- Redes móviles
 - Evolución histórica del mercado
 - o Liberalización del mercado
 - Operadores Móviles Virtuales (OMV)
- Generaciones de redes móviles
 - ¿Qué es una generación?
 - ¿Qué implica un cambio de generación?
 - Estado actual
- Red móvil 1G
 - Antenas de Telefonía Móvil
 - Red celular
 - Handover (cambio de celda)
 - Red de antenas
 - Comunicación inalámbrica
 - Frecuencias y espectro electromagnético
 - Bandas de frecuencia para móviles
 - Gestión del espectro
 - o Bandas de frecuencia y operadores
- Red móvil 2G Principios de los 90
 - Contratos
 - Evolución de los datos en 2G
 - Tarjeta SIM
 - Formatos físicos
 - eSIM (Embedded SIM)
 - Dual SIM
 - o Identificadores en la red
 - Proceso de autenticación en GSM
 - Roaming
 - ¿Qué es el roaming?
- Red móvil 3G (desde 2004)
 - ¿Qué trajo de nuevo?
 - ¿Qué hizo posible la 3G?
 - Relación con otras generaciones
- Red móvil 4G (desde 2010)
 - ¿Qué trajo de nuevo?
 - ¿Qué hizo posible la 4G?
 - Relación con generaciones anteriores
- Red móvil 5G (desde ~2020)
 - ¿Qué trajo de nuevo?
 - ¿Qué hizo posible la 5G?
 - Relación con generaciones anteriores

Redes móviles

1986: Entrada de España en la UE

- UE: Organización supranacional
- Países ceden parte de soberanía. Comparten reglas comunes.
- Evitar conflictos entre estados (interdependencia económica). Proceso de privatización (Felipe González y José María Aznar)
- España tenía empresas públicas
- Sectores estratégicos: transporte, energía y telecomunicaciones
- Normas de la UE: No se permiten grandes empresas públicas deficitarias.
- Obligación: España privatizó empresas para evitar distorsiones en el mercado.
- Empresas públicas: Algunas se mantuvieron bajo control estatal, pero con limitaciones.
- Capital extranjero: La entrada de inversores en empresas como Telefónica y Seat fue posible gracias a negociaciones con otros países.

Liberalización del mercado

Telefónica: Posición monopolística (1924-1990)

- Telefónica dominaba el mercado de telecomunicaciones en España.
- Privatización de Telefónica (1995-1997)
- 1994: Liberalización mercado telecomunicaciones.
- Desarrollo de la red digital GSM.
- Nuevas licencias a través de concursos. Cambio de marcas y operadores
- Telefónica se convierte en Movistar.
- Airtel pasa a ser Vodafone (1995).
- Retevisión > Amena > Orange (1998).
- En 2006: Nacen los operadores móviles virtuales.

Proveedores de servicio Objetivo de la liberalización

- Aumentar la competencia en el sector.
- Mejorar servicios para los consumidores.
- Comisión Europea impulsó la liberalización del mercado.
- CNMC y otras entidades facilitaron la entrada de Operadores Móviles Virtuales (OMV).

Operadores Móviles Virtuales (OMV)

- No tienen red propia
- Usan redes de Movistar, Vodafone, Orange y Yoigo.
- Pagan por usar sus redes
- Ofrecen servicios con su propia marca.

Nichos de mercado de los OMV:

- Tarifas prepago para usuarios que prefieren pagar por adelantado.
- Servicios para inmigrantes con planes específicos.
- Planes de bajo coste con precios más competitivos
- Servicios a medida e innovadores.
- Atracción de diversos segmentos de la población.

- Impacto en el mercado
- Mayor competencia en el mercado de telecomunicaciones.
- Diversidad de opciones para los consumidores.

Generaciones de redes móviles

¿Qué es una generación?

- Cada **generación** representa un conjunto de tecnologías móviles con mejoras importantes respecto a la anterior.
- Se identifican con números: 1G, 2G, 3G, 4G, 5G.
- Cada salto generacional supone:
 - o Más velocidad de transmisión.
 - Nuevas funcionalidades.
 - o Mejor calidad de servicio.

¿Qué implica un cambio de generación?

- Las antenas y estaciones base deben actualizarse para soportar las nuevas tecnologías.
- Los **móviles** también deben ser **compatibles** para poder aprovechar la nueva red.
- Por eso, no todos los móviles pueden usar redes 5G, por ejemplo.

Estado actual

- Hoy en día, la 5G ya está desplegada en muchas ciudades.
- Aún convive con 4G, 3G e incluso algunas zonas con 2G.
- Las generaciones anteriores **no desaparecen de golpe**, sino que se van retirando poco a poco.

Red móvil 1G

Transmisión analógica

- Utilizaban señales analógicas para transmitir voz.
- Comunicaciones por modulación de frecuencia (FM) (radio).
- Susceptibles a interferencias, ruido y escuchas no autorizadas.

🗋 Baja eficiencia energética

- Baterías de níquel-cadmio (NiCd), con poca autonomía y pesadas.
- Algunos modelos (como el Ericsson "Hotline") eran grandes y se llevaban como maletines.

Funcionamiento básico

- Conexión inicial: Al encender el teléfono, se conectaba a la antena más cercana.
- Central conmutadora (MSC): La antena se comunicaba con la central conmutadora.
- **Llamada:** Al hacer una llamada, esta se dirigía desde el teléfono a la torre, y de ahí por línea terrestre a la red telefónica fija.

• Solo voz: No había datos ni SMS (eso llegó con 2G).

Antenas de Telefonía Móvil

- Ubicación en ciudades: Se colocan en edificios altos.
- Cobertura: Cada antena cubre un área determinada.
- El teléfono se conecta a la antena más cercana mientras se mueve.
- Las antenas están conectadas entre sí y a Internet, lo que permite enviar información a través de la red de la operadora.

Red celular

- La cobertura se divide en celdas con forma hexagonal.
- Cada celda tiene una antena propia (estación base).
- Celdas: Zonas geográficas pequeñas con una antena base (torre) que daba cobertura.
- Al moverse de una celda a otra, se realizaba el "handover" (transferencia) para mantener la llamada.
- Cada antena emite en frecuencias distintas para evitar interferencias.

Handover (cambio de celda)

- Cuando el usuario se mueve, el móvil pierde señal de una celda y gana señal de otra.
- El sistema cambia automáticamente la conexión a la nueva antena: esto se llama "handover".
- En 1G, este proceso era lento y con posibles cortes, ya que no había buena gestión digital.

Red de antenas

- Las antenas emiten ondas electromagnéticas en una banda de frecuencia concreta.
- Estas ondas se **propagan por el aire**, pero pierden potencia con la distancia y los obstáculos.
- Se colocan antenas en lugares altos (tejados, torres) y en función de la **densidad de población**.

Comunicación inalámbrica

- El móvil recibe la señal con su antena interna.
- Detecta solo las ondas de la frecuencia que le interesa, y descarta otras señales del entorno (TV, radio, wifi...).
- Así se asegura que solo se conecta con su operador móvil.

Frecuencias y espectro electromagnético

- El **espectro electromagnético** incluye todas las frecuencias posibles.
- Cada tipo de onda (radio, microondas, rayos X...) tiene propiedades diferentes.
- Ejemplo: los rayos X atraviesan el cuerpo, pero no los huesos.
- En medicina, se usan rayos X o gamma para destruir células cancerosas (radioterapia).

Bandas de frecuencia para móviles

- Las redes móviles usan frecuencias concretas, según lo que se necesite:
 - Mayor cobertura, menor velocidad.
 - Menor cobertura, mayor velocidad.

- Las bandas bajas (700-900 MHz) llegan más lejos.
- Las bandas altas (2-3 GHz) dan más velocidad pero cubren menos área.

Gestión del espectro

- El espectro radioeléctrico es un recurso limitado y público.
- En España lo gestiona la Secretaría de Estado de Telecomunicaciones e Infraestructuras Digitales.
- Asignan las frecuencias a los operadores (Movistar, Vodafone, etc.) para que no se solapen.

Bandas de frecuencia y operadores

- Las compañías como Movistar o Vodafone compran o alquilan bandas de frecuencia al Estado.
- Con esas bandas:
 - o Instalan antenas que emiten en esas frecuencias.
 - Los** móviles se conectan** a esas frecuencias para poder llamar, enviar mensajes o navegar por internet.

Red móvil 2G – Principios de los 90

- Digitalización de la red
- Con 2G llega la digitalización de la voz y los datos.
- El estándar más usado fue GSM (Global System for Mobile Communications).

Principales mejoras:

- Introducción de la tarjeta SIM.
- Uso de canales compartidos (TDMA: división en el tiempo).
- Cifrado de las comunicaciones.
- Envío de **SMS** entre usuarios.
- Transmisión de datos, aunque a baja velocidad.

Popularización de los primeros teléfonos móviles

- Los teléfonos eran sencillos, y se ofrecían en modalidad de contrato o tarjetas prepago.
- Permitían llamar y enviar SMS, pero no la conexión a Internet.
- La mensajería consistía en enviar SMS, a un coste fijo.

Contratos

- Las tarifas más habituales eran de tarjetas prepago, con una cantidad de dinero asignada.
- Permitían recargar el saldo de la tarjeta.
- También existía la opción de **contrato**, donde se pagaba una tarifa mensual.

Tarjetas prepago

• Las **tarjetas prepago** permitían a los usuarios tener control sobre su gasto, ya que solo se podía gastar el saldo cargado.

Evolución de los datos en 2G

- GPRS (2001)
 - o Aumenta la velocidad de transmisión de datos.
 - Permite el uso de **MMS** (mensajes multimedia) y **navegación web básica**.
- EDGE
 - o Mejora la velocidad y **ancho de banda**.
 - o Soporta aplicaciones multimedia más avanzadas.

Tarjeta SIM

- **SIM**: Subscriber Identity Module.
- Introducida con GSM.
- Contiene información que identifica al usuario en la red.

¿Qué guarda una SIM?

- IMSI: número único del usuario en la red.
- Ki: clave secreta para autenticar al usuario.
- Agenda de contactos, SMS, y algunos datos del operador.

¿Qué ventaja tiene?

- El número está en la tarjeta, no en el teléfono.
- Puedes cambiar de móvil y mantener tu número y contactos

Formatos físicos

- Existen diferentes tamaños: SIM, microSIM, nanoSIM.
- Sin SIM, no puedes conectarte a la red móvil.
- Sí puedes conectarte a una red Wi-Fi si está disponible.

eSIM (Embedded SIM)

- SIM digital integrada en el dispositivo.
- No necesita tarjeta física.
- Permite cambiar de operador sin cambiar la SIM.
- Ahorra espacio y ofrece más flexibilidad al usuario.

Dual SIM

• Permite usar dos SIM en el mismo teléfono.

Usos frecuentes:

- Separar trabajo y vida personal (dos números en un dispositivo).
- Combinar operadores: aprovechar distintas coberturas o tarifas.
- Viajes: usar una SIM local y mantener la de tu país.

Identificadores en la red

Concepto Significa Para qué sirve Dónde se guarda

Concepto	Significa	Para qué sirve	Dónde se guarda
IMSI	International Mobile Subscriber Identity (Identidad Internacional de Suscriptor Móvil)	Identifica al usuario (la SIM) dentro de la red del operador	En la tarjeta SIM
IMEI	International Mobile Equipment Identity (Identidad Internacional del Equipo Móvil)	Identifica al dispositivo (el teléfono)	En el hardware del móvil (y no se puede cambiar fácilmente)

Proceso de autenticación en GSM

- Móvil envía su IMSI a la red
- Luego usa un TMSI (identificador temporal) para proteger su identidad. Challenge-Response
- Red envía número aleatorio (RAND) al móvil.
- SIM, usando su clave secreta (Ki), calcula una respuesta (SRES) con el algoritmo A3.
- Red hace el mismo cálculo y compara respuestas. Si coinciden → autenticado. Generación de clave de cifrado
- A partir de RAND y Ki, la SIM genera una clave de sesión Kc con el algoritmo A8.
- Clave se usará para cifrar los datos entre el móvil y la red. Cifrado de la comunicación
- Se activa el cifrado usando la clave Kc y el algoritmo A5/x.

Roaming

¿Qué es el roaming?

Permite que una SIM se conecte a redes extranjeras cuando estás fuera de tu país.

¿Cómo funciona?

- 1. Al encender el móvil en el extranjero, este escanea redes disponibles.
- 2. Consulta a la **SIM** para saber con qué operadores tiene acuerdos de roaming.
- 3. El teléfono intenta registrarse en una de esas redes y **envía el IMSI** (identificador único del usuario).
- 4. La red extranjera pregunta a tu operadora original si puede aceptar al usuario.
- 5. Si es aceptado, se autoriza el acceso.
- 6. Se realiza una **autenticación segura** entre tu SIM y la operadora original (proceso *challenge-response*), con la red extranjera como intermediaria.
- Si todo va bien: puedes **llamar, enviar SMS y usar datos** como si estuvieras en tu país.

EU Roaming en la Unión Europea

- Sin recargos adicionales al viajar por la UE.
- Usas tu tarifa habitual: llamadas, mensajes y datos al mismo precio que en España.

Roaming fuera de la UE

- En países como Marruecos, Ecuador o Filipinas:
 - Algunas SIMs tienen datos limitados.
 - Se conectan a **redes locales**, que pueden tener costes más altos.
 - Es recomendable consultar las condiciones con tu operador antes de viajar.

https://o2online.es/ayuda/paises-por-zonas-zona-1-zona-2-y-zona-3/

Red móvil 3G (desde 2004)

¿Qué trajo de nuevo?

- 1. UMTS (Universal Mobile Telecommunications System)
 - Evolución del estándar GSM.
 - Usa **WCDMA** (Wideband Code Division Multiple Access) en lugar de TDMA.
 - Todos los usuarios comparten la misma frecuencia, pero con códigos únicos.
 - Permite más usuarios a la vez y mejor rendimiento en zonas densas.

2. HSPA y HSPA+ (2006)

- Mejoras sobre 3G estándar.
- Velocidades de hasta 42 Mbps.
- Permite usar apps con más datos: YouTube, redes sociales, videollamadas, navegación GPS, etc.

¿Qué hizo posible la 3G?

- Nacieron los smartphones reales: iPhone, Android.
- Acceso completo a **Internet móvil** (ya no solo WAP).
- Popularización de apps como:

- WhatsApp
- Mapas con GPS
- Correo electrónico en tiempo real
- Streaming y redes sociales

Relación con otras generaciones

- La 3G fue un gran salto respecto a la 2G: voz y datos digitales más rápidos.
- Prepara el camino para la llegada del 4G y las apps modernas.

Red móvil 4G (desde 2010)

¿Qué trajo de nuevo?

LTE (Long Term Evolution)

- Tecnología principal de 4G.
- Basada completamente en **datos IP**, incluso para llamadas (VoIP).
- Velocidades mucho más altas: hasta 100 Mbps o más.
- Baja latencia → ideal para contenido en tiempo real.

¿Qué hizo posible la 4G?

- Streaming de música y vídeo fluido (Netflix, Spotify, etc.).
- Videollamadas en HD (Skype, FaceTime...).
- Apps más avanzadas: juegos online, trabajo en la nube, apps de transporte (Uber, Google Maps en tiempo real).
- **Tethering** (compartir conexión con otros dispositivos).

Relación con generaciones anteriores

- Mucho más rápida que 3G.
- Transición a la era de los datos móviles masivos.
- Puente entre smartphones y el inicio de los dispositivos conectados.

Red móvil 5G (desde ~2020)

¿Qué trajo de nuevo?

Características principales

- Velocidades ultrarrápidas: hasta 10 Gbps en teoría.
- Latencia muy baja: menos de 1 ms.
- Conexión de muchos dispositivos al mismo tiempo (IoT, ciudades inteligentes).
- Tres tipos de bandas:
 - ∘ **Banda baja** → cobertura amplia, velocidad moderada.
 - ∘ **Banda media** → equilibrio entre cobertura y velocidad.
 - o Banda alta (mmWave) → velocidad máxima, pero poca cobertura.

¿Qué hizo posible la 5G?

- Realidad aumentada y virtual en tiempo real.
- Vehículos autónomos con comunicación instantánea.
- Telemedicina con cirugía remota.
- Streaming 4K/8K y experiencias inmersivas.
- Desarrollo de smart cities y loT masivo.

Relación con generaciones anteriores

- No solo mejora la velocidad: transforma sectores enteros (industria, salud, transporte).
- Supone el paso de un móvil conectado a un mundo conectado.