

Параллельность плоскостей

Определение.

Две плоскости называются параллельными, если они не имеют общих точек или совпадают.

$$\alpha \parallel \beta$$

$$\alpha \cap \beta = \emptyset$$
 или $\alpha = \beta$

Теорема.

Если плоскость пересекает две параллельные плоскости, то линии пересечения плоскостей будут параллельны.

Если
$$\alpha \mid\mid \beta$$
 и $\gamma \cap \alpha = 1_{\scriptscriptstyle 1}$ и $\gamma \cap \beta = 1_{\scriptscriptstyle 2},$ то $1_{\scriptscriptstyle 1}\mid\mid 1_{\scriptscriptstyle 2}.$ Без доказательства.

Теорема (признак параллельности двух плоскостей)

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.

Дано: $\mathbf{a}_1 \subset \alpha$, $\mathbf{B}_1 \subset \alpha$, $\mathbf{a}_1 \cap \mathbf{B}_1$,

$$\mathbf{a}_2 \subset \beta, \ \mathbf{B}_2 \subset \beta, \ \mathbf{a}_2 \cap \mathbf{B}_2,$$

$$a_1 || a_2, B_1 || B_2.$$

Доказать: $\alpha \mid\mid \beta$.

Доказательство:

Пусть
$$\alpha \cap \beta = \mathbf{C}$$

$$\mathbf{a}_{2} \parallel \mathbf{a}_{1} => \mathbf{a}_{2} \parallel \alpha$$

 $\mathbf{B}_{2} \parallel \mathbf{B}_{1} => \mathbf{B}_{2} \parallel \alpha$

Ho с с α , значит (по лемме) $a_2||$ с и $a_2||$ с $a_2||$ в $a_2||$ но по условию $a_2 \cap a_2 \cap a_$

Значит $\alpha \parallel \beta$.

