OPERAÇÕES UNITÁRIAS I

PROFª KASSIA G SANTOS

2020/1- CURSO REMOTO

DEPARTMENTO DE ENGENHARIA QUÍMICA

UFTM

AULA 11

5.1Britagem

BRITAGEM

Fragmentação de blocos de minérios vindos da mina, levando-os a granulometria compatíveis para utilização direta ou para posterior processamento.

Minérios:

Redução de tamanho conveniente

Liberação de minerais valiosos de sua ganga

Baixa relação de redução: as forças aplicadas são elevadas e a geometria do equipamento tem importância fundamental.

Estágio de Britagem	Tamanho máx. de alimentação [mm]	Tamanho máximo do produto [mm]	Razão de Redução
Primária	1000	100	8:1
Secundária	100	10	6 a 8:1
Terciária	10	1	4 a 6:1
Quaternária	5	0,8	Até 20:1

Britagem primária

Os britadores de grande porte operando em circuito aberto e sem o escalpe da fração fina. RR- 8:1

Britagem Secundária e Terciária

Tem como objetivo na maioria dos casos a redução granulométrica do material para a moagem.

É comum na britagem secundária o descarte prévio da fração fina na alimentação, com a finalidade de aumentar a capacidade de produção.

Os equipamento	s normalmente	utilizados	são:
----------------	---------------	------------	------

- ☐ britador giratório secundário;
- ☐ britador de mandíbulas secundário;
- ☐ britador cônico;
- ☐ britador de martelos;
- ☐ britador de rolos.

Os britadores são semelhantes àqueles empregados na britagem primária, apenas tendo dimensões menores.

Na britagem terciária, emprega-se usualmente britadores cônicos, cuja granulometria máxima do produto obtido está compreendida na faixa de 25 a 3 mm, com uma razão de redução de 4:1 ou 6:1, operando geralmente em circuito fechado.

CONFIRGURAÇÕES DO CIRCUITO DE BRITAGEM

CIRCUITO FECHADO

CIRCUITO ABERTO

ROM: "RUN OF MINE" é o minério alimentado diretamente ao britador, sem nenhum processamento prévio;

Escalpe de finos: é a retirada dos finos por meio de uma peneira antes do britador

BRITADOR DE MANDÍBULA

Possui uma mandíbula móvel e outra fixa, a móvel se movimenta em direção da sem movimento causando a britagem. Este movimento é possível através de um motor que integra o equipamento. A mandíbula móvel é instalada no queixo. O movimento do queixo é definido pela excentricidade do eixo e pelo ângulo acentuado da mandíbula, que gera um movimento agressivo em toda extensão da britadeira.

http://www.kleemann.info/en/technologies/crushing-technology/

BRITADOR DE MANDÍBULA 1 e 2 EIXOS

movimento elíptico

Tipo Dodge

movimento pendular

50% mais caros

p/ materiais

Tipo Blake

ESPECIFICAÇÃO DO BRITADOR DE MANDÍBULAS

Tipo de material

Capacidade média [t/h]

Tamanho de finos na alimentação

Redução de tamanho

http://apuntes-ing-mecanica.blogspot.com.br/2014/01/trituradoras-quijadas-i.html

E especificado por área de entrada, isto é, a distância entre as mandíbulas na alimentação (boca) e a largura das placas (comprimento da entrada).

Um triturador de mandíbulas Modelo PE150x250 terá uma boca 150 e uma largura das placas de 250.

Modelo	Tamanho Máx. da alimentação [mm]	Tamanho de saída [mm]	Capacidade [ton/h]	Potência do motor [kW]	Dimensão global [mm]	Peso [ton]
PE150x250	125	10-40	1-3	5.5	896x745x935	0,8
PE250x400	200	20-60	5-20	15	1150x1275x1240	2,8
PE400x600	350	40-100	16-60	30	1700x1732x1653	6,5

BRITADORES GIRATÓRIOS

- □ Utilizado quando existe uma grande quantidade de material a ser fragmentado, sendo mais operacional do que o britador de mandíbula, pois pode ser alimentado por qualquer lado, indistintamente, além de permitir uma pequena armazenagem no seu topo.
- □ Princípio de funcionamento: movimento de aproximação e distanciamento do cone central em relação à carcaça invertida.
- Este movimento circular (85 a 150 rpm) faz com que toda a área da carcaça seja utilizada na britagem, o que fornece ao britador uma grande capacidade de operação.
- □ Cone é longo e a câmara aberta para cima, possibilitando receber fragmentos de grandes dimensões
- □ Britador cônico

BRITADOR GIRATÓRIO CÔNICO

BRITADOR GIRATÓRIO E CÔNICO

BRITADOR DE IMPACTO

- ☐ A fragmentação é feita por impacto ao invés de compressão.
- ☐ Indicados para britagem primária, onde se deseja uma alta razão de redução e alta percentagem de finos.
- □ Por meio do movimento das barras (500 até 3.000 rpm), parte da energia cinética é transferida para o material, projetando-o sobre as placas fixas de impacto onde ocorre a fragmentação.

Desvantagem:

- apresenta elevado custo de manutenção e grande desgaste;
- □ não é aconselhável para rochas abrasivas e de materiais com mais de 15% de sílica.

BRITADORES DE IMPACTO

BRITADOR DE ROLOS

- ☐ O movimento giratório do rolo provoca a compressão e cisalhamento do material entre os dentes e a placa fixada à câmara.
- ☐ Tem emprego limitado devido ao grande desgaste dos dentes, por ser sensível à abrasão.
- ☐ É aconselhável sua aplicação para rochas de fácil fragmentação e também para britagens móveis, dada as pequenas dimensões do equipamento.

□ Possui alta tolerância à umidade da alimentação, sendo na britagem primária o equipamento

que produz menos finos.

- □ De um ou dois rolos, lisos ou dentados
- ☐ A RR do de 1 rolo chega a 7:1
- → O de 2 rolos possui menor RR (3:1) e forte limitação da granulometria da alimentação, limitada pela distância fixada entre os rolos e os diâmetros dos mesmos.

SELEÇÃO DE BRITADORES

10 Condição de Recepção

Gape (abertura da alimentação)

$$gape = \frac{\text{Maior partícula da alimentação}}{0.8}$$

20 Condição de Processamento

Deve gerar a distribuição de tamanho desejada

APA (Abertura na posição aberta

APF (Abertura na posição fechada)

Mandíbula

APA = APF+movimento do queixo

Giratório

APA = APF+excêntrico do cone

SELEÇÃO DE BRITADORES

30

Capacidade

Critério de Taggart:

$$x = \frac{\text{Capacidade [t/h]}}{gape^2[in^2]}$$

Se x>0,115: Britador giratório (grandes vazões)

Se x<0,115: Britador de mandíbulas (baixas vazões)

Densidade aparente (Fator A)

Índice de Trabalho(WI) (Fator B)

Tamanho da alimentação (Fator C)

Umidade

Giratórios e Mandíbulas

Tabela 5 - Densidade aparente dos materiais britados

Vm³	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2	2,1	2,2	2,3	2,4
Fator A	0,75	0,81	0,88	0,94	1	1,06	1,13	1,19	1,25	1,31	1,38	1,44	1,5

Tabela 6 - Work index

Figura 20 - tamanho de alimentação

% da alimentação menor que 1/2 APA para britadores ou 1/2 APF para cones/Hydrocones

Figura 21 - umidade

Figura 22

A capacidade real do britador será aproximadamente igual a:

 $Q = Q_x \times A \times B \times C \times D$ onde \mathbf{Q}_{τ} = capacidade de tabela

Hydrocones e Cones

Capacidade (m³/h) –Britadores Primários de Mandíbulas Circuito aberto

Máquina	RPM	Excêntrico (mm)	Movimento da Mandíbula			Abertu	ıra da Boc	a de Saída	– Posição	Fechada		
				1/4"	1/2"	3/4"	1"	1 1/2"	2"	3"	3 ½"	4"
2015C	380	8	1/2"	1,5-2	2-3	3-4	4-5	5-6,5				
3020C	350	10	3/4"			5-6,5	6-8	8-10	10-13			
4230C	350	12,5	3/4"			7-8	8-10	10-13	12-15	15-20		
4535C	300	13	3/4"				10-13	12-16	15-20	20-25	22-28	25-32
6240C	280	15	3/4"				17-22	22-29	28-35	39-50	42-52	44-55
8050C	280	16	1"							55-72	60-80	65-88
10060C	250	17	1"							72-95	76-105	88-115
10080C	250	17	1"								78-120	90-140
11080C	240	17	1"									100-155
12090C	230	17	1"									130-180
150120C	200	19	1 ½"									

Máquina	RPM	Excêntrico (mm)	Movimento do Queixo			Abertur	a da Boca	de Saída -	– Posição Fech	ada	
				4 ½"	5"	6"	7"	8"	9"	10"	12"
2015C	380	8	1/2"								
3020C	350	10	3/4"								
4230C	350	12,5	3/4"								
4535C	300	13	3/4"								
6240C	280	15	3/4"								
8050C	280	16	1"	72-95	77-100	88-115					
10060C	250	17	1"	95-130	105-140	120-160	140-180	155-200			
10080C	250	17	1"	100-155	110-170	140-200	160-230	177-260	200-290		
11080C	240	17	1"	110-170	120-187	155-220	175-253	195-285	220-320		
12090C	230	17	1"	145-205	155-230	185-275	210-310	240-370	265-410	280-450	
150120C	200	19	1 ½"					350-520	390-560	405-600	470-690

Capacidade (m³/h) –Britadores Primários de Mandíbulas Circuito Fechado

Tabela 2 - Capacidade de produção (m³/h) de britadores de mandíbulas de um eixo em circuito fechado (apud 2)

_	o o	nto (pol.)							1	Abertura	da boca	de saída	- Posição	o fechada					
Máquina	Boca de alimentação (mm)	Movimento do queixo (pol	1/4"	1/2"	3/4"	i	1 1/2"	2"	3*	3 1/2"	4"	4 1/2"	5"	6"	7"	8"	9"	10"	12"
2015E	200x150	1/2"	1,5-2	2-3	3-4	4-5	5- <u>6,5</u>												
3020E	300x200	3/4"			5-6,5	6-8	8-10	10-13											
4230E	420x300	3/4"			7-8	8-10	10-13	12-15	15-20										
6240E	620x400	3/4"				17-22	22-29	28-35	39-50	42-52	44-55								
8050E	800x500	1"						45-56	55-72	60-80	65-88	72-95	77-100	88-115					
10060E	1000x600	1"							72-95	76-105	88-115	95-130	105-140	120-160	140-180	155-200			
10080E	1000x800	1"								78-120	90-140	100-155	110-170	140-200	160-230	177-260	200-290		
12090E	1200x900	1"									130-180	145-205	155-230	185-275		240-370			
	1500x1200													260-390	300-430	350-520	390-560	405-600	470-69

 ω

Capacidade (m³/h) –Britadores Primários de Mandíbulas

Capacidade: Atentar que os fabricantes podem fornecer valores em t/h ou m³/h

APF	C63	C80	C95	C100	C105	C110	C125	C140	C145	C160	C200	C3055
mm (pol.)	Ca	pacidad	es em t/	h com a	limentaç	ão de m	naterial c	om den	sidade a	parente	de 1,6 t	/m³
40 (1 5/8)	40	65										
50 (2)	55	80										
60 (2 3/8)	65	95	120									
70 (2 3/4)	80	115	140	150	155	190						240
80 (3 1/8)	95	130	160	170	175	210						270
90 (3 1/2)	110	150	180	190	200	235						295
100 (4)	120	165	200	215	220	255	290					325
125 (5)		210	250	265	280	310	350	385	400			390
150 (6)		250	300	315	335	370	410	455	470	520		460
180 (7)		290	360	370	390	425	470	520	540	595	760	530
200 (8)				420	445	480	530	590	610	675	855	600
225 (9)							590	655	680	750	945	
250 (10)							650	725	750	825	1040	
275 (11)									820	900	1130	
300 (12)										980	1225	

Capacidade (m³/h) –Britadores Primários de Mandíbulas com 2 eixos

Tabela 2 - Capacidade de produção (m3/h) de britadores de mandíbulas de dois eixos (apud 2)

a	nto (pol.)		Abertura da boca de saída- Posição fechada														
Máquina	Movimento do queixo (pol.)	1"	2"	3ª	4®	4 1/2"	5 [#]	6™	7 ^s	8"	9*	10"	12"	14 ^u			
45358	1"	10-13	15-20	20-25	25-32												
90608	1"			40-50	50-65	55-70	60-75	70-90	80-100								
1209013	1 1/2"				90-110	95-120	100-125	110.140	125-160	140-180	160-200	180-220					
48"X60 A-1	1 1/2"				170-250	180-265	190-280	210-310	230-330	240-360	260-390	300-400					
60"X84 A-1	1 1/2"									400.500	450-560	500-620	580-720	650,800			

Capacidade (m³/h) –Britadores Primários de Mandíbulas

Tabela 4.11- Capacidade de produção (m³/h) – rebritadores de mandíbulas

Máquina	RPM	Excêntrico (mm)	Movimento da mandibula	Δ	BER	TURA	DA E	BOCA	DE S	SAÍDA	P	osıç	ÃO F	ECHA	ADA	
				1/4"	1/2"	3/4"	1"	1 ½"	2"	2 1/2"	3"	3 1/2"	4"	4 ½"	5"	5 ½"
6013	350	10	3/8"	3-4	5-6,5	7-9	9-12									
8013	350	12,5	1/2"	4-5	6,5-8,5	9-12	12-16									
9026	300	13	3/4"			17-22	20-26	29-37	37-48	45-58						
12040	280	16	1*						55-78	65-85	75-97	83-105	100-130	110-142	120-156	125-16

Capacidade (m³/h) –Britadores Giratórios

GIRATÓRIOS PRIMÁRIOS

			D. I.S i -	F		Capac Ai	idade de pr pertura de s	rodução e saída (APA	m circuito a) mm e (pole	berto (m³/ egadas)	'h)	
Máquina	rpm	rpm do pinhão	Potência hp máx.	Excêntrico padrão	140 (5 1/2")	150 (6")	165 (6 1/2")	175 (7")	190 (7 1/2")	200 (8")	215 (8 1/2")	230 (9")
4265	175	600	500	1 1/2"	862	993	1112	1221				
4874	157	600	600	1 5/8"	1453	1550	1617	1731	1815	1890		
5474	157	600	600	1 5/8"		1362	1481	1594	1694	1790		
6089	149	600	800	1 13/16"			2159	2337	2500	2650	2794	2928

GIRATÓRIOS SECUNDÁRIOS

		rpm do	Potência	Excêntrico	С	apacidade de pro Abert	dução em circ ura de saída (<i>i</i>		1)
Máquina	ishiina i fhai i fi i	hp máx.	padrão	2"	2 1/2"	3"	3 1/2"	4"	
1336*	285	925	100-125	1"	115	140	170		
1645*	250	880	150-200	1 11	160	180	200	230	
1650	225	764	150-200	1 1/4"	200	225	240	270	
2060	260	870	250-300	1 1/4"	•	280	320	380	420

As capacidades indicadas são baseadas na operação com material de alimentação limpo e seco, com baixa porcentagem de finos.

^{*} Não mais fabricados

SELEÇÃO DE BRITADORES

40 Potência consumida

Lei de Bond:

$$-W = QW_i \left(\frac{10}{\sqrt{P}} - \frac{10}{\sqrt{F}}\right)$$

P= é o D80 do produto [μm] F= é o D80 da alimentação [μm]

50 Granulometria do produto

Britador giratório

Britador cônico

$$P = 25400 \cdot APA \cdot (0,04WI + 0,4)$$

$$P = \frac{25400 \cdot APF \cdot 7 \cdot e \cdot (0,02WI + 0,7)}{7 \cdot e - 2APF}$$
e=excentricidade

Carga circulante (Circuito Fechado)

Critério de Taggart:

$$CC_{SF} = \frac{100}{1 - \frac{r}{\eta}}$$

 η = eficiência do processo de britagem;

r = 30% do material é maior que a tela da peneira de fechamento do circuito

DISTRIBUIÇÃO GRANULOMÉTRICA DO PRODUTO BRITADOR DE MANDÍBULA

DISTRIBUIÇÃO GRANULOMÉTRICA DO PRODUTO BRITADOR DE MANDÍBULA

DISTRIBUIÇÃO GRANULOMÉTRICA DO PRODUTO BRITADOR GIRATÓRIO

Tabela 4.7- Tamanho máximo de blocos na alimentação de britador primário.

Capacidade de Produção	Tamanho Máximo de Blocos				
(1.000t/a)	Céu aberto (cm)	Subterrânea (cm)			
Pequena (500)	50-60	25-35			
Média (500-3.000)	70-100	40-50			
Grande (3.000-9.000)	90-100	60-70			
Muito Grande (9.000)	120	-			

Tabela 4.9- Densidade aparente dos materiais britados (Fonte Manual da Faço).

			\
t/m³	Fator A	t/m³	Fator A
1,2	0,75	1,9	1,19
1,3	0,81	2	1,25
1,4	0,88	2,1	1,31
1,5	0,94	2,2	1,38
1,6	1	2,3	1,44
1,7	1,06	2,4	1,5
1,8	1,13		

Tabela 4.10 - Fator B dependente do Wi.

Wi	10	12	14	18	22
В	1,15	1,1	1	0,9	0,8

Figura 4.20 - Fator de tamanho de alimentação.

Contabilizando a umidade do material (Fator D)

Figura 4.21 - Fator de umidade para britadores giratórios e mandíbulas.

Tabela 4.13 – Capacidade de produção – circuito fechado rebriadores Hydrocone.

M	áquina	Câmara	Abertura	Potência	Capacidade de Produção (m3 / h) Abertura da Saída do Lado Fechado (Polp.)									
			de Alim. (Polp.)	0.00.00.00.00.00	3	/8"	Abertura da		5/8"		3/4"		olp.)	
		(r oip.)	A		В	А	В	А	В	А	В	А	В	
4	36	médios	4"	75-125	31-42	48-65	34-46	51-69	39-53	59-80	45-61	67-90	48-65	70-95
3 1/2	51	finos	3 ½	125-250	45-61	68-92	48-65	73-99	51-69	79-107	59-80	90-122	73-99	107-144
5	51	médios	5 "		51-69	77-104	54-73	82-111	57-77	88-119	65-88	99-134	79-107	116-157
4	60	finos	4"	200-300	68-92	102-138	74-100	111-150	79-107	119-160	91-123	128-173	153-207	186-251
7	60	médios	7 "						113-153	169-228	127-171	186-251	141-190	197-266
5	84	finos	5"	300-500	186-246	270-365	196-265	298-402	216-292	321-433	255-344	349-471	284-383	380-513
7	84	médios	7"	/			213-288	321-433	239-323	356-481	265-358	365-493	291-393	388-524

AULA 11

(Parte 2)

Exercícios de Britagem

EX19: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex2, pg 457):

Reduzir um minério desde um top size de 15,5" no ROM até um top size de 8# no produto. Quantos estágios de cominuição devo utilizar e qual a relação de redução recomendada para cada um deles?

Existem muitas soluções possíveis, mas com mesmo raciocínio:

$$F = 15 \frac{1}{2}$$
" = 393,7mm
 $P = 8 \# = 2,4mm \rightarrow RR = 393,7/2,4 = 164$

Estágio de Britagem	F [mm]	P [mm]	Razão de Redução
Primária	1000	100	8:1
Secundária	100	10	6 a 8:1
Terciária	10	1	4 a 6:1
Quaternária	5	0,8	Até 20:1

Uma das soluções possíveis seria:

Britagem primária: 15,5" para 3": RR=5,2

Britagem Secundária: 3" para ½": RR=6

Britagem Terciária: 1/2" para 8#: RR=5,3

EX20: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex5, pg 460):

Qual a distribuição granulométrica fornecida por um britador de mandíbulas 6420 com abertura na posição fechada de 1 ¾", operando em circuito aberto?

Gráfico da distribuição granulométrica usa APA:

$$APA = APF + movimento do queixo$$

Informação na tabela de seleção do modelo 🔸

$$APA = 1 \frac{3}{4} + \frac{3}{4} = 2 \frac{1}{2}$$
"

Usar o Gráfico da distribuição granulométrica para britador de mandíbulas

Com o valor da APA escolho a curva e obtenho a distribuição do produto:

Malha	4	2	1	1/2	1/4	1/8	<1/8
%passante	100	70	38	22	13	7	7
% retida	0	30	32	16	9	6	

Capacidade (m³/h) –Britadores Primários de Mandíbulas Circuito Aberto

Máquina	RPM	Excêntrico (mm)	Movimento da Mandíbula	Abertura da Boca de Saída — Posição Fechada								
				1/4"	1/2"	3/4"	1"	1 1/2"	2"	3"	3 ½"	4"
2015C	380	8	1/2"	1,5-2	2-3	3-4	4-5	5-6,5				
3020C	350	10	3/4"			5-6,5	6-8	8-10	10-13			
4230C	350	12,5	3/4"			7-8	8-10	10-13	12-15	15-20		
4535C	300	13	3/4"				10-13	12-16	15-20	20-25	22-28	25-32
6240C	280	15	3/4"				17-22	22-29	28-35	39-50	42-52	44-55
8050C	280	16	1"							55-72	60-80	65-88
10060C	250	17	1"							72-95	76-105	88-115
10080C	250	17	1"								78-120	90-140
11080C	240	17	1"									100-155
12090C	230	17	1"									130-180
150120C	200	19	1 ½"									

Máquina	RPM	Excêntrico (mm)	Movimento do Queixo	Abertura da Boca de Saída – Posição Fechada									
				4 ½"	5"	6"	7"	8"	9"	10"	12"		
2015C	380	8	1/2"										
3020C	350	10	3/4"										
4230C	350	12,5	3/4"										
4535C	300	13	3/4"										
6240C	280	15	3/4"										
8050C	280	16	1"	72-95	77-100	88-115							
10060C	250	17	1"	95-130	105-140	120-160	140-180	155-200					
10080C	250	17	1"	100-155	110-170	140-200	160-230	177-260	200-290				
11080C	240	17	1"	110-170	120-187	155-220	175-253	195-285	220-320				
12090C	230	17	1"	145-205	155-230	185-275	210-310	240-370	265-410	280-450			
150120C	200	19	1 1/2"					350-520	390-560	405-600	470-690		

Para Britador de Mandíbulas

Abertura

EX21: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex11, pg 463):

Escolher um britador primário para dolomita com top size de 24cm e vazão de alimentação de 9,3 t/h, operando com APA=1 ¾", p=1,6t/m³.

1º: Condição de Recepção:

$$gape = a = \frac{24cm}{0.8} = 30cm = 11.8$$
"

2º: Critério de Taggart:

$$x = \frac{\text{C [t/h]}}{gape^2[in^2]} = \frac{9.3}{11.8^2} = 0.065 < 0.115$$

Escolher o Britador Mandíbulas

3º: Calculando APF (APA=1 ¾") Movimento da madíbula é ¾".

$$APF = 1 \frac{3}{4} - \frac{3}{4} = 1$$
"

4º: Condições de processo:

APA=1 3/4 APF= 1"

Da Tabela dos modelos:

Britadores 4230 e o 6240 atendem a condição da APA

5º: Capacidade volumétrica:

$$Q_v = 1.5 \frac{\text{C [t/h]}}{1.6[\text{t/m}^3]} = 8.7 \frac{m^3}{h}$$

Fator de Serviço, por operar descontinuamente

Ambos Britadores 4230 e o 6240 atendem

Capacidade (m³/h) –Britadores Primários de Mandíbulas Circuito Aberto

Máquina	RPM	Excêntrico (mm)	Movimento da Mandíbula	Abertura da Boca de Saída – Posição Fechada								
				1/4"	1/2"	¾"	1"	1 1/2"	2"	3"	3 ½"	4"
2015C	380	8	½"	1,5-2	2-3	3-4	4-5	5-6,5				
3020C	350	10	3/4"			5-6,5	6-8	8-10	10-13			
4230C	350	12,5	3/4"			7-8	8-10	10-13	12-15	15-20		
4535C	300	13	3/4"				10-13	12-16	15-20	20-25	22-28	25-32
6240C	280	15	3/4"				17-22	22-29	28-35	39-50	42-52	44-55
8050C	280	16	1"							55-72	60-80	65-88
10060C	250	17	1"							72-95	76-105	88-115
10080C	250	17	1"								78-120	90-140
11080C	240	17	1"									100-155
12090C	230	17	1"									130-180
150120C	200	19	1 ½"									

Máquina	RPM	Excêntrico (mm)	Movimento do Queixo	Abertura da Boca de Saída — Posição Fechada							
				4 ½"	5"	6"	7"	8"	9"	10"	12"
2015C	380	8	1/2"								
3020C	350	10	3/4"								
4230C	350	12,5	3/4"								
4535C	300	13	3/4"								
6240C	280	15	3/4"								
8050C	280	16	1"	72-95	77-100	88-115					
10060C	250	17	1"	95-130	105-140	120-160	140-180	155-200			
10080C	250	17	1"	100-155	110-170	140-200	160-230	177-260	200-290		
11080C	240	17	1"	110-170	120-187	155-220	175-253	195-285	220-320		
12090C	230	17	1"	145-205	155-230	185-275	210-310	240-370	265-410	280-450	
150120C	200	19	1 ½"					350-520	390-560	405-600	470-690

EX22: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex12, pg 463):

O que acontece com a capacidade do britador do ex. anterior, se o material está com umidade de 5%, contém 5% de argila, seu WI é 10 kWh/st e 32% da alimentação é menor que 7/8"? Usar Modelo 6240

Dados:

Top size= 24cm C= 9,3 t/h p=1,6t/m³. APA=1 ³/₄" APF=1" Umidade= 5% Argila= 5% WI=10 kWh/st D32=7/8" Capacidade nominal do Modelo 6240 é 17-22m³/h (Q=19,5 m³/h) Todas esses circunstâncias afetam o desempenho do britador.

- a) Fator A: A=1 pois Q já está em m3/h.
- b) Fator B (WI): Da Tabela 6, verificamos que este material é mais fácil de britar que o material referência. Há um ganho de 15% na capacidade.

Tabela 6 - Work index											
Wi	10	12	14	18	22						
Fator B	1,15	1,1	1	0,9	0,8						

B = 1,15

EX22: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex12, pg 463):

O que acontece com a capacidade do britador do ex. anterior, se o material está com umidade de 5%, contém 5% de argila, seu WI é 10 kWh/st e 32% da alimentação é menor que 7/8"?

Dados:

Top size= 24cm C= 9,3 t/h p=1,6t/m³. APA=1 ³/₄" APF=1" Umidade= 5% Argila= 5% WI=10 kWh/st D32=7/8" c) Fator C (Tamanho na alimentação)
Top size/gape=24/30=80%

D32=7/8" C = 1

d) Fator D (Umidade, argila) D = 0.9

0100040\-

Capacidade real (Modelo6240):

$$Q_{real} = 19, 5 \cdot 1 \cdot 1, 15 \cdot 1 \cdot 0, 9 = 20, 2 \frac{m^3}{h}$$

$$Q_{real} = 19, 5 \cdot 1 \cdot 1, 15 \cdot 1 \cdot 0, 9 = 20, 2 \frac{m^3}{h}$$

$$Q_{0,9} = Q_{0,9} = Q_{0$$

EX23: (Tratamento de minérios, pg 175): Projetar uma instalação de britagem para 70m3/h de minério que vem da mina, com um top size de 30 polegadas (0,76 m) e 25% menor que 2,5 polegadas. Sabe-se que o WI do minério é WI = 10 kWh/sht. A densidade aparente do minério é 1,6 o teor de argila é maior que 5% e a umidade 10%

Dados:

APF=???

Top size= 30"=76cm Qv= 70m3/h p=1,6t/m³. Umidade= 10% Argila>5% WI=10 kWh/st D25=2,5" Modelo=? APA=??

1º: Condição de Recepção:

$$gape = a = \frac{30"}{0.8} = 37.5"$$

3º: Selecionar o modelo:

2º: Critério de Taggart:

$$x = \frac{\text{C [t/h]}}{gape^2[in^2]} = \frac{1,6.70}{37,5^2} = 0,08 < 0,115$$

Escolher o Britador Mandíbulas

Tabela 5 – Capacidade de produção (m³/h) – Britadores Primários de Mandíbulas Circuito Aberto.

Máquina	RPM	Excêntrico (mm)	Movimento da Mandíbula	Abertura da Boca de Saída — Posição Fechada								
				1/4"	1/2"	3/4"	1"	1 ½"	2"	3"	3 ½"	4"
2015C	380	8	1/2"	1,5-2	2-3	3-4	4-5	5-6,5				
3020C	350	10	3∕4″			5-6,5	6-8	8-10	10-13			
4230C	350	12,5	3/4"			7-8	8-10	10-13	12-15	15-20		
4535C	300	13	3∕4″				10-13	12-16	15-20	20-25	22-28	25-32
6240C	280	15	34"				17-22	22-29	28-35	39-50	42-52	44-55
8050C	280	16	1"							55-72	60-80	65-88
10060C	250	17	1"							72-95	76-105	88-115
10080C	250	17	1"								78-120	90-140
11080C	240	17	1"									100-155
12090C	230	17	1"									130-180
150120C	200	19	1 1/2"									

Continuação Tabela 5

$$APA = 4"+1" = 5"$$

Máquina	RPM	Excêntrico	Movimento								
		(mm)	do Queixo			Abertur	a da Boca	de Saida	– Posição Fech	ada	
				4 ½"	5"	6"	7"	8"	9"	10"	12"
2015C	380	8	1/2"								
3020C	350	10	¾″								
4230C	350	12,5	¾″								
4535C	300	13	¾″								
6240C	280	15	34"								
8050C	280	16	1"	72-95	77-100	88-115					
10060C	250	17	1"	95-130	105-140	120-160	140-180	155-200			
10080C	250	17	1"	100-155	110-170	140-200	160-230	177-260	200-290		
11080C	240	17	1"	110-170	120-187	155-220	175-253	195-285	220-320		
12090C	230	17	1"	145-205	155-230	185-275	210-310	240-370	265-410	280-450	
150120C	200	19	1 1/2"					350-520	390-560	405-600	470-690

EX23: (Da Luz, Tratamento de minérios, pg 175): Projetar uma instalação de britagem para 70m3/h de minério que vem da mina, com um top size de 30 polegadas (0,76 m) e 25% menor que 2,5 polegadas. Sabe-se que o WI do minério é WI = 10 kWh/sht. A densidade aparente do minério é 1,6 o teor de argila é maior que 5% e a umidade 10%

Dados:

Top size= 30"=76cm Qv = 70m3/h $\rho = 1,6t/m^3$. Umidade= 10% Argila>5% WI=10 kWh/st D25=2,5" Modelo=? APA=??APF=???

1º: Condição de Recepção: 2º: Critério de Taggart:

$$gape = a = \frac{30"}{0.8} = 37.5"$$

$$x = \frac{\text{C [t/h]}}{gape^2[in^2]} = \frac{1,6.70}{37,5^2} = 0,08 < 0,115$$

Britador Mandíbulas

3º: Selecionar o modelo 8050: APF=4", Movimento da madíbula é 1" e APA=5", Q=65-88m³/h

40: Distribuição de tamanho: tamanho máximo do produto: APA

D	%passante
5"	85
3"	55
2"	38
1"	22
1/2"	13

Faixa Granulométrica	Peso (%)	Capacidade m ³ /h
+ 5"	15	10,5
- 5" + 3"	30	21
- 3" + 2"	17	11,9
- 2" + 1"	16	11,2
- 1" + ½"	9	6,3
- ½"	13	9,1
Total	100	70

D	%passante
5"	85
3"	55
2"	38
1"	22
1/2"	13

EX23: (Tratamento de minérios, pg 175): Projetar uma instalação de britagem para 70m3/h de minério que vem da mina, com um top size de 30 polegadas (0,76 m) e 25% menor que 2,5 polegadas. Sabe-se que o WI do minério é WI = 10 kWh/sht. A densidade aparente do minério é 1,6 o teor de argila é maior que 5% e a umidade 10%

Dados:

Top size= 30"=76cm Qv = 70m3/h $\rho = 1,6t/m^3$. Umidade= 10% Argila>5% WI=10 kWh/st D25=2,5" Modelo=? APA=5" APF=4"

50: Calcular a capacidade real: $Q_{real} = Q_v * A * B * C * D$

A: Fator é 1.

t/m³	Fator A	t/m³	Fator A
1,2	0,75	1,9	1,19
1,3	0,81	2	1,25
1,4	0,88	2,1	1,31
1,5	0,94	2,2	1,38
1,6	1	2,3	1,44
1,7	1,06	2,4	1,5
1,8	1,13		

B: Fator é 1,15.

Tabela 9 – Fator B dependente do WI ⁽¹²⁾ .										
WI	10	12	14	18	22					
В	1,15	1,1	1	0,9	0,8					

EX23: (Tratamento de minérios, pg 175): Projetar uma instalação de britagem para 70m3/h de minério que vem da mina, com um top size de 30 polegadas (0,76 m) e 25% menor que 2,5 polegadas. Sabe-se que o WI do minério é WI = 10 kWh/sht. A densidade aparente do minério é 1,6 o teor de argila é maior que 5% e a umidade 10%

Dados:

Top size= 30"=76cm Qv= 70m3/h p=1,6t/m³. Umidade= 10% Argila>5% WI=10 kWh/st D25=2,5" Modelo=? APA=5" APF=4"

C: Fator é 0,94.

Top size/gape=30/37,5/=0,8=80%

D: Fator é 0,76.

$$Q_{real} = 70 \cdot 1 \cdot 1,15 \cdot 0,94 \cdot 0,76 = 57,51 \frac{m^3}{h}$$

% de alimentação menor que metade da abertura de saída do britador em posição fechada (1/2 APF)

Figura 21 – C: Fator de tamanho de alimentação⁽¹²⁾.

Atividades da Aula 11

Individual:

- ☐ Leia a teoria do projeto de britadores.
- ☐ Refaça os exercícios.
- ☐ Faça outros exercícios resolvidos do livro.

Empresa

- □ Baixar catálogos de britadores e moinhos e peneiradores industriais
- ☐ Escolher o tema do Projeto Orientado de Cominuição

