

本学期实验与学习定结

> 简单电路设计

MOSFET 运放 功放

- > 仿真分析
- > 测量方法
- > 设计调试

几种集成运算放大器的典型参数(P64)

芯片型号₽		μΑ741 (单¹) <i>₀</i>	0P07C₽	NE5532(双)₽	LF347(四).₽	LM-324(四)₄		
电源↓	双电源₽	±3V~±18V₽	±3V~±18V₽	±3 V∼±20V ₽	±1.5V″±16V∂	±18 V ₽		
电压₽ 单电源₽		-0	-₽	- ₄	-43	3 V~ 32 V ₽		
输入失	调电压 V∞□	1. OmV∉	250μ V∂	0. 5mV ₽	5 m V ₽	2mV√		
输入失	调电流 /∞₽	20nA∂	8nA∂	10n A ∂	25 <u>p</u> A-	5 <u>n</u> A.		
输入偏	置电流 /₌₽	80nA∂	±9 <u>n</u> A₽	200nA∂	50 <u>p</u> A.	45nA₽		
开环电	压增益 4₀∞	2×10*•	4×10⁵₽	50×10 ^{sel} (<i>R</i> = 600Ω) ₽	1×10⁵₽	1×10 ⁶		
输入	电阻 /⊌₽	2. ΟΜΩ₽	33 ΜΩ₽	0.3 MΩ₽	10 [≅] Ω₽			
单位增	益帯寛 8‰	1MHz₽	0.6 MHz «³	10 MHz√ (ζ=100pF, R= 600 Ω)√	4 MHz∘	1MHz₽		
转换	速率 S₁₽	0. 5V/μs∂	0. 3V/μs ₽	9 V/μs₽	13 V/µs∘	− ₽		
共模排	⊯比 ⁄‱	90 dB∂	120 dB∂	100 dB∂	100 dB⊲	85 dB₽		
功率	车消耗₽	60π ₩ ₽	150m₩₽	780 ∰⊮	570m₩₽	1130 ლ∰-		
输入时	电压范围₽	±13 V ₽	±14 V ₽	±电源电压₽	±15 V ₽	−0. 3 V~ 32 V ₽		
说 明₽		通用型↩	低噪声∂	低噪声₽	高 <u>用型</u> (JFET)₽	通用型₽		

信号的产生、分解与合成

- (1)设计信号产生电路:能够产生频率为5KHz 峰峰值为10V的方波,再由方波生成对应频率, 峰峰值为6V的三角波。
- (2) 设计信号分解、合成(选做)电路:对 所产生的方波进行滤波分解,产生该方波的一次、三次谐波正弦信号,再将这些信号再合成 为近似方波信号。

自学内容

- > 第2章 电子线路计算机辅助分析与设计
 - > 2.1 Orcad9.2软件概述
 - > 2.2 Orcad9.2电路设计仿真分析的流程
 - > 2.3 电子线路分析示例
- > 第3章 模拟电子线路基础实验
 - > 3.5 集成运算放大器的参数测试
 - > 3.6 集成运算放大器在信号运算方面的应用
 - > 3.7 集成运算放大器在波形产生、变换与处理方面的应用
- > 第4章 模拟电子线路应用设计
 - > 4.6 RC有源滤波器的设计

实验要点

- > 利用运放进行信号产生电路设计
- > 利用运放进行信号处理电路设计

信号的产生、分解与合成

设计一个信号产生、分解与合成电路,能够产生所需频率的方波,并对所产生的方波进行滤波分解,产生多个不同频率的正弦信号,再将这些信号再合成为近似方波信号。

方波产生电路(多谐振荡电路)

三角波产生电路

同相迟滞比较器

$$V_{+} = \frac{R_{2}}{R_{2} + R_{3} + RP_{1}} V_{o1} + \frac{R_{3} + RP_{1}}{R_{2} + R_{3} + RP_{1}} V_{ia}$$

将翻转条件 $V_{+}=V_{-}=0$ 代入

$$V_{ia} = \frac{-R_2}{R_3 + RP_1} V_{o1} \longrightarrow \begin{cases} V_{T_-} = \frac{-R_2}{R_3 + RP_1} V_{CC} \\ V_{T_+} = \frac{R_2}{R_3 + RP_1} V_{CC} \end{cases}$$

比较器的门限宽度 ΔV_{T} 为

$$\Delta V_{\rm T} = V_{\rm T+} - V_{\rm T-} = 2 \cdot \frac{R_2}{R_3 + RP_1} V_{\rm CC}$$

三角波产生电路

同相迟滞比较器

$$V_{+} = \frac{R_{2}}{R_{2} + R_{3} + RP_{1}} V_{o1} + \frac{R_{3} + RP_{1}}{R_{2} + R_{3} + RP_{1}} V_{ia}$$

将翻转条件
$$V_{+}=V_{-}=0$$
代入

$$V_{ia} = \frac{-R_2}{R_3 + RP_1} V_{o1} \longrightarrow \begin{cases} V_{T_-} = \frac{-R_2}{R_3 + RP_1} V_{CC} \\ V_{T_+} = \frac{R_2}{R_3 + RP_1} V_{CC} \end{cases}$$

反相积分器

$$v_{o2} = -\frac{1}{C_2} \int_{t_0}^{t_1} \frac{v_{o1}}{(R_4 + RP_2)} dt - v_{C2}(t_0)$$
$$= \pm \frac{V_{CC}}{(R_4 + RP_2)C_2} t + v_{O2}(t_0)$$

方波-三角波的工作过程:

- a点闭合,形成闭环电路,则自动产生方波-三角波。
- 输出 v_{o1} 为高电平($+V_{CC}$), 比较器门限 电 压为 V_{T-} 。这 时积分器开始反向积分,三角 波 v_{o2} 线性下降。
- 如此反复,就可自动产生方波-三角波。

波-三角波的幅度和频率

> 方波幅度:

> 三角波正、负幅度: 就是比较器门限电压

$$V_{\text{o2m}} = \frac{R_2}{R_3 + RP_1} V_{\text{CC}}$$

$$V_{\text{o2pp}} = \Delta V_{\text{T}} = \frac{2R_2}{R_3 + \text{RP}_1} V_{\text{CC}}$$

> 方波-三角波频率:

$$T = \frac{4R_2(R_4 + RP_2)C_2}{R_3 + RP_1}$$

$$f = \frac{1}{4(R_4 + RP_2)C_2} \cdot \frac{R_3 + RP_1}{R_2}$$

方 波-三角波的幅度和频率

> 三角波正、负幅度:

$$V_{\text{o2m}} = \frac{R_2}{R_3 + RP_1} V_{\text{CC}}$$

> 方波-三角波频率:

$$f = \frac{1}{4(R_4 + RP_2)C_2} \cdot \frac{R_3 + RP_1}{R_2}$$

- > 结论:
- ① 方波的幅度由+ V_{CC} 和 - V_{EE} 决定;
- ②三角波幅度可由RP」进行调节,但会影响频率;
- ③调节RP₂,可调节频率,且不会影响三角波幅度,可用 RP₂实 现频率微调,用C2改变频率范围。

方波-三角波产生电路

信号分解电路

周期信号的傅里叶级数展开

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t)$$

其中: T 为周期, ω 为角频率。 $\omega = \frac{2\pi}{T}$; 第一项 $\frac{a_0}{2}$ 为直流分量

方波可分解为:

$$f(t) = \frac{4A}{\pi} (\sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \frac{1}{7} \sin 7\omega t + \cdots)$$

滤波器工作原理

- ➤ 在实际的电子系统中,输入信号往往包含有一些不需要的信号成分,必须设法将它衰减到足够小的程度.或者把有用信号挑选出来。为此,需要采用滤波器。
- ▶ 滤波器允许一定频率范围内的信号通过, 抑制或急剧衰减该频率范围以外的信号。
- ▶ 根据要滤除的干扰信号的频率与工作频率的相对关系,滤波器可分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器和全通滤波器等种类。

滤波器工作原理

低通 (LPF)

高通 (HPF)

带通 (BPF)

带阻 (BEF)

全通 (APF)

滤波器工作原理

- ➤ 根据滤波器中是否使用有源器件,可分为有源滤 波器和无源滤波器。
- ➤ 如果在一级RC低通电路的输出端再加上一个电压跟随器,使之与负载很好地隔离开来,就构成了一个简单的一阶有源低通滤波电路。由于电压跟随器的输入阻抗很高、输出阻抗很低,因此,其带负载能力得到加强。
- ▶ 如果希望电路不仅有滤波功能而且能起放大作用 ,则只要将电路中的电压跟随器改为同相比例放 大电路即可。
- ▶ 但由于集成运放的带宽有限,相应有源滤波器的最高工作频率受限。

放大电路

高阶有源低通滤波电路

1. 二阶压控电压源型(Sallen-Key)

(1) 传递函数

)传递函数
$$A_{vf} = 1 + \frac{R_f}{R_1} \quad (同相比例)$$
 $V_I = R$ $A_{vf} = R$ $C_1 = C$ $C_2 = C$

对于滤波电路,有

$$A_{vf} = \frac{V_o(s)}{V_P(s)} \qquad V_P(s) = \frac{1/sC}{R + 1/sC} \cdot V_A(s)$$

$$\frac{V_{i}(s) - V_{A}(s)}{R} - \frac{V_{A}(s) - V_{o}(s)}{1/sC} - \frac{V_{A}(s) - V_{P}(s)}{R} = 0$$

得滤波电路传递函数

$$A(s) = \frac{V_o(s)}{V_i(s)} = \frac{A_{vf}}{1 + (3-A_{vf})sCR + (sCR)^2}$$
 (二阶)

 $v_{\rm O}$

1. 二阶压控电压源型

(1) 传递函数

$$A(s) = \frac{A_{vf}}{1 + (3-A_{vf})sCR + (sCR)^{2}}$$

令 $A_0 = A_{vf}$ 称为通带增益

$$Q = \frac{1}{3 - A_{-\epsilon}}$$
 称为等效品质因数

$$\omega_0 = \frac{1}{RC}$$
 称为特征角频率

$$A(s) = \frac{A_0}{1 + \frac{1}{Q}(\frac{s}{\omega_0}) + (\frac{s}{\omega_0})^2}$$

注意:

当 $3-A_{vf}>0$,即 $A_{vf}<3$ 时, 滤波电路才能稳定工作。

 $v_{\rm O}$

1. 二阶压控电压源型

(1) 传递函数

用
$$s = j\omega$$
 代入, 得
$$\dot{A}(j\omega) = \frac{A_0}{1 - (\frac{\omega}{\omega_0})^2 + j\frac{1}{0} \cdot \frac{\omega}{\omega_0}}$$

用
$$s = \mathbf{j}\omega$$
 代入,得
$$\dot{A}(\mathbf{j}\omega) = \frac{A_0}{1 - (\frac{\omega}{\omega_0})^2 + \mathbf{j}\frac{1}{Q} \cdot \frac{\omega}{\omega_0}}$$
 可得归一化的幅频响应

$$20 \lg \left| \frac{\dot{A}(j\omega)}{A_0} \right| = 20 \lg \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_0}\right)^2\right]^2 + \left(\frac{\omega}{\omega_0 Q}\right)^2}}$$

$$\omega = \omega_0$$
时 $\left| \frac{\dot{A}(j\omega_0)}{A_0} \right| = Q$ 相频响应 $\varphi(\omega) = -\arctan \frac{\frac{\omega}{\omega_0 Q}}{1 - (\frac{\omega}{\omega_0})^2}$

1. 二阶压控电压源型

(2) 幅频响应

不同 Q 值二阶低通滤波器的归一化幅频、相频响应

2. 高阶

n阶巴特沃斯

SK 型单位增益低通滤波器

$$A(S) = \frac{\frac{1}{S^2 C_1 C_2}}{R_1 R_2 + R_1 \frac{1}{SC_1} + R_2 \frac{1}{SC_1} + \frac{1}{S^2 C_1 C_2}} = \frac{1}{1 + SC_2 (R_1 + R_2) + S^2 C_1 C_2 R_1 R_2}$$

转换到频域,有:

$$\dot{A}(j\omega) = \frac{1}{1 + j\omega C_2(R_1 + R_2) + (j\omega)^2 C_1 C_2 R_1 R_2}$$

对比式
$$\dot{A}(j\omega) = A_0 \frac{1}{1 + \frac{1}{Q}j\frac{\omega}{\omega_0} + (j\frac{\omega}{\omega_0})^2}$$

可得:

特征角频率
$$\omega_0 = \frac{1}{\sqrt{C_1 C_2 R_1 R_2}}$$
; $f_0 = \frac{1}{2\pi \sqrt{C_1 C_2 R_1 R_2}}$
$$Q = \frac{\sqrt{C_1 C_2 R_1 R_2}}{C_2 (R_1 + R_2)}$$

因为电容的取值一般不容易任选,先确定C1和C2

据式
$$f_0 = \frac{1}{2\pi\sqrt{C_1C_2R_1R_2}}$$
 得: $R_1R_2 = \frac{1}{4\pi^2f_0^2C_1C_2}$

得:
$$R_1R_2 = \frac{1}{4\pi^2 f_0^2 C_1 C_2}$$

据式
$$Q = \frac{\sqrt{C_1 C_2 R_1 R_2}}{C_2 (R_1 + R_2)}$$

据式
$$Q = \frac{\sqrt{C_1 C_2 R_1 R_2}}{C_2 (R_1 + R_2)}$$
 得: $R_1 + R_2 = \frac{\sqrt{C_1 C_2 R_1 R_2}}{C_2 Q} = \frac{1}{2\pi f_0 C_2 Q}$

可以解得:

$$R_1 = \frac{\frac{1}{Q} \pm \sqrt{\frac{1}{Q^2} - 4\frac{C_2}{C_1}}}{4\pi f_0 C_2}$$

$$R_1 = \frac{\frac{1}{Q} \pm \sqrt{\frac{1}{Q^2} - 4\frac{C_2}{C_1}}}{4\pi f_0 C_2} \qquad R_2 = \frac{\frac{1}{Q} \mp \sqrt{\frac{1}{Q^2} - 4\frac{C_2}{C_1}}}{4\pi f_0 C_2}$$

为了保证电阻表达式中根号内数值不能小于 0 , 两个电容的选择存在约束:

$$\frac{1}{Q^2} - 4\frac{C_2}{C_1} \ge 0$$

即:
$$C_2 \leq \frac{1}{40^2}C_1 \quad 或者: C_1 \geq 4Q^2C_2$$

对第一个电容 C_1 或者 C_2 的选择,理论上可以任意。但是一般情况下,不要使得两个电阻太大或者太小。

截止频率与电容选择

$f_{\scriptscriptstyle m C}$	1Hz	10Hz	100Hz	1000Hz	10kHz	100kHz	1MHz	10MHz
C ₁ 量级	10~100µF	1~10µF	0.1~1µF	10~100nF	1~10nF	0.1~1nF	10~100pF	1~10pF

设计一个二阶 SK 型低通滤波器。要求,中频增益为1倍,

截止频率为 1kHz , Q=0.58。

用 Q 和特征频率
$$f_0$$
 表达截止频率 f_0 定义: $K = \frac{f_0}{f_0}$

$$|A(jf_{c})| = \left| A_{m} \frac{1}{1 + \frac{1}{Q} j \frac{f_{c}}{f_{0}} + (j \frac{f_{c}}{f_{0}})^{2}} \right| = \left| A_{m} \frac{1}{1 + \frac{1}{Q} j K + (j K)^{2}} \right| = \frac{1}{\sqrt{2}} A_{m}$$

$$K = \frac{\sqrt{4Q^2 - 2 + \sqrt{4 - 16Q^2 + 32Q^4}}}{2Q}$$

根据 Q 值,计算特征频率 f_0 。

将
$$Q=0.58$$
 代入得:
$$K = \frac{\sqrt{4Q^2 - 2 + \sqrt{4 - 16Q^2 + 32Q^4}}}{2Q} = 0.791$$

解得:

$$f_0 = \frac{f_c}{K} = \frac{1000 \text{Hz}}{0.791} = 1264.244 \text{Hz}$$

选择电容 C₁=100nF

选择
$$C_2$$
。 应满足: $C_2 \leq \frac{1}{4Q^2}C_1 = 74.316$ nF

电阻电容 E 系列选值表

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
E3	1								2.2								4.7							
E6	1				1.5				2.2				3.3				4.7				6.8			
E24	1.0	1.1	1.2	1.3	1.5	1.6	1.8	2.0	2.2	2.4	2.7	3.0	3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1
E96	1.00	1.10	1.21	1.30	1.50	1.62	1.82	2.00	2.21	2.43	2.74	3.01	3.32	3.65	3.92	4.32	4.75	5.11	5.62	6.34	6.81	7.50	8.25	9.31
	1.02	1.13	1.24	1.33	1.54	1.65	1.87	2.05	2.26	2.49	2.80	3.09	3.40	3.74	4.02	4.42	4.87	5.23	5.76	6.49	6.98	7.68	8.45	9.53
	1.05	1.15	1.27	1.37	1.58	1.69	1.91	2.10	2.32	2.55	2.87	3.16	3.48	3.83	4.12	4.53	4.99	5.36	5.90	6.65	7.15	7.87	8.66	9.76
	1.07	1.18		1.40		1.74	1.96	2.15	2.37	2.61	2.94	3.24	3.57		4.22	4.64		5.49	6.04		7.32	8.06	8.87	
				1.43		1.78				2.67									6.19				9.09	
				1.47																				
	4	8	11	17	20	25	29	33	37	42	46	50	54	57	61	65	68	72	77	80	84	88	93	96

根据电阻电容 E 系列选值表,电容常用 E6 系列,即在 1~10 之间,只有 6 个待选值,分别为 1,22,33,47,68,82,因此,选择 C_2 为 68nF。 计算两个电阻值并选择合适的标称值。将全部已知参数代入,解得:

$$R_{1} = \frac{\frac{1}{Q} + \sqrt{\frac{1}{Q^{2}} - 4\frac{C_{2}}{C_{1}}}}{4\pi f_{0}C_{2}} = 2061.24\Omega$$

$$R_{2} = \frac{\frac{1}{Q} - \sqrt{\frac{1}{Q^{2}} - 4\frac{C_{2}}{C_{1}}}}{4\pi f_{0}C_{2}} = 1130.68\Omega$$

这些精确的电阻,从性价比合适的 E96系列挑选合适的值,上述计算值最为接近的是: R_1 取 2.05kΩ, R_2 取 1.13kΩ。

有源带通滤波电路

1. 电路组成原理

可由低通和高通串联得到

$$\omega_{\rm H} = \frac{1}{R_1 C_1}$$
 低通截止角频率

$$\omega_{\rm L} = \frac{1}{R,C_{\rm s}}$$
 高通截止角频率

必须满足 $\omega_{\rm L} < \omega_{\rm H}$

2. 二阶压控电压源型

传递函数

$$A(s) = \frac{A_{vf}sCR}{1 + (3-A_{vf})sCR + (sCR)^2}$$

$$A_0 = \frac{A_{vf}}{3 - A_{vf}}$$
 $\omega_0 = \frac{1}{RC}$ $Q = \frac{1}{3 - A_{vf}}$

得
$$A(s) = \frac{A_0 \frac{s}{Q\omega_0}}{1 + \frac{s}{Q\omega_0} + (\frac{s}{\omega_0})^2}$$
 则有 $\dot{A}(j\omega) = \frac{A_0}{1 + jQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}$
$$\omega = \omega_0$$
时,有最大值

有
$$\dot{A}(\mathbf{j}\omega) = \frac{A_0}{1 + \mathbf{j}Q(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})}$$

$$\omega = \omega_0$$
时,有最大值

$$A(j\omega) = \frac{A_0 \frac{1}{Q} \cdot \frac{j\omega}{\omega_0}}{1 - \left(\frac{\omega}{\omega_0}\right)^2 + j\frac{\omega}{\omega_0 Q}} = \frac{A_0}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} \begin{vmatrix} \dot{A} \\ \frac{\dot{A}}{\omega_0} \end{vmatrix}$$

$$\left| \frac{\dot{A}(\mathbf{j}\boldsymbol{\omega}_0)}{A_0} \right| = 1$$

2. 二阶压控电压源型

$$\left| \frac{\dot{A}(\mathbf{j}\omega)}{A_0} \right| = \frac{1}{\sqrt{1 + \left[Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right) \right]^2}}$$

截止角频率

$$\omega_{\rm L} = \frac{\omega_0}{2} \left(\sqrt{4 + \frac{1}{Q^2}} - \frac{1}{Q} \right)$$

$$\omega_{\rm H} = \frac{\omega_0}{2} \left(\sqrt{4 + \frac{1}{Q^2}} + \frac{1}{Q} \right)$$

带宽
$$BW = f_0/Q$$

窄带通滤波器,则仅允许中心频率附近很窄范围内的信号通过, 它只有一个中心频率。

移相与合成电路

0~180°超前移项

0~180°滞后移项

可取: R1=R2=10K C=100nF R=1K

验收

- ➤ 预习报告(含信号分析过程、电路设计计算过程与电路参数,仿真结果)
- 实际测试数据与测量结果---验收表; 电路图, 电路插板布局; 实际测量波形图
- > 实际电路与测量
- 》《电子线路设计、测试与实验》(一)MOOC 课程模块七单元测验
- 注:设计计算不用太准,善用电位器在调试时调整 用Pspice、Multisim进行电路仿真帮助进行电路参数调整

实验报告

- > 设计要求
- > 设计方案(含电路图、仿真结果、元件清单)
- ▶ 测试结果(电路成品图片、分级测试结果(数据与波形图片),系统测试结果(数据与波形图片)
- > 实验中的问题、分析、与解决方案、解决结果
- > 实验总结及体会