Jasan Su Silim chen Indues

Maximum Permissible Exposure Report

For

GL Technologies (Hong Kong) Limited

Unit 210D, 2/F, Enterprise Place Hong Kong Science Park, Shatin, N.T. Hong Kong, China

FCC ID: 2AFIW-AR750

FCC Rule(s): FCC 47CFR Part 1.1310

Product Description: GL.iNet 750M Travel AC Router

Tested Model: <u>GL- AR750</u>

Report No.: <u>HCT17IR269E-3</u>

Sample Receipt Date: Sep 15, 2017

Tested Date: Sep 15~Oct 27, 2017

Issued Date: Oct 27, 2017

Tested By: <u>Jason Su / Engineer</u>

Reviewed By: Silin Chen / EMC Manager

Approved & Authorized By: Jandy So / PSQ Manager

Prepared By:

Shenzhen SEM Test Technology Co. Ltd

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, 518101, China

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

Report No.: HCT17IR269E-3 Page 1 of 7

TABLE OF CONTENTS

1.	GENERAL INFORMATION	.3
	1.1 Product Description for Equipment Under Test (EUT)	
	1.2 Test Standards	
	1.3 GENERAL DESCRIPTION OF TEST.	
	1.4 HUMAN EXPOSURE ASSESSMENT RESULTS	5

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information		
Applicant:	GL Technologies (Hong Kong) Limited	
Address of applicant:	Unit 210D, 2/F, Enterprise Place Hong Kong Science Park,	
	Shatin, N.T. Hong Kong, China	
Manufacturer:	GL Technologies (Hong Kong) Limited	
Address of manufacturer:	Unit 210D, 2/F, Enterprise Place Hong Kong Science Park,	
	Shatin, N.T. Hong Kong, China	

General Description of EUT		
Product Name:	GL.iNet 750M Travel AC Router	
Trade Name:	GL·ÎNet	
Model No.:	GL-AR750	
Adding Model(s):	N/A	
Hardware Version:	GL-AR750-V1.1	
Software Version:	2.263	
Rated Voltage:		
Power Adapter Model:		
Note: The test data is gathered from a production sample provided by the manufacturer.		

Technical Characteristics of EUT				
Frequency Range:	2412-2462MHz for 802.11b/g/n(HT20)			
	2422-2452MHz for 802.11n(HT40)			
	U-NII-1: 5150MHz~5250MHz			
	U-NII-3: 5725MHz~5850MHz			
Max RF Output Power:	21.24 dBm (Conducted)			
Data Rate:	2.4GHz: 1-11Mbps, 6-54Mbps, up to 300Mbps			
	5GHz: 802.11a: 6/9/12/18/24/36/48/54 Mbps			
	802.11n: up to 150Mbps			
	802.11ac: at most 433.3 Mbps			
Modulation: 5GHz	2.4GHz: IEEE 802.11b: CCK			
	IEEE 802.11g: OFDM			
	IEEE 802 11n HT20: OFDM			
	IEEE 802 11n HT40: OFDM			
	5GHz: 802.11a: OFDM (QPSK, BPSK, 16QAM)			
	802.11n: OFDM (QPSK, BPSK, 16QAM,			
	64QAM)			

Report No.: HCT17IR269E-3 Page 3 of 7

	802.11ac: OFDM (QPSK, BPSK, 16QAM,
	64QAM, 256QAM)
Type of Antenna:	Internal Antenna
Antenna Gain:	2.4GHz: Chain1: 3dBi
	Chain2: 3dBi
	5GHz: 3dBi

1.2 Test Standards

The objective of the following report is used to demonstrate that EUT operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the relative provisions of FCC 47CFR Part 1.1310

1.3 General Description of Test

Items	Description	
EUT Frequency band	☐ FHSS: 2.400GHz ~ 2.483GHz ☐ WLAN: 2.400GHz ~ 2.483GHz ☑ WLAN: 5.150GHz ~ 5.250GHz ☑ WLAN: 5.745GHz ~ 5825GHz ☐Others:	
Device category	☐ Portable (<20cm separation) ☐ Mobile (>20cm separation) ☐ OthersFixed location(>20cm separation)	
Exposure classification		
Antenna diversity	☐Single antenna ☐Multiple antennas: ☐Tx diversity ☐Rx diversity ☐Tx/Rx diversity	
Max. output power	The 2.4G total peak power 21.24dBm (0.133W) The 5G peak power 21.03dBm (0.127W)	
Antenna gain (Max)	2.4G: 3.0dBi (Numeric gain:2.00) 5G: 3.0dBi (Numeric gain:2.00)	
Evaluation applied		

Note:

- 1. 2.4GHz:The maximum output is 21.24dBm at IEEE 802.11b mode 2437MHz (with 2.00numeric antenna gain.)
- 2. 5GHz:The maximum output is 21.03dBm at IEEE 802.11a mode 5785MHz (with 2.00numeric antenna gain.)
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20 cm, even if the calculations indicate that the MPE distance would

be lesser.

1.4 Human Exposure Assessment Results

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Limits for Occup	ational/Controlle	d Exposure		
0.3–3.0 3.0–30 30–300 300–1,500 1,500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	* 100 * 900/f ² 1.0 f/300 5	6 6 6 6
(B) Limits for General Po	pulation/Uncont	rolled Exposure		
0.3–1.34 1.34–30 30–300 300–1,500 1,500–100,000	614 824/f 27.5	1.63 2.19/f 0.073	*100 *180/f² 0.2 f/1500 1.0	30 30 30 30 30 30

f = frequency in MHz * = Plane-wave equivalent power density

Calculation

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where E = Field Strength in Volts / meter

P = Power in Watts

G=Numeric antenna gain

d=Distance in meters

S=Power Density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = 100 * d(m)$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Equation 1

Where d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Report No.: HCT17IR269E-3 Page 5 of 7

2.4G MPE Evaluation:

EUT parameter (data from the separate report)		
Given	Where	
720 P. G. F. 2	G: numerical gain of transmitting antenna;	
$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^{-2}}{3770}$	TP: Transmitted power in watt;	
	d: distance from the transmitting antenna in	
	meter	
Max average output power in Watt (TP)	21.24dBm (0.133W=133.0mW)	
Antenna gain (G)	3.0dBi (Numeric gain: 2.00)	
Exposure classification	S=1mW/cm ²	
Minimum distance in meter (d) (from transmitting structure to the human body)	20cm (0.2m)	

Yields

$$S = \frac{30xPxG}{3770d^2}$$
, P=0.133W=133.0mW, G=2.00, d=0.2m=20cm
S=0.053mW/cm²

Conclusion:

 $S{=}0.053 mW/cm^2$ is significant lower than the FCC 47CFR Part 1.1310 Limit $1 mW/cm^2$. (For mobile or fixed location transmitters, the maximum power density is $1.0~mW\,/~cm^2$ even if the calculation indicates that the power density would be larger.)

5G MPE Evaluation:

EUT parameter (data from the separate report)			
Given	Where		
$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$	G: numerical gain of transmitting antenna;		
	TP: Transmitted power in watt;		
	d: distance from the transmitting antenna in		
	meter		
Max average output power in Watt (TP)	21.03dBm (0.127W=127.0mW)		
Antenna gain (G)	3.0dBi (Numeric gain: 2.00)		
Exposure classification	S=1mW/cm ²		
Minimum distance in meter (d) (from transmitting structure to the human body)	20cm (0.2m)		

Yields

$$S = \frac{30xPxG}{3770d^2}$$
, P=0.27W=127.0mW, G=2.00, d=0.2m=20cm
S=0.050mW/cm²

Report No.: HCT17IR269E-3 Page 6 of 7

Conclusion:

 $S{=}0.050 mW/cm^2$ is significant lower than the FCC 47CFR Part 1.1310 Limit $1 mW/cm^2$. (For mobile or fixed location transmitters, the maximum power density is $1.0\ mW$ / cm^2 even if the calculation indicates that the power density would be larger.)

Report No.: HCT17IR269E-3 Page 7 of 7