Расчетная работа Тензорный анализ, 1 курс, бакалавры.

1. Смешанный тензор $\mathbf{t} = \mathbf{\tau}_{j}^{i} \mathbf{e}_{i} \mathbf{e}^{j}$ задан на линейном пространстве L^{3} матрицей \mathbf{T} . Найти его матрицу \mathbf{T}' базисе $\mathbf{e}_{1}', \mathbf{e}_{2}', \mathbf{e}_{3}'$.

1.1.
$$\mathbf{T} = \begin{pmatrix} 9 & 15 & 0 \\ 15 & 14 & 15 \\ 0 & 15 & 9 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 2\mathbf{e}_3, \mathbf{e}'_2 = 2\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.2.
$$\mathbf{T} = \begin{pmatrix} 1 & -2 & 6 \\ -2 & -5 & 10 \\ 6 & 10 & -16 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 3\mathbf{e}_3, \mathbf{e}'_2 = 3/2\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.3.,
$$\mathbf{T} = \begin{pmatrix} 68 & 38 & -4 \\ 38 & 35 & 2 \\ -4 & 2 & 14 \end{pmatrix}$$
, $\mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 4\mathbf{e}_3$, $\mathbf{e}'_2 = 4/3\mathbf{e}_1 - \mathbf{e}_2$, $\mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$.

1.4.
$$\mathbf{T} = \begin{pmatrix} 1 & -4 & 0 \\ -4 & 13 & 1 \\ 0 & 1 & -2 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 3/2\mathbf{e}_3, \mathbf{e}'_2 = 3\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.5.
$$\mathbf{T} = \begin{pmatrix} 1 & 4 & 2 \\ 4 & 8 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$
, $\mathbf{e}_1' = \mathbf{e}_1 + \mathbf{e}_2 + 4/3\mathbf{e}_3$, $\mathbf{e}_2' = 4\mathbf{e}_1 - \mathbf{e}_2$, $\mathbf{e}_3' = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$.

1.6.
$$\mathbf{T} = \begin{pmatrix} 6 & -4 & 6 \\ -4 & 7 & 4 \\ 6 & 2 & 27 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 5\mathbf{e}_3, \mathbf{e}'_2 = 5/4\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.7.
$$\mathbf{T} = \begin{pmatrix} -12 & -24 & 24 \\ -24 & 48 & 44 \\ 24 & 44 & -48 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 5/4\mathbf{e}_3, \mathbf{e}'_2 = 5\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.8.
$$\mathbf{T} = \begin{pmatrix} 4 & 2 & 6 \\ 2 & 0 & 4 \\ 6 & 4 & 8 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 6\mathbf{e}_3, \mathbf{e}'_2 = 6/5\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.9.
$$\mathbf{T} = \begin{pmatrix} 0 & -4 & 4 \\ -4 & 12 & 0 \\ 4 & 0 & -4 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 6/5\mathbf{e}_3, \mathbf{e}'_2 = 6\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.10.
$$\mathbf{T} = \begin{pmatrix} 7 & 1 & -14 \\ 1 & 7 & -8 \\ -14 & -8 & 40 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 7\mathbf{e}_3, \mathbf{e}'_2 = 7/6\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.11.
$$\mathbf{T} = \begin{pmatrix} 1 & -3 & 0 \\ -3 & 8 & -1 \\ 0 & -1 & 2 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 7/6\mathbf{e}_3, \mathbf{e}'_2 = 7\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.12.
$$\mathbf{T} = \begin{pmatrix} 3 & -6 & 0 \\ -6 & 24 & -4 \\ 0 & -4 & -4 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 8\mathbf{e}_3, \mathbf{e}'_2 = 8/7 \,\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.13.
$$\mathbf{T} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, $\mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3$, $\mathbf{e}'_2 = 1/2\mathbf{e}_1 - \mathbf{e}_2$, $\mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$.

1.14.
$$\mathbf{T} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}, \ \mathbf{e}_1' = \mathbf{e}_1 + \mathbf{e}_2 + 1/2\mathbf{e}_3, \mathbf{e}_2' = \mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_3' = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.15.
$$\mathbf{T} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - 2\mathbf{e}_3, \mathbf{e}'_2 = 2/3\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.16.
$$\mathbf{T} = \begin{pmatrix} 4 & -2 & 2 \\ -2 & 0 & 3 \\ 2 & 3 & 4 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 2/3\mathbf{e}_3, \mathbf{e}'_2 = -2\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.17.
$$\mathbf{T} = \begin{pmatrix} -1 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - 3\mathbf{e}_3, \mathbf{e}'_2 = 3/4\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.18.
$$\mathbf{T} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & -2 & 0 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - 3\mathbf{e}_3, \mathbf{e}'_2 = 3/4\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.19.
$$\mathbf{T} = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & 2 \\ -2 & 2 & 0 \end{pmatrix}, \ \mathbf{e}_1' = \mathbf{e}_1 + \mathbf{e}_2 - 4\mathbf{e}_3, \mathbf{e}_2' = 4/5\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_3' = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.20.
$$\mathbf{T} = \begin{pmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 4/5\mathbf{e}_3, \mathbf{e}'_2 = -4\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.21.
$$\mathbf{T} = \begin{pmatrix} -3 & 2 & 0 \\ 2 & -3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - 5\mathbf{e}_3, \mathbf{e}'_2 = 5/6\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.22.
$$\mathbf{T} = \begin{pmatrix} 0 & -2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 5/6\mathbf{e}_3, \mathbf{e}'_2 = -5\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.23.
$$\mathbf{T} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - 6\mathbf{e}_3, \mathbf{e}'_2 = 6/7\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.24.
$$\mathbf{T} = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$$
, $\mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 6/7\mathbf{e}_3$, $\mathbf{e}'_2 = -6\mathbf{e}_1 - \mathbf{e}_2$, $\mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$.

1.25.
$$\mathbf{T} = \begin{pmatrix} -2 & 3 & 0 \\ 3 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - 7\mathbf{e}_3, \mathbf{e}'_2 = 7/8\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.26.
$$\mathbf{T} = \begin{pmatrix} -2 & 4 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - 8\mathbf{e}_3, \mathbf{e}'_2 = 8/9\,\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.27.
$$\mathbf{T} = \begin{pmatrix} -3 & 4 & 0 \\ 4 & -3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 8/9\mathbf{e}_3, \mathbf{e}'_2 = -8\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.28.
$$\mathbf{T} = \begin{pmatrix} 1 & 4 & 2 \\ 4 & 8 & 2 \\ 2 & 2 & 4 \end{pmatrix}, \ \mathbf{e}_1' = \mathbf{e}_1 + \mathbf{e}_2 - 9\mathbf{e}_3, \mathbf{e}_2' = 9/10\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_3' = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.29.
$$\mathbf{T} = \begin{pmatrix} 68 & 38 & -4 \\ 38 & 35 & 2 \\ -4 & 2 & 14 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 9/10\mathbf{e}_3, \mathbf{e}'_2 = -9\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.30.
$$\mathbf{T} = \begin{pmatrix} 9 & 15 & 0 \\ 15 & 14 & 15 \\ 0 & 15 & 9 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 10\mathbf{e}_3, \mathbf{e}'_2 = 10/9\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.31.
$$\mathbf{T} = \begin{pmatrix} 4 & 2 & 6 \\ 2 & 0 & 4 \\ 6 & 4 & 8 \end{pmatrix}, \ \mathbf{e}_1' = \mathbf{e}_1 + \mathbf{e}_2 + 11\mathbf{e}_3, \mathbf{e}_2' = 11/10\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_3' = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.32.
$$\mathbf{T} = \begin{pmatrix} 7 & 1 & -14 \\ 1 & 7 & -8 \\ -14 & -8 & 40 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1, \mathbf{e}'_2 = \mathbf{e}_3, \mathbf{e}'_3 = \mathbf{e}_2.$$

1.33.
$$\mathbf{T} = \begin{pmatrix} 3 & -6 & 0 \\ -6 & 24 & -4 \\ 0 & -4 & -4 \end{pmatrix}, \ \mathbf{e}'_1 = -\mathbf{e}_1, \mathbf{e}'_2 = -\mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_3.$$

1.34.,
$$\mathbf{T} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $\mathbf{e}'_1 = 2\mathbf{e}_1$, $\mathbf{e}'_2 = -\mathbf{e}_2$, $\mathbf{e}'_3 = 3\mathbf{e}_3$.

1.35.
$$\mathbf{T} = \begin{pmatrix} -3 & 2 & 0 \\ 2 & -3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 2\mathbf{e}_3, \mathbf{e}'_2 = 2\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.36.
$$\mathbf{T} = \begin{pmatrix} 0 & -2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 7\mathbf{e}_3, \mathbf{e}'_2 = 7/6\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.37.
$$\mathbf{T} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}, \ \mathbf{e}_1' = \mathbf{e}_1 + \mathbf{e}_2 + 3/2 \,\mathbf{e}_3, \mathbf{e}_2' = 3\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_3' = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.38.
$$\mathbf{T} = \begin{pmatrix} 1 & -3 & 0 \\ -3 & 8 & -1 \\ 0 & -1 & 2 \end{pmatrix}, \ \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 4/5 \,\mathbf{e}_3, \mathbf{e}'_2 = -4 \mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.39.
$$\mathbf{T} = \begin{pmatrix} 68 & 38 & -4 \\ 38 & 35 & 2 \\ -4 & 2 & 14 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 9/10\mathbf{e}_3, \mathbf{e}'_2 = -9\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.40.
$$\mathbf{T} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - 6\mathbf{e}_3, \mathbf{e}'_2 = 6/7 \mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.41.
$$\mathbf{T} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, $\mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3$, $\mathbf{e}'_2 = 1/2\mathbf{e}_1 - \mathbf{e}_2$, $\mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$.

1.42.
$$\mathbf{T} = \begin{pmatrix} 1 & 4 & 2 \\ 4 & 8 & 2 \\ 2 & 2 & 4 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - 9\mathbf{e}_3, \mathbf{e}'_2 = 9/10\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

1.43.
$$\mathbf{T} = \begin{pmatrix} -12 & -24 & 24 \\ -24 & 48 & 44 \\ 24 & 44 & -48 \end{pmatrix}, \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 + 5/4\mathbf{e}_3, \mathbf{e}'_2 = 5\mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3.$$

2. Найти матрицы произведения **xy** векторов $\mathbf{x} = x^i \mathbf{e}_i$, $\mathbf{y} = y^i \mathbf{e}_i \in L$, тензоров (\mathbf{xy}) и $[\mathbf{xy}]$, а также свертку $^2(\mathbf{xyz})_1$, где $\mathbf{z} = -\mathbf{f}^1 + \mathbf{f}^2 + \mathbf{f}^3 \in L^*$.

2.1.
$$\mathbf{x} = 1,1,2$$
, $\mathbf{y} = 2,-1,0$. **2.2.** $\mathbf{x} = 1,1,3$, $\mathbf{y} = 3/2,-1,0$. **2.3.** $\mathbf{x} = 1,1,4$, $\mathbf{y} = 4/3,-1,0$.

2.4.
$$\mathbf{x} = 1,1,3/2$$
, $\mathbf{y} = 3,-1,0$. **2.5.** $\mathbf{x} = 1,1,4/3$, $\mathbf{y} = 4,-1,0$. **2.6.** $\mathbf{x} = 1,1,5$, $\mathbf{y} = 5/4,-1,0$.

2.7.
$$\mathbf{x} = 1,1,5/4$$
, $\mathbf{y} = 5,-1,0$. **2.8.** $\mathbf{x} = 1,1,6$, $\mathbf{y} = 6/5,-1,0$. **2.9.** $\mathbf{x} = 1,1,6/5$, $\mathbf{y} = 6,-1,0$.

2.10.
$$\mathbf{x} = 1,1,7$$
, $\mathbf{y} = 7/6,-1,0$. **2.11.** $\mathbf{x} = 1,1,7/6$, $\mathbf{y} = 7,-1,0$.

2.12.
$$\mathbf{x} = 1,1,8$$
, $\mathbf{y} = 8/7,-1,0$. **2.13.** $\mathbf{x} = 1,1,-1$, $\mathbf{y} = 1/2,-1,0$.

2.14.
$$\mathbf{x} = 1,1,1/2$$
, $\mathbf{y} = 1,-1,0$. **2.15.** $\mathbf{x} = 1,1,-2$, $\mathbf{y} = 2/3,-1,0$.

2.16.
$$\mathbf{x} = 1,1,2/3$$
, $\mathbf{y} = -2,-1,0$. **2.17.** $\mathbf{x} = 1,1,-3$, $\mathbf{y} = 3/4,-1,0$.

2.18.
$$\mathbf{x} = 1,1,-3$$
, $\mathbf{y} = 3/4,-1,0$. **2.19.** $\mathbf{x} = 1,1,-4$, $\mathbf{y} = 4/5,-1,0$.

2.20.
$$\mathbf{x} = 1,1,4/5$$
 , $\mathbf{y} = -4,-1,0$. **2.21.** $\mathbf{x} = 1,1,-5$, $\mathbf{y} = 5/6,-1,0$.

2.22.
$$\mathbf{x} = 1,1,5/6$$
 , $\mathbf{y} = -5,-1,0$. **2.23.** $\mathbf{x} = 1,1,-6$, $\mathbf{y} = 6/7,-1,0$.

2.24.
$$\mathbf{x} = 1,1,6/7$$
, $\mathbf{y} = -6,-1,0$. **2.25.** $\mathbf{x} = 1,1,-7$, $\mathbf{y} = 7/8,-1,0$.

2.26.
$$\mathbf{x} = 1,1,-8$$
 , $\mathbf{y} = 8/9,-1,0$. **2.27.** $\mathbf{x} = 1,1,8/9$, $\mathbf{y} = -8,-1,0$.

2.28.
$$\mathbf{x} = 1,1,-9$$
 , $\mathbf{y} = 9/10,-1,0$. **2.29.** $\mathbf{x} = 1,1,9/10$, $\mathbf{y} = -9,-1,0$.

2.30.
$$\mathbf{x} = 1,1,10$$
 , $\mathbf{y} = 10/9,-1,0$. **2.31.** $\mathbf{x} = 1,1,11$, $\mathbf{y} = 11/10,-1,0$.

2.32.
$$\mathbf{x} = 1,0,0$$
 , $\mathbf{y} = 0,0,1$. **2.33.** $\mathbf{x} = -1,0,0$, $\mathbf{y} = 0,-1,0$.

2.34.
$$\mathbf{x} = 2,0,0$$
 , $\mathbf{y} = 0,-1,0$. **2.35.** $\mathbf{x} = 1,1,3$, $\mathbf{y} = 3/2,-1,0$.

2.36.
$$\mathbf{x} = 1,1,3/2$$
 , $\mathbf{y} = 3,-1,0$. **2.37.** $\mathbf{x} = 1,1,5$, $\mathbf{y} = 5/4,-1,0$.

2.38.
$$\mathbf{x} = 1,1,6$$
, $\mathbf{y} = 6/5,-1,0$. **2.39.** $\mathbf{x} = 1,1,7$, $\mathbf{y} = 7/6,-1,0$.

2.40.
$$\mathbf{x} = 1{,}1{,}8$$
, $\mathbf{y} = 8/7, -1{,}0$. **2.41.** $\mathbf{x} = 1{,}1{,}1/2$, $\mathbf{y} = 1{,}-1{,}0$.

2.42.
$$\mathbf{x} = 1,1,2/3$$
, $\mathbf{y} = -2,-1,0$. **2.43.** $\mathbf{x} = 1,1,-3$, $\mathbf{y} = 3/4,-1,0$.

3. Найти все компоненты тензорного произведения **xy** векторов $\mathbf{x} = x^i \mathbf{e}_i$, $\mathbf{y} = y^i \mathbf{e}_i$ (см. п. 2) в евклидовом пространстве с матрицей Грама $\mathbf{G} = (g_{ii})$.

3.1.
$$\mathbf{G} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
. **3.2.** $\mathbf{G} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 1 & -2 & 6 \end{pmatrix}$. **3.3.** $\mathbf{G} = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. **3.4.** $\mathbf{G} = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & -1 \\ 0 & -1 & 2 \end{pmatrix}$.

3.5.
$$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
. **3.6.** $\mathbf{G} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 2 \\ 0 & 2 & 5 \end{pmatrix}$. **3.7.** $\mathbf{G} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 5 & -1 \\ -1 & -1 & 2 \end{pmatrix}$. **3.8.** $\mathbf{G} = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 1 & 3 \end{pmatrix}$.

3.9.
$$\mathbf{G} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 4 & -2 \\ -1 & -2 & 3 \end{pmatrix}$$
. **3.10.** $\mathbf{G} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ -2 & -1 & 6 \end{pmatrix}$. **3.11.** $\mathbf{G} = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & -1 \\ 0 & -1 & 2 \end{pmatrix}$.

3.12.
$$\mathbf{G} = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 8 & 2 \\ -1 & 2 & 2 \end{pmatrix}$$
. **3.13.** $\mathbf{G} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. **3.14.** $\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$. **3.15.** $\mathbf{G} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

3.16.
$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$$
. **3.17.** $\mathbf{G} = \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$. **3.18.** $\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. **3.19.** $\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

3.20.
$$\mathbf{G} = \begin{pmatrix} 1/4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/4 \end{pmatrix}$$
. **3.21.** $\mathbf{G} = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$. **3.22.** $\mathbf{G} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. **3.23.** $\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

3.24.
$$\mathbf{G} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
. **3.25.** $\mathbf{G} = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$. **3.26.** $\mathbf{G} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 9 \end{pmatrix}$. **3.27.** $\mathbf{G} = \begin{pmatrix} 1 & 5 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

3.28.
$$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
. **3.29.** $\mathbf{G} = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. **3.30.** $\mathbf{G} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 5 & 2 \end{pmatrix}$. **3.31.** $\mathbf{G} = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 1 & 3 \end{pmatrix}$.

3.32.
$$\mathbf{G} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ -2 & -1 & 6 \end{pmatrix}$$
. **3.33.** $\mathbf{G} = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 8 & 2 \\ -1 & 2 & 2 \end{pmatrix}$. **3.34.** $\mathbf{G} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. **3.35.** $\mathbf{G} = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

3.36.
$$\mathbf{G} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. **3.37.** $\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$. **3.38.** $\mathbf{G} = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & -1 \\ 0 & -1 & 2 \end{pmatrix}$.

3.39.
$$\mathbf{G} = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. **3.40.**, $\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

3.41.,
$$\mathbf{G} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
. **3.42.**, $\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

3.43.,
$$\mathbf{G} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 5 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
.

- **4.** Найти внешнее произведение 1-форм $\mathbf{f} \wedge \mathbf{g}$, где $\mathbf{f} = \alpha_i \mathbf{f}^i$, $\mathbf{g} = \beta_i \mathbf{f}^i$, $\alpha_i = x^i$, $\beta_i = y^i$ (см. п. 2), а также значение $(\mathbf{f} \wedge \mathbf{g})(\mathbf{x}, \mathbf{y})$.
- **5.** По заданной матрице Грама **G** (см. п. 3) для тензора $\mathbf{S} = s_{ij} \mathbf{e}^i \mathbf{e}^j$, заданному матрицей **T** (см. п. 1):
 - а) определить главные значения и главные направления:
 - б) найти инварианты;
 - в) определить тип тензорной поверхности;
 - г) найти его шаровую и девиаторную составляющие.
- **6.** Для криволинейных координат на плоскости (u,v), где Oxy прямоугольная декартова система координат, найти:
 - а) ковариантный и контравариантный базисы;
 - б) матрицы перехода Р и Q;
 - в) символы Кристоффеля I и II рода;
- Γ) выражения ковариантных производных компонент вектора **w** через его физические компоненты.

6.1.
$$x = u$$
, $y = v^2$. **6.2.** $x = u^2$, $y = v$. **6.3.** $x = u^3$, $y = v$. **6.4.** $x = u$, $y = \cos v$.

6.5.
$$x = u$$
, $y = \sin v$. **6.6.** $x = \sin u$, $y = \cos v$. **6.7.** $x = 1 + u$, $y = v^2$. **6.8.** $x = 3u^2$, $y = 2v$.

6.9.
$$x = 1 + u^3$$
, $y = 4v$. **6.10.** $x = u$, $y = e^v$. **6.11.** $x = u$, $y = \ln v$. **6.12.** $x = u^3$, $y = \sin v$.

6.13.
$$x = \text{ch}u$$
, $y = v$. **6.14.** $x = \text{sh}u$, $y = v$. **6.15.** $x = \text{sh}u$, $y = v^2$. **6.16.** $x = 2\text{ch}u$, $y = \text{sh}v$

6.17.
$$x = e^u$$
, $y = \text{ch} v$. **6.18.** $x = u^2$, $y = \text{sh} v^2$. **6.19.** $x = \sin 2u$, $y = v$.

6.20.
$$x = \sin 2u$$
, $y = \cos 2v$. **6.21.** $x = u$, $y = e^{-3v}$. **6.22.** $x = \sin 2u$, $y = \sinh v$.

6.23.
$$x = 1 + u$$
, $y = v^3$. **6.24.** $x = u(1 + u)$, $y = v(1 + v)$. **6.25.** $x = u(1 + u^3)$, $y = v(1 + v^3)$.

6.26.
$$x = 1 + e^u$$
, $y = 1 + e^v$. **6.27.** $x = u^3$, $y = v^2$. **6.28.** $x = u$, $y = \cos v$. **6.29.** $x = u$, $y = \sin 2v$.

6.30.
$$x = 2u$$
, $y = v^2$. **6.31.** $x = \text{sh}u$, $y = 1 + v$. **6.32.** $x = \sin u$, $y = \text{sh}v$. **6.33.** $x = 3u^2$, $y = 2v^2$.

6.34.
$$x = u$$
, $y = 1 + \sin v$. **6.35.** $x = 1 + u$, $y = e^{-v}$. **6.36.** $x = \cos u$, $y = \sin 2v$.

6.37.
$$x = 1 + u^2$$
, $y = v^3$. **6.38.** $x = u$, $y = \cos 2v$. **6.39.** $x = \sinh u$, $y = v^2$. **6.40.** $x = 2 \cosh u$, $y = \sinh v$.

6.41.
$$x = e^u$$
, $y = \text{ch} v$. **6.42.** $x = u^2$, $y = \text{sh} v^2$. **6.43.** $x = \sin 2u$, $y = \cos 2v$.