9. Développements limités

- 9.1. NOTION DE DÉVELOPPEMENT LIMITÉ
- 9.2. DÉVELOPPEMENTS LIMITÉS USUELS
- 9.3. Opérations sur les DL

9. Développements limités

9.1. NOTION DE DÉVELOPPEMENT LIMITÉ

Définition

Soit $f: I \to \mathbb{R}$ une application, et soit x_0 un réel élément ou extrémité de I.

Soit n un entier naturel. On dit que f admet un développement limité (en abrégé un DL) à l'ordre <math>n en x_0 s'il existe des réels a_0, a_1, \ldots, a_n et une fonction $x \mapsto \varepsilon(x)$ tels que :

a Fordre
$$n$$
 en x_0 stil existe des reels a_0, a_1, \ldots, a_n et une fonction $\forall x \in I, f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + (x - x_0)^n \varepsilon(x)$, avec $\lim_{x \to x_0} \varepsilon(x) = 0$.

Avec les notations de Landau, cela peut s'écrire : $f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n)$.

Proposition (unicité du développement limité)

Soit f une application admettant un DL d'ordre n en x_0 : $f(x) = \sum_{k=0}^{n} a_k (x-x_0)^k + o((x-x_0)^n)$.

Alors les coefficients a_0, a_1, \dots, a_n sont définis de façon unique.

Le polynôme $P(x) = \sum_{k=0}^{n} a_k (x - x_0)^k$ est appelé partie principale du développement limité.

Troncature d'un développement limité

• Supposons que f admette un DL d'ordre n en x_0 . Soit p un entier naturel, $p \le n$. Alors f admet un DL d'ordre p en x_0 , obtenu par troncature. Plus précisément :

$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n) \implies f(x) = \sum_{k=0}^{p} a_k (x - x_0)^k + o((x - x_0)^p).$$

Par exemple, si $f(x) = 1 - x + 2x^3 + x^4 + o(x^4)$, alors $f(x) = 1 - x + 2x^3 + o(x^3)$.

• Il arrive qu'on utilise les notations "O" de Landau dans un développement limité. Par exemple, si $f(x) = 1 + 2x^2 + x^3 - x^4 + o(x^4)$, alors $f(x) = 1 + 2x^2 + x^3 + O(x^4)$. Cette dernière écriture contient un peu plus d'informations que $f(x) = 1 + 2x^2 + x^3 + o(x^3)$.

DL et équivalents

• On considère le développement $f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n)$.

Si tous les a_k sont nuls, alors f(x) est négligeable devant $(x-x_0)^n$ au voisinage de x_0 . Sinon, et si m est l'indice minimum tel que $a_m \neq 0$, alors $f(x) \sim a_m (x-x_0)^m$ en x_0 . Inversement, si $f(x) \sim a_m (x-x_0)^m$ en x_0 , avec $m \in \mathbb{N}$, alors $f(x) = a_m (x-x_0)^m + o((x-x_0)^m)$.

Par exemple :
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4) \implies \cos x - 1 + \frac{x^2}{2!} \sim \frac{x^4}{4!}$$
 en 0.

• Dans la pratique, on utilisera souvent les équivalents dans les recherches de limites, et les développements limités lorsqu'on cherche plus de précision (par exemple non seulement l'existence d'une demi-tangente mais encore la position de la courbe par rapport à celle-ci) ou quand il est difficile d'utiliser des équivalents (notamment dans les sommes.)

DL à gauche ou à droite en un point

Soit $f: I \to \mathbb{R}$ une application définie au voisinage d'un point x_0 .

Il arrivera que seule la restriction de f à $I \cap]a, +\infty[$ ou à $I \cap]-\infty, a[$ possède un DL en x_0 . On parlera dans ce cas de développement limité à droite ou à gauche en x_0 .

Définition (développement limité au voisinage de $\pm \infty$)

Soit $f: I \to \mathbb{R}$ une application définie au voisinage de $+\infty$ (ou de $-\infty$.)

Soit n un entier naturel. On dit que f admet un développement limité (en abrégé un DL) à l'ordre n en $+\infty$ (resp. en $-\infty$) s'il existe des réels a_0, a_1, \ldots, a_n et une fonction $x \mapsto \varepsilon(x)$

tels que :
$$\forall x \in I$$
, $f(x) = \sum_{k=0}^{n} \frac{a_k}{x^k} + \frac{\varepsilon(x)}{x^n}$, avec $\lim_{x \to \infty} \varepsilon(x) = 0$.

Avec les notations de Landau, cela peut s'écrire : $f(x) = \sum_{k=0}^{n} \frac{a_k}{x^k} + o\left(\frac{1}{x^n}\right)$.

Remarque

Tant pour les DL à droite où à gauche que pour les DL en $\pm \infty$, on dispose de propriétés analogues à celles qui ont déjà été vues (unicité, troncature, équivalents, etc.)

Importance des développements à l'origine

- f a un DL d'ordre n en $x_0 \Leftrightarrow g: x \mapsto g(x) = f(x_0 + x)$ a un DL d'ordre n en 0. Plus précisément : $f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n) \Leftrightarrow g(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$.
- De même, f a un DL d'ordre n en $\pm \infty \Leftrightarrow h: x \mapsto h\left(\frac{1}{x}\right)$ a un DL d'ordre n en 0. Plus précisément : $f(x) = \sum_{k=0}^{n} \frac{a_k}{x^k} + o\left(\frac{1}{x^n}\right) \Leftrightarrow h(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$.
- Ces deux remarques, et le fait que les calculs y sont plus simples, font que les DL sont généralement formés à l'origine (c'est d'ailleurs le cas des DL usuels.)

DL et continuité, DL et dérivabilité

- Dire que f admet un DL $f(x) = a_0 + o(1)$ d'ordre 0 en x_0 , c'est dire que f est continue (ou prolongeable par continuité) en x_0 .
 - Ce développement s'écrit nécessairement $f(x) = f(x_0) + o(1)$.
- Dire que que f admet un DL $f(x) = a_0 + a_1(x x_0) + o(x x_0)$ d'ordre 1 en x_0 , c'est dire que f est dérivable (après prolongement éventuel en x_0).
 - Ce développement s'écrit nécessairement $f(x) = f(x_0) + f'(x_0)(x x_0) + o(x x_0)$.
- En revanche un DL d'ordre $n \ge 2$ en x_0 n'implique pas que f soit deux fois dérivable en x_0 . Un contre-exemple est donné par l'application $f: x \mapsto x^3 \sin \frac{1}{x}$ en 0.
- Si f est de classe C^n de I dans IR, et si x_0 appartient à I, alors l'égalité de Taylor-Young prouve l'existence du DL de f en x_0 à l'ordre n. Ce DL s'écrit :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

Placement par rapport à une tangente ou à une asymptote

• On suppose que f admet un DL d'ordre n > 3 en x_0 :

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + o((x - x_0)^n).$$

On sait que cela implique la dérivabilité de f en x_0 , avec $f(x_0) = a_0$ et $f'(x_0) = a_1$.

L'équation de la tangente Δ à la courbe y = f(x) en $x = x_0$ est donc $y = a_0 + a_1(x - x_0)$.

Remarque : si le DL n'est valable qu'à gauche ou à droite de x_0 , c'est une demi-tangente.

Soit m l'indice minimum tel que m > 2 et $a_m \neq 0$.

Alors $f(x) - a_0 - a_1(x - x_0) \sim a_m(x - x_0)^m$ au voisinage de x_0 .

On en déduit le placement local de la courbe y = f(x) par rapport à Δ .

- \diamond Si m est pair, le placement de y = f(x) par rapport à Δ est donné par le signe de a_m . Si $a_m > 0$, la courbe est localement "au-dessus" de sa tangente.
 - Si $a_m < 0$, la courbe est localement "en-dessous" de sa tangente.
- \diamond Si m est impair, la courbe y = f(x) "traverse" Δ au voisinage de M_0 . Δ est donc une tangente d'inflexion.
- On suppose qu'au voisinage de $\pm \infty$ on a le développement : $\frac{f(x)}{x} = a_0 + \frac{a_1}{x} + \dots + \frac{a_n}{x^n} + o\left(\frac{1}{x^n}\right)$.

Alors $f(x) = a_0 x + a_1 + \frac{a_2}{x} + \dots + \frac{a_n}{x^{n-1}} + o\left(\frac{1}{x^{n-1}}\right)$ (c'est un "développement asymptotique".)

Ainsi $\lim_{x\to\pm\infty}(f(x)-a_0x-a_1)=0$. On en déduit que la droite Δ d'équation $y=a_0x+a_1$ est asymptote à la courbe y=f(x) au voisinage de $\pm\infty$.

Soit m l'indice minimum tel que $m \ge 2$ et $a_m \ne 0$. Alors $f(x) - a_0x - a_1 \sim \frac{a_m}{x^{m-1}}$.

On en déduit le placement de la courbe y = f(x) par rapport à Δ au voisinage de $\pm \infty$.

DL et parité

• Soit f une application définie sur un intervalle de centre 0.

On suppose que f admet un DL d'ordre n à l'origine : $f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$.

- \diamond Si f est paire, la partie principale du DL est paire. Autrement dit les coefficients a_{2k+1} sont nuls : $f(x) = a_0 + a_2 x^2 + \cdots + a_{2k} x^{2k} + \cdots$
- \diamond Si f est impaire, alors la partie principale du DL de f est un polynôme impair. Autrement dit les coefficients a_{2k} sont nuls : $f(x) = a_1x + a_3x^3 + \cdots + a_{2k+1}x^{2k+1} + \cdots$
- Si on forme le DL d'une fonction paire ou impaire, il pourra être utile d'utiliser cette parité et la notation "O" pour améliorer à peu de frais la précision du développement.

Supposons par exemple que f soit paire : $f(x) = a_0 + a_2x^2 + a_4x^4 + O(x^6)$ est plus précis que $f(x) = a_0 + a_2x^2 + a_4x^4 + o(x^5)$, lui-même plus précis que $f(x) = a_0 + a_2x^2 + a_4x^4 + o(x^4)$.

Une dernière remarque

Dans un DL $f(x) = a_0 + a_1(x - x_0) + a_2(x - x)^k + \cdots + a_n(x - x_0)^n + o((x - x_0)^n)$, on ne développera jamais les termes $a_k(x - x_0)^k$, avec $k \ge 2$.

En revanche, on rappelle que $y = a_0 + a_1(x - x_0) = a_1x + (a_0 - a_1x_0)$ est l'équation de la tangente en $M_0(x_0, f(x_0))$ à la courbe y = f(x).

9.2. Développements limités usuels

Tous les développements ci-dessous sont valables à l'origine, et peuvent être obtenus par la formule de Taylor-Young (ou par d'autres méthodes qui seront exposées plus loin.)

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n) = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) = \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2})$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$$

$$sh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2})$$

$$\operatorname{ch} x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \operatorname{o}(x^{2n+1}) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + \operatorname{o}(x^{2n+1})$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^6)$$

$$\ln x = x - \frac{x^3}{3} + \frac{2x^5}{15} + o(x^6)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + o(x^n) = \sum_{k=0}^n (-1)^k x^k + o(x^n)$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n) = \sum_{k=0}^n x^k + o(x^n)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n + o(x^n)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n) = \sum_{k=1}^n (-1)^{k+1} \frac{x^k}{k} + o(x^n)$$

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^n}{n} + o(x^n) = -\sum_{k=1}^n \frac{x^k}{k} + o(x^n)$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) = \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+2})$$

$$\arcsin x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots + o(x^{2n+2})$$

$$\arccos x = \frac{\pi}{2} - \arcsin x = \dots$$

9.3. Opérations sur les DL

Pour simplifier, les résultats sont énoncés pour des DL à l'origine, mais on peut facilement les adapter à des développements en un autre point, voire en $\pm \infty$.

Combinaisons linéaires

- Soient $f, g: I \to \mathbb{R}$ telles que $f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$ et $g(x) = \sum_{k=0}^{n} b_k x^k + o(x^n)$. Alors, pour tous scalaires α, β , on a: $(\alpha f + \beta g)(x) = \sum_{k=0}^{n} (\alpha a_k + \beta b_k) x^k + o(x^n)$.
- Exemples:

$$\Rightarrow \sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\left(\sin x + \cos x\right) = \frac{\sqrt{2}}{2}\left(1 + x - \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + o(x^4)\right).$$

$$\Rightarrow \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\left(\ln(1+x) - \ln(1-x)\right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}).$$

DL obtenu par primitivation

• Soit $f: I \to \mathbb{R}$ admettant un DL d'ordre n en $0: f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$.

Soit F une primitive de f sur l'intervalle I (donc une application dérivable telle que F' = f.) Alors F a en 0 un DL d'ordre n + 1 obtenu par intégration terme à terme de celui de f.

Plus précisément : $F(x) = F(0) + \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1} + o(x^{n+1})$ (ne pas oublier F(0)...)

• Exemples :

$$\Rightarrow \text{ Si } f(x) = \ln \cos x, \text{ alors } f'(x) = -\tan x = -x - \frac{x^3}{3} - \frac{2x^5}{15} + o(x^6).$$
On en déduit $f(x) = -\frac{x^2}{2} - \frac{x^4}{12} - \frac{x^6}{45} + o(x^7).$

$$\Rightarrow$$
 Si $f(x) = \arctan \frac{x+2}{1-2x}$, alors $f'(x) = \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + o(x^7)$.
On en déduit $f(x) = \arctan 2 + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + o(x^8)$.

DL obtenu par dérivation

• Soit f une application de classe C^{n+1} au voisinage de 0. Alors le développement limité de f' en 0 à l'ordre n s'obtient en dérivant terme à terme le développement limité de f en 0 à l'ordre n+1 (ces deux développements résultent de la formule de Taylor-Young).

Ce résultat est surtout utilisé pour des applications de classe \mathcal{C}^{∞} .

• Exemple : On sait que $\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n)$.

Par dérivation, on en déduit : $\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \dots + (n+1)x^n + o(x^n)$.

Un nouvelle dérivation donne : $\frac{1}{(1-x)^3} = 1 + 3x + 6x^2 + \dots + (n+2)(n+1)x^n + o(x^n)$.

Produit de deux DL

- Soient $f, g: I \to \mathbb{R}$ telles que $f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$ et $g(x) = \sum_{k=0}^{n} b_k x^k + o(x^n)$. Alors $(fg)(x) = \sum_{k=0}^{n} c_k x^k + o(x^n)$, avec $c_k = \sum_{i+j=k} a_i b_j$.
- Exemples:

Composition de deux DL

• Soient $f, g: I \to \mathbb{R}$ telles que $f(x) = \sum_{k=1}^n a_k x^k + \mathrm{o}(x^n)$ et $g(x) = \sum_{k=0}^n b_k x^k + \mathrm{o}(x^n)$.

Remarque : il est important que le coefficient constant a_0 du DL de f soit nul. Autrement dit l'application f doit être un infiniment petit quand x tend vers 0.

Dans ces conditions, l'application $g \circ f$ admet un DL d'ordre n en 0.

Si on note $P = \sum_{k=1}^{n} a_k x^k$ et $Q = \sum_{k=0}^{n} b_k x^k$ les parties régulières des DL de f et g, alors la partie

régulière de celui de $g \circ f$ est obtenue en conservant les termes de degré $\leq n$ dans $Q \circ P$.

Dans la pratique, on pose $g(X) = \sum_{k=0}^{n} b_k X^k + o(X^n)$ et on remplace X par le DL de f(x).

On calcule de proche en proche les DL des puissances successives $X^k = f(x)^k$, en ne gardant à chaque étape que les puissances x^m avec $m \le n$.

• Exemple :

Supposons
$$f(x) = x - x^2 + 2x^3 + x^4 + o(x^4)$$
 et $g(X) = 1 + X + 3X^2 - X^3 - X^4 + o(X^4)$.
Posons $X = f(x) = x - x^2 + 2x^3 + x^4 + o(x^4)$.

On trouve
$$X^2 = x^2 - 2x^3 + 5x^4 + o(x^4)$$
, puis $X^3 = x^3 - 3x^4 + o(x^4)$ et $X^4 = x^4 + o(x^4)$.

On en déduit le développement limité de $g\circ f$ à l'ordre 4 à l'origine :

$$(g \circ f)(x) = 1 + X + 3X^2 - X^3 - X^4 + o(X^4) = 1 + x + 2x^2 - 5x^3 + 18x^4 + o(x^4)$$

Les calculs précédents peuvent avantageusement prendre place dans un tableau comme indiqué ci-contre. Un tel tableau est particulièrement indiqué quand aucun des deux DL à composer n'est pair ou impair.

					coeff
\overline{X}	x	$-x^2$	$2x^3$	x^4	1
X^2		x^2	$-2x^3$	$5x^4$	3
X^3			x^3	$-3x^4$	-1
X^4				x^4	-1
	x	$2x^2$	$-5x^3$	$18x^{4}$	

Inverse d'un DL

• Soit $f: I \to \mathbb{R}$ admettant un DL d'ordre n en $0: f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$.

On suppose que $a_0 \neq 0$ (autrement dit f possède une limite non nulle en 0.)

Dans ces conditions l'application $x \mapsto \frac{1}{f(x)}$ possède un DL d'ordre n en 0.

Pour cela on écrit
$$\frac{1}{f(x)} = \frac{1}{a_0(1-g(x))}$$
 où $g(x) = -\frac{1}{a_0} \left(a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n) \right)$.

On compose ensuite le DL de $x \mapsto g(x)$ par celui de $x \mapsto \frac{1}{1-x}$.

• Exemple :

On veut calculer le développement limité de $x \mapsto \frac{1}{\cos x}$ à l'origine, à l'ordre 7.

On sait que
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + o(x^7)$$
.

On pose donc
$$\frac{1}{\cos x} = \frac{1}{1 - g(x)}$$
, avec $X = g(x) = \frac{x^2}{2!} - \frac{x^4}{4!} + \frac{x^6}{6!} + o(x^7)$.

On utilise ensuite
$$\frac{1}{1-X} = 1 + X + X^2 + X^3 + O(X^4)$$
.

On trouve
$$X^2 = \frac{x^4}{4} - \frac{x^6}{24} + o(x^7)$$
 et $X^3 = \frac{x^6}{8} + o(x^7)$.

On obtient finalement :
$$\frac{1}{\cos x} = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + o(x^7)$$
.

Quotient de deux DL

• Soient $f, g: I \to \mathbb{R}$ telles que $f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$ et $g(x) = \sum_{k=0}^{n} b_k x^k + o(x^n)$, avec $b_0 \neq 0$.

On suppose donc que l'application g ne tend vers 0 à l'origine.

Dans ces conditions, $\frac{f}{g}$ admet un DL en 0 à l'ordre n.

Ce développement est obtenu en effectuant le produit de celui de f par celui de $\frac{1}{q}$.

• Exemple :

On peut obtenir le développement limité de $\tan x$ en 0 par quotient.

On sait que
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + o(x^8)$$
.

On a vu précédemment que
$$\frac{1}{\cos x} = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + o(x^7)$$
.

On en déduit le développement limité de $x \mapsto \tan x$ en 0, à l'ordre 8 :

$$\tan x = \frac{\sin x}{\cos x} = x \left(1 - \frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + o(x^7) \right) \left(1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + o(x^7) \right)$$
$$= x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + o(x^8)$$

Quelques remarques pour finir

• Soient $f, g: I \to \mathbb{R}$ deux applications admettant un DL en 0.

On suppose que $f(x) = a_p x^p + a_{p+1} x^{p+1} + a_{p+2} x^{p+2} + \cdots$, avec $p \ge 0$.

De même, on suppose que $g(x) = b_q x^q + b_{q+1} x^{q+1} + b_{q+2} x^{q+2} + \cdots$, avec $q \ge 0$.

Pour former le DL du produit fg à l'ordre n, il suffit de former celui de f à l'ordre n-q et celui de g à l'ordre n-p.

Par exemple, pour calculer le DL de $(1 - \cos x)(\sin x - x)$ en 0 à l'ordre 8 :

- \Rightarrow On écrit $1 \cos x = \frac{x^2}{2!} \frac{x^4}{4!} + o(x^5)$ et $\sin x x = -\frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6)$.
- ♦ On en déduit

$$(1 - \cos x)(\sin x - x) = \left(\frac{x^2}{2} - \frac{x^4}{24} + o(x^5)\right)\left(-\frac{x^3}{6} + \frac{x^5}{120} + o(x^6)\right) = -\frac{x^5}{12} + \frac{x^7}{90} + o(x^8)$$

• Soient $f, g: I \to \mathbb{R}$ deux applications admettant un DL en 0.

On suppose que $f(x) = a_p x^p + a_{p+1} x^{p+1} + a_{p+2} x^{p+2} + \cdots$, avec $p \ge 1$.

De même, on suppose que $g(x) = b_0 + b_1 x + b_2 x^2 + \cdots$

Pour former le DL de $g \circ f$ en 0, on écrit : $(g \circ f)(x) = b_0 + b_1 f(x) + b_2 f^2(x) + \dots + b_k f^k(x) + \dots$

Mais le développement de $f^k(x)$ débute par $(a_p x^p)^k = a_p^k x^{pk}$.

On voit que pour obtenir le DL de $g \circ f$ en 0 à l'ordre n, il faut porter celui de f à un ordre m tel que $pm \leq n < p(m+1)$. Donc $m = \mathrm{E}(\frac{n}{p})$.

Par exemple, pour calculer le DL de $\ln(1+x-\arctan x)$ en 0 à l'ordre 6 :

- \diamond On écrit $X = x \arctan x = \frac{x^3}{3} \frac{x^5}{5} + o(x^6)$ et $\ln(1+X) = X \frac{X^2}{2} + O(X^3)$.
- \diamond On trouve $X^2 = \frac{x^6}{18} + o(x^6)$ puis $\ln(1 + x \arctan x) = \frac{x^3}{3} \frac{x^5}{5} \frac{x^6}{18} + o(x^6)$
- Quand on doit calculer le DL à un ordre déterminé d'une application f qui s'exprime en fonction d'autres applications g, h, \ldots il faut prendre le temps de comprendre à quel ordre les DL de g, h, \ldots doivent être calculés. Il y a en effet deux risques : celui de partir avec des DL trop "longs" et de faire beaucoup de calculs inutiles, et celui au contraire de partir avec des DL trop "courts" ce qui oblige à tout recommencer.

Par exemple, pour calculer le DL en 0 (à droite) de $f(x) = \frac{1}{x} \ln(\cos \sqrt{x})$ à l'ordre 2 :

- \Rightarrow On écrit $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + O(x^8)$ puis $\cos \sqrt{x} = 1 \frac{x}{2} + \frac{x^2}{24} \frac{x^3}{720} + o(x^3)$.
- $\diamond \text{ On pose } X = -\frac{x}{2} + \frac{x^2}{24} \frac{x^3}{720} + \mathrm{o}(x^3) \text{ et on compose par } \ln(1+X) = X \frac{X^2}{2} + \frac{X^3}{3} + \mathrm{o}(X^3).$
- \Rightarrow Après calcul, on trouve : $\ln(\cos\sqrt{x}) = -\frac{x}{2} \frac{x^2}{12} \frac{x^3}{45} + o(x^3)$.
- \diamond Finalement, la division par x fait chuter l'ordre du DL d'une unité.

Le développement cherché est donc : $\frac{1}{x}\ln(\cos\sqrt{x}) = -\frac{1}{2} - \frac{x}{12} - \frac{x^2}{45} + o(x^2)$.

Pour obtenir un résultat à l'ordre 2, il a donc fallu développer $x \mapsto \cos x$ à l'ordre 6.

• Quand on veut calculer le DL de $g \circ f$ en 0 en composant les développements de f et de g à l'origine, il faut veiller à ce que f(x) soit bien un infiniment petit lorsque x tend vers 0, afin que la substitution de X par f(x) soit justifiée dans le développement de g(X). Si ce n'est pas le cas, on peut souvent s'y ramener, comme dans les exemples suivants :

$$\Leftrightarrow \exp f(x) = \exp(a_0 + a_1 x + a_2 x^2 + \cdots) = \exp(a_0) \exp(a_1 x + a_2 x^2 + \cdots).$$

On pose alors
$$X = a_1x + a_2x^2 + \cdots$$
 et on utilise $\exp(X) = 1 + X + \frac{X^2}{2!} + \cdots$

$$\Rightarrow \ln f(x) = \ln(a_0 + a_1 x + a_2 x^2 + \dots) = \ln(a_0) + \ln\left(1 + \frac{a_1}{a_0} x + \frac{a_2}{a_0} x^2 + \dots\right).$$

On pose alors
$$X = \frac{a_1}{a_0} x + \frac{a_2}{a_0} x^2 + \cdots$$
 et on utilise $\ln(1+X) = X - \frac{X^2}{2} + \cdots$

$$f(x)^{\alpha} = (a_0 + a_1 x + a_2 x^2 + \cdots)^{\alpha} = a_0^{\alpha} \left(1 + \frac{a_1}{a_0} x + \frac{a_2}{a_0} x^2 + \cdots \right)^{\alpha}.$$

On pose alors
$$X = \frac{a_1}{a_0}x + \frac{a_2}{a_0}x^2 + \cdots$$
 et on utilise $(1+X)^{\alpha} = 1 + \alpha X + \frac{\alpha(\alpha-1)}{2}X^2 + \cdots$

• On sait que
$$(1+x)^{\alpha} = 1 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n)$$
, où $a_k = \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$.

Si on doit former un tel développement avec une valeur particulière de α , et plutôt que d'utiliser la formule donnant a_k , il est préférable de calculer les a_k de proche en proche, au moyen d'un tableau comme indiqué ci-dessous :

1	$*\alpha$	$*(\alpha-1)*\frac{1}{2}$	$*(\alpha-2)*\frac{1}{3}$	$*(\alpha - 3) * \frac{1}{4}$	$*(\alpha-4)*\frac{1}{5}$
a_0	$=a_1$	$=a_2$	$=a_3$	$=a_4$	$=a_5$

Par exemple, pour développer $f(x) = \sqrt{1+x}$:

1	$*\frac{1}{2}$	$*\frac{-1}{2}*\frac{1}{2}$	$*\frac{-3}{2}*\frac{1}{3}$	$*\frac{-5}{2}*\frac{1}{4}$	$*\frac{-7}{2}*\frac{1}{5}$
$=a_0$	$= a_1 = \frac{1}{2}$	$= a_2 = \frac{-1}{8}$	$= a_3 = \frac{1}{16}$	$= a_4 = \frac{-5}{128}$	$=a_5=\frac{7}{256}$

On en déduit :
$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \frac{7x^5}{256} + o(x^5)$$

• Il arrive qu'on ait besoin de développements limités pour trouver un simple équivalent d'une expression (notamment quand cette expression est constituée de sommes).

Par exemple, pour un équivalent de $\sin(\sinh x) - \sinh(\sin x)$ en 0, il faut développer $\sin x$ et sh x à l'ordre 7 (pour atteindre les premiers coefficients qui ne se simplifient pas) :

$$\diamond$$
 On trouve d'abord $\sin(\sin x) = x - \frac{x^5}{15} - \frac{x^7}{90} + o(x^7)$.

$$\diamond$$
 On trouve ensuite sh $(\sin x) = x - \frac{x^5}{15} + \frac{x^7}{90} + o(x^7)$.

$$\diamond$$
 On en déduit : $\sin(\sinh x) - \sinh(\sin x) = -\frac{x^7}{45} + o(x^7) \sim -\frac{x^7}{45}$.