

Distributed Systems Models

Marco Aiello

Distributed System Definition

from Coulouris et al.

A system model is necessary to precisely and uniquely specify the relationship between different components of a distributed system and its behaviour as a whole. Different aspects of a distributed system need modeling:

- Computation state (e.g, consistency)
- Architecture (e.g., client-server)
- O Interaction (e.g., asynchronous messages)
- Failure (e.g., types of channel exceptions)
- Security (e.g., types of attacks to a host)

Modelling the state of the computation

- State machine to model a system who's output depends on the current state and input (e.g., incoming messages)
- Finite State Machine (FSM):
 - S is a finite non-empty set of states;
 - $s_0 \in S$ is the initial state;
 - I is a set of input messages
 - O is a set of output messages
 - $\delta: S \times I \to S \times O$ is the state transition function

Finite State Machine

Example

- S={⊥,voted, king}
- $s0 = \bot$
- I = {start election, king, reset}
- O = {vote, ack, no_op}
- Next state function:
 - (⊥,start election) -> (voted,vote)
 - (voted, king) -> (voted, ack)
 - (voted,reset) -> (⊥,no_op)
 - (king, reset) -> (⊥,no_op)

Finite State Machine

Example schema

State of a Distributed System

 A distributed system is modelled by the set of states of its components and of its channels

host 1 channel host 2

Some important (negative) results

- No leader election in anonymous rings
- No consensus in asynchronous systems
- Byzantine fault tolerance with at most $\lceil \frac{1}{3}n 1 \rceil$
- CAP theorem (Consistency, Availability, Partitioning Tolerance)

Architectural Models

- Client-server
 - Architectural variations:
 - One server-many clients
 - Many servers-many clients
 - Intermediaries: proxies, load balancing mediators
 - Computational load variations
 - Mobile code (applets, scripts)
 - Mobile agents
 - Network computers
 - Thin clients
- Peer-to-peer

Client Server

Client Server Variations

a) client request results in the downloading of applet code

b) client interacts with the applet

Peer-to-peer

Interaction model

- Synchronous distributed system
 - Time to execute a step has lower and upper bounds
 - Each message is received within a given time
 - Each process has a local clock with a given max drift
- Asynchronous distributed system
 - No bounds on process execution time
 - No bounds on message receival time
 - Arbitrary clock drifts

Example: eMail

Interaction model

- Performance
 - Latency: △ time transmission begins and beginning of receipt
 - Bandwidth: amount of information that can be transmitted over a channel in the unit of time
 - Jitter: difference in time needed to transmit a series of messages
- Clock drift rate: timing events (GPS)
- Event ordering

Failure model

• Defines how failures can occur in order to detect and mask them, thus establishing the level of fault tolerance of the system.

Security Models

- Model the enemy's attacks
 - list type of attacks, to which components, for which users and processes
- Goal:
 - To protect objects, processes, communication, data integrity and privacy
- Solutions:
 - Cryptography
 - Authentication
 - Secure channels
 - Data mixing and obfuscation