Problem 1.

Determine voltages at all nodes and currents through all branches in the below two BJT circuits. Assume $\beta = 100$, $V_{D0} = 0.7 \ V$, $V_{sat} = 0.2 \ V$.

Problem 2.

Determine voltages at all nodes and currents through all branches in the below circuit. Assume $\beta = 100$, $V_{D0} = 0.7 V$, $V_{sat} = 0.2 V$.

Problem 3.

Find the voltages at all the nodes and the currents through all the branches. $V_t = 1 V$ and $(\mu_n C_{ox} W/L) = 1 mA/V^2$, $\lambda = 0$.

Problem 4.

The NMOS and PMOS transistors in the below circuit are matched with $k_n = k_p = 1 \, mA/V^2$, and $V_{tn} = -V_{tp} = 1 \, V$. Assuming $\lambda = 0$ for both transistors, find the drain currents i_{DN} and i_{DP} . And the voltage v_o for $v_i = 0 \, V$, $+2.5 \, V$.

Problem 5.

The NMOS transistors in the below circuit have $V_t = 0.5 V$ and $\mu_n C_{ox} = 250 \,\mu A/V^2 \,\lambda = 0$, and $L_1 = L_2 = 0.25 \,\mu m$. Find the required values of the gate width for each of Q_1 and Q_2 and the value of R, to obtain the voltage and current values indicated.

