Explore More

Subcription: Premium CDAC NOTES & MATERIAL @99

Contact to Join Premium Group

Click to Join
Telegram Group

For More E-Notes

Join Our Community to stay Updated

TAP ON THE ICONS TO JOIN!

	codewitharrays.in freelance project available to buy contact on 8007592194	
SR.NO	Project NAME	Technology
1	Online E-Learning Platform Hub	React+Springboot+MySql
2	PG Mates / RoomSharing / Flat Mates	React+Springboot+MySql
3	Tour and Travel management System	React+Springboot+MySql
4	Election commition of India (online Voting System)	React+Springboot+MySql
5	HomeRental Booking System	React+Springboot+MySql
6	Event Management System	React+Springboot+MySql
7	Hotel Management System	React+Springboot+MySql
8	Agriculture web Project	React+Springboot+MySql
9	AirLine Reservation System / Flight booking System	React+Springboot+MySql
10	E-commerce web Project	React+Springboot+MySql
11	Hospital Management System	React+Springboot+MySql
12	E-RTO Driving licence portal	React+Springboot+MySql
13	Transpotation Services portal	React+Springboot+MySql
14	Courier Services Portal / Courier Management System	React+Springboot+MySql
15	Online Food Delivery Portal	React+Springboot+MySql
16	Muncipal Corporation Management	React+Springboot+MySql
17	Gym Management System	React+Springboot+MySql
18	Bike/Car ental System Portal	React+Springboot+MySql
19	CharityDonation web project	React+Springboot+MySql
20	Movie Booking System	React+Springboot+MySql

	freelance_Project available to buy contact on 8007592194	
21	Job Portal web project	React+Springboot+MySql
22	LIC Insurance Portal	React+Springboot+MySql
23	Employee Management System	React+Springboot+MySql
24	Payroll Management System	React+Springboot+MySql
25	RealEstate Property Project	React+Springboot+MySql
26	Marriage Hall Booking Project	React+Springboot+MySql
27	Online Student Management portal	React+Springboot+MySql
28	Resturant management System	React+Springboot+MySql
29	Solar Management Project	React+Springboot+MySql
30	OneStepService LinkLabourContractor	React+Springboot+MySql
31	Vehical Service Center Portal	React+Springboot+MySql
32	E-wallet Banking Project	React+Springboot+MySql
33	Blogg Application Project	React+Springboot+MySql
34	Car Parking booking Project	React+Springboot+MySql
35	OLA Cab Booking Portal	React+NextJs+Springboot+MySql
36	Society management Portal	React+Springboot+MySql
37	E-College Portal	React+Springboot+MySql
38	FoodWaste Management Donate System	React+Springboot+MySql
39	Sports Ground Booking	React+Springboot+MySql
40	BloodBank mangement System	React+Springboot+MySql

41	Bus Tickit Booking Project	React+Springboot+MySql
42	Fruite Delivery Project	React+Springboot+MySql
43	Woodworks Bed Shop	React+Springboot+MySql
44	Online Dairy Product sell Project	React+Springboot+MySql
45	Online E-Pharma medicine sell Project	React+Springboot+MySql
46	FarmerMarketplace Web Project	React+Springboot+MySql
47	Online Cloth Store Project	React+Springboot+MySql
48	Train Ticket Booking Project	React+Springboot+MySql
49	Quizz Application Project	JSP+Springboot+MySql
50	Hotel Room Booking Project	React+Springboot+MySql
51	Online Crime Reporting Portal Project	React+Springboot+MySql
52	Online Child Adoption Portal Project	React+Springboot+MySql
53	online Pizza Delivery System Project	React+Springboot+MySql
54	Online Social Complaint Portal Project	React+Springboot+MySql
55	Electric Vehical management system Project	React+Springboot+MySql
56	Online mess / Tiffin management System Project	React+Springboot+MySql
57		React+Springboot+MySql
58		React+Springboot+MySql
59		React+Springboot+MySql
		Keaccispinigooociiviysqi
60		React+Springboot+MySql

Spring Boot + React JS + MySQL Project List

Sr.No	Project Name	YouTube Link
1	Online E-Learning Hub Platform Project	https://youtu.be/KMjyBaWmgzg?si=YckHuNzs7eC84-IW
2	PG Mate / Room sharing/Flat sharing	https://youtu.be/4P9cIHg3wvk?si=4uEsi0962CG6Xodp
3	Tour and Travel System Project Version 1.0	https://youtu.be/-UHOBywHaP8?si=KHHfE_A0uv725f12
4	Marriage Hall Booking	https://youtu.be/VXz0kZQi5to?si=IIOS-QG3TpAFP5k7
5	Ecommerce Shopping project	https://youtu.be/vJ_C6LkhrZ0?si=YhcBylSErvdn7paq
6	Bike Rental System Project	https://youtu.be/FlzsAmIBCbk?si=7ujQTJqEgkQ8ju2H
7	Multi-Restaurant management system	https://youtu.be/pvV-pM2Jf3s?si=PgvnT-yFc8ktrDxB
8	Hospital management system Project	https://youtu.be/lynlouBZvY4?si=CXzQs3BsRkjKhZCw
9	Municipal Corporation system Project	https://youtu.be/cVMx9NVyI4I?si=qX0oQt-GT-LR_5jF
10	Tour and Travel System Project version 2.0	https://youtu.be/ 4u0mB9mHXE?si=gDiAhKBowi2gNUKZ

Sr.No	Project Name	YouTube Link
11	Tour and Travel System Project version 3.0	https://youtu.be/Dm7nOdpasWg?si=P_Lh2gcOFhlyudug
12	Gym Management system Project	https://youtu.be/J8_7Zrkg7ag?si=LcxV51ynfUB7OptX
13	Online Driving License system Project	https://youtu.be/3yRzsMs8TLE?si=JRI_z4FDx4Gmt7fn
14	Online Flight Booking system Project	https://youtu.be/m755rOwdk8U?si=HURvAY2VnizlyJlh
15	Employee management system project	https://youtu.be/ID1iE3W GRw?si=Y jv1xV BljhrD0H
16	Online student school or college portal	https://youtu.be/4A25aEKfei0?si=RoVgZtxMk9TPdQvD
17	Online movie booking system project	https://youtu.be/Lfjv_U74SC4?si=fiDvrhhrjb4KSlSm
18	Online Pizza Delivery system project	https://youtu.be/Tp3izreZ458?si=8eWAOzA8SVdNwlyM
19	Online Crime Reporting system Project	https://youtu.be/0UlzReSk9tQ?si=6vN0e70TVY1GOwPO
20	Online Children Adoption Project	https://youtu.be/3T5HC2HKyT4?si=bntP78niYH802I7N

Seraching And Sorting Algorithms

1.

Linear search is used

- A. When the list has only a few elements
- B. When performing a single search in an unordered list
- C. none of above
- D. both A and B

Answer: D

2.

The Best case complexity of linear search algorithm is

- A. O(1)
- B. O(log 1)
- C. O(n^2)
- D. O(n log 1)

Answer: A

3.

The Worst case occur in linear search algorithm when

- A. Item is somewhere in the middle of the array
- B. Item is the last element in the array or is not there at all
- C. Item is the last element in the array
- D. Item is the first element in the array

Answer: B

4.

Binary search algorithm uses

- A. Linear way to search values
- B. Divide and conquer method
- C. Bubble sorting techSnique
- D. None of them

Answer: B

5.

Given an array arr = $\{5,6,77,88,99\}$ and key = 88;

How many iterations are done until the element is found using Binary search?

- A. 1
- **B.** 3
- C. 4
- D. 2

Answer: D

6.

What is the advantage of selection sort over other sorting techniques?

- A. It requires no additional storage space
- B. It is scalable
- C. It works best for inputs which are already sorted

Seraching And Sorting Algorithms

D. It is faster than any other sorting technique

D. It is faster than any other sorting technique	
Answer: A	
7. How many comparisons are needed to sort an array of length 5 if a straight selection sort is used an array is already in the opposite order?	ıd
A. 1 B. 5 C. 10 D. 20 Answer: C	
8. In a heap with n elements with the smallest element at the root, the seventh smallest element can be found in time	
A. θ(nlogn) B. θ(n) C. θ(logn) D. θ(1)	
Answer: A	
9. What is the max. number of comparisons that can take place when a bubble sort is implemented? Assume there are n elements in the array?	
A. (1/2)(n-1) B. (1/2)n(n-1) C. (1/4)n(n-1) D. none of above	
Answer: B	
10. Which design algorithm is used for quick sort	
A. Divide and conqueror B. greedy C. backtrack D. noneof above	
Answer: A	
11. Consider an array of elements arr[5]= {5,4,3,2,1}, what are the steps of insertions done while doing insertion sort in the array.	
A. 45321,34521,23451,12345 B. 54312,54123,51234,12345 C. 43215,32154,21543,15432	

Answer: A

D. 45321,23451,34521,12345

Seraching And Sorting Algorithms

12.

Which of the following statements explains insertion sort?

- A. The list is broken apart into smaller lists that are sorted and merged back together.
- B. The list is iterated through multiple times until it finds the desired first number, then repeats the process for all numbers.
- C. It removes one element from the list, finds where it should be located, and inserts it in that position until no more elements remain.
- D. All numbers less than the average are inserted on the left, and the rest is inserted at the right. The process is then repeated for the left and right side until all numbers are sorted.

Answer: C

13.

Which of the following is true about merge sort?

- A. Merge Sort works better than quick sort if data is accessed from slow sequential memory.
- B. Merge Sort is stable sort by nature
- C. Merge sort outperforms heap sort in most of the practical situations.
- D. All of the above.

Answer: D

14.

Given the following list of numbers [21, 1, 26, 45, 29, 28, 2, 9, 16, 49, 39, 27, 43, 34, 46, 40] which answer illustrates the list to be sorted after 3 recursive calls to mergesort?

A. [16, 49, 39, 27, 43, 34, 46, 40]

B. [21,1]

C. [21, 1, 26, 45]

D. [21]

Answer: B

15.

In quick sort which of the below is true?

- A. We should compulsary choose first element as pivot.
- B. We should compulsary choose last element as pivot.
- C. We should compulsary choose random element as pivot.
- D. None of above

Answer: D

Stack Queue

1.

The postfix expression specified below, with single digit operands is evaluated using a stack. The top two elements of the stack after the first * is evaluated will be (Note that $^{\land}$ is the exponentiation operator): 8 2 3 $^{\land}$ / 2 3 * + 5 1 * -

- A. 6, 1
- B. 5, 7
- C. 3, 2
- D. 1, 5

Answer: A

2.

The data structure required to check whether an expression contains balanced parenthesis is?

- A. Stack
- B. Queue
- C. Tree
- D. Array

Answer: A

3.

The five items:A,B,C,D, and E are pushed in a stack, one after the other starting from A The stack is popped four times and each element is inserted in a queue.Then two elements are deleted from the queue and pushed back on the stack.Now one item is popped from the stack.The popped item is?

- A.E
- B. B
- C.C
- D. D

Answer: D

4.

A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as a ?

- A. Queue
- B. Stack
- C. Tree
- D. Linked list

Answer: A

5.

Which of the following statements is true:

- i) First in First out types of computations are efficiently supported by STACKS.
- ii) Implementing LISTS on linked lists is more efficient than implementing LISTS on an array for almost all the basic LIST operations.
- iii) Implementing QUEUES on a circular array is more efficient than implementing QUEUES on a linear array with two indices.
- iv) Last in First out type of computations are efficiently supported by QUEUES

Stack Queue

- A. (ii) and (iii) are true
- B. (i) and (ii) are true
- C. (iii) and (iv) are true
- D. (ii) and (iv) are true

Answer: A

6.

A priority queue Q is used to implement a stack S that stores characters. PUSH(C) is implemented as INSERT(Q, C, K) where K is an appropriate integer key chosen by the implementation. POP is implemented as DELETEMIN(Q). For a sequence of operations, the keys chosen will be in:

- A. Non-increasing order
- B. Non-decreasing order
- C. strictly increasing order
- D. strictly decreasing order

Answer: D

7.

Suppose a circular queue of capacity (n - 1) elements is implemented with an array of n elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are?

A.Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT

B.Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR

C.Full: REAR == FRONT, empty: (REAR+1) mod n == FRONT

D.Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT

Answer: A

8.

In the array implementation of circular queue, which of the following operation take worst case linear time?

- A. Insertion
- B. Deletion
- C. To empty a queue
- D. None

Answer: D

9.

A circular queue is implemented using an array of size 10. The array index starts with 0, front is 6, and rear is 9. The insertion of next element takes place at the array index.?

- A. 0
- **B.** 7
- C. 9
- D. 10

Answer: A

Stack Queue

10.

The infix expression A+B/C*(D+E)-F when converted to postfix the result would evaluate to?

A. ABC/DE+*+F-

B. ABC/ED*+F-

C. AB+/CED*F-

D. ABC/D+*EF-

Answer: A

11.

What will be the result of postfix expression $7532^{922^{-}+64*+}$

A. 38

B. 41

C. 40

D. 35

Answer: C

12.

The data structure required for Breadth First Traversal on a graph is?

A. Stack

B. Array

C. Queue

D. Tree

Answer: c

13.

When it comes to Process scheduling in operating system the following Datastructure is preferred?

A.Stack

B.Queue

C.Array

D.All of above

Answer: B

14.

Which of the following is true about linked list implementation of queue?

- A. In push operation, if new nodes are inserted at the beginning of linked list, then in pop operation, nodes must be removed from end.
- B. In push operation, if new nodes are inserted at the end, then in pop operation, nodes must be removed from the beginning.

C. Both of the above

D. None of the above

Answer: C

Stack Queue Stack Queue

15. The Infix expression (A+B^C)*D+E^5 when converted to prefix expression the result would evaluate to

A. +*+**A**^**BCD**^**E**5

B.*++A^**BCD**^**E**%

C.+*+A^BC^DE5

D.*+**A**+^**BDC**^**E**5

Answer: A

Linked List

Which of the following statements about linked list data structure is/are TRUE?

- A. Addition and deletion of an item to/from the linked list do not require modification of the existing pointers
- B. The linked list pointers do not provide an efficient way to search an item in the linked list
- C. Linked list pointers always maintain the list in ascending order
- D. The linked list data structure provides an efficient way to find kth element in the list

```
Answer: B
struct node
 int data;
 struct node * next;
typedef struct node NODE; NODE *ptr;
Which of the following c code is used to create new node?
A. ptr=(NODE*)malloc(sizeof(NODE));
B. ptr=(NODE*)malloc(NODE);
C. ptr=(NODE*)malloc(sizeof(NODE*));
D. ptr=(NODE)malloc(sizeof(NODE));
Answer: A
Which of the following is false about a doubly linked list?
A. We can navigate in both the directions
B. It requires more space than a singly linked list
C. The insertion and deletion of a node take a bit complex
D. None of the above
Answer: D
Which of the following operations is performed more efficiently by doubly linked list than by singly
linked list?
A. Deleting a node whose location in given
B. Searching of an unsorted list for a given item
C. Inverting a node after the node with given location
D. Traversing a list to process each node
Answer: A
Which of the following application makes use of a circular linked list?
```

Answer: C

A. Undo operation in a text editor

B. Recursive function calls C. Allocating CPU to resources

D. All of the mentioned

Linked List

6

Which of the following is false about a circular linked list?

- A. Every node has a successor
- B. Time complexity of inserting a new node at the head of the list is O(1)
- C. Time complexity for deleting the last node is O(n)
- D. None of the mentioned

Answer: B

7.

Which of the following is a header list where the last node points back to the header node.

- A. rounded header list
- B. circular header list
- C. common header list
- D. forward header list

Answer: B

8.

What is the time required in Doubly circular linked list while jumping from head to tail and from tail to head?

- A. O(n)
- B. O(1)
- C. O(logn)
- D. None of above

Answer: B

9.

What are application of Circular Doubly linked List?

- A. Managing songs playlist in media player applications.
- B. Managing shopping cart in online shopping.
- C. Operating System resources
- D. Both A and B

Answer: D

10.

Which of the following is the disadvantage of using Circular doubly linked list?

- A. Extra memory requirement
- **B.** Traversing
- C. Searching
- D. None of above

Answer: A

Tree And Graph Exploring New Ideas Reaching New Heights
The number of edges from the node to the deepest leaf is calledof the tree.
A. Length B. Depth C. Height D. None of the mentioned
Answer: C
2. Which of the following is correct with respect to binary trees?
A. Let T be a binary tree. For every $k \ge 0$, there are no more than $2k$ nodes in level k B. Let T be a binary tree with k levels. Then T has no more than $2k - 1$ nodes C. Let T be a binary tree with N nodes. Then the number of levels is at least ceil(log (N + 1)) D. All of the mentioned
Answer: D
3. Which statement is correct about binary tree ?
A. Every full binary tree is also a complete binary tree B. Every complete binary tree is also a full binary tree C. Every binary tree is either complete or full D. A binary tree cannot be both complete and full
Answer: A
4. In full binary search tree every internal node has exactly two children. If there are 100 leaf nodes in the tree, how many internal nodes are there in the tree?
A. 25 B. 49 C. 99 D. 101
Answer: C
5. What is the maximum height of an AVL tree with p nodes?
A. p B. log(p) C. log(p)/2 D. p/2 Answer: B
6. Which type of traversal of binary search tree outputs the value in sorted order?
A. Pre-order B. None C. Post-order D. In-order Answer: D

Tree And Graph

7.

The post order traversal of a binary tree is DEBFCA. Find out the pre order traversal

- A. ABFCDE
- B. ABDECF
- C. ADBFEC
- D. ABDCEF

Answer: B

8.

One can convert a binary tree into its mirror image by traversing it in

- A. inorder
- B. preorder
- C. postorder
- D. None of the above

Answer: C

9.

Out of following which data structure is non linear type?

- A. Stacks
- B. Graph
- C. Lists
- D. None of the above

Answer: B

10.

An adjacency matrix representation of a graph cannot contain information of:

- A. parallel edges
- B. edges
- C. nodes
- D. direction of edges

Answer: A

11.

For the given graph(G), which of the following statements is true?

Tree And Graph

- A. G is a complete graph
- B. G is not a connected graph
- C. The edge connectivity of the graph is 1
- D. The vertex connectivity of the graph is 2

Answer: D

12.

Which of the following properties does a simple graph not hold?

- A. Must be connected
- B. Must be unweighted
- C. Must have no loops or multiple edges
- D. All of the mentioned

Answer: A

13

Which of the following is true?

- A. A graph may contain no edges and many vertices
- B. A graph may contain many edges and no vertices
- C. A graph may contain no edges and no vertices
- D. None of the mentioned

Answer: B

14.

The degree of any vertex of graph is ____?

- A. The number of edges incident with vertex
- B. Number of vertex in a graph
- C. Number of vertices adjacent to that vertex
- D. Number of edges in a graph

Answer: A

15.

A graph G is called a if it is a connected acyclic graph?

- A. Cyclic graph
- B. Regular graph
- C. Tree
- D. Not a graph

Answer: C

16.

Rather than build a subgraph one edge at a timebuilds a tree one vertex at a time.

- A. kruskal's algorithm
- B. prim's algorithm
- C. dijkstra algorithm
- D. bellman ford algorithm

Answer: B

Time Complexity The complexity of linear search algorithm is A. O(n) B. O(log n) C. O(n2) D. O(n log n) Answer: A 2. The complexity of merge sort algorithm is A. O(n) B. O(log n) C. O(n2)D. O(n log n) Answer: D What is the time complexity of following code int a = 0: for (i = 0; i < N; i++)for (j = N; j > i; j--)a = a + i + j; A. O(N) B. O(N*log(N))C. O(N * Sqrt(N))D. O(N*N) Answer: D What is recurrence for worst case of QuickSort and what is the time complexity in Worst case? A. Recurrence is T(n) = T(n-2) + O(n) and time complexity is $O(n^2)$ B. Recurrence is T(n) = T(n-1) + O(n) and time complexity is $O(n^2)$ C. Recurrence is T(n) = 2T(n/2) + O(n) and time complexity is O(nLogn)D. Recurrence is T(n) = T(n/10) + T(9n/10) + O(n) and time complexity is O(nLogn)Answer: B What is the time complexity of pre-order traversal in the iterative fashion? A. O(n) B. O(1) C. O(logn) D. O(nlogn) Answer: A

Time Complexity The time complexity of heap sort in worst case is A. O(logn) B. O(n) C. O(n2) D. O(nlogn) Answer: D Time complexity of bubble sort in best case is A. θ (n) B. θ (nlogn) C. θ (n2) D. θ (n(logn) 2) Answer: A Which of the following algorithms has lowest worst case time complexity? A. Insertion sort **B.** Selection sort C. Quick sort D. Heap sort Answer: D Out of following asymptotic notation which is the worst among all? A. O(n+9378) B. O(n3) C. nO(1) D. 20(n) Answer: B In conversion from prefix to postfix using stack data-structure, if operators and operands are pushed and popped exactly once, then the run-time complexity is -A. O(n) B. O(1) C. O(log n) D. O(n2) Answer: A What is the time complexity Floyd Warshall Algorithm? A. O(V*V) B. O(E*V) C. O(V*V*V) D. O(E*E) Answer: C

https://www.youtube.com/@codewitharrays

https://www.instagram.com/codewitharrays/

https://t.me/codewitharrays Group Link: https://t.me/cceesept2023

+91 8007592194 +91 9284926333

codewitharrays@gmail.com

https://codewitharrays.in/project