به نام خدا

حل سوالات تئوری درس سیستم های نهفته یارسا اقاعلی ۲۲۰۰۲۱۰۷۲

سوال ٥

(General-Purpose Processors)پردازندههای عمومی(.

این پردازندهها برای انجام وظایف متنوع و عمومی طراحی شدهاند. نمونههایی از آن شامل پردازندههای کامپیوترهای شخصی مانند Intel و AMD یا حتی پردازندههای موبایل میباشد.

ویژگیهای اصلی:

- طراحی انعطاف پذیر :قادر به اجرای طیف وسیعی از برنامهها هستند، از پردازش متن گرفته تا بازیهای گرافیکی و شبیه سازی.
 - قدرت پردازش بالا :به دلیل وجود معماری پیچیدهتر و هستههای متعدد، قدرت محاسباتی بالایی دارند.
- حافظه و تجهیزات جانبی وابسته :این پردازندهها به تنهایی نمی توانند کار کنند و به واحدهای خارجی مانند حافظه رم (RAM) و ذخیره سازی (SSD/HDD) نیاز دارند.

مزايا:

- ۱. کاربرد عمومی :می توانند هر نوع کدی را با سیستم عامل های مختلف اجرا کنند.
 - ۲. انعطاف پذیری :مناسب برای پردازش دادههای پیچیده یا نرمافزارهای مختلف.
- ۳. پشتیبانی گسترده :انواع ابزارهای نرمافزاری و سختافزاری از آنها پشتیبانی میکنند.

معایب:

- ۱. مصرف انرژی بالا: به دلیل معماری پیچیده، معمولاً انرژی بیشتری مصرف می کنند.
 - ٢. هزينه بالا :طراحي و توليد أنها يرهزينه است.
 - ۳. عدم بهینهسازی برای وظایف خاص :برای وظایف ساده، بهرهوری پایینی دارند.

(Task-Specific Processors)میکروکنترلرها2.

میکروکنترلرها پردازندههایی هستند که برای وظایف خاص طراحی شدهاند و شامل یک پردازنده (CPU) ، حافظه داخلی (RAM)و (RAM) و امکانات ورودی/خروجی در یک تراشه واحد میباشند.

ویژگیهای اصلی:

- یکپارچگی :تمامی اجزا (مانند CPU ، حافظه، و ورودی /خروجی)در یک تراشه قرار دارند.
- بهینه سازی برای وظایف خاص: طراحی آنها ساده تر و مناسب وظایف مشخص مانند کنترل دستگاهها یا پردازش سیگنال است.
 - کم مصرف :برای دستگاههای باتری دار یا کاربردهای صنعتی مناسب هستند.

مزایا:

- ۱. اندازه کوچک و یکپارچه :به دلیل وجود همه اجزا در یک تراشه، فضای کمی اشغال می کنند.
- ۲. مصرف انرژی کم :برای سیستمهایی که به صرفهجویی در انرژی نیاز دارند، ایدهآل هستند.
 - ۳. قیمت مناسب :به دلیل طراحی ساده تر و تولید انبوه، هزینه کمتری دارند.
- ٤. طراحی اختصاصی :برای کارهای خاصی مانند کنترل موتور یا مدیریت سنسورها بهینهسازی شدهاند.

معایب:

- ۱. کاربرد محدود :برای وظایف پیچیده مناسب نیستند.
- ۲. انعطاف پذیری کم: توانایی اجرای برنامههای مختلف و چندمنظوره را ندارند.
- ۳. حافظه و سرعت محدود :معمولاً حافظه داخلی و قدرت پردازش کمتری نسبت به پردازندههای عمومی دارند.

مقايسه كلى:

ویژ <i>گی</i> ها	پردازندههای عمومی	ميكرو كنترلرها
هدف طراحی	انجام وظایف عمومی و پیچیده	انجام وظایف خاص و از پیش تعیینشده
قدرت پردازش	بسيار بالا	محدود
مصرف انرژی	كالب	بسیار کم
یکپارچگی اجزا	نیاز به قطعات خارجی	کاملاً یکپارچه
هزينه	گران تر	ارزان تر
كاربردها	رایانهها، موبایلها، سرورها	لوازم خانگی، کنترل صنعتی، رباتیک

جمعبندی:

- ۱. پردازندههای عمومی برای کاربردهای چندمنظوره و وظایف پیچیده مناسب هستند اما مصرف انرژی بالا و هزینه بیشتری دارند.
- 7. میکروکنترلرها برای کاربردهای خاص و وظایف کم مصرف، ساده و قابل پیش بینی مانند دستگاههای هوشمند و صنعتی طراحی شدهاند.

سوال ٦

الف) سیستمهای نهفته چگونه با محیط خارجی تعامل داشته و سیگنالهای محیطی را دریافت و پردازش میکنند؟

.1تعامل با محيط خارجي:

سیستمهای نهفته از سنسورها و عملگرها برای تعامل با محیط استفاده می کنند:

- سنسورها:(Sensors)
- وظیفه سنسورها، دریافت سیگنالهای محیطی و تبدیل آنها به سیگنالهای الکتریکی است که سیستم
 بتواند پردازش کند.

٥ مثال:

- سنسور دما مانند LM35 دما را به ولتاژ تبدیل می کند.
- سنسور نور مانند LDR شدت نور را به مقدار مقاومت تغییر میدهد.
 - **میکروفن**:صدا را به سیگنال الکتریکی تبدیل میکند.

• عملگرها:(Actuators)

وظیفه عملگرها تبدیل خروجی دیجیتال سیستم نهفته به یک عمل فیزیکی است.

٥ مثال:

- **موتور DC** برای حرکت مکانیکی.
 - **LED**برای نمایش نور.
- **رلهها** برای کنترل دستگاههای برقی.

.2نحوه دريافت سيگنالهاي محيطي:

سیستمهای نهفته معمولاً سیگنالهای محیطی را از طریق پورتهای ورودی اخروجی و واحدهای داخلی پردازنده دریافت و پردازش می کنند:

١. سيگنال أنالوگ:

- o سیگنالهای پیوسته هستند (مانند ولتاژ خروجی یک سنسور دما).
- سیستم از یک مبدل آنالوگ به دیجیتال (ADC) استفاده میکند تا این سیگنالها را به دادههای
 دیجیتال تبدیل کند.

۲. سیگنال دیجیتال:

این سیگنالها به صورت صفر و یک (سطوح منطقی) هستند و مستقیماً توسط سیستم نهفته خوانده
 میشوند.

.3نحوه پردازش سیگنالها:

• واحد پردازش (CPU) یا Microcontroller •

- o دادههای ورودی از سنسورها در واحد پردازش مورد تحلیل قرار می گیرند.
- الگوریتمهای خاصی برای پردازش و تصمیم گیری اجرا میشوند (مانند کنترل روشنایی بر اساس شدت نور محیط).

• واحد حافظه:

۰ برای ذخیره دادههای موقتی و اجرای برنامههای از پیش تعیینشده استفاده میشود.

.4ارسال سيگنالهاي خروجي:

- پس از پردازش، سیستم سیگنال خروجی را برای کنترل عملگرها ارسال می کند.
- این سیگنالها می توانند دیجیتال باشند (مانند روشن کردن یک LED) یا آنالوگ (مانند ارسال سیگنال PWM برای کنترل سرعت موتور).

ب) چه پروتکلها و روشهایی برای این کار استفاده می شود؟

برای برقراری ارتباط بین اجزای سیستمهای نهفته و دستگاههای محیطی از پروتکلهای ارتباطی استفاده می شود. این پروتکلها می توانند برای ارتباط داخلی بین ماژولها یا ارتباط خارجی با دستگاههای دیگر باشند.

.1يروتكلهاى ارتباط داخلى:

این پروتکلها برای ارتباط سنسورها، عملگرها، و واحدهای پردازش داخلی در سیستم نهفته استفاده میشوند:

:I2C (Inter-Integrated Circuit) •

- o یک پروتکل دو سیمه است.
- ۰ برای اتصال سنسورها، حافظهها، و دستگاههای کمسرعت استفاده میشود.
 - مثال: خواندن داده از سنسور دما یا فشار.

:SPI (Serial Peripheral Interface) •

- o پروتکل سریالی با سرعت بالا.
- o برای ارتباط با دستگاههایی که نیاز به انتقال داده سریع دارند، مانند نمایشگرها و حافظههای فلش.

UART (Universal Asynchronous Receiver-Transmitter): •

- o برای ارسال و دریافت داده سریال.
- o معمولاً در ارتباط با دستگاههایی مثل ماژولهای GPS یا ارتباط با کامپیوتر استفاده می شود.

ADC (Analog-to-Digital Converter): •

o برای تبدیل سیگنال آنالوگ سنسورها به دیجیتال استفاده میشود.

PWM (Pulse Width Modulation): •

برای کنترل عملگرهایی مانند موتورهای DC یا LED استفاده می شود.

2. پروتکلهای ارتباط خارجی:

این پروتکلها برای ارتباط سیستم نهفته با سایر دستگاههای خارجی یا شبکهها استفاده میشوند:

• بلوتوث:(Bluetooth)

- o برای ارتباط بیسیم کوتاهبرد.
- o مثال: انتقال داده بین سیستم نهفته و یک موبایل.

Wi-Fi: •

- o برای اتصال سیستم نهفته به شبکههای اینترنتی.
- o مثال: استفاده در IOT برای ارسال دادههای سنسورها به سرور.

CAN (Controller Area Network): •

- ۰ برای ارتباط بین اجزای مختلف در سیستمهای خودرو.
- \circ مثال: ارتباط بین ECU (واحد کنترل الکترونیکی) و سنسورهای خودرو.

Ethernet: •

برای ارتباط پرسرعت بین دستگاههای صنعتی یا انتقال دادههای حجیم.

ZigBee: •

o پروتکلی کممصرف برای شبکههای بیسیم کوچک.

o مثال: استفاده در خانههای هوشمند.

.3روشهای پردازش سیگنال:

- پردازش در زمان واقعی:(Real-Time Processing)
- o برای سیستمهایی که به پاسخگویی سریع نیاز دارند (مانند سیستمهای کنترل صنعتی یا رباتیک).
 - فيلتر ديجيتال:
 - o برای حذف نویز از دادههای سنسورها.
 - کنترل بازخوردی:(Feedback Control)
 - o برای ایجاد خروجی بر اساس مقادیر ورودی و تنظیم عملکرد سیستم.

جمع بندى:

- ۱. تعامل با محیط: سیستمهای نهفته از طریق سنسورها و عملگرها با محیط ارتباط برقرار می کنند، دادههای محیطی را دریافت کرده، پردازش می کنند و پاسخ مناسب ارسال می کنند.
- ۲. پروتکلهای ارتباطی :برای دریافت و ارسال داده بین اجزای داخلی یا دستگاههای خارجی، از پروتکلهایی مانندFi ،UART ،SPI ، I2C استفاده می شود.
- ۳. اهمیت پردازش :نحوه پردازش دادهها و استفاده از الگوریتمهای مناسب، کارایی سیستم نهفته را تضمین می کند.

کاربرد :این روشها در سیستمهایی مانند خودروهای هوشمند، خانههای هوشمند، دستگاههای پزشکی و صنایع رباتیک دیده می شود.

سوال ٧

مفهوم Real-Time در سیستمهای نهفته:

Real-Time (زمان واقعی) به معنای عملکرد و پاسخدهی یک سیستم در بازه زمانی مشخص و پیش بینی شده است. در سیستمهای نهفته Real-Time، وظیفه اصلی سیستم این است که عملیات خاصی را در مهلت زمانی (Deadline) از پیش تعیین شده انجام دهد.

ویژگیهای کلیدی سیستمهای:Real-Time

- ۱. **واکنش سریع :**سیستم باید دادههای ورودی را پردازش کرده و خروجی مناسب را در مدتزمان مشخصی تولید کند.
 - ۲. زمان بندی دقیق :اجرای وظایف باید طبق یک زمان بندی خاص و با رعایت مهلتها انجام شود.
- ۳. پیش بینی پذیری :رفتار سیستم باید کاملاً قابل پیش بینی باشد، یعنی بتوان اطمینان داشت که وظایف در مهلتهای تعیین شده انجام می شوند.

مثالها:

- سیستمهای کنترل خودرو: مانند ترمز ABS ، که باید در زمان کوتاه پاسخ دهد تا ایمنی خودرو حفظ شود.
- **دستگاههای پزشکی :**مانند مانیتورهای قلب یا دستگاه تنفس مصنوعی که باید دادهها را در زمان واقعی پردازش کنند.
 - رباتیک :بازوهای رباتیک در خطوط تولید صنعتی که باید در هماهنگی دقیق عمل کنند.

طبقه بندی سیستمهای:Real-Time

۱. سیستمهای Real-Time سخت:(Hard Real-Time)

- در این نوع سیستمها، رعایت مهلت زمانی (Deadline) حیاتی است و حتی یک تأخیر کوچک می تواند
 منجر به خرابی یا فاجعه شود.
 - o مثال: سیستمهای ترمز ABS یا کنترل پرواز هواپیما.

۲. سیستمهای Real-Time نرم:(Soft Real-Time)

در این نوع سیستمها، رعایت مهلت زمانی مهم است، اما تأخیرهای کوچک قابل قبول هستند و فقط بر
 کیفیت خروجی تأثیر می گذارند.

مثال: پخش ویدیو یا صوت در رسانهها.

۳. سیستمهای Real-Time سفت و سخت:(Firm Real-Time)

ترکیبی از سیستمهای سخت و نرم است؛ برخی مهلتها غیرقابل چشم پوشی هستند، اما برخی دیگر اگر
 رعایت نشوند، تنها کیفیت کاهش می یابد.

محدودیتهای سیستمهای Real-Time در پردازندههای نهفته:

رعایت Real-Time در سیستمهای نهفته چالشهایی به همراه دارد که به محدودیتهای سختافزاری و نرمافزاری مرتبط است:

.1محدودیتهای سختافزاری:

• منابع پردازشی محدود:

- پردازندههای سیستمهای نهفته معمولاً قدرت محاسباتی کمتری نسبت به پردازندههای عمومی دارند.
 - o مثال: پردازندههای ARM Cortex-M که توان مصرفی کم اما قدرت محاسباتی محدود دارند.

• حافظه محدود:

حافظه RAM و Flash موجود در سیستمهای نهفته محدود است که ممکن است مانع از اجرای برنامههای پیچیده شود.

• نیاز به مصرف انرژی کم:

بسیاری از سیستمهای نهفته برای دستگاههای باتریدار طراحی شدهاند، بنابراین پردازنده باید بهینه عمل
 کند و این ممکن است سرعت پردازش را محدود کند.

.2محدودیتهای نرمافزاری:

• زمان بندى دقيق وظايف:

- اطمینان از اجرای دقیق وظایف در مهلتهای زمانی تعیینشده یکی از بزرگترین چالشهاست.
- استفاده از سیستمعاملهای (Real-Time (RTOS) مانند FreeRTOS می تواند
 کمک کند، اما نیازمند طراحی دقیق است.

• مديريت اولويتها:

وظایف مختلف در سیستمهای نهفته ممکن است اولویتهای متفاوتی داشته باشند. اگر یک وظیفه با
 اولویت بالا به تأخیر بیفتد، ممکن است مهلتها رعایت نشوند.

.3چالشهای ارتباطی:

• تاخير در انتقال دادهها:

اگر سیستم از سنسورهای خارجی یا دستگاههای دیگر داده دریافت کند، ممکن است تأخیر در ارتباطات
)مثلاً از طریق 12C یا (SPI باعث از دست رفتن مهلت زمانی شود.

• نویز در سیگنالها:

پردازش دادههای ورودی ممکن است تحت تأثیر نویز محیطی قرار گیرد و سیستم نتواند در زمان واقعی
 به درستی عمل کند.

.4محدودیتهای محیطی:

• شرایط محیطی سخت:

سیستمهای نهفته معمولاً در محیطهای صنعتی، خودرو، یا هوافضا به کار میروند که ممکن است دما،
 رطوبت، یا ارتعاش بالا عملکرد آنها را مختل کند.

• خطاهای غیرمنتظره:

رویدادهای پیش بینی نشده ممکن است باعث خرابی یا تأخیر شوند (مانند قطع برق، تداخل در سیگنالها،
 یا خرابی سخت افزار).

راهکارهای مقابله با محدودیتها:

۱. استفاده از:RTOS

- یک سیستمعامل زمان واقعی (RTOS) وظیفه زمانبندی دقیق وظایف و مدیریت اولویتها را بر
 عهده دارد.
 - Zephyr.، $^{\circ}$ ،VxWorks ،: FreeRTOS مثال $^{\circ}$

۲. طراحی بهینه:

o الگوریتمها و نرمافزارهای سیستم باید ساده و کارآمد طراحی شوند تا از منابع محدود استفاده بهتری شود.

٣. ماژولار كردن وظايف:

o تقسیم وظایف بزرگ به وظایف کوچکتر و اجرای آنها در بازههای زمانی مشخص.

۴. استفاده از سختافزار تخصصی:

پردازندههایی که برای Real-Time طراحی شدهاند مانند سری ARM Cortex-R یا واحدهای کمکی
 مانند DMA که پردازش دادهها را تسریع میکند.

۵. مديريت انرژي:

استفاده از تکنیکهای بهینهسازی مصرف انرژی، مانند حالت خواب (Sleep Mode) در
 میکروکنترلرها.

جمع بندى:

مفهوم Real-Time در پردازندههای سیستمهای نهفته به معنای انجام وظایف در مهلت زمانی مشخص است. رعایت این مههوم هملتها برای سیستمهای سخت (Hard Real-Time) حیاتی است و نیازمند طراحی سختافزاری و نرمافزاری بهینه میباشد. با این حال، محدودیتهای منابع سختافزاری، مدیریت زمان بندی، و شرایط محیطی چالشهایی را ایجاد می کنند که می توان با استفاده از ابزارها و تکنیکهای مناسب بر آنها غلبه کرد.

سوال ۸

تعریف میکروکنترلر و میکروپروسسور:

۱. میکروکنترلر:(Microcontroller)

یک سیستم کامپیوتری کوچک و مستقل است که شامل پردازنده (CPU) ، حافظه (RAM, عضور یک سیستم کامپیوتری کوچک و مستقل است که شامل پردازنده (I/O) است و همه این اجزا روی یک تراشه قرار دارند.

- o طراحی شده برای انجام **وظایف خاص** در سیستمهای تعبیهشده. (Embedded Systems)
 - o مثال: سری) ARM Cortex-M ، سری ATmega328 ، و.PIC ، مثال: سری) ARM مانند

۲. میکروپروسسور:(Microprocessor)

- o یک واحد پردازش مرکزی (CPU) است که برای اجرای برنامهها طراحی شده است.
- فاقد حافظه داخلی یا واحدهای I/O است و باید به صورت خارجی به حافظه و دیگر ماژولها متصل
 شود.
 - o بیشتر برای سیستمهای عمومی و پیچیده استفاده می شود.
 - ARM Cortex-A. و سری x86 اینتل و x86

تفاوتهای کلیدی بین میکروکنترلر و میکروپروسسور:

ویژگی	میکروکنترلر (Microcontroller)	میکروپروسسور (Microprocessor)
ساختار داخلی	شامل CPU ، حافظه، و I/O روى	فقط CPU ، نياز به حافظه و I/O
	یک تراشه	خارجی دارد
کاربرد	برای وظایف خاص و سیستمهای	برای پردازش عمومی و سیستمهای
	نهفته	پیچیده
مصرف انرژی	کم(Low Power) ، مناسب برای	بیشتر(Higher Power) ، نیاز به
	باتری	خنککننده
اندازه و پیچیدگی	کوچک و ساده	بزرگتر و پیچیده
قیمت	ارزان تر	گران تر
سرعت پردازش	محدود (دهها مگاهرتز)	بسیار سریعتر (گیگاهرتز)
مناسب برای سیستمهای Real-Time	بسیار مناسب	معمولاً مناسب نيست

طراحی نرمافزار	برای کنترل وظایف خاص و محدود	برای اجرای سیستمعاملها و برنامههای پیچیده
حافظه	حافظه داخل <i>ی</i> (RAM) ، (Flash)	نیاز به حافظه خارجی RAM) ، ROM)
ورودی/خروجی(۱/۵)	دارای پورتهای I/O داخلی	به صورت خارجی به ۱/۵ متصل میشود

کاربردهای میکروکنترلر و میکروپروسسور:

(Microcontroller):میکروکنترلر.

میکروکنترلرها برای وظایف خاص و سیستمهای نهفته استفاده میشوند، جایی که نیاز به یک سیستم کمهزینه، کممصرف و ساده است.

• کاربردها:

- سیستمهای خودکار: کنترل موتورها، سیستمهای تهویه مطبوع (HVAC) ، و ماشینهای لباسشویی.
 - o دستگاههای پزشکی :مانیتور ضربان قلب، دستگاههای دیالیز.
 - o سیستمهای کنترل خودرو: کنترل ترمز ABS ، کیسه هوا.
 - o رباتیک :کنترل سروو موتورها و سنسورها.
- اینترنت اشیا :(IOT) دستگاههای هوشمند خانگی مانند ترموستات، قفل هوشمند، یا روشنایی هوشمند.
 - o تجهیزات الکترونیکی ساده: ساعتهای دیجیتال، ریموت کنترلها، و اسباببازیها.

• مزایا برای کاربردها:

- o کممصرف (مناسب برای دستگاههای باتریدار).
- o اندازه کوچک (مناسب برای دستگاههای قابل حمل).

o هزينه يايين.

(Microprocessor):میکروپروسسور.

میکروپروسسورها برای کاربردهای پیچیده تر و پردازش عمومی استفاده می شوند، جایی که نیاز به قدرت پردازش بالا و امکان اجرای چند وظیفه به صورت همزمان وجود دارد.

• کاربردها:

- o کامپیوترهای شخصی :(PC) اجرای سیستمعاملها و نرمافزارهای عمومی.
- o سرورها و دیتاسنترها :پردازش دادههای حجیم و اجرای برنامههای پیچیده.
 - o تلفنهای هوشمند و تبلتها :اجرای سیستمعاملهای اندروید و.iOS
 - o سیستمهای صنعتی پیشرفته :تحلیل دادههای سنسورها، کنترل رباتها.
- o سیستمهای چندرسانهای :پخش ویدیو و گرافیک در تلویزیونها یا کنسولهای بازی.
- هوش مصنوعی و یادگیری ماشین :پردازش دادههای پیچیده و الگوریتمهای یادگیری عمیق.

• مزایا برای کاربردها:

- قدرت پردازش بالا.
- o قابلیت اجرای برنامههای پیچیده.
- o مناسب برای سیستمهایی که نیاز به سرعت و مقیاس پذیری دارند.

مقایسه در انتخاب برای کاربردها:

میکروپروسسور	ميكروكنترلر	نیاز سیستم
نامناسب	مناسب	کاربردهای ساده و خاص
مناسب	نامناسب	نیاز به پردازش پیچیده

محدودیت در انرژی	بسیار مناسب	مصرف بالا
سیستمهای نهفته کوچک	ایدهآل	نامناسب
سیستمهای عمومی و چندوظیفهای	نامناسب	ایدهآل

جمع بندى:

- میکروکنترلرها برای سیستمهای ساده و خاص مانند دستگاههای نهفته و IoT مناسب هستند. این تراشهها کم مصرف، کوچک و مقرون به صرفه اند و معمولاً در پروژههایی استفاده می شوند که نیاز به عملکرد-Real Time و تعامل مستقیم با سنسورها و عملگرها دارند.
- میکروپروسسورها برای پردازشهای پیچیده، سیستمهای چندوظیفهای و برنامههای عمومی مانند کامپیوترها و سرورها مناسب هستند. این تراشهها قدرت پردازش بالایی دارند، اما به منابع خارجی وابستهاند و معمولاً مصرف انرژی بیشتری دارند.

انتخاب بین این دو بستگی به نیازهای خاص پروژه و محدودیتهای منابع (مانند هزینه، اندازه، و مصرف انرژی) دارد.