Computational Methods of Optimization First Midterm(7th Dec, 2020)

Time: 60 minutes

Instructions

- $\bullet\,$ Answer all questions
- $\bullet\,$ See upload instructions in the form

In the following, assume that f is a C^1 function defined from $\mathbb{R}^d \to \mathbb{R}$ unless otherwise mentioned. Let $\mathbf{I} = [e_1, \dots, e_d]$ be a $d \times d$ matrix with e_j be the jth column. Also $\mathbf{x} = [x_1, x_2, \dots, x_d]^{\top} \in \mathbb{R}^d$ and $\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\top}\mathbf{x}}$. Set of real symmetric $d \times d$ matrices will be denoted by \mathcal{S}_d . [n] will denote the set $\{1, 2, \dots, n\}$

1.	(10 points) Ple	ease indicate	True(T) or	False(F)	in the	space	given	after	each	question.	All	questions	carry
	equal marks												

- (a) Let a < b where $a, b \in \mathbb{R}$ and $h : [a, b] \to \mathbb{R}$ be differentiable and satisfies h(a) = h(b). Then h has a critical point in (a, b).
- (b) Suppose the function defined in the previous question satisfies $|h(x) h(y)| \le 1|x y|$ for all $x, y \in (a, b)$. There could exist a point in (a, b) such that $h'(x) \ge 2$, where h'(x) is derivative of h at x. _____
- (c) If f is a coercive function then the global minimum must lie at one of the critical points. Recall that a critical point is a point, \mathbf{x} , such that $\nabla f(\mathbf{x}) = 0$.
- (d) Consider $g: \mathbb{R} \to \mathbb{R}, g(u) = u^2 \frac{1}{3}u^3$. The function has a global minimum.
- (e) The local maximum of g(defined in the previous question) is at u=0.
- 2. Let $f: S \subset \mathbb{R}^d \to \mathbb{R} \in \mathcal{C}^2$ function. Let $H(\mathbf{x})$ be the Hessian of f with eigenvectors denoted by columns of $U \in \mathbb{R}^{d \times d}$
 - (a) (2 points) Consider $S = \{\mathbf{x} | \mathbf{x} = \mathbf{x}^* + \mathbf{U}\mathbf{v}, \mathbf{v} \in \mathbb{R}^d\}$. \bar{S} , the complement of the set S, is not empty. True or False. Justify with reasons.

(b) (4 points) The Hessian, $H(\mathbf{x}^*)$ at a stationary point \mathbf{x}^* has one eigenvalue 0 and the rest positive. For any $\mathbf{x} \in S$ with $\mathbf{v} \neq 0$ $f(\mathbf{x}) > f(\mathbf{x}^*)$ is true. Prove or disprove

(c) (4 points) Suppose $H(\mathbf{x}^*)$ has negative and positive eigenvalues. Construct two distinct points, \mathbf{x}^1 and \mathbf{x}^2 in terms of \mathbf{U} so that

$$f(\mathbf{x}^1) < f(\mathbf{x}) < f(\mathbf{x}^2)$$

3. Let $f(x) = \sqrt{1 + x^2}, x \in \mathbb{R}$.

(a)	(2 points) Find the x^* , global minimum of the problem
(b)	(4 points) Let $x^{(k)}$ be the output of the kth iteration of Newton's method applied to $f(x)$. Find a function g such that $ x^{(k+1)}-x^* \leq g(x^{(k)}-x^*) $
(c)	(4 points) Using the above relationship find largest a so that the Newton's method is most effective for any $x^{(0)} \in (x^* - a, x^* + a)$.

4.	Consider	minimizing	the	function
----	----------	------------	-----	----------

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x} - \mathbf{b}^{\top}\mathbf{x}$$

over $\mathbf{x} \in \mathbb{R}^d$ with $Q \in \mathcal{S}_d^+, \mathbf{b} \in \mathbb{R}^d$ using the steepest descent iterates,

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \nabla f(\mathbf{x}^{(k)})$$

executed with exact step-size selection strategy. Let $f^* = f(\mathbf{x}^*)$ be the global minimum. Let $g(\mathbf{y}) = f(A\mathbf{x})$ where A is a $d \times d$ natrix. Consider applying steepest descent procedure to g i.e.

$$\mathbf{y}^{(k+1)} = \mathbf{y}^{(k)} - \alpha_k \nabla g(\mathbf{y}^{(k)})$$

and g^* is the global minimum of g attained at \mathbf{y}^* .

(a)	(4 points)	State the Hessian	of f	and g .	Derive t	the relationship	between \mathbf{x}^*	and \mathbf{y}^*

(b) (3 point) What is the c	onvergence rate o	of the steepest	${\it descent procedure}$	for g ?
--------------	-----------------	-------------------	-----------------	---------------------------	-----------

- 1			
- 1			
- 1			
- 1			
- 1			

((\mathbf{c})) (3	points)	What	is	the	best	value	of	A?

Let j	$f: \mathbb{R}^d \to \mathbb{R}$ be a $C^{(2)}$ function. Consider the Quasi-newton update
a.	$s^{(k)} = -G^{(k)} \nabla f(\mathbf{x}^{(k)})'$
	$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k s^{(k)}$
c.	$G^{(k+1)} = G^{(k)} + A^{(k)} E A^{(k)\top}$
wher	e $\gamma_k = \nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)}), \ \delta_k = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}, \ \text{and} \ A^{(k)} = [\delta_k \ G^{(k)}\gamma^{(k)}] \ \text{and} \ E \ \text{is a matrix.}$
	(1 point) What is your name
(b)	(4 points) Find E corresponding to DFP updates.
(c)	(5 points) Show that for exact line search DFP updates yield positive definite matrices.

5.