✓ Congratulations! You passed!

Keep Learning

GRADE 100%

Asymptotic Notation and Complexity

LATEST SUBMISSION GRADE

100%

1. Consider the algorithm below shown as pseudo code:

3 / 3 points

```
algorithm compute_array_stuff ( a )
\# a is an array of size n
for k = 1 to n:
    if a[k] is prime:
          return 0
sum = 0
for i = 1 to n:
    for j = i + 1 to n:
        sum = sum + a[i] * a[j]
return sum
```

Select all the correct facts from the list below. Ensure that no incorrect facts are selected.

For each n, in the best case, the algorithm exits after a constant number of steps. This is realized specifically by an array whose very first element is a prime number.

✓ Correct Correct! See lines 4-5

- For each n, the algorithm executes in time that is linear in n in the worst case.
- The worst case is realized by an array of all composite numbers.

✓ Correct Correct, otherwise, the algorithm exits early.

The worst case complexity of this algorithm is (upper bounded by) $O(n^3)$.

✓ Correct

ightharpoonup The worst case complexity of this algorithm is (lower bounded) $\Omega(n)$

Yes since $\Omega(n)$ is asymptotic lower bound to $\Omega(n^2)$.

The worst case complexity of this algorithm is $\Theta(n^2)$

✓ Correct

Correct: it is upper bounded by some constant times $n^2\,$ plus some constant times n. Also, we can also show that on an array of size n with all composites, it will take time at least $c_1n^2+c_2n+c_3$ for constants c_1,c_2,c_3 .

2. Algorithm X programmed by an "ace programmer" runs in time $2.5n^4+3n^3+1.4n+2$ for inputs of size n in the worst case. Another algorithm Y programmed by a novice for the same problem runs in time 2000n+10000 for inputs of size n in the worst case.

3/3 points

Please select the correct answers

ightharpoonup For inputs of size 2, X is much faster than Y.

✓ Correct Correct. Just plug in n=2 and check in both the formulas.

 $\begin{tabular}{ll} \blacksquare & Algorithm X is going to be much faster than Y for all inputs. \end{tabular}$

lacksquare Algorithm X runs in time $\Theta(n^4)$

✓ Correct

Correct: the leading term is n^4 and it will dominate all the other terms in the running time. We can also ignore the constant factors.

lacksquare Algorithm Y runs in time $O(n^2)$

	\checkmark Correct Sure since n^2 is asymptotically larger than $2000n+10000$.
	Algorithm Y is asymptotically faster than X.
	✓ Correct At n = 11, the running time of X will be larger than that of Y and for n >= 11, we can see that Y will remain faster (smaller time) than X
	✓ It is possible for some input of size 100 that algorithm X is faster than algorithm Y
	Correct Yes, this is true, since the formulae provided talk about the worst case time. Any individual input may run faster.
3.	Suppose an algorithm runs in time $1.5 imes 2^n + 1.2 imes n^2$ in the worst case. Select the correct answer from the choices below.
	• Its running time can be expressed as $O(3^n)$ • Since constants are ignored in asymptotic running time, we can write the running time as $\Theta(2^{2n})$
	Since constants are ignored in asymptotic running time, we can write the running time as $\Theta(2^{-r})$. The factor $1.2 \times n^2$ dominates the other term 2^n . Thus, the algorithms asymptotic complexity is $O(n^2)$.
	$igcap$ Running times like 2^n are not possible for algorithms we program.
	\checkmark Correct Correct since 3^n will asymptotically dominate 2^n .
4.	Suppose an algorithm runs in time $200\log_2(n)+250$ time in the worst case as a function of the input size n , which of the options below are correct?
	\checkmark Correct Correct: note that $\log_a(n) = \log_b(n)/\log_a(b)$ since the denominator is a constant, we can ignore the base of the logarithm in asymptotic notation
	lt is impossible for an algorithm to have a running time that is smaller than the input size.
	igspace The running time of the algorithm is $O(n)$
	\checkmark Correct Correct: n is asymptotically larger than $\log(n)$.