SLOW-SWAN MODEL (PART I)

Juan Carlos Munoz-Mora

Universidad EAFIT 2020

COMPETITION

(proposal)

SPANISH VS ENGLISH

- Winner +0.06 in the overall RAP
- Loser -0.01 in the overall RAP

LEARNING BY CONTEXT - POSTWAR ECONOMY

- Productivity
- Technology
- Consumption
- Labor!!

WHAT DID WE KNOW ABOUT LONG TERM GROWTH AT THAT TIME?

- The main model was the HD model?
 - Fixed Output-Labor ratio
 - No role of knowledge
 - No productivity
- Believe or not, Ramsey already had the model (no used).
- It was not enough to explain what was happening

SOME UNASWERED QUESTIONS USING THE HD

- What was the role of technological change?
- What is the role of productivity?
- Where is the knowledge accomulation?
- Population growth?

THEANSWER

Robert Solow (1924)

- 1941, Solow left the university and joined the U.S. Army (until August 1945)
- RA of Leontief

- A very simple model of long-term growth. Robert Solow and Trevor Swan in 1956
- Fits pretty well the US data at that point

THE BASICS

ROBISON CROUSE ECONOMY

- Closed Economy
- No government purchases of goods and services.
- One sector economy (eat or produce)
- Production = Income

PRODUCTION FUNCTION - TREE MAIN INGREDIENTS:

- Capital K(t)
 - such as machines, buildings, pencils, and so on (Rival good)
- Labor L(t)
 - the number of workers and the amount of time they work, as well as their physical strength, skills, and health (Rival Good)
 - Population (growths) $\rightarrow L(t) = e^{nt}$
- knowledge or technology T(t)
 - Workers and machines cannot produce anything without a formula or blueprint that shows them how to
- do it. (Rival Good)

WHAT DOES THIS ECONOMY PRODUCE FOR? Y(t)

- Consumption C(t)
- Investment I(t)
 - Investment is used to create new units of pyshical capital $\uparrow K(t)$
 - Replace old, depreciated capital (How does it happen? next)

$$Y(t) = C(t) + I(t)$$

Moreover, we know that $S(t) \equiv Y(t) - C(t)$

•
$$S(t) \equiv Y(t) - C(t) = I(t)$$

ENDOGENOUS SAVING RATE/INVESTMET RATE

- s(.) the fraction of production that is save
 - $\rightarrow s(.)Y(t) = S(t)$
- \Rightarrow (1 s(.)) is the fraction of consumed
- Y(t) = C(t) + I(t) = (1 s(.))Y(t) + s(.)Y(t) = Y(t)

HOW THIS SAVING RATE IS DERIVED?

Rational households choose the saving rate by comparing the costs and benefits of consuming today rather than tomorrow; this comparison involves preference parameters and variables that describe the state of the economy, such as the level of wealth and the interest rate.

It is assumed exogenous.

WHAT ABOUT K(t)

As all machines, buildings, pencils, and so on might get older we need to introduce depreciation.

- it depreciates at the constant $\delta > 0$
- → a constant fraction of the capital stock wears out and, hence, can no longer be used for production.

Then,

$$\frac{\delta K}{\delta t} = \dot{K}(t) = I(t) - \delta K(t) = sF[K(t), L(t), T(t)] - \delta K(t)$$

Let's make a diagram of the basic model!

WHAT DO WE NEED TO MAKE THIS MODEL WORK?

a "well behaved" production function

what does it means that F(K, L, T) is a 'well behaved function'?

0 - CONSTANT RETURNS TO SCALE

$$F(\lambda K, \lambda L, T) = \lambda F(K, L, T)$$

homogeneous function $\rightarrow f(\alpha v) = \alpha^k f(\alpha v)$ where k = 1

- Intuition: an increase in inputs (capital and labour) cause the same proportional increase in output.
- Lets make a graph (45 degree)

1 - POSITIVE AND DIMINISHING RETURNS TO PRIVATE INPUTS.

 $\forall K>0$ and L>0, F(.) exhibits positive and diminishing marginal products with respect to each input:

$$\frac{\delta F}{\delta K} > 0$$
 and $\frac{\delta^2 F}{\delta K^2} < 0$

$$\frac{\delta F}{\delta L} > 0$$
 and $\frac{\delta^2 F}{\delta L^2} < 0$

Intuition

2 - INADA CONDITIONS

marginal product of capital (or labor) approaches infinity as capital (or labor) goes to 0 and approaches 0 as capital (or labor) goes to infinity:

$$\lim_{k \to 0} \left(\frac{\delta F}{\delta K} \right) = \infty$$

$$\lim_{l \to 0} \left(\frac{\delta F}{\delta L} \right) = \infty$$

$$\lim_{k \to \infty} \left(\frac{\delta F}{\delta K} \right) = 0$$

$$\lim_{l \to \infty} \left(\frac{\delta F}{\delta L} \right) = 0$$

Intuition

3 - ESSENTIALITY

Each input is essential for production

$$F(0, L) = F(K, 0) = 0$$

Intuition

LAST PRELIMINARIES

INFORMATION PER-CAPITA

$$Y = F(K, L, T)$$
 if we multiplicate $\frac{1}{L}$ (per capita)
$$\frac{Y}{L} = y = \frac{1}{L}F(K, L, T) = F(\frac{K}{L}, 1, T) = f(k)$$
 or, $Y = Lf(k)$

intensive form (that is, in per worker or per-capita form) of production function.

WHAT DOES IT IMPLY FOR THE CAPITAL ACCUMULATION?

We know that:

$$\frac{\delta K}{\delta t} = \dot{K}(t) = I(t) - \delta K(t) = sF[K(t), L(t), T(t)] - \delta K(t)$$

Then,

•
$$\dot{k} = \frac{\delta k}{\delta t} = \frac{\delta \frac{K}{L}}{\delta t} = sf(k) - (\delta + n)k$$

NOW, WE ARE READY!

THE SOLOW-SWAN MODEL

(in action)

STEADY STATE

- a situation in which the various quantities grow at constant (perhaps zero) rates.
- Slow-Swan Model $\rightarrow sf(k^*) = (n + \delta)k^*$ --> Intuition?
- the per capita quantities k, yy, and c do not grow in the steady state.

BASIC COMPARATIVE STATICS

THE GOLDEN RULE OF CAPITAL ACCUMULATION

- At steady-state $c^* = (1 s)f(k^*)$
- we know that $sf(k^*) = (n + \delta)k^*$
- Then, $c^* = f(k^*) (n + \delta)k^*$
- $max(c^*)$

THE GOLDEN RULE OF CAPITAL ACCUMULATION.

Next Class - Readings

** Reading Chapter 2

- Cobb-douglas
- 1.2.12 Technological Progress

