Machine Learning Probability Theory - A short recap

Prof. Matthias Hein

Machine Learning Group
Department of Mathematics and Computer Science
Saarland University, Saarbrücken, Germany

Lecture 2, 23.10.2013

Roadmap for today

- Discrete and continuous probability (... a bit of measure theory)
- Random variables
- Joint density, marginal density and the transformation law
- Expectation, variance, covariance, correlation, quantiles
- Independence, conditional probability, conditional independence
- Basic notions from statistics

Probability

History

- 17th century: development through the studies of games,
- 1933: axiomatic formulation of probability theory by Kolmogorov.

Interpretation of probability

Frequentist interpretation:

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n},$$

where n_A is the number of times A happens when we have done n trials.

Bayesian interpretation:

Probabilities are quantifying "rational belief". In the Bayesian framework we can answer:

What is the probability that the sun rises tomorrow?

Discrete probability

- Atomic/elementary events: set of possible outcomes which cannot be further divided $\Omega = \{\omega_1, \dots, \omega_n\}$ (e.g. coin, $\Omega = \{H, T\}$).
- Elementary event: A singleton $\{\omega_r\}$ of Ω is called elementary event.
- Events: set of possible events the powerset 2^{Ω} (for the coin: $\{\emptyset, H, T, \{H, T\}\}\$).
- Probability measure: a function $P: 2^{\Omega} \to [0,1]$, such that
 - $P(\emptyset) = 0$ and $P(\Omega) = 1$,
 - $\blacktriangleright \sum_{\omega_i \in \Omega} P(\omega_i) = 1,$
 - $ightharpoonup A \in 2^{\Omega} \implies P(A) = \sum_{\omega_i \in A} P(\omega_i).$
- Additivity rule of probabilities: Let $A, B \in 2^{\Omega}$ then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Example: Binomial distribution

- An experiment with two outcomes $\mathcal{Y} = \{0,1\}$ is called **Bernoulli** trial determined by p = P(Y = 1).
- binomial distribution models n repeated Bernoulli trials where the outcomes are independent, e.g. a coin toss. Denote by X the number of times we observe Y=1 (order does not matter).
- The **binomial probability measure** Bin(n, p) is then defined as,

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k},$$

with the binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

ullet Set of events: $\Omega = \{0, \dots, n\}$ and one can check,

$$P(\Omega) = \sum_{k=0}^{n} P(X = k) = \sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k} = (1-p+p)^{n} = 1.$$

General probability measures

Can we do the same if Ω is uncountable e.g. $\Omega = \mathbb{R}$?

One can show that if one tries to assign probabilities to **any** subset of 2^{Ω} one can get inconsistencies.

Banach-Tarski paradox

One can cut a ball of volume 1 into disjoint pieces and reassemble it so that one gets two balls of volume 1.

- \implies it makes no sense to assign to every set a volume.
- \implies we have to replace the powerset 2^{Ω} with something smaller.
- \implies leads to the definition of a σ -Algebra.

Problem is resolved by Kolmogorov by a rigorous definition of measure theory

σ -algebra

Definition

Let 2^{Ω} be the **power set**, the set of all subsets of Ω , and $\mathcal{A} \subset 2^{\Omega}$. \mathcal{A} is a σ -algebra if the following conditions hold:

- $\emptyset \in \mathcal{A} \text{ and } \Omega \in \mathcal{A},$
- ② if $A \in \mathcal{A}$, then also the complement A^c is contained in A,
- ③ \mathcal{A} is closed under **countable** unions and intersections, that is if A_1, A_2, \ldots is a sequence of events in \mathcal{A} , then
 - $\cup_{i=1}^{\infty} A_i \in \mathcal{A}$
 - $\cap_{i=1}^{\infty} A_i \in \mathcal{A}.$

- The pair (Ω, A) is called a **measure space**.
- All sets in the σ -algebra are called **measurable**.
- Probabilities will be only assigned to measurable sets.

Borel σ -Algebra

Definition

Let $C \subset 2^{\Omega}$. The σ -algebra generated by C is the smallest σ -algebra containing C. The Borel σ -algebra \mathcal{B} in \mathbb{R}^d is the σ -algebra generated by the open sets in \mathbb{R}^d .

Lebesgue Measure on \mathbb{R}^d

- ullet We consider the Borel $\sigma ext{-Algebra}~\mathcal{B}$ on \mathbb{R}^d
- The Lebesgue measure $\mu: \mathcal{B} \to \mathbb{R}_+$ is now just the usual measure of volume. For the one-dimensional case, we have

$$\mu(]a,b[)=b-a,$$

• A set $A \in \mathcal{B}$ has **measure zero** if $\mu(A) = 0$. Any countable set of points has measure zero.

Warning: The Lebesgue measure works acctually on its own σ -algebra but the difference is for our purposes neglectable.

Probability measure

Definition

A **probability measure** defined on a σ -algebra \mathcal{A} of Ω is a function $P: \mathcal{A} \to [0,1]$ that satisfies:

- **①** P(Ω) = 1,
- ② For every countable sequence $(A_n)_{n\geq 1}$ of elements of \mathcal{A} , pairwise disjoint (that is $A_m\cap A_n=\emptyset$ whenever $m\neq n$), one has

$$P\Big(\bigcup_{n=1}^{\infty}A_n\Big)=\sum_{n=1}^{\infty}P(A_n).$$

The second property is called **countably additive**. P(A) is called the probability of A.

Probability on continuous spaces

In the case $\Omega = \mathbb{R}^d$ we will work with measures which have a density with respect to the **Lebesgue measure**.

Definition

Let \mathcal{B} be the Borel σ -algebra in \mathbb{R}^d . A probability measure P on $(\mathbb{R}^d, \mathcal{B})$ has a **density** p if p is a non-negative (Borel measurable) function on \mathbb{R}^d satisfying

$$P(A) = \int_A p(x)dx = \int_A p(x_1, \ldots, x_d) dx_1 \ldots dx_d,$$

for all $A \in \mathcal{B}$.

- This implies: $1 = P(\mathbb{R}^d) = \int_{\mathbb{R}^d} p(x) dx$.
- In the following we always abbreviate, $dx = dx_1 \dots dx_d$.
- **Not** all probability measures on \mathbb{R}^d have a density.

Example of a probability measure with density

The Gaussian distribution or normal distribution on \mathbb{R} has two parameters μ (mean) and σ^2 (variance). The associated probability measure is denoted by $\mathcal{N}(\mu, \sigma^2)$. The density (with respect to the Lebesgue measure) is given as

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Some further densities

Multivariate Gaussian $\mathcal{N}(\mu, C)$

Parameters: $\mu \in \mathbb{R}^d$ and $C \in \mathbb{R}^{d \times d}$ (positive-definite),

$$p(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\det C|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu)}$$
$$= \frac{1}{(2\pi)^{\frac{d}{2}} |\det C|^{\frac{1}{2}}} e^{-\frac{1}{2} \langle x-\mu, C^{-1}(x-\mu) \rangle},$$

- A Gaussian density is uniquely determined by the mean and the covariance matrix C,
- Special case $C = \sigma^2 \mathbb{1}$,

$$p(x) = \frac{1}{(2\pi\sigma^2)^{\frac{d}{2}}} e^{-\frac{1}{2\sigma^2}||x-\mu||^2}.$$

Uniqueness of the density

f, f' agree almost everywhere (up to sets of measure zero) if

$$\int_{\mathbb{R}^d} \mathbb{1}_{f(x)\neq f'(x)} dx = 0.$$

Theorem

A non-negative (Borel measurable) function p on \mathbb{R}^d is the density of a probability measure P on \mathbb{R}^d if and only if

$$\int_{\mathbb{R}^d} p(x) dx = 1.$$

- Any other positive Borel measurable function p' which agrees with p almost everywhere induces the same probability measure.
- Conversely, a probability measure on \mathbb{R}^d determines its density (if it exists) up to sets of Lebesgue measure zero

$$p(x) = \lim_{r \to 0} \frac{P(B(x,r))}{\text{vol}(B(x,r))},$$
 almost everywhere.

Distribution function

Distribution function:

• The (cumulative) distribution function of a probability measure P on $(\mathbb{R}, \mathcal{B})$ is the function

$$F(x) = P((-\infty, x]).$$

If the distribution function F is sufficiently differentiable, then

$$p(x) = \frac{\partial F}{\partial x}\Big|_{x}.$$

• The distribution function of P on $(\mathbb{R}^d, \mathcal{B})$ is the function

$$F(x_1,\ldots,x_d) = P\Big(\prod_{i=1}^d (-\infty,x_i]\Big).$$

If the distribution function F is sufficiently differentiable, then

$$p(x_1,\ldots,x_d) = \frac{\partial^d F}{\partial x_1 \ldots \partial x_d} \Big|_{x_1,\ldots,x_d}.$$

Quantile

Quantiles: Quantiles are only defined for distributions on \mathbb{Z} and \mathbb{R} .

Definition

The α -quantile of a probability measure on $\mathbb Z$ or $\mathbb R$ is the real number q_α such that

$$F(q_{\alpha}) = P(]-\infty, q_{\alpha}]) = \alpha.$$

The **median** is the $\frac{1}{2}$ -quantile.

- Median and mean agree if the distributions are symmetric,
- The median is more robust to changes of the probability measure.

Quantiles and Distribution

Density, Distribution function and Quantiles of a Gaussian probability measure

Measurable functions and random variables

Definition

Let (Ω, A) and (Γ, B) be spaces with a σ -Algebra (measurable space). A function $X : \Omega \to \Gamma$ is called measurable if

$$X^{-1}(B) \in \mathcal{A}$$
, for all $B \in \mathcal{B}$.

If in addition there is a probability measure defined on (Ω, \mathcal{A}) then $X: \Omega \to \Gamma$ is called **random variable**. The **probability measure** or **law** P_X of X is defined for any $B \subset \Gamma$ as

$$P_X(B) = P(X^{-1}(B)) = P(\{\omega \mid X(\omega) \in B\}).$$

- Random variables are denoted by capital letters e.g. X, Y, Z in order to distinguish them from normal variables x, y, z.
- If the target space Γ is \mathbb{R}^d or \mathbb{Z} , we speak of \mathbb{R}^d -valued resp. \mathbb{Z} -valued random variables.
- A random variable X is a variable with random values and can be identified with the probability measure Py (omission of sample space)

 Machine Learning Group)

 Machine Learning

Examples of random variables

• Coin toss: $\Omega = \{H, T\}$, P(H) = p. Define $Z : \{H, T\} \to \mathbb{Z}$ by

$$Z = \left\{ \begin{array}{l} 1 \text{ if } H, \\ 0 \text{ if } T. \end{array} \right.$$

Z is a random variable with Bernoulli-distribution:

$$\mathrm{P}_Z(Z=1)=\mathrm{P}(Z^{-1}(1))=\mathrm{P}(H)=p, \text{ and similar } \mathrm{P}_Z(Z=0)=1-p.$$

• Repeat the coin toss independently n times and denote by X the number of times we observe head (order does not matter). Let Ω be the set of all sequences of n variables with the alphabet $\{H, T\}$, then $|\Omega| = 2^n$. X is a random variable $X : \Omega \to \mathbb{Z}$ with distribution

$$P_X(X = k) = P(X^{-1}(k)) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Example: Let n = 3, then $X^{-1}(2) = \{HHT, HTH, THH\}$.

Joint density and marginals

Theorem

Let $X = (X_1, X_2)$ be a \mathbb{R}^2 -valued random variable with density p_X on \mathbb{R}^2 . Then the densities p_{X_1} of X_1 and p_{X_2} of X_2 are given as

$$p_{X_1}(x_1) = \int_{\mathbb{R}} p_X(x_1, x_2) dx_2, \qquad p_{X_2}(x_2) = \int_{\mathbb{R}} p_X(x_1, x_2) dx_1.$$

- The law of $X = (X_1, X_2)$ is called the **joint measure** of X_1 and X_2 with density $p_X(x_1, x_2)$,
- p_{X_1} and p_{X_2} are called marginal densities of X and are associated to the probability measures of X_1 respectively X_2 .
- \implies the joint measure can in general not be reconstructed from the knowledge of the marginal densities (only if X_1 and X_2 are independent).
- \Longrightarrow the concept can be directly generalized to random variables $X=(X_1,\ldots,X_d)$ taking values in \mathbb{R}^d .

Joint Measure and marginals II

What are the marginal densities of X_1 and X_2 ?

Transformation Law

What is the density of a function of a random variable X?

Theorem

Let $X=(X_1,\ldots,X_d)$ have joint density p_X . Let $g:\mathbb{R}^d\to\mathbb{R}^d$ be continuously differentiable and injective, with non-vanishing Jacobian. Then Y=g(X) has density

$$p_Y(y) = \begin{cases} p_X(g^{-1}(y))|\det J_{g^{-1}}(y)| & \text{if } y \text{ is in the range of } g, \\ 0 & \text{otherwise.} \end{cases}$$

ullet The Jacobian J_g of a function $g:\mathbb{R}^d o\mathbb{R}^d$ at x is the d imes d- matrix

$$J_{g}(x)_{ij} = \frac{\partial g_{i}}{\partial x_{i}}\Big|_{x}.$$

- This formula follows directly from the rule for changing coordinates for a multidimensional integral.
- result allows to generate samples from complicated densities from simple ones.

Example: samples from an exponential distribution

How to generate samples from an exponential distribution ? $p_{\lambda}(y) = \lambda \exp(-\lambda y)$, for $y \ge 0$, $p_{\lambda}(y) = 0$ if y < 0 with $\lambda > 0$

- available: samples from uniform distribution (Matlab/C: rand) on [0,1].
- ullet we need a function $g:[0,1]
 ightarrow \mathbb{R}$ (resp. g^{-1}) such that

$$p_{\lambda}(y) = \lambda \exp(-\lambda y) = p_{X}(g^{-1}(y)) \left| \frac{\partial g^{-1}}{\partial y} \right| = \left| \frac{\partial g^{-1}}{\partial y} \right|.$$

General case: complicated differential equation.

This case:
$$g^{-1}(y) = \exp(-\lambda y)$$
 fulfills that $! \Longrightarrow g(x) = -\frac{\log(x)}{\lambda}$

- X_i samples from the uniform distribution on [0,1],
- $Y_i = g(X_i) = -\frac{\log(X_i)}{\lambda}$ are samples from the exponential distribution.

Expectation and variance

Definition

The **expected value** or **expectation** $\mathbb{E}[X]$ of a \mathbb{R}^d -valued random variable X is defined as

$$(\mathbb{E}[X])_i = \int_{\mathbb{R}^d} x_i \ p(x) \ dx = \int_{\mathbb{R}^d} x_i \ p(x_1, \dots, x_d) \ dx_1 \dots dx_d,$$

and for a discrete random variable X taking values in $\mathbb Z$ it is defined as,

$$\mathbb{E}[X] = \sum_{n=-\infty}^{\infty} n \, \mathrm{P}(X=n).$$

The variance Var[X] (also $\sigma^2(X)$) of an \mathbb{Z} - or \mathbb{R} -valued random variable X is defined as

$$\operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}X)^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

The standard deviation of X is $\sigma(X) = \sqrt{\operatorname{Var}[X]}$.

Probability and expectation

Expectation of functions of random variables

We can also define the expectation of functions of random variables.

$$\mathbb{E}[f(X)] = \int_{\mathbb{R}^d} f(x) p(x) dx = \int_{\mathbb{R}^d} f(x_1, \dots, x_d) p(x_1, \dots, x_d) dx_1 \dots, dx_d.$$

Probability via expectation

Let \mathbb{I}_A be the indicator function of the set A, that is

$$\mathbb{1}_{\mathcal{A}}(x) = \left\{ \begin{array}{ll} 1 & \text{if } x \in \mathcal{A}, \\ 0 & \text{else} \end{array} \right..$$

then the probability of any set can be written as an expectation,

$$\mathbb{E}[\mathbb{1}_A] = \mathrm{P}(A).$$

Covariance and correlation

Definition

The **covariance** Cov(X, Y) of two \mathbb{R} -valued random variables X and Y is defined as,

$$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[X Y] - \mathbb{E}[X] \mathbb{E}[Y].$$

The **correlation** Corr(X, Y) of two \mathbb{R} -valued random variables X and Y is then defined as,

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Cov}(X,X)\operatorname{Cov}(Y,Y)}} = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}.$$

The covariance matrix C of an \mathbb{R}^d -valued random variable X is given as $C_{ij} = \operatorname{Cov}(X_i, X_j)$ or in matrix form

$$C = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T].$$

Covariance and correlation II

Properties of covariance and correlation:

• The expectation and variance have the following properties $\forall a,b \in \mathbb{R}$,

$$\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b\mathbb{E}[Y],$$

$$\operatorname{Var}[aX + b] = a^{2} \operatorname{Var}[X],$$

$$\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2 \operatorname{Cov}(X, Y).$$

- One has: $-1 \leq \operatorname{Corr}(X, Y) \leq 1$.
- Correlation is a measure of linear dependence. If X and Y are linearly dependent, that is Y = aX + b with $a, b \in \mathbb{R}$, then

$$Corr(X, Y) = Corr(X, aX + b) = \frac{a}{|a|} = \begin{cases} 1, & \text{if } a > 0, \\ 0, & \text{if } a = 0, \\ -1, & \text{if } a < 0. \end{cases}$$

Thus linearly dependent random variables achieve maximal correlation.

Independence

Definition

• Two events $A, B \in \mathcal{A}$ are **independent** if

$$P(A \cap B) = P(A)P(B).$$

• Let A, B be events and P(B) > 0. The **conditional probability** of A given B is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Theorem

Suppose P(B) > 0.

- A and B are independent if and only if P(A|B) = P(A).
- The operation $A \to P(A|B)$ from $A \to [0,1]$ defines a new probability measure on A, called the **conditional probability measure given** B.

Note: generally $P(A|B) \neq P(B|A)$.

Law of total probability

Definition

A collection of events (E_n) is called a **partition** of Ω if $E_n \in \mathcal{A}$ for each n, they are pairwise disjoint, $E_n \cap E_m = \emptyset$ for $m \neq n$, $\mathrm{P}(E_n) > 0$ for each n, and $\cup_n E_n = \Omega$.

Law of total probability

Theorem

Let $(E_n)_{n\geq 1}$ be a finite or countable partition of Ω . Then if $A\in\mathcal{A}$,

$$P(A) = \sum_{n} P(A|E_n)P(E_n).$$

Bayes theorem

Theorem (Bayes theorem)

Let (E_n) be a finite or countable partition of Ω , and suppose $\mathrm{P}(A)>0$. Then

$$P(E_n|A) = \frac{P(A|E_n)P(E_n)}{\sum_m P(A|E_m)P(E_m)}.$$

We frequently use the Bayes theorem as follows. Let A, B two events,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)},$$

which basically follows from the definition of conditional probability.

Independence of random variables

The concept of independence:

- Two random variables X, Y are maximally dependent if Y = f(X) with f one-to-one.
- Two random variables are independent if knowledge about one variable does not tell you anything about the other one (successive coin tosses).

Definition

Two random variables X, Y with values in the measurable spaces (E, \mathcal{E}) and (F, \mathcal{F}) are **independent** if

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B), \text{ for all } A \in \mathcal{E}, B \in \mathcal{F}.$$

• in the following we restrict ourselves to random variables with density or probabilities on discrete spaces.

Independence of random variables II

Proposition

Let X, Y be \mathbb{R} -valued random variables with joint-density $p_{X \times Y}$ and marginal densities p_X and p_Y , then X and Y are **independent** if

$$p_{X\times Y}(x,y)=p_X(x)\;p_Y(y),\quad \forall x,y\in\mathbb{R}.$$

The conditional density p(x|Y = y) of X given Y = y is defined as,

$$p(x|y) = \frac{p(x,y)}{p(y)}, \quad \forall y \text{ with } p(y) > 0.$$

Let X, Y be \mathbb{Z} -valued random variables. X and Y are **independent** if,

$$P_{X\times Y}(X=i,Y=j)=P_X(i) P_Y(j), \quad \forall i,j\in\mathbb{Z}.$$

The conditional probability P(X = i | Y = j) of X given Y = j is,

$$P(X=i|Y=j) = \frac{P_{X\times Y}(X=i,Y=j)}{P(Y=j)}, \quad \forall j \text{ with } P(Y=j) > 0.$$

Motivation

Problems with continuous probabilities:

The conditional probability P(X = x | Y = y) of X given Y = y is undefined since the event Y = y has probability mass P(Y = y) = 0.

Underlying argumentation:

$$P(X \in [x, x + \Delta x], Y \in [y, y + \Delta y]) \approx p_{X \times Y}(x, y) \Delta x \Delta y$$

$$P(Y \in [y, y + \Delta y]) \approx p_{Y}(y) \Delta y.$$

$$P(X \in [x, x + \Delta x] \mid Y \in [y, y + \Delta y]) \approx \frac{p_{X \times Y}(x, y)}{p_{Y}(y)} \Delta x.$$

Dividing by Δx and taking the limit $\Delta x \to 0$ and $\Delta y \to 0$ yields the result.

Notation: From now on we discard the subscript at $p_X(x)$.

Conditional density function

- the conditional density function defines a density for X|Y=y by varying the set $\{Y=y\}$
- extend the definition of the conditional density also to values y with p(y) = 0 by assigning an arbitrary value.

The **conditional probability density** of X|Y = y is defined as

$$p(x|y) = \begin{cases} \frac{p(x,y)}{p(y)} & \text{if } p(y) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Let X, Y be random variables on \mathcal{X}, \mathcal{Y} , then

$$\int_{\mathcal{X}} p(x|y) dx = 1, \qquad \int_{\mathcal{Y}} p(x|y) p(y) dy = p(x).$$

Conditional expectation

Definition

Let X, Y be two \mathbb{R} -valued random variables. The **conditional** expectation $\mathbb{E}[X|Y=y]$ of X given Y=y is defined for y with p(y)>0 as the quantity

$$\mathbb{E}[X|Y=y] = \int_{\mathbb{R}} x \, p(x|y) \, dx.$$

The **conditional expectation** $\mathbb{E}[X|Y]$ of X given Y is a random variable h(Y) with values

$$h(y) = \mathbb{E}[X|Y = y].$$

Proposition

Important properties of the conditional expectation are:

- $\mathbb{E}[X|Y] = \mathbb{E}[X]$, if X and Y are independent,
- $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$ (sometimes called the "tower property"),
- $\mathbb{E}[f(Y)g(X)|Y] = f(Y)\mathbb{E}[g(X)|Y].$