安徽大学 2017—2018 学年第一学期

《高等数学 A (一)》考试试卷 (B 卷) (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	 11	Ξ	四	五	总分
得 分					
阅卷人					

一、填空题(每小题2分,共10分)

得分

- 2. 若连续函数 f(x) 满足 $\lim_{x\to 0} \frac{f(x)-2}{\sin x} = 1$,则 f'(0) =______.
- 3. 已知 $f'(\ln x) = 1 + x$,则 f(x) =_____.
- 4. 曲线 $y = \ln \cos x$ 上从 x = 0 到 $x = \frac{p}{4}$ 一段的弧长为______.
- 5. 若 f(x) 在 $[0,+\infty)$ 上连续,且满足 $\int_0^{x^2(x+1)} f(t)dt = x$,则 f(2) =______.
- 二、选择题(每小题2分,共10分)

得分

6. 下列曲线中,没有斜渐近线的是

()

(A) $y = x \ln(e + \frac{1}{x})$

(B) $y = \frac{(x-1)^3}{(x+1)^2}$

(C) $y = x + \arctan x$

(D) $y = x + \sin x$

7. 设 f(x) 在 $(-\infty, +\infty)$ 上连续,在 $(-\infty, 0) \cup (0, +\infty)$ 内 有二阶连续的导数, f'(x) 的图形如图所示,若 m 表 示函数 y = f(x) 的极值点个数, n 表示曲线 y = f(x)的拐点个数,则有 (A) m=4, n=3 (B) m=4, n=4)

- (C) m = 5, n = 3
- (D) m = 5, n = 4
- 8. 若 f(x) 的导函数是 $\sin x$,且 f(0) = -1,则 f(x) 的
- 一个原函数可能是

(

- (A) $1+\sin x$
- (B) $1-\sin x$
- (C) $1+\cos x$
- (D) $1-\cos x$
- 9. 设 f(x), g(x) 均在区间[0,2]上二阶可导, f(0) = g(0) = 0, f(2) = g(2) = 1,且对任意 $x \in [0,2], \quad f''(x) > 0, \quad g''(x) < 0, \quad \text{id } S_1 = \int_0^2 f(x) \, \mathrm{d} x, S_2 = \int_0^2 g(x) \, \mathrm{d} x, \quad \text{id } S_1 = \int_0^2 f(x) \, \mathrm{d} x, \quad \text{id } S_2 = \int_0^2 g(x) \, \mathrm{d} x, \quad \text{id } S_3 = \int_0^2 g(x) \, \mathrm{d} x$
 - (A) $S_1 < S_2 < 1$

(B) $1 < S_2 < S_1$

(C) $S_1 < 1 < S_2$

- (D) $S_2 < 1 < S_1$
- 10. 下列反常积分中,收敛的是

)

- (A) $\int_{0}^{+\infty} e^{-\sqrt{x}} dx$ (B) $\int_{0}^{+\infty} \frac{1}{x^{2}} dx$ (C) $\int_{1}^{+\infty} \frac{1}{\sqrt{x}} dx$ (D) $\int_{0}^{1} \frac{1}{x^{2}} dx$

三、计算题(每小题8分,共48分)

得 分

11. 求极限 $\lim_{x\to 0} \frac{\int_0^{\sin x} \frac{\arctan t^2}{t} dt}{\frac{t}{2}}$.

12. 求极限
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \mathbf{L} + \frac{1}{n+n} \right)$$
.

13. 设当 $x \to 0$ 时, $e^x - (mx^2 + nx + 1)$ 是比 x^2 高阶的无穷小,求常数 m , n 的值.

14. 求积分
$$\int \frac{\ln x}{(x+1)^2} dx$$
.

15. 求积分
$$I = \int_{-1}^{1} \frac{2018 + x^{2017}}{\sqrt{4 - x^2}} dx$$
.

16. 求微分方程
$$y'' + 2y' + y = xe^x$$
 的通解.

四、应用题(每小题10分,共20分)

得 分

17. 过点 (1,0) 作抛物线 $y = \sqrt{x-2}$ 的切线,该切线与上述抛物线及 x 轴围成一平面图形,求此平面图形绕 x 轴旋转一周所成旋转体的体积.

18. 设 f(x) 连续且满足 $\int_0^x t f(t) dt = x^2 + f(x)$, (1) 求 f(0), f'(0); (2) 求 f(x).

五、证明题 (每小题 6 分,共 12 分)

得 分

19. 设f(x)在[0,1]上连续,证明:

$$\int_0^p x f(\sin x) dx = p \int_0^{\frac{p}{2}} f(\sin x) dx.$$

20. 设函数 f(x) 在[0,1] 上连续, 在(0,1) 内可导,且满足 $f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx$. 证明: 至少存在一点 $x \in (0,1)$,使得 x f'(x) + f(x) = 0.