Colles semaine 4 : Séries numériques : compléments

1 Sommes finies

- ▶ Généralités nombre de termes, indice de sommation, valeur moyenne
- ▶ Propriétés Linéarité, croissance (majorer, minorer une somme), relation de Chasles
- Sommation télescopique Formule $\sum_{k=m}^{n} (u_{k+1} u_k) = u_{n+1} u_m$ et variantes
 - ► On décompose la série par linéarité, puis changement d'indice. (éventuellement approche directe : on développe la somme avec des ... + ... + ... et on simplifie)
 - ▶ Télescopage de décomposition en éléments simples. L'exemple $\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 \frac{1}{n+1}$.

2 Convergence

2.1 Définitions

La série $\sum_{n\geqslant 0} a_n$ converge si la **suite des sommes partielles** $\left(S_N = \sum_{n=0}^N a_n\right)$ converge.

- ▶ Somme de la série La somme de la série est alors la limite $S = \lim_{N\to\infty} S_N$.
- Exemple Calcul de $\sum_{k=1}^{+\infty} \frac{1}{k(k+1)} = 1$.
- ▶ Divergence grossière Pour que la série $\sum_{n\geqslant 0} a_n$ converge, il faut que $a_n \xrightarrow{\infty} 0$.

 (mais cette condition n'est pas suffisante, comme pour $H_n = \sum_{k=1}^n \frac{1}{k}$, divergente)

2.2 Séries à termes positifs (SATP)

- ▶ Sommes partielles Si (a_n) est ≥ 0 , alors la suite $\left(S_n = \sum_{k=0}^n a_k\right)$ est croissante.
- ▶ Alternative des suites croissantes. Pour (S_n) croissante, alors (de deux choses l'une) :
 - (S_n) est majorée, et alors (S_n) converge,
 - (S_n) n'est pas majorée, et alors (S_n) tend vers $+\infty$.
- ▶ Exemples de maj-minoration des sommes partielles. Application : convergence de SÀTP.

2.3 Convergence par comparaison (pour les séries à termes positifs)

- ▶ Pour chacun des cas $\begin{vmatrix} u_n \leq v_n, \\ \text{ou } u_n \sim v_n, \\ \text{ou } u_n = o(v_n) \end{vmatrix}$ si $\sum v_n$ converge, alors $\sum u_n$ aussi.
- Séries de référence
 - *) Séries géométriques : La série $\sum_{n\geqslant 0}q^n$ converge ssi |q|<1, (la somme est alors $\frac{1}{1-q}$)
 - *) Séries de Riemann : La série $\sum_{n\geqslant 1} \frac{1}{n^{\alpha}}$ converge ssi $\alpha>1$
- ▶ Utilisation notable si $u_n = o\left(\frac{1}{n^2}\right)$, alors la série $\sum_{n \ge 0} u_n$ converge.

2.4 Convergence absolue

- ▶ **Définition** La série $\sum_{n\geq 0} a_n$ converge absolument si la série $\sum_{n\geq 0} |a_n|$ converge.
- ▶ Propriété fondamentale Toute série absolument convergente est aussi convergente.
- ▶ La réciproque est fausse

La série alternée $\sum_{n\geqslant 1} \frac{(-1)^n}{n+1}$ converge (vers $\ln(2)$!), mais **n'est pas** absolument convergente.

▶ Relation de comparaisons et convergence absolue

Les résultats de 2.3 s'appliquent aussi avec $|u_n|$ par convergence absolue.

3 Les questions de cours

1. Une formule (ou un exemple) de la sommation télescopique

2. Relations de comparaisons et convergence des sàtp

3. Convergence des séries de Riemann

4. Critère de convergence des séries à termes positifs (alternative des suites croissantes)

5. Le cours sur la notion de série absolument convergente

