

planetmath.org

Math for the people, by the people.

index of a Lie algebra

Canonical name IndexOfALieAlgebra
Date of creation 2013-03-22 15:30:47
Last modified on 2013-03-22 15:30:47
Owner benjaminfjones (879)
Last modified by benjaminfjones (879)

Numerical id 6

Author benjaminfjones (879)

Entry type Definition Classification msc 17B05

Defines index of a Lie algebra
Defines Frobenius Lie algebra

Defines Kirillov form

Let \mathfrak{q} be a Lie algebra over \mathbb{K} and \mathfrak{q}^* its vector space dual. For $\xi \in \mathfrak{q}^*$ let \mathfrak{q}_{ξ} denote the stabilizer of ξ with respect to the co-adjoint representation. The *index* of \mathfrak{q} is defined to be

$$\mathrm{ind}\ \mathfrak{q}:=\min_{\xi\in\mathfrak{g}^*}\dim\mathfrak{q}_\xi$$

Examples

- 1. If \mathfrak{q} is reductive then ind $\mathfrak{q}=\mathrm{rank}\ \mathfrak{q}$. Indeed, \mathfrak{q} and \mathfrak{q}^* are isomorphic as representations for \mathfrak{q} and so the index is the minimal dimension among stabilizers of elements in \mathfrak{q} . In particular the minimum is realized in the stabilizer of any regular element of \mathfrak{q} . These elements have stabilizer dimension equal to the rank of \mathfrak{q} .
- 2. If ind $\mathfrak{q} = 0$ then \mathfrak{q} is called a *Frobenius Lie algebra*. This is equivalent to condition that the *Kirillov form* $K_{\xi} \colon \mathfrak{q} \times \mathfrak{q} \to \mathbb{K}$ given by $(X,Y) \mapsto \xi([X,Y])$ is non-singular for some $\xi \in \mathfrak{q}^*$. Another equivalent condition when \mathfrak{q} is the Lie algebra of an algebraic group Q is that \mathfrak{q} is Frobenius if and only if Q has an open orbit on \mathfrak{q}^* .