First we show how the isomorphism between $SO(3,1) \cong SU(2) \otimes SU(2)$ works. Any group element $g \in SO(3,1)$ can be assumed to take the form $g = e^{i(\theta_i J_i + \phi_i K_i)}$, let this be expressed in $J_{\pm i} = J_i \pm i K_i$ generators as

$$e^{i(\theta_i J_i + \phi_i K_i)} = e^{i(\alpha_i J_{+i} + \beta_i J_{-i})}$$

Then we know

$$\alpha_{i}(J_{i}+iK_{i})+\beta_{i}(J_{i}-iK_{i})=\theta_{i}J_{i}+\phi_{i}K_{i} \implies \left\{ \begin{array}{l} \alpha_{i}+\beta_{i}=\theta_{i} \\ \alpha_{i}-\beta_{i}=-i\phi_{i} \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} \alpha_{i}=\frac{\theta_{i}-i\phi_{i}}{2} \\ \beta_{i}=\frac{\theta_{i}+i\phi_{i}}{2} \end{array} \right.$$

Now given g, we can use its α_i , β_i to construct two elements $(u, v) \in SU(2) \otimes SU(2)$ where

$$u = e^{i\alpha_i \sigma_i}$$
$$v = e^{i\beta_i \sigma_i}$$

This is how an element of the Lorentz group SO(3,1) can be represented by a pair of Weyl spinors (u,v). On the other hand, given two spinors u, v, we can reverse the procedure to determine θ_i, ϕ_i hence $g \in SO(3, 1)$. The fact that the construction is homomorphic is not shown here, but the octave scripts has a demonstration.

Now we elaborate on the point that $(u^{\dagger}u, u^{\dagger}\vec{\sigma}u)$ transforms like 4-vector. Consider rotation $e^{i\theta_3 J_3}$. Recall that

$$J_3 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad iJ_3 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad J_3^2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then expanding the exponential and focusing on the x, y components, we have (as 2×2 matrix)

$$e^{i\theta_3 J_3} = \left[1 + \frac{(i\theta_3)^2}{2!} + \frac{(i\theta_3)^4}{4!} + \cdots\right] I + \left[\frac{\theta_3}{1!} - \frac{\theta_3^3}{3!} + \cdots\right] \begin{bmatrix}0 & 1\\-1 & 0\end{bmatrix}$$
$$= \begin{bmatrix}\cos\theta_3 & \sin\theta_3\\ -\sin\theta_3 & \cos\theta_3\end{bmatrix} = R(-\theta_3)$$

Now consider the boost $e^{i\phi_3K_3}$, recall that

Expanding,

$$e^{i\phi_3 K_3} = \left[1 + \frac{\phi_3^2}{2!} + \frac{\phi_3^4}{4!} + \cdots \right] I + \left[\frac{\phi_3}{1!} + \frac{\phi_3^3}{3!} + \cdots \right] \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \cosh \phi_3 & \sinh \phi_3 \\ \sinh \phi_3 & \cosh \phi_3 \end{bmatrix} = B(\phi_3)$$

A spacetime 4-vector (t, x, y, z) under $R(-\theta_3)$ transforms like

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \theta_3 \\ -\theta_3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + \theta_3 y \\ y - \theta_3 x \end{bmatrix}$$

We now use the isomorphic construction above to see the action of the same rotation on u, and how it effectively transforms $(u^{\dagger}u, u^{\dagger}\vec{\sigma}u)$. Since

$$u \to e^{i\theta_3\sigma_3/2}u$$
$$u^{\dagger} \to u^{\dagger}e^{-i\theta_3\sigma_3/2}$$

we know that the "time component" $u^{\dagger}u$ is invariant, so is the σ_3 component of $\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix}$. But the x and y components transform like the following

$$\begin{bmatrix} u^\dagger \sigma_1 u \\ u^\dagger \sigma_2 u \end{bmatrix} \! \to \! \begin{bmatrix} u^\dagger e^{-i\theta_3\sigma_3/2} \sigma_1 e^{i\theta_3\sigma_3/2} u \\ u^\dagger e^{-i\theta_3\sigma_3/2} \sigma_2 e^{i\theta_3\sigma_3/2} u \end{bmatrix}$$

Now

$$\begin{split} e^{-i\theta_3\sigma_3/2}\sigma_1 e^{i\theta_3\sigma_3/2} &\approx (I-i\theta_3\sigma_3/2)\sigma_1(I+i\theta_3\sigma_3/2) \\ &\approx \sigma_1 + i\frac{\theta_3}{2}[\sigma_1,\sigma_3] \\ &= \sigma_1 + i\frac{\theta_3}{2}(-2i\sigma_2) = \sigma_1 + \theta_3\sigma_2 \end{split}$$

similarly,

$$\begin{split} e^{-i\theta_3\sigma_3/2}\sigma_2 e^{i\theta_3\sigma_3/2} &\approx (I-i\theta_3\sigma_3/2)\sigma_2(I+i\theta_3\sigma_3/2) \\ &\approx \sigma_2 + i\frac{\theta_3}{2}[\sigma_2,\sigma_3] \\ &= \sigma_2 + i\frac{\theta_3}{2}(2i\sigma_1) = \sigma_2 - \theta_3\sigma_1 \end{split}$$

Which is precisely how (x, y) transforms under $R(-\theta_3)$. Under $B(\phi_3)$, the spacetime 4-vector transforms as

$$\begin{bmatrix} t \\ z \end{bmatrix} \rightarrow \begin{bmatrix} \cosh \phi_3 & \sinh \phi_3 \\ \sinh \phi_3 & \cosh \phi_3 \end{bmatrix} \begin{bmatrix} t \\ z \end{bmatrix} \approx \begin{bmatrix} 1 & \phi_3 \\ \phi_3 & 1 \end{bmatrix} \begin{bmatrix} t \\ z \end{bmatrix} = \begin{bmatrix} t + \phi_3 z \\ z + \phi_3 t \end{bmatrix}$$

And similarly, under boost

$$\begin{split} u &\to e^{\phi_3\sigma_3/2} u \\ u^\dagger &\to u^\dagger e^{\phi_3\sigma_3/2} \end{split}$$

$$\begin{bmatrix} u^\dagger \sigma_0 u \\ u^\dagger \sigma_1 u \\ u^\dagger \sigma_2 u \\ u^\dagger \sigma_3 u \end{bmatrix} \to \begin{bmatrix} u^\dagger e^{\phi_3\sigma_3/2} \sigma_0 e^{\phi_3\sigma_3/2} u \\ u^\dagger e^{\phi_3\sigma_3/2} \sigma_1 e^{\phi_3\sigma_3/2} u \\ u^\dagger e^{\phi_3\sigma_3/2} \sigma_2 e^{\phi_3\sigma_3/2} u \\ u^\dagger e^{\phi_3\sigma_3/2} \sigma_3 e^{\phi_3\sigma_3/2} u \end{bmatrix}$$

Picking i,

$$\begin{split} e^{\phi_3\sigma_3/2}\sigma_i e^{\phi_3\sigma_3/2} &\approx (I+\phi_3\sigma_3/2)\sigma_i (I+\phi_3\sigma_3/2) \\ &\approx \sigma_i + \frac{\phi_3}{2} \{\sigma_i,\sigma_3\} \end{split}$$

which leaves σ_1, σ_2 unchanged, and transforms

$$I = \sigma_0 \rightarrow \sigma_0 + \phi_3 \sigma_3$$
 $\sigma_3 \rightarrow \sigma_3 + \phi_3 \sigma_0$

which is precisely how (t,z) transforms under $B(\phi_3)$.

Next let's show that the Weyl Lagrangian denstiy

$$\mathcal{L} = i u^{\dagger} \sigma^{\mu} \partial_{\mu} u$$

is Lorentz invariant.

We do this by looking at how it transforms under infinitesimal rotation $e^{i\theta_3 J_3} \sim R(-\theta_3)$ and infinitesimal boost $e^{i\phi_3 K_3} \sim B(\phi_3)$ respectively.

Under rotation $R(-\theta_3)$, focusing on the x, y components,

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x' \\ y' \end{bmatrix} = R(-\theta_3) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta_3 + y \sin \theta_3 \\ -x \sin \theta_3 + y \cos \theta_3 \end{bmatrix} \qquad \Longrightarrow$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = R^{-1}(-\theta_3) \begin{bmatrix} x' \\ y' \end{bmatrix} \begin{bmatrix} x' \cos \theta_3 - y' \sin \theta_3 \\ x' \sin \theta_3 + y' \cos \theta_3 \end{bmatrix} \qquad \Longrightarrow$$

$$\partial'_{\mu} = \begin{bmatrix} \partial_{x'} \\ \partial_{y'} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \frac{\partial x}{\partial x'} + \frac{\partial}{\partial y} \frac{\partial y}{\partial x'} \\ \frac{\partial}{\partial x} \frac{\partial x}{\partial x'} + \frac{\partial}{\partial y} \frac{\partial y}{\partial x'} \\ \frac{\partial}{\partial x} \frac{\partial x}{\partial x'} + \frac{\partial}{\partial y} \frac{\partial y}{\partial x'} \end{bmatrix} = \begin{bmatrix} \partial_x \cos \theta_3 + \partial_y \sin \theta_3 \\ -\partial_x \sin \theta_3 + \partial_y \cos \theta_3 \end{bmatrix} = R^{-1T}(-\theta_3) \partial_{\mu}$$

Restoring to the full 4-vector, under rotation $e^{i\theta_3 J_3} \sim R(-\theta_3)$

$$\partial_{\mu} \to \partial_{\mu} + \theta_{3} \begin{bmatrix} 0 \\ \partial_{y} \\ -\partial_{x} \\ 0 \end{bmatrix}$$

Combining with $u \to e^{i\theta_3\sigma_3/2}u, u^{\dagger} \to u^{\dagger}e^{-i\theta_3\sigma_3/2}$, the Lagrangian \mathcal{L} is transformed by

$$\begin{split} \mathcal{L} &\to \mathcal{L}' = i u^\dagger e^{-i\theta_3\sigma_3/2} \sigma^\mu \left(\partial_\mu + \theta_3 \begin{bmatrix} 0 \\ \partial_y \\ -\partial_x \\ 0 \end{bmatrix} \right) e^{i\theta_3\sigma_3/2} u \\ &\approx i u^\dagger \left(I - \frac{i\theta_3\sigma_3}{2} \right) \sigma^\mu \left(\partial_\mu + \theta_3 \begin{bmatrix} 0 \\ \partial_y \\ -\partial_x \\ 0 \end{bmatrix} \right) \left(I + \frac{i\theta_3\sigma_3}{2} \right) u \\ &\approx \mathcal{L} + i u^\dagger \left[\frac{i\theta_3}{2} \left(\sigma^\mu \partial_\mu \sigma_3 - \sigma_3 \sigma^\mu \partial_\mu \right) + \theta_3 (\sigma^1 \partial_y - \sigma^2 \partial_x) \right] u \end{split}$$

If \mathcal{L} were to be Lorentz invariant, the operator inside the brackets will have to be zero. Indeed

$$\sigma^{\mu}\partial_{\mu}\sigma_{3}u = \sigma^{\mu}\partial_{\mu}\sigma_{3}\begin{bmatrix} u_{1}(t,\vec{x}) \\ u_{2}(t,\vec{x}) \end{bmatrix} = \sigma^{\mu}\partial_{\mu}\begin{bmatrix} u_{1} \\ -u_{2} \end{bmatrix}
= I\begin{bmatrix} \partial_{t}u_{1} \\ -\partial_{t}u_{2} \end{bmatrix} + \sigma^{1}\begin{bmatrix} \partial_{x}u_{1} \\ -\partial_{x}u_{2} \end{bmatrix} + \sigma^{2}\begin{bmatrix} \partial_{y}u_{1} \\ -\partial_{y}u_{2} \end{bmatrix} + \sigma^{3}\begin{bmatrix} \partial_{z}u_{1} \\ -\partial_{z}u_{2} \end{bmatrix}
= \begin{bmatrix} \partial_{t}u_{1} \\ -\partial_{t}u_{2} \end{bmatrix} + \begin{bmatrix} -\partial_{x}u_{2} \\ \partial_{x}u_{1} \end{bmatrix} + \begin{bmatrix} i\partial_{y}u_{2} \\ i\partial_{y}u_{1} \end{bmatrix} + \begin{bmatrix} \partial_{z}u_{1} \\ \partial_{z}u_{2} \end{bmatrix}
= \begin{bmatrix} \partial_{t}u_{1} \\ \partial_{t}u_{2} \end{bmatrix} + \sigma^{1}\begin{bmatrix} \partial_{x}u_{1} \\ \partial_{x}u_{2} \end{bmatrix} + \sigma^{2}\begin{bmatrix} \partial_{y}u_{1} \\ \partial_{y}u_{2} \end{bmatrix} + \sigma^{3}\begin{bmatrix} \partial_{z}u_{1} \\ \partial_{z}u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} \partial_{t}u_{1} \\ -\partial_{t}u_{2} \end{bmatrix} + \begin{bmatrix} \partial_{x}u_{2} \\ -\partial_{x}u_{1} \end{bmatrix} + \begin{bmatrix} -i\partial_{y}u_{2} \\ -i\partial_{y}u_{1} \end{bmatrix} + \begin{bmatrix} \partial_{z}u_{1} \\ \partial_{z}u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} \partial_{t}u_{1} \\ -\partial_{t}u_{2} \end{bmatrix} + \begin{bmatrix} \partial_{x}u_{2} \\ -\partial_{x}u_{1} \end{bmatrix} + \begin{bmatrix} -i\partial_{y}u_{2} \\ -i\partial_{y}u_{1} \end{bmatrix} + \begin{bmatrix} \partial_{z}u_{1} \\ \partial_{z}u_{2} \end{bmatrix}$$

$$(2)$$

Therefore

$$\frac{i\theta_3}{2} \left(\sigma^\mu \partial_\mu \sigma_3 - \sigma_3 \sigma^\mu \partial_\mu \right) u = \theta_3 \begin{bmatrix} (-i\partial_x - \partial_y) u_2 \\ (i\partial_x - \partial_y) u_1 \end{bmatrix}$$

which exactly cancels

$$\theta_{3}(\sigma^{1}\partial_{y} - \sigma^{2}\partial_{x})u = \theta_{3}\left(\sigma^{1}\begin{bmatrix}\partial_{y}u_{1}\\\partial_{y}u_{2}\end{bmatrix} - \sigma^{2}\begin{bmatrix}\partial_{x}u_{1}\\\partial_{y}u_{2}\end{bmatrix}\right) = \theta_{3}\left(\begin{bmatrix}\partial_{y}u_{2}\\\partial_{y}u_{1}\end{bmatrix} + \begin{bmatrix}i\partial_{x}u_{2}\\-i\partial_{x}u_{1}\end{bmatrix}\right)$$

Similarly under boost $e^{i\phi_3K_3} \sim B(\phi_3)$

$$\begin{bmatrix} t \\ z \end{bmatrix} \rightarrow \begin{bmatrix} t' \\ z' \end{bmatrix} = B(\phi_3) \begin{bmatrix} t \\ z \end{bmatrix} = \begin{bmatrix} t \cosh \phi_3 + z \sinh \phi_3 \\ t \sinh \phi_3 + z \cosh \phi_3 \end{bmatrix} \implies$$

$$\begin{bmatrix} t \\ z \end{bmatrix} = B^{-1}(\phi_3) \begin{bmatrix} t' \\ z' \end{bmatrix} = \begin{bmatrix} t' \cosh \phi_3 - z' \sinh \phi_3 \\ -t' \sinh \phi_3 + z' \cosh \phi_3 \end{bmatrix} \implies$$

$$\partial'_{\mu} = \begin{bmatrix} \partial_{t'} \\ \partial_{z'} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial t} \frac{\partial t}{\partial t'} + \frac{\partial}{\partial z} \frac{\partial z}{\partial t'} \\ \frac{\partial}{\partial t} \frac{\partial t}{\partial t'} + \frac{\partial}{\partial z} \frac{\partial z}{\partial z'} \end{bmatrix} = \begin{bmatrix} \partial_t \cosh \phi_3 - \partial_z \sinh \phi_3 \\ -\partial_t \sinh \phi_3 + \partial_z \cosh \phi_3 \end{bmatrix} = B^{-1T}(\phi_3) \partial_{\mu}$$

$$\partial_{\mu}
ightarrow \partial_{\mu} - \phi_3 egin{bmatrix} \partial_z \ 0 \ 0 \ \partial_t \end{bmatrix}$$

Combining with $u \to e^{\phi_3\sigma_3/2}u, u^\dagger \to u^\dagger e^{\phi_3\sigma_3/2}$, the Lagrangian $\mathscr L$ is transformed by

$$\begin{split} \mathcal{L} &\rightarrow \mathcal{L}' = i u^\dagger e^{\phi_3 \sigma_3/2} \sigma^\mu \left(\partial_\mu - \phi_3 \begin{bmatrix} \partial_z \\ 0 \\ 0 \\ \partial_t \end{bmatrix} \right) e^{\phi_3 \sigma_3/2} u \\ &\approx i u^\dagger \left(I + \frac{\phi_3 \sigma_3}{2} \right) \sigma^\mu \left(\partial_\mu - \phi_3 \begin{bmatrix} \partial_z \\ 0 \\ 0 \\ \partial_t \end{bmatrix} \right) \left(I + \frac{\phi_3 \sigma_3}{2} \right) u \\ &\approx \mathcal{L} + u^\dagger \left[\frac{\phi_3}{2} \left(\sigma^\mu \partial_\mu \sigma_3 + \sigma_3 \sigma^\mu \partial_\mu \right) - \phi_3 (\partial_z + \sigma^3 \partial_t) \right] u \end{split}$$

From (1) and (2), we know that

$$\frac{\phi_3}{2} \left(\sigma^\mu \partial_\mu \sigma_3 + \sigma_3 \sigma^\mu \partial_\mu \right) u = \phi_3 \left[(\partial_t + \partial_z) u_1 \\ (-\partial_t + \partial_z) u_2 \right]$$

which exactly cancels

$$-\phi_3(\partial_z + \sigma^3 \partial_t)u = -\phi_3 \begin{bmatrix} (\partial_z + \partial_t)u_1 \\ (\partial_z - \partial_t)u_2 \end{bmatrix}$$

Now we prove the useful "Weyl map". Let $\sigma^{\mu}=(\sigma_0,\sigma_1,\sigma_2,\sigma_3)$, and $\bar{\sigma}^{\mu}=(\sigma_0,-\sigma_1,-\sigma_2,-\sigma_3)$. The Weyl map claims

$$\bar{\sigma}^{\mu}\Lambda_{\mu}^{\ \nu} = (S_R^{-1})^{\dagger}\bar{\sigma}^{\nu}S_R^{-1} \tag{3}$$

$$\sigma^{\mu}\Lambda_{\mu}{}^{\nu} = (S_{I}^{-1})^{\dagger}\sigma^{\nu}S_{I}^{-1} \tag{4}$$

$$\Lambda^{\nu}_{\ \mu}\bar{\sigma}^{\mu} = S_{p}^{-1}\bar{\sigma}^{\nu}(S_{p}^{-1})^{\dagger} \tag{5}$$

$$\Lambda^{\nu}_{\mu}\sigma^{\mu} = S_{L}^{-1}\sigma^{\nu}(S_{L}^{-1})^{\dagger} \tag{6}$$

where S_R, S_L are the representations of Λ in the right/left-handed Weyl spinor respectively, i.e.,

$$S_R = e^{i\alpha_i\sigma_i} = e^{i(\theta_i - i\phi_i)\sigma_i/2}$$

$$S_L = e^{i\beta_i\sigma_i} = e^{i(\theta_i + i\phi_i)\sigma_i/2}$$

note that

$$(S_R^{-1})^\dagger = \left(e^{-i(\theta_i - i\phi_i)\sigma_i/2}\right)^\dagger = e^{i(\theta_i + i\phi_i)\sigma_i/2} = S_L$$
 and vice versa $(S_L^{-1})^\dagger = S_R$

We prove (3)-(6) with infinitesimal rotation around z-axis and infinitesimal boost along z-axis. First, with rotation $\Lambda = e^{i\theta_3 J_3}$, we have

For (3), v = 1,

$$\begin{split} \mathrm{LHS} &= \bar{\sigma}^1 \Lambda_1^{\ 1} + \bar{\sigma}^2 \Lambda_2^{\ 1} = -\sigma_1 + \theta_3 \sigma_2 \\ \mathrm{RHS} &= \left(I + \frac{i \theta_3 \sigma_3}{2}\right) (-\sigma_1) \bigg(I - \frac{i \theta_3 \sigma_3}{2}\bigg) = -\sigma_1 - \frac{i \theta_3}{2} [\sigma_3, \sigma_1] = -\sigma_1 + \theta_3 \sigma_2 \end{split}$$

 $\nu = 2$

$$\begin{split} \mathrm{LHS} &= \bar{\sigma}^1 {\Lambda_1}^2 + \bar{\sigma}^2 {\Lambda_2}^2 = -\theta_3 \sigma_1 - \sigma_2 \\ \mathrm{RHS} &= \bigg(I + \frac{i\theta_3 \sigma_3}{2}\bigg) (-\sigma_2) \bigg(I - \frac{i\theta_3 \sigma_3}{2}\bigg) = -\sigma_2 - \frac{i\theta_3}{2} \big[\sigma_3, \sigma_2\big] = -\sigma_2 - \theta_3 \sigma_1 \end{split}$$

For (4), v = 1,

$$\begin{split} \mathrm{LHS} &= \sigma^1 \Lambda_1^{\ 1} + \sigma^2 \Lambda_2^{\ 1} = \sigma_1 - \theta_3 \sigma_2 \\ \mathrm{RHS} &= \bigg(I + \frac{i \theta_3 \sigma_3}{2} \bigg) (\sigma_1) \bigg(I - \frac{i \theta_3 \sigma_3}{2} \bigg) = \sigma_1 + \frac{i \theta_3}{2} [\sigma_3, \sigma_1] = \sigma_1 - \theta_3 \sigma_2 \bigg) \end{split}$$

 $\nu = 2$

$$\begin{aligned} \text{LHS} &= \sigma^1 \Lambda_1^2 + \sigma^2 \Lambda_2^2 = \theta_3 \sigma_1 + \sigma_2 \\ \text{RHS} &= \left(I + \frac{i \theta_3 \sigma_3}{2}\right) (\sigma_2) \left(I - \frac{i \theta_3 \sigma_3}{2}\right) = \sigma_2 + \frac{i \theta_3}{2} [\sigma_3, \sigma_2] = \sigma_2 + \theta_3 \sigma_1 \end{aligned}$$

For (5), v = 1,

$$\begin{split} \mathrm{LHS} &= \boldsymbol{\Lambda}^{1}{}_{1}\bar{\boldsymbol{\sigma}}^{1} + \boldsymbol{\Lambda}^{1}{}_{2}\bar{\boldsymbol{\sigma}}^{2} = -\boldsymbol{\sigma}_{1} - \boldsymbol{\theta}_{3}\boldsymbol{\sigma}_{2} \\ \mathrm{RHS} &= \bigg(I - \frac{i\boldsymbol{\theta}_{3}\boldsymbol{\sigma}_{3}}{2}\bigg)(-\boldsymbol{\sigma}_{1})\bigg(I + \frac{i\boldsymbol{\theta}_{3}\boldsymbol{\sigma}_{3}}{2}\bigg) = -\boldsymbol{\sigma}_{1} + \frac{i\boldsymbol{\theta}_{3}}{2}\big[\boldsymbol{\sigma}_{3}, \boldsymbol{\sigma}_{1}\big] = -\boldsymbol{\sigma}_{1} - \boldsymbol{\theta}_{3}\boldsymbol{\sigma}_{2} \end{split}$$

 $\nu = 2$

$$\begin{split} \mathrm{LHS} &= \Lambda^2{}_1\bar{\sigma}^1 + \Lambda^2{}_2\bar{\sigma}^2 = \theta_3\sigma_1 - \sigma_2 \\ \mathrm{RHS} &= \left(I - \frac{i\theta_3\sigma_3}{2}\right)(-\sigma_2)\left(I + \frac{i\theta_3\sigma_3}{2}\right) = -\sigma_2 + \frac{i\theta_3}{2}[\sigma_3,\sigma_2] = -\sigma_2 + \theta_3\sigma_1 \end{split}$$

For (6), v = 1,

$$\begin{split} \mathrm{LHS} &= \boldsymbol{\Lambda}^{1}{}_{1}\boldsymbol{\sigma}^{1} + \boldsymbol{\Lambda}^{1}{}_{2}\boldsymbol{\sigma}^{2} = \boldsymbol{\sigma}_{1} + \boldsymbol{\theta}_{3}\boldsymbol{\sigma}_{2} \\ \mathrm{RHS} &= \bigg(I - \frac{i\boldsymbol{\theta}_{3}\boldsymbol{\sigma}_{3}}{2}\bigg)(\boldsymbol{\sigma}_{1})\bigg(I + \frac{i\boldsymbol{\theta}_{3}\boldsymbol{\sigma}_{3}}{2}\bigg) = \boldsymbol{\sigma}_{1} - \frac{i\boldsymbol{\theta}_{3}}{2}[\boldsymbol{\sigma}_{3}, \boldsymbol{\sigma}_{1}] = \boldsymbol{\sigma}_{1} + \boldsymbol{\theta}_{3}\boldsymbol{\sigma}_{2} \end{split}$$

v=2,

$$\begin{split} \mathrm{LHS} &= \boldsymbol{\Lambda}^2{}_1\boldsymbol{\sigma}^1 + \boldsymbol{\Lambda}^2{}_2\boldsymbol{\sigma}^2 = -\boldsymbol{\theta}_3\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2 \\ \mathrm{RHS} &= \bigg(I - \frac{i\boldsymbol{\theta}_3\boldsymbol{\sigma}_3}{2}\bigg)(\boldsymbol{\sigma}_2)\bigg(I + \frac{i\boldsymbol{\theta}_3\boldsymbol{\sigma}_3}{2}\bigg) = \boldsymbol{\sigma}_2 - \frac{i\boldsymbol{\theta}_3}{2}[\boldsymbol{\sigma}_3, \boldsymbol{\sigma}_2] = \boldsymbol{\sigma}_2 - \boldsymbol{\theta}_3\boldsymbol{\sigma}_1 \end{split}$$

Similarly, for boost $\Lambda = e^{i\phi_3 K_3}$, we have

$$\Lambda \approx \begin{bmatrix} 1 & 0 & 0 & \phi_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \phi_2 & 0 & 0 & 1 \end{bmatrix}, \qquad S_R = e^{\phi_3 \sigma_3/2} \approx I + \frac{\phi_3 \sigma_3}{2}, \qquad S_L = e^{-\phi_3 \sigma_3/2} \approx I - \frac{\phi_3 \sigma_3}{2}$$

For (3), v = 0,

$$\begin{split} \mathrm{LHS} &= \bar{\sigma}^0 \Lambda_0{}^0 + \bar{\sigma}^3 \Lambda_3{}^0 = I - \phi_3 \sigma_3 \\ \mathrm{RHS} &= \left(I - \frac{\phi_3 \sigma_3}{2}\right) (\sigma_0) \left(I - \frac{\phi_3 \sigma_3}{2}\right) = I - \phi_3 \sigma_3 \end{split}$$

v=3,

LHS =
$$\bar{\sigma}^0 \Lambda_0^3 + \bar{\sigma}^3 \Lambda_3^3 = \phi_3 I - \sigma_3$$

RHS = $\left(I - \frac{\phi_3 \sigma_3}{2}\right) (-\sigma_3) \left(I - \frac{\phi_3 \sigma_3}{2}\right) = -\sigma_3 + \phi_3 I$

For (4), v = 0,

LHS =
$$\sigma^0 \Lambda_0^0 + \sigma^3 \Lambda_3^0 = I + \phi_3 \sigma_3$$

RHS = $\left(I + \frac{\phi_3 \sigma_3}{2}\right) (\sigma_0) \left(I + \frac{\phi_3 \sigma_3}{2}\right) = I + \phi_3 \sigma_3$

v = 3,

LHS =
$$\sigma^0 \Lambda_0^3 + \sigma^3 \Lambda_3^3 = \phi_3 I + \sigma_3$$

RHS = $\left(I + \frac{\phi_3 \sigma_3}{2}\right) (\sigma_3) \left(I + \frac{\phi_3 \sigma_3}{2}\right) = \sigma_3 + \phi_3 I$

For (5), v = 0,

$$\begin{aligned} \text{LHS} &= \Lambda^0_{0}\bar{\sigma}^0 + \Lambda^0_{3}\bar{\sigma}^3 = I - \phi_3\sigma_3 \\ \text{RHS} &= \left(I - \frac{\phi_3\sigma_3}{2}\right)(\sigma_0)\left(I - \frac{\phi_3\sigma_3}{2}\right) = I - \phi_3\sigma_3 \end{aligned}$$

v = 3,

$$\begin{split} \mathrm{LHS} &= \Lambda^3{}_0\bar{\sigma}^0 + \Lambda^3{}_3\bar{\sigma}^3 = \phi_3 I - \sigma_3 \\ \mathrm{RHS} &= \left(I - \frac{\phi_3\sigma_3}{2}\right)(-\sigma_3)\left(I - \frac{\phi_3\sigma_3}{2}\right) = -\sigma_3 + \phi_3 I \end{split}$$

For (6), v = 0,

$$\begin{aligned} & \text{LHS} = {\Lambda^0}_0 \sigma^0 + {\Lambda^0}_3 \sigma^3 = I + \phi_3 \sigma_3 \\ & \text{RHS} = \left(I + \frac{\phi_3 \sigma_3}{2}\right) (\sigma_0) \left(I + \frac{\phi_3 \sigma_3}{2}\right) = I + \phi_3 \sigma_3 \end{aligned}$$

v = 3,

LHS =
$$\Lambda^3_0 \sigma^0 + \Lambda^3_3 \sigma^3 = \phi_3 I + \sigma_3$$

RHS = $\left(I + \frac{\phi_3 \sigma_3}{2}\right) (\sigma_3) \left(I + \frac{\phi_3 \sigma_3}{2}\right) = \sigma_3 + \phi_3 I$

At last we show the Lorentz invariance of $\mathcal L$ in index notation. Given $\Lambda = e^{i(\theta_i J_i + \phi_i K_i)} \in SO(3,1)$, let $S = e^{i(\theta_i - i\phi_i)\sigma_i/2}$ be the corresponding transformation to be applied to u.

First observe that

$$\sigma_i \partial_{\nu} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \sigma_i \begin{bmatrix} \partial_{\nu} u_1 \\ \partial_{\nu} u_2 \end{bmatrix} = \partial_{\nu} \sigma_i \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad \Longrightarrow \qquad [\sigma_i, \partial_{\nu}] = 0 \qquad \Longrightarrow \qquad S \partial_{\nu} = \partial_{\nu} S \partial_{\nu} = S \partial_{\nu} S \partial_{\nu} =$$

Now the differential operator ∂_{μ} transforms like

$$\partial_{\mu} \rightarrow \partial'_{\mu} = \frac{\partial}{\partial x'^{\mu}} = \frac{\partial}{\partial x^{\nu}} \frac{\partial x^{\nu}}{\partial x'^{\mu}}$$

By definition of Λ , we have

$$x^{\nu} = (\Lambda^{-1})^{\nu}_{\mu} x^{\prime \mu}$$

so

$$\partial_{\mu}' = (\Lambda^{-1})^{\nu}_{\mu} \partial_{\nu} = (\Lambda^{-1T})_{\mu}^{\nu} \partial_{\nu}$$

In fact

$$\boldsymbol{\Lambda}^T\boldsymbol{\eta}\boldsymbol{\Lambda} = \boldsymbol{\eta} \qquad \Longrightarrow \qquad \boldsymbol{\Lambda}^{-1T} = \boldsymbol{\eta}\boldsymbol{\Lambda}^T\boldsymbol{\eta} \qquad \Longrightarrow \qquad \left(\boldsymbol{\Lambda}^{-1T}\right)_{\boldsymbol{\mu}}{}^{\boldsymbol{\nu}} = \boldsymbol{\eta}_{\boldsymbol{\mu}\boldsymbol{\rho}}\boldsymbol{\Lambda}^{\boldsymbol{\rho}}{}_{\boldsymbol{\tau}}\boldsymbol{\eta}^{\boldsymbol{\tau}\boldsymbol{\nu}}$$

therefore the Lagrangian transforms as

$$\begin{split} \mathcal{L} &= i u^\dagger \sigma^\mu \partial_\mu u \to \mathcal{L}' = i u^\dagger S^\dagger \left[\sigma^\mu (\Lambda^{-1T})_\mu^{\nu} \partial_\nu \right] S u \\ &= i u^\dagger S^\dagger \left[\sigma^\mu \eta_{\mu\rho} \Lambda^\rho_{\tau} \eta^{\tau\nu} \partial_\nu \right] S u \\ &= i u^\dagger S^\dagger \left[\bar{\sigma}_\rho \Lambda^\rho_{\tau} \partial^\tau \right] S u \qquad \text{(applying Weyl map)} \\ &= i u^\dagger S^\dagger \left[(S^{-1})^\dagger \bar{\sigma}_\tau S^{-1} \partial^\tau \right] S u \qquad ([S, \partial_\tau] = 0) \\ &= i u^\dagger \bar{\sigma}_\tau \partial^\tau u = i u^\dagger \sigma^\tau \partial_\tau u \end{split}$$

Another way of saying $\mathcal L$ is Lorentz invariant is that the Weyl equation

$$\sigma^{\mu}\partial_{\mu}u=0$$

transforms under S by

$$\sigma^{\mu}\partial_{\mu}'Su = (S^{-1})^{\dagger}\sigma^{\mu}\partial_{\mu}u = 0$$