

Test 3 2015 The mole Question/Answer Booklet

Student Name	
Class (Teacher)	

Section	Mark	
One	/20	
Two	/32	
Total	/52	
	%	

Time allowed for this paper

Working time for paper: 50 minutes

Material required/recommended for this paper

To be provided by the supervisor

This Question/Answer booklet Multiple-choice Answer sheet Chemistry Data sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener,

correction fluid/tape, eraser, ruler, highlighters

Special items: non-programmable calculators approved for use in the WACE

examinations

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Section One: Multiple-choice

(20 marks)

This section has **10** questions. Answer **all** questions on the separate Multiple-choice Answer Sheet provided.

- 1. Which of the following describes the mass of Avogadro's number of particles (6.022×10^{23}) ?
 - a) 10g of sodium hydroxide
 - b) 32g of oxygen gas
 - c) 9g of water
 - d) 55g of hydrochloric acid
- 2. The number of atoms of carbon in one mole of ethanol, C₂H₅OH, is:
 - a) 6.022
 - b) 6.022 x 10²³
 - c) 1.204 x 10²³
 - d) 1.204 x 10²⁴
- 3. Calculate the mass of hydrogen atoms in 0.132 g of $(NH_4)_2SO_4$.
 - a) $4.03 \times 10^{-4} g$
 - b) 8.05 x 10⁻³ g
 - c) $8.05 \times 10^{-4} \text{ g}$
 - d) 4.03×10^{-3} g
- 4. Which of the following contains the least number of molecules?
 - a) $1g ext{ of } H_2$
 - b) $2g ext{ of } N_2$
 - c) $4g ext{ of } O_2$
 - d) 8g of O_3

- 5. What is the percentage by mass of Iron in Fe₂O₃?
 - a) 35 %
 - b) 50 %
 - c) 60 %
 - d) 70 %
- 6. Sodium hydrogen carbonate decomposes on heating as in the equation:

$$2 \text{ NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{H}_2\text{O}(g) + \text{CO}_2$$

If 0.2000 mole of Carbon Dioxide is produced, what mass of sodium hydrogen carbonate has reacted?

- a) 84.01 g
- b) 67.21 g
- c) 16.80 g
- d) 33.61 g
- 7. Once vaporised and ignited, ethanol burns readily according to the following equation:

$$C_2H_5OH (g) + 3 O_2 (g) \rightarrow 2 CO_2 (g) + 3 H_2O (g)$$

What mass of carbon dioxide is produced when 0.5 mole of ethanol is completely burnt?

- a) 2 g
- b) 44 g
- c) 88 g
- d) 66 g
- 8. Which of the following contains the greatest number of molecules at STP?
 - a) 16 g of oxygen gas
 - b) 4 g of helium gas
 - c) 40 L of hydrogen gas
 - d) 1.5 moles of carbon dioxide gas

- 9. A gas is stored in a rigid container. If the temperature of the container is reduced, what will happen to the pressure of the gas in the container?
 - a) The pressure will remain unchanged.
 - b) The pressure will decrease.
 - c) The pressure will increase.
 - d) The pressure cannot be determined without knowing the number of moles of gas.
- 10. According to the equation:

$$2 H_2 + O_2 \rightarrow 2 H_2O$$

What volume of oxygen (at STP) is required to react to produce 18 g of water?

- a) 11.4 L
- b) 22.7 L
- c) 44.9 L
- d) 67.2 L

END OF PART A - PLEASE TURN OVER

PART B: EXTENDED ANSWER AND CALCULATIONS

(32 MARKS)

Question 1		
A student was given a sample of 6.00g of NH ₄ Cl a) What is the chemical name of this compound?		
	(1)	
b) What is the percentage of nitrogen by mass, in this compound?		
c) How many moles of the compound are in this sample?		
Question 2	4 Marks	
With one or more of the postulates of the Kinetic Theory of Gases explain	why;	
a) Gases are easily compressed.		
	(2)	
b) Heating a gas causes an increase in the pressure exerted by the	gas.	
	(2)	

A 15.3 g piece of steel, containing only iron and carbon, was treated with an excess of hot hydrochloric acid to form 3.02 L of hydrogen at STP.

Fe + 2 HCl \rightarrow FeCl₂ + H₂

	Work out the number of moles of Hydrogen gas (H ₂) produced.	
b) 	Work out the number of moles of iron used up in this reaction.	
	Work out the mass of iron used up.	(1)
d)	Calculate the percentage of iron in the steel. Use appropriate number of significant figures. (2)	

Question 4. Balance the following chemical equations:

(3 marks)

(a) __ Pb(CO₃)_{2 (s)} + ___ HNO_{3 (aq)}
$$\rightarrow$$
 ___ Pb(NO₃)_{4 (aq} + ___ H₂O _(I) + ___ CO_{2 (g)}

(b) ___Cr
$$_{(s)}$$
 + ___ HCl(aq) \rightarrow ___CrCl $_{3\,(aq)}$ + ___ H $_{2\,(g)}$

(c) ___NH₄OH
$$_{(aq)}$$
 + ___H₃PO₄ $_{(aq)}$ \rightarrow ___ (NH₄)₃PO₄ $_{(aq)}$ + ___H₂O $_{(I)}$

Question 5 (6 marks)

Write balanced chemical equations (including states of matter for each species) of the following reactions:

- (a) The production of carbon dioxide gas, water and potassium nitrate upon the addition of nitric acid to potassium hydrogen carbonate solution.
 (3 marks)
- (b) The reaction of magnesium carbonate and hydrochloric acid to produce magnesium chloride, water and carbon dioxide.(3 marks)

Question 6 (4 marks)

A sample of copper (I) oxide was dissolved in sulfuric acid and the solution evaporated to dryness to yield 3.14 g of Cu₂SO₄.

$$Cu_2O + H_2SO_4 \rightarrow Cu_2SO_4 + H_2$$

(a) What was the mass of the copper (I) oxide sample? (4 marks) **Use appropriate number of significant figures.**

Question 7. (6 marks)

A 4.15 g sample of steel wire is oxidized to form iron (III) oxide when reacted with oxygen. If the mass of iron (II) oxide produced was 4.95 g what was the percentage of iron in the steel wire?

Use appropriate number of significant figures.

END OF TEST

ADDITIONAL SPACE FOR WORKING
