Number Representations

123,0

$$= 100_{10} + 20_{10} + 3_{10}$$

$$= 1 \times 10^{2} + 2 \times 10^{\prime} + 3 \times 10^{\circ}$$

Each place represents a power of 10. Hence, a Base 10 Number

A Base 10 Number has 10 digits

Base 10 = \(\frac{2}{3} \), 1, 2, 3, -...9\(\frac{3}{3} \)

10 digits

The digits in Base 10 are are 0 to 9!

Computers do Not work in Base 10.
They work in Base 2. We prefer using
Base 8 and Base 16 since it saves
space and can easily be converted.

Base 2 - 2 digits = £0, 1}

Base 8 - 8 digits = 30,1,2, ... 23

Base 16 -> 30,1,2, ...9, A,B,C,D,E,F3

Equivalence							
BASE		Equivalence Number Representation				BASE	
2	8	10	16	2	8	10	16
O	0	0	0	1000	10	8	8
1	1	l	1	1001	11	9	9
10	2	2	2	1010	12	10	A
1 1	3	3	3	1011	13	11	B
10D	4	4	2	1100	14	12	C
101	5	5	5	1101	15	13	${\mathcal D}$
110	6	6	6	1110	16	14	E
1)	7	7	7	1111	17	15	F
							_
		64	32	6 8	4	2 1	

The ease of conversion

$$8 = 2^3$$
 $16 = 2^4$

Base 2 can easily be converted into Base 8 and Base 16.

Base 8 is 3 places of Base 2 Base 16 is 4 places of Base 2

> 1010/01/10/2 Look at previous table to help

Which is equivalent in Base 10

$$2x8 + 5x8^{2} + 3x8 + 5x8^{2} = 5x/6^{2} + 5x/6 + Dx/6^{2}$$

$$1024 + 320 + 24 + 5 = 1280 + 80 + 13$$

$$1373_{10} = 1373_{10}$$

The conversion should be equivalent!

It Checks

Additional Examples

$$123_{8} = 1 \times 8^{3} + 2 \times 8 + 3 \times 8^{6}$$

$$64 + 16 + 3 = 83_{,0}$$

$$1010011_{2} = 1 \times 2^{4} + 1 \times 2^{4} + 1 \times 2^{4} + 1 \times 2^{6}$$

$$64 + 16 + 2 + 1 = 83_{,0}$$

$$53_{,6} = 5 \times 16^{7} + 3 \times 6^{9}$$

$$80 + 3 = 83_{,8}$$

The conversion back to Base 10 shows the equivalence of all 3 representations.

Another Example

$$443_8 = 100100011_2$$

$$4x8^2 + 4x8 + 3x8^\circ = 1x2^8 + 1x2^5 + 1x2 + 1x2^\circ$$

$$256 + 32 + 3 = 256 + 32 + 2 + 1$$

$$291_{10} = 291_{10}$$

The conversion to Base 10 and its equivalence shows how correct the results are by agreement!

127 = 129 64 32 16 8 4 2

$$21_{10} = 10101 = 25_8 = 15_{16}$$

$$57_{10} = 111001_2 = 71_8 = 39_{16}$$