Support Vector Machines

Tim Smith, PhD

Support Vector Machines

- Very popular
- Powerful for both classification and regression
- Can uncover both linear and nonlinear relationships!
- Resource intensive!

• Iris data: separate one class from the other

• Iris data: separate one class from the other

Goal: fit the widest possible "street" between classes

Decision boundary (stays as far away as possible from instances)

• Hyperplanes: separate one class from another

In a 2-D world, the hyperplane is a "line"

In a 3-D world, the hyperplane is a "plane"

Hard Margin Classification

- Data must be linearly separable
- There must be NO outliers
- (i.e., the perfect world!)

Soft Margin Classification

- Allows margin violations
 - Instances that are "in the street" or "misclassified"
- C is referred to as "regularization parameter"
 - Controls the width of the margin
 - Determines how much violation is allowed!
- Higher C values perform LESS regularization
 - Leads to a SMALLER margin
 - Aims for less violations
 - There is a risk of overfitting
- Lower C values perform MORE regularization
 - Leads to a WIDER margin
 - Aims for more violations
 - Favors generalizability

- Not all data are linearly separable
- Solution 1:
 - Create polynomial features manually and fit a linear SVM!
 - Problem: Generates too much data (so needs more resources!)
- (Example on next slide)

Example

Sqft	Sold
1000	0
1250	0
1500	1
1750	1
2000	0
2250	0

Standardize

Sqft	Sold
-1.464	0
-0.878	0
-0.293	1
0.293	1
0.878	0
1.464	0

Example

Standardize

Sqft	Sold
-1.464	0
-0.878	0
-0.293	1
0.293	1
0.878	0
1.464	0

Sqft	Sqft ²	Sold
-1.464	2.143	0
-0.878	0.771	0
-0.293	0.086	1
0.293	0.086	1
0.878	0.771	0
1.464	2.143	0

- Solution 2: use a "kernel trick"
 - Similar to adding many polynomial degrees; but it's only calculated and the data is not actually altered by adding new polynomial features.
 - SVC(kernel="poly", degree=3, coef0=1, C=5)
 - coef0 controls how much the model should be influenced by higher degree polynomials

Adding Similarity Features

- Another technique to tackle nonlinear classification
- Adds "features" (i.e., new variables/dimensions) for separation of instances
- Computationally expensive

Gaussian RBF Kernel

• The kernel trick to add similarity features

Gaussian RBF Kernel

- SVC(kernel="rbf", gamma=5, C=0.001)
 - Higher gamma makes the bell shape narrower
 - Smaller gamma makes the bell shape wider
- Increase gamma if the model is underfitting!
- Decrease gamma if overfitting!

Gaussian RBF Kernel

Increase C to minimize violations

Kernel Tricks

- SVC(kernel="linear")
 - Fits a straight line/plane to separate the two classes
- SVC(kernel="poly")
 - Tricks the SVC to think that there are polynomial features (WITHOUT creating polynomial features)
 - Fits a curved line/plane to separate the two classes
- SVC(kernel="rbf")
 - Tricks the SVC to think there are new features (i.e., similarity features)
 - Fits a straight line/plane in a new n-dimensional space

Multi-Class Classification

- SVM cannot perform multi-class classification (in its true sense)
- Instead, it performs: one-versus-rest ("ovr")
 - Create multiple binary class classification models
 - Run the observation on these models
 - Make a final determination based on the combined results

OvR

- Logistic and SVM use this encoding in the background.
- One-vs-rest is a method for using binary classification algorithms for multiclass classification.
- OvR approach splits the multi-class dataset into multiple binary classification problems.
 - Example: Predicting red, blue, green or yellow:
 - Binary classification problem 1: red vs [blue, green, yellow]
 - Binary classification problem 2: blue vs [red, green, yellow]
 - Binary classification problem 3: green vs [red, blue, yellow]
 - Binary classification problem 4: yellow vs [red, blue, green]
- A binary classifier is then trained on each binary classification problem and predictions are made using the model that is the most confident.

SVM Regression

- SVM can be used to predict numerical values too
- Instead of creating the widest street, fits most instances on the street
- The width of the street is controlled by epsilon

SVM Regression

Use kernelized SVM for polynomial models

Python Cheatsheet

- C: regularization
 - Small C: wide margin, allows more violations (i.e., generalizable)
 - High C: small margin, allows less violations (i.e., overfitting)
- coef0: used for poly kernel
 - Controls how much the model is influenced by higher degree polynomials
- gamma: the shape of the bell for Gaussian RBF
 - Higher values make it narrower
 - Smaller values make it wider
- tol: precision parameter
- epsilon: width of the margin in regression