

Università di Pisa

Misura della vita media del muone

Alberto Montanelli

Laboratorio di Interazioni Fondamentali Facoltà di Fisica

Obbiettivi dell'esperienza e Setup sperimentale

Obbiettivo: Misura della vita media del muone.

Setup sperimentale:

- Scintillatori plastici posti in sequenza verticale;
- Scintillatori bersaglio: PMT08-11;
- Moduli NIM: discriminatore, moduli logici AND, OR, DUAL TIMER, convertitore TTL-NIM;
- FPGA: campionamento di segnali temporali con frequenza di acquisizione max di 50Mhz. Richiede in ingresso segnali di durata almeno di 20ns.

Punti di lavoro PMT ed efficienze

Punto di lavoro: Plot ϵ vs $V_{\rm alimentazione}$ e vs $R_{\rm singola}$.

• Efficienza:
$$\epsilon = \frac{\textit{N}_{\text{triple}}}{\textit{N}_{\text{doppie}}};$$
 ex. $\epsilon_{\text{PMT02}} = \frac{\text{PMT01\&PMT02\&PMT03}}{\text{PMT01\&PMT03}}$

• Errore su efficienza:
$$\sigma_{\epsilon} = \frac{\sqrt{(1-\epsilon)\epsilon \cdot N_{\mathrm{doppie}}}}{N_{\mathrm{doppie}}}; \quad \sigma_{R} = \sqrt{N}/T$$
• Doppie accidentali: $R_{1\&2}$ accidentali $= R_{1}R_{2}(\omega_{1} + \omega_{2} - 2\Delta t)$.

Punto di lavoro per PMT02

<i>V</i> [V]	Rate singola [Hz]	Efficienza
1720 ± 2	24 ± 1	$\textbf{0.48} \pm \textbf{0.06}$
1740 ± 2	34 ± 1	$\textbf{0.72} \pm \textbf{0.05}$
1760 ± 2	41 ± 1	0.77 ± 0.05
1780 ± 2	51 ± 1	0.83 ± 0.04
1790 ± 2	60 ± 1	0.89 ± 0.03
1800 ± 2	64 ± 1	0.90 ± 0.03
1810 ± 2	73 ± 2	0.87 ± 0.04
1820 ± 2	80 ± 2	0.93 ± 0.03
1830 ± 2	88 ± 2	0.86 ± 0.04
1850 ± 2	112 ± 2	0.90 ± 0.03

Segnale di START

VETO: $\overline{PMT01}$.

Il veto deve contenere tutto il segnale: il segnale di veto (CH1 in giallo) contiene il segnale di START (CH2 in blu).

 R_{μ} livello mare $\sim 1 \mu \cdot \mathrm{cm^2/min}$; $A_{\mathrm{PMT}} \sim 200 \mathrm{cm^2} \rightarrow R_{\mathrm{atteso}} \sim 3 \mathrm{Hz}$. Si ottiene un rate di 1.57 \pm 0.12 Hz.

Segnale di START: una particella è passata nell'apparato e si è fermata nel bersaglio.

START

START:

PMT02&PMT05&PMT01

 $\& (\mathsf{PMT08} \vee \mathsf{PMT09} \vee \mathsf{PMT10} \vee \mathsf{PMT11})$

Vita media del muone

- Istogramma diff. temporali; si prende uno START e il suo successivo STOP:
- $\rightarrow \Delta T = t_{\rm STOP} t_{\rm START};$
- si scartano tutti gli START o STOP consecutivi $\mid (t[i] t[i-1]) < 20 \mu s$.
- Fit: minim. χ^2 , fit function: $A \exp(-x/\tau) + C$;
- Parametri: A=976±22; C=63±1; $\tau = 2.22 \pm 0.04 (\text{stat.}) \mu s$; $\chi^2/\text{ndof} = 392/185$.
- Presa dati: 12/12/23-19/12/23

 $\begin{aligned} &\text{Fondo} \sim \# \mathrm{START} \cdot \textit{P}, \\ &\textit{P} = \textit{R}_{\mathrm{OR}} \cdot \Delta_{\mathrm{bin}}. \\ &\textit{R}_{\mathrm{OR}} \sim 400 \mathrm{Hz}, \\ &\Delta_{\mathrm{bin}} = \frac{20 \cdot 10^{-6}}{200} \mathrm{s}; \\ &\#_{\mathrm{START}} \sim 10^{6}, \\ &\rightarrow \text{Fondo} {\sim} 40. \\ &\tau \text{ Eventi di fondo} {>} \tau_{\mu}. \end{aligned}$

Vita media del muone - Revisione

 $au = au_{
m medio} \pm \sigma_{
m stat}({
m err.stand}) \pm \sigma_{
m sist}(frac{ au_{
m max} - au_{
m min}}{2})$; dovuto alla variazione di range e bin.

$$au = extstyle{2.01} \pm extstyle{0.04} ext{(stat.)} \pm extstyle{0.22} ext{(sist.)} \mu$$
s