AFML-TR-79-4081

ENVIRONMENTAL DURABILITY OF THE WELDBOND, FPL, AND PABST JOINING SYSTEMS

Northrop Corporation Aircraft Group 3901 West Broadway Hawthorne, California 90250

JULY 1979

DOC FILE COPY

FINAL REPORT FOR PERIOD DEC 1977 - MAY 1979

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (CI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Chief, Metals Branch

Manufacturing Technology Division

wester I Lee

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFML/LTM ,W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

UNCLASSIFIED

19 REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
AFML+TR-79-4081	
6. TITLE (and Substitio)	S. TYPE OF REPORT & PERIOD COVERS
ENVIRONMENTAL DURABILITY OF THE WELDBOND,	Final Report, 1 Dec 77
	S. PERFORMING ORG. REPORT NUMBER
	NOR-79-41
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(1)
R. G. Hocker	F33615-76-C-5412
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASI
Northrop Corporation	AREA & WORK UNIT NUMBERS
3901 W. Broadway Hawthorne, CA 90250	Project No. 828-6 [2]
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Materials Laboratory	Jul 79
Air Force Systems Command	TO NUMBER OF PAGES
Wright-Patterson Air Force Base, OH 45433	70
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING
	N/A
Approved for public release, distribution unlimi	ted.
Approved for public release, distribution unlimi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different to	
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different in 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES	om Report)
17. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, if different in Block 20, if di	om Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Block 20, if di	ronmental stress-corrosion,
17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different in Block 20, if di	ronmental stress-corrosion, tract No. F33615-76-C-5412, Aluminum. Under controlled mparison of durability and rface preparation/adhesive ive bonding system, the FPL nd system. The three types

410 275

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

xlk

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

cons

test, and the surface scratch test. Four different environmental exposures were used: (1) 95 to 100 percent relative humidity at 120F, (2) 5 percent salt fog at 95F, (3) 3.5 percent salt water and (4) the sea coast beach site at E1 Segundo, California. Four material combinations were evaluated for this program: 2024-T3 alclad bonded to 7075-T6 bare, 2024-T3 bare bonded to 7075-T6 bare, 2024-T3 bare bonded to 7075-T6 bare.

The objective of this program was to rank the three bonding systems and four material combinations in terms of durability and corrosion behavior.

The results of this evaluation showed that the PABST system had the best durability, the FPL system was second, and the weldbond system was third in durability ranking. A separate Northrop IRAD program was conducted to improve the durability of the weldbond system. The results of this program showed that the addition of a thin, 0.00004 inch, layer of BR-127 primer (air dried then co-cured) to the standard weldbond surface improved its durability so that it is nearly equal to that of the PABST system and vastly superior to the commonly used FPL system. The corrosion behavior of the three surface preparation processes were equal when the surfaces were primed and painted.

The ranking of the four material combinations in terms of decreasing durability is as follows:

2024-T3 bare/2024-T3 bare 2024-T3 bare/7075-T6 bare 7075-T6 bare/7075-T6 bare 2024-T3 alclad/7075-T6 bare

PREFACE

This report was prepared by the Northrop Corporation, Aircraft Group, Hawthorne, California, under USAF Contract No. F33615-76-C-5412, as an addendum to the basic weldbond program, "Advanced Weldbonding Process Establishment for Aluminum." The contract work was performed under Project No. 828-6 and was sponsored by the Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Dayton, Ohio. Mr. S.G. Lee of the Metals Branch (LTM) of the Manufacturing Technology Division, AFML was the project engineer.

Northrop Corporation, Aircraft Group, was the contractor, with Mr. R. G. Hocker serving as the program manager for this addendum. Other Northrop personnel who made major contributions include: K. C. Wu, H. E. Langman, H. R. Miller, and J. W. Lewis (for welding and specimen preparation); V. S. Srinath, G. G. Richards, and L. M. Urzua (for surface preparation); and R. E. Herfert and S. L. Feenstra (for scanning electron microscope surface analysis).

McDonnell Douglas, Long Beach, California provided the PABST test panels and availability to their sea coast exposure site at El Segundo, California. The cooperation and assistance of the following McDonnell Douglas personnel is gratefully acknowledged: E.W. Thrall, Jr., PABST, Program Manager; R.W. Shannon, Materials and Process Engineering, Section Chief; R.W. Ochsner, Materials and Process Engineering, Unit Chief; and R. L. Radecky, Materials and Process Engineer.

The contractor report number is NOR-79-41. This report covers work performed from December 1977 through May 1979.

TABLE OF CONTENTS

Section		Page
1	INTRODUCTION	1
2	TECHNICAL DISCUSSION	4
	TEST MATRIX AND TEST DESCRIPTION	4
	Wedge Test	4
	Constant Load-Sait Water Immersion Test	10
	Surface Scratch Test	11
	SURFACE PREPARATION AND ADHESIVE APPLICATION	11
	RESULTS AND DISCUSSION	12
	Wedge Tests - Sea Coast	12
	Wedge Tests - 5 Percent Salt Fog, 95F	18
	Wedge Tests - 95 to 100 Percent Relative Humidity, 120F	19
	Constant Load - Salt Water Immersion Tests	24
	Surface Scratch Tests	25
	Durability Ranking of Three Joining Systems	30
	WELDBOND DURABILITY IMPROVEMENT STUDY	32
	Weldability Evaluation	32
	Wedge Test Durability Results	33
	Weldbond Properties With and Without BR-127 Primer	33
	Wedge Test with Spot Weld	36
	Conclusions for the Weldbond Durability Improvement Study	38
3	CONCLUSIONS	40
	REFERENCES	41
	APPENDIX A - WEDGE TEST DATA	43

LIST OF ILLUSTRATIONS

Figure		Page
1	Surface/Adhesive Systems for FPL, Weldbond, and PABST Joining Processes	3
2	Test Coupon Configurations	6
3	Typical Anodized Layer on 2024-T3 Alclad	13
4	Typical Anodized Layer on 2024-T3 Bare	14
5	Typical Anodized Layer on 7075-T6 Bare	15
6	Average Wedge Crack Growth of 2024-T3 Alclad/7075-T6 Bare - Sea Coast Exposure	16
7	Average Wedge Crack Growth of 2024-T3 Bare/7075-T6 Bare – Sea Coast Exposure	16
8	Average Wedge Crack Growth of 2024-T3 Bare/2024-T3 Bare - Sea Coast Exposure	17
9	Average Wedge Crack Growth of 7075-T6 Bare/7075-T6 Bare - Sea Coast Exposure	17
10	Average Wedge Crack Growth of 2024-T3 Alclad/7075-T6 Bare - Salt Fog Exposure	20
11	Average Wedge Crack Growth of 2024-T3 Bare/7075-T6 Bare – Salt Fog Exposure	20
12	Average Wedge Crack Growth of 2024-T3 Bare/2024-T3 Bare - Salt Fog Exposure	21
13	Average Wedge Crack Growth of 7075-T6 Bare/7075-T6 Bare — Salt Fog Exposure	21
14	Average Wedge Crack Growth of 2024-T3 Alclad/7075-T6 Bare - 95-100 Percent Relative Humidity	22
15	Average Wedge Crack Growth of 2024-T3 Bare/7075-T6 Bare — 95-100 Percent Relative Humidity	22
16	Average Wedge Crack Growth of 2024-T3 Bare/2024-T3 Bare - 95-100 Percent Relative Humidity	23
17	Average Wedge Crack Growth of 7075-T6 Bare/7075-T6 Bare - 95-100 Percent Relative Humidity	23
18	Average Wedge Crack Growth of 2024-T3 Alclad/7075-T6 Bare Including Weldbond/BR-127 - Salt Fog Exposure	35
19	Average Wedge Crack Growth of 2024-T3 Alclad/7075-T6 Bare Including Weldbond/BR-127 - Sea Coast Exposure	35
20	Average Wedge Crack Growth of 2024-T3 Alclad/7075-T6 Bare Weldbond with Spot Weld - Salt Fog Exposure	39

LIST OF TABLES

Table		Page
1	Test Matrix for Each Joining System - FPL, Weldbond and PABST	5
2	FPL Process	7
3	Northrop Weldbond Process	8
4	PABST Process	9
5	Constant Load/Salt Water Immersion Test Results for the FPL System	26
6	Constant Load/Salt Water Immersion Test Results for the Weldbond System	27
7	Constant Load Salt Water Immersion Test Results for the PABST System	28
8	Surface Scratch Test Results	29
9	Durability Ranking of Three Joining Systems	31
10	Test Matrix for Weldbond/BR-127 Evaluation	34
11	Lap-Shear Strength for Primed and Unprimed Weldbonded 7075-T6	34
12	High-Load Transfer Fatigue Behavior for Primed and Unprimed Weldbonded 7075-T6	37
	APPENDIX A	43
A1	Wedge Test Data - Sea Coast Exposure - 2024-T3 Alclad/7075-T6 Bare FPL Bonding System	44
A2	Wedge Test Data - Sea Coast Exposure - 2024-T3 Alclad/7075-T6 Bare Weldbond System	45
A3	Wedge Test Data - Sea Coast Exposure - 2024-T3 Alclad/7075-T6 Bare PABST System	46
A4	Wedge Test Data - Sea Coast Exposure - 2024-T3 Bare/7075-T6 Bare FPL Bonding System	47
A5	Wedge Test Data - Sea Coast Exposure - 2024-T3 Bare/7075-T6 Bare Weldbond System	48
A6	Wedge Test Data - Sea Coast Exposure - 2024-T3 Bare/7075-T6 PABST System	49
A7	Wedge Test Data - Sea Coast Exposure - 2024-T3 Bare/2024-T3 Bare FPL Bonding System	50

LIST OF TABLES (Continued)

Table		Page
A8	Wedge Test Data - Sea Coast Exposure - 2024-T3 Bare/2024-T3 Bare Weldbond System	51
A9	Wedge Test Data - Sea Coast Exposure - 2024-T3 Bare/2024-T3 Bare PABST System	52
A10	Wedge Test Data - Sea Coast Exposure - 7075-T6 Bare/7075-T6 Bare FPL Bonding System	53
A11	Wedge Test Data - Sea Coast Exposure - 7075-T6 Bare/7075-T6 Bare Weldbond System	54
A12	Wedge Test Data - Sea Coast Exposure - 7075-T6 Bare/7075-T6 Bare PABST System	55
A13	Wedge Test Data - Salt Fog Exposure - 2024-T3 Alclad/7075-T6 Bare FPL Bonding System	56
A14	Wedge Test Data - Salt Fog Exposure - 2024-T3 Alclad/7075-T6 Bare Weldbond System	56
A15	Wedge Test Data - Salt Fog Exposure - 2024-T3 Alclad/7075-T6 Bare PABST System	57
A16	Wedge Test Data - Salt Fog Exposure - 2024-T3 Bare/7075-T6 Bare FPL Bonding System	57
A17	Wedge Test Data - Salt Fog Exposure - 2024-T3 Bare/7075-T6 Bare Weldbond System	58
A18	Wedge Test Data - Salt Fog Exposure - 2024-T3 Bare/7075-T6 Bare PABST System	58
A19	Wedge Test Data - Salt Fog Exposure - 2024-T3 Bare/2024-T3 Bare FPL Bonding System	59
A20	Wedge Test Data - Salt Fog Exposure - 2024-T3 Bare/2024-T3 Bare Weldbond System	59
A21	Wedge Test Data - Salt Fog Exposure - 2024-T3 Bare/2024-T3 Bare PABST System	60
A22	Wedge Test Data - Salt Fog Exposure - 7075-T6 Bare/7075-T6 Bare FPL Bonding System	60
A23	Wedge Test Data - Salt Fog Exposure - 7075-T6 Bare/7075-T6 Bare Weldbond System	61
A24	Wedge Test Data - Salt Fog Exposure - 7075-T6 Bare/7075-T6 Bare PABST System	61
A25	Wedge Test Data - 95-100% Relative Humidity Exposure - 2024-T3 Alclad/7075-T6 Bare-FPL Bonding System	62
A26	Wedge Test Data - 95-100% Relative Humidity Exposure - 2024-T3 Alclad/7075-T6 Bare-Weldbond System	62

LIST OF TABLES (Continued)

63 63
63
00
64
64
65
65
66
66
67
67
68
69
70

SECTION 1

INTRODUCTION

During the past six years, two new processes have become available for surface treatment of aluminum prior to adhesive bonding. These are the 10-volt phosphoric acid anodizing process developed by Boeing, which has been integrated into the PABST (Primary Adhesively Bonded Structure Technology) program by McDonnell Douglas, (Reference 1) and the low-voltage dilute phosphoric acid/sodium dichromate anodizing process developed by Northrop (References 2, 3, and 4) for use in the weldbond manufacturing process. A third system for adhesive bonding, the FPL (Forest Products Laboratory) system, has been used extensively and is used presently by Fairchild Republic Corporation to adhesively bond panels for the A-10 aircraft. Reference made to the FPL system throughout this report is an abbreviated term for the bonding system in which an FPL etch is used with the BR-127 primer and the FM 123-2 mat adhesive.

The Northrop weldbond joining system was developed to have durability better than that of the spot weld etch joining system, which was previously used, and approximately equal to that of the FPL joining system. Comparison of the durability of these joining systems was based initially on a 1-day wedge test in 95-100 percent humidity at 120F. This test indicated only if a system was poor or good. A CL/SWIT (constant load-salt water immersion test) was then developed, which differentiated between a fair and a good system. At this stage of the test development, the weldbond system was shown to be equal or better than the FPL system. Currently, for the PABST system, long term wedge tests are used to evaluate durability. The long term wedge test differentiates between a good and an excellent adhesive bonding system. However, it does not evaluate the durability of the complete weldbond system since welds are not included in the preparation of the wedge test specimen; and yet, spot welding is an integral part of the weldbond joining system.

Northrop recently completed a program on "Advanced Weldbonding Process Establishment for Aluminum," (Reference 4). As part of this program, a technology transfer of the weldbond process to the Fairchild Republic Corporation was accomplished. A follow-on contract was awarded to Fairchild Republic to initiate production weldbonding of several fuselage panels for the A-10 aircraft.

One of the primary concerns in the use of adhesively bonded structures is premature failure due to a time-dependent crack growth in the bond joint under the combined influence of applied stress and a corrosive environment. This type of failure is commonly termed "environmental stress cracking." Resistance to environmental stress cracking is defined as environmental durability, and is referred to as durability in this report.

In order to compare the durability of the weldbond system with that of the other two adhesive bonding systems (PABST and FPL), an addendum program to the Northrop weldbonding contract (Reference 4) was conducted. Under controlled stress and environmental conditions, a direct comparison of durability behavior was made for the three systems. These systems included the PABST adhesive bonding system, the FPL adhesive bonding system, and the Northrop weldbond system.

A schematic representation of these systems is shown in Figure 1. The FPL system utilizes a thin (300 to 600 angstroms) boehmite layer ($\alpha Al_2O_3 \cdot H_2O$), which is formed during the FPL process. This bonding system also includes the BR-127 primer and the FM 123-2 mat adhesive. The weldbond system also utilizes a thin (400 to 800 angstroms) boehmite layer applied by anodizing, but this system does not include a primer. A chromated paste adhesive, Goodrich A1444B, is used for the weldbond system so that the welds can be made through the adhesive. The PABST adhesive system utilizes a much thicker (approximately 3,000 angstroms) boehmite layer and includes the BR-127 primer and the FM-73 mat adhesive. In order to evaluate these three joining systems, three different types of tests, including the wedge test, the constant load-salt water immersion test, and the surface scratch test, were used. Four different environmental exposures were used: (1) 95 to 100 percent relative humidity at 120F, (2) 5 percent salt fog at 95 F, (3) 3.5 percent salt water at room temperature, and (4) the McDonnell Douglas sea coast beach site at El Segundo, California. Four material combinations were evaluated for this program: 2024-T3 alclad bonded to 7075-T6 bare, 2024-T3 bare bonded to 7075-T6 bare, 2024-T3 bare bonded to 2024-T3 bare, and 7075-T6 bare bonded to 7075-T6 bare.

The objective of this program was to rank the three bonding systems and the four material combinations in terms of durability behavior.

FIGURE 1. SURFACE/ADHESIVE SYSTEMS FOR FPL, WELDBOND, AND PABST JOINING PROCESSES

THE RESERVE OF THE PROPERTY OF

SECTION 2

TECHNICAL DISCUSSION

TEST MATRIX AND TEST DESCRIPTION

The tests conducted for the PABST, FPL, and weldbond joining systems are presented in the test matrix, Table 1. The FPL, PABST and weldbond systems are described in the introduction. The three types of tests used were the wedge test and the constant load-salt water immersion test (CL/SWIT) for durability evaluation, and the surface scratch test for surface corrosion evaluation. The four different exposure environments include: 95 to 100 percent relative humidity at 120 F, 5 percent salt fog at 95 F per ASTM standard B117, 3.5 percent salt water at room temperature, and the McDonnell Douglas beach site located in El Segundo, California, approximately 75 yards from the ocean.

Wedge Test

For the wedge tests, crack-growth measurements were made periodically for exposure times up to 90 days in the 95-100 percent relative humidity and salt fog environments, and once a month for a total of 1 year in the sea coast environment.

A sketch of the wedge coupon is shown in Figure 2. The wedge test panels measured 6 inches x 6 inches x 0.125 inch. The panels were cleaned, surface treated, and bonded, according to the procedures outlined in Tables 2, 3, and 4 for each of the three joining systems. After the cure cycle, all test panels were primed with MIL-P-23377 epoxy polyamide primer and painted with MIL-C-81773 polyurethane aircraft top coat paint. Ultrasonic inspections were made of each panel and only panels without voids in the adhesive bondline were accepted for tests. Five wedge coupons were saw cut from each 6-inch x 6-inch panel. One edge of each wedge specimen was machined or polished smooth so that wedge crack-growth measurements could easily be made. These edges were left unprotected throughout the exposure.

TABLE 1. TEST MATRIX FOR EACH JOINING SYSTEM-FPL, WELDBOND, AND PABST

		NUMBER OF SPECIMENS			
TYPE OF TEST	EXPOSURE CONDITIONS	2024 CLAD TO 7075 BARE	2024 BARE TO 7075 BARE	2024 BARE TO 2024 BARE	7075 BARE TO 7075 BARE
TOTAL TO THE	SEA COAST, EL SEGUNDO, CALIF FOR 12 MONTHS	12	12	12	12
WEDGE TEST	5% SALT FOG AT 95F FOR 90 DAYS	6	6	6	6
	95-100% RELATIVE HUMIDITY AT 120F FOR 90 DAYS	6	6	6	6
CONSTANT LOAD SALT WATER	3.5% SALT WATER STRESS FOR 2,000 HOURS: 1,875 PSI 2,380 PSI	3 -	3 -	3 -	_ 3
IMMERSION TEST	STRESS FOR 1,000 HOURS: 2,380 PSI 3,000 PSI	3 -	3 -	3 -	_ 3
SURFACE SCRATCH TEST	5% SALT FOG AT 95F FOR 2,000 HOURS 2024-T3 ALCLAD — COATED* — 10 2024-T3 ALCLAD — UNCOATED — 10 2024-T3 BARE — COATED* — 10 2024-T3 BARE — UNCOATED — 10 7075-T6 BARE — COATED* — 10 7075-T6 BARE — UNCOATED — 10				

^{*}COATED SPECIMENS WERE PRIMED WITH MIL-P-23377 EPOXY POLYAMIDE PRIMER AND TOP COATED WITH MIL-C-81773 POLYURETHANE PAINT

THE ENDS AND SIDES
OF THE WEDGE SHALL BE
APPROXIMATELY FLUSH WITH
SPECIMEN END AND SIDES

WEDGE TEST PANEL, COUPON, AND WEDGE

CONSTANT LOAD/SALT WATER IMMERSION TEST COUPON

NOTE: ALL DIMENSIONS ARE IN INCHES

FIGURE 2. TEST COUPON CONFIGURATIONS

TABLE 2. FPL PROCESS

OPERATION	MATERIAL	PROCESS		
VAPOR DEGREASE	1-1-1 TRICHLOROETHANE			
ALKALINE CLEAN	ALTREX 1097 5-8 OZ/GAL	10-15 MINUTES 160-190F		
SPRAY RINSE	DEIONIZED WATER	5-7 MINUTES 110F		
DEOXIDIZE AND ETCH	FPL-ETCH 96% SULFURIC ACID: 38.5-41.5 FLUID OZ/GAL SODIUM DICHROMATE, DIHYDRATE: 8 OZ/GAL 2024 ALUMINUM SCRAP: 0.2 OZ/GAL	12-15 MINUTES 150-160F		
PRIME	BR-127, 0.00015-INCH TO 0.00030-INCH THICKNESS SPRAY COAT	AIR DRY: 30 MINUTES AT RT. CURE: 60-120 MINUTES AT 250F		
ADHESIVE	FM 123-2 0.045 LB/SQ FT, 2 LAYERS	VACUUM BAG. APPLY AUTOCLAVE PRESSURE OF 50-100 PSI. CURE: 90 MINUTES AT 260F		

TABLE 3. NORTHROP WELDBOND PROCESS

OPERATION	MATERIAL	PROCESS
VAPOR DEGREASE	1-1-1 TRICHLOROETHANE	VAPOR 60 SECONDS; CONDENSED FLUID-60 SECONDS; COOL, REPEAT.
ALKALINE CLEAN	TURCO 4215-S, 6-8 OZ/GAL SOLUTION	12-15 MINUTES, 125-165F
SPRAY RINSE	COLD DEIONIZED WATER WITH TAP WATER MIX	5-7 MINUTES
DEOXIDIZE	NITRIC ACID/AMCHEM-7 (MODIFIED)	6-8 MINUTES, ROOM TEMPERATURE IN
	NITRIC ACID — 11-14% BY VOLUME, BE ^o 42 (70% HNO ₃)	AGITATED SOLUTION
	AMCHEM-7: 2.9 – 3.3 WT OZ/GALLON SOLUTION	
	ALODINE-45: 11.2 – 11.5 ML/GALLON SOLUTION	a service de la companion de l La companion de la companion d
	ALODINE 1200E ACTIVATOR – 13.2 – 13.4 ML/GALLON SOLU⊤ION	
	BALANCE – DI WATER	
SPRAY RINSE	COLD DEIONIZED WATER WITH TAP WATER MIX	5-7 MINUTES
ANODIZE	PSD SOLUTION	20-25 MINUTES, ROOM TEMPERATURE
	PHOSPHORIC ACID - 1.2 - 1.5 FL OZ/ GALLON SOLUTION (85% H3PO4)	VOLTAGE - 1.4-1.6
	SODIUM DICHROMATE DIHYDRATE: — 1.3 – 1.5 OZ/GALLON SOLUTION	VOLTS, DC FOR BARE ALLOYS
	1.3 – 1.5 02/GALLON 3020110N	0.9-1.1 VOLTS, DC FOR CLAD ALLOYS
SPRAY RINSE	COLD DEONIZED WATER WITH TAP WATER MIX	5-7 MINUTES
OVEN DRY	CIRCULATING HOT AIR	30-40 MINUTES, 150±10F
ADHESIVE	A1444B PASTE	APPLY TO BOTH SURFACES
WELD		RESISTANCE SPOT WELI
CURE		250-260F FOR 2 HOURS

TABLE 4. PABST PROCESS

OPERATION	MATERIAL	PROCESS		
VAPOR DEGREASE OR SOLVENT WIPE	1-1-1 TRICHLOROETHANE	name satisfaction of Commission		
ALKALINE CLEAN	TURCO 4215-S	4-8 OZ/GAL 15 MINUTES 140F		
SPRAY RINSE	DEIONIZED WATER	5-7 MINUTES ROOM TEMPERATURE		
DEOXIDIZE	NITRIC ACID/AMCHEM 6-16	15 MINUTES		
	AMCHEM 6-16: 6-8% BY VOLUME 8-10% BY WEIGHT	75-95F		
	NITRIC ACID: 20 FLUID OZ/GAL, (70% HNO3)			
	DEIONIZED WATER: BALANCE			
SPRAY RINSE	DEIONIZED WATER	5-7 MINUTES ROOM TEMPERATURE		
ANODIZE	PHOSPHORIC ACID 96% H ₃ PO ₄ : 11-16 OZ/GAL DEIONIZED WATER: BALANCE	20-25 MINUTES ROOM TEMPERATURE AT 10-15 VOLTS		
SPRAY RINSE	DEIONIZED WATER	5-7 MINUTES ROOM TEMPERATURE		
OVEN DRY	CIRCULATING HOT AIR	30-60 MINUTES 150-160F		
PRIME:	BR-127, 0.00015-INCH TO 0.00030-INCH THICKNESS SPRAY COAT	AIR DRY: 30 MINUTES AT RT CURE: 1 HOUR AT 225F		
ADHESIVE:	FM 73, 0.060 LB/SQ FT	VACUUM BAG APPLY AUTOCLAVE PRESSURE OF 50-100 PSI. CURE: 90 MINUTES AT 250F		

On the day the specimens were to be exposed, an aluminum wedge was driven into one end of the specimen, as shown in Figure 2. A 3X magnifying glass was used to determine the initial crack length and a scribe mark was made on the edge of the specimen. The initial crack length and the adhesive bondline thickness were measured and recorded. A high stress was created at the initial crack tip along the bondline across the one-inch wide specimen. During exposure to the corrosive environment, the crack progressed uniformly toward the bottom end of the wedge specimen. The progression of the crack, or crack-growth, was easily measured by placing a steel ruler along the edge of the specimen using the initial crack length scribe mark as the reference line. Measurements were made to the nearest 0.01 inch.

Constant Load-Salt Water Immersion Test (CL/SWIT)

A sketch of the constant load-salt water immersion specimen is shown in Figure 2. For this test specimen, a sheet thickness of 0.063 inch was used. Doublers of the same thickness were also used at the ends of the specimen to prevent failure at the pin loading holes.

In order to obtain 10 one-inch wide specimens from one bonded panel, 5-inch x 12-inch panels were cleaned, surface treated, and adhesive bonded or weldbonded with a one-inch overlap joint. X-ray analysis was made of the weldbonded panels to confirm that high quality welds existed at the lap-joint. These panels were then primed and top coated using the same materials as used for the wedge test panels. Ten specimens were cut from each panel and the edges were machined smooth. These edges were left unprotected during the test.

Four control tests were conducted for each material combination shown in Table 1, in order to establish baseline lap-shear strengths. To provide the salt water environment, a slit was made in the bottom of a small, open plastic bottle so that the specimen could be pulled through the bottom of the bottle. The slit was then sealed which allowed the lap-joint to be immersed in a salt water solution. After the specimens were loaded in the constant load creep frame, a 3.5 percent salt water solution was poured into the bottle. This solution was replaced once a week during the 1,000 hour and 2,000 hour exposures. For the 1,000 hour exposure, the specimens were stressed at loads which were equal to 60 percent of the ultimate tensile strength of the lowest strength aluminum alloy used in the joint. For the 2,000 hour exposure, the specimens were stressed at loads which were equal to 48 percent of the ultimate tensile strength of the lowest strength aluminum alloy used in the joint. The relationships of the

constant load to the percent ultimate strength and to the percent yield strength, based on MIL-Hdbk-5 "A" values, for each material are as follows:

	FTU (psi)	FTY (psi)	Exposure Time (Hours)	Constant Load (lbs)	Percent FTU	Percent FTY
2024-T3 alclad	62,000	45,000	2,000	1,875	48	66
			1,000	2,380	61	84
2024-T3 bare	65,000	47,000	2,000	1,875	46	63
			1,000	2,380	58	80
7075-T6 bare	78,000	70,000	2,000	2,380	48	54
			1,000	3,000	61	68

After the CL/SWIT specimens completed the constant load-salt water immersion exposure, they were lap-shear tested to determine if there was any loss in strength or any corrosion attack at the joint. These lap-shear strength values were compared to the control lap-shear strength of unexposed specimens.

Surface Scratch Test

The third test, which was used to evaluate the general surface corrosion behavior of the three joining systems, was the surface scratch test. The test specimen is shown in Figure 2. Three-inch x 6-inch panels were used for this test. Half of the specimens were uncoated and half were primed and top coated as shown in Table 1. An "X" was scribed on the surfaces of these panels with a Stanley knife, as defined in ASTM standard D 1654, "Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments." The test panels were exposed to 5 percent salt fog at 95F for 2,000 hours. Alodined control specimens for each of the alloys were also exposed. Periodically, the specimens were examined for evidence of corrosion at the scratch and on the surface.

SURFACE PREPARATION AND ADHESIVE APPLICATION

The aluminum surfaces were cleaned, deoxidized, and anodized, according to the process descriptions shown in Tables 2, 3, and 4. The type of adhesive and cure cycles used are also shown in these tables. The FPL process and the weldbond process were accomplished at Northrop, and the PABST test panels were surface treated and adhesively bonded at McDonnell Douglas at Long Beach, California. Scanning electron

microscope (SEM) analysis on bent specimens was used to determine the thickness of the oxide layer and to provide assurance that the proper surface treatment was achieved. The SEM samples were processed at the same time as the test panels. Typical anodized layers for each material are shown in Figures 3, 4, and 5 for all three surface treatments. The thicknesses of the oxide layers were within the range noted in Figure 1.

A mat adhesive and autoclave cure were used for the FPL and PABST system panels, and a paste adhesive and oven cure were used for the weldbond panels. With the paste adhesive, a 0.003-inch thick aluminum shim, Figure 2, extending 3/8-inch in from the sides of the 6-inch x 6-inch weldbond panels, was used to maintain a minimum bondline thickness of 0.005 inch. Ten pounds of lead weights were placed on each weldbond panel during the cure cycle to obtain a uniform bondline thickness.

Lots E and F of the paste adhesive A1444B (Reference 4), were used to prepare all the weldbond specimens. However, the wedge crack growth after only one month exposure at the sea coast was greater than 0.5 inch for three of the material combinations. An investigation was conducted which revealed that the adhesive for the weldbond test panels was undercured. Therefore, a second set of weldbond wedge panels was prepared using Lot J, A1444B. This delayed the initial exposure at the sea coast by two months for the weldbond specimens.

RESULTS AND DISCUSSION

Wedge Tests - Sea Coast

The average wedge crack growth for the sea coast exposure is presented in Figures 6, 7, 8, and 9 for the three bonding systems and the four material combinations. For all four material combinations, the wedge crack-growth rate was higher for the weldbond system than for the FPL bonding system and the PABST bonding system. However, the FPL system had a crack-growth rate very similar to the weldbond system with a delay time of only approximately one month to reach the same crack growth as the weldbond system. Therefore, although the relative ranking of durability shows the FPL system to be better than the weldbond system, from a practical point of view the two systems have essentially the same durability for a sea coast exposure with a crack-growth greater than 1 inch in three or four months for three of the four material combinations, and approximately 0.8-inch crack growth for 2024-T3 bare bonded to 2024-T3 bare after 10 months exposure. In contrast, the PABST bonding system showed essentially no crack growth (less than 0.04 inch) after a 12 month sea coast exposure

FIGURE 3. TYPICAL ANODIZED LAYER ON 2024-T3 ALCLAD

MAGNIFICATION 20,000X

MAGNIFICATION 20,000X

PABST SURFACE TREATMENT

FIGURE 4. TYPICAL ANODIZED LAYER ON 2024-T3 BARE

FIGURE 5. TYPICAL ANODIZED LAYER ON 7075-T6 BARE

FIGURE 6. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 ALCLAD/7075-T6

BARE — SEA COAST EXPOSURE

FIGURE 7. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 BARE/7075-T6 BARE — SEA COAST EXPOSURE

FIGURE 8. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 BARE/2024-T3 BARE — SEA COAST EXPOSURE

FIGURE 9. AVERAGE WEDGE CRACK GROWTH OF 7075-T6 BARE/7075-T6 BARE - SEA COAST EXPOSURE

for all four material combinations. The wedge crack-growth data for each specimen are presented in Appendix A.

The material combinations have been ranked for this exposure in terms of durability behavior. An arbitrary scale of 1 to 10 was used. A low number designates a low wedge crack-growth rate, and a high number designates a high wedge crack-growth rate. The slope of the curves shown in Figures 6, 7, 8, and 9 indicates the wedge crack-growth rate for each bonding system as related to material combination. This method of ranking material combinations was used for all three wedge test exposures, sea coast, salt fog, and the relative humidity exposure. This analysis did not include the PABST system since essentially no crack growth (less than 0.04 inch) occurred for these environments. The durability ranking of material combinations for the sea coast exposure is as follows:

MATERIAL COMBINATION	RANK
2024-T3 alclad to 7075-T6 bare	9
2024-T3 bare to 7075-T6 bare	8
2024-T3 bare to 2024-T3 bare	3
7075-T6 bare to 7075-T6 bare	10

Wedge Tests - 5 Percent Salt Fog, 95F

The average wedge crack growth for the salt fog exposure is presented in Figures 10, 11, 12, and 13 for the three bonding systems and the four material combinations. For three of the material combinations, the weldbond system showed a faster crack growth than the FPL bonding system and the PABST bonding system. For 2024-T3 bare bonded to 2024-T3 bare, the crack growth was the same for the weldbond system and the FPL system with an approximate 0.5-inch average crack growth at the end of the 90 day exposure. The PABST bonding system again showed essentially no crack growth (less than 0.03 inch), after the 90 day exposure for all four material combinations. The wedge crack growth data for each specimen are presented in Appendix A.

The relative durability ranking of the materials for this exposure is as follows:

MATERIAL COMBINATION	RANK
2024-T3 alclad to 7075-T6 bare	8
2024-T3 bare to 7075-T6 bare	5
2024-T3 bare to 2024-T3 bare	3
7075-T6 bare to 7075-T6 bare	4

A question arose as to which environment is more severe, the sea coast beach site or the salt fog exposure. An analysis of the wedge test data shows that the answer depends upon the bonding system, the material combination, and the exposure time. The severity of the sea coast exposure as compared to the severity of the salt fog exposure for a 90 day (or 3 month) time period is as follows:

BONDING SYSTEM	MATERIAL COMBINATION	MORE SEVERE
FPL	2024-T3 alclad/7075-T6 bare	Sea Coast
	2024-T3 bare/7075-T6 bare	Sea Coast
	2024-T3 bare/2024-T3 bare	Salt Fog
	7075-T6 bare/7075-T6 bare	Sea Coast
Weldbond	2024-T3 alclad/7075-T6 bare	Salt Fog
	2024-T3 bare/7075-T6 bare	Same
	2024-T3 bare/2024-T3 bare	Same
	7075-T6 bare/7075-T6 bare	Sea Coast

It can be seen from this analysis that the severity question is not easily answered. For the weldbond system, two material combinations showed the same wedge crack growth for both environments, one material combination showed less crack growth at the sea coast, and one material combination showed greater crack growth. However, for the FPL bonding system, three of the four material combinations showed greater crack-growth for the 90-day sea coast exposure than the 90-day salt fog exposure.

Although there is not a clear correlation between the sea coast and the salt fog exposure, the 90-day salt fog test is more easily reproduced and is more available to most companies, as an alternate to the sea coast exposure.

Wedge Tests - 95 to 100 Percent Relative Humidity, 120F

The average wedge crack growth for the 95 to 100 percent relative humidity exposure is shown in Figures 14, 15, 16, and 17 for the three bonding systems and the four material combinations. For all three bonding systems, the average wedge crack growth was less than 0.2 inch for the 60-day exposure and less than 0.4 inch for the 90-day exposure. Therefore, it is difficult to rank the three bonding systems or the

FIGURE 10. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 ALCLAD/7075-T6
BARE - SALT FOG EXPOSURE

FIGURE 11. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 BARE/7075-T6
BARE - SALT FOG EXPOSURE

FIGURE 12. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 BARE/2024-T3
BARE - SALT FOG EXPOSURE

FIGURE 13. AVERAGE WEDGE CRACK GROWTH OF 7075-T6 BARE/7075-T6
BARE - SALT FOG EXPOSURE

FIGURE 14. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 ALCLAD/7075-T6
BARE - 95-100 PERCENT RELATIVE HUMIDITY

FIGURE 15. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 BARE/7075-T6 BARE — 95-100 PERCENT RELATIVE HUMIDITY

FIGURE 16. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 BARE/2024-T3 BARE — 95-100 PERCENT RELATIVE HUMIDITY

FIGURE 17. AVERAGE WEDGE CRACK GROWTH OF 7075-T6 BARE/7075-T6
BARE - 95-100 PERCENT RELATIVE HUMIDITY

material combinations shown in Figures 14, 15 and 16. The PABST bonding system had only very slight improvement in durability over the other two bonding systems. In fact, for 7075-T6 bare bonded to 7075-T6 bare, the average crack-growth was equal for the weldbond and the PABST bonding system. The wedge crack-growth data for each specimen are presented in Appendix A.

As was discussed for the sea coast and salt fog exposure conditions, a durability ranking of the material combinations for the 95 to 100 percent relative humidity exposure was made. The results of this ranking are as follows:

MATERIAL COMBINATION	RANK	
2024-T3 alclad to 7075-T6 bare	2	
2024-T3 bare to 7075-T6 bare	1	
2024-T3 bare to 2024-T3 bare	1	
7075-T6 bare to 7075-T6 bare	1	

An overall summary of the ranking of the material combinations based on the three different wedge test exposure conditions is:

Material Combination	Sea Coast	Salt Fog	Relative Humidity	Total
2024-T3 alclad to 7075-T6 bare	9	8	2	19
2024-T3 bare to 7075-T6 bare	8	5	1	14
2024-T3 bare to 2024-T3 bare	3	3	1	7
7075-T6 bare to 7075-T6 bare	10	4	1	15

The material combination with the lower total ranking number has better durability than a material combination with a higher ranking number. Therefore, based on this analysis, 2024-T3 bare bonded to 2024-T3 bare exhibits the best durability and 2024-T3 alclad bonded to 7075-T6 bare exhibits the poorest durability. The other two material combinations exhibit intermediate durability. Again, it is noted that this analysis is based on the wedge crack growth behavior for the FPL and the weldbond systems. Since there was essentially no crack growth for the PABST bonding system, relative durability ranking of the materials cannot be made based on wedge crack-growth results for the PABST system.

Constant Load - Salt Water Immersion Tests

The results for the constant load-salt water immersion tests are shown in Tables 5, 6, and 7 for both the 1,000 hour and the 2,000-hour immersion in the 3.5

percent salt water under a constant load. The residual strength for the specimens tested after this exposure was greater than 96 percent of the control test strength values for all three bonding systems and all four material combinations except for one value of 94 percent obtained for the weldbond system for 7075-T6 bare weldbonded to 7075-T6 bare, under high load (1,000 hour) conditions. This average loss of 6 percent of the ultimate lap-shear strength is not considered significant, but for the purposes of this program the weldbond system was assigned a higher durability ranking number (poorer durability) than the other bonding systems. Also, the weldbond system had an unexplained premature failure after 615 hours for the 1,000 hour, 2024-T3/2024-T3 test series, which again earned this system a poorer durability ranking.

The lap-shear area was examined for corrosion attack after the residual strength tests were conducted. No evidence of corrosion attack was found for any of the lap-shear test specimens. Since there was no evidence of corrosion attack at the lap-joint interface and since there was no significant loss in residual lap-shear strength, the relative durability ranking of the material combinations cannot be made for this test series.

Surface Scratch Test

The results for the surface scratch tests are shown in Table 8, for the three bonding surface treatments and three materials. The objective of this test was to determine if the surface treatment used for each of the three joining systems would pass the 2,000 hour salt fog exposure if a scratch were made through the standard coating of MIL-P-23377 epoxy polyamide primer and MIL-C-81773 polyurethane top coat. All three surface treatments when coated with the standard primer and top coat passed the 2,000 hour exposure to the 5 percent salt fog at 95 F. No evidence of surface corrosion or corrosion at the scratch was found on these panels. Therefore, all three surface treatments and three materials were rated equal for this series of surface corrosion tests.

In addition to the coated panels, uncoated panels were also exposed for 2,000 hours. The results of this exposure for uncoated panels is also shown in Table 8. As expected, panels prepared by the PABST method showed no evidence of corrosion; panels prepared by the FPL method showed slight corrosion; and panels prepared by the weldbond method showed moderate to severe corrosion. As seen in Figure 1, the PABST surface treatment prior to adhesive application produces an aluminum surface with a thick oxide layer on which a protective primer, BR-127, is applied. The FPL

TABLE 5. CONSTANT LOAD/SALT WATER IMMERSION TEST RESULTS FOR THE FPL SYSTEM

ero tak irolem ka - os takandiklori s	2024-T3 CLAD TO 7075-T6 BARE	2024-T3 BARE TO 7075-T6 BARE	2024-T3 BARE TO 2024-T3 BARE	7075-T6 BARE TO 7075-T6 BARE
CONTROL	A11 3650	B11 3700	C11 3850	D11 5150
STRENGTH	A12 3700	B12 3650	C12 3800	D12 4950
(LBS)	A7 3650	B7 3750	C7 3750	D7 5100
	A8 3700	B8 3700	C8 3800	D8 5150
AVERAGE	3675	3700	3800	5088
1000 HOUR				
DATA:				
LOAD (LBS)	2380	2380	2380	3000
RESIDUAL	A1 3850	B1 3650	C2 3700	D1 4800
STRENGTH	A2 3850	B2 3800	C3 3800	D2 5000
(LBS)	A3 3700	B3 3750	C4 3750	D3 5050
AVERAGE	3800	3730	3750	4950
PERCENT LOSS	NONE	NONE	1.3%	2.7%
2000 HOUR				
DATA:				
LOAD (LBS)	1875	1875	1875	2380
RESIDUAL	A4 3650	B4 3700	C1 3600	D4 5100
STRENGTH	A5 3700	B5 3700	C5 3650	D5 4850
(LBS)	A6 3650	B6 3650	C6 3700	D6 4950
AVERAGE	3665	3680	3650	4970
PERCENT LOSS	NONE	NONE	3.9%	2.3%
FAILURE MODE 100% 100%		100%	100%	
	COHESIVE	COHESIVE	COHESIVE	COHESIVE

TABLE 6. CONSTANT LOAD/SALT WATER IMMERSION TEST RESULTS FOR THE WELDBOND SYSTEM

10x4983-859 55 8x48 84 450		T3 CLAD TO T6 BARE	an an	T3 BARE TO T6 BARE		T3 BARE TO T3 BARE		T6 BARE TO T6 BARE
CONTROL	E9	4000	F5	3900	G1	3800	H1	5200
STRENGTH	E3	4000	F8	3800	G9	3750	Н9	5150
(LBS)	E7	4000	F1	4000	G8	3900	H2	5200
			F3	3900	G10	3800	H10	5200
AVERAGE		4000		3900		3815		5190
1000 HOUR DATA:								
LOAD (LBS)	100	2380		2380		2380	KAZ	3000
RESIDUAL	E4	3700	F7	3850	G5	3750	Н6	4800
STRENGTH	E5	3900	F8	3800	G6	3800	H7	4700
(LBS)	E6	4100	F10	3900	G7	(1)	Н8	5000
AVERAGE		3900		3850		3775		4830
PERCENT LOSS	- 2	2.5%	1	.3%	1	.0%	5	.9%
2000 HOUR DATA: LOAD (LBS)		1875		1875		1875		2380
RESIDUAL	E1	3900	F2	3900	G2	.4050	НЗ	5100
STRENGTH	E2	4100	F4	3850	G3	3900	H4	5050
(LBS)	E8	4150	F6	3900	G4	3550	H5	5000
AVERAGE	1.79%	4050		3880		3830		5050
PERCENT LOSS	N	ONE	0	.5%	N	ONE	2	.7%
FAILURE MODE		TO 70% HESIVE		O 80%		O 90% ESIVE		O 95% IESIVE

⁽¹⁾ FAILED IN 615 HOURS Not included in average.

TABLE 7. CONSTANT LOAD/SALT WATER IMMERSION TEST RESULTS FOR THE PABST SYSTEM

62,0387 er 60 - 935 - 50,0337 dem		T3 CLAD TO T6 BARE		T3 BARE TO T6 BARE		T3 BARE TO T3 BARE		T6 BARE TO T6 BARE
CONTROL	111	4150	J1	3950	K1	3700	L10	5200
STRENGTH	112	3750	J10	4000	K11	3750	L11	5250
(LBS)	17	4000	J8	3950	K8	3850	L7	5100
	18	3950	J9	4000	K9	3850	L8	5150
AVERAGE	2195	3962		3975	- 125/03/	3787		5175
1000 HOUR								
DATA:								
LOAD (LBS)		2380	ONES .	2380		2380	34.0	3000
RESIDUAL	11	4100	J5	4050	K5	3950	L1	5200
STRENGTH	12	4050	J6	4050	K6	3850	L2	5200
(LBS)	13	4000	J7	4050	K7	3950	L3	5100
AVERAGE	W-75	4050	988	4050		3915		5165
PERCENT LOSS	N	ONE	N	ONE	N	ONE	N	ONE
2000 HOUR								
DATA:								
LOAD (LBS)		1875	18121	1875		1875	10000	2380
RESIDUAL	14	3900	J2	4000	K2	3850	L4	5050
STRENGTH	15	4000	13	4050	КЗ	3900	L5	5100
(LBS)	16	4100	J4	4050	K4	3850	L6	5000
AVERAGE		4000		4035		3865		5050
PERCENT LOSS	N	ONE	N	ONE	N	ONE	2	.4%
FAILURE MODE	1	00%	1	00%	1	00%	1	00%
	COH	HESIVE	COH	IESIVE	СОН	IESIVE	СОН	IESIVE

TABLE 8. SURFACE SCRATCH TEST RESULTS

EXPOSURE: 5 PERCENT SALT FOG AT 95F, ASTM B 117

CORROSION RESULT CODE: O - NO CHANGE

S – SLIGHT CORROSION

M – MODERATE CORROSION

X – SEVERE CORROSION

JOINING SYSTEM	MATE	DIAL			ION RESU		
STSTEM	MATE	TIAL	72	500	1000	1500	2000
	2024-T3 ALCLAD	- COATED*	0	0	0	0	0
		- UNCOATED	0	0	0	S	S
FPL	2024-T3 BARE	- COATED*	0	0	0	0	0
		- UNCOATED	0	0	0	0	S
	7075-T6 BARE	- COATED*	0	0	0	0	0
		- UNCOATED	0	0	S	S	S
	2024-T3 ALCLAD	- COATED*	0	0	0	0	0
		- UNCOATED	S	S	М	М	М
WELDBOND	2024-T3 BARE	- COATED*	0	0	0	0	0
		- UNCOATED	X	×	×	×	×
	7075-T6 BARE	- COATED*	0	0	0	0	0
		- UNCOATED	X	×	×	x	X
	2024-T3 ALCLAD	- COATED*	0	0	0	0	0
		- UNCOATED	0	0	0	0	0
PABST	2024-T3 BARE	- COATED*	0	0	0	0	0
FADSI		- UNCOATED	0	0	0	0	0
	7075-T6 BARE	- COATED*	0	0	0	0	0
		- UNCOATED	0	0	0	0	0
ALODINE	2024-T3 ALCLAD		0	0	0	0	0
CONTROL	2024-T3 BARE		0	0	0	0	0
	7075-T6 BARE		0	0	0	0	0

^{*}COATED SPECIMENS WERE PRIMED WITH MIL-P-23377 EPOXY POLYAMIDE PRIMER AND TOP COATED WITH MIL-C-81773 POLYURETHANE PAINT

surface treatment produces a thin oxide layer but also includes a layer of protective primer, BR-127. On the other hand, the weldbond surface preparation was developed with a thin oxide layer and no protective primer so that resistance spot welds could easily be made. The intent of the weldbond surface preparation was to enable resistance spot welds to be made and to allow the durable paste adhesive, A1444B, to seal and protect the weldbond interface. The weldbond surface preparation alone will not provide sufficient corrosion protection for exterior aluminum surfaces. However, if the surface is primed or primed and painted, it can be expected to perform similar to the PABST and FPL panels.

Durability Ranking of Three Joining Systems

An analysis was made of all the durability tests conducted for the two adhesive bonding systems and the weldbond system. A summary of this analysis is presented in Table 9. The joining system which had the best durability for a specific test series and material combination was ranked as number 1, the second best was ranked as number 2, and the third best was ranked as number 3. The ranking numbers were totaled for each joining system. Therefore, the system having the lowest sum total had the best durability for the tests conducted for this program. The final ranking of the three joining systems in terms of decreasing durability is: PABST, FPL and weldbonding. As discussed in the results section for the surface scratch tests, this ranking is not surprising since both the PABST and FPL surface treatments prior to adhesive bonding include the addition of a protective coat of primer, BR-127, and the PABST system has the added advantage of a thick oxide layer.

Based on the results of the constant load-salt water immersion tests, the durability of the three joining systems is equal. Therefore, the durability ranking noted above was based on the results of the wedge tests. However, it is difficult to correlate the stress that is created in a wedge-test specimen to the stress that would occur in actual aircraft panels. Also, the wedge test does not evaluate completely the durability of the weldbond system since spot welding, which is an integral part of the weldbond joining system, is not used in the preparation of the standard wedge-test specimen. In order to have commonality for the wedge-test comparisons, the wedge-test specimens for the weldbond system were not welded. Data for wedge specimens which were welded are presented in the next section of this report. In summary, the wedge test provided a good method for evaluating the durability of adhesive bonding systems but not necessarily that of the complete weldbond system.

TABLE 9. DURABILITY RANKING OF THREE JOINING SYSTEMS

TYPE OF TEST	EXPOSURE CONDITIONS	MATERIAL (1)	FPL ETCH	WELDBOND	PABST
	95-100% RELATIVE	24C-75B	2	2	1
WEDGE	HUMIDITY AT 120F FOR	24B-75B	2	2	1
WEDGE	90 DAYS	24B-24B	2 2	2	1
		75B-75B	2	1	1
	5% SALT FOG AT	24C-75B	2	3	1
WEDGE	95F FOR 90 DAYS	24B-75B	2	3	1
WEDGE		24B-24B	2	2	1
		75B-75B	2	3	1
	SEA COAST,	24C-75B	2	3	1
WEDGE	EL SEGUNDO, CALIF	24B-75B	2	3	1
WEDGE	FOR 12 MONTHS	24B-24B	2	3	1
		75B-75B	2	3	1
CONSTANT	3.5% SALT WATER	24C-75B	1	1	1
LOAD SALT	EXPOSURE FOR	24B-75B	1	1	1
WATER	2000 HOURS	24B-24B	1	1	1
IMMERSION		75B-75B	1	1	1
CONSTANT	3.5% SALT WATER	24C-75B	1	1	1
LOAD SALT	EXPOSURE FOR	24B~75B	1	1	1
WATER	1000 HOURS	24B-24B	1	2	1
IMMERSION		75B-75B	1	2	1
SURFACE	5% SALT FOG AT				
SCRATCH	95F FOR	ALL	1	1	1
PANEL (2)	2000 HOURS				
	TOTAL		33	41	21

⁽¹⁾ 24C = 2024-T3 alclad; 24B = 2024-T3 bare; 75B = 7075-T6 bare.

⁽²⁾ These surface scratch panels were primed with MIL-P-23377 epoxy polyamide primer and top coated with MIL-C-81773 polyurethane paint. This test is used to indicate surface corrosion behavior of the materials used in the three joining systems.

WELDBOND DURABILITY IMPROVEMENT STUDY (An Independent Northrop Program)

The object of the addendum to the weldbond program was to compare the durability of the FPL and PABST adhesive bonding system with that of the weldbond system. Concurrent with this effort, a separate Northrop IRAD program was conducted to determine if a spray coat of BR-127 primer on the weldbond surface would improve the durability of this joining method and still result in a surface that could be spot welded using the standard weld parameters that had been established during the weldbond program.

This separate effort was conducted in three phases. The first phase was to establish what thickness of BR-127 primer could be welded in the uncured state using standard weldbond weld parameters. The second phase was to determine if this weldable layer of BR-127 did improve the durability of the weldbond system. If the durability were improved, then a third phase was planned to show the effects of the BR-127 on the weldbond properties. A test matrix for the last two phases is shown in Table 10.

The material combination, 2024-T3 alclad bonded to 7075-T6, was selected for the durability evaluation since this combination was more susceptible to wedge crack growth than the other three material combinations tested during the weldbond addendum program. Wedge tests were conducted for two different exposures: 95F salt fog and the sea coast. Lap-shear tests were conducted at room temperature and -65F using 7075-T6 weldbonded to 7075-T6. High-load transfer fatigue tests and T-peel tests were also conducted using 7075-T6.

Weldability Evaluation

The first phase, weldability evaluation, revealed that resistance spot welds could easily be made through BR-127 primer if the primer thickness was 0.00004 inch, and the primer was air dried, not fully cured. Welds made on panels with a primer thickness of 0.00008 inch were inconsistent in quality, and panels with a primer thickness of 0.00015 inch could not be welded using the standard weldbond weld parameters. The standard thickness for BR-127 primer is 0.00015 to 0.00030 inch. Based on the results of the weldability study, the test specimens for this investigation were prepared using a very thin, 0.00004-inch coat of BR-127 primer. The aluminum sheet was cleaned and anodized according to the standard weldbond procedures. Then the primer was applied as a 1/2 box spray coat to match the color tone of prior samples of known primer thickness. Quality control panels were sprayed at the same time as the test panels. The thickness of the primer on these control panels after curing was found to be

0.00004 inch. Primer thickness was measured using a Fischer Permascope (eddy current system) which has an accuracy of 0.00003 inch (2 percent full scale). The primer was allowed to air dry for a minimum of 30 minutes before applying the adhesive. Paste adhesive A1444B, Lot K, was used for these test panels. The primer was co-cured with the adhesive at 250-260F for 2 hours.

Wedge Test Durability Results

The second phase, durability evaluation, revealed that a very thin (0.00004-inch) layer of BR-127 primer, co-cured with the adhesive, was sufficient to improve the durability of the weldbond system to the extent that it almost equals the durability of the PABST adhesive bonding system. The durability of the weldbond system with the BR-127 primer exposed to 95F salt fog shows an average wedge crack growth of less than 0.20 inch in 90 days compared to more than 1.0-inch crack growth in less than 25 days for the weldbond system without the BR-127 primer, Figure 18. These wedge tests for the weldbond/BR-127 system, still in progress, show an average wedge crack growth of less than 0.20 inch even after 214 days (7 months). Also the durability of the weldbond/BR-127 system is much better than the FPL adhesive system.

The results of the sea coast wedge tests are shown in Figure 19. For this exposure condition, the durability of the weldbond/BR-127 system is essentially equal to the durability of the PABST system after 5 months exposure, i.e., average wedge crack growth of 0.04 and 0.01 inch respectively. A crack growth less than 0.05 inch is considered to be negligible. The degree of improvement for the weldbond/BR-127 system is tremendous when compared to the 2.0-inch crack growth for the unprimed weldbond system and the 1.60-inch crack growth of the FPL bonding system for the same 5 month exposure time.

Weldbond Properties With and Without BR-127 Primer

For the third phase, lap-shear, T-peel and high-load transfer fatigue tests were conducted on panels which had been surface treated with and without the addition of the BR-127 primer, to determine if the primer would degrade the weldbond properties.

<u>Lap-Shear Strength</u>. Lap-shear specimens were weldbonded using 0.063-inch thick sheets of 7075-T6 bare. The lap-shear specimens were 1-inch wide with a 1-inch overlap. Tests were conducted at room temperature and -65F. The results are presented in Table 11. The lap-shear strength was almost equivalent for primed

TABLE 10. TEST MATRIX FOR WELDBOND/BR-127 EVALUATION

		NUMBER (OF SPECIMENS
		WITH BR-127	WITHOUT BR-127
DURABILITY WEDGE TESTS	95F SALT FOG	5	6*
2024-T3 ALCLAD TO 7075-T6	SEA COAST	10	12*
WELDBOND PROPERTY TESTS 7075-T6 TO 7075-T6			
LAP-SHEAR	ROOM TEMPERATURE	5	5
	-65F	5	5
T-PEEL	ASTM D1876	6	6
FATIGUE	HIGH-LOAD TRANSFER	8	5*

^{*}Data obtained from AFML-TR-79-4006 (Reference 4)

TABLE 11. LAP-SHEAR STRENGTH FOR PRIMED AND UNPRIMED WELDBONDED 7075-T6

TEST	LAP SHEAR	STRENGTH (PSI)
TEMPERATURE	WITH BR-127	WITHOUT BR-127
ROOM TEMPERATURE	4920	4740
	4640	4990
	4540	4700
	4690	4800
	4690	4740
AVERAGE	4700	4790
-65F	3480	3640
	3670	4000
	4160	4330
	4060	3990
	2680	3310
AVERAGE	3610	3850

FIGURE 18. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 ALCLAD/7075-T6 BARE INCLUDING WELDBOND/BR-127 — SALT FOG EXPOSURE

FIGURE 19. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 ALCLAD/7075-T6 BARE INCLUDING WELDBOND/BR-127 — SEA COAST EXPOSURE

and unprimed specimens. Therefore, the use of BR-127 primer on a weldbond prepared aluminum surface did not reduce the lap-shear strength of the weldbonded joint.

T-Peel Tests. T-peel tests were conducted per ASTM standard D 1876 using 7075-T6 bare bonded to 7075-T6 bare, 0.032-inch sheet thickness, with primed and unprimed weldbond surfaces. The peel strength in pounds per inch of width is as follows:

with BR-127: 13.0; 11.0; 9.5; 10.0; 7.5; 8.0; avg. 9.8 without primer: 14.0; 10.0; 11.0; 9.0; 9.0; 11.5; avg 10.7

There is no significant difference in T-peel strength between the primed and the unprimed weldbond surface. All specimens showed 100 percent cohesive failure.

Fatigue Behavior. Eight high-load transfer fatigue specimens were weldbonded using 0.063-inch thick 7075-T6 aluminum and the BR-127 primer. The specimen configuration was the same as that used for the basic weldbond program (Reference 4) so that a direct comparison could be made with unprimed fatigue specimens. Lap joint dimensions were 1.25 inches wide x 1.25 inches overlap and a single spot weld was used. The fatigue results are shown in Table 12. The average fatigue life for the primed specimens was higher than that of the unprimed specimens, i.e., 328,000 cycles vs 197,000 cycles. However, this difference in fatigue life is not considered to be significant, particularly if we take into account that the reference tests, unprimed specimens, were weldbonded and tested more than a year ago using a different batch of adhesive and other possible slight variations in cleaning, anodizing, curing and testing. Therefore, these reference tests may not be considered to be valid control tests. The important point to note is that the use of the BR-127 primer did not degrade the fatigue behavior of a weldbonded joint, and in fact may have enhanced the bonding strength of the A1444B paste adhesive to the anodized aluminum surface.

Wedge Test with Spot Weld

It has been shown that the addition of a thin layer of BR-127 primer improved the durability of the standard weldbond system significantly. However, since a weld nugget is part of the weldbond joint, a question still remained as to how effective a spot weld would be in retarding the crack-growth in a wedge test.

Five wedge specimens were fabricated using the standard weldbond surface preparation and paste adhesive A1444B with 2024-T3 alclad and 7075-T6 bare. Spot

TABLE 12. HIGH-LOAD TRANSFER FATIGUE BEHAVIOR FOR PRIMED **AND UNPRIMED WELDBONDED 7075-T6**

R: 0.1 FREQUENCY: 10 HZ MAXIMUM LOAD: 2,250 LBS.

PRIMED	FATIGUE LIFE	NUGGET DIAMETER
SPECIMENS	(CYCLES)	MAX/MIN (INCH)
1	350,510	0.25/0.25
2	398,240	0.31/0.29
3	446,530	0.35/0.32
4	332,950	0.32/0.32
5	394,810	0.34/0.30
6	256,320	0.32/0.30
7	186,200	0.37/0.31
8	256,090	0.31/0.27
AVERAGE	327,706	
UNPRIMED	FATIGUE LIFE	NUGGET DIAMETER
SPECIMENS (1)	(CYCLES)	(INCH)
1	130,970	0.28
2	133,670	0.34
3	187,780	0.31
4	235,230	0.32
5	296,120	0.30
AVERAGE	196,754	

⁽¹⁾ Data obtained from AFML-TR-79-4006 (Reference 4)

welds were centered 3 inches from the end of the 6-inch specimen as shown in Figure 20. The average initial crack length was 2.25 inches, therefore, the edge of the spot weld nugget was approximately 0.5 inch from the initial crack tip created by the wedge. These specimens were exposed to the 5 percent salt fog environment.

The results of these wedge tests are shown in Figure 20 along with the wedge test results for the standard weldbond system, the weldbond system with BR-127, and the PABST system for comparison purposes. After 13 days the crack had progressed up to the edge of the weld nugget, i.e., 0.52 inch. After 183 days (6 months) the crack progressed only a small additional amount to 0.60 inch. The spot weld restrained the wedge crack-growth for at least six months of exposure to the salt fog after the crack tip reached the nugget. Therefore, the weldbond system, which utilizes spot welds is very effective in retarding crack-growth that might occur along the adhesive bonded joint with the standard weldbond surface preparation.

Conclusions for the Weldbond Durability Improvement Study

- 1. The environmental-stress durability of the weldbond system in both the 95F salt fog and the sea coast environment is significantly improved by the addition of a thin (0.00004-inch) layer of BR-127 primer to the anodized surface.
- 2. The addition of a thin layer of BR-127 primer to the standard weldbond surface preparation does not reduce lap-shear strength, T-peel strength, or high-load transfer fatigue life for weldbonded panels.
- 3. High quality welds can easily be made through a thin (0.00004-inch) layer of air dried BR-127 primer added to the standard weldbond surface treatment.
- 4. Spot welds in weldbond wedge specimens are effective in retarding crack growth in a stress-corrosion environment.

FIGURE 20. AVERAGE WEDGE CRACK GROWTH OF 2024-T3 ALCLAD/7075-T6 BARE WELDBOND WITH SPOT WELD - SALT FOG EXPOSURE

SECTION 3

CONCLUSIONS

- 1. The wedge test crack growth for all three joining systems was less than 0.5 inch after 90 days exposure to the 95-100 percent relative humidity at 120 F.
- 2. The ranking of the two adhesive bonding systems and the weldbond system in terms of decreasing durability is as follows: PABST, FPL and weldbonding.
- 3. The addition of a thin layer of BR-127 primer to the weldbond surface greatly improves the durability of the weldbond system so that its durability is nearly equal to that of the PABST system and is substantially superior to the durability of the FPL system.
- 4. The ranking of the four material combinations in terms of decreasing durability is as follows:

2024-T3 bare/2024-T3 bare 2024-T3 bare/7075-T6 bare 7075-T6 bare/7075-T6 bare 2024-T3 alclad/7075-T6 bare

- 5. The wedge test does not realistically evaluate the durability of the weldbond system since spot welding, which is an integral part of the weldbond joining system, is not used in the preparation of the standard wedge-test specimen.
- 6. The constant load-salt water immersion test was ineffective for comparing the durability of the three joining systems.
- 7. Wedge-crack specimens in a 95 to 100 percent relative humidity exposure at 120F is not an effective test for distinguishing durability behavior of the PABST, FPL and weldbond joining systems.
- 8. Spot welds in wedge specimens are effective in stopping crack-growth for at least six months in the salt fog environment.

REFERENCES

- (1) "Primary Adhesively Bonded Structure Technology," Contract No. F33615-75-C-3016, (June 1979).
- (2) Bowen, B.B., Herfert, R.E., and Wu, K.C., "Development of Corrosion Resistant Surface Treatments for Aluminum Alloys for Spot-Weld Bonding," Report No. AFML-TR-75-69, (March 1975).
- (3) Wu, K. C., "Advanced Aluminum Weldbond Manufacturing Methods," Report No. AFML-TR-76-131, (September 1976).
- (4) Croucher, T.R., "Advanced Weldbonding Process Establishment for Aluminum," Report No. AFML-TR-79-4006, (April 1979).

APPENDIX A WEDGE TEST DATA

WEDGE TEST DATA - SEA COAST EXPOSURE - 2024-T3 ALCLAD/7075-T6 BARE

FPL BONDING SYSTEM

ADHESIVE SYSTEM: FPL Etch - BR-

FPL Etch - BR-127 Primer/FM 123-2 Mat Adhesive

EXPOSURE STARTED:

29 March, 1978

		Initial					Wedge Crack Growth (Inch)	Crack	Growtl	(Inch					_
Specimen	Bondline Thickness	Crack					Expo	Exposure Time (Months)	ime (N	(Jouths					
	(Inch)	(Inch)	1	2	3	4	5	9	7	œ	6	10	11	12	
A1	900.0	1.90	0.20	1.15	1,25	1,25	1,45	1.60	1,60	1.60	1.60	1.60	1,60	1,60	Ξ
A2	0.009	1.92	0.25	0.25	0.30	1.05	1.30	1.40	1,40	1.40	1.40	1,70	1.70	1.70	(2)
A3	0.009	1,95	0,55	1.20	1,35	1.40	1.50	1,60	1,60	1,60	1.60	1.70	1,70	1,70	Ξ
A4	0.008	1,95	0.22	0.55	0.98	1.10	1.20	1.20	1.40	1.40	1.40	1,40	1.40	1.40	3
A5	0.007	2,02	0,19	0.23	0.23	1.15	1,35	1.50	1.80	1.80	2,20	2,30	2.30	2.30	(2)
A6	0.007	1,90	0.20	0.31	0.31	0.60	0,85	1.00	1.00	1.00	1.00	1,00	1,00	1,00	3
A7	0.010	1.91	0.18	0.21	0.25	1.95	2.50	3.20	3,20	3,20	3,20	3.20	3.20	3,20	(2)
A8	0.010	1.92	0.22	0.23	1.20	1.80	2.30	2.50	2,50	2,60	2.60	2, 70	2.70	2, 70	(2)
49	0.008	1,99	0.72	1,15	Dis	continue	inue	d(1)							
A10	0.008	1,96	0.15	0.90	1.48	2.15	2.20	2.80	3,40	3,40	3.40	3.40	3.40	3,40	(2)
A11	900.0	1,94	0,13	0.20	0,25	1.05	1.30	2.10	2, 10	2,10	2,20	2,20	2.20	2, 20	(2)
A12	0.008	1.92	0.52	Dis	cont	inue	d (1)								
	AV	Average	0.29	0.58	0.76	1.35	1.60	1.89	2.00	2,01	2,05	2, 11	2.11	2, 11	
	R	Range {	0.13	0.21	0.23			_	1.00	00	1.00	1,00	1.00	1.00	
		7	0.72	1.20	1.48	2.15	2.50	3.20	3,40	3.40	3.40	3.40	3.40	3.40	

(1) Failure mode was 80 to 100 percent adhesive failure along the 2024-T3 alclad surface.

(2) Failure mode was 80 to 100 percent adhesive failure along the 7075-T6 surface.

WELDBOND SYSTEM

1.0 - 1.5 Volt Phosphoric Acid Anodize/A1444B Paste Adhesive ADHESIVE SYSTEM:

EXPOSURE STARTED: 1 June, 1978

			(2)	(2)	(2)	(2)	(3)	(4)	(2)	(3)	(2)	(3)	(4)	(4)			
		12	2.50		2.50	2.75	2.60	2.00		2.45	d	2.00	1.90		2.87	1.90	4.00
		11	2.50	tinued	2.50	2,75	2.60	1.80	Discontinue	2,45	ontinue	2.00	1.60	3.90	2.83	1.60	4.00
		10	2.50	Discontinued	2.50	2,75	2.60	1,80	Disco	2.45		2.00	1.40	3.30	2.76	1.40	4.00
		6	2.40	3,90	2.40	2.75	2.60	1,70	3.97	2.30	Disc	2.00	1.20	2.80	2.67	1.20	4.00
Wedge Crack Growth (Inch)	(onths)	œ	2.20	3,10	2.30	2.70	2.60	1.60	2.90	2.00	4.00	1.90	1.20	2,80	2,44	1.20	4.00
Growt	Exposure Time (Months)	7	2.20	2,60	2.30	2.70	2.60	1.60	2.10	2.00	2.40	1.80	1.00	2.60	2.16	1.00	2.70
Crack	sure T	9	2.00	2.40	2.20	2.60	2.60	1.60	2,10	2.00	2,20	1.70	1.00	2.50	2.08	1.00	2,60
Vedge	Expo	5	1,90	2,20	2.20	2,60	2,60	1.60	2,10	2.00	1.90	1.70	0.90	2,30	2.00	06.	2,60
		4	1.50	1.80	2.20	2,00	2,40	1.40	2,00	1.70	1.45	1,45	0.90	1,80	1.72	06.	2,40
		3	1.50	1,45	1,65	1.70	2,20	1,00	1.90	1.50	1.20	1.30	0.85	1,60	1,49	. 85	2,20
		2	.95	1.15	1.10	1.10	1.50	0.65	1,35	0.70	1.05	0,85	0.65	1,05	1,01	. 65	1,50
		1	0.30	0.48	0.08	0,13	0,16	0.18	0,55	0.13	0.37	0.14	0.20	0.16	. 24	80.	.55
Initial	Crack	(Inch)	2, 13	2.07	2, 12	2.14	2.09	2.09	2.04	2.13	1.97	2,00	2, 19	2.08	erage (1)	Range S	ر
	Bondline	(Inch)	0.006	900.0	0,006	0.008	0.008	0.006	0.007	0.008	0.010	0.010	0,005	0.005	Av	Re	
	Specimen		M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12			

(1) Average values include walues for specimens which were discontinued.

(2) Failure mode was 100 percent adhesive failure along the 2024-T3 alclad surface.

(3) Failure mode was 100 percent adhesive failure, 20 to 50 percent of which occurred along the 2024-T3 alclad surface.

(4) Failure mode was 100 percent adhesive failure, 80 percent of which occurred along the 2024-T3 alclad surface.

WEDGE TEST DATA - SEA COAST EXPOSURE - 2024-T3 ALCLAD/7075-T6 BARE

PABST SYSTEM

ADHESIVE SYSTEM: 10 - 1.

10 - 15 Volt Phosphoric Acid Anodize/BR-127 Primer/FM 73 Mat Adhesive

EXPOSURE STARTED:

29 March 1978

, ded	-	Initial					Wedge	Crack	Growt	Wedge Crack Growth (Inch)				
Code	Thickness	Crack					Expo	Exposure Time (Months	ime (N	(ouths)				
	(Inch)	(Inch)	1	2	3	4	5	9.	7	80	6	10	11	12
111	0.007	2.07	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	0.007	2.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	0,009	2.08	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14	0,008	2.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	0.007	2.08	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
91	0.007	2,05	0,03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	0.008	2.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I 8	0.009	2.06	0.01	0:01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
61	0.007	2.08	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0,04	0.04
110	0.008	2.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1111	0.008	2.07	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
112	0.008	2.04	0.0	Dis	ont	n u e	P							
	Av	Average	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0,01	0.01
	R	Range {	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		ر	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04

WEDGE TEST DATA - SEA COAST EXPOSURE - 2024 - T3 BARE/7075 - T6 BARE

FPL BONDING SYSTEM

FPL Etch - BR-127 Primer/FM 123-2 Mat Adhesive

ADHESIVE SYSTEM:

29 March, 1978 EXPOSURE STARTED:

		Initial				_	Wedge Crack Growth (Inch)	Crack	Growth	(Inch)					
Specimen	Bondline	Crack					Expo	sure T	Exposure Time (Months	(onths)					
	(Inch)	(Inch)	1	2	ဗ	4	2	9	7	80	6	10	11	12	
B1	900.0	1.93	0,10	0.86	2.30	3,85	Dis	con	inu	d (2)					
B2	0.010	1.88	0.18	0.18	0.75	1.75	2,00	2.20	2.40	2.40	2,40	2.40	2.40	2.40	(2)
B3	0.008	1.87	0,13	0.16	0.16	0.25	0.40	09.0	09.0	09.0	09.0	09.0	09.0	09.0	(2)
B4	0.008	1,93	0,10	0.11	1,10	1,85	2,60	3.20	3.20	3.20	3.20	3.20	3.20	3.20	(2)
BS	0.007	1.95	0,16	0.16	1,35	2,50	4,05	Dis	con	inue	d (2)				
B6	0.005	1,92	0,13	0.14	1, 25	1.80	2.20	2.50	2.70	2,70	2, 70	2.70	2,70	2.70	(2)
B7	0.010	1,95	0.10	0.08	0.12	0.90	1.00	1,10	1,10	1.10	1.10	1.10	1, 10	1,10	(2)
B8	0.010	1.94	0.10	0.10	0.25	0.30	0.70	1.10	1,30	1,30	1.30	1,30	1.30	1.30	(2)
B9	0.00	1.93	0.10	0.10	0.12	0.20	0.70	0.80	0,80	08.0	08.0	0.80	0.80	0.80	(2)
B10	0.007	1,99	0,15	0.15	1.30	2.80	4.0	Disc	con	inue	d (2)				
B11	900.0	1.99	0.12	0.85	Dis	con	inue	d (2)							
B12	0.010	1,95	0,13	Dis	c o n	tinue	ď								
	Av	Average (1)	0.13	0.26	0.87	1.62	1,96	2, 17	2.24	2, 24	2, 24	2.24	2.24	2,24	
	R	Range (0.10	0.10	0.12	0.20	0.40	09.0	09.0	09.0	09.0	09.0	09.0	09.0	
		<u> </u>	0.18	0.86	2.30	3.85	4.05	4.05	4.05	4.05	4.05	4.05	4.05	4.05	

(1) Average values include values for specimens B5 and B10.

(2) Failure mode was 80 to 100 percent adhesive failure along the 7075-T6 surface.

WEDGE TEST DATA - SEA COAST EXPOSURE - 2024 - T3 BARE/7075-T6 BARE

WELDBOND SYSTEM

1.0 - 1.5 Volt Phosphoric Acid Anodize/A1444B Paste Adhesive

EXPOSURE STARTED: 1 June 1978

ADHESIVE SYSTEM:

		Initial				1	Wedge Crack Growth (Inch)	Crack	Growth	(Inch)				
Specimen	Bondline	Crack					Expo	Exposure Time (Months	ime (M	(ouths)				
	(Inch)	(Inch)	-	2	3	4	5	9	7	8	6	10	11	12
NI	0.009	2.19	0.05	1.20	1.70	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1,80	1.80
N2	0.012	2, 23	0.0	1.35	2, 10	2.30	2,30	2,30	2.30	2.30	2.30	2,30	2.30	2.30
N3	0.015	2.16	0.0	1.20	1.50	2.00	2,00	2.00	2.00	2,00	2.00	2.00	2,00	2.00
N4	0,015	2.49	0.0	1.05	1.50	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
N5	0.013	2.75	0.0	0.75	1.30	1.50	1.50	1.70	1.70	1.90	2.00	2.00	2,00	2.00
9N	0.008	2.18	0.04	0.06	0.10	0.15	0,15	0,15	0.35	0.50	0.50	0.50	09.0	09.0
N7	0.011	2.38	0.0	0.0	0.0	0.0	0.70	0.70	0.70	0.70	0.70	08.0	08.0	0.90
N8	0.014	2,27	0.0	0,85	1.80	1.80	1,90	1,90	1.90	2.20	2.30	2,30	2,30	2.30
6N	0.012	2.17	0.0	0.0	.10	.40	.80	1,00	1,00	1.10	1.30	1.30	1,30	1.60
N10	0.013	2.07	0.05	1,25	1.95	2.20	2, 20	2,20	2.20	2,20	2.20	2.20	2,20	2.20
N11	0.015	2.18	0.10	0.90	1,65	1.80	1.90	2,30	2.50	2.50	2.50	2.50	2.50	2.50
N12	0.013	2.31	0.05	0.10	0.60	0.75	1,20	1,35	1,35	1.40	1.40	1.50	1.50	1.50
	Ave	erage	0.02	0.73	1.21	1,37	1,51	1,59	1,63	1.70	1,73	1,76	1.76	1.79
	R	Range {	0.0	0.0	0.0	0.0					0.50	0.60	0.60	0.60
		,	0.10	1.35	2.10	2.30	2.30	2.30	2.50	2.50				

(1) Failure mode was 95 to 100 percent adhesive along the 7075-T6 surface.

(2) Failure mode was 100 percent adhesive failure.

WEDGE TEST DATA - SEA COAST EXPOSURE - 2024 - T3 BARE/7075 - T6 BARE

PABST SYSTEM

10 - 15 Volt Phosphoric Acid Anodize/ BR-127 Primer/ FM 73 Mat Adhesive ADHESIVE SYSTEM:

EXPOSURE STARTED: 29 Ma

): 29 March, 1978

		Initial					Wedge	Wedge Crack Growth (Inch)	Growth	(Inch				
Specimen	Bondline	Crack					Expo	Exposure Time (Months)	ime (N	(onths)				
	(Inch)	(Inch)	1	2	3	4	5	9	7	8	6	10	11	12
JI	900.0	2.17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J2	0.008	2.08	. 02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.05
J3	0.008	2.11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J4	0.007	2.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J5	900.0	2.14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J6	0.003	2.19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J7	900.0	2.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18	0.007	2.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19	0.007	2, 10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J10	0.007	2,10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J11	900.0	2.12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J12	0.007	2,15	NC	Dis	cont	inue	þ							
	Ave	erage	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Ra	I ange	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		<i>-</i>	.02	.02	.02	.02	. 02	. 02	. 02	.02	. 02	. 02	.02	.02

WEDGE TEST DATA - SEA COAST EXPOSURE - 2024 - T3 BARE/2024 - T3 BARE

FPL BONDING SYSTEM

FPL Etch - BR-127 Primer/FM 123-2 Mat Adhesive

EXPOSURE STARTED:

ADHESIVE SYSTEM:

29 March, 1978

	:::	Initial					Wedge Crack Growth (Inch)	Crack	Growtl	l (Inch				
Code	Thickness	Crack					Expo	Exposure Time (Months	ime (N	(onths)				
	(Inch)	(Inch)	1	2	3	4	5	9	7	∞	6	10	11	12
CI	0.008	1,89	.15	.15	.15	.15	.15	. 20	.30	.30	.40	. 50	0.50	0.50
C2	0,009	1.93	. 05	80.	.10	.10	.10	.20	.30	.30	.40	.40	0,40	0,40
ខ	0.010	1.88	. 05	.10	. 13	.90	1.10	1,40	1.40	1.40	1.50	1.50	1,50	1,50
C4	0.008	1.88	.12	.12	.15	. 25	. 45	09.	. 60	. 60	. 60	. 60	0.60	0.60
CS	0.007	1.91	.11	.11	.15	. 90	1, 10	1,30	1,30	1.40	1.50	1.50	1.50	1.50
90	0,009	1,88	.12	.13	.16	.16	, 35	,50	.50	. 50	.50	.50	0.50	0.50
C7	0.009	1,90	.15	.15	.15	. 25	. 35	.35	.35	.35	.35	.50	0.50	0.50
83	0.009	1,93	.12	.12	.12	.15	.15	. 20	. 20	. 20	.30	.30	0.30	0.30
62	0.008	1,93	80.	.12	.15	. 20	.75	1.00	1,00	1.00	1.00	1.00	1.00	1.00
C10	0.007	1,96	.10	.10	.10	.15	. 80	. 85	. 90	06.	.90	.90	0.90	0.90
C11	0.00	1,93	.12	.12	. 20	.30	.35	09.	09.	.60	.60	.60	09.0	09.0
C12	0.00	1.83	.18	Dis	con	inu	þ							
	Ave	erage	.11	.12	.14	.32	.51	. 65	.68	69.	. 73	.75	0.75	0.77
	Ra	ange {	.05	80.	.10	.10	.10	. 20	. 20	. 20	.30	.30	0.30	0.30
			,18	. 15	. 20	06.	1,10	1.40	1.40	1.40	1.50	1.50	1.50	1.60

£ \$ £ £ £ £ £ £ £ £ £

Failure mode was 40 to 60 percent adhesive failure. Failure mode was 80 to 100 percent adhesive failure. Failure mode was 20 to 40 percent adhesive failure. 33E

WEDGE TEST DATA - SEA COAST EXPOSURE - 2024 - T3 BARE/2024 - T3 BARE

WELDBOND SYSTEM

1.0 - 1.5 Volt Phosphoric Acid Anodize/A1444B Paste Adhesive

EXPOSURE STARTED: 1 Ju

ADHESIVE SYSTEM:

1 June, 1978

		Initial					Wedge Crack Growth (Inch)	Crack	Growt	(Inch				
Specimen	Eonaline Thickness	Crack					Expo	Exposure Time (Months)	ime (N	(onths)				
	(Inch)	(Inch)	-	2	က	4	5	9	7	8	6	10	11	12
01	0.010	2,07	0.11	0.55	0.80	06.0	1,00	1,00	1.00	1.10	1.20	1,35	1.35	1.50
02	0.00	2.06	0.10	0.50	0, 75	0.85	0.90	0.90	06,0	1,00	1.00	1.00	1.00	1.05
03	0.008	2, 50	0.02	0.02	0.02	0.02	0,15	0,22	0, 22	0.30	0.30	0.30	0.30	0.55
40	0.00	2, 17	0.10	09.0	0,70	0.75	08.0	0.80 0.80	08.0	0.80	0.90	0.90	0.90	0.90
05	0.010	2, 15	0.05	0,95	1.00	1,10	1.10	1,10	1,10	1.10	1.20	1.20	1.20	1.20
90	0,005	2,06	0,05	0,05	0.20	0.20	0.20	0.20	0.20	0.30	0.30	0.35	0,35	0.45
07	0.010	2,02	0.07	0. 70	0.75	0.80	0.80	0.90	0.95	1.00	1.00	1.10	1, 10	1.10
80	0.011	2.07	0.08	0.08	0.10	0.20	0.20	0.20	0.20	0.20	0.45	0.55	0.55	0.55
60	0.010	2,00	0.11	0,11	0, 15	0,20	0,20	0.20	0,20	0.20	0.30	0.55	0.60	0.60
010	0.003	2, 12	0.10	0, 10	0, 15	0, 15	0, 15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
011	0.00	2, 11	0.08	0.55	0.95	1,05	1.45	1.60	1.60	1.80	1.80	1.90	1.90	2.20
012	0.00	2, 12	0.15	0, 15	0.50	09.0	0.65	0.80	0.90	1.10	1.20	1.50	1.65	2.20
	Ave	erage	0.085	0,36	0.51	0,59	0.63	0.67	0.68	0.76	0.82	0.91	0.94	1.06
	Ra	→ agu	0.02	.02	0.02	0.02	0.15	0, 15	0.15	0,15	0.15	0.15	0.15	0.15
		ر ا	0.15	. 95	1.00	1.10	1.45	1.60 1.60	1,60	1,80	1.80	1.90	1.90	2.20

6 6 6 6 6 6 6 6 6 6 6

(1) Failure mode was 90 to 100 percent adhesive failure.

(2) Failure mode was 90 percent cohesive failure.

WEDGE TEST DATA - SEA COAST EXPOSURE - 2024 - T3 BARE/2024 - T3 BARE

PABST SYSTEM

10-15 Volt Phosphoric Acid Anodize/BR-127 Primer/FM73 Mat Adhesive

EXPOSURE STARTED: 29 Ma

ADHESIVE SYSTEM:

D: 29 March, 1978

		Initial					Vedge	Crack	Wedge Crack Growth (Inch)	(Inch)				
Specimen	Bondline Thickness	Crack					Expo	sure T	Exposure Time (Months	(onths)				
	(Inch)	(Inch)	1	2	3	4	5	9	7	8	6	10	=	12
K1	0.008	2.13	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.05	0.05	0.05
K2	900.0	2.08	0.05	0.02	0.05	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.05	0.05
K3	0.008	2.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K4	0.008	2.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
K5	900.0	2.10	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
K6	0.004	2.08	0.02	0.02	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
K7	0.005	2.11	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.05	0.02
К8	0.005	2.16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K9	900.0	2, 10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K10	0.007	2, 10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K11	0.005	2, 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K12	0.007	2,08	0.0	DISC	DISCONTINUE	NUEL								
	Aw	Average	0,01	0, 01	0,01	0,01	0.01	0,01	a 01	0.01	0.01	0.01	0.01	0.01
	R	Range {	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.03	0.0 Q.03

WEDGE TEST DATA - SEA COAST EXPOSURE - 7075 - T6 BARE/7075 - T6 BARE

FPL BONDING SYSTEM

ADHESIVE SYSTEM:

FPL Etch - BR-127 Primer/FM 123-2 Mat Adhesive

EXPOSURE STARTED:

29 March, 1978

Chooimon	Dondling	Initial				-	Wedge Crack Growth (Inch)	Crack	Growt	h (Inch				
Code	Thickness	Length					Expo	Exposure Time (Months)	ime (A	fonths)				
	(Inch)	(Inch)	-	7	3	4	5	9	7	8	6	10	11	12
DI	0.00	1.96	0.12	0.20	0.65	1.00	1,00	1.40	1.40	1,40	1.40	1.40	1,40	1.40
D2	0.010	1.98	0.14	0.65	1.40	2,35	2.75	3, 50	3,50	3,60	3,60	3,60	3,60	3, 70
23	0.010	1.97	0.10	0.78	1.80	3.10	4.0D	4.0 DISCONTINUED	NILN	UED				
75	0.010	1.98	0.00	0.82	1,35	1.80	1,80	1.80	1.80	1,80	1.80	1,80	1.80	1.80
D5	0.010	1.98	0.08	0.08	0.75	1.45	1.80	2.10	2.10	2.10	2.10	2, 10	2.10	2,10
D6	0.008	1.93	0.13	0.65	1.20	1,50	1,65	1.70	1.70	1,75	1,75	1,75	1.75	1.75
D7	0.010	1.92	0.14	0.14	1.45	DISC	DISCONTINUE	NUE)					
D8	0.010	1.96	0.15	0.15	1,55	1,55	2, 10	2,30	2.30	2.30	2.30	2,30	2.30	2,30
D9	0.010	1.91	0, 13	0.83	1.35	1.65	1.75	2.00	2.00	2.00	2.00	2,00	2.00	2.00
D10	0.010	1.98	0.08	0.68	1.70	2,20	2,40	2.40	2.40	2.40	2.40	2,50	2.50	2.50
D11	0.00	1.96	0, 11	1,08	DIS	CONTINUE		Q						
D12	0.008	2.00	0.05	DISC	ONT	NUE	0							
	Av	Average(1)	0.11	0.55	1.20	1.84	2, 13	2,35	2.35	2.36	2.36	2.37	2.37	2.38
	Ra	ange (-	0.08	0,65	1,00	1,00	1.40	1.40	i.	1.40	i.	1.40	1.40
		ر	0.15	1.08	1.80	3,10	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00

(S) (S) (S)

(2)

888888

(1) Average Values Include Values For Specimen D3.

WEDGE TEST DATA - SEA COAST EXPOSURE - 7075-T6 BARE/7075-T6 BARE

WELDBOND SYSTEM

ADHESIVE SYSTEM: 1.0 - 1.5 Volt Phosphoric Acid Anodize/A1444B Paste Adhesive

		Initial					Wedge Crack Growth (Inch)	Crack	Growth	(Inch)					
Specimen	Bondline Thickness	Crack					Exposure	sure T	Time (Months	(onths)					
	(Inch)	(Inch)	1	2	3	4	5	9	7	8	6	10	111	12	
P1	0.009	2.51	0.0	0.55	1.10	1.20	1.40	1.40	1.40	1.40	1.40	1.40	1,40	1.40	<u>E</u>
P2	0,011	2.15	0.02	1, 15	1.80	2.00	2,00	2.20	2.20	2.20	2.20	2.20	2.20	2.20	Œ
P3	0,011	2.19	0.0	1.10	1.45	1.60	1.65	1.65	1.65	1.70	1.70	1.70	1.70	1.70	ਹ
P4	0.010	2.17	0.07	1.00	1.65	2.20	2,20	2,20	2.20	2.20	2,20	2.20	2, 20	2.20	E)
P5	0.010	2.43	0:0	0.95	1.30	1.55	1,55	1.55	1.55	1.60	1.60	1.60	1.60	1.60	Œ
P6	0.009	2, 25	0.0	1.20	1.75	2.00	2,00	2,00	2.00	2.00	2.00	2,00	2,00	2.00	ਹ
P7	0.010	2, 25	0.0	0.50	1.30	1.60	1.90	1.90	1.90	1,90	2.00	2.00	2,00	2.00	Œ
P8	0.010	2, 21	0.10	1.25	1,85	2.15	2, 15	2,15	2.15	2,15	2.15	2, 15	2, 15	2.15	Œ
P9	0.010	2, 11	0.08	06.0	1.40	1.40	1.80	1.80	1.80	1.90	1.90	2,00	2,00	2.00	E)
P10	0,011	2,38	0.0	0.95	1.20	1.50	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	<u>E</u>
P11	0.011	2.66	0.0	0.85	1.50	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	E
P12	0.012	2,38	0.0	1,15	1.50	1.90	1.90	1.90	1.90	2.00	2.00	2.00	2.00	2.00	Œ
	Av	Average	0.024	96.0	1.48	1.74	1,85	1.85	1.85	1.88	1.89	1.90	1.90	1.90	Œ
	R	Range {	0.0	0.50	1.10 1.20	1.20	1.40	1.40	1,40	1.40	1.40	1.40	1.40	1.40	
		ر	0.10	1.25	1,85 2,20	2.20	2, 20 2, 20	2.20	2.20	2, 20	2.20 2.20		2.20	2.20	

(1) Failure mode was 100 percent adhesive failure.

WEDGE TEST DATA - SEA COAST EXPOSURE - 7075-T6 BARE/7075-T6 BARE

PABST SYSTEM

ADHESIVE SYSTEM: 10-15 Volt Phosphoric Acid Anodize/BR127 Primer/FM 73 Mat Adhesive

EXPOSURE STARTED: 29 March, 1978

		Initial					Wedge Crack Growth (Inch)	Crack	Growt	h (Inch				
Specimen Code	Bondline Thickness	Crack					Expo	sure 1	Exposure Time (Months	(Jonths)				
	(Inch)	(Inch)	1	2	3	4	5	9	7	8	6	10	111	12
11	0.002	2.16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.2	0.007	2.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ដ	0.008	2.08	0.0	0.0	. 05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
47	0.007	2.07	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.5	0.003	2, 14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
97	0.005	2.16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
L7	0.008	2, 15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.8	0.008	2, 13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
61	900.0	2, 13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.10	0.002	2, 14	. 04	0.04	0.04	0.04	0.04	0.04	0.0	0.04	0.04	0.04	0.04	0.04
111	900.0	2, 13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.12	900.0	2, 11	0.0	DISC	ONT	NUE								
	Ave	verage	0.0	0.0	0.01	0,01	0.01	0.01	0.01	0.01	0.01	a 01	0.01	0.01
	24	Range {	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

TABLE A13 WEDGE TEST DATA - SALT FOG EXPOSURE -2024-T3 ALCLAD/7075-T6 BARE

FPL BONDING SYSTEM

ADHESIVE SYSTEM: FPL Etch/BR-127 Primer/FM 123-2 Mat Adhesive

EXPOSURE STARTED: 4 May 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack Length			Expos	ure Tir	ne (Days)		
0000	(Inch)	(Inch)	1	4	8	15	30	50	60	90
A 13	(1)	2.01	0.05	0.72	0.82	0.82	0.85	0.92	0.92	0.92
A 14	(1)	1.96	0.08	0.18	0.21	0.38	0.55	0.70	0.70	0.70
A 15	(1)	2.01	0.10	0.21	0.23	0.25	0.35	0.45	0.45	0.55
A 16	(1)	1.96	0.11	0.18	0.25	0.05	0.25	0.40	0.40	0.45
A 17	(1)	1. 89	0.17	0.25	0.25	0. 25	0.32	0.52	0.55	0.60
A 18	(1)	1. 85	0.21	0.24	0.31	0.32	0.40	0.60	0.60	0.65
	A	verage	0.12	0.30	0.35	0.38	0.45	0.60	0.60	0, 65
	Т	lange {	0.05	0.18	0.21	0.25	0.25	0.40	0.40	0.45
		Tanke (0.21	0.72	0.82	0.82	0.85	0.92	0.92	0.92

- (1) Bondline thickness ranged from 0.006-inch to 0.010-inch.
- (2) 100 percent adhesive failure along the 2024-T3 alclad surface.

TABLE A14 WEDGE TEST DATA - SALT FOG EXPOSURE - 2024-T3 ALCLAD/7075-T6 BARE WELDBOND SYSTEM

ADHESIVE SYSTEM: 1.0-1.5 Volt Phosphoric Acid Anodize/Al444B Paste Adhesive Cured at $250\text{-}260~\mathrm{F}$ for 2 $1/2~\mathrm{Hours}$

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack Length			Expos	sure T	ime (Days)		
000	(Inch)	(Inch)	1	4	11	15	30	45	60	90
М 13	0.008	2.10	0.06	0.15	0.15	0.75	2, 20	3.10	3.90	(1)
M 14	0.007	2.08	0.15	0.20	0.27	0.35	0.45	2.70	2.70	(1)
M 15	0.007	2. 11	0.10	0.15	0.37	0.45	2.20	2.50	2.70	(1)
M 16	0.008	2.00	0.0	0.05	0.20	0.20	2.10	2.70	2.80	(1)
M 17	0.009	2.12	0.13	0.13	0.25	0.25	0.35	2.80	2.80	(l)
M 18	0.009	2.06	0.11	0.15	0.25	0.50	2.10	2.90	4.00	(l)
	A	verage	0.09	0.14	0.25	0.42	1.56	2.78	3.15	
	1	Range (0.0	0.05	0.20	0.20	0.35	2.50	2.70	
			0.15	0.20	0.37	0.75	2.20	3.10	4.00	

^{(1) 100} percent adhesive failure along the 2024-T3 alclad surface.

TABLE A15 WEDGE TEST DATA - SALT FOG EXPOSURE - 2024-T3 ALCLAD/7075-T6 BARE PABST SYSTEM

ADHESIVE SYSTEM: 10-15 Volt Phosphoric Acid Anodize/BR-127 Primer/FM 73 Mat Adhesive

EXPOSURE STARTED: 4 May 1978

		Initial			Wedge	Crack	Growt	h (Inch)		
Specimen Code	Bondline Thickness	Crack			Expos	ure Ti	me (Days)		
	(Inch)	(Inch)	1	4	8	15	30	50	60	90
I 13	(1)	2.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I 14	(1)	2.09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I 15	(1)	2.14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I 16	(1)	2.08	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I 17	(1)	2.08	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I 18	(1)	2.12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	A	verage	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	F	lange {								

⁽¹⁾ Bondline thickness ranged from 0.005 to 0.009 inch.

TABLE A16 WEDGE TEST DATA - SALT FOG EXPOSURE-2024-T3 BARE/7075-T6 BARE FPL BONDING SYSTEM

ADHESIVE SYSTEM: FPL Etch /BR-127 Primer/FM 123-2 Mat Adhesive

EXPOSURE STARTED: 4 May 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack Length			Expo	sure T	me (Days)		
	(Inch)	(Inch)	1	4	8	15	30	50	60	90
B 13	(1)	1, 93	0.12	0.15	0.22	0.26	0.35	0.45	0.50	0, 65
B 14	(1)	2.02	0.05	0.13	0.16	0.17	0.25	0.30	0.30	0,30
B 15	(1)	1. 99	0.12	0.17	0.21	0.23	0.30	0.30	0.30	0.40
B 16	(1)	2.00	0.09	0.18	0.25	0.26	0.38	0.55	0.60	0.60
B 17	(1)	1.97	0.06	0.13	0.18	0.22	0.50	0.60	0.65	0,65
B 18	(1)	1.95	0.09	0.17	0.18	0.23	0.30	0.55	0.65	0.65
	A	verage	0.09	0.16	0.20	0.23	0.35	0.46	0.50	0.54
		Range {	0.06	0.13	0.16	0.17	0.25	0.30	0.30	0.30
			0.12	0.18	0.25	0.26	0.50	0.60	0.65	0.65

(1) Bondline thickness ranged from 0.006 inch to 0.010 inch.

^{(2) 100} percent adhesive failure with more than 80 percent occurring along the 2024-T3 bare.

TABLE A17 WEDGE TEST DATA - SALT FOG EXPOSURE - 2024-T3 BARE/7075-T6 BARE

WELDBOND SYSTEM

ADHESIVE SYSTEM: 1.0-1.5 Volt Phosphoric Acid Anodize/Al444B Paste Adhesive Cured

at 270-290 F for 1 Hour

EXPOSURE STARTED: 12 June 1978

		Initial			Wedge	Crack	Growth	(Inch)			
Specimen Code	Bondline Thickness	Crack			Expos	ure Ti	me (Days)			1
0040	(Inch)	(Inch)	1	4	11	15	30	45	60	90	
N 13	0.013	2.56	0.0	0.0	0.0	1. 15	1.30	1.30	1.40	1.40	
N 14.	0.013	2.16	0.10	0.10	0.85	1.60	1. 80	1.80	1.80	1.80	
N 15	0.013	2.71	0.0	0.0	0.0	0.02	0.05	0.10	1.50	1.50	
N 16	0.013	2.42	0.0	0.0	0.0	0.0	1.10	1.30	1.30	1.30	
N 17	0.013	2.26	0.0	0.0	0.80	0.80	0.95	1.10	1.30	1.30	
N 18	0.016	2.81	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	T
	A	verage	0.02	0.02	0.28	0.60	0.87	0.93	1. 21	1. 21	1
	T	ongo S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
		lange {	0.10	0.10	0.85	1.60	1.80	1.80	1.80	1.80	1

^{(1) 100} percent adhesive failure along the 2024-T3 bare surface.

TABLE A18 WEDGE TEST DATA - SALT FOG EXPOSURE - 2024-T3 BARE/7075-T6 BARE
PABST SYSTEM

ADHESIVE SYSTEM: 10-15 Volt Phosphoric Acid Anodize/BR-127 Primer/FM 73 Mat Adhesive

EXPOSURE STARTED: 4 May 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack Length			Expo	sure T	ime (Days)		
Code	(Inch)	(Inch)	1	4	8	15	30	50	60	90
J 13	(1)	2.19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J 14	a	2.26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J 15	(1)	2.29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J 16	(1)	2.14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J 17	(1)	2.13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
J 18	(1)	2.13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	A	verage	0.0	0.0	0.0	U. 0	0.0	0.0	0.0	0.0
	1	Range {								

⁽¹⁾ Bondline thickness ranged from 0.005 to 0.009 inch.

TABLE A19 WEDGE TEST DATA - SALT FOG EXPOSURE - 2024-T3 BARE/2024-T3 BARE
FPL BONDING SYSTEM

ADHESIVE SYSTEM: FPL Etch/BR-127 Primer/FM 123-2 Mat Adhesive

EXPOSURE STARTED: 4 May 1978

		Initial			Wedge	Crack	Growt	h (Inch)]
Specimen Code	Bondline Thickness	Crack			Expos	sure Ti	me (Days)			1
5540	(Inch)	(Inch)	1	4	8	15	30	50	60	90	
C 13	(1)	1, 90	0.07	0.13	0.16	0.16	0. 22	0.40	0.55	0,60	}
C 14	(1)	1, 91	0.08	0.13	0.17	0.19	0.20	0.35	0.43	0,50	
C 15	(1)	1.92	0.12	0.20	0.21	0.24	0.25	0,35	0,35	0.45	1
C 16	(1)	1, 92	0,09	0, 13	0.17	0.19	0.20	0.30	0.35	0.50	1
C 17	(1)	1.89	0.12	0.17	0,21	0.23	0.30	0.40	0.50	0,60	1
C 18	(1)	1.87	0.12	0.16	0.22	0.25	0.40	0.55	0.55	0,65	k
	A	verage	0.10	0, 15	0.19	0, 21	0.26	0,39	0.46	0.55	
	F	Range {	0.07 0.12	0.13 0.20	0.16 0.22	0.16 0.25	0.20 0.40	0.30	0.35 0.55	0.45 0.65	1

(1) Bondline thickness ranged from 0.006 inch to 0.010 inch.

(2) 100 percent adhesive failure.

TABLE A20 WEDGE TEST DATA - SALT FOG EXPOSURE - 2024-T3 BARE/2024-T3 BARE

WELDBOND SYSTEM

ADHESIVE SYSTEM: 1.0-1.5 Volt Phosphoric Acid Anodize/Al444B Paste Adhesive Cured at 250-260 F For 2-1/2 Hours

EXPOSURE STARTED: 12 June 1978

		Initial			Wedge	Crack	Growt	h (Inch)		
Specimen Code	Bondline Thickness	Crack			Expo	sure T	ime (Days)		
	(Inch)	(Inch)	1_1_	4	11	15	30	45	60	90
O 13	0.009	2.10	0.14	0.15	0.28	0.30	0.35	0.45	0.45	0.50
0 14	0.008	2.08	0.08	0.15	0.27	0.30	0.30	0.55	0.55	0.60
O 15	0.009	2.14	0.03	0.05	0.15	0.20	0.35	0.50	0.50	0.50
O 16	0.008	2.08	0.15	0.15	0.20	0.20	0.30	0.45	0.45	0.50
O 17	0.008	2.04	0.06	0.10	0.18	0.18	0,20	0.30	0,30	0.40
O 18	0.008	2, 05	0.08	0.15	0.18	0.18	0.20	0.50	0.50	0.50
	A	verage	0.09	0.13	0.21	0. 23	0. 28	0.46	0.46	0.50
	1	Range {	0, 0 3 0, 15	0.05 0.15	0.15 0.28	0.18 0.30	0. 20 0. 35	0.30 0.55	0.30 0.55	0.40

(1) 90 to 95 percent cohesive failure.

TABLE A21 WEDGE TEST DATA - SALT FOG EXPOSURE - 2024-T3 BARE/2024-T3 BARE
PABST SYSTEM

ADHESIVE SYSTEM: 10-15 Volt Phosphoric Acid Anodize/BR-127 Primer/FM 73 Mat Adhesive

EXPOSURE STARTED: 4 May 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen	Bondline Thickness	Crack Length			Expos	ure Ti	me (Days)		
	(Inch)	(Inch)	1	4	8	15	30	50	60	90
K13	(1)	2.13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K14	(1)	2.14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K15	(1)	2.10	0.0	0.0	0.0	0.0	0.05	0.05	0.05	0.05
K16	(1)	2.12	0.0	0.0	0.0	0.0	0.06	0.06	0.06	0.06
K17	(1)	2.11	0.0	0.02	0.02	0.02	0.02	0.02	0.02	0.02
K18	(1)	2.10	0.0	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	A	verage	0.0	0.01	0.01	0.01	0.03	0.03	0.03	0.03
	D	lange {		0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Tange 2		0.03	0.03	0.03	0.06	0.06	0.06	0.06

(1) Bondline thickness ranged from 0.005 to 0.009 inch.

TABLE A22 WEDGE TEST DATA - SALT FOG EXPOSURE - 7075-T6 BARE/7075-T6 BARE FPL BONDING SYSTEM

ADHESIVE SYSTEM: FPL Etch/BR-127 Primer/FM 123-2 Mat Adhesive

EXPOSURE STARTED: 4 May 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack Length			Expo	sure T	ime (Days)		
Code	(Inch)	(Inch)	1	4	8	15	30	50	60	90
D13	(1)	2.00	0.08	0.15	0.20	0.20	0.20	0.25	0.30	0.45
D14	(1)	2.04	0.08	0.13	0.18	0.30	0.30	0.30	0.30	0.30
D15	(1)	2.04	0.07	0.08	0.17	0.18	0.20	0.30	0.30	0.35
D16	(1)	2.03	0.10	0.20	0.21	0.23	0.23	0.25	0.25	0.30
D17	(1)	1.98	0.13	0.15	0.15	0.23	0.25	0.35	0.35	0.45
D18	(1)	2.08	0.06	0.10	0.21	0.21	0.21	0.25	0.25	0.25
	A	verage	0.09	0.14	0.18	0.23	0.23	0.28	0.29	0.35
	I	Range {	0.06	0.08	0.12	0.18	0.20	0.25	0.25	0.25
			0.13	0.20	0.21	0.30	0.30	0.35	0.35	0.45

(1) Bondline thickness ranged from 0.006-inch to 0.010-inch.

(2) 100 percent adhesive failure.

TABLE A23 WEDGE TEST DATA - SALT FOG EXPOSURE - 7075-T6 BARE/7075-T6 BARE
WELDBOND SYSTEM

ADHESIVE SYSTEM: 1.0 - 1.5 Volt Phosphoric Acid Anodize/A1444B Paste Adhesive Cured at 270-290°F for 1 Hour

EXPOSURE STARTED: 12 June 1978

		Initial			Wedge	Crack	Growt	h (Inch)			
Specimen Code	Bondline Thickness	Crack			Expos	sure T	ime (Days)			
Code	(Inch)	Length (Inch)	1	4	11	15	30	45	60	90	
P13	0.013	2.52	0.0	0.05	0.05	0.45	1.40	1.40	1.40	1.40	1
P14	0.011	2.15	0.12	0.15	0.35	0.65	1.50	1.70	1.70	1.70	
P15	0.009	2.15	0.08	0.12	0.15	0.15	0.90	1.55	1.55	1.60	1
P16	0.010	2.14	0.08	0.10	0.35	0.80	0.90	0.90	0.90	0.90	1
P17	0.013	2.81	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
P18	0.014	2.36	0.0	0.0	0.0	0.0	0.0	0.40	1.10	1.10	1
	A	verage	0.05	0.06	0.15	0.34	0.78	0.99	1.10	1.11	
	1	tange {	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		Tanke 1	0.12	0.15	0.35	0.80	1.50	1.70	1.70	1.70	

^{(1) 100} percent adhesive failure.

TABLE A24 WEDGE TEST DATA - SALT FOG EXPOSURE - 7075-T6 BARE/7075-T6 BARE PABST SYSTEM

ADHESIVE SYSTEM: 10-15 Volt Phosphoric Acid Anodize/BR-127 Primer/FM 73 Mat Adhesive

EXPOSURE STARTED: 4 May 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack			Expo	sure T	ime (Days)		
Code	(Inch)	Length (Inch)	1	4	8	15	30	50	60	90
L13	(1)	2.15	0.0	0.0	0.0	0.0	0.10	0.10	0.10	0.10
L14	(1)	2.18	0.0	0.0	0.0	0.0	0.05	0.05	0.05	0.05
L15	(1)	2.18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
L15	(1)	2.16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
117	(1)	2.11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
L18	(1)	2.13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	A	verage	0.0	0.0	0.0	0.0	0.03	0.03	0.03	0.03
	10.0	Range {					0.0	0.0	0.0	0.0
			-	-	The second	1-	0.10	0.10	0.10	0.10

⁽¹⁾ Bondline thickness ranged from 0.005 to 0.009 inch

TABLE A25 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 2024-T3 ALCLAD/7075-T6 BARE-FPL BONDING SYSTEM

ADHESIVE SYSTEM: FPL Etch/BR-127 Primer/FM 123-2 Mat Adhesive

EXPOSURE STARTED: 12 June 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack Length			Expos	sure Ti	me (1	Days)		
	(Inch)	(Inch)	1	4	11	15	30	45	60	90
A25	0.008	2.02	0.10	0.12	0.17	0.15	0.15	0.15	0,15	0.30
A26	0.007	2, 03	0.12	0.17	0.18	0.18	0.18	0.18	0.18	0.25
A27	0.009	1.98	0.13	0,18	0.21	0.21	0.21	0.21	0.21	0.29
A28	0.009	1.95	0.14	0.17	0.20	0, 21	0, 21.	0, 21	0, 21	0, 28
A29	0.008	1.98	0.09	0.10	0.12	0.12	0.12	0,12	0.12	0, 21
A30	0.008	1.98	0.13	0.16	0.18	0.18	0.18	0.18	0.18	0, 25
	A	verage	0.11	0.15	0.17	0.17	0.17	0.17	0.17	0.26
	F	lange {	0.09	0.10	0.12	0.12	0.12	0.12	0.12	0.21
		, r	0.14	0.18	0.21	0.21	0.21	0.21	0.21	0.30

ADHESIVE SYSTEM: 1.0-1.5 Volt Phosphoric Acid Anodize/A-1444B Paste Adhesive Cured at 250-260F for 2-1/2 Hours

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen	Bondline Thickness	Crack			Expos	sure Ti	me (I	Days)		
COGO	(Inch)	(Inch)	1	4	11	15	30	45	60	90
M25	0.007	2.38	0.0	0.05	0.06	0.15	0.15	0.15	0.15	0.35
M26	0.008	2, 13	0.0	0.13	0.16	0.20	0.25	0.25	0, 25	0.38
M27	0.010	2.38	0.0	0.0	0.0	0.0	0.08	0.08	0.08	0.27
M28	0.010	2, 22	0,0	0.07	0.08	0.10	0.10	0.13	0.13	0.36
M29	0.009	2.28	0.02	0.15	0.15	0.15	0.20	0.20	0.20	0.47
M30	0.007	2.10	0.15	0.21	0.27	0.30	0.38	0.40	0.40	0.6
	A	verage	0.03	0.10	0.12	0.15	0.19	0.20	0.20	0.4
	1	Range {	0.0	0.0	0.0	0.08	0.08	0.08	0.08	
		•	0,15	0.21	0.27	0.30	0.38	0.40	0.40	0.68

TABLE A27 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 2024-T3
ALCLAD/7075-T6 BARE - PABST SYSTEM

ADHESIVE SYSTEM: 10-15 Volt Phosphoric Acid Anodize/BR-127 Primer/FM 73 Mat Adhesive

EXPOSURE STARTED: 12 June 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack			Expos	ure Ti	me (Days)		
Code	(Inch)	Length (Inch)	l	4	n	15	30	45	60	90
I 25	0.008	2.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I 26	0.009	2.15	0.03	0.03	0.03	0.03	0.03	0.03	0,03	0.06
1 27	0.010	2, 11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.05
1 28	0.010	2.08	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.05
I 29	0.009	2.12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.05
I 30	0.007	2.11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	A	verage	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.04
	F	lange {	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
		(0,03	0,03	0.03	0.03	0.03	0.03	0.03	0.06

TABLE A28 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 2024-T3 BARE/7075-T6 BARE - FPL BONDING SYSTEM

ADHESIVE SYSTEM: FPL Etch/BR-127 Primer/FM 123-2 Mat Adhesive

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack			Expos	sure Ti	me (l	Days)		
	(Inch)	(Inch)	1	4	11	15	30	45	60	90
B 25	0,009	2,00	0.12	0.12	0.14	0.14	0.14	0.14	0.14	0, 21
B 26	0.008	1,99	0,15	0.15	0.21	0.21	0,21	0.21	0, 21	0.27
B 27	0,010	1.99	0.12	0.14	0.16	0.17	0.17	0.17	0.17	0.28
B 28	0.010	2.00	0.11	0.11	0.16	0.16	0,18	0.18	0.18	0. 27
B 29	0.010	1.98	0.11	0.12	0,16	0.16	0.17	0.17	0.17	0. 24
B 30	0.006	1.99	0.12	0.13	0.17	0.17	0.18	0.18	0.18	0. 23
	A	verage	0,12	0.13	0.17	0.17	0.18	0.18	0.18	0. 25
		Range {	0.11	0.11	0.14	0.14	0.14	0.14	0.14	0. 21
		,	0.15	0.15	0.21	0.21	0.21	0.21	0.21	0. 2

TABLE A29 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 2024-T3 BARE/7075-T6 BARE - WELDBOND SYSTEM

ADHESIVE SYSTEM: 1.0-1.5 Volt Phosphoric Acid Anodize/Al444B Paste Adhesive cured at

270-290 F for 1 Hour.

EXPOSURE STARTED: 12 June 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack Length			Expos	sure Ti	me (1	Days)		
	(Inch)	(Inch)	1	4	11	15	30	45	60	90
N 25	0.008	2. 25	0.10	0.12	0,13	0,13	0,15	0.15	0.15	0.42
N 26	0.015	2,58	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.08
N 27	0.017	2.62	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.04
N 28	0.018	2.48	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.10
N29	0.019	2.16	0.0	0.08	0.08	0.08	0,09	0,09	0.09	0,22
N 30	0.012	2.28	0.0	0.06	0.06	0.06	0.07	0.07	0.07	0.18
	A	verage	0.02	0.04	0.05	0,05	0,05	0.05	0.05	0.17
	F	lange {	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.04
			0.10	0.12	0.13	0.13	0,15	0.15	0.15	0.42

TABLE A30 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 2024-T3 BARE/7075-T6 BARE - PABST SYSTEM

ADHESIVE SYSTEM: 10-15 Volt Phosphoric Acid Anodize/BR-127 Primer/FM 73 Mat Adhesive

		Initial			Wedge	Crack	k Growt	h (Inch)		
Specimen Code	Bondline Thickness	Crack			Exp	osure	Time (Days)		
Code	(Inch)	(Inch)	1	4	11	15	30	45	60	90
J 25	0.004	2,12	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.03
J 26	0,006	2.09	0.0	0.0	0.0		0.06	0.06	0.06	0.06
J 27	0.007 2.12	2,12	0.0	0,0	0.0	c. 0	0.0	0.0	0.0	0.0
J 28	0.007	2, 14	0.0	0.0	0.0	0.0	0,05	0.05	0.05	0.08
J 29	0.006	2.16	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.07
J 30	0.006	2.11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	A	verage	0.0	0.0	0.0	0.0	0.02	0.02	0.02	0.04
	F	Range {	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.08

TABLE A31 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 2024-T3 BARE/2024-T3 BARE - FPL BONDING SYSTEM

ADHESIVE SYSTEM: FPL Etch /BR-127 Primer/FM 123-2 Mat Adhesive

EXPOSURE STARTED: 12 June 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack Length			Expos	sure Ti	me (Days)		
	(Inch)	(Inch)	1	4	11	15	30	45	60	90
C 25	0.007	2, 01	0.06	0.06	0.11	0, 13	0.13	0, 13	0, 13	0.18
C 26	0.008	1,90	0.16	0.16	0.17	0.17	0.17	0.17	0.17	0.27
C 27	0.009	1.94	0.09	0.09	0.11	0, 13	0,13	0, 13	0, 13	0.20
C 28	0.009	1,90	0.15	0.16	0, 18	0,18	0,20	0, 20	0, 20	0. 26
C 29	0.008	1,93	0.12	0.12	0.13	0,13	0.15	0.15	0.15	0. 25
C 30	0.009	1.97	0,10	0,11	0.14	0,15	0,15	0.15	0.15	0.22
	A	verage	0.11	0.11	0.14	0.15	0.16	0.16	0.16	0.23
	F	Range {	0.06	0.06	0.11	0.13	0.13	0.13	0.13	0.18
		me. 5	0.16	0.16	0.18	0.18	0.20	0.20	0.20	0.27

TABLE A32 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 2024-T3 BARE/2024-T3 BARE - WELDBOND SYSTEM

ADHESIVE SYSTEM: 1.0-1.5 Volt Phosphoric Acid Anodize/Al444B Paste Adhesive Cured at 250-260F for 2-1/2 Hours

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack			Expo	sure T	ime (Days)		
	(Inch)	(Inch)	1	4	11	15	30_	.45	60	90
C 25	0,004	2,51	0.0	0.02	0.03	0.03	0.15	0, 15	0, 15	0.30
O 26	0.012	2.49	0.0	0.0	0.0	0.0	0.05	0,05	0, 05	0.18
O 27	0.011	2,56	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.14
O 28	0.013	2.52	0.0	0.0	0.0	0.0	0,05	0,05	0, 05	0.27
O 29	0.011	2.44	0.07	0.07	0.07	0.10	0.10	0.10	0.10	0,20
O 30	0.010	2.55	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.20
	A	verage	0.0	0.02	0.02	0.02	0.06	0.06	0.06	0.22
	1	Range {	0.01	0.0	0.0	0.0	0.0 0.15	0.0 0.15	0.0 0.15	0.14

TABLE A33 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 2024-T3
BARE/2024-T3 BARE PABST SYSTEM

ADHESIVE SYSTEM: 10-15 Volt Phosphoric Acid Anodize/BR-127 Primer/FM 73 Mat Adhesive

EXPOSURE STARTED: 12 June 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen	Bondline	Crack			Expos	ure Ti	me (l	Days)		
Code	Thickness (Inch)	Length (Inch)	1	4	11	15	30	45	60	90
K 25	0.005	2.13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
K 26	0.006	2.12	0.06	0.06	0,06	0.06	0.06	0,06	0,06	0.06
K 27	0,006	2.12	0,03	0,10	0.10	0.10	0.10	0.10	0.10	0.10
K 28	0.007	2.12	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0
K 29	0.008	2.05	0,0	0.0	0,0	0.0	0,0	0.0	0.0	0.0
K 30	0,006	2, 22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	A	verage	0,02	0,03	0,03	0,03	0,03	0.03	0,03	0,03
	F	lange	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0
		-	0.06	0.10	0.10	0.10	0.10	0.10	0.10	0.10

TABLE A34 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 7075-T6 BARE/7075-T6 BARE - FPL BONDING SYSTEM

ADHESIVE SYSTEM: FPL Etch/BR-127 Primer/FM 123-2 Mat Adhesive

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack			Expos	sure Ti	me (I	Days)		
	(Inch)	(Inch)	1	4	11	15	30	45	60	90
D 25	0, 010	2.00	0, 10	0.11	0, 13	0.13	0,13	0.13	0,13	0,16
D 26	0.007	2.01	0.03	0.08	0.12	0.12	0.12	0.12	0,12	0,16
D 27	0,009	1.99	0, 13	0.13	0.13	0.13	0.13	0.13	0, 13	0.16
D 28	0,010	1,95	0.12	0.12	0.13	0.13	0.13	0.13	0.13	0.16
D 29	0,009	2.02	0.0	0.05	0, 07	0.08	0.08	0.08	0, 08	0.1
D 30	0.010	1.97	0.11	0.14	0,15	0.15	0,15	0,15	0,15	0.16
		verage	0.08	0.11	0,12	0.12	0.12	0.12	0.12	0, 15
	1	Range {	0.0	0.05	0.07	0.08	0.08	0.08	0.08	0.10
		(0.11	0.14	0.15	0.15	0, 15	0,15	0, 15	0.16

TABLE A35 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 7075-T6
BARE/7075-T6 BARE - WELDBOND SYSTEM

ADHESIVE SYSTEM: 1.0-1.5 Volt Phosphoric Acid Anodize/Al444B Paste Adhesive Cured at 270-290 F For 1 Hour

EXPOSURE STARTED: 12 June 1978

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack Length			Expos	sure Ti	me (Days)		
Code	(Inch)	(Inch)	1	4	11	15	30	45	60	90
P 25	0.010	2.39	0.0	0.0	0.0	0.0	0,03	0,03	0.03	0.18
P 26	0,013	2,34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,11
P 27	0,010	2.43	0.0	0.0	0.0	0,0	0,0	0.0	0.0	0,10
P 28	0,011	2.73	0.0	0,0	0,0	0,0	0.0	0.0	0.0	0.06
P 29	0,010	2.48	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.11
P 30	0,009	2,81	0.0	0,0	0.0	0,0	0.0	0.0	0.0	0.0
	A	verage	0.0	0.0	0.0	0,0	0,005	0,005	0,005	0,09
	F	lange {	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		- (0.0	0.0	0.0	0.0	0.03	0.03	0.03	0.18

TABLE A36 WEDGE TEST DATA - 95-100% RELATIVE HUMIDITY EXPOSURE - 7075-T6 BARE/7075-T6 BARE - PABST SYSTEM

ADHESIVE SYSTEM: 10-15 Volt Phosphoric Acid Anodize/BR-127 Primer/FM 73 Mat Adhesive

		Initial			Wedge	Crack	Growth	(Inch)		
Specimen Code	Bondline Thickness	Crack			Expo	sure Ti	me (l	Days)		
Code	(Inch)	(Inch)	1	4	11	15	30	45	60	90
L 25	0.006	2.18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.06
L 26	0,006	2,06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.05
L 27	0.008	2.10	0,02	0,05	0, 05	0, 05	0.05	0.05	0.05	0.05
L 28	0.009	2.13	0.0	0,05	0,0	0,0	0.0	0.0	0.0	0.05
L 29	0.008	2,17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
L 30	0.007	2, 13	0.0	0.05	0,05	0,05	0.08	0.08	0.08	0.08
	A	verage	0.0	0.03	0,03	0,03	0,03	0.03	0.03	0.05
	I	Range {	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		(0.02	0.05	0.05	0.05	0.08	0.08	0.08	0.08

WEDGE TEST DATA - SEA COAST EXPOSURE - 2024-T3 ALCLAD/7075-T6 BARE

WELDBOND SYSTEM WITH PRIMER BR-127

ADHESIVE SYSTEM:

1.0-1.5 Volt Phosphoric Acid Anodize/BR-127/A1444B

EXPOSURE STARTED:

1 February 1979

		Initial					Wedge Crack Growth (Inch)	Crack	Growt	(Inch)				
Specimen Bond 1	Bond Line Thickness	Crack					Expo	eure T	Exposure Time (Months	(ontha)				
	(Inch)	(Inch)	-	2	က	4	2	9	7	8	6	10	=	12
Cl	0.005	2.30	0.20	0.20	0.20	0.20	0.20							
C2	0.005	2.27	0.02	0.02	0.05	0.05	0.02							
c3	900.0	2.32	0.0	0.0	0.0	0.0	0.0							
C4	0.005	2.36	0.0	0.0	0.0	0.05	0.02							
cs	0.005	2.26	0.04	0.04	0.04	0.04	0.04							
92	900.0	2.28	0.0	0.0	0.0	0.0	0.0							
C2	0.00	2.27	0.0	0.0	0.0	0.0	0.0							
82	0.004	2.28	0.0	0.09	0.09	0.09	0.09							
63	0.005	2.30	0.0	0.05	0.02	0.02	0.02					i		
C10	900.0	2.55	0.0	0.0	0.0	0.0	0.0							
	Ave	Average	0.03	0.04	0.04	0.04	0.04							
	Æ	Range {	0.0	0.0	0.0	0.0	0.0							

WEDGE TEST DATA - SALT FOG EXPOSURE - 2024-T3 ALCLAD/7075-T6 BARE

WELDBOND SYSTEM WITH PRIMER BR-127

ADHESIVE SYSTEM:

1.0-1.5 Volt Phosphoric Acid Anodize/BR-127/A1444B

EXPOSURE STARTED:

10 October 1978

Thickness Length (Inch) 1 2 3 4 5 6 7 8 9 10 11 0.008 2.08 0.15 0.20 0.20 0.20 0.20 0.20 0.20 0.012 2.15 0.10 0.15 0.20 0.20 0.20 0.20 0.012 2.25 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0.009 2.34 0.0 0.05 0.15 0.15 0.15 0.15 0.15 (1) Average 0.07 0.13 0.18 0.18 0.18 0.18 Tange 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Chocker							Vedge	Crack	Wedge Crack Growth (Inch)	(Inch)				
Clinch Clinch 1 2 3 4 5 6 7 8 9 10 11	5	Fond Line Thickness						Expo	sure T	ime (N	(onths)				
0.008 2.08 0.15 0.20 0.20 0.20 0.20 0.20 0.20 0.012 2.15 0.10 0.15 0.20 0.20 0.20 0.20 0.012 2.11 0.05 0.15 0.15 0.15 0.15 0.15 0.009 2.34 0.0 0.05 0.15 0.15 0.15 0.15 0.009 2.34 0.0 0.05 0.15 0.15 0.15 0.15 Average 0.07 0.13 0.18 0.18 0.18 0.18 0.18 Range		(Inch)		1	2	3	4	2	9	7	8	6	10	11	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-1	0.008	2.08	0.15	0.20	0.20	0.20	0.20		0.20					
0.012 2.11 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0	4-2	0.012	2.15	0.10	0.15	0.20	0.20	0.20	0.20	0.20					
0.010 2.25 0.05 0.10 0.20 0.20 0.20 0.20 0.20 0.009 2.34 0.0 0.05 0.15 0.15 0.15 0.15 0.009 2.34 0.0 0.05 0.15 0.15 0.15 0.15 Average 0.07 0.13 0.18 0.18 0.18 0.18 Range { 0.07 0.15 0.20 0.20 0.20 0.20 0.20 0.20 } 0.20	4-3	0.012	2.11	0.02	0.15	0.15		0.15	0.15	0.15					
0.009 2.34 0.0 0.05 0.15 0.20	4-4	0.010	2.25	0.02	0.10	0.20	0.20	0.20	0.20	0.20					
0.07 0.13 0.18 0.18 0.18 0.18 0.15 0.15 0.15 0.15 0.15 0.20 0.20 0.20 0.20 0.20	4-5	0.009	2.34	0.0	0.02	0.15		0.15	0.15	0.15					
0.07 0.13 0.18 0.18 0.18 0.18 0.00 0.05 0.15 0.15 0.15 0.15 0.15 0.15															
0.07 0.13 0.18 0.18 0.18 0.18 0.18 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15															
0.07 0.13 0.18 0.18 0.18 0.18 0.0 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0															
0.07 0.13 0.18 0.18 0.18 0.18 0.0 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0															
0.07 0.13 0.18 0.18 0.18 0.18 0.0 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0															
0.07 0.13 0.18 0.18 0.18 0.18 0.0 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0															
0.07 0.13 0.18 0.18 0.18 0.18 0.18 0.0 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0.20 0.20 0.20 0.20 0.20															
\[\begin{pmatrix} 0.0 & 0.05 & 0.15 & 0.15 & 0.15 & 0.15 \\ 0.15 & 0.20 & 0.20 & 0.20 & 0.20 \end{pmatrix} \]		Av	erage	0.07		0.18	0.18	0.18		0.18					
		Æ	}	0.0	0.05	$0.15 \\ 0.20$	0.15	0.15	0.15	0.15					

(1) Discontinued and split open to show 100 percent cohesive failure.

WEDGE TEST DATA FOR WELDBOND SPECIMENS WITH WELDS - 2024- I3 ALCLAD

7075- IG BARE

ADHESIVE SYSTEM:

1.0 - 1.5 Volt Phosphoric Acid Anodize/A1444B Paste Adhesive With One Spot Weld

Centered 3 Inches From End of Specimen

EXPOSURE STARTED: 9 J

: 9 January 1979 in 5% Salt Fog at 95F

		Initial				W	edge C	rack (Wedge Crack Growth (Inch)	(Inch)				
Specimen	Bond Line	Crack					Expos	Exposure Time	ime					
Code	Thickness	Length		Da	Days		-			-	Months			
	(Inch)	(Inch)	2	9	13	20		1	2	3	4	5	9	7
WB-1	0.005	2.21	0.10	0.35	09.0	09.0		0.60	09.0	0.60	0.60	Œ		
WB-2	0.005	2.23	0.10	0.40	0.50	0.55		09.0	09.0	09.0	09.0	09.0	09.0	
WB-3	0.005	2.28	0.0	0.25	0.40	09.0		09.0	09.0	09.0	0.60	09.0	09.0	
WB-4	0.002	2.27	0.07	0.50	09.0	09.0		0.60	0.60	0.60	0.60	09.0	0.60	
WB-5	0.002	2.25	0.08	0.45	0.50	0.50		09.0	09.0	09.0	09.0	09.0	09.0	
														•
	Av	verage	0.07	0.39	0.52	0.57		09.0	09.0	09.0	0.60	0.60	09.0	
	8	7	0.0	0.25	0.40	0.50		09.0	09.0	09.0	09.0	0.60	09.0	
		ر	0.10	0.50	09.0	09.0		09.0	09.0	09.0	09.0	0.60	0.60	

Specimen was removed after four months and pried open. Thirty percent interface corrosion was observed on the 2024-T3 alclad surface in addition to the 100 percent adhesive failure along this surface. E