Seminar on Topological Dynamics of Definable Group Actions Section 3 - Example 2

April 7, 2022

1 Review

- There is a \mathbb{Q} -flow $2^{\mathbb{Q}}$ acted by right shift $k * f(n) \equiv f(n-k)$.
- Functions which are periodic and piecewise constant are dense in $2^{\mathbb{Q}}$. Each of them is almost periodic. Hence every point in $2^{\mathbb{Q}}$ is weakly generic.
- There is a sufficiently generic function $\eta \in 2^{\mathbb{Q}}$, which has a dense orbit in $2^{\mathbb{Q}}$ and some other nice propertiees.
- Fix such η , let $P_{\sigma}(x) \iff x * \eta \in [\sigma]$ be a unary predicate for any $\sigma \subseteq_{fin} \mathbb{Q}$, then $M = (\mathbb{Q}, +, P_{\sigma})_{\sigma}$ has quantifier elimination. Let T_{η} be the theory of M.

2 Weakly generic types

Every element $m \in M$ is definable as $y + P_{\sigma}(M) = P_{m*\sigma}(M)$. Hence M is a prime model of T_{η} . Any model is a vector space over \mathbb{Q} .

We regard a point in $\Pi_{q\in\mathbb{Q}^*}2^{\mathbb{Q}}$ as $\bar{f}=\{f_q:f_q\in 2^{\mathbb{Q}},q\in\mathbb{Q}^*\}$, a sequence(family) of functions in $2^{\mathbb{Q}}$, the topology is still the product topology. The action $n*\bar{f}$ is given by $(qa*f_q)(k)=f_q(k-qa)$. There is a isomorphism between non-algebraic types in $S_1(M)$ and $\Pi_{q\in\mathbb{Q}^*}2^{\mathbb{Q}}$, which is similar to the case in Example 1 that $S_{\Delta}(M)\cong 2^{\mathbb{Z}}$.

Lemma 1. For $\bar{f} = \{f_q : f_q \in 2^{\mathbb{Q}}, q \in \mathbb{Q}^*\}$, let $p_{\bar{f}} \equiv \{x \neq a \ a \in M\} \cup \{P_{f_q|X}(q \cdot x) : X \subseteq_{fin} \mathbb{Q}, q \in \mathbb{Q}^*\}$. Then $\bar{f} \mapsto p_{\bar{f}}$ is an isomorphism from between non-algebraic types in $S_1(M)$ and $\Pi_{q \in \mathbb{Q}^*} 2^{\mathbb{Q}}$.

Note every constant type is not weakly generic, and every point in $\Pi_{q\in\mathbb{Q}^*}2^{\mathbb{Q}}$ is weakly generic for the same reason as $2^{\mathbb{Q}}$. We see that non-algebraic types in $S_1(M)$ are exactly weakly generic types in $S_1(M)$. So we can use the notation WGen(M) for it.

Let N be any model of T_{η} , we can talk about $\Pi_{q \in \mathbb{Q}^*} 2^N$ similarly. There is also $\bar{\eta}_N \in \Pi_{q \in \mathbb{Q}^*} 2^N$ such that the N-orbit is dense in $\Pi_{q \in \mathbb{Q}^*} 2^N$, and $\bar{\eta}_N$ is sufficiently generic.

Remark 2. Note N is not constructed via $\bar{\eta}_N$, but N inherit elementary property of genericity from M.

We are going to show there is also a isomorphism between WGen(N) and $\Pi_{q\in\mathbb{Q}^*}2^N$. Assume $N=M\oplus V$ for some subspace V of N for the rest of this section. We may regard $f_q\in 2^N$ as the union of $v*f_{q,v}$ where $f_{q,v}\in 2^M$.

Lemma 3. For every $f \in 2^{\subset N}$ there are unique $f_v \in 2^{\subset M}$, $v \in V$, such that f is the disjoint union of the functions $v * f_v$, $v \in V$.

Proof. Let
$$f_v = (-v) * f|(v+M)$$
.

Lemma 4. (1) Every non-algebraic atomic formula over N in variable x is equivalent to $P_{\sigma}(q(x-v))$ for some $\sigma \in 2^{<\mathbb{Q}}$, $q \in \mathbb{Q}^*$ and $v \in V$.

- (2) The negation of each formula as in (1) is equivalent in N to a disjunction of formulas of this kind.
- (3) If (v_i, q_i) , i < n, are some finitely many pairwise distinct elements of $V \times \mathbb{Q}^*$, and for each i < n we have some finitely many ompatible functions $\sigma_{i,j} \in 2^{<\mathbb{Q}}$, $j < m_i$, then the formula

$$\bigwedge_{i < n} \bigwedge_{j < m_i} P_{\sigma_{i,j}}(q_i(x - v_i)).$$

Lemma 5. For $\bar{f} = \{f_q : f_q \in 2^N, q \in \mathbb{Q}^*\}$, let $p_{\bar{f}} \equiv \{x \neq n \ a \in N\} \cup \{P_{\sigma}(q(x-v)) : \sigma = f_{q,v} | X, X \subseteq_{fin} N, q \in \mathbb{Q}^*\}$. Then $\bar{f} \mapsto p_{\bar{f}}$ is an isomorphism from between non-algebraic types in $S_1(N)$ and $\Pi_{q \in \mathbb{Q}^*} 2^N$.

Also, non-algebraic types in $S_1(N)$ are exactly weakly generic types in $S_1(N)$, i.e. WGen(N). By the isomorphism, $p_{\bar{\eta}_N}$ is not almost periodic. So also in WGen(N), not all types are almost periodic. We will consider some specific examples of types in WGen(N) that are not almost periodic later.

3 Self-replicating function

Definition 6. (1) Assume $N' = N \oplus W$ for some \mathbb{Q} -vector space W and $\bar{f} = \langle f_q \rangle \in \Pi_{q \in \mathbb{Q}^*} 2^N$. We define the W-prolongation \bar{f}' of \bar{f} as the sequence $\langle f'_q \rangle \in \Pi_{q \in \mathbb{Q}^*} 2^{N'}$ given by $f'_q(n+w) = f_q(n)$ where $n \in N$ and $w \in W$.

- (2) We say that $\bar{f} \in \Pi_{q \in \mathbb{Q}^*} 2^{N'}$ has countable support if for some countable subspace N' of $N, N = N' \oplus W, \bar{f}$ is a W-prolongation of some $\bar{f}' \in \Pi_{q \in \mathbb{Q}^*} 2^{N'}$.
- (3) We say that $p \in WGen(N)$ has countable support $p = p_{\bar{f}}$ for some \bar{f} with countable support.

Proposition 7. There are types $p \in WGen(N)$ that have countable support and are not almost periodic.

Proof. Choose $\eta' = \bigcup_{v \in V} v * \eta$ where η is the sufficiently generic function in $2^{\mathbb{Q}}$. Let $\bar{\eta'} = \langle \eta'_q \rangle$ where $\eta'_q = \eta'$, then choose $p = p_{\bar{\eta'}}$.

It's more convinient to work in $\Pi_{q\in\mathbb{Q}^*}2^N$ than in WGen(N). We introduce a technical property of \bar{f} implying \bar{f} is almost periodic. It's like a generalization of periodic and piecewise-constant function from M to N.

Definition 8. (1) We say that $f \in 2^N$ is self-replicating if the following holds:

For every finite $X \subseteq N$ there is a finite $Y \subseteq N$ such that for any $n \in N$, there is some $m \in N$ with $m * (f|X) = \subseteq f|(n + Y)$.

(2) We say that $\tilde{f} \in \Pi_{q \in \mathbb{O}^*} 2^N$ is self-replicating if the following holds:

For every finite sequence $q_i \in \mathbb{Q}^*$, $i \in I$, of distinct numbers, for every finite set $X \subseteq N$, there is a finite $Y \subseteq N$ such that for every $n \in N$ there is $m \in N$ such that for every $i \in I$, $q_i m * (f_{q_i}|X) \subseteq f_{q_i}|(q_i n + Y)$.

Lemma 9. (1) Assume $f \in 2^N$ is self-replicating, then f is alomost periodic. (2) Assume $\bar{f} \in \Pi_{q \in \mathbb{Q}^*} 2^N$ is self-replicating, then \bar{f} is alomost periodic.

Proof. (1) Suppose $g \in cl(N * f)$, we need to show $f \in cl(N * g)$. Assume X is finite, choose a finite Y provided by the self-replication of f. Since $g \in cl(N * f)$, there is some $n \in N$ such that $g|Y \subseteq n * f$. Choose an $m \in N$ with $m * (f|X) \subseteq f|(-n + Y)$, then ((-n) * g)|(-n + Y) = f|(-n + Y) contains m * (f|X), so $f|X \subseteq (-(n + m)) * g$. (2) Similar.

Lemma 10. Assume $N' = N \oplus W$ and $\bar{f} = \langle f_q \rangle \in \Pi_{q \in \mathbb{Q}^*} 2^N$ is self-replicating. Then the W-prolongation of \bar{f} is also self-replicating.

Proof. Easy.
$$\Box$$

Lemma 11. (1) The set of self-replicating functions $f \in 2^N$ is dense in 2^N . (2) The set of self-replicating sequences $\bar{f} \in \Pi_{q \in \mathbb{Q}^*} 2^N$ is dense in $\Pi_{q \in \mathbb{Q}^*} 2^N$.

Proof. The proof of (2) is similar to that of (1), so we only prove (1). When $dim_{\mathbb{Q}}(N)$ is finite, assume $Z \subseteq_{fin} N$ and $\sigma \in 2^Z$. We need to extend σ into a self-replicating $f \in 2^N$. We may assume

$$Z = \left\{ \sum l_i b_i : l_i \in \mathbb{N}, l_i < k \right\}$$

where $\mathcal{B} = \{b_i : i \in I\}$ is a set of bases, $k \in \mathbb{N}$. Then we define f as

$$f\left(\sum (l_i + t_i k + r_i)b_i\right) = \sigma\left(\sum l_i b_i\right)$$

where $t_i, l_i \in \mathbb{Z}$, $0 \le l_i < k$ and $r_i \in \mathbb{Q} \cap [0, 1)$.

To check self-replication, for an enlarged

$$X = \left\{ \sum_{i=1}^{l} \frac{l_i}{l} b_i : l_i \in \mathbb{N}, 0 \le \frac{l_i}{l} < tk \right\}$$

where $l, t \in \mathbb{N}$, we find

$$Y = \left\{ \sum_{i=1}^{l} \frac{l_i}{l} b_i : l_i \in \mathbb{N}, 0 \le \frac{l_i}{l} < (t+1)k \right\}$$

When $dim_{\mathbb{Q}}(N)$ is infinite, suppose we are going to deal with $Z \subseteq_{fin} N$ and $\sigma \in 2^{\mathbb{Z}}$. Let $N = W_0 \oplus W_1$ where W_0 is finite and $Z \subseteq W_0$. There is self-replicating $f_0 \in 2^{W_0}$ extending σ . Let $f \in 2^N$ be the W_1 -prolongation of f_0 , then f is self-replicating by lemma 10.

Proposition 12. Assume N is countable and N' is a \mathbb{Q} -vector space properly extending N. (1) Let $f \in 2^N$, there is a self-replicating $f' \in 2^{N'}$ extending f.

(2) Let $\bar{f} \in \Pi_{q \in \mathbb{Q}^*} 2^N$, there is a self-replicating $\bar{f}' \in \Pi_{q \in \mathbb{Q}^*} 2^{N'}$ extending \bar{f} .

Proof. By lemma 10, we may assume $N' = N \oplus W$ where $\dim_{\mathbb{Q}}(W) = 1$, or just assume $W = \mathbb{Q}$. We present N as a incresing chain of finite sets $(X_j)_{j<\omega}$. By the proof of lemma 11, for each j we have a self-replicating $f_j \in 2^N$. We may assume the self-replication is uniform, meaning that for every $j' < \omega$ and finite $X \subseteq N$, there is a finite $Y \subseteq N$ such that for every $n \in N$, there is an $m \in N$ such that for every j < j' we have that $m * (f_j | X) \subseteq f_j(n + Y)$.

We define $f' \in 2^N$ as (a) For n' = n + r, where $n \in N$ and $r \in \mathbb{Q} \cap [0, 1)$, let f'(n') = f(n). So f' extends f. (b) For n' = n + k + r, with $n \in N$, $k \in \mathbb{Z} \setminus \{0\}$, $r \in \mathbb{Q} \cap [0, 1)$, let $f'(n') = f_t(k)$, where 2^t is the highest power of 2 dividing k.

To check self-replication, for an enlarged $X \subseteq_{fin} N'$, let $X = X_t \times X^*$ where $X_t \subseteq N$ is the enlarged finite set in the proof of lemma 11 (we omit parameter l), and

$$X^* = \left\{ \frac{i}{s} : i \in \mathbb{N}, -2^t \le \frac{i}{s} \le 2^t \right\}$$
 (1)

for some $s, t \in \mathbb{N}$.

Let j' = t + 1, Y_0 be a uniform choice on $(f_i)_{i < j'}$,

$$Y^* = \left\{ \frac{i}{s} : i \in \mathbb{N}, -2^{t+3} \le \frac{i}{s} \le 2^{t+3} \right\}.$$
 (2)

Then we choose $Y = Y_0 \times Y$.

Proposition 13. Assume $p \in WGen(N)$ has countable support. Assume N' is a properly elementary extension of N. Then there is an almost periodic type $p' \in WGen(N')$ extending p.

Proof. We may assume $N=N_0\oplus W$ such that N_0 is countable, $p|N_0=p_{\bar{f}_0}$ for some $f_0\in\Pi_{q\in\mathbb{Q}^*}2^{N_0}$ and $p=p_{\bar{f}}$ for the W-prolongation $\bar{f}\in\Pi_{q\in\mathbb{Q}^*}2^N$ of \bar{f}_0 .

Suppose $N' = N \oplus W'$, let $N_1 = N_0 \oplus W$, by proposition 12, there is self-replicating $f_1 \in \Pi_{q \in \mathbb{Q}^*} 2^{N_1}$ extending \bar{f}_0 . Let $f' \in \Pi_{q \in \mathbb{Q}^*} 2^{N'}$ be the W-prolongation of f_1 , then $p' = p_{\bar{f}'}$ is what we want.

Remark 14. We didn't require any saturation for models to get these results. Even when N is ω -saturated, many types in WGen(N) are not almost periodic and have almost periodic extension in any properly elementary extension $N' \succ N$. This shows that the notion of almost periodic is not down-absolute even between ω -saturated models. Maybe this suggests weakly generic types are the correct generalization of generic types.

In this example, it's still not clear whether we can drop the condition that p is countable support in proposition 13. This example is a simple unstable structure, we don't know any o-minimal example.