CARLETON UNIVERSITY

SCHOOL OF COMPUTER SCIENCE

COMP4905 - Honours Project

Formation Flight of UAVs Swarms in an Obstacle–Filled Three–Dimensional Environment

Author Yannick ABOUEM Supervisor Prof. Mark LANTHIER

July 23, 2024

Abstract

Abstract goes here!

Acknowledgements

This project uses Webots (http://www.cyberbotics.com), an open-source mobile robot simulation software developed by Cyberbotics Ltd.

Contents

1	Introduction	5
	1.1 Swarms of Unmanned Aerial Vehicles	
	1.2 Objectives	6
2	Methodology	7
	2.1 Automated movement of UAVs and PID Controller	7

List of Figures

1 Introduction

Cooperation among different individuals in a group is often necessary to solve complex problems that are otherwise harder or impossible to complete for a singular individual. This concept is true in the field of robotics, where robotic swarms systems, which are systems composed of numerous small and limited robots (Oh et al. 2017), are a crucial area of study. Due to the early stage of development of this field, there are not many currently existing applications, however there exists many research projects to test the capabilities of swarm algorithms (Schranz et al. 2020). Despite the lack of representation in the industry sector, multi-robot systems have become of interest recently due to their abilities to resist failures and damages, adaptability to new environments and low costs (Oh et al. 2017).

A specific problem in swarm robotics, is the pattern formation problem, which consists of "getting a group of robots to form and stay in a specific formation, like a wedge or a chain, and maintaining that formation" (Sri and Suvarchala 2022). The robots in the swarm need to coordinate to maintain a specific shape in order to achieve the desired goal. In this process, different methods of controlling the swarm can be used, for example the election of a leader or the imposition of a certain set of behaviors for each member. There is also a distinction between centralized and decentralized pattern formation, where centralized pattern formation is performed when there exists a centralized unit that coordinates the individual robots (Oh et al. 2017).

In this project we will explore a decentralized and distributed solution to the pattern formation problem. A distributed approach was chosen because of their robustness to failure, due to their built-in redundancy since each robot in the swarm receives the same role (Oh et al. 2017). This is advantageous compared to a centralized, non-distributed approach as it mitigates the possibility of a single point of failure.

1.1 Swarms of Unmanned Aerial Vehicles

A swarm of Unmanned Aerial Vehicles is a swarm of robots where each robot is capable of flight using a set of rotors. These swarms have multiple uses. They are commonly used in military applications, but they are also used for civilian applications, such as aerial surveys, disaster management, environment mapping, search and rescue and for leisure (Tahir et al. 2019). These are applications that would benefit from pattern formation, as we can direct the swarm to take an optimal shape for its use case. For example, we can choose a shape to best cover an area while performing an aerial survey

or environment mapping, or adopt a chain-like formation to establish communication between two points (Schranz et al. 2020) which can be deployed at a site of a natural disaster to aid in search and rescue efforts.

1.2 Objectives

The objective of this project is to provide a distributed solution to the pattern formation problem, meaning build a system of multiple robots capable of positioning themselves in a specific shape and maintain this shape while navigating an environment dotted by obstacles. This will be achieved using obstacle detection and avoidance techniques, as well as distributed system principles, such as leader election, and computer network principles. For this project we chose to use unmanned aerial vehicles to demonstrate the efficacy of the solution. Similar work being done includes (Chen et al. 2021), where a hierarchical approach is applied to formation control of fixed wing UAVs, by breaking up the swarm into several smaller groups headed by a leader.

2 Methodology

In this chapter we will focus on methods used in reaching the objectives of this project. This chapter is subdivided in multiple sections, where each section covers the particulars of each part of the project.

2.1 Automated movement of UAVs and PID Controller

The first and most fundamental part of the project is the automated movement of the UAVs. This means that given a UAV it should be possible for it to move seamlessly without any input from a user to a given waypoint. A waypoint in this case is simply a set of two-dimensional coordinates in the world.

In order to achieve this we used a common technique used in robotics, a PID Controller. Short for proportional-integral-derivative controller

Bibliography

- Chen, Hao et al. (2021). "Formation flight of fixed-wing UAV swarms: A group-based hierarchical approach". In: *Chinese Journal of Aeronautics* 34.
- Oh, Hyondong et al. (2017). "Bio-inspired self-organising multi-robot pattern formation: A review". In: *Robotics And Autonomous Systems* 91.
- Schranz, Melanie et al. (2020). "Swarm Robotic Behaviors and Current Applications". In: *Frontiers in Robotics and AI*. doi: 10.3389/frobt.2020.00036. PMID: 33501204; PM-CID: PMC7805972.
- Sri, S.M. Lakshmi and C.V. Kavya Suvarchala (2022). "Multi-robot systems: a review of pattern formation and adaptation". In: *Advanced Engineering Sciences* 54.
- Tahir, Anam et al. (2019). "Swarms of Unmanned Aerial Vehicles A Survey". In: *Journal of Industrial Information Integration* 16.