Slides (Notes) for Critical Exponents

YouTube Link: https://www.youtube.com/watch?v=yAbvptzDZYc

YouTube Video Title: Critical Exponents: Why Chemistry Never Mattered

Spin States

Atomic Lattice

Spin Lattice

Ising Model

(Ernst Ising)

We could forget about the physical items (Atoms) themselves and just consider the lattice of spins -> Ising Model

Spin Lattice

Strong Magnetisation

Weak Magnetisation

Heated

More disordered while being heated

Cooled less disordered as we cool it down

M - Magnetisation

M T_c - Curie Temperature As we heart up the morterial, it become less & less magnetic, until it reaches Tc. Exponent

(where M drops to 0) It's found that Tc / the relation ship between M & T follows some power law. No matter what substance is being used,

For 2D substance, it's found that β is always Substance X $\beta = 0.125$

Substance Y $\beta = 0.125$ No matter what substances have been used, liquid or solid.

Substance Z $\beta = 0.125$ the chemistry of the substance has no effect.

The power (B) always come out the same!

Curie Temperature - T_c

Magnetisation - M

Lars Onsager

$$\frac{K_B T_C}{J} = \frac{2}{\ln(1+\sqrt{2})}$$

$$M = [1 - \sinh^{-4}(2BJ)]^{1/8}$$
Thus exponent LBJ is always for 2D moderials.

Model

The is able to
find the exact solution

to the 2-D Ising

These	ex	ponents s <u>Crit</u>	are,	Collecti	vely	It was NOT just the
KNOW	n ou	2D	3D	4D	3.)	magnetization that has
		0				this property (such
		1/8				power law relationship)
	γ	7/4	?	1		Other quantities like
	δ	15	?	3		· · · · · · · · · · · · · · · · · · ·
		1/4				heart Corporately orlso has
	V	1	?	1/2		power laws and their exponents Lthey might be
	3	2	?	0		a, r, 5,) could be
	pre	dicteo	l e	sact	ly	. Most omportantly, they are
						istances -