Machine Learning for Economists and Business Analysts

Trees and Forests

Anthony Strittmatter

Literature

- ▶ James, Witten, Hastie, and Tibshirani (2013): "An Introduction to Statistical Learning", Springer, download, Chapters 4.1-4.2 and 8.
- ► Hastie, Tibshirani, and Friedman (2009): "Elements of Statistical Learning", 2nd ed., Springer, download, Chapter 9.2.

Tree

- ▶ Trees partition the sample into mutually exclusive groups l_j , which are called leaves.
- Let $\pi = \{l_1, ..., l_{\#(\pi)}\}$ be the terminal leaves of a specific tree or sample partition.
- ▶ Let $l_i \equiv l_i(x, \pi)$ be the respective leaf (for $j = 1, ..., \#(\pi)$).
- ▶ The leaf $I_j(x,\pi)$ of tree π is a function of the covariates X such that $x \in I_i$.
- Let $\#(\pi)$ be the number of terminal leaves in tree π .

Example: Shallow Tree

Log Salary of Baseball Players

Example: Shallow Tree (cont.)

Recursive Partitioning

- ► Trees select the leaves with a top-down, greedy algorithm, which is called *recursive partitioning*.
- Top-down because we start with a root (tree without leaves) and successively add splits.
- Greedy because at each step of the tree building we add the split that improves the prediction power best (instead of looking ahead).

Tree Building Algorithm

- (1) Start with the entire sample (root).
- (2) For each predictor X_j and cut-point s define the pair of half-planes

$$I_1^{(j,s)} = \{X | X_j < s\} \text{ and } I_2^{(j,s)} = \{X | X_j \ge s\}.$$

- ightharpoonup Calculate the mean outcomes \bar{Y}_1 and \bar{Y}_2 in each half-plane, respectively.
- ▶ Seek the covariate X_{i1}^* and the cut-point s_1^* that minimise

$$\sum_{i:X_i \in I_1^{(j,s)}} (Y_i - \bar{Y}_1)^2 + \sum_{i:X_i \in I_2^{(j,s)}} (Y_i - \bar{Y}_2)^2.$$

Tree Building Algorithm (cont.)

(2) For each predictor X_i and cut-point s define the triple of half-planes

$$l_1^{(j,s)} = \{X|X_{j1}^* < s_1^*, X_j < s\}, \ l_2^{(j,s)} = \{X|X_{j1}^* < s_1^*, X_j \geq s\}, \ \text{and} \ l_3^{(j,s)} = \{X|X_{j1}^* < s_1^*, X_j \geq s\}, \ \text{and} \ l_3^{(j,s)} = \{X|X_{j1}^* \geq s_1^*\}$$

and

$$l_1^{(j,s)} = \{X|X_{j1}^* \geq s_1^*, X_j < s\}, \ l_2^{(j,s)} = \{X|X_{j1}^* \geq s_1^*, X_j \geq s\}, \ \text{and} \ l_3^{(j,s)} = \{X|X_{j1}^* < s_1^*\}.$$

- Calculate the mean outcomes \bar{Y}_1 , \bar{Y}_2 , and \bar{Y}_3 in each half-plane, respectively.
- Seek the covariate X_{i2}^* and the cut-point s_2^* that minimise

$$\sum_{i:X_i \in I_i^{(j,s)}} (Y_i - \bar{Y}_1)^2 + \sum_{i:X_i \in I_2^{(j,s)}} (Y_i - \bar{Y}_2)^2 + \sum_{i:X_i \in I_2^{(j,s)}} (Y_i - \bar{Y}_3)^2.$$

(3) Continue until some stopping rule is reached (e.g., max. tree size, min. terminal leave size, min. MSE gain).

"Deep" Tree

Selecting Optimal Tree Size

- \rightarrow Pruning the complexity of trees can improve out-of-sample prediction power.
- ightarrow Select optimal tree size π with cross-validation.

Complexity Pruning

- (A) Use recursive partitioning to grow the deep tree π_0 in the training data.
- (B) For each value of α a subtree $\pi \subseteq \pi_0$ minimises

$$\sum_{j=1}^{\#(\pi)} \sum_{i:X_i \in I_j} (Y_i - \bar{Y}_j)^2 + \alpha \#(\pi). \tag{1}$$

Obtain a sequence of best subtrees.

- (C) Use cross-validation to choose α . Partition the sample in k folds. For each fold:
 - (a) Repeat steps (A) and (B) excluding the kth-fold.
 - (b) Evaluate the MSE using equation (1) in the kth-fold.
 - (c) Average the MSE across the k folds for each value of α and select the α that minimises the average MSE.
- (D) Return to the subtree from (B) with the selected value of α .

Prediction

 \blacktriangleright For the selected tree π^* use the estimation sample to predict

$$\widehat{Y}_i = \frac{1}{\sum_{j=1}^{\#(\pi^*)} \sum_{i=1}^{N} 1\{X_i \in I_j(x, \pi^*)\}} \sum_{j=1}^{\#(\pi^*)} \sum_{i=1}^{N} 1\{X_i \in I_j(x, \pi^*)\} \cdot Y_i.$$

► This is equivalent to the linear regression

$$\min_{\beta} \sum_{i=1}^{N} \left(Y_i - \sum_{j=1}^{\#(\pi^*)} 1\{X_i \in I_j(x, \pi^*)\} \beta_j \right)^2.$$

Advantages and Disadvantages of Trees

Advantages:

- Shallow trees are very easy to understand.
- Shallow trees can be displayed graphically in a nice way.
- ▶ Trees automatically handle interactions between covariates.
- It is not necessary to transform covariates as long as they have an order.

Disadvantages:

Often trees are unstable and have a high variance.

Bootstrap Sampling

- ▶ We observe a sample $\{Y_i, X_i\}_{i=1}^N$ with size N
- ► Bootstrap algorithm:
 - 1. Draw randomly *N* observations with replacement from the original sample
 - 2. Estimate \hat{Y}_i^b in the "bootstrapped" sample b with a tree
 - 3. Repeat 1. and 2. B times
- ▶ We obtain B estimates $\widehat{Y}_i^1, \widehat{Y}_i^2, ..., \widehat{Y}_i^B$

Subsampling

- ▶ We observe a sample $\{Y_i, X_i\}_{i=1}^N$ with size N
- ► Subsampling algorithm:
 - 1. Draw randomly M < N observations without replacement from the original sample
 - 2. Estimate \hat{Y}_i^s in the subsample s with a tree
 - 3. Repeat 1. and 2. S times
- ▶ We obtain S estimates $\widehat{Y}_i^1, \widehat{Y}_i^2, ..., \widehat{Y}_i^S$

Random Forests

- ▶ Build G deep trees π_g on different subsets of the data (subsampling or bootstrapping) and covariates.
 - → decorrelated trees
- ► These trees are overfitted in the sample and will have a high out-of-sample variance.
- ▶ To overcome this problem, we aggregate the trees

$$\widehat{Y}_i^{RF} = \frac{1}{G} \sum_{g=1}^G \widehat{Y}_i^{\pi_g}.$$

- ► This procedure is often called bootstrap-aggregation ("bagging").
- We loose interpretability but gain prediction power compared to (shallow) trees.
- ► Tuning parameters: Forest size, subsample selection, covariate selection, tree size, honest inference, etc.

Random Forest: Weighted Representation

Source: Athey, Tibshirani, Wager (2018)

Classification

Outcome variable is categorical:

- ► School degrees (ordered)
- Occupations (unordered)
- Credit default (binary dummy)
- \rightarrow In this lecture we consider binary dummies as outcome variable.

Example: Credit Default Risk

→ defaulted (orange crosses) and not defaulted (blue circles)

Example: Credit Default Risk

→ defaulted (orange) and not defaulted (blue)

Why not linear Regression?

Possible disadvantages of linear regression when outcome is binary:

► Predictions off-support:

- Linearity assumption violated by construction.
- ightharpoonup Heteroskedasticity ightharpoonup there exist more efficient estimators.

Why are Trees Suited for Binary Outcomes?

Advantages:

- Trees allow for non-linearities.
- ► Group averages cannot lie outside of support [0, 1].

Disadvantages:

 MSE is not optimal to select optimal complexity of "classification" trees.

	Estimator 1		Estimator 2	
Y	$\widehat{Pr}(Y=1)$	$(Y - \widehat{Pr}(Y = 1))^2$	$\widehat{Pr}(Y=1)$	$(Y - \widehat{Pr}(Y = 1))^2$
1	0.51	0.2401	0.49	0.2601
0	0.49	0.2401	0.01	0.0001
1	0.51	0.2401	0.99	0.0001
MSE		0.2401		0.0868

Alternatives to MSE

Node Purity:

► Gini-Index:

$$G=\sum_{j=1}^{\#(\pi)}\hat{p}_j(1-\hat{p}_j),$$

with $\hat{p}_j = \widehat{Pr}(Y = 1|I_j)$ and I_j indicating the terminal leaves for $j = 1, ..., \#(\pi)$.

Cross-Entropy:

$$D = -\sum_{i=1}^{\#(\pi)} \hat{p}_j log(\hat{p}_j).$$

- \rightarrow Both node purity measures are minimized when each terminal leave contains only observations with Y=1 or Y=0.
- \rightarrow We use one node purity measure for complexity pruning (α -pruning).

Classification Tree

