Electricity and Magnetism

- Physics 259 L02
 - •Lecture 26

Chapter 24.4 and 24.5:

Potential due to an electric dipole Potential due to a continuous charge distribution

Last time

- Electric potential energy of a collection of charges
- Interpreting equipotential surfaces
- · Equipotential surfaces: visualizing electric potential

This time

- Potential due to an electric dipole
- Potential due to a continuous charge distribution

Starting from the end

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesl

The whole story is:

... place charge q' at the point as a probe and measure the potential energy $U_{q'+q}$.

Electric force on q' from q

Then the electric field of q is

$$\vec{F}_{qq'} = \frac{1}{4\pi\varepsilon_0} \frac{qq}{r^2} \hat{r}$$

$$\vec{E} = \frac{\vec{F}_{qq'}}{q'} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}$$

Potential energy of q and q'

Then the potential of q is

$$U_{q'+q} = \frac{1}{4\rho e_0} \frac{qq'}{r}$$

$$V = \frac{U_{q'+q}}{q'} = \frac{1}{4\rho e_0} \frac{q}{r}$$

Electric Potential

source charges

$$V \equiv rac{U_{q+sources}}{q}$$

$$U_{q+sources} = qV$$

Potential Gradient -- E and V

Note: E is always \perp equipotential lines

$$\vec{E} = -\vec{\nabla}V = -\frac{\partial V}{\partial x}\hat{i} - \frac{\partial V}{\partial y}\hat{j} - \frac{\partial V}{\partial z}\hat{k}$$

In 3 dimensions we must take 3 derivatives, then add them **VECTORIALLY**

Alternatively, the potential is found from the electric field integrated along any path connecting points A and B

$$V_{AB} = \int_{A}^{B} \vec{E} \cdot ds$$

Equipotential Surfaces

- ✓ Adjacent points with the same electric potential from an equipotential surface
- ✓ No net work W is done on a charged particle by an electric field when particle moves on the same equipotential surface

$$W = -\Delta U = -q \, \Delta V = -q(V_f - V_i).$$

Equipotential Surfaces

(a) A single positive charge

Note – E is always ⊥ V!!

Conducting sphere + sheet

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

Calculating Potential from the Field

Differential work dW done on a particle by force F

$$dW = \vec{F}.d\vec{s} = q\vec{E}.d\vec{s} \rightarrow W = q\int_{i}^{f} \vec{E}.d\vec{s}$$

$$\mathbf{\&} \quad W = -\Delta U = -q \, \Delta V = -q(V_f - V_i).$$

$$V = -\int_i^f \vec{E} \cdot d\vec{s}.$$

For uniform electric field

$$\Delta V = -E \, \Delta x.$$

Problem 24.02 of textbook: Finding potential change from the electric field

Find the potential difference v_f-v_i by moving a positive test charge q from I to f along the path shown.

Electric potential of a dipole at arbitrary point p

$$\Rightarrow V = \frac{q}{4\pi\epsilon_0} \frac{r_- - r_+}{r_+}$$

$$rataval dipoles \Rightarrow$$

$$r >> d => r_- = r_+ = r$$

$$\Rightarrow$$
 $r = r^2$ & $r - r^+ \Rightarrow$

 Go through "Appendix 1-chapter 24" in D2L (different approach)

Electric potential of a line of charge at point p

Thin nonconducting rod of length L with uniform positive charge with charge density λ .

Find electric potential V due to the rod at p, a perpendicular distance d from the left end of the rod.

This section we talked about:

Chapter 24.4 and 24.5

See you on Wednesday

