- •Given a sequence of matrices, find the most efficient way to multiply these matrices together.
- matrix multiplication is associative.
- •no matter how we parenthesize the product, the result will be the same.
- •the order in which we parenthesize the product affects the number of simple arithmetic operations needed to compute the product, or the efficiency

- •Given a sequence of matrices, find the most efficient way to multiply these matrices together.
 - A, B, C are 3 matrices
 - A is a 10×30 matrix, B is a 30×5 matrix, and C is a 5×60 matrix
 - ABC
- matrix multiplication is associative.
 - (AB)C or
 - A(BC)
- •no matter how we parenthesize the product, the result will be the same.

- 18 Multiplications
- 3*2*3 Multiplications
- A (3 x 2) B (2 x 3)
 3*2*3 Multiplications

 $AB = (3 \times 3)$

A is a 10×30 matrix, B is a 30×5 matrix, and C is a 5×60 matrix

AB = 10*30*5 multiplications & order will be 10×5

- •(AB)C = (10*30*5) + (10*5*60) = 1500 + 3000 = 4500 multiplications
- BC= 30*5*60 multiplications & order will be 30 x 60
- A(BC) = (30*5*60) + (10*30*60) = 9000 + 18000 = 27000 multiplications

Find the optimal matrix multiplication of

A1(10 x100) A2(100 x 5) A3(5 x 50) A4(50 x 1)

$$A_1(10 \times 100) A_2(100 \times 5) A_3(5 \times 50) A_4(50 \times 1)$$

- $A_1(A_2(A_3A_4))$
- $\bullet (A_1 A_2) (A_3 A_4)$
- $\bullet((\overline{A}_1A_2)A_3)A_4$
- $\bullet (A_1 (A_2 A_3)) A_4$
- $\bullet A_1 ((A_2 A_3)A_4)$

- 1750 multiplications
- 5300 multiplications
- 8000 multiplications
- 75,500 multiplications
- 31,000 multiplications

$$A_1(10 \times 100) A_2(100 \times 5) A_3(5 \times 50) A_4(50 \times 1)$$

Using Dynamic programming

 $A_{1}(10 \times 100) A_{2}(100 \times 5) A_{3}(5 \times 50) A_{4}(50 \times 1)$

Multiplications -->

0			
	0		
		0	
			0

Ordering/Pairing —

0			
	0		
		0	
			0

$$A_{1}(10 \times 100) \quad A_{2}(100 \times 5) \quad A_{3}(5 \times 50) \quad A_{4}(50 \times 1)$$

•
$$A_{12} = A_1 A_2$$

= 10*100*5 = 5000

•
$$A_{23} = A_2 A_3$$

= 100*5*50 = 25000

•
$$A_{34} = A_3 A_4$$

= $5*50*1 = 250$

0			
	0		
		0	
			0

$$A_{1}(10 \times 100) \quad A_{2}(100 \times 5) \quad A_{3}(5 \times 50) \quad A_{4}(50 \times 1)$$

•
$$A_{12} = A_1 A_2$$

= 10*100*5 = 5000

•
$$A_{23} = A_2 A_3$$

= $100*5*50 = 25000$

•
$$A_{34} = A_3 A_4$$

= 5*50*1 = 250

0	5000		
	0	25000	
		0	250
			0

0	A ₁ A ₂ 10 x 5		
	0	A ₂ A ₃ 100 x 50	
		0	A ₃ A ₄ 5 x 1
			0

$$A_{1}(10 \times 100) \quad A_{2}(100 \times 5) \quad A_{3}(5 \times 50) \quad A_{4}(50 \times 1)$$

$$A_{13} = A_1 A_2 A_3$$

•
$$A_{13} = (A_1 A_2) A_3$$

•
$$A_{13} = A_1(A_2A_3)$$

0	5000		
	0	25000	
		0	250
			0

0	A ₁ A ₂ 10 x 5		
	0	A ₂ A ₃ 100 x 50	
		0	A ₃ A ₄ 5 x 1
			0

$$A_{1}(10 \times 100) \quad A_{2}(100 \times 5) \quad A_{3}(5 \times 50) \quad A_{4}(50 \times 1)$$

$$A_{13} = A_1 A_2 A_3$$

•
$$A_{13} = (A_1 A_2) A_3$$

= 5000+10*5*50 = 7500

•
$$A_{13} = A_1(A_2A_3)$$

= 10*100*50 + 25000 = 75000

0	5000		
	0	25000	
		0	250
			0

0	A ₁ A ₂ 10 x 5		
	0	A ₂ A ₃ 100 x 50	
		0	A ₃ A ₄ 5 x 1
			0

$$A_{1}(10 \times 100) \quad A_{2}(100 \times 5) \quad A_{3}(5 \times 50) \quad A_{4}(50 \times 1)$$

$$A_{13} = A_1 A_2 A_3$$

•
$$A_{13} = (A_1 A_2) A_3$$

= 5000+10*5*50 = 7500

•
$$A_{13} = A_1(A_2A_3)$$

= 10*100*50 + 25000 = 75000

0	5000	7500	
	0	25000	
		0	250
			0

0	A ₁ A ₂ 10 x 5	(A ₁ A ₂)A ₃ 10 x 50	
	0	A ₂ A ₃ 100 x 50	
		0	A ₃ A ₄ 5 x 1
			0

$$A_1(10 \times 100) \quad A_2(100 \times 5) \quad A_3(5 \times 50) \quad A_4(50 \times 1)$$

$$m[i,j]=m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

•
$$A_{13} = (A_1 A_2) A_3$$

$$m[1,3]=m[1,2]+m[3,3]+p_0p_2p_3$$

=5000+0+10*5*50 = 7500

0	5000	7500	
	0	25000	
		0	250
			0

0	A ₁ A ₂ 10 x 5	$(A_1A_2)A_3$ 10 x 50	
	0	A ₂ A ₃ 100 x 50	
		0	A ₃ A ₄ 5 x 1
			0

$$A_1(10 \times 100) \quad A_2(100 \times 5) \quad A_3(5 \times 50) \quad A_4(50 \times 1)$$

$$A_{24} = A_2 A_3 A_4$$

•
$$A_{24} = (A_2 A_3) A_4$$

= 25000 + 100*50*1 = 30000

•
$$A_{24} = A_2(A_3A_4)$$

= $100*5*1 + 250 = 750$

0	5000	7500	
	0	25000	750
		0	250
			0

0	A ₁ A ₂ 10 x 5	(A ₁ A ₂)A ₃ 10 x 50	
	0	A ₂ A ₃ 100 x 50	A ₂ (A ₃ A ₄) 100 x 1
		0	A ₃ A ₄ 5 x 1
			0

$$A_{1}(10 \times 100) \quad A_{2}(100 \times 5) \quad A_{3}(5 \times 50) \quad A_{4}(50 \times 1)$$

$$A_{14} = A_1 A_2 A_3 A_4$$

•
$$A_{14} = A_1(A_2A_3A_4)$$

•
$$A_{14} = A_1(A_2A_3A_4)$$

= $A_{14} = (A_1A_2A_3)A_4$
= $A_1A_2A_3$

•
$$A_{14} = (A_1 A_2)(A_3 A_4)$$

0	5000	7500	
	0	25000	750
		0	250
			0

0	A ₁ A ₂ 10 x 5	(A ₁ A ₂)A ₃ 10 x 50	
	0	A ₂ A ₃ 100 x 50	A ₂ (A ₃ A ₄) 100 x 1
		0	A ₃ A ₄ 5 x 1
			0

$$A_1(10 \times 100) \quad A_2(100 \times 5) \quad A_3(5 \times 50) \quad A_4(50 \times 1)$$

$$A_{14} = A_1 A_2 A_3 A_4$$

•
$$A_{14} = A_1(A_2A_3A_4)$$

= $10*100*1 + 750 = 1750$

•
$$A_{14} = (A_1 A_2 A_3) A_4$$

= 7500 + 10*50*1 = 8000

•
$$A_{14} = (A_1 A_2)(A_3 A_4)$$

= 5000 + 250 + 10*5*1 = 5300

0	5000	7500	
	0	25000	750
		0	250
			0

0	A ₁ A ₂ 10 x 5	(A ₁ A ₂)A ₃ 10 x 50	
	0	A ₂ A ₃ 100 x 50	$A_{2}(A_{3}A_{4})$ 100 x 1
		0	A ₃ A ₄ 5 x 1
			0

$$A_{1}(10 \times 100) \quad A_{2}(100 \times 5) \quad A_{3}(5 \times 50) \quad A_{4}(50 \times 1)$$

$$A_{14} = A_1 A_2 A_3 A_4$$

•
$$A_{14} = A_1(A_2A_3A_4)$$

= $10*100*1 + 750 = 1750$

•
$$A_{14} = (A_1 A_2 A_3) A_4$$

= 7500 + 10*50*1 = 8000

•
$$A_{14} = (A_1 A_2)(A_3 A_4)$$

= 5000 + 250 + 10*5*1 = 5300

0	5000	7500	1750
	0	25000	750
		0	250
			0

0	A ₁ A ₂ 10 x 5	$(A_1A_2)A_3$ 10 x 50	$A_{1}(A_{2}(A_{3}A_{4}))$ 10 x 1
	0	A ₂ A ₃ 100 x 50	$A_{2}(A_{3}A_{4})$ 100 x 1
		0	A ₃ A ₄ 5 x 1
			0

$$A_1(10 \times 100) \quad A_2(100 \times 5) \quad A_3(5 \times 50) \quad A_4(50 \times 1)$$

$$A_{14} = A_1 A_2 A_3 A_4$$

Answer =
$$A_1(A_2(A_3A_4))$$

• 1750 multiplications

0	5000	7500	1750
	0	25000	750
		0	250
			0

0	A ₁ A ₂ 10 x 5	(A ₁ A ₂)A ₃ 10 x 50	$A_{1}(A_{2}(A_{3}A_{4}))$ 10 x 1
	0	A ₂ A ₃ 100 x 50	$A_{2}(A_{3}A_{4})$ 100 x 1
		0	A ₃ A ₄ 5 x 1
			0

Thank you