Investigating Trophic Dynamics in Lake Okeechobee's Pelagic Zone

Anna Swigris^{1,2} and Corey T. Callaghan¹

¹Department of Wildlife Ecology and Conservation, University of Florida

²South Florida Water Management District

Florida Wildlife Society Conference April 17th, 2025

Lake Okeechobee

- Lake Okeechobee is a large, shallow lake that has experienced major anthropogenically-driven changes over the last century.
- Agriculture

 increased levels of nitrogen and phosphorus
 - Phosphorus-limited system → nitrogen-limited system
 - Internal loading
 - Turbidity and light
- Dike → limited nutrient export

Plankton

- Zooplankton and phytoplankton
- Phytoplankton are photosynthetic, floating organisms that respond quickly to changes in nutrients and light.
 - Base of pelagic trophic web
 - Harmful algal blooms
 - Chlorophyll-a
- Zooplankton are non-photosynthetic organisms that float in the water column
 - Filter feeders
 - Microzooplankton and macrozooplankton

The Project

- Routine Plankton Monitoring = long-term plankton monitoring effort initiated by SFWMD in 1994
- Sampling frequency change: Quarterly → Monthly
- Data Range: January 2023 → December 2024
- Parameters:
 - Phytoplankton (Chl-a)
 - Zooplankton
 - Microzooplankton (including nauplii)
 - Macrozooplankton
 - Water Quality
 - Temperature, TN, TP, TSS, DO, and more
- Sites in four ecological zones
 - Northern (L001)
 - Western (L005)
 - Central (LZ40)
 - Nearshore (POLE3S)

Phytoplankton

• Recall: Chlorophyll-a as proxy for biomass

Average Monthly Phytoplankton Biomass

Microzooplankton

Rotifers & Nauplii

Macrozooplankton

Average Monthly Macrozooplankton Biomass

Microzooplankton

A Spatial Scale

Who Influences Who?

- Confounding Variables → Principal Components Analysis
- Biomass of Zooplankton (BZ): Biomass of Phytoplankton (BP)
 - Low → smaller zooplankton communities, higher trophic state
 - High → larger-bodied zooplankton communities, lower trophic state
- Water Quality Variables
 - Dissolved Inorganic Nitrogen (DIN), Soluble Reactive Phosphorus (OPO₄), Temperature, and Total Suspended Solids (TSS)

Back to the Questions at Hand...

What's Next?

- Mesocosm project to isolate effects of planktivorous fish on the relationship between zooplankton and phytoplankton
- Nutrient component included to quantify which force(s) are most affecting this relationship

Thank You!

- Global Ecology Research Group Lab at the University of Florida
- South Florida Water Management District
- Florida Chapter of The Wildlife Society

School of Natural Resources and Environment

