Modelingwith

Open 07-Models.Rmd

The basics

A low dimensional description of a higher dimensional data set.

Data

What is the model function?

Data

What uncertainty is associated with it?

Data

How "good" is the model?

Data

What are the residuals?

Data

What are the predictions?

Data

	Algorithm	Alg										
hm	Algorithm		Algorithm		Algo							
hm	Algorithm	Algorithm	Algorithm					Algorithm	Algorithm	Algorithm	Algorithm	Alge
hm	Algorithm	Algorithm	Algorithm	Algorithm	Algorithi		Algorithm	Algorithm		Algorithm	Algorithm	Algo
hm	Algorithm	Algorithm	Algorithm	Algorithm				Algorithm	Algorithm	Algorithm	Algorithm	Algo
hm 3	Algorithm	Alge										

(Popular) modeling functions in R

function	package	fits			
lm()	stats	linear models			
glm()	stats	generalized linear models			
gam()	mgcv	generalized additive models			
glmnet()	glmnet	penalized linear models			
rlm()	MASS	robust linear models			
rpart()	rpart	trees			
randomForest()	randomForest	random forests			
xgboost()	xgboost	gradient boosting machines			

(Popular) modeling functions in R

function	package	fits			
lm()	stats	linear models			
glm()	stats	generalized linear models			
gam()	mgcv	generalized additive models			
glmnet()	glmnet	penalized linear models			
rlm()	MASS	robust linear models			
rpart()	rpart	trees			
randomForest()	randomForest	random forests			
xgboost()	xgboost	gradient boosting machines			

modelr

Tidy functions that make it easier to work with models in R

```
# install.packages("tidyverse")
library(modelr)
wages <- heights %>% filter(income > 0)
```


wages

income <int></int>	eight <dbl></dbl>	weight <int></int>	age <int></int>	marital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>
19000	60	155	53	married	female	13	6.841
35000	70	156	51	married	female	10	49.444
105000	65	195	52	married	male	16	99.393
40000	63	197	54	married	female	14	44.022
75000	66	190	49	married	male	14	59.683
102000	68	200	49	divorced	female	18	98.798
0	74	225	48	married	male	16	82.260
70000	64	160	54	divorced	female	12	50.283
60000	69	162	55	divorced	male	12	89.669
150000	69	194	54	divorced	male	13	95.977

1–10 of 7,006 rows

Previous 1 2 3 4 5 6 ... 100 Next

wages %>%

ggplot(aes(log(income))) + geom_histogram(binwidth = 0.25)

lm()

Fit a linear model to data

formulas

Formula only needs to include the response and predictors

$$y = \alpha + \beta x + \epsilon$$

Your Turn 1

Fit the model below and then examine the output. What does it look like?

mod_e <- lm(log(income) ~ education, data = wages)</pre>


```
mod_e < -lm(log(income) ~ education, data = wages)
mod_e
## Call:
    lm(formula = log(income) \sim education, data = wages)
##
##
                                             1. Not pipe friendly to
                                              have data as second
## Coefficients:
                                              argument:(
## (Intercept) education
        8.5577
##
                      0.1418
                                             2. Output is not tidy, or
class(mod_e)
                                              even a data frame
## "lm"
```

Use "." to pipe input to somewhere other than the first argument

```
mod_e <- wages %>%
  lm(log(income) ~ education, data = .)
```

wages will be passed to here

orom orom

broom

Turns model output into data frames

```
# install.packages("tidyverse")
library(broom)
```


broom

Broom includes three functions which work for most types of models (and can be extended to more):

- 1. tidy() returns model coefficients, stats
- 2. glance() returns model diagnostics
- 3. **augment()** returns predictions, residuals, and other raw values

tidy()

Returns useful model output as a data frame

mod_e %>% tidy()

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	8.5576906	0.073259622	116.81320	0.00000e+00
education	0.1418404	0.005304577	26.73924	8.408952e-148

2 rows

glance

Returns common model diagnostics as a data frame

p.valu	statistic	sigma	adj.r.squared	r.squared
<db< td=""><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td></db<>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
8.408952e-14	714.987	0.9923358	0.119456	0.1196233

1 row | 1–10 of 11 columns

augment()

Returns data frame of model output related to original data points

mod_e %>% augment()

.rownames <chr></chr>	log.income. <dbl></dbl>	education <int></int>	.fitted <dbl></dbl>	.se.fit <dbl></dbl>	.resid <dbl></dbl>	.hat <dbl></dbl>	.sigma <dbl></dbl>	.0
1	9.852194	13	10.401615	0.01400504	-0.549421141	0.0001991827	0.9924012	3.05413
2	10.463103	10	9.976094	0.02335067	0.487009048	0.0005537086	0.9924074	6.67558
3	11.561716	16	10.827137	0.01880219	0.734579123	0.0003590043	0.9923784	9.84333
4	10.596635	14	10.543456	0.01386811	0.053178965	0.0001953068	0.9924299	2.80556
5	11.225243	14	10.543456	0.01386811	0.681787624	0.0001953068	0.9923856	4.61145
6	11.532728	18	11.110817	0.02719979	0.421910848	0.0007513008	0.9924131	6.8008
7	11.156251	12	10.259775	0.01600734	0.896475490	0.0002602083	0.9923532	1.06237
8	11.002100	12	10.259775	0.01600734	0.742324811	0.0002602083	0.9923774	7.28429
9	11.918391	13	10.401615	0.01400504	1.516775174	0.0001991827	0.9922098	2.32766
10	11.652687	16	10.827137	0.01880219	0.825550901	0.0003590043	0.9923648	1.24323

augment()

Returns data frame of model output related to original data points

```
mod_e %>% augment(data = wages)
```

Adds the original wages data set to the output

Your Turn 2

Use a pipe to model **log(income)** against **height**. Then use broom and dplyr functions to extract:

- 1. The coefficient estimates and their related statistics
- 2. The adj.r.squared and p.value for the overall model


```
mod_h <- wages %>% lm(log(income) ~ height, data = .)
mod_h %>%
 tidy()
          term estimate std.error statistic
                                                  p.value
##
## 1 (Intercept) 6.98342583 0.237484827 29.40578 4.129821e-176
        height 0.05197888 0.003521666 14.75974 2.436945e-48
## 2
mod_h %>%
 glance() %>%
 select(adj.r.squared, p.value)
## adj.r.squared p.value
      0.03955779 2.436945e-48
## 1
```

```
mod_h %>%
  tidy() %>% filter(p.value < 0.05)
##
           term estimate std.error statistic
                                                      p.value
## 1 (Intercept) 6.98342583 0.237484827 29.40578 4.129821e-176
         height 0.05197888 0.003521666 14.75974 2.436945e-48
## 2
mod_e %>%
                                          so which determines
                                               income?
  tidy() %>% filter(p.value < 0.05)
##
           term estimate std.error statistic
                                                     p.value
## 1 (Intercept) 8.5576906 0.073259622 116.81320 0.000000e+00
## 2 education 0.1418404 0.005304577 26.73924 8.408952e-148
```

multivariate regression

To fit multiple predictors, add multiple variables to the formula:

log(income) ~ education + height

Your Turn 3

Model log(income) against education and height. Do the coefficients change?


```
mod_eh <- wages %>%
  lm(log(income) \sim education + height, data = .)
mod_eh %>%
  tidy()
           term estimate std.error statistic
##
                                                     p.value
## 1 (Intercept) 5.34837618 0.231320415 23.12107 1.002503e-112
      education 0.13871285 0.005205245 26.64867 7.120134e-147
## 2
         height 0.04830864 0.003309870 14.59533 2.504935e-47
## 3
```


Your Turn 4

Model log(income) against education and height and sex. Can you interpret the coefficients?


```
mod_ehs <- wages %>%
  lm(log(income) \sim education + height + sex, data = .)
                 What does this mean?
                                        Where is sexmale?
mod_ehs %>%
  tidy()
                   est mate std. error statistic p.value
##
           term
## 1 (Intercept) 8.25042 2260 0.334703051 24.649976 4.681336e-127
      education 0.147983063 0.005196676 28.476486 5.164290e-166
## 2
         height 0.006726614 0.004792698 1.403513 1.605229e-01
## 3
## 4 sexfemale -0.461747002 0.038941592 -11.857425 5.022841e-32
```



```
## term estimate std.error statistic p.value
## 1 (Intercept) 8.250422260 0.334703051 24.649976 4.681336e-127
## 2 education 0.147983063 0.005196676 28.476486 5.164290e-166
## 3 height 0.006726614 0.004792698 1.403513 1.605229e-01
## 4 sexfemale -0.461747002 0.038941592 -11.857425 5.022841e-32
```

For factors, R treats the first level as the baseline level, e.g. the mean log(income) for a male is:

log(income) = 8.25 + 0.15 * education + 0 * height

Each additional level gets a coefficient that acts as an *adjustment* between the baseline level and the additional level, e.g. the mean income for a female is:

log(income) = 8.25 + 0.15 * education + 0 * height - 0.46


```
## term estimate std.error statistic p.value
## 1 (Intercept) 8.250422260 0.334703051 24.649976 4.681336e-127
## 2 education 0.147983063 0.005196676 28.476486 5.164290e-166
## 3 height 0.006726614 0.004792698 1.403513 1.605229e-01
## 4 sexfemale -0.461747002 0.038941592 -11.857425 5.022841e-32
```

For factors, R treats the first level as the baseline level, e.g. the mean log(income) for a male is:

log(income) = 8.25 + 0.15 * education + 0 * height

Each additional level gets a coefficient that acts as an *adjustment* between the baseline level and the additional level, e.g. the mean income for a female is:

log(income) = 8.25 + 0.15 * education + 0 * height - 0.46


```
## term estimate std.error statistic p.value
## 1 (Intercept) 8.250422260 0.334703051 24.649976 4.681336e-127
## 2 education 0.147983063 0.005196676 28.476486 5.164290e-166
## 3 height 0.006726614 0.004792698 1.403513 1.605229e-01
## 4 sexfemale -0.461747002 0.038941592 -11.857425 5.022841e-32
```

But what does all of this look like?

model visualization

Your Turn 5

Use a broom function and ggplot2 to make a line graph of height vs .fitted for our heights model, mod_h.

Bonus: Overlay the plot on the original data points.


```
mod_h %>%
  augment(data = wages) %>%
  ggplot(mapping = aes(x = height, y = .fitted)) +
    geom_line()
```



```
mod_h %>%
  augment(data = wages) %>%
  ggplot(mapping = aes(x = height, y = .fitted)) +
    geom_point(mapping = aes(y = log(income)), alpha = 0.1) +
    geom_line(color = "blue")
```


Your Turn 6

Repeat the process to make a line graph of **height** vs .**fitted** colored by **sex** for model **mod_ehs**. Are the results interpretable?

Add + facet_wrap(~education) to the end of your code. What happens?


```
mod_ehs %>%
  augment(data = wages) %>%
  ggplot(mapping = aes(x = height, y = .fitted, color = sex)) +
    geom_line()
```



```
mod_ehs %>%
  augment(data = wages) %>%
  ggplot(mapping = aes(x = height, y = .fitted, color = sex)) +
    geom_line() +
    facet_wrap(~ education)
```


facet_wrap()

Divides plot into subplots based on a grouping variable. "Wraps" subplots into rectangular collection.

visualizing multiple models

modelr

Tidy functions that make it easier to work with models in R

```
# install.packages("tidyverse")
library(modelr)
```


add_predictions()

Uses the values in a data frame to generate a prediction for each case. Overlaps with augment()*

add_predictions(data, model)

Uses this model

To add predictions to these cases

wages %>% add_predictions(mod_h)

•	height <dbl></dbl>	weight <int></int>	age <int></int>	marital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>	pred <dbl></dbl>
	60	155	53	married	female	13	6.841	10.102158
	70	156	51	married	female	10	49.444	10.621947
	65	195	52	married	male	16	99.393	10.362053
	63	197	54	married	female	14	44.022	10.258095
	66	190	49	married	male	14	59.683	10.414032
	68	200	49	divorced	female	18	98.798	10.517989
	64	160	54	divorced	female	12	50.283	10.310074
	69	162	55	divorced	male	12	89.669	10.569968
	69	194	54	divorced	male	13	95.977	10.569968
	64	145	53	married	female	16	67.021	10.310074
1-10	of 5,266	rows 2-9	of 9 c	olumns	Previous 1	2 3 4	5 6	100 Next

spread_predictions()

Adds predictions for multiple models, each in their own column.

spread_predictions(data, ...)

Adds predictions from each of these models

To the cases in this data frame

wages %>%

spread_predictions(mod_h, mod_eh, mod_ehs)

•	narital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>	mod_h <dbl></dbl>	mod_eh <dbl></dbl>	mod_ehs <dbl></dbl>
m	narried	female	13	6.841	10.102158	10.050162	10.116052
n	narried	female	10	49.444	10.621947	10.117110	9.739369
m	narried	male	16	99.393	10.362053	10.707844	11.055381
m	narried	female	14	44.022	10.258095	10.333801	10.284215
m	narried	male	14	59.683	10.414032	10.478727	10.766142
d	livorced	female	18	98.798	10.517989	11.130195	10.909780
d	livorced	female	12	50.283	10.310074	10.104684	9.994975
d	livorced	male	12	89.669	10.569968	10.346227	10.490355
d	livorced	male	13	95.977	10.569968	10.484940	10.638338
m	narried	female	16	67.021	10.310074	10.659535	10.586908

CC BY-SA RStudio

gather_predictions()

Adds predictions for multiple models as a pair of key:value columns (model:pred)

gather_predictions(data, ...)

Adds predictions from each of these models

To the cases in this data frame (duplicating rows as necessary)

wages %>%

gather_predictions(mod_h, mod_eh, mod_ehs)

model <chr></chr>	income <int></int>	height <dbl></dbl>	weight <int></int>	age <int></int>	marital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>	pred <dbl></dbl>
mou_h	19000	60	155	53	married	female	13	6.841	10.102138
mod_h	35000	70	156	51	married	female	10	49.444	10.621947
mod_h	105000	65	195	52	married	male	16	99.393	10.362053
mod_h	40000	63	197	54	married	female	14	44.022	10.258095
mod_h	75000	66	190	49	married	male	14	59.683	10.414032
mod_h	102000	68	200	49	divorced	female	18	98.798	10.517989
mod_h	70000	64	160	54	divorced	female	12	50.283	10.310074
mod_h	60000	69	162	55	divorced	male	12	89.669	10.569968
mod_h	150000	69	194	54	divorced	male	13	95.977	10.569968
mod_h	115000	64	145	53	married	female	16	67.021	10.310074

1–10 of 15,798 rows

Previous 1 2 3 4 5 6 ... 100

Your Turn 7

Use one of **spread_predictions()** or **gather_predictions()** to make a line graph of **height** vs **pred** colored by **model** for each of **mod_h**, **mod_eh**, and **mod_ehs**. Are the results interpretable?

Add + facet_grid(sex ~ education) to the end of your code. What happens?


```
wages %>%
  gather_predictions(mod_h, mod_eh, mod_ehs) %>%
  ggplot(mapping = aes(x = height, y = pred, color = model)) +
    geom_line()
```



```
wages %>%
  gather_predictions(mod_h, mod_eh, mod_ehs) %>%
  ggplot(mapping = aes(x = height, y = pred, color = model)) +
    geom_line() +
    facet_grid(sex ~ education)
```


Residuals

Modelr provides the equivalent functions for residuals


```
wages %>%
add_residuals(mod_e)
```

Modelr provides the equivalent functions for residuals

```
add_predictions() → add_residuals()
spread_predictions() → spread_residuals()
gather_predictions() → gather_residuals()
```


wages %>% add_residuals(mod_h)

income <int></int>	height <dbl></dbl>	weight <int></int>	age <int></int>	marital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>	resid <dbl></dbl>
19000	60	155	53	married	female	13	6.841	-0.2499641042
35000	70	156	51	married	female	10	49.444	-0.1588437767
105000	65	195	52	married	male	16	99.393	1.1996628894
40000	63	197	54	married	female	14	44.022	0.3385397443
75000	66	190	49	married	male	14	59.683	0.8112117773
102000	68	200	49	divorced	female	18	98.798	1.0147387260
70000	64	160	54	divorced	female	12	50.283	0.8461766568
60000	69	162	55	divorced	male	12	89.669	0.4321315995
150000	69	194	54	divorced	male	13	95.977	1.3484223314
115000	64	145	53	married	female	16	67.021	1.3426135431

1–10 of 5,266 rows

Previous 1 2 3 4 5 6 ... 100 Next

```
wages %>%
gather_residuals(mod_e, mod_h, mod_eh, mod_ehs) %>%
ggplot(aes(afqt, resid)) +
   geom_bin2d() +
   geom_smooth() +
   facet_wrap(~model)
```


Recap

Use glance(), tidy(), and augment() to return model values in a data frame.

Use add_predictions() or gather_predictions() or spread_predictions() to visualize predictions.

Use add_residuals() or gather_residuals() or spread_residuals() to visualize residuals.

Modelingwith

