2.5. Espacios producto y teorema de Fubini

1. Mostrar que si (X, \mathcal{F}, μ) e (Y, \mathcal{G}, ν) son espacios de medida completos, el espacio producto $(X \times Y, \mathcal{F} \otimes \mathcal{G}, \mu \times \nu)$ no tiene por qué ser completo.

Sugerencia: Considerar $E = A \times B$, donde $\emptyset \neq A \in \mathcal{F}$ y $\mu(A) = 0$ y $B \subset Y$ con $B \notin \mathcal{G}$.

- **2**. Sea μ la medida de contar sobre $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.
 - (a) Mostrar que la medida producto $\mu \times \mu$ coincide con la medida de contar en $\mathcal{P}(\mathbb{N} \times \mathbb{N})$.
 - (b) Consideramos la función

$$f(m,n) = \begin{cases} 1, & \text{si } m = n, \\ -1, & \text{si } m = n+1, \\ 0, & \text{en otro caso.} \end{cases}$$

Comprobar que las sumas iteradas

$$\sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} f(m,n) \right) \quad \text{y} \quad \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} f(m,n) \right)$$

existen, pero son distintas. ¿Contradice esto el teorema de Fubini?

- **3**. Sean $f: X \to \mathbb{R}$ \mathcal{F} -medible y $g: Y \to \mathbb{R}$ \mathcal{G} -medible. Si $h: \mathbb{R}^2 \to \mathbb{R}$ es medible Borel, entonces la función H(x,y) = h(f(x),g(y)) es $\mathcal{F} \otimes \mathcal{G}$ -medible.
- **4**. Sean (X, \mathcal{F}, μ) y (Y, \mathcal{G}, ν) espacios de medida σ -finitos. Para funciones $f: X \to \mathbb{R}$ \mathcal{F} -medible y $g: Y \to \mathbb{R}$ \mathcal{G} -medible se considera la función h(x, y) = f(x)g(y).
 - (a) Demostrar que h es $\mathcal{F} \otimes \mathcal{G}$ -medible.
 - (b) Demostrar que si $f \in \mathcal{L}^1(\mu)$ y $g \in \mathcal{L}^1(\nu)$ entonces $h \in \mathcal{L}^1(\mu \times \nu)$ y

$$\int_{X\times Y} h(x,y) \, d(\mu \times \nu)(x,y) \, = \, \left(\int_X f(x) \, d\mu(x)\right) \, \left(\int_Y g(y) \, d\nu(y)\right).$$

- 5. Sean (X, \mathcal{F}, m) e (Y, \mathcal{G}, ν) , donde X = Y = [0, 1], $\mathcal{F} = \mathcal{B}(X)$, $\mathcal{G} = \mathcal{P}(Y)$, m es la medida de Lebesgue y ν es la medida de contar. Consideramos el espacio producto $(X \times Y, \mathcal{F} \otimes \mathcal{G}, m \times \nu)$ y el conjunto $D = \{(x, x) : x \in [0, 1]\}$.
 - (a) Mostrar que $D \in \mathcal{F} \otimes \mathcal{G}$. Sugerencia: $D = \bigcap_{1}^{\infty} D_{n}$ con $D_{n} = \bigcup_{j=1}^{n} \left[\frac{j-1}{n}, \frac{j}{n}\right] \times \left[\frac{j-1}{n}, \frac{j}{n}\right]$.
 - (b) Comprobar que

$$\int_Y \left(\int_X 1_D(x,y) dm(x) \right) d\nu(y) = 0 \qquad \text{y} \qquad \int_X \left(\int_Y 1_D(x,y) d\nu(y) \right) dm(x) = 1.$$

(c) Mostrar que $(m \times \nu)(D) = \infty$. Sugerencia: Tener en cuenta que

$$(m \times \nu)(D) = \inf \left\{ \sum_{j=1}^{\infty} m(A_j)\nu(B_j) : A_j \in \mathcal{F}, B_j \in \mathcal{G} \ y \ D \subset \bigcup_{j=1}^{\infty} A_j \times B_j \right\}.$$

- (d) ¿Contradice este ejercicio el teorema de Fubini-Tonelli?
- **6**. Consideramos $f: \mathbb{R}^2 \to \mathbb{R}$ definida mediante

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2}, & \text{si } (x,y) \in [-1,1]^2 - \{(0,0)\}, \\ 0, & \text{en otro caso.} \end{cases}$$

Mostrar que sus integrales iteradas existen y valen cero. ¿Es f integrable?

7. Sea m > 0 y $f: \mathbb{R}^2 \to \mathbb{R}$ definida mediante

$$f(x,y) = \begin{cases} \frac{y^2 \sin^2 x}{x^2 (x^2 + y^2)(x^2 + y^2 + m^2)}, & \text{si } x \neq 0, \\ 0, & \text{en otro caso.} \end{cases}$$

Demostrar que f es integrable.

Sugerencia: Mostrar que $|f(x,y)| \le f_1(x)f_2(y)$, con f_1, f_2 integrables.

8. Sea $f: [-1,1] \to [0,\infty]$ una función positiva e integrable. Definimos, para $x \in (0,1]$,

$$g(x) = \frac{1}{x} \int_{-x}^{x} f(t) dt.$$

(a) Probar que $g \in \mathcal{L}^1[0,1]$ si y sólo si $f(t) \log(1/|t|)$ es integrable en [-1,1] y, en ese caso,

$$\int_0^1 g(x) \, dx = \int_{-1}^1 f(t) \log(1/|t|) \, dt.$$

- (b) Si f es integrable, pero no es positiva, ¿qué implicaciones del "si y sólo si" se mantienen?
- 9. Sean $f, g : \mathbb{R} \to \mathbb{R}$ funciones medibles Borel e integrables en \mathbb{R} .
 - (a) Probar que la función $(x,y)\mapsto f(x-y)$ es $\mathcal{B}(\mathbb{R}^2)$ -medible.
 - (b) Probar que la convolución de f y g, $(f*g)(x) := \int_{\mathbb{R}} f(x-y)g(y) \, dy$, está bien definida en casi todo $x \in \mathbb{R}$ y, además, $f*g \in \mathcal{L}^1$. Sugerencia: Usar el Teorema de Fubini-Tonelli.

10. Consideramos la función $S:[0,\infty)\to\mathbb{R}$ dada por

$$S(T) = \int_0^T \frac{\sin x}{x} \, dx.$$

- (a) Mostrar que S es uniformemente continua. Es decir, $\sup_{T \in [0,\infty)} |S(T+h) S(T)| \to 0$, cuando $h \to 0$.
- (b) $\lim_{T\to\infty} S(T) = \pi/2$. Sugerencia: Usar que $1/x = \int_0^\infty e^{-xt} dt$ (para x > 0), el teorema de Fubini y el TCD. Por favor, comprobar que todos los teoremas se aplican correctamente.
- (c) S está acotada.
- (d) La función $f(x) = \sin x/x$ no es integrable en $(0, \infty)$, es decir,

$$\int_0^\infty \left| \frac{\sin x}{x} \right| \, dx = \infty.$$

Sugerencia: Mostrar que $\int_{n\pi}^{(n+1)\pi} \left| \frac{\sin x}{x} \right| dx \ge \frac{2}{(n+1)\pi}$.

11. Mostrar que la función $f(x,y) = e^{-y}\sin(2xy)$ es integrable para $(x,y) \in [0,1] \times [0,\infty)$, y deducir el valor de la integral

$$\int_0^\infty \frac{\sin^2 y}{y} e^{-y} \, dy.$$

Sugerencia: Calcular la integral $\int_0^1 \sin(2xy) dx$.

12. Consideramos la función definida por

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2}, & \text{si } (x,y) \in [-1,1]^2 - \{(0,0)\}, \\ 0, & \text{en otro caso.} \end{cases}$$

Mostrar que las integrales iteradas de f son iguales, pero f no es integrable.

2 5. Integración en coordenadas polares

- 13. Sean Γ y β las funciones gamma y beta de Euler, respectivamente.
 - (a) Integrando por partes muestra la ecuación funcional de Γ : $\Gamma(p+1) = p\Gamma(p)$, para p > 0.
 - (b) Haz un cambio de variable adecuado para ver que

$$\Gamma(p) = 2 \int_0^\infty u^{2p-1} e^{-u^2} du.$$

- (c) Muestra que $\Gamma(1/2) = \sqrt{\pi}$. Sugerencia: Calcula $\Gamma(1/2)^2$ usando la expresión del apartado (b), el Teorema de Fubini y el cambio a coordenadas polares en el plano.
- (d) Haz un cambio de variable adecuado para ver que

$$\beta(p,q) = 2 \int_0^{\pi/2} \sin^{2p-1} v \cos^{2q-1} v \, dv.$$

(e) Muestra que

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

Sugerencia: Usa la sugerencia del apartado (c) y (d) para calcular $\Gamma(p)\Gamma(q)$.

- **14**. En $(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n), m)$, determinar para qué valores de α existen y son finitas las siguientes integrales y calcular su valor en ese caso.
 - (a) $\int_{\mathbb{R}^n} \frac{dx}{(1+||x||^2)^{\alpha}}.$
 - (b) $\int_{\{\|x\| < R\}} \|x\|^{\alpha} dx$, para R > 0.
 - (c) $\int_{\{\|x\|<1\}} \frac{x_1^2 x_2^2 + x_3^2 \dots + (-1)^{n+1} x_n^2}{\|x\|^{\alpha}} dx.$