Large-scale convex optimisation

Sebastian Banert

Exercise 7

9 January 2021

Problem 1. Let $f: \mathcal{H} \to \overline{\mathbb{R}}$ be proper, convex, and lower semicontinuous, and let $\gamma > 0$. The function ${}^{\gamma}f: \mathcal{H} \to \overline{\mathbb{R}}$ (called the *Moreau envelope*) is defined as

$${}^{\gamma} f(x) = \left(f \square \frac{1}{2\gamma} \| \cdot \|^2 \right) (x) = \inf_{y \in \mathcal{H}} \left\{ f(y) + \frac{1}{2\gamma} \| y - x \|^2 \right\}.$$

Show that ${}^{\gamma}f(x) \in \mathbb{R}$ for all $x \in \mathcal{H}$, that f and ${}^{\gamma}f$ have the same set of minimisers, and that ${}^{\gamma}f$ is differentiable and $\nabla^{\gamma}f(x) = \frac{1}{\gamma}\Big(x - \operatorname{Prox}_f^{\gamma}(x)\Big)$ for all $x \in \mathcal{H}$.

Problem 2. Let $C \subseteq \mathcal{H}$ be nonempty, closed, and convex, and let $\gamma > 0$. Calculate $\gamma \delta_C(x)$ and $\operatorname{Prox}_{\delta_C}^{\gamma}(x)$ for $x \in \mathcal{H}$.

Problem 3. For $\gamma > 0$ and $x \in \mathbb{R}$, compute $\gamma | \cdot | (x)$ and $\operatorname{Prox}_{|\cdot|}^{\gamma}(x)$ (i.e., the Moreau envelope and proximal points of the absolute value function), the inner product on \mathbb{R} being the usual product of real numbers.