Spline de lissage non-uniformes:

une spline lissante permet de satisfaire un compromis entre la fidélité aux observations bruyantes et le lissage de la spline ajustée. précisément, étant donné un ensemble de points de données (u_k, z_k) avec

$$u_1 < u_2 < \dots < u_n$$

où les observations z_k sont supposées bruyantes, nous considérons une séquence de nœuds splines $x_1 < x_2 < ... < x_n$ tel que $\{u_k\}_{1 \le k \le N}$, et l'espace $S[x_1, x_2]$ des splines naturelles associées à ces points on considère ensuite le problème d'optimisation

$$Min_{s \in S[x_1, x_2]} E_{0,2}(s)$$

$$E_{0,2}(s) = \sum_{k=1}^{N} (z_k - s(u_k))^2 + \rho \int_{x_1}^{x_n} [s''(t)]^2$$

de la même maniéré que dans le cas uniforme, on détermine les matrice A,R,S,M,N, $H_{0,3}etH_{1,2}$ commençant par la matrice A et R on cherche toujours la relation entre y et y' avec les conditions normal de spline $(s''(x_1) = s''x_n) = 0$ et la condition du cantacte C^2 aux nœuds internes $(s''_{i-1}(x_i) = s''_i(x_i)$ à la fin on obtient ces 3 relation entre y et y'

$$2y'_1 + y'_2 = 3/h_1(y_2 - y_1)$$

$$y'_{n-1} + 2y'_n = 3/h_{n-1}(y_n - y_{n-1})$$

donc la relation entre y et y' est de la forme Ay'=Ry ,alors on obtient

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 & \dots & \dots & \dots & 0 & 0 \\ h_2 & 2(h_1 + h_2) & h_1 & 0 & \dots & \dots & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \dots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \vdots & \ddots & \ddots & \dots & \ddots & \vdots \\ 0 & 0 & \vdots & \ddots & \ddots & \dots & \ddots & \vdots \end{pmatrix}$$

$$R = 1/3 \begin{pmatrix} -\frac{1}{h_1} & \frac{1}{h_1} & 0 & 0 & \dots & \dots & \dots & 0 & 0 \\ \frac{h_2}{h_1} & \frac{h_2}{h_1} - \frac{h_1}{h_2} & \frac{h_1}{h_2} & 0 & \dots & \dots & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \vdots & \ddots & \ddots & \frac{-h_i}{h_{i-1}} & \frac{h_i}{h_{i-1}} - \frac{h_{i-1}}{h_i} & \frac{h_{i-1}}{h_i} & \vdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \vdots & \ddots & \vdots & \dots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \vdots & \vdots & \ddots & \vdots & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots \\$$

pour trouver la matrice S on considéré l'intégrale suivant

$$\int_{x1}^{xn} [s''(t)]^2 dt = \sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} [s''(t)]^2 dt$$

on développant en remplaçant h
 par h_i cette formule on obtient une sorte de forme quadratique

$$\int_{r1}^{xn} [s''(t)]^2 dt = Y''^T Sy$$
"

et enfin la matrice S est de la forme

$$S = 1/3 \begin{pmatrix} 2h_1 & \frac{1}{2}h_1 & 0 & 0 & \dots & \dots & 0 & 0\\ \frac{1}{2}h_2 & 2h_2 & \frac{1}{2}h_2 & 0 & \dots & \dots & 0 & 0\\ \vdots & . & . & . & . & \dots & . & . & .\\ \vdots & . & . & . & \frac{1}{2}h_i & 2h_i & \frac{1}{2}h_i & 0 & \vdots\\ . & . & . & . & . & \dots & . & .\\ 0 & 0 & . & . & . & \dots & . & \frac{1}{2}h_{n-1} & 2h_{n-1} \end{pmatrix}$$

pour obtenir les matrice M et N nous exprimons le vecteur y" en fonction des vecteurs y et y'. Pour les splines naturelles $s \in S$, avec des segments $s_i = S_{[x_i, x_{i+1}]}$, i=1,...,n-1. enfin on applique l'interpolation d'Hermite avec a les conditions suivantes :

$$y''_{i} = s''_{i-1}(x_i) = s''_{i}(x_i), i = 2, ..n - 1$$

qui mène à

$$y" = My + Ny'$$

Donc:

$$N = \begin{pmatrix} \frac{1}{h_1} & \frac{2}{h_1} - \frac{2}{h_2} & -\frac{1}{h_2} & 0 & 0 & \dots & \dots & \dots & 0 & 0 \\ \vdots & \dots & \vdots & \dots & \dots & \dots & \dots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \dots & \dots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \frac{1}{h_{i-1}} & \frac{2}{h_{i-1}} - \frac{2}{h_i} & -\frac{1}{h_i} & 0 & \vdots & \vdots \\ \vdots & \ddots & \dots & \dots & \dots & \dots & \vdots & \vdots \\ 0 & 0 & \ddots & \ddots & \dots & \dots & \frac{1}{h_{n-2}} & \frac{2}{h_{n-2}} - \frac{2}{h_{n-1}} & -\frac{1}{h_{n-1}} & \end{pmatrix}$$

avec la même méthode dans le cas Uniforme on trouve les matrice $H_{03}etH_{12}$