Lista 6: CM300 Introdução ao Cálculo

A. Ramos *

November 18, 2019

Abstract

Funções trigonométricas, inversas, etc.

1 Exercícios

Refaça os exercícios desenvolvidos em aula.

1.1 Funções trigonométricas

1. Verifique que as seguintes expressões são identidades

(a)
$$\sin^4(\theta) - \cos^4(\theta) = \sin^2(\theta) - \cos^2(\theta)$$
.

- (b) $\csc \theta \sin \theta = \cot \theta \cos \theta$
- 2. Encontre todas as soluções de

(a)
$$\sin t = \sqrt{3}/2$$

$$Rpta: C.S = \{\pi/3 + 2\pi n, 2\pi/3 + 2\pi n : n \in \mathbb{Z}\}\$$

(b)
$$\cos^2 t = 3/4$$

$$Rpta: C.S = \{\pi/6 + 2\pi n, 5\pi/6 + 2\pi n, 7\pi/6 + 2\pi n, 11\pi/6 + 2\pi n : n \in \mathbb{Z}\}.$$

3. Dentro do intervalo $[0, 2\pi)$, encontre todas as soluções de

(a)
$$2\sin^2 t = -\sin t$$

$$Rpta: C.S = \{0, \pi, 7\pi/6, 11\pi/6\}$$

(b)
$$1 - \cos t = 2\sin^2 t$$

$$Rpta: C.S = \{0, 2\pi/3, 4\pi/3\}.$$

4. Converta de radianos para graus: (a) $5\pi/3$; (b) $\pi/36$; (c) $3\pi/2$

Rpta: (a)
$$3900^{\circ}$$
; (b) 5° ; (c) 270°

5. Converta de gruas para radianos (a) 30° ; (b) 135° ; (c) 15° (d) 1080°

Rpta: (a)
$$\pi/6$$
; (b) $3\pi/4$; (c) $\pi/12$ (d) 6π

6. Esboce os gráficos das funções, indicando sua amplitude A e período T.

(a)
$$f(x) = \sin x$$

Rpta:
$$A = 1, T = 2\pi$$

(b)
$$f(x) = \cos 2x$$

Rpta:
$$A=1, T=\pi$$

(c)
$$f(x) = 2\sin(\frac{x}{2}) - 2$$

Rpta:
$$A = 2, T = 4\pi$$

(d)
$$f(x) = \cos(x - \frac{\pi}{2}) + 3$$

Rpta:
$$A = 1, T = 2\pi$$

(e)
$$f(x) = \frac{1}{2}\cos(3x + \frac{x}{4}) + \frac{3}{2}$$

Rpta:
$$A = 1/2, T = 2\pi/3$$

(f)
$$f(x) = 3\sin(5x - \pi) + 6$$

Rpta:
$$A = 3, T = 2\pi/5$$

7. Faça a substituição $u := \arcsin(x/3)$ para simplificar

(a)
$$\sqrt{9-x^2}$$

Rpta:
$$3\cos u$$

(b)
$$\frac{x^2}{\sqrt{9-x^2}}$$

 $Rpta: 3 \tan u \sin u.$

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

- 8. Faça a substituição $u := \arctan(x/4)$ para simplificar
 - (a) $\sqrt{16+x^2}$
 - (b) $\frac{\sqrt{x^2+16}}{x^3}$

 $Rpta: 4 \sec u$ $Rpta: \frac{\cos^2 u}{16 \sin^3 u}.$

9. Em certa cidade, o dia mais quente do ano, em média é o dia 7 de agosto, quando a temperatura média é de 30°. O dia mais frio do ano tem uma temperatura média de 14°.

Use uma função trigonométrica (coseno ou seno) para modelar a temperatura da cidade, supondo que o ano dura 365 dias. Com essa função calcule os dias em que a temperatura seja de 20°.

- Rpta: Temperatura $T(d)=8\cos(\frac{2\pi}{365}d)+22,$ onde destá dado em dias.
- 10. Um artista está tocando uma sanfona. O comprimento da sanfona é uma função A(t) (medido em cm) onde t é o tempo medido em segundos, qual é modelada por $A(t) = a\cos(bt) + d$. Quando t = 0, a sanfona mede 15 cm que é o seu menor comprimento. Para $t \in (0, 1.5)$ o comprimento da sanfona está crescendo, e no tempo t = 1.5, a sanfona está no comprimento médio de 21 cm. Com essas informações, calcule $a, b \in d$.

Rpta: a = 6, $b = \pi/3$, d = 21

- 11. Simplifique as seguintes expressões:
 - (a) $\sin(\arccos x)$

Rpta: $\sqrt{1-x^2}$.

(b) $\cos(\arctan x)$

Rpta: $\frac{1}{\sqrt{1+x^2}}$.

(c) $\tan(2\arccos(x))$

 $Rpta: \frac{2x\sqrt{1-x^2}}{2x^2-1}$

- 12. Calcule:
 - (a) $\sin(\frac{1}{2}\arccos(\frac{4}{5}))$

Rpta: $\frac{\sqrt{10}}{10}$.

(b) $\cos(2\arctan(\frac{2}{3}))$

Rpta: $\frac{1}{9}$.

(c) $\sec(2\arctan(\frac{1}{2}))$

Rpta: $\frac{5}{2}$.

- 13. Use a fórmula de mudança de fase para escrever
 - (a) $3\cos 4x + \sqrt{3}\sin 4x$

Rpta: $2\sqrt{3}\cos(4x-\frac{\pi}{6})$

(b) $6(\cos 3x - \sin 3x)$

Rpta: $6\sqrt{2}\cos(3x+\frac{\pi}{4})$

- 14. Simplifique as expressões algébricas
 - (a) $\frac{1}{x\sqrt{4-x^2}}$ com $x = 2\sin u, u \in (-\pi/2, \pi/2)$

 $Rpta: \frac{1}{4} \sec u \csc u$

(b) $\frac{\sqrt{x^2-a^2}}{x}$ com $x = a \sec u, u \in [0, \pi/2)$

 $Rpta: \sin u$

- 15. Encontre as soluções no intervalo $[0, 2\pi)$
 - (a) $2\cos^2 x + 3\sin x$

Rpta: $\pi/3$, $5\pi/3$

(b) $\tan x - \sec x = 1$

- Rpta: π
- 16. Um bote está no meio do mar boiando. A distância do bote d(t) (em metros) ao fundo do mar, é uma função do tempo (em segundo) e pode ser modelada como $A\sin(bt) + d$. Quanto t = 0, o bote está exatamente no meio da sua oscilação e está a 1m acima do fundo. Se para $t \in (0, \pi/4)$ o bote está subindo e chega à sua altura máxima de 1.2cm depois de $\pi/4$ segundos.

 $Rpta:\ \ b=2,\, A=0.2,\, d=1.$