Name: MATH E-156 MATHEMATICAL STATISTICS

Assignment 6

1. The joint probability mass function (joint pmf) of two discrete random variables, X and Y, is given in the following table:

	X = 1	X = 2	X = 3
Y=1	.02	.08	.30
Y = 2	.04	.32	.04
Y = 3	.10	.08	.02

(a) Find the covariance Cov(X, Y).

(b) Find the correlation $\rho_{X,Y}$.

- 2. Suppose X_1 , X_2 are independent random variables with means $E(X_1) = \mu_1$, $E(X_2) = \mu_2$ and standard deviations $SD(X_1) = \sigma_1$, $SD(X_2) = \sigma_2$. Find (a) $E(4X_1 - 3X_2 + 1)$
 - (b) $Var(4X_1 3X_2 + 1)$
 - (c) $Cov(X_1 + X_2, X_1 X_2)$

3. Let $X \sim \text{Beta}(a_1, b_1)$ for some $a_1, b_1 > 0$. Also, let $Y \sim \text{Beta}(a_2, b_2)$ for some $a_2, b_2 > 0$. If the correlation $\rho_{X,Y} = -0.6$, find (a) Cov(X,Y)

(b) E(XY)

4. Let X and Y be two random variables. Assuming correlations exist, prove that for any constants a, b, c, and d:

$$|\rho_{U,V}| = |\rho_{X,Y}|,$$

where U = a + bX and V = c + dY.

5. A factory has two *independent* production lines. Daily production for line 1 is a random variable X_1 with mean 1500 and standard deviation 100. Daily production for line 2 is a random variable X_2 with mean 2000 and standard deviation 130. What are the mean and standard deviation of the total daily production $T = X_1 + X_2$?

6. A large population has the mean μ and the standard deviation σ . We take a simple random sample X_1, X_2, X_3 of n=3 independent measurements from this population. For the sample mean,

$$\bar{X} \doteq \frac{1}{3} (X_1 + X_2 + X_3),$$

find

- (a) $E(\bar{X})$
- (b) $Var(\bar{X})$
- (c) $SD(\bar{X})$
- 7. Assume that a random square has a side length that takes value 1 with probability p and value 2 with probability 1-p.
 - (a) Find the correlation between the side length and the perimeter of the square.

(b) Find the correlation between the side length and the area of the square.

- 8. Two players play n independent rounds of a game, and the 1st player has probability p of winning each round. Let X and Y denote the numbers of games won by 1st and 2nd player, respectively. Find
 - (a) E[X], SD(X) and E[Y], SD(Y)

(b) Cov(X, Y)

(c) $\rho_{X,Y}$