SKE and SKEP Processor Performance

Consider the following processor structure:

$$x(n)$$
 Processor $\Lambda(\underline{x})$

Our goal is to decide presence or absence of a sinusoid buried in white Gaussian noise

where:

$$x(n) = s(n) + n(n) \;,\; n = 0,1,\ldots,\, N\text{-}1$$
 and $N = 16$

$$s(n) = A \sin(2\pi f_c n + \phi)$$
, $f_c = 1/16$

n(n) is an uncorrelated, Gaussian noise sequence $\sim N(0,1)$

SNR =
$$A^2/2\sigma^2$$
, $\sigma^2 = 1$.

I. Select values of A such that:

A.
$$2E/N_0 = 4$$

B.
$$2E/N_0 = 9$$

What are the corresponding SNR's?

- II. Determine the ROC performance of the following processors both theoretically and via Monte Carlo simulation (show your theoretical calculations and explain how you implemented your simulations):
 - A. Signal Known Exactly (SKE) ($\phi = 0$)
 - B. Signal Known Except for Phase (SKEP) (ϕ a random variable uniformly distributed between $-\pi$ and π)

When carrying out the simulations, generate estimates of $p(\Lambda | H_0)$ and $p(\Lambda | H_1)$ (or sufficient statistics for Λ), plot them, and from these (or their corresponding cumulative distribution functions) compute estimates of P_D and P_F . Compare your theoretical and simulation results.

Plot your ROC curves both on linear axes and on normal probability paper. See Chap. 2 in [1].

Reference

[1] S. Kay. Fundamentals of Statistical Signal Processing. Vol. II: Detection Theory. Prentice-Hall (1998).