Práctica 3

Manejo de la sección de E/S del microcontrolador ESP32

Objetivo: El alumno se familiarizará con la configuración y uso de puertos mediante el uso del ESP-IDF SDK.

Equipo: - Computadora Personal y tarjeta de desarrollo del ESP32.

Teoría: - Técnicas de anti-rebote de botones

- Manejo de Puertos de Entrada y Salida

Desarrollo:

- Revisar documentación del SDK sobre la sección de entrada y salida <u>ESP-IDF</u> <u>GPIO</u>.
- Revisar configuración del SDK del parámetro CONFIG_FREERTOS_HZ, para esta práctica se necesitara que este configurado a 1000. Eso logrará que nuestros retardo puedan tener resolución de 1 mili-segundo.
- Implementar el juego del Rebote (algo similar a "Pong" de 1-dimensión) en base al esquemático de la Fig. 1 y el código proporcionado en el repositorio.

Fig. 1. Esquemático

Funciones a implementar:

1. void **initIO**(void)

Inicialización requerida de los puertos utilizados en esta práctica, según la Fig. 1.

2. eButtonState_t checkButtons(eButtonId_t *buttonNumber)

Retorna el ID del botón detectando y su possible estado *ebtnundefined*, *ebtnshortPressed* y *ebtnlongPressed*. Donde el umbral para una larga duración es cualquiera que sea mayor a 1 segundo. Es importante ignorar el rebote mecánico, un ejemplo de este rebote se puede apreciar en la Fig 2.

Fig. 2. Ejemplo del rebote mecánico de un botón.

3. bool playSequence(eGameState_t gameState)

Muestra el patrón actual que refleja el estado del juego. Estos estados son los siguientes:

• eWaitForStart:

Sequencia de *walking-zero* del LED de mas a la izquierda al LED de mas a la derecha, actualizándose cada 500 ms (s_0 =0b1111, s_1 =0b0111, ..., s_4 =0b1110, y repetir)

• eOngoingGame:

Sequencia de *walking-one* del MSB al LSB con rebote, actualizándose cada 300 ms (s_0 =0b0001, s_1 =0b0010, ..., s_3 =0b1000, s_4 =0b0100, s_6 =0b0010 y repetir) con decremento de 20 ms en cada rebote.

• eEnd:

Muestra el puntaje obtenido por el jugador (con un factor de escala de 0.5) sobre un solo LED, donde el LED de mas a la izquierda representa un puntaje de 2, y el de mas a la derecha de 14. Este LED deberá estar parpadeando con un patrón de 300 ms encendido y 50 ms apagado.

Revisa el estado actual de los botones y valida que sean presionados en una ventana de tiempo correcta. Esta ventana esta dada de la siguiente manera, cuando la "pelota" vaya en sentido de los LEDs a la izquierda, el usuario debe presionar el botón de la izquierda cuando alguno de los dos LEDs del extremo estén encendidos, y misma racionalización en el otro sentido.

Nota:

Es importante tener en cuenta que *ninguna de las dos funciones anteriores debe* bloquear la tarea, ya que que ambas deben aparentar que están corriendo al mismo tiempo. Para lograr esto, hacer uso de la variable global de mili-segundos.

Comentarios y Conclusiones.

Bibliografía y Referencias.