TẬP HỢP VÀ ÁNH XẠ

- Tập hợp
- Ánh xạ

TẬP HỢP

- Các khái niệm và ký hiệu
- Các phép toán trên tập hợp
- Tập các tập con của một tập hợp
- Tính chất các phép toán trên tập hợp

- Tập hợp là một khái niệm toán học cơ bản không được định nghĩa
- Có thể mô tả tập hợp, chẳng hạn, tập các học sinh trong
 lớp CSMT2011, tập các số nguyên tố vv..
- Một tập hợp không có phần tử nào gọi là tập rỗng, ký hiệu Ø

- Biểu diễn tập hợp
 - Liệt kê: $A = \{a_1, a_2, ..., a_n\}$
 - Theo tính chất của các phần tử: $A = \{x \in \Omega | p(x)\}$
 - Ví dụ $A = \{x \in R \mid 2x^2 + 3x 5 = 0\}$

- Cho A, B là hai tập hợp, nếu ∀x ∈ A ⇒ x ∈ B thì A là tập con của B, ký hiệu A ⊂ B
- Nếu A⊂ B và B⊂ A thì tập A bằng tập B, ký hiệu A = B
- Số phần tử của tập hợp A được gọi là bản số của nó (cardinality), ký hiệu là |A|

Ví dụ
$$A = \{a_1, a_2, ..., a_n\}$$
, thì $|A| = n$

Định Lý Cho ba tập hợp A, B và C, khi đó ta có:

- Nếu A B và B C thì A C
- A = B nếu và chỉ nếu A B và B A

Chứng minh

- $\forall x \in A$, do $A \subset B$ nên $x \in B$, lại do $B \subset C$ nên $x \in C$. Vì vậy $A \subset C$
- Vì A = B nên mọi phần tử trong A cũng là phần tử trong B và ngược lại nên A ⊂ B và B ⊂ A. Mặt khác nếu A ⊂ B và B ⊂ A thì mọi phần tử thuộc A cũng thuộc B và ngược lại nên A = B

CÁC PHÉP TOÁN TRÊN TẬP HỢP

Cho tập Ω (gọi là tập vũ trụ) và A, B các tập con của Ω

- Hợp của hai tập: $A \cup B = \{x \in \Omega \mid x \in A \text{ hoặc } x \in B\}$
- Giao của hai tập: A∩B= {x∈Ω |x ∈A và x ∈B}
- Hiệu của hai tập: A B= {x∈Ω |x ∈A và x ∉B}

CÁC PHÉP TOÁN TRÊN TẬP HỢP

- Phần bù $\overline{A} = \{x \in \Omega \mid x \notin A\}$
- Tích Descartes A₁× A₂×... ×A_n = {(a₁, a₂, ..., a_n)|a_i ∈A_i,
 i=1,..., n}

TẬP CÁC TẬP CON CỦA MỘT TẬP HỢP

- Cho tập X, tập ℘(X) = {A | A ⊂X } gọi là tập các tập con của tập X
 - Tập các tập con còn được ký hiệu ℘(X) = 2^X
 - Ví dụ X ={ a_1 , a_2 , a_3 }, thì $\wp(X) = {\emptyset, {a_1}, {a_2}, {a_3}, {a_1}, {a_2}, {a_2}, {a_3}, {a_1}, {a_2}, {a_3}}$

TÍNH CHẤT CÁC PHÉP TOÁN

Cho tập Ω và A, B các tập con của Ω

- Các phép toán ∪, ∩ trên tập hợp có tính giao hoán, kết hợp và phân bố
- Luật De Morgan: $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A \cup B}$
- Tính chất của phần bù: $A \cup \overline{A} = \Omega$

$$A \cap A = \emptyset$$

ÁNH XẠ

- Các khái niệm
- Ánh xạ ngược
- Ánh xạ hợp
- Ánh xạ đồng nhất
- Các tính chất

 Một ánh xạ f từ tập A vào tập B là phép gán tương ứng mỗi phần tử x của A với một phần tử duy nhất y của B, ký hiệu là f(x), gọi là ảnh của x qua f

Ví dụ 1 Cho A = {1, 2}, B = {a, b, c}, tương ứng $1 \mapsto c$ $2 \mapsto a$

xác định một ánh xạ f từ A vào B

Ví dụ 2 Gọi R là tập hợp số thực và Z là tập hợp số nguyên, với mỗi số thực x ký hiệu □x□là số nguyên lớn nhất nhỏ hơn hoặc bằng x, thì tương ứng

$$\mathsf{X} \mapsto \mathsf{D} \mathsf{X} \mathsf{D}$$

xác định một ánh xạ f: R Z (nghĩa là y=f(x)= x

Hai ánh xạ f và g từ A vào B được gọi là bằng nhau nếu

$$\forall x \in A, f(x) = g(x)$$

Nếu E là một tập con của A thì ảnh của E qua f là tập

$$f(E) = \{ y \in B \mid \exists x \in E, y = f(x) \}$$

Nghĩa là
$$f(E) = \{f(x) | x \in E\}$$

- Nếu F là tập con của B thì ảnh ngược (tạo ảnh) của F là tập f⁻¹(F) = {x ∈ A |f(x) ∈ F}
- Nếu $y \in B$, $f^{-1}(\{y\}) = f^{-1}(y) = \{x \in A \mid f(x) = y\}$

- Giả sử f: A → B là ánh xạ từ A vào B, khi đó
 - f là toàn ánh nếu $f(A) = B (\forall y \in B, \exists x \in A, f(x) = y)$
 - f là đơn ánh nếu hai phần tử khác nhau bất kỳ của A có ảnh khác nhau

$$\forall x, x' \in A, x \neq x' \Rightarrow f(x) \neq f(x')$$

• f là song ánh nếu đồng thời là đơn ánh và toàn ánh

Cho A =
$$\{a_1, a_2\}$$
, B= $\{b_1, b_2, b_3\}$, C= $\{c_1, c_2, c_3\}$

- f: A \rightarrow B; f(a₁)= b₁, f(a₂)= b₃ là một đơn ánh
- g: C \rightarrow A; g(c₁)= a₁, g(c₂)= a₁, g(c₃)= a₂ là một toàn ánh
- h: B \rightarrow C; h(b₁)= c₂, h(b₂)= c₁, h(b₃)= c₃ là một song ánh
- Tìm một ánh xạ không đơn ánh, không toàn ánh?

ÁNH XẠ NGƯỢC

Cho f: A B là một song ánh từ A vào B, tương ứng f⁻¹:
 B A sao cho với mỗi y L B ứng với x L A mà f(x) = y,
 được gọi là ánh xạ ngược của f

 $F^1(y) = x$ khi và chỉ khi f(x) = y

ÁNH XẠ NGƯỢC

• Từ định nghĩa suy ra $\forall y \in B$, $f(f^{-1}(y)) = y$ và $\forall x \in A$, $f^{-1}(f(x)) = x$

ÁNH XẠ NGƯỢC

• Cho f: R \rightarrow R, x \mapsto x³ +1 là một song ánh Tìm ánh xạ ngược f⁻¹: R \rightarrow R

$$y \mapsto f^{-1}(y)$$

Gọi x là ảnh của y qua f-1 thì

$$f^{-1}(y) = x (*)$$

Theo định nghĩa ta có f(x) = y, hay $x^3 + 1 = y \Leftrightarrow x = \sqrt[3]{y - 1}$, thay vào (*) ta có f⁻¹(y) = $\sqrt[3]{y - 1}$

ÁNH XẠ HỢP

• Cho hai ánh xạ f: A \rightarrow B và g: B \rightarrow C, ánh xạ hợp (tích) của hai ánh xạ f và g là ánh xạ h: A \rightarrow C xác định bởi

h:
$$A \to C$$

 $x \mapsto h(x) = g(f(x))$
Ta viết $h = g^{\circ}f : A \to B \to C$
 $x \mapsto f(x) \mapsto g(f(x)) = h(x)$

ÁNH XẠ HỢP

Ánh xạ hợp h = g f : A B C của hai ánh xạ f: A B
 và g: B C

ÁNH XẠ ĐỒNG NHẤT

Cho X là tập bất kỳ, ánh xạ

$$id_X: X \to X$$

 $x \mapsto x$

 $\forall x \in A$, được gọi là ánh xạ đồng nhất trên X

CÁC TÍNH CHẤT

lưu ý: nói chung là $f^{\circ}g \neq g^{\circ}f$ (không giao hoán)

CÁC TÍNH CHẤT

Cho f: A B, g: B C là các song ánh f f⁻¹ = id_B và f⁻¹ f = id_A (g f)⁻¹ = f⁻¹ g⁻¹ (xem như bài tập).
Chứng minh: rõ rang f f⁻¹ là ánh xạ từ B vào B và ∀y L B, f f⁻¹(y) = f(f⁻¹(y)) = y
Vậy: f f⁻¹ = id_B

CÁC TÍNH CHẤT

Gọi f: A \rightarrow B, E_1 , $E_2 \subset$ A và F_1 , $F_2 \subset$ B ta có

- $f(E_1 \cup E_2) = f(E_1) \cup f(E_2)$
- $f(E_1 \cap E_2) \subset f(E_1) \cap f(E_2)$
- $f^{-1}(F_1 \cup F_2) = f^{-1}(F_1) \cup f^{-1}(F_2)$
- $f^{-1}(F_1 \cap F_2) = f^{-1}(F_1) \cap f^{-1}(F_2)$

Chứng minh: Xem như bài tập

BÀI TẬP VỀ NHÀ

- Đọc chương 2 (sách Nguyễn Hòa, Nguyễn Nhựt Đông)
- Làm các bài tập chương 2 đã cho theo nhóm và cá nhân