

SUBJECT: Linear Algebra - TOPIC: Matrices And Determinants

Matrices and Determinants: The set of all $n \times n$ matrices with real entries is usually denoted as $M_n(\mathbb{R})$. $(M_n(\mathbb{R}),+)$ is an abelian group.

 $(M_n(\mathbb{R}), +, \cdot)$ is a non commutative ring with unity, which is not an integral domain.

Result:

1. Let $A, B \in M_n(\mathbb{R}), A \cdot B = 0$ need not imply that either A = 0 or B = 0.

Eg:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

2. Let A, B be an $m \times n$ matrix, and B be an $n \times p$ matrix then AB is of $m \times p$. Also AB = 0 does not imply that either A = 0 or B = 0

Eg:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{2 \times 3}$$
 $B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}_{3 \times 1}$ $AB = \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{2 \times 1}$

Determinant of a square matrix: Determinant is a map from $M_n(\mathbb{R}) \longrightarrow \mathbb{R}$ given by $det: M_n(\mathbb{R}) \longrightarrow \mathbb{R}$ satisfying the following properties.

1.
$$det(A^T) = det(A)$$

$$\begin{vmatrix} 2 & 3 \\ 5 & 7 \end{vmatrix} = \begin{vmatrix} 2 & 5 \\ 3 & 7 \end{vmatrix}$$

 $\begin{vmatrix} 2 & 3 \\ 5 & 7 \end{vmatrix} = \begin{vmatrix} 2 & 5 \\ 3 & 7 \end{vmatrix}$ 2. det(A') = -det(A), wher A' is the matrix obtained from A by interchanging any two rows or columns.

$$\begin{vmatrix} 2 & 3 \\ 5 & 7 \end{vmatrix} = - \begin{vmatrix} 5 & 7 \\ 2 & 3 \end{vmatrix} \qquad R_1 \Leftrightarrow R_2$$

3. det(A) = 0 if any two rows or columns of A are proportional.

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 7 & 0 \end{vmatrix} = 0$$
, Since $R_2 = 2R_1$

4. $det(kA) = k^n det(A), k \in \mathbb{R}$

$$\begin{vmatrix} 2 & 6 & 4 \\ 10 & 20 & 14 \\ 22 & 26 & 28 \end{vmatrix} = \det \left(2 \begin{bmatrix} 1 & 3 & 2 \\ 5 & 10 & 7 \\ 11 & 13 & 14 \end{bmatrix} \right) = 2^{3} \begin{vmatrix} 1 & 3 & 2 \\ 5 & 10 & 7 \\ 11 & 13 & 14 \end{vmatrix}$$

5. If every element of a row or column of A can be expressed as the sum of two or more terms, thn determinant of A can be expressed as the sum of two or more determinants.

$$\begin{vmatrix} 10+5 & 13+5 \\ 2 & 3 \end{vmatrix} = \begin{vmatrix} 10 & 13 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 5 & 5 \\ 2 & 3 \end{vmatrix}$$

6. det(A'') = det(A), where A'' is the matrix obtained from A by operating $R_i \to R_i \pm kR_j$, $i \neq j$ or $C_i \to C_i \pm kC_j, i \neq j$

$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 8 & 11 \end{vmatrix} \quad R_2 \to R_2 + 2R_1$$

Properties:

- 1. Determinant is a continuous map from $M_n(\mathbb{R}) \longrightarrow \mathbb{R}$.
- 2. $det(AB) = det(A) \cdot det(B)$, where $A, B \in M_n(\mathbb{R})$.
- 3. $det(A^n) = (det(A))^n, A \in M_n(\mathbb{R}).$ (Check for n=2, use induction).

4.
$$det(A^{-1}) = \frac{1}{det(A)}, det(adj(A)) = (det(A))^{n-1}.$$

$$AA^{-1} = I$$
 : $|A||A^{-1}| = 1$ $\Rightarrow |A^{-1}| = \frac{1}{|A|}$

We know

$$A^{-1}|A| = adj(A)$$

$$\therefore |A^{-1}|A|| = |adj(A)| \Rightarrow |A|^n |A^{-1}| = |adj(A)|$$

$$|A|^n \frac{1}{|A|} = |adj(A)| \Rightarrow |adj(A)| = |A|^{n-1}$$

- 5. det(I) = 1, I is the identity matrix.
- 6. Determinant of a triangular matix is just the product of diagonal entries.
- 7. Let $A \in M_n(\mathbb{R})$. If any row or column of A is combination of sum of other rows or columns, then det(A) = 0.
- 8. Let A be an $m \times n$ matrix and B be an $n \times m$ matrix, then $det(I_m + (AB)_m) = det((BA)_n + I_n)$.
- 9. Let $A, B \in M_n(\mathbb{R})$, $AB = 0 \Rightarrow$ either det(A) = 0 or det(B) = 0. $|AB| = 0 \Rightarrow |A||B| = 0$.

 \mathbb{R} is an integral domain. So, |A| or |B| = 0

Inverse of a square matrix: Let $A \in M_n(\mathbb{R})$, then A is said to be invertible if there exist a matrix B in $M_n(\mathbb{R})$ such that AB = BA = I

The set of all invertible matrices in $M_n(\mathbb{R})$ is $GL_n(\mathbb{R})$, which is a group under multiplication.

Theorem 1: $A \in M_n(\mathbb{R})$ is invertible iff $det(A) \neq 0$

Proof:

Necessary Condition: Let B be inverse of A.

$$\therefore AB = I \Rightarrow |A||B| = 1$$

$$|A| \neq 0.$$

Sufficient Condition: We have $|A| \neq 0$.

Let
$$B = \frac{1}{|A|} adj(A)$$
 be inverse

$$\therefore AB = A\left(\frac{1}{|A|}adj(A)\right) = \frac{1}{|A|}A \ adj(A) = \frac{|A|^I}{|A|} \neq I$$
Similarly $BA = I$

Definition: Let $A \in M_n(\mathbb{R})$ with $det(A) \neq 0$, then the inverse of A is given by $A^{-1} = \frac{adj(A)}{det(A)}$ where adj(A) is adjugate of A or classical adjoint of A, $adj(A) = (cof(A))^T$ and $(cof(A)) = [A_{i,j}]$ where $A_{i,j}$ is the cofactor of the element $a_{i,j}$.

Result:

1. $A \in M_n(\mathbb{R})$ is invertible iff A^n is invertible.

 $A \text{ is invertible} \Rightarrow |A| \neq 0, \quad A \in M_n(\mathbb{R}).$

$$\Rightarrow |A|^n \neq 0 \Rightarrow |A^n| \neq 0 \therefore A^n \text{ is invertible}$$

Similarly, A^n is invertible $\Rightarrow |A^n| \neq 0 \Rightarrow |A|^n \neq 0 \Rightarrow |A| \neq 0$.

- 2. Let A be a matrix with integer entries, then adj(A) is also a matrix with integer entries.
- 3. If $A \in M_n(\mathbb{Z})$ then A^{-1} is a matrix with integer entries iff $|A| \in \{-1, 1\}$. (if $A \in M_n(\mathbb{R})$, the result doesnot hold.

Eg:
$$A = \begin{bmatrix} \frac{1}{2} & \frac{3}{4} \\ -1 & \frac{1}{2} \end{bmatrix}$$
. $|A| = 1$ but $A^{-1} \notin M_n(\mathbb{Z})$.)

Determinant of block matrix:

- 1. Consider the block matrix $T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ where A is an $n \times n$ and B is an $m \times m$ matrix, then T is an $(m+n) \times (m+n)$ matrix, and det(T) = det(A).det(B).
- 2. Let $P = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, where A, B, C, D are $n \times n$ matrices and $det(D) \neq 0$ then $det(P) = det(D).det(A BD^{-1}C)$.

3. Let $P = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, where A, B, C, D are $n \times n$ matrices which commute pairwise, then det(P) = det(AD - BC).

