

PowerFactory 2021

Technical Reference

Under-/OvervoltageRelUlim, TypUlim

Publisher:

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen / Germany Tel.: +49 (0) 7072-9168-0 Fax: +49 (0) 7072-9168-88

info@digsilent.de

Please visit our homepage at: https://www.digsilent.de

Copyright © 2020 DIgSILENT GmbH

All rights reserved. No part of this publication may be reproduced or distributed in any form without written permission of DIgSILENT GmbH.

December 1, 2020 PowerFactory 2021 Revision 1

Contents

1	Gen	eral De	escription	1
2	Feat	tures 8	User interface	1
	2.1	Under	-/Overvoltage (RelUlim)	1
		2.1.1	Basic data	1
		2.1.2	Description	1
	2.2	Under	-/Overvoltage Type(TypUlim)	2
		2.2.1	Vector shift	3
			SHC calculation	3
			RMS/EMT simulation	3
3	Inte	gratior	in the relay scheme	4
4	Log	ic		5
	4.1	Single	phase	5
	4.2	3 phas	se	6
	4.3	Vector	shift	7
Α	Para	ameter	Definitions	8
	A.1	Unde	r-/Overvoltage Type (TypUlim)	8
	A.2	Unde	r-/Overvoltage Element (RelUlim)	8
В	Sigr	nal Def	initions	9
	B.1	Single	phase	9
	B.2	3 phas	se	9
	B.3	Vector	Shift	10
Lis	st of	Figure	s	11
Lis	st of	Tables		12

1 General Description

The *Under-/Overvoltage* "RelUlim" block implements one of the following protection functions:

- · an over voltage definite time element
- · an under voltage definite time element
- · a vector jump detection element

The block defines a voltage trip threshold and a constant time delay or, only if set as vector jump detection element, an angular difference; no graphical representation of the trip characteristic is available.

The *Under-/Overvoltage* "RelUlim" block is operational during short circuit, load flow and RMS/EMT simulations.

2 Features & User interface

2.1 Under-/Overvoltage (RelUlim)

The user can change the block settings using the "Under-/Overvoltage" dialogue ("RelUlim" class). The dialogue consists of two tab pages: *Basic data*, and *Description*. The main settings are located in the *Basic data* tab page.

2.1.1 Basic data

The "Under-/Overvoltage" dialogue provides a *presentation* area where the red text shows some info regarding:

- The international symbols used to represent the block protective function.
- The active functionality (*Undervoltage* or *Overvoltage* or *Vector Shift*)
- · Which voltages are measured by the block.

The block can be disabled using the "Out of service" check box ("outserv" parameter). If the element is an *Under voltage* or an *Over voltage* element, the voltage threshold and the time delay can be set using the "Voltage" ("Uset" parameter), and the "Time Delay" control ("Tdel" parameter). If the the element is a *Vector Shift*, the angular threshold can be set using the "Delta Angle" ("Uang" parameter) control. The controls are combo boxes for ranges of discrete values otherwise edit boxes. The blue text on the right of the graphical controls provides additional info regarding the voltage threshold in terms of primary voltage.

2.1.2 Description

The *Description* tab page can be used to insert some information to identify the loc protective element (both with a generic string and with an unique textual string similar to the *Foreign Key* approach used in the relational databases) and to identify the source of the data used to create it.

2.2 Under-/Overvoltage Type(TypUlim)

The *Under-/Overvoltage* block main characteristics must be configured in the "Under-/Overvoltage Type" dialogue (*TypUlim* class). The dialogue doesn't contain any tab page, all parameters are showed in the dialogue unique page.

The "IEC Symbol" ("sfiec" parameter) and the "ANSI Symbol" ("sfansi" parameter) combobox allow to insert for documentation purpose the European and the US standard symbols representing the block functionality. A list of possible symbols is available in the combo boxes but any other symbol can be typed.

The "Function" ("ifunc" parameter) combo box defines if the block is one of the following

- an *Undervoltage* element
- · an Overvoltage element
- · a Vector shift element

The number and the type of the input quantities processed by the block can be configured using the "Type" combo box ("itype" parameter) as:

- 3 phase element ("Voltage (3ph)")
- single phase element ("Voltage (1ph)")
- earth element ("Earth Voltage (3*U0)")
- negative sequence element ("Negative Sequence (U2)")
- positive sequence element ("Positive Sequence (U1)")

Many of the types listed above are provided for documentation only purpose. The underlying types are:

- a 3 phase block (for the "Voltage (3ph)" "Type")
- a single phase block (for the "Voltage (1ph)", "Earth Voltage (3*U0)", "Negative Sequence (U2)", "Positive Sequence (U1)" "Type")
- · a Vector Shift block

If the element is an *Under voltage* or an *Over voltage* element the voltage threshold and the time delay ranges can be set inserting a range definition string in the "Voltage" ("rUset" parameter), and the "Time Delay" ("rTdel" parameter) edit boxes.

If the the element is a *Vector Shift*, the angular threshold range can be set inserting a range definition string in the "Delta Angle" ("rUang" parameter) edit box.

2.2.1 Vector shift

When in the "Function" ("ifunc" parameter) combo box the *Vector shift* item has been set, the block monitors the angle of the phase voltages and trips when the variation of the angle of all phases is greater than the "Delta Angle" ("rUang" parameter) value. It can be used to reproduce the F78 and F78V ANSI function.

This PowerFactory functionality has been conceived to be used running an EMT simulation, due to the better accuracy achieved by an EMT simulation in the phase voltage angles calculation, but it can be also used running a RMS simulation or a SHC calculation.

The algorithm is also slightly different in the SHC calculation, which is a static calculation and in the RMS/EMT simulations.

SHC calculation: In the SHC calculation, except the angular differences calculated at the SHC time, the only other data available are the LDF data. For this reason the angle variation is calculated as the difference between the angles calculated running the LDF and the angles calculated running the SHC. If the angle variation of all phases is greater than the "Delta Angle" ("rUang" parameter) value then a *Vector shift* is detected and the block trips

RMS/EMT simulation: The RMS/EMT algorithm calculates the angular difference between the actual voltage angles and the angles measured a cycle and an half cycle before the actual simulation time. If at least 5 of these 6 angular differences are greater than the "Delta Angle" ("rUang" parameter) value then a *Vector shift* is detected and the block trips.

3 Integration in the relay scheme

The *Under-/Overvoltage* "RelUlim" type class name is *TypUlim*. The *Under-/Overvoltage* dialogue class name is *RelUlim*. As already shown, there are three main versions of the block: a single phase, a three phase version and the Vector Shift. The number and the name of the input signals depends only upon which of these versions is used.

The typical connection of a single phase *Under-/Overvoltage* "RelUlim" block is showed in Figure 3.1.

Figure 3.1: Connection scheme of a *DIgSILENT* single phase *Under-/Overvoltage* "RelUlim" block.

The connections associated with a three phase *Under-/Overvoltage* "RelUlim" block are quite similar.

The typical connection of a three phase *Under-/Overvoltage* "RelUlim" block is showed in Figure 3.2.

Figure 3.2: Connection scheme of a *DIgSILENT* three phase *Under-/Overvoltage* "RelUlim" block.

The connections associated with a *Vector Shift* "RelUlim" block are different, the phase voltage vector components and the clock signal must be provided.

The typical connection of a Phase Shift *Under-/Overvoltage* "RelUlim" block is showed in Figure 3.3.

Figure 3.3: Connection scheme of a *DIgSILENT* three phase Vector Shift *Under-Overvoltage* "ReIUlim" block.

4 Logic

4.1 Single phase

Figure 4.1: The Single Phase *Under-/Overvoltage (RelUlim)logic*

4.2 3 phase

Figure 4.2: The three Phase Under-/Overvoltage (RelUlim) logic

4.3 Vector shift

Figure 4.3: The Vector Shift *Under-/Overvoltage (RelUlim) simplified (SHC) logic*

A Parameter Definitions

A.1 Under-/Overvoltage Type (TypUlim)

Table A.1: Input parameters of Under-/Overvoltage type (*TypUlim*)

Parameter	Description	Unit
loc₋name	Name assigned by the user to the block type	Text
sfiec	IEC symbol $(U<,U<<,U>,U>>)$	Text
sfansi	ANSI symbol (27,27N,59,78)	Text
ifunc	Function ("Overvoltage", "Undervoltage", "Vector Shift")	Integer
itype	Block Type ("Voltage (3ph)", "Voltage (1ph)", "Earth Voltage (3*U0)", "Neg-	Integer
ul la ak	ative Sequence (U2)", "Positive Sequence (U1)"	Taut
rUset	Range of the Voltage threshold	Text
rUang	Range of the delta angle threshold used by the <i>Vector Shift</i> detector	Text
iunitu	Voltage the shold unit (Sec. Amps, pu)	Integer
rTdel	Range of the trip time delay	Text
iunitt	Trip time delay unit (Sec, cycles)	Integer
Ts	Pick up time, it is the time spent measuring the voltage in the load flow	Seconds
	and short circuit calculation and in the RMS simulation	
Tres	Reset time, it is the delay with which the block reset the trip outputs after	Seconds
	that the voltage went below (or above if the <i>Undervoltage</i> function has	
	been set) the trip threshold * Kr	
Kr	Reset ratio	Real

A.2 Under-/Overvoltage Element (RelUlim)

Table A.2: Input parameters of the Under-/Overvoltage element (RelUlim))

Parameter	Description	Unit
loc_name	Name assigned to the user to the block element	Text
Typ₋id	Pointer to the relevant TypUlim object	Pointer
outserv	Flag to put out of service the block	Y/N
Uset	Voltage threshold in Volts	Sec Volts
Usetr	Voltage threshold in pu	pu
Uang	Delta angle threshold used by the Vector Shift detector	deg
Tdel	Trip time delay in seconds	Seconds
cTdel	Trip time delay in cycles	Cycles
CUpset	Voltage threshold in Volts	Primary Volts

B Signal Definitions

B.1 Single phase

Table B.1: Input/output signals of the single phase Under-/Overvoltage element (*CalUlim1p*)

Name	Description	Unit	Type	Model
wUabs	Input voltage	Sec Volts	IN	Any
iblock	Blocking signal	Seconds(or 1/0 RMS/EMT simulation)	IN	Any
wsup	Supervising signal	Seconds(or 1/0 RMS/EMT simulation)	IN	Any
yout	Trip signal	Seconds(or 1/0 RMS/EMT simulation)	OUT	Any
y_s	Start signal	Seconds(or 1/0 RMS/EMT simulation)	OUT	Any

B.2 3 phase

Table B.2: Input/output signals of 3 phase Under-/Overvoltage element (CalUlim)

Name	Description	Unit	Type	Model
wUabs_A	Phase A input voltage	Sec Volts	IN	Any
wUabs_B	Phase B input voltage	Sec Volts	IN	Any
wUabs_C	Phase C input voltage	Sec Volts	IN	Any
iblock	Blocking signal	Seconds (or 1/0 RMS/EMT simulation)	IN	Any
wsup_A	Phase A supervising signal	Seconds(or 1/0 RMS/EMT simulation)	IN	Any
wsup_B	Phase B supervising signal	Seconds(or 1/0 RMS/EMT simulation)	IN	Any
wsup_C	Phase C supervising signal	Seconds(or 1/0 RMS/EMT simulation)	IN	Any
yout	Trip signal (any phase)	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
yout_A	Phase A trip signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
yout_B	Phase B trip signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
yout₋C	Phase C trip signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
yallout	All phases trip signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
y_s	Start signal (any phase)	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
y_A	Phase A start signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
y_B	Phase B start signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
y_C	Phase C start signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any

B.3 Vector Shift

Table B.3: Input/output signals of 3 phase Vector Shift element (CalUvecshift)

Name	Description	Unit	Туре	Model
wUabs_A	Phase A input voltage	Sec Volts	IN	Any
wUabs₋B	Phase B input voltage	Sec Volts	IN	Any
wUabs_C	Phase C input voltage	Sec Volts	IN	Any
wUr_A	Phase A voltage real part	Secondary Volts	IN	Any
wUi_A	Phase A voltage imaginary part	Secondary Volts	IN	Any
wUr_B	Phase B voltage real part	Secondary Volts	IN	Any
wUi_B	Phase B voltage imaginary part	Secondary Volts	IN	Any
wUr_C	Phase C voltage real part	Secondary Volts	IN	Any
wUi₋C	Phase C voltage imaginary part	Secondary Volts	IN	Any
iblock	Blocking signal	Seconds (or 1/0 RMS/EMT simulation)	IN	Any
wsup_A	Phase A supervising signal	Seconds(or 1/0 RMS/EMT simulation)	IN	Any
wsup_B	Phase B supervising signal	Seconds(or 1/0 RMS/EMT simulation)	IN	Any
wsup_C	Phase C supervising signal	Seconds(or 1/0 RMS/EMT simulation)	IN	Any
clock	Clock signal	1/0	IN	EMT
				only
yout	Trip signal (any phase)	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
yout₋A	Phase A trip signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
yout_B	Phase B trip signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
yout_C	Phase C trip signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
yallout	All phases trip signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
y_s	Start signal (any phase)	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
y_A	Phase A start signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
y_B	Phase B start signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any
y_C	Phase C start signal	Seconds (or 1/0 RMS/EMT simulation)	OUT	Any

List of Figures

3.1	Connection scheme of a <i>DIgSILENT</i> single phase <i>Under-/Overvoltage</i> "RelUlim" block	4
3.2	Connection scheme of a <i>DlgSlLENT</i> three phase <i>Under-/Overvoltage</i> "RelUlim" block	4
3.3	Connection scheme of a <i>DIgSILENT</i> three phase Vector Shift <i>Under-/Overvoltage</i> "Reblock	
4.1	The Single Phase <i>Under-/Overvoltage (RelUlim)logic</i>	5
4.2	The three Phase Under-/Overvoltage (RelUlim) logic	6
4.3	The Vector Shift Under-/Overvoltage (RelUlim) simplified (SHC) logic	7

List of Tables

A.1	Input parameters of Under-/Overvoltage type (<i>TypUlim</i>)	8
A.2	Input parameters of the Under-/Overvoltage element (<i>ReIUlim</i>))	8
B.1	Input/output signals of the single phase Under-/Overvoltage element (CalUlim1p)	9
B.2	Input/output signals of 3 phase Under-/Overvoltage element (CalUlim)	9
B.3	Input/output signals of 3 phase Vector Shift element (CalUvecshift)	10