UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE INFORMÁTICA

CÁLCULO DAS FUNÇÕES RAIZ QUADRADA E SENO

Acadêmicos: RA: Vanessa Yukari Kajihara 78605

Vinícius Menossi 108840

Professor: Airton Marco Polidório

Disciplina: 6900 – Matemática Computacional

Maringá, 21 de abril de 2021.

CÁLCULO DA RAIZ QUADRADA

Pelo desenvolvimento da série de Taylor, chega-se na seguinte expressão (para |x| < 1):

$$\sqrt{x+1} = 1 + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{(2k-2)!}{k!(k-1)!2^{2k-1}} x^k$$
 (1)

Truncando essa série com 7 termos, tem-se:

$$\sqrt{x+1}^* = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \frac{7x^5}{256} - \frac{21x^6}{1024}$$
 (2)

O oitavo termo é + $\frac{99x^7}{2048}$.

0.547722557505166

0.30

-0.70

Os valores solicitados foram calculados e os resultados estão apresentados na Tabela 1. Todos os valores deste trabalho foram calculados usando o GNU Octave.

		\sqrt{a}	$\sqrt{x+1}$ usando 7	$\sqrt{x+1}$ usando	8
		\sqrt{a}	termos	termos	
0,95	-0,05	0,974679434480896	0,9746794344 <mark>94018</mark>	0,974679434456253	
1,10	0,10	1,048808848170150	1,04880884 <mark>6679690</mark>	1,048808851513670	
1 90	0.90	1 378404875209020	1 373931112304690	1 397051909716800	

Tabela 1 – Resultados calculados de \sqrt{a} e $\sqrt{x+1}$ usando 7 e 8 termos da série de Taylor.

É possível perceber que para alguns valores a precisão aumentou e para outros diminuiu considerando a utilização de 7 ou 8 termos da série. Isso porque a precisão pode variar de acordo com vários fatores: a quantidade de termos da série utilizados para o cálculo da raiz quadrada, a distância entre o valor de x e o valor em torno da qual a série é definida (raio de convergência) e a representação do número decimal em base binária, que pode estar errada e seu erro é propagado nos cálculos ao utilizar a série.

Além disso, o computador não trabalha bem com números que possuem grandes quantidades de casas decimais, pois neste ambiente a sua representação tem quantidade finita

de casas. Por isso ele pode arredondar ou truncar o número de casas, o que também gera erros de cálculo.

UTILIZANDO O ESQUEMA DE HORNER

Considerando que operações de multiplicação demoram mais tempo que adições, para diminuir o tempo de processamento, é possível escrever as equações segundo o esquema de Horner. Rearranjando a Equação (2), fazendo:

$$A = \frac{1}{2} = 0,5$$

$$B = -\frac{1}{8} = -0,125$$

$$C = \frac{1}{16} = 0,0625$$

$$D = -\frac{5}{128} = -0,0390625$$

$$E = \frac{7}{256} = 0,02734375$$

$$F = -\frac{21}{1024} = -0,020507812$$

Então:

$$\sqrt{x+1}^* = 1 + Ax + Bx^2 + Cx^3 + Dx^4 + Ex^5 + Fx^6$$

$$= 1 + x(A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5)$$

$$= 1 + x(A + x(B + Cx + Dx^2 + Ex^3 + Fx^4))$$

$$= 1 + x(A + x(B + x(C + Dx + Ex^2 + Fx^3)))$$

$$= 1 + x(A + x(B + x(C + x(D + Ex + Fx^2))))$$

$$= 1 + x(A + x(B + x(C + x(D + x(E + Fx)))))$$

 $\sqrt{x+1}^* = 1 + x(A + x(B + x(C + x(D + x(E + Fx)))))$

Do mesmo modo, sendo
$$G = \frac{99}{2048} = 0$$
, 048339844, a série com 8 termos fica:

(3)

$$\sqrt{x+1}^* = 1 + x(A + x(B + x(C + x(D + x(E + x(F + Gx))))))$$
 (4)

A Tabela 2 apresenta os valores de multiplicações e somas das equações originais e escritas de acordo com o esquema de Horner. Pode-se perceber que, equanto o número de somas continua o mesmo, o número de multiplicações cai significativamente no segundo caso.

Tabela 2 – Comparação do número de operações das equações originais e escritas no esquema de Horner.

Egypoão	Multiplicações		Somas	
Equação	Original	Horner	Original	Horner
7 termos	20	6	6	6
8 termos	28	7	7	7

A Tabela 3 apresenta os cálculos das raízes dos mesmos casos experimentais da Tabela 1. É possível verificar que, apesar da diminuição do número de multiplicações, não houve alteração na precisão dos resultados.

Tabela 3 – Cálculos de raiz quadrada usando as equações ecritas com o esquema de Horner.

		\sqrt{a}	$\sqrt{x+1}$ usando 7 termos	$\sqrt{x+1}$ usando 8 termos
0,95	-0,05	0,974679434480896	0,9746794344 <mark>94019</mark>	0,9746794344 <mark>56253</mark>
1,10	0,10	1,048808848170150	1,04880884 <mark>6679687</mark>	1,048808851513672
1,90	0,90	1,378404875209020	1,373931112304688	1,397051909716797
0,30	-0,70	0,547722557505166	0,550925206054688	0,546944212060547

GENERALIZANDO O CÁLCULO DA RAIZ

Para generalizar o cálculo da raiz quadrada, para um valor de $a \in [0, \infty_c)$, pode-se realizar a redução do argumento da seguinte forma: primeiro, escreve-se o número em base binária em notação científica normalizada. Deste modo, obter-se-á o seguinte:

$$(1 + mantissa)2^e$$

Manipulando a expressão acima, é possível calcular a raiz de qualquer valor utilizando a série de Taylor apresentada, pois será obtido um valor do tipo a = 1 + x, sendo x a

mantissa. Além disso, a multiplicação ou divisão por 2 é computacionalmente ágil, pois para isso basta realizar um shift de bits.

Além disso, é necessário observar o expoente da base. Isso porque se ele for ímpar, é necessário multiplicar e dividir o número por 2 para que seja possível extrair a raiz da base, ou seja:

$$\sqrt{(1 + mantissa)2^{e}} = \sqrt{\frac{(1 + mantissa)}{2}} 2^{e+1} = 2^{\frac{e+1}{2}} \frac{1}{\sqrt{2}} \sqrt{(1 + mantissa)}$$
$$= 2^{\frac{e+1}{2} - 1} \sqrt{2} \sqrt{(1 + mantissa)} = 2^{\frac{e-1}{2}} \sqrt{2} \sqrt{(1 + mantissa)}$$

e o valor $\sqrt{2}$ pode ser armazenado como uma constante.

Já para números de expoente par, tem-se:

$$\sqrt{(1 + mantissa)2^e} = 2^{\frac{e}{2}}\sqrt{(1 + mantissa)}$$

Os cálculos realizados para os valores experimentais estão expostos na Tabela 4. Pode-se perceber que, embora a generalização possa ser aplicada em um intervalo maior, os resultados de raiz quadrada obtidos perderam precisão utilizando este método.

Tabela 4 – Cálculo dos valores de raiz quadrada.

n_{10}	0,95	1,10	1,90	0,30
$n_{2}^{}$	0,111100110011010	1,000110011001101	1,111001100110011	0,010011001100110
Notação científica n_2	1,11100110011010 x 2 ⁻¹	1,000110011001101 x 2º	1,111001100110011 x 2 ⁰	1,0011001100110 x 2 ⁻²
Mantissa (decimal)	0,899047852	0,100006104	0,899993896	0,199951172
Valor reduzido	(1+0,899047852) 2-1	$(1+0,100006104)2^0$	$(1+0,899993896)2^{0}$	(1+0,199951172)2-2
Expressão para cálculo da raiz	$2^{-1}\sqrt{2}\sqrt{1\ +\ 0,8990478!}$	$\sqrt{1 + 0,100006104}$	$\sqrt{1 + 0,899993896}$	$2^{-1}\sqrt{1 + 0,199951172}$
\sqrt{n}	0,974679434480896	1,048808848170150	1,378404875209020	0,547722557505166
$ \sqrt{1+x} $ usando 7 termos	1,37361675749370	1,04881175664284	1,37392909790607	1,09542265073955
$ \sqrt{1+x} $ usando 8 termos	1,39656687410706	1,04881176147889	1,39704879766781	1,09542326843289
Resultado final usando 7 termos	0,971293723975273	1,04881175664284	1,37392909790607	0,547711325369775
Resultado final usando 8 termos	0,987521907061602	1,04881176147889	1,39704879766781	0,547711634216445

CÁLCULO DO SENO

Pelo desenvolvimento da série de Taylor para sen(x) tem se o seguinte polinômio:

$$\operatorname{sen}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + \dots$$

Ao truncarmos essa série no seu sexto elemento obtemos que:

$$\mathrm{sen}(x) \,\cong\, x \,-\, rac{x^3}{3!} \,+\, rac{x^5}{5!} \,-\, rac{x^7}{7!} \,+\, rac{x^9}{9!} \,-\, rac{x^{11}}{11!}$$

com uma precisão mínima de 10^{-10} para $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$

para conseguirmos calcular com argumentos fora do intervalo será feita a seguinte equivalência:

$$x'=x-kc$$
, para $c=rac{\pi}{2}$

$$\mathsf{Sen}(x) \ ' = \left\{ egin{array}{ll} \operatorname{sen}(x'), & |k| \operatorname{mod} 4 = 0 \ \cos(x'), & |k| \operatorname{mod} 4 = 1 \ -\operatorname{sen}(x'), & |k| \operatorname{mod} 4 = 2 \ -\cos(x'), & |k| \operatorname{mod} 4 = 3 \end{array}
ight.$$

Desenvolvendo a série de Taylor para cos(x):

$$\cos(x) \ = \ 1 \ - \ rac{x^2}{2!} \ + \ rac{x^4}{4!} \ - \ rac{x^6}{6!} \ + \ rac{x^8}{8!} \ - \ rac{x^{10}}{10!} \ + rac{x^{12}}{12!} \ - \ \ldots$$

truncando no primeiros sete termos:

$$\cos(x) \,\cong\, 1 \,-\, rac{x^2}{2!} \,+\, rac{x^4}{4!} \,-\, rac{x^6}{6!} \,+\, rac{x^8}{8!} \,-\, rac{x^{10}}{10!} \,+ rac{x^{12}}{12!}$$

com uma precisão mínima de 10^{-10} para $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$

UTILIZANDO O ESQUEMA DE HORNER

sendo:

$$A = -\frac{1}{3}! = -1.666666666666667e-1$$

$$C = -1/7! = -1.98412698412698e-4$$

$$D = 1/9! = 2.75573192239859e-6$$

$$E = -1/11! = -2.505210838544172e-08$$

$$w = x^2$$

$$Sen(x) \cong x *(1 + w *(A + w *(B + w *(C + w *(D + E*a5)))))$$

sendo

$$A = -1/2! = -0.5$$

$$C = -1/6! = -0.0013888888888888888$$

$$D = 1/8! = 2.48015873015873e-05$$

$$E = -1/10! = -2.755731922398589e-07$$

$$F = 1/12! = 2.08767569878681e-09$$

$$Cos(x) \cong 1 + w * (A + w * (B + w * (C + w * (D + w * (E + w * F)))))$$

CÁLCULO DESTA APROXIMAÇÃO DO SENO x math.sin() DO PYTHON:

x (em graus)	Sen(x)'	math.sin(x)	erro
00	0,0	0,0	0,0
10º	0,17364817766693036	0,17364817766693033	2,7755575615628914e-17
20º	0,3420201433256685	0,3420201433256687	2,220446049250313e-16
30º	0,499999999999643	0,499999999999994	3,5638159090467525e-14
40º	0,64278760968504	0,6427876096865393	1,4992451724538114e-12
50º	0,7660444431190528	0,766044443118978	7,482903185973555e-14
60º	0,86602540378444	0,8660254037844386	1,4432899320127035e-15
70º	0,9396926207859084	0,9396926207859083	1,1102230246251565e-16
80º	0,984807753012208	0,984807753012208	0,0
90º	1,0	1,0	0,0
100º	0,984807753012208	0,984807753012208	0,0
110º	0,9396926207859084	0,9396926207859084	0,0
120º	0,86602540378444	0,8660254037844387	1,3322676295501878e-15
130º	0,7660444431190528	0,766044443118978	7,482903185973555e-14
140º	0,64278760968504	0,6427876096865395	1,4994672170587364e-12
150º	0,499999999999643	0,499999999999994	3,5638159090467525e-14
160⁰	0,3420201433256685	0,3420201433256689	3,885780586188048e-16
170º	0,17364817766693036	0,17364817766693028	8,326672684688674e-17
180º	-0,0	1,2246467991473532e-16	1,2246467991473532e-16
190º	-0,17364817766693036	-0,17364817766693047	1,1102230246251565e-16
200⁰	-0,3420201433256685	-0,34202014332566866	1,6653345369377348e-16
210º	-0,499999999999643	-0,5000000000000001	3,58046925441613e-14
220º	-0,64278760968504	-0,6427876096865393	1,4992451724538114e-12
230º	-0,7660444431190528	-0,7660444431189779	7,494005416219807e-14
240º	-0,86602540378444	-0,8660254037844385	1,5543122344752192e-15
250º	-0,9396926207859084	-0,9396926207859084	0,0
260º	-0,984807753012208	-0,984807753012208	0,0
270º	-1,0	-1,0	0,0
280º	-0,984807753012208	-0,9848077530122081	1,1102230246251565e-16
290º	-0,9396926207859084	-0,9396926207859083	1,1102230246251565e-16
300⁰	-0,.86602540378444	-0,8660254037844386	1,4432899320127035e-15
310º	-0,7660444431190528	-0,7660444431189781	7,471800955727304e-14
320º	-0,64278760968504	-0,6427876096865396	1,499578239361199e-12
330º	-0,499999999999643	-0,5000000000000004	3,6137759451548845e-14
340º	-0,3420201433256685	-0,3420201433256686	1,1102230246251565e-16

350º	-0,17364817766693036	-0,1736481776669304	2,7755575615628914e-17
360⁰	0,0	-2,4492935982947064e-16	2,4492935982947064e-16

Tabela 5 – Cálculo dos valores do seno.

Gráfico comparando o erro relativo entre Sen(x)' e math.sin(x):

Gráfico 1 – Erro x Ângulo °.

É possível observar uma repetição nos valores dos erros, isso se deve ao caráter cíclico da função Sen(x)', o maior erro registrado corresponde ao valor de 1,499578239361199e-12, pertencente ao ângulo de 320 $^{\circ}$, é possível observar também que o valor do erro é diretamente proporcional ao valor do argumento x', assim quanto maior x' maior o erro.

APÊNDICE:

Neste apêndice será demonstrado a implementação da aproximação do seno tratada neste caso:

Nesta parte são definidas as constantes que serão utilizadas no esquema de horner:

```
#### valores para o seno ####
     a1 = -1.666666666666667e-1
                                    #-1/3!
     a2 = 8.3333333333333339-3
                                     #+1/5!
                                     #-1/7!
     a3 = -1.98412698412698e-4
                                     #+1/9!
     a4 = 2.75573192239859e-6
                                     #-1/11!
     a5 = -2.505210838544172e-08
10
     #### valores para o cosseno ####
     b1 = -0.5
                                      #-1/2!
11
                                      #+1/4!
     b2 = 0.04166666666666664
12
                                      #-1/6!
13
     b3 = -0.00138888888888888
                                      #+1/8!
14
     b4 = 2.48015873015873e-05
15
     b5 = -2.755731922398589e-07
                                      #-1/10!
     b6 = 2.08767569878681e-09
16
                                      #+1/12!
```

Em seguida as funções seno e cosseno no esquema de horner:

```
def seno(x):

    w = x*x

    return x *(1 + w *( a1 + w *(a2 + w *(a3 + w *(a4 + w*a5)))))

def coseno(x):

    w = x*x

    return 1 + w *( b1 + w *( b2 + w *( b3 + w *(b4 + w *(b5 + w *b6)))))
```

Nesta parte é feita a transformação do argumento de acordo com o valor do ângulo, e feita a comparação entre essa aproximação e a função math.sin() do python.

```
erroMax= 0
33
          angulo = -1
          for x in range(0,361,10):
35
36
37
              if(x \leftarrow 45):
                  res = seno(math.radians(x))
40
              elif(x \leftarrow 135):
41
                  res = coseno(math.radians(x-90))
42
43
              elif(x <= 225):
                  res = -1*seno(math.radians(x-180))
45
              elif(x <= 315):
                  res = -1*coseno(math.radians(x-270))
47
              elif(x <=360):
                  res = seno(math.radians(x-360))
50
52
              senpy = math.sin(math.radians(x))
              erro = abs(res - senpy)
54
              if(erro > erroMax):
                  erroMax = erro
56
                  angulo = x
```