Filtros de Orden Estadístico

Felipe Sánchez Soberanis

15 de septiembre de 2022

$\mathbf{\acute{I}ndice}$

unto 1
Resultados
Bibliografía
Librerías
Algoritmos propios
Problemas
unto 2
Resultados
Bibliografía
Librerías
Algoritmos propios
Problemas
unto 3
Resultados
Bibliografía
Librerías
Algoritmos propios
Problemas
onclusiones
epositorio

Punto 1

Resultados

Figura 1: Resultados del punto 1.

Bibliografía

https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73

https://www.researchgate.net/publication/328619526

https://www.researchgate.net/publication/328619526_Comparative_Analysis_of_Fixed_Valued_Impuls e_Noise_Removal_Techniques_for_Image_Enhancement_Second_International_Conference_ICACD S 2018 Dehradun India April 20-21 2018 Revised Selected Papers Part I

Librerías

- scipy
- opency-contrib-python
- matplotlib
- numpy

Algoritmos propios

N/A.

Problemas

N/A.

Punto 2

Resultados

Figura 2: Resultados del punto 2.

Bibliografía

https://medium.com/image-vision/noise-filtering-in-digital-image-processing-d12b5266847c

Librerías

- lacktriangledown opency-contrib-python
- \blacksquare matplotlib
- numpy

Algoritmos propios

N/A.

Problemas

N/A.

Punto 3

Resultados

Figura 3: Resultados del punto 3.

Bibliografía

https://slideum.com/doc/1152380/filtro-mediana-adaptativo---departamento-de-ciencias-de-laurante de la departamento-de-ciencias-de-laurante de la delaurante delaurante delaurante de la delaurante de la delaurante delaurante de la delaurante delaurante de la delaurante de la delaurante delaurante delaurante de la delaurante de la delaurante delaurante de la delaurante delaurante de la delaurante de la delaurante delaurante delaurante de la delaurante de la delaurante de la delaurante delaurante delaurante de la delaurante de la delaurante delaurante delaurante de la delaurante delaurante de la delaurante delau

Librerías

- scipy
- \blacksquare opency-contrib-python
- \blacksquare matplotlib
- numpy

Algoritmos propios

Figura 4: Flujo del filtro adaptativo de mediana.

Problemas

N/A.

Conclusiones

Relacionado a la tarea anterior, el hecho de poder usar un histograma para poder identificar el tipo de ruido que se presenta en una imagen nos permite poder seleccionar, entre los varios algoritmos que existe, como los que se vieron en esta tarea, el más adecuado para poder reducir dicho ruido, manteniendo la mayor cantidad de información original posible. Esto permite que podamos trabajar con una gamma más amplia de datos, ya que no necesitamos tener datos completamente ideales o perfectos, podemos utilizar datos más cotidianos, los cuales podemos limpiar para producir un muy buen resultado.

Repositorio

https://github.com/FelipeSanchezSoberanis/vision-por-computadora/tree/main/filtros_orden_estadistico