Definitions

Definition 1.1. 一个有限有向图 G = (N, E) 由有限集合 N 和集合 $E \subseteq N \times N$ 构成. 对定义的补充: 取 N 上两个顶点 n_1 和 n_2 ,若有一条 n_1 到 n_2 有向边 e,那么 $e \in E$.

Definition 1.2. 一个程序图是一个有限有向图 G = (N, E),其中 N 表示程序中的所有指令 (instruction) 构成的集合,E 表示指令之间的控制流(control flow)构成的集合.

Example 1.3. 通篇将使用下面的例子来阐述.

Definition 1.4. Constant pool表示由一群有序对 (order pair)(v,c) 构成的集合,记为 **P**. 其中 v 表示程序中某个具体的变量,c 表示某个常量. G 上某顶点 i 处的 Constant pool 记为 \mathbf{P}_i ,若 $(v,c) \in \mathbf{P}_i$,那么表示在程序动态运行时变量 v 可以取到常量 c,所以是可以存在 $(v,c_1),(v,c_2) \in \mathbf{P}_i$

Definition 1.5. 给定 G 上某个顶点 i 和从 entry 到 i 的一条路径 $\pi = (p_1, \dots, p_n)$,其中 p_1 为 entry, p_n 为顶点 i. 用 \mathbf{P}_i^{π} 表示限制在路径 π 上 i 点的 constant pool,注意其含义是在路径 π 确定的情况下,沿着 π 执行到 顶点 i 处时,这一点的程序状态是确定的,所以若 $(v,c) \in \mathbf{P}_i^{\pi}$,则不会同时存在 $(v,c') \in \mathbf{P}_i^{\pi}$.

Example 1.6. 以上图的 D 点举例,如果我们关注的路径是 $\pi_1 = (A, B, C, D)$,那么

$$\mathbf{P}_{D}^{\pi_{1}} = \{(a,1), (c,0), (b,2)\}.$$

如果我们关注的路径是 $\pi_2 = (A, B, C, D, E, F, C, D)$, 那么

$$\mathbf{P}_{D}^{\pi_2} = \{(a,1), (c,4), (b,2), (d,3), (e,2)\}.$$

Definition 1.7. 给定程序图 G = (N, E) 中的某个顶点 i, 那么它的Propagated constant pool表示为

$$\mathcal{P}_i = \bigcap_{k \in K} \mathbf{P}_i^{\pi_k}.$$

其中 G 上总共有 K 条 entry 到 i 的路径.

Definition 1.8. 给定程序图 G=(N,E),定义集合 V 表示 G 上所有的变量,集合 C 表示图上所有的常量和集合 $U=V\times C$ 表示可能出现在任意顶点上 constant pool 中 order pairs. 那么一个常量传播函数表示为

$$f: \overline{N} \times \mathfrak{P}(U) \rightarrow \mathfrak{P}(U).$$

其中 $\mathfrak{P}(U)$ 表示 U 的幂集.

给定某个具体顶点 i 和 constant pool \mathbf{P} ,若 $(v,c) \in f(i,\mathbf{P})$ 当且仅当

- 1. $(v,c) \in \mathbf{P}$ 且顶点 i 处没有对 v 进行赋值, 或
- 2. 对 v 赋值表达式的结果是常量 c.

那么前面的Propagated constant pool的定义可以改写为

$$\mathcal{P}_i = \bigcap_{u \in F^i} u,$$

其中 $F^i = \{f(p_{kn}, f(p_{kn-1}, \dots, f(p_1, \mathbf{P}_{\varepsilon})) \dots), \dots\}, (p_{k1}, \dots, p_{kn})$ 是一个 entry ε 到 i 的路径 $\pi_k, k \in K, \mathbf{P}_{\varepsilon}$ 表示 entry 处的初始化的 constant pool.

Example 1.9. 例如在上图 A 点的 constant pool 是一个 \emptyset , 那么

$$f(A,\emptyset) = \{(a,1)\}.$$

如果我们把得到的结果当做 B 点的 constant pool, 那么就有

$$f(B, f(A, \emptyset)) = \{(a, 1), (c, 0)\}\$$

Definition 1.10. 一个semilattice(半格) S 由一个非空集合 S 和一个二元运算·构成,其中·需要满足下面的条件

- 1. $x \cdot x = x$,
- $2. x \cdot y = y \cdot x,$
- 3. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

通常我们把·用 / 或者 / 来表示.

Definition 1.11. 给定一个 semilattice S. 在其上构造一个 partial order set,我们定义若 $x \wedge y = x$,则 $x \leq y$,这个特殊的 poset(后面用它代称 partial order set) 我们称之为meet semilattice. 对偶地定义若 $x \vee y = y$,则 $x \leq y$,这个 poset 我们称之为 join semilattice.

Definition 1.12. 给定一个 meet semilattice S, 若 S 里面有一个最大元 1(maximum element),即对于任意的 $x \in S$,都有 $x \wedge 1 = x$,且对任意 $A \subseteq S$,有 $\bigwedge S$ 存在. 我们称 S 为一个complete meet semilattice. 同理给定一个 join semilattice 里面有一个最小元 0(minimum element),且对任意 $A \subseteq S$,有 $\bigvee S$ 存在,则称其为complete join semilattice.

Definition 1.13. 给定常量域 U,设 $L = (\mathfrak{P}(U), \cap)$ 为一个 meet semilattice.

Lemma 1.14. 下面等式成立 homomorphism???

$$f(i, x \wedge y) = f(i, x) \wedge f(i, y).$$

其中 $y, u \in \mathfrak{P}(U)$.

证明. 分四种情况来分别说明

- 1. 若 $(v,c) \in x$ 和 $(v,c) \in y$. 那么 $(v,c) \in x \land y$,若 $(v,c) \in f(i,x \land y)$,则满足 f 定义提到的条件 (1)(2),那么在满足 (1)(2) 的前提下均有 $(v,c) \in f(i,x)$ 和 $(v,c) \in f(i,y)$,即 $(v,c) \in f(i,x) \land f(i,y)$. 同理若 $(v,c) \notin f(i,x \land y)$,也可以得到 $(v,c) \notin f(i,x) \land f(i,y)$.
- 2. 若 $(v,c) \in x$ 和 y 里面没有关于 v 的 variable-constant pair. 同下
- 3. 若 x 里面没有关于 v 的 variable-constant pair 和 $(v,c) \in y$. 同下
- 4. 若 $(v, c_1) \in x$ 和 $(v, c_2) \in y$. 那么 $(v, c_1) \notin x \land \exists (v, c_2) \notin x \land y$. 若 $(v, c_3) \in f(i, x \land y)$,则满足 f 定义中条件 (2). 那么满足 (2) 的前提下,有 $(v, c_3) \in f(i, x)$ 和 $(v, c_3) \in f(i, y)$,即 $(v, c_3) \in f(i, x) \land f(i, x)$. 若 $f(i, x \land y)$ 中没有关于 v 的 variable-constant pair,那么 f 中没有对 v 进行重新赋值,则 $(v, c_1) \in f(i, x)$ 和 $(v, c_2) \in f(i, y)$,即 $f(i, x) \land f(i, y)$ 里面也没有关于 v 的 variable-constant pair.

由于我们选取的 i 和 x,y 都是任意的, 综上原式成立.

Definition 1.15. 给定有向图 G = (N, E) 上一个顶点 i, 若 $s \in N$ 且 $(i, s) \in E$, 则 s 为 i 的立即后继(immediate successor),把 i 的所有立即后继记为 $\mathrm{IS}(i)$;同理若 $p \in N$ 且 $(p, i) \in E$,则 s 为 i 的立即前驱(immediate predecessor),把所有的立即后继记为 $\mathrm{IP}(i)$.

Algorithm

```
Algorithm 1: global analysis
   input: A program graph G = (N, E)
   output The propagated constant pool \mathcal{P}_i of every node i
1 begin
       /* 我们只关注整个图只有一个 entry \varepsilon. 经典 worklist 的应用
                                                                                                                              */
       W \longleftarrow \{(\varepsilon, \mathbf{P}_{\varepsilon})\};
       /* 所有顶点的 propagated constant pool 初始化为整个 lattice 里面的最大值
       foreach i in N do
 3
         \mathcal{P}_i = 1
 4
       while W \neq \emptyset do
 5
            X \longleftarrow (i, \mathbf{P}_i) \in W;
 6
            W \longleftarrow W - \{(i, \mathbf{P}_i)\};
 7
            /* 注意到这里 propagated constant pool 是不增的
                                                                                                                              */
           if X \wedge \mathcal{P}_i < \mathcal{P}_i then
 8
                \mathcal{P}_i \longleftarrow X \wedge \mathcal{P}_i;
 9
                /* 考虑所有后继
                                                                                                                              */
                W \longleftarrow W \cup \{ (s, f(i, \mathcal{P}_i)) \mid s \in \mathrm{IS}(i) \}
10
```

Theorem 2.1. 算法 1 的步骤是有限的.

Theorem 2.2. 算法 1 计算得到的结果 $\mathcal{P}_i = \bigwedge_{u \in F^i} u$, 其中 $F^i = \{f(p_n, f(p_{n-1}, \dots, f(p_1, \mathbf{P}_{\varepsilon})) \dots), \dots\}$.

证明. 注意上面的 \wedge 在这里就是集合上的 \cap ,因为我们的 semilattice 的 underlying set 是 $\mathfrak{B}(U)$. 对于从 ε 到 i 的任意一条路径 $\pi_k = (p_{k_1}, \cdots, p_{k_n})$,其中 $p_{k_1} = \varepsilon$, $p_{k_n} = i$,那么

$$\bigwedge_{u \in F^i} u = \bigwedge_{k \in K} f(p_{k_n}, f(p_{k_{n-1}}, \cdots, f(p_{k_1}, \mathbf{P}_{\varepsilon})) \cdots).$$

我们注意到对于任意的 $k \in K$ 都有 $p_{k_n} = i$, 那么应用 lemma 1.13 就有

$$f(i, \bigwedge_{k \in K} f(p_{k_{n-1}}, \cdots, f(p_{k_1}, \mathbf{P}_{\varepsilon}) \cdots).$$

我们在想这个 \bigwedge 能不能继续往里面推呢? 考虑对于任意的 $k \in K$, 集合 $\{p_{kn-1}\}$ 可能就不是一个单点集了 (single set),这个集合就是 i 的所有的立即前驱 $\mathrm{IP}(i)$. 我们又可以尝试用 lemma 1.13 合并一些项

$$f(i, \bigwedge_{i^{-1} \in \mathrm{IP}(i)} f(i^{-1}, \bigwedge_{k \in K \text{ and } p_{k_{n-1}=i^{-1}}} f(p_{k_{n-2}}, \cdots, f(p_{k_1}, \mathbf{P}_{\varepsilon}) \cdots))$$

那么最后我们可以给出一般式

$$f(i, \bigwedge_{i^{-1} \in \mathrm{IP}(i)} f(i^{-1}, \bigwedge_{k \in K \text{ and } p_{k_{n-1} = i^{-1}}} f(i^{-2}, \cdots \bigwedge_{k \in K \text{ and } p_{k_{3} = i^{-(n-3)}}} f(i^{-(n-3)}, \bigwedge_{k \in K \text{ and } p_{k_{2} = i^{-(n-2)}}} f(i^{-(n-2)}, f(p_{k_{1}}, \mathbf{P}_{\varepsilon}))) \cdots))).$$

体会这个一般式子, 我们已经证明了.