

IoT for the climate change

Charalampos Orfanidis (chaorf@dtu.dk)

02 January 2024 DTU Compute

Francesco Tonolini and Fadel Adib. 2018. *Networking across boundaries: enabling wireless communication through the water-air interface.* In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication (SIGCOMM '18).

02 January 2024 DTU Compute 2

Direct underwater-air communication is infeasible

Wireless signals work well only in a single medium

Why we do not use acoustic signals

Why we do not use radio signals

Radio signals
Die in the water

Approach #1: Relay Nodes

Approach #1: Relay Nodes

Approach #2:Surfacing

Translational Acoustic RF Communication (TARF)

- First technology that enables wireless communication water-air interface
- Theoretically achieves the best of both RF and acoustic signals in their respective media
- Deals with practical challenges of communicating across water-air interface including natural surface waves
- Implemented and tested in practical environments

Application scenarios

Submarine - Airplane Communication

Finding missing airplanes

Ocean exploration

Key idea

Radar

Measure Surface
Vibration

Can we sense the surface vibration caused by the transmitted the transmitted underwater signal?

Recording the surface vibration

Experiment: Transmitting acoustic signal at 120 and 180 Hz

How can we sense microscale vibration

Problem: measuring micrometers vibration requires 100s of THz of bandwidth → Impractical and costly

Acoustic

Underwater speaker

Solution: Measure changes in displacement using the angle of the millimeter-wave radar

Natural surface waves mask the signal

On calm days ocean surface ripples (capillary waves) have 2cm peak-to-peak amplitude

1000 larger than surface vibration cause by the acoustic signal

Natural surface waves can be treated as structural interference and filtered out

Natural occurring waves (i.e. ocean waves) are relatively slow

Acoustic signal are transmitted at higher frequencies

1 – 2 Hz

Filtering alone does not work!

Dealing with waves

$$angle = 360 \times \frac{displacement}{wavelength}$$
 $mod360$

By treating natural surface waves as structured interference, they are able to track and eliminate their impact on our signal.

How we modulate?

Implementation

Evaluation

Water tank

Pool setup

Throughput

Experiment: Vary the power and depth of the underwater transmission

SNR Vs Depth

Dealing with waves

Experiment: Generate waves of peak-to-peak amplitude

Conclusions

- TARF (Translational Acoustic-RF) Communication
 - The first communication modality that enables wireless transmissions through the water-air interface
 - A prototype system that demonstrates uplink communication and deals with practical challenges
- Transform the water surface from and obstacle to a communication medium
 - Paves way for many applications like submarine-airplane communication and ocean exploration

Open research questions

Downlink communication?

Reza Ghaffarivardavagh, Sayed Saad Afzal, Osvy Rodriguez, and Fadel Adib. 2020. *Ultra-Wideband Underwater Backscatter via Piezoelectric Metamaterials*. In Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (SIGCOMM '20).

Significant interest in Ocean IoT

"More than 95% of ocean remains unobserved and unexplored."

- NOAA, 2018

Underwater communication

Underwater backscatter

- Sufficient throughput (~10-50 kbps)
- Long range (~50 100 m)
- High power consumption
- Costly to scale

- Limited throughput (2-3 kbps)
- Short range (5-10 m)
- Ultra-low power consumption
- Very cost-efficient

Ultra-Wideband Underwater Backscatter via Piezoelectric Metamaterials (U²B)

- Enables scalable, ultra-low-power and low-cost ocean IoT
- Introduces a novel metamaterial design for underwater backscatter
 - Higher throughput
 - Longer range
 - Low-power and low-cost
- First demonstration of underwater backscatter in-the-wild

Problem: Underwater backscatter exploits resonant materials which limits their throughput

Problem: Underwater backscatter exploits resonant materials which limits their throughput

Resonance -> Narrow bandwidth -> Limited throughput This approach is costly, bulky and adds unwanted directionality

How can we overcome the resonance problem while maintaining low-cost, low-power backscatter?

Introduce a novel metamaterial design that enables ultrawideband backscatter.

Key idea: create coupling only between two piezos to synthesize many resonances

Ultra-Wideband Underwater Backscatter

Evaluation

400 experimental trials at different ranges, throughputs and number of nodes

Throughput: 20kbps (↑ by 5x)

Range: 62m (↑ by 6x)

Concurrent nodes: 10 (↑ by 5x)

Code + Tutorials

https://github.com/signalkinetics/Underwater-Backscatter

Zhao, Y., Afzal, S. S., Akbar, W., Rodriguez, O., Mo, F., Boyle, D., ... Haddadi, H. (2022). *Towards battery-free machine learning and inference in underwater environments.* 29–34. Presented at the Proceedings of the 23rd Annual International Workshop on Mobile Computing Systems and Applications, Tempe, Arizona.

Existing approaches for underwater sensing are not scalable

Vessels with subsea sensor

Expensive

Underwater robots

X Low spatial-temporal accuracy

Floats Ccean surface only

Vision: Scalable Underwater IoT for Sensing the Ocean

Bio-acoustics application to detect animal sounds

Underwater drone

Memory constrained

Compute constrained

The sensor (with a standard low-power MSP430 MCU) can only store less than 10s of audio if it stores the entire raw signal!

How to enable long-term sensing within the memory and compute constraints of ultra-low power nodes?

Underwater sensor

- How can we determine which sounds need to be stored and which ones can be discarded?
- Can we use these sounds to identify animals?
- Can we develop machine learning modes that adapt different underwater environments?

Underwater battery-free inference

Underwater battery-free inference system architecture

On-board processing: Differentiating noise from animal sounds

On-board processing: Differentiating noise from animal sounds

On-board processing: Differentiating noise from animal sounds

On-board processing: classify different marine animals

State-of-the art machine learning models require a lot of memory (~2MB), which cannot fit on a memory constrained device (256~kB)

Enabling inference on memory-constrained underwater environments

Resampling the input and trimming the CNN models reduced the memory consumption by ~200x so that the CNN model fits the memory

Original signal

Resampled signal

Memory: ~272kB

Memory: ~272kB

Storing the inference result and discarding the resampled signal gives us further improvement in memory by a factor of 1000x

Memory: ~60kB

Underwater battery-free inference system architecture

Underwater battery-free inference system architecture

Implementation

Potted transducer

MSP430 launchpad

Evaluation

- The implemented prototype consumes ultra-low-power of 3.13mW
- Resampling and trimming the CNN can reduce the memory consumption by 200x
- Performing inference gives us a further 1000x improvement in memory consumption

- 1. Adapting to different environments
- 2. Enabling underwater inference for other applications
- 3. Battery-free distributed ML training

Arora, N., Iyer, V., Oh, H., Abowd, G. D., & Hester, J. D. (2023). *Circularity in Energy Harvesting Computational 'Things*'. 931–933. Presented at the Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston, Massachusetts.

Viewpoint:

Researchers has focused a lot on low-power battery-free operation of IoT but that is not enough for environmental sustainability.

Explosion of IoT devices and global E-waste

50 billion devices in 2021

52 million tonnes E-waste in 2021

Viewpoint:

Researchers has focused a lot on low-power battery-free operation of IoT but that is not enough for environmental sustainability.

There is a need to include circularity as a system design parameter.

How do you develop computational "things" with a fully circular life cycle?

Rethinking the computing stack

Rethinking the computing stack

Energy Neutral System

Of the shelf components

Active elements: Silicon, germanium

Heavy metals: Cu, Au

Substrate: Ceramics, epoxy, plastic

Use bio-degradable or re-usable material for functional device design

Transient electronics

Energy Neutral System

Transient Electronics

BUILD MATERIAL DEVICES with:

Plant, animal or artificial Proteins Polymers

Benign metals or conductive organic polymers

Bio-degradable flexible self-powered microphone

Nivedita Arora, Thad Starner, and Gregory D. Abowd. 2020. SATURN: an introduction to the internet of materials. Commun. ACM 63, 12 (December 2020)

Sustainable interaction design

Sustainable Interaction Design

Energy Neutral System

Transient Electronics

Product features that ease assembly/disassembly e.g. Modularity

Interaction that includes behavioral change towards adopting circularity

Power and performance of transient devices is not at par with traditional SI electronics.

Materials and device issues:

Transient Electronics

- 1. How can we build transient electronics that perform equivalent with the state of the art?
- How can tune transiency device lifecycles for
 week, 1 year to 5 years?

Power and performance of transient devices is not in par with traditional SI electronics.

Circuits and systems:

- 1. What types of energy neutral circuits are possible with transient devices?
- 2. How can we do things at programmable system level to overcome them?

Example: Timer made from biodegradable transistor in face-mask

- 1. Biodegradable timer has limited frequency.
- 2. Adapting the FFT window with degradation of timer.

30 November 2023 DTU Compute

68

Power and performance of transient devices is not in par with traditional SI electronics.

Circuits and systems:

- 1. What types of energy neutral circuits are possible with transient devices?
- 2. How can we do things at programmable system level to overcome them?

Example: degradable bio-inspired sensors interrogated by a drone

Intra-disciplinary research for circular computational things

Sustainable Interaction **Applications** User interaction flow to Design degrade/recycle/reuse Energy **Systems** Neutral Low/unreliable System **Circuits** energy/operation **Transient Devices** Electronics Biodegradable/recyclable **Materials** materials device manufacturing

Come and join us to do research!