EJERCICIO RESUELTO DE SISTEMAS DE ECUACIONES EQUIVALENTES

Resuelto por la Profesora Mariela Glassman

Dados los sistemas S:
$$\begin{cases}
-2x + y - z = 4 \\
6x + z = -1 \\
3y - 2z = 11
\end{cases}$$
 y S':
$$\begin{cases}
4x + y = 3 \\
2x + 2y - z = 7
\end{cases}$$

- a) Demuestre que S y S' son sistemas equivalentes.
- **b)** ¿Existe alguna solución de S y S' para la cual la suma de sus dos primeras coordenadas valga 0? Si la respuesta es afirmativa indique cual es esa solución.

Resolución

a) Primero, analizamos los rangos de cada sistema:

$$\begin{split} S: &\begin{cases} -2x + y - z = 4 \\ 6x + z = -1 \end{cases} \rightarrow \\ 3y - 2z = 11 \\ \begin{pmatrix} -2 & 1 & -1 & | & 4 \\ 6 & 0 & 1 & | & -1 \\ 0 & 3 & -2 & | & 11 \end{pmatrix} \xrightarrow{f_2 + 3f_1 \rightarrow f_2} \begin{pmatrix} -2 & 1 & -1 & | & 4 \\ 0 & 3 & -2 & | & 11 \end{pmatrix} \xrightarrow{f_3 - f_2 \rightarrow f_3} \begin{pmatrix} -2 & 1 & -1 & | & 4 \\ 0 & 3 & -2 & | & 11 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow rango(S) = 2 \\ S': &\begin{cases} 4x + y = 3 \\ 2x + 2y - z = 7 \end{cases} \xrightarrow{\begin{pmatrix} 4 & 1 & 0 & | & 3 \\ 2 & 2 & -1 & | & 7 \end{pmatrix}} \xrightarrow{f_1 \leftrightarrow f_2} \begin{pmatrix} 2 & 2 & -1 & | & 7 \\ 4 & 1 & 0 & | & 3 \end{pmatrix} \xrightarrow{f_2 - 2f_1 \rightarrow f_2} \begin{pmatrix} 2 & 2 & -1 & | & 7 \\ 0 & -3 & 2 & | & -11 \end{pmatrix} \rightarrow rango(S') = 2 \end{split}$$

Como tienen el mismo rango, ahora verificamos si son equivalentes (usando las matrices ampliadas que nos quedaron, primero ubico las ecuaciones de S y luego las de S'):

$$\begin{pmatrix} -2 & 1 & -1 & | & 4 \\ 0 & 3 & -2 & | & 11 \\ 2 & 2 & -1 & | & 7 \\ 0 & -3 & 2 & | & -11 \end{pmatrix} \xrightarrow{f_3 + f_1 \to f_3} \begin{pmatrix} -2 & 1 & -1 & | & 4 \\ 0 & 3 & -2 & | & 11 \\ 0 & 3 & -2 & | & 11 \\ 0 & -3 & 2 & | & -11 \end{pmatrix} \xrightarrow{f_3 - f_2 \to f_3} \begin{pmatrix} -2 & 1 & -1 & | & 4 \\ 0 & 3 & -2 & | & 11 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Como en la triangulación se eliminan todas las ecuaciones de S', los sistemas resultan equivalentes.

b) Encontremos primero la solución del sistema (ambos tiene la misma, al ser equivalentes). La matriz ampliada nos quedo $\begin{pmatrix} 2 & 2 & -1 & 7 \\ 0 & -3 & 2 & -11 \end{pmatrix}$, que corresponde al sistema $\begin{cases} 2x+2y-z=7 \\ -3y+2z=-11 \end{cases}$. De la última ecuación obtenemos que $z=-\frac{11}{2}+\frac{3}{2}y$. Reemplazando esto en la primera ecuación, llegamos a que $x=-\frac{1}{4}y+\frac{3}{4}$. Luego la solución es $\left\{ \left(-\frac{1}{4}y+\frac{3}{4};y;-\frac{11}{2}+\frac{3}{2}y\right),y\in R\right\}$.

Veamos si alguna de esas infinitas soluciones cumple con que la suma de sus dos primeras coordenadas vale 0: $\left(-\frac{1}{4}y + \frac{3}{4}\right) + y = 0 \rightarrow y = -1$. Por lo tanto la solución que cumple lo pedido es (1; -1; -7).