Federate Orchestration for Cloud-Fog Infrastructure

Dominic Lindsay

Lancaster Univeristy

February 5, 2020

Overview

Todays Presentation...

- Introduction
- Fog-Cloud Computing
- Orchestration at the edge
- Quality of Service
- Problem Statement
- Proposal
- System Design
- HotCloud'20
- Questions

Cloud-Fog Computing

Cloud-Fog Continuum

Hierarcichal Network

- Cloud-Fogs are composed of hierarchal networks.
- Nodes top possess more resources and exhibit higher availability.

Characteristics

- Distributed Infrastructure
- Non-Neglible Latencies
- Limited Availability and Reachability

Figure: Cloud-Fog Network. Cloud Clusters possessing the most resources are found at the top with high availability, whilst Fog Node/Cloudlets are in middle tier, posess less resources but possess lower latencies and higher aggregate bandwidth.

Orchestration

Autonomous Resource Management and Workload Execution

- Orchestration
 - Scheduling and Resource Management
 - Cloud Orchestration

Application Contexts

Applications DAGs

Application DAG

- Application submit jobs as DAGs.
- Vertices identify tasks and their requirements
 e.g. spark executor ⟨2GB, 1CPU⟩
- Edges identify both time and space constraints.
- Task are executed by workers on behalf of an Application Master.
- or clusters

Example DAG

Quality of Service

Application Performance

Applications are composed of individual services Workers execute work on behalf of Application Masters

Intra-Service Quality of Service

- Application depends on multiple services for execution of tasks.
- Intra-Node Bandwidth and Latency dictates QoS of task executors.

Fog-Cloud Orchestration

Centralised Orchestration

Orchestration Systems typically manage only a single cluster.

As such resources are manage as a single flat hierarchy.

False Assumptions

Centralised orchestration systems exhibit several limitations when managing Cloud-Fogs

- Non-Negligible Intra-Cluster Latencies
- Unlimited intra-cluster bandwidths
- Uniform Sub-Cluster Resource Utilization
- Uniform Sub-Cluster Workload Affinity

Leading to poor quality placement and degraded application performance

Proposal

Federate Orchestration Framework

Hierarchical Resources

Fog-Cloud computing require orchestration mechanisms capable of adapting to dynamic sub-cluster utilization and dynamic bandwidth and latency constraints.

Objective

The objective of this work is to investigate new orchestration mechanisms for resource management in decentralised Cloud-Fogs infrastructures, capable of making *QoS* aware placements in dynamic hierarchical infrastructures.

Contributions

- Two-Layer Federate, Mobility Aware Orchestration Platform
- Bandwidth and Latency Migration Policy
- High Level Application Level Constraints.

Requirements

Cluster Aware

Workload posses affinities to differnt scheduling archetectures Cluster Utilization impacts workload performance

Quality of Service Aware

Quality of Service is dictated not only by resource (CPU, mem, etc) but by bandwidth and latency across sub-clusters

Application Aware

Careful placement of a workload can lead to increased performance.

Scheduler should be aware of executor population.

Provide Cluster Affinity/Anti-Affinity and Cardinality.

System Diagram

Tag	Container ID	Node ID
Storm_w	co_93	Fn-1-99

HotCloud'20

- USENIX workshop
- Fancy Companies
- Deadline: 17th March

Questions?