

# **Deduktives Lernen**

Prof. Dr.-Ing. Rüdiger Dillmann

Prof. Dr.-Ing. J. Marius Zöllner

Eine Definition Lernen allgemeiner Problemlösungen durch Beobachtung und Analyse Lösungen eines speziellen Problems



"Hey! Look what Zog do!"

(drawn by Gary Larson)



Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



Universität Karlsruhe (TH)
Forschungsuniversität • gegründet 1825

### **Deduktives Lernen: Übersicht**



- Deduktive Lernverfahren: Motivation und Einführung (3-7)
- Erklärungsbasiertes Lernen (EBL)
  - Prinzip (8–10)
  - Mitchell's EBG als Formalisierung (11–16)
  - Diskussion EBL (17–24)
  - Anwendung: STRIPS (25–31)
- Bewertung Deduktives Lernen (32–33)
- Hybride Lernverfahren (34-41)

#### **Deduktion**



- Deduktion = "Ableitung"
- Eigenschaften der Lernverfahren
  - Nutzung vorhandenen Wissens
  - Neuformulierung vorhandenen Wissens
  - Explizite Darstellung implizit vorhandenen Wissens
- Beispiele
  - Modus Ponens:  $\frac{A, A \rightarrow B}{B}$
  - Reduktion abstrakter auf berechenbare Größen

#### **Deduktive Lernverfahren**



- Deduktive / Analytische Lernverfahren benutzen hauptsächlich vorhandenes Hintergrundwissen und benötigen wenige oder gar keine Lernbeispiele
- Gegensatz: Induktive / Empirische Lernverfahren

#### **Motivation: Schach-Gabel**







#### Motivation: Schach-Gabel II



- Lernziel:
  - Erkennen von Situationen, bei denen der König sowie eine wertvolle Figur gleichzeitig bedroht werden.
- Für Schachspiel reichen normalerweise:
  - Zugregeln für Figuren
  - Spiel ist verloren, wenn König geschlagen wird
- Suchraum ist zu groß
- Lernen relevanterSituationen auf Basis von Hintergrundwissen



#### Motivation: Schach-Gabel III



- Induktiv: extrem viele Beispiele notwendig.
- Mensch ist wesentlich effektiver! Ein paar Beispiele reichen.
- Extrahiertes Wissen:
  - Wenn König und Turm gleichzeitig bedroht sind
  - König muss bewegt werden
  - Turm kann geschlagen werden
- Bereichstheorie:
  - Mögliche Züge im Schach
  - Spiel wird verloren, wenn König geschlagen wird
- Bereichstheorie erlaubt, die wesentlichen Merkmale zu extrahieren



# Was ist Erklärungsbasiertes Lernen? I



"The key insight behind explanation-based generalization is that it is possible to form a justified generalization of a single positive training example provided the learning system is endowed with some explanatory capabilities. In particular, the system must be able to explain to itself why the training example is an example of the concept under study. Thus, the generalizer is presumed to possess a definition of the concept under study as well as domain knowledge for constructing the required explanation."

Mitchell et al.: [2], S. 49



# Was ist Erklärungsbasiertes Lernen? II



#### Gegeben:

- Zielkonzept: Eine Beschreibung des zu lernenden Konzepts (die nicht das Operationalitätskriterium erfüllt).
- Trainingsbeispiel: Ein Beispiel für das Zielkonzept
- Bereichstheorie (engl. Domain Theory): Regeln und Fakten, die erklären, warum das Trainingsbeispiel ein Beispiel für das Zielkonzept ist.
- Operationalitäts- (Anwendbarkeits-) Kriterium: Ein Prädikat über Konzeptbeschreibungen, das die Form spezifiziert, in der erlernte Beschreibungen vorliegen müssen.

#### Gesucht:

 Eine Generalisierung des Trainingsbeispiels, die eine hinreichende Definition des Zielkonzeptes darstellt und das Operationalitätskriterium erfüllt.



# Erklärungsbasierte Generalisierung I (EBG)



- Ziel: Trainingsbeispiel ←→ Generalisierung
- Zweischritt-Verfahren für jedes positive Beispiel:
  - Explain: Finden einer Erklärung
  - Generalize: Generalisierung der Erklärung

Formalisierung des Erklärungsbasierten Lernens durch Mitchell et.al. [2] Andere Formalisierungen u.a. durch DeJong/Mooney [3]



# **EBG**–Beispiel



- Zielkonzept: robust (x)
- Trainingsbeispiele:
  - robot(Num5), r2d2 (Num5), age(Num5, 5), manufacturer(Num5, GR) ...
- Bereichstheorie:
  - $\blacksquare$  fixes(u, u)  $\rightarrow$  robust(u)
  - **sees**  $(x, y) \land habile(x) \rightarrow fixes(x, y)$
  - ightharpoonup robot(w) ightharpoonup sees(w, w)
  - $\blacksquare$  r2d2 (x)  $\rightarrow$  habile (x), c3po (x)  $\rightarrow$  habile(x)
- Operationalitätskriterium:
  - Das Zielkonzept ist beschrieben in Termen der Beispielbeschreibung oder einfach auswertbarer Prädikate aus der Bereichstheorie (z.B. less (x, y))



# Erklärungsbasierte Generalisierung II



#### Explain:

- Konstruiere in Termen der Bereichstheorie eine Erklärung, die zeigt, wie das Trainingsbeispiel die Definition des Zielkonzeptes erfüllt.
- Konstruiere diese Erklärung so, dass jeder Ast der Erklärungsstruktur in einem Ausdruck endet, der das Operationalitätskriterium erfüllt.

#### Generalize:

■ Bestimme hinreichende Bedingungen, unter denen die oben gefundene Erklärungsstruktur gültig ist und formuliere diese Kriterien in Termen, die das Operationalitätskriterium erfüllen.



# EBG-Beispiel: 1. Schritt: Explain





# Erklärungsbasierte Generalisierung II



#### Explain:

- Konstruiere in Termen der Bereichstheorie eine Erklärung, die zeigt, wie das Trainingsbeispiel die Definition des Zielkonzeptes erfüllt.
- Konstruiere diese Erklärung so, dass jeder Ast der Erklärungsstruktur in einem Ausdruck endet, der das Operationalitätskriterium erfüllt.

#### Generalize:

■ Bestimme hinreichende Bedingungen, unter denen die oben gefundene Erklärungsstruktur gültig ist und formuliere diese Kriterien in Termen, die das Operationalitätskriterium erfüllen.



# EBG-Beispiel: 2. Schritt: Generalize





# Was ist Erklärungsbasiertes Lernen? III



- Prozess, der implizites Wissen in explizites umwandelt
- Für jedes positive Trainingsbeispiel wird eine Generalisierung erstellt.
- Warum EBL?
  - Analogien zur menschlichen Wissensverarbeitung
  - Biasproblematik bei induktivem Lernen
- Wesentlicher Aspekt: Speedup-Learning



# **Erklärungsbasierte Generalisierung III**





# **EBL: Hintergrundwissen**



- Voraussetzungen:
  - Vollständigkeit
  - Korrektheit / Konsistenz
  - Anwendbarkeit
- Problemfälle
  - Erklärung nicht möglich oder nicht berechenbar
  - Inkonsistente (Beispiel und Gegenbeispiel) oder multiple Erklärungen
- Wie soll mit Hintergrundwissen / Bereichstheorien umgegangen werden, die die Anforderungen nicht erfüllen?
  - Approximierungen (Anahme "etwas sei wahr / falsch")
  - Explorierung



# EBL: Notwendigkeit von Beispielen



- EBL-System kann Beispiel erklären. Kann es damit auch Beispiele selbst erzeugen ?
  - In manchen Bereichen gilt nicht
    - Erklärungsfähigkeit => Generierungsfähigkeit
      - (z.B. NP-vollständige Probleme)
- Beispiele dienen als Fingerzeige
  - ohne Beispiele ist Suche im Bereichswissen und Aufbau der Erklärungsstruktur komplexer.
- Vorgegebene Beispiele können als "typisch" ausgewählt werden. Diese Auswahl erfordert Wissen über das Zielkonzept, das i.a. nicht im System enthalten ist.



# EBL: Wird tatsächlich gelernt?



Wdh. aus VL 1: Definition Maschinelles Lernen

#### **Definition:**

Ein System lernt aus Erfahrung E in Hinblick auf eine Klasse von Aufgaben T und einem Performanzmaß P, wenn seine Leistungen bei Aufgaben aus T gemessen mit P durch Erfahrung aus E steigt.

#### Beispiel: Lernen Schach zu spielen

T = Schachspielen

P = Prozent der gewonnenen Spiele

E = Spiele gegen sich selbst



# EBL: Wird tatsächlich gelernt?



- Wird Wissen erlernt, das nicht bereits im Hintergrundwissen enthalten ist ("knowledge-level learning")?
- EBG/EBL verändert die "deduktive Hülle" der Wissensbasis NICHT.
  - ⇒ Unbegrenzte Ressourcen vorausgesetzt wird nichts neues erlernt.
- Aber: In der Praxis sind Zeit/Rechenleistung begrenzt.
- Erst durch Makros/Generalisierung können manche Ziele erreicht/Aufgaben durchgeführt werden.
  - Unter diesen Voraussetzungen wird tatsächlich "gelernt".
  - sog. Speedup-Learning



# EBL: Ressourcenaufwand für das Lernen neuer Regeln



- Hardware (Parallelrechner, paralleles "Matchen")
  - Keine echte "Lösung", Lösung wird "vertagt"
- Indizierung von Regeln/Makrooperatoren
  - Keine Reduzierung der Regelmenge
- Vermutlich bester Ansatz:
  - Beschränkung der Aufnahme neuer Regeln bzw. Makrooperatoren
  - Messen der "Nützlichkeit" neuer Regeln/ Operatoren (bzgl. neu zu lösender Probleme)
  - Ggfs. Lösung von Beispielproblemen zur Unterstützung dieser "Messungen"
  - Erhalten oder Verwerfen der Regel, je nach Ergebnis



# EBL: Nützlichkeit von Regeln



- Nützlichkeit einer einzelnen gelernten Regel bzw. eines Makrooperators
- Nützlichkeit der Kombination aller Regeln (MOs) (gelernt & vorgegeben)



Umwandlung des Suchraums durch Makrooperatoren

Erhöhte Redundanz, erhöhter Aufwand bei Matching

Worst Case: Jeder Pfad wird als nützlich angesehen



### Vorteile von EBL



- Gelerntes Wissen ist korrekt
  - Korrektheit des ursprünglichen Wissens vorausgesetzt
- Kein (impliziter) induktiver Bias
- Stattdessen explizite Formulierung der Domänentheorie
  - Ausnutzung vorhandenen domänenspezifischen Wissens
  - Bessere Überprüfbarkeit
  - Domänenunabhängiger, da Bereichswissen separat repräsentiert

# **Anwendungen von EBL**



- Erzeugung von Makrooperatoren (automatisches Planen)
  - STRIPS (STanford Resarch Institute Problem Solver)
  - SOAR (Symbolic Cognitive Architecture, CMU)
- Lernen, Suche zu kontrollieren
  - Effektivitätssteigerung beim Planen, besonders bei großen Zustandsräumen
  - PRODIGY (Lernen von Planungsstrategien, CMU)
    - Bewertung von Regeln
    - Einbeziehung von negativen Beispielen



# Erzeugung von Makrooperatoren



#### Gegeben:

- Wissen über (Elementar-) Operatoren in einer Problemlösungsdomäne
- Erfahrung mit gültigen Problemlösungen in der Domäne

#### Gesucht:

 Zusammengefasste Operatorsequenzen, welche die Kosten für das Finden von Problemlösungswissen reduzieren

# STRIPS: Makrooperatoren I



# Planungsaufgabe:

Finde eine Operatorsequenz, die einen Startzustand S in einen Zielzustand T überführt.

#### Beispiel:

S = INROOM(ROBOT,ROOM1) & INROOM(BOX1,ROOM2)

T = INROOM(ROBOT, ROOM1) & INROOM(BOX1,ROOM1)





# STRIPS: Makrooperatoren II



- STRIPS Operatoren sind wie folgt beschrieben:
  - Vorbedingung (Precondition)
  - Liste zu löschender Aussagen (Delete list)
  - Liste hinzuzufügender Aussagen (Add list)

# STRIPS: Makrooperatoren III





Operator:

GOTHROUGH(d,r1,r2)

PC: INROOM(ROBOT,r1) &

CONNECTS(d,r1,r2)

DL: INROOM(ROBOT,r1)

AL: INROOM(ROBOT,r2)

Operator: PUSHTHROUGH(b,d,r1,r2)

PC: INROOM(ROBOT,r1) & CONNECT(d,r1,r2)

& INROOM(b,r1)

DL: INROOM(ROBOT,r1), INROOM(b,r1)

AL: INROOM(ROBOT,r2), INROOM(b,r2)



# STRIPS: Makrooperatoren IV



- Neuer Makrooperator TRANSFER
- Holen einer Box aus einem benachbarten Raum

#### TRANSFER(b,r1,r2):

PC: INROOM(ROBOT,r1) & CONNECTS(d,r1,r2) &

INROOM(b,r2) & CONNECTS(d,r2,r1)

AL: INROOM(b,r1)

DL: INROOM(b,r2)



# STRIPS: Zusammenfassung



- Vorgehensweise:
- Explain:
  - Aufbau der Makrooperatoren aus Elementaroperatoren
- Generalisierung:
  - Ersetze Konstante durch Variable
  - Stelle Verbindungen zwischen Variablen her (auf Basis von Operator-Beziehungen und Vorbedingungen)
- Operationalisierung:
  - Explizite Angabe der Vorbedingungen für Anwendung
  - Indizierung über Vorbedingungen
- Erweiterung:
  - Probabilistische STRIPS mehrere Zielzustände mit einer gewissen Wahrscheinlichkeit erreichbar [6]



# **Einordnung EBL**



Typ der Inferenz
Ebenen des Lernens
Lernvorgang
Beispielgebung
Umfang der Beispiele
Hintergrundwissen



#### Deduktives vs. Induktives Lernen I



|           | Induktives Lernen                                                                            | Deduktives Lernen                                           |
|-----------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Ziel      | <ul> <li>Hypothese passt zu den<br/>Daten</li> </ul>                                         | <ul> <li>Hypothese passt zur<br/>Bereichstheorie</li> </ul> |
| Vorteile  | <ul> <li>wenig a-priori Wissen</li> </ul>                                                    | <ul> <li>wenig Beispiele<br/>notwendig</li> </ul>           |
| Nachteile | <ul> <li>schlecht bei geringen Datenmengen</li> <li>schlecht bei inkorrektem Bias</li> </ul> | schlecht, falls imperfekte     Bereichstheorie              |

#### Deduktives vs. Induktives Lernen II



- Deduktive Methoden:
  - Durch Logik gerechtfertigte Hypothesen
- Induktive Methoden:
  - Statistisch gerechtfertigte Hypothesen



# Kombination induktiver und deduktiver Lernmethoden



- Reale Lernprobleme: zwischen induktiv und deduktiv
  - Hintergrundwissen vorhanden, aber nicht beliebig viel
  - Hintergrundwissen korrekt?
  - Trainingsdaten in begrenzter Menge
  - Trainingsdaten korrekt?

|                | Induktives Lernen                         | Deduktives Lernen                       |
|----------------|-------------------------------------------|-----------------------------------------|
| Ziel           | Hypothese passt zu Daten                  | Hypothese passt zu<br>Hintergrundwissen |
| Rechtfertigung | Statistische Inferenz                     | Deduktive Inferenz                      |
| Vorteile       | Benötigt wenig Vorwissen                  | Lernt aus spärlichen Daten              |
| Probleme       | Spärliche Daten, inkorrekt gewählter Bias | Unvollständiges<br>Hintergrundwissen    |

# Anforderungen an hybride Verfahren



- Hybride Verfahren sollten ...
  - Ohne Hintergrundwissen so effektiv lernen wie rein induktive Verfahren
  - Mit perfektem Hintergrundwissen so effektiv lernen wie rein deduktive Verfahren
  - Mit unvollständigem Hintergrundwissen und Trainingsdaten besser als rein induktive und rein deduktive Verfahren sein
  - Mit unbekannter Menge von Fehlern in Trainingsdaten zurechtkommen
  - Mit unbekannter Menge von Fehlern in Hintergrundwissen zurechtkommen
- Realität: Wunschliste nur teilweise realisierbar



# **Definition Lernproblem**



- Gegeben:
  - Menge von Trainingsbeispielen D, möglicherweise mit Fehlern
  - Bereichstheorie B, möglicherweise fehlerhaft
  - Hypothesenraum H
- Ziel: Finde Hypothese h, die am besten sowohl zu Trainingsbeispielen als auch zu Bereichstheorie passt.
- Entscheidung über beste Hypothese z.B. mittels

$$\arg\min_{h\in H} k_D E_D(h) + k_B E_B(h)$$

- E<sub>D</sub>, E<sub>B</sub>: Fehlerrate bezüglich Trainingsdaten/Bereichstheorie
- k<sub>D</sub>, k<sub>B</sub>: relatives Gewicht für Trainingsdaten/Bereichstheorie
- Frage: Wie k<sub>D</sub>, k<sub>B</sub> wählen?



# Ansätze zur Konstruktion hybrider Verfahren



- Lernen als Suche im Hypothesenraum
  - Hypothesenraum H
  - Initiale Hypothese h<sub>0</sub>
  - Suchoperatoren O
  - Zielkriterium G
- Verschiedene Möglichkeiten zur Nutzung von Vorwissen um induktive Suche zu verfeinern
- Verwende Vorwissen
  - um initiale Hypothese h<sub>0</sub> abzuleiten

- Bsp. KBANN
- um Zielkriterium G der Suche zu ändern
- um mögliche Suchschritte zu ändern



#### **KBANN: Idee**



- Initialisiere Neuronales Netz mittels Bereichstheorie
- Verfeinere initiales Netz durch Backpropagation und Trainingsbeispiele
- Verwendung:
  - Bereichstheorie korrekt → alle Beispiele korrekt klassifiziert
  - Beispiele inkorrekt klassifiziert → Fehler in Bereichstheorie, induktive Verfeinerung durch Backpropagation
- Intuition:
  - Sogar wenn Bereichstheorie nur annähernd korrekt,
     Starthypothese besser als zufällige Initialisierung



#### **KBANN: Details**



- Gegeben:
  - Menge von Trainingsbeispielen
  - Bereichstheorie aus nicht-rekursiven Prolog-ähnlichen logischen Ausdrücken
- Gesucht:
  - NN das zu Trainingsdaten passt, angelehnt an Bereichstheorie
- Verfahren in 2 Schritten
  - 1) Aufbau eines initialen NNs äquivalent zur Bereichstheorie
  - 2) Verfeinerung des initialen NNs



141 151

# **KBANN: Algorithmus**



# Algorithmus

- 1. Pro Instanzattribut ein Netz-Input
- Für jede Klausel der Bereichstheorie ein Neuron wie folgt einfügen:
  - Eingang mit geprüften Attributen verknüpfen, verwende Gewicht Wfür nicht-negierte Attribute und –W für negierte
  - Setze Schwellwert auf -(n 0.5)W(mit n = Anzahl der nicht-negiertenBedingungsteile)
- 3. Zusätzliche Verbindungen, um jedes Element auf Schicht i mit jedem auf Schicht i+1 zu verbinden, zufällige kleine Gewichte zuweisen
- 4. Backpropagation-Algorithmus mit den Trainingsbeispielen auf initiales Netz anwenden

Beispiel: 
$$T \leftarrow \neg L, M, N$$
  
 $L \leftarrow A, \neg B$   
 $M \leftarrow B, C$   
 $N \leftarrow A, \neg B, \neg D$ 



# **KBANN: Anwendungen**



Lernen von physikalischen Objektenklassen

[4]

- Instanzen beschrieben durch Angaben über Material
- Beispielaufgabe: Zielkonzept Tasse lernen
- signifikante Verfeinerung des initialen Netzes durch Backpropagation-Algorithmus
- Erkennung biologischer Konzepte in DNS-Sequenzen
- [5]

- Gen-Sequenzen repräsentiert als Strings
- gesucht: bestimmte genetische Regionen (Promotoren)
- Bereichswissen aus biol. Forschung extrahiert
- KBANNs zeigen gute Resultate

# Was wir heute gemacht haben...



- Einführung / Motivation des Deduktiven Lernens
- Explanation Based Learning
- Explanation Based Generalization mit Beispiel
  - Anwendung: STRIPS
- Hybride Verfahren
  - Beispiel KBANN

