

PES University, Bengaluru-560100

(Estd. Under Karnataka Act 10 of 2013)

UE18CS254

April 2020: (ESA) Model paper - BTech 4th Sem UE18CS254 - Theory of Computation

Time: 3 Hrs Answer All Questions Max Marks: 100

			1
1.	a)	What is alphabet and strings and language? Explain with examples. Explain following	8
		functions on strings with example:	
		• Length	
		 Concatenation 	
		 Replication 	
		• Reversal	
	b)	Define Deterministic Finite Automata . Design DFA for the following languages:	3+
	,	1) L={ w: w is the string representation of Floating Point numbers}	4
		a. FP no is optional sign, followed by decimal no, followed by optional	
		exponent.	
		b. Decimal no of the form x or x.y (33 or 33.54)	
		c. Exponent begins with E, followed by optional sign and integer.	
		d. Integer is nonempty string of decimal digits.	
	С	Prove, If w and x are strings then $(wx)^R = x^R w^R$	5
	١	Trove, if w and x are strings then (wx) = x w	
2.	a)	Design DFSM for the following languages and write all the five tuples.	8
		i) $L = \{ \text{ w contains } \{0, 1\}^* \text{ , accepting Binary number divisible by 3} \}$	
		ii) $L = \{ w \text{ contains } \{a, b\}^* : w \text{ has both aa and bb as a substrings} \}.$	
	b)	Convert the given NFA to equivalent DFA	8
		1 (
		$\left(\begin{array}{c} q_0 \end{array}\right) \xrightarrow{\varepsilon} \left(\begin{array}{c} q_1 \end{array}\right) \xrightarrow{0} \left(\begin{array}{c} q_2 \end{array}\right)$	
		q_0 q_1 q_2	
		1 8/ 1	
		$(q_3) 0 ((q_4))$	
	c)	Write regular expression for	4
		L = {w ε {a,b}* w = $a^{2n}b^{2m} n>=0$, m >= 0 }	
		$L = \{w \in \{a,b\}^* w \text{ does not end in ba } \}$	
3.	a)	What is Context Free Grammar? Write CFG for the balanced parenthesis language.	5+
э.	ω,		_

		SRN	
	b)	Consider the following grammar G:	5+
		$S \rightarrow 0S1 \mid SS \mid 10$	5
		Show the parse tree produced by G for each of the following strings:	
		1) 010110	
		2) 00101101	
		What is ambiguous grammar?	
4.	a)	Define PDA. Build a PDA to accept the following language	2+
		$L = \{ a^n b^m a^n : n,m \ge 0 \text{ and m is even } \}$	6
	b)	Define a deterministic PDA. Build a PDA to accept the following language	2+
		$\{a^nb^m: m \le n \le 2m\}.$	4
	С	State Pumping Lemma and Prove $L = \{a^nb^nc^n : n \ge 0\}$ is not a Context Free language	6
	_	, , , , , , , , , , , , , , , , , , , ,	
5.	a)	Define Turing Machine. Design a Turing Machine that accepts the language denoted by	4+
		Regular expression 00*.	4
	b)	Design and draw a Turing Machine for $L = \{ a^n b^n c^n : n \ge 0 \}$. Write a note on	4+
		"CHURCH- TURING Thesis".	2
	С	Define PCP and Obtain the solution for the following system of PCP $A = \{1, 10111, 10\}$	2+

4

and $B = \{111, 10, 0\}.$