

General Description

DA9230 is an ultra-low quiescent current, high efficiency buck regulator in a compact I²C configurable WLCSP package targeting battery powered applications needing highly efficient power supplies.

The battery life of these devices is significantly improved due to the low quiescent current delivered by DA9230 during operation and shutdown.

The buck regulator extends high light load efficiency down to 10 uA further extending battery life. Dynamic Voltage Control in the Buck regulator facilitates optimization across the system power modes enabling further improvement in System efficiency and battery life.

DA9230 provides multiple protection features and comes with the ability to monitor the events and indicators in the GPO pin.

Suitable for space constrained applications, the DA9230 comes in a 1.65 mm x 1.25 mm, 12-pin WLCSP package.

Key Features

- 300 mA buck regulator
 - 750 nA total input current (buck enabled no load)
 - □ Up to 81% efficiency at 1.8 V output, 10 µA load currents
 - □ Input voltage 2.5 V to 5.5 V(Minimum 2.75 V for start up)
 - □ Output voltage 0.6 V to 1.9 V
 - □ Dynamic Voltage Control (DVC)

- I²C interface for device configuration and control
- Protection features and System Monitors
- Small 1.65 mm x 1.25 mm, 12-pin WLCSP package

Applications

- Wearables wrist wear, hearables
- Smart devices thermostats and door locks
- Smoke detectors

- Portable medical devices
- Remote sensors
- High efficiency, low power applications

Contents

Ge	neral	Descripti	on	1
Ke	y Feat	ures		1
Аp	plicati	ions		1
Со	ntents	S		1
Fig	jures			3
Tal	bles			4
1	Term	s and De	finitions	6
2			olication Diagrams	
3		_		
4			imum Ratings	
-			d Operating Conditions	
5			u Operating Conditions	
6 _		•		
7			racteristics	
8			acteristics	
9		-	ting Characteristics	
	9.1		Load Quiescent Current vs Temperature, Device is Switching	
	9.2		/s Temperature	
	9.3		y vs Load Current	
	9.4		g Frequency vs Load Current	
	9.5 9.6		uт Ripple vs Load Current uтvs Load Current	
	9.6		Mode Operation	
	9.8		ad Transient Response	
	9.9		namic Voltage Control	
	9.10		Enable and Start up	
10	Featu		iptions	
. •	10.1		able and Disable Through IC_EN	
	10.2	•	der-Voltage Lockout	
	10.3	Over-Te	mperature Protection	27
	10.4	Buck Re	gulatorgulator	27
		10.4.1	Buck Output Voltage Programability	27
		10.4.2	Start-up Operation	28
		10.4.3	Power Saving Mode Operation	
		10.4.4	Dynamic Voltage Control	
		10.4.5	Cycle-by-cycle Over-Current Protection	
		10.4.6	Output Over-Voltage Protection	
		10.4.7	Output Under-Voltage Protection	
		10.4.8	Automatic Output voltage Discharge	
		10.4.9	Event Flag and Fault Control	30

Datasheet

27-Feb-2020

	10.5	I ² C Progi	raming		. 31
		10.5.1	Interface De	escription	. 31
		10.5.2	Details of th	ne I ² C Protocol	. 31
	10.6	GPO Pin	Function Pr	ograming	. 32
		10.6.1	Power Goo	d Indicator	. 32
		10.6.2	Event Indica	ator	. 32
		10.6.3	Reset Pulse	e Generation	. 32
		10.6.4	Always Pull	-Down or Hi-Z	. 32
11	Regis	ter Overv	•		
•	_				
		11.1.1	•	ol	
		11.1.2		dule	
	11 2		•		
	11.2	11.2.1		ol	
		11.2.1	11.2.1.1	Event/Status/Mask Registers	
			11.2.1.2	User Registers	
		11.2.2		dule	
		11.2.2	11.2.2.1	System Reset Registers	
			11.2.2.1	System ID Registers	
				•	
12		_			
		•			
			•	evel	
	12.3	Soldering	g Information	1	. 45
13	Orde	ring Infor	mation		. 46
Co	ntactii	ng Dialog	Semicondu	uctor	. 47
_:		_			
	gure	S			
				iagram	
				View)	
_					
₹ig	ure 12	: Buck Vo	uт = 0.6 V		. 18
_					

Datasheet

27-Feb-2020

Figure 18: Buck V _{OUT} = 1.3 V	
Figure 19: Buck V _{OUT} = 0.9 V	
Figure 20: Buck V _{OUT} = 0.6 V	
Figure 21: Buck V _{OUT} = 1.9 V	. 21
Figure 22: Buck V _{OUT} = 1.2 V	
Figure 23: Buck V _{OUT} = 0.9 V	
Figure 24: Buck V _{OUT} = 0.6 V	
Figure 25: Buck V _{IN} = 3.6 V, Buck V _{OUT} = 1.8 V, Buck I _{LOAD} = 1 mA	
Figure 26: Buck V _{IN} = 3.6 V, Buck V _{OUT} = 1.8 V, Buck I _{LOAD} = 10 mA	
Figure 28: Buck Vin = 3.6 V, Buck Vout = 1.8 V, Buck ILOAD = 100 IIIA	
Figure 29: Buck $V_{IN} = 3.6 \text{ V}$, Buck $V_{OUT} = 1.6 \text{ V}$, Buck $I_{LOAD} = 300 \text{ HA}$	
Figure 30: Buck $I_{LOAD} = 100$ mA to 300 mA to 100 mA (0.2 A/µs); Buck $V_{IN} = 3.6$ V, Buck $V_{OUT} = 1.8$ V	
- 19410 00. Buok 1,040 = 100 111/1 10 000 111/1 10 100 111/1 (0.2 7/µ0), Buok 111/1 = 0.0 1, Buok 100 1 1.1/1	
Figure 31: Buck I_{LOAD} = 10 mA to 300 mA to 10 mA (0.3 A/µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 1.2 V	
Figure 32: Buck $I_{LOAD} = 100$ mA to 300 mA to 100 mA (0.2 A/ μ s); Buck $V_{IN} = 3.6$ V, Buck	0
V _{OUT} = 1.2 V	. 23
Figure 33: Buck I_{LOAD} = 10 mA to 300 mA to 10 mA (0.3 A/µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 0.9 V	/23
Figure 34: Buck I_{LOAD} = 100 mA to 300 mA to 100 mA (0.2 A/µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 0.9	
Figure 35: Buck I_{LOAD} = 10 mA to 300 mA to 10 mA (0.3 A/ μ s); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 0.6 V	/24
Figure 36: Buck I_{LOAD} = 100 mA to 300 mA to 100mA (0.2 A/µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 0.6	3 V
Figure 37: Buck V_{OUT} 0.6 V to 1.2 V; Buck V_{IN} = 3.6 V, Buck I_{LOAD} = 300 mA	
Figure 38: Buck V _{OUT} 1.2 V to 0.6 V; Buck V _{IN} = 3.6 V, Buck I _{LOAD} = 300 mA	
Figure 39: Buck V_{OUT} 1.3 V to 1.9 V; Buck V_{IN} = 3.6 V, Buck I_{LOAD} = 300 mA	. 25
Figure 40: Buck V _{OUT} 1.9 V to 1.3 V; Buck V _{IN} = 3.6 V, Buck I _{LOAD} = 300 mA	
Figure 41: Device Enable: Buck V _{IN} = 3.6 V, Buck V _{OUT} 1.8 V, Buck I _{LOAD} = 300 mA	. 26
Figure 42: Vou⊤ ramp-up after Enabled (Zoom-in of Figure 41)	. 26
Figure 43: I ² C Serial Interface Pins	. 31
Figure 44: I ² C Start and Stop Conditions	. 31
Figure 45: Package Outline Drawing	. 44
Tables	
	_
Table 1: Pin Description	
Table 2: Pin Type Definition	
Table 3: Absolute Maximum Ratings	
Table 4: Recommended Operating Conditions	
Table 5: Input Current	
Table 6: Buck Output	
Table 7: GPO - Electrical performance	
Table 8: Analog Core - Electrical performance	
Table 9: I2C interface	
Table 10: Thermal Characteristics	
Table 11: Buck Output Voltage Settings	
Table 12: GPO as Power Good Indicator	
Table 13: Event/Status/Mask and User Registers	
Table 14: System Reset Registers	
Table 15: Register EVENT	
Table 16: Register STATUS	
Table 17: Register MASK	
Table 18: Register GPO	
Table 19: Register BUCK	. 37

Datasheet

27-Feb-2020

DA9230

Ultra-Low Quiescent Current Buck

Table 20: Register BUCK_CFG	39
Table 21: Register FAUL_CTL	40
Table 22: Register PIN_MONITOR	41
Table 23: Register SYS_RST_EVENT	41
Table 24: Register SYS_SRST	
Table 25: Register SYS_DEVICE_ID	42
Table 26: Register SYS_VARIANT_ID	42
Table 27: Register SYS_CONFIG_ID	43
Table 28: MSL Classification	45
Table 29: Ordering Information	46
Table 30: OTP List	

1 Terms and Definitions

CDM Charged Device Model

DC Direct Current

DCM Discontinuous Conduction Mode

FET Field Effect Transistor

NMOS N-channel Metal-Oxide-Semiconductor
OTP One-Time Programable (memory)

PMIC Power Management IC

PMOS P-channel Metal-Oxide-Semiconductor

R/W Read/Write

SCL Serial CLock SDA T&R Tape and Reel

UVLO Under-Voltage LockOut

WLCSP Wafer-Level Chip-Scale Package

2 Block and Application Diagrams

Figure 1: Block Diagram

Figure 2: DA9230 Application Diagram

3 Pinout

Figure 3: Pinout Diagram (Top View)

Table 1: Pin Description

Pin#	Pin Name	Type (See Table 2)	Drive (mA)	Reset State	Description
A1	VDD_SYS	Al			Buck V _{IN}
A2	SW	AIO			Buck switch node
A3	PGND	AIO			Buck ground
B1	SDA	DIO			I ² C serial data
B2	GPO	DO			General purpose output
В3	VBUCK_SNS	Al			Buck V _{OUT} /feedback voltage
C1	SCL	DI			I ² C serial clock
C2	NC				No connection
C3	GND	Al			Analog ground
D1	IC_EN	DI			Chip enable
D2	NC				No connection
D3	VDD	Al			Analog V _{IN}

Table 2: Pin Type Definition

Pin Type	Description	Pin Type	Description
DI	Digital Input	Al	Analog Input
DO	Digital Output	AO	Analog Output
DIO	Digital Input/Output	AIO	Analog Input/Output
DIOD	Digital Input/Output open Drain	BP	Back drive Protection
PU	Fixed pull-up resistor	SPU	Switchable pull-up resistor
PD	Fixed pull-down resistor	SPD	Switchable pull-down resistor

4 Absolute Maximum Ratings

Table 3: Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Max	Unit
T _{STG}	Storage temperature		-40	125	°C
TJ	Operating junction temperature		40	125	°C
VDD	Analog V _{IN} pin	Tied to VDD_SYS	-0.3	6	V
VDD_SYS	Power V _{IN} pin	Tied to VDD	-0.3	6	V
I/O pins	Maximum voltage	I/O pin voltage ≤ VDD	-0.3	6	V

Stresses beyond those listed under Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

5 Recommended Operating Conditions

Table 4: Recommended Operating Conditions

Parameter	Description	Conditions	Min	Тур	Max	Unit
VDD	Analog V _{IN}	Tied to VDD_SYS	2.5		5.5	٧
			Note 1			
VDD_SYS	Power V _{IN}	Tied to VDD	2.5		5.5	V
			Note 1			
Іоит_виск	Buck load Current	Output current from SW pin, continuous DC current			300	mA

Note 1 Requires minimum 2.75V for start-up. Once started, input voltage can go down to 2.5V.

6 ESD Ratings

Parameter	Description	Conditions	Value	Unit
Vesd	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 Note 1	± 2000	>
		Charged device model (CDM), per JEDEC specification JESD22- C101 Note 2	± 500	

- **Note 1** JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- **Note 2** JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7 Electrical Characteristics

VDD = VDD_SYS = 3.6 V, T_J = -40°C to 85°C. Typical values are at T_J = 25°C (unless otherwise noted).

Table 5: Input Current

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
	Electrical performance								
IQ_BUCK_ON _NO_LD	Buck no load quiescent current	-40 °C < T _J < 85 °C Buck enabled and regulating, no load 2.5 V \leq V _{VDD_SYS} \leq 5.5 V V _{BUCK} = 1.8 V		0.75	3.5	μА			

Table 6: Buck Output

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Electrical performance				
Ron_pmos	On resistance of PMOS pass device	V _{VDD_SYS} = 3.6 V I _{OUT} = 50 mA		600	800	mΩ
Ron_nmos	On resistance of NMOS pass device	V _{VDD_SYS} = 3.6 V I _{OUT} = 50 mA		300	450	mΩ
Rsys_dhcg	MOSFET on-resistance for buck discharge	V _{VDD_SYS} = 3.6 V I _{OUT} = -10 mA into VOUT pin		33		Ω
tstart	Buck start-up time	V _{VDD_SYS} = 3.6 V V _{BUCK} = 1.8 V I _{OUT} = 0 A from BUCK_EN = 1 to switching start		3		ms
ILIM_SW_PM OS	SW current limit PMOS	V _{VDD_SYS} = 3.6 V V _{BUCK} = 1.8 V		600		mA
t _{OFF}	Off time in continuous conduction mode	V _{BUCK} = 1.8 V		270		ns
f _{SW}	Switching frequency in continuous conduction mode				3	MHz
IOUT_MAX	Maximum DC output current		300			mA
ILIM_PMOS_ SOFTSTART	PMOS switch current limit during softstart	Current limit is reduced during softstart		350		mA
VOUT_VBUC K_SNS	Buck output voltage range	Programable range, 50 mV steps	0.6		1.9	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vout_vbuc k_sns_hi	Buck output voltage range	HI programable range, 50 mV steps Vout_RANGE_HI = 1	1.3		1.9	V
Vout_vbuc k_sns_lo	Buck output voltage range	LO programable range, 50 mV steps Vout_range_HI = 0	0.6		1.3	>
Vout_vbuc k_acc	Buck output voltage accuracy	V _{VDD_SYS} = 5 V PFM mode lout = 10 mA Vout_RANGE_HI = 1 VBUCK = 1.8 V	-2.5	0	2.5	%
VOUT_PWM _LD2	DC output voltage load regulation in CCM mode	V _{BUCK} = 1.8 V Load range		0.01		%/mA
VOUT_PWM _LINE2	DC output voltage line regulation in CCM mode	VBUCK = 1.8 V lout = 200 mA VDD range		0.1		%/V

Table 7: GPO - Electrical performance

Symbol	Parameter	Conditions	Min	Тур	Тур Мах	
R _{PD}	GPO pull-down resistance	V _{VDD_SYS} = 3.6 V		12		Ω
Voн	GPO Output high voltage	V _{PULLUP} = 1.8 V	1.4			V
VoL	GPO Output low voltage	VPULLUP = 1.8 V			0.4	V

Table 8: Analog Core - Electrical performance

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{SHDN_HYS}	Thermal shut-down hysteresis			20		°C
T _{SHDN_THR}	Thermal shut-down threshold			125		°C
V _{TH_UVLO}	Under-voltage lockout threshold	Input voltage falling	2.4		2.5	V
VTH_UVLO_ RISE	Under-voltage lockout threshold rising.	Input voltage rising.			2.75	V
VHYS_UVLO	Under-voltage lockout hysteresis	Input voltage rising		200		mV

Table 9: I2C interface

Symbol	Parameter	Conditions	Min	Тур	Max	Unit						
	Electrical performance											
f _{I2C_CLK}	I ² C bus specification standard and fast mode frequency support		100		400	kHz						
VIN_HI_THR	Input high threshold level for SDA and SCL		1.4			V						
V _{IN_LO_THR}	Input low threshold level for SDA and SCL				0.4	V						
V _{OUT_LO_T}	Output low threshold level for SDA				0.4	V						
ILKG_HILVL	High-level leakage current for SDA and SCL.	V _{PU} = V _{VDD} SDA and SCL			1	μΑ						

8 Thermal Characteristics

Table 10: Thermal Characteristics

Parameter	Description	Conditions	Тур	Unit
R _{TH_JA}	Junction-to-ambient thermal resistance	JEDEC 6-layer pcb, no airflow	73.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	JEDEC 6-layer pcb, no airflow	6.66	°C/W
R _{TH_} JВ	Junction-to-board thermal resistance	JEDEC 6-layer pcb, no airflow	34.8	°C/W

9 Typical Operating Characteristics

Test Circuit of Figure 2, Buck $V_{IN} = VDD_SYS = VDD$, L=2.2 μH (170 $m\Omega$), $T_A = 25$ °C, unless specified otherwise.

9.1 Buck No Load Quiescent Current vs Temperature, Device is Switching

Figure 4: Buck Vout = 1.8 V

Figure 5: Buck V_{OUT} = 0.9 V

9.2 RDSon vs Temperature

Figure 7: Low-Side FET

9.3 Efficiency vs Load Current

Figure 8: Buck V_{OUT} = 1.9 V

Figure 10: Buck V_{OUT} = 1.2 V

Figure 12: Buck $V_{OUT} = 0.6 V$

Figure 9: Buck V_{OUT} = 1.8 V

Figure 11: Buck V_{OUT} = 0.9 V

9.4 Switching Frequency vs Load Current

Figure 13: Buck V_{OUT} = 1.9 V

Figure 15: Buck V_{OUT} = 1.2 V

Figure 14: Buck V_{OUT} = 0.9 V

Figure 16: Buck V_{OUT} = 0.6 V

9.5 Buck Vout Ripple vs Load Current

Figure 17: Buck $V_{OUT} = 1.9 \text{ V}$

Figure 20: Buck $V_{OUT} = 0.6 V$

9.6 Buck Voutvs Load Current

Figure 21: Buck V_{OUT} = 1.9 V

Figure 23: Buck V_{OUT} = 0.9 V

Figure 24: Buck V_{OUT} = 0.6 V

9.7 Typical Mode Operation

Figure 25: Buck V_{IN} = 3.6 V, Buck V_{OUT} = 1.8 V, Buck I_{LOAD} = 1 mA

Figure 26: Buck V_{IN} = 3.6 V, Buck V_{OUT} = 1.8 V, Buck I_{LOAD} = 10 mA

Figure 27: Buck VIN = 3.6 V, Buck VOUT = 1.8 V, Buck I_{LOAD} = 100 mA

Figure 28: Buck V_{IN} = 3.6 V, Buck V_{OUT} = 1.8 V, Buck I_{LOAD} = 300 mA

9.8 Buck Load Transient Response

Figure 29: Buck $I_{LOAD} = 10$ mA to 300 mA to 10 mA (0.3 A/ μ s); Buck $V_{IN} = 3.6$ V, Buck $V_{OUT} = 1.8$ V

Figure 30: Buck I_{LOAD} = 100 mA to 300 mA to 100 mA (0.2 A/µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 1.8 V

Figure 31: Buck I_{LOAD} = 10 mA to 300 mA to 10 mA (0.3 A/µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 1.2 V

Figure 32: Buck I_{LOAD} = 100 mA to 300 mA to 100 mA (0.2 A/ µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 1.2 V

Figure 33: Buck I_{LOAD} = 10 mA to 300 mA to 10 mA (0.3 A/µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 0.9 V

Figure 34: Buck I_{LOAD} = 100 mA to 300 mA to 100 mA (0.2 A/µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 0.9 V

Datasheet Revision 3.0 27-Feb-2020

Figure 35: Buck I_{LOAD} = 10 mA to 300 mA to 10 mA (0.3 A/µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 0.6 V

Figure 36: Buck I_{LOAD} = 100 mA to 300 mA to 100mA (0.2 A/µs); Buck V_{IN} = 3.6 V, Buck V_{OUT} = 0.6 V

9.9 Buck Dynamic Voltage Control

Figure 37: Buck V_{OUT} 0.6 V to 1.2 V; Buck V_{IN} = 3.6 V, Buck I_{LOAD} = 300 mA

Figure 39: Buck V_{OUT} 1.3 V to 1.9 V; Buck V_{IN} = 3.6 V, Buck I_{LOAD} = 300 mA

Figure 38: Buck V_{OUT} 1.2 V to 0.6 V; Buck V_{IN} = 3.6 V, Buck I_{LOAD} = 300 mA

Figure 40: Buck V_{OUT} 1.9 V to 1.3 V; Buck V_{IN} = 3.6 V, Buck I_{LOAD} = 300 mA

9.10 Device Enable and Start up

Figure 41: Device Enable: Buck V_{IN} = 3.6 V, Buck V_{OUT} 1.8 V, Buck I_{LOAD} = 300 mA

Figure 42: V_{OUT} ramp-up after Enabled (Zoom-in of Figure 41)

10 Feature Descriptions

10.1 Chip Enable and Disable Through IC_EN

DA9230 features a dedicated IC_EN pin to enable and disable the chip. When IC_EN = high, the device is turned on. IC_EN voltage should not exceed VDD_SYS voltage on the device. When EN = low, the device is shut down completely, including I²C communications.

10.2 VDD Under-Voltage Lockout

DA9230 features an under-voltage lockout (UVLO) on VDD. When VDD falls below UVLO falling threshold, buck is disabled, see Section 10.4.9 for fault behaviour and control, A VIN_UV_Event will be flagged if it is not masked. When VDD rises above the UVLO rising threshold, the device will be alive. VDD should be always tied to VDD_SYS on the PCB board so both VDD and VDD_SYS will share the same UVLO protection.

10.3 Over-Temperature Protection

DA9230 also features an on-Chip over-temperature protection (TSD). The die junction temperature is monitored when buck is in continuous current Mode. When the junction temperature is higher than the thermal shutdown threshold, buck is disabled to prevent the device being damaged by overheating, see Section 10.4.9 for fault behavior and control. An OT_Event will be flagged if it is not masked.

10.4 Buck Regulator

DA9230 includes a nano-ampere standby buck regulator with an adjustable output voltage, Dynamic Voltage Scaling capability and a maximum load current of 300 mA. It also has power saving mode operation and different protection features.

10.4.1 Buck Output Voltage Programability

The DA9230 buck regulator can be set to two different ranges based on the value of VOUT_RANGE_HI. The value of BUCK_VOUT<4:0> is locked to a certain range based on the value of VOUT_RANGE_HI, and VOUT_RANGE_HI can only be changed while the buck is disabled. The buck can be set to the output voltages shown in Table 11. If a command is received outside of the allowable range (that is above 1.3 V for VOUT_RANGE_HI = 0 or below 1.3 V for VOUT_RANGE_HI = 1), digital will force the value of BUCK_VOUT<3:0> to 01110 (1.3 V).

Table 11: Buck Output Voltage Settings

VOUT_RANGE_HI	BUCK_VOUT<4:0>	Buck Output Voltage (V)
0	00000	0.60
0	00001	0.65
0	00010	0.70
0	00011	0.75
0	00100	0.80
0	00101	0.85
0	00110	0.90
0	00111	0.95

VOUT_RANGE_HI	BUCK_VOUT<4:0>	Buck Output Voltage (V)
0	01000	1.00
0	01001	1.05
0	01010	1.10
0	01011	1.15
0	01100	1.20
0	01101	1.25
0 or 1	01110	1.30
1	01111	1.35
1	10000	1.40
1	10001	1.45
1	10010	1.50
1	10011	1.55
1	10100	1.60
1	10101	1.65
1	10110	1.70
1	10111	1.75
1	11000	1.80
1	11001	1.85
1	11010	1.90
1	11011	1.90
1	11100	1.90
1	11101	1.90
1	11110	1.90
1	11111	1.90

10.4.2 Start-up Operation

DA9230 buck integrates a start-up circuit to minimize output voltage over-shoot and input voltage drop during start-up. When writing 1 to BUCK_EN (Bit 7 of Reg0x05), the buck is enabled and starts switching after a typical delay time of 3 ms. During start-up, the cycle-by-cycle current limit is reduced to limit inrush current.

10.4.3 Power Saving Mode Operation

DA9230 buck regulator features power saving mode that greatly reduces the quiescent current when device has very light load condition. When load decreases, buck regulator enters discontinuous mode and operates with Pulse Frequency Modulation (PFM). The low-side FET will be turned off based on a zero-crossing comparator to prevent negative inductor current flowing through the FET which can result in additional conduction loss. If both FETs remain in the OFF state for a certain delay time after inductor current crosses zero, the device will enter power saving mode. In power saving mode, DA9230 shuts down most of the internal circuitry to save current consumption. The

lighter the load, the longer the duration of power saving mode will be, to achieve the lowest quiescent current and improve light load efficiency.

10.4.4 Dynamic Voltage Control

DA9230 buck regulator has dynamic voltage control (DVC) feature which allows the buck output voltage to track the internal reference voltage when it changes at a rate of 50 mV/2 ms. Since the buck output voltage can only be changed within an allowable range while still keeping the buck enabled, DVC also follows the same behaviour. The DVC is done via I²C, whereby the buck output voltage setting is stepped in 50 mV steps within either the low range or high range. Each voltage step lasts for 2 ms.

10.4.5 Cycle-by-cycle Over-Current Protection

For the Over-current Protection (OCP) in DA9230, the peak current through high-side FET is monitored cycle-by-cycle. When the sensed current exceeds the pre-set current limit, the high-side FET will be turned OFF immediately to limit the inductor current. The high-side FET will be turned on again after the constant-off time expires. If the OC condition persists for 64 µs, buck will be forced off and buck output will be pull-down until the fault clears, see Section 10.4.9 for fault behavior and control and Section 10.4.8 for output voltage discharge and control. An OC_BUCK_Event will be flagged if it is not masked.

10.4.6 Output Over-Voltage Protection

DA9230 features an output over-voltage protection (OVP) to protect the load from damage. When both IC_EN and BUCK_EN are high and the buck output voltage is 200 mV greater than the internal reference voltage, the high side FET is immediately OFF, see Section 10.4.9 for fault behavior and control. Then the internal buck output discharge FET will be turned on to discharge buck output capacitor, see Section 10.4.8 for output voltage discharge and control. An OV_BUCK_Event will be flagged if it is not masked. Buck will remain off and buck output will be pull-down until the fault is cleared.

10.4.7 Output Under-Voltage Protection

When buck output short happens, inductor current will increase until the peak reaches the cycle-by-cycle current limit. Then the high-side FET turns OFF and low-side FET turns on. Since buck output is shorted, inductor current slope is very small during low-side FET on time. The inductor current could gradually go higher and higher. To effectively prevent the inductor current running away at Vout short condition, buck Vout is also monitored. If over-current condition happens and buck Vout drops 400 mV below the reference voltage, the buck regulator will be shut off immediately and an UV_BUCK_Event will be flagged if it is not masked, see Section 10.4.9 for fault behavior and control.

10.4.8 Automatic Output voltage Discharge

To speed up the discharging of buck output capacitor and ensure a safer start-up next time, the buck regulator provides automatic output voltage discharge when IC_EN is pulled low or buck shutdown caused by any fault. Automatic output discharge when buck is forced OFF by fault needs to set register bit BUCK_PD_CFG1 = 0; automatic output discharge when buck is disabled by BUCK_EN = 0 needs to set register bit BUCK_PD_CFG2 = 0. The output of the buck regulator is discharged through VBUCK_SNS pin and an internal buck output discharge FET with typical 33 Ω resistance.

10.4.9 Event Flag and Fault Control

DA9230 has the flexibility for customers to control the behavior of buck when there is a fault condition. There are five register bits (UVLO_FRC_DIS, TSD_FRC_DIS, OV_DIS_BUCK, OC_BUCK_EVENT, SC_DIS_BUCK) controlling whether the buck will be disabled when the corresponding fault condition happens. In addition, users can choose whether to mask or unmask the event flag when the fault condition happens.

When there is a VDD Under-voltage condition, buck will be forced OFF if UVLO_FRC_DIS = 1. Buck will remain alive if UVLO_FRC_DIS = 0. During the VDD Under-voltage condition, the event register bit VIN_UV_EVENT = 1 if the corresponding mask register bit M_VIN_UV is set to 0 otherwise VIN_UV_EVENT = 0.

When there is an Over-Temperature fault inside the device, buck will be forced OFF if TSD_FRC_DIS = 1. If TSD_FRC_DIS = 0, buck will remain alive. During the over-temperature condition, the event register bit OT EVENT = 1.

When there is an over-voltage fault at buck output, buck will be forced OFF if OV_DIS_BUCK = 1. Buck will continue switching if OV_DIS_BUCK = 0. During the fault, OV_BUCK_EVENT is set to 1 if M_OV_BUCK_EVENT = 0 otherwise OV_BUCK_EVENT = 0.

When the over-current condition in buck persists for 64 μ s and M_OC_BUCK_EVENT is set to 0, OC_BUCK_EVENT will be set to 1. If OC_DIS_BUCK = 1, BUCK is forced disabled. If OC_DIS_BUCK = 0, buck will continue switching during the over-current condition.

When there is a buck Output under-voltage condition and M_UV_BUCK_EVENT = 0, UV_BUCK_EVENT is set to 1. If both buck output under-voltage and over-current condition exist and SC_DIS_BUCK = 1, buck will be forced OFF. If SC_DIS_BUCK = 0, buck will continue switching without shutting down by the under-voltage protection.

DA9230 also has a fault recovery mechanism that can be customized through the 3-bits RCVRY_NUM. This value determines the fault recovery trial number for buck and is counted down by every fault that triggers buck OFF. When RCVRY_NUM reaches 0, recovery trial is ended and buck will remain OFF even if the buck enable signals are toggled HI. If RCVRY_NUM is set to 0x7, there will be no count down on the recovery trial number and recovery trail will not be ended. Before RCVRY_NUM reaches 0, buck will be recovered automatically if the fault condition disappears.

Event flags are not automatically cleared when the fault conditions disappear. They have to be cleared by changing the values in register EVENT through I²C.

10.5 I²C Programing

10.5.1 Interface Description

DA9230 includes an I²C compatible interface based on the following signals:

- SCL: standard 400 kHz I²C bus serial clock generated by the Host processor
- SDA: standard 400 kHz I²C bus serial address/data input output

SDA and SCL are open drain I/O terminals. The standard frequency of the I²C bus is 400 kHz in fast mode or 100 kHz in slow mode.

Figure 43: I²C Serial Interface Pins

The I²C bus is used to control most functions and change register values depending on the application requirements. In active battery, the I²C circuitry is powered from the battery. The interface maintains a proper operation as long as VDD_SYS is valid.

The device is compatible with the standard I²C protocol but only operates as a slave. The transfer protocol is the same whether operating in fast or slow mode.

10.5.2 Details of the I²C Protocol

The device supports 7-bit addressing only, the address is 0x2F. The 8-bit shifted address is 0x5E. A timer runs during I²C transitions. If the timer expires while SDA is held low, all additional commands are ignored and the I²C state machine is reset. The timer is reset with a START condition and stopped with a STOP condition.

The I²C bus is monitored at all times for a valid SLAVE address, and an acknowledge bit is generated if the SLAVE address was true.

- A START condition is initiated by a high to low transition on the SDA line while the SCL is in the high state.
- A STOP condition is indicated by a low to high transition on the SDA line while the SCL is in the high state.
- An ACKNOWLEDGE is indicated by the receiver pulling the SDA line low during the following clock cycle.

Figure 44: I²C Start and Stop Conditions

When the address is matching the following event sequence happens:

- The device generates an ACKNOWLEDGE to indicate to the master that the communication link has been established
- 2. The master generates SCL clock cycles to transmit or receive data
- 3. After receiving data, an ACKNOWLEDGE is generated either by the device or the master (whichever is transmitting the data)
 A data sequence is 9-bit, consisting of 8-bit data and 1-bit ACKNOWLEDGE. It can be repeated as long as necessary.
- 4. The master generates a STOP condition to end the data transfer

The bus returns to IDLE-mode if during a message a new START or STOP condition occurs. Data is transmitted MSB first for both R/W operations.

10.6 GPO Pin Function Programing

DA9230 has a General purpose output (GPO) pin which can be programed to have multiple functions.

10.6.1 Power Good Indicator

When GPO pin is configured to the VDD power good indicator, it is an open drain output and can be configured to either active high or active low. When GPO status is Hi-Z, an external pull-up is required for GPO to be high.

Table 12: GPO as Power Good Indicator

GPO Configuration	$V_{IN} > V_{IN_UVLO}$	GPO Status	
Active High	No	0	
	Yes	Hi-Z	
Active Low	No	Hi-Z	
	Yes	0	

10.6.2 Event Indicator

GPO pin can also be configured as the event indicator in open drain output. Whenever there is an event or multiple events (VIN_UV_EVNT or OT_EVENT or OV_BUCK_EVENT or OC_BUCK_EVENT or UV_BUCK_EVENT) happen, GPO will be pulled down Low. This can be used as an interrupt to host CPU to inform events happened. When there is no event, GPO will remain in Hi-Z status and an external pull-up is required for GPO to be high.

10.6.3 Reset Pulse Generation

GPO pin can be configured to generate a reset pulse signal when buck starts. The reset signal can be used by host CPU or other device that are connected to buck output. When GPO is Low, it indicates a reset pulse period; when GPO is in Hi-Z status (An external pull-up is required for GPO to be high), it indicates a non-reset period.

There is also a timing control to negate the reset pulse signal. The GPO reset pulse width can be adjusted between 8 and 112 ms measured from written 1 to BUCK_EN register bit.

10.6.4 Always Pull-Down or Hi-Z

When GPO pin is not used, it can be configured to either always Hi-Z or pull-down to Low.

11 Register Overview

11.1 Register Map

11.1.1 Buck Control

Table 13: Event/Status/Mask and User Registers

User Register	s								
Register	Addr	7	6	5	4	3	2	1	0
EVENT	0x0000	OT_EVENT	VIN_UV_EVENT	Reserved	OC_BUCK_EVENT	OV_BUCK_EVENT	UV_BUCK_EVENT	Reserved	Reserved
STATUS	0x0002	OT_STAT	VIN_UV_STAT	Reserved	OC_BUCK_STAT	OV_BUCK_STAT	UV_BUCK_STAT	Reserved	BUCK_EN_STA T
MASK	0x0003	Reserved	M_VIN_UV	Reserved	M_OC_BUCK_EVEN T	M_OV_BUCK_EVEN T	M_UV_BUCK_EVEN T	Reserved	Reserved
GPO	0x0004	GPO_RST_CTF	RL<3:0>			GPO_CTRL<3:0>			
BUCK	0x0005	BUCK_EN	VOUT_RANGE_H I	Reserved	BUCK_VOUT<4:0>				
BUCK_CFG	0x0006	Reserved	Reserved	BUCK_PD_CFG 2	BUCK_PD_CFG1	Reserved	Reserved	SEL_BUC	K_ILIM<1:0>
FAULT_CTL	0x0008	SC_DIS_BUC K	OC_DIS_BUCK	OV_DIS_BUCK	TSD_FRC_DIS	UVLO_FRC_DIS	RCVRY_NUM<2:0>		
PIN_MONTO R	0x000A	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	GPO_OUT_MON

11.1.2 System Module

Table 14: System Reset Registers

User Registers											
Register	Addr	7	6	5	4	3	2	1	0		
SYS_RST_EVENT	0x0001	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	RESET_EVENT		
SYS_SRST	0x0009	Reserved	Reserved	Reserved	Reserved	SRST<3:0>					
SYS_DEVICE_ID	0x0080	DEV_ID<7:0>									
SYS_VARIANT_ID	YS_VARIANT_ID 0x0081 MRC<3:0> VRC<3:0>										
SYS_CONFIG_ID	0x0082	CONFIG_REV<7:	0>								

11.2 Register Definitions

11.2.1 Buck Control

11.2.1.1 Event/Status/Mask Registers

Table 15: Register EVENT

Address	Register Name	POR V	alue	Cyant fly	Event flag						
0x0000	EVENT	0x00		Eventilia	ені над						
7	6	5		4		3	2	1	0		
OT_EVENT	VIN_UV_EVENT	Rese	ved	OC_E	BUCK_EVENT	OV_BUCK_EVENT	UV_BUCK_EVENT	Reserved	Reserved		
Field Name		Bits	Туре	POR	OR Description						
OT_EVENT [7] evnt Ox0 Over Temperature fault event flag. When Over tempera When I2C writes '1' to this bit, the event flag is cleared.							re condition is detecte	d, this bit is set to 1.			
VIN_UV_EVENT [6] evnt					Under Voltage on VDD event flag. When Under Voltage (UVLO) condition is detected, this bit is set to 1. When I2C writes '1' to this bit, the event flag is cleared.						

Field Name	Bits	Туре	POR	Description
OC_BUCK_EVENT	[4]	evnt	0x0	Over Current on BUCK OUT event flag. When the buck Over Current condition is detected (when BUCK_EN==1 && M_OC_BUCK==0), this bit is set to 1. When I2C writes '1' to this bit, the event flag is cleared.
OV_BUCK_EVENT	[3]	evnt	0x0	Over Voltage on BUCK OUT event flag. When the buck Over Voltage condition is detected (when BUCK_EN==1 && M_OV_BUCK==0), this bit is set to 1. When I2C writes '1' to this bit, the event flag is cleared.
UV_BUCK_EVENT	[2]	evnt	0x0	Under voltage on BUCK OUT event flag. When the under voltage condition (i.e. short circuit) is detected on the buck (when BUCK_EN==1 && M_UV_BUCK==0), this bit is set to 1. When I2C writes '1' to this bit, this event flag is cleared.

Table 16: Register STATUS

Address	Register Name	PC	OR Value	C4	-4						
0x0002	STATUS	0x	(00	Sta	-Status						
7	6		5		4		3	2	1	0	
OT_STAT	VIN_UV_STAT	ı	Reserved		OC_BUCK_S	STAT	OV_BUCK_STAT	UV_BUCK_STAT	Reserved	BUCK_EN_STAT	
Field Name		Bits	Туре	POR Description							
OT_STAT		[7]	virtual	0x0	Indicate	Indicate present Over Temp status.					
VIN_UV_STAT		[6]	virtual	0x0	Indicate	e present	V _{IN} under-voltage sta	tus.			
OC_BUCK_STAT		[4]	virtual	0x0	Indicate	present	BUCK VOUT over cu	irrent status.			
OV_BUCK_STAT		[3]	virtual	0x0	Indicate	e present	BUCK VOUT over vo	oltage status.			
UV_BUCK_STAT		[2]	virtual	0x0	Indicate	Indicate present BUCK VOUT under voltage status.					
BUCK_EN_STAT		[0]	virtual	0x0	1:Buck	Indicate present Buck Enable status. 1:Buck enabled 0:Buck disabled					

Table 17: Register MASK

Address	Register Name	POR	Value		Mask								
0x0003	MASK	0x7C			iviask								
7	6	5	•			4		3	2	1	0		
Reserved	M_VIN_UV	/I_VIN_UV Reserved			M_O	C_BUCK_	EVENT	M_OV_BUCK_EVENT	M_UV_BUCK_EVENT	Reserved	Reserved		
Field Name			Bits	Туре		POR	Descri	Description					
M_VIN_UV			[6] cfg O		TP	0x1	Mask to set VIN_UV_EVNT. VIN_UV_STAT is updated regardless of this mask.						
M_OC_BUCK_EVENT			[4] cfg OT		TP	0x1	Masks to set OC_BUCK_EVENT. OC_BUCK_STAT is updated regardless of this mask.						
M_OV_BUCK_EVENT			[3]	cfg O	TP	0x1	Masks	to set OV_BUCK_EVE	NT. OV_BUCK_STAT	is updated regardles	s of this mask.		
M_UV_BUCK_EVENT			[2]	cfg O	TP	0x1	Masks	to set UV_BUCK_EVE	NT. UV_BUCK_STAT i	s updated regardless	s of this mask.		

11.2.1.2 User Registers

Table 18: Register GPO

Address	Register Na	ame	POR Val		70tral						
0x0004	GPO		0x00	GI	PO control						
7	6		5		4	3	2	1	0		
GPO_RST_CTRL<3:	:0>					GPO_CTR	L<3:0>				
Field Name	Bits	Туре	POR	Description							
				Reset pulse :	signal nagate timing	control					
GPO_RST_CTRL	[7:4]	cfg OTI	0x0	Value	Description						
				0x0	8ms after BUCK_	EN = 1, GPO	reset pulse is negate	d.			

Field Name	Bits	Туре	POR	Description	on
				0x1	16ms after BUCK_EN = 1, GPO reset pulse is negated.
				0x2	32ms after BUCK_EN = 1, GPO reset pulse is negated.
				0x3	48ms after BUCK_EN = 1, GPO reset pulse is negated.
				0x4	64ms after BUCK_EN = 1, GPO reset pulse is negated.
				0x5	80ms after BUCK_EN = 1, GPO reset pulse is negated.
				0x6	96ms after BUCK_EN = 1, GPO reset pulse is negated.
				0x7	112ms after BUCK_EN = 1, GPO reset pulse is negated.
				GPO Cont	rol
				Value	Description
				0x1	Reset Pulse generation output
ODO OTDI	[0.0]	-4 OTD	00	0x2	PowerGood indicator, Active Low
GPO_CTRL	[3:0]	cfg OTP	UXU	0x3	PowerGood indicator, Active High
				0x4	Event indicator
				0x8	Force GPO output low
				0x9	Force GPO output hi-z

Table 19: Register BUCK

Address	Register Name	POR Value	Duals anabla 8 yout aan	tral								
0x0005	BUCK	0x58	Suck enable & voul con	uck enable & vout control								
7	6	5	4	3	2	1	0					
BUCK_EN	VOUT_RANGE_HI	Reserved	BUCK_VOUT<4:0>									

Field Name	Bits	Туре	POR	Description	on .
BUCK_EN	[7]	cfg OTF	0x0	BUCK ena	ble
				Range sele	ection for buck. This can only be changed while BUCK_EN = 0
VOLIT BANGE III	[0]	-4 OTF	20.4	Value	Description
VOUT_RANGE_HI	[6]	cfg OTF	20X1	0x0	0.60 V <= VBUCK <= 1.30 V
				0x1	1.30 V <= VBUCK <= 1.90 V
				Buck outpu	ut voltage
				Value	Description
				0x00	0.60 V
				0x01	0.65 V
				0x02	0.70 ∨
				0x03	0.75 V
				0x04	0.80 V
				0x05	0.85 V
BUCK_VOUT	[4:0]	datablk OTP	0x18	0x06	0.90 V
				0x07	0.95 V
				80x0	1.00 V
				0x09	1.05 V
				0x0A	1.10 V
				0x0B	1.15 V
				0x0C	1.20 V
				0x0D	1.25 V
				0x0E	1.30 V

Field Name	Bits	Туре	POR	Description	on
				0x0F	1.35 V
				0x10	1.40 V
				0x11	1.45 V
				0x12	1.50 V
				0x13	1.55 V
				0x14	1.60 V
				0x15	1.65 V
				0x16	1.70 V
				0x17	1.75 V
				0x18	1.80 V
				0x19	1.85 V
				0x1A	1.90 V
				0x1B	1.90 V
				0x1C	1.90 V
				0x1D	1.90 V
				0x1E	1.90 V
				0x1F	1.90 V

Table 20: Register BUCK_CFG

Address	Register Name	POR Value	ual config							
0x0006	BUCK_CFG	0x00	uck config							
7	6	5	4	3	2	1	0			
Reserved	Reserved	BUCK_PD_CFG2	BUCK_PD_CFG1	Reserved	Reserved	SEL_BUCK_ILIM<1:0)>			

Field Name	Bits	Туре	POR	Description	on							
BUCK_PD_CFG2	[5]	cfg OTP	0x0	0: If BUC	Default current limit Default +50mA Default +100mA				f BUCK_EN = 0, BUCK_PD_EN = 1 1: If BUCK_EN = 0, BUCK_PD_EN = 0			
BUCK_PD_CFG1	[4]	cfg OTP	0x0	0: When E	BUCK is forced off by faults, BUCK_PD_EN = 1 1: When BUCK is forced off by faults, BUCK_PD_EN = 0							
			Buck peal	current limit setting								
			Value	Description								
	[4 0]	(OTD		0x0	Default current limit							
SEL_BUCK_ILIM	[1:0]	cfg OTP	UXU	0x1	Default +50mA							
			0x2	Default +100mA								
				0x3	Default +150mA							

Table 21: Register FAUL_CTL

Address	Regi	ster Na	me l	POR Valu		oult 9 December contro	.1					
0x0008	FAUI	LT_CTL	()x1F		ault & Recovery contro	1					
7	6			5		4	3	2	1	0		
SC_DIS_BUCK	OC_	_DIS_BU	JCK	OV_DIS	_BUCK	TSD_FRC_DIS	UVLO_FRC_DIS	RCVRY_NUM<2:0>				
Field Name		Bits	Туре	POR	Description	1						
SC_DIS_BUCK		[7]	cfg OTF	0x0	1: Force dis	sable BUCK during SHORT CIRCUIT condition oc_buck=1 & uv_buck=1						
OC_DIS_BUCK		[6]	cfg OTF	0x0	1: Force dis	able BUCK during oc_	ouck=1 for over 64 cy	cles				
OV_DIS_BUCK		[5]	cfg OTF	0x0	1: Force dis	orce disable BUCK during ov_buck=1						
TSD_FRC_DIS		[4]	cfg OTF	0x1		rce disable BUCK g Over Temp						
UVLO_FRC_DIS		[3]	cfg OTF	0x1	1: Force dis	Force disable BUCK ring UVLO						
RCVRY_NUM		[2:0]	data OTP	0x7		very trial fault number.						

Table 22: Register PIN_MONITOR

Address	Regi	ster Nan	ne F	POR Valu		IN MONITOR					
0x000A	PIN_	MONTO	R ()x00	P	IN MONITOR					
7	6			5		4	3	2	1	0	
Reserved	Res	erved		Reserve	d	Reserved	Reserved	Reserved	Reserved	GPO_OUT_MON	
Field Name		Bits	Туре	POR	Description	on					
GPO_OUT_MON		[0]	virtual	0x0	Indicate cur	rent GPO output					

11.2.2 System Module

11.2.2.1 System Reset Registers

Table 23: Register SYS_RST_EVENT

Address	Regi	ster Nan	ne F	POR Valu		locat Event flog					
0x0001	SYS_	_RST_E\	VENT ()x01	IN	eset Event flag					
7	6			5		4	3	2	1	0	
Reserved	Res	erved		Reserve	d	Reserved	Reserved	Reserved	Reserved	RESET_EVENT	
Field Name		Bits	Туре	POR	Description	on					
RESET_EVENT		[0]	evnt	0x1	RESET eve	RESET event flag. After Reset, this bit is set. When I2C write '1' to this bit, this event flag is cleared.					

Table 24: Register SYS_SRST

Address	Register Name	POR Value	Soft Reset								
0x0009	SYS_SRST	0x00	OIL Reset								
7	6	5	4	3	2	1	0				
Reserved		Reserved	Reserved	SRST<3:0>							

Field Name	Bits	Туре	POR	Description
SRST	[3:0]	cfg	0x0	Initiate Soft Reset by writing 0x5.

11.2.2.2 System ID Registers

Table 25: Register SYS_DEVICE_ID

Address	Regis	ster Nan	ne F	POR Valu		DEVICE_ID						
0x0080	SYS_	DEVICE	:_ID	0x00		DEVICE_ID	EVICE_ID					
7	6			5		4	3	2		1	0	
DEV_ID<7:0>)EV_ID<7:0>											
Field Name		Bits	Туре	POR	Description	cription						
DEV_ID		[7:0]	virtual	0x0	Device ID;	Device ID; hard-coded or metal-programmed						

Table 26: Register SYS_VARIANT_ID

Address	Register	Name	POR Val		VARIANT_ID					
0x0081	SYS_VAF	IANT_ID	0x00		VARIANT_ID	TANI_ID				
7	6		5		4	3	2	1	0	
MRC<3:0>						VRC<3:0>				
Field Name	Bits	Туре	POR	Descriptio	n					
MRC	[7:4]	virtual	0x0	Mask Revision Code; mask design changes increment reset value.						
VRC	[3:0]	trim OTP	0x0	Chip Variar	chip Variant Code; e.g. package variants.					

Table 27: Register SYS_CONFIG_ID

Address	Regis	ster Nan	ne	POR Valu	ie (ONFIG_ID					
0x0082	SYS	_CONF	IG_ID	0x00							
7	6			5		4	3	2	1	o	
CONFIG_REV<7:0	CONFIG_REV<7:0>										
Field Name		Bits	Туре	POR	Descriptio	n					
CONFIG_REV			trim OTP	0x0	OTP settin	gs revision					

12 Package Information

12.1 Package Outlines

Figure 45: Package Outline Drawing

12.2 Moisture Sensitivity Level

The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor lifetime) in which a moisture sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a maximum temperature of 30 °C and a maximum relative humidity of 60% RH before the solder reflow process. The MSL classification is defined in Table 28.

The device package is qualified for MSL 1.

Table 28: MSL Classification

MSL level	Floor Lifetime
MSL 1	unlimited at 30 °C/85% RH

12.3 Soldering Information

Refer to the JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from http://www.jedec.org.

13 Ordering Information

The ordering number consists of the part number followed by a suffix indicating the packing method. For details and availability or other custom OTP parts, please consult Dialog Semiconductor's customer portal or your local sales representative.

Table 29: Ordering Information

Part number	Package	Size (mm)	Shipment Form	Pack Quantity
DA9230 -xxxx	WLCSP-12	1.25 x 1.65	T&R	4500

Table 30: OTP List

Order code	Description	Buck Vout
DA9230-07VZ2	OTP with buck voltage preconfigured	0.6 V
DA9230-08VZ2	OTP with buck voltage preconfigured	0.8 V
DA9230-09VZ2	OTP with buck voltage preconfigured	1.2 V
DA9230-0AVZ2	OTP with buck voltage preconfigured	1.8 V
DA9230-61VZ2	OTP with buck voltage preconfigured	1.9 V
DA9230-62VZ2	OTP with buck voltage preconfigured	1.1 V

Status Definitions

Revision	Datasheet Status	Product Status	Definition
1. <n></n>	Target	Development	This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice.
2. <n></n>	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
3. <n></n>	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via Customer Product Notifications.
4. <n></n>	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

Disclaimer

Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are the property of their respective owners.

© 2020 Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Hong Kong

Dialog Semiconductor Hong Kong

Phone: +852 2607 4271

Phone: +82 2 3469 8200

Dialog Semiconductor Korea

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email:

enquiry@diasemi.com

North America

Dialog Semiconductor Inc.

Phone: +1 408 845 8500

Japar

Dialog Semiconductor K. K. Phone: +81 3 5769 5100

Dialog Semiconductor Taiwan Phone: +886 281 786 222

Web site:

www.dialog-semiconductor.com

China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China Phone: +86 21 5424 9058