geometries to a shapefile"
 def getParameterInfo(self):
   params = [
     arcpy.Parameter(
       displayName="Input JSON File",
       name="input_json",
       datatype="DEFile",
       parameterType="Required",
       direction="Input"
     ),
     arcpy.Parameter(
       displayName="Output Shapefile",
       name="output_shp",
       datatype="DEFeatureClass",
       parameterType="Required",
       direction="Output"
   ]
   return params
```

```
def execute(self, parameters, messages):
 input_json = parameters[0].valueAsText
 output_shp = parameters[1].valueAsText
 try:
   # Load JSON content
   with open(input_json, 'r', encoding='utf-8') as f:
     data = json.load(f)
   # Extract meta and data sections
   meta = data.get('meta')
   records = data.get('data')
   field_names = [col['name'] for col in meta['view']['columns']]
   dict_list = [dict(zip(field_names, rec)) for rec in records]
   # Convert to DataFrame and then GeoDataFrame
   df = pd.DataFrame(dict_list)
   df['geometry'] = df['the_geom'].apply(wkt.loads)
   gdf = gpd.GeoDataFrame(df, geometry='geometry', crs="EPSG:4326")
   # Save to shapefile
   gdf.to_file(output_shp)
   messages.addMessage(" Shapefile successfully created at: " + output_shp)
 except Exception as e:
   messages.addErrorMessage(" Error occurred: " + str(e))
```

Results and Visualization

• Generated shapefile successfully displayed in ArcGIS Pro

Applied Unique Values symbology using the "Cluster Le" field.

• Designed a layout with title, legend, scale bar, and north arrow.

Export Output

Exported the layout to PDF using ArcGIS Pro's Export Layout tool.

References

- Market Value Analysis 2018, <u>data.nola.gov</u>
- Esri ArcGIS Pro Python Documentation
- Python libraries: pandas, geopandas, shapely, arcpy

Academic Integrity Note

This project report and code were developed with the assistance of OpenAl ChatGPT for code review.