Application No.: 10/019,407

Art Unit: 2813

Docket No.: 520.41003X00

Page 8

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Withdrawn, Previously Presented) A polycrystalline semiconductor thin film substrate comprising an insulative substrate and a polycrystalline semiconductor thin film formed on one surface of the insulative substrate, wherein the polycrystalline semiconductor thin film is formed by a plurality of laser irradiation steps, wherein the laser irradiation steps are carried out so that, after the last laser irradiation step, the number of crystal grains with the number of closest crystal grains of 6 is greatest among plural crystal grains that form the polycrystalline semiconductor thin film.
- 2. (Withdrawn, Original) A polycrystalline semiconductor thin film substrate as defined in claim 1, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.
- 3. (Previously Presented) A semiconductor device comprising plural transistors formed in a polycrystalline semiconductor thin film, wherein the polycrystalline semiconductor thin film is formed by a plurality of laser irradiation steps, wherein the laser irradiation steps are carried out so that, after the last laser irradiation step, the number of crystal grains with the number of closest crystal grains of 6 is greatest among plural crystal grains that form the polycrystalline semiconductor thin film.

Docket No.: 520.41003X00 Application No.: 10/019,407 Page 9

Art Unit: 2813

A semiconductor device as defined in claim 3, wherein the 4. (Original) roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.

5. (Withdrawn, Previously Presented) A semiconductor device comprising plural transistors formed in a polycrystalline semiconductor thin film, wherein the polycrystalline semiconductor thin film is formed by a plurality of laser irradiation steps, wherein the laser irradiation steps are carried out so that, after the last laser irradiation step, within a square region with a 10 μ side, 50 to 100% of the crystal grains have the number of closest crystalline grains of 6 and are present in an area including the center of the polycrystalline semiconductor thin film.

(Withdrawn, Original) A semiconductor device as defined in claim 5, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.

7. (Canceled)

(Withdrawn, Previously Presented) An electronic apparatus comprising a semiconductor device in which plural transistors are formed in a polycrystalline semiconductor thin film, wherein variation in the threshold voltage of the plural transistors is 0.1 V or less, wherein the polycrystalline semiconductor thin film is formed by a plurality of laser irradiation steps, wherein the laser irradiation steps are

Application No.: 10/019,407

Art Unit: 2813

Docket No.: 520.41003X00

Page 10

carried out so that, after the last laser irradiation step, the number of crystal grains with the number of closest crystal grain of 6 is greatest among plural crystal grains that form the polycrystalline semiconductor thin film.

(Withdrawn, Original) An electronic apparatus as defined in claim 8, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.

10. (Withdrawn, Previously Presented) An electronic apparatus comprising a semiconductor device in which plural transistors are formed in a polycrystalline semiconductor thin film, wherein the polycrystalline semiconductor thin film is formed by a plurality of laser irradiation steps, wherein the laser irradiation steps are carried out so that, after the last laser irradiation step, within a square region with a 10 μm side, 50 to 100% of the crystal grains have the number of closest crystalline grains of 6 and are present in an area which includes the center of the polycrystalline semiconductor thin film.

- 11. (Withdrawn, Original) An electronic apparatus as defined in claim 10, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.
- 12. (Withdrawn, Previously Presented) An electronic apparatus as defined in claim 8, wherein the electronic apparatus is a liquid crystal display, the semiconductor device has transistors for operating each of pixels of a liquid crystal

Application No.: 10/019,407

Art Unit: 2813

Docket No.: 520.41003X00

Page 11

display panel and transistors constituting peripheral driver circuits and is stacked and

attached on the liquid crystal display panel of the liquid crystal display.

13. (Withdrawn, Previously Presented) An electronic apparatus as defined in

claim 8, wherein at least one of a central processing unit, a cache circuit, a memory

circuit, a peripheral circuit, an input/output circuit and a bus circuitry are formed with

the transistors of the semiconductor device.

14 - 15. (Cancelled)

16. (Withdrawn, Previously Presented) A semiconductor device in which a

transistor is formed in a polycrystalline semiconductor thin film, wherein the

polycrystalline semiconductor thin film is formed by a plurality of laser irradiation

steps, wherein the laser irradiation steps are carried out so that, after the last laser

irradiation step, the number of crystal grains with the number of closest crystal grains

of 6 is greatest among plural crystal grains forming the channel region of the

transistor.

17. (Withdrawn, Previously Presented) A semiconductor device in which

plural transistors are formed in the polycrystalline semiconductor thin film wherein

the polycrystalline semiconductor thin film is formed by a plurality of laser irradiation

steps, wherein the laser irradiation steps are carried out so that, after the last laser

irradiation step,, within a square region with a 10 μm side, 50 to 100% of the crystal

Application No.: 10/019,407 Docket No.: 520.41003X00

Art Unit: 2813 Page 12

grains have the number of closest crystalline grains of 6 and are present in an area which includes the center of the polycrystalline semiconductor thin film.

18. (Withdrawn, Original) A semiconductor device as defined in claim 17. wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.

19. (Withdrawn, Previously Presented) An electronic apparatus having plural transistors formed in a polycrystalline semiconductor thin film, wherein the polycrystalline semiconductor thin film is formed by a plurality of laser irradiation steps, wherein the laser irradiation steps are carried out so that, after the last laser irradiation step, the number of crystal grains with the number of closest crystal grains of 6 is greatest among plural crystal grains forming the polycrystalline semiconductor thin film.

20. (Withdrawn, Original) An electronic apparatus as defined in claim 19, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.