ALGORITHMS AND DATA STRUCTURES II

(COM2721, Spring 2024)

Graphs

(Haiko Müller)

Outline

Basic Definitions and Applications

Graph Traversal

Breadth First Search Depth First Search

Connected Components

Connectivity in Directed Graphs

DAGs and Topological Sort

Graphs

Graphs: Are an important and widespread tool to model networks, relations, and structures. Example: Viennese underground network

Undirected Graphs

undirected graph: G = (V, E)

- *V* is the set of vertices (or nodes).
- \blacksquare E is the set of edges between pairs of vertices.
- captures pairwise relationships between objects.
- notation for edges between vertex a and vertex b: $\{a,b\}$ or $\{b,a\}$.
- \blacksquare alternatively also ab or ba or a-b or b-a.
- **graph** size parameters/notation: n = |V|, m = |E|

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6, 7-8\}$$

$$n = 8$$

$$m = 11$$

Undirected Graphs: Further Definitions

adjacent, incident, neighbourhood:

Let $e = \{u, v\}$ be an edge in E.

- $\blacksquare u$ and v are adjacent, i.e., u is a neighbour of v and v is a neighbour of u.
- $N(v) = \{w \mid \{v, w\} \in E\}$ is the open neighbourhood of v.
- $lackbox{1.5} N[v] = \{v\} \cup N(v)$ is the closed neighbourhood of v.
- $lue{v}$ (respectively, u) and e are incident.
- $u, v = \{v, u\}.$

degree: deg(v) denotes the degree of the vertex v.

- ullet deg(v) is equal to the number of edges incident to v.
- \blacksquare We have $\sum\limits_{v \in V} \deg(v) = 2 \cdot |E|$ (Handshaking-Lemma).

Undirected Graphs: Further Definitions

Fundamental Definitions:

- multi-edge: more than one edge between the same two vertices.
- loop: an edge between a vertex and itself.

Simple Graph: An undirected graph without multi-edges and loops.

Hints:

- In this module we usually talk about finite simple graphs (if not stated otherwise).
- For certain application areas one also considers weighted graphs (with real-valued weights on the edges or vertices).

Directed Graphs

Directed Graph (Digraph): G = (V, E)

- *V* is the set of vertices (or nodes).
- $lue{E}$ is the set of arcs (or directed edges) between pairs of vertices.
- notation for an arc from a to b: (a,b) or $a \rightarrow b$
- $(a,b) \neq (b,a)$

Hint: Arcs in opposing directions are allowed in simple digraphs.

Directed Graphs: Further Definitions

Let a = (u, v) be an arc in E, then:

- $\blacksquare v$ is the head and u is the tail of a,
- lacksquare u is an incoming neighbour of v and v is an outgoing neighbour of u,
- $lacksquare N^-(v)$ is the set of incoming neighbours of v, i.e., $N^-(v)=\{\,u:(u,v)\in E\,\}$,
- $lacksquare N^+(v)$ is the set of outgoing neighbours of v, i.e., $N^+(v)=\{\,u:(v,u)\in E\,\}$,
- ullet deg⁻(v) is in-degree of v, i.e., deg⁻ $(v) = |N^-(v)|$,
- \bullet deg⁺(v) is out-degree of v, i.e., deg⁺(v) = $|N^+(v)|$.

We have: $deg(v) = deg^+(v) + deg^-(v)$.

Some Graph Applications

Graph	Nodes	Edges		
transportation	street intersections	highways		
communication	computers	fibre optic cables		
World Wide Web	web pages	hyperlinks		
social	people	relationships		
food web	species	predator-prey		
software systems	functions	function calls		
scheduling	tasks	precedence constraints		
circuits	gates	wires		

World Wide Web

Web graph.

■ Node: web page.

■ Edge: hyperlink from one page to another.

9-11 Terrorist Network

Social network graph.

- Node: people.
- Edge: relationship between two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

Ecological Food Web

Food web graph.

- Node = species.
- Edge = from prey to predator.

Reference: http://www.

Seven Bridges of Königsberg [Euler 1736]

SOLVTIO PROBLEMATIS
SOLVTIO PROBLEMATIS

AD

CEOMETRIAM SITV

PERTINENTIS.

AVCTORE

Leonb. Fulero.

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if $\{u, v\}$ is an edge.

- vertices: $1, 2, \ldots, n$.
- Two representations of each edge.
- Space proportional to n^2 .
- Checking if $\{u, v\}$ is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- vertices: $1, 2, \ldots, n$.
- Two representations of each edge.
- Space proportional to m + n.
- Checking if $\{u, v\}$ is an edge takes $\mathcal{O}(\deg(u))$ time.
- Identifying all edges takes $\Theta(m+n)$ time.

Adjacency matrix or adjacency lists?

Number of edges:

- \blacksquare a graph can have up to ${n \choose 2} = \frac{n(n-1)}{2} = \mathcal{O}(n^2)$ edges.
- for such a dense graph both representations use the same amount of space and are comparable.

Practice:

- graphs coming from applications are usually much less dense.
- often $m = \mathcal{O}(n)$.
- in these cases the representation via adjacency lists is preferable.

Hint: If we say that an algorithm runs in linear-time we assume the representation via adjacency lists and refer to a run-time of $\mathcal{O}(n+m)$.

Undirected Graphs: output all edges

Adjacency matrix:

Adjacency list:

```
\begin{array}{l} \textbf{input} \ : \ \text{adjacency lists} \ L \ \ \text{and vertices numbered} \ 0, \dots, n-1 \\ \textbf{for} \ u \leftarrow 0 \ \ \text{to} \ n-1 \ \ \textbf{do} \\ & \boxed{ \ \ \textbf{for} \ v \in L[u] \ \ \textbf{do} \\ & \boxed{ \ \ \ \ } \ \ \textbf{if} \ u < v \ \ \textbf{then} \ \ \textbf{print} \ \ \textbf{the edge} \ \{u,v\}; \end{array} }
```

Directed Graphs: output all edge

Adjacency matrix:

Adjacency list:

Paths and Connectivity

Definition: A path in an undirected graph G=(V,E) is a sequence $(v_1,v_2,\ldots,v_{k-1},v_k),\ k\geq 1$, of vertices with the property that each consecutive pair v_i,v_{i+1} is joined by an edge in E. The length of a path is k-1.

Hints: We also say that the path goes from v_1 to v_k and that the path is a v_1 - v_k -path.

Definition: A vertex u is reachable from a vertex v in G, if G contains an u-v-path.

Definition: An undirected graph is connected, if for every pair u and v of vertices, there is a path between u and v.

Shortest Paths and Distance

Definition: A shortest u-v-path between two vertices u and v is a path between u and v of shortest length. Note that a shortest path is always simple, i.e., no vertex occurs twice on the path.

Definition: The distance between vertices u and v in an undirected graph is the length of a shortest u-v-path.

Remark: If u is not reachable from v, we assume the distance to be ∞ .

Connectivity: Example

disconnected graph:

not connected: For instance, there is no path between 1 and 10.

Example for connectedness: The vertices 1 to 8 and their incident edges form a connected graph.

Cycle

Definition: A cycle is a path $(v_1, v_2, \dots, v_{k-1}, v_k)$ for which $\{v_1, v_k\}$ is an edge too, $k \geq 3$. The length of this cycle is k.

Example of a cycle: C = (1, 2, 4, 5, 3)

Paths and Cycles in Digraphs

Definition: A path in a digraph G=(V,E) is a sequence $(v_1,v_2,\ldots,v_{k-1},v_k)$, $k\geq 1$, of vertices with the property that every consecutive pair v_i,v_{i+1} is connected by a directed arc from v_i to v_{i+1} .

Remarks:

- The path goes from a start vertex to an end vertex. The reverse does not necessarily hold.
- v can be reached from u, if there is an u-v-path.
- shortest u-v-paths are simple (i.e., do not contain any vertex twice).

Cycle: A directed cycle is a path $(v_1, v_2, \dots, v_{k-1}, v_k)$ with $v_k \rightarrow v_1$ and $k \geq 2$.

Trees

Definition: An undirected graph is a tree, if it is connected and acyclic (*i.e.*, does not contain any cycle).

Theorem: Let G be an undirected graph with n vertices. Every two of the following conditions imply the third:

- *G* is connected.
- G does not contain a cycle.
- $lue{}$ G has $n{-}1$ edges.

Properties and Notions of Trees:

- a leaf is a vertex of degree one
- every tree with at least 2 vertices has at least one leaf
- there is a unique path between any two vertices in a tree

Rooted Tree or Arborescence

Rooted Tree: Obtained from a tree by choosing an arbitrary vertex r as the root and directing all edges away from r.

Importance: Modelling of hierarchical structures.

Phylogenetic Tree

Phylogenetic Tree: Models the evolutionary relationships between different species.

GUI-Hierarchies

GUI-Hierarchies: Describe the organisation of GUI components.

Outline

Basic Definitions and Applications

Graph Traversal
Breadth First Search
Depth First Search

Connected Components

Connectivity in Directed Graphs DAGs and Topological Sort

Graph Traversal: Applications

s-t connectivity problem: Is there a path between two given vertices s and t?

s-t shortest paths: The length of a shortest path between s and t (i.e., the distance between s and t)?

Applications:

- facebook.
- maze traversal.
- Kevin Bacon number.
- Fewest number of hops in a communication network.

Outline

Basic Definitions and Applications

Graph Traversal

Breadth First Search

Connected Components

Connectivity in Directed Graphs

DAGs and Topological Sort

Breadth First Search (BFS)

BFS Intuition: Explore outward from a start vertex s in all possible directions, adding nodes one "layer" at a time.

BFS Algorithm:

- $L_0 = \{s\}.$
- $\blacksquare L_1 = \text{all neighbours of vertices in } L_0.$
- L_2 = all vertices that are not in L_0 or L_1 and that are adjacent to a vertex in L_1 .
- $L_{i+1} = \text{all vertices that are not in any previous layer and}$ that are connected via an edge to a vertex in L_i .

BFS: Theorem

Theorem

 L_i contains all vertices of distance i from s for every i.

Proof.

Let $(v_0, v_1, v_2, \dots, v_n)$ be a shortest path between v_0 and v_n .

- v_0 is in L_0 .
- $lue{v}_1$ is in L_1 , since v_1 is a neighbour of v_0 .
- v_2 is in L_2 , since v_2 is a neighbour of v_1 and not a neighbour of v_0 (otherwise there would be a shorter path between v_0 and v_n using the edge between v_0 and v_2).
- This argument applies for all other vertices, which implies that $v_i \in L_i$ for every i. \square

BFS: Implementation using a Queue

Implementation: Array visited, Queue Q

```
input: graph G = (V, E) and start vertex s.
for v \in V do visited[v] \leftarrow false:
Q \leftarrow \{s\}; visited[s] \leftarrow true:
while Q \neq \emptyset do
    remove the first vertex u from Q
                                                          /* dequeue */;
                /* or any other operation on u */:
    print u
   for v \in N(u) do
       if !visited[v] then
           \mathsf{visited}[v] \leftarrow \mathsf{true};
        add v at the end of Q
                                                                             /* enqueue */
```

 \square N(u) is the set of neighbours of u in G

BFS: Example

Possible execution: start vertex = 1, visited vertices are in darkgray

BFS: Analysis

Theorem: BFS has a run-time of $\mathcal{O}(n+m)$.

Run-time: We need to consider three parts:

- initialisation
- while-loop
- for-loop (inside while-loop)

BFS: Analysis

initialisation:

- every vertex is considered once
- constant time per vertex.
- Therefore, the run-time for initialisation is $\mathcal{O}(n)$.

while-loop:

- every vertex is added to Q at most once, since it will be marked visited thereafter
- therefore, every vertex is considered only once in the while-loop.

BFS: Analysis

for-loop (inside while-loop):

- Let u be the current vertex before entering the for-loop.
- $lue{}$ Then all neighbours of u are considered in the for-loop.
- Therefore, the for-loop is executed exactly deg(u) times with each execution requiring only constant time.

Total:

- \blacksquare The total run-time is therefore $\mathcal{O}\big(n+\sum\limits_{u\in V}\deg(u)\big).$
- \blacksquare Since $\sum\limits_{u\in V}\deg(u)=2m$, we obtain the run-time of $\mathcal{O}(n+m).$

BFS-Tree

BFS-Tree: BFS creates a tree (BFS-tree), whose root is the start vertex s containing all vertices reachable from s.

Creation: Starting at s, whenever a vertex v is visited for the first time as a neighbour of a vertex u it becomes the child of u in the BFS-tree.

BFS-Tree: Property

Property: Let T be a BFS-tree of G=(V,E) and let $\{x,y\}$ be an edge of G. Then the level of x and y in T can differ by at most one.

BFS: Calculating the Levels

Application of BFS: Calculate the level for every vertex.

Implementation: Array level, Queue Q

```
input: graph G = (V, E) and start vertex s.
for v \in V do level[v] \leftarrow -1;
Q \leftarrow \{s\}; level[s] \leftarrow 0;
while Q \neq \emptyset do
    remove the first vertex u from Q:
    for v \in N(u) do
        if ||v|| = -1 then
            level[v] \leftarrow level[u]+1;
        add v at the end of Q
```

Outline

Basic Definitions and Applications

Graph Traversal

Breadth First Search

Depth First Search

Connected Components

Connectivity in Directed Graphs

DAGs and Topological Sort

Depth First Search (DFS)

Idea: From a visited node go first to another not yet visited neighbour (recursive call) before visiting its other neighbours.

```
// global array visited
input: graph G = (V, E) and start vertex s.
begin
   for v \in V do visited[v] \leftarrow false;
   \mathsf{DFS}(G,s);
procedure DFS(G, v)
   visited[v] \leftarrow true;
                             /* or any other operation on v */;
    print v
    for n \in N(v) do
       if !visited[n] then
        | \mathsf{DFS}(G,n)
```

DFS: Example

Possible run: start node = 1, visited nodes are darkgray

DFS: Analysis

Theorem: DFS runs in time $\mathcal{O}(n+m)$.

Runtime: We need to consider:

- initialisation
- for-loop

Initialisation:

- \blacksquare initialisation takes time $\mathcal{O}(n)$.
- DFS(G,v) is called at most once per node.

DFS: Analysis

for-loop in DFS(G,v):

- $lue{}$ considers all $\deg(v)$ nodes n in the adjacency list of v.
- therefore, for loop is executed deg(v) times.
- **a** all commands within the for-loop take constant time (apart from the recursive call of DFS(G,v), whose run-time is considered in the analysis for node v).

Total:

- \blacksquare therefore, the total the run-time is $\mathcal{O}\big(n + \sum\limits_{v \in V} \deg(v)\big).$
- \blacksquare since $\sum\limits_{v \in V} \deg(v) = 2m$, we obtain $\mathcal{O}(n+m).$

DFS-Tree

Creating a DFS-tree works in the same manner as for BFS, i.e.:

Starting at s, whenever a vertex v is visited for the first time as a neighbour of a vertex u it becomes the child of u in the DFS-tree.

DFS-tree property:

- the edges of the graph must be between vertices on the same root-to-leaf path
- in other words: the edges of the graph must not be between different branches of the DFS-tree

DFS vs BFS Search Order

Search Order: DFS differs from BFS:

- one first tries to get as far away from the start node as possible.
- once there are no unvisited nodes left in the neighbourhood, the recursion backtracks to find the first node having an unvisited neighbour
- edges in the graph only go between ancestors and descendants in the DFS-tree but can jump levels in the tree

Example: DFS vs BFS

Search Order:

- BFS: a, b, c, d, e, f, g, h ,i, j, k
- DFS: a, b, d, h, e, i, j, c, f, k, g

Outline

Basic Definitions and Applications

Graph Traversa

Breadth First Search Depth First Search

Connected Components

Connectivity in Directed Graphs

DAGs and Topological Sort

Connected Components

Connectivity (Reminder): An undirected graph is connected if there is a path between every pair of nodes in the graph.

Disconnected: If the graph contains a pair of nodes without a path between them, the graph is not connected.

Subgraph: A graph $G_1=(V_1,E_1)$ is a subgraph of a graph $G_2=(V_2,E_2)$, if $V_1\subseteq V_2$ and $E_1\subseteq E_2$.

Connected Component: A maximal connected subgraph of a graph is called a connected component. A disconnected graph is the disjoint union of its connected components.

Connected Component

Example: A disconnected graph with 3 connected components.

Connected Component

Identifying connected components: Find all nodes that can be reached from s.

Connected Component

Identifying connected components: Find all nodes that can be reached from s.

Solution:

- \blacksquare call DFS(G,s) or BFS(G,s).
- A node u is reachable from s if and only if visited[u]=true.

Counting Connected Components

DFSNUM algorithm:

```
input: graph G = (V, E), global array visited (shared with DFS).
procedure DFSNUM(G)
     for v \in V do visited[v] \leftarrow false;
     c \leftarrow 0:
     for v \in V do
          if !visited[v] then
          \begin{array}{|c|c|} c \leftarrow c + 1; \\ \mathsf{DFS}(G, v) \end{array}
     return c
```

Counting Connected Components

Runtime: The runtime is in $\mathcal{O}(n+m)$.

Analysis:

- Let G = (V, E) be the given graph and $G_1 = (V_1, E_1), \dots, G_r = (V_r, E_r)$ its connected components.
- Let |V| = n, |E| = m, and $|V_i| = n_i$ and $|E_i| = m_i$, for every i with $1 \le i \le r$.
- Clearly $n=n_1+\cdots+n_r$ and $m=m_1+\cdots+m_r$.
- for every connected component G_i $(1 \le i \le r)$ the algorithm performs DFS. This has a runtime of $\mathcal{O}(n_i + m_i)$.
- initialisation requires $\mathcal{O}(n)$ time.
- therefore, we obtain $\mathcal{O}(n + \sum_{i=1}^{r} (n_i + m_i)) = \mathcal{O}(2n + m) = \mathcal{O}(n + m)$ as the total run-time.

Outline

Basic Definitions and Applications

Graph Traversal

Breadth First Search

Depth First Search

Connected Components

Connectivity in Directed Graphs DAGs and Topological Sort

Search in Directed Graphs

Directed Reachability: Find all nodes that can be reached from a given node s.

directed shortest s-t path: Find a shortest path from s to t for two given nodes s and t.

Search in directed graphs: BFS and DFS can also be applied for directed graphs.

Example Web-crawler: Start from a website s. Find all websites that are directly or indirectly linked from s.

Strong Connectivity

Definition: Two nodes u and v are strongly connected if there is a path from u to v and vice versa.

Definition: A directed graph is strongly connected if every pair of nodes is strongly connected.

Remark: A directed graph is called weakly connected if the underlying undirected graph, *i.e.*, the undirected graph that one obtains by ignoring the direction of edges, is connected.

Strong Connectivity: Example

Strongly connected:

Not strongly connected (but weakly connected): node 1 cannot be reached by any other node; node 3 cannot reach any other node.

Strong Connectivity

Lemma

Let s be an arbitrary node in a directed graph G. G is strongly connected if and only if every node can be reached from s and every node can reach s.

Proof:

- ⇒ Follows from the definition.
- \Leftarrow path from u to v: combine a u-s path with a s-v path. combine a v-s path with a s-u path.
 - paths might and are allowed to overlap

Strong Connectivity: Algorithm

Theorem: Testing whether G is strongly connected can be achieved in $\mathcal{O}(n+m)$ time.

Proof:

- choose an arbitrary node s.
- execute BFS with start node s in.
- execute BFS with start node s in G^{rev}.
- return yes if and only if all nodes can be reached in both executions of BFS above.
- correctness follows immediately from the previous lemma.
 - \blacksquare G^{rev} obtained from G by reversing direction of every arc in G

Outline

Basic Definitions and Applications

Graph Traversal

Breadth First Search Depth First Search

Connected Components

Connectivity in Directed Graphs
DAGs and Topological Sort

Directed Acyclic Graph (DAG)

Definition: A DAG is a directed graph with no directed cycles.

Example: Ordering Constraint: arc (u,v) means that task u needs to be achieved before task v.

Definition: A topological ordering of a directed graph G = (V, E) is a linear order of its nodes, denoted by v_1, v_2, \ldots, v_n , such that i < j for every arc (v_i, v_j) .

Topological Order: Example

A DAG:

A topological ordering:

Ordering Constraints

Ordering Constraints: arc (u, v) means that task u has to be achieved before task v.

Applications:

- ullet Preconditions for modules: module u has to be completed before module v.
- **Compilation**: class u has to be compiled before class v.
- \blacksquare pipeline between processes: output of process u is required for the input to process v.

Lemma: If G has a topological ordering then G is a DAG. Proof: (by contradiction)

- Assume that G has a topological ordering v_1, \ldots, v_n and contains a directed cycle C.
- Let v_i be the node with the smallest index in C and let v_j be the node before v_i in C, i.e., there is an arc (v_i, v_i) .
- Due to the choice of i, it holds that i < j.
- On the other hand, because (v_j, v_i) is an arc and v_1, \ldots, v_n is a topological ordering it should be the case that j < i. A contradiction. \square

the supposed topological ordering: v_1, \ldots, v_n

Lemma: If G has a topological ordering then G is a DAG.

Question: Does every DAG have a topological ordering?

Question: If so, how to we calculate it?

Lemma: If G is a DAG then G has a node without incoming arcs. Proof: (by contradiction)

- Assume that G is a DAG and every node has at least one incoming arc.
- Chose an arbitrary node v and follow the arcs from v in the reverse direction. Since v has at least one incoming arc (u, v), we can reach u in this manner.
- $lue{}$ Since u has at least one incoming arc (x,u), we can reach x in this manner.
- $lue{}$ This can be repeated until we reach a node w for a second time; since G has only finitely many nodes.
- Then the sequence C of nodes between two visits of the same node w is a cycle, a contradiction. \square

Lemma: If G is a DAG, then G has a topological ordering.

Proof: (Induction for n)

- induction start: true if n=1.
- Consider a DAG G with n > 1 nodes. Take a node v without any incoming arcs.
- Consider the digraph $G \{v\}$, *i.e.*, the digraph G after removing v and all its incident arcs.
- $G \{v\}$ is a DAG, since removing v cannot create any cycles.
- By the induction hypothesis, it holds that $G \{v\}$ has a topological ordering.
- place v at the first position of a topological ordering and append the topological ordering for $G \{v\}$. This is valid since v has no incoming arcs. \square

Topological Ordering

Algorithm: auxiliary array count for removal of nodes, initially empty queue/stack Q.

```
input : DAG G = (V, E)
for v \in V do count[v] \leftarrow 0;
for v \in V do
  for (v, w) \in E do count[w] \leftarrow \text{count}[w] + 1;
for v \in V do
   if count[v] == 0 then
    Add v to the beginning of Q
while Q is non-empty do
    remove the first element v from Q:
    print v:
   for (v, w) \in E do
       count[w] \leftarrow count[w]-1;
     if count[w] == 0 then Add w to the beginning of Q;
```

Topological Ordering: Runtime

Theorem: The algorithm finds a topological ordering in time $\mathcal{O}(n+m)$.

Proof: We need to consider the following parts:

- initialisation
 - first for-loop for count.
 - second (nested) for-loop.
 - third for-loop for generating Q.
- while-loop (with nested for-loop).

initialisation:

- the first foreach-loop, which initialises count, takes time $\mathcal{O}(n)$.
- for the second nested for-loops: the inner-loop is executed $\deg^+(v)$ times for every node v. This takes time $\mathcal{O}(n+m)$.
- the third for-loop for generating Q takes time $\mathcal{O}(n)$.
- Therefore, the initialisation requires time O(n+m).

Topological Ordering: Runtime

while-loop:

- lacktriangle every node v is removed at most once from Q.
- therefore, the while-loop is executed at most once per node.

foreach-loop:

- Let v be the currently active node before the for-loop is executed.
- lacktriangle then the for-loop is executed once for every outgoing neighbour w of v.
- those are exactly $\deg^+(v)$ many. Therefore the for-loop is executed $\deg^+(v)$ times and the single commands inside the for-loop take constant time.
- lacktriangle every node w is added at most once to Q.

Topological Ordering: Runtime

Total:

- Initialisation takes time $\mathcal{O}(n+m)$
- while-loop takes time $\mathcal{O}(n+m)$
- therefore $\mathcal{O}(n+m)$ is the total runtime.

Topological sort: find an ordering à la DFS

The idea of topological sort:

- Start DFS at the first unvisited vertex.
- Follow only the outgoing edges, *i.e.* replace N(v) by $N^+(v)$.
- Number a vertex (in decreasing order) after all its out-neighbours are numbered.
- Repeat until no unvisited vertices are left.

Topological sort: the pseudocode

```
input: a dag G = (V, A)
output: a topological ordering \sigma: V \to \mathbb{N} of G
begin
   i \leftarrow |V|;
   for v \in V do mark v unvisited:
   while there is a unvisited vertex v \in V do TS-visit(v);
procedure TS-visit (v)
    if v is marked stacked then stop;
    if v is marked unvisited then
        mark v stacked:
        for w \in N^+(v) do TS-visit(w);
       mark v visited:
     \sigma(v) \leftarrow i; i \leftarrow i-1
```

Topological sort: correctness

Lemma

The algorithm topological sort computes a topological ordering of its input graph.

Proof.

Let vw be a directed edge of the digraph G = (V, A).

When $\mathsf{TS-visit}(v)$ is executed the vertex $w \in N^+(v)$ is considered in line 10.

If w is already visited at the time then $\sigma(v) \leq i < \sigma(w)$ holds.

Otherwise TS-visit(w) will terminate before TS-visit(v) terminates and therefore we have $\sigma(v) < \sigma(w)$.

Topological sort: running time

Lemma

Topological sort runs in linear time.

Proof.

As for DFS.