Demystification of Peierels Brackets construction

Definition 1: Dynamical System

We call *abstract dynamical system* a pair (E, P) composed of:

- - smooth fiber bundle of typical fiber *Q* on manifold *M*, called "configuration bundle".
- $P: \Gamma^{\infty}(E) \to \Gamma^{\infty}(E)$

differential operator in the sense that it is represented by a linear combination of partial derivative in every local chart.

Definition 2: Space of kinematics (off-shell) configurations

We call:

$$C := \Gamma^{\infty}(M, E)$$

the space of kinematic configurations.

Definition 3: Space of Dynamics (on-shell) configurations

We call

Sol :=
$$\ker(P) = \{ \gamma \in \mathbb{C} \mid R(P)(f) = 0 \mid \forall \text{local chart representation} \}$$

where we have denoted respectively as R(P) and f the local chart representation (as in Eq. ??) of P and γ on the same chart.

This is the subset of C containing all the smooth solutions of the motion equations corresponding to the dynamical operator:

$$P: \mathbb{C} \to \mathbb{C}$$

Definition 4: Lagrangian System (of r-th order)

We call *Lagrangian system* of r-th order the pair (E, \mathcal{L}) composed of:

- $\cdot E \xrightarrow{\pi} M$
 - smooth fiber bundle of typical fiber Q on the oriented pseudo-Riemannian manifold (M,g,\mathfrak{o}) called "configuration bundle".
- $\mathcal{L}: J^r E \to \wedge^m T^* M$

bundle-morphism from the r-th Jet Bundle (see Section ??) to the top-dimensional form bundle over the base manifold *M* called "Lagrangian density" or simply "Lagrangian" of r-th order.

Definition 5: Lagrangian Densities on the bundle *E*

We denote the set of all *Lagrangian densities* (of r – th order) on the bundle E as:

$$\mathsf{Lag}^r(E) := \mathsf{hom} \Big(J^r E, \quad \bigwedge^m (T^* M) \Big) \cong \big\{ f : \Gamma^\infty(J^r E) \to \Omega^m(M) \big\}$$

(where $\Omega^m(M)$ is the common name for $\Gamma^{\infty}(\Lambda^m(T^*M))$ in the context of Grassmann algebras.) The equivalence states the fact that a bundle-morphism induces a map between the sections.

Proposition 0.0.1 Lag^r(E) has an vector space structure inherited by the linear structure of $\Omega(M)$.

Definition 6: Lagrangian functional

We call Lagrangian functional a map:

$$\mathscr{O}_{\mathscr{L}}: \mathbb{C} \to D'(M)$$

where D'(M) is the space of regular distribution over M, whose action on any configuration $\phi \in \mathbb{C}$, evaluated on the test-function $f \in C_0^{\infty}(M)$, it is given by:

$$\mathscr{O}_{\mathscr{L}}[\phi](f) = \int_{M} \mathscr{L}[\phi] f \mathrm{d}\mu$$

Definition 7: Euler-Lagrange operator

We call Euler-Lagrange operator, the differential operator

$$Q_{\chi}: \mathbb{C} \to \mathbb{C}$$

relative to the Lagrangian density $\chi \in \mathsf{Lag}^1(E)$, such that:

$$Q_{\chi}(\gamma) = \left(\nabla_{\mu} \left(\frac{\partial \chi}{\partial (\partial_{\mu} \phi)} \Big|_{\gamma} \right) - \frac{\partial \chi}{\partial \phi} \Big|_{\gamma} \right) \qquad \forall \gamma \in \mathbb{C}$$
 (1)

Where ∇_{μ} is the covariant derivative corresponding to the background metric g. a

0.0.1 TODO: Peirels constuction lingo

Definition 8: Disturbance

By "disturbance" we mean a time-compact supported Lagrangian density $\chi \in \mathsf{Lag}^a$ which acts as a perturbation on the Lagrangian of the system:

$$\mathcal{L} \leadsto \mathcal{L}' = \mathcal{L} + \epsilon \cdot \chi$$

where ϵ is a real modulation parameter. Recalling that Lag is linear we have that \mathcal{L}' is still a suitable Lagrangian of the system.

Definition 9: Disturbed Motion equation under a Disturbance (Jacobi Equation)

$$\Rightarrow P\eta = -Q_{\chi}\phi(x) \tag{2}$$

 $a \frac{\partial \chi}{\partial (\partial_{\mu} \phi)}$ has the be intended as the Lagrangian density constructed differentiating $\chi(\phi, \partial_{\mu})$ as an ordinary function, treating its functional entries as an usual scalar variable.

^aI.e. the top form $\chi(\phi)$ is time-compact supported for all $\phi \in \mathbb{C}$.

called Jacobi Equation. It yelds the pertubation to apply to a fixed configuration:

$$\phi'(x) = \phi(x) + \epsilon \eta(x) \in \mathbb{C}$$

such that:

$$\begin{cases} P_{\varepsilon}\phi'(x) &= o(\varepsilon) \\ P\phi(x) &= 0 \end{cases}$$

Definition 10: Effect Operator

Considering an arbitrary continuous^a functional $B: \mathbb{C} \to \mathbb{R}$ (not necessarily linear) we can define the effect of a perturbation on the values of B[2, pag. 5] as a map:

$$\mathbf{D}_{\gamma}^{\pm}:C^{1}(\mathbb{C},\mathbb{R})\to C^{1}(\mathbb{C},\mathbb{R})$$

$$\mathbf{D}_{\chi}^{\pm}B(\phi_0) := \lim_{\epsilon \to 0} \left(\frac{B(\phi_{\epsilon}^{\pm}) - B(\phi_0)}{\epsilon} \right) \tag{3}$$

Definition 11: Peierls Bracket

The binary function

$$\{\cdot,\cdot\}: \mathsf{Lag}_{\mathsf{tc}} \times \mathsf{Lag}_{\mathsf{tc}} \to \mathbb{R}$$

such that

$$\{\chi, \omega\}(\phi_0) := \mathbf{D}_{\chi}^{-} \mathcal{O}_{\omega}(\phi_0) - \mathbf{D}_{\chi}^{+} \mathcal{O}_{\omega}(\phi_0)$$

$$\tag{4}$$

0.0.2 TODO: Symplectic space of field-theoretic systems.

Remark:

questo lo devo dire a parole o scriverlo?

- · linear system
- · green hyperbolic dynamics
- · globally hyperbolic spacetime based sections

Definition 12: Configuration Pairing

The pairing between two sections is defined as:

$$(X,Y) = \int_{M} \langle X, Y \rangle_{x} d\mu(x)$$
 (5)

where $d\mu = d\text{Vol}_{\mu}$ is the volume form induced by the metric and the orientation on M under the additional constraint: (The definition is well posed only in:)

$$dom \big((\cdot, \cdot) \big) = \big\{ (X,Y) \in \Gamma^{\infty}(E) \times \Gamma^{\infty}(E) \ \big| \ < X,Y >_{x} \in L^{1}(M,\mu) \big\}$$

Definition 13: Pre-Observable

They are defined as a class of "off-shell" functionals on C:

$$\mathcal{E}_0 := \left\{ F_f : \mathtt{C} \ni \phi \mapsto (f,\phi) \in \mathbb{R} \quad \middle| \quad f \in \Gamma_0^\infty(E) \right\}$$

 $[\]overline{}^a$ The precise notion of continuity require the specification of a (infinite dimensional) manifold structure on C.

This can be seen as the range of the linear map:

$$F:\Gamma_0^\infty\to\mathscr{E}_0$$

which associates to any section $f \in \Gamma_0^{\infty}(E)$ the linear functional $F_f(\cdot) = (f, \cdot) : \mathbb{C} \to \mathbb{R}$.

Definition 14: Classical Observable

Due to the degeneracy of the map F^{So1} , \mathcal{E}_0^{So1} can not be a good set of classical observables. Being the kernel known, we can identify all the elements that posses the same corresponding functional:

$$[f] = \{ f + Pg \mid |g \in \Gamma_0 \}$$

It is natural then to define the classical observables as the quotient space:

$$\mathscr{E}\coloneqq\frac{\mathscr{E}_0^{\mathsf{Sol}}}{N}$$

Finally, the mapping between these equivalence classes can be easily defined : $\forall [f] \in \frac{\Gamma_0}{P\Gamma_0}$ we build the functional $F_{[f]}$: Sol $\to \mathbb{R}$ such that:

$$F_{[f]}(\phi) = F_f(\phi)$$
 $\forall \phi \in Sol, \forall f \in [f]$

This functional is well-defined, *i.e.* the expression is independent from the choice of the representative, only on Sol. The reason is that if $\phi \in \mathbb{C} \setminus \text{Sol}$, then $F_f(\phi)$ is different for each choice of the representative $f \in [f]$. This construction is said to " implement the on-shell condition at the level of functionals".

In conclusion the mapping:

$$\frac{\Gamma_0}{P\Gamma_0} \stackrel{F}{\longleftarrow} \mathcal{E} = F\left(\frac{\Gamma_0}{P\Gamma_0}\right)$$

,between suitable equivalence classes and linear functionals on Sol, guarantees:

- a faithful representation since *F* is bijective.
- the separability condition, a fortiori of separability properties of \mathcal{E}_0^{Sol} .

From now on we will identify these two spaces:

$$\mathcal{E} \simeq \frac{\Gamma_0}{P\Gamma_0}$$

in view of the bijectivity of F.

Definition 15: PreQuantum Symplectic Space

todo...

Proposition 0.0.2 this structure correspond to a suitable domain restriction of the peierls brackets