Reporte del Taller 10

Datos del Equipo

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian

CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 2
Core(s) per socket: 2
Socket(s): 1
NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6 Model: 42

Model name: Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz

Stepping: 7

CPU MHz: 888.798 CPU max MHz: 2900,0000 CPU min MHz: 800,0000 BogoMIPS: 4589.65 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 256K L3 cache: 3072K NUMA node0 CPU(s): 0-3

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx lahf_lm epb pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid xsaveopt dtherm ida arat pln pts md_clear flush_l1d

Datos de la Prueba

Número de	Pruebas			Promedio
Hilos	1	2	3	Promedio
1	358.803334	319.048317	291.05842	322.97002367
2	290.729083	289.860089	282.193711	287.59429433
3	279.140233	278.989515	287.832097	281.98728167
4	277.307614	274.400469	279.973158	277.22708033
5	282.951638	299.78427	290.878988	291.20496533
6	294.261831	305.460474	295.985024	298.56910967
7	298.678027	291.114981	295.274122	295.02237667
8	301.484228	297.292262	309.543904	302.77346467

Tiempo de Ejecución 330 320 310 (s) odwei 290 280 300 280 270 260 250 2 3 4 5 6 7 8 1 Número de Hilos

partir de los tiempos y el análisis hecho podemos notar que, a pesar de que se siga incrementando la cantidad de hilos para el procesamiento, el tiempo de ejecución, a partir de cierto punto, se mantiene dentro de un mismo rango, sin tener ningún cambio grande.

A

¿Qué es la Ley de Amdahl?

Formulada por Gene Amdahl, evalúa como mejora el rendimiento de un computador cuando se mejora o se incrementan los recursos de una de sus partes. Esta ley se puede explicar de la siguiente manera:

- El aumento del rendimiento por la adición de una mejora será limitado por la frecuencia con la que se usa dicha mejora.
- Si se agrega una mejora a un sistema al cual ya se lo ha mejorado, la razón de incremento en el rendimiento será menor a la mejora original.
- Finalmente, el algoritmo es el último factor que decide la velocidad de un proceso, no el número de componentes trabajando. Llegará un momento donde el algoritmo no se podrá paralelizar más.

¿Qué otras técnicas de multiprocesamiento existen? Detalle y explique sus ventajas y desventajas.

Multiprocesamiento Simétrico:

Tipo de arquitectura en la que dos o más unidades de procesamiento comparten una única memoria central.

- Ventajas
 - Más eficientes, las tareas son distribuidas de manera balanceada
 - Si un procesador falla, las tareas son repartidas
 - Mayor portabilidad
 - Cualquier procesador puede trabajar en cualquier tarea

- Memoria globalmente compartida
- Comparte recursos y tareas dinámicamente.
- Desventajas
 - El tráfico en el bus de memoria se satura
 - Poco escalable
 - Más difíciles de diseñar

Multiprocesamiento Asimétrico:

Tipo de arquitectura donde hay un procesador maestro en el cual se ejecuta el sistema operativo y el resto de los procesadores "esclavos" ejecutan las tareas.

- Ventajas
 - Incremento en el rendimiento del sistema para múltiples usuarios de red
 - Fácil manejo y pocos problemas de integridad de datos.
 - Soporte a múltiples tarjetas de red
 - Transferencia rápida de información entre los segmentos de red
- Desventajas
 - Al fallar la unica copia del sistema operativo puede causar una falla completa de todo el sistema.
 - Menor portabilidad
 - Perdida de rendimiento
 - Poca confiabilidad

Bibliografía

Angulo, J.M., Gutiérrez J.L., y Angulo I. (1995). Arquitectura de Microprocesadores: Los Pentium a fondo. Madrid: THOMSON PARANINFO, S.A.

Ortega J., Anguita, M., y Prieto, A. (2005). Arquitectura de Computadores. España: Ed. Paraninfo S.A.