

Симплектические методы интегрирования уравнения Ландау-Лифшица

Плотников Антон

Санкт-Петербург 23 мая 2016 г.

Магнитные скирмионы Введение

Скирмионы - это топологически устойчивые вихревые структуры, наблюдаемые в магнитных решетках.

Магнитные скирмионы Актуальность

Тема скирмионов сейчас весьма актуальна, за последний год скирмионы упоминаются более чем в 1000 статьях, по результатам поискового запроса в schoolar.google.com. В научных журналах рассматриваются возможности использования скирмионов в качестве эффективных ПЗУ за счет возможность потенциально высокой плотности размещения их на кристаллической решетке.

Состояние магнитной системы описывается уравнением Ландау-Лифшица

Уравнение Ландау-Лифшица

$$\begin{split} \frac{dS_n}{dt} &= -\gamma S_n \times H_n^{eff} - \gamma \lambda S_n \times \left(S_n \times H_n^{eff}\right) \\ H_n^{eff} &= \nabla_{S_n} E = AS_n + B_n \end{split}$$

Большинство описанных моделей используют малоэффективные методы интегрирования, такие как метод Эйлера.

Итераций: 1000

Скорость: 0.1

Большинство описанных моделей используют малоэффективные методы интегрирования, такие как метод Эйлера.

• Итераций: 10000

• Скорость: 0.01

Большинство описанных моделей используют малоэффективные методы интегрирования, такие как метод Эйлера.

• Итераций: 100000

• Скорость: 0.001

Большинство описанных моделей используют малоэффективные методы интегрирования, такие как метод Эйлера.

• Итераций: 1000000

• Скорость: 0.0001

В общем виде симплектический метод выглядит следующим образом:

Общий вид симплектического интегратора

$$\begin{split} S_{n+1} &= S_n + h \sum_{j=1}^s b_j f(t_n + c_j h, \xi_j) \\ \xi_j &= y_n + h \sum_{i=1}^s a_{ji} f(t_n + c_j h, \xi_i) \end{split}$$

Запись гамильтониана

<u>в симплектическом виде</u>

Желаемая форма

Метод ньютона

В симпликтическом методе возникает задача решить нелинейное уравнение. Его можно решать обобщенным методом Ньютона.

В конечном итоге метод Ньютона сводится к решению системы уравнений вида:

Система из метода Ньютона

$$f_i + \sum_{k_i}^n \frac{\partial f_i}{\partial x_k} \left(x_k^{[j+1]} - x_k^{[j]} \right)$$

Метод ньютона

В симпликтическом методе возникает задача решить нелинейное уравнение. Его можно решать обобщенным методом Ньютона.

В конечном итоге метод Ньютона сводится к решению системы уравнений вида:

Система из метода Ньютона

$$f_i + \sum_{k_i}^n \frac{\partial f_i}{\partial x_k} \left(x_k^{[j+1]} - x_k^{[j]} \right)$$

Эту систему можно решить методом би-сопряженных градиентов.