1 <u>CLAIMS</u>

1.	(Currently Amended) A transmitter coupled to at least two single-channel links of	a
high-bandwidth link, the transmitter comprising:		

- at least two registers, each associated with a single channel different single-channel link and each receiving a different portion of user data provided to the transmitter from a module; and
- a framer providing adapted to i) provide the user data from the module as a packet plurality of packets, each having a packet delineator and based on a packet format, and ii) ensure that the packet delineator of each packet is provided on a particular single-channel link; and

wherein one register provides a portion of the each packet with the packet delineator to [[a]] the particular single-channel link, and each register provides a corresponding portion of the each packet to an associated single-channel link.

- 2. (Original) The invention as recited in claim 1, wherein, for a sequence of packets, the transmitter inserts inter-packet fill to provide the packet delineator of each packet on the particular single-channel link.
- 3. (Original) The invention as recited in claim 1, wherein at least one single-channel link is a serial link.
- 4. (Original) The invention as recited in claim 3, wherein the serial link is an 8B/10B encoded link operating in accordance with either a Ethernet standard, a Fibre-channel standard, or a Infiniband standard.
- 5. (Currently Amended) The invention as recited in claim 3, wherein the serial link applies scrambling to the each packet including the user data.
- 6. (Original) The invention as recited in claim 3, wherein the serial link operates in accordance with a SONET standard.
- 7. (Original) The invention as recited in claim 1, wherein the at least two single-channel links are parallel links.
- 8. (Original) The invention as recited in claim 7, wherein the parallel links operate in accordance with either a PCI bus standard or a RapidIO standard.
- 9. (Original) The invention as recited in claim 1, wherein the transmitter operates in a node in accordance with an asynchronous transfer mode standard or a synchronous optical network standard.

Serial No. 10/045,643 -2- Balay 1-20-3-1-1 (992.0328)

1	10. (Original) The invention as recited in claim 1, wherein the transmitter is embodied in an	
2	integrated circuit.	
1	11. (Currently Amended) A receiver generating user data for a module from a packet	
2	plurality of packets received from at least two single-channel links forming a high-bandwidth link, the	
3	receiver comprising:	
4	at least two registers, each receiving a different portion of the each packet, wherein	
5	one register provides a portion of the each packet with a packet delineator from a	
6	particular single channel single-channel link, and each register provides a corresponding portion	
7	of the each packet from an associated single-channel link; and	
8	a framer that 1) forms the each packet from the a corresponding packet delineator and 2) extracts	
9	the user data based on a packet format.	
1	12. (Original) The invention as recited in claim 11, wherein the packet format includes	
2	information in at least one message channel other than the user data.	
1	13. (Original) The invention as recited in claim 11, wherein the packet format includes error	
2	detection or error detection/correction information.	
1	14. (Original) The invention as recited in claim 13, wherein the error detection or error	
2	detection/correction information is cyclic redundancy check information.	
1	15. (Original) The invention as recited in claim 11, wherein the packet format allows for	
2	discarding of inter-packet fill.	
1	16. (Original) The invention as recited in claim 11, wherein the apparatus operates in a node	
2	in accordance with an asynchronous transfer mode standard or a synchronous optical network standard.	
1	17. (Original) The invention as recited in claim 11, wherein the circuit is embodied in an	
2	integrated circuit.	
1	18. (Currently Amended) A method of transmitting user data from a module over at least	
2	two single-channel links of a high-bandwidth link, the method comprising the steps of:	
3	(a) receiving, in each of at least two registers, each having a corresponding single channel single-	
4	channel link, a different portion of user data from the module; and	
5	(b) providing 1) the user data as a packet plurality of packets, each having a packet delineator and	
6	based on a packet format; [[,]] and	

-3-

Serial No. 10/045,643

Balay 1-20-3-1-1 (992.0328)

- 7 (c) 2) ensuring that the packet delineator of each packet is provided on a particular single-channel link; and
- wherein one register provides a portion of the each packet with the packet delineator to [[a]] the
 particular single-channel link, and each register provides a corresponding portion of the each packet to an
 associated single-channel link.
 - 19. (Original) The invention as recited in claim 18, wherein step (b) further includes the step of inserting inter-packet fill such that the packet delineator occurs on the particular single-channel link for each packet in a sequence of packets.
- 1 20. (Original) The invention as recited in claim 18, wherein, for step (b) at least one single-2 channel link is a serial link.
 - 21. (Original) The invention as recited in claim 20, wherein, for step (b) the serial link is an 8B/10B encoded link operating in accordance with either a Ethernet standard, a Fibre-channel standard, or a Infiniband standard.
 - 22. (Currently Amended) The invention as recited in claim 20, further including the step of scrambling at least one portion of the each packet including the user data.
- 1 23. (Original) The invention as recited in claim 20, wherein, for step (b), the serial link operates in accordance with a SONET standard.
 - 24. (Original) The invention as recited in claim 18, wherein, for step (b) the at least two single-channel links are parallel links.
 - 25. (Original) The invention as recited in claim 18, wherein, for step (b) the parallel links operate in accordance with either a PCI bus standard or a RapidIO standard.
- 26. (Original) The invention as recited in claim 18, wherein the method is implemented within a node in accordance with an asynchronous transfer mode standard or a synchronous optical network standard.
 - 27. (Original) The invention as recited in claim 18, wherein the method is implemented within a processor of an integrated circuit.
- 1 28. (Currently Amended) A method of generating user data for a module from a packet
 2 plurality of packets received from at least two single-channel links forming a high-bandwidth link, the
 3 method comprising the steps of:

-4-

1

2

3

1

2

3

1

2

1

2

1 2

1

2

- 4 (a) receiving, in each of at least two registers, a corresponding portion of the each packet;
- (b) providing a <u>different</u> portion of <u>the each</u> packet with a packet delineator from a particular single-channel single-channel link, and 2) a corresponding portion of <u>each</u> the packet from an associated single-channel link;
 - (c) forming the each packet from the a corresponding packet delineator; and
- 9 (d) extracting the user data based on a packet format.

8

1

2

3

1

2

1 2

3

1 2

3

4

5

6 7

8

1

2

3

- 1 29. (Original) The invention as recited in claim 28, wherein step (d) extracts information in at least one message channel other than the user data.
 - 30. (Currently Amended) The invention as recited in claim 28, wherein step (c) forms the each packet based on error detection or error detection/correction information included with the packet in accordance with the packet format.
 - 31. (Original) The invention as recited in claim 30, wherein the error detection or error detection/correction information is cyclic redundancy check information.
- 1 32. (Original) The invention as recited in claim 28, wherein step (c) discards inter-packet fill.
 - 33. (Original) The invention as recited in claim 28, wherein the method is implemented within a node in accordance with an asynchronous transfer mode standard or a synchronous optical network standard.
 - 34. (Original) The invention as recited in claim 28, wherein the method is implemented within a processor of an integrated circuit.
 - 35. (New) The invention as recited in claim 1, wherein the transmitter is adapted to provide the packet delineator of each packet to the particular single-channel link independent of the sizes of the packets.
 - 36. (New) The invention as recited in claim 11, wherein the receiver is adapted to provide the packet delineator of each packet from the particular single-channel link independent of the sizes of the packets.
 - 37. (New) The invention as recited in claim 18, wherein the provision of the portion of each packet with the packet delineator to the particular single-channel link occurs independently of the sizes of the packets.

- 4 38. (New) The invention as recited in claim 28, wherein the receipt of the portion of each
- 5 packet with the packet delineator from the particular single-channel link occurs independently of the sizes
- 6 of the packets.