

Event Sourcing

Registra todos los cambios al estado de una aplicación como una secuencia de eventos.

Índice

¿De qué vamos a hablar?

- 1. Definiciones. (¿qué es y cómo funciona?)
- 2. Posibles aplicaciones.
- 3. Ventajas. (¿qué ganamos?)
- 4. Casos de éxito. (¿quién lo está usando?)
- 5. Inconvenientes. (¿de verdad merece la pena?)
- Futuro.

¿Qué? ¿Cómo?

software en la actualidad sin sistemas de control de versiones?

¿Sería posible el desarrollo del

Estaríamos obligados a mantener un *registro manual* de cambios en los propios ficheros.

```
# Change: 14532
# Update At: 2018-04-23
# Update By: Philippe Creux
# Reason: Fix a bug that was introduced sometimes between
  change #12320 that's in users.rb.backup-2018-02-11
           and change #14211 above (around line 2400)
# def destroy
# self.destroy at = Time.now
# end
def destroy
 self.deleted at = Time.now
end
```

Problema

Alguien introduce un <u>fallo de seguridad en un</u> <u>componente poco utilizado</u>.

Al cabo de un tiempo, la funcionalidad que emplea el componente cobra relevancia.

Se detecta el problema de seguridad pero <u>el</u> <u>origen del problema es desconocido</u>.

¿Solución?

Analizar los registros de cambios en miles de ficheros para buscar el que ha producido el fallo.

Solución

Emplear un sistema de control de versiones que registre todos los <u>cambios en el estado</u> del código y nos permita devolverlo a cualquiera de ellos.

Ya tenemos el código bajo control, pero...

¿Qué pasa con los datos de la aplicación?

Event Sourcing

Registra de manera centralizada todos los cambios en el estado de una aplicación junto con el origen y el momento en el que ocurrieron.

GIT, para datos

Event Sourcing

Registra de manera centralizada todos los cambios en el estado de una aplicación junto con el origen y el momento en el que ocurrieron.

Una tienda de ropa

Algunas definiciones (I)

Las acciones del usuario, llamadas a APIs o métodos, trabajos cron... generan **EVENTOS**.

Nos interesa conocer:

- Cuando han ocurrido.
- Quien los ha generado.
- Cuál era su estado anterior.

Algunas definiciones (II)

Los eventos se registran de forma centralizada en un **REGISTRO.**

Esto nos permite:

- Reconstruir el estado de la aplicación repitiendo los eventos del registro.
- Repetir secuencias concretas de eventos.
- Consultar cual era su estado anterior.

50 tiendas de ropa

3 elementos básicos

- 1.
- 2. **Agregadores** representan de manera resumida (agregada) el estado actual de la aplicación.
- 3. **Calculadores** leen una secuencia de eventos y los modifican como sea necesario..
- 4. **Reactores** *reaccionan* a los eventos a medida que ocurren.

Aplicaciones

Cuando una **tarea implica varios pasos** y en caso de error, para revertir los cambios sería necesario reproducirlos de nuevo en orden para devolver los datos a un estado coherente

Cuando es necesario **capturar la intención, el propósito o el motivo** en los datos. Por ejemplo, los cambios en una entidad de cliente se pueden capturar como una serie de tipos de evento específicos como Cambio de domicilio, Cierre de cuenta o Fallecimiento.

Cuando el **uso de eventos** es una **característica natural** de la operación de la aplicación y requiere poco esfuerzo de implementación o desarrollo adicional

3 ¿Qué ganamos?

Gracias al registro de eventos:

Reconstrucción completa

Consulta temporal

Reproducción de eventos

Ventajas:

Desacoplamiento (productor - consumidor)

Trazabilidad

Escalabilidad

Tolerancia a fallos / Reconstrucción

- A partir registros -> bases de datos.
- Instantáneas en cualquier momento.
- Agregar fácilmente funciones al sistema.
- Reacción rápida.
- Eventos independientes de los detalles técnicos del sistema.
- Auditar o reproducir el historial.

¿Quién lo está usando?

Sistemas de control de versiones:

Sistemas de bases de datos:

Sistemas contables:

	Α	В	С	D	E
1				Saldo:	1.304,45 €
2					
3	Fecha	Concepto	Entrada	Salida	Saldo
4	7/9/18	Movimiento inicial	100,00€		100,00€
5	7/9/18	Ingreso general	1.000,00€		1.100,00 €
6	8/9/18	Comida		56,00 €	1.044,00 €
7	8/9/18	Gasolina		40,00 €	1.004,00 €
8	9/9/18	Intereses	0,45 €		1.004,45 €
9	9/9/18	Traspaso de otras cuentas	300,00 €		1.304,45 €

¿Es una buena idea?

Mucho más código

- Generar eventos
- Guardar eventos
- Transiciones / Procesamiento de eventos

Acoplamiento a los eventos

Interacción exterior

Interacción exterior

¿Se quedará obsoleto?

Bibliografía

https://docs.microsoft.com/es-es/azure/architecture/patterns/event-sourcing

https://kickstarter.engineering/event-sourcing-made-simple-4a2625113224

https://martinfowler.com/eaaDev/EventSourcing.html

https://microservices.io/patterns/data/event-sourcing.html