实验 B12 温度测控仪的设计与组装*

鸭大学子 1寸

(1中山大学物理学院,广东广州 510275)

摘 要:温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。温度传感器的类型很多,包括金属电阻温度传感器、热敏电阻温度传感器、热电偶温度传感器、PN 结温度传感器、电压型集成电路温度传感器和电流型集成电路温度传感器等等。本实验通过搭建基于电压型集成电路温度传感器的温度测控电路,学习了温度传感器测量和控制温度的基本原理,并测试了搭建的测控电路的有效性。

关键词:温度传感器;LM35

1 引 言

在大一的实验 A4(温度传感器温度特性的测量) [shenhan2015] 中已经了解了多种温度传感器的特性和工作原理,本实验将在此基础上,利用温度传感器,设计并组装数字式温度计和温度控制仪。由于这一实验的巨大成就,密立根获得了 1923 年的诺贝尔物理学奖。

80 多年来,显示出该实验在工业应用和科学研究中的广泛应用前景。

笔者利用大学实验室常用的密立根油滴实验仪重 做了密立根油滴实验,并尝试由实验结果验证电荷分 布的不连续性,将在本文中详述。

下面将换栏!换栏不同于换页。

2 温度测控原理

温度的测控,包含温度的测量和控制,其中温度 的测量往往转化为电信号输出,而温度的控制通常使 用电磁继电器实现。本实验设计的温度测控仪器主要 包括两个部分,一个是温度传感器,另一个是温度测 控电路。

2.1 温度测控仪电路

基于以上三种温度测控仪,我们相应得也有三种温度测控仪电路。

2.1.1 基于 AD590 电流型温度传感器的数显温度测控仪

这里本来并不需要文字。

- **A. 温度显示原理** 如果就需要这样的效果,那很好。
- B. 温度控制原理 但段落后面如果需要换行,就是个棘手的问题。

第一步: 调零。 小段落后面的正文也是一样,

第二步: 确定电压灵敏度 紧跟着段落标题。

2.2 温度传感器

本实验涉及三种温度测控仪的组装,分别采用三 种不同的温度传感器,包括

^{*}由中山大学物理学院陆佑堂提供器材和指导。

[†]通信作者, xxx22@mail2.sysu.edu.cn

(1)金属电阻温度传感器

如 PT100 或 Cu50, PT100 即铂金属电阻,在 0°C 时的电阻值为 $R_0 = 100\Omega$; Cu50 即铜金属电阻,在 0°C 时的电阻值为 $R_0 = 50\Omega$ 。

2.3 实验内容

本实验中笔者选择了"基于 LM35 电压型温度传感器的数显温度测控仪"电路进行搭建和测试。

- (1) 根据图??搭建电路。
- (2) 测量数字电压读数与温度之间的对应关系,作电 压与温度关系曲线。
- (3) 利用组装的温度测控仪电路,将加热阱的温度控制在 $75^{\circ}C$ 。

3 温度测控仪的搭建和测试

3.1 测试用设备

A. 其他设备

直流稳压电源(如图??所示)用于提供测控仪电路的 ±12V 电源,数字万用表的直流电压测量功能可用于替代数字电压表,用于指示温度测控仪的当前温度。各仪器使用方法请查阅教材。

图 1: 不跨栏单幅图排版

B. 温度控制设备

图??为致冷/加热温度控制仪,从左到右分成三个部分,分别为(1)数字电压表(有20V和2V两个量程);(2)加热和致冷功率控制器;(3)温度设置和测量装置风扇用于加快空气流动。图??的控温阱分为致冷阱和加热阱两种。制冷阱用于0°C至室温范围的实验,加热阱用于室温-100°C范围。

4 实验结果与讨论

4.1 数字电压读数与温度的对应关系

将测控电路接入加热阱,记录温度传感器温度为 30°C 80°C 对应的数字电压表示数。分别记录温度上 升时和温度下降时的电压值,取平均以降低误差,如表??所示。

t/°C	上升/mV	下降/mV	平均 V_0/mV
30	271	280	275.5
32.9	299	313	306
37.8	336	363	349.5
40.9	364	396	380
42.7	387	414	400.5
45	414	438	426
50	460	489	474.5
53	475	518	496.5
55	494	538	516
58	522	568	545
60	540	588	564
63	569	617	593
65	589	636	612.5
70	639	684	661.5
73	669	711	690
75	690	729	709.5
78	721	753	737
80	748	768	758

表 1: 不跨栏表格的排版

5 结论

下面是公式编辑的相关环境。

1. equation 环境 默认有标号,用于单个公式。

$$\eta' = \eta/[1 + b/(pa)] \tag{1}$$

如果不用标号,只需在 equation 后面加上*,

$$\eta' = \eta/[1 + b/(pa)] \tag{2}$$

这其实相当于直接使用 \[\] 进行公式编辑。

$$e = (1.60217733 \pm 0.00000049) \times 10^{-19}$$
C

图 2: 跨栏单幅图片排版

图 3: 跨栏双图并行排版

	油滴序号	Q/C	Q/e	n	e/C
静态法	1	1.713E-19	1.069	1	1.713E-19
	2	5.681E-19	3.546	4	1.420E-19
	3	5.710E-19	3.564	4	1.428E-19
	4	1.292E-18	8.062	8	1.615E-19
	5	9.490E-19	5.923	6	1.582E-19
		平均值:	1.551E-19	相对误差:	3.169%
动态法	6	1.253E-18	7.821	8	1.566E-19
	7	3.174E-19	1.981	2	1.587E-19
	8	1.234E-18	7.701	8	1.542E-19
	9	9.402E-19	5.868	6	1.567E-19
	10	6.309E-19	3.938	4	1.577E-19
整体情况		平均值: 平均值:	1.568E-19 1.560E-19	相对误差: 相对误差:	2.133% $2.651%$

表 2: 跨栏表格的排版

2. gather 环境 默认有自动标号,用于多行公式排版,没有对齐功能。

$$f_r = 6\pi a \eta v_g \tag{3}$$

$$m = 4\pi a^3 \rho/3 \tag{4}$$

如果不用标号,只需在 gather 后面加上*。

$$f_r = 6\pi a \eta v_g$$
$$m = 4\pi a^3 \rho/3$$

3. align 环境和 aligned 次环境

$$a = b + c + d \tag{5}$$

$$x = y + z \tag{6}$$

等价的用法是 equation 环境加上 aligned 次环境,

$$a = b + c + d$$

$$x = y + z$$
(7)

如果不用标号,只需在 align 后面加上*,

$$a = b + c + d$$
$$x = y + z$$

等价的用法是 equation 环境加上 aligned 次环境,在 equation 后面加上 *。

$$a = b + c + d$$

$$x = y + z$$
(8)

4. multiline 环境 可用于单条长公式排版,换行但不对齐,默认有自动标号,不标号只需加上*。

$$x = a + b + c +$$

$$d + e + f + g \quad (9)$$

5. 带有左边大括号的公式

$$\begin{cases} C_1 \cdot \frac{dU_{C_1}}{dt} = \frac{1}{R_1} \cdot (u_{C_2} - u_{C_1}) - f(u_{R_N}) \\ C_2 \cdot \frac{dU_{C_2}}{dt} = i_L - \frac{1}{R_1} \cdot (u_{C_2} - u_{C_1}) \\ L \cdot \frac{di_L}{dt} = -U_{C_2} \end{cases}$$

Experiment B12: The Design and Assembling of Temperature Sensor*

Fohong Wang¹ †

1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China

Abstract: The temperature sensor is made of some metal, semiconductor and other materials with temperature-related characteristics. There are many types of temperature sensors, including metal resistance temperature sentors, thermistor temperature sensors, voltage-type integrated circuit temperature sensors and current-type integrated circuit temperature sensors. In this experiment, by building a temperature measurement and control circuit based on a voltage-type integrated circuit temperature sensor, the basic principles of temperature sensor measurement and control were learned, and the effectiveness of the measurement and control circuit was tested.

Key words: Temperature sensor, LM35

^{*}Supported and taught by Luyoutang, School of Physics, Sun Yat-sen University

 $^{^\}dagger \textsc{Corresponding author}.$ E-mail:xxx22@mail2.sysu.edu.cn