Première expérience

Il est compliqué de faire une mesure de la densité ρ directement car nous devrions être capable de compter le nombre de véhicule qui se trouve sur un tronçon de longue distance à un instant t, ce qu'il se passe à un endroit x appartenant au tronçon et peut être trop loin pour être vu. Nous pouvons cependant mesurer le flux f à un endroit x et supposé qu'il est a peu près constant sur une partie du tronçon (x-dx,x+dx) que nous appelerons (E-S), cela correspond un un système ouvert un mécanique des fluides sur lequel nous pouvons appliquer le théorème de Bernoulli. C'est à dire que le flux entrant est égal au flux sortant et ce flux est le même sur une petite partie du tronçon (E-S).

$$A \xrightarrow{\qquad \qquad \downarrow \qquad \downarrow \qquad } B$$

Nous pouvons aussi mesurer la vitesse des véhicules et en déduire la moyenne v.

Nous pouvons donc récupérer la densité ρ grâce à la formule $f = \rho v \Leftrightarrow \rho = \frac{f}{r}$

Nous pouvons bien sur mesurer le flux ρ en comptant le nombre de véhicule $\stackrel{v}{N}$ qui passe sur une durée T qui doit être suffisamment longue pour une mesure précise mais pas trop longue car la densité ρ dépend du temps.

$$\begin{cases} f = \rho v \\ f = \frac{N}{T} \end{cases} \Rightarrow \rho = \frac{N}{v.T}$$

Après un ensemble de mesures, nous pourrons nous servir des couples de (ρ, v) pour déterminer la droite passant au plus proche de chaque point en utilisant par exemple la méthode des moindres carrés. Nous pourrons donc déterminer ρ_{max} et v_{max} grâce à :

$$\begin{cases} v(0) &= v_{max} \\ v(\rho_{max}) &= 0 \end{cases}$$

Nous pourrons aussi donné la courbe approchée de $f(\rho)$ qui vaut :

$$f(\rho) = \frac{v_{max}}{\rho_{max}} (\rho_{max} - \rho) \rho$$

$$\Leftrightarrow f(\rho) = v_{max} \cdot \rho - \frac{v_{max}}{\rho_{max}} \rho^2$$

On aura donc un flux maximal f_{max} atteint en ρ_c en $\rho_c = \frac{\rho_{max}}{2}$.

$$f(\rho_c) = f(\frac{\rho_{max}}{2}) = f_{max}$$

De cette expérience, nous pourrons observé dans un premier temps si le modèle LWR suit bien l'expérience mené, et ensuite un nuage de point correspondant à une fonction de la densité ρ en fonction du temps $t:\rho(t)$ sur le tronçon (E-S) et ansi voir la forme de la fonction.