GARCH and Zillow Housing Data

Presented by Emilio Vasquez, Paul (Nik) Lopez, Horace Tsai, Lucas Everett

6/28/2023

Cal State Fullerton

Agenda

Emilio Vasquez Paul (Nik) Lopez Horace Tsai Lucas Everett All

Introduction/EDA

Emilio Vasquez

Dataset: Median Housing Sale Price from Zillow

- ▶ Downloaded raw monthly median house sale prices from https://www.zillow.com/research/data/
- > Spans from 2/29/2008 to 3/31/2023, giving us about 180 datapoints for each city
- Covers 608 different cities across the United States
- > Potential bias in the data that could mispresent the true median for any given state

Winners and Losers Since 2008 (Sorted on Increase, by Region):

Bottom 10 Decreases

Time Series EDA for Los Angeles, CA

Decomposition of additive time series

Generalized

Auto

Regressive

Conditional

eteroskedasticity

GARCH Background

Paul (Nik) Lopez

Why are we using GARCH

- One of the most popular models to forecast volatility in the industry
- The model can capture volatility clustering that is often observed in time series, particularly in prices and other financial data.
- 3. The model can capture the fact that volatility can change over time.
- 4. Model flexibility.
 - The GARCH model has many extensions, such as the EGARCH (Exponential GARCH), that can accommodate asymmetric effects in volatility changes (not pursued here).

Like AR and ARMA, GARCH is an extension of ARCH

ARMA(1) an extension of AR(1)

GARCH(1,1) an extension of ARCH(1)

$$AR(1)$$
: $X_t = \phi X_{t-1} + Z_t$
where $t = 0, \pm 1, ..., and $Z_t \sim WN(0, \sigma^2)$$

$$ARCH(1): X_t = Z_t \ \sigma_t = Z_t \sqrt{\alpha_0 + \alpha_1(X_{t-1})^2}$$
 where $t = 0, \pm 1, ..., and Z_t \sim WN(0, \sigma^2)$ and σ_t is std dev of return of time t Z_t

$$ARMA(1,1): X_t = \phi X_{t-1} + \theta Z_{t-1} + Z_t$$

where $t = 0, \pm 1, ..., and Z_t \sim WN(0, \sigma^2)$

$$X_{t}$$
 Z_{t-1}
 Z_{t}

$$GARCH(1,1): X_{t} = Z_{t} \sigma_{t} = Z_{t} \sqrt{\alpha_{0} + \alpha_{1}(X_{t-1})^{2} + \beta \sigma_{t-1}^{2}}$$

$$Z_{t}$$

$$X_{t} \sim X_{t-1}$$

$$\sigma_{t} \sim \sigma_{t-1}$$

How we forecast with the GARCH Model

Unlike other models, GARCH models returns versus the prices.

- 1. Take log returns or percentage changes and fit GARCH to the transformed time series
- 2. Use ACF and other measures to determine the correct parameters
- 3. Forecast volatility after the model is fit.
- 4. Take the last price of our data and reverse the log return or percentage change calculation to get the next predicted price

 $New\ Price = Old\ Price * (1 + vol\ forecast)$

GARCH Housing Data Analysis/Results

Horace Tsai

When/How to Use GARCH

When to Use GARCH

- Widely used when trying to predict/forecast volatility such as finance or economic data
- Time series data has high points of volatility

How to Use GARCH

- Plot time series data to make sure data has high points of volatility
- Plot ACF and PACF
- Create GARCH Model based on analysis of ACF and PACF

Analysis/ Results of GARCH

```
plt.figure(figsize=(10,4))
plt.plot(returns)
plt.ylabel('Pct Return', fontsize=16)
plt.title('LA Home Price Returns', fontsize=20)
```

Text(0.5, 1.0, 'LA Home Price Returns')

GARCH(2, 2) Fit

$$X_{t} = Z_{t} \sigma_{t} = Z_{t} \sqrt{\alpha_{0} + \alpha_{1}(X_{t-1})^{2} + \alpha_{2}(X_{t-2})^{2} + \beta_{1}\sigma_{t-1}^{2} + \beta_{2}\sigma_{t-2}^{2}}$$

Vol Model:	GARCH	Log-Likeli	hood:	-395.646
Distribution:	Normal		AIC:	803.291
Method:	Maximum Likelihood	'	BIC:	822.382

Volatility Model

	coef	std err	t	P> t	95.0% Conf. Int.
omega	0.1722	4.885	3.526e-02	0.972	[-9.403, 9.747]
alpha[1]	0.0616	1.837	3.355e-02	0.973	[-3.540, 3.663]
alpha[2]	6.9151e-10	2.791	2.478e-10	1.000	[-5.470, 5.470]
beta[1]	2.2291e-08	2.735	8.150e-09	1.000	[-5.360, 5.360]
beta[2]	0.8925	2.511	0.355	0.722	[-4.028, 5.813]

GARCH(1, 1) Fit

$$X_t = Z_t \ \sigma_t = Z_t \sqrt{\alpha_0 + \alpha_1 (X_{t-1})^2 + \beta \sigma_{t-1}^2}$$

Vol Model:	GARCH	Log-Likelih	ood:	-396.589
Distribution:	Normal		AIC:	801.178
Method:	Maximum Likelihood		BIC:	813.906

Volatility Model

	coef	std err	t	P> t	95.0% Conf. Int.
omega	0.1081	0.156	0.694	0.487	[-0.197, 0.413]
alpha[1]	0.0325	0.106	0.306	0.760	[-0.176, 0.241]
beta[1]	0.9405	0.127	7.396	1.407e-13	[0.691, 1.190]

GARCH(2, 0) = ARCH(2) Fit

Vol Model:	ARCH	Log-Likeli	hood:	-396.393
Distribution:	Normal		AIC:	800.786
Method:	Maximum Likelihood	'	BIC:	813.513

Volatility Model

	coef	std err	t	P> t	95.0% Conf. Int.
omega	3.1326	0.640	4.894	9.904e-07	[1.878, 4.387]
alpha[1]	0.1488	8.041e-02	1.850	6.430e-02	[-8.836e-03, 0.306]
alpha[2]	0.2902	0.149	1.953	5.082e-02	[-1.040e-03, 0.581]

Volatility Prediction - Rolling Forecast

Forecast with Garch(2,0)

GARCH(2,0) Price Predictions for First Quarter 2023

Analysis/ Results of Forecast

Model

 Our ARCH(2) fit the best with the lowest AIC and significant values

Model	AIC	Ω (p- value)	α1 (p- value)	α2 (p- value)	β1 (p- value)	β2 (p- value)
GARCH (2,2)	803.29	0.972	0.973	1.00	1.00	0.722
GARCH (1,1)	801.18	0.487	0.760	N/A	1.407e- 13	N/A
GARCH (2,0)	800.79	9.904e- 07	6.430e- 02	5.082e- 02	N/A	N/A

Predictions

- Ran our model to forecast volatility for the Months of January, February, and March
- Used the forecasted volatility to compute our new prices by using the following formula:

$$PercentChangeReturns = \frac{newprice - oldprice}{oldprice} * 100$$

Date	Actual	Predicted	Difference
2023-01-31	\$815,000	\$833,745	\$18,745
2023-02-28	\$825,000	\$833,989	\$8,989
2023-03-31	\$840,000	\$839,850	-\$150

Conclusion

Lucas Everett

General Shortcomings of the GARCH Model

The biggest shortcoming is volatility itself

General Shortcomings of the GARCH Model

- Assumes volatility based on prior records and conditional variances
 - Models can be unstable for highly volatile data → incorrect forecasts
- Selecting the correct GARCH model can be cumbersome
- High computational cost due to intensive fitting of complex models to large data sets

Extensions on GARCH

Could have tested other kinds of GARCH models on the data

- IGARCH (Integrated) restricts the parameters
- NGARCH (Nonlinear) addresses correlation
- EGARCH (Exponential) accommodates asymmetric effects

Each distinct GARCH model tries to help access and interpret how the positive and negative changes in the series affect volatility and the return in assets/profits/losses.

Where Can We Go From Here ...

With the data available, there are a lot of different analyses one could zone in on:

- •COVID-19 housing market affect
 - Was there a fundamental change in the volatility structure of the time series?
- Median housing prices of states before/after election season
- Try modeling other regions in the dataset
- Implement EGARCH model and other extensions

Conclusion

- Certain housing sale prices were shocking/counterintuitive to our initial thoughts after performing EDA
- ARCH(2) worked well for predicting Median Sale Price for Los Angeles, CA
- Small step towards learning more about ARCH/GARCH and becoming the best time series experts on the block!

Questions & Answers?

Winners and Losers Since 2008 (sorted on increase):

Top 10 Increases

Bottom 10 Increases

