УДК 004.94

Сравнительный анализ разностного и вероятностного методов исследования математической модели, построенной на дифференциальном уравнении в частных производных эллиптического типа

А. Ш. Керимов¹

kerimov.edu@yandex.ru

¹МГТУ им. Н. Э. Баумана, Москва, Россия

Аннотация

Статья посвящена численным методам приближённого решения стационарного многомерного эллиптического уравнения теплопроводности. Выведены математические соотношения двух конечно-разностных алгоритмов: метода Либмана для центрально-симметричной схемы и метода прогонки для продольно-поперечной схемы; а также вероятностного метода. Проведён анализ программных реализаций методов на быстродействие.

Ключевые слова

задача двумерной теплопроводности, численные методы, уравнение Пуассона, продольно-поперечная схема, матричная прогонка, центрально-симметричная схема, метод Либмана, вероятностный метод

Введение

Прикладные проблемы приводят к необходимости решения краевых задач для уравнений с частными производными. Разработка приближённых методов их решения базируется на построении и исследовании численных методов решения краевых задач для базовых (основных, модельных) уравнений математической физики. В качестве таковых при рассмотрении уравнений второго порядка выделяются эллиптические, параболические и гиперболические уравнения.

1 Постановка задачи

Задана математическая модель с постоянными коэффициентами $k(x,z)\equiv k$ (уравнение Пуассона):

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2} + \frac{f(x,z)}{k} = 0.$$
 (1)

На границах прямоугольной области (0 < x < a, 0 < z < b).

Краевые условия:

$$\begin{cases} x = 0, & u(0, z) = u_0, \\ x = a, & u(a, z) = u_0, \\ z = 0, & u(x, 0) = u_0, \\ z = b, & u(x, b) = u_0. \end{cases}$$
(2)

Значения коэффициентов задачи (все размерности согласованы).

Геометрические размеры a=b=10 см.

$$u_0 = 300 \text{ K}.$$

В качестве примера функции источников можно предложить распределение вида $f(x,z)=f_0e^{\beta(x-a/2)^2(z-b/2)^2},$ параметры f_0,β варьируются исходя из условия, чтобы максимум функции не превышал 3000 К.

Сформулированная математическая модель описывает двумерное температурное поле u(x,z) в тонкой прямоугольной пластине с размерами $a \times b$. Температура по толщине пластины (третьей координате) принимается постоянной.

2 Конечно-разностная аппроксимация

2.1 Разностно-итерационный метод Либмана

Наложим сетку

$$\omega_{h_x,h_z} = \{ x_i = ih_x, i = \overline{0,N_x}; \quad z_i = jh_z, j = \overline{0,N_z} \}. \tag{3}$$

На этой сетке аппроксимируем дифференциальную задачу (1) во внутренних узлах с помощью отношения конечных разностей по следующей схеме (вводится сеточная

функция $y_{i,j}, i = \overline{0, N_x}, j = \overline{0, N_z}$):

$$\frac{y_{i+1,j} - 2y_{i,j} + y_{i-1,j}}{h_x^2} + \frac{y_{i,j+1} - 2y_{i,j} + y_{i,j-1}}{h_z^2} + \frac{f(x_i, z_j)}{k} + O(h_x^2 + h_z^2) = 0,$$

$$i = \overline{1, N_x - 1}, \quad j = \overline{1, N_z - 1},$$
(4)

которая на шаблоне (рис. 1) имеет второй порядок по переменным x и z, поскольку шаблон центрально симметричен.

Рисунок 1 — Центрально-симметричный шаблон для уравнения Пуассона

СЛАУ (4) имеет пяти-диагональный вид (каждое уравнение содержит пять неизвестных и при соответствующей нумерации переменных матрица имеет ленточную структуру). Решать её можно различными методами линейной алгебры, например, итерационными методами, методом матричной прогонки и т. п.

Рассмотрим разностно-итерационный метод Либмана (метод Гаусса — Зейделя) численного решения нашей задачи [2]. Для простоты изложения этого метода примем $h_x = h_z = h$, тогда из схемы (4) получим

$$\hat{y}_{i,j} = \frac{1}{4} \left(y_{i+1,j} + y_{i-1,j} + y_{i,j+1} + y_{i,j-1} + \frac{f(x_i, z_j)}{k} h^2 \right),$$

$$i = \overline{1, N_x - 1}, \quad j = \overline{1, N_z - 1},$$
(5)

где $\hat{y}_{i,j} \equiv y_{i,j}^{k+1}, \, y_{i,j} \equiv y_{i,j}^{k}, \, k$ — номер итерации.

Линейно проинтерполируем граничные значения u для начальной итерации. Тогда $y_{i,j}^0 \equiv u_0$.

$$y_{i,j}^{1} = u_0 + \frac{1}{4} \left(\frac{f(x_i, z_j)}{k} h^2 \right),$$

$$i = \overline{1, N_r - 1}, \quad j = \overline{1, N_z - 1}.$$
(6)

Это распределение $y_{i,j}^1$ снова подставляется в (5), получая распределение $y_{i,j}^2$ и т. д. Процесс Либмана прекращается, когда

$$\left| y^{k+1} - y^k \right| \leqslant \varepsilon, \quad \left| y^k \right| = \max_{i,j} \left| y_{i,j}^k \right|,$$
 (7)

где ε — наперёд заданная точность.

2.2 Продольно-поперечная схема

Добавим в эллиптическое уравнение координату по времени, чтобы получилось уравнение параболического типа с двумя пространственными переменными:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2} + \frac{f(x,z)}{k}.$$
 (8)

Для составления схемы, которая носит название продольно-поперченой, введём полуцелый слой $\bar{t}=t_m+\frac{\tau}{2}$. Схема имеет вид

$$\frac{\overline{y}_{ij} - y_{ij}}{0.5\tau} = A_1 \overline{y}_{ij} + A_2 y_{ij} + \frac{f_{ij}}{k},\tag{9}$$

$$\frac{\hat{y}_{ij} - \overline{y}_{ij}}{0.5\tau} = A_1 \overline{y}_{ij} + A_2 \hat{y}_{ij} + \frac{f_{ij}}{k}, \tag{10}$$

причём разностные операторы A_1 , A_2 действуют каждый по своему направлению (по своей координате) и определяются выражениями

$$A_1 y_{ij} = \frac{1}{h_x^2} (y_{i-1,j} - 2y_{ij} + y_{i+1,j}), \tag{11}$$

$$A_2 y_{ij} = \frac{1}{h_z^2} (y_{i,j-1} - 2y_{ij} + y_{i,j+1}). \tag{12}$$

Здесь $1 \le i \le N_x - 1$, $1 \le j \le N_z - 1$.

Схема (9), (10) реализуется следующим образом. Вначале вычисляют решение на полуцелом слое согласно (9). В системе линейных уравнений (9) с трёхдиагональной матрицей неизвестными являются величины \bar{y}_{ij} , которые находят прогонкой по индексу i (по координате x) для каждого фиксированного значения индекса j. При найденном решении \bar{y}_{ij} система (10) также является линейной системой уравнений с трёхдиагональной матрицей, в которой неизвестными выступают \hat{y}_{ij} . Решение \hat{y}_{ij} находят прогонкой по индексу j (по координате z) для каждого индекса i [1].

Относительно аппроксимации и устойчивости продольно-поперечной схемы

следует отметить, что схема (9), (10) равномерно и безусловно устойчива по начальным данным и по правой части и аппроксимирует задачу на равномерных сетках с погрешностью $O(\tau^2 + h_x^2 + h_z^2)$.

Приведём уравнение (9) к стандартному виду для прогонки

$$\frac{2(\overline{y}_{ij} - y_{ij})}{\tau} = \frac{1}{h_x^2} (\overline{y}_{i-1,j} - 2\overline{y}_{ij} + \overline{y}_{i+1,j}) + \frac{1}{h_z^2} (y_{i,j-1} - 2y_{ij} + y_{i,j+1}) + \frac{f_{ij}}{k}, \tag{13}$$

$$\frac{1}{h_x^2}\overline{y}_{i-1,j} - 2\left(\frac{1}{h_x^2} + \frac{1}{\tau}\right)\overline{y}_{ij} + \frac{1}{h_x^2}\overline{y}_{i+1,j} = -\frac{1}{h_z^2}y_{i,j-1} + 2\left(\frac{1}{h_z^2} - \frac{1}{\tau}\right)y_{ij} - \frac{1}{h_z^2}y_{i,j+1} - \frac{f_{ij}}{k}, (14)$$

$$\tau h_z^2 \overline{y}_{i-1,j} - 2h_z^2 (\tau + h_x^2) \overline{y}_{ij} + \tau h_z^2 \overline{y}_{i+1,j} = h_x^2 \left(2(\tau - h_z^2) y_{ij} - \tau \left(y_{i,j-1} + y_{i,j+1} + \frac{h_z^2 f_{ij}}{k} \right) \right)$$
(15)

Коэффициенты для метода прогонки:

$$\begin{cases}
A_{i} = \tau h_{z}^{2}, \\
B_{i} = -2h_{z}^{2}(\tau + h_{x}^{2}), \\
C_{i} = \tau h_{z}^{2}, \\
D_{i} = h_{x}^{2} \left(2(\tau - h_{z}^{2})y_{ij} - \tau \left(y_{i,j-1} + y_{i,j+1} + \frac{h_{z}^{2}f_{ij}}{k} \right) \right), \\
i = \overline{1, N_{x} - 1}.
\end{cases} (16)$$

Краевые условия:

$$A_0 = 0, \quad B_0 = 1, \quad C_0 = 0, \quad D_0 = u_0,$$

 $A_{N_x} = 0, \quad B_{N_x} = 1, \quad C_{N_x} = 0, \quad D_{N_x} = u_0.$ (17)

Приведём уравнение (10) к стандартному виду для прогонки

$$\frac{2(\hat{y}_{ij} - \overline{y}_{ij})}{\tau} = \frac{1}{h_x^2} (\overline{y}_{i-1,j} - 2\overline{y}_{ij} + \overline{y}_{i+1,j}) + \frac{1}{h_z^2} (\hat{y}_{i,j-1} - 2\hat{y}_{ij} + \hat{y}_{i,j+1}) + \frac{f_{ij}}{k}, \tag{18}$$

$$\frac{1}{h_z^2}\hat{y}_{i,j-1} - 2\left(\frac{1}{h_z^2} + \frac{1}{\tau}\right)\hat{y}_{ij} + \frac{1}{h_z^2}\hat{y}_{i,j+1} = -\frac{1}{h_x^2}\overline{y}_{i-1,j} + 2\left(\frac{1}{h_x^2} - \frac{1}{\tau}\right)\overline{y}_{ij} - \frac{1}{h_x^2}y_{i+1,j} - \frac{f_{ij}}{k},$$
(19)

$$\tau h_x^2 \hat{y}_{i,j-1} - 2h_x^2 (\tau + h_z^2) \hat{y}_{ij} + \tau h_x^2 \hat{y}_{i,j+1} = h_z^2 \left(2(\tau - h_x^2) \overline{y}_{ij} - \tau \left(\overline{y}_{i-1,j} + \overline{y}_{i+1,j} + \frac{h_x^2 f_{ij}}{k} \right) \right)$$
(20)

Коэффициенты для метода прогонки:

$$\begin{cases}
A_{j} = \tau h_{x}^{2}, \\
B_{j} = -2h_{x}^{2}(\tau + h_{z}^{2}), \\
C_{j} = \tau h_{x}^{2}, \\
D_{j} = h_{z}^{2} \left(2(\tau - h_{x}^{2})\overline{y}_{ij} - \tau \left(\overline{y}_{i-1,j} + \overline{y}_{i+1,j} + \frac{h_{x}^{2} f_{ij}}{k} \right) \right), \\
j = \overline{1, N_{z} - 1}.
\end{cases} (21)$$

Краевые условия:

$$A_0 = 0, \quad B_0 = 1, \quad C_0 = 0, \quad D_0 = u_0,$$

 $A_{N_z} = 0, \quad B_{N_z} = 1, \quad C_{N_z} = 0, \quad D_{N_z} = u_0.$ (22)

3 Вероятностный метод

Теперь применим статистический метод решения уравнения Пуассона (1).

Покроем область $0 \le x \le a, 0 \le z \le b$ квадратной сеткой с шагом h.

Из каждого узла сетки будем моделировать случайное блуждание частиц. Находясь во внутреннем узле y_{ij} , частица M может с равной вероятностью уйти либо влево, либо вправо, либо вверх, либо вниз. Блуждание частицы M заканчивается, как только она выходит на границу области.

Решение уравнения (1) в результате моделирования стохастического блуждания частиц имеет вид

$$y(x,z) = \frac{1}{N_p} \sum_{j=1}^{N_p} y_b(j) + \left(\frac{h^2}{4k}\right) \frac{1}{N_p} \sum_{j=1}^{N_p} \overline{f}_j M_j,$$
 (23)

где

- N_p количество разыгрываемых частиц из узла;
- $-y_b(j)$ граничное значение функции y для j-й частицы;
- \overline{f}_j среднее значение функции f по всем узлам траектории j-й частицы;
- $-M_{j}$ количество узлов в траектории j-й частицы.

4 Сравнительный анализ методов решения

Для определённости положим $f_0=100,\ \beta=-0.001,\ k=2,36.$

Моделирование производилось на компьютере MacBook Pro 2019 со следующими характеристиками:

- OC: macOS Catalina 10.15.7,
- процессор: 1,4 ГГц 4-ядерный Intel Core i5,
- память: 8 ГБ 2133 МГц LPDDR3.

Сравним результаты моделирования на сетке с шагом $h_x = h_z = h = 1$ см, $\tau = 1$ с, $\varepsilon = 0{,}0001$, $N_p = 5000$. В таблицах 1—3 представлены температурные поля, полученные продольно-поперечным методом, методом Либмана и вероятностным методом соответственно. В таблице 4 представлена разница значений в таблицах 1 и 2, в таблице 5 — разница значений в таблицах 1 и 3

Таблица 1 — Температурное поле, полученное продольно-поперечным методом

300	300	300	300	300	300	300	300	300	300	300
300	349.322	382.246	403.667	415.839	419.795	415.839	403.667	382.246	349.322	300
300	382.246	439.312	476.848	498.206	505.144	498.206	476.848	439.312	382.246	300
300	403.667	476.848	525.356	553.028	562.022	553.028	525.356	476.848	403.667	300
300	415.839	498.206	553.028	584.362	594.552	584.362	553.028	498.206	415.839	300
300	419.795	505.144	562.022	594.552	605.133	594.552	562.022	505.144	419.795	300
300	415.839	498.206	553.028	584.362	594.552	584.362	553.028	498.206	415.839	300
300	403.667	476.848	525.356	553.028	562.022	553.028	525.356	476.848	403.667	300
300	382.246	439.312	476.848	498.206	505.144	498.206	476.848	439.312	382.246	300
300	349.322	382.246	403.667	415.839	419.795	415.839	403.667	382.246	349.322	300
300	300	300	300	300	300	300	300	300	300	300

Таблица 2 — Температурное поле, полученное методом Либмана

300	300	300	300	300	300	300	300	300	300	300
300	349.345	382.289	403.726	415.908	419.868	415.908	403.726	382.289	349.345	300
300	382.289	439.394	476.961	498.339	505.283	498.339	476.961	439.394	382.289	300
300	403.726	476.961	525.511	553.211	562.214	553.211	525.511	476.961	403.726	300
300	415.908	498.339	553.211	584.577	594.778	584.577	553.211	498.339	415.908	300
300	419.868	505.283	562.214	594.778	605.371	594.778	562.214	505.283	419.868	300
300	415.908	498.339	553.211	584.577	594.778	584.577	553.211	498.339	415.908	300
300	403.726	476.961	525.511	553.211	562.214	553.211	525.511	476.961	403.726	300
300	382.289	439.394	476.961	498.339	505.283	498.339	476.961	439.394	382.289	300
300	349.345	382.289	403.726	415.908	419.868	415.908	403.726	382.289	349.345	300
300	300	300	300	300	300	300	300	300	300	300

Таблица 3 — Температурное поле, полученное вероятностным методом

300	300	300	300	300	300	300	300	300	300	300
300	349.803	382.492	404.371	419.301	418.625	415.562	400.087	382.571	351.737	300
300	384.997	442.545	473.549	497.889	507.576	499.431	474.139	439.467	382.811	300
300	405.146	478.473	524.138	551.763	564.484	552.102	526.34	476.475	401.646	300
300	414.462	498.766	552.034	584.046	594.611	583.298	551.826	497.87	417.096	300
300	415.855	504.978	566.014	596.944	606.235	595.045	562.636	505.849	417.98	300
300	416.745	502.088	554.535	585.253	596.061	585.178	552.745	495.924	414.075	300
300	401.095	476.578	526.036	552.892	559.744	556.223	524.868	479.992	405.338	300
300	386.053	440.889	477.076	496.92	502.109	500.311	478.829	437.964	382.543	300
300	349.484	382.176	405.716	415.766	414.571	415.185	406.072	383.099	352.097	300
300	300	300	300	300	300	300	300	300	300	300

Таблица 4 — Поэлементная разница таблиц 1 и 2

0	0	0	0	0	0	0	0	0	0	0
0	-0.0227	-0.0433	-0.0594	-0.0698	-0.0734	-0.0698	-0.0593	-0.0431	-0.0227	0
0	-0.0432	-0.0821	-0.1130	-0.1328	-0.1397	-0.1328	-0.1130	-0.0821	-0.0432	0
0	-0.0594	-0.1130	-0.1554	-0.1827	-0.1920	-0.1827	-0.1553	-0.1130	-0.0594	0
0	-0.0698	-0.1328	-0.1827	-0.2147	-0.2258	-0.2147	-0.1827	-0.1328	-0.0698	0
0	-0.0734	-0.1396	-0.1921	-0.2257	-0.2372	-0.2257	-0.1921	-0.1396	-0.0734	0
0	-0.0698	-0.1328	-0.1827	-0.2147	-0.2258	-0.2147	-0.1827	-0.1328	-0.0698	0
0	-0.0594	-0.1130	-0.1554	-0.1827	-0.1920	-0.1827	-0.1554	-0.1130	-0.0594	0
0	-0.0432	-0.0821	-0.1130	-0.1328	-0.1397	-0.1328	-0.1130	-0.0821	-0.0432	0
0	-0.0227	-0.0433	-0.0594	-0.0698	-0.0734	-0.0698	-0.0593	-0.0431	-0.0227	0
0	0	0	0	0	0	0	0	0	0	0

Таблица 5 — Поэлементная разница таблиц 1 и 3

0	0	0	0	0	0	0	0	0	0	0
0	-0.4807	-0.2463	-0.7046	-3.4620	1.1701	0.2765	3.5800	-0.3253	-2.4147	0
0	-2.7512	-3.2329	3.2989	0.3178	-2.4320	-1.2246	2.7091	-0.1548	-0.5650	0
0	-1.4789	-1.6246	1.2173	1.2659	-2.4618	0.9264	-0.9844	0.3736	2.0206	0
0	1.3766	-0.5593	0.9949	0.3165	-0.0591	1.0640	1.2022	0.3362	-1.2569	0
0	3.9394	0.1655	-3.9923	-2.3919	-1.1016	-0.4929	-0.6146	-0.7057	1.81451	0
0	-0.9067	-3.8815	-1.5061	-0.8906	-1.5090	-0.8161	0.2839	2.2827	1.76364	0
0	2.5712	0.2703	-0.6805	0.1367	2.2779	-3.1948	0.4872	-3.1434	-1.6711	0
0	-3.8075	-1.5768	-0.2278	1.2865	3.0342	-2.1043	-1.9807	1.3480	-0.2969	0
0	-0.1614	0.0694	-2.0491	0.0722	5.2242	0.6533	-2.4052	-0.8537	-2.7752	0
0	0	0	0	0	0	0	0	0	0	0

Наибольшая разница в таблице 4 по модулю не превосходит 0,2372, в таблице 5-3,9923. Таким образом, можно заключить, что программная реализация методов даёт приблизительно одинаковый результат.

В таблице 6 представлено время работы методов в зависимости от некоторых значений шага сетки h (и шага по времени τ для продольно-поперечного метода). t_{final} в таблице обозначает модельное время до установления стационарного режима. Количество итераций в продольно-поперечном методе равно удвоенному (если считать расчёт промежуточного слоя \bar{t} за итерацию) отношению t_{final} к τ .

Таблица 6 — Время работы методов

h, cm	T 0	Продол	ьно-поперечный	Либ	мана	Вероятностный	
n, cm	τ , c	t_{final} , c	Время, мс	Итераций	Время, мс	Время, мс	
1	1	37	1.009	233	0.225	194.35	
0.5	1	37 4.764		990	4 429	923.74	
0.5	0.5	32.5	3.57668	820	4.432	923.74	
0.2	0.2	27.6	26.0888	4249	113.179	7007	
0.1	1	37	22.700	13122	1450	27205	
0.1	0.1	24	160.63		1458	27305	

Таким образом, из таблицы 6 видно, что алгоритмы, основанные на конечноразностной схеме решения дифференциального уравнения (1), являются более быстрыми по сравнению с вероятностным методом. Также можно заметить, что продольнопоперечная схема решается методом матричной прогонки явно быстрее, чем центральносимметричная схема разностно-итерационным методом Либмана, несмотря на то, что для малых $N < 20 \ (h > 0.5)$ метод Либмана выигрывает по скорости.

Заключение

В ходе численного решения стационарного многомерного эллиптического уравнения теплопроводности выведены математические соотношения двух конечноразностных алгоритмов: метода Либмана для центрально-симметричной схемы и метода прогонки для продольно-поперечной схемы; а также вероятностного метода. Проведён анализ программных реализаций методов на быстродействие. Выяснено, что наибольший интерес в плане производительности представляет матричная прогонка продольно-поперечная схемы, однако для сеток с малым количеством узлов (большим шагом), подойдёт и метод Либмана. Вероятностный метод является интересным с точки зрения получения численного решения, однако для серьёзных математических расчётов не подлежит.

Список литературы

- [1] Градов В. М. Курс лекций по моделированию. МГТУ им. Н. Э. Баумана.
- [2] Абдурагимов Э. И. Метод сеток решения задачи Дирихле для уравнения Пуассона. ДГУ

Керимов Ахмед Шахович — студент, МГТУ им. Н. Э. Баумана, кафедра «Программное обеспечение ЭВМ и информационные технологии».