Guia de Machine Learning -Regressão Linear Simples Python

Resumo sobre Regressão Linear

A analise de regressão linear avalia a relação estatística entre uma ou mais variáveis. Vamos exemplificar ...

Variação de gasto com **Alimentação** x **Salário**

Concessão **limite** de cartão de crédito x **Salário**

Quando consideramos o efeito de duas ou mais variáveis, utilizamos a analise de regressão múltipla, exemplo:

Alimentação

Quando consideramos o efeito de apenas 1 variável, utilizamos a analise de regressão simples.

Para que serve uma regressão?

O modelo de regressão serve para prever comportamentos com base na associação entre duas variáveis que geralmente possuem uma boa correlação.

Onde utilizo essa regressão?

As aplicações são diversas !! Mas vamos exemplificar:

- ✓ Prever o valor de fechamento de uma ação na ibovespa;
- ✓ Produtividade de colaboradores de um call center;
- √ % de Desmatamento nos próximos anos;
- ✓ Previsão de faturamento.
- ✓ Muitos outros!

Observação: Estatística não é 100% assertiva, o papel dela é te direcionar.

Vamos importar as bibliotecas externas que iremos precisar

```
[18] # Biblioteca para modelagem de dados
import pandas as pd

# Biblioteca para recursos matemáticos
import numpy as np

# Biblioteca para recursos Graficos
import matplotlib.pyplot as plt
```

Vamos criar alguns dados fictícios para podemos usar nesse exemplo

```
[40] # Criando nossa base de dados
     # ----- Base de Preço de apartamentos Fictícia
    # Criando lista com os valores
    Metragem = [40, 45, 50, 55, 60, 62, 65, 70, 80, 90, 92,
                100, 110, 120, 150]
     Valor = [200, 280, 310, 350, 390, 410, 450, 490, 550, 620,
             670, 700, 750, 810, 989]
     # Organizando os valores em um Dicionário
     Dicionario = {
         'Metragem' : Metragem,
         'Valor Imovel' : Valor
     }
    # Lendo o Dicionário com o Pandas
     DataFrame = pd.DataFrame( data=Dicionario )
    # Verificando as primeiras linhas
     DataFrame.head()
```

	Metragem	Valor	Imovel
0	40		200
1	45		280
2	50		310
3	55		350
4	60		390

Vamos usar esses dados para prever o **valor de um apartamento**. Nesse exemplo criamos alguns dados fictícios para treinamos o modelo.

Vamos gerar um gráfico com 2 eixos para entender os dados

Nesse exemplo os dados foram forjados. É nítido que há uma correlação entre essas 2 variável. Quanto **maior a metragem** maior o **valor do imóvel**.

Vamos calcular a correlação

Vamos entender a tabela de correlação

Tabela de Correlação

A correlação pode ser **positiva** ou **negativa**, a escala vai de **1** a **-1**.

Quanto mais próximo de 1, há uma **correlação positiva**, ou seja, quando uma variável cresce a outra cresce.

Quanto mais próxima de -1, há uma correlação negativa, ou seja, quando uma variável cresce a outra diminui ou vice-versa.

No **nosso exemplo** a correlação ficou em 0.99, ou seja, há uma correlação muito forte entre o metragem vs preço.

Na regressão é sempre importante haver correlações fortes entre as variáveis.

Caso não haja, o modelo irá ter uma **dispersão muito grande**, e as previsões ficaram fora da realidade.

Ajustar os dados em uma matriz para serem inseridos no 'sklearn'

```
[44] # Convertendo o Eixo x para formato de Matriz
# -1 quer dizer para não mexer nas linhas,
# 1 quer dizer para incluir uma coluna
Eixo_x = Eixo_x.reshape(-1, 1)
```

Vamos treinar o modelo

```
[51] # Importando a biblioteca com os recursos da regressão linear
    from sklearn.linear_model import LinearRegression

# Definido uma variavel com os calculos estatisticos
Regressor = LinearRegression()

# Passando os dados para treinar o modelo
Regressor.fit( Eixo_x, Eixo_y )

# Identificando o b0 e b1 - Referencia da formula da regressão line
B1 = Regressor.coef_ # Coeficiente
B0 = Regressor.intercept_ # Constante

# Mostrando os valores
print('B0 =', B0, '\n', 'B1 =', B1[0] )

B0 = -32.38752208173719
```

Formula da regressão linear

B1 = 7.110860244933606

Caso não tenha conhecimento sobre estatística, vou deixar um vídeo bem legal de como funciona essa formula.

https://www.youtube.com/watch?v=n--K70T6c3A&list=PLVGJZxcisYSGmqs4muOxEoiqUYWlAVmef&index=16

Vamos Calcular o score dessa regressão.

```
[52] # Calculando o score da regressão
Score = Regressor.score( Eixo_x, Eixo_y )
Score
```

0.9864540901286758

Esse score é diferente da correlação.

Porem a escala é bem similar, quanto mais próximo de 1 é melhor.

Vamos entender a reta que foi gerada pelo modelo

Avaliando o modelo.

Nessa previsão a **reta vermelha** ficou bem próxima dos dados, ou seja, o modelo teve uma ótima performance.

Lembrando que os dados são forjados. Nem sempre ficara dessa forma nos modelos rsrs.

Fazendo uma previsão

```
Um apartamento de: 50 metros
Usando o modelo para prever o valor, custaria: R$ 323.16
```

Nesse exemplo acima, fizemos uma previsão de um valor de uma apartamento de 50 metros.

Nos nossos dados um aparamento de 50 metros custava 310. O modelo previu 323.

Ressalto que estatística não é 100% assertiva. Ela é diretiva.

Final

Esse guia é um exemplo de uma regressão linear simples.

Guia da documentação caso queira mais detalhes

https://scikit-

learn.org/stable/modules/generated/sklearn.linear model.LinearRegression.html

Odemir Depieri Jr

Software Engineer Sr Tech Lead Specialization Al