向量

Didnelpsun

目录

1	线性相关性		
	1.1	初等运算	1
	1.2	定义法	1
		1.2.1 代入重组	1
		1.2.2 同乘	1
	1.3	行列式	2
	1.4	矩阵秩	3
2	线性表出		
	2.1	矩阵秩	3
	2.2	极大线性无关组	3
	2.3	向量组线性标出	4
3	等价	·向量组	4
4	向量空间		
	4.1	基坐标	5
	4.2	过渡矩阵	5

1 线性相关性

使用行列式不等于 0 的方法最方便,但是有时候行列不同就不能这么做了。

1.1 初等运算

多用于选择题,给出 n 维线性无关向量,判断向量组是否线性无关。如果向量组初等运算为 0 就代表线性相关。

例题: 已知 n 维向量 α_1 , α_2 , α_3 线性无关,则判断线性相关性: $\alpha_1 + \alpha_2$, $\alpha_2 - \alpha_3$, $\alpha_3 + \alpha_1$ 。

解: $\alpha_1 + \alpha_2$ 与 $\alpha_2 - \alpha_3$,共同出现了 α_2 ,首先要消掉 α_2 ,所以相减得到 $\alpha_1 + \alpha_3$,然后发现跟后面的 $\alpha_3 + \alpha_1$ 一样,所以直接一减得到 0,表示线性相关。

1.2 定义法

基本是证明题,若证明 α 、 β 线性无关,则令 $k_1\alpha + k_2\beta = 0$,判断 k_i 的值,如果只有零解则代表 k 矩阵为满秩,从而线性无关。

1.2.1 代入重组

若要求线性相关的式子由其他向量构成,则将式子代入表示目标式子。

例题: 设 α_1 , α_2 , β_1 , β_2 , β_3 都是 n 维向量, $n \ge 3$, 且 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_1 - 2\alpha_2$, $\beta_3 = 3\alpha + 1 + 2\alpha_2$, 证明向量组 β_1 , β_2 , β_3 线性相关。

证明: 若存在 k_1, k_2, k_3 使得 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = 0$ 。

代入 α 表示 β 的式子: $k_1(\alpha_1 + \alpha_2) + k_2(\alpha_1 - 2\alpha_2) + k_3(3\alpha_1 + 2\alpha_2) = 0$.

 $\therefore (k_1 + k_2 + 3k_3)\alpha_1 + (k_1 - 2k_2 + 2k_3)\alpha_2 = 0.$

 $\therefore k_1 + k_2 + 3k_3 = 0$,且 $k_1 - 2k_2 + 2k_3 = 0$ 即可。

而未知数的个数大于方程个数,所以有无穷多解,从而必然有非零解,从而 β_1 , β_2 , β_3 线性相关。

1.2.2 同乘

若要求线性相关的式子存在一定的乘积关系,则可以用同乘一步步消去系数。

例题: 设 A 是 n 阶矩阵,若存在正整数 k,使得线性方程组 $A^k x = 0$ 有解向量 α ,且 $A^{k-1}\alpha \neq 0$,证明向量组 α , $A\alpha$, \cdots , $A^{k-1}\alpha$ 线性无关。

证明: 假设 $\alpha, A\alpha, \dots, A^{k-1}\alpha$ 线性相关,则设存在系数 $\lambda_1, \lambda_2, \dots, \lambda_k$ 使得 $\lambda_1 \alpha + \lambda_2 A \alpha + \dots + \lambda_k A^{k-1} \alpha = 0$.

 $A^k x = 0$ 的解为 α , $A^k \alpha = 0$, $A^{k+2} \alpha = A^{k+1} \alpha = A^k \alpha = 0$.

左乘 A^{k-1} ,得到 $\lambda_1 A^{k-1} \alpha + \lambda_2 A^k \alpha + \cdots + \lambda_k A^{2k-2} \alpha = \lambda_1 A^{k-1} \alpha = 0$ 。

 $\therefore A^{k-1}\alpha \neq 0$, $\therefore \lambda_1 = 0$, 消去 λ_1 : $\lambda_2 A\alpha + \lambda_3 A^2\alpha + \cdots + \lambda_k A^{k-1}\alpha = 0$.

左乘 A^{k-2} ,得到 $\lambda_2 A^{k-1} \alpha + \lambda_3 A^k \alpha + \cdots + \lambda_k A^{2k-3} \alpha = \lambda_2 A^{k-1} \alpha = 0$ 。

 $\therefore A^{k-1}\alpha \neq 0, \ \ \therefore \lambda_2 = 0, \ \ \mathring{\mathbf{1}} + \lambda_2 : \ \lambda_3 A^2\alpha + \lambda_4 A^3\alpha + \dots + \lambda_k A^{k-1}\alpha = 0.$

同理依次左乘 A^n ,所以 $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$,所以 $\alpha, A\alpha, \cdots, A^{k-1}\alpha$ 线 性无关。

行列式 1.3

对向量的线性相关性可以从其向量组组成的行列式来计算, 若行列式值为 0 则线性相关,若行列式值不为0则线性无关。

注意这里容易失根。要仔细找出所有为 0 的因式,不要随便降低阶数。

例题: 设 a_1, a_2, \dots, a_s 是 s 个互不相同的数,探究 s 个 n 维列向量 $\alpha_i =$ $[1, a_i, a_i^a, \cdots, a_i^{n-1}]^T$ $(i = 1, 2, \cdots, s)$ 的线性相关性。

解: 当 s > n 时, 有 n 个方程 s 个未知数, 所以必然存在自由变量, 从而 必然线性相关性。

当
$$s = n$$
 时, $|\alpha_1 \alpha_2 \cdots \alpha_n| = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{vmatrix} = \prod_{1 \leq j \leq i \leq n} (a_i - a_j) \neq 0.$

所以线性无关。

上面因为范德蒙德行列式已经不等于 0, 即上面的方阵线性无关, 原来无关延 无关, 所以整个方程都线性无关。

综上当 s > n 时线性相关, $s \le n$ 时线性无关。

1.4 矩阵秩

当向量的个数与维数不同时就不能使用行列式去分析,而只能用矩阵的秩来分析。当矩阵满秩则线性无关,当矩阵降秩则线性相关。

当谈到多个向量是否线性相关时可以将向量组组成矩阵,判断其秩。满秩就 是线性无关,降秩就是线性相关。

2 线性表出

2.1 矩阵秩

当谈到一个向量是否能被其他向量线性表出时,要将这些向量全部组成一起,判断能否被其他向量表出的向量放在最右边,然后判断增广矩阵的秩。

- 1. 若 $r(\alpha_1, \alpha_2, \dots) \neq r(\alpha_1, \alpha_2, \dots, \beta)$, 则 β 无法被 α 线性表出。
- 2. 若 $r(\alpha_1, \alpha_2, \dots) = r(\alpha_1, \alpha_2, \dots, \beta) < r$,则 β 可以被 α 无穷线性表出。表达式为基础解系。
- 3. 若 $r(\alpha_1, \alpha_2, \dots) = r(\alpha_1, \alpha_2, \dots, \beta) = r$,则 β 可以被 α 惟一线性表出。表 达式为将矩阵化为单位矩阵后 β 所在就是 α 的系数。

例题: 已知 $\alpha_1 = (1,2,1)^T$, $\alpha_2(2,3,a)^T$, $\alpha_3 = (1,a+2,-2)^T$, $\beta = (1,3,0)^T$,若 β 可以由 α_1 、 α_2 , α_3 线性表示,且表示法不唯一,求 a。

解:设 $x_1\alpha_1 + x_2\alpha_2 + x_2\alpha_3 = \beta$,由 β 可以由 α_1 、 α_2 , α_3 线性表示,且表示法不唯一可知 $Ax = \beta$ 有无穷解,即 r(A) = r(A|B) < 3。

$$= [\alpha_1, \alpha_2, \alpha_3 | \beta] = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & a+2 & 3 \\ 1 & a & -2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & a & 1 \\ 0 & 0 & a^2 - 2a - 3 & a - 3 \end{bmatrix} \circ$$

2.2 极大线性无关组

极大线性无关组一般与向量组秩在一起使用。一般解出极大线性无关组与 秩,还要用极大线性无关组表示出其余的向量,基本步骤:

1. 将向量组拼接为矩阵 A, 对 A 进行初等行变换,化为最简行阶梯形矩阵,确定矩阵秩 r(A)。

- 2. 在最简行阶梯矩阵中按列找出一个秩为 r(A) 的子矩阵,即在每个台阶上 找一列列向量,找 r(A) 列构成一个新矩阵,其就是一个极大线性无关组。
- 3. 将其余向量依次与极大线性无关组进行对比解出表示方法。

注意: 求向量组的秩可以进行初等变换,包括行变换和列变换。但是求极大线性无关组时最好只使用行变换,因为列变换会改变方程的解。从而解方程组只能做行变换。

2.3 向量组线性标出

若对于多个向量组成的向量组 B 是否能线性表出向量组 A (而不是单个向量 α),把 A 和 B 合并,则若合并后的向量组 C 的秩大于 B 的,那么向量组 B 不能线性表示向量组 A。

解决方法跟单个向量表出一样,将 B 和 A 合并为增广矩阵,然后进出行变换。

也给出这样的结论, 若 B 自身线性相关,则无法线性表出其他矩阵。

例题: 设向量组 $\alpha_1 = (1,0,1)^T$ 、 $\alpha_2 = (0,1,1)^T$ 、 $\alpha_3 = (1,3,5)^T$ 不能由向量组 $\beta_1 = (1,1,1)^T$ 、 $\beta_2 = (1,2,3)^T$ 、 $\beta_3 = (3,4,a)^T$ 线性表示,求 a。

解: 已知题目,则 $(\beta_1,\beta_2,\beta_3)$ 线性相关。

对其行变换,解得 a=5。

3 等价向量组

r(A) = r(B) = r(A|B),所以需要计算三个向量组构成的矩阵的秩就可以了。

例题: 设向量组 α : $\alpha_1 = [1,0,2]^T$, $\alpha_2 = [0,1,1]^T$, $\alpha_3 = [2,-1,a+4]^T$, 向量组 β : $\beta_1 = [1,2,4]^T$, $\beta_2 = [1,-1,a+2]^T$, $\beta_3 = [3,3,10]^T$ 。

矩阵
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 2 & 1 & a+4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 & 3 \\ 2 & -1 & 3 \\ 4 & a+2 & 10 \end{pmatrix}$.

- (1)*AB* 是否等价。
- (2) 向量组 *AB* 是否等价。

(1)
$$\mathbf{M}$$
: 化简 $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & a+1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a \end{pmatrix}$

若 $a \neq -1$,则 r(A) = 3,且 $a \neq 0$,则 r(B) = 3,此时 AB 等价。

若 a = -1,则 r(A) = 2,r(B) = 3,AB 不等价。

若 a = 0, 则 r(B) = 2, r(A) = 2, AB 不等价。

(2) 解: 因为向量组 α 拼接在一起就是 A, β 拼接在一起就是 B, 所以 $r(\alpha) = r(A)$, $r(\beta) = r(B)$, $r(\alpha|\beta) = r(A|B)$ 。

将
$$AB$$
 拼在一起做行变换,得到 $(A|B)=\left(egin{array}{ccccccc} 1 & 0 & 2 & 1 & 1 & 3 \\ 0 & 1 & -1 & 2 & -1 & 3 \\ 0 & 0 & a+1 & 0 & a+1 & 1 \end{array}\right)$ 。

若 $a \neq -1 \neq 0$, 则 r(A) = r(B) = r(A|B)。向量组等价。

若 a=-1 或 a=0,则 $r(A) \neq r(B)$,所以不等价。

4 向量空间

4.1 基坐标

对于任意向量 $\alpha = \xi_i x_i = \eta_i y_i$, ξ_i 、 η_i 为基, x_i 、 y_i 为向量基 ξ_i 、 η_i 下的坐标。

4.2 过渡矩阵

对于两个基 η_i 、 ξ_i , $\eta_i = \xi_i C$ 的 C 为 ξ_i 到 η_i 的过渡矩阵,该式子为基变换公式。

所以得到 x = Cy,这个公式为坐标变换公式。