MAS-6215 Mid-Exam

- (1) (3 marks) Let K be a number field of degree n. Show that it is not possible to find elements $\beta_1, \dots, \beta_n \in \mathcal{O}_K$ such that $D(\beta_1, \dots, \beta_n) = -D(K)$.
- (2) (9 marks) Let $K=\mathbb{Q}(2^{1/3})$. As \mathbb{Q} -vector space, K has basis $\{1,2^{1/3},2^{2/3}\}$. Let $\alpha=a+b2^{1/3}+c2^{2/3}$ be some element from K thus $a,b,c\in\mathbb{Q}$.
 - Find the transformation matrix m_{α} obtained from the linear transform defined by the multiplication of α w.r.t the above basis. From m_{α} , compute the $\mathrm{Trace}_{K/\mathbb{Q}}$ and $\mathrm{Norm}_{K/\mathbb{Q}}$ of α .
 - Let $\beta = 2^{1/3} 2^{2/3} \in K$.
 - Find the minimal polynomial for β and compute the trace and norm for β from its minimal polynomial.
 - Find all K-conjugates of β and determine the number fields generated by these conjugates. Explain that the discriminants for these conjugate number fields are equivalent.
- (3) (3 marks) Let $K = \mathbb{Q}(\sqrt{2})$ and ideal $I = (5 + \sqrt{2}, 7 + 2\sqrt{2})$. Compute D(K) and D(I).
- (4) (9 marks) Given an irreducible polynomial $f(x) = x^3 x^2 2x 8$ and let α be a root of f(x). Let $K = \mathbb{Q}(\alpha)$ be the number field generated by α .
 - Let $\beta = \frac{1}{2}(\alpha^2 + \alpha)$. Show that β is an algebraic integer.
 - Compute $D(\alpha)$.
 - Deduce $D(1, \alpha, \beta)$ from $D(\alpha)$ and then explain why $\{1, \alpha, \beta\}$ is an integral basis for K.
- (5) (6 marks) Let $K = \mathbb{Q}(\sqrt{6})$ and $P = (2, \sqrt{6})$ be an ideal in \mathcal{O}_K .
 - Show that $P = 2\mathbb{Z} + \sqrt{6}\mathbb{Z}$.
 - Define the set $\tilde{P} = \{ \alpha \in K \mid \alpha P \subseteq \mathcal{O}_K \}$. Show that $\tilde{P} = \frac{1}{2}P$.
 - Find some element $\alpha \in \tilde{P}$ such that $\alpha P \not\subseteq P$.