- Introduzione
- 2 II problema
- 3 Struttura del codice
- 4 Risultati
- Conclusioni

Scopo del progetto

Lo scopo è di creare una piccola libreria per il pricing di derivati finanziari con il metodo degli elementi finiti, appoggiandosi sulla libreria deal.ii.

Motivazioni

La procedura più diffusa in finananza è di usare le differenze finite. Gli elementi finiti, seppure leggermente più complicati da implementare, presentano solo vantaggi.

- Introduzione
- 2 Il problema
- 3 Struttura del codice
- 4 Risultati
- Conclusioni

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C +
+ \int_{\mathbb{R}} \left(C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0.$$

Con opportune condizioni al contorno.

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C +
+ \int_{\mathbb{R}} \left(C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0.$$

Con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

 La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C +
+ \int_{\mathbb{R}} \left(C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0.$$

Con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, trattata in modo esplicito ad ogni passaggio.

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C +
+ \int_{\mathbb{R}} \left(C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0.$$

Con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, trattata in modo esplicito ad ogni passaggio. Separabile in due pezzi.

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r S \frac{\partial C}{\partial S} - r C +
+ \int_{\mathbb{R}} \left(C(t, S e^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0.$$

Con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, trattata in modo esplicito ad ogni passaggio.

Trasformazioni price e logprice

$$\frac{\partial u}{\partial t} + \left(r - \frac{\sigma^2}{2}\right) \frac{\partial u}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} - ru$$
$$+ \int_{\mathbb{R}} \left(u(t, x + y) - u(t, x) - (e^y - 1) \frac{\partial u}{\partial x}\right) \nu(dy) = 0$$

Con opportune condizioni al contorno.

Possiamo scomporre il problema in due parti

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, trattata in modo esplicito ad ogni passaggio.

Trasformazioni price e logprice

Scomposizione della parte integrale

Definendo in modo seguente le quantità

$$\hat{lpha} = \int_{\mathbb{R}} (e^y - 1)
u(y) dy$$
 $\hat{\lambda} = \int_{\mathbb{R}}
u(y) dy$

l'equazione diventa

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + (r - \hat{\alpha}) S \frac{\partial C}{\partial S} - (r + \hat{\lambda}) C + \int_{\mathbb{R}} C(t, Se^y) \nu(y) dy = 0$$

Scomposizione della parte integrale

Analogamente per la trasformazione logprice si ha

$$\hat{\lambda} = \int_{\mathbb{R}}
u(y) dy,$$
 $\hat{lpha} = \int_{\mathbb{R}} (e^y - 1)
u(y) dy,$

con rispettiva equazione

$$\frac{\partial u}{\partial t} + \left(r - \frac{\sigma^2}{2} - \hat{\alpha}\right) \frac{\partial u}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2} - (r + \hat{\lambda})u + \int_{\mathbb{R}} u(t, x + y)\nu(y)dy = 0$$

In due dimensioni

Con la trasformazione Price

$$\begin{split} \frac{\partial C}{\partial t} + (r - \hat{\alpha}_1) S_1 \frac{\partial C}{\partial S_1} + (r - \hat{\alpha}_2) S_2 \frac{\partial C}{\partial S_2} + \frac{\sigma_1^2}{2} S_1^2 \frac{\partial^2 C}{\partial S_1^2} + \frac{\sigma_2^2}{2} S_2^2 \frac{\partial^2 C}{\partial S_2^2} \\ + \rho \sigma_1 \sigma_2 S_1 S_2 \frac{\partial^2 C}{\partial S_1 \partial S_2} - (r + \lambda_1 + \lambda_2) C \\ + \int_{\mathbb{R}} C(t, S_1 e^y, S_2) \nu_1(y) dy + \int_{\mathbb{R}} C(t, S_1, S_2 e^y) \nu_2(y) dy = 0. \end{split}$$

In due dimensioni

Con la trasformazione logprice

$$\begin{split} \frac{\partial u}{\partial t} + \frac{\sigma_1^2}{2} \frac{\partial^2 u}{\partial x_1^2} + \frac{\sigma_2^2}{2} \frac{\partial^2 u}{\partial x_2^2} + \rho \sigma_1 \sigma_2 \frac{\partial^2 u}{\partial x_1 \partial x_2} + \left(r - \frac{\sigma_1^2}{2} - \hat{\alpha}_1\right) \frac{\partial u}{\partial x_1} \\ + \left(r - \frac{\sigma_2^2}{2} - \hat{\alpha}_2\right) \frac{\partial u}{\partial x_2} - \left(r + \hat{\lambda}_1 + \hat{\lambda}_2\right) u \\ + \int_{\mathbb{R}} u(t, x_1 + y, x_2) \nu_1(y) dy + \int_{\mathbb{R}} u(t, x_1, x_2 + y) \nu_2(y) dy = 0. \end{split}$$

- Introduzione
- 2 II problema
- 3 Struttura del codice
- 4 Risultati
- Conclusioni

La libreria deal.ii

Libreria deal.ii

Una potente libreria ad elementi finiti sui quadrilateri. Molto completa e semplice da iniziare a utilizzare, permette di risolvere problemi variazionali fino a 3 dimensioni con poche righe di codice.

La libreria deal.ii

Libreria deal.ii

Una potente libreria ad elementi finiti sui quadrilateri. Molto completa e semplice da iniziare a utilizzare, permette di risolvere problemi variazionali fino a 3 dimensioni con poche righe di codice.

Vantaggi

- Documentazione molto ampia e chiara, a cui si aggiunge la presenza di 51 tutorial programs che illustrano come usare la libreria per problemi tipici
- Organizzata in moduli che coprono le diverse aree di un problema ad elementi finiti (creazione griglie, algebra lineare, output risultati, etc)

La nostra implementazione

Classi Opzione

Seguendo la linea di deal.ii, è stata creata una serie classi principale che rappresentano il problema e gestiscono creazione griglia, assemblaggio sistema e soluzione.

- Introduzione
- 2 II problema
- 3 Struttura del codice
- 4 Risultati
- Conclusioni

- Introduzione
- 2 II problema
- 3 Struttura del codice
- 4 Risultati
- 6 Conclusioni