CINÉTICA QUÍMICA – FATORES QUE ALTERAM A VELOCIDADE DAS REAÇÕES QUÍMICAS

FATORES QUE ALTERAM A VELOCIDADE DAS REAÇÕES

• Concentração de Reagentes

Quanto maior a concentração de reagentes, maior a velocidade de uma reação química.

• Lei da Velocidade (Lei Cinética)

A velocidade de uma reação é diretamente proporcional ao produto das concentrações dos reagentes, elevadas a seus respectivos coeficientes.

$$aA + bB \rightarrow cC$$

 $v = K \cdot [A]^a \cdot [B]^b$

Obs.: [] = concentração molar (mol/L)

Mecanismo de Reações

Mecanismo de uma reação é a série de etapas que levam os reagentes aos produtos.

Nesse mecanismo há etapas lentas e rápidas. A etapa mais lenta é a etapa determinante da velocidade.

A velocidade da reação global é a velocidade da **etapa mais lenta**.

Exemplo

Seja a reação $2A + 3B \rightarrow A_2B_3$ que se processa em duas etapas:

$$1^{\underline{a}}$$
 etapa: $2A + B \rightarrow A_2B$ (lenta)

$$2^a$$
 etapa: $A_2B + 2B \rightarrow A_2B_3$ (rápida)

A velocidade da reação é dada pela expressão:

$$v = K \cdot [A]^2 \cdot [B]$$

Ordem de uma Reação

É a soma dos expoentes a que estão elevadas as concentrações na lei experimental da velocidade.

EXERCÍCIOS DE APLICAÇÃO

01 (PUC-RS) Relacione os fenômenos descritos na coluna I com os fatores que influenciam na velocidade dos mesmos, citados na coluna II.

Coluna I

- 1. Queimados se alastrando rapidamente quando está ventando.
- 2. Conservação dos alimentos no refrigerador.
- 3. Efervescência da água oxigenada na higiene de ferimentos.
- 4. Lascas de madeira queimando mais rapidamente que uma tora de madeira.

Coluna II

- a) superfície de contato
- b) catalisador
- c) concentração
- d) temperatura

A alternativa que contém a associação correta entre as duas colunas é:

- a) 1 c; 2 d; 3 b; 4 a
- b) 1 d; 2 c; 3 b; 4 a
- c) 1 a; 2 b; 3 c; 4 d
- d) 1 b; 2 c; 3 d; 4 a
- e) 1 c; 2 d; 3 a; 4 b
- 02 (UNIFENAS-MG) Dada a reação genérica: $3 A(g) + 2 B(g) \rightarrow A_3B_2(g)$, verificou-se experimentalmente que, quando a concentração de A duplica, mantendo-se também constante a concentração de B, a velocidade quadruplica; e quando a concentração de B duplica, mantendo-se constante a concentração de A, a velocidade também quadruplica.

Qual a expressão da velocidade da reação?

- a) $v = K [A]^2 [B]^2$
- b) $v = K [A]^3 [B]^2$
- c) $v = K [A]^2 [B]^3$
- d) $v = K [A] [B]^2$
- e) $v = K [A]^2 [B]$

03 (FUVEST-SP) Foram realizados quatro experimentos.

Cada um deles consistiu na adição de solução aquosa de ácido sulfúrico de concentração 1 mol/L a certa massa de ferro. A 25 °C e 1 atm, mediram-se os volumes de hidrogênio desprendido em função do tempo.

No final de cada experimento, sempre sobrou ferro que não reagiu. A tabela mostra o tipo de ferro usado em cada experimento, a temperatura e o volume da solução de ácido sulfúrico usado.

O gráfico mostra os resultados.

Experimento	Material	Temperatura °C	Volume da solução de H ₂ SO ₄ /mL
Α	pregos	60	50
В	limalha	60	50
С	limalha	60	80
D	limalha	40	80

Tempo

As curvas de 1 a 4 correspondem, respectivamente, aos experimentos:

	1	2	3	4
a)	D	С	Α	В
b)	D	С	В	Α
c)	В	Α	С	D
d)	С	D	Α	В
e)	С	D	В	Α

04 (UEL-PR) Na preparação de hidrogênio, realizaram-se cinco experiências entre magnésio e ácido clorídrico, nas condições abaixo especificadas. Escolha a alternativa correspondente à reação com maior velocidade.

	Magnésio na forma:	Concentração do ácido, em mol/L	Temperatura da reação (°C)
A	raspas	0,1	20
В	raspas	0,2	25
С	fita	0,1	20
D	fita	0,2	20
Е	lâmina	0,1	25

05 (UNIRIO-RJ) Num laboratório foram efetuadas diversas experiências para a reação:

$$2 H_2(g) + 2 NO(g) \rightarrow N_2(g) + 2 H_2O(g)$$

Com os resultados das velocidades iniciais obtidos, montou-se a seguinte tabela:

EXPER.	$[H_2]$	[NO]	$v(\text{mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1})$
1	0,10	0,10	0,10
2	0,20	0,10	0,20
3	0,10	0,20	0,40
4	0,30	0,10	0,30
5	0,10	0,30	0,90

Baseando-se na tabela anterior, podemos afirmar que a lei de velocidade para a reação é:

- a) $v = K \cdot [H_2]$
- b) $v = K \cdot [NO]$
- c) $v = K \cdot [H_2] \cdot [NO]$
- d) $v = K \cdot [H_2]^2 \cdot [NO]$
- e) $v = K \cdot [H_2] \cdot [NO]^2$

06 (VUNESP-SP) Duas fitas idênticas de magnésio metálico são colocadas, separadamente, em dois recipientes.

No primeiro recipiente adicionou-se solução aquosa de HCℓ e, no segundo, solução aquosa de CH₃COOH, ambas de concentração 0,1 mol/L.

Foram feitas as seguintes afirmações:

- I) As reações se completarão ao mesmo tempo nos dois recipientes, uma vez que os ácidos estão presentes na mesma concentração.
- II) O magnésio metálico é o agente oxidante nos dois casos.
- III) Um dos produtos formados em ambos os casos é o hidrogênio molecular.
- IV) As velocidades das reações serão afetadas se as fitas de magnésio forem substituídas por igual quantidade deste metal finamente dividido.

São verdadeiras as afirmações:

a) I e II, apenas.

d) III e IV, apenas.

b) II e III, apenas.

e) II, III e IV apenas.

c) I e III, apenas.

- 07 (UFRJ-RJ) A oxidação do brometo de hidrogênio produzindo bromo e água pode ser descrita em 3 etapas:
- I. $HBr(g) + O_2(g) \rightarrow HOOBr(g)$ (etapa lenta)
- II. $HBr(g) + HOOBr(g) \rightarrow 2 HOBr(g)$ (etapa rápida)
- III. $HOBr(g) + HBr(g) \rightarrow Br_2(g) + H_2O(g)$ (etapa rápida)
- a) Apresente a expressão da velocidade da reação de oxidação do brometo de hidrogênio.
- b) O que acontecerá com a velocidade da reação se triplicarmos a molaridade do "HBr" e dobrarmos a molaridade do "O ".
- 08 (ITA-SP) Uma certa reação química é representada pela equação: 2 A(g) + 2 B(g) → C(g) onde A, B e C significam as espécies químicas que são colocadas para reagir. Verificou-se, experimentalmente, numa certa temperatura, que a velocidade desta reação quadruplica com a duplicação da concentração da espécie A, mas não depende das concentrações das espécies B e C. Assinale a opção que contém, respectivamente, a expressão correta da velocidade e o valor correto da ordem da reação.
- a) $v = k[A]^2 [B]^2 e 4$.
- b) $v = k[A]^2 [B]^2 e 3$.
- c) $v = k[A]^2 [B]^2 e 2$.
- d) $v = k[A]^2 e 4$.
- e) $v = k[A]^2 e 2$.
- 09 (Centec-BA) Considerem-se a reação $A + B \rightarrow C$ e as informações contidas no quadro abaixo.

Experimentos	Conc. de [A] (mols/L)	Conc. de [B] (mols/L)	Velocidade da reação
I	1	1	0,020
II	2	1	0,040
III	1	2	0,080
IV	2	2	0,160

A expressão que melhor representa a velocidade de reação é:

- a) k [A]²
- b) k [B]²
- c) k [A] [B]
- d) k [A]² [B]
- e) k [A] [B]²
- 10 (FEPA-PA) Em uma experiência de cinética química, aumentaram-se diversas vezes a concentração de um dos reagentes, "A", mantendo-se fixa a concentração das outras substâncias e se observou que a velocidade da reação não se alterou. Assim, se pode afirmar que a ordem desta reação em relação ao reagente A é igual a:
- a) 1
- b) 0
- c) 2
- d) -1
- e) 1,5

- 11 (FUVEST-SP) O estudo cinético, em fase gasosa, da reação representada por $NO_2 + CO \rightarrow CO_2 + NO$ mostrou que a velocidade da reação não depende da concentração de CO, mas depende da concentração de NO_2 elevada ao quadrado. Esse resultado permite afirmar que:
- a) o CO atua como catalisador.
- b) o CO é desnecessário para a conversão de NO2 em NO.
- c) o NO2 atua como catalisador.
- d) a reação deve ocorrer em mais de uma etapa.
- e) a velocidade da reação dobra se a concentração inicial de NO₂ for duplicada.
- 12 (ACAFE-SC) Átomos de cloro, resultantes da decomposição de CCℓ₂F₂ (clorofluormetano), catalisam a decomposição do ozônio na atmosfera. Um mecanismo simplificado para a decomposição é:

global:
$$O_3 + O \xrightarrow{luz} 2O_2$$

$$\begin{cases} O_3 + Cl \longrightarrow O_2 + ClO (1^a \text{ etapa}) \\ ClO + O \longrightarrow Cl + O_2 (2^a \text{ etapa}) \end{cases}$$

A alternativa que apresenta a equação de velocidade para a 1ª etapa da reação é:

- a) $v = k [C\ell]$
- b) $v = k [O_2] [C \ell O]$
- $0) V K [O_2] [C_1$

d) $v = K [O_3] [C\ell]$ e) $v = k [C\ell O]$

- c) $v = k [O_3]$
- 13 (PUC-MG) A seguir, estão representadas as etapas da reação:

$$H_2 + Br_2 \rightarrow 2 \ HBr$$
I. $Br_2 \rightarrow Br \bullet + Br \bullet \text{ (etapa rápida)}$
II. $H_2 + Br \bullet \rightarrow HBr + H \bullet \text{ (etapa lenta)}$
III. $H \bullet + Br_2 \rightarrow HBr + Br \bullet \text{ (etapa rápida)}$
IV. $Br \bullet + Br \bullet \rightarrow Br_2 \text{ (etapa rápida)}$
V. $H \bullet + H \bullet \rightarrow H_2 \text{ (etapa rápida)}$

A velocidade da reação é determinada pela etapa:

- a) I
- b) II
- c) III
- d) IV
- e) V
- 14 (UFU-MG) Para a reação em fase gasosa, representada pela equação

2 HBr + NO
$$\rightleftharpoons$$
 H₂O + NO + Br₂ \triangle H = −19,6 kcal

é proposto um mecanismo em duas etapas:

Etapa 1: HBr +
$$NO_2 \rightleftharpoons HOBr + NO$$
 (lenta)

Etapa 2: HBr + HOBr
$$\rightleftharpoons$$
 H₂O + Br₂ (rápida)

A lei de velocidade desta reação é:

- a) $v = k [HBr]_2 [NO_2]$
- b) v = k [HBr] [HOBr]
- c) $v = k [HBr]^2 [NO_2] [HOBr]$
- d) $v = k [HBr]^2 [NO_2] [HOBr]_2 [NO]$
- e) v = k [HBr] [NO₂]

15 (UNIP-SP) Considerando a reação química $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$ verifica-se que a velocidade (rapidez) da mesma é dada pela equação: $v = k [NO_2]^2$

A etapa lenta do processo poderia ser:

- a) $2 NO_2(g) \rightarrow NO_3 + NO$
- b) $NO_2 + CO_2 \rightarrow NO_3 + CO$
- c) $NO_3 + CO \rightarrow NO_2 + CO_2$
- d) $2 \text{ NO}_2 + 2 \text{ CO} \rightarrow 2 \text{ NO} + 2 \text{ CO}_2$
- e) $2 NO_2 \rightarrow NO + O_3$
- **16** (MACKENZIE-SP) A reação $A(g) + B(g) \rightarrow C(g) + D(g)$ é de primeira ordem em relação a A e de primeira ordem com relação a B.

Comprimindo os gases a ¼ do volume original, a temperatura constante, a velocidade da reação:

- a) não se altera.
- b) diminui 4 vezes.
- c) diminui 16 vezes.
- d) aumenta 8 vezes.
- e) aumenta 16 vezes.
- 17 (FUVEST-SP) Em solução aquosa ocorre a transformação:

$$H_2O_2 + 2I^- + 2H^+ \rightarrow 2H_2O + I_2$$
(reagentes) (produtos)

Em quatro experimentos, mediu-se o tempo decorrido para a formação de mesma concentração de I₂, tendo na mistura de reação as seguintes concentrações iniciais de reagentes:

Experimentos	Concentrações iniciais (mol/L)			Tempo (s)
	H_2O_2	I-	H ⁺	
I	0,25	0,25	0,25	56
II	0,17	0,25	0,25	87
III	0,25	0,25	0,17	56
IV	0,25	0,17	0,25	85

Esses dados indicam que a velocidade da reação considerada depende apenas da concentração de:

- a) H_2O_2 e I^-
- b) H₂O₂ e H⁺
- c) H_2O_2
- d) H⁺
- e) I
- **18 (CESGRANRIO-RJ)** A equação X + 2Y → XY₂ representa uma reação, cuja equação da velocidade é:

v = k [X] [Y]

Assinale o valor da constante de velocidade, para a reação acima, sabendo que, quando a concentração de X é 1M e a concentração de Y é 2 M, a velocidade da reação é de 3 mol/min.

- a) 3,0
- b) 1,5
- c) 1,0
- d) 0,75
- e) 0,5

19 (UFPE-PE) Com relação aos dados experimentais constantes na tabela abaixo, relativos à reação:

$$C\ell_2(aq) + 2 Fe^{2+}(aq) \rightarrow 2 C\ell^{-}(aq) + 2 Fe^{3+}(aq)$$

Número do experimento	[C/ ₂] inicial	[Fe ⁺²] inicial	Velocidades iniciais relativas
Ι	0,10	1	1
II	0,20	1	2
III	0,10	0,5	0,5
IV	0,05	0,05	0,025

a expressão que sugere a lei de velocidade de reação é:

- a) $v = k [C\ell_2] [Fe^{2+}]^2$
- b) $v = k [C\ell_2] [Fe^{2+}]$
- c) $v = k [C\ell_2]^2 [Fe^{2+}]^2$
- d) $v = k [C\ell_2]^2 [Fe^{2+}]^0$
- e) $v = k [C\ell_2]^0 [Fe^{2+}]^2$

20 (PUC-RJ) Dados experimentais sobre a reação do brometo de t-butila com hidroxila, a 55 °C:

$$(CH_3)_3CBr + OH^- \rightarrow (CH_3)_3COH + Br^-$$

Concentração Inicial (M)		Velocidade	
	$(CH_3)_3$ CBr	OH-	(mol . L ⁻¹ . s ⁻¹)
1	0,10	0,10	0,0010
2	0,20	0,10	0,0020
3	0,30	0,10	0,0030
4	0,10	0,20	0,0010
5	0,10	0,30	0,0010

Assinale a opção que contém a expressão da velocidade da reação:

- a) $v = k [(CH_3)_3CBr]$
- b) $v = k [OH^{-}]$
- c) $v = k [(CH_3)_3CBr]^2 [OH^-]$
- d) $v = k [(CH_3)_3CBr]^3 [OH^-]^2$
- e) $v = k [(CH_3)_3CBr] [OH^-]$
- **21 (FMTM-MG)** A reação expressa pela equação: 2 NO + 2 H₂ \rightarrow N₂ + 2 H₂O, tem lei de velocidade de formação de N₂ expressa pela equação v = k [NO]² [H₂], onde k é a constante de velocidade.
- a) Discuta por que o expoente que afeta a concentração de H₂ na lei de velocidade é diferente do coeficiente da equação estequiométrica.
- b) Foram feitas duas determinações da velocidade dessa reação. Nas duas determinações as concentrações de H₂ empregadas foram as mesmas, enquanto a concentração de NO empregada numa delas é o dobro da concentração empregada na outra. Qual é a relação existente entre as velocidades de reação das duas determinações? Justifique.
- c) Qual a ordem dessa reação e qual a sua molecularidade?

22 (FUVEST-SP) 0 composto $C_6H_5N_2C\ell$ reage quantitativamente com água, a 40 °C, ocorrendo a formação de fenol, ácido clorídrico e liberação de nitrogênio: $C_6H_5N_2C\ell$ (aq) + $H_2O(\ell) \rightarrow C_6H_5OH(aq)$ +

Conc./mol L ⁻¹	Tempo/min
0,80	zero
0,40	9,0
0,20	18,0
0,10	27,0

- a) Partindo-se de 500 mL da solução de $C_6H_5N_2C\ell$ e coletando-se o nitrogênio (isento de umidade) à pressão de 1 atm e 40 °C, qual o volume obtido desse gás, decorridos 27 minutos? Mostre com cálculos.
- b) A partir dos dados da tabela; pode-se mostrar que a velocidade da reação é dada pela expressão: $v = k \left[C_6 H_5 N_2 C \ell \right]$

Demonstre esse fato utilizando os dados da tabela.

Sugestão: calcule a velocidade média nas concentrações 0,60 e 0,30 mol/L.

Volume molar de gás a 1 atm e 40 °C = 26 L/mol.

23 (IME-RJ) A reação $C\ell O^- \to C\ell O^- + C\ell^-$ pode ser representada pelo seguinte diagrama de energia potencial (EP) pela coordenada de reação:

Pede-se:

- a) propor um mecanismo para a reação, composto por reações elementares;
- b) a expressão da velocidade de reação global. Justifique a resposta.

24 (UERJ-RJ) A reação expressa pela equação: x X + y Y → z Z + w W

foi realizada em diversas experiências nas quais se manteve constante a temperatura. As velocidades de reação foram medidas, variando-se a concentração molar de um dos reagentes e mantendo-se a do outro constante. Os resultados obtidos estão representados no gráfico adiante:

Em função dos dados apresentados,

- a) determine a ordem da reação em relação aos reagentes X e Y, respectivamente.
- b) calcule o número de vezes em que a velocidade da reação aumenta quando se duplica a concentração molar de Y e se triplica a concentração molar de X.

25 (ITA-SP) Considere a reação representada pela equação química $3A(g) + 2B(g) \rightarrow 4E(g)$. Esta reação ocorre em várias etapas, sendo que a etapa mais lenta corresponde a reação representada pela seguinte equação química: $A(g) + C(g) \rightarrow D(g)$.

A velocidade inicial desta última reação pode ser expressa por: $-\frac{\Delta[A]}{\Delta t} = 5 \text{mol.s}^{-1}$

Qual e a velocidade inicial da reação (mol.s⁻¹) em relação a espécie E?

- a) 3,8
- b) 5,0
- c) 6,7
- d) 20

26 (UEL-PR) O ozônio próximo à superfície é um poluente muito perigoso, pois causa sérios problemas respiratórios e também ataca as plantações através da redução do processo da fotossíntese. Um possível mecanismo que explica a formação de ozônio nos grandes centros urbanos é através dos produtos da poluição causada pelos carros, representada pela equação química a seguir: $NO_2(g) + O_2(g) \rightarrow NO(g) + O_2(g)$ Estudos experimentais mostram que essa reação ocorre em duas etapas:

e) 60

I.
$$NO_{2(g)} \xrightarrow{LUZ} NO_{(g)} + O$$
 (lenta)

II.
$$O_{2(g)} + O \longrightarrow O_{3(g)}$$
 (rápida)

De acordo com as reações apresentadas, a lei da velocidade é dada por:

- a) $v = k \cdot [O_2] \cdot [O]$
- b) $v = k \cdot [NO_2]$
- c) $v = k \cdot [NO_2] + k \cdot [O_2] \cdot [O]$
- d) $v = k \cdot [NO] \cdot [O_3]$
- e) $v = k \cdot [O_3]$

27 (UFRN-RN) Foram obtidos os seguintes dados experimentais para a velocidade de hidrólise de sacarose em solução diluída, a uma temperatura constante.

$$\begin{array}{ccc} \text{C}_{12}\text{H}_{22}\text{O}_{11} + \text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + \text{C}_6\text{H}_{12}\text{O}_6 \\ \text{sacarose} & \text{glicose} & \text{frutose} \end{array}$$

Experimento	Concentração de sacarose (mol·L ⁻¹)	Velocidade (mol · L ^{−1} · min ^{−1})
1	0,10	1,01 · 10 ⁻⁴
II	0,20	2,02 · 10-4
III	0,30	3,03 · 10-4
IV	0,40	4,04 · 10 ⁻⁴

Com base nos dados anteriores, determine o(a):

- a) molecularidade da reação;
- b) equação da velocidade;
- c) ordem da reação;
- d) valor da constante de velocidade.

28 (UNIFESP-SP) Tetróxido de dinitrogênio se decompõe rapidamente em dióxido de nitrogênio, em condições ambientais.

$$N_2O_4(g) \rightarrow 2 NO_2(g)$$

A tabela mostra parte dos dados obtidos no estudo cinético da decomposição do tetróxido de dinitrogênio, em condições ambientais.

Tempo (μs)	[N ₂ O ₄]	[NO ₂]
0	0,050	0
20	0,033	X
40	У	0,050

Os valores de x e de y na tabela e a velocidade média de consumo de N_2O_4 nos 20 μ s iniciais devem ser, respectivamente:

- a) 0,034, 0,025 e 1,7 x 10 $^{\text{-3}}$ mol L $^{\text{-1}}$ $\,\mu$ s $^{\text{-1}}$
- b) 0,034, 0,025 e 8,5 x 10^{-4} mol L⁻¹ μ s⁻¹
- c) 0,033, 0,012 e 1,7 x 10^{-3} mol L⁻¹ μ s⁻¹
- d) 0,017, 0,033 e 1,7 x 10^{-3} mol L $^{-1}$ μ s $^{-1}$
- e) 0,017, 0,025 e 8,5 x 10 $^{\text{-4}}$ mol L $^{\text{-1}}$ $\,\mu$ s $^{\text{-1}}$

$$2 N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$

Foram realizados três experimentos, apresentados na tabela.

Experimento	[N ₂ O ₅]	Velocidade
1	Х	4 z
II	x/2	2 z
III	x/4	Z

A expressão da velocidade da reação é:

a) $v = k \cdot [N_2O_5]^0$

b) $v = k \cdot [N_2 O_5]^{1/4}$

c) $v = k \cdot [N_2 O_5]^{1/2}$

d) $v = k \cdot [N_2O_5]^1$

e) $v = k \cdot [N_2O_5]^2$

30 (PUC-SP) A reação 2 NO(g) + 2 $H_2(g) \rightarrow N_2(g)$ + 2 $H_2O(g)$ foi estudada a 904 °C. Os dados da tabela seguinte referem-se a essa reação.

[NO] (mol/L)	[H ₂] (mol/L)	Velocidade (mol/L · s)
0,420	0,122	0,140
0,210	0,122	0,035
0,105	0,122	0,0087
0,210	0,244	0,070
0,210	0,366	0,105

A respeito dessa reação, é correto afirmar que sua expressão da velocidade é:

d) $v = k[NO]^4[H_2]^2$

e) $v = k[NO]^2[H_2]^2$

a) $v = k[NO][H_2]$

b) $v = k[NO]^2[H_2]$

c) $v = k[H_2]$

31 (PUC-SP) Considere a reação: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g) \Delta H = -226 \text{ kJ/mol}$

Ao realizar essa reação a 700° C e com pressões parciais de NO_2 (pNO₂) e CO (pCO) iguais a 1 atm, determinouse uma taxa de formação para o $CO_2(v)$ igual a x. Sabendo-se que a lei de velocidade para essa reação é $v = k[NO2]^2$, foram feitas as seguintes previsões sobre a taxa de formação de $CO_2(v)$.

Experimento	pNO ₂ (atm)	pCO (atm)	t (°C)	V
1	2	1	700	2x
II	1	2	700	X
III	1	1	900	>χ

Estão corretas as previsões feitas para:

- a) I, apenas.
- b) I e II, apenas
- c) II e III, apenas.
- d) I e III, apenas.
- e) I, II e III.

32 (PUC-MG) A reação

$$NO_2(g) + CO(g) \rightarrow CO_2(g) + NO(g)$$

ocorre em duas etapas:

- · 1a Etapa: $NO_2(g) + NO_2(g) \rightarrow NO(g) + NO_3(g)$ (etapa lenta)
- · 2a etapa: $NO_3(g) + CO(g) \rightarrow CO_2(g) + NO_2(g)$ (etapa rápida)

A lei de velocidade para a reação é:

- a) $v = k \cdot [NO_2]^2$
- b) $v = k \cdot [NO_2]^2 \cdot [CO]$
- c) $v = k \cdot [NO_3] \cdot [CO]$
- d) $v = k \cdot [NO_2] \cdot [CO]$
- e) $v = k \cdot [CO_2]^2 \cdot [CO]$

33 (Uniube-MG) O metal Mg interage com ácido clorídrico produzindo gás hidrogênio.

$$Mg(g) + 2 HC\ell(aq) \rightarrow H_2(g) + MgC\ell_2(aq)$$

Foram realizados vários experimentos em que se utilizou a mesma massa de magnésio e o mesmo volume de solução de HCI 0,3 mol/L, 0,4 mol/L e 0,5 mol/L.

Os dados coletados foram projetados no gráfico.

Analisando-se os dados, pode-se afirmar que a rapidez da reação é:

- a) maior em A, porque a concentração do HCI utilizado é maior.
- b) maior em B, porque a concentração do HCI utilizado é maior.
- c) maior em C, porque a concentração do HCI utilizado é maior.
- d) maior em A, porque a concentração do HCI utilizado é menor.
- e) maior em A, B, C, porque não depende da concentração do HCI utilizado.

34 (UFPI-PI) O trióxido de enxofre, SO₃, matéria-prima para fabricação do ácido sulfúrico, H₂SO₄, é preparado através da oxidação do enxofre, em presença do catalisador, conforme a reação a seguir:

$$SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow SO_{3(g)}$$

Considerando a reação simples e elementar, marque a opção correta.

- a) A reação é de primeira ordem em relação a SO₂.
- b) Aumentando a temperatura, diminui a velocidade de formação do SO₃.
- c) A reação é de terceira ordem em relação ao reagente.
- d) Aumentando a temperatura, diminui a energia cinética média das moléculas.
- e) A velocidade do desaparecimento do SO₂ é a metade da velocidade do desaparecimento do O₂.

35 (UEM-PR) Os conversores catalíticos automotores, baseados em ligas metálicas sólidas contendo ródio, paládio ou molibdênio, são dispositivos antipoluição existentes na maioria dos carros. Sua função é absorver moléculas de gases poluentes e, através de um processo chamado catálise, oxidar ou decompor esses gases, como mostra o exemplo abaixo. Para a reação global 2 $NO(g) + O_2 \rightarrow 2 NO_2(g)$, na qual NO_2 atmosférico é gerado a partir de NO expelido dos escapamentos de automóveis, é proposto o seguinte mecanismo, em duas etapas:

2 NO(g)
$$\rightarrow$$
 N₂O₂(g) (etapa rápida)
N₂O₂(g) + O₂(g) \rightarrow 2 NO₂(g) (etapa lenta)

Considerando essas afirmações, assinale o que for correto.

- (01) A lei de velocidade da etapa lenta é igual a $v = k[O_2].[NO]^2$.
- (02) As reações das etapas rápida e lenta podem ser chamadas de reações bimoleculares.
- (04) A catálise descrita acima é um exemplo de catálise homogênea.
- (08) À temperatura e à concentração de NO(g) constantes, se a concentração de O₂(g) duplicar, a reação global será 4 vezes mais rápida.
- (16) Sendo a lei de velocidade da etapa lenta, obtida experimentalmente, igual a $v = k[N_2O_2].[O_2]$, sua ordem de reação é igual a 2.

Some os números dos itens corretos

- 36 (ITA-SP) Um recipiente aberto, mantido à temperatura ambiente, contém uma substância A(s) que se transforma em B(g) sem a presença de catalisador. Sabendo-se que a reação acontece segundo uma equação de velocidade de ordem zero, responda com justificativas às seguintes perguntas.
- a) Qual a expressão algébrica que pode ser utilizada para representar a velocidade da reação?
- b) Quais os fatores que influenciaram na velocidade da reação?
- 37 (FATEC-SP) Na tabela que segue, estão resumidos os dados coletados quando volumes iguais de soluções aquosas dos ácidos A e B interagem com massas iguais do metal magnésio.

	Tempo de reação
Ácido A + Mg	inferior a 1 s
Ácido B + Mg	superior a 30 s

Com base nesses dados, afirma-se que:

- I. A e B podem ser o mesmo ácido, porém em concentrações diferentes.
- II. A pode ser um ácido forte, e B, um ácido fraco.
- III. A concentração de íons H⁺ é maior na solução de B.

Dessas afirmações:

- a) apenas a I está correta.
- b) apenas a II está correta.
- c) apenas a III está correta.
- d) estão corretas a I e a II, apenas.
- e) estão corretas a II e a III, apenas.

38 (UFRGS-RS) O carvão é um combustível constituído de uma mistura de compostos ricos em carbono. A situação em que a forma de apresentação do combustível, do comburente e a temperatura utilizada favorecerão a combustão do carbono com maior velocidade é:

	Combustivel	Comburente	Temperatura (°C)
a)	carvão em pedaços	ar atmosférico	0
b)	carvão pulverizado	ar atmosférico	30
c)	carvão em pedaços	oxigênio puro	20
d)	carvão pulverizado	oxigênio puro	100
e)	carvão em pedaços	oxigênio liquefeito	50

- 39 (UFLA-MG) A reação genérica A + B \rightarrow AB se processa em uma única etapa. (k = 0,4 L/mol·min)
- a) Calcule a velocidade da reação em mol/L .min, quando as concentrações de A e B forem, respectivamente, 3,0 e 4,0 mol/L.
- b) Cite quatro fatores que afetam a velocidade da reação.

40 (PUC-SP) Na reação de solução de ácido clorídrico com zinco metálico, o gráfico que melhor representa o comportamento das espécies em solução é:

41 (PUC-RJ) Sabendo que a velocidade da reação de decomposição do pentóxido de nitrogênio, N₂O₅, aumenta duas vezes quando sua concentração é duplicada, assinale o item que apresenta a alternativa **incorreta**.

$$2 N_2 O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$

- a) A reação de decomposição do pentóxido de nitrogênio é uma reação cuja cinética é de segunda ordem.
- b) A equação de velocidade que rege a decomposição do pentóxido de nitrogênio é igual a $V = k.[N_2O_5]$, em que V é a velocidade da reação e k é a constante de velocidade.
- c) Se o uso de um catalisador acarretasse o aumento da velocidade da reação, isso seria consequência da diminuição da energia de ativação da reação.
- d) Se a velocidade da reação é 3.10^{-2} mol. $L^1.s^{-1}$ quando a concentração de N_2O_5 é de 0,1 mol/litro, a constante de velocidade da reação é igual a 0,3 s^{-1} .
- e) Após a reação de decomposição do N₂O₅ em um balão de volume fixo, a pressão do sistema é maior do que a pressão inicial.
- 42 (PUC-RJ) Considere a reação expressa pela equação: $2 \text{ AB(s)} + 2 \text{ C}_2(g) + D_2(g) \rightarrow 2 \text{ AC}_2(g) + 2 \text{ BD(g)}$ na qual é mantida a temperatura constante. Se a pressão parcial de $C_2(g)$ for reduzida à metade e a de D_2 for duplicada, a velocidade da reação (elementar):
- a) permanecerá constante.
- b) ficará duas vezes maior.
- c) ficará metade da inicial.
- d) ficará quatro vezes maior.
- e) dependerá também da pressão parcial de AB.
- 43 (PUC-RS) Considere a reação elementar representada pela equação:

$$3 O_2(g) \rightarrow 2 O_3(g)$$

Ao triplicarmos a concentração do oxigênio, a velocidade da reação, em relação à velocidade inicial, torna-se:

- a) duas vezes maior.
- b) três vezes maior.
- c) oito vezes menor.
- d) vinte e sete vezes maior.
- e) nove vezes maior.
- 44 (UFSM-RS) Observe a equação:

$$C_{12}H_{22}O_{11}+H_2O \stackrel{H^+}{\rightleftharpoons} C_6H_{12}O_6+C_6H_{12}O_6$$
Sacarose Glicose Frutose

Em solução diluída, a expressão da velocidade dessa reação é $v = k \cdot [C_{12}H_{22}O_{11}]$. Sabe-se que, quando a concentração da sacarose é 2,0 mols/L, a velocidade da reação é de 5,0 mols/L · min. Nessas condições, o valor da constante de velocidade para a reação é:

- a) 2,5 min⁻¹
- b) 1,5 min⁻¹
- c) 1,0 min⁻¹
- d) 0,8 min⁻¹
- e) 0,4 min⁻¹

45 (UEL-PR) Se o suprimento de ar, na câmara de combustão de um motor de automóvel, for insuficiente para a queima do n-octano, pode ocorrer a formação de monóxido de carbono, uma substância altamente poluidora do ar atmosférico. Dados:

2
$$C_8H_{18}(\ell)$$
 + 25 $O_2(g)$ \to 16 $CO_2(g)$ + 18 $H_2O(\ell)$ ΔH^0 = - 10.942 kJ

$$2 CO(g) + O_2(g) \rightarrow 2 CO_2(g) \Delta H^0 = -566,0 \text{ kJ}$$

Os dados experimentais para a velocidade de reação, V, indicados no quadro a seguir, foram obtidos a partir dos resultados em diferentes concentrações de reagentes iniciais para a combustão do monóxido de carbono, em temperatura constante.

Experimento	CO (mol/L)	O ₂ (mol/L)	V (mol/L·s)
1	1,0	2,0	4 · 10 ⁻⁶
2	2,0	2,0	8 · 10 ⁻⁶
3	1,0	1,0	1 · 10 ⁻⁶

A equação de velocidade para essa reação pode ser escrita como $V = k .[CO]^a.[O_2]^b$, em que a e b são, respectivamente, as ordens de reação em relação aos componentes $CO \in O_2$.

De acordo com os dados experimentais, é correto afirmar que, respectivamente, os valores de a e b são:

- a) 1 e 2
- b) 2 e 1
- c) 3 e 2
- d) 0 e 1
- e) 1 e 1

46 (UFPE-PE) Em determinadas condições de temperatura e pressão, a decomposição térmica do éter dimetílico (ou metoxietano ou oxibismetano), dada pela equação $(CH_3)_2O(g) \rightarrow CH_4(g) + H_2(g) + CO(g)$, exibe a seguinte dependência da velocidade com a concentração:

Experimento	Concentração inicial de (CH ₃) ₂ O em mol·L ⁻¹	Velocidade inicial em mol · L ⁻¹ · s ⁻¹
1	0,20	1,60
II	0,40	6,40
III	0,60	14,40

Considerando que a concentração da espécie química x seja denominada [x], a velocidade (V) para essa reação será expressa como:

- a) $V = k \cdot [(CH_3)_2O]$
- b) $V = k \cdot [CH_4] \cdot [H_2] \cdot [CO]$
- c) V = k
- d) $V = k \cdot [(CH_3)_2O]^2$
- e) $V = k \cdot \{[CH_4] \cdot [H_2] \cdot [CO]\} / [(CH_3)_2O]$

47 (UNICAP-PE) A amônia se decompõe segundo a reação: $2 \text{ NH}_3 \rightarrow \text{N}_2 + 3 \text{ H}_2$

Um estudante, querendo determinar a velocidade de decomposição da amônia, montou uma tabela, criando o gráfico abaixo.

Tempo	[NH ₃]	[N ₂]	[H ₂]
0			
10			
20			
30			

- () No tempo 0, a concentração molar no N_2 é 1,6.
- () No tempo 20, a concentração molar do H_2 é 1,5.
- () No tempo 10, a concentração molar do NH₃ é 1,0.
- () No tempo 30, a concentração molar do N₂ é igual à do NH₃.
- () A velocidade da reação em relação ao N₂, no intervalo de 10 a 20, é 0,04.

48 (UEM-PR) A uma dada temperatura, medidas experimentais da velocidade da reação abaixo mostraram tratar-se de uma reação de primeira ordem em relação à concentração de S₂O₈²⁻ e também de primeira ordem em relação a I⁻.

$$S_2O_8^{2^-} + 3 I^- \rightarrow 2 SO_4^{2^-} + I_3^-$$

Considerando essas afirmações, assinale a(s) alternativa(s) correta(s).

- (01) A lei de velocidade da reação pode ser descrita por $v = K.[S_2O_8^{2^-}].[I^-].$
- (02) Provavelmente, existem erros nas medidas experimentais, visto que os coeficientes obtidos são diferentes dos coeficientes da equação balanceada.
- (04) Se forem mantidas constantes a temperatura e a concentração de I^- , a velocidade da reação duplicar-se-á se a concentração de $S_2O_8^{2-}$ for duplicada.
- (08) Uma elevação da temperatura irá alterar a velocidade da reação somente se a reação for endotérmica.
- (16) A adição de um catalisador ao sistema aumenta a velocidade da reação porque diminui a energia de ativação para a formação dos produtos.

Some os números dos itens corretos.

49 (FUVEST-SP) A reação de acetato de fenila com água, na presença de catalisador, produz ácido acético e fenol. Os seguintes dados de concentração de acetato de fenila, [A], em função do tempo de reação, t, foram obtidos na temperatura de 5°C:

t/min	0	0,25	0,50	0,75	1,00	1,25	1,50
[A]/mol L ⁻¹	0,80	0,59	0,43	0,31	0,23	0,17	0,12

a) Com esses dados, construa um gráfico da concentração de acetato de fenila (eixo y) em função do tempo de reação (eixo x), utilizando o quadriculado a seguir.

- b) Calcule a velocidade média de reação no intervalo de 0,25 a 0,50 min e no intervalo de 1,00 a 1,25 min.
- c) Utilizando dados do item b, verifique se a equação de velocidade dessa reação pode ser dada por: v = k [A] em que v = velocidade da reação k = constante, grandeza que não depende de v nem de [A]
- [A] = concentração de acetato de fenila
- d) Escreva a equação química que representa a hidrólise do acetato de fenila.

50 (FATEC-SP) Tiossulfato de sódio e ácido clorídrico interagem segundo a equação:

$$S_2O_3^{2-}(aq) + 2 H^+(aq) \rightarrow SO_2(g) + H_2O + S(s)$$

A transformação é sinalizada pelo surgimento de um precipitado de enxofre que transmite à solução uma certa turbidez.

O estudo experimental da transformação foi feito cronometrando o tempo necessário para a formação de uma quantidade fixa de enxofre capaz de encobrir uma cruz feita numa folha de papel. Os seguintes dados foram coletados:

Experiência	[H+] mol/L ⁻¹	[S ₂ O ₃ ²⁻] mol/L ⁻¹	Velocidade mol/L ⁻¹ s ⁻¹
1	3	0,250	$4.0 imes10^{-2}$
2	3	0,125	$2.0 imes10^{-2}$
3	3	0,0625	$1.0 imes10^{-2}$
4	2,4	0,250	$4.0 imes10^{-2}$
5	1,2	0,250	$4.0 imes10^{-2}$

A análise dos dados permite concluir que a velocidade da reação:

- a) é diretamente proporcional ao produto $[H^+]^2$. $[S_2O_3^{2-}]$.
- b) é diretamente proporcional ao quadrado da concentração de H⁺.
- c) é diretamente proporcional ao quadrado da concentração de S₂O₃²⁻.
- d) independe da concentração do reagente tiossulfato.
- e) independe da concentração do reagente H⁺.

GABARITO

01- Alternativa A

- a) superfície de contato: 4. Lascas de madeira queimando mais rapidamente que uma tora de madeira.
- b) catalisador: 3. Efervescência da água oxigenada na higiene de ferimentos, onde a enzima catalase atua como catalisador da decomposição da água oxigenada.
- c) concentração: 1. Queimados se alastrando rapidamente quando está ventando.
- d) temperatura: 2. Conservação dos alimentos no refrigerador.

02- Alternativa A

$$v = K \cdot [A]^{x} \cdot [B]^{y}$$

$$4v = K \cdot [2A]^{x} \cdot [B]^{y}$$

$$4v = K \cdot [A]^{x} \cdot [B]^{y}$$

$$4v = K \cdot [A]^{x} \cdot [A]^{y} \cdot [A]^{y}$$

$$4v = 2^{y} \cdot K \cdot [A]^{x} \cdot [A]^{y} \cdot [A]^{y}$$

$$2^{2} \cdot \cancel{x} = 2^{x} \cdot \cancel{x}$$

$$x = 2$$

$$y = 2$$

03- Alternativa E

Reação química ocorrida: $Fe(s) + H_2SO_4(aq) \rightarrow FeSO_4(aq) + H_2(g)$

As curvas 1 e 2 referem-se à solução com maior volume da solução de H₂SO₄ (80mL), ou seja, experimentos C e D. Sendo que a curva 1 refere-se ao experimento C que possui maior temperatura que produz maior volume de hidrogênio no início da reação.

As curvas 3 e 4 referem-se à solução com menor volume da solução de H₂SO₄ (50mL), ou seja, experimentos A e B. Sendo que a curva 3 refere-se ao experimento B que possui o ferro com maior superfície de contato produzindo maior volume de hidrogênio no início da reação.

Com isso teremos: curva 1 = experimento C, curva 2 = experimento D, curva 3 = experimento B, curva 4 = experimento A

04- Alternativa B

Reação química ocorrida: Mg(s) + 2 HC ℓ (aq) \rightarrow MgC ℓ_2 (aq) + H₂(g)

A reação que ocorre com maior velocidade é a que apresenta magnésio em raspas (maior superfície de contato), solução de ácido clorídrico com maior concentração e experimento realizado com maior temperatura.

05- Alternativa E

$$\begin{array}{c|c} v_1 = K \cdot (0,1)^x \cdot (0,1)^y \\ v_2 = K \cdot (0,2)^x \cdot (0,1)^y \end{array} \right\rangle \ \frac{0,10}{0,20} = \frac{K \cdot (0,1)^x \cdot (0,1)^y}{K \cdot (0,2)^x \cdot (0,1)^y} \Rightarrow \frac{1}{2} = \frac{1}{2^x} \ \Rightarrow \ \boxed{x=1} \\ v_1 = K \cdot (0,1)^x \cdot (0,1)^y \\ v_3 = K \cdot (0,1)^x \cdot (0,2)^y \end{array} \right\rangle \frac{0,10}{0,40} = \frac{K \cdot (0,1)^x \cdot (0,1)^y}{K \cdot (0,1)^x \cdot (0,2)^y} \Rightarrow \frac{1}{4} = \frac{1}{2^y} \ \Rightarrow \ \boxed{y=2}$$

Logo, a Lei de velocidade fica: $v = K \cdot [H_2] \cdot [NO]^2$

06- Alternativa D

I – Falsa

HCl → ácido forte, mais ionizado, maior concentração de H+, maior a velocidade da reação.

II – Falsa. Agente redutor

$$\begin{array}{c} \text{Mg} + 2 \, \text{HCl} \longrightarrow \text{MgCl} + \text{H}_2 \\ \hline \\ \text{O} \\ \hline \\ \text{Agente redutor} \end{array}$$

07-

a) etapa lenta (determina a equação da velocidade) $\rightarrow v = k \cdot [HBr] \cdot [O_2]$

b) $v = k \cdot [HBr] \cdot [O_2] \rightarrow vi = k \cdot x \cdot y = kxy \rightarrow vf = k \cdot 2x \cdot 3y = 6 kxy$

A velocidade final é seis vezes a velocidade inicial.

08- Alternativa E

Como a velocidade só depende de "A", esta é de 2ª ordem em relação a A, pois dobrando sua "molaridade", quadruplica a velocidade da reação.

 $V = k \cdot [A]^2$ (reação de 2ª ordem)

09- Alternativa E

$$v = k \cdot [A]^{\alpha} \cdot [B]^{\beta}$$

Comparando I e II: dobramos a [A] e mantendo a

[B] = cte, a velocidade dobrou (1ª ordem em relação a A) ∴ α = 1

Comparando I e III: dobramos a [B] e mantendo a

[A] = cte, a velocidade quadruplicou (2^a ordem em relação a B) $\therefore \beta = 2$

$$v = k \cdot [A] \cdot [B]^2$$

10- Alternativa B

Quando altera a concentração do reagente e a velocidade da reação não modifica, com isso podemos concluir que esta substância não participa da equação da velocidade, e desta forma sua ordem é zero.

11- Alternativa D

Se a velocidade da reação apresentada não depende da concentração molar do CO, logo esta reação é obtida em várias etapas, sendo que a etapa lenta é a que determina a expressão da velocidade da reação.

12- Alternativa D

A reação obtida em várias etapas, é a etapa lenta que determina a expressão da velocidade da reação.

13- Alternativa B

A reação obtida em várias etapas, é a etapa lenta que determina a expressão da velocidade da reação.

14- Alternativa E

A reação obtida em várias etapas, é a etapa lenta que determina a expressão da velocidade da reação.

15- Alternativa A

A reação obtida em várias etapas, é a etapa lenta que determina a expressão da velocidade da reação.

16- Alternativa E

Equação de velocidade da reação: v inicial = k (pA) (pB)

Em uma compressão isotérmica, volume e pressão são grandezas inversamente proporcionais, com isso, ao comprimir os gases a ¼ do volume original, a pressão ficará 4 vezes maior em relação à pressão inicial, com isso teremos: $v_{final} = k \ 4(pA).4(pB) \rightarrow v_{final} = 16 \ k \ (pA) \ (pB) \rightarrow v_{final} = 16 \ v_{inicial}$

17- Alternativa A

Considerando-se os experimentos II e I, onde modifica a concentração de H_2O_2 e não modifica as concentrações de I^- e H^+ , há uma diminuição no tempo, sendo assim, a velocidade da reação depende da concentração da substância H_2O_2 .

Considerando-se os experimentos IV e I, onde modifica a concentração de I⁻ e não modifica as concentrações de H₂O e H⁺, há uma diminuição no tempo, sendo assim, a velocidade da reação depende da concentração da substância I⁻.

Considerando-se os experimentos III e I, onde modifica a concentração de H⁺ e não modifica as concentrações de I⁻ e H⁺, não há modificação no tempo, sendo assim, a velocidade da reação não depende da concentração da substância H⁺.

18- Alternativa B

Equação da velocidade é: v = k [X] [Y]

Substituindo os dados: $3 = k \cdot (1) \cdot (2) \rightarrow k = 1,5$

19- Alternativa B

Expressão da velocidade da reação: $v = k \cdot [C\ell_2]^X \cdot [Fe^{2+}]^Y$

Calculando o valor de X comparando-se os resultados do experimento I e II: $2^1 = 2^X \to x = 1$ Calculando o valor de Y comparando-se os resultados do experimento III e I: $2^1 = 2^Y \to y = 1$ Com isso, ficamos com: y = k. $[C\ell_2]^1$. $[Fe^{2+}]^1$

20- Alternativa A

Expressão da velocidade da reação: $v = k \cdot [(CH_3)_3CBr]^X \cdot [OH^-]^Y$

Calculando o valor de X comparando-se os resultados do experimento I e II: $2^1 = 2^X \rightarrow x = 1$ Calculando o valor de Y comparando-se os resultados do experimento I e IV: $2^0 = 2^Y \rightarrow y = 0$ Com isso, ficamos com: v = k. [(CH₃)₃CBr]¹

21-

- a) O expoente da concentração de H_2 na equação de velocidade é diferente do coeficiente estequiométrico da reação, pois a equação possui várias etapas, sendo que a etapa lenta é a determinante da expressão de velocidade.
- b) Expressão de velocidade da equação inicial: v _{inicial} = k [NO]² [H₂]

Dobrando a concentração molar de NO e mantendo a concentração molar de H₂: v _{final} = k [2NO]² [H₂]

- \rightarrow v final = 4 k [NO]² [H₂] \rightarrow v final = 4 . v inicial
- c) v = k [NO]² [H₂], 2ª ordem em relação ao NO, 1ª ordem em relação ao H₂, ordem total: 3ª ordem

A molecularidade só pode ser definida em cada etapa da reação, pois cada etapa tem o seu complexo ativado e a sua molecularidade.

Como a soma das etapas origina a equação 2 NO + 2 $H_2 \rightarrow N_2$ + 2 H_2O , logo sua molecularidade é igual a 4.

22-

```
a) nN_2 = nC_6H_5N_2C\ell = 0.80 - 0.10 = 0.70 mols (v = 1 L); (t = 27 min) em v = 0.5 L\rightarrow nN<sub>2</sub> = 0.35 mol Para P = 1atm e 40 °C temos:
```

```
1mol N<sub>2</sub> ----- 26L
0,35 mol N<sub>2</sub> ----- x
```

$$\therefore x = 9,1 L(N_2)$$

b)

Na \mathcal{M} = 0,60 mol/L (intervalo de 0 a 9 s)

$$V_{m} = \frac{0,80 - 0,40}{9 - 0} = \frac{0,40}{9} = 0,044 \text{ mol/L} \cdot \text{min}$$

na M = 0,30 mol/L (intervalo de 9 a 18 s)

$$V_m = \frac{0,40-0,20}{18-9} = \frac{0,20}{9} = 0,022 \text{ mol/L} \cdot \text{min}$$

A concentração em mol/L se reduziu à metade e a velocidade também se reduziu à metade ($1^{\underline{a}}$ ordem em relação ao $C_6H_5N_2CI$).

23-

a) Como a etapa lenta é que determina a velocidade da reação global, temos o possível mecanismo:

$$3 C\ell O^{-} \rightarrow C\ell O_{2}^{-} + C\ell^{-} + C\ell O^{-}$$
 (etapa lenta): "maior Eat" $C\ell O_{2}^{-} + C\ell^{-} + C\ell O^{-} \rightarrow C\ell O_{3}^{-} + 2 C\ell^{-}$ (etapa rápida) "menor Eat"

b)
$$3 \text{ C}\ell\text{O}^- \rightarrow \text{C}\ell\text{O}_3^- + 2\text{C}\ell^-$$

Vglobal = Vetapa lenta \rightarrow V = k · [C ℓ O $^{-}$]³

24-

a)

Reagente X = reação de 2ª ordem

Reagente Y = reação de 1ª ordem

b) A velocidade da reação aumenta 18 vezes.

25- Alternativa C

Reação global: $3A(g) + 2B(g) \rightarrow 4E(g)$

Cálculo da velocidade da reação em relação a espécie E: $\frac{5\text{mol A}}{1\text{ seg}} \cdot \frac{4\text{mol E}}{3\text{mol A}} = 6,7\text{mol E.seg}^{-1}$

26- Alternativa B

A reação que ocorre em várias etapas, a expressão da velocidade da reação é proveniente da etapa lenta, e com isso temos: $v = k \cdot [NO_2]$

27-

- a) Reação bimolecular (1mol de sacarose reage com 1 mol de água)
- b) V = k · [sacarose]
- c) Reação de 1ª ordem ou ordem 1.
- d) $k = 1.01 \cdot 10^{-3} \text{ min}^{-1}$

28- Alternativa B

Tempo	N ₂ O ₄	\rightarrow	2 NO ₂
Início	0,05M		0
20s	0,05-0,033=0,017M		0,034M
40s	0,05-0,025=0,025M		0,05M

Cálculo da velocidade média de consumo de N_2O_4 nos 20 μ s iniciais:

$$V_{m(0-20\mu s)} = \frac{|0,033-0,05|}{20-0} = 8,5.10^{-4} \text{M.} \mu \text{s}^{-1}$$

29- Alternativa D

Calculando a expressão de velocidade da reação: v=k. $[N_2O_5]^X$ Comparando o experimento II e I temos que: $2=2^X \rightarrow X=1$

Com isso ficamos com: $v = k \cdot [N_2O_5]^1$

30- Alternativa B

Calculando a expressão de velocidade da reação: $v = k . [NO]^{x} . [H_{2}]^{y}$

Comparando o experimento II e I temos que: $4 = 2^{X} \rightarrow 2^{2} = 2^{X} \rightarrow X = 2$

Comparando o experimento II e IV temos que: $2 = 2^{Y} \rightarrow Y = 1$

Com isso ficamos com: $v = k \cdot [NO]^2 \cdot [H_2]^1$

31- Alternativa C

Para a lei de velocidade da reação v = k[NO₂] ² temos:

Experimento I (F): $v' = k [2 NO_2]^2 \rightarrow v' = k.2^2 . [NO_2]^2 \rightarrow v' = 4 . v$

Experimento II (V): $v' = k.[NO_2]^2 \rightarrow v' = v$

Experimento III (V): aumenta a temperatura aumenta a velocidade da reação.

32- Alternativa A

A reação que ocorre em várias etapas, a expressão da velocidade da reação é proveniente da etapa lenta, e com isso temos: $v = k \cdot [NO_2]^2$

33- Alternativa A

Quanto maior a concentração dos reagentes, maior a velocidade da reação, maior o volume de hidrogênio liberado.

34- Alternativa A

A equação $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ é elementar e com isso temos a seguinte expressão da velocidade de reação: $v = k \cdot [SO_2]^{1/2}$ e desta forma podemos afirmar que a reação é de 1ª ordem em relação ao SO_2 .

35-02+16=18

- (01) (F) A lei de velocidade da etapa lenta é igual a $v = k[O_2].[N_2O_2].$
- (02) (V) As reações das etapas rápida e lenta podem ser chamadas de reações bimoleculares.
- (04) (F) A catálise descrita acima é um exemplo de catálise heterogênea, pois o catalisador é sólido e os reagentes são gasosos.
- (08) (F) À temperatura e à concentração de NO(g) constantes, se a concentração de O₂(g) duplicar, a reação global será 2 vezes mais rápida.
- (16) (V) Sendo a lei de velocidade da etapa lenta, obtida experimentalmente, igual a $v = k[N_2O_2].[O_2]$, sua ordem de reação é igual a 2.

36-

- a) Se a reação $A(s) \rightleftharpoons B(g)$ apresenta equação de velocidade de ordem zero, então $V = K[A]^0$, ou seja, a velocidade da reação é constante.
- b) Como o reagente A é sólido, os fatores que podem influenciar a velocidade da reação são: temperatura, estado de agregação do sólido (superfície de contato) e presença de um catalisador.

37- Alternativa D

- I. (V) A e B podem ser o mesmo ácido, porém em concentrações diferentes.
- II. (V) A pode ser um ácido forte, e B, um ácido fraco.
- III. (F) A concentração de íons H⁺ é maior na solução de A.

38- Alternativa D

A reação de combustão do carvão ocorre mais rápido nas seguintes condições: carvão pulverizado (maior área de contato), oxigênio puro (maior concentração) e a 100°C (maior temperatura).

39-

- a) 4,8mol.L⁻¹ .min⁻¹
- b) Temperatura, superfície de contato, concentração dos reagentes, catalisador.

40- Alternativa C

Reação química: $Zn(s) + 2 HC\ell(aq) \rightarrow ZnC\ell_2(aq) + H_2(g)$

 $Zn(s) + 2 H^{+}(aq) + 2 C\ell^{-}(aq) \rightarrow Zn^{2+}(aq) + 2 C\ell^{-}(aq) + H_{2}(g)$

Como podemos observar a concentração dos íons $C\ell^-$ permanece constante.

41- Alternativa A

Sabendo que a velocidade da reação de decomposição do pentóxido de nitrogênio, N_2O_5 , aumenta duas vezes quando sua concentração é duplicada, desta forma temos: $v = k.[N_2O_5]^1$, sendo assim, a reação é de $1^{\underline{a}}$ ordem.

42- Alternativa C

Para a reação elementar temos: $v = k.(pC_2)^2.(pD_2)^1$

Se a pressão parcial de $C_2(g)$ for reduzida à metade e a de D_2 for duplicada: $v' = k.(1/2.pC_2)^2.(2.pD_2)^1 \rightarrow v' = \frac{1}{2}.v$

43- Alternativa D

Para a reação elementar temos: $v = k \cdot [O_2]^3$

Ao triplicarmos a concentração do oxigênio ficamos com: $v' = k \cdot [3 O_2]^3 \rightarrow v' = 27 \cdot v$

44- Alternativa A

Como: $v = k \cdot [C_{12}H_{22}O_{11}]$

Substituindo os dados temos: 5 mols/L.min = k . 2 mol/L \rightarrow k = 2,5 min⁻¹

45- Alternativa A

Expressão da velocidade da reação: $V = k \cdot [CO]^a \cdot [O_2]^b$

Calculando o valor de **a** comparando-se os resultados do experimento I e II: $2^1 = 2^a \rightarrow a = 1$

Calculando o valor de Y comparando-se os resultados do experimento III e I: $2^2 = 2^{\gamma} \rightarrow \gamma = 2$

Com isso, ficamos com: $V = k \cdot [CO]^1 \cdot [O_2]^2$

46- Alternativa D

Expressão da velocidade da reação: $V = k \cdot [(CH_3)_2O]^X$

Dobrando a concentração de $(CH_3)_2O$, a velocidade da reação aumenta 4 vezes e com isso temos: $2^2 = 2^X \rightarrow X=2$

47- F, F, F, F, F

48 - 21 (01 + 04 + 16)

Para reação indicada de primeira ordem em relação aos reagentes temos: $v = k.[S_2O_8^2]^1.[I^-]^1$

- (01) (V) A lei de velocidade da reação pode ser descrita por $v = K.[S_2O_8^2].[I^-].$
- (02) (F) Os coeficientes obtidos são diferentes dos coeficientes da equação balanceada, pois a reação é obtida em várias etapas.
- (04) (V) Se forem mantidas constantes a temperatura e a concentração de I^- , a velocidade da reação duplicarse-á se a concentração de $S_2O_8^{2-}$ for duplicada.
- (08) (F) Uma elevação da temperatura irá alterar a velocidade tanto da reação endotérmica como a exotérmica.
- (16) (V) A adição de um catalisador ao sistema aumenta a velocidade da reação porque diminui a energia de ativação para a formação dos produtos.

49-

a)

- b) 0,24 mol.L⁻¹.min⁻¹
- c) Se V = k.[A], então Δ V = k. Δ [A], com K constante para qualquer intervalo. Usando os dados de b, temos:

$$\begin{aligned} k_{(0,25-0,50)} &= \frac{\Delta}{\Delta [A]} = \frac{0,64}{0,16} = 4 \\ k_{(1,00-1,25)} &= \frac{\Delta V}{\Delta [A]} = \frac{0,24}{0,06} = 4 \end{aligned}$$

$$k_{(1,00-1,25)} = \frac{\Delta V}{\Delta[A]} = \frac{0,24}{0,06} = 4$$

Sendo assim, a reação é de 1ª ordem.

50- Alternativa E

Como pode ser observado analisando-se as experiências 4 e 5, a velocidade da reação não depende da concentração de H⁺.