Math Induction

based on How to Prove It (chapter 6)

- To prove a goal of the form ∀ n∈N P(n):
- First prove the base case:
 - P(n₀) is true
- then prove the induction step:
 - \forall $n \in \mathbb{N}$ $n > n_0$ (P(n) \rightarrow P(n + 1)).
- Example 6.1.1. Prove that for every natural number n, $2^0 + 2^1 + \cdots + 2^n = 2^{n+1} 1$.
- Base case: $2^{\circ} = 2^{\circ + 1} 1 = 2 1 = 1$ is true
- Induction case:

Givens Goal
$$n \in \mathbb{N} \qquad 2^0 + 2^1 + \dots + 2^{n+1} = 2^{n+2} - 1$$

$$2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1$$

$$2^{0} + 2^{1} + \dots + 2^{n+1} = 2 \cdot 2^{n+1} - 1 = 2^{n+2} - 1.$$

- Example 6.1.2. Prove that \forall n $\in \mathbb{N}$ (3 | (n³ n)).
- Base case: ?
- Induction case:

Givens Goal
$$n \in \mathbb{N} \qquad \exists j \in \mathbb{Z} (3j = (n+1)^3 - (n+1))$$

$$\exists k \in \mathbb{Z} (3k = n^3 - n)$$

$$(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$$
$$= (n^3 - n) + 3n^2 + 3n$$
$$= 3k + 3n^2 + 3n$$
$$= 3(k + n^2 + n).$$

Example 6.1.3. Prove that \forall $n \ge 5(2^n > n^2)$.

- Base case: n = 5.
- Inductive case: assume $2^n > n^2$, and try to prove that $2^{n+1} >$

Givens	Goal
$2^n > n^2$	$2^{n+1} > (n+1)^2$

- We want to prove the goal: $2^{n+1} > n^2 + 2n + 1$.
- From givens: $2^{n+1} = 2 \times 2^n > 2n^2 = n^2 + n^2$
- We will prove the goal if we prove that $n^2 > 2n+1$.
- Since $n \ge 5$, it follows that $n^2 \ge 5n = 2n + 3n > 2n + 1$.
- So, we proved the goal!

Strong Induction

- In the induction step of a proof by mathematical induction, we prove that a natural number has some property based on the assumption that the previous number has the same property.
- In some cases this assumption isn't strong enough to make the proof work, and we need to assume that all smaller natural numbers have the property.
- To prove a goal of the form \forall $n \in \mathbb{N}$ P(n):
 - Prove base step: P(n₀) is true
 - Prove induction step: \forall n \in N, n>n₀ [(\forall k< n, k≥n₀,k \in N P(k)) \rightarrow P(n)]
 - induction step: if every natural number smaller than *n* has the property P, then *n* has the property P.

Theorem 6.4.2. Every integer n > 1 is either prime or a product of primes.

Proof (by strong induction):

- base case:
 - n=2 is prime
- inductive hypothesis:
 - \forall $n \in \mathbb{N}$, $k \in \mathbb{N}$, $k < n[k > 1 \rightarrow (k \text{ is prime } \forall k \text{ is a product of primes})]$
- goal:
 - \forall n \in N, n > 1 \rightarrow (n is prime \forall n is a product of primes)
- Take arbitrary natural n. If n is prime then the goal is true.
- Suppose n is not prime.
- It means \exists a $\in \mathbb{N}$ \exists b $\in \mathbb{N}$ $((n = ab) \land (a < n) \land (b < n)).$

- $\exists a \in \mathbb{N} \exists b \in \mathbb{N} (n = ab \land a < n \land b < n).$
- Since a < n = ab, it follows that b > 1.
- Similarly b < n = ab, it follows that a > 1.
- Since (a < n) \(\) (b < n), by inductive hypothesis, each
 of a and b is either prime or a product of primes. But
 then since n = ab, n is a product of primes.

Theorem 6.4.4. (Well-ordering principle) Every nonempty set of natural numbers has a smallest element.

Proof:

- **Goal:** \forall $S \subseteq \mathbb{N}$ ($S \neq \emptyset \rightarrow S$ has a smallest element).
- After letting S be an arbitrary subset of N, we'll prove the contrapositive of the conditional statement: if S has no smallest element then S is empty (meaning ∀n ∈N (n∉ S)).
- Use strong induction.
- Base case: o∉ S (if o ∈S, then it is the smallest element of S, since 0 is the smallest natural number).
- Strong induction hypothesis: \forall k < n(k \notin S).
- Goal: n ∉ S.
- Proof of the goal: if n∈S then n would be the smallest element of S.
 Since S has no smallest element n∉ S.
- Thus, assuming that S has no smallest element we obtained that S is empty. Therefore if S is not empty, S has a smallest element.

Theorem 6.4.5. $\sqrt{2}$ is irrational.

- Proof is based on well-ordering principle.
- (See textbook How To Prove It, section 6.4)