Lecture:

Overview of Color

- Physics of color
- Human encoding of color
- Color spaces
- White balancing

What is color?

- The result of interaction between physical light in the environment and our visual system.
- A psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights.

Slide credit: Lana Lazebnik Carlos Niebles, and Ranjay Krishna

Color and light

White light: composed of almost equal energy in all wavelengths of the visible spectrum

Newton 1665

Electromagnetic Spectrum

Visible Light

Plank's law for Blackbody radiation Surface of the sun: ~5800K (~5500*C)

The Physics of Light

Any source of visible light can be completely described physically by its spectrum: the amount of energy emitted (per time unit) at each wavelength 400 - 700 nm.

The Physics of Light

Some examples of the spectra of light

SOURCES. Ruby Laser B. Gallium Phosphide Crystal

Tungsten Lightbulb

D. Normal Daylight

The Physics of Light

Some examples of the <u>reflectance</u> spectra of

Interaction of light and surfaces

 Reflected color is the result of interaction of light source spectrum with surface reflectance

rom Foundation of Vision by Brian Wandell, Sinauer-Associates, 1995

Hyperspectral Imaging Technology

Interaction of light and surfaces

• What is the observed color of any surface under monochromatic light?

Adapted from slides by Juan Carlos Niebles, and Ranjay Krishna Olafur Eliasson, Room for one color

Interaction of light and surfaces

monochromatic light refers to visible light of a narrow band of wavelengths

A blue book under red mono. light looks black

A red book under red mono. light looks red

A white book under red mono. light looks red

Adapted from slides by Juan Carlos Niebles, and Ranjay Krishna Olafur Eliasson, Room for one color

Overview of Color

- Physics of color
- Human encoding of color
- Color spaces
- White balancing

Two types of light-sensitive receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Rod / Cone sensitivity

Physiology of Color Vision

Three kinds of

WAVELENGTH (nm.)

Color perception

Rods and cones act as filters on the spectrum

- To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
 - Each cone yields one number
- Q: How can we represent an entire spectrum with 3 numbers?
- A: We can't! Most of the information is lost.
 - As a result, two different spectra may appear indistinguishable
 - » such spectra are known as metamers

Spectra of some real-world surfaces

Standardizing color experience

- We would like to understand which spectra produce the same color sensation in people under similar viewing conditions
- Color matching experiments

Color mixing

Additive color mixing

Colors combine by adding color spectra

Light *adds* to existing black.

Examples of additive color systems

CRT phosphors

http://www.jegsworks.com http://www.crtprojectors.co.uk/

Source: W. Freeman

We say a "negative" amount of p₂ was needed to make the match, **because we** added it to the test color's side.

The primary color amounts needed for a match:

Source: W. Freeman

Subtractive color mixing

Colors combine by *multiplying* color spectra.

Pigments remove color from incident light (white).

Examples of subtractive color systems

- Printing on paper
- Crayons
- Photographic film

Trichromacy

- In color matching experiments, most people can match any given light with three primaries
 - Primaries must be independent
- For the same light and same primaries, most people select the same weights
 - Exception: color blindness
- Trichromatic color theory
 - Three numbers seem to be sufficient for encoding color
 - Dates back to 18th century (Thomas Young)

Overview of Color

- Physics of color
- Human encoding of color
- Color spaces
- White balancing

Linear color spaces

- Defined by a choice of three primaries
- The coordinates of a color are given by the weights of the primaries used to match it

mixing two lights produces colors that lie along a straight line in color space

mixing three lights produces colors that lie within the triangle they define in color space

Adapted from slides by Juan Carlos Niebles, and Ranjay Krishna

How to compute the weights of the primaries to match any spectral signal

 Matching functions: the amount of each primary needed to match a monochromatic light source at each wavelength

RGB space

- Primaries are monochromatic lights (for monitors, they correspond to the three types of phosphors)
- Subtractive matching required for some wavelengths

Linear color spaces: CIE XYZ

- Primaries are imaginary, but matching functions are everywhere positive
- The Y parameter corresponds to brightness or luminance of a color

Nonlinear color spaces: HSV

 Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity)

Overview of Color

- Physics of color
- Human encoding of color
- Color spaces
- White balancing

- When looking at a picture on screen or print, we adapt to the illuminant of the room, not to that of the scene in the picture
- When the white balance is not correct, the picture will have an unnatural color "cast"

incorrect white balance

correct white balance

http://www.cambridgeincolour.com/tutorials/white-balance.htm

Film cameras:

Different types of film or different filters for different illumination conditions

Digital cameras:

- Automatic white balance
- White balance settings corresponding to several common illuminants
- Custom white balance using a reference object

Von Kries adaptation

- Multiply each channel by a gain factor
- A more general transformation would correspond to an arbitrary 3x3 matrix

Slide: F. Durand

Von Kries adaptation

- Multiply each channel by a gain factor
- A more general transformation would correspond to an arbitrary 3x3 matrix

Best way: gray card

- Take a picture of a neutral object (white or gray)
- Deduce the weight of each channel
 - If the object is recoded as r_w, g_w, b_w use weights 1/r_w, 1/g_w, 1/b_w

Slide: F. Durand

- Without gray cards: we need to "guess" which pixels correspond to white objects
- Gray world assumption
 - The image average r_{ave}, g_{ave}, b_{ave} is gray
 - Use weights 1/r_{ave}, 1/g_{ave}, 1/b_{ave}
- Brightest pixel assumption (non-staurated)
 - Highlights usually have the color of the light source
 - Use weights inversely proportional to the values of the brightest pixels
- Gamut mapping
 - Gamut: convex hull of all pixel colors in an image
 - Find the transformation that matches the gamut of the image to the gamut of a "typical" image under white light
- Use image statistics, learning techniques

Slide: F. Durand

Uses of color in (old-school) computer vision

Color histograms for indexing and retrieval

Swain and Ballard, Color Indexing, IJCV 1991.

Skin detection

M. Jones and J. Rehg, <u>Statistical Color Models with</u>

<u>Application to Skin Detection</u>, IJCV 2002.

Source: S. Lazebnik

Image segmentation and retrieval

C. Carson, S. Belongie, H. Greenspan, and Ji. Malik, Blobworld: Image segmentation using Expectation-Maximization and its application to image querying, ICVIS 1999.

Source: S. Lazebnik

Robot soccer

M. Sridharan and P. Stone, <u>Towards Eliminating</u>
<u>Manual Color Calibration at RoboCup</u>. RoboCup-2005:
Robot Soccer World Cup IX, Springer Verlag, 2006

Building appearance models for tracking

D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their</u>

<u>Appearance</u>. PAMI 2007.

Source: S. Lazebnik

Credits

 Most slides are mainly by Juan Carlos Niebles and Ranjay Krishna from Stanford Al Lab