Gesture Based Driving System

Staff Co- Ordinators: Vipin V Arjun Santhosh E Ву,

Bilbeeya C Babu(15)

Gopika Sidharthan (20)

Govind Raj (21)

Manasi K A(25)

ECE Dept

SNMSMTMIMT

CONTENTS

- 2 > AIM
 - INTRODUCTION
 - **BLOCK DIAGRAM**
 - BLOCK DIAGRAM EXPLANATION
 - CIRCUIT DIAGRAM
 - WORKING
 - **FLOWCHART**
 - ADVANTAGES
 - DISADVANTAGES
 - APPLICATIONS
 - **FUTURE SCOPE**
 - **CONCLUSION**
 - REFERENCES

AIM

To develop a accelerometer based Gesture Controlled Driving System with Pic16f877a microcontroller

ECE Dept

SNMIMT

- Gesture recognition enables humans to communicate with machine and interact naturally with any mechanical devices
- Most of the controllers of existing remote cars require users to interface with joysticks and push buttons
- Comparing to these conventional controllers we built, a wireless gesture controller which enables cars to mock hand motion in all dimensions
 - The goal of this project is to capture simple hand gestures from the glove and use that input to wirelessly control car

BLOCK DIAGRAM

6

TRANSMITTER SECTION

ECE Dept SNMIMT

RECEIVER SECTION

A fixed voltage power supply producing constant +5V is obtained using three terminal regulator IC LM7805.

9

PIC16F877

- Low power, high speed CMOS FLASH technology.
- 5 I/O ports A,B,C,D &E
- Flash Program memory 8KB
- Operating speed: DC 20 MHz clock input.
- Up to 8-channel Analog-to-Digital converter.
- Only 35 single word instructions to learn.

10

PIC16F877A PIN DIAGRAM

ECE Dept SNMIMT

ACCELEROMETER

- An accelerometer is a kind of sensor which gives an analog data while moving in x ,y , z direction.
- In our project we use ADXL335 is a triple axis accelerometer with extremely low noise and power consumption.
- Excellent temperature stability.

LCD

- Display 16 characters per line and there are 2 such lines-16*2 LCD.
- +5v power supply.
- Two registers command and data.

ECE Dept

ENCODER

- HT12E is an encoder integrated circuit of 2^12 series of encoders.
- It encodes the 12 bit parallel data into serial for transmission through an RF transmitter.
- These 12 bits are divided into 8 address bits and 4 data bits

14 **ENCODING**

ECE Dept

15

ECE Dept

SNMIMT

RF MODULE

- RF module as the name suggests operates at radio frequency
- This comprises of an RF transmitter and an RF receiver.
- An RF transmitter receives serial data and transmits it wirelessly through RF through its antenna connected at pin 4.
- The transmitted data is received by an RF receiver operating at the same frequency as that of the transmitter

ECE Dept

DECODER

- It is a decoder integrated circuit that belongs to 2^12 series of decoders.
- It is capable of decoding 12 bits, of which 8 are address bits and 4 are data bits.
- The data on 4 bit latch type output pins remain unchanged until new is received.

DECODING

ECE Dept

ECE Dept

MOTOR DRIVER

- L293D is 16 pin IC
- Dual H bridge motor driver IC
- Each H bridge can drive a motor in bi-direction
- It is current enhancing IC as output from pic16 is not able to drive the motor itself.

DC MOTOR

- low cost DC motor suitable for most robotic and general applications. It has a output shaft with a hole for easy mounting of wheels or pulleys.
- Input Voltage: 6-12 V
- Stall Current: 500 600 mA
- Shaft length: 2.4 cm

CIRCUIT DIAGRAM

TRANSMITTER SECTION

ECE Dept

SNMIMT

WORKING

23

TRANSMITTER SIDE

- Accelerometer will detect the gesture and send analog output to the ADC of Pic16 on the corresponding axis.
- The Microcontroller will send the command based on threshold set on the ADC of respective axis to the RF encoder Module.
- The Encoder Module (IC HT12E) will send the corresponding Data bit using RF transmitter to the RF Receiver.

SNMIMT

24 RECEIVER SIDE

- The RF Receiver will send the command to IC HT12D and the corresponding Data bit will be pulled high.
- By checking the status of Data bits of the Decoder IC the microcontroller will send the command to the motor Driver to start or stop the motors.
- It will Receive the commands from the pic16 and will Reverse the polarity/direction whenever required.

25

FLOW CHART

26 RECEIVER

ADVANTAGES

- Gesture based systems are simpler and easier to operate
- It helps in building a ridge between machines and humans than primitive text user interfaces or even GUIs(graphical user interface) which still limit the majority of input to keyboard and mouse
- Physically disabled can gain benefit

DISADVANTAGES

- The user has a huge device on his hand which obstruct the user do normal hand movement
- Fine movement is difficult to achieve when working with bigger objects

APPLICATIONS

Applications can find their way into cost effective solutions for

- 1. Vehicle navigation
- 2. Wheel chair control
- 3. Hospital Bed control
- 4. Self control humanoids

FUTURE SCOPE

- It can be improved to control any devices by any part of body not just by hand.
- Adding GPRS and GPS
- Adding Zigbee module

CONCLUSION

- In the race of man vs. machine, hand gesture controlled systems comes as an example of companionship of man and machine.
- Taking the technology to the next level from speech recognitions and wired communications is the technology of gesture controlled systems

REFERENCES

32

<u>Inttps://www.elprocus.com/accelerometer-based-gesture-control-robot/</u>

<u>Inttp://www.engineersgarage.com/contribution/accelerometer-based-hand-gesture-controlled-robot</u>

http://www.ablab.in/accelerometer-based-hand-gesture-controlled-robot-with-avr-atmega32-microcontroller/

ECE Dept

Thank You