基礎情報処理 Information Processing Basics

第3回目 論理回路からコンピュータまで1

2004年10月21日(木)

高等教育研究開発推進センター 小山田耕二

代講:酒井晃二

Outline

- 1. コンピュータとはなにか
- 2. ディジタル情報の世界
- 3. 論理回路からコンピュータまで1
- 4. 論理回路からコンピュータまで2
- 5. プログラム基礎1
- 6. プログラム基礎2
- 7. データ構造とアルゴリズム1
- 8. データ構造とアルゴリズム2
- 9. コンピュータネットワーク
- 10.情報倫理
- 11.さまざまな情報処理
- 12.コンピュータ科学の諸問題

3. 論理回路からコンピュータまで

- 3.1 論理代数と論理回路
 - 3.1.1 論理代数
 - 3.1.2 論理代数と真理値表
 - 3.1.3 論理回路
- 3.2 組合せ回路設計
 - 3.2.1 論理回路の実現と簡単化
 - 3.2.2 加算基本回路
- 3.3 順序回路とハードウェア
 - 3.3.1 フリップフロップ
 - 3.3.2 順序回路
 - 3.3.3 コンピュータの状態モデル

3.1 論理代数と論理回路

- 3.1.1 論理代数
- 3.1.2 論理代数と真理値表
- 3.1.3 論理回路

3.1.1 ブール代数

Boolean algebra

デジタル回路の設計には必須の知識である。デジタル回路は、電圧の H(High), L(Low) のみで情報を演算するため、基本的に<u>組み合わせ回路</u>はブール代数における<u>論理式</u>で書き表わすことができる(ただし、<u>フリップフロップ</u>等を用いた<u>順序回路</u>は、単純に一つの<u>論理式</u>で表わすことはできない)。

ブール代数の基本演算(**論理演算**)は <u>論理否定 ¬(not)、論理和</u> (or)、<u>論理積</u> (and) の3つから成る。 これらの合成から作られる演算で代表的なものに<u>排他的論理和</u> (xor) がある。

ブール代数をブール束と呼ぶのは、、について分配的な束となるからである。

つまり次の条件が満たされるは

巾等律: $x \quad x = x \quad x = x$ 、

交換律:x y = y x, x y = y x、

結合律: $(x \quad y) \quad z = x \quad (y \quad z) \ (x \quad y) \quad z = x \quad (y \quad z) \ .$

吸収律:(x y) x = x (x y) x = x

分配律: $(x \quad y) \quad z = (x \quad z) \quad (y \quad z), (x \quad y) \quad z = (x \quad z) \quad (y \quad z)$ 。

さらに、ブール代数では次が成り立つは

恒真 1 と恒偽(矛盾) 0 とをもち、各元 x に対して元 ¬x が存在して、x ¬x=0, x ¬x=1 をみたす。

数学的にはこれらの条件を公理として、それを満たす集合を一般に、 ブール束あるいは**ブール代数**と呼ぶ。

http://ja.wikipedia.org/wiki/%E3%83%96%E3%83%BC%E3%83%AB%E4%BB%A3%E6%95%B0

3.1.1 ブール代数

Boolean algebra

ーブール代数と論理演算ー

ブール代数/論理代数の対象

0か1の値をとる論理変数

0 = 偽(false)

1 = 真(true)

論理演算

論理積(AND) 論理和(OR) 論理否定(NOT)

3.1.2 論理代数と真理値表

-集合論と論理演算-

ベン図(Venn diagram)

3.1.2 論理代数と真理値表

論理演算とベン図

Α

 $\overline{\mathsf{A}}$

 $A \cdot B$

A + B

 $A + \overline{B}$

Α	Ā
0	
1	

A	В	A٠E
0	0	
0	1	
1	0	
_1	1	

Α	В	A + B
0	0	
0	1	
1	0	
1	1	

Α	В	B	A + E
0	0		
0	1		
1	0		
1	1		

3.1.2 論理代数と真理値表

論理代数と集合論は同一の体系である

De Morgan's law

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

真理値表(truth table)

A	В	A+B	Ā+B	_	Α	В	A	В	$\overline{A} \cdot \overline{B}$
0	0	0			0	0	1	1	
0	1	1			0	1	1	0	
1	0	1			1	0	0	1	
1	1	1			1	1	0	0	

3.1.3 論理回路

Logical circuit

論理ゲート(logic gate)

MOS (metal oxide semiconductor) トランジスタ

(参考)トランジスタの仕組み

3.1.3 論理回路

Logical circuit

NANDゲートとNORゲート

3.1.3 論理回路

Logical circuit

CMOS (complementary MOS) トランジスタ

高速で省電力

NOT

NAND

NOR

3.2 組合せ回路設計

Combinational circuit design

- 3.2.1 論理回路の実現と簡単化
- 3.2.2 加算基本回路

3.2.1 論理回路の実現と簡単化

論理ゲート記号

3.2.1 論理回路の実現と簡単化

組合せ回路(combinational circuit)

多数決決定の真理値表

\overline{A}	В	C	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
0	1	1	
1	1	0	
1	1	1	
	1	1	

多数決決定の回路例

$$X = ABC + \overline{ABC} + A\overline{BC} + AB\overline{C} = M(A,B,C)$$

3.2.1 論理回路の実現と簡単化

簡単化された多数決決定回路

3.2.2 加算基本回路

加算の真理値表 (半加算器)

\overline{A}	В	S	C
0	0		
0	1		
1	0		
1	1		

S:和(sum) C:桁上がり(carry)

論理関数

$$S = A\overline{B} + \overline{A}B$$

$$C = AB$$

Sの実現

下桁からの桁上がりを考慮していない(半加算)

3.2.2 加算基本回路

加算の真理値表 (全加算器)

$\overline{A_i}$	\boldsymbol{B}_{i}	C_{i-1}	S_i	C_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

論理関数

$$S_i = A \oplus B \oplus C$$
$$C_i = M(A, B, C)$$

全加算器回路 Full adder

自動車産業におけるIT化

開発、生産でプロセスを効率化

http://www.mitsubishi-motors.co.jp/

自動車メーカーを取り巻く 状況の変化とIT活用の関係

自動車メーカーの市販CAD導入状況

デジタルモックアップの活用

マツダ「アテンザ」の例

出所:http://www.atenza.mazda.co.jp/sport/

出所:http://www.atenza.mazda.co.jp/sport/spec3.html

日経デジタルエンジニアリング 2002 年 10 月号 p87 図 2(C)

人間工学の応用

マツダが「アテンザ」のドア操作感の品質向上で取り組んだ

日経デジタルエンジニアリング 2002 年 10 月号 p97 図 2

「Jack」

日産自動車がフェアレディZの開発で活用した人体モデル

日経デジタルエンジニアリング 2002 年 10 月号 p98 図 3

[THUMS]

豊田中央研究所の人体FEMモデル

出所:http://www.toyota-cs.com/data/pdf/thums_j.pdf

自動車メーカーの提携関係

情報システムに関する アウトソーシング

情報システム

の運用を日本 IBM

ヘアウトソ

ーシング。

三菱自動車

業務を日本 IBM ヘアウト

社内の情報システム部門

は「一企画業務へ集中。

日本国内における情報システムの保守 / 運用業務と一部の開発

マツダ

2001年 5月

今後 10 年間 マツダグループにおけるネッ

トワー

クサービスの

構築に関して日本テレコムと提携。

ホンダ

ル向上を目指す。

対象は業務系の管理システム

(生産や販売、

専門スキ

CAD/CAM/CAE を中心とした開発プロセス系

システム部門のリソースをシステム開発へ集中させ、

システムは含まれない

会計など)、

2000年10月

システム企画。

開発は両者の技術者が共同で参画。社内の情報

日産自動車

マツダ

2000年10月

社内の情報システム部門は企画。新規システム開発に専念。

情報システムの保守 / 運用業務を日本 IBM ヘアウトソーシング。

2000年

1999年

情報システムの開発保守運用業務の大部分を日本 IBM

アウトソーシング。社内の情報システム部門は研究・

開発領域のIT化の戦略・立案以外へ注力。

インターネットプロトコル

(IP) を活用した次世代情報通信ネット

-ビスの構築に関して日本テレコムと提携。

今後のIT活用

自動車メーカーおよび自動車部品メーカーに求められる

小テスト(氏名:

(1)下記の多数決回路について、真理値表を完成させよ。

\overline{A}	В	C	X
0	0	0	
0			
0			
0			
1			
1			
1			
1	1	1	

(2)講義に関する感想等を述べよ。