

Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia Elétrica ELE0648 - Tópicos Especiais em Transmissão de Energia Elétrica - 2020.6

Propagação de ondas e ferro-ressonância

Levy Gabriel da Silva Galvão

Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia Elétrica ELE0648 - Tópicos Especiais em Transmissão de Energia Elétrica - 2020.6

Propagação de ondas e ferro-ressonância

Resumo referente ao assunto ministrado na disciplina de Tópicos Especiais em Transmissão de Energia Elétrica, como requisito para avaliação da terceira unidade.

Orientador: Prof^o. Dr^o. José Tavares de Oliveira

Sumário

1	Ferr	ro-ressonância	2
2 Propagação de ondas em linhas monofásicas		4	
	2.1	Linha com terminal em vazio	6
	2.2	Linha com terminal em curto-circuito	6
	2.3	Linha com terminal resistivo	6
	2.4	Linha com terminal indutivo	7
	2.5	Linha com terminal capacitivo	8
	2.6	Impedância interna de geradores	8
	2.7	Impedâncias concentradas em série com linhas de transmissão	9
	2.8	Propagação de ondas por ramificações	9
3	Rep	presentação de não-linearidades	10
4	Exemplos		11

1 Ferro-ressonância

Os efeitos de ferro-ressonância estão presentes em capacitores e indutores com capacidade de sofrerem saturação. Dessa forma, assim como a ressonância normal, em que ocorre a partir do circuito ser excitado com uma tensão cuja frequência seja próxima ou igual à sua frequência natural, a ferro-ressonância se dará de forma semelhante. No regime de ferro-ressonância há uma variação rápida e descontínua nas amplitudes e fases das correntes e tensões de operação, resultando em formas de onda não senoidais (pode conter harmônicas) e com altos valores de pico e sobrefluxo no núcleo do transformador podendo prejudicar os equipamentos.

Situações de ferro-ressonância são:

- Ressonância entre cabos de elevada capacitância e reatores limitadores de corrente;
- Ressonância entre indutância linear e a capacitância de um sistema com linha levemente carregada;
- Ferro-ressonância entre TP's e a capacitância entre os enrolamentos de um transformador de distribuição;
- Ferro-ressonância em sistemas com elementos saturáveis e filtros harmônicos.

Para ilustrar a ferro-ressonância, imagina-se um circuito RLC série alimentado por uma fonte senoidal. Normalmente para um valor fixo de indutância, só haverá um ponto de ressonância para o circuito. Porém, se introduzir uma indutância variável de acordo com a saturação, haverá uma faixa de valores em que ocorrerá ressonância. A figura 1 ilustra ambos os casos, para (a) o caso da indutância fixa e (b) para o caso da indutância variável, marcando o ponto de maior corrente.

Figura 1: Circuito RLC para (a) indutância fixa e (b) indutância variável.

Outra forma de ilustrar é a partir de um circuito LC. Pela lei de Kirchhoff de tensões, tem-se:

$$E = V_C + V_L$$

A tensão na fonte E, a tensão no capacitor $V_C = -IX_C$ negativa, pois tem sinal trocado em relação às quedas de tensão nos indutores da rede, com circuito circulado pela corrente I e tensão no indutor de V_L . O equivalente de Thévenin enxergando apenas o indutor é: $E_t = E + IX_C$. Esse valor é importante para se traçar uma curva linear da solução ideal do circuito e compará-la com o caso da curva de saturação dada em 2.

Figura 2: Circuito LC pelo equivalente de Thévenin, com comportamento linear e não-linear sobreposto..

Analisando a figura acima, o caso A possui três soluções e o B apenas uma, com apenas a solução 1 da curva A apresentando equilíbrio para variações pequenas de corrente,

enquanto que para as demais, uma menor variação de corrente resultará em uma operação durante a saturação, resultando em sobretensão.

Demais casos de circuitos que podem sofrer ferro-ressonância são:

- Gerador alimentando circuitos com acoplamento capacitivo, porém com presença de TP:
- Gerador alimentando linha de transmissão alimentando TP, em que chave seccionadora aberta na linha causa acoplamento capacitivo;
- Gerador alimentando linha com transformador trifásico ligado em $Y-Y, \Delta-Y$ aterrado, etc.

Algumas soluções para o caso de ferro-ressonância são:

- Trocar chaves fusíveis por disjuntores, evitando desbalanceamento de fases no sistema;
- Manobrar, por último, quando possível, o transformador mais próximo, evitando o circuito série de cabo-transformador;
- Alocar cargas resistivas no secundário do transformador, de forma que quando refletida no primário irá aumentar o amortecimento do circuito, porém danosamente aumentando o carregamento do cabo e do transformador ao aumentar a dissipação de potência;
- Modificação do circuito por aumentar o comprimento do cabo, alimentação aérea, reator de terciário, ou aumentando a resistência do aterramento, porém resulta em investimentos elevados;
- Ou reduzir a tensão aplicada para evitar que o transformador opere na saturação.

2 Propagação de ondas em linhas monofásicas

Considerando uma análise feita para uma linha semi-infinita com gerador de tensão f(t) e uma distância de interesse de l, cuja velocidade da onda é ν (tempo de deslocamento de 0 a l é $\tau = l/\nu$), tem-se uma onda de tensão de:

$$v(0,t) = v^+(0,t) = f(t)$$
, avaliada no ponto $x = 0$

$$v(l,t) = v^+(0,t-l/\nu) = f(t-l/\nu)$$
, avaliada no ponto $x=l$

Isso mostra que de acordo com que f(t) é deslocado em direção ao ponto x = l, este sofre um atraso temporal correspondente ao tempo de trânsito.

Agora a análise da passagem de uma onda no ponto de junção (descontinuidade) do encontro de duas linhas de impedâncias características diferentes. Considera-se que ao transmitir uma onda incidente (v^+, i^+) , até o ponto de junção, haverá uma parcela da onda que será refletida e outra refratada.

Assim, para a linha 1, tem-se a onda incidente relacionada por: $i_1^+ = v_1^+/Z_1$. A onda refletida será: $i_1^- = -v_1^-/Z_1$. E a onda refratada para a linha 2: $i_2^+ = v_2^+/Z_2$. No ponto de conexão deverá haver um equilíbrio das ondas, de forma que as relações abaixo sejam obedecidas:

$$v_1^+ + v_1^- = v_2^+$$

 $i_1^+ + i_1^- = i_2^+$

Se as equações acima forem desenvolvidas tendo em vista evidenciar a relação entre impedâncias, a relação abaixo pode ser obtida:

$$v_{1}^{-} = \Gamma_{r}v_{1}^{+}$$

$$v_{2}^{+} = (1 + \Gamma_{r})v_{1}^{+}$$

$$i_{1}^{-} = -\Gamma_{r}i_{1}^{+}$$

$$i_{2}^{+} = (1 - \Gamma_{r})i_{1}^{+}$$

Essa relação entre onda incidente e refletida é mediada por um coeficiente amplamente conhecido, sendo ele chamado de coeficiente de reflexão e este indica a parcela da onda incidente que foi refletida $\left(\Gamma_r = \frac{Z_2 - Z_1}{Z_2 + Z_1}\right)$. O coeficiente também pode ser usado para relacionar a onda incidente com a refratada. Comumente é desenvolvido o coeficiente de reflexão como $\Gamma_t = 1 + \Gamma_r = \frac{2Z_2}{Z_1 + Z_2}$

Este coeficiente mostra que se a impedância característica de ambas as linhas forem iguais, não haverá onda refletida e a onda refratada será integralmente composta pela onda incidente. Qualquer outro valor que faça as impedâncias diferentes, haverá reflexão.

2.1 Linha com terminal em vazio

Uma linha com terminal em vazio pode ser modelada como $Z_2 \longrightarrow \infty$, em termos de coeficiente de reflexão e transmissão, tem-se que:

$$\Gamma_r = \lim_{Z_2 \to \infty} \frac{Z_2 - Z_1}{Z_2 + Z_1} = 1$$

$$\Gamma_t = \lim_{Z_2 \to \infty} \frac{2Z_2}{Z_1 + Z_2} = 2$$

Isso implica dizer que a onda refletida é exatamente igual à onda incidente e a onda de tensão no fim da linha é o dobro da incidente.

2.2 Linha com terminal em curto-circuito

Uma linha com terminal em curto-circuito pode ser modelada como $Z_2 \longrightarrow 0$, em termos de coeficiente de reflexão e transmissão, tem-se que:

$$\Gamma_r = \lim_{Z_2 \to 0} \frac{Z_2 - Z_1}{Z_2 + Z_1} = -1$$

$$\Gamma_t = \lim_{Z_2 \to 0} \frac{2Z_2}{Z_1 + Z_2} = 0$$

Este resultado mostra que a onda refletida é de igual módulo que a onda incidente, porém com sinal trocado. Já para a onda refratada, esta é inexistente.

2.3 Linha com terminal resistivo

Para este tipo de linha o mesmo raciocínio é valido, resultando em coeficientes:

$$\Gamma_r = \frac{R - Z_1}{R + Z_1} = -1$$

$$\Gamma_t = \frac{2R}{Z_1 + R} = 0$$

2.4 Linha com terminal indutivo

Os resultados ainda são válidos quando se utiliza o domínio de Laplace, para $Z_2(s)=sL$ e $Z_1(s)=Z_1$:

$$\Gamma_r = \frac{Z_2(s) - Z_1}{Z_2(s) + Z_1(s)} = -1$$

$$\Gamma_t = \frac{2Z_2(s)}{Z_1(s) + Z_2(s)} = 0$$

Analisando para um degrau de tensão E_0/s tal que $v_1^+ = E_0$:

$$V_2(s) = \frac{2Z_2(s)}{Z_1(s) + Z_2(s)} \frac{E_0}{s} = \frac{2E_0}{s + \frac{Z_1}{T}}$$

No domínio do tempo:

$$v_2(t) = 2E_0 e^{-\frac{Z_1}{L}t}$$

Dessa forma permite-se concluir que $v_2(0) = 2E_0$ e $v_2(\infty) = 0$, resultante do comportamento indutivo.

A onda refletida ainda pode ser encontrada por:

$$v_1^-(t) = v_2 - v_1^+ = E_0(2e^{-\frac{Z_1}{L}t} - 1)$$

2.5 Linha com terminal capacitivo

Para a mesma análise que o caso anterior, porém com $Z_2(s) = \frac{1}{sC}$, a tensão no terminal pode ser:

$$v_2(t) = 2E_0(1 - e^{-\frac{t}{CZ_1}})$$

De forma que a tensão avaliada no início tende a ser nula e para um tempo muito grande, $2E_0$

2.6 Impedância interna de geradores

Para um gerador de tensão e_0 que alimenta uma linha de impedância Z_1 por meio de uma resistência R_{int} . Por meio de eu circuito equivalente série, permite-se concluir que a tensão enviada à linha é o divisor de tensão.

Trocando a resistência do caso anterior por uma indutância L_{int} , que facilmente modela a indutância interna de geradores síncronos. Assim, o mesmo divisor de tensão aplicado a um degrau na entrada resultará na tensão:

$$V_1^+(s) = \frac{E_0}{s} \frac{Z_1}{Z_1 + sL_{int}}$$

No tempo:

$$v_1^+(t) = E_0(1 - e^{-\frac{Z_1}{L_{int}}t})$$

No início da análise essa tensão será nula e em regime permanente tenderá à tensão do gerador.

2.7 Impedâncias concentradas em série com linhas de transmissão

Para duas linhas com impedâncias características Z_1 e Z_2 conectadas por meio de outra impedância Z(s) de natureza genérica, deseja-se verificar inicialmente os efeitos no coeficiente de reflexão visto do ponto 1. Para isso calcula-se o equivalente de impedância visto do ponto 1, que é: $Z_{eq}(s) = Z_2 + Z(s)$.

$$\Gamma_{r1} = \frac{Z_{eq}(s) - Z_1}{Z_{eq}(s) + Z_1(s)}$$
$$\Gamma_{t1} = \frac{2Z_{eq}(s)}{Z_1(s) + Z_{eq}(s)}$$

Assim a tensão transmitida será dada pelo divisor de tensão:

$$V_2^+(s) = \frac{2Z_{eq}(s)}{Z_1 + z_{eq}(s)} V_1^+(s) \frac{Z_2}{Z_{eq}(s)}$$

Vários modelos de Z(s) como de capacitância ou indutância podem ser experimentados para verificar os efeitos na tensão terminal.

2.8 Propagação de ondas por ramificações

Esse problema é ilustrado considerando que uma onda se propaga em uma linha de impedância Z_1 encontra um nó que ramifica para duas outras linhas de impedâncias Z_2 e Z_3 . Para essa análise utiliza-se uma impedância equivalente ($Z_{eq23} = Z_2//Z_3$) ao paralelo entre as impedâncias depois do nó para o cálculo dos coeficientes de reflexão e transmissão.

$$\Gamma_r = \frac{Z_{eq23}(s) - Z_1}{Z_{eq23}(s) + Z_1(s)}$$
$$\Gamma_t = \frac{2Z_{eq23}(s)}{Z_1(s) + Z_{eq23}(s)}$$

Como os coeficientes não variam se analisada a onad que vai de 1 para 2 ou de 1 para 3, assim mantendo a simetria, observa-se que as tensões que são transmitidas para as

linhas 2 e 3 são as mesmas entre si, respeitando o princípio de que no ponto de junção entre as linhas, a tensão será a mesma. O mesmo raciocínio é válido para ondas trafegando no sentido contrário.

3 Representação de não-linearidades

Serão analisado o comportamento da rede frente a elementos resistivos não lineares. Essa análise é interessante para estuda de pára-raios, que controla, as sobretensões em sistemas de potência.

O modelo de linha segue a imagem abaixo:

Figura 3: Linha terminada com pára-raios.

Pára-raios convencionais possuem centelhador em série com o resistor para saturar a tensão em um valor de sobretensão específico, com a finalidade de proteger o circuito. O exemplo tratado aqui não irá considerar tal centelhador.

A tensão incidente e a impedância características da linha podem ser representados por seu equivalente de Thèvenin, resultando em uma fonte de tensão de valor $2v_1^+$ seguida de uma impedância série Z_1 e que por fim se conecta ao pára-raios.

Portanto a tensão no pára-raios será: $f(i) = 2v_1^+ - Z_1i$. Dada a solução pelo método gráfico abaixo (também existe o método iterativo):

Figura 4: (a) solução gráfica e (b) terminação resistiva

O método é comparado para o caso em que a casa é linear e f(i) = Ri.

A solução do problema não linear é abordado de várias formas, incluindo a linearização por partes da curva VxI do pára-raios. A escolha da quantidade de segmentos de reta pode variar de acordo com o esforço computacional desejado e o quão preciso será a resposta. Lembrando que quanto mais retas, mais precisa a solução, porém mais custosa.

Até agora a forma de onda da tensão incidente era considerada regular. Porém, as soluções traçadas anteriormente podem ser aplicadas para qualquer forma de onda.

4 Exemplos

Exemplo 1

Uma linha que termina em uma reator e solicita a expressão no fim da linha, sendo esta suficientemente longa para desprezar reflexões. Assim, os dados e solução são apresentadas no código do MATLAB:

```
V1_inc = 100; % onda de tensao incidente [V]
Z1 = 200; % impedancia caracteristica da linha 1 [ohm]
Z2 = 300; % impedancia caracteristica da linha 2 [ohm]

Tr = (Z2-Z1)/(Z2+Z1); % coeficiente de reflexao
Tt = 1+Tr; % coeficiente de transmissao

V1_ref = Tr*V1_inc; % onda de tensao refletida [V]
V2_trans = Tt*V1_inc; % onda de tensao transmitida [V]
```

```
>> V1_ref = 20;
>> V2_trans = 120;
```

Isso mostra uma tensão refletida de 20V e uma refratada de 120V.

Exemplo 2

Este exemplo fornece o modelo de uma linha com alimentação senoidal e com final como uma carga indutiva. Solicita-se a expressão para a tensão no fim da linha. Dito isso, uma vez identificado que o problema trata de uma linha com indutor, monta-se a função de transferência no domínio de Laplace do coeficiente de transmissão, com o intuito de facilitar os cálculos por meio das leis de Kirchhoff.

Na teoria a tensão senoidal da entrada também pode ser modelada no domínio de Laplace, multiplicada com o coeficiente de transmissão e logo em seguida ser aplicada a transformada inversa para obter a seguinte resposta no domínio do tempo: $v_f(t) = -0.901e^{-600t} + 1.064cos(377t - 32.14^{\circ})$.

Esse resultado pode ser encontrado facilmente pela manipulação das equações transformadas. O interesse desse tópico é simular no MATLAB a resposta no domínio do tempo:

```
_{1} Z = 300;
                        % impendancia caracteristica da linha [ohm]
_{2} L = 0.5;
                        % reator [H]
3 w = 377;
                       % frequencia angular [rad/s]
_{4} fs = 1e4;
                       % frequencia de amostragem
_{5} t = 0:1/fs:0.1-1/fs; % vetor tempo de simulação
6 e = sin(w*t);
                       % tensao de entrada senoidal
s = tf('s');
9 Tt = 2*s*L/(Z+s*L); % coeficiente de transmissao
E = w/(s^2+w^2);
                       % transformada de Laplace da tensao de entrada
11 Vf = Tt*E;
                       % tensao no final da linha (dominio de Laplace)
12 lsim(Tt,e,t); legend('Tensao no fim da linha')
```


Figura 5: Tensão no final de uma linha com reator na extremidade.

De acordo com a figura 5 observa-se um rápido transitório devido à presença da exponencial e^{-600t} da resposta teórica. Como o argumento dessa exponencial é alto, seu decaimento é rápido e toma pouco mais de um ciclo para que seu efeito seja reduzido. O atraso de fase é presente devido aos 32.14° de atraso na parcela cossenoidal.

Exemplo 3

Este exemplo solicita a análise das constantes de tempo de ondas aplicada em uma LT com $Z=250\Omega$ e f=60Hz ou $\omega=277rad/s$, energizada por um sistema cuja impedância equivalente é puramente indutiva. Potência de curto-circuito no valor nominal de tensão de 500kV de 25000MVA e 25000MVA.

Primeiramente identifica-se que o sistema é composto do tipo da seção "impedâncias internas de geradores" para o caso da indutância do gerador. Para esse caso a tensão que chega à linha é:

$$v_1^+(t) = E_0(1 - e^{-\frac{Z_1}{L}t})$$

Portanto a constante de tempo será $\tau = \frac{L}{Z_1}$. Porém $X = V^2/S_{CC}$ e $L = X/\omega$, assim:

$$\tau = \frac{V^2}{\omega Z_1 S_{CC}}$$

No MATLAB, para ambas as situações de potência de curto-circuito, tem-se:

```
V1_inc = 100; % onda de tensao incidente [V]
Z1 = 200; % impedancia caracteristica da linha 1 [ohm]
Z2 = 300; % impedancia caracteristica da linha 2 [ohm]

Tr = (Z2-Z1)/(Z2+Z1); % coeficiente de reflexao
Tt = 1+Tr; % coeficiente de transmissao

V1_ref = Tr*V1_inc; % onda de tensao refletida [V]
V2_trans = Tt*V1_inc; % onda de tensao transmitida [V]

>> tau = [0.0013, 0.00013];
```

Isso implica dizer que um aumento de $10 \times$ na potência de curto-circuito, ocasiona uma redução de $10 \times$ na constante de tempo, com a redução do tempo implicando em um efeito menor da indutância.

Exemplo 4

Este exemplo trata de uma onda degrau que se propaga entre duas linhas com uma junção LC em série. Solicita-se a forma de onda da tensão no final da linha 2. Considerar as linhas com parâmetros idênticos e suficientemente longas para desprezar reflexões do ponto 2 em direção ao fim da linha. Novamente recorre-se ao auxílio do MATLAB para as operações algébricas para encontrar a equação transformada da tensão no final da linha:

A equação transformada para a tensão na linha 2 será:

Figura 6: Tensão no final de uma linha aberta com junção LC entre outra linha.

Transformando a representação no domínio de Laplace para o domínio do tempo, tem-se: $v_f(t) = 10.08(e^{-801.158t} - e^{1197.88t})$. Essa composição de exponenciais também pode ser confirmada na figura 6 referente à simulação.

Tanto pela equação teórica, quanto pelo gráfico da simulação, observa-se que para um tempo t=0, ambas as exponenciais valem a unidade e se anulam, resultando em 0.

Em seguida para $t \longrightarrow \infty$ também resultado em um valor nulo, pois ambas as exponenciais também serão nulas.

Exemplo 5

Neste exemplo solicita-se para determinar a tensão no terminal de uma LT protegida por um pára-raios quando atingido por um degrau de tensão de 1000kV. Impedância característica de 400Ω .

De acordo com a curva do problema, para uma corrente de até 1kA, a tensão varia de 0kV a 300kV; e no trecho da corrente de 1kA a 11kA a tensão varia de 300kV a 400kV.

Assim, dadas as equações linearizadas e não linear para a tensão no fim da linha:

$$v_f = 2v_1^+ - Z_1 i$$
$$v_f = f(i)$$

Para o caso linear, a solução será homogênea independente do trecho, de forma que: $v_f = 2000-400i$.

Porém para o primeiro trecho em que a tensão cresce do zero a uma taxa constante f(i) = 300i, entretanto: $v_f = 2000 - 400i = f(i) = 300i$, implicando em: $i = \frac{2000}{300 + 400} = 2.85kA$. Esse valor de corrente viola o limite da trecho estabelecido de 1kA. Para o segundo trecho a tensão varia com f(i) = 10i + 290 e igualando ao caso linear: $v_f = 2000 - 400i = f(i) = 10i + 290$, logo $i = \frac{2000 - 290}{400 + 10} = 4.17kA$.

Este último valor de corrente atende os requisitos do trecho e pode ser utilizado para modelar o circuito, de forma que a tensão v_f pode ser calculada com a equação do caso linear, porém considerando i=4.17kA, resultando em $v_f=33.17kV$.

Exemplo 6

Calcular a tensão no terminal de linha para as condições de um raio que atinge a LT a uma certa distância do terminal de linha (proteção com pára-raios). A solução do problema

beira a análise gráfico. Os dados fornecidos são uma corrente de surto máxima de I = 10kA, impedância característica da LT $Z_1 = 400\Omega$ e é fornecidas as curvas da forma de onda da corrente do raio e a curva VxI do pára-raios. Também considera-se:

$$\begin{cases} i = 0 \text{ se } v_f \le 1000kV \\ v_f = 10i + 1000 \text{ se } v_f > 1000kV \end{cases}$$
 (1)

Considerando simetria entre v_1^+ e v_1^- , tem-se: $v_1^+ = \frac{Z_1 i}{2} = 200 i$, apresentando assim a mesma forma da corrente, apenas escalonada. Assim, para o pico de corrente 10kA, o pico de sobretensão é 2000kV. A solução da saída pode ser obtida por: $v_f = 2(v_1^+ - 200i)$, isso causa um deslocamento vertical na curva em questão.

Exemplo 7

Este exemplo considera uma onda de tensão de 2000kV que atinge uma SE por uma impedância característica de 400Ω e se dirige a um nó com três ramos, dois deles resultam em LT com mesma impedância característica que a anterior e o outro ramo possui um pára-raios.

Como o pára raios é a carga não-linear, aplica-se o equivalente de Thèvenin do seu ponto de vista. Considera-se a mesma relação de tensão linear para o pára-raios que os problemas anteriores: $v_f = 1000 - 10i$. Tudo combinado resulta em uma tensão de $v_f = 1023kV$, segundo o código em MATLAB abaixo:

```
Z = 400; % impedancia caracterisca das linhas [ohm]
V = 2000; % tensao da onda [kV]

Zth = Z/3; % eq. de Thevenin
Tt = 2*(Z/2)/(Z+Z/2); % coeficiente de transmissao
Eth = V*Tt; % tensao em vazio sem o para-raios

% vf = 1000+10i % problema anterior
i = (Eth-1000)/(Zth+10); % corrente que circula no para-raios
Vf = Eth-Zth*i; % tensao no para-raios
```

Referências

- [1] Transitórios Eletromagnético em Sistemas de Potência. Luiz Cera Zanetta Júnior. EDUSP.2003.
- [2] Coordenação de Isolamento. Vol. 8. Série P.T.I Convênio Eletrobrás/UFSM. 1979.
- [3] Transitórios Elétricos e Coordenação de Isolamento (aplicação em sistemas de Alta tensão). Ary D'ajuz e outros. EDUFF, Universidade Federal Fluminense. FURNAS, Centrais Elétricas S.A. 1987.
- [4] Equipamentos Elétricos (especificação e aplicação em subestações de alta tensão. Ary D'ajuz e outros. EDUFF. Universidade Federal Fluminense. FURNAS, Centrais Elétricas S.A. 1986.
- [5] Equipamentos de Alta Tensão (prospecção e hierarquização de inovações tecnológicas). Sergio O. Frontin e outros. ANEEL.taesa.BRASNORTE.FINATEC.Universidade de Brasília. 2013.
- [6] Alternativas não Convencionais para Transmissão de Energia Elétrica (estado da arte).Gerhard Ett e outros.FDTE.ANEEL.ISA.EATE.CEMIG.Eletrobras. Goya Editora LTDA.2011.