

集成运算放大器的基本应用

——模拟运算电路

实验目的

- 1
- 了解集成运放的外形结构及各引脚功能;
- 掌握集成运放的三种输入方式,研究由集成运放 组成的比例、加法、减法、积分和微分等基本运 算电路的功能;
- 3 了解集成运放在实际应用时应考虑的一些问题。

一、集成运放的电路符号和特性

- (1) 输入阻抗 $Z_{in} \rightarrow \infty$
- (2) 输出阻抗 $Z_{out} \rightarrow 0$

(3)
$$u_o = A_{od}(u_+ - u_-)$$

 $A_{od} \rightarrow \infty$

(4) 模拟运算电路特征: 深度电压负反馈

◆虚断:
$$i_{+} = i_{-} = 0$$

二、741集成运放的管脚图和主要性能参数

差动 增益	输入 阻抗	CMRR		输入失调电流	输入失调电压	特征 频率
2×10^5	$>2M\Omega$	90dB	75Ω	200nA	1~5mV	1MHz

1. 反相比例运算电路

图6-1 反相比例运算电路

2. 反相加法电路

图6-2 反相加法运算电路

3. 同相比例运算电路

图6-3 同相比例运算电路

$$U_o = (1 + \frac{R_F}{R_1})U_i$$

当
$$R_1 = \infty$$
或者 $R_F = 0$

4. 差动放大电路(减法器)

$$U_{o} = \frac{R_{F}}{R_{1}}(U_{i2} - U_{i1})$$

5. 积分运算电路

图6-5 反相积分运算电路

$$u_o(t) = -\frac{1}{RC} \int_0^t u_i dt + u_c(0)$$

6. 微分运算电路

图6-6 反相微分运算电路

$$u_o(t) = -R_F C \frac{du_i}{dt}$$

实验原理 6. 微分电路

由于电容C的容抗随输入信号的频率升高而减小,导致输出电压随频率的升高而增加,为限制电路的高频电压增益,在输入端与电容C之间接入一小电阻 R_1 ,当输入频率小于

 $f_i = \frac{1}{2\pi R_i C}$ 时,电路起微分作用;若输入频率远高于 f_i 时,电路近似一个反相放大器。 R_i

运算放大器好坏的检查

接成电压跟随器,电路如下图所示。

当万用表上电压 $u_2 = 2V$ 时,表示集成运算放大器是好的,反之就坏了,需更换芯片。

实验内容

1. 反相比例运算电路

按图6-1正确连线。输入f=500Hz, $U_i=0.5V$ (有效值)的正弦交流信号,用毫伏表测量 U_i 、 U_0 有效值,并观察 u_0 和 u_i 的相位关系,将结果记入表6-1。

表6-1 U_i=0.5V(有效值),f=500Hz

U _i (V)	U _o (V)	u _i 与u _o 波形	Au	
			实测值	计算值
	807			

实验内容 2. 反相加法运算电路

按图6-2接线,U_{i1}和U_{i2}采用直流稳压电源输入,用万用表DCV档测量U_{i1}和U_{i2}及输出电压V_o,将结果记入表6-2中。

表6-2

$U_{i1}(V)$	0.1	0.3	-0.1	-0.3
$U_{i2}(V)$	0.2	0.6	-0.2	-0.6
$U_{0}(V)$				

实验内容 3. 同相比例运算电路

接图6-3正确连线。输入f=500Hz, $U_i=0.5V$ (有效值)的正弦交流信号,用毫伏表测量 U_i 、 U_0 有效值,并观察 u_0 和 u_i 的相位关系,将结果记入表6-3。

表6-3 U_i=0.5V(有效值), f=500Hz

$U_i(V)$	U _o (V)	u _i 与u _o 波形	Au	
			实测值	计算值

实验内容 4. 差动放大电路(减法器)

按图6-4正确连接实验 电路,U_{i1}和U_{i2}采用直流稳 压电源输入,用万用表测 量U_{i1}和U_{i2}及输出电压U_o, 注意U_{i1}和U_{i2}输入不能过大, 防止U_o进入饱和区,将测 量结果记入表6-4中

表6-4

$U_{i1}(V)$	1	2	-1	-2
$U_{i2}(V)$	0.5	1.7	-0.5	-1.7
$U_{\mathbf{O}}(\mathbf{V})$				

实验内容 5. 积分运算电路

按积分电路如图6-5所示正确连接电路,取频率f 为100Hz,峰峰值为2V的方波作为输入信号u_i,用示 波器测量并记录u_i,u_o 波形,计算理论的u_{opp},进行 误差计算和分析。

实验内容

6. 微分电路

按图6-7微分电路所示 正确连接。输入三角波 信号 u_i 的频率为f=1kHz, 峰峰值为 2V, 用示波器 观察并定量画出输入、 输出波形。理论计算, 误差计算和分析。B单频, 波形选择数字2,按OK, 从CHB输出三角波。

补充思考题

设计一个能实现下列运算关系的运算电路。(<mark>运放数≤2</mark>) 已知条件如下:

$$(1) \quad U_o = 2U_{11} + U_{12} - 3U_{13}$$

(2)
$$U_o = 2U_{11} - 3U_{12}$$

课后思考题

- 1. 如何判断集成运算放大器的好坏?为了不损坏集成运算放大器,实验中应注意什么问题?
- 2. 在反相加法运算电路6-2中,如果U_{i1}和U_{i2}均采用直流信号,并选定U_{i2}=-1V,考虑到运算放大器的最大输出幅度为±12V,U_{i1}的绝对值不应超过多少伏?
- 3. 在积分运算电路图5-5中,分析电阻R_f的作用,说明R_f的精度对积分电路的精度有何影响?

下次实验:负反馈放大器(101室)

或 考试(112室)