EE236: Experiment No. 4 Temperature dependance of Solar Cell Characteristics

Mayur Ware, 19D070070

February 22, 2022

1 Overview of the experiment

1.1 Aim of the experiment

Aim of this experiment is to analyze the forward bias I-V and C-V characteristics of Solar Cell in twisted conditions. We have to vary the temperatures and find Ideality factors at certain points.

To analyze the effects of Series Resistance (R_s) and Shunt Resistance (R_{sh}) on the Lighted I-V Characteristics of Solar Cell.

1.2 Methods

Firstly, I read and understood the background material to understand the temperature dependence. Then, I used the netlists from the previous lab for plotting the I-V Characteristics of Solar Cell at different temperatures namely, 35°C, 45°C, 55°C, 65°C and 75°C. Then, I calculated η for low forward bias (1mA) and for high forward bias (5mA) at all the temperatures. After that, I simulated the lighted I-V Characteristics of Solar Cell for all the given temperatures and R varying from 1 Ω to 500 Ω to find V_{oc} , I_{sc} and Fill Factor (FF).

Finally, I varied the Series Resistance (R_s) and Shunt Resistance (R_{sh}) of the Solar Cell to find V_{oc} , I_{sc} and Fill Factor (FF).

2 Design

Fig 1.: I-V Characteristics of Solar Cell

The circuit in Fig. 1 is for the I-V characteristics simulation of Solar Cell. I did DC analysis for input voltage from -2V to 2V. The Solar Cell is forward biased. I simulated the circuit for 5 different values of temperatures.

Fig 2.: I-V Characteristics of Solar Cell as a power source

This circuit represents I-V Characteristics of Solar Cell as a power source. I did a DC analysis for resistance from 1 Ω to 500 Ω . Then, I measured the I-V characteristics of the circuit for 8mA light generated current.

 V_{OC} is the rightmost point on the I-V curve whereas I_{SC} is the leftmost point on the curve. Lastly, I plotted P-V graph and calculated the Fill Factor using the following formula.

And varied the Series Resistance (R_s) and Shunt Resistance (R_{sh}) of the Solar Cell to find V_{oc} , I_{sc} and Fill Factor (FF).

Fill Factor (FF) =
$$I_{MP} * V_{MP}/(I_{SC} * V_{OC})$$
 (1)

[where, V_{MP} is the voltage at which the power P reaches maximum and I_{MP} the current at the maximum power point.]

3 Simulation results

3.1 Code snippets

```
3.1.1 I-V Characteristics of Solar Cell for different temperatures :
Mayur Ware | 19D070070
*EE236 | Lab 4
*I-V Characteristics of Solar Cell
*Including Solar cell model file
.include Solar_Cell.txt
*Netlist
Vin In GND dc 0.01 ; Input
Vx 1 2 dc 0 ; Dummy voltage source
R1 In 1 100 ; Resistor
X1 2 GND solar_cell IL_val=0e-3 ;IL = 0A
*.temp 35 ;Temperature
*.temp 45 ;Temperature
*.temp 55 ;Temperature
*.temp 65 ;Temperature
.temp 75 ;Temperature
*DC Analysis
.dc Vin -2 2 0.01
.control
run
set color0 = white
set color1 = black
set color2 = blue
set color3 = red
set xbrushwidth = 2
plot I(Vx) vs V(2); Id vs Vd plot
.endc
.end
3.1.2 Lighted I-V Characteristics of Solar Cell for different temper-
atures:
Mayur Ware | 19D070070
*EE236 | Lab 4
*Lighted I-V Characteristics
*Including Solar cell model file
```

```
.include Solar_Cell.txt
*Netlist
Vx 1 2 dc 0
R1 0 1 100
X1 2 0 solar_cell IL_val=8e-3 ;IL = 8mA
*.temp 35 ;Temperature
*.temp 45 ;Temperature
*.temp 55 ;Temperature
*.temp 65 ;Temperature
.temp 75 ;Temperature
*DC Analysis
.dc R1 1 500 0.01
.control
run
set color0 = white
set color1 = black
set color2 = blue
set color3 = red
set xbrushwidth = 2
plot I(Vx) vs V(2)
plot V(1)*I(Vx) vs V(2)
.endc
.end
```

3.2 Simulation results

I-V Characteristics of Solar Cell at

Fig. $3 : T = 35^{0}C$

Fig. 4: $T = 45^{\circ}C$

I-V Characteristics of Solar Cell at

Fig. 5 :
$$T = 55^{\circ}C$$

Fig.
$$6 : T = 65^{\circ}C$$

Fig. 7 : I-V Characteristics of Solar Cell at $T=75^{0}\mathrm{C}$

Temp	$V_D (I_D=1 \text{mA})$	$V_D (I_D=2\text{mA})$	$V_D (I_D=5\text{mA})$	$\eta~(\mathrm{I}_D{=}1\mathrm{mA})$	$\eta \ (\mathrm{I}_D = 5 \mathrm{mA})$
$35^{0}\mathrm{C}$	0.2924V	0.3484V	0.4333V	3.0586	3.9024
$45^{\circ}\mathrm{C}$	0.2651V	0.3227V	0.4075V	2.3042	3.5949
$55^{0}\mathrm{C}$	0.2393V	0.2924V	0.3803V	2.6493	4.1112
$65^{0}\mathrm{C}$	0.2106V	0.2667V	0.3530V	3.7922	3.7197
$75^{0}\mathrm{C}$	0.1826V	0.2405V	0.3289V	2.5982	3.6942

 $\label{eq:Lighted I-V Characteristics of Solar Cell at T=65^0C} Fig.~14: I_D~vs~V_D~~Fig.~15: P_R~vs~V_D$

Lighted I-V Characteristics of Solar Cell at $T = 75^{\circ}C$

Fig. 16: I_D vs V_D

Fig. 17 : P_R vs V_D

Fig. 18: Fill Factor (FF) vs Temperature

Fig. 19: V_D vs Temperature (for $I_D = 1 \text{mA}$, 2 mA and 5 mA)

Fig. 20 : V_{oc} vs Temperature

Fill Factor (FF), V_D and V_{oc} all show linear decreasing trend with Temperature. V_D increases with increase in I_D .

Lighted I-V Characteristics of Solar Cell at $R_s=0\Omega$

Fig. 21 : I_D vs V_D

Lighted I-V Characteristics of Solar Cell at ${\bf R}_s=10\Omega$

Fig. 23 : I_D vs V_D

Lighted I-V Characteristics of Solar Cell at ${\bf R}_s=30\Omega$

Fig. 25 : I_D vs V_D

Fig. 26 : P_R vs V_D

Fig. 27 : \mathbf{I}_{sc} vs \mathbf{R}_{s}

Fig. 28 : V_{oc} vs R_s

Fig. 29 : Fill Factor (FF) vs R_s

With increase in R_s , I_D vs V_D as well as P_R vs V_D curve of the Lighted I-V Characteristics of Solar Cell gets flatten. Also, Fill Factor (FF), I_{sc} (in magnitude) and V_{oc} decreases with increase in R_s .

Lighted I-V Characteristics of Solar Cell at $R_{sh}=100\Omega$

 $\begin{array}{ll} \mbox{Lighted I-V Characteristics of Solar Cell at } R_{sh} = 500\Omega \\ \mbox{Fig. 32: } I_D \mbox{ vs } V_D \\ \mbox{Fig. 33: } P_R \mbox{ vs } V_D \\ \end{array}$

Lighted I-V Characteristics of Solar Cell at ${\bf R}_{sh}=5000\Omega$ Fig. 35 : P_R vs V_D

Fig. 34 : I_D vs V_D

Fig. 36 : I_{sc} vs R_{sh}

Fig. 37 : V_{oc} vs R_{sh}

Fig. 38 : Fill Factor (FF) vs R_{sh}

Effect of R_{sh} is completely inverse as compared to R_s . With decrease in R_sh , I_D vs V_D as well as P_R vs V_D curve of the Lighted I-V Characteristics of Solar Cell gets flatten. Also, Fill Factor (FF), I_{sc} (in magnitude) and V_{oc} increases with increase in R_{sh} .

4 Experimental results

This section is not applicable for this experiment.

5 Experiment completion status

I have completed all sections as well as exercises in this lab.

6 Questions for reflection

This section is not applicable for this experiment.