

PyTorch

https://pytorch.org/

Open Source - Deep Learning Frameworks

Why do we need a special Deep Learning Framework?

Python code for Neural Network


```
NSE talent Sprint IIIT Hyderabad
```

```
def build model(nn hdim, num passes=20000, print loss=False):
   np.random.seed(0)
   W1 = np.random.randn(nn input dim, nn hdim) / np.sqrt(nn input dim)
   bl = np.zeros((1, nn hdim))
   W2 = np.random.randn(nn hdim, nn output dim) / np.sqrt(nn hdim)
   b2 = np.zeros((1, nn output dim))
   # This is what we return at the end
   model = {}
   # Gradient descent. For each batch...
   for i in range(0, num passes):
       # Forward propagation
       z1 = X.dot(W1) + b1
       al = np.tanh(z1)
       z2 = al.dot(W2) + b2
       exp scores = np.exp(z2)
       probs = exp scores / np.sum(exp scores, axis=1, keepdims=True)
       # Backpropagation
       delta3 = probs
       delta3(range(num examples), y) -= 1
       dW2 = (al.T).dot(delta3)
       db2 = np.sum(delta3, axis=0, keepdims=True)
       delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2))
       dW1 = np.dot(X.T, delta2)
       db1 = np.sum(delta2, axis=0)
       # Add regularization terms (bl and b2 don't have regularization terms)
       dW2 += reg lambda * W2
       dW1 += reg lambda * W1
       # Gradient descent parameter update
       W1 += -epsilon * dW1
       b1 += -epsilon * db1
       W2 += -epsilon * dW2
       b2 += -epsilon * db2
       # Assign new parameters to the model
       model = { 'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}
       # Optionally print the loss.
       # This is expensive because it uses the whole dataset, so we don't want to do it too often.
       if print loss and i % 1000 == 0:
           print("Loss after iteration %i: %f" %(i, calculate_loss(model)))
   return model
```

```
# Helper function to evaluate the total loss on the dataset
 def calculate loss(model):
     W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
     # Forward propagation to calculate our predictions
     z1 = X.dot(W1) + b1
     al = np.tanh(z1)
     z2 = a1.dot(W2) + b2
     exp scores = np.exp(z2)
     probs = exp scores / np.sum(exp scores, axis=1, keepdims=True)
     # Calculating the loss
     corect logprobs = -np.log(probs[range(num examples), y])
     data loss = np.sum(corect logprobs)
     # Add regulatization term to loss (optional)
     data loss += reg lambda/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2)))
     return 1./num examples * data loss
# Helper function to predict an output (0 or 1)
def predict(model, x):
    W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
    # Forward propagation
    z1 = x.dot(W1) + b1
    al = np.tanh(z1)
    z2 = al.dot(W2) + b2
    exp scores = np.exp(z2)
    probs = exp scores / np.sum(exp scores, axis=1, keepdims=True)
    return np.argmax(probs, axis=1)
```


And finding the gradients!!

Standard Deep Learning Framework

Computational graphs

Numerical Examples

$$\begin{split} f(x,y,z) &= \sigma(w_0x_0 + w_1x_1 + b) \\ \sigma(x) &= \frac{1}{1 + e^{-x}} \\ \frac{d\sigma(x)}{x} &= \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{(1 + e^{-x})}\right) \left(\frac{1}{(1 + e^{-x})}\right) \\ \frac{d\sigma(x)}{x} &= (1 - \sigma(x))(\sigma(x)) \end{split}$$

From Stanford Course: Convolutional Neural Networks for Visual Recognition

What is computational graph?

 A directed graph, where every node represents a mathematical operation and edges represent the variables which are to be operated.

$$f(x, y, z) = (x + y)z$$

$$eg: x = -2, y = 5, z = -4$$

Types of Computational Graphs

Static

Cannot add nodes at runtime

Building graph is separated from execution

Dynamic

Allows addition of nodes at runtime

Every execution there is a new graph

Standard Deep Learning Framework

Build and operate Computational Graphs

Auto-differentiation

Compute and take derivatives of huge composition functions

Standard Deep Learning Framework

Build and operate Computational Graphs

Auto-differentiation

Parallelizing on GPU

Parallelizing

GPU Many cores

Standard Deep Learning Framework

Build and operate Computational Graphs

Perform forward and backward propagation

Parallelizing on GPU

Provide with Standard
Architectures and other widely
used primitives

FAIR (Facebook Artificial Intelligence Research)

Based on Torch

Dynamic Computational graph

Easy to implement, debug, Developer Friendly

Tensor computation with strong GPU acceleration

Efficient Memory Usage

Basics of Pytorch

The building blocks

Variables

- A Variable class wraps a tensor. You can access this tensor by calling .data attribute of a Variable.
- The Variable also stores the gradient of a scalar quantity (say, loss) with respect to the parameter it holds. This gradient can be accessed by calling the .grad attribute.
- The third attribute a Variable holds is a grad_fn, a Function object which created the variable.
 - c = a + b. Then c is a new variable, and it's grad_fn is something called AddBackward

The building blocks

Tensors

Like Numpy arrays but can run on GPU


```
import torch

dtype = torch.cuda.FloatTensor

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in).type(dtype)
y = torch.randn(N, D_out).type(dtype)
w1 = torch.randn(D_in, H).type(dtype)
w2 = torch.randn(H, D_out).type(dtype)
```


The building blocks

Variables are nodes in a computational graph which store the data and gradient

Variables

```
import torch
from torch.autograd import Variable

N, D_in, H, D_out = 64, 1000, 100, 10
x = Variable(torch.randn(N, D_in), requires_grad=False)
y = Variable(torch.randn(N, D_out), requires_grad=False)
w1 = Variable(torch.randn(D_in, H), requires_grad=True)
w2 = Variable(torch.randn(H, D_out), requires_grad=True)
```


Difference

```
import torch
dtype = torch.FloatTensor
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in).type(dtype)
y = torch.randn(N, D_out).type(dtype)
w1 = torch.randn(D in, H).type(dtype)
w2 = torch.randn(H, D out).type(dtype)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad wl = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

```
import torch
from torch.autograd import Variable
N, D in, H, D_out=64,1000,100,10
x=Variable(torch.randn(N, D in), requires grad=False)
y=Variable(torch.randn(N, D_out), requires_grad=False)
w1=Variable(torch.randn(D_in,H), requires_grad=True)
w2=Variable(torch.randn(H, D out), requires grad=True)
learning rate=1e-6
for t in range(500):
    y pred=x.mm(w1).clamp(min=0).mm(w2)
    loss=(y pred-y).pow(2).sum()
    loss.backward()
    w1.data-=learning rate*w1.grad
    w2.data-=learning_rate*w2.grad
   w1.grad.data.zero ()
   w2.grad.data.zero ()
```


Neural Network

torch.nn

NN module

Higher-level wrappers for working with neural nets

- Layers
- Activation Functions
- Loss functions

Other layers: Dropout, Linear, Normalization Layer

NN Block Diagram

X, Y dataloader

Architecture

+

Forward Pass Computation

Loss (Y, y_pred)

```
class Net(nn.Module):
   def __init__(self):
        super(Net, self). init ()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.mp = nn.MaxPool2d(2)
       self.fc = nn.Linear(320, 10) # 320 -> 10
   def forward(self, x):
       in size = x.size(0)
       x = F.relu(self.mp(self.conv1(x)))
       x = F.relu(self.mp(self.conv2(x)))
       x = x.view(in_size, -1) # flatten the tensor
       x = self.fc(x)
       return F.log softmax(x)
```

torch.nn.Conv2d(in_channels, out_channels, kernel_size, ...) torch.nn.MaxPool2d(kernel_size, ...)

NN Block Diagram

X, Y dataloader

Architecture +

Forward Pass Computation

Loss (Y, y_pred)

```
import torch
import torch.nn as nn
class Net(nn.Module):
    def init (self, input size, hidden size, num classes):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)
        self.softmax = nn.Softmax(dim=1)
        #Weight Initialization
        for m in self.modules():
            if isinstance(m,nn.Linear):
                weight init.xavier normal (m.weight)
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.softmax(out)
        return out
N, D_in, H, D_out = 64, 1000, 100, 10
net=Net(D in, H, D out)
criterion=nn.CrossEntropyLoss()
```



```
X, Y
 dataloader
Architecture
                         New Weights
Forward Pass
Computation
                          Optimizer
Loss (Y, y_pred)
                          Gradients
                            Update
```

```
import torch
import torch.nn as nn
class Net(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(input size, hidden size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)
        self.softmax = nn.Softmax(dim=1)
        #Weight Initialization
        for m in self.modules():
            if isinstance(m,nn.Linear):
                weight init.xavier normal (m.weight)
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.softmax(out)
        return out
N, D in, H, D out = 64, 1000, 100, 10
net=Net(D_in, H, D_out)
criterion=nn.CrossEntropyLoss()
X=torch.randn(N, D in)
y=torch.randn(N, D_out)
train_loader=Dataloader(TensorDataset(X,y), batchsize=8)
```



```
X, Y
 dataloader
Architecture
                         New Weights
Forward Pass
Computation
                          Optimizer
Loss (Y, y_pred)
                          Gradients
                            Update
```

```
use cuda = torch.cuda.is available()
device = torch.device("cuda" if use_cuda else "cpu")
import torch
import torch.nn as nn
class Net(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(Net, self). init ()
        self.fc1 = nn.Linear(input size, hidden size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden size, num classes)
        self.softmax = nn.Softmax(dim=1)
        #Weight Initialization
        for m in self.modules():
            if isinstance(m,nn.Linear):
                weight init.xavier normal (m.weight)
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.softmax(out)
        return out
N, D_in, H, D_out = 64, 1000, 100, 10
net=Net(D_in, H, D_out)
criterion=nn.CrossEntropyLoss()
X=torch.randn(N, D in)
y=torch.randn(N, D out)
train loader=Dataloader(TensorDataset(X,y), batchsize=8)
optimizer = torch.optim.SGD(net.parameters(), lr=learning rate)
net = net.to(device)
```



```
class Net(nn.Module):
                                                                               def __init__(self, input_size, hidden_size, num_classes):
                                                                                   super(Net, self).__init__()
                                                                                   self.fc1 = nn.Linear(input size, hidden size)
       X, Y
                                                                                   self.relu = nn.ReLU()
                                                                                   self.fc2 = nn.Linear(hidden size, num classes)
                                                                                   self.softmax = nn.Softmax(dim=1)
  dataloader
                                                                                   #Weight Initialization
                                                                                   for m in self.modules():
                                                                                       if isinstance(m,nn.Linear):
                                                                                           weight init.xavier normal (m.weight)
                                                                               def forward(self, x):
                                                                                   out = self.fc1(x)
                                                                                   out = self.relu(out)
                                                                                   out = self.fc2(out)
 Architecture
                                                                                   out = self.softmax(out)
                                                                                    return out
                                      New Weights
                                                                           N, D_in, H, D_out = 64, 1000, 100, 10
Forward Pass
                                                                           net=Net(D_in, H, D_out)
                                                                            criterion=nn.CrossEntropyLoss()
Computation
                                                                           X=torch.randn(N, D in)
                                                                           y=torch.randn(N, D_out)
                                                                            train loader=Dataloader(TensorDataset(X,y), batchsize=8)
                                                                            optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)
                                                                            net = net.to(device)
                                                                            for epoch in range(num_epochs):
                                         Optimizer
                                                                               for i, (images, labels) in enumerate(train_loader):
                                                                                   images = images.view(-1, 28*28)
                                                                                    labels = labels
                                                                                   images, labels = images.to(device), labels.to(device)
Loss (Y, y_pred)
                                         Gradients
                                                                                   optimizer.zero_grad()
                                                                                   outputs = net(images)
                                                                                   loss = criterion(outputs, labels)
                                                                                   loss.backward()
                                          Update
                                                                                   optimizer.step()
```


NN Training (alternate)

PyTorch

Neural networks library deeply integrated with autograd designed for maximum flexibility **Important Packages:** a Tensor library like NumPy, with strong GPU support torch. torch. torch.nn torch optim autograd Auto differentiation library that Optimization package with standard optimization all differentiable Tensor methods such as SGD, RMSProp, LBFGS, Adam etc. supports operations in torch

Computation on GPU

Computational Graph: GPU

```
class Net(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)
        self.softmax = nn.Softmax(dim=1)
        #Weight Initialization
        for m in self.modules():
            if isinstance(m,nn.Linear):
                weight init.xavier normal (m.weight)
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.softmax(out)
        return out
N, D_in, H, D_out = 64, 1000, 100, 10
net=Net(D_in, H, D_out)
criterion=nn.CrossEntropyLoss()
X=torch.randn(N, D in)
y=torch.randn(N, D_out)
train loader=Dataloader(TensorDataset(X,y), batchsize=8)
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)
net = net.to(device)
for epoch in range(num epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.view(-1, 28*28)
        labels = labels
       images, labels = images.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = net(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
```


Computational Graph: Pytorch

CPU vs GPU

CPU vs GPU

	# Cores	Clock Speed	Memory	Price
CPU (Intel Core i7-7700k)	4 (8 threads with hyperthreading)	4.4 GHz	Shared with system	\$339
CPU (Intel Core i7-6950X)	10 (20 threads with hyperthreading)	3.5 GHz	Shared with system	\$1723
GPU (NVIDIA Titan Xp)	3840	1.6 GHz	12 GB GDDR5X	\$1200
GPU (NVIDIA GTX 1070)	1920	1.68 GHz	8 GB GDDR5	\$399

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks

Thanks!!

Questions?