자동차 연비 예측

학습 목표

• 회귀 예시로 자동차 연비를 예측하는 신경망 모델을 만들어 본다.

주요 내용

- 1. 문제 정의
- 2. 데이터 준비
- 3. 모델 정의 및 훈련, 검증

https://www.tensorflow.org/tutorials/keras/regression

1 문제 정의

자동차 연비 예측

1970년대 후반과 1980년대 초반의 자동차 연비를 예측하는 모델

Auto MPG 데이터셋

- 이 기간에 출시된 자동차 정보 제공
- 398개 인스턴스, 8개 속성

https://archive.ics.uci.edu/ml/datasets/auto+mpg

속성	타입	설명
MPG	continuous	갤런 당 마일수
Cylinders	multi-valued discrete	실린더 수
Displacement	continuous	배기량
Horsepower	continuous	마력
Weight	continuous	공차 중량
Acceleration	continuous	가속
Model Year	multi-valued discrete	모델 연식
Origin	multi-valued discrete	제조국
Car name	string	차량 이름

Network 구성

- Missing Value 제거
- Origin One Hot Vector로 변경
- Normalization

• 9차원 입력 벡터

- 2-hidden layers
- 64 neurons
- Hidden unit의 activation은 relu

2 데이터 준비

패키지 설치

산점도 행렬을 그리기 위해 seaborn 패키지를 설치합니다 !pip install -q seaborn

6

텐서플로와 다른 라이브러리 임포트

```
from __future__ import absolute_import, division, print_function, unicode_literals, unicode_literals
import pathlib
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
print(tf.__version__)
```

1.14.1-dev20190524

Auto MPG 데이터셋

dataset_path = keras.utils.get_file("auto-mpg.data", "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data")

dataset_path

'/home/kbuilder/.keras/datasets/auto-mpg.data'

Pandas로 데이터 읽기

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin
393	27.0	4	140.0	86.0	2790.0	15.6	82	1
394	44.0	4	97.0	52.0	2130.0	24.6	82	2
395	32.0	4	135.0	84.0	2295.0	11.6	82	1
396	28.0	4	120.0	79.0	2625.0	18.6	82	1
397	31.0	4	119.0	82.0	2720.0	19.4	82	1

pandas 데이터 구조

테이블 형태의 데이터 구조

이름이 있는 Column

		MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin
	393	27.0	4	140.0	86.0	2790.0	15.6	82	1
	394	44.0	4	97.0	52.0	2130.0	24.6	82	2
Index를 갖는 Row →	395	32.0	4	135.0	84.0	2295.0	11.6	82	1
	396	28.0	4	120.0	79.0	2625.0	18.6	82	1
	397	31.0	4	119.0	82.0	2720.0	19.4	82	1

Column 이름으로 Query가 가능 (data['Horsepower'])

DataFrame

• Column들로 이뤄진 데이터 구조로 Column마다 데이터 타입이 다를 수 있음 (Column 또는 Row는 Series 객체로 관리)

10

• Column은 Name으로 Row는 Index로 접근

pandas Column 이름으로 조회

<u>컬럼 이름으로 조회</u>

dataset['MPG']

18.0

1	15.0
2 3	18.0 16.0
4	17.0
393 394 395 396	27.0 44.0 32.0 28.0
397	31.0
	51.0

Name: MPG, Length: 398, dtype: float64

여러 컬럼 조회 칼럼 이름을 리스트로 명시

11

dataset[['MPG', 'Weight']]

	MPG	Weight
1	18.0	3504.0
2	15.0	3693.0
3	18.0	3436.0
4	16.0	3433.0
•••		•••
393	27.0	2790.0
394	44.0	2130.0
395	32.0	2295.0
396	28.0	2625.0
397	31.0	2720.0

398 rows × 2 columns

pandas Column 조건 검색

여러 조건으로 행 선택

dataset[(dataset['Origin']==2) & (dataset['Horsepower']>70)].head(4)

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin
20	25.0	4	110.0	87.0	2672.0	17.5	70	2
21	24.0	4	107.0	90.0	2430.0	14.5	70	2
22	25.0	4	104.0	95.0	2375.0	17.5	70	2
23	26.0	4	121.0	113.0	2234.0	12.5	70	2

- 차량 제조국이 Europe이고 마력이 70이상인 차량 선택
- head()는 default로 처음 5개 항목을 반환, tail()은 default로 마지막 5개 항목을 반환

12

pandas Row Index로 조회

<u>인덱스 위치를 지정해서 행 선택 (iloc 함수)</u>

인덱스 위치

dataset.iloc[:5]

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin
0	18.0	8	307.0	130.0	3504.0	12.0	70	1
1	15.0	8	350.0	165.0	3693.0	11.5	70	1
2	18.0	8	318.0	150.0	3436.0	11.0	70	1
3	16.0	8	304.0	150.0	3433.0	12.0	70	1
4	17.0	8	302.0	140.0	3449.0	10.5	70	1

- iloc는 인덱스 위치에 대해 실행
- 그외 ix(), loc() : 인덱스 레이블을 지정할 수도 있음

13

pandas 행 & 열 추가/삭제, 누락 데이터 제거

<u>새로운 이름으로 열 추가</u>

dataset['USA'] = 1

drop 함수로 행 삭제

dataset = dataset.drop('Origin', axis=1)

axis=0은 row, 1은 column

drop 함수로 열 삭제

dataset = dataset.drop(Row_Index, axis=0)

axis=0은 row, 1은 column

<u>누락 데이터 조회</u>

dataset.isna()

누락 데이터 개수 합산

dataset.isna().sum()

<u>누락 데이터 제거</u>

dataset = dataset.dropna()

14

pandas 데이터 샘플링

<u>샘플 개수로 지정</u>

dataset.sample(n=5000, random_state=0)

샘플 비율로 지정

dataset.sample(frac=0.8, random_state=0)

Seed for the random number generator (if int), or numpy RandomState object.

15

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html

pandas Series 연산

Series는 같은 이름을 갖는 항목끼리 연산, 같은 원리도 DataFrame도 이름을 매칭해서 연산

```
student1 = pd.Series({'국어':100, '영어':80,'수학':90})
student2 = pd.Series({'수학':80, '국어':90, '영어':80})
print(student1)
print('\n')
print(student2)
```

```
[Output]
국어 100
영어 80
수학 90
dtype: int64
수학 80
국어 90
영어 80
dtype: int64
```

```
[Output]
            국어
                           영어
                    수학
덧셈
      190.000000
                  170.000
                          160.0
뺄셈
       10.000000
                  10.000
                            0.0
    9000.000000 7200.000 6400.0
나눗셈
        1.111111
                    1.125
                            1.0
```

데이터 전처리 (문제)

17

누락 데이터 확인 : dataset.isna() 누락 데이터 제거 : dataset.drop()

Origin 1은 USA, 2는 Europe, 3은 Japan

dataset.sample(), dataset.drop() 사용

dataset.pop() 사용

표준정규분포 정규화
$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0,1)$$

누락 데이터 확인 및 제거 (문제)

누락된 데이터 확인

```
# 누락 데이터 확인은 dataset.isna()로 확인
# your code
MPG
Cylinders
Displacement
Horsepower
Weight
Acceleration
Model Year
Origin
dtype: int64
```

누락된 행을 삭제

your code

Origin을 One-Hot Vector로 변환

누락된 데이터 열은 수치형이 아니고 범주형이므로 원-핫 인코딩(one-hot encoding)으로 변환

```
origin = dataset.pop('Origin')
dataset['USA'] = (origin == 1)*1.0
dataset['Europe'] = (origin == 2)*1.0
dataset['Japan'] = (origin == 3)*1.0
dataset.tail()
```

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	USA	Europe	Japan
393	27.0	4	140.0	86.0	2790.0	15.6	82	1.0	0.0	0.0
394	44.0	4	97.0	52.0	2130.0	24.6	82	0.0	1.0	0.0
395	32.0	4	135.0	84.0	2295.0	11.6	82	1.0	0.0	0.0
396	28.0	4	120.0	79.0	2625.0	18.6	82	1.0	0.0	0.0
397	31.0	4	119.0	82.0	2720.0	19.4	82	1.0	0.0	0.0

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

19

데이터셋 분할 (문제)

데이터셋을 훈련 세트와 테스트 세트로 분할 (Hint : dataset.sample(), dataset drop() 사용)

train_dataset = # your code
test_dataset = # your code

데이터 조사하기

산점도 행렬로 데이터 분포 및 상관성 조사

```
sns.pairplot(train_dataset[["MPG",
    "Cylinders", "Displacement", "Weight"]],
diag_kind="kde")
```

kde: Use kernel density estimates for univariate plots:

데이터 통계

```
train_stats = train_dataset.describe()
train_stats.pop("MPG")
train_stats = train_stats.transpose()
train_stats
```

	count	mean	std	min	25%	50%	75%	max
Cylinders	314.0	5.477707	1.699788	3.0	4.00	4.0	8.00	8.0
Displacement	314.0	195.318471	104.331589	68.0	105.50	151.0	265.75	455.0
Horsepower	314.0	104.869427	38.096214	46.0	76.25	94.5	128.00	225.0
Weight	314.0	2990.251592	843.898596	1649.0	2256.50	2822.5	3608.00	5140.0
Acceleration	314.0	15.559236	2.789230	8.0	13.80	15.5	17.20	24.8
Model Year	314.0	75.898089	3.675642	70.0	73.00	76.0	79.00	82.0
USA	314.0	0.624204	0.485101	0.0	0.00	1.0	1.00	1.0
Europe	314.0	0.178344	0.383413	0.0	0.00	0.0	0.00	1.0
Japan	314.0	0.197452	0.398712	0.0	0.00	0.0	0.00	1.0

레이블 분리 (문제)

레이블 분리

```
# dataset.pop() 사용
train_labels = # your code
test_labels = # your code
```

데이터 정규화

표준정규분포 데이터 정규화

```
def norm(x):
    return (x - train_stats['mean']) / train_stats['std']

normed_train_data = norm(train_dataset)
normed_test_data = norm(test_dataset)
```

참고 DataFrame 연산

DataFrame과 Series는 같은 이름을 가진 항목끼리 연산

train_dataset = {'MPG': {...}, 'Cylinders': {....}, ..., 'Weight' " {...}, ...} DataFrame은 Column들의 Series를 갖는 Series이다!

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin	
393	27.0	4	140.0	86.0	2790.0	15.6	82	1	
394	44.0	4	97.0	52.0	2130.0	24.6	82	2	
395	32.0	4	135.0	84.0	2295.0	11.6	82	1	$X - \mu$
396	28.0	4	120.0	79.0	2625.0	18.6	82	1	$Z = \frac{1}{2}$
397	31.0	4	119.0	82.0	2720.0	19.4	82	1	σ
									train_dataset - train_stats['mean']
train_s	stats = {	count': {}	, mean' : {},	.}					train_stats['std']

	count	mean	std	min	25%	50%	75%	max
Cylinders	314.0	5.477707	1.699788	3.0	4.00	4.0	8.00	8.0
Displacement	314.0	195.318471	104.331589	68.0	105.50	151.0	265.75	455.0
Horsepower	314.0	104.869427	38.096214	46.0	76.25	94.5	128.00	225.0
Weight	314.0	2990.251592	843.898596	1649.0	2256.50	2822.5	3608.00	5140.0
Acceleration	314.0	15.559236	2.789230	8.0	13.80	15.5	17.20	24.8
Model Year	314.0	75.8 <mark>9</mark> 8089	3.675642	70.0	73.00	76.0	79.00	82.0
USA	314.0	0.624204	0.485101	0.0	0.00	1.0	1.00	1.0
Europe	314.0	0.178344	0.383413	0.0	0.00	0.0	0.00	1.0

train_stats['mean'] = {''Cylinders' : {...}, 'Displacement' : {....}, ..., 'Weight' " {...}, ...}

train_stats['std'] = {''Cylinders' : {...}, 'Displacement' : {...}, ..., 'Weight' " {...}, ...}

3 모델 정의 및 훈련, 검증

Network 구성

- Missing Value 제거
- Origin One Hot Vector로 변경
- Normalization

• 9차원 입력 벡터

- 2-hidden layers
- 64 neurons
- Hidden unit의 activation은 relu

모델 (문제)

모델 정의

If the pandas object is dataframe then it returns columns

```
def build_model():
# input len(train_dataset.keys())
# hidden 64, hidden 64, output 1
model = keras.Sequential(#your code)

# RMSProp으로 Optimizer 생성, learning rate = 0.001
optimizer = #your code

# loss, optimizer, metric 설정
# metric은 'mean_absolute_error', 'mean_squared_error'로 설정
model.compile(#your code)
```

Fully Connected Network Hidden1 Hidden2 Input Output 64 64

모델 생성

model = build_model()

모델 확인

모델 구조 출력

model.summary()

```
Model: "sequential"
Layer (type) Output Shape Param #
dense (Dense) (None, 64)
                            640
dense_1 (Dense) (None, 64) 4160
dense_2 (Dense) (None, 1)
Total params: 4,865
Trainable params: 4,865
Non-trainable params: 0
```

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

29

모델 실행

훈련 전 10개 데이터에 대해 예측

```
example_batch = normed_train_data[:10]
example_result = model.predict(example_batch)
example_result
array([[ 0.45123982],
      [0.26063395],
      [-0.04244372],
     [0.65448815],
     [ 0.26905507],
     [0.12702759],
     [ 0.31641036],
     [ 0.1571908 ],
      [0.12432042],
      [ 0.20841858]], dtype=float32)
```

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

30

모델 훈련 (문제)


```
# 에포크가 끝날 때마다 점(.)을 출력해 훈련 진행 과정을 표시합니다
class PrintDot(keras.callbacks.Callback):
 def on_epoch_end(self, epoch, logs):
  if epoch % 100 == 0: print(")
  print('.', end=")
EPOCHS = 1000
# 1. PrintDot() Callback 추가
# 2. validation_split을 이용해서 validation set은 training set의 20%로 설정
#3. verbose=0로 설정해서 출력 없애기
history = model.fit(#your code)
```

모델 과정 시각화

모델 히스토리 테이블 출력

```
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
hist.tail()
```

	loss	mean_absolute_error	mean_squared_error	val_loss	val_mean_absolute_error	val_mean_squared_error	epoch
995	2.671277	1.040861	2.671277	8.136572	2.205987	8.136572	995
996	2.453449	1.026373	2.453449	9.190708	2.362641	9.190708	996
997	2.630218	1.022048	2.630218	8.589535	2.264779	8.589535	997
998	2.518478	1.019921	2.518478	8.555749	2.256706	8.555749	998
999	2.453510	1.009472	2.453510	7.952622	2.160183	7.952622	999

훈련 모니터링

MAE, MSE 오류 그래프 (1000 epochs)

검증 오류가 낮아지지 않으므로 EarlyStopping 콜백(callback)을 사용

33

훈련 모니터링

```
import matplotlib.pyplot as plt
def plot_history(history):
 hist = pd.DataFrame(history.history) # DataFrame으로 변환
 hist['epoch'] = history.epoch # epoch 추가
 plt.figure(figsize=(8,12))
 plt.subplot(2,1,1) # MAE 그래프
 plt.xlabel('Epoch')
 plt.ylabel('Mean Abs Error [MPG]')
 plt.plot(hist['epoch'], hist['mean_absolute_error'], label='Train Error')
 plt.plot(hist['epoch'], hist['val_mean_absolute_error'], label = 'Val Error')
 plt.ylim([0,5])
 plt.legend()
 plt.subplot(2,1,2) # MSE 그래프
 plt.xlabel('Epoch')
 plt.ylabel('Mean Square Error [$MPG^2$]')
 plt.plot(hist['epoch'], hist['mean_squared_error'], label='Train Error')
 plt.plot(hist['epoch'], hist['val_mean_squared_error'], label = 'Val Error')
 plt.ylim([0,20])
 plt.legend()
 plt.show()
```

plot history(history)

EarlyStopping 콜백 사용 (문제)

35

Callback 정의 및 설정

참고 tf.keras.callbacks.EarlyStopping

```
tf.keras.callbacks.EarlyStopping(
    monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto',
    baseline=None, restore_best_weights=False
)
```

- monitor: Quantity to be monitored.
- min_delta: Minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement.
- patience: 몇 번 동안 개선되지 않으면 중단할지 회수 지정 Number of epochs with no improvement after which training will be stopped.
- verbose: verbosity mode.
- mode: One of {"auto", "min", "max"}. In min mode, training will stop when the quantity monitored has stopped decreasing; in max mode it will stop when the quantity monitored has stopped increasing; in auto mode, the direction is automatically inferred from the name of the monitored quantity.
- **baseline**: Baseline value for the monitored quantity. Training will stop if the model doesn't show improvement over the baseline.
- restore_best_weights: Whether to restore model weights from the epoch with the best value of the monitored quantity. If False, the model weights obtained at the last step of training are used.

EarlyStopping 콜백 사용

EarlyStopping 후 MAE, MSE 오류 그래프

37

테스트

테스트 세트에서 모델의 성능을 확인

loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=0)

print("테스트 세트의 평균 절대 오차: {:5.2f} MPG".format(mae))

테스트 세트의 평균 절대 오차: 1.84 MPG

Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch

38

예측

예측 테스트 결과와 실제 레이블과의 상관 관계 그래프

```
test_predictions = model.predict(normed_test_data).flatten()

plt.scatter(test_labels, test_predictions)
plt.xlabel('True Values [MPG]')
plt.ylabel('Predictions [MPG]')
plt.axis('equal')
plt.axis('square')
plt.xlim([0,plt.xlim()[1]])
plt.ylim([0,plt.ylim()[1]])
_ = plt.plot([-100, 100], [-100, 100])
```

plt.axis('equal') : 각 축의 스케일을 동일하게 함 plt.axis('square') : 각 축의 범위가 xmax - xmin = ymax - ymin이 되게 설정

39

오차의 분포

```
error = test_predictions - test_labels
plt.hist(error, bins = 25)
plt.xlabel("Prediction Error [MPG]")
_ = plt.ylabel("Count")
```


정규 분포와 유사한 형태

Thank you!

