Множина комплексних чисел С

Означення. Комплексним числом називається число вигляду z=a+bi, де $a,b\in\mathbb{R}$, i — уявна одиниця, для якої $i^2=-1$.

Дійсною частиною комплексного числа z = a + bi ϵ a = Re z, а уявною — b = Im z.

Означення. Два комплексні числа $z_1=a_1+b_1i$ та $z_2=a_2+b_2i$ називаються рівними $z_1=z_2$, якщо $\begin{cases} a_1=a_2\\ b_1=b_2. \end{cases}$

Дії з комплексними числами

1. Додавання

Якщо
$$z_1 = a_1 + b_1 i$$
, $z_2 = a_2 + b_2 i$, то $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2) i$.

2. Віднімання

Якщо
$$z_1 = a_1 + b_1 i$$
, $z_2 = a_2 + b_2 i$, то $z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2) i$.

3. Множення

Якщо
$$z_1=a_1+b_1i$$
, $z_2=a_2+b_2i$, то $z_1z_2=(a_1+b_1i)(a_2+b_2i)=a_1a_2+a_1b_2i+b_1a_2i+b_1b_2i^2=$
$$=(a_1a_2-b_1b_2)+(a_1b_2+b_1a_2)i.$$

Означення. Спряженим до комплексного числа z=a+bi називається комплексне число $\overline{z}=a-bi$

4. Ділення

Для того, щоб поділити комплекні числа, треба чисельник і знаменник домножити на спряжене число до знаменника, тобто, якщо $z_1=a_1+b_1i$, $z_2=a_2+b_2i$, то

$$\frac{z_1}{z_2} = \frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{(a_1 + b_1 i)(a_2 - b_2 i)}{(a_2 + b_2 i)(a_2 - b_2 i)} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{b_1 a_2 - a_1 b_2}{a_2^2 + b_2^2} i.$$

Операція спряження має такі властивості.

1.
$$z + \overline{z} = 2 \operatorname{Re} z$$
.

2.
$$z - \overline{z} = 2i \operatorname{Im} z$$
.

3.
$$\overline{\overline{z}} = z$$
.

4. Якщо
$$z \in \mathbf{R}$$
, то $\overline{z} = z$.

5.
$$\overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2.$$

6.
$$\overline{z_1 \cdot z_2} = \overline{z}_1 \cdot \overline{z}_2.$$

$$7. \qquad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2} \ .$$

Комплексному числу z=a+bi поставимо у відповідність точку M(a;b) площини ${\bf R}^2$. По осі Ox відкладаємо дійсну частину комплексного числа ${\bf Re}\,z$, по осі Oy — уявну частину ${\bf Im}\,z$. Початку координат відповідає z=0.

Спряженому комплексному числу $\bar{z} = a - bi$ відповідатиме точка, симетрична до точки M(a;b) стосовно дійсної осі.

Модуль і аргумент комплексного числа

Означення. Модулем комплексного числа z=a+bi називається довжина вектора \overrightarrow{OM} , тобто $r=|\overrightarrow{OM}|=\sqrt{a^2+b^2}$.

Означення. Аргументом комплексного числа z=a+bi називається кут $\varphi=\arg z$ між вектором \overrightarrow{OM} і додатним напрямом осі Ox.

Очевидно, що аргумент комплексного числа визначається з системи
$$\begin{cases} \cos \varphi = \frac{a}{r}, \\ \sin \varphi = \frac{b}{r}. \end{cases}$$

Вважатимемо, що $0 \le \varphi < 2\pi$.

Тригонометрична форма комплексного числа

Означення. Тригонометричною формою комплексного числа z називають його запис у вигляді $z = r(\cos \varphi + i \sin \varphi)$, де r = |z| - модуль числа z, а $\varphi = \arg z$.

Нехай задано два комплексні числа в тригонометричній формі $z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1)$ та $z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2)$. Тоді

$$z_1 \cdot z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)).$$

Отже, при множенні двох комплексних чисел їхні модулі перемножуються, а аргументи додаються. Це правило можна узагальнити для довільної скінченної кількості співмножників.

При діленні двох комплексних чисел їхні модулі діляться, а аргументи віднімаються

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right).$$

Якщо за формулою множення комплексних чисел у тригонометричній формі множити n однакових комплексних чисел $z = r(\cos \varphi + i \sin \varphi)$, то одержимо формулу Муавра

$$z^{n} = r^{n} (\cos n\varphi + i \sin n\varphi).$$

Добування кореня з комплексного числа

Означення. Коренем n-го степеня $(n\in \mathbf{N})$ з комплексного числа z називається таке число ω , що $\omega^n=z$. Його позначають $\sqrt[n]{z}$.

 $\text{Hexaй } z = r(\cos \varphi + i \sin \varphi).$

Якщо z = 0, то $\sqrt[n]{z} = 0$.

Припустимо, що $\sqrt[n]{z} = \rho(\cos\psi + i\sin\psi)$. Тоді

$$\rho^{n}(\cos n\psi + i\sin n\psi) = r(\cos \varphi + i\sin \varphi).$$

Два комплексні числа рівні, якщо їхні модулі рівні, а аргументи рівні, або відрізняються на число, кратне періоду 2π . Отож,

$$\rho^n = r, \quad n\psi = \varphi + 2\pi k, \qquad \text{ де } k \in \mathbf{Z}.$$

Звідси
$$\rho = \sqrt[n]{r}$$
, $\psi = \frac{\varphi + 2\pi k}{n}$, $k \in \mathbb{Z}$.

Отже,
$$\omega_k = \sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \ k \in \mathbf{Z}.$$

При $k=0,1,\dots,n-1$ одержимо різні значення ω_k , а далі вони будуть повторюватися.

Отже, для $z \neq 0$ існує n різних значень кореня n — го степеня, які знаходимо за формулою

$$z_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \ k = 0, 1, \dots, n - 1.$$

Корені n — го степеня з комплексного числа розміщені у вершинах правильного n -кутника.