Reviews:

Heathcock, C. H. In *Comprehensive Organic Synthesis*, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, **1991**, *Vol. 2*, pp. 133-238.

Kim, B. M.; Williams, S. F.; Masamune, S. In *Comprehensive Organic Synthesis*, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, **1991**, *Vol. 2*, pp. 239-275.

Paterson, I. In *Comprehensive Organic Synthesis*, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, **1991**, *Vol. 2*, pp. 301-319.

The aldol reaction was discovered by Aleksandr Porfir'evich Borodin in 1872 where he first
observed the formation of "aldol", 3-hydroxybutanal, from acetaldehyde under the influence of
catalysts such as hydrochloric acid or zinc chloride.

Diastereofacial Selectivity in the Aldol Addition Reaction-Zimmerman-Traxler Chair-Like Transition States

Note: the enantiomeric transition states (not shown) are, by definition, of equal energies. The
pericyclic transition state determines syn/anti selectivity. To differentiate two syn or two anti
transition states, a chiral element must be introduced (e.g., R₁, R₂, or L), thereby creating
diastereomeric transition states which, by definition, are of different energies.

- Zimmerman and Traxler proposed that the aldol reaction with metal enolates proceeds via a chair-like, pericyclic process. In practice, the stereochemistry can be highly metal dependent.
 Only a few metals, such as boron, reliably follow the indicated pathways.
- (*Z*)- and (*E*)-enolates afford *syn* and *anti*-aldol adducts, respectively, by minimizing 1,3-diaxial interactions between R₁ and R₂ in each chair-like TS[‡].

Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920-1923.

Dubois, J. E.; Fellman, P. Tetrahedron Lett. 1975, 1225-1228.

Heathcock, C. H.; Buse, C. T.; Kleschnick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. *J. Org. Chem.* **1980**, *45*, 1066-1081.

Preparation of (Z)- and (E)-Boron Enolates

- Dialkylboron triflates typically afford (*Z*)-boron enolates, with little sensitivity toward the amine used or the steric requirements of the alkyl groups on the boron reagent.
- In the case of dialkylboron chlorides the geometry of the product enolates is much more sensitive to variations in the amine and the alkyl groups on boron.
- The combination of (c-Hex)₂BCl and Et₃N provides the (E)-boron enolate preferentially.

Evans, D. A.; Vogel, E.; Nelson, J. V. J. Am. Chem. Soc. 1979, 101, 6120-6123.

Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. *Pure & Appl. Chem.* **1981**, *53*, 1109-1127.

Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. *J. Am. Chem. Soc.* **1989**, *111*, 3441-3442.

(Z)-Selective Preparation of Boron Enolates from Evans' Acyl Oxazolidinones (Imides)

Observed selectivity > 100:1 Z: E.

Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. *Pure Appl. Chem.* **1981**. *53*. 1109-1127.

Syn-Selective Aldol Reactions of Imide-Derived Boron (Z)-Enolates

Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J. Bartroli, J. *Pure & Appl. Chem.* **1981**, *53*, 1109-1127.

- Chiral controller group biases enolate π-faces such that one of the two diastereomeric (syn) transition states is greatly favored.
- Dipole-dipole interactions within the imide are minimized in the reactive conformation (see: Noe, E. A.; Raban, M J. Am. Chem. Soc. 1975, 97, 5811-5820).

$$\begin{array}{c} \text{H}_{3}\text{C} & \text{CH}_{3} \\ \text{O} & \text{O} \\ \text{O} & \text{A} \end{array} \qquad \begin{array}{c} \text{1.} \quad \textit{n-Bu}_{2}\text{BOTf, } \textit{i-Pr}_{2}\text{NEt} \\ \text{CH}_{2}\text{Cl}_{2}, \text{ 0 °C} \\ \text{2.} \quad \text{RCHO} \\ -78 \rightarrow 23 \text{ °C} \end{array} \qquad \begin{array}{c} \text{H}_{3}\text{C} & \text{CH}_{3} \\ \text{O} & \text{O} \\ \text{E} \\ \text{O} & \text{O} \\ \text{E} \\ \text{O} & \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{O} & \text{OH} \\ \text{E} \\ \text{O} & \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{O} & \text{OH} \\ \text{CH}_{3} \\ \text{O} & \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2}\text{Cl}_{2}, \text{ 0 °C} \\ \text{CH}_{2}\text{Cl}_{2}, \text{ 0 °C} \end{array} \qquad \begin{array}{c} \text{CH}_{3} \\ \text{O} & \text{OH} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{O} & \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{4} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ \text{CH}_{5} \\ \text{CH}_{5} \\ \text{CH}_$$

		diastereomeric ^a	
imide	aldehyde	ratio	yield (%)
Α	(CH ₃) ₂ CHCHO	497:1	78
В	$(CH_3)_2CHCHO$	<1:500	91
Α	n-C₄H ₉ CHO	141:1	75
В	n-C₄H ₉ CHO	<1:500	95
Α	C ₆ H ₅ CHO	>500:1	88
В	C ₆ H ₅ CHO	<1:500	89

^aRatio of major syn product to minor syn product.

- · A variety of chiral imides can be used for highly selective aldol reactions.
- · Anti products are typically formed in less than 1% yield.
- · Often, a single crystallization affords diastereomerically pure product.

Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129.

Evans, D. A.; Gage, J. R. Org. Syn. 1990, 68, 83.

Carboximide Hydrolysis with Lithium Hydroperoxide

substrate	reagent	yield of A (%) ^a	yield of B (%) ^a
Bn O H CH ₃	LiOOH	1 76	16
	LiOH	0	100
Ph OH Ph	LiOOH	1 98	<1
	LiOH	43	30

^aYield of diastereomerically pure (>99:1) product.

- LiOOH displays the greatest regioselectivity for attack of the exocyclic carbonyl group.
- · This selectivity is most pronounced with sterically congested acyl imides.
- This is a general solution for the hydrolysis of all classes of oxazolidinone-derived carboximides and allows for efficient recovery of the chiral auxiliary.

 The selective hydrolysis of carboximides can be achieved in the presence of unactivated esters using LiOOH.

Evans, D. A.; Britton, T. C.; Ellman, J. A. *Tetrahedron Lett.* **1987**, *28*, 6141-6144. Gage, J. R.; Evans, D. A. *Org. Syn.* **1990**, *68*, 83-91.

Other Methods for Removal of the Chiral Auxiliary

· Reductive cleavage:

Bri
$$CH_3$$
 CH_2 HO CH_3 CH_2 HO CH_3 CH_2 HO CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3 CH_2 CH_3 CH_3 CH_3 CH_4 CH_5 CH

· Esterification:

· Transamination:

- A free β -hydroxyl group is required.
- Weinreb amides can be readily converted into ketones or aldehydes (see: Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818).

Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988, 110, 2506-2526.

Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001-7031. M. Movassaghi

Diastereoselective Syn-Aldol Reaction of β -Ketoimides

$$\begin{array}{c} Sn(OTf)_2 \\ Et_3N, CH_2Cl_2 \\ RCHO, -20 °C \\ \hline \\ RCH_3 \\ \hline \\ CH_3 \\ \hline \\ RCH_3 \\ \hline \\$$

enolization conditions	RCHO ^a	yield %b	ratio anti-syn : syn-syn
Α	H₃C CHO	83	95:5
В	CH₃	86	<1:99
Α	H₃C T CHO	77°	95:5
В	II CH ₂	64 ^c	2:98
Α	H₃C CHO	71	79:21
В	3000	86	<1:99
Α	CHO	85	89:11
В		81	4:96

A: Sn(OTf)₂, Et₃N; B: TiCl₄, *i*-Pr₂NEt. ^a1.0-1.1 equiv ^bIsolated yield of major diastereomer (>99% purity). ^c3-5 equiv of RCHO was used.

- Both enolization methods provide (*Z*)-enolates and (diastereomeric) *syn* aldol products.
- The stereochemical outcome of both reactions is dominated by the C₂ methyl-bearing stereocenter, as shown in the proposed transition states above.
- The chirality of the oxazolidinone has little influence on the diastereoselectivity of these reactions

Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. *J. Am. Chem. Soc.* **1990**, *112*, 866-868.

Diastereoselective Anti-Aldol Reaction of β-Ketoimides

aldehyde	yield % ^a	ratio anti-anti : syn-anti
(CH ₃) ₂ CHCHO	78	84:16
CH ₂ =C(CH ₃)CHO	72	92:8
CH₃CH₂CHO	70 ^b	80:20
PhCH ₂ CH ₂ CHO	84 ^b	88:12
Ph CHO	84	97:3

^aIsolated yield of major diastereomer. ^bYield of purified mixture of diastereomers.

- Enolization of the less hindered side of the ketone under Brown's conditions affords the (E)-boron enolate.
- The C2 stereocenter is the dominant control element in these aldol reactions; "matched" vs. "mismatched" effects of the remote auxiliary are negligible.

Si face

RCHO

RL

CH₃ CH₃

RCHO

RCH₃ CH₃

Syn-anti, predicted

$$R_L$$

RCHO

RCH₃ CH₃
 R_L

RCHO

RCH₃ CH₃
 R_L

RCHO

RCH₃ CH₃
 R_L

RCHO

RCH₃ CH₃
 R_L

Anti-anti, observed

 The sense of asymmetric induction observed in these reactions was unexpected and opposite to a prediction based on a reactant-like transition state model minimizing A_(1,3) strain.

Evans, D. A.; Ng, H. P.; Clark, J. S.; Reiger, D. L. Tetrahedron 1992, 48, 2127-2142.

$$O \xrightarrow{D} O \xrightarrow{C} CH_3$$

$$O \xrightarrow{C} CH_3$$

 In addition to β-ketoimides, the two chiral ethyl ketones above are known to undergo aldol reactions at the unexpected Re face of the enolate, deilvering anti-anti aldol products.

Paterson, I.; Goodman, J. M.; Isaka, M. *Tet. Lett.* **1989**, *30*, 7121-7124. Paterson, I.; Wallace, D. J.; Cowden, C. J. *Synthesis* **1998**, 639-652.

Syn-Anti-Selective Aldol Reactions of Chiral Ethyl Ketones

• The C2 stereocenter is believed to be the dominant control element for both substrates.

 Minimization of A_(1,3) interactions in the enolate biases the approach of the aldehyde to the methyl-bearing π-face of the enolate, while the (E)-enolate geometry affords anti-aldol products.

Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757-6761.

Directed Reduction of β-Hydroxy Ketones

Internal hydride delivery:

• The reactivity of the reagent is attenuated such that the reduction of ketones proceeds at convenient rates only intramolecularly, favoring formation of 1,3-anti-diols.

External hydride delivery:

- Chelated transition state, axial attack provides 1,3-syn-diol.
- These directed reductions are applicable to δ-hydroxy-β-ketoimides:

Evans, D. A.; Chapman, K. T.; Carreira, E. M. *J. Am. Chem. Soc.* **1988**, *110*, 3560-3578.

Jaron Mercer, M. Movassaghi

Premonensin

Anti-Aldols with Magnesium Enolates

α-napthaldehyde furfural

- Silylation of the magnesium alkoxide in the aldol product turns over the magnesium.
- The aldehyde component is limited to non-enolizable aromatic and α,β -unsaturated aldehydes.

14:1

6:1

91

80

Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2002, 124, 392-393.

Use of the analogous N-acylthiazolidinethione chiral auxiliary affords products of the opposite
 anti-stereochemistry in comparable yields and with high selectivities.

Both reactions are proposed to proceed through boat transition states. See: Evans, D. A.;
 Downey, W. C.; Shaw, J. T.; Tedrow, J. S. Org. Lett. 2002, 4, 1127-1130.

Evans, D. A.; DiMare, M. J. Am. Chem. Soc. 1986, 108, 2476-2478.

M. Movassaghi

Chris Coletta, Jaron Mercer

Open Transition State Aldol Reactions

Heathcock and coworkers reported that complexation of the aldehyde with an added Lewis
acid allows access to non-Evans syn and anti aldol products via open transition states.

aldehyde	Lewis acid	anti:syn*	yield (%)*	
H₃C CHO	SnCl ₄ TiCl ₄	10:90 12:88	66 72	
Ph-CHO	TiCl ₄	8:92	65	

aldehyd	de	Lewis acid	anti:syn*	yield (%)*
H ₃ C C	СНО	Et ₂ AICI	88:12	81
PhCHC)	Et ₂ AlCl	74:26	62

*Determined by ¹H NMR. Yield given is the total yield of diastereomeric aldol mixture.

 Gauche interactions around the forming C-C bond dictate which face of the aldehyde reacts. For small Lewis acids, transition state 1 is favored. For large Lewis acids, transition state 2 is favored.

Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747-5750.

Synthesis of Oxazolidinethione and Thiazolidinethione Chiral Auxiliaries

Crimmins, M. T; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894-902.

Asymmetric Aldol Reactions with Titanium Enolates of N-Acylthiazolidinethiones

RCHO	(-)-sparteine (equiv)	yield (%)	A : B
CH ₂ =CHCHO	1.0	49	>99:1
<i>i</i> -PrCHO	1.0	60	98:2
CH ₂ =CHCHO	2.0	77	<1:99
<i>i</i> -PrCHO	2.0	75	3:97

- · Selectivities are generally >95:5 for syn:anti products.
- Both the yield and diastereoselectivities are high and synthetically useful, although they are typically lower than the corresponding oxazolidine aldol reactions.
- An advantage of this method is that a single acyloxazolidinethione can provide either syn aldol product by changing the amount of sparteine in the reaction mixture.

• Proposed transition states provide a rationale for the selectivity dependence on amine equivalents:

• The thiazolidinethione auxiliary is easily removed under mild conditions:

 The thiazolidinethione auxiliary is recovered by basic extraction (1 M NaOH) of the product mixture.

Crimmins, M. T.; King, B. W.; Tabet, E. A. *J. Am. Chem. Soc.* **1997**, *119*, 7883-7884. Crimmins, M. T.; Chaudhary, K. *Org. Lett.* **2000**, *2*, 775-777.

Anti-Selective Aldol Reactions with Titanium Enolates of N-Glycolyloxazolidinethiones

R	aldehyde	A : B : syn	yield (%)
allyl	H₃CCHO	94:6:0	84
allyl	Ph-CHO	65 : 24 : 11	56
allyl	CH ₃ CHO	94:6:0	74
allyl	CHO	95 : 5 : 0	58
Bn	CH ₃ CHO	88 : 12 : 0	64
Bn	≫ CHO	74 : 26 : 0	48
CH ₃	CH ₃ CHO	84 : 11 : 5	63
CH ₃	CHO	88:12:0	59

- Complexation of the aldehyde with excess titanium occurs in situ to give anti products with high selectivity.
- The proposed transition state is analogous to that of the anti-selective Heathcock aldol.

Crimmins, M. T.; McDougall, P. J. Org. Lett. 2003, 5, 591-594.

Asymmetric Synthesis of Syn-β-Hydroxy-α-Amino Acids

 The isothiocyanate below serves as a chiral glycine equivalent. Stannous triflate-mediated aldol reactions give cyclized aldol adducts in high yield and diastereoselectivity.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\\\\\\\\end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\\\\\\\\\\\end{array}\\ \end{array}\\ \begin{array}{c} \\\\\\\\\\\\\\\\\\\\\\\end{array}\\ \end{array}$$

aldehyde	ratio*	yield (%)
H ₃ CCHO	91:9	75
PhCHO	99:1	91
H ₃ C CHO	99:1	92
CH ₃ CHO	94:6	73
CH ₃ CHO	97:3	71

*Ratio of desired (illustrated) stereoisomer to the sum of all other stereoisomers.

• The N-methyl amino acid can be reached in 4 steps.

Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757-6761.

Asymmetric Synthesis of Anti-β-Hydroxy-α-Amino Acids

· 2-Chloro- and 2-Bromoacetyl imides undergo aldol addition with high diastereoselectivity.

*Ratio of desired (illustrated) stereoisomer to the sum of all other stereoisomers.

 Halide displacement with NaN₃ occurs with inversion of stereochemistry. Hydrolytic removal of the auxiliary followed by hydrogenation of the azide delivers the amino acid.

Evans, D. A.; Sjogren, E. B.; Weber, A. E.; Conn, R. E. Tetrahedron Lett. 1987, 28, 39-42.

Vancomycin Aglycon:

Evans, D. A.; Wood, R. W.; Trotter, B. W.; Richardson, T. I.; Barrow, J. C.; Katz, J. L. *Angew. Chem. Int. Ed.* **1998**, *37*, 2700-2704.

Evans, D. A.; Watson, P. S. Tet. Lett. 1996, 37, 3251-3254.

Direct Aldolization of Pseudoephenamine Glycinamide

Isolated yields of stereoisomerically pure products. Diastereomeric ratios reported as major isomer: sum of all other diastereomers.

- Pseudoephenamine glycinamide undergoes a direct aldol addition with both aldehyde and ketone substrates.
- The corresponding *N*-Boc-protected or methyl ester hydrochloride derivatives can be prepared in two steps from the aldol products.

Seiple, I. B.; Mercer, J. A. M.; Sussman, R. J.; Myers, A. G. Unpublished.

Jaron Mercer

Paterson Aldol

Reviews:

Cowden, C. J.; Paterson, I. Org. React. 1997, 51, 1.

Franklin, A. S.; Paterson, I. Contemp. Org. Synth. 1994, 1, 317.

Syn-Aldol Adducts via Enol Diisopinocampheylborinates

$$H_3C \underbrace{\hspace{1cm} \bigcap_{i: Pr_2NEt} (-)\text{-lpc}_2BOTf}_{CH_2Cl_2, -78 \ °C} \underbrace{\hspace{1cm} \bigcap_{i: Pr_2Net} OBlpc_2}_{H_3C} \underbrace{\hspace{1cm} \bigcap_{i: Pr_2Net} (-)\text{-15 °C};}_{R_1} \underbrace{\hspace{1cm} \bigcap_{i: Pr_2Net} (-)\text{-15 °C};}_{H_2O_2} \underbrace{\hspace{1cm} \bigcap_{i: Pr_2Net} (-)\text{-15 °C};}_{H_2O_2} \underbrace{\hspace{1cm} \bigcap_{i: Pr_2Net} (-)\text{-15 °C};}_{R_1} \underbrace{\hspace{1cm} \bigcap_{i: Pr_2Net} (-)\text{-15 °C};}_{H_2O_2} \underbrace{\hspace{1cm} \bigcap_{i: Pr_2Net} (-)\text{-15 °C};}_{R_1} \underbrace{\hspace{1cm} \bigcap_{i: Pr_2Net} (-)\text{-15 °C};}_{H_2O_2} \underbrace{\hspace{1cm} \bigcap_{i: Pr_2Net} ($$

ketone	aldehyde	syn:anti	ee (%)	yield (%)
H ₃ C CH ₃	CH₃ CHO	98:2	91	78
H_3C CH_3	CH ₃ CHO	96:4	66	45
H_3C CH_3	CHO	96:4	80	84
H_3C CH_3 CH_3	CH₃ CHO	95:5	88	99
H_3C CH_3 CH_3	CH ₃	97:3	86	79

- Enolization occurs selectively on the less hindered side of the ketone and with (Z)-selectivity.
- The (E)-Enolate, generated in low yield using (–)-lpc₂BCl, does not lead to a selective anti-aldol reaction.
- · Highest enantioselectivities are obtained with unhindered aldehydes.
- Aldol additions of methyl ketones are not highly enantioselective (53-73% ee).

Paterson, I.; Goodman, J. M.; Lister, M. A.; Scumann, R. C.; McClure, C. K.; Norcross, R. D. *Tetrahedron* **1990**, *46*, 4663-4684.

Proposed Origin of Selectivity:

$$\begin{array}{c} OB(-)\text{-lpc}_2 \\ R_1 + R_2\text{CHO} \end{array}$$

$$\begin{array}{c} H_3C \\ H_$$

 Diastereofacial selectivity is believed to be due to a favored transition state wherein steric interactions between the (–)-lpc ligand on boron and the R₁ substituent on the ketone are minimized.

Paterson, I.; Goodman, J. M.; Lister, M. A.; Scumann, R. C.; McClure, C. K.; Norcross, R. D. *Tetrahedron* **1990**, *46*, 4663-4684.

Anti-Aldol Reactions of Lactate-Derived Ketones

aldehyde	de (%)	yield (%) ^a
CH₃ H₃C CHO	94	95
H₃C CHO	99	82
H ₃ C CHO	90	97
CHO CHO	96	97
PhCHO	99	85

alsolated yield for 3 steps.

 Diastereofacial selectivity is very high; α-chiral aldehydes afford anti-aldol adducts with high diastereoselectivity regardless of their stereochemistry.

· Other examples:

 The origin of the diastereoselectivity is proposed to be due to a formyl hydrogen bond in the favored transition state.

 $BzO \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} H_3C \xrightarrow{CH_3} R$

R = *i*-Pr, 81% R = Ph, 96%

• Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639-652.

Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.; Lister, M. A. *J. Am. Chem. Soc.* **1994**, *116*, 11287-11314.

Acetate Aldol Addition of a Chiral $\alpha\textsc{-Sulphinylester}$ Enolate to Aldehydes

$$Ar = 4-CH_3C_6H_4$$

$$CH_3CO_2t-Bu$$

$$i-Pr_2NMgBr$$

$$Ar = 4-CH_3C_6H_4$$

$$Ar = 4-CH_3C_6H_4$$

$$AI, Hg$$

$$AI$$

• The β -hydroxy ester products are isolated in 50-85% yield and 80-91% ee.

Proposed Transition State

 Approach of the aldehyde is proposed to occur from the side of the non-bonding electron pair of the sulfur atom with the R-group of the aldehyde anti to the sulfinyl substituent. A chelated enolate is proposed.

Mioskowski, C.; Solladie, G. J. Chem. Soc., Chem. Commun. 1977, 162-163.

Addition of a Chiral Acetate Enolate to Aldehydes

• Both (R)- and (S)-mandelic acids are commercially available.

- · Low diastereoselectivities are obtained with mismatched chiral aldehydes.
- · A mechanistic rationale has not been proposed.

Braun, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 24-37.

An Approach to the Acetate Aldol Problem

$$\begin{array}{c} \text{H}_{3}\text{C} \quad \text{CH}_{3} \\ \text{N} \quad \text{SCH}_{3} \\ \text{O} \quad \text{SCH}_{3} \\ \end{array} \begin{array}{c} \text{1. } n\text{-Bu}_{2}\text{BOTf, } i\text{-Pr}_{2}\text{NEt} \\ \text{CH}_{2}\text{Cl}_{2}, 0 \, ^{\circ}\text{C} \\ \end{array} \begin{array}{c} \text{O} \quad \text{OH} \\ \text{SCH}_{3} \\ \text{-78} \rightarrow 23 \, ^{\circ}\text{C} \\ \text{86-99\% de} \\ \end{array} \begin{array}{c} \text{3. Ra-Ni, } 60 \, ^{\circ}\text{C} \\ \text{acetone} \\ \text{4. 2N KOH} \\ \text{CH}_{3}\text{OH, } 0 \, ^{\circ}\text{C} \\ \end{array}$$

$$\bullet \text{ A temporary substituent is used to afford acetate} \\ \text{aldol products selectively.} \quad \text{Simple N-acetyl imides} \\ \text{do not react selectively.} \quad R = \text{Ph, CH}_{3}, \\ n\text{-C}_{3}\text{H}_{7}, i\text{-C}_{3}\text{H}_{7} \\ \end{array} \begin{array}{c} \text{80-90\% (4 steps)} \\ \text{86-99\% ee} \end{array}$$

Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129.

An Enantioselective Mukaiyama Aldol Reaction Catalyzed by a Tryptophan-Derived Oxazaborolidine

 The Lewis-acid catalyzed addition of silyl enol ethers to aldehydes is known as the Mukaiyama Aldol reaction: Kobayashi, S.; Uchiro, H.; Shina, I.; Mukaiyama, T. *Tetrahedron* 1993, 49, 1761-1772.

• Use of terminal trimethylsilyl enol ethers provide the highest level of enantioselectivities.

• A transition state is proposed in which the si face of the aldehyde is blocked by the indole ring.

Corey, E. J.; Cywin, C. L; Roper, T. D. Tetrahedron Lett. 1992, 33, 6907-6910.

Catalytic, Enantioselective Mukaiyama Aldol Condensation of Silyl Thioketene Acetals

aldehyde	yield (%)	ee (%)
PhCHO	90	97
PhCH ₂ CH ₂ CHO	80	97
furyICHO	88	>98
c-C ₆ H ₁₁ CHO	70	89
PhCH ₂ OCH ₂ CHO	82	>98

• This reaction is highly sensitive to the solvent and to reactant concentrations.

Keck, G. E.; Krishnamurthy, D. J. Am. Chem. Soc. 1995, 117, 2363-2364.

Catalytic, Enantioselective Acetate Aldol Additions with Silyl Ketene Acetals

Review: Carreira, E. M.; Singer, R. A. Drug Discovery Today 1996, 1, 145-150.

OSi(CH₃)₃ 1. (-)-1 (0.5-5 mol %);
$$Et_2O$$
, 4 h, -10 °C R_1 OR₂ Et_2O , 4 h, -10 °C R_1 OR₂

Aldehyde	%ee: R ₂ = Et	%ee: R ₂ = CH ₃	%ee: R ₂ = Bn
CH ₃ CHO	92	97	-
CH ₃ CHO	88	95	-
Ph	93	97	96
Ph	89	94	91
СНО	94	95	-
CHO	93	96	96

Yields for two steps (addition and desilylation) range from 72-98%.

- Catalyst 1 is formed by condensation of the chiral amino alcohol with 3-bromo-5-tert-butylsalicylaldehyde followed by complexation with Ti(Oi-Pr)₄ and 3,5-di-tert-butylsalicylic acid. Both enantiomeric forms are available.
- Complete removal of i-PrOH during catalyst preparation is key to achieving high yields and selectivities. This may be done by azeotropic removal of i-PrOH with toluene or by its silylation in an in situ catalyst preparation (TMSCI, Et₃N).
- The reaction can be carried out in a variety of solvents, such as toluene, benzene, chloroform, diethyl ether, and *tert*-butyl methyl ether.
- Alkenyl and alkynyl aldehydes are particularly good substrates for this catalytic process.

OSi(CH₃)₃ 1. (-)-1 (3 mol %) OH O Et₂O, 0 °C ROCH₃

$$\begin{array}{c}
OSi(CH_3)_3 \\
Et_2O, 0 °C
\end{array}$$
OCH₃

aldenyde	yield (%)	%ee
TBSOCH ₂ ———CHO	88	96
Ph———CHO	96	94
TIPS——CHO	88	97
TBSO H ₃ C" = CHO	88	96

Carreira, E. M.; Singer, R. A.; Lee, W. *J. Am. Chem. Soc.* **1994**, *116*, 8837-8838. Singer, R. A.; Carreira, E. M. *Tetrahedron Lett.* **1997**, *38*, 927-930. Singer, R. A.; Shepard, M. S.; Carreira, E. M. *Tetrahedron* **1998**, *54*, 7025-7032.

Catalytic, Enantioselective Aldol Additions of an Acetone Enolate Equivalent

aldehdye	temp. (°C)	yield	%ee
Ph(CH ₂) ₃ ———CHO	0	99	98
TBSOCH ₂ ——CHO	0	85	93
Ph——CHO	0	99	91
Ph CHO	0 → 23	98	90
PhCHO	0 → 23	83	66
c-C ₆ H ₁₁ CHO	0 → 23	79	75

- · 2-methoxypropene is used as the reaction solvent.
- · Unhindered aldehydes afford products with the highest enantioselectivities.
- 2,6-di-tert-butyl-4-methylpyridine (0.4 equiv) is used in the reaction to prevent decomposition
 of the product by adventitious acid.

Carreira, E. M; Lee, W.; Singer, R. A. J. Am. Chem. Soc. 1995, 117, 3649-3650.

• The vinyl ether products can be isolated, or transformed into other useful products:

Carreira, E. M; Lee, W.; Singer, R. A. J. Am. Chem. Soc. 1995, 117, 3649-3650.

Catalytic, Enantioselective Dienolate Additions to Aldehydes

aldehyde	yield (%)	%ee
TIPS——CHO	86	91
TBSO—CHO	97	94
CH ₃ CHO	88	92
n-Bu₃Sn ← CHO	79	92
Ph CHO	97	80
PhCHO	83	84 (96) ^a
^a after recrystallization		

• The silyl dienolate is easily prepared, purified by distillation, and is stable to storage.

 The absolute sense of induction parallels that of acetate-derived silyl enol ether and 2-methoxypropene addition reactions.

 The protected acetoacetate adducts are versatile precursors for the preparation of optically active δ-hydroxy-β-keto esters, amides, and lactones.

Singer, R. A.; Carreira, E. M. J. Am. Chem. Soc. 1995, 117, 12360-12361.

Catalytic, Enantioselective Dienolate Additions to Aldehydes Using a Nucleophilic Catalyst.

aldehyde	yield (%)	%ee
PhCHO	92	94
⟨S CHO	98	95
OCH ₃	82	90
Ph CHO	48	91
CH ₃ CHO	81	83
Ph CH_3	74	65

- (S)-Tol-BINAP-CuF₂ is readily prepared in situ by mixing (S)-Tol-BINAP, Cu(OTf)₂, and (n-Bu₄N)Ph₃SiF₂ in THF.
- This process is efficient for non-enolizable (α, β -unsaturated, aromatic, and heteroaromatic) aldehydes.
- Enolizable, aliphatic aldehydes give products with high enantioselectivity, but in poor yield (<40%).
- Spectroscopic evidence supports a catalytic process involving a chiral transition metal dienolate as an intermediate.

Krüger, J.; Carreira, E. M. *J. Am. Chem. Soc.* **1998**, *120*, 837-838. Pagenkopt, B. L.; Krüger, J.; Stojanovic, A.; Carreira, E. M. *Angew. Chem.*, *Int. Engl. Ed.* **1998**, *37*, 3124-3126.

Enantioselective Acetate Aldol Addition Using a Chiral Controller Group

$$\begin{array}{c} O \\ H_3C \\ \hline \\ SPh \\ \hline \\ CH_2Cl_2 \\ Et_3N \\ -78 \rightarrow 23 \ ^{\circ}C \\ \end{array} \begin{array}{c} O \\ EX_2 \\ SPh \\ \hline \\ -90 \ ^{\circ}C, \ 2h \\ \hline \\ \hline \\ -90 \ ^{\circ}C, \ 2h \\ \end{array} \begin{array}{c} O \\ F \\ \hline \\ SPh \\ \hline \\ \\ \end{array}$$

aldehdye	yield (%)	ee (%)
C ₆ H ₅ CHO	84	91
i-PrCHO	82	83

- Bromide 3 is produced from the corresponding (R,R)-bissulfonamide by reaction with BBr₃ in CH₂Cl₂
- Upon completion of the reaction, the (R,R)-bis-sulfonamide can be recovered and reused.

Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc. 1989, 111, 5493-5495.

Catalytic, Enantioselective Aldol Additions of Silyl Thioketene Acetals and Silyl Enol Ethers

R ₁	R ₂	enol silane geometry	time (h)	T (°C)	syn:anti	%ee	yield (%)
Н	<i>t</i> -Bu	-	24	-78	-	99	99
CH ₃	Et	(<i>Z</i>)	4	-78	97:3	97	90
CH ₃	Et	(<i>E</i>)	1d	-50	86:14	85	48
<i>i</i> -Bu	Et	(<i>Z</i>)	2d	-50	95:5	95	85

Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C.; Campos, K. R.; Connell, B. T.; Staples, R. J. *J. Am. Chem. Soc.* **1999**, *121*, 669-685.

Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C.; Campos, K. R.; Connell, B. T.; Staples, R. J. *J. Am. Chem. Soc.* **1999**, *121*, 669-685.

H₃CO OTMS OTMS
$$= \frac{2(10 \text{ mol}\%)}{1 \text{ HF}}$$
 $= \frac{1}{100 \text{ mol}\%}$ $= \frac{1}{100 \text{ mo$

 Based on structural data acquired with catalyst 1, a bidentate coordination of methyl pyruvate to the copper complex 2 has been proposed.

Evans, D. A.; Kozlowski, M. C.; Burgey, C. S.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **1997**, *119*, 7893-7894.

H₃CO CH₃ + OTMS
$$CH_2Cl_2$$
 CH_3 + CH_3COHO CH_2Cl_2 CH_3COHO C

Evans, D. A.; MacMillan, D. W. C.; Campos, K. R. *J. Am. Chem. Soc.* **1997**, *119*, 10859-10860.

Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325-335.

Proline-Catalyzed Asymmetric Aldol Reaction of Acetone

- Typically a 20-30 equivalent excess of acetone is used in relation to the aldehyde.
- Tertiary and α-branched aldehydes result in the highest yields and enantioselectivities, while unbranched aliphatic aldehydes give poor yields and enantioselectivities.
- 5,5-Dimethyl thiazolidinium-4-carboxylate (DMTC) has also been found to be an efficient amino acid catalyst for the acetone aldol reaction. Results with DMTC are in parentheses.

List, B.; Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc. 2000, 122, 2395-2396.

Kandasamy, S.; Notz, W.; Bui, T.; Barbas, C. F., III. J. Am. Chem. Soc. 2001, 123, 5260-5267.

Proposed transition state:

Rankin, K. N.; Gauld, J. W.; Boyd, R. J. *J. Phys. Chem. A.* **2002**, *106*, 5155-5159. Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. *J. Am. Chem. Soc.* **2003**, *125*, 2475-2479.

For a discussion on the involvement of oxazolidinones in the mechanism, see: Seebach, D.; Beck, A. K.; Badine, M.; Limbach, M.; Eschenmoser, A.; Treasurywala, A. M.; Hobi, R.; Prikoszovich, W.; Linder, B. *Helv. Chim. Acta* **2007**, *90*, 425–471.

M. Movassaghi, Chris Coletta

Proline-Catalyzed Asymmetric Aldol Reaction of Hydroxyacetone

- The anti-diol product formed is not readily accessible via asymmetric dihydroxylation, making this reaction complementary to the Sharpless asymmetric dihydroxylation.
- The reaction is highly regioselective, and with suitable substrates (α -branched aliphatic aldehydes) the anti:syn ratio (dr) and enantioselectivity are excellent. In the case of α -unbranched aldehydes and aromatic aldehydes, the poor anti:syn selectivity is thought to result from a decrease in an eclipsing interaction between the alcohol and the aldehyde in the disfavored boat transition state shown below.

Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386-7387.

Proposed origin of selectivity:

Proline-Catalyzed Asymmetric Aldol Reaction of Acetonide Protected Dihydroxyacetone

aldehyde	catalyst	yield	anti/syn	%ee
<i>i</i> -PrCHO	(S)-proline	97	>98:2	94
c-C ₆ H ₁₁ CHO	(S)-proline	86	>98:2	90
BnOCH ₂ CHO	(S)-proline	40	>98:2	97
(CH ₃ O) ₂ CHCHO	(S)-proline	69	94:6	93
H ₃ C"CHO CH ₃	(<i>R</i>)-proline	76	>98:2	>98
O CHO	(S)-proline	80	>98:2	>96
H ₃ C" NBoc CH ₃	(<i>R</i>)-proline	31		>96
CHO NCbz CH ₃	(S)-proline	80	>98:2	>96

- The use of linear aldehydes in this reaction leads to poor yields, likely due to self condensation.
- Aromatic aldehydes form products with low diastereoselectivity (e.g., a 4:1 anti:syn ratio was reported for ortho-chlorobenzaldehyde).
- With the α -chiral α -aminoaldehyde shown above, the mismatched case results in a poor yield,

but excellent dr and ee.

· Certain hexoses have been synthesized by this method.

Enders, D.; Grondal, C. Angew. Chem. Int. Ed. 2005, 44, 1210-1212.

Chris Coletta

TBDPSO

Proline-Catalyzed Enantioselective Cross-Aldol Reaction of Aldehydes

R ₁	R_2	yield (%)	anti:syn	%ee
Ме	Et	80	4:1	99
Me	<i>i</i> -Bu	88	3:1	97
Me	<i>c</i> -C ₆ H ₁₁	87	14:1	99
Me	Ph	81	3:1	99
Me	<i>i</i> -Pr	82	24:1	>99
<i>n</i> -Bu	<i>i</i> -Pr	80	24:1	98
Bn	<i>i</i> -Pr	76	19:1	91

- Slow addition via syringe pump of the donor aldehyde to a solution of the acceptor aldehyde and proline is required in order to avoid dimerization of the donor aldehyde.
- Either non-enolizable aldehydes or aldehydes containg α or β -branching are suitable acceptor aldehydes for this reaction.

Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799.

Proline-Catalyzed Direct and Enantioselective Aldol Reaction of α -Oxyaldehydes

R	solvent	yield (%)	anti:syn	%ee
Bn	DMF	73	4:1	98
PMB	DMF	64	4:1	97
MOM	DMF	42	4:1	96
TBDPS	DMF/dioxane	61	9:1	96
TIPS	DMSO	92	4:1	95
TBS	dioxane	62	4:1	88

Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2002**, *124*, 6798-6799.

 The aldol products from α-oxyaldehydes can be further elaborated as part of a two-step synthesis of carbohydrates.

Northrup, A. B.; MacMillan, D. W.C. Science 2004, 305, 1752-1755.

Littoralisone:

BnO

Mangion, I. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3696-3697.

Chris Coletta, Jaron Mercer

Catalytic, Enantioselective Thioester Aldol Reactions

aldehyde	yield (%)	syn:anti	%ee
CH ₃ (CH ₂) ₆ CHO	80	9:1	92 (R)
CH ₃ O ₂ C(CH ₃) ₄ CHO	83	10:1	94
HO CHO	83	9:1	93 (S)
H₃C CHO 8	79	8:1	91
$CH_3(CH_2)_5$ ——CHO	59	2.2:1	96 (S)
H₃C CHO	73	7.5:1	89
c-C ₆ H ₁₁ CHO	48 (71ª)	36:1	93
HO,,, O(CH ₂) ₄ C	PHO 70	5.5:1	92
^{13℃} ČH ₃	^a two equiv	of aldehyde v	vas used.

- This method is compatible with aldehyde substrates containing unprotected hydroxyl groups, including phenols.
- $\, \cdot \,$ Aromatic aldehydes and $\beta -$ branched aldehydes are generally poor substrates.

• The thioester group of the aldol products can be transformed by Pd-catalyzed cross coupling to give ketones.

Magdziak, D.; Lalic, G.; Lee, H. M.; Fortner, K. C.; Aloise, A. D.; Shair, M. D. *J. Am. Chem. Soc.* **2005**, *127*, 7284-3695.

• A recent example of proline-catalyzed aldol reaction in the synthesis of prostaglandin PGF_{2a}:

Coulthard, G; Erb, W.; Aggarwal, V. K. Nature 2012, 489, 278-281.

Chris Coletta, Fan Liu