Griven Dataset

Weight(x)	Preice (Y) 35 60 20 50		
_2			
4			
5			
3			
6			
5	55		
7	60		

Foremula of Linearc Regression

co.s. M. Opic

$$Y = MX + C$$

$$C = \overline{Y} - M\overline{X}$$

$$M = \frac{\overline{X} \cdot \overline{Y} - \overline{X}\overline{Y}}{(\overline{X})^2 - \overline{X}^2}$$

$$\overline{X} = Mean X$$

$$\overline{Y} = Mean Y$$

Calculation Table for Linearc Regression

						-X-1	-	-31	
	×	Y	ΧY	x ²	\overline{X}	Ÿ	Χ̈́Υ	(x)	X ²
1	2	35	70	4	x 83 6	/1111	y		
	4	60	240	76		1.50			, 1
1	5	20	100	25	22/7	220/-	1555/7	6 3	
	3	50	150	9	=4.57	330/ 7 = 47.14	= 222.1	4 =20.88	164/7
	6	50	300	36	12 July	Topacj Karal	prof ,	141	723. (3
	5	55	275	25	1	5 + XM	7		
	7	60	420	49	d ()	1 65.0			

Now,
$$M = \frac{\overline{X \cdot Y} - \overline{XY}}{(\overline{X})^2 - \overline{X^2}}$$

$$= \frac{4.57 \times 47.14 - 222.14}{20.88 - 23.43}$$

$$= \frac{215.43 - 222.14}{20.88 - 23.43}$$

$$= \frac{-6.71}{-2.55}$$

Now,
$$C = Y - MX$$

$$= 47.14 - 2.63 \times 4.57$$

$$= 47.14 - 12.02$$
Intercept, $C = 35.12$

Now, predicted price fore vegetable weight 6 15, Y= Mx + C = 2.63 × 6 + 35.12 = 50.9 Now, we find the prodicted value for the given dataset and also calculate the residuals:

weight	weight value		Tresiduals	
2	35	40.38	5.38	
4	60	45.64	14.36	
5	20	48.27	28.27	
3	50	43.01	6.99	
6	50	. 50.90	0.90	
5	55	48.27	6.73	
ア	60	53.53	6.47	

Now, Take another table for calculating MSE & MAE:

actual value (y;)	predicted value (9:)	y.−ŷ;	14:-9:1	(4-9)2
35	40.38	-5.38	5.38	28.94
60 .	45.64	14.36	14.36	206.21
20	48.27	-28.27	28.27	799.19
50	43.01	6.99	6.99	48.86
50	50.90	- 0.9	0.9	0.81
55	48.27	6.73	6.73	45.29
60	53.53	6 - 47	6.47	41.86

Mean Absolute Ercrore (MAE):

Mean Squared Erazor (MSE):

MSE = $\frac{1}{m}\sum_{i=1}^{m} (y_i - \hat{y})$ which along the sale way

28.94+206.21+799.19+48.86+0.81+45.29+41.86

= 167.31 0.3