

Resistencia de materiales Hiperestática

Matías Pacheco Alarcón & Estefano Muñoz Moya

Universidad de Santiago de Chile
Facultad de Ingeniería - Departamento de Ingeniería Mecánica
Av. Bdo. O'Higgins 3363 - Santiago - Chile
e-mail: matias.pacheco@usach.cl & estefano.munoz@usach.cl

INGENIERÍA MECÁNICA 18 de noviembre de 2020

Se tiene la estructura de la figura donde la viga AH es rígida, a la cual se articulan la barra BD, CE, IG, JH. Las barras son de acero (E=210 [GPa]) y todas tienen la misma área transversal de 300 [mm²]. Calcule los esfuerzos en todas las barras si la fuerza es de 10 [KN]. Utilice el teorema de Castigliano.

Primero se resuelve la estática en la viga:

$$\sum M_a=0:$$

$$200F_D\sin(\alpha) + 350F_E\sin(\beta) + 550F_G + 1050F_H = 1450F \tag{1}$$

Considerando como elementos deformables las barras BD, CE, IG y JH, se obtiene la derivada de la función de energía de deformación del sistema:

$$\frac{\partial U}{\partial F_i} = \delta_i = \delta_{BD} \frac{\partial F_D}{\partial F_i} + \delta_{CE} \frac{\partial F_E}{\partial F_i} + \delta_{IG} \frac{\partial F_G}{\partial F_i} + \delta_{HJ} \frac{\partial F_H}{\partial F_i}$$
 (2)

Dado que sólo existe una ecuación de la estática, y es necesaria solamente una barra para convertir este problema en un caso isoestático, se eligen 3 barras redundantes y sólo una perteneciente al sistema isoestático, tal como se observa en la siguiente tabla.

\overline{BD} (F_D)	\overline{CE} (F_E)	\overline{IG} (F_G)	\overline{JH} (F_H)
Redundante	Redundante	Redundante	Isoestático
Independiente	Independiente	Independiente	Dependiente
			and the second s

Considerando como elementos deformables las barras BD, CE, IG y JH, se obtiene la derivada de la función de energía de deformación del sistema:

$$\frac{\partial U}{\partial F_i} = \delta_i = \delta_{BD} \frac{\partial F_D}{\partial F_i} + \delta_{CE} \frac{\partial F_E}{\partial F_i} + \delta_{IG} \frac{\partial F_G}{\partial F_i} + \delta_{HJ} \frac{\partial F_H}{\partial F_i}$$
 (2)

Dado que sólo existe una ecuación de la estática, y es necesaria solamente una barra para convertir este problema en un caso isoestático, se eligen 3 barras redundantes y sólo una perteneciente al sistema isoestático, tal como se observa en la siguiente tabla.

\overline{BD} (F_D)	\overline{CE} (F_E)	\overline{IG} (F_G)	\overline{JH} (F_H)
Redundante	Redundante	Redundante	Isoestático
Independiente	Independiente	Independiente	Dependiente
			and the second second second

Por lo anterior se establece que las barras **redundantes** son variables **independientes** y las que pertenecen al sistema **isoestático** son variables **dependientes** en la formulación.

Luego, reordenando la ecuación 1, se crea una función para la fuerza dependiente F_H :

$$F_H = \frac{1450F - 200F_D \sin(\alpha) - 350F_E \sin(\beta) - 550F_G}{1050}$$
(3)

Con la ecuación anterior se calculan todas las **derivadas parciales** de las variables **dependientes** (isoestáticas, F_H), **respecto de las independientes** (redundantes, F_D , F_E , F_G).

$$\frac{\partial F_H}{\partial F_D} = \frac{-200 \sin(\alpha)}{1050}$$

$$\frac{\partial F_H}{\partial F_E} = \frac{-350 \sin(\beta)}{1050}$$

$$\frac{\partial F_H}{\partial F_C} = \frac{-550}{1050}$$
(4)

Se consideran los pasadores B, C e I como puntos con desplazamientos conocidos ($\delta=0$) para derivar la energía de deformación respecto a las fuerzas F_D , F_E y F_G (independientes o redundantes). Aplicando el teorema de Castigliano para el pasador B (F_D):

$$\frac{\partial U}{\partial F_{i}} = \delta_{i} = \delta_{BD} \frac{\partial F_{D}}{\partial F_{i}} + \delta_{CE} \frac{\partial F_{E}}{\partial F_{i}} + \delta_{IG} \frac{\partial F_{G}}{\partial F_{i}} + \delta_{HJ} \frac{\partial F_{H}}{\partial F_{D}}$$

$$0 = \delta_{BD} \frac{\partial F_{D}}{\partial F_{D}} + \delta_{CE} \frac{\partial F_{E}}{\partial F_{D}} + \delta_{GI} \frac{\partial F_{C}}{\partial F_{D}} + \delta_{HJ} \frac{\partial F_{H}}{\partial F_{D}}$$

$$0 = \frac{F_{D}I_{D}}{EA} + \frac{F_{H}I_{H}}{EA} \left(\frac{-200}{1050} \sin(\alpha) \right)$$

$$0 = F_{D}I_{D} + F_{H}I_{H} \left(\frac{-200}{1050} \sin(\alpha) \right)$$
(5)

Realizando el teorema de Castigliano para cada fuerza independiente, se obtiene el siguiente sistema de ecuaciones:

$$\begin{cases} F_{H} &= \frac{1450F - 200F_{D}\sin(\alpha) - 350F_{E}\sin(\beta) - 550F_{G}}{1050} \\ 0 &= F_{D}I_{D} + F_{H}I_{H} \left(\frac{-200}{1050}\sin(\alpha)\right) \\ 0 &= F_{E}I_{E} + F_{H}I_{H} \left(\frac{-350}{1050}\sin(\beta)\right) \\ 0 &= F_{G}I_{G} + F_{H}I_{H} \left(\frac{-550}{1050}\right) \end{cases}$$

$$(6)$$

Considerando a:

$$F = 10 \text{ [KN]}, \ I_H = I_G = 250 \text{ [mm]}, \ I_D = \sqrt{150^2 + 200^2} \text{ [mm]},$$

$$I_E = \sqrt{150^2 + 350^2} \text{ [mm]}, \ \alpha = \tan^{-1}\left(\frac{150}{200}\right), \ \beta = \tan^{-1}\left(\frac{150}{350}\right)$$

Resolviendo el sistema de ecuaciones lineal, se obtiene la fuerza y esfuerzo en cada barra:

	Barra			
	$B-D(F_D)$	C-E (<i>F_E</i>)	I-G (<i>F</i> _G)	J-H (<i>F_H</i>)
<i>F</i> [N]	1215.19	916.627	5569.6	10632.9
σ [MPa]	4.050	3.055	18.565	35.443

Se tiene la estructura de la figura donde la viga AH es rígida, a la cual se articulan la barra BD, CE, IG, JH. Las barras son de acero (E=210 [GPa], α_T =12*10⁻⁶ [1/°C]) y todas tienen la misma área transversal de 300 [mm²]. Calcule los esfuerzos en todas las barras si la temperatura aumenta en $\Delta T=20$ [°C]. Utilice el teorema de Castigliano.

Primero se resuelve la estática en la viga:

$$200F_D\sin(\alpha) + 350F_E\sin(\beta) + 550F_G + 1050F_H = 0 \tag{7}$$

NOTA

Hay que resaltar que de acuerdo a la definición de las fuerzas, las barras \overline{BD} , \overline{GI} , \overline{HJ} se están asumiendo a tracción (Concordante a la deformación térmica) y la barra \overline{CE} se asume a compresión (Contraria a la deformación térmica).

Considerando como elementos deformables las barras BD, CE, IG y JH, se obtiene la derivada de la función de energía de deformación del sistema:

$$\frac{\partial U}{\partial F_i} = \delta_i = \delta_{BD} \frac{\partial F_D}{\partial F_i} + \delta_{CE} \frac{\partial F_E}{\partial F_i} + \delta_{IG} \frac{\partial F_G}{\partial F_i} + \delta_{HJ} \frac{\partial F_H}{\partial F_i}$$
(8)

Dado que sólo existe una ecuación de la estática, y es necesaria solamente una barra para convertir este problema en un caso isoestático, se eligen 3 barras redundantes y sólo una perteneciente al sistema isoestático, tal como se observa en la siguiente tabla.

\overline{BD} (F_D)	\overline{CE} (F_E)	\overline{IG} (F_G)	\overline{JH} (F_H)
Redundante	Redundante	Redundante	Isoestático
Independiente	Independiente	Independiente	Dependiente
			and the second second second

Considerando como elementos deformables las barras BD, CE, IG y JH, se obtiene la derivada de la función de energía de deformación del sistema:

$$\frac{\partial U}{\partial F_i} = \delta_i = \delta_{BD} \frac{\partial F_D}{\partial F_i} + \delta_{CE} \frac{\partial F_E}{\partial F_i} + \delta_{IG} \frac{\partial F_G}{\partial F_i} + \delta_{HJ} \frac{\partial F_H}{\partial F_i}$$
(8)

Dado que sólo existe una ecuación de la estática, y es necesaria solamente una barra para convertir este problema en un caso isoestático, se eligen 3 barras redundantes y sólo una perteneciente al sistema isoestático, tal como se observa en la siguiente tabla.

\overline{BD} (F_D)	\overline{CE} (F_E)	\overline{IG} (F_G)	\overline{JH} (F_H)
Redundante	Redundante	Redundante	Isoestático
Independiente	Independiente	Independiente	Dependiente
			and the second second second

Por lo anterior se establece que las barras **redundantes** son variables **independientes** y las que pertenecen al sistema **isoestático** son variables **dependientes** en la formulación.

Luego, reordenando la ecuación 1, se crea una función para la fuerza dependiente F_H :

$$F_H = \frac{-200F_D \sin(\alpha) - 350F_E \sin(\beta) - 550F_G}{1050} \tag{9}$$

Con la ecuación anterior se calculan todas las **derivadas parciales** de las variables **dependientes** (isoestáticas, F_H), **respecto de las independientes** (redundantes, F_D , F_E , F_G).

$$\frac{\partial F_H}{\partial F_D} = \frac{-200 \sin(\alpha)}{1050}$$

$$\frac{\partial F_H}{\partial F_E} = \frac{-350 \sin(\beta)}{1050}$$

$$\frac{\partial F_H}{\partial F_C} = \frac{-550}{1050}$$
(10)

Recordando la definición de tracción $(\overline{BD}, \overline{GI}, \overline{HJ})$, compresión (\overline{CE}) y el cambio de temperatura de cada barra se obtiene el alargamiento de cada una.

$$\delta_{BD} = \delta_{BD}^{M} + \delta_{BD}^{T} = \frac{F_{D}I_{D}}{EA} + \alpha_{T}I_{D}\Delta T$$

$$\delta_{CE} = \delta_{CE}^{M} - \delta_{CE}^{T} = \frac{F_{E}I_{E}}{EA} - \alpha_{T}I_{E}\Delta T$$

$$\delta_{IG} = \delta_{IG}^{M} + \delta_{IG}^{T} = \frac{F_{G}I_{G}}{EA} + \alpha_{T}I_{G}\Delta T$$

$$\delta_{HJ} = \delta_{HJ}^{M} + \delta_{HJ}^{T} = \frac{F_{H}I_{H}}{EA} + \alpha_{T}I_{H}\Delta T$$

$$(11)$$

Donde el superíndice M y $\mathcal T$ indican el alargamiento debido al efecto mecánico y térmico respectivamente.

El signo + indica que el efecto mecánico y térmico producen alargamientos en la misma dirección (tracción y expansión).

El signo - indica que el efecto mecánico y térmico producen alargamientos en distintas direcciones (compresión y expansión).

Se consideran los pasadores B, C e I como puntos con desplazamientos conocidos ($\delta=0$) para derivar la energía de deformación respecto a las fuerzas F_D , F_E y F_G (independientes o redundantes). Aplicando el teorema de Castigliano para el pasador B (F_D):

$$\frac{\partial U}{\partial F_{i}} = \delta_{i} = \delta_{BD} \frac{\partial F_{D}}{\partial F_{i}} + \delta_{CE} \frac{\partial F_{E}}{\partial F_{i}} + \delta_{IG} \frac{\partial F_{G}}{\partial F_{i}} + \delta_{HJ} \frac{\partial F_{H}}{\partial F_{i}}$$

$$0 = \delta_{BD} \frac{\partial F_{D}}{\partial F_{D}} + \delta_{CE} \frac{\partial F_{E}}{\partial F_{D}} + \delta_{GI} \frac{\partial F_{C}}{\partial F_{D}} + \delta_{HJ} \frac{\partial F_{H}}{\partial F_{D}}$$

$$0 = \left(\frac{F_{D}I_{D}}{EA} + \alpha_{T}\Delta T\right) + \left(\frac{F_{H}I_{H}}{EA} + \alpha_{T}\Delta T\right) \frac{\partial F_{H}}{\partial F_{D}}$$

$$0 = I_{D} \left(\frac{F_{D}}{EA} + \alpha_{T}\Delta T\right) + I_{H} \left(\frac{F_{H}}{EA} + \alpha_{T}\Delta T\right) \left(-\frac{200}{1050}\sin(\alpha)\right)$$
(12)

Realizando la derivada de la ecuación 12 para cada fuerza independiente, se obtiene el siguiente sistema de ecuaciones:

cuaciones:
$$\begin{cases} F_{H} &= \frac{-200F_{D}\sin(\alpha) - 350F_{E}\sin(\beta) - 550F_{G}}{1050} \\ 0 &= I_{D}\left(\frac{F_{D}}{EA} + \alpha_{T}\Delta T\right) + I_{H}\left(\frac{F_{H}}{EA} + \alpha_{T}\Delta T\right)\left(\frac{-200}{1050}\sin(\alpha)\right) \\ 0 &= I_{E}\left(\frac{F_{E}}{EA} + \alpha_{T}\Delta T\right) + I_{H}\left(\frac{F_{H}}{EA} + \alpha_{T}\Delta T\right)\left(\frac{-350}{1050}\sin(\beta)\right) \\ 0 &= I_{G}\left(\frac{F_{G}}{EA} - \alpha_{T}\Delta T\right) + I_{H}\left(\frac{F_{H}}{EA} + \alpha_{T}\Delta T\right)\left(\frac{-550}{1050}\right) \end{cases}$$
 o a:

Considerando a:

$$I_H = I_G = 250$$
 [mm], $I_D = \sqrt{150^2 + 200^2}$ [mm], $I_E = \sqrt{150^2 + 350^2}$ [mm], $\alpha = \tan^{-1}(\frac{150}{200})$,

$$\beta = \tan^{-1}\big(\tfrac{150}{350}\big), \ \alpha_T = 12 \cdot 10^{-6} \ [1/^\circ \mathrm{C}], \ \Delta T = 20 \ [^\circ \mathrm{C}], \ E = 210000 \ [\mathrm{MPa}], \ A = 300 \ [\mathrm{mm}^2]$$

Resolviendo el sistema de ecuaciones lineal, se obtiene la fuerza y esfuerzo en cada barra:

	Darra			
	$B-D(F_D)$	C-E (<i>F_E</i>)	I-G (<i>F</i> _G)	J-H (<i>F_H</i>)
<i>F</i> [N]	-13115.21	16632.23	-5931.39	2421.88
σ [MPa]	-43.72	55.44	-19.77	8.07

Hiperestática

Darra

Resistencia de materiales Hiperestática

Matías Pacheco Alarcón & Estefano Muñoz Moya

Universidad de Santiago de Chile
Facultad de Ingeniería - Departamento de Ingeniería Mecánica
Av. Bdo. O'Higgins 3363 - Santiago - Chile
e-mail: matias.pacheco@usach.cl & estefano.munoz@usach.cl

INGENIERÍA MECÁNICA 18 de noviembre de 2020