Solving Quadratic Functions

by factoring or completing the square

Solve for the roots or zeros of the function

For each function, first factor it (always show this step), then state the roots using the form, "x = 3, 4 (or whatever the values are).

1.
$$f(x) = x^2 + 7x + 12$$

2.
$$f(x) = x^2 + 13x + 12$$

3.
$$f(x) = x^2 - 4x - 12$$

4.
$$f(x) = 2x^2 - 10x - 12$$

5.
$$f(x) = -3x^2 + 6x - 3$$

6.
$$f(x) = \frac{1}{2}x^2 + 2x + 2$$

Completing the square

Complete the square.

7.
$$f(x) = x^2 - 6x + 11$$

8.
$$f(x) = x^2 + 8x + 9$$

Expand from vertex form to standard form, $ax^2 + bx + c$ where $a, b, c \in \mathbb{R}$. Then factor the result and state the roots. Sketch the function, labeling the intercepts' values and vertex as an ordered pair.

9.
$$f(x) = (x-2)^2 - 9$$

Function substitution

- 10. Given f(x) = 3x + 2. What is f(2x 1)?
 - (a) Perform the substitution, putting 2x 1 in parenthesis.
 - (b) Simplify, beginning each line with a leading equals sign if it is equal to the line above.
- 11. Given f(x) = 3x + 2. What is the inverse of the function $f^{-1}(x)$?
 - (a) Rewrite the function reversing x and y. (assume that y and f(x) are interchangeable)
 - (b) Solve for x. Finish by putting y on the left side of the equality.
 - (c) State the answer as $f^{-1}(x)$ equals an expression.