1. Since outer measure preserves order and $A \cup B \supset A$, then $|A \cup B| \ge |A|$. Now, consider the sequence A_1, A_2, \ldots such that $A_1 = A$, $A_2 = B$, and $A_k = \emptyset$ for k > 2. It follows from the countable subadditivity of outer measure that

$$\left|\bigcup_{k=1}^{\infty} A_k \right| = |A \cup B|$$

$$\leq \sum_{k=1}^{\infty} |A_k|$$

$$= |A| + |B| = |A|.$$
 (by given)

Thus, $|A \cup B| = |A|$.

2. We first show that for any $A \subset \mathbb{R}$ that $\ell(tA) = |t| \cdot \ell(A)$. If t = 0, then since $tA = \emptyset$, $\ell(tA) = 0$. Then, if t > 0, it follows that

$$tA = \begin{cases} (ta, tb) & \text{if } A = (a, b), \\ (ta, \infty) & \text{if } A = (a, \infty), \\ (-\infty, ta) & \text{if } A = (-\infty, a), \\ \emptyset & \text{if } A = \emptyset. \end{cases}$$

On the other hand, if t < 0, then

$$tA = \begin{cases} (tb, ta) & \text{if } A = (a, b), \\ (-\infty, ta) & \text{if } A = (a, \infty), \\ (ta, \infty) & \text{if } A = (-\infty, a), \\ \emptyset & \text{if } A = \emptyset. \end{cases}$$

Thus, it follows that $\ell(tA) = |t| \cdot \ell(A)$, by the definition of $\ell(\cdot)$. Note that if t = 0, then trivially, $|tA| = |\emptyset| = 0$. So, we only consider the case where $t \neq 0$. Consider a sequence of open intervals I_1, I_2, \ldots whose union contains A. It follows that tI_1, tI_2, \ldots is a sequence of open intervals whose union contains tA. Then,

$$|tA| \le \sum_{k=1}^{\infty} |tI_k| = |t| \sum_{k=1}^{\infty} |I_k|,$$

by taking the *infimum* over all such sequences, we have that $|tA| \leq |t| \cdot |A|$. Now, observe that $|\frac{1}{t}(tA)| = |A|$, so

$$|t|\left|\frac{1}{t}(tA)\right| \leq |t|\sum_{k=1}^{\infty} \ell(\frac{1}{t}(tA)) \leq \frac{|t|}{|t|}\sum_{k=1}^{\infty} \ell(tI_k) = \sum_{k=1}^{\infty} |tI_k|.$$

Again, by taking the *infimum* over all such sequences we have that $|t| \cdot |A| \le |tA|$. Thus, $|tA| = |t| \cdot |A|$.

- 3. It suffices to show that $|B \setminus A| + |A| \ge |B|$. By the subadditivity of outer measure, $|B \setminus A| + |A| \ge |(B \setminus A) \cup A|$. Since $(B \setminus A) \cup A \supset B$ and outer measure preserves order then $|(B \setminus A) \cup A| \ge |B|$. Thus, $|B \setminus A| \ge |B| |A|$.
- 9. Suppose that A is bounded, then there exists some $x,r\in\mathbb{R}$ such that $A\subset (x-r,x+r)$. Then, for any $t>\max\{|x-r|,|x+r|\}$, it follows that $A\cap (-t,t)=A$. Thus, the limit expression holds when A is bounded. Now, consider the case where A is unbounded. First, the limit must exist since for any sequence of $t_k\to\infty$, it follows that $|A\cap (-t_k,t_k)|$ is monotone. Moreover, it must be that $|A|\geq \lim_{t\to\infty}|A\cap (-t,t)|$ since for any t>0, $|A|\geq |A\cap (-t,t)|$. So, it remains to show that $|A|\leq \lim_{t\to\infty}|A\cap (-t,t)|$.
- 11. By the definition of outer measure, since
- 12. (a) The arbitrary union of open sets is open. Thus, $\bigcup_{k=1}^{\infty} (r_k 1/2^k, r_k + 1/2^k)$ is open. And, by definition, the complement of an open set is closed. So, F is closed.

- (b) By way of contradiction, suppose that there exists an interval $I \subset F$ such that I contains more than one element. That is, I=(a,b) for a < b. Then, it follows from the denseness of $\mathbb Q$ in $\mathbb R$ that there exists a rational number in I. Thus, there is an centered around this rational number that is not contained in F. Thus, I is not connected and therefore, I is not an interval. So, any intervals in F contain only one element.
- (c) It follows from problem 3 that

$$|F| \ge |\mathbb{R}| - \left| \bigcup_{k=1}^{\infty} \left(r_k - \frac{1}{2^k}, r_k + \frac{1}{2^k} \right) \right|,$$

$$\ge |\mathbb{R}| - \sum_{k=0}^{\infty} \frac{1}{2^k},$$

$$\ge |\mathbb{R}| - 2,$$

$$\ge \infty.$$