SBML Model Report

Model name: "Yi2003_GproteinCycle"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Enuo He¹ at October 17th 2006 at 3:12 p.m. and last time modified at February 24th 2015 at 8:25 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	7
events	0	constraints	0
reactions	7	function definitions	0
global parameters	0	unit definitions	1
rules	0	initial assignments	0

Model Notes

The paper describes both wild-type and mutant cells of G protein cycle by using different values of G protein deactivation. We chosed the wild-type, k=0.11 s-1.

The unit of the concentration for the proteins are numbers of molecules per cell.

Figure 5(A) was reproduced with COPASI 4.0 (Build 18) and SBML_odeSolver. Figure 5(B) was reproduced with COPASI 4.0 (Build 18).

¹University of Oxford, enuo.he@wolfson.ox.ac.uk

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition item

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

racio 2. 1 reperties of air comparaments.							
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell	cell		3	1	litre		

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains seven species. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi-
			1		tion
L	Ligand	cell	item $\cdot 1^{-1}$		\Box
R	Receptor	cell	item $\cdot 1^{-1}$	\Box	
G	Inactive heterotrimeric G-protein	cell	item $\cdot 1^{-1}$		
Gbg	Free levels of G-beta-gamma	cell	item $\cdot 1^{-1}$		
Gd	G-alpha-GDP	cell	item $\cdot 1^{-1}$		
Ga	G-alpha-GTP	cell	item $\cdot 1^{-1}$		
RL	Receptor-Ligand	cell	item $\cdot 1^{-1}$		\Box

5 Reactions

This model contains seven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO
1	reaction_0	Ligand-Receptor Association	$L+R \rightleftharpoons RL$	
2	${\tt reaction_1}$	Receptor Synthesis	$\emptyset \longrightarrow R$	
3	${\tt reaction_2}$	Receptor Degradation	$R \longrightarrow \emptyset$	
4	${\tt reaction_3}$	Heterotrimeric G-Protein Formation	$Gd + Gbg \longrightarrow G$	
5	${\tt reaction_4}$	G-protein Activation	$G \xrightarrow{RL} Ga + Gbg$	
6	${\tt reaction_5}$	Receptor-Ligand Degradation	$RL \longrightarrow \emptyset$	
7	${\tt reaction_6}$	G-protein Inactivation	$Ga \longrightarrow Gd$	

5.1 Reaction reaction_0

This is a reversible reaction of two reactants forming one product.

Name Ligand-Receptor Association

Reaction equation

$$L + R \rightleftharpoons RL \tag{1}$$

Reactants

Table 5: Properties of each reactant.

Id	Name	SBO
L	Ligand	
R	Receptor	

Product

Table 6: Properties of each product.

Id	Name	SBO
RL	Receptor-Ligand	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{L}] \cdot [\text{R}] - \text{k2} \cdot [\text{RL}]) \tag{2}$$

Table 7: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$3.32 \cdot 10^{-18}$		
k2			0.010		

5.2 Reaction reaction_1

This is an irreversible reaction of no reactant forming one product.

Name Receptor Synthesis

Reaction equation

$$\emptyset \longrightarrow R$$
 (3)

Product

Table 8: Properties of each product.

Id	Name	SBO
R	Receptor	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{cell}) \cdot \text{v} \tag{4}$$

Table 9: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
v			4.0		

5.3 Reaction reaction_2

This is an irreversible reaction of one reactant forming no product.

Name Receptor Degradation

Reaction equation

$$R \longrightarrow \emptyset$$
 (5)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
R	Receptor	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{R}] \tag{6}$$

Table 11: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$4 \cdot 10^{-4}$		\overline{Z}

5.4 Reaction reaction_3

This is an irreversible reaction of two reactants forming one product.

Name Heterotrimeric G-Protein Formation

Reaction equation

$$Gd + Gbg \longrightarrow G$$
 (7)

Reactants

Table 12: Properties of each reactant.

	racie 12. Troperties of each reactant.				
Id	Name	SBO			
	G-alpha-GDP				
Gbg	Free levels of G-beta-gamma				

Product

Table 13: Properties of each product.

Id	Name	SBO
G	Inactive heterotrimeric G-protein	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Gd}] \cdot [\text{Gbg}]$$
 (8)

Table 14: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		1.0	

5.5 Reaction reaction_4

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name G-protein Activation

Reaction equation

$$G \xrightarrow{RL} Ga + Gbg \tag{9}$$

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
G	Inactive heterotrimeric G-protein	

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
RL	Receptor-Ligand	

Products

Table 17: Properties of each product.

	1 · · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
	G-alpha-GTP Free levels of G-beta-gamma	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{RL}] \cdot [\text{G}]$$
 (10)

Table 18: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		10^{-5}	

5.6 Reaction reaction_5

This is an irreversible reaction of one reactant forming no product.

Name Receptor-Ligand Degradation

Reaction equation

$$RL \longrightarrow \emptyset$$
 (11)

Reactant

Table 19: Properties of each reactant.

Id	Name	SBO
RL	Receptor-Ligand	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{RL}] \tag{12}$$

Table 20: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		0.004	Ø

5.7 Reaction reaction_6

This is an irreversible reaction of one reactant forming one product.

Name G-protein Inactivation

Reaction equation

$$Ga \longrightarrow Gd$$
 (13)

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
Ga	G-alpha-GTP	

Product

Table 22: Properties of each product.

Id	Name	SBO
Gd	G-alpha-GDP	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Ga}] \tag{14}$$

Table 23: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		0.11	\checkmark

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

6.1 Species L

Name Ligand

Initial concentration $6.02 \cdot 10^{17} \text{ item} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in reaction_0).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L} = -v_1 \tag{15}$$

6.2 Species R

Name Receptor

Initial concentration $10000 \ item \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0, reaction_2 and as a product in reaction_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R} = |v_2| - |v_1| - |v_3| \tag{16}$$

6.3 Species G

Name Inactive heterotrimeric G-protein

Initial concentration $7000 \text{ item} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_4 and as a product in reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t}G = |v_4| - |v_5| \tag{17}$$

6.4 Species Gbg

Name Free levels of G-beta-gamma

Initial concentration 3000 item · 1⁻¹

This species takes part in two reactions (as a reactant in reaction_3 and as a product in reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Gbg} = |v_5| - |v_4| \tag{18}$$

6.5 Species Gd

Name G-alpha-GDP

Initial concentration $3000 \text{ item} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in reaction_3 and as a product in reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G}\mathrm{d} = |v_7| - |v_4| \tag{19}$$

6.6 Species Ga

Name G-alpha-GTP

Initial concentration $0 item \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction_6 and as a product in reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ga} = |v_5| - |v_7| \tag{20}$$

6.7 Species RL

Name Receptor-Ligand

Initial concentration 0 item $\cdot 1^{-1}$

This species takes part in three reactions (as a reactant in reaction_5 and as a product in reaction_0 and as a modifier in reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RL} = |v_1| - |v_6| \tag{21}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany