Unsupervised Learning

Quiz, 5 questions

1 point

1

For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.

- Given many emails, you want to determine if they are Spam or Non-Spam emails.
- Given a set of news articles from many different news websites, find out what are the main topics covered.
- Given historical weather records, predict if tomorrow's weather will be sunny or rainy.
- From the user usage patterns on a website, figure out what different groups of users exist.

1 point

2.

Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a training example $x^{(i)}=\begin{bmatrix}-2\\1\end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?

$$igcup c^{(i)}=2$$

$c^{(i)}$ is not assigned $c^{(i)}$ is not assigned $c^{(i)} = 3$ Quiz, 5 questions $c^{(i)} = 1$				
1				
point 3.				
	ns is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?			
	Test on the cross-validation set.			
	Move the cluster centroids, where the centroids μ_k are updated.			
	The cluster assignment step, where the parameters $c^{\left(i ight)}$ are updated.			
	Randomly initialize the cluster centroids.			
1 point				

4.

Suppose you have an unlabeled dataset $\{x^{(1)},\dots,x^{(m)}\}$. You run K-means with 50 different random					
initinishiper yis edalaga interest clusterings of the					
Quiz, 5 data. W	Quiz, 5 questions data. What is the recommended way for choosing which one of				
these 50 clusterings to use?					
	Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.				
	For each of the clusterings, compute $rac{1}{m}\sum_{i=1}^m x^{(i)}-\mu_{c^{(i)}} ^2$, and pick the one that minimizes this.				
	The answer is ambiguous, and there is no good way of choosing.				
	The only way to do so is if we also have labels $y^{\left(i ight)}$ for our data.				
1 point					
5. Which of the following statements are true? Select all that apply.					
	For some datasets, the "right" or "correct" value of K (the number of clusters) can be ambiguous, and hard even for a human expert looking carefully at the data to decide.				
	The standard way of initializing K-means is setting $\mu_1=\dots=\mu_k$ to be equal to a vector of zeros.				
	Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible.				

If we are worried about K-means getting stuck in bad local optima, one way to ameliorate (reduce) this problem is if we try using multiple random initializations.

T T	• •	T	•	
Unsupe	144 11 C O C	-1	rnı	120
1 1 1 1 1 1 1 1 1 1 1 1	31 V I V P (I	104		1
Olibapt	er vioca	LCU		
1				-

Quiz, 5 questions						
I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code						
Diogo Vasconcelos						
	Submit Quiz					

