VLSI Devices Lecture 14

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

The second half

• Two YouTube lectures (L25 & L26). Final exam on June 16

(maybe)

GIST Lecture

2

Coverage

- Two YouTube lectures reserved for advanced topics
 - -L14: Substrate bias, channel mobility
 - -L15: 3.2.1
 - -L16: 3.2.1 (Continued)
 - -L17: Velocity saturation (3.2.2)
 - -L18: Channel length modulation and so on (3.2.3, 3.2.4, 3.2.5)
 - -L19: MOSFET scaling
 - L20: MOSFET scaling (Continued)
 - -L21: Quantum effect (4.2.4)
 - L22: Double-gate MOSFETs (10.3)
 - -L23: FinFETs
 - -L24: CFETs

Subthreshold slope (1)

• I_d is independent of V_{ds} , when $V_{ds} \gg k_B T/q$.

$$I_{d} = \mu_{eff} \frac{W}{L} \sqrt{\frac{\epsilon_{si} q N_{a}}{2\phi_{s}}} \left(\frac{k_{B}T}{q}\right)^{2} \exp\left(\frac{q(V_{gs} - V_{t})}{mk_{B}T}\right)$$

- Its gate voltage dependence is very important.

$$\log_{10} I_d = (a \ constant) + \frac{q\left(V_{gs} - V_t\right)}{mk_B T} \log_{10} e$$

$$\frac{d(\log_{10} I_d)}{dV_{gs}} = \frac{q}{mk_B T} \log_{10} e$$
Subthreshold slope
$$S = \left(\frac{d(\log_{10} I_d)}{dV_{gs}}\right)^{-1} = \frac{mk_B T}{q} \ln 10$$

$$S = \left(\frac{d(\log_{10} I_d)}{dV_{gs}}\right)^{-1} = \frac{mk_B T}{q} \ln 10$$

Taur, Eq. (3.41)

Subthreshold slope (2)

- At 300 K, $\frac{k_B T}{q} \ln 10$ is 60 mV/dec.
 - Note that m is larger than 1.

Subthreshold behavior (Natarajan, IEDM 2024)

Substrate bias (1)

- Assume that the substrate is biased with V_{bs} . (For NMOSFETs, $V_{bs} < 0$)
 - -Recall that $(\frac{dV}{d\phi_s} \approx 1)$

$$I_{d} \approx \mu_{eff} \frac{W}{L} \left\{ C_{ox} (V_{gs} - V_{fb}) \phi_{s} - \frac{1}{2} C_{ox} \phi_{s}^{2} - \frac{2}{3} \sqrt{2 \epsilon_{si} q N_{a}} \phi_{s}^{1.5} \right\} \Big|_{\phi_{s,s}}^{\phi_{s,d}}$$

-Use
$$V_{gs} \Rightarrow V_{gs} - V_{bs}$$
, $\phi_{s,s} \Rightarrow 2\phi_B - V_{bs}$, and $\phi_{s,d} \Rightarrow 2\phi_B - V_{bs} + V_{ds}$.

Substrate bias (2)

• Then, we have

$$\begin{split} I_{d} &= \mu_{eff} \frac{W}{L} \bigg[C_{ox} \bigg(V_{gs} - V_{fb} - 2\phi_B - \frac{1}{2} V_{ds} \bigg) V_{ds} \\ &- \frac{2}{3} \sqrt{2\epsilon_{si} q N_a} (2\phi_B - V_{bs} + V_{ds})^{1.5} + \frac{2}{3} \sqrt{2\epsilon_{si} q N_a} (2\phi_B - V_{bs})^{1.5} \bigg] \end{split}$$
 Taur, Eq. (3.43)

- First-order expansion yields

$$I_{d} = \mu_{eff} \frac{W}{L} \left[C_{ox} (V_{gs} - V_{fb} - 2\phi_{B}) - \sqrt{2\epsilon_{si}qN_{a}} (2\phi_{B} - V_{bs})^{0.5} \right] V_{ds}$$

Substrate bias (3)

Therefore, at low drain voltages,

$$= \mu_{eff} C_{ox} \frac{W}{L} \left[\left(V_{gs} - V_{fb} - 2\phi_B \right) - \frac{1}{C_{ox}} \sqrt{2\epsilon_{si}qN_a(2\phi_B - V_{bs})} \right] V_{ds}$$

- It means that

$$V_t = V_{fb} + 2\phi_B + \frac{\sqrt{2\epsilon_{si}qN_a(2\phi_B - V_{bs})}}{C_{ox}}$$
 Taur, Eq. (3.44)

- Substrate sensitivity

$$\frac{dV_t}{d(-V_{bs})} = \frac{\sqrt{\epsilon_{si}qN_a}}{C_{ox}\sqrt{2(2\phi_B - V_{bs})}}$$
 Taur, Eq. (3.45)

Substrate bias (4)

 A reverse substrate bias is to widen the bulk depletion region and raise the threshold voltage.

GIST Lecture

Threshold voltage variation with reverse substrate bias for two uniform substrate doping concentration (Taur, Fig. 3.14)

Effective mobility

• Previously, we made the following simplification:

$$I_d(y) = qW \int_0^{x_i} \mu_n n(x, y) \frac{dV}{dy} dx = -\mu_{eff} W \frac{dV}{dy} \left(-q \int_0^{x_i} n(x, y) dx \right)$$

$$= -\mu_{eff} W \frac{dV}{dy} Q_i(y)$$
Taur, Eq. (3.8)

-Then, what is μ_{eff} ?

$$\mu_{eff}(y) = \frac{\int_0^{x_i} \mu_n n(x, y) dx}{\int_0^{x_i} n(x, y) dx}$$
 Taur, Eq. (3.50)

Position-dependent

Why is the mobility position-dependent?

- In addition to the bulk scattering mechanisms,
 - Additional scattering mechanisms are important.

GIST Lecture

11

Effective mobility against effective field

- Effective field
 - Average electric field perpendicular to the Si-SiO₂ interface experienced by the carriers in the channel

$$\mathcal{E}_{eff} = \frac{1}{\epsilon_{si}} \left(|Q_d| + \frac{1}{2} |Q_i| \right) \qquad \text{Taur, Eq. (3.51)}$$

$$- \text{Using } |Q_d| \approx C_{ox} \left(V_t - V_{fb} - 2\phi_B \right) \text{ and } |Q_i| \approx C_{ox} \left(V_{gs} - V_t \right),$$

$$\mathcal{E}_{eff} = \frac{V_t - V_{fb} - 2\phi_B}{3t_{ox}} + \frac{V_{gs} - V_t}{6t_{ox}} \qquad \text{Taur, Eq. (3.53)}$$

Mobility variation

Mobility variation (Vertical field dependence)

Thank you!