Introduction to multigrid

Iskander Ibragimov JGU Mainz

Overview

- Direct solvers
- Iterative solvers
 - Excercises
 - Advantages of iterative solver vs direct
- Steady-state diffusion equation
- Multigrid solver
 - Excercises

What is common?

https://www.youtube.com/watch?v=JvMuQN4FuvU https://seissol.org/

System of linear equations

$$A\mathbf{x} = \mathbf{b}$$

How to solve?

$$x = A \setminus b$$

Thank you for your attention!

System of linear equations

$$101x + 12y - 13z = 14$$

 $21x + 201y + 23z = 24$
 $-31x + 32y + 301z = 34$

$$A = \begin{bmatrix} 101 & 12 & -13 \\ 21 & 201 & 23 \\ -31 & 32 & 301 \end{bmatrix} b = \begin{bmatrix} 14 \\ 24 \\ 34 \end{bmatrix}$$

System of linear equations

$$101x_1 + 12x_2 - 13x_3 = 14$$

$$21x_1 + 201x_2 + 23x_3 = 24$$

$$-31x_1 + 32x_2 + 301x_3 = 34$$

Direct solve

Solve system of linear equations in code

$$\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$$

OR

$$\mathbf{x} = A^{-1}\mathbf{b}$$

Direct solve
 Solve system of linear equations in code

$$101x_1 + 12x_2 - 13x_3 = 14$$

$$21x_1 + 201x_2 + 23x_3 = 24$$

$$-31x_1 + 32x_2 + 301x_3 = 34$$

Guess x!

$$r = b - Ax_{guess}$$

$$r = b - Ax$$

$$x = x + r$$

$$\mathbf{r} = \mathbf{b} - \mathbf{A}\mathbf{x}$$
 $\mathbf{x} = \mathbf{x} + \mathbf{r}$
Check if norm of $(\mathbf{x} - \mathbf{x}_{old})$ is small

Iterative solvers Richardson method

$$r = w(b - Ax)$$

Iterative solvers Richardson method

$$r = w(b - Ax)$$

Iterative solvers Jacobi method

$$\mathbf{r} = D^{-1}(\mathbf{b} - (\mathbf{L} + \mathbf{U})\mathbf{x})$$

$$A = \begin{bmatrix} 101 & 12 & -13 \\ 21 & 201 & 23 \\ -31 & 32 & 301 \end{bmatrix}$$

$$D = \begin{bmatrix} 101 & & \\ & 201 & \\ & & 301 \end{bmatrix}$$

$$U = \begin{vmatrix} 12 & -13 \\ 23 & \end{vmatrix}$$

$$L = \left[\begin{array}{cc} 21 \\ -31 & 32 \end{array} \right]$$

Dampened Jacobi method

$$r = wD^{-1}(b - (L + U)x) + (1 - w)x$$

$$A = \begin{bmatrix} 101 & 12 & -13 \\ 21 & 201 & 23 \\ -31 & 32 & 301 \end{bmatrix}$$

$$D = \begin{bmatrix} 101 & & \\ & 201 & \\ & & 301 \end{bmatrix}$$

$$U = \begin{bmatrix} 12 & -13 \\ 23 \end{bmatrix}$$

$$L = \left[\begin{array}{cc} 21 \\ -31 & 32 \end{array} \right]$$

Gauss-Seidel method

$$\mathbf{r} = \mathbf{L}^{-1}(\mathbf{b} - \mathbf{U}\mathbf{x})$$

$$A = \begin{bmatrix} 101 & 12 & -13 \\ 21 & 201 & 23 \\ -31 & 32 & 301 \end{bmatrix}$$

$$D = \begin{bmatrix} 101 & & \\ & 201 & \\ & & 301 \end{bmatrix}$$

$$U = \begin{vmatrix} 12 & -13 \\ 23 & \end{vmatrix}$$

$$L = \left[\begin{array}{cc} 21 \\ -31 & 32 \end{array} \right]$$

Successive over-relaxation method

$$r = (1 - w)x + wD^{-1}(b - Ux - Lx)$$

$$A = \begin{bmatrix} 101 & 12 & -13 \\ 21 & 201 & 23 \\ -31 & 32 & 301 \end{bmatrix}$$

$$D = \begin{bmatrix} 101 & & \\ & 201 & \\ & & 301 \end{bmatrix}$$

$$U = \begin{bmatrix} 12 & -13 \\ 23 \end{bmatrix}$$

$$L = \begin{bmatrix} 21 \\ -31 & 32 \end{bmatrix}$$

Dampened Jacobi method simplified

$$r = wD^{-1}(b - (L + U)x) + (1 - w)x$$

Dampened Jacobi method

$$\mathbf{r} = \mathbf{w}\mathbf{D}^{-1}(\mathbf{b} - \mathbf{A}\mathbf{x})$$

Simplified dampened Jacobi method

$$A = \begin{bmatrix} 101 & 12 & -13 \\ 21 & 201 & 23 \\ -31 & 32 & 301 \end{bmatrix}$$

$$D = \begin{bmatrix} 101 & & \\ & 201 & \\ & & 301 \end{bmatrix}$$

$$U = \begin{bmatrix} 12 & -13 \\ 23 \end{bmatrix}$$

$$L = \begin{bmatrix} 21 \\ -31 & 32 \end{bmatrix}$$

Disclaimer for iterative methods:

A Needs to be positive definite to converge = diagonally dominant

$$A = \begin{bmatrix} 101 & 12 & -13 \\ 21 & 201 & 23 \\ -31 & 32 & 301 \end{bmatrix}$$

Why use iterative solvers? 100 n!2" n

- Only matrix-vector multiplication
- Most of our systems has zeros in matrix A
- Do not need to store additional matrices for factorization
- More scalable
- Much better to parallelize
- Can use preconditioners

Iterative solvers (sparse): ≈O(n²)

Temperature equation

(When internal heat production is negligible and there is no advection of material)

$$\kappa
abla^2 T = rac{\partial T}{\partial t}$$
 $\kappa rac{\partial^2}{\partial x^2} T = rac{\partial T}{\partial t}$
 $\frac{\partial T}{\partial t}$
 $\frac{\partial T}{\partial t} = \frac{\partial T}{\partial t}$
 $\frac{\partial T}{\partial t} = \frac{\partial T}{\partial t}$

T – temperature

t – time

 κ – diffusivity constant

Steady-state

$$\frac{\partial I}{\partial t} = 0$$

$$\kappa \frac{\partial^2 T}{\partial x^2} = 0$$

Temperature does not change in time

Finite-Difference Discretization

$$\kappa \frac{\partial^{2} T}{\partial x^{2}} = \mathbf{0}$$

$$\frac{\partial T}{\partial x_{left}} \frac{\partial T}{\partial x_{right}}$$

$$\frac{\partial T}{\partial x_{right}} = \frac{T_{i+1} - T_{i}}{dx}$$

$$\frac{\partial T}{\partial x_{left}} = \frac{T_{i} - T_{i-1}}{dx}$$

$$\frac{\partial^2 T_i}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right) = \frac{\frac{\partial T}{\partial x_R} - \frac{\partial T}{\partial x_L}}{dx} = \frac{1}{dx} \left(\frac{T_{i+1} - T_i}{dx} - \frac{T_i - T_{i-1}}{dx} \right)$$

Finite-Difference Discretization

$$\kappa \frac{\partial^2 T}{\partial x^2} = 0$$

Finite-difference approximation

$$k\frac{T_{i+1} - 2T_i + T_{i-1}}{dx^2} = 0$$

$$\frac{k}{dx^2}T_{i+1} - 2\frac{k}{dx^2}T_i + \frac{k}{dx^2}T_{i-1} = 0$$

$$S = \frac{k}{dx^2} - \text{Constant}$$

$$ST_{i+1} - 2ST_i + ST_{i-1} = 0$$

$$\frac{\partial^{2}T}{\partial x^{2}}$$

$$\frac{\partial T}{\partial x_{left}} \frac{\partial T}{\partial x_{right}}$$

$$T_{i-1} T_{i} T_{i+1}$$

$$\frac{\partial T}{\partial x_{right}} = \frac{T_{i+1} - T_i}{dx}$$
$$\frac{\partial T}{\partial x_{left}} = \frac{T_i - T_{i-1}}{dx}$$

$$\frac{\partial^2 T_i}{\partial x^2} = \frac{1}{dx} \left(\frac{T_{i+1} - T_i}{dx} - \frac{T_i - T_{i-1}}{dx} \right)$$

Fill up matrix A and RHS

$$ST_{i+1} - 2ST_i + ST_{i-1} = 0$$

$$A = \begin{bmatrix} -2S & 0 & 0 \\ 1 & -2S & 1 \\ 0 & 0 & -2S \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad b = \begin{bmatrix} T_{guess} \\ T_{guess} \\ T_{guess} \end{bmatrix}$$

$$b = \begin{bmatrix} T_{guess} \\ T_{guess} \\ T_{guess} \end{bmatrix}$$

New T

Old T/Initial Guess T

Boundary Conditions

$$\frac{\partial^{2}T}{\partial x^{2}}$$

$$\frac{\partial T_{i-1}}{\partial x} \frac{\partial T_{i}}{\partial x}$$

$$T_{left} T_{right}$$

$$A = \begin{bmatrix} -2S & 0 & 0 \\ 1 & -2S & 1 \\ 0 & 0 & -2S \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad b = \begin{bmatrix} T_{guess} \\ T_{guess} \\ T_{guess} \end{bmatrix}$$

$$b = \begin{bmatrix} I_{guess} \\ T_{guess} \\ T_{guess} \end{bmatrix}$$

Boundary Conditions

$$\frac{\partial^{2}T}{\partial x^{2}}$$

$$\frac{\partial T_{i-1}}{\partial x} \frac{\partial T_{i}}{\partial x}$$

$$T_{left} T_{right}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -2S & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad b = \begin{bmatrix} T_{left} \\ T_{guess} \\ T_{right} \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$b = \begin{bmatrix} I_{left} \\ T_{guess} \\ T_{right} \end{bmatrix}$$

Correction propagation

Go excercise

Iteration cycle

Courant–Friedrichs–Lewy (CFL) condition is dependent on spatial increment

Initial model

Model with small correction

Jacobi, Gauss-seidel etc

What is multigrid

• The essential multigrid principle is to approximate the smooth (long wavelength) part of the error on coarser grids.

Correction propagation

V-cycle

1.Initial model 3.Model with correction from coarser model

2. Solve small resolution problem

V-cycle 4 multigrid levels

Multigrid

Smoothing

Residuals look spiky!

Geometric Multigrid

Restriction operation

Fine Level

Coarse Level

Geometric Multigrid

Restriction operation

Fine Level

Coarse Level

Geometric Multigrid

Restriction operation

Fine Level

Coarse Level

nx

Geometric Multigrid Prolongation operation

$$P = \mathcal{P}$$

Geometric Multigrid Galerkin Coarsening

$$r1 = Rr$$

 $A1 = RAP$

R
A
P
= A1

Geometric Multigrid Galerkin Coarsening

You need to build all restriction operators in the beginning for geometric multigrid

What is an advantage of multigrid

- Good to parallelize
- Low memory usage
- Fast to converge
- Scalable
- No problem with sparse matrices
- Preconditioners
- Domain decomposition

Computational cost:

Direct solver: O(n³)

Iterative solvers (sparse): $O(nnz(A))+O(n) \approx O(n^2)$

Multigird: O(n)

LaMEM

Problem size:

Resolution	Cell Number
8x8x8	512
16x16x16	4096
32x32x32	32768
64x64x64	262144
128x128x128	2097152

Total solution time, Falling spheres 32 ^3

Total solution time, Falling spheres 16 ^3

Total solution time, Falling spheres 64 ^3

Acknowledgments

Anton Popov (JGU Mainz) – With multigrid code Evangelos Moulas (JGU Mainz) – Consultation