Resolução do Exercício 2 item 3.

Enunciado: T(n) = 3T(n/2) + n para n > 1 é ??? com T(1) = 1. Dica: resolva a recorrência para $n=2^k$.

$$T(n)=3*T(n/2)+n=3*[3*T(n/2^2)+n/2]+n=3^2*T(n/2^2)+3*n/2+n=\\ =3^2*[3*T(n/2^3)+n/2^2]+3*n/2+n=\\ =3^2*[3*T(n/2^3)+n/2^2]+3*n/2+n=\\ =....=3^k*T(n/2^k)+3^k(k-1)*n/2^k(k-1)+....+n=3^k*T(n/2^k)+SUM(0...k-1)+n*(3/2)^k(i)$$

Teremos $T(1) = T(n/2^k)$ no último nível, logo:

$$n/2 \land k = 1$$
$$n=2 \land k$$

k = lgn (log na base 2)

$$T(n) = 3^k T(n/2^k) + SUM(0...k-1) n*(3/2)^(i) =$$

= $3^l gn*T(1) + SUM(0...lgn-1) n*(3/2)^(i) =$
= $3^l gn + SUM(0...lgn-1) n*(3/2)^(i) =$, pois $T(1)=1$
= $n^l g3 + SUM(0...lgn-1) n*(3/2)^(i) =$, pois $3^l gn = n^l g3$ (propriedade de logaritmo)

Vamos analisar o somatório, como se trata de uma PG com razão (3/2) > 1, não dá pra aplicar PG infinita. Vamos calcular a PG finita: $a1(q^m-1)/(q-1)$

onde, para
$$SUM(0...lgn-1) n*(3/2)^(i)$$
, temos a1 = 1, q = (3/2) e m = lgn (quantidade de termos da PG já que começamos em 0).

Logo,

SUM(0...lgn-1)
$$n*(3/2)^{(i)} = 1.((3/2)^{lgn-1})/(3/2-1) =$$

= $((3/2)^{lgn} - 1)*2 =$
= $(n^{lg}(3/2)-1)*2 =$
= $(n^{(lg3-lg2)-1})*2 =$
= $(n^{(lg3-1)-1})*2 =$
= $(2*n^{(lg3-1)-2})$

$$T(n) = n \log 3 + 2 n (\log 3-1) - 2 = O(n \log 3)$$

Provando por indução:

 $T(k) \le cn \le 3 - dn$ para todo $k \le n$ (Para $T(k) \le cn \le 3$ não funciona!!)

Para k=n, teremos:

$$T(n)=3T(n/2) + n \le 3cn \log 3 - 3dn + n$$

 $\le 3cn \log 3 - (3d-1)n$
 $\le Cn \log 3$
onde $C \ge 3c$ e $(3d-1) > 0$, ou seja, $d > 1/3$