

Flavour Composition and Spurious Signal

Laurie McClymont, Andreas Korn

Di-bjet (non)-Meet 03 May 2016

Plan: Study Just Data with Trigger Only

- Hopefully this show that online tagging is a smooth procedure
- We have shown in MC that offline tagging is smooth (see slide 9+)
- If online is smooth and offline is smooth => (online + offline) will be smooth

Event Selection

- Full data set
- **b-Jet Trigger** HLT j175 bmedium j60 bmedium

- No offline tagging
- Leading jet p_T > 200 GeV, |η| < 2.5
- Subleading jet $p_T > 80$ GeV, $|\eta| < 2.5$
- $|y^*| < 0.6$
- 500 < m_{jj} < 1200 GeV

Data: pmedium_j60_bmediun

HLT_j175_bmedium_j60_bmedium
No offline tagging

3 Para Fit Function Fit Range: 500-1200

bH Range = 566-677 GeV bH p-value = 0.0005

After window removal bH p-value = 0.6389

1 Changing the Fit Range

Data:

HLT_j175_bmedium_j60_bmedium
No offline tagging

4 Para Fit Function

Fit Range: 500-1200

```
*** final values

*** BH p-value = 0.1876 +/- 0.00390392

*** BH value = 5.27154

*** BH range = 566 - 611
```


Other Fit Functions - Take 1

This was wrong fit range:

- Bottom bin should be changed to 500 GeV
- Didn't pick up last two bins

Standard Dijet (3,4,5):
$$f(x) = p_0 (1-x)^{p_1} x^{p_2 + p_3 ln(x) + p_5 ln(x)^2}$$

Variation 9:
$$f_{new9}(x) = p_0(1-x)^{p_1+p_2\log(x)}x^{p_3+p_4\log(x)}$$

UA2:
$$f_{\mathrm{UA2}}(x) = p_0 x^{p_1} e^{-p_2 x - p_3 x^2}$$

7 Other Fit Functions - Take 2

Better fit range!

Better fits => except for 3 P and UA2

Standard Dijet (3,4,5):
$$f(x) = p_0 (1-x)^{p_1} x^{p_2 + p_3 ln(x) + p_5 ln(x)^2}$$

Variation 9:
$$f_{new9}(x) = p_0(1-x)^{p_1+p_2\log(x)}x^{p_3+p_4\log(x)}$$

UA2:
$$f_{\mathrm{UA2}}(x) = p_0 x^{p_1} e^{-p_2 x - p_3 x^2}$$

Entries

Last time:

- Studied flavour composition of offline b-tagging only (slide 3)
- Performed some spurious signal checks (slide 4)

Problems:

- For flavour composition, not considered effect of online b-tagging on c/l-jets
- For spurious signal, effective entries are smaller than scaled distribution
 - Hence, MC errors > poisson errors.
 - (slide 5)

Event Selection

- No Trigger
- Trigger Eff. Applied
 - HLT_j175_bmedium_j60_bmedium
 - Emulate trigger using bTrig Effs.
 - Histograms from John
 - Same Landau Fits as Karol

- 70% Eff. WP
- Leading jet p_T > 200 GeV, |η| < 2.5
- Subleading jet $p_T > 80$ GeV, $|\eta| < 2.5$
- $|y^*| < 0.6$
- 500 < m_{jj} < 1200 GeV

11 **Spurious Signal Check**

ATLAS Internal

Vs=13 TeV, 3200 pb⁻¹

Pseudo-experiments

Value in Data

p-value = 0.58

2 4 6 8 10 12 14

BumpHunter

- Trigger Eff. Applied Emulate Trigger
 Smooth Landau fit function
- 70% Eff. Point

Scaled > Effective Entries

Thus, MC drives errors">
Thus, MC drives errors

13 **Emulating Online Tagging Efficiency**

Problem 1:

For flavour composition, not considered effect of online b-tagging on c/l-jets

We will try:

- Non truth b-jet trigger efficiency measured in fully leptonic ttbar sample
 These are likely to be gluons
- We can fit to this and use this to estimate non-b-jet online efficiency
- For first iteration fit with flat line

X-Jet Trig Eff. wrt offline = #X-Jets pass offline and online b-tagging #X-Jets online b-tagging

14 Flavour Dependant Trigger Eff.

b-Jet Trigger Eff. Applied

- b-jet trigger efficiency applied to all jets
- As was done before

Flavour Dependant Trigger Eff.

- b-jet trigger eff. applied to b-jets
- Not b-jet trigger eff. applied to not b-jets

Doesn't really change too much!

- Still smooth

15 **Emulating Offline b-Tagging**

Problem 2: For spurious signal, eff. entries < scaled dist. => MC drives errors

We will try:

- Don't tag, this throws away stats.
- Instead reweight jets by tagging efficiency
 - Flavour dependant
- Efficiencies taken from ttbar event
 - (Moriond note: Appendix G)
- Fit to these
 - (fits are not perfect)

16 Flavour Composition and Mjj Spectrum

- Emulated not matching Normal
- Could improve
 - Play with fits (Particularly light)
 - Include eta dependant eff.s

17 **Gain in Effective Entries**

- Gain in effective entries is small
 - Sum of weights dominated by bb
 - This is because bb has largest weights
 - I think N_{bb} limits us!
- I don't think this is worth continuing
- Another possibility to try:
 - Find average weight per m_{ij} bin
 - Reweight all events by this
 - Not flavour dependant
 - Need a think...

Backup

- Study online tagging's effect on flavour composition
- From John we have an estimate online efficiencies w.r.t offline for non-B jets

Apply this to non-B jets to emulate effect of online trigger on flavour fraction

20 Flavour Composition 750 GeV - bJet Trigger

- HLT_j175_bmedium_j60_bmedium
- Leading jet p_T > 200 GeV, |η| < 2.5
- Subleading jet $p_T > 80$ GeV, $|\eta| < 2.5$
- $|y^*| < 0.6$

No Trigger Eff. Applied

• 70% / 85% Eff. Point

- Dominant bb contribution
- Different Trigger WP in MC and Data

2

 m_{jj}^{4} [TeV]

3

 10^{-3}

ATLAS Simulation $\sqrt{s} = 13 \text{ TeV}$

