Задачи начального уровня по языку Lisp

1. Глубина списка (Взята!)

Постройте функцию, которая заданному списку определит максимальную вложенность. Глубина элемента 0.

Пример

2. Мощность списка (Взята!)

Постройте функцию, которая заданному списку определит суммарное количество атомарных элементов.

Пример

3. Список атомов (Взята!)

Постройте функцию, которая заданному списку выдаст список входящих в него и в его подсписки атомов, без повторений.

4. Леанирезация списка (Взята!)

Постройте функцию, которая заданному списку создаст список атомарных элементов в том же порядке.

Пример

5. Максимальный список (Взята!)

Постройте функцию, которая заданному списку выдаст подсписок в котором больше всего элементов.

Пример

6. Зеркальный список (Взята!)

Постройте функцию, которая перевернёт список и все его подсписки. всего элементов.

Пример

7. Максимум списка (Взята!)

Постройте функцию, которая найдет среди всех чисел списка, учитывая подсписки, максимальное и все его подсписки. всего элементов.

8. НОД списка (Взята!)

Если список чисел (без подсписка). Постройте функцию, которая найдет Наибольший общий делитель этих чисел.

Пример

```
(d '( 10 100 1000 10000))
10
```

9. Путь (Взята!)

Дан список пар названий комнат и ещё две комнаты. Пара (a b) обозначает, что можно попасть из комнаты а в комнату b. Построить функцию, которая определит есть ли путь из первой комнаты во вторую и выдаст его.

Пример

```
(d '( (312-1 312) (312-2 312) (312-3 312) (312-4 312) (301 x) (312 x) (x 314) (x x) ) 312-1 314 ) (312-1 312 x 314)
```

10. Достижимость (Взята!)

Дан список пар названий комнат и ещё комната. Пара (a b) обозначает, что можно попасть из комнаты а в комнату b. Выдать список комнат в которые можно добраться из данной.

Пример

```
(d '( (312-1 312) (312-2 312) (312-3 312) (312-4 312) (301 x) (312 x) (x 314) (x x) ) x ) (x 314)
```

11. Циклический сдвиг вправо (Взята!)

В заданном списке осуществить циклический сдвиг вправо на 1.

```
(d '(a b c d))
(d a b c)
```

12. Циклический сдвиг влево (Взята!)

В заданном списке осуществить циклический сдвиг влево на 1.

Пример

13. Циклический сдвиг вправо-2 (Взята!)

В заданном списке осуществить циклический сдвиг вправо на 1.

Пример

14. Циклический сдвиг влево-2 (Взята!)

В заданном списке осуществить циклический сдвиг влево на 1.

Пример

15. Поиск одинаковых (Взята!)

Выдать список элементов у которых есть копии в этом списке.

Пример

```
(d '(a b c d a b a c a a))
(a b c)
```

16. Двойной список (Взята!)

Если список есть запись двух одинаковых списков, то выдать «Да», иначе выдать «Нет».

17. Сокращаемый список (Взята!)

Если список есть запись нескольких одинаковых списков, то выдать «Да», иначе выдать «Нет».

Пример

18. Список одного (Взята!)

Если для построения списка и его подсписков был использован только 1 элемент, выдать его, иначе выдать «Нет».

Пример

19. Список разных (Взята!)

Если для построения списка и его подсписков был использованы разные элементы, выдать «Да», иначе один из повторяющихся элементов.

Пример

```
(d '(a (1) (2 b a) (((c))) )
a
```

20. Цикл

Дан список пар названий комнат и ещё две комнаты. Пара (a b) обозначает, что можно попасть из комнаты а в комнату b. Построить функцию, которая определит можно ли ходить по каким-то комнатам по-кругу и выдаст список этих комнат.

```
(d '( (312-1 312) (312-2 312) (312-3 312) (312-4 312) (301 x) (312 x) (x 314) (x x) ) (314 301) ) (301 312 x 314)
```

21. Производная (Взята!)

В качестве параметра создаваемая Вами функция получает функцию действительного переменного, запрограммированную при помощи лишь сложения и умножения. Посчитать ее производную. Алгебраические упрощения делать не обязательно.

Внимание! При тестировании задачи функция может быть задана некорректно. Ошибку в ее задании нужно вылавливать.

Пример

```
(d '( lambda (a )(+ (* a a) x)) )
( lambda (a )(* 2 a) )
```

22. Интерполяция (Взята!)

Задан список аргументов и значений не более чем из 10 пар. Выдать функцию, проходящую через эти точки.

Пример

```
(d '( (1.0 1.0) (2.0 2.0) (3.0 3.0) (4.0 4.0))) )
( lambda (a )( a) )
```

23. Интеграл (Взята!)

В качестве параметра создаваемая Вами функция получает функцию действительного переменного, запрограммированную при помощи лишь сложения и умножения. Посчитать ее интеграл. Алгебраические упрощения делать не обязательно.

Внимание! При тестировании задачи функция может быть задана некорректно. Ошибку в ее задании нужно вылавливать.

Пример

```
(d '( lambda (a )(+ (* a a) x)) )
( lambda (a )(+ (* 0.33333 (* a (* a a))) c) )
```

24. Логические функции

В качестве параметра создаваемая Вами функция получает логическую функцию нескольких переменных, запрограммированную при помощи лишь логических операций: конъюнкции, дизъюнкции и отрицания, и список значений некоторых из ее параметров. Выдать остаточную

функцию, получающуюся после подстановки значений в исходную функцию и ее упрощения.

Внимание! При тестировании задачи функция может быть задана некорректно. Ошибку в ее задании нужно вылавливать.

Пример

```
(d '( lambda (a b c)(and (or a b) (or (not a) (not c)))) ((a
t) (b f)) )
( lambda (c)(not c))
```

25. Многочлен

В качестве параметра создаваемая Вами функция получает многочлен нескольких переменных, задаваемый при помощи лишь операций: + и *, причем + не будет встречаться внутри * и в каждом слагаемом не более одного постоянного коеффициента. и список значений некоторых из ее параметров. Выдать остаточную функцию, получающуюся после подстановки значений в исходную функцию и ее упрощения. Коффициенты и параметры — целые числа.

Внимание! При тестировании задачи функция может быть задана некорректно. Ошибку в ее задании нужно вылавливать.

Пример

```
(d '( lambda (a b c)((+ (* 2 a b c) (+ (* 2 c b a) -3)) ((a 1) (b -1)) )
(lambda (c)(+ (* -4 c) -3))
```

26. Собери многочлен

В качестве параметра создаваемая Вами функция получает список списков сомножителей. Функцию вычисляющий многочлен, который поучится, если сложить все элементы данного списка (каждый элемент — произведение). Коффициенты и параметры — целые числа.

Внимание! При тестировании задачи функция может быть задана некорректно. Ошибку в ее задании нужно вылавливать.

```
(d '((2 a b c) (c b) (a 10 -10) (b c) (-3))
(lambda (a b c)(+ (* 2 a b c) (* 2 b c) -3))
```

27. Красивый многочлен (Взята!)

В результате дедуктивного синтеза был получен многочлен, в котором умножения и сложения только двухместные и возможна куча подобных членов. Но все умножения внутри сложения. Коффициенты и параметры — целые числа.

Привести подобные и записать с минимальным количеством операций Внимание! При тестировании задачи функция может быть задана некорректно. Ошибку в ее задании нужно вылавливать.

Пример

```
(d '( lambda (a b c)((+ (* 2 (* (* a b) c) (+ (* (* 1 c) (*(* 1 c)) (* b a)) (+ -1 -2)) )
(lambda (a b c)(+ (* 2 a b c) (* 2 b c) -3) )
```

28. Минимум

Задан список элементов, первый их которых функция минимума для двух элементов. Остальной список — элементы, следи которых нужно найти минимальный.

```
\begin{array}{l} \textit{(d '(lambda (x y)((if (> x y) x y) a b))} \\ \textit{c} \end{array}
```