Guía Ingeniería Matemática Semana 5

Cálculo Diferencial e Integral 08-2 Universidad de Chile

Ejercicios

1. Calcule las siguientes primitivas, en la variable x:

(a)
$$\int x^{\alpha}$$
.

(g)
$$\int \frac{1}{ax}$$
.

(g)
$$\int \frac{1}{ax}$$
. (m) $\int \frac{1}{\sqrt{x^2 - 1}}$.

(b)
$$\int \frac{1}{x}$$

(h)
$$\int \operatorname{senh}(ax)$$

(n)
$$\int \frac{1}{\sqrt{a^2 - x^2}}$$

(c)
$$\int \operatorname{sen}(ax)$$

(i)
$$\int \cosh(ax)$$

(b)
$$\int \frac{1}{x}$$
. (h) $\int \operatorname{senh}(ax)$. (n) $\int \frac{1}{\sqrt{a^2 - x^2}}$. (c) $\int \operatorname{sen}(ax)$. (i) $\int \cosh(ax)$. (n) $\int \frac{1}{\sqrt{a^2 + x^2}}$. (d) $\int \cos(ax)$. (j) $\int \frac{1}{1 + x^2}$. (e) $\int be^{ax}$. (k) $\int \frac{1}{\sqrt{1 - x^2}}$. (o) $\int \frac{1}{a^2 - x^2}$.

(d)
$$\int \cos(ax)$$

(k)
$$\int \frac{1+x^2}{\sqrt{1-x^2}}$$

(o)
$$\int \frac{1}{a^2 - x^2}$$
.

(f)
$$\int (ax)^{\alpha}$$

(1)
$$\int \frac{1}{\sqrt{1+x^2}}$$

(f)
$$\int (ax)^{\alpha}$$
. (l) $\int \frac{1}{\sqrt{1+x^2}}$. (p) $\int \frac{1}{\sqrt{x^2-a^2}}$.

2. Justifique en detalle el cálculo, hecho en la tutoría, de las primitivas:

(a)
$$\int \sec x dx$$
.

(b)
$$\int \csc x dx.$$

3. Aplicar un cambio de variable para calcular las siguientes primitivas, en la

(a)
$$\int \frac{x+1}{x^2+x}$$
.

(f)
$$\int e^{-\sqrt{x}}$$
.

(b)
$$\int \frac{x}{\sqrt{x^2 - a^2}}$$

(g)
$$\int e^x \sqrt{1+e^x}$$

(a)
$$\int \frac{1}{x^2 + x}$$
.
(b) $\int \frac{x}{\sqrt{x^2 - a^2}}$.
(c) $\int \frac{1}{x \ln(x)(\ln^2(x) + 1)}$.
(d) $\int \frac{\tan(x)}{\ln(\sin(x))}$.
(e) $\int \frac{\sin(x)\cos(x)}{\sqrt{1 + \sin(x)}}$.
(f) $\int e^{-x^2}$.
(g) $\int e^x \sqrt{1 + e^x}$.
(h) $\int \frac{\ln(x)}{\sqrt{x}}$.
(i) $\int \sqrt{x^2 - a^2}$.

(h)
$$\int \frac{\ln(x)}{\sqrt{x}}$$
.

(d)
$$\int \frac{\tan(x)}{\ln(\sin(x))}$$

(i)
$$\int \sqrt{x^2 - a^2}$$

(e)
$$\int \frac{\operatorname{sen}(x) \cos(x)}{\sqrt{1 + \operatorname{sen}(x)}}$$

(j)
$$\int \sqrt{x^2 + a^2}$$
.

Problemas

 ${f P1.}$ Calcule las siguientes primitivas:

(a)
$$\int \frac{\sin x \cos x}{\sqrt{1 + \sin x}} dx.$$

(b)
$$\int \frac{\sqrt{x}}{\sqrt{1+\sqrt{x}}} dx.$$

Nota: Más problemas que se aplican a los contenidos de esta semana, se encuentran en la guía de la semana

Ingeniería Matemática Universidad de Chile

(c)
$$\int \frac{x}{\sqrt{1+x^2+(\sqrt{1+x^2})^3}} dx$$
.

P2. Sean f, g, h funciones tales que f(x) = g(x) + h(x)g'(x). Usando la definición de primitiva muestre que

$$\int f(x)e^{h(x)}dx = e^{h(x)}g(x) + c.$$

P3. Sea $f: \to +$ derivable y $g: \to -$ continua tales que f'(x)+g(x)f(x)=0. Usando la definición de primitiva muestre que

$$\int g(x)dx = -\ln f(x) + c$$

- **P4.** Sea $f: \to +$ derivable y tal que $\int f(x)dx = f(x)$.
 - a) Muestre que $\frac{f'(x)}{f(x)}=1$ y deduzca que $\int \frac{f'(x)}{f(x)} dx = x+c.$
 - b) Concluya que $f(x) = e^{x+c}$.