Week 3 Lab

Quiz, 11 questions

Congratulations! You passed!	Next Item
1/1 point	
1. How many of the 13 variables are categorical?	
<u> </u>	
<u> </u>	
7	
Correct.	
<u> </u>	
1/1 point	
2. Use visualization such as a histogram and summary statistics tools in R to analyze Which of the following best describes the distribution of weight ?	the distribution of weight .
Left skewed	
Correct Correct.	
Right skewed	
Uniformly distributed	

Normally distributed Week 3 Lab

Quiz, 11 questions

11/11 points (100%)

1/1 point

3.

Which of the following corresponds to the **95%** credible interval for the average birth weight of all full-term babies born in North Carolina?

- There is a 95% chance that babies weigh 7.4 to 7.5 pounds.
- There is a 95% chance that the average weights of babies in this sample is between 7.4 an 7.5 pounds.
- There is a 95% chance that babies on average weigh 7.4 to 7.5 pounds

Correct

Make sure you have input the correct credible level.

1/1 point

4.

Based of Jeffrey's scale for interpretation of a Bayes factor how should we describe the evidence in favor of H_1 from the results above?

- Not worth a bare mention
- Positive
- Strong
- O Very Strong

Correct

1/1 point

5.

For predicting the birth weight of a new full term baby in NC:

				_	-
\ 	[ee]	7	つ	-	٦h.
w	-	ĸ	۲.		4I)

Quiz, 11 questiorisere is 50% chance that their birth weight will be 7.4 pounds.

	There is a 95% chance that their birth weight will be on average 7.4 to 7.5 pounds.
	There is a 95% chance that their birth weight will be 7.4 to 7.5 pounds
0	There is a 95% chance that their birth weight will be 5.4 to 9.5 pounds
Corr e Revi	ect ew calculation of credible interval.
~	1/1 point
	ruct a side-by-side boxplot of habit and weight for the data using full term births and compare the two utions. Which of the following is false about the relationship between habit and weight ?
	Median birth weight of babies born to non-smokers is slightly higher than that of babies born to smokers.
	Range of birth weights of female babies are roughly the same as that of male babies.
0	Both distributions are approximately symmetric.
Corr Corr	
	The IQRs of the distributions are roughly equal.
~	1/1 point
7. Based	on the Bayes factor calculated above, how strong is evidence against H_1 ?
	Not worth a bare mention
	Positive

00%)

/ eek 3 uiz, 11 ques Corr		11/11 points (10
	view interpretation of Bayes factors.	
	Very Strong	
~	1 / 1 point	
may cl	would the Bayes factor above change if we were to increase the prior probability of H_2 change the prior of H_1 and H_2 by specifying ${f hypothesis_prior}={f c(a, b)}$ where $a_2)=b$, and $a+b=1$.)	
	Get bigger	
	Get smaller	
0	Stay the same	
	rrect rrect. The calculation of Bayes factors does not involve prior or posterior probability of pothesis.	either
~	1/1 point	
9. How w sqrt(2)	would the Bayes factor for H_2 to H_1 change if we were to change the scale in the Cauc 2)/2?	hy prior rscale =
	Stay the same	
	Get smaller	
0	Get bigger	

Correct

Week 3 Lab ¹ / _{poi}	1
Quiz, 11 questions	111

10. Based	on the 95% credible interval for the differences in full term birth weights for nonsmokers and smoker:
	There is a 95% chance that babies born to nonsmoker mothers are on average 0.11 to 0.54 pounds lighter at birth than babies born to smoker mothers.
	There is a 95% chance that the difference in average weights of babies whose moms are smokers and nonsmokers is between 0.11 to 0.54 pounds.
	There is a 95% chance that the difference in average weights of babies in this sample whose moms are nonsmokers and smokers is between 0.11 to 0.54 pounds.
0	There is a 95% chance that babies born to nonsmoker mothers are on average 0.11 to 0.54 pounds heavier at birth than babies born to smoker mothers.
Corr Revi	ect ew interpretation of Bayes factors.
~	1/1 point
Condu Based	
Condu Based	point $ ct the same hypothesis test for the mean of the difference in perceived stress scale for the {\it sport} group. \\ of Jeffrey's scale for interpretation of a Bayes factors how should we describe the evidence against H_1$
Condu Based	point ct the same hypothesis test for the mean of the difference in perceived stress scale for the ${f sport}$ group. of Jeffrey's scale for interpretation of a Bayes factors how should we describe the evidence against H_1 he results?
Based	ct the same hypothesis test for the mean of the difference in perceived stress scale for the ${\bf sport}$ group. of Jeffrey's scale for interpretation of a Bayes factors how should we describe the evidence against H_1 he results? ${\bf Strong}$ Positive
Condu Based from th	ct the same hypothesis test for the mean of the difference in perceived stress scale for the ${\bf sport}$ group. of Jeffrey's scale for interpretation of a Bayes factors how should we describe the evidence against H_1 he results? ${\bf Strong}$ Positive

