ARTICLE IN PRESS

Construction and Building Materials xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Construction and Building Materials

journal homepage: www.elsevier.com/locate/conbuildmat

New formulations for mechanical properties of recycled aggregate concrete using gene expression programming

Aliakbar Gholampour^a, Amir H. Gandomi^b, Togay Ozbakkaloglu^{a,*}

^a School of Civil, Environmental and Mining Engineering, University of Adelaide, South Australia 5005, Australia ^b BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA

HIGHLIGHTS

- New models are developed by GEP technique to predict mechanical properties of recycled aggregate concrete (RAC).
- A comprehensive database covering a wide range of parameters is assembled through an extensive review of the literature.
- w_{eff}/c and RCA% are the most influential parameters on mechanical properties of RAC.
- Simple and accurate formulations with a wide range of applicability have been proposed.
- Predictions of the proposed models are consistent with those of the currently used code expressions for natural aggregate concrete.

ARTICLE INFO

Article history: Received 30 August 2016 Received in revised form 21 October 2016 Accepted 30 October 2016 Available online xxxx

Kevwords: Recycled concrete aggregate Recycled aggregate concrete (RAC) Compressive strength Elastic modulus Flexural strength Splitting tensile strength Gene expression programming (GEP)

ABSTRACT

This paper presents new empirical models for prediction of the mechanical properties of recycled aggregate concrete (RAC) using gene expression programming (GEP) technique. A large and reliable test database containing the results of 650 compressive strength, 421 elastic modulus, 346 splitting tensile strength, and 152 flexural strength, tests of RACs containing no pozzolanic admixtures is collated through an extensive review of the literature. The performance of existing mechanical property models of RACs is then assessed using the database, and the results of this assessment are presented using selected statistical indicators. New expressions for the predictions of 28-day compressive strength, elastic modulus, flexural strength, and splitting tensile strength of RACs are developed based on the database. The assessment results indicate that the predictions of the proposed models are in close agreement with the test results, and the new models provide improved estimates of the mechanical properties of RACs compared to the existing models.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Rapid industrial and population growths have resulted in the increased rate of demolition of old structures in order to obtain new construction sites. Generation and disposal of the huge amount of construction and demolition waste in the landfills caused environmental problems by depleting the landfill areas [1-3]. Over the past two decades, the use of recycled concrete aggregate, obtained from construction and demolition waste, as an alternative to non-renewable natural aggregate in concrete has been considered to improve resource sustainability in the construction industry and minimize the environmental impact of the disposed construction and demolition waste [4–6]. The use of recvcled concrete as coarse aggregates in the new concrete mix is rec-

* Corresponding author.

E-mail address: togay.ozbakkaloglu@adelaide.edu.au (T. Ozbakkaloglu).

ognized as an attractive technology to conserve natural resources and reduce the environmental impact of the construction industry [2,3,7-9]. However, as a result of the variability in the characteristics of the recycled concrete aggregates, the mechanical properties of RACs obtained using them vary from those of natural aggregate concrete (NAC). Therefore, understanding the relationship between the mechanical properties and mix proportions of RAC is essential before the material can widely be adopted by the construction industry.

The compressive strength, elastic modulus, flexural strength, and splitting tensile strength are the key material properties for the analysis and design of concrete structures. A comprehensive review of the existing studies on RAC has shown that a number of models have been reported in the literature to predict these mechanical properties for RAC [10-30]. However, because of the limitations in the parametric ranges of the considered experimental results as well as the relatively small test databases used in the

http://dx.doi.org/10.1016/j.conbuildmat.2016.10.114 0950-0618/© 2016 Elsevier Ltd. All rights reserved.

calibration of the models, the existing models are often restricted to specific specimen subsets and they might not provide accurate predictions of the mechanical properties of RAC beyond these parametric spaces. Therefore, a large and carefully constructed database, covering a wide range of parameters, is needed to develop reliable and accurate expressions to predict the mechanical properties of RAC. Such a database is presented in the current paper.

Recent technological progress in artificial intelligence techniques has generated accurate and reliable computer-aided modeling procedures for structural engineering problems [31-39]. Application of machine learning and computational intelligence methods to predict the mechanical properties of RAC has also received recent research attention. Younis and Pilakoutas [9] proposed a strength model to predict the compressive strength of the RAC using multi-linear and non-linear regressing analysis. Duan et al. [40] and Sahoo et al. [41] utilized artificial neural networks (ANN) method to predict the compressive strength of the RAC. Deshpande et al. [42] modeled the compressive strength of the RAC by ANN, model tree, and nonlinear regression methods. Duan et al. [43] utilized ANN method to predict the elastic modulus of RAC. Behnood et al. [44] predicted elastic modulus of RAC using M5 model tree algorithm. Recently, Gonzalez-Taboada et al. [45] proposed models to predict the compressive strength, elastic modulus, and splitting tensile strength of RAC using multivariable regression and genetic programming.

Pattern recognition of the computational intelligence methods plays a significant role in the application of them in the engineering applications. Most of the existing computational intelligence methods (e.g. ANN and support vector regression) are capable of providing complex pattern recognition through black-box models. However, the structure of these methods needs to be predefined by a base form, which requires extensive memory size [46,47]. Genetic Programming (GP) is a powerful optimization technique based on the genetic and natural selections. The main advantage of the GP-based methods is their ability to provide simple expressions without the need to assume a base form. GP provides a relatively new pattern recognition procedure for civil engineering applications [47,48]. Gene expression programming (GEP) introduced by Ferreira [49] is an extended GP-based method. In GEP, linear chromosomes as several genes with a fixed length encode a smaller program. Recent studies indicated that GEP can be an efficient alternative to the traditional GP method in civil engineering applications [46-51]. In these studies, GEP has been used for prediction of compressive strength of foam concrete, compressive strength of steel fiber reinforced concrete under triaxial compression, moment capacity of ferrocement members, shear strength of reinforced concrete deep beams, flow number of asphalt mixture, and liquefaction potential of soil. However, the use of GEP in structural engineering applications has remained limited, and no study to date has considered its application to predict the mechanical properties of RAC.

In this study, empirical models are proposed using GEP technique to predict 28-day compressive strength, elastic modulus, flexural strength, and splitting tensile strength of RAC. In addition, 34 existing mechanical properties models of RAC collected from 21 published studies are reviewed and assessed through statistical analysis using a reliable and comprehensive database containing samples with a wide range of mixture proportions.

2. Experimental database

The RAC database in Table A1 in the Appendix was compiled from 69 experimental studies in the literature. The results included in the database were obtained from concrete specimens manufactured using mixes that contained no pozzolanic admixtures. The resulting database consists of 332 compressive strength results

obtained from cube specimens ($f_{c,cube}$), 318 compressive strength results obtained from cylinder specimens ($f_{c,cylinder}$), 421 elastic modulus (E_c) results, 152 flexural strength (f_r) results, and 346 splitting tensile strength (f_{sr}) results.

The database shown in Table A1 contains information for each dataset including the type and size of the specimens, the effective water-to-cement binder ratio (w_{eff}/c), aggregate-to-cement ratio (a/c), maximum particle size (Φ) of recycled concrete aggregates and natural aggregates, air-dried density $(
ho_{\it ad})$ and saturated surface dry density of hardened concrete (ρ_{ssd}), strength of the parent concrete recycled concrete aggregate derived from $(f_{c,p})$, recycled concrete aggregate replacement ratio (RCA%), water absorption of recycled concrete aggregates and natural aggregates (WARCA and WA_{NA}, respectively), bulk density of coarse recycled concrete aggregates and natural aggregates (ρ_{RCA} and ρ_{NA} , respectively), Los Angeles abrasion index of recycled concrete aggregates and natural aggregates (LA_{RCA} and LA_{NA} , respectively), compressive strength of concrete (f_c) , elastic modulus of concrete (E_c) , flexural strength of concrete (f_r) , and splitting tensile strength of concrete (f_{st}) . The distribution of the most influential parameters (i.e. w_{eff}/c and RCA%) are shown in Fig. 1 for the specimens in the database.

Three types of specimens were used in obtaining the mechanical properties in Table A1; namely, cylinders, cubes, and beams. For each type of specimen, two different sizes were used in the tests, which are indicated by the labels. The cylinders had a diameter of either 100 or 150 mm and a height-to-diameter ratio of two, which are labeled as C_1 and C_2 , respectively; cubes had a dimension of 100 or 150 mm, which are labeled as S_1 and S_2 , respectively; and beams had a dimension of $100 \times 100 \times 500$ mm or $150 \times 150 \times 750$ mm, which are labeled as S_1 and S_2 , respectively. In Table A1, w_{eff}/c of the specimens varied from 0.19 to 0.87, RCA%

Fig. 1. Distribution histograms of: (a) w_{eff}/c ; (b) RCA%

ARTICLE

Table 1Summary of existing models to predict mechanical properties of RAC.

Year	Model	Compressive strength (f_c) (MPa)	Elastic modulus (E_c) (MPa)	Flexural strength (f_r) (MPa)	Splitting tensile strength (f_{st}) (MPa)
1985	Ravindrarajah and Tam		7770f ^{'0.33} _{c,cube}		
1988	Kakizaki et al. [15]		$1.9 \cdot 10^5 \cdot \left(\frac{\rho_h}{2400}\right)^{1.5} \cdot \sqrt{\frac{f_{c,cube}^2}{2000}}$		
1993	Bairagi et al. [17]		$(5780 - 1340 \cdot RCA\%) \sqrt{f'_{c,cube}}$	$(0.82-0.16\cdot \textit{RCA}\%)\sqrt{f_{c,cube}'}$	
1996	de Oliveira and Vazquez		$2.15 \cdot 10^4 \sqrt[3]{0.1 f'_{c,cube}}$		
1996	Tavakoli and Soroushian [21]		$378f'_{c,cube} + 8242$	$0.62\sqrt{f_{c,cube}'}$ (ACI 318)	$0.5\sqrt{f_{c,cube}'}$
1998	Dillmann [19]		634.43f' _{c,cube} + 3057.6		
1999	Dhir [20]		$370f'_{c,cube} + 13100$		
2001	Zilch and Roos [22]		$9100(f'_{c,cylinder} + 8)^{1/3} \cdot (\frac{\rho_h}{2400})^2$		
2005	Kheder and Al-Windawi		4993f ^{70.422} _{c,cylinder}	$0.762f_{c,cylinder}^{\prime 0.473}$	$0.568f_{c,cylinder}^{\prime0.499}$
2006	Xiao et al. [10]	$f'_{c,cube} = 0.069 \rho_h - 116.1$	$\frac{10^5}{2.8 + \frac{40.1}{f'_{c \text{ orbe}}}}$	$0.75\sqrt{f_{c,cube}^{\prime}}$	$0.24\sqrt{f_{c,cube}^{\prime0.65}}$
2006	Xiao et al. [29]				$(0.24 - 0.06 \cdot RCA\%) f_{c,cub}^{\prime 2/3}$
2007	Rahal [24]		$ ho_h^{1.5} \cdot 0.043 \sqrt{f_{c,cylinder}'}$		· c,cab
2010	Corinaldesi [25]		$18,800 \cdot \sqrt[3]{0.083 \cdot f'_{c,ylinder}}$		
2012	Sriravindrarajah et al. [11]	$f'_{c,cube} = 22.2e^{-0.052P}P$ is the porosity of the concrete	·		
2012	Lovato et al. [12]	$f_{c.cylinder}' = 22.5 \left(\frac{0.5}{w_{eff}/c}\right)^{0.67} \cdot \left(1 - \frac{RCA\%}{7.44}\right) \cdot FRA\% \cdot \left(1 - \frac{a/c}{8.61}\right) \cdot \\ \left[1 - (-0.04 \cdot RCA\% \cdot a/c)\right] \cdot \left[1 - (0.008 \cdot FRA\% \cdot a/c)\right] \text{where} \\ FRA\% \text{ is fine recycled aggregate percentage}$	$\begin{array}{l} 13.49(\frac{0.5}{w_{eff}/c})^{0.48} \cdot (1-\frac{RCA\%}{5.76}) \cdot (1-\frac{FRA\%}{5.49}) \cdot (1-\frac{a/c}{8.67}) \cdot \\ [1-(-0.04 \cdot RCA\% \cdot a/c)]10^3 \end{array}$		$1.86(1 - \frac{RCA\%}{6.81}) \cdot (1 - \frac{FRA\%}{9.86})$ $(1 - \frac{a/c}{4.87}) \cdot [1 - (-0.016 \cdot RCA\% \cdot a/c)]$
2012	Hoffmann et al. [26]	rana is the recycled aggregate percentage	$6800\sqrt[3]{f'_{c,ylinder}}$		KC/1/0 · u/C)]
2012	Pereira et al. [13]	$f_{c,\text{cube}}' = k_1/k_2^{(w_{\text{eff}}/c)} \cdot (1 - k_3 \cdot WA_{RCA} \cdot RCA\%)$ $k_1 = 230.3, k_2 = 25.9, k_3 = -0.077$ where WA_{RCA} is water absorption rate of recycled concrete aggregate	y · cymaa		
2012	Pereira et al.[27]	where WA _{RCA} is water absorption rate of recycled concrete aggregate	$4.228 \cdot f_{c,cube}^{\prime 1/3}((1 - RCA\%) \cdot \rho_{NA} +$		$0.096 \cdot f_{c,cube}^{\prime 2/3}((1 - RCA\%))$
2013	Thomas et al.[14]	$f'_{c,ylinder} = -0.32 + 0.022 \cdot RCA\% + (1 - 0.0025 \cdot RCA\%) \cdot f'_{c-NA} f_{c-NA}$ is the compressive strength of the companion NAC	$RCA\% \cdot ho_{RCA}) \left[rac{(0.55)}{(w_{eff}/c)} ight]^{0.22}$		$ ho_{\mathit{NA}} + \mathit{RCA}\% \cdot ho_{\mathit{RCA}})[\frac{0.55}{(w_{\mathit{eff}}/c)}]$
2013	Younis and Pilakoutas [9]	the compressive strength of the companion NAC $f'_{c,\text{cube}} = [13.7 \frac{\rho_{\text{RA}}}{\rho_{\text{NA}}} + 2.47 \frac{LA_{\text{NA}}}{LA_{\text{NA}}} - 0.2 \frac{WA_{\text{NA}}}{WA_{\text{NA}}} - 0.12RCA\% - 10.35] \cdot f'_{c-\text{NA}}$ $f'_{c,\text{cube}} = [-1.245 \frac{\rho_{\text{RA}}}{\rho_{\text{NA}}} + 3.22 \frac{LA_{\text{NA}}}{LA_{\text{RA}'}} - 0.99 \frac{WA_{\text{NA}'}}{WA_{\text{NA}'}} - 0.13RCA\%] \cdot f'_{c-\text{NA}}$			
		$f_{c,cube} = [f_{c-NA}^{\prime} \cdot (\frac{R_{CA}}{P_{NA}})^{-0.15} \cdot (\frac{L_{A_{NA}}}{L_{A_{NA}}})^{-3.6} \cdot (\frac{W_{A_{NA}}}{W_{A_{NA}}})^{0.5}] \div (RCA\% + 1)^{0.12} \text{ where } LA_{RCA} \text{ and } LA_{NA}, \text{ respectively, are the Los Angeles abrasion index for recycled concrete aggregate and NA, and } WA_{NA} \text{ is water absorption rate of NA}$			
2014	Wardeh et al. [28]		$E_c = 17553(0.1 \cdot f'_{c.cube})^{0.42}$		

*In this table, f_c , E_c , f_r , f_{st} and f_{c-NA} are in MPa; ρ_{hr} , ρ_{RCA} and ρ_{NA} are in kg/m³; P, WA_{RCA} , and WA_{NA} are in%.

varied from 0 to 100, f_c varied from 13.4 to 108.5 MPa, E_c varied from 12.5 to 50.4 GPa, f_r varied from 1.9 to 10.2 MPa, and f_{st} varied from 1.1 to 6.3 MPa.

It should be noted that, as marked in Table A1, the datasets that deviated significantly from the global trends of the database (i.e. ±50%) were excluded from the model assessment and were not used in the subsequent model development. This resulted in 508 compressive strength results, 251 from cube specimens and 257 from cylinder specimens; 351 elastic modulus results; 118 flexural strength results; and 307 splitting tensile strength results that were used in the model assessment and development.

3. Existing models for predicting mechanical behavior of RAC

Table 1 presents the existing models, obtained from 21 different studies in the literature, to predict the mechanical properties of RAC. These include the eight models for compressive strength [9–14], 16 models for elastic modulus [10,12,15–28], four models for flexural strength [10,17,21,23], and six models for splitting tensile strength [10,12,21,23,27,29]. All models contain closed-form equations, which were developed by regression analysis of the experimental test results, and hence their accuracy is dependent on the size, reliability, and parametric range of the test databases used in the model development.

4. Gene expression programming

Gene expression programming (GEP) was developed by Ferreira [49] as a branch of genetic programming (GP) and it is based on five different components of: a function set, a terminal set, a fitness function, control parameters, and a terminal condition. A character string with a fixed length is used in the GEP algorithm in order to obtain the solution, whereas GP technique uses a parse tree structure, which can vary in length during the run in the computer program. The creation of the genetic variety in the GEP is extremely simple because of the genetic mechanism of this technique at the chromosome level. Furthermore, because of its multi-genic nature. GEP allows the development of complex and nonlinear programs with several subprograms. In GEP, each gene consists of two types of symbols: a fixed length variables and constants as terminal set (e.g. {a,b,c,6}) and arithmetic operations as function set (e.g. {+,-, \times, \div, \log). The key feature of the GEP is the creation of the chromosomes, which are capable of representing any parse tree using Karva language to read and express the information encoded in the chromosomes. The chromosomes are then translated to the branched structures of expression tree (ET). The transformation of the Karva expression (K-expression) to an ET initiates from the first position in the K-expression, as the root of ET, and continues through the string. In order to generate the string, the ET is inversely transformed to the K-expression using the record of the nodes from the root layer to the deepest layer. In the GEP algorithm, because of the predefined and fixed length of the genes and the variability in the corresponding ETs' size, there is a number of extra elements which is not effective in the mapping process of the genome. Therefore, the K-expression's length can be less than or equal to that of the GEP gene [46,48].

Fig. 2 shows the schematic of the GEP algorithm. The algorithm starts with the random creation of the chromosome with the fixed length for each evolving program (individual). Subsequently, the chromosomes are declared, and the fitness of each individual is evaluated. Following this, the individuals are chosen based on their fitness results in order to apply the reproduction. The process is repeated with the new individual for a series of generations until a solution is found. In this approach, conversion in the population is provided by performing genetic operations, such as mutation, rotation, and crossover, on the selected program.

Fig. 2. Schematic presentation of the GEP algorithm.

5. Performance measures

To increase the accuracy of the developed models, the experimental database was randomly separated into three different subsets of learning, validation, and testing. In this division, the learning data were used for the genetic development, the validation data for the final model selection, and the testing data for the determination of the accuracy of the GEP models in regard to the data that do not play any role in the structure of the models. The final models are selected using an objective function (OBJ) based on the best performance of both learning and validation data sets. The objective function, defined as Eq. (1), is minimized to select the best GEP models [47].

$$OBJ = \left(\frac{n_L - n_V}{n_T}\right) \rho_L + \left(\frac{2n_V}{n_T}\right) \rho_V \tag{1}$$

where n is the number of the data points, ρ is the performance index, and subscripts L, V, and T are learning, validation, and testing data sets, respectively. Four statistical indexes including the average absolute error (AAE), root mean square error (RMSE), mean (M), and covariance (COV) are used to assess the model performance. The definitions of AAE, RMSE, M, COV, and ρ [47] are given in Eqs. (2)–(6).

$$AAE = \frac{1}{n} \sum_{i=1}^{n} \frac{|t_i - u_i|}{t_i} \times 100$$
 (2)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (t_i - u_i)^2}{n}}$$
(3)

$$M = \frac{1}{n} \sum_{i=1}^{n} \frac{u_i}{t_i} \tag{4}$$

$$COV = \frac{1}{M} \sqrt{\frac{\sum_{i=1}^{n} \left(\frac{u_i}{t_i} - \frac{\overline{u}}{\overline{t}}\right)^2}{n-1}}$$
 (5)

$$\rho = \frac{\text{RMSE}/\bar{t}}{1 + \frac{\sum_{i=1}^{n} (u_i - \bar{u}_i)(t_i - \bar{t}_i)}{\sqrt{\sum_{i=1}^{n} (u_i - \bar{u}_i)^2 \sum_{i=1}^{n} (t_i - \bar{t}_i)^2}}}$$
(6)

where u_i and t_i are ith predicted and experimental outputs, respectively; \overline{u}_i and \overline{t}_i are ith average values of the predicted and experimental outputs, respectively; and \overline{t} is the average value of the experimental output.

6. Model development using GEP

In order to obtain the relationships between mechanical properties of RAC and the influential parameters with improved accuracy, the specimens in the database were closely studied and the main factors affecting the mechanical properties of RACs were determined. To evaluate the contribution of each input parameter on the mechanical properties, sensitivity analysis (SA) was performed through the determination of frequency values of the input parameters. The percentage of contribution of each input parameter is calculated using Eqs. (7) and (8) [113]:

$$L_i = f_{max}(x_i) - f_{min}(x_i) \tag{7}$$

$$SA_i = \frac{L_i}{\sum_{j=1}^n L_j} \times 100 \tag{8}$$

where $f_{max}(x_i)$ and $f_{min}(x_i)$ are maximum and minimum of the predicted output based on the ith input domain when other input values are constant at the average value. Figs. 3(a)–(d) show the sensitivity analysis of compressive strength, elastic modulus, flexural strength, and splitting tensile strength, respectively. It can be

seen in these figures that the most influential parameters on the mechanical properties of RAC are w_{eff}/c and RCA%. Fig. 3 shows that the relative influences of w_{eff}/c and RCA% remain mostly constant across the mechanical properties investigated in this study.

Consequently, the compressive strength (f'_c) , elastic modulus (E_c) , flexural strength (f_r) , and splitting tensile strength (f_{st}) are considered to be a function of the following parameters:

$$f'_{c}, E_{c}, f_{r}, \text{and} f_{st} = f(w_{eff}/c, RCA\%)$$

$$\tag{9}$$

Based on Eq. (9), w_{eff}/c and RCA% were employed to generate the mechanical property models using the GEP algorithm. Several runs were performed to ensure adequate robustness and generalization of the models. The fitting parameters for the GEP algorithm were chosen based on the previously suggested values by Gandomi et al. [50,114] and a number of initial runs. Population size (i.e. number of chromosomes) sets the running time, with a larger size results in a longer time. Based on the number of possible solutions and complexity of the problem, three optimal levels were set for the population size, i.e. 50, 150, and 300. Head size and number of genes, which evolve the chromosome architectures of the models, specify the complexity of each gene and the number of sub-ET in the evolved model, respectively. The increase of the genes number usually results in overfitting and generation of a complex function. Based on the suggestion by Gandomi et al. [48], the head size

Table 2Optimal parameter settings for GEP algorithm.

Parameter	Settings
General	
Chromosomes	30
Genes	10
Gene size	7
Numerical constant	
Constants per gene	1
Data type	Floating number
Lower bound	-10
Upper bound	10

Fig. 3. Sensitivity analysis of: (a) compressive strength, (b) elastic modulus, (c) flexural strength, and (d) splitting tensile strength of RAC.

was set as 1, and the number of genes was set as two in this study. The optimal values of the other parameters in the GEP algorithm are shown in Table 2. These values were obtained from 10 different runs for each combination adopting a trial-and-error method [48,115].

6.1. GEP-based formulation of the compressive strength of RAC

The performance of existing compressive strength models was assessed using the database to evaluate the accuracy and relative

performance of the models. Based on the available input parameters in the database, only three compressive strength models, i.e. Xiao et al. [10], Pereira et al. [13], and Thomas et al. [14] models, could be used in the model assessment. Two of these models were given for cube specimens [10,13], and one for cylinder specimens [14]. The other compressive strength models (i.e. Refs. [9], [11], and [12]) required specific input parameters that were not available in the database.

In this study, two compressive strength models were developed; one to predict the cube strength ($f'_{c,cube}$) and one to predict

Table 3 Model predictions of compressive strength (f'_c) of RAC.

Model	Number of datasets	AAE (%)	RMSE (MPa)	Mean	ρ	COV	Specimen type
Xiao et al. [10]	74	12.7	11.3	0.98	0.17	0.19	Cube
Pereira et al. [13]	157	22.2	11.8	1.14	0.15	0.24	Cube
Thomas et al. [14]	257	14.6	8.1	1.09	0.11	0.19	Cylinder
Proposed model	251	12.4	7.9	1.02	0.09	0.17	Cube
Proposed model	257	14.4	7.8	1.01	0.11	0.19	Cylinder

Table 4 Model predictions of elastic modulus (E_c) of RAC.

Model	Number of datasets	AAE (%)	RMSE (GPa)	Mean	ho	COV
Xiao et al. [10]	104	14.3	6.17	0.91	0.14	0.16
Kakizaki et al. [15]	33	10.9	4.51	0.92	0.08	0.13
Ravindrarajah and Tam [16]	104	13.1	5.62	0.93	0.12	0.16
Bairagi et al. [17]	104	19.1	6.76	1.15	0.13	0.16
de Oliveira and Vazquez [18]	104	22.3	7.14	1.20	0.15	0.16
Dillmann [19]	104	21.7	8.40	1.11	0.17	0.23
Dhir [20]	104	14.3	5.15	1.03	0.11	0.17
Tavakoli and Soroushian [21]	104	16.8	6.55	0.88	0.13	0.19
Pereira et al. [27]	82	31.1	10.54	1.29	0.22	0.17
Wardeh et al. [28]	104	17.2	5.79	1.13	0.12	0.16
Lovato et al. [12]	204	70.6	21.8	0.29	0.53	0.24
Zilch and Roos [22]	84	8.3	3.10	1.06	0.06	0.10
Kheder and Al-Windawi [23]	172	18.7	6.76	0.82	0.14	0.12
Rahal [24]	84	10.1	3.74	1.08	0.07	0.10
Corinaldesi [25]	172	10.1	3.85	0.96	0.08	0.12
Hoffmann et al. [26]	172	21.5	7.65	0.79	0.16	0.12
Proposed model	351	10.1	3.06	1.00	0.06	0.10

Table 5 Model predictions of flexural strength (f_r) of RAC.

Model	Number of datasets	AAE (%)	RMSE (MPa)	Mean	ρ	COV
Xiao et al. [10]	19	8.1	0.52	0.99	0.06	0.09
Bairagi et al. [17]	19	11.1	0.73	0.99	0.08	0.13
Tavakoli and Soroushian [21]	19	17.9	1.12	0.82	0.12	0.09
Kheder and Al-Windawi [23]	54	16.1	0.97	0.95	0.14	0.20
Proposed model	118	8.1	0.52	0.99	0.05	0.08

Table 6 Model predictions of splitting tensile strength (f_{st}) of RAC.

Model	Number of datasets	AAE (%)	RMSE (MPa)	Mean	ρ	COV
Xiao et al. [10]	109	16.6	0.52	0.96	0.10	0.19
Tavakoli and Soroushian [21]	109	20.3	0.57	1.16	0.10	0.22
Pereira et al. [27]	58	17.3	0.78	1.12	0.15	0.24
Xiao et al. [29]	109	16.6	0.67	0.86	0.13	0.18
Lovato et al. [12]	149	76.4	2.50	0.23	0.62	0.43
Kheder and Al-Windawi [23]	139	23.1	0.77	1.20	0.16	0.18
Proposed model	307	15.8	0.51	0.99	0.10	0.17

7

A. Gholampour et al./Construction and Building Materials xxx (2016) xxx-xxx

the cylinder strength ($f'_{c,cylinder}$). The proposed equations are obtained from 10 subprograms (i.e. genes), with each of them investigating an individual aspect of the problem [50]. The following expressions are proposed to predict the strengths at the age of 28 days for RACs with compressive strengths of up to 110 MPa:

$$f'_{c,cube}(\text{MPa}) = \frac{19.1 \times 0.998^{\text{RCA}\%} \times (w_{\text{eff}}/c + 0.33)}{w_{\text{eff}}/c^{1.5}}$$
(10)

$$f'_{c,cylinder}(\text{MPa}) = \frac{23.5 \times 0.998^{RCA\%} \times (w_{eff}/c + 0.09)}{w_{eff}/c^{1.7}}$$
(11)

Fig. 4. Variation in compressive strength of RAC with w_{eff}/c for cube specimens: (a) RCA% = 0%, (b) RCA% = 1-30%, (c) RCA% = 31-90%, and (d) RCA% = 100%.

Fig. 5. Variation in compressive strength of RAC with w_{eff}/c for cylinder specimens: (a) RCA% = 0%, (b) RCA% = 1-30%, (c) RCA% = 31-90%, and (d) RCA% = 100%.

Fig. 6. Comparison of concrete compressive strengths with model predictions: (a) cubes; (b) cylinders.

Table 3 shows the prediction statistics of the proposed models together with those of the existing models. The size of the experimental database plays an important role in the reliability of the models. It can be seen in the table that the proposed models provide improved accuracy while also being applicable to a larger number of datasets than the existing models.

6.2. GEP-based formulation of the elastic modulus of RAC

As can be seen in Table 1, 16 models exist in the literature to predict the elastic modulus of RAC. In these models, the compressive strength (f_c) is often considered as the sole parameter affecting the elastic modulus (E_c) of RACs. In the current study the following expression is proposed to predict the elastic modulus of RAC with E_c of up to 50 GPa as a function of RCA% and W_{eff}/c :

$$E_c(\text{GPa}) = 0.016 \times (6.1 - 0.015RCA\%) \times (5.3 - 1.7w_{eff}/c)^{3.9}$$
 (12)

Table 4 shows the prediction statistics of the proposed model together with those of the existing models. It can be seen from the table that the models by Xiao et al. [10], Ravindrarajah and Tam [16], Bairagi et al. [17], and Wardeh et al. [28] were the best performing elastic modulus models in the literature. However, the proposed model provides better accuracy than the existing models, while also being applicable to a larger number of datasets.

6.3. GEP-based formulation of the flexural strength of RAC

The following expression is proposed to predict the flexural strength (f_r) of RAC with f_r of up to 8 MPa:

$$f_r(\text{MPa}) = 0.022 \times (1.2 - 0.002RCA\%) \times (2.3 - 0.3w_{\text{eff}}/c)^{6.9}$$
 (13)

Table 5 shows the prediction statistics of the proposed model together with those of the four existing models. It can be seen from the table that among the existing models, those by Xiao et al. [10]

Fig. 7. Variation in elastic modulus of RAC with w_{eff}/c : (a) RCA% = 0%, (b) RCA% = 1-30%, (c) RCA% = 31-90%, and (d) RCA% = 100%.

and Bairagi et al. [17] performed the best. It can also be seen in Table 5 that the proposed model provides further improvements to accuracy while also expanding the range of applicability.

6.4. GEP-based formulation of the splitting tensile strength of RAC

The following expression is proposed to predict the splitting tensile strength (f_{st}) of RAC with f_{st} of up to 6 MPa:

$$f_{st}(\text{MPa}) = 0.012 \times (0.9 - 0.002 \text{RCA\%}) \times (2.1 - 0.3 w_{\text{eff}}/c)^{9.1} \eqno(14)$$

Table 6 shows the prediction statistics of the proposed model together with those of the six existing models. As can be seen in the table, among existing models those by Xiao et al. [10] and Bairagi et al. [17] performed the best. It can also be seen in Table 6 that further improvements to accuracy and range of applicability are achieved by the proposed model.

Fig. 8. Comparison of concrete elastic modulus with model predictions.

7. Parametric investigation of the proposed models

In order to further validate the proposed models, parametric analyses are performed for the proposed expressions based on the input parameters. The methodology is based on studying the variation of the model predictions with the change in a single input parameter, while the other variables are kept constant at the database average [116]. All datasets were first divided into four groups according to their recycled concrete aggregate replacement ratio (i.e., RCA% of 0%, 1-30%, 30-90%, and 100%) in order to study the effect of RCA% on the target mechanical properties. The robustness of the proposed expressions is determined by evaluating how well the predicted values agree with the mechanical properties of RAC. Figs. 4 and 5 show the variation of the compressive strength of cube $(f_{c,cube})$ and cylinder specimens $(f_{c,cylinder})$, respectively, with w_{eff}/c at each RCA% interval. It is well understood that the compressive strength (f_c) of concrete decreases with increasing w_{eff}/c and the results shown in Figs. 4 and 5 are in agreement with this [8,12,24,25,117]. Figures also illustrate that the compressive strength decreases with an increase in the RCA% for a given w_{eff}/c . As can be seen in Fig. 6, which shows the comparison of the compressive strength results with the model predictions, the proposed models accurately capture the influences of w_{eff}/c and RCA% to well reproduce the test results.

Fig. 7 shows the variation of the elastic modulus of RAC with w_{eff}/c at each RCA% interval. The comparison of the expressions in Fig. 7 shows that the elastic modulus of RAC decreases with increasing w_{eff}/c , which is in agreement with previous studies [10,12,13,17,23,25]. The figure also illustrates that the elastic modulus decreases with increasing RCA% for a given w_{eff}/c . It can be seen in Fig. 8, which shows the comparison of the elastic modulus results with the model predictions, that the proposed model provides close predictions accurately capturing the influences of w_{eff}/c and RCA%.

Fig. 9. Variation in flexural strength of RAC with w_{eff}/c : (a) RCA% = 0%, (b) RCA% = 1-30%, (c) RCA% = 31-90%, and (d) RCA% = 100%

Fig. 10. Comparison of concrete flexural strength with model predictions.

Fig. 12. Comparison of concrete splitting tensile strength with model predictions.

Fig. 9 shows the variation of the flexural strength of RAC with w_{eff}/c at each RCA% interval. The comparison of the expressions in Fig. 9 shows that the flexural strength of RAC decreases with increasing w_{eff}/c , which is in agreement with previous studies [10,23]. The figure also illustrates that the flexural strength decreases with increasing RCA% for a given w_{eff}/c . The comparisons of the experimental flexural strength results with the predictions of the proposed model are shown in Fig. 10. As can be seen in the figure, the model predicts the results closely.

Fig. 11 shows the variation of the splitting tensile strength of RAC with w_{eff}/c at each RCA% interval. The comparison of the expressions in Fig. 11 shows that the splitting tensile strength of RAC decreases with increasing w_{eff}/c , which is in agreement with the previous studies [8,23,29,117]. The figure also illustrates that the splitting tensile strength decreases with increasing RCA% for a given w_{eff}/c . The comparisons of the experimental splitting tensile strength results with the predictions of the proposed model are

shown in Fig. 12. As can be seen in the figure, the model predicts the results closely.

8. Comparison of the model predictions with design code expressions

A review of the existing design codes and standards [118–124] identified a number of models that were proposed to predict the mechanical properties of NAC based on $f_{c,cylinder}$. The details of these models are summarized in Table 7. Figs. 13(a)–(c) show the predictions of the code expressions together with those of the models proposed in this study for the elastic modulus, flexural strength, and splitting tensile strength, respectively. The comparison of the results shows that, when applied to NAC (i.e. RCA% = 0), the trends of the proposed models are in agreement with the overall trend of the existing code expressions. This observation validates the consistency of the proposed models with currently

Fig. 11. Variation in splitting tensile strength of RAC with w_{eff}/c : (a) RCA% = 0%, (b) RCA% = 1-30%, (c) RCA% = 31-90%, and (d) RCA% = 100%.

Fig. 13. Comparisons of models of the present study with models given in design codes for conventional concrete: a) elastic modulus, b) flexural strength, c) splitting tensile strength.

60

Compressive Strength, $f'_{c,cylinder}$ (MPa) (c)

used expressions for NAC, which establishes a reliable baseline for the extension of the models to RAC through the incorporation of the aggregate replacement ratio.

9. Conclusions

This paper has presented new models developed using GEP technique to predict the compressive strength, elastic modulus, flexural strength, and splitting tensile strength of recycled aggregate concrete. A comprehensive database containing results of 650 compressive strength, 421 elastic modulus, 346 splitting tensile strength, and 152 flexural strength, tests of RACs reported in 69 studies and covering a wide range of parameters was assembled through an extensive review of the literature. The database was used to assess the performance of 34 existing mechanical property models of RAC reported in 21 studies. The following are the main observations and conclusions resulting from this analytical study:

- 1. The results of the parametric and sensitivity analyses on the database show that w_{eff}/c and RCA% are the most influential parameters on mechanical properties of RAC.
- The proposed models provide simple formulations by accurately establishing relative contributions of the most influential parameters while also being applicable to a larger number of datasets than the existing models.
- 3. The comparison of the proposed models with the existing code expressions shows that the trends of the proposed models are in agreement with the overall trend of the existing code expressions when applied to NAC (i.e. *RCA*% = 0). This observation validates the consistency of the proposed models with currently used code expressions for NAC.
- 4. The assessment results show that the proposed models provide accurate predictions of the compressive strength, elastic modulus, flexural strength, and splitting tensile strength of RAC, making them suitable for use in the pre-design of RACs.

Acknowledgements

The authors thank Mr Tianyu Xie for his assistance in the preparation of the test database supplied in the appendix.

Table 7Summary of NAC mechanical property models given in current design codes.

30

0

Model	Elastic modulus (E_c) (GPa)	Flexural strength (f_r) (MPa)	Splitting tensile strength (f_{st}) (MPa)
AS 3600-09 [118]	$E_c = 4.3 \times 10^{-5} (\rho_h)^{1.5} \sqrt{f_{cm}'} \text{ *when } f_{cm}' \leqslant 40 \text{MPa} E_c = (2.4 (\rho_h)^{1.5})^{1.5}$	$f_r = 0.60 \sqrt{f_{c,cylinder}'}$	$f_{st} = 0.4 \sqrt{f_{c,cylinder}'}$
	$\sqrt{f_{cm}^{\prime}}+12) imes10^{-5}$ when $40 ext{ <}f_{cm}^{\prime}\leqslant100$ MPa		
ACI 318-11 [119]	$E_c = 4.73 \sqrt{f'_{c,cylinder}}$	$f_r = 0.62 \sqrt{f'_{c,cylinder}}$	$f_{st} = 0.53 \sqrt{f_{c,cylinder}'}$
CSA A23.3-04 [120]	$E_c = 4.5 \sqrt{f'_{c,cylinder}}$	$f_r = 0.60 \sqrt{f_{c,cylinder}'}$	• 22
Eurocode 2-04 [121]	$E_c = 9.5 f_{c,cylinder}^{\prime \frac{1}{3}}$	$f_r = 0.435 f_{c,cylinder}^{\prime 2/3}$	$f_{st} = 0.3 (f_{c,cylinder}')^{2/3}$
JSCE-07 [122]	$E_c = 4.7 \sqrt{f'_{c,cylinder}}$		$f_{st} = 0.44 \sqrt{f'_{c,cylinder}}$
JCI-08 [123]	$E_c = 6.3 f_{c,cylinder}^{\prime 0.45}$		$f_{st} = 0.13 (f'_{c,cylinder})^{0.85}$
NZS 3101:2006 [124]	$E_c = 3.32(\sqrt{f'_{c,cylinder}}) + 6.9$	$f_r = 0.60 \sqrt{f_{c,cylinder}'}$	$f_{\rm st} = 0.44 \sqrt{f_{c,cylinder}'}$

120

90

In this table, $f_o f_{cm} f_h$, and f_{st} are in MPa, E_c is in GPa, and ρ_h is in kg/m³. ${}^*\!f_{cm}$ is the mean in-situ compressive strength.

A. Gholampour et al./Construction and Building Materials xxx (2016) xxx–xxx

 Table A1

 Experimental database of recycled aggregate concrete

Appendix A

Experime	ntal databa:	Experimental database of recycled aggregate concrete	ed aggrega	te concre	ete																		ĺ
Year of publication	Source	Geometric pi	Geometric properties of specimens	imens		Concrete mix properties	x properties		Properties of	Properties of coarse aggregate	te						4 0 I	Physical properties of concrete		Mechanical properties of concrete	ties of concre	te	
		Compressive strength tests	Elastic modulus tests	Hexural strength tests	Splitting tensile strength tests	Effective water- to- cement ratio (weglc)	Aggregate- to-cement ratio (a/c)	RCA replacement ratio (RCA %)	Parent concrete strength (MPa)	Nominal maximum RCA size (mm)	Nominal maximum NA size (mm)	Bulk B density d of RCA o (kg/m³) (Bulk V density a of NA C (kg/m³) (Water absorption of RCA (WA _{KCA})(%)	Water Ld absorption A of NA al (WAwa) (%) oi	Los Los Angeles Ang abrasion abra of RCA of N	eles ision IA a)	Density of Der hardened har concrete con AD (ρ_{ad}) SSI (kg/m^3) (kg	Density of Com hardened stren concrete (MPa SSD (ρ_{SSD}) (kg/m³)	Compressive E strength (f.c.) n (MPa)	Elastic modulus (Ec) (MPa)	Flexural strength (fr) (MPa)	Splitting tensile strength (f_{α}) (MPa)
1988	Yoda et al.	C.	C,			0.50	2.6	0		20	20								42.8		32153		
	[36]	ن ن	ن ت			0.50	2.5	20		20	20								42.7		31178		
2000	Limbachiva	ับัง	∵ ت	m		0.50	2.3	100		20	30		2610		2.5				41.8		31589	5.2	
	et al. [53]		,	ĭ e		1 2		, ,			۱ ۶								1 0				
		ς ν, ο	3 C C	2 62 6		0.45	7 67 6	2 05 5		20	2 8 8	2400	2610	6.6	2.5				50.8		27500	4.9	
		ห์ ซึ่	ا ک د	5 2		0.39	3.3 2.6	0 0		20	30 30				2.5				20°C 60.3			0.0	
		y y	ე ე	2 2 2 2 2 2		0.39	2.6 2.6	20 92		20 20	30 80	2400 2	2610 4 2610 4	4.9	2.5				60.8			5.1	
		s, s,	° ° °	B B		0.39	2.6	0 0		20 20	30				2.5				60.2			5.0	
		v. v.	ి చ	B B		0.29	2.2	30		20	30	2400 2	2610 4	6.9	2.5				70.2			6.5	
	:		2 2	2 62		0.29	2.2	100		20	30								70.0				
2002	Ajdukiewicz and Kliszczewicz		ζ.		Č	0.36	2.4	0	41.6	16	16						<u>*</u>	2400	4.84		30000		4.1
	<u>Z</u>		2 2		ن 2	0.36	2.3	100	41.6	16	16						2 23	2320	44.5		27400		0.10
		2 22 1	، ت ت		، ت ت	0.36	2.4	0 0	50.6	16	16						3 23 23	06.5	48.9		30900		9.9
		2 22	° ° ° °		، ت ت	0.36	2.2	9 0 ,	50.6	16	16						2 23	0.00	46.1 42.4		23200		4.2.
		S S	J J		° ° °	0.36	2.3	100	63.2	16 16	16						2 23	3 6	48.9		30900		9.9
		S S	J J ,		°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	0.36	2.2	0 0	63.2 35.6	16 16	16 16						2 2 2	2260	50.7		30900		9.6
		S 22	ე ე		ర ర	0.36	2.3	001	35.6 35.6	16 16	16 16						22 23	40	45.2		27500		2.5
		S 22	ა ა		° ° °	0.36 0.36	2.3	100	66.0 66.0	16 16	16 16						2 23	8 8	48.9		30900		3.8
		S ₂ S ₂	° ° °		° ° °	0.36	2.2	0 0	66.0	16 16	16 16						22 22	30	45.1		23300		35
		S 22	° ° °		° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0.36	2.4	100	72.3 72.3	16 16	16 16						22	80	54.4		36500 29800		1.0
2002	Gómez- Soberón [55]		C ₂		C ₂	0.47	2.5	0	38.4	20	20	.,	2590		6.0				39.0		29700		3.7
			S S		° ° °	0.47	2.5	15	38.4	20	20		2590		6.0				38.1		29100		3.7
		7 0 0	100		7 0 0	0.42	2.4	900	38.4	20	20	2410 2		8.5	0.9				35.8		26600		3.4
2004	Gonçalves	S ₂	ř		3	09'0	4.6	0		15	20		2670		0.5				43.5				ł
	et al. [55]	S2				0.60	4.1	100		15	20	2450		5.6					38.2				
		S 22				0.45	2.9	100		15 15	20	2450		5.6	0.5				61.7 52.8				
		S 22				0.35	2.6	100		15 15	20	2450	2670	5.6	0.5				74.4				
		' S '				0.45	3.2	25		15	20		2670		0.5				60.7				
2004	Poon et al.	S ₁				0.57	3.1	3 0		20	25		2620		1.3				48.3				
		ę, ę				0.57	3.1	20		20	25	2330 2	2620 6	6.3	1.3				44.9 7.44.7				
		ς, ς,				0.57	3.0	100		20	32				1.3				46.8				
		i vi vi				0.57	3.1	20		20	32		2620	6.3	1 T T				43.2				
		. v. o				0.57	2.9	100		20	32	2330							43.3				
		S. Y				0.57	2.8	20		20	20	2330 2	2620	6.3	1.3				43.0				

A. Gholampour et al./Construction and Building Materials xxx (2016) xxx-xxx

A. Gholampour et al./Construction and Building Materials xxx (2016) xxx-xxx

The continue of the continue			сеотеть ри	Geometric properties of specimens	imens		Concrete m	Concrete mix properties		Properties of	Properties of coarse aggregate	e						Physical properties of concrete	perties of	Mechanical properties of concrete	perties of con	rete	
March St. St			Compressive strength tests		Flexural strength tests	Splitting tensile strength tests	Effective water- to- cement ratio (w _{eff} C)	Aggregate- to-cement ratio (a/c)	RCA replacement ratio (RCA %)			Nominal maximum NA size (mm)							Density of hardened concrete SSD (\rho_{SSD}) (kg/m^3)	Compressive strength (f_c) (MPa)	Elastic modulus (E _c) (MPa)	Hex stre (f,) (MP	Flexural strength (Pr) (MPa)
	2007	Rahal [24]	s, s	5° 5°			0.65	3.1	0 100		19	25 25								21.8*	11400*		
			. S. S	ن ت			0.50	2.9	0 100		19	25								26.7*	11300*		
			ī vī v	י ט'י			0.48	2.8	0		19	25								28.9*	15700"		
			i S	5 C			0.43	2.6	0 0		19	25								31.1*	17800*		
			S, o	S 0			0.43	2.6	000		19	25								28.7*	14700*		
Manufaction 1			S. v.	ე ე			0.40	2.4	100		91	19								29.5	13.400*		
Column C	2007	Wang [67]	S2				0.54	3.1	0		32	25								26.8*			
Column C			S 2				0.49	3.1	9 00		32	25								26.9			
Control 1			S 2				0.46	2.7	0		32	25								34.3*			
4 Control 1			S 22				0.43	2.7	100		32	32								34.2			
Fig. 1. Company 1. Com			S 22				0.42	2.4	100		32	32								38.6"			
Marie Mari	0000	o included	. S ₂				0.39	2.4	100		32	32					è			38.4	22100		
Fig. 10 C.	2000	et al. [68]	5	5			0.70	Ī	0		Pr.	2					0.02			10.1	77 100		
No. 10.00 No.			ن ن	ت ت			0.67	3.9	100		30	01 01	2520 2510	m m	8 6	34				18.0*	23400		
March Color Colo			ال ا	ت			0.35	3.1	0		30	10					28.0			37.5*	33100		
March S. S. C.			ن ن	ບັ ບັ			0.35	2.1	0 <u>0</u>		e e	0 0	2520 2510	ri ri	s 6	34				36.4	28800		
March S. S. C.			Ū	ا ت ر			0.34	2.1	0		28.3	10					28.0			48.4	39900		
Marie S. C. C. C. C. C. C. C.			ت ت	<i>ງ</i> ບັ			0.34	2.2	8 6		8 R	30	25.20	m m	» o	39				44.4	32700		
8 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2008	[69] nH	. S ₂	ַ טֿ ט	E a	ن ت	0.47	3.3	0 %		32	22								31.2*	30296	4.6	
Note of the control			S 2	ت ت	z z	ت ت	0.38	32	R 05		32	7 7 7								31.0° 29.3°	28620	4 4 5 4	
Fig. Column Col			. S	י ט נ	் வீ வ	ا ت ر	036	3.1	0,5		32	22								28.4"	23378*	4.4 *4.c	
Mail Care	2008	Kou et al.	ر ت م	ت ت	zī.	ت ت	0.55	3.0 2.6	0 0		32 20	20								48.6	30300	4.7	
C C C C C C C C C C		[02]	Ü	Ü		ű	0.55	2.6	20		20	20								45.3	28650		
Color Colo				י ט נ		ນີ້ ປ [ີ] ເ	0.55	2.5	20.5		3 2 2	2 8 8								42.5	26400		
C C C C C C C C C C			ت ت	ت ت		ت ت	0.50	2.5	0 0		70 70 70	20 20								. 75 - 17 - 17	31100		
Colored Heat			ن ت	ن ت		ن ن	0.50	2.6	20		20	20								51.7	29570		
C C C C C C C C C C			ī J	ī		1 J	0.50	2.6	100		20	20								43.4	25670		
C C C C C C C C C C C C C C C C C C C			ت ت	ت ت		ບົ ບົ	0.45	2.8	0 20		20	20 20								66.8	32210 30370		
Color of All Col			، ت	ا ت		ا ت	0.45	2.7	50		20	20								56.8*	28540		
C, C			ت ت	ت ت		ت ت	0.40	2.9	0 0		20 20	20								72.3	33470		
Ci Ci<			ت ت	ت ت		ບັ ບັ	0.40	2.8	20		20 20	20 20								69.6"	31400		
Thingstate Ci Ci Ci Ci Ci Ci Ci C	0000	to see N	ن ن	ن ن	۵	ن ن	0.40	2.8	100		20	30								58.5	27850	5	
Ci Ci Ci Bi Ci Ci Ci Bi Ci	7000	71]	، ت	5 (، ۵	، ت	000	6.7	0 8		G :	04 1								030	31/22	9 9	
Ci Ci Ci Bi Ci Ci Bi Ci Ci Ci Bi Ci			، ت ت	، ت ت	5 55 1	، ت ت	0.50	2.9	20.50		9 23 1	20 2								38.0	305/4	3.7	
Ci Ci Ci Bi Ci Ci Bi Ci O 23			ن ن ن	ا ت ت	മ്മ്	ت ت	0.50	2.8	30 00		25	32								36.0	29223	3.5	
Zhou et al. S ₁ Chou et al. S ₁ Chou et al. S ₂ Chou et al. S ₃ Chou et al. S ₄ Chou et al. S ₅ Chou et al. S ₅ Chou et al. S ₄ Chou et al. S ₅ Chou et al. Chou et al.			ت ت	ت ت	B 22	ບົ ບົ	0.50	2.8	100		25	32								30.4 29.5	25885	3.2	
S ₁ S ₁ S ₂ S ₃ S ₄ S ₅	2008	Zhou et al.	S				0.58	3.2	0		32	32	2	070	0.8					44.6			
Si			S ₁				0.52	3.2	50		32	22								41.4			
S ₁ 0.40 3.2 100 3.2 2.2 2.80 4.4 0.8 3.0 3.2 2.2 3.80 2.97 4.4 0.8 3.0 3.2 2.2 3.80 2.97 4.4 0.8 4.0 3.2 3.2 3.8			į vi i				0.52	3.2	20 20		33.32	121								38.3			
S ₁ 047 3.2 100 3.2 28.80 4.4 40.3 Domingo- C ₂ C ₂ 041 2.6 0 20 20 2647 1.0 27.8 2360 42.3 Cabo et al. [73] C ₂ C ₂ C ₃ C ₄ 039 2.5 20 20 2338 2647 5.2 1.0 40.2 27.8 2350 47.4			ž Š				0.52	3.2	20 20		32 32	77								36.6 41.2			
C ₂ C ₂ C ₃ C ₄ C ₅	2009	Domingo-	C ₂	్ర			0.47	3.2	0 0		32 20	20					27.8		2360	40.3	33308		
C ₂ C ₄ C ₅ C ₇		Cabo et al. [73]																					
			, C	ζ,			0.39	2.5	20		20	20	2338 2			40.2	27.8		2350	47.4	32360		

Particular Par	Physical properties of concrete	Los Los tion Angeles Angeles abrasion abrasion ((%) of RCA of NA ((Mrcr) ((Mw))										
Office of a position		Water absorption of RCA (WA _{RCA})(%)			63	1.8	6.3 1.8	6.3	6.8	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		
Example of positioning parties of positioning parties of positioning parties of positioning states of the parties of survey problems and parties of positioning states of the parties of the parties of the parties of the parties of parties of the parties		Bulk density of RCA (kg/m³)									2870	2400 2870 2400 2870 2400 2870 2400 2870 2630 2870 2630 2870
Easting Pexuma Splitting Easting Eas	ies of coarse aggregate	Nominal maximum RCA size (mm)										20 20 20 20 20 20 20 20 20 20 20 20 20 20
Elastic Pleanal Splitting Concrete mix modulus Strength Feeting Splitting Splitting Splitting Strength Feeting Splitting Strength Feeting Splitting Strength Strengt		RCA replacement ratio (RCA %)	0	10 20 30 40 40 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100	100	0 100	100 50	50 50 50 50 50 50 50 50 50	0	20 40 60 80 100 20 40
Parties of specimens Parties of specimens	Concrete mix properties											3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Perties of specific perties of specific modellies ressis	•	Splitting tensile strength tests	D	5								0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Geometric properties of specimens									ប្រជួលប្រជួលប្រជួ		50000000000000000000000000000000000000
	Year of Source publication		2009 Padmini et al. [74]	2009 Yang et al.	2009 Ye [76]				2010 Corinaldesi	<u>i</u>	2010 Kumutha and Vijai	<u>s</u>

A. Gholampour et al./Construction and Building Materials xxx (2016) xxx-xxx

Year of publication		2010		2010		2011		2011	2011	2011	2011	2012		2012	2012
Source		Radonjanin	et dt. [78]	Zega and Di Maio [79]		Belén et al.	08	Fathifazl et al. [81]	González- Fonteboa	et di. [02] Rao et al.	Somna et al.	Abd Elhakam	et al. 1855	Cui et al. [86]	Hoffmann et al. [26]
Geometric pr	Compressive strength tests	Cı	ن ن		જ્જું જું જું	જ્જું હ	ប្រជួលប្រជួ	೮ ೮೮೮೮.	2 2	C C C C C C C C	ن 2 2 5	ប៊ូប៊ូប៊ូប៊ូ %	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		² ²
Geometric properties of specimens	Elastic modulus tests	C,	ن ن	7 7	2 2 2 2	0 0 0 j	<u> </u>		2	00000000	ి చి చి				° ° ° °
ecimens	Flexural strength tests	B	<u> </u>	ī											B B
	Splitting tensile strength tests	ت	ن ت	7	2 2 2 2	5 5 5 5	ប្រក្រក្ក		C ₂	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	ū	ប្រជួលប្រជួល	7	
Concrete	Effective water- to- cement ratio (Weg(C)	0.51	0.57	0.65	0.65 0.65 0.65 0.42	0.42 0.42 0.42	0.66 0.68 0.50 0.51 0.53	0.45 0.45 0.45 0.45	0.65	0.65 0.65 0.65 0.50 0.50 0.50 0.50	0.43 0.43 0.45	0.45 0.55 0.65 0.65 0.65	0.60 0.60 0.60 0.60 0.45 0.45 0.45	0.49 0.37 0.36 0.36	0.53
Concrete mix properties	Aggregate- to-cement ratio (a/c)	3.6	3.6	33	3.2 3.1 2.7	2.7 2.5 3.4	3.3 2.8 2.6 2.5 2.3 2.1	1.9 2.3 2.1 3.1	3.4	3.3 2.6 2.5 2.5 2.1 3.1	3.0 2.9 2.8 2.3	2.3 2.9 3.5 3.5 4.6	46 45 45 44 26 26 25 25 25	3.1 3.0 2.9 2.9	6.5
	RCA replacement ratio (RCA %)	0	50	0	25 50 75 0	25 50 75 0	20 50 0 0 20 50 100	0 64 100 0 64	0 0	20 50 100 0 20 50 100	25 50 100 0	100 0 100 0 0	25 50 75 100 0 25 50 75	0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0	0 100
Properties (Parent concrete strength (MPa)													26.3 42.7 42.7 65.3	
Properties of coarse aggregate	Nominal maximum RCA size (mm)	32	32	19	61 61 61 61	19 19 19	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	91 19 19 19	16	16 16 16 16 16 16 20	20 20 19	19 19 19 19	119 119 119 119	25 25 25 25 25	32
ate	Nominal maximum NA size (mm)	20	20	50	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2	50 20	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 20 25	25 25 25 25 25 20	20 20 20 20 20 20 20 19	16 16 16 16	15
	Bulk density of RCA (kg/m³)		2489		2440 2440 2440	2440 2440 2440	2400 2400 2400 2400 2400 2400	2420 2420 2420 2500 2500	7200	2400 2400 2400 2400 2400 2400	2661 2602 2510	2490 2490 2490		2490 2570 2440 2470	2263
	Bulk density of NA (kg/m³)	2671	2671	2720	2720 2720 2720 2720	2720 2720 2720 2730	2730 2730 2730 2730 2730	2740 2740 2740	2720	2720 2720 2720 2720 2720 2620	2620 2620 2730	2730		2710	2650
	Water absorption of RCA (WA _{RCA}) (%)		2.4	i	8 8 8 9	5 8 8 8 8 8 9	5.50 5.50 5.50 5.50 5.50 5.50	ሊ ታ	5.5	5.0 5.0 5.0 5.0 5.0	1.9 2.6 3.9	8 8 8 8 8 8		2.9 5.6 5.3	6.0
	Water absorption of NA (WA _{MA}) (%)	0.3	0.3	0.2	0.2 0.2 0.2	0.2 0.2 0.2 2.5	2.5 2.5 2.5 2.5 2.5 2.5	6.9 6.0 6.0	2.0	2.0 2.0 2.0 2.0 2.0 1.1	1.1 1.1 0.45	0.45		0.8	0.2
	Los Angeles abrasion of RCA (LA _{RCA})		34 34	;	33.6 33.6 33.6	33.6 33.6 33.6				*** ***	38.8	37 37 37			
	Los Dageles habrasion cof NA Page (LAya)	29.2	29.2	25.0	25.0 25.0 25.0 25.0	25.0 25.0 25.0			23.0	23.0 23.0 23.0 23.0 23.0 23.0	21.6 2 21.6 2 2 23	23			
Physical properties of concrete	Density of hardened concrete AD (ρ_{ad}) (kg/m ³)									2146	2329 2302 2175				
	Density of chardened s concrete (SSD (ρ_{SSD}) (kg/m³)	7	7 7			2340	2330 22270 22270 2360 2330 2210			2320 2300 2270 2360 2360 2310 2310	4 4 4 4	V (1) (1) (1) (1) (1)	(4 (4 (4 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5	40444	., .,
Mechanical properties of concrete	Compressive strength (f_c) (MPa)	43.4	45.2	10.2*	18.5* 18.0* 16.5*	33.0° 34.5 34.0° 31.9	31.7 32.4 30.1 44.8 43.7 40.5	35.2* 41.4* 34.1	11.9	31.7 32.4 30.1 44.8 43.7 37.5 51.8	47.0 46.0 42.5 44.4	41.0 33.7 33.3 30.4 24.8	26.7 21.5* 20.0* 39.5 38.3 37.0 35.0*	44.3 37.6 42.6 44.7	39.3 33.2*
erties of conc	Elastic modulus (E _c) (MPa)	35550	32250	25000	24900 23000 20500* 33500	31500 31000 30000* 29569	28190 26352 24261 33875 32594 28817 23994		29569	28190 26352 24261 33875 32594 28817 23994 31220	23570 21540 20350*				26500
ete	Flexural strength (f,) (MPa)	5.4	5.7	!						5.2	4.2 5.0				4.4
	Splitting tensile strength (f_{st}) (MPa)	2.7	3.2	2.1	1.9	3.1 2.9° 2.9	2.4 2.5 2.6 2.8 3.1 2.9		2.9	224 225 228 229 27	2.3	2.7	2.2 1.8 1.2 1.2 2.7 2.5 2.5		

A. Gholampour et al./Construction and Building Materials xxx (2016) xxx-xxx

Year of Source publication		2012 Li and	[87] 2012 Limba		2012 Perei	(27) (20) (20) (20) (20) (20) (20) (20) (20	et al. 2013 Butle	[16]
		Li and Xiao					ت	
Geometric properties of specimens	Compressive strength tests	ប្រាប្រភ	ଦେ ଦେ ପ		ប្រាប្រាប្រ	<i>୪୪୪୪୪୪୪୪୪୪୪୪୪</i> ୪୪ <i>୪</i>	ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	ប្រប្រ
operties of sp.	Elastic modulus tests	បី បី បី បី ប <u>ី</u>	ប្រជ្រ	00000000000000000	²		0 0 0 0 0 0 0 0 0 0 0 0 0 0	ប្រហ្វ
ecimens	Hexural strength tests	R R R					සි	<u> </u>
	Splitting tensile strength tests				$^{\circ}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ū	ប្រប្រ
Concrete	Effective water- to- cement ratio (w _{c,ff} (c)	0.54 0.46 0.44 0.45	0.47 0.49 0.54 0.66	0.66 0.61 0.58 0.55 0.55 0.50 0.50 0.47 0.44 0.48 0.48	0.60 0.52 0.52 0.47 0.47	0.59 0.57 0.54 0.45 0.45 0.67 0.67 0.67 0.63 0.53 0.53	0.54 0.54 0.54 0.45 0.45 0.40 0.40 0.40	0.48 0.39 0.29
Concrete mix properties	Aggregate- to-cement ratio (a/c)	6.4 5.9 5.8 6.4	2.9 2.8 2.7 4.6	4 4 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.8 3.6 3.2 3.0 2.7	2 5 8 8 9 2 6 7 7 9 8 6 7 8 8 9 2 6 7 6 7 9 8 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	3.5 2.6 2.3
	RCA replacement ratio (RCA %)	90 60 60 25 0	30 50 100	30 00 00 00 00 00 00 00 00 00 00 00 00 0	0 0 0 0 0	10 10 10 10 10 10 10 10 10 10 10 10 10	20 50 0 0 0 20 50 100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00 0 0
Properties	Parent concrete strength (MPa)				37.3	37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Properties of coarse aggregate	Nominal maximum RCA size (mm)	32 32 32 32 32	32 32 30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32 32 33 32 12	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 0 0 0
gate	Nominal maximum NA size (mm)	15 15 15 32 25	32 32 32 22	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 25 25 25 20	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 20 20
	Bulk density of RCA (kg/m³)	2609 2518 2584 2594		2340 2340 2340 2340 2340 2340 2340 2340	2264 2276 2273	2010 2010 2010 2010 2010 2010 2010 2010	2451 2451 2451 2451 2451 2451 2451 2451	2360 2280 2220
	Bulk density of NA (kg/m³)	2650 2650 2650 2650	2510	2510 2510 2510 2510 2510 2510 2510 2510	2389 2387 2720	2720 2720 2720 2720 2720 2720 2720 2720	2581 2581 2581 2581 2581 2581 2581 2581	2670
	Water absorption of RCA (WA _{RCA}) (%)	1.5 2.7 1.6 1.6		טעט עעט עעט עעט מעט עעט מעט מעט מעט אייט אייט אייט אייט אייט אייט אייט אי	2.0	10.9 10.9 10.9 10.9 10.9 10.9 10.9	77 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.7 6.2 7.8
	Water absorption of NA (WA _{WA}) (%)	0.2 0.2 0.2 0.2	1.4	<u> </u>	970	006 006 006 006 006 006 006 006 006	22 222 222 2	1.5
	Los Angeles abrasion of RCA (LA _{RCA})						6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	15.1 22.1 25
	Los Angeles abrasion of NA (LA _{NA})					24.8	24.8 24.8 24.8 24.8 24.8 24.8 24.8 11.9	11.9
Physical properties of concrete	Density of hardened concrete AD (ρ_{od}) (kg/m^3)				2394	2377 2249 2249 2249 2245 2245 2430 2440 2269 2269 2247 22417	2388	2316 2256 2270 2407
erties of	Density of hardened concrete SSD (\rho_{SSD}) (kg/m ³)							
Mechanical properties of concrete	Compressive strength (f_c) (MPa)	45.4* 54.3 54.4 53.4 34.8*	31.9* 30.6 29.7 21.0*	20.0° 19.0° 21.0° 22.40° 21.0° 21.0° 21.0° 25.0° 25.0° 25.0° 25.0° 25.0° 33.0° 33.0° 34.0° 34.0° 36.6°	33.6 41.8 41.1 48.6 48.1 39.5	40.0 38.6 33.6 53.3 53.7 51.0 47.8 65.2 65.2 65.4 65.3 49.8	50.5 48.1 45.2 59.7 64.7 78.7* 78.7* 63.8 62.8* 38.9	38.6 38.1 39.3* 61.9
perties of con	Elastic modulus (E _c) (MPa)	32433* 30667 33333 34800 26568	26552 26333 25650 19500*	17500° 12500° 18800° 18800° 16500° 23500° 17000° 17000° 17000° 17000° 17000° 17000° 17000° 17000° 17000° 17000° 17000° 17000°	34400	33700 32300 23900 41300 40600 35000 35000 43900 41900 41900 41900 38480	37550 36280 31280 41630 40100 37000 37000 45700* 41630 37440	29920 27370 27770 35380
rete	Flexural strength (f _r) (MPa)	4.4* 5.9 6.4 6.0					ά ά	522
	Splitting tensile strength (f_{st}) (MPa)				2.9	2.9 2.7 2.6 2.2 3.7 3.3 3.3 4.5 4.5 3.7 3.7 3.4	3.2	3.5 3.3 4.4

A. Gholampour et al./Construction and Building Materials xxx (2016) xxx-xxx

Table A1 (continued) Year of Source publication	continued) Source	Geometric pro	Geometric properties of specimens	imens		Concrete m	Concrete mix properties		Properties of	Properties of coarse aggregate	ate							Physical properties of concrete	rties of	Mechanical properties of concrete	operties of cor	crete	
		Compressive strength tests	Elastic modulus tests	Flexural strength tests	Splitting tensile strength tests	Effective water- to- cement ratio (w _{eff} (c)	Aggregate- to-cement ratio (a/c)	RCA replacement ratio (RCA %)	Parent concrete strength (MPa)	Nominal maximum RCA size (mm)	Nominal maximum NA size (mm)	Bulk density of RCA (kg/m³)	Bulk density of NA (kg/m³)	Water absorption of RCA (WA _{RCA}) (%)	Water absorption of of NA (WAM) (%)	Los Angeles abrasion of RCA (LA _{KCA})	Los Angeles abrasion of NA (LA _{NA})	Density of hardened concrete AD $(\rho_{\alpha d})$ (kg/m^3)	Density of hardened concrete SSD (\rho_{SSD}) (kg/m^3)	Compressive strength (f_c) (MPa)	Elastic modulus (E _c) (MPa)	Flexural strength (f,) (MPa)	igth
2013	Chen et al.	S ₂				0.52	3.0	100		25	20	2490		4.9						37.6			
	[26]	<u> የ</u> የ የ የ				0.52 0.52 0.52 0.52	3.0 2.9 3.1	0 100		25 25 25 25	20 20 32	2570 2440 2470	27.10	2.9 5.6 5.3	0.83					43.3 42.6 44.7 44.3			
2013	Hou and	, <u>v</u>				0.58	3.2	0		32	16		2970		0.8					44.6			
	0	ଜିବୁ ବିବୁ ବିବୁ ବିବୁ				0.52 0.58 0.58 0.58 0.58	3.2 3.2 3.2 3.2 3.2 3.2	53 100 54 100 53		32 32 32 32 32 32 32 32 32 32 32 32 32 3	16 16 25 25 25 25 25	2720 2720 2650 2650 2880 2880	2970 2970 2970	4.8 8.4.4 4.6.6 4.4.4 4.4.4	0.8					41.4 40.7 38.3 36.6 41.2 40.3			
2013	Ismail and Ramli [94]	Š				0.41	1.7	15		20	32	2330	2600	4.4	0.7			2378		50.8			
, see	Manyi a	ଉଦ୍ଧ ଦ ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ	e	α				3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S of the second	***********************************	2	2330 2330 2331 2337 2337 2337 2337 2339 2390 2390 2390 2390 2390 2390 2390	2600 2600 2600 2600 2600 2600 2600 2600	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	007 007 007 007 007 007 007 007 007 007			2266 2267 2267 2267 2267 227 227 228 228 228 228 228 228 228 22	N352	4446 4446 4446 4446 4446 4446 4446 444	33,4400	3	
	[56]	ប ប ប	ប៊ ប៊ ប៊	<u> </u>		0.48 0.48 0.48	5.0 4.9 5.0	27 64 37	36.0 36.0 36.0	25 25 25 25 25 25 25 25 25 25 25 25 25 2	20 20 20	2250 2250 2250	2570 2570 2570	7.0 7.0 7.0	222				2320 2200 2270	51.4 45.6* 44.7	30300 24900* 26900	5.8 4.9*	
2013	Matias et al.	ن ن		B,		0.50	5.0	37 100	36.0	25 25	32	2250 2452	2570	7.0	1.2			2267	2300	41.9 51.0	30600	5.7	
		<u> </u>				0.50 0.50 0.50 0.50 0.50 0.50 0.50	4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 100 0 50 50 50 50 25 25 25		25 25 25 25 25 25 25 25 25	32 32 32 32 32 32 25 25	2452 2452 2452 2452 2452 2452 2452 2452	2652 2652 2652 2652 2652 2652 2652 2652	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 8 8 8 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0 8 0			2237 2239 2350 2300 2284 2296 2332 2340 2308		49.0 48.0 52.0 51.0 51.0 52.0 50.0			

Marie 1964	The control of the co		Source	Geometric pro	Geometric properties of specimens	cimens		Concrete m	Concrete mix properties		Properties of	Properties of coarse aggregate	ate						Physical properties of concrete	operties of	Mechanical properties of concrete	perties of con	rete	
				Compressive strength tests			Splitting tensile strength tests	Effective water- to- cement ratio ($w_{eff}(c)$)	Aggregate- to-cement ratio (q/c)	RCA replacement ratio (RCA %)	Parent concrete strength (MPa)	Nominal maximum RCA size (mm)	Nominal maximum NA size (mm)						Density of hardened concrete AD (ρ_{ad}) (kg/m ³)		Compressive strength (f,c) (MPa)	Elastic modulus (E _c) (MPa)	Flexural strength (f,) (MPa)	Splitting tensile strength (f.st) (MPa)
		0, 2	Sheen et al.	C ₁	C,	B ₁		0.38	2.0	0		25	38	. IN	2630		1.2				54.1	34500	7.7	
		-	Ī	ن ن	ن ن	B B		0.28	2.0	100		25	8 8	2260	, ,	7.5					38.3*	26300	6.5	
				ا ت ا	ֿ טֿ ט	. E. a		0.23	2.0	100		25	38			7.5	ç				33.2*	23500"	5.5	
				ت ت	ت ت	l B		0.34	2.4	100		25	8 8			7.5	7				31.3*	22900	5.7	
				ن ت	ن ت	E G		0.34	2.4	100		25	38	2260		7.5					28.4*	21600	5.3	
				ت ت	ت ت	<u>.</u> 20		0.58	3.1	0 0		25	25			C:/	1.2				28.8	24800	5.9	
				C,	Ű,	E s		0.43	3.1	100		25	25	2260	, - 1	7.5					26.5	19300*	5.5	
				ت ت	ت ت			0.35	3.1	100		52 52	25	2260	- 1	7.5					21.6*	17200	5.1	
				, C	ū	B		0.67	3.5	0		25	25				1.2				23.6	22800	5.2	
				ن ت	ن ت	<u>п</u>		0.49	3.5	100		25	25	2260	1	7.5					21.6	16500"	5.3	
				ت ت	ت ت	- <u>-</u>		0.40	3.5	100		25	25			7.5					18.8*	15300"	4.5	
				, ŗ	ت ت	B		0.80	4.2	0		25	25				1.2				17.3*	18900	4.4	
				ن ت	ن ت	<u>т</u> п		0.59	4.2	100		25	25	2260	1	7.5					16.1	15100"	5.2*	
1 1 1 1 1 1 1 1 1 1				ت ت	ت ت	<u>.</u>		0.48	4 4 2 4 2 4 2	100		52 52	25	2260		7.5					13.9*	14100"	3.9	
	Column C	-	Thomas et al.	C ī	ان آ	ī	²	09'0	3.6	0		20	20			!	1.8	31.0			38.0	34500	ŀ	2.8
		_	[14]	Ċ	ď		٠	0.50	5	02		00	۶			e 10		31.0			6	32500		9 (
	Column C			⁷ ⁷	° 0		7 °C	0.57	3.3	20		20	20			5.3		31.0			44.0	31000		3.1
Column C	Column C			C ₂	، 2		ς,	0.54	3.0	100		20	20			5.3		31.0			45.0	30200		2.4
Column	Column C			ک د	ی د		ی د	0.45	2.5	02		0 02	02 02			.3		31.0			50.5	3,500		3.5
100 100	C C C C C C C C C C			° 2	7 5		ی ت	0.44	2.5	20		20	20			5.3		31.0			45.0	33000		2.7
C	Column C			C ₂	C ₂		Č	0.42	2.3	100		20	20			5.3		,			56.0	31500		3.7
C C C C C C C C C C	Column C			°2	ე ი		ე ი	0.67	3.6	0		20	19			,		31.0			37.0	35000		2.7
C C	C			ک ک	ی د		ۍ د	0.68	3.0	20		02 02	6 6			5.3		31.0			33.5	30800		2.5
C C	C C			° ° °	J J		_ت ت	0.70	2.3	100		2 22	19			5.3		0.10			32.0	27000		2.3
C C	C C			C ₂	C ₂		C ₂	0.53	2.7	0		20	19					31.0			45.0	35000		3.2
C C	C C C C C C C C C C			ر 2	J (° °	0.53	2.5	50		30 50	19			5.3		31.0			0.44	34000		2.8
C C	C C			2 2	S C		ე ი	0.53	1.8	100		30 20	61			5.5		31.0			41.0	30500		2.2
C C	C C			° ° °	ی ہ		ال ا	0.51	3.1	0		20	20					31.0			46.5	36500		2.9
C C	C C			C ₂	C ₂		C ₂	0.52	3.2	20		20	20			5.3		31.0			44.0	36000		2.8
1	C C			C ₂	ა ი		ა ი	0.54	3.0	50		30	50			5.3		31.0			41.0	33500		2.7
C C	C C			ک د	ک ت		ک ت	0.38	2.7	0 0		20 20	20 00			5.5		31.0			58.0	37500		3.4
C C	G G G OA4 27 90 2220 240 63 18 42 310 960 346 G G G G G G G 10 20 2200 61 12 346 291 416 386 G G G G G G G 10 20 120 120 61 12 346 291 416 291 416 291 416 291 416 291 416 291 416 291 416 291 416 291 416 291 416 391 416 391 416 391 416 391 416 391 416 391 416 391 416 391 416 391 416 391 416 391 416 391 416 391 416 391 416 416 416 416 416 416			⁷ 2	, C		" _"	0.42	2.9	20		20	20			5.3		31.0			53.5	36000		3.1
G G	C C			° 5	ా చ		ر ان	4. 9	2.7	20		20	20			5.3		31.0			54.0	34000		3.9
C C	6.4 2.5 <td>-</td> <td>F to coll.</td> <td>ر د</td> <td>5</td> <td></td> <td>5"</td> <td>0.49</td> <td>5.5</td> <td>100</td> <td></td> <td>07 92</td> <td>07 01</td> <td></td> <td></td> <td>5.3</td> <td></td> <td></td> <td></td> <td></td> <td>40.0</td> <td>78000</td> <td></td> <td>4.4</td>	-	F to coll.	ر د	5		5"	0.49	5.5	100		07 92	07 01			5.3					40.0	78000		4.4
C ₂ C ₃ <th< td=""><td>G, G, G</td><td>ئت د</td><td>98]</td><td>5</td><td></td><td></td><td></td><td>74.0</td><td>0.2</td><td>8</td><td></td><td>07</td><td>6</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td></th<>	G, G	ئت د	98]	5				74.0	0.2	8		07	6			-					2			
0.63 2.6 50 19 2330 250 6.1 12 34.6 29.1 0.64 2.6 50 20 19 2320 250 6.1 12 34.6 29.1 0.54 2.6 50 20 19 2320 250 5.8 12 32.2 29.1 0.67 2.3 100 20 19 2320 250 19 2320 250 20<	0.62 2.6 6.0 19 2.59 2.59 6.1 1 346 29.1 25.5 0.44 2.6 9.0 9.0 19 2.29 5.8 1.2 34.6 29.1 35.5 0.52 2.3 100 20 19 2.20 5.8 1.2 34.6 29.1 44.6 0.62 2.3 100 20 19 2.20 5.8 1.2 32.2 39.1 36.7 0.41 2.8 2.0 10 2.0 1.9 2.20 5.8 1.2 32.2 39.1 36.7 0.41 2.8 2.0 2.0 2.0 2.9 2.9 3.9 1.2 30.8 39.1 46.1 0.42 2.8 2.0 2.0 2.0 2.2 2.9 3.9 1.2 30.8 39.1 46.1 0.5 2.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <			C ₂				0.51	2.3	100		20	19			6.1					31.4			
0.44 2.6 9.6 19 2320 5.8 12 25.1 29.1 0.51 2.3 100 20 19 2320 5.8 12 22.2 29.1 0.62 2.3 100 20 19 2320 5.8 22.2 22.2 0.41 2.8 2.0 10 2.2 2.3 1.2 30.8 2.9.1 0.42 2.6 5.0 2.0 2.3 2.3 1.2 30.8 2.9.1 0.45 2.8 2.0 2.0 2.3 2.3 1.2 30.8 2.9.1 0.50 2.8 2.0 2.0 2.3 2.3 1.2 30.8 2.9.1 0.50 2.8 2.0 2.0 2.3 2.30 2.3 3.9 1.2 3.9.1 0.54 2.8 2.0 2.0 2.3 2.30 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 <	644 26 69 69 19 2320 289 19 2320 68 19 446 062 23 10 20 19 2320 88 22 29.1 446 062 23 10 20 19 2320 39 12 20 20 044 28 20 20 20 280 280 39 12 308 29.1 461 050 23 20 20 20 280 280 29.1 461 461 050 23 20 20 280 280 29.1 461 4			ک ک				0.52	2.6	2001		02 02	6 6			5.1					35.5			
0.51 2.3 100 20 19 2320 5.8 32.2 0.41 2.8 2.9 19 2360 5.9 19 2360 3.9 12 30.8 29.1 0.41 2.8 2.0 2.0 2.9 2.96 2.90 3.9 1.2 30.8 29.1 0.42 2.8 2.0 2.0 2.0 2.96 2.90 3.9 1.2 30.8 29.1 0.52 2.8 2.0 2.0 2.0 2.96 2.90 3.9 1.2 30.8 29.1 0.52 2.8 2.0 2.0 2.0 2.0 2.9 3.9 1.2 30.8 29.1 0.54 2.3 1.0 2.0 2.0 2.9 2.9 3.9 1.2 30.8 29.1 0.54 2.3 1.0 2.0 2.0 2.9 2.9 4.5 1.2 30.8 29.1 0.44 2.5	6.51 2.3 100 20 19 2220 5.8 22.2 5.8 22.2 5.8 2.9 5.8 2.2 2.9 5.8 2.2 2.9 2.9 2.3 1.2 2.0 2.9 2.3 1.2 3.0 2.9 1.2 2.3 1.2 3.0 2.9 1.2 2.3 1.2 3.0 2.9 4.5 1.2 3.0 2.9 4.5 1.2 3.0 2.9 4.5 4.5 1.2 3.0 4.5 </td <td></td> <td></td> <td>° 2°</td> <td></td> <td></td> <td></td> <td>0.44</td> <td>2.6</td> <td>20</td> <td></td> <td>20</td> <td>19</td> <td></td> <td></td> <td>5.8</td> <td></td> <td></td> <td></td> <td></td> <td>44.6</td> <td></td> <td></td> <td></td>			° 2°				0.44	2.6	20		20	19			5.8					44.6			
0.62 2.3 100 20 19 2320 5.8 23.2 0.44 2.8 2.0 2.0 19 2360 250 39 12 30.8 29.1 0.45 2.8 2.0 2.0 2.0 2.0 2.0 2.0 3.9 1.2 30.8 29.1 0.45 2.8 2.9 2.0 2.0 2.0 2.0 3.9 1.2 30.8 29.1 0.54 2.8 2.0 2.0 2.0 2.0 2.0 3.9 1.2 30.8 29.1 0.54 2.8 2.0 2.0 2.0 2.0 2.0 2.0 3.9 1.2 30.8 29.1 0.44 2.8 2.0<	0462 2.3 100 19 2.320 5.8 2.2 2.2 2.5 </td <td></td> <td></td> <td>C₂</td> <td></td> <td></td> <td></td> <td>0.51</td> <td>2.3</td> <td>100</td> <td></td> <td>20</td> <td>19</td> <td>2320</td> <td>w 1</td> <td>5.8</td> <td>32.2</td> <td></td> <td></td> <td></td> <td>36.7</td> <td></td> <td></td> <td></td>			C ₂				0.51	2.3	100		20	19	2320	w 1	5.8	32.2				36.7			
0.42 2.6 5.0 20 236	642 26 50 20 250			ن ت				0.62	2.3	20 0		0 20	6 6			3.8					29.5			
0.45 2.3 100 236 236 3.9 3.9 3.08 3.08 0.52 2.6 2.6 2.0 20 2.9 2.90 3.9 1.2 3.08 2.91 0.54 2.6 5.0 2.0 2.0 2.36 2.39 1.2 3.08 2.91 0.43 2.8 2.0 2.0 2.0 2.39 4.5 1.2 2.85 2.91 0.44 2.8 2.0 2.0 2.0 2.39 4.5 1.2 2.85 2.91 0.50 2.0 2.0 2.0 2.39 2.30 4.5 1.2 2.85 2.91 0.40 2.3 2.0 2.0 2.0 2.0 2.0 4.5 1.2 2.85 2.91 0.50 2.0 2.0 2.0 2.3 2.30 4.5 1.2 2.85 2.91 0.50 2.0 2.0 2.3 2.30 4.5 1.2	6.56 2.3 100 236 236 3.9 3.9 3.9 4.9 <td></td> <td></td> <td>ე ე</td> <td></td> <td></td> <td></td> <td>0.42</td> <td>2.6</td> <td>20 22</td> <td></td> <td>20</td> <td>20</td> <td></td> <td></td> <td>3.0</td> <td></td> <td></td> <td></td> <td></td> <td>45.1</td> <td></td> <td></td> <td></td>			ე ე				0.42	2.6	20 22		20	20			3.0					45.1			
0.50 2.8 2.0 2.0 2.360 2.96 3.9 1.2 30.8 2.9.1 0.54 2.5 5.6 5.0 2.0 2.360 2.90 3.9 1.2 30.8 2.9.1 0.42 2.8 2.0 2.0 2.0 2.36 2.39 1.2 30.8 2.9.1 0.42 2.8 2.0 2.0 2.0 2.350 2.39 4.5 1.2 2.85 2.9.1 0.40 2.3 1.0 2.0 2.0 2.350 4.5 1.2 2.85 2.9.1 0.51 2.8 2.0 2.0 2.0 2.0 2.350 4.5 1.2 2.85 2.9.1 0.52 2.6 5.0 2.0 2.0 2.350 4.5 1.2 2.85 2.9.1 0.52 2.6 5.0 2.0 2.0 2.350 4.5 1.2 2.85 2.9.1 0.4 2.8 2.0 2.0	0.50 2.8 2.0 2.0 2.96 3.9 1 3.0 2.0 2.96 3.9 1 3.0 2.0 3.9			. C2				0.45	2.3	100		20	20			3.9					42.9			
0.42 2.5 3.0 2.0 2.00 4.5 1.2 2.88.5 2.91 0.40 2.3 2.0 2.0 2.0 2.0 2.0 2.0 4.5 1.2 2.88.5 2.91 0.40 2.3 2.0 2.0 2.0 2.0 2.0 4.5 1.2 2.88.5 2.91 0.50 2.0 2.0 2.0 2.0 2.0 2.0 4.5 1.2 2.88.5 2.91 0.50 2.0 2.0 2.0 2.0 2.0 2.0 4.5 1.2 2.88.5 2.91 0.40 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.42 2.30 2.00 <th< td=""><td></td><td></td><td>ζ,</td><td></td><td></td><td></td><td>0.50</td><td>2.8</td><td>20</td><td></td><td>20</td><td>20</td><td></td><td></td><td>3.9</td><td></td><td></td><td></td><td></td><td>39.3</td><td></td><td></td><td></td></th<>			ζ,				0.50	2.8	20		20	20			3.9					39.3			
0.42 2.8 2.0 20 2350 2350 45 12 28.5 29.1 0.43 2.6 50 20 20 2350 45 12 28.5 29.1 0.44 2.3 100 20 20 2350 2360 45 12 28.5 29.1 0.51 2.8 2.0 20 20 2350 2360 45 12 28.5 29.1 0.52 2.3 100 20 20 2350 45 12 28.5 29.1 0.42 2.8 50 20 20 2350 45 12 28.5 29.1 0.42 2.8 20 20 20 2350 45 12 28.5 29.1 0.42 2.8 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	0.42 2.8 2.0 <td></td> <td></td> <td>2 2</td> <td></td> <td></td> <td></td> <td>0.54</td> <td>2.3</td> <td>100</td> <td></td> <td>2 02</td> <td>02 02</td> <td></td> <td></td> <td>5.5</td> <td></td> <td></td> <td></td> <td></td> <td>37.7</td> <td></td> <td></td> <td></td>			2 2				0.54	2.3	100		2 02	02 02			5.5					37.7			
0.43 2.6 5.0 20 2350 2590 4.5 1.2 28.5 29.1 0.40 2.3 100 20 2350 2360 4.5 1.2 28.5 29.1 0.51 2.8 2.0 20 2350 2360 4.5 1.2 28.5 29.1 0.52 2.6 2.0 2.0 2350 2360 4.5 1.2 28.5 29.1 0.42 2.8 2.0 2.0 2.0 2.0 2.0 4.5 1.2 2.85 2.91 0.42 2.8 2.0 2.0 2.0 2.0 2.0 4.7 1.2 2.85 2.91 0.42 2.6 5.0 2.0 2.0 2.0 2.0 4.7 1.2 2.81 0.43 2.6 5.0 2.0 2.0 2.350 2.360 4.7 1.2 3.01 2.91 0.43 2.6 2.0 2.0 2.350	043 25 50 20 2350 2590 45 12 28.5 29.1 41.0 040 28 28 28 29 45 12 28.5 29.1 41.0 051 28 20 20 20 2360 2590 45 12 28.5 29.1 42.7 052 2.3 100 20 20 2590 45 12 28.5 29.1 42.7 042 2.8 20 20 20 2390 47 12 28.5 29.1 42.7 042 2.8 20 20 20 2390 47 12 30.1 29.1 45.4 042 2.8 20 20 20 2390 47 12 30.1 29.1 45.4 043 2.8 2.0 2.0 2.3 2.390 4.7 12 30.1 29.1 41.3 0.2 2.8 </td <td></td> <td></td> <td>⁷ 2</td> <td></td> <td></td> <td></td> <td>0.42</td> <td>2.8</td> <td>20</td> <td></td> <td>70</td> <td>50</td> <td></td> <td></td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td>48.1</td> <td></td> <td></td> <td></td>			⁷ 2				0.42	2.8	20		70	50			4.5					48.1			
0.40 2.3 100 20 2359 4.5 28.5 29.1 28.5 29.1 2 29.1 29.1	0.40 2.3 100 20 2350 45 28.5 29.1 28.7 28.7 0.51 2.6 5.0 2.0 2.0 2.3 2.3 1.2 2.85 2.9.1 42.7 0.52 2.6 5.0 2.0 2.3 2.3 4.5 1.2 2.85 2.9.1 4.7 0.42 2.8 5.0 2.0 2.3 2.30 4.5 1.2 2.85 2.9.1 4.7 0.42 2.6 5.0 2.0 2.3 2.30 4.7 1.2 2.85 2.9.1 4.7 0.43 2.3 1.0 2.0 2.3 2.30 2.3 2.3 2.3 3.1 4.85 0.43 2.3 1.0 2.0 2.3 2.30 4.7 1.2 3.01 2.9.1 4.54 0.43 2.3 1.0 2.0 2.3 2.30 4.7 1.2 3.01 2.9.1 4.54 0.5 <td></td> <td></td> <td>C₂</td> <td></td> <td></td> <td></td> <td>0.43</td> <td>2.6</td> <td>20</td> <td></td> <td>20</td> <td>20</td> <td></td> <td></td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td>41.0</td> <td></td> <td></td> <td></td>			C ₂				0.43	2.6	20		20	20			4.5					41.0			
652 26 50 20 2350 2350 45 12 28.5 29.1 650 23 100 20 20 2350 45 12 28.5 29.1 0.42 2.8 20 20 2350 2350 47 12 30.1 29.1 0.42 2.6 50 20 2350 2350 47 12 30.1 29.1 0.43 2.3 100 20 20 2350 47 12 30.1 29.1 0.52 2.8 20 20 2350 47 12 30.1 29.1 0.52 2.8 20 20 2350 47 12 30.1 29.1 0.52 2.6 50 20 2350 250 47 12 30.1 29.1 0.52 2.6 50 20 2350 250 47 12 30.1 29.1 0.52<	6.52 2.6 5.0 2.0 2.5 2.5 6.7 2.5 <td></td> <td></td> <td>ک ت</td> <td></td> <td></td> <td></td> <td>0.40</td> <td>2.3</td> <td>20 0</td> <td></td> <td>20 20</td> <td>20 02</td> <td></td> <td></td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td>38.7</td> <td></td> <td></td> <td></td>			ک ت				0.40	2.3	20 0		20 20	20 02			4.5					38.7			
0.50 2.3 100 20 2350 45 2.85 2.85 0.42 2.8 2.0 2.0 2.0 2.350 2.50 4.7 1.2 30.1 29.1 0.42 2.6 5.0 2.0 2.0 2.350 2.50 4.7 1.2 30.1 29.1 0.43 2.3 1.00 2.0 2.0 2.350 4.7 1.2 30.1 29.1 0.5 2.8 2.0 2.0 2.350 2.350 4.7 1.2 30.1 29.1 0.5 2.9 4.7 1.2 3.0 2.0 2.350 2.500 4.7 1.2 30.1 2.9 0.5 2.0 2.0 2.0 2.350 2.500 4.7 1.2 30.1 2.9 0.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <td>0.50 2.3 100 20 2350 4.5 2.85 2.85 31.4 0.42 2.8 2.0 2.0 2.30 2.36 2.36 4.7 1.2 30.1 2.91 45.4 0.42 2.8 2.0 2.0 2.30 2.30 2.30 4.7 1.2 30.1 2.31 46.8 0.43 2.3 100 2.0 2.3 2.30 4.7 1.2 30.1 2.3 47.3 0.52 2.6 5.0 2.0 2.3 2.30 4.7 1.2 30.1 2.9.1 41.3 0.55 2.6 5.0 2.0 2.3 2.30 4.7 1.2 30.1 2.9.1 41.3 0.56 2.6 5.0 2.0 2.3 2.350 2.3 4.7 1.2 30.1 2.9.1 41.3 0.56 2.3 1.0 2.3 2.3 2.3 4.7 1.2 30.1 2.9.1 <</td> <td></td> <td></td> <td>⁷ 2</td> <td></td> <td></td> <td></td> <td>0.52</td> <td>2.6</td> <td>20</td> <td></td> <td>20</td> <td>20</td> <td></td> <td></td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td>35.4</td> <td></td> <td></td> <td></td>	0.50 2.3 100 20 2350 4.5 2.85 2.85 31.4 0.42 2.8 2.0 2.0 2.30 2.36 2.36 4.7 1.2 30.1 2.91 45.4 0.42 2.8 2.0 2.0 2.30 2.30 2.30 4.7 1.2 30.1 2.31 46.8 0.43 2.3 100 2.0 2.3 2.30 4.7 1.2 30.1 2.3 47.3 0.52 2.6 5.0 2.0 2.3 2.30 4.7 1.2 30.1 2.9.1 41.3 0.55 2.6 5.0 2.0 2.3 2.30 4.7 1.2 30.1 2.9.1 41.3 0.56 2.6 5.0 2.0 2.3 2.350 2.3 4.7 1.2 30.1 2.9.1 41.3 0.56 2.3 1.0 2.3 2.3 2.3 4.7 1.2 30.1 2.9.1 <			⁷ 2				0.52	2.6	20		20	20			4.5					35.4			
0.42 2.8 2.0 2.0 2.350 2.590 4.7 1.2 30.1 29.1 0.42 2.6 5.0 2.0 2.0 2.350 2.59 4.7 1.2 30.1 29.1 0.43 2.3 1.0 2.0 2.0 2.350 2.59 4.7 1.2 30.1 29.1 0.52 2.8 2.0 2.0 2.0 2.350 2.59 4.7 1.2 30.1 29.1 0.52 2.6 5.0 2.0 2.0 2.350 2.59 4.7 1.2 30.1 29.1 0.52 2.6 5.0 2.0 2.0 2.0 4.7 1.2 30.1 29.1 0.57 2.6 5.0 2.0 </td <td>0.42 2.8 2.0 2.0 2.95 2.96 4.7 1.2 30.1 2.9.1 4.85 0.42 2.8 2.0 2.0 2.39 2.99 4.7 1.2 30.1 2.9.1 45.4 0.52 2.8 2.0 2.0 2.35 2.59 4.7 1.2 30.1 2.9.1 45.4 0.52 2.8 2.0 2.0 2.35 2.59 4.7 1.2 30.1 2.9.1 41.3 0.55 2.3 100 2.0 2.350 2.590 4.7 1.2 30.1 2.9.1 41.3 0.56 2.3 100 2.0 2.350 2.590 4.7 1.2 30.1 2.9.1 41.3 0.56 2.3 100 2.0 2.350 2.590 4.7 1.2 30.1 2.9.1 31.2</td> <td></td> <td></td> <td>C₂</td> <td></td> <td></td> <td></td> <td>0.50</td> <td>2.3</td> <td>100</td> <td></td> <td>20</td> <td>20</td> <td></td> <td></td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td>31.4</td> <td></td> <td></td> <td></td>	0.42 2.8 2.0 2.0 2.95 2.96 4.7 1.2 30.1 2.9.1 4.85 0.42 2.8 2.0 2.0 2.39 2.99 4.7 1.2 30.1 2.9.1 45.4 0.52 2.8 2.0 2.0 2.35 2.59 4.7 1.2 30.1 2.9.1 45.4 0.52 2.8 2.0 2.0 2.35 2.59 4.7 1.2 30.1 2.9.1 41.3 0.55 2.3 100 2.0 2.350 2.590 4.7 1.2 30.1 2.9.1 41.3 0.56 2.3 100 2.0 2.350 2.590 4.7 1.2 30.1 2.9.1 41.3 0.56 2.3 100 2.0 2.350 2.590 4.7 1.2 30.1 2.9.1 31.2			C ₂				0.50	2.3	100		20	20			4.5					31.4			
0.42 2.5 3.0 2.0 2.39 2.90 4.7 1.2 30.1 2.3.1 0.43 2.3 100 20 2.350 4.7 1.2 30.1 29.1 0.52 2.8 2.0 2.0 2.0 2.350 2.590 4.7 1.2 30.1 29.1 0.52 2.6 5.0 2.0 2.0 2.350 2.590 4.7 1.2 30.1 29.1 0.52 2.6 5.0 2.0 2.0 2.350 2.590 4.7 1.2 30.1 29.1	0.42 2.0 30 2.0 2.30 2.30 4.7 12 30.1 23.1 47.4 37.9 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5			° °				0.42	2.8	20		20	20			4.7					48.5			
6,52 2,8 20 20 20 2350 2590 4,7 1,2 30,1 29,1 0.52 2,5 5,0 20 20 2350 2590 4,7 1,2 30,1 29,1 0.52 2,5 1,0 20 20 20 2350 2590 4,7 1,2 30,1 29,1 0.52 2,5 1,0 20 20 2350 2590 4,7 1,2 30,1 29,1 0.52 2,5 1,0 20 20 20 20 20 20 20 20 20 20 20 20 20	0.52 2.8 2.0 2.0 2.0 2.350 2.350 2.350 4.7 1.2 30.1 29.1 41.3 0.52 2.6 5.0 2.0 2.350 2.390 4.7 1.2 30.1 29.1 36.8 0.56 2.3 100 2.0 2.350 2.390 4.7 30.1 29.1 31.2			ی ت				0.43	2.3	100		8 8	70 70			4.7					37.0			
0,52 2,6 5,0 2,0 2,0 2,55,0 4,7 1,2 30,1 29,1 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1	$0.52 \qquad 2.6 \qquad 5.0 \qquad 2.0 \qquad 2.350 \qquad 2.990 4.7 \qquad 1.2 \qquad 30.1 \qquad 29.1 \qquad 36.8$ $0.56 \qquad 2.3 \qquad 100 \qquad 2.0 \qquad 2.0 \qquad 2.350 \qquad 4.7 \qquad 30.1 \qquad 29.1 \qquad 31.2$			° °				0.52	2.8	20		70	20			4.7					41.3			
	max 100 11 000m 0m 0			ک "				0.52	2.6	100		20 00	20			4.7					36.8			

A. Gholampour et al./Construction and Building Materials xxx (2016) xxx-xxx

				ž.	imens		Concrete m	Concrete mix properties		Properties of coarse aggregate	CORTON 1881-0-	ə						Physical properties of concrete	perties of	Mec	chanical pro	Mechanical properties of concrete
Manufactory of the control of the co			Compressive strength tests	Elastic modulus tests	Flexural strength tests	Splitting tensile strength tests	Effective water- to- cement ratio (w _{eff} C)	Aggregate- to-cement ratio (<i>a/c</i>)	RCA replacement ratio (RCA %)	Parent concrete strength (MPa)	Nominal maximum RCA size (mm)	Nominal maximum NA size (mm)	Bulk B density d of RCA o ((kg/m³) (1)							Comp streng (MPa)	Compressive strength (f_c) (MPa)	ressive Elastic th $\mathcal{C}_{\mathcal{E}_j}$ modulus $(E_{\mathcal{E}_j})$ (MPa)
Manufacture 1		Xiao et al.	S_2	Ü			0.41	2.6	0		32	20	2	320	0.4					47.2		33100
Note		66	S ₂	ບັ ບັ			0.38	2.6	33		32	20								42.4		30940 31910
Market 1			S 22	ប្រ			0.34	2.6	72 100		32	20								36.7*		29090° 26510
Market of the control		Younis and Pilakoutas	s,				0.47	3.8	0		20	25	2	210	1.0					53.1		
Manufaction of the control of the co		<u>-</u>	ร์ ร์				0.47	3.7	20		20	25								50.0		
Fig. 10 Fig.		Andreu and	જ્જ જે	ت	eñ	ت	0.47	3.5	75 100 0		2 2 2	10 25 25			,,		24.8	2510		44.0° 41.6 102.1		50410
Market Color Col		Miren [100]	š .	J (5 4	ت	67.0	F. 6	> 6	9	2 ;	2 9					9 9	010		1 20		
1			N N N	౮౮	ഇ. ഇ. ആ	ប្រប	0.29	2.8	20 50 100	100.0	2 2 2	9 9 9					24.8	2500 2480 2430		108.0°		48540 47930 46100
100 100			. S . S . Z	បែប	i e e	បែប	0.29	2.8	20 50	60.0	2 2	2 2 2					24.8	2440		102.5		47790
Section Sect			. S ₂ S ₂	ت ت	B B	ن ن	0.29	2.6	100	60.0	10	01 01					24.8	2340 2470		100.8*		40090
Note Column Col				ֿט ט	B B	ت ت	0.29	2.7	50 100	40.0	0 0	10 01					24.8	2430 2390		96.8*		43040 37150
Column		Beltrán et al.			В	C ₂	0.65	4.6	0		20	30	2	980	1.5	3	20			18.0*		
Fig. 10 Fig.		•			<u>6</u> 6	C' C' (0.65	4.8	25 50		20 20	30 30					5 20			14.7*		
Controller of A. Contro			ت ت		m m	J J	0.65	5.8	0		20	8 8					8 8			14.2" 30.8		
Control Cont			్ర ర		B B	్ చ	0.72	5.9	20 40		20	20					20 20			26.8 26.6		
Holifold et al. C			° ° ° °		e e	చి చి	0.45	2.3	20		16	50 20					2 2 3			49.3		
Continue	2014	Beltrán et al.		°C	B ₂	<i>3</i> °	0.60	3.5	0 0		16	70 70 70					707	2167	2390	42.0		27300
Control C C C C C C C C C C C C C C C C C C C		[102]		° ° °	B ₂		09.0	3.4	20		16 16	20						2098	2330	42.9		26200
Control Cont			రి రి	° ° °	B ₂		0.50	3.2	100		16 16	20 20						1989 2188	2240 2370	40.9 50.2		25100 30000
California (A) Califor			° ° ° °	J J ,	2 B B		0.50	2.5	20 50		16	20 20						2136	2320	51.6		27200
Comment Comm	2014	Çakır and Sofyanlı	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	S.	P2	Ū	0.50	3.4	0 0		22	22 20			-			1998	2240	50.3 46.7		26400
Cametro C ₁ C ₂ C ₃ C ₄ C ₄ C ₅ C ₄ C ₅ C ₄ C ₅		[103]	ζ,			Ū (0.50	3.4	50		12	22		025						46.9		
Fig. 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	7100	o io me	5 U U	·	0	ى تى ر	0.50	3.4	100		7 7 7	7 7 7			ç					48.6		91100
Diblaset al. C ₁ C ₂ C ₃ C ₄	107	et al. [104]	ī	ī	22	ī	70.0	7:7	•		n n	2								6:67		8
1 C ₁ C ₂ C ₃ C ₄ C ₅ C ₅	2014	Dilbas et al.	ن ن	ڻ ٽ	B ₂	ت ت	0.50	3.5	25 50		8	10 20					24.3		2478	32.6 33.0		32100 23437
Poom [105] Poom [1		Duan and	S C	ن ن		ن ن	0.50	3.2	0 20		8 20	20							2038	29.1		22896
C C		Poon [105]	ن -	ن ٠		ن ٠	890	9	001		00	92								35.0		20850
G G			ર જે જે	ប្រប		របប	0.68	0 8 8 6 4 4	00 00		2 2 2	2 2 2								29.2 27.7		21900 20490
C C C C C C C C C C C C C C C C C C C			ທ໌ ທ໌ ເ	ບັ ບັ ເ		ن ت ر	0.51	3.3	100		2 2 2	2 2 2								47.6		30680 28860
C C C C 0.44 2.4 100 20 2450 2000 0.9 C C C C 0.44 2.4 100 20 2450 3.1 C C C C 0.44 2.3 100 20 20 2370 7.1 C C C C 0.44 2.3 100 20 20 2370 7.8 C C C C C 0.44 2.3 100 20 20 2800 7.8 C C C C C 0.44 2.3 100 20 20 2800 0.9			ກົທົ່ເ	ى تى ت		ى تى ر	0.51	3.0	100		20 20	8 8 8								42.9		26550
C ₁ C ₁ C ₂ C ₃ 100 20 20 2360 7.8 7.8 C ₄ C ₃			પૂ ભૂ બ્	ں ت ت		ت ت ت	0. 0. 0. 4. 4. 4.	2.5 2.3 2.3	100		8 8 8	8 8 8								60.0 53.7		32360 29420 24610
G G G 034 2.1 100 20 20 2450 3.1			ν, γ,	ن ن		ن ن	0.44	2.3	001		20	20								53.2		28500
			v, v,	ن ت		ن ت	0.34	2.1	100		20	20	2450	3.1						78.2	e, c	4760

(continued on next page)

A. Gholampour et al./Construction and Building Materials xxx (2016) xxx-xxx

Year of publication	Source	Geometric p	Geometric properties of specimens	cimens		Concrete	Concrete mix properties		Properties of	f coarse aggregate	te						i -	Physical properties o	erties of	Mechanical properties of concrete	operties of cor	ıcrete	
		Compressive strength tests	Elastic modulus tests	Flexural strength tests	Splitting tensile strength tests	Effective water- to- cement ratio (Weg/C)	Aggregate- to-cement ratio (a/c)	RCA replacement ratio (RCA %)	Parent concrete strength (MPa)	Nominal maximum RCA size (mm)	Nominal maximum NA size (mm)	Bulk E density c of RCA c (kg/m³)	Bulk density of NA (kg/m³)	Water absorption of RCA (WA _{RCA}) (%)	Water LC absorption At of NA at (WA _M) (%) of	Los L Angeles A abrasion a of RCA o (LA _{KCA}) (i	Los Angeles I abrasion of NA (LA _{NA}) ((Density of hardened concrete AD (ρ_{ad}) (kg/m^3)	Density of hardened concrete SSD (\$\rho_{SSD}\$) (\$kg/m^3\$)	Compressive strength (f _c) (MPa)	Elastic modulus (E _c) (MPa)	Flexural strength (f, r) (MPa)	
2014	Folino and	ū	رَ		رَ	0.50	3.1	0		19	19		2730		0.3				2420	36.5	31667		
2014	Gavarre et al.	ប្រហ្វ	ប្រូប		ប្រូប	0.50	2.8	30 60 100		19 19 20	119 119 119	2570 2570 2570	2730	2.7 2.7 2.7	0.3 0.3 1.7	m	32.0		23.85 23.82 23.46 23.70	33.6 30.4 29.1 40.5	28617 24533 20750		
	[107]					0.65 0.65 0.65 0.65 0.65	33.22.	20 50 100 0 20 50		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	19 19 19 19	2300 2300 2300 2300 2300 2300 2300	2500 2500 2500 2500 2500	5.2 5.2 5.2 5.2 5.5 5.5 5.5		40.2 3 40.2 3 40.2 3 28.6 3	32.0 32.0 32.0 32.0		2340 2330 2320 2370 2360 2350	39.5 40.8 43.7* 40.5 41.0			
2014	Kang et al.	្រ	ت	B ₂	Ü	0.42	2.7	8 0		25	25		2570	C.	1.1	0.00			0662	38.6	29200	10.2*	
2014	Pedro et al.	ប្រហ្ទ	ប្រក្ល	B B 2 2 B B 3	ប្រប្រ	0.40 0.39 0.36	2.7 2.2 2.7 4.6	16 37 52 0		25 25 25 22	25 25 20 20	2200 2200 2200 2200	2570 2570 2570 2570	5.4 5.4 5.4	2222					32.7* 31.7* 29.0* 23.9	29200 26500 25300 33300*	9.7*	
	[109]	ଜ୍ ଜ୍ ଜ୍ ଜ୍	୯୯୯୯		00000	0.65 0.41 0.87 0.66 0.42	3.4 9.5 9.8 1.8 1.8	0 0 100 100		22222	20 20 20 20 20	2 2451 2387 2362	2537	7.8 6.9 4.2	13 13					38.7 71.1 19.7 35.7 66.8	36700 46900 25200 29500 40300°		
		ભૂ ભૂ ભૂ ભૂ ભૂ	J J J J J		00000	0.86 0.65 0.42 0.81	4.6 3.5 2.9 4.9 3.6	100 100 0 0		22222	20 20 20 20 20		2665	7.5 6.4 4.2	1.0					21.8 36.1 68.5 27.5 42.4	26500 30000 40300° 34700° 38300		
		જ જ જ જ જ જ જ જ	୯୯୯୯୯୯.		000000	0.40 0.84 0.40 0.82 0.64	3.5 3.5 2.8 3.7.7 4.0 6.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		222222	20 20 20 20 20 20 30	2401 2484 2363 2447 2458		7.6 3.6 6.9 5.8	0.1					72.3 21.0 41.1 70.2 23.6 39.7	47600 25900 31200 40400° 27800° 31500°		
2014	Pepe et al.	ភប	ت ت		ت د	0.64	3.0	0 0		61	20		2634	n ri	1.3					33.0	24770		
2014	Thomas et al.	ប្រប	ប្រប		ប្រប	0.77	3.1 3.4	100 100 0		19 19	20 20 19	2268 1946	2730	11.9	0.5	2	23.0		2410	27.5 29.9 47.8	24860 24400 34200		
		<i>.</i>	<i>.</i>		<i>.</i>	0.59 0.54 0.45 0.45 0.67 0.67 0.63 0.53 0.53 0.53 0.53 0.54 0.64 0.64 0.64 0.64	33 3 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2330 2330 2330 2330 2330 2330 2330 2330	2730 2730 2730 2730 2730 2730 2730 2730		0.5 37 0.5 37 0.		23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0		2400 2280 2280 2480 2480 2480 2480 2480	49.3 447.5 447.5 66.2 66.2 66.3 66.3 66.3 67.3 67.3 67.3 67.3 67.3	32300 30100 30100 30100 34000 31400 31400 31400 32200 33800 33900 33900 3000 30		

																	Physical properties of concrete	rties of	Mechanical properties of concrete	perties of cor	ıcrete	
ural Splitting Effective Aggregate- RCA Parent replacement concrete s strength to- ratio (a/c) ratio (RCA ½) strength to- ratio (a/c) ratio (RCA ½) strength tasts ratio (RCA ½) (MPa)	Effective Aggregate RCA water to-cement replacement to- cement anio (a/c) ratio (RCA x) anio (wag(c)	Spitting Effective Aggregate RCA	Effective Aggregate RCA water to-cement replacement to- cement anio (a/c) ratio (RCA x) anio (wag(c)	re Aggregate RCA to-cement replacement ratio (d/c) ratio (RCA %)	RCA replacement ratio (RCA %)		Parent concre streng (MPa)	\$ 1	Nominal maximum RCA size (mm)	Nominal maximum NA size (mm)	Bulk density of RCA (kg/m³)	Bulk density of NA (kg/m³)	Water absorption of RCA (WA _{RCA}) (%)	Water absorption of NA (WA _{NA}) (%)	Los Angeles abrasion of RCA (LA _{RCA})	Los Angeles abrasion of NA (LA _{MA})	Density of hardened concrete AD (ρ_{oal}) (kg/m ³)	Density of hardened concrete SSD (\rho_{SSD}) (kg/m ³)	Compressive strength (f'c) (MPa)	Elastic modulus (E _c) (MPa)	Flexural strength (f_t) (MPa)	Splitting tensile strength (β_{st}) (MPa)
C ₁ 0.50 2.9 0	0.50 2.9	C ₁ 0.50 2.9	0.50 2.9	2.9		_			20	20			6.5						37.0	39500	4.9	3.5
0.50 2.5	C ₁ 0.50 2.5	C ₁ 0.50 2.5	0.50 2.5	2.5		0			20	20	2240		6.5						33.0	36000	4.7	3.2
C ₁ 0.50 1.4 65	0.50 1.4	C ₁ 0.50 1.4	0.50 1.4	1.4		5			20	20	2240		6.5						39.5*	33500*	*4.4	3.2*
0.50 1.2	C ₁ 0.50 1.2	C ₁ 0.50 1.2	0.50 1.2	1.2		00			20	20	2240								39.0	30500	4.0	3.0
C ₂ 0.55 2.8 0	0.55 2.8	C ₂ 0.55 2.8	0.55 2.8	2.8		_			12	12		2710		2.0				2347	40.9	29300	5.1	3.2
0.53 2.6	0.53 2.6	0.53 2.6	0.53 2.6	2.6		5			12	12	2220	2710	6.1	2.0				2289	41.0	29000	4.7	2.6
0.51 2.5	C ₂ 0.51 2.5	C ₂ 0.51 2.5	0.51 2.5	2.5		0.			12	12	2220	2710	6.1	2.0				2236	40.5	28200	4.6	5.6
C ₂ 0.47 2.1 100	0.47 2.1	C ₂ 0.47 2.1	0.47 2.1	2.1		00			12	12	2220		6.1					2199	40.3	27200	3.7	2.4
0.47 2.1	C ₂ 0.47 2.1	C ₂ 0.47 2.1	0.47 2.1	2.1		00			7	7	2220			2.0				2138	38.0	26700	3.4	2.3
0.53 2.7	C ₂ 0.53 2.7	C ₂ 0.53 2.7	0.53 2.7	2.7		_			7	7		2570	4.1	2.0				2287	40.1	28100	5.3	3.3
0.49 2.4	C ₂ 0.49 2.4	C ₂ 0.49 2.4	0.49 2.4	2.4		0:			7	7	2150	2570	4.1	2.0				2174	41.2	27900	5.0	3.0
0.45 2.1	C ₂ 0.45 2.1	C ₂ 0.45 2.1	0.45 2.1	2.1		00			7	7	2150	2570	4.1	2.0				2147	40.8	25700	3.9	2.5
C ₂ 0.45 2.1 100	C ₂ 0.45 2.1	C ₂ 0.45 2.1	0.45 2.1	2.1		00			7	7	2150		4.1					2115	39.2	25100	3.6	2.4

References

- [1] F.P. Torgal, S. Jalali, Construction and Demolition (C & D) Wastes, Eco-efficient Construction and Building Materials, Springer, London, 2011, pp. 51–73.
- [2] M. Behera, S.K. Bhattacharyya, A.K. Minocha, R. Deoliya, S. Maiti, Recycled aggregate from C&D waste & its use in concrete-A breakthrough towards sustainability in construction sector: A review, Constr. Build. Mater. 68 (2014) 501–516.
- [3] H. Dilbas, M. Şimşek, Ö. Çakır, An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume, Constr. Build. Mater. 61 (2014) 50–59.
- [4] P.K. Mehta, H. Meryman, Tools for reducing carbon emissions due to cement consumption, Struct. Magaz. 1 (1) (2009) 11–15.
 [5] F.P. Torgal, Y. Ding, S. Miraldo, Z. Abdollahnejad, J.A. Labrincha, Are
- [5] F.P. Torgal, Y. Ding, S. Miraldo, Z. Abdollahnejad, J.A. Labrincha, Are geopolymers moere suitable than portland cement to produce high volume recycled aggregates HPC, Constr. Build. Mater. 36 (2012) 1048–1052.
- [6] S.C. Kou, C.S. Poon, H.W. Wan, Properties of concrete prepared with low-grade recycled aggregates, Constr. Build. Mater. 36 (2012) 881–889.
- [7] I.B. Topcu, S. Sengel, Properties of concretes produced with waste concrete aggregate, Cem. Concr. Res. 34 (8) (2004) 1307–1312.
- [8] Ö. Çakır, Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives, Constr. Build. Mater. 68 (2014) 17–25.
- [9] K.H. Younis, K. Pilakoutas, Strength prediction model and methods for improving recycled aggregate concrete, Constr. Build. Mater. 49 (2013) 688– 701.
- [10] J.Z. Xiao, J.B. Li, C. Zhang, On relationships between the mechanical properties of recycled aggregate concrete: an overview, Mater. Struct. 39 (6) (2006) 655–664.
- [11] R. Sriravindrarajah, N.D.H. Wang, L.J.W. Ervin, Mix Design for Pervious Recycled Aggregate Concrete. International, J. Concr. Struct. Mater. 6 (4) (2012) 239–246.
- [12] P.S. Lovato, E. Possan, D.C.C. Dal Molin, Â.B. Masuero, J.L.D. Ribeiro, Modeling of mechanical properties and durability of recycled aggregate concretes, Constr. Build. Mater. 26 (1) (2012) 437–447.
- [13] P. Pereira, L. Evangelista, Brito.J. De, The effect of superplasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates, Constr. Build. Mater. 28 (1) (2012) 722–729.
- [14] C. Thomas, J. Setién, J.A. Polanco, P. Alaejos, M.S. de Juan, Durability of recycled aggregate concrete, Constr. Build. Mater. 40 (2013) 1054–1065.
- [15] M. Harada, T. Soshiroda, S. Kubota, T. Ikeda, Y. Kasai, Strength and elastic modulus of recycled aggregate concrete, In: Proceedings of the Second International RILEM Symposium on Demolition and Reuse of Concrete and Masonry, 1988, vol. 2, pp. 565-574.
- [16] R.S. Ravindrarajah, C.T. Tam, Properties of concrete made with crushed concrete as coarse aggregate, Magaz. Concr. Res. 37 (130) (1985) 29–38.
- [17] N.K. Bairagi, K. Ravande, V.K. Pareek, Behaviour of concrete with different proportions of natural and recycled aggregates, Resour. Conserv. Recycl. 9 (1) (1993) 109–126.
- [18] M.B. de Oliveira, E. Vazquez, The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete, Waste Manage. 16 (1) (1996) 113–117.
- [19] R. Dillmann. Concrete with recycled concrete aggregate, in: Sustainable Construction: Use of Recycled Concrete Aggregate-Producings of The International Symposium Held at Department of Trade and Industry Conference Centre, London, UK, 1998, pp. 11–12.
- [20] R.K. Dhir, Sustainability of Recycled Concrete Aggregate for Use IN BS 5328 Designated Mixes, Proc. ICE-Struct. Build. 134 (3) (1999) 257–274.
- [21] M. Tavakoli, P. Soroushian, Strengths of recycled aggregate concrete made using field-demolished concrete as aggregate, ACI Mater. J. 93 (2) (1996) 182– 190.
- [22] K. Zilch, F. Roos, An equation to estimate the modulus of elasticity of concrete with recycled aggregates, Civ. Eng. 76 (4) (2001) 187–191.
- [23] G.F. Kheder, S.A. Al-Windawi, Variation in mechanical properties of natural and recycled aggregate concrete as related to the strength of their binding mortar, Mater. Struct. 38 (7) (2005) 701–709.
- [24] K. Rahal, Mechanical properties of concrete with recycled coarse aggregate, Build. Environ. 42 (1) (2007) 407–415.
- [25] V. Corinaldesi, Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates, Constr. Build. Mater. 24 (9) (2010) 1616–1620.
- [26] C. Hoffmann, S. Schubert, A. Leemann, M. Motavalli, Recycled concrete and mixed rubble as aggregates: influence of variations in composition on the concrete properties and their use as structural material, Constr. Build. Mater. 35 (2012) 701–709.
- [27] P. Pereira, L. Evangelista, J. de Brito, The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates, Cement Concr. Compos. 34 (9) (2012) 1044–1052.
- [28] G. Wardeh, E. Ghorbel, H. Gomart, Mix design and properties of recycled aggregate concretes: applicability of eurocode 2, Int. J. Concr. Struct. Mater. (2014) 1–20.
- [29] J. Xiao, P. Li, W. Qin, Study on bond-slip between recycled concrete and rebars, J. Tongji Univ. 34 (1) (2006) 13.
- [30] D.X. Xuan, L.J.M. Houben, A.A.A. Molenaar, Z.H. Shui, Mechanical properties of cement-treated aggregate material—a review, Mater. Des. 33 (2012) 496–502.

- [31] I. Mansouri, T. Ozbakkaloglu, O. Kisi, T. Xie, Predicting Behavior of FRP-Confined Concrete using Neuro Fuzzy, Neural Network, Multivariate Adaptive Regression Splines and M5 Model Tree Techniques, Mater. Struct. (2016), http://dx.doi.org/10.1617/s11527-015-0790-4.
- [32] I. Mansouri, A. Gholampour, O. Kisi, T. Ozbakkaloglu, Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques, Neural Comput. Appl. (2016), http://dx.doi.org/ 10.1007/s00521-016-2492-4.
- [33] J.C. Lim, M. Karakus, T. Ozbakkaloglu, Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming, Comput. Struct. 162 (2016) 28–37.
- [34] M. Jalal, A.A. Ramezanianpour, A.R. Pouladkhan, P. Tedro, Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders, Neural Comput. Appl. 23 (2013) 455– 470.
- [35] M.A. Mashrei, R. Seracino, M.S. Rahman, Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints, Constr. Build. Mater. 40 (2013) 812–821.
- [36] A. Sadrmomtazi, J. Sobhani, M.A. Mirgozar, Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS, Constr. Build. Mater. 42 (2013) 205–216.
- [37] R. Perera, D. Tarazona, A. Ruiz, A. Martín, Application of artificial intelligence techniques to predict the performance of RC beams shear strengthened with NSM FRP rods. Formulation of design equations, Compos. B Eng. 66 (2014) 162–173.
- [38] T.M. Pham, M.N. Hadi, Predicting stress and strain of frp-confined square/ rectangular columns using artificial neural networks, J. Compos. Constr. 18 (6) (2014) 1–9. 04014019-1-9.
- [39] H. Mashhadban, S.S. Kutanaei, M.A. Sayarinejad, Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network, Constr. Build. Mater. 119 (2016) 277–287.
- [40] Z.H. Duan, S.C. Kou, C.S. Poon, Prediction of compressive strength of recycled aggregate concrete using artificial neural networks, Constr. Build. Mater. 40 (2013) 1200–1206.
- [41] K. Sahoo, P. Sarkar, R. Davis, Artificial neural networks for prediction of compressive strength of recycled aggregate concrete, Int. J. Chem. Metal. Civ. Eng. 3 (1) (2016) 81–85.
- [42] N. Deshpande, S. Londhe, S. Kulkarni, Modeling compressive strength of recycled aggregate concrete by artificial neural network, model tree and nonlinear regression, Int. J. Sustain. Build Environ. 3 (2014) 187–198.
- [43] Z.H. Duan, S.C. Kou, C.S. Poon, Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete, Constr. Build. Mater. 44 (2013) 524–532.
- [44] A. Behnood, J. Olek, M.A. Glinicki, Predicting modulus elasticity of recycled aggregate concrete using M5' model tree algorithm, Constr. Build. Mater. 94 (2015) 137-147.
- [45] I. Gonzalez-Taboada, B. Gonzalez-Fonteboa, F. Martinez-Abella, J. Perez-Ordonez, Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming, Constr. Build. Mater. 106 (2016) 480–499.
- [46] A.H. Alavi, A.H. Gandomi, A robust data mining approach for formulation of geotechnical engineering systems, Eng. Comput. 28 (3) (2011) 242–274.
- [47] A.H. Gandomi, D.A. Roke, Assessment of artificial neural network and genetic programming as predictive tools, Adv. Eng. Softw. 88 (2015) 63–72.
- [48] A.H. Gandomi, S. Babanajad, A. Alavi, Y. Farnam, Novel approach to strength modeling of concrete under triaxial compression, J. Mater. Civ. Eng. (2012), http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000494, 1132-1143.
- [49] C. Ferreira, Gene expression programming: a new adaptive algorithm for solving problems, Complex Syst. 13 (2) (2001) 87–129.
- [50] A.H. Gandomi, A.H. Alavi, M.R. Mirzahosseini, F.M. Nejad, Nonlinear genetic-based models for prediction of flow number of asphalt mixtures, J. Mater. Civ. Eng. 23 (3) (2011) 248–263.
- [51] P.K. Muduli, S.K. Das, Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model, Acta Geophys. 62 (3) (2014) 529–543.
- [52] K. Yoda, T. Yoshikane, Y. Nakashima, T. Soshiroda, Recycled cement and recycled concrete in Japan. In: Proceedings of the International Conference on Demolition and Reuse of Concrete and Masonry, 1988, pp. 527-536.
- Demolition and Reuse of Concrete and Masonry, 1988, pp. 527-536. [53] M.C. Limbachiya, T. Leelawat, R.K. Dhir, Use of recycled concrete aggregate in
- high-strength concrete, Mater. Struct. 33 (9) (2000) 574–580.
 [54] A. Ajdukiewicz, A. Kliszczewicz, Influence of recycled aggregates on mechanical properties of HS/HPC, Cem. Concr. Compos. 24 (2) (2002) 269– 270.
- [55] J. Gómez-Soberón, Porosity of recycled concrete with substitution of recycled concrete aggregate: an experimental study, Cem. Concr. Res. 32 (8) (2002) 1301–1311
- [56] A. Gonçalves, A. Esteves, M. Vieira, Influence of recycled concrete aggregates on concrete durability, In: International RILEM Conference on the Use of Recycled Materials in Buildings and Structures, 2004, pp. 554–562.
- [57] C.S. Poon, Z.H. Shui, L. Lam, H. Fok, S.C. Kou, Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete, Cem. Concr. Res. 34 (1) (2004) 31–36.
- [58] Y.H. Lin, Y.Y. Tyan, T.P. Chang, C.Y. Chang, An assessment of optimal mixture for concrete made with recycled concrete aggregates, Cem. Concr. Res. 34 (8) (2004) 1373–1380.

- [59] X. Wei, Experimental study on influence of recycled coarse aggregates contents on properties of recycled aggregate concrete, Concrete 9 (2006) 13.
- [60] M. Etxeberria, A.R. Mari, E. Vazquez, Recycled aggregate concrete as structural material, Mater. Struct. 40 (5) (2007) 529–541.
- [61] M. Etxeberria, E. Vázquez, A. Marí, M. Barra, Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete, Cem. Concr. Res. 37 (5) (2007) 735–742.
- [62] L. Evangelista, J. De Brito, Mechanical behaviour of concrete made with fine recycled concrete aggregates, Cem. Concr. Compos. 29 (5) (2007) 397–401.
- [63] C.S. Poon, S.C. Kou, L. Lam, Influence of recycled aggregate on slump and bleeding of fresh concrete, Mater. Struct. 40 (9) (2007) 981–988.
- [64] A.B. Ajdukiewicz, A.T. Kliszczewicz, Comparative tests of beams and columns made of recycled aggregate concrete and natural aggregate concrete, J. Adv. Concr. Technol. 5 (2) (2007) 259–273.
- [65] M.P. Hu, Mechanical properties of concrete prepared with different recycled coarse aggregates replacement rate, Chin. Concr. J. 2 (2007) 52–54.
- [66] S.C. Kou, C.S. Poon, D. Chan, Influence of fly ash as cement replacement on the properties of recycled aggregate concrete, J. Mate. Civ. Eng. 19 (9) (2007) 709–717.
- [67] Z.W. Wang, Production and properties of high quality recycled aggregates, Concrete 3 (2007) 74–77.
- [68] M. Casuccio, M.C. Torrijos, G. Giaccio, R. Zerbino, Failure mechanism of recycled aggregate concrete, Constr. Build. Mater. 22 (7) (2008) 1500–1506.
- [69] M.P. Hu, Mechanical properties of recycled aggregate concrete at early ages, Concrete 5 (2008) 37–41.
- [70] S.C. Kou, C.S. Poon, D. Chan, Influence of fly ash as a cement addition on the hardened properties of recycled aggregate concrete, Mater. Struct. 41 (7) (2008) 1191–1201.
- [71] K.H. Yang, H.S. Chung, A.F. Ashour, Influence of type and replacement level of recycled aggregates on concrete properties, ACI Mater. J. 105 (3) (2008).
- [72] H. Zhou, B.K. Liu, L.U. Guo, Experimental research on the basic mechanical properties of recycled aggregate concrete, J. Anhui Inst. Arch. Ind. 6 (2008) 3.
- [73] A. Domingo-Cabo, C. Lázaro, F. López-Gayarre, M.A. Serrano-López, P. Serna, J. O. Castaño-Tabares, Creep and shrinkage of recycled aggregate concrete, Constr. Build. Mater. 23 (7) (2009) 2545–2553.
- [74] A.K. Padmini, K. Ramamurthy, M.S. Mathews, Influence of parent concrete on the properties of recycled aggregate concrete, Constr. Build. Mater. 23 (2) (2009) 829–836.
- [75] X. Yang, J. Wu, J.G. Liang, Experimental study on relationship between tensile strength and compressive strength of recycled aggregate concrete, Sichuan Build. Sci. 35 (2009) 190–192.
- [76] H. Ye, Experimental study on mechanical properties of concrete made with high quality recycled aggregate, Sichuan Build. Sci. 35 (2009) 195–199.
- [77] R. Kumutha, K. Vijai, Strength of concrete incorporating aggregates recycled from demolition waste, ARPN J. Eng. Appl. Sci. 5 (5) (2010) 64–71.
- [78] V. Radonjanin, M. Malešev, S. Marinković, Recycled concrete as aggregate for structural concrete production, Sustain 2 (5) (2010) 1204–1225.
- [79] C.J. Zega, Maio.A.A. Di, Recycled concretes made with waste ready-mix concrete as coarse aggregate, J. Mater. Civ. Eng. 23 (3) (2010) 281–286.
- [80] G.F. Belén, M.A. Fernando, C.L. Diego, S.P. Sindy, Stress-strain relationship in axial compression for concrete using recycled saturated coarse aggregate, Constr. Build. Mater. 25 (5) (2011) 2335–2342.
- [81] G. Fathifazl, A.G. Razaqpur, O.B. Isgor, A. Abbas, B. Fournier, S. Foo, Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate, Cem. Concr. Compos. 33 (10) (2011) 1026–1037.
- [82] B. González-Fonteboa, F. Martínez-Abella, J. Eiras-López, S. Seara-Paz, Effect of recycled coarse aggregate on damage of recycled concrete, Mater. Struct. 44(10): 1759–1771.
- [83] M.C. Rao, S.K. Bhattacharyya, S.V. Barai, Influence of field recycled coarse aggregate on properties of concrete, Mater. Struct. 44 (1) (2011) 205–220.
- [84] R. Somna, C. Jaturapitakkul, W. Chalee, P. Rattanachu, Effect of the water to binder ratio and ground fly ash on properties of recycled aggregate concrete, J. Mater. Civ. Eng. 24 (1) (2011) 16–22.
- [85] A. Abd Elhakam, A.E. Mohamed, E. Awad, Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete, Constr. Build. Mater. 35 (2012) 421–427.
- [86] Z.L. Cui, S.S. Lu, Z.S. Wang, Influence of Recycled Aggregate on Strength and Anti-carbonation Properties of Recycled Aggregate Concrete, J. Build. Mater. 15 (2) (2012) 264–267.
- [87] H. Li, J.Z. Xiao, On Fatigue Strength of Recycled Aggregate concrete Based on Its Elastic Modulus, J. Build. Mater. 15 (2) (2012) 260–263.
- [88] M. Limbachiya, M.S. Meddah, Y. Ouchagour, Performance of Portland/silica fume cement concrete produced with recycled concrete aggregate, ACI Mater. J. 109 (1) (2012).
- [89] S. Marinković, V. Radonjanin, M. Malešev, I. Gnjatović, Comparative environmental assessment of natural and recycled aggregate concrete, Waste Manage. 30 (11) (2010) 2255–2264.
- [90] A. Barbudo, J. de Brito, L. Evangelista, M. Bravo, F. Agrela, Influence of water-reducing admixtures on the mechanical performance of recycled concrete, J. Clean Prod. 59 (2013) 93–98.
- [91] L. Butler, J.S. West, S.L. Tighe, Effect of recycled concrete coarse aggregate from multiple sources on the hardened properties of concrete with equivalent compressive strength, Constr. Build. Mater. 47 (2013) 1292–1301.
- [92] Z.P. Chen, J.J. Xu, H.H. Zheng, Y.S. Su, J.Y. Xue, J.T. Li, Basic mechanical properties test and stress-strain constitutive relations of recycled coarse aggregate concrete, J. Build Mater. 16 (1) (2013) 24–32.

- [93] Y.L. Hou, G. Zheng, Mechanical properties of recycled aggregate concrete in different age, J. Build Mater. 16 (4) (2013) 683–687.
- [94] S. Ismail, M. Ramli, Engineering properties of treated recycled concrete aggregate (RCA) for structural applications, Constr. Build. Mater. 44 (2013) 464–476.
- [95] S. Manzi, C. Mazzotti, M.C. Bignozzi, Short and long-term behavior of structural concrete with recycled concrete aggregate, Cem. Concr. Compos. 37 (2013) 312–318.
- [96] D. Matias, J. de Brito, A. Rosa, D. Pedro, Mechanical properties of concrete produced with recycled coarse aggregates-influence of the use of superplasticizers, Constr. Build. Mater. 44 (2013) 101–109.
- [97] Y.N. Sheen, H.Y. Wang, Y.P. Juang, D.H. Le, Assessment on the engineering properties of ready-mixed concrete using recycled aggregates, Constr. Build. Mater. 45 (2013) 298–305.
- [98] V.A. Ulloa, E. García-Taengua, M.J. Pelufo, A. Domingo, P. Serna, New views on effect of recycled aggregates on concrete compressive strength, ACI Mater. J. 110 (6) (2013).
- [99] J. Xiao, H. Li, Z. Yang, Fatigue behavior of recycled aggregate concrete under compression and bending cyclic loadings, Constr. Build. Mater. 38 (2013) 681–688
- [100] G. Andreu, E. Miren, Experimental analysis of properties of high performance recycled aggregate concrete, Constr. Build. Mater. 52 (2014) 227–235.
- [101] M.G. Beltrán, F. Agrela, A. Barbudo, J. Ayuso, A. Ramírez, Mechanical and durability properties of concretes manufactured with biomass bottom ash and recycled coarse aggregates, Constr. Build. Mater. 72 (2014) 231–238.
- [102] M.G. Beltrán, A. Barbudo, F. Agrela, A.P. Galvín, J.R. Jiménez, Effect of cement addition on the properties of recycled concretes to reach control concretes strengths, J. Clean Prod. 79 (2014) 124–133.
- [103] Ö. Çakır, Ö.Ö. Sofyanlı, Influence of silica fume on mechanical and physical properties of recycled aggregate concrete, HBRC J. 11 (2) (2015) 157–166.
- [104] J.A. Carneiro, P.R.L. Lima, M.B. Leite, R.D. Toledo Filho, Compressive stressstrain behavior of steel fiber reinforced-recycled aggregate concrete, Cem. Concr. Compos. 46 (2014) 65–72.
- [105] Z.H. Duan, C.S. Poon, Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars, Mater. Des. 58 (2014) 19–29.
- [106] P. Folino, H. Xargay, Recycled aggregate concrete—mechanical behavior under uniaxial and triaxial compression, Constr. Build. Mater. 56 (2014) 21–31.
- [107] F.L. Gayarre, C.L.C. Pérez, M.A.S. López, A.D. Cabo, The effect of curing conditions on the compressive strength of recycled aggregate concrete, Constr. Build. Mater. 53 (2014) 260–266.
- [108] T.H.K. Kang, W. Kim, Y.K. Kwak, S.G. Hong, Flexural testing of reinforced concrete beams with recycled concrete aggregates (with Appendix), ACI Struct. J. 111 (3) (2014).

- [109] D. Pedro, J. de Brito, L. Evangelista, Performance of concrete made with aggregates recycled from precasting industry waste: influence of the crushing process, Mater. Struct. (2014) 1–14.
- [110] M. Pepe, R.D. Toledo Filho, E.A. Koenders, E. Martinelli, Alternative processing procedures for recycled aggregates in structural concrete, Constr. Build. Mater. 69 (2014) 124–132.
- [111] C. Thomas, I. Sosa, J. Setién, J.A. Polanco, A.I. Cimentada, Evaluation of the fatigue behavior of recycled aggregate concrete, J. Clean Prod. 65 (2014) 397– 405
- [112] S. Capitanio, S. Hayes, M. Mak, M. Murdock, Design of RAC filled FRP Tubers as Columns for New Construction. Final Year Honor's Research Project Report, The University of Adelaide, 2014.
- [113] A.H. Gandomi, G.J. Yun, A.H. Alavi, An evolutionary approach for modeling of shear strength of RC deep beams, Mater. Struct. 46 (12) (2011) 2109–2119.
- [114] A.H. Gandomi, A.H. Alavi, M. Mousavi, S.M. Tabatabaei, A hybrid computational approach to derive new ground-motion attenuation equations, Eng. Appl. Artif. Intell. 24 (4) (2011) 717–732.
- [115] A. Baykasoglu, H. Gullub, H. Canakcıb, L. Ozbakırc, Prediction of compressive and tensile strength of limestone via genetic programming, Expert Syst. Appl. 35 (1–2) (2008) 111–123.
- [116] J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA, 1992.
- [117] H. Mefteh, O. Kebaïli, H. Oucief, L. Berredjem, N. Arabi, Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete, J. Clean. Prod. 54 (2013) 282–288.
- [118] AS3600-2009, Australian Standard for Concrete Structures, 2009. S.A, North Sydney.
- [119] ACI 318-11, Building Code Requirements for Structural Concrete and Commentary, PCA Notes on ACI 318-11: With Design Applications, ACI International, Farmington Hills, Mich, 2011.
- [120] Canadian Standard. C S A. A23.3-04, Design of Concrete Structures, Canadian Standard Association, 2004.
- [121] British Standards Institution, Eurocode 2: Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings, British Standards Institution, 2004
- [122] Japan Society of Civil Engineers, Standard Specification for Concrete Structure, JSCE, Tokyo, Japan, 2007.
- [123] Japanese Civil Institute, Guidelines for Control of Cracking of Mass Concrete 2008, Japan Concrete Institute, 2008.
- [124] New Zealand Standard, Concrete Structures Standard. NZS 3101:2006. The Design of Concrete Structures, 2006. Wellington, New Zealand.