DOT/FAA/AR-98/33

Office of Aviation Research Washington, D.C. 20591

Uniaxial and Biaxial Tests on Riveted Fuselage Lap Joint Specimens

October 1998

Final Report

This document is available to the U.S. public Through the National Technical Information Service (NTIS), Springfield, Virginia 22161.

19981218 053

Reproduced From Best Available Copy

U.S. Department of Transportation Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.					
DOT/FAA/AR-98/33		;					
4. Title and Subtitle		5. Report Date					
UNIAXIAL AND BIAXIAL TESTS ON	RIVETED FUSELAGE	October 1998					
LAP JOINT SPECIMENS	•	6. Performing Organization Code					
7. Author(s)		8. Performing Organization Report No.					
H. Vlieger and H.H. Ottens		NLR CR 97319L					
Performing Organization Name and Address		10. Work Unit No. (TRAIS)					
Nationaal Luch-En Ruimtevaart Laborato	rium						
National Aerospace Laboratory NLR							
1059 CM Amsterdam, PO Box 90502		11. Contract or Grant No.					
The Netherlands		MoC AIA/CA-52-3-2					
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered					
U.S. Department of Transportation							
Federal Aviation Administration		Final Report					
Office of Aviation Research		14. Sponsoring Agency Code					
Washington, DC 20591		AAR-430					
15. Supplementary Notes							
FAA William J. Hughes Technical Center monitor: Dr. Paul Tan							

16. Abstract

As a part of a collaboration program between the Federal Aviation Administration (FAA, USA) and the Department of Civil Aviation (RLD, the Netherlands), the Dutch National Aerospace Laboratory (NLR) has carried out fatigue tests on riveted lap joint specimens. The specimens are representative of the longitudinal lap joints of a commercial aircraft in which multiple-site damage (MSD) was found in service. Two different rivet configurations, dimpled and countersunk riveted joints, were investigated. The countersunk riveted specimens were bonded as well. Four different bonding qualities ranging from fully bonded to fully unbonded were tested.

The results of the test program showed that the fatigue life until failure of the dimpled lap joint specimens was about one-quarter of that of the unbonded countersunk specimens. The bonding quality is a major parameter for the fatigue life. Fully or partly bonded specimens did not show fatigue cracking within 500 or even 1000 kilocycles. Specimens with a fully degraded bonding layer have slightly better fatigue properties compared to fully unbonded specimens.

17. Key Words		18. Distribution Statement			
Dimpled rivet joints, Countersunk rivet join specimens, Bonding quality	This document is availaded Technical Information 22161.				
19. Security Classif. (of this report)	this page)	21. No. of Pages	22. Price		
Unclassified	Unclassified		56	N/A	

TABLE OF CONTENTS

			Page
EXE	CUTIV	E SUMMARY	vii
1.	INT	RODUCTION	. 1
2.	DES	CRIPTION OF THE TEST PROGRAM	1
3.	DES	CRIPTION OF THE SPECIMENS	11
4.	EXE	CUTION OF THE TESTING	11
	4.1 4.2	Uniaxial Tests Biaxial Tests	11 14
5.	SPA	TE MEASUREMENT PERFORMED	18
6.	REST	ULTS OF TESTS AND MEASUREMENTS	18
7.	DISC	CUSSION	45
	7.1 7.2 7.3 7.4	General Remarks Comparison of Countersunk Riveted and Dimpled Riveted Lap Joints The Effect of the Bonding Quality Comparison of Wide- and Narrow-Specimen Results	45 46 47 48
8.	CON	CLUSIONS	48
9.	REFI	ERENCES	49

LIST OF FIGURES

Figure		Page
1	Structural Details of Longitudinal Skin Splices With Multiple-Site Damage	2
2	Configuration for 120-mm-Wide Lap Joint Specimens	5
3	Configuration for 160-mm-Wide Lap Joint Specimens	6
4	Configuration for 480-mm-Wide Countersunk Lap Joint Speicmens	8
5a	Configuration for 480-mm-Wide Dimpled Lap Joint Speicmens (D4a, D5a)	9
5b	Configuration for 480-mm-Wide Dimpled Lap Joint Speicmens (D3a)	10
6	Exploded View of 160-mm-Wide Biaxial Lap Joint Specimen	. 12
7	Position of Strain Gauges on 160-mm-Wide Lap Joint Specimens	13
8a	Biaxial Test Setup	14
8b	One of the 480-mm-Wide Biaxial Specimens Mounted in the Test Frame	17
8c	Positions of Strain Guages on Specimen to Realize a Correct Alignment During the Test	18
9	Results for Specimen C1c	21
10	Results for Specimen C2c	21
11	Results for Specimen C3c	22
12	Results for Specimen C4c	22
13	Results for Specimen C5c	23
14	Results for Specimen C2a	23
15	Results for Specimen C4d	24
16	Results for Specimen C5d	24
17	Results for Specimen Cle	25
18	Results for Specimen C2e	26
19	Results for Specimen C3e	27

20	Results for Specimen C4e	28
21	Results for Specimen C5e	29
22	Results for Specimen C1a	30
23	Results for Specimen C3a	31
24	Results for Specimen C4f	32
25	Results for Specimen C5f	. 33
26	Results for Specimen C4a	34
27	Results for Specimen C5a	36
28	Results for Specimen C6a	38
29	Results for Specimen D3a	40
30	Results for Specimen D4a	42
31	Results for Specimen D5a	43
32	Results of SPATE Measurements	45

LIST OF TABLES

Table		Page
la	Original Test Program on Riveted/Bonded Fuselage Lap Joint Specimens	3
1b	Actual Test Program on Fuselage Lap Joint Specimens	4
2	Summary of Applied Loads	16
3	Summary of the Test Results	19
4	Diameter (mm) of the Rivet Formed Head for the Rivets in the Critical Row	20

EXECUTIVE SUMMARY

As a part of a collaboration program between the Federal Aviation Administration (FAA, USA) and the Department of Civil Aviation (RLD, the Netherlands), the Dutch National Aerospace Laboratory (NLR) has carried out fatigue tests on riveted lap joint specimens. The specimens are representative of the longitudinal lap joints of a commercial aircraft in which multiple-site damage (MSD) was found in service. Two different rivet configurations, dimpled and countersunk riveted joints, were investigated. The countersunk riveted specimens were bonded as well. Four different bonding qualities ranging from fully bonded to fully unbonded were tested.

The results of the test program showed that the fatigue life until failure of the dimpled lap joint specimens was about one-quarter of that of the unbonded countersunk specimens. The bonding quality is a major parameter for the fatigue life. Fully or partly bonded specimens did not show fatigue cracking within 500 or even 1000 kilocycles. Specimens with a fully degraded bonding layer have slightly better fatigue properties compared to fully unbonded specimens.

1. INTRODUCTION.

The Federal Aviation Administration (FAA, USA) and the Department of Civil Aviation (RLD, the Netherlands) have defined a collaborative program on structural integrity of aging aircraft. As part of this program the Dutch National Aerospace Laboratory (NLR) carried out fatigue tests on riveted lap joint specimens.

In the first part of this test program, specimens designed and manufactured in the USA were tested uniaxially and biaxially. The results of these tests have been reported in references 1 and 2.

In the second part, specimens tested were representative of a fuselage longitudinal lap joint of a commercial aircraft with multiple-site damage (MSD) (see figure 1). Two different rivet configurations were used: two rows with dimpled rivets and three rows with countersunk rivets. The countersunk riveted joints were cold bonded as well. The quality of the bonding was evaluated in the test program. Four bonding qualities were investigated: fully bonded, partly bonded (simulating manufacturing defects), degraded bonding (simulating bonding degradation during service), and fully unbonded. Different specimen widths (120, 160, and 480 mm) were used. The specimens were loaded either uniaxially or biaxially. All specimens were manufactured by Fokker Aircraft Corporation in order to guarantee aircraft manufacturer quality.

In this report the test program (section 2), the specimens (section 3), the execution of the tests (section 4), the measurement (section 5), and the test results (section 6) are described. The test results are discussed in section 7 and the conclusions are presented in section 8.

2. DESCRIPTION OF THE TEST PROGRAM.

The test program, as originally planned, is summarized in table la. Two specimen widths were planned. The wide specimens (480 mm) had dimpled (without bonding) or countersunk (fully or partly bonded) rivet connections. All narrow specimens (160 mm) contained a countersunk/bonded rivet connection (with various degrees of debonding of the bonding layer, see below).

The test program performed was slightly different from the test program originally planned (table 1a), as given in table 1b.

Cross Section of Fuselage (Typical) and Stiffener Numbering System

Note: the damaged areas are positioned at different longitudinal fuselage stations

damaged area	rivet connection in damaged lap joints				
I	dimpled (<i>not</i> bonded and	two rows of MS 20426 AD4 rivets,			
11	no interfaying sealant)	pitch ~16 mm			
ш	countersunk and cold bonded (EC 2216)	three rows of NAS 1097 AD4 rivets, pitch 20 mm			

FIGURE 1. STRUCTURAL DETAILS OF LONGITUDINAL SKIN SPLICES WITH MULTIPLE-SITE DAMAGE

TABLE 1a. ORIGINAL TEST PROGRAM ON RIVETED/BONDED FUSELAGE LAP JOINT SPECIMENS (SEE FIGURE 1)

Specimen (Configuration	Width (mm)	Number of Specimens	Biaxial/Uniaxial Specimens	Stress Level (C-A)	
Dimpled (1)	Not Bonded, No Interfaying Sealant		3			
Countersunk + Bonded	No Debonding	480	3	Biaxial		
(2)	Partially Debonded*		3			
	Fully Bonded		3		$\sigma_{\text{max}} = 94 \text{ MPA}$ $R = 0.10$	
Countersunk + Bonded	Partially Debonded	160	3	In Each Group: 2 Uniaxial,	K = 0.10	
(2)	Bonded, Separated, and Riveted		3	l Biaxial	. 19	
	Fully Debonded	·	3			

^{*}Amount of debonding to be applied in specimens based on test results obtained from 160-mm-wide specimens.

Note: All dimensions are in mm

One of the purposes of the test program was to investigate the influence of the bonding quality on the fatigue life of the riveted and bonded lap joints. Four bonding quality conditions were tested on the narrow specimens:

- a. Fully bonded joint.
- b. Partly bonded to simulate manufacturing errors.
- c. Fully bonded, then torn apart and riveted again to simulate bonding degradation in service.
- d. Fully unbonded.

TABLE 1b. ACTUAL TEST PROGRAM ON FUSELAGE LAP JOINT SPECIMENS

Specimen No.	Specimen Width (mm)	Bonding Quality	Loading Uniaxial/Biaxial	Rivet Type
C1c	160	fully bonded	biaxial	countersunk
C2c	160	fully bonded	uniaxial	countersunk
C3c	160	fully bonded	uniaxial	countersunk
C4c	120	fully bonded	uniaxial	countersunk
C5c	120	fully bonded	biaxial	countersunk
C2a	480	fully bonded	biaxial	countersunk
C4d	120	partly bonded	uniaxial	countersunk
C5d	120	partly bonded	biaxial	countersunk
Cle	160	degradation of bonding 1	uniaxial	countersunk
C2e	160	degradation of bonding ¹	uniaxial	countersunk
C3e	160	degradation of bonding 1	biaxial	countersunk
C4e	120	degradation of bonding 1	uniaxial	countersunk
C5e	120	degradation of bonding 1	biaxial	countersunk
Cla	480	degradation of bonding 1	biaxial	countersunk
C3a	480	degradation of bonding 1	biaxial	countersunk
C4f	120	unbonded ²	uniaxial	countersunk
C5f	120	unbonded ²	biaxial	countersunk
C4a	480	unbonded ³	biaxial	countersunk
C5a	480	unbonded	biaxial	countersunk
C6a	480	unbonded	biaxial	countersunk
D3a	480	unbonded	biaxial	dimpled
D4a	480	unbonded	biaxial	dimpled
D5a	480	unbonded	biaxial	dimpled

Three specimens were planned (160 mm in width) for each bonding condition (see table 1a and figure 3).

¹ Fully bonded, then torn apart and riveted again.
² With 2- x 0.2-mm-thick aluminum foil (see figure 2).
³ With 0.2-mm-thick aluminum foil (see figure 4).

FIGURE 2. CONFIGURATION FOR 120-mm-WIDE LAP JOINT SPECIMENS

FIGURE 3. CONFIGURATION FOR 160-mm-WIDE LAP JOINT SPECIMENS

All specimens, however, were delivered fully bonded rather than with the different bonding conditions.

Six of the specimens were used for the following bonding conditions (see table 1b): fully bonded specimens C1c, C2c, and C3c and bonding degradation specimens C1e, C2e, and C3e.

New specimens were manufactured, two specimens for each bonding quality condition. These specimens, however, were made 120 mm wide instead of the 160 mm, but all bonding conditions were applied correctly (see table 1b and figure 2):

- a. Fully bonded specimens C4c and C5c.
- b. Partly bonded specimens C4d and C5d.
- c. Bonding degradation specimens C4e and C5e.
- d. Unbonded specimens C4f and C5f.

The unbonded specimens were designed so that a thin aluminium sheet (0.2 mm thick) was placed between the riveted sheets so that the specimens would have the same joint thickness as the bonded configurations. This was thought to be important in order to have the same secondary bending in the specimens for the different bonding conditions. However, in specimens C4f and C5f, two foils of 0.2 mm thickness were used instead of one (see figure 2). In the partly bonded specimens C4d and C5d, a 0.2-mm-thick aluminium foil (see figure 2) was used in the unbonded part.

Some of the narrow specimens (120 and 160 mm wide) were tested uniaxially, the rest were tested biaxially. All wide specimens (480 mm) were tested biaxially (see table 1b).

On the basis of the test results obtained from the narrow specimens, it was decided to use the six 480-mm-wide specimens with countersunk rivets to test the following bonding conditions (see table 1b and figure 4):

- a. Fully bonded, only one specimen, C2a, for reference purposes.
- b. Bonding degradation specimens C1a, C3a.
- c. Unbonded specimens C4a, C5a, and C6a.

In specimen C4a, a thin aluminium sheet (0.2 mm thick) was inserted between the specimen halves for reasons discussed previously. In specimens C5a and C6a this sheet was omitted.

The 480-mm-wide specimens with dimpled riveted joints were numbered D3a, D4a, and D5a (see table 1b and figures 5a and 5b).

All wide specimens (countersunk riveted and dimpled riveted) were tested biaxially only.

In addition to the specimens used in the testing program, 480-mm-wide dimpled and countersunk lap joint specimens were manufactured to serve as calibration specimens for the eddy-current inspections to be carried out during the tests. For that purpose these specimens were provided with artificial defects (EDM-electrical discharge machined notches) representing fatigue cracks initiated in or near the lap joint rivet holes. For more details about these specimens see reference 3.

FIGURE 4. CONFIGURATION FOR 480-mm-WIDE COUNTERSUNK LAP JOINT SPECIMENS

FIGURE 5a. CONFIGURATION FOR 480-mm-WIDE DIMPLED LAP JOINT SPECIMENS (D4a, D5a)

FIGURE 5b. CONFIGURATION FOR 480-mm-WIDE DIMPLED LAP JOINT SPECIMENS (D3a)

3. DESCRIPTION OF THE SPECIMENS.

As discussed in the previous section, several specimen widths were used: 120, 160, and 480 mm. Specimen dimensions and details are given in figures 2 to 6.

All specimens were made of 1-mm-thick aluminium alloy 2024-T3 alclad material. Prior to assembling the two parts of the specimens, the specimen parts were pretreated, anodized, and primed according to industrial specifications. The (cold) adhesive used was EC2216. The rivets used were NAS 1097 AD4 for the countersunk specimens and MS 20426 AD4 for the dimpled specimens, both with a 3.2 mm diameter.

The dimpled specimens had two rivet rows in a staggered configuration. One row has 30 rivets, the other 29 rivets. The 29-rivet row for specimens D4a and D5a and the 30-rivet row for specimen D3a is at the highly loaded countersunk side as is shown in figures 5a and 5b.

After delivery to NLR, the specimens for uniaxial testing were placed in the clamping area with 1-mm-thick aluminium tabs (at either side) to prevent clamping failure.

The specimens for biaxial testing required special treatment. To be able to run biaxial fatigue tests on specimens in which the lap joint is the fatigue critical area, special attention must be paid to the load introduction into the lap joint area. Figure 6 shows how the biaxial loads were introduced into the test section by means of clamping arms consisting of either unidirectional aramid fibers embedded in epoxy resin (with the narrow specimens for both loading directions and with the wide specimens for the loading direction parallel to the lap joint) or unidirectional glass fibers only (with the wide specimens for the loading direction normal to the lap joint). These arms were cold bonded to the four specimen edges.

4. EXECUTION OF THE TESTING.

4.1 UNIAXIAL TESTS.

The uniaxial constant amplitude fatigue tests were carried out in a 350 kN MTS servo-hydraulic testing machine. The maximum stress levels were nominally 94 MPa. An R-ratio (ratio of minimum-to-maximum stress in a cycle) of 0.1 was used. In this way the stress range ($\Delta \sigma$) in the tests corresponded to a σ_{hoop} of 85 MPa, a stress value typical for the cabin differential pressure of a midsize commercial aircraft. The actual applied stress levels and the resulting specimen end loads are given in table 2. A chard range of 50 kN of the testing machine was used for these tests.

All tests were carried out under load control at a frequency of 10 Hz. At that frequency no dynamic effects were experienced so that no special fixturing was required.

The specimen ends were clamped in standard clamping devices of the testing machine.

FIGURE 6. EXPLODED VIEW OF 160-mm-WIDE BIAXIAL LAP JOINT SPECIMEN (HALF SPECIMEN DRAWN)

ci

To check the correct alignment of the specimens during testing to obtain a symmetrical stress distribution across the specimen width, all specimens were provided with two (end load) strain gauges, i.e., one on the left-hand side and one on the right-hand side. The positions of these gauges are given in figure 7. The type of gauges used was HBM 3/120 LY63.

FIGURE 7. POSITION OF STRAIN GAUGES ON 160-mm-WIDE LAP JOINT SPECIMENS

During the tests, all rivet rows (at either side) were inspected using a travelling microscope combined with a crack monitoring device (Sony Magnecsale EA-210). When a crack was found, the crack length was measured by positioning the crosshairs of the microscope at the extremities of the crack (i.e., at the rivet head edge and at the crack tip). The inspection frequency used during the testing program was based on initiation lives experience obtained from the tests.

Initially inspections were carried out at rather small inspection intervals (every 10,000 cycles) but these intervals increased as more experience was obtained on crack initiation lives. After crack

initiation was detected in a certain test, the inspections were carried out with smaller intervals to collect as much crack propagation data as possible.

4.2 BIAXIAL TESTS.

The biaxial, constant amplitude fatigue tests were carried out in a biaxial fatigue testing frame containing two double-acting hydraulic actuators (see figure 8a). The actuators had a maximum capacity of 200 kN (horizontal actuator) and 100 kN (vertical actuator) and were controlled by closed-loop servo systems. Double-bridge load cells were mounted at the rod ends of the actuators. The load systems of the test frame were controlled by a computerized signal generator and control system.

FIGURE 8a. BIAXIAL TEST SETUP

Like the uniaxial tests, the maximum stress level in a cycle (normal to the lap joint) was 94 MPa nominal. The actual applied stress levels and the resulting specimen end loads are given in table 2.

A chart range of 50 kN was used. All specimens were subjected to in-phase biaxial stresses representing the fuselage pressurization stress cycles with a biaxiality ratio (ratio of longitudinal-to-hoop stress) of 0.5. The synchronization of the phases of both load systems was controlled by the software of the control system.

During the tests, the ends of the four arms of the cruciform specimens were bolted to triangular plate fixtures which were connected to adjustable tension rods (see figure 8a). For each load system, one of these tension rods was connected to the actuator load cell and the other to the structure of the test frame. At their ends, the tension rods were provided with blade hinges. Figure 8b shows one of the biaxial specimens mounted in the test frame.

All tests were carried out under load control with an R-ratio of 0.1 and a frequency of 3 Hz. At that frequency no dynamic effects were experienced so that no special fixturing was required.

Similar to the way described in section 4.1 for the uniaxial tests, the specimens were aligned in the test frame during testing using strain gauges, but now a total of eight strain gauges were used, i.e., four for each load direction. The positions of the strain gauges on the specimens are shown in figure 8c. The strain gauges of each load system were connected in a Wheatstone bridge.

The alignment of the specimen in the test frame was carried out as follows.

First, a static alignment was performed by adjusting the lengths of the tension rods in such a way that the panel center was at the center of the test frame. Then, preloads of 1.33 times the maximum test loads occurring in a cycle were applied to the specimen in both directions. Finally, the alignment was further fine-tuned dynamically (starting at a low test frequency) by balancing the output of the Wheatstone bridges of both loading systems (see figure 8c).

The inspections during the tests were carried out in a similar way as described for the uniaxial tests with the exception that no travelling microscope combined with a crack monitoring device was available at the biaxial test frame. Instead, the inspections were performed using a magnifying glass and a torch. To determine the moment and the locations of crack initiation, the visual inspections were supported by means of high-frequency eddy-current inspections using the calibration specimens that were manufactured particularly for that purpose (see last paragraph of section 2).

TABLE 2. SUMMARY OF APPLIED LOADS

	Δσ (MPA)	43.2	43.2	43.2	42.3	42.3		42.3		Δσ (MPa)	42.3	42.3
ιγ	omax (MPa)	47.9	47.9	47.9	47.0	47.0		47.0	1у	omax (MPa)	47	47
horizontally	Fmin (N) Gn	1342 4	1342 4.	1342 4.	1342 4	1316 4.		1316 4	horizontally	F _{min} (kN)	1.316	1.175
ho		13	13	13	13				ho	Fmax (KN)	13.16	11.75
	Fmax (N)	13423	13423	13423	13423	13160		13160	!			
	b (mm)	280	•		_					length (mm)		220
	Δσ(MPa)	85.5	85.5 86.3 87.3	86.3 85.7	86.3	86.7	88 85 85 85 85 85 85 85 85 85 85 85 85 8	86.7		Δσ (MPa)	84.6	84.6
cally	omax (MPa)	95.0	955.0 95.9 9	95.9	95.9	96.4	95	96.4	cally	omax (MPa)	4	94
vertically	Fmin (N)	1150.4	1150.4		1151	1542	1520	1542	vertically	F _{min} (kN)	4.512	4.512
	Fmax (N)	11504	11504	11506	-	15416	15200	15416		F _{max} (kN)	45.12	45.12
0 0 2 1 1	(mm)	1.01	1.01	1.0	1.0	1.0	1.01	1.0	thickness	(ww)	1.0	1.0
		119.9	119.9		120	160	160.15	160	wi Ath	(mm)	480	480
	no.	C4c C5c	C5d	CSe CAf	C5f	C1c	33 C1e	C3e	nominodra	no.	C1a C2a C3a C4a C5a	D3a D4a D5a

FIGURE 8b. ONE OF THE 480-mm-WIDE BIAXIAL SPECIMENS MOUNTED IN THE TEST FRAME

Note: All dimensions are in mm

Connection of strain gauges in Wheatstone bridges

FIGURE 8c. POSITIONS OF STRAIN GUAGES ON SPECIMEN TO REALIZE A CORRECT ALIGNMENT DURING THE TEST

5. SPATE MEASUREMENT PERFORMED.

The stress distribution in panel D4a was investigated by means of thermo-elastic equipment (SPATE 8000). SPATE measures the sum of the principal stresses.

6. RESULTS OF TESTS AND MEASUREMENTS.

Table 3 summarizes a survey of the uniaxial and biaxial fatigue test results and shows the number of kilocycles at which the first cracks initiated and the number of kilocycles at which the specimen failed. The test results will be discussed in more detail in the following section.

TABLE 3. SUMMARY OF THE TEST RESULTS

Countersunk specimens, fully bonded

Specimen	Specimen Width	Uniaxial/	First Crack	First Linkup	Failure
No.	(mm)	Biaxial	(kilocycles)	(kilocycles)	(kilocycles)
Clc	160	biaxial			500 *
C2c	160	uniaxial			500 *
C3c	160	uniaxial			500 *
C4c	120	uniaxial			500 *
C5c	120	biaxial			1000 *
C2a	480	biaxial		·	1000 *

Countersunk specimens, partly bonded

Countersum spec	Countersum specimens, party conded									
Specimen No.	Specimen Width (mm)	Uniaxial/ Biaxial	First Crack (kilocycles)	First Linkup (kilocycles)	Failure (kilocycles)					
C4d	120	uniaxial	_		500 *					
C5d	120	biaxial			500 *					

Countersunk specimens, degradation of bonding

Specimen	Specimen Width	Uniaxial/	First Crack	First Linkup	Failure
No.	(mm)	Biaxial	(kilocycles)	(kilocycles)	(kilocycles)
Cle	160	uniaxial	275	311	311
C2e	160	uniaxial	200	201	202
C3e	160	biaxial	250	397	303
C4e	120	uniaxial	175	218	218
C5e	-120	biaxial	313	355	357
Cla	480	biaxial	225	303	307
C3a	480	biaxial			1000 *

Countersunk specimens, fully unbonded

Specimen	Specimen Width	Uniaxial/	First Crack	First Linkup	Failure	
No.	(mm)	Biaxial	(kilocycles)	(kilocycles)	(kilocycles)	
C4f	120	uniaxial	150	182	182	
C5f	120	biaxial	213	263	263	
C4a	480	biaxial	460	548	557	
C5a	480	biaxial	588	600	605	
C6a	480	biaxial	434	434	438	

Dimpled specimens, fully unbonded

	Dimpied specific	Dimpled specimens, furly unbonded					
	Specimen	Specimen Width	Uniaxial/	First Crack	First Linkup	Failure	
	No.	(mm)	Biaxial	(kilocycles)	(kilocycles)	(kilocycles)	
	D3a	480	biaxial	120	148	153	
i	D4a	480	biaxial	112	135	137	
	D5a	480	biaxial	112	124	127	

^{*} Test stopped, no cracks found

In table 4 the measured diameter of the formed heads of the rivets in the critical row are given. These data are only given for the failed specimens.

TABLE 4. DIAMETER (mm) OF THE RIVET FORMED HEAD FOR THE RIVETS IN THE CRITICAL ROW

Specimen	C1e	C2e	C3e			
rivet number 17 18 19 20 21 22 23 24	4.91 4.92 4.85 4.92 4.82 4.99 4.85 4.78	4.81 4.80 4.84 4.84 5.09 4.94 4.68 4.75	5.21 5.11 5.14 5.08 5.14 5.24			
average	4.88	4.84	5.15			
Specimen	C4e	C5e	C5f			
rivet number 13 14 15 16 17 18	4.56 4.86 4.79 4.94 4.61 4.82	- 4.77 5.01 4.87 4.82	4.80 4.77 4.72 4.42			
average	4.76	4.87	4.68			
Specimen	C1a	C2a	C3a	C4a	C5a	C6a
rivet number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	4.96 4.89 5.15 5.08 5.22 4.76 5.21 4.86	- 05 55.04 5.08 5.09 5.09 5.05 5.13 4.90 5.09 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13	- 4.91 4.70 4.86 4.95 4.95 4.80 4.80 4.81 4.80 4.81 5.01 5.01 5.01 5.01 5.01	-20 5.11 4.91 4.82 5.07 4.74 4.88 4.77 4.88 4.74 4.89 4.87 4.89 4.89 4.71 4.89 4.71 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	- 5.53 5.42 5.47 5.02 5.13 5.15 5.08 5.19 5.14 5.24 5.23 5.14 6.42 4.91 5.23 5.14 4.86 5.42 4.98	- 20 5 · 19 4 · 99 4 · 70 4 · 74 4 · 78 4 · 78 4 · 78 4 · 87 4 · 87 4 · 87 4 · 87 4 · 87 5 · 90 6 · 74 6 · 74 7 · 74
average	4.94	5.06	4.94	4.93	5.18	4.92

Figures 9 to 31 present the test results of each specimen. In these figures the specimen configuration and the applied loading are given. For those specimens with cracks, the crack initiation and the crack growth are given as a function of the number of applied loading cycles. After the failure of the specimen, the fracture surfaces were studied using a binocular. For each failed specimen, a sketch of the fracture surface was made indicating the locations of crack initiation and the extensions of the fatigue cracks up to failure. The results of the SPATE measurements are presented in figure 32.

FIGURE 9. RESULTS FOR SPECIMEN C1c

FIGURE 10. RESULTS FOR SPECIMEN C2c

FIGURE 11. RESULTS FOR SPECIMEN C3c

FIGURE 12. RESULTS FOR SPECIMEN C4c

no cracks found; test stopped at 1000 kilocycles

FIGURE 13. RESULTS FOR SPECIMEN C5c

FIGURE 14. RESULTS FOR SPECIMEN C2a

no cracks found; test stopped at 500 kilocycles

FIGURE 15. RESULTS FOR SPECIMEN C4d

no cracks found; test stopped at 1000 kilocycles

FIGURE 16. RESULTS FOR SPECIMEN C5d

FIGURE 17. RESULTS FOR SPECIMEN C1e

FIGURE 18. RESULTS FOR SPECIMEN C2e

FIGURE 19. RESULTS FOR SPECIMEN C3e

FIGURE 20. RESULTS FOR SPECIMEN C4e

FIGURE 21. RESULTS FOR SPECIMEN C5e

FIGURE 22. RESULTS FOR SPECIMEN C1a

FIGURE 22. RESULTS FOR SPECIMEN C1a (CONTINUED)

FIGURE 23. RESULTS FOR SPECIMEN C3a

FIGURE 24. RESULTS FOR SPECIMEN C4f

FIGURE 25. RESULTS FOR SPECIMEN C5f

Note: All crack lengths are in mm

FIGURE 26. RESULTS FOR SPECIMEN C4a

Failure mode

FIGURE 26. RESULTS FOR SPECIMEN C4a (CONTINUED)

Note: All crack lengths are in mm

FIGURE 27. RESULTS FOR SPECIMEN C5a

Failure mode

FIGURE 27. RESULTS FOR SPECIMEN C5a (CONTINUED)

Note: All crack lengths are in mm

FIGURE 28. RESULTS FOR SPECIMEN C6a

Failure mode

FIGURE 28. RESULTS FOR SPECIMEN C6a (CONTINUED)

Note: All crack lengths are in mm

FIGURE 29. RESULTS FOR SPECIMEN D3a

Failure mode

FIGURE 29. RESULTS FOR SPECIMEN D3a (CONTINUED)

FIGURE 30. RESULTS FOR SPECIMEN D4a

Note: All crack lengths are in mm

FIGURE 31. RESULTS FOR SPECIMEN D5a

												for	me	d h	eac	is t	de	•									
cycles (10 ³)		ŀ	1	1	1	l .		l l	1	1	l		ı	i	ł	i	ł	1	1	i	l	1	i i	54 L R	i		i
112.500	T					•																					
118.750	1					25																					
122.500						*35																					
124.000					0	1.035																					
125.000					•	1.54.0																					
125.500					•	255.0	0	*15																			
126.000	T				* 1.0	2.55.0		# 1.5 O-																			
126.500					1.02.0	255.0	0.52.5	2525																			
126.706	T	F	Α	L	Ų R	Ε																					

Note: All crack lengths are in mm

FIGURE 31. RESULTS FOR SPECIMEN D5a (CONTINUED)

FIGURE 32. RESULTS OF SPATE MEASUREMENTS

7. DISCUSSION.

7.1 GENERAL REMARKS.

The test results show that no fatigue cracks occurred in the riveted lap joints below 500 kilocycles as long as the bonding was fully or partly intact. This conclusion holds for all riveted/bonded specimens tested whether they are uniaxially or biaxially loaded or whether they are wide or narrow.

All the specimens with degraded bonding or without bonding showed multiple-site fatigue cracking (except specimen C3a).

Some typical characteristics of fatigue crack initiation and fatigue crack growth will be discussed for specimen C1e (figure 17).

For specimen C1e the measured cracks started at rivet 18 left and at rivet 20 left. From the final crack configuration it can be seen that these cracks started at the end of the countersink near the cylindrical part. A through-the-thickness crack then developed that became visible at the outer surface as soon as it had grown outside the countersink.

At rivet 18 right and at rivet 19 left, fatigue cracks initiated at the faying surface. These cracks grew a large extent before they became through-the-thickness cracks and became visible at the outer surface.

From the fracture surface it can be seen that fatigue cracks initiated from nearly all rivet holes and that a number of cracks grew sufficiently large to cause the final specimen failure.

The data were examined to see if there was a relationship between rivet squeeze force and the location of fatigue crack initiation. The diameter of the rivet formed head is taken as a measure of the squeeze force. From table 4 the following diameters are taken:

Specimen C1e Rivet No.	17	18	19	20	21	22	23	24
Diameter Formed	4.91	4.92	4.85	4.92	4.82	4.99	1.05	
Head in mm	7.71	4.72	4.03	4.92	4.62	4.99	4.85	4.78

It might have been expected that a large squeeze force, resulting in a large head diameter, caused a large clamping force in the two parts. This would decrease the load transfer through the rivet and increase the load transfer by friction. In that case, crack initiation on the faying surface is more likely to occur. On the other hand small squeeze forces increase the load transfer through the rivets and then crack initiation from the end of the countersink would be more likely. Rivet 18 has one of the larger diameter formed heads: fatigue cracks started from the rivet hole at both sides and from the faying surface at the right side. Rivet 19 has one of the smallest diameter formed heads showing a similar pattern as rivet 18. Rivet 24, having the smallest formed head diameter, does not show fatigue cracking at the left side of the rivet hole at all.

It appears to be difficult and possibly impossible to relate fatigue crack initiation location directly to the riveting squeeze force indicated by rivet head diameter.

From table 3 it can be seen that the life of the specimens from inspectable crack length to failure is 20% or less of the total fatigue life. The life of the specimens from the first linkup to failure is less then 5% of the total fatigue life. These percentages are similar to those found in reference 1.

7.2 COMPARISON OF COUNTERSUNK RIVETED AND DIMPLED RIVETED LAP JOINTS.

The dimpled riveted lap joint specimens (D3a, D4a, D5a) have inferior fatigue properties compared to the fully unbonded countersunk riveted specimens (C4a, C5a, C6a) as is shown in the following table (taken from table 3):

Specimen No.	Kilocycles <u>First Crack</u>	Kilocycles First Linkup	Kilocycles <u>Failure</u>
D3a	120	148	153
D4a	112	135	137
D5a	112	124	127
<u>Average</u>	<u>115</u>	<u>136</u>	<u>139</u>
C4a	460	548	557
C5a	588	600	605
C6a	434	434	438
Average	<u>494</u>	<u>527</u>	<u>334</u>

There are two reasons for this difference. First, the dimpling process causes large plastic deformation in the vicinity of the rivet hole. This can lead to early crack initiation; in particular, initiation of circumferential cracks at the edge of the dimpled countersink. Second, the dimpled lap joint has only two rivet rows whereas the countersunk joint has three rivet rows. The loads transferred by a rivet row in the dimpled joint is higher then that for the countersunk joint.

7.3 THE EFFECT OF THE BONDING QUALITY.

The influence of the bonding quality on the fatigue life of the riveted and bonded lap joints was investigated. Four bonding qualities were tested:

- a. Fully bonded.
- b. Partly bonded to simulate manufacturing errors.
- c. Degradation of bonding (fully bonded, then torn apart and riveted again) to simulate bonding degradation in service.
- d. Fully unbonded.

The fully bonded and the partly bonded specimens did not fail below 500 kilocycles (see table 3) independent of the specimen width and the loading condition (uniaxial or biaxial). From these results it is concluded that as long as at least a part of the bonding is intact, for the stress level tested, fatigue of a riveted/bonded lap joint will not be a problem.

The results for the specimens with bonding degradation can be compared to the results of the fully unbonded specimens. The comparison will be made for the specimen width and the loading condition separately.

The following averaged values have been derived from table 3:

.			onding Degrada	tion	Fully Unbonded			
Specimen Width	Loading Condition	Specimen Numbers	First Crack (kilocylces)	Failure (kilocycles)	Specimen Numbers	First Crack (kilocylces)	Failure (kilocycles)	
narrow	uniaxial	C1e, C2e, C4e	217	244	C4f	150	182	
narrow	biaxial	C3e, C5e	282	330	C5f	213	263	
wide	biaxial	Cla, C3a *	>612(225)	>653(307)	C4a, C5a, C6a	494	533	

^{*}Specimen C3a did not fail.

In all cases it is observed that the specimens with degraded bonding performed better then the fully unbonded specimens. Probably the remainder of the bond gives extra friction between the two joint parts, which lead to extra load transfer by friction. Then, less loads have to be transferred by the rivets which is beneficial for the fatigue life of the joint.

7.4 COMPARISON OF WIDE- AND NARROW-SPECIMEN RESULTS.

The influence of the specimen width can be studied for countersunk riveted specimens that were biaxially loaded and for the different bonding conditions.

None of the fully bonded specimens, wide or narrow, failed.

For the specimens with bonding degradation, the following results were derived from table 3:

Specimen Width	Specimen Numbers	First Crack (kilocycles)	Failure (kilocycles)
narrow	C3e, C5e	282	330
wide	C1a, C3a *	225	307

^{*} Specimen C3a did not crack.

For the specimens without bonding the following results were obtained:

Specimen	Specimen	First Crack (kilocycles)	Failure
Width	<u>Numbers</u>		(kilocycles)
narrow	C5f	213	263
wide	C4a,C5a,C6a	494	533

For the specimens tested with bonding degradation, the wide specimens had a relatively longer fatigue life from crack initiation to failure compared to the narrow specimens. In the wide specimens, cracks occurred at a limited number of rivets and not at all rivets simultaneously. It took some time before these cracks grew to such an extent that the residual strength of the specimen was substantially affected.

The comparison of the results of the unbonded specimens was somewhat hampered by the different geometry of the riveted joints. For the narrow specimen C5f, two 0.2-mm-thick aluminium foils were used erroneously instead of one foil. This lead to more secondary bending in the joint which resulted in a shorter fatigue life. In the wide specimens C5a and C6a, no aluminium foil was used. This lead to less secondary bending and longer fatigue life. Only specimen C4a was made correctly.

8. CONCLUSIONS.

Uniaxial and biaxial tests were carried out on lap joint specimens representative of the fuselage longitudinal skin splices of a commercial aircraft in which MSD has been found during operational usage. From the test results the following conclusions can be drawn:

 The dimpled, riveted lap joints show inferior fatigue properties compared to the unbonded countersunk riveted joints. The average fatigue life to failure of the dimpled joints was about one-quarter of the fatigue life of the countersunk joints (139 kilocycles versus 532 kilocycles).

- The riveted and bonded specimens did not fail within 500 kilocycles as long as the bonding was fully or partly intact.
- The specimens with degraded bonding (bonded, torn apart, and riveted together) had a 25%-35% longer fatigue life compared to fully unbonded specimens. The remains of the bonding caused extra friction which increased the fatigue life of the lap joint.
- The small specimens (120, 160 mm) had about half the fatigue life of the wide specimens (480 mm) for the same loading condition (uniaxial or biaxial) and the same stress levels.
- The biaxially loaded specimens had a significant (35%-75%) longer fatigue life compared to similar uniaxially loaded specimens.
- It was not possible to relate the crack initiation location to the diameter of the formed rivet head (a measure for the riveting force).
- The number of cycles to crack initiation was the major part of the total number of cycles to failure. The crack growth life from inspectable to failure was at maximum 25% of the total fatigue life.

9. REFERENCES.

- 1. Vlieger, H., Results of Uniaxial and Biaxial Tests on Riveted Fuselage Lap Joint Specimens, NLR TP 94250 L, April 1994.
- 2. Vlieger, H., Experimental results of Uniaxial and Biaxial Fatigue Tests on Riveted Fuselage Lap Joint Specimens, NLR CR 94253 L, June 1994.
- 3. Heida, J.H., Eddy-Current Inspection Procedures for F28 Fuselage Lap Joint Specimens, NLR CR 92438 L.