Modelling Search

and

evaluating strategies

theorem

proving

(Colloquium given at TU-Graz in May 2000)

> MARIA PAOLA BONACINA DEPT. OF COMPUTER SCIENCE THE UNIVERSITY OF IOWA

What is theorem proving and how does it relate to software technology?

Theorem proving

H: assumptions

What follows from H?

q: conjecture

Does φ follow from H? $(H \neq \varphi)$

H may be:

- · mathematical theory (e.g., algebra geometry analysis)
- · system specification (e.g., message-passing)

Refutational theorem proving

Hul79}

either prose q by generating a refutation of Hulips

Hul79} + L

or disprove op by generating a counter example

(a model of Hulze)

T.P. and S.T.:

T.P. and S.T.:

Proving helps computing:

Formal Methods

Verification / Synthesis

Computing helps proving:

Algorithms

Human - Computer Interfaces

T.P. and S.T.:

Solving helps proving:

Constraint solving (e.g., SAT)

Symbolic Computation

(e.g., Computer Algebra)

Proving helps solving:
Deductive proofs
Inductive proofs

Models to work in

Different axiomatizations

Problems in proving

Refutationally complete method Exhaustive search

Done!?

Too much redundant information

Brute-force search not adequate

Remedies:

Inference systems with less redundancy
Better search techniques

My research program

Common theme: control of deduction Research directions:

- · Combination of forward and backward reasoning

 Tanget oriented equational reasoning

 Lemmatization in semantic strategies
- · Distributed deduction

 Clause Diffusion (Aquarius, Peers)

 Modified Clause Diffusion (Peers med)

 Distributed search: criteria to partition

 search space
- · Analysis of strategies

 (both inference system and search plan)

 Sewach space reduction by contraction

 Distributed search contraction based strategies

Why modelling

search and evaluating

strategies in T.P.?

Theorem proving is difficult

Semi-decidable problem

Infinite search space

Finite resources

but:

it works!

In mathematics, e.g.:

- · Moufang identities im zings S. Ananthanaman, J. Hsiang SBR2 1990
- · Axiomatizations of Lukasiewicz many-valued logic
 - S. Amantharaman, M.P. Bomacima SBR 3 1989-91
- · Single axioms for groups W. Mc Cume OTTER 1993
- · Robbins algebras are Boolean W. McCume EQP 1996

And not only in math:

- Deductive composition of SW from subroutine Pibraries (M.E. Stickel et al. SNARK 1994)
 - · Verification of cryptographic protocols

 (J. Schumann SETHEO 1997)

 (C. Weidenbach SPASS 1999)
 - Modelling + Venification of message-passing systems
 (W. McCune IVY 1999)
 O. Shumsky

These systems implement many different strategies:

inference rules I search plan 5 T.P. strategy &=<I; >>

Why do they work?
How to evaluate them?

Traditional approach: implement implement

le is betten!

Clearly not satisfactory.

Conventional complexity analysis does not apply

- · infinite search space
- · un decidable problem domain

Can't do worst-case non average-case analysis.

- · complexity not proportional to imput (e.g., imput length)
- · complexity not proportional to output (e.g., proof length)

Need a way to analyze the process of finding a proof.

A key feature of today T.P. strategies:

contraction

Assume forward reasoning: generate (e.g., zesofution) and Keep clauses.

Contraction:

deletion/replacement rules,

e.g., subsumption Simplification (term rewriting)

Contraction reduces search space

But how do we compare two infinite graphs?

T.P. strategy: &= < I, \(\) inference rules I: set of (e.g., resolution) Expansion 7M(x,y,z) v M(y,x,z)7M(a,b,r)7M(b,a,r) Contraction (e.g., simplification) P(fffo) **V** * ffx >> fx P(fo) 7: well-founded ordering

Search plan and derivation

E: search plan

reduce the now-determinism of I

· state: multiset of clauses

S: States* __ I (decides mext rule)

§: States* -> L* (decides next premises)

Derivation: Sot Sit ... Sit ...

Eagen-contraction search plan
Contraction-based strategy

Second

part:

modelling

search

Representation of search space

I: inference system

S: imput clauses

SI: closure of S w.r.t. I

Search graph:

 $G(S_x^*) = (V, E, \ell, h)$

Vertices V:

clauses

l: V →> 2/=

Hyperarcs E:

inferences

 $h: E \longrightarrow I$

Examples:

How to represent the evolution of the search space?

· Markings:

· S: # 'copies' (variants) of a clause

$$S(\varphi) = \begin{cases} -1 & \text{if } m \text{ variants } (m > 0) \\ 0 & \text{of } \varphi \text{ are present} \end{cases}$$

$$0 & \text{otherwise}$$

· c(e) = # of times arc e has been executed

Example:

Evolution of search space

So + Si + Si + Si + Fin + ...

Go Gi Gi Gi+1

At stage 0: 1 if
$$\varphi \in S_o$$
 $S_o(\varphi) = \begin{cases} 0 & \text{otherwise} \end{cases}$

At stage 0:

$$S_o(\varphi) = \begin{cases} 1 & \text{if } \varphi \in S_o \\ 0 & \text{otherwise} \end{cases}$$

$$S_{i+1}(x) = \begin{cases} S_i(x) + 1 \\ 1 \\ S_i(x) - 1 \end{cases}$$

$$S_{i+1}(x) = \begin{cases} S_i(x) - 1 \\ -1 \\ S_i(x) \end{cases}$$

if
$$x = \psi \wedge Si(x) > 0$$

if $x = \psi \wedge Si(x) < 0$
if $x = \phi \wedge Si(x) > 1$
if $x = \phi \wedge Si(x) = 1$
otherwise

$$C_{i+1}(e) = C_i(e) + 1$$

Marked search graph

- Active: $s(\varphi) > 0$
- ·· Generated: s(φ) ≠ 0

Advantages:

- · Graph does not change marking does
- · Easy to represent contraction
- · Also extended to parallel search lone marking per process)

Third

part:

evaluating

strategies

Analysis of strategy behaviour

How to capture the effect of the steps

performed up to stage i on the search space

including the part that remains to be

explored after stage i?

G :

The future is <u>infinite</u> but we have something finite if we look back.

Ancestor-graph

An ancestor-graph of u is $t = (u; e; (t_1 ... t_{n+1}))$

where ti is an anceston-graph of vi.

at₆(u) or at₆(φ): set of ancestor-graphs of u

/* $\varphi = l(u) */$

Remark: an ancestor-graph of u represents a generation-path that generates & from So.

Relevance

The modes relevant to the generation of p

Given MEV

 $t = (n, e, (t_1 \dots t_{m+1}))$

e = (v1 ... vn; vn+1; u)

WET is relevant to v in t

if

• $W \in \{ V_1 \dots V_{n+1} \}$ and c(e) = 0 or

· W is relevant to vi inti for some i.

Reva(t): set of relevant modes in t.

Example:

A notion of distance Given G, P, teato(q)

- · Past distance of q int:

 pdistal(t) = | \ w | wet, s(w) +0 }|
- Future distance of φ in t: $\begin{cases}
 \varphi & \text{if } S(\varphi) < 0 \text{ or } \\
 \exists w \in \text{Rev}_{G}(t) = \begin{cases}
 0/w
 \end{cases}$
- · Global distance of q in t:

 gdista(t) = pdista(t) + fdista(t)
- f-distance of φ : fdist $_{6}(\varphi) = min f$ dist $_{6}(t)$ $t \in at_{6}(\varphi)$
- g-distance of φ : $gdist_{\varepsilon}(\varphi) = min gdist_{\varepsilon}(t)$ $t \in at_{\varepsilon}(\varphi)$

Remarks:

- (1) Dynamic distance:

 if op then unreachable!

 (0) => redundant)
- (2) fdisto(t) measures the portion of that needs to be traversed in order to reach p
- (3) Alternative definitions:

 use multisets instead of cardinalities.

Bounded search spaces

Stice infinite graph & into sequence of finite layers:

at stage i (\forall i) of dezivation, define the bounded search space reachable within distance j (j>0) (from the beginning):

where

$$mul_{\theta}(v_{ij}) = | \{t: t \in at_{\theta}(v), 0 < gdist_{\theta}(t) \leq j \} |$$

space (Gi, j) is dynamic

Expansion inferences visit the search space:

Contraction inferences visit and modify (prune) the search space:

if Siviple Siviple then

• if
$$Si(\varphi) = 1$$
 and $Diti(\varphi) \neq \varphi$
 $\exists \kappa > 0 \quad \forall j > \kappa$

space (Gi+1, j) < mul space (Gi, j)

where:

$$D_{i+1}(\varphi) = |\varphi'| \exists t \in at_{\sigma}(\varphi'), \varphi \in Rev_{Gi+1}(t)$$

Analysis of search space reduction

by contraction:

compare strategies of different

contraction power

Given $\ell_1 = \langle I_1, \xi_1 \rangle$ $\ell_2 = \langle I_2, \xi_2 \rangle$ input set So

Assume same expansion rules:

G1 + G2

space (G', j) + space (G', j)

because of different contraction rules.

What can we compare?

Compare the variations

Given derivation

$$G_i = (V, E, P, R, Si, c_i)$$

Use Δ space (G,j) as measure to compare contraction-based strategies.

. Consider
$$\mathcal{C}_1 = \langle I_e \cup I_{R_1} | \xi \rangle$$

 $\mathcal{C}_2 = \langle I_e \cup I_{R_2} | \xi \rangle$

(iii)
$$\ell_2$$
 has more contraction power than ℓ_1 (R₁(S) \subseteq R₂(S) \forall S)

Use
$$S_0^1 + S_1^1 + S_2^1 + S_2^1 + S_3^1 + S_4^1 + \dots$$

$$G_i^1$$

$$S_0^2 \leftarrow S_1^2 \leftarrow S_2^2 \leftarrow \dots S_i^2 \leftarrow S_{i+1}^2 \dots$$

$$S_i^2 \leftarrow S_{i+1}^2 \cdots S_{i+1}^2 \cdots S_{i+1}^2 \cdots$$

Note: the (unmarked) search graphs G1 + G2

Lemmas:

- $\forall i 7,0 \quad \forall \varphi \in S_i$ $\exists 187,0 \quad s.t. \quad \varphi \in S_k^2$ or $\varphi \in R_2(S_k^2)$ and vice versa
- $\forall i \neq 0$ $\forall \varphi \in R_1(S_i^1)$ $\exists k \neq 0$ s.t. $\varphi \in R_2(S_k^2)$ (but not vice versa)
- $\forall i > 0$ $\forall \varphi \in G'$ if $S_i^1(\varphi) = -1$ then $\exists x > 0 \cdot S_k^2(\varphi) = -1 \quad \text{on}$ $S_k^2(\varphi) = 0 \quad \text{and} \quad fdist_{G_k^2}(\varphi) = 0$
- $\forall i \neq 0$ $\forall q \in G^1$ $\forall t \in at_{G^1}(q)$,

 if $f dist_{G^1}(t) = \infty$ then $\exists \kappa \neq 0$ $f dist_{G^1}(t) = \infty$

More contraction eventually prunes more space

Thm: Vino Juno Vj>0 Aspace (Guij) > mue Aspace (Giij).

More contraction eventually causes

fewer things to be generated

ate(v) = ancestor-graphs of v made of only

expansion steps

emul₆(v_{ij}) = $|\{t: t \in at_{\epsilon}^{\epsilon}(v), o \leqslant gdist_{\epsilon}(t) \leqslant j\}|$ espace $(G, j) = \underset{v \in V}{\text{emul₆}(v_{ij}) \cdot \ell(v)}$ $v \neq T$

Thm: Vino 3470 Vj>0 espace (Gij) < espace (Gij)

· If all rules in Iz-I1 are deletion rules

Thm. Vino Frao Vjoo Space (Gu,j) & space (Gi,j).

Summary

Stronger contraction $(R_1(S) \subseteq R_2(S))$ induces more reduction of the bounded search spaces, thus higher reduction of search complexity.

All theorems so far in the form

Viro 3 470 Vjro ...

bound on search space

r stage in derivation by le

r stage in derivation by le

Further results in the form

\(\forall j > 0 \)
\(\forall z \)
\(\forall z

- · ∀j>0 ∃m7,0 ∀i7,m espace (Gi,j) ≤ mue espace (Gi,j).
- $\forall j > 0$ $\exists m > 0$ $\forall i \neq m$ $space (G^2, j) \leq me$ $space (G^1, j)$ if all rules in $I_2 - I_1$ are deletion rules.

Discussion

- · Lack of ways to analyze / compare strategies ("strategy analysis")

 has hampered T.P. (A.I.).
- · Main difficulty: infinite search space.
- · Representation of search space

 -all possible inferences form a

 static infinite graph
 - dynamics of the search described by marking, essential for contraction.

Discussion

- · Stice infinite search graph into sequence of (now-static) finite search graphs.
- · Notion of complexity based on WFO (e.g., multiset ordenings)
 not only linear ordening (N, >).
 - · Comparison of contraction based strategies:

 aive a formal instification of

give a formal justification of why contraction is effective.

Future work

- The beginning of the journey...

 stimulate interest

 more concepts

 more notions
- Apply to other strategies (e.g., subgoal-reduction)
- Comparison of search plans
- Already extended to parallel deduction (distributed-search contraction-based strategies)
- Asymptotic analysis?

Related work

- · Search space representation [Kowalski 1969]
- · Proof complexity

 NP * co-NP iff no p-bounded proof system

 f(x) = y for propositional tautologies

 [Cook-Recklow 1979, Vrghart 1995]
- · Lower bounds based on Herbrand Theorem [Statman 1979, Ozerkov 1982, Goubault 1994]
- · Search complexity

 [Plaisted 1994, Plaisted Zhu 1997]

 [Leitsch 1997]