A Simple Approach to Ordinal Classification

Ciencia de datos 17/18 02/6/2018

Procederemos a ilustrar la funcionalidad del algoritmo con el ejemplo base Iris

```
summary(iris)
```

```
Sepal.Length
                      Sepal.Width
                                       Petal.Length
                                                        Petal.Width
##
           :4.300
                            :2.000
                                             :1.000
    Min.
                     Min.
                                      Min.
                                                       Min.
                                                              :0.100
    1st Qu.:5.100
                     1st Qu.:2.800
##
                                      1st Qu.:1.600
                                                       1st Qu.:0.300
    Median :5.800
                     Median :3.000
                                      Median :4.350
                                                       Median :1.300
##
##
   Mean
           :5.843
                     Mean
                            :3.057
                                      Mean
                                             :3.758
                                                       Mean
                                                              :1.199
   3rd Qu.:6.400
                     3rd Qu.:3.300
                                      3rd Qu.:5.100
                                                       3rd Qu.:1.800
##
    Max.
           :7.900
                     Max.
                            :4.400
                                      Max.
                                             :6.900
                                                       Max.
                                                              :2.500
##
          Species
##
               :50
##
    versicolor:50
##
    virginica:50
##
##
##
```

Para mayor comodidad, se codificará la clase a enteros haciendo uso de la función revalue de la librería plyr

```
library(plyr)
iri<-iris
iri$Species <- revalue(iri$Species, c("setosa"="1", "versicolor"="2", "virginica"="3"))
iri</pre>
```

```
##
       Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
                  5.1
                               3.5
                                              1.4
                                                           0.2
## 2
                  4.9
                               3.0
                                              1.4
                                                           0.2
                                                                       1
## 3
                  4.7
                               3.2
                                              1.3
                                                           0.2
                                                                       1
## 4
                  4.6
                               3.1
                                              1.5
                                                           0.2
                                                                       1
## 5
                 5.0
                               3.6
                                              1.4
                                                           0.2
                                                                       1
## 6
                 5.4
                               3.9
                                              1.7
                                                           0.4
                                                                       1
## 7
                  4.6
                               3.4
                                              1.4
                                                           0.3
                                                                       1
## 8
                                              1.5
                                                           0.2
                 5.0
                               3.4
                                                                       1
## 9
                  4.4
                               2.9
                                              1.4
                                                           0.2
                                                                       1
## 10
                  4.9
                               3.1
                                              1.5
                                                           0.1
## 11
                 5.4
                               3.7
                                              1.5
                                                           0.2
                                                                       1
## 12
                  4.8
                               3.4
                                              1.6
                                                           0.2
                                                                       1
## 13
                  4.8
                               3.0
                                              1.4
                                                           0.1
                                                                       1
## 14
                  4.3
                               3.0
                                              1.1
                                                           0.1
                                                                       1
## 15
                               4.0
                                                           0.2
                 5.8
                                              1.2
                                                                       1
## 16
                 5.7
                               4.4
                                              1.5
                                                           0.4
                                                                       1
                               3.9
## 17
                 5.4
                                              1.3
                                                           0.4
                                                                       1
## 18
                               3.5
                                              1.4
                                                           0.3
                                                                      1
                 5.1
                                                           0.3
## 19
                 5.7
                               3.8
                                              1.7
                                                                       1
```

## 20	5.1	3.8	1.5	0.3	1
## 21	5.4	3.4	1.7	0.2	1
## 22	5.1	3.7	1.5	0.4	1
## 23	4.6	3.6	1.0	0.2	1
## 24	5.1	3.3	1.7	0.5	1
## 25	4.8	3.4	1.9	0.2	1
## 26	5.0	3.0	1.6	0.2	1
## 27	5.0	3.4	1.6	0.4	1
## 28	5.2	3.5	1.5	0.2	1
## 29	5.2	3.4	1.4	0.2	1
## 30	4.7	3.2	1.6	0.2	1
## 31	4.8	3.1	1.6	0.2	1
## 32	5.4	3.4	1.5	0.4	1
## 33	5.2	4.1	1.5	0.1	1
## 34	5.5	4.2	1.4	0.2	1
## 35	4.9	3.1	1.5	0.2	1
## 36	5.0	3.2	1.2	0.2	1
## 37		3.5		0.2	
	5.5		1.3		1
## 38	4.9	3.6	1.4	0.1	1
## 39	4.4	3.0	1.3	0.2	1
## 40	5.1	3.4	1.5	0.2	1
## 41	5.0	3.5	1.3	0.3	1
## 42	4.5	2.3	1.3	0.3	1
## 43	4.4	3.2	1.3	0.2	1
## 44	5.0	3.5	1.6	0.6	1
## 45	5.1	3.8	1.9	0.4	1
## 46	4.8	3.0	1.4	0.3	1
## 47	5.1	3.8	1.6	0.2	1
## 48	4.6	3.2	1.4	0.2	1
## 49	5.3	3.7	1.5	0.2	1
## 50	5.0	3.3	1.4	0.2	1
## 51	7.0	3.2	4.7	1.4	2
## 52	6.4	3.2	4.5	1.5	2
## 53	6.9	3.1	4.9	1.5	2
## 54	5.5	2.3	4.0	1.3	2
## 55	6.5	2.8	4.6	1.5	2
## 56	5.7	2.8	4.5	1.3	2
## 57	6.3	3.3	4.7	1.6	2
## 58	4.9	2.4	3.3	1.0	2
## 59	6.6	2.9	4.6	1.3	2
## 60	5.2	2.7	3.9	1.4	2
## 61	5.0	2.0	3.5	1.0	2
## 62	5.9	3.0	4.2	1.5	2
## 63	6.0	2.2	4.0	1.0	2
## 64	6.1	2.9	4.7	1.4	2
## 65	5.6	2.9	3.6	1.3	2
## 66	6.7	3.1	4.4	1.4	2
## 67	5.6	3.0	4.5	1.5	2
## 68	5.8	2.7	4.1	1.0	2
## 69	6.2	2.2	4.5	1.5	2
## 70	5.6	2.5	3.9	1.1	2
## 71	5.9	3.2	4.8	1.8	2
## 72	6.1	2.8	4.0	1.3	2
## 73	6.3	2.5	4.9	1.5	2

##	74	6.1	2.8	4.7	1.2	2
##	75	6.4	2.9	4.3	1.3	2
##	76	6.6	3.0	4.4	1.4	2
	77	6.8	2.8	4.8	1.4	2
	78	6.7	3.0	5.0	1.7	2
	79	6.0	2.9	4.5	1.5	2
##		5.7	2.6	3.5	1.0	2
##		5.5	2.4	3.8	1.1	2
	82	5.5	2.4	3.7	1.0	2
##	83	5.8	2.7	3.9	1.2	2
##	84	6.0	2.7	5.1	1.6	2
##	85	5.4	3.0	4.5	1.5	2
##	86	6.0	3.4	4.5	1.6	2
##	87	6.7	3.1	4.7	1.5	2
##	88	6.3	2.3	4.4	1.3	2
##	89	5.6	3.0	4.1	1.3	2
##	90	5.5	2.5	4.0	1.3	2
##	91	5.5	2.6	4.4	1.2	2
##	92	6.1	3.0	4.6	1.4	2
##	93	5.8	2.6	4.0	1.2	2
##	94	5.0	2.3	3.3	1.0	2
##	95	5.6	2.7	4.2	1.3	2
##	96	5.7	3.0	4.2	1.2	2
##	97	5.7	2.9	4.2	1.3	2
##	98	6.2	2.9	4.3	1.3	2
##	99	5.1	2.5	3.0	1.1	2
##	100	5.7		4.1	1.3	2
			2.8			
##	101	6.3	3.3	6.0	2.5	3
##	102	5.8	2.7	5.1	1.9	3
##	103	7.1	3.0	5.9	2.1	3
##	104	6.3	2.9	5.6	1.8	3
##	105	6.5	3.0	5.8	2.2	3
##	106	7.6	3.0	6.6	2.1	3
##	107	4.9	2.5	4.5	1.7	3
##	108	7.3	2.9	6.3	1.8	3
##	109	6.7	2.5	5.8	1.8	3
##	110	7.2	3.6	6.1	2.5	3
##	111	6.5	3.2	5.1	2.0	3
##	112	6.4	2.7	5.3	1.9	3
##	113	6.8	3.0	5.5	2.1	3
##	114	5.7	2.5	5.0	2.0	3
	115	5.8	2.8	5.1	2.4	3
	116	6.4	3.2	5.3	2.3	3
	117	6.5	3.0	5.5	1.8	3
	118	7.7	3.8	6.7	2.2	3
	119	7.7	2.6	6.9	2.3	3
	120	6.0	2.2	5.0	1.5	3
	121	6.9	3.2	5.7	2.3	3
	121					
		5.6	2.8	4.9	2.0	3
	123	7.7	2.8	6.7	2.0	3
	124	6.3	2.7	4.9	1.8	3
	125	6.7	3.3	5.7	2.1	3
	126	7.2	3.2	6.0	1.8	3
##	127	6.2	2.8	4.8	1.8	3

##	128	6.1	3.0	4.9	1.8	3
##	129	6.4	2.8	5.6	2.1	3
##	130	7.2	3.0	5.8	1.6	3
##	131	7.4	2.8	6.1	1.9	3
##	132	7.9	3.8	6.4	2.0	3
##	133	6.4	2.8	5.6	2.2	3
##	134	6.3	2.8	5.1	1.5	3
##	135	6.1	2.6	5.6	1.4	3
##	136	7.7	3.0	6.1	2.3	3
##	137	6.3	3.4	5.6	2.4	3
##	138	6.4	3.1	5.5	1.8	3
##	139	6.0	3.0	4.8	1.8	3
##	140	6.9	3.1	5.4	2.1	3
##	141	6.7	3.1	5.6	2.4	3
##	142	6.9	3.1	5.1	2.3	3
##	143	5.8	2.7	5.1	1.9	3
##	144	6.8	3.2	5.9	2.3	3
##	145	6.7	3.3	5.7	2.5	3
##	146	6.7	3.0	5.2	2.3	3
##	147	6.3	2.5	5.0	1.9	3
##	148	6.5	3.0	5.2	2.0	3
##	149	6.2	3.4	5.4	2.3	3
##	150	5.9	3.0	5.1	1.8	3

El siguiento paso consistirá en la creación de n° clases -1 (en este caso 3-1 = 2) dataframes con clase binaria descomponiendo el problema inicial. Considerando el orden de aparición de las clases

```
clases=as.integer(unique(iri$Species))
clases
```

```
## [1] 1 2 3
```

Seleccionaremos los índices de éstas:

```
indices<-which(iri$Species==clases[1])
indices</pre>
```

```
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ## [24] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ## [47] 47 48 49 50
```

Guardamos la variable clase en un vector auxiliar

```
y = as.integer(iri$Species)
```

Cambiamos los valores de estas clases a 0 y el resto a 1

```
y[indices]<-0
y = ifelse(y==0,0,1)</pre>
```

Con esto ya tenemos casi listo el primer data frame derivado, nos queda por juntar el resto del dataset con la nueva clase binaria. Más adelante se procederá a clasificar dicho conjunto de datos , por lo que es conveniente pasar la variable a factor

data1 = cbind(iri[,1:4],target1=as.factor(y)) sapply(data1,class)

Sepal.Length Sepal.Width Petal.Length Petal.Width target1
"numeric" "numeric" "numeric" "factor"

data1

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	target1
##	1	5.1	3.5	1.4	0.2	0
##	2	4.9	3.0	1.4	0.2	0
##	3	4.7	3.2	1.3	0.2	0
##	4	4.6	3.1	1.5	0.2	0
##	5	5.0	3.6	1.4	0.2	0
##	6	5.4	3.9	1.7	0.4	0
##	7	4.6	3.4	1.4	0.3	0
##	8	5.0	3.4	1.5	0.2	0
##	9	4.4	2.9	1.4	0.2	0
##	10	4.9	3.1	1.5	0.1	0
##	11	5.4	3.7	1.5	0.2	0
##	12	4.8	3.4	1.6	0.2	0
##	13	4.8	3.0	1.4	0.1	0
	14	4.3	3.0	1.1	0.1	0
##	15	5.8	4.0	1.2	0.2	0
	16	5.7	4.4	1.5	0.4	0
	17	5.4	3.9	1.3	0.4	0
	18	5.1	3.5	1.4	0.3	0
	19	5.7	3.8	1.7	0.3	0
	20	5.1	3.8	1.5	0.3	0
	21	5.4	3.4	1.7	0.2	0
	22	5.1	3.7	1.5	0.4	0
##		4.6	3.6	1.0	0.2	0
	24	5.1	3.3	1.7	0.5	0
	25	4.8	3.4	1.9	0.2	0
	26	5.0	3.0	1.6	0.2	0
	27	5.0	3.4	1.6	0.4	0
	28	5.2	3.5	1.5	0.2	0
	29	5.2	3.4	1.4	0.2	0
	30	4.7	3.2	1.6	0.2	0
	31 32	4.8 5.4	3.1 3.4	1.6 1.5	0.2	0
	33	5.4	4.1	1.5	0.4	0
	34	5.5	4.2	1.4	0.2	0
	35	4.9	3.1	1.5	0.2	0
##		5.0	3.2	1.2	0.2	0
##		5.5	3.5	1.3	0.2	0
##		4.9	3.6	1.4	0.1	0
##		4.4	3.0	1.3	0.2	0
##		5.1	3.4	1.5	0.2	0
##		5.0	3.5	1.3	0.3	0
##		4.5	2.3	1.3	0.3	0
##		4.4	3.2	1.3	0.2	0
##		5.0	3.5	1.6	0.6	0

##	45	5.1	3.8	1.9	0.4	0
##	46	4.8	3.0	1.4	0.3	0
##	47	5.1	3.8	1.6	0.2	0
##	48	4.6	3.2	1.4	0.2	0
##	49	5.3	3.7	1.5	0.2	0
##	50	5.0	3.3	1.4	0.2	0
##	51	7.0	3.2	4.7	1.4	1
##	52	6.4	3.2	4.5	1.5	1
##	53	6.9	3.1	4.9	1.5	1
##	54	5.5	2.3	4.0	1.3	1
##	55	6.5	2.8	4.6	1.5	1
##	56	5.7	2.8	4.5	1.3	1
##	57	6.3	3.3	4.7	1.6	1
##	58	4.9	2.4	3.3	1.0	1
##	59	6.6	2.9	4.6	1.3	1
##	60	5.2	2.7	3.9	1.4	1
##	61	5.0	2.0	3.5	1.0	1
##	62	5.9	3.0	4.2	1.5	1
##	63	6.0	2.2	4.0	1.0	1
##	64	6.1	2.9	4.7	1.4	1
##	65	5.6	2.9	3.6	1.3	1
##	66	6.7	3.1	4.4	1.4	1
##	67	5.6	3.0	4.5	1.5	1
##	68	5.8	2.7	4.1	1.0	1
##	69	6.2	2.2	4.5	1.5	1
##	70	5.6	2.5	3.9	1.1	1
##	71	5.9	3.2	4.8	1.8	1
##	72	6.1	2.8	4.0	1.3	1
##	73	6.3	2.5	4.9	1.5	1
##	74	6.1	2.8	4.7	1.2	1
##	75	6.4	2.9	4.3	1.3	1
##	76	6.6	3.0	4.4	1.4	1
##	77	6.8	2.8	4.8	1.4	1
##	78	6.7	3.0	5.0	1.7	1
##	79	6.0	2.9	4.5	1.5	1
	80	5.7	2.6	3.5	1.0	1
##	81	5.5	2.4	3.8	1.1	1
##		5.5	2.4	3.7	1.0	1
##		5.8	2.7	3.9	1.2	1
##		6.0	2.7	5.1	1.6	1
##		5.4	3.0	4.5	1.5	1
##		6.0	3.4	4.5	1.6	1
##		6.7	3.1	4.7	1.5	1
##		6.3	2.3	4.4	1.3	1
##		5.6	3.0	4.1	1.3	1
##		5.5	2.5	4.0	1.3	1
##		5.5	2.6	4.4	1.2	1
##		6.1	3.0	4.6	1.4	1
##		5.8	2.6	4.0	1.2	1
##		5.0	2.3	3.3	1.0	1
##		5.6	2.7	4.2	1.3	1
##		5.7	3.0	4.2	1.2	1
##		5.7	2.9	4.2	1.3	1
##	98	6.2	2.9	4.3	1.3	1

##	99	5.1	2.5	3.0	1.1	1
##	100	5.7	2.8	4.1	1.3	1
##	101	6.3	3.3	6.0	2.5	1
##	102	5.8	2.7	5.1	1.9	1
##	103	7.1	3.0	5.9	2.1	1
##	104	6.3	2.9	5.6	1.8	1
##	105	6.5	3.0	5.8	2.2	1
	106	7.6	3.0	6.6	2.1	1
	107	4.9	2.5	4.5	1.7	1
	108	7.3	2.9	6.3	1.8	1
	109	6.7	2.5	5.8	1.8	1
	110	7.2	3.6	6.1	2.5	1
	111	6.5	3.2	5.1	2.0	1
	112	6.4	2.7	5.3	1.9	1
	113	6.8	3.0	5.5	2.1	1
	114	5.7	2.5	5.0	2.0	1
	115	5.8	2.8	5.1	2.4	1
	116	6.4	3.2	5.3	2.3	1
	117	6.5	3.0	5.5	1.8	1
	118	7.7	3.8	6.7	2.2	1
	119	7.7	2.6	6.9	2.3	1
	120	6.0	2.2	5.0	1.5	1
	121	6.9	3.2	5.7	2.3	1
	122	5.6	2.8	4.9	2.0	1
	123	7.7	2.8	6.7	2.0	1
	124	6.3	2.7	4.9	1.8	1
	125	6.7	3.3	5.7	2.1	1
	126	7.2	3.2	6.0	1.8	1
	127	6.2	2.8	4.8	1.8	1
	128	6.1	3.0	4.9	1.8	1
	129	6.4	2.8	5.6	2.1	1
	130	7.2	3.0	5.8	1.6	1
	131	7.4	2.8	6.1	1.9	1
	132	7.9	3.8	6.4	2.0	1
	133	6.4	2.8	5.6	2.2	1
##	134	6.3	2.8	5.1	1.5	1
	135	6.1	2.6	5.6	1.4	1
	136	7.7	3.0	6.1	2.3	1
	137	6.3	3.4	5.6	2.4	1
	138	6.4	3.1	5.5	1.8	1
	139	6.0	3.0	4.8	1.8	1
	140	6.9	3.1	5.4	2.1	1
	141	6.7	3.1	5.6	2.4	1
	142	6.9	3.1	5.1	2.4	1
	143	5.8	2.7	5.1	1.9	1
	144	6.8	3.2	5.9	2.3	1
	145	6.7	3.3	5.7	2.5	1
	146	6.7	3.0	5.7	2.3	1
	147	6.3	2.5	5.2	1.9	1
	148	6.5	3.0	5.0	2.0	1
		6.2		5.4	2.0	
	149		3.4			1
##	150	5.9	3.0	5.1	1.8	1

Procederemos a repetir los pasos anteriores, teniendo en cuenta las clases ya convertidas en el paso anterior,

por lo que las añadiremos al vector de índices previamente creado.

```
indices<-c(indices,which(iri$Species==clases[2]) )
indices</pre>
```

```
##
     [1]
            1
                 2
                     3
                              5
                                   6
                                        7
                                            8
                                                 9
                                                    10
                                                         11
                                                             12
                                                                  13
                                                                      14
                                                                           15
                                                                                16
                                                                                    17
                             22
                                                    27
##
    [18]
           18
               19
                    20
                        21
                                  23
                                      24
                                           25
                                               26
                                                         28
                                                             29
                                                                  30
                                                                      31
                                                                           32
                                                                                33
                                                                                    34
##
    [35]
           35
               36
                    37
                         38
                             39
                                  40
                                      41
                                           42
                                               43
                                                    44
                                                         45
                                                             46
                                                                  47
                                                                      48
                                                                           49
                                                                                50
                                                                                    51
           52
                    54
                        55
                                           59
                                                         62
##
    [52]
               53
                             56
                                  57
                                      58
                                                60
                                                    61
                                                             63
                                                                  64
                                                                      65
                                                                           66
                                                                                67
                                                                                    68
           69
               70
                    71
                        72
                             73
                                           76
                                               77
                                                    78
                                                         79
                                                                           83
##
    [69]
                                  74
                                      75
                                                             80
                                                                  81
                                                                      82
                                                                                84
                                                                                    85
##
    [86]
           86
               87
                    88
                        89
                             90
                                 91
                                      92
                                           93
                                               94
                                                    95
                                                         96
                                                             97
                                                                  98
                                                                      99 100
```

Volvemos a crear de nuevo la variable auxiliar

```
y = as.integer(iri$Species)
```

Cambiamos los valores de estas clases a 0 y el resto a 1 considerando las anteriores

```
y[indices]=0
y = ifelse(y==0,0,1)
```

Creamos así el segundo dataset derivado

```
data2 = cbind(iri[,1:4],target2=as.factor(y))
sapply(data2,class)
```

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width target2
## "numeric" "numeric" "numeric" "factor"
```

data2

```
##
        Sepal.Length Sepal.Width Petal.Length Petal.Width target2
## 1
                  5.1
                               3.5
                                             1.4
                                                           0.2
## 2
                  4.9
                               3.0
                                             1.4
                                                           0.2
                                                                      0
## 3
                  4.7
                               3.2
                                             1.3
                                                           0.2
                                                                      0
## 4
                  4.6
                               3.1
                                             1.5
                                                           0.2
                                                                      0
## 5
                  5.0
                               3.6
                                             1.4
                                                           0.2
                                                                      0
## 6
                  5.4
                               3.9
                                             1.7
                                                           0.4
                                                                      0
## 7
                  4.6
                               3.4
                                             1.4
                                                           0.3
                                                                      0
## 8
                  5.0
                               3.4
                                             1.5
                                                           0.2
                                                                      0
## 9
                  4.4
                               2.9
                                             1.4
                                                           0.2
                                                                      0
## 10
                  4.9
                               3.1
                                             1.5
                                                           0.1
                                                                      0
## 11
                  5.4
                               3.7
                                             1.5
                                                           0.2
                                                                      0
## 12
                  4.8
                               3.4
                                             1.6
                                                           0.2
                                                                      0
## 13
                                                                      0
                  4.8
                               3.0
                                             1.4
                                                           0.1
## 14
                  4.3
                               3.0
                                             1.1
                                                           0.1
                                                                      0
## 15
                               4.0
                                                           0.2
                                                                      0
                 5.8
                                             1.2
## 16
                 5.7
                               4.4
                                             1.5
                                                           0.4
                                                                      0
## 17
                 5.4
                               3.9
                                             1.3
                                                           0.4
                                                                      0
## 18
                 5.1
                               3.5
                                             1.4
                                                           0.3
                                                                      0
                               3.8
                                                           0.3
                                                                      0
## 19
                 5.7
                                             1.7
```

## 20	5.1	3.8	1.5	0.3	0
## 21	5.4	3.4	1.7	0.2	0
## 22	5.1	3.7	1.5	0.4	0
## 23	4.6	3.6	1.0	0.2	0
## 24	5.1	3.3	1.7	0.5	0
## 25	4.8	3.4	1.9	0.2	0
## 26	5.0	3.0	1.6	0.2	0
## 27	5.0	3.4	1.6	0.4	0
## 28	5.2	3.5	1.5	0.2	0
## 29	5.2	3.4	1.4	0.2	0
## 30	4.7	3.2	1.6	0.2	0
## 31	4.8	3.1	1.6	0.2	0
## 32	5.4	3.4	1.5	0.4	0
## 33	5.2	4.1	1.5	0.1	0
## 34	5.5	4.2	1.4	0.2	0
## 35	4.9	3.1	1.5	0.2	0
## 36	5.0	3.2	1.2	0.2	0
## 37	5.5	3.5	1.3	0.2	0
## 38	4.9	3.6	1.4	0.1	0
## 39	4.4	3.0	1.3	0.2	0
## 40	5.1	3.4	1.5	0.2	0
## 41	5.0	3.5	1.3	0.3	0
## 42	4.5	2.3	1.3	0.3	0
## 43	4.4	3.2	1.3	0.2	0
## 44	5.0	3.5	1.6	0.6	0
## 45	5.1	3.8	1.9	0.4	0
## 46	4.8	3.0	1.4	0.3	0
## 47	5.1	3.8	1.6	0.2	0
## 48	4.6	3.2	1.4	0.2	0
## 49	5.3	3.7	1.5	0.2	0
## 50	5.0	3.3	1.4	0.2	0
## 51	7.0	3.2	4.7	1.4	0
## 52	6.4	3.2	4.5	1.5	0
## 53	6.9	3.1	4.9	1.5	0
## 54	5.5	2.3	4.0	1.3	0
## 55	6.5	2.8	4.6	1.5	0
## 56	5.7	2.8	4.5	1.3	0
## 57	6.3	3.3	4.7	1.6	0
## 58	4.9	2.4	3.3	1.0	0
## 59	6.6	2.9	4.6	1.3	0
## 60	5.2	2.7	3.9	1.4	0
## 61	5.0	2.0	3.5	1.0	0
## 62	5.9	3.0	4.2	1.5	0
## 63	6.0	2.2	4.0	1.0	0
## 64	6.1	2.9	4.7	1.4	0
## 65	5.6	2.9	3.6	1.3	0
## 66	6.7	3.1	4.4	1.4	0
## 67	5.6	3.0	4.5	1.5	0
## 68	5.8	2.7	4.1	1.0	0
## 69	6.2	2.2	4.5	1.5	0
## 70	5.6	2.5	3.9	1.1	0
## 71	5.9	3.2	4.8	1.8	0
## 72	6.1	2.8	4.0	1.3	0
## 73	6.3	2.5	4.9	1.5	0
		-	-	-	-

##	74	6 1	2 0	1 7	1 0	^
##	7 4 75	6.1 6.4	2.8 2.9	4.7 4.3	1.2 1.3	0
##	76	6.6	3.0	4.4	1.4	0
##	77			4.4		
##	78	6.8 6.7	2.8 3.0	5.0	1.4 1.7	0
						0
##	79	6.0	2.9	4.5	1.5	0
	80	5.7	2.6	3.5	1.0	0
	81	5.5	2.4	3.8	1.1	0
	82	5.5	2.4	3.7	1.0	0
	83	5.8	2.7	3.9	1.2	0
##	84	6.0	2.7	5.1	1.6	0
##	85	5.4	3.0	4.5	1.5	0
##	86	6.0	3.4	4.5	1.6	0
##	87	6.7	3.1	4.7	1.5	0
##	88	6.3	2.3	4.4	1.3	0
##	89	5.6	3.0	4.1	1.3	0
	90	5.5	2.5	4.0	1.3	0
##	91	5.5	2.6	4.4	1.2	0
	92	6.1	3.0	4.6	1.4	0
	93	5.8	2.6	4.0	1.2	0
	94	5.0	2.3	3.3	1.0	0
	95	5.6	2.7	4.2	1.3	0
##	96	5.7	3.0	4.2	1.2	0
##	97	5.7	2.9	4.2	1.3	0
##	98	6.2	2.9	4.3	1.3	0
	99	5.1	2.5	3.0	1.1	0
	100	5.7	2.8	4.1	1.3	0
##	101	6.3	3.3	6.0	2.5	1
##	102	5.8	2.7	5.1	1.9	1
##	103	7.1	3.0	5.9	2.1	1
##	104	6.3	2.9	5.6	1.8	1
##	105	6.5	3.0	5.8	2.2	1
##	106	7.6	3.0	6.6	2.1	1
##	107	4.9	2.5	4.5	1.7	1
##	108	7.3	2.9	6.3	1.8	1
##	109	6.7	2.5	5.8	1.8	1
##	110	7.2	3.6	6.1	2.5	1
	111	6.5	3.2	5.1	2.0	1
	112	6.4	2.7	5.3	1.9	1
	113	6.8	3.0	5.5	2.1	1
	114	5.7	2.5	5.0	2.0	1
##	115	5.8	2.8	5.1	2.4	1
	116	6.4	3.2	5.3	2.3	1
##	117	6.5	3.0	5.5	1.8	1
##	118	7.7	3.8	6.7	2.2	1
##	119	7.7	2.6	6.9	2.3	1
	120	6.0	2.2	5.0	1.5	1
##	121	6.9	3.2	5.7	2.3	1
	122	5.6	2.8	4.9	2.0	1
	123	7.7	2.8	6.7	2.0	1
##	124	6.3	2.7	4.9	1.8	1
	125	6.7	3.3	5.7	2.1	1
##	126	7.2	3.2	6.0	1.8	1
##	127	6.2	2.8	4.8	1.8	1

```
## 128
                 6.1
                              3.0
                                            4.9
                                                          1.8
                                                                     1
## 129
                 6.4
                              2.8
                                            5.6
                                                                     1
                                                          2.1
## 130
                 7.2
                              3.0
                                            5.8
                                                          1.6
## 131
                 7.4
                              2.8
                                            6.1
                                                          1.9
                                                                     1
## 132
                 7.9
                              3.8
                                            6.4
                                                          2.0
                                                                     1
## 133
                 6.4
                              2.8
                                            5.6
                                                          2.2
                                                                     1
## 134
                 6.3
                              2.8
                                            5.1
                                                          1.5
                                                                     1
## 135
                 6.1
                              2.6
                                            5.6
                                                          1.4
                                                                     1
## 136
                 7.7
                              3.0
                                            6.1
                                                          2.3
                                                                     1
## 137
                 6.3
                              3.4
                                            5.6
                                                          2.4
                                                                     1
## 138
                 6.4
                              3.1
                                            5.5
                                                          1.8
                                                                     1
## 139
                              3.0
                                            4.8
                                                          1.8
                 6.0
                                                                     1
## 140
                 6.9
                              3.1
                                            5.4
                                                          2.1
                                                                     1
## 141
                 6.7
                              3.1
                                            5.6
                                                          2.4
                              3.1
## 142
                 6.9
                                                          2.3
                                            5.1
                                                                     1
## 143
                 5.8
                              2.7
                                            5.1
                                                          1.9
## 144
                 6.8
                              3.2
                                            5.9
                                                          2.3
                                                                     1
## 145
                 6.7
                              3.3
                                            5.7
                                                          2.5
                                                                     1
## 146
                 6.7
                              3.0
                                            5.2
                                                          2.3
                                                                     1
## 147
                 6.3
                              2.5
                                            5.0
                                                          1.9
                                                                     1
## 148
                 6.5
                              3.0
                                            5.2
                                                          2.0
                                                                     1
## 149
                 6.2
                              3.4
                                            5.4
                                                          2.3
                                                                     1
                 5.9
                              3.0
## 150
                                            5.1
                                                          1.8
                                                                     1
```

El siguiente paso ser'ia crear un modelo de clasificaci'
on para conjunto de datos. Usaremos el c4.5, implementado en el paque
te de Rweka como j48

```
library(RWeka)
m1 <- J48(target1 ~ ., data = data1)
m1
## J48 pruned tree
## -----
##
## Petal.Width <= 0.6: 0 (50.0)
## Petal.Width > 0.6: 1 (100.0)
## Number of Leaves : 2
##
## Size of the tree :
m2 <- J48(target2 ~ ., data = data2)</pre>
m2
## J48 pruned tree
## -----
##
## Petal.Width <= 1.7
      Petal.Length <= 4.9: 0 (98.0/1.0)
## |
## |
      Petal.Length > 4.9
## |
          Petal.Width <= 1.5: 1 (3.0)
          Petal.Width > 1.5: 0 (3.0/1.0)
## Petal.Width > 1.7: 1 (46.0/1.0)
```

```
## Number of Leaves : 4
##
## Size of the tree :
                        7
Podemos hacer un estudio más detallado de los modelos, haciendo uso de la siguiente función
eval_m1 <- evaluate_Weka_classifier(m1, numFolds = 10, complexity = FALSE, class = TRUE)</pre>
eval_m1
## === 10 Fold Cross Validation ===
##
## === Summary ===
##
                                                              99.3333 %
## Correctly Classified Instances
                                           149
## Incorrectly Classified Instances
                                                              0.6667 %
                                             1
## Kappa statistic
                                             0.9849
## Mean absolute error
                                             0.0067
## Root mean squared error
                                             0.0816
## Relative absolute error
                                            1.4973 %
## Root relative squared error
                                            17.3203 %
## Coverage of cases (0.95 level)
                                            99.3333 %
## Mean rel. region size (0.95 level)
                                            50
## Total Number of Instances
                                           150
##
## === Detailed Accuracy By Class ===
##
                                                           F-Measure MCC
##
                    TP Rate FP Rate Precision Recall
                                                                                ROC Area PRC Area Class
##
                    0,980
                             0,000
                                       1,000
                                                  0,980
                                                            0,990
                                                                       0,985
                                                                                0,990
                                                                                           0,987
##
                                                  1,000
                    1,000
                             0,020
                                       0,990
                                                            0,995
                                                                       0,985
                                                                                0,990
                                                                                           0,990
## Weighted Avg.
                    0,993
                             0,013
                                       0,993
                                                  0,993
                                                            0,993
                                                                       0,985
                                                                                0,990
                                                                                           0,989
##
## === Confusion Matrix ===
##
##
              <-- classified as
          b
##
     49
         1 |
                a = 0
      0 100 |
                b = 1
eval_m2 <- evaluate_Weka_classifier(m2, numFolds = 10, complexity = FALSE, class = TRUE)
eval_m2
## === 10 Fold Cross Validation ===
##
## === Summary ===
##
## Correctly Classified Instances
                                           141
                                                              94
                                                                      %
                                                                      %
## Incorrectly Classified Instances
                                                              6
## Kappa statistic
                                             0.8643
                                             0.0744
## Mean absolute error
## Root mean squared error
                                            0.2422
                                            16.7021 %
## Relative absolute error
## Root relative squared error
                                            51.378 %
## Coverage of cases (0.95 level)
                                            94.6667 %
```

0

1

##

```
## Mean rel. region size (0.95 level)
                                                    %
                                            52
## Total Number of Instances
                                           150
##
## === Detailed Accuracy By Class ===
##
##
                    TP Rate FP Rate Precision Recall
                                                           F-Measure MCC
                                                                                ROC Area PRC Area Class
##
                    0,960
                             0,100
                                       0,950
                                                  0,960
                                                            0,955
                                                                       0,864
                                                                                0,925
                                                                                          0,947
                                                                                                     0
                    0,900
                             0,040
                                       0,918
                                                  0,900
                                                            0,909
                                                                       0,864
                                                                                0,925
                                                                                          0,827
                                                                                                     1
##
## Weighted Avg.
                    0,940
                             0,080
                                       0,940
                                                  0,940
                                                            0,940
                                                                       0,864
                                                                                0,925
                                                                                          0,907
##
##
  === Confusion Matrix ===
##
            <-- classified as
##
        b
    96
       4 |
            a = 0
##
##
     5 45 | b = 1
```

Necesitamos conocer las probabilidades generadas por nuestros modelos, para ello probaremos a predecir la instancia numero 130 de nuestro dataset, sabiendo de por si que pertenece a la clase 3

```
pred1<-predict(m1,iri[130,1:4],type="probability")
pred1

## 0 1
## 130 0 1

pred2<-predict(m2,iri[130,1:4],type="probability")
pred2

## 0 1
## 130 0.66666667 0.33333333</pre>
```