Low-scaling GW in ABINIT (GWR)

M. Giantomassi

Université Catholique de Louvain Louvain-la-Neuve, Belgium

ABIDEV 2024 11th International ABINIT Developer Workshop Saint-Paulin, Québec, Canada, June 30th – July 4th, 2024

The GW implementation of ABINIT

(quartic scaling version)

- Formalism in G- and ω -space (real-axis)
- Norm-conserving pseudos (recommended) and PAW
- Different approximations for the self-energy: HF, COHSEX, GW
- Different integrations techniques for Σ :
 - four different plasmon-pole models: FAST but APPROXIMATE
 - countour-deformation (CD): ACCURATE but SLOW
 - Analytic continuation + Pade'
- Different levels of self-consistency: G^0W^0 , energy-only, qp-GW, full GW
- MPI-algorithm with distributed wavefunctions
- OpenMP threads for low-level loops, BLAS and FFTs
- Steps are connected via files and input variables: getwfk or getwfk_filepath, getscr_filepath ...

Limitations of the standard GW code

- Quartic scaling in natom
- Quadratic in the number of k-points in the BZ
- Memory for $W(\mathbf{g}, \mathbf{g}', \mathbf{q}, \omega)$ does not scale with MPI procs (big limitation when computing Σ)
- Only two MPI levels (*nband* and *nsppol*). Decent scalability but **not exascale-ready**:

- Screening (step 3) of Zr2Y2O7/C1 testcase on MN4 "highmem" compute nodes
- 80% scaling efficiency sustained to 14 nodes (652 MPI processes)
- Fully-loaded nodes (with 48 MPI processes per node) slower than partially-loaded nodes leaving cores unused

GW in imaginary time with supercells ABINIT GWR code (released in v10)

The GW approximation

GW with supercells and imaginary-axis

PHYSICAL REVIEW B 90, 054115 (2014)

In brief:

- Work with the analytic continuation of Hedin's equations on the image. axis: $(t \to i\tau, \omega \to i\omega)$
- Avoid convolutions by working in the most natural space *e.g.*:

$$-\chi(\mathbf{r},\mathbf{R}',i\tau) = G(\mathbf{r},\mathbf{R}',i\tau) G^*(\mathbf{R}',\mathbf{r},-i\tau)$$

Notations: \mathbf{r} spans the unit cell, $\mathbf{R} = \mathbf{r} + \mathbf{L}$ spans the supercell

-
$$W_{\mathbf{k}}(\mathbf{g}, \mathbf{g}', i\omega) = v_{\mathbf{k}}(\mathbf{g}, \mathbf{g}') \epsilon_{\mathbf{k}}^{-1}(\mathbf{g}, \mathbf{g}', i\omega)$$

- Use FFTs to go from the $\mathbf{R} = \mathbf{r} + \mathbf{L}$ supercell to $\mathbf{G} = \mathbf{k} + \mathbf{g}$ and viceversa
- Sample the imaginary axis with minimax meshes $\{\omega_k\}$, $\{\tau_j\}$ that minimize the maximum error in the MP2 energy for given number of points N and $R = \frac{\Delta_{\max}}{\Delta_{\text{gap}}}$
- Use inhomogeneous sine/cosine transforms for $i\omega_k \leftrightarrow i\tau_i$

Precomputed weights
$$\chi_{\mathbf{k}}(\mathbf{g},\mathbf{g}',i\omega_k) = \sum_{j=1}^{N} \gamma_{kj} \cos(\omega_k \tau_j) \chi_{\mathbf{k}}(\mathbf{g},\mathbf{g}',i\tau_j)$$

GWR code in a nutshell

- optdriver 6 to activate the GWR driver
- gwr_task specifies the task to perform:
 - "HDIAGO" for direct diagonalization with scalapack followed by WFK output
 - "G0W0" for one-shot method
 - "EGEW", "EGW0", "G0EW" for eigenvalue-only self-consistency
 - "RPA_ENERGY" for E_c energy with automatic extrapolation for $npweps \rightarrow \infty$
 - "CC4S" to produce matrix elements required by CC4S (Coupled cluster for solids)
- External files required:
 - 1) **DEN** file with GS density (required for all tasks)
 - 2) **WFK** file with empty states (only for *GW/RPA tasks*)
- Scalapack required in all gwr_tasks
- G and W are computed in the same run and stored in memory (no getscr* variables)
- Self-consistent iterations are performed in the same dataset (no *getqps* variable)
- Automatic parallelization:
 - HDIAGO uses MPI pools to distribute k/spins and $H_{gg'}$ matrix with scalapack
 - The other *gwr_tasks* employ a 4D MPI Cartesian grid (**g/r**, **k**-points, minimax mesh, spin)

GWR input variables

New input variables specific to GWR:

- gwr_task instead of gwcalctyp
- gwr_ntau: number of points in the minimax mesh (GreenX library)
- gwr_boxcutmin: defines the FFT mesh for G from ecut (crucial for performance and memory)
- gwr_max_niter, gwr_tolqp_eig: stopping criteria for GW self-consistency
- gwr_np_kgts: to specify the MPI grid (optional)
- gwr_sigma_algo: 1 for supercell version, 2 for convolutions in BZ with symmetries
- gwr_max_hwtene: Max. transition energy included in the computation of the head/wings of $\chi_{gg'}(q \to 0)$

•

Variables in common with the legacy GW code:

- ecuteps: cutoff energy for χ , W
- *ecutsigx*: cutoff energy for Σ_x
- $gw_qprange$ or (nkptgw, kptgw bdgw) to define states in Σ_{nk}
- *inclvkb*: for the treatment of the $q \rightarrow 0$ limit in χ
- $gw_icutcoul$, vcutgeo: treatment of $q \to 0$ divergence and Coulomb cutoff for isolated systems

Input file for G_0W_0 with the GWR code

```
optdriver 6
                                   # Activate GWR code
gwr_task "G0W0"
                                   # One-shot calculation
getden_filepath "GS_DEN"
                                   # Read GS density
                                   # Read WFK file with empty states
getwfk_filepath "GREEN_WFK"
                                   # Bands in Green's function
          1000
nband
                                  # Number of minimax points
gwr_ntau 8
                                  # Ratio between FFT box and G-sphere. Default: 1.1
gwr_boxcutmin 1.1
                                  # Cut-off energy for dielectric matrix.
ecuteps
          8.0
                                  # Dimension of the G sum in Sigma_x.
          12.0
ecutsigx
nkptgw
                                 # number of k-point where GW corrections are computed
                                 # set it to 0 to automatically select the fundamental and the direct gap
                                 # k-points in reduced coordinates
kptgw
      0.0
            0.0
 0.5
      0.0
           0.0
bdgw
                                 # calculate GW corrections for bands from 4 to 5
```

GWR algorithm

P. Liu et al. PhysRevB. **94** 165109 (2016)

WFK generation with direct diagonalization

```
optdriver 6 # enter GWR code
gwr_task "HDIAGO" # direct diago.
getden_filepath "GS_DEN" # read GS density to build H
nband 1200 # occ + empty states
```

```
G(\mathbf{r}, \mathbf{r}', i\tau) = \Theta(\tau)\overline{G}(\mathbf{r}, \mathbf{r}', i\tau) + \Theta(-\tau)\underline{G}(\mathbf{r}, \mathbf{r}', i\tau)
```

$$\overline{G}(\mathbf{r}, \mathbf{r}', i\tau) = -\sum_{n}^{\infty} \psi_{n}(\mathbf{r})\psi_{n}^{*}(\mathbf{r}')e^{-\varepsilon_{n}\tau} \qquad (\tau > 0)$$

$$\underline{G}(\mathbf{r}, \mathbf{r}', i\tau) = \sum_{n}^{\infty} \psi_{n}(\mathbf{r})\psi_{n}^{*}(\mathbf{r}')e^{-\varepsilon_{n}\tau} \qquad (\tau < 0)$$

Scalapack diago vs iterative eigensolvers:

- Iterative solvers are efficient provided *nband* << *npw*
- High-energy states are difficult to converge with iterative methods
- Direct diago. easily outperforms iterative solvers (e.g. lobpcg) if many bands are needed
- In ZnO, for instance, ~3000 bands are needed to converge...

ecut 40.0 mpw 3909 ngkpt 8 8 5 nbdbuf 10% nband tolwfr 1.0d-18

wall-time (s)

nband	slk_diago	lobpcg	
1000	11	105	
2000	21	306	
3000	35	FAIL	

(512 cores, 2 Gb per core)

MPI distribution of G, χ , W in GWR

- 4D MPI grid to distribute memory and operations over:
 - collinear spins inside *spin_comm* (trivial algo.)
 - IBZ k-points inside *kpt_comm*
 - g' components inside g_comm
 - $-i\tau/i\omega$ points inside tau_comm (almost trivial algo.)

- *spin_comm* and tau_*comm* levels are very efficient (few MPI communications)
- kpt_comm and g_comm are network intensive but crucial to keep memory at bay
- To go to the supercell, indeed, we need to pre-compute and store in memory:

$$G_{\mathbf{k}}(\mathbf{r}, \mathbf{g}') = \sum_{\mathbf{g}} e^{i(\mathbf{k} + \mathbf{g})\mathbf{r}} G_{\mathbf{k}}(\mathbf{g}, \mathbf{g}')$$
 for each $\mathbf{k} \in \mathrm{BZ}$ memory $\propto \frac{N_{\mathrm{BZ}}}{\mathrm{np}_{k}} \times \frac{\mathrm{nfft}}{\mathrm{np}_{g}} \times \mathrm{npw}$

- For optimal performance, MPI procs should be a multiple of gwr_ntau x nsppol but mind the memory for G!
- Matrices are stored in single precision by default (—enable-gw-dpc="yes" to use double precision)

GWR algorithm

P. Liu et al. PhysRevB. **94** 165109 (2016)

$$G_{\mathbf{k}}(\mathbf{g}, \mathbf{G}', i\tau)$$

$$(1) \text{ FFT}$$

$$G(\mathbf{r}, \mathbf{R}', i\tau) \xrightarrow{GG} \chi(\mathbf{r}, \mathbf{R}', i\tau) \xrightarrow{FFT} \chi_{\mathbf{k}}(\mathbf{g}, \mathbf{g}', i\tau) \xrightarrow{CT} \chi_{\mathbf{k}}(\mathbf{g}, \mathbf{g}', i\omega)$$

$$(5) \text{ RPA}$$

$$\Sigma(\mathbf{r}, \mathbf{R}', i\tau)$$

$$(9) \text{ }$$

$$\Sigma_{\mathbf{nn}}^{(\mathbf{k})}(i\tau) \xrightarrow{CT+ST} \Sigma_{\mathbf{nn}}^{(\mathbf{k})}(i\omega) \xrightarrow{AC} \Sigma_{\mathbf{nn}}^{(\mathbf{k})}(\omega) \xrightarrow{\text{Linearization}} E_{\mathbf{nk}}^{\mathbf{QP}}$$

From G to χ in $i\tau$ space (step 1)

For each k in the BZ, do:

NB: the loop over τ -points is external. At each iteration, we have to consider $\pm \tau_i$ (not always shown in the equations)

- ightharpoonup Use symmetries to build $G_{\mathbf{k}}$ in the BZ
- FFT along **g** index

→ MPI-transpose to have **g**′ local on each proc

Cons:

- ► Workspace memory $\propto \frac{N_{\text{BZ}}}{\text{np}_k} \times \frac{\text{nfft}}{\text{np}_g} \times \text{npw}$
- Lots of calls to PTRANS: $\left(\frac{2N_{\text{BZ}}}{\text{np}_k}\right)$
- Memory increases with $N_{\mathbf{r}}$ (ecut and gwr_boxcutratio)

Pros:

- ► Linear scaling in *N*_{BZ}
- Scales well with np_k (less PTRANS calls)

From G to χ in $i\tau$ space (step 2)

Step 1. For each ${\bf r}$ in unit cell, use \tilde{G} to compute:

$$G(\mathbf{r}, \mathbf{R}') = \sum_{\mathbf{k}\mathbf{g}'} G(\mathbf{r}, \mathbf{k} + \mathbf{g}') e^{-i(\mathbf{k} + \mathbf{g}')\mathbf{R}'} \qquad \qquad \text{Need all } \mathbf{k} \text{ in the BZ for the FFT!} \\ \mathbf{k}\text{-parallelism is really low-level!}$$

$$\chi(\mathbf{r}, \mathbf{R}', i\tau) = G(\mathbf{r}, \mathbf{R}', i\tau) G^*(\mathbf{R}', \mathbf{r}, -i\tau) \qquad \qquad \text{Only } \chi_{\mathbf{r}}(\mathbf{R}') \text{ is stored at fixed } \mathbf{r}$$

$$\chi(\mathbf{r}, \mathbf{G}') = \sum_{\mathbf{R}' \in S} \chi(\mathbf{r}, \mathbf{R}') e^{i\mathbf{G}'\mathbf{R}'} \qquad \qquad \text{Transform } immediately \text{ to } \mathbf{G}'\text{-space } (\mathbf{k} + \mathbf{g}') \text{ and store results in temp. PBLAS matrix } \tilde{\chi}$$

Step 2. Once all $\bf r$ have been computed, MPI-transpose χ and perform FFT along the $\bf r$ -axis

$$\chi_{\mathbf{k}}(\mathbf{g},\mathbf{g}') = \sum_{\mathbf{r} \in C} e^{-i(\mathbf{k}+\mathbf{g})\mathbf{r}} \chi(\mathbf{r},\mathbf{k}+\mathbf{g}') \qquad \qquad \text{Only k-points in the IBZ are stored }$$
 Matrices are PBLAS-distributed

Cons:

- k-parallelism requires *nfft* communications
- We loose part of the speedup gained in step 1

Pros:

- ► Tons of FFTs in batch mode (blocking over r)
- Ideal scenario for OpenMP/GPUs

GWR algorithm

P. Liu et al. PhysRevB. **94** 165109 (2016)

Computing W from χ

Step 1. Cosine transform $(i\omega \rightarrow i\tau)$:

Requires communication inside tau_comm

$$\chi_{\mathbf{k}}(\mathbf{g}, \mathbf{g}', i\omega_k) = \sum_{j=1}^{N} \gamma_{kj} \cos(\omega_k \tau_j) \chi_{\mathbf{k}}(\mathbf{g}, \mathbf{g}', i\tau_j)$$

Step 2. Compute symmetrized dielectric matrix:

$$\varepsilon_{\mathbf{k}}(\mathbf{g}, \mathbf{g}', i\omega) = \delta_{\mathbf{g}\mathbf{g}'} - v_{\mathbf{k}}(\mathbf{g}, \mathbf{g}') \chi_{\mathbf{k}}(\mathbf{g}, \mathbf{g}', i\omega) \qquad v_{\mathbf{k}}(\mathbf{g}, \mathbf{g}') = \frac{4\pi}{|\mathbf{k} + \mathbf{g}| |\mathbf{k}' + \mathbf{g}'|}$$

Step 3. Compute *correlated screened Coulomb* interaction \tilde{W} :

vcutgeo selects the expression for v

$$W_{\mathbf{k}}(\mathbf{g},\mathbf{g}',i\omega) = v_{\mathbf{k}}(\mathbf{g},\mathbf{g}')\epsilon_{\mathbf{k}}^{-1}(\mathbf{g},\mathbf{g}',i\omega) \qquad \tilde{W}_{\mathbf{k}}(\mathbf{g},\mathbf{g}',i\omega) = W_{\mathbf{k}}(\mathbf{g},\mathbf{g}',i\omega) - v_{\mathbf{k}}(\mathbf{g},\mathbf{g}')$$
Matrix inversion with Scalapack/ELPA.

Step 4. Inverse Cosine Transform $(i\tau \rightarrow i\omega)$:

$$\tilde{W}_{\mathbf{k}}(\mathbf{g}, \mathbf{g}', i\tau_k) = \sum_{j=1}^{N} \xi_{kj} \cos(\omega_k \tau_j) \tilde{W}_{\mathbf{k}}(\mathbf{g}, \mathbf{g}', i\omega_j)$$

Requires communication inside tau_comm

GWR algorithm

Computing $\Sigma_{nq}(\omega)$

Step 1. FFTs in the unit cell:

$$G_{\mathbf{k}}(\mathbf{g},\mathbf{g}',i\tau) \stackrel{FFT}{\Longrightarrow} G_{\mathbf{k}}(\mathbf{r},\mathbf{g}',i\tau) \qquad \tilde{W}_{\mathbf{k}}(\mathbf{g},\mathbf{g}',i\tau) \stackrel{FFT}{\Longrightarrow} \tilde{W}_{\mathbf{k}}(\mathbf{r},\mathbf{g}',i\tau)$$

Step 2. For each \mathbf{r} in C do:

$$G(\mathbf{r}, \mathbf{R}', i\tau) = \sum_{\mathbf{k}\mathbf{g}'} G(\mathbf{r}, \mathbf{k} + \mathbf{g}', i\tau) e^{-i(\mathbf{k} + \mathbf{g}')\mathbf{R}'}$$

$$W(\mathbf{r}, \mathbf{R}', i\tau) = \sum_{\mathbf{k}\mathbf{g}'} W(\mathbf{r}, \mathbf{k} + \mathbf{g}', i\tau) e^{-i(\mathbf{k} + \mathbf{g}')\mathbf{R}'}$$

$$\Sigma(\mathbf{r}, \mathbf{R}', i\tau) = -G(\mathbf{r}, \mathbf{R}', i\tau) W(\mathbf{r}, \mathbf{R}', i\tau)$$

$$\Sigma_{n\mathbf{q}}(i\tau) = \Sigma_{n\mathbf{q}}(i\tau) + \sum_{\mathbf{R}' \in S} \psi_{n\mathbf{q}}^*(\mathbf{r}) \Sigma(\mathbf{r}, \mathbf{R}', i\tau) \psi_{n\mathbf{q}}(\mathbf{R}')$$

$$Compute partial contribution to \Sigma_{n\mathbf{q}} and accumulate$$

Step 3. sine/cosine transforms to go to $i\omega$ space, followed by analytic continuation to the real- ω :

$$\Sigma_{n\mathbf{q}}(i\tau) = \Sigma_{n\mathbf{q}}^{C}(i\tau) + \Sigma_{n\mathbf{q}}^{S}(i\tau) \xrightarrow{CT+ST} \Sigma_{n\mathbf{q}}(i\omega) \xrightarrow{AC} \Sigma_{n\mathbf{q}}(\omega)$$

Step 4. Add exchange part (sum over occ states directly). Finally, solve the linearized QP equation

Is GWR faster than the legacy code?

Well, it depends:

• In small symmetric systems, the quartic code is still competitive but W is not MPI-distributed!

3000

- GWR is superior if:
 - low-symmetry systems with dense **k**-meshes
 - large ecuteps or nband
 - G_0W_0 without PPM
 - off-diagonal matrix elements of Σ are needed for self-consistency

wall-time spent in the GWR routines for nband 1000

Benchmark results for ZnO:

- ► 8 nodes on Lumi, 2 Gb per core
- *ecut* 40.0
- ecuteps 12
- ngkpt 8 8 5
- *▶ nomega/gwr_ntau* = 12
- $np_{\tau} = 2 \text{ in GWR}$

nband	Quartic GW	GWR
1000	3023	1947
2000	MEM_FAIL	2145

wall-time (s)

MEM FAIL

```
read_ugb_from_wfk: 16.04 [s]
build_chi0_head_and_wings: 54.36 [s]
build_sigxme: 0.64 [s]
build_green: 4:48 [minutes]
cos_transform: 4.23 [s]
build_chi: 13:11 [minutes]
cos_transform: 0.72 [s]
build_wc: 3.02 [s]
build_sigmac: 13:09 [minutes]
```

• Most of the wall-time spent to build χ and Σ in the supercell (build_chi and build_sigmac)

2432

• Unlike the quartic-code, Σ is as expensive as χ (but we have symmetry tricks to accelerate this part, $gwr_sigma_algo = 2$)

Strong scaling of GWR code Benchmarks performed by L. Baquet

Test C1: Speed up with respect to 3072 cores

Discrepancy between low-scaling G_0W_0 implementation and quadratic one, for 7 different solids.

Using 20 time-frequency points or more allows one to obtain a numerical error on the order of 0.02eV or below.

Pros and cons of GWR code

Pros:

- Cubic scaling in natom
- Linear scaling with N_k in the full BZ
- Fast convergence with minimax mesh (~20 points)
- GW beyond PPA: $\Sigma(\omega)$ and $A(\omega)$ at reasonable cost
- Computing off-diagonal $\Sigma_{mn}^{\mathbf{k}}$ for all **k**-points in the IBZ is not as expensive as in legacy code

Cons:

- Symmetries are more difficult to exploit, especially in the supercell
- Requires Pade' to go back to the real axis: $\Sigma(i\omega) \to \Sigma(\omega)$
- Much more memory-demanding than conventional *GW* algorithm
- Requires different MPI levels and PBLAS distribution of G, χ, W to make memory scale

Future directions:

- OpenMP threads to reduce the MPI_ALLTOALL bottleneck
- Porting FFTs to GPUs

Thank you for your attention!

Supplemental material

Green's function: real ω vs $i\tau$ space

G in ω -space (real axis)

$$G(\mathbf{r}, \mathbf{r}', \omega) = \sum_{n} \frac{\psi_{n}(\mathbf{r})\psi_{n}^{*}(\mathbf{r}')}{\omega - \varepsilon_{n} + i\delta^{+} \operatorname{sign}(\varepsilon_{n})}$$

- Branch cuts and poles $\rightarrow \omega$ -integration is tricky
- Analytic expression for RPA $\tilde{\chi}(\omega)$
- Direct connection with QP energies and spectral function $A(\omega)$

|G| in imaginary time i au|

$$G(\mathbf{r}, \mathbf{r}', i\tau) = \Theta(\tau)\overline{G}(\mathbf{r}, \mathbf{r}', i\tau) + \Theta(-\tau)\underline{G}(\mathbf{r}, \mathbf{r}', i\tau)$$

$$\overline{G}(\mathbf{r}, \mathbf{r}', i\tau) = -\sum_{n}^{\infty} \psi_{n}(\mathbf{r})\psi_{n}^{*}(\mathbf{r}')e^{-\varepsilon_{n}\tau} \qquad (\tau > 0)$$

$$\underline{G}(\mathbf{r}, \mathbf{r}', i\tau) = \sum_{n}^{\infty} \psi_{n}(\mathbf{r})\psi_{n}^{*}(\mathbf{r}')e^{-\varepsilon_{n}\tau} \qquad (\tau < 0)$$

- Smooth behaviour in $i\tau/i\omega \rightarrow$ integration is "easier"
- Requires $i\tau \Rightarrow i\omega$ transforms
- Requires analytic continuation to go back to the real- ω axis before computing QP energies and $A(\omega)$

Plane-wave expansion of two-point functions

- Infinite system simulated with Born-von-Karman (BvK) periodic boundary conditions *i.e.* (N_1, N_2, N_3) supercell of volume $V = N\Omega$ with $N = N_1 N_2 N_3$ and Ω the unit cell volume
- $G, \tilde{\chi}, W$ are defined in the BvK supercell
- $G, \tilde{\chi}, W$ are invariant if we translate both $\mathbf{r_1}$ and $\mathbf{r_2}$ by \mathbf{R} *i.e.*:

$$G(\mathbf{r}_1, \mathbf{r}_2) = G(\mathbf{r}_1 + \mathbf{R}, \mathbf{r}_2 + \mathbf{R})$$

• This implies the Fourier expansion:

$$f(\mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{1}{V} \sum_{\mathbf{q}} e^{i(\mathbf{q} + \mathbf{G}_{1}) \cdot \mathbf{r}_{1}} f_{\mathbf{G}_{1} \mathbf{G}_{2}}(\mathbf{q}) e^{-i(\mathbf{q} + \mathbf{G}_{2}) \cdot \mathbf{r}_{2}}$$

$$f_{\mathbf{G}_{1} \mathbf{G}_{2}}(\mathbf{q}) = \frac{1}{V} \iint_{V} e^{-i(\mathbf{q} + \mathbf{G}_{1}) \cdot \mathbf{r}_{1}} f(\mathbf{r}_{1}, \mathbf{r}_{2}) e^{i(\mathbf{q} + \mathbf{G}_{2}) \cdot \mathbf{r}_{2}} d\mathbf{r}_{1} d\mathbf{r}_{2}$$

where the **q**-points belong to the BZ mesh dual to the BvK supercell: $(\frac{1}{N_1}, \frac{1}{N_2}, \frac{1}{N_3})$

Spatial symmetries in GW

• KS wavefunctions in the BZ can be reconstructed from the IBZ:

$$[H, \{\mathcal{R}, \mathbf{t}\}] = 0$$

$$\{u_{\mathcal{R}\mathbf{k}}(\mathbf{r}) = e^{-i\mathcal{R}\mathbf{k}\cdot\mathbf{t}}u_{\mathbf{k}}(\mathcal{R}^{-1}(\mathbf{r} - \mathbf{t}))$$

$$u_{\mathcal{R}\mathbf{k}}(\mathbf{G}) = e^{-i(\mathcal{R}\mathbf{k} + \mathbf{G})\cdot\mathbf{t}}u_{\mathbf{k}}(\mathcal{R}^{-1}\mathbf{G}).$$
Rotation matrix
Fractional translation

• Spatial symmetry for the polarizability:

$$\chi^{0}(\mathbf{r}_{1},\mathbf{r}_{2}) = \chi^{0}(\mathcal{R}^{-1}(\mathbf{r}_{1}-\mathbf{t}),\mathcal{R}^{-1}(\mathbf{r}_{2}-\mathbf{t}))$$

$$\chi^{0}_{\mathbf{G}_{1}\mathbf{G}_{2}}(\mathcal{R}\mathbf{q}) = e^{i\mathbf{t}\cdot(\mathbf{G}_{2}-\mathbf{G}_{1})}\chi^{0}_{\mathcal{R}^{-1}\mathbf{G}_{1}}\mathcal{R}^{-1}\mathbf{G}_{2}}(\mathbf{q})$$

Take-home message:

- Bloch states are computed in the IBZ and then reconstructed in the BZ at *runtime*
- $G(\mathbf{k})$ and $\chi^0(\mathbf{q})$ are computed and stored only for \mathbf{k}/\mathbf{q} in the IBZ
- ightharpoonup BZ integrals depending on an external \mathbf{q} , can be restricted to the IBZ $_{\mathbf{q}}$ defined by the *little-group* of \mathbf{q}
- Significant speedup and memory saving in *high-symmetry* systems. Time-reversal can be easily included

Validation: $\chi(\omega)$ with GWR and Adler-Wiser

- Silicon with $4x4x4\Gamma$ -centered k-mesh
- *gwr_ntau* = 12
- *nband* = 100 and *inclvkb* 2 to compute head and wings

Scaling of GWR algo. with the k-mesh size

- Linear scaling with the BZ size but computing Σ in the SC is more expensive than χ (cpu and memory)
- If one-shot QPs are needed only at the CBM/VBM, convolution + symmetries for $\Sigma_{n\mathbf{k}}$ is faster:

- Computing Σ in the supercell is the recommended approach if one needs $\Sigma_{n\mathbf{k}}$ for all \mathbf{k} in the IBZ, e.g.:
 - band structure interpolation of G_0W_0 results
 - self-consistency (requires off-diagonal matrix elements for which symmetries are not easy to exploit)

QP direct gaps with GWR and quartic GW

- 4x4x4 Γ-centered **k**-mesh
- $nband = 100 \times n_{OCC}$, ecuteps = 14 Ha
- gwr_ntau = 20 in GWR, nfreqre = 50, freqremax=1.5 Ha, nfreqim 10 for CD

- Overall, good agreement. CD is our reference
- Largest difference between GWR and quartic code for LiF at Γ (~0.2 eV)
- In GaAs, GWR and CD agree with each other, PPM overestimates CD/GWR by ~0.2 eV