AMENDMENTS TO THE CLAIMS:

Amend the claims as follows:

Claims 1-77. (Cancelled)

78. (Currently Amended) A compound of the formula:

$$J_{\frac{1}{6}}^{1} \xrightarrow{\frac{8}{9}} \xrightarrow{\frac{1}{9}} \xrightarrow{\frac{2}{3}} J^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

wherein either:

- (a) K is =O, L is -H, α is a single bond, β is a double bond, γ is a single bond ("acridone"); or:
- (b) K is a 9-substituent, L is absent, α is a double bond, β is a single bond, γ is a double bond ("acridine");

and wherein:

J¹ is a 2- or 3-substituent; and,

J² is a 6- or 7-substituent;

and wherein J^1 and J^2 are each independently a group of the formula:

wherein:

 R^{N1} is independently a nitrogen substituent and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; and,

W is independently C₃₋₂₀heterocyclyl, C₅₋₂₀aryl, and is optionally substituted, or

W is independently a group of the formula:

$$-(CH_2)_n-[G-(CH_2)_m]_s-T$$

wherein:

n is independently an integer from 1 to 8;

each m is independently an integer from 1 to 8;

s is independently an integer from 0 to 3;

each G is independently -O- or -NRN-;

each R^N is independently a nitrogen substituent;

T is independently a terminal amino group, $-NR^1R^2$ or a terminal ether group, $-OR^5$

and wherein, when K is a 9-substituent, K is a group of the formula:

wherein:

 R^{N2} is independently a nitrogen substituent and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; and,

Q is independently C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted:

and pharmaceutically acceptable salts, esters, amides, solvates, hydrates, and protected forms thereof.

79. (Previously Presented) An acridone compound according to claim 78, wherein K is =0, L is -H, α is a single bond, β is a double bond, γ is a single bond ("acridone"):

80. (Previously Presented) An acridine compound according to claim 78, wherein K is a 9-substituent, L is absent, α is a double bond, β is a single bond, γ is a double bond ("acridine"):

- 81. (Previously Presented) A compound according to claim 78, wherein J^1 is a 2-substituent and J^2 is a 7-substituent.
- 82. (Previously Presented) A compound according to claim 78, wherein J^1 is a 3-substituent and J^2 is a 6-substituent.
- 83. (Previously Presented) A compound according to claim 78, wherein J^1 is a 2-substituent and J^2 is a 6-substituent; or:

J¹ is a 3-substituent and J² is a 7-substituent.

- 84. (Previously Presented) A compound according to claim 78, wherein W is independently C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted with one or more groups selected from: amino; ether; amido; acylamino; carboxy; ester; acyloxy; and sulfonamido.
- 85. (Previously Presented) A compound according to claim 78, wherein W is independently C₁₋₇alkyl and is optionally substituted with one or more groups selected from: amino and ether.

- 86. (Previously Presented) A compound according to claim 78, wherein W is independently C₁₋₇alkyl substituted with one or more group selected from: amino; ether; polyamino; polyether; and polyether-polyamino.
- 87. (Previously Presented) A compound according to claim 78, wherein W is independently a group of the formula:

$$-(CH_2)_n-[G-(CH_2)_m]_s-T$$

wherein:

n is independently an integer from 1 to 8;

each m is independently an integer from 1 to 8;

s is independently an integer from 0 to 3;

each G is independently -O- or -NRN-;

each R^N is independently a nitrogen substituent;

T is independently a terminal amino group, -NR¹R² or a terminal ether group, -OR⁵,

wherein each of R^1 and R^2 of the terminal amino group, -NR¹R², is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; or, R^1 and R^2 , taken together with the nitrogen atom to which they

are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.

88. (Previously Presented) A compound according to claim 78, wherein W is independently C₁₋₇alkyl substituted with one or more group selected from: amino; ether; amino-C₁₋₇alkyl-amino; amino-C₁₋₇alkoxy; and ether-C₁₋₇alkoxy.

89. (Previously Presented) A compound according to claim 78, wherein W is independently selected from:

ether-C₁₋₇alkyl; amino-C₁₋₇alkyl-amino-C₁₋₇alkyl;

amino-C₁₋₇alkyl;

amino-C₁₋₇alkoxy-C₁₋₇alkyl; and,

ether- C_{1-7} alkoxy- C_{1-7} alkyl.

90. (Previously Presented) A compound according to claim 78, wherein W is independently selected from the following, wherein $-NR^1R^2$ is a terminal amino group, $-CR^5$ is a terminal ether group, R^N is a nitrogen substituent, and each of n and m is independently an integer from 1 to 8:

 $-(CH_2)_n-NR^1R^2;$

-(CH₂)_n-OR⁵;

$$-(CH_2)_n-NR^N-(CH_2)_m-NR^1R^2;$$

$$-(CH_2)_n-NR^N-(CH_2)_m-OR^5;$$

$$-(CH_2)_n-O-(CH_2)_m-NR^1R^2; \text{ and,}$$

$$-(CH_2)_n-O-(CH_2)_m-OR^5.$$

91. (Previously Presented) A compound according to claim 78, wherein W is independently selected from the following, wherein $-NR^1R^2$ is a terminal amino group, - OR^5 is a terminal ether group, R^N is a nitrogen substituent, and m is independently an integer from 1 to 8:

```
-(CH<sub>2</sub>)<sub>2</sub>-NR<sup>1</sup>R<sup>2</sup>;

-(CH<sub>2</sub>)<sub>2</sub>-OR<sup>5</sup>;

-(CH<sub>2</sub>)<sub>2</sub>-NR<sup>N</sup>-(CH<sub>2</sub>)<sub>m</sub>-NR<sup>1</sup>R<sup>2</sup>;

-(CH<sub>2</sub>)<sub>2</sub>-NR<sup>N</sup>-(CH<sub>2</sub>)<sub>m</sub>-OR<sup>5</sup>;

-(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-NR<sup>1</sup>R<sup>2</sup>; and,

-(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-OR<sup>5</sup>;

-(CH<sub>2</sub>)<sub>3</sub>-NR<sup>1</sup>R<sup>2</sup>;

-(CH<sub>2</sub>)<sub>3</sub>-NR<sup>N</sup>-(CH<sub>2</sub>)<sub>m</sub>-NR<sup>1</sup>R<sup>2</sup>;
```

```
-(CH<sub>2</sub>)<sub>3</sub>-NR<sup>N</sup>-(CH<sub>2</sub>)<sub>m</sub>-OR<sup>5</sup>;

-(CH<sub>2</sub>)<sub>3</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-NR<sup>1</sup>R<sup>2</sup>; and,

-(CH<sub>2</sub>)<sub>3</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-OR<sup>5</sup>;

-(CH<sub>2</sub>)<sub>4</sub>-NR<sup>1</sup>R<sup>2</sup>;

-(CH<sub>2</sub>)<sub>4</sub>-OR<sup>5</sup>;

-(CH<sub>2</sub>)<sub>4</sub>-NR<sup>N</sup>-(CH<sub>2</sub>)<sub>m</sub>-NR<sup>1</sup>R<sup>2</sup>;

-(CH<sub>2</sub>)<sub>4</sub>-NR<sup>N</sup>-(CH<sub>2</sub>)<sub>m</sub>-OR<sup>5</sup>;

-(CH<sub>2</sub>)<sub>4</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-OR<sup>5</sup>;

-(CH<sub>2</sub>)<sub>4</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-OR<sup>5</sup>.
```

92. (Previously Presented) A compound according to claim 78, wherein W is independently selected from the following, wherein -NR¹R² is a terminal amino group, - OR⁵ is a terminal ether group, and n is independently an integer from 1 to 8:

$$-(CH_2)_n-NR^1R^2$$
; and,
- $(CH_2)_n-OR^5$.

93. (Previously Presented) A compound according to claim 78, wherein W is independently selected from the following, wherein -NR¹R² is a terminal amino group, and -OR⁵ is a terminal ether group:

$$-(CH_2)_2-NR^1R^2$$
; and,
 $-(CH_2)_2-OR^5$;
 $-(CH_2)_3-NR^1R^2$; and,
 $-(CH_2)_3-OR^5$;
 $-(CH_2)_4-NR^1R^2$; and,
 $-(CH_2)_4-OR^5$.

94. (Previously Presented) A compound according to claim 78, wherein W is independently selected from the following, wherein -NR¹R² is a terminal amino group:

$$-(CH_2)_2-NR^1R^2$$
;
 $-(CH_2)_3-NR^1R^2$; and,
 $-(CH_2)_4-NR^1R^2$.

95. (Previously Presented) A compound according to claim 87, wherein each of R^1 and R^2 of the terminal amino group, -NR 1 R 2 , is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted;

- or, R¹ and R², taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.
- 96. (Previously Presented) A compound according to claim 95, wherein said terminal amino group is a secondary amino group, and one of R¹ and R² is -H.
- 97. (Previously Presented) A compound according to claim 95, wherein said terminal amino group is a tertiary amino group, and neither R¹ nor R² is -H.
- 98. (Previously Presented) A compound according to claim 95, wherein each of R¹ and R² is independently -Me, -Et, -nPr, -iPr, -nBu, or -tBu.
- 99. (Previously Presented) A compound according to claim 95, wherein -NR¹R² is independently -N(Me)₂, -N(Et)₂, -N(nPr)₂, -N(iPr)₂, -N(nBu)₂, or -N(tBu)₂.
- 100. (Previously Presented) A compound according to claim 95, wherein -NR¹R² is independently -NHMe, -NHEt, -NH(nPr), -NH(iPr), -NH(nBu), or -NH(tBu).
- 101. (Previously Presented) A compound according to claim 95, wherein R¹ and R², taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 3 to 8 ring atoms, which heterocyclic ring is saturated, partially unsaturated, or fully unsaturated, and is optionally substituted.

102. (Previously Presented) A compound according to claim 95, wherein R¹ and R², taken together with the nitrogen atom to which they are attached form a cyclic amino group of the following formula, wherein q is independently an integer from 2 to 7, and wherein said group is optionally substituted:

103. (Previously Presented) A compound according to claim 95, wherein the terminal amino group, -NR¹R², is independently one of the following cyclic amino groups, and is optionally substituted:

104. (Previously Presented) A compound according to claim 95, wherein the terminal amino group, -NR¹R², is one of the following groups, and is optionally substituted:

wherein R is an amino substituent, for example, hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl.

105. (Previously Presented) A compound according to claim 95, wherein the terminal amino group, -NR¹R², is one of the following substituted cyclic amino groups:

- 106. (Previously Presented) A compound according to claim 87, wherein R^5 is independently an ether substituent, and is selected from: hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, and C_{5-20} aryl; and is optionally substituted.
- 107. (Previously Presented) A compound according to claim 106, wherein R⁵ is independently -H.
- 108. (Previously Presented) A compound according to claim 106, wherein R^5 is independently C_{1-7} alkyl, C_{3-20} heterocyclyl, and C_{5-20} aryl; and is optionally substituted.
- 109. (Previously Presented) A compound according to claim 106, wherein R⁵ is independently -Me, -Et, -nPr, -iPr, -nBu, -tBu, optionally substituted -Ph, or optionally substituted -Bn.
- 110. (Currently Amended) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$-\stackrel{R^{N2}}{\stackrel{N}{\longrightarrow}} \stackrel{N}{\stackrel{N}{\longrightarrow}} \stackrel{(R)_t}{\stackrel{N}{\longrightarrow}} \stackrel{R^{N2}}{\stackrel{N}{\longrightarrow}} \stackrel{N}{\stackrel{N}{\longrightarrow}} \stackrel{(R)_t}{\stackrel{N}{\longrightarrow}} \stackrel{R^{N2}}{\stackrel{N}{\longrightarrow}} \stackrel{(R)_t}{\stackrel{N}{\longrightarrow}} \stackrel{(R)_t}{\stackrel{N}{\longrightarrow}} \stackrel{R^{N2}}{\stackrel{N}{\longrightarrow}} \stackrel{(R)_t}{\stackrel{N}{\longrightarrow}} \stackrel{R^{N2}}{\stackrel{N}{\longrightarrow}} \stackrel{R^{N2}}{\stackrel{N}} \stackrel{N}{\longrightarrow} \stackrel{N}{$$

wherein t is independently an integer from 0 to 4, and each $(R)_t$ is independently a substituent selected from halo, amino, hydroxy, ether, thio, thioether, C_{1-7} alkyl, C_{1-7} haloalkyl, acyl, amido, carboxy, cyano, and aminoalkyl.

111. (Currently Amended) A compound according to claim 80, wherein K is a 9-substituent, and is a group having one of the following formulae:

wherein [[t]] $\underline{t'}$ is independently an integer from 0 to 3, and each [[(R) $_t$]] (R) $_{\underline{t'}}$ is independently a substituent selected from halo, amino, hydroxy, ether, thio, thioether, $\underline{C_{1-7}}$ alkyl, $\underline{C_{1-7}}$ haloalkyl, acyl, amido, carboxy, cyano, and aminoalkyl.

112. (Currently Amended) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$\begin{array}{c|c}
R^{N2} & (R)_t \\
\hline
R^{N2} & (R)_{t''}
\end{array}$$

wherein [[t]] \underline{t} " is independently an integer from 0 to 5, and each [[(R)_t]] (R)_t" is independently a substituent selected from halo, amino, hydroxy, ether, thio, thioether, C₁₋₇alkyl, C₁₋₇haloalkyl, acyl, amido, carboxy, cyano, and aminoalkyl.

Claim 113. (Canceled)

114. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$-$$
NR 3 R 4

wherein -NR³R⁴ is as defined for -NR¹R²,

wherein each of R^1 and R^2 of the terminal amino group, $-NR^1R^2$, is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; or, R^1 and R^2 , taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.

115. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$\begin{array}{c|c}
R^{N2} & R^{N} \\
N & C \\
N & C \\
N & NR^{3}R^{4}
\end{array}$$

wherein R^N is a nitrogen substituent as defined for R^{N2} , R^Q is independently a C_{1-10} alkylene group, and $-NR^3R^4$ is as defined for $-NR^1R^2$,

wherein each of R^1 and R^2 of the terminal amino group, $-NR^1R^2$, is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; or, R^1 and R^2 , taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.

116. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$-N \xrightarrow{\stackrel{R^{N2}}{\downarrow}} -N \xrightarrow{\stackrel{R^{N}}{\downarrow}} NR^{3}R^{4}$$

wherein R^N is a nitrogen substituent as defined for R^{N2} , R^Q is a C_{1-10} alkylene group, and $-NR^3R^4$ is as defined for $-NR^1R^2$,

wherein each of R^1 and R^2 of the terminal amino group, -NR¹R², is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; or, R^1 and R^2 , taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.

117. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and has the following formula:

$$-N \xrightarrow{R^{N2}} -R \xrightarrow{R^{N}} (CH_{2})_{p} -NR^{3}R^{4}$$

wherein R^N is a nitrogen substituent, p is independently an integer from 1 to 8, and -NR³R⁴ is as defined for -NR¹R²,

wherein each of R^1 and R^2 of the terminal amino group, $-NR^1R^2$, is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; or, R^1 and R^2 , taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.

118. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$-N \xrightarrow{R^{N2}} -R \xrightarrow{R^{N}} -N \xrightarrow{C} NR^{3}R^{4}$$

wherein R^N is a nitrogen substituent as defined for R^{N2} , and $-NR^3R^4$ is as defined for $-NR^1R^2$,

wherein each of R^1 and R^2 of the terminal amino group, $-NR^1R^2$, is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is

optionally substituted; or, R¹ and R², taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.

119. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

120. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$-N \xrightarrow{\mathbb{R}^{N2}} X - (CH_2)_p - Y$$

wherein:

$$X \text{ is -N(R}^N)$$
-, -CH₂-, -O-, or -S-;

R^N is a nitrogen substituent as defined for R^{N2};

-ORY is as defined for -OR5;

-NR³R⁴ is as defined for -NR¹R²; and,

p is independently an integer from 1 to 8,

wherein each of R^1 and R^2 of the terminal amino group, -NR¹R², is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; or, R^1 and R^2 , taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.

- 121. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and Q is independently a C_{1-7} alkyl group optionally substituted with one or more amino groups, one or more hydroxy groups, one more ether groups, one or more carboxy groups, one or more C_{3-20} heterocyclyl groups, or one or more C_{5-20} aryl groups.
- 122. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$R_{l}^{N2}$$
 $-N-(CH_{2})_{p}-NR^{3}R^{4}$

wherein p is independently an integer from 1 to 8, and the group $-NR^3R^4$ is as defined for $-NR^1R^2$,

wherein each of R^1 and R^2 of the terminal amino group, -NR¹R², is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; or, R^1 and R^2 , taken together with the nitrogen atom to which they

are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.

123. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$-N = -NR^3R^4$$

$$-NR^3R^4$$

wherein each group -NR³R⁴ is as defined for -NR¹R²,

wherein each of R^1 and R^2 of the terminal amino group, -NR¹R², is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; or, R^1 and R^2 , taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.

124. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and Q is, or comprises, an alicyclic saturated C₁₋₇alkyl group, and is optionally substituted.

125. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$-N - CH (CH_2)_{q}$$

wherein q is independently an integer from 2 to 7, and wherein the cyclic group is optionally substituted.

126. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of one of the following formulae:

127. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$-N-(CH_2)_p-CH$$

wherein p is independently an integer from 1 to 8 and q is independently an integer from 2 to 7, and wherein the cyclic group is optionally substituted.

128. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of one of the following formulae:

wherein p is independently an integer from 1 to 8, and wherein the cyclic group is optionally substituted.

129. (Previously Presented) A compound according to claim 80, wherein K is a 9-substituent, and is a group of the formula:

$$-N(R^{N2})-(CH_2)_n-[G-(CH_2)_m]_s-T;$$

wherein:

n is independently an integer from 1 to 8;

each m is independently an integer from 1 to 8;

s is independently an integer from 0 to 3;

each G is independently -O- or -NRN-;

each R^N is independently a nitrogen substituent as defined for R^{N2};

T is independently a terminal amino group, -NR¹R² or a terminal ether group, -OR⁵,

wherein each of R^1 and R^2 of the terminal amino group, -NR¹R², is independently an amino substituent, and is hydrogen, C_{1-7} alkyl, C_{3-20} heterocyclyl, or C_{5-20} aryl, and is optionally substituted; or, R^1 and R^2 , taken together with the nitrogen atom to which they are attached, form a heterocyclic ring having from 3 to 8 ring atoms, and is optionally substituted.

- 130. (Previously Presented) A compound according to claim 78, wherein each R^{N1} is independently -H, -Me, -Et, -nPr, -iPr, -tBu, -Bn, or -Ph.
- 131. (Previously Presented) A compound according to claim 78, wherein each R^{N1} is independently -H.
- 132. (Previously Presented) A compound according to claim 78, wherein each R^{N2} is independently -H. -Me. -Et. -nPr. -iPr. -tBu. -Bn. or -Ph.
- 133. (Previously Presented) A compound according to claim 78, wherein each ${\sf R}^{\sf N2}$ is independently -H.
- 134. (Previously Presented) A compound according to claim 78, wherein each R^{N1} and R^{N2} is independently -H, -Me, -Et, -nPr, -iPr, -tBu, -Bn, or -Ph.
- 135. (Previously Presented) A compound according to claim 78, wherein each $R^{\rm N1}$ and $R^{\rm N2}$ is independently -H.

136. (Currently Amended) A compound selected from the following compounds, and pharmaceutically acceptable salts, esters, amides, solvates, hydrates, and protected forms thereof:

BSU-SB-36/114

137. (Currently Amended) A pharmaceutical composition comprising <u>a</u> therapeutically effective amount of a compound according to claim 78 and a pharmaceutically acceptable carrier or diluent.

Claims 138-140. (Cancelled)