Project: Predictive Analytics Capstone

Task 1: Determine Store Formats for Existing Stores

Company currently has 85 grocery stores and is planning to open 10 new stores at the beginning of the year. Currently, all store use the same store format to sell all their products, which begin to cause problems as stores are suffering from product surpluses in some product categories and shortages in others. I am asked to provide analytical support to make decisions about store formats and inventory planning.

1. What is the optimal number of store formats? How did you arrive at that number?

I used only 2015 sales data and applied K-means clustering model. Based on K-means cluster assessment report, I picked the final optimal number of store formats to be 3 as it has highest rand in Adjusted Rand Indices chart and highest rand in Calinski_harabasz Indices chart as well.

Plots

2. How many stores fall into each store format?

Cluster 1 has 23 stores, cluster 2 has 29 stores and cluster 3 has 33 stores.

Cluster	Count
1	23
2	29
3	33

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

Cluster 1 has more general merchandise sales and less Dairy sales

Cluster 2 has more dairy, frozen food, produce, floral sales and less dry grocery, meat sales.

Cluster 3 has more meat and deli sales and less general merchandise sales.

		Summary Report of	the K-Means Clustering Solution	on CLusterKmean)		
Solution Sur	mmary						
		Sum_Dry_Grocery + Sum_Dairy + Sum_Froz a, family = kccaFamily("kmeans"))	en_Food + Sum_Meat + Sum_Produce	+ Sum_Floral + Sum_	_Deli + Sum_Bakery + Su	ım_General_Mercha	ndise,
Cluster Info	rmation:						
	Cluster	Size	Ave Distance		Max Distance		Separation
	1	23	2.320539	3.55145			1.87424
	2	29	2.540086	4.475132			2.118708
	3	33	2.115045		4.9262		
	e after 12 iterations. iin cluster distances: 196.831	35.					
	Sum_Dry_Grocery	Sum_Dai	y Sum_Frozen_Food	Sum_Meat	Sum_Produce	Sum_Floral	Sum_Del
1	0.327833	-0.7610	-0.389209	-0.086176	-0.509185	-0.301524	-0.23259
2	-0.730732	0.7026	0.345898	-0.485804	1.014507	0.851718	-0.554641
3	0.413669	-0.08703	9 -0.032704	-0.032704 0.48698 -0.53665 -0.538327			0.64952
	Sum_Bakery	Sum_General_Merchandis	se				
1	-0.894261	1.2085	16				
2	0.396923	-0.30486	52				
3	0.274462	-0.57438	39				

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

Task 2: Formats for New Stores

The grocery store chain has 10 new stores opening up at the beginning of the year. I am asked to determine which store format each of the new stores should. Since I don't have sales data for these new stores, we need to determine the format based on demographic data.

- 1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)
 - The model comparison report below shows the comparison matrix of Decision Tree, Forest Model and Boosted Model. From the report below, we can see that Boosted Model has the highest accuracy and F1 score. Thus, Boosted model is the best model to apply for the prediction.

	Model Comparison Report							
Fit and error measures								
Model	Accuracy	F1	Accuracy_1	Accuracy_2	Accuracy_3			
Decision_Tree_Storeformat	0.7059	0.7685	0.7500	1.0000	0.555			
Forest_Storeformat	0.8235	0.8426	0.7500	1.0000	0.777			
Boosted_Storeformat	0.8235	0.8889	1.0000	1.0000	0.666			
Model: model names in the current comparison.								
Accuracy: overall accuracy, number of correct predictions of all class	es divided by total sample n	number.						
Accuracy [class name]: accuracy of Class [class name] is defined as			to be Class Iclass name) divided by the tot	al number of cases that actu	ally belong to Class			
[class name], this measure is also known as recall.	the number of cases that a	re correctly predicted	to be class (class fiame) divided by the too	arriumber or cases that actu	ially belong to class			
AUC: area under the ROC curve, only available for two-class classifica	tion							
		6t 6 -		aliminate de la constanta de l				
F1: F1 score, 2 * precision * recall / (precision + recall). The precision n				divided by the total numbe	er or cases predicted to			
be in that class. In situations where there are three or more classes, av	erage precision and average	e recall values across c	lasses are used to calculate the FT score.					
Confusion matrix of Boosted_Storeformat								
Confusion matrix of Boosted_Storeformat		Actual_1	Actual_2		Actual_3			
Confusion matrix of Boosted_Storeformat Predicted_1		Actual_1	Actual_2		Actual_3			
_		_	_		Actual_3			
Predicted_1		4			Actual_3 1 2 6			
Predicted_1 Predicted_2	at	4 0	 0 4		Actual_3 1 2 6			
Predicted_1 Predicted_2 Predicted_3	at	4 0 0	0 4 0		1 2 6			
Predicted_1 Predicted_2 Predicted_3 Confusion matrix of Decision_Tree_Storeform	at	4 0 0	 0 4		1 2 6			
Predicted_1 Predicted_2 Predicted_3 Confusion matrix of Decision_Tree_Storeform Predicted_1	at	4 0 0	0 4 0 Actual_2		1 2 6			
Predicted_1 Predicted_2 Predicted_3 Confusion matrix of Decision_Tree_Storeform	at	4 0 0 0			Actual_3 1 2 6 Actual_3 2 2 5			
Predicted_1 Predicted_2 Predicted_3 Confusion matrix of Decision_Tree_Storeform Predicted_1 Predicted_1 Predicted_2	at	4 0 0 0			1 2 6			
Predicted_1 Predicted_2 Predicted_3 Confusion matrix of Decision_Tree_Storeform Predicted_1 Predicted_2 Predicted_2 Predicted_3	at	Actual_1 3 0 1	Actual_2 0		Actual_3			
Predicted_1 Predicted_2 Predicted_3 Confusion matrix of Decision_Tree_Storeform Predicted_1 Predicted_2 Predicted_2 Predicted_3 Confusion matrix of Forest_Storeformat	at	Actual_1 3 0 1			1 2 6			
Predicted_1 Predicted_2 Predicted_3 Confusion matrix of Decision_Tree_Storeform Predicted_1 Predicted_2 Predicted_2 Predicted_3	at	Actual_1 3 0 1	Actual_2 Actual_2 Actual_2		Actual_			

2. What format do each of the 10 new stores fall into? Please fill in the table below.

Store Number	Segment
S0086	3
S0087	2
S0088	1
S0089	2
S0090	2
S0091	1
S0092	2
S0093	1
S0094	2
S0095	2

Task 3: Predicting Produce Sales

I am asked to predict the accurate monthly sale forecast.

1 What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

ETS(M,N,M) with no dampening should be used for ETS model.

The seasonality shows increasing trend and should be applied multiplicatively. The trend is not clear and nothing should be applied. The error chart is irregular and should be applied multiplicatively as well.

ARIMA(0,1,2)(0,1,0) is set to calculate elements automatically.

Method: ETS(M,N,M)

I	AIC	AICc	BIC 1112.5677
l	1089.6723	1116.3389	1112.5677

Summary of ARIMA Model ARIMA_Produce

Method: ARIMA(1,0,	0)(0,1,0)[12]							
Call: auto.arima(Sum_Pro	oduce)							
Coefficients: ar1 Value 0.663132 Std Err 0.15945								
sigma^2 estimated Information Criteria		5725.33: log	j likeliho	od = -347	7.41299			
AIC AICC E	BIC 081							
In-sample error mea	asures:							
ME -266968.7825838 13858	RMSE 00.2923691 96122	MAE 3.1598628 -1.	MPE 2966978 4	MAPE .3808852 0	MASE .5121821 -0	ACF1 0.1664469		

ETS model's accuracy is higher when compared to ARIMA model. A holdout sample of 6 months data is used. Its RMSE of 1,020,597 is lower than ARIMA's 1,429,296 while its MASE is 0.45 compared to ARIMA's 0.53. ETS also has a higher AIC at 1,283 while ARIMA's AIC is 859.

Period	Sub_Period	forecast	forecast_high_95	forecast_high_80	forecast_low_80	forecast_low_95
2016	1	21539936.007499	23479964.557336	22808452.492932	20271419.522066	19599907.457663
2016	2	20413770.60136	22357792.702597	21684898.329698	19142642.873021	18469748.500122
2016	3	24325953.097628	26761721.213559	25918616.262307	22733289.932948	21890184.981697
2016	4	22993466.348585	25403233.826166	24569128.609653	21417804.087517	20583698.871004
2016	5	26691951.419156	29608731.673669	28599131.515834	24784771.322478	23775171.164643
2016	6	26989964.010552	30055322.497686	28994294.191682	24985633.829422	23924605.523418
2016	7	26948630.764764	30120930.290185	29022885.932332	24874375.597196	23776331.239343
2016	8	24091579.349106	27023985.64738	26008976.766614	22174181.931598	21159173.050832
2016	9	20523492.408643	23101144.398226	22208928.451722	18838056.365564	17945840.419059
2016	10	20011748.6686	22600389.955254	21704370.226808	18319127.11039£ ctiva	te Wi17423107.381946
2016	11	21177435.485839	23994279.191514	23019270.585553	19335600.386124 o to Se	ttings 18360591.780163
2016	12	20855799.10961	23704077.778174	22718188.42676	18993409.79246	18007520.441046

2 Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

Please see below forecast table for existing and new stores.

		Existing stores	New stores	Total Produce
Period	Month	Sales	Sales	Sales
2016	1	21539936.01	2534110.119	24074046.13
2016	2	20413770.6	2401620.071	22815390.67
2016	3	24325953.1	2861876.835	27187829.93
2016	4	22993466.35	2705113.688	25698580.04
2016	5	26691951.42	3140229.579	29832181
2016	6	26989964.01	3175289.884	30165253.89
2016	7	26948630.76	3170427.149	30119057.91
2016	8	24091579.35	2834303.453	26925882.8
2016	9	20523492.41	2414528.519	22938020.93
2016	10	20011748.67	2354323.373	22366072.04
2016	11	21177435.49	2491462.998	23668898.48
2016	12	20855799.11	2453623.425	23309422.53

Tableau Visualization

