

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	20.62 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.91	
C _e =	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.05	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1091.38</u>	<u>5514.25</u>	k
Compressive Load =	4442.27	4835.31	k
Lateral Load =	<u>336.95</u>	<u>2515.39</u>	k
Moment (Weak Axis) =	0.68	0.37	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 133120.0 in-lbs Resisting Force Required = 2016.97 lbs A minimum 132in long x 29in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3361.62 lbs to resist overturning. Minimum Width = Weight Provided = 5781.88 lbs Sliding 580.09 lbs Force = Use a 132in long x 29in wide x 18in tall Friction = 0.4 Weight Required = 1450.23 lbs ballast foundation to resist sliding. Resisting Weight = 5781.88 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 580.09 lbs Cohesion = 130 psf Use a 132in long x 29in wide x 18in tall 26.58 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2890.94 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft

f'c =

Length =

2500 psi

8 in

Bearing Pressure Ballast Width <u>29 in</u> 30 in 31 in 32 in $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.42 \text{ ft}) =$ 5782 lbs 5981 lbs 6181 lbs 6380 lbs

ASD LC		1.0D ·	+ 1.0S		1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	29 in	30 in	31 in	32 in	29 in	30 in	31 in	32 in	29 in	30 in	31 in	32 in	29 in	30 in	31 in	32 in
FA	1553 lbs	1553 lbs	1553 lbs	1553 lbs	1501 lbs	1501 lbs	1501 lbs	1501 lbs	2162 lbs	2162 lbs	2162 lbs	2162 lbs	-494 lbs	-494 lbs	-494 lbs	-494 lbs
FB	1584 lbs	1584 lbs	1584 lbs	1584 lbs	1805 lbs	1805 lbs	1805 lbs	1805 lbs	2412 lbs	2412 lbs	2412 lbs	2412 lbs	-2535 lbs	-2535 lbs	-2535 lbs	-2535 lbs
F _V	176 lbs	176 lbs	176 lbs	176 lbs	1040 lbs	1040 lbs	1040 lbs	1040 lbs	899 lbs	899 lbs	899 lbs	899 lbs	-1160 lbs	-1160 lbs	-1160 lbs	-1160 lbs
P _{total}	8919 lbs	9119 lbs	9318 lbs	9517 lbs	9088 lbs	9287 lbs	9487 lbs	9686 lbs	10356 lbs	10555 lbs	10754 lbs	10954 lbs	440 lbs	559 lbs	679 lbs	799 lbs
M	3926 lbs-ft	3926 lbs-ft	3926 lbs-ft	3926 lbs-ft	4432 lbs-ft	4432 lbs-ft	4432 lbs-ft	4432 lbs-ft	5944 lbs-ft	5944 lbs-ft	5944 lbs-ft	5944 lbs-ft	2045 lbs-ft	2045 lbs-ft	2045 lbs-ft	2045 lbs-ft
е	0.44 ft	0.43 ft	0.42 ft	0.41 ft	0.49 ft	0.48 ft	0.47 ft	0.46 ft	0.57 ft	0.56 ft	0.55 ft	0.54 ft	4.65 ft	3.66 ft	3.01 ft	2.56 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	255.0 psf	253.7 psf	252.5 psf	251.4 psf	250.9 psf	249.8 psf	248.8 psf	247.8 psf	267.6 psf	265.9 psf	264.4 psf	262.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	416.1 psf	409.5 psf	403.3 psf	397.5 psf	432.8 psf	425.6 psf	418.9 psf	412.6 psf	511.5 psf	501.7 psf	492.6 psf	484.0 psf	142.6 psf	80.9 psf	70.4 psf	67.9 psf

Shear key is not required.

Maximum Bearing Pressure = 512 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 29in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 2476.1 \text{ ft-lbs}$

Resisting Force Required = 2049.17 lbs S.F. = 1.67

Weight Required = 3415.28 lbs Minimum Width = 29 in in Weight Provided = 5781.88 lbs A minimum 132in long x 29in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		29 in			29 in			29 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	265 lbs	641 lbs	217 lbs	887 lbs	2575 lbs	849 lbs	94 lbs	187 lbs	46 lbs		
F _V	212 lbs	208 lbs	214 lbs	157 lbs	152 lbs	167 lbs	212 lbs	209 lbs	213 lbs		
P _{total}	7423 lbs	7799 lbs	7375 lbs	7701 lbs	9389 lbs	7663 lbs	2188 lbs	2280 lbs	2139 lbs		
M	845 lbs-ft	837 lbs-ft	853 lbs-ft	637 lbs-ft	635 lbs-ft	668 lbs-ft	844 lbs-ft	835 lbs-ft	846 lbs-ft		
е	0.11 ft	0.11 ft	0.12 ft	0.08 ft	0.07 ft	0.09 ft	0.39 ft	0.37 ft	0.40 ft		
L/6	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft		
f _{min}	200.3 psf	215.2 psf	197.8 psf	230.2 psf	293.8 psf	225.9 psf	3.4 psf	7.8 psf	1.5 psf		
f _{max}	358.2 psf	371.6 psf	357.1 psf	349.1 psf	412.5 psf	350.6 psf	161.2 psf	163.8 psf	159.5 psf		

Maximum Bearing Pressure = 413 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 29in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 29in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.417 k	Maximum Axial Load = 3.785 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>46%</u>	Utilization = 51%
Diagonal Strut		
Maximum Axial Load =	1.742 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>23%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 40.12 in

Allowable Story Drift for All Other

Structures, $\Delta = \{$ 0.020 h_{sx} 0.802 in

Max Drift, $\Delta_{MAX} =$ 0.543 in

0.543 \leq 0.802, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 120 \text{ in}$$

$$J = 0.432$$

$$331.976$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = \left(\frac{Bc - \frac{cy}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$c_2 = \left(\frac{C_c}{C_c}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 120$$

$$J = 0.432$$

$$211.117$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.6$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k_1 Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

38.9 ksi

$\phi F_L =$ 3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L St = 25.1 \text{ ksi}$$
 $1x = 897074 \text{ mm}^4$

43.2 ksi

2.788 k-ft

 $\phi F_L =$

$$2.155 \text{ in}^4$$

y = 41.015 mm

$$Sx = 1.335 \text{ in}^3$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

1.073 in⁴

$$x = 45.5 \text{ mm}$$

 $Sy = 0.599 \text{ in}^3$

$$M_{max}Wk = 1.152 \text{ k-ft}$$

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.16.1N/A for Weak Direction

16.2

 $\frac{\theta_y}{\theta_b} 1.3 Fcy$

3.904 k-ft

3.4.18

h/t =

Bbr -

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

43.2 ksi

 $lx = 984962 \text{ mm}^4$

29.4 ksi

2.366 in⁴

1.375 in³

3.363 k-ft

43.717 mm

$$\begin{array}{rcl} S1 = & 36.9 \\ m = & 0.65 \\ C_0 = & 40 \\ Cc = & 40 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 33.3 \text{ ksi} \\ y = & 923544 \text{ mm}^4 \\ 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ \end{array}$$

 $M_{max}Wk =$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_L =$

 $\phi F_L St =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_I = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$\varphi = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

 $C_0 =$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} Wk = 1.460 \text{ k-ft}$$

24.5

0.65

27.5

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Rb/t =

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$
 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \ ksi \\ y = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 3$$

Weak Axis:

$$L_b = 55.91$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

S1.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi \varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$QE_L W k = 28.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ Iy = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Υ	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-77.697	-77.697	0	0
2	M14	٧	-77.697	-77.697	0	0
3	M15	V	-122.096	-122.096	0	0
4	M16	V	-122.096	-122.096	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	٧	177.594	177.594	0	0
	2	M14	V	136.155	136.155	0	0
	3	M15	V	73.997	73.997	0	0
	4	M16	У	73.997	73.997	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	469.783	2	1102.084	1	.86	1	.004	1	0	1	0	1
2		min	-611.492	3	-1295.014	3	-62.278	5	28	4	0	1	0	1
3	N7	max	.036	9	1209.185	1	43	12	0	12	0	1	0	1
4		min	126	2	-236.19	3	-259.196	4	52	4	0	1	0	1
5	N15	max	.025	9	3417.13	1	0	9	0	9	0	1	0	1
6		min	-1.574	2	-839.521	3	-248.839	4	506	4	0	1	0	1
7	N16	max	1795.589	2	3719.473	1	0	3	0	3	0	1	0	1
8		min	-1934.914	3	-4241.734	3	-62.043	5	282	4	0	1	0	1
9	N23	max	.037	14	1209.185	1	9.385	1	.02	1	0	1	0	1
10		min	126	2	-236.19	3	-253.045	4	509	4	0	1	0	1
11	N24	max	469.783	2	1102.084	1	047	12	0	12	0	1	0	1
12		min	-611.492	3	-1295.014	3	-62.813	5	282	4	0	1	0	1
13	Totals:	max	2733.329	2	11759.14	1	0	9						
14		min	-3158.508	3	-8143.663	3	-943.207	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	99.316	1	486.677	1	-6.39	12	0	3	.237	1	0	4
2			min	4.639	12	-647.148	3	-161.474	1	013	2	.011	12	0	3
3		2	max	99.316	1	340.883	1	-5.032	12	0	3	.093	4	.613	3
4			min	4.639	12	-455.416	3	-124.12	1	013	2	.005	12	46	1
5		3	max	99.316	1	195.09	1	-3.675	12	0	3	.049	5	1.012	3
6			min	4.639	12	-263.684	3	-86.766	1	013	2	039	1	758	1
7		4	max	99.316	1	49.296	1	-2.317	12	0	3	.026	5	1.198	3
8			min	4.639	12	-71.953	3	-49.412	1	013	2	115	1	893	1
9		5	max	99.316	1	119.779	3	873	10	0	3	.005	5	1.172	3
10			min	4.639	12	-96.498	1	-21.065	4	013	2	149	1	867	1
11		6	max	99.316	1	311.51	3	25.295	1	0	3	006	12	.932	3
12			min	3.76	15	-242.292	1	-16.015	5	013	2	142	1	679	1
13		7	max	99.316	1	503.242	3	62.649	1	0	3	004	12	.48	3
14			min	-5.568	5	-388.086	1	-13.915	5	013	2	093	1	329	1
15		8	max	99.316	1	694.974	3	100.003	1	0	3	0	10	.184	1
16			min	-16.974	5	-533.879	1	-11.814	5	013	2	047	4	186	3
17		9	max	99.316	1	886.705	3	137.357	1	0	3	.13	1	.858	1
18			min	-28.38	5	-679.673	1	-9.714	5	013	2	057	5	-1.065	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	99.316	1	825.467	1	-5.828	12	.013	2	.303	1	1.694	1
20			min	4.639	12	-1078.437	3	-174.711	1	0	3	.008	12	-2.156	3
21		11	max	99.316	1	679.673	1	-4.471	12	.013	2	.13	1	.858	1
22			min	4.639	12	-886.705	3	-137.357	1	0	3	.003	12	-1.065	3
23		12	max	99.316	1	533.879	1	-3.113	12	.013	2	.045	4	.184	1
24			min	4.639	12	-694.974	3	-100.003	1	0	3	003	3	186	3
25		13	max	99.316	1	388.086	1	-1.756	12	.013	2	.021	5	.48	3
26		10	min	4.639	12	-503.242	3	-62.649	1	0	3	093	1	329	1
27		14	max	99.316	1	242.292	1	398	12	.013	2	0	15	.932	3
28		17	min	3.467	15	-311.51	3	-25.295	1	0	3	142	1	679	1
29		15	max	99.316	1	96.498	1	12.058	1	.013	2	005	12	1.172	3
30		13	min	-6.09	5	-119.779	3	-16.725	5	_	3	149	1	867	1
		16								0			12		_
31		16	max	99.316	1	71.953	3	49.412	1	.013	2	003		1.198	3
32		47	min	-17.496	5	-49.296	1	-14.624	5	0	3	115	1_	893	1
33		17	max	99.316	1	263.684	3	86.766	1	.013	2	0	3	1.012	3
34			min	-28.902	5	-195.09	1	-12.524	5	0	3	063	4_	758	1
35		18	max	99.316	1	455.416	3	124.12	1	.013	2	.078	_1_	.613	3
36			min	-40.308	5	-340.883	1	-10.423	5	0	3	066	5	46	1
37		19	max	99.316	1	647.148	3	161.474	1	.013	2	.237	_1_	0	1
38			min	-51.714	5	-486.677	1	-8.323	5	0	3	077	5	0	3
39	M14	1	max	59.648	4	515.354	1	-6.566	12	.008	3	.27	1	0	1
40			min	1.986	12	-506.136	3	-166.476	1	011	1	.012	12	0	3
41		2	max	48.242	4	369.56	1	-5.209	12	.008	3	.133	4	.481	3
42			min	1.986	12	-360.448	3	-129.122	1	011	1	.006	12	492	1
43		3	max	46.183	1	223.766	1	-3.851	12	.008	3	.073	5	.801	3
44			min	1.986	12	-214.759	3	-91.768	1	011	1	017	1	821	1
45		4	max	46.183	1	77.972	1	-2.493	12	.008	3	.039	5	.959	3
46			min	1.986	12	-69.071	3	-54.414	1	011	1	098	1	989	1
47		5	max	46.183	1	76.617	3	-1.136	12	.008	3	.008	5	.954	3
48		1	min	1.986	12	-67.822	1	-31.379	4	011	1	138	1	995	1
49		6	max	46.183	1	222.306	3	20.293	1	.008	3	005	12	.788	3
50		-	min	-7.115	5	-213.615	1	-25.084	5	011	1	136	1	838	1
		7													_
51		-	max	46.183	1	367.994	3	57.647	1	.008	3	004	12	.46	3
52			min	-18.521	5	-359.409	1	-22.983	5	011	1	093	1_	52	1
53		8	max	46.183	1	513.682	3	95.001	1	.008	3	0	10	0	15
54			min	-29.927	5	-505.203	1	-20.883	5	011	1	076	4_	049	2
55		9	max	46.183	1	659.37	3	132.355	1	.008	3	.118	_1_	.603	1
56			min	-41.332	5	-650.997	1	-18.782	5	011	1	094	5	681	3
57		10	max	67.313	4	796.791	1_	-5.652	12	.011	1	.286	_1_	1.407	1
58			min	1.986	12	-805.059	3	-169.709	1	008	3	.008	12	-1.495	3
59		11	max		4	650.997	1	-4.295	12	.011	1	.134	_4_	.603	1
60			min	1.986	12	-659.37	3	-132.355		008	3	.002	12	681	3
61		12	max	46.183	1	505.203	1	-2.937	12	.011	1	.071	5	0	15
62			min	1.986	12	-513.682	3	-95.001	1	008	3	008	1	049	2
63		13	max	46.183	1	359.409	1	-1.579	12	.011	1	.037	5	.46	3
64			min	1.986	12	-367.994	3	-57.647	1	008	3	093	1	52	1
65		14	max	46.183	1	213.615	1	222	12	.011	1	.006	5	.788	3
66			min	1.986	12	-222.306	3	-32.07	4	008	3	136	1	838	1
67		15	max	46.183	1	67.822	1	17.061	1	.011	1	005	12	.954	3
68			min	.399	15	-76.617	3	-25.231	5	008	3	138	1	995	1
69		16	max		1	69.071	3	54.414	1	.011	1	003	12	.959	3
70		1.0	min	-10.762	5	-77.972	1	-23.13	5	008	3	098	1	989	1
71		17	max	46.183	1	214.759	3	91.768	1	.011	1	.001	3	.801	3
72		17	min	-22.168	5	-223.766	1	-21.03	5	008	3	08	4	821	1
		40				360.448	•	129.122				.106			_
73		18		46.183	1		3		1	.011	1			.481	3
74		10	min	-33.574	5	-369.56	1	-18.929	5	008	3	097	5	492	
75		19	max	46.183	1_	506.136	3	166.476	_1_	.011	1	.27	<u>1</u>	0	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

The color of the	hear[lb] LC z Shear[lb] LC Torque[k-ft] LC y-y Mome LC z-z Mome	
T8		3
Record Proceed Process Proce		2
80		3
81 3 max 58.744 5 264.48 2 -3.812 12 0.01 1 .099 5 .437 82 min -48.54 1 -120.02 3 -91.746 1 -007 3 -0.17 1 -979 83 4 max 47.339 5 88.245 2 -24.54 12 .011 1 .055 5 5.28 84 min -48.54 1 -43.396 3 -54.992 1 -0.07 3 -0.98 1 -1.175 85 5 min -48.54 1 -87.991 2 -40.513 4 -0.07 3 -138 1 -1.175 87 6 max 24.527 5 109.852 3 20.315 1 .011 1 -0.05 12 .454 88 min -48.54 1 -262.463 3 57.669 1 <t< td=""><td></td><td>3</td></t<>		3
82		2
83 4 max 47.339 5 88.245 2 2.2454 12 .011 1 .055 5 .528 84 min -48.54 1 -43.396 3 -54.392 1 -007 3 098 1 -1.175 85 5 max 55.933 3 -54.996 12 .011 1 .014 5 .533 86 min -48.54 1 -87.991 2 -40.513 4 -007 3 -138 1 -1.175 87 6 max 24.527 5 109.852 3 20.315 1 .011 1 -004 12 .98 89 7 max 13.121 5 186.476 3 57.669 1 .011 1 -004 12 289 90 min -48.54 1 -440.463 2 -32.002 5 -007 3 -13<		3
84 min -48.54 1 -43.396 3 -54.392 1 007 3 098 1 -1.175 85 5 max 35.933 5 33.228 3 -1.096 12 .011 1 .014 5 .533 86 min -48.54 1 -87.991 2 -40.513 4 007 3 138 1 -1.175 87 6 max 24.527 5 109.852 3 2.0315 1 .011 1 -005 12 .454 88 min -48.54 1 -264.227 2 -34.203 5 007 3 136 1 98 90 min -48.54 1 -616.698 2 -30.002 5 007 3 031 1 -588 91 8 max -7.326 12 393,723 3 132.77 1 .011		2
85 5 max 35,933 5 33,228 3 -1,096 12 .011 1 .014 5 .533 86 min -48,54 1 -87,991 2 -40,513 4 007 3 138 1 -1,175 87 6 max 24,527 5 109,852 3 20,315 1 .011 1 005 12 .454 88 min -48,54 1 -264,227 2 -34,203 5 007 3 136 1 98 89 7 max 1.715 5 263.1 3 57,007 3 104 1 004 12 .289 1 .011 1 .004 12 .289 1 .011 1 .004 12 .289 1 .011 1 .11 .01 .01 .04 .01 .04 .01 .01 .01 .01 <td></td> <td>3</td>		3
86 min -48.54 1 -87.991 2 -40.513 4 007 3 138 1 -1.175 87 6 max 24.527 5 109.852 3 20.315 1 .011 1 005 12 .454 88 min -48.54 1 -264.227 2 -34.203 5 007 3 034 1 98 89 7 max 13.121 5 186.476 3 57.669 1 .011 1 004 12 289 90 min -48.54 1 -616.698 2 -30.002 5 007 3 1 4 015 93 9 max -2.326 12 399.723 3 132.377 1 .011 1 .118 1 .782 94 min -48.54 1 -792.934 2 -27.901 5 -007		2
87 6 max 24,527 5 109,852 3 20,315 1 .011 1 .005 12 .454 88 min -48,54 1 -264,227 2 -34,203 5 007 3 -,136 1 98 89 7 7 max 13,121 5 186,476 3 57,669 1 .011 1 .004 12 .289 90 min -48,54 1 -440,463 2 -32,102 5 007 3 093 1 588 91 8 max 1.715 5 263.1 3 95,023 1 .011 1 0 10 .04 92 min -48,54 1 -616,988 2 -20,007 3 -11 4 .015 93 9 max -2,326 12 392,17 2 -5,692 12 .007 3 <td></td> <td>3</td>		3
Reference		2
Residue		3
90		2
91		3
92 min	40.463 2 -32.102 5007 3093 1588	2
93	263.1 3 95.023 1 .011 1 0 10 .04	3
93 9 max -2.326 12 339.723 3 132.377 1 .011 1 .118 1 .782 94 min -48.54 1 -792.934 2 -27.901 5 007 3 129 5 295 95 10 max -2.326 12 969.17 2 -5.692 12 .007 3 .286 1 1.761 96 min -48.54 1 -416.347 3 -169.731 1 011 1 .008 12 715 97 11 max 3.935 5 792.934 2 -4.334 12 .007 3 .169 4 .782 98 min -48.54 1 -339.723 3 -132.377 1 .011 1 .002 12 .295 99 12 max -2.326 12 640.463 2 -2.976 12 .007 3 .052	16.698 2 -30.002 5007 31 4015	1
94		2
95		3
96		2
97		3
98		2
99		3
100		3
101 13 max -2.326 12 440.463 2 -1.619 12 .007 3 .052 5 .289 102 min -48.54 1 -186.476 3 -57.669 1 011 1 093 1 588 103 14 max -2.326 12 264.227 2 261 12 .007 3 .01 5 .454 104 min -48.54 1 -109.852 3 -41.222 4 011 1 136 1 98 105 15 max -2.326 12 87.991 2 17.039 1 .007 3 005 12 .533 106 min -52.455 4 -33.228 3 -34.352 5 011 1 138 1 -1.175 107 16 max -2.326 12 43.396 3 54.392 1		1
102 min -48.54 1 -186.476 3 -57.669 1 011 1 093 1 588 103 14 max -2.326 12 264.227 2 261 12 .007 3 .01 5 .454 104 min -48.54 1 -109.852 3 -41.222 4 011 1 136 1 98 105 15 max -2.326 12 87.991 2 17.039 1 .007 3 005 12 .533 106 min -52.455 4 -33.228 3 -34.352 5 011 1 138 1 -1.175 107 16 max -2.326 12 43.396 3 54.392 1 .007 3 003 12 .528 108 min -63.861 4 -88.245 2 -32.251 5		3
103 14 max -2.326 12 264.227 2 261 12 .007 3 .01 5 .454 104 min -48.54 1 -109.852 3 -41.222 4 011 1 136 1 98 105 15 max -2.326 12 87.991 2 17.039 1 .007 3 005 12 .533 106 min -52.455 4 -33.228 3 -34.352 5 011 1 138 1 -1.175 107 16 max -2.326 12 43.396 3 54.392 1 .007 3 003 12 .528 108 min -63.861 4 -88.245 2 -32.251 5 011 1 098 1 -1.175 109 17 max -2.326 12 120.02 3 91.746		2
104 min -48.54 1 -109.852 3 -41.222 4 011 1 136 1 98 105 15 max -2.326 12 87.991 2 17.039 1 .007 3 005 12 .533 106 min -52.455 4 -33.228 3 -34.352 5 011 1 138 1 -1.175 107 16 max -2.326 12 43.396 3 54.392 1 .007 3 003 12 .528 108 min -63.861 4 -88.245 2 -32.251 5 011 1 098 1 -1.175 109 17 max -2.326 12 120.02 3 91.746 1 .007 3 .001 3 .437 110 min -75.266 4 -264.48 2 -30.151 5 <td< td=""><td></td><td>3</td></td<>		3
105 15 max -2.326 12 87.991 2 17.039 1 .007 3 005 12 .533 106 min -52.455 4 -33.228 3 -34.352 5 011 1 138 1 -1.175 107 16 max -2.326 12 43.396 3 54.392 1 .007 3 003 12 .528 108 min -63.861 4 -88.245 2 -32.251 5 011 1 098 1 -1.175 109 17 max -2.326 12 120.02 3 91.746 1 .007 3 .001 3 .437 110 min -75.266 4 -264.48 2 -30.151 5 011 1 106 4 979 111 18 max -2.326 12 196.643 3 129.1 <td< td=""><td></td><td>2</td></td<>		2
106 min -52.455 4 -33.228 3 -34.352 5 011 1 138 1 -1.175 107 16 max -2.326 12 43.396 3 54.392 1 .007 3 003 12 .528 108 min -63.861 4 -88.245 2 -32.251 5 011 1 098 1 -1.175 109 17 max -2.326 12 120.02 3 91.746 1 .007 3 .001 3 .437 110 min -75.266 4 -264.48 2 -30.151 5 011 1 106 4 979 111 18 max -2.326 12 196.643 3 129.1 1 .007 3 .106 1 .261 112 min -86.672 4 -440.716 2 -28.05 5		3
107 16 max -2.326 12 43.396 3 54.392 1 .007 3 003 12 .528 108 min -63.861 4 -88.245 2 -32.251 5 011 1 098 1 -1.175 109 17 max -2.326 12 120.02 3 91.746 1 .007 3 .001 3 .437 110 min -75.266 4 -264.48 2 -30.151 5 011 1 106 4 979 111 18 max -2.326 12 196.643 3 129.1 1 .007 3 .106 1 .261 112 min -86.672 4 -440.716 2 -28.05 5 011 1 133 5 588 113 19 max -2.326 12 273.267 3 166.454		2
108 min -63.861 4 -88.245 2 -32.251 5 011 1 098 1 -1.175 109 17 max -2.326 12 120.02 3 91.746 1 .007 3 .001 3 .437 110 min -75.266 4 -264.48 2 -30.151 5 011 1 106 4 979 111 18 max -2.326 12 196.643 3 129.1 1 .007 3 .106 1 .261 112 min -86.672 4 -440.716 2 -28.05 5 011 1 133 5 588 113 19 max -2.326 12 273.267 3 166.454 1 .007 3 .27 1 0 114 min -98.078 4 -616.952 2 -25.95 5 011		3
109 17 max -2.326 12 120.02 3 91.746 1 .007 3 .001 3 .437 110 min -75.266 4 -264.48 2 -30.151 5 011 1 106 4 979 111 18 max -2.326 12 196.643 3 129.1 1 .007 3 .106 1 .261 112 min -86.672 4 -440.716 2 -28.05 5 011 1 133 5 588 113 19 max -2.326 12 273.267 3 166.454 1 .007 3 .27 1 0 114 min -98.078 4 -616.952 2 -25.95 5 011 1 163 5 0 115 M16 1 max 80.451 5 590.409 2 -6.26 12 .012 1 .238 1 0 116 min <t< td=""><td></td><td>2</td></t<>		2
110 min -75.266 4 -264.48 2 -30.151 5 011 1 106 4 979 111 18 max -2.326 12 196.643 3 129.1 1 .007 3 .106 1 .261 112 min -86.672 4 -440.716 2 -28.05 5 011 1 133 5 588 113 19 max -2.326 12 273.267 3 166.454 1 .007 3 .27 1 0 114 min -98.078 4 -616.952 2 -25.95 5 011 1 163 5 0 115 M16 1 max 80.451 5 590.409 2 -6.26 12 .012 1 .238 1 0 116 min -105.484 1 -254.541 3 -161.694 1		3
111 18 max -2.326 12 196.643 3 129.1 1 .007 3 .106 1 .261 112 min -86.672 4 -440.716 2 -28.05 5011 1133 5588 113 19 max -2.326 12 273.267 3 166.454 1 .007 3 .27 1 0 114 min -98.078 4 -616.952 2 -25.95 5011 1163 5 0 115 M16 1 max 80.451 5 590.409 2 -6.26 12 .012 1 .238 1 0 116 min -105.484 1 -254.541 3 -161.694 101 3 .01 12 0 117 2 max 69.046 5 414.173 2 -4.902 12 .012 1 .127 4 .24		2
112 min -86.672 4 -440.716 2 -28.05 5 011 1 133 5 588 113 19 max -2.326 12 273.267 3 166.454 1 .007 3 .27 1 0 114 min -98.078 4 -616.952 2 -25.95 5 011 1 163 5 0 115 M16 1 max 80.451 5 590.409 2 -6.26 12 .012 1 .238 1 0 116 min -105.484 1 -254.541 3 -161.694 1 01 3 .01 12 0 117 2 max 69.046 5 414.173 2 -4.902 12 .012 1 .127 4 .24		3
113 19 max -2.326 12 273.267 3 166.454 1 .007 3 .27 1 0 114 min -98.078 4 -616.952 2 -25.95 5 011 1 163 5 0 115 M16 1 max 80.451 5 590.409 2 -6.26 12 .012 1 .238 1 0 116 min -105.484 1 -254.541 3 -161.694 1 01 3 .01 12 0 117 2 max 69.046 5 414.173 2 -4.902 12 .012 1 .127 4 .24		2
114 min -98.078 4 -616.952 2 -25.95 5 011 1 163 5 0 115 M16 1 max 80.451 5 590.409 2 -6.26 12 .012 1 .238 1 0 116 min -105.484 1 -254.541 3 -161.694 1 01 3 .01 12 0 117 2 max 69.046 5 414.173 2 -4.902 12 .012 1 .127 4 .24		2
115 M16 1 max 80.451 5 590.409 2 -6.26 12 .012 1 .238 1 0 116 min -105.484 1 -254.541 3 -161.694 1 01 3 .01 12 0 117 2 max 69.046 5 414.173 2 -4.902 12 .012 1 .127 4 .24		5
116 min -105.484 1 -254.541 3 -161.694 1 01 3 .01 12 0 117 2 max 69.046 5 414.173 2 -4.902 12 .012 1 .127 4 .24		2
117 2 max 69.046 5 414.173 2 -4.902 12 .012 1 .127 4 .24	54.541 3 -161.694 101 3 .01 12 0	3
		3
118 min -105.484 1 -177.917 3 -124.34 101 3 .004 12558		2
119 3 max 57.64 5 237.937 2 -3.545 12 .012 1 .073 5 .395		3
120 min -105.484 1 -101.293 3 -86.986 101 3038 192		2
121 4 max 46.234 5 61.702 2 -2.187 12 .012 1 .041 5 .465	1.702 2 -2.187 12 .012 1 .041 5 .465	3
122 min -105.484 1 -24.669 3 -49.632 101 3114 1 -1.087	4.669 3 -49.632 101 3114 1 -1.087	2
123 5 max 34.828 5 51.954 3829 12 .012 1 .01 5 .45	1.954 3829 12 .012 1 .01 5 .45	3
124 min -105.484 1 -114.534 2 -29.292 401 3149 1 -1.057	14.534 2 -29.292 401 3149 1 -1.057	2
125 6 max 23.423 5 128.578 3 25.075 1 .012 1005 12 .35	28.578 3 25.075 1 .012 1005 12 .35	3
126 min -105.484 1 -290.77 2 -24.147 501 3142 1832	90.77 2 -24.147 501 3142 1832	2
127 7 max 12.017 5 205.202 3 62.429 1 .012 1004 12 .164	05.202 3 62.429 1 .012 1004 12 .164	3
128 min -105.484 1 -467.005 2 -22.046 501 3093 1411		2
129 8 max .611 5 281.826 3 99.783 1 .012 1 0 10 .205		2
130 min -105.484 1 -643.241 2 -19.946 501 3069 4106	43.241 2 -19.946 501 3069 4106	3
131 9 max -4.682 12 358.45 3 137.137 1 .012 1 .129 1 1.018		2
132 min -105.484 1 -819.477 2 -17.845 5 01 3 088 5 462	<u> 19.477 2 -17.845 5 01 3 088 5 462</u>	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]		y Shear[lb]							l .		
133		10	max	-4.682	<u>12</u>	995.713	2	-5.959	12	.01	3	.302	1_	2.027	2
134		4.4	min	-105.484	1_	-435.074	3	-174.491	1	012	1_	.009	12	903	3
135		11	max	524	<u>15</u>	819.477	2	-4.601	12	.01	3_	.13	4	1.018	2
136		40		-105.484	1_	-358.45	3	-137.137	1	012	1	.003	12	462	3
137		12	max	-4.682	12	643.241	2	-3.244	12	.01	3	.067	4	.205	2
138		10		-105.484	1_	-281.826	3	-99.783	1	012	1	003	1_	106	3
139		13	max	-4.682	12	467.005	2	-1.886	12	.01	3	.033	5	.164	3
140			min	-105.484	1_	-205.202	3	-62.429	1	012	1	093	1_	411	2
141		14	max	-4.682	12	290.77	2	528	12	.01	3	.002	5	.35	3
142			min	-105.484	1_	-128.578	3	-32.551	4	012	1	142	1	832	2
143		15	max	-4.682	12	114.534	2	12.279	1	.01	3	005	12	.45	3
144		1.0	min	-105.484	1_	-51.954	3	-24.844	5	012	1	149	1	-1.057	2
145		16	max	-4.682	12	24.669	3	49.632	1	.01	3	004	12	.465	3
146				-105.484	1_	-61.702	2	-22.743	5	012	1_	114	1	-1.087	2
147		17	max	-4.682	12	101.293	3	86.986	1	.01	3_	0	12	.395	3
148				-105.484	_1_	-237.937	2	-20.643	5	012	1_	087	4	92	2
149		18	max	-4.682	12	177.917	3	124.34	1	.01	3	.079	1	.24	3
150			min	-105.484	<u>1</u>	-414.173	2	-18.542	5	012	1_	099	5	558	2
151		19	max	-4.682	12	254.541	3	161.694	1_	.01	3	.238	1	0	2
152			min	-115.3	4	-590.409	2	-16.442	5	012	1_	119	5	0	5
153	<u>M2</u>	1	max		_1_	2.072	4	.927	1_	0	3	0	3	0	1
154			min	-1156.117	3	.507	15	-59.063	4	0	4	0	1	0	1
155		2		1077.387	_1_	2.038	4	.927	1	0	3_	0	1_	0	15
156				-1155.833	3	.499	15	-59.392	4	0	4	015	4	0	4
157		3	max	1077.766	_1_	2.005	4	.927	1_	0	3	0	1_	0	15
158			min	-1155.548	3	.492	15	-59.722	4	0	4	03	4	001	4
159		4	max	1078.145	<u>1</u>	1.971	4	.927	1	0	3	0	1_	0	15
160			min	-1155.264	3	.484	15	-60.051	4	0	4	046	4	002	4
161		5	max	1078.524	_1_	1.938	4	.927	1	0	3	0	1	0	15
162			min	-1154.979	3	.476	15	-60.381	4	0	4	061	4	002	4
163		6	max	1078.904	1	1.905	4	.927	1	0	3	.001	1	0	15
164			min	-1154.695	3	.468	15	-60.71	4	0	4	077	4	003	4
165		7		1079.283	_1_	1.871	4	.927	1	0	3	.001	1_	0	15
166			min	-1154.41	3	.46	15	-61.039	4	0	4	092	4	003	4
167		8	max	1079.662	1	1.838	4	.927	1	0	3	.002	1	0	15
168			min	-1154.126	3	.452	15	-61.369	4	0	4	108	4	004	4
169		9		1080.041	1	1.804	4	.927	1	0	3	.002	1	0	15
170				-1153.842	3	.444	15	-61.698	4	0	4	124	4	004	4
171		10		1080.421	1	1.771	4	.927	1	0	3	.002	1	001	15
172			min	-1153.557	3	.437	15	-62.028	4	0	4	14	4	004	4
173		11	max	1080.8	1	1.738	4	.927	1	0	3	.002	1	001	15
174			min	-1153.273	3	.429	15	-62.357	4	0	4	156	4	005	4
175		12		1081.179	1	1.704	4	.927	1	0	3	.003	1	001	15
176			min	-1152.988	3	.421	15	-62.687	4	0	4	172	4	005	4
177		13		1081.558	1	1.671	4	.927	1	0	3	.003	1	001	15
178				-1152.704	3	.413	15	-63.016	4	0	4	188	4	006	4
179		14	max	1081.938	1	1.637	4	.927	1	0	3	.003	1	002	15
180				-1152.419	3	.405	15	-63.346	4	0	4	204	4	006	4
181		15	max	1082.317	1	1.604	4	.927	1	0	3	.003	1	002	15
182				-1152.135	3	.397	15	-63.675	4	0	4	22	4	007	4
183		16		1082.696	1	1.571	4	.927	1	0	3	.004	1	002	15
184				-1151.85	3	.389	15	-64.005	4	0	4	237	4	007	4
185		17		1083.075	1	1.537	4	.927	1	0	3	.004	1	002	15
186				-1151.566	3	.381	12	-64.334	4	0	4	253	4	007	4
187		18		1083.455	1	1.504	4	.927	1	0	3	.004	1	002	15
188			min		3	.368	12	-64.664	4	0	4	269	4	008	4
189		19		1083.834	1	1.47	4	.927	1	0	3	.004	1	002	15
			,							_					

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC		LC	z-z Mome	LC
190			min	-1150.997	3	.355	12	-64.993	4	0	4	286	4	008	4
191	M3	1	max	419.796	2	8.009	4	1.282	4	0	3	0	1_	.008	4
192			min	-552.837	3	1.895	15	.004	12	0	4	02	4	.002	15
193		2	max	419.626	2	7.239	4	1.823	4	0	3	0	1	.005	4
194			min	-552.965	3	1.714	15	.004	12	0	4	02	4	0	12
195		3	max	419.456	2	6.469	4	2.363	4	0	3	0	1	.002	2
196			min	-553.093	3	1.533	15	.004	12	0	4	019	4	0	3
197		4	max	419.285	2	5.699	4	2.904	4	0	3	0	1_	0	2
198			min	-553.22	3	1.352	15	.004	12	0	4	018	4	002	3
199		5	max	419.115	2	4.929	4	3.445	4	0	3	0	1	0	15
200			min	-553.348	3	1.171	15	.004	12	0	4	016	4	003	3
201		6	max	418.945	2	4.159	4	3.985	4	0	3	0	1	001	15
202			min	-553.476	3	.99	15	.004	12	0	4	015	4	005	6
203		7	max	418.774	2	3.389	4	4.526	4	0	3	0	1	001	15
204			min	-553.604	3	.809	15	.004	12	0	4	013	4	006	6
205		8	max	418.604	2	2.619	4	5.066	4	0	3	0	1	002	15
206			min	-553.732	3	.628	15	.004	12	0	4	011	5	007	6
207		9	max	418.434	2	1.849	4	5.607	4	0	3	0	1	002	15
208			min	-553.859	3	.447	15	.004	12	0	4	009	5	008	6
209		10	max	418.263	2	1.079	4	6.147	4	0	3	0	1	002	15
210			min	-553.987	3	.266	15	.004	12	0	4	006	5	009	6
211		11	max	418.093	2	.369	2	6.688	4	0	3	0	1	002	15
212			min	-554.115	3	039	3	.004	12	0	4	004	5	009	6
213		12	max	417.923	2	096	15	7.228	4	0	3	0	1	002	15
214			min	-554.243	3	489	3	.004	12	0	4	0	5	009	6
215		13	max	417.752	2	277	15	7.769	4	0	3	.002	4	002	15
216			min	-554.37	3	-1.232	6	.004	12	0	4	0	12	009	6
217		14	max	417.582	2	458	15	8.309	4	0	3	.006	4	002	15
218			min	-554.498	3	-2.002	6	.004	12	0	4	0	12	008	6
219		15	max	417.412	2	639	15	8.85	4	0	3	.009	4	002	15
220		'	min	-554.626	3	-2.772	6	.004	12	Ö	4	0	12	007	6
221		16	max	417.241	2	82	15	9.391	4	0	3	.013	4	001	15
222		1	min	-554.754	3	-3.542	6	.004	12	0	4	0	12	006	6
223		17	max		2	-1.001	15	9.931	4	0	3	.017	4	0	15
224			min	-554.881	3	-4.312	6	.004	12	0	4	0	12	004	6
225		18	max		2	-1.182	15	10.472	4	0	3	.022	4	0	15
226		1	min	-555.009	3	-5.082	6	.004	12	0	4	0	12	002	6
227		19	max	416.73	2	-1.363	15	11.012	4	0	3	.026	4	0	1
228		1.0	min	-555.137	3	-5.852	6	.004	12	0	4	0	12	0	1
229	M4	1		1206.119	1	0	1	428	12	0	1	.016	4	0	1
230				-238.49	3	0	1	-258.033		Ö	1	0	12	0	1
231		2		1206.289	1	0	1	428	12	0	1	0	12	0	1
232			min	-238.362	3	0	1	-258.181		0	1	013	4	0	1
233		3		1206.459	1	0	1	428	12	0	1	0	12	0	1
234			min		3	0	1	-258.329		0	1	043	4	0	1
235		4		1206.63	1	0	1	428	12	0	1	0	12	0	1
236			min			0	1	-258.476		0	1	073	4	0	1
237		5		1206.8	1	0	1	428	12	0	1	0	12	0	1
238		<u> </u>		-237.979		0	1	-258.624		0	1	102	4	0	1
239		6		1206.97	<u> </u>	0	1	428	12	0	1	0	12	0	1
240		U		-237.851	3	0	1	-258.772		0	1	132	4	0	1
241		7		1207.141	<u> </u>	0	1	428	12	0	1	0	12	0	1
241			min		3	0	1	-258.919		0	1	162	4	0	1
		0					1				1		12		1
243		8		1207.311	1	0	1	428	12	0	1	102		0	1
244 245		0	min		<u>3</u> 1	0	1	<u>-259.067</u>	12	0	1	192 0	12	0	_
		9		1207.481		0		428		0				0	1
246			THILL	-237.468	3	0	1	-259.215	4	0	1	221	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec	T	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1207.652	_1_	0	1	428	12	0	1	0	12	0	1
248			min	-237.34	3	0	1	-259.362	4	0	1	251	4	0	1
249		11	max	1207.822	1	0	1	428	12	0	1	0	12	0	1
250			min	-237.212	3	0	1	-259.51	4	0	1	281	4	0	1
251		12	max	1207.992	1	0	1	428	12	0	1	0	12	0	1
252			min	-237.084	3	0	1	-259.657	4	0	1	311	4	0	1
253		13	max	1208.163	1	0	1	428	12	0	1	0	12	0	1
254			min	-236.957	3	0	1	-259.805	4	0	1	34	4	0	1
255		14	max	1208.333	1	0	1	428	12	0	1	0	12	0	1
256			min	-236.829	3	0	1	-259.953	4	0	1	37	4	0	1
257		15		1208.503	1	0	1	428	12	0	1	0	12	0	1
258			min	-236.701	3	0	1	-260.1	4	0	1	4	4	0	1
259		16		1208.674	1	0	1	428	12	0	1	0	12	0	1
260		1	min	-236.573	3	0	1	-260.248	4	0	1	43	4	0	1
261		17		1208.844	1	0	1	428	12	0	1	0	12	0	1
262			min		3	0	1	-260.396	4	0	1	46	4	0	1
263		18		1209.014	1	0	1	428	12	0	1	0	12	0	1
264		''	min	-236.318	3	0	1	-260.543	4	0	1	49	4	0	1
265		19	+	1209.185	1	0	1	428	12	0	1	0	12	0	1
266		15	min	-236.19	3	0	1	-260.691	4	0	1	52	4	0	1
267	M6	1		3465.142	1	2.479	2	0	1	0	1	0	4	0	1
268	IVIO	<u> </u>	min	-3784.73	3	.108	3	-59.633	4	0	4	0	1	0	1
269		2	+	3465.521	1	2.453	2	0	1	0	1	0	1	0	3
270			min	-3784.446	3	.088	3	-59.962	4	0	4	015	4	0	2
271		3	max	3465.9	1	2.427	2	0	1	0	1	0	1	0	3
272		<u> </u>	min	-3784.161	3	.069	3	-60.291	4	0	4	031	4	001	2
273		4		3466.279	1	2.401	2	00.231	1	0	1	0	1	0	3
274			min	-3783.877	3	.049	3	-60.621	4	0	4	046	4	002	2
275		5		3466.659	1	2.375	2	00.021	1	0	1	0	1	0	3
276			min	-3783.593	3	.03	3	-60.95	4	0	4	062	4	002	2
277		6		3467.038	1	2.349	2	00.55	1	0	1	0	1	0	3
278		Ĭ	min	-3783.308	3	.01	3	-61.28	4	0	4	077	4	003	2
279		7		3467.417	1	2.323	2	0	1	0	1	0	1	0	3
280		<u> </u>	min	-3783.024	3	009	3	-61.609	4	0	4	093	4	004	2
281		8		3467.796	1	2.297	2	0	1	0	1	0	1	0	3
282			min	-3782.739	3	029	3	-61.939	4	0	4	109	4	004	2
283		9		3468.176	1	2.271	2	0	1	0	1	0	1	0	3
284			min	-3782.455	3	048	3	-62.268	4	0	4	125	4	005	2
285		10	+	3468.555	1	2.245	2	0	1	0	1	0	1	0	3
286		'	min		3	068	3	-62.598	4	0	4	141	4	005	2
287		11		3468.934	1	2.219	2	0	1	0	1	0	1	0	3
288			min		3	087	3	-62.927	4	0	4	157	4	006	2
289		12		3469.313	1	2.193	2	0	1	0	1	0	1	0	3
290		12		-3781.601	3	107	3	-63.257	4	0	4	173	4	007	2
291		13		3469.693	1	2.167	2	0	1	0	1	0	1	0	3
292			min		3	126	3	-63.586	4	0	4	189	4	007	2
293		14		3470.072	1	2.141	2	0	1	0	1	0	1	0	3
294			min		3	146	3	-63.916	4	0	4	206	4	008	2
295		15		3470.451	1	2.115	2	0	1	0	1	0	1	0	3
296		15	min		3	165	3	-64.245	4	0	4	222	4	008	2
297		16		3470.831	1	2.089	2	0	1	0	1	0	1	0	3
298		10	min		3	185	3	-64.574	4	0	4	239	4	009	2
299		17		3471.21	1	2.063	2	0	1	0	1	0	1	0	3
300		17		-3780.179	3	204	3	-64.904	4	0	4	255	4	009	2
301		18	1	3471.589	_ <u></u>	2.037	2	0	1	0	1	0	1	0	3
302		10	min		3	224	3	-65.233	4	0	4	272	4	01	2
303		19		3471.968	1	2.011	2	0	1	0	1	0	1	0	3
000		- 10	mux	0 17 1.000											

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC
304			min	-3779.61	3	243	3	-65.563	4	0	4	289	4	01	2
305	<u>M7</u>	1_	max	1646.793	2	8.02	6	1.145	4	0	_1_	0	1	.01	2
306			min	-1739.255	3	1.882	15	0	1	0	4	021	4	0	3
307		2		1646.622	2	7.25	6	1.686	4	0	1	0	1	.008	2
308			min	-1739.383	3	1.701	15	0	1	0	4	02	4	002	3
309		3	max		2	6.48	6	2.226	4	0	1	0	1	.005	2
310			min	-1739.511	3	1.52	15	0	1	0	4	019	4	003	3
311		4	max		2	5.71	6	2.767	4	0	1	0	1	.003	2
312			min	-1739.639	3	1.339	15	0	1	0	4	018	4	005	3
313		5	max	1646.111	2	4.94	6	3.307	4	0	1	0	1	0	2
314			min	-1739.766	3	1.158	15	0	1	0	4	017	4	006	3
315		6	max	1645.941	2	4.17	6	3.848	4	0	1	0	1	0	2
316			min	-1739.894	3	.977	15	0	1	0	4	015	4	006	3
317		7	max	1645.771	2	3.4	6	4.388	4	0	1	0	1	001	15
318			min	-1740.022	3	.796	15	0	1	0	4	014	4	007	3
319		8	max	1645.6	2	2.63	6	4.929	4	0	1	0	1	002	15
320			min	-1740.15	3	.615	15	0	1	0	4	012	4	007	3
321		9	max	1645.43	2	1.968	2	5.47	4	0	1	0	1	002	15
322			min	-1740.277	3	.317	12	0	1	0	4	009	4	008	4
323		10	max	1645.26	2	1.368	2	6.01	4	0	1	0	1	002	15
324			min	-1740.405	3	041	3	0	1	0	4	007	4	009	4
325		11	max	1645.089	2	.768	2	6.551	4	0	1	0	1	002	15
326			min	-1740.533	3	491	3	0	1	0	4	004	4	009	4
327		12		1644.919	2	.168	2	7.091	4	0	1	0	1	002	15
328			min	-1740.661	3	941	3	0	1	0	4	002	5	009	4
329		13	max		2	29	15	7.632	4	0	1	.002	4	002	15
330		10	min	-1740.788	3	-1.391	3	0	1	0	4	0	1	009	4
331		14	max		2	471	15	8.172	4	0	1	.005	4	002	15
332		17	min	-1740.916	3	-1.99	4	0.172	1	0	4	.003	1	008	4
333		15		1644.408	2	652	15	8.713	4	0	1	.008	4	002	15
334		13	min	-1741.044	3	-2.76	4	0.713	1	0	4	0	1	002	4
335		16		1644.238	2	833	15	9.253	4	0	1	.012	4	001	15
336		10	min	-1741.172	3	-3.53	4	0	1	0	4	.012	1	006	4
337		17		1644.067	2	-1.014	15	9.794	4	0	1	.016	4	001	15
338		17	min	-1741.299	3	-4.3	4	0	1	0	4	.010	1	004	4
339		18		1643.897	2	- 4.3 -1.195	15	10.334	4		1	.02	4	0	15
		10		-1741.427					1	0			1		
340		40	min		3	-5.07	4	0	-	0	4	0		002	4
341		19	max		2	-1.376	15	10.875	4	0	11	.025	4	0	1
342	140		min	-1741.555	3	-5.84	4	0	•	0	4	0	1	0	1
343	M8	1		3414.064	1_	0	1	0	1	0	1_	.016	4	0	1
344				-841.82	3	0	1	-251.123		0	1	0	1	0	1
345		2		3414.234	1_	0	1	0	1	0	1	0	1	0	1
346			min		3_	0	1	-251.271	4	0	1_	013	4	0	1
347		3		3414.405		0	1	0	1	0	1	0	1	0	1
348				-841.565	3	0	1	-251.418		0	1	042	4	0	1
349		4		3414.575	_1_	0	1	0	1	0	1	0	1_	0	1
350				-841.437	3	0	1	-251.566		0	1	071	4	0	1
351		5		3414.745	_1_	0	1	0	1	0	1	0	1	0	1
352				-841.309		0	1	-251.713		0	1	1	4	0	1
353		6		3414.916	_1_	0	1	0	1	0	1	0	1	0	1
354				-841.181	3	0	1	-251.861	4	0	1	129	4	0	1
355		7	max	3415.086	_1_	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-252.009	4	0	1	158	4	0	1
357		8	max	3415.256	1	0	1	0	1	0	1	0	1	0	1
358			min	-840.926	3	0	1	-252.156	4	0	1	187	4	0	1
359		9	max	3415.427	1	0	1	0	1	0	1	0	1	0	1
360				-840.798	3	0	1	-252.304	4	0	1	216	4	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	TOPC MICHIE				<u> </u>										
	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	3415.597	1	0	1	0	1	0	1	0	1	0	1
362				-840.67	3	0	1	-252.452	4	0	1	245	4	0	1
363		11		3415.767	1	0	1	0	1	0	1	0	1	0	1
364				-840.543	3	0	1	-252.599	4	0	1	274	4	0	1
365		12		3415.938	1	0	1	0	1	0	1	0	1	0	1
		12					1	-252.747	4		1	303	<u> </u>		
366		40		-840.415	3	0	_			0			4	0	1
367		13		3416.108	1_	0	1	0	1	0	1	0	1	0	1
368				-840.287	3	0	1	-252.895	4	0	1_	332	4	0	1
369		14		3416.278	_1_	0	1	0	1	0	_1_	0	1	0	1
370			min	-840.159	3	0	1	-253.042	4	0	1	361	4	0	1
371		15	max	3416.449	1	0	1	0	1	0	1	0	1	0	1
372			min	-840.032	3	0	1	-253.19	4	0	1	39	4	0	1
373		16		3416.619	1	0	1	0	1	0	1	0	1	0	1
374				-839.904	3	0	1	-253.337	4	0	1	419	4	0	1
375		17		3416.789	1	0	1	0	1	0	1	0	1	0	1
		17					1	-253.485		0	1		<u> </u>	0	1
376		4.0		-839.776	3	0	_		4	_		448	4		_
377		18		3416.96	1_	0	1	0	1	0	1	0	1	0	1
378				-839.648	3	0	1_	-253.633	4	0	1_	477	4	0	1
379		19	max	3417.13	_1_	0	1	0	1_	0	_1_	0	1_	0	1
380			min	-839.521	3	0	1	-253.78	4	0	1	506	4	0	1
381	M10	1		1077.007	1_	1.983	6	04	12	0	1	0	1	0	1
382			min	-1156.117	3	.448	15	-59.555	4	0	5	0	3	0	1
383		2	max	1077.387	1	1.949	6	04	12	0	1	0	10	0	15
384				-1155.833	3	.44	15	-59.885	4	0	5	015	4	0	6
385		3		1077.766	1	1.916	6	04	12	0	1	0	12	0	15
386				-1155.548	3	.432	15	-60.214	4	0	5	031	4	0	6
387		4		1078.145	_ <u></u>	1.882	6	04	12	0	1	0	12	0	15
		-4												_	
388				-1155.264	3	.424	15	-60.544	4	0	5	046	4	001	6
389		5		1078.524	_1_	1.849	6	04	12	0	1_	0	12	0	15
390				-1154.979	3	.416	15	-60.873	4	0	5	062	4	002	6
391		6		1078.904	1_	1.816	6	04	12	0	1_	0	12	0	15
392			min	-1154.695	3	.408	15	-61.203	4	0	5	077	4	002	6
393		7	max	1079.283	1	1.782	6	04	12	0	1	0	12	0	15
394			min	-1154.41	3	.4	15	-61.532	4	0	5	093	4	003	6
395		8		1079.662	1	1.749	6	04	12	0	1	0	12	0	15
396				-1154.126	3	.393	15	-61.862	4	Ö	5	109	4	003	6
397		9		1080.041	1	1.716	6	04	12	0	1	0	12	0	15
398				-1153.842	3	.385	15	-62.191	4	0	5	125	4	004	6
		10							12	T	1	i			
399		10		1080.421	1	1.682	6	04		0		0	12	0	15
400		4.4		-1153.557	3	.377	15	-62.521	4	0	5	141	4	004	6
401		<u>11</u>		1080.8	1_	1.649	6	04	12	0	1_	0	12	001	15
402				-1153.273	3	.369	15	-62.85	4	0	5	157	4	005	6
403		12		1081.179	_1_	1.615	6	04	12	0	_1_	0	12	001	15
404				-1152.988	3	.361	15	-63.18	4	0	5	173	4	005	6
405		13		1081.558	1	1.582	6	04	12	0	1	0	12	001	15
406				-1152.704	3	.353	15	-63.509	4	0	5	189	4	005	6
407		14		1081.938	1	1.549	6	04	12	0	1	0	12	001	15
408				-1152.419	3	.345	15	-63.838	4	0	5	206	4	006	6
409		15		1082.317	1	1.515	6	04	12	0	1	0	12	001	15
410		10	min	-1152.135	3	.338	15	-64.168	4	0	5	222	4	006	6
		16							12						
411		16		1082.696	1	1.482	6	04		0	1	0	12	001	15
412				-1151.85	3	.33	15	-64.497	4	0	5	238	4	007	6
413		<u> 17</u>		1083.075	_1_	1.448	6	04	12	0	1_	0	12	002	15
414				-1151.566	3	.322	15	-64.827	4	0	5	255	4	007	6
415		18		1083.455	_1_	1.415	6	04	12	0	1_	0	12	002	15
416			min	-1151.282	3	.314	15	-65.156	4	0	5	272	4	007	6
417		19	max	1083.834	1	1.382	6	04	12	0	1	0	12	002	15
		_ • •									_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-1150.997	3	.306	15	-65.486	4	0	5	288	4	008	6
419	M11	1	max	419.796	2	7.955	6	1.241	4	0	1	0	12	.008	6
420			min	-552.837	3	1.859	15	078	1	0	4	021	4	.002	15
421		2	max	419.626	2	7.185	6	1.782	4	0	1	0	12	.005	2
422			min	-552.965	3	1.678	15	078	1	0	4	02	4	0	12
423		3	max	419.456	2	6.415	6	2.322	4	0	1	0	12	.002	2
424			min	-553.093	3	1.497	15	078	1	0	4	019	4	0	3
425		4	max	419.285	2	5.645	6	2.863	4	0	1	0	12	0	2
426			min	-553.22	3	1.316	15	078	1	0	4	018	4	002	3
427		5	max	419.115	2	4.875	6	3.403	4	0	1	0	12	0	15
428			min	-553.348	3	1.135	15	078	1	0	4	017	4	003	4
429		6	max	418.945	2	4.105	6	3.944	4	0	1	0	12	001	15
430			min	-553.476	3	.954	15	078	1	0	4	015	4	005	4
431		7	max	418.774	2	3.335	6	4.484	4	0	1	0	12	002	15
432			min	-553.604	3	.773	15	078	1	0	4	013	4	006	4
433		8	max	418.604	2	2.565	6	5.025	4	0	1	0	12	002	15
434			min	-553.732	3	.592	15	078	1	0	4	011	4	008	4
435		9	max	418.434	2	1.795	6	5.565	4	0	1	0	12	002	15
436		-	min	-553.859	3	.411	15	078	1	0	4	009	4	002	4
437		10		418.263	2	1.025	6	6.106	4	0	1	0	12	002	15
438		10	max min	-553.987	3	.23	15	078	1	0	4	007	4	002	4
439		11		418.093		.369	2	6.647	4		1	0	12	009	15
440		11	max	-554.115	3	039	3	078	1	0	4	004	4	002 01	4
		12	min								1				
441		12	max	417.923	2	132	15	7.187	4	0		0	12	002	15
442		40	min	-554.243	3	516	4	078	1	0	4	001	4	009	4
443		13	max	417.752	2	313	15	7.728	4	0	1	.002	5	002	15
444		4.4	min	-554.37	3	-1.286	4	078	1	0	4	0	1	009	4
445		14	max	417.582	2	494	15	8.268	4	0	1	.005	5	002	15
446			min	-554.498	3_	-2.056	4	078	1	0	4	0	1	008	4
447		15	max	417.412	2	675	15	8.809	4	0	1	.009	4	002	15
448		4.0	min	-554.626	3	-2.826	4	078	1	0	4	0	1	007	4
449		16	max	417.241	2	856	15	9.349	4	0	1	.013	4	001	15
450			min	-554.754	3_	-3.596	4	078	1	0	4	0	1_	006	4
451		17	max		2	-1.037	15	9.89	4	0	1	.017	4	001	15
452			min	-554.881	3	-4.366	4	078	1	0	4	0	1	004	4
453		18	max		2	-1.218	15	10.43	4	0	1_	.021	4	0	15
454			min	-555.009	3_	-5.136	4	078	1	0	4	0	1	002	4
455		19	max	416.73	2	-1.399	15	10.971	4	0	1	.026	4	0	1
456			min	-555.137	3	-5.906	4	078	1	0	4	0	1	0	1
457	M12	1	max	1206.119	_1_	0	1	9.741	1	0	1	.016	4	0	1
458				-238.49	3_	0	1	-252.841	4	0	1_	0	1_	0	1
459		2		1206.289	_1_	0	1	9.741	1	0	1_	0	1	0	1
460			min	-238.362	3	0	1	-252.988		0	1	013	4	0	1
461		3		1206.459	1_	0	1	9.741	1	0	1	.002	1	0	1
462			min	-238.234	3	0	1	-253.136	4	0	1	042	4	0	1
463		4	max	1206.63	1	0	1	9.741	1	0	1	.003	1	0	1
464			min	-238.106	3	0	1	-253.284	4	0	1	071	4	0	1
465		5	max	1206.8	1	0	1	9.741	1	0	1	.004	1	0	1
466				-237.979	3	0	1	-253.431	4	0	1	1	4	0	1
467		6		1206.97	1	0	1	9.741	1	0	1	.005	1	0	1
468				-237.851	3	0	1	-253.579		0	1	129	4	0	1
469		7		1207.141	1	0	1	9.741	1	0	1	.006	1	0	1
470			min		3	0	1	-253.726		0	1	158	4	0	1
471		8		1207.311	1	0	1	9.741	1	0	1	.007	1	0	1
472			min		3	0	1	-253.874		0	1	188	4	0	1
473		9		1207.481	1	0	1	9.741	1	0	1	.008	1	0	1
474				-237.468		0	1	-254.022	_	0	1	217	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10		1207.652	_1_	0	1	9.741	1	0	1	.01	1_	0	1
476			min	-237.34	3	0	1	-254.169	4	0	1	246	4	0	1
477		11	max	1207.822	_1_	0	1	9.741	1	0	1	.011	1	0	1
478			min	-237.212	3	0	1	-254.317	4	0	1	275	4	0	1
479		12	max	1207.992	_1_	0	1	9.741	1	0	_1_	.012	1	0	1
480			min	-237.084	3	0	1	-254.465	4	0	1	304	4	0	1
481		13	max	1208.163	_1_	0	1	9.741	1	0	1	.013	1	0	1
482			min	-236.957	3	0	1	-254.612	4	0	1	334	4	0	1
483		14	max	1208.333	1	0	1	9.741	1	0	1	.014	1	0	1
484			min	-236.829	3	0	1	-254.76	4	0	1	363	4	0	1
485		15	max	1208.503	1	0	1	9.741	1	0	1	.015	1	0	1
486			min	-236.701	3	0	1	-254.907	4	0	1	392	4	0	1
487		16	max	1208.674	1	0	1	9.741	1	0	1	.016	1	0	1
488			min	-236.573	3	0	1	-255.055	4	0	1	421	4	0	1
489		17		1208.844	1	0	1	9.741	1	0	1	.017	1	0	1
490			min	-236.446	3	0	1	-255.203	4	0	1	451	4	0	1
491		18		1209.014	1	0	1	9.741	1	0	1	.018	1	0	1
492			min	-236.318	3	0	1	-255.35	4	0	1	48	4	0	1
493		19		1209.185	1	0	1	9.741	1	0	1	.02	1	0	1
494			min	-236.19	3	0	1	-255.498	4	0	1	509	4	0	1
495	M1	1	max	161.478	1	647.127	3	51.694	5	0	1	.237	1	0	3
496	1711		min	-8.323	5	-485.32	1	-99.205	1	0	3	077	5	013	2
497		2	max	161.968	1	646.118	3	52.935	5	0	1	.184	1	.243	1
498			min	-8.094	5	-486.666	1	-99.205	1	0	3	049	5	341	3
499		3	max	331.185	3	544.527	1	-2.319	15	0	3	.132	1	.488	1
500		-	min	-200.742	2	-467.429	3	-98.507	1	0	1	022	5	668	3
501		4	max	331.552	3	543.181	1	-1.484	15	0	3	.08	1	.201	1
502		4	min	-200.253	2	-468.439	3	-98.507	1	0	1	023	5	421	3
503		5		331.92	3	541.835	1	648	15	0	3	.028	1	004	15
504		- O	max min	-199.763	2	-469.448	3	-98.507	1	0	1	024	5	174	3
505		6	max	332.287	3	540.489	1	.188	15	0	3	024	12	.074	3
506		0		-199.273	2	-470.458	3	-98.507	1	0	1	029	4	371	1
507		7	min	332.655		539.143	1	1.396	5	0	3	003	12	.323	3
508		-	max	-198.783	3	-471.467	3	-98.507	1	0	1	003	1	656	1
		0	min		2										
509		8	max	333.022	3_	537.797	1	2.637	5	0	3	006	12	.572	3
510			min	-198.293	2	-472.477	3	-98.507	1	0	1	128	1	94	1
511		9	max	343.322	3	42.102	2	48.785	5	0	9	.075	1	.668	3
512		40	min	-132.489	2	.406	15	-144.72	1	0	3	124	5	-1.071	1
513		10	max	343.689	3	40.756	2	50.026	5	0	9	0	10	.65	3
514		4.4	min	-131.999	2	0	5	-144.72	1	0	3	098	4	-1.083	1
515		11		344.057	3_	39.41	2	51.268	5	0	9	004	12	.633	3
516		40	min		2	-1.679	4	-144.72	1	0	3	087	4	-1.094	1
517		12	max		3	306.794	3	139.656	5	0	2	.126	1_	.551	3
518			min		10	-582.275	1	-96.228	1_	0	3	188	5	966	1
519		13		354.659	3_	305.784	3	140.898	5	0	2	.076	1_	.39	3
520			min		10	-583.621	1	-96.228	1	0	3	114	5	659	1
521		14		355.027	<u>3</u>	304.775	3	142.139	5	0	2	.025	1_	.229	3
522			min	-77.689	10	-584.967	1	-96.228	1	0	3	04	5	35	1
523		15		355.394	3_	303.765	3	143.381	5	0	2	.036	5	.068	3
524			min	-77.281	10	-586.313	1	-96.228	1	0	3	026	1	041	1
525		16	max		3	302.756	3	144.622	5	0	2	.112	5	.292	2
526			min	-76.873	10	-587.659	1	-96.228	1	0	3	077	1	092	3
527		17	max	356.129	3	301.746	3	145.863	5	0	2	.188	5	.601	2
528			min		10	-589.005	1	-96.228	1	0	3	128	1	251	3
529		18	max		5	592.215	2	-4.683	12	0	5	.168	5	.302	2
530			min		1	-253.579		-116.61	4	0	2	182	1	124	3
531		19			5	590.869	2	-4.683	12	0	5	.119	5	.01	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	LC_
532			min	-161.69	1	-254.588	3	-115.368	4	0	2	238	1	012	1
533	M5	1	max	349.412	1	2156.806	3	90.768	5	0	1	0	1	.027	2
534			min	11.658	12	-1642.986	1	0	1	0	4	171	4	0	3
535		2	max	349.902	1	2155.796	3	92.009	5	0	1	0	1	.894	1
536			min	11.903	12	-1644.332	1	0	1	0	4	123	4	-1.139	3
537		3	max	1064.477	3	1660.035	1	38.671	4	0	4	0	1	1.722	1
538			min	-715.035	2	-1499.392	3	0	1	0	1	076	4	-2.232	3
539		4	max	1064.845	3	1658.689	1	39.912	4	0	4	0	1	.846	1
540			min	-714.545	2	-1500.402	S	0	1	0	1	055	4	-1.44	3
541		5		1065.212	3	1657.343	1	41.154	4	0	4	0	1	.011	9
542				-714.055	2	-1501.412	3	0	1	0	1	033	4	649	3
543		6		1065.58	3	1655.997	1	42.395	4	0	4	0	1	.144	3
544				-713.565	2	-1502.421	3	0	1	0	1	011	5	903	1
545		7		1065.947	3	1654.651	1	43.637	4	0	4	.011	4	.937	3
546				-713.075	2	-1503.431	3	0	1	0	1	0	1	-1.776	1
547		8		1066.314	3	1653.305	1	44.878	4	0	4	.035	4	1.731	3
548				-712.585	2	-1504.44	3	0	1	0	1	0	1	-2.649	1
549		9		1083.473	3	140.264	2	156.716	4	0	1	0	1	1.993	3
550		<u> </u>		-576.907	2	.407	15	0	1	0	1	172	4	-2.998	1
551		10		1083.84	3	138.918	2	157.958	4	0	1	0	1	1.929	3
552		10		-576.417	2	0	15	0	1	0	1	089	5	-3.037	1
553		11		1084.208	3	137.572	2	159.199	4	0	1	0	1	1.866	3
554				-575.927	2	-1.522	6	0	1	0	1	007	5	-3.076	1
555		12	_	1101.496	3	970.042	3	196.234	4	0	1	0	1	1.638	3
556		12	min	-440.283	2	-1802.201	1	0	1	0	4	269	4	-2.742	1
557		13		1101.863	3	969.033	3	197.475	4	0	1	0	1	1.126	3
558		13		-439.793	2	-1803.547	1	0	1	0	4	165	4	-1.791	1
559		14		1102.231	3	968.023	3	198.717	4	0	1	0	1	.615	3
		14				-1804.893	1	0	1		4		4		1
560		15		-439.303	2		•	_	•	0	•	061		838	
561 562		15		1102.598 -438.813	<u>3</u> 2	967.014	3	199.958 0	<u>4</u> 1	0	<u>1</u> 4	.044 0	1	.185 004	13
		16				966.004	_	201.2	4		1	.15			
563		16		1102.966	3	-1807.585	3			0			4	1.132	2
564		47	_	-438.323	2		1	0	1	0	4_	0	1	405	3
565		17		1103.333	3_	964.995	3	202.441	4	0	1_	.257	4	2.08	2
566		40	min	-437.833	2	-1808.931	1	0	1_	0	4_	0	1	91 <u>5</u>	3
567		18	max		12	1995.379	2	0	1	0	4_	.268	4	1.073	2
568		40		-349.478	1_	-869.417	3	-33.833	5	0	_1_	0	1	<u>478</u>	3
569		19	max		12	1994.033	2	0	1	0	4_	.251	4	.023	1
570				-348.988	_1_	-870.426	3	-32.592	5	0	1_	0	1	019	3
571	<u>M9</u>	1	max		1_	647.127	3	99.205	1	0	3_	011	12	0	3
572						-485.32			12		4	237	1	013	2
573		2		161.968	_1_	646.118	3	99.205	1	0	3	009	12	.243	1
574			min		12	-486.666	1	4.639	12	0	4_	184	1	341	3
575		3		331.185	3_	544.527	1	98.507	1_	0	_1_	006	12	.488	1
576			min	-200.742	2	-467.429	3	4.597	12	0	3	132	1	668	3
577		4		331.552	3_	543.181	1	98.507	1	0	_1_	004	12	.201	1
578				-200.253	2	-468.439	3	4.597	12	0	3	08	1	421	3
579		5	max	331.92	3	541.835	1_	98.507	1	0	_1_	001	12	004	15
580			min	-199.763	2	-469.448	3	4.597	12	0	3	034	4	174	3
581		6	max	332.287	3	540.489	1	98.507	1	0	1	.024	1	.074	3
582			min	-199.273	2	-470.458	3	4.597	12	0	3	022	5	371	1
583		7	max	332.655	3	539.143	1	98.507	1	0	1	.076	1	.323	3
584				-198.783	2	-471.467	3	4.597	12	0	3	015	5	656	1
585		8		333.022	3	537.797	1	98.507	1	0	1	.128	1	.572	3
586				-198.293	2	-472.477	3	4.597	12	0	3	008	5	94	1
587		9		343.322	3	42.102	2	144.72	1	0	3	003	12	.668	3
588				-132.489	2	.412	15	6.581	12	0	9	149	4	-1.071	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	343.689	3	40.756	2	144.72	1	0	3	0	1	.65	3
590			min	-131.999	2	.006	15	6.581	12	0	9	098	4	-1.083	1
591		11	max	344.057	3	39.41	2	144.72	1	0	3	.077	1	.633	3
592			min	-131.509	2	-1.633	6	6.581	12	0	9	062	5	-1.094	1
593		12	max	354.292	3	306.794	3	172.715	4	0	3	006	12	.551	3
594			min	-78.506	10	-582.275	1	4.257	12	0	2	231	4	966	1
595		13	max	354.659	3	305.784	3	173.957	4	0	3	003	12	.39	3
596			min	-78.097	10	-583.621	1	4.257	12	0	2	14	4	659	1
597		14	max	355.027	3	304.775	3	175.198	4	0	3	001	12	.229	3
598			min	-77.689	10	-584.967	1	4.257	12	0	2	048	4	35	1
599		15	max	355.394	3	303.765	3	176.44	4	0	3	.045	4	.068	3
600			min	-77.281	10	-586.313	1	4.257	12	0	2	.001	12	041	1
601		16	max	355.761	3	302.756	3	177.681	4	0	3	.138	4	.292	2
602			min	-76.873	10	-587.659	1	4.257	12	0	2	.003	12	092	3
603		17	max	356.129	3	301.746	3	178.922	4	0	3	.232	4	.601	2
604			min	-76.464	10	-589.005	1	4.257	12	0	2	.006	12	251	3
605		18	max	-6.505	12	592.215	2	105.592	1	0	2	.229	4	.302	2
606			min	-162.18	1	-253.579	3	-81.82	5	0	3	.008	12	124	3
607	·	19	max	-6.26	12	590.869	2	105.592	1	0	2	.238	1	.01	3
608			min	-161.69	1	-254.588	3	-80.578	5	0	3	.01	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rota	ite [r L	C_(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.109	1	.006	3 8.71	4e-3 1	NC	1	NC	1
2			min	564	4	017	3	003	2 -1.41	8e-3	NC NC	1	NC	1
3		2	max	0	1	.288	3	.038	1 1.00	1e-2 1	NC	5	NC	2
4			min	564	4	1	1	017	5 -1.45	7e-3		3	6646.298	1
5		3	max	0	1	.536	3	.09	1 1.13	1e-2 1	NC	5	NC	3
6			min	564	4	265	1	02		7e-3	433.86	3	2719.217	1
7		4	max	0	1	.686	3	.135	1 1.26		NC	5	NC	3
8			min	564	4	357	1	014	5 -1.53	6e-3		3	1799.258	1
9		5	max	0	1	.72	3	.158	1 1.39	e-2 1	NC	5	NC	3
10			min	564	4	363	1	003	5 -1.57		325.384	3	1532.563	1
11		6	max	0	1	.642	3	.153	1 1.52	e-2 1	NC	5	NC	3
12			min	564	4	285	1	.006	15 -1.61	5e-3	364.25	3	1587.57	1
13		7	max	0	1	.473	3	.12	1 1.65		NC	5	NC	3
14			min	564	4	142	1	.006	10 -1.65	4e-3	489.21	3	2024.325	1
15		8	max	0	1	.26	3	.07	1 1.77	9e-2 1	NC	4	NC	2
16			min	564	4	0	15	0	10 -1.69	4e-3	866.322	3	3510.363	1
17		9	max	0	1	.192	2	.023	4 1.90		NC	4	NC	1
18			min	564	4	.005	15	005	10 -1.73	3e-3	2811.565	2	NC	1
19		10	max	0	1	.255	1	.019	3 2.03		NC	3	NC	1
20			min	564	4	021	3	012	2 -1.77	2e-3	1637.628	1	NC	1
21		11	max	0	12	.192	2	.02	1 1.90	9e-2 1	NC	4	NC	1
22			min	564	4	.005	15	014	5 -1.73	3e-3	2811.565	2	NC	1
23		12	max	0	12	.26	3	.07	1 1.77	9e-2 1	NC	4	NC	2
24			min	564	4	0	15	014	5 -1.69	4e-3	866.322	3	3510.363	1
25		13	max	0	12	.473	3	.12	1 1.65	ie-2 1	NC	5	NC	3
26			min	564	4	142	1	005	5 -1.65	4e-3	489.21	3	2024.325	1
27		14	max	0	12	.642	3	.153	1 1.52	e-2 1	NC	5	NC	3
28			min	564	4	285	1	.005	15 -1.61	5e-3	364.25	3	1587.57	1
29		15	max	0	12	.72	3	.158	1 1.39	e-2 1	NC	5	NC	3
30			min	564	4	363	1	.011	10 -1.57	5e-3	325.384	3	1532.563	1
31		16	max	0	12	.686	3	.135	1 1.26	1e-2	NC	5	NC	3
32			min	564	4	357	1	.01	10 -1.53	6e-3	341.287	3	1799.258	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
33		17	max	0	12	.536	3	.09	1	1.131e-2	1_	NC	5_	NC	3
34		10	min	<u>564</u>	4	<u>265</u>	1	.006	10	-1.497e-3	3	433.86	3	2719.217	1
35		18	max	0	12	.288	3	.038	1	1.001e-2	1_	NC 705,000	5	NC 0040,000	2
36		40	min	<u>564</u>	4	<u>1</u>	1	.001	10	-1.457e-3		785.028	3	6646.298	1
37		19	max	0	12	.109	1	.006	3	8.714e-3	1_	NC NC	1_	NC NC	1
38	N444	1	min	<u>565</u>	4	017	3	003	2	-1.418e-3	3	NC NC	1_	NC NC	1
39	M14	1_	max	0	1	.198	3	.005	3	5.407e-3	1_	NC	1_	NC NC	1
40		_	min	435	4	352	1	002	2	-3.561e-3		NC NC	1_	NC NC	1
41		2	max	0	1	.493	3	.026	1	6.489e-3	1_	NC 747.445	5	NC 0700 F 45	2
42			min	<u>435</u>	4	<u>687</u>	1	025	5	-4.337e-3	3	717.145	1_	9763.545	1
43		3	max	0	1	.743	3	.072	1	7.571e-3	1_	NC 005.554	15	NC	3
44		-	min	435	4	974	1	03	5	-5.114e-3	3	385.554	1_	3396.647	1
45		4	max	0	1	<u>.916</u>	3	.116	1	8.652e-3	1_	NC	15	NC	3
46			min	435	4	-1.183	1	02	5	-5.89e-3	3	288.751	1_	2103.914	1
47		5	max	0	1	.996	3	.141	1	9.734e-3	_1_	NC	<u>15</u>	NC 4700 000	3
48		_	min	435	4	-1.296	1	003	5	-6.666e-3	3	254.157	1_	1728.608	1
49		6	max	0	1	.983	3	.139	1	1.082e-2	_1_	NC	15	NC	3
50			min	435	4	-1.313	1	.009		-7.442e-3		249.657	1_	1750.008	1
51		7	max	0	1	.895	3	.111	1	1.19e-2	_1_	NC	15	NC	3
52			min	435	4	-1.25	1	.006	10	-8.218e-3	3	267.395	1	2195.128	1
53		8	max	00	1	.763	3	.066	1	1.298e-2	_1_	NC	15	NC	2
54			min	435	4	-1.136	1	0	10	-8.995e-3	3	306.053	1_	3753.738	1
55		9	max	0	1	.636	3	.033	4	1.406e-2	_1_	NC	15	NC	1_
56			min	435	4	-1.02	1	005	10	-9.771e-3	3	359.141	1	7139.559	4
57		10	max	0	1	.576	3	.017	3	1.514e-2	_1_	NC	5	NC	1_
58			min	435	4	965	1	011	2	-1.055e-2	3	391.69	1_	NC	1
59		11	max	0	12	.636	3	.019	1	1.406e-2	1_	NC	15	NC	1_
60			min	435	4	-1.02	1	025	5	-9.771e-3	3	359.141	1_	NC	1
61		12	max	0	12	.763	3	.066	1_	1.298e-2	_1_	NC	15	NC	2
62			min	435	4	-1.136	1	028	5	-8.995e-3	3	306.053	1_	3753.738	1
63		13	max	0	12	.895	3	.111	1	1.19e-2	_1_	NC	15	NC	3
64			min	435	4	-1.25	1	018	5	-8.218e-3	3	267.395	1	2195.128	1
65		14	max	0	12	.983	3	.139	1	1.082e-2	_1_	NC	15	NC	3
66			min	435	4	-1.313	1	0	15	-7.442e-3	3	249.657	1	1750.008	1
67		15	max	0	12	.996	3	.141	1_	9.734e-3	_1_	NC	15	NC	3
68			min	435	4	-1.296	1	.01	10	-6.666e-3	3	254.157	1	1728.608	1
69		16	max	00	12	.916	3	.116	1	8.652e-3	_1_	NC	15	NC	3
70			min	435	4	-1.183	1	.008	10	-5.89e-3	3	288.751	1_	2103.914	1
71		17	max	0	12	.743	3	.072	1	7.571e-3	_1_	NC	15	NC	3
72			min	435	4	974	1	.005	10	-5.114e-3	3	385.554	1	3396.647	1
73		18	max	0	12	.493	3	.035		6.489e-3		NC	5	NC	2
74			min	435	4	687	1	0	10	-4.337e-3	3_	717.145	1	6896.223	4
75		19	max	0	12	.198	3	.005	3	5.407e-3	_1_	NC	_1_	NC	1_
76			min	435	4	352	1	002	2	-3.561e-3		NC	1	NC	1
77	M15	1_	max	0	12	.202	3	.005	3	3.01e-3	3_	NC	_1_	NC	1_
78			min	361	4	351	1	002	2	-5.529e-3	1_	NC	1	NC	1
79		2	max	0	12	.389	3	.026	1	3.669e-3	<u>3</u>	NC	5	NC	2
80			min	361	4	725	1	035	5	-6.64e-3	_1_	634.687	2	6667.168	
81		3	max	00	12	.55	3	.073	1	4.329e-3	3_	NC	15	NC	3
82			min	<u>361</u>	4	-1.045	1	042	5	-7.752e-3	1_	342.704	2	3386.825	1
83		4	max	00	12	.67	3	.116	1	4.988e-3	3_	NC	15	NC	3
84			min	361	4	-1.273	1	03	5	-8.864e-3	1_	258.583	2	2099.05	1_
85		5	max	0	12	.738	3	.141	1	5.647e-3	3	NC	15	NC	3
86			min	361	4	-1.39	1	007	5	-9.976e-3		230.235	2	1724.862	1
87		6	max	0	12	.755	3	.139	1	6.306e-3	3	NC	15	NC	3
88			min	361	4	-1.397	1	.009		-1.109e-2	1	229.522	1	1745.921	1
89		7	max	00	12	.728	3	.111	1	6.965e-3	3	NC	15	NC	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	361	4	-1.312	1	.006	10 -1.22e-2	1	249.956	1_	2188.563	
91		8	max	0	12	.674	3	.066	1 7.625e-3	3	NC	<u>15</u>	NC 0704 000	2
92			min	361	4	<u>-1.171</u>	1	0	10 -1.331e-2	1_	292.94	1_	3734.639	
93		9	max	0	12	<u>.616</u>	3	.042	4 8.284e-3	3	NC 050.750	<u>15</u>	NC	1
94		40	min	361	4	<u>-1.03</u>	1	004	10 -1.442e-2	1_	353.759	<u>1</u>	5668.751	4
95		10	max	0	1	.588	3	.016	3 8.943e-3	3	NC	5_	NC NC	1
96		4.4	min	361	4	<u>963</u>	1	01	2 -1.553e-2	1_	392.398	1_	NC NC	1
97		11	max	0	1	<u>.616</u>	3	.02	1 8.284e-3	3	NC 050.750	<u>15</u>	NC	1
98		10	min	361	4	-1.03	1	033	5 -1.442e-2	1	353.759	1_	7165.202	5
99		12	max	0	1	.674	3	.066	1 7.625e-3	3	NC 000.04	<u>15</u>	NC 0704 000	2
100		40	min	361	4	<u>-1.171</u>	1	039	5 -1.331e-2	1	292.94	1_	3734.639	
101		13	max	0	1	.728	3	.111	1 6.965e-3	3	NC	<u>15</u>	NC	3
102			min	361	4	<u>-1.312</u>	1	026	5 -1.22e-2	1_	249.956	1_	2188.563	1
103		14	max	0	1	<u>.755</u>	3	.139	1 6.306e-3	3	NC	15	NC	3
104			min	361	4	-1.397	1	002	5 -1.109e-2	1_	229.522	1_	1745.921	1
105		15	max	0	1	.738	3	.141	1 5.647e-3	3	NC	<u>15</u>	NC	3
106			min	361	4	-1.39	1	.01	10 -9.976e-3	1_	230.235	2	1724.862	1
107		16	max	0	1	.67	3	.116	1 4.988e-3	3	NC	15	NC	3
108			min	361	4	-1.273	1	.009	10 -8.864e-3	1_	258.583	2	2099.05	1
109		17	max	0	1	.55	3	.073	1 4.329e-3	3	NC	<u>15</u>	NC	3
110			min	361	4	-1.045	1	.005	10 -7.752e-3	1_	342.704	2	3386.825	1
111		18	max	0	1	.389	3	.045	4 3.669e-3	3	NC	5	NC	2
112			min	361	4	725	1	0	10 -6.64e-3	1_	634.687	2	5363.947	4
113		19	max	0	1	.202	3	.005	3 3.01e-3	3	NC	_1_	NC	1
114			min	361	4	351	1	002	2 -5.529e-3	1	NC	1_	NC	1
115	M16	1	max	0	12	.105	1	.004	3 5.31e-3	3	NC	_1_	NC	1
116			min	145	4	067	3	002	2 -8.068e-3	1	NC	1_	NC	1
117		2	max	0	12	.037	3	.037	1 6.254e-3	3	NC	5_	NC	2
118			min	145	4	167	2	027	5 -9.209e-3	1_	917.69	2	6686.934	1
119		3	max	0	12	.119	3	.089	1 7.197e-3	3	NC	5_	NC	3
120			min	145	4	375	2	033	5 -1.035e-2	1_	510.665	2	2726.403	
121		4	max	0	12	.162	3	.135	1 8.141e-3	3	NC	5	NC	3
122			min	145	4	495	2	025	5 -1.149e-2	1_	406.879	2	1800.443	1
123		5	max	0	12	.161	3	.158	1 9.084e-3	3	NC	5	NC	3
124			min	145	4	51	2	009	5 -1.263e-2	1	396.787	2	1530.93	1
125		6	max	0	12	.116	3	.153	1 1.003e-2	3	NC	5	NC	3
126			min	145	4	423	2	.006	15 -1.377e-2	1	463.447	2	1582.507	1
127		7	max	0	12	.037	3	.121	1 1.097e-2	3	NC	5	NC	3
128			min	145	4	256	2	.007	10 -1.491e-2	1	683.924	2	2010.523	1
129		8	max	0	12	.009	9	.071	1 1.191e-2	3	NC	3	NC	2
130			min	145	4	057	3	.002	10 -1.605e-2	1	1652.048	2	3454.306	1
131		9	max	0	12	.163	1	.03	4 1.286e-2	3	NC	4	NC	1
132			min	145	4	14	3	004	10 -1.719e-2	1	3292.486	3	7940.361	4
133		10	max	0	1	.244	1	.014	3 1.38e-2	3	NC	5	NC	1
134			min	145	4	177	3	01	2 -1.833e-2	1	1727.747	1	NC	1
135		11	max	0	1	.163	1	.021	1 1.286e-2	3	NC	4	NC	1
136			min	145	4	14	3	021	5 -1.719e-2	1	3292.486	3	NC	1
137		12	max	0	1	.009	9	.071	1 1.191e-2	3	NC	3	NC	2
138			min	145	4	057	3	022	5 -1.605e-2	1	1652.048	2	3454.306	1
139		13	max	0	1	.037	3	.121	1 1.097e-2	3	NC	5	NC	3
140			min	145	4	256	2	01	5 -1.491e-2	1	683.924	2	2010.523	
141		14	max	0	1	.116	3	.153	1 1.003e-2	3	NC	5	NC	3
142			min	145	4	423	2	.005	15 -1.377e-2	1	463.447	2	1582.507	1
143		15	max	0	1	.161	3	.158	1 9.084e-3	3	NC	5	NC	3
144		l .	min	145	4	51	2	.011	12 -1.263e-2	1	396.787	2	1530.93	1
145		16	max	0	1	.162	3	.135	1 8.141e-3	3	NC	5	NC	3
146			min	144	4	495	2	.009	12 -1.149e-2	1	406.879	2	1800.443	
170			1111111	.177		. +00		.000	12 1.1700 2		100.010		1000.440	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
147		17	max	0	1	.119	3	.089	1	7.197e-3	3	NC	5	NC	3
148		40	min	144	4	375	2	.007	10	-1.035e-2	1_	510.665	2	2726.403	1
149		18	max	0	1	.037	3	.04	4	6.254e-3	3_	NC 047.00	5_	NC cccc c	2
150		40	min	144	4	167	2	.002	10	-9.209e-3	1_	917.69	2	6038.6	4
151		19	max	.001	1	.105	1	.004	3	5.31e-3	3	NC NC	<u>1</u> 1	NC NC	1
152	MO	4	min	144	4	067	3	002	2	-8.068e-3	1_	NC NC	_	NC NC	_
153	M2	1	max	.006	1	.004	2	.008	1	1.349e-3	5	NC NC	1	NC 101110	2
154		2	min	006	3	008	3	531	4	-2.041e-4	_1_	NC NC	1_	104.149	4
155		2	max	.005	1	.004	2	.007	1	1.443e-3	5_1	NC	1_4	NC 442.44	2
156		3	min	006	3	008	2	488	4	-1.904e-4	1_	NC NC	<u>1</u> 1	113.44 NC	2
157		3	max	.005		.003		.006	1	1.536e-3	5_4				
158		1	min	005	3	007	3	445	4	-1.767e-4	_1_	NC NC	1_	124.481	4
159		4	max	.005	1	.002	2	.006	1	1.629e-3	5_1	NC NC	1	NC	2
160		-	min	005	3	007	3	402	4	-1.63e-4	1_	NC NC	1_	137.727	4
161		5	max	.004	1	.002	2	.005	1	1.722e-3	5_	NC NC	<u>1</u> 1	NC 450.0	1
162			min	005	3	007	3	36	4	-1.493e-4	_1_	NC NC	_	153.8	4
163		6	max	.004	1	.001	2	.005	1	1.816e-3	5	NC NC	1	NC 470 FF0	1
164		-	min	004	3	007	3	319	4	-1.356e-4	1_	NC NC	1_	173.559	4
165		7	max	.004	1	0	2	.004	1	1.909e-3	5	NC NC	1	NC 400,005	1
166		_	min	004	3	006	3	279	4	-1.219e-4	_1_	NC NC	1_	198.225	4
167		8	max	.004	1	0	2	.003	1	2.002e-3	5_	NC NC	1	NC 000 F04	1
168			min	004	3	006	3	241	4	-1.083e-4	1_	NC NC	1_	229.581	4
169		9	max	.003	1	0	2	.003	1	2.099e-3	4_	NC NC	1	NC 070,000	1
170		40	min	003	3	006	3	205	4	-9.456e-5	1_	NC NC	1_	270.308	4
171		10	max	.003	1	0	15	.002	1	2.197e-3	4_	NC NC	1_	NC 204 co4	1
172		4.4	min	003	3	005	3	171	4	-8.088e-5	1_4	NC NC	1_	324.601	4
173		11	max	.003	1	0	15	.002	1	2.296e-3	4_	NC NC	1	NC 000,005	1
174		40	min	003	3	005	3	139	4	-6.719e-5	1_	NC NC	1_	399.325	4
175		12	max	.002	1	0	15	.002	1	2.394e-3	4_	NC NC	1	NC 500.00	1
176		40	min	002	3	004	3	109	4	-5.35e-5	1	NC NC	1_	506.36	4
177		13	max	.002	1	0	15	.001	1	2.492e-3	4	NC NC	1	NC	1
178		4.4	min	002	3	004	3	083	4	-3.982e-5	1_	NC NC	1_	667.773	4
179		14	max	.002	1	0	15	0	1	2.59e-3	4	NC NC	1	NC OOO 400	1
180		4.5	min	002	3	003	3	06	4	-2.613e-5	1_	NC NC	1_	928.496	4
181		15	max	.001	1	0	15	0	1	2.689e-3	4_	NC NC	1_	NC	1
182		40	min	001	3	003	3	04	4	-1.244e-5	1_	NC NC	1_	1392.223	4
183		16	max	0	1	0	15	0	1	2.787e-3	4	NC NC	1	NC 0040407	1
184		47	min	001	3	002	3	024	4	-3.741e-7	3	NC NC	1_	2346.107	4
185		17	max	0	1	0	15	0	1	2.885e-3	4	NC	1	NC	1
186		40	min	0	3	001	3	<u>011</u>	4	4.289e-7	12	NC NC	1_	4857.807	4
187		18	max	0	1	0	15	0	1	2.983e-3		NC NC	1	NC	1
188		40	min	0	3	0	6	003	4	1.079e-6		NC NC	1_	NC NC	1
189		19	max	0	1	0	1	0	1	3.081e-3	4	NC NC	1	NC	1
190	140		min	0	1	0	1	0	1	1.729e-6		NC NC	1_	NC NC	1
191	<u>M3</u>	1	max	0	1	0	1	0	1	-5.538e-7	<u>12</u>	NC NC	1_	NC NC	1
192			min	0	1	0	1	0	1	-7.254e-4	4	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	.015	4	9.951e-6	1_	NC NC	1	NC	1
194			min	0	2	002	6	0	12	-7.471e-5		NC NC	1_	NC NC	1
195		3	max	0	3	0	15	.029	4	5.8e-4	4	NC	1	NC	1
196		4	min	0	2	003	6	0	12	1.451e-6	<u>12</u>	NC NC	1_	NC NC	1
197		4	max	0	3	001	15	.042	4	1.233e-3	4	NC NC	1_	NC	1
198		-	min	0	2	005	6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12	2.454e-6	12	NC NC	1_	9646.761	5
199		5	max	.001	3	002	15	.054	4	1.885e-3	4	NC NC	1	NC	1
200			min	0	2	007	6	0	12	3.456e-6		NC NC	1_	8325.348	5
201		6	max	.001	3	002	15	.065	4	2.538e-3	4	NC NC	1	NC	1
202		-	min	001	2	009	6	0	12	4.459e-6	12	NC NC	1_	7782.517	5
203		7	max	.002	3	002	15	.076	4	3.191e-3	4	NC	_1_	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

245 9 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 246 min 0 3003 3075 4 -6.12e-4 4 NC 1 331.353 247 10 max .001 1 .002 2 0 12 2.065e-5 1 NC 1 NC 248 min 0 3002 3062 4 -6.12e-4 4 NC 1 397.74		Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
Dec										_						
207			8													1
Description														_		5
209			9													7
210			10													<u>5</u>
11			10													1
212			11													1
213																1
214			12											_		1
215			12													1
216			13													1
217			10													1
218			14			_								_		1
15																1
220			15													1
221																1
Description			16											1		1
17										12				1		1
Description			17					15	.17					1		1
19 max .003 2 .005 1 0 12 1.649e-5 12 NC 1 NC 1 NC 227 19 max .005 3 0 5 .193 4 1.102e-2 4 NC 1 NC 1 NC 228 min .004 2 .003 1 0 12 1.749e-5 12 NC 1 NC 1 NC 229 M4 1 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 230 min 0 3 .005 3 193 4 -6.12e-4 4 NC 1 128.368 231 2 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 232 min 0 3 005 3 178 4 -6.12e-4 4 NC 1 139.684 233 3 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 234 min 0 3 005 3 178 4 -6.12e-4 4 NC 1 139.684 234 min 0 3 004 3 162 4 -6.12e-4 4 NC 1 153.144 235 4 max .002 1 .003 2 0 12 2.065e-5 1 NC 1 NC 236 min 0 3 004 3 146 4 -6.12e-4 4 NC 1 153.144 235 4 max .002 1 .003 2 0 12 2.065e-5 1 NC 1 NC 236 min 0 3 004 3 146 4 -6.12e-4 4 NC 1 169.308 237 5 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 238 min 0 3 004 3 131 4 -6.12e-4 4 NC 1 188.934 239 6 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 240 min 0 3 004 3 116 4 -6.12e-4 4 NC 1 188.934 239 6 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 241 7 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 242 min 0 3 003 3 102 4 -6.12e-4 4 NC 1 243.222 243 8 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 244 min 0 3 003 3 008 4 -6.12e-4 4 NC 1 243.222 243 8 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 246 min 0 3 003 3 008 4 -6.12e-4 4 NC 1 243.222 243 8 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 246 min 0 3 003 3				min			006		0	12		12		1		1
19 max .005 3 0 5 .193 4 1.102e-2 4 NC 1 NC	225		18	max	.005	3	0	15	.181	4	1.037e-2	4	NC	1	NC	1
228 min 004 2 003 1 0 12 1.749e-5 12 NC 1 NC 229 M4 1 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 230 min 0 3 005 3 193 4 -6.12e-4 4 NC 1 128.368 231 2 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 232 min 0 3 005 3 178 4 -6.12e-4 4 NC 1 139.684 233 3 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 234 min 0 3 004 3 162 4 -6.12e-4 4 NC <td>226</td> <td></td> <td></td> <td>min</td> <td>003</td> <td>2</td> <td>005</td> <td>1</td> <td>0</td> <td>12</td> <td>1.649e-5</td> <td>12</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>	226			min	003	2	005	1	0	12	1.649e-5	12	NC	1	NC	1
229 M4 1 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 230 min 0 3 005 3 193 4 -6.12e-4 4 NC 1 128.368 231 2 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 232 min 0 3 005 3 178 4 -6.12e-4 4 NC 1 139.684 233 3 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 139.684 234 min 0 3 004 3 162 4 -6.12e-4 4 NC 1 153.144 235 4 max .002 1 .003 2 0 12 2.065e-5 <td< td=""><td>227</td><td></td><td>19</td><td>max</td><td>.005</td><td>3</td><td>0</td><td>5</td><td>.193</td><td>4</td><td></td><td>4</td><td>NC</td><td>1</td><td>NC</td><td>1</td></td<>	227		19	max	.005	3	0	5	.193	4		4	NC	1	NC	1
230				min		2				12		12		1		1
231 2 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 232 min 0 3 005 3 178 4 -6.12e-4 4 NC 1 139.684 233 3 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 234 min 0 3 004 3 162 4 -6.12e-4 4 NC 1 153.144 235 4 max .002 1 .003 2 0 12 2.065e-5 1 NC 1 NC 236 min 0 3 004 3 146 4 -6.12e-4 4 NC 1 169.308 237 5 max .002 1 .002 2 0 12 2.065e-5 1 NC <td></td> <td>M4</td> <td>1</td> <td>max</td> <td>.003</td> <td></td> <td>.003</td> <td></td> <td></td> <td>12</td> <td></td> <td>1</td> <td></td> <td>_1_</td> <td></td> <td>3</td>		M4	1	max	.003		.003			12		1		_1_		3
232 min 0 3 005 3 178 4 -6.12e-4 4 NC 1 139.684 233 3 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 234 min 0 3 004 3 162 4 -6.12e-4 4 NC 1 153.144 235 4 max .002 1 .003 2 0 12 2.065e-5 1 NC 1 NC 236 min 0 3 004 3 146 4 -6.12e-4 4 NC 1 169.308 237 5 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 238 min 0 3 004 3 131 4 -6.12e-4 4 NC 1 </td <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td>1_</td> <td></td> <td>4</td>				min								4		1_		4
233 3 max .003 1 .003 2 0 12 2.065e-5 1 NC 1 NC 234 min 0 3 004 3 162 4 -6.12e-4 4 NC 1 153.144 235 4 max .002 1 .003 2 0 12 2.065e-5 1 NC 1 NC 236 min 0 3 004 3 146 4 -6.12e-4 4 NC 1 169.308 237 5 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 238 min 0 3 004 3 131 4 -6.12e-4 4 NC 1 188.934 239 6 max .002 1 .002 2 0 12 2.065e-5 1 NC <td></td> <td></td> <td>2</td> <td></td> <td>.003</td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>3</td>			2		.003					12		1				3
234 min 0 3 004 3 162 4 -6.12e-4 4 NC 1 153.144 235 4 max .002 1 .003 2 0 12 2.065e-5 1 NC 1 NC 236 min 0 3 004 3 146 4 -6.12e-4 4 NC 1 169.308 237 5 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 238 min 0 3 004 3 131 4 -6.12e-4 4 NC 1 188.934 239 6 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 240 min 0 3 004 3 116 4 -6.12e-4 4 NC 1 </td <td></td> <td>4</td> <td></td> <td></td> <td></td> <td>4</td>												4				4
235 4 max .002 1 .003 2 0 12 2.065e-5 1 NC 1 NC 236 min 0 3 004 3 146 4 -6.12e-4 4 NC 1 169.308 237 5 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 238 min 0 3 004 3 131 4 -6.12e-4 4 NC 1 188.934 239 6 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 240 min 0 3 004 3 116 4 -6.12e-4 4 NC 1 NC 241 7 max .002 1 .002 2 0 12 2.065e-5 1 NC			3			-										2
236 min 0 3 004 3 146 4 -6.12e-4 4 NC 1 169.308 237 5 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 238 min 0 3 004 3 131 4 -6.12e-4 4 NC 1 188.934 239 6 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 240 min 0 3 004 3 116 4 -6.12e-4 4 NC 1 213.075 241 7 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 <t< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>•</td><td></td><td>4</td></t<>					_					_				•		4
237 5 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 238 min 0 3 004 3 131 4 -6.12e-4 4 NC 1 188.934 239 6 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 240 min 0 3 004 3 116 4 -6.12e-4 4 NC 1 213.075 241 7 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 242 min 0 3 003 3 102 4 -6.12e-4 4 NC 1 243.222 243 8 max .002 1 .002 2 0 12 2.065e-5 1 NC <td></td> <td></td> <td>4</td> <td></td> <td>2</td>			4													2
238 min 0 3 004 3 131 4 -6.12e-4 4 NC 1 188.934 239 6 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 240 min 0 3 004 3 116 4 -6.12e-4 4 NC 1 213.075 241 7 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 242 min 0 3 003 3 102 4 -6.12e-4 4 NC 1 243.222 243 8 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 244 min 0 3 003 3 088 4 -6.12e-4 4 NC 1 </td <td></td> <td></td> <td>_</td> <td></td> <td>4</td>			_													4
239 6 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 240 min 0 3 004 3 116 4 -6.12e-4 4 NC 1 213.075 241 7 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 242 min 0 3 003 3 102 4 -6.12e-4 4 NC 1 243.222 243 8 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 244 min 0 3 003 3 088 4 -6.12e-4 4 NC 1 281.555 245 9 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 246 min 0 3 003 3 <td< td=""><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></td<>			5						-							2
240 min 0 3 004 3 116 4 -6.12e-4 4 NC 1 213.075 241 7 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 242 min 0 3 003 3 102 4 -6.12e-4 4 NC 1 243.222 243 8 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 244 min 0 3 003 3 088 4 -6.12e-4 4 NC 1 281.555 245 9 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 246 min 0 3 003 3 075 4 -6.12e-4 4 NC 1 </td <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>4</td>					_											4
241 7 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 242 min 0 3 003 3 102 4 -6.12e-4 4 NC 1 243.222 243 8 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 244 min 0 3 003 3 088 4 -6.12e-4 4 NC 1 281.555 245 9 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 246 min 0 3 003 3 075 4 -6.12e-4 4 NC 1 331.353 247 10 max .001 1 .002 2 0 12 2.065e-5 1 NC 1 NC 248 min 0 3 002 3 <t< td=""><td></td><td></td><td>Ь</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></t<>			Ь													2
242 min 0 3 003 3 102 4 -6.12e-4 4 NC 1 243.222 243 8 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 244 min 0 3 003 3 088 4 -6.12e-4 4 NC 1 281.555 245 9 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 246 min 0 3 003 3 075 4 -6.12e-4 4 NC 1 331.353 247 10 max .001 1 .002 2 0 12 2.065e-5 1 NC 1 NC 248 min 0 3 002 3 062 4 -6.12e-4 4 NC 1<			7											•		2
243 8 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 244 min 0 3 003 3 088 4 -6.12e-4 4 NC 1 281.555 245 9 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 246 min 0 3 003 3 075 4 -6.12e-4 4 NC 1 331.353 247 10 max .001 1 .002 2 0 12 2.065e-5 1 NC 1 NC 248 min 0 3 002 3 062 4 -6.12e-4 4 NC 1 397.74			/													
244 min 0 3 003 3 088 4 -6.12e-4 4 NC 1 281.555 245 9 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 246 min 0 3 003 3 075 4 -6.12e-4 4 NC 1 331.353 247 10 max .001 1 .002 2 0 12 2.065e-5 1 NC 1 NC 248 min 0 3 002 3 062 4 -6.12e-4 4 NC 1 397.74			0									•		_		2
245 9 max .002 1 .002 2 0 12 2.065e-5 1 NC 1 NC 246 min 0 3003 3075 4 -6.12e-4 4 NC 1 331.353 247 10 max .001 1 .002 2 0 12 2.065e-5 1 NC 1 NC 248 min 0 3002 3062 4 -6.12e-4 4 NC 1 397.74			0													4
246 min 0 3 003 3 075 4 -6.12e-4 4 NC 1 331.353 247 10 max .001 1 .002 2 0 12 2.065e-5 1 NC 1 NC 248 min 0 3 002 3 062 4 -6.12e-4 4 NC 1 397.74			a													2
247			9		_											4
248 min 0 3002 3062 4 -6.12e-4 4 NC 1 397.74			10									1				1
			10									4				4
	249		11	max	.001	1	.002	2	0	12	2.065e-5	1	NC	1	NC	1
250 min 0 3002 3051 4 -6.12e-4 4 NC 1 489.104																4
251			12											•		1
252 min 0 3002 304 4 -6.12e-4 4 NC 1 619.952									-							4
253 13 max 0 1 .001 2 0 12 2.065e-5 1 NC 1 NC			13											1		1
254 min 0 3002 303 4 -6.12e-4 4 NC 1 817.212						3						4		1		4
255			14											•		1
256 min 0 3001 3022 4 -6.12e-4 4 NC 1 1135.672																
257 15 max 0 1 0 2 0 12 2.065e-5 1 NC 1 NC			15		-											1
258 min 0 3001 3015 4 -6.12e-4 4 NC 1 1701.639					_	3						4		1		4
259 16 max 0 1 0 2 0 12 2.065e-5 1 NC 1 NC			16		_									1		1
260 min 0 3 0 3009 4 -6.12e-4 4 NC 1 2864.306					0	3	0		009	4		4	NC	1	2864.306	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	2.065e-5	1	NC	1	NC 5040.570	1
262		10	min	0	3	0	3	004	4	-6.12e-4	4	NC	1_	5918.578	4
263		18	max	0	1	0	2	0	12	2.065e-5	1	NC	1_	NC	1
264			min	0	3	0	3	001	4	-6.12e-4	4	NC	1_	NC	1
265		19	max	00	1	00	1	0	1	2.065e-5	_1_	NC	_1_	NC	1_
266			min	0	1	0	1	0	1	-6.12e-4	4_	NC	1_	NC	1
267	<u>M6</u>	1	max	.018	1	.018	2	0	1	1.419e-3	_4_	NC	3_	NC	1
268			min	02	3	025	3	536	4	0	1_	3145.971	2	103.221	4
269		2	max	.017	1	.016	2	0	1	1.51e-3	4	NC	3	NC	1
270			min	019	3	024	3	492	4	0	1_	3444.264	2	112.432	4
271		3	max	.016	1	.015	2	0	1	1.602e-3	4	NC	3	NC	1_
272			min	018	3	022	3	449	4	0	_1_	3802.281	2	123.376	4
273		4	max	.015	1	.013	2	0	1	1.694e-3	4	NC	3	NC	1
274			min	017	3	021	3	405	4	0	1	4236.516	2	136.506	4
275		5	max	.014	1	.012	2	0	1	1.785e-3	4	NC	3	NC	1
276			min	016	3	02	3	363	4	0	1	4769.763	2	152.439	4
277		6	max	.013	1	.01	2	0	1	1.877e-3	4	NC	1_	NC	1
278			min	015	3	018	3	322	4	0	1	5434.234	2	172.027	4
279		7	max	.012	1	.009	2	0	1	1.969e-3	4	NC	1	NC	1
280			min	013	3	017	3	282	4	0	1	6276.677	2	196.48	4
281		8	max	.011	1	.008	2	0	1	2.06e-3	4	NC	1	NC	1
282			min	012	3	015	3	243	4	0	1	7367.047	2	227.566	4
283		9	max	.01	1	.006	2	0	1	2.152e-3	4	NC	1	NC	1
284			min	011	3	014	3	207	4	0	1	8813.932	2	267.944	4
285		10	max	.009	1	.005	2	0	1	2.244e-3	4	NC	1	NC	1
286			min	01	3	013	3	172	4	0	1	NC	1	321.776	4
287		11	max	.008	1	.004	2	0	1	2.335e-3	4	NC	1	NC	1
288			min	009	3	011	3	14	4	0	1	NC	1	395.868	4
289		12	max	.007	1	.003	2	0	1	2.427e-3	4	NC	1	NC	1
290		1.2	min	008	3	01	3	11	4	0	1	NC	1	502.008	4
291		13	max	.006	1	.002	2	0	1	2.519e-3	4	NC	1	NC	1
292		- 10	min	007	3	008	3	084	4	0	1	NC	1	662.085	4
293		14	max	.005	1	.002	2	0	1	2.61e-3	4	NC	1	NC	1
294			min	006	3	007	3	06	4	0	1	NC	1	920.684	4
295		15	max	.004	1	0	2	0	1	2.702e-3	4	NC	1	NC	1
296		13	min	004	3	006	3	04	4	0	1	NC	1	1380.718	_
297		16	max	.003	1	<u>000</u>	2	0	1	2.794e-3	4	NC	1	NC	1
298		10	min	003	3	004	3	024	4	0	1	NC	1	2327.265	
299		17	max	.002	1	004 0	2	_ 024 0	1	2.885e-3	4	NC	1	NC	1
300		17	min	002	3	003	3	011	4		1	NC NC	1	4820.83	4
		10				<u>003</u> 0			1	2 0770 2			1		4
301		18		.001 001	3	001	3	003	4	2.977e-3 0	<u>4</u> 1	NC NC	1	NC NC	1
302		10	min				1		1	_	_	NC NC	1	NC NC	1
303		19	max	<u> </u>	1	0	1	0 	1	3.069e-3	4	NC NC	1		1
304	N 4 7	4	min			0			-	0	1		<u>1</u> 1	NC NC	
305	<u>M7</u>	1	max	0	1	0	1	0	1	7 2000 1	1_1	NC NC	1	NC NC	1
306			min	0	1	0	1	0	1	-7.208e-4	4	NC NC	_	NC NC	1
307		2	max	0	3	0	15	.015	4	0	1_1	NC NC	1	NC NC	1
308		_	min	0	2	002	3	0	1	-8.295e-5	4_	NC NC	1_	NC NC	1
309		3	max	.002	3	0	15	.028	4	5.549e-4	4	NC	1_	NC NC	1
310			min	002	2	004	3	0	1	0	<u>1</u>	NC	1_	NC	1
311		4	max	.003	3	001	15	.041	4	1.193e-3	4	NC	1	NC	1
312			min	002	2	006	3	0	1	0	<u>1</u>	NC	_1_	9083.414	
313		5	max	.003	3	002	15	.053	4	1.831e-3	4	NC	1_	NC	1
314			min	003	2	008	3	0	1	0	1	NC	1_	7801.602	
315		6	max	.004	3	002	15	.065	4	2.468e-3	4	NC	_1_	NC	1_
316			min	004	2	01	3	0	1	0	1_	9807.042	3	7250.262	
317		7	max	.005	3	002	15	.075	4	3.106e-3	4	NC	1_	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

240	Member	Sec	min	x [in]	LC 2	y [in]	LC	z [in]	LC 1	_		(n) L/y Ratio			
318 319		8	min	005 .006	3	011 003	15	<u> </u>	4	0 3.744e-3	<u>1</u> 4	8709.276 NC	<u>3</u> 1	7138.77 NC	1
320		0	max	006	2	003 012	3	<u>.086</u>	1	0	1	8052.067	3	7379.979	
321		9	max	.007	3	003	15	.095	4	4.382e-3	4	NC	1	NC	1
322		9	min	006	2	003 013	3	<u>.095</u>	1	0	1	7596.24	4	7989.495	4
323		10	max	.008	3	003	15	.104	4	5.02e-3	4	NC	1	NC	1
324		10	min	007	2	013	4	0	1	0.026-3	1	7304.165	4	9078.157	4
325		11	max	.008	3	003	15	.113	4	5.658e-3	4	NC	1	NC	1
326		1	min	008	2	013	4	0	1	0.0006-0	1	7261.157	4	NC	1
327		12	max	.009	3	003	15	.121	4	6.295e-3	4	NC	1	NC	1
328		12	min	009	2	013	4	0	1	0.2330 3	1	7466.617	4	NC	1
329		13	max	.01	3	003	15	.13	4	6.933e-3	4	NC	1	NC	1
330		10	min	01	2	012	4	0	1	0	1	7964.774	4	NC	1
331		14	max	.011	3	003	15	.139	4	7.571e-3	4	NC	1	NC	1
332			min	01	2	011	4	0	1	0	1	8868.104	4	NC	1
333		15	max	.012	3	002	15	.147	4	8.209e-3	4	NC	1	NC	1
334			min	011	2	01	1	0	1	0	1	NC	1	NC	1
335		16	max	.013	3	002	15	.157	4	8.847e-3	4	NC	1	NC	1
336			min	012	2	009	1	0	1	0	1	NC	1	NC	1
337		17	max	.014	3	001	15	.166	4	9.485e-3	4	NC	1	NC	1
338			min	013	2	009	1	0	1	0	1	NC	1	NC	1
339		18	max	.014	3	0	15	.177	4	1.012e-2	4	NC	1	NC	1
340			min	014	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.015	3	0	15	.188	4	1.076e-2	4	NC	1	NC	1
342			min	014	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.013	2	0	1	0	1	NC	1	NC	1
344			min	002	3	015	3	188	4	-6.611e-4	4	NC	1	131.76	4
345		2	max	.008	1	.012	2	0	1	0	1	NC	1	NC	1
346			min	002	3	014	3	173	4	-6.611e-4	4	NC	1	143.378	4
347		3	max	.007	1	.011	2	0	1	0	1	NC	1	NC	1
348			min	002	3	014	3	158	4	-6.611e-4	4	NC	1	157.198	4
349		4	max	.007	1	.011	2	0	1	0	1	NC	_1_	NC	1
350			min	002	3	013	3	143	4	-6.611e-4	4	NC	1_	173.794	4
351		5	max	.006	1	.01	2	0	1	0	_1_	NC	_1_	NC	1
352			min	002	3	012	3	128	4	-6.611e-4	4	NC	1	193.945	4
353		6	max	.006	1	.009	2	0	1	0	_1_	NC	_1_	NC	1
354			min	001	3	011	3	113	4	-6.611e-4	4_	NC	<u>1</u>	218.73	4
355		7	max	.005	1	.009	2	00	1	0	_1_	NC	_1_	NC	1
356			min	001	3	01	3	099	4	-6.611e-4	4	NC	1_	249.682	4
357		8	max	.005	1	.008	2	0	1	0	1	NC	1	NC	1
358			min	001	3	009	3	086	4	-6.611e-4		NC NC	1	289.038	4
359		9	max	.005	1	.007	2	0	1	0	1_1	NC NC	1	NC 040.405	1
360		10	min	001	3	008	3	073	4	-6.611e-4	4	NC NC	1_	340.165	4
361		10	max	.004	1	.006	2	0	1	0	1_1	NC	1	NC 400,005	1
362		4.4	min	001	3	008	3	<u>061</u>	4	-6.611e-4	4	NC NC	1	408.325	4
363		11	max	.004	1	.006	2	0	1	0	1_1	NC NC	1	NC F00.400	1
364		40	min	0	3	007	3	049	4	-6.611e-4	4	NC NC	1_	502.128	4
365		12	max	.003	3	.005 006	3	0	1	0	1_1	NC NC	1_	NC COC 47	1
366		12	min	0				039	4	-6.611e-4	4	NC NC	1_1	636.47	4
367		13	max	.003	3	.004 005	3	0 03	1 4	0 -6.611e-4	<u>1</u> 4	NC NC	1	NC	4
368 369		14	min	.002	1	005 .004	2	03 0	1	0	<u>4</u> 1	NC NC	1	838.998 NC	4
370		14	max	0	3	004	3	021	4	-6.611e-4	4	NC NC	1	1165.966	4
371		15	max	.002	1	.003	2	<u>021</u> 0	1	0	_ 4 _	NC NC	1	NC	1
371		13	min	.002	3	003	3	014	4	-6.611e-4	4	NC NC	1	1747.055	
373		16	max	.001	1	.003	2	014 0	1	0	_ 4 _	NC NC	1	NC	1
374		10	min	0	3	003	3	008	4	-6.611e-4	4	NC	1	2940.8	4
5/4			1111111	U	J	003	J	000	4	-0.011 e- 4	4	INC		2340.0	_+_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
375		17	max	0	1	.001	2	0	1	0	_1_	NC	1_	NC	1
376			min	0	3	002	3	004	4	-6.611e-4	4	NC	1_	6076.749	4
377		18	max	0	1	0	2	0	1	0	_1_	NC	_1_	NC	1
378		40	min	0	3	0	3	001	4	-6.611e-4	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	1_	NC	1_	NC	1
380	M40	4	min	0	1	0	1	0	1	-6.611e-4	4	NC NC	1_	NC NC	1
381	M10	1	max	.006	3	.004	2	0	12	1.422e-3	4	NC NC	1_	NC 400.050	2
382		2	min	006		008	2	536	4	9.968e-6	12	NC NC	<u>1</u> 1	103.356	4
383		2	max	.005	3	.004	3	0	12	1.513e-3 9.318e-6	<u>4</u> 12	NC NC	1	NC	2
384 385		3	min	006 .005	1	008 .003	2	<u>492</u> 0	12	1.604e-3	4	NC NC	1	112.578 NC	2
386		3	max	005	3	003	3	448	4	8.668e-6	12	NC	1	123.537	4
387		4	max	.005	1	.002	2	446	12	1.695e-3	4	NC	1	NC	2
388		4	min	005	3	007	3	405	4	8.018e-6	12	NC	1	136.685	4
389		5		.003	1	.007	2	405 0	12	1.786e-3	4	NC NC	1	NC	1
390		1 5	max	005	3	007	3	363	4	7.369e-6	12	NC	1	152.639	4
391		6	max	.003	1	.001	2	<u>.505</u>	12	1.877e-3	4	NC	1	NC	1
392			min	004	3	007	3	321	4	6.719e-6	12	NC	1	172.252	4
393		7	max	.004	1	0	2	0	12	1.968e-3	4	NC	1	NC	1
394		'	min	004	3	006	3	281	4	6.069e-6	12	NC	1	196.738	4
395		8	max	.004	1	<u>.000</u>	2	0	12	2.058e-3	4	NC	1	NC	1
396		Ť	min	004	3	006	3	243	4	5.419e-6	12	NC	1	227.865	4
397		9	max	.003	1	0	2	0	12	2.149e-3	4	NC	1	NC	1
398			min	003	3	006	3	206	4	4.769e-6	12	NC	1	268.298	4
399		10	max	.003	1	0	2	0	12	2.24e-3	4	NC	1	NC	1
400		10	min	003	3	005	3	172	4	4.12e-6	12	NC	1	322.201	4
401		11	max	.003	1	0	2	0	12	2.331e-3	4	NC	1	NC	1
402			min	003	3	005	3	14	4	3.47e-6	12	NC	1	396.394	4
403		12	max	.002	1	001	2	0	12	2.422e-3	4	NC	1	NC	1
404			min	002	3	004	3	11	4	2.82e-6	12	NC	1	502.677	4
405		13	max	.002	1	0	15	0	12	2.513e-3	4	NC	1	NC	1
406			min	002	3	004	3	083	4	2.17e-6	12	NC	1	662.975	4
407		14	max	.002	1	0	15	0	12	2.604e-3	4	NC	1	NC	1
408			min	002	3	003	3	06	4	1.52e-6	12	NC	1	921.933	4
409		15	max	.001	1	0	15	0	12	2.695e-3	4	NC	1	NC	1
410			min	001	3	003	4	04	4	8.706e-7	12	NC	1	1382.62	4
411		16	max	0	1	0	15	0	12	2.786e-3	4	NC	1	NC	1
412			min	001	3	002	4	024	4	-1.245e-6	1	NC	1	2330.548	4
413		17	max	0	1	0	15	0	12	2.877e-3	4	NC	1	NC	1
414			min	0	3	002	4	011	4	-1.493e-5	1	NC	1	4827.924	4
415		18	max	0	1	0	15	0	12	2.968e-3	4	NC	1	NC	1
416			min	0	3	0	4	003	4	-2.862e-5	1_	NC	1_	NC	1
417		19	max	0	1	0	1	0	1	3.059e-3	4	NC	_1_	NC	1
418			min	0	1	0	1	0	1	-4.231e-5	1	NC	1	NC	1
419	<u>M11</u>	1	max	0	1	0	1	0	1	1.334e-5	1_	NC	_1_	NC	1
420			min	0	1	0	1	0	1	-7.182e-4	4	NC	1_	NC	1
421		2	max	0	3	0	15	.015	4	-4.487e-7	12	NC	_1_	NC	1
422			min	0	2	002	4	0	1	-7.797e-5	4	NC	<u>1</u>	NC	1
423		3	max	0	3	0	15	.028	4	5.623e-4	4_	NC	_1_	NC	1
424			min	0	2	004	4	0	1	-3.324e-5	_1_	NC	1_	NC	1
425		4	max	0	3	001	15	.041	4	1.203e-3	4_	NC	1_	NC	1
426			min	0	2	005	4	0	1	-5.654e-5	1_	NC	1_	9376.546	
427		5	max	.001	3	002	15	.053	4	1.843e-3	4_	NC	_1_	NC	1
428			min	0	2	007	4	0	1	-7.983e-5	1_	NC	1_	8083.5	4
429		6	max	.001	3	002	15	.065	4	2.483e-3	4_	NC	1_	NC TEAC	1
430		_	min	001	2	009	4	001	1	-1.031e-4	1_	NC NC	1_	7546	4
431		7	max	.002	3	003	15	.075	4	3.123e-3	4	NC	1_	NC	_1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	I C	x Rotate [r	LC	(n) I /v Ratio	LC	(n) I /z Ratio	ıc
432	WICHIDOI		min	001	2	011	4	002	1	-1.264e-4	1	8763.359	4	7470.935	
433		8	max	.002	3	003	15	.085	4	3.764e-3	4	NC	1	NC	1
434			min	001	2	012	4	002	1	-1.497e-4	1	7851.515	4	7777.02	4
435		9	max	.002	3	003	15	.095	4	4.404e-3	4	NC	2	NC	1
436			min	002	2	013	4	002	1	-1.73e-4	1	7310.526	4	8495.466	4
437		10	max	.002	3	003	15	.104	4	5.044e-3	4	NC	2	NC	1
438			min	002	2	013	4	003	1	-1.963e-4	1	7045.655	4	9771.703	4
439		11	max	.003	3	003	15	.113	4	5.684e-3	4	NC	2	NC	1
440			min	002	2	014	4	003	1	-2.196e-4	1	7017.712	4	NC	1
441		12	max	.003	3	003	15	.121	4	6.325e-3	4	NC	2	NC	1
442			min	002	2	013	4	003	1	-2.429e-4	1	7227.995	4	NC	1
443		13	max	.003	3	003	15	.13	4	6.965e-3	4	NC	1	NC	1
444			min	002	2	013	4	004	1	-2.662e-4	1	7720.706	4	NC	1
445		14	max	.003	3	003	15	.139	4	7.605e-3	4	NC	1	NC	1
446			min	003	2	011	4	004	1	-2.895e-4	1	8606.038	4	NC	1
447		15	max	.004	3	002	15	.148	4	8.245e-3	4	NC	1	NC	1
448			min	003	2	01	4	005	1	-3.128e-4	1	NC	1	NC	1
449		16	max	.004	3	002	15	.157	4	8.885e-3	4	NC	1	NC	1
450			min	003	2	008	4	005	1	-3.361e-4	1	NC	1	NC	1
451		17	max	.004	3	002	15	.167	4	9.526e-3	4	NC	1_	NC	1_
452			min	003	2	006	1	006	1	-3.593e-4	1_	NC	1_	NC	1
453		18	max	.005	3	0	15	<u>.178</u>	4	1.017e-2	4	NC	_1_	NC	1
454			min	003	2	005	1	007	1	-3.826e-4	1_	NC	1_	NC	1
455		19	max	.005	3	0	15	.189	4	1.081e-2	4	NC	1_	NC	1
456			min	004	2	003	1	007	1	-4.059e-4	1_	NC	1	NC	1
457	M12	1_	max	.003	1	.003	2	.007	1	-1.081e-6	12	NC	_1_	NC	3
458			min	0	3	005	3	189	4	-6.228e-4	4	NC	1_	131.009	4
459		2	max	.003	1	.003	2	.007	1	-1.081e-6	12	NC	_1_	NC	3
460			min	0	3	005	3	174	4	-6.228e-4	4	NC	1_	142.556	4
461		3	max	.003	1	.003	2	.006	1	-1.081e-6	12	NC	_1_	NC	2
462			min	0	3	004	3	159	4	-6.228e-4	4_	NC	1_	156.293	4
463		4	max	.002	1	.003	2	.006	1	-1.081e-6	12	NC	_1_	NC	2
464		_	min	0	3	004	3	144	4	-6.228e-4	4_	NC	1_	172.789	4
465		5	max	.002	1	.002	2	.005	1	-1.081e-6	12	NC	1_	NC	2
466			min	0	3	<u>004</u>	3	129	4	-6.228e-4	4_	NC	1_	192.818	4
467		6	max	.002	1	.002	2	.004	1	-1.081e-6	12	NC	1	NC NC	2
468		-	min	0	3	004	3	114	4	-6.228e-4	4	NC NC	1_	217.453	4
469		7	max	.002	1	.002	2	.004	1	-1.081e-6	12	NC	1	NC 040.00	2
470			min	0	3	003	3	<u>1</u>	4	-6.228e-4	4	NC NC	1_	248.22	4
471		8	max	.002	1	.002	2	.003	1	-1.081e-6	12	NC NC	1_1	NC	2
472		0	min	0	3	003	3	086 003	4	-6.228e-4			1_1	287.339	4
473		9	max min	.002	3	.002 003	3	.003 073	1	-1.081e-6 -6.228e-4	12	NC NC	<u>1</u> 1	NC 220 150	2
474 475		10		.001	1	003 .002	2	.002	1		<u>4</u> 12	NC NC	1	338.158 NC	1
475		10	max min	.001	3	002	3	061	4	-6.228e-4	4	NC NC	1	405.908	4
477		11	max	.001	1	002 .001	2	.002	1	-0.228e-4 -1.081e-6	12	NC NC	1	NC	1
477			min	0	3	002	3	05	4	-6.228e-4	4	NC NC	1	499.146	4
479		12	max	.001	1	.002	2	.002	1	-1.081e-6	12	NC NC	1	NC	1
480		14	min	0	3	002	3	039	4	-6.228e-4	4	NC NC	1	632.678	4
481		13	max	0	1	.002	2	.001	1	-0.226e-4 -1.081e-6	12	NC NC	1	NC	1
482		13	min	0	3	002	3	03	4	-6.228e-4	4	NC NC	1	833.984	4
483		14	max	0	1	<u>002</u> 0	2	<u>03</u> 0	1	-1.081e-6	12	NC	1	NC	1
484		14	min	0	3	001	3	021	4	-6.228e-4	4	NC NC	1	1158.976	_
485		15	max	0	1	<u>001</u> 0	2	<u>021</u> 0	1	-1.081e-6		NC	1	NC	1
486		13	min	0	3	001	3	014	4	-6.228e-4	4	NC	1	1736.55	4
487		16	max	0	1	<u>001</u> 0	2	<u>014</u> 0	1	-1.081e-6	12	NC	1	NC	1
488		10	min	0	3	0	3	008	4	-6.228e-4		NC	1	2923.06	4
TUU			1111111	U	J	U	J	.000		J.2206-4		110		2020.00	7

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) I /v Ratio	LC	(n) I /z Ratio	IC
489		17	max	0	1	0	2	0	1	-1.081e-6	12	NC	1	NC	1
490			min	0	3	0	3	004	4	-6.228e-4	4	NC	1	6039.956	4
491		18	max	0	1	0	2	0	1	-1.081e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-6.228e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-1.081e-6	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-6.228e-4	4	NC	1	NC	1
495	M1	1	max	.006	3	.109	1	.565	4	1.63e-2	1	NC	1	NC	1
496			min	003	2	017	3	0	12	-2.379e-2	3	NC	1	NC	1
497		2	max	.006	3	.053	1	.548	4	8.58e-3	4	NC	4	NC	1
498			min	003	2	008	3	005	1	-1.177e-2	3	2063.184	1	NC	1
499		3	max	.006	3	.009	3	.531	4	1.393e-2	4	NC	5	NC	1
500			min	003	2	008	2	008	1	-1.462e-4	1	987.933	1	7654.92	5
501		4	max	.006	3	.037	3	.514	4	1.222e-2	4	NC	5	NC	1
502			min	003	2	076	1	007	1	-4.324e-3	3	617.986	1	5354.775	5
503		5	max	.006	3	.075	3	.497	4	1.051e-2	4	NC	15	NC	1
504			min	003	2	15	1	005	1	-8.532e-3	3	442.605	1	4193.17	5
505		6	max	.006	3	.115	3	.48	4	1.426e-2	1	NC	15	NC	1
506			min	003	2	221	1	002	1	-1.274e-2	3	346.548	1	3500.509	5
507		7	max	.006	3	.155	3	.462	4	1.906e-2	1	9971.178	15	NC	1
508			min	002	2	285	1	0	12	-1.695e-2	3	290.119	1	3035.962	4
509		8	max	.005	3	.188	3	.443	4	2.386e-2	1	8859.612	15	NC	1
510			min	002	2	337	1	0	12	-2.116e-2	3	256.858	1	2710.087	4
511		9	max	.005	3	.209	3	.423	4	2.635e-2	1	8280.06	15	NC	1
512			min	002	2	369	1	0	1	-2.124e-2	3	239.586	1	2517.334	4
513		10	max	.005	3	.217	3	.401	4	2.731e-2	1	8103.551	15	NC	1
514			min	002	2	379	1	0	12	-1.859e-2	3	234.422	1	2464.221	4
515		11	max	.005	3	.211	3	.376	4	2.826e-2	1	8279.84	15	NC	1
516			min	002	2	369	1	0	12	-1.594e-2	3	239.927	1	2526.332	4
517		12	max	.005	3	.194	3	.35	4	2.704e-2	2	8859.106	15	NC	1
518			min	002	2	336	1	0	1	-1.329e-2	3	257.92	1	2720.516	4
519		13	max	.005	3	.165	3	.32	4	2.169e-2	2	9970.209	15	NC	1
520			min	002	2	283	1	0	1	-1.064e-2	3	292.738	1	3204.723	4
521		14	max	.005	3	.128	3	.288	4	1.634e-2	2	NC	15	NC	1
522			min	002	2	218	1	0	12	-7.988e-3	3	352.182	1	4206.475	4
523		15	max	.005	3	.087	3	.256	4	1.101e-2	1	NC	15	NC	1
524			min	002	2	145	1	0	12	-5.336e-3	3	454.242	1	6373.329	4
525		16	max	.005	3	.044	3	.224	4	9.32e-3	4	NC	5	NC	1
526			min	002	2	072	1	0	12	-2.685e-3	3	642.56	1_	NC	1
527		17	max	.004	3	.003	3	.194	4	1.037e-2	4	NC	5	NC	1
528			min	002	2	005	2	0	12	-3.337e-5	3	1043.659	1	NC	1
529		18	max	.004	3	.053	1	.168	4	1.016e-2	2	NC	4	NC	1
530			min	002	2	033	3	0	12	-4.018e-3	3	2204.953	1	NC	1
531		19	max	.004	3	.105	1	.144	4	2.04e-2	2	NC	1	NC	1
532			min	002	2	067	3	001	1	-8.156e-3	3	NC	1	NC	1
533	M5	1	max	.019	3	.255	1	.564	4	0	1_	NC	1	NC	1
534			min	012	2	021	3	0	1	-3.397e-6	4	NC	1_	NC	1
535		2	max	.019	3	.125	1	.551	4	7.138e-3	4	NC	5	NC	1
536			min	012	2	008	3	0	1	0	1	875.82	1	NC	1
537		3	max	.019	3	.028	3	.536	4	1.406e-2	4	NC	5	NC	1
538			min	012	2	024	2	0	1	0	1	409.682	1	6279.213	4
539		4	max	.018	3	.105	3	.519	4	1.145e-2	4	9622.185	15	NC	1
540			min	012	2	205	1	0	1	0	1	248.807	1	4703.832	4
541		5	max	.018	3	.212	3	.5	4	8.85e-3	4	6733.795	15	NC	1
542			min	012	2	402	1	0	1	0	1	174.037	1	3912.396	4
543		6	max	.018	3	.331	3	.481	4	6.245e-3	4	5184.524	15	NC	1
544			min	012	2	599	1	0	1	0	1_	133.911	1_	3420.997	4
545		7	max	.017	3	.448	3	.462	4	3.641e-3	4	4289.789	15	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio	LC		
546			min	011	2	778	1	0	1	0	1_	110.727	1_	3059.202	-
547		8	max	.017	3	.546	3	.443	4	1.037e-3	4		<u>15</u>	NC	1
548			min	011	2	921	1	0	1	0	1_	97.243	_1_	2750.385	
549		9	max	.017	3	.609	3	.423	4	0	1_	3502.729	<u>15</u>	NC 0544044	1
550		40	min	011	2	<u>-1.012</u>	1	0	1	-2.148e-6	5	90.33	1_	2514.944	
551		10	max	.016	3	.631	3	.401	4	0 -2.058e-6	1	3422.341	<u>15</u>	NC 2481.408	1
552		11	min	011 .016	3	<u>-1.042</u> .616	3	<u> </u>	4	0	<u>5</u> 1	88.276 3502.808	<u>1</u> 15	NC	1
553 554		+	max	011	2	-1.011	1	<u></u> 0	1	-1.967e-6	5	90.469	1	2553.661	4
555		12	max	.015	3	.562	3	.351	4	7.425e-4	4	3769.721	15	NC	1
556		12	min	01	2	918	1	0	1	0	1	97.7	1	2675.699	_
557		13	max	.015	3	.477	3	.321	4	2.607e-3	4	4290.175	15	NC	1
558		13	min	01	2	771	1	0	1	0	1	111.916	1	3152.322	
559		14	max	.015	3	.368	3	.288	4	4.472e-3	4	5185.283	15	NC	1
560		17	min	01	2	588	1	0	1	0	1	136.586	1	4356.197	4
561		15	max	.014	3	.247	3	.253	4	6.337e-3	4	6735.303	15	NC	1
562			min	01	2	388	1	0	1	0	1	179.839	1	7667.384	_
563		16	max	.014	3	.124	3	.219	4	8.201e-3	4	9625.35	15	NC	1
564			min	01	2	19	1	0	1	0	1	261.805	1	NC	1
565		17	max	.014	3	.01	3	.189	4	1.007e-2	4	NC	5	NC	1
566			min	01	2	015	2	0	1	0	1	441.3	1	NC	1
567		18	max	.014	3	.126	1	.164	4	5.112e-3	4	NC	5	NC	1
568			min	01	2	088	3	0	1	0	1	960.55	1	NC	1
569		19	max	.014	3	.244	1	.145	4	0	1	NC	1	NC	1
570			min	01	2	177	3	0	1	-1.69e-6	4	NC	1	NC	1
571	M9	1	max	.006	3	.109	1	.564	4	2.379e-2	3	NC	1_	NC	1
572			min	003	2	017	3	0	1	-1.63e-2	1	NC	1_	NC	1
573		2	max	.006	3	.053	1	<u>.551</u>	4	1.177e-2	3	NC	4	NC	1
574			min	003	2	008	3	0	12	-7.926e-3	1	2063.184	1_	NC	1
575		3	max	.006	3	.009	3	.535	4	1.402e-2	4_	NC	5_	NC	1
576			min	003	2	008	2	0	12	-2.455e-5	<u>10</u>	987.933	1_	6425.458	
577		4	max	.006	3	.037	3	.518	4	1.101e-2	5	NC	5	NC	1
578		-	min	003	2	076	1	<u> </u>	12	-4.656e-3	1_	617.986	1_	4757.455	
579		5	max	.006	3	.075	3	.5	4	8.532e-3	3	NC 440.005	<u>15</u>	NC 2010 000	1
580			min	003	2	15	1	0	12	-9.458e-3	1_	442.605	1_	3916.269	
581		6	max	.006	3	.115	3	.481	4	1.274e-2	3	NC 246 549	<u>15</u>	NC	1
582		7	min	003	3	221	3	<u>0</u>	12	-1.426e-2	1	346.548	1_	3399.343 NC	
583			max	.006	2	.155	1	.462	1	1.695e-2 -1.906e-2	<u>3</u>	9953.815	<u>15</u> 1	3031.328	1
584 585		8	min	002 .005	3	285 .188	3	0 .443	4	2.116e-2	3	290.119 8844.531	<u> </u>	NC	1
586		0	max min		2	337	1	<u>.443</u>		-2.386e-2	1	256 252		2733.575	
587		9	max	.005	3	.209	3	.423	4	2.124e-2	3	8266.142	15	NC	1
588		-	min	002	2	369	1	0	12	-2.635e-2	1	239.586	1	2510.672	
589		10	max	.005	3	.217	3	.401	4	1.859e-2	3	8089.972	15	NC	1
590		10	min	002	2	379	1	0	1	-2.731e-2	1	234.422	1	2465.274	
591		11	max	.005	3	.211	3	.376	4	1.594e-2	3	8265.926	15	NC	1
592			min	002	2	369	1	0	1	-2.826e-2	1	239.927	1	2534.745	-
593		12	max	.005	3	.194	3	.35	4	1.329e-2	3		15	NC	1
594			min	002	2	336	1	0	12	-2.704e-2	2	257.92	1	2697.207	
595		13	max	.005	3	.165	3	.32	4	1.064e-2	3	9953.156	15	NC	1
596			min	002	2	283	1	0	12	-2.169e-2	2	292.738	1	3205.571	4
597		14	max	.005	3	.128	3	.287	4	7.988e-3	3	NC	15	NC	1
598			min	002	2	218	1	002	1	-1.634e-2	2	352.182	1	4332.775	5
599		15	max	.005	3	.087	3	.253	4	5.958e-3	5	NC	15	NC	1
600			min	002	2	145	1	005	1	-1.101e-2	1	454.242	1	7012.862	5
601		16	max	.005	3	.044	3	.22	4	8.006e-3	5	NC	5	NC	1
602			min	002	2	072	1	007	1	-5.771e-3	1	642.56	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.004	3	.003	3	.19	4	1.011e-2	4	NC	5	NC	1
604			min	002	2	005	2	007	1	-5.286e-4	1	1043.659	1	NC	1
605		18	max	.004	3	.053	1	.165	4	4.787e-3	5	NC	4	NC	1
606			min	002	2	033	3	005	1	-1.016e-2	2	2204.953	1	NC	1
607		19	max	.004	3	.105	1	.145	4	8.156e-3	3	NC	1	NC	1
608			min	002	2	067	3	0	12	-2.04e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.