

Week 2. Linear Regression and Gradient Descent

Dr. Shuo Wang

Recall: regression

- Regression means learning a function that captures the "trend" between input and output.
- The output is a continuous value.
- This function is used to predict the target values for new inputs.

Overview

- Linear Regression a ML algorithm for regression problems
- Gradient descent an optimisation technique used to in ML algorithms.

Example of a regression problem

Can we predict people's weight from their height?

Height(cm)	Weight(kg)
150.00686	69.73347
151.64326	69.83261
155.54032	71.55730
158.80535	71.92875
161.17561	72.92118
:	
175.15167	79.48533
182.32900	80.52182
191.11317	83.67998
193.21947	84.72086
202.68705	89.64049

Univariate linear regression

We have one input attribute (height) – hence the name univariate.

$$y = f(x; w_0, w_1) = w_1 x + w_0$$

• Any line is described by this equation by specifying values for w_1 and w_0 .

Check your understanding

Height(cm)	Weight(kg)
150.00686	69.73347
151.64326	69.83261
155.54032	71.55730
158.80535	71.92875
161.17561	72.92118
:	
175.15167	79.48533
182.32900	80.52182
191.11317	83.67998
193.21947	84.72086
202.68705	89.64049

Play around with linear functions

- Go to https://www.desmos.com/calculator
- Type: y = w_1 x + w_0
- Plug in some values for the free parameters, or set up the slider to see the effect of changing w_0 and w_1 .
- What is the role of the free parameters?
- w_0 is the intercept with the y-axis
- w_1 is the slope of the line which is also the gradient function of the linear function $f(x; w_0, w_1) = w_1 x + w_0$ (recall last week!)
- Fixing concrete numbers for these parameters gives you specific lines.

Our goal: find the "best" line

Which is the "best" line? That captures the trend in the data.

Loss/cost functions

- We need a criterion that tells us how good/bad that line is.
- Such criterion is called a loss function. It is a function of the free parameters.

Terminology

Loss function = cost function = loss = cost = error function

We average the losses on all training examples

For each training example (point)
 n = 1,..., N,

The loss on the n-th point is the <u>mismatch/distance</u> between the output of the model for this point $f(x^{(n)}; w_0, w_1)$ and the observed target $v^{(n)}$.

Average these losses.

Loss function

- The loss expresses an error, so it must be always non-negative.
- Absolute value loss (L1 loss):

$$L1 = |f(x) - y|$$

Mean squared error loss (L2 loss):

$$L2 = (f(x) - y)^2$$

0/1 loss:

$$L_{0/1} = 0$$
 if $f(x) = y$, else 1

Check your understanding

- Suppose a linear function with parameters $w_0 = 0.5$, $w_1 = 0.5$
- Computer the MSE value at the training example (1,3).

Univariate linear regression

Given training data

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots (x^{(N)}, y^{(N)})$$

Fit the model

$$y = f(x; w_0, w_1) = w_1 x + w_0$$

By minimizing the cost function

$$g(w_0, w_1) = \frac{1}{N} \sum_{n=1}^{N} (f(x^{(n)}; w_0, w_1) - y^{(n)})^2$$

Cost function depends on the free parameter

Univariate linear regression

- Every combination of (w₀, w₁) has an associated cost.
- Key training task: find the 'best' values of (w₀, w₁) such that the cost is minimum.

Gradient Descent

Demo Example for Gradient Descent

Gradient Descent

- A general strategy to minimize cost functions in ML algorithms.
- Goal: minimize the cost function $g(w_0, w_1)$

```
Start at a random point say w_0 = 0, w_1 = 0
Repeat until no change occurs
Update w_0, w_1 by taking
a <u>small step</u> in the <u>direction of the steepest descent</u>
Return w_0, w_1.
```


Gradient Descent – More General...

• Goal: minimize the cost function $g(\mathbf{w})$, where $\mathbf{w} = (w_0, w_1, ...)$

```
Input: \alpha > 0
Initialise w. //at 0 or some random value
Repeat until convergence
w \coloneqq w - \alpha \nabla g(w)
Return w.
```


Algorithm for univariate linear regression using GD

```
Input: \alpha > 0, training set \{(x^{(n)}, y^{(n)}): n = 1, 2 ... N\}
Initialise w_0 = 0, w_1 = 0
Repeat
    for n = 1, 2... N //more efficient to update after each data point
         w_0 := w_0 - \alpha((w_1 x^{(n)} + w_0) - y^{(n)})
         w_1 := w_1 - \alpha((w_1 x^{(n)} + w_0) - y^{(n)})x^{(n)}
Until change in cost remains below a very small threshold
Return w_0, w_1.
```


Univariate linear regression

- Every combination of (w_0, w_1) has an associated cost.
- Key training task: find the 'best' values of (w₀, w₁) such that the cost is minimum.

Effect of the learning rate

Whether or not we descend in the function when taking this step depends completely on how far along it we travel.

Multivariate linear regression

Univariate nonlinear regression

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_m x^m = \mathbf{w}^T \mathbf{x}$$

Х

$$\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_m \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 1 \\ x \\ \chi^2 \\ \dots \\ \chi^m \end{pmatrix}$$

polynomial regression model.

Advantages of vector notation

- Vector notation is more concise.
- With the vectors w and x populated appropriately (and differently in each case, as on the previous 2 slides), these models are still linear in the parameter vector.
- The cost function is the L2 as before.
- The gradient remains:

$$\nabla g(\mathbf{w}) = 2(\mathbf{w}^T \mathbf{x}^{(n)} - \mathbf{y}^{(n)}) \mathbf{x}^{(n)}$$

Ready to be plugged into the general gradient descent algorithm.

Overfitting

- Linear regression also has overfitting problems. The model can be overcomplex.
- What order of polynomial would you choose?

Q/A

Teams Channel for Week2
Office Hour and Dropin Sessions
See Canvas module homepage

Figures and animations referred to:

Jeremy Watt et al. Machine Learning Refined. Cambridge University Press, 2020.

https://github.com/jerm/watt/machine_learning_refined