

Semester I Examinations 2012/2013

Exam Code(s) 4BS3, 4CS2

Exam(s) Bachelor of Science (Mathematics)

Modules Ring Theory

Module Codes MA416, MA538

Paper 1

External Examiner(s) Dr Colin Campbell Internal Examiner(s) Prof. Graham Ellis

⋆ Dr Emil Sköldberg

<u>Instructions:</u> Students should attempt ALL questions.

Duration 2 Hours

No. of Pages 3 (including this page)

Discipline Mathematics

- 1. (a) In each of the following cases, determine if the object is a ring. If you believe that it is a ring, it is enough to say so; if not, you should give a reason.
 - (i) The set of all real 2×2 matrices with trace 0 under the usual addition and multiplication of matrices. (Recall that the trace of a matrix is the sum of its diagonal entries.)
 - (ii) The set of all polynomials $\sum_{i\geq 0} a_i x^i$ in $\mathbb{Q}[x]$ such that $a_i=0$ whenever i is odd.
 - (b) Find all units and zerodivisors in the rings
 - (i) \mathbb{Z}_{15} ,
 - (ii) $\mathbb{Z}_2[x]/(x^2+1)$.
 - (c) Give an example of a ring R and two units $u, v \in R$ such that u + v is a unit.
 - (d) Show that the units in a ring R form a group under multiplication.
- 2. (a) Let R and S be rings. What is meant by a ring homomorphism from R to S?
 - (b) If $\varphi: R \longrightarrow S$ is a ring homomorphism; define its *kernel*. Also explain what a $(two\text{-}sided)\ ideal$ is, and show that the kernel of φ is an ideal.
 - (c) What is meant by a principal ideal domain (PID)? Show that the integers \mathbb{Z} form a PID.
 - (d) Define the *field of fractions* of an integral domain. (You need to describe its elements and the definition of addition and multiplication). Show that addition and multiplication are well-defined operations.

- 3. (a) What is meant by an *irreducible polynomial* in F[x], where F is a field? Give an example of a field F and a polynomial f(x) in F[x] such that f(x) is reducible in F[x], but f(x) does not have a root in F.
 - (b) State and prove Eisenstein's irreducibility criterion.
 - (c) For each of the following polynomials, determine if it is irreducible or not, and if it is reducible, factor it into irreducibles.
 - (i) $x^5 9x^2 + 3x 15$ in $\mathbb{Q}[x]$.
 - (ii) $x^3 + x^2 + x + 1$ in $\mathbb{Z}_2[x]$.
 - (d) Find all irreducible monic polynomials of degree 3 in $\mathbb{Z}_2[x]$.
- 4. (a) What are *maximal ideals* and *prime ideals* in a commutative ring? Show that every maximal ideal is prime.
 - (b) Let I and J be ideals in the commutative ring R. Define the sets IJ and I+J and show that they are ideals in R.
 - (c) Let R be a PID, and let I = (r), J = (s) be two ideals in R. Show that the ideal IJ = (rs).
 - (d) Determine all maximal ideals in $R = \mathbb{Z}_3[x]/(x^3 + x + 1)$, and for each maximal ideal I, determine the order of R/I.
- 5. (a) Give the definition of a Euclidean ring.
 - (b) Let F be a field. Show that the polynomial ring F[x] is a Euclidean ring.
 - (c) Show that in a Euclidean ring, d(a) = d(1) if and only if a is a unit.
 - (d) Given the elements 4+i and 1-2i in $\mathbb{Z}[x]$, compute their greatest common divisor. Hence, or otherwise, find a generator for the ideal I+J, where I=(4+i) and J=(1-2i).