1. a = 0 的情形.

任给 $\epsilon > 0$. 取 N 使得 n > N 时有 $|a_n| < \epsilon^2$, 进而 $|\sqrt{a_n}| < \epsilon$.

2. a > 0 的情形.

任给 $\epsilon > 0$. 取 N 使得 n > N 时有 $|a_n - a| < \sqrt{a}\epsilon$, 于是

$$|\sqrt{a_n} - \sqrt{a}| = \frac{|a_n - a|}{\sqrt{a_n} + \sqrt{a}} \le \frac{1}{\sqrt{a}}|a_n - a| < \epsilon.$$

综上, 总有 $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}$.

例 1.2.3 研究 {sin n} 的敛散性.

解. 假设它收敛,看看是否有迹可循. 设 $\lim_{n\to\infty}\sin n=s$. 根据三角公式,有

$$\sin(n+1) = \sin n \cos 1 + \cos n \sin 1.$$

因此 $\{\cos n\}$ 存在极限, 记为 c. 对上式两端同时求极限, 可得

$$s = s\cos 1 + c\sin 1.$$

另一方面, 利用公式 sin(n-1) = sin n cos 1 - cos n sin 1 可得

$$s = s \cos 1 - c \sin 1$$
.

由此可得 s = c = 0. 但这是不可能的,因为

$$1 = \lim_{n \to \infty} (\sin^2 n + \cos^2 n) = s^2 + c^2.$$

因此 {sin n} 发散.

3 课时/9 课时

保序性

设 $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$.

- ▶ 若 A > B, 则存在 N, 当 $n \ge N$ 时 $a_n > b_n$.
- ▶ 若存在 N, 当 $n \ge N$ 时 $a_n > b_n$, 则 $A \ge B$.

证明. 将保号性和四则运算应用于数列 $\{a_n - b_n\}$ 即可.

1.3 数列的审敛法

从上两节可以看到,用极限的定义可以非常清晰严密的进行论证,但 终究稍显繁琐. 本节介绍几种常用的判断数列敛散性的方法.

迫敛法

迫敛性 (Sandwich Theorem)

若 $a_n \le b_n \le c_n$ 且 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, 则 $\{b_n\}$ 也收敛且 $\lim_{n \to \infty} b_n = L$.

注意, 迫敛性并非保序性. 保序性是在极限存在的前提下得到保序的结果, 而迫敛性则是以极限存在作为结论之一.

证明概要. 关键点是

$$-\epsilon < a_n - L \le b_n - L \le c_n - L < \epsilon$$
.

请自行补充完整.

例 1.3.1 求 🕼 的极限.

证明. 可以仿照 \sqrt{a} 的做法,利用二项式公式的二次项,可以得到估计 $\sqrt[n]{n} \le 1 + \sqrt{\frac{2}{n-1}}$. 下面用**均值不等式**

$$\sqrt[n]{x_1 x_2 \cdots x_n} \le \frac{1}{n} (x_1 + x_2 + \dots + x_n), \quad x_k \ge 0$$

来作估计. 取 $x_1 = x_2 = \sqrt{n}$, $x_3 = \cdots = x_n = 1$, 则

$$\sqrt[n]{n} \le \frac{1}{n} (2\sqrt{n} + n - 2) < 1 + \frac{2}{\sqrt{n}}.$$

从而

$$1 \le \sqrt[n]{n} \le 1 + \frac{2}{\sqrt{n}}.$$

易知右端极限为 1,根据迫敛性,可知 $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

例 1.3.2 证明: $\lim_{n\to\infty} \frac{1}{\sqrt[n]{n!}} = 0$.

证明概要. 无论 n 是奇数亦或偶数, 均有

$$\sqrt[n]{n!} = (1 \cdot 2 \cdot 3 \cdots n)^{\frac{1}{n}} \ge \left(\frac{n}{2}\right)^{\frac{n}{2} \cdot \frac{1}{n}} = \sqrt{\frac{n}{2}}.$$

因此

$$0 \le \frac{1}{\sqrt[n]{n!}} \le \sqrt{\frac{2}{n}}.$$

由迫敛性易得极限为零.

例 1.3.3 求 $a_n = \frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \dots + \frac{n}{n^2 + n + n}$ 的极限.

证明概要. 对分母进行放缩, 得

$$\frac{\sum_{k=1}^{n} k}{n^2 + n + n} \le a_n \le \frac{\sum_{k=1}^{n} k}{n^2 + n + 1}.$$

计算两侧极限可知 $a_n \to \frac{1}{2}$.

例 1.3.4 设
$$a_1=1, a_{n+1}=a_n+\frac{1}{a_n}(n\geq 1).$$
 证明: $\frac{a_n}{\sqrt{2n}}\to 1.$

证明概要. 递推式两端平方 $a_{n+1}^2 = a_n^2 + 2 + \frac{1}{a_n^2}$, 累加得

$$a_{n+1}^2 = 1 + 2n + \frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2}.$$

所以 $a_{n+1}^2 > 2n+1$, 从而 $0 < 1/a_{n+1}^2 < 1/(2n+1)$, 因此 $1/a_n^2 \to 0$. 于是,

$$\frac{a_{n+1}^2}{n} = 2 + \frac{1}{n} + \frac{1}{n} \left(\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2} \right).$$

利用切萨罗定理可知 $a_{n+1}^2/n \rightarrow 2$, 进而

$$\lim_{n \to \infty} \frac{a_n^2}{n} = \lim_{n \to \infty} \frac{a_{n+1}^2}{n+1} = \lim_{n \to \infty} \frac{a_{n+1}^2}{n} \cdot \frac{n}{n+1} = 2.$$

开根号即得.

迫敛法的核心在于估计数列的大小,这种估计的直觉需要勤加练习才可提升,没有人是生而知之的.

归并原理

归并原理描述的是数列和它的子列的敛散性联系. 所谓**子列**,是指在原数列中任取无限项, 再按原顺序排列而成的一个新数列. 比如数列 $a_1, a_2, a_3, a_4, \cdots$ 的一部分 $a_3, a_8, a_{10}, a_{298}, \cdots$ 构成了一个子列. 一般地,如果在 $\{a_n\}$ 中选取了第 $n_1, n_2, \cdots, n_k, \cdots$ 项 $(n_k < n_{k+1})$,那么子列为

$$a_{n_1}, a_{n_2}, a_{n_3}, \cdots, a_{n_k}, \cdots$$

如果记子列为 $\{b_k\}$, 那么 $b_k = a_{n_k}$. 特别地, 若 $n_k = k$, 即为原数列.

从函数角度而言,子列是一种复合函数. 事实上,设 $a: \mathbb{N} \to \mathbb{R}$ 是数 列, $n: \mathbb{N} \to \mathbb{N}$ 是严格增函数, 则复合函数 $b=a \circ n: \mathbb{N} \to \mathbb{R}$ 就是 a 的一个子列.

归并原理

数列收敛的充要条件是它的任何子列都收敛(于同一个数).

证明. 充分性是显然的, 因为原数列本身就是一个子列.

必要性 设 $a_n \to L$, 子列为 $b_k = a_{n_k}$.

任给 $\epsilon > 0$. 因为 $a_n \to L$, 所以存在 N, 当 n > N 时, 成立 $|a_n - L| < \epsilon$. 注意到, 当 k > N 时, 有 $n_k \ge k > N$, 于是 $|b_k - L| = |a_{n_k} - L| < \epsilon$. 这就意味着 $b_k \to L$.

如果用邻域语言来说,则是一句话证明:因为 $U(a;\epsilon)$ 外面只有有限项 $\{a_n\}$,自然只有有限项 $\{b_k\}$.

在证明充分性的时候只要所有子列均收敛即可,不需要极限相同;在证明必要性时,我们证明了任何子列都收敛于同一个极限. □

归并原理常用来证明数列发散. 比如,数列 $\{(-1)^n\}$ 的奇子列极限为-1、偶子列极限为1,两者不同,所以原数列发散.

例 1.3.5 (故地重游) 证明 {sin n} 发散.

证明. 前面已用四则运算证明,现在从子列的角度做一个观察. 对于每个正整数 k,闭区间 $\left[\frac{\pi}{3} + k\pi, \frac{2\pi}{3} + k\pi\right]$ 内至少含有一个整数,记最小的为 n_k ,则 $\sin n_{2k} \geq \sin \frac{\pi}{3}$, $\sin n_{2k+1} \leq -\sin \frac{\pi}{3}$. 根据保序性,这两个子列不可能收敛于同一极限.

对于发散到无穷大的数列,也有类似的归并原理,留给读者自行探究.

单调收敛定理

我们已经知道确界原理是实数系的一个基本原理,利用这个原理可以证明几个与数列敛散性有关的定理,它们有的显而易见、有的则是云遮雾绕.单调收敛定理应属前者,甚至不证自明.

单调收敛定理

单调有界数列必然收敛;单调无界数列必然发散到无穷大.

证明. 这里仅证有界情形. 不妨假设 $\{a_n\}$ 单调递增且有上界,由确界原理知 $\sup\{a_n\}:=a$ 存在. 下面证明 $a_n\to a$. 首先, 必有 $a-a_n\geq 0$. 其次, $\forall \epsilon>0$, $\exists N:a_N>a-\epsilon$, 进而由单调性知 $\forall n>N:a_n\geq a_N>a-\epsilon$. 因此 $0\leq a-a_n<\epsilon$.

例 1.3.6 设 $x_0 = \sqrt{2}, x_{n+1} = \sqrt{3 + 2x_n} (n \ge 0)$. 证明: $\{x_n\}$ 收敛, 并求极限.

证明. 记增量 $\delta_n = x_{n+1} - x_n$, 则

$$\delta_n = \sqrt{3 + 2x_n} - \sqrt{3 + 2x_{n-1}} = \frac{2(x_n - x_{n-1})}{\sqrt{3 + 2x_n} + \sqrt{3 + 2x_{n-1}}}.$$

因此 δ_n 与 δ_{n-1} 同号,所以数列 $\{x_n\}$ 单调.²

另一方面,用归纳法容易证明 $0 \le x_n \le 3$. 根据单调收敛定理, $\{x_n\}$ 收敛,极限记为 L. 利用四则运算法则可知极限满足 $L^2 = 3 + 2L$,根据保号性 L = 3.

下面换一种做法: 直接证明极限 L = 3. 利用递推式可得

$$|x_{n+1} - 3| = \frac{2|x_n - 3|}{\sqrt{3 + 2x_n} + 3} \le \frac{2}{3}|x_n - 3| \le (\frac{2}{3})^n|x_1 - 3|.$$

由迫敛性知 $|x_{n+1} - 3| \rightarrow 0$ 即 $x_n \rightarrow 3$.

2: 事实上, 如果迭代为 $x_{n+1} = f(x_n)$, 那 么只要 f 单调递增, 就有 $\{x_n\}$ 的单调性. 至于 $\{x_n\}$ 是单调增还是单调减,则依赖于数列的首项.

自然常数 (Euler's number)

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2.718281828 \ 459045 \ 23536 \ 028747 \cdots$$

证明. 记 $e_n = (1 + \frac{1}{n})^n$, 我们证明它单调递增有上界. 由二项式公式得

$$e_n = 1 + \frac{C_n^1}{n} + \frac{C_n^2}{n^2} + \dots + \frac{C_n^n}{n^n}.$$

第 0 项和第 1 项永远是 1. 仔细观察第 k(≥ 2) 项

$$\frac{C_n^k}{n^k} = \frac{n(n-1)\cdots(n-(k-1))}{1\cdot 2\cdots k\cdot n^k} = \frac{1}{k!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{k-1}{n}\right).$$

固定 k, 上式关于 n 单调递增,因此 e_n 的第 k 项比 e_{n+1} 的第 k 项小. 而且, e_n 还比 e_{n+1} 少一项,所以 $\{e_n\}$ 单调递增. 为了证明有界性,再次利用上式,注意括号项都小于 1,因此

$$e_n < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 2 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n} < 3.$$

因此数列 $\{e_n\}$ 必然收敛.

区间套定理 (nested interval theorem)

设 $\{[a_n,b_n]\}$ 是一列闭区间套, 满足

- (a) $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$;
- (b) $\lim_{n\to\infty} (b_n a_n) = 0.$

则 $\{a_n\}$ 和 $\{b_n\}$ 均收敛且极限相同. 进而存在唯一 $\xi \in \cap_n [a_n, b_n]$.

证明. 由 (a) 知 $\{a_n\}$ 和 $\{b_n\}$ 都是单调有界数列,所以存在极限. 由 (b) 知它们的极限相等.

致密性定理 (Bolzano-Weierstrass Theorem)

有界数列必有收敛子列.

证明. 设数列 $\{x_n\}$ 满足 $a \le x_n \le b$. 将区间 I = [a,b] 二等分,必有一个子区间含有无限项 $\{x_n\}$,记为 I_1 . 再将区间 I_1 二等分,仍会有一个子区间含有无限项 $\{x_n\}$,记为 I_2 . 依此类推,得到一列区间套 $I_n = [a_n,b_n]$. 根据区间套定理, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L$. 取子列 $\{x_{n_k}\}$ 使得 $a_k \le x_{n_k} \le b_k$,根据迫敛性知 $x_{n_k} \to L$.

柯西原理

从定义判断数列收敛需要知道它的极限值,这在大部分情况下并不适用.能否直接用通项的性态来判断数列的敛散性?单调收敛原理是一种

方法, 但它有着明显的局限性. 一般情况下, 关键在于如何用通项来刻 画条件 $|a_n - L| < \epsilon$. 注意到

$$\lim_{m\to\infty}|a_n-a_m|=|a_n-L|,$$

因此一个自然的想法是用 $|a_n - a_m| < \epsilon$ 代替 $|a_n - L| < \epsilon$.

柯西列/基本列

如果数列 $\{a_n\}$ 满足**柯西条件**: 任意给定 $\epsilon > 0$,总存在 N,使得当 $n, m \ge N$ 时,恒有 $|a_n - a_m| < \epsilon$. 则称其为**柯西列**或**基本列**.

直观而言, 柯西条件描述了数列 "要多挤有多挤" 的性质. 方便起见, 柯 西条件经常写为如下形式:

$$\forall \epsilon > 0, \exists N, \forall n > N, \forall p \in \mathbb{Z}_+ \, : \, |a_{n+p} - a_n| < \epsilon.$$

运用 $|a_n - a_m| \le |a_n - L| + |L - a_m|$ 易知收敛数列必然是柯西列. 事实上两 者是等价的.

柯西收敛原理

数列收敛的充要条件是它是柯西列.

证明. 我们分三步来证明充分性.

有界性 根据定义,对于 $\epsilon = 1$,存在 N, 当 $n,m \ge N$ 时成立 $|a_n - a_m| < 1$. 所以,对于任意 $n \ge N$ 成立 $|a_n - a_N| < 1$. 从而数列有界.

收敛子列 由致密性定理,存在收敛子列,设为 $a_{n_k} \to L$. **收敛性** 任意给定 $\epsilon > 0$. 存在 N, 当 $n,m \ge N$ 时成立 $|a_n - a_m| < \epsilon/2$. 同时,存在 K,当 $k \ge K$ 时成立 $|a_{n_k} - L| < \epsilon/2$. 因此,当 $n \ge M :=$ $\max\{N,K\}$ 时

$$|a_n - L| \le |a_n - a_{n_M}| + |a_{n_M} - L| < \epsilon.$$

因此 $a_n \to L$.

例 1.3.7 若存在常数 $\theta \in (0,1)$, 使得数列 $\{a_n\}$ 满足

$$|a_{n+1} - a_n| \le \theta |a_n - a_{n-1}|,$$

则称 $\{a_n\}$ 为**压缩数列**. 证明: 压缩数列必收敛.

证明. 由压缩性易得

$$|a_{n+1} - a_n| \le \theta |a_n - a_{n-1}| \le \theta^2 |a_{n-1} - a_{n-2}| \le \dots \le \theta^n |a_1 - a_0|.$$

从而

$$\begin{split} |a_{n+p} - a_n| &\leq |a_{n+p} - a_{n+p-1}| + \dots + |a_{n+1} - a_n| \\ &\leq \theta^n (1 + \theta + \dots + \theta^{p-1}) |a_1 - a_0| \leq \frac{\theta^n |a_1 - a_0|}{1 - \theta}. \end{split}$$

由于 $\theta^n \to 0$, 可知 $\{a_n\}$ 是柯西列, 故而收敛.

例 1.3.8 设
$$a_0 = 1$$
, $a_{n+1} = \frac{1}{1+a_n}$. 证明: $\{a_n\}$ 收敛.

证明. 由递推公式可得

$$a_{n+1} - a_n = \frac{a_{n-1} - a_n}{(1 + a_n)(1 + a_{n-1})}.$$

可见数列不单调, 不能用单调收敛定理. 尝试压缩数列的办法. 用归纳法容易证明 $\frac{1}{2} \le a_n \le 1$, 所以

$$|a_{n+1} - a_n| \le \frac{|a_n - a_{n-1}|}{(1 + a_n)(1 + a_{n-1})} \le \frac{4}{9}|a_n - a_{n-1}|.$$

因此 $\{a_n\}$ 是压缩数列,必收敛.

确界原理、单调收敛定理、区间套定理、致密性定理、柯西收敛原理统称为**实数基本定理**. 事实上,它们两两之间都是等价的,因此任何一个都可以作为刻画实数连续性或完备性的基本原理.

3 课时/12 课时

上极限与下极限

归并原理和致密性定理表明探讨子列的极限是有意义的. 如果 $\{a_n\}$ 的某个子列收敛于常数 L,则称 L 为 $\{a_n\}$ 的**极限点/聚点**. 对极限点的深入分析,将揭示一种简洁有效的审敛法.

上极限/下极限

若 $\{a_n\}$ 是有界数列,则其极限点的确界仍然是极限点. 上确界称为数列的上极限,记为 $\lim_{n\to\infty} a_n$; 下确界称为数列的下极限,记为 $\lim_{n\to\infty} a_n$.

证明. 设极限点的上确界为 s. 若它不是极限点,则存在极限点列 $\{L_k\}$ 收敛于 s. 因为 L_k 是 $\{a_n\}$ 的极限点,所以存在 a_{n_k} 使得 $|L_k - a_{n_k}| < 1/k$. 于是

$$|s - a_{n_k}| \le |s - L_k| + |L_k - a_{n_k}| \le |s - L_k| + 1/k \to 0,$$

矛盾. 故而 s 也是 $\{a_n\}$ 的极限点.

上下极限判别法

有界数列 $\{a_n\}$ 收敛的充要条件是 $\overline{\lim_{n\to\infty}} a_n = \underline{\lim} a_n$.

证明. 必要性是显然的,因为此时仅有一个极限点. 下面说明充分性. 记上下极限为 L,如果 $\{a_n\}$ 不以 L 为极限,则它在某个邻域 $U(L;\delta)$ 外有无限项,根据致密性定理,这无限项中存在收敛子列,由保序性知其极限必不是 L,这与上下极限均为 L 矛盾.

例 1.3.9 设 $\{a_n\}$ 为有界数列. 证明:

$$\overline{\lim_{n\to\infty}} a_n = \lim_{n\to\infty} \sup_{k\geq n} a_k, \quad \underline{\lim_{n\to\infty}} a_n = \lim_{n\to\infty} \inf_{k\geq n} a_k.$$

证明. 仅考虑上极限. 易见 $\lim_{n\to\infty}\sup_{k\geq n}a_k$ 也是极限点. 若它严格小于上极限,根据保序性,当 n 充分大时,有 $\sup_{k\geq n}a_k<\overline{\lim_{j\to\infty}}a_j$. 这意味着上极限的附近只有数列的有限项,矛盾.

与极限不同,有界数列的上下极限必然存在.因此,可以通过比较上下极限的值来判断极限是否存在.下述结果是常用的.

- $\blacktriangleright \overline{\lim}_{n\to\infty}(-a_n) = -\underline{\lim}_{n\to\infty}a_n$
- F 若 $a_n > 0$, 则 $\overline{\lim}_{n \to \infty} (1/a_n) = 1/\underline{\lim}_{n \to \infty} a_n$
- ▶ 若 $a_n \le b_n$, 则 $\overline{\lim_{n \to \infty}} a_n \le \overline{\lim_{n \to \infty}} b_n$, $\underline{\lim_{n \to \infty}} a_n \le \underline{\lim_{n \to \infty}} b_n$
- $\overline{\lim} (a_n + b_n) \le \overline{\lim} a_n + \overline{\lim} b_n$
- $\underline{\lim}_{n \to \infty} (a_n + b_n) \ge \underline{\lim}_{n \to \infty} a_n + \underline{\lim}_{n \to \infty} b_n$
- ▶ 若 $a_n > 0, b_n > 0$, 则 $\overline{\lim}_{n \to \infty} (a_n b_n) \le \overline{\lim}_{n \to \infty} a_n \cdot \overline{\lim}_{n \to \infty} b_n$
- ▶ 若 $a_n > 0, b_n > 0$, 则 $\underline{\lim}_{n \to \infty} (a_n b_n) \ge \underline{\lim}_{n \to \infty} a_n \cdot \underline{\lim}_{n \to \infty} b_n$

例 1.3.10 (故地重游) 设
$$a_0 = 1$$
, $a_{n+1} = \frac{1}{1+a_n}$. 证明: $\{a_n\}$ 收敛.

证明. 易知 $1/2 \le a_n \le 1$,所以存在上下极限,记 A 为上极限、a 为下极限. 对递推式取上下极限,可得

$$\overline{\lim_{n\to\infty}}\,a_{n+1}=\frac{1}{\underline{\lim_{n\to\infty}}\,(1+a_n)},\quad \underline{\lim_{n\to\infty}}\,a_{n+1}=\frac{1}{\overline{\lim_{n\to\infty}}\,(1+a_n)}.$$

因此 A = 1/(1+a) 且 a = 1/(1+A),故 a = A,进而 $\{a_n\}$ 收敛.

例 1.3.11 设
$$a_n \ge 0$$
 且 $a_{m+n} \le a_m + a_n$. 证明: $\{a_n/n\}$ 收敛.

证明. 易知 $0 \le a_n \le na_1$, 即 $0 \le a_n/n \le a_1$. 固定正整数 N, 利用余数定理 $m = q_m N + r_m$, $0 \le r_m \le N - 1$. 于是

$$\frac{a_m}{m} \le \frac{q_m a_N + a_{r_m}}{q_m N + r_m}.$$

注意到 r_m 和 a_{r_m} 有界, 当 $m \to \infty$ 有

$$\varlimsup_{m\to\infty}\frac{a_m}{m}\leq\varlimsup_{m\to\infty}\frac{q_ma_N+a_{r_m}}{q_mN+r_m}=\lim_{m\to\infty}\frac{q_ma_N+a_{r_m}}{q_mN+r_m}=\frac{a_N}{N}.$$

因为上式对于任意 N 均成立, 令 $N \to \infty$ 有

$$\overline{\lim}_{m\to\infty}\frac{a_m}{m}\leq \underline{\lim}_{N\to\infty}\frac{a_N}{N}.$$

从而 $\{a_n/n\}$ 的上下极限相等, $\{a_n/n\}$ 收敛.

1.4 施笃兹定理

施笃兹(Stolz)定理也称为施笃兹-切萨罗定理,它意图解决某些情况下极限的除法法则失效的问题. 我们知道,如果 y_n/x_n 的分子分母同时趋于零或者无穷大,那么不能直接运用四则运算求极限. 考虑一个理想模型, 假设 $\{x_n\}$, $\{y_n\}$ 都单调递增趋于无穷大,不妨将它们写为

$$x_n = a_1 + a_2 + \dots + a_n, \quad y_n = b_1 + b_2 + \dots + b_n$$

其中 $a_j,b_j>0$. 一个直观的想法是, 如果添加的项的比值 b_n/a_n 趋于稳定, 那么两个和式的比值 y_n/x_n 也应当趋于稳定. 换言之, 如果 $b_n/a_n\to L$ 则 应有 $y_n/x_n\to L$. 这便是施笃兹定理.

施笃兹-切萨罗定理(* 型)

设 $\{x_n\}$ 严格递增趋于无穷大. 若 $\lim_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}=L,\ \ y_n\lim_{n\to\infty}\frac{y_n}{x_n}=L.$

证明. 对于任意 $\epsilon > 0$, 存在 N, 当 n > N 时有

$$(L-\epsilon)(x_{n+1}-x_n) < y_{n+1}-y_n < (L+\epsilon)(x_{n+1}-x_n).$$

从n=N累加至n=N+p-1,可得

$$(L-\epsilon)(x_{N+p}-x_N) < y_{N+p}-y_N < (L+\epsilon)(x_{N+p}-x_N)$$

即

$$(L-\epsilon)\left(1-\frac{x_N}{x_{N+p}}\right) < \frac{y_{N+p}}{x_{N+p}} - \frac{y_N}{x_{N+p}} < (L+\epsilon)\left(1-\frac{x_N}{x_{N+p}}\right).$$

所以

$$\left|\frac{y_{N+p}}{x_{N+p}} - L\right| \le \left|\frac{Lx_N}{x_{N+p}}\right| + \epsilon \left|1 - \frac{x_N}{x_{N+p}}\right| + \left|\frac{y_N}{x_{N+p}}\right|.$$

注意 N 是固定的, 所以当 p 足够大时, 必有

$$\left|\frac{y_{N+p}}{x_{N+p}} - L\right| < 3\epsilon.$$

即
$$y_n/x_n \to L$$
.

施笃兹-切萨罗定理(🗓 型)

设 $\{x_n\}$ 和 $\{y_n\}$ 均趋于零,且 x_n 严格单调. 若 $\lim_{n\to\infty} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}=L$,则 $\lim_{n\to\infty} \frac{y_n}{x_n}=L$.

证明概要. 不妨设 $\{x_n\}$ 单调递减. 类似无穷型的证明, 当 n 充分大, 有

$$(L-\epsilon)(x_n-x_{n+p}) < y_n - y_{n+p} < (L+\epsilon)(x_n-x_{n+p}).$$

令 $p \to \infty$ 得

$$(L-\epsilon)x_n \le y_n \le (L+\epsilon)x_n$$

即

$$\left|\frac{y_n}{x_n} - L\right| \le \epsilon.$$

故而 $y_n/x_n \to L$.

几何上,把 (x_n, y_n) 看做坐标平面上的点,则它与原点的连线的斜率为 y_n/x_n ,那么 Stolz 定理也是自然的. 注意,Stolz 定理并非充要条件,也 就是说不能由差商极限不存在推出比值极限不存在. 从几何上容易构造出反例.

例 1.4.1 (Cesàro 定理) . 设
$$a_n \to a$$
, 证明: $\frac{1}{n}(a_1 + \dots + a_n) \to a$.

证明. 满足 * 型 Stolz 定理, 所以

$$\lim_{n\to\infty}\frac{1}{n}(a_1+\cdots+a_n)\xrightarrow{\operatorname{Stolz}}\lim_{n\to\infty}\frac{a_n}{1}=a.$$

需要注意的是,这里的逻辑与四则运算一样:因为后式成立,所以前式成立且等于后式. □

解. 显然 $\{x_n\}$ 严格递减趋于零. 尝试 $\frac{0}{0}$ 型 Stolz 定理,

$$\lim_{n \to \infty} n x_n = \lim_{n \to \infty} \frac{x_n}{1/n} = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{1/(n+1) - 1/n} = \lim_{n \to \infty} n(n+1) x_n^2.$$

并不能得到结果, 所以上述连等式未必成立. 换一个思路,

$$\lim_{n \to \infty} nx_n = \lim_{n \to \infty} \frac{n}{1/x_n} \xrightarrow{\text{Stolz}} \lim_{n \to \infty} \frac{1}{1/x_{n+1} - 1/x_n}$$
$$= \lim_{n \to \infty} \frac{x_n x_{n+1}}{x_n - x_{n+1}} = \lim_{n \to \infty} (1 - x_n) = 1.$$

由于最终可以得到结果, 说明可以用 Stolz 定理, 所以极限为 1. □

例 1.4.3 设
$$y_n = 3x_{n+1} + x_n$$
 且 $\lim_{n \to \infty} y_n = L$, 证明: $\lim_{n \to \infty} x_n = L/4$.

证明. 由于 $y_n - L$ 和 $x_n - L/4$ 满足同样的关系,不妨假设 L = 0. 令 $\bar{y}_n = (-1)^{n+1} y_n, \bar{x}_n = (-1)^n x_n$,则它们满足

$$\bar{y}_n = 3\bar{x}_{n+1} - \bar{x}_n.$$

稍加变形可用 Stolz 定理,

$$\lim_{n\to\infty}\bar{x}_n=\lim_{n\to\infty}\frac{3^n\bar{x}_n}{3^n}\xrightarrow[n\to\infty]{\operatorname{Stolz}}\lim_{n\to\infty}\frac{3^{n+1}\bar{x}_{n+1}-3^n\bar{x}_n}{3^{n+1}-3^n}=\lim_{n\to\infty}\frac{3^n\cdot\bar{y}_n}{3^n\cdot2}=0.$$

所以 $x_n = (-1)^n \bar{x}_n \to 0$.

若对 $y_n - x_n = 3x_{n+1}$ 取上下极限,可直接得到结果. 细节留作练习. \square 3 课时/15 课时