

Verrou : l'arithmétique stochastique sans recompilation

École thématique PRECIS 17 mai 2017

François Févotte Bruno Lathuilière

EDF R&D PERICLES 123

Contexte & enjeux

Vérification & Validation

Contexte & enjeux

Vérification & Validation

Quantification des erreurs : enjeux

- qualité des résultats produits
- efficacité d'utilisation des ressources (temps de calcul / développement)

Contexte & enjeux

Processus de V&V: non-régression

Plan

- 1. Arithmétique flottante
- 2. Méthode CESTAC & Verrou
- ${\it 3. \ Applications}$
- 4. Conclusions perspectives

De quoi s'agit-il?

- Représentation à virgule flottante en précision limitée
 - ► [nos exemples] décimal, 3 chiffres significatifs (% ‰): 42.0, 0.123
 - [float] binaire, 24 bits significatifs ($\simeq 10^{-7}$)
 - [double] binaire, 53 bits significatifs ($\simeq 10^{-16}$)

- **♦** Conséquences : calcul flottant ≠ calcul réel
 - ▶ arrondi

$$a \oplus b \neq a + b$$

▶ perte d'associativité $(a \oplus b) \oplus c \neq a \oplus (b \oplus c)$

Perte de précision

♠ Absorption

3.14159 + 0.00141421 3.14300421 ♠ Annulation

3.14300 - 3.14159 0.00141xxx

Erreurs de calcul

- Quelques algorithmes à risque:
 - ► accumulation de beaucoup de calculs dans un résultat→ absorption
 - somme, produit scalaire...
 - ► soustractions de nombres proches → annulation
 - ► calcul d'erreur / écart par rapport à une référence
 - cumul de plusieurs situations précédentes
 - lacktriangledown norme 1 d'un vecteur d'écarts : $arepsilon = \sum_i \left| v_i v_i^{ref}
 ight|$
 - ightharpoonup variance, écart-type : $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[v_i \frac{1}{N} \sum_{j=1}^{N} v_j \right]^2}$

Erreurs de calcul

- Quelques algorithmes à risque:
 - ► accumulation de beaucoup de calculs dans un résultat→ absorption
 - somme, produit scalaire...
 - ► soustractions de nombres proches → annulation
 - ► calcul d'erreur / écart par rapport à une référence
 - cumul de plusieurs situations précédentes
 - lacktriangledown norme $\mathbf{1}$ d'un vecteur d'écarts : $arepsilon = \sum_i \left| v_i v_i^{\mathrm{ref}}
 ight|$
 - ightharpoonup variance, écart-type : $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[v_i \frac{1}{N} \sum_{j=1}^{N} v_j \right]^2}$
- Quis custodiet ipsos custodes?
 - qui valide la référence ?

Quelles conséquences?

Conséquences possibles :

- calcul bloqué (ex. TELEMAC2D)
- résultat invalide (ex. production hydraulique)
- non-reproductibilité des résultats (ex. ASTER, COCAGNE, ATHENA...)
- performance (ex. SATURNE, Apogene)

Calcul bloqué : ex. Telemac2D

Calcul bloqué : ex. Telemac2D

Calcul bloqué : ex. Telemac2D

Quelles conséquences?

Conséquences possibles :

- calcul bloqué (ex. TELEMAC2D)
- résultat invalide (ex. production hydraulique)
- non-reproductibilité des résultats (ex. ASTER, COCAGNE, ATHENA...)
- performance (ex. SATURNE, Apogene)

Quelles conséquences?

Conséquences possibles :

- calcul bloqué (ex. TELEMAC2D)
- résultat invalide (ex. production hydraulique)
- non-reproductibilité des résultats (ex. ASTER, COCAGNE, ATHENA...)
- performance (ex. SATURNE, Apogene)

Non-reproductibilité

▶ Calcul séquentiel ou parallèle

Compilateur

(ou même simplement les options)

Versions de bibliothèques externes

Non-reproductibilité

Job	s	w
F3C		*
COCAGNE Non Reg		*
COCAGNE-NonReg		4
Test on multiple configuration		*
COCAGNE-NonReg-c7-gcc-dbl-dklib-rel-par		*
COCAGNE-NonReg-c7-gcc-dbl-dkzip-rel-par		*
COCAGNE-NonReg-c7-gcc-dbl-dkzip-rel-seq		*
COCAGNE-NonReg-c7-intel-dbl-dkzip-rel-par		*
COCAGNE-NonReg-c7-gcc-flt-dklib-rel-par		*
COCAGNE-NonReg-c7-gcc-flt-dkzip-rel-par		*
COCAGNE-NonReg-c9-gcc-dbl-dkzip-rel-par		*
COCAGNE-NonReg-c7-gcc-dbl-dkzip-rel-par-reloc		*
COCAGNE-NonReg-c9-gcc-dbl-dkzip-rel-par-reloc		*

Quelles conséquences?

Conséquences possibles :

- calcul bloqué (ex. TELEMAC2D)
- résultat invalide (ex. production hydraulique)
- non-reproductibilité des résultats (ex. ASTER, COCAGNE, ATHENA...)
- performance (ex. SATURNE, Apogene)

Performances: ex. optimisation production hydraulique

◆ Objectif: maximiser le revenu Annulation possible

$$\rho = \max_{\textbf{p}, \textbf{v}} \underbrace{\left[\sum_{t \in T} \lambda_t \, \textbf{p}_t \right.}_{\text{puissance produite}} + \underbrace{\sum_{r \in R} \omega_r \, \left(\textbf{v}_r^{\text{fin}} - \textbf{v}_r^{\text{ini}} \right) \right]}_{\text{eau en réserve}},$$

Performances: ex. optimisation production hydraulique

Objectif : maximiser le revenu

$$\rho = \max_{\mathbf{p}, \mathbf{v}} \left[\sum_{t \in T} \lambda_t \, \mathbf{p}_t + \sum_{r \in R} \omega_r \, \mathbf{v}_r^{\mathsf{fin}} \right] - \sum_{r \in R} \omega_r \, \mathbf{v}_r^{\mathsf{ini}},$$

▶ Gain en performance : supérieurs à ×50 dans de nombreux cas

Quelles solutions?

- ▶ De nombreuses solutions existent :
 - ► algorithmes compensés / exacts
 - algorithmes reproductibles
 - ightharpoonup précision supérieure (float ightarrow double ightarrow MPFR)
 - ► tolérance des comparaisons
- Besoin = détection des problèmes
 - ► existence
 - ▶ ampleur
 - ► localisation

Méthode CESTAC & Verrou

- 1. Arithmétique flottante
- 2. Méthode CESTAC & Verrou
- Applications
- 4. Conclusions perspectives

Modéliser l'imprécision par un aléa sur le mode d'arrondi

Modéliser l'imprécision par un aléa sur le mode d'arrondi

Modéliser l'imprécision par un aléa sur le mode d'arrondi

Opération	Eval. 1	Eval. 2	Eval. 3	Moyenne
a = 1/3	0.333↓	0.334↑	0.334↑	0.334
$b = a \times 3$	0.999↓	1.00_{\downarrow}	1.01↑	1.00

Synchrone / asynchrone

- synchrone (ex: CADNA)
- asynchrone (ex: Verrou)

Opération	Eval. 1	Eval. 2	Eval. 3	Moyenne
a = 1/3				
$b = a \times 3$				
if $b \geqslant 1$ then				
b = b - 1				
else				
b = 1 - b				
end				
$b = \sqrt{b}$				
,				

Synchrone / asynchrone

- synchrone (ex: CADNA)
- asynchrone (ex: Verrou)

Opération	Eval. 1	Eval. 2	Eval. 3	Moyenne
a = 1/3	0.333	0.334 [↑]	0.334↑	→ 3.3 4e-1
$b = a \times 3$, i			
if $b\geqslant 1$ then				
b = b - 1				
else				
b = 1 - b				
end				
$b = \sqrt{b}$				

Synchrone / asynchrone

- synchrone (ex: CADNA)
- asynchrone (ex: Verrou)

Opération	Eval. 1	Eval. 2	Eval. 3	Moyenne
a = 1/3	_0.333↓	0.334↑	0.334 [↑]	3.3 4e−1
$b = a \times 3$	0.999	1.00_{\perp}	1.01↑	1.0 0
if $b\geqslant 1$ then		– True		Warning
b = b - 1	1.00e-3	0.00	1.00e-2	→ 3.00e-3
else				
b = 1 - b				
end				
$b = \sqrt{b}$	X	0.00	1.00e-1	×

Synchrone / asynchrone

- synchrone (ex: CADNA)
- asynchrone (ex: Verrou)

Opération	Eval. 1	Eval. 2	Eval. 3	Moyenne
a = 1/3	0.333↓			
$b = a \times 3$	0.999			
if $b\geqslant 1$ then	False			
b = b - 1				
else				
b = 1 - b	1.00e-3			
end				
$b = \sqrt{b}$	3.17e-2 [↑]			
	↓			

Synchrone / asynchrone

- synchrone (ex: CADNA)
- asynchrone (ex: Verrou)

Opération	Eval. 1	Eval. 2	Eval. 3	Moyenne
a = 1/3	0.333↓	0.334↑	0.334↑	
$b = a \times 3$	0.999	1.00_{\downarrow}	1.01↑	
if $b\geqslant 1$ then	False	True	True	
b = b - 1		0.00	1.00e-2	
else				
b = 1 - b	1.00e-3			
end				
$b = \sqrt{b}$	3.17e-2 [↑]	0.00	1.00e-1	
print <i>b</i>	↓	↓	↓	4.39e-2

CADNA: Analyse dynamique des sources

\$ athena2d casTest

CADNA: Analyse dynamique des sources

\$ athena2d-cadna casTest

Méthode CESTAC

Verrou : Analyse dynamique du binaire

\$ valgrind --tool=verrou --rounding-mode=random athena2d casTest

Méthode CESTAC

Verrou : Analyse dynamique du binaire

\$ valgrind --tool=verrou --rounding-mode=random athena2d casTest

Analyse dynamique du binaire avec Valgrind

\$ valgrind --tool=verrou --rounding-mode=random PROGRAM [ARGS...]

Exemple de sortie

```
$ valgrind --tool=verrou --rounding-mode=random PROGRAM [ARGS...]
==4683== Verrou. Check floating-point rounding errors
==4683== Copyright (C) 2014, F. Fevotte & B. Lathuiliere.
==4683== First seed : 1430818339
==4683== Simulating AVERAGE rounding mode
==4683== Instrumented operations :
==4683== add : yes
==4683==
==4683== Operation
                      Instructions count
==4683== '- Precision Instrumented Total
==4683==
==4683== add
                   500869335
                                     500869335 (100%)
==4683== '- flt 400695468
                                        400695468 (100%)
==4683== '- db1
                                         100173867 (100%)
                        100173867
==4683==
==4683==
                  763127658
                                     763127658 (100%)
       sub
==4683== '- flt
                    763127658
                                       763127658 (100%)
==4683==
                                     1202086563 (100%)
==4683== mul
                 1202086563
==4683== '- flt 1101912537
                                        1101912537 (100%)
==4683== '- dbl
                    100174026
                                        100174026 (100%)
==4683==
```

/37 💆 eDI

Exemple de sortie

```
$ valgrind --tool=verrou --rounding-mode=random PROGRAM [ARGS...]
==4683== Verrou. Check floating-point rounding errors
==4683== Copyright (C) 2014. F. Fevotte & B. Lathuiliere.
==4683== First seed : 1430818339
==4683== Simulating AVERAGE rounding mode
==4683== Instrumented operations :
==4683== add · ves
         Sorties normales du programme
==4683==
==4683==
==4683==
         + Warnings pour les instructions "dangereuses"
==4683==
                                            (ex:x87)
==4683==
                                                        (100%)
                                                       468 (100%)
==4683==
==4683==
                          1001/386/
                                                100173867 (100%)
         · - apı
==4683==
==4683==
                     763127658
                                           763127658 (100%)
        sub
==4683== '- flt
                       763127658
                                             763127658 (100%)
==4683==
                                             1202086563 (100%)
==4683== mul
                    1202086563
==4683== '- flt 1101912537
                                               1101912537 (100%)
==4683== '- dbl
                        100174026
                                                100174026
                                                              (100%)
==4683==
```


- Transformation sans erreur (la division est un peu plus compliquée):
 - \triangleright $a \circ b = \sigma + \delta$.

- Si $\delta < 0$:

- ▶ Transformation sans erreur (la division est un peu plus compliquée):
 - \triangleright $a \circ b = \sigma + \delta$.

- Si $\delta > 0$:
 - $\blacktriangleright \ [a \circ b] = fl(a \circ b),$

- random : arrondi équiprobable (CESTAC)
 - $p(\lceil a \circ b \rceil) = 0.5$
 - $p(\lfloor a \circ b \rfloor) = 0.5$

$$p(\lfloor a \circ b \rfloor) = \frac{ulp - \delta}{ulp}$$

» math.cos(42.)
-0.39998531498835133

Sections (non-)instrumentées

```
$ valgrind --tool=verrou --rounding-mode=random python

> import math
> math.cos(42.)
-4.5847217124585136
> math.cos(42.)
-4.6689026578736614
```

Sections (non-)instrumentées

▶ Fichier libmath.exclude:

```
#sym lib
* /lib/libm-2.11.3.so
```


Applications

- 1. Arithmétique flottante
- 2. Méthode CESTAC & Verrou
- 3. Applications
 Athena-2D: ultra-sons
 Apogene: planif. production
 Code Aster: mécanique
- 4. Conclusions perspectives

Code Athena 2D

Résultat produit : "A-scan"

Code Athena 2D

Contrôle Non Destructif par Ultra-Sons

- études réalisées par la R&D + ingénierie
- sous contrôle de l'ASN

Code Athena 2D

- 36k lignes de code
- ▶ Fortran 77 + Fortran 90
- Dépendances : BLAS, LAPACK
- ▶ Code "connu"

Objectifs de l'étude

- Pas de problème identifié
- ▶ Test de "routine"

Tests de non-régression dans verrou

	random 1
Cas-Test A	
ins1.dat	0
ascan.dat	1.8e-12
Cas-Test B	
sismo.dat	7.9e-69
ascan.dat	1.2e-10
Cas-Test C	
ins1.dat	4.6e-06
sismo.dat	8.0e-28
ascan.dat	2.0e-11
Cas-Test D	
ins1.dat	1.5e-18
enerloc.dat	0
sismo.dat	0
ascan.dat	0

Tests de non-régression dans verrou

	random 1	random 2
Cas-Test A		
ins1.dat	0	6.1e-06
ascan.dat	1.8e-12	5.9e-12
Cas-Test B		
sismo.dat	7.9e-69	7.9e-69
ascan.dat	1.2e-10	2.0e-11
Cas-Test C		
ins1.dat	4.6e-06	4.6e-06
sismo.dat	8.0e-28	2.8e-28
ascan.dat	2.0e-11	1.2e-11
Cas-Test D		
ins1.dat	1.5e-18	4.1e-01
enerloc.dat	0	2.3e-01
sismo.dat	0	1.6e-01
ascan.dat	0	1.5e-01

Tests de non-régression dans verrou

	random 1	random 2	random 3	random 4
Cas-Test A				
ins1.dat	0	6.1e-06	6.1e-06	6.1 e - 06
ascan.dat	1.8e-12	5.9e-12	5.9e-12	5.9e-12
Cas-Test B				
sismo.dat	7.9e-69	7.9e-69	4.3e-69	4.3e-69
ascan.dat	1.2e-10	2.0e-11	2.8e-10	1.1e-11
Cas-Test C				
ins1.dat	4.6e-06	4.6e-06	4.6e-06	0
sismo.dat	8.0e-28	2.8e-28	8.0e-28	0
ascan.dat	2.0e-11	1.2e-11	1.8e-11	0
Cas-Test D				
ins1.dat	1.5e-18	4.1e-01	2.0e-01	0
enerloc.dat	0	2.3e-01	1.2e-01	0
sismo.dat	0	1.6e-01	3.2e-02	0
ascan.dat	0	1.5e-01	3.6e-01	6.5e-03

Cas-test problématique

Cas-test problématique

Applications

- 1. Arithmétique flottante
- 2. Méthode CESTAC & Verrou
- 3. Applications
 Athena-2D: ultra-sons
 Apogene: planif. production
 Code Aster: mécanique
- 4. Conclusions perspectives

Code Apogene

Planification court terme

- assurer l'équilibre production = consommation,
- minimiser les coûts de production.

Code Apogene v1

- ♦ 300k+ lignes de Fortran,
- "boîte noire":
 - ► aucune connaissance préalable,
 - difficile à recompiler;

$\begin{array}{c} \text{Wind Energy} \\ \text{System} \end{array} \begin{array}{c} \text{Pumped Storage Plant} \\ \text{Inverter} \end{array} \begin{array}{c} \text{PV Generator} \\ \text{Poly Solar Energy System} \\ \end{array}$

Objectifs

 investiguer un problème de non-reproductibilité en cas de re-numérotation des vallées hydrauliques

Verrou: Localisation d'erreurs par bisection

```
log.L
                     .../apogene.release
volum2
                     .../apogene.release
bilpla_
                     .../apogene.release
ecrval
                     .../apogene.release
print plath
                     .../apogene.release
classer_groupes_
                     .../apogene.release
etupla_
                     .../apogene.release
couhyd_pi_
                     .../apogene.release
ecrplr_
                     .../apogene.release
imovi
                     .../apogene.release
                     .../apogene.release
resopt_
getgrp_marginal_
                     .../apogene.release
                     .../apogene.release
ecrpla
fin_exec_main_
                     .../apogene.release
decopt_pi_
                     .../apogene.release
paraend_
                     .../apogene.release
resopt_cnt_zones_
                     .../apogene.release
apstop
                     .../apogene.release
ihyd_
                     .../apogene.release
impression_info_
                     .../apogene.release
                     .../apogene.release
coupla
gere_print_plath_
                     .../apogene.release
                     .../apogene.release
log
                     .../apogene.release
thepla_
contot
                     .../apogene.release
iprit
                     .../apogene.release
```

▶ Delta-Debugging [A. Zeller, 1999]

Verrou: Localisation d'erreurs par bisection

```
# log.L
                       .../apogene.release
# volum2
                       .../apogene.release
# bilpla_
                       .../apogene.release
# ecrval
                       .../apogene.release
# print plath
                       .../apogene.release
# classer_groupes_
                      .../apogene.release
# etupla_
                       .../apogene.release
# couhyd_pi_
                       .../apogene.release
# ecrplr_
                       .../apogene.release
# imovi
                       .../apogene.release
# resopt_
                       .../apogene.release
# getgrp_marginal_
                       .../apogene.release
# ecrpla
                       .../apogene.release
# fin_exec_main_
                       .../apogene.release
# decopt_pi_
                       .../apogene.release
# paraend_
                      .../apogene.release
# resopt_cnt_zones_
                       .../apogene.release
# apstop_
                       .../apogene.release
# ihyd_
                       .../apogene.release
# impression_info_
                       .../apogene.release
# coupla
                       .../apogene.release
# gere_print_plath_
                       .../apogene.release
# log
                       .../apogene.release
# thepla_
                       .../apogene.release
# coutot_
                       .../apogene.release
# iprit
                       .../apogene.release
```

Delta-Debugging [A. Zeller, 1999]

Verrou: Localisation d'erreurs par bisection

```
# log.L
                     .../apogene.release
# volum2
                     .../apogene.release
# bilpla_
                     .../apogene.release
# ecrval
                     .../apogene.release
# print plath
                     .../apogene.release
# classer_groupes_
                     .../apogene.release
# etupla_
                     .../apogene.release
                     .../apogene.release
# couhyd_pi_
# ecrplr_
                     .../apogene.release
# imovi
                     .../apogene.release
# resopt_
                     .../apogene.release
                     .../apogene.release
# getgrp_marginal_
# ecrpla
                     .../apogene.release
fin_exec_main_
                     .../apogene.release
decopt_pi_
                     .../apogene.release
paraend_
                     .../apogene.release
resopt_cnt_zones_
                     .../apogene.release
apstop
                     .../apogene.release
ihyd_
                     .../apogene.release
impression_info_
                     .../apogene.release
                     .../apogene.release
coupla
                     .../apogene.release
gere_print_plath_
                     .../apogene.release
log
                     .../apogene.release
thepla_
contot
                     .../apogene.release
iprit
                     .../apogene.release
```

▶ Delta-Debugging [A. Zeller, 1999]

Verrou: Localisation d'erreurs par bisection

```
# log.L
                      .../apogene.release
# volum2
                      .../apogene.release
# bilpla_
                     .../apogene.release
# ecrval
                     .../apogene.release
# print plath
                     .../apogene.release
# classer_groupes_
                     .../apogene.release
# etupla_
                     .../apogene.release
                      .../apogene.release
couhyd_pi_
ecrplr_
                      .../apogene.release
imovi
                      .../apogene.release
                      .../apogene.release
resopt_
                      .../apogene.release
getgrp_marginal_
ecrpla_
                      .../apogene.release
fin_exec_main_
                      .../apogene.release
decopt_pi_
                      .../apogene.release
paraend_
                     .../apogene.release
resopt_cnt_zones_
                      .../apogene.release
apstop
                     .../apogene.release
ihyd_
                      .../apogene.release
impression_info_
                      .../apogene.release
                      .../apogene.release
coupla
                      .../apogene.release
gere_print_plath_
                      .../apogene.release
log
                      .../apogene.release
thepla_
contot
                      .../apogene.release
iprit
                      .../apogene.release
```

Delta-Debugging [A. Zeller, 1999]

Verrou: Localisation d'erreurs par bisection

```
log.L
                     .../apogene.release
                     .../apogene.release
volum2
bilpla_
                     .../apogene.release
ecrval
                     .../apogene.release
print plath
                     .../apogene.release
classer_groupes_
                     .../apogene.release
etupla_
                     .../apogene.release
# couhyd_pi_
                     .../apogene.release
# ecrplr_
                     .../apogene.release
# imovi
                     .../apogene.release
# resopt_
                     .../apogene.release
                     .../apogene.release
# getgrp_marginal_
# ecrpla
                     .../apogene.release
fin_exec_main_
                     .../apogene.release
decopt_pi_
                     .../apogene.release
paraend_
                     .../apogene.release
resopt_cnt_zones_
                     .../apogene.release
apstop
                     .../apogene.release
ihyd_
                     .../apogene.release
impression_info_
                     .../apogene.release
                     .../apogene.release
coupla
                     .../apogene.release
gere_print_plath_
                     .../apogene.release
log
                     .../apogene.release
thepla_
contot
                     .../apogene.release
iprit
                     .../apogene.release
```

▶ Delta-Debugging [A. Zeller, 1999]

Verrou: Localisation d'erreurs par bisection

```
log.L
                     .../apogene.release
volum2
                     .../apogene.release
bilpla_
                     .../apogene.release
ecrval
                     .../apogene.release
print plath
                     .../apogene.release
classer_groupes_
                     .../apogene.release
etupla_
                     .../apogene.release
# couhyd_pi_
                     .../apogene.release
ecrplr_
                     .../apogene.release
imovi
                     .../apogene.release
                     .../apogene.release
resopt_
                     .../apogene.release
getgrp_marginal_
                     .../apogene.release
ecrpla
fin_exec_main_
                     .../apogene.release
# decopt_pi_
                     .../apogene.release
paraend_
                     .../apogene.release
resopt_cnt_zones_
                     .../apogene.release
apstop_
                     .../apogene.release
# ihvd_
                     .../apogene.release
impression_info_
                     .../apogene.release
                     .../apogene.release
coupla
                     .../apogene.release
gere_print_plath_
                     .../apogene.release
log
                     .../apogene.release
thepla_
# coutot_
                     .../apogene.release
# iprit
                     .../apogene.release
```

▶ Delta-Debugging [A. Zeller, 1999]

Entrées :

- ► script de lancement
- script de comparaison

Sortie :

► DDmax: ensemble maximal de fonctions générant une erreur

Apogene: Verrou + Delta Debugging

Symboles instables :

```
couhvd pi
coutot
decopt_pi_
ihyd_
iprit_
matctr pi
nzsv1
opti_un_grth_
pildef
prosca_
proxmyqn_
recrea_pi_
relax_vol_
remise grad
scale hvd
thpdyn_
```

Lignes source instables :

```
COUHYD PI.f:196
COUHYD_PI.f:197
COUHYD PI.f:198
COUHYD PI.f:199
COUHYD_PI.f:200
COUHYD PI.f:203
COUHYD PI.f:204
COUHYD_PI.f:205
COUHYD PI.f:206
COUHYD_PI.f:208
COUHYD PI.f:211
COUHYD PI.f:212
COUHYD_PI.f:213
COUHYD PI.f:215
COUTOT.f:61
COUTOT.f:64
COUTOT.f:65
COUTOT.f:70
COUTOT.f:91
COUTOT.f:96
COUTOT.f:98
```

Apogene : Verrou + Delta Debugging

Symboles instables :

couhyd_pi_
coutot_
decopt_pi_
ihyd_
iprit_
matctr_pi_
nzsv1_
opti_un_grth_
pildef_
prosca_
proxmyqn_
recrea_pi_
relax_vol_
remise_grad_
scale hyd

thpdyn_

Lignes source instables :

```
COUHYD_PI.f:196
COUHYD_PI.f:197
COUHYD_PI.f:198
COUHYD_PI.f:199
COUHYD_PI.f:200
COUHYD_PI.f:203
```

- ▶ 1/2 journée pour mettre en place l'étude
- 4 jours de calcul (slow down = $9\times$)
- instabilités trouvées !

```
COUTOT.f:61
COUTOT.f:64
COUTOT.f:65
COUTOT.f:70
COUTOT.f:91
COUTOT.f:96
COUTOT.f:98
```


Applications

- L. Arithmétique flottante
- 2. Méthode CESTAC & Verrou
- 3. Applications
 Athena-2D: ultra-sons
 Apogene: planif. production
 Code Aster: mécanique
- 4. Conclusions perspectives

Application: mécanique

Code_Aster

Mécanique au sens large

- Sismique
- Acoustique
- ▶ Thermique

Code Aster

- 1.2M lignes de code
- Fortran 90, C, Python
- Nombreuses dépendances :
 - ► solveurs linéaires (MUMPS...)
 - mailleurs et partitionneurs (Metis,

Objectifs de l'étude

investiguer des problèmes de non-reproductibilité entre machines de test

Application: mécanique

endif

Verrou : l'arithmétique stochastique sans recompilation

120:end subroutine

Localisation de branchements instables par couverture de code

\$ make CFLAGS="-fprofile-arcs -ftest-coverage"

```
$ make check
$ gcov *.c *.f
 Converture "standard"
                                                       Converture "Verrou"
 120:subroutine fun1(area, a1, a2, n)
                                                       120:subroutine fun1(area, a1,...
        implicit none
                                                               implicit none
      integer :: n
                                                            integer :: n
   -: real(kind=8) :: area, a1, a2
                                                         -: real(kind=8) :: area, ...
                                                       120: if (a1 .eq. a2) then
 120:
        if (a1 .eq. a2) then
             area = a1
                                                         4:
                                                                   area = a1
         else
                                                               else
 107:
             if (n .lt. 2) then
                                                                   if (n .lt. 2) then
                                                       116:
 107:
                 area = (a2-a1) / (log(a2)-log(a1))
                                                                       area = (a2-a1...
                                                       116:
 ### .
             else if (n .eq.2) then
                                                       ### .
                                                                   else if (n .eq.2)...
 ###:
                 area = sgrt (a1*a2)
                                                       ###:
                                                                       area = sgrt (...
             else
                                                                   else
   -1
 ###:
                 1 ...
                                                       ###:
                                                                       1 ....
             endif
                                                                   endif
   - t
```

35/37

endif

120:end subroutine

Application: mécanique

Correction de la formule

$$f(a,b) = \begin{vmatrix} a & \text{si } a = b \\ \frac{b-a}{\log(b) - \log(a)} & \text{sinon} \end{vmatrix} \longrightarrow f(a,b) = \begin{vmatrix} a & \text{si } a = b \\ a \frac{\frac{b}{a} - 1}{\log(\frac{b}{a})} & \text{sinon} \end{vmatrix}$$

Étude empirique

- en dehors du code
- autour du point problématique
- référence = arithmétique d'intervalles

Preuve

erreur bornée par 10 ulps

 $= fl (4.2080034963016440 \times 10^{-5})$

Conclusions – Perspectives

Conclusions

Verrou semble convenir à nos besoins:

- coût d'entrée (quasiment) nul,
- quantification des pertes de précision flottante,
- ▶ localisation semi-automatique des parties instables (à gros grain).

Perspectives

- gérer toutes les instructions
 - AVX & instructions vectorielles SSE simple précision,
 - instructions scalaires x87;
- conforter les fonctionnalités de Delta-Debugging;
- conforter les fonctionnalités de localisation de branchements instables;
- gérer "proprement" la libmath.

Merci! Des questions?

Récupérez verrou sur github : http://github.com/edf-hpc/verrou

Documentation: http://edf-hpc.github.io/verrou/vr-manual.html

Annexes

- DBI avec Valgrind
- 2 Traitement de la division
- Tests & branchements
- 4 Synchrone vs Asynchrone

Instrumentation binaire avec valgrind

```
Δ
```

- Possibilités d'instrumentation:
 - ► Ne rien faire (recopier l'instruction telle quelle)
 - Compter les instructions
 - Détecter des erreurs
 - ► Remplacer les opérations

Valgrind ne gère que le mode d'arrondi NEAREST

Transformation approchée pour la division

Ce qu'on cherche :

$$\frac{a}{b} = q + r,$$

avec q = fl(a/b).

♠ Algorithme proposé :

Input: a, bOutput: \tilde{r} tel que $a/b \simeq \mathrm{fl}(a/b) + \tilde{r}.$ 1 $q \leftarrow \mathrm{fl}(a/b)$ 2 $(p, s) \leftarrow \mathrm{twoprod}(b, q)$ 3 $t \leftarrow \mathrm{fl}(a - p)$ 4 $u \leftarrow \mathrm{fl}(t - s)$ 5 $\tilde{r} \leftarrow \mathrm{fl}(u/b)$

Idée de la preuve :

$$q = \frac{a}{b} \left(1 + \epsilon_1 \right)$$

$$p = b q (1 + \epsilon_2)$$

= $a(1 + \epsilon_1)(1 + \epsilon_2)$

t = a - p (Lemme de Sterbenz)

$$u=(t-s)(1+\epsilon_3)$$

$$= \left(a - (p+s)\right)(1+\epsilon_3)$$

$$= (a - bq) (1 + \epsilon_3)$$
$$= br(1 + \epsilon_3)$$

$$\tilde{r} = \frac{u}{b} (1 + \epsilon_4)$$

$$b = r(1+\epsilon_3)(1+\epsilon_4).$$

Tests et branchements : exemple de MAAP

Entrées:

	Eval. 1	Eval. 2
Température	1275 .2	1274.8
Porosité	0.4238 2	0.42383

Algorithme:

```
1 if T <= 1275.:
   por += 0.032
4 elif T <= 1400.:
   por += 0.019
```

Crayon combustible

Sorties :

Porosité	0.4 4282	0.45583

Arithmétique stochastique

_

Synchrone vs asynchrone: exemple

Asynchrone

	1.e-4	2.e-5	-1.e-5	
if x < 0:	False	False	True	_
x = 0	1.e-4	1.e-5	0.	
y = sqrt(x)	1.e-2	3.16e-3	0.	4.38e-3

Arithmétique stochastique

Synchrone vs asynchrone: exemple

Synchrone