Searching Multiple Local Optimal Solutions in Multimodal Function by Bat Algorithm based on Novelty Search

P3-10

複数解探索におけるノベルティサーチに基づく分散Bat Algorithm

〇 岩瀬 拓哉 高野 諒 上野 史 梅内 祐太 石井 晴之 佐藤 寛之 髙玉 圭樹 |電気通信大学

はじめに | 複数解探索の問題点:大域探索と局所探索のバランス

Bat Algorithm(BA)

・局所探索性能を自動で調整

・ランダムな大域探索Bat Algorithm(BA)

gbest Xrnd

従来BAでは一つの最良解を探索 局所探索 > 大域探索

 x_{abest}

目的:分散型BAの提案とその有効性の検証

・ノベルティサーチ(大域探索)の導入

・複数局所解を保持

従来手法 | Bat Algorithm [Yang X.S., 2010]

Step1: 初期化と解生成

 $f_i = f_{min} + (f_{max} - f_{min})\beta...(1)$ 周波数 f_i の設定(β は[0 1]の乱数)

$$d_i^{t-1} = x_{gbest} - x_i^{t-1}$$
 ...(2)
 $v_i^t = v_i^{t-1} + d_i^{t-1} * f_i$...(3)

$$v_i^t = v_i^{t-1} + d_i^{t-1} * f_i$$
 ...(3)
 $x_i^t = x_i^{t-1} + v_i^t$...(4)

$$x_{new} = x_{gbest} + \epsilon A^t$$
 ...(5)
(ϵ (は[-1-1]の乱数)

ランダムに新しい解x_{rnd}を生成

Step4: 解とパラメータの更新

 $f(x_{qbest}) > \{f(x_i^t), f(x_{new}), f(x_{rnd})\}$ x_i^t, x_{new}, x_{rnd} から x_{abest} を更新

$$A_i^{t+1} = \alpha A_i^t \qquad \dots (6)$$

$$r_i^{t+1} = r_i^t (1 - exp(-\gamma t))...(7)$$

Step1へ戻る (i = i + 1 ただしi = 0

(i = Nのとき))

ノベルティサーチ [Joel L,et al, 2008]

k: 個体近傍数 $_{..}$ x: 評価される解 μ_{i} : その他の解

$$\rho(x) = \frac{1}{k} \sum_{i=1}^{k} distance(x, \mu_i)$$

個体を疎な空間へ移動させる距離関数

提案手法 | Novelty Search Bat Algorithm (NSBA)

変更点1: 全個体から離れるような解生成 (ノベルティサーチの活用)

$$\Rightarrow d_i^{t-1} = \frac{1}{N} \sum_{j=1}^{N} (x_i^{t-1} - x_j^{t-1}) * \varepsilon^{|x_i^{t-1} - x_j^{t-1}|} ... (2)'$$

スカラー→ベクトル式 (探索方向の決定)

個体間の移動距離 (個体同士が近い>遠い)

変更点2: $x_{gbest} \rightarrow x_{pbest}$ に変更

複数局所解探索

 $\Rightarrow x_{new} = x_{pbest} + \epsilon A^t ... (5)'$ パーソナルベスト近辺に新しい解を生成

 \Rightarrow If $rand < A_i &$ $f(x_{nbest}) > \{f(x_i^t), f(x_{new}), f(x_{rnd})\}$ x_i^t, x_{new}, x_{rnd} から x_{pbest} を更新

問題設定

Griewank関数の概形

Griewank関数の等高線マップ

評価関数:Griewank Function 次元数:2 範囲:[-10 10]

最 適 解: $f(x^*) = 0, x^* = (0\ 0)$ 局所解数: 17

実験結果 | 解の補足数と分布

各手法	解捕捉数	dist	標準偏差
Original BA (従来手法)	1.7 / 17 (10.0%)	141.70	1.059
NNBA (最近傍個体移動)	9.6 / 17 (56.47%)	43.99	1.429
NSBA (全個体分散)	9.1 / 17 (53.53%)	35.92	0.876

10seed分の局所解捕捉数 (N=20)

複数の局所解に分散 つの局所解に密集

実験内容

BA, NNBA, NSBAの比較

最近傍個体移動Bat Algorithm(NNBA) [岩瀬, 2017]

最近傍個体同十の距離を一定以上保つ

$$d_i^{t-1} = min(x_i^{t-1} - x_k^{t-1})$$
 ...(2)' x_k^{t-1} は x_i^{t-1} に最も近い個体

評価指標

各局所解s,から最近傍個体までの距離の和

 $dist = \sum_{i=1}^{M} m_i n |s_i - x_i|$

パラメータの設定 ラウドネス: $A^0 = 1$

個体数:N=20 パルスレート: r = rand [0 1] 周波数带: $f_{min} = 0$, $f_{max} = 2$ 世代数:t=1000 試行回数:seed=10 $\alpha = \gamma = 0.9$,