HOMEWORK #1 SOLUTIONS

Remember to write clearly and to justify all your claims in your solutions.

(1) Use induction to prove that

(1)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Solution. First, we prove the base case of the above formula, when n = 1. This is obvious, since then the formula reads $1^2 = 1(2)(3)/6 = 1$, which is true.

Next, we assume that the formula is true for n, and prove it true for n+1. The formula for n reads

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Add $(n+1)^2$ to both sides:

$$\left(\sum_{k=1}^{n} k^2\right) + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2.$$

The left hand side is the same as the sum of the squares from 1 to n+1. The right hand side simplifies to:

$$\frac{n(n+1)(2n+1)+6(n+1)^2}{6} = \frac{(n+1)(n(2n+1)+6(n+1))}{6}$$
$$= \frac{(n+1)(2n^2+7n+6)}{6} = \frac{(n+1)(n+2)(2n+3)}{6}$$

This last expression is the same as the right hand side of Equation 1, with n replaced by n+1. So we have proven Equation 1 with n replaced by n+1, which was our goal. \square

- (2) Use the Euclidean algorithm to find the gcd of the following pairs of integers:
 - (a) a = 186, b = 51,
 - (b) a = 438, b = 150.

You should write down each step of the Euclidean algorithm (although you need not show all your arithmetic scratchwork).

Solution. For a = 186, b = 51, we get the following list of Euclidean divisions:

$$186 = 51 \cdot 3 + 33(q = 3, r = 33),$$

$$51 = 33 \cdot 1 + 18(q = 1, r = 18),$$

$$33 = 18 \cdot 1 + 15(q = 1, r = 15),$$

$$18 = 15 \cdot 1 + 3(q = 1, r = 3),$$

$$15 = 3 \cdot 5 + 0(q = 5, r = 0).$$

The last non-zero remainder, 3, is the gcd of 186 and 51. \square For a = 438, b = 150, we get the following list of Euclidean divisions:

$$438 = 150 \cdot 2 + 138(q = 2, r = 138),$$

$$150 = 138 \cdot 1 + 12(q = 1, r = 12),$$

$$138 = 12 \cdot 11 + 6(q = 11, r = 6),$$

$$12 = 6 \cdot 2 + 0(q = 2, r = 0).$$

The last non-zero remainder, 6, is the gcd of 438 and 150. \square

(3) Use the Euclidean algorithm to find a pair of integer solutions x, y to the equation 96x + 28y = 8. (Soon we will see how to find all integer solutions to this equation.)

Solution. We begin by using the Euclidean algorithm to find the gcd of 96 and 28:

$$96 = 28 \cdot 3 + 12,$$

$$28 = 12 \cdot 2 + 4,$$

$$12 = 4 \cdot 3 + 0.$$

The last non-zero remainder is 4, so gcd(96, 28) = 4. We now use the steps of the Euclidean algorithm to find a pair of integers x, y which solve the equation 96x + 28y = 4:

$$4 = 28 - 12(2),$$

$$4 = 28 - (96 - 28 \cdot 3)(2) = 96(-2) + 28(7).$$

Therefore x = -2, y = 7 solves 96x + 28y = 4. To get a solution to 96x + 28y = 8, just multiply the previous solutions by 2, so that x = -4, y = 14 solves 96x + 28y = 8. \Box

(4) Suppose we know that the gcd of two positive integers, say a, b, is equal to 20. Is it possible to determine what all the (positive) common divisors of a, b are from this information? If so, what are those common divisors? (Remember, you need to prove all your assertions!)

Solution. A theorem in class said that every common divisor of a, b divides gcd(a, b) = 20 as well. Just to be thorough, we should check that every divisor of gcd(a, b) is

also a common divisor of a, b. So suppose $c | \gcd(a, b)$. Because $\gcd(a, b) | a, b$, we must have c | a, c | b, as desired.

These two facts taken together show that the set of common divisors of a, b are just the divisors of gcd(a, b) = 20. The divisors of 20 are 1, 2, 4, 5, 10, 20, so these are the common divisors of a, b. \square

(5) Recall that the Fibonacci sequence f_n is defined by the recursive relation $f_{n+2} = f_{n+1} + f_n$ for $n \ge 1$, and the initial terms $f_1 = f_2 = 1$. So the first few members of the Fibonacci sequence are $1, 1, 2, 3, 5, 8, \ldots$ Show that $\gcd(f_{n+1}, f_n) = 1$ for all $n \ge 1$.

Solution. If we want to prove something about $\gcd(f_{n+1}, f_n)$, it might be worthwhile to try the Euclidean algorithm. So let $n \geq 3$ be any integer greater than 2. (If n = 1, 2, then the claim in the question is obviously true.) Let us try a Euclidean division of f_{n+1} by f_n . The recursive definition of the Fibonacci sequence tells us that $f_{n-1} = f_{n+1} - f_n$. Also notice that $f_{n-1} < f_n$: indeed, since $f_n > 0$ for all n, and $f_{n-1} + f_{n-2} = f_n$, we must have $f_{n-1} < f_n$ since $f_{n-2} > 0$. Therefore, f_{n-1} must be the remainder when we perform a Euclidean division of f_{n+1} by f_n . (Remember, the remainder is the unique integer r such that $0 \leq r < f_n$, and such that $f_{n+1} - r$ is a multiple of f_n .)

But if f_{n-1} is the remainder when we perform a Euclidean division of f_{n+1} by f_n , this tells us that $\gcd(f_{n+1}, f_n) = \gcd(f_n, f_{n-1})$. We repeat this argument with f_n, f_{n-1} to obtain the following chain of equalities:

$$\gcd(f_{n+1}, f_n) = \gcd(f_n, f_{n-1}) = \dots = \gcd(f_3, f_2) = \gcd(2, 1) = 1.$$

- (6) For each of the following sets of integers, determine whether they are mutually coprime, not mutually coprime but coprime, or not coprime. (Remember, prove your answer.)
 - (a) 27, 80, 13,
 - (b) 24, 19, 186.

Solution. The set 27, 80, 13 is mutually coprime. Indeed, $27 = 3^3$, and $3 \nmid 80$, so $\gcd(27, 80) = 1$. Since 13 is prime, and $13 \nmid 27, 80$, $\gcd(13, 27) = 1$, $\gcd(13, 80) = 1$. The set 24, 19, 186 is coprime but not mutually coprime. For instance, $3 \mid 24, 3 \mid 186$, so $\gcd(24, 186) \geq 3$. However, because 19 is prime, and $19 \nmid 24$, $\gcd(24, 19, 186) = \gcd(\gcd(24, 19), 186) = \gcd(1, 186) = 1$. □

- (7) For a positive integer n, let $\phi(n)$ be the number of positive integers less than n coprime to n. For instance, $\phi(4) = 2$, since 1, 3 are coprime to 4, but 2 is not, while $\phi(6) = 2$ as well, because 1, 5 are coprime to 6, but 2, 3, 4 are not. (This function is called the *Euler totient* function and we will learn much more about it later in the class.)
 - (a) Calculate $\phi(3)$ and $\phi(12)$.
 - (b) Calculate $\phi(5)$ and $\phi(15)$. What is the relationship between $\phi(5), \phi(3)$, and $\phi(15)$?
 - (c) Based on the above calculations, if a, b are positive integers, what do you conjecture for the relationship between $\phi(a), \phi(b)$, and $\phi(ab)$? (Don't bother trying to prove your conjecture, we'll do this later on.)
 - (d) Test your conjecture with a = 4, b = 2. Do you need to change your conjecture at all? (Presumably you will need to calculate $\phi(2)$ and $\phi(8)$.)

Solution.

- (a) $\phi(3) = 2$, since $\gcd(1,3) = \gcd(2,3) = 1$, while $\gcd(3,3) = 3 \neq 1$. Similarly, $\phi(12) = 4$, because $\gcd(1,12) = \gcd(5,12) = \gcd(7,12) = \gcd(11,12) = 1$, while $\gcd(n,12) \neq 1$ for any other value of $n,1 \leq n \leq 12$ (those other values are divisible by either 2 or 3).
- (b) $\phi(5) = 4$, because 5 is prime, so that gcd(n, 5) = 1 for $1 \le n < 5$. $\phi(15) = 8$, since 1, 2, 4, 7, 8, 11, 13, 14 are relatively prime to 15 (they are not divisible by either 3 or 5), while 3, 5, 6, 9, 10, 12, 15 are not relatively prime to 15.
- (c) The above considerations seem to suggest that $\phi(ab) = \phi(a)\phi(b)$.
- (d) If a=4, b=2, we have $\phi(2)=1, \phi(4)=2, \phi(8)=4$, so the conjecture from the previous part fails for this choice of a, b. The correct modification is to require that a, b be relatively prime in our conjecture, which is the case with the a, b pairs 3, 4 or 5, 3. \square