Sujet d'étude

Exercice 1 Construction de \mathbb{R} par les suites de Cauchy

Partie A Suites de Cauchy dans Q

Une suite $(r_n)_{n\in\mathbb{N}}\in\mathbb{Q}^{\mathbb{N}}$ est dite *de Cauchy dans* \mathbb{Q} si, et seulement si

$$\forall \alpha \in \mathbb{Q}_+^\star, \exists N \in \mathbb{N}, \forall (p,q) \in \mathbb{N}^2 \left(p \geq N \text{ et } q \geq N \implies |r_q - r_p| \leq \alpha \right).$$

On note $\mathcal{C}_{\mathbb{Q}}$ l'ensemble des suites de Cauchy dans \mathbb{Q} .

- **A1.** Vérifier que toute suite constante de $\mathbb{Q}^{\mathbb{N}}$ est de Cauchy dans \mathbb{Q} .
- **A2.** Les suites de termes généraux $u_n = n$, $v_n = (-1)^n$ et $w_n = \sum_{k=1}^n \frac{1}{k}$ sont-elles de Cauchy dans \mathbb{Q} ?
- A3. Montrer que toute suite de Cauchy dans Q est bornée.
- **A4.** Dans l'ensemble $C_{\mathbb{Q}}$ des suites de Cauchy dans \mathbb{Q} , on note \mathcal{R} la relation définie par

$$(r_n)_{n\in\mathbb{N}}\mathcal{R}(s_n)_{n\in\mathbb{N}}\iff \forall\alpha\in\mathbb{Q}_+^\star, \exists N\in\mathbb{N}, \forall n\in\mathbb{N}, \left(n\geq N\implies |r_n-s_n|\leq\alpha\right).$$

Montrer que \mathcal{R} est une une relation d'équivalence dans $\mathcal{C}_{\mathbb{Q}}$.

Partie B Le groupe abélien $(\mathbb{R}, +)$

Pour toute suite $(r_n)_{n\in\mathbb{N}}$ de Cauchy dans \mathbb{Q} , on note $\widehat{(r_n)_{n\in\mathbb{N}}}$ sa classe d'équivalence modulo \mathcal{R} . L'ensemble des classe d'équivalence de $\mathcal{C}_{\mathbb{Q}}$ modulo \mathcal{R} est noté \mathbb{R} .

B1. Montrer que l'ensemble $\mathcal{C}_{\mathbb{Q}}$ est stable pour l'addition des suites, définie par

$$(r_n)_{n\in\mathbb{N}} + (s_n)_{n\in\mathbb{N}} = (r_n + s_n)_{n\in\mathbb{N}}.$$

B2. Montrer que l'addition dans $C_{\mathbb{Q}}$ est compatible avec la relation d'équivalence \mathcal{R} , c'est-à-dire, pour toute suites $(r_n)_n$, $(s_n)_n$, $(t_n)_n$ de $C_{\mathbb{Q}}$, on a

$$((r_n)_n \mathcal{R}(s_n)_n) \implies ((r_n)_n + (t_n)_n \mathcal{R}(s_n)_n + (t_n)_n).$$

B3. En déduire que l'on peut définir une addition dans \mathbb{R} par

$$\widehat{(r_n)_n} + \widehat{(s_n)_n} = (r_n)_n + (s_n)_n.$$

B4. Montrer que $(\mathbb{R}, +)$ est un groupe abélien.

Partie C L'anneau commutatif $(\mathbb{R}, +, \times)$

C1. Montrer que l'ensemble $C_{\mathbb{Q}}$ est stable pour la multiplication des suites, définie par

$$(r_n)_{n\in\mathbb{N}}\times(s_n)_{n\in\mathbb{N}}=(r_ns_n)_{n\in\mathbb{N}}.$$

1

C2. Montrer que la multiplication dans $C_{\mathbb{Q}}$ est compatible avec la relation d'équivalence \mathcal{R} .

C3. En déduire que l'on peut définir une multiplication dans \mathbb{R} par

$$\widehat{(r_n)_n} \times \widehat{(s_n)_n} = (r_n)_n \times \widehat{(s_n)_n}.$$

- **C4.** Montrer que $(\mathbb{R}, +, \times)$ est un anneau commutatif.
- **C5.** Soit θ l'application de \mathbb{Q} dans \mathbb{R} définie par

$$\forall r \in \mathbb{Q}, \theta(r) = \widehat{(r)_{n \in \mathbb{N}}},$$

où $(r)_{n\in\mathbb{N}}$ désigne la suite constante égale à r.

Montrer que θ est un morphisme injectif de $(\mathbb{Q}, +, \times)$ dans $(\mathbb{R}, +, \times)$.

Dans la suite, on confondra désormais $r \in \mathbb{Q}$ et $\theta(r) \in \mathbb{R}$.

Partie D Le corps $(\mathbb{R}, +, \times)$

D1. Soient $x \in \mathbb{R} \setminus \{0\}$ et $(r_n)_{n \in \mathbb{N}} \in x$. Montrer qu'il existe $\alpha \in \mathbb{Q}_+^*$ tel que

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \left(n \ge N \implies r_n \ge \alpha\right)$$

ou $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \left(n \ge N \implies r_n \le -\alpha\right)$.

D2. En déduire que $(\mathbb{R}, +, \times)$ est un corps commutatif.

Partie E Relation d'ordre dans \mathbb{R}

On note

$$\mathbb{R}_{+} = \left\{ x \in \mathbb{R} \mid \exists (r_n)_n \in x, \forall n \in \mathbb{N}, r_n \ge 0 \right\}$$
 et
$$\mathbb{R}_{-} = \left\{ x \in \mathbb{R} \mid -x \in \mathbb{R}_{+} \right\}.$$

- **E1.** Montrer que \mathbb{R}_+ est stable pour + et \times .
 - Montrer que $\mathbb{R}_+ \cap \mathbb{R}_- = \{ 0 \}$ et $\mathbb{R}_+ \cup \mathbb{R}_- = \mathbb{R}$.
- **E2.** On définit une relation, notée \leq , dans \mathbb{R} par

$$\forall (x, y) \in \mathbb{R}^2, (x \le y \iff y - x \in \mathbb{R}_+).$$

Établir que \leq est une relation d'ordre total dans \mathbb{R} , prolongeant l'ordre usuel de \mathbb{Q} . Démontrer

$$\forall (x, y, z) \in \mathbb{R}^3, x \le y \implies x + z \le y + z,$$

ainsi que

$$\forall (x, y, z) \in \mathbb{R}^3, (x < y \text{ et } 0 < z) \implies xz < yz.$$

E3. Pour $x \in \mathbb{R}$, on définit la valeur absolue de x par

$$|x| = \begin{cases} x & \text{si } x \ge 0\\ -x & \text{si } x \le 0. \end{cases}$$

Montrer les assertions suivantes

- (a) $\forall x \in \mathbb{R}, |x| \ge 0$.
- (b) $\forall x \in \mathbb{R}, (|x| = 0 \iff x = 0).$
- (c) $\forall (x, y) \in \mathbb{R}^2$, $|xy| = |x| \cdot |y|$.
- (d) $\forall (x, y) \in \mathbb{R}^2, |x + y| \le |x| + |y|$.

Partie F Densité de $\mathbb Q$ dans $\mathbb R$ et partie entière

F1. Montrer que \mathbb{Q} est dense dans \mathbb{R} , c'est-à-dire

$$\forall (x, y) \in \mathbb{R}^2, (x < y \implies \exists r \in \mathbb{Q}, x < r < y).$$

F2. En déduire que \mathbb{R} est un corps archimédien, c'est-à-dire

$$\forall (\varepsilon, A) \in (\mathbb{R}_+^*)^2, \exists N \in \mathbb{N}^*, N\varepsilon \geq A.$$

F3. Montrer

$$\forall x \in \mathbb{R}, \exists ! n \in \mathbb{Z}, n \leq x < n + 1;$$

l'entier n est appelé la partie entière de x et est notée $\lfloor x \rfloor$.

Partie G Complétude de \mathbb{R}

On dit qu'une suite de réels $(x_n)_n \in \mathbb{R}^{\mathbb{N}}$ converge vers un réel ℓ si, et seulement si

$$\forall \varepsilon \in \mathbb{R}_{+}^{\star}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \left(n \geq N \implies |x_{n} - \ell| \leq \varepsilon\right).$$

G1. Soient $x \in \mathbb{R}$ et $(r_n)_n \in \mathbb{Q}^{\mathbb{N}}$. Établir que la suite $(r_n)_n$ converge vers x si, et seulement si

$$(r_n)_n \in C_{\mathbb{Q}}$$
 et $x = \widehat{(r_n)_n}$.

G2. On dit qu'une suite de réels $(x_n)_n \in \mathbb{R}^{\mathbb{N}}$ est *de Cauchy dans* \mathbb{R} si, et seulement si

$$\forall \varepsilon \in \mathbb{R}_+^\star, \exists N \in \mathbb{N}, \forall (p,q) \in \mathbb{N}^2 \left(p \geq N \text{ et } q \geq N \implies |r_q - r_p| \leq \varepsilon \right).$$

Montrer que toute suite de Cauchy dans \mathbb{R} converge dans \mathbb{R} . On dit alors que \mathbb{R} est *complet*.

Partie H Théorème de la borne supérieure dans \mathbb{R}

H1. Soit $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles fermés bornés non-vides emboîtés, c'est-à-dire

$$I_{n+1} \subset I_n$$

3

de longueur tendant vers 0. Montrer que $\bigcap_{n\in\mathbb{N}} I_n$ est un singleton.

H2. En déduire que toute partie majorée, non-vide de \mathbb{R} admet une borne supérieure dans \mathbb{R} .