Examenul de bacalaureat național 2019 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$q=3 \Rightarrow b_3=9$	3p
	$b_1 + b_2 + b_3 = 1 + 3 + 9 = 13$	2p
2.	$x_1 + x_2 = -m, \ x_1 x_2 = 7$	2p
	-2m+21=1, deci $m=10$	3 p
3.	$(x-2)(x+2) = 2^5 \Rightarrow x^2 - 36 = 0$	3 p
	x = -6, care nu convine, $x = 6$, care convine	2p
4.	Prima cifră se poate alege în 5 moduri	1p
	Pentru fiecare alegere a primei cifre, a doua cifră se poate alege în câte 4 moduri	1p
	Pentru fiecare alegere a primelor două cifre, a treia cifră se poate alege în câte 3 moduri,	3 p
	deci se pot forma $5 \cdot 4 \cdot 3 = 60$ de numere	Sp
5.	Punctul M este mijlocul segmentului AB	3p
	$x_M = 4 , \ y_M = 4$	2p
6.	Punctul M este mijlocul segmentului AB $x_{M} = 4, y_{M} = 4$ $\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC \cdot \sin \frac{2\pi}{3}}{2} = \frac{3\sqrt{3} \cdot 4 \cdot \frac{\sqrt{3}}{2}}{2} = \frac{12 \cdot 3}{4} = 9$	3p
	$=\frac{12\cdot 3}{4}=9$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{vmatrix} =$	2p
	=0+1+(-1)-0-0-0=0	3 p
b)	$\det(A(a)) = \begin{vmatrix} a & 1 & 1 \\ 1 & -a & -1 \\ 1 & 1 & a \end{vmatrix} = -a^3 + a =$	3p
	$= a(1-a^2) = a(1-a)(1+a)$, pentru orice număr real a	2 p
c)	Pentru $a=0$, sistemul este compatibil nedeterminat și soluțiile sistemului sunt de forma $(1+\alpha,1-\alpha,\alpha)$, unde $\alpha\in\mathbb{R}$	3p
	Pentru orice α număr întreg, numerele $x_0 = 1 + \alpha$, $y_0 = 1 - \alpha$ și $z_0 = \alpha$ sunt întregi	2 p
2.a)	x*2019 = (x-2019)(2019-2019) + 2019 =	3p
	= 0 + 2019 = 2019, pentru orice număr real x	2p

	$x * x = (x - 2019)^2 + 2019, (x * x) * x = (x - 2019)^3 + 2019$	2p
	$(x-2019)^3 + 2019 = x \Leftrightarrow (x-2019)((x-2019)^2 - 1) = 0$, deci $x = 2018$ sau $x = 2019$ sau	3p
	x = 2020	•
c)	$(m-2019)(n-2019) + 2019 = 2020 \Leftrightarrow (m-2019)(n-2019) = 1$	2p
	Cum m și n sunt numere întregi, obținem $m = 2018$, $n = 2018$ sau $m = 2020$, $n = 2020$	3 p

SUBIECTUL al III-lea

(30 de puncte)

	(30 de pair	
1.a)	$f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x} =$	3p
	$= \frac{\sqrt{x}}{2x} - \frac{1}{x} = \frac{\sqrt{x} - 2}{2x}, \ x \in (0, +\infty)$	2 p
b)	$f(1)=1, f'(1)=-\frac{1}{2}$	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = -\frac{1}{2}x + \frac{3}{2}$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = 4$	1p
	$x \in (0,4] \Rightarrow f'(x) \le 0$, deci f descrescătoare pe $(0,4]$ și $x \in [4,+\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[4,+\infty)$	2 p
	Cum $f(4) = 2 - \ln 4$, obținem $f(x) \ge 2 - \ln 4$, deci $\sqrt{x} - \ln \frac{x}{4} \ge 2$, pentru orice $x \in (0, +\infty)$	2p
2.a)	$\int_{0}^{1} (x^{2} + 9) f(x) dx = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big _{0}^{1} =$	3 p
	$=\frac{1}{3}-0=\frac{1}{3}$	2p
b)	$F'(x) = f(x) = \frac{x^2}{x^2 + 9}, F''(x) = f'(x) = \frac{18x}{\left(x^2 + 9\right)^2}, x \in \mathbb{R}, \text{ unde funcția } F : \mathbb{R} \to \mathbb{R} \text{ este o}$	2p
	primitivă a lui f	
	$F''(x) = 0 \Leftrightarrow x = 0$	1p
	$x \in (-\infty, 0) \Rightarrow F''(x) < 0$ şi $x \in (0, +\infty) \Rightarrow F''(x) > 0$, deci F are un singur punct de	2p
0)	inflexiune	
c)	$x \in [0,1] \Rightarrow x^{2n} \ge 0$ şi, cum $0 \le f(x) \le 1$, obţinem $0 \le x^{2n} f(x) \le x^{2n}$	2p
	$0 \le I_n = \int_0^1 x^{2n} f(x) dx \le \int_0^1 x^{2n} dx = \frac{x^{2n+1}}{2n+1} \Big _0^1 = \frac{1}{2n+1} \text{ si } \lim_{n \to +\infty} \frac{1}{2n+1} = 0 \text{ , deci } \lim_{n \to +\infty} I_n = 0$	3 p