TD 4:

1 Exercice 1 - Arme à l'ancienne

L'une des armes utilisée au Moyen-âge pour envoyer des charges lourdes contre les murailles était ce que l'on appelle "un trébuchet". Il est composé d'une poutre AB à laquelle est fixée un contrepoids en A. En B est attachée une corde au bout de laquelle une poche contient le projectile M.

Soit R(O,x,y,z) le repère lié au sol et $R_B(B,x_1,y_1,z_1)$ le repère lié à la poutre. Le mouvement a lieu dans le plan (Oxy). La base polaire $(\vec{u}_r,\vec{u}_\omega)$ est liée à RB. On donne OB=a et BM=b.

1.1 Partie A

- 1. Quel est le mouvement de ${\cal R}_b$ par rapport à ${\cal R}?.$
- 2. On suppose que la corde BM reste tendue. Donner l'expression de \vec{BM} . En déduire l'expression de $\vec{v}(M_{/R_B})$.
- 3. Determiner l'expression du vecteur \vec{OM} . En déduire l'expression de $v(\vec{M}_{/R})$.

Le projectile est est lâché lorsque $\theta = \pi$ et $\varphi = 0$.

- 4. Déterminer l'expression de $\vec{v}(M_{/R})$, en fonction de $a, b, \dot{\varphi}, \dot{\theta}$.
- 5. Montrer que la vitesse obtenue est plus grande que s'il n'y avait qu'un seul bras rigide de longueur a+b. \end{enumerate}

1.2 Partie B

On étudie désormais le projectile M laché avec une vitesse horizontale $v_0=200km/h$, depuis la hauteur totale du trébuchet H=16m. On se place dans un repère orthonormé $(\vec{u}_x,\,\vec{u}_y)$. On considère que le projectile a une masse m=100kg. Les frottements sont négligés.

- 1. A l'aide du PFD, déterminer l'équation de la trajectoire y(x).
- 2. En déduire la distance que parcourt horizontalement le projectile avant de s'écraser au sol.