

the third multiplier performs a fixed multiplication by a factor of 2; and

the fourth and fifth multipliers multiply the applied data values by the values of normalized secondary interpolating instants d and $d/2$, respectively, the normalized secondary interpolating instant d being formed by normalizing a secondary interpolating instant t^*_{in} to the secondary sampling rate T^* , with $d = t^*_{in} / T^*$, and the secondary interpolating instant t^*_{in} being referred to the closest secondary sample value $[(ss, sp^*)]$.

3

6. (Amended) The filter combination according to claim 1, wherein a gang switch controlled by the normalized interpolating instant d_p and having at least a first switch position $[(p1)]$ and a second switch position $[(p2)]$ is interposed between the outputs of the discrete-time filter $[(1)]$ and the inputs of the continuous-time interpolation filter $[(2)]$.

7. (Amended) The filter combination according to claim 6, wherein the first switch position $[(p1)]$, the first, second, and third outputs of the discrete-time filter $[(1)]$ are connected, respectively, to the first, second, and third inputs of the continuous-time interpolation filter $[(2)]$, and wherein the second switch position $[(p2)]$, the second, third, and fourth outputs of the discrete-time filter $[(1)]$ are connected, respectively, to the

21