	Utech
Name:	
Roll No.:	A Phones (9° Executing 2 and Execution)
Invigilator's Signature:	

CS/B.Tech(CSE)/SEM-7/CS-704C/2012-13 2012

PARALLEL PROGRAMMING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Objective Type Questions)

- 1. State *true* or *false* for the following : $10 \times 1 = 10$
 - i) All prefix sums of list of n values can be computed in $[\log n]$ addition steps on a EREW PRAM.
 - ii) Bisection width of Shuffle-exchange network is 2^{k-1} .
 - iii) Amdahl's law states that the maximum speed-up s achievable by parallel computer with p processors performing the computation is s < (1 f)/p, where f be the fraction of work performed sequentially.

7403 Turn over

CS/B.Tech(CSE)/SEM-7/CS-704C/2012-13

iv) Truth table for the bit-serial addition on CM-200 processor array :

	Input Bits		Output Bits	
Memory	Memory	Flag	Memory	Flag
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- v) Binomial trees of height greater than 4 can be embedded in 2-D mesh without increasing the dilation beyond 1.
- vi) The parallel section pragma precedes K blocks of code that may be executed concurrently by K threads, if it has this syntax :
 - # pragma omp parallel sections
- vii) Inverting loops into parallel "for loops" can actually increase a program execution time.
- viii) s_lock and s_unlock are the two functions used in a primitive stack monitor to be implemented in Sequence C.
- ix) MPI is used in SAS architecture.
- x) Barrier is the only way through which synchronization is possible.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

2.

- Explain the terms 'Linear speed-up' and 'Super linear speed-up'. Why is sub-linear speed-up achieved for most of the problems? 3+2
- 3. Overhead has an important role is parallel programming. Explain. List the different classes of overheads. 2 + 3
- 4. With a suitable diagram, explain the PRAM model for parallel processing.
- Compare the RAM model of serial computation with PRAM model of parallel computation.
- 6. What is omega network? Explain briefly with a suitable diagram. 5

GROUP - C (Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Derive a EREW PRAM algorithm to sum n elements using $\frac{n}{2}$ processors. Derive the time complexity of the algorithm.
 - b) Write a PRAM algorithm to merge two sorted lists. The two lists and their unions have disjoint values. 4
 - c) Prove that a *p*-processor priority RAM can be simulated by a *p*-processor EREW PRAM algorithm. Determine the factor by which the time complexity is increased. 5

CS/B.Tech(CSE)/SEM-7/CS-704C/2012-13

8.	a)	Discuss Flynn's classification for multiprocessor
		systems. What are its short-comings?
	b)	What is cache coherence? Why is cache coherence
		important in case of multiprocessors? 4
	c)	Describe a superscalar architecture. 4
9.	a)	What are the different design requirements for the distributed systems? Discuss the different challenges that need to be addressed while designing distributed system. $2+3 \\$
	b)	What are the diameter and bisection width of a hypercube with 16 nodes ? What is the difference between a hypercube and a cube connected cycle network?
	c)	Compare centralised and distributed shared memory architecture.
10.	a)	What is self scheduling and indirect scheduling? 5
	b)	Explain effectiveness of cache. 5
	c)	What is understood by granularity of a program ? How does it affect the efficiency of parallel processing ? 5
11. Wri		te short notes on any <i>three</i> of the following : $3 \times 5 = 15$
	a)	Parallel sorting algorithm
	b)	C* Programmer's model
	c)	Foster's methodology for parallel algorithm
	d)	MPI programming technique
	e)	Data parallelism.

7403 4