Esercizi e problemi su circuiti elettrici elementari

1 Esercizi

Esercizio (p.480 n.9).

La resistenza totale di un circuito è 300Ω . In esso vi sono tre resistenze in serie: la seconda è tripla della prima e la terza è doppia della seconda. Determina il valore delle tre resistenze.

Soluzione.

DATI RICHIESTE SCHEMA GRAFICO
$$R_1+R_2+R_3=300\Omega \quad R_1 \ , \ R_2 \ , \ R_3$$

$$R_2=3R_1 \ , \ R_3=2R_2$$

Basta risolvere il sistema di tre equazioni a tre incognite "dato dai dati" (②).

$$\begin{cases} R_1 + R_2 + R_3 = 300 \\ R_2 = 3R_1 \\ R_3 = 2R_2 \end{cases} \qquad \begin{cases} {}^{\prime\prime} \\ R_2 = 3R_1 \\ R_3 = 2R_2 = 6R_1 \end{cases} \qquad \begin{cases} {}^{\prime\prime} \\ {}^{\prime\prime} \\ {}^{\prime\prime} \end{cases}$$

$$\begin{cases} 10R_1 = 300 \\ {}^{\prime\prime} \\ {}^{\prime\prime} \end{cases} \qquad \begin{cases} R_1 + 3R_1 + 6R_1 = 300 \\ {}^{\prime\prime} \\ {}^{\prime\prime} \end{cases}$$

$$\begin{cases} R_1 = 30 \\ R_2 = 3R_1 = 60 \\ R_3 = 6R_1 = 180 \end{cases}$$

Quindi
$$R_1 = 30\Omega$$
, $R_2 = 3R_1 = 60\Omega$ e $R_3 = 6R_1 = 180\Omega$.

Esercizio (p.480 n.11).

In un circuito vi sono quattro resistenze da 50Ω , 70Ω , 75Ω e 105Ω collegate in serie. Sapendo che una batteria le alimenta con una d.d.p. di 60V, determina l'intensità di corrente che le attraversa.

Soluzione.

DATI RICHIESTE SCHEMA GRAFICO
$$R_1 = 50\Omega \ , \ R_2 = 70\Omega \ , \ R_3 = 75\Omega$$

$$R_3 = 105\Omega \ , \ \Delta V = 60V$$

Collegamento in serie
$$\Rightarrow R_e = R_1 + R_2 + R_3 + R_4 = 50 + 70 + 75 + 105 = 300\Omega$$
.

Legge di Ohm:
$$\Delta V = R_e I \Rightarrow I = \frac{\Delta V}{R_e} = \frac{60}{300} = 0, 2A.$$

Esercizio (p.480 n.12).

In un circuito vi sono due resistenze in serie di 250Ω e 70Ω , mentre ai morsetti del generatore la d.d.p. è di 128V. Trova:

(a) l'intensità di corrente che attraversa il circuito;

(b) la d.d.p. ai capi di ciascuna resistenza.

Soluzione.

Collegamento in serie
$$\Rightarrow R_e = R_1 + R_2 = 250 + 70 = 320\Omega$$
.

Legge di Ohm:
$$\Delta V = R_e I \Rightarrow I = \frac{\Delta V}{R_e} = \frac{128}{320} = 0, 4A.$$

Legge di Ohm: $\Delta V_1 = R_1 I = 250 \cdot 0, 4 = 100V.$

Legge di Ohm: $\Delta V_2 = R_2 I = 70 \cdot 0, 4 = 28V$.

Esercizio (p.481 n.17).

Dopo un nodo di un circuito elettrico vi sono due rami tra loro in parallelo. Nel primo, caratterizzato da una resistenza di 3Ω , l'intensità della corrente è 0,2A. Calcola la resistenza del secondo ramo, sapendo che in esso l'intensità della corrente è 0,8A.

Soluzione.

Collegamento in parallelo $\Rightarrow \Delta V_1 = \Delta V_2$

Legge di Ohm:
$$\Delta V_1 = R_1 I_1$$
 e $\Delta V_2 = R_2 I_2$

quindi:
$$R_1I_1 = R_2I_2 \Rightarrow R_2 = \frac{R_1I_1}{I_2} = \frac{3 \cdot 0, 2}{0, 8} = 0,75\Omega.$$

Esercizio (p.481 n.19).

Nel nodo di un circuito la corrente entrante è di 6A, mentre i due rami uscenti dal nodo, e fra loro in parallelo, sono rispettivamente di 2Ω e 4Ω . Detremina l'intensità delle correnti che percorrono ciascuno dei due rami.

Soluzione.

Collegamento in parallelo $\Rightarrow \Delta V_1 = \Delta V_2$

Legge di Ohm:
$$\Delta V_1 = R_1 I_1$$
 e $\Delta V_2 = R_2 I_2$

quindi:
$$R_1I_1 = R_2I_2 \implies 2I_1 = 4I_2 \implies I_1 = 2I_2$$

Principio di Kirkhhoff: $I_1 + I_2 = I \implies I_1 + I_2 = 6$

Sostituendo si ha:

$$2I_2 + I_2 = 6 \implies 3I_2 = 6 \implies I_2 = 2A \implies I_1 = 2I_2 = 4A$$

Esercizio (p.481 n.21).

Quale valore devono avere tre resistenze di ugual valore disposte in parallelo, affinché la resistenza equivalente sia di 20Ω ?

Soluzione.

DATI RICHIESTE SCHEMA GRAFICO
$$R_1 = R_2 = R_3 \; , \; R_e = 20\Omega \quad R_1 \; , \; R_2 \; , \; R_3$$

$$\begin{array}{c} \text{Collegamento in parallelo} \ \Rightarrow \ \frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \ \Rightarrow \\ \\ \Rightarrow \ \frac{1}{R_1} + \frac{1}{R_1} + \frac{1}{R_1} = \frac{3}{R_1} = \frac{1}{20} \ \Rightarrow \ \frac{R_1}{3} = 20 \ \Rightarrow \ R_1 = 20 \cdot 3 = 60 \Omega \end{array}$$

2 Problemi

Il testo dei problemi è già schematizzato.

Problema (p.483 n.1).

DATI	RICHIESTE	CIRCUITO
$R_1 = 50\Omega$ $R_2 = 20\Omega$ $R_3 = 30\Omega$ $\Delta V = 310V$	(a) R_e (b) I (c) I_2 , I_3	$ \begin{array}{c c} R_1 \\ \hline & \\ R_2 \\ \hline & \\ & \\$

Soluzione.

(a)
$$R_2$$
 ed R_3 sono in parallelo $\Rightarrow R_{2,3} = \frac{R_2 R_3}{R_2 + R_3} = \frac{20 \cdot 30}{20 + 30} = \frac{600}{50} = 12\Omega$
 R_1 ed $R_{2,3}$ sono in serie $\Rightarrow R_e = R_1 + R_{2,3} = 50 + 12 = 62\Omega$

(b) Legge di Ohm:
$$\Delta V = R_e I \Rightarrow I = \frac{\Delta V}{R_e} = \frac{310}{62} = 5A$$

(c)
$$\begin{cases} I_2 + I_3 = I \\ R_2 I_2 = R_3 I_3 \end{cases} \Rightarrow \begin{cases} I_2 + I_3 = 5 \\ 20I_2 = 30I_3 \end{cases} \Rightarrow \begin{cases} I_2 + I_3 = 5 \\ I_2 = \frac{2}{3}I_3 \end{cases} \Rightarrow$$
$$\Rightarrow \begin{cases} \frac{2}{3}I_3 + I_3 = 5 \\ I_3 = \frac{3}{5} \cdot 5 = 3A \\ I_2 = \frac{2}{3} \cdot 3 = 2A \end{cases} \Rightarrow \begin{cases} I_3 = \frac{3}{5} \cdot 5 = 3A \\ I_2 = \frac{2}{3} \cdot 3 = 2A \end{cases}$$

Problema (p.484 n.2).

DATI	RICHIESTE	CIRCUITO
$R_1 = 250\Omega$ $R_2 = 200\Omega$ $R_3 = 150\Omega$ $R_4 = 450\Omega$ $\Delta V = 260V$	(a) R_e (b) I (c) I_2 , I_3 , 4	R ₁ R ₂ R ₂ R ₃ R ₄

Soluzione.

(a)
$$R_3$$
 ed R_4 sono in serie $\Rightarrow R_{3,4} = R_3 + R_4 = 150 + 450 = 600\Omega$
 R_2 ed $R_{3,4}$ sono in parallelo $\Rightarrow R_{2,3,4} = \frac{R_2 R_{3,4}}{R_2 + R_{3,4}} = \frac{200 \cdot 600}{200 + 600} = \frac{120000}{800} = 150\Omega$
 R_1 ed $R_{2,3,4}$ sono in serie $\Rightarrow R_e = R_3 + R_{2,3,4} = 250 + 150 = 400\Omega$
(b) Legge di Ohm: $\Delta V = R_e I \Rightarrow I = \frac{\Delta V}{R_e} = \frac{260}{400} = 0,65A$

(c)
$$\begin{cases} I_2 + I_{3,4} = I \\ R_2 I_2 = R_{3,4} I_{3,4} \end{cases} \Rightarrow \begin{cases} I_2 + I_3 = 0,65 \\ 200 I_2 = 600 I_3 \end{cases} \Rightarrow \begin{cases} " \\ I_2 = \frac{200}{600} I_3 = \frac{1}{3} I_3 \end{cases} \Rightarrow \\ \Rightarrow \begin{cases} \frac{1}{3} I_3 + I_3 = 0,65 \\ " \end{cases} \Rightarrow \begin{cases} \frac{4}{3} I_3 = 0,65 \\ " \end{cases} \Rightarrow \begin{cases} I_3 = \frac{3}{4} \cdot 0,65 = 0,49A \\ I_2 = \frac{1}{3} \cdot 0,49 = 0,16A \end{cases}$$

Problema (p.484 n.3).

DATI	RICHIESTE	CIRCUITO
$R_1 = 20\Omega$ $R_2 = 15\Omega$ $R_3 = 10\Omega$ $R_4 = 30\Omega$ $R_5 = 25\Omega$ $\Delta V = 150V$	(a) R_e (b) I (c) I_3 (c) ΔV_5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Soluzione.

(a) R_2 , R_3 ed R_4 sono in parallelo \Rightarrow

$$\Rightarrow \frac{1}{R_{2,3,4}} = \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} = \frac{1}{15} + \frac{1}{10} + \frac{1}{30} = \frac{2+3+1}{30} = \frac{6}{30} \Rightarrow R_{2,3,4} = \frac{30}{6} = 5\Omega$$

 R_1 , $R_{2,3,4}$ ed R_5 sono in serie $\,\Rightarrow\,R_e=R_1+R_{2,3,4}+R_5=20+5+25=50\Omega$

(b) Legge di Ohm:
$$\Delta V = R_e I \implies I = \frac{\Delta V}{R_e} = \frac{150}{50} = 3A$$

(c)
$$R_2I_2 = R_3I_3 \Rightarrow I_2 = \frac{R_3}{R_2}I_3 = \frac{10}{15}I_3 = \frac{2}{3}I_3 \text{ e } R_4I_4 = R_3I_3 \Rightarrow I_4 = \frac{R_3}{R_2}I_3 = \frac{10}{30}I_3 = \frac{1}{3}I_3 \text{ quindi:}$$

$$I_2 + I_3 + I_4 = I \Rightarrow \frac{2}{3}I_3 + I_3 + \frac{1}{3}I_3 = \frac{6}{3}I_3 = 3 \Rightarrow I_3 = \frac{3}{6} \cdot 3 = 1, 5A$$

(d) Legge di Ohm: $\Delta V_5 = R_5 I = 25.3 = 75V$

Problema (p.484 n.4).

DATI	RICHIESTE	CIRCUITO
$R_1 = 1200\Omega$ $R_2 = 1800\Omega$ $R_3 = 1400\Omega$ $R_4 = 1600\Omega$ $R_5 = 3000\Omega$ $I = 0, 12A$	(a) R_e (b) ΔV (c) $I_3, 4$ (c) ΔV_2	$\begin{array}{c c} R_1 & R_2 \\ \hline \downarrow_{1,2} & W_1 - W_2 \\ \hline \downarrow_{3,4} & R_3 & R_4 \\ \hline \end{array}$

Soluzione.

(a)
$$R_1$$
 ed R_2 sono in serie $\Rightarrow R_{1,2} = R_1 + R_2 = 1200 + 1800 = 3000\Omega$
 R_3 ed R_4 sono in serie $\Rightarrow R_{3,4} = R_3 + R_4 = 1400 + 1600 = 3000\Omega$

$$R_{1,2}$$
 ed $R_{3,4}$ sono in parallelo $\Rightarrow R_{1,2,3,4} = \frac{R_{1,2}R_{3,4}}{R_{1,2} + R_{3,4}} = \frac{3000^2}{2 \cdot 3000} = \frac{3000}{2} = 1500\Omega$

 $R_{1,2,3,4}$ ed R_5 sono in serie $\Rightarrow R_e = R_{1,2,3,4} + R_5 = 1500 + 3000 = 4500 = 4, 5 \cdot 10^3 \Omega$

(b) Legge di Ohm: $\Delta V = R_e I = 4500 \cdot 0, 12 = 540V$

(c)
$$R_{1,2}I_{1,2} = R_{3,4}I_{3,4} \Rightarrow I_{1,2} = \frac{R_{3,4}}{R_{1,2}}I_{3,4} = \frac{3000}{3000}I_{3,4} = I_{3,4}$$
 quindi:

$$I_{1,2} + I_{3,4} = I \implies I_{3,4} + I_{3,4} = 2I_{3,4} = 0, 12 \implies I_{3,4} = \frac{0,12}{2} = 0,06A$$

(d) Legge di Ohm: $\Delta V_2 = R_2 I_{1,2} = 1800 \cdot 0,06 = 108 V$

Problema (p.484 n.5).

Soluzione.

$$\begin{array}{ll} R_1 \ , \, R_2 \ \mathrm{ed} \ R_3 \ \mathrm{in} \ \mathrm{serie} \Rightarrow R_e = R_1 + R_2 + R_3 = 150 + 50 + 100 = 300\Omega \\ \mathrm{Legge} \ \mathrm{di} \ \mathrm{Ohm:} & \Delta V = R_e I \ \Rightarrow \ I = \frac{\Delta V}{R_e} = \frac{120}{300} = 0, 4A \\ \mathrm{Legge} \ \mathrm{di} \ \mathrm{Joule:} & P = R_e I^2 = 300 \cdot 0, 4^2 = 48W \\ P_1 = R_1 I^2 = 150 \cdot 0, 4^2 = 24W \\ P_2 = R_2 I^2 = 50 \cdot 0, 4^2 = 8W \\ P_3 = R_3 I^2 = 100 \cdot 0, 4^2 = 16W \end{array}$$

Problema (p.484 n.6).

Soluzione.

$$R_1 \ , R_2 \ \text{ed} \ R_3 \ \text{in parallelo} \ \Rightarrow \ \frac{1}{R_{1,2,3}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{80} + \frac{1}{120} + \frac{1}{192} = \frac{12+8+5}{960} = \frac{25}{960}$$

$$\Rightarrow R_{1,2,3} = \frac{960}{25} = 38, 4\Omega$$

$$R_{1,2,3} \ \text{ed} \ R_4 \ \text{in serie} \ \Rightarrow \ R_e = R_{1,2,3} + R_4 = 38, 4+51, 6 = 90\Omega$$
 Legge di Ohm: $\Delta V = R_e I \ \Rightarrow \ I = \frac{\Delta V}{R_e} = \frac{135}{90} = 1, 5A$

$$R_1I_1 = R_2I_2 \Rightarrow I_2 = \frac{R_1}{R_2}I_1 = \frac{80}{120}I_1 = \frac{2}{3}I_1$$

 $R_1I_1 = R_3I_3 \Rightarrow I_3 = \frac{R_1}{R_3}I_1 = \frac{80}{192}I_1 = \frac{5}{12}I_1$

Principio di Kirchhoff:
$$I_1 + I_2 + I_3 = I \implies I_1 + \frac{2}{3}I_1 + \frac{5}{12}I_1 = \frac{25}{12}I_1 = 1,5$$

$$\Rightarrow I_1 = \frac{12}{25} \cdot 1, 5 = 0,72A \Rightarrow I_2 = \frac{2}{3}I_1 = \frac{2}{3} \cdot 0,72 = 0,48A \text{ e } I_3 = \frac{5}{12}I_1 = \frac{5}{12} \cdot 0,72 = 0,3A$$

Problema (p.484 n.7).

Soluzione.

In generale, se un interruttore è aperto (OFF), allora in quel ramo del circuito non circola corrente (è come se non ci fosse).

	(a)	(b)	(c)	(d)	(e)
INTERRUTTORE 1	OFF	OFF	ON	ON	ON
INTERRUTTORE 2	OFF	ON	OFF	ON	ON
INTERRUTTORE 3	OFF	ON	ON	OFF	ON
I(A)	0,9	1,62	1,8	0,9	2

(a) C'è solo $R_4 = 100\Omega$ quindi, per la legge di Ohm,

$$I = \frac{\Delta V}{R} = \frac{90}{100} = 0,9A$$

(b) R_2 ed R_3 sono in serie $\Rightarrow R_{2,3} = R_2 + R_3 = 75 + 50 = 125\Omega$

$$R_{2,3}$$
 ed R_4 sono in parallelo $\Rightarrow R_e = \frac{R_{2,3}R_4}{R_{2,3} + R_4} = \frac{125 \cdot 100}{125 + 100} = \frac{12500}{225} = 55,60$ quindi, per la legge di Ohm, $I = \frac{\Delta V}{R} = \frac{90}{55,6} = 1,62A$

(c) R_1 ed R_3 sono in serie $\Rightarrow R_{1,3} = R_1 + R_3 = 50 + 50 = 100\Omega$

$$R_{1,3}$$
 ed R_4 sono in parallelo $\Rightarrow R_e = \frac{R_{1,3}R_4}{R_{1,3} + R_4} = \frac{100^2}{2 \cdot 100} = 50\Omega$ quindi, per la legge di Ohm, $I = \frac{\Delta V}{R} = \frac{90}{50} = 1,8A$

(d) In questo caso, come nel caso (a), l'unica resistenza effettiva è R_4 , quindi I=0,9A.

(e)
$$R_1 \text{ ed } R_2 \text{ sono in parallelo} \quad \Rightarrow R_{1,2} = \frac{R_1 R_2}{R_1 + R_2} = \frac{75 \cdot 50}{75 + 50} = \frac{3750}{125} = 30\Omega$$

$$R_{1,2} \text{ ed } R_3 \text{ sono in serie} \Rightarrow R_{1,2,3} = R_{1,2} + R_3 = 30 + 50 = 80\Omega$$

$$R_{1,2,3} \text{ ed } R_4 \text{ sono in parallelo} \quad \Rightarrow R_e = \frac{R_{1,2,3} R_4}{R_{1,2,3} + R_4} = \frac{80 \cdot 100}{80 + 100} = \frac{8000}{180} = 44, 4\Omega$$
 quindi, per la legge di Ohm,
$$I = \frac{\Delta V}{R} = \frac{90}{44, 4} = 2A$$

Problema (p.484 n.8).

DATI	RICHIESTE	CIRCUITO
$R_1 = 60\Omega$ $I = 1, 2A$ $\Delta V = 24V$	R	60Ω †1,2 A R ©24 V

Soluzione.

Legge di Ohm:
$$\Delta V = R_e I \implies R_e = \frac{\Delta V}{I} = \frac{24}{1,2} = 20\Omega$$

 R_1 ed R in parallelo $\implies \frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R} \implies \frac{1}{20} = \frac{1}{60} + \frac{1}{R} \implies$
 $\implies \frac{1}{R} = \frac{1}{20} - \frac{1}{60} = \frac{3-1}{60} = \frac{2}{60} = \frac{1}{30} \implies R = 30\Omega$

FINE ©