

CIRCUITOS ELÉTRICOS

Teoremas da Máxima Transferência de Potência e da Reciprocidade de Efeitos

Professor : Adélio José de Morais Engenharia Elétrica

Grupo:Kaio Saramago11511EEL013Gustavo de Oliveira Machado11511EEL014Matheus Henrique Marconi11511EEL005Raoni Exaltação Masson11511ETE005

Sumário

1	Materiais Utilizados:									2
2	Procedimento Experimental									2
2.1	Teorema da Máxima Transferência de Potência			 						2
2.2	Teorema da Reciprocidade de Efeitos			 						3
3	Conclusão									5
4	Bibliografia									5

1 Materiais Utilizados:

- \bullet 1 Protoboard
- 1 Multímetro
- 2 Fontes de Tensão (12V e 15V)
- 4 Resistores (33 Ω ; 47 Ω ; 68 Ω e 100 Ω)
- 1 Osciloscópio
- Fios de ligação

2 Procedimento Experimental

2.1 Teorema da Máxima Transferência de Potência

O teorema da máxima transferência de potência nos garante que a máxima potência ocorrerá quando ligarmos aos terminais um elemento passivo de mesmo valor da resistência/condutância da fonte. Em nosso caso, ligamos um resistor de mesmo valor que a simulação de resistência interna da fonte, 47Ω (como ilustrado na figura 1). Os dados experimentais, obtidos através de um multímetro, seguem na tabela abaixo, juntamente com as potências e rendimento que foram calculados.

$$P = V \cdot I = R \cdot I^2 \tag{i}$$

$$I = \frac{E_0}{R_0 + R} \tag{ii}$$

Substituindo (ii) em (i), temos:

$$P = V \cdot \frac{E_0^2}{(R_0 + R)^2}$$

Fazendo $\frac{dP}{dR} = 0 \Rightarrow R = R_0$
$$\therefore P_{max} = \frac{E_0^2}{4 \cdot R_0}$$

$R(\Omega)$	I(mA)	V(V)	P(W)	Pf(W)	$\eta\%$
14,9	244,8	3,647	0,893	3,672	24,3
29,9	196,0	5,861	1,149	2,940	39,1
47	161,2	7,570	1,220	2,418	50,5
65,5	133,4	8,740	1,166	2,001	58,3
89,9	109,3	9,830	1,074	1,640	65,5

Tabela 1: Dados onde os parâmetros corrente, tensão e resistência foram obtidos experimentalmente.

As equações que usamos para determinar os dados calculados citados anteriormente foram:

$$P=VI \qquad P_f=E_0I \qquad \eta=rac{P}{P_f}$$

2.2 Teorema da Reciprocidade de Efeitos

O teorema da reciprocidade de efeitos nos diz que a corrente I em qualquer ramo de um circuito, com uma única fonte de tensão E localizada em outro ramo qualquer do mesmo circuito, é igual a corrente no ramo em que se encontrava a fonte se ela for transferida para o ramo no qual a corrente I foi originalmente medida.

Primeiramente, montamos o circuito original a seguir:

Com um multímetro, medimos os valores das tensões nos resistores de 47Ω , 33Ω , 68Ω e 100Ω . Logo após, utilizando a Lei de Ohm, dividimos os valores das tensões nos resistores pelos respectivos valores de suas resistências, obtendo-se assim os valores das correntes I, I_1 e I_2 :

$$I = \frac{V_{47}}{47} = \frac{6,124}{47} = 0,1303[A]$$

$$I_1 = \frac{V_{33}}{33} = \frac{1,476}{33} = 0,04472[A]$$

$$I_2 = \frac{V_{68}}{68} = \frac{5,932}{68} = 0,0872[A]$$

Verificando:

$$I = I_1 + I_2 = 0.1303 + 0.04472 = 0.13192[A]$$

Note que, somando I_1 com I_2 obtemos um valor muito próximo de I, calculado experimentalmente.

Agora, deslocamos a fonte de tensão E para o ramo do resistor de 33 Ω , onde circula I_1 e montamos o seguinte circuito:

Novamente com um multímetro, efetuamos as medidas dos novos valores das tensões nos resistores e dividimos pelas resistências. Fazendo isso, assim como foi feito no circuito original, obtemos os valores das correntes I', I'_1 e I'_2 :

$$I' = \frac{V_{47}}{47} = \frac{2,093}{47} = 0,0445[A]$$

$$I_1' = \frac{V_{100}}{100} = \frac{7,42}{100} = 0,0742[A]$$

$$I_2' = \frac{V_{68}}{68} = \frac{2,098}{68} = 0,0309[A]$$

Note que, pelo teorema da reciprocidade de efeitos, deve-se ter que $I_1 = I'$. Nesse caso, observamos que realmente os valores de I_1 e I' são bem próximos, comprovando-se assim o teorema da reciprocidade de efeitos.

Além disso, pela Lei de Kirchoff das correntes, deve-se ter a seguinte relação neste circuito:

$$I_1' = I' + I_2'$$

$$I_1' = 0.0445 + 0.0309 = 0.0754[A]$$

De fato, podemos observar que quando somamos I' com I'_2 obtemos um valor muito próximo de I'_1 , obtido experimentalmente.

3 Conclusão

Em ambos os teoremas obtivemos os resultados que são condizentes com a teoria. No primeiro, Máxima Transferência de Potência, observamos pela tabela 1, que somente quando a resistência interna da fonte é aproximadamente igual a resistência da carga, temos máxima transferência de potência, como previamente explicitado pelo teorema. Já para a segunda parte experimental, comprovamos que quando trocamos a fonte de lugar, desde que exista apenas uma fonte no circuito, o resultado é uma troca de correntes. Ou seja, suponhamos um ramo A onde temos uma corrente I e um ramo B onde temos uma corrente Ix e a fonte. Quando trocamos a fonte para o ramo A do circuito saberemos que a corrente Ix no ramo B será igual a I.

4 Bibliografia

BOYLESTAD, L.Robert Introdução à Análise de Circuitos, 10ª edição