

Lecture 5.3

Multiple Random Variables: Independence of Random Variables

Independence of random variables

Recall: Events A and B are independent iff $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Two random variables X and Y are said to be **independent** if and only if

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \in x) \ \mathbb{P}(Y \le y), \quad \forall (x, y) \in \mathbb{R}^2.$$

In other words, for all $x \in \mathbb{R}$ and $y \in \mathbb{R}$, we have

$$F_{X,Y}(x,y) = F_X(x)F_Y(y).$$

More generally, random variables X_1, X_2, \dots, X_n with joint cdf F are **independent** if and only if

$$F(x_1, x_2, \dots, x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\dots F_{X_n}(x_n), \quad \forall (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$

Note: The above definitions are valid for all random variables, i.e., discrete, continuous, combination, and beyond.

Independence of discrete random variables

We can also easily check the independence for <u>discrete</u> random variables using the their probability mass functions.

Discrete random variables X_1, \ldots, X_n with joint pmf f are **independent** if and only if

$$f(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n),\quad \forall (x_1,x_2,\ldots,x_n)\in\mathbb{R}^n,$$

where f_{X_i} is the marginal pmf of X_i .

Example

Consider the joint probability mass function of (X, Y) below. Both X and Y only take the values $\{0, 1, 2\}$.

			у		
		0	1	2	
	0	0	<u>1</u>	0	1/4
Х	1	$\frac{1}{4}$	$\frac{1}{4}$	0	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{4} \end{array}$
	2	0	0	$\frac{1}{4}$	$\frac{1}{4}$
		1/4	1/2	1/4	

Are the event $\{X = 1\}$ and $\{Y = 1\}$ independent? Yes.

Are the random variables X and Y independent? No.

Independence of continuous random variables

Similarly, we can easily check the independence for <u>continuous</u> random variables using their probability density functions (if they exist).

Random variables X_1, \ldots, X_n with joint pdf f are **independent** if and only if

$$f(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n),\quad \forall (x_1,x_2,\ldots,x_n)\in\mathbb{R}^n,$$

where the f_{X_i} is the marginal pdf of X_i .

Example

Consider the joint probability density function of (X, Y) below.

$$f_{X,Y}(x,y) = \begin{cases} \frac{6}{7}(1+x^2y), & (x,y) \in [0,1] \times [0,1] \\ 0, & \text{else.} \end{cases}$$

Are the random variables X and Y independent?

Example

We had

$$f_X(x) = \begin{cases} \frac{6}{7}(1+x^2/2), & x \in [0,1], \\ 0, & \text{else.} \end{cases}$$

Similarly, for $x \in [0, 1]$,

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_0^1 \frac{6}{7} (1 + x^2 y) dx = \frac{6}{7} (1 + \frac{y}{3}),$$

SO,

$$f_Y(y) = \begin{cases} \frac{6}{7}(1+y/3), & y \in [0,1], \\ 0, & \text{else.} \end{cases}$$

But for any $(x,y) \in [0,1]^2$, $f_{X,Y}(x,y) = \frac{6}{7}(1+x^2y) \neq f_X(x)f_Y(y)$.

Functions of Independent Random Variables

Suppose two random variable X and Y are are independent. Then, h(X) and g(Y) are independent no matter what the functions h and g are.

The event $\{h(X) \le t\}$ can always be written as $\{X \in A\}$, where $A = \{x : h(x) \le t\}$. Indeed,

$$\{\omega \in \Omega \mid h(X(\omega)) \le t\} = \{\omega \in \Omega \mid X(\omega) \in \{x \in \mathbb{R} \mid h(x) \le t\}\}.$$

Similarly, for any u, the event $\{g(Y) \le u\}$ can be written as $\{Y \in B\}$, where $B = \{y : g(y) \le u\}$. So,

$$\mathbb{P}(h(X) \le t, h(Y) \le u) = \mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$
$$= \mathbb{P}(h(X) \le t)\mathbb{P}(h(Y) \le u).$$

The independence of h(X) and g(Y) follows simply from the independence of X and Y.