

INSTITUTE FOR STRUCTURE AND NUCLEAR ASTROPHYSICS NUCLEAR SCIENCE LABORATORY

Chiral Wobbling in ¹³⁵Pr

N. Sensharma¹, U. Garg¹, S. Frauendorf¹, J. Arroyo¹, J. L. Cozzi¹, K. B. Howard¹, S. Weyhmiller¹, S. Zhu², M. P. Carpenter², P. Copp², F. G. Kondev², J. Li², S. Stoltz², J. Wu², A. D. Ayangeakaa³, D. J. Hartley³, R. V. F. Janssens^{4,5}, Q. B. Chen⁶

¹Physics Department, University of Notre Dame, IN 46556, USA, ²Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA, ³Department of Physics, United States Naval Academy, Annapolis, MD 21402, USA, ⁴Department of Physics and Astronomy, University of North Carolina Chapel Hill, NC 27599, USA, ⁵Triangle Universities Nuclear Laboratory, Duke University, Durham, NC 27708, USA, ⁶Physik-Department, Technische Universität München, D-85747 Garching, Germany

Introduction

Triaxial nuclear shapes are very rare. Their experimental observation is aided by two fingerprints:

Wobbling - Harmonic oscillation of one of the principal axes about the space fixed J[1].

Signatures:

- $n_w = 0, 1, 2, \dots$ rotational bands
- $\Delta n_w = +1$ transitions
- Interband transitions are $\Delta I = 1$,

Fig. 1. Schematic of nuclear wobbling motion

No. of triple

coincidence events

1.5 x 10¹⁰

 1.0×10^{10}

Chirality – Occurs when the axis of rotation lies outside all the three principal planes of the triaxial rotor and the nucleus starts exhibiting handedness [2].

Signatures:

- Two $\Delta I = 1$ bands with same excitation energy and parity.
- Nearly constant staggering
- Identical B(M1)/B(E2) ratios

Fig. 2. Schematic of chiral rotation

Experimental Details

- Experiments performed using Gammasphere facility at Argonne National Laboratory.
- Reaction: 123Sb(16O,4n)135Pr at 80 MeV
- Target: 634 μg/cm² ¹²³Sb foil with a 15 μg/cm² front
 Al layer

Exp No.

No. of

detectors

63

Fig. 3. Gammasphere array at ANL

Level Scheme

Fig. 4. Partial negative parity level scheme for ¹³⁵Pr. The colors blue, magenta and red indicate pure E2, pure M1 and mixed M1+E2 transitions respectively.

Results

Fig. 5. (a) Excitation energies, (b) Staggering parameter and (c) Reduced transition probability ratios for Dipole Bands 1 and 2.

Fig. 6. Angular distribution plots for Dipole Band 2 → Dipole Band 1 transitions.

Interpretation

Transverse wobbling:

• Odd $(\pi h_{11/2})^1$ aligns with the short (s) axis of the triaxial rotor.

Chiral wobbling:

- Two additional $(vh_{11/2})^{-2}$ align with the long (I) axis.
- Net angular momentum generated in the s-l plane.
- Collective R precesses along this axis.
- Collective excitation of the wobbling type.

Fig. 4. Schematic of (a) Transverse wobbling and (b) Chiral wobbling in ¹³⁵Pr.

The simultaneous observation of wobbling and chirality in a triaxial nucleus has never been done before.

Conclusion and Future Work

- 135Pr is the first possible case of Chiral wobbling.
- High statistics angular distribution measurements performed.
- Analysis ongoing to extend Dipole bands 1 and 2 and find more connecting transitions.
- Calculations in the framework of the Particle Rotor Model (PRM) being done to affirm experimental observations.

References

[1] S. Frauendorf, F. Dönau, Phys. Rev. C 89 (2014) 014322.

[2] S. Frauendorf and J. Meng, Nucl. Phys. A617, 131 (1997)

NSF PHY-1713857

