

DRAFT

PRODUCT ENVIRONMENTAL FOOTPRINT CATEGORY RULES

PEFCR draft

Office Chair

Author:

Irene Bartolozzi (SSSUP)

on behalf of the Life EFFIGE Sectorial Technical Group of Working Station

Il presente documento include indicazioni metodologiche per la conduzione di uno studio LCA secondo quanto previsto dalla metodologia PEF (Product Environmental Footprint) per la valutazione dell'impronta ambientale di prodotto così come definita nella Raccomandazione 2013/179/UE della Commissione e, ove possibile, dalle Product Environmental Footprint Category Rules Guidance, Version 6.3, May 2018.

Il documento, sviluppato nell'ambito del progetto LIFE EFFIGE, è riferito al solo mercato italiano ed è stato redatto in collaborazione con il partner FLA.

I suoi contenuti sono un contributo agli studi di settore, ma non sono vincolanti rispetto ad altre iniziative in corso o a venire.

1. Introduction	4
2. PEFCR scope	5
2.1 Product classification	5
2.2 Representative product(s)	6
2.3 Functional unit and reference flow	6
2.4 System boundary	7
2.5 EF impact assessment	9
2.6 Limitations	11
3. Most relevant impact categories, life cycle stages, processes and elementary flows	11
4. LIFE CYCLE INVENTORY	16
4.1 List of mandatory company-specific data	16
4.1.1 Assembly –chair	18
4.1.2 Distribution	19
4.2 List of processes expected to run by the company	20
4.3 Data gaps	20
4.4 Data quality requirements	20
4.5 Data needs matrix (DNM)	20
4.6 Allocation rules	20
4.7 Which datasets to use?	21
4.8 Modelling of wastes and recycled content	21
4.8.1 Aluminium recycling	22
4.8.2 Steel recycling	22
4.8.3 Glass recycling	23
4.8.4 Paper and cardboard packaging recycling	23
4.8.5 Plastic packaging recycling	24
5. Life cycle stages	25
5.1 Manufacturing chair components	25
5.2 Manufacturing chair packaging	34
5.3 Manufacturing chair	35
5.4 Distribution	35
5.5 Use & Maintenance	36
5.6 End of life	37
6. PEF results	38
6.1 Benchmark values	38
6.2 PEF profile	40
6.3 Additional environmental information	40
6.4 Other impact results	40
7 REFERENCES	40

1. Introduction

The present Product Environmental Footprint Category Rules (PEFCR) is developed within the Life EFFIGE Project, aimed to develop new tools for the implementation of PEF in small and medium-sized businesses, helping them to experiment innovative approaches and methods reduce their environmental footprint and making them more competitive on the current market.

The Product Environmental Footprint (PEF) Guide provides detailed and comprehensive technical guidance on how to conduct a PEF study. PEF studies may be used for a variety of purposes, including in-house management and participation in voluntary or mandatory programmes.

For all requirements not specified in this PEFCR the applicant shall refer to the documents this PEFCR is in conformance with (see chapter 2).

The compliance with the present PEFCR is optional for PEF in-house applications, whilst it is mandatory whenever the results of a PEF study or any of its content is intended to be communicated.

Terminology: shall, should and may

This PEFCR uses precise terminology to indicate the requirements, the recommendations and options that could be chosen when a PEF study is conducted.

- The term "shall" is used to indicate what is required in order for a PEF study to be in conformance with this PEFCR.
- The term "should" is used to indicate a recommendation rather than a requirement. Any deviation from a "should" requirement has to be justified when developing the PEF study and made transparent.
- The term "may" is used to indicate an option that is permissible. Whenever options are available, the PEF study shall include adequate argumentation to justify 2. General information about the PEFCR

This PEFCR is valid for products in scope sold in Italy

The PEFCR is written in English.

This PEFCR has been prepared in conformance with the following documents:

- PEFCR "Guidance version 6.3" excluding all that parts applicable only for products already covered by existing PEFCR. Deviations from the requirements of Guidance v.6.3 have been made based on older versions of the Guidance and expert judgment.
- Product Environmental Footprint (PEF) Guide; Annex II to the Recommendation 2013/179/EU, 9 April 2013. Published in the official journal of the European Union Volume 56, 4 May 2013

This PEFCR was developed within the Project EFFIGE –LIFE by the STG Working station guided by partner FLA.

The existing Product Category Rules for the product in scope (Office chair) are the following:

Source	PCR	Product category	Underlying standards and program instructions
EPD	UN CPC 3812 & 3814 OTHER FURNITURE USED IN OFFICES AND OTHER FURNITURE N.E.C.	Other furniture used in offices	ISO14040-14044 ISO 14025

2. PEFCR scope

2.1 Product classification

Office furniture production is the result of activities classified in the *Nomenclature Générale des Activités Économiques dans les Communautés Européennes*/Statistical classification of products by activity NACE/CPA Rev.2 under code **31.01 Manufacture of office furniture** and, more specifically,

31.01.11 Metal furniture of a kind used in office.

This product category includes the production of office furniture of several materials (excluded some specific ones), including chairs/seats and tables.

2.2 Representative product(s)

The representative product was determined as a virtual product from the weighted average of the office chair sold on the Italian market as indicated by STG and FLA partner..

The product types are the following:

- Operational padded chair type A EN 1335-1
- Operational padded chair with mesh backrest type A EN 1335-1
- 4 leg multiuse chair –plastic
- 4 leg multiuse chair –padded

Table 1 Representative product

Representative Product	Туре	%
Office chair	Operational padded chair type A EN 1335-11	45%
	Operational padded chair with mesh backrest type A EN 1335-1	35%
	4 leg multiuse chair –plastic	10%
	4 leg multiuse chair –padded	10%

The screening study is available upon request to the STG coordinator that has the responsibility of distributing it with an adequate disclaimer about its limitations.

2.3 Functional unit and reference flow

The functional unit (unit of analysis) is one unit of product, thus **one office chair,** as agreed in the EFFIGE office furniture STG.

Table 2 defines the key aspects used to define the FU.

Table 2 Key aspects of the FU

What? Providing of a seating solution in o	
	environment

How much?	1 unit
How long?	5 years
How well?	the office chair satisfies the requirements of UNI EN 1335-1 and UNI EN 1335-2 or UNI EN 16139

The reference flow is one office chair

2.4 System boundary

The flow diagram of the entire process includes the following activities (Table 3):

Table 3. Life cycle stages

Life cycle stage	Short description of the processes included	
Manufacturing chair components	Production and supply of raw materials, including: Plastics (PP, ABS, PAM, expanded PU) Metals (Steel, aluminium) Fabric (wool, cotton, polyamide) Wood based particleboard Manufacturing of the components: Particleboard production Glass tempering Steel machining and cutting, bending, powder coating) Aluminium (extrusion) Plastics injection moulding Fabric production (spinning of fibres) Transport to chair assembly facility	

Manufacturing chair packaging	Production and supply of raw materials, including:		
	Packaging (PE, Cardboard);		
	Transport to chair assembly facility		
Manufacturing -chair	 Chair assembly (the cutting to size of the padding and fabric, the use of glue and staples to fix the components) Packaging 		
Distribution	Transport by lorry		
	Transport by ship		
Use & maintenance	Cleaning of the surface (use of tap water)		
End of life	End of life of packaging (cardboard, PE)		
	End of life of chair		

Processes in Situation 1 are the processes run by the company applying the PEFCR. Processes in Situation 3 are the ones not run by the company applying the PEFCR and this company does not have access to (company-) specific information.

According to this PEFCR, the following processes may be excluded based on the cut-off rule:

• The production of buildings and equipment. Relevance of buildings and equipment will be tested during supporting studies.

2.5 EF impact assessment

Each PEF study carried out in compliance with this PEFCR shall calculate the PEF-profile including all PEF impact categories listed in the table below (ILCD Method 2011 for characterisation, normalisation and weighting factors).

Impact category	Indicator	Unit	Recommended default LCIA method
Climate change - Climate change- biogenic - Climate change — land use and land transformation	Radiative forcing as Global Warming Potential (GWP100)	kg CO _{2 eq}	Baseline model of 100 years of the IPCC (based on IPCC 2013)
Ozone depletion	Ozone Depletion Potential (ODP)	kg CFC-11 _{eq}	Steady-state ODPs 1999 as in WMO assessment
Human toxicity, cancer*	Comparative Toxic Unit for humans (CTU _h)	CTUh	USEtox model (Rosenbaum et al, 2008)
Human toxicity, non-cancer*	Comparative Toxic Unit for humans (CTU _h)	CTUh	USEtox model (Rosenbaum et al, 2008)
Particulate matter	Impact on human health	kg PM2,5 equivalent	UNEP recommended model (Fantke et al 2016)
lonising radiation, human health	Human exposure efficiency relative to U ²³⁵	kBq U ²³⁵ eq	Human health effect model as developed by Dreicer et al. 1995 (Frischknecht et al, 2000)
Photochemical ozone formation, human health	Tropospheric ozone concentration increase	kg NMVOC _{eq}	LOTOS-EUROS model (Van Zelm et al, 2008) as implemented in ReCiPe
Acidification	Accumulated Exceedance (AE)	mol H+ _{eq}	Accumulated Exceedance (Seppälä et al. 2006, Posch et al, 2008)
Eutrophication, terrestrial	Accumulated Exceedance (AE)	mol N _{eq}	Accumulated Exceedance (Seppälä et al. 2006, Posch et al, 2008)
Eutrophication, freshwater	Fraction of nutrients reaching freshwater end compartment (P)	kg P _{eq}	EUTREND model (Struijs et al, 2009b) as implemented in ReCiPe
Eutrophication, marine	Fraction of nutrients reaching marine end compartment (N)	kg N _{eq}	EUTREND model (Struijs et al, 2009b) as implemented in ReCiPe
Ecotoxicity, freshwater ¹	Comparative Toxic Unit for ecosystems (CTU _e)	СТИе	USEtox model, (Rosenbaum et al, 2008)
Land Use	Soil Organic Matter (SOM)	Kg C deficit	Mila i Canals et al. 2007
Water resource depletion	Freshwater scarcity	m³ water _{eq}	Swiss Ecoscarcity 2006
Mineral, fossil & renewable resource depletion	Scarcity of mineral resource	kg Sb _{eq}	van Oers et al. 2002.

¹ Long-term emissions (occurring beyond 100 years) shall be excluded from the toxic impact categories. Toxicity emissions to this sub-compartment have a characterisation factor set to 0 in the EF LCIA (to ensure consistency). If included by the applicant in the LCI modelling, the sub-compartment 'unspecified (long-term)' shall be used

2.6 Limitations

The main limitation are:

- The lack of primary data for the production of buildings and equipment.

3. Most relevant impact categories, life cycle stages, processes and elementary flows

The most relevant impact categories for the product RP – Office Chair, in scope of this PEFCR, are the following:

- Mineral, fossil & ren resource depletion
- Particulate matter
- Acidification
- Climate change, fossil
- Photochemical ozone formation.
- Terrestrial eutrophication
- Marine eutrophication

The most relevant life cycle stages for the product group in scope of this PEFCR are the following:

- Manufacturing of chair components
- End of life

The most relevant processes for the product group in scope of this PEFCR are the following (table 4):

Table 1. List of the most relevant processes

Impact category		Processes
Mineral, fossil &	ren	Material-mechanism (from life cycle stage Manufacturing of chair components)
resource depletion		Material –gas cylinder (from life cycle stage Manufacturing of chair components)
		Material-4 legs (from life cycle stage Manufacturing of chair components)
		Material- castors (from life cycle stage Manufacturing of chair components)
		Material-connection (from life cycle stage Manufacturing of chair components)

Impact category	Processes
	Material- base (from life cycle stage Manufacturing of chair components)
	Material- cover (from life cycle stage Manufacturing of chair components)
	Production – hardware (from life cycle stage Manufacturing of chair components)
	Packaging (from life cycle stage Manufacturing of chair packaging)
	Assembly (from life cycle assembly stage)
	End of life packaging (from end of life stage)
Particulate matter	Material-mechanism (from life cycle stage Manufacturing of chair components)
	Material-mesh (from life cycle stage Manufacturing of chair components)
	Material-upholstered backrest (from life cycle stage Manufacturing of chair components)
	Material-upholstered seat (from life cycle stage Manufacturing of chair components)
	Material –gas cylinder (from life cycle stage Manufacturing of chair components)
	Material-4 legs (from life cycle stage Manufacturing of chair components)
	Material- castors (from life cycle stage Manufacturing of chair components)
	Material- base (from life cycle stage Manufacturing of chair components)
	Material- cover (from life cycle stage Manufacturing of chair components)
	Production –gas cylinder (from life cycle stage Manufacturing of chair components)
	Production –4 legs (from life cycle stage Manufacturing of chair components)
	Packaging (from life cycle stage Manufacturing of chair packaging)
	Assembly (from life cycle assembly stage)
	End of life packaging (from end of life stage)

Impact category	Processes
Acidification	Material-mechanism (from life cycle stage Manufacturing of chair components)
	Material-mesh (from life cycle stage Manufacturing of chair components)
	Material-upholstered backrest (from life cycle stage Manufacturing of chair components)
	Material-upholstered seat (from life cycle stage Manufacturing of chair components)
	Material –castors (from life cycle stage Manufacturing of chair components)
	Material-base (from life cycle stage Manufacturing of chair components)
	Material- cover (from life cycle stage Manufacturing of chair components)
	Production –gas cylinder (from life cycle stage Manufacturing of chair components)
	Production –4 legs (from life cycle stage Manufacturing of chair components)
	Packaging (from life cycle stage Manufacturing of chair packaging)
	Assembly (from life cycle Manufacturing of chair stage)
	Distribution (from life cycle stage distribution)
Climate change, fossil	Material-mechanism (from life cycle stage Manufacturing of chair components)
	Material-mesh (from life cycle stage Manufacturing of chair components)
	Material-upholstered backrest (from life cycle stage Manufacturing of chair components)
	Material-upholstered seat (from life cycle stage Manufacturing of chair components)

Impact category	Processes
	Material –gas cylinder (from life cycle stage Manufacturing of chair components)
	Material –armrest (from life cycle stage Manufacturing of chair components)
	Material –4 legs (from life cycle stage Manufacturing of chair components)
	Material –castors (from life cycle stage Manufacturing of chair components)
	Material –base (from life cycle stage Manufacturing of chair components)
	Material –cover (from life cycle stage Manufacturing of chair components)
	Assembly (from life cycle stage Manufacturing of office chair)
	Packaging (from life cycle stage Manufacturing of chair packaging)
	Production-mechanism (from life cycle stage Manufacturing of chair components)
	Production-gas cylinder (from life cycle stage Manufacturing of chair components)
	Production-4 legs (from life cycle stage Manufacturing of chair components)
Photochemical ozone formation	Material-mechanism (from life cycle stage Manufacturing of chair components)
	Material-mesh (from life cycle stage Manufacturing of chair components)
	Material-upholstered backrest (from life cycle stage Manufacturing of chair components)
	Material-upholstered seat (from life cycle stage Manufacturing of chair components)
	Material –gas cylinder (from life cycle stage Manufacturing of chair components)
	Material –armrest (from life cycle stage Manufacturing of chair components)
	Material –4 legs (from life cycle stage Manufacturing of chair components)

Impact category	Processes
	Material –castors (from life cycle stage Manufacturing of chair components)
	Material –base (from life cycle stage Manufacturing of chair components)
	Material –cover (from life cycle stage Manufacturing of chair components)
	Packaging (from life cycle stage Manufacturing of chair packaging)
	Production-mechanism (from life cycle stage Manufacturing of chair components)
	Assembly (from life cycle stage Manufacturing of office chair)
	Distribution (from life cycle stage distribution)
	End of life packaging (from end of life stage)
Marine eutrophication	Material-mechanism (from life cycle stage Manufacturing of chair components)
	Material-upholstered backrest (from life cycle stage Manufacturing of chair components)
	Material-upholstered seat (from life cycle stage Manufacturing of chair components)
	Material –castors (from life cycle stage Manufacturing of chair components)
	Material –base (from life cycle stage Manufacturing of chair components)
	Material –cover (from life cycle stage Manufacturing of chair components)
	Packaging (from life cycle stage Manufacturing of chair packaging)
	Assembly (from life cycle stage Manufacturing of office chair)

Impact category	Processes
	Distribution (from life cycle stage distribution)
	End of life chair (end of life stage)
Terrestrial eutrophication	Material-mechanism (from life cycle stage Manufacturing of chair components)
	Material-upholstered backrest (from life cycle stage Manufacturing of chair components)
	Material-upholstered seat (from life cycle stage Manufacturing of chair components)
	Material –base (from life cycle stage Manufacturing of chair components)
	Material –cover (from life cycle stage Manufacturing of chair components)
	Packaging (from life cycle stage Manufacturing of chair packaging)
	Assembly (from life cycle stage Manufacturing of office chair)
	Distribution (from life cycle stage distribution)

4. Life cycle inventory

4.1 List of mandatory company-specific data

The following processes shall be modelled using company specific data:

- Assembly -chair
- Distribution

Activity data to be collected will be verified and validated during the PEF supporting studies.

Default datasets will be validated during the PEF supporting studies.

4.1.1 Assembly -chair

In this process all the components of the office chair provided by the suppliers are assembled to form the final product. The process includes energy consumption even though it is mainly carried out manually, with the cutting to size of the padding and fabric, the use of glue and staples to fix the components.

Data collection requirements for mandatory process Assembly-chair

Requirement	s for data collection	on purposes	Requirements for modelling purposes				Remarks				
Activity data to be collected	Specific requirements (e.g. frequency, measurement standard, etc)	Unit of measure	Default dataset to be used	Dataset source (i.e. node)	UUID	TIR	TeR	GR	Р	DQR	
Inputs:	Inputs:										
Yearly electricity consumption for Assembly	1 year average	kWh/year	Electricity, medium voltage {COUNTRY} market for APOS, U	Ecoinvent	n/a	n/a	n/a	n/a	n/a	n/a	
Other material inputs											
Outputs:		<u> </u>			l	<u> </u>					

4.1.2 Distribution

The distribution of the product occurs on road by lorry or by seaship .

Process name*	Unit of	Default dataset	Dataset source	UUID		D	efault [OQR	Remarks
	measure ment (output)				Р	TiR	GR	TeR	
DISTRIBUTION LORRY	Kg*km	Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoinvent	n/a	n/ a	n/a	n/a	n/a	
DISTRIBUTION SHIP	KG*KM	Transport, freight, sea, transoceanic ship {GLO} market for APOS, U	Ecoinvent	n/a	n/ a	n/a	n/a	n/a	

4.2 List of processes expected to run by the company

The following processes are expected to be run by the company applying the PEFCR:

- Assembly-chair
- Distribution -chair

The processes description is in chapter 5.1.

4.3 Data gaps

Unless primary data on raw materials and consumables production of appropriate quality (as defined in the PEF Recommendation) are made available from producers, to assure an appropriate overall quality of the PEF study and the comparability of the results, default proxies reported in cap. 5.1. have to be used.

4.4 Data quality requirements

This PEFCR does not specify more stringent data quality requirements and additional criteria for the assessment of data quality compared to the ones reported in PEFCR Guidance 6.3.

For data quality requirements, assessment and reporting, see PEFCR Guidance 6.3, Section B.5.4.

4.5 Data needs matrix (DNM)

For the evaluation of all processes required to model the product and outside the list of mandatory company-specific (listed in section 5.1) using the Data Needs Matrix, see PEFCR Guidance 6.3. Section B.5.5.

4.6 Allocation rules

If applicable, allocation in finished particleboard production shall be applied as physical allocation among particleboard finished, dust and waste to dust, since the two coproducts are being reused in the particleboard production.

Table 5. Allocation rules

Process	Allocation rule	Modelling instructions
Finished particleboard production	Physical allocation	The mass of the different outputs shall be used.

4.7 Which datasets to use?

The secondary datasets to be used by the applicant are those listed in this PEFCR. Whenever a dataset needed to calculate the PEF-profile is not among those listed in this PEFCR, then the applicant shall choose between the following options (in hierarchical order)²:

- Use an EF-compliant dataset available on one of the following nodes:
 - http://eplca.jrc.ec.europa.eu/EF-node
 - o http://lcdn.blonkconsultants.nl
 - o http://ecoinvent.lca-data.com
 - o http://lcdn-cepe.org
 - o https://lcdn.quantis-software.com/PEF/
 - http://lcdn.thinkstep.com/Node
- Use an EF-compliant dataset available in a free or commercial source;
- Use another EF-compliant dataset considered to be a good proxy. In such case this information shall be included in the "limitation" section of the PEF report.
- Use an ILCD-entry level-compliant dataset. In such case this information shall be included in the "data gap" section of the PEF report.

4.8 Modelling of wastes and recycled content

For modelling of waste and recycled content the Circular Footprint Formula, as described in PEFCR Guidance 6.3, Section B.5.11, shall be applied.

² These recommendations shall be taken into account under one of the following conditions: 1) the datasets are included in the Database integrated into the software of LCA; or 2) checked and validated procedures exist for the import of EF-compliant datasets into the structure required by the software; or 3) the EF compliant impact assessment method is available in the LCA software and a PEFCR exists with benchmark; or 4) the EF compliant impact assessment method is available in the LCA software and the PEF of a suppliers exists with the EF compliant environmental profile (characterized results)

4.8.1 Aluminium recycling

Aluminium recycling			
	Ev*	Aluminium, primary, ingot {UN-EUROPE} production Alloc Rec, U	(A-1)*R2*Qs/Qp
	Erec_eol	Aluminium scrap, post-consumer (waste treatment) {RER} treatment of aluminium scrap, post-consumer, by collecting, sorting, cleaning, pressing Alloc Def, U	(1-A)*R2
	Ese_elect	Electricity, medium voltage {IT} market for Alloc Rec, U;	R3*LHV*Xerelec*(-1)
	Ese_heat	Heat, central or small-scale, natural gas {RER} market group for Alloc Rec, U;	R3*LHV*Xer heat*(-1)
	E er	Scrap aluminium (waste treatment) {CH} treatment of scrap aluminium, municipal incineration Alloc Def, U	R3
	Ed	Waste aluminium {CH} treatment of, sanitary landfill Alloc Rec, U	(1-R2-R3)

Parameter	Value	Source
Α	0.8	Annex C
R2	0.39	
R3	0.214	
Qs/Qp	0.85	

4.8.2 Steel recycling

Steel recycling			
	Ev*	Steel, low-alloyed {RoW} steel production, electric, low-alloyed Alloc Rec, U	(A-1)*R2*Qs/Qp
	Erec_eol	Iron scrap, sorted, pressed {RER} sorting and pressing of iron scrap Alloc Rec, U	(1-A)*R2
	Ese_elect		R3*LHV*Xerelec*(-1)
	Ese_heat		R3*LHV*Xer heat*(-1)
	E er	Scrap steel {CH} treatment of,incinerationl Alloc Rec,	R3
	Ed	Scrap steel {CH} treatment of, inert material landfill Alloc Rec, U	(1-R2-R3)

Parameter	Value	Source
Α	0.2	Annex C
R2	0.73	
R3	0.0945	
Qs/Qp	1	

4.8.3 Glass recycling

Glass recycling			
	Ev*		(A-1)*R2*Qs/Qp
	Erec_eol		(1-A)*R2
	Ese_elect		R3*LHV*Xerelec*(-1)
	Ese_heat		R3*LHV*Xer heat*(-1)
	E er		R3
	Ed	Waste glass {CH} treatment of, inert material landfill Alloc Def, U	(1-R2-R3)

Parameter	Value	Source
Α	0.2	Annex C
R2	0.76	
R3	0	
Qs/Qp	1	

4.8.4 Paper and cardboard packaging recycling

Paper and cardboard packaging			
	Ev*	Paper, woodfree, uncoated {RER} market for Alloc Rec, U	(A-1)*R2*Qs/Qp
	Erec_eol	Graphic paper, 100% recycled {GLO} market for Alloc Rec, U;	(1-A)*R2
	Ese_elect	Electricity, medium voltage {IT} market for Alloc Rec, U;	R3*LHV*Xerelec*(-1)
	Ese_heat	Heat, central or small-scale, natural gas {Europe without Switzerland} market for heat, central or small-scale, natural gas Alloc Rec, U;	R3*LHV*Xer heat*(-1)
	E er	Waste graphical paper {Europe without Switzerland} treatment of waste graphical paper, municipal incineration Alloc Rec, U;	R3
	Ed	Waste graphical paper {Europe without Switzerland} treatment of waste graphical paper, sanitary landfill Alloc Rec, U	(1-R2-R3)

Parameter	Value	Source
Α	0.2	Annex C
R2	0.73	

R3	0.0945	
Qs/Qp	0.85	

4.8.5 Plastic packaging recycling

Plastic packaging			
	Ev*	Polyethylene terephthalate, granulate, amorphous {RER} production Alloc Rec, U	(A-1)*R2*Qs/Qp
	Erec_eol	PET (waste treatment) {GLO} recycling of PET Alloc Def, U_mod;	(1-A)*R2
	Ese_elect	Electricity, medium voltage {IT} market for Alloc Rec, U;	R3*LHV*Xerelec*(- 1)
	Ese_heat	Heat, central or small-scale, natural gas {Europe without Switzerland} market for heat, central or small-scale, natural gas Alloc Rec, U;	R3*LHV*Xer heat*(-1)
	E er	Waste polyethylene {CH} treatment of, municipal incineration Alloc Rec, U;	R3
	Ed	Waste polyethylene terephtalate {CH} treatment of, sanitary landfill Alloc Rec, U	(1-R2-R3)

Parameter	Value	Source
Α	0.5	Annex C
R2	0.31	
R3	0.24	
Qs/Qp	1	

5. Life cycle stages

For each process, default datasets will be verified during the PEF supporting studies process. During the PEF supporting studies the availability of data for the amount per FU will be verified. If not available, the default amount per FU will be applied.

5.1 Manufacturing chair components

Table 6. Raw material acquisition and processing

Process name	Unit			Default		UUI D	De	fault D	QR		Most
me ren t	(outpu	R ₁	Amount per FU	Dataset	Database		Р	TiR	GR	TeR	relevant process [Y/N]
Polypropylene - armrest	kg		1.56	Polypropylene , granulate {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Injection moulding- armrest	kg		1.56	Injection moulding {RER} processing APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Nylon -PAM - castors 5	kg		0.32	Nylon 6 {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Injection moulding - castors	kg		0.32	Injection moulding {RER} processing	Ecoinvent	n/a	n / a	n/a	n/a	n/a	

			APOS, U							
Steel - castors	kg	0.08	Steel, low- alloyed {RER} steel production, converter, low-alloyed APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Aluminium- chair base	kg	1.36	Aluminium, primary, ingot {IAI Area, EU27 & EFTA} aluminium, ingot, primary, import from Rest of Europe APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Extrusion Al- chair base	kg	1.36	Impact extrusion of aluminium, 1 stroke {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Nylon -PAM — chair cover	kg	0.15	Nylon 6 {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Wool- chair cover	kg	0.15	Sheep fleece in the grease {RoW} sheep production, for wool APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Cotton- chair cover	kg	0.15	Cotton fibre {GLO} market	Ecoinvent	n/a	n /	n/a	n/a	n/a	

			for APOS, U			а				
Spinning_text ile	kg	0.45	Spinning, bast fibre {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Steel - connection chair	kg	0.48	Steel, low- alloyed {RER} steel production, converter, low-alloyed APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Metal working-steel - connection chair	kg	0.48	Metal working, average for steel product manufacturing {RER} processing APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Steel – gas cylinder	kg	0.8	Steel, low- alloyed {RER} steel production, converter, low-alloyed APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Metal working-steel gas cylinder	kg	0.8	Metal working, average for steel product manufacturing {RER} processing APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Cutting- bending-	MJ	1.6	Electricity, medium	Ecoinvent	n/a	n /	n/a	n/a	n/a	

steel - gas cylinder			voltage {COUNTRY} market for APOS, U			а				
Powder coating - gas cylinder	m2	0.12	Powder coat, steel {RER} powder coating, steel APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
POM - gas cylinder	kg	0.08	Polyoxymethy lene (POM)/EU-27	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Aluminium- chair mechanism	kg	0.64	Aluminium, primary, ingot {IAI Area, EU27 & EFTA} aluminium, ingot, primary, import from Rest of Europe APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Extrusion Al- chair mechanism	kg	0.64	Impact extrusion of aluminium, 1 stroke {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Nylon -PAM - mechanism	kg	1.6	Nylon 6 {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Injection moulding – mechanism PA	kg	1.6	Injection moulding {RER} processing	Ecoinvent	n/a	n / a	n/a	n/a	n/a	

			APOS, U							
Polyester PET -mesh	kg	0.35	Polyethylene terephthalate, granulate, amorphous {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Extrusion plastic - mesh	kg	0.35	Extrusion, plastic pipes {RER} production APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Polyurethane expanded - mesh	kg	0.175	Polyurethane, flexible foam {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Steel – hardware chair	kg	0.2	Steel, low- alloyed {RER} steel production, converter, low-alloyed APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Polypropylen e - hardware chair	kg	0.2	Polypropylene , granulate {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Metal working-steel - chair hardware	kg	0.2	Metal working, average for steel product manufacturing {RER} processing APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	

						I				
Zinc coating_mod IT - chair hardware	kg	0.2	Zinc coat, coils {RER} zinc coating, coils Alloc Def, U_MOD IT	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Steel - 4 legs chair	kg	0.8	Steel, low- alloyed {RER} steel production, converter, low-alloyed APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Metal working-steel - 4 legs chair	kg	0.8	Metal working, average for steel product manufacturing {RER} processing APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Cutting- bending- steel - 4 legs chair	MJ	1.6	Electricity, medium voltage {COUNTRY} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Powder coating - 4 legs chair	m2	0.12	Powder coat, steel {RER} powder coating, steel APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Polypropylen e – shell PP	kg	0.35	Polypropylene , granulate {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	
Injection moulding-	kg	0.35	Injection moulding	Ecoinvent	n/a	n /	n/a	n/a	n/a	

shell PP		{RER}		а		
		processing APOS, U				
		,				

Table 7. Transport

Process	Unit	De	fault (per F	U)	Default dataset	Data	UUID		De	fault L	OQR	Most
name*	of measu remen t (outpu t)	Distance	Utilisati on ratio*	Empty return		set sour ce		Р	TiR	G R	TeR	relevan t [Y/N]
Supply_har dware chair	Kg*km	300			Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	
Supply_arm rest	Kg*km	300			Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	
Supply_cast ors	Kg*km	300			Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	
Supply_con necting structure	Kg*km	300			Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	
Supply_chai r base	Kg*km	300			Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	

				ton, EURO5 APOS, U							
Supply_chai r cover	Kg*km	300		Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	
Supply_gas cylinder	Kg*km	300		Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	
Supply_mec hanism chair	Kg*km	300		Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	
Supply_mes h backrest	Kg*km	300		Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	
Supply_shel I chair	Kg*km	300		Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	
Supply_uph olstered backrest	Kg*km	300		Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	

				ton, EURO5 APOS, U							
Supply_uph olstered seat	Kg*km	300		Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 APOS, U	Ecoi nven t	n/a	n / a	n/a	n/ a	n/a	

^{*}The applicant of this PEFCR shall always check the utilisation ratio applied in the default dataset and adapt it accordingly.

5.2 Manufacturing chair packaging

Table 8. Manufacturing chair packaging

Process name*	Unit of			Default		UUID	De	fault D	QR		Most
	measure ment (output)	R ₁	Amount per FU	Dataset	base		Р	TiR	GR	TeR	relevant process [Y/N]
Cardboard - packaging	kg		3.2	Corrugated board box {GLO} market for corrugated board box APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	N
PE film - packaging			0.5	Packaging film, low density polyethylene {GLO} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	N

Table 9. Transport packaging

Process Unit of name* measure		Dej	fault (per FL	I)	Default dataset	Dataset source	UUIÐ		Defa	ult DC	QR	Most relevant
nume	ment (output)	Distance	Utilisati on ratio*	Empty return		Jource		Ρ	TiR	G R	TeR	[Y/N]

	Kg*km	300		Transport, freight,	Ecoinvent	n/a	n	n/a	n/	n/a	
Supply_				lorry 16-32 metric			/		а		
Packagin				ton, EURO5 {RER}			а				
g chair				transport, freight,							
				lorry 16-32 metric							
				ton, EURO5 APOS,							
				U							

^{*}The applicant of this PEFCR shall always check the utilisation ratio applied in the default dataset and adapt it accordingly.

5.3 Manufacturing chair.

Table 10. Office chair Manufacturing

Process	Unit of		D	efault		UUID	De	fault	DQR		Most
name*	measureme nt (output)	R ₁	Amoun t per FU	Dataset	base		Р	TiR	GR	TeR	relevan t process [Y/N]
ASSEMBLY CHAIR											

These processes are already described in chapter 4.1.

5.4 Distribution

Table 11. Transport

Process name*	Unit of	Def	ault (pe	er FU)	Default dataset	Datas et	o E		Default	DQ	R	Most relevant
	measure ment (output)	Distance	Utili sati on rati o*	Empty return		source	à	Р	TiR	G R	Te R	[Y/N]

DISTRIBUTION LORRY	Kg*km	1000 km		Transport, freight, lorry 16- 32 metric ton, EURO5 {RER} transport, freight, lorry 16- 32 metric ton, EURO5 APOS, U	Ecoinv ent	n/a	n / a	n/a	n / a	n/ a	
DISTRIBUTION SHIP	Kg*Km	10.000 km		Transport, freight, sea, transoceanic ship {GLO} market for APOS, U	Ecoinv ent	n/a	n / a	n/a	n / a	n/ a	

^{*}The applicant of this PEFCR shall always check the utilisation ratio applied in the default dataset and adapt it accordingly.

5.5 Use & Maintenance

Table 12. Use and Maintenance

Process name*	Unit of			Default		UUID	De	fault D	QR		Most
	measurement (output)	R ₁	Amount per FU	Dataset	Database		Р	TiR	GR	TeR	relevant process [Y/N]
Maintenance chair (cleaning)	1		7.5	Tap water {Europe without Switzerland} market for APOS, U	Ecoinvent	n/a	n / a	n/a	n/a	n/a	

5.6 End of life

Table 13. End of life

Process name*	Unit of			Default		UUI	Def	ault D	QR		Most
	measurement (output)	R ₁	Amount per FU	Dataset	Database	D	Р	Ti R	GR	TeR	relevant process [Y/N]
End of life chair	kg		12.7	Municipal solid waste {CH} treatment of, sanitary landfill APOS, U; Particleboard recycling CFF; Steel recycling CFF; Glass recycling CFF							
End of life packaging paper and cardboard	kg		3.2	15.01.01 Packaging paper and cardboard – R CFF							
End of life packaging plastics	kg		0.5	15.01.02Pack aging plastics – R CFF							

These processes are modelled according to the data in chapter 4.8.

6. PEF results

6.1 Benchmark values

The results of the PEF screening conducted on the representative product are reported in the following tables:

Table 14.- Characterised benchmark values for RP -Office chair

Impact Category	Units	Total	Production - chair component	Production - chair packaging	Assembly - chair	Distribution	Use and maintenance	End of life
Climate change,				p	5115111			
fossil	kg CO2 eq	92,132	77,883	5,051	8,727	1,808	0,003	-1,340
Climate change,	NS CO2 Cq	32,132	77,003	3,031	0,727	1,000	0,003	1,540
biogenic	kg CO2 eq	11,195	3,823	4,179E-02	3,542E-02	3,699E-04	5,357E-06	7,295
Climate change,	1.8 002 04	11,133	3,023	1,1752 02	3,3 122 02	3,0332 0 1	3,3372 00	,,233
land use & transf	kg CO2 eq	1,358	1,337	3,052E-02	1,017E-02	7,294E-04	4,158E-06	-0,021
	kg CFC-11	4,910E-	_,	3,0022 02	_,0_/ _ 0_	7,25 .2 6 .	.,2552 55	-1,779E-
Ozone depletion	eq	06	3,382E-06	3,562E-07	1,035E-06	3,146E-07	2,610E-10	07
Human toxicity,	·	9,153E-	·	ŕ		,	·	-4,156E-
non-cancer effects	CTUh	06	8,077E-06	8,889E-07	4,149E-07	1,865E-07	1,190E-09	07
Human toxicity,		3,799E-						-1,847E-
cancer effects	CTUh	06	3,676E-06	6,459E-08	4,735E-08	1,262E-08	2,851E-10	09
	kg PM2.5	6,557E-						-3,983E-
Particulate matter	eq	02	6,195E-02	3,042E-03	3,229E-03	1,324E-03	1,715E-06	03
Ionizing radiation	kBq U235							
НН	eq	3,937	1,776	0,310	0,515	0,119	2,691E-04	1,217
	kg							
Photochemical	NMVOC							-3,611E-
ozone formation	eq	0,277	0,229	0,017	0,019	1,496E-02	7,708E-06	03
	molc H+							-1,132E-
Acidification	eq	0,674	0,584	0,024	0,054	2,310E-02	1,607E-05	02
Terrestrial								-2,589E-
eutrophication	molc N eq	1,666	1,480	0,058	0,099	5,502E-02	2,772E-05	02
Freshwater		6,798E-	6 2065 02	2 5025 04	2.4055.04	2 7545 05	2 2775 07	-9,596E-
eutrophication	kg P eq	03	6,296E-03	2,502E-04	3,195E-04	2,751E-05	2,377E-07	05
Marine	les Ni se	1,295E-	0.0025.02	C C00F 03	C 220E 02	4.0245.02	2 2465 06	1,477E-
eutrophication	kg N eq	01	9,692E-02	6,688E-03	6,229E-03	4,931E-03	2,316E-06	02
Freshwater ecotoxicity	CTUe	90,102	80,454	5,877	1,937	2,815	3,895E-03	-0,986
ecotoxicity	kg C	90,102	60,454	3,6//	1,937	2,615	3,093E-03	-0,980
Land use	deficit	192,966	172,511	19,380	8,516	5,616	3,501E-03	-13,061
Water resource	m3 water	132,300	172,311	15,380	0,510	3,010	3,3011-03	-3,465E-
depletion	eq	0,606	0,489	2,949E-03	0,116	3,246E-04	1,229E-03	-3,403L-
Mineral, fossil &	kg Sb eq	2,078E-	1,365E-03			1,471E-05	5,779E-08	4,469E-
willeral, tossii &	kg on ed	2,0/8E-	1,305E-U3	2,147E-04	3,738E-05	1,4/11-05	5,//9E-08	4,409E-

ren resource	03	04
depletion		

Table 15 - Normalised benchmark values for RP Office chair

		Production	Production				
		- chair	- chair	Assembly -		Use and	
Impact Category	Totale	component	packaging	chair	Distribution	maintenance	End of life
Climate change, fossil	9,993E-03	8,447E-03	5,479E-04	9,465E-04	1,961E-04	3,048E-07	-1,453E-04
Cliamte change,							
biogenic	1,214E-03	4,146E-04	4,532E-06	3,842E-06	4,012E-08	5,810E-10	7,912E-04
Climate change, land							
use & transf	1,473E-04	1,450E-04	3,310E-06	1,103E-06	7,911E-08	4,510E-10	-2,223E-06
Ozone depletion	2,273E-04	1,566E-04	1,649E-05	4,790E-05	1,456E-05	1,208E-08	-8,235E-06
Human toxicity, non-	4 7475 00	4 5455 00	4 6605 00	7 7045 04	0.4005.04	2 2225 25	7 7075 04
cancer effects	1,717E-02	1,515E-02	1,668E-03	7,784E-04	3,499E-04	2,232E-06	-7,797E-04
Human toxicity, cancer effects	1,030E-01	9,963E-02	1,750E-03	1,283E-03	3,420E-04	7,728E-06	-5,006E-05
Particulate matter	1,725E-02	1,630E-02	8,006E-04	8,498E-04	3,485E-04	4,512E-07	-1,048E-03
	· ·		•			,	
Ionizing radiation HH Photochemical ozone	3,484E-03	1,572E-03	2,740E-04	4,556E-04	1,054E-04	2,381E-07	1,077E-03
formation	8,724E-03	7,238E-03	5,337E-04	5,941E-04	4,720E-04	2,431E-07	-1,139E-04
Acidification	1,424E-02	1,235E-02	5,026E-04	1,138E-03	4,885E-04	3,398E-07	-2,394E-04
Terrestrial	1,4242 02	1,2332 02	3,0202 04	1,1302 03	1,0032 04	3,3302 07	2,3342 04
eutrophication	9,467E-03	8,410E-03	3,279E-04	5,630E-04	3,126E-04	1,575E-07	-1,471E-04
Freshwater							
eutrophication	4,593E-03	4,254E-03	1,691E-04	2,159E-04	1,859E-05	1,606E-07	-6,484E-05
Marine							
eutrophication	7,665E-03	5,735E-03	3,958E-04	3,686E-04	2,917E-04	1,370E-07	8,740E-04
Freshwater	4 0245 02	0.2055.02	6 7245 04	2 2475 04	2 2205 04	4 4575 07	4 4205 04
ecotoxicity	1,031E-02	9,205E-03	6,724E-04	2,217E-04	3,220E-04	4,457E-07	-1,128E-04
Land use	2,580E-03	2,306E-03	2,591E-04	1,138E-04	7,508E-05	4,680E-08	-1,746E-04
Water resource depletion	7,442E-03	6,009E-03	3,623E-05	1,420E-03	3,988E-06	1,510E-05	-4,257E-05
Mineral, fossil & ren	7,44ZE-U3	0,009E-03	3,023E-03	1,420E-03	3,300E-UD	1,310E-05	-4,237E-US
resource depletion	2,058E-02	1,351E-02	2,126E-03	3,701E-04	1,456E-04	5,722E-07	4,424E-03

6.2 PEF profile

The applicant shall calculate the PEF profile of its product in compliance with all requirements included in this PEFCR. The following information shall be included in the PEF report:

- full life cycle inventory;
- characterised results in absolute values, for all impact categories (including toxicity; as a table);
- normalised and weighted result in absolute values, for all impact categories (including toxicity; as a table);
- the aggregated single score in absolute values

Together with the PEF report, the applicant shall develop an aggregated EF-compliant dataset of its product in scope. This dataset shall be made available on the EF node (http://eplca.jrc.ec.europa.eu/EF-node). The disaggregated version may stay confidential.

6.3 Additional environmental information

Optional

6.4 Other impact results

[This chapter is optional and may only be included in the PEFCR when the TS decides to add one or two toxicity impact categories to the list of most relevant impact categories. In this case, the TS may decide to display here the characterised results from the selected ICs toxicity.]

7. References

