NAME:

SID:

Problem 1: For each question (a), (b), (c) below, give the formula for the number of lottery draws and a brief justification (at most 15 words). You do not need to compute the numerical value.

(a) A draw of MegaLoser lottery consists of 5 different numbers from the range 1, 2, ..., 49. The ordering of the numbers does not matter. (For example, draw 9, 1, 29, 41, 3 is the same as 3, 1, 9, 41, 29.) Give the formula for the number of different draws of MegaLoser lottery.

Answer: $\binom{49}{5} = \frac{49!}{5! \, 44!}$

Justification: This is the number of 5-element subsets from 49 elements.

(b) A draw of HopelessLotto lottery consists of 5 different numbers from the range 1, 2, ..., 49. The ordering of the numbers matters. (For example, draw 9, 1, 29, 41, 3 is different from 3, 1, 9, 41, 29.) Give the formula for the number of different draws of HopelessLotto lottery.

Answer: $\frac{49!}{44!} = 49 \cdot 48 \cdot 47 \cdot 46 \cdot 45$

Justification: This is the number of 1-1 functions mapping 5 elements to 49 elements.

(c) A draw of BetYourPaycheck lottery consists of 5 numbers (not necessarily different) from the range 1, 2, ..., 49. The ordering of the numbers matters. (For example, draw 9, 1, 29, 41, 1 is different from 1, 1, 9, 41, 29.) Give the formula for the number of different draws of BetYourPaycheck lottery.

Answer: 49^5

Justification: This is the number of all functions mapping 5 elements to 49 elements.

Problem 2: Determine the numerical values of the expressions below. You need to show your work to get credit.

$$1 + 2 + 3 + \dots + 29 + 30 = \frac{1}{2} \cdot 30 \cdot (30 + 1) = 465.$$

$$\sum_{i=0}^{5} 10^{i} = \frac{10^{6} - 1}{10 - 1} = \frac{999,999}{9} = 111,111.$$

$$\log_3 81^5 = 5 \cdot \log_3 81 = 5 \cdot 4 = 20.$$

$$\sum_{i=0}^{\infty} (1/4)^i = \frac{1}{1 - 1/4} = 4/3.$$

Problem 3: For each of the statements below, determine whether it is true or false. Give a brief justification of your answer (at most 10 words). *Note:* to discourage guessing, incorrect T/F answers will receive negative credit.

statement	T/F	justification
$\exists x \in \mathbb{Z} : x^4 + x^3 - 2x^2 - 1 = 0$	F	Only candidates for integral roots are $1, -1$, and neither works
$\exists x \in \mathbb{R} : 2^{x^2} < 1$	F	$x^2 \ge 0$, so $2^{x^2} \ge 2^0 = 1$
$\forall x \in \mathbb{R} : x^2 - x + 1 > 0$	Т	The discriminant is -3 (negative)
$\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : y^2 + y = x^2$	Т	This is a quadratic equation in y . The discriminant is $1+4x^2$, which is always positive
$\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} : x^2y - 2y = 0$	Т	Taking $x = \sqrt{2}$, the left-hand side is 0 for all y

Reminders:

- ullet R denotes the set of all real numbers.
- \bullet $\mathbb Z$ denotes the set of all integers.
- \forall denotes the universal quantifier ("for all") and \exists denotes the existential quantifier ("there exists").