Manual for Package: mathematics Revision 23M

Karl Kästner

February 16, 2023

Contents

1	calend	ar 1
	1.1	days_per_month
	1.2	isnight
2	mathe	matics 1
	2.1	cast_byte_to_integer
3	compl	ex-analysis 1
	3.1	$complex_exp_product_im_im 1$
	3.2	$complex_exp_product_im_re\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$
	3.3	$complex_exp_product_re_im \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	3.4	$complex_exp_product_re_re \ \dots \ \dots \ 2$
	3.5	croots
	3.6	root_complex
	3.7	test_imroots
4	deriva	tion 3
	4.1	derive_acfar1
	4.2	derive_ar1_spectral_density
	4.3	derive_ar2param
	4.4	derive_arc_length
	4.5	derive_brownian_phase_inv 4
	4.6	derive_fourier_power
	4.7	derive_fourier_power_exp
	4.8	derive_laplacian_curvilinear
	4.9	derive_laplacian_fourier_piecewise_linear 4
	4.10	derive_logtripdf
	4.11	derive_smooth1d_parametric
	4.12	derive_spectral_density_bandpass_initial_condition 5

5	deriva	tion/master	5
	5.1	derive_bc_one_sided	5
	5.2	derive_convergence	5
	5.3	derive_error_fdm	5
	5.4	derive_fdm_poly	5
	5.5	derive_fdm_power	5
	5.6	derive_fdm_taylor	5
	5.7	derive_fdm_vargrid	5
	5.8	derive_fem_2d_mass	5
	5.9	derive_fem_error_2d	6
	5.10	derive_fem_error_3d	6
	5.11	derive_fem_sym_2d	6
	5.12	derive_grid_constants	6
	5.13	derive_interpolation	6
	5.14	derive_laplacian	6
	5.15	derive_limit	6
	5.16	derive_nc_1d	6
	5.17	derive_nc_1d	6
	5.18	derive_nc_2d	6
	5.19	derive_nonuniform_symmetric	7
	5.20	derive_richardson	7
	5.21	derive_sum	7
	5.22	nn	7
	5.23	test_derive	7
	5.24	test_derive_fdm_poly	7
	5.25	test_filter	7
	5.26	test_vargrid	7
	0.20	ucst_vargita	'
6	deriva	tion	7
	6.1	simplify_atan	7
7	mathe	ematics	8
•	7.1	entropy	8
	***		Ŭ
8	finance	e	8
	8.1	derive_skewrnd_walsh_paramter	8
	8.2	gbm_bridge	8
	8.3	gbm_cdf	8
	8.4	gbm_fit	8
	8.5	gbm_fit_old	8
	8.6	gbm_inv	8
	8.7	gbm_mean	8
	8.8	gbm_median	9
	8.9	gbm_momemt2par	9

	8.10 8.11	gbm_pdf
	8.12	gbm_skewness
	8.13	gbm_std
	8.14	gbm_transform_time_step
	8.15	•
	8.16	skewgbm_simulate
	8.17	skewrnd_walsh
9	finance	e/test 10
	9.1	test_gbm
	9.2	test_gbm_pdf
	9.3	test_skewrnd_walsh
10	c	/@CMEM
10		·/@STFT 10
	10.1	STFT
	10.2	itransform
	10.3	stft_{-}
	10.4	stftmat
	10.5	transform
11	fourier	11
	11.1	amplitude_from_peak
	11.2	caesaro_weight
	11.3	dftmtx_man
	11.4	example_fourier_window
	11.5	fft2_cartesian2radial
	11.6	fft_man
	11.7	fft_rotate
	11.8	fftsmooth
	11.9	fix_fourier
	11.10	fourier_2d_padd
	11.11	fourier_2d_quadrants
	11.12	fourier_axis
	11.13	fourier_axis_2d
	11.14	fourier_cesaro_correction
	11.15	fourier_coefficient_piecewise_linear
	11.16	fourier_coefficient_piecewise_linear_1
	11.17	fourier_coefficient_ramp3
	11.18	fourier_coefficient_ramp_pulse
	11.19	fourier_coefficient_ramp_step
	11.20	fourier_coefficient_square_pulse
	11.21	fourier_complete_negative_half_plane
	11.22	fourier_cubic_interaction_coefficients
		10 01101 - 0 01010 - 111101 010011 - 0001110101100

11.23	fourier_derivative	15
11.24	fourier_derivative_matrix_1d	
11.25	fourier_derivative_matrix_2d	15
11.26	fourier_expand	16
11.27	fourier_fit	16
11.28	$fourier_freq2ind . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	16
11.29	fourier_interpolate	16
11.30	fourier_matrix	16
11.31	fourier_matrix2	16
11.32	fourier_matrix3	16
11.33	fourier_matrix_exp	17
11.34	fourier_multiplicative_interaction_coefficients	17
11.35	fourier_power	17
11.36	fourier_power_exp	17
11.37	fourier_predict	17
11.38	fourier_quadratic_interaction_coefficients	18
11.39	fourier_random_phase_walk	18
11.40	fourier_range	18
11.41	fourier_regress	18
11.42	fourier_resampled_fit	18
11.43	fourier_resampled_predict	18
11.44	fourier_signed_square	18
11.45	fourier_transform	19
11.46	fourier_transform_fractional	19
11.47	fourier_truncate_negative_half_plane	19
11.48	hyperbolic_fourier_box	19
11.49	idftmtx_man	19
11.50	laplace_2d_pwlinear	19
11.51	mean_fourier_power	20
11.52	moments_fourier_power	20
11.53	nanfft	20
11.54	peaks	
11.55	roots_fourier	
11.56	spectral_density	21
11.57	std_fourier_power	21
11.58	test_complex_exp_product	21
11.59	test_fourier_filter	21
11.60	test_idftmtx	21
11.61	var_fourier_power	21
		٠
12 mathe		22
12.1	gaussfit_quantile	22
13 geome	etry/@Geometry	22

13.1	Geometry
13.2	arclength
13.3	arclength_old
13.4	arclength_old2
13.5	base_point
13.6	base_point_limited
13.7	centroid
13.8	cosa_min_max
13.9	cross2
13.10	curvature
13.11	ddot 2
13.12	distance
13.13	distance2
13.14	dot
13.15	$edge_length \dots \dots$
13.16	enclosed_angle
13.17	enclosing_triangle
13.18	hexagon
13.19	inPolygon
13.20	inTetra
13.21	inTetra2
13.22	inTriangle
13.23	intersect
13.24	lineintersect
13.25	lineintersect1
13.26	minimum_distance_lines
13.27	mittenpunkt
13.28	nagelpoint
13.29	onLine
13.30	orthocentre
13.31	plumb_line
13.32	poly_area
13.33	poly_edges
13.34	poly_set
13.35	poly_width
13.36	polyxpoly
13.37	project_to_curve
13.38	quad_isconvex
13.39	random_disk
13.40	random_simplex
13.41	sphere_volume
13.42	tetra_volume
13.43	tobarycentric
13.44	tobarycentric1

1	3.45	tobarycentric2	28
1	3.46		28
1	3.47	v	28
1	3.48	_	28
1	3.49		28
1	3.50	tri_distance_opposit_midpoint	28
1	3.51		28
1	3.52		28
1	3.53		29
1	3.54	tri_height	29
1	3.55	tri_incircle	29
1	3.56	tri_isacute	29
1	3.57		29
1	3.58	tri_semiperimeter	29
1	3.59	tri_side_length	29
14 g	geome	v	30
	4.1	v O	30
	4.2	8	30
	4.3		30
	4.4		30
	4.5	9	30
	4.6	1	31
	4.7	1	31
	4.8	1	31
	4.9		31
	4.10		31
	4.11	<i>U</i> 1	31
	4.12	0	31
	4.13	8	31
	4.14	9	32
	4.15	0	32
	4.16	8	32
	4.17	9	32
1	4.18	±	32
1	4.19	streamline_radius_of_curvature	32
1 K L	iat o e	ram/@Histogram	33
	11 5.0g 1 .5.1	,	33
	5.2		ээ 33
	.5.2 .5.3	9	ээ 33
	.5.3 .5.4		ээ 33
	.5.4 .5.5		ээ 33
	.5.6		ээ 33
1	.U.U	CIII2UCSU	oc

1	15.7	cmoment
1	15.8	cmomentS
1	15.9	entropy
1	15.10	entropyS
1	15.11	export_csv
1	15.12	iquantile
1	15.13	kstest
1	15.14	kurtosis
1	15.15	kurtosisS
1	15.16	mean
1	15.17	meanS
1	15.18	median
1	15.19	medianS
1	15.20	mode
1	15.21	modeS
1	5.22	moment
1	15.23	momentS
1	15.24	pdf
1	15.25	quantile
1	15.26	quantileS
1	15.27	resample
1	15.28	setup
1	15.29	skewness
1	15.30	skewnessS
1	15.31	stairs
1	15.32	stairsS
1	15.33	std 36
1	15.34	stdS
1	15.35	var 36
1	15.36	varS
	nistogi	
1	16.1	hist_man
1	16.2	histadapt
1	16.3	histconst
1	16.4	pdf_poly
1	16.5	plotcdf
1	16.6	test_histogram
17 r	nathe	matics 37
1	17.1	imrotmat
		algebra 37
1	18.1	averaging_matrix_2

	18.2	colnorm	37
	18.3	$condest_{-}$	37
	18.4	connectivity_matrix	38
	••		
19		algebra/coordinate-transformation	38
	19.1	barycentric2cartesian	38
	19.2	barycentric2cartesian3	38
	19.3	cartesian2barycentric	38
	19.4	cartesian_to_unit_triangle_basis	38
	19.5	ellipsoid2geoid	38
	19.6	example_approximate_utm_conversion	38
	19.7	latlon2utm	38
	19.8	$latlon2utm_simple~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots$	39
	19.9	lowrance_mercator_to_wgs84	39
	19.10	nmea2utm	39
	19.11	$\operatorname{sn2xy}$	39
	19.12	unit_triangle_to_cartesian	39
	19.13	utm2latlon	39
	19.14	xy2nt	39
	19.15	xy2sn	40
	19.16	xy2sn_java	40
	19.17	xy2sn_old	40
20		algebra	40
	20.1	$det2x2 \dots $	40
	20.2	det3x3	40
	20.3	$det4x4 \dots $	40
	20.4	$diag2x2 \dots \dots \dots \dots \dots$	40
	20.5	down	41
	20.6	eig2x2	41
21	linear-	algebra/eigenvalue	41
41	21.1	eig_bisection	41
	21.2	eig_inverse	41
	21.3	eig_inverse_iteration	41
	21.4	eig_power_iteration	41
	21.1	cis-power_normalist	-11
22	linear-	algebra/eigenvalue/jacobi-davidson	41
	22.1	$afun_jdm \ \ldots \ldots \ldots \ldots \ldots \ldots$	41
	22.2	$davids on \dots \dots \dots \dots \dots \dots \dots \dots \dots $	41
	22.3	jacobi_davidson	41
	22.4	jacobi_davidson_qr	42
	22.5	jacobi_davidson_qz	42
	22.6	jacobi_davidson_simple	42

	22.7	jdqr	42
	22.8	jdqr_sleijpen	45
	22.9	jdqr_vorst	49
	22.10	jdqz	52
	22.11	mfunc_jdm	56
	22.12	mgs	56
	22.13	minres	56
	22.14	$mv_jacobi_davidson $	56
23	linear-	algebra	57
	23.1	$\operatorname{first} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	57
	23.2	$gershgorin_circle \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	57
	23.3	$haussdorff \ldots \ldots \ldots \ldots \ldots \ldots$	57
	23.4	ieig2x2	57
	23.5	inv2x2	57
	23.6	inv3x3	57
	23.7	$inv4x4 \dots $	57
	23.8	kernel2matrix	58
24	linear-	algebra/lanczos	58
	24.1	arnoldi	58
	24.2	$arnoldi_new \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	58
	24.3	eigs_lanczos_man	58
	24.4	lanczos	58
	24.5	$lanczos_\dots$	58
	24.6	$lanczos_biorthogonal \dots \dots$	58
	24.7	lanczos_biorthogonal_improved	58
	24.8	$lanczos_ghep \ \dots $	58
	24.9	mv_lanczos	59
	24.10	reorthogonalise	59
	24.11	test_lanczos	59
25	linear-	algebra	59
	25.1	laplacian_eigenvalue	59
	25.2	laplacian_eigenvector	59
	25.3	$laplacian_power $	59
	25.4	$least_squares_perpendicular_offset $	59
	25.5	${\it left} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	59
26	linear-	algebra/linear-systems	59
	26.1	gmres_man	59
	26.2	minres_recycle	60
27	linear-	algebra	60

	27.1	lpmean	60
	27.2	lpnorm	60
	27.3	matvec3	60
	27.4	max2d	60
	27.5	$\operatorname{mid} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	60
	27.6	mpoweri	60
	27.7	$mtimes2x2 \dots $	60
	27.8	$mtimes 3x3 \dots \dots$	61
	27.9	nannorm	61
	27.10	nanshift	61
	27.11	nl	61
	27.12	normalise	61
	27.13	normalize1	61
	27.14	normrows	61
	27.15	orth2	62
	27.16	orth_man	62
	27.17	orthogonalise	62
	27.18	padd2	62
	27.19	paddext	62
	27.20	paddval1	62
	27.21	paddval2	62
28		algebra/polynomial	63
28	28.1	chebychev	63
28	28.1 28.2	chebychev	63 63
28	28.1 28.2 28.3	chebychev	63 63 63
28	28.1 28.2 28.3 28.4	chebychev	63 63 63
28	28.1 28.2 28.3 28.4 28.5	chebychev	63 63 63 63
28	28.1 28.2 28.3 28.4 28.5 28.6	chebychev piecewise_polynomial roots1	63 63 63 63 63
28	28.1 28.2 28.3 28.4 28.5 28.6 28.7	chebychev	63 63 63 63 63 63
28	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8	chebychev	63 63 63 63 63 63 63
28	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9	chebychev piecewise_polynomial roots1 roots2 roots2poly roots3 roots4 roots_piecewise_linear test_roots4	63 63 63 63 63 63 64
28	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8	chebychev	63 63 63 63 63 63 63
	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10	chebychev piecewise_polynomial roots1	63 63 63 63 63 63 64 64
	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10	chebychev piecewise_polynomial roots1 roots2 roots2poly roots3 roots4 roots_piecewise_linear test_roots4 vanderi_1d algebra	63 63 63 63 63 63 64 64 64
	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 linear- 29.1	chebychev piecewise_polynomial roots1 roots2 roots2poly roots3 roots4 roots_piecewise_linear test_roots4 vanderi_1d algebra randrot	63 63 63 63 63 63 64 64 64
	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 linear - 29.1 29.2	chebychev piecewise_polynomial roots1 roots2 roots2poly roots3 roots4 roots_piecewise_linear test_roots4 vanderi_ld algebra randrot right	63 63 63 63 63 63 64 64 64 64
	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 linear - 29.1 29.2 29.3	chebychev piecewise_polynomial roots1 roots2 roots2poly roots3 roots4 roots_piecewise_linear test_roots4 vanderi_1d algebra randrot right rot2	63 63 63 63 63 63 64 64 64 64 64
	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 linear - 29.1 29.2 29.3 29.4	chebychev piecewise_polynomial roots1 roots2 roots2poly roots3 roots4 roots_piecewise_linear test_roots4 vanderi_1d algebra randrot right rot2 rot2dir	63 63 63 63 63 63 64 64 64 64 64 64
	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 linear- 29.1 29.2 29.3 29.4 29.5	chebychev piecewise_polynomial roots1 roots2 roots2poly roots3 roots4 roots_piecewise_linear test_roots4 vanderi_1d algebra randrot right rot2 rot2dir rot3	63 63 63 63 63 63 64 64 64 64 64 64 64
	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 linear - 29.1 29.2 29.3 29.4 29.5 29.6	chebychev piecewise_polynomial roots1 roots2 roots2poly roots3 roots4 roots_piecewise_linear test_roots4 vanderi_1d algebra randrot right rot2 rot2dir rot3 rotR rotR	63 63 63 63 63 63 64 64 64 64 64 64 64 64
	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 linear - 29.1 29.2 29.3 29.4 29.5 29.6 29.7	chebychev piecewise_polynomial roots1 roots2 roots2poly roots3 roots4 roots_piecewise_linear test_roots4 vanderi_1d algebra randrot right rot2 rot2dir rot3 rotR rownorm	63 63 63 63 63 63 64 64 64 64 64 64 64 65
	28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 linear - 29.1 29.2 29.3 29.4 29.5 29.6	chebychev piecewise_polynomial roots1 roots2 roots2poly roots3 roots4 roots_piecewise_linear test_roots4 vanderi_1d algebra randrot right rot2 rot2dir rot3 rotR rotR	63 63 63 63 63 63 64 64 64 64 64 64 64 64

	29.10	spzeros	65
	29.11	test_roots3	65
	29.12	transform_minmax	65
	29.13		65
	29.14	transposeall	65
	29.15	up	65
	29.16	vander_nd	66
	29.17		66
30	logic	•	36
	30.1		66
31	master	·/plot	36
-	31.1	/ 1	66
	31.2	o a constant of the constant o	66
	31.3	1	66
	31.4	8 8	66
	31.5		66
	31.6		67
	31.7		67
	31.8	1 0	67
	31.9	•	67
	31.10	1	67
	31.11		67
	31.12		67
	31.13		67
	31.14	i v	67
	31.15		67
	31.16	•	68
	31.17	1 2 3	68
	31.18		68
	31.19	1	68
	31.20	1	68
	31.21	plot_runtime	68
	31.22	1	68
	31.23	• •	68
32	master	r/ported	38
	32.1	/ 1	68
	32.2		69
	32.3	* *	69
	32.4	1 1	69
	32.5		69
	22.6		ഗ

	32.7	element_neighbour_2d
	32.8	prefetch_2d
	32.9	promote_2d_3_10
	32.10	promote_2d_3_15
	32.11	promote_2d_3_21
	32.12	promote_2d_3_6
	32.13	promote_3d_4_10
	32.14	promote_3d_4_20
	32.15	promote_3d_4_35
	32.16	vander_2d
	32.17	vander_3d
33	mathe	matics 70
	33.1	monotoneous_indices
	33.2	nearest_fractional_timestep
		r
34	numbe	er-theory 71
	34.1	ceiln
	34.2	digitsb
	34.3	floorn
	34.4	iseven
	34.5	multichoosek
	34.6	nchoosek_man
	34.7	pythagorean_triple
	34.8	roundn
35	numer	ical-methods 72
	35.1	advect_analytic
36	numer	ical-methods/differentiation 72
	36.1	derivative1
	36.2	derivative2
0.7		ical-methods 72
31		ical-methods 72 diffuse_analytic
	37.1	diffuse_analytic
38	numer	ical-methods/finite-difference 73
	38.1	cdiff
	38.2	cdiffb
	38.3	central_difference
	38.4	cmean
	38.5	cmean2
	38.6	derivative_matrix_1_1d 73
	38.7	derivative_matrix_2_1d 73
	38.8	derivative matrix 2d 74

	38.9	derivative_matrix_curvilinear	74
	38.10	$derivative_matrix_curvilinear_2 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	74
	38.11	$\label{eq:difference_kernel} \text{difference_kernel} \ \dots $	74
	38.12	$diffusion_matrix_2d_anisotropic\ .\ .\ .\ .\ .\ .\ .\ .\ .$	74
	38.13	$diffusion_matrix_2d_anisotropic2 \ \dots \ \dots \ \dots \ \dots$	74
	38.14	$directional_neighbour \ \ldots \ldots \ldots \ldots \ldots \ldots$	74
	38.15	$\operatorname{distmat} \ \ldots \ $	74
	38.16	$downwind_difference \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	75
	38.17	$gradpde2d \dots \dots$	75
	38.18	laplacian	75
	38.19	laplacian_fdm	75
	38.20	lrmean	75
39	numer	ical-methods/finite-difference/master	75
	39.1	$fdm_adaptive_grid \dots \dots$	75
	39.2	$fdm_adaptive_refinement_old \ \dots \dots \dots \dots \dots \dots$	75
	39.3	$fdm_assemble_d1_2d \ldots \ldots \ldots \ldots \ldots \ldots$	75
	39.4	$fdm_assemble_d2_2d \ldots \ldots \ldots \ldots \ldots \ldots$	76
	39.5	$fdm_confinement \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	76
	39.6	$fdm_d_vargrid \dots \dots$	76
	39.7	$fdm_h_unstructured \ \dots $	76
	39.8	$fdm_hydrogen_vargrid\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	76
	39.9	$fdm_mark_unstructured_2d \ldots \ldots \ldots \ldots \ldots$	76
	39.10	$fdm_plot \dots \dots$	76
	39.11	$fdm_plot_series \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	76
	39.12	$fdm_refine_2d\ldots\ldots\ldots\ldots\ldots\ldots$	76
	39.13	$fdm_refine_3d\ldots\ldots\ldots\ldots\ldots\ldots$	76
	39.14	$fdm_refine_unstructured_2d \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	77
	39.15	$fdm_schroedinger_2d \ldots \ldots \ldots \ldots \ldots \ldots$	77
	39.16	$fdm_schroedinger_3d \ldots \ldots \ldots \ldots \ldots \ldots$	77
	39.17	relocate	77
40	numer	ical-methods/finite-difference	77
	40.1	mid	77
	40.2	pwmid	77
	40.3	ratio	77
	40.4	steplength	77
	40.5	$swapoddeven \dots \dots$	78
	40.6	test_derivative_matrix_2d	78
	40.7	test_derivative_matrix_curvilinear	78
	40.8	test_difference_kernel	78
	40.9	$upwind_difference $	78
41	numer	ical-methods/finite-element	78

	41.1	Mesh_2d_java	8
	41.2	Tree_2d_java	8
	41.3	assemble_1d_dphi_dphi	8
	41.4	assemble_1d_phi_phi	8
	41.5	assemble_2d_dphi_dphi_java	9
	41.6	assemble_2d_phi_phi_java	9
	41.7	$assemble_3d_dphi_dphi_java \dots $	9
	41.8	$assemble_3d_phi_phi_java \dots $	9
	41.9	boundary_1d	9
	41.10	boundary_2d	9
	41.11	boundary_3d	9
	41.12	check_area_2d	9
	41.13	circmesh	9
	41.14	cropradius	9
	41.15	display_2d	0
	41.16	display_3d	0
	41.17	distort	0
	41.18	err_2d	0
	41.19	$estimate_err_2d_3 \dots \dots \dots 8$	0
	41.20	$example_1d \dots \dots$	0
	41.21	example_2d	0
	41.22	explode	0
	41.23	fem_2d	0
	41.24	$fem_2d_heuristic_mesh \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	0
	41.25	$fem_get_2d_radial $	1
	41.26	fem_interpolation	1
	41.27	$fem_plot_1d\ldots\ldots\ldots \ \ 8$	1
	41.28	$fem_plot_1d_series \ \dots \ \dots \ 8$	1
	41.29	$fem_plot_2d \dots \dots$	1
	41.30	$fem_plot_2d_series \ \dots \ \dots \ 8$	1
	41.31	$fem_plot_3d\ldots\ldots\ldots \ \ 8$	1
	41.32	$fem_plot_3d_series \ \dots \ \dots \ 8$	1
	41.33	fem_plot_confine_series	
	41.34	fem_radial	
	41.35	flip_2d	
	41.36	get_mesh_arrays	
	41.37	hashkey	2
42	numon	ical-methods/finite-element/int 8	ว
44	42.1	${f ical-methods/finite-element/int} \ {f sint_1d_gauss} \ \ldots \ {f 8}$	
	42.1	int_1d_gauss_1	
	42.2	int_1d_gauss_2	
	42.4	int_1d_gauss_3	
	42.4	int 1d gauss 4	

83
8
83
8
8
8
8
8
8
84
84
84
84
84
84
84
84
84
84
8
8
8
8
8
8
8
8
8
8
80
80
80
80
80
80
80
80
80
80
8'
8'

	43.3	mark_1d
	43.4	mesh_1d_uniform
	43.5	mesh_3d_uniform
	43.6	mesh_interpolate
	43.7	neighbour_1d
	43.8	old
	43.9	pdeeig_1d
	43.10	pdeeig_2d
	43.11	pdeeig_3d
	43.12	polynomial_derivative_1d
	43.13	potential_const
	43.14	potential_coulomb
	43.15	potential_harmonic_oscillator
	43.16	project_circle
	43.17	project_rectangle
	43.18	promote_1d_2_3
	43.19	promote_1d_2_4
	43.20	promote_1d_2_5
	43.21	promote_1d_2_6
	43.22	quadrilaterate
	43.23	recalculate_regularity_2d 89
	43.24	refine_1d
	43.25	refine_2d_21
	43.26	refine_2d_structural
	43.27	regularity_1d
	43.28	regularity_2d
	43.29	regularity_3d
	43.30	relocate_2d
	43.31	test_circmesh
	43.32	test_hermite
	43.33	tri_assign_points
	43.34	triangulation_uniform
	43.35	vander_1d
	43.36	vanderd_1d
	43.37	vanderi_1d
44		ical-methods/finite-volume/@Advection 91
	44.1	Advection
	44.2	dot_advection
45	numer	ical-methods/finite-volume/@Burgers 91
	45.1	burgers_split
	45.2	dot_burgers_fdm
	45.3	dot_burgers_fft

46	numer	rical-methods/finite-volume/@Finite_Volume	91
	46.1	Finite_Volume	91
	46.2	apply_bc	92
	46.3	solve	92
	46.4	step_split_strang	92
	46.5	step_unsplit	92
47	numer	${ m rical-methods/finite-volume/@Flux_Limiter}$	92
	47.1	Flux_Limiter	92
	47.2	beam_warming	92
	47.3	fromm	93
	47.4	$lax_wendroff \dots \dots \dots \dots \dots \dots \dots \dots$	93
	47.5	$\min \mod \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	93
	47.6	$monotized_central \ \dots $	93
	47.7	muscl	93
	47.8	superbee	93
	47.9	upwind	93
	47.10	vanLeer	94
48	numer	m rical-methods/finite-volume/@KDV	94
	48.1	dot_kdv_fdm	94
	48.2	dot_kdv_fft	94
	48.3	kdv_split	94
49	numer	${ m rical-methods/finite-volume/@Reconstruct_Average_E}$	volve 94
	49.1	Reconstruct_Average_Evolve	94
	49.2	advect_highres	95
	49.3	advect_lowress	95
50	numer	rical-methods/finite-volume	95
	50.1	Godunov	95
	50.2	Lax_Friedrich	95
	50.3	Measure	95
	50.4	Roe	95
	50.5	fv_swe	96
	50.6	$staggered_euler \dots \dots \dots \dots \dots \dots$	96
	50.7	$staggered_grid \dots \dots \dots \dots \dots \dots$	96
51	numer	rical-methods	96
	51.1	grid2quad	96
${f 52}$	numer	rical-methods/integration	96
	52.1	cumintL	96
	52.2	cumintR	96
	52.3	cumint_trapezoidal	96

	52.4	$int_trapezoidal \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	97
53	numer	ical-methods/interpolation/@Kriging	97
	53.1	Kriging	97
	53.2	estimate_semivariance	97
	53.3	$interpolate_{\dots$	97
54	numer	${\it ical-methods/interpolation/@RegularizedInterpolator}$	c1 97
	54.1	RegularizedInterpolator1	97
	54.2	$init \dots \dots \dots \dots \dots \dots \dots \dots \dots $	98
55	numer	${\it ical-methods/interpolation/@RegularizedInterpolator}$	c 2 98
	55.1	RegularizedInterpolator2	98
	55.2	init	98
56	numer	ical-methods/interpolation/@RegularizedInterpolator	r3 08
50	56.1	RegularizedInterpolator3	98
	56.2	init	98
	50.2		90
57	numer	${f ical-methods/interpolation}$	98
	57.1	IDW	98
	57.2	IPoly	98
	57.3	IRBM	99
	57.4	ISparse	99
	57.5	Inn	99
	57.6	Interpolator	99
	57.7	fixnan	99
	57.8	$idw1 \dots $	99
	57.9	$idw2 \dots $	99
	57.10	inner2outer	100
	57.11	inner2outer2	100
	57.12	interp1_circular	100
	57.13	interp1_limited	100
	57.14	interp1_man	100
	57.15	interp1_piecewise_linear	100
	57.16	interpl_save	100
	57.17	interp1_slope	
	57.18	interpl_smooth	
	57.19	interp1_unique	101
	57.20	interp2_man	
	57.21	interp_angle	
	57.22	interp_fourier	
	57.23	interp_fourier_batch	
	57.24	interp_sn	

	57.25	interp_sn2
	57.26	interp_sn3
	57.27	interp_sn
	57.28	limit_by_distance_1d
	57.29	resample1
	57.30	resample_d_min
	57.31	resample_vector
	57.32	test_interp1_limited
58	numer	ical-methods 103
	58.1	inverse_complex
	58.2	maccormack_step
	58.3	minmod
59	numer	ical-methods/multigrid 103
	59.1	mg_interpolate
	59.2	mg_restrict
60	numer	ical-methods/ode/@BVPS_Characteristic 103
	60.1	BVPS_Characteristic
	60.2	assemble1_A
	60.3	$assemble 1_A_Q \ldots \ldots$
	60.4	assemble2_A
	60.5	assemble_AA
	60.6	assemble_AAA
	60.7	assemble_Ic
	60.8	bvp1c
	60.9	check_arguments
	60.10	couple_junctions
	60.11	derivative
	60.12	init
	60.13	$inner2outer_bvp2c$
	60.14	reconstruct
	60.15	resample
	60.16	solve
	60.17	$test_assemble1_A \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	60.18	$test_assemble2_A \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
61	numer	$ical-methods/ode/@Time_Stepper$ 106
	61.1	Time_Stepper
	61.2	solve
62	numer	ical-methods/ode 106
	62.1	bvp2fdm

	62.2	bvp2wavetrain
	62.3	bvp2wavetwopass
	62.4	ivp_euler_forward
	62.5	ivp_euler_forward2
	62.6	ivprk2
	62.7	ode2_matrix
	62.8	ode2characteristic
	62.9	step_trapezoidal
	62.10	test_bvp2
63	numer	ical-methods/optimisation 108
	63.1	aitken_iteration
	63.2	anderson_iteration
	63.3	armijo_stopping_criterion
	63.4	astar
	63.5	binsearch
	63.6	bisection
	63.7	box1
	63.8	box2
	63.9	cauchy
	63.10	cauchy2
	63.11	directional_derivative
	63.12	dud
	63.13	extreme3
	63.14	extreme_quadratic
	63.15	ftest
	63.16	fzero_bisect
	63.17	fzero_newton
	63.18	grad
	63.19	hessian
	63.20	$hessian_from_gradient \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	63.21	$hessian_projected \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	63.22	line_search
	63.23	$line_search2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	63.24	$line_search_polynomial $
	63.25	$line_search_polynomial2\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$
	63.26	$line_search_quadratic \dots \dots$
	63.27	$line_search_quadratic2 \ldots \ldots$
	63.28	$line_search_wolfe \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	63.29	$ls_bgfs \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	63.30	ls_broyden
	63.31	$ls_generalized_secant \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	63.32	nlcg
	63 33	nlle 113

	63.34	picard
	63.35	poly_extrema
	63.36	quadratic_function
	63.37	quadratic_programming
	63.38	quadratic_step
	63.39	rosenbrock
	63.40	sqrt_heron
	63.41	test_directional_derivative
	63.42	test_dud
	63.43	test_fzero_newton
	63.44	test_line_search_quadratic2
	63.45	test_ls_generalized_secant
	63.46	test_nlcg_6_order
	63.47	test_nlls
64	numer	ical-methods/pde 115
	64.1	$laplacian 2 d_fundamental_solution $
65		ical-methods/piecewise-polynomials 115
	65.1	Hermite1
	65.2	hp2_fit
	65.3	hp2_predict
	65.4	hp_predict
	65.5	hp_regress
	65.6	lp_count
	65.7	lp_predict
	65.8	lp_regress
	65.9	lp_regress
cc		! 4
00	numer 66.1	ical-methods 116 test_adams_bashforth
	00.1	test_adams_basmortn
67	mathe	matics 117
•	67.1	oversampleNZ
	0111	
68	regress	sion/@PolyOLS 117
	68.1	PolyOLS
	68.2	coefftest
	68.3	detrend
	68.4	fit
	68.5	fit
	68.6	predict
	68.7	predict
	68.8	slope

69	regress	1000 Sion/@PowerLS	118
	69.1	PowerLS	118
	69.2	fit	118
	69.3	predict	118
	69.4	predict	118
70		sion /@Theil	118
10	70.1	sion/@Theil Theil	
	70.1	detrend	
	70.2	fit	
	70.3	predict	
	70.4	slope	
	10.5	stope	119
71	regress	sion	119
	71.1	Theil_Multivariate	
	71.2	areg	119
	71.3	ginireg	
	71.4	hesssimplereg	120
	71.5	l1lin	120
	71.6	lsq_sparam	120
	71.7	polyfitd	120
	71.8	$regression_method_of_moments \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	120
	71.9	robustlinreg	121
	71.10	theil2	
	71.11	theil_generalised	121
	71.12	total_least_squares	
	71.13	weighted_median_regression	121
72	set-the	eorv	121
• –	72.1	issubset \dots	121
73	mathe		122
	73.1	shuffle_index	122
74	sional_	processing	122
14	74.1	asymwin	122
	14.1	asymwin	122
75	signal-	processing/autocorrelation	122
	75.1	acf_radial	122
	75.2	acfar1	122
	75.3	$acfar1_2$	122
	75.4	acfar2	122
	75.5	acfar2_2	123
	75.6	ar1_cutoff_frequency	123
	75.7	ar1_effective_sample_size	123

	75.8	ar1_mse_mu_single_sample
	75.9	ar1_mse_pop
	75.10	ar1_mse_range
	75.11	ar1_spectrum
	75.12	ar1_to_tikhonov
	75.13	ar1_var_factor
	75.14	ar1_var_factor
	75.15	ar1_var_range2
	75.16	ar1delay
	75.17	ar1delay_old
	75.18	ar2_acf2c
	75.19	ar2conv
	75.20	ar2dof
	75.21	ar2param
	75.22	autocorr2
	75.23	autocorr_angular
	75.24	autocorr_bandpass
	75.25	autocorr_brownian_phase
	75.26	autocorr_brownian_phase_2d
	75.27	autocorr_brownian_phase_across
	75.28	autocorr_decay_rate
	75.29	autocorr_effective_sample_size
	75.30	autocorr_fft
	75.31	autocorr_forest
	75.32	autocorr_genton
	75.33	autocorr_highpass
	75.34	autocorr_lowpass
	75.35	$autocorr_periodic_additive_noise $
	75.36	autocorr_periodic_windowed
	75.37	autocorr_radial
	75.38	autocorr_radial_hexagonal_pattern
	75.39	autocorrelation_max
76	_	processing 127
	76.1	average_wave_shape
	76.2	bandpass
	76.3	bandpass_continuous_cdf
	76.4	bartlett
	76.5	bin1d
	76.6	bin2d
	76.7	binormrnd
	76.8	brownian_phase_cdf
	76.9	brownian_phase_inv
	76.10	coherence

76.1	11 190
76.1	
76.1	
76.1	
76.1	
76.1	
76.1	
76.1	
76.1	1 0
76.1	
76.2	
76.2	· · · · · · · · · · · · · · · · · · ·
76.2	1
76.2	1
76.2	0
76.2	
76.2	1
76.2	1
76.2	1
76.2	3
76.3	
76.3	1
76.3	2 fcut2Lw_gausswin $\dots \dots 131$
76.3	3 fcut_gausswin
76.3	4 filt_hodges_lehman
	1 /01
_	al-processing/filters 131
77.1	circfilt2
77.2	
77.3	filter2
77.4	
77.5	filter_r_to_f0
77.6	filter_rho_to_f0
77.7	filter_twosided
77.8	filteriir
77.9	filterp
77.1	1
77.1	
77.1	0
77.1	•
77.1	
77.1	
77.1	6 $medfilt1_man2 \dots 134$
77.1	7 $medfilt1_padded \dots 134$
77.1	8 medfilt1_reduced

	77.19	trifilt1
	77.20	trifilt2
- 0		
78	_	processing 135
	78.1	firls_man
	78.2	fit_spectral_density
	78.3	fit_spectral_density_2d
	78.4	fit_spectral_density_radial
	78.5	flattopwin
	78.6	frequency_response_boxcar
	78.7	freqz_boxcar
	78.8	gaussfilt1
	78.9	hanchangewin
	78.10	hanchangewin2
	78.11	hanwin
	78.12	$hanwin_{-}$
	78.13	high_pass_1d_simple
	78.14	kaiserwin
	78.15	kalman
	78.16	lanczoswin
	78.17	last
	78.18	maxfilt1
	78.19	meanfilt1
	78.20	mid_term_single_sample
	78.21	minfilt1
	78.22	minmax
	78.23	mu2ar1
	78.24	mysmooth
	78.25	nanautocorr
	78.26	nanmedfilt1
	78.27	neper2db
	78.28	oscillator_noisy
79	_	processing/passes 138
	79.1	bandpass1d
	79.2	bandpass1d_fft
	79.3	bandpass1d_implicit
	79.4	bandpass2
	79.5	bandpass2d
	79.6	bandpass2d_2
	79.7	bandpass2d_fft
	79.8	bandpass2d_ideal
	79.9	bandpass2d_implicit
	79.10	bandpass2d_iso

79.11	bandpass_arg
79.12	
79.13	B bandpass_max
79.14	4 bandpass_max2
79.15	6 highpass
79.16	6 highpass1d_fft_cos
79.17	highpass1d_implicit
79.18	8 highpass2d_fft
79.19) highpass2d_ideal
79.20) highpass2d_implicit
79.21	highpass_arg
79.22	2 highpass_fc_to_rho
79.23	B lowpass
79.24	l lowpass1d_fft
79.25	6 lowpass1d_implicit
79.26	6 lowpass2
79.27	$^{\prime}$ lowpass2d_2
79.28	B lowpass2d_anisotropic
79.29	0 lowpass2d_fft
79.30) lowpass2d_ideal
79.31	lowpass2d_implicit
79.32	2 lowpass_arg
79.33	B lowpass_fc_to_rho
79.34	l lowpass_iir
79.35	6 lowpass_iir_symmetric
79.36	6 lowpassfilter2
0	al-processing 142
80.1	peaks_man
91 gign	al-processing/periodogram 142
81.1	- 0,1
81.2	periodogram_2d
81.3	periodogram_align
81.4	periodogram_angular
81.5	periodogram_bartlett
81.6	periodogram_bootstrap
81.7	periodogram_confidence_interval
81.8	periodogram_filter
81.9	periodogram_median
81.10	
81.11	
81.12	1 0 11
81.13	

	81.14	periodogram_std
	81.15	periodogram_test_periodicity
	81.16	periodogram_test_periodicity_2d
	81.17	periodogram_test_stationarity
	81.18	periodogram_welsh
82	_	processing 146
	82.1	polyfilt1
	82.2	qmedfilt1
	82.3	quadratfilt1
	82.4	quadratwin
	82.5	randar1
	82.6	randar1_dual
	82.7	randar2
	82.8	randarp
	82.9	rectwin
	82.10	recursive_sum
	82.11	select_range
	82.12	smooth1d_parametric
	82.13	smooth2
	82.14	smooth_man
	82.15	smooth_parametric
	82.16	smooth_parametric2
	82.17	smooth_with_splines
	82.18	smoothfft
83		processing/spectral-density 148
	83.1	gampdf_man
	83.2	hex_angular_pdf
	83.3	hex_angular_pdf_max
	83.4	hex_angular_pdf_max2par
	83.5	lognpdf_entropy
	83.6	misespdf
	83.7	normpdf_entropy
	83.8	skewpdf_entropy
	83.9	spectral_density_ar2
	83.10	spectral_density_area
	83.11	$spectral_density_bandpass2d_ideal \dots \dots$
	83.12	$spectral_density_bandpass_2d \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	83.13	$spectral_density_bandpass_2d_max2par 149$
	83.14	$spectral_density_bandpass_2d_scale \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	83.15	$spectral_density_bandpass_2d_scale_old 149$
	83.16	$spectral_density_bandpass_continuous 150$
	83 17	spectral density handpass continuous may 150

83.18	spectral_density_bandpass_continuous_max2par 150
83.19	spectral_density_bandpass_continuous_scale 150
83.20	spectral_density_bandpass_discrete
83.21	spectral_density_brownian_phase
83.22	spectral_density_brownian_phase_2d 151
83.23	spectral_density_brownian_phase_across
83.24	spectral_density_brownian_phase_across_max 151
83.25	$spectral_density_brownian_phase_across_max2par \ . \ . \ . \ . \ . \ 151$
83.26	$spectral_density_brownian_phase_across_mode2par \ . \ . \ . \ . \ 151$
83.27	spectral_density_brownian_phase_mode 151
83.28	$spectral_density_brownian_phase_mode2par \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
83.29	spectral_density_brownian_phase_scale
83.30	spectral_density_estimate_2d
83.31	spectral_density_flat
83.32	spectral_density_forest
83.33	spectral_density_gausswin
83.34	$spectral_density_highpass \ . \ . \ . \ . \ . \ . \ . \ . \ . \$
83.35	$spectral_density_highpass2d_ideal \\ \ldots \\ \ldots \\ 152$
83.36	$spectral_density_highpass_2d \dots \dots$
83.37	$spectral_density_highpass_cos\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$
83.38	$spectral_density_lorentzian $
83.39	spectral_density_lorentzian_max
83.40	$spectral_density_lorentzian_max2par \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
83.41	$spectral_density_lorentzian_scale \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
83.42	$spectral_density_lowpass2d_ideal \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
83.43	$spectral_density_lowpass_2d~.~.~.~.~.~.~.~.~.~.~.~.~153$
83.44	spectral_density_lowpass_continuous
83.45	spectral_density_lowpass_continuous_scale 153
	$spectral_density_lowpass_discrete \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	spectral_density_lowpass_one_sided
83.48	spectral_density_maximum_bias_corrected
	spectral_density_periodic_additive_noise
83.50	spectral_density_rectwin
83.51	spectral_density_wperiodic
cional	processing 154
0	spectral_density_brownian_phase_reg2par
	spectrogram
	sum_ilag
	sum_ii
	sum_ii
	sum_ij
	sum_ij
84.8	sum_ij_partial
	83.19 83.20 83.21 83.22 83.23 83.24 83.25 83.26 83.27 83.28 83.29 83.30 83.31 83.32 83.34 83.35 83.36 83.37 83.38 83.40 83.41 83.42 83.43 83.44 83.45 83.46 83.47 83.48 83.49 83.50 83.51 signal- 84.1 84.2 84.3 84.4 84.5 84.6 84.7

	84.9	sum_multivar
	84.10	test_acfar1
	84.11	tikhonov_to_ar1
	84.12	trapwin
	84.13	triwin
	84.14	triwin2
	84.15	tukeywin_man
	84.16	varar1
	84.17	welch_spectrogram
	84.18	wfilt
	84.19	winbandpass
85	signal-	processing/windows 157
00	85.1	circwin
	85.2	danielle_window
	85.3	gausswin
	85.4	gausswin1
	85.5	gausswin2
	85.6	radial_window
	85.7	range_window
	85.8	rectwin_cutoff_frequency
	85.9	std_window
	85.10	window2d
	85.11	window_make_odd
	00.11	window_make_odd
86	signal-	processing 158
	86.1	$winfilt 0 \ldots $
	86.2	winlength
	86.3	wmeanfilt
	86.4	wmedfilt
	86.5	wordfilt
	86.6	$wordfilt_edgeworth$
	86.7	wrapphase
	86.8	xar1
	86.9	xcorr_man
87	sorting	159
•	87.1	sort2
	87.2	sort2d
ଚ୍ଚ	enatial	-pattern-analysis/@Spatial_Pattern 159
oo	88.1	Spatial_Pattern
	88.2	analyze_grid
	88.3	analyze_grid
	00.0	anaryzc_oransect

	88.4	$extract_improfile \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	88.5	fit_parametric_densities
	88.6	imread
	88.7	plot
	88.8	plot_transect
	88.9	report
	88.10	resample_functions
	88.11	tabulate
~~	. •	
89	_	-pattern-analysis 161
	89.1	approximate_ratio_distribution
	89.2	banded_pattern
	89.3	brownian_phase_patch_size_distribution
	89.4	hexagonal_pattern
	89.5	patch_size_1d
	89.6	patch_size_2d
	89.7	reconstruct_isotropic_density
	89.8	separate_isotropic_from_anisotropic_density 161
	89.9	suppress_low_frequency_lobe
90	special	-functions 162
	90.1	bessel_sphere
	90.2	besseliln_large_x
	90.3	beta_man
	90.4	betainc_man
	90.5	digamma_man
	90.6	exp10
	90.7	hankel_sphere
	90.8	hermite
	90.9	legendre_man
	90.10	neumann_sphere
	00.10	neumannasphere
91	statist	
	91.1	atan_s2
	91.2	beta_kurt
	91.3	beta_mean
	91.4	beta_moment2param
	91.5	beta_skew
	91.6	beta_std
	91.7	$chi2_kurt \dots \dots$
	91.8	chi2_mean
	91.9	chi2_skew
	91.10	chi2_std
	91.11	coefficient_of_determination

	91.12	conditional_expectation_normal
	91.13	correlation_confidence_pearson
92		ics/distributions 164
	92.1	PDF
	92.2	$binorm_separation_coefficient \dots \dots$
	92.3	binormcdf
	92.4	binormfit
	92.5	binormpdf
	92.6	edgeworth_cdf
	92.7	$edgeworth_pdf \dots \dots$
	92.8	$exppdf_max2par \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	92.9	$gam_moment2param $
	92.10	$logn_mean \ldots \ldots$
	92.11	$logn_mode \ \ldots \ $
	92.12	$logn_mode2param \ \dots \ $
	92.13	$logn_moment2param $
	92.14	$logn_param2moment $
	92.15	logn_std
	92.16	$lognpdf_{-} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $
	92.17	normpdf_wrapped
	92.18	normpdf_wrapped_mode
	92.19	normpdf_wrapped_mode2par
	92.20	pdfsample
	92.21	t2cdf
	92.22	t2inv
93	statisti	167
	93.1	error_propagation_fraction $\dots \dots \dots$
	93.2	$error_propagation_product$
	93.3	$example_standard_error_of_sample_quantiles \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	93.4	f_var_finite
	93.5	$fisher_mean \dots \dots$
	93.6	$fisher_moment2param \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	93.7	$fisher_std \dots \dots$
	93.8	gam_mean
	93.9	gam_std
	93.10	gamma_mode
	93.11	gamma_mode2par
	93.12	gamma_moments_to_parameter
	93.13	gamma_stirling
	93.14	gaussfit3
	93.15	gaussfit_quantile
	93.16	geoserr

	93.17	geostd
	93.18	hodges_lehmann_correlation
	93.19	hodges_lehmann_dispersion
0.4		. /
94	statist : 94.1	ics/information-theory 170 akaike_information_criterion
	-	
	94.2	bayesian_information_criterion
95	statist	ics 170
	95.1	jackknife_block
	95.2	kurtnedf
	95.3	kurtnpdf
	95.4	kurtosis_bias_corrected
	95.5	limit
	95.6	logfactorial
	95.7	loglogpdf
	95.8	lognfit_quantile
	95.9	logskewcdf
	95.10	logskewpdf
96		ics/logu 171
	96.1	lambertw_numeric
	96.2	logtrialtcdf
	96.3	logtrialtinv
	96.4	logtrialtmean
	96.5	logtrialtpdf
	96.6	logtrialtrnd
	96.7	logtricdf
	96.8	logtriinv
	96.9	logtrimean
	96.10	logtripdf
	96.11	logtrirnd
	96.12	logucdf
	96.13	logucm
	96.14	loguinv
	96.15	logumean
	96.16	logupdf
	96.17	logurnd
	96.18	loguvar
	96.19	medlogu
	96.20	test_logurnd
	96.21	tricdf
	96.22	triinv
	96 23	trimedian 174

	96.24	tripdf	4
	96.25	trirnd	5
97	statisti		_
	97.1	max_exprnd	
	97.2	maxnnormals	
	97.3	mean_angle	
	97.4	$mean_generalized_gampdf \dots \dots$	5
	97.5	midrange	5
	97.6	minavg	5
	97.7	mode_man	6
ne	atotiati	ics/moment-statistics 176	c
90		ics/moment-statistics 176 autocorr_man3	
	98.1 98.2		
		autocorr_man4	
	98.3		
	98.4	blockserr	
	98.5	comoment	
	98.6	corr_man	
	98.7	cov_man	
	98.8	dof	
	98.9	edgeworth_quantile	
	98.10	effective_sample_size	
	98.11	f_correlation	
	98.12	f_finite	
	98.13	lmean	
	98.14	lmoment	
	98.15	maskmean	
	98.16	masknanmean	
	98.17	mean1	8
	98.18	mean_man	8
	98.19	mse	9
	98.20	nanautocorr_man1	9
	98.21	nanautocorr_man2	9
	98.22	nanautocorr_man4	9
	98.23	nancorr	9
	98.24	nancumsum	9
	98.25	nanlmean	9
	98.26	nanr2	0
	98.27	nanrms	0
	98.28	nanrmse	
	98.29	nanserr	0
	98.30	nanwmean	0
	98.31	nanwstd	

00.00	100
98.32	nanwvar
98.33	nanxcorr
98.34	pearson
98.35	pearson_to_kendall
98.36	pool_samples
98.37	qmean
98.38	range_mean
98.39	rmse
98.40	serr
98.41	serr1
98.42	test_qskew
98.43	test_qstd_qskew_optimal_p
98.44	wautocorr
98.45	wcorr
98.46	wcov
98.47	wdof
98.48	wkurt
98.49	wmean
98.50	wrms
98.51	wserr
98.52	wskew
98.53	wstd
98.54	wvar
99 statist	
99.1	nangeomean
99.2	nangeostd
	tics/nonparametric-statistics 184
100.1	
100.2	kernel2d
101-4-4:-4	104
101statist	
101.1	normmoment
101.2	normpdf2
102tatic	tics/order-statistics 185
102.1	hodges_lehmann_location
102.1 102.2	kendall
102.2 102.3	kendall_to_pearson
102.3 102.4	mad2sd
102.4 102.5	madcorr
102.5 102.6	median2_holder
102.7	median_ci

102.8	median_man
102.9	mediani
102.10	nanmadcorr
102.11	nanwmedian
102.12	nanwquantile
102.13	oja_median
102.14	qkurtosis
102.15	qmoments
102.16	qskew
102.17	qskewq
102.18	qstdq
102.19	quantile1_optimisation
102.20	quantile2_breckling
102.21	quantile2_chaudhuri
102.22	quantile2_projected
102.23	quantile2_projected2
102.24	quantile_envelope
102.25	quantile_regression_simple
102.26	ranking
102.27	spatial_median
102.28	spatial_quantile
102.29	spatial_quantile2
102.30	spatial_quantile3
102.31	spatial_rank
102.32	spatial_sign
102.33	spatial_signed_rank
102.34	spearman
102.35	spearman_rank
102.36	spearman_to_pearson
102.37	wmedian
102.38	wquantile
103statist	ics 190
103.1	qstd
103.2	quantile_extrap
103.3	quantile_sin
104statist	ics/random-number-generation 191
104.1	laplacernd
104.2	randc
104.3	skewness2param
104.4	skewpdf_central_moments
104.5	skewrnd

105statist	ics	191
105.1	range	191
105.2	$resample_with_replacement \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	191
106statist	ics/resampling-statistics/@Jackknife	192
106.1	Jackknife	192
106.2	estimated_STATIC	192
106.3	matrix1_STATIC	192
106.4	matrix2	192
107statist	cics/resampling-statistics	193
107.1	block_jackknife	193
107.2	jackknife_moments	
107.3	moving_block_jackknife	
107.4	randblockserr	
107.5	resample	
108statist	ics	194
108.1	scale_quantile_sd	194
108.2	sd_sample_quantiles	
108.3	skew_generalized_normal_fit	
108.4	skew_generalized_normpdf	
108.5	skewcdf	
108.6	skewparam_to_central_moments	
108.7	skewpdf	
108.8	spatialrnd	
108.9	test_mean_generalized_gampdf	
108.10	test_skew_generalized_normpdf	
108.11	trimmed_mean	
108.12	ttest2_man	
108.13	ttest_man	
108.14	ttest_paired	
108.15	uniformnpdf	
108.16		196
108.17	wgeovar	196
108.18	wharmean	196
108.19	wharstd	196
108.20		196
108.21	wnormpdf \dots	196
109stocha	astic	196
109.1		196
109.2	brownian_drift_hitting_probability2	
109.3	brownian_field	

	109.4	brownian_motion_1d_acf
	109.5	brownian_motion_1d_cov
	109.6	brownian_motion_1d_fft
	109.7	brownian_motion_1d_fourier
	109.8	brownian_motion_1d_interleave
	109.9	brownian_motion_1d_laplacian
	109.10	brownian_motion_2d_cov
	109.11	brownian_motion_2d_fft
	109.12	brownian_motion_2d_fft_old
	109.13	brownian_motion_2d_fourier
	109.14	brownian_motion_2d_interleave
	109.15	brownian_motion_2d_interleaving
	109.16	brownian_motion_2d_kahunen
	109.17	brownian_motion_2d_laplacian
	109.18	$brownian_motion_with_drift_hitting_probability~.~.~.~.~198$
	_	
110	Omathe	
	110.1	$ternary_diagram \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
11.	ltest/fo	ourier 199
11.	111.1	
	111.1	test_lourier_meq2md
11:	2test/m	naster 199
	112.1	dat_test_lanczos_3d_k_20_n_40
	112.2	poisson2d_blk
	112.3	qr_implicit_givens_2
	112.4	spectral_derivative_2d
	112.5	$test_2d_eigensolver_hydrogen \dots \dots$
	112.6	test_2d_refine
	112.7	$test_3d_eigensolver_hydrogen \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	112.8	test_FEM
	112.9	$test_Mesh_3d \ \dots \ $
	112.10	$test_arnoldi \ldots \ldots$
	112.11	test_arpackc
	112.12	$test_assemble \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	112.13	$test_assembly_performance \ \ldots \ $
	112.14	$test_bc_one_sided $
	112.15	$test_compare_solvers \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	112.16	test_complete
	112.17	$test_convergence \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	112.18	$test_convergence_b\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$
	112.19	$test_df_2d \ldots \ldots$
	112.20	$test_eig_algs \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	112.21	test_eig_inverse

112.22	test_eigs_lanczos
112.23	$test_eigs_lanczos_1 \dots \dots$
112.24	$test_eigs_lanczos_2 \ \dots \ $
112.25	test_eigs_lanczos_performance
112.26	test_fdm
112.27	$test_fdm_d_vargrid \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
112.28	test_fdm_spectral
112.29	test_fem
112.30	test_fem_1d
112.31	test_fem_1d_higher_order
112.32	test_fem_2d_adaptive
112.33	test_fem_2d_higher_order
112.34	test_fem_3d_higher_order
112.35	test_fem_3d_refine
112.36	test_fem_b
112.37	test_fem_derivative
112.38	test_fem_quadrature
112.39	test_final
112.40	test_fix_substitution
112.41	test_forward
112.42	test_get_sparse_arrays
112.43	test_harmonic_oscillator
112.44	test_high_order_fdm_periodic_bc
112.45	test_hydrogen_wf
112.46	test_ichol
112.47	test_interpolation
112.48	test_inverse_problem
112.49	test_it_vs_exact
112.50	test_jama
112.51	test_jd
112.52	test_jdqz
112.53	test_lanczos_2
112.54	test_lanczos_biorthogonal
112.55	test_laplacian
112.56	test_laplacian_non_uniform
112.57	test_laplacian_simple
112.58	$test_mesh_2d_uniform \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
112.59	test_mesh_2d_uniform_2
112.60	test_mesh_circle
112.61	4-4
	test_mesh_generation
112.62	test_mesh_interpolate
112.62 112.63	
	test_mesh_interpolate

112.66	test_nc
112.67	test_nonuniform_symmetric
112.68	test_pde
112.69	
112.70	test_poison_fem
112.71	test_polar
112.72	test_potential
112.73	test_powers
112.74	test_precondition
112.75	test_project_rectangle
112.76	test_qr
112.77	test_quantum_well
112.78	test_radial_adaptive
112.79	test_radial_confinement
112.80	test_radial_fixes
112.81	test_refine_2d
112.82	test_refine_2d_b
112.83	test_refine_3d
112.84	test_refine_structural
112.85	test_regularisation
112.86	test_round_off
112.87	test_schrödinger_potentials
112.88	test_uniform_mesh
112.89	test_vargrid
•	ignal-processing/autocorrelation 208
113.1	test_acf
113.2	test_acf_bias
113.3	test_acf_brownian_phase
113.4	test_acfar1_2
113.5	test_acfar1_3
113.6	test_acfar1_4
113.7	test_acfar2
113.8	test_ar1_var_factor
113.9	test_ar1_var_factor_2
113.10	9 1
113.11	test_ar1_var_pop
113.12	test_ar1_var_pop_1
113.13	test_ar1delay
113.14	test_ar2
114test/s	ignal-processing/passes 209
114.1	test_bandpass2d_ideal
114.2	_

114.3	test_lowpass1d_implicit
114.4	test_lowpass2d_anisotropic
114.5	test_lowpass2d_fft
114.6	$test_lowpass2d_rho \ldots \ldots$
115test/s	ignal-processing/periodogram 210
115.1	test_periodicity_test_2d
115.2	test_periodogram_bartlett_se
115.3	test_periodogram_gauss
115.4	test_periodogram_radial
115.5	test_periodogram_test
115.6	test_periodogram_test_periodicity_2d
115.7	test_periogogram_significance
116test/s	ignal-processing/spectral-density 211
116.1	test_spectral_density_2
116.2	test_spectral_density_bandpass_2d 211
116.3	test_spectral_density_bandpass_2d_max2par 211
116.4	test_spectral_density_bandpass_continuous
116.5	test_spectral_density_bandpass_continuous_1 211
116.6	test_spectral_density_bandpass_maximum 211
116.7	test_spectral_density_bandpass_scale
116.8	test_spectral_density_bp
116.9	test_spectral_density_bp_2d
116.10	test_spectral_density_bp_approx
116.11	test_spectral_density_brownian_phase
116.12	test_spectral_density_brownian_phase_2d 212
116.13	test_spectral_density_brownian_phase_across 212
116.14	$test_spectral_density_brownian_phase_across_mode2par 212$
116.15	test_spectral_density_brownian_phase_mode 212
116.16	test_spectral_density_brownian_phase_mode2par 212
116.17	test_spectral_density_brownian_phase_scale 212
116.18	test_spectral_density_flat
116.19	test_spectral_density_hp_cos
116.20	test_spectral_density_lorentzian_max
116.21	test_spectral_density_lorentzian_scale
116.22	test_spectral_density_lowpass
116.23	test_spectral_density_lowpass_continuous 213
116.24	test_spectral_density_lowpass_continuous_1 213
116.25	test_spectral_density_maxiumum_bias_corrected 213
117test/s	ignal-processing 213
117.1	test_autocorrelation_max
117.2	test_cdf_bandpass_continuous

117.3	test_cdf_brownian_phase
117.4	test_fit_spectral_density
118test/s	patial-pattern-analysis 214
118.1	test_approximate_ratio_distribution
118.2	test_approximate_ratio_quantile
118.3	test_separate_isotropic_density
$119 ext{test/s}$	tatistics/distributions 214
	test_normpdf_wrapped
120test/s	tatistics/moment-statistics 214
	test_wmean
121test/s	tatistics 214
121.1	test_fisher_moment2param
121.2	test_gamma_mode
199tost /st	tochastics 215
	test_brownian_surface
122.1	test_blowinaii_surface
123test	215
123.1	test_S
123.2	test_advect_analytic
123.3	test_asymbp
123.4	test_bandpass2d
123.5	test_bandwidth
123.6	test_bartlett_angle
123.7	test_bartlett_distribution
123.8	test_bartlett_expansion
123.9	test_beta
123.10	test_betainc
123.11	test_bivariate_covariance_term
123.12	test_brownian_drift_hitting_probability
123.13	test_brownian_drift_hitting_probability2
123.14	test_brownian_motion_1d
123.15	test_brownian_motion_2d_cov
123.16	test_brownian_motion_2d_fft
123.17	test_brownian_noise_1d
123.18	test_brownian_noise_2d
123.19	test_brownian_noise_interleave
123.20	test_coherence
123.21	test_combined_spectral_density
123.22	test_continuous_fourier_transform
193 93	test conveyity 917

123.24	test_d2
123.25	test_determine_phase_shift
123.26	test_diffuse_analytic
123.27	test_diffusion_matrix
123.28	test_ellipse
123.29	test_error_propagation_fraction
123.30	test_f
123.31	test_f2
123.32	test_fit_2d_spectral_density
123.33	test_fourier
123.34	test_fourier_derivative
123.35	test_fourier_derivative_1
123.36	test_fourier_integral
123.37	test_fourier_mask_covariance_matrix
123.38	test_ft_bp
123.39	test_gam
123.40	test_gamma_distribution
123.41	test_gampdf_man
123.42	test_gaussfit3
123.43	test_gaussian_flat
123.44	test_geoserr
123.45	test_hexagonal_pattern
123.46	test_iafrate
123.47	test_implicit_ode
123.48	test_imrotmat
123.49	test_integration
123.50	test_ivp
123.51	test_jacobian
123.52	test_lanczoswin
123.53	test_laplacian_power
123.54	test_lognfit_quantile
123.55	test_ls_perpendicular_offset
123.56	test_madcorr
123.57	test_mask
123.58	test_max_normal
123.59	test_moments
123.60	test_moments_fourier_power
123.61	$test_mtimes3x3$
123.62	test_noisy_oscillator
123.63	test_nonperiodic_pattern
123.64	test_normalization
123.65	test_ols
123.66	test_parcorr
123.67	test_positivity_preserving

123.68	test_randar1
123.68 123.69	test_randar1
123.09 123.70	test_randar1_muitivariate
123.70 123.71	test_ratio_distributions
123.71 123.72	test_atio_distributions
123.72	test_spatialrnd
123.73	test_spatialfid
123.74 123.75	test_spectrum_additivity
123.76	test_stationarity 2
123.70 123.77	test_sum_ij
123.77	test_sum_multivar
123.79	test_suni_mutivai
123.79	test_wautocorr
123.80	test_wavelet_transform
123.81 123.82	test_wavelet_transform
123.83	test_window
123.84	test_window
123.85	test_xar1_mid_term
120.00	test_Aarr_mid_term
124mathe	matics 223
124 mathe 124.1	
	trapezoidal_fixed
	trapezoidal_fixed
124.1	trapezoidal_fixed
124.1 125 wavele	trapezoidal_fixed
124.1 125wavel e 125.1	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224
124.1 125wavel e 125.1 125.2	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224
124.1 125wavele 125.1 125.2 125.3	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224
124.1 125wavele 125.1 125.2 125.3 125.4 125.5 125.6	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224 test_cwt_man 224
124.1 125wavele 125.1 125.2 125.3 125.4 125.5	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224
124.1 125wavele 125.1 125.2 125.3 125.4 125.5 125.6	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224 test_cwt_man 224
124.1 125wavele 125.1 125.2 125.3 125.4 125.5 125.6 125.7	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224 test_cwt_man 224 test_phasewrap 224 test_phasewrap 224
124.1 125wavele 125.1 125.2 125.3 125.4 125.5 125.6 125.7 125.8	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224 test_cwt_man 224 test_phasewrap 224 test_phasewrap 224 test_wavelet 224
124.1 125wavele 125.1 125.2 125.3 125.4 125.5 125.6 125.7 125.8 125.9	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224 test_cwt_man 224 test_phasewrap 224 test_wavelet 224 test_wavelet2 224
124.1 125wavelet 125.1 125.2 125.3 125.4 125.5 125.6 125.7 125.8 125.9 125.10 125.11 125.12	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224 test_cwt_man 224 test_phasewrap 224 test_wavelet 224 test_wavelet2 225 test_wavelet_analysis 225 test_wavelet_reconstruct 225 test_wtc 225
124.1 125wavele 125.1 125.2 125.3 125.4 125.5 125.6 125.7 125.8 125.9 125.10 125.11 125.12 125.13	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224 test_cwt_man 224 test_phasewrap 224 test_wavelet 225 test_wavelet2 225 test_wavelet_reconstruct 225 test_wtc 225 wavelet 225 wavelet 225
124.1 125wavelet 125.1 125.2 125.3 125.4 125.5 125.6 125.7 125.8 125.9 125.10 125.11 125.12	et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224 test_cwt_man 224 test_phasewrap 224 test_wavelet 224 test_wavelet 225 test_wavelet_analysis 225 test_wtc 225 wavelet 225 wavelet 225 wavelet 225 wavelet 225 wavelet_reconstruct 225 wavelet_reconstruct 225 wavelet_reconstruct 225
124.1 125wavele 125.1 125.2 125.3 125.4 125.5 125.6 125.7 125.8 125.9 125.10 125.11 125.12 125.13	trapezoidal_fixed 223 et 224 contiuous_wavelet_transform 224 cwt_man 224 cwt_man2 224 example_wavelets 224 phasewrap 224 test_cwt_man 224 test_phasewrap 224 test_wavelet 225 test_wavelet2 225 test_wavelet_reconstruct 225 test_wtc 225 wavelet 225 wavelet 225

1 calendar

$1.1 \quad days_per_month$

1.2 isnight

2 mathematics

mathematical functions of various kind

2.1 cast_byte_to_integer

cast byte to integer

3 complex-analysis

operations on complex numbers

3.1 complex_exp_product_im_im

3.2 complex_exp_product_im_re

product of the imaginary part of one and the real part of a second complex exponential

the product has two frequency components

input :

c : complex amplitudes

o : frequencies

output :

cp : amplitude of the product
op : frequencies of the product

3.3 complex_exp_product_re_im

```
the product has two frequency components
 product of the imaginary part of one and the real part of a second
 complex exponential
 input :
       c : complex amplitudes
       o : frequencies
output :
       cp : amplitude of the product
       op : frequencies of the product
3.4 complex_exp_product_re_re
 product of the real part of two complex exponentials
re(c1 exp(io1x))*re(c2 exp(io2x)) =
               real(c1*c2*exp(i*(n1+n2)*o*x)) ...
       1/2*(
             + real(conj(c1)*c2*exp(i*(n2-n1)*o*x)) )
the product has two frequency components
 input :
       c : complex amplitudes
       {\tt o} : frequencies
 output :
       cp : amplitude of the product
       op : frequencies of the product
3.5
    croots
nth-roots of a complex number
input:
c : complex number
n : order of root
    n must be rational, to obtain n solutions
    otherwise no finite set of solutions exists
```

r : roots of the complex number

root	of a complex number
3.7	test_imroots
4	derivation
	vation of several functions by means of symbolic computation
4.1	derive_acfar1
4.2	$derive_ar1_spectral_density$
4.3	derive_ar2param
4.4	donivo ano langeth
4.4	derive_arc_length
4 5	derive_brownian_phase_inv
1.0	doile-sion man_phase_mv
4.6	derive_fourier_power
	•
4.7	derive_fourier_power_exp
	• •

 ${\bf 3.6 \quad root_complex}$

4.8 d	lerive_laplacian_curvilinear
4.9 d	lerive_laplacian_fourier_piecewise_linear
4.10	${\bf derive_logtripdf}$
4.11	$derive_smooth1d_parametric$
4.12	$derive_spectral_density_bandpass_initial_condition$
$5 ext{ de}$	erivation/master
5. 1 d	lerive_bc_one_sided
5.2 d	${f lerive_convergence}$
5.3 d	lerive_error_fdm
5.4 d	$ m lerive_fdm_poly$

- ${\bf 5.5}\quad derive_fdm_power$
- 5.6 derive_fdm_taylor
- 5.7 derive_fdm_vargrid
- 5.8 derive_fem_2d_mass
- 5.9 derive_fem_error_2d
- 5.10 derive_fem_error_3d
- $5.11 \quad derive_fem_sym_2d$
- 5.12 derive_grid_constants
- 5.13 derive_interpolation
- 5.14 derive_laplacian

5.15	$derive_limit$
5.16	derive_nc_1d
5.17	$derive_nc_1d_$
5.18	derive_nc_2d
5.19	$derive_nonuniform_symmetric$
%	
5.20	$derive_richardson$
5.21	derive_sum
5.22	nn
5.23	${ m test_derive}$
5.24	$test_derive_fdm_poly$

- 5.25 test_filter
- 5.26 test_vargrid

6 derivation

derivation of several functions by means of symbolic computation

6.1 simplify_atan

symbolic simplification of the arcus tangent

7 mathematics

mathematical functions of various kind

7.1 entropy

- 8 finance
- 8.1 derive_skewrnd_walsh_paramter
- 8.2 gbm_bridge
- 8.3 gbm_cdf

8.4	${ m gbm_fit}$
8.5	${ m gbm_fit_old}$
8.6	${ m gbm_inv}$
8.7	${f gbm_mean}$
8.8	${ m gbm_median}$
8.9	${ m gbm_momemt2par}$
8.10	${ m gbm_pdf}$
8.11	${f gbm_simulate}$
8.12	${ m gbm_skewness}$
8.13	${ m gbm_std}$

- $8.14 \quad gbm_transform_time_step$
- 8.15 put_price_black_scholes
- 8.16 skewgbm_simulate
- 8.17 skewrnd_walsh
- 9 finance/test
- $9.1 ext{test_gbm}$
- 9.2 $test_gbm_pdf$
- 9.3 test_skewrnd_walsh
- 10 fourier/@STFT
- 10.1 STFT

class for short time fourier transform

Note: the interval Ti should be set to at leat 2*max(T), as otherwise coefficients tend to oscillate in the presence of noise

Note: for convenience, the independent variable is labeled as time (t),
but the independent variable is arbitrary, so it works
likewise in space

10.2 itransform

inverse of the short time fourier transform

10.3 stft_

static wrapper for STFT

10.4 stftmat

transformation matrix for the short time fourier transform

10.5 transform

short time fourier transform

11 fourier

support and analysis functions both for the discrete (fast) fourier
 transform (dft/fft)
and continuous fourier analysis (fourier series)

11.1 amplitude_from_peak

```
amplitude and standard deviation of the amplitude of a frequency
   component
represented by a peak in the fourier domain
input :
h : peak height
w : peak width at half height

output:
a : amplitude in real space
s : standard deviation of the frequency (!)
```

11.2 caesaro_weight

11.3 dftmtx_man

```
fourier matrix in matlab style with a limited number of rows, columns of higher frequencies are omitted % \left( 1\right) =\left( 1\right) \left( 1\right
```

input :

n : number of samples
nr : number of columns

output :

F : fourier matrix

11.4 example_fourier_window

11.5 fft2_cartesian2radial

11.6 fft_man

```
fast fourier transform for complex input data
```

input:

 ${\tt F}$: data in real space

output :

F : fourier transformation of F

11.7 fft_rotate

11.8 fftsmooth

smooth the fourier transform and determine upper and lower bound confidence intervals

input :
f :

sfunc : a smoothing function (for example fir convolution with rectangular window)

returns filtered (mean) value and normalized fir window

nf : window length

nsigma : number of standard deviations for confidnce intervals

output :

ff : filtered fourier transform

1 : lower bound
u : upper bound

11.9 fix_fourier

fill gaps (missing data) by means of fourier extrapolation

fix periodic data series with fourier interpolation
longest gap should not exceed 1/2 of the shortest time span of
 interest (1/cutoff frequency)

note: this limit equals the position of first side lobe of the ft of a rectangular window with gap length

11.10 fourier_2d_padd

11.11 fourier_2d_quadrants

11.12 fourier_axis

return axis of frequencies and periods for the discrete fourier transform

as computed by fft (matlab-style) $\,$

input:

X : sample locations (equal interval)

L : length of samples
n : number of samples

output :

f : frequencies
T : periods

N : frequency id

11.13 fourier_axis_2d

11.14 fourier_cesaro_correction

11.15 fourier_coefficient_piecewise_linear

fourier series coefficients of a piecewise linear function (not coefficient of discrete fourier transform) function can be discontinuous between intervals scales domain length to 2pi

input :

l,r : end points of piecewise linear function

 $\ensuremath{\text{lval}}$, $\ensuremath{\text{rval}}$: values at end points

L : length of domain

n : number of samples/highest frequency

output :

a, b : coefficients for frequency components

11.16 fourier_coefficient_piecewise_linear_1

fourier series coefficients of a piecewise linear function (not coefficient of discrete fourier transform) function can be discontinuous between intervals scales domain length to 2pi

input :

X : end points of piecewise linear function

Y : values at end points

output :

ab : coefficients for frequency components

11.17 fourier_coefficient_ramp3

fourier series coefficient of a ramp

11.18 fourier_coefficient_ramp_pulse

fourier series coefficient of a ramp pules

11.19 fourier_coefficient_ramp_step

fourier coefficient of a ramp-step

11.20 fourier_coefficient_square_pulse

fourier series coefficients of a square pulse

11.21 fourier_complete_negative_half_plane

11.22 fourier_cubic_interaction_coefficients

11.23 fourier_derivative

derivative via fourier transform exponential convergence for periodic functions results in spurious oscillations for aperiodic functions

input

x : data, sampled in equal intervals

k : order of the derivative

dx : kth-derivative of x

note : 1) the derivative converges with spectral accuracy, i.e. is exact up to rounding condition for L sufficiently large and ${\bf x}$ being periodic

- 2) the derivative converges with order p, when x has only p-continous derivatives, including discontinuous derivatives over the boundary
- 3) discontinuous derivatives result in gibbs phenomenon

11.24 fourier_derivative_matrix_1d

11.25 fourier_derivative_matrix_2d

11.26 fourier_expand

expand values of fourier series

11.27 fourier_fit

fit a fourier series to a set of sample points that are not spaced
 in
equal intervals

11.28 fourier_freq2ind

11.29 fourier_interpolate

interpolate samples y sampled at moments (location) t to locations ti

11.30 fourier_matrix

transformation matrix for a continuous fourier series (not for the discrete ${\rm dft/fft}$)

11.31 fourier_matrix2

transformation matrix for a continuous fourier series (not for the discrete ${\rm dft/fft}$)

11.32 fourier_matrix3

transformation matrix for the continous fourier transform this is a matrix with (2*n+1) real columns

11.33 fourier_matrix_exp

transformation matrix for a continuous fourier series (not for the discrete ${\rm dft/fft}$)

11.34 fourier_multiplicative_interaction_coefficients

11.35 fourier_power

```
powers of a continuous fourier series in sin/cos form
powers of a^p = (ur + u1 sin(ot) + u2 sin(ot+dp))^p
phase of first component assumed 0
frequencies higher than 2-omega ignored in input
frequencies higher than 3-omega not computed
```

11.36 fourier_power_exp

11.37 fourier_predict

expand a continous fourier series at times t

11.38 fourier_quadratic_interaction_coefficients

11.39 fourier_random_phase_walk

evaluete fourier series where the phase undergoes a brownian motion

11.40 fourier_range

approximate range of a continous Fourier series with 2 components range(y) = max(y) - min(y)

11.41 fourier_regress

fit a continous fourier series to a set of sample points not
 sampled
at equal intervals

11.42 fourier_resampled_fit

fits coefficients of a continuous fourier transform, but stores them as resampled values

11.43 fourier_resampled_predict

interpolates a continuous fourier series that has been stored as
 values
at their support points

11.44 fourier_signed_square

11.45 fourier_transform

```
continuous fourier transformation of y
(not discrete fourier transformation dft/fft)
input:
    b : data sampled at equal intervals
```

T : length of data in time or space, i.e. position of last sample if

 $\begin{array}{c} \text{position of first sample is 0} \\ \text{T_max} : \text{maximum period to include} \end{array}$

output :

A : fourier matrix

p : fourier transformation of b

tt : TODO

11.46 fourier_transform_fractional

11.47 fourier_truncate_negative_half_plane

11.48 hyperbolic_fourier_box

11.49 idftmtx_man

inverse matrix for the discrete fourier transform in matlab style with a limited number of columns, thus ignoring higher frequencies keep 2nc+1 columns (mean and conj-complex pairs of nc frequencies)

11.50 laplace_2d_pwlinear

```
least squares with piecewise integration [x0,p,q,r] piecewise linear polynomials at the boundaries
```

11.51 mean_fourier_power

11.52 moments_fourier_power

11.53 nanfft

discrete fourier transform of a data series with gaps

11.54 peaks

11.55 roots_fourier

zeros of continuous fourier series series

$$f = a_0 + sum_j = n a_i cos(j x) + b_i sin(j x)$$

11.56 spectral_density

spectral density

11.57 std_fourier_power

11.58 test_complex_exp_product

11.59 test_fourier_filter

11.60 test_idftmtx

11.61 var_fourier_power

12 mathematics

mathematical functions of various kind

12.1 gaussfit_quantile

13 geometry/@Geometry

13.1 Geometry

13.2 arclength

```
arc length of a two dimensional curve
8th order accurate
does not require the segments length to vary smoothly
note: the curve can be considered parametric, e.g. x = x(t), y=y(t)
and
    and t = t(s), but the error term contains derivatives of t,
    thus a non smooth t (strongly varying distance between points)
    requires the scaling as done below
```

13.3 arclength_old

arc length of a two dimensional function

13.4 arclength_old2

arc length of a two dimensional function

13.5 base_point

base point (fusspunkt), i.e. point on a line with shortest distance to another point $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left$

13.6 base_point_limited

base point (Fusspunkt) of a point on a line

13.7 centroid

centroid of a polygone

13.8 cosa_min_max

13.9 cross2

cross product in two dimensions

13.10 curvature

curvature of a function in two dimensions

13.11 ddot

sum of squares of cos of inner angles of triangle

13.12 distance

equclidan distance between two points

13.13 distance2

euclidean distance between two points
this function requires a and be of equal dimensions, or the least
the first pair or second pair to be a scalar

13.14 dot

dot product

13.15 edge_length

edge length

13.16 enclosed_angle

angle enclosed between two lines

13.17 enclosing_triangle

smallest enclosing equilateral triangle with bottom site paralle to $\ensuremath{\mathtt{X}}$ axis

13.18 hexagon

coordinates of a hexagon, scaled and rotated

13.19 inPolygon

flag points contained in a polygon much faster than matlab internal function

13.20 inTetra

flag points contained in tetrahedron

13.21 inTetra2

flag points contained in tetrahedron

13.22 inTriangle

flag points contained in triangle
function [flag, c] = inTriangle(P1,P2,P3,P0)

13.23 intersect

intersect between two lines

13.24 lineintersect

intersect of two lines

13.25 lineintersect1

intersect of two lines

13.26 minimum_distance_lines

minimum distance of two lines in three dimensions

13.27 mittenpunkt

mittenpunkt of a triangle

13.28 nagelpoint

nagelpoint of a triangle

13.29 onLine

13.30 orthocentre

orthocentre of triangle

13.31 plumb_line

13.32 poly_area

area of a polygon
function A = poly_area(x,y)

13.33 poly_edges

edges of a polygon

13.34 poly_set

associate point at arbitary location with a polygon it is contained in and assign the value of the polygon to it

13.35 poly_width

width of polygon width holes by surface normals holes / islands separated with NaN order of points of outer boundary must be cw order of points of holes must be ccw note that this function does not give the true width for expanding sections use voronoi polygons for this

13.36 polyxpoly

intersections of two polygons

13.37 project_to_curve

closest point on a curve with respect to a point at distance to the $\ensuremath{\text{curve}}$

13.38 quad_isconvex

13.39 random_disk

draw random points on the unit disk

13.40 random_simplex

random point inside of a triangle

13.41 sphere_volume

volume of a sphere
function v = sphere_volume(r)

13.42 tetra_volume

volume of a tetrahedron

13.43 tobarycentric

cartesian to barycentric coordinates

13.44 tobarycentric1

cartesian to barycentric coordinates

13.45 tobarycentric2

cartesian to barycentric coordinates

13.46 tobarycentric3

cartesian to barycentric coordinates

13.47 tri_angle

cos of angles of a triangle

13.48 tri_area

angle of a triangle

13.49 tri_centroid

centroid of a triangle

13.50 tri_distance_opposit_midpoint

distance between corner of a triangle and its opposing mid-point

13.51 tri_edge_length

edge length of a triangle

13.52 tri_edge_midpoint

mid point of a triangle

13.53 tri_excircle

excircle of a triangle

13.54 tri_height

height of a triangle

13.55 tri_incircle

incircle of a triangle

13.56 tri_isacute

flag acute triangles

13.57 tri_isobtuse

flag obntuse triangles

13.58 tri_semiperimeter

semiperimeter of a triangle

13.59 tri_side_length

edge lenght of triangle

14 geometry

14.1 Polygon

Simple 2D polygon class

Polygon properties:

x - x coordinates of polygon
y - y coordinates of polygon
nnodes - number of nodes in the polygon

Polygon methods:

in - checks whether given points lie inside, on the edge, or
 outside of the polygon
area - returns the area of the polygon
centerline - computes the centerline of the river
iscw - check whether polygon is clockwise
reverse - reverse the order of the polygon

14.2 bounding_box

bounding box of X

14.3 curvature_1d

curvature of a sampled parametric curve in two dimensions

14.4 cvt

centroidal voronoi tesselation

14.5 deg_to_frac

degree, minutes and seconds to fractions

14.6 ellipse

return points on an ellipse
n : number of points
ci : confidence interval, i.e. for 1 sigma

14.7 ellipseX

x-coordinates of y-coordinates of an ellipse

14.8 ellipseY

14.9 first_intersect

get first intersection between lines in $\ensuremath{\mathtt{A}}$ and $\ensuremath{\mathtt{B}}$

14.10 golden_ratio

golden ratio

14.11 hypot3

 ${\tt hypothenuse} \ {\tt in} \ {\tt 3D}$

14.12 meanangle

weighted mean of angles

14.13 meanangle2

mean angle

14.14 meanangle3

mean angle

14.15 meanangle4

mean angle

14.16 medianangle

```
median angle angle, that has the smallest squared distance to all others
```

14.17 medianangle2

```
median angle
input
alpha : x*m, [rad] angle

ouput
ma : 1*m, [rad] median angle
sa : 1*m, [rad] standard error of median angle for uncorrelated
    error
```

14.18 pilim

```
limit to +- pi
```

14.19 streamline_radius_of_curvature

```
streamline radius of curvature simplifies when rotatate to streamwise coordinates to R = 1/dv/ds * u
```

15 histogram/@Histogram

15.1 2x

15.2 Histogram

15.3	bimodes

$$15.5$$
 cdfS

$$15.11 \quad export_csv$$

15.12 iquantile

15.13 kstest

15.14 kurtosis

15.15 kurtosisS

15.16 mean

15.17 meanS

15.18 median

15.19 medianS

 $15.20 \mod e$

 $15.21 \mod S$

15.22 moment

- 15.23 momentS
- 15.24 pdf
- 15.25 quantile
- 15.26 quantileS
- 15.27 resample
- 15.28 setup
- 15.29 skewness
- 15.30 skewnessS
- 15.31 stairs
- 15.32 stairsS

 $15.33 ext{ std}$

 $15.34 ext{ stdS}$

15.35 var

15.36 varS

16 histogram

16.1 hist_man

16.2 histadapt

16.3 histconst

 $16.4 \quad pdf_poly$

16.5 plotcdf

16.6 test_histogram

17 mathematics

mathematical functions of various kind

17.1 imrotmat

- 18 linear-algebra
- 18.1 averaging_matrix_2

18.2 colnorm

norms of columns

18.3 condest_

estimation of the condition number

18.4 connectivity_matrix

19 linear-algebra/coordinate-transformation

$19.1 \quad barycentric 2 cartesian$

 $\hbox{\tt barycentric to cartesian coordinates}$

19.2 barycentric2cartesian3

convert barycentric to cartesian coordinates

19.3 cartesian2barycentric

cartesian to barycentric coordinates

19.4 cartesian_to_unit_triangle_basis

transform coodinates into unit triangle

19.5 ellipsoid2geoid

$19.6 \quad example_approximate_utm_conversion$

19.7 latlon2utm

transform latitude and longitude to WGS84 UTM

19.8 latlon2utm_simple

19.9 lowrance_mercator_to_wgs84

convert lowrance coordinates to wgs84 based on spreadsheet by D Whitney King and Patty B at Lowrance

19.10 nmea2utm

convert nmea messages to utm coordinates

$19.11 \quad \text{sn2xy}$

convert sn to xy coordinates

19.12 unit_triangle_to_cartesian

transform coordinates in unit triangle to cartesian coordinates

19.13 utm2latlon

convert wgs84 utm to latitute and longitude

19.14 xy2nt

project all points onto the cross section and assign them nz-coordinates

$19.15 \quad xy2sn$

convert cartesian to streamwise coordiantes

$19.16 \text{ xy}2\text{sn_java}$

use java port for speed up

$19.17 \text{ xy}2sn_old$

transform points from cartesian into streamwise coordinates ${\tt NOTE} \,:\, {\tt prefer} \,\, {\tt the} \,\, {\tt java} \,\, {\tt version}, \,\, {\tt this} \,\, {\tt has} \,\, {\tt some} \,\, {\tt problems} \,\, {\tt with} \,\, {\tt round}$

20 linear-algebra

$20.1 \det 2x2$

2x2 matrix inverse of 2x2 matrices stacked along dim 3

$20.2 \det 3x3$

determinant of stacked 3x3 matrices

$20.3 \det 4x4$

determinant of stacked 4x4 matrices

20.4 diag2x2

diagonal of stacked 2x2 matrices

20.5 down

$20.6 \quad eig2x2$

eigenvalues of stacked 2x2 matrices

21	linear-algebra/eigenvalue
21.1	${ m eig_bisection}$
21.2	eig_inverse
21.3	${ m eig_inverse_iteration}$
21.4	${ m eig_power_iteration}$
22	linear-algebra/eigenvalue/jacobi-davidson
	afun_jdm
22.2	davidson
22.3	${f jacobi_davidson}$
22.4	$jacobi_davidson_qr$
22.5	iacobi_davidson_gz

22.6 jacobi_davidson_simple

22.7 jdgr

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
 V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V, *W
%
% Compute approximate eigenpair and residual
%
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
\% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
%
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
% Compute approximate eigenpair and residual
%
%
%
%
```

```
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
\% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
  V W AV.
%
  Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
%
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
   M=W'*V
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
```

```
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
\% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
   _____
%===== END ARNOLDI
   _____
% not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
   % compute vectors and matrices for skew projection
% solve preconditioned system
% O step of bicgstab eq. 1 step of bicgstab
\% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
\% collect the updates for x in 1-space
% but, do the orth to Q implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Q explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow, pause
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
```

```
plot(J,HIST(:,1),'*'); drawnow,% pause
r=r/rho; rho=1;
% HIST=rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues ------
\%----- reorder schur form ------
%----- compute qz form ------
%----- sort eigenvalues -----
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
%% 'v'
```

22.8 jdqr_sleijpen

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
% V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V, *W
% Compute approximate eigenpair and residual
%
%
%
%
```

```
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
%
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
%
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
%
  V W AV.
%
  Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
```

```
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
%
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
%
   M=W'*V
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[]; R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
  _____
%====== END ARNOLDI
  _____
% not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
   _____
% compute vectors and matrices for skew projection
% solve preconditioned system
% 0 step of bicgstab eq. 1 step of bicgstab
\% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
```

```
% sufficient accuracy. No need to update r,u
implicit preconditioning
\% collect the updates for x in 1-space
% but, do the orth to Q implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Q explicitly
% In exact arithmetic not needed, but
% = 1000 appears to be more stable.
\% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow, pause
% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
r=r/rho; rho=1;
% HIST=rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1];
plot(J,HIST(:,1),'*'); drawnow, pause
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues ------
%----- reorder schur form -----
%----- compute qz form ------
%----- sort eigenvalues -----
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
%% 'v'
```

$22.9 \quad jdqr_vorst$

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
  V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V'*W
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
%
\mbox{\ensuremath{\mbox{\%}}} Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
```

```
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   V W AV.
%
   Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
%
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
\% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
%
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
%
   M=W,*V
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
\% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
```

```
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
   _____
%===== END ARNOLDI
   % not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
   _____
% accepted separation between eigenvalues:
% no preconditioning
% solve left preconditioned system
% compute vectors and matrices for skew projection
% precondion and project r
% solve preconditioned system
% no preconditioning
% solve two-sided expl. precond. system
% compute vectors and matrices for skew projection
% precondion and project r
% solve preconditioned system
% "unprecondition" solution
%%%% u(:,j+1)=Atilde*u(:,j)
%%%% r(:,j+1)=Atilde*r(:,j)
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues ------
%----- reorder schur form -----
%----- compute qz form ------
%----- sort eigenvalues ------
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
```

22.10 jdqz

```
% Read/set parameters
% Return if eigenvalueproblem is trivial
% Initialize target, test space and interaction matrices
% V=RepGS(Qschur,V); [AV,BV]=MV(V); %%% more stability??
% W=RepGS(Zschur,eval(testspace)); %%% dangerous if sigma~lambda
% Solve the preconditioned correction equation
```

```
% Expand the subspaces and the interaction matrices
% Check for stagnation
% Solve projected eigenproblem
% Compute approximate eigenpair and residual
%=== an alternative, but less stable way of computing z =====
% display history
% save history
% check convergence
% EXPAND Schur form
\% Expand preconditioned Schur matrix MinvZ=M\Zschur
% check for conjugate pair
\% To detect whether another eigenpair is accurate enough
% restart if dim(V)> jmax
% Initialize target, test space and interaction matrices
% additional stabilisation. May not be needed
% V=RepGS(Zschur,V); [AV,BV]=MV(V);
% end add. stab.
% Solve the preconditioned correction equation
\% expand the subspaces and the interaction matrices
% Check for stagnation
% compute approximate eigenpair
% Compute approximate eigenpair and residual
% display history
% save history
% check convergence
% expand Schur form
% ZastQ=Z'*Q0
% the final Qschur
\% check for conjugate pair
% t perp Zschur, t in span(Q0,imag(q))
% To detect whether another eigenpair is accurate enough
% restart if dim(V)> jmax
%===== END JDQZ
  %====== PREPROCESSING
  _____
Y_____
%====== ARNOLDI (for initial spaces)
  _____
%% then precond=I and target = 0: apply Arnoldi with A
%===== END ARNOLDI
  _____
%====== POSTPROCESSING
```

```
%====== SORT QZ DECOMPOSITION INTERACTION MATRICES
  _____
%====== COMPUTE SORTED JORDAN FORM
  %===== END JORDAN FORM
  %===== OUTPUT
  ______
%====== UPDATE PRECONDITIONED SCHUR VECTORS
  %====== SOLVE CORRECTION EQUATION
  % solve preconditioned system
%-----
%====== LINEAR SOLVERS
  % [At,Bt]=MV(x); At=theta(2)*At-theta(1)*Bt;
% xtol=norm(r-At+Z*(Z'*At))/norm(r);
%===== Iterative methods
  _____
\% 0 step of bicgstab eq. 1 step of bicgstab
% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
% but, do the orth to Z implicitly
% compute norm in 1-space
% HIST=[HIST;[nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Z explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
```

```
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow
\% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
%-----
\% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow
%===== END SOLVE CORRECTION EQUATION
  %====== BASIC OPERATIONS
  y(1:5,1), pause
%====== COMPUTE r AND z
  -----
% E*u=Q*sigma, sigma(1,1)>sigma(2,2)
\%====== END computation r and z
  _____
%====== Orthogonalisation
  _____
%====== END Orthogonalisation
  _____
\%====== Sorts Schur form
  _____
kappa=max(norm(A,inf)/max(norm(B,inf),1.e-12),1);
  kappa=2^(round(log2(kappa)));
\%----- compute the qz factorization ------
%----- scale the eigenvalues -----
\%----- sort the eigenvalues -----
\%----- swap the qz form ------
% repeat SwapQZ if angle is too small
```

```
\% i>j, move ith eigenvalue to position j
% compute q s.t. C*q=(t(i,1)*S-s(i,1)*T)*q=0
C*P=Q*R
check whether last but one diag. elt r nonzero
C*q
% end computation q
%====== INITIALIZATION
  _____
% defaults
           %%%% search for 'xx' in fieldnames
%% 'ma'
%% 'sch'
%% 'to'
%% 'di'
% jmin=nselect+p0 %%%% 'jmi'
% jmax=jmin+p1 %%%% 'jma'
%% 'te'
%% 'pai'
%% 'av'
%% 'tr'
%% 'fix'
%% 'ns'
%% 'ch'
%% 'lso'
%% 'ls_m'
%% 'ls_t'
%% 'ls_e'
%% 'ty'
%% '1_'
%% 'u_'
%% 'p_'
%% 'sca'
%% 'v0'
initiation
'standard'
'harmonic'
'searchspace'
```

%======================================
% or Operator_Form=3 or Operator_Form=5???
%====== DISPLAY FUNCTIONS
======================================
%======================================
%======================================
%======================================
$22.11 \mathrm{mfunc_jdm}$
$22.12 \mathrm{mgs}$
$22.13 \mathrm{minres}_{-}$
22.14 mv_jacobi_davidson
23 linear-algebra
23.1 first
23.2 gershgorin_circle

range of eigenvalues determined by the gershgorin circle theorem

23.3 haussdorff

haussdorf dimension box counting: count cectangles passed through by line (covered by polygon)

Koch snow flake 3:4 -> 1.2619 Kantor set 2:3, (4:9) -> 0.6309 quadrat 4:2, 9:3, 16:4 -> 2

23.4 ieig2x2

reconstruct matrix from eigenvalue decomposition

23.5 inv2x2

2x2 inverse of stacked matrices

23.6 inv3x3

23.7 inv4x4

inverse of stacked 4x4 matrices

23.8 kernel2matrix

${\bf 24}\quad {\bf linear-algebra/lanczos}$

24.1 arnoldi

24.2	arnoldi_new
24.3	eigs_lanczos_man
24.4	lanczos
24.5	$lanczos_{-}$
24.6	$lanczos_biorthogonal$
24.7	$lanczos_biorthogonal_improved$
24.8	$lanczos_ghep$
24.9	mv_lanczos
24.10	reorthogonalise
24.11	test_lanczos

- 25 linear-algebra
- 25.1 laplacian_eigenvalue
- ${\bf 25.2} \quad laplacian_eigenvector$
- $25.3 \quad laplacian_power$
- ${\bf 25.4} \quad least_squares_perpendicular_offset$
- 25.5 left

left element of vector, leftmost column is extrapolated

- ${\bf 26}\quad {\bf linear-algebra/linear-systems}$
- 26.1 gmres_man

break on convergence

- 26.2 minres_recycle
- 27 linear-algebra
- 27.1 lpmean

mean of pth-power of a

27.2 lpnorm

norm of 1th-power of a

27.3 matvec3

matrix-vector product of stacked matrices and vectors

$27.4 \quad \text{max2d}$

 $\hbox{\tt maximum value and i-j index for \mathtt{matrix}}$

27.5 mid

mid point between neighbouring vector elements

27.6 mpoweri

approximation of A^p, where p is not integer by quadtratic interpolation

$27.7 \quad \text{mtimes} 2x2$

27.8 mtimes3x3

product of stacked 3x3 matrices

27.9 nannorm

norm of a vector, skips nan-values

27.10 nanshift

shift vector, but set out of range values to NaN

27.11 nl

```
number rows (lines) of a matrix analogue to unix nl command
```

27.12 normalise

```
normalise a vector or the columns of a matrix
note that the columns are independently normalised, and hence not
   necessarily
orthogonal to each other use the gram schmidt algorithm for this (
   qr or orth)
```

27.13 normalize1

```
normalize columns in x to [-1,1]
```

27.14 normrows

27.15 orth2

make matrix A orhogonal to B

27.16 orth_man

orthogonalize the columns of A

27.17 orthogonalise

```
make x orthogonal to Y
```

27.18 padd2

padd values around a 2d (image) matrix, constant exprapolation

27.19 paddext

```
padd values to vactor
not suitable for noisy data
order = 0 : constant extrapolation (hold)
order = 1 : linear extrapolation
```

27.20 paddval1

```
padd values at end of \boldsymbol{x}
```

27.21 paddval2

padd values to x

28 linear-algebra/polynomial

28.1 chebychev

chebycheff polynomials

28.2 piecewise_polynomial

evaluate piecewise polynomial

28.3 roots1

roots of linear functions

28.4 roots2

roots of quadratic function $c1 x^2 + c2 x + c3 = 0$

28.5 roots2poly

28.6 roots3

28.7 roots4

 $28.8 \quad roots_piecewise_linear$

 $28.9 test_roots4$

28.10 vanderi_1d

vandermonde matrix of an integral

29 linear-algebra

29.1 randrot

random rotation matrix

29.2 right

get right column by shifting columns to left extrapolate rightmost column $\,$

29.3 rot2

rotation matrix from angle

29.4 rot2dir

rotation matrix from direction vector

29.5 rot3

$29.6 \quad rotR$

29.7 rownorm

$29.8 \quad simmilarity_matrix$

29.9 spnorm

frobenius norm

29.10 spzeros

allocate a sparze matrix of zeros

$29.11 \quad test_roots3$

29.12 transform_minmax

29.13 transpose3

transpose stacked 3x3 matrices

29.14 transposeall

29.15 up

29.16 vander_nd

29.17 vanderd_2d

30 logic

bitwise operations on integers

30.1 bitor_man

bitwise OR of the numbers of the columns of A input:

A (positive integer)

- 31 master/plot
- 31.1 attach_boundary_value
- 31.2 cartesian_polar
- 31.3 img_vargrid
- 31.4 plot_basis_functions
- 31.5 plot_convergence
- $31.6 \quad plot_dof$
- 31.7 plot_eigenbar

- ${\bf 31.8 \quad plot_error_estimation}$
- $31.9 \quad plot_error_estimation_2$
- 31.10 plot_error_fem
- 31.11 plot_fdm_kernel
- $31.12 \quad plot_fdm_vs_fem$
- 31.13 plot_fem_accuracy
- $31.14 \quad plot_function_and_grid$
- 31.15 plot_hat
- 31.16 plot_hydrogen_wf
- 31.17 plot_mesh

- $31.18 \quad plot_mesh_2$
- 31.19 plot_refine
- 31.20 plot_refine_3d
- 31.21 plot_runtime
- 31.22 plot_spectrum
- 31.23 plot_wavefunction
- 32 master/ported
- 32.1 assemble_2d_phi_phi
- 32.2 assemble_3d_dphi_dphi
- 32.3 assemble_ $3d_phi_phi$

- $32.4 \quad dV_-2d_-$
- 32.5 derivative_2d
- 32.6 derivative_3d
- 32.7 element_neighbour_2d
- ${\bf 32.8} \quad prefetch_2d_$
- $32.9 \quad promote_2d_3_10$
- $32.10 \quad promote_2d_3_15$
- $32.11 \quad promote_2d_3_21$
- $32.12 \quad promote_2d_3_6$
- $32.13 \quad promote_3d_4_10$

- $32.14 \quad promote_3d_4_20$
- $32.15 \quad promote_3d_4_35$
- 32.16 vander_2d
- 32.17 vander_3d

33 mathematics

mathematical functions of various kind

- 33.1 monotoneous_indices
- ${\bf 33.2} \quad nearest_fractional_timestep$
- 34 number-theory
- 34.1 ceiln

floor to leading n-digits

34.2 digitsb

number of digits with respect to specified base

34.3 floorn

floor to n-digits

34.4 iseven

true for even numbers in X

34.5 multichoosek

all combinations of lenght k from set values with repetitions c.f. nchoosek, combinations without repetition

input :

x : scalar integer or vector of arbitrary numbers

k : length of subsets

output :

if x scalar : number of combinations if x vector : the exact combinations

34.6 nchoosek_man

vecotrised binomial coefficient b = N!/K!(N-K)!

34.7 pythagorean_triple

pythagorean triple

34.8 roundn

round to n digits

35 numerical-methods

35.1 advect_analytic

36 numerical-methods/differentiation

36.1 derivative1

first derivative on variable mesh second order accurate

36.2 derivative2

second derivative on a variable mesh

37 numerical-methods

37.1 diffuse_analytic

38 numerical-methods/finite-difference

38.1 cdiff

```
differences of columns of X
degree = 1 : central first order differences
degreee = 2 : central second order differences
```

38.2 cdiffb

```
differences of columns of X
degree = 1 : central first order differences
degreee = 2 : central second order differences
TODO use difference matrix function for simplicity
```

38.3 central_difference

38.4 cmean

single gaussian smoothing step with kernel 1/4*[1,2,1]

38.5 cmean 2

38.6 derivative_matrix_1_1d

```
finite difference matrix of first derivative in one dimensions n: number of grid points h = L/(n+1) constant step with function [D1, d1] = derivative_matrix_1d(n,L,order)
```

38.7 derivative_matrix_2_1d

finite derivative matrix of second derivative in one dimension

38.8 derivative_matrix_2d

finite difference derivative matrix in two dimensions

38.9 derivative_matrix_curvilinear

derivative matrix on a curvilinear grid

38.10 derivative_matrix_curvilinear_2

derivative matrix on a two dimensional curvilinear grid the grid has not necessarily to be orthogonal

38.11 difference_kernel

difference kernels for equispaced grids
c.f. Computing the Spectrum of the Confined Hydrogen Atom, Kastner,
2012

38.12 diffusion_matrix_2d_anisotropic

38.13 diffusion_matrix_2d_anisotropic2

38.14 directional_neighbour

38.15 distmat

distance matrix for a 2 dimensional rectangular matrix

38.16 downwind_difference

38.17 gradpde2d

```
objective function gradiend on two dimensional regular grid numeric gradient for non-linear least squares optimisation of a PDE on a rectangular grid x_* = \min(f(x)) f = (v(x) - v(x_*))^2 = f(x) + A dx + O(dx^2) a_ij = df_i/dx_j
```

38.18 laplacian

$38.19 \quad laplacian_fdm$

finite difference matrix of the laplacian $\ensuremath{\mathsf{RC}}$

38.20 lrmean

mean of the left and right element

- 39 numerical-methods/finite-difference/master
- 39.1 fdm_adaptive_grid
- 39.2 fdm_adaptive_refinement_old
- 39.3 fdm_assemble_d1_2d
- 39.4 fdm_assemble_d2_2d
- 39.5 fdm_confinement
- $39.6 fdm_d_vargrid$
- 39.7 fdm_h_unstructured

39.8	$fdm_hydrogen_vargrid$
39.9	$fdm_mark_unstructured_2d$
39.10	${ m fdm_plot}$
39.11	${ m fdm_plot_series}$
39.12	${ m fdm_refine_2d}$
39.13	${ m fdm_refine_3d}$
39.14	${ m fdm_refine_unstructured_2d}$
39.15	${ m fdm_schroedinger_2d}$
39.16	$fdm_schroedinger_3d$

39.17 relocate

40 numerical-methods/finite-difference

40.1 mid

mid point between neighbouring vector elements

40.2 pwmid

segment end point to segment mid point transformation for regular 1 $\,$ d grids $\,$

40.3 ratio

ratio of two subsequent values

40.4 steplength

step length of a vector if it were equispaced

40.5 swapoddeven

swap odd and even elements in a vector

40.6 test_derivative_matrix_2d

40.7 test_derivative_matrix_curvilinear

40.8 test_difference_kernel

$40.9 \quad upwind_difference$

- 41 numerical-methods/finite-element
- 41.1 Mesh_2d_java
- 41.2 Tree_2d_java
- 41.3 assemble_1d_dphi_dphi
- $41.4 \quad assemble_1d_phi_phi$
- $41.5 \quad assemble_2d_dphi_dphi_java$
- 41.6 assemble_2d_phi_phi_java
- 41.7 assemble_3d_dphi_dphi_java
- 41.8 assemble_3d_phi_phi_java

- $41.9 \quad boundary_1d$
- $41.10 \quad boundary_2d$
- $41.11 \quad boundary_3d$
- 41.12 check_area_2d
- 41.13 circmesh
- 41.14 cropradius
- $41.15 \quad display_2d$
- 41.16 display_3d
- 41.17 distort
- $41.18 \quad err_2d$

- 41.19 estimate_err_2d_3
- $41.20 \quad example_1d$
- 41.21 example_2d
- 41.22 explode
- 41.23 fem_2d
- 41.24 fem_2d_heuristic_mesh
- $41.25 \quad fem_get_2d_radial$
- 41.26 fem_interpolation
- 41.27 fem_plot_1d
- 41.28 fem_plot_1d_series

- 41.29 fem_plot_2d
- $41.30 \quad fem_plot_2d_series$
- $41.31 \quad fem_plot_3d$
- $41.32 \quad fem_plot_3d_series$
- $41.33 \quad fem_plot_confine_series$
- 41.34 fem_radial

adaptive grid constant grid

- 41.35 flip_2d
- $41.36 \text{ get_mesh_arrays}$
- 41.37 hashkey

- $\begin{array}{ll} 42 & numerical-methods/finite-element/int \\ 42.1 & int_1d_gauss \end{array}$
- $42.2 \quad int_1d_gauss_1$
- $42.3 \quad int_1d_gauss_2$
- $42.4 \quad int_1d_gauss_3$
- $42.5 \quad int_1d_gauss_4$
- $42.6 \quad int_1d_gauss_5$
- $42.7 \quad int_1d_gauss_6$
- $42.8 \quad int_1d_gauss_lobatto$
- $42.9 \quad int_1d_gauss_n$

- $42.10 \quad int_1d_nc_2$
- $42.11 \quad int_1d_nc_3$
- $42.12 \quad int_1d_nc_4$
- $42.13 \quad int_1d_nc_5$
- $42.14 \quad int_1d_nc_6$
- $42.15 \quad int_1d_nc_7$
- $42.16 \quad int_1d_nc_7_hardy$
- $42.17 \quad int_2d_gauss_1$
- $42.18 \quad int_2d_gauss_12$
- $42.19 \quad int_2d_gauss_13$

- $42.20 \quad int_2d_gauss_16$
- 42.21 int_2d_gauss_19
- $42.22 \quad int_2d_gauss_25$
- $42.23 \quad int_2d_gauss_3$
- 42.24 int_2d_gauss_33
- $42.25 \quad int_2d_gauss_4$
- $42.26 \quad int_2d_gauss_6$
- 42.27 int_2d_gauss_7
- $42.28 \quad int_2d_gauss_9$
- 42.29 int_2d_nc_10

- $42.30 \quad int_2d_nc_15$
- $42.31 \quad int_2d_nc_21$
- $42.32 \quad int_2d_nc_3$
- 42.33 int_2d_nc_6
- 42.34 int_3d_gauss_1
- $42.35 \quad int_3d_gauss_11$
- $42.36 \quad int_3d_gauss_14$
- 42.37 int_3d_gauss_15
- $42.38 \quad int_3d_gauss_24$
- $42.39 \quad int_3d_gauss_4$

- $42.40 \quad int_3d_gauss_45$
- $42.41 \quad int_3d_gauss_5$
- $42.42 \quad int_3d_nc_11$
- 42.43 int_ $3d_nc_4$
- $42.44 \quad int_3d_nc_6$
- 42.45 int_3d_nc_8
- ${\bf 43}\quad numerical\text{-}methods/finite-element}$
- $43.1 \quad interpolation_matrix$
- 43.2 mark
- $43.3 \quad mark_{-}1d$

- $43.4 \quad mesh_1d_uniform$
- $43.5 \quad mesh_3d_uniform$
- 43.6 mesh_interpolate
- 43.7 neighbour_1d
- 43.8 old
- $43.9 \quad pdeeig_1d$
- 43.10 pdeeig_2d
- 43.11 pdeeig_3d
- $43.12 \quad polynomial_derivative_1d$
- 43.13 potential_const

43.14	$potential_coulomb$
43.15	$potential_harmonic_oscillator$
43.16	$\mathbf{project_circle}$
43.17	$project_rectangle$
43.18	$promote_1d_2_3$
43.19	$promote_1d_2_4$
43.20	${ m promote_1d_2_5}$
43.21	$promote_1d_2_6$
43.22	quadrilaterate

 $43.23 \quad recalculate_regularity_2d$

- 43.24 refine_1d
- $43.25 \quad refine_2d_21$
- $43.26 \quad refine_2d_structural$
- $43.27 \quad regularity_1d$
- $43.28 \quad regularity_2d$
- $43.29 \quad regularity_3d$
- $T = [1 \ 2 \ 3 \ 4];$
- $43.30 \quad relocate_2d$
- 43.31 test_circmesh
- 43.32 test_hermite

43.33 tri_assign_points

43.34 triangulation_uniform

43.35 vander_1d

van der Monde matrix

43.36 vanderd_1d

43.37 vanderi_1d

44 numerical-methods/finite-volume/@Advection

44.1 Advection

FVM treatment of the Advection equation

44.2 dot_advection

advection equation

$45 \quad numerical-methods/finite-volume/@Burgers$

45.1 burgers_split

```
viscous Burgers' equation, mixed analytic and numerical derivative in frequency space by splitting sheme u_t = -(0.5*u^2)_x + c*u_xx
```

45.2 dot_burgers_fdm

```
viscous burgers' equation

u_t = -d/dx (1/2*u^2) + c d^2/dx^2 u_xx
```

45.3 dot_burgers_fft

```
viscous Burgers' equation in frequency space u_t + (0.5*u^2)_x = c*u_xx
```

46 numerical-methods/finite-volume/@Finite_Volume

46.1 Finite_Volume

```
finite volume method for partial differential equations 1+1
    dimensions
(time and space)
```

46.2 apply_bc

apply boundary conditions

46.3 solve

46.4 step_split_strang

step in time, treat inhomogeneous part by Strang splitting this scheme is not suitable for stationary solutions, for example steady shallow water flow

46.5 step_unsplit

step in time, without splitting the inhomogeneous term

47 numerical-methods/finite-volume/@Flux_Limiter

47.1 Flux_Limiter

class of flux limiters

47.2 beam_warming

beam warming sheme
low resolution
note: works only if sign of eigenvalues point into the same
direction according to RL

47.3 fromm

fromme limiter
low res

$47.4 lax_wendroff$

lax wendroff scheme second order accurate, but no tvd this is effectively not a limiter eq. 6.39 in randall, leveque

47.5 minmod

min-mod schock limiter

47.6 monotized_central

monotonized central flux limiter

47.7 muscl

muscl flux limiter

47.8 superbee

superbee limiter

47.9 upwind

godunov scheme
godunov, first order accurate

47.10 vanLeer

van Leer limiter

48 numerical-methods/finite-volume/@KDV

48.1 dot_kdv_fdm

korteweg de vries equation $u_t + (0.5*u^2)_x = c*u_xxx$

$48.2 \quad dot_kdv_fft$

korteweg de vries equation compute derivatives in frequency space $u_t + (0.5*u^2)_x = c*u_xxx$

48.3 kdv_split

korteweg de vries equation in frequency space, derivative treated by splitting scheme

49 numerical-methods/finite-volume/@Reconstruct_Average_Evolve

49.1 Reconstruct_Average_Evolve

```
Reconstruct Average Evolve Finite Volume Method for treatment of
    1+1D pdes

McCronack Scheme
err = 0(dt^2) + 0(dx^2), except as discontinuities
error:
    h_xxx(3:end-2) = 1/dx^3*( -0.5*h(1:end-4) + h(2:end-3) - h(4:end-1) + 0.5*h(5:end) );
    th = -1/6*dx^2*qh_.*(1 - (qh_*dt/dx).^2).*h_xxx;
```

49.2 advect_highres

single time step for the reconstruct evolve algorithm

49.3 advect_lowress

single time step
low resolution

50 numerical-methods/finite-volume

50.1 Godunov

Godunov, upwind method for systems of pdes

50.2 Lax_Friedrich

Lax-Friedrich-Method for hyperbolic conservation laws err = O(dt) + O(dx)|a dt/dx| < 1

50.3 Measure

50.4 Roe

non linear roe solver for the SWE (randall, leveque 15.3.1)

The roe solver guarantess:

- A is diagonalisable with real eigenvalues (15.12)
- can be determined by a closed formula
- is an efficient replacement for true Rieman solver

50.5 fv_swe

wrapper for solving SWE

50.6 staggered_euler

forward euler method with staggered grid

50.7 staggered_grid

staggered grid approximation to the SWE

51 numerical-methods

51.1 grid2quad

extract rectangular elements of a structured grid in form of an unstructured quad-mesh format

52 numerical-methods/integration

52.1 cumintL

cumulative integral from left to right

52.2 cumintR

cumulative integral from right to left

52.3 cumint_trapezoidal

integrate y along x with the trapezoidal rule

52.4 int_trapezoidal

integrate y along x with the trapezoidal rule

53 numerical-methods/interpolation/@Kriging

53.1 Kriging

class for Kriging interpolation

53.2 estimate_semivariance

estimate the parameter of the semivariance model for Kriging interpolation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$

 $\mbox{\%}$ set up the regression matrix and solve for parameters

53.3 interpolate_

interpolate with Krieging method

this function may interpolate several quantities per coordinate,
using the same variogram, if the semivariance of the quantities
 differs,
the user may prefer to estimate the semivariance and interpolate
 each quantity
individually

Xs : source point coordinates
Vs : value at source points
Xt : targe point coordinates
Vt : value at target points

E2t : squared interpolation error at target points

54 numerical-methods/interpolation/@RegularizedInterpolator

54.1 Regularized Interpolator 1

class for regularized interpolation (Thikonov) on a 1D mesh

54.2 init

initialize the interpolator with a set of sampling points

55 numerical-methods/interpolation/@RegularizedInterpolator

55.1 RegularizedInterpolator2

class for regularized interpolation on an unstructures mesh (
 interpolation)

55.2 init

initialize the interpolator with a set of point samples

56 numerical-methods/interpolation/@RegularizedInterpolator3

56.1 RegularizedInterpolator3

class for regularized interpolation (Tikhonov) on a triangulation (unstructured mesh)

56.2 init

initialize the interpolator with a set of sampling points

57 numerical-methods/interpolation

57.1 IDW

spatial averaging by inverse distance weighting

57.2 IPoly

polynomial interpolation class

57.3 IRBM

57.4 ISparse

sparse interpolation class

57.5 Inn

nearest neighbour interpolation

57.6 Interpolator

interpolator super-class

fprintf(1,'Progress: %f%% %fs\n',100*
 idx/size(Xt,1),t);

57.7 fixnan

fill nan-values in vector with gaps

57.8 idw1

spatial average ny inverse distance weighting

57.9 idw2

spatial average by inverse distance weighting

57.10 inner2outer

linear interpolation of segment mit point to grid points at segment ends assumes equal grid spacing

57.11 inner2outer2

interpolate from element (segment) centres to edge points

57.12 interp1_circular

57.13 interp1_limited

interpolate values, but not beyond a certain distance
this function is idempotent, i.e. it will not extrapolate over into
 gaps
exceedint the limit and thus not spuriously extend the series when
 called a second time on the same data

57.14 interp1_man

interpolate

57.15 interp1_piecewise_linear

57.16 interp1_save

make interpolation save to round off errors
the matlab internal interpolation suffers from rounding errors,
 which
are unacceptable when values of X and Y are large (for example UTm
 coordinates)
this normalization prevents this

57.17 interp1_slope

quadratic interpolation returning value and derivative(s)

57.18 interp1_smooth

57.19 interp1_unique

matlab fails to interpolate, when x values are not unique this function makes the values unique before use

57.20 interp2_man

nearest neighbour interpolation in two dimensions

57.21 interp_angle

interpolate an angle

57.22 interp_fourier

interpolation by the fourier method

57.23 interp_fourier_batch

batch interpolation by the fourier interpolation

57.24 interp_sn

```
interpolate along streamwise coordinates
This gives similar result to setting aspect ratio for sN to
   infinity,
but not quite,as the input point set is not dense (scale for sN to
   infinity does not work)
        sdx = sdx(sdx_);
```

57.25 interp_sn2

interpolation in streamwise coordinates

57.26 interp_sn3

57.27 interp_sn_

57.28 limit_by_distance_1d

```
smooth subsequent values along a curve such that v(x0+dx) < v(x0) + (ratio-1)*dx if v is the edge length in a resampled polygon, then v_i/v_i+1) < ratio ratio^1 = exp(a*1)
```

57.29 resample1

interpolation along a parametric curve with variable step width

57.30 resample_d_min

resample a function

$57.31 \quad resample_vector$

resample a track so that velocity vectors do not run into each other $% \left(1\right) =\left(1\right) \left(1\right)$

57.32 test_interp1_limited

58 numerical-methods

58.1 inverse_complex

58.2 maccormack_step

58.3 minmod

59 numerical-methods/multigrid

59.1 mg_interpolate

$59.2 mg_restrict$

60 numerical-methods/ode/@BVPS_Characteristic

60.1 BVPS_Characteristic

solve coupled first- and second-order 1D boundary-value problems

60.2 assemble 1_A

assemble the discretisation matrix for a first order ode (mean component, zero frequency)

60.3 assemble 1_A_Q

assemble the discretisation matrix for a first order ode (mean component, zero frequency)

60.4 assemble 2_A

assemble the discretisation matrix for a second-order ode (non-zero frequency component) $\,$

60.5 assemble_AA

assemble the discretisation matrix for each channel iteratively calls assembly for each frequency components

60.6 assemble_AAA

assemble the discretisation matrix for the entire network iteratively calls assembly for each channel

- 60.7 assemble_Ic
- 60.8 bvp1c
- 60.9 check_arguments
- 60.10 couple_junctions
- 60.11 derivative
- 60.12 init
- $60.13 \quad inner2outer_bvp2c$
- 60.14 reconstruct

60.15 resample

60.16 solve

```
solve system of non-linear second order odes (in more than one
   variable)
as boundary value problems

odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
   c_1 y" + c_2 y' + c_3 y + c_4 = c_4

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
   q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
   + q(x,2)*( p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)

where q weighs the waves travelling from left to right and right to
   left (default [1 1])
```

60.17 test_assemble1_A

60.18 test_assemble2_A

- 61 numerical-methods/ode/@Time_Stepper
- 61.1 Time_Stepper
- 61.2 solve

62 numerical-methods/ode

62.1 bvp2fdm

```
solve system of non-linear second order odes (in more than one
   variable)
as boundary value problems by the finite difference method

odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
c_1 y" + c_2 y' + c_3 y + c_4 = 0

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
   q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
   + q(x,2)*( p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)

where q weighs the waves travelling from left to right and right to
   left (default [1 1])
```

62.2 bvp2wavetrain

solve second order boundary value problem by repeated integration

62.3 bvp2wavetwopass

two pass solution for the linearised wave equation solve first for the wave number k, and then for y

62.4 ivp_euler_forward

solve intial value problem by the euler forward method

62.5 ivp_euler_forward2

62.6 ivprk2

solve initial value problem by the two step runge kutta method

62.7 ode2_matrix

 $\begin{tabular}{ll} transformation matrix of second order ode \\ to left and right going wave \\ \end{tabular}$

```
c = odefun(x)
c1 y'' + c2' y + c3 y == 0
y = y_p + y_m, left and right going wave
d/dx [y_p, y_m] = A*[y_m, y_p]
```

62.8 ode2characteristic

second order odes transmittded and reflected wave

62.9 step_trapezoidal

single trapezoidal step

62.10 test_bvp2

63 numerical-methods/optimisation

63.1 aitken_iteration

63.2 anderson_iteration

63.3 armijo_stopping_criterion

armijo stopping criterion for optimizations

63.4 astar

astar path finding alforithm

63.5 binsearch

binary search on a line

63.6 bisection

bisection

63.7 box1

test objective function for optimisation routines

63.8 box2

63.9 cauchy

63.10 cauchy2

solve non-linear system by cuachy's method slower than quadratic optimisation, but does not require a hessian $% \left(1\right) =\left(1\right) +\left(1$

fun : objective function, returns

f : scalar, objective function value

opt : options

63.11 directional_derivative

```
directional (projected) derivative
d : derivative, highest first
p : series expansion around x0
```

63.12 dud

optimization by the dud algorithm

63.13 extreme3

```
extract maxima by quadratic approximation from sampled function val
    (t)
intended to be called after [mval, mid] = max(val) for refinement
    of
locatian and maximum

input
t    : sampling time (uniformly spaced)
v    : values at sampling times
ouput:
tdx    : index where extremum should be computed
t0    : location of the extremum
val0    : value of extremum

v'(dt0) = 0 and v''(dt0) determines type of extremum
```

63.14 extreme_quadratic

63.15 ftest

63.16 fzero_bisect

63.17 fzero_newton

63.18 grad

numerical gradient

63.19 hessian

numerical hessian

63.20 hessian_from_gradient

numerical hessian from gradient

63.21 hessian_projected

numerical hessian projected to one dimenstion

63.22 line_search

bisection routine

63.23 line_search2

bisection method

fun : objective funct
x0 : start value

 ${\tt f0}$: objective function value at ${\tt x0}$

g : gradient at x0

p : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

 $\begin{array}{lll} \mbox{1b} & : \mbox{lower bound for } x \\ \mbox{up} & : \mbox{upper bound for } x \end{array}$

63.24 line_search_polynomial

polynomial line search
fun : objective funct
x0 : start value
f0 : objective function value at x0
g : gradient at x0
dir : search direction from x0 (p = g for steepest descend)
h : initial step length (default 1)
lb : lower bound for x
up : upper bound for x

63.25 line_search_polynomial2

cubic line search
fun : objective funct
x0 : start value
f0 : objective function value at x0
g : gradient at x0
dir : search direction from x0 (p = g for steepest descend)
h : initial step length (default 1)
lb : lower bound for x
up : upper bound for x

63.26 line_search_quadratic

quadratic line search
fun : objective funct
x0 : start value
f0 : objective function value at x0
g : gradient at x0
dir : search direction from x0 (p = g for steepest descend)
h : initial step length (default 1)
lb : lower bound for x
up : upper bound for x

63.27 line_search_quadratic2

quadratic line search

63.28 line_search_wolfe

line search by wolfe method
c.f.: OPTIMIZATION THEORY AND METHODS - Nonlinear Programming, Sun,
 Yuan

63.29 ls_bgfs

least squares by the bgfs method

63.30 ls_broyden

63.31 ls_generalized_secant

least squares by the secant method Barnes, 1965 Wolfe, 1959 Fletcher 1980, 6.3 seber 2003 gerber

63.32 nlcg

Shanno 1970

non-linear conjugate gradient
input:
x : nx1 start vectort

opt : struct options
fdx : gradient constraint

63.33 nlls

non-linear least squares

63.34 picard

picard iteration

63.35 poly_extrema

extrema of a polynomial

$63.36 \quad quadratic_function$

evaluate quadratic function in higher dimensions

63.37 quadratic_programming

optimize by quadratic programming $% \left(1\right) =\left(1\right) \left(1\right$

63.38 quadratic_step

single step of the quadratic programming

63.39 rosenbrock

rosenbrock test function

$63.40 \quad sqrt_heron$

Heron's method for the square root

- 63.41 test_directional_derivative
- 63.42 test_dud
- 63.43 test_fzero_newton
- $63.44 \quad test_line_search_quadratic 2$
- 63.45 test_ls_generalized_secant
- 63.46 test_nlcg_6_order
- 63.47 test_nlls

$$f = w'*(p*abs(x-1).^4) + w'*(1-p)*abs(x-1).^2;$$

- 64 numerical-methods/pde
- $64.1 \quad laplacian 2 \\ d_fundamental_solution$

65 numerical-methods/piecewise-polynomials

65.1 Hermite1

hermite polynomial interpolation in 1d

65.2 hp2_fit

fit a hermite polynomial
coefficients are derivative free
x0 : left point of first segment
x1 : right point of last segment

n : number of segments
x : sample x-value
val : sample y-value

c : coefficients (values at points, no derivatives)

65.3 hp2_predict

prediction with pw hermite polynomial
c are values at support points

65.4 hp_predict

predict with piecewise hermite polynomial

65.5 hp_regress

fit piecewise hermite polynomial coefficients are values and derivatives

65.6 lp_count

lagrangian basis for interpolation count number of valid samples

$65.7 \quad lp_predict$

lagrangian basis piecwie interpolation, predicor

- 65.8 lp_regress
- 65.9 lp_regress_
- 66 numerical-methods
- 66.1 test_adams_bashforth

67 mathematics

mathematical functions of various kind

67.1 oversample NZ

- 68 regression/@PolyOLS
- 68.1 PolyOLS

class for polynomial least squares

68.2 coefftest

68.3 detrend

detrending by polynomial regression

68.4 fit

fit a polynomial function like polyfit, but returns parameter error estimates TODO automatically activate scaleflag

68.5 fit_

fit a polynomial function

68.6 predict

predict polynomial function values

68.7 predict_

68.8 slope

slope by linear regression

69 regression/@PowerLS

69.1 PowerLS

class for power law regression

69.2 fit

```
fit a power law
like polyfit, but returns parameter error estimates
```

69.3 predict

```
predict with power law
    S2 = diag((A*obj.C)*A');
    L = Y - S;
    U = Y + S;
```

69.4 predict_

70 regression/@Theil

70.1 Theil

Kendal-Theil-Sen robust regression

70.2 detrend

linear detrending of a set of samples by the Theil-Senn Slope

70.3 fit

```
fit slope and intercept to a set of sample with the Theil-Sen method
```

c : confidence interval c = 2*ns*normcdf(1) for ns-sigma
intervals

 $\begin{array}{l} \texttt{param} \; : \; \texttt{itercept} \; \texttt{and} \; \texttt{slope} \\ \texttt{P} \; : \; \texttt{confidence} \; \texttt{interval} \end{array}$

70.4 predict

predict values and confidence intervals with the Theil-Sen method

70.5 slope

fit the slope with the Theil-Sen method

71 regression

linear and non-linear regression

71.1 Theil_Multivariate

extension of the Theil-Senn regression to higher dimensions by means of the Gauss-Seidel iteration

71.2 areg

regression using the pth-fraction of samples with smallest residual

71.3 ginireg

gini regression

71.4 hessimplereg

hessian, gradient and objective function value of the simple regression ${\tt rhs} \, = \, {\tt p(1)} \, + \, {\tt p(2)} \, \, {\tt x} \, + \, {\tt eps}$

71.5 l1lin

solve ||Ax - b||_L1 by means of linear programming

71.6 lsq_sparam

```
parameter covariance of the least squares regression fun \ : \ model \ function \ for \ predtiction b \ : \ sample \ values f(p) = b p \ : \ parameter \ at \ point \ of \ evaluation \ (preferably \ optimum)
```

71.7 polyfitd

```
fit a polynomial of order n to a set of sampled values and sampled
  values
of the derivative

x0 must contain at least for conditioning as otherwise the
  intercept
cannot be determined
```

71.8 regression_method_of_moments

```
fit linear function ||a b x = y||_L2 by the method of moments y+eps = alpha + beta*x
```

71.9 robustling

```
fit a linear function by splitting the x-values at their median (med(y\_left) - med(y\_right))/(med(x\_left)-med(x\_right) this approach performs poorly compared to the theil-senn operator
```

71.10 theil2

Theil senn-estimator for two dimensions (glm)

71.11 theil_generalised

generalization of the Theil-Senn operator to higher dimensions,
for arbitrary functions such as polynomials and multivariate
 regression
either higher order polynomials or glm
c.f. "On theil's fitting method", Pegoraro, 1991

71.12 total_least_squares

total least squares

71.13 weighted_median_regression

weighted median regression c.f. Scholz, 1978

72 set-theory

72.1 issubset

test if set B is subset of A in O(n)-runtime

A : first set
B : second set

P : set of primes (auxiliary)

73 mathematics

mathematical functions of various kind

73.1 shuffle_index

74 signal-processing

74.1 asymwin

creates asymmetrical filter windows filter will always have negative weights

75 signal-processing/autocorrelation

75.1 acf_radial

75.2 acfar1

Autocorrelation function of the finite AR1 process

$$a_k = 1/(n-k)sum x_ix_i+1 + (xi + xi+k)mu + mu^2$$

= $r^k + 1/n sum_ij + 1/n$
pause

$75.3 \quad acfar1_2$

autocorrelation of the ar1 process

75.4 acfar2

impulse response of the ar2 process

$75.5 \quad acfar2_2$

```
autocorrelation of the ar2 process X_i + a1 X_{i-1} + a2 X_{i-2} = 0
```

75.6 ar1_cutoff_frequency

$75.7 \quad ar1_effective_sample_size$

effective sample size correction for autocorrelated series

75.8 ar1_mse_mu_single_sample

standard error of a single sample of an ar1 correlated process

$75.9 \quad ar1_mse_pop$

variance of the population mean of a single realisation around zero $E[(mu_N-0)^2] = E[mu_N^2]$

75.10 ar1_mse_range

mean standard error of the mean of a range of values taken from an $\operatorname{ar1}$ process

75.11 ar1_spectrum

spectrum of the ar1 process

75.12 ar1_to_tikhonov

convert ar1 correlation to tikhonovs lambda

75.13 ar1_var_factor

```
variance correction factor for an autocorrelated finite process n: [1 .. inf] population size m: [1 .. n] samples size rho: [-1 < rho < 1 (for convergence)] correlation of samples
```

75.14 ar1_var_factor_

variance of an autocorrelated finite process

$75.15 \quad ar1_var_range2$

```
variance of sub sample starting at the end of the series from the finite length first order autocorrelated process s2 = 1/m^2 \ sum\_i^m \ sum\_j^m \ rho^-|i-j|
```

75.16 ar1delay

75.17 ar1delay_old

autocorrelation of the residual

75.18 ar2_acf2c

determine coefficients of the ar2 process from the first two lags of the autocorrelation function

75.19 ar2conv

```
coefficients of the ar2 process determined from the two leading
   correlations
of the acf [1,r1,r2,...]
```

75.20 ar2dof

effective samples size for the ar2 process

75.21 ar2param

ar2 parameter estimation from first two terms of acf
acf = [1 a1 a2 ...]

- 75.22 autocorr2
- 75.23 autocorr_angular
- $75.24 \quad autocorr_bandpass$
- 75.25 autocorr_brownian_phase
- 75.26 autocorr_brownian_phase_2d
- 75.27 autocorr_brownian_phase_across
- 75.28 autocorr_decay_rate

estimate exponential decay of the autocorrelation

 $75.29 \quad autocorr_effective_sample_size$

effective sample size from acf

75.30 autocorr_fft estimate sample autocorrelation function 75.31 autocorr_forest $autocorr_genton$ 75.32autocorrelation function 75.33 autocorr_highpass 75.34 autocorr_lowpass autocorr_periodic_additive_noise 75.3575.36 autocorr_periodic_windowed 75.37 autocorr_radial

75.38 autocorr_radial_hexagonal_pattern

75.39 autocorrelation_max

76 signal-processing

76.1 average_wave_shape

extract waves with varying length from a wave train and and average their shape $\,$

76.2 bandpass

bandpass filter

76.3 bandpass_continuous_cdf

76.4 bartlett

```
Effective sample size factor for bartlett window c.f. thiebaux c.f spectral analysis-jenkins, eq. (6.3.27) c = acf note: results seams always to be 1 tac too low T : reduction factor for dof for ar1 with a = rho^k = \exp(-k/L), T = 2L
```

76.5 bin1d

bin values of \boldsymbol{v} sampled at \boldsymbol{x} into bins bounded by "edges" apply function \boldsymbol{v} to it

76.6 bin2d

bin values of V sampled at X and Y into the grid structured grid ex
 ,ey
apply function func to all walues in the bin
func = mean : default
func = sum : non-normalized frequency histogram in 2D

76.7 binormrnd

generate two correlated normally distributed vectors

76.8 brownian_phase_cdf

76.9 brownian_phase_inv

76.10 coherence

$76.11 \quad conv1_man$

convolutions with padding

$76.12 \quad conv2_man$

convolution in 2d

$76.13 \quad conv2z$

76.14 conv30

convolve with rectangular window of lenght \boldsymbol{n} circular boundaries

$76.15 \quad conv_{-}$

convolution of a with b

76.16 conv_centered

convolve x with filter window f
when length of f is even, this guarantees a symmetric result (no
 off by on
displacement) by making the length of f odd at first

76.17 convz

76.18 cosexpdelay

76.19 csmooth

smooth recursively with [1,2,1]/4 kernel function x = csmooth(x,n,p,circ)

76.20 daniell_window

Daniell window for smoothing the power spectrum c.f. Daniell 1946
Bloomfield 2000
meko 2015

76.21 db2neper

convert decibel to neper

76.22 db2power

power ratio from db

$76.23 \quad derive_bandpass_continuous_scale$

$76.24 \quad derive_danielle_weight$

76.25 derive_limit_0_acfar

76.26 detect_peak

detect peaks in a vector requires function value to fall to p*max before new value is allowed

76.27 determine_phase_shift

76.28 determine_phase_shift1

average phase and phase shift per time step of a train of waves

76.29 doublesum_ij

double sum of r^i

76.30 effective_mask_size

$76.31 \quad effective_sample_size_to_ar1$

convert effective sample size to ar1 correlation

76.32 fcut2Lw_gausswin

76.33 fcut_gausswin

76.34 filt_hodges_lehman

77 signal-processing/filters

77.1 circfilt2

Mon 19 Dec 17:03:02 CET 2022 smooth (filter) the 2D image z with a circular disk of radius nf apply periodic boundary conditions

77.2 filter1

filter along one dimension

77.3 filter2

filter columns of x (matlab does only support vector input)

77.4 filter_

invalidate values that exceed n-times the robust standard deviation

77.5 filter_r_to_f0

77.6 filter_rho_to_f0

77.7 filter_twosided

77.8 filteriir

```
filter adcp t-n data over time
```

v : nz,nt : values to be filtered
H : nt,1 : depth of ensemble

last : nt,1 : last bin above bottom that can be sampled without

side lobe interference

 ${\tt nf} \; : \; {\tt scalar} \; : \; {\tt number} \; \; {\tt of} \; \; {\tt reweighted} \; \; {\tt iterations} \; \;$

when samples

 distance to bed is reference (advantageous for near-bed suspended transport)

 $\ensuremath{\mathsf{TODO}}$ for wash load: distance to surface is more relevant interpolate depending on z

when depth changes, neighbouring indices do not correspond to same relative position in the water column

relative poisition in the colum (s-coordinate) smoothes values

near the bed: absolute distance to bed is chosen near surface: absolute distance to surface is chosen

-> cubic transformation of index

faster and avoid alising (smoothing along z)
 resample ensemble to same number of bins in S -> filter ->
 resample back
 use nonlinear transform z-s coordinates
-> resampling has to be local (Hi -> H-filtered)

filtered profile coordinates to sample coordinates

zf -> zi (special transform)

corresponding indices and fractions

filtration step (update of hf and vf)

sample coordinates to updated profile coordinates

(the inverse step is actually not necessary)

write filtered value

77.9 filterp

77.10 filterp1

fir filter with some fancy extras

77.11 filterstd

77.12 gaussfilt2

smooth (filter) the 2D image z with a gaussian window apply periodic boundary conditions

77.13 lowpass_discrete

design coefficients of a low pass filter with specified cut of
 frequency
and sampling period
alalogue low pass with pole at s=-omega_c=1/tau=1/RC
Ha = tau/(tau + s) = 1/(1 + omega_c*s)

77.14 meanfilt2

filter with a rectangular window along both dimensions

$77.15 \quad medfilt1_man$

moving median filter, supports columnwise operation

$77.16 \quad medfilt1_man2$

moving median filter with special treatment of boundaries

77.17 medfilt1_padded

median filter with padding

$77.18 \quad medfilt1_reduced$

median filter with padding

77.19 trifilt1

filter with triangular window
trifilt1 is ident to twice applying rectfilt1 (meanfilt1) with half
 the domain size
note : inifnitely many convolution yield a gaussian

77.20 trifilt2

filter with a triangular window along both dimensions

78 signal-processing

78.1 firls_man

design finite impulse response filter by the least squares method

78.2 fit_spectral_density

fit (spectral) densities

$78.3 \quad fit_spectral_density_2d$

fit spectral densities

78.4 fit_spectral_density_radial

fit spectral densities

78.5 flattopwin

the flat top window

78.6 frequency_response_boxcar

frquency response of a boxcar filter

78.7 freqz_boxcar

frequncy response of a boxcar filter

78.8 gaussfilt1

filter data series with a gaussian window, assumes periodic bc

78.9 hanchangewin

hanning window for change point detection

78.10 hanchangewin2

nanning window for chage point detection

78.11 hanwin

hanning filter window

78.12 hanwin_

hanning filter window

78.13 high_pass_1d_simple

78.14 kaiserwin

kaiser filter window

78.15 kalman

Kalman filter

78.16 lanczoswin

Lanczos window

78.17 last

lake tail, but for matrices

78.18 maxfilt1

78.19 meanfilt1

moving average filter with special treatment of the boundaries

$78.20 \quad mid_term_single_sample$

variance of single sample, mid term

78.21 minfilt1

78.22 minmax

78.23 mu2ar1

error variance of the mean of the finite length ar1 process

 $(mu)^2 = (sum epsi)^2 = sum_i sum_j eps_i eps_j = sum_ii(rho,n)/n^2$ this has the limit s^2 for rho->1

78.24 mysmooth

78.25 nanautocorr

autocorrelation with nan-values

78.26 nanmedfilt1

medfilt1, skipping nans

78.27 neper2db

convert neper to db

78.28 oscillator_noisy

79 signal-processing/passes

79.1 bandpass1d

$79.2 \quad bandpass1d_fft$

filter input vector with a spatial (two-sided) bandpass in fourier space

79.3 bandpass1d_implicit

79.4 bandpass2

bandpass filter

- 79.5 bandpass2d
- 79.6 bandpass2d_2
- 79.7 bandpass2d_fft
- 79.8 bandpass2d_ideal
- 79.9 bandpass2d_implicit
- 79.10 bandpass2d_iso

79.11 bandpass_arg

determine correlation coefficient from frequency of mode for the $\operatorname{symmetric}$

79.12 bandpass_f0_to_rho

correlation coefficient for the pth-order symmetric bandpass filter
 with
maximum at f0 (when rho_lp = rho_hp)

79.13 bandpass_max

79.14	$bandpass_max2$
79.15	highpass
high pa	ass filter
79.16	$highpass1d_fft_cos$
filter spa	the input vector with a cosine-shaped highpass in frequency
79.17	$highpass1d_implicit$
79.18	$highpass2d_fft$
79.19	$highpass 2d_ideal$
79.20	$highpass 2d_implicit$
79.21	highpass_arg
79.22	highpass_fc_to_rho

low pass filter					
79.24	$lowpass1d_fft$				
79.25	$lowpass1d_implicit$				
79.26	lowpass2				
design	low pass filter with cutoff-frequency f1				
79.27	$lowpass2d_2$				
79.28	$lowpass 2 d_ani sotropic$				
79.29	$lowpass2d_{\perp}fft$				
79.30	lowpass2d_ideal				

 $79.31 \quad lowpass 2 \\ d_implicit$

79.23 lowpass

79.32 lowpass_arg

79.33 lowpass_fc_to_rho

79.34 lowpass_iir

iir-low pass

79.35 lowpass_iir_symmetric

two-sided iir low pass filter (for symmetry)

79.36 lowpassfilter2

low-pass filter of data

80 signal-processing

80.1 peaks_man

peaks of a periodogram

81 signal-processing/periodogram

81.1 periodogram

compute the normalized periodogram

81.2 periodogram_2d

compute the normalized periodogram in two dimensions $% \left(1\right) =\left(1\right) \left(1\right)$

01 0		- 1:
81.3	periodogram	_amgn
	F	

81.4 periodogram_angular

81.5 periodogram_bartlett

estimate the spectral density nonparametrically with Bartlett's $\tt method$

81.6 periodogram_bootstrap

81.7 periodogram_confidence_interval

confidence interval for periodogram values

81.8 periodogram_filter

81.9 periodogram_median

81.10 periodogram_p_value

81.11 periodogram_qq

 $\operatorname{qq-plot}$ of a spectral density estimate by smoothing against the expected beta-density

81.12 periodogram_quantiles

quantiles of a periodogram

81.13 periodogram_radial

81.14 periodogram_std

standard deviation of a periodogram

81.15 periodogram_test_periodicity

test a periodogram for hidden periodic frequency components function [p,ratio,maxShat,mdx,fdx,S] = periodogram_test_periodicity (fx,Shat,nf,fmin,fmax,S,mode) input: fx : frequengcies Shat : corresponding periodogram values ${\tt nf}$: number of bins to test for periodicity, ignored when S is given fmin, fmax : frequency range limits to test : exact (a priori known theoretical spectral density, must not be estimated from the periodogram) ${\tt mode}$: automatically set to "exact", when S given inclusive : estimate density by smoothing including the central bin exclusive : estimate density by smoothing excluding the central bin note: inclusive and exclusive lead to different distribution but identical p-values

TODO pass L and not ${\tt fx}$

81.16 periodogram_test_periodicity_2d

```
test a periodogram for hidden periodic frequency components
```

[p,stat,ratio] = periodogram_test_periodicity_2d(b, L, nf, frmin, frmax)
input:

fx : frequengcies

image to test for presence of hidden periodicities,
 i.e. periodicities where the frequency is not known a priori

nf : radius of circular disk (in number of bins) used for smoothing

the periodogram to estimate the spectral density bmsk : mask determining parts of the image to include in the analysis

default is entire image

fmin, fmax: (radial) frequency range limits to test (fmask)

mode : automatically set to "exact", when S given

inclusive : estimate density by smoothing including the central bin

exclusive : estimate density by smoothing excluding the central bin

note: inclusive and exclusive lead to different distribution but identical p-values

influence of masking the input file:

- the root-mean-square energy of the ordinates is proportional $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

to the number of unmasked points

values in the periodogram are not any more linearly independent

so that the dof of the filter window is not nf²

TODO make frmin, frmax an fmask

81.17 periodogram_test_stationarity

test a periodogram for statoinarity
note : the method works, but is of little practical use,
as it requires about 50 periods and a small dx to detect a
 frequency change by a factor of 2

81.18 periodogram_welsh

82 signal-processing

82.1 polyfilt1

polynomial filter, can be achieved by iteratively processing the data with a mean (zero-order) filter

82.2 qmedfilt1

medfilt1, after fitting a quadratic polynomial

82.3 quadratfilt1

82.4 quadratwin

82.5 randar1

generate random ar1 process
e1 = randar1(sigma,p,n,m)

$82.6 \quad randar1_dual$

draw random variables of two corrlated ar1 processes

82.7 randar2

generate ar2 process

82.8 randarp

randomly generate the instance of an ar-p process

82.9 rectwin

rectangular window

82.10 recursive_sum

82.11 select_range

82.12 smooth1d_parametric

smooth position of p0=x0,y0 between p1=x1,y1 and p2=x2,y2, so that distance to p1 and p2 becomes equal and the chord length remains the same

82.13 smooth2

smooth vectos of X

82.14 smooth_man

82.15 smooth_parametric

smooth a parametric function given in x-y coordinates
 matvec2x2(R,[dxc;dyc])

$82.16 \quad smooth_parametric2$

parametrically smooth the curve

82.17 smooth_with_splines
82.18 smoothfft
filter with fast fourier transform
83 signal-processing/spectral-density
83.1 gampdf_man
83.2 hex_angular_pdf
83.3 hex_angular_pdf_max
83.4 hex_angular_pdf_max2par
$83.5 lognpdf_entropy$
83.6 misespdf

83.7 normpdf_entropy

83.8 skewpdf_entropy
83.9 spectral_density_ar2
83.10 spectral_density_area
integrate the spectral density
$83.11 spectral_density_bandpass2d_ideal$
83.12 spectral_density_bandpass_2d
83.13 spectral_density_bandpass_2d_max2par
transform mode (maxima) of the bandpass spectral density into the paramter of the underlying distribution
83.14 spectral_density_bandpass_2d_scale

 $83.15 \quad spectral_density_bandpass_2d_scale_old$

83.16 spectral_density_bandpass_continuous

```
function [S_bp,Sc] = spectral_density_bandpass_continous(fx,fc,
    order,normalize,pp)

output :
S_bp : spectral density of the bandpass filter in continuos space
    limit case of the discrete bandpass for dx -> 0
Sc : scale factor to normalize area to 1, if noramlize = true

input :
f : frequency (abszissa)
fc : central frequency, location of maximum on abszissa
order : number of times filter is applied iteratively, not
    necessarily integer

normalize : normalize area under curve int_0^inf S(f) df = 1, if
    not maximum S(fc) = 1
pp : powers for recombination of the lowpass filter
```

83.17 spectral_density_bandpass_continuous_max

maximum of the bandpass spectral density

83.18 spectral_density_bandpass_continuous_max2par

transform mode (maxima) of the bandpass spectral density into the
 paramter
of the underlying distribution

83.19 spectral_density_bandpass_continuous_scale

normaliztation scale of the spatial bandpass density

83.20 spectral_density_bandpass_discrete

spectral density of the discrete spatial (two-sided) bandpass filter

83.21 spectral_density_brownian_phase

spectral	density	of a	fou	rier	serie	s where	the	phase	undergoes
brownian motion									
with star	ndard de	viati	on s	per	unit	distance	Э		

- 83.22 spectral_density_brownian_phase_2d
- $83.23 \quad spectral_density_brownian_phase_across$
- 83.24 spectral_density_brownian_phase_across_max
- $83.25 \quad spectral_density_brownian_phase_across_max2par$
- $83.26 \quad spectral_density_brownian_phase_across_mode2par$
- 83.27 spectral_density_brownian_phase_mode

 ${\tt mode}$ $({\tt maximum})$ of the spectral density of the fourier series with brownian phase

83.28 spectral_density_brownian_phase_mode2par

transform mode to parameters of the brownian phase spectral density

83.29	$spectral_density_brownian_phase_scale$
normali	zation scale of the brownian phase spectral density
83.30	$spectral_density_estimate_2d$
83.31	spectral_density_flat
flat sp	pectral density of a random vector woth iid elements
83.32	$spectral_density_forest$
83.33	$spectral_density_gausswin$
83.34	$spectral_density_highpass$
00 0 .	
83.35	spectral_density_highpass2d_ideal
83.36	spectral_density_highpass_2d
	- v G -
83.37	$spectral_density_highpass_cos$
consine	e shaped spectral density of a highpass filter

83.38 spectral_density_lorentzian lorentzian spectral density 83.39 $spectral_density_lorentzian_max$ mode (maximum) of the lorentzian spectral density spectral_density_lorentzian_max2par transform maximum of the lorentzian spectral density to its ${\tt distribution} \ {\tt parameters}$ spectral_density_lorentzian_scale normalization scale of the lorentzian spectral density 83.42spectral_density_lowpass2d_ideal 83.43 spectral_density_lowpass_2d $83.44 \quad spectral_density_lowpass_continuous$ spectral_density_lowpass_continuous_scale

83.46 spectral_density_lowpass_discrete

83.47 s	${ m pectral_density_lowpass_one_sided}$
83.48 s _j	pectral_density_maximum_bias_corrected
83.49 s _j	pectral_density_periodic_additive_noise
83.50 sj	pectral_density_rectwin
83.51 s	${f pectral_density_wperiodic}$
	nal-processing ectral_density_brownian_phase_reg2par
84.2 sp	ectrogram
spectrogr	am
84.3 su	m_i_lag
sum of ar	1 matrix with lag

sum_i=1^n rho^|i-k|

$84.4 \quad sum_i$

sum of ar1 matrix
sum_i=1^n sum_j=1^n rho^|i-j|
this is for the variance, take square root for the standard
 deviation factor

84.5 sum_ii_

$84.6 \quad sum_{ij}$

 $84.7 \quad sum_ij_$

84.8 sum_ij_partial_

$84.9 \quad sum_multivar$

sum of matrix entries of bivariate ar1 process

84.10 test_acfar1

84.11 tikhonov_to_ar1

convert coefficient of the tikhonov regularization to correlatioon of the arl process

84.12 trapwin

trapezoidal filter window

84.13 triwin

triangular filter window

84.14 triwin2

triangular filter window

84.15 tukeywin_man

84.16 varar1

error variance of a single sample of a finite length ar1 process with respect to the mean, averaged over the population

84.17 welch_spectrogram

welch spectrogram

84.18 wfilt

filter with window

84.19 winbandpass

filter with bandpass

85 signal-processing/windows

85.1 circwin

85.2 danielle_window

danielle fourier window

85.3 gausswin

85.4 gausswin1

85.5 gausswin2

85.6 radial_window

radial filter window in the 2d-frequency domain

85.7 range_window

range of values within a certain range of indices (window)

85.8 rectwin_cutoff_frequency

85.9 std_window

moving block standard deviation

$85.10 \quad window2d$

85.11 window_make_odd

86 signal-processing

86.1 winfilt0

filter with window

86.2 winlength

window length for desired cutoff frequency
power at fc is halved
H(wf) = 1/sqrt(2) H(f)
if the filter window were used as a low pass filter
note: the user should prefer a windowed ideal low pass filter
TODO, relate this to DOF

86.3 wmeanfilt

mean filter with window

86.4 wmedfilt

median filter with window

86.5 wordfilt

weighted order filter

$86.6 \quad wordfilt_edgeworth$

weighed order filter

86.7 wrapphase

86.8 xar1

86.9 xcorr_man

cross correlation of two sampled ar1 processes

87 sorting

87.1 sort2

sort two numbers

87.2 sort2d

sort elements of matrix in ${\tt X}$ returns row and column index of sorted values

$88 \quad spatial-pattern-analysis/@Spatial_Pattern$

88.1 Spatial_Pattern

88.2 analyze_grid

88.3	${ m analyze_transect}$
88.4	$\operatorname{extract_improfile}$
88.5	$fit_parametric_densities$
88.6	imread
88.7	plot
88.8	${\bf plot_transect}$
88.9	report
88.10	${\bf resample_functions}$

88.11 tabulate

89	spatial-pattern-analysis
89.1	$approximate_ratio_distribution$
89.2	${\bf banded_pattern}$
89.3	$brownian_phase_patch_size_distribution$
89.4	${\bf hexagonal_pattern}$
89.5	patch_size_1d
89.6	patch_size_2d
89.7	${\bf reconstruct_isotropic_density}$
89.8	$separate_isotropic_from_anisotropic_density$

 $89.9 \quad suppress_low_frequency_lobe$

90 special-functions

90.1 bessel_sphere

spherical Bessel function of the first kind

$90.2 \quad besseliln_large_x$

90.3 beta_man

90.4 betainc_man

90.5 digamma_man

 $90.6 \quad \exp 10$

90.7 hankel_sphere

spherical Hankel function for the far field (incident plane wave) first kind

90.8 hermite

probabilistic's hermite polynomial by recurrence relation

input :
n : order
x : value

output:
f : H_n(x)

 $df : d/dx H_n(x)$

90.9 legendre_man

legendre polynomials

90.10 neumann_sphere

spherical Neumann function
Bessel function of the second kind

91 statistics

$91.1 \quad atan_s2$

stadard deviation of the arcus tangens by means of taylor expansion

91.2 beta_kurt

91.3 beta_mean

91.4 beta_moment2param

transform central moments (mean and sd) to parameters of the beta function $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +$

91.5 beta_skew

91.6	${f beta_std}$
91.7	${ m chi2_kurt}$
91.8	chi2_mean
91.9	chi2_skew
91.10	$ m chi2_std$
91.11	$coefficient_of_determination$
91.12	$conditional_expectation_normal$
91.13	$correlation_confidence_pearson$
	ence intervals of the correlation coefficient Fischer 1921
92	${ m statistics/distributions}$

class for quasi-distributions from a set of sampling points

92.1 PDF

92.2 binorm_separation_coefficient

separation coefficient of a bimodal normal distribution

92.3 binormcdf

bio-modal gaussian distribution

92.4 binormfit

fit sum of to normal distribution to a histogram

92.5 binormpdf

92.6 edgeworth_cdf

edgeworth expansion of an unknown cumulative distribution with mean mu, standard deviation sigma, and third and fourth cumulants c.f. Rao 2010

92.7 edgeworth_pdf

probability density of and unknown distribution
with mean mu, standard deviation sigma, and third and fourth
 cumulants
c.f. Rao 2010

$92.8 \quad exppdf_max2par$

$92.9 \quad gam_moment2param$

92.10 logn_mean

$92.11 logn_mode$

mode (maximum) of the log-normal density

$92.12 logn_mode2param$

$92.13 logn_moment2param$

transform the mode (mu,sd) to parameters of the \log normal distribution

$92.14 logn_param2moment$

transform parameters to mode (mu, sd) for the \log normal distribution

$92.15 logn_std$

$92.16 \quad lognpdf_{-}$

log normal distribution called by modes rather than parameters

92.17 normpdf_wrapped

$92.19 \quad normpdf_wrapped_mode2par$

92.20 pdfsample

```
pdf from sample distribution
Note: better use kernal density estimates
```

92.21 t2cdf

Hotelling's T-squared cumulative distribution

92.22 t2inv

inverse of Hotelling's T-squared cumulative distribution

93 statistics

- 93.1 error_propagation_fraction
- 93.2 error_propagation_product
- $93.3 \quad example_standard_error_of_sample_quantiles$

93.4 f_var_finite reduction of variance when sampling from a finite population without replacement 93.5 fisher_mean 93.6 fisher_moment2param

93.7 fisher_std

93.8 gam_mean

 $93.9 \quad \text{gam_std}$

93.10 gamma_mode

 $93.11 \quad gamma_mode2par$

 $93.12 \quad gamma_moments_to_parameter$

transform modes (mu,sd) to parameters of the gamma distribution

93.13 gamma_stirling

93.14 gaussfit3

93.15 gaussfit_quantile

93.16 geoserr

93.17 geostd

$93.18 \quad hodges_lehmann_correlation$

```
hodges_lehmann correlatoon coefficient
c.f. Shamos 1976
c.f. Bickel and Lehmann 1976
c.f. rousseeuw 1993
c.f. Shevlyakov 2011
```

93.19 hodges_lehmann_dispersion

```
dispersion determined by the hodges lehman method asymptotic efficiency of dispersion estimates: standard deviation: E(s - hat \ s)/s = 2/sqrt(2 \ n) \ 0.707/sqrt(n) \ (100\%) hodges lehmann dispersion E(s-hat \ s)/s = (pi/3)^2/(sqrt(2 \ n)) \ 0.775/sqrt(n) \ (91\%) mad E(s-hat \ s)/s \ 1.17 \ s/sqrt(n) \ (60\%) c.f. Shamos 1976 c.f. Bickel and Lehmann 1976
```

c.f. rousseeuw 1993

nb: rousseeuw uses the 25th percentile, which is more efficient for small sample sizes

94 statistics/information-theory

94.1 akaike_information_criterion

akaike information criterion

serr : rmse of model prediction

n : effective sample size
k : number of parameters

c.f. akaike (1974)
c.f. sugiura 1978

94.2 bayesian_information_criterion

bayesian information criterion

95 statistics

95.1 jackknife_block

95.2 kurtncdf

95.3 kurtnpdf

95.4 kurtosis_bias_corrected

bias corrected kurtosis

95.5 limit

limit a by lower and upper bound

95.6 logfactorial

approximate log of the factorial

95.7 loglogpdf

95.8 lognfit_quantile

95.9 logskewcdf

95.10 logskewpdf

96 statistics/logu

96.1 lambertw_numeric

lambert-w function

96.2 logtrialtcdf

pdf of a logarithmic triangular distribution

96.3 logtrialtiny

```
inverse of the logarithmic triangular distribution
= (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/
    log(a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b
    ) + d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c)
    + b log(c) - d F log(a) log(c)))/(log(a) - log(b)))
x = (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/log
    (a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b) +
    d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c) + b
    log(c) - d F log(a) log(c)))/(log(a) - log(b))))
```

96.4 logtrialtmean

mean of the logarithmic triangular distribution

96.5 logtrialtpdf

density of the logarithmic triangular distribution

96.6 logtrialtrnd

96.7 logtricdf

 $\hbox{\it cumulative distribution of the logarithmic triangular distribution}\\$

96.8 logtriinv

invere of the logarithmic triangular distribution

96.9 logtrimean

mean of the logarithmic triangular distribution

96.10 logtripdf

probability density of the logarithmic triangular distribution

96.11 logtrirnd

96.12 logucdf

probability density of the logarithmic uniform distribution

96.13 logucm

central moments of the log-uniform distribution

96.14 loguinv

inverse of the \log -uniform distribution

96.15 logumean

mean of the log-uniform distribution

96.16 logupdf

pdf of the log uniform distribution

96.17 logurnd

random numbers following a log-uniform distribution

96.18 loguvar

variance of the log-uniform distribution

96.19 medlogu

median of the log-uniform distribution

96.20 test_logurnd

96.21 tricdf

cumulative distribution of the log-triangular distribution

96.22 triinv

inverse of the triangular distribution

96.23 trimedian

median of the triangular distribution

96.24 tripdf

probability density of the triangular distribution

96.25 trirnd

random numbers of the triangular distribution

97 statistics

97.1 max_exprnd

97.2 maxnnormals

expected maximum of n normal variables c.f. Wolperts this is the median, not the mean of the maximum! see median of gumbel

97.3 mean_angle

97.4 mean_generalized_gampdf

97.5 midrange

 $\mbox{\sc mid}$ range of columns of $\mbox{\sc X}$

97.6 minavg

solution of the minimum variance problem minimise the variance of the weighted sum of n-independent random variables with equal mean and individual variance

$97.7 \quad mode_man$

98 statistics/moment-statistics

98.1 autocorr_man3

autoccorrelation of the columns of X

98.2 autocorr_man4

autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix

c.f. box jenkins 2008 eq. 2.1.12

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

98.3 autocorr_man5

autocorrellation of the columns of X

98.4 blockserr

estimate the standard error of potetially sequentilly correlated ${\tt data}$

by blocking

block length should be sufficiently larger than correlation length and sufficiently smaller than data length $\,$

this uses a sliding block approach, which reduces the variation of the error estimate

98.5 comoment

 $\begin{array}{c} {\tt non-central\ higher\ order\ moments\ of\ the\ multivariate\ normal} \\ {\tt distribution} \end{array}$

c.f. Moments and cumulants of the multivariate real and complex ${\tt Gaussian}$ distributions

note : there seem to be some typos in the original paper, for x^4 cii², the square seems to be missing

mu : nx1 mean vector
C : nxn covariance matrix

k : nx1 powers of variables in moments

98.6 corr_man

correlation of two vectors

$98.7 \quad cov_man$

covariance matrix of two vectors

98.8 dof

mininum number of support points for a polynomial of degree order in dim dimensions

98.9 edgeworth_quantile

inverse edgeworth expansion c.f. cornis fisher 1937 c.f. Rao 2010 c.f. 2.50 in hall CHERNOZHUKOV 3.3

98.10 effective_sample_size

effective sample size of the weighted mean of uncorrelated data c.f. Kish

98.11 f_correlation

correction factor for standard error of the mean of n ar1-correlated iid samples $\ensuremath{\mathsf{S}}$

98.12 f_finite

reduction factor of standard error for sampling from a finite
 distribution
without replacement

98.13 lmean

mean of $x.^1$, not of abs

98.14 lmoment

1-moment of vector x

98.15 maskmean

mean of the masked values of X

98.16 masknanmean

98.17 mean1

 ${\tt mean}$ of ${\tt x}$

98.18 mean_man

mean and standard error of X

98.19 mse

mean squared error of residual vector res this is de-facto the std for an unbiased residual

98.20 nanautocorr_man1

autocorrelation of a vector with nan-values

98.21 nanautocorr_man2

autocorrelation of a vector with nan-values

98.22 nanautocorr_man4

compute autocorrelation for x if x is a vector, or indivvidually
 for the
columns of x if x is a matrix
box jenkins 2008 eq. 2.1.12
TODO nan is problematic!
Note that it is faster to compute the acf in frequency space
as done in the matlab internal function

98.23 nancorr

(co)-correlation matrix when samples a NaN

98.24 nancumsum

cumulative sum, setting nan values to zero

98.25 nanlmean

mean of the 1-th power of the absolute value of \boldsymbol{x}

98.26 nanr2

coefficient of determination when samples are invalid

98.27 nanrms

root mean square value when sample contains nan-values

98.28 nanrmse

root mean square error from vector of residuals this is de-facto the std for an unbiased residual

98.29 nanserr

standard error of x with respect to mean when x contains nan values

98.30 nanwmean

```
weighted mean
min_x sum w (x-mu)^2 => mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = nanwmean(w,x)
```

98.31 nanwstd

weighed standard deviation

98.32 nanwvar

```
weighted variance of columns, corrected for degrees of freedom (
   bessel)

s^2 = sum(w*(x-sum(wx)/sum(w))^2)/sum(w)
```

98.33 nanxcorr

98.34 pearson

pearson correlation coefficient

98.35 pearson_to_kendall

conversion of pearson to kendall correlation coefficient c.f. Kruskal 1958

98.36 pool_samples

pooled mean and standard deviation of several groups of different size, mean and standard deviation

98.37 qmean

trimmed mean

98.38 range_mean

$98.39 \quad rmse_{-}$

 $\hbox{root mean square error computed from a residual vector} \\ \hbox{this is de-facto the std for an unbiased residual}$

98.40 serr

standard error of the mean of a set of uncorrelated samples

98.41 serr1

98.42 test_qskew

98.43 test_qstd_qskew_optimal_p

98.44 wautocorr

autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix samples can be weighted

c.f. box jenkins 2008 eq. 2.1.12

c.f. autocorr_man4

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

98.45 wcorr

correlation of two vectors when samples are weighted

98.46 wcov

covariance of two vectors when samples are weighted

98.47 wdof

effective degrees of freedom for weighted samples

98.48 wkurt

kurtosis with weighted samples

98.49 wmean

```
weighted mean
min_x sum w (x-mu)^2 => mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = wmean(w,x)
```

98.50 wrms

weighted root mean square

98.51 wserr

weighted root mean square error

98.52 wskew

```
skewness of a weighted set of samples function sk = wskew(w,x)
```

98.53 wstd

weighed standard deviation

98.54 wvar

```
weighted variance of columns, corrected for degrees of freedom (
   bessel)
variance of the weighted sample mean of samples with same mean (but
   not necessarily same variance)
s^2 = sum (w^2(x-sum(wx)^2))
s2_mu : error of mean, s2_mu : sd of prediction
```

99 statistics

99.1 nangeomean

99.2 nangeostd

geometric standard deviation ignoring nan-values

100 statistics/nonparametric-statistics

100.1 kernel1d

X : ouput x axis bins
xi : samples along x
m : number of bins in X
fun : kernel function

pdf : propability density of xi

100.2 kernel2d

kernel density estimate in two dimensions

101 statistics

101.1 normmoment

expected norm of $x.^n$, when values x in x are iid normal with mu and sigma

101.2 normpdf2

pdf of the bivariate normal distribution

102 statistics/order-statistics

102.1 hodges_lehmann_location

hodges lehman location estimator

Asymptotic rms efficency of location estimte:

mean: 1 s/sqrt(n)

hodges lehman: sqrt(pi/3)*s ~ 1.0233 s/sqrt(n) median: pi/2 s/sqrt(n) ~ 1.25 s / sqrt(n)

102.2 kendall

kendall correlation coefficient

102.3 kendall_to_pearson

convert kendall rank correlation coefficient to the person product
 moment
correlation coefficient

c.f. Kruskal, 1958, p. 823

$102.4 \quad \text{mad2sd}$

transform median absolute deviation to standard deviation for normal distributed values

102.5 madcorr

proxy correlation by median absolute deviation

$102.6 \quad median2_holder$

$102.7 \quad median_ci$

median and its confidence intervals under assumption of normality se_me = sqrt(1/2 pi) 1.25331 * sd/sqrt(n)

102.8 median_man

median and confidence intervals c is a P value for the confidence interval, default is 0.95 (2-sigma) median of the colums of X

102.9 mediani

index of median, if median is not unique, any of the values is ${\it chosen}$

102.10 nanmadcorr

proxy correlation by median absolute deviation

102.11 nanwmedian

weighted median, skips nan-values

102.12 nanwquantile

weighted quantile, skips nan values

102.13 oja_median

two dimensional oja median note: the multivariate median is not unique oja 1983, for extension to multivariate function, see chaudhri

102.14 qkurtosis

kurosis computed for quantiles

Note : this is a measurement of shape-tailedness and yields the same value for the normal distribution as "kurtosis"

However, this is a separate statistic and hence requires different methods for calculating P-values and hypothesis testing

102.15 qmoments

moments estimated from quantiles

102.16 qskew

skewness estimated from quantiles

Note: this is a measurement of shape-symmetry and yields the same value for the skew-normal distribution as "skewness"

However, this is an own statistic and hence requires different methods for calculating P-values and hypothesis testing

102.17 qskewq

skewness estimated by quantiles

102.18 qstdq

proxy standard deviation determined by quantiles

102.19 quantile1_optimisation

102.20 quantile2_breckling

qunatile regression

102.21 quantile 2_chaudhuri

quantile regression

$102.22 \quad quantile 2_projected$

quantile in two dimensions

102.23 quantile2_projected2

spatial qunatile for chosen direction

102.24 quantile_envelope

102.25 quantile_regression_simple

simple quantile regression

102.26 ranking

ranking for spearman statistics

102.27 spatial_median

c.f. Oja 2008
is this the same as the oja simplex median (c.f. small 1990)?

102.28 spatial_quantile

spatial quantile

102.29 spatial_quantile2

spatial quantile

102.30 spatial_quantile3

spatial quantile

102.31 spatial_rank

unsigned rank

102.32 spatial_sign

spatial sign

102.33 spatial_signed_rank

signed rank
Note: this is only a true rank if X is normal with zero mean,
 abitrary variance

102.34 spearman

spearman's product moment coefficient

102.35 spearman_rank

$102.36 \quad spearman_to_pearson$

conversion of spearman rank to person product moment correlation coefficient

102.37 wmedian

weighted median

102.38 wquantile

weighted quantile

103 statistics

103.1 qstd

103.2 quantile_extrap

103.3 quantile_sin

104 statistics/random-number-generation

104.1 laplacernd

random number of laplace distribution

104.2 randc

correlate to correlated standard normally distributed vectors

104.3 skewness2param

104.4 skewpdf_central_moments

104.5 skewrnd

random numbers of the skew normal distribution

105 statistics

105.1 range

range and mid range of input

105.2 resample_with_replacement

106 statistics/resampling-statistics/@Jackknife

106.1 Jackknife

class for leave out 1 (delete 1) Jackknife estimates

- note 1: the 1-delete jackknife does not yield consistend estimates for all functions,
 - in particular it will perform poorly on robust estimation functions
 - this is overcome by the d-delete jacknife, where d has to exceed the breakdown point
 - of the estimating function, for example $\operatorname{sqrt}(n)$ for the median
 - as this leads to unreasonably large number of repetitions, bootstrap
 - is recommended for large sample cases (or blocking for sequential data)
- note 2 : as a linearisation, jackknife underestimates the error variance in case of

dependence in the data

note 3 : studentisation and the leave out 1 jackknife are related
note 4 : the double 1 sample jacknife performs iferior to the d1
 jacknife

106.2 estimated_STATIC

jacknife estimate of mean, bias and standard error

 $\verb|theta0|: estimate from all samples|\\$

thetad : set of estimates obtained by leaving out one data point

each

last dimension of theta is assumed to be the jackknife dimension

106.3 matrix1_STATIC

matrix of estimation for leaving out two samples at a time

106.4 matrix2

matrix of estimations for jacknive with two samples left out

107 statistics/resampling-statistics

107.1 block_jackknife

107.2 jackknife_moments

moments determined by the jacknife

func : function of interest on the samples (e.g. mean)

A : parameter matrix columns : parameters

rows : samples of the parameter sets

d : number of samples left out

107.3 moving_block_jackknife

blocked Jacknfife for autocorrelated data
sliding block, statistically more efficient but computationally
 expensive
note, number of blocks must be sufficiently large h ~ sqrt(n)? << n</pre>

107.4 randblockserr

standard error of sequentilly correlated data by blocking block length should be sufficiently larger than correlation length and sufficiently smaller than data length this uses a sliding block approach, which reduces the variation of

the error estimate
TODO this does not work, randomly picking samples does not reveal

107.5 resample

the correlation

resample a vector and apply function to it

TODO, should be with replacement

n : number of samples

m : number of subsamples

cx : maximum number of combinations

108 statistics

108.1 scale_quantile_sd

scale factor for the standard deviation of the asymtpotic distibution of sample quantiles (for normal distribution) see cadwell, 1952

108.2 sd_sample_quantiles

108.3 skew_generalized_normal_fit

108.4 skew_generalized_normpdf

108.5 skewcdf

108.6 skewparam_to_central_moments

108.7 skewpdf

skew-normal distribution c.f. Azzalini 1985

108.8 spatialrnd

$108.9 \quad test_mean_generalized_gampdf$

108.10 test_skew_generalized_normpdf

$108.11 trimmed_mean$

trimmed mean

108.12 $ttest2_man$

```
two-sample t-test here posix return value standard: h=0 accepted, h=1 failed note: the matlab logic is inverse : h=1 accepted, h=0 failed two sided univariate t-test
```

108.13 ttest_man

two-sample t-test
unequal sample size
equal variance

108.14 $ttest_paired$

```
paired t-test unequal sample size equal variance more powerfull than unpaired test, as long as correlation between x1 and x2 > 0
```

108.15 uniformnpdf

108.16 wgeomean

weighted geometric mean
function mu = wgeomean(w,x)

108.17 wgeovar

variance of the weighted geometric mean

108.18 wharmean

weighted harmonic mean

108.19 wharstd

108.20 wharvar

108.21 wnormpdf

wrapped normal distribution to the unit circle ${\tt c.f.}$ stephens

109 stochastic

109.1 brownian_drift_hitting_probability

109.2 brownian_drift_hitting_probability2

109.3 brownian_field

- 109.4 brownian_motion_1d_acf
- 109.5 brownian_motion_1d_cov
- 109.6 brownian_motion_1d_fft
- 109.7 brownian_motion_1d_fourier
- 109.8 brownian_motion_1d_interleave
- 109.9 brownian_motion_1d_laplacian
- 109.10 brownian_motion_2d_cov

109.11	$brownian_motion_2d_fft$
109.12	$brownian_motion_2d_fft_old$
109.13	$brownian_motion_2d_fourier$
109.14	$brownian_motion_2d_interleave$
109.15	$brownian_motion_2d_interleaving$
109.16	brownian_motion_2d_kahunen
109.17	brownian_motion_2d_laplacian
109.18	$brownian_motion_with_drift_hitting_probability$
110 ı	nathematics

mathematical functions of various kind

 $110.1 \quad ternary_diagram$

- $111 \quad test/fourier$
- 111.1 test_fourier_freq2ind
- 112 test/master
- $112.1 \quad dat_test_lanczos_3d_k_20_n_40$
- 112.2 poisson $2d_blk$
- $112.3 \quad qr_implicit_givens_2$
- 112.4 spectral_derivative_2d
- 112.5 test_2d_eigensolver_hydrogen
- 112.6 test_2d_refine
- 112.7 test_3d_eigensolver_hydrogen
- 112.8 test_FEM

112.9	test_Mesh_3d
112.10	${ m test_arnoldi}$
112.11	${ m test_arpackc}$
112.12	${ m test_assemble}$
112.13	$test_assembly_performance$
112.14	${ m test_bc_one_sided}$
112.15	$test_compare_solvers$
112.16	${ m test_complete}$

 $112.17 \quad test_convergence$

 $112.18 \quad test_convergence_b$

- $112.19 \quad test_df_2d$
- 112.20 test_eig_algs
- 112.21 test_eig_inverse
- 112.22 test_eigs_lanczos
- 112.23 test_eigs_lanczos_1
- 112.24 test_eigs_lanczos_2
- 112.25 test_eigs_lanczos_performance
- 112.26 test_fdm
- 112.27 test_fdm_d_vargrid
- 112.28 test_fdm_spectral

- 112.29 test_fem
- 112.30 test_fem_1d
- 112.31 test_fem_1d_higher_order
- $112.32 \quad test_fem_2d_adaptive$
- 112.33 test_fem_2d_higher_order
- $112.34 \quad test_fem_3d_higher_order$
- 112.35 test_fem_3d_refine
- 112.36 test_fem_b
- 112.37 test_fem_derivative
- 112.38 test_fem_quadrature

- 112.39 test_final
- 112.40 test_fix_substitution
- 112.41 test_forward
- 112.42 test_get_sparse_arrays
- 112.43 test_harmonic_oscillator
- $112.44 \quad test_high_order_fdm_periodic_bc$
- 112.45 test_hydrogen_wf
- 112.46 test_ichol
- 112.47 test_interpolation
- 112.48 test_inverse_problem

- 112.49 test_it_vs_exact
- 112.50 $test_jama$
- 112.51 test_jd
- $112.52 \quad test_jdqz$
- 112.53 test_lanczos_2
- $112.54 \quad test_lanczos_biorthogonal$
- 112.55 test_laplacian
- 112.56 test_laplacian_non_uniform
- 112.57 test_laplacian_simple
- 112.58 test_mesh_2d_uniform

- 112.59 test_mesh_2d_uniform_2
- 112.60 test_mesh_circle
- 112.61 test_mesh_generation
- 112.62 test_mesh_interpolate
- 112.63 test_mg
- $112.64 \quad test_minres_recycle$
- 112.65 test_multigrid
- 112.66 test_nc
- 112.67 test_nonuniform_symmetric
- 112.68 test_pde

- 112.69 test_permutation
- 112.70 test_poison_fem
- 112.71 test_polar
- 112.72 test_potential
- 112.73 test_powers
- 112.74 test_precondition
- 112.75 test_project_rectangle
- 112.76 $test_qr$
- 112.77 test_quantum_well
- 112.78 test_radial_adaptive

- 112.79 test_radial_confinement
- 112.80 test_radial_fixes
- 112.81 test_refine_2d
- 112.82 test_refine_2d_b
- 112.83 test_refine_3d
- 112.84 test_refine_structural
- 112.85 test_regularisation
- 112.86 test_round_off
- 112.87 test_schrödinger_potentials
- 112.88 test_uniform_mesh

112.89 test_vargrid		
113 tes	${ m st/signal ext{-}processing/autocorrelation}$	
113.1 tes	st_acf	
113.2 tes	$\operatorname{st_acf_bias}$	
113.3 tes	st_acf_brownian_phase	
113 4 tes	st_acfar1_2	
	70 - GOTGT I - -	
110 5		
113.5 tes	${ m st_acfar1_3}$	
113.6 tes	${ m st_acfar1_4}$	

113.7 test_acfar2

113.8 test_ar1_var_factor

- 113.9 test_ar1_var_factor_2
- $113.10 \quad test_ar1_var_mu_single_sample$
- $113.11 \quad test_ar1_var_pop$
- $113.12 \quad test_ar1_var_pop_1$
- 113.13 test_ar1delay
- 113.14 $test_ar2$
- 114 test/signal-processing/passes
- $114.1 \quad test_bandpass2d_ideal$
- 114.2 test_lowpass1d_fft
- 114.3 test_lowpass1d_implicit

114.4	${ m test_lowpass2d_anisotropic}$
114.5	$test_lowpass2d_fft$
114.6	${ m test_lowpass2d_rho}$
115	test/signal-processing/periodogram
115.1	$test_periodicity_test_2d$
115.2	$test_periodogram_bartlett_se$
115.3	${ m test_periodogram_gauss}$
	$test_periodogram_radial$
1155	${ m test_periodogram_test}$
110.0	icsi_periodogram_iest
115.6	$test_periodogram_test_periodicity_2d$

116	test/signal-processing/spectral-density
116.1	$test_spectral_density_2$
116.2	$test_spectral_density_bandpass_2d$
116.3	$test_spectral_density_bandpass_2d_max2par$
116.4	$test_spectral_density_bandpass_continuous$
	<pre>title(sprintf('n %d L %g %g%%',[n,L,1e2*rmse(idx,jdx)]))</pre>
116.5	$test_spectral_density_bandpass_continuous_1$
116.6	$test_spectral_density_bandpass_maximum$
116.7	$test_spectral_density_bandpass_scale$

 $115.7 \quad test_periogogram_significance$

 $116.8 \quad test_spectral_density_bp$

- $116.9 \quad test_spectral_density_bp_2d$
- 116.10 test_spectral_density_bp_approx
- 116.11 test_spectral_density_brownian_phase
- $116.12 \quad test_spectral_density_brownian_phase_2d$
- 116.13 test_spectral_density_brownian_phase_across
- $116.14 \quad test_spectral_density_brownian_phase_across_mode2par$
- 116.15 test_spectral_density_brownian_phase_mode
- 116.16 test_spectral_density_brownian_phase_mode2par
- $116.17 \quad test_spectral_density_brownian_phase_scale$
- 116.18 test_spectral_density_flat

116.20 $test_spectral_density_lorentzian_max$
$116.21 test_spectral_density_lorentzian_scale$
$116.22 test_spectral_density_lowpass$
116.23 $test_spectral_density_lowpass_continuous$
$116.24 \ test_spectral_density_lowpass_continuous_1$
116.25 $test_spectral_density_maxiumum_bias_corrected$
117 test/signal-processing
117.1 test_autocorrelation_max

 $116.19 \quad test_spectral_density_hp_cos$

 $117.2 \quad test_cdf_bandpass_continuous$

- $117.3 \quad test_cdf_brownian_phase$
- 117.4 test_fit_spectral_density
- 118 test/spatial-pattern-analysis
- $118.1 \quad test_approximate_ratio_distribution$
- 118.2 test_approximate_ratio_quantile
- 118.3 test_separate_isotropic_density
- 119 test/statistics/distributions
- $119.1 test_normpdf_wrapped$
- 120 test/statistics/moment-statistics
- 120.1 test_wmean
- 121 test/statistics
- 121.1 test_fisher_moment2param

- $121.2 \quad test_gamma_mode$
- 122 test/stochastics
- 122.1 test_brownian_surface
- **123** test
- 123.1 test_S
- 123.2 test_advect_analytic
- 123.3 test_asymbp
- 123.4 test_bandpass2d
- 123.5 test_bandwidth
- $123.6 \quad test_bartlett_angle$
- 123.7 test_bartlett_distribution

123.8	$test_bartlett_expansion$
123.9	$\mathbf{test_beta}$
123.10	${f test_betainc}$
123.11	$test_bivariate_covariance_term$
123.12	$test_brownian_drift_hitting_probability$
123.13	$test_brownian_drift_hitting_probability2$
123.14	${ m test_brownian_motion_1d}$
123.15	$test_brownian_motion_2d_cov$
123.16	$test_brownian_motion_2d_fft$

123.17 test_brownian_noise_1d

123.19 test_brownian_noise_interleave 123.20 test_coherence 123.21 test_combined_spectral_density 123.22 test_continuous_fourier_transform 123.23 test_convexity 123.24 $test_d2$ 123.25 test_determine_phase_shift 123.26 test_diffuse_analytic

123.27 test_diffusion_matrix

123.18 test_brownian_noise_2d

123.28	$\operatorname{test_ellipse}$
123.29	$test_error_propagation_fraction$
123.30	$\mathbf{test}_{\mathbf{f}}$
123.31	$test_f2$
123.32	$test_fit_2d_spectral_density$
123.33	${ m test_fourier}$
123.34	$test_fourier_derivative$
123.35	$test_fourier_derivative_1$
123.36	test_fourier_integral

123.37 test_fourier_mask_covariance_matrix

- $123.38 \quad test_ft_bp$
- 123.39 $test_gam$
- 123.40 test_gamma_distribution
- 123.41 test_gampdf_man
- 123.42 test_gaussfit3
- $123.43 \quad test_gaussian_flat$
- 123.44 $test_geoserr$
- 123.45 test_hexagonal_pattern
- 123.46 test_iafrate
- 123.47 test_implicit_ode

 ${\bf 123.48 \quad test_imrotmat}$

123.49 test_integration

123.50 test_ivp

123.51 test_jacobian

123.52 test_lanczoswin

 $123.53 \quad test_laplacian_power$

 $123.54 \quad test_lognfit_quantile$

 $123.55 \quad test_ls_perpendicular_offset$

123.56 test_madcorr

123.57 test_mask

123.59 test_moments 123.60 test_moments_fourier_power 123.61 test_mtimes3x3123.62 test_noisy_oscillator $123.63 \quad test_nonperiodic_pattern$ 123.64 test_normalizatation 123.65 test_ols 123.66 test_parcorr

123.67 test_positivity_preserving

123.58 test_max_normal

- 123.68 test_randar1
- 123.69 test_randar1_multivariate
- 123.70 test_randar2
- 123.71 test_ratio_distributions
- 123.72 test_sd_rectwin
- 123.73 test_spatialrnd
- 123.74 test_spectrum_additivity
- 123.75 test_stationarity
- 123.76 test_stationarity2
- 123.77 test_sum_ij

- 123.78 test_sum_multivar
- 123.79 test_trifilt1
- 123.80 test_wautocorr
- 123.81 test_wavelet_transform
- 123.82 test_whittle
- 123.83 test_window
- 123.84 test_wordfilt
- 123.85 test_xar1_mid_term

124 mathematics

mathematical functions of various kind

124.1 trapezoidal_fixed

125 wavelet

125.1 continuous_wavelet_transform

continuous wavelet transform
follows "The Illustrated Wavelet Transform Handbook: Introductory
 Theory and ..."

125.2 cwt_man

continuous fourier transform as of time of implmentation, the matlab interal cwt is affected by serious round-off errors and has issues with the scaling, which is not the case here

$125.3 \quad cwt_man2$

125.4 example_wavelets

125.5 phasewrap

wrap the phase to +/- pi

125.6 test_cwt_man

125.7 test_phasewrap

125.8 test_wavelet

125.9 test_wavelet2

125.10 test_wavelet_analysis

125.11 test_wavelet_reconstruct

125.12 test_wtc

125.13 wavelet

wavelet windows

125.14 wavelet_reconstruct

iverses wavelet transform for single frequency (reconstruction of time series) n: window lengths in multiples of filter period 1/f0

125.15 wavelet_transform

wavelet transform for single frequency n: window lengths in multiples of filter period 1/f0