ARTIFICIAL INTELLIGENCE

ARTIFICIAL NEURAL NETWORKS-II

CS-632

Dr. Muhammad Aqib

University Institute of Information Technology PMAS-Arid Agriculture University Rawalpindi

THE PARTS OF A NEURON

How do ANNs work?

The signal is not passed down to the next neuron verbatim

ACTIVATION FUNCTIONS

- Step(x) = 1 if $x \ge t$, else 0
- Sign(x) = +1 if x >= 0, else -1
- Sigmoid(x) = 1/(1+e-x)
- Identity Function A(x) = X

REPRESENTATIONAL POWER OF PERCEPTRONS

- Perceptrons can represent the logical AND, OR, and NOT functions as above.
- we consider 1 to represent True and –1 to represent False.

In general, perceptrons can learn linearly separable functions, such as AND:

Here there is no way to draw a single line that separates the "+" (true) values from the "-"
 (false) values.

TRAIN A PERCEPTRON

- At start of the experiment there are W random values
- Than the training begins with objective of teaching it to differentiate two classes of inputs I and II
- The goal is to have the nodes output o = 1 if the input is of class I, and to have
 - o= -1 if the input is of class II
- You can free to choose any inputs (Xi) and to designate them as being of class I or II

TRAIN A PERCEPTRON

 If the node happened to output 1 signal when given a class II input or output -1 signal when given a class I input the weight Wi has no change.

Then the training is complete.

SINGLE LAYER PERCEPTRON

 For a problem which calls for more then 2 classes, several perceptrons can be combined into a network.

Can distinguish only linear separable functions.

SINGLE LAYER PERCEPTRON

Single layer, five nodes. 2 inputs and 3 outputs

Recognizes 3 linear separate classes, by means of 2 features

Figure 6: Single layer perceptron network with three output neurons.

Figure 7: Three linearly separable classes.

MULTI-LAYER NETWORKS

MULTI-LAYER NETWORKS

- A Multi layer perceptron can classify non linear separable problems.
- A Multilayer network has one or more hidden layers.

Multi-layer networks

Hidden layers

EXAMPLE

Logical XOR Function

<u>X</u>	<u>Y</u>	<u>output</u>
0	0	0
0	1	1
1	0	1
1	1	0

XOR

Activation Function: if (input >= threshold), fire else, don't fire

XOR

Activation Function: if (input >= threshold), fire else, don't fire

XOR

Activation Function: if (input >= threshold), fire else, don't fire

XOR

Activation Function: if (input >= threshold), fire else, don't fire

Example: A Classification Task

 A typical neural network application is classification. Consider the simple example of classifying trucks given their masses and lengths

How do construct a neural network that can classify any Lorry and Van?

MASS	LENGTH	CLASS
10.0	6	LORRY
20.0	5	LORRY
5.0	4	VAN
2.0	5	VAN
2.0	5	VAN
3.0	6	LORRY
10.0	7	LORRY
15.0	8	LORRY
5.0	9	LORRY 63

TRAINING MULTILAYER PERCEPTRON

- The training of multilayer networks raises some important issues:
- How many layers ?, how many neurons per layer ?
- Too few neurons makes the network unable to learn the desired behavior.
- Too many neurons increases the complexity of the learning algorithm.

TRAINING MULTILAYER PERCEPTRON

- A desired property of a neural network is its ability to generalize from the training set.
- If there are too many neurons, there is the danger of over fitting.

TRAINING PERCEPTRONS

- Learning involves choosing values for the weights
- The perceptron is trained as follows:
 - First, inputs are given random weights (usually between –0.5 and 0.5).
 - An item of training data is presented. If the perceptron mis-classifies it, the weights are modified according to the following:

 $w_i \leftarrow w_i + (a \times x_i \times (t - o))$

- where *t* is the target output for the training example, o is the output generated by the preceptron and *a* is the learning rate, between 0 and 1 (usually small such as 0.1)
- Cycle through training examples until successfully classify all examples
 - Each cycle known as an epoch

BACKPROPAGATION

- Multilayer neural networks learn in the same way as perceptrons.
- However, there are many more weights, and it is important to assign credit (or blame) correctly when changing weights.
- E sums the errors over all of the network output units

$$E(w) = \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2$$

BACKPROPAGATION ALGORITHM

- Create a feed-forward network with n_{in} inputs, n_{hidden} hidden units, and n_{out} output units.
- Initialize all network weights to small random numbers
- Until termination condition is met, Do
 - For each <x,t> in training examples, Do
 Propagate the input forward through the network:
 - 1. Input the instance x to the network and compute the output o_u of every unit u in the network

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$$

3. For each hidden unit h, calculate its error term δ_h

$$\delta_h \leftarrow o_h (1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k$$

4. Update each network weight $w_{ji} \leftarrow w_{ii} + \Delta w_{ii}$

where

$$\Delta w_{ji} = \alpha \delta_j x_{ji}$$

PROBLEMS WITH TRAINING:

- Nets get stuck
 - Not enough degrees of freedom
 - Hidden layer is too small
- Training becomes unstable
 - too many degrees of freedom
 - Hidden layer is too big / too many hidden layers
- Over-fitting
 - Can find every pattern, not all are significant. If neural net is "over-fit" it will not generalize well to the testing dataset

Thank You