Lecture-02

Complex Differentiation and The Cauchy-Riemann Equation

Analytic Functions:

If a single valued function f(z) is differentiable i.e. f'(z) exists at every point of a domain D except possibly at a finite number of exceptional points then the function is said to be **analytic** in the domain D. These exceptional point at which f'(z) does not exist are called **singular points** or **singularities of the function**.

Necessary conditions for f(z) to be analytic:

RECTANGULAR FORM:

If z = x + iy and f(z) = u(x, y) + iv(x, y) satisfies the **Cauchy-Riemann equations(C-R)** i.e.,

$$u_x = v_y$$
 and $u_y = -v_x$
i.e., $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

then f(z) is said to be **analytic.**

Hence, at points where f'(z) exists may be obtained from either of

$$f'(z) = u_x + iv_x$$
 or $f'(z) = v_y - iu_y$.

POLAR FORM:

If $z = re^{i\theta}$ and $f(z) = u(r, \theta) + iv(r, \theta)$ satisfies the **Cauchy-Riemann equations(C-R)** i.e.

$$u_r = \frac{1}{r}v_\theta$$
 and $v_r = -\frac{1}{r}u_\theta$
i.e., $\frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r}\frac{\partial u}{\partial \theta}$

then f(z) is said to be **analytic.**

Hence, at points where f'(z) exists may be obtained from either of

$$f'(z) = e^{-i\theta} (u_r + iv_r).$$

Important Formulae:

$$\sin at = \frac{e^{iat} - e^{-iat}}{2i}$$

$$\cos at = \frac{e^{iat} + e^{-iat}}{2}$$

$$\cos iay = \cosh ay$$

$$\sinh at = \frac{e^{at} - e^{-at}}{2}$$

$$\cosh at = \frac{e^{at} + e^{-iat}}{2}$$

$$\sin iay = i\sinh ay$$

Example: 1

Verify **C-R** equations for the function $f(z) = e^{z^2}$ and hence find $\frac{df}{dz}$ or f'(z).

Solution: Given,

$$f(z) = e^{z^2} = e^{(x+iy)^2}$$
 or, $u + iv = e^{x^2 - y^2 + i \, 2xy}$ or, $u + iv = e^{x^2 - y^2} \, e^{i \, 2xy}$ or, $u + iv = e^{x^2 - y^2} \, (\cos 2xy + i \sin 2xy)$ or, $u + iv = e^{x^2 - y^2} \cos 2xy + i \, e^{x^2 - y^2} \sin 2xy$ Here, $u(x, y) = e^{x^2 - y^2} \cos 2xy$ and $v(x, y) = e^{x^2 - y^2} \sin 2xy$.

Now, partially differentiating u and v with respect to x and y, we get

$$u_x = 2x e^{x^2 - y^2} \cos 2xy - 2y e^{x^2 - y^2} \sin 2xy$$

$$u_y = -2y e^{x^2 - y^2} \cos 2xy - 2x e^{x^2 - y^2} \sin 2xy$$

$$v_x = 2y e^{x^2 - y^2} \cos 2xy + 2x e^{x^2 - y^2} \sin 2xy$$

$$v_y = -2y e^{x^2 - y^2} \sin 2xy + 2x e^{x^2 - y^2} \cos 2xy$$

From the above result, we can write

$$u_x = v_y$$
 and $v_x = -u_y$

Since f(z) satisfies Cauchy-Riemann equations, so f(z) is analytic.

$$f'(z) = u_x + i v_x$$

$$= 2x e^{x^2 - y^2} \cos 2xy - 2y e^{x^2 - y^2} \sin 2xy + i (2y e^{x^2 - y^2} \cos 2xy + 2x e^{x^2 - y^2} \sin 2xy)$$

$$= 2x e^{x^2 - y^2} (\cos 2xy + i \sin 2xy) + i 2y e^{x^2 - y^2} (\cos 2xy - \frac{1}{i} \sin 2xy)$$

$$= 2x e^{x^2 - y^2} (\cos 2xy + i \sin 2xy) + i 2y e^{x^2 - y^2} (\cos 2xy + \frac{i^2}{i} \sin 2xy)$$

$$= 2x e^{x^2 - y^2} (\cos 2xy + i \sin 2xy) + i 2y e^{x^2 - y^2} (\cos 2xy + i \sin 2xy)$$

$$= 2x e^{x^2 - y^2} e^{i 2xy} + i 2y e^{x^2 - y^2} e^{i 2xy}$$

$$= 2(x + i y) e^{x^2 - y^2 + i 2xy} = 2(x + i y) e^{(x + i y)^2} = 2z e^{z^2}.$$

Example: 2

Verify **C-R** equations for the function $f(z) = z^5$ and hence find $\frac{df}{dz}$ or f'(z).

Solution:

Given

$$f(z) = z^5$$
or, $u + iv = (r e^{i\theta})^5$
or, $u + iv = r^5 e^{i 5\theta}$
or, $u + iv = r^5 (\cos 5\theta + i \sin 5\theta)$
or, $u + iv = r^5 \cos 5\theta + i r^5 \sin 5\theta$

Here,
$$u = r^5 \cos 5\theta$$
 and $v = r^5 \sin 5\theta$

Partially differentiating u and v with respect to r and θ , we get

$$u_r = 5r^4 \cos 5\theta$$

$$v_r = 5r^4 \sin 5\theta$$

$$u_{\theta} = -5r^5 \sin 5\theta$$

$$v_{\theta} = 5r^5 \cos 5\theta$$

From the above result, we can write

$$u_r = \frac{1}{r}v_\theta$$
 and $v_r = -\frac{1}{r}u_\theta$.

Since f(z) satisfies Cauchy-Riemann equations, so f(z) is an analytic function.

$$f'(z) = e^{-i\theta} (u_r + i v_r)$$

$$= e^{-i\theta} (5r^4 \cos 5\theta + i5r^4 \sin 5\theta)$$

$$= 5r^4 e^{-i\theta} (\cos 5\theta + i \sin 5\theta)$$

$$= 5r^4 e^{-i\theta} e^{i 5\theta}$$

$$= 5r^4 e^{i 4\theta}$$

$$= 5(r e^{i \theta})^4$$

$$= 5 z^4.$$

Exercise set: 2.1

- 1. Write Cauchy-Riemann (C-R) equations in rectangular and polar forms.
- 2. For the following functions:

a)
$$f(z) = iz\overline{z}$$

b)
$$f(z) = z^2$$

c)
$$f(z) = e^x(\cos y - i\sin y)$$

d)
$$f(z) = e^{2x}(\cos 2y + i \sin 2y)$$

e)
$$f(z) = Re(z^2) - i Im(z^2)$$

- (i) separate real and imaginary parts,
- (ii) verify **C-R** equations,

(iii) find
$$\frac{df}{dz}$$
 or $f'(z)$.

3. Are the following functions analytic? If analytic, then find $f'(z) = u_x + iv_x$

$$f(z) = \overline{z}$$
, $2z^2 + 3e^z$, $2ze^z$ and $3z^3$.

4. Are the following functions analytic? If analytic, then find $f'(z) = e^{-i\theta} (u_r + iv_r)$

$$f(z) = z^2$$
, $\frac{1}{z^9}$, $z^{-\frac{2}{3}}$ and $z^{\frac{3}{5}}$.

Reference Book: Advanced Engineering Mathematics (10th edition) by Erwin Kreyszig, Herbert Kreyszig, Edward J. Norminton, published by John Wiley & Sons, Inc

3