Hunter Lybbert Student ID: 2426454 12-02-24 AMATH 567

HOMEWORK 10

Collaborators*: Laura Thomas, Cooper Simpson, Nate Ward, Sophia Kamien

*Listed in no particular order. And anyone I discussed at least part of one problem with is considered a collaborator.

1: I sketched the following in class. Complete the argument. Show that for an integer $j \in (-N, N)$ and h > 0,

$$\lim_{h \to \infty} \int_{\mathrm{i}h}^{\mathrm{i}h + \pi} \frac{\mathrm{e}^{2\mathrm{i}jz}}{\tan(Nz)} \mathrm{d}z = \begin{cases} -\mathrm{i}\pi & j = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Solution:

TODO:

Following the sketch provided in class let's look at an import representation of tan(Nz)

$$\tan(Nz) = \frac{\sin(Nz)}{\cos(Nz)}$$

$$= \frac{e^{iNz} + e^{-iNz}}{2i} \left(\frac{e^{iNz} - e^{-iNz}}{2}\right)^{-1}$$

$$= \frac{e^{iNz} + e^{-iNz}}{2i} \left(\frac{2}{e^{iNz} - e^{-iNz}}\right)$$

$$= \frac{1}{i} \left(\frac{e^{iNz} + e^{-iNz}}{e^{iNz} - e^{-iNz}}\right)$$

$$= \frac{1}{i} \left(\frac{e^{iNz}}{e^{iNz} - e^{-iNz}}\right)$$

$$= \frac{1}{i} \left(\frac{1 + e^{-2iNz}}{1 - e^{-2iNz}}\right)$$

$$= \frac{1}{i} \left(\frac{1 + (\cos(Nz) - i\sin(Nz))^2}{1 - (\cos(Nz) - i\sin(Nz))^2}\right)$$

$$= \frac{1}{i} \left(\frac{1 + \cos^2(Nz) - 2i\cos(Nz)\sin(Nz) - \sin^2(Nz)}{1 - \cos^2(Nz) + 2i\cos(Nz)\sin(Nz) + \sin^2(Nz)}\right)$$
...
$$= i + \mathcal{O}(e^{-2Nh})$$

2: From A&F: 4.2.1 (b)

Solution:

See solution to problem 2 from homework set 9.

3: From A&F: 4.2.2 (a, h) Evaluate the following real integrals by residue integration:

(a)

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} \mathrm{d}x, \quad a^2 > 0$$

Solution:

We can also look at just the imaginary part of another version of this integral

$$\begin{split} \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} \mathrm{d}x &= \mathrm{Im} \int_{-\infty}^{\infty} \frac{x \, \mathrm{e}^{\mathrm{i}x}}{x^2 + a^2} \mathrm{d}x \\ &= \mathrm{Im} \int_{-\infty}^{\infty} \frac{x \left(\cos x + \mathrm{i} \sin x\right)}{x^2 + a^2} \mathrm{d}x \\ &= \mathrm{Im} \left[\int_{-\infty}^{\infty} \frac{x \cos x}{x^2 + a^2} \mathrm{d}x + \mathrm{i} \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} \mathrm{d}x \right] \\ &= \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} \mathrm{d}x. \end{split}$$

Therefore, we consider the integral

$$\int_{-\infty}^{\infty} \frac{x e^{ix}}{x^2 + a^2} dx$$

and then take the imaginary part at the end. In order to evaluate this integral we look at the integral over the contour C which is a counterclockwise semicircle in the upper half plane with radius R. Then applying the Residue Theorem and taking the limit as $R \to \infty$, we have the following

$$\oint_C \frac{z e^{iz}}{z^2 + a^2} dz = \int_{-R}^R \frac{x e^{ix}}{x^2 + a^2} dx + \oint_{C^R} \frac{z e^{iz}}{z^2 + a^2} dz$$

$$2\pi i \sum_{w \in S} \left(\frac{z e^{iz}}{z^2 + a^2}\right) = \int_{-\infty}^\infty \frac{x e^{ix}}{x^2 + a^2} dx + \oint_{C^R} \frac{z e^{iz}}{z^2 + a^2} dz$$

where S is the set of singularities of our function in the upper half plane and I claim the C_R contour integral goes to 0 by Jordan's Lemma. I will verify this second claim next.

To justify using Jordan's Lemma I want to note we are using k=1 in assumptions from the lemma of concern. Moreover, I will be assuming a>0 for now. Additionally, we need to show $f(z)\to 0$ uniformly as $R\to\infty$ in C_R , that is if $|f(z)|\leq K_R$, where K_R only depends on R and not arg z and $K_R\to 0$ as $R\to\infty$. Let's first find this

bound K_R

$$|f(z)| = \left| \frac{z}{z^2 + a^2} \right|$$

$$= \left| \frac{R e^{i\theta}}{R^2 e^{2i\theta} + a^2} \right|$$

$$= \frac{R}{|R^2 e^{2i\theta} + a^2|}$$

$$\leq \frac{R}{|R^2 e^{2i\theta}| - |-a^2|}$$

$$\leq \frac{R}{R^2 - a^2}.$$

In the final two steps with inequalities we first apply the inverse triangle inequality, followed by recognizing the following. Since R is becoming arbitrarily large then for a given a eventually R will be larger such that $R^2 > a^2$ and therefore the expression $R^2 - a^2 > 0$ thus we can drop the absolute value in the end. Now, let $K_R = R/(R^2 - a^2)$. Clearly the denominator will win out as we take $R \to \infty$ since it has a squared R in it, while the numerator only has a linear R. Therefore, $K_R \to 0$ as $R \to \infty$ and thus $f(z) \to 0$ uniformly as $R \to \infty$ in C_R . Thus we have verified that

$$\oint_{C^R} \frac{z e^{iz}}{z^2 + a^2} dz$$

by Jordan's Lemma.

TODO: Square away that this is a good argument or not.

We need to evaluate this limit

$$\lim_{R\to\infty}\frac{z}{z^2+a^2}=\frac{R}{R^2+a^2}=\frac{\infty}{\infty}$$

and then use L'Hôpitals to get

$$\lim_{R\to\infty}\frac{z}{z^2+a^2}=\frac{1}{z}=0$$

Therefore we no longer need to be concerned with the integral over C_R . Notice the denominator of our function factors to (z - ia)(z + ia) therefore the set of singularities in the upper half plane is $S = \{ia\}$. Hence we have

$$\int_{-\infty}^{\infty} \frac{x e^{ix}}{x^2 + a^2} dx = 2\pi i \sum_{w \in S} \operatorname{Res}_{z=w} \left(\frac{z e^{iz}}{z^2 + a^2} \right)$$

$$= 2\pi i \operatorname{Res}_{z=ia} \left(\frac{z e^{iz}}{(z - ia)(z + ia)} \right)$$

$$= 2\pi i \left(\frac{ia e^{i^2 a}}{ia + ia} \right)$$

$$= 2\pi i \left(\frac{ia e^{-a}}{2ia} \right)$$

$$= \pi i e^{-a}.$$

Therefore,

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx = \operatorname{Im} \left[\int_{-\infty}^{\infty} \frac{x e^{\parallel x}}{x^2 + a^2} dx \right]$$
$$= \operatorname{Im} \left[\pi i e^{-a} \right]$$
$$= \pi e^{-a}$$

TODO: consider doing a case where a < 0.

(h)

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{(5-3\sin\theta)^2}$$

Solution:

Let's begin by reverse parameterizing this into a contour integral around the unit circle. Notice, using the normal parameterization but going the other way we have, $z = e^{i\theta}$ and

$$dz = i e^{i\theta} d\theta \implies \frac{1}{iz} dz = d\theta.$$

Additionally, notice,

$$\sin \theta = \frac{\mathrm{e}^{\mathrm{i}\theta} - \mathrm{e}^{-\mathrm{i}\theta}}{2\mathrm{i}} = \frac{z - \frac{1}{z}}{2\mathrm{i}}.$$

Hence, our reverse parameterization can get us here (with a little simplification)

$$\int_{0}^{2\pi} \frac{d\theta}{(5-3\sin\theta)^{2}} = \oint_{\partial B_{1}(0)} \left(5-3\left(\frac{z-\frac{1}{z}}{2i}\right)\right)^{-2} \frac{dz}{iz}$$

$$= \oint_{\partial B_{1}(0)} \left(5-\frac{3z}{2i}+\frac{3}{2iz}\right)^{-2} \frac{dz}{iz}$$

$$= \oint_{\partial B_{1}(0)} \left(\frac{10iz-3z^{2}+3}{2iz}\right)^{-2} \frac{dz}{iz}$$

$$= \oint_{\partial B_{1}(0)} \frac{(2iz)^{2}}{(10iz-3z^{2}+3)^{2}iz} dz$$

$$= \oint_{\partial B_{1}(0)} \frac{4iz}{(10iz-3z^{2}+3)^{2}} dz.$$

Now we need to factor the quadratic in the denominator to determine the singularities of the integrand

$$10iz - 3z^{2} + 3 = (i - 3z)(z - 3i)$$
$$= -3(z - i/3)(z - 3i).$$

Then we have

$$\begin{split} \oint_{\partial B_1(0)} \frac{4\mathrm{i}z}{\left(10\mathrm{i}z - 3z^2 + 3\right)^2} \mathrm{d}z &= \oint_{\partial B_1(0)} \frac{4\mathrm{i}z}{\left(-3\left(z - \mathrm{i}/3\right)\left(z - 3\mathrm{i}\right)\right)^2} \mathrm{d}z \\ &= \oint_{\partial B_1(0)} \frac{4\mathrm{i}z}{9(z - \mathrm{i}/3)^2(z - 3\mathrm{i})^2} \mathrm{d}z \\ &= 2\pi\mathrm{i} \underset{z = \mathrm{i}/3}{\mathrm{Res}} \left(\frac{4\mathrm{i}z}{9(z - \mathrm{i}/3)^2(z - 3\mathrm{i})^2}\right). \end{split}$$

Let's compute the residue at the simple pole with this formula

$$\begin{aligned} 2\pi \mathrm{i} & \underset{z=\mathrm{i}a}{\mathrm{Res}} \left(\frac{4\mathrm{i}z}{9(z-\mathrm{i}/3)^2(z-3\mathrm{i})^2} \right) = 2\pi \mathrm{i} & \frac{1}{(2-1)!} \frac{\mathrm{d}^{2-1}}{\mathrm{d}z^{2-1}} \left(\underbrace{(z-\mathrm{i}/3)^2} \frac{4\mathrm{i}z}{9(\underline{z}-\mathrm{i}/3)^2} \right) \bigg|_{\mathrm{i}/3} \\ &= 2\pi \mathrm{i} & \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{4\mathrm{i}z}{9(z-3\mathrm{i})^2} \right) \bigg|_{\mathrm{i}/3} \\ &= 2\pi \mathrm{i} & \left(\frac{4\mathrm{i}9(z-3\mathrm{i})^2 - 4\mathrm{i}z(9 \cdot 2(z-3\mathrm{i}))}{9^2(z-3\mathrm{i})^4} \right) \bigg|_{\mathrm{i}/3} \\ &= 2\pi \mathrm{i} & \left(\frac{4\mathrm{i}(z-3\mathrm{i}) - 8\mathrm{i}z}{9(z-3\mathrm{i})^3} \right) \bigg|_{\mathrm{i}/3} \\ &= 2\pi \mathrm{i} & \left(\frac{4\mathrm{i}z + 12 - 8\mathrm{i}z}{9(z-3\mathrm{i})^3} \right) \bigg|_{\mathrm{i}/3} \\ &= 2\pi \mathrm{i} & \left(\frac{-4\mathrm{i}z + 12}{9(z-3\mathrm{i})^3} \right) \bigg|_{\mathrm{i}/3} \\ &= 2\pi \mathrm{i} & \left(\frac{4}{9} + 12 \right) \\ &= 2\pi \mathrm{i} & \left(\frac{4}{9} + 12 \right) \\ &= 2\pi \mathrm{i} & \left(\frac{4}{9} + 12 \right) \\ &= 2\pi \mathrm{i} & \left(\frac{4}{9} - 18\mathrm{i} \right) \\ &= 2\pi \mathrm{i} & \left(\frac{40}{-8 \cdot 64(-1)\mathrm{i}} \right) \\ &= 2\pi \mathrm{i} & \left(\frac{40}{8 \cdot 32} \right) \\ &= \frac{5\pi}{32}. \end{aligned}$$

4: (a) Show that

$$\operatorname{Res}_{z=k} f(z) \cot(\pi z) = \frac{1}{\pi} f(k),$$

provided f(z) is analytic at $z = k, k \in \mathbb{Z}$.

Solution:

Recall that if $z = z_k$ is a pole of order N of $f(z) \cot \pi z$ then

$$\operatorname{Res}_{z=z_k}\left(f(z)\cot\pi z\right) = \frac{1}{(N-1)!}\lim_{z\to z_k}\frac{\mathrm{d}^{N-1}}{\mathrm{d}z^{N-1}}\left[(z-z_k)^N f(z)\cot\pi z\right].$$

Notice, that the only places where our function $f(z) \cot \pi z$ only blows up in the locations where $\tan(\pi z) = 0$, therefore, $\sin \pi z = 0$. This holds at all the integers z = k. Each $k \in \mathbb{Z}$ will therefore be a simple pole of $f(z) \cot \pi z$. Then let's calculate

$$\operatorname{Res}_{z=k}(f(z)\cot \pi z) = \frac{1}{(1-1)!} \lim_{z \to k} \frac{\mathrm{d}^{1-1}}{\mathrm{d}z^{1-1}} \left[(z-k)^1 f(z)\cot \pi z \right]$$

$$= \lim_{z \to k} \left[(z-k)f(z)\cot \pi z \right]$$

$$= \lim_{z \to k} \left[\frac{(z-k)f(z)}{\tan \pi z} \right]$$

$$= \frac{(k-k)f(k)}{\tan \pi k}$$

$$= \frac{0}{0}.$$

Using L'Hôpital's, we have

$$\lim_{z \to k} \left[\frac{(z-k)f(z)}{\tan \pi z} \right] = \lim_{z \to k} \left[\frac{\frac{d}{dz}(z-k)f(z)}{\frac{d}{dz}\tan \pi z} \right]$$

$$= \lim_{z \to k} \left[\frac{f(z) + (z-k)f'(z)}{\pi \sec^2(\pi z)} \right]$$

$$= \frac{f(k) + (k-k)f'(k)}{\pi \sec^2(\pi k)}$$

$$= \frac{1}{\pi} (f(k) + (k-k)f'(k))\cos^2(\pi k)$$

$$= \frac{1}{\pi} f(k)\cos^2(\pi k)$$

$$= \frac{1}{\pi} f(k).$$

(b) Let Γ_N be a square contour, with corners at $(N+1/2)(\pm 1 \pm i), N \in \mathbb{Z}^+$. Show that

$$|\cot(\pi z)| \le 2$$
,

for z on Γ_N .

Solution:

Consider the following representation of $\cot \pi z$ with some manipulation

$$|\cot \pi z| = \left| \frac{1}{\tan \pi z} \right| = \left| \frac{\cos \pi z}{\sin \pi z} \right|$$

$$= \left| \cos \pi z (\sin \pi z)^{-1} \right|$$

$$= \left| \frac{e^{i\pi z} + e^{-i\pi z}}{2} \left(\frac{e^{i\pi z} - e^{-i\pi z}}{2i} \right)^{-1} \right|$$

$$= \left| \frac{e^{i\pi z} + e^{-i\pi z}}{2} \left(\frac{2i}{e^{i\pi z} - e^{-i\pi z}} \right) \right|$$

$$= \left| \frac{i \left(e^{i\pi z} + e^{-i\pi z} \right)}{2} \right|$$

$$= \left| \frac{i \left(e^{i\pi z} + e^{-i\pi z} \right)}{e^{i\pi z} - e^{-i\pi z}} \right|$$

$$\leq |i| \left| \frac{e^{i\pi z} + e^{-i\pi z}}{e^{i\pi z} - e^{-i\pi z}} \right|$$

$$= \left| \frac{e^{i\pi z} + e^{-i\pi z}}{e^{i\pi z} - e^{-i\pi z}} \right|$$

$$= \left| \frac{e^{i\pi z} + e^{-i\pi z}}{e^{i\pi z} - e^{-i\pi z}} \right|$$

$$= \left| \frac{e^{i\pi z} + e^{-i\pi z}}{e^{i\pi z} - e^{-i\pi z}} \right|$$

$$= \left| \frac{1 + e^{-2\pi i z}}{1 - e^{-2\pi i z}} \right|.$$

We will analyze this to show $|\cot \pi z| \leq 2$ along the contour Γ_N .

TODO: Parameterize the contour (along the top and bottom pieces of the rectangle where the real part is parameterized but the imaginary part is constant) to get something in terms of $\coth \pi z$ and show that that is bounded by 2 since it is a decreasing function. TODO: Do something similar to this for the sides of the contour where the imaginary part is variable but the real part is constant.

$$f(x) = mx + b$$

(c) Suppose f(z) = p(z)/q(z), where p(z) and q(z) are polynomials, so that the degree of q(z) is at least two more than the degree of p(z). Show that

$$\lim_{N \to \infty} \left| \oint_{\Gamma_N} \frac{p(z)}{q(z)} \cot(\pi z) dz \right| = 0$$

Solution:

TODO:

$$f(x) = mx + b$$

(d) Suppose, in addition, that q(z) has no roots at the integers. Show that

$$\sum_{k=-\infty}^{\infty} \frac{p(k)}{q(k)} = -\pi \sum_{j} \operatorname{Res}_{z=z_{j}} f(z) \cot(\pi z)$$

where the z_j 's are the roots of q(z). Notice that the sum on the right-hand side has a finite number of terms.

Solution:

TODO:

$$f(x) = mx + b$$

(e) Use the result of the previous problem to evaluate the following sums:

$$(i) \sum_{k=-\infty}^{\infty} \frac{1}{k^2 + 1}$$

Solution:

TODO:

$$f(x) = mx + b$$

(ii)
$$\sum_{k=-\infty}^{\infty} \frac{1}{k^4 + 1}$$

Solution:

TODO:

$$f(x) = mx + b$$

(iii)
$$\sum_{k=-\infty}^{\infty} \frac{1}{k^2 - 1/4}$$

Solution:

TODO:

$$f(x) = mx + b$$

(iv)
$$\sum_{k=-\infty}^{\infty} \frac{1}{16k^4 - 1}$$

Solution:

TODO:

$$f(x) = mx + b$$