FMI, Info, Anul I Semestrul I, 2016/2017 Logică matematică și computațională Laurențiu Leuștean, Alexandra Otiman, Andrei Sipoș

Seminar 14

- (S14.1) Considerăm limbajul \mathcal{L} ce conține un singur simbol de operație de aritate 2. Să se găsească un enunț φ astfel încât $(\mathbb{Z}, +) \vDash \varphi$, dar $(\mathbb{Z} \times \mathbb{Z}, +) \nvDash \varphi$.
- (S14.2) Considerăm limbajul \mathcal{L} ce conține un singur simbol de operație, ·, de aritate 2. Fie $\mathcal{G} = (G, \cdot^{\mathcal{G}})$ un grup finit. Să se determine un enunț φ_G astfel încât pentru orice grup $\mathcal{H} = (H, \cdot^{\mathcal{H}})$ avem că $\mathcal{H} \models \varphi_G$ dacă și numai dacă \mathcal{H} este izomorf cu \mathcal{G} .
- (S14.3) Considerăm un limbaj \mathcal{L} și o mulțime Γ de enunțuri peste el astfel încât pentru orice $p \in \mathbb{N}$ există $m \geq p$ și o \mathcal{L} -structură cu m elemente ce satisface Γ . Arătați că există o \mathcal{L} -structură infinită ce satisface Γ .
- (S14.4) Considerăm limbajul \mathcal{L} ce conține un singur simbol de relație, $\dot{<}$, de aritate 2. Fie Γ o mulțime de enunțuri ce conține axiomele de ordine strictă, totală și ce admite măcar un model infinit. Să se arate că există un model \mathcal{A} pentru Γ în care, mai mult, $(\mathbb{Q}, <)$ se scufundă, i.e. există $f: \mathbb{Q} \to A$ (necesar injectivă) cu proprietatea că pentru orice $q, r \in \mathbb{Q}$, q < r dacă și numai dacă $f(q) \dot{<}^{\mathcal{A}} f(r)$.
- (S14.5) Peste orice limbaj \mathcal{L} , pentru orice enunţ φ , numim spectrul finit al lui φ mulţimea acelor $n \in \mathbb{N}^*$ cu proprietatea că există o \mathcal{L} -structură cu n elemente ce satisface φ .
 - (i) Dacă \mathcal{L} este limbajul cu un singur simbol de relație de aritate 2, să se scrie un enunț φ ce spune că relația asociată simbolului este o relație de echivalență ale cărei clase au fiecare câte două elemente. Să se determine spectrul finit al lui φ .
 - (ii) Să se găsească câte un limbaj şi câte un enunţ peste el astfel încât spectrul finit al enunţului să fie, pe rând:
 - (a) multimea puterilor de prime;
 - (b) multimea numerelor de forma $2^n 3^m$, cu n, m > 0;
 - (c) multimea numerelor compuse.