

Deep Learning #3

15 Jan. 2021

자율주행시스템 개발팀 신 주 석

- Problem of the Neural Network
 - 1) 여러 개의 Perceptron으로 특정 문제(e.g. XOR)를 해결할 수 있지만, 해당 파라미터(Weight, Bias)를 학습 시킬 수 있는 방법을 찾을 수 없었음.
 - → Backpropagation(Chain-Rule)을 이용하여 학습 가능
 - 2) Vanish Gradient problem (Chain-Rule, Sigmoid(0~1))
 - → ReLu (Rectified Linear Unit)을 이용하여 해결

- 3) Initialized the weight의 설정
 - Not all 0's
 - Challenging issue
 - Hinton et al. (2006) "A Fast Learning Algorithm for Deep Belief Nets"
 - Restricted Boatman Machine (RBM)

restricted boltzmann machine

Xavier initialize Method

- 4) Small labeled dataset, Computing Power
 - → Big Dataset, GPU, etc.

Deep Neural Network

Drop out

- Very high accuracy on the training dataset (eg: 0.99)
- Poor accuracy on the test data set (0.85)

l2reg = 0.001 * tf.reduce_sum(tf.square(W))

Deep Neural Network

Dropout

» Avoid Overfitting

Dropout: A Simple Way to Prevent Neural Networks from Overfitting [Srivastava et al. 2014]

Regularization: **Dropout**

"randomly set some neurons to zero in the forward pass"


```
dropout_rate = tf.placeholder("float")
   _L1 = tf.nn.relu(tf.add(tf.matmul(X, W1), B1))
   L1 = tf.nn.dropout(_L1, dropout_rate)

TRAIN:
   sess.run(optimizer, feed_dict={X: batch_xs, Y: batch_ys, dropout_rate: 0.7})

EVALUATION:
   print "Accuracy:", accuracy.eval({X: mnist.test.images, Y: mnist.test.labels, dropout_rate: 1})
```


Deep Neural Network

MNIST Deep NN & ReLu & Xavier Initialization & Dropout

```
W1 = tf.get_variable("W1", shape=[784, 512],
                     initializer=tf.contrib.layers.xavier_initializer())
b1 = tf.Variable(tf.random_normal([512]))
L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
L1 = tf.nn.dropout(L1, keep prob=keep prob)
W2 = tf.get_variable("W2", shape=[512, 512],
                     initializer=tf.contrib.layers.xavier_initializer())
b2 = tf.Variable(tf.random normal([512]))
L2 = tf.nn.relu(tf.matmul(L1, W2) + b2)
L2 = tf.nn.dropout(L2, keep_prob=keep_prob)
W3 = tf.get variable("W3", shape=[512, 512],
                     initializer=tf.contrib.layers.xavier_initializer())
b3 = tf.Variable(tf.random_normal([512]))
L3 = tf.nn.relu(tf.matmul(L2, W3) + b3)
L3 = tf.nn.dropout(L3, keep prob=keep prob)
W4 = tf.get_variable("W4", shape=[512, 512],
                     initializer=tf.contrib.layers.xavier_initializer())
b4 = tf.Variable(tf.random normal([512]))
L4 = tf.nn.relu(tf.matmul(L3, W4) + b4)
L4 = tf.nn.dropout(L4, keep_prob=keep_prob)
W5 = tf.get_variable("W5", shape=[512, 10],
                     initializer=tf.contrib.layers.xavier_initializer())
b5 = tf.Variable(tf.random_normal([10]))
hypothesis = tf.matmul(L4, W5) + b5
```

```
Epoch: 0001 \text{ cost} = 0.314719560
                                                       Epoch: 0001 \text{ cost} = 0.477981920
                                                       Epoch: 0002 \text{ cost} = 0.174209262
Epoch: 0002 \text{ cost} = 0.136928339
                                                       Epoch: 0003 \text{ cost} = 0.133356226
Epoch: 0003 \text{ cost} = 0.114664485
Epoch: 0004 \text{ cost} = 0.105699805
                                                       Epoch: 0004 \text{ cost} = 0.107630954
                                                      Epoch: 0005 \text{ cost} = 0.097190227
Epoch: 0005 \text{ cost} = 0.093989542
                                                      Epoch: 0006 \text{ cost} = 0.082390315
Epoch: 0006 \text{ cost} = 0.091876498
                                                       Epoch: 0007 \text{ cost} = 0.075062841
Epoch: 0007 \text{ cost} = 0.079226325
                                                       Epoch: 0008 \text{ cost} = 0.069322145
Epoch: 0008 \text{ cost} = 0.076840967
                                                      Epoch: 0009 \text{ cost} = 0.064841361
Epoch: 0009 \text{ cost} = 0.074611597
                                                      Epoch: 0010 \text{ cost} = 0.058239024
Epoch: 0010 \text{ cost} = 0.064871844
                                                      Epoch: 0011 \text{ cost} = 0.056864930
Epoch: 0011 \text{ cost} = 0.064510580
                                                      Epoch: 0012 \text{ cost} = 0.054271612
Epoch: 0012 \text{ cost} = 0.072228441
                                                      Epoch: 0013 \text{ cost} = 0.052183560
Epoch: 0013 \text{ cost} = 0.067988544
                                                      Epoch: 0014 \text{ cost} = 0.046791719
Epoch: 0014 \text{ cost} = 0.050129582
                                                       Epoch: 0015 cost = 0.044676678
Epoch: 0015 \text{ cost} = 0.062997886
                                                      Learning Finished
Epoch: 0016 \text{ cost} = 0.054448708
                                                      Accuracy: 0.9818
Training Done!!!!
Accuracy: 0.9769
Label: [2]
Prediction:
               [2]
```

```
for i in range(total_batch):
   batch_xs, batch_ys = mnist.train.next_batch(batch_size)
   feed_dict = {X: batch_xs, Y: batch_ys, keep_prob: 0.7}
   c, _ = sess.run([cost, optimizer], feed_dict=reed_dict)
   avg_cost += c / total_batch
```


기존 Data를 학습하여 자전거 대여 대수 예측하기 (using CNN)

NEXT

Convolution Neural Network Recurrent Neural Network

Traffic Sign Recognition using CNN

Steering value prediction using CNN

Language Translation using RNN

Input
 Word Ids: [208, 68, 203, 32, 9, 95, 129]
 English Words: ['he', 'saw', 'a', 'old', 'yellow', 'truck', '.']

Prediction
 Word Ids: [288, 175, 27, 141, 209, 293, 10, 325, 1]
 French Words: il a vu un vieux camion jaune . <EOS>

CNN: Convolutional Neural Network

SoftMax

Image Filtering

- Filtering: 전자공학 Signal Processing, 시스템 분야로 부터 파생된 개념
 - » Fourier 변환을 통하여 데이터를 주파수 성분으로 변경한 후, 주파수에 대하여 여러가지 가공 처리를 하기 위해 Filtering이란 개념이 나왔음
 - » 이미지의 경우, 입력 신호가 주파수 형태가 아니라 이미지이기 때문에 Spatial Filtering

System: 일련의 입력 신호를 처리하여 또 다른 일련의 출력 신호를 만들어 내는 것

Filter: 시스템의 한 성분으로써, 신호의 일부 성분을 제거하거나 일부 특성을 변경하기 위해 설계된 시스템의 한 종류

Image Processing for CV: Image Filtering

► Mask, filter, template, kernel

Convolution

$$g(x,y) = h(x,y) \times f(x,y) = \sum_{s=-a}^{a} \sum_{t=-a}^{b} h(s,t) \times f(x+s,y+t)$$

Kernel Size: m * n

$$a = (m-1)/2$$

$$b = (n-1)/2$$

а	b	C		r	S	t
d	е	f	*	u	V	W
g	h	i		х	у	Z
	h(x,y))	•	j	(x,y))

$$g = a \cdot z + b \cdot y + c \cdot x + d \cdot w + e \cdot v + f \cdot u + g \cdot t + h \cdot s + i \cdot r$$

Filtering 경계 처리

- 1. 특정 상수 값 삽입 (e.g. 0) 2. 경계에 있는 픽셀 값을 복사
- 3. 영상을 주기적인 신호로 해석하여
- 맞은 편 픽셀 값을 복사 (Wrap-around) 4. 모든 이웃 픽셀이 정의되는 위치에서 Convolution 연산을 시작 (출력 영상의 경계 영역의 값은 입력 영상 값을 그대로 사용하거나 특정 상수 값 사용)

Image Smoothing

- _ 입력영상을 조금 부드럽게 하거나 **잡음 (Noise) 을 제거**하기 위해 사용
- Mean, Gaussian, Median Filter, etc.
- Mean Filtering

$$\frac{1}{9} \left(v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8 + v_9 \right)$$

Image Processing for CV: Image Filtering

♦ Image Smoothing

Mean Filtering

♦ Image Smoothing

Mean Filtering

Original image

5*5

3*3 Mean filtering

7*7

♦ Image Smoothing

- Median Filtering
 - » Non-Linear Filter
 - » Useful for removing salt-pepper Noise

♦ Image Smoothing

- Median Filtering
 - » Non-Linear Filter
 - » Useful for removing salt-pepper Noise

Original image

Median Filtering

Mean Filtering

Image Processing for CV: Image Filtering

♦ Image Smoothing

- Median Filtering: 실습 (MOD & Median Filter (cv::medianBlur(InputArray src, OutputArray dst, int ksize))
 - » Useful for removing salt-pepper Noise

- » opency 라이브러리 사용하지 않고 구현
 - Sorting Algorithm 포함

Conv Layer

one number!

5x5x3 Filter
(Kernel)

동일한 필터(w)를 가지고 이동

32x32x3 image

How many numbers can we get?

7x7 input (spatially) assume 3x3 filter

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3: stride 1 => (7 - 3)/1 + 1 = 5stride 2 => (7 - 3)/2 + 1 = 3stride 3 => (7 - 3)/3 + 1 = 2.33

Conv Layer

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0					20		
0							
0							
8							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:) (N - F) / stride + 1

Conv Layer

32x32x3 image

Conv Layer

32x32x3 image

Conv Layer

Max pooling and others

- Pooling Layer (Sampling과 유사)

- Pooling Layer
 - » Max Pooling

max pool with 2x2 filters and stride 2

6	8
3	4

FC (Fully Connected) Layer

- CNN Case Study
 - » LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

- CNN Case Study
 - » AlexNet [Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = **35K**

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

- CNN Case Study
 - » GoogLeNet [Szegedy et al. 2014]

- CNN Case Study
 - » ResNet [He et al. 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

- CNN Case Study
 - » Deep Mind's AlphaGo

nature

ALL SYSTEMS GO

The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

policy network:

[19x19x48] Input

CONV1: 192 5x5 filters , stride 1, pad 2 => [19x19x192]

CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192]

CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves)

MNIST 99% using CNN

- 실습: MNIST 99% using CNN
 - » Simple CNN: Layer 3

```
# L2 ImgIn shape=(?, 14, 14, 32)
W2 = tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.01))
# Conv ->(?, 14, 14, 64)
# Pool ->(?, 7, 7, 64)
L2 = tf.nn.conv2d(L1, W2, strides=[1, 1, 1, 1], padding='SAME')
L2 = tf.nn.relu(L2)
L2 = tf.nn.max_pool(L2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
L2 = tf.reshape(L2, [-1, 7 * 7 * 64])
```



```
L2 = tf.reshape(L2, [-1, 7 * 7 * 64])

# Final FC 7x7x64 inputs -> 10 outputs

W3 = tf.get_variable("W2", shape=[7 * 7 * 64, 10],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.random_normal([10]))
hypothesis = tf.matmul(L2, W3) + b
```


define cost/loss & optimizer

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=hypothesis, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

Accuracy: 98.85%

- 실습: MNIST 99% using CNN

Accuracy: 99.38%

- 실습: MNIST 99% using CNN
 - » Deep CNN (Dropout + additional FC layer)+Callback

```
class callback_Chk_ACC(tf.keras.callbacks.Callback):
    def on_epoch_end(self, epoch, logs={}):
        if(logs.get('accuracy')>0.99):
            print("\nAccuracy is 99%")
            self.model.stop_training = True

callbacks = callback_Chk_ACC()
```

 $tf.model.fit(x_train, y_train, batch_size=batch_size, epochs=training_epochs, callbacks=[callbacks])$

Ensemble

Accuracy: 99.52%

Fashion MNIST

```
import tensorflow as tf
print(tf. version )
mnist = tf.keras.datasets.fashion mnist
(training images, training labels), (test images, test labels) = mnist.load data()
training images=training images.reshape(60000, 28, 28, 1)
training images=training images / 255.0
test images = test images.reshape(10000, 28, 28, 1)
test images=test images/255.0
model = tf.keras.models.Sequential([
  tf.keras.layers.Conv2D(64, (3,3), activation='relu', input shape=(28, 28, 1)),
 tf.keras.layers.MaxPooling2D(2, 2),
 tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
 tf.keras.layers.MaxPooling2D(2,2),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dense(10, activation='softmax')
1)
model.compile(optimizer='adam', loss='sparse categorical crossentropy', metrics=['accuracy'])
model.summary()
model.fit(training images, training labels, epochs=1)
test loss = model.evaluate(test images, test labels)
```


- **♦** TSR using CNN
 - Build a Traffic Sign Recognition Project
 - » Pip install pandas
 - » Pip install sklearn
 - » Pip install scikit-image

TSR using CNN

- Build a Traffic Sign Recognition Project
 - » Load the data set (German Traffic Sign: http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
 - Using provided "pickle" files

```
# Load pickled data
import pickle
# TODO: Fill this in based on where you saved the training and testing data
training file = 'traffic-signs-data/train.p'
validation file = 'traffic-signs-data/valid.p'
testing file = 'traffic-signs-data/test.p'
with open(training file, mode='rb') as f:
    train = pickle.load(f)
with open(validation file, mode='rb') as f:
    valid = pickle.load(f)
with open(testing file, mode='rb') as f:
    test = pickle.load(f)
                               Containing raw pixel data of the traffic sign images
X train, y train = train['features'], train['labels']
X valid, y valid = valid['features'], valid['labels']
X test, y test = test['features'], test['labels']
```

- » Explore, Summarize and visualize the data set
- » Design, Train and Test a CNN Model architecture
- » Use the model to make predictions on new images
- » Analyze the softmax probabilities of the new images

TSR using CNN

- Build a Traffic Sign Recognition Project
 - » Load the data set
 - » Explore, Summarize and visualize the data set
 - The size of training/validation/test set is 34799/4410/12630.
 - The shape of a traffic sign images is (32, 32, 3). image_shape = X_train[0].shape
 - The number of unique classes/labels in the data set is 43. n_classes = len(np.unique(y_train))

```
Number of training examples = 34799
Number of validation examples = 4410
Number of testing examples = 12630
Image data shape = (32, 32, 3)
Number of classes = 43
```


#TODO: make code

TODO: Reference the provided code

- » Design, Train and Test a CNN Model architecture
- » Use the model to make predictions on new images
- » Analyze the softmax probabilities of the new images

TSR using CNN

- Build a Traffic Sign Recognition Project
 - >> Load the data set
 - » Explore, Summarize and visualize the data set

#TODO: Reference the provided code

```
### Data exploration visualization code goes here.
                                                                       (1)
### Feel free to use as many code cells as needed.
import matplotlib.pyplot as plt
import pandas as pd
import random as rnd
import cv2
# Visualizations will be shown in the notebook.
%matplotlib inline
readfile = pd.read csv('signnames.csv')
sign name = readfile['SignName'].values
train classes, train class cnt = np.unique(y train, return counts = True)
test classes, test class cnt = np.unique(y test, return counts = True)
                                                                     fig0 = plt.figure(figsize=(13,10))
fig, axis = plt.subplots(2,4, figsize=(15,6))
                                                                     plt.bar(np.arange(n classes), train class cnt, align='center', label='train')
fig.subplots adjust(hspace=0.2, wspace=0.2)
                                                                     plt.bar(np.arange(n classes), test class cnt, align='center', label='test')
axis = axis.ravel()
                                                                     plt.xlabel('Class: Name of Traffic sign')
for i in range(8):
                                                                     plt.ylabel('Number of each class')
    idx = rnd.randint(0, n train)
                                                                     plt.xlim([-1, n classes])
    img = X train[idx]
                                                                     plt.xticks(np.arange(n classes), sign name, rotation=270)
    axis[i].axis('off')
                                                                     plt.legend()
    axis[i].set title(sign name[y train[idx]])
                                                                     plt.tight layout()
    axis[i].imshow(img)
                                                                     plt.show()
```

- Design, Train and Test a CNN Model architecture
- » Use the model to make predictions on new images
- » Analyze the softmax probabilities of the new images

♦ TSR using CNN

- Build a Traffic Sign Recognition Project
 - » Load the data set
 - » Explore, Summarize and visualize the data set
 - » Design, Train and Test a CNN Model architecture
 - Pre-processing image data
 - ✓ Color channel images & normalize

def	normali	ze_imag	ge (ima	age	data)	:	
	return	(image	data	-	128)/	128	

Layer	Description	
Input	32x32x3 (Color & Normalize)	_
Convolution 3x3	1x1 stride, same padding, outputs 32x32x32	
RELU		
Max pooling	2x2 stride, outputs 16x16x32	
Convolution 3x3	1x1 stride, same padding, outputs 16x16x64	
RELU		
Max pooling	2x2 stride, outputs 8x8x64	
Convolution 3x3	1x1 stride, same padding, outputs 8x8x64	
RELU		
Dropout	0.6	
Convolution 3x3	1x1 stride, same padding, outputs 8x8x96	
RELU		
Dropout	0.6	
Convolution 3x3	1x1 stride, same padding, outputs 8x8x128	_
RELU		
Dropout	0.6	

Flatten	8x8x128 = 8192
Fully connected	(8192, 256)
Dropout	0.6
Fully connected	(256, 128)
Dropout	0.6
Fully connected	(128, 84)
Dropout	0.6
Fully connected	(84, 43)

TODO: Make CNN Architecture & plot using provided code

- » Use the model to make predictions on new images
- » Analyze the softmax probabilities of the new images

♦ TSR using CNN

- Build a Traffic Sign Recognition Project
 - » Load the data set
 - » Explore, Summarize and visualize the data set
 - » Design, Train and Test a CNN Model architecture
 - Pre-processing image data
 - ✓ Grayscale images & normalize

TODO: Convert Color RGB to Grayscale using provided code And Plotting

```
def norm (img_data):
#     return (img_data - 128) / 128
#     return img_data / np.max(img_data)
     return img_data / 255

def gray_scale(X):
     X = 0.299 * X[:, :, :, 0] + 0.587 * X[:, :, :, 1] + 0.114 * X[:, :, :, 2]
     X = X.reshape(X.shape + (1,))
     return X
```

```
# X_train = norm(gray_scale(X_train))
# X_valid = norm(gray_scale(X_valid))
# X_test = norm(gray_scale(X_test))
```

The result of the accuracy of the validation set is **about 96%**.

- » Use the model to make predictions on new images
- » Analyze the softmax probabilities of the new images

TSR using CNN

- Build a Traffic Sign Recognition Project
 - » Load the data set
 - » Explore, Summarize and visualize the data set
 - » Design, Train and Test a CNN Model architecture
 - Pre-processing image data
 - ✓ Grayscale images & normalize

TODO: Apply CLAHE (Contrast Limited Adaptive Histogram Equalization) to Grayscale using provided code and Plotting CLAHE images

```
X train gray = []
                                                                  for i in range(8):
X train CLAHE = []
                                                                       idx = rnd.randint(0, n train)
X valid gray = []
                                                                       img = X train CLAHE[idx]
X valid CLAHE = []
X test gray = []
                                                                       axis[i].axis('off')
X test CLAHE = []
                                                                       axis[i].set title(sign name[y train[idx]])
                                                                       axis[i].imshow(img, 'gray')
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(4,4))
for i in range (n train):
                                                                  X train arr = np.array(X train CLAHE)
   X train gray.append(cv2.cvtColor(X train[i], cv2.COLOR RGB2GRAY))
                                                                  X valid arr = np.array(X valid CLAHE)
   X train CLAHE.append(clahe.apply(X train gray[i]))
for i in range (n validation):
                                                                  X test arr = np.array(X test CLAHE)
   X valid gray.append(cv2.cvtColor(X valid[i], cv2.COLOR RGB2GRAY))
                                                                  X train arr = X train arr.reshape(X train arr.shape + (1,))
   X valid CLAHE.append(clahe.apply(X valid gray[i]))
                                                                  X valid arr = X valid arr.reshape(X valid arr.shape + (1,))
for i in range (n test):
                                                                  X test arr = X test arr.reshape(X test arr.shape + (1,))
   X test gray.append(cv2.cvtColor(X test[i], cv2.COLOR RGB2GRAY))
                                                                  X train = norm(X train arr)
    X test CLAHE.append(clahe.apply(X test gray[i]))
                                                                  X valid = norm(X valid arr)
fig, axis = plt.subplots(2,4, figsize=(15,6))
                                                                  X test = norm(X test arr)
fig.subplots adjust(hspace=0.2, wspace=0.2)
axis = axis.ravel()
```


- » Use the model to make predictions on new images
- » Analyze the softmax probabilities of the new images

♦ TSR using CNN

- Build a Traffic Sign Recognition Project
 - » Load the data set
 - » Explore, Summarize and visualize the data set
 - » Design, Train and Test a CNN Model architecture
 - Pre-processing image data
 - ✓ Grayscale images & normalize

TODO: Make CNN Architecture and plot the accuracy

Layer.	Description	
Input₽	32x32x1 (CLAHE & Normalize)₽	
Convolution 3x3₽	1x1 stride, same padding, outputs 32x32x96¢	
RELU₽	€	
Max pooling₽	2x2 stride, outputs 16x16x964	
Convolution 4x4₽	1x1 stride, same padding, outputs 16x16x128@	
RELU₽	₽	
Max pooling₽	2x2 stride, outputs 8x8x1284	
Convolution 3x3₽	1x1 stride, same padding, outputs 8x8x256	
RELU₽	₽	
Max pooling₽	2x2 stride, outputs 4x4x256¢	
Convolution 4x4₽	1x1 stride, same padding, outputs 4x4x256	
RELU₽	₽	
Dropout₽	0.5+2	
Flatten₽	4x4x256 = 4096φ	
Fully connected ₽	(4096, 1024)₽	
Dropout₄□	0.5+2	
Fully connected &	(1024, 256)	
Dropout₽	0.5+>	
Fully connected @	(256, 43)	

- Training set accuracy of 99%
- Validation set accuracy of 97.3%
- Test set accuracy of 95.6%

- » Use the model to make predictions on new images
- » Analyze the softmax probabilities of the new images

TSR using CNN

- Build a Traffic Sign Recognition Project
 - » Load the data set
 - » Explore, Summarize and visualize the data set
 - » Design, Train and Test a CNN Model architecture
 - » Use the model to make predictions on new images
 - Analyze the softmax probabilities of the new images# TODO: Reference provided code and some test data

```
def plot_test_images(images,n):
    fig, axes = plt.subplots(1, n, figsize=(13,5))
    fig.subplots_adjust(hspace=0.1, wspace=0.1)

    for i, ax in enumerate(axes.flat):
        ax.imshow(images[i])
        ax.set_title(i+1)
        ax.set_xticks([])
        ax.set_yticks([])

# fig.savefig('in5.png')
### Load the images
from skimage import io
imgs = [ io.imread('test0/test{}.png'.format(i + 11)) for i in range(10) ]

plot test images(imgs,10)
```


Thank you & Good luck!