- 1) Questian -> questian tab 2) Repent in the chut. 3) TAW -> Calling
- 4) Slack, what app (8240991339), titas. de - 1@ scaler. com

Policy

- 1) Attendance (Live + Recorded) > 90%
- 2) HW & Assignments > 75%
- 3) Participation in Drizzer & Polh 295%

MLI S MZ 2 2 transition

2 months

2 months

1 months

After 2 months

H genda
Summary - 1 learnt so for
Overview - 10,000 ft of ML is all about.
- ML? ML VS SDE
- ML Tanks
- Types of learning in ML
Application
EDA - Exploratory Pata Analysis (if time permits)
Alrendy Leaunt
1) Python, DSML libraries [MUST]
->(3) 2) Probability & Statistics
3) Co-ordinate Greometry. (Linear Algebra)
-324) Calarlys & Optimis ation.
IV > Numerical > histogram, KDE
1V > Numerical -> histogram, KDE) cutegorical -> bour, count plot, pie

num-num -) scatter plot, live plut cat - cat -> stacked bour plot num - cut -> heat plat, chisterimas box plot, violin plat List of patients or predict is diabetic 2 Leight Leight -) lobel (categorical-s d'nd) input -> height & neight (features) -> output -> dabel (d/nd) in but W, H

Challenger: -> intimite læg mwds - infinite variation of known ML approach -> Subject, body understant pattern 10 Herry Same Cutegorization generalization [ML System] broadle set vf lottery pattern Good night 18 H 3ry And ng Tom M Mitchell -> Father of Machine I covering (T) Tonk -> Spans vs Non - Span (P) Performance - Accuracy - % of correct (E) Experience -) Data which is given

It with more Experience,	you performance
	eet to Tark (7)
then your ML System	is actually
Levering (L)	
Performance Voyeer	data data
penf	wmance at unseen
1	/ duter
densin bound	duy & Meaning of Patterns
ML Tombo	Types at ML
- durification (Categorization	- supervised - W
- regren a	- Un supervited
- clustering	- Reinfor cement
- revommen dation	- Semi-supervised 7
- Foremains	- Wently specifed
	Research

50 L, 10 L, 1.5 Cr Reprenim 50, 10, 150 26.2 68.73 Continuous values rm - discrete fork Distrete example Continuous example Regression

Classification of (ip, op) poir ip f(x)

(ip), 5.5)

Seen duta
(ip), 6.4)

(ip), 6.4)

(ip), 6.4)

(ip), 6.4)

(ip), 6.4)

(ip), 8.5) (ip4, 1.5) Clamfichian 2 Regression 2 10L, 15L, 28.3L, 34.7L, 122L, 105C,... 0-10L, 10L-20L, 202-30L, ... 140-150L 15 ranges 13 danser / Categorica Cloudination Diswell 1, 2, 3,

Rational Diswell E I, R

Tradianal N3

Janification Region Logistic Regresion Linear $p(x) = \lambda$ L> -(m,H,+ m2W,+c) $\mathcal{F}_i = m_1 H_1 + m_2 W_1 + C$