IN THE CLAIMS:

Please cancel Claims 1-15 without prejudice to or disclaimer of the subject matter recited therein.

- 1-15. (Canceled)
- 16. (Previously Presented) An apparatus comprising:
- a light-emitting device or a light-receiving device, arranged on a substrate;
- a plastic optical fiber including a core and a cladding; and
- a lens having a function of controlling light rays, said lens being arranged above said device and formed of a material with a thermally-softening temperature higher than a thermally-softening temperature of said core, and at least a part of said lens being embedded in an end face of said plastic optical fiber.
- 17. (Previously Presented) The apparatus according to claim 16, wherein said substrate has a portion for holding said lens in a predetermined position, said portion being formed directly or indirectly on said substrate.
- 18. (Previously Presented) The apparatus according to claim 17, wherein an adjusting surface for adjusting a positional relationship in an optical-axial direction between said lens and said plastic optical fiber is also formed near said portion for holding said lens, and a periphery of the end face of said plastic optical fiber abuts said adjusting surface.

- 19. (Previously Presented) The apparatus according to claim 18, wherein said lens has a diameter smaller than a diameter of said plastic optical fiber, said portion for holding said lens comprises a recess whose size is larger than the diameter of said lens and smaller than the diameter of said plastic optical fiber, and said adjusting surface comprises a surface around said recess.
- 20. (Previously Presented) The apparatus according to claim 17, wherein said portion for holding said lens is formed integrally with said lens and of a material common to said lens and integrally with said lens.
- 21. (Previously Presented) The apparatus according to claim 16, wherein said substrate is provided with an alignment member for holding an end portion of said plastic optical fiber and aligning optical axes of said lens and said plastic optical fiber with each other.
- 22. (Previously Presented) The apparatus according to claim 16, wherein said lens is a light-condensing lens having a spherical surface.
- 23. (Previously Presented) The apparatus according to claim 22, wherein said lens is a ball lens.
- 24. (Previously Presented) The apparatus according to claim 16, wherein said lens is a light-condensing lens having a semispherical surface.

- 25. (Previously Presented) The apparatus according to claim 16, wherein said lens is formed of glass.
- 26. (Previously Presented) The apparatus according to claim 16, wherein said lens is formed of polymer.
- 27. (Previously Presented) The apparatus according to claim 16, wherein said plastic optical fiber is totally-fluorine-contained plastic optical fiber.
- 28. (Previously Presented) The apparatus according to claim 16, wherein said lens is bonded to said plastic optical fiber at a peripheral portion of said lens with an adhesive.
- 29. (Previously Presented) A method of fabricating an apparatus, said method comprising the steps of:

preparing a thermally-conductive substrate for arranging in a predetermined position a light-emitting device or a light-receiving device, and for holding a lens in a predetermined position on the substrate;

arranging the device in the predetermined position on the substrate;

holding the lens in the predetermined position on the substrate;

heating the substrate and the lens held thereby to a temperature below a thermally-softening temperature of the lens and above a thermally-softening temperature of a core of a plastic optical fiber; and

pressing an end face of the plastic optical fiber against the heated lens to embed at least a part of the lens in the end face of the plastic optical fiber and cause an end of the plastic optical fiber to have a function of controlling light rays.

- 30. (Previously Presented) The method of fabricating an apparatus according to claim 29, wherein in said preparing step the thermally-conductive substrate is prepared such that a portion for holding the lens in the predetermined position is formed directly or indirectly on the thermally-conductive substrate.
- 31. (Previously Presented) The method of fabricating an apparatus according to claim 30, wherein in said preparing step the thermally-conductive substrate is prepared such that an adjusting surface for adjusting a positional relationship in an optical-axial direction between the lens and the plastic optical fiber is also formed near the portion for holding the lens, and, in said pressing step, a periphery of the end face of the plastic optical fiber is caused to abut the adjusting surface when the lens is embedded in the end face of the plastic optical fiber.
- 32. (Previously Presented) The method of fabricating an apparatus according to claim 29, further comprising the step of providing an alignment member for holding an end portion of the plastic optical fiber and aligning optical axes of the lens and the plastic optical fiber with each other on the substrate, wherein the optical axes of the lens and the plastic optical fiber are caused to align with each other when the lens is embedded at the end face of the plastic optical fiber in said pressing step.

- 33. (Previously Presented) The method of fabricating an apparatus according to claim 29, wherein the lens held in said holding step has a diameter smaller than a diameter of the plastic optical fiber.
- 34. (Previously Presented) The method of fabricating an apparatus according to claim 29, further comprising the step of bonding the lens to the plastic optical fiber at a peripheral portion of the lens with an adhesive.