Introduction to MatLab

- MATLAB is very well suited to model communications systems:
 - Signals are naturally represented in MATLAB,
 - MATLAB has a very large library of functions for processing signals,
 - Visualization of signals is very well supported in MATLAB.
- MATLAB is used interactively.
 - Eliminates code, compile, run cycle.
 - Great for rapid prototyping and what-if analysis.

MATLAB's Built-in Help System

- MATLAB has an extensive built-in help system.
 - On-line documentation reader:
 - contains detailed documentation for entire MATLAB system,
 - is invoked by
 - typing doc at command line
 - clicking "Question Mark" in tool bar of main window,
 - via "Help" menu.
 - Command-line help provides access to documentation inside command window.
 - Helpful commands include:
 - help function-name, e.g., help fft.
 - lookfor keyword, e.g., lookfor inverse.
- We will learn how to tie into the built-in help system.

Interacting with MATLAB

- You interact with MATLAB by typing commands at the command prompt (») in the command window.
- MATLAB's response depends on whether a semicolon is appended after the command or not.
 - If a semicolon is **not** appended, then MATLAB displays the result of the command.
 - With a semicolon, the result is not displayed.

Examples:

► The command xx = 1:3 produces

```
xx = 1 2 3
```

- The command xx = 1:3; produces no output. The variable xx still stores the result.
- Do use a semicolon with xx = 1:30000000;

Signals and Vectors

- Our objective is to simulate communication systems in MATLAB.
 - This includes the signals that occur in such systems, and
 - processing applied to these signals.
- In MATLAB (and any other digital system) signals must be represented by samples.
 - Well-founded theory exists regarding sampling (Nyquist's sampling theorem).
 - Result: Signals are represented as a sequence of numbers.
- MATLAB is ideally suited to process sequences of numbers.
 - MATLAB's basic data types: vectors (and matrices).
 - Vectors are just sequence of numbers.

Task: Generate samples of the sinusoidal signal

$$x(t) = 3 \cdot \cos(2\pi 440t - \frac{\pi}{4})$$

for t ranging from 0 to 10 ms. The sampling rate is 20 KHz.

```
fs=20*10^3;
t=0:1/fs:0.01;
theta=-pi/4;
x=3*cos(2*pi*440*t+theta);
```

Addition and Subtraction

- The standard + and operators are used to add and subtract vectors.
- One of two conditions must hold for this operation to succeed.
 - Both vectors must have exactly the same size.
 - In this case, corresponding elements in the two vectors are added and the result is another vector of the same size.
 - **Example:** [1 3 2] + 1:3 produces 2 5 5.
 - A prominent error message indicates when this condition is violated.
 - One of the operands is a scalar, i.e., a 1 × 1 (degenerate) vector.
 - In this case, each element of the vector has the scalar added to it.
 - The result is a vector of the same size as the vector operand.
 - **Example:** [1 3 2] + 2 produces 3 5 4.

Element-wise Multiplication and Division

- The operators . * and . / operators multiply or divide two vectors element by element.
- One of two conditions must hold for this operation to succeed.
 - Both vectors must have exactly the same size.
 - In this case, corresponding elements in the two vectors are multiplied and the result is another vector of the same size.
 - ► Example: [1 3 2] .* 1:3 produces 1 6 6.
 - An error message indicates when this condition is violated.
 - One of the operands is a scalar.
 - In this case, each element of the vector is multiplied by the scalar.
 - The result is a vector of the same size as the vector operand.
 - **Example:** [1 3 2] .* 2 produces 2 6 4.
 - If one operand is a scalar the '.' may be omitted, i.e.,
 [1 3 2] * 2 also produces 2 6 4.

Inner Product

- The operator * with two vector arguments computes the inner product (dot product) of the vectors.
 - Recall the inner product of two vectors is defined as

$$\vec{x}' \cdot \vec{y} = \sum_{n=1}^{N} x(n) \cdot y(n).$$

- This implies that the result of the operation is a scalar!
- The inner product is a useful and important signal processing operation.
 - It is very different from element-wise multiplication.
 - The second dimension of the first operand must equal the first dimension of the second operand.
 - MATLAB error message: Inner matrix dimensions must agree.
 - ► Example: [1 3 2] * (1:3)' = 13.
 - The single quote (') transposes a vector.

Powers

- To raise a vector to some power use the .^ operator.
 - **Example:** [1 3 2].^2 yields 1 9 4.
 - The operator ^ exists but is generally not what you need.
 - Example: [1 3 2]^2 is equivalent to [1 3 2] * [1 3 2] which produces an error.
- Similarly, to use a vector as the exponent for a scalar base use the . ^ operator.
 - Example: 2.^[1 3 2] yields 2 8 4.
- Finally, to raise a vector of bases to a vector of exponents use the .^ operator.
 - **Example:** [1 3 2].^(1:3) yields 1 9 8.
 - The two vectors must have the same dimensions.
- The . ^ operator is (nearly) always the right operator.

Complex Arithmetic

- MATLAB support complex numbers fully and naturally.
 - ▶ The imaginary unit $i = \sqrt{-1}$ is a built-in constant named i and j.
 - Creating complex vectors:
 - Example: xx = randn(1,5) + j*randn(1,5) creates a vector of complex Gaussian random numbers.
- A couple of "gotchas" in connection with complex arithmetic:
 - Never use i and j as variables!
 - Example: After invoking j=2, the above command will produce very unexpected results.
 - Transposition operator (') transposes and forms conjugate complex.
 - That is very often the right thing to do.
 - Transpose only is performed with . ' operator.

Functions Returning a Scalar Result

- Many other functions accept a vector as its input and return a scalar value as the result.
- Examples include
 - min and max,
 - mean and var Or std,
 - sum computes the sum of the elements of a vector,
 - norm provides the square root of the sum of the squares of the elements of a vector.
 - The norm of a vector is related to power and energy.

Accessing Elements of a Vector

- Accessing a range of elements of a vector:
 - ▶ Example: Let xx = ones(1,10);, change the first five elements to -1.
 - ► Solution: xx(1:5) = -1*ones(1,5); Note, xx(1:5) = -1 works as well.
 - Example: Change every other element of xx to 2.
 - Solution: xx(2:2:end) = 2;;
 - Note that end may be use to denote the index of a vector's last element.
 - This is handy if the length of the vector is not known.
 - Example: Change third and seventh element to 3.
 - Solution: xx([3 7]) = 3;;
- A set of elements of a vector is accessed by providing a vector of indices in parentheses.

A Basic Plot

- The sinusoidal signal, we generated earlier is easily plotted via the following sequence of commands:
- Try help plot for more information about the capabilities of the plot command.

Multiple Plots in One Figure

- MATLAB can either put multiple graphs in the same plot or put multiple plots side by side.
- The latter is accomplished with the subplot command.

Resulting Plot

