MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ KONKURSU CHEMICZNEGO

ETAP II (REJONOWY)

Zadania zamknięte: 1 pkt poprawnie zaznaczona odpowiedź;

0 pkt błędnie zaznaczona odpowiedź.

Zad.	1	2	3	4	5	6	7	8	9	10
Odp.	C	C	C	C	A	D	A	C	В	D

Zadania otwarte

Zadanie 11. (2 pkt)

Nr	Zmiana warunków reakcji poprzez	Wpływ zmiany na szybkość reakcji
1.	użycie mniej rozdrobnionej miedzi	zmniejsza się
2.	obniżenie temperatury prowadzenia przemiany o 10° C przez zanurzenie naczynia do zlewki z mieszaniną wody i lodu	zmniejsza się
3.	rozcieńczenie kwasu azotowego(V)	zmniejsza się
4.	podwyższenie temperatury prowadzenia przemiany o 10° C przez ogrzewanie naczynia palnikiem gazowym	zwiększa się

Za poprawne podanie czterech odpowiedzi -2 pkt.

Za poprawne podanie trzech odpowiedzi -1 pkt.

Za poprawne podanie dwóch odpowiedzi -0 pkt. Za poprawne podanie jednej odpowiedzi -0 pkt.

Zadanie 12. (2 pkt)

a) Równanie reakcji:

$$Hg_2^{2+} + 2I^- \rightarrow Hg_2I_2 \left(\downarrow \right)$$

Za poprawne podanie równania reakcji – 1 pkt.

Za błędne podanie równania reakcji -0 pkt.

b) Trwalsza odmiana jodku rtęci(I) ma barwę **pomarańczową**.

Za poprawne podanie barwy związku -1 pkt.

Niepoprawnie podana barwa związku lub brak odpowiedzi – 0 pkt.

Zadanie 13. (1 pkt)

Nazwa pierwiastka: kobalt

- 1 pkt. Za poprawne podanie nazwy pierwiastka

Podanie symbolu pierwiastka (Co) -0 pkt.

Niepoprawne podanie nazwy pierwiastka lub brak odpowiedzi -0 pkt.

Zadanie 14. (1 pkt)

$K^2L^8M^{15}N^2$

Za poprawne podanie powłokowej konfiguracji elektronowej

-1 pkt.

Podanie podpowłokowej lub skróconej(walencyjnej) konfiguracji elektronowej -0 pkt. Niepoprawne podanie konfiguracji elektronowej pierwiastka lub brak odpowiedzi

-0 pkt.

Zadanie 15 (1 pkt)

Nie ma wpływu na wydajność reakcji.

Za poprawne dokończenie zdania -1 pkt.

Niepoprawne dokończenie zdania lub brak odpowiedzi -0 pkt.

Zadanie 16 (2 pkt)

Cząsteczki substancji A przemieściły	1.były polarne	stąd	3.silnie oddziaływały z fazą stałą	i	5.duże powinowactwo do rozpuszczalnika
się na dużą odległość ponieważ	2.byly niepolarne	wynika, że	4. słabo oddziaływały z fazą stałą	miały	6.małe powinowactwo do rozpuszczalnika

Za poprawne wskazanie trzech odpowiedzi -2 pkt.

Za poprawne podanie dwóch odpowiedzi − 1 pkt.

Za poprawne podanie jednej odpowiedzi -0 pkt.

Brak poprawnej odpowiedzi -0 pkt.

Zadanie 17 (2 pkt)

a)
$$CuSO_4 \cdot 5H_2O(s) \xrightarrow{Temp.} CuSO_4(s) + 5H_2O(g)$$

Za poprawne podanie równania reakcji – 1 pkt.

<u>UWAGA:</u> W równaniu nie jest wymagane podanie stanów skupienia substancji oraz warunków reakcji (ogrzewanie)

Za niepoprawne podanie równania reakcji lub brak odpowiedzi

-0 pkt.

<i>b)</i>	I.	Zmiana barwy substancji z niebieskiej na białą
	II.	Na ściankach probówki skrapla się bezbarwna ciecz (woda)

Za poprawne podanie dwóch obserwacji – 1 pkt.

Za poprawne podanie jednej obserwacji -0 pkt. Brak odpowiedzi -0 pkt.

Zadanie 18 (2 pkt)

Przykładowe rozwiązanie:

1. Masa CuSO₄ w hydracie

$$X = 12.8 g$$

2. Stężenie procentowe

$$C_{\rm p} = \frac{12.8g}{20g + 100 \, g} * 100\% = 10.67\% = 11\%$$

Za podanie prawidłowego wyniku wraz z jednostką i poprawną metodę – 2 pkt.

Za błąd rachunkowy, nieprawidłowe podanie wyniku (np. 10,67%) i poprawną metodę – 1 pkt.

Za prawidłowy wynik, ale nieprawidłową metodę obliczeniową -0 pkt.

Za niepoprawny wynik i niepoprawną metodę obliczeniową -0 pkt.

Brak rozwiązania lub obliczeń prowadzących do prawidłowego wyniku – 0 pkt.

Zadanie 19 (2 pkt)

a) Równanie reakcji utlenienia: $Au^0 \rightarrow Au^{3+} + 3e^-$ Równanie reakcji redukcji: $e^- + 2H^+ + NO_3^- \rightarrow NO_2 + H_2O$

Należy uznać za poprawny zapis: $N^{+V/V lub +5} \rightarrow N^{+IV/IV lub +4} - e^{-}$

<u>UWAGA</u>: Nie należy uznać zapisu $N^{5+} \rightarrow N^{4+} - e^-$ za poprawny!

Za podanie prawidłowej reakcji utlenienia i redukcji – 1 pkt.

Za podanie jednego, prawidłowego równania -0 pkt. Brak równania reakcji utlenienia i redukcji -0 pkt.

b)
$$Au + 6H^{+} + 3NO_{3}^{-} \rightarrow Au^{3+} + 3NO_{2} + 3H_{2}O$$

Za prawidłowe podanie równania reakcji w formie jonowej skróconej – 1 pkt.

Za podanie równania reakcji w formie cząsteczkowej -0 pkt. Brak równania reakcji lub brak odpowiedzi -0 pkt.

Zadanie 20 (2 pkt)

4CH₄ · 23H₂O

Przykładowe rozwiązanie:

- 1. Wzór ogólny klatratu: mCH₄ · nH₂O
- 2. Masy molowe:

masa molowa $CH_4 = 16 \text{ g/mol}$ masa molowa $H_2O = 18 \text{ g/mol}$

3. Stosunek molowy m:n

$$\frac{m \times 16}{n \times 18} = \frac{13,39}{86.61}$$
 m: n = 1:5,75 = 4:23

4. Wzór klatratu: 4CH₄ · 23H₂O

Za podanie prawidłowego wyniku i poprawną metodę -2 pkt.

Za błąd rachunkowy, nieprawidłowe podanie wyniku, ale (i) poprawną metodę — 1 pkt.

Za prawidłowy wynik, ale nieprawidłową metodę obliczeniową — 0 pkt. Za niepoprawny wynik i niepoprawną metodę obliczeniową — 0 pkt. Brak rozwiązania lub obliczeń prowadzących do prawidłowego wyniku — 0 pkt.

Zadanie 21. (2 pkt)

Decyzją WKK zadanie 21 zostało uchylone, a wszyscy zdający uzyskali maksymalną liczbę punktów(niezależnie od udzielonej odpowiedzi)

Zadanie 22. (2 pkt)

UWAGA:

Nie wymagane jest podanie wzoru półstrukturalnego(grupowego) uwzględniającego geometrię cząsteczki!

Wzór półstrukturalny	CH ₃ CI CH ₂ CH ₃ CH ₃	CH ₂ CH ₂ CH ₃ CH CH ₃ CH CH ₃ CH
Nazwa systematyczna	2-chloro-2,4,4-trimetylopentan	3-etylo-2-metylopentan

Za prawidłowe podanie wzoru półstrukturalnego i prawidłową nazwę związku

Za nieprawidłowy wzór półstrukturalny związku i prawidłową nazwę związku

lub

Za prawidłowy wzór półstrukturalny związku i nieprawidłową nazwę związku

Za nieprawidłowy wzór półstrukturalny związku i nieprawidłową nazwę związku

Za brak wzoru półstrukturalnego i brak nazwy

— 0 pkt.

— 0 pkt.

Zadanie 23. (1 pkt)

$$C_5H_{12} + 8 O_2 \rightarrow 5 CO_2 + 6 H_2O$$

Zadanie 24. (2 pkt)

Schemat doświadczenia:

Za poprawny schemat doświadczenia obydwu etapów(wraz z warunkami przebiegu reakcji) – 1pkt.

UWAGA:

Uczeń wskazuje dowolną mocną zasadę lub tlenek zasadowy oraz dowolny mocny kwas!

Za nieprawidłowy schemat doświadczenia (np. brak ogrzewania)

-0 pkt.

Równania przebiegających reakcji(nie wymagane jest uwzględnienie ogrzewania):

Etap I:

$$\begin{aligned} &\text{SiO}_2 + \text{Na}_2 \text{O} \xrightarrow{\text{T}} \text{Na}_2 \text{SiO}_3 \\ &\text{SiO}_2 + 2 \text{NaOH} \xrightarrow{\text{T}} \text{Na}_2 \text{SiO}_3 + \text{H}_2 \text{O} \end{aligned}$$

UWAGA:

Należy uznać za poprawne równanie reakcji powstawania soli kwasu orto-krzemowego(H₄SiO₄)!

Etap II:

$$Na_2SiO_3 + H_2SO_4 \rightarrow H_2SiO_3(\downarrow) + Na_2SO_4$$

Za prawidłowe podanie obydwu równań reakcji

− 1 pkt.

Za prawidłowe podanie jednego równania reakcji

-0 pkt.

Za nieprawidłowe podanie równań reakcji lub brak odpowiedzi

-0 pkt.

UWAGA:

Równania reakcji muszą być zgodne ze schematem zaproponowanym przez ucznia! Należy uznać za poprawne równanie reakcji powstawania kwasu *orto*-krzemowego(H₄SiO₄)!

Zadanie 25 (2 pkt)

a) 1.
$$2NO + O_2 \rightarrow 2NO_2$$

2.
$$NO_2 \rightarrow NO + O$$

3.
$$O_2 + O \rightarrow O_3$$

Za prawidłowe podanie równań i kolejności zachodzących reakcji

-1 pkt.

Za prawidłowe podanie równań reakcji zachodzących w nieprawidłowej kolejności -0 pkt. Za nieprawidłowe podanie równań reakcji lub brak odpowiedzi

-0 pkt.

b) katalizatorem

Za prawidłowe określenie roli NO Za nieprawidłowe określenie roli NO − 1 pkt.

-0 pkt

Zadanie 26. (2 pkt)

<u>UWAGA:</u> w zależności od przyjętego stosunku substratów (np. 100:200) wynik końcowy może się nieznacznie różnić. Należy sprawdzić czy ostateczna wartość wynika z poprawnych obliczeń i wykorzystania poprawnej metody!

62 % obj.

Obliczenie wykorzystując stosunek objętości gazów(warunki normalne):

	O_2	CO	$2CO_2$
$V_{początkowe}$ [dm^3]	2,24	4,48	0
V _{przereagowało} [dm³]	0,225	0,45	0
$V_{w st. równowagi} [dm^3]$	2,015	4,03	0,45

Obliczenie wykorzystując stosunek molowy gazów(warunki normalne):

	O_2	2 CO	$2CO_2$
n _{początkowe} [mol]	0,1	0,2	-
n _{przereagowało} [mol]	0,01	0,02	=
nw st. równowagi [mol]	0,09	0,18	0,02

1. Liczba moli CO₂

$$22,4 \text{ dm}^3 - 1 \text{ mol}$$

$$0.45 \, dm^3 - x \, mol$$

$$x = 0.02 \text{ mola}$$

- 2. Ilość/objętość pozostałego CO i O₂ patrz tabelka
- 3. Całkowita liczba moli / całkowita objętość (po ustaleniu stanu równowagi)

$$n_{\text{calk}} = 0.09 + 0.18 + 0.02 = 0.29 \text{ moli}$$
 / $V_{\text{calk}} = 2.015 + 4.03 + 0.45 = 6.495 \text{ dm}^3$

4. Zawartość % tlenku węgla(II) w mieszaninie poreakcyjnej:

$$0.18 \text{ mol} - z \%$$
 lub $4.03 \text{ dm}^3 - z \%$ $0.29 \text{ mol} - 100 \%$ $6.495 \text{ dm}^3 - 100 \%$

$$z = 62,07\%$$
 lub $z = 62,05\%$

Za podanie prawidłowego wyniku wraz z jednostką i poprawną metodę – 2 pkt.

Za błąd rachunkowy lub podanie wyniku bez jednostki, ale poprawną metodę — 1 pkt.

Za prawidłowy wynik, ale nieprawidłową metodę obliczeniowa -0 pkt.

Zadanie 27. (2 pkt)

Obserwacja: Wytrąca się / strąca się (biały) osad

<u>UWAGA:</u> Nie wymagany jest kolor strąconego osadu. Jeśli jednak uczeń błędnie opisał barwę wytrąconego osadu to powoduje to utratę punktu!

Równanie reakcji: $\mathbf{Zn^{2+} + 20H^{-} \rightarrow Zn(0H)_{2}}$

Za prawidłowe podanie obserwacji i równania reakcji – 2 pkt.

Za prawidłowe podanie obserwacji i nieprawidłowe równanie reakcji lub jego brak — 1 pkt. Za nieprawidłowe podanie obserwacji i prawidłowe równanie reakcji — 1 pkt. — 1 pkt.

Za nieprawidłowe podanie obserwacji i nieprawidłowe równanie reakcji lub jego brak — 0 pkt. Za brak obserwacji i nieprawidłowe równanie reakcji lub jego brak — 0 pkt.

Maksymalna liczba punktów do uzyskania: 40

Do etapu rejonowego kwalifikujemy uczniów, którzy uzyskali 90% możliwej do uzyskania liczby punktów, to jest 36 punkty.

ZASADY OCENIANIA PRAC KONKURSOWYCH

- 1) Każdy poprawny sposób rozwiązania przez ucznia zadań powinien być uznawany za prawidłowy i uczeń otrzymuje maksymalną liczbę punktów.
- 2) Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym.
- 3) Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej.
- 4) Jeżeli w jakiejkolwiek części uczeń przedstawi więcej niż jedno rozwiązanie i chociaż jedno będzie błędne, nie można uznać tej części rozwiązania za prawidłowe.
- 5) Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- 6) Wykonywanie obliczeń na wielkościach fizycznych powinny odbywać się z zastosowaniem rachunku jednostek.