١	<u>, </u>	/ 🗆 💃	_
诚	1=/	エュ	11-
M1X'		ᇄ	ш

编号:		
细 写:		

西北工业大学考试试题(卷)

2017-2018年第 1 学期

开	F课学院_	航	空学院	课程	程概	率论与数:	理统计	学时	48
夬	试 日期_	20	17.12.06	考证	、时间 <u>2</u>	小时	考试形	式(闭)	(A)卷
	题号			三	四	五.	六	七	总分
	得分								

- 一、填空(每空2分,共20分)
- 1. 10 把钥匙中有 4 把能打开门, 今任取 2 把, 能将门打开的概率为______
- 2. 设 A、B 是两个随机事件,已知 P(A) = 0.6, P(B) = 0.7 ,则 P(AB) 的最小值为 _____。
- 3. 二维离散型随机变量(X,Y)的联合分布律为

YX	1	2
0	1/8	1/4
1	3/8	1/4

则方差D(X+Y)=_____。

- 4. 设总体 X 的分布函数为 F(x),概率密度函数为 f(x),而 X_1, \dots, X_n 是来自总体 X 的一个样本,则最小次序统计量 $X_{(1)} = \min(X_1, \dots, X_n)$ 的概率密度函数为______。
- 5. 设随机变量 X , 其数学期望 E(X) = m 和方差 D(X) = m(>0) , 则由切比雪夫不等
- 注: 1. 命题纸上一般不留答题位置, 试题请用小四、宋体打印且不出框。
 - 2. 命题教师和审题教师姓名应在试卷存档时填写。

共4页 第1页

式可知 $P{0 < X < 2m} \ge _____$ 。

- 6. 设 $X_1, X_2, \dots, X_n, \dots$ 是独立同分布的随机变量序列,且具有数学期望 $E(X_k) = \mu$ 和 方差 $D(X_k) = \sigma^2 > 0 (k = 1, 2, \dots)$, 当 n 充分大时, $\frac{1}{n} \sum_{i=1}^n X_i^{\text{近似地}}$ ______。
- 7. 设 X_1, X_2, X_3, X_4 是来自总体 $N\left(0,\sigma^2\right)$ 的一个样本,其中 σ^2 已知,则统计量 $Y = \frac{(X_1 + X_2)^2}{(X_3 X_4)^2}$ 的分布为_____。
- 8. 己知随机变量 $X \sim b\big(6000, 1/6\big)$,则 $P\{X \ge 1050\} \approx$ ______。 (己知 $\Phi(\sqrt{3}) = 0.9584$)
- 9. 设 X_1, X_2, X_3, X_4 是来自指数分布总体 $X \sim \exp(\theta)$ (其中 θ 未知)的一个样本,可以得到参数 θ 的一些估计量: $\hat{\theta}_1 = \frac{1}{10}(X_1 + 2X_2 + 3X_3 + 4X_4)$, $\hat{\theta}_2 = \frac{1}{6}(X_1 + X_2) + \frac{1}{3}(X_3 + X_4)$ 和 $\hat{\theta}_3 = \frac{1}{4}(X_1 + X_2 + X_3 + X_4)$,其中最有效的估计量是_____。
- 10. 假设 H_0 :总体X的分布函数为 $F(x;\theta_1,\theta_2,\theta_3)$, $\theta_1,\theta_2,\theta_3$ 为未知参数。若将在 H_0 成立条件下X的所有可能取值的全体分为k个互不相交的子集 A_1,A_2,\cdots,A_k ,以 f_i 表示样本值 x_1,x_2,\ldots,x_n 中落入 A_i 的个数,且 H_0 为真时有 $\hat{p}_i=P(A_i)$,给定显著性水平 α ,则该假设检验问题的拒绝域为
- 二、(12分)假设有两箱球:第一个箱子中有40个红球和10个白球,第二个箱子中有30个红球和18个白球。现随机挑出一箱,然后从该箱子中取出1个球。试求:
- (1)该球为白球的概率。(2)若所取出的球是白球,试问此白球来自各箱的概率。

西北工业大学命题专用纸

三、(16分)设随机变量
$$X$$
 的概率密度函数为 $f(x) = \begin{cases} \frac{1}{3}e^x, & x \le 0 \\ \frac{1}{3}, & 0 < x \le 2 \\ 0, & x > 2 \end{cases}$

求(1)分布函数F(x)。

- (2) 概率 P(-3 < X < 1)。
- (3)数学期望E(X)。
- (4) $Y = e^X$ 的概率密度函数。

四、(18分)设二维随机变量(X,Y)的联合概率密度为 $f(x,y) = \begin{cases} 1, & 0 < |x| < y < 1 \\ 0, & else \end{cases}$

- (1) 求X与Y的相关系数。
- (2) 求随机变量 X 与 Y 的边缘概率密度函数。
- (3) 判断 *X* 与 *Y* 是否独立?
- (4) 求Y = y条件下X的条件概率密度函数 $f_{X|Y}(x|y)$ 。
- (5) 求Z = X Y的概率密度函数 $f_z(z)$ 。

五、(16 分) 设 X_1, X_2, \cdots, X_n 是来自总体 $X \sim N(0, \sigma^2)$ 的一个样本,其中 σ 未知。

- (1) 求 σ 的矩估计 $\hat{\sigma}_{M}$ 。
- (2) 求 σ^2 的最大似然估计 $\hat{\sigma}_{ME}^2$ 。
- (3) 判断 $\hat{\sigma}_{M}$ 是否为 σ 的相合估计?
- (4) 判断 $\hat{\sigma}_{MLE}^2$ 是否为 σ^2 的无偏估计和相合估计?

西北工业大学命题专用纸

六、(18 分)有甲乙两台机床生产同一型号的滚珠,根据已有经验,这两台机床生产的滚珠直径分别服从正态分布 $X \sim N(\mu_1, \sigma_1^2)$ 和 $Y \sim N(\mu_2, \sigma_2^2)$,其中 μ_1 , σ_1^2 , μ_2 和 σ_2^2 均未知,且两台机床工作相互独立。现从这两台机床生产的滚珠中分别抽取一些样本,测得滚珠直径如下(单位: mm):

甲机床: 15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8

乙机床: 15.2 15.0 14.8 15.2 15.0 15.1 14.8 15.0 14.8

- (1) 试求 μ 的置信水平为0.95 的置信区间。
- (2) 试检验 $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 \neq \sigma_2^2$ (取 $\alpha = 0.05$); 若能接受 H_0 ,接着检验 $H_0': \mu_1 = \mu_2$, $H_1': \mu_1 \neq \mu_2$ (取 $\alpha = 0.05$)。

 $(F_{0.025}(7,8)=4.5286$, $F_{0.025}(8,7)=4.8993$, $t_{0.025}(7)=2.3646$, $t_{0.025}(8)=2.3060$, $t_{0.025}(15)=2.1314$, $t_{0.025}(16)=2.1199$, $t_{0.025}(17)=2.1098$ 。) 小数点后保留 4 位

教务处印制 共 4 页 第 4 页

答题卡

一、填空			
1	2	3	
4.		5	
+. <u> </u>		S	
6	7	8	
0	10	>	