a) Print the following pattern.

N=3

N=

$$N=3$$
 $N=6$
 $N=6$

- (N 1). qual 1 store (1
- 2) Dinner Losp ford (= 1)
- 3) inside inner Loop, check if j iss odd (en
- a) if odd ->
- 5) elce Paint j
- 6) Use copines afterience loop to change

$$N=3$$
 $N=6$
 $N=6$

1) 1st Appropiets

2nd Approalsh.

		2	3	4
1	*	*	*	*
2	1	×	×	4
3	1		*	*
4	1		1	+
,	1			

ĭ	choces	N-1+1 Stars
1	0	4
2	l l	3
3	2	2
4	3	.4

N=5

Spaces + stevs

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1) + \int_{0}^{\infty} (1 \rightarrow N-i+1).$$

$$\int_{0}^{\infty} (1 \rightarrow i-1$$

```
each 1000 -> stars + [spaces + spaces] + stars.
          1 \rightarrow n-i+1 + (1 \rightarrow (i-1) + 1 \rightarrow (i-1) + N-i+1
(1 \rightarrow N-i+1) + (1 \rightarrow 2 \times (i-1)) + (1 \rightarrow N-i+1)
(2 \rightarrow N-i+1) + (2 \rightarrow 2 \times (i-1)) + (3 \rightarrow N-i+1)
                                        1 -> oute 200
                   for Cinti=1; ix=N; i++> d
                          for (int j=1; j 1= N-i+1; j++) {
                                          sop("+"); //stor
                            for (int j=1; j2=2x(i-D; j++){
                                           sop("-"); //space
                              for (int j=1 i j x= N-i+1; j++) {
                                               80pc " 4"); //star.
                                 sopine);
                           4
```

each low
$$\Rightarrow$$
 stars $+$ space $+$ space $+$ stars.

1 $+$ N-1 $+$ 1

2 \times (N-1) $+$ 1

for (1-1) $+$ for (1-1);

https://www.interviewbit.com/snippet/01d54300e26559b42d22/