	Properties & Confinement.
).	Birary Predicate Properties. 1) Symmetry: anything stands in a relationship of the predicate stands
	in the opposite as well. i.e.
	a touches b b touches a (symmetry). 2) Transitivity:
	3) Reflexivity: anything stands in a relationship of itself. i.e. Π^2 is reflexive iff $\forall \lambda \in \Pi(\lambda \lambda)$. e.g. real is the same color of red.
	e.g. Ix Iy (R(xy) /x +y). Yx Yy(R(xy) -> R(yx)). Yx Yy Yz (R(xy) / R(yz) -> R(xxy). :. Yx R(xxx) Invalid.
	Pr]: some pair in R and the member in pair one not the same. Pr]: if (x,y) in R then (y,x) in R. (Symmetry). Pr3: if (x,y) and (y,2) in R, then (x,2) in R. (Transtive).
	$NC: N \forall x R(xx) (\text{not reflexive}) = \exists x N R(xx).$ There is 8th. in UD that not (x, x) .
	$VD: \{0, 1, 2\}$ O noting since its for all, x might be same $R: \{(0, 1), (1, 0), (0, 0), (1, 1)\}$ as $a \in \mathbb{R}$ and $a \in \mathbb{R}$ are the same $a \in \mathbb{R}$ a

