CS302: Operating System

Spring 2020 Dr. Bo Tang

Time: 14:00 - 16:00, every Wednesday

Venue: Online / Zoom Meeting

Who am I

- Bo Tang
 - 1007, A7, iPark
 - Momepage: http://acm.sustech.edu.cn/btang/
 - Office hours: make appointment
 - Coach of SUSTech-CPC team

- Research areas:
 - Data management (Spatial and temporal database)
 - Big data platforms (Spark, Tensorflow)
 - Data-Intensive Systems (DeepInsight, Cheetah)

CS302 TAS

TA-in-Chief:

- Ms Yun SHEN, sheny@mail.sustc.edu.cn (Lab tutor in CSE)
- Wang Teng

Student Assistant:

- Wentao Ning
- Haotian Liu
- Chuan Yang
- Qiandong Tang
- Yi Zhao
- Jiaping Cao
- Keming Li

Why we have to learn OS

- Work for famous Companies
 - Google, Facebook, Microsoft, Alibaba, Tencent et, al.
 - "What is the maximum file size in an USB (FAT32)? Why?"
 - "What happens when we turn on computer?"
 - "What happens if all Chinese are in one wechat group?"
- To be a hacker, or avoid to be hacked
 - "WannaCry", hacked Windows' Server Message Block Protocol, from Windows xp to Windows 2012
- To do system research
 - Architect new systems, e.g., Spark, Hadoop, Tensorflow
 - Augment OS core component, e.g., storage recovery
 - Devise a File System: GPS (HDFS), PolarFS

Welcome to C\$302

- We will study Operating System
 - Concepts & Practice
 - Overview, Process, Memory, Storage
- We will also:
 - Learn the heart of modern operating system
 - Study the CS knowledge architecture

Goals:

- To be a system admin
 - System admin vs. programmer
- To let you know what you did not know yet
- To help you know what you should know in CS

Prerequisites

- C Programming
 - All course projects will use C or C++
 - Linux kernel is written by C
 - Do not worry, we have tutorial for C.
- Data structure and algorithm analysis
 - It helps you to understand OS concepts, e.g., LRU
 - It assists you to design efficient OS components
- Optional: computer organization principle
 - How do computers work?
 - Hardware and software collaboration

Reference Books

- Operating System Concepts, 9th Edition, Abraham Siberschatz et. al.
- Operating Systems Principles & Practice, 2nd Edition, Thomas Anderson et. al.
- ◆ 操作系统课程设计, 机械工业出版社, 朱敏, 唐博等

How do you understand better

- Lectures (2 hours)
 - Get the main ideas and concepts
 - Try to be active and THINK about the questions
- Tutorial / Lab (2 hours)
 - Tutorial is helping you to understand concepts in lectures.
 - Do the lab exercises / assignments
 - Do not be shy to ask questions
- Read Linux kernel code after each class
 - https://github.com/torvalds/linux
- Try to be a contributor of Linux Kernel:
 - Improve power management support of systems
 - Allow direct writes to persistent memory managed by filesystems
 - Develop new drivers for new devices

How do you understand better

Sep 16, 2001 - Feb 20, 2019

Contributions: Commits ▼

Contributions to master, excluding merge commits

Assessment (tentative)

- Continuous Assessment: 50%
 - Class participations: 20%
 - Lab exercises: 20%
 - Project tutorial: 10%
- Exam: 50%
 - Mid-term Examination: 20%
 - Final Examination: 30%

Assessment (cont'd)

Class participation

- Both lecture and lab are taking into account
- The easiest part in all assessments

Lab exercise

- Once per week, you need submit your report for each lab
- 100 marks for each lab

Examination

- Mid-term 20%
- Final Exam 30%

OS Project

Option 1: I will give a list of system papers, you read some of it and give a **hands-on** tutorial to the students in the same lab session.

- Hadoop: Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: Simplified data processing on large clusters." OSDI, 2004
- Hive: Thusoo, Ashish, et al. "Hive: a warehousing solution over a mapreduce framework." VLDB, 2009
- Spark: Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing." NSDI, 2012
- Flink: Alexandrov, Alexander, et al. "The stratosphere platform for big data analytics." VLDBJ, 2014
- Weron: Kulkarni, Sanjeev, et al. "Twitter heron: Stream processing at scale." SIGMOD, 2015.
- Tensorflow: Abadi, Martín, et al. "Tensorflow: A system for large-scale machine learning." OSDI. 2016.

Tutorial example: https://github.com/ISG-ICS/cloudberry/wiki/quick-start

OS Project

Option 1: more papers

- Hive v2: Huai, Yin, et al. "Major technical advancements in apache hive", SIGMOD, 2014
- Google Goods: Halevy, Alon, et al. "Goods: Organizing Google's Datasets." SIGMOD, 2016
- Apache Tez: Saha, Bikas, et al. "Apache Tez: A Unifying Framework for Modeling and Building Data Processing Applications", SIGMOD, 2015
- SparkSQL: Armbrust, Michael, et al. "Spark sql: Relational data processing in spark." SIGMOD, 2015.

OS Project

Option 2: Build a File System / Storage System by a published research paper.

- (1) PloarFS: An Ultra-low Latency and Failure Resilient Distributed File System for Shared Storage Cloud Database, PVLDB'2018, Alibaba File System for PolarDB
- (2) PaxosStore: High-availability Storage Made Practical in WeChat, PVLDB'2017, Tencent Storage for Wechat.
- Team size: 4-5 per group, assigned by email application.
- Bonus:
 - Sot A or A+ directly (published as an open-source version, e.g., HDFS for GFS), or bonus marks (up to 12%)
 - One-to-one guidance (at least one afternoon discussion per week)

Grading Policy

- Later policy:
 - No later submission allow
- Guidelines on collaboration
 - Write up the assignment ON YOUR OWN
 - If you discuss with your classmates on assignments, make sure you throw away written work from the discussion
- Zero tolerance on plagiarism
 - Software will be used to detect plagiarism cases!
 - Serious cases will be reported to university
 - Sign cheating agreement with CSE Department in next week

Tentative Schedule

No.	Topic
1	Introduction
2	OS Structures
3	Processes
4	Threads
5	Synchronization
6	Scheduling
7	Main Memory

No.	Topic
8	Virtual Memory
9	Storage Structure
10	I/0
11	File System II
12	File System I
13	Linux System
14	Advanced topics

Course Materials

Blackboard

- Please check course website regularly
 - Announcement
 - Lecture slides
 - Tutorial / lab exercises
 - Solutions