ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ

МЕМ-254 АРІӨМНТІКН ГРАММІКН АЛГЕВРА ХЕІМЕРІЮ Е Ξ АМНО 2016 ЕРГА Σ ТНРІО 4 1-11-2016 Н АЛАЛ Σ Н СНОLESKY В

1. Διατύπωση του προβλήματος.

Έστω:

- $d \in \mathbb{N}$,
- τριδιαγώνιος, συμμετρικός και θετικά ορισμένος πίνακας $A \in \mathbb{R}^{d \times d}$,
- διάνυσμα $b \in \mathbb{R}^d$.

Σκοπός μας είναι να βρούμε τη λύση $x\in\mathbb{R}^d$ του γραμμικού συστήματος $A\,x=b$, χρησιμοποιώντας την ανάλυση Cholesky. Σημειώνουμε ότι ένας πίνακας $B\in\mathbb{C}^{d\times d}$ είναι τριδιαγώνιος όταν $B_{ij}=0$ για όλα τα $i,j=1,\ldots,d$ με $|i-j|\geq 2$.

2. Περιγραφή της ανάλυσης Cholesky.

Επειδή ο πίνακας A είναι συμμετρικός και θετικά ορισμένος, υπάρχει κάτω τριγωνικός πίνακας $L \in \mathbb{R}^{d \times d}$ με θετικά διαγώνια στοιχεία τέτοιος ώστε $A = L \, L^T$.

Επειδή ο πίνακας A είναι συμμετρικός και τριδιαγώνιος μπορούμε να αποθηκεύσουμε τα στοιχεία του σε ενα πίνακα $B\in\mathbb{C}^{d\times 2}$ ως εξής: $A_{i,i}=B_{i,2}$ για $i=1,\ldots,d$, και $A_{i,i-1}=B_{i,1}$ για $i=2,\ldots,d$. Για τυπικούς λόγους θέτουμε $B_{1,1}=0$. Ο πίνακας L έχει μη μηδενικά μόνο στη διαγώνιο και στην υποδιαγώνιο, επομένως μπορείς να αποθηκευτεί σε πίνακα $\Gamma\in\mathbb{C}^{d\times 2}$, όπου: $L_{ii}=\Gamma_{i,2}$ για $i=1,\ldots,d$, $L_{i,i-1}=\Gamma_{i,1}$ για $i=2,\ldots,d$, και $\Gamma_{1,1}=0$.

Για $k=1,\ldots,d$, πρώτα υπολογίζουμε το διαγώνιο στοιχείο $L_{kk}=\Gamma_{k,2}$ ως εξής:

$$\Gamma_{k,2} = \left[A_{k,k} - \sum_{j=1}^{k-1} (L_{k,j})^2 \right]^{\frac{1}{2}}$$

$$= \left[A_{k,k} - (L_{k,k-1})^2 \right]^{\frac{1}{2}}$$

$$= \left[B_{k,2} - (\Gamma_{k,1})^2 \right]^{\frac{1}{2}}$$

και στη συνέχεια υπολογίζουμε το στοιχείο $L_{k+1,k} = \Gamma_{k+1,1}$ ως εξής:

$$\Gamma_{k+1,1} := \frac{1}{L_{k,k}} \left[A_{k+1,k} - \sum_{j=1}^{k-1} L_{k+1,j} L_{kj} \right]$$

$$= \frac{1}{L_{k,k}} \left(A_{k+1,k} - L_{k+1,k-1} L_{k,k-1} \right)$$

$$= \frac{1}{L_{k,k}} A_{k+1,k}$$

$$= \frac{1}{\Gamma_{k,2}} B_{k+1,1}.$$

Επειδή το γραμμικό σύστημα παίρνει τη μορφή: $L(L^Tx)=b$, πρώτα βρίσκουμε τη λύση $y\in\mathbb{R}^d$ του γραμμικού συστήματος Ly=b ως εξής:

$$y_1 = \frac{1}{L_{1,1}} b_1 = \frac{1}{\Gamma_{1,2}} b_1,$$

$$y_i = \frac{1}{L_{i,i}} \left[b_i - \sum_{j=1}^{i-1} L_{i,j} y_j \right] = \frac{1}{L_{i,i}} \left(b_i - L_{i,i-1} y_{i-1} \right)$$

$$= \frac{1}{\Gamma_{i,2}} \left(b_i - \Gamma_{i,1} y_{i-1} \right) \quad i = 2, \dots, d,$$

και στη συνέχεια βρίσκουμε τη λύση x λύνοντας το γραμμικό σύστημα $L^T x = y$, ως εξής:

$$x_{d} = \frac{1}{L_{d,d}} y_{d} = \frac{1}{\Gamma_{d,2}} y_{d}$$

$$x_{i} = \frac{1}{L_{i,i}} \left[y_{i} - \sum_{j=i+1}^{d} L_{j,i} x_{j} \right] = \frac{1}{L_{i,i}} \left(y_{i} - L_{i+1,i} x_{i+1} \right)$$

$$= \frac{1}{\Gamma_{i,2}} \left(y_{i} - \Gamma_{i+1,1} x_{i+1} \right), \quad i = d-1, \dots, 1.$$

3. Αντικείμενο εργαστηρίου.

Γράψτε ένα πρόγραμμα το οποίο να υπολογίζει τη λύση x του γραμμικού συστήματος Ax=b χρησιμοποιώντας την ανάλυση Cholesky όπως περιγράψαμε στις προηγούμενες παραγράφους.

Παράδει γμα. Δοχιμάστε το πρόγραμμά σας με ένα τριδιαγώνιο πίναχα A με διαγώνια στοιχεία $A_{j,j}=2$ για $j=1,\ldots,d$, υπερδιαγώνια στοιχεία $A_{j,j+1}=-1$ για $j=1,\ldots,d-1$, και υποδιαγώνια στοιχεία $A_{j,j-1}=-1$ για $j=2,\ldots,d$. Για $b\in\mathbb{R}^d$ με $b_1=1,$ $b_j=0$ για $j=2,\ldots,d-1$, και $b_d=1$, η λύση $x\in\mathbb{R}^d$ του γραμμικού συστήματος έχει συντεταγμένες $x_i=1$ για $i=1,\ldots,d$.

Γ. Ζουράρης