

The Leader in High Temperature **Semiconductor Solutions**

Version: 3.3

CHT-NEPTUNE PRELIMINARY DATASHEET **High-Temperature** 1200V/10A, Silicon Carbide MOSFET

General description

CHT-NEPTUNE is a high-temperature, high-voltage, Silicon Carbide MOSFET switch. It is available in a metal TO-257 package - the metal case being isolated from the switch terminals. The product is guaranteed for normal operation on the full range -55°C to +225°C. The device has a breakdown voltage in excess of 1200V and is capable of switching currents up to 10A at the maximum temperature (225°C). The device features a body diode that can be used as free-wheeling diode.

Benefits:

- High-power density converters (support of high-frequency switching and reduced cooling)
- Extended lifetime and high reliability
- Harsh environments and high temperature power converters
- Seamless driving with CHT-Themis-Atlas and HADES® gate driver solutions

Features

- Specified from -55 to +225°C (Tj)
- V_{DS} Max: 1200V
- I_{DS} Max (continuous):
 - o 10A @ 225°C (Tj)
- Typical On-resistance:
 - R_{DSon} = 90 m Ω @ 25°C
 - $R_{DSon} = 150 \text{ m}\Omega @ 225^{\circ}C$
- **High Speed Switching**
- Voltage control: V_{GS}=-4V/20V
- Low capacitance: C_{GS}=1915 pF
- Package: TO-257

Applications

- Power inverters including DC-AC power supplies, motor drives & actuator controls
- DC-DC converters
- AC-DC converters and battery chargers

Package Configuration

TO-257 (Pin1= Drain; Pin2= Source; Pin3= Gate) (case floating)

 PUBLIC
 20-Aug-14

 Doc. PDS-111102 V3.3
 WWW.CISSOID.COM
 2 of 7

Absolute Maximum Ratings

 $\begin{array}{lll} \text{Gate-to-Source voltage V}_{\text{GS}} & \text{-5V to 25V} \\ \text{Drain-to-Source voltage V}_{\text{DS}} & \text{-0.5V to 1200V} \\ \text{Drain current I}_{\text{DS}} \text{ (cont.)} & \text{12A} \\ \text{Max Junction temperature T}_{\text{jmax}} & \text{225°C} \\ \text{Power dissipation (*)} & \text{30W} \\ \end{array}$

ESD Rating (expected)

Human Body Model >1kV

(*): including switching losses

Operating Conditions

Electrical characteristics

Unless otherwise stated, $T_j = 25$ °C. **Bold** figures point out values valid over the whole temperature range ($T_j = -55$ °C to +225°C).

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Threshold voltage	\/	$T_{j}=25^{\circ}C$; $I_{D}=1mA$; $V_{DS}=20V$		2.5		V
	V_{TH} $T_{j}=225^{\circ}\text{C}$; $I_{D}=1\text{mA}$; $V_{DS}=20\text{V}$			1		V
Drain cut-off current		V _{GS} =0V, V _{DS} =1200V, T _j =25°C		20		nA
	I _{DSS}	V _{GS} =0V, V _{DS} =1200V, T _j =225°C		10		μΑ
		V_{GS} =-5V, V_{DS} =1200V, T_j =225°C		0.27		μΑ
Gata laakaga current	1	$V_{GS} = 20V, V_{DS} = 0V, T_{j} = 25^{\circ}C$		10		nA
Gate leakage current	I _{GSS}	$V_{GS} = 20V, V_{DS} = 0V, T_j = 225$ °C		100		nA
Static drain-to-source resistance	R _{DSon}	V _{GS} =20V, ID=10A, T _j =25°C		90		mΩ
Static dialif-to-source resistance	NDSon	V_{GS} =20V, ID=10A, T_j =225°C		150		mΩ
Breakdown drain-to-source voltage (DC characterization)	V _{BRDS}	V _{GS} =0V; ID = 100 μA	1200			V
Input capacitance	C _{ISS}	$V_{GS}=0V_{DC}, V_{DS}=600V_{DC}$		1915		рF
Output capacitance	Coss	f = 1 MHz	4	120		pF
Feedback capacitance	C _{RSS}	$V_{AC} = 25 \text{mV}$		10		рF
Turn-on delay time	$T_{d(ON)}$			17		ns
Rise time	T _r	VDS=600V; VGS= -4/20V; ID = 10A; RG= 6.8Ω: L = 856uH		14		ns
Turn-off delay time	$T_{d(OFF)}$			62		ns
Fall time	T_f			36		ns
Turn-On Switching Loss	E _{on}	110 0.011, 1 000 p. 1		205		μJ
Turn-Off Switching Loss	E _{off}			173		μJ
Internal gate resistance	R _G	$V_{GS}=0V_{DC}$; f = 1 MHz; $V_{AC}=25mV$		5		Ω
Gate to Source Charge	Q_{GS}	T: 25°C :\/DC 600\/:		23		nC
Gate to Drain Charge	Q_{GD}	Tj=25°C ;VDS= 600V; ID = 10A; VGS = -2/20V		43		nC
Total Gate Charge	Q_G	15 - 107, 1002/201		90		nC

Thermal Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Junction-to-Case Thermal resistance	ROJC			1.1		°C/W

Reverse Diode Characteristics

Unless otherwise stated, $T_j = 25^{\circ}$ C. **Bold** figures point out values valid over the whole temperature range ($T_j = -55^{\circ}$ C to +225°C). Timing definitions according to JEDEC 24 page 27

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Diode forward voltage	V _F	Tj=25°C; VGS=-5V; IF=10A		3.5		V
		Tj=25°C; VGS=-2V; IF=10A		3.1		V
Reverse recovery time	T _{rr}	Tj=25°C; VDS=300V;		50		ns
Peak reverse recovery current	I _{prr}	VGS = -5V; $I_F=2A;dI_F/dt = 100A/\mu S$		2.3		Α

 PUBLIC
 20-Aug-14

 Doc. PDS-111102 V3.3
 WWW.CISSOID.COM
 4 of 7

Typical Performance Characteristics

Figure 1: Drain current vs V_{DS} (T_J =25°C)

Figure 3: Drain current vs V_{GS} voltage

Figure 5:Typical capacitances vs V_{DS} (T_i =25°C)

Figure 2: Drain current vs V_{DS} (T_J =225°C)

Figure 4: On-state drain source resistance vs. Drain current and temperature ($V_{GS} = 20V$)

Package Dimensions

PUBLIC **20-Aug-14 Doc. PDS-111102 V3.3 WWW.CISSOID.COM** 6 of 7

Ordering Information

Product Name	Ordering Reference	Package	Marking
CHT-NEPTUNE	CHT-PLA8543C-TO257-T	TO-257 metal can	CHT-PLA8543C

Contact & Ordering

CISSOID S.A.

Headquarters and contact EMEA:	CISSOID S.A. – Rue Francqui, 3 – 1435 Mont Saint Guibert - Belgium T: +32 10 48 92 10 - F: +32 10 88 98 75 Email: sales@cissoid.com
Sales Representatives:	Visit our website: http://www.cissoid.com

Disclaimer

Neither CISSOID, nor any of its directors, employees or affiliates make any representations or extend any warranties of any kind, either express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose, and the absence of latent or other defects, whether or not discoverable. In no event shall CISSOID, its directors, employees and affiliates be liable for direct, indirect, special, incidental or consequential damages of any kind arising out of the use of its circuits and their documentation, even if they have been advised of the possibility of such a damage. The circuits are provided "as is". CISSOID has no obligation to provide maintenance, support, updates, or modifications.

 PUBLIC
 20-Aug-14

 Doc. PDS-111102 V3.3
 WWW.CISSOID.COM
 7 of 7