

Implementation of Common Non-Maxwellians Background Distributions in GENE

<u>Boris Andrews</u>, Dr Salomon Janhunen *Tokamak Energy Ltd*

2nd November 2022

Contents

Background and Motivation

- 2 Implementation
 - Fixing Generic Backgrounds
 - Adding Damped Backgrounds

BACKGROUND: Salomon has run beam simulations in GENE, using 3 (4) species:

Species	Particle	Density		Pistribution
Electrons	Electron	High	Maxwellian	Velocity = 0
Electrons	Electron	riigii	iviaxweilialis	Temperature = Low
lone	Ions Proton High Maxwellian	Velocity = 0		
10115		iviaxweiliali	Temperature = Low	
Beam	Proton	Low	Maxwellian	Velocity = 0
				Temperature = High

- Poorly represented beam distribution function!
- Can we improve this?

BACKGROUND: Salomon has run beam simulations in GENE, using 3 (4) species:

Species	Particle	Density		Pistribution
Electrons	Electron	High	Maxwellian	Velocity = 0
Electrons	Electron	riigii	iviaxweilialis	Temperature = Low
lone	Ions Proton High Maxwellian	Velocity = 0		
10115		iviaxweiliali	Temperature = Low	
Beam	Proton	Low	Maxwellian	Velocity = 0
				Temperature = High

- Poorly represented beam distribution function!
- Can we improve this?

BACKGROUND: Salomon has run beam simulations in GENE, using 3 (4) species:

Species	Particle	Density	Distribution	
Electrons	Electron	High	Maxwellian	Velocity = 0
				Temperature = Low
lone	Ions Proton High Maxwellian	Velocity = 0		
10115		Iligii	iviaxweiliali	Temperature = Low
Beam	Proton	Low	Maxwellian	Velocity = 0
				Temperature = High

- Poorly represented beam distribution function!
- Can we improve this?

BACKGROUND: Salomon has run beam simulations in GENE, using 3 (4) species:

Species	Particle	Density	D	Pistribution
Electrons	Electron	High	Maxwellian (Velocity = 0
				Temperature = Low
lons	Proton	High	Maxwellian	Velocity = 0
10115	FIOLOII	riigii	Maxwelliali	Temperature = Low
Beam	Proton	Low	Maxwellian {	Velocity = Non-0
				Femperature = High

- Poorly represented beam distribution function!
- Can we improve this?

Figure: Energy density profiles (on different flux tubes) showing the damping of (alpha) particles over a certain threshold energy(/velocity)

BACKGROUND: Salomon has run beam simulations in GENE, using 3 (4) species:

Species	Particle	Density	Distribution	
Electrons	Electron	High	Maxwellian	\int Velocity = 0
				\int Temperature = Low
lons	Proton	High	Maxwellian	$\int Velocity = 0$
IONS	Proton	nign	iviaxweilian	\int Temperature = Low
				Velocity = $Non-0$
Beam	Proton	Low	Damped	${\sf Temperature} = {\sf High}$
			Maxwellian	Damping
				$= v_A$ speed

PROBLEM

GENE supports:

- ✓ Maxwellian backgrounds
- * Shifted Maxwellian backgrounds
- ✗ Fully non-Maxwellian backgrounds (i.e. here damped distributions)

PROJECT

- Fix generic background distributions support
- Add damped Maxwellians

PROBLEM

GENE supports:

- ✓ Maxwellian backgrounds
- Shifted Maxwellian backgrounds
- ✗ Fully non-Maxwellian backgrounds (i.e. here damped distributions)

PROJECT

- Fix generic background distributions support
- Add damped Maxwellians

Contents

Background and Motivation

- 2 Implementation
 - Fixing Generic Backgrounds
 - Adding Damped Backgrounds

Contents

Background and Motivation

- 2 Implementation
 - Fixing Generic Backgrounds
 - Adding Damped Backgrounds

Implementation — Fixing Generic Backgrounds

WORK

- Some work done by me/some by Gabriele Merlo
- (Lots of digging in lots of lines of code)

TESTING

- In collaboration with team here, team at PPPL have some simulations of 2 ST40 shots (9831 & 9894) in TRANSP
- Should be able to run comparisons against these!

Implementation — Fixing Generic Backgrounds

WORK

- Some work done by me/some by Gabriele Merlo
- (Lots of digging in lots of lines of code)

TESTING

- In collaboration with team here, team at PPPL have some simulations of 2 ST40 shots (9831 & 9894) in TRANSP
- Should be able to run comparisons against these!

Contents

Background and Motivation

- 2 Implementation
 - Fixing Generic Backgrounds
 - Adding Damped Backgrounds

.WHAT DISTRIBUTIONS TO CONSIDER...

Tried to be as general here as possible:

Consider arbitrary "damping" as a map on particle speeds

$$(v_{\parallel}, \mu)^{\mathsf{pre}} \mapsto (v_{\parallel}, \mu)^{\mathsf{post}}$$
 (1)

• Equivalently maps distribution before damping, f_{s0}^{pre} , to distribution after damping, f_{s0}^{post}

$$f_{s0}^{\text{post}}\left(\mathbf{v}_{\parallel}^{\text{post}}, \mu^{\text{post}}\right) = J\left(\mathbf{v}_{\parallel}, \mu\right) f_{s0}^{\text{pre}}\left(\mathbf{v}_{\parallel}^{\text{pre}}, \mu^{\text{pre}}\right)$$
 (2)

$$J = \partial_{\nu_{\parallel}^{\mathsf{post}}} \nu_{\parallel}^{\mathsf{pre}} \partial_{\mu^{\mathsf{post}}} \mu^{\mathsf{pre}} - \partial_{\mu^{\mathsf{post}}} \nu_{\parallel}^{\mathsf{pre}} \partial_{\nu_{\parallel}^{\mathsf{post}}} \mu^{\mathsf{pre}}$$
(3)

Example

$$v^{\text{pre}} = \left[1 + \left(\frac{v^{\text{post}}}{v^{\text{damp}}}\right)^{k}\right] v^{\text{post}} \tag{4}$$

As $v \to \infty$:

$$f_{s0}^{\text{pre}} = \exp\left(-\text{const.}v^2\right) \tag{5}$$

$$f_{s0}^{\text{post}} = \exp\left(-\text{const.}v^{2+k}\right) \tag{6}$$

Example such damping function

Figure: $v^{\text{damp}} = 1.5, k = 20$

Damped velocity distribution

Figure: $v^{\text{damp}} = 1.5$, k = 20, u = 0, T = 0.48

• Damped energy distribution

Figure: $v^{\text{damp}} = 1.5$, k = 20, u = 0, T = 0.48

Figure: Energy density profiles (on different flux tubes) showing the damping of (alpha) particles over a certain threshold energy(/velocity)

• Damped *shifted* velocity distribution

Figure: $v^{\text{damp}} = 1.5$, k = 20, u = 1.2, T = 0.04

• Damped *shifted* energy distribution

Figure: $v^{\text{damp}} = 1.5$, k = 20, u = 1.2, T = 0.04

.HOW DO WE IMPLEMENT THIS IN FULL GENERALITY?

.HOW DO WE IMPLEMENT THIS IN FULL GENERALITY?

 What kind of functionals does the dist_eq_*_damped_t class instance need to evaluate?

Procedure	Functional
get_*D_dv	$\partial_{v_{\parallel}}f_{s0}$
get_*D_dm	$\partial_{\mu} f_{s0}$
get_*D_dvdm	$\frac{B_0}{2}\partial_{v_{\parallel}}f_{s0}-v_{\parallel}\partial_{\mu}f_{s0}$
:	i i

- Needs access to:
 - $v_{\parallel}^{\text{pre}}$, μ^{pre} (and their derivatives up to 2nd order)
 - *J* (and its derivative up to 1st order)

What kind of functionals does the dist_eq_*_damped_t class instance need to evaluate?

Procedure	Functional
get_*D_dv	$\partial_{v_{\parallel}}f_{s0}$
get_*D_dm	$\partial_{\mu}f_{s0}$
get_*D_dvdm	$\frac{B_0}{2}\partial_{v_{\parallel}}f_{s0}-v_{\parallel}\partial_{\mu}f_{s0}$
:	i i

- Needs access to:
 - $v_{\parallel}^{\text{pre}}$, μ^{pre} (and their derivatives up to 2nd order)
 - J (and its derivative up to 1st order)

.CODE NOW AVAILABLE! In my Gitlab repository:

- Just ask me for access! :)
- https://gitlab.mpcdf.mpg.de/g-borisandrews/gene-gpu

 Also have a far more detailed report to which Salomon should have access