# Analog IC Lab 2

| Name                 | ID       |
|----------------------|----------|
| Nada Tarek Mowafi    | 20012094 |
| Salma Hamdy Mohammed | 20010677 |

## **The Characteristics of Integrators and Differentiators Circuits:**

- ➤ <u>Integrator:</u>
- The circuit:



Function generator settings for all:



# 1. Sinusoidal wave input:

### • Output from multisim:



## • Output in the lab:



#### 2. Square wave input:

#### • Output from multisim:



#### • Output in the lab:



Comment: If the square wave is applied to Integrator Amplifier, the produced output will be a triangular wave or saw tooth wave as the op-amp integrator produces an output voltage which is proportional to the integral of the input voltage.

# 3. Triangular wave input:

## • Output from multisim:



## • Output in the lab:



• The frequency response:



## **The differentiator circuit:**



• Function generator settings for all:



1) Sinusoidal wave input: Output from multisim:



#### **Output in the lab:**



## 2) **Square wave input:**

## **Output from multisim:**



#### **Output in the lab:**



#### Comment:

If a rectangular wave is applied to a differentiator amplifier, the output will be a series of pulses. And if a square wave is applied, the output will be delta as the op-amp differentiator produces an output voltage which is proportional to the rate of change of the input voltage.

## 3) Triangular wave input:

**Output from multisim:** 



# Output in the lab:



## **Frequency response:**

