LPI

Assignment L2

Data Analysis

Title: - Classification Date of Completion: 19.11.20 Problem Statement: - Dowhload Pima Indians Diabetes

datasets. Use. Naive Bayes Algorithm for
classification load from the et CS v file.

and splif into training & testing set.

Summerize the properties in the
Training, dot aset so that we can
calculate probabilities and make prediction
Classify, Samples from a feet dataset 4

a summerized training dataset. - Understand Classification 1 make prediction hearning Outo Objectives: Learning Outcome: Students will be able to understand classification and make predictions.

Software & Hardwar Requirement: - 08 (linux), Python, Pima Indians Diabetes dataset

Theory:

Naive Bayes:
1) classifier technique

2) It assumes that the presence of any other feature

a day is related to the presence of any other feature

6	Page:			7
0	Date:	1	1	

2)	It is easy to build and particularly useful for very large dataset. Along with simplicity it is believed to out perform even sofisticated clausfication models.
	Bayes Theorem: - Finds the proability of event occurring given fles probability of another event that has already occurred.
	P(A B) = P(B A) P(A) $P(B)$
)	P(A/B) is the proterior probability of class (A, tauget) given predictor (B, altributes).
2) 3)	P(A) is the prior probability of class. P(B B). P(B A) is the likelihood which is the probability of predictor given a class. P(B) is the prior probability of predictor.
	Test Cases:- The Triput lace Actual Of Expected Of Remark.
	Is disablic 1(true) 1 (true) Passed is not disable 0 Passed disable
	1-> have dicability 0 → does not have disability diabitic

Conclusion: Thus I clausified the given data in 2 parts disablific and not disablific using naive bayes model.