Espacios con producto interno

Álgebra Lineal 2024 (LM, PM, LCC)

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

1 de octubre de 2024

Producto interno

Definición

Sea V un espacio vectorial sobre el cuerpo \mathbb{K} (\mathbb{R} o \mathbb{C}). Un **producto interno** sobre V es una función que a cada par de vectores en V, (u,v) le asigna un escalar que se nota: $u \cdot v$, $u \times v$, $\langle u,v \rangle$ o (u|v), de modo tal que para todos $u,v,w \in V$ y $\alpha \in \mathbb{K}$ se verifica:

- 1. $\langle u, v \rangle = \overline{\langle v, u \rangle}$.
- 2. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$.
- **3**. $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$.
- 4. $\langle u, u \rangle \ge 0$ y $\langle u, u \rangle = 0$ si y solo si u = 0.

Ejemplos de productos internos

1. Sea $V = \mathbb{K}^n$, $V \ni v = (v_1, \dots, v_n)^t$. Producto interno canónico.

$$V = \mathbb{R}^n, \quad \langle u, v \rangle := u^t v = \sum_{i=1}^n u_i v_i; \qquad V = \mathbb{C}^n, \quad \langle u, v \rangle := u^t \overline{v} = \sum_{i=1}^n u_i \overline{v_i}.$$

2. En
$$V = \mathbb{R}^2$$
, para $u = (u_1, u_2)$ y $v = (v_1, v_2)$
$$\langle u, v \rangle := u_1 v_1 - u_2 v_1 - u_1 v_2 + 4 u_2 v_2.$$

3. Sea $V = \mathcal{M}_{n \times n}(\mathbb{K})$, para $A = (a_{ij})$ y $B = (b_{ij})$, definamos

$$\langle A,B\rangle = \sum_{i,j} a_{ij} \overline{b_{ij}},$$

Sea \underline{B} matriz, su **matriz adjunta** es $\underline{B}^* = \overline{B^t}$, i.e. $b_{ij}^* = \overline{b_{ji}}$. Se tiene

$$\langle A, B \rangle = tr(AB^*) = tr(B^*A).$$

• • •

4. Sean $t_0, \dots, t_n \in \mathbb{K}$ distintos. Sea $V =_n [x]$.

$$\langle p,q\rangle := p(t_0)\overline{q(t_0)} + \cdots + p(t_n)\overline{q(t_n)}.$$

Axiomas 1), 2) y 3) \checkmark . Veamos el axioma 4).

5. Sea V = C([0,1]). Para $f, g \in V$ sea

$$\langle f,g\rangle := \int_0^1 f(t)g(t)dt,$$

Axiomas 1),2) y 3) √ por las propiedades de la integración. Además

$$\langle f, f \rangle = \int_0^1 f^2(t)dt \ge 0.$$

Si $\langle f,f\rangle=\int_0^1 f^2(t)dt=0$, suponiendo que $f\neq 0$ y por el teorema de conservación del signo para una función continua se llegaría a que $\langle f,f\rangle>0$ lo que es una contradicción.

Espacio producto interno

Definición

Un **espacio producto interno**, es un espacio vectorial sobre \mathbb{K} (\mathbb{R} o \mathbb{C}) munido de un producto interno.

Un espacio producto interno real de dimensión finita es frecuentemente llamado **espacio euclidiano**.

Un espacio producto interno complejo de dimensión finita es frecuentemente llamado **espacio unitario**.

Definición

Sea V un espacio vectorial con producto interno $\langle \cdot, \cdot \rangle$. Se llama **norma** de un vector v a $||v|| = \sqrt{\langle v, v \rangle}$. Resulta equivalente $||v||^2 = \langle v, v \rangle$.

Teorema

Si V es un espacio producto interno, entonces para $u,v\in V$ y $\alpha\in\mathbb{K}$ cualesquiera se tiene

- 1. $||\alpha v|| = |\alpha|||v||$.
- 2. ||v|| > 0 para $v \neq 0$.
- 3. $|\langle u, v \rangle| \le ||u|| ||v||$. Designaldad de Cauchy-Schwarz.
- 4. $||u + v|| \le ||u|| + ||v||$. Desigualdad triangular

Demos: ...

Definición

Sea V un espacio producto interno, luego se define la **distancia** entre dos vectores $u, v \in V$ como

$$dist(u,v) = ||u - v||.$$

Ortogonalidad

Definición

Sean $u, v \in V$ espacio producto interno. Entonces diremos que u y v son ortogonales si $\langle u, v \rangle = 0$. Notación $u \perp v$.

Si $u \in V$ es ortogonal a todo vector en $W \subseteq V$ se dice que u es ortogonal a W.

Complemento ortogonal de W $W^{\perp} := \{v \in V : v \perp w, \forall w \in W\}$

Nota

El único vector en V que es ortogonal a todo vector en V y es el vector nulo.

Ejemplo

Sea $V = \mathbb{R}^3$ y sea W un plano por el origen y sea L la recta por el 0, perpendicular a W. Luego si $0 \neq z \in L$ y $0 \neq w \in W$ se tiene que $z \cdot w = 0$. Así cada vector en L es ortogonal a cada vector w en el plano. De hecho se tiene que

$$L = W^{\perp}$$
, $W = L^{\perp}$.

Proposición

- *i*) Un vector $v \in W^{\perp}$ si y solo si v es ortogonal a todo vector en un conjunto que genere a W.
- ii) W^{\perp} es un subespacio vectorial de V.

Demos: Ejercicio.

Teorema

Sea $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. El complemento ortogonal del espacio fila de A es de nul(A), y el complemento ortogonal del espacio columna de A es $nul(A^t)$.

$$(Fil(A))^{\perp} = nul(A)$$
 $(Col(A))^{\perp} = nul(A^t).$

Demos ...

.

Conjunto ortogonal

Definición

Si $S \subset V$, S es un **conjunto ortogonal** si todo par de vectores distintos de S son ortogonales.

Un **conjunto ortonormal** es un conjunto ortogonal S donde ||v|| = 1 para todo $v \in S$.

Ejemplos

- 1. Las bases canónicas en \mathbb{R}^n o \mathbb{C}^n son conjuntos ortonormales con respecto al producto interno canónico.
- 2. Sea $V = \mathcal{M}_{n \times n}(\mathbb{K})$, para $A = (a_{ij})$ y $B = (b_{ij})$, con el producto interno

$$\langle A,B\rangle=\sum_{i,j}a_{ij}\overline{b_{ij}},$$

Sea E^{pq} tal que la matriz que tiene un 1 en la fila p, columna q y 0 en el resto. $\{E^{pq}: p, q=1, \cdots, n\}$ es un conjunto ortonormal pues

$$\langle E^{pq}, E^{rs} \rangle = tr(E^{pq}(E^{rs})^*) = tr(E^{pq}E^{sr})\delta_{qs}tr(E^{pr}) = \delta_{qs}\delta_{pr}.$$

3. Sea V = C([0,1]) con el producto interno $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$. Sea $f_n(x) = \sqrt{2}\cos(2\pi nx)$ y $g_n(x) = \sqrt{2}\sin(2\pi nx)$. Entonces $\{1,f_1,g_1,f_2,g_2,\cdots\}$ es un conjunto infinito ortonormal o **sistema ortonormal** .

Teorema

Un conjunto ortogonal de vectores no nulos es linealmente independiente.

Demos: ...

Corolario

Si un vector w es combinación lineal de una colección ortogonal de vectores no nulos v_1, \cdots, v_m , entonces w es igual a la combinación lineal particular dada por

$$w = \sum_{j=1}^{m} \frac{\langle w, v_k \rangle}{\|v_k\|^2} v_k.$$

Observación

Si $\{v_1, \dots, v_m\}$ es un conjunto ortogonal de vectores no nulos en un espacio con producto interno de dimensión finita V, luego $m \le \dim(V)$.

Dimensión geométrica de $V \leq$ Dimensión algebraica de V.

Proceso de ortogonalización de Gram-Schmidt

Teorema

Proceso de ortogonalización de Gram-Schmidt

Sea V un espacio con producto interno y sea $\{v_1, v_2, \cdots, v_n\} \subset V$ linealmente independiente. Entonces pueden construirse vectores ortogonales $w_1, w_2, \cdots, w_n \in V$ tales que para cada $k = 1, \cdot, n$ resulte el conjunto $\{w_1, \cdots, w_k\}$ una base para el espacio generado por v_1, \cdots, v_k .

<u>Demos</u>:...

Observación

Por ejemplo para para n = 4 los vectores toman la forma

$$w_{1} = v_{1}, w_{3} = v_{3} - \frac{\langle v_{3}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1} - \frac{\langle v_{3}, w_{2} \rangle}{\|w_{2}\|^{2}} w_{2},$$

$$w_{2} = v_{2} - \frac{\langle v_{2}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1}, w_{4} = v_{4} - \frac{\langle v_{4}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1} - \frac{\langle v_{4}, w_{2} \rangle}{\|w_{2}\|^{2}} w_{2} - \frac{\langle v_{4}, w_{3} \rangle}{\|w_{3}\|^{2}} w_{3}.$$

Corolario

Todo espacio con producto interno de dimensión finita tiene una base ortonormal.

Observación

Sean V un e.v.p.i. $\dim(V)$ finita, $\mathcal{B} = \{v_1, \dots, v_n\}$ una base ordenada de V. Luego podemos definir una matriz asociada al producto interno del siguiente modo

$$G=(g_{ij})=(\langle v_i,v_j\rangle)$$

Así para $[u]_{\mathcal{B}} = [x_1, \dots, x_n]^t \ y \ [w]_{\mathcal{B}} = [y_1, \dots, y_n]^t$,

$$\langle u, w \rangle = \langle \sum_{j=1}^n x_j v_j, \sum_{j=1}^n y_j v_j \rangle = [u]_{\mathcal{B}}^t G \overline{[w]}_{\mathcal{B}}.$$

Si B es ortonormal, la matriz G = I y el producto interno queda

$$\langle u, w \rangle = \sum_{j=1}^{n} x_j \overline{y}_j.$$

Ejemplo

Consideremos $V = \mathbb{R}^3$ y los vectores $v_1 = (3,0,4)^t$, $v_2 = (-1,0,7)^t$, $v_3 = (2,9,11)^t$ en \mathbb{R}^3 con el producto interno canónico.

Aplicando el proceso de Gram-Schmidt se obtienen los vectores

$$\begin{split} w_1 &= V_1 = (3,0,4)^t, \\ w_2 &= v_2 - \frac{\langle v_2, w_1 \rangle}{\|w_1\|^2} w_1, = (-1,0,7)^t - \frac{25}{25} (3,0,4)^t = (-4,0,3)^t \text{ y} \\ w_3 &= v_3 - \frac{\langle v_3, w_1 \rangle}{\|w_1\|^2} w_1 - \frac{\langle v_3, w_2 \rangle}{\|w_2\|^2} w_2 = (2,9,11)^t - \frac{50}{25} (3,0,4)^t - \frac{25}{25} (-4,0,3)^t = (0,9,0). \\ \{w_1, w_2, w_3\} \text{ constituye una base ortogonal.} \end{split}$$

Si queremos una base ortonormal, basta dividir cada vector por su norma y obtenemos $u_1 = (\frac{3}{5}, 0, \frac{4}{5})^t$, $u_2 = (\frac{-4}{5}, 0, \frac{3}{5})^t$ y $u_3 = (0, 1, 0)^t$.

Proyección ortogonal. Mejor aproximación

Sean V un e.v.p.i. s/\mathbb{K} y $0 \neq u \in V$. Queremos descomponer $y \in V$ como

$$y = \widehat{y} + z, \quad \widehat{y} = \alpha u, \quad \langle u, z \rangle = 0.$$
 (1)

Para $\alpha \in \mathbb{K}$, sea $z = y - \alpha u$, de modo que se cumpla (1). Entonces $y - \widehat{y}$ es ortogonal a u si y sólo si

$$0 = \langle y - \alpha u, u \rangle = \langle y, u \rangle - \alpha \langle u, u \rangle,$$

i.e. sólo si

$$\alpha = \frac{\langle y, u \rangle}{\|u\|^2},$$
 $\widehat{y} = \frac{\langle y, u \rangle}{\|u\|^2}u.$

El vector \hat{y} es la **proyección ortogonal de** y **sobre** u y z es la componente de y ortogonal a u.

Observación

Proyección ortogonal de y sobre L

$$\widehat{y} = \operatorname{proy}_L y = \frac{\langle y, u \rangle}{||u||^2} u.$$

Definición

Sean $W \subseteq V$ e.v.p.i. s/\mathbb{K} y $v \in V$. Si existe $\overline{w} \in W$ tal que

$$||v - \overline{w}|| \le ||v - w|| \, \forall w \in W,$$

se dice que \overline{w} es una **mejor aproximación a** v **en** W.

Teorema

de la descomposición ortogonal

Sea W un subespacio vectorial de V espacio vectorial sobre K con producto interno y sea $v \in V$.

- ı) El vector $\overline{w} \in W$ es una mejor aproximación de v, por vectores de W si y sólo si $v \overline{w}$ es ortogonal a W.
- II) Si existe una mejor aproximación a v por vectores de W, la misma es única.
- III) Si W es de dimensión finita y $\{w_1, \dots, w_n\}$ es una base ortonormal de W, entonces el vector

$$\overline{w} = \sum_{k=1}^{n} \frac{\langle v, w_k \rangle}{\|w_k\|^2} w_k$$

es la única mejor aproximación a v por vectores de W.

Demos: ...

Proyección ortogonal

Definición

Siempre que exista el vector \overline{w} del teorema anterior se lo llama **proyección ortogonal**. Si todo vector de V tiene proyección ortogonal sobre W, la aplicación que a cada vector de V le asigna su proyección ortogonal sobre W se llama **proyección ortogonal de** V **sobre** W.

Corolario

Sean V e.v.p.i s/\mathbb{K} , $W \subseteq V$, $\dim(W)$ dimensión finita y P_W la proyección ortogonal de V sobre W. Entonces la aplicación $v \to v - P_W v$ es la proyección ortogonal de V sobre W^{\perp} .

<u>Demos</u>: ...

Ejemplo

Sean $V = \mathbb{R}^3$ con el p.i. canónico y $W = s.e.\{(3, 12, -1)\}$. Calculemos la proyección ortogonal de (-10, 2, 8) sobre W

$$\overline{w} = \frac{\langle (-10, 2, 8), (3, 12, -1) \rangle}{9 + 144 + 1} (3, 12, -1) = \frac{-14}{154} (3, 12, -1).$$

La proyección ortogonal de \mathbb{R}^3 sobre W es la transformación lineal P_W definida por

$$(x_1, x_2, x_3) \mapsto P_W(x_1, x_2, x_3) = \frac{3x_1 + 12x_2 - x_3}{154}(3, 12, -1).$$

 $rang(P_W) = 1$, luego por el teorema del rango se tiene que $dim(nul(P_W) = 2$. Además se tiene que

$$P_W(x_1, x_2, x_3) = 0 \Leftrightarrow 3x_1 + 12x_2 - x_3 = 0 \Leftrightarrow (x_1, x_2, x_3) \in W^{\perp},$$

por lo tanto $W^{\perp} = nul(P_W)$ y $\dim(W^{\perp}) = 2$.

La proyección ortogonal de V sobre W^{\perp} es la transformación lineal $I-P_W$.

Definición

Un operador lineal $T \in \mathcal{L}(V)$ se dice **idempotente** si $T^2 = T$.

Teorema

Sean V e.v.p.i s/\mathbb{K} , WV, $\dim(W)$ finita y sea P_W la proyección ortogonal de V sobre W. Entonces P_W es una transformación lineal idempotente de V sobre W, $W^{\perp} = nul(P_W)$ y $V = W \oplus W^{\perp}$.

Demos

Corolario

Bajo las condiciones del teorema, $I-P_W$ es la proyección ortogonal de V sobre W^\perp , es una transformación lineal idempotente de V en W^\perp con espacio nulo igual a W.

Demos: ...

Corolario

Desigualdad de Bessel

Sea $\{v_1, \dots, v_n\}$ un conjunto ortogonal de vectores no nulos en un espacio con producto interno V. Sea $u \in V$, entonces

$$\sum_{k=1}^{n} \frac{|\langle u, v_k \rangle|^2}{\|v_k\|^2} \le \|u\|^2,$$

la igualdad vale si y solo si

$$u = \sum_{k=1}^{n} \frac{\langle u, v_k \rangle}{\|v_k\|^2} v_k.$$

Demos: ...