Devoir surveillé n°7 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $n \in \mathbb{N}^*$. Montrer que la décomposition en éléments simples de $\frac{1}{X^n - 1}$ est

$$\frac{1}{X^n - 1} = \frac{1}{n} \sum_{\omega \in \mathbb{U}_n} \frac{\omega}{X - \omega}.$$

II. L'espace des fonctions périodiques.

Dans tout ce problème, les espaces vectoriels considérés sont réels, et on se place dans l'espace vectoriel E des fonctions réelles ($E = \mathbb{R}^{\mathbb{R}}$).

Si $T \in \mathbb{R}_+^*$, on note \mathscr{P}_T l'ensemble des fonctions réelles T-périodiques, et \mathscr{P} l'ensemble des fonctions réelles périodiques.

On admet dans ce problème l'irrationnalité de $\pi: \pi \notin \mathbb{Q}$.

- 1) Soit $T \in \mathbb{R}_+^*$. Montrer que \mathscr{P}_T a une structure d'espace vectoriel.
- 2) Écrire ensemblistement \mathscr{P} en fonction des \mathscr{P}_T .
- 3) On considère la fonction $f: x \mapsto \cos(x) + \cos(2\pi x)$.
 - a) Justifier que $f \in \text{Vect}(\mathscr{P})$.
 - **b)** On suppose qu'il existe $T \in \mathbb{R}_+^*$ tel que $f \in \mathscr{P}_T$.
 - i) Montrer que pour tout $n \in \mathbb{Z}$: $\cos(2\pi T) 1 = 2\sin\left(\frac{T}{2}\right)\sin\left(n + \frac{T}{2}\right)$.
 - ii) En déduire que $\sin\left(\frac{T}{2}\right) = 0$, puis que T est un multiple de 2π .
 - iii) Que vaut $\cos(2\pi T)$? Que dire de T? En déduire une contradiction.
 - c) Est-ce que $f \in \mathscr{P}$? Est-ce que \mathscr{P} a une structure d'espace vectoriel?
- **4)** a) Soit $n, m \in \mathbb{N}^*$ vérifiant $n \mid m$. De manière générale, a-t-on $\mathscr{P}_n \subset \mathscr{P}_m$? $\mathscr{P}_m \subset \mathscr{P}_n$?
 - b) Soit $n, m \in \mathbb{N}^*$. Déterminer un entier p vérifiant $\mathscr{P}_n \cup \mathscr{P}_m \subset \mathscr{P}_p$.
 - c) Montrer que $\bigcup_{n\in\mathbb{N}^*}\mathscr{P}_n$ a une structure d'espace vectoriel.
- 5) a) Montrer que $C = \bigcap_{T \in \mathbb{R}_+^*} \mathscr{P}_T$ est l'ensemble des fonctions constantes. Est-ce un espace vectoriel?
 - **b)** Soit $T \in \mathbb{R}_+^*$, on note $Z_T = \{ f \in \mathscr{P}_T \mid f(0) = 0 \}$.
 - i) Montrer que Z_T est un sous-espace vectoriel de \mathscr{P}_T .
 - ii) Montrer que Z_T et C sont supplémentaires dans \mathscr{P}_T .

III. Étude asymptotique d'une suite implicite.

Pour tout $n \in \mathbb{N}^*$, on définit : f_n : $\begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto x^n \ln x \end{cases}$.

- 1) Soit $n \in \mathbb{N}^*$. Montrer que l'équation $f_n(x) = 1$ possède une et une seule solution sur \mathbb{R}_+^* , que l'on notera x_n .
- 2) Montrer que pour tout $n \in \mathbb{N}^*$, $x_n > 1$.
- 3) Soient $n, m \in \mathbb{N}^*$ tels que n < m. Montrer que $x_m < x_n$
- 4) Montrer que (x_n) est une suite convergente, dont on notera ℓ la limite. Montrer que $\ell \geqslant 1$.
- **5)** Montrer que $\ell = 1$.
- 6) Soient (u_n) et (v_n) deux suites de réels strictement positifs. On suppose que $u_n \xrightarrow[n \to +\infty]{} +\infty$ et que $u_n \underset{n \to +\infty}{\sim} v_n \ln v_n$.
 - a) Montrer que pour tout x > 0, $x \ln x < x^2$.
 - **b)** En déduire que $v_n \xrightarrow[n \to +\infty]{} +\infty$.
 - c) Montrer que $\ln\left(\frac{u_n}{v_n \ln v_n}\right) \xrightarrow[n \to +\infty]{} 0$ et en déduire que

$$\ln u_n = \ln v_n + \ln \ln v_n + o(1).$$

- **d)** En déduire que $\ln u_n \underset{n \to +\infty}{\sim} \ln v_n$.
- e) En conclusion, montrer que $v_n \sim \frac{u_n}{n \to +\infty} \frac{u_n}{\ln u_n}$
- 7) Soit $n \in \mathbb{N}^*$. Montrer que $n \ln x_n + \ln \ln x_n = 0$, et en déduire que $n = \frac{1}{\ln x_n} \ln \left(\frac{1}{\ln x_n} \right)$.
- 8) En utilisant les résultats de la question 6), montrer que $\frac{1}{\ln x_n} \sim \frac{n}{n \to +\infty} \frac{n}{\ln n}$.
- 9) En déduire que $x_n 1 \underset{n \to +\infty}{\sim} \frac{\ln n}{n}$.

— FIN —