фак. номер: група:

отговорите на 1, 2, 3, 5, 7 и 8 се попълват на този лист, за 4, 6, 9, 10 и 11 се използват само допълнителни листа.

1. (4 точки) Довършете дефиницията: Редицата $\{a_n\}_1^\infty$ се нарича сходяща, ако съществува число l такова, че за всяко

- 2. (продължение) (4 точки) Довършете дефиницията: Казваме, че редицата $\{b_n\}_1^\infty$ клони към $+\infty$, ако за всяко
- 3. (продължение) (7 точки, обосновка не е необходима)

Нека $\lim_{n \to \infty} b_n = +\infty$ и $\lim_{n \to \infty} a_n = \frac{1}{3}$. Попълнете:

$$\lim_{n \to \infty} (a_n - b_n) =$$

$$\lim_{n\to\infty} (b_n - a_n) = 0$$

$$\lim_{n \to \infty} (a_n - b_n) = \qquad ; \lim_{n \to \infty} (b_n - a_n) = \qquad ; \lim_{n \to \infty} a_n b_n = \qquad ;$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} =$$

$$\lim_{n\to\infty}\frac{b_n}{a_n}=$$

$$\lim_{n\to\infty} |a_n|^{b_n} =$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \qquad \qquad ; \lim_{n \to \infty} \frac{b_n}{a_n} = \qquad \qquad ; \lim_{n \to \infty} |a_n|^{b_n} = \qquad \qquad ; \lim_{n \to \infty} |b_n|^{a_n} =$$

- 4. (продължение) (8 точки) Обосновете (използвайки дефинициите) отговора си (в предната точка) за случая $\lim_{n\to\infty} a_n b_n$.
 - **5.** (4+4 точки) Довършете дефиницията (по два начина):

Казваме, че функцията $f:[0,+\infty)\to\mathbb{R}$ има граница L когато x клони към $+\infty$, ако: (Коши)

- **6.** (продължение) Нека f(x) е непрекъсната в $[0\,,\,+\infty)$, $\lim_{x\to+\infty}\,f(x)=L$ и f(0)>L . Докажете, че:
- а) (5 moчки) f(x) е ограничена в $[0, +\infty)$;
- б) (7 $moч\kappa u$) f(x) има най-голяма стойност в $[0, +\infty)$.

7. (4 точки) Довършете дефиницията:

Функцията f(x) се нарича диференцируема в точката a, ако е дефинирана в

и

- 8. (продължение) (4 точки) Формулирайте теоремата на Лагранж (за крайните нараствания).
- **9.** (продължение) (12 точки) Нека функцията $f: \mathbb{R} \to \mathbb{R}$ има производна във всяка точка. Докажете, че f(x) е растяща в \mathbb{R} тогава и само тогава, когато $f'(x) \geq 0$ за всяко $x \in \mathbb{R}$.
- **10.** (12 точки) Формулирайте и докажете правилото за смяна на променливите за неопределени интеграли.
 - **11.** Нека F(x) е примитивна на функцията $f(x) = \frac{3 x^2 + 4}{x^4 + 3 x^2 + 2} \cdot \arctan \frac{x^2 + 4}{x^2 + 3}$ в $\mathbb R$.

- а) (5 точки) същесвува число C такова, че функцията G(x) = F(x) + C е нечетна;
- б) (5 mouku) F(x) е равномерно непрекъсната в \mathbb{R} ;
- в) (5 точки) F(x) е вдлъбната в интервала $[0, +\infty)$;
- г) (5 точки) $xf(2x) \le F(2x) F(x) \le xf(x)$ за всяко $x \in [0, +\infty)$;
- д) (5 точки) $\lim_{x \to +\infty} (F(2013x) F(x)) = 0$.

фак. номер: група:

отговорите на 1, 2, 3, 5, 7 и 8 се попълват на този лист, за 4, 6, 9, 10 и 11 се използват само допълнителни листа.

1. (4 точки) Довършете дефиницията: Редицата $\{a_n\}_1^\infty$ се нарича сходяща, ако съществува число l такова, че за всяко

- 2. (продължение) (4 точки) Довършете дефиницията: Казваме, че редицата $\{b_n\}_1^\infty$ клони към $-\infty$, ако за всяко
- 3. (продължение) (7 точки, обосновка не е необходима)

Нека $\lim_{n \to \infty} b_n = -\infty$ и $\lim_{n \to \infty} a_n = -\frac{1}{3}$. Попълнете:

$$\lim_{n \to \infty} (a - b) = \lim_{n \to \infty} (b - a)$$

$$\lim_{n \to \infty} (a_n - b_n) = \qquad ; \lim_{n \to \infty} (b_n - a_n) = \qquad ; \lim_{n \to \infty} a_n b_n = \qquad ;$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} =$$

$$\lim_{n\to\infty}\frac{b_n}{a_n}=$$

$$\lim_{n\to\infty} |a_n|^{b_n} =$$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\qquad \qquad ; \lim_{n\to\infty}\frac{b_n}{a_n}=\qquad \qquad ; \lim_{n\to\infty}|a_n|^{b_n}=\qquad \qquad ; \lim_{n\to\infty}|b_n|^{a_n}=$$

- 4. (продължение) (8 точки) Обосновете (използвайки дефинициите) отговора си (в предната точка) за случая $\lim_{n\to\infty} a_n b_n$.
 - **5.** (4+4 точки) Довършете дефиницията (по два начина):

Казваме, че функцията $f:(-\infty,0]\to\mathbb{R}$ има граница L когато x клони към $-\infty$, ако: (Коши)

- **6.** (продължение) Нека f(x) е непрекъсната в $(-\infty\,,\,0]\,,\,\lim_{x\to-\infty}\,f(x)=L$ и f(0)< L . Докажете, че:
- а) (5 moчки) f(x) е ограничена в $(-\infty, 0]$;
- б) (7 $moч\kappa u$) f(x) има най-малка стойност в $(-\infty, 0]$.

7. (4 точки) Довършете дефиницията: Функцията f(x) се нарича диференцируема в точката a, ако е дефинирана в

и

- 8. (продължение) (4 точки) Формулирайте теоремата на Лагранж (за крайните нараствания).
- **9.** (продължение) (12 точки) Нека функцията $f: \mathbb{R} \to \mathbb{R}$ има производна във всяка точка. Докажете, че f(x) е намаляваща в \mathbb{R} тогава и само тогава, когато $f'(x) \leq 0$ за всяко $x \in \mathbb{R}$.
- **10.** $(12\ mov\kappa u)$ Формулирайте и докажете правилото за интегриране по части за неопределени интеграли.
 - **11.** Нека F(x) е примитивна на функцията $f(x) = \frac{3\,x^2+5}{x^4+4\,x^2+3} \cdot \arctan \frac{x^2+5}{x^2+2}$ в $\mathbb R$.

- а) (5 точки) същесвува число C такова, че функцията G(x) = F(x) + C е нечетна;
- б) (5 mouku) F(x) е равномерно непрекъсната в \mathbb{R} ;
- в) (5 точки) F(x) е вдлъбната в интервала $[0, +\infty)$;
- г) (5 точки) $xf(2x) \le F(2x) F(x) \le xf(x)$ за всяко $x \in [0, +\infty)$;
- д) (5 точки) $\lim_{x \to +\infty} (F(2013x) F(x)) = 0$.

фак. номер: група:

отговорите на 1, 2, 3, 5, 7 и 8 се попълват на този лист, за 4, 6, 9, 10 и 11 се използват само допълнителни листа.

1. (4 точки) Довършете дефиницията: Редицата $\{a_n\}_1^\infty$ се нарича сходяща, ако съществува число l такова, че за всяко

- 2. (продължение) (4 точки) Довършете дефиницията: Казваме, че редицата $\{b_n\}_1^\infty$ клони към $+\infty$, ако за всяко
- 3. (продължение) (7 точки, обосновка не е необходима)

Нека $\lim_{n \to \infty} b_n = +\infty$ и $\lim_{n \to \infty} a_n = -\frac{1}{3}$. Попълнете:

$$\lim_{n \to \infty} (a_n - b_n) = \qquad ; \lim_{n \to \infty} (b_n - a_n) = \qquad ; \lim_{n \to \infty} a_n b_n = \qquad ;$$

$$\lim_{n\to\infty} (b_n - a_n) =$$

$$\lim_{n\to\infty} a_n b_n =$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} =$$

$$; \lim_{n \to \infty} \frac{b_n}{a_n} =$$

$$\lim_{n\to\infty} |a_n|^{b_n} =$$

$$\lim_{n\to\infty}\frac{a_n}{b_n}= \qquad \qquad ; \ \lim_{n\to\infty}\frac{b_n}{a_n}= \qquad \qquad ; \ \lim_{n\to\infty}|a_n|^{b_n}= \qquad \qquad ; \ \lim_{n\to\infty}|b_n|^{a_n}=$$

- 4. (продължение) (8 точки) Обосновете (използвайки дефинициите) отговора си (в предната точка) за случая $\lim_{n\to\infty} a_n b_n$.
 - **5.** (4+4 точки) Довършете дефиницията (по два начина):

Казваме, че функцията $f:[0,+\infty)\to\mathbb{R}$ има граница L когато x клони към $+\infty$, ако: (Коши)

- **6.** (продължение) Нека f(x) е непрекъсната в $[0\,,\,+\infty)$, $\lim_{x\to+\infty}\,f(x)=L$ и f(0)< L . Докажете, че:
- а) (5 moчки) f(x) е ограничена в $[0, +\infty)$;
- б) (7 точки) f(x) има най-малка стойност в $[0, +\infty)$.

7. (4 точки) Довършете дефиницията: Функцията f(x) се нарича диференцируема в точката a, ако е дефинирана в

и

- 8. (продължение) (4 точки) Формулирайте теоремата на Лагранж (за крайните нараствания).
- **9.** (продължение) (12 точки) Нека функцията $f: \mathbb{R} \to \mathbb{R}$ има производна във всяка точка. Докажете, че f(x) е намаляваща в \mathbb{R} тогава и само тогава, когато $f'(x) \leq 0$ за всяко $x \in \mathbb{R}$.
- **10.** (12 точки) Формулирайте и докажете правилото за смяна на променливите за неопределени интеграли.
 - **11.** Нека F(x) е примитивна на функцията $f(x) = \frac{3 \, x^2 + 5}{x^4 + 3 \, x^2 + 2} \cdot \operatorname{arctg} \frac{x^2 + 5}{x^2 + 3}$ в $\mathbb R$.

- а) (5 точки) същесвува число C такова, че функцията G(x) = F(x) + C е нечетна;
- б) (5 mouku) F(x) е равномерно непрекъсната в \mathbb{R} ;
- в) (5 точки) F(x) е вдлъбната в интервала $[0, +\infty)$;
- г) (5 точки) $xf(2x) \le F(2x) F(x) \le xf(x)$ за всяко $x \in [0, +\infty)$;
- д) (5 точки) $\lim_{x \to +\infty} (F(2013x) F(x)) = 0$.

фак. номер: група:

отговорите на 1, 2, 3, 5, 7 и 8 се попълват на този лист, за 4, 6, 9, 10 и 11 се използват само допълнителни листа.

1. (4 точки) Довършете дефиницията: Редицата $\{a_n\}_1^\infty$ се нарича сходяща, ако съществува число l такова, че за всяко

- 2. (продължение) (4 точки) Довършете дефиницията: Казваме, че редицата $\{b_n\}_1^\infty$ клони към $-\infty$, ако за всяко
- 3. (продължение) (7 точки, обосновка не е необходима)

Нека $\lim_{n \to \infty} b_n = -\infty$ и $\lim_{n \to \infty} a_n = \frac{1}{3}$. Попълнете:

$$\lim (a_n - b_n) =$$

$$\lim_{n\to\infty} (b_n - a_n) =$$

$$\lim_{n \to \infty} (a_n - b_n) = \qquad ; \lim_{n \to \infty} (b_n - a_n) = \qquad ; \lim_{n \to \infty} a_n b_n = \qquad ;$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} =$$

$$; \lim_{n \to \infty} \frac{b_n}{a_n} =$$

$$\lim_{n\to\infty} |a_n|^{b_n} =$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \qquad \qquad ; \lim_{n \to \infty} \frac{b_n}{a_n} = \qquad \qquad ; \lim_{n \to \infty} |a_n|^{b_n} = \qquad \qquad ; \lim_{n \to \infty} |b_n|^{a_n} =$$

- 4. (продължение) (8 точки) Обосновете (използвайки дефинициите) отговора си (в предната точка) за случая $\lim_{n\to\infty} a_n b_n$.
 - **5.** (4+4 точки) Довършете дефиницията (по два начина):

Казваме, че функцията $f:(-\infty,0]\to\mathbb{R}$ има граница L когато x клони към $-\infty$, ако: (Коши)

- **6.** (продължение) Нека f(x) е непрекъсната в $(-\infty\,,\,0]\,,\,\lim_{x\to-\infty}\,f(x)=L$ и f(0)>L . Докажете, че:
- а) (5 moчки) f(x) е ограничена в $(-\infty, 0]$;
- б) (7 $moч\kappa u$) f(x) има най-голяма стойност в $(-\infty, 0]$.

7. (4 точки) Довършете дефиницията:

Функцията f(x) се нарича диференцируема в точката a, ако е дефинирана в

и

- 8. (продължение) (4 точки) Формулирайте теоремата на Лагранж (за крайните нараствания).
- **9.** (продължение) (12 точки) Нека функцията $f: \mathbb{R} \to \mathbb{R}$ има производна във всяка точка. Докажете, че f(x) е растяща в \mathbb{R} тогава и само тогава, когато $f'(x) \geq 0$ за всяко $x \in \mathbb{R}$.
- **10.** (12 точки) Формулирайте и докажете правилото за интегриране по части за неопределени интеграли.
 - **11.** Нека F(x) е примитивна на функцията $f(x) = \frac{3 \, x^2 + 7}{x^4 + 4 \, x^2 + 3} \cdot \operatorname{arctg} \frac{x^2 + 7}{x^2 + 3}$ в $\mathbb R$.

- а) (5 такова, че функцията G(x) = F(x) + C е нечетна;
- б) (5 $moч\kappa u$) F(x) е равномерно непрекъсната в \mathbb{R} ;
- в) (5 moчки) F(x) е вдлъбната в интервала $[0, +\infty)$;
- г) (5 точки) $xf(2x) \le F(2x) F(x) \le xf(x)$ за всяко $x \in [0, +\infty)$;
- д) (5 точки) $\lim_{x \to +\infty} (F(2013x) F(x)) = 0$.