

Berechnungen

Auslegung eines 33,3Hz-Filterkreises

Angal	han	711m	H	torn	ah	man
AHUAI		/				

Unternehmen: English Electric Company Ltd. (EE)

Standort: Berlin

Anschrift: Wilhelminenhofstraße 75A

12459 Berlin

Bearbeiter

Name: S. Richter

Bearbeitungsstand

Datum: 23.06.2022

Vermerke

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Da	tengrundlage	2
	1.1	Leistungsdaten 16,7Hz-Netz	2
	1.2	Leistungsdaten 50Hz-Netz	2
	1.3	Vorhandene Hilfsenergien	2
	1.4	Liefergrenze	2
2	Au	slegung des Filterkreises	3
	2.1	Übersetzungsverhältnis des Transformators	3
	2.2	Resonanzfrequenz	3
	2.3	Filterkreiskomponenten	3
	2.4	Strombelastung des Filterkreises	3
	2 5	Spannungsbelastung der Filterkreiskomponenten	4

1 Datengrundlage

1.1 Leistungsdaten 16,7Hz-Netz

Nennspannung : 110kV 2AC 16,7Hz max. Spannung : 123kV 2AC 16,7Hz min. Spannung : 105kV 2AC 16,7Hz

Nennleistung : 16MW bei $cos(\phi) = 0.8$

1.2 Leistungsdaten 50Hz-Netz

Nennspannung : 110kV 3AC 50Hz max. Spannung : 123kV 3AC 50Hz min. Spannung : 105kV 3AC 50Hz

Nennleistung : 17,5MW bei $cos(\phi) = 1$

1.3 Vorhandene Hilfsenergien

2 unabhängige 400V 3AC 50Hz Einspeisungen 500kVA

1.4 Liefergrenze

16,7Hz-Seite : 110kV-Transformator-Anschluss50Hz-Seite : 110kV-Transformator-Anschluss

E

2 Auslegung des Filterkreises

2.1 Übersetzungsverhältnis des Transformators

$$\underline{\ddot{\mathbf{u}}} = \frac{110kV}{3.5kV} = \underline{31,43}$$

Primärspannung [kV]	Sekundärspannung [kV]
105	3,34
110	3,50
123	3,91

2.2 Resonanzfrequenz

$$f_0 = 2 \cdot f_N$$

$$\underline{\underline{f_0}} = 2 \cdot 16,7Hz = \underline{\underline{33,4Hz}}$$

2.3 Filterkreiskomponenten

$$\omega_0 = 2 \cdot \pi \cdot f_0 = 2 \cdot \pi \cdot \frac{1}{2 \cdot \pi \cdot \sqrt{L_{FC} \cdot C_{FC}}} = \frac{1}{\sqrt{L_{FC} \cdot C_{FC}}}$$

• Festlegung: $L_{FC}=10$ mH

• Berechnung: CFC

$$C_{FC} = \frac{1}{\omega_0^2 \cdot L_{FC}} = \frac{1}{(2 \cdot \pi \cdot f_0)^2 \cdot L_{FC}}$$

$$\underline{\underline{C_{FC}}} = \frac{1}{(2 \cdot \pi \cdot 33,4Hz)^2 \cdot 10mH} \approx \underline{\frac{2,27mF}{2}}$$

2.4 Strombelastung des Filterkreises

$$\underline{S_N} = \frac{P_N}{\cos(\varphi)} = \frac{16MW}{0.8} = \underline{20MVA}$$

maximaler Strom:

$$\underline{I_{FC_DC_max}} = \frac{S_N}{U_{d_min}} = \frac{20MVA}{\sqrt{2} \cdot 3.34kV} \approx \underbrace{4.23kA}_{}$$

$$\underline{I_{FC_DC_max_eff}} = \frac{I_{FC_DC_max}}{\sqrt{2}} = \frac{4,23kA}{\sqrt{2}} \approx \underline{\frac{2,99kA}{\sqrt{2}}}$$

• minimaler Strom:

$$\underline{I_{FC_DC_min}} = \frac{S_N}{U_{d\ max}} = \frac{20MVA}{\sqrt{2} \cdot 3.91kV} \approx \underbrace{\frac{3.62kA}{1000}}_{\frac{1}{1000}}$$

$$\underline{I_{FC_DC_min_eff}} = \frac{I_{FC_DC_min}}{\sqrt{2}} = \frac{3,61kA}{\sqrt{2}} \approx \underline{\frac{2,56kA}{\sqrt{2}}}$$

2.5 Spannungsbelastung der Filterkreiskomponenten

• Spannungsüberhöhung am Reihenschwingkreis:

$$\underline{\vartheta} = \frac{f_0}{f_N} = \frac{33,4Hz}{16,7HZ} = \underline{2}$$

$$\frac{\vartheta^2}{\vartheta^2 - 1} = \frac{2^2}{2^2 - 1} = \frac{4}{3}$$

• maximale Spannung:

$$\underline{U_{C_max}\ =\ U_{L_max}}\ =\ U_{d_max}\cdot 1, 2\cdot \frac{4}{3} = \sqrt{2}\cdot 3, 91kV\cdot 1, 2\cdot \frac{4}{3} \approx \underline{8,85kV}$$

• minimale Spannung:

$$\underline{U_{C_min} = U_{L_min}} = U_{d_min} \cdot 1, 2 \cdot \frac{4}{3} = \sqrt{2} \cdot 3,34kV \cdot 1, 2 \cdot \frac{4}{3} \approx \underline{7,56kV}$$