Homework 9 (Chap 10-11)

1. Fig. 1 shows two masses connected by a cord passing over a pulley of radius R_0 and moment of inertia I. Mass M_A slides on a frictionless surface, and M_B hangs freely. Determine the acceleration of the masses.

- 2. In Fig. 2, if a billiard ball is hit in just the right way by a cue stick, the ball will roll without slipping immediately after losing contact with the stick. Consider a billiard ball (radius r, mass M) at rest on a horizontal pool table. A cue stick exerts a constant horizontal force F on the ball for a time t at a point that is a height h above the table's surface (see the figure below). Assume that the coefficients of kinetic friction and the static friction between the ball and table are μ_k and μ_s , respectively. Determine the range for h so that the ball will roll without slipping immediately after losing contact with the stick.
- 3. As shown in Fig. 3, on an inclined surface, a dumbbell with outer diameter R and inner diameter r (r = 3/5R) is pulled by a force F with a string winded around its inner post. Give that the inclined angle of the surface $\theta = 37^{\circ}$, m the mass of the dumbbell, the moment of inertia of the dumbbell $I_c = 4/5 \ mR^2$, the static friction coefficient $\mu_s = 3/5$. For a given magnitude of force F that makes the dumbbell to execute pure roll motion, draw the free-body diagram and determine the direction and magnitude of the acceleration of the dumbbell, and the friction force.

1. Fig. 1 shows two masses connected by a cord passing over a pulley of radius R_0 and moment of inertia I. Mass M_A slides on a frictionless surface, and M_B hangs freely. Determine the acceleration of the masses.

From the freebody diagram of M_A , we have

$$\vec{T}_A + \vec{N}_A + \vec{M}_A g = M_A \vec{a}_A$$

$$\Rightarrow x: -T_A = M_A a_A \quad (1)$$

$$y: N_A - M_A g = 0 \quad (2)$$

From the freebody diagram of M_B, we have

$$\vec{T}_B + \vec{M}_B g = M_B \vec{a}_B \quad (3)$$

$$\Rightarrow y: T_B - M_B g = M_B a_B$$
 (4)

From the freebody diagram of the pulley, we have

$$\vec{R}_0 \times \vec{T}_A + \vec{R}_0 \times \vec{T}_B = I\vec{\alpha}$$

$$\Rightarrow -R_0 T_A + R_0 T_B = I\alpha \quad (5)$$

The physical relation between a_A , a_B , and α is (for α , the positive direction is counter clockwise)

$$a_A = a_B = -R_0 \alpha \equiv a$$
 (6)

From (1),(4),(5), and (6) we get

$$\Rightarrow R_0 M_A a + R_0 (M_B g + M_B a) = -I \frac{a}{R_0}$$

$$\Rightarrow a = \frac{-M_B g}{M_A + M_B + I/R_0^2}$$

Problem 1 (solution 1, +torque for rollin to the same direction as a)

If a billiard ball is hit in just the right way by a cue stick, the ball will roll without slipping immediately after losing contact with the stick. Consider a billiard ball (radius r, mass M) at rest on a horizontal pool table. A cue stick exerts a constant horizontal force F on the ball for a time t at a point that is a height h above the table's surface (see the figure below). Assume that the coefficients of kinetic friction and the static friction between the ball and table are μ_k and μ_s , respectively. Determine the range for h so that the ball will roll without slipping immediately after losing contact with the stick.

$$\sum \vec{F} = M\vec{a}$$

$$\sum \vec{\tau} = \vec{r} \times \vec{F} = I\vec{\alpha}$$

$$\sum F_x = F - f_s = Ma$$

$$\sum F_y = N - Mg = 0$$

$$\sum \tau = F(h - r) + f_s \cdot r = I\alpha$$

Roll without slipping $\rightarrow a = r\alpha$

$$\frac{F - f_s}{M} = r \frac{F(h - r) + f_s \cdot r}{I}$$

$$\frac{2}{5} Mr^2 (F - f_s) = Mr \left[F(h - r) + f_s \cdot r \right]$$

$$\Rightarrow \frac{2}{5}r(F-f_s) = \left[F(h-r) + f_s \cdot r\right]$$

$$-\frac{7}{5}rf_s = F(h - \frac{7}{5}r)$$

$$\Rightarrow \frac{7}{5}(1 + \frac{Mg}{F}\mu_s) \ge \frac{h}{r} \ge \frac{7}{5}(1 - \frac{Mg}{F}\mu_s)$$

+ torque for rolling to the same direction as *a*

<u>Problem 1(solution 2, direction of torque and the angular acceleration follows the coordinate system of the free body diagram)</u>

If a billiard ball is hit in just the right way by a cue stick, the ball will roll without slipping immediately after losing contact with the stick. Consider a billiard ball (radius r, mass M) at rest on a horizontal pool table. A cue stick exerts a constant horizontal force F on the ball for a time t at a point that is a height h above the table's surface (see the figure below). Assume that the coefficients of kinetic friction and the static friction between the ball and table are μ_k and μ_s , respectively. Determine the range for h so that the ball will roll without slipping immediately after losing contact with the stick.

Roll without slipping
$$\Rightarrow \alpha = r\alpha$$

$$a = \frac{F - f_s}{M}, \quad \alpha = -\frac{F(h - r) + f_s \cdot r}{I}$$

$$\Rightarrow \frac{F - f_s}{M} = r \frac{F(h - r) + f_s \cdot r}{I}$$

$$\Rightarrow \frac{2}{5}Mr^2(F - f_s) = Mr[F(h - r) + f_s \cdot r]$$

$$\Rightarrow \frac{2}{5}r(F - f_s) = [F(h - r) + f_s \cdot r]$$

$$\Rightarrow -\frac{7}{5}rf_s = F(h - \frac{7}{5}r)$$

$$\Rightarrow f_s = F(1 - \frac{5}{7r}h) \qquad (|f_s| \le Mg\mu_s)$$

$$\Rightarrow \frac{7}{5}(1 + \frac{Mg}{F}\mu_s) \ge \frac{h}{r} \ge \frac{7}{5}(1 - \frac{Mg}{F}\mu_s)$$

2.As shown in Fig. x, on a inclined surface, a dumbbell with outer diameter \mathbf{R} and inner diameter \mathbf{r} ($\mathbf{r} = 3/5\mathbf{R}$) is pulled by a force \mathbf{F} with a string winded around its inner post. Give that the inclined angle of the surface $\theta = 37^{\circ}$, \mathbf{m} the mass of the dumbbell, the moment of inertia of the dumbbell $I_c = 4/5$ $\mathbf{m}\mathbf{R}^2$, the static friction coefficient $\mu_s = 3/5$. For a given magnitude of force \mathbf{F} that makes the dumbbell to execute pure roll motion, draw the free-body diagram and determine the direction and magnitude of the acceleration of the dumbbell, and the friction force. ($\sin 37^{\circ} = 3/5$)

$$\sum \vec{F} = m\vec{a}$$
X: $F\cos\theta - mg\sin\theta - f = ma$ (1)

y:
$$F \sin \theta + N - mg \cos \theta = 0$$
 (2)
$$\sum \vec{\tau} = I \vec{\alpha}$$

$$\sum \vec{\tau} = I\vec{\alpha}$$

$$\vec{r} \times \vec{F} + \vec{R} \times \vec{f} = I\vec{\alpha}$$
z: $rF - Rf = I\alpha$ (3)

For pure roll, $a = -R\alpha$ (4)

(1)
$$\Rightarrow \frac{4}{5}F - \frac{3}{5}mg - f = ma$$
 (5)
(3),(4) $\Rightarrow \frac{3}{5}RF - Rf = \frac{4}{5}mR^2\alpha$
 $\Rightarrow \frac{3}{5}F - f = -\frac{4}{5}ma$ (6)
(5),(6) $\Rightarrow \frac{1}{5}F - \frac{3}{5}mg = \frac{9}{5}ma$
 $\Rightarrow a = \frac{F}{9m} - \frac{g}{3}$, in x-direction,(7)
(6),(7) $\Rightarrow f = \frac{3}{5}F + \frac{4}{5}ma$
 $\Rightarrow f = \frac{3}{5}F + \frac{4}{5}m\left(\frac{F}{9m} - \frac{g}{3}\right)$
 $\Rightarrow f = \frac{31}{45}F - \frac{4}{15}mg$ (8)