_	_	-	A .	
_		1 -4	Δ	1 1
		ш		
		u	7	u

Aim: - Write Verilog Code for NABT and Covery out the
following:
a) Perform Junctional Verification using tost beach
D) Synthesize the design targeting Suitable library and
by Setting area and timing Constraints.
For Various Cometraints get tabulate the area hower
and delay for the Synthesized metlist.
1) Identify the Critical fath and Set the Constraints to
obtain oftimum gate level metlist with suitable
Constraints.
Design Code:-
module unit (suget, txclk, ld_tx_data, tx_data, tx_onable
t.x out, tx_empty, nxclk, uld_nx_data,
rx_data, rx_emable, rx_in, rx_empty);
input greget;
input txclk;
imput Id tx data;
input [7:0] t x data;
imput tx_emable;
output tx_out;
output tx_emptry:
imput sexcele:
imput uld_ 21x _ data;

```
output [7:0] 9ex_data.
infut ex enable.
input ex in;
output Ix empty;
Treg [7:0] +x sug;
reg tx_empty;
reg tx_over_rum;
sug [3:0] tx_cont;
rug tx_out.
Treg [7:0] Nx - Treg :
 Steg [7:0] 91x_data:
Jug [3:0] 91 x _ Sample _ (mt;
 grag [3:0] sex_cont;
 sug six frame ever
 Trag DEX Over Jun;
 Jug Jex_ampty
 sug six di
reg rx-dz
 oug orx busy;
 always @ (passedge rxclk or possedge reget)
 ile (reget)
 hegin
 9(x_9/4g <=0.
 21x_data <=0.
 orx_sample_cont <=0.
 91x_cont <= 0.
 rx frame err <=0.
  nx over sun <=0.
```

	91x _ emptor <=1.
	21x_d1 <=1.
	9ex_d> <=1:
	orx bugy <=0.
1	end else begin
	and I
	91x_d/<= 9x_in;
	91x d2 <= 91x d1.
	if (uld_rx_data) begin
	91x_data <= 21x_9ug.
	91x_empty <=1.
	end
	il (91x_enable) begin
	il (! 2x busy 88 ! 2x ds) begin
	gex_bugy <=1;
	IX Sample Cont <=1.
	91x_(mt <=0.
	end
	if (91x buen) begin
	Stx Sault begin
	91x Sample cont < = 91x Sample cont+1
	mble (mt = = -)
	16 (31x - d) == 1) BB (21x - (mt == 0)
	IX_buey <=0.
	end else begin
	six_cont <= six cont+1
	if (2x cont >0 88 9x (mt <9
	begin 2 x mt 29
_	end end ex (nt-1) <= 91x

```
if ( nx_cont = = 9) begin
  six_bugy <=0.
  riged (=== d) begin
  Dix_brame_our <=1.
   end else begin
   six_empty <=0.
   gex_frame_err <=0.
    91x_oner_sun <= (91x_empty) 9 0:1;
   end
   emd
 if ( ! rx_enable) begin
   grx_buen <=0.
  always @ ( hosedge trelk or hosedge riget)
  if (teset) begin
    tx_rug <=0.
  tx_empty <=1.
    tx_over_sun <=0.
    tx_out <=1;
    tx_cnt <=0.
   end else begin
    if (ld -tx -data) begin
       if (! tx_empty) begin
```

	tx_over_sum <=0.
	end else begin
	tx_9eg <= tx_data.
	tx_empty <=0;
	and
	and
	if (+x_enable &8 ! +x_emptry) begin
	$t \times -cnt < = t \times -cnt + 1$
	ik (tx_cnt ==0) begin
	tx_out <=0;
	end colored to love
	it (tx_cnt >0 && tx_cnt <9) begin
	tx_out <= tx_9eg[tx_cnt-1];
	emd
	if (tx-(nt==9) begin
	tx_out <=1;
	tx_cnt <=0;
	$t \times - empty < = 1$;
	end
	end
	if (! tx_enable) begin
	tx_cnt <=0;
/	end
-	
-	end
ndma	dule

```
Test bench code :-
module Hart th.
      Steg steget.
      seg txclk.
      reg ld tx data:
      oreg [7:0] tx_data.
       Ireg tx-enable:
       Sug sixclk.
       reg uld grx data.
       Treg Dex enable.
      Treg 91 X _ in;
      wine tx_out.
       wire tx empty.
        wine [7:0] rx - data:
        wire 91x_empty.
     1/ uncomment lines for convenient accepto internal
     1/ wire [7:0] 91x greg = uut. 21x - 9reg
     // wire [3.0] 91x_cnt = 44+91x_cmt.
     1/ wire [3:0] Ix Sample Cont = ULLT. IX - Sample Cont.
     1/ Kuire 91x_dz = uut.nx_dz.
     / wire sex busy = uut.rx busy;
          Wart Leut ( reget (reget) . txclk (txclk). ld
         tx - data (Id + x data) . tx data (tx - data)
          · tx _ emable (tx_ emable) , · tx_out (tx_out),
          · tx_ empty (tx_ empty), . rxclk (rxclk)
          · uld_ 91x_ data (uld_ 91x_ data) . 91x_ data
( o1x_ data) . 91x_ enable ( 91x_ enable) . 91x_ in
```

```
(six_im), orx_empty (six_empty));
ring clk.
initial
clk=o.
 always #10 clk= ~ clk.
Ireg. [3:0] Counter.
  initial
 begin
  rxclk =0.
   txclk=0.
   Counter =0.
   end
   alway, a ( freedge clk) begin
  Counter < = Counter +1.
  if ( Counter = = 15)
     txclk < = ~txclk
     gexclk <= ~gexclk.
     always a (tx_out) = xx_in = tx_out;
     initial
     begin
      gregat = 1.
       ld_tx_data =0.
        tx_data = 0;
        tx_emable = 1;
        uld_grx_data=o.
        gix_emable=1:
        91 x _ im = 1.
```

```
#500.
            suget = 0.
          tx_data = 8'bo111_1111.
           mait (+x_empty == 1).
           ld_tx_data=1.
           wait (t.x_empty ==0).
           $ display (" Data leaded for Send").
            ld_tx_data = 0.
            Luait (tx_compty ==1).
            $ display (" Data Sent").
            mait ( or x compton == 0).
             $ dieplay ( " FX Byta Ready").
                  Isld 9xx data=1.
             mait (six_empty == 1);
             $ display ("Bx Bryte unleaded: 1.6" 91x data)
             #100.
             $ Limich .
          end
endmadule
```