Лабораторная работа 3.2.2

Резонанс напряжений в последовательном контуре

Балдин Виктор, Б01-303

27 ноября 2024 г.

Краткая теория

Импеданс последовательного контура:

$$Z = Z_R + Z_C + Z_L = R + \frac{1}{iwC} + iwL$$

Ток в цепи:

$$I = \frac{\mathcal{E}}{Z} = \frac{\mathcal{E}}{R + \frac{1}{iwC} + iwL}$$

С учетом характеристик цепи: $w_0^2 = \frac{1}{LC}, \ \delta = \frac{R}{2L}$ получаем напряжения на всех элементах:

$$U_C = IZ_C = \frac{\mathcal{E}}{R + \frac{1}{iwC} + iwL} \cdot \frac{1}{iwC} = \frac{\mathcal{E}}{1 - w^2LC + iwCR} = \frac{\mathcal{E}w_0^2}{w_0^2 - w^2 + 2i\delta w}$$

$$U_L = IZ_L = \frac{\mathcal{E}w^2}{w^2 - w_0^2 - 2i\delta w}$$

$$U_R = IR = \frac{\mathcal{E}2i\delta w}{w_0^2 - w^2 + 2i\delta w}$$

Если контур обладает хорошей добротностью $Q = \frac{w_0}{2\delta}$, то резонансная частота $w_{\text{pe}_3} \approx w_0$, на которой в Q раз увеличивается напряжение на конденсаторе и катушке:

$$U_C = -i\mathcal{E}\frac{w_0}{2\delta} = -i\mathcal{E}Q, \quad U_L = i\mathcal{E}\frac{w_0}{2\delta} = i\mathcal{E}Q, \quad U_R = \mathcal{E}$$

Напряжения на катушке и конденсаторе находятся в противофазе, и всё напряжение источника находится на активном сопротивлении.

Добротность можно также измерить по амплитудно-частотной характеристике:

$$Q = \frac{w_0}{2\Delta w}$$

где $2\Delta w$ - ширина резонансной кривой на уровне $U=\frac{U_{\mathrm{pes}}}{\sqrt{2}}.$

Установка

Последовательный контур подключен к источнику напряжения, на который подается сигнал с генератора. R_L и R_C - активные сопротивления катушки и конденсатора. Напряжения снимаются вольтметрами 1 и 2 со всей цепи и с конденсатора соответственно.

Рис. 1: Схема экспериментальной цепи

Ход работы и обработка результатов

Относительный вклад активных потерь на конденсаторах: $\frac{R_{S_{max}}}{R_{\Sigma}} \le 2,4\%$, среднее значение 1,8%. Также полученные данные имеют систематическую погрешность ввиду погрешности вольтметра $\varepsilon_{U_C} = \le 3\%$ и погрешности измерения резонансной частоты, примем её за $\varepsilon_f = 1\%$. Тогда получаем следующие относительные систематические погрешности для полученных величин:

Видно, что большей емкости отвечает кривая с большей шириной (так как добротность ниже). Измерим добротности с помощью ширины резонансной кривой на графике в относительном масштабе. Получились следующие значения:

Рассчитаем также добротность по ФЧХ: измерим ширину кривой, которая ограничивается значениями $\frac{\Delta\phi}{\pi}$ от 0,25 до 0,75, получим следующие значения добротностей:

Построим теперь график зависимость $R_L(\nu)$.

Значения отклоняются от среднего достаточно сильно, прослеживается почти линейная зависимость от частоты. Из возможных причин можно выделить влияние скин-эффекта, из-за которого ток вытесняется на поверхность проводника и течет по меньшему сечению.

Требуется также построить векторные диаграммы токов и напряжений при резонансе для контура с минимальной добротностью. Так как контур последовательный, то токи будут находится на всех элементах в одной фазе. А вот с напряжением ситуация другая: напряжения на конденсаторе и катушке почти в противофазе, причем из напряжение на катушке опережает \mathcal{E} на $\frac{\pi}{2}$, а напряжение на конденсаторе отстаёт от \mathcal{E} на $\frac{\pi}{2}$. U_L расположена под углом $\varphi=87,6^\circ$, так как на катушке есть еще активное сопротивление R_L . $\operatorname{tg}\varphi$ можно рассчитать как $\frac{U_{C_{\mathrm{pes}}}}{IR_L}$.

Выводы

В данной лабораторной работе был исследован резонанс напряжений в последовательном контуре и вычислены добротности контуров с различными значениями емкости несколькими способами. Так как получившиеся Φ ЧХ и АЧХ не очень точны ввиду небольшого числа точек и их неравномерности, то погрешность при расчете добротности через ширину резонансных кривых достаточно велика. Однако, рассчет по АЧХ получился достаточно точным в случае контура с C_2 . В любом случае, это явно не лучший способ измерять добротность контура, гораздо точнее измерение по формулам через параметры контура.

Было замечено, что активное сопротивление R_L катушки не является постоянным и линейно растет с частотой. Объяснение этому, скорее всего, кроется в скин-эффекте.