Basic Univariate Statistics

Chapter 6

Basic Statistics

- A statistic is a number, computed from sample data, such as a mean or variance.
- The objective of Statistics is to make inferences
 (predictions, decisions) about a population based upon
 information contained in a sample.
 - » Mendenhall
- The objective of Statistics is to make predictions about the cost of a weapon system based upon information in analogous systems.
 - » DoD Cost Analyst

Measures of Central Tendency

- These statistics describe the "middle region" of the sample.
 - Mean
 - » The arithmetic average of the data set.
 - Median
 - » The "middle" of the data set.
 - Mode
 - » The value in the data set that occurs most frequently.
- These are almost newenthe same, and potenties of the same of the

Mean

- It is used to estimate the population mean, (μ).
- Calculated by taking the sum of the observed values (y_i) divided by the number of observations (n).

Historical Transmogrifier

Average Unit Production Costs

<u>System</u>	<u>FY97</u> \$K	
1	22.2	_
2	17.3	$\sum_{i=1}^{n} a_i$
3	11.8	$-\sum_{i=1}^{2} y_i - y_1 + y_2 + \cdots + y_n$
4	9.6	$\overline{y} = \overline{\frac{i=1}{i}} = \underline{y_1 + y_2 + \cdots + y_n}$
5	8.8	n n y_i
6	7.6	21
7	6.8	$-222+17.3+\cdots+1.6$
8	3.2	V = - = \$9.06K
9	1.7	10
10	1.6	

Residual

Median

- The Median is the middle observation of an ordered (from low to high) data set
- Examples:
 - 1, 2, 4, 5, 5, 6, 8
 - » Here, the middle observation is 5, so the median is 5
 - 1, 3, 4, 4, 5, 7, 8, 8
 - » Here, there is no "middle" observation so we take the average of the two observations at the center

Media
$$=\frac{4+5}{2} = 4.5$$

Mode

- The Mode is the value of the data set that occurs most frequently
- Example:
 - 1, 2, 4, 5, 5, 6, 8
 - » Here the Mode is 5, since 5 occurred twice and no other value occurred more than once
- Data sets can have more than one mode, while the mean and median have one unique value
- Data sets can also have NO mode, for example:
 - 1, 3, 5, 6, 7, 8, 9
 - » Here, no value occurs more frequently than any other, therefore no mode exists
 - » You could also argue that this data set contains 7 modes since each value occurs as frequently as every other

Dispersion Statistics

- The Mean, Median and Mode by themselves are not sufficient descriptors of a data set
- Example:
 - Data Set 1: 48, 49, 50, 51, 52
 - Data Set 2: 5, 15, 50, 80, 100
- Note that the Mean and Median for both data sets are identical, but the data sets are glaringly different!
- The difference is in the dispersion of the data points
- Dispersion Statistics we will discuss are:
 - Range
 - Variance
 - Standard Deviation

Range

- The Range is simply the difference between the smallest and largest observation in a data set
- Example
 - Data Set 1: 48, 49, 50, 51, 52
 - Data Set 2: 5, 15, 50, 80, 100
- The Range of data set 1 is 52 48 = 4
- The Range of data set 2 is 100 5 = 95
- So, while both data sets have the same mean and median, the dispersion of the data, as depicted by the range, is much smaller in data set 1

Variance

- The Variance, s², represents the amount of variability of the data relative to their mean
- As shown below, the variance is the "average" of the squared deviations of the observations about their mean

$$s^2 = \frac{\sum (y_i - \overline{y})^2}{n-1}$$

• The Variance, s^2 , is the *sample* variance, and is used to estimate the actual *population* variance, σ^2

$$\sigma^2 = \frac{\sum (y_i - \mu)^2}{N}$$

Standard Deviation

- The Variance is not a "common sense" statistic because it describes the data in terms of squared units
- The Standard Deviation, s, is simply the square root of the variance

$$s = \sqrt{\frac{\sum (y_i - \overline{y})^2}{n-1}}$$

 The Standard Deviation, s, is the sample standard deviation, and is used to estimate the actual population standard deviation, σ

$$\sigma = \sqrt{\frac{\sum (y_i - \mu)^2}{N}}$$

Standard Deviation

• The sample standard deviation, s, is measured in the same units as the data from which the standard deviation is being calculated $\nabla (y - \overline{y})^2$

			,	\sim
System	FY97\$K	y _i - y	$(y_i - y)^2$	$s^2 = \frac{\sum_i (y_i - y_i)}{n-1}$
1	22.2	13.1	172.7	
2	17.3	8.2	67.9	$1727 + 67.9 + \cdots + 557$
3	11.8	2.7	7.5	10-1
4	9.6	0.5	0.3	
5	8.8	-0.3	0.1	$=\frac{3998}{9}=444(\$K^2)$
6	7.6	-1.5	2.1	$\frac{1}{9}$
7	6.8	-2.3	5.1	
8	3.2	-5.9	34.3	$s = \sqrt{s^2} = \sqrt{444(\$K^2)}$
9	1.7	-7.4	54.2	y 1 3 1 (42 t)
10	1.6	-7.5	55.7	=6.67(\$K)
Average	9.06			313 / (422)

- This number, \$6.67K, represents the average estimating error for predicting subsequent observations
- In other words: On average, when estimating the cost of transmogrifiers that belongs to the same population as the ten systems above, we would expect to be off by \$6.67K

Coefficient of Variation

- For a given data set, the standard deviation is \$100,000.
- Is that good or bad? It depends...
 - A standard deviation of \$100K for a task estimated at \$5M would be very good indeed.
 - A standard deviation of \$100K for a task estimated at \$100K is clearly useless.
- What constitutes a "good" standard deviation?
- The "goodness" of the standard deviation is not its value per se, but rather what percentage the standard deviation is of the estimated value.
- The Coefficient of Variation (CV) is defined as the "average" percent estimating error when predicting subsequent observations within the representative population.
- The CV is the ratio of the standard deviation to the mean.

$$CV = \frac{S_y}{y}$$

Coefficient of Variation

- In the first example, the CV is \$100K/\$5M = 2%
- In the second example, the CV is \$100K/\$100K = 100%
- These values are unitless and can be readily compared.
- The CV is the "average" percent estimating error for the population when uşing as the estimator.
- Or, the CV is the "average" percent estimating error when estimating the cost of future tasks.
- Calculate the CV from our previous transmogrifier cost database:
 - CV = \$6.67K/\$9.06K = 73.6%
- Therefore, for subsequent observations we would expect to be off on "average" by 73.6% when using \$9.06K as the estimated cost.

Normal Distribution

- •Continuous random variables are associated with populations which contain an infinitely large number of observations
- The heights of trees, the weight of humans, the cost of weapons, and the error when predicting the cost of a weapon system are all examples of continuous random variables.
- These continuous random variables can take on a variety of shapes, many of which approximate a bell-shaped curve. These bell-shaped curves approximate the normal probability distribution.

The Empirical Rule: Given a distribution of measurements drawn from a population that is approximately bell-shaped, the interval

- 1. will contain approximately 68 percent of the measurements.
- 2. will contain approximately 95 percent of the measurements.
- 3. will contain approximately all (99.7%) of the measurements.