

数据挖掘比赛案例介绍

甜橙金融杯大数据竞赛

数据分析常用工具

- 1. Python、R、...
- 2.Anaconda pycharm
- 3. numpy pandas
- 4. 可视化matplotlib、seaborm

或

网上搜索Python官方文档

基本流程

赛题分析

数据观察

特征工程初步

怎么分析赛题

1. 背景?

2. 数据?

3.任务和评价指标?

赛题背景

操作详单数据字典

字段名	中文解释	字段说明	
UID	用户编号		
day	操作日期	连续的日期标识, E.g., 1为第一天,2为第二天,以此类推	
mode	操作类型	操作类型 (例如:修改密码、查询余额)	
success	操作状态		
time	操作时间点		
OS	操作系统		
version	客户端版本号		
device1	操作设备参数1	设备名称加密,原字段如"Jack's iphone"	
device2	操作设备参数2	设备型号	
device_code1	操作设备唯一标识1	设备号唯一标识加密,可用于安卓类设备的唯一标识	
device_code2	操作设备唯一标识2	设备号唯一标识加密,可用于安卓类设备的唯一标识	
mac1	MAC地址	操作设备MAC地址编码加密, 原字段如 "38:XX:XX:XX:XX:2"	
ip1	IP地址	操作设备IP地址编码加密	
ip2	IP地址	操作电脑P地址编码加密	
device_code3	操作设备唯一标识3	设备号唯一标识加密,可用于苹果类设备的唯一标识	
mac2	MAC地址	WIFI MAC地址编码加密, 原字段如 "02:XX:XX:XX:XX:03	
wifi	WIFI名称	WIFI名称,原字段如 "A的wifi"	
geo_code	地理位置	经纬度GeoHash编码	
ip1_sub	IP地址	前三位操作设备IP地址编码加密(ip1前三位IP地址) 比如,原字段为12,34,56,7和12,34,56,8的ip地址 三位都为12,34,56,故脱敏后的值是一样的	
ip2_sub	IP地址	前三位操作电脑IP地址编码加密(ip2前三位IP地址)	

交易详单数据字典

字段名	中文解釋	字段说明		
UID	用户编号			
channel	平台	平台类型		
dau	六号口物	连续的日期标识,		
day	交易日期	1为第一天,2为第二天,以此类推		
time	交易时间点			
trans_amt	脱敏后交易金额	保留大小关系		
amt_src1	资金类型	交易资金源类型,例如"余额"、"银行卡"		
merchant	商户标识	商户编码加密		
code1	商户标识	商户子门店编码加密		
code2	商户终端设备标识	商户交易终端设备编码加密		
trans_type1	交易类型1	交易类型,例如"消费","退款"		
acc_id1	账户相关	用户交易账户号编码加密		
device_code1	操作设备唯一标识1	设备号唯一标识加密,可用于安卓类设备的唯一标识		
desden endo2	操作设备唯一标识2	设备号唯一标识加密,可用于安卓类设备的唯一标识		
device_code2		(唯一标识码并不会只是一种 但都能达到效果)		
device_code3	操作设备唯一标识3	设备号唯一标识加密,可用于苹果类设备的唯一标识		
device1	操作设备参数1	设备名称加密,原字段如 "Jack's iphone"		
device2	操作设备参数2	设备型号		
mac1	MAC地址	操作设备MAC地址编码加密,		
		原字段如 "38:XX:XX:XX:XX:92"		
ip1	IP地址	操作设备IP地址编码加密		
bal	脱敏后账户余额	保留大小关系		
amt_src2	资金类型	交易资金源类型,与1类型相似,2对银行卡做了细分		
acc_id2	账户相关	转账操作的转出账户号编码加密		
acc_id3	账户相关	转账操作的转入账户号编码加密		
geocode	地理位置	经纬度GeoHash编码		
trans_type2	交易类型2	交易类型,例如"线上"、"线下"		
trans_type2	文勿失主4	trans_type2与trans_type1的维度和侧重不同		
market_code	营销活动号编码	营销活动号编码加密		
market_type	营销活动标识	营销活动类型		
ip1_sub	IP地址	前三位操作设备IP地址编码加密(ip1前三位IP地址)		

赛题任务

通过训练学习用户在消费过程中 的关联操作、交易详单信息,来 识别"羊毛党"

二分类问题

TP FN

FP

TN

TPR = TP / (TP + FN)

FPR = FP / (FP + TN)

其中, TP、FN、FP、TN分别为真正例、

假反例、假正例、真反例。

TPR1: FPR=0.001时的TPR TPR2: FPR=0.005时的TPR TPR3: FPR=0.01时的TPR

score= 0.4*TPR1+0.3*TPR2+0.3*TPR3

评价指标的分析

样本	概率	标签
1	0.99	1
2	0.92	0
3	0.91	1
4	0.90	0
5	0.85	_ 1
6	0.84	0
7	0.83	0
8	0.75	1
9	0.63	0
10	0.50	0

TPR1: FPR=0.001时的TPR TPR2: FPR=0.005时的TPR TPR3: FPR=0.01时的TPR

score= 0.4*TPR1+0.3*TPR2+0.3*TPR3

FPR小意味着此时被冤枉的为"羊毛党"的用户少

TPR大意味着只要是"羊毛党",都应该尽可能找出来

- 1. 删除字段
- 2. 数据补齐

训练集正负样本比例

羊毛党样本比例小, 且复赛测试集中羊毛党比例更小。

Day

可以看出,用户行为数据在day上呈现出了周期性的特征,可以作为判断是周几的依据。

Time

Merchant

举例:对operation中正负样本在mode上的数据探索

举例:对operation中正负样本在mode上的数据探索

异常数据处理

等 特征 工程

os mode trans_type ...

① 最小值
② 最大值
③ 累加值

④ 平均数

	UID	os	os_count
0	10000	103	9
1	10001	102	49
2	10001	200	17
3	10001	104	1
4	10002	102	10
5	10002	101	1
6	10003	102	15
7	10004	102	34
8	10006	102	4
9	10006	200	3
10	10007	102	13

	UID	max	min	mean
0	10000	26	13	20.22222
1	10001	13	2	6.522388
2	10002	29	29	29.000000
3	10003	17	17	17.000000
4	10004	29	1	12.647059
5	10006	8	7	7.571429
6	10007	26	18	22.307692

将类别字段每个取值频次都作为特征

op_Data.groupby('UID').os.value_counts().unstack().reset_index().fillna(0
)

	UID	os	os_count
0	10000	103	9
1	10001	102	49
2	10001	200	17
3	10001	104	1
4	10002	102	10
5	10002	101	1
6	10003	102	15
7	10004	102	34
8	10006	102	4
9	10006	200	3
10	10007	102	13

os	UID	101	102	103	104	105	107	200
0	10000	NaN	NaN	9.0	NaN	NaN	NaN	NaN
1	10001	NaN	49.0	NaN	1.0	NaN	NaN	17.0
2	10002	1.0	10.0	NaN	NaN	NaN	NaN	NaN
3	10003	NaN	15.0	NaN	NaN	NaN	NaN	NaN
4	10004	NaN	34.0	NaN	NaN	NaN	NaN	NaN
5	10006	NaN	4.0	NaN	NaN	NaN	NaN	3.0
6	10007	NaN	13.0	NaN	NaN	NaN	NaN	NaN

直接统计

类别种类较少 类别值基本不变

Topk: 类别种类很多,类别值变化大,将出现较少的归为"其它取值"

分箱

pd. cut (x, bins)
pd. qcut (x, q)

流行度

流行度

含义

字段映射为数值, 数值反映字段取值的用户数量

version	流行度
7.0.9	17432
7.0.5	16753
7.0.7	4004
7.0.2	3463
6.6.2	1331

version	流行度
7.4.0	17521
7.2.0	14659
7.3.0	7819
7.5.1	4932
7.5.0	1657

Train Test

地理信息字段处理

geohash编码:二维的经纬度转换成字符串

0 wskx 3 wm4v 5 ws90 6 ws45 7 ws2x 9 ws82 10 wkjm 11 wwdj 12 wmxb 13 wwew 14 wtgf		geo_code
5 ws90 6 ws45 7 ws2x 9 ws82 10 wkjm 11 wwdj 12 wmxb 13 wwew	0	wskx
import geohash lambda x:geohash.decode(x ws2x ws82 ws82 wwy wwdj wwdj wwxb www	3	wm4v
7 ws2x 9 ws82 10 wkjm 11 wwdj 12 wmxb 13 wwew	5	ws90
7 ws2x 9 ws82 10 wkjm 11 wwdj 12 wmxb 13 wwew	6	ws45
10 wkjm 11 wwdj 12 wmxb 13 wwew	7	ws2x
11 wwdj 12 wmxb 13 wwew	9	ws82
12 wmxb 13 wwew	10	wkjm
13 wwew	11	wwdj
	12	wmxb
14 wtgf	13	wwew
	14	wtgf

geo_code

(25, 119)

(29, 105)

(25, 114)

(23, 115)

(25, 113)

(25, 113)

(23, 109)

(38, 115)

(31, 112)

(38, 118)

(33, 118)

tips: 一般的工具需要手动安装geohash包 python的话在cmd输入命令 "pip install Geohash"

地理信息字段处理

"羊毛党"

- ■恶意篡改地理位置信息
- 使用vpn

经纬度 按月统计 按天统计 极值、跨度、方差等特征 活动范围、活动位置变化

特征工程

模型选择

树模型

XGBoost
LightGBM
CatBoost
RandomForest
ExtraTree
Regularized Greedy Forest (RGF)
Gradient Boosting Classifier
Gradient Boosting Classifier

- 可解释性强
- 可处理混合类型特征
- 具体伸缩不变性(不用归一化特征)
- 有特征组合的作用
- 可自然地处理缺失值
- 对异常点鲁棒
- 有特征选择作用
- 可扩展性强,容易并行

- 缺乏平滑性(回归预测时输出值只能 输出有限的若干种数值)
- 不适合处理高维稀疏数据

其他模型 LR、朴素贝叶斯等

模型选择

- 选择的模型及模型参数:
- lgb.LGBMClassifier (boosting_type='gbdt', num_leaves=200, reg_alpha=3,reg_lambda=5, max_depth=-1,n_estimators=5000, objective='binary', subsample=0.9, colsample_bytree=0.77,subsample_freq=1, learning_rate=0.05,random_state=1000, n_jobs=16, min_child_weight=4, min_child_samples=5, min_split_gain=0)

线下验证

提交次数有限

实际应用需求

线下验证

• 根据数据分布抽样:例如分层抽样

· CV交叉验证

扩展思考

id	句子		
1	[i, like, data, mining,, etc]		
2	[i, don't, know, what, ,etc]		
•••			

_	_	_	_
			_
_			
	_		

id	一月内操作类型序列		
1	[mode1, mode1, mode2, mode4,, mode1]		
2	[mode4, mode5, mode4, mode4,, mode2]		
•••			

扩展思考

- 只用统计特征是不够的,因为测试数据和训练数据时间相隔太久,复赛测试数据与训练数据时间相隔更久。
- 该问题的本质是探索羊毛党的行为模式以及羊毛党之间的关联关系。

扩展思考

口关联图谱、图数据库

口社区发现算法, 比如COPRA算法

口异构信息网络,比如NetClus网络聚类

磨刀功夫

注意记录: 避免重复工作、避免遗漏信息

• 分析数据、业务——潜在的信息

• 特征改动——线上、线下效果

• 参数调整——线上、线下效果

自动日志: python的logging包

手动记录

磨刀功夫

多看评论和赛后解法

• 每一次比赛后其实都对实际的Data Mining问题有新的认识,总结自己的方案和其他top的方案,这是在比赛方面提高的关键

不断学习

不断接触前沿paper,不断学习当下最新算法,可以参考工业界有效的方案

切记只看不做

• 数据挖掘不等于机器学习

要求

 到Data Castle报名参赛,单人参赛。注意队名为: DM+学号 <u>http://www.dcjingsai.com/common/cmpt</u>

• 下载数据,完成比赛

• 考核:线上分数+模型亮点

• baseline会发到微信群里

http://www.inpluslab.com

移动互联网与金融大数据实验室