Betti numbers of symbolic powers of star configurations

Federico Galetto

CMS Winter Meeting 2018, Vancouver Symbolic and Regular Powers of Ideals December 9, 2018

Team Oaxaca

Joint work in progress with:

- Jennifer Biermann (Hobart and William Smith Colleges)
- Hernán de Alba Casillas (Universidad Autónoma de Zacatecas)
- Satoshi Murai (Waseda University)
- Uwe Nagel (University of Kentucky)
- Augustine O'Keefe (Connecticut College)
- Tim Römer (Universität Osnabrück)
- Alexandra Seceleanu (University of Nebraska, Lincoln)

Star configurations

- ullet L_1,\ldots,L_n linear forms in a polynomial ring
- ullet Assume all subsets $\{L_{i_1},\ldots,L_{i_c}\}$ are linearly independent

Definition (Star configuration of codimension c)

$$I_{n,c} := \bigcap_{1 \leqslant i_1 < \dots < i_c \leqslant n} \langle L_{i_1}, \dots, L_{i_c} \rangle$$

Symbolic powers of star configurations

For all $m \geqslant 1$,

$$I_{n,c}^{(m)} = \bigcap_{1 \leqslant i_1 < \dots < i_c \leqslant n} \langle L_{i_1}, \dots, L_{i_c} \rangle^m.$$

Problem

Can we describe the Betti numbers of $I_{n,c}^{(m)}$?

Bonus problem

Can we describe the equivariant Betti numbers of $I_{n,c}^{(m)}$?

Known: Betti numbers of symbolic square

Theorem (Geramita, Harbourne, Migliore, 2013)

If $c \geqslant 2$, then

$$\beta_{i,i+j}(I_{n,c}^{(2)}) = \begin{cases} \binom{n}{c-2-i} \binom{n-c+1+i}{i}, & j=n-c+2\\ \binom{n}{c-1} \binom{c-1}{i}, & j=2(n-c+1) \end{cases}$$

G., Geramita, Shin, and Van Tuyl also prove this for codimension 2 star configurations via symbolic defect.

Reduction to monomials

Theorem (Geramita, Harbourne, Migliore, Nagel, 2017)

If we replace the linear forms L_i by variables x_i , then the Betti numbers of $I_{n,c}^{(m)}$ stay the same.

From now on, we consider

$$I_{n,c}^{(m)} = \bigcap_{1 \leqslant i_1 < \dots < i_c \leqslant n} \langle x_{i_1}, \dots, x_{i_c} \rangle^m \subseteq \mathbb{k}[x_1, \dots, x_n].$$

Advantages:

- $I_{n,c}^{(m)}$ is a monomial ideal;
- $I_{n,c}^{(m)}$ is stable under permutations of variables.

\mathfrak{S}_n -fixed ideals

The symmetric group \mathfrak{S}_n acts on $\mathbb{k}[x_1,\ldots,x_n]$ by permuting the variables.

Let $I \subseteq \mathbb{k}[x_1, \dots, x_n]$ be a monomial ideal such that $\mathfrak{S}_n \cdot I \subseteq I$. The minimal generating set G(I) of I splits into \mathfrak{S}_n -orbits:

$$\{\sigma(x^{\lambda}): \sigma \in \mathfrak{S}_n\}$$

for some partitions $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{N}^n$. [Convention: partitions have $\lambda_1 \leqslant \lambda_2 \leqslant \dots \leqslant \lambda_n$.]

Definition

For an \mathfrak{S}_n -fixed monomial ideal $I\subseteq \Bbbk[x_1,\ldots,x_n]$, define

$$P(I) := \{\lambda : x^{\lambda} \in I\},$$

$$\Lambda(I) := \{\lambda : x^{\lambda} \in G(I)\}.$$

Shifted ideals

Let $I \subset \mathbb{k}[x_1, \dots, x_n]$ be an \mathfrak{S}_n -fixed monomial ideal.

Definition (Shifted ideal)

We say I is *shifted* if, for every $\lambda = (\lambda_1, \dots, \lambda_n) \in P(I)$ and $1 \leq k < n$ with $\lambda_k < \lambda_n$, we have $x^{\lambda} x_k / x_n \in I$.

Definition (Strongly shifted ideal)

We say I is strongly shifted if, for every $\lambda = (\lambda_1, \ldots, \lambda_n) \in P(I)$ and $1 \leq k < l \leq n$ with $\lambda_k < \lambda_l$, we have $x^{\lambda} x_k / x_l \in I$.

In both definitions, we can replace P(I) by $\Lambda(I)$.

Examples of shifted ideals

Example

The \mathfrak{S}_3 -fixed ideal

$$I = \langle x_1 x_2 x_3, x_1^2 x_2, x_1 x_2^2, x_1^2 x_3, x_1 x_3^2, x_2^2 x_3, x_2 x_3^2, x_1^4, x_2^4, x_3^4 \rangle \subseteq \mathbb{k}[x_1, x_2, x_3]$$

is strongly shifted with $\Lambda(I) = \{(1, 1, 1), (0, 1, 2), (0, 0, 4)\}.$

Example

The \mathfrak{S}_4 -fixed ideal $I\subseteq \Bbbk[x_1,x_2,x_3,x_4]$ with $\Lambda(I)=\{(1,1,2,2),(0,2,2,2),(0,1,2,3)\}$ is shifted but not strongly shifted since $(0,1,2,3)\in P(I)$ but $(1,1,1,3)\not\in P(I)$.

Star configurations are strongly shifted

Proposition (BDGMNORS)

For every integer $m \geqslant 1$, $I_{n,c}^{(m)}$ is \mathfrak{S}_n -fixed and strongly shifted. Moreover

$$P(I_{n,c}^{(m)}) = \left\{ \lambda : \sum_{i=1}^{c} \lambda_i \geqslant m \right\},$$

$$\Lambda(I_{n,c}^{(m)}) = \left\{ \lambda : \sum_{i=1}^{c} \lambda_i = m, \forall i > c \ \lambda_i = \lambda_c \right\}.$$

Question

Are there other interesting examples of (strongly) shifted ideals?

Shifted ideals have linear quotients

Consider distinct monomials $u = \sigma(x^{\lambda}), v = \tau(x^{\mu}) \in \mathbb{k}[x_1, \dots, x_n]$, where λ, μ are partitions, and $\sigma, \tau \in \mathfrak{S}_n$.

We set $v \prec u$ if:

- $\deg(v) < \deg(u)$, or
- $\deg(v) = \deg(u)$ and $x^{\mu} >_{\text{lex}} x^{\lambda}$, or
- $\lambda = \mu$ and $v <_{\text{lex}} u$.

Theorem (BDGMNORS)

Shifted \mathfrak{S}_n -fixed monomial ideals have linear quotients.

Betti tables of star configurations

Corollary (BDGMNORS)

• For every integer $i \geqslant 0$,

$$\beta_{i,i+m(n-c+1)}(I_{n,c}^{(m)}) = \binom{n}{c-1} \binom{c-1}{i}.$$

- **②** The Castelnuovo-Mumford regularity of $I_{n,c}^{(m)}$ is m(n-c+1).
- **3** If $m \geqslant 2$, then all nonzero rows in the Betti table of $I_{n,c}^{(m)}$ have length c-1, with the exception of the top one.
- If $m \leqslant c$, then for every integer $i \geqslant 0$,

$$\beta_{i,i+n-c+m}(I_{n,c}^{(m)}) = \binom{n}{c-m-i} \binom{n-c+m+i-1}{i}.$$

Betti numbers of symbolic cube

Corollary (BDGMNORS)

If
$$c \geqslant 3$$
, then $\beta_{i,i+j}(I_{n,c}^{(3)}) =$

$$\begin{cases} \binom{n}{c-3-i} \binom{n-c+2+i}{i}, & j=n-c+3 \\ \binom{n}{c-2} \binom{c-2}{i} + (n-c+1) \binom{c-1}{i}, & j=2(n-c+1) \\ \binom{n}{c-1} \binom{c-1}{i}, & j=3(n-c+1) \end{cases}$$