Q.5 Attempt any two questions:

Obtain the y parameters for the circuit in figure 12

Figure 12

- Derive expression for the h parameter in terms of Z parameter for a two port 5 network.
- The **ABCD** parameters of the two-port network in Figure 13 are

$$\begin{bmatrix} 4 & 20 \\ 0.1s & 2 \end{bmatrix}$$

The output port is connected to a variable load for maximum power transfer. Find R_L and the maximum power transferred.

Figure 13

- Q.6 i. What do you mean by positive real function? Write any two properties.
 - Check the following polynomial is Hurwitz or not. ii.

$$P(s) = s^5 + s^4 + 8s^3 + 15s + 8$$

Find the Foster first form for the driving point impedance function.

$$Z(s) = \frac{2(s^2+1)(s^2+9)}{s(s^2+4)}$$

Synthesise the impedance function and obtain Cauer II realisation:

$$Z(s) = \frac{s(s^2+3)(s^2+5)}{(s^2+2)(s^2+4)}$$

5

5

2 3

5

5

Total No. of Questions: 6

Faculty of Engineering

End Sem (Odd) Examination Dec-2019

EC3CO05 / EI3CO05 Circuit Analysis and Synthesis

Programme: B.Tech.

Branch/Specialisation: EC / EI

1

1

1

1

1

1

Enrollment No.....

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. The dependent source in Figure 1 is:
 - (a) Voltage-controlled current source
 - (b) Voltage-controlled voltage source
 - (c) Current-controlled voltage source
- (d) Current-controlled current source
- For the circuit in Figure 2, v_1 and v_2 are related as
 - (a) $v_1 = 6i + 8 + v_2$

(b) $v_1 = 6i - 8 + v_2$

(c) $v_1 = -6i + 8 + v_2$

(d) $v_1 = -6i - 8 + v_2$

Figure 1

Figure 2

- iii. A load is connected to a network. At the terminals to which the load is 1 connected, $R_{th} = 10$ Ohm and $V_{th} = 40V$. The maximum possible power supplied to the load is:
 - (a) 160 W
- (b) 80 W
- (c) 40 W
- (d) 1 W
- An RC circuit has R=2 Ohm and C=4F. The time constant is: (a) 0.5 S
 - (b) 2 S
- (c) 4 S
- (d) 8 S
- The current through an RL series circuit with input voltage v(t) is given in the s-1 domain as:
 - (a) $V(s) \left[R + \frac{1}{sL} \right]$
- (b) V(s)(R + sL) (c) $\frac{V(s)}{R + \frac{1}{2l}}$

- The Laplace transform of u(t-2) is:

- vii. What is the condition for reciprocity in terms of h parameters?
 - (a) $h_{11} = h_{22}$
- (b) $h_{12} h_{21} = h_{11} h_{22}$ (c) $h_{12} + h_{21} = 0$
- (d) $h_{12} = h_{21}$

- viii. For a symmetrical two port network,
 - (a) $z_{11} = z_{22}$

(b) $z_{12} = z_{21}$

(c) $z_{11} z_{22} - z_{12}^2 = 0$

(d) $z_{11} = z_{22}$ and $z_{12} = z_{21}$

- ix. The following property relates to LC impedance or admittance functions:
 - (a) The poles and zeros are simple and lie on the j ω axis.
 - (b) There must be either a zero or a pole at origin and infinity.
 - (c) The highest (or lowest) power of numerator and denominator differ by unity.
 - (d) All of these
- X. The network function $F(s) = \frac{s+2}{(s+1)(s+3)}$ represents an
 - (a) RC impedance

- (b) RL impedance
- (c) RC impedance and RL admittance (d) RC admittance and RL impedance
- Q.2 i. Explain cut sets and tie set.
 - ii. Calculate the phasor currents I₁ and I₂ in the circuit of Figure 3

Figure 3

- iii. Use mesh analysis to find the current I_0 in the circuit of Figure 4.
- OR iv. In the circuit of Figure 5 determine the currents i_1 , i_2 , and i_3

Figure 4

1

1

2

3

5

5

5

5

Figure 5

- Q.3 Attempt any two:
 - i. Use superposition to find v_x in the circuit of Figure 6
 - ii. The switch in Figure 7 was open for a long time but closed at t=0. Determine:
 - (a) $i(0^+)$, $v(0^+)$ (b) $\frac{di(0+)}{dt}$, $\frac{dv(0+)}{dt}$ (c) $i(\infty)$, $v(\infty)$

Figure 6

Figure 7

iii. The switch in Figure 8 has been in position A for a long time. At t=0, the switch 5 moves to B. Determine v(t) for t>0 and calculate its value at t=1 s and 4 s.

Figure 8

Q.4 i. Find initial and final value of the function given as:

$$F(s) = \frac{4(s+1)}{s^2 + 4s + 6}$$

i. Find the transfer function $H(s) = \frac{I_1(s)}{I_0(s)}$ in the circuit of figure 9.

Figure 9

iii. Find $v_0(t)$ in the circuit of figure 10 using Laplace transform. Assume $v_0(0) = 5$ 5V.

Figure 10

OR iv. Consider the circuit in figure 11. Find the value of the voltage across the capacitor assuming that the value of $v_s(t) = 10u(t)V$ and assume that at t=0, -1A flows through the inductor and +5V is drop across the capacitor.

5

2

3

Marking Scheme EC3CO05 / EI3CO05 Circuit Analysis and Synthesis

Q.1	i. The dependent source in Figure 1 is:(d) Current-controlled current source			1	
	••		1		
	ii.	For the circuit in Figure 2, v_1 and v_2 are related as		1	
	(a) $v_1 = 6i + 8 + v_2$ iii. A load is connected to a network. At the terminals to which connected, $R_{th} = 10$ Ohm and $V_{th} = 40$ V. The maximum posupplied to the load is: (c) 40 W				
	iv. An RC circuit has R=2 Ohm and C=4F. The time constant is:				
	 v. The current through an <i>RL</i> series circuit with input voltage <i>v(t)</i> is given a domain as: (d) \$\frac{V(s)}{R+sL}\$ vi. The Laplace transform of u(t - 2) is: 				
	(d) $\frac{e^{-2s}}{s}$ vii. What is the condition for reciprocity in terms of h parameters?				
		(c) $h_{12} + h_{21} = 0$ viii. For a symmetrical two port network,			
	viii.				
	(a) $z_{11} = z_{22}$			1	
	ix.	(d) All of these			
	**				
	X. The network function $F(s) = \frac{s+2}{(s+1)(s+3)}$ represents an			1	
		(c) RC impedance and RL admittance			
0.2	:	Cut sets	1 mark	2	
Q.2	1.	Tie set	1 mark	4	
	ii.	Equation	1 mark	3	
	111.	Phasor currents I_1 and I_2 1 mark for each (1 mark * 2)	2 marks	3	
	iii.	Mesh analysis to find the current I_0 in the circuit	2 marks	5	
		Equation	1 mark		
		I ₁	1.5 marks		
		I_2	1.5 marks		
		I_0	1 mark		

OR	iv.	In the circuit Determine the currents i_1 , i_2 , and i_3		5
		Equation	2 marks	
		I_1	1 mark	
		I_2	1 mark	
		I_3	1 mark	
Q.3		Attempt any two:		
	i.	Use superposition to find v_x in the circuit of Figure 6		5
		Due to 20V	2 marks	
		Due to 4 A	2 marks	
		Find v_x	1 mark	
	ii.	Determine:		5
		(a) $i(0^+)$, $v(0^+)$	1.5 marks	
		(b) $\frac{di(0+)}{dt}$, $\frac{dv(0+)}{dt}$	2 marks	
		$(c) i(\infty), v(\infty)$	1.5 marks	
	iii.	Determine $v(t)$ for $t>0$	4 marks	5
		Calculate its value at $t = 1$ s and 4 s	1 mark	
Q.4	i.	Find initial	1 mark	2
		Final value of the function	1 mark	
	ii.	Find the transfer function $H(s) = \frac{I_1(s)}{I_0(s)}$ in the circuit		3
	iii.	Find $v_0(t)$ in the circuit of figure 10 using Laplace transfor	m.	5
		5 domain circuit	1 mark	
		For equation	1 mark	
		For $v_0(s)$	1 mark	
ΩR	iv.	For $v_0(t)$ Find the value of the voltage	2 marks	5
OK	14.	Stepwise marking		3
Q.5		Attempt any two questions:		
	i.	Obtain the y parameters for the circuit		5
		Equation	1 mark	
		Y_{11}	1 mark	
		Y_{12}	1 mark	
		Y_{21}	1 mark	
		Y_{22}	1 mark	

	ii.	Derive expression for the		5	
		h parameter equation	1 mark		
		Z parameter equation	1 mark		
		Derivation	3 marks		
	iii.	Find R _L and the maximum power transferred.		5	
		Equation	1 mark		
		$V_{ m tn}$	1.5 marks		
		R_{tn}	1.5 marks		
		P_{max}	1 mark		
Q.6	i.	Positive real function	1 mark	2	
V .0		Any two properties	1 mark	_	
	ii.	Check the following polynomial is Hurwitz or not.		3	
		Stepwise marking		· ·	
	iii.	Find the Foster first form for the driving point impeda	5		
		Stepwise marking			
OR	iv.	Synthesise the impedance function and obtain Cauer l	5		
		Stepwise marking			
