Programa web para visualización de conjuntos en sistemas dinámicos discretos en \mathbb{C} imagi

Renato Leriche Vázguez¹

¹Facultad de Ciencias, UNAM

Seminario de Dinámica Holomorfa, Mayo 2016

Índice

- Descripción
 - Presentación
 - Möbius en 2 Pedazos
 - Funciones Generales
 - Configuración
- 2 Trabajo por hacer

- "Imagi" significa imaginar, en esperanto.
- Programa web (sobre HTML5), en JavaScript independente de plataforma.
- Creado inicialmente para graficación de telarañas e itinerarios en familias de transformaciones Möbius en 2 pedazos.
- Graficación de Mandelbrots, Julias y órbitas en familias generales $\{h_{\kappa}: \mathbb{C} \to \mathbb{C}\}.$

- "Imagi" significa imaginar, en esperanto.
- Programa web (sobre HTML5), en JavaScript independente de plataforma.
- Creado inicialmente para graficación de telarañas e itinerarios en familias de transformaciones Möbius en 2 pedazos.
- Graficación de Mandelbrots, Julias y órbitas en familias generales $\{h_K : \mathbb{C} \to \mathbb{C}\}.$

- "Imagi" significa imaginar, en esperanto.
- Programa web (sobre HTML5), en JavaScript independente de plataforma.
- Creado inicialmente para graficación de telarañas e itinerarios en familias de transformaciones Möbius en 2 pedazos.
- Graficación de Mandelbrots, Julias y órbitas en familias generales $\{h_{\kappa}: \mathbb{C} \to \mathbb{C}\}.$

- "Imagi" significa imaginar, en esperanto.
- Programa web (sobre HTML5), en JavaScript independente de plataforma.
- Creado inicialmente para graficación de telarañas e itinerarios en familias de transformaciones Möbius en 2 pedazos.
- Graficación de Mandelbrots, Julias y órbitas en familias generales $\{h_K : \mathbb{C} \to \mathbb{C}\}.$

Secciones

- Canvas izquierdo: Mandelbrot de $\{f_{\kappa}\}$.
- ullet Canvas derecho: Julia, órbitas, telarañas, etc., de f_{κ} .
- Menú y controles.
 - Familias transformaciones Möbius en 2 pedazos.
 - Familias de funciones generales
 - Configuración de algoritmos
 - Configuración general
 - Ayuda

Canvases

- Acercamiento: Ctrl + Mouse Left \u2211.
- Alejamiento: Ctrl + Mouse Left [™]
- Indicación de coordenadas: Move Mouse.
- Elección de parámetro κ: Double Click Mouse Left en canvas izquierdo ⇒ redibujo de canvas derecho.
- Guardar imagen: Mouse Right.

Möbius en 2 Pedazos

• Especificación de transformaciones Möbius:

$$f_{\kappa}(z) = \frac{a_f(\kappa)z + b_f(\kappa)}{c_f(\kappa)z + d_f(\kappa)}, \ g_{\kappa}(z) = \frac{a_g(\kappa)z + b_g(\kappa)}{c_g(\kappa)z + d_g(\kappa)}$$
$$F_{\kappa,R}(z) = \begin{cases} f_{\kappa}(z) & \text{si } z \in R \\ g_{\kappa}(z) & \text{si } z \notin R \end{cases}$$

- Pedazo R:
 - $r > 0 \implies R = D(c, r)$, disco con centro en c y radio r > 0.
 - $r \le 0 \implies R$ semiplano definido por la recta que pasa por c con inclinación $-r\pi$

$$R = \{z | n \cdot (z - c) < 0\}, n = ie^{-r\pi}$$

Möbius en 2 Pedazos

• Especificación de transformaciones Möbius:

$$f_{\kappa}(z) = \frac{a_f(\kappa)z + b_f(\kappa)}{c_f(\kappa)z + d_f(\kappa)}, \ g_{\kappa}(z) = \frac{a_g(\kappa)z + b_g(\kappa)}{c_g(\kappa)z + d_g(\kappa)}$$
$$F_{\kappa,R}(z) = \begin{cases} f_{\kappa}(z) & \text{si } z \in R \\ g_{\kappa}(z) & \text{si } z \notin R \end{cases}$$

- Pedazo R:
 - $r > 0 \implies R = D(c, r)$, disco con centro en c y radio r > 0.
 - $r \le 0 \implies R$ semiplano definido por la recta que pasa por c con inclinación $-r\pi$

$$R = \{z | n \cdot (z - c) < 0\}, n = ie^{-r\pi i}$$

Algoritmos

Aproximaciones de:

- Julia lleno $\mathcal{J}(F_{\kappa,R}) = \{z | \mathcal{O}(z, F_{\kappa,R}) \text{ acotada} \}.$
- Órbita $\mathscr{O}(A, F_{\kappa,R}) = \bigcup_{n \geq 0} F_{\kappa,R}^n(A), A \subset \mathbb{C}.$
- Telaraña $Spid(F_{\kappa,R}) = \overline{\bigcup_{n \geq 0} F_{\kappa,R}^{-n}(\partial R)}$.
- "Estimación" de telaraña $Spid(F_{\kappa,R})$ y de itinerarios.
- Itinerarios $I_{{\mathcal F}_{\kappa,R}}(z)\in \Sigma^2=\{0,1\}^{\mathbb N}$, donde

$$(I_{F_{\kappa,R}}(z))_n = \begin{cases} 0 & \operatorname{si} F_{\kappa,R}^n(z) \in R \\ 1 & \operatorname{si} F_{\kappa,R}^n(z) \notin R \end{cases}$$

Siempre se dibuja $\mathcal{M}(\{F_{\kappa,R}\},s_0) = \{\lambda \mid \mathcal{O}(s_0,F_{\lambda,R}) \text{ acotada}\}.$

Generales

- $h_{\kappa}: \mathbb{C} \to \mathbb{C}$.
- Operaciones en C
 - + : Suma.
 - : Resta.
 - * : Multiplicación.
 - / : División.
 - ^ : Potencia.
 - %: Módulo, (x + yi)%(a + bi) = (x%a) + (y%b)i.
- Ejemplos:
 - z*z + k
 - $z^2 (2 0.5i)*z + k/(z^2)$

Generales

- $h_{\kappa}: \mathbb{C} \to \mathbb{C}$.
- ullet Operaciones en ${\mathbb C}$
 - + : Suma.
 - - : Resta.
 - * : Multiplicación.
 - / : División.
 - ^ : Potencia.
 - **%**: Módulo, (x+yi)%(a+bi) = (x%a) + (y%b)i.
- Ejemplos:
 - z*z + k
 - $z^2 (2 0.5i)*z + k/(z^2)$

Generales

- $h_{\kappa}: \mathbb{C} \to \mathbb{C}$.
- Operaciones en C
 - + : Suma.
 - - : Resta.
 - * : Multiplicación.
 - / : División.
 - ^ : Potencia.
 - %: Módulo, (x+yi)%(a+bi) = (x%a)+(y%b)i.
- Ejemplos:
 - z*z + k
 - $z^2 (2 0.5i)*z + k/(z^2)$

Funciones permitidas

- re im abs (=|z|) arg $(= \sphericalangle(z))$ conj $(=\overline{z})$ neg (=-z) norm $(=\frac{z}{|z|})$
- floor $(= \lfloor x \rfloor + \lfloor y \rfloor i)$ ceil $(= \lceil x \rceil + \lceil y \rceil i)$ round $(= \lfloor x + 0.5 \rfloor + \lfloor y + 0.5 \rfloor i)$ iPart (parte entera) fPart (parte fraccionaria)
- square $(=z^2)$ cube $(=z^3)$ sqrt $(=z^{\frac{1}{2}})$ cbrt $(=z^{\frac{1}{3}})$
- $\exp (= e^z) \log (= ln(z))$ gamma $(= \Gamma(z))$ fact $(= \prod (x-n) + \prod (y-n)i)$
- cos sin tan sec csc cot arccos arcsin arctan arcsec arccsc arccot cosh sinh tanh sech csch coth arccosh arcsinh arctanh arcsech arccsch arccoth.
- Constantes: i $(i^2 = -1)$, pi $(= \pi)$ y e.

Ejemplo

- Ejemplo $h_{\kappa}: \mathbb{R}^2 \to \mathbb{R}^2$.
- Mapeo de Hénon:

$$h_{a,b}(x,y) = (a - by + x^2, x), \ a, b \in \mathbb{R}$$

• \Longrightarrow re(k) - im(k)*im(z) + re(z)*re(z) + i*re(z)

Ejemplo

- Ejemplo $h_{\kappa}: \mathbb{R}^2 \to \mathbb{R}^2$.
- Mapeo de Hénon:

$$h_{a,b}(x,y) = (a - by + x^2, x), \ a, b \in \mathbb{R}$$

• \Longrightarrow re(k) - im(k)*im(z) + re(z)*re(z) + i*re(z)

Ejemplo

- Ejemplo $h_{\kappa}: \mathbb{R}^2 \to \mathbb{R}^2$.
- Mapeo de Hénon:

$$h_{a,b}(x,y) = (a-by+x^2, x), a,b \in \mathbb{R}$$

 $\bullet \implies re(k) - im(k)*im(z) + re(z)*re(z) + i*re(z)$

Algoritmos

Aproximaciones de:

- Julia lleno $\mathscr{J}(h_{\kappa})$.
- Órbita $\mathscr{O}(A, h_{\kappa})$, $A \subset \mathbb{C}$.

Siempre se dibuja $\mathcal{M}(\{h_{\kappa}\}, s_0)$.

Parámetros para algoritmos

Para cualquier algoritmo (Mandelbrot, Julia, órbita, telaraña...)

- Iteraciones máximas N.
- Cota para el criterio de escape M.
- Criterio de escape:
 - |z| > M (internamente usa $|z|^2 > M^2$).
 - |Re(z)| > M.
 - Re(z) > M. (Ejemplo con k*exp(z)).
- Semilla s₀ para el Mandelbrot.
- Parámetro κ .

Nota: s_0 y κ aceptan cualquier expresión, por ejemplo -1+i, i/2, (0.5-i)/(-2+0.25i) ó $\exp(i*pi/3)$ $(\in S^1)$.

Parámetros para órbitas

- Conjunto $A \subset \mathbb{C}$: Punto, Segmento de Recta, Circunferencia o Rectángulo Relleno.
- Número de puntos en A.
- Puntos z_0 y z_1 para definir A:
 - Punto: $A = \{z_0\}$.
 - Segmento de Recta: $A = \{z_0 + t(z_1 z_0)\}_{t \in [0,1]}$.
 - Circunferencia: $A = \{z_0 + re^{it}\}_{t \in [0,2\pi]}$, donde $r = |z_0 z_1|$.
 - Rectángulo: $A = [x_0, y_0] \times [x_1, y_1]$.
- "Grosor" de puntos.

Elementos de Dibujo

- Mapeos de color fijos, uno personalizable (usar custom en la lista), pueden invertirse.
- Se pueden mostrar/ocultar: Ejes coordenados, etiquetas, frontera del pedazo D.
- Colores de fondo y de frente.
- "Resetear" canvases izquierdo y derecho por separado.

To Do

- Conseguir tesistas para hacer el trabajo que falta ©.
- Mejorar algoritmos.
- Diagrama de bifurcaciones, 2D y 3D.
- Visualización en $\hat{\mathbb{C}}$ (esfera en 3D).
- Escribir manual de usuario.
- Varios idiomas (añadir español, al menos).
- ¿Sugerencias?

To Do

- Conseguir tesistas para hacer el trabajo que falta ©.
- Mejorar algoritmos.
- Diagrama de bifurcaciones, 2D y 3D.
- Visualización en $\hat{\mathbb{C}}$ (esfera en 3D).
- Escribir manual de usuario.
- Varios idiomas (añadir español, al menos).
- ¿Sugerencias?

To Do

- Conseguir tesistas para hacer el trabajo que falta ©.
- Mejorar algoritmos.
- Diagrama de bifurcaciones, 2D y 3D.
- Visualización en $\hat{\mathbb{C}}$ (esfera en 3D).
- Escribir manual de usuario.
- Varios idiomas (añadir español, al menos).
- ¿Sugerencias?

Fin

¡Gracias!