

Matemática

Folha 7 - Funções (Noções Elementares)

Dados dois conjuntos A e B, chama-se função de A em B a toda a correspondência que a cada elemento de A associa um e um só elemento de B.

Se designarmos a função por f e por x e y as variáveis representativas dos elementos de A e de B, respetivamente, escreve-se

$$f: A \longrightarrow B$$

 $x \mapsto y = f(x)$.

A x dá-se o nome de variável independente e a y chama-se variável dependente. O conjunto A diz-se o domínio de f e representa-se por D_f e o conjunto B é o conjunto de chegada.

Dizemos também que y é a *imagem* do *objeto* x por f.

O contradomínio de f é o conjunto constituído por todas as imagens de f e representa-se por D_f' ou Im_f ,

$$D'_f = \{f(x) : x \in A\}.$$

O gráfico da função f é o conjunto dos pontos (x,y) do plano que satisfazem a condição y=f(x), com $x\in D_f$.

Exemplo 1 Seja $f\colon \mathbb{R}\backslash\{1,2\}\longrightarrow \mathbb{R}$ $x\mapsto y=2x+1$. Tem-se $D_f=\mathbb{R}\backslash\{1,2\}$ e $D_f'=\mathbb{R}\backslash\{3,5\}.$

Chamamos função real de variável real a uma função $f:A\longrightarrow B$ em que A e B são subconjuntos de $\mathbb{R}.$

Uma função real de variável real $f:D\longrightarrow E$ diz-se

- injetiva quando a objetos distintos em D correspondem imagens distintas em E, ou seja, quando para quaisquer $a,b\in D,\ a\neq b\Longrightarrow f(a)\neq f(b),$ ou ainda, quando $f(a)=f(b)\Longrightarrow a=b;$
- sobrejetiva quando o seu contradomínio coincide com o conjunto de chegada, ou seja, quando para qualquer número $c \in E$, existe um número $a \in D$ tal que f(a) = c;
- bijetiva quando é simultaneamente injetiva e sobrejetiva;
- par quando, para qualquer $a \in D$, se tem $-a \in D$ e f(-a) = f(a);
- *impar* quando, para qualquer $a \in D$, se tem $-a \in D$ e f(-a) = -f(a);

- crescente quando, para quaisquer números $a, b \in D$, $b > a \Longrightarrow f(b) \ge f(a)$, em particular, estritamente crescente se $b > a \Longrightarrow f(b) > f(a)$;
- decrescente quando, para quaisquer números $a, b \in D$, $b > a \Longrightarrow f(b) \le f(a)$, em particular, estritamente decrescente se $b > a \Longrightarrow f(b) < f(a)$;
- monótona se é crescente ou decrescente; em particular, estritamente monótona se é estritamente crescente ou estritamente decrescente;
- periódica de período P quando, para qualquer $a \in D$, se tem $a+P \in D$ e f(a+P)=f(a);
- majorada quando existe um número $M \in \mathbb{R}$ tal que, para qualquer $a \in D$, se tem $f(a) \leq M$;
- minorada quando existe um número $m \in \mathbb{R}$ tal que, para qualquer $a \in D$, se tem $f(a) \geq m$;
- limitada quando é minorada e majorada, ou seja, quando existem números $M, m \in \mathbb{R}$ tais que, para qualquer $a \in D$, se tem $f(a) \in [m, M]$;
- que possui um *máximo local* em $c \in D$ se existe uma vizinhança de centro c e raio $\delta > 0$, $|c \delta, c + \delta[$, tal que, para qualquer $a \in]c \delta, c + \delta[$, $f(c) \geq f(a)$;
- que possui um *máximo absoluto* em $c \in D$ se, para qualquer $a \in D$, $f(c) \ge f(a)$;
- que possui um *mínimo local* em $c \in D$ se existe uma vizinhança de centro c e raio $\delta > 0$, $|c \delta, c + \delta[$, tal que, para qualquer $a \in]c \delta, c + \delta[$, $f(c) \leq f(a)$;
- que possui um *mínimo absoluto* em $c \in D$ se, para qualquer $a \in D$, $f(c) \leq f(a)$.
- que possui um extremo em $c \in D$ se f(c) é um máximo ou um mínimo de f; neste caso, c diz-se um extremante de f, (um maximizante ou um minimizante).

Exemplo 2 Considere a função

Função par; não é injetiva nem é sobrejetiva ($D'f = [0, +\infty[\neq \mathbb{R})$). f é minorada mas não é majorada, não possui máximos locais (nem absolutos), mas possui um mínimo absoluto na origem que é 0. Não é uma função monótona, embora seja estritamente crescente em $[0, +\infty[$ e estritamente decrescente em $]-\infty,0]$.

Folha 2 - Funções (Noções Elementares): Exercícios Propostos

Exercício 1 Das representações gráficas seguintes indique, justificando, as que podem representar funções, indicando, para essas, o domínio e o contradomínio.

a)

b)

c)

d)

e)

f)

Considere a função real de variável real definida por $f(x) = -\frac{3x-1}{2}$. Exercício 2

- a) Verifique se o ponto $\left(-\frac{1}{2},\frac{5}{4}\right)$ pertence ao gráfico de f.
- b) Calcule $f(-\frac{1}{3})$.
- c) Resolva a condição f(x) > -3 e indique o significado geométrico desta condição.

Exercício 3 Determine o domínio das seguintes funções:

a)
$$f(x) = \frac{1}{x} + 5$$

b)
$$f(x) = \frac{x}{x^2 + x}$$
;

a)
$$f(x) = \frac{1}{x} + 5$$
; b) $f(x) = \frac{x}{x^2 + x}$; c) $f(x) = \frac{\sqrt{1 - x}}{\sqrt{9 + 4x}}$

Exercício 4 Considere as funções

$$f(x) = \begin{cases} 3 & \text{se } x < 2, \\ x - 3 & \text{se } x \ge 2 \end{cases} \qquad \text{e} \qquad g(x) = \begin{cases} -2 & \text{se } x = -1, \\ -x + 3 & \text{se } -1 < x < 3, \\ -x & \text{se } 3 \le x < 6. \end{cases}$$

- a) Determine D_f e D_g .
- b) Represente graficamente cada uma das funções.
- c) Verifique se alguma das funções é injetiva.
- d) Indique, caso existam, o máximo e o mínimo absolutos da função g.

Exercício 5 Estude a paridade das funções:

a)
$$f(x) = x - 4x^2$$
;

b)
$$f(x) = 1 - x^4$$
;

b)
$$f(x) = 1 - x^4$$
; c) $f(x) = \sqrt[3]{x} - 9x^3$.

Considere os gráficos das funções $f,\,g,\,h,\,i,\,j,\,k:$]0,1[$\longrightarrow \mathbb{R}$: Exercício 6

- a) Indique as funções que têm máximo absoluto.
- b) Indique as funções que têm mínimo absoluto.
- c) Indique o conjunto dos minimizantes de g.
- Indique as funções que são sobrejetivas. d)
- e) Indique as funções que são não injetivas.
- f) Indique as funções que não são limitadas.
- Indique as funções decrescentes.
- Indique as funções crescentes.
- Indique os intervalos de monotonia de j.