EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

63310366

PUBLICATION DATE

19-12-88

APPLICATION DATE

10-06-87

APPLICATION NUMBER

62143157

APPLICANT: HITACHILTD;

INVENTOR: FURUKAWA YOSHIO;

INT.CL.

H02K 55/04

TITLE

: SYNCHRONOUS MACHINE

PURPOSE: To improve maintainability and controllability, by employing superconducting field winding in a synchronous machine and feeding current through a rotary transformer therefor.

CONSTITUTION: A rotor having a magnetic pole 7 is provided inside of the stator 8 of generator, and a yoke 9 is provided on the outer circumference of a shaft 11. A field winding 10 composed of wound hollow superconductor internally cooled with liquid nitrogen is fixed to the pole 7. The field winding 10 is coupled through a superconducting lead 12 with a superconducting rotor side transformer coil 5, and a core 3 is arranged at the stator side while facing a stator transformer coil 2 so as to form a magnetic path. The coil 2 is coupled with a static exciter 1. Consequently, stator side current is not required to be coupled with rotor side current through a brush or the like, and current in the field winding 10 can be controlled through coupling of flux of superconducting coil.

COPYRIGHT: (C)1988,JPO&Japio

⑲ 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭63-310366

⑤Int Cl ⁴ H 02 K 55/04 識別記号 ZAA

> 莽 夫

庁内整理番号 2325-5H @公開 昭和63年(1988)12月19日

審査請求 未請求 発明の数 1 (全3頁)

39発明の名称 同期搜

> ②特 顋 昭62-143157

昭62(1987)6月10日

砂発 明 者 坂

⑫発 明 者

茨城県日立市幸町3丁目1番1号 株式会社日立製作所日 立工場内

茨城県日立市幸町3丁目1番1号 株式会社日立製作所日

古 ①出 額 人

立工場内 東京都千代田区神田駿河台4丁目6番地

②代 理 人 弁理士 小川 勝男

111

株式会社日立製作所

外2名

1.発明の名称 南斯梅

2. 特許請求の範囲

- 1、回転子に外継巻線を有する同期機において、 該界職港線を超電導導体で形成し、少なくとも ロータ側は超電導導体のコイルを港回した回転 トランスを有し、鉄ロータトランスコイルと該 界磁巻線を超電導導体リードで結んだことを特 敗とする何期機。
- 3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は問期機に係り、特に道転性が良く保守 性も良好な問期機に関するものである。

〔従来の技術〕

従来の同期機は何えば、加貫貞広。鈴木正材共 差の「何期後」(戦機大出版局)第8章に示すよ うに、雌磁系としては次のようなものが用いられ ていた。すなわち、回転直流動磁機を存するもの。 静止形臓磁機でコレクタリングを通じて励盛する

もの、交流器と回転整流子の組合せによりブラシ なしとするものである。

(発明が解決しようとする問題点)

しかしながら、回転励機機・静止形励磁機はブ ラシを有するための保守性に問題があり、又発電 機界職務線の設計の制限により、最適な設計を行 うことができない。

また、従来のブラシなし両期機は、回転側に整 液脂があるため、 制御性及び容量の面で制限があ つた.

本発明の目的は、ブラシなしでしかも制御性の 良い何期機を供給することにある。

〔問題点を解決するための手段〕

上記目的は、周期後の昇磁巻線を超電導化し、 超電導の囲転トランジスタを通じて電流を供給す ることにより遺成される。

すなわち、超電導コイルは、抵抗が0でインダ クタンス成分のみのため、四転偶のコイルを組織 雄化することにより、静止形のコイルの制御によ り回転整流器なく容易に制御できる。

特開昭63-310366 (2)

(作用)

界磁コイル及びリード及び回転トランスの2次 側は全て超電率コイルとするため 電流の減衰はき わめて少なく、1次側の電液を制御すればそれに 気交する2次側コイルに逆向きの電流が流れるた め同期機としての風磁電流を容易に制御できる。 (突筋例)

以下、本発明の一実施例を第1回により説明する。

 またステータトランスコイル2は、静止励電装置 1と結合されている。コイルを冷却する被体室楽 は、固定側からカップリング13を通して、ロー タ側に供給されている。コイルは、本図には記し ていないが、保冷材により保冷されている。ここ で本実施例の動作を説明する。回路トランスの巻 数の比は、この場合ステータトランスコイル2の

巻数の方が、ロータトランスコイル2の巻数より

も大きくしかも逆方向巻としている。いま、静止

放するように鉄心3をステータ側に配している。

この磁場は、軸9と、ステータ側のトランスコア

3の間に入つた磁性液体 15の磁場も形成してお

り、ガイド轉受6用の油の流れも防止している。

励機装置 1 を励磁し、第 2 圏に示すようにステータトランスコイル 2 の電磁が I 」のように変化させる。いま、ステータトランスコイルの恣散の方が多いため、ロータトランスコイル 5 の電流 I ュは、第 2 関 b)のように励敵され、界磁コイルは

和取得であるから抵抗は O であり、減衰は老しく小さい。わずかに接続部の抵抗程度で、半日程度

一定電流をながし続けることは容易である。

いま、低負荷のA及びA、の状態から、負荷を上昇しようとすると I に を B のように上昇させれば、 I ェ は B ′ のように上昇し、ほとんど時間遅れなく、界磁コイル 1 0 の電流を制御できる。

本実施例では、鉄心を使つた磁東カップリングを用いたがもちろん、空心としても良い。また本実施例のように、鉄心間のギヤップ16には吸引力が強くためスラスト力を低減する効果もある。

本実施例では、直流の場合のみを考えているが、可変速発電機のように、低周波の3相を供給するときも、同様に構成することができる。この場合には、1次間等線と2次間準線の比を非常にかできる。一方、サイクロコンパータは、電圧が高いカが有利であることが多いので、サイクロコンパータ、界磁コイル絶線とも最適の設計をすることができる。

(発明の効果)

以上説明したように、本発明によれば、ブラシ

等で、固定側電流と回転子側電流を結合する必要なく、超電源コイルの磁度の結合で昇磁溶線の電液の制御ができるので、保守性、制御性が著しく向上するという効果がある。

4.図面の無単な説明

第1 団は本発明の一実施例のたて韓阿類発電機の所面団、第2 団は昇磁電洗制御の説明団である。 2 … ステータトランスコイル、3 … 団転トランス 鉄心、5 … 超電準ロータトランスコイル、10 … 超電準昇磁巻線、12 … 超電準ロータリード。

代理人 弁理士 小川勝男

特開昭63-310366 (3)

