⑩特許出願公告

許 公 報(B2) $\Psi 4 - 75796$ 幽特

1 1.5 Mint. Cl. 5

識別記号

广内整理番号

网络公告 平成4年(1992)12月1日

C 02 F 1/52 B 01 D 21/01

Z 102

7824-4D 7824-4D

発明の数 2 (全6頁)

水処理方法及び水処理用凝集剤 会発明の名称

> 顧 昭61-276688 四特

❸公 图 昭63-130189

類 昭61(1986)11月21日 सर्दछ

❷昭63(1988)6月2日

孝 雄 長 谷 川 60発明 習 凝 卣 也 60発明 奢 鬼

埼玉県戸田市上戸田5丁目24番3号 神奈川県相模原市上銭間301の90の102

69発明 者 鈴 木 東京都江戸川区中葛西4丁目8番15号の107

奖 衉 曲 Œ 包発 明 者 尾

東京都町田市南成瀬4丁目17番10号

娥 浩 の発 明 者 红 膫

東京都北区赤羽台1丁目3番13号の101

砂発 明 老 棋 木 克 紘 神奈川県大和市西鶴間6丁月18番5号

水道機工株式会社 **砂出 頗** 人

東京都中央区八重洲1丁目9番9号

四代 理 弁理士 鈴木 秀雄 人

卷 查 宫 川上 美 秀

公害防止関連技術

特開 昭55-28749 (JP, A) 國参考文 鮲

> 大森 英三著「高分子凝集剤」第96-97頁,昭和52年10月25日 第3版、高分子刊行 会発行

7

2

の特許請求の範囲

1 ケイ酸モノマーの極限粘度の約2倍以上の極 限粘度を有する重合ケイ酸と、水中で水酸化物を 形成しうる金属の可溶性塩を、該金属に対するケ に注入攪拌し、処理対象水中の不純物を凝集沈澱 させることを特徴とする水処理方法。

2 ケイ酸モノマーの極限粘度の約2倍以上の極 限粘度を有する重合ケイ酸と、水中で水酸化物を イ素のモル比が2以上となる比率で含有し、かつ 函指数が2以下又は11以上の水溶液であることを 特徴とする水処理用凝集剤。

発明の詳細な説明

(産業上の利用分野)

本発明は、各種用水又は廃水等の化学的水処理 方法及び水処理用凝集剤に関する。

(從来技術)

各種用水又は廃水等に、水中の懸濁物質その他

の不純物の凝集剤を注入して水の浄化処理を行な う水処理方法においては、凝集剤として、硫酸ア ルミニウム (硫酸パン土)、塩化第2鉄等の無機 低分子凝集剤、ポリ塩化アルミニウム (PAC) イ紫のモル比が2以上となる比率で処理対象水中 5 等の無機高分子軽集剤、又はポリアクリルアミド 等の有機高分子凝集剤等が用いられている。

硫酸パン土(Ala(SO4)。・18HaO)を用いる処 理方法は、硫酸パン土が比較的安価に得られる等 の理由のため、最も一般的に行なわれているが、 形成しうる金属の可溶性塩を、該金属に対するケ 10 その凝集効果は必ずしも高いとは云い難い。すな わち、懸濁物質等の凝集速度が遅く、形成される 凝集フロツクも小さく、特に処理水が低温の場合 には十分な凝集効果が得られず、また、アルカリ 消費量が大きいために多量のアルカリ到や凝集補 15 助剤の併用を必要とする等の欠陥がある。

> 塩化第2鉄溶液(FeCla・xHzO)を用いる水 処理方法は、凝集フロツクが大きく、各種重金属 との共沈作用が大きい笹の凝集効果上の利点はあ るが、塩化第2鉄溶液は腐食性がある上に安定性

3

が低く、また消石灰を併用する必要があるので処 理後の発生汚泥の量が蓄しく多くなり、その焼成 のために2次公客を発生させ易い欠陥がある。

ポリ塩化アルミニウム (PAC) (AL(OH)。 碁集効果をあげることができ、凝集フロツクの形 成も比較的速い等の利点があるため、次第に硫酸 パン土法にかわつて広く用いられるようになつて いる。しかし、PAC製造工程における条件の調 の凝集性能にばらつきが生じ易く、コストも、硫 酸パン土に比べて著しく高価になるという欠陥が ある。

ポリアクリルアミド (CH(CO)(NH2) CH2) 。等の有機高分子凝集剤を用いる方法は、フロツ 15 クの生成速度や凝集フロックの形状も大きい点で は有利であるが、処理後の水の安全性について懸 念があるという重大な欠陥がある。

(発明が解決しようとする問題点)

し、凝集速度、形成フロツク経等の凝集性能にお いて優れ、温度、州等の点において適用対象領域 が広く、かつ、安全で低コストの水処理方法及び 水処理用凝集剤を提供することを目的とする。

(問題点を解決するための手段)

本発明の水処理方法においては、重合度の高い 重合ケイ酸が、少量の金属塩と共に凝集剤として 用いられる。前記の硫酸パン土等による水処理に 際して、経集補助剤として活性ケイ酸を用いるこ 活性ケイ酸を、碳酸パン土中のアルミニウムに対 しモル比において最大1.1程度の低い割合で凝集 助剤として用いていたものである。

本発明の発明者等は、重合度を高めた重合ケイ り、極めて優れた凝集フロック形成能力を示すこ とを知見し、これに基づいて、重合ケイ酸を凝集 中剤とする新たな水処理方法を開発したものであ

市販の水ガラスを原料とし、これを、その極限粘 **変能がケイ酸モノマーの極限粘度値(0.104)の** 約2倍以上となるように重合させたものが用いら れる。重合は、酸性溶液中で行なつてもよく、ア

ルカリ性溶液中で行なつてもよい。

重合ケイ酸と共存させる金属イオンとしては、 現在、凝集剤に一般に用いられているアルミニウ ムや鉄のほか、水中で水酸化物を形成しうる金 Clan) を用いる方法は、低温の場合にも十分な 5 属、例えば、銅、亜鉛、マンガン、カルシウム等 のイオンを用いることができる。これらの金属 は、硫酸、硝酸等の溶液に溶解して用いるが、予 め重合ケイ酸と金属イオンの双方を含有する溶液 を調製してこれを凝集剤として用いる場合には、 整が複雑で均質な製品を得られ難いために、製品 10 酸性領域で重合して得られた重合ケイ酸に対して は酸性の金属塩を用い、アルカリ領域で重合して 傷られた重合ケイ酸に対してはアルカリ性の金属 塩を用いるのがよい。

(作用)

上記の重合ケイ酸と金属塩溶液を、ケイ素と会 羅との比率、すなわちSi/Mのモル比が、例えば 金属がアルミニウムである場合にはほぶ2.5~15 となるようにし、約20~30m/ L程度の機度で処 理対象水中に注入することによって、水処型を行 本発明は、上記の如き従来方法の欠陥に照ら 20 なう。Si/Mの好適な比率を、アルミニウム以外 の各種金属について示せば、次のとおりである。

> 鉄·····Si/Fe 25~15 銅·····Si/Cu 2~18 マグネシウム·····Si/Mg 2~10

25 鉛·····Si/Pb 6~20 コバルト……Si/Co 4~10 スズ·····Si/Sn 2~18

重合ケイ酸溶液と金属塩溶液を、各別に処理対 象水に注入して攪拌してもよく、予め、重合ケイ とは公知であるが、この場合には、重合度の低い 30 酸と金属塩の混合溶液の凝集剤として調製し、こ れを処理対象水中に注入してもよい。

趣合ケイ酸は、常温で放置しておくと、さらに 重合が進行してゲル化するに至る。ゲル化した重 合ケイ酸は凝集剤として用いることができないか 酸が、少量の金属イオンと共存させることによ 35 ら、製造後の重合ケイ酸の重合進行を抑制するこ とが望ましい。重合ケイ酸の重合の進行は、重合 ケイ酸溶液のpHが中性に近い程速く、溶液の酸性 度又はアルカリ性度が強い程遅い。したがつて、 製造後の重合ケイ酸は、その溶液の用を調節し 本発明方法において用いられる重合ケイ酸は、40 て、酸性度又はアルカリ性度を高くしておくこと が適切である。例えば、四4の酸性溶液中で重合 させた場合、pH4の状態のままでは8時間程度で ゲル化するが、希硫酸を加えて州2に調整してお くと、140時間を経過しても安定な状態を維持し、

良好な凝集物性を有する。

また、MI9のアルカリ性溶液中で重合させた場 合には、そのままでは35分程度でゲル化するが、 4N-NaOHを加えて折IIに調整すると、ゲル化 時間は約120時間に延長する。したがつて、水処 5 理現場近くにおいて重合ケイ酸を製造して用いる 場合には、田鯛節にそれ程留意しなくてもよい が、遠隔地で製造した重合ケイ酸又はそれを用い た凝集剤を水処理現場に連搬保管した後に使用す することが適切である。

(実施例)

実施例 1

市販水ガラス 4 号品を水で希釈してSi濃度 3 % を、23%希硫酸1ぬ中に攪拌しながら混入し、 PH4、Si濃度1.5%の酸性ケイ酸溶液 2 kg を得た。 この酸性ケイ酸溶液を窒温 (27℃) において静か に概律しつつ重合させて重合ケイ酸溶液とし、重 合操作開始後一定時間無(2時間、4時間、6時 20 る。 間) に容器から重合ケイ酸溶液を分取し、それぞ れ試料1(盤合時間2時間)、試料2(重合時間4 時間) 及び試料3(重合時間6時間) とした。各 試料についてJISZ-8803に定める方法により極 限粘度を測定したところ、次のとおりであつた。

試料 1 ……0.21、試料 2 ……0.36、試料 3 ……

次いで、各試料に(1:4) 硫酸を添加し、H を2.0に調整した。

上記各試料に破骸アルミニウム(Ala (SO₄)₈18H₂O) を加えたものを凝集剤とし、ジ ヤーテストの方法(提拌条件……急速提拌 120rpm2分、中速攪掉60rpm3分、緩速攪拌 30rpm2分)により、処理対象水(水温25℃、瀕 るような場合には、Hを約2以下又は約11以上と 10 度219 w/ℓ)に対する艇集試験を行なつた。処 理対象水に対する薬品の注入量は硫酸アルミニウ ムを基準として60m/lとし、各試料について試 料中におけるケイ素とアルミニウムのモル比を 様々に変えて試験を行なつたところ、試験開始後 (SiOs邊度6.4%) に調整した水ガラス水溶液 l kg 15 凝集フロックが出現するまでの時間ならびに形成 されたフロックの平均粒径は、第1宏のとおりで あつた。フロツクの粒径は試験中に撮影した写真 に基づいて制定し、表中におけるA.B……等の粒 径表示は、次の基準によって表示したものであ

> A-----0.2m以下、B------0.2mm~03mm、C------0.3 ma ~ 0.5 ma 、 D ······ 0.5 ma ~ 1.0 ma 、 E ····· 1.0 ma ~1.5 mm . F ······1.5 mm ~2.0 mm . G ······2.0 mm ~5.0 was. H······5.0 max以上

BEST AVAILABLE COPY

1 麦

林湾	1		2	····	3	
Si/AI ₹ル比	フロツク 出現時間 (sec)	フロツ ク粒径	フロック 出現時間 (sec)	フロツ ク 粒径	フロツク 出現時間 (sec)	フロツ ク粒径
0,6	50	В	50	В	60	₿
1.2	30	C	40	С	55	С
2.4	25	D	30	D	30	D
3, 6	23	E	25	E	20	É
4.8	15	E	15	E	15	E
5, 9	20	E	20	F	20	F

試料 2 3 1 フロツク フロツク フロツ フロツク フロツ フロツ 出現時間 出現時間 出現時間 Si/Al ク粒径 ク粒径 ク粒径 モル比 (sec) (sec) (sec) 30 E 25 F 20 F 7.1 F F 8.3 40 30 20 F C F 20 9.5 45 D 32 G 20 G 11 53 35

上記試験によって明らかなとおり、金属の共存 比率が低い場合においても十分な疑集効果を示 し、また、重合度が高いもの程高い凝集効果を示 す。

7

実施例 2

実施例1の方法により製造した酸性重合ケイ酸 露液(但し、重合時間3時間経過後に分取したも の、極限粘度0.27)に、下記のとおり各種金属塩 とし、これを実施例1と同じ処理対象水(水温25 ℃)に注入(注入量、金属塩を基準として60~/ ℓ) して、実施例1と同一条件のジャーテストの 方法により凝集試験を行なつた。

試料 4 ····· (硫酸銅) ·····Si/Cuモル比4.4 試料 5 ······ (塩化亜鉛) ······Si/2nモル比3.6 試料 6 ····· (塩化マンガン) ·····Si/Mnモル比

フロック出現時間及びフロック平均粒径は、第 2表のとおりであつた。

第	2	姕
5H)	L	- ex

試料	4	5	6
フロツク出現時間(sec)	13	12	8
フロック平均粒径	E	E	E

* 上記試験によつて明らかなとおり、アルミニウ ム以外の各種の金属イオンと併用しても高い凝熄 効果を示す。

8

15 実施例 3

奥施例!の方法により製造した酸性重合ケイ酸 溶液(但し、重合時間 4時間経過後に分取したも の) に硫酸銅、硝酸第2鉄、塩化亜鉛、塩化マン ガン及び塩化マグネシウムを各別に添加溶解した 溶液をそれぞれ加えたものを試料4ないし試料6 20 ものを試料7ないし試料11とし、前記試料2及び 上紀試料 7~11を用いて、低温の処理対象水(水 温3℃、濁度220㎜/ℓ)に対して凝集試験を行 なった。凝集期注入量は、金属塩基準で80mg/l とし、各試料中におけるケイ素と金属のモル比は 25 次のとおりである。

> 試料 2……Si/Alモル比……5.0 試料 7······Si/Cuモル比······4A

試料 8······Si/Feモル比······5.2

試料 9······Si/Znモル比······2.4 30 試料10······Si/Mnモル比······7.1

試料11······Si/Mgモル比······3.4

上記試験におけるフロック出現までの時間及び 形成フロックの平均粒径は、第3表のとおりであ つた。

第 3 夎

35

試料	2(AI)	7(Cu)	8(Fe)	9(Zn)	10(Mn)	11(Mg)
フロツク出現時間(8≪)	60	25	20	10	10	40
フロツク平均粒径	F	E	E	E	F	G

上記試験によつて明らかなとおり、各種の金属 イオンと共存して低温の処理水に対しても、高い

凝集効果を示す。

実施例 4

市販の水ガラス4号品を水で希釈してSi鼝度 1.5% (SiO:濃度3.2%) に調整した水ガラス溶液 500%にさらに(1:4)硫酸を加えて用9に調 整し、これを室温(25℃)において静かに攪拌し を加えてMIIとした後、撥拌を停止して静置し、 極限粘度1.25のアルカリ性重合ケイ酸溶液を得 た。この溶液にアルミン酸ナトリウムを添加して (Si/Alモル比14.0)、試料12とし、これを処理対 実施例1と同一条件のジャーテストにより、凝集 試験を行なつた。フロツク出現までの時間はち 秒、フロックの平均粒径はEであつた。

上記試験によって明らかなとおり、実施例1な いし3のように酸性溶液中において重合させたも 25 ののみでなく、アルカリ性溶液中において重合さ せた重合ケイ酸溶液の場合においても、高い凝集 効果を示す。

実施例 5

実施例 4 において製造したアルカリ性重合ケイ 20 酸溶液を少量卵分取して試料13、試料14及び試料 15とし、試料13ないし14をそれぞれ硫酸銅溶液、 塩化亜鉛溶液又は塩化マンガン溶液と共に低温の 処理対象水(水温15℃、濁度220㎏/ℓ)に注入 及び注入量は突施例2と同じとした。)凝集試験 を行なつた。

各試料の、フロック出現時間及び形成フロック の平均粒径は、第4表のとおりであつた。

表 第

試料	13(Ca)	14(Zn)	15(Mn)		
フロツク出現 時間(sec)	10	15	10		
フロツク平均 粒径	E	F	D		

上記試験によって明らかなとおり、アルカリ際 液中において重合させたものも、各種金属イオン

との共存により低温の処理対象水に対しても高い 凝集効果を示す。

拳等例 1

実施例1と同じく、市販水ガラス4号品を用い つつ重合させ、15分後に水酸化ナトリウム(4N) 5 て得られたM4、Si機度1.5%の酸性ケイ酸溶液 のうち、特別の重合操作を行なうことなく、直ち に分取したものを試料16とした。この試料の極限 粘度は0.104であつた。

試料16に硫酸アルミニウムを添加し、Si/Al 象水(水温25℃、髑度220㎜/ℓ)に注入して、 10 モル比を0.6、1.2、4.8、7.1及び8.3としたものを 用いて、実施例1におけると同じ処理対象水(水 温25℃、濁度220㎏/ℓ)に対して同じ注入量を もつて競集試験を行なった。その結果は第5表の とおりであつた。

裘

Si/Alモル比	0.6	1.2	2.4	4,8	7, 1	8.3	11
フロツク出現 時間(sec)	60	50	38	30	80	ファクチ	マツに成
フロツク平均 粒径	В	₿	С	С	A	- TEE. 5	,

上記試験によって明らかなとおり、重合度の低 い重合ケイ酸は、金属イオンと共存させても十分 して(但し、2液法による各別注入とし、モル比 25 な凝集効果を示せず、むしろ、金属イオンの共存 量を或る程度以下にすると、全く凝集効果を失な う。

参考例 2

従来法による活性ケイ酸として、市販の水ガラ 30 ス3号品を水で希釈してSi濃度0.7% (SiOa濃度 1.5%) の希釈溶液とし、これに(1:4) 硫酸 を加えてPH8.5に調整し、室温において静かに2 時間攪拌して活性ケイ酸溶液を得た。その極限粘 度は0.12であった。これをSiO.機度0.5%にまで 35 水で希釈して試料17とし、これと硫酸アルミニウ ムを用いて、低温の処理対象水(水温147℃、温 度100mg/l) に対する凝集試験(注入量、硫酸 アルミニウム基準で20mg/l)を行なつた。その 結果は第6数のとおりであつた。

12

	绑		6	麦		
Si/AIモル比	0,8	1.8	4.2	5,8	7.5	
- us a distribute HH/)	- CA	45	OF.	300101	10001	

Si/AIモル比	0.8	1.8	4.2	5,8	7.5	9,2
フロツク出現時間(sec)	50	45	35	100以上	100以上	100以上
フロツク平均粒径	В	В	С	A	A	A

上記試験によって明らかなとおり、重合度の低 い従来法の活性ケイ酸は、金属イオンと共存させ ても十分な凝集効果を示さない。

(発明の効果)

以上のとおり、本発明の水処理方法及び水処理 用凝集剤は、安価な水ガラスを原料とする重合度

の高い重合ケイ酸と、水中で水酸化物を形成しう る金属イオンを形成しうる各種金属の熔液を用い ることにより、処理水中の不純物に対する凝集効 10 果が高く、特に低温水に対しても顕著な凝集効果 を有し、しかも水処理コストが低廉となる等の効 果を奏しうるものである。