Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №3
З дисципліни «Методи наукових досліджень»
За темою:
«ПРОВЕДЕННЯ ТРЬОХФАКТОРНОГО ЕКСПЕРИМЕНТУ З
ВИКОРИСТАННЯМ ЛІНІЙНОГО РІВНЯННЯ РЕГРЕСІЇ»

ВИКОНАВ: Студент II курсу ФІОТ Групи IB-91 Гутов В.В. Номер у списку - 8

ПЕРЕВІРИВ: асистент Регіда П.Г.

Мета: провести дробовий трьохфакторний експеримент. Скласти матрицю планування, знайти коефіцієнти рівняння регресії, провести 3 статистичні перевірки.

Завдання:

1. Скласти матрицю планування для дробового трьохфакторного експерименту. Провести експеримент в усіх точках факторного простору, повторивши N експериментів, де N — кількість експериментів (рядків матриці планування) в усіх точках факторного простору — знайти значення функції відгуку У. Значення функції відгуку знайти у відповідності з варіантом діапазону, зазначеного далі (випадковим чином).

$$y_{\text{max}} = 200 + x_{\text{cp max}};$$

$$y_{\text{min}} = 200 + x_{\text{cp min}}$$

$$y_{\text{min}} = 200 + x_{\text{cp min}}$$

$$y_{\text{min}} = \frac{x_{1 \text{max}} + x_{2 \text{max}} + x_{3 \text{max}}}{3}, x_{\text{cp min}} = \frac{x_{1 \text{min}} + x_{2 \text{min}} + x_{3 \text{min}}}{3}$$

- 2. Знайти коефіцієнти лінійного рівняння регресії. Записати лінійне рівняння регресії.
- 3. Провести 3 статистичні перевірки.
- 4. Написати комп'ютерну програму, яка усе це виконує.

Варіанти обираються по номеру в списку в журналі викладача.

№ _{варианта}	X_1		X_2		X_3	
	min	max	min	max	min	max
108	-30	0	-35	10	0	20

Програмний код

```
import random
from beautifultable import BeautifulTable
import numpy as np
import os
import sys

# Гутов Віталій
# Варіант 108:
# x1_min = -30, x1_max = 0, x2_min = -35, x2_max = 10, x3_min = 0, x3_max = 20

# y_min = 200 + xc_min
# y_max = 200 + xc_max

def main():
    global m
    global y_matrix
    global average_y
    global plan_matrix_x
    global plan_matrix_for_output
    global b0, b1, b2, b3
    global xn
    global n
    x0 = 1
    x1_min = -30
    x1_max = 0
```

```
[x1 max, x2 max, x3 min]]
a21 = a12
```

```
def studens():
```

```
def fish():
plan matrix for output[i][1] + blist[3] * plan matrix for output[i][2] for i
m = 3
main()
t list = studens()
\overline{\text{fisher}} = \text{fish}()
plan table = BeautifulTable()
headers x = ['X{}'.format(i) for i in range(1, m+1)]
headers y = ['Y\{\}'.format(i) for i in range(1, m+1)]
plan table.columns.header = [*headers x, *headers y]
    plan table.rows.append([*plan matrix for output[i], *y matrix[i]])
print('Normalized equations:')
result y = []
result_y.append(b0 + b1 * plan_matrix_for_output[i][0] + b2 *
plan_matrix_for_output[i][1] + b3 * plan_matrix_for_output[i][2])
print('Studens')
print('Fisher')
print('Fp = ', round(fp, 3))
print(fisher)
```

```
Матриця планування:
| -30 | -35 | 0 | 208 | 181 | 203 |
| -30 | 10 | 20 | 199 | 181 | 179 |
| 0 | -35 | 20 | 188 | 179 | 191 |
| 0 | 10 | 0 | 191 | 179 | 202 |
Normalized equations:
y = 191.371 + -0.117 * x1 + -0.07 * x2 + -0.392 * x3 = 197.333 = 197.333 - average y
y = 191.371 + -0.117 * x1 + -0.07 * x2 + -0.392 * x3 = 186.333 = 186.333 - average y
y = 191.371 + -0.117 * x1 + -0.07 * x2 + -0.392 * x3 = 186.0 = 186.0 - average y
y = 191.371 + -0.117 * x1 + -0.07 * x2 + -0.392 * x3 = 190.667 = 190.667 - average y
Kohren check
Gp = 0.42 < 0.7679
Studens
t0 = 71.17
t1 = 0.655
t2 = 0.593
t3 = 1.466
Fisher
Fp = 1.051
The regression equation is adequate to the original at a significance level of 0.05
Process finished with exit code 0
```

Висновок

Виконуючи дану лабораторну роботу, я провів трьохфакторний есперимент. Склав матрицю планування та знайшов коефіцієнти рівняння регресії, провів статистичні перевірки.

Результати роботи програми наведені вище. Під час виконання роботи проблем не виникло.

Контрольні запитання:

1. Що називається дробовим факторним експериментом?

ДФЕ – це частина ПФЕ, який мінімізує число дослідів, за рахунок тієї інформації, яка не дуже істотна для побудови лінійної моделі.

2. Для чого потрібно розрахункове значення Кохрена?

Критерій Кохрена використовують для порівняння трьох і більше виборок однакового обсягу n

3. Для чого перевіряється критерій Стьюдента?

За допомогою критерія Стьюдента перевіряється значущість коефіцієнта рівняння регресії.

Тобто, якщо виконується нерівність $t_s < t_{\text{табл}}$, то приймається нуль-гіпотеза, тобто вважається, що знайдений коефіцієнт β s є статистично незначущим і його слід виключити з рівняння регресії.

Якщо $t_s > t_{\text{табл}}$ то гіпотеза не підтверджується, тобто βs – значимий коефіцієнт і він залишається в рівнянні регресії.

4. Чим визначається критерій Фішера і як його застосовувати?

Отримане рівняння регресії необхідно перевірити на адекватність досліджуваному об'єкту. Для цієї мети необхідно оцінити, наскільки відрізняються середні значення у вихідної величини, отриманої в точках факторного простору, і значення у, отриманого з рівняння регресії в тих самих точках факторного простору. Для цього використовують дисперсію адекватності.

Адекватність моделі перевіряють за F-критерієм Фішера.

Якщо $F_{\pi pak} < F_{\tau eop}$, то отримана математична модель з прийнятим рівнем статистичної значимості q адекватна експериментальним даним.