A Data-Distribution and Successive Spline Points based discretization approach for evolving gene regulatory networks from scRNA-Seq time-series data using Cartesian Genetic Programming

Removed due to double-blind review.

Supplementary Material

This supplementary material presents additional details and extra tabular results when solving the proposed benchmark problems for assessing the performance of the proposal.

1 Curated Problems

Tables 1 and 2 present the tabular results when solving the curated problems considering the AUPRC and AUROC of the median values. The values are presented considering the worst, first quantile (Q1), mean, median, third quantile (Q3), best, and standard deviation (STD) values.

Table 1: Values of AUPRC for the median case. The best results are in boldface.

	Prob.	Alg.	Worst	Q1	Mean	Median	Q3	Best	Std.
		CGP	0.2038	0.2153	0.2304	0.2293	0.2459	0.2584	0.0179
	GSD	CGP-DSSPD	0.2157	0.2351	0.2502	0.2548	0.2584	0.2763	0.0190
0% dropout	HSC	CGP	0.2003	0.2212	0.2550	0.2528	0.2840	0.3253	0.0380
obo		CGP-DSSPD	0.1956	0.2122	0.2309	0.2303	0.2486	0.2678	0.0235
dr	Q4D	CGP	0.5297	0.5692	0.5863	0.5913	0.6032	0.6287	0.0281
%	mCAD	CGP-DSSPD	0.5948	0.6440	0.7055	0.7186	0.7341	0.8460	0.0731
	43C	CGP	0.2284	0.2630	0.2739	0.2724	0.2929	0.3124	0.0242
		CGP-DSSPD	0.2261	0.2579	0.2751	0.2665	0.2884	0.3552	0.0328
	GSD	CGP	0.1908	0.2088	0.2255	0.2276	0.2425	0.2573	0.0202
تد		CGP-DSSPD	0.2151	0.2292	0.2536	0.2519	0.2673	0.3140	0.0309
out	HSC	CGP	0.2047	0.2579	0.2688	0.2747	0.2929	0.3063	0.0316
do.		CGP-DSSPD	0.2129	0.2152	0.2341	0.2237	0.2439	0.2777	0.0230
ф С	QAD	CGP	0.5385	0.5947	0.6119	0.6201	0.6331	0.6535	0.0327
50% dropout	mCAD	CGP-DSSPD	0.5945	0.6426	0.6528	0.6516	0.6633	0.7116	0.0292
	43C	CGP	0.2494	0.2698	0.2925	0.2819	0.3064	0.3709	0.0372
		CGP-DSSPD	0.2147	0.2502	0.2706	0.2637	0.2789	0.3468	0.0356
70% dropout	a O	CGP	0.1931	0.2061	0.2180	0.2177	0.2239	0.2515	0.0172
	GSD	CGP-DSSPD	0.1851	0.2298	0.2398	0.2389	0.2573	0.2766	0.0242
	HS^C	CGP	0.2230	0.2390	0.2604	0.2441	0.2735	0.3246	0.0339
		CGP-DSSPD	0.1951	0.2197	0.2428	0.2499	0.2633	0.2874	0.0287
	QAL	CGP	0.5386	0.6011	0.6539	0.6446	0.7004	0.7946	0.0796
	mCAD	CGP-DSSPD	0.5614	0.6146	0.6660	0.6635	0.7239	0.7475	0.0634
7	75C	CGP	0.2463	0.2526	0.2817	0.2832	0.3041	0.3286	0.0286
		CGP-DSSPD	0.2315	0.2518	0.2931	0.2859	0.3157	0.4109	0.0502

Table 2: Values of AUROC for the median case. The best results are in boldface.

	Prob.	Alg.	Worst	Q1	Mean	Median	Q3	Best	Std.
		CGP	0.4807	0.4971	0.5118	0.5173	0.5242	0.5472	0.0193
	CSD	CGP-DSSPD	0.4780	0.5009	0.5185	0.5267	0.5367	0.5450	0.0220
0% dropout	HS^C	CGP	0.4235	0.4823	0.5265	0.5272	0.5759	0.6193	0.0589
obo		CGP-DSSPD	0.4146	0.4647	0.4943	0.4918	0.5378	0.5524	0.0441
$d\mathbf{r}$	mCAD	CGP	0.2857	0.3338	0.3764	0.3846	0.4052	0.4670	0.0552
%		CGP-DSSPD	0.4505	0.4890	0.5473	0.5632	0.5783	0.6758	0.0639
O	13C	CGP	0.4041	0.4923	0.5038	0.5020	0.5419	0.5675	0.0472
		CGP-DSSPD	0.4602	0.4872	0.5095	0.5016	0.5205	0.6033	0.0379
	GSD	CGP	0.4520	0.4861	0.5069	0.5086	0.5393	0.5450	0.0323
دد		CGP-DSSPD	0.4737	0.5078	0.5223	0.5267	0.5409	0.5560	0.0232
on	HS^C	CGP	0.4290	0.5425	0.549	0.5583	0.5837	0.6154	0.0519
do.		CGP-DSSPD	0.4556	0.4812	0.4935	0.4874	0.5088	0.5396	0.0242
д	mCAD	CGP	0.3242	0.3901	0.4346	0.4505	0.4821	0.4890	0.0559
50% dropout		CGP-DSSPD	0.3956	0.4505	0.4681	0.4698	0.4725	0.5604	0.0390
	49C	CGP	0.4650	0.5030	0.5320	0.5297	0.5472	0.6480	0.0511
		CGP-DSSPD	0.4114	0.4618	0.4833	0.4911	0.5055	0.5374	0.0373
70% dropout	,cD	CGP	0.4380	0.4727	0.4910	0.4924	0.4984	0.5459	0.0296
	GSD	CGP-DSSPD	0.4370	0.5055	0.5127	0.5212	0.5258	0.5511	0.0305
	$HS^{\mathbb{C}}$	CGP	0.4792	0.4944	0.5288	0.4990	0.5615	0.6364	0.0494
		CGP-DSSPD	0.4336	0.4727	0.5054	0.4927	0.5406	0.5820	0.0459
	mCAD	CGP	0.2857	0.4272	0.4890	0.4780	0.5659	0.7363	0.1303
%0		CGP-DSSPD	0.4341	0.4560	0.5137	0.5247	0.5673	0.5934	0.0582
7	49C	CGP	0.4447	0.4671	0.5090	0.5195	0.5358	0.5813	0.0448
		CGP-DSSPD	0.4398	0.4998	0.5250	0.5415	0.5488	0.5813	0.0418

2 Parameter Sensitivity Analysis

Table 3 presents the tabular results of the parameter sensitivity analysis considering the median values. The first column is the area under (AU) the precision-recall curve (PRC) and the receiver operating characteristic curve (ROC), respectively. Negative values indicate that the parameter generated worse results than the reference (0.02).

Table 3: Parameter sensitivity analysis for the median case. The values are the relative difference between several values for μ_{var} . The reference is $\mu_{var} = 0.02$.

	0% dropout				50% dropout				70% dropout				
AU	μ_{var}	GSD	HSC	mCAD	VSC	GSD	HSC	mCAD	VSC	GSD	HSC	mCAD	VSC
PRC	$0.005 \\ 0.01 \\ 0.05$	2.59% -1.45% -3.73%	1.48% $0.22%$ $-3.13%$	0.31% $2.16%$ $0.31%$	-3.83% -2.63% 15.95%	2.58% 1.15% -1.51%	23.47% 8.85% 7.47%	6.48% $3.62%$ $7.00%$	-2.43% $5.50%$ $17.18%$	1.05% $0.88%$ $-0.59%$	9.24% 4.16% -5.04%	6.63% $6.30%$ $-4.46%$	-7.14% -14.24% -8.08%
ROC	0.005 0.01 0.05	0.66% -0.85% 0.25%	-0.14% 1.61% -1.10%	-0.50% 0.48% -0.50%	-4.70% -4.86% -1.30%	0.74% 1.12% -1.77%	9.44% 5.40% 5.50%	18.11% 16.37% 17.54%	0.41% 0.16% 0.81%	-0.61% -0.56% -0.36%	8.83% 10.96% -1.44%	4.73% 4.73% -0.51%	-10.06% -14.35% -8.57%