Задание 1. Архимедова разминка.

Данная задача состоит из двух не связанных между собой задач.

Задача 1.1 Шар на дне сосуда.

На дне сосуда, заполненного водой, покоится шар радиуса R. Высота уровня воды в сосуде равна h, причем h = 4R. Плотность воды ρ , ускорение свободного падения g.

1.1.1 Найдите силу давления воды, действующую на верхнюю половину поверхности шара.

Подсказка.

Объем шара равен $V=rac{4}{3}\pi R^3$. Площадь поверхности шара равна $S=4\pi R^2$.

Задача 1.2 Однородный стержень в неоднородной жидкости.

В данной задаче рассматриваются условия плавания стержня в жидкости, плотность которой изменяется с глубиной.

Тонкий однородный стержень длины l, изготовленный из материала плотности ρ_0 , погружен в сосуд, заполненный жидкостью. Высота уровня жидкости в сосуде равна длине стержня h=l. Плотность жидкости у поверхности равна ρ_1 , далее она возрастает по линейному закону с увеличением глубины z и достигает значения ρ_2 у дна сосуда.

- 1.2.1 Установите, каком соотношении между заданными плотностями ρ_0, ρ_1, ρ_2 стрежень может плавать в вертикальном положении.
- 1.2.2 Найдите глубину погружения нижнего конца стержня z при его вертикальном положении, в зависимости от заданных значений плотностей ρ_0, ρ_1, ρ_2 .
- 1.2.3 Установите, при каком соотношении между заданными плотностями ρ_0, ρ_1, ρ_2 стрежень может плавать в вертикальном положении, находясь в положении устойчивого равновесия при глубине погружения $z \approx l$. Считайте, что при этом стержень дна не касается. Можно ли реализовать такую ситуацию на практике?