Page 1

MTH204: Assignment Abhumanyu Sethia 190023 Sethia@itk.ac.in

Question 1	Page
1) Show that everygroup of order <60 is solvable.	
adution:	
We present the following Lemmas. We present the following Lemmas it is assumed that 19160	
· Lemmal: if I GI = 2m.3n, then G is solvable	
[Proof in Appendix A1]	
· Lemma 2: \$ y largest prime factor of 161 > 7	
the Front in Appendin A2]	
[Pleaf in Appendin H2]	
· lemma 3: 4 largest prime factor of 191=7	
then a is solvable.	
[Proof in Appendix A3]	
· Lemma 4: if largest prime factor of 191=5	
then Ginsolvable.	
[Ploof in Appendin A 4]	
	that
We will use one or more of the following lammas to show all groups of order < 60 are solvable.	
all groups of order < 60 are solvable.	
I I what the above & lemmas are	
The following take shows I'm acound order < 60	ulos a
The following table shows that the above & Lemmas are sufficient to prove that every group of order < 60	

Appendin : Place of lemma 1

Page 4

Lemmal: 7 | G| (60 and |G| = 2m.3h then Givsolvable

We peace by induction

· Basilase: Andrew in Alate for 161-20

- par n=0, 191=2 which is cyclic, hance solvable.

- par m=0, |C1=3 which is cyclic, hence solvable

- | or m=n=1, | bn | = 6 Hotelstr only 2 such groups emit and are both solvable, as discussed in the leatures

o for m < 3

n3 E £1, +3

- 'y N3=1

then the Syland - 3 subgloup is normal and cyclic and those by rational.

thereby solvable

=> By induction G/P is solvable

=> Gis solvable

- y 13=4 then we have a non-terised homomorphism

\$: Go -> Sq Har Gacts on the 4-element set

of Sylone - 3 subgloup by conjugation.

(as a subgroup of a solvable gloup). elboulos is (4) mt (= viduction hypothesia)

Since Ker of is solvable (by Since Ker (\$) => Gis solvable.

· For m 7.4 $-i\sqrt{n=0}$ $\Rightarrow G is a p-gloup <math>\Rightarrow G is polvable$ - u n=1 (as 191 < 60) the 191=48, m=4 The number of Sylow-2-Rubyloup 12 € £1,33 if n2=1, then G is solvable by normality & induction (as shown in the previous Case) then use have a non-trivial homomorphism \$: G -> S3 € (Gacts on 3-element set of Sylone 2-subgroups) Since Szio solvable, Im o is solvable Ker & is solvable (by Induction hypothesis) But G/kerp=mp Herce, Gr is solvable.

Hence, proved

1

Appendix A2: Proof of lemma 2 [Page 6]

Lemma 2: Harges quien |G| < 60

if largest prime factor of |G|, p = >7

Then Gr is solvable.

Place | Scice P77

A So, IGI = pk with R<p (as IGI < 60)

As np = Imod p, the only possible np = 1

So, the Sylow p-subgroups are normal

By induction, it is solvable

\$\text{3} GIP is solvable}

[Page 7

Appendix A 3: Proof of Lemma 3

Lemma 3: Grisen 19160 if the largest prime factor of 191, p=7 then Gis solvable.

Place : Since p=7, which IGI= 17k the only When k < 8, the Sylow-7-Subgloup is hormal hence, solvable.

Now, for k7,8, there is only one possible value of [G1<60 ie. |G1=56 ie.k=8

⇒ n7€ {1,83

then Cris solvable by normality and induction hypothical (analogous to person of Similar Case in Appendix A) 4 n=1,

her have +8 (6.8) ge dements of order 6

⇒ rue con only have 1 Sylone 2-subgloup.

But Sylow 2-subgloup is normal

=> G is solvable by induction

Hence, proved.

Appendix At: Proof of Lemma +

(Page 8

Lamma 4: Grusen 161 < 60 If the Carget prime factor of 191, p=5 Then Cris salvable

Proof: Since P= 5, 191=5k

. y K < 5

then $n_5 = 1$.

=> Sylow 5-subgloup is normal. By induction, Cr is solvable.

· 4 k75

then,

Case!: k \pi 1 mod 5

then Giv solvable (as shown above)

Con 2: k = Imod 5.

then the only such possibility for 161 < 60. is 161=30.

ie. no E El, 69.

then G is solvable by normality of induction hypothesis (analogous to proof of similar case in appendin AISA 2)

y N5=6 Then there use have 24(4.6) elements of order 4

> use con have only 1 Sylow 3 -subgloup.

96 Sylz (G) is ralmal and G/g and 9 are solvable by induction

Herce, Gà also solvable Herce, proved.

Page 10 Place! Let | 61 1 = P1 1. P2 -.. PR and let a be rilpotent Then G ~ S, x Sx ... x Sk where Si = no of unique Pi-Sylow subgroups So, the no. of nilpotent glaups = [S, x S_x - . x Sk] $(\#G) = n(S_1) \cdot n(S_2) \cdot ... \cdot n(S_k)$ where n (Si) & = total no. of possible Persungso Pi - Sylan subgroups upto woundsourow

Now, we present the following 3 Lemmas in this content.

Lemma!: y |G |= P1.P2.P3.--.PR

where Pi's are district primes

the No Spripotent G = |.|.|...| = 1

[Proof in Appendin B]

· Lemma 2: $\frac{1}{4} |G| = p^2$ then no. of nipotent G = 2(#G)

[Ploof in Appendin B2]

Lemma 3: if $|G| = p^3$ where $p \in \{2,3\}$.

then no of nilpotent $G = ^35$ [Proof of in Appendin 183].

Page III. Now, we will factorise the order and apply appropriate lamna to find nipotent groups of order 66 No of nipotent group Order Pactorisation tenna (s) applied only I group of order lenists 2 6 2.3 8 32 9 10 11 12 122 2-1=2 13 14 15 3.5 Six asked to take this as gueen 17 122 1.2 = 2 18 2.1 = 122 $2^2.5$ 20

Page 12

Order	factorisation /	Lemmas used	No. of nilpotent gloups
21	=3.7	١	
22	= 2.11	1	
23	= 23	1	
24	= 23 · 3	123	5:1 = [5]
25	= 52	2	22
26	2.13	1	
27	33	3	5
28	22.7	122	2.1 = 2
29	29	1	
30	2.3.5	1	
31	31	1	
32	2 ^s Si	asked totake as	[51]
33	323.11	1	
34	2.17	(
35	5.7	1	The state of the s
36 3	2. 22. 32	2	2.2=4
37	37	1	
38	2.19	1	
	3.5	1	
10/2	3.5	3	1.5 = 5

			Page 13.
Order	Pactolisation	Lemmasused	No. of nipotent groups
41	41	1	
4-2	2.3.7	1	
43	+3	1	001
44	22.11	122	2.1 = 2
45	$3^2 \cdot 5$	122	2.1 = 2
46	23. 2	1	,
47	4-7.	1	
+8	16.3	1 and 8 is asked to assume 14/016.	14.1 = [14
49	72	2_	[2
50	2.52	122	1.2= 2
51	3.17	(
52	- 2 ² ·13	122	21 = 2
5	3 53	J	
54	3^3 . 2	123	5.1= 5
5.1	5.5.11	1	5 []
56	23.7	143	5.1 = 5
5		1	
58 59			
	235	1	

Appendin B1: Ploof of Lemma 1

Page 19

Lemma : If $|G| = P_1 \cdot P_2 \cdot ... \cdot P_k$ where P_i is are distinct primes then number of nilpotent groups $G_i = |I| \cdot |I| \cdot ... \cdot |I| = 1$.

Placed

If Say |G|= p (where p is a prime)

then G is cyclic and thereby abelian (as taught in lextures)

8

G

Z/pZ

We already know that every finite p-group is nilpotent.

So, the only group of order p is Z/pz which is nilpotent.

Hence, if IG1= P, n (G)=1.

So, if $|G| = |P_1|P_2|P_3 - |P_R|$ then $|G| = |G|P_1| \cdot |G|P_2| - - |G|P_R| = |G| \cdot |G|$

Hence, placed. [

Lemma 2: If $|G|=p^2$ where p is a prime then number of nilpotent gloups G=2

Phoof:

Since all first p-groups are nilpotent all groups of order

So the problem reduces to finding total number of groups of order p2 Let G be the group. We know that any group of order prisabelian

· Case 1 - there is an element of order p2

> Case 1 - there is an element of order p2

> Case 1 - there is an element of order p2

> Case 1 - there is an element of order p2

> Case 1 - there is an element of order p2

· Case 2 - + g & G \ Le3, O (g) = p.

Let neglège

So, <n7 is also cyclic (since |6/(n) #=P)
and 6/(n7 is also cyclic (since |6/(n) #=P)

So, consider the homeomorphism of: G -> G/2n7.

Which maps of to g < n7

Which maps of to g < n7

& (It is a homomorphism because <n7 is normal)

So, by Toomorphism Theorem, G ~ Kerpx Imp Im 0 = 6/<n>

my - 1/(n) κerφ = <n7., So, G = G/(x) × (n) = Zp × Zp

So, number of groups of order p2 = 2. Hence, placed. I

Appendix B3: Play of Lemma 3

Page 16

Lemma 3: if $|G| = p^3$ where $p \in \{2,3\}$ then #G = 5

· Ploof tos p=2 ie. 161=8

· Lemma - If each element : 1 + g EG is of order 2 then G is abelian and isomorphic to Z/22×7/22×--7/22 and latis a power of 2

Mod: Assume 1 + a + b EG So, use have. $\alpha 2 = b2 = (\Rightarrow \alpha = \alpha^{-1}, b = b^{-1}.$

→ ab + 1 (as if ab=1 ⇒ a=b-1=b)

 $= 71 = (ab)^2 = a(ba)b. \Rightarrow ba = a-1b-1 = ab.$

Thus Cris abelian Also, since G is finite, it has a finite set of independent

Sire of his abelian, we can write any $g \in G$ as $g = a_1^{e_1} - a_n$ for $e_i \in \{0, 1\}$ generators a, ..., an.

 \Rightarrow G = $\langle \alpha_1 7 \times --- \times \langle \alpha_n 7 \rangle$ and $|G| = 2 \times 0. --2 = 2^n$.

Page 17 | G1=8, there are 3 abelian and 2 non-obelian groups, The 3 abelian groups are Z/8z, 7/4z x Z/2z and (Z/2) We have already seen that profinite - p gloup is the nilpotent. So, the 3 abelian groups are con clearly nipotent. Since com printe of group will be nilpotent and lot 8 has only & Sgroups . The other groups must have man order of any element >2 → Janelement a of order 4 all others (besides 1) & have order 2017 let bbe an element not generated by a. So, we have elements 1, a, as, as, b, ab, a2b, a3b Now, b2 can only be one of the 7 But b2= a, a3 => b is not of order 2014 So, b2=1 01 b2=a2. 6 (ase 1: b2=1 So, ba should be equal to the last 3 elements. If ba = ab, then the gloup's abelian 4 use get Z/42 × 2/22 If ba = a2b, then b-1 a2b = a.) a2=1 which is contradiction So, we must have ba = a3 b. => (ab)2=1. => a= = b2 = (ab)2=1 => dihedral group of order 8.

Care 2: $b^2=a^2$ $\Rightarrow b \text{ has order 4}$ \Rightarrow

Hence, ba=a3b.

So, we get a group with a==1, & a==b2, ba=a3b.

=> gnaterian group

For |z| = 27 i.e. p=3All We got 3 Abelian gloups, Z/272.

and $(Z/32)^3$.

So, now we have a nonabelian group of order 27.

Since it is a p-group, the order of the centre is either 3 or J.

Since it is a p-group, the order of the centre is either 3 or J.

But for any group in which & We'll have 2 non-Abelian groups.