stable matching

- input: given 2 distinct groups of people each with their own rankings of people from the opposite group
- output: stable matching of people: there does not exist 2 pairs (x1, y1), (x2, y2) such that x1 likes y2 more than y1 and y2 likes x1 more than x2 Gale-shapley algorithm:

```
while # exists free man, m, that has not proposed to every woman:
 w = # first woman on m's list not he has not proposed to yet
 if w.status = free:
     engage(w, m)
 else if # w prefer m over current partner m_old:
     engage(w, m)
     free(m_old)
 else:
     continue # w rejects m
```

- men optimal: gale shapely always returns arrangement where men get their best possible stable matching → reason because men always propose from highest down, if highest is stable already will not change
- women pessimality: gale shapely always returns worst stable matching for women
- Word ram model: RAM = array of words; runtime counts instructions (e.g. mul = 1), ignore compiler optimizations/ OS multithreading etc.
- Notations: for function f(n) w/ asymptotic (n^2)
 - ∘ Big O: $O(n^2)$ → 0 <= f(n) <= $c*(n^2)$ for some constant c and where n > k, for some constant k.
 - ∘ Big Omega: $\Omega(n^2)$ → 0 <= c*(n^2) <= f(n) for some constant c and where n > k, for some constant k.
 - ∘ Big Theta: $\theta(n^2) \rightarrow \theta <= a*(n^2) <= f(n) <= b*(n^2)$ for some constant a, band where n > k, for some constant k.
 - \circ small o o(n^2), omega ω (n^2): like big notation, but **not equal** \to o(n^2), f(n) < c*(n^2) for all values c, when n > k for some constant k
- Limit method: as $n \to infinity$, $f(n)/g(n) \to x$

```
 x == 0: f(n) = o(g(n)), since f(n)/g(n) = 0, f(n)/g(n) < k, f(n) < k*g(n).</li>
 x < infinity: f(n) = O(g(n)).</li>
 x < infinity, x > 0: f(n) = Θ(g(n)).
 x > 0: f(n) = Ω(g(n)).
 x == infinity: f(n) = ω(g(n)).
```

Asymptotic useful shit

- Stirling approximation: $log(n!) = \Theta(nlogn)$; also, log(a) * log(b) = log(ab).
- e^x >= 1 + x
- $k^n > n^a$, for any k > 1, and a.
- $\lg^2(n) == (\lg n)^2 != \lg \lg n, \lg(ab) == \lg a + \lg b, \lg(a^n) == n \lg a, \log b(a) == 1/\log b(b), a^{\log b(c)} == c^{\log b(a)}.$
- 1 + 1/2 + 1/3 + ... = 1n(n) + 0(1) (Harmonic), 1 + 2 + ... n = n(n + 1)/2 (AP), 1 + x

```
+ x^2 + ... x^n = (x^n + 1 - 1)/(x - 1) (GP).
```

• L'hopitals: $\lim x \to \inf inty$, f(x)/g(x) == f'(x)/g'(x), e.g. $(\log n/n == 1/n/1)$

Correctness

Using a loop invariant (e.g. array [1 .. j] sorted after j iterations)

- 1. initialization: show loop invariant true before iteration
- 2. mantenance: show if invariant true before iteration, remain true after 1 iteration
- 3. termination: when algo terminates, can be used as property to show correctness (e.g. array [1..n-1] is sorted and no element gt [n] exists, imply whole array sorted)

solving recurrence

- Recursion tree: draw whole recursion tree, e.g. merge sort; Ign levels each level n ops, total nIgn
- 2. master method: T(n) = aT(n/b) + f(n) where a > = 1, b > 1, f asymptotic positive. compare f(n) w/ $n^{(\log(a)baseb)}$.
 - 1. $f(n) = O(n^{(\log a \text{ base } b k)})$ for some constant k > 0: $T(n) = O(n^{(\log a \text{ base } b)})$, fn grows polynomially slower than $n^{(\log a \text{ base } b)}$ by $n^{(\log a \text{ base } b)}$ for some constant k > 0: $T(n) = O(n^{(\log b^a)})$
 - 2. $f(n) = \Theta(n^{(\log a \text{ base b})} * \lg^k(n)), k >= 0, (e.g. k = 2 \rightarrow \lg\lg n),$ then $T(n) = \Theta(n^{(\log a \text{ base b})} * \lg^k(k+1)(n)),$ both grow at similar rates $f(n) = \Theta(n^{\log_b a} \lg^k n)$ $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$
 - 3. $f(n) = \Omega(n^{(\log a \text{ base } b + k)}), k > \theta, T(n) = \Theta(f(n)), f(n) \text{ grows}$ faster by $n \wedge k$, **satisfies regularity condition** af(n/b) <= cf(n) for some $cf(n) = \Omega(n^{(\log ba + c)}) T(n) = \Theta(f(n))$

3. substitution method:

- 1. quess a time complexity, e.g. $T(n) = n^2$, so $T(n) <= cn^2$ for some c
- 2. substitute recurring T's with eqn: $T(n) = T(n/2) \rightarrow T(n) = c(n^2)/4$.
- 3. show result is less than guess: $c(n^2)/4 \le cn^2$.

Randomized algorithms

- Basis works on E(X) = sum(All possible cases * probability of each case)
- Ex: quicksort, let Ai be a permutation where the ith largest element is the first index (i.e. picked as pivot). E(X) = sum(Expected Ai runtime) / n
- Randomized algorithms usually are simple, can approximate good solutions much faster than deterministic

Hashing

- U: universe, all possible values to be hashed, M: the size of array to be mapped to, N: number of stored items
- Randomization: randomize the hash function used, so we do not keep colliding on specific indexes
- Universal hashing: suppose randomized hash function, set of all hash functions = H.
 Universal hashing → |h(x) == h(y)|/|H| <= 1/M: for all x, y where x != y, number of hash functions h that collide / number of hash functions total <= 1/M.
- For any universal set of hash functions mapping $U \to M$, for any N elements the expected number of collisions < N/M
- For any universal set of hash functions, if M >= N, expected cost for N insertion/deletion/queries = O(N) → for each in N expected cost O(N/M) = O(1) each

- Perfect hashing: expected worst case constant time, if M=N^2, expected num collisions
- < 1. (Theorem: there exists hash function $U \rightarrow M$ where $|M| = N^2$ with no collisions)
 - 2 level scheme: each index is another hash map. at each index choose second level hash function with no collisions (M=N^2)
 - $\circ\,$ if H is universal, Expected size of all secondary arrays in 2 level scheme < 2n

Amortized analysis

- O(n) = worst case of a single operation; Amortized worst case = average each case in worst case running all k operations.
- . NOT the same as average case analysis.
- Aggregate method
 - sum worst possible k operations, divide by k. (if many diff operations pick worst possible permuation of operations)
 - tedious, provide upper bound on true cost. cannot provide amortized cost of each operation, only of whole set of operations
- Accounting/ Bankers method
 - Assign common, low cost ops a higher cost, which pays off higher cost, less common operations e.g. increase INSERT cost by 1 so DELETE ALL cost can be 0
 - Actual cost must be <= amortized cost
- · Potential method
 - o define potential function $\phi(i)$ wuch that $\phi(i) >= 0$ for all i, $\phi(i) =$ potential at the end of ith operation. Try to select ϕ such that costly operation, $\Delta \phi$ is negative, negates actual expensive cost. (find decreasing qty during operation)
 - Amortized cost of ith operation = actual_cost(i) + φ(i) φ(i 1).(potential difference, Δφ(i) = φ(i) φ(i 1))
 - \circ Amortized cost n operations = actual cost n ops + $\varphi(n)$ $\varphi(0)$.
 - To show actual cos n ops = $O(f(n) + \varphi(0))$, just show amortized O(f(n)).
 - e.g. binary addition, expensive operation, flip k bits to 0, longest suffix of 1's decrease. φ(i) = 1 + length longest suffix.
 - draw table, columns actual cost, Δφ, amortized cost. each row = 1 case, e.g. expensive case + normal case. show amortized cost still same, total cost = n * amortized cost.