Ứng dụng Xử lý ảnh số & video số

Tuần 2: Toán tử hình thái học trên ảnh nhị phân

PGS. TS. Lý Quốc Ngọc

Nội dung

- 2.1. Giới thiệu về toán tử hình thái học
- 2.2. Toán tử hình thái học trên ảnh nhị phân
- 2.3. Toán tử hình thái học trên ảnh độ xám

2.1. Giới thiệu về toán tử hình thái học

- -Bắt đầu phát triển vào cuối thập niên 1960.
- -Dựa trên cơ sở phép toán đại số của các toán tử phi tuyến tác động trên hình dáng đối tượng (Algebra of non-linear operator).
- -Thay thế phép tích chặp (Linear algebraic system of convolution).

2.1. Giới thiệu về toán tử hình thái học

- -Các tác giả chính: Matheron, Serra.
- -Thường được dùng trong các ứng dụng mà hình dáng đối tượng và tốc độ xử lý là vấn đề cần quan tâm như: ảnh microscopic (sinh học, vật liệu, địa chất, tội phạm), kiểm lỗi công nghiệp (industrial inspection), nhận dạng kí tự (OCR), phân tích tài liệu (document analysis).

2.1. Giới thiệu về toán tử hình thái học

- Toán tử Morphology có đặc tính bảo toàn đặc trưng hình dáng chính của đối tượng.
- Toán tử Morphology được dùng trong các mục đích chính sau:
 - Tiền xử lý ảnh (lọc nhiễu, tinh giãn hình dáng).
 - Tăng cường cấu trúc đối tượng (xương hóa, mỏng hóa, dày hóa, bao lồi).
- Phân đoạn đối tượng từ nền.
- Định lương đối tượng dựa trên đặc trưng hình học vô hướng (diện tích, chu vi, hệ số Euler-Poincaré).

2.2. Toán tử hình thái học trên ảnh nhị phân

- 2.2.1. Khái niệm cơ bản
- 2.2.2. Toán tử giãn nở nhị phân(Binary Dilation)
- 2.2.3. Toán tử co nhị phân(Binary Erosion)
- 2.2.4. Toán tử mở nhị phân(Binary Opening)
- 2.2.5. Toán tử đóng nhị phân(Binary Closing)
- 2.2.6. Toán tử khác

- Anh nhị phân được biểu diễn bởi tập điểm 2D,
 là tập con của tập số nguyên 2D: Z²
- Các điểm thuộc đối tượng trong ảnh có giá trị
 1 được biểu thị bởi X.
- Các điểm thuộc phần bù của đối tượng trong
 ảnh có giá trị 0 được biểu thị bởi X^c.

-Ví dụ: tập điểm X gồm các điểm thuộc đối tượng trong ảnh được xác định:

$$X = \{(1,0), (1,1), (1,2), (2,2), (0,3), (0,4)\},\$$
 $O = (0,0)$

- Phép biến đối hình thái học được tạo thành dựa vào hai tập:
 - Tập X (tập điểm thuộc đối tượng) và
 - Tập **B** (tập điểm kết cấu)

Tập **X**

Tập **B**

Phép tịnh tiến của tập X bởi vector h được xác định:

$$X_h = \{ p \in \varepsilon^2, p = x + h, x \in X \}$$
$$Vd: h = (1,0)$$

Mục đích

Lấp kẽ hở, lỗ hồng.

Định nghĩa

$$X \oplus B = \{ p \in \varepsilon^2 : p = x + b, x \in X \text{ and } b \in B \}$$

$$X \oplus B = \{ p \in \varepsilon^2 : (\hat{B})_p \cap X \neq \emptyset \}$$

$$X \oplus B = \bigcup_{b \in B} X_b$$

$$VD : X = \{ (1,0), (1,1), (1,2), (2,2), (0,3), (0,4) \}$$

$$B = \{ (0,0), (1,0) \}$$

$$X \oplus B = \{ (1,0), (1,1), (1,2), (2,2), (0,3), (0,4), (2,0), (2,1), (2,2), (3,2), (1,3), (1,4) \}$$

Ví dụ:

$$X \oplus B = \{(1,0), (1,1), (1,2), (2,2), (0,3), (0,4), (2,0), (2,1), (2,2), (3,2), (1,3), (1,4)\}$$

Ví dụ

Tính chất

• Giao hoán:

$$X \oplus B = B \oplus X$$

Kết hợp:

$$X \oplus (B \oplus D) = (X \oplus B) \oplus D$$

• Hội tập tịnh tiến:

$$X \oplus B = \bigcup_{b \in B} X_b$$

Bất biến với phép tịnh tiến:

$$X_h \oplus B = (X \oplus B)_h$$

ullet Bảo toàn phép bao hàm: $X \subseteq Y \Rightarrow X \oplus B \subseteq Y \oplus B$

Mục đích

Loại bỏ chi tiết không thích hợp (theo nghĩa về kích thước)

Định nghĩa

$$X\Theta B = \{ p \in \varepsilon^2 : p + b \in X, \forall b \in B \}$$

$$X\Theta B = \{ p \in \varepsilon^2 : (B)_p \subseteq X \}$$

$$X\Theta B = \bigcap_{b \in B} X_{-b}$$

$$X = \{(1,0),(1,1),(1,2),(0,3),(1,3),(2,3),(3,3),(1,4)\}$$

$$B = \{(0,0), (1,0)\}$$

$$X\Theta B = \{(0,3), (1,3), (2,3)\}$$

Ví dụ

Ví dụ

PGS.TS. Lý Quốc Ngọc

Ví dụ

X

 $X \setminus X\Theta B$

PGS.TS. Lý Quốc Ngọc

Tính chất

Chống mở rộng:

$$(0,0) \in B \Rightarrow X\Theta B \subseteq X$$

Không giao hoán:

$$X\Theta B \neq B\Theta X$$

Giao tập tịnh tiến ngược:

$$X\Theta B = \bigcap_{b \in B} X_{-b}$$

Bất biến với phép tịnh tiến:

$$X_h \Theta B = (X \Theta B)_h$$

ullet Bảo toàn phép bao hàm: $X \subseteq Y \Rightarrow X\Theta B \subseteq Y\Theta B$

Mục đích

Làm trơn biên đối tượng, loại eo hẹp và chỗ lồi mỏng.

Định nghĩa

$$X \circ B = (X\Theta B) \oplus B$$

$$(X \circ B = \bigcup \{(B)_p \mid (B)_p \subseteq X\})$$

 $Vi \ d\mu \quad X \circ B = (X\Theta B) \oplus B\}$

 $Vi \ d\mu \quad X \circ B = (X\Theta B) \oplus B\}$

Tính chất

Chống mở rộng:

$$(0,0) \in B \Rightarrow X \circ B \subseteq X$$

• Lũy đẳng:

$$X \circ B = (X \circ B) \circ B$$

ullet Bảo toàn phép bao hàm: $X \subseteq Y \Rightarrow X \circ B \subseteq Y \circ B$

Mục đích

Smoothes sections of contours,

Fuses narrow breaks and long thin gulfs,

Eliminates small holes,

Fill gaps in the contour.

Định nghĩa

$$X \bullet B = (X \oplus B)\Theta B$$

$$X \bullet B = \{ w \in \varepsilon^2 : (B)_p \cap X \neq \emptyset, w \in (B)_p \}$$

$$Vi \ du \quad X \bullet B = (X \oplus B)\Theta B\}$$

 $X \oplus B$

 $(X \oplus B)\Theta B$

$$Vi \ d\mu \quad X \bullet B = (X \oplus B)\Theta B\}$$

$$X \bullet B = \{ w \in \varepsilon^2 : (B)_p \cap X \neq \emptyset, w \in (B)_p \}$$

Tính chất

Mở rộng:

$$(0,0) \in B \Rightarrow X \subseteq X \bullet B$$

• Lũy đẳng:

$$X \bullet B = (X \bullet B) \bullet B$$

•Bảo toàn phép bao hàm:

$$X \subset Y \Rightarrow X \bullet B \subset Y \bullet B$$

cdio

2.2.6. Toán tử hình thái học khác

- 1. Toán tử giãn nở nhị phân (Binary Dilation)
- 2. Toán tử co nhị phân(Binary Erosion)
- 3. Toán tử mở nhị phân(Binary Opening)
- 4. Toán tử đóng nhị phân(Binary Closing)
- 5. Toán tử Hit-or-Miss
- 6. Trích biên (Boundary Extraction)
- 7. Lấp vùng (Region Filling)
- 8. Bao lồi (Convex Hull)
- 9. Làm mảnh (Thinning)
- 10. Làm dày (Thickening)
- 11. Rút xương (Skeleton)