Das Geiger-Müller-Zählrohr

Leander Flottau leander.flottau@tu-dortmund.de

 ${\it Jan~Gaschina} \\ {\it jan.gaschina@tu-dortmund.de}$

Durchführung: 19.01.2021 Abgabe: 26.01.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung			
2	Theorie 2.1 Aufbau	5 5 6 6		
3	Versuchsdurchführung 3.1 Versuchsaufbau 3.2 Messung der Charakteristik 3.3 Messung der Totzeit 3.3.1 Oszillograph 3.3.2 Messung mithilfe der zwei-Quellen-Methode	7 7 7		
4	Auswertung 4.1 Zählrohr Charakterristik 4.2 Totzeit des Zählrohres 4.2.1 Totzeitbestimmung mit dem Oszilloskop 4.2.2 Totzeitbestimmung mit der Zwei-Quellen-Methode 4.3 Ladung pro einfallendem Teilchen	10 10		
5	Diskussion	14		
6	Literatur	14		
7	Anhang	14		

1 Zielsetzung

In diesem Experiment sollen Strahlungsintensitäte mithilfe eines Geiger-Müller-Zählrohres bestimmt werden. Aus diesen lassen sich Rückschlüsse auf die Kenndaten des Zählrohres ziehen.

2 Theorie

2.1 Aufbau

Zählrohre lösen einen elektrischen Impuls aus, wenn sie ionisierender Strahlung ausgesetzt sind, durch deren Messung sich die Strahlungsintensität bestimmen lässt. Ein Zählrohr im Allgemeinen besteht aus einer dünnen drahtförmigen Anode des Radius r_a und einer Zylinderförmigen Kathode mit Radius r_b , deren Zwischenraum mit einem Gas gefüllt ist. Diese bilden durch Anlegen einer äußeren Spannung U einen zylindrischen Kondensator mit einem radialsymmetrischen elektrischen Feld der Feldstärke

$$E = \frac{U}{r \ln(r_b/r_a)}$$

im Abstand r von der zentralen Achse.

Abbildung 1: Aufbau eines Geiger-Müller-Zählrohres Quelle: 1. TU-Dortmund, V703 Das Geiger-Müller-Zählrohr

2.2 Funktionsweise

Wenn Strahlung durch das Zählrohrfenster einfällt, wird das Strahlungsteilchen Atome im Gas ionisieren. Da für eine Ionisation in der Regel ca.26 eV Energie aufgebracht werden muss, und die Teilchenenergie deutlich Größer ist, können mehrere Ionisationen erfolgen. Das nachfolgende Verhalten der freien Elektronen variirt qualitativ stark in Abhängigkeit von der angelegten Spannung.

Im Bereich geringer Spannung ist die Beschleunigung der Elektronen so gering, dass sie mit den Ionen rekombinieren, wodurch nur ein geringer Anteil der Elektronen die Anode erreicht.

Wenn die Spannung ausreichend erhöht wird, ist keine Rekombination der Elektronen

Abbildung 2: Arbeitsbereiche verschiedener Zählrohrtypen Quelle: 1. TU-Dortmund, V703 Das Geiger-Müller-Zählrohr

mehr möglich, sodass alle freien Elektronen die Anode erreichen. Der resultierende Strom ist proportional zu Intensität und Energie der einfallenden Strahlung. Ein solches Zählrohr wird Ionisationskammer genannt, und funktioniert aufgrund der geringen Stärke des Ionisationsstroms nur bei Strahlung hoher Intensität.

Bei weiterer Erhöhung der Kondensatorspannung nehmen die freien Elektronen durch das elektrische Feld genug Energie auf um ihrerseits wiederum Atome zu Ionisieren und dadurch entlang des Feldes eine sogenannte Townsend-Lawine auszulösen. Dies führt zu einem messbaren Ladungsimpuls. Die gesammelte Ladung Q ist proportional zur Strahlungsenergie, weshalb dieser Bereich als Proportionalitätsbereich bezeichnet wird. Im letzten und zugleich höchsten praktikablen Spannungsbereich ist die Energie der Elektronen so groß, dass sich die Lawinen durch UV-Quanten nicht nur entlang des Feldes, sondern im gesamten Zählrohr ausbreiten. Der resultierende Spannungsstoß lässt keine Rückschlüsse mehr auf die ursprüngliche Teilchenergie zu, allerdings werden bereits sehr geringe Strahlungsintensitäten registriert. Zählrohre, welche in diesem Bereich arbeiten, werden Geiger-Müller-Zählrohr genannt.

Abbildung 3: Tot- und Erholungszeit eines Geiger-Müller-Zählrohres Quelle: 1. TU-Dortmund, V703 Das Geiger-Müller-Zählrohr

2.3 Tot- und Erholungszeit

Die positiv geladenen Ionen, die bei Strahlungseinfall entstehen, bewegen sich aufgrund der hohen Masse deutlich langsamer zur Kathode. Sie erzeugen für eine begrentzte Zeit T eine positive Raumladung, die dem äußeren elektrischen Feld entgegenwirkt. Da in dieser Zeit die elektrische Feldstärke in drahtnähe sehr gering ist, können keine Elektronen-lawinen, und somit keine Impulse ausgelöst werden, weshalb diese Zeit als Totzeit bezeichnet wird, in der keine Strahlung registriert wird. Auf die Totzeit folgt ein Zeitraum in der sich die Feldstärke mit Abwandern der positiven Ladungsträger wieder aufbaut. Erst nach Abschluss dieser Erholungszeit T_e haben ausgelöste Ladungsimpulse wieder ihre ursprüngliche Höhe.

2.4 Nachentladungen

Wenn die Ionen den Zählrohrmantel erreichen, sind sie durch ihre hohe Energie in der Lage, Elektronen aus dem Metall abzulösen. Diese freien Elektronen sind in der Lage nach Beschleunigung durch das elektrische Feld selbst Ionisationsakte durchzuführen und eine Elektronenlawine auszulösen. Diese Nachentladungen lösen Impulse aus, die ionisierende Strahlung vortäuschen und dadurch Intensitätsmessungen verfälschen können. Daher werden sie durch Zusatz von Alkoholdämpfen zum Zählrohrgas größtenteils unterbunden. Die Alkoholmoleküle werden ionisiert und ihre Energie wird durch Anregung von Schwingungen verbraucht, sodass keine Nachentladungen entstehen.

2.5 Charakeristik

Jedes Zählrohr besitzt eine bestimmte Charakteristik, die die detektierte Teilchenzahl in Abhängigkeit von der angelegten Spannung beschreibt (bei konstanter Strahlungsintensität). Ab dem Spannungswert U_e kann das Zählrohr akkurat arbeiten. An diesen Wert schließt sich ein Spannungsintervall an in dem das Zählrohr arbeitet, und das die Form eines Plateaus annimmt. Bei einem idealen Zählrohr weist das Plateau eine perfekte ebenheit, also keinerlei Steigung auf, es wird also unabhängig von der angelegten Spannung der gleich Teilchenwert registriert. Im realen Fall hat das Plateau immer eine

leichte Steigung, da höhere Spannungswerte öfter zu vereinzelten Nachentladungen führen. Wenn die Spannung über den optimalen Arbeitsbereich hinaus erhöht wird, führen die Nachentladungen zu einer Dauerentladung, die das Zählrohr früher oder später zerstört.

2.6 Ansprechrate

Ein weiterer essentieller Kennnwert für Geiger-Müller-Zählrohre ist die sogenannte Ansprechrate, also die Wahrscheinlichkeit, mit der das Zählrohr auf Strahlung einer bestimmten Form reagiert. α und β -Strahlung haben ein so hohes Ionisationsvermögen, dass das Zählrohr sie in nahezu 100% der Fälle registriert. Um sicherzugehen, dass die Strahlung das Zählrohrgas erreicht, wird für das Zählrohrfenster extrem dünne Mylar-Folie mit geringer Dichte verwendet, sodass selbst α -Teilchen die Abschirmung durchdringen können. Im Gegensatz zu α bzw. β -Strahlung interagieren hochenergetische γ -Quanten nur äußerst limmitiert mit Materie. Daher liegt die Ansprechrate für diese Form radioaktiver Strahlung nur bei ca. 1%.

2.7 Zählrohrstrom

Mithilfe des mittleren Zählrohrstroms I lässt sich die Zahl der freigesetzten Ladungen pro eingefallenen Teilchen

$$Z = \frac{I}{e_0 N} \tag{1}$$

berechnen.

2.8 Zwei Quellen Methode

Aufgrund der Totzeit T des Zählrohres ist die gemessene Zählrate N_r immer geringer als die Zahl der tatsächlich eingetroffenen Teilchen N_w . Da in der Zeit t $N_r t$ Teilchen registriert werden, ist das Zählrohr für die Zeit $TN_r t$ unempfindlich, und misst nur für $t - TN_r t$. Daraus ergibt sich für die reale Meßrate:

$$N_w = \frac{Impulsrate}{Mezeit} = \frac{N_r t}{(1 - TN_r)t} = \frac{N_r}{1 - TN_r} \tag{2}$$

Basierend darauf kann die Totzeit bestimmt werden. Wenn zwei Strahlenquellen zusammen und jeweils getrennt gemessen werden, ist die Zählrate beider Quellen gemeinsam kleiner als die Summe der einzelnen Zählraten ($N_{1+2} < N_1 + N_2$). Da für die realen Zählraten jedoch $N_{w1+2} = N_{w1} + N_{w2}$ gelten muss, ergibt sich aus (3)

$$\frac{N_{1+2}}{1 - TN_{1+2}} = \frac{N_1}{1 - TN_1} - \frac{N_2}{1 - TN_2} \tag{3}$$

Daraus lässt sich bei bekannten Zählraten die Totzeit gemäß

$$T \approx \frac{N_1 + N_2 - N_{1+2}}{2N_1 N_2} \tag{4}$$

berchnen. Hier wurde die Näherung $(TN_i)^2 \ll 1$ (mit i = 1, 2, 1 + 2) angenommen.

3 Versuchsdurchführung

3.1 Versuchsaufbau

Für den Versuch wurde die Anordung gemäß Abbildung 4 verwendet. Die Ladung des Zählrohrdrahtes löst am Widerstand einen Spannungsimpuls aus, der am Kondensator entkoppelt wird. Anschließend wird der Impuls verstärkt und am Zähler registriert oder an einem Oszillographen sichtbar gemacht. Die β -Strahlen Quelle wurde derart auf das Zählrohr gerichtet, dass die Zählrate 100 imp/s nicht übersteigt, um Abweichungen aufgrund der vergleichsweise hohen Totzeit eines Geiger-Müller-Zählrohres zu vermeiden.

Abbildung 4: Pro einfallendem Teilchen ausgelöste Ladung Quelle: 1. TU-Dortmund, V703 Das Geiger-Müller-Zählrohr

3.2 Messung der Charakteristik

Zur Messung der Charakteristik wurde die Spannung in Intervallen von 10 V erhöht, und die Zahl der Impulse pro 60 s gemessen. Diese Zeitspanne wurde gewählt, um zu gewährleisten, dass die Zahl der Impulse in der Größenordnung N=10000 liegt, damit der Messfehler $\Delta N=\sqrt{N}$ ca. 1% oder geringer ist. Außerdem wurde die Zählrohrspannung in Abständen von $\Delta U=50$ V gemessen.

3.3 Messung der Totzeit

3.3.1 Oszillograph

Die Totzeit kann bestimmt werden, indem von einem Oszillographen die Zeitspanne zwischen dem ursprünglichen Impuls und dem ersten nachfolgenden Impuls bei bekannter Ablenkgeschwindigkeit des Kathodenstrahls agelesen wird.

3.3.2 Messung mithilfe der zwei-Quellen-Methode

Um eine Totzeitkorrektur zur erhalten wurde die Impulsrate erhöht indem der Abstand zum Zählrohr verringert wurde. Anschließend wurde wie in Abbildung 5 zunächst über 120 s die Zählrate der ersten Quelle gemessen, anschließend wurde eine zweite Quelle hinzugefügt und zuletzt die erste Quelle entfernt und jeweils über die gleiche Zeitspanne gemessen.

Abbildung 5: Pro einfallendem Teilchen ausgelöste Ladung. Quelle: 1. TU-Dortmund, V703 Das Geiger-Müller-Zählrohr Abschnitt 6

4 Auswertung

In diesem Kapitel werden die aufgenommenen Messwerte ausgewertet.

4.1 Zählrohr Charakterristik

In diesem Abschnitt wird die sogenannte Charakeristik des Geiger-Müller-Zählrohres ermittelt. Dazu wird der Abstand der Strahlungsquelle so gewählt, das die Impulsrate bei etwa $10\,000\,\mathrm{Imp/min}$ liegt um eine zu große Ungenauigkeit durch Totzeiten zu vermeiden. Da die Messwerte poissonverteilt sind wird der Fehler über Gleichung 5 Um die Plateau-

Abbildung 6: Teilchenzahlen im Geiger-Müller-Zählrohr

Steigung zu ermittlen wurde mittels linearer Regression ein Polynom ersten Grades durch die Messpunkte gelegt:

$$f(x) = ax + b \to D_f = \{x \in \mathbb{R} | 360 \le x \le 620\}$$

mit folgenden Parametern:

$$a = 1.215 \pm 0.256 \frac{1}{V}$$
$$b = 9567.924 \pm 125.414$$

Das Plateau hat eine Länge von etwa $260\,\mathrm{V}$ im Bereich von $360\,\mathrm{V}$ bis $620\,\mathrm{V}$ die Steigung ergibt sich aus:

$$\tfrac{f(x_2)-f(x_1)}{x_2-x_1} = \tfrac{((1.014\pm0.017)\times10^4-1.002\pm0.016)\times10^4}{470V-370V} = (1,215\pm0,256)\,\tfrac{\%}{100}.$$

Die verwendeten Messwerte sind: Der zu jedem Messwert gehörende Fehler berechnet sich über die Poissonverteilung:

$$\Delta N = \sqrt{N} \tag{5}$$

4.2 Totzeit des Zählrohres

An dieser Stelle wird zunächst mithilfe eines Oszilloskopes die Totzeit des Geiger-Müller-Zählrohres abgeschätzt und anschließend mit der Zwei-Quellen-Methode genauer vermessen bzw. abgeschätzt.

4.2.1 Totzeitbestimmung mit dem Oszilloskop

In Abbildung 7 ist die Bildröhre eines Oszilloskopes zu sehen. Die Totzeit ist der Raum zwischen den ersten beiden Signalen. Da das Oszilloskop auf 100µs/DIV eingestellt ist und die beiden Signale etwa eine Unterteilung (DIV) auseinander liegen wird die Totzeit auf $T \approx 100 \mu s$ geschätzt.

Abbildung 7: Signal am Geiger-Müller-Zählrohr 100µs/DIV Quelle: 1. TU-Dortmund, V703 Das Geiger-Müller-Zählrohr

4.2.2 Totzeitbestimmung mit der Zwei-Quellen-Methode

Die Totzeit lässt sich mit der Näherungsformel Gleichung 4 aus den Messwerten ?? für N_1 , N_2 und N_{1+2} sofort ermittlen, es folgt also mit:

$$\begin{split} N_1 &= 96041 \frac{Imp}{120s} \\ N_2 &= 76518 \frac{Imp}{120s} \\ N_{1+2} &= 158479 \frac{Imp}{120s} \end{split}$$

Tabelle 1: Gemessene Impulse pro Zeitintervall in Abhängingkeit von der Spannung

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{r} 380 & 9996 \pm 100 \\ 390 & 9943 \pm 100 \\ 400 & 9995 \pm 100 \\ 410 & 9980 \pm 100 \\ 420 & 9986 \pm 100 \\ 430 & 9960 \pm 100 \\ 440 & 10219 \pm 103 \\ 450 & 10264 \pm 103 \\ 460 & 10174 \pm 103 \\ \end{array} $	
$ \begin{array}{r} 390 & 9943 \pm 100 \\ 400 & 9995 \pm 100 \\ 410 & 9980 \pm 100 \\ 420 & 9986 \pm 100 \\ 430 & 9960 \pm 100 \\ 440 & 10219 \pm 100 \\ 450 & 10264 \pm 100 \\ 460 & 10174 \pm 100 \\ \end{array} $	
$\begin{array}{cccc} 400 & 9995 \pm 100 \\ 410 & 9980 \pm 100 \\ 420 & 9986 \pm 100 \\ 430 & 9960 \pm 100 \\ 440 & 10219 \pm 100 \\ 450 & 10264 \pm 100 \\ 460 & 10174 \pm 100 \\ \end{array}$	
$\begin{array}{cccc} 410 & 9980 \pm 100 \\ 420 & 9986 \pm 100 \\ 430 & 9960 \pm 100 \\ 440 & 10219 \pm 100 \\ 450 & 10264 \pm 100 \\ 460 & 10174 \pm 100 \end{array}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccc} 430 & 9960 \pm 100 \\ 440 & 10219 \pm 100 \\ 450 & 10264 \pm 100 \\ 460 & 10174 \pm 100 \end{array}$	
$\begin{array}{cccc} 440 & 10219 \pm 103 \\ 450 & 10264 \pm 103 \\ 460 & 10174 \pm 103 \end{array}$	
450 10264 ± 102 460 10174 ± 102	1
$460 10174 \pm 102$	L
	L
470 10035 ± 100	
$480 10350 \pm 102$	
$490 10290 \pm 10290$	
$500 10151 \pm 103$	
$510 10110 \pm 102$	
$520 10255 \pm 102$	
$530 10151 \pm 101$	
$540 10351 \pm 102$	
550 10184 ± 103	
560 10137 ± 103	
570 10186 ± 101	
$580 10171 \pm 101$	
590 10171 ± 103	
$600 10253 \pm 103$ $610 10368 \pm 103$	
610 10368 ± 102 620 10365 ± 102	
$630 10224 \pm 103$ $640 10338 \pm 103$	
$650 10493 \pm 102$	
$660 10493 \pm 102$	
$670 10640 \pm 103$	
$680 10939 \pm 108$	
690 11159 ± 106	
700 11547 ± 107	

$$T = (115 \pm 4) \mu s$$

Der entsprechende Fehler wurde mit der Gaußschen-Fehlerfortpflanzung ermittelt. Dazu wurden folgende Ableitungen verwendet:

$$\begin{split} \sigma_{x} &= \sqrt{(\frac{\partial f}{\partial x_{1}})^{2} \sigma_{x_{1}}^{2} + (\frac{\partial f}{\partial x_{2}})^{2} \sigma_{x_{2}}^{2} + \ldots + (\frac{\partial f}{\partial x_{n}})^{2} \sigma_{x_{n}}^{2}} \\ &\qquad \qquad \frac{\partial T}{\partial N_{1}} = \frac{N_{1+2} - N_{2}}{2N_{2}N_{1}^{2}} \\ &\qquad \qquad \frac{\partial T}{\partial N_{2}} = \frac{N_{1+} - N_{1}}{2N_{1}N_{2}^{2}} \\ &\qquad \qquad \frac{\partial T}{\partial N_{1+2}} = -\frac{1}{2N_{1}N_{2}} \end{split}$$
 (6)

4.3 Ladung pro einfallendem Teilchen

Im folgenden Diagramm Abbildung 8 ist die Anzahl der Ladungen Z die durch ein einziges einfallendes Teilchen ausgelöst wurden gegen die Spannung aufgetragen. Die Zahl Z lässt sich mit diesen Werten: direkt über Gleichung 1 berechnen

Tabelle 2: Messwerte des Stromes

U[V]	$I[\mu A]$
350	0.3 ± 0.05
400	0.4 ± 0.05
450	0.7 ± 0.05
500	0.8 ± 0.05
550	1.0 ± 0.05
600	1.3 ± 0.05
650	1.4 ± 0.05
700	1.8 ± 0.05

 ${\bf Abbildung~8:}$ Pro einfallendem Teilchen ausgelöste Ladung

Tabelle 3: Ladungen pro einfallendem Teilchen

U[V]	Z[e]
350	$11420877863 \pm 1906959500$
400	$14987116964 \pm 1879377895$
450	$25540082774 \pm 1841627474$
500	$29513591578 \pm 1867714299$
550	$36772445516 \pm 1874382573$
600	$47482469587 \pm 1885491961$
650	$49965388277 \pm 1849942326$
700	$58377332056 \pm 1710174398$

5 Diskussion

In diesem Versuch sollten Verschiedene Eigenschaften eines Geiger-Müller-Zählrohres beschrieben werden, dazu wurde zunächst in Unterabschnitt 4.1 die Kennlinie Abbildung 6 des Verwendeten Gerätes ermittelt und an das Plateau mittels linearer Regression ein Polynom ersten Grades angepasst. Dieses Polynom hat wie erwartet eine geringe Steigung von etwa 1,22%, was bedeutetd das es noch gelegentlich zu Nachentladungnen kommt, es sich aber im allgemeinen um ein qualitativ hochwertiges Zählrohr handelt. Das Plateau ist jedoch schlecht zu identifizieren und kann daher die Aussage über die Qualität des Zählrohrs nur schwer verifizieren. Hier wurde es mit einer Länge von etwa 260 Einheiten angenommen und liegt zwischen 360 V und 620 V in der gewählten Darstellung. Als nächstes wurde die Totzeit in Unterabschnitt 4.2 zunächst mithilfe eines Oszilloskopes bestimmt Unterunterabschnitt 4.2.1. Der abgelesene Wert von $T \approx 100 \mu s$ ist wie sich in Unterunterabschnitt 4.2.2 zeigt sehr ähnlich groß wie der mittels der Zwei-Quellen-Metode errechnete bzw. gemessene. Um die Totzeit genauer zu bestimmen wurde wie bereits erwähnt die Zwei-Quellen-Methode Unterunterabschnitt 4.2.2 verwendet. Der errchnete Wert $T = 115 \pm 0,04s$ liegt zumindest in der gleichen Größenordnung wie der Messwert der im vorherigen Kapitel mittels Oszilloskop bestimmten Wertes. Der Literaturwert liegt bei 0,1ms [3] was sich exakt mit der Messung am Oszilloskop deckt und von dem errechneten Wert um etwa 10% abweicht. Die Oszilloskop-Methode eignet sich sehr gut um eine schnelle Abschätzung vorzunehmen, allerdings können hier sehr leicht Ablesefehler passieren die zu groben Ungenauigkeiten führen. Die Zwei-Quellen-Methode ist zwar bedeutend aufwändiger da zwei Quellen benötigt werden und drei Messungen durchgeführt werden müssen, dafür ist sie allerdings im Rahmen der Näherung präzise und es können neben Rechenfehler, auch Probleme entstehen wenn die Proben schon älter sind, also geringere Zerfallsraten haben oder die erste Probe räumliche Veränderungen erleidet. Da eine Totzeitbestimmung theoretisch nur einmal durchgeführt werden muss, ist es sinnvoll die zwar aufwändigere aber präzisere Methode der Zwei-Qellen zu nutzen. An Ende wurde noch die Anzahl der Ladungen die von einem einzelnen in das Geiger-Müller-Zählrohreinfallenden Teilchen im Rahmen eines Teilchenschauers ausgelöst werden und den Messdraht erreichen. Diese Zahlen scheinen für Teilchen der entsprechenden Energie durchaus realistisch. Im ganzen kann von einem erkentnis reichen gut gelungenen Versuch gesprochen werden.

6 Literatur

- 1. TU-Dortmund, V703 Das Geiger-Müller-Zählrohr
- 2. Dieter Meschede, Gerthsen Physik 25.Aufl.
- 3. https://www.chemie.de/lexikon/Geigerz%C3%A4hler.html (30.10.21)

7 Anhang

Auf den folgenden Seiten finden sich die Originalmesswerte.