[0088] In formulae (1-1) and (1-2), X⁻ is an anion of the following formula (1A), (1B), (1C) or (1D).

$$R^{fa}$$
 — CF_2 — SO_2

$$R^{(b)}$$
 – CF_2 – SO_2 N^-

$$\begin{array}{c|c}
R^{\ell^2} \\
CF_2 \\
CF_2 \\
SO_2 \\
R^{\ell^2} - CF_2 - SO_2 - C \\
SO_2 \\
CF_2 \\
CF_2
\end{array}$$

-continued

O
$$CF_3$$
 \parallel
 $C - CH_2 - SO_3^ CF_3$
 CF_3

[0089] In formula (1A), R^{fa} is fluorine or a C_1 - C_{40} straight, branched or cyclic monovalent hydrocarbon group which may contain a heteroatom.

[0090] Of the anions of formula (1A), an anion having the formula (1A') is preferred.

[0091] In formula (1A'), R^{106} is hydrogen or trifluoromethyl, preferably trifluoromethyl. R^{107} is a C_1 - C_{38} straight, branched or cyclic monovalent hydrocarbon group which may contain a heteroatom. As the heteroatom, oxygen, nitrogen, sulfur and halogen atoms are preferred, with oxygen being most preferred. Of the monovalent hydrocarbon groups represented by R¹⁰⁷, those groups of 6 to 30 carbon atoms are preferred from the aspect of achieving a high resolution in forming patterns of fine feature size. Suitable monovalent hydrocarbon groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, neopentyl, cyclopentyl, hexyl, cyclohexyl, 3-cyclohexenyl, heptyl, 2-ethylhexyl, nonyl, undecyl, tridecyl, pentadecyl, heptadecyl, 1-adamantyl, 2-adamantyl, 1-adamantylmethyl, norbornyl, norbornylmethyl, tricyclodecanyl, tetracyclododecanyl, tetracyclododecanylmethyl, dicyclohexylmethyl, eicosanyl, allyl, benzyl, diphenylmethyl, tetrahydrofuryl, methoxymethyl, ethoxymethyl, methylthiomethyl, acetamidomethyl, trifluoroethyl, (2-methoxyethoxy)methyl, acetoxymethyl, 2-carboxy-1-cyclohexyl, 2-oxopropyl, 4-oxo-1-adamantyl, and 3-oxocyclohexyl. In these groups, one or more hydrogen atoms may be substituted by a moiety containing a heteroatom such as oxygen, sulfur, nitrogen or halogen, or one or more carbon atoms may be substituted by a moiety containing a heteroatom such as oxygen, sulfur or nitrogen, so that the group may contain a hydroxyl, cyano, carbonyl, ether, ester, sulfonic acid ester, carbonate, lactone ring, sultone ring, carboxylic anhydride or haloalkyl moiety.

[0092] With respect to the synthesis of the sulfonium salt having an anion of formula (1A'), reference may be made to JP-A 2007-145797, JP-A 2008-106045, JP-A 2009-007327, and JP-A 2009-258695. Also useful are the sulfonium salts described in JP-A 2010-215608, JP-A 2012-041320, JP-A 2012-106986, and JP-A 2012-153644.

[0093] Examples of the anion of formula (1A) are shown below, but not limited thereto.