Data-Analysis-NanoDegree-Udacity-Project-4

Project-done-by-Cherif.Arsanious

The report is the first page only, the remaining of the pages are just the code used

Analysis and Visualizations

After gathering, assessing, cleaning and storing our data. It is time now to do some analysis and visual our data about the twitter account WeRateDogs.

By running the describe method, I observed the following thing:

- Favorites (or like) column has a minimum of 72 likes and it goes to tweet_id 666102155909144 lowest retweet of 11 retweets only. The dog is english_setter and actually it did get a high rating 8400 likes. It has a maximum of 157953 and it goes to to tweet_id 744234799360020481 and a retweets number of 78695. The highest likes went to a labrador_retriever in doggo stage with a
- The highest rating in our wrangled data is 14/10 and it belongs to 33 tweets. The lowest rating v
 tweets_id of the the lowest and hightest ratings are found in the code cells). The average rating
 on the rating_numerator I found that 12/10 is the mode rating with a frequency of 444 tweets. T
 rating are pembroke(4) french_bulldog(2),and golden_retriever(2)

By running the corr() method on the twitter_archive_master data frame, I observed:

- Weak postive pearson correlation between retweets count and rating_numerator with a value 0.:
 the account admin doesn't guarantee that the followers will retweet these posts and the other w
- Moderate postive pearson correlation between favourites count and rating_numerator with a val
 dog by the account admin doesn't guarantee that the followers will like these posts and the other

By plotting a scatter plot between retweets count and favourites counts:

 There is a strong positive pearson correlation between favourites count and retweets counts will indicates only a relational but says not about causation, I can imply that one caused the other.

```
1 #Using describe() method to analyze our data
```

² twitter_archive_master.describe()

	tweet_id	favorites	retweets	rating_numerator	rating_denominator
count	1.941000e+03	1941.000000	1941.000000	1941.000000	1941.0
mean	7.359180e+17	8399.435343	2492.583205	10.537352	10.0
std	6.762265e+16	12372.113161	4468.137245	2.162537	0.0
min	6.660209e+17	72.000000	11.000000	1.000000	10.0
25%	6.757816e+17	1785.000000	556.000000	10.000000	10.0
50%	7.084699e+17	3799.000000	1204.000000	11.000000	10.0
75%	7.881506e+17	10451.000000	2850.000000	12.000000	10.0
max	8.924206e+17	157953.000000	78695.000000	14.000000	10.0

1 twitter_archive_master.query('favorites==72')

t	tweet_id	favorites	retweets	dog_name	dog_breed	stage	rating_nu

1924 666102155909144576 72 11 NaN english_setter NaN

1 twitter_archive_master.query('favorites==157953')

78695

NaN labrador_retriever doggo

1 list(twitter_archive_master.query('rating_numerator==14')['tweet_id'])

```
[890240255349198849,
887517139158093824,
884441805382717440,
881536004380872706,
878057613040115712,
870063196459192321,
868880397819494401,
864873206498414592,
860184849394610176,
856282028240666624,
854120357044912130,
852226086759018497,
851464819735769094,
841439858740625411,
832273440279240704,
831911600680497154,
828650029636317184,
828381636999917570,
825535076884762624,
822462944365645825,
821407182352777218,
820314633777061888,
819006400881917954,
819004803107983360,
813812741911748608,
807621403335917568,
794205286408003585,
778408200802557953,
774314403806253056,
762035686371364864,
755206590534418437,
742465774154047488,
685547936038666240]
```

1 twitter_archive_master.query('rating_numerator==14')['dog_breed'].value_counts()

```
pembroke
                            4
                            2
french_bulldog
                            2
golden_retriever
                            1
pomeranian
chihuahua
                            1
gordon_setter
                            1
samoyed
                            1
bloodhound
                            1
black-and-tan_coonhound
                            1
eskimo_dog
                            1
                            1
rottweiler
standard_poodle
                            1
                            1
bedlington_terrier
irish setter
                            1
Name: dog_breed, dtype: int64
```

1 twitter_archive_master.rating_numerator.value_counts()

```
12
       444
10
       416
11
       392
13
       249
9
       149
8
        95
7
        51
14
        33
5
        33
6
        32
3
        19
4
        15
2
         9
1
```

Name: rating_numerator, dtype: int64

```
1 twitter_archive_master.rating_numerator.value_counts().plot(kind='bar')
2 plt.xlabel('Rating_Numerator', fontsize=15)
3 plt.ylabel('Frequency', fontsize=15)
4 plt.title('Distribution of Dogs Ratings', fontsize=15)
```

Text(0.5, 1.0, 'Distribution of Dogs Ratings')

1 twitter_archive_master.corr()

	tweet_id	favorites	retweets	rating_numerator	rating_denominato
tweet_id	1.000000	0.613850	0.386979	0.537975	Nε
favorites	0.613850	1.000000	0.929102	0.395391	Nε
retweets	0.386979	0.929102	1.000000	0.297646	Nε
rating_numerator	0.537975	0.395391	0.297646	1.000000	Nε
rating_denominator	NaN	NaN	NaN	NaN	Nε
img_num	0.213148	0.126056	0.101735	0.202592	Nε
prediction_confidence	0.100789	0.071119	0.049980	0.102845	Na

¹ twitter_archive_master.plot(x='favorites',y='retweets',kind='scatter',figsize=(20,10));

⁴ plt.title('Relational Plot between Favourites Counts and Retweets Counts', fontsize=15)

² plt.xlabel('Favourites_Counts',fontsize=15)

³ plt.ylabel('Retweets_Counts',fontsize=15)

/usr/local/lib/python3.6/dist-packages/pandas/plotting/_matplotlib/core.py:420: Futur To accept the future behavior, pass 'dtype=object'.

To keep the old behavior, pass 'dtype="datetime64[ns]"'.

numeric_data[col] = np.asarray(numeric_data[col])

Text(0.5, 1.0, 'Relational Plot between Favourites Counts and Retweets Counts')

Relational Plot between Favourites Cou

1 twitter_archive_master[['favorites','retweets']].corr()

	favorites	retweets	
favorites	1.000000	0.929102	
retweets	0.929102	1.000000	

1 twitter_archive_master.plot(x='timestamp_x',y='rating_numerator',kind='line',figsize=(1

2 plt.xlabel('Time', fontsize=15)

³ plt.vlabel('Rating'.fontsize=15)

4 plt.title('Relation bet. Time and Rating of Dogs', fontsize=15)

Text(0.5, 1.0, 'Relation bet. Time and Rating of Dogs')

