Fun Summary

November 16, 2023

Contents

1	metric spaces			
	1.1	metric spaces	2	
	1.2	Topology in metric spaces	2	
	1.3	separability and completion	4	
	1.4	Continuity	4	
	1.5	Compact sets	5	
	1.6	Theorem of Baire	6	
2	Normal spaces and Banach spaces			
	2.1	definitions	7	
	2.2	Example: l^p -spaces	7	
	2.3	Finite dimensional normed spaces	8	
	2.4	On the closure of $\overline{B_1(0)}$	8	
3	A question from approximation theory			
	3.1	Theorem of Stone-Weierstrass	9	
	3.2	Applications	10	
4	Continuous linear maps			
	4.1	Continuity of linear maps	11	
	4.2	Operatornorm and dual space	12	
	4.3	Neumann series	12	
	4.4	The dual space of l^p	13	
5	Theorem of Hahn-Banach			
	5.1	Extension Theorem	14	
	5.2	Separation Theorems	15	

1 metric spaces

1.1 metric spaces

Definition 1.1.1. A metric space is a non-empty set X together with a map

$$d: X \times X \to \mathbb{R}$$

$$(x,y) \mapsto d(x,y)$$

such that

1.
$$d(x,y) = 0$$
 iff $x = y$

2.
$$d(x,y) = d(y,x)$$

3.
$$d(x,z) \le d(x,y) + d(y,z) \ \forall x,y,z \in X$$

Remark 1.1.2. (d admits only positive values)

$$0 = d(x, x) \le d(x, y) + d(y, x) = 2d(x, y)$$

Example 1.1.3. 1. $d_2(x,y) = ||x-y||_2$

2.
$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{else} \end{cases}$$

Definition 1.1.4. (convergence)

A sequence $(x_n)_{n\in\mathbb{N}}$ in a metric space (X,d) is said to be convergent to $x\in X$ if

$$x_n \to x \text{ in } (X,d)$$

or

$$\lim_{n \to \infty} x_n = x \text{ in } (x, d)$$

1.2 Topology in metric spaces

Let (X, d) be a metric space.

Definition 1.2.1. 1. an open ball is defined by

$$B_r(x) = \{ y \in X : d(x,y) < r \}$$

- 2. $O \subset X$ is called open if $\forall y \in O$ there is r > 0 such that $B_r(y) \subset O$
- 3. $A \subset X$ is closed if $X \setminus A$ is open.

Theorem 1.2.2. (metric spaces are topological spaces)

Let \mathcal{T} be the set of open subsets of X. Then

- 1. $\varnothing, X \in \mathcal{T}$
- 2. if $U, V \in \mathcal{T}$, then $U \cup V \in \mathcal{T}$
- 3. if $\{U_i\}_{i\in I} \subset \mathcal{T}$, then $\bigcup_{i\in I} \in \mathcal{T}$

Remark 1.2.3. 1. \varnothing , X are closed

- 2. finite union of closed sets is closed
- 3. arbitrary intersections of closed sets is closed

Lemma 1.2.4. $A \subset X$ is closed iff \forall convergent sequences $(x_n)_{n \in \mathbb{N}} \subset A$ the limit point is in A.

Definition 1.2.5. For $M \subset X$ we define

$$\overline{M} = \bigcap_{A \supset M, \; A \text{ closed}}$$

as the closure of M and

$$M = \bigcup_{O \subset M, \, O \text{ open}}$$

as the interior of M.

 $\partial M = \overline{M} \setminus M$ is the boundary of M

Attention:

Define the closed ball as $\overline{B}_r(a) = \{y \in X : d(y, a) \leq r\}$. Then in general $\overline{B}_r(a) \neq \overline{B}_r(a)$. Example: Take $X \neq \emptyset$ and the trivial metric d. Then

$$B_1(a) = \{a\} = \overline{B_1(a)}$$

but $\overline{B}_1(a) = X$.

1.3 separability and completion

Let (X, d) be a metric space.

Definition 1.3.1. 1. $M \subset X$ is called dense in X if $\overline{M} = X$.

2. X is called separable if X has a countable dense subset.

Remark 1.3.2. M is dens in X iff

$$\forall x \in X \ \forall \varepsilon > 0 \ \exists y \in M \ \text{s.t.} \ d(x,y) < \varepsilon$$

Definition 1.3.3. 1. $(x_n)_{n\in\mathbb{N}}\subset X$ is called a Cauchy sequence if

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \text{ s.t. } m, n > N \text{ implies } d(x_n, x_m) < \varepsilon$$

2. A metric space in which all Cauchy sequences converge is called complete.

Example 1.3.4. 1. $(C^0([a,b],\mathbb{R}), d_{\infty})$ with $d_{\infty}(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|$ is complete.

2. (\mathbb{R}^n, d_2) with $d_2(x, y) = ||x - y||_2$ is complete.

Lemma 1.3.5. Let (X,d) be a complete metric space and $\emptyset \neq A \subset X$. Then (A,d) is complete iff A is closed.

Definition 1.3.6. $A \subset X$ is called bounded if its diameter

$$diam(A) = \sup\{d(x, y) : x, y \in A\}$$

is finite.

Theorem 1.3.7. (X,d) is complete iff $\forall (F_n)_{n\in\mathbb{N}}$ sequences of closed subsets such that $F_{n+1} \subset F_n$ and $diam(F_n) \to 0$ then

$$\exists ! x_0 \in X \ s.t. \bigcap_{n \in \mathbb{N}F_n = \{x_0\}}$$

1.4 Continuity

Definition 1.4.1. Let $(X, d_x), (Y, d_y)$ be metric spaces and $f: X \to Y$. f is continuous in x_0 if

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{s.t.} \; \forall x \in X \; d_x(x, x_0) < \delta \; \text{implies} \; d_y(f(x), f(x_0)) < \varepsilon$$

With sequences:

$$\forall (x_n)_{n\in\mathbb{N}}\subset X\ x_n\to x_0\ \text{in}\ (X,d_x)\ \text{if it holds}\ (f(x_n))_{n\in\mathbb{N}}\subset Y,\ f(x_n)\to f(x_0)\ \text{in}\ (Y,d_y)$$

f is continuous if f is continuous in x_0 for all $x_0 \in X$.

In other words f is continuous if for all $O \subset Y$ open (closed) $f^{-1}(O)$ is open (closed) in X.

Special case: f is Lipschitz continuous if $\exists L > 0$ s.t.

$$d_{y}(f(x), f(y)) \le Ld_{x}(x, y) \ \forall x, y \in X$$

f is an isometric if $\forall x, y \in X$ it holds that $d_Y(f(y), f(x)) = d_x(x, y)$.

1.5 Compact sets

Definition 1.5.1. Let (X, d) be a metric space and $A \subset X$.

- 1. an open cover of A is a collection $\{U_i\}_{i\in I}$ where $I\neq\emptyset$ is an arbitrary index set of open subsets of X s.t. $A\subset\bigcup_{i\in I}U_i$.
- 2. A is compact if every open cover of A contains a finite subcover i.e. there is $N \in \mathbb{N}$ and indices $i_1, ..., i_N$ such that

$$A \subset U_1 \cup ... \cup U_N$$

- 3. A is sequentially compact if every sequence in A has a convergence subsequence in A.
- 4. A is called precompact or totally bounded if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ and $\exists x_1, ..., x_N \in X$ such that $A \subset \bigcup_{i=1}^N B_{\varepsilon}(x_i)$.

Theorem 1.5.2. Let (X, d) be a metric scape and $A \subset X$. The following are equivalent:

- 1. A is compact
- 2. A is sequentially compact
- 3. (A, d) is complete and A is precompact.

Remark 1.5.3. If A is precompact, then \overline{A} is precompact. Further, if (X, d) is complete and $A \subset X$ then A is precompact $\Leftrightarrow \overline{A}$ is compact.

Recall: A compact \Rightarrow bounded and closed and $f: X \to Y$ continuous with $A \subset X$ compact, then f(A) is compact as well. Further, if $f: A \to \mathbb{R}$ is continuous and A is compact, then

$$\exists x_1, x_2 \in A \text{ s.t. } f(x_1) \le f(x) \le f(x_2) \ \forall x \in A$$

Theorem of Heine-Borel: $A \subset \mathbb{R}^n$ is compact iff A is closed and bounded.

1.6 Theorem of Baire

Theorem 1.6.1. Let (X,d) be a complete metric space and $\forall n \in \mathbb{N}$ consider $U_n \subset X$ open and dense. Then

$$\bigcap_{n\in\mathbb{N}}U_n$$

is dense in X.

Remark 1.6.2. 1. Completeness is in general necessary. Consider (\mathbb{Q}, d) and d(x, y) = |x - y|. Define a sequence x_n such that $\mathbb{Q} = \{x_n \ n \in \mathbb{N}\}$. Take $U_n = \mathbb{Q} \setminus \{x_n\}$ which is open and dense. Then

$$\bigcap_{n\in\mathbb{N}} U_n = \varnothing$$

Corollary 1.6.3. Let (X, d) be a complete metric space. Let $\forall n \in \mathbb{N}$, $A_n \subset X$ be closed and

$$X = \bigcup_{n \in \mathbb{N}} A_n$$

Then $\exists N \in \mathbb{N} \text{ s.t. } A_N \text{ has an interior point.}$

Remark 1.6.4. Theorem 1.6.1 is also called Baire category theory.

- In a metric space (X, d) $A \subset X$ is called nowhere dense if \overline{A} has no interior points.
- A is called of first category if $\exists (M_n)_{n\in\mathbb{N}}$ where $M_n\subset A$ nowhere dense s.t. $A=\bigcup_{n\in\mathbb{N}}M_n$
- A is called of second category if it is not of first category

Hence the theorem of Baire implies that every complete metric space is of second category.

2 Normal spaces and Banach spaces

Let X be a \mathbb{K} -vector space where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

2.1 definitions

Definition 2.1.1. A map $||\cdot||: X \to \mathbb{R}$ is called a norm on X if

- 1. $\forall x \in X, ||x|| \ge 0 \text{ and } ||x|| = 0 \text{ iff } x = 0$
- 2. $\forall \lambda \in \mathbb{K}$ and $\forall x \in X$ it holds that $||\lambda x|| = |\lambda| \cdot ||x||$
- 3. $\forall x, y \in X \text{ it holds } ||x + y|| \le ||x|| + ||y||$

The pair $(X, ||\cdot||)$ is called an normed space.

 $p: X \to \mathbb{R}$ is called a seminorm if $p(x) \geq 0 \ \forall x \in X$ and 2. and 3. are also satisfied.

Example 2.1.2. 1.
$$C^0([0,1];\mathbb{R})$$
 with $||f||_{\infty} = \max_{x \in [0,1]} |f(x)|$

- 2. more general for a compact metric space $K: C^0(K,\mathbb{R})$ with $||f||_{\infty} = \max_{x \in K} |f(x)|$
- 3. $C^1([0,1];\mathbb{R})$ with $p(f) = \max_{x \in [0,1]} |f'(x)|$
- 4. $\Omega \subset \mathbb{R}^n$ measurable. $L^1(\Omega) = \{f : \Omega \to \mathbb{R} : f \text{ integrable } \}$ with

$$p: L^{(\Omega)} \to \mathbb{R}: \ p(f) = \int_{\Omega} |f(x)| \, dx$$

then p is a seminorm.

Remark 2.1.3. Any normed space is a metric space via

$$d(x,y) = ||x - y||$$

All concepts from chapter 1 apply.

Lemma 2.1.4. Let $(X, ||\cdot||)$ be a normed space. Then X is called separable iff $\exists A \subset X$ countable such that s.t. $\overline{span\{A\}} = X$ where $span\{A\} = \{\sum_{i=1}^n \lambda_i x_i\}$ with $n \in \mathbb{N}$, $\lambda_i \in K$ and $x_i \in A$. Here the columne is defined w.r.t the norm.

Definition 2.1.5. A complete normed space is called a Banach space.

2.2 Example: l^p -spaces

We consider the vector space $\mathbb{K}^{\mathbb{N}}$ of sequences in in \mathbb{K} . Let $x = (x_n)_{n \in \mathbb{N}}$ and $y = (y_n)_{n \in \mathbb{N}}$. Define $x + y = (x_n + y_n)_{n \in \mathbb{N}}$ and $\lambda x = (\lambda x_n)_{n \in \mathbb{N}}$.

For $x \in \mathbb{K}^{\mathbb{N}}$ define

$$||x||_{l^p} = \left(\sum_{n=1}^{\infty} |x|^p\right)^{1/p}$$

for $1 \le p < \infty$ and

$$||x||_{l^{\infty}} = \sup_{n \in \mathbb{N}} |x_n|$$

else.

Define $l^p = \{x = (x_n)_{n \in \mathbb{N}} : ||x||_{l^p} < \infty\}$ for $1 \le p \le \infty$. We find that l^p is a subspace of $\mathbb{K}^{\mathbb{N}}$ and l^p is a normed space (for the triangle inequality use the Hölder inequality).

Theorem 2.2.1. For $1 \le p \le \infty$ l^p is a Banach space.

Lemma 2.2.2. For finite p, l^p is separable while l^{∞} is not.

2.3 Finite dimensional normed spaces

Let X be a vector space over \mathbb{K} . $\exists e_1, ..., e_n \in X$ s.t.

$$\forall x \in X; \ \exists \lambda_1, ..., \lambda_n \in \mathbb{K}: \ x = \sum_{i=1}^n \lambda_i x_i$$

For $p \in [1, \infty)$ we define

$$||x||_p = \left(\sum_{i=1}^n |\lambda_i|^p\right)^{1/p}$$

and for $p = \infty$

$$||x||_{\infty} = \max_{1 \le i \le n} |\lambda_i|$$

Definition 2.3.1. Two norms are equivalent in that

$$\alpha ||\cdot||_1 \leq ||\cdot||_2 \leq \beta ||\cdot||_1$$

Theorem 2.3.2. In a finite dimensional space, all norms are equivalent.

Theorem 2.3.3. Finite dimensional normed spaces are Banach spaces.

2.4 On the closure of $\overline{B_1(0)}$

Lemma 2.4.1 (Lemma of Riesz, Lemma of the almost orthogonal element). Let X be a normed space. $U \subset X$ a closed subspace of X s.t. $U \neq X$. Then $\forall \lambda \in (0,1) \exists x_{\lambda} \in X$ s.t. $||x_{\lambda}|| = 1$ and $dist(x_{\lambda}, U) \geq \lambda$.

Theorem 2.4.2. In a normed space X, $\overline{B_1(0)}$ is compact iff X is finite dimensional.

3 A question from approximation theory

3.1 Theorem of Stone-Weierstrass

Let X be a compact metric space. Then $(C^0(X), \mathbb{K}), ||\cdot||_{\infty}$, where $||f||_{\infty} = \max_{x \in X} |f(x)|$ is a Banach space.

Which property of $A \subset C^0(X, \mathbb{K})$ ensures that A is dense.

Definition 3.1.1. $A \subset C^0(X, \mathbb{K})$ is called subalgebra, if $\forall f, g, \in A$

- 1. $\lambda f + \mu g \in A$ (subspace)
- $2. f \cdot g \in A$

Example 3.1.2. • $\{p:[0,1]\to\mathbb{R}\}$ is a subalgebra of $C^0([0,1];\mathbb{R})$.

• $\{f: [-1,1] \to \mathbb{R}; f \text{ continuous and even}\}$ is a subalgebra.

Remark 3.1.3. If A is a subalgebra, then \overline{A} is also a subalgebra.

Definition 3.1.4. Let $A \subset C^0(X)$ be a subalgebra.

- 1. A is called unital if $1 \in A$
- 2. A separates point if $x, y \in X$, $x \neq y$, $\exists f \in A \text{ s.t. } f(x) \neq f(y)$.
- 3. (if $\mathbb{K} = \mathbb{C}$) A is stable under conjuguation if from $f \in A$ we conclude that also $\overline{f} \in A$.

Remark 3.1.5. If A is unital then all constant functions are in A.

Lemma 3.1.6. Consider $f: [-1,1] \to \mathbb{R}$ where f(x) = |x|. Then \exists sequence of polynomials $(p_n)_{n \in \mathbb{N}}$ s.t.

$$p_n \to f$$

uniformly in [-1, 1].

Lemma 3.1.7. Let $A \subset C^0(X,\mathbb{R})$ be a unital subalgebra. Then

- 1. if $f \in A$ then $|f| \in \overline{A}$.
- 2. if $f, g \in A$ then $\max\{f, g\} \in \overline{A}$ and $\min\{f, g\} \in \overline{A}$

Theorem 3.1.8 (Stone-Weierstrass). Let A be a compact metric space. $A \subset C^0(X, \mathbb{K})$ is a unital subalgebra that separates points and if $\mathbb{K} = \mathbb{C}$ is stable under conjugation, then A is dense in $C^0(X, \mathbb{K})$ w.r.t $||\cdot||_{\infty}$.

3.2 Applications

Theorem 3.2.1 (Theorem of Weierstraß). Let [a,b] be a compact interval in \mathbb{R} , $f:[a,b] \to \mathbb{R}$ be a continuous function and $\varepsilon > 0$. Then $\exists p:[a,b] \to \mathbb{R}$ a polynomial s.t.

$$||p - f||_{\infty} = \sup_{x \in [a,b]} |p(x) - f(x)| < \varepsilon$$

Definition 3.2.2. A function $f: \mathbb{R} \to \mathbb{C}$ is periodic if

$$f(x+t) = f(x)$$

for a $t \in \mathbb{R}$ and all $x \in \mathbb{R}$.

Remark 3.2.3. If f is periodic with period t then $\tilde{f}: \mathbb{R} \to \mathbb{C}$ where $\tilde{f}(x) = f(t\frac{x}{2\pi})$ is periodic of period 2π .

Consider $C_{2\pi}^0(\mathbb{R}, \mathbb{C})$ the space of continuous 2π -periodic functions. We consider the span of $\{e^{ikx} = \cos(kx) + i\sin(kx), k \in \mathbb{Z}\}.$

Definition 3.2.4. A trigonometric polynomial is a function $f: \mathbb{R} \to \mathbb{C}$

$$f(x) = \sum_{k=-N}^{N} c_k \cdot e^{ikx}$$

with $c_k \in \mathbb{C}$

Theorem 3.2.5 (Approximation of periodic functions). Trigonometric polynomials are dense in $(C_{2\pi}^0(\mathbb{R},\mathbb{C}),||\cdot||_{\infty})$

Application to neural networks

The simplest case of a neural network has d inputs $x_1, ..., x_d$ and one output Z called a feed forward network. Each input influences the output and x_i might have a weight α_i associated to it. The output is a function in $x = (x_1, ..., x_d)$ and the weights $\alpha = (\alpha_1, ..., \alpha_d)$. For instance, the output is often of the form

$$Z = \sum_{i=1}^{d} \alpha_i x_i + b$$

where b is the bias of the network. To make the network slightly stronger, we add a intermediate layer $y = (y_1, ..., y_r)$ where each x_i is connected to each y_j with the associated weight $\gamma_{i,j}$. The y layer (often called activation) is the connected to the output Z as above

with weights α_j . We introduce the realtion

$$y_j = \Phi(\sum_{i=1}^d \gamma_{j,i} x_i + b)$$

for a measurable function Φ . Lastly, the output is then given by

$$Z = \sum_{j=1}^{r} \alpha_j y_j$$

Definition 3.2.6. 1. $A^d = \{a : \mathbb{R}^d \to \mathbb{R} : a(x9 = w^T x + b)\}$ where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$.

- 2. given $\Phi: \mathbb{R} \to \mathbb{R}$ measurable $d \in \mathbb{N}$ define $\Sigma^d(\Phi) = \{f: \mathbb{R}^d \to \mathbb{R}: f(x) = \sum_{j=1}^N \alpha_j \Phi(a_j(x)) \text{ with } N \in \mathbb{N}, \alpha_j \in \mathbb{R}, a_j \in A^d\}$ as the set of single hidden layer feed forward networks.
- 3. A squashing function is a measurable non-decreasing function $\Phi: \mathbb{R} \to \mathbb{R}$ s.t. $\lim_{x \to -\infty} \Phi(x) = 0$ and $\lim_{x \to \infty} \Phi(x) = 1$.

Theorem 3.2.7 (Universal Approximation theorem of Hornik-Stinchcombe-White). Let Φ we a squashing function $K \subset \mathbb{R}^d$ compact $f: K \to \mathbb{R}$ continuous and $\varepsilon > 0$. Then $\exists g \in \Sigma^d(\Phi)$ s.t.

$$\sup_{x \in K} |f(x) - g(x)| < \varepsilon$$

4 Continuous linear maps

 $(X, ||\cdot||_X), (Y, ||\cdot||: Y)$ are K-Vector spaces with $K = \mathbb{R}$ or $K = \mathbb{C}$. $T: X \to Y$ is called linear if

$$T(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 T(x_1) + \lambda_2 T(x_2)$$

4.1 Continuity of linear maps

Definition 4.1.1. LEt $T: X \to Y$ be linear. Then T is bounded if $\exists C > 0$ s.t.

$$||Tx||_Y \le C||x||_X \ \forall x \in X$$

or equivalently

$$\sup_{x \in X \setminus \{0\}} \frac{||Tx||_Y}{||x||_X} \le C$$

which is also equivalent to

$$\sup_{x \in X, ||x||_X = 1} ||Tx||_Y \le C$$

Theorem 4.1.2. For $T: X \to Y$ linear, the following are equivalent:

- 1. T is continuous
- 2. T is continuous in 0
- 3. t is bounded

Lemma 4.1.3. Let X have infinite dimension. Then $\exists T: X \to \mathbb{K}$ linear and not bounded.

Definition 4.1.4. Define L(X,Y) as the set of linear continuous (\Leftrightarrow bounded) maps from X to Y. With the usual addition $((T_1 + T_2)(x) = T_1(X) + T_2(x))$ and the scalar multiplication $((\lambda(T)(x)) = \lambda T(x))$ this is a vector space. If X = Y we write L(X). For $T \in L(X,Y)$

$$\ker T = \{x \in X : Tx = 0\}$$

and

$$\Im(T) = \{ y \in Y : \exists x \in X : Tx = y \}$$

4.2 Operatornorm and dual space

Theorem 4.2.1. Let $X \neq \{0\}$.

• L(X,Y) with the operatornorm $||T|| = \sup_{x \in X \setminus \{0\}} \frac{||Tx||_Y}{||x||_X} = \sup_{x \in X, ||x||_X = 1} ||Tx||_Y$ is a normed space. We have

$$||Tx||_{Y} \le ||T||||x||_{X}$$

• If Y is a Banach space then L(X,Y) is a Banach space.

Definition 4.2.2. For a normed space $(X, ||\cdot||_{\infty})$ we define the dual space $X' = L(X, \mathbb{K})$. Remark 4.2.3. X' is a Banach space.

4.3 Neumann series

Lemma 4.3.1. Let X, Y, Z be three normed spaces. Let $T \in L(X, Y)$ and $S \in L(Y, Z)$. Then $S \circ T \in L(X, Z)$ and

$$||S \circ T|| \le ||S||||T||$$

Let $T: X \to Y$ be linear, bounded and bijective. Then $\exists T^{-1}: Y \to X$ linear.

Definition 4.3.2. Let X, Y be normed spaces.

- 1. $T \in L(X,Y)$ is bijective such that $T^{-1} \in L(Y,X)$ then T is called an isomorphism
- 2. X, Y are called isomorph if there is $T: X \to Y$ isomorphism.
- 3. $T \in L(X, Y)$ is called an Isometry if ||Tx|| = ||x||.
- 4. X, Y are called isometric isomorph if $\exists T \in L(X, Y)$ an isomorphism that is also an isometry.

Remark 4.3.3. The identity $I_x: X \to X$ with $x \mapsto x$ is in L(X). Then $T \in L(X)$ is an isomorphism iff $\exists S \in L(X)$ s.t. $S \circ T = I_x$ and $T \circ S = I_x$

Let $T \in L(X)$ s.t ||T|| < 1. Define $T^0 = I_x$, $T^n = T \circ T^{n-1}$. Obviously $T^n \in L(X)$ for all n. Now,

$$\left(\sum_{k=0}^{n} T^{k}\right)_{n \in \mathbb{N}} \subset L(X)$$

is a Cauchy sequence w.r.t. the operator norm. Hence, if X is a Banach-Space, so is L(X) and thus the series converges to a $S \in L(X)$. Furthermore

$$\sum_{k=0}^{\infty} ||T||^k = \frac{1}{1 - ||T||}$$

Finally, we can also note that $S = (I_x - T)^{-1}$.

Theorem 4.3.4 (Neumann series). Let X be a Banach-Space, $T \in L(X)$ with ||T|| < 1The $I_x - T$ is an isomorphism and

$$(I_x - T)^{-1} = \sum_{k=0}^{\infty} T^k$$

is in L(X). This is called the Neumann series.

4.4 The dual space of l^p

We only deal with $1 \le p < \infty$.

Theorem 4.4.1. Let $q \in (1, \infty]$ be s.t. $\frac{1}{p} + \frac{1}{q} = 1$. Then the dualspace $(l^p)'$ is isometric isomorph to l^q .

5 Theorem of Hahn-Banach

Let X be a vector space, $X \neq \{0\}$ over $\mathbb{K} = \mathbb{R}$.

5.1 Extension Theorem

Given $U \subset X$ subspace, $l: U \to \mathbb{R}$ linear, is there $L: X \to \mathbb{R}$ linear such that $L|_U = l$? For this we need Zorn's Lemma:

Definition 5.1.1. Let $M \neq \emptyset$ be a set and \leq be a partial order on M, i.e. \leq satisfies

- 1. reflexiv: $x \leq x \ \forall x \in M$
- 2. antisymmetric: $x \leq y$ and $y \leq x \Rightarrow x = y$
- 3. transitivity $x \leq y, y \leq z \Rightarrow x \leq z$

Then

- $A \subset M$ is called chain of totally ordered if $\forall x, y \in A$ either $x \leq y$ or $y \leq x$
- $b \in M$ is an upper bound for a chain A if $a \leq b$ for all $a \in A$
- $m \in M$ is called maximal element if

$$\forall x \in M \text{ s.t. } m \leq x \Rightarrow x = m$$

Lemma 5.1.2 (Zorn). Let $M \neq \emptyset$ and \leq be a partial order on M. If every chain in M has an upper bound in M, then there is a maximal element.

Definition 5.1.3. LEt X be a vector space. $p: X \to \mathbb{R}$ is called sublinear if

- 1. $p(\lambda x) = \lambda p(x)$ for all $x \in X, \lambda \geq 0$
- 2. $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$

Theorem 5.1.4 (Extension theorem of Hahn-Banach). Let X be a vecorspace over \mathbb{R} , $U \subset X$ a subspace and $U \neq X$. Let $p: X \to \mathbb{R}$ be a subspace $l: U \to \mathbb{R}$ be linear s.t. $l(x) \leq p(x) \ \forall x \in U$. Then $\exists L: X \to \mathbb{R}$ linear s.t. $L(x) \leq p(x) \ \forall x \in X$ and $L(x) = l(x) \ \forall x \in U$. L is called extension of l.

Consequences for normed spaces

Theorem 5.1.5. Let $(X, ||\cdot||_X)$, $U \subset X$ a subspace fo X, with $U \neq X$. Let $u' \in U' = L(U, \mathbb{R})$. Then $\exists x' \in X'$ s.t. $||x'||_{X'} = ||u'||_{U'}$ such that $x'(u) = u'(u) \ \forall u \in U$.

Corollary 5.1.6. Let $(X, ||\cdot||_X)$, $U \subset X$ be a subspace of X and $x_0 \in X$ s.t. $dist(x_0, U) > 0$. Then $\exists x' \in X'$ s.t. $x'|_U = 0 \ \forall u \in U$ and $x'(x_0) = dist(x_0, U)$ with $||x'||_{X'} = 1$.

Corollary 5.1.7. Let $X, ||\cdot||_X$ and $x_0 \in X$.

1. if $x_0 \neq 0$ then $\exists F \in X'$ with $||F||_{X'} = 1$ and $F(x_0) = ||x_0||_X$ In particular, for $x \in X$

$$||x||_X = \sup_{F \in X', ||F||_{X'}=1} |F(x)|$$

- 2. If $F(x_0) = 0$ for all $F \in X'$, then $x_0 = 0$. In particular, X' separates points of X.
- 3. $U \subset X$ subspace. Then U is dense in X iff if for $x' \in X'$ s.t. $x'_{|_U} = 0$ it follows x' = 0.

5.2 <u>Separation Theorems</u>

Definition 5.2.1. Let X be a vectorspace over \mathbb{R} . $A \subset X$ is called convex, if

$$\forall x, y \in A, \ \lambda x + (1 - \lambda)y \in A, \ \forall \lambda \in [0, 1]$$

Lemma 5.2.2. Let $C \subset X$ open and convex with $O \in C$. Define $p_C : X \to \mathbb{R}$ such that $p_C(x) = \inf\{\lambda > 0 \text{ s.t. } \frac{x}{\lambda} \in C\}$. This is called the Minkowski functional. Then p_C is sublinear and $C = \{x \in X : p_C(x) < 1\}$.

Lemma 5.2.3. Let $(X, ||\cdot||)$ be a normed space and $A \subset X$ be convex and open, $A \neq \emptyset$ and $x_0 \in X \setminus A$, then $\exists F \in X'$ s.t.

$$F(x) < F(x_0) \ \forall x \in A$$

Definition 5.2.4. Let $X \neq \{0\}$ be a \mathbb{R} -vector space.

- 1. $H = \{x \in X : f(x) = \alpha\}$ with $f : X \to \mathbb{R}$ linear, $\alpha \in \mathbb{R}$
- 2. $A, B \subset X$ are separated by an affine hyperplane H if $H = \{f = \alpha\}$ and $f(a) \le \alpha \le f(b) \ \forall a \in A \ \forall b \in B$.
- 3. $A, B \subset X$ are strictly separated by an affine Hyperplane H if $\exists \varepsilon > 0$ s.t. $f(a) + \varepsilon \le \alpha \le f(b) \varepsilon$.

Theorem 5.2.5 (Separation Theorem of Hahn-Banach). Let $(X, ||\cdot||)$, A, B convex, $A \neq \emptyset$, $b \neq \emptyset$, $A \cap B = \emptyset$ and A or B should be open.. Then $\exists F \in X'$ and $\delta \in \mathbb{R}$ s.t.

$$F(a) < \delta < F(b) \ \forall a \in A, b \in B$$

Theorem 5.2.6. Let $(x, ||\cdot||)$, A, B convex subsets $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$. Let A be closed and B be compact. Then $\exists F \in X', \exists \varepsilon > 0$ s.t. $F(a) + \varepsilon \leq F(b) - \varepsilon \ \forall a \in A, b \in B$.