Министерство науки и высшего образования Российской Федерации МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ОТЧЁТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Изучение плазмы газового разряда в неоне

Работу выполнил,	
студент ФЭФМ группы Б04-107	Луговцов Г.С

Реферат

В работе изучаются состояние и свойства плазмы газового разряда в неоне. Для этого экмпериментально находится вольт-амперная характеристика разряда, одиночного и двойного зондов. В результате были получены такие характеристики плазмы как электронная температура, концентрация электронов, ленгмюровская частота колебаний электронов, дебаевский радиус, среднее число ионов в дебаевской сфере и долю ионизованных атомов для различных значений тока разряда.

Содержание

Вв	едение		4
1	Метод	ика	
	1.1	Описание установки	
	1.2	Одиночный и двойной зонды	6
2	Обсуж	дение результатов	8
	2.1	Исследование ВАХ разряда	8
	2.2	Исследование зондовых характеристик	S
За	ключен	ие	2
Сп	исок и	спользованных источников	?

Введение

Плазмой называют четвёртое агрегатное состояние, при котором вещество (в нашем случае это неон) диссоциирует на газ из свободных ионов, электронов и нейтральных частиц, которые не распались. В связи с этим возникает необходимость учитывать новые свойства вещества для описания с помощью некоторых параметров. Для описания поведения плазмы вводятся такие параметры как плазменная частота, радиус Дебая, среднее число ионов в дебаевской сфере. В этой работе мы постараемся подробно изучить поведение плазмы на примере двойного зонда и разряда.

1 Методика

1.1 Описание установки

Рисунок $1.1 - \Pi$ ринципиальная схема установки. Установка состоит из высоковольтного источника питания (ВИП), стеклянной газоразрядной трубки, источника питания постоянного тока, вольтметров и амперметров.

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и *геттерный* узел — стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (*геттер*). Трубка наполнена изотопом неона 22 Ne при давлении 2 торр. Катод и один из анодов (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 к регулируемому высоковольтному источнику питания (ВИП).

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный делитель напряжения.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изго-

товлены из молибденовой проволоки. Они подключены к отдельному источнику питания через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

1.2 Одиночный и двойной зонды

При внесении в плазму уединённого проводника — зонда — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(1.1)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ – средние скорости электронов и ионов, S – площадь зонда, n – плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения U_f – плавающего потенциала (рис. \ref{puc}).

Рисунок 1.2 — Вольт-амперная характеристика одиночного зонда

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{e\text{H}}$ – электронный ток насыщения, а минимальное $I_{i\text{H}}$ – ионный ток насыщения.

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов.

Реальная зависимость описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
 (1.2)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha \approx \alpha$ при малых α и $A \to 0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
 (1.3)

Рисунок 1.3 — Вольт-амперная характеристика двойного зонда

2 Обсуждение результатов

2.1 Исследование ВАХ разряда

Зажигаем плазму и строим ВАХ разряда в координатах $I_{\rm p}(U_{\rm p})$:

Рисунок 2.1 - BAX разряда

По наклону того участка кривой, который приближен к линии, находим максимальное диффиренциальное сопротивление разряда $R_{\text{диф}}$ (обратный коэффициент прямой):

$$R_{\text{диф}} = \frac{dU}{dI} = 33.0 \pm 1.5 \text{ кОм}$$
 (2.1)

Сравнивная полученную кривую с рисунком 2.2 мы приходим к выводу, что состояние будет называться *поднормальным тлеющим зарядом* (участок ГД). Полное описание есть на стр. 283 практикума [1].

Рисунок 2.2 — Вольт-амперная характеристика разряда в неоне при давлении 1 торр. Пунктиром изображён пример нагрузочной прямой, соответствующей режиму нормального тлеющего разряда.

2.2 Исследование зондовых характеристик

Построим зондовые характеристики для разных токов и отцентруем кривые:

Рисунок 2.3 — ВАХ двойного зонда

Определим асимптоты:

Рисунок 2.4 — Асимптоты ВАХ зондов

И по точкам пересечения асимптот с осью ординат найдём ионный ток насыщения:

$$I_{i\mathrm{H}}^{5\mathrm{B}} = 95.8 \pm 0.5 \; \mathrm{mkA},$$

$$I_{i\mathrm{H}}^{3\mathrm{B}} = 52.5 \pm 0.2 \; \mathrm{mkA},$$

$$I_{i\mathrm{H}}^{1.5\mathrm{B}} = 25.9 \pm 0.1 \; \mathrm{mkA}.$$

Используя полученные данные вычислим электронную температуру T_e , концентрацию электронов n_e , частоту собственных продольных колебаний пространственного заряда в однородной плазме в отсутствие магнитного поля — ленгмюровскую частоту колебаний электронов ω_p , расстояние, на которое распространяется действие электрического поля отдельного заряда в квазинейтральной среде — дебаевский радиус r_D , среднее число ионов в дебаевской сфере N_D и долю ионизованных атомов α для различных значений тока разряда:

I_p , мА	$T_e, 10^4 \text{ K}$	$n_e, 10^{15} \text{ m}^{-3}$	$\omega_p,~10^4~{ m pag/c}$	$r_D, 10^{-5} \text{ cm}$	N_D	$\alpha, 10^{-7}$
5.0	41 ± 4	58 ± 6	144 ± 10	49 ± 3	30	24
3.0	42 ± 4	33 ± 4	107 ± 9	66 ± 5	40	13
1.5	41 ± 6	16 ± 2	75 ± 8	94 ± 10	57	7

Таблица $2.1-\Pi$ араметры плазмы для различных значений тока разряда $I_p.$

Заключение

Исследовав ВАХ разряда, мы пришли к выводу, что плазма находилась в состоянии поднормального тлеющего заряда.

При исследовании зондовых характеристик удалось выяснить, что плазма идеальна (энергия кулоновского взаимодействия много меньше тепловой) и квазинейтральна (суммарный заряд в любом малом по сравнению с размерами системы объёме равен нулю).

Полученные в результате обработки экспериментальных данных характеристики плазмы позволяют достаточно точно описать её поведение не только в рамках эксперимента, но и в других исследовательских задачах, использующих плазму в подобных условиях.

Список использованных источников

1. $M.\Gamma$., Hикулин. Лабораторный практикум по общей физике: учеб. пособие. В трёх томах. Т. 2. Электричество и магнетизм / Никулин М.Г., Попов П.В., Нозик А.А. — Москва: МФТИ, 2019. — 370 с.