Source Separation with Deep Generative Priors

Vivek Jayaram and John Thickstun W PAUL G. ALLEN SCHOOL

Bayesian Source Separation

Unobserved Components: $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_k)$

Observed Mixture: **m**

Prior (deep generative model): $\mathbf{x} \sim p$

Likelihood:
$$\mathbf{m} \sim \mathcal{N}\left(\sum_{i=1}^n \mathbf{x}_i, \gamma^2 I\right)$$

Posterior likelihood:
$$p(\mathbf{x}|\mathbf{m}) = \frac{p(\mathbf{m}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{m})}$$

Sampling with Langevin Dynamics

Smoothed prior (convolve with Gaussian): $p_{\sigma}(\mathbf{x})$

Smoothed posterior:
$$p_{\sigma}(\mathbf{x}|\mathbf{m}) = \frac{p(\mathbf{m}|\mathbf{x})p_{\sigma}(\mathbf{x})}{p(\mathbf{m})}$$

Innovation Noise: $arepsilon \sim \mathcal{N}(0,I)$

Noise-Annealed Langevin Dynamics:

$$\mathbf{x}^{(t+1)} \equiv \mathbf{x}^{(t)} + \eta \nabla_{\mathbf{x}} \log p_{\sigma}(\mathbf{x}^{(t)}|\mathbf{m}) + 2\sqrt{\eta}\varepsilon_t$$

A Robust Practical Algorithm, with a Qualitative Ablation Study

Preliminary Separation Results

Image Colorization

Image Colorization is a corollary of our work

Color Image: $\mathbf{x} = (\mathbf{x}_r, \mathbf{x}_g, \mathbf{x}_b)$

Grayscale Image: $\mathbf{m} = \frac{\mathbf{x}_r + \mathbf{x}_g + \mathbf{x}_b}{3}$

It may be possible to adapt our work to other conditional generation problems

https://arxiv.org/abs/2002.07942 Preliminary Work:

https://github.com/jthickstun/basis-separation GitHub Repo: