AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A processor-implemented method <u>for</u>			
2	enabling efficient communication between a first and a second node in a network			
3	of by routing network traffic through fault zones in the network, the method			
4	comprising:			
5	identifying a path from a-the first network node to athe-second network			
6	node;			
7	identifying a set of fault zones through which the identified path passes;			
8	for each fault zone in the set of fault zones, assigning as a zone weight the			
9	number of paths from the first network node to the second network node that			
10	include said fault zone, wherein the zone weight is determined from the path			
11	configuration of the network;			
12	calculating a path weight for the identified path, wherein said path weight			
13	is equal to the sums of said zone weights for each fault zone included in the			
14	identified path; and			
15	selecting the identified path as the current path for network traffic from the			
16	first node to the second node,			
17	whereby efficient communication from the first node to the second node is			
18	enabled along the selected path.			

(Original) The method of claim 1, further comprising:

identifying a new path from the first network node to the second network

1

2

2.

3	node;			
4	assigning zone weights to each fault zone in the new path;			
5	calculating a new path weight for the new path; and			
6	if the new path weight is lower than said path weight for the identified			
7	path, selecting the new path as the current path for network traffic from the first			
8	node to the second node.			
1	3. (Currently amended) The method of claim 1, wherein:			
2	the first network node is identified by a first identifier;			
3	the second network node is identified by multiple identifiers, including a			
4	second identifier;			
5	selecting the identified path as the current path for network traffic from the			
6	first node to the second node comprises selecting the identified path <u>as</u> the current			
7	path for network traffic from the first identifiernode -to the second node, wherein			
8	the second node is identified by the second identifier; and			
9	paths other than the identified path are selected as the current paths for			
10	network traffic from the first <u>node</u> identifier to the <u>second node</u> , wherein the			
11	second node is identified by multiple identifiers other than the second identifier.			
1	4. (Currently amended) A computer readable medium storing			
2	instructions that, when executed by a computer, cause the computer to perform a			
3	method for enabling efficient communication between a first and a second node in			
4	a network of by routing network traffic through fault zones in the network, the			
5	method comprising:			
6	identifying a path from a-the first network node to a-the second network			
7	node;			
8	identifying a set of fault zones through which the identified path leads;			
9	for each fault zone in the set of fault zones, assigning as a zone weight the			

10	number of paths from the first network node to the second network node that		
11	include said fault zone, wherein the zone weight is determined from the path		
12	configuration of the network;		
13	calculating a path weight for the identified path, wherein said path weight		
14	is equal to the sums of said zone weights for each fault zone included in the		
15	identified path; and		
16	selecting the identified path as the current path for network traffic from the		
17	first node to the second node,		
18	whereby efficient communication from the first node to the second node i		
19	enabled along the selected path.		
1	5. (Currently amended) A processor-implemented method <u>for</u>		
2	enabling efficient communication between a first and a second node in a subnet e		
3	by determining routing between nodes in a the subnet, the method comprising:		
4	identifying multiple fault zones in the subnet, each fault zone comprising		
5	one or more components of the subnet;		
6	configuring a central subnet manager to manage routing between nodes in		
7	the subnet;		
8	identifying a set of paths from a first node having a first identifier to a		
9	second node having multiple identifiers, including a second identifier, wherein		
10	traffic is deliverable to the second node using any of the multiple identifiers;		
11	for each fault zone traversed by one or more of the paths, establishing a		
12	zone weight based on the number of paths from the first node to the second node		
13	that traverse said fault zone, wherein the zone weight is determined from the path		
14	configuration of the subnet;		
15	for each path in the set of paths, establishing a path weight from the sums		
16	of the zone weights for each fault zone traversed by said path; and		
17	for each of the multiple identifiers of the second node, selecting as the		

18	current path from the first identifier node to the second node identified by each of			
19	the said identifier multiple identifiers, from said set of paths, the path having the			
20	best path weight,			
21	whereby efficient communication from the first node to the second node is			
22	enabled along the selected path.			
1	6. (Currently amended) A computer readable medium storing			
2	instructions that, when executed by a computer, cause the computer to perform a			
3	method for enabling efficient communication between a first and a second node in			
4	<u>a subnet of by</u> determining routing between nodes in <u>a the</u> subnet, the method			
5	comprising:			
6	identifying multiple fault zones in the subnet, each fault zone comprising			
7	one or more components of the subnet;			
8	configuring a central subnet manager to manage routing between nodes in			
9	the subnet;			
10	identifying a set of paths from a-the first node having a first identifier to a			
11	the second node having multiple identifiers, including a second identifier, wherein			
12	traffic is deliverable to the second node using any of the multiple identifiers;			
13	for each fault zone traversed by one or more of the paths, establishing a			
14	zone weight based on the number of paths from the first node to the second node			
15	that traverse said fault zone, wherein the zone weight is determined from the path			
16	configuration of the subnet;			
17	for each path in the set of paths, establishing a path weight from the sums			
18	of the zone weights for each fault zone traversed by said path; and			
19	for each of the multiple identifiers of the second node, selecting as the			
20	current path from the first identifier node to the second node, wherein the second			

node is identified by each of the said identifier multiple identifiers, from said set

of paths, the path having the best path weight,

21

22

23	whereby efficient communication from the first node to the second node is		
24	enabled along	the selected path.	
1	7-13	(Canceled).	
1	14.	(Currently amended) A system for enabling efficient	
2	communication between nodes in a subnet by determining routing through a-the		
3	subnet comprising multiple fault zones, comprising:		
4	a network node configured to interface a client computing device with the		
5	subnet, wherein each node is identifiable by one or more node identifiers; and		
6	a client	computing device, comprising:	
7		a processor; and	
8		a subnet manager module configured to determine routing between	
9	a first r	node and a second node in the subnet, wherein the first node is	
10	address	sable by a first identifier and the second node is addressable by	
11	multipl	e identifiers, including a second identifier;	
12	wherei	n said subnet manager determines routing between the first node	
13	and second no	de by:	
14		for each fault zone in the subnet traversed by a path from the first	
15	node to	the second node, calculating a zone weight based on the number of	
16	paths fi	rom the first node to the second node that traverse said fault zone,	
17	wherei	n the zone weight is determined from the path configuration of the	
18	subnet;		
19		for each of the paths from the first node to the second node,	
20	calcula	ting a path weight based on the sums of said zone weights for the	
21	fault zo	ones traversed by said path; and	
22	selectin	ng as the current path from the first node identifier to the second	
23	node identified	by the second identifier, the path from the first identifier to the	

24	second identifier having the best path weight,
25	whereby efficient communication from the first node to the second node is
26	enabled along the selected path.

- 1 15. (Original) The system of claim 14, wherein the client computing
 2 device further comprises:
 3 a memory configured to store path weights of current paths between
 4 multiple pairs of node identifiers.
- 1 16. (Original) The system of claim 14, wherein said memory is further 2 configured to store, in association with each of the current paths, zone weights for 3 fault zones traversed by the current path.
- 1 17. (Original) The system of claim 14, wherein said subnet manager is 2 further configured to disseminate routing information to a plurality of nodes in the 3 subnet, said routing information including said current path from the first 4 identifier to the second identifier.

18-24 (Canceled).