Übersicht – Übung 2

Dienst- und Protokollbegriff ISO/OSI-Referenzmodell Netzwerktopologien

Dienst- und Protokollbegriff

Was ist ein Dienst?

"Ein Dienst ist eine Menge von Funktionen, die einem Benutzer von einem Erbringer zur Verfügung gestellt werden."

- Zugriff erfolgt über Service Access Points (SAPs)
- Beispiele für Dienste:
 - Mailversand
 - Drucken
 - Websites abrufen
 - Abstrakt: Transport von Daten

Dienst- und Protokollbegriff

Was ist ein Protokoll?

"Ein Protokoll legt den zeitlichen Ablauf der Kommunikation zur Realisierung eines Dienstes sowie ein Format für die auszutauschenden Dateneinheiten fest."

- Das Format lässt sich zerlegen in:
 - Kontrollinformationen (Header / Footer)
 - Zu übertragende Nutzdaten
- Nutzdaten: Service Data Unit (SDU)
- Gesamtheit SDU + Kontrollinformationen: Protocol Data Unit (PDU)

Dienst- und Protokollbegriff

Dienst- und Protokollbegriff

Dienste bzw. deren Protokolle lassen sich "verschachteln".
 Hier wird die PDU von Protokoll B als SDU von Protokoll A übertragen:

Wichtig: B "weiß nichts" von A → austauschbar

ISO/OSI-Referenzmodell

- Hierarchische Einteilung der Dienste / Protokolle
- Kriterium: Abstraktionsniveau vom physikalischen Übertragungsmedium
- Hintergrund:
 - Anfang 1980er: ITU und ISO
 - Open Systems
 Interconnection Model
 - Ziele: Unabhängigkeit, Flexibilität

http://www.tcpipguide.com/free/ t_DataEncapsulationProtocolDataUnitsPDUsandServiceDa.htm

ISO/OSI-Referenzmodell

- 7 Schichten
 - Schicht 1: Am nächsten am Kabel
 - Schicht 7: Am abstraktesten
- Datenfluss:
 - horizontal: logisch
 - vertikal: real
- Keine Implementierungen vorgeschrieben
- Schnittstellen müssen präzise beschrieben sein

http://www.tcpipguide.com/free/ t_DataEncapsulationProtocolDataUnitsPDUsandServiceDa.htm

ISO/OSI-Referenzmodell

- Schicht 1: Physical (Bitübertragung)
- Schicht 2: Data Link (Sicherung)
- Schicht 3: Network (Netzwerk / Vermittlung)
- Schicht 4: Transport
- Schicht 5: Session (Sitzung)
- Schicht 6: Darstellung (Presentation)
- Schicht 7: Anwendung (Application)

ISO/OSI-Referenzmodell

Physical Layer (1) → Bits

- Rohe Übertragung auf Bitebene
- Charakteristika des Mediums (Kabel, Funk, ...) einbeziehen
- Physikalische Parameter: Spannungspegel, Impedanz, Taktgebung, ...
- Steuerung der Übertragungsrate (Bit bzw. Baud)
- Übertragungsmodus: simplex, halbduplex, vollduplex
- Netzwerktopologie: siehe Aufgabe am Ende der Übung
- Leitungscodierung: z. B. Manchester, NRZ, ...
- Evtl. Kanalcodierung: z. B. Trellis
- Beispiel-Hardware: Kabel, einfache Hubs, Repeater

ISO/OSI-Referenzmodell

Data Link Layer (2) → **Frames**

- Weitestgehend fehlerfreie Punkt-zu-Punkt-Übertragung
- Fehlererkennung, evtl. auch Korrektur
 - Sequenznummern, ACK, Retransmission, ... siehe nächste Übung
- Flusskontrolle
- Oft Unterteilung in zwei Teilschichten:
 - Media Access Control (MAC): Zugriff auf das Medium
 - Logical Link Control (LLC): Fehlererkennung / -korrektur,
 Multiplexing, Flusskontrolle
- Beispiel-Implementierungen: IEEE 802.3 (Ethernet), IEEE 802.5 (Token Ring), IEEE 802.11 (WLAN), HDLC, PPP(oE)

ISO/OSI-Referenzmodell

Network Layer (3) → **Pakete**

- "Echte" Netzwerke: Ende-zu-Ende statt Punkt-zu-Punkt
- Eindeutige Adressierung
- Routing
- Fragmentierung und Wiederzusammenfügung von Paketen
- Weiterleitung von Fehler- und Informationsmeldungen
- Gruppenmanagement (z. B. Multicast-Gruppen)
- Aushandlung von Dienstegüte (Quality of Service, QoS)
- Beispiel-Protokolle: IP, ICMP, IGMP, RIP, OSPF

ISO/OSI-Referenzmodell

Transport Layer (4) → **Segmente bzw. Datagramme**

- Prozess-zu-Prozess
- Unterschiedliche Ansätze:
 - verbindungsorientiert
 - verbindungslos
- Verlässliche Übertragung: Sequenznummern, Prüfsummen, ACKs, ...
- Fragmentierung und Wiederzusammenfügung von Segmenten
- Flusskontrolle
- Verstopfungskontrolle
- Verschlüsselung ... ?!
- Beispiel-Protokolle: TCP, UDP, QUIC

ISO/OSI-Referenzmodell

Session Layer (5) → **Data**

- Sitzungsverwaltung
- Authentifizierung
- Autorisierung
- Checkpointing → Wiederaufnahme von Sitzungen
- Remote Procedure Calls (RPC)
- Beispiel-Protokolle: HTTP, FTP, SMTP

ISO/OSI-Referenzmodell

Presentation Layer (6) → **Data**

- Einheitliche Datensyntax für unterschiedliche Anwendungen (z. B. ASCII vs. Unicode), ggf. über ASN.1, XML, JSON, ...
- Kompression
- Verschlüsselung
- Beispiel-Protokolle: HTML (?)

ISO/OSI-Referenzmodell

Application Layer (7) → **Data**

- Schnittstelle zwischen OSI-Modell und Anwendungen
- Nah am Benutzer
- Beispiel-Protokolle: HTTP, FTP, SMTP, IMAP, ...

ISO/OSI-Referenzmodell

Pro-Contra ISO/OSI?

- Pro:
 - Einheitliche Terminologie
 - Unabhängig von konkreten Technologien / Implementierungen
 - Austauschbarkeit
 - Forschung, Lehre, Modellierung, Taxonomie für Dienste / Protokolle

ISO/OSI-Referenzmodell

Pro-Contra ISO/OSI?

- Contra:
 - Zu komplex → nie vollständig implementiert
 - Overhead bei der Übertragung
 - Übergabe der Daten an den Schnittstellen kostet Zeit → effiziente Implementierung kaum möglich
 - Überladung der unteren Schichten
 - Wenig Funktionalität in den Schichten 5 und 6
 - Verbindungslose Dienste?
 - Verschlüsselung, Datensicherheit?

Netzwerktopologien

Aufgabe: Beschreiben bzw. skizzieren Sie folgende Netzwerktopologien und nennen Sie Vor- und Nachteile:

- Bus
- Liniennetz
- Ring
- Stern
- Vollständig vermaschtes Netz
- Backbone

Netzwerktopologien

<u>Topologie</u>	<u>Vorteile</u>	<u>Nachteile</u>
Bus	Gemeinsames Medium, ausfallsicher (abh. vom Medium), leicht erweiterbar	Zugriff auf das Medium muss geregelt werden → langsam bei hoher Last
Liniennetz	Konzeptionell einfach, wenig Kabel, leicht erweiterbar	Hohes Ausfallrisiko, heterogene Übertragungszeit
Ring	Fast so einfach wie Liniennetz, homogen	Recht hohes Ausfallrisiko, heterogene Übertragungszeit
Stern	Triviale Wegwahl, konzeptionell einfach, ausfallsicher	SPOF (Single Point of Failure), "Flaschenhals"
Vollständig vermaschtes Netz	Homogen, triviale Wegwahl, ausfallsicher	Viele Kabel notwendig (wie viele?), schlecht erweitarbar
Backbone	Hierarchische Struktur, Kopplung von Unternetzen	Komplex

Netzwerktopologien

Aufgabe: Es sollen n Rechner zu einem Netz verbunden werden. Alle Rechner senden pro Zeiteinheit eine Nachricht. Dabei wählt jeder Rechner für sich einen der anderen (n – 1) Rechner als Ziel aus. Die Auswahlwahrscheinlichkeiten sind stets für alle Rechner gleich und betragen 1: (n – 1). Über wie viele Teilstrecken ("Hops") wird eine Nachricht bei den folgenden Topologien im Schnitt übertragen?

- Vollständig vermaschtes Netz
- Stern (zentraler Knoten ist Switch)
- Stern (zentraler Knoten ist Rechner)
- Einseitiger Ring
- Liniennetz