Exercise (Kentaro Shimizu) Nucleotide diversity π $\left(\theta_{\pi},\theta_{T}\right)$

Average proportion of pairwise differences between the sequences Basic index of molecular population genetics:

$$n_c = \frac{n(n-1)}{2}$$
 number of pairwise comparisons

 π_{ij} proportion of differences between i-th and j-th

θ , another index

(nucleotide polymorphism based on polymorphic site)

S: the proportion of polymorphic sites (or nucleotide polymorphism) observed in the sample, n: the number of sequences

Test of neutrality: Tajima's D

example: balancing selection

Tajima Genetics 123, p. 229, 1989

- (1) AGGCTGCATC
- (2)
- (3) .A....C.
- (4) .A....C.

$$\pi = \sum_{i < j} \pi_{ij} / n_c = ?$$

$$\theta = s / \sum_{k=1}^{n-1} \frac{1}{k} = ?$$

$$D = \frac{\pi - \theta}{standard_deviation_of_(\pi - \theta)}$$

positive or negative?

Intuitively: singleton vs. shared mutation

Test of neutrality: Tajima's D

example: positive selection

Tajima Genetics 123, p. 229, 1989

- (1) AGGCTGCATC
- (2)
- (3)
- (4) .A.....C.

$$\pi = \sum_{i < j} \pi_{ij} / n_c = ?$$

$$\theta = s / \sum_{k=1}^{n-1} \frac{1}{k} = ?$$

$$D = \frac{\pi - \theta}{standard_deviation_of_(\pi - \theta)}$$

positive or negative?

Intuitively: singleton vs. shared mutation