

Fundação Universidade Federal de Mato Grosso do Sul

Implementação Algorítmica Trabalho Avaliativo 2

Sophya Martins Ribeiro Soraya Dias Ferreira

INTRODUÇÃO

O presente relatório visa expor análises acerca de resultados dos testes de precisão e tempo de execução realizados com dois algoritmos de resolução do problema Corte da Tora, para a disciplina de Implementação Algorítmica. Nos testes, foram comparadas uma solução em programação dinâmica e outra com a estratégia gulosa. Todas as análises e os algoritmos foram desenvolvidos utilizando a linguagem Python com algumas bibliotecas, tais como Time — para leitura dos tempos iniciais e finais de execução —, Matplot — para gerar gráficos baseados nos dados obtidos —, numpy — para melhor visualização do gráfico — e random — direcionada aos números aleatórios da lista de preços.

Em todos os testes realizados é necessário considerar três parâmetros principais: INC e FIM — que referem-se consecutivamente à posição inicial e final para os vetores utilizados e, por fim, STP — que denota o passo, ou intervalo, em que serão registrados os tempos de execução.

O problema do corte da tora consiste em encontrar a melhor maneira de cortar uma tora de madeira em pedaços menores, de modo a maximizar o valor total obtido com a venda desses pedaços. Cada pedaço tem um valor associado, e a tarefa é determinar onde fazer os cortes para alcançar o maior retorno possível. Neste trabalho foram considerados dois algoritmos para resolver esse problema: um utilizando programação dinâmica *bottom up*, que examina todas as opções possíveis para garantir a solução ótima; outro fazendo uso da abordagem gulosa, que toma decisões localmente ótimas, isto é, escolhendo sempre os cortes com maior densidade, o que não garante que o resultado final será o melhor possível. Esses algoritmos são comparados tanto em termos de tempo de execução quanto no valor total obtido com a venda das toras cortadas.

Fundação Universidade Federal de Mato Grosso do Sul

INSTRUÇÕES PARA EXECUTAR O PROGRAMA

Para executar os programas, é necessário que a máquina tenha o Python 3 instalado e seja instalada a biblioteca matplotlib por meio do comando "pip install -U matplotlib", conforme documentação da ferramenta. Tendo isso, basta escolher um ambiente de desenvolvimento integrado e abrir a pasta do projeto. Para realizar os testes considerando os parâmetros explicados anteriormente, basta rodar o arquivo main.py e inserir as entradas solicitadas no terminal.

ALGORITMOS

Os vetores de preços foram gerados aleatoriamente por meio da função "gerar_precos(n: int) -> list", que cria uma lista de tamanho n, na qual cada elemento é um número inteiro positivo aleatório, gerado pela função random.randint(1, n). Essa abordagem permite gerar valores dentro do intervalo [1, n]. O valor superior variou em n, 2*n, 3*n ou até 4*n para tentar obter maior variação entre as soluções.

A solução dinâmica consiste em aplicar o método *bottom-up* da programação dinâmica para encontrar o valor máximo possível de venda. A ideia é construir uma tabela de soluções parciais de forma incremental, armazenando os melhores resultados de cortes já realizados e reutilizando-os para calcular cortes maiores. No código, temos uma lista chamada *storage*, que guarda os valores máximos obtidos para cada tamanho de tora, desde o tamanho 0 até o tamanho total da tora. Para cada comprimento, a solução mais lucrativa é calculada testando diferentes pontos de corte e somando o valor do pedaço cortado ao valor já otimizado do restante. Ao final, a tabela contém a melhor solução para o tamanho total da tora, que é o valor retornado. Com isso, garantimos que todas as combinações possíveis de cortes são consideradas, e o valor máximo de revenda é obtido de forma eficiente.

Já a solução gulosa que usamos busca sempre a tora que tem o melhor custo-benefício em relação ao tamanho. Em vez de calcular todas as possibilidades, ela vai direto na escolha que parece mais vantajosa naquele momento, comparando o valor por unidade de tamanho das toras e considerando aquela que traz mais retorno por centímetro. Diferente da solução dinâmica, que considera todas as combinações de cortes possíveis, o algoritmo guloso não garante que a solução encontrada será a máxima, mas tenta obter um valor alto com base em decisões imediatas. É uma abordagem mais simples e rápida, mas pode resultar em um valor de revenda inferior ao da solução dinâmica, que otimiza globalmente.

Fundação Universidade Federal de Mato Grosso do Sul

RESULTADOS OBTIDOS

Nesta seção serão apresentados os resultados obtidos para cada parâmetro escolhido, considerando o gráfico de tempo de execução entre as duas soluções e o gráfico dos valores de quantidade máxima de venda obtidos. Para o primeiro teste, foram considerados os parâmetros explícitos na tabela 1, para o segundo teste, os da tabela 2 e assim por diante. A linha alaranjada do gráfico com nome Greedy refere-se ao algoritmo guloso, enquanto que a linha azul com nome Dynamic Programming refere-se à solução dinâmica.

Tabela 1 - Parâmetros para realização do teste 1

Teste 1					
Parâmetros	INC	FIM	STP		
Valores	1000	20000	1000		

Fonte: autoras, 2024.

Como pode ser observado no Gráfico 1 abaixo, o algoritmo guloso é mais eficiente que o dinâmico. No entanto, a despeito disso, ele não pode ser considerado melhor, uma vez que seu resultado não é 100% correto em todos os casos, ou seja, ele é ineficaz.

É importante explicitar que, no Gráfico 2, que demonstra a comparação dos totais de venda, pode parecer que somente o Dynamic Programming foi representado, todavia isso se deve ao fato de que o Greedy errou raramente e, quando errou, teve uma porcentagem de acerto sempre igual ou superior a 99%. o que dificulta a visualização gráfica das discrepâncias.

Fundação Universidade Federal de Mato Grosso do Sul

Gráfico 1 - Tempos obtidos no teste 1

Fonte: autoras, 2024.

Gráfico 2 - Quantidade de vendas obtidas no teste 1

Tabela 2 - Parâmetros para realização do teste 2

Teste 2					
Parâmetros	INC	FIM	STP		
Valores	1000	10000	1000		

Fonte: autoras, 2024.

Nos próximos testes, conforme os parâmetros aumentaram, o comportamento de ambas as operações prosseguiram seguindo o que era previsto.

Gráfico 3 - Tempos obtidos no teste 2

Gráfico 4 - Quantidade de vendas obtidas no teste 2

Fonte: autoras, 2024.

Tabela 3 - Parâmetros para realização do teste 3

Teste 3					
Parâmetros	INC	FIM	STP		
Valores	10000	100000	10000		

Gráfico 5 - Tempos obtidos no teste 3

Fonte: autoras, 2024.

Gráfico 6 - Quantidade de vendas obtidas no teste 3

Fundação Universidade Federal de Mato Grosso do Sul

CONSIDERAÇÕES FINAIS

Neste relatório, foram analisados os tempos de execução e os resultados esperados quanto ao valor total de vendas do problema do corte da tora utilizando uma solução gulosa e uma solução dinâmica. Os resultados saíram de acordo com o esperado. A solução gulosa, porém, surpreendeu, pois foi capaz de encontrar a exata solução em quase todos os casos de teste, e a porcentagem de aproximação dos totais de venda dela não esteve abaixo de 99% em nenhum momento.

Fundação Universidade Federal de Mato Grosso do Sul

REFERÊNCIAS

MATPLOTLIB. *User guide*. Disponível em: https://matplotlib.org/stable/users/index. Acesso em: 05 set. 2024.

HIGA, Carlos. Slides da Disciplina. Apresentações. Disponível em: https://ava.ufms.br/course/view.php?id=61684. Acesso em 08 set. 2024.