Single cell RNA sequencing data analysis Practical exercises 4-6 February 2019

Åsa Björklund asa.bjorklund@scilifelab.se

Practical on zoom

- Work in groups of 5, the idea is that you can help each other out and discuss results.
- One zoom breakout room per group, you should have already been assigned to a group in slack.
 Please stay online in the breakout room for your group.
- Come to main room for question or tell us on slack an we can come to your breakout room.
- We have some extra rooms where we can sit with a student if there are specific questions.

https://nbisweden.github.io/workshop-scRNAseq/exercises

Tutorial	R Seurat	R Scater/Scran	Scanpy
Quality Control	Seurat_qc (.Rmd)	Scater_qc (.Rmd)	ScanPY_qc (.ipynb)
Dimensionality reduction	Seurat_dr (.Rmd)	Scater_dr (.Rmd)	Scanpy_dr (.ipynb)
Data integration	Seurat_integr (.Rmd)	Scater_integr (.Rmd)	Scanpy_integr (.ipynb)
Clustering	Seurat_clust (.Rmd)	Scater_clust (.Rmd)	Scanpy_clust (.ipynb)
Differential expression	Seurat_dge (.Rmd)	Scater_dge (.Rmd)	Scanpy_dge (.ipynb)
Celltype prediction	Seurat_ct (.Rmd)	Scater_ct (.Rmd)	Scanpy_ct (.ipynb)
Spatial transcriptomics	Seurat_ST (.Rmd)		Scanpy_ST (.ipynb)
Trajectory inference	Slingshot_ti (.Rmd)	Slingshot_ti	PAGA_ti

SciLifeLab

Three main pipelines for analysing single cell data:

Seurat:

- R based, centered around Seurat objects.
- Mainly developed for droplet based data
- Easy to use, recommended for R beginners
- Cons: uses a LOT of memory

Scran:

- R based, centered around SingleCellExperiment objects
- Has more different statistical methods
- Can handle spike-ins
- Cons: More complicated than Seurat to run.

Scanpy:

- Python based
- Handles large datasets better.
- Cons: Requires quite some python knowledge. Does not yet have all the functionality of the R based tools

Seurat object

Slot	Function
assays	A list of assays within this object
meta.data	Cell-level meta data
active.assay	Name of active, or default, assay
active.ident	Identity classes for the current object
graphs	A list of nearest neighbor graphs
reductions	A list of DimReduc objects
<pre>project.name</pre>	User-defined project name (optional)
tools	Empty list. Tool developers can store any internal data from their methods here
misc	Empty slot. User can store additional information here
version	Seurat version used when creating the object

SingleCellExperiment (SCE) objects

```
## class: SingleCellExperiment
## dim: 611 379

## metadata(2): SuppInfo which_qc

## assays(3): tophat_counts logcounts counts

## rownames(611): 0610007P14Rik 0610009B22Rik ... 9930111J21Rik1

## 9930111J21Rik2

## rowData names(0):

## colnames(379): SRR2140028 SRR2140022 ... SRR2139341 SRR2139336

## colData names(22): NREADS NALIGNED ... Animal.ID passes_qc_checks_s

## reducedDimNames(2): PCA TSNE

## altExpNames(3): ERCC RIKEN original
```

https://bioconductor.org/packages/release/bioc/vignettes/SingleCellExperiment/inst/doc/intro.html

AnnData (Scanpy) objets

https://anndata.readthedocs.io/en/latest/anndata.AnnData.html

What to chose?

- It is recommended that you go through all the steps with one pipeline as each exercise depends on saved objects from the previous step.
- Everyone works in very different pace. Focus on one of the pipelines first. If you have time left over, you can also try out the other ones.

The datasets – Covid-19 PBMCs

- Data from paper: "Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19" Lee et al. Sci Immuno
- We have selected 3 controls and 3 severe covid samples and subsampled to 1500 cells per subject for computational speed/memory.
- ST and trajectory lab will be with other datasets.

Installation of all packages

- We have created a conda environment for the course that should contain all packages you need for the exercises
- However, for slingshot trajectory inference lab, there
 is an additional conda environment that needs to be
 installed.
- If you chose to instead work with standard R installations, you can use the list of required packages in the environment file and install them on your own.

Why conda?

- Often easier installations compared to traditional R installation for packages with C-compilation etc.
- Good way to manage different versions of packages in different projects.
- There are other ways of managing packages. E.g packrat for R, pyenv for python etc.

The code:

 All code for the exercises is available as R-markdown documents, or jupyter notebooks, in the folder: workshop-scRNAseq/labs/compiled/

- Please report to us if you find any errors in the code!
 - Slack channel #exercises
- We may find bugs and update the code in that case, update your git repo with command "git pull"

Reproducible coding

- You should always be able to find and recreate the results.
 - Scripts should be able to run from input files to create the output.
 - Never work with saved R sessions!
- Name your scripts with relevant names so you can find them 2 years later ☺
- Always backup code good idea to use github that also gives you version control.

Memory issues in R

- scRNAseq datasets are often large, think about how you code. Avoid duplicating objects!
- Remove unused matrices and clear memory with gc().
- Most packages store scRNAseq as sparse matrices, will require package Matrix or similar for many standard matrix operations.
- If you still have issues with memory in R, test setting e.g. R_MAX_VSIZE=70Gb in the .Renviron file.
 Default is 16Gb.

Troubleshooting

- Slack channel #exercises
- It is important that you learn how to troubleshoot yourselves.
 - Look at your error messages, perhaps the answer is there?
 - If not Google is your best friend! Forums like
 Seqanswers, Stackexchange, Bioconductor support forum,
 specific forums (or github issues) for each package may
 have the answer.
- TAs are there to answer any questions and give suggestions, but we may not always have the answer.

Rmarkdown demonstration

