HW2

Michael B. Nattinger*

August 24, 2020

Question 1

Consider the set $A = \{\frac{1}{n}\}_{n \in \mathbb{N}} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$. I will prove that there does not exist $S \subset \mathbb{R}$ s.t. the set of S's limit points is A.

pf Assume for the purpose of contradiction the existence of $S \subset \mathbb{R}$, where the set of \overline{S} 's limit points are equal to A. We will show that 0 is a limit point. Let $\epsilon > 0$ be arbitrary. Let n be the smallest $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. Then, since $\frac{1}{2n} \in A$, $\frac{1}{2n}$ is a limit point of S so $\exists s \in S$ such that s is in a neighborhood of size $\frac{1}{4n}$ around $\frac{1}{2n}$. Then, $|0-s| \leq |0-\left(\frac{1}{2n}+\frac{1}{4n}\right)| = \frac{1}{2n}+\frac{1}{4n} < \frac{1}{n} < \epsilon$. Additionally, we know that $|0-s| \geq |0-\left(\frac{1}{2n}-\frac{1}{4n}\right)| = \frac{1}{4n} > 0$ so $s \neq 0$. Thus, every neighborhood of 0 contains a nonzero element of S, so 0 is a limit point of S, but $0 \notin A$, a contradiction.

2 Question 2

Prove that $f(x) = \cos x^2$ is not uniformly continuous on \mathbb{R} .

pf Let $\epsilon = 1$ and for the purpose of contradiction assume f(x) is uniformly continuous on \mathbb{R} . Then $\exists \delta > 0$ s.t. $\forall x, y \in \mathbb{R}$ with $|x - y| < \delta$, $|\cos x^2 - \cos y^2| < 1$. Let $x_k = \sqrt{2\pi k}, y_k = \sqrt{2\pi k + \pi}$. Then, $\lim_{k \to \infty} |x_k - y_k| = 0$. So, for any δ , we can find \tilde{k} s.t. $|x_{\tilde{k}} - y_{\tilde{k}}| < \delta$, but for any k, $|\cos x_k^2 - \cos y_k^2| = |\cos(2\pi k) - \cos(2\pi k + \pi)| = |1 - (-1)| = |1 - (-1)|$ |2|=2>1. This is a contradiction, so f(x) is not uniformly continuous on \mathbb{R} .

3 Question 3

Let $f: \mathbb{R} \to \mathbb{R}_{++}$ be continuous on an interval [a,b]. We will prove that $(\frac{1}{f})$ is bounded on [a,b].

^{*}I worked on this assignment with my study group: Alex von Hafften, Andrew Smith, Ryan Mather, and Tyler Welch. I have also discussed problem(s) with Emily Case, Sarah Bass, and Danny Edgel. ${}^1|x_k-y_k|=|\sqrt{2\pi k}-\sqrt{2\pi k}+\pi|=\frac{|2\pi k-(2\pi k+\pi)|}{|\sqrt{2\pi k}+\sqrt{2\pi k}+\pi|}=\frac{\pi}{|\sqrt{2\pi k}+\sqrt{2\pi k}+\pi|}\to 0.$

To prove the limit, take $\epsilon > 0$ and define N such that N is the smallest $n \in \mathbb{N}$ such that $n \ge \frac{\left(\frac{\pi}{2\epsilon}\right)^2}{2\pi}$. Then, for all $n \in \mathbb{N}$ with n > N, $\frac{\pi}{|\sqrt{2\pi}n + \sqrt{2\pi}n + \pi|} < \frac{\pi}{|2\sqrt{2\pi}n|} < \frac{\pi}{2\sqrt{2\pi}N} \le \epsilon$.

pf As f is continuous, by the extreme value theorem $\exists \hat{x}, \tilde{x} \in [a, b]$ s.t. $f(\hat{x}) \geq f(x)$ $\forall x \in [a,b] \text{ and } f(\tilde{x}) \leq f(x) \ \forall x \in [a,b]. \text{ Since } f(\hat{x}), f(\tilde{x}) > 0, \ \exists m, M \in \mathbb{R}_{++} \text{ s.t.}$ $m < f(\tilde{x})$ and $M > f(\hat{x})$. Assume for the purpose of contradiction that $(\frac{1}{f})$ is not bounded by $\frac{1}{m}$ from above. Then, $\exists c \in [a,b]$ s.t. $(\frac{1}{f})(c) > \frac{1}{m} \Rightarrow f(c) < m$ which is a contradiction. Next, assume for the purpose of contradiction that $(\frac{1}{f})$ is not bounded by $\frac{1}{M}$ from below. Then $\exists d \in [a,b]$ s.t. $(\frac{1}{f})(d) < \frac{1}{M} \Rightarrow f(d) > M$, a contradiction. Thus, $(\frac{1}{f})$ is bounded above by $\frac{1}{m}$ and below by $\frac{1}{M}$ on [a,b]. Thus, $(\frac{1}{f})$ is bounded on [a,b].

4 Question 4

Let $f: [a,b] \to \mathbb{R}$ be a continuous function, $a < b, a, b \in \mathbb{R}$. Assume that f(a) < 0 < f(b). We follow the construction of sequences $\{l_n\}$ and $\{u_n\}$ as described in the problem set.

Show that sequences $\{l_n\}$ and $\{u_n\}$ both converge.

pf For arbitrary $n^* \in \mathbb{N}$, $l_{n^*} \leq \frac{l_{n^*} + u_{n^*}}{2} \leq u_{n^*}^2$ so $l_n \leq l_{n+1} \leq u_n \ \forall n \in \mathbb{N}$ and $u_n \geq u_n$ $\overline{u_{n+1}} \ge l_n \ \forall n \in \mathbb{N}$. Thus, for any $n \in \mathbb{N}$, $l_1 \le l_n \le u_n \le u_1$. Therefore, $\{l_n\}$ is monotone increasing and bounded above by u_1 and below by l_1 , and $\{u_n\}$ is monotone decreasing and bounded below by l_1 and above by u_1 . By the monotone convergence theorem, both $\{l_n\}$ and $\{u_n\}$ converge.

Both sequences converge to the same limit

pf We now define a new sequence $\{a_n\}$ with $a_n = u_n - l_n \ \forall n \in \mathbb{N}$. During each n we are stepping midway in between u_n and l_n , or we are setting $u_n = l_n$, so $a_n \leq \frac{b-a}{2^{n-1}}$. $\frac{b-a}{2^{n-1}} \to 0^4$ and $\frac{b-a}{2^{n-1}} \ge a_n \ge 0 \ \forall n \in \mathbb{N}$ so $a_n \to 0$ by the squeeze theorem. Thus, $\{u_n - l_n\} = \{a_n\} \to 0$, and it follows that $\lim_{n \to \infty} u_n = \lim_{n \to \infty} l_n$.

Define the common limit of two sequences c and show that f(c) = 0.

pf Since $\{u_n\},\{l_n\}$ converge, define $u,l\in\mathbb{R}$ s.t. $u_n\to u$ and $l_n\to l$. Since by construction $f(u_n) \geq 0 \geq f(l_n) \ \forall n \in \mathbb{N}$, since f is continuous and limits preserve weak inequalities $f(u) \geq 0 \geq f(l)$. Since we also know that $a_n \to 0$, $(u_n - l_n) \to 0$ so $u-l=0 \Rightarrow u=l$. Thus, $f(u) \ge 0 \ge f(l)=f(u) \Rightarrow f(u)=f(l)=0$.

²This is because $u_n \geq l_n \ \forall n \in \mathbb{N}$ which I will prove here by induction. $u_1 = b \ge a = l_1.$

Assume $u_k \ge l_k$ for $k \in \mathbb{N}$. Then $u_k \ge \frac{u_k + l_k}{2} \ge l_k$ so $u_{k+1} \ge l_{k+1}$.

³I will prove $a_n = \frac{b-a}{2^{n-1}}$ or $a_n = 0$ formally here by induction. $a_1 = u_1 - l_1 = b - a \le \frac{b-a}{2^{1-1}}$. Assume $a_k = \frac{b-a}{2^{k-1}}$. Then, $a_{k+1} = u_{k+1} - l_{k+1} = u_k - l_k - \frac{u_k - l_k}{2} = \frac{u_k - l_k}{2} = \frac{b-a}{2} = \frac{b-a}{2^{k+1}} = \frac{b-a}{2^{(k+1)-1}}$, or $a_{k+1} = 0$. Now assume $a_k = 0$. Then, $a_{k+1} = 0$. Thus, $a_n \le \frac{b-a}{2^n} \ \forall n \in \mathbb{N}$.

4To prove $\lim_{n \to \infty} \frac{b-a}{2^{n-1}} = 0$, let $\epsilon > 0$. We can choose N to be the smallest $n \in \mathbb{N}$ such that $n \ge 0$.

 $[\]log_2\left(\frac{b-a}{\epsilon}\right) + 1$ and for n > N, $\left|\frac{b-a}{2^{n-1}} - 0\right| < \left|\frac{b-a}{2^N}\right| \le \epsilon$.

5 Question 5

Prove that at any time there are two antipodal points on Earth that share the same temperature.

I will take as given that temperature is a continuous, natural phenomenon.

pf Take any great circle of the Earth, C. Starting at any point $c \in C$ we can define t(x) as the temperature on the Earth at point $\tilde{x} \in C$, where x is the angle in radians between \tilde{x} and c. We then define $T(x) = t(x) - t(x + \pi)$. Since t(x) is continuous, T(x) is continuous.⁵

We then have 3 possible cases:

- 1. T(0) = 0. Then $0 = t(0) t(\pi) \Rightarrow t(0) = t(\pi)$.
- 2. T(0) < 0. Then $0 > t(0) t(\pi) \Rightarrow 0 < t(\pi) t(0) \Rightarrow T(\pi) > 0$.
- 3. T(0) > 0. Then $0 < t(0) t(\pi) \Rightarrow 0 > t(\pi) t(0) \Rightarrow T(\pi) < 0$.

Clearly in case (1) point c has an antipodal point of the same temperature. In cases (2) and (3), since T(x) is continuous on $[0, \pi]$, by the intermediate value theorem $\exists k \in (0, \pi)$ s.t. $T(k) = 0 \Rightarrow t(k) - t(k + \pi) = 0 \Rightarrow t(k) = t(k + \pi)$. Thus, there exists some point $\tilde{k} \in C$, k radians from k, which has an antipodal point of the same temperature.

⁵Here I will prove that the difference of two continuous functions is continuous. Let $f(x), g(x) : \mathbb{R} \to \mathbb{R}$, and let h(x) := f(x) - g(x). Let $x_0 \in \mathbb{R}$ and $\epsilon > 0$ be arbitrary. Since f, g are continuous, $\exists \delta_f, delta_g$ s.t. $\forall x \in \mathbb{R}$ where $|x - x_0| < \delta_f$ then $|f(x) - f(x_0)| < \frac{\epsilon}{2}$ and s.t. $\forall x \in \mathbb{R}$ where $|x - x_0| < \delta_g$ then $|g(x) - g(x_0)| < \frac{\epsilon}{2}$. Define $d := \min\{d_f, d_g\}$. Then for $|x - x_0| < d$, $|h_x - h_{x_0}| = |f_x - g_x - f_{x_0} + g_{x_0}| \le |f(x) - f(x_0)| + |g(x) - g(x_0)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Thus, h(x) is continuous.