An Electronic Voting Machine

Based on 8085 Microprocessor

An Overview of The Problem

The Problem

- Design a microprocessor Voting Machine which has provision for 8 candidates.
- Clear the count before starting
- It needs to be enabled by 8 polling agents and the Presiding officer.
- After 10 hours (7 a.m. to 5 p.m.) it should stop taking input
- The Presiding officer by pressing a code can lock it in between & then can restart it by pressing another code.

Components to be used

- 1. 8085 Microprocessor
- 2. 8255-Programmable peripheral interface x2
- 3. 8254 Timer IC
- 4. 7400 -NAND
- 5. 7402- NOR
- 6. Resistors
- 7. Switches
- 8. 74147 Priority Encoder

I/O Interfacing Table

Sr No.	Type of IC	Port A	ddress	Binary							
		Label	Hex	В7	В6	B5	B4	ВЗ	B2	B1	В0
		А	0x00	0	0	0	0	0	0	0	0
1	8255	В	0x01	0	0	0	0		0	1	
		С	0x02	0	0	0	0	0	0	1	0
		CWR	0x03	0	0	0	0	0	0	1	1
	8255	А	0x04	0	0	0	0	0	1	0	0
2		В	0x05	0	0	0	0	0	1	0	1
2	6255	С	0x06	0	0	0	0	0	1	0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1	0
		CWR	0x07	0	0	0	0	0	1		1
		C0	0x08	0	0	0	0	1	0	0	0
3	8254	C1	0x09	0	0	0	0	1	0	0	1
3	0204	C2	0x0A	0	0	0	0	1	0	0 0 1 1 0 0 0 1 1	0
		CWR	0x0B	0	0	0	0	1	0	1	1

Initialization

How Data of Votes will Be Stored

Mem Ad	Data						
1000	"A"	1006	"C"	100C	"E"	1012	"G"
1001	LSB	1007	LSB	100D	LSB	1013	LSB
1002	MSB	1008	MSB	100E	MSB	1014	MSB
1003	"B"	1009	"D"	100F	"F"	1015	"H"
1004	LSB	100A	LSB	1010	LSB	1016	LSB
1005	MSB	100B	MSB	1011	MSB	1017	MSB

Approach

- Initially,
 - All bit must be oo
 - o Labels for candidates to be set alphabetically
- This initialization subroutine should be called on powering on the machine.

So, it is written at 0x000

Program

Code

Start:MVI A,92

OUT 03

MVI A,80

OUT 07

MVI D,08

MVI A,1B

SIM

MVI B,00

LXI H,1000

MVI C,41

loop_init:MOV M,C

MOV M,B

INX H

INX H

INR C

MOV M,B

DCR D

JNZ loop_init

CALL security:

Counting The Votes

Approach

- According to the Election commission of India, a EVM is expected to count a maximum of 3840 votes, So we are required to build a 16 bit counter.
- We will interface 8 buttons to port b of 8255

Interfacing Diagram

Components used

- 1. 8255-Programmable peripheral interface
- 2. 7400-NAND gate
- 3. Resistors
- 4. Switches
- 5. Connecting wire

Program

Program

count:LXI H,1000	loop_rot:ORI 00	cntup:INX H
LDA 1023	CP cntup	MOV C,M
OUT 04	INX H	INX H
wait3:RIM	INX H	MOV B,M
JP wait3	INX H	INX B
IN 01	RLC	MOV M,B
	DCR D	DCX H
MVI D,08	JNZ loop_rot	MOV M,C
	JMP count	JMP count

Security Procedures

Basic Appraoch

- Interface a number pad to the 8085 via a 8255.
- 8-bit security codes stored in the memory.
- All 9 codes need to be entered one after another correctly to authenticate.

How Data will be stored in memory

Memory Address	Data	Memory Address	Data	Memory Address	Data
0x1018	Code 1	0x101B	Code 4	0x101E	Code 7
0x1019	Code 2	0x101C	Code 5	0x101F	Code 8
0x101A	Code 3	0x101D	Code 6	0x1020	Code 9

Interfacing Diagram

Components used

- 1. 8255-Programmable peripheral interface
- 2. 74147 -Priority Encoder
- 3. 7402-NOR gate
- 4. 7400-NAND gate
- 5. Resistors
- 6. Switches
- 7. Connecting wire

Truth Table of Priority Encoder

	INPUTS							OUTPUTS				
1	2	3	4	5	6	7	8	9	D	С	В	Α
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
х	x	x	х	Х	Х	х	Х	L	L	Н	Н	L
х	×	×	х	Х	Х	X	L	Н	L	Н	Н	Н
×	х	х	х	Х	Х	L	Н	н	Н	L	L	L
х	X	X	х	Х	L	н	Н	Н	Н	L	L	Н
×	×	×	×	L	Н	н	Н	Н	н	L	Н	L
×	×	×	L	Н	Н	н	Н	Н	Н	L	Н	Н
×	×	L	Н	Н	Н	н	Н	Н	Н	Н	L	L
х	L	Н	Н	н	Н	н	Н	н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	н	н	Н	Н	Н	Н	L

H = high logic level, L = low logic level, X = Irrelevant

Program

Code

security:LXI H,1018 wait2:RIM LDA 1029 JP wait2

OUT 04 IN 00

wait1:RIM ADD B

CMA

JP wait1 IN 00 CMP M

RLC RLC

RLC

RLC MOV B,A

RNZ INX H DCR D JNZ wait1

JMP Delay

Creating The 10 hr Delay

Basic Approach

- Perform frequency division using IC-8254, to make the time period of the clock 1,000s
- Then use a counter of 36 to make delay of 10hr
- After this, An RST7.5 is given and the display routine is written there

Interfacing Diagram

Program

Code

delay:mvi a, 36	mvi a, B2	mvi a, 00
out OB	out 09	out OA
mvi a, ff	mvi a, C4	jmp count
out 08	out 09	
mvi a,ff	mvi a,B1	
out 08	out OB	
mvi a, 76	mvi a, 36	
out OB	out OA	

Displaying The Count

Appraoch

- Interfacing 5 seven segment displays,
 - 4 displays would display the count
 - o 1 will act as the label for the candidates and the different modes
- Interfacing 4 seven segment via the c port of the 8255
- Interfacing the label seven segment via port a of another 8255
- The routine would be written at RST7.5 location

Look up table for labels

Mem Ad	Label	Data	Mem Ad	Label	Data
0x1021	A	EE	0x1026	F	8E
0x1022	b	2E	0x1027	g	F6
0x1023	С	9C	0x1028	Н	6E
0x1024	d	7A	0x1029	S	B6
0x1025	Е	9E			

Interfacing Diagram

Program

Code

REP1:LXI H,1021 MOV A,M OUT 04 PUSH H LXI H,1001 MVI C,08 REP:MVI D,02 MVI B,80	LOOP1:MOV A,M ANI OF ADD B OUT 02 MOV A,B RRC MOV B,A MOV A,M ANI FO RRC	RRC RRC ADD B OUT 02 MOV A,B RRC MOV B,A INX H	DCR D JNZ LOOP1 RIM CP REPEAT INX H INX H XCHG POP H INX H	OUT Pa2 PUSH H XCHG DCR C JNZ REP JMP REP1 REPEAT:DCX H JMP REP
---	--	--	--	---

Emergency Interrupt

Approach

• If the presiding officer presses 19 simultaneously the counting will be halted

• Untill, he presses 37 keys

Program

Code

RLC

trap:RIM wait2:RIM

JP wait1 JP wait2

IN 00 IN 00

RLC ADD B

CMA

RLC CPI 37

RLC JNZ trap

MOV B,A JMP count

More Info for Refrence

CWR OF 8255 and 8254

SC₁

Format of RIM and SIM

Click on the github link for access to code and other information

https://github.com/AnshumatDinesh/An-Electronic-Voting-Machine-Using-808 5-Microprocessor