

Ch1实数集与函数^{顾燕红微信}

主讲教师: 顾燕红

办公室: 汇星楼409

办公室答疑时间:每周二15点至17点

微信号: 18926511820 QQ号: 58105217

Email: yhgu@szu.edu.cn

(添加好友、加群请备注学号 姓名 数学分析1)

QQ群、QQ、微信群、微信随时答疑解惑

2023秋季数学分析(1... 群号: 921774255

QQ学习交流群

2023年10月9日 BY GYH

§1 实数

§ 2 数集确界原理

§3 函数概念

§ 4 具有某些特性的函数

两类重要数集:区间与邻域

有界集

上、下确界定义和确界原理

开区间

设 $a,b \in \mathbb{R}$,且a < b,称数集 $\{x | a < x < b\}$ 为开区间,记作(a,b).

闭区间

设 $a,b\in\mathbb{R}$,且a< b,称数集 $\left\{x\middle|a\leq x\leq b
ight\}$ 为闭区间,记作 $\left[a,b
ight]$.

半开半闭区间

设 $a,b\in\mathbb{R}$,且a< b,称数集 $\left\{x\middle|a\leq x< b\right\}$ 和 $\left\{x\middle|a< x\leq b\right\}$ 为半开半闭区间,记作 $\left[a,b\right)$ 或 $\left(a,b\right]$.

以上几类区间统称为有限区间.

无限区间

$$(a,+\infty) = \{x \mid x > a\} \qquad [a,+\infty) = \{x \mid x \ge a\}$$

$$(-\infty,b) = \{x \mid x < b\} \qquad (-\infty,b] = \{x \mid x \le b\}$$

$$(-\infty,+\infty) = \{x \mid -\infty < x < +\infty\} = \mathbb{R}$$

有限区间和无限区间统称为区间.

邻域

$$U(a;\delta) = \{x | |x-a| < \delta\} = (a-\delta,a+\delta)$$
: 点 a 的 δ 邻域,简记为 $U(a)$.

$$U_{+}(a;\delta) = [a,a+\delta)$$
: 点 a 的 δ 右邻域,简记为 $U_{+}(a)$.

$$U_{-}(a;\delta) = (a-\delta,a]$$
: 点 a 的 δ 左邻域,简记为 $U_{-}(a)$.

$$U^{\circ}(a;\delta) = \{x | 0 < |x-a| < \delta\}$$
:点 a 的空心 δ 邻域,简记为 $U^{\circ}(a)$.

$$U_+^\circ(a;\delta) = (a,a+\delta)$$
:点 a 的空心 δ 右邻域,简记为 $U_+^\circ(a)$.

$$U_{-}^{\circ}(a;\delta)=(a-\delta,a)$$
:点 a 的空心 δ 左邻域,简记为 $U_{-}^{\circ}(a)$.

$$U(\infty; M) = \{x | |x| > M\}$$
,其中M为充分大的正数: ∞ 的M邻域,简记为 $U(\infty)$.

$$U(+\infty;M) = \{x \mid x > M\}$$
,其中M为充分大的正数: $+\infty$ 的M邻域,简记为 $U(+\infty)$.

$$U(-\infty;M) = \{x \mid x < -M\}$$
,其中M为充分大的正数:-∞的M邻域,简记为 $U(-\infty)$.

有界集

设 $S \subset \mathbb{R}$.

- (1) $\exists M \in \mathbb{R}$, 对∀ $x \in S$, 有 $x \le M$, 则称 $M \ni S$ 的一个上界, 称 $S \ni A$ 有上界的数集.
- (2) 若∃ $L \in \mathbb{R}$,对 $\forall x \in S$,有 $x \ge L$,则称 $L \ni S$ 的一个下界,称 $S \ni A$ 有下界的数集.
- (3) 若S既有上界又有下界,则称S为有界集.

无界集

设 $S \subset \mathbb{R}$.

- (1) 若S不是有上界的数集,则称S无上界,即对 $\forall M \in \mathbb{R}, \exists x_0 \in S$,使得 $x_0 > M$.
- (2) 若S不是有下界的数集,则称S无下界,即对 $\forall L \in \mathbb{R}$, $\exists x_0 \in S$,使得 $x_0 < L$.
- (3) 若S不是有界的数集,则称S无界,即对 $\forall K > 0$, $\exists x_0 \in S$,使得 $|x_0| > K$.

注1: S有界 $\Leftrightarrow \exists K > 0$, 对 $\forall x \in S$, 有 $|x| \leq K$.

注2: 任何有限区间都是有界集.

任何无限区间都是无界集.

注3: 由有限个数组成的数集是有界集.

倒1 证明数集 $S = \{2^n | n \in \mathbb{N}_+\}$ 无上界, 有下界.

证 取L=1,则 $\forall x=2^n \in S$,有x>L. 故S有下界.

 $\forall M \in \mathbb{R}$, 若M < 1, 取 $x_0 = 2^1$, 则 $x_0 > M$.

因此S无上界.

例2证明数集 $\mathbb{N}_{+}=\{n\mid n$ 为正整数}无上界,有下界.

证 取L=1,则 $\forall n \in \mathbb{N}_+$,有 $n \geq L$. 故 \mathbb{N}_+ 有下界.

 $\forall M \in \mathbb{R}$, 若M < 1, 取 $n_0 = 1$, 则 $n_0 > M$.

因此№,无上界.

例3 证明数集
$$S = \left\{ \frac{n^2 - 1}{2n^3} \middle| n \in \mathbb{N}_+ \right\}$$
有界.

证 对 $\forall n \in \mathbb{N}_+$,有

$$\left|\frac{n^2-1}{2n^3}\right| \leq \left|\frac{n^2}{2n^3}\right| + \left|\frac{1}{2n^3}\right| \leq \frac{1}{2} + \frac{1}{2} = 1,$$

因此数集S有界.

上确界

设 $S \subset \mathbb{R}, S \neq \emptyset$. 若数 $\eta \subset \mathbb{R}$ 满足

- (1) 对 $\forall x \in S$,有 $x \leq \eta$,即 η 是S的上界;
- (2) 对 $\forall \alpha < \eta, \exists x_0 \in S$,使得 $x_0 > \alpha$,即 η 是S的最小上界,

则称数 η 是数集S的上确界,记为 $\eta = \sup S$.

下确界

设 $S \subset \mathbb{R}, S \neq \emptyset$. 若数 $\xi \subset \mathbb{R}$ 满足

- (1) 对 $\forall x \in S$, 有 $x \geq \xi$, 即 ξ 是S的下界;
- (2) 对 $\forall \beta > \xi$, $\exists x_0 \in S$, 使得 $x_0 < \beta$, 即 $\xi \in S$ 的 最大下界,

则称数 ξ 是数集S的下确界,记为 $\xi = \inf S$.

注1:上确界定义中条件(2)可换成

$$\forall \alpha < \eta, \exists x_0 \in S : x_0 > \alpha \Leftrightarrow \forall \varepsilon > 0, \exists x_0 \in S, x_0 > \eta - \varepsilon.$$

注2:下确界定义中条件(2)可换成

$$\forall \beta > \xi, \exists x_0 \in S : x_0 < \beta \Leftrightarrow \forall \varepsilon > 0, \exists x_0 \in S, x_0 < \xi + \varepsilon.$$

注3:上确界与下确界统称为确界.

例4设
$$S = \left\{ x \mid x = 1 - \frac{1}{n}, n = 1, 2, \cdots \right\}$$
, 证明: $\sup S = 1$, $\inf S = 0$.

证 先证 $\sup S = 1$.

(i)
$$\forall x \in S, x = 1 - \frac{1}{n} < 1$$
,即1是S的上界;

(ii) 对 $\forall \alpha < 1$, 有 $1-\alpha > 0$, 由阿基米德性, $\exists n_0 \in \mathbb{N}_+$,

使得
$$n_0 > \frac{1}{1-\alpha}$$
.取 $x_0 = 1 - \frac{1}{n_0} \in S$,有 $x_0 > \alpha$.

因此, $\sup S = 1$. 再证 $\inf S = 0$.

(i)
$$\forall x \in S, x = 1 - \frac{1}{n} \ge 0$$
, 即0是 S 的下界;

(ii) 对
$$\forall \beta > 0$$
. 取 $x_0 = 0 \in S$, 有 $x_0 < \beta$.

因此, $\inf S = 0$.

- 例5设 $S = \{x \mid x$ 区间(0,1)上的有理数 $\}$,证明: $\sup S = 1$, inf S = 0. 证 先证 $\sup S = 1$.
 - (i) $\forall x \in S$, 显然有x < 1,即1是S的上界;
 - (ii) 对 $\forall \alpha < 1$. 若 $\alpha \le 0$,取 $x_0 = 0.1 \in S$,有 $x_0 > \alpha$. 若 $0 < \alpha < 1$,则由有理数集在实数集中的稠密性知,在(α ,1)上必有有理数 x_0 ,即存在 $x_0 \in S$,使 $x_0 > \alpha$. 因此, $\sup S = 1$. 再证 $\inf S = 0$.
 - (i) $\forall x \in S$, 显然x > 0, 即0是S的下界;
 - (ii) 对 $\forall \beta > 0$. 若 $\beta \geq 1$,取 $x_0 = 0.1 \in S$,有 $x_0 < \beta$. 若 $0 < \beta < 1$.则由有理数集在实数集中的稠密性知,在 $(0,\beta)$ 上必有有理数 x_0 ,即存在 $x_0 \in S$,使 $x_0 < \beta$. 因此,inf S = 0.

例6 设 $S = \{x \mid x \in [0,1]\}$, 证明: $\sup S = 1$, $\inf S = 0$.

证 先证 $\sup S = 1$.

- (i) $\forall x \in S$, 显然有 $x \le 1$,即1是S的上界;
- (ii) 对 $\forall \alpha < 1$. 若 $\alpha \le 0$, 取 $x_0 = 0$. $1 \in S$, 有 $x_0 > \alpha$. 若 $\alpha > 0$, 取 $x_0 = 1 \in S$, 有 $x_0 > \alpha$.

因此, $\sup S = 1$.

再证 $\inf S = 0$.

- (i) $\forall x \in S$, 显然有 $x \ge 0$, 即0是S的下界;
- (ii) 对 $\forall \beta > 0$.取 $x_0 = 0 \in S$, 有 $x_0 < \beta$.

因此, $\inf S = 0$.

例7设
$$S = \left\{ x \mid x = \frac{(-1)^n}{n}, n = 1, 2, \dots \right\}$$
, 证明: $\sup S = \frac{1}{2}$, $\inf S = -1$.

证 先证 $\sup S = \frac{1}{2}$.

(i)
$$\forall x \in S$$
, 显然有 $x \le \frac{1}{2}$, 即 $\frac{1}{2}$ 是 S 的上界; (ii) 对 $\forall \alpha < \frac{1}{2}$. 取 $x_0 = \frac{1}{2} \in S$, 有 $x_0 > \alpha$.

(ii) 对
$$\forall \alpha < \frac{1}{2}$$
. 取 $x_0 = \frac{1}{2} \in S$, 有 $x_0 > \alpha$.

因此, $\sup S = \frac{1}{2}$.

再证 $\inf S = -1$.

(i)
$$\forall x \in S$$
, 显然有 $x \ge -1$, 即 -1 是 S 的下界;

(ii) 对
$$\forall \beta > -1.$$
取 $x_0 = -1 \in S, x_0 < \beta.$

因此, $\inf S = -1$.

例8 求数集
$$S = \left\{ x \middle| x = \frac{n}{n+1}, n = 1, 2, \cdots \right\}$$
上、下确界,并用定义验证. 解 $\sup S = 1$.

(i)
$$\forall x \in S$$
,因对 $\forall n \in \mathbb{N}_+$,有 $x = \frac{n}{n-1} < 1$,即1是 S 的上界;

(ii) 对
$$\forall \alpha < 1$$
,若 $\alpha \leq 0$,取 $x_0 = \frac{1}{2}$,有 $x_0 > \alpha$.

则
$$x_0 = \frac{n_0}{n_0 + 1} \in S$$
,且 $x_0 > \alpha$. 因此, $\sup S = 1$.

$$\inf S = \frac{1}{2}.$$

(i)
$$\forall x \in S$$
,因对 $\forall n \in \mathbb{N}_+$,有 $x = \frac{n}{n+1} \ge \frac{1}{2}$,即 $\frac{1}{2}$ 是 S 的下界;

(ii)
$$\forall \beta > \frac{1}{2}$$
. $\mathbb{R} x_0 = \frac{1}{1+1} = \frac{1}{2} \in S, x_0 < \beta$.

因此,
$$\inf S = \frac{1}{2}$$
.

注1: 若数集S存在上(下)确界,则一定是唯一的.

注2: 若数集S存在上确界、下确界,则有 $\inf S \leq \sup S$.

注3:数集S的确界可能属于S,也可能不属于S.

- 例9 设数集 S有上确界.证明 $\eta = \sup S \in S \Leftrightarrow \eta = \max S$.
 - 证 \Rightarrow 设 $\eta = \sup S \in S$,则对 $\forall x \in S$,有 $x \leq \eta$,而 $\eta \in S$, 故 η 是数集S中最大的数,即 $\eta = \max S$.
 - \leftarrow 设 $\eta = \max S$, 则 $\eta \in S$.
 - (i) $\forall x \in S$, 显然有 $x \leq \eta$, 即 η 是S的上界;
 - (ii) 对 $\forall \alpha < \eta$. 取 $x_0 = \eta \in S$, 有 $x_0 > \alpha$.

因此, $\sup S = \eta$.

注: $\xi = \inf S \in S \Leftrightarrow \xi = \min S$

确界原理

沒 $S \subset \mathbb{R}, S \neq \emptyset$.

若S有上界,则S必有上确界;

若S有下界,则S必有下确界。

注:有界数集一定存在上、下确界,但不一定有最大、最小数.

数学分析1 —— Ch1 实数集与函数 —— §2 数集 确界原理 确界原理 非空有界数集必有上、下确界.

证 证明若数集S有上界,则S必有上确界.

不妨设S含有非负数.由于S有上界,故可找到非负整数n,使得

(1)对 $\forall x \in S$, 有x < n + 1. (2) $\exists a_0 \in S$, 使 $a_0 \ge n$.

对半开区间[n,n+1)作10等分,分点为 $n.1,n.2,\dots,n.9$,则存在 0,1,2,...,9中的一个数 n_1 ,使得

(1)对 $\forall x \in S$,有 $x < n.n_1 + \frac{1}{10}$. (2)∃ $a_1 \in S$,使 $a_1 \ge n.n_1$. 再对半开区间 $[n.n_1,n.n_1 + \frac{1}{10})$ 作10等分,则存在 $0,1,2,\cdots,9$ 中的 一个数n,,使得

(1)对 $\forall x \in S$, 有 $x < n \cdot n_1 n_2 + \frac{1}{10^2} \cdot (2)$ $\exists a_2 \in S$, 使 $a_2 \ge n \cdot n_1 n_2$.

继续不断地10等分在前一步骤中所得到的半开区间,可知对 $\forall k = 1, 2, \dots, \exists 0, 1, 2, \dots, 9$ 中的一个数 n_k , 使得

(1)对 $\forall x \in S$, 有 $x < n \cdot n_1 n_2 \cdots n_k + \frac{1}{10^k}$. (2) $\exists a_k \in S$, 使 $a_k \ge n \cdot n_1 n_2 \cdots n_k$.

将上述步骤无限地进行下去,得到实数 $\eta = n.n_1n_2\cdots n_k\cdots$. 下面证明 $\eta = \sup S$. 为此只需证明:

(i) $\forall x \in S$, 有 $x \leq \eta$; (ii) 对 $\forall \alpha < \eta$, $\exists a' \in S$, $a' > \alpha$.

若结论(i)不成立,即 $\exists x \in S$,使 $x > \eta$.

则可找到x的k位不足近似 x_k ,使 $x_k > \overline{\eta}_k = n.n_1 n_2 \cdots n_k + \frac{1}{10^k}$,从而 $x > n.n_1 n_2 \cdots n_k + \frac{1}{10^k}$,

矛盾.

设 $\alpha < \eta, \exists k, \notin \eta$ 的k位不足近似 $\eta_k > \overline{\alpha}_k, \text{即 } n.n_1 n_2 \cdots n_k > \overline{\alpha}_k,$ 根据数 η 的构造, $\exists a' \in S, a' \geq \eta_k, \lambda$ 而 $a' \geq \eta_k > \overline{\alpha}_k \geq \alpha,$ 即得到 $\alpha < a'$. 故结论(ii)成立. 根据上确界的定义, $\eta = \sup S$.

非正常确界

1 规定 (i) $\forall a \in S$,则有 $-\infty < a < +\infty$.

(ii) 若数集S无上界,记 $\sup S = +\infty$.

若数集S无下界,记 $\inf S = -\infty$.

2推广的确界原理任一非空数集必有上、下确界。

- 例 10 设 A, B 为非空数集. 对 $\forall x \in A, \exists y \in B, 有 x \leq y$. 证明: $\sup A \leq \sup B$.
 - 证由于对 $\forall x \in A$, $\exists y \in B$,有 $x \leq y$,因此 $y \in A$ 的一个上界,由于A非空有上界,根据确界原理知,A存在上确界 $\sup A$. 若数集B没有上界,则 $\sup B = +\infty$. 此时显然有 $\sup A < \sup B = +\infty$. 若数集B有上界,由于B非空有上界,根据确界原理知,B存在上确界 $\sup B$.

由于对 $\forall x \in A, \exists y \in B, \ fx \leq y, \$ 因此y是A的上界,从而,根据上确界的定义有 $\sup A \leq y \leq \sup B,$ 即 $\sup A \leq \sup B.$

注: 需先证明确界的存在性.

- 例11 设 A, B 为非空数集.满足: $\forall x \in A$, $\forall y \in B$, 有 $x \leq y$. 证明: 数集A有上确界, 数集B有下确界, 且 $\sup A \leq \inf B$.
 - 证 由假设B中任一数y都是A的上界,A中任一数x都是B的下界。因此根据确界原理,A有上确界 $\sup A$,B有下确界 $\inf B$ 。由确界定义,上确界 $\sup A$ 是最小的上界,因此, $\forall y \in B$: $\sup A \leq y$. $\sup A$ 又是B的一个下界,而 $\inf B$ 是最大的下界,因此 $\sup A \leq \inf B$.

注: 需先证明确界的存在性.

数学分析1—— Ch1 实数集与函数—— $\S2$ 数集 确界原理 例 12 设 A, B 是 \mathbb{R} 中非空有上界的数集,

- (i) $\not \in \mathcal{X}$ $A + B = \{z \mid z = x + y, x \in A, y \in B\}$, $y \in A \in A$, $y \in B \in A$, $y \in A$, $y \in B \in A$, $y \in A$, y
- (ii) 若 $c \in \mathbb{R}$, 定义 $A + c = \{z \mid z = x + c, x \in A\}$, 则 $\sup (A + c) = \sup A + c$;
- (iii) 若c > 0, 定义 $cA = \{z \mid z = cx, x \in A\}$,则 $\sup(cA) = c \sup A$.
- (iv) 若A,B为非空非负有界数集,定义 $C = \{z \mid z = xy, x \in A, y \in B\}$,则 inf $C = \inf A \cdot \inf B$; sup $C = \sup A \cdot \sup B$.
- 证 (方法一) (i)由于A,B非空有上界,显然A+B也是非空有上界.根据确界原理知,A,B,A+B存在上确界.

 $\forall z \in A+B$,根据A+B的定义知, $\exists x \in A, y \in B$,使得z=x+y. 由于 $x \leq \sup A, y \leq \sup B$,所以 $z=x+y \leq \sup A+\sup B$,即 $\sup A+\sup B$ 是A+B的上界.

根据上确界的定义,对 $\forall \varepsilon > 0, \exists x_0 \in A,$ 使得 $x_0 > \sup A - \frac{\varepsilon}{2}, \exists y_0 \in B,$ 使得 $y_0 > \sup B - \frac{\varepsilon}{2}.$

即 $\exists z_0 = x_0 + y_0 \in A + B$,使得 $z_0 = x_0 + y_0 > \sup A + \sup B - \varepsilon$.

所以 $\sup(A+B)=\sup A+\sup B$.

例12 设A, B 是 \mathbb{R} 中非空有上界的数集,

(i) 定义
$$A + B = \{z \mid z = x + y, x \in A, y \in B\}$$
,则 $\sup (A + B) = \sup A + \sup B$;

(ii) 若
$$c \in \mathbb{R}$$
, 定义 $A + c = \{z \mid z = x + c, x \in A\}$, 则 $\sup (A + c) = \sup A + c$;

(iii) 若
$$c > 0$$
, 定义 $cA = \{z \mid z = cx, x \in A\}$,则 $\sup(cA) = c\sup A$.

(iv) 若
$$A$$
, B 为非空非负有界数集,定义 $C = \{z \mid z = xy, x \in A, y \in B\}$,

则 $\inf C = \inf A \cdot \inf B$; $\sup C = \sup A \cdot \sup B$.

证 (方法二)(i)由于A,B非空有上界,显然A+B也是非空有上界.

根据确界原理知,A,B,A+B存在上确界.

 $\forall z \in A + B$, 根据A + B的定义知, $\exists x \in A, y \in B$, 使得z = x + y.

由于 $x \le \sup A, y \le \sup B$, 所以 $z = x + y \le \sup A + \sup B$,

于是 $\sup(A+B) \leq \sup A + \sup B$.

根据上确界的定义,对 $\forall \varepsilon > 0$, $\exists x_0 \in A, \exists y_0 \in B$,使得 $x_0 > \sup A - \frac{\varepsilon}{2}, y_0 > \sup B - \frac{\varepsilon}{2}$.

即 $\exists z_0 = x_0 + y_0 \in A + B$,使 $(z_0 = x_0 + y_0) > \sup A + \sup B - \varepsilon$.

于是 $\sup(A+B)>\sup A+\sup B-\varepsilon$. 由于 ε 的任意性,有 $\sup(A+B)\geq\sup A+\sup B$.

所以 $\sup(A+B)=\sup A+\sup B$.

BY GYH

例12 设A, B 是 \mathbb{R} 中非空有上界的数集,

(i) 定义
$$A + B = \{z \mid z = x + y, x \in A, y \in B\}$$
,则 $\sup (A + B) = \sup A + \sup B$;

(ii) 若
$$c \in \mathbb{R}$$
, 定义 $A + c = \{z \mid z = x + c, x \in A\}$, 则 $\sup (A + c) = \sup A + c$;

(iii) 若
$$c > 0$$
, 定义 $cA = \{z \mid z = cx, x \in A\}$,则 $\sup(cA) = c\sup A$.

证 (ii)由于A非空有上界,显然A+c也是非空有上界。

根据确界原理知,A,A+c存在上确界.

$$\forall z \in A + c$$
, 根据 $A + c$ 的 定义知, $\exists x \in A$, 使得 $z = x + c$.

由于
$$x \le \sup A$$
, 所以 $z = x + c \le \sup A + c$, 即 $\sup A + c$ 是 $A + c$ 的上界.

根据上确界的定义,对
$$\forall \varepsilon > 0$$
, $\exists x_0 \in A$, 使得 $x_0 > \sup A - \varepsilon$,

即
$$\exists z_0 = x_0 + c \in A + c$$
,使得 $z_0 = x_0 + c > \sup A + c - \varepsilon$.

所以
$$\sup(A+c)=\sup A+c$$
.

数学分析1—— Ch1 实数集与函数—— § 2 数集 确界原理 例 12 设 A, B 是 \mathbb{R} 中非空有上界的数集,

(i) 定义
$$A + B = \{z \mid z = x + y, x \in A, y \in B\}$$
,则 $\sup (A + B) = \sup A + \sup B$;

(ii) 若
$$c \in \mathbb{R}$$
, 定义 $A + c = \{z \mid z = x + c, x \in A\}$, 则 $\sup (A + c) = \sup A + c$;

(iii) 若
$$c > 0$$
, 定义 $cA = \{z \mid z = cx, x \in A\}$,则 $\sup(cA) = c \sup A$.

(iv) 若
$$A$$
, B 为非空非负有界数集,定义 $C = \{z \mid z = xy, x \in A, y \in B\}$,则 inf $C = \inf A \cdot \inf B$; sup $C = \sup A \cdot \sup B$.

证 (iii)由于A非空有上界,显然cA也是非空有上界.

根据确界原理知, A, cA存在上确界.

 $\forall z \in cA$, 根据cA的定义知, $\exists x \in A$, 使得z = cx.

由于 $x \le \sup A$, 所以 $z = cx \le c \sup A$, 即 $c \sup A$ 是cA的上界.

根据上确界的定义,对 $\forall \varepsilon > 0$, $\exists x_0 \in A$, 使得 $x_0 > \sup A - \frac{\varepsilon}{c}$,

即 $\exists z_0 = cx_0 \in cA$,使得 $z_0 = cx_0 > c \sup A - \varepsilon$.

所以 $\sup(cA) = c \sup A$.

例 12 设 A, B 是 \mathbb{R} 中非空有上界的数集,

(i) 定义
$$A + B = \{z \mid z = x + y, x \in A, y \in B\}$$
,则 $\sup (A + B) = \sup A + \sup B$;

(ii) 若
$$c \in \mathbb{R}$$
, 定义 $A + c = \{z \mid z = x + c, x \in A\}$, 则 $\sup (A + c) = \sup A + c$;

(iii) 若
$$c > 0$$
, 定义 $cA = \{z \mid z = cx, x \in A\}$,则 $\sup(cA) = c\sup A$.

(iv) 若
$$A$$
, B 为非空非负有界数集,定义 $C = \{z \mid z = xy, x \in A, y \in B\}$,

则 $\inf C = \inf A \cdot \inf B$; $\sup C = \sup A \cdot \sup B$.

证 (iv)由于A,B非空有界,显然C也是非空有界.

根据确界原理知,数集A,B,C存在确界.

 $\forall z \in C$,根据C的定义知, $\exists x \in A, y \in B$,使得z = xy.

由于 $0 \le x \le \sup A$, $0 \le y \le \sup B$, 所以 $z = xy \le \sup A \sup B$, 即 $\sup A \sup B \ne C$ 的上界.

于是
$$\sup C \leq \sup A \sup B$$
. 根据上确界的定义,对 $\forall \varepsilon > 0, \exists x_0 \in A, y_0 \in B,$ 使得

于是
$$\sup C \leq \sup A \sup B$$
. 根据上确界的定义,对 $\forall \varepsilon > 0$, $\exists x_0 \in A, y_0 \in B$, 使得 $x_0 > \sup A - \frac{\varepsilon}{2(\sup A + \sup B + \varepsilon + 1)}, y_0 > \sup B - \frac{\varepsilon}{2(\sup A + \sup B + \varepsilon + 1)}$ 从而 $x_0 y_0 > \left(\sup A - \frac{\varepsilon}{2(\sup A + \sup B + \varepsilon + 1)}\right)$

$$= \sup A \sup B - \frac{(\sup A + \sup B)\varepsilon}{2(\sup A + \sup B + \varepsilon + 1)} + \frac{\varepsilon^2}{4(\sup A + \sup B + \varepsilon + 1)^2} > \sup A \sup B - \frac{\varepsilon}{2} - \frac{\varepsilon}{2} = \sup A \sup B - \varepsilon.$$

由于 ε 的任意性知, $\sup C \geq x_0 y_0 \geq \sup A \sup B$.

所以 $\sup C = \sup A \sup B$.

 $\forall z \in C$,根据C的定义知, $\exists x \in A, y \in B$,使得z = xy.

由于 $x \ge \inf A \ge 0$, $y \ge \inf B \ge 0$, 所以 $z = xy \ge \inf A \inf B$, 即 $\inf A \inf B \ne C$ 的下界. 于是 $\inf A \inf B \le \inf C$.

根据下确界的定义,对 $\forall \varepsilon > 0, \exists x_0 \in A, y_0 \in B,$ 使得

$$x_0 < \inf A + \frac{\varepsilon}{2(\inf A + \inf B + \varepsilon + 1)}, y_0 < \inf B + \frac{\varepsilon}{2(\inf A + \inf B + \varepsilon + 1)}$$

从而

$$x_0y_0 < \left(\inf A + \frac{\varepsilon}{2(\inf A + \inf B + \varepsilon + 1)}\right) \left(\inf B + \frac{\varepsilon}{2(\inf A + \inf B + \varepsilon + 1)}\right)$$

$$=\inf A\inf B+\frac{(\inf A+\inf B)\varepsilon}{2(\inf A+\inf B+\varepsilon+1)}+\frac{\varepsilon^2}{4(\inf A+\inf B+\varepsilon+1)^2}$$

$$<\inf A\inf B+\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\inf A\inf B+\varepsilon.$$

由于 ε 的任意性知, $\inf C \leq x_0 y_0 \leq \inf A \inf B$.

所以 $\inf C = \inf A \inf B$.

- 例13 设A,B为非空有界数集, $S=A \cup B$.证明:
 - (i) $\sup S = \max \{\sup A, \sup B\};$

(结合确界性质)

- (ii) inf $S = \min \{\inf A, \inf B\}$.
- 证1 由于 $S = A \cup B$,显然S也是非空有界数集,

根据确界原理知,数集A,B,S的上、下确界都存在.

(i) $\forall x \in S$,有 $x \in A$ 或 $x \in B$,从而 $x \leq \sup A$ 或 $x \leq \sup B$.

因此 $x \leq \max\{\sup A, \sup B\}$,

所以 $\sup S \leq \max \{\sup A, \sup B\}$.

 $\forall x \in A,$ 有 $x \in S,$ 从而 $x \leq \sup S$. 所以 $\sup A \leq \sup S$;

同理又有 $\sup B \leq \sup S$. 所以 $\sup S \geq \max \{\sup A, \sup B\}$.

从而得证 $\sup S = \max \{ \sup A, \sup B \}$.

- 例13 设A,B为非空有界数集, $S=A \cup B$.证明:
 - (i) $\sup S = \max \{ \sup A, \sup B \};$
 - (ii) $\inf S = \min \{\inf A, \inf B\}$.
 - (ii) $\forall x \in S$,有 $x \in A$ 或 $x \in B$,从而 $x \ge \inf A$ 或 $x \ge \inf B$.

因此 $x \ge \min \{\inf A, \inf B\},$

所以 $\inf S \ge \min \{\inf A, \inf B\}$.

 $\forall x \in A,$ 有 $x \in S,$ 从而 $x \ge \inf S$. 所以 $\inf A \ge \inf S$;

同理又有 $\inf B \ge \inf S$. 所以 $\inf S \le \min \{\inf A, \inf B\}$.

从而得证 $\inf S = \min \{\inf A, \inf B\}$.

- 例13 设A,B为非空有界数集, $S=A \cup B$.证明:
 - (i) $\sup S = \max \{ \sup A, \sup B \};$
 - (ii) inf $S = \min \{\inf A, \inf B\}$.
- (利用确界的定义证明)
- 证2 由于 $S = A \cup B$,显然S也是非空有界数集,

根据确界原理知,数集A,B,S的上、下确界都存在.

(i) 不妨设 $\sup A \ge \sup B$,则 $\max \{\sup A, \sup B\} = \sup A$.

对 $\forall x \in S = A \cup B$,则 $x \in A$ 或 $x \in B$

从而 $x \leq \sup A$ 或 $x \leq \sup B \leq \sup A$, 因此 $x \leq \sup A$.

对 $\forall \alpha < \sup A, \exists x_0 \in A, \notin x_0 > \alpha.$ 而 $x_0 \in S, \exists x_0 > \alpha.$

从而得证 $\sup S = \sup A$, 即 $\sup S = \max \{\sup A, \sup B\}$.

- 例13 设A,B为非空有界数集, $S=A \cup B$.证明:
 - (i) $\sup S = \max \{ \sup A, \sup B \};$
 - (ii) $\inf S = \min \{\inf A, \inf B\}.$
 - (ii) 不妨设 $\inf A \ge \inf B$,则 $\min \{\inf A,\inf B\} = \inf B$.

对 $\forall x \in S = A \cup B$,则 $x \in A$ 或 $x \in B$

从而 $x \ge \inf A$ 或 $x \ge \inf B$,因此 $x \ge \inf B$.

对 $\forall \beta > \inf B$, $\exists x_0 \in B$, 使 $x_0 < \beta$. 而 $x_0 \in S$, 且 $x_0 < \beta$.

从而得证 $\inf S = \inf B$, $\operatorname{pinf} S = \min \{\inf A, \inf B\}$.

例14 求下列数集的上下确界,并依定义加以验证:

(1)正整数集
$$\mathbb{N}_{+}$$
. (2) $S = \{-2^{n} | n \in \mathbb{N}_{+}\}$.

(3)
$$E = \{y | y = 2 - x^2, x \in \mathbb{R}\}.$$

对 $\forall M > 0$,由Archimedes性知,∃ $n \in \mathbb{N}_+$,使得n > M.

因此 \mathbb{N}_{+} 无上界,即 $\sup \mathbb{N}_{+} = +\infty$.

对 $\forall x \in \mathbb{N}_+$,有 $x \ge 1$,故1是 \mathbb{N}_+ 的下界.

又对 $\forall \beta > 1$,取 $x_0 = 1 \in \mathbb{N}_+$,有 $x_0 < \beta$.

因此, $\inf \mathbb{N}_{+} = 1$.

例14 求下列数集的上下确界,并依定义加以验证:

(1)正整数集
$$\mathbb{N}_{+}$$
. (2) $S = \{-2^{n} | n \in \mathbb{N}_{+} \}$.

(3)
$$E = \{y | y = 2 - x^2, x \in \mathbb{R}\}.$$

 \Re (2) sup S=-2, inf $S=-\infty$.

对 $\forall x \in S$,有 $x \le -2$,故-2是S的上界.

又对 $\forall \alpha < -2$,取 $x_0 = -2 \in S$,有 $x_0 > \alpha$. 因此, $\sup S = -2$.

对 \forall *L* ∈ \mathbb{R} , 若*L* ≥ -1, 取 $x_0 = -2 \in S$, 有 $x_0 < L$.

若L < -1,则 $\log_2(-L) > 0$,由Archimedes性知,

 $\exists n_0 \in \mathbb{N}_+$, 使得 $n_0 > \log_2(-L)$,则 $x_0 = -2^{n_0} \in S$,且 $x_0 < L$.

因此S无下界, \mathbb{P} inf $S = -\infty$.

例14 求下列数集的上下确界,并依定义加以验证:

(1)正整数集
$$\mathbb{N}_{+}$$
. (2) $S = \{-2^{n} | n \in \mathbb{N}_{+} \}$.

(3)
$$E = \{y | y = 2 - x^2, x \in \mathbb{R}\}.$$

解 (3) $\sup E = 2$, $\inf E = -\infty$.

对 $\forall y \in E$, 有 $y = 2 - x^2 \le 2$, 故 2是E的 上界.

又对 $\forall \alpha < 2$,取 $y_0 = 2 \in E$,有 $y_0 > \alpha$. 因此, $\sup E = 2$.

对 $\forall L \in \mathbb{R}$,若 $L \geq 2$,取 $y_0 = 2 - 1 = 1 \in E$,有 $y_0 < L$.

若L < 2,则 $\sqrt{2-L} > 0$,由Archimedes性知,

$$\exists n_0 \in \mathbb{N}_+,$$
使得 $n_0 > \sqrt{2-L},$ 取 $y_0 = 2-n_0^2 \in E,$ 且 $y_0 < L.$

因此E无下界,即 $\inf E = -\infty$.

例 15 设数集
$$A \subset \mathbb{R}_+, B = \left\{ y \middle| y = \frac{1}{x}, x \in A \right\}.$$

证明 $\sup A = +\infty$ 的充要条件是 $\inf B = 0$.

证 ⇒ 设若
$$\sup A = +\infty$$
. 显然 $\forall y \in B, y = \frac{1}{x} > 0$, $\sup 0 \neq B$ 的一个下界.
$$\forall \varepsilon > 0, \diamondsuit M = \frac{1}{\varepsilon}, \text{ 则由于 } \sup A = +\infty, \exists x_0 \in A, x_0 > M.$$
 于是 $y_0 = \frac{1}{x_0} \in B$, 且 $y_0 < 0 + \varepsilon = \varepsilon$. 因此 $\inf B = 0$.

$$\Leftarrow$$
 若 inf $B=0.$ 则 $\forall M>0,$ 令 $\varepsilon=\frac{1}{M}>0,$ ∃ $y_0\in B$,且 $y_0<\varepsilon$.

根据
$$B$$
的定义, $\exists x_0 \in A$,使得 $y_0 = \frac{1}{x_0} \in B$,从而 $x_0 = \frac{1}{y_0} > \frac{1}{\varepsilon} = M$.

因此 $\sup A = +\infty$.

思考:

利用确界原理证明实数集的阿基米德性.

你应该:

理解区间及邻域的概念

掌握有界集和上、下确界的概念

理解确界原理及其证明思路

能在有关命题中正确地使用确界原理