# Exercices de Recherche Opérationnelle

## Amadou Korka DIALLO

## Table des matières

| 1 Exercice 4 |                                         |   |  |  |  |
|--------------|-----------------------------------------|---|--|--|--|
|              | 1.1 Formulation d'un programme linéaire | 2 |  |  |  |
|              | 1.2 Résolution avec la methode simplexe | 4 |  |  |  |
| 2 Exercice 5 |                                         |   |  |  |  |
|              | 2.1 Formulation d'un programme linéaire | 4 |  |  |  |

## 1 Exercice 4

## 1.1 Formulation d'un programme linéaire

#### Objectif:

Minimiser le coût total.

#### Variables:

X: nombre d'offres A achetées,

Y: nombre d'offres B achetées.

#### Fonction objectif:

$$Min Z = 5X + 4, 5Y$$

#### **Contraintes:**

• Besoins en pains : Les besoins quotidiens en pains sont estimés à au moins 36 pains.

$$4X + 3Y \ge 36$$

• Besoins en croissants : Les besoins quotidiens en croissants sont estimés à au moins 24 croissants.

$$2X + 3Y \ge 24$$

• Non-négativité : Les variables doivent être positives.

$$X \ge 0, \quad Y \ge 0$$

#### Le programme linéaire est donné par :

Min 
$$Z = 5X + 4, 5Y$$

$$\begin{cases} 4X + 3Y \ge 36\\ 2X + 3Y \ge 24\\ X, Y \ge 0 \end{cases}$$



\* Le point B est l'intersection entre la droite (D1) et (Y'0Y) donc B(0,12)

\* Le point C est l'intersection entre la droite (D1) et (X'0X) donc B(12,0)

\*Le point A est l'intersection des deux droites (D1) et (D2). Nous allons résoudre ce système pour déterminer les points d'intersection.

$$(D1): 4X + 3Y = 36$$

$$(D2): 2X + 3Y = 24$$

Nous résolvons le système en utilisant la méthode de substitution ou d'élimination.

1. Soustraction des deux équations :

$$(4X + 3Y) - (2X + 3Y) = 36 - 24$$
  
 $2X = 12 \implies X = 6$ 

2. Substitution de X = 6 dans D2:

$$2(6) + 3Y = 24 \implies 12 + 3Y = 24 \implies 3Y = 12 \implies Y = 4$$

Le point d'intersection est donc A(6,4).

Pour 
$$B$$
,  $5(0) + 4$ ,  $5(12) = 54$ 

Pour 
$$C$$
,  $5(12) + 4, 5(0) = 60$ 

Pour 
$$A$$
,  $5(6) + 4, 5(4) = 48$ 

Donc le minimum est Z = 48 pour X = 6 et Y = 4

### 1.2 Résolution avec la methode simplexe

Première base réalisable:  $u_1, u_2$ 

Table 1: Tableau 1

| Base  | $x_1$ | $x_2$ | $u_1$ | $u_2$ | Solution |
|-------|-------|-------|-------|-------|----------|
| Z     | -5    | -4,5  | 0     | 0     | 0        |
| $u_1$ | 4     | 3     | 1     | 0     | 36       |
| $u_2$ | 2     | 3     | 0     | 1     | 24       |

Calcul: X entre dans la base et u1 en sort.

Table 2: T1 vers T2

| Base  | $x_1$ | $x_2$         | $u_1$          | $u_2$ | Solution |
|-------|-------|---------------|----------------|-------|----------|
| Z     | 0     | -0,75         | $\frac{-5}{4}$ | 0     | 45       |
| X     | 1     | $\frac{3}{4}$ | $\frac{-1}{4}$ | 0     | 9        |
| $u_2$ | 0     | $\frac{3}{2}$ | $\frac{1}{2}$  | -1    | 6        |

Calcul: Y entre dans la base et u2 en sort.

Table 3: T2 vers T3

| 10010 01 12 1010 10 |       |       |                |                |          |
|---------------------|-------|-------|----------------|----------------|----------|
| Base                | $x_1$ | $x_2$ | $ u_1 $        | $u_2$          | Solution |
| Z                   | 0     | 0     | -1             | $\frac{-3}{4}$ | 48       |
| X                   | 1     | 0     | $\frac{-1}{2}$ | $\frac{1}{2}$  | 6        |
| Y                   | 0     | 1     | $\frac{1}{3}$  | $\frac{2}{3}$  | 4        |

## 2 Exercice 5

## 2.1 Formulation d'un programme linéaire

Objectif : Maximiser la somme des revenus générés par la vente des vaches et des dindes.

#### Variables:

V1: nombre de vaches par an nourries au mil,

V2: nombre de vaches par an nourries pour arachide,

D1: nombre de panel par an nourries au mil,

D2 : nombre de panel par an nourries à l'arachide,

X: surface en ha pour le mil,

Y : surface en ha pour arachide,

#### Fonction objectif:

$$MaxZ = 7000(V1 + V2) + 800(D1 + D2) - 400X - 500Y$$

#### Contraintes:

• La surface totale est de 80ha :

$$X + Y < 84$$

• La consommation en mil ne dépasse pas la production:

$$7V1 + 4D1 \le 30 * X$$

• La consommation en arachide ne dépasse pas la production :

$$5V2 + 7D2 \le 50 * Y$$

• Le nombre d'heures de travail ne dépasse pas 28200h l'année:

$$30(V1 + V2) + 60(D1 + D2) + 50(X + Y) \le 28200$$

• Les tabulations disponibles

$$24(V1 + V2) + 16(D1 + D2) < 11904$$

• Non-négativité:

### Le programme linéaire est donné par :

$$\begin{aligned} \operatorname{Max} Z &= 7000(V1 + V2) + 800(D1 + D2) - 400X - 500Y \\ \begin{cases} X + Y \leq 84 \\ 7V1 + 4D1 \leq 30 * X \\ 5V2 + 7D2 \leq 50 * Y \\ 30(V1 + V2) + 60(D1 + D2) + 50(X + Y) \leq 28200 \\ 24(V1 + V2) + 16(D1 + D2) \leq 11904 \\ V1, V2, D1, D2, X, Y \geq 0 \end{aligned}$$