Mathematics Extension 1: Question		·
Suggested Solutions	Marks Awarded	Marker's Comments
(a) y=2x-5 -y=6-3x		
$tan \theta = \frac{2 - (-3)}{1 + 2 \times (-3)} \qquad \left(\frac{m_1 - 1}{1 + n}\right)$	ma	
$1 + 2 \times (-3)$	n, m2)	
= /		
$\Theta = 45^{\circ}$	2	
$\frac{x+4}{x} < 3$		
x x(x+4) <3x		
$23\ell^2 - 4x > 0$	i l	
$2 \operatorname{sc}(\operatorname{sc}-2) > 0$	-	
2620, 26>2	3	
(c) $\sin 2\theta = \sin^2 \theta$		
25in 0 cos 0 - sin 20 =0		•
sin 0 (2 coso - sin 0)=0		
$\sin\theta = 0$ or $\sin\theta = 2\cos\theta$	9	•
tane=2.		
$\theta = n\pi$, $\theta = n\pi + \tan^{-1}2$.	
OR NT + 1.11 ROT	2	
((4)	
(d).		
D/Bc	!	
A = 3 - 5 - 5		
$AF = \sqrt{3^2 + 3^2} = \sqrt{18}$		
$tan \Theta = \frac{EF}{AF} = \frac{8}{IB}$		
1 19		
$\theta = 62^{\circ}04^{\prime}$	2	
on 62° (nearest degree	_	
(3	

Mathematics Extension 1: Question 2			
Suggested Solutions	Marks Awarded	Marker's Comm	nents
2(a) $(-2,5)$ (a,b) $3:2$			
$\frac{3a+2(-2)}{3+2}=2; \frac{3xb+2x5}{3+2}=2$ $\alpha = 4\frac{2}{3}; b=0$ (2)			
(b) $2x^{3}-6x^{2}+5x-1=0$			
$= \frac{1}{2}$ $= 5$ $= 5$			
(c) $x^3 - 11x^2 + px + 9 = 0$ Roots are $\alpha, \alpha, \alpha + 2$.			
Sum of roots: $\alpha + \alpha + (\alpha + \bar{\alpha}) = 11$ $\alpha = 3$.			
Roots are 3,3,5.		•	
23+27+A7: 3×3+3×5+3×5=P P=39.			
4/37: 3×3×5=-9 4 9=-45.			
(d). A OF B			
LCBE = LBAC = 0 (alt. segment thm) (A		Atternative:	
LBAC = LACD = 0 (alt.ongles AB//D) LBCD = LCBF + LBFC (ext.ongle of ABCE)		KABC = ∠BCE	(arternate as in parallel lines)
$\theta + LACB = \theta + LBEC$ $\therefore LACB = LBEC$ (B)			
From (A), (B), two poirs of angles are			
equal DABCE 3			

Mathematics Extension 1: Question 3		
Suggested Solutions	Marks Awarded	Marker's Comments
3.a) Let $y = \frac{5-2x}{3}$ Inverse is: $x = \frac{5-2y}{3}$ $3x = 5-2y$ $y = \frac{5-3x}{2}$ $\therefore f^{-1}(x) = \frac{5-3x}{2}$		
(b) $\cos^{-1}(\frac{1}{2}\tan\frac{2\pi}{3}) = \cos^{-1}(\frac{1}{2}\times -\frac{1}{3})$ = $\cos^{-1}(-\frac{13}{2})$ = $\frac{5\pi}{6}$ (2)		
(c) $sin(2cos^{-1}\frac{2}{3})$ Let $\theta = cos^{-1}\frac{2}{3}$ = $sin 2\theta$ $cos \theta = \frac{2}{3}$ = $2sin\theta cos \theta$ = $2 \times \frac{\sqrt{5}}{3} \times \frac{2}{3}$ = $\frac{4\sqrt{5}}{9}$		
(d) $\frac{\cos A - \sin A}{\cos A + \sin A} = \frac{\cos A - \sin A}{\cos A + \sin A} \times \frac{\cos A + \sin A}{\cos A + \sin A}$ $= \frac{\cos^2 A - \sin^2 A}{\cos^2 A + \sin^2 A + 2 \sin A \cos A}$ $= \frac{\cos^2 A}{1 + \sin^2 A} $ (2)		
(e) $y = x + \cos^{-1}x$ $\frac{dx}{dx} = 1 - \sqrt{1-x^2} = 1 - (1-x^2)^{-\frac{1}{2}}$ For stat. point: $1 = \sqrt{1-x^2} : \sqrt{1-x^2} = 1$ $\therefore x = 0$ $\frac{d^2y}{dx^2} = \frac{1}{2}(1-x^2)^{-\frac{1}{2}}(-2x) = \frac{-x}{(1-x^2)^{3/2}}$		
When $x=0$, $\frac{d^2y}{dx^2}=0$. If $x<0$, $\frac{d^2y}{dx^2}>0$; If $x>0$, $\frac{d^2y}{dx^2}<0$ Concavity changes: one stationary Point is a horizontal point of inflexion. 3		

Mathematics Extension 1: Question 4	<u>.</u>	
Suggested Solutions	Marks Awarded	Marker's Comments
$4.(a)(i)$ No. of different hands = $\binom{52}{4}$		
= 270 725 (1)		
(ii) $P(aces) = \frac{\binom{4}{2}\binom{48}{2}}{\binom{52}{4}}$		
= 0.025		
(b) (i) No. of orrangements = \frac{8!}{2!2!2!} = 5040 (2)		
(ii) No. arrgts. with Uatends = $\frac{6!}{2!}$ = 180 (1)		
(c)(i) $PQ: \frac{y-q^2}{x-2q} = \frac{p^2-q^2}{2p-2q} = \frac{p+q}{2}$		
$2y - 2q^2 = (p+q)x - 2q(p+q)$ $2y - 2q^2 = (p+q)x - 2pq - 2q^2$ (p+q)>c - 2y - 2pq = 0 (2)		
(ii) M: $\left(\frac{2P+2q}{2}, \frac{P^2+q^2}{2}\right)$ 1.e. $\left(P+q, \frac{P^2+q^2}{2}\right)$		
(iii) If PG passes through (0,2) Subst. x=0, y=2: 0-2×2-2P9=0 Pq=-2		
$x = P + q$, $y = \frac{P^2 + q^2}{2}$		
$(p+q)^{2} = p^{2} + q^{2} + 2pq$ $x^{2} = 2y + 2 \times (-2)$		
$x^2 = 2y - 4$ Locus of Mis $x^2 = 2y - 4$. 3		
· · · · · · · · · · · · · · · · · · ·		

Mathematics Extension 1: Question 5		
Suggested Solutions	Marks Awarded	Marker's Comments
5. (a) (i) $\int \frac{1}{4+x^2} dx = \frac{1}{2} \tan^{-1} \frac{x}{2} + C$		
$(ii) \int \frac{x}{4+x^2} dx = \frac{1}{2} \int \frac{2x}{4+x^2} dx$		
= \frac{1}{2} \log_e (4+x^2) +C ()		
(b) $\int_{0}^{\frac{\pi}{6}} \sin^{2}x dx = \int_{0}^{\frac{\pi}{6}} \frac{1}{2} (1 - \cos 2x) dx$ = $\frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_{0}^{\frac{\pi}{6}}$		
$=\frac{1}{2}\left[\left(\frac{\pi}{6}-\frac{1}{2}\times\frac{13}{2}\right)-\left(0-0\right)\right]$		
$= \frac{\pi}{12} - \frac{\sqrt{3}}{8} \circ \frac{2\pi - 3\sqrt{3}}{24}$		
(c) $\int \frac{e^{2x}}{e^{x}-2} dx$ $u = e^{x}-2$ $\frac{du}{dx} = e^{x}$		
$= \int \frac{e^{2x}-2}{e^{2x}-2} du = e^{2x} dx$		
$= \int \frac{(u+\lambda) du}{u}$ $= \int \left(1 + \frac{2}{u}\right) du$		
$= u + 2 \ln u + c$ $= e^{x} - 2 + 2 \ln(e^{x} - 2) + c $ 3		
$(d) \qquad \ddot{x} = \frac{-\zeta}{(x+1)^2}$		
$\frac{d}{d\omega} \left(\pm v^{2} \right) = -6 \left(x + 1 \right)^{-2}$ $\pm v^{2} = 6 \left(x + 1 \right)^{-1} + C$		
When 31=0, 5=4. 8=6+C		
$\frac{1}{2} v^2 = \frac{6}{3C+1} + 2$ $= \frac{6+2(x+1)}{x+1}$		
$= \frac{2 \times 48}{\times + 1}$ $= 2 \left(\frac{\times 44}{\times + 1} \right)$		
$v^{2} = 4\left(\frac{x+4}{x+1}\right)$		
$v = \pm 2\sqrt{\frac{x+4}{x+1}} \qquad 4$		

Mathematics Extension 1: Question 6	· · · · · · · · · · · · · · · · · · ·	
Suggested Solutions	Marks Awarded	Marker's Comments
$6(a) \int \frac{1}{\sqrt{x^2 + 16}} dx = log_e(x + \sqrt{x^2 + 16}) + C$		
(b) Prove 1.3 + 3 5 + + (2n-1)(2n+1) = n		
When n=1, LHS = 1.3 = 3, RHS = 1 = 3		
it is true for n=1.		
Assume it is true for n=k.		
1.e. assume 1.3 + 3.5 + + (2k-1)(2k+1) = k		
When $n = k+1$.		
LHS = 1 + 1 + + (2k-1)(2k+1) + (2k+1)(2k+3)		
= $\frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$ by assumption		
$= \frac{k(2k+3) + 1}{(2k+1)(2k+3)}$		
$(ak+1)(ak+3)$ $= ak^2 + 3k+1$		
(2k+1)(2k+3)		
$= \frac{(k+1)(2k+1)}{(2k+1)(2k+3)}$		
$= \frac{k+1}{2(k+1)+1} = \frac{n}{2n+1} \text{ where } n = k+1.$		
: if it is true for n=k, it is true for n=k+1		
Since it is true for n=1, it is true for		
$n=2, n=3, \dots$ (4)		
(c) Let $f(x) = 2x - 4 \sin 3x$ $f'(x) = 2 - 12 \cos 3x$.		
$f(i) = 2 - \mu \sin 3 = 1.4355$		
1'(1)=2-12 cos3 = 13.880		
$Approx'n = 1 - \frac{f(1)}{f'(1)} = 1 - \frac{1 \cdot 4355}{13.880}$ $= 0.90 \ (2dP)$		
(d)(i) 8 13 /A		
23 2		
(ii) $x^2 - 3 = 2x$ $x^2 - 2x - 3 = 0$		
(x-3)(x+1)=0 $x=3, -1$		
A(3,6) $B(-3,6)\therefore 2x > x^2-3 for -3 < x < 3.$		

Mathematics Extension 1: Question 7@		 -
Suggested Solutions	Marks Awarded	Marker's Comments
$7(a) (i) \ddot{x} = 0 \qquad \qquad \uparrow^{4} A^{V}$		
# = C		
When $t=0$, $\dot{x}=V\cos\theta$	**	
∴ c = VcosØ ∴, xè = VeosØ		
sc = Veoso t + c'		
when t=0, x=0c'=0		
$\therefore x = V \cos \theta t$		
ÿ = − 10		
$\dot{q} = -10t + k$		
When $t=0$, $y=V\sin\theta$: $k=V\sin\theta$		
$y = V \sin \theta - i \sigma t$		
$y = V \sin \theta t - s t^2 + k'$		
When t=0, y=0 :- k'=0		
:- y = V sin ot - 5 t 2		•
(ii) When t=4, y=0, x=100		
$100 = 4\sqrt{\cos\theta}$ $0 = 4\sqrt{\sin\theta} - 80$		
$V\cos\theta = 25$ $V\sin\theta = 20$		
$\frac{V \sin \theta}{V \cos \theta} = \frac{20}{25}$. $\tan \theta = 0.8$ $\theta = 38^{\circ} 40'$		
Also, V2 cos20 + V2 sin20 = 252+202		
V2 (costo + sinto) = 1025		
$V = \sqrt{1025} \text{ or } 32.0 \text{ m/s}$ = $5/47$	2)	
(iii) Maximum height when &= 0		
5 41 sin 38°40'-10t =0	4	
$t = 4$ $\int_{-\infty}^{\infty} x dx dx = \int_{-\infty}^{\infty} x dx dx$		
when $t=2$, $y=541 \times \frac{4}{41} \times 2 - 5 \times 2^{3}$ = 20		
Maximum height is 20 m.		
2 (2)		
_		

Mathematics Extension 1: Question 7(b)	· · · · · · · · · · · · · · · · · · ·	-
Suggested Solutions	Marks Awarded	Marker's Comments
(b) $\frac{dT}{dt} = -k(T - T_0)$		
dt a -kt		
(i) T = To + A e - Kt		
$\frac{dT}{dt} = -kAe^{-kt}$ $= -k(T-T_0)$		
$= -k(T-T_0) \qquad \qquad (1)$		
(i) When t = 0, T = 150 , To = 25		
150 = 25 + A		
:. A = 125		
:. T = 25 + 125 e		
When t=1, T=100		
100 = 25 + 125 e	1 1	
75 = 125 e-t		
$e^{k} = \frac{12.5}{2.5}$		
$k = \ln\left(\frac{125}{75}\right)$		
= 0.5108 (4dp) N		-
-0.5108t		
:. T= 25 + 125 e		
When $T=50$,		
50 = 25 + 125 C		
25 = 125 e		
$e^{0.5 \cdot 08t} = \frac{125}{25} = 5$	•	
0.5108t = ln5		
t = ln5		
0.5108		
= 3.15(2dp)		
It takes 3.15 minutes to		
reach 50°. 11		
(S)		
	1	