Recurrent neural networks for machine translation

Outline

- Machine translation problem
- Neural machine translation
- Encoder Decoder approach
- Attention-based Neural Machine Translation
- Prominent Neural Machine Translation Models

Statistical Machine Translation

- Translate a source sentence E into a target sentence F
- Set of rules transforming a source sentence into a correct translation
- We don't even know the set of rules underlying a single language, not to mention the rules underlying a pair of languages.
- Statistical approach where those rules, either implicitly or explicitly, are automatically extracted from a large corpus of text.

f=(La, croissance, économique, s'est, ralenti, ces, dernières, années, .)

e=(economic, growth, has, slowed, down, in, recent, years, .)

Evaluation

- BLEU (BiLingual Evaluation Understudy)
- N-gram overlap between machine translation output and reference translation
- Compute precision for n-grams of size 1 to 4
- Add brevity penalty (for too short translations)

•

$$BLEU = min \left(1, \frac{output - length}{reference - length} \right) \left(\prod_{i=1}^{4} precision_i \right)^{\frac{1}{4}}$$

Example

SYSTEM A: Israeli officials responsibility of airport safety

2-GRAM MATCH

1-GRAM MATCH

REFERENCE: Israeli officials are responsible for airport security

SYSTEM B: airport security Israeli officials are responsible

2-GRAM MATCH

4-GRAM MATCH

Metric	System A	System B
precision (1gram)	3/6	6/6
precision (2gram)	1/5	4/5
precision (3gram)	0/4	2/4
precision (4gram)	0/3	1/3
brevity penalty	6/7	6/7
BLEU	0%	52%

Multiple Reference Translations

- To account for variability, use multiple reference translations
 - n-grams may match in any of the references
 - closest reference length used
- Example

SYSTEM:: Israeli officials responsibility of airport safety

2-GRAM MATCH 2-GRAM MATCH 1-GRAM

Israeli officials are responsible for airport security

REFERENCES:: Israel is in charge of the security at this airport

The security work for this <u>airport</u> is the <u>responsibility of</u> the Israel government

<u>Israeli</u> side was in charge <u>of</u> the security of this <u>airport</u>

Encoder-Decoder Framework for Machine Translation

Encoder-Decoder Framework for Machine Translation

La croissance économique s'est ralenti ces dernières années.

économic growth has slowed, down in recent years.

Architectures based on Encoder-Decoder Framework

- Recurrent Neural Network based
- Convolution Neural Network based
- Feed Forward Neural Network based

Key steps

- Embed
- Encode
- Attend (Only in attention based architectures)
- Predict

Neural machine translation system

The Encoder

Step 1: Word to one-hot vector

Step 2: One-hot vector to continuous-space representation

Projects the 1-of-K coded vector with a matrix E to d-dimensional (typically 100 – 500) continuous word representation

$$s_i = E_{d \times K} x_i$$

s i updated to maximize the translation performance

e=(economic, growth, has, slowed, down, in, recent, years, .)

Step 3: Sequence summarization by RNN

Sequence of continuous vectors s_i summarized by RNN

$$h_i = \phi_{\theta}(h_{i-1}, s_i)$$

e=(economic, growth, has, slowed, down, in, recent, years, .)

Summary sentence representation vectors

Sentence Representations from [Sutskever et al., 2014]. Similar sentences are close together

The Decoder

Step 1: Compute internal hidden state of decoder

$$z_i = \phi_{\theta'}(h_T, u_{i-1}, z_{i-1})$$

f=(La, croissance, économique, s'est, ralenti, ces, dernières, années, .)

Step 2: Next word probability

Score and normalize target words

Step 3: Sample next word

Training

Training: Maximum Likelihood Estimation

Given parallel corpus D of training examples

$$D = \{(x^{1}, y^{1}), (x^{2}, y^{2}), \dots, (x^{n}, y^{n})\}$$

NMT can compute

$$\log P(y^n|x^n,\theta)$$

Log-likelihood of training corpus

$$L(D,\theta) = \frac{1}{N} \sum_{n=1}^{N} \log P(y^n \vee x^n, \theta),$$

Maximize log-likelihood using stochastic gradient descent (SGD)

Problem with simple encoder-decoder architectures

Soft Attention Mechanism for Neural Machine Translation

Bidirectional recurrent neural networks for encoding a source sentence

Attention Mechanism

- To decide i-th target word, calculate relevance score between i-th target word and every source word
- Attention mechanism is implemented by a neural network
- Input to NN (z_{i-1}, h_i)

Attention Mechanism (step 1)

f=(La, croissance, économique, s'est, ralenti, ces, dernières, années, .)

Attention Mechanism (step 2)

f=(La, croissance, économique, s'est, ralenti, ces, dernières, années, .) Recurrent Word Sample State U_i Attention Mechanism α_i $\exp(e_j)$ **(2)**

Annotation Vector

 h_J

Attention Mechanism (step 3)

f=(La, croissance, économique, s'est, ralenti, ces, dernières, années, .)

Alternate view of attention mechanism

Summary of attention based NMT

• Annotation vectors (h_1,\ldots,h_T) where $h_i^T = \begin{vmatrix} \dot{h}_i^T \ \dot{h}_i^T \end{vmatrix}$

• Relevance weight or an alignment weight of j-th annotation vector for

t-th target word (f is FF NN)

$$\alpha_{tj} = \frac{\exp(f(z_{(t-1)}, h_j, y_{t-1}))}{\sum_{k=1}^{T} \exp(f(z_{(t-1)}, h_k, y_{t-1}))}$$

Context vector of t-th word

$$c_t = \sum_{j=1}^T \alpha_{tj} h_j$$

Decoder's hidden state

$$z_t = f_r(z_{t-1}, y_{t-1}, c_t)$$

Performance

Visualization of attention

Prominent approaches for neural machine translation

Translation Model	Training time	BLEU (difference from baseline)
Transformer (T2T)	3 days on 8 GPU	28.4 (+7.8)
SliceNet (T2T)	6 days on 32 GPUs	26.1 (+5.5)
GNMT + Mixture of Experts	1 day on 64 GPUs	26.0 (+5.4)
ConvS2S	18 days on 1 GPU	25.1 (+4.5)
GNMT	1 day on 96 GPUs	24.6 (+4.0)
ByteNet	8 days on 32 GPUs	23.8 (+3.2)
MOSES (phrase-based baseline)	N/A	20.6 (+0.0)

BLEU scores (higher is better) on the standard WMT English-German translation task

References

- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
- Cho, Kyunghyun et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).
- Cho, Kyunghyun, Aaron Courville, and Yoshua Bengio. "Describing Multimedia Content using Attention-based Encoder—Decoder Networks." arXiv preprint arXiv:1507.01053 (2015).
- Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural Turing Machines." arXiv preprint arXiv:1410.5401 (2014).
- Gulcehre, Caglar et al. "On Using Monolingual Corpora in Neural Machine Translation." arXiv preprint arXiv:1503.03535 (2015).
- Kalchbrenner, Nal, and Phil Blunsom. "Recurrent Continuous Translation Models." EMNLP 2013: 1700-1709.
- Koehn, Philipp. Statistical machine translation. Cambridge University Press, 2009.
- Pascanu, Razvan et al. "How to construct deep recurrent neural networks." arXiv preprint arXiv:1312.6026 (2013).
- Schwenk, Holger. "Continuous space language models." Computer Speech & Language 21.3 (2007): 492-518.
- Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks."
 Advances in Neural Information Processing Systems 2014: 3104-3112.
- http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-with-gpus/
- Minh Thang Luong, Hieu Pham, Christopher D. Manning"Effective Approaches to Attention-based Neural Machine Translation." arXiv:1508.04025 (2015).
- Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, Yann N. Dauphin. "Convolutional Sequence to Sequence Learning", arXiv:1705.03122 (2017)
- Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi. "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation" arXiv:1609.08144
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones. "Attention Is All You Need", arXiv:1706.03762