

COMPOSITE

Feasibility Study Athena V2 Diffusor-Outlet

For Neva Aerospace Ltd.

Content

- 1. Specifications
- 2. Analytical Approach
- 3. CFD-Simulations
- 4. Conclusions

1. Specifications

Fa. Schübeler-Composite Daniel Schübeler

	Athena V2
Density [kg/m³]	1,25
Shroud Diameter [mm]	180
Hub Diameter [mm]	30
v0 [m/s]	0
Thrust [N]	~40 N

Fa. Schübeler-Composite Daniel Schübeler

Where is the Lift generated?

Momentum change

$$I = mv$$

$$T = \dot{I} = \frac{dm}{dt}v = \dot{m}v$$

OR

Thrust due to pressure distribution and viscous stress on solids

$$T = \int_{A_{solid}} \vec{p} \cdot \vec{n} \cdot dA_{solid} + \int_{A_{solid}} \tau_{viscous} dA_{solid}$$

Fa. Schübeler-Composite Daniel Schübeler

Effects on Thrust in Inlet and Outlet

- $p_0 > p_{inlet} \rightarrow T_{P,Inlet} > 0 \rightarrow positive Thrust$
- p_{0} , p_{out} \rightarrow $T_{P.Out}$ < 0 \rightarrow negative Thrust

Fa. Schübeler-Composite Daniel Schübeler

Effect in widening the outlet

- Windening the outlet will reduce the outlet velocity and
- reduce the backpressure on plane 5
- Thrust is reduced to the square of the velocity while
- Power ist reduced to the cube

5 6 7
$$T = \dot{m}v_{7} = \rho A_{7} \cdot v_{7}^{2}$$

$$P = \Delta p_{total} \cdot \dot{V} = \Delta p_{total} \cdot A_{7}v_{7}$$

$$\Delta p_{total} = p_{7} - p_{0} = (p_{0} + \frac{1}{2}\rho v_{7}^{2}) - p_{0} = \frac{1}{2}\rho v_{7}^{2}$$

$$P \propto v_{7}^{3} \Rightarrow \frac{T}{P} \propto v_{7}^{-1} \propto A_{7}^{-1}$$

Fa. Schübeler-Composite Daniel Schübeler

Calculated improvement on Thrust-Power Ratio

$$A_{7,straight} = 254,5cm^{2}$$

$$A_{7,expanding} = 301,7cm^{2}$$

$$\frac{T}{P} \propto \frac{1}{\begin{pmatrix} A_{7,straight} / A_{7,expanding} \end{pmatrix}} = \frac{301,7}{254,5} = 1,185$$

18,5% higher Thrust-Power-Ratio

Losses in widening the outlet

- The outlet diffusor produces pressure losses depending on the diffusor angle and length $\Delta p_{diffusor} = \zeta \cdot \frac{\rho}{2} \cdot v_7^2$
- Difficult to estimate

$$\zeta$$
: Re sis tan ce – Coefficien t
 $\zeta \approx 0.01 - 0.2$

Fa. Schübeler-Composite Daniel Schübeler

Unlimited Thrust?

- In Theory, yes
- Until the diffusor losses are bigger than the Thrust increase
- Reducing the outlet velocity means loss of agility
- What are the limits for the diffusor?

Fa. Schübeler-Composite Daniel Schübeler

Geometry:

- 4 Geometries calculated
- With hub and without hub
- With expanding nozzle and without

A03

Actuator Disc:

- -Outlet at upper side
- -Inlet at lower side
- -same massflow

Fa. Schübeler-Composite Daniel Schübeler

Mesh

- Multigrid unstructured hexaedron mesh
- Fully resoluted boudary layer
- ¼ of complete geometry with symmetric boundary conditions
- Total number of nodes: ~ 550.000

Fa. Schübeler-Composite Daniel Schübeler

Mesh

Fa. Schübeler-Composite Daniel Schübeler

Solver Setting

- Compressible fluid model "Air Perfect"
- Mathemetical model: Navier Stokes
- **Spalart Almaras turbulence model**
- **CFL** number: 3
- **Steady state**

Fa. Schübeler-Composite Daniel Schübeler

Boundary Conditions

Fa. Schübeler-Composite Daniel Schübeler

Results: Streamlines A03

Fa. Schübeler-Composite Daniel Schübeler

Results: Streamlines A04

Fa. Schübeler-Composite Daniel Schübeler

Fa. Schübeler-Composite Daniel Schübeler

Fa. Schübeler-Composite Daniel Schübeler

Results: Detailed Velocity Vectors Inlet A03

Fa. Schübeler-Composite *Daniel Schübeler*

Results: Detailed Velocity Vectors Inlet A04

Fa. Schübeler-Composite Daniel Schübeler

Results: Total and Static Pressure A03

Fa. Schübeler-Composite Daniel Schübeler

Results: Total and Static Pressure A04

Fa. Schübeler-Composite Daniel Schübeler

Results: Visualization of the Pressure Forces in Z-Direction A03

Fa. Schübeler-Composite Daniel Schübeler

Results: Visualization of the Pressure Forces in Z-Direction A04

Fa. Schübeler-Composite Daniel Schübeler

Results: Comparsion

	T[N] Momentum change (mf*v)	vf[m³/s]	p _{tot,3} [Pa]	p _{tot,5} [Pa]	∆p [Pa]	P _{hydr} [W]	T/P _{hydr} [N/kW]
A03	30,45	0,856	101220	101867	647	553,8	54,9
A04	35,88	0,855	101220	102160	940	803,9	44,6

- The diffusor outlet has 23% better Thrust-Power-ratio
- Analytically only 18% ... ?
- Only the hydraulical Power is considerated, no fan, nor motor efficiency
- To achieve this improvement, the aerodynamic rotor has to be optimized for each case. (Optimum rotor for A03 is other than A04)
- The improvement works only for static thrust

4. Conclusions

Outlook

- It may be interesting to push the diffusor to the limits
- Find the optimum diffusor in trems of diameter, length and shape
- Investigate how the diffusor behaves at other power setting
- Perform a complete CFD-Calculation including the complete rotating fan

Feasibility Study AthenaV2 Slide 25
Diffusor Outlet 22.10.2015