Uncertainty relations with the variance and the quantum Fisher information — The Cramér-Rao bound as a convex roof

Géza Tóth^{1,2,3,4} and Florian Fröwis⁵

 ¹Theoretical Physics and EHU Quantum Center, University of the Basque Country (UPV/EHU), Bilbao, Spain
 ²Donostia International Physics Center (DIPC), San Sebastián, Spain
 ³IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
 ⁴Wigner Research Centre for Physics, Budapest, Hungary
 ⁵Group of Applied Physics, University of Geneva, CH-1211 Geneva, Switzerland

Benasque, 19 May 2022

Outline

- Motivation
 - The Cramér-Rao bound

- 2 The derivation
 - The Cramér-Rao bound based on a convex roof

Proving the Cramér-Rao bound

- The Cramér-Rao bound is a fundamental relation in metrology.
- It is an expression with the quantum Fisher information (QFI),
 which is a complicated function of the state and the Hamiltonian.
- We will look for a simple proof of the Cramér-Rao bound based on fundamental uncertainty relations.
- We will exploit the fact that the QFI is the convex roof of the variance.

Outline

- Motivation
 - The Cramér-Rao bound

- 2 The derivation
 - The Cramér-Rao bound based on a convex roof

Cramér-Rao bound

Error propagation formula

$$(\Delta \theta)_A^2 = \frac{(\Delta A)^2}{|\partial_\theta \langle A \rangle|^2} = \frac{(\Delta A)^2}{|\langle i[A, B] \rangle|^2}.$$

• If we measure *A*, then the precision of the estimation is bounded as

$$(\Delta \theta)^2 \geq \frac{1}{m} (\Delta \theta)^2_A$$

where m is the number of independent repetitions.

• Let us consider a decomposition of the density matrix

$$\varrho = \sum_{k} p_{k} |\psi_{k}\rangle \langle \psi_{k}|.$$

• The Heisenberg uncertainty for the components ris

$$(\Delta A)^2_{\psi_k}(\Delta B)^2_{\psi_k} \geq \frac{1}{4}|\langle i[A,B]\rangle_{\psi_k}|^2.$$

Cramér-Rao bound II

Let us consider the inequality

$$\left(\sum_{k} p_k a_k\right) \left(\sum_{k} p_k b_k\right) \ge \left(\sum_{k} p_k \sqrt{a_k b_k}\right)^2,$$
 where a_k , $b_k > 0$.

Hence, we arrive at

$$\left[\sum_{k} p_{k} (\Delta A)^{2}_{\psi_{k}}\right] \left[\sum_{k} p_{k} (\Delta B)^{2}_{\psi_{k}}\right] \geq \frac{1}{4} \left[\sum_{k} p_{k} |\langle i[A,B] \rangle_{\psi_{k}}|\right]^{2}.$$

• We can choose the decomposition such that

$$\sum_{k} p_k (\Delta B)^2_{\ \psi_k} = F_Q[\varrho,B]/4.$$

Due to the concavity of the variance we also know that

$$\sum_{k} p_k (\Delta A)^2_{\psi_k} \leq (\Delta A)^2.$$

Cramér-Rao bound III

Hence, it follows that

$$(\Delta A)^2_{\varrho}\left[4\min_{p_k,\psi_k}\sum_k p_k(\Delta B)^2_{\psi_k}\right]\geq |\langle i[A,B]\rangle_{\psi_k}|^2.$$

• Then,

$$\frac{\left(\Delta A\right)^2_{\ \varrho}}{|\langle i[A,B]\rangle_{\psi_k}|^2} \geq \frac{1}{\left[4\min_{p_k,\psi_k}\sum_k p_k(\Delta B)^2_{\ \psi_k}\right]}.$$

• Finally, for the precision of estimation, if we measure *A* and the Hamiltonian is *B*, we have

$$(\Delta\theta)^2 \geq \frac{1}{m}(\Delta\theta)^2_A = \frac{1}{m} \frac{(\Delta A)^2_{\varrho}}{|\langle i[A,B]\rangle_{\psi_k}|^2} \geq \frac{1}{m} \times \frac{1}{4 \min\limits_{\rho_k,\psi_k} \sum\limits_k p_k (\Delta B)^2_{\psi_k}}.$$

 $F_Q[\varrho,B]$, the QFI!

Summary

 We showed how to derive the Cramér-Rao bound with the convex roof of the variance.

See:

Géza Tóth and Florian Fröwis,

Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices,

Phys. Rev. Research 4, 013075 (2022).

THANK YOU FOR YOUR ATTENTION!

