Dosage acido - basique

I-Principe du dosage acido-basique:

1)Définition du dosage:

Le dosage (ou titrage) consiste à déterminer la concentration d'une espèce chimique présente dans une solution dite solution titrée en faisant réagir cette solution avec une solution de concentration connue dite solution titrante.

La réaction du dosage doit être rapide, totale et unique .(c'est dire que l'état final du système doit être atteint dans une courte durée et le réactif limitant est toujours entièrement consommé et la réaction ne doit pas être en compétition avec d'autres réactions).

2) Mode opératoire d'un dosage:

On introduit dans un bécher à l'aide d'une pissette jaugée un volume de la solution à titrer, puis on lui ajoute progressivement à l'aide d'une burette la solution titrante tout en utilisant un système d'agitation afin d'homogénéiser le mélange.

III-Dosage d'une solution d'acide éthanoique :

1)Etude expérimentale:

On introduit dans un bécher un volume $V_A=20mL$ d'une solution d'acide éthanoïque CH_3COOH de concentration c_A inconnue puis on lui ajoute progressivement à l'aide d'une burette graduée une solution d'hydroxyde de sodium $(Na^+ + HO^-)$ de concentration $c_B=0,02mol/L$.

On mesure le pH du mélange après chaque addition et on indique les valeurs obtenues dans le tableau suivant:

	V_B (mL)	0	2	4	8	10	12	14	14,5	15	15,5	16	18	20	24	26	30
F	ЭΗ	2,9	3,4	3,6	3,9	4,1	4,5	5	5,8	7,6	10	11	11,3	11,4	11,5	11,6	11,7

On trace la courbe représentant la variation du pH en fonction du volume V_B de soude versé.

2)Exploitation des résultats de l'expérience:

a)Equation de la réaction du dosage: :

Les ions Na⁺ sont inactifs, ils ne participent pas à la réaction du dosage.

Equation de la réaction du dosage: $CH_3COOH + HO^- \longrightarrow CH_3COO^- + H_2O$

C'est une réaction totale

c)Détermination du point d'équivalence:

■<u>Méthode des tangentes</u>: On trace la droite Δ tangente à la courbe au point A et on trace la droite Δ' parallèle à Δ au point B, puis on représente le segment [H, H'] perpendiculaire à Δ et à Δ' .

Ensuite on trace la droite Δ'' médiatrice du segment [H, H']. Cette dernière se coupe avec la courbe pH=f(V_B) au point E.

Coordonnées du point d'équivalence E:

$$V_{BE} = 15 mL$$
 $pH_E \approx 7.8$

$$pH_E \approx 7$$
,

■ <u>Méthode de la courbe dérivée</u>: Cette méthode permet de déterminer le volume d'équivalence, elle consiste à tracer, à l'aide d'un logiciel, la courbe dérivée: $\frac{dpH}{dV_p} = f(pH)$. Le volume d'équivalence V_{BE} correspond à l'abscisse du maximum de cette courbe.

Cette méthode conduit dans le cas de notre dosage à V_{BE}=15mL.

■ <u>Méthode d'utilisation de l'indicateur coloré</u>: Expérimentalement on détermine le volume d'équivalence en utilisant un indicateur coloré ,lorsque sa couleur change brusquement à la teinte sensible on est à l'équivalence ,on obtient donc la valeur du volume de soude versé à l'équivalence.

Choix de l'indicateur coloré:

L'indicateur coloré correspondant est celui dont la zone de virage contient le pH du point d'équivalence pH_E..

Dans ce dosage le rouge de crésol est convenable car sa zone de virage: [7,2-8,8] contient $pH_E = 7,8$.

d) Relation d'équivalence:

- -- Avant l'équivalence, HO est le réactif limitant - Après l'équivalence, CH₃COOH est le réactif limitant.
- A l'équivalence le mélange est stœchiométrique : n_i(CH₃COOH)=n_{éq}(HO⁻)

La relation d'équivalence est donc:
$$C_A.V_A = C_B.V_{BE}$$

$$d' \circ \dot{u}: C_A = \frac{C_B.V_{BE}}{V_A} = \frac{0.02 \times 15.10^{-3}}{20.10^{-3}} = 1.5.10^{-2} \, mol/L$$

e)Détermination du taux d'avancement final de la réaction:

Pour montrer que la réaction du dosage est totale, il suffit de montrer que: $\tau = 1$.

Traçons le tableau d'avancement de la réaction au moment de versement du volume V_{B versé}=10mL de soude .D'après la courbe du dosage le pH correspondant à ce volume est pH=4,1.

$$\begin{array}{l} n_{o}\left(CH_{3}COOH^{-}\right)=c_{a}.v_{a}=0.015\times0.02=3\times10^{-4}\,mol=0.3mmol\\ n_{o}\left(HO^{-}\right)=\text{n}_{\text{ vers\'e}}\left(HO^{-}\right)=c_{b}.v_{b}=0.02\times0.01=2\times10^{-4}\,mol=0.2m.mol\\ \text{vers\'e} \end{array}$$

Equation	le la réaction	HCOOH	+ HO- —	→ HCOO- (aq)	+ H ₂ O (aq)						
Les états	avancement	quantités de matières er (mmol)									
E.I.	0	0,3	0,2	0 .	excès						
E. T.	. x	0.3x	0,2 -x	x	excès						
E. Ėq.	- X eq	0,3 -x _f	0,2 -xf	Хf	excès						

HO⁻ est le réactif limitant, et x_{max}=0,2mmol.

A partir de l'état final qui correspond au pH=4,1 et $[H_3O^+]_f = 10^{-4.1} mol/L$ le produit ionique de l'eau :

$$[H_{3}O^{+}] \times [HO^{-}] = 10^{-14}$$
 \Rightarrow $[HO^{-}] = \frac{10^{-14}}{[H_{3}O^{+}]} = \frac{10^{-14}}{10^{-4,1}} = 10^{4,1-14} = 10^{-9.9} \, mol/L$
$$n_{f}(HO^{-}) = [HO^{-}] \times V_{S} = 10^{-9.9} (10 + 20).10^{-3} = 3.10^{-11.9} \, mol = 3.10^{-8.9} \, m.mol = 3.10^{-8.9}$$

D'après le tableau d'avancement on a: $0.2 - x_f = n_f (HO^-) = 3.10^{-8.9}$ \Rightarrow $x_f = 0.2m.mol$ Le taux d'avancement final : $\tau = \frac{x_f}{x_{\text{max}}} = \frac{0.2}{0.2} = 1$: donc la réaction est totale.

IIII-Dosage d'une solution d'ammoniaque :

1)Etude expérimentale: On verse dans un bécher un volume V_B=20mL d'une solution d'ammoniaque NH₃ de concentration c_B inconnue puis on lui ajoute progressivement à l'aide d'une burette graduée une solution d'acide chlorhydrique $(H_3O^+ + Cl^-)$ de concentration $c_A=1,2.10^{-2}$ mol/L.

20	18	17	16	15	14,5	14	13	11	9	7	5	3	2	1	0	$V_{A.}(mL)$
2,7	2,8	3	3,2	3,6	4,4	7,3	8,2	8,7	9	9,2	9,5	9 ,8	10	10,3	10,6	pН

2)Exploitation des résultats de l'expérience:

a)Equation de la réaction du dosage :

Les ions Cl sont inactifs, ils ne participent pas à la réaction du dosage.

Equation de la réaction du dosage:
$$\begin{array}{c|c} NH_3 + H_3O^+ & \longrightarrow & NH_4^+ + H_2O \\ (aq) & (aq) & (aq) & (aq) \end{array}$$
 C'est une réaction totale.

b) <u>Détermination du point d'équivalence</u>: <u>La méthode des tangentes</u> conduit à $pH_E = 5.6$ $V_{BE} \approx 14.4 mL$:

La méthode de l'indicateur coloré: D'après le tableau des indicateurs colorés on constate que c'est le rouge de méthyle qui est convenable pour ce dosage, car sa zone de virage [4,2-6,2] contient le pH_E=5,6.

La méthode de la courbe dérivée conduit dans ce cas à V_{AE}=14,4mL.

c)Relation d'équivalence :

- -Avant l'équivalence, H3O+ est le réactif limitant et après l'équivalence, NH3 est le réactif limitant.

La relation d'équivalence est donc:

$$C_{\scriptscriptstyle A}V_{\scriptscriptstyle AE}=C_{\scriptscriptstyle B}V_{\scriptscriptstyle B}$$

- A l'équivalence le mélange est stœchiométrique :
$$n_i(NH_3) = n_i(H_3O^+)$$

La relation d'équivalence est donc: $C_AV_{AE} = C_BV_B$ d'où: $C_B = \frac{C_AV_{AE}}{V_B} = \frac{1,4.10^{-2} \times 14,4}{20} = 10^{-2} mol/L$

Remarque: Dans le cas du dosage d'une solution d'acide chlorhydrique (H3O++ Cl-) par une solution d'hydroxyde de sodium (Na+ + HO-) ou bien l'inverse le pH du mélange à l'équivalence pHE=7.

L'équation de la réaction du dos age dans ce cas s'écrit : $H_3O^+ + HO^- \rightarrow 2H_2O$

$$H_3O^+ + HO^- \rightarrow 2H_2O^+$$

Car les ions Na+ et les ions Cl-sont inactifs .