# Tecniche di animazione 3D nella realizzazione di un cortometraggio

Leonardo Marini

10 Dicembre 2019

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

## Indice

- 1. Introduzione
- 2. Concetti di animazione

- 3. Progettazione
- 4. Produzione

## Intro

## <u>Analisi</u>

Cortometraggio animato in 3D

## **Analisi**

- · Cortometraggio animato in 3D
- · Uso di diverse tecniche di animazione

## **Analisi**

- · Cortometraggio animato in 3D
- · Uso di diverse tecniche di animazione
- · Breve durata

### **Analisi**

- · Cortometraggio animato in 3D
- · Uso di diverse tecniche di animazione
- · Breve durata
- · Nessun requisito sulla storia

## La storia



Figure 1: Capitano



Figure 2: Ragazzo



Figure 3: Capitana

Concetti di animazione

Euler Quaternions Matrici

 Concettualmente semplice

#### Euler

Quaternions

- Concettualmente semplice
- Complessa e confusa in pratica

#### Euler

## Quaternions

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante

#### Euler

## Quaternions

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

#### Euler

## **Ouaternions**

- Concettualmente
  No gimbal lock semplice
- · Complessa e confusa in pratica
- · L'ordine delle rotazioni è importante
- · Gimbal lock e interpolazioni spezzate

#### Euler

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

### Quaternions

- No gimbal lock
- Interpolazione diretta e dolce

#### Euler

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

#### Quaternions

- · No gimbal lock
- Interpolazione diretta e dolce
- Semplifica i calcoli

#### Euler

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

#### Quaternions

- · No gimbal lock
- Interpolazione diretta e dolce
- Semplifica i calcoli
- Interpolazioni consistenti e predicibili

#### Euler

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

#### Quaternions

- · No gimbal lock
- Interpolazione diretta e dolce
- Semplifica i calcoli
- Interpolazioni consistenti e predicibili

#### Matrici

 Qualsiasi tipo di trasformazione

#### Euler

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

#### Quaternions

- · No gimbal lock
- Interpolazione diretta e dolce
- Semplifica i calcoli
- Interpolazioni consistenti e predicibili

- Qualsiasi tipo di trasformazione
- Parenting

#### Euler

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

#### Quaternions

- · No gimbal lock
- Interpolazione diretta e dolce
- Semplifica i calcoli
- Interpolazioni consistenti e predicibili

- Qualsiasi tipo di trasformazione
- Parenting
- Constraints

#### Euler

- Concettualmente semplice
- Complessa e confusa in pratica
- L'ordine delle rotazioni è importante
- Gimbal lock e interpolazioni spezzate

#### Quaternions

- · No gimbal lock
- Interpolazione diretta e dolce
- Semplifica i calcoli
- Interpolazioni consistenti e predicibili

- Qualsiasi tipo di trasformazione
- Parenting
- Constraints
- · Armature deform

• Figure complesse come quella umana

- · Figure complesse come quella umana
- Approccio naive

- · Figure complesse come quella umana
- · Approccio naive
- · Precisione del posizionamento

- · Figure complesse come quella umana
- · Approccio naive
- · Precisione del posizionamento
- · Difficile animare azioni comuni

 $\cdot$  Figure complesse come quella umana

- · Figure complesse come quella umana
- Approccio inverso

- · Figure complesse come quella umana
- · Approccio inverso
- · Semplifica le animazioni

- · Figure complesse come quella umana
- · Approccio inverso
- · Semplifica le animazioni
- · Complessa da calcolare

## IK - Lo Jacobiano

| $\frac{\partial p_{x}}{\partial \theta_{1}}$      | $\frac{\partial p_{x}}{\partial \theta_{2}}$      |   | $\frac{\partial p_x}{\partial \theta_n}$      |
|---------------------------------------------------|---------------------------------------------------|---|-----------------------------------------------|
| $\frac{\partial p_y}{\partial \theta_1}$          | $\frac{\partial p_y}{\partial \theta_2}$          |   | $\frac{\partial p_y}{\partial \theta_n}$      |
| :                                                 | ÷                                                 | · | ÷                                             |
| $\frac{\partial \alpha_{z}}{\partial \theta_{1}}$ | $\frac{\partial \alpha_{z}}{\partial \theta_{2}}$ |   | $\frac{\partial \alpha_z}{\partial \theta_n}$ |

Matrice di derivate parziali corrispondenti alla differenza della posizione attuale dell'end-effector rispetto alla posizione obiettivo.

## Proprietà

- · Soluzione iterativa
- Simile al metodo del simplesso

# Progettazione

## Rigging

**Table 1:** Diversi tipi di rig necessari un una figura umana in base ai compiti che deve eseguire

| Porzione del rig | Compito                   | Soluzione |
|------------------|---------------------------|-----------|
| Braccia          | raggiungere e gesticolare | IK e FK   |
| Mani             | afferrare                 | FK        |
| Gambe            | correre e camminare       | IK        |

Produzione

## Animazioni

#### IK

camminata corsa raggiungere

#### FK

raggiungere afferrare

#### Curve

camminata corsa inseguimento spaziale

#### Cicli

camminata corsa sparatorie

