Capstone Design 1 1st Presentation

Group 8

박영진 지도교수님 박연수 Wabi Demeke 조현근 장신원 부준호 김경서 손기영

Outline

Previous Events

Concept Generation/Evaluation

Future Plan

Problem Definition

Problem Definition

Previous Events

Previous Events

3/7	1 st meeting with Professor Young Jin Park
3/9	Material distribution
3/12	Brainstorming
3/14	2 nd meeting with Prof. Park
3/16	Brief meeting after ROS lecture (Deciding concept evaluation method)
3/19	Concept evaluation + Specifying corresponding robot concept (storage)
3/21	3 rd meeting with Prof. Park
3/22	Preliminary experiment & Concept Finalization
3/26	Review presentation / Presentation Material / Solidworks Drawing
3/27	4 th meeting with Prof. Park
3/28	Revise presentation material Group 8

Previous Events + Details

Overall progress

March

				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

3/7

Leader election

3/12

- 1. Gantt chart
- 2. "Collecting" brainstorming
- 3. Schedule check

3/16

- 1. Specify goal/Assignment distributed
- 2. Decide evaluation method

3/19

- 1. "Collecting" evaluation
 - Sort out best options
 - Use Pugh's method on remaining options
- 2. Decide storage method related to the grip method
- 3. Packaging/wiring unnecessary to make decision matrix

3/22

- 1. Preliminary experiment white band
- 2. Concept Finalization
- 3. Presentation preparation

Previous Events + Details

Overall progress

March

				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

3/7

Leader election

3/12

- 1. Gantt chart
- 2. "Collecting" brainstorming
- 3. Schedule check

3/16

- 1. Specify goal/Assignment distributed
- 2. Decide evaluation method

3/19

- 1. "Collecting" evaluation
 - Sort out best options
 - Use Pugh's method on remaining options
- 2. Decide storage method related to the grip method
- 3. Packaging/wiring unnecessary to make decision matrix

3/22

- 1. Preliminary experiment white band
- 2. Concept Finalization
- 3. Presentation preparation

Concept Generation/Evaluation

Concept Generation/Evaluation

Collecting Method Brainstorming

Filter out Brainstormed ideas Decision matrix – Pugh's method Concept Finalization Preliminary experiments

[Collecting Method] Brainstorming

[Collecting Method] Brainstorming

Filter out Brainstormed ideas

- Two-part (mechanical linkage) grip
- Rotating crane; pushing the balls into the box
- Adhesive tape-roller
- Elastic grid collector (inspired by tennis ball pickup tool)
- Banded drum roller (inspired by tennis ball pickup tool)
- Vacuum tube-box system
- Double dust pan/wedge grip (holes for storage included)
- Double conveyer belt
- Door system
- Sorting after collecting

Decision Matrix (modified)

- Pugh's Method

Issue: Collecti	Baseline	Two-part (mechanical linkage) grip	Rubber band elastic grip		Double dust pan/wedge grip (holes for storage included)	
Required Force	15		0.53	0.69	0.44	0.33
Weight	10	_	0.50	0.48	0.25	0.22
Grip accuracy	25	∑ ∩	0.59	0.70	0.81	0.83
Grip to storage acc	20	DAT	0.50	0.80	0.83	0.50
Assembly	15		0.65	0.42	0.61	0.48
Creativity	15		0.18	0.67	0.3	0.7
	Total		2.95	3.76	3.24	3.06
Weighted		l total	0.5015	0.6500	0.5960	0.5560

- Preparation

- Grid structure with white band

4cm (band gap)

5cm

6cm

- Parallel structure with white band

5cm of center to center distance

- Grid structure with rubber band

5cm of center to center distance

- Experiment Result

- Grid structure
- White band
- 5cm of center to center distance

Concept Details/Finalization

- 1) Abort internal storage
 - 1) Collect the balls
 - 2) Drop the whole storage on basket

Tuck the internal storage on the edge of basket, and back up

Quite risky (creative or pathetic)

- 3) Vertical plate in internal storage
 - 1) Collect the balls
 - 2) Push the vertical plate forward
 - 3) Front door of the storage opens and balls spill out

Requires two motors

Requires switch mechanism

- 4) Horizontal plate in internal storage
 - 1) Collect the balls
 - 2) Locate the storage above the basket
 - 3) Let go the horizontal plate
 - 4) Balls penetrate the net below

Requires two motors

Balls might get stuck

Horizontal plate may not drop evenly Group 8

- 5) Two gears
 - 1) Collect the balls
 - 2) Lower portion of gear : vertical motion only
 - 3) Upper portion of gear : rotational motion
 - 4) Internal storage tilts and the balls fall out

Big workspace, bulky

- 2) Rotate the internal storage
- + Rack and Pinion

Translational + Rotational movement

Gear manufacture

Rack and Pinion

Future Plan

Future Plan

Improve Scheduling Separate plans on each part

Improve final concept

Engineering Problems

Improve Scheduling

- Bitrix24

Future Plan

Improve Scheduling Separate plans on each part

Improve final concept

Engineering Problems

Engineering Problems

Gear Ratio

Required force to collect balls

Robot vibration control

Collector shape

Battery pack, PMS heat management

Outline

Problem Definition Previous Events Concept Generation/Evaluation Future Plan

Thank you

Concept Generation/Evaluation

Collecting Method Brainstorming Filter out Brainstormed ideas Decision matrix – Pugh's method Concept Finalization Preliminary experiments

Required force to collect the balls

$$F_{y,max}(d) = \frac{16kr^3}{L^2} \times 0.0382 \times \left(2 - \frac{d}{r}\right)^{3.7419}$$

k : Spring constant

r: radius of ball

L: length of band

d: band gap

41

Calculation for collecting ball with elastic band

조현근

1. Assumptions

Figure 1 Structure Assumption

Figure 2 Band Direction assumption

Assumption 1 - Ball is small enough to assume the 2-springs structure like Fig.1

 $Assumption \ 2-Band \ will \ move \ to \ the \ point \ on \ the \ surface \ of \ the \ ball \ which \ is \ nearest$ from its original position, X'.

Assumption $3 - \Delta << L$

2. Structure estimation

From assumption 1, the length change of each spring is $\sqrt{L^2/4 + \Delta^2} - L/2$. From assumption 3, it can changed into

$$\frac{L}{2} \left(1 + \frac{4\Delta^2}{L^2} \right)^{\frac{1}{2}} - \frac{L}{2} \cong \frac{L}{2} \left(\frac{1}{2} \frac{4\Delta^2}{L^2} \right) = \frac{\Delta^2}{L}$$

Net force occurs to the direction of Δ , so net force is

$$2k\frac{\Delta^2}{L} \cdot \frac{2\Delta}{L} = 4k\frac{\Delta^3}{L^2}$$

3. Force estimation

From figure 2, we can know that the nearest point on the ball surface from the original position X is X'. So Δ is $r - (d/2) \cdot \sec\theta$. Thinking 4 elastic bands, the force applies to the moving direction F_v is:

$$\mathrm{F_y} = 4 \times 4k \frac{\Delta^3}{L^2} \sin \theta = \frac{16k}{L^2} \left(r - \frac{d}{2} \sec \theta \right)^3 \sin \theta$$

To get maximum force,

$$\begin{split} \frac{L^2}{16k} \cdot \frac{\partial F_y}{\partial \theta} &= \left(r - \frac{\mathrm{d}}{2} \sec \theta \right)^2 \left[\cos \theta \left(r - \frac{d}{2} \sec \theta \right) - \frac{3}{2} d \tan^2 \theta \right] = 0 \\ &\quad r \cos \theta - \frac{d}{2} - \frac{3}{2} d \tan^2 \theta = r \cos \theta + d - \frac{3}{2} d \sec^2 \theta = 0 \\ &\quad \therefore \cos^3 \theta + \frac{d}{r} \cos^2 \theta - \frac{3}{2} \frac{d}{r} = 0 \end{split}$$

Getting $\cos \theta$ by each value of d/r by Matlab, F_v can be re-written as

$$F_y = \frac{16kr^3}{L^2} \left(1 - \frac{d}{2r} \frac{1}{\cos \theta}\right)^3 \sqrt{1 - \cos^2 \theta}$$

Assuming $F_y = A\left(2 - \frac{d}{r}\right)^B$, from least square method with Matlab, we could get

$$F_{y,\text{max}}(d) = \frac{16kr^3}{L^2} \times 0.0382 \times \left(2 - \frac{d}{r}\right)^{3.7419}$$

Figure 3 Plot of calculated F_y and F_y driven from least square method

4. Escape energy estimation

From assumption 2, the ball can escape when the ball approach to the θ =0. As the vertical movement of the ball y is $y = \frac{1}{2}d \tan \theta$, we can get energy equation as:

$$\begin{split} \mathbf{W} &= \int F_{y,\max} dy = \int_{\theta_0}^0 \frac{16kr^3}{L^2} \Big(1 - \frac{d}{2r} \sec \theta\Big)^3 \sin \theta \cdot \frac{1}{2} d \sec^2 \theta \ d\theta \\ &\quad \tau = \sec \theta \ , d\tau = \sin \theta \sec^2 \theta \ d\theta \\ &\quad \mathbf{W} = \int_{\frac{2r}{d}}^1 \frac{8kr^3 d}{L^2} \Big(1 - \frac{d}{2r}\tau\Big)^3 \ d\tau \\ &\quad \mathbf{t} = 1 - \frac{d}{2r}\tau, -2\mathbf{r} \cdot \mathbf{d}\mathbf{t} = \mathbf{d} \cdot \mathbf{d}\tau \\ &\quad \dot{\cdot} \mathbf{W} = \int_0^{1 - \frac{d}{2r}} - \frac{16kr^4}{L^2} t^3 dt = -\frac{4k}{L^2} \Big(r - \frac{d}{2}\Big)^4 \end{split}$$

So, the ball need to have the kinetic energy more than -W to escape from the elastic band structure.