MATH2040C Homework 6

ZHENG Weijia (William, 1155124322)

April 9, 2021

1 Section 6.1, **Q8**

Provide reasons why each of the following is not an inner product on the given vector spaces.

- (a) $\langle (a,b),(c,d)\rangle = ac bd$ on \mathbb{R}^2 .
- **(b)** $\langle A, B \rangle = \operatorname{tr}(A + B)$ on $M_{2 \times 2}(R)$.
- (c) $\langle f(x), g(x) \rangle = \int_0^1 f'(t)g(t) dt$ on P(R), where ' denotes differentiation.

1.1 (a)

Suppose this is an inner product. Then $\langle x, x \rangle \geq 0$ should hold $\forall x \in \mathbb{R}^2$. Let x = (1, 10). Then $\langle x, x \rangle = \langle (1, 10), (1, 10) \rangle = 1^2 - 10^2 = -99 < 0$. Therefore, this is not an inner product.

1.2 (b)

Suppose this is an inner product. Then $\langle x, x \rangle \geq 0$ should hold $\forall x \in M_{2 \times 2}(R)$.

Let
$$x = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
. Then

$$\langle x, x \rangle = tr(x+x) = -2 - 2 = -4 < 0.$$

Therefore, this is not an inner product.

1.3 (c)

Suppose this is an inner product. Then $\forall f,g\in P(\mathbb{R}), \overline{\langle\,g,f\rangle}=\langle\,f,g\rangle$ should hold. Let $f(x)=x,g(x)=x^2+x$.

Then

$$\langle f, g \rangle = \int_0^1 1(x^2 + x) \, dx = \frac{5}{6}.$$

$$\overline{\langle g, f \rangle} = \overline{\int_0^1 (2x+1)x \, dx} = \frac{7}{6}.$$

Therefore $\overline{\langle g,f\rangle} \neq \langle f,g\rangle$ for some $f,g\in P(\mathbb{R})$. Hence, this is not an inner product. Done.

2 Section 6.1, Q17

Let T be a linear operator on an inner product space V, and suppose that ||T(x)|| = ||x|| for all x. Prove that T is one-to-one.

Note that because we have ||T(x)|| = ||x||. Then $\forall x \in V$, with $x \neq 0$ we have

$$||T(x)|| = ||x|| > 0.$$

Therefore $x \neq 0$.

Note that ||T(0)|| = ||0|| = 0, which implies

$$T(0) = 0.$$

Hence $N(T) = \{0\}.$

Hence, T is one-to-one.

Done.

3 Section 6.1, Q18

Let V be a vector space over F, where F = R or F = C, and let W be an inner product space over F with inner product $\langle \cdot, \cdot \rangle$. If $T: V \to W$ is linear, prove that $\langle x, y \rangle' = \langle \mathsf{T}(x), \mathsf{T}(y) \rangle$ defines an inner product on V if and only if T is one-to-one.

3.1 If part

In the if part, we assume T is one-to-one and try to prove $\langle \cdot, \cdot \rangle'$ is an inner product. One-to-one implies $N(T) = \{0\}$. Then $\forall x (\neq 0) \in V, T(x) \neq 0$. Therefore

$$\langle x, x \rangle' = \langle T(x), T(x) \rangle > 0.$$

Because $\langle \cdot, \cdot \rangle$ is an inner product.

Also note that $\forall x, y, z \in V, \forall c \in F$,

$$\langle\, x+z,y\rangle^{'} = \langle\, T(x+z),T(y)\rangle = \langle\, T(x)+T(z),T(y)\rangle = \langle\, T(x),T(y)\rangle + \langle\, T(z),T(y)\rangle$$

$$=\langle x, y \rangle' + \langle z, y \rangle'.$$

Besides,

$$\langle cx, y \rangle' = \langle T(cx), T(y) \rangle = \langle cT(x), T(y) \rangle = c \langle T(x), T(y) \rangle = c \langle x, y \rangle'.$$

And finally,

$$\overline{\langle \, x,y\rangle'} = \overline{\langle \, T(x),T(y)\rangle} = \langle \, T(y),T(x)\rangle = \langle \, y,x\rangle'.$$

Based on all above, $\left\langle \, \cdot, \cdot \right\rangle'$ is an inner product.

3.2 Only if part

In the only if part, we have $\langle \cdot, \cdot \rangle'$ is already an inner product and try to prove T is injective. Note that T is linear, then T(0) = 0 must hold.

Becasue $\forall x (\neq 0) \in V, \langle x, x \rangle' = \langle T(x), T(x) \rangle > 0$. Therefore $\forall x \neq 0, T(x) \neq 0$.

Therefore $N(T) = \{0\}$, follows that T is injective.

Done.

4 Section 6.1, Q19

Let V be an inner product space. Prove that

- (a) $||x \pm y||^2 = ||x||^2 \pm 2\Re \langle x, y \rangle + ||y||^2$ for all $x, y \in V$, where $\Re \langle x, y \rangle$ denotes the real part of the complex number $\langle x, y \rangle$.
- (b) $||x|| ||y|| | \le ||x y||$ for all $x, y \in V$.

4.1 (a)

Our goal is to prove $2\mathcal{R}\langle\,x,y\rangle=||x+y||^2-||x||^2-||y||^2$ and $-2\mathcal{R}\langle\,x,y\rangle=||x-y||^2-||x||^2-||y||^2$.

For the plus sign, note that the

$$R.H.S. = \mathcal{R}\langle x + y, x + y \rangle - \mathcal{R}\langle x, x \rangle - \mathcal{R}\langle y, y \rangle$$

$$= \mathcal{R}\langle x, y \rangle + \mathcal{R}\langle y, x \rangle.$$

Note that $\mathcal{R}\langle x, y \rangle = \mathcal{R}\langle y, x \rangle$ because $\overline{\langle x, y \rangle} = \langle y, x \rangle$.

Therefore L.H.S. = R.H.S..

For the minus sign, note that the

$$R.H.S. = \mathcal{R}\langle x - y, x - y \rangle - \mathcal{R}\langle x, x \rangle - \mathcal{R}\langle y, y \rangle$$

$$= \mathcal{R}\langle x, -y \rangle + \mathcal{R}\langle -y, x \rangle.$$

Which is equal to $2\mathcal{R}\langle x, -y \rangle = -2\mathcal{R}\langle x, y \rangle = L.H.S.$.

Therefore, (a) is proved. Done.

4.2 (b)

To prove (b), it is suffice to prove $|||x|| - ||y|||^2 \le ||x - y||^2$. Iff.

$$||x||^2 + ||y||^2 - 2||x|| \cdot ||y|| \le ||x||^2 + 2\mathcal{R}\langle x, y\rangle + ||y||^2.$$

iff.

$$||x|| \cdot ||y|| \ge \mathcal{R}\langle x, y \rangle.$$

Which is bound to be true because

$$||x|| \cdot ||y|| \ge |\langle x, y \rangle| \ge \mathcal{R} \langle x, y \rangle.$$

Done.

5 Section 6.1, Q23

Let $V = F^n$, and let $A \in M_{n \times n}(F)$.

- (a) Prove that $\langle x, Ay \rangle = \langle A^*x, y \rangle$ for all $x, y \in V$.
- (b) Suppose that for some $B \in M_{n \times n}(F)$, we have $\langle x, Ay \rangle = \langle Bx, y \rangle$ for all $x, y \in V$. Prove that $B = A^*$.
- (c) Let α be the standard ordered basis for V. For any orthonormal basis β for V, let Q be the $n \times n$ matrix whose columns are the vectors in β . Prove that $Q^* = Q^{-1}$.
- (d) Define linear operators T and U on V by T(x) = Ax and $U(x) = A^*x$. Show that $[U]_{\beta} = [T]_{\beta}^*$ for any orthonormal basis β for V.

5.1 (a)

Denote $T = L_A : V \to V$, note that T is linear. Note that we have a corollary that $(L_A)^* = L_{A^*}$.

Then $\langle x, Ay \rangle = \langle A^*x, y \rangle$ follows. Done.

5.2 (b)

Let $\beta = \{v_1, v_2, \dots, v_n\}$ be a standard basis for $V = F^n$, then we have a expression of A such that $\forall x \in V$,

$$B(x) = \sum_{i=1}^{n} \langle B(x), v_i \rangle v_i = \sum_{i=1}^{n} \langle x, Av_i \rangle v_i = \sum_{i=1}^{n} \langle A^*x, v_i \rangle v_i = A^*(x).$$

Therefore, $B = A^*$.

Done.

5.3 (c)

Denote $\beta = \{v_1, v_2, \dots, v_n\}$ is a orthonormal basis as the problem said. Then

$$Q:=(v_1,v_2,\ldots,v_n).$$

Therefore

$$Q^* = \begin{pmatrix} -v_1 - \\ -v_2 - \\ -\cdots - \\ -v_n - \end{pmatrix}.$$

Hence

$$Q^*Q = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} = I_n.$$

Therefore, $Q^* = Q^{-1}$. Done.

5.4 (**d**)

Note that

$$[U]_{\beta} = \begin{pmatrix} Uv_1 & Uv_2 & \dots & Uv_n \end{pmatrix}_{\beta} = \begin{pmatrix} A^*v_1 & A^*v_2 & \dots & A^*v_n \end{pmatrix}_{\beta}.$$

And

$$[T]_{\beta}^* = (Tv_1 \ Tv_2 \ \dots Tv_n)_{\beta}^* = (Av_1 \ Av_2 \ \dots \ Av_n)_{\beta}^* = [(Av_1 \ Av_2 \ \dots \ Av_n)^*]_{\beta}.$$

Suffice to prove that

$$(A^*v_1 \quad A^*v_2 \quad \dots A^*v_n)_{\beta} = (Av_1 \quad Av_2 \quad \dots \quad Av_n)_{\beta}^*.$$

Denote $Q = \begin{pmatrix} v_1 & v_2 & \dots & v_n \end{pmatrix}$.

Iff

$$\left(A^*Q\right)_{\beta} = \left(AQ\right)_{\beta}^*.$$

Iff

$$(A^*)_{\beta}Q_{\beta} = (A_{\beta}Q_{\beta})^*.$$

Note that Q_{β} is always I_n . Therefore it suffice to prove that

$$(A^*)_{\beta} = (A_{\beta})^*$$

Denote that the j-th column of $[A]_{\beta}$ is $\begin{pmatrix} a_{1j} \\ a_{2j} \\ \dots \end{pmatrix}$.

I.e.,

$$[A_{\beta}]_{ij} = a_{ij}.$$

Hence the j-th row of $A_{eta}^* = \begin{pmatrix} a_{1j}^* & a_{2j}^* & \dots a_{nj}^* \end{pmatrix}$. Hence

$$[A_{\beta}^*]_{ij} = a_{ji}^*.$$

Therefore

$$(A_{\beta})^* = (A^*)_{\beta}.$$

Hence (d) is proved.

6 Section 6.2, Q2(g)

(g)
$$V = M_{2\times 2}(R)$$
, $S = \left\{ \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 9 \\ 5 & -1 \end{pmatrix}, \begin{pmatrix} 7 & -17 \\ 2 & -6 \end{pmatrix} \right\}$, and $A = \begin{pmatrix} -1 & 27 \\ -4 & 8 \end{pmatrix}$

What I need to do is to 1. apply the G-S process to obtain a orthonormal basis. Compute Fourier coefficient and use Theorem 6.5 to check.

Because this is about the matrices, I adopt the Frobenius inner product

$$\langle A, B \rangle = tr(B^*A).$$

Denote the ones inside S as w_1, w_2, w_3 .

Let
$$v_1 = w_1 = \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix}$$
.

And
$$v_2 = w_2 - \frac{\langle w_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = \begin{pmatrix} -4 & 4 \\ 6 & -2 \end{pmatrix}$$
.

And
$$v_3 = w_3 - \frac{\langle w_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle w_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 = \begin{pmatrix} 9 & -3 \\ 6 & -6 \end{pmatrix}$$
.

By checking, the v_i 's are orthogonal.

To normalize them, we can have

$$S' = \{\frac{1}{6}v_1, \frac{1}{6\sqrt{2}}v_2, \frac{1}{9\sqrt{2}}v_3\} = \{v_1', v_2', v_3'\}.$$

Which is an orthonormal basis.

To calculate the Fourier coefficient of A, we calculate

$$\langle A, v_1' \rangle = 24, \langle A, v_2' \rangle = 6\sqrt{2}, \langle A, v_3' \rangle = -9\sqrt{2}.$$

By the Theorem 6.5, we

$$24\frac{1}{6}v_1 + 6\sqrt{2}\frac{1}{6\sqrt{2}}v_2 - 9\sqrt{2}\frac{1}{9\sqrt{2}}v_3 = \begin{pmatrix} -1 & 27\\ -4 & 8 \end{pmatrix}.$$

Which means that the theorem is verified.

Done.

7 Section 6.2, Q2(i)

(i)
$$V = \operatorname{span}(S)$$
 with the inner product $\langle f, g \rangle = \int_0^{\pi} f(t)g(t) dt$, $S = \{\sin t, \cos t, 1, t\}$, and $h(t) = 2t + 1$

Let
$$v_1=w_1=\sin t$$
.
Let $v_2=w_2-\frac{\langle w_2,v_1\rangle}{\langle v_1,v_1\rangle}v_1=\cos t$.
Let $v_3=w_3-\frac{\langle w_3,v_1\rangle}{\langle v_1,v_1\rangle}v_1-\frac{\langle w_3,v_2\rangle}{\langle v_2,v_2\rangle}v_2=1-\frac{4}{\pi}\sin t$.
Let $v_4=w_4-\frac{\langle w_4,v_1\rangle}{\langle v_1,v_1\rangle}v_1-\frac{\langle w_4,v_2\rangle}{\langle v_2,v_2\rangle}v_2-\frac{\langle w_4,v_3\rangle}{\langle v_3,v_3\rangle}v_3=t+\frac{4}{\pi}\cos t-\frac{\pi}{2}$.
To normalize them, we can just calculate and divide them by their norm.

Our
$$h(t) = 2t + 1$$
.

Note that $\langle h, v_1' \rangle = 6.609, \langle h, v_2' \rangle = -3.1915, \langle h, v_3' \rangle = 3.195, \langle h, v_4' \rangle = 0.38666.$

Then by doing the calculation, we have

$$h(t) = 1.99999t + 1.00000.$$

Which is what we expected.

Done.

Section 6.2, Q6 8

6. Let V be an inner product space, and let W be a finite-dimensional subspace of V. If $x \notin W$, prove that there exists $y \in V$ such that $y \in W^{\perp}$, but $\langle x, y \rangle \neq 0$. Hint: Use Theorem 6.6.

Using the theorem 6.6, there exists unique $y, pj_W(x)$ such that

$$x = y + pj_W(x)$$
.

Where $pj_W(x)$ is the component of x which is inside W. Therefore, $y \in W^{\perp}$. Then we need to check

$$\langle x, y \rangle = \langle y + pj_W(x), y \rangle = \langle y, y \rangle + \langle pj_W(x), y \rangle.$$

Note that $pj_W(x) \in W$ and $y \in W^{\perp}$, then $\langle pj_W(x), y \rangle = 0$.

Hence $\langle x, y \rangle = \langle y, y \rangle$. Suppose $\langle y, y \rangle = 0$, then y = 0.

Then $x = y + pj_W(x) = pj_W(x) \in W$. Which is contradicting with $x \notin W$.

Therefore $\langle x, y \rangle \neq 0$ at the first place.

9 **Section 6.2, Q10**

10. Let W be a finite-dimensional subspace of an inner product space V. Prove that there exists a projection T on W along W[⊥] that satisfies $N(T) = W^{\perp}$. In addition, prove that $||T(x)|| \leq ||x||$ for all $x \in V$. Hint: Use Theorem 6.6 and Exercise 10 of Section 6.1. (Projections are defined in the exercises of Section 2.1.)

Inspect a orthonormal basis for W, denote it as $\{v_1, v_2, \dots, v_k\}$ and W^{\perp} 's (orthonormal basis) as $\{v_{k+1}, v_{k+2}, \dots, v_n\}$.

Because these are basis, hence $\forall x \in V, \exists! a_1, \dots, a_n$ such that

$$x = \sum_{i=1}^{n} a_i v_i = \sum_{i=1}^{k} a_i v_i + \sum_{j=k+1}^{n} a_j v_j.$$

Then a feasible projection is $T(x) = \sum_{i=1}^{k} a_i v_i$.

We now prove $N(T) = W^{\perp}$.

 $\forall x \in W^{\perp}, T(x) = 0.$

 $\forall x \notin W^{\perp}, x \in V$, there exists some (not all zero, otherwise $x \in W^{\perp}$) b_1, \ldots, b_k such that

$$T(x) = \sum_{i=1}^{k} b_i v_i \neq 0.$$

Therefore $N(T) = W^{\perp}$.

Further, we prove that $\forall x \in V, ||T(x)|| \le ||x||$.

 $\forall x \in W^{\perp}$, it has already been proved.

 $\forall x \notin W^{\perp}$, there exists unique c_1, c_2, \ldots, c_n such that

$$x = \sum_{i=1}^{n} c_1 v_1.$$

Therefore, $||x|| = \sqrt{\sum_{i=1}^n c_i^2}$ (because $\{v_1, v_2, \dots, v_n\}$ is orthonormal) Then notice that $T(x) == \sum_{i=1}^k c_i v_i$ from our construction of T.

Hence $||T(x)|| = \sqrt{\sum_{i=1}^{k} c_i^2}$.

Note that $k \le n$, then $||T(x)|| \le ||x||$ follows naturally.

Done.

10 Section 6.2, Q15

- **15.** Let V be a finite-dimensional inner product space over F.
 - (a) Parseval's Identity. Let $\{v_1, v_2, \ldots, v_n\}$ be an orthonormal basis for V. For any $x, y \in V$ prove that

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

(b) Use (a) to prove that if β is an orthonormal basis for V with inner product $\langle \cdot, \cdot \rangle$, then for any $x, y \in V$

$$\langle \phi_{\beta}(x), \phi_{\beta}(y) \rangle' = \langle [x]_{\beta}, [y]_{\beta} \rangle' = \langle x, y \rangle,$$

where $\langle \cdot, \cdot \rangle'$ is the standard inner product on F^n .

10.1 (a)

$$\langle x, y \rangle = \langle \sum_{i=1}^{n} \langle x, v_i \rangle v_i, \sum_{j=1}^{n} \langle y, v_j \rangle v_j \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \langle \langle x, v_i \rangle v_i, \langle y, v_j \rangle v_j \rangle = \sum_{i=1}^{n} \langle \langle x, v_i \rangle v_i, \langle y, v_i \rangle v_i \rangle$$

$$= \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle} \langle v_i, v_i \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

10.2 (b)

What we need to prove is that $\sum_{i=1}^n \langle x, v_i \rangle \overline{\langle y, v_i \rangle} = \langle [x]_\beta, [y]_\beta \rangle'$. Inspecting the R.H.S., $([x]_\beta)_j = \langle x, v_j \rangle$ and $([y]_\beta)_j = \langle y, v_j \rangle$. Therefore $\langle [x]_\beta, [y]_\beta \rangle' = \sum_{j=1}^n ([x]_\beta)_j \cdot \overline{([y]_\beta)_j} = \sum_{i=1}^n \langle x, v_j \rangle \cdot \overline{\langle y, v_j \rangle}$. Hence L.H.S. = R.H.S.. Done.