Imaging Systems

#dcfldd if=input file of=output file options

Example Input Files (if = *input file*)

```
LINUX
```

/dev/hda (First IDE Physical Drive)
/dev/hda2 (Second Logical Partition)
/dev/sda (First SCSI Physical Drive)

WINDOWS

\\.\PhysicalDrive0 (First Physical Drive)
\\.\D: (Logical Drive D:)
\\.\PhysicalMemory (Physical Memory)

Example Output Files (of = *output file*)

\\hostname\share\imagefile.img (Windows Share)
imagefile.img (Bit Image File)
/dev/usb (USB Drive)
/dev/hdb (2nd IDE Drive)

Useful Options

bs= block size (sets the block size)
count=N (copy only N blocks FILE)
skip=N (skip ahead N blocks FILE)
conv=noerror, sync
hashwindow=num
hashwindow=0 (hash every num bytes)
hashlog=filename (write md5 hash to file)

mmls to split out partitions from physical image

mmls -t dos imagefile (-t is the type of drive)

Slot Start (skip=) End Length (count=) Description 02: 00:00 0000000063 0001028159 0001028097 Win95 FAT32 (0x0B)

Example: Use **dd** to carve logical image

dd if=imagefile bs=512 skip=63 count=1028097 of=imagefile.partition1.img

Sorter

sorter < options > -d dir imagefile.dd

Options:

- -e: extension mismatch only
- -s: Save the data to category directories (-h will produce thumbnails)
- -d: directory for saving info
- -c: config file
- -m: mount point (so you can see full path of the file)

sorter -h -m / -s -d < output dir > image file.dd

Sleuthkit Tools

File System Layer Tools (Partition Information)

fsstat -Displays details about the file system
fsstat imagefile.dd

Data Layer Tools (Block or Cluster)

blkcat -Displays the contents of a disk block
blkcat imagefile.dd block num

blkls -Lists contents of deleted disk blocks
blkls imagefile.dd > imagefile.blkls

blkcalc -Maps between dd images and blkls results
blkcalc imagefile.dd -u blkls_num

blkstat -Display allocation status of block
blkstat imagefile.dd cluster number

MetaData Layer Tools (Inode, MFT, or Directry Entry)

ils -Displays inode details
ils imagefile.dd

istat -Displays information about a specific inode
istat imagefile.dd inode num

icat -Displays contents of blocks allocated to an inode
icat imagefile.dd inode num

ifind -Determine which inode contains a specific block # ifind imagefile.dd -d block_num

Filename Layer Tools

fls -Displays deleted file entries in a directory inode
fls -rpd imagefile.dd

ffind -Find the filename that using the inode
ffind imagefile.dd inode num

Forensic Analysis Cheat Sheet v1.4

Forensics
POCKET REFERENCE GUIDE
SANS Institute

incidents@sans.org +1 317.580.9756 http://forensics.sans.org http://isc.sans.org

Purpose

Forensic Analysts are on the front lines of computer investigations. This guide aims to support Forensic Analysts in their quest to uncover the truth.

How To Use This Sheet

When performing an investigation it is helpful to be reminded of the powerful options available to the investigator. This document is aimed to be a reference to the tools that could be used. Each of these commands runs locally on a system.

This sheet is split into these sections:

- Mounting Images
- Imaging Systems
- Integrity Checking
- Sorter
- Automated Forensic Data Collection
- Recovering Data
- Creating Timelines
- String Searches
- The Sleuthkit

The key to successful forensics is minimizing your data loss, accurate reporting, and a thorough investigation.

Mounting DD Images

mount -t fstype [options] image mountpoint

image can be a disk partition or dd image file

Useful Options (-o)

romount as read onlyloopmount on a loop devicenoexecdo not execute files

noatime do not adjust last access times

uid= user_id mount as a specific user

gid= group_id mount as a group

umask= set permissions

Example: Mount an image file at mount location

```
# mount -t fs_type -o loop,
ro,umask=0222,uid=forensic,gid=users
imagefile.dd /mnt/hack/mount location
```

Mounting NTFS DD Images

```
# ntfs-3g [options] image mountpoint
```

image can be a disk partition or dd image file

Useful Options (-o)

ro mount as read only loop mount on a loop device

show_sys_files show ntfs volume files on mount

```
# ntfs-3g -o loop,ro,
imagefile.dd /mnt/hack/mount_location
```

Creating Timelines

Create the body file of all filename data using fls

```
# fls -m mountpoint -r imagefile.dd >
imagefile.body
```

```
mountpoint = location of mount ( / or C: )
```

Create the timeline

mactime -b imagefile.mac > timeline.all

String Searches

ASCII string search and list the byte offset

```
# srch_strings -t d imagefile.dd >
imagefile.ascii.str
```

UNICODE string search and list byte offset

```
# srch_strings -e l -t d imagefile.dd >
imagefile.uni.str
```

Search for a specific string using grep

GREP Useful Options

- -i ignore case
- -f dirty_word_list_filename

```
# grep -i password -f dirty_words.txt
imagefile.ascii.str
```

Automated Forensic Data Collection

WINDOWS (Windows Forensic Toolchest)

Use WFT to automate the gathering of information on your windows system. You can execute this from a CDROM D:

D:\IR\wft\wft.exe

Answers should be DEFAULT except for:

- 1. What is the toolpath you would like to use?
 - D:\IR
- 2. What is the destination path you would like to use?

\\<IPADDRESS>\images\windowsforensics\wft\

Recovering Data

Create Unallocated Image (deleted data) using blkls

```
# blkls imagefile.dd >
unallocated_imagefile.blkls
```

Create Slack Image Using dls (for FAT and NTFS)

```
# blkls -s imagefile.dd > imagefile.slack
```

Foremost Carves out files based on headers and footers

```
data_file.img = raw data, slack space, memory, unallocated space
```

```
# foremost -o outputdir -c
/path/to/foremost.conf data_file.img
```

Sigfind - search for a binary value at a given offset (-o)

```
-o <offset> start search at byte <offset>
```

sigfind <hexvalue> -o <offset> data_file.img