Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Lineare Algebra I

Blatt 2

Abgabe: 23.11.2019, 10 Uhr Gruppennummer angeben!

Aufgabe 1 (6 Punkte).

In einer Gruppe G definiere folgende Relation:

$$g_1 \sim g_2 \iff \exists h \in G(hg_1h^{-1} = g_2).$$

- (a) Zeige, dass die obige Relation eine Äquivalenzrelation auf G ist.
- (b) Beschreibe die Äquivalenzklasse des neutralen Elementes.
- (c) In welcher Äquivalenzklasse (bezüglich g) liegt das Inverse von hgh^{-1} ? Und das Element $(hgh^{-1})^n$, für n aus \mathbb{N} ?
- (d) Beschreibe die Klasse jedes Elementes der Gruppen (\mathbb{R}^* ,) und (\mathbb{Z} , +).

Aufgabe 2 (4 Punkte).

Zeige induktiv über die Kardinalität der endlichen Menge X, dass jede injektive Abbildung $f:X\to X$ surjektiv sein muss.

Aufgabe 3 (5 Punkte).

Wir betrachten die in Aufgabe 1 definierte Relation \sim in der Gruppe S_4 . Beschreibe die Äquivalenzklasse des Zyklus (1 2 3).

Aufgabe 4 (5 Punkte).

Sei R ein kommutativer Ring mit Eins.

- (a) Zeige, dass die Menge $\mathcal{M}_{2\times 2}(R)$ quadratischer 2×2 -Matrizen mit Einträgen aus R ein Ring mit Eins bildet. Ist dieser Ring kommutativ?
- (b) Wenn R positive Charakteristik hat, was ist die Charakteristik von $\mathcal{M}_{2\times 2}(R)$?

ABGABE IN ILIAS ALS EINE EINZIGE PDF-DATEI EINREICHEN.