Colégio BBBB Bandeirantes BBBB BBBB

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 173011		
3.0	Matemática -	Álgebra	1.a Série	М	11/09/2017			
Questões	Testes	Páginas	Professor(es)					
7	8	7	Fábio Cáceres / Fátima Regina / Sílvia Guiti					
Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente,								

Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.

Aluno(a)		Turma	N.o
Nota	Professor	Assinatura do	o Professor

Instruções:

- 1. A prova pode ser resolvida a lápis. Respostas só com tinta azul ou preta.
- 2. Resposta sem resolução não será considerada.
- 3. Únicos materiais permitidos: caneta, lápis (ou lapiseira), régua e borracha.
- 4. Entregue somente as **folhas de respostas** no final da prova.

Parte I: Testes (valor: 2,0)

- 01. (IFAL/2017) Sabendo que $2^{x+3}=32$, determine o valor de 2^{-x} :
 - a. 4
 - b. 2
 - c. 0
 - d. $\frac{1}{2}$
 - e. $\frac{1}{4}$
- 02. (PUCRJ/2012) A equação $2^{x^2-14} = \frac{1}{1024}$ tem duas soluções reais. A soma das duas soluções é:
 - a. -5
 - b. 2
 - c. 0
 - d. 14
 - e. 1024
- 03. (IFSUL/2015) A solução real da equação $3^x 3^{x-1} + 3^{x-3} 3^{x-4} = 56$ é:
 - a. 0
 - b. 1
 - c. 3
 - d. 4
 - e. 5

- 04. (UFJF/2011) Sejam a, b e c números reais positivos, com $c \neq 1$. Sobre a função logarítmica, é correto afirmar:
 - a. se $\log_c a = y$, então $a^y = c$
 - b. $\log_c(a+b) = (\log_c a) \cdot (\log_c b)$
 - c. $\log_c \left(\frac{a}{b}\right) = \frac{\log_c a}{\log_c b}$
 - d. $\log_c(a-b) = \log_c a \log_c b$
 - e. $\log_c \left(\frac{1}{a}\right) = -\log_c a$
- 05. (UCPel/2011) Se $\log_a 1024 = 20$, então "a" vale:
 - a. $\sqrt{2}$
 - b. $\sqrt[3]{2}$
 - c. $\sqrt[4]{2}$
 - d. $\sqrt[4]{3}$
 - e. $\sqrt{3}$
- 06. (UFRGS/2014) Atribuindo para log 2 o valor 0,3, então os valores de log 0,2 e log 20 são, respectivamente,
 - a. -0.7 e 3.
 - b. −0,7 e 1,3.
 - c. 0,3 e 1,3.
 - d. 0,7 e 2,3.
 - e. 0,7 e 3.
- 07. (UFRGS/2017) Se $\log_5 x = 2$ e $\log_{10} y = 4$, então $\log_{20} \frac{y}{x}$ é:
 - a. 2
 - b. 4
 - c. 6
 - d. 8
 - e. 10
- 08. (IFAL/2017) O potencial de hidrogênio (pH) das soluções é dado pela função: pH = $-log[H^+]$, onde $[H^+]$ é a concentração do cátion H^+ ou H_3O^+ na solução. Se, em uma solução, a concentração de H^+ é $2 \cdot 10^{-8}$, qual o pH dessa solução? Adote: log2 = 0.3.
 - a. 2,4
 - b. 3,8
 - c. 6,7
 - d. 7,7
 - e. 11

Folha de Respostas

Bimestre 3.o	Disciplina Matemática-Álgebra		Data da prova 11/09/2017	P 173011 p 3
Aluno(a)			Turma	N.o
Professor		Assinatura do Pro	fessor	Nota

Quadro de Respostas

Obs.: 1. Assinalar com X, a tinta, a resposta que julgar correta.

2. Rasura = Anulação.

	01	02	03	04	05	06	07	08
a.								
b.								
C.								
d.								
e.								

Parte II: Questões (valor: 8,0)

01. (valor: 1,5) Determine o conjunto solução das equações exponenciais abaixo:

a.
$$49^{x-1} = \left(\frac{1}{343}\right)^{3x-14}$$

b.
$$(\sqrt{3})^{x-1} = (\sqrt[3]{9})^{2-x}$$

c.
$$25^x - 26 \cdot 5^x + 25 = 0$$

02. (valor: 0,5) Se x e y são tais que $\begin{cases} 2^{3x+4y} = 16 \\ 5x+7y = 8 \end{cases}$ Determine $x^2 + y^2$.

$$x^2 + y^2 = \underline{\hspace{1cm}}$$

- 03. (valor: 1,0) Calcule pela definição os seguintes logarítmos:
 - a. $\log_{0,25} 32$

b. $\log_{243} \left(\frac{1}{27} \right) =$

c. $\log_{\frac{3}{5}} \left(\sqrt[3]{\frac{25}{9}} \right) =$

Aluno(a)	Turma	N.o	P 173011
			p 5

04. (valor: 1,0) Sendo log2 = a e log3 = b, expresse em função de a e b os valores dos seguintes logarítmos:

a.
$$\log_{1000} 15 =$$

b.
$$\log_{9} 160 =$$

05. (valor: 1,0) Sabendo que $\log x + \log x^2 + \log x^3 + \log x^4 = -20$, determine x.

06. (valor: 2,0) Resolva as equações logarítmicas abaixo:

a.
$$\log (3x^2 + 28) - \log (3x - 2) = 1$$

b.
$$\log_{21}(x+2) + \log_{21}(x+6) = 1$$

Aluno(a)	Turma	N.o	P 173011
			p 7

07. (valor: 1,0) A figura 1 representa um cabo de aço preso nas extremidades de duas hastes de mesma altura h em relação a uma plataforma horizontal. A representação dessa situação num sistema de eixos ortogonais supõe a plataforma de fixação das hastes sobre o eixo das abscissas; as bases das hastes como dois pontos, A e B; e considera o ponto O, origem do sistema, como o ponto médio entre essas duas bases (figura 2). O comportamento do cabo é descrito matematicamente pela função

 $f(x) = 2^x + \left(\frac{1}{2}\right)^x$ com domínio [A,B].

a. Nessas condições, qual o menor distância entre o cabo e a plataforma de apoio?

Resposta:

b. Considerando as hastes com 2,5m de altura, qual deve ser a distância entre elas, se o comportamento do cabo seguir precisamente a função dada?

Resposta:

Colégio BBB Bandeirantes

Parte I: Testes (valor: 2,0)

- 01. (IFAL/2017) Sabendo que $2^{x+3}=32$, determine o valor de 2^{-x} :
 - a. 4

$$2^{x+3} = 32$$

b. 2

$$2^{x+3} = 2^5 \Leftrightarrow x+3=5 \Rightarrow x=2$$

- c. 0
- Portanto, $2^{-x} = 2^{-2} \implies 2^{-x} = \frac{1}{4}$
- d. $\frac{1}{2}$
- e. $\frac{1}{4}$
- 02. (PUC-RJ/2012) A equação $2^{x^2-14} = \frac{1}{1024}$ tem duas soluções reais. A soma das duas soluções é:

Portanto, a soma das soluções é - 2 + 2 = 0

- $\mathsf{a.}\,-\mathsf{5}$
- b. 2

$$2^{x^2-14} = 2^{-10} \Leftrightarrow x^2 - 14 = -10 \Rightarrow x^2 = 4 \Rightarrow x = -2 \text{ of } x = 2$$

- c. 0
- d. 14
- e. 1024
- 03. (IFSUL-2015) A solução real da equação $3^x 3^{x-1} + 3^{x-3} 3^{x-4} = 56$ é:
 - a. 0

$$3^{x} - 3^{x} \cdot 3^{-1} + 3^{x} \cdot 3^{-3} - 3^{x} \cdot 3^{-4} = 56$$

b. 1

$$3^{x}\left(1-\frac{1}{3}+\frac{1}{27}-\frac{1}{81}\right)=56$$

c. 3 d. 4

$$3^{x} \cdot \left(\frac{56}{81}\right) = 56$$

e. 5

$$3^x = 81$$

 $3^x = 3^4 \iff x = 4$

Portanto, a solução da equação é igual a 4

- 04. (UFJF/2011) Sejam a, b e c números reais positivos, com $c \neq 1$. Sobre a função logarítmica, é correto afirmar:
 - a. se $\log_a a = y$, então $a^y = c$

Falso, pois
$$\log_{e} a = y \Leftrightarrow c^{y} = a$$

- b. $\log_c (a+b) = (\log_c a) \cdot (\log_c b)$
- Falso, pois $\log_c a + \log_c b = \log_c (a \cdot b)$
- c. $\log_c \left(\frac{a}{h} \right) = \frac{\log_c a}{\log_c h}$
- Falso, pois $\log_c \left(\frac{a}{b}\right) = \log_c a \log_c b$
- d. $\log_c (a-b) = \log_c a \log_c b$
- Falso, pois $\log_c a \log_c b = \log_c \left(\frac{a}{b}\right)$

 $\log 1024 = 20 \Leftrightarrow a^{20} = 1024 \Rightarrow a^{20} = 2^{10} \Rightarrow (a^{20})^{\frac{1}{20}} = (2^{10})^{\frac{1}{20}} \Rightarrow a = 2^{\frac{1}{2}} \Rightarrow a = \sqrt{2}$

- e. $\log_c(\frac{1}{a}) = -\log_c a$
- Correto, pois $\log_c \left(\frac{1}{a}\right) = \log_c 1 \log_c a = -\log_c a$
- 05. (UCPEL-2011) Se $\log_a 1024 = 20$, então "a" vale:
 - a. $\sqrt{2}$

 - b. $\sqrt[3]{2}$
 - c. $\sqrt[4]{2}$
 - d. $\sqrt[4]{3}$
 - $e.\sqrt{3}$

- 06. (UFRGS-2014) Atribuindo para log2 o valor 0,3, então os valores de log 0,2 e log20 são, respectivamente,
 - Como log2 = 0.3 e log10 = 1, seque que: a. -0.7 e 3.
 - $\log 0.2 = \log \left(\frac{2}{10}\right) = \log 2 \log 10 = 0.3 1 = -0.7$ b. -0.7 e 1.3.
 - c. 0,3 e 1,3. $\log 20 = \log (2 \cdot 10) = \log 2 + \log 10 = 0.3 + 1 = 1.3$
 - d. 0,7 e 2,3. e. 0,7 e 3.
- 07. (UFRGS-2017) Se $\log_5 x = 2$ e $\log_{10} y = 4$, então $\log_{20} \frac{y}{x}$ é:
 - $\log_5 x = 2 \Leftrightarrow x = 5^2 \Rightarrow x = 25$ a. 2
 - b. 4 $\log_{10} y = 4 \Leftrightarrow y = 10^4 \Rightarrow y = 10000$
 - c. 6
 - Assim, $\log_{20} \left(\frac{10000}{25} \right) = \log_{20} 400 = \log_{20} 20^2 = 2 \cdot \log_{20} 20 = 2$ d. 8 e. 10
- 08. (IFAL-2017) O potencial de hidrogênio (pH) das soluções é dado pela função: $pH = -\log[H^{+}]$, onde $[H^{+}]$ é a concentração do cátion H^{+} ou $H_{3}O^{+}$ na solução. Se, em uma solução, a concentração de H^{+} é $2 \cdot 10^{-8}$, qual o pH dessa solução? Adote: $\log 2 = 0.3$.
 - Sendo $2 \cdot 10^{-8}$ a concentração de [H $^+$] e o pH da solução dado por pH = $-\log[H^+]$, a. 2,4
 - b. 3,8
 - c. 6,7 $pH = -\log(2 \cdot 10^{-8}) \Rightarrow pH = -(\log 2 + \log 10^{-8}) \Rightarrow pH = -(\log 2 - 8 \cdot \log 10) \Rightarrow$
 - d. 7,7 \Rightarrow pH = 8 - 0.3 \Rightarrow pH = 7.7
 - e. 11

Quadro de Respostas

- Obs.: 1. Assinalar com X, a tinta, a resposta que julgar correta.
 - 2. Rasura = Anulação.

	01	02	03	04	05	06	07	08
a.					Χ		Χ	
b.						Χ		
C.		Χ						
d.			Χ					Χ
e.	X			Χ				

Parte II: Questões (valor: 8,0)

01. (valor: 1,5) Determine o conjunto solução das equações exponenciais abaixo:

a.
$$49^{x-1} = \left(\frac{1}{343}\right)^{3x-14}$$

$$(7^2)^{x-1} = (7^{-3})^{3x-14}$$

$$7^{2x-2} = 7^{-9x+42}$$

$$\Leftrightarrow 2x - 2 = -9x + 42$$

$$11x = 44$$

$$x = 4$$

$$S \equiv \{4\}$$

b.
$$(\sqrt{3})^{x-1} = (\sqrt[3]{9})^{2-x}$$

 $(3^{\frac{1}{2}})^{x-1} = (3^{\frac{2}{3}})^{2-x}$
 $3^{\frac{x-1}{2}} = 3^{\frac{4-2x}{3}} \Leftrightarrow \frac{x-1}{2} = \frac{4-2x}{3} \Rightarrow 3x-3 = 8-4x \Rightarrow 7x = 11 \Rightarrow x = \frac{11}{7}$
 $S = \left\{\frac{11}{7}\right\}$

c.
$$25^x - 26 \cdot 5^x + 25 = 0$$

$$(5^x)^2 - 26 \cdot 5^x + 25 = 0$$
, substituindo 5^x por y e reescrevendo a equação, temos:

$$y^{2} - 26 \cdot y + 25 = 0$$

$$(y - 25)(y - 1) = 0 \Rightarrow \begin{cases} y = 1 \Longrightarrow 5^{x} = 1 \Longrightarrow 5^{x} = 5^{0} \Longleftrightarrow x = 0 \\ y = 25 \Longrightarrow 5^{x} = 25 \Longrightarrow 5^{x} = 5^{2} \Longleftrightarrow x = 2 \end{cases}$$

02. (valor: 0,5) Se
$$x$$
 e y são tais que
$$\begin{cases} 2^{3x+4y} = 16 \\ 5x+7y = 8 \end{cases}$$

Determine
$$x^2 + y^2$$

$$\begin{cases} 2x & y = 2 \\ 5x + 7y = 8 \end{cases}$$

$$\begin{cases} 3x + 4y = 4 & \cdot (-5) \\ 5x + 7y = 8 & \cdot (3) \end{cases}$$

$$\begin{cases} 5x + 7y = 8 & (3) \end{cases}$$

$$\begin{cases} -15x - 20y = -20 \\ 15x + 21y = 24 \end{cases}$$

$$v = 4 \Rightarrow x = -4$$

Portanto,
$$x^2 + y^2 = (-4)^2 + (4)^2 \Rightarrow x^2 + y^2 = 32$$

03. (valor: 1,0) Calcule pela definição os seguintes logarítmos:

a.
$$\log_{0,25} 32$$

Seja
$$\log_{0,25} 32 = x \Leftrightarrow (0,25)^x = 32 \Rightarrow 2^{-2x} = 2^5 \Leftrightarrow x = -\frac{5}{2}$$

Portanto,
$$\log_{0,25} 32 = -\frac{5}{2}$$

b.
$$\log_{243} \left(\frac{1}{27} \right) =$$

Seja
$$\log_{243}\left(\frac{1}{27}\right) = x \Leftrightarrow (243)^x = \frac{1}{27} \Rightarrow 3^{5x} = 3^{-3} \Leftrightarrow x = -\frac{3}{5}$$

Portanto,
$$\log_{243}\left(\frac{1}{27}\right) = -\frac{3}{5}$$

c.
$$\log_{\frac{3}{5}} \left(\sqrt[3]{\frac{25}{9}} \right) =$$

Seja
$$\log_{\frac{3}{5}} \left(\sqrt[3]{\frac{25}{9}} \right) = x \Leftrightarrow \left(\frac{3}{5} \right)^x = \left(\sqrt[3]{\frac{25}{9}} \right) \Rightarrow \left(\frac{3}{5} \right)^x = \left(\frac{3}{5} \right)^{-\frac{2}{3}} \Leftrightarrow x = -\frac{2}{3}$$

Portanto,
$$\log_{\frac{3}{5}} \left(\sqrt[3]{\frac{25}{9}} \right) = -\frac{2}{3}$$

04. (valor: 1,0) Sendo log2 = a e log3 = b, expresse em função de a e b os valores dos seguintes logarítmos:

a.
$$\log_{1000} 15 = \log_{10^3} 15 = \frac{1}{3} \log (3 \cdot 5) = \frac{1}{3} \left[\log 3 + \log \left(\frac{10}{2} \right) \right] = \frac{1}{3} \left[\log 3 + \log 10 - \log 2 \right]$$
 como $\log 2 = a$, $\log 3 = b$ e $\log 10 = 1$, temos $\log_{1000} 15 = \frac{b - a + 1}{3}$

b.
$$\log_9 160 = \frac{\log 160}{\log 9}$$
 (mudança de base)
$$\log_9 160 = \frac{\log (2^4 \cdot 10)}{\log 3^2} = \frac{4 \log 2 + \log 10}{2 \cdot \log 3}$$
 Portanto, $\log_9 160 = \frac{4a + 1}{2b}$

05. (valor: 1,0) Sabendo que
$$\log x + \log x^2 + \log x^3 + \log x^4 = -20$$
, determine x . $\log x + 2\log x + 3\log x + 4\log x = -20 \Rightarrow 10 \cdot \log x = -20 \Rightarrow \log x = -2$, pela definição de logaritmo, temos $\log_{10} x = -2 \Leftrightarrow x = 10^{-2} \Rightarrow x = \frac{1}{100}$ Portanto, $x = \frac{1}{100}$

06. (valor: 2,0) Resolva as equações logarítmicas abaixo:

a.
$$\log (3x^2 + 28) - \log (3x - 2) = 1$$

C.E. $\begin{cases} 3x^2 + 28 > 0 \Rightarrow x > \frac{2}{3} \\ 3x - 2 > 0 \end{cases} \Rightarrow x > \frac{2}{3}$
 $\log \left(\frac{3x^2 + 28}{3x - 2}\right) = \log 10 \Leftrightarrow \frac{3x^2 + 28}{3x - 2} = 10$
 $\Rightarrow 3x^2 + 28 = 30x - 20 \Rightarrow 3x^2 - 30x + 48 = 0 \Rightarrow x^2 - 10x + 16 = 0 \Rightarrow (x - 2)(x - 8) = 0 \Rightarrow x = 2 \text{ ou } x = 8$
Portanto, $S = \{2, 8\}$

b.
$$\log_{21}(x+2) + \log_{21}(x+6) = 1$$

C.E. $\begin{cases} x+2>0 \\ x+6>0 \end{cases} \Rightarrow x \ge -2$
 $\log_{21}(x+2)(x+6) = \log_{21}21 \Leftrightarrow (x+2)(x+6) = 21 \Rightarrow x^2 + 8x + 12 = 21 \Rightarrow x^2 + 8x - 9 = 0 \Rightarrow (x+9)(x-1) = 0 \Rightarrow x = 1 \text{ ou } x = -9 \text{ (não convém)}$
Portanto, $S = \{1\}$

07. (valor: 1,0) A figura 1 representa um cabo de aço preso nas extremidades de duas hastes de mesma altura h em relação a uma plataforma horizontal. A representação dessa situação num sistema de eixos ortogonais supõe a plataforma de fixação das hastes sobre o eixo das abscissas; as bases das hastes como dois pontos, A e B; e considera o ponto O, origem do sistema, como o ponto médio entre essas duas bases (figura 2). O comportamento do cabo é descrito matematicamente pela função $f(x) = 2^x + \left(\frac{1}{2}\right)^x$ com domínio [A, B].

a. Nessas condições, qual o menor distância entre o cabo e a plataforma de apoio?

De acordo com a situação descrita acima, temos que a menor distância entre o cabo e a plataforma ocorre quando x = 0. Assim,

$$f(0) = 2^{0} + \left(\frac{1}{2}\right)^{0} \Rightarrow f(0) = 1 + 1 \Rightarrow f(0) = 2$$

Portanto, a menor distância entre o cabo e a plataforma é de 2 metros.

b. Considerando as hastes com 2,5 m de altura, qual deve ser a distância entre elas, se o comportamento do cabo seguir precisamente a função dada?

De acordo com as medidas indicadas na figura, temos:

$$f(a) = \frac{5}{2} \Rightarrow 2^a + \left(\frac{1}{2}\right)^a = \frac{5}{2} \Rightarrow 2^a + \frac{1}{2^a} - \frac{5}{2} = 0$$

Substituindo 2^a por t e reescrevendo a equação temos:

$$t + \frac{1}{t} - \frac{5}{2} = 0 \Rightarrow \frac{2t^2 - 5t + 2}{2t} = 0 \text{ como } t = 2^a > 0,$$

segue que $2t^2 - 5t + 2 = 0$

$$\Delta = (-5)^2 - 4(2)(2) = 9$$

$$t = \frac{5 \pm 3}{4} \begin{cases} t = 2 \Longrightarrow 2^a = 2 \Longleftrightarrow a = 1 \\ t = \frac{1}{2} \Longrightarrow 2^a = 2^{-1} \Longleftrightarrow a = -1 \end{cases}$$

Portanto, a distância entre A e B é de 2 metros.