音乐年份预测←

本课题采用的数据集来自于"百万歌曲数据集(Million Song Dataset, MSD)",百万歌曲数据集包括了 1,000,000 首当代流行音乐的音频特征和元数据。音频特征是对歌曲的音频的数据描述,包括响度、音色、音调等。歌曲的元数据指歌曲名称、演唱者、词曲作者、发行公司、发行年份等信息,它们不能在歌曲的音频中直接体现。每首歌用一个.h5 文件储存其特征,所有的文件在一个目录树中分布。.h5 文件使用 HDF5 格式储存数据,是一种层次化的数据储存格式。本数据集提供了 hdf5_getters.py 模组来读取这种格式的文件(已作为附件提供,也可在数据集官网中下载)。

任务:根据一首音乐的音频特征,推测这首音乐的发行年份。 问题的输入:音乐的特征。 问题的输出:发行年份(是一个实数)

数据集下载:

wget http://millionsongdataset.com/sites/default/files/AdditionalFiles/TRAXLZU12903D05F94.h5

2.数据预处理

1. 读取h5文件,并转化为txt文件

参考数据集提供代码: https://github.com/tbertinmahieux/MSongsDB/blob/master/PythonSrc/hdf5_getters.py

- 2. 将txt文件转化为csv文件
 - a. 首先将txt文件转化为csv文件,使用python的csv库

```
import csv

raw_csv_path = "./datasets/raw_data.csv"
raw_txt_path = "./datasets/YearPredictionMSD.txt"

csvFile = open(raw_csv_path,'w',newline='',encoding='utf-8')
writer = csv.writer(csvFile)
csvRow = []

f = open(raw_txt_path,'r',encoding='GB2312')
for line in f:
    csvRow = line.split(',')
    writer.writerow(csvRow)

f.close()
csvFile.close()
```

b. 为了后续算法和数据可视化,添加标题行

```
import csv

raw_csv_path = "./datasets/raw_data.csv"
addtitle_csv_path = "./datasets/addtitle.csv"

# set title names
header_list = ['Year']
for i in range(1,91):
    header_list.append('attr' + str(i))

# read raw csv and insert title
with open(raw_csv_path, "r") as infile:
    reader = list(csv.reader(infile))
    reader.insert(0, header_list)

with open(addtitle_csv_path, "w") as outfile:
    writer = csv.writer(outfile)
    for line in reader:
        writer.writerow(line)
```

```
import csv
addtitle_csv_path = "./datasets/addtitle.csv"
delcol_csv_path = "./datasets/data.csv"
# set the index of columes
cols_to_remove = []
for i in range(13,91):
   cols_to_remove.append(i) # Column indexes to be removed (starts at 0)
cols_to_remove = sorted(cols_to_remove, reverse=True) # Reverse so we remove from the end first
row_count = 0 # Current amount of rows processed
with open(addtitle_csv_path, "r") as source:
   reader = csv.reader(source)
   with open(delcol_csv_path, "w", newline='') as result:
      writer = csv.writer(result)
       for row in reader:
           print('\r{0}'.format(row_count), end='') # Print rows processed
           for col_index in cols_to_remove:
              del row[col_index]
           writer.writerow(row)
# remove addtitle csv
cmd = "rm -rf " + addtitle_csv_path
os.system(cmd)
```

最终效果展示(仅前10行):

	Year	attr1	attr2	attr3	attr4	attr5	attr6	attr7	attr8	attr9	attr10	attr11	attr12
0	2001	49.94357	21.47114	73.07750	8.74861	-17.40628	-13.09905	-25.01202	-12.23257	7.83089	-2.46783	3.32136	-2.31521
1	2001	48.73215	18.42930	70.32679	12.94636	-10.32437	-24.83777	8.76630	-0.92019	18.76548	4.59210	2.21920	0.34006
2	2001	50.95714	31.85602	55.81851	13.41693	-6.57898	-18.54940	-3.27872	-2.35035	16.07017	1.39518	2.73553	0.82804
3	2001	48.24750	-1.89837	36.29772	2.58776	0.97170	-26.21683	5.05097	-10.34124	3.55005	-6.36304	6.63016	-3.35142
4	2001	50.97020	42.20998	67.09964	8.46791	-15.85279	-16.81409	-12.48207	-9.37636	12.63699	0.93609	1.60923	2.19223
5	2001	50.54767	0.31568	92.35066	22.38696	-25.51870	-19.04928	20.67345	-5.19943	3.63566	-4.69088	2.49578	-3.02468
6	2001	50.57546	33.17843	50.53517	11.55217	-27.24764	-8.78206	-12.04282	-9.53930	28.61811	8.25435	-0.43743	5.66265
7	2001	48.26892	8.97526	75.23158	24.04945	-16.02105	-14.09491	8.11871	-1.87566	7.46701	1.18189	1.46625	-6.34226
8	2001	49.75468	33.99581	56.73846	2.89581	-2.92429	-26.44413	1.71392	-0.55644	22.08594	7.43847	-0.03578	1.66534
9	2007	45.17809	46.34234	-40.65357	-2.47909	1.21253	-0.65302	-6.95536	-12.20040	17.02512	2.00002	-1.87785	9.85499

3.数据特征展示

1.数据统计信息

	Year	attr1	attr2	attr3	attr4	attr5	attr6	attr7	attr8	attr9	attr10	attr11	
count	515345.000000	515345.000000	515345.000000	515345.000000	515345.000000	515345.000000	515345.000000	515345.000000	515345.000000	515345.000000	515345.000000	515345.000000	5153
mean	1998.397082	43.387126	1.289554	8.658347	1.164124	-6.553601	-9.521975	-2.391089	-1.793236	3.727876	1.882385	-0.146527	
std	10.931046	6.067558	51.580351	35.268585	16.322790	22.860785	12.857751	14.571873	7.963827	10.582861	6.530232	4.370848	
min	1922.000000	1.749000	-337.092500	-301.005060	-154.183580	-181.953370	-81.794290	-188.214000	-72.503850	-126.479040	-41.631660	-69.680870	
25%	1994.000000	39.954690	-26.059520	-11.462710	-8.487500	-20.666450	-18.440990	-10.780600	-6.468420	-2.293660	-2.444850	-2.652090	
50%	2002.000000	44.258500	8.417850	10.476320	-0.652840	-6.007770	-11.188390	-2.046670	-1.736450	3.822310	1.783520	-0.097950	
75%	2006.000000	47.833890	36.124010	29.764820	8.787540	7.741870	-2.388960	6.508580	2.913450	9.961820	6.147220	2.435660	
max	2011.000000	61.970140	384.065730	322.851430	335.771820	262.068870	166.236890	172.402680	126.741270	146.297950	60.345350	88.020820	

2.年份数据量分布图

3.属性的分类散点图

attr1的分类散点图

attr3的分类散点图

4.属性的箱式图

attr1的随年份分布的箱式图

所有属性的箱式图

5.变量之间的相关性图

6.按照decade分布的热力图

4.分类预测

1.KNN法:

可视化KNN方法的参数一和参数二

发现可视化结果的分类效果并不好,输出准确值:

预测值: [1999 2007 1996 ... 2005 2005 2008] 预测值是否等于真实值 [False False False ... True False True] accuracy: 0.17546764637396187

2.PCA法:

可视化PCA降维效果(降至3维)

划分出不同年份

发现降维效果并不理想,存在很多重叠部分,对于分类任务帮助不大

3.SVC法:

SVC的运行时间较长,通过查看SVC的官方文档,原因是因为

"The fit time scales at least quadratically with the number of samples and may be impractical beyond tens of thousands of samples."

算法的时间复杂度大约是样本数量的平方,本实验中样本数量较多,将会导致较长的运行时间

4.随机森林:

使用留出法分割训练集和测试集,输出前100个预测值:

```
array([2001, 2010, 2003, 2007, 2005, 2007, 2009, 2009, 2006, 2008, 1994, 2005, 2007, 1992, 1994, 1993, 1994, 2007, 1978, 2007, 2008, 2006, 1998, 2003, 1994, 1994, 2003, 1984, 2006, 1996, 2005, 2006, 1982, 1992, 2001, 2001, 1995, 2002, 2005, 2004, 2002, 2006, 2008, 2005, 2007, 2005, 2003, 2009, 1998, 2002, 2002, 2006, 1994, 2004, 2006, 2008, 1989, 2003, 2002, 2003, 1996, 2005, 2006, 1998, 2006, 2009, 2006, 2007, 2003, 2001, 1999, 1967, 1997, 2000, 2008, 1997, 1969, 1977, 2005, 1997, 1983, 1996, 2006, 1999, 2002, 2002, 2008, 1982, 2003, 1986, 2002, 1982, 2001, 2000, 1982, 1966, 1990, 1999, 1995, 2007])
```

测试集标签:

```
array([2001, 2010, 2003, 2007, 2005, 2007, 2009, 2009, 2006, 2008, 1994, 2005, 2007, 1992, 1994, 1993, 1994, 2007, 1978, 2007, 2008, 2006, 1998, 2003, 1994, 1994, 2003, 1984, 2006, 1996, 2005, 2006, 1982, 1992, 2001, 2001, 1995, 2002, 2005, 2004, 2002, 2006, 2008, 2005, 2007, 2005, 2003, 2009, 1998, 2002, 2002, 2006, 1994, 2004, 2006, 2008, 1989, 2003, 2002, 2003, 1996, 2005, 2006, 1998, 2006, 2009, 2006, 2007, 2003, 2001, 1999, 1967, 1997, 2000, 2008, 1997, 1969, 1977, 2005, 1997, 1983, 1996, 2006, 1999, 2002, 2002, 2008, 1982, 2003, 1986, 2002, 1982, 2001, 2000, 1982, 1966, 1990, 1999, 1995, 2007])
```

随机森林各年份分类概率:

预测准确率:

```
rfc.score(Xtest,Ytest)
1.0
```

使用留出法将会有多少样本未被投入训练集:

$$\lim_{m\to\infty}(1-\frac{1}{m})^m=\frac{1}{e}\approx 0.368$$

5.深度学习:

使用两层全连接层,一层softmax层作为网络结构,进行分类任务:

```
def get_network():
    model = kr.models.Sequential()
    model.add(Dense(20, input_shape=(train_features.shape[1],), activation="relu"))
    model.add(Dense(20, activation="relu"))
    model.add(Dense(label_count, activation="softmax"))
    opt = "adam"
    model.compile(loss= "categorical_crossentropy", optimizer=opt, metrics=["accuracy"], )
    return model
```

训练过程:

```
.
396/396 [≕
                                                  =] - 1s 1ms/step - loss: 1.8112 - accuracy: 0.2688
Epoch 2/10
Epoch 3/10
396/396 [=
                                                     - 0s 992us/step - loss: 1.5016 - accuracy: 0.4120
Epoch 4/10
396/396 [==
                                                  =] - 0s 1ms/step - loss: 1.4608 - accuracy: 0.4230
Epoch 5/10
396/396 [==
Epoch 6/10
                                                 ==] - 2s 4ms/step - loss: 1.4369 - accuracy: 0.4354
                                                ==] - 2s 4ms/step - loss: 1.4199 - accuracy: 0.4424
396/396 [≕
Epoch 7/10
396/396 [==
Epoch 8/10
                                               ===1 - 1s 3ms/step - loss: 1.4060 - accuracy: 0.4470
396/396 [==
Epoch 9/10
                                               ===] - 1s 3ms/step - loss: 1.3956 - accuracy: 0.4532
396/396 [==
Epoch 10/10
                                          ======] - 1s 4ms/step - loss: 1.3860 - accuracy: 0.4564
                                             =====] - 1s 3ms/step - loss: 1.3763 - accuracy: 0.4610
===] - 1s 2ms/step - loss: 1.4560 - accuracy: 0.4318
396/396 [==
99/99 [=:
                                             ====] - 1s 1ms/step - loss: 1.8229 - accuracy: 0.2674
396/396 [≕
Epoch 2/10
396/396 [==
                                           :=====] - 1s 2ms/step - loss: 1.5875 - accuracy: 0.3685
Epoch 10/10
396/396 [==:
396/396 [========] - 1s lms/step - loss: 1.3711 - accuracy: 0.4662
99/99 [=====] - 0s lms/step - loss: 1.4661 - accuracy: 0.4188
[0.43178374 0.43380496 0.42824659 0.44239515 0.41875157]
```

训练结果通过混淆矩阵热力图展示:

混淆矩阵:

	0	1	2	3	4	5	6
0	0.694545	0.174545	0.036364	0.029091	0.010909	0.043636	0.010909
1	0.304460	0.367925	0.151801	0.079760	0.036021	0.036021	0.024014
2	0.099750	0.183639	0.387312	0.142738	0.073038	0.050501	0.063022
3	0.096882	0.090455	0.130921	0.473221	0.102595	0.043085	0.062842
4	0.118998	0.081320	0.094674	0.192051	0.218680	0.117011	0.177266
5	0.066789	0.051196	0.054241	0.049557	0.118956	0.190162	0.469098
6	0.029042	0.034850	0.057115	0.036786	0.101646	0.160697	0.579864

可见对角线上分类的概率最大,说明分类正确,分类效果较好

5.实验总结

想法验证,对于结果有轻微的提升:

- 1.划分训练集和测试集的时候不整体随机划分,而是按照年份随机划分,这样做的好处是数据分布不均匀,有的年份样本量太小,可能该年份没有加入 训练集直接加入测试集造成模型未学习到;
- 2.进行归一化,虽然数据值的大小没有差很多个数量级,但是仍然会对权重产生轻微的影响;
- 3.尝试了一下深度学习的算法,用全连接网络
- 4.可以根据相关性图对原始的所有数据进行降维,前12个属性中部分属性对于分类效果不明显,根据原始数据降至12维可能会对最后的结果带来一定的 帮助
- 5.按照decades表示,会减少计算量,更便于验证想法
- 6.根据数据分布特征,可以尝试核函数
- 7.许多sklearn的算法不支持GPU加速,因为sklearn在设计时就有意识的设置成CPU,方便跨设备使用,可以手写cuda,加速训练
- 8.设置验证集,部分算法极有可能过拟合