Choice of Metrics in ML-Based Forecasting of Ingredients in Retail

Student: Vorobeva Tatiana

Supervisors:

- Polina Polunina, visiting lecturer, Big Data and Information Retrieval Department, Faculty of Computer Science;
 Specialist McKinsey and Co
- Sarkis Grigoryan, Head of Competence center for Artificial Intelligence at Digital Economy Development Fund

Agenda

- 1. Introduction
 - Topic relevance
 - Business problem statement
 - Research objectives
- 2. Metrics classification and calculation
- 3. Experiments description
 - Data description & preprocessing
 - Model choice
 - Metrics exploration
- 4. Conclusion

Introduction Topic relevance

Recent changes in retail / QSR* landscape

Increased importance of operational efficiency due to turbulent economic situation

Need to track model quality & adjust accordingly to changing factors

Limited number of case studies on forecast accuracy metrics

Retail turnover, %

Introduction

Business problem statement (1/2)

Data for this research was provided by "Teremok" company

- Chain of quick service restaurants, specializing on Russian cuisine
- 165 restaurants located in Moscow, Saint-Petersburg and Krasnodar
- Employs over 5000 people

Introduction

Business problem statement (2/2)

Forecasting model structure

INPUT

Data for the last 14 days:

- Stock
- Consumption
- Write-offs
- Sales stop

OUTPUT

Order of ingredients for next day:

 Number of boxes of each ingredient

Key features of procurement process:

- 1. Orders are placed by each restaurant for next day
- 2. Ingredients are ordered **by boxes**
- Lost sales driven by out-of-stocks lead to higher profit losses than potential write-offs of excessive ingredients

Introduction

Research objectives

Research objectives:

- 1. Identify the most applicable ML-based forecasting model based on current business process and specifics of data
- 2. Propose a set of metrics which would enable more efficient model quality and business risk monitoring

Methods:

Overview of **related work and theoretical concepts**, mathematical **modelling**, **analysis of formal outcomes and** their translation into **recommendations** for business

Methodology

Metrics classifications

Makridakis and Hibon (1995)

1° dimention:

- Absolute
- Relative to a base or other method
- Relative to the size of errors

2° dimention:

- Single method
- More than one method
- In comparison to some benchmark

Hyndman (2006)

- Scale-dependent (e.g. MAE, GMAE);
- Percentage-error (e.g. MAPE);
- Relative-error (e.g. MdRAE, GMRAE);
- Scale-free error (e.g. MASE)

Botchkarev (2019)

- Primary
 - Plus typology across 3 key components
- Extended
- Composite
- Hybrid

Methodology

Key metrics overview

	MAE	MdAE	MSE	RMSE	BIAS	MAPE	MdAPE	WAPE
Туре	Absolute			Percentage-based				
Calculation	$\frac{1}{n} \sum_{t=1}^{n} y_t - \hat{y}_t $	$ \underset{t=1n}{\operatorname{median}}(y_t - \hat{\mathbf{y}}_t) $	$\frac{1}{n}\sum_{t=1}^n(y_t-\hat{\mathbf{y}}_t)^2$	$\sqrt{\frac{1}{n}\sum_{t=1}^{n}(y_t - \hat{\mathbf{y}}_t)^2}$	$\frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y}_t)$	$\frac{1}{n} \sum_{t=1}^{n} \frac{ y_t - \hat{y}_t }{y_t}$	$\underset{t=1n}{\text{nedian}} \left(\frac{ y_t - \hat{y}_t }{y_t} \right)$	$\frac{\sum_{t=1}^{n} y_t - \hat{y}_t }{\sum_{t=1}^{n} y_t }$
Aggregation	Mean	Median	Mean	Mean	N/A	Mean	Median	Weighted Mean
Comparability across scales	-	-	-	-	+/-	+	+	+
Resistance to outliers	-	+	-	-	-	-	+	+
Handling zero observations	+	+	+	+	+	-	-	+

Source: compiled by author based on [4], [5]

ExperimentsData description

Restaurants

Time period

Features

- 9 restaurants
- 3 groups (with high / medium / low turnover)
- By 3 restaurants in each group

- Daily data
- 2 years

- Ingredient id
- Stock
- Consumption
- Write-offs
- Sales stop
- Packaging coefficient

ExperimentsData description

Explorative analysis of the dataset showed the following specifics:

- 1. Presence of outliers
- 2. Difference in KPIs by groups of restaurants

Features distribution

ExperimentsData description

Explorative analysis of the dataset showed the following specifics:

- 1. Presence of outliers
- 2. Difference in KPIs by groups of restaurants

Mean consumption and wrote-off by groups of restaurants

Data preprocessing and target calculation (1/2) To build a model we preprocessed given dataset:

- **1. Observations** were grouped into 14-day periods
- 2. Actual **number of consumed boxes** of ingredients was calculated
- 3. Categorical feature (item_id) was encoded (OHE)
- 4. Target was calculated as ideal number of boxes to order on day D

Ideal order on day D allows to have stock of ingredient at the end of the day equal to half the consumption by 12:00 on day D+1

Actual vs 'ideal' number of boxes, %

Data preprocessing and target calculation (2/2)

- For modelling: logarithm from target as input
- For forecasting: inverse transformation
- A 'tail' in target distribution is observed, which mostly consists of items-outliers

Distribution of target value, %

Choice of model

	SVM (RBF)	KNN	Random Forest	LightGBM	CatBoost
R2	0.29	0.22	0.86	0.87	0.87
Spearman	0.39	0.70	0.89	0.89	0.90
RMSE	122.66	129.09	53.64	53.34	52.34
MAPE	94.17	94.43	46.37	44.12	42.07

3000 4000

Best result

Experiments

Choice of model

	SVM (RBF)	KNN	Random Forest	LightGBM	CatBoost
R2	0.29	0.22	0.86	0.87	0.87
Spearman	0.39	0.70	0.89	0.89	0.90
RMSE	122.66	129.09	53.64	53.34	52.34
MAPE	94.17	94.43	46.37	44.12	42.07

ExperimentsChoice of model

Permutation importance test

Metrics for CatBoost with default vs optimized hyperparameters

metric	Default	Optimized
R2	0.87	0.87
Spearman	0.90	0.90
RMSE	52.34	52.52
MAPE	42.07	40.83

Forecast accuracy metrics analysis (1/2)

- Absolute errors (MAPE, MAE and BIAS) are very vulnerable to outliers.
- **Median errors** (MdAPE, MdAE) and **WAPE** provide more **coherent estimations**.
- Custom metric <u>Median under-order</u> was calculated as: median value of all cases, when forecasted number of boxes to order was below actually consumed.

metric	all sample	without outliers
MAPE (mean)	40.8	19.4
MdAPE (median)	14.2	13.7
MAE (mean)	6.83	0.89
MdAE (median)	0.63	0.57
BIAS	2.86	0.18
WAPE	24.5	21.9
Median under-order	-0.03	-0.03

Forecast accuracy metrics analysis (2/2)

- Scale-free (absolute) errors tend to be lower for group of restaurants with low turnover, which might be explained by overall lower off-takes.
- Percent-based errors like MAPE, MdAPE, WAPE tend to show more coherent results.

metric	high	medium	low
MAPE (mean)	37.6	31.9	47.2
MdAPE (median)	13.5	14.5	13.3
MAE (mean)	8.69	7.39	4.78
MdAE (mean)	0.95	0.64	0.37
BIAS	2.6	2.37	2.53
WAPE	18.3	23.9	30.3
Median under-order	-0.06	-0.04	-0.02

Conclusion

Model testing:

- Several models were tested (SVR with different kernels, KNN, Random Forest, Gradient Boosting (LightGBM, CatBoost).
- CatBoost showed best results on total sample and sub-samples.

Metrics exploration:

- A set of standard metrics was calculated.
- Custom metric was proposed.
 - In case of outliers in data median errors are more robust.
 - Absolute errors have more physical sense and can be easily converted to profit losses (mind outliers).
 - If business process requires certain conditions to be met a custom metric might be used (mind outliers).

Recommendation: a combination of metrics (e.g. MdAPE, BIAS and Median under-order). It also might be helpful for "Teremok" to approximate forecast errors to lost profits or extra losses.

Thank you!