Ueda's classification – type (β)

Setup

- X: complex manifold of $\dim_{\mathbb{C}} = 2$,
- $Y \subset X$: compact (non-singular) Riemann surface holomorphically embedded in X with $c_1(N_{Y/X}) = 0$.

Definition (type (β))

The pair (Y,X) is said to be of type (β) if there exists a (non-singular) holomorphic foliation $\mathcal F$ defined on a neighborhood of Y which also has Y as a leaf and has U(1)-linear holonomy along Y (i.e. the image of the holonomy function $\operatorname{Hol}_{\mathcal F,Y}\colon \pi_1(Y,*)\to \mathcal O^*_{(\mathbb C,0)}$ is a subgroup of $U(1):=\{t\in\mathbb C\mid |t|=1\}$).

Observation: (Y,X): of type (β) if Y admits a holomorphic tubular neighborhood (\Leftarrow the fact that $N_{C/X}$ admits U(1)-flat connection).

Idea of Ueda's classification theory

Idea

Classify (Y,X) in accordance with the difference from "the case of type (β) " in n-jet sense (along $Y, n \in \mathbb{Z}_{>0}$).

In what follows, we will try to explain Ueda's classification theory in the following steps:

- **Step 1**: Alternative definition of type (β) by using local defining functions
- **Step 2**: The notion "local defining functions of type n"
- **Step 3**: Ueda's obstruction class $u_n(Y, X)$
- **Step 4**: Definition of type (α) and (γ)
- Step 5: Ueda's theorems on the classification

Step1: Alternative definition of type (β)

Take an open covering $\{V_j\}$ of a small neighborhood V of Y and a holomorphic coordinates system (z_j,w_j) of each V_j as follows:

- z_i : an extension of a coordinate z_i on $V_i \cap Y$
- w_i : a local defining function of $V_i \cap Y$

Step1: Alternative definition of type (β) (continuation)

From the following, we may assume that there exists $t_{jk} \in U(1)$ such that

$$\left. \frac{w_j}{w_k} \right|_{V_{jk} \cap Y} \equiv t_{jk}$$

holds on each $V_{jk} := V_j \cap V_k$.

Theorem

Let Y be a compact Kähler manifold and N be a line bundle on Y. Assume that $c_1(N)=0$. Then N is U(1)-flat (i.e. the transition functions $\in U(1)$ for a suitable choice of a local trivialization of N).

Therefore, we have the following form of the expansion of the function $t_{jk}w_k|_{V_{jk}}$ by w_j :

$$t_{jk}w_k = w_j + f_{jk}^{(2)}(z_j) \cdot w_j^2 + f_{jk}^{(3)}(z_j) \cdot w_j^3 + f_{jk}^{(4)}(z_j) \cdot w_j^4 + O(w_j^5)$$

4 D > 4 D > 4 E > 4 E > E 990

Step1: Alternative definition of type (β) (continuation)

Definition (alternative definition of type (β))

The pair (Y, X) is said to be of type (β) if

$$t_{jk}w_k = w_j$$

holds on each V_{jk} by choosing w_j 's appropriately.

c.f.
$$\mathcal{F} := \{w_j \equiv (\text{constant})\}$$

Definition (type (β) , repeated)

The pair (Y,X) is said to be of type (β) if there exists a (non-singular) holomorphic foliation $\mathcal F$ defined on a neighborhood of Y which also has Y as a leaf and has U(1)-linear holonomy along Y.

Step2: Local defining functions of type n

$$\{(V_j,(z_j,w_j))\}$$
: as above $(t_{jk}w_k=w_j+f_{jk}^{(2)}(z_j)\cdot w_j^2+\cdots)$.

Definition (Local defining functions of type n)

 $\{w_j\}$ is said to be of type n if, for any $\nu \leq n$, it holds that $f_{jk}^{(\nu)} \equiv 0$ for each j, k.

i.e.

$$t_{jk}w_k = w_j + f_{jk}^{(n+1)}(z_j) \cdot w_j^{n+1} + f_{jk}^{(n+2)}(z_j) \cdot w_j^{n+2} + \cdots$$

holds for $\{w_j\}$ of type n.

$$\exists \{w_j\} \text{ of type } n \Leftrightarrow \text{``}(Y,X) \text{ seems to be type } (\beta) \text{ in } n\text{-jet along } Y''$$

Note: Our $\{w_j\}$ is always at least of type 1.

4 D > 4 D > 4 E > 4 E > E 900

Step3: Ueda's obstruction class $u_n(Y, X)$

Assume that $\exists \{w_j\}$ of type n. One can deduce from

$$t_{jk}w_k = w_j + f_{jk}^{(n+1)}(z_j) \cdot w_j^{n+1} + f_{jk}^{(n+2)}(z_j) \cdot w_j^{n+2} + \cdots$$

that

$$\left(\frac{1}{t_{jk}w_k}\right)^n = \left(\frac{1}{w_j}\right)^n \cdot (1 - f_{jk}^{(n+1)}(z_j) \cdot w_j^n + O(w_j^{n+1}))^n.$$

Therefore,

$$f_{jk}^{(n+1)}|_{V_j \cap Y} = \frac{1}{n} \left[\frac{1}{w_j^n} - t_{jk}^{-n} \frac{1}{w_k^n} \right] \Big|_{V_j \cap Y}.$$

From the calculation above, we have that

Prop.

$$\left\{\left(V_j\cap Y,f_{jk}^{(n+1)}
ight)
ight\}$$
 satisfies the 1-cocycle condition as sections of $N_{Y/X}^{-n}$.

Step3: Ueda's obstruction class $u_n(Y, X)$ (continuation)

Definition

$$u_n(Y,X):=\left[\left\{\left(V_j\cap Y,f_{jk}^{(n+1)}
ight)
ight\}
ight]\in H^1(Y,N_{Y/X}^{-n})$$
: n -th Ueda class.

Here we denote by $H^1(Y,N_{Y/X}^{-n})$ the 1-st Čech cohomology group $\check{H}^1(Y,\mathcal{O}_Y(N_{Y/X}^{-n}))$ of the sheaf of holomorphic sections of $N_{Y/X}^{-n}$.

Key Prop.

- (1) When $\exists \{w_j\}$ of type n, the condition " $u_n(Y,X)=0$ " does not depend on the choice of $\{w_j\}$ of type n.
- (2) Assume that $\exists \{w_j\}$ of type n. Then $u_n(Y,X)=0$ iff $\exists \{w_j\}$ of type n+1.

Step4: Definition of type (α) and (γ)

By the Key Proposition in the previous page, only one of the following holds:

- $\exists n \in \mathbb{Z}_{>0}$ s.t. $\exists \{w_i\}$ of type n and $u_n(Y,X) \neq 0$.
- $\forall n \in \mathbb{Z}_{>0}$, $\exists \{w_j\}$ of type n and $u_n(Y,X) = 0$.

In the former case, (Y,X) is said to be <u>of finite type</u> (or more precisely, of type n).

In the latter case, (Y, X) is said to be *of infinite type*.

Note: (Y, X) of type $(\beta) \Rightarrow$ of infinite type.

Definition

- (Y,X) is said to be *of type* (α) if it is of finite type.
- (Y,X) is said to be *of type* (γ) if it is of infinite type however it is not of type (β) .

Step5: Ueda's theorems on the classification

Theorem (Ueda '83)

- (1) $N_{Y/X} \in \operatorname{Pic}^0(C)$: torsion $\Rightarrow (Y, X)$: of type (α) or (β) .
- (2) $N_{Y/X} \in \operatorname{Pic}^0(C)$: Diophantine (see below) $\Rightarrow (Y,X)$: of type (β) .
- $(3) \ (Y,X) \colon \text{of type } (\alpha) \Rightarrow \text{there exists a } \mathbb{R}\text{-valued function } \Phi \text{ on a neighborhood } V \text{ of } Y \text{ s.t. } \Phi|_{V\backslash Y} \colon \text{s.p.s.h, } \Phi(p) \to +\infty \text{ as } p \to Y.$ Especially, Y has a str. pseudoconcave neighborhoods system in this case.
- (4) \exists an example (Y, X) of type (γ) .

Observation: When (Y,X): of type (β) , then there exists a \mathbb{R} -valued function Φ on a neighborhood V of Y s.t. $\Phi|_{V\setminus Y}$: pluriharmonic, $\Phi(p)\to +\infty$ as $p\to Y$ ($\Leftarrow \Phi(z_j,w_j):=\log|w_j|$). Especially, Y has a psudoflat neighborhoods system in this case.

Summary

Date

Y:= cpt R:em. surf, $X:=Y\times P'$ Regard $Y\subset X$ via $Y=Y\times 10$ f $\subset X$. CP'. - D Nr/x = 14 (Y2) = 0. : X = Yor - R (too) $(2, w) \longleftrightarrow (og |w|);$ Both P and - P: psh. (not stor. psh) of DV: Lei-flat I = MY for some M Y:= C/21, t): an ellipt. cure (ZEH) ~(なけて,名前 X:= Z""00-Sect"

Is or Regard YCX. ~ NY/x = 1 y , (Y2) = 0. Consider $\overline{L}: X \longrightarrow \mathbb{R}$ induced by $(J, L) \longmapsto |L - \overline{y}|^2$. I : nell-det, str. psh around Y=13=008 P/4 = +00. Similar to the case of (Y2)>0 [Veda'83] Eg3 (Veda's e.g) 7 (Y,X) st. Y: nbld. Y, F: V - RV1-09 with / =-06=Y sinke application of [Growers' 62]

40%

KOKUYO LOOSE-LEAF 7-836B 6 mm ruled × 36 lines

FE: V R 1+004 with (= +009= Y conti. with (= +009= Y.

[K-15] auxiv: 1510.02287

			No.	3
			Date	
ommorron: well	treat the co	ase where		
)	JV: Y-nbhd C	= X ,		
	= Z: hol. tolia	(non -5:-	gular) with t	1
17		<u>o-V</u> ,		(=
Kmk . I-	t is the case counter-example	for e.g. 1-3	3.	
· P	counter-example	for the existe	use of (V, Z)	
				こん
- O Explain	. Vedars classifi	cation theory	of (T.X)	
1	. Vedars classifi	/ u	der this confi	9.
- F. /.	the volatio-shi	. b. +		d'
O Expain	the relationshi	the holine	17.1	
505-		a colored .	Vada the	رساه
			0 600 110	/
一個の資料の色				
	ded to 1476			
	det En, 42(.		(+	
	-3をかいて(1	(AT)	2
C Plall	0131 E Ex.4	てに去いてく	(: 9	hz
6/ 6/ (.	Ex39 しょうさい。	もまってく、		

No. 4.

D-1-

Veden's classification of (Y, X) A (x: surt,
Y: opeops one with (Y2)=0 assure 30: anthol of Y inx

= Z: (non-sig) hol. toliation on V.

with YE ZI. [the holonomy of 2] Vis. [psh tructons on a nobed of Y]. a Observation the holowy Holzy: T, (Y,*) - Oc,0 U(1)-linavisable (i.e. Inage (Holay) C U(1):= {tec| It = 14.) = 里: (*a nbhd V of Y) -> Rytoot : psh s.t. 更is (=> 2v: Lei-flat). c.t. eg.1 (p.h). Consider toliation churt 1(Vi, (2; wi)) & of a nobed of Y. - Wa = = taj. Wj 平(3, W;):=-log(W;) A When Ho [7, [8] (w) = tr.w+ (h.o.t.) are an obstruction for the existence of pluriharmonic &

209 for hal function with

CPX dynamics for Holzy. V.S. Existence of

Levi-Shits

SY: ellipt. one Assure () the liver pare of Hday [8] is in what tollows. Jilialle where 2: 20060 ty= 1.w+ (L.o.t.) 9:6166e == Ho(EXCX) 0 7 (Y, X, V, F) of case VI, VI, IX. J(w) = n. w+ (h.o.t.) @ Case I, II, VII => 3 \$! V → R"1+009: = H. (F, Y []] Ph, 1====Y (LME UCI) (=) = levi flate) Similar to "e.g. 1", called "type (1)" in Vehils @ Case I => = 9: V → RU1+009: Str. psh. s.e. 1==009=Y, [Vedi83] (explanatater) ... Simlar to "eg. 2", Called "type (x)" in Vadals VV: a ubhd of " Case IV, X => [K-, Ogairs] 1 \$ ₱ : V → RU(-004 with \$ 1 = = 004 = 4 サ里: V→R" | tooy: conth | = 00 {=1, デモ: psh on V.Y. First example of (Y,X) with the property (++) constructed by ageneralization of , called "type (T)! In 355 Case V 1= 74 711 走回的にとばし, 时间的为事的体" あてでナソク?

KOKUYO LOOSE-LEAF /-836B 6 mm ruled x 36 lines

Date

Setting: 1(Y, X), (Y') = 0, on Vik, Wk = toj. W; + toj (2;). W; 2 + ----"formally won-light fact we may assure taje ((1) for 4.k. (Y,X); Type (d) = In EN s.t. Fluit as above with taj = taj = ... = taj = 0. type (b) = | w; \ s.t. we = te; w; for big ."In the case". type (r) \rightleftharpoons $\forall n \in \mathbb{N}$, $\exists (w \in \{s, t, t_{ij} = f_{aj}^{(i)} = \cdots = f_{aj}^{(n)} \equiv 0, t_{ij} \neq 0,$ however Flwig s.t. Wa = taj. w; to bik.

itomally limble, however

war-limble

case Thu ([Veda 83]) (1) (Y.X): Type (4) => IV: and of Y, = £: V→ R 1+009 : conti. Flory: stv. psh. (+ estim. of the sidgularity of I) (3) NY/x & Pie (4): torsion ->
(3) NY/x & Pie (4): Diophontine => (Y,X): type (1) cf (Signet's after they (2) NYX Elic (Y): Torsion => (Y.X): type (X) outype (P) (4) = (1,x): of expe(T) 第20目の遂料の室 | 4 (日見/20日でまう)一枚でいと"?? · 4×49 · (- type & p. or oder !)

上田の支援