

基于结构的药物设计(三)

——分子对接技术之半柔性对接

药学院邹毅

Email: zouyi@cpu.edu.cn

分子对接的一般操作流程

大分子初始构象获取及预处理

大分子结构获取

- · PDB数据库获取(选择分辨率高、有小分子配体的结构)
- 同源模建

大分子结构预处理

- 蛋白结构检测(去除非必须单元,主、侧链修复等)
- 水分子的去留
- 质子化状态确定

蛋白结构准备

- 1、去除晶胞(Structure—Crystal cell—Remove cell)
- 2、蛋白结构准备(去除非必须元素,水分子处理等;加氢,加电荷,主、侧链修复、质子化状态确定等)

Macromolecules

3、准备好后会弹出新窗口"3GEN_prep"

定义结合位点

• 定义晶体结构中的小分子所在位置为结合位点

1、在准备好的蛋白里选中小分子

2、定义活性位点/

注意准备好的大分子窗口对应的名称: 3GEN_prep

点击 "From current selection" 后出现,表示球状的活性位点

小分子结构准备及能量优化(以重对接为例)

- 1、获取小分子(可直接在DS visualizer 中画或从第三方软件中导入)
 - (1) 如从第三方软件中画好后粘贴至
- DS. 需先在DS中新建标签页. 再在工

(2) 如重对接,直接将3GEN prep的

小分子剪切到新窗口"Molecule"

Files 🔣

Tools 🛛 Protocols 🖂

Prepare or Filter Ligands

Use the Filter dialog to perform basic filtering of molecules in the Data Table, or

Sketch Molecules

Prepare Ligands..

Filter by Property...

Build Fragment

Prepare

小分子结构准备及能量优化(以重对接为例)

新出现的窗口,注意该窗口对应的名称: Molecule (1)

1、计算结束后会自动出现新的窗口,并出现如下对话框,点击OK

2、准备好的小分子 的三维结构

- 3、小分子的能量优化
- (1) Simulation-Change
 Forcefield-Apply Forcefield
- (2) Simulation-Run
 Simulations-Minimization
- (3) 出现对话框,点击OK,可以发现小分子构象出现了 微小变化

分子对接

准备好小分子,并定义好大分子的活性位点后,接下来就是分子对接了

• 确保当前窗口为准备好的大分子,即3GEN prep。

Parameter Value

3GEN_prep:3GEN

-17.0041, 6.71975, -15.0922, 9.738

Molecule-(1):All

High Quality

Smart Minimizer

Help

100

0.25

FAST

False

• 展开Ligand-Receptor Interactions模块下的Dock Ligands,设置好参数后点击Run即可进行对接计算

活性位点参数

· 如选择LibDock算法, 参数设置如下:

Dock Ligands (LibDock)

Input Receptor

Input Ligands

Advanced Parallel Processing

Show Parameter Help

Options V

Cancel

Input Site Sphere

Number of Hotspots

Docking Preferences

Conformation Method

Minimization Algorithm

Docking Tolerance

构象产生

能量优化算法

Parameter Name

• 如选择CDOCKER算法,参数设置如下: Dock Ligands (CDOCKER) Parameter Name Parameter Value Input Receptor 3GEN prep:3GEN Input Ligands Molecule-(1):All ■ Input Site Sphere -17.0041, 6.71975, -15.0922, 9.73833 Top Hits 10 Random Conformations 10 Orientations to Refine 10 Simulated Annealing True Advanced Parallel Processing False Show Parameter Help Options V Cancel Help

分子对接

· 对接完成后会自动新建新的窗口,LibDock如下图:

1、为了便于观察,可先取消活性位点显示的红球

2、非键相互作用分析

Receptor-Ligand Interactions

- 3、比较小分子的对接构象与晶体构象
- 把保存在Molecule中的分子复制粘贴到对接结果的 窗口3GEN中:
- 为了便于观察,设置晶体构象为棒状模型,绿色

• 重对接结果分析

方法一: 肉眼观察

第一个pose

第二个pose

• 重对接结果分析

方法二: RMSD值计算

1、新建窗口,自动命名为"Molecule(2)",将对接结果中的对接pose连同参考分子一同复制粘贴到新窗口中,注意最后一个为参考分子(即原晶体结构中的小分子配体)

2、设置参考: 选中参考分子, 依次选择Structure-RMSD-Set Reference

3、计算RMSD的分子:在需要计算的pose边上打勾(这里假设计算前十个pose),并确保呈选中状态,

依次选择Structure-RMSD-Heavy Atoms

• 重对接结果分析

方法二: RMSD值计算

4、弹出新窗口"3GEN - RMSD Report"

- 对对接结果进行重打分
- 1、窗口切换到对接结果,选择Score Ligand Poses; 2、计算完后弹出另一个"3GEN"窗口

- 定量分析对接结果pose
- 1、窗口切换到对接结果,选择Protocols下的Analyze Ligand Poses; 2、计算完后双击任务结果弹出另一个"Molecule (3)"窗口及结果页面

• 分析对接结果pose

1、窗口切换到对接结果,选择Protocols下的Analyze Ligand Poses; 2、计算完后双击任务结果弹出另一个"Molecule (3)"窗口及结果页面 相互作用图

Residue Interaction Histograms

实验报告(鼓励使用自己找的晶体结构):

- (1) 使用CDOCKER进行重对接并分析对接结果
- (2) 比较LibDock和CDOCKER的对接结果(RMSD值),选择最佳对接算法
- (3) 选择最佳对接算法进行新化合物的设计,并进行对接研究,分析对接结果

$$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$