Kapitel 3

"Gestänge" (Linkages)

Betrachte einen (stilisierten) Roboterarm mit zwei Gelenken, eines in $0 \in \mathbb{R}^2$ fixiert, und zwei Stangen fixer Länge $l_1 > l_2$, die über das weitere Gelenk miteinander verbunden sind.

Der Konfigurationsraum C, das heißt der Raum aller möglichen Positionen beider Stangen , wird durch ihre Winkel zur x-Achse parametrisiert, das heißt $C = T^2 = \mathbb{S}^1 \times \mathbb{S}^1$. Sein Arbeitsbereich W, das heißt die Menge der Positionen des Endpunktes, ist ein Annulus mit äußerem Radius $l_1 + l_2$ und innerem Radius $l_1 - l_2$. Das liefert die Parametrisierung

$$\alpha: C = T^2 \to W$$
 $(\vartheta_1, \vartheta_2) \mapsto l_1 \cdot \vartheta_1 + l_2 \cdot \vartheta_2$

Lemma

Es bezeichne Δ die Diagonale in T^2 und $\Delta^* = \{(\vartheta, -\vartheta) \mid \vartheta \in \mathbb{S}^1\}$. Das Komplement $T^2 \setminus \Delta \cup \Delta^*$ besitzt zwei Komponenten, deren jede von α diffeomorph auf W abgebildet wird.

1 Abstandsfunktion von Roboterarmen

Zur Untersuchung der Abstandsfunktion $\|\sum_{i\leq n} l_i \vartheta_i\|$ genügt die Betrachtung des Raumes aller möglichen "Gestalten" des Armes, seines Modellraumes: Seine "Gestalt" hängt nicht vom ersten Winkel, beziehungsweise seiner Länge im \mathbb{R}^2 ab. Der Modellraum sei definiert als

$$W = (\vartheta_1, \dots, \vartheta_n) \in \mathbb{S}^1 \times \dots \times \mathbb{S}^1 / SO(2)$$

Durch die Abbildung $[\vartheta_1, \ldots, \vartheta_n] \mapsto (1, \vartheta_2 \vartheta_1^{-1}, \ldots, \vartheta_n \vartheta_1^{-1})$ erhält man einen Diffeomorphismus $M \cong T^{n-1}$. Für jeden festen Abstand $\|\sum_{i \leq n} l_i \vartheta_i\|$ ist das Urbild der Abstandsfunktion der Raum der geschlossenen polygone mit Kantenlängen l_1, \ldots, l_n .

2 Polygonräume

Jedes geschlossene Polygon ist, bis auf euklidische Bewegungen, durch l_1,\ldots,l_n und die orientierten Winkel zwischen den Kanten charakterisiert. Normalisiert man die letzte Kante auf die x-Achse mit $\vartheta_n = -e_1$, so erhält man als Modulraum $M_l = \{(\vartheta_1,\ldots,\vartheta_n) \in \mathbb{S}^1 \times \ldots \times \mathbb{S}^1 \mid \sum l_i \vartheta_i = 0, \vartheta_n = -e_1\}$. Jede solche Normalisierung entspricht einer Drehung, also

$$M_l = \{(\vartheta_1, \dots, \vartheta_n) \in \mathbb{S}^1 \times \dots \times \mathbb{S}^1 \mid \sum l_i \vartheta_i = 0\}/SO(2)$$

wobei auch hier SO(2) diagonal auf dem n-Torus wirkt.

Jede Permutation $\sigma \in S_n$ induziert einen Diffeomorphismus $\varphi_{\sigma}: T^n \to T^n$ durch $\varphi_{\sigma}(\vartheta_1, \ldots, \vartheta_n) = (\vartheta_{\sigma(1)}, \ldots, \vartheta_{\sigma(n)})$. Da die Summation und SO(2)-Wirkung invariant unter der Permutation sind, erhält man so einen Diffeomorphismus $M_l \to M_{l_{\sigma}}$, mit $\tilde{l} = (l_{\sigma(1)}, \ldots, l_{\sigma(n)})$. Das Diffeomorphismus hängt nicht von der Reihenfolge der Kantenlängen ab.

 $l_2/$ $l_3/$ l

Im Fall n=3 nehmen wir $l_1 \geq l_2 \geq l_3$ an. Falls $l_1=l_2+l_3$ gilt, so ist das Dreieck entartet, es gilt $M_l=\{*\}$. Ist die Dreickesungleichung strikt erfüllt, das heißt $l_1 < l_2 + l_3$, so existieren zwei Dreiecke mit genau diesen Kantenlängen, welche sich durch eine Spiegelung unterscheiden. Gilt $l_1 > l_2 + l_3$, so existiert kein Dreieck mit diesen Kantenlängen und $M_l=\emptyset$.

Lemma

Für $n \geq 3$ gilt genau dann $M_l = \emptyset$, wenn $l_i > l_1 + l_2 + \ldots + \hat{l_i} + \ldots + l_n$ für ein $i \leq n$ gilt.

Beweis

Offensichtlich ist die Bedingung hinreichend. Es gelte $l_i = \sum_{i \neq j} l_j$ für alle $i \leq n$. Für n = 3 ist die Aussage klar. Für $n \geq 4$ existiert ein $i \leq n$, so dass

$$l_i + l_{i+1} \le l_1 + \ldots + l_{i-1} + l_{i+2} + \ldots + l_n$$

gilt, denn wäre dem nicht so, so gälte

$$2(l_i + l_{i+1}) > \sum l_i = \mathcal{L}$$

für alle i und es folgte

$$4 \cdot \mathcal{L} = \sum_{i \le n} 2(l_i + l_{i+1}) > n \cdot \mathcal{L}.$$

Nach Induktion existiert ein geschlossenes Polygon mit Kantenlängen $l_1, l_2, \ldots, l_i + l_{i+1} + \ldots + l_n$, das heißt ein n-gon mit kollinearen Kanten der Längen l_i und l_{i+1} . Damit gilt $M_l \neq \emptyset$.

Wann ist M_l eine Mannigfaltigkeit? Ein **Längenvektor** $l = (l_1, \ldots, l_n)$ heißt **generisch**, wenn es $keine \ \varepsilon_i \in \{+1, -1\}$ gibt mit $\sum_{i < n} \varepsilon_i l_i = 0$.

Satz

Ist $l \in \mathbb{R}^n_{>0}$ generisch, so ist M_l eine kompakte orientierbare (n-3)-Mannigfaltigkeit ohne Rand.

Es sei $W = T^n/SO(2)$ der Modulraum eines Roboterarmes mit n Stangen und

$$f_l: W \to \mathbb{R}$$
 $[\vartheta_1, \dots, \vartheta_n] \mapsto \|\sum_{i \le n} l_i \vartheta_i\|^2$

die **Höhenfunktion** zum Längenvektor $l = (l_1, \ldots, l_n)$. Ist $f_l(p) = 0$, so ist der Arm geschlossen, das heißt p bestimmt ein geschlossenes ebenes n-gon mit Kantenlängen l_1, \ldots, l_n , d. h. $p \in M_l$. Der Modulraum liegt als Nullstellenmenge von f_l in dem (n-1)-Torus W; M besteht genau aus den Maximalstellen von f_l .

Kollineare Konfigurationen sind (topologisch) interessante Punkte in W.

Eine Teilmenge $\mathcal{J} \subseteq \{1, \ldots, n\}$ heißt **kurz** (beziehungsweise **lang**), falls $\sum_{j \in \mathcal{J}} l_j < \sum_{i \neq j} l_j$ (beziehungsweise ... > ...) gilt, andernfalls heiße sie **ausgewogen**. \mathcal{J} ist genau dann ausgewogen, wenn sein Komplement \mathcal{J}^c ausgewogen ist. Es existiert genau dann ein ausgewogenes \mathcal{J} , wenn l nicht generisch ist.

Ist \mathcal{J} lang oder ausgewogen, so sei $p_{\mathcal{J}} = [\vartheta_1, \dots, \vartheta_n] \in W$ mit $\vartheta_i = 1$ für $i \in \mathcal{J}$ und $\vartheta_i = -1$ sonst. Insbesondere gilt $p_{\mathcal{J}} = p_{\mathcal{J}^c}$ für ausgewogenes \mathcal{J} .

Lemma

Die kritischen Punkte von $f_l: W \setminus M_l \to \mathbb{R}$ sind genau die Konfigurationen $p_{\mathcal{J}}$ für lange Teilmengen \mathcal{J} . Jeder solche Punkt ist nicht-entartet und hat den Morse-Index $n - |\mathcal{J}|$.

Bevor wir mit dem eigentliche Beweis beginnen erinnern wir uns noch zunächst an die Vorlesung vom letzten Semester. Die **Hessesche** ist gegeben durch $H_f = \nabla^2 f$ für ein $f \in C^{\infty}(M)$ und es gilt (ACHTUNG, stimmt nicht mit Kapitel 9.1 der alten VL überein!)

$$H_f(X,Y) = X(\mathrm{d}f(Y)) - \mathrm{d}f(\nabla_X f) = X(Y(f)) - (\nabla_X f)(f)$$

$$= [X,Y](f) + Y(Xf) - \underbrace{(\nabla_X Y - \nabla_Y X)}_{=[X,Y]f} f - \nabla_Y X f$$

$$= Y(Xf) - \nabla_Y X f = H_f(Y,X)$$

 H_f ist im Allgemeinen nicht C^{∞} -linear, aber in kritischen Punkten von f: Sei $X_p \in T_p M$, setze fort zu Vektorfeldern X und \tilde{X} auf M. Dann gilt

$$H_f(\tilde{X},Y)|_p = \tilde{X}_p(Yf) - (\nabla_{\tilde{X}_p}Y)f = X_p(Yf) - \underbrace{\mathrm{d}f|_p}_{=0}(\nabla_{\tilde{X}_p}Y) = X_p(Yf).$$

In kritischen Punkten ist H_f C^{∞} -linear und hängt nicht von der Wahl des Zusammenhangs ab. In lokalen Koordinaten sei dann $X_p = \sum_{i \leq n} \zeta^i \frac{\mathrm{d}}{\mathrm{d}x^i}$, $Y_p = \sum_{i \leq n} \eta^i \frac{\mathrm{d}}{\mathrm{d}x^i}$, und ζ^i, η^i konstant. Dann folgt

$$H_f(X_p, Y_p) = X_p(Yf) = X_p \Big(\sum_{i \le n} \eta^i \frac{\partial}{\partial x^i} \Big)$$

$$= \sum_{j \le n} \zeta^i \Big(\underbrace{\frac{\partial \eta^i}{\partial x^i}}_{-0} \frac{\partial f}{\partial x^i} + \eta^i \frac{\partial^2 f}{\partial x^i \partial x^j} \Big) = \sum_{i,j \le n} \eta^i \zeta^j \frac{\partial^2 f}{\partial x^i \partial x^j}$$

Für den beweis des Lemmas setzen wir $l = (l_1, \ldots, l_n)$ und $f_l : W \setminus M_l \to \mathbb{R}$ mit $[u_1, \ldots, u_n] \mapsto \|-\sum l_i u_i\|^2$. Die kritischen Punkte von f_l sind genau die (kollinearen) Konfigurationen $p_{\mathcal{J}}$ für lange Teilmengen $\mathcal{J} \subseteq \{1, \ldots, n\}$ $(\sum_{i \in \mathcal{J}} l_i > \sum_{j \notin \mathcal{J}} l_j)$ und $p_{\mathcal{J}} = (u_1, \ldots, u_n)$ mit $u_i = 1$ für $i \in \mathcal{J}$ und $u_i = -1$ sonst). Jeder solche kritische Punkt $p_{\mathcal{J}}$ ist nicht ausgeartet und hat den Morse-Index $n - |\mathcal{J}|$.

Beweis (vom Lemma)

Wir betrachten die Abbildung

$$f_l: T^n \twoheadrightarrow W \xrightarrow{f_l} \mathbb{R}$$
 $(u_1, \dots, u_n) \mapsto -\|\sum l_i u_i\|^2$

und setzen $u_i = e^{i\vartheta_i} = (\cos\vartheta_i, \sin\vartheta_i)$. Dann gilt

$$\begin{split} f_l(u) &= -\left(\sum_{i \le n} l_i^2 \cos \vartheta_i\right)^2 - \left(\sum_{i \le n} l_i \sin \vartheta_i\right)^2 \\ &= -\left(\sum_{i \le n} l_i^2 \cos^2 \vartheta_i + 2\sum_{i < j} l_i l_j \cos \vartheta_i \cos \vartheta_j\right) \\ &- \left(\sum_{i \le n} l_i^2 \sin^2 \vartheta_i + 2\sum_{i < j} l_i l_j \sin \vartheta_i \sin \vartheta_j\right) \\ &= -\left(\sum_{i \le n} l_i^2 (\cos^2 \vartheta_i + \sin^2 \vartheta_i)\right) - 2\sum_{i < j} l_i l_j \underbrace{\left(\cos \vartheta_i \cos \vartheta_j + \sin \vartheta_i \sin \vartheta_j\right)}_{=\cos(\vartheta_i - \vartheta_i)} \end{split}$$

Wie steht es nun um die kritischen Punkte? Es gilt

$$\frac{\partial f_l}{\partial \vartheta_k} = -2l_k \sum_{i \le n} l_i \sin(\vartheta_i - \vartheta_k) = -2l_k \sum_{i \le n} l_i (\sin \vartheta_i \cos \vartheta_k - \cos \vartheta_i \sin \vartheta_k) = 0$$

genau dann, wenn

$$\cos \vartheta_k \underbrace{\sum_{i \le n} l_i \sin \vartheta_i}_{=:y(u)} = \sin \vartheta_k \underbrace{\sum_{i \le n} l_i \cos \vartheta_i}_{=:x(u)}$$

- **1. Fall:** $x(u) = y(u) = 0 \Leftrightarrow -x^2(u) y^2(u) = f_l(u) = 0 \Leftrightarrow u \in M_l$ **2. Fall:** $\tan \vartheta_k \equiv \frac{y(u)}{x(u)} \forall k \leq n \Leftrightarrow \vartheta_i \in \{\vartheta_1, \vartheta_1 + \pi, \vartheta_1 \pi\} \Leftrightarrow u_i = \pm u_j \forall i, j \Leftrightarrow u \text{ ist}$ kollineare Konfiguration

Es sei $\mathcal{J} \subseteq \{1, \ldots, n\}$ eine lange Teilmenge, $p_{\mathcal{J}} = (u_1, \ldots, u_n)$ mit $u_i = 1$ für $i \in \mathcal{J}$ und $u_i = -1$ für $i \notin \mathcal{J}$. Dann ist $\mathcal{L}_{\mathcal{J}} = \sum_{i \leq n} l_i u_i > 0$ und es gilt $f_l(p_{\mathcal{J}}) = -\mathcal{L}_{\mathcal{J}}^2$. Die Hessesche von f_l im Punkt $p_{\mathcal{.}\mathcal{T}}$ ist

$$\frac{\partial^2 f_l}{\partial \vartheta_i \partial \vartheta_j} = \begin{cases} -2l_i l_j \cos(\vartheta_j - \vartheta_i) & \text{falls } i \neq j \\ 2l_i \sum_{k \neq i} l_k \underbrace{\cos(\vartheta_i - \vartheta_k)}_{=u_i u_k} & \text{falls } i = k \end{cases}.$$

Es gilt

$$l_i \sum_{k \neq i} l_k u_i u_k = l_i u_i \sum_{k \neq i} l_k u_k = l_i u_i (\mathcal{L}_{\mathcal{J}} - l_i u_i) = l_i^2 \left(\frac{l_i \mathcal{L}_i}{l_i} - 1 \right) \quad \text{und} \quad d_i = \frac{u_i \mathcal{L}_{\mathcal{J}}}{l_i},$$

also folgt

$$\frac{1}{2} \frac{\partial^2 f_l}{\partial \vartheta_i \partial \vartheta_j} = \begin{cases} -l_i l_j u_i u_j = (l_i u_i)(l_j u_j)(-1) \\ l^2 (d_i - 1) = (l_i u_i)(l_i u_i)(d_i - 1) \end{cases}.$$

Wir setzen nun für drei Matrizen

$$D = \begin{pmatrix} d_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_n \end{pmatrix} \qquad A = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix} \qquad B = \begin{pmatrix} l_1 u_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & l_n u_n \end{pmatrix}$$

und schreiben dann

$$\frac{1}{2}H_f(p_{\mathcal{J}}) = B^T(D - A)B.$$

Es genügt zu zeigen, dass D-A auf $\mathcal{T}_{[p_{\mathcal{J}}]}\,W$ nicht ausgeartet mit Signatur $n-|\,\mathcal{J}\,|$ ist:

$$\det(D - A) = \prod_{i \le n} d_i (1 - \sum_{j \le n} \frac{1}{d_j})$$

Ohne Einschränkung sei $\mathcal{J} = \{k, k+1, \ldots, n\}$. Dann gilt $u_i = 1$ und $d_i < 0$ für i < k, dann gilt für die Hauptminoren von Ordnung l < k

$$\det(D - A)_{ll} = \prod_{i \le n} d_i \left(\underbrace{1 - \sum_{j \le l} \frac{1}{d_j}}_{>0} \right).$$

Für $l \ge k$ gilt

$$1 - \sum_{j \le l} \frac{1}{d_j} = 1 - \sum_{j \le l} \frac{l_{\mathcal{J}}}{u_j \mathcal{L}_{\mathcal{J}}} = \mathcal{L}_{\mathcal{J}}^{-1} \left(\mathcal{L}_{\mathcal{J}} - \sum_{j \le l} l_j u_j \right) = \mathcal{L}_{\mathcal{J}}^{-1} \left(\sum_{i \le n} l_i u_i - \sum_{j \le l} l_j u_j \right)$$

$$= \mathcal{L}_{\mathcal{J}}^{-1} \left(\sum_{i > l} l_i u_i \right) \begin{cases} > 0 & \text{für } k \le l < n \\ = 0 & \text{für } l = n \end{cases}$$

Es gilt

$$\operatorname{sign}(\det(D-A)_{ll}) = \begin{cases} (-1)^{l} & \text{für } l < k \\ (-1)^{k-1} & \text{für } k \le l < k \end{cases}$$

und D-A hat $n-|\mathcal{J}|$ negative Eigenwert, $n-k=|\mathcal{J}|-1$ positive Eigenwerte und genau einen Eigenwert 0. Da f_l invariant unter der SO(2)-Wirkung ist, gilt in $p_{\mathcal{J}}$ in Richtung der Faser $H_{f_l}(p_{\mathcal{J}},p_{\mathcal{J}})=\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2}f_l(\lambda p_{\mathcal{J}})=0$. Damit ist H_{f_l} auf W in $[p_{\mathcal{J}}]$ nicht ausgeartet und hat Signatur $n-|\mathcal{J}|$.

Satz

Ist $l = (l_1, ..., l_n)$ generisch, das heißt gilt $\sum_{i \le n} l_i u_i \ne 0$ für alle $u_i \in \{1, -1\}$, so ist M_l eine kompakte orientierbare (n-3)-Mannigfaltigkeit ohne Rand.

Beweis

Seien $l'=(l_1,\ldots,l_{n-1})$ und $f_{l'}^{-1}=(-l_n^2)=M_l$. Betrachte den "Roboterarm" mit (n-1) Segmenten und $f_{l'}:W=T^{n-2}\to\mathbb{R}$. Nach dem obigen Lemma hat $f_{l'}$ genau einen kritischen Wert $-a^2\neq 0$, wenn eine kollineare Konfiguration (u_1,\ldots,u_{n-1}) existiert mit $u_i\in\{1,-1\}$, so dass $-a^2=\|\sum_{i\leq n}l_iu_i\|^2=f_{l'}(u)\Leftrightarrow \pm a+\sum l_iu_i=0\Leftrightarrow (l_1,\ldots,l_{n-1},a)$ ist nicht generisch.

 l_1 l_n

Das heißt $-l_n^2$ ist ein regulärer Wert von $f_{l'}$ und damit ist $f_{l'}^{-1}(-l_n^2) = M_l$ eine kompakte orientierbare Mannigfaltigkeit in $W \cong T^{n-2}$ der Kodimension 1.

Was ist mit nicht-generischen Längenvektoren? Betrachte die Urbilder von kritischen Punkten.

Lemma (Morse-Lemma)

Es sei p ein nicht-entarteter kritischer Punkt von Index k einer glatten Funktion f auf einer Mannigfaltigkeit M. Dann existieren lokale Koordinaten $x=(x^1,\ldots,x^n)$ von M um p mit

$$f = f(p) - (x^1)^2 - \dots - (x^k)^2 + (x^{k+1})^2 + \dots + (x^n)^2$$

Beweisskizze

Für f(p) = 0 schreibe

$$f(x) = \int_0^1 \frac{\mathrm{d}(f(tx^1, \dots, tx^n))}{\mathrm{d}t} \mathrm{d}t = \sum_{i \le n} x^i \underbrace{\int_0^1 \frac{\partial f}{\partial x^i}(tx) \mathrm{d}t}_{=:g_i(x)}$$

$$g_i(0) = \frac{\partial f}{\partial x^i}(0) = 0$$

wobei analog zu f für ensprechends \tilde{g}_{ij}

$$g_i(x) = \sum_{j \le n} x^j \tilde{g}_{ij}(x)$$
$$f(x) = \sum_{i,j} x^i x^j \left(\frac{\tilde{g}_{ij} + \tilde{g}_{ji}}{2}\right) = \sum_i x^i x^j h_{ij}$$

und dementsprechend

$$H_f(0) = (h_{ij})_{ij}.$$

"Verbiege" nun die Koordinaten so, dass gilt

$$(h_{ij}) = \begin{pmatrix} -1 & & & & & \\ & \ddots & & & \sigma & \\ & & -1 & & & \\ & & & +1 & & \\ & \sigma & & \ddots & \\ & & & & +1 \end{pmatrix}$$

Lokal hat f um p entlang k Kurven in linear unabhängige Richtungen Maxima und entsprechend n-k Minima.

Allgemein gilt $f(q) = c - (x^1)^2 - \ldots + (x^{k+1})^2 + \ldots + (x^n)^2 = c - \sum_{i \le k} (x^i)^2 + \sum_{i > k} (x^i)^2$, und mit $x = (x^1, \ldots, x^k)$ und $y = (y^1, \ldots, y^{n-k}) = (x^{k+1}, \ldots, x^n)$ schreibe $f(q) = c - \|x\|^2 + \|y\|^2$. Es gilt genau dann f(q) = c, wenn $\|x\| = \|y\|$.

Dies ist genau dann der Fall, wenn entweder x(q) = y(q) = 0 gilt, oder $\zeta \in \mathbb{S}^{k-1}$, $\eta \in \mathbb{S}^{n-k-1}$ und $r \in \mathbb{R}_{>0}$ existieren, mit $x(q) = r\zeta$ und $y(q) = r\eta$. Es existiert also eine Umgebung U von p, so dass

$$f^-(c)\cap U\cong C(\mathbb{S}^{k-1}\times\mathbb{S}^{n-k-1})=\mathbb{S}^{k-1}\times\mathbb{S}^{n-k-1}\times [0,1]/\!\!/\mathbb{S}^{k-1}\times\mathbb{S}^{n-k-1}\times \{0\}$$

und

$$\overline{x}(t\zeta^1,\dots,t\zeta^k,t\eta^1,\dots,t\eta^{n-k}) \leftarrow [\zeta,\eta,t]$$

Eine weitere Folgerung des Morse-Lemmas ist, dass nicht-entartete kritische Punkte stets isoliert sind. Eine Teilmenge $\mathcal{J} \subset \{1,\ldots,n\}$ ist genau dann **ausgewogen** bezüglich eines Längenvektors (l_1,\ldots,l_n) , das heißt $\sum_{i\in\mathcal{J}}l_i=\sum_{i\notin\mathcal{J}}l_i$, wenn entweder $\mathcal{I}=\mathcal{J}$ oder sein Komplement $\mathcal{J}=\mathcal{J}^c$ eine lange Teilmenge in $\{1,\ldots,n-1\}$ bezüglich $l'=(l_1,\ldots,l_{n-1})$ ist und $f_{l'}=(p_{\mathcal{J}})=-l_n^2$.

In einer Umgebung eines kritischen Punktes ist $f_{l'}^-(-l_n^2)$ homöomorph zu einem Kegel über dem Produkt der Spären der Dimensionen

$$\operatorname{ind}(p_{\mathcal{I}}) - 1 = (n-1) - |\mathcal{J}| - 1 = n - |\mathcal{J}| - 2$$

und

$$(n-1) - \text{ind}(p_{\mathcal{J}}) - 1 = |\mathcal{J}| - 2.$$

Damit gilt der folgende Satz:

Satz

Ist $l = (l_1, \ldots, l_n)$ ein nicht-generischer Längenvektor, so ist M_l kompakt und bis auf endlich viele Punkte eine (n-3)-Mannigfaltigkeit. Eine Umgebung jeder dieser unendlich vielen Singularitäten ist homöomorph zu

$$C(\mathbb{S}^{n-|\mathcal{J}|-2}\times\mathbb{S}^{|\mathcal{J}|-2}),$$

wobei \mathcal{J} eine bezüglich l ausgeartete Teilmenge ist.

Der Diffeomorphietyp von M_l hängt nicht von der Reihenfolge der Längen l_1, \ldots, l_n ab, das heißt $\sigma \in S_n$ definiert einen Diffeomorphismus von M_l auf $M_{\sigma(l)}$.

$$[M_l \hookrightarrow \mathbb{R}^n]$$

Satz (Ferber-Schütz)

Es sei $l = (l_1, \ldots, l_n)$ ein geordneter Längenvektor, das heißt $l_1 \geq l_2 \geq \ldots \geq l_n > 0$, und es bezeichne σ_k (beziehungsweise μ_k) die Anzahl der kurzen (beziehungsweise ausgewogenen) Teilmengen $\mathcal{J} \subseteq \{1, \ldots, n\}$ mit $|\mathcal{J}| = k + 1$ und $1 \in \mathcal{J}$. Dann ist $H_k(M_l; \mathbb{Z})$ frei abelsch vom Rang $\sigma_k + \mu_k + \sigma_{(n-3)} - k$, wobei $n - 3 = \dim M_l$.

Beispiel

Sei l=(3,2,2,1,1), n=5 und dim $M_l=2$. Es existieren keine ausgewogenen Teilmengen, das heißt $\mu_k=0$.

$$\sigma_{0} = \# \underset{1 \in \mathcal{J}, |\mathcal{J}| = 1}{\text{kurze}} \mathcal{J} = \#\{\{1\}\} = 1$$

$$\sigma_{1} = \# \underset{1 \in \mathcal{J}, |\mathcal{J}| = 2}{\text{kurze}} \mathcal{J} = \#\{\{1, 4\}, \{1, 5\}\} = 2$$

$$\sigma_{2} = \# \underset{1 \in \mathcal{J}, |\mathcal{J}| = 3}{\text{kurze}} \mathcal{J} = 0$$

Damit:

$$\underbrace{\chi^{(M_l)}}_{=2-2g} = \sum_{k} (-1)^k \beta_k = (1+0+0) - (2+0+2) + (0+0+1) = 1-4+1 = -2$$

Also:

$$M_l = \bigcirc$$

3 Walkers Vermutung

Welche Invarianten von M_l bestimmen den Längenvektor von l (bis auf geeignete Äquivalenz)? Für $l \in \mathbb{R}^n_{>0}$ und $t \in \mathbb{R}_{>0}$ gilt $M_l \cong M_{tl}$. Zur Definition der geforderten Äquivalenz betrachtet man zunächst Längenvektoren im Inneren $A \subset \Delta^{n-1} - \{(l_1, \ldots, l_n) \in \mathbb{R}^n_{>0} \mid \sum l_i = 1\}$ des Standardsimplex.

Weiter zerlegt man A wie folgt in Teilmengen niedrigerer Dimension. Für jedes $\mathcal{J} \subseteq \{1, \dots, n\}$ definiert

$$\sum_{i \in \mathcal{J}} l_i = \sum_{i \notin \mathcal{J}} l_i$$

eine Hyperebene $H_{\mathcal{J}}$. Es bezeichnen $A^{(k)} \subset A$ die Menge der Längenvektoren l, welche in mindestens (n-1)-k solcher Hyperebenen $H_{\mathcal{J}}$ enthalten sind, das heißt

$$A^{(0)} \subset A^{(1)} \subset A^{(2)} \subset \ldots \subset A^{(n-1)} \subset A$$
.

Ein **k-Stratum** ist eine Zusammenhangskomponente von $A^{(k)} \setminus A^{(k-1)}$. Zwei Längenvektoren liegen in demselben Stratum, falls sie die gleichen kurzen Teilmengen besitzen.

Maximale Strata, Zusammenhangskomponenten von $A^{(n-1)} \setminus A^{(n-2)}$, heißen **Kammern**. Betrachte die Involution (Spiegelung an der x-Achse)

$$\tau: M_l \to M_l$$
 $[u_1, \dots, u_n] \mapsto [\overline{u}_1, \dots, \overline{u}_n]$

Ist n ein Fixpunkt von τ , so gilt $u_i \in \mathbb{R}$, $u_i = \pm 1$ für alle $i \leq n$, und somit ist jeder Fixpunkt eine kollineare Konfiguration. Insbesondere besitzt τ für generische l keine Fixpunkte.

Satz (Hausmann, Rodriguez '04)

Falls l und l' in denselben Straten liegen, so sind M_l und $M_{l'}$ τ -äquivariant diffeomorph.

Walkers Vermutung

Es seien $l, l' \in A$ generische Längenvektoren. Falls die ganzzahligen Kohomologieringe von M_l und $M_{l'}$ graduiert isomorph sind, so existiert ein $\sigma \in S_n$ so, dass l und $\sigma(l')$ in derselben Kammer liegen.

Satz (Faber, Hausmann, Schütz '07)

Es seien $l, l' \in A$ geoordnete Längenvektoren. Falls dann ein Isomorphismus geraduierter Ringe von $H^*(M_l; \mathbb{Z})$ nach $H^*(M_{l'}; \mathbb{Z})$ existiert, welcher mit τ^* kommutiert, so liegen l und l' in demselben Stratum. Insbesondere sind dann M_l und $M_{l'}$ τ -äquivalent diffeomorph.

Betrachte den Modulraum N_l der geschlossenen Polygone in \mathbb{R}^3 mit Kantenlängen l_1, \ldots, l_n , das heißt

$$N_l = \{(u_1, \dots, u_n) \in \mathbb{S}^2 \times \dots \times \mathbb{S}^2 \mid \sum l_i u_i = 0\}_{SO(3)}$$

Hier lässt sich zeigen, dass für generische l N_l eine Mannigfaltigkeit der Dimension 2(n-3) ist.

Satz (Faber, Hausmann, Schütz '07)

Es sei $n \neq 4$ und es seien $l, l' \in A$ generische geordnete Längenvektoren. Falls $H^*(M_l; \mathbb{Z})$ und $H^*(M_{l'}; \mathbb{Z})$ isomorph (siehe oben) sind, so liegen l und l' in derselben Kammer.

Für n=4 ist die Aussage falsch: Die Längenvektoren l=(2,1,1,1) und l'=(2,2,2,1) liegen in unterschiedlichen Kammern. Es gilt

$$M_l\cong \mathbb{S}' \hspace{1cm} M_{l'}\cong \mathbb{S}^1\dot{\cup}\mathbb{S}^1 \hspace{1cm} N_l\cong \mathbb{S}^2\cong N_{l'}$$

Ein Längenvektor heißt normal, falls gilt

$$\bigcap_{\substack{|\mathcal{J}|=3\\\text{lang und ausgew.}}} \mathcal{J} \neq \emptyset.$$

Eine Kammer heißt **normal**, wenn sie einen normalen Längenvektor enthält; damit sind alle darin normal.

Satz (Faber, Hausmann, Schütz '07)

Es seien l und l' geordnete Längenvektoren und es gäbe einen Isomorphismus $H^*(M_l; \mathbb{Z}) \to H^*(M_{l'}; \mathbb{Z})$. Falls l normal ist, so ist l' normal und l und l' liegen in denselben Straten.

Dieser Satz liefert uns

1) Die Anzahl der S_n -Bahnen von normalen Kammern ist höchstens so groß wie die Anzahl der Diffeomorphie Typen von M_l für generische l. Diese Anzahl wiederum ist höchstens so groß wie die Anzahl der S_n -Bahnen von Kammern.

$$\#_{\text{norm. Kammern}}^{S_n\text{-Bahnen}} \le \#_{\text{von }M_l,l}^{\text{Diffeom.-Typen}} \le \#_{\text{v. Kammern}}^{S_n\text{-Bahnen}}$$

2) Die Anzahl der S_n -Bahnen von normalen Strata ist höchstens so groß wie die Anzahl der Diffeomorphie Typen von M_l . Diese Anzahl wiederum ist höchstens so groß wie die Anzahl der S_n -Bahnen von Strata.

$$\# \frac{S_n\text{-Bahnen}}{\text{norm. Strata}} \leq \# \frac{\text{Diffeom.-Typen}}{\text{von } M_l} \leq \# \frac{S_n\text{-Bahnen}}{\text{v. Strata}}$$

Für große n existieren wenige nicht-normale Strata: Es sei $\mathcal{N}_n\subseteq A^{(n-1)}$ die Vereinigung aller normalen Strata. Dann gilt

$$\frac{\operatorname{vol}(A^{(n-1)}\setminus\mathcal{N}_n)}{\operatorname{vol}(A^{(n-1)})}\leq \frac{n^6}{2^n}.$$