(Due Tuesday, April 22)

Proposition 10.16: If the sequence (x_k) converges to L, then $\lim_{k\to\infty} x_{k+1} = L$.

Proof. let the sequence (x_k) converge to L, Then,

By def of convergence: for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for each $n \ge \mathbb{N}, |x_n - L| < \varepsilon$.

Using the same N as above: $n-1 \ge N-1$. This gives us $|x_{(n-1)+1}-L|=|x_n-L|<\varepsilon$. Which we know to be true as given by the def of convergence. so $\lim_{k\to\infty}x_{k+1}=L$. by the def of limit

Proposition 10.21(ii): Let $\lim_{k\to\infty} = L$. If $(x_k)_{k=0}^{\infty}$ is decreasing, then $x_k \geqslant L$ for all $k \geqslant 0$.

Proof. Let $\lim_{k\to\infty} = L$. and $(x_k)_{k=0}^{\infty}$ is decreasing. Then,

For the purpose of contradiction, assume that there exists some $x_i < L$.

By the def of a limit: x_k converges to L and the def of convergence: for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for each $n \ge \mathbb{N}$, $|x_n - L| < \varepsilon$.

Take x_i , By LEMMA 10.37/2, for every $m \ge i$, $x_i \ge x_m$. This means that once x is less than L it will always be less than L. That is for any N we choose there will be a $n \ge N$ such that $x_n < L$ If we then set $N \ge i$

Proposition 10.27: Given any $r \in \mathbb{R}_{>0}$, the number \sqrt{r} is unique in the sense that, if $x \in \mathbb{R}_{>0}$ and $x^2 = r$, then $x = \sqrt{r}$.

1