Année 2020-2021

TD Réduction Matricielle

Valeurs propres et vecteurs propres

Exercice 1 Soit $E = \mathbb{R}[X]$ et f l'application définie par

$$f: E \to E$$

$$P \mapsto (X^3 + X)P' - (3X^2 - 1)P$$

- 1. Montrer que f est un endomorphisme.
- 2. Déterminer les valeurs propres de f ainsi que les sous-espaces propres associés.

Exercice 2 Soit $E = \mathbb{R}[X]$ et f l'application définie par

$$\begin{array}{cccc} f & : & E & \to & E \\ & P & \mapsto & XP - (X-1)^2 P' \end{array}$$

- 1. Montrer que f est un endomorphisme.
- 2. Déterminer les valeurs propres de f ainsi que les sous-espaces propres associés.

Exercice 3 Soit $E = \mathbb{R}[X]$ et f l'application définie par

- 1. Montrer que f est un endomorphisme.
- 2. Calculer le noyau de f et montrer que $\operatorname{Im}(f) = \operatorname{Vect}(X^2, X)$.
- 3. Déterminer les valeurs propres de f ainsi que les sous-espaces propres associés.

Exercice 4 Soit E un \mathbb{R} -espace vectoriel et f un endomorphisme de E. Soit $p \in \mathbb{N}$, $p \neq 0, 1$. Soient $\lambda_1, \ldots, \lambda_p$ des valeurs propres de f deux à deux distinctes. Pour tout $i \in \{1, \ldots, p\}$, soit x_i un vecteur propore associé à la valeur propre λ_i . Soient $\alpha_1, \ldots, \alpha_p$ des réels non nuls. Posons

$$x = \sum_{i=1}^{p} \alpha_i x_i$$

Montrer que x n'est pas un vecteur propre de f.

Exercice 5 Soit E l'ensemble des suites réelles et soit f l'application définie par

$$f : E \to E (u_n) \mapsto (v_n)$$

où $v_0 = u_0$ et pour tout $n \ge 1$, $v_n = \frac{u_{n-1} + u_n}{2}$.

1. Montrer que f est un endomorphisme.

2. Déterminer les valeurs propres de f ainsi que les sous-espaces propres associés.

Cas de la dimension finie et application aux matrices

Exercice 6 Déterminer les valeurs propres des matrices réelles suivantes. Puis, pour chaque valeur propre, rechercher une base des sous-espaces propres associés et donner leur dimension :

$$\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

Exercice 7 Pour les matrices réelles suivantes :

- 1. Calculer valeurs propres et une base des sous-espaces propres.
- 2. Lorsque cela est possible, diagonaliser sur \mathbb{R} les matrices au moyen d'une matrice inversible. Quand cela n'est pas possible, expliquer d'où provient cette impossiblité.

$$\begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

$$\frac{1}{2} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -1 & 1 \\ 2 & -1 & 2 \\ -4 & 2 & 1 \end{pmatrix}$$

Exercice 8 Soit la matrice $A = \begin{pmatrix} 3 & 2 & 2 & -4 \\ 2 & 3 & 2 & -1 \\ 1 & 1 & 2 & -1 \\ 2 & 2 & 2 & -1 \end{pmatrix}$. Diagonaliser A sur $\mathbb R$ sachant que A est diagonalisable

sur \mathbb{R} , que son déterminant vaut 6, qu'une valeur propre vaut 1 et que $\begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}$ est un vecteur propre de A.

Exercice 9 Soit
$$A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & -2 \end{pmatrix}$$
.

- 1. Avant de calculer les valeurs propres de A, dites pourquoi on peut affirmer que
 - (a) Toutes ses valeurs propres sont réelles.
 - (b) Une valeur propre est nulle.
 - (c) Les deux autres sont opposées.
- 2. Déterminer toutes les valeurs propres de A.
- 3. Déterminer une base du sous-espace propre relatif à la valeur propre strictement positive.
- 4. Sans calcul, expliquer pour quoi il ne peut exister auncune matrice réelle diagonalisable B telle que $B^2 = A$.

Exercice 10 Soit $A \in \mathcal{M}_n(\mathbb{R})$.

1. Comparer les valeurs propres et les vecteurs propres de A et de A^2 .

- 2. Si A est inversible, comparer les valeurs propres et les vecteurs propres de A et de A^{-1} .
- 3. Comparer les valeurs propres et les vecteurs propres de A et de ${}^{t}A$.

Exercice 11 Soit $A \in \mathcal{M}_n(\mathbb{R})$. Démontrer que A^2 admet 1 pour valeur propre si et seulement si A admet 1 ou -1 comme valeur propre.

Exercice 12 Que pensez-vous des affirmations suivantes? Justifier par une démonstration ou un contreexemple.

- 1. Si la matrice $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable, A^2 l'est aussi.
- 2. Si la matrice $A^2 \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable, A l'est aussi.

Exercice 13 Soit $A \in \mathcal{M}_2(\mathbb{R})$ telle que $\det(A) < 0$. Montrer que A est diagonalisable sur \mathbb{R} .

Exercice 14 Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ ayant n valeurs propres distinctes. Démontrer que si A et B commutent, elles ont mêmes vecteurs propres.

Trigonalisation

Exercice 15 Soient $A = \begin{pmatrix} 0 & 1 & 2 \\ -2 & 3 & 6 \\ -3 & 3 & 15 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$. Ces matrices sont-elles trigonalisables dans $\mathcal{M}_3(\mathbb{R})$?

Exercice 16 Trigonaliser les matrices suivantes dans $\mathcal{M}_3(\mathbb{R})$ lorsque c'est possible :

$$\begin{pmatrix} -2 & 0 & 2 \\ 3 & -3 & 0 \\ 8 & -6 & -2 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 4 \\ 1 & 0 & -1 \end{pmatrix}, \begin{pmatrix} -2 & -6 & 6 \\ 1 & 1 & -1 \\ -3 & -6 & 7 \end{pmatrix}$$

Polynômes annulateurs, théorème de Cayley-Hamilton

Exercice 17 Soit $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$. Exprimer A^3 en fonction de A^2 , A et I_3 .

Exercice 18 Quelles sont les valeurs propres possibles d'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^3 + A^2 - 2A = 0$?

Exercice 19 On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est nilpotente s'il existe un entier naturel k non nul tel que $A^k = 0$. Quelles sont les valeurs propres possibles d'une telle matrice?

Exercice 20 Quelles sont les valeurs propres possibles d'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^3 = A$?

Applications de la réduction matricielle

Exercice 21 Soit $A = \begin{pmatrix} 13 & -12 & -6 \\ 6 & -5 & -3 \\ 18 & -18 & -8 \end{pmatrix}$. Montrer que cette matrice est diagonalisable sur \mathbb{R} , la diagonalisable sur \mathbb{R} , la diagonalisable sur \mathbb{R} pour teut entier peturel k

naliser puis calculer A^k pour tout entier naturel k.

Exercice 22 Soit $A = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -2 \\ 0 & 4 & 3 \end{pmatrix}$. Montrer que cette matrice est diagonalisable sur \mathbb{R} , la diagonalisable sur \mathbb{R} , la diagonalisable sur \mathbb{R} sur \mathbb{R} liser puis calculer $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{A^k}{k!}$.

Exercice 23 Résoudre les systèmes différentiels suivants, x, y, z désigant des fonctions de classe \mathcal{C}^1 sur \mathbb{R} .

$$\begin{cases} x' &= 2x - y \\ y' &= x + z \\ z' &= -x + y + z \end{cases}, \begin{cases} x' &= -2x + 2z \\ y' &= 3x - 3y \\ z' &= 8x - 6y + 2z \end{cases}, \begin{cases} x' &= 2x + y + e^t \\ y' &= 2y + 4z \\ z' &= x - z \end{cases}, \begin{cases} x' &= x + y \\ y' &= -x + 2y + z \end{cases}, \begin{cases} x' &= x + y \\ y' &= -x + 2y + z \end{cases}, \begin{cases} x' &= x + y + e^t \\ y' &= -x + 2y + z \end{cases}$$