

4	1	ΠĐ	π ₂	π ₃	π ₄	π ₅	π ₆	π ₇	π ₈	π ₉	π ₁₀	π ₁₁	π ₁₂	π ₁₃	π ₁₄	π ₁₅
	S ¹	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	S ²	0	Z	Z	Z ₂	Z ₂	Z ₁₂	Z ₂	Z ₂	Z ₃	Z ₁₅	Z ₂	Z ₂ ²	C 1. C 2.	Z ₈₄ ×Z ₂ ²	Z_2^2
		0	0	Z	Z_2	Z_2	Z ₁₂	Z_2	72	<u>Z</u> 3	Z ₁₅	Z_2	Z_{2}^{2}	$Z_{12} \times Z_{2}$	$Z_{84} \times Z_2^2$	Z ₂
	S ⁴	0	0	0	Z	Z_2	Z_2	Z×Z _{N2}	Z_2^2	Z_2^2	$Z_{24} \times Z_3$	Z ₁₅	Z ₂	Z_2^3	Z ₁₂₀ × Z ₁₂ ×Z ₂	Z ₈₄ ×Z ₂ ⁵
	S ⁵	0	0	0	0	Z (Z	$\overline{Z_2}$	Z ₂₄	Z_2	Z ₂	Z_2	Z ₃₀	Z_2	Z_{2}^{3}	7 ₇₂ ×Z ₂
	S ⁶	0	0	0	0	0	Z	Z	$\overline{Z_2}$	Z ₂₄	0	Z	Z ₂	Z ₆₀	$Z_{24} \times Z_2$	Z_2^3
	s ⁷	0	0	0	0	0	0	Z	Z ₂	Z ₂	Z ₂₄	0	0	Z ₂	Z ₁₂₀	Z_2^3
	<i>S</i> ⁸	0	0	0	0	0	0	0	z	\mathbb{Z}_2	Z ₂	Z ₂₄	0	0	Z ₂	Z×Z ₁₂₀

Homology
$$S^2$$
: $H_2(S^2)$, $H_1(S^2)$, $H_2(S^2)$

$$H_n(S^2) = \{e\}$$

$$n_{33}$$

$$T^2$$
, σ_{5} , ...

Exactly 5 polygon ...

Triangularization of S2


```
3. \left( \frac{i \times + jy + kZ}{2} \right) = ? = 0
For. Ho(K) = Zo(k).
Bo(K)
    Zo = Ker 00 = =
                             0 \cdot (\infty) \cdot = 0
                            ð, (ip.p1) = P1-P0
     70 = < 21/127 = ZOLOZ
                           32((16/1/1))=
                             (PIP) - (P.Pi) + (P.Pi)
   B. = Im (01) = { c ∈ C1 } 3x ∈ C2 : C = 01x }
      (C1) C0
                            31 Q =
                            3'C =
o, (la+mb+nc) -! sie
   Q(y-x) + m(z-y) + n(z-x)
=
(z \in z)
                                   · Im(01).
     -(l+n) 1 + (l-m) y + (m+n) Z
                                   · E · C . (K) · · ·
   . f.: (0(1c) = ZS14-1. Z. . . .
                                   f((1x+my+n2) = (+m+n)
  Ker f. = . { xe C1 | f(2) = 0 }. kerf = . Bo.(K). . . .
```

$$\varphi: G_1 \longrightarrow G_2$$
 $\xrightarrow{G_1} \underset{\text{kerf}}{\underline{G_1}} \underset{\text{kerf}}{\underline{G_1}}$ $\xrightarrow{\text{kerf}}$ $\xrightarrow{\text{kerf}}$

$$H_{\circ}(k) = \frac{Z_{\circ}(k)}{B_{\circ}(k)} \cong Z$$

$$= -(l+n)(x) + (l-m)(y) + (m+n)(z)$$

$$= -(l+n)(x) + (m+n)(x) + (m+n)(x)$$

$$= -(l+n)(x) + (m+n)(x)$$

$$= -(m+n)(x) + (m+n)(x)$$

$$= -(m+n)(x) + (m+n)(x)$$

$$= -(m+n)(x) + (m+n)(x)$$

$$= -(m+n)(x) + (m+n)(x)$$

$$= -(m+n)($$

$$(l_{1}m,n) \in \mathbb{Z}^{3}$$

The image of [71] is in a ... به تساسل کا ع $\begin{cases} x & -1 \\ y & 1 \end{cases}$ $\begin{cases} x & 0 \\ y & 1 \end{cases}$ $\begin{cases} x$ $\langle (Y-x), (z-y) \rangle = Im(x_1) = Bo(k)$ Free Abelian groß + mourpulation. a veetsi space liver opertor. $H_{\circ} = \frac{Z_{\circ}}{B_{\circ}} = \frac{\langle x_{1}y_{1}z_{1}\rangle}{\langle y_{-}x_{1}z_{-}y_{1}\rangle} \simeq \frac{\langle x_{1}y_{1}z_{1}\rangle}{\langle 0, z_{-}y_{2}\rangle} = \frac{\langle x_{1}x_{1}x_{2}\rangle}{\langle 0, z_{-}y_{2}\rangle}$ $= \frac{\langle x \rangle}{\langle 0 \rangle} = \langle x \rangle = \mathbb{Z} / \mathbb{Z}$ H46 H; [8] 91797 = 6: [81] = [5] - 3192 (H) [ax+by+c2] = [~x+6x+22] Lx 1412)

$$(\alpha - \alpha) \times + (\alpha - \delta) \times + (\alpha -$$

H₁ =
$$\frac{Z_1}{B_1}$$
 $Z_1 = \ker O_1$
 $C_1 = \frac{\partial I}{\partial A}$
 $C_2 = \frac{\partial I}{\partial A}$
 $C_3 = \frac{\partial I}{\partial A}$
 $C_4 = \frac{\partial I}{\partial A}$
 $C_5 = \frac{\partial I}{\partial A}$
 $C_6 = \frac{\partial I}{\partial A}$
 $C_6 = \frac{\partial I}{\partial A}$
 $C_6 = \frac{\partial I}{\partial A}$
 $C_7 = \frac{\partial I}{\partial A}$
 $C_8 = \frac{\partial I}$

$$\frac{(-a-b+c)}{(a+b-c)} = \frac{Z_1}{B_1} = H_1 \cong \frac{G}{G} = \{e\}$$

$$\frac{(a+b-c)}{(1)} = \{0,1,1,1,2,2,...\}$$

$$\frac{(1)}{(-1)} = \{0,1,1,1,2,2,...\}$$

Here
$$S = \frac{2z}{Bz}$$
 $S = \frac{2z}{Bz}$
 $S = \frac{2z}{Bz}$

$$H_{\circ}(S^{2}) = H_{2}(S^{2}) = \mathbb{Z}.$$

$$H_{\circ}(S^{2}) = \{e\} \cdot \int ... \mathbb{R}^{2} dt = \mathbb{R}^{2} dt$$

$$\mathbb{R}^{2} \to H_{1} \mathbb{Z}^{2}$$

$$Z_{1} = kcr 0_{1} \quad \bigcirc 0_$$

$$\frac{\langle a_{+}b_{+}c_{+}\rangle \langle a_{+}b_{+}c_{+}\rangle}{\langle a_{+}b_{+}c_{+}\rangle \langle a_{+}b_{+}c_{+}\rangle} = \frac{\langle a_{+}c_{+}\rangle \langle a_{+}c_{+}\rangle$$

$$H_{i}(k) \cong \pi_{i}(k)$$

Hunewicz Theorem: For any Space X, (path-connected) 5, new n=1 (nx) is inot isomophise.). ____ (T ab (X)) it (X) is mphism $\{0,1,2,3\} + \stackrel{6}{=}$ (X is (n1) Corrected). (n-1) calling (\frac{\pi}{\pi}(\times) = -)

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 00 \\ (e) & e_{1} \leq 1 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} = 0 \end{cases}$$

$$H_{1c}(S^{n}, Z) = \begin{cases} Z & I_{c} =$$

 $0 \xrightarrow{c_{33}} C_{1} \xrightarrow{g_{5}} C_{1} \xrightarrow{g_{1}} C_{2} \xrightarrow{g_{1}} C_{2} \xrightarrow{g_{1}} C_{3}$

Then's only 5 solid polygon.