МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3344	Гусева Е.А.
Преподаватель	Иванов Д.В.

Санкт-Петербург

2023

Цель работы

Изучение принципов работы машины Тьюринга и написание программы для машины Тьюринга.

Задание.

Вариант 1

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}.

Напишите программу, которая удаляет в исходной строке два символа, следующих за первым встретившимся символом 'b'. Если первый встретившийся символ 'b' — последний в строке, то удалить его. Если первый встретившийся символ 'b' — предпоследний в строке, то удалить один символ, следующий за ним, т. е. последний в строке. Если в строке символ 'b' отсутствует, то удалить самый первый символ строки. После удаления в строке не должно оставаться пробелов и пустых мест!

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит: а b с " " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы. 3
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе. Ваша программа должна вывести полученную ленту после завершения работы.

Выполнение работы

Были созданы переменные tape — содержащая входные данные, служащая памятью машины, current_state — хранящая состояние машины на каждом такте. Был реализован словарь состояний, соответствующий таблице состояний.

	' '(пробел)	ʻa'	'b'	'c'
q1	'', R, q1	'a', N, qsearch	'b', R, qdell	'c', N, qsearch
qsearch	'', L, qfirst	'a', R, qsearch	'b', R, qdel1	'c', R, qsearch
qfirst	'', R, adel2	''a, L, qfirst		'c', L, qsearch
qdel1	'', Ladel2	", R, qdel2	", R, qdel2	", R, qdel2
qdel2	'', N, qt	'', N, qt	'', N, qt	'', N, qt

q1 — начальное состояние, поиск первого символа, не являющегося пробелом, если первый символ 'b'- то осуществляется переход к состоянию удаления символов. qsearch — состояние поиска первого символа 'b' во входной строке, если в строке нет символа 'b' - переход к состоянию удаления первого символа во входной строке. qfirst — состояние удаления первого символа, не являющегося пробелом, в строке. qdel1 — состояние удаления первого из двух символов после первого встреченного символа 'b'. qdel2 — состояние удаления второго из двух символов после первого встреченного символа 'b'.

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	aabbcc	aabc	-
2.	ccbbaa	ccba	-

Выводы

Был изучен принцип работы машины Тьюринга, написан алгоритм работы машины и составлена таблица состояний для выполнения поставленной задачи.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
L, R, N = -1, 1, 0
     tape = list(input())
     current state = 'q1'
     head position = 0
     asd={
          'q1':{
              ' ': [' ', R, 'q1'],
'a': ['a', N, 'qsearch'],
              'b': ['b', R, 'qdel1'],
              'c': ['c', N, 'gsearch']
          },
          'qsearch': {
              ' ': [' ', L, 'qfirst'],
              'a': ['a', R, 'qsearch'],
              'b': ['b', R, 'qdel1'],
              'c': ['c', R, 'qsearch']
          } ,
          'qfirst':{
              ' ': [' ', R, 'qdel2'],
              'a': ['a', L, 'qfirst'],
              'c': ['c', L, 'qfirst']
          },
          'qdel1': {
              ' ': [' ', L, 'qdel2'],
              'a': ['', R, 'qdel2'],
              'b': ['', R, 'qdel2'],
              'c': ['', R, 'qdel2']
          } ,
          'qde12':{
              'a': ['', N, 'qt'],
              'b': ['', N, 'qt'],
              'c': ['', N, 'qt'],
              ' ': [' ', N, 'qt']
          }
     while current state != 'qt':
          symbol,
                           move direction,
                                                       next state
asd[current state][tape[head position]]
          tape[head position] = symbol
          head position+=move direction
          current state=next state
     print(*tape, sep='')
```