Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Artem Gorodilov Naměřeno: 26. února 2024

Obor: Astrofyzika **Skupina:** Po 14:00 **Testováno:**

Úloha č. C: Studium termoelektronové emise

1. Zadání

1. Změřit, jak se anodový proud mění v závislosti na anodovém napětí $I_a = f(U)$, kde U je v rozmezí od -5 V do 500 V, pro dvě hodnoty žhavicího proudu I_f . Výsledné závislosti zobrazit v grafu.

Zobrazit náběhovou oblast anodového proudu I_a v grafu s použitím souřadnic $\ln I_a = f(U_a)$ a určit teplotu elektronů.

Zpracovat oblast nasyceného anodového proudu $I_{nas} = f(U)$ pro U < 500 V do grafu v souřadnicích ln $I_{nas} = \sqrt{U_a}$ a určit přírůstek proudu způsobený Schottkyho efektem.

- 2. Určit anodové napětí U_a , při kterém je anodový proud nasycený, tj. $I_a = I_{nas}$.
- 3. Měřením závislosti nasyceného anodového proudu na žhavícím proudu $I_{nas} = f(I_f)$ určit výstupní práci wolframu w pomocí Richardsonovy-Dushmanovy rovnice.

2. Teorie

2.1. Termoelektronová emise

Experiment se zabývá uvolňováním elektronů z kovových povrchů, které je vyvoláno jejich zahřátím na vysokou teplotu. Tento jev, známý jako termoemise, nám umožňuje získat informace o vazebných silách, kterými jsou elektrony drženy v kovech.

Když je kov zahřát na dostatečně vysokou teplotu, začne emitovat elektrony. Avšak, aby mohly elektrony opustit povrch kovu, musí mít jejich energie vyšší hodnotu než je tzv. výstupní práce kovu w. Celkový proud elektronů uvolněných z kovu při teplotě T a s výstupní prací w je popsán jako nasycený emisní proud:

$$I_{\text{nas}} = BT^2 \exp\left(-\frac{w}{kT}\right) \tag{1}$$

kde B je konstanta zahrnující plochu katody a termoemisní konstantu a k je Boltzmannova konstanta. Po logaritmování a úpravě dostáváme vztah pro Richardsonovu-Dushmanovu přímku:

$$y = -\frac{w}{k}x + \ln B \tag{2}$$

kde $y = \ln(I_{nas}/T^2)$ a x = 1/T.

Teplotu vlákna určíme z měření žhavícího proudu I_f a napětí U_f :

$$R_t = \frac{U_f}{I_f} = \frac{\rho d}{S} (1 + \alpha t) \tag{3}$$

kde R_t je odpor vlákna při teplotě t, ρ je hustota materiálu, d je průměr vlákna, S je jeho plocha a α je teplotní součinitel odporu.

Zajímavostí je, že při snižování anodového napětí se elektrony stávají více brzděny elektrickým polem.

Figure (1) a - integrální, b - diferenciální tvar rozdělení energie elektronů. Oblast c je oblast je oblast nábojového proudu, oblast d je oblast saturačního proudu.

Pro naběhovou oblast platí, že anodový proud I_a je exponenciálně závislý na anodovém napětí U_a a teplotě emitovaných elektronů T_e :

$$I_a = I_0 \exp\left(\frac{eU_a}{kT_e}\right) \tag{4}$$

2.2. Schottkyho efekt

Pokud se katoda nachází v silném elektrickém poli, dochází ke snížení výstupní práce katody, což můžeme popsat následujícím vztahem:

$$w_p = \sqrt{\frac{e^3 E}{4\pi\epsilon_0}} \tag{5}$$

kde e je náboj elektronu, ϵ_0 je permitivita vakua a E je intenzita elektrického pole u povrchu katody. A tedy nová hodnota w_p výstupní práce bude:

$$w = w - w_p = w - \sqrt{\frac{e^3 E}{4\pi\epsilon_0}} \tag{6}$$

Schottkyho efekt je schematicky znázorněn na obrázku (2).

Figure (2) Schottkyho efekt.

Nasycený anodový proud pak bude záviset na intenzitě elektrického pole u povrchu katody a vystupní práci:

$$\ln I'_{nas} = \ln I_{nas} + \sqrt{\frac{e^3}{4\pi\epsilon_0 k^2 T^2}} \sqrt{E}$$
 (7)

Intenzitu elektrického pole u žhavené katody lze určit ze vztahu:

$$E = U_a \frac{L - D}{D} \frac{1}{r \ln(R/r)} \tag{8}$$

kde L, D, R a r jsou geometrické parametry katody a anody, specifické pro použité zařízení.

3. Měření

Experiment provádíme s poloautomatickým nastavením, kde jsou všechna napětí a měřicí zařízení připojena k počítači, což nám umožňuje okamžité grafické znázorňování získaných dat.

Tímto způsobem můžeme ihned po zaznamenání dat identifikovat oblast náběhového proudu.

Za tímto účelem zjistíme závislost ln $I_a=f(U_a)$ o případech dvou $I_f=1.8$ A a $I_f=1.9$ A. Poté získané údaje vyneseme do grafu a provedeme lineární fitování oblasti náběhového proudu. Poté ze vzorce (3) určíme teplotu emitovaných elektronů T pomocí získané směrnice přímky α jako $T=\frac{e}{k\alpha}$. Výsledky jsou znázorněny na obrázku (3).

Z toho dostáváme následující teploty emitovaných elektronů:

$$T_{1.8} = (4080 \pm 340) \text{ K}$$
 a $T_{1.9} = (4650 \pm 320) \text{ K}$

Figure (3) Závislost $\ln I_a = f(U_a)$ pro $I_f = 1.8$ A a $I_f = 1.9$ A.

Dále uvažujeme oblast nasyceného proudu. Nejprve zjistíme závislost $\ln I_{nas} = \sqrt{U_a}$ a vykreslíme data. Data jsou znázorněna na obrázku (4).

Poté z grafu ručně určíme hodnotu přírůstku proudu. Získáme následující naměřené hodnoty:

$$\Delta I_{nas,1.8} = 4.75(1) \ \mu A$$

 $\Delta I_{nas,1.9} = 13.36(1) \ \mu A$

Figure (4) Závislost l
n $I_{nas} = \sqrt{U_a}$ pro $I_f = 1.8$ A a $I_f = 1.9$ A.

Podle vzorce (7) určete intenzitu elektrického pole v blízkosti katody pro anodové napětí pri kterém je anodový proud nasycený:

$$U_{a,1.8} = 6.4 \text{ V}$$
 a $U_{a,1.9} = 6.48 \text{ V}$ $E = 1.25 \cdot 10^6 \text{ V/m}$

Podle vzorce (6) tedy zjistíme teoretickou hodnotu přírůstku proudu:

$$\Delta I_{nas,teor,1.8} = 8.80(9) \ \mu A$$

 $\Delta I_{nas,teor,1.9} = 21.1(2) \ \mu A$

Dale změříme závislost nasyceného anodového proudu na žhavícím proudu $I_{nas} = f(I_f)$ pro napětí $U_a = 19.95 \text{ V}$.

Pomocí vzorce (3) určíme teplotu vlákna t. Poté vypočteme zavislost $\ln(I_{nas}/T^2) = f(1/T)$ a vyneseme data do grafu. Data jsou znázorněna na obrázku (5).

Z lineárního fitování získáme hodnotu výstupní práce w wolframu a konstantu zahrnující plochu katody a termoemisní konstantu B:

$$w = 3.55(6) \text{ eV}$$

 $B = 1.1(6) \cdot 10^6 \text{ A/K}^{-2}$

Figure (5) Závislost $\ln(I_{nas}/T^2) = f(1/T)$ pro $U_a = 19.95$ V. R-D křivka.

Tabulkové hodnoty použité při výpočtu:

$$\begin{array}{lll} e = 1.6 \cdot 10^{-19} \; \mathrm{C} & k = 1.38 \cdot 10^{-23} \; \mathrm{J/K} \\ \epsilon_0 = 8.85 \cdot 10^{-12} \; \mathrm{F/m} & \rho = 4.89 \cdot 10^{-8} \; \Omega \mathrm{m} \\ \alpha = 4.83 \cdot 10^{-3} \; \mathrm{K^{-1}} & r = 0.045 \; \mathrm{mm} \\ R = 17 \; \mathrm{mm} & L = 25 \; \mathrm{mm} \\ D = 15 \; \mathrm{mm} & d/s = 7.76 \cdot 10^6 \; \mathrm{m} \end{array}$$

Výsledky měření jsou v tabulce (1) a (2).

K výpočtu veličin a jejich nejistot byla použita knihovna Uncertinties pro Python: pypi.org/project/uncertainties. Chyby byly rozšířeny o Studentův koeficient (2-Tail Confidence Level) s ohledem na stupně volnosti pro každou hodnotu, pro interval spolehlivosti 68.27%.

4. Závěr

Ze získaných dat jsme určili teplotu emitovaných elektronů $T_{1.8}=(4080\pm340)~{\rm K}$ a $T_{1.9}=(4650\pm320)~{\rm K}$ pro $I_f=1.8~{\rm A}$ a $I_f=1.9~{\rm A}$ resp. Vidime, že teplota elektronů se zvyšuje s žhavícím proudem.

Dále jsme určili hodnotu přírůstku proudu pro napětí $U_a=500$ V, které odpovídá intenzitě elektrického pole $E=1.25\cdot 10^6$ V/m. Získané hodnoty $\Delta I_{nas,1.8}=7.907(9)~\mu{\rm A}$ a $\Delta I_{nas,1.9}=19.22(1)~\mu{\rm A}$. Vidíme, že naměřené hodnoty se liší od teoretických hodnot o 40% a 30% resp. Anodové napětí, při kterém je anodový proud nasycený, jsme určili jako $U_{a,1.8}=6.4$ V a $U_{a,1.9}=6.48$ V.

Nakonec jsme určili výstupní práci wolframu w=3.55(6) eV a konstantu zahrnující plochu katody a termoemisní konstantu $B=1.1(6)\cdot 10^6$ A/K⁻². Ziskaná hodnota výstupní práce se liší od tabulkové hodnoty $w_{tab}=4.5$ eV o 21%. To bylo s největší pravděpodobností způsobeno tím, že jsme při měření I_f použili rozsah 1.8 A až 1.9 A. Hodnota výstupní práce by byla přesnější, kdybychom při měření použili větší interval proudu.

 ${\bf 5.~P\r{r}\'{i}lohy}$ 5.1. Tabulka naměřených a vypočtených hodnot pro $I_f={\bf 1.8~A}$

-						_					
$U_f[V]$	$I_f[A]$	$U_a[V]$	I_a	$\ln I_a$	$\sqrt{U_a}$	$U_f[V]$	$I_a[A]$	$U_a[V]$	I_a	$\ln I_a$	$\sqrt{U_a}$
4.259	1.805	10.37	9.646	-11.549	3.22	4.261	1.805	-6.58	0.001	-20.409	_
4.259	1.805	10.87	9.766	-11.537	3.297	4.262	1.805	-5.986	0.0	-21.444	
4.259	1.805	11.37	9.878	-11.525	3.372	4.263	1.805	-5.578	0.0	-21.79	
4.259	1.805	11.87	10.035	-11.509	3.445	4.262	1.805	-4.987	0.0	-21.514	
4.26	1.805	12.268	10.063	-11.507	3.503	4.259	1.805	-4.585	0.0	-22.663	
4.26	1.805	12.86	10.132	-11.5	3.586	4.259	1.805	-4.09	0.0	-21.455	
4.26	1.805	13.36	10.19	-11.494	3.655	4.258	1.805	-3.592	0.004	-19.454	
4.26	1.805	13.86	10.246	-11.489	3.723	4.257	1.805	-2.993	0.002	-20.083	
4.26	1.805	14.36	10.301	-11.483	3.789	4.258	1.805	-2.595	0.001	-20.5	
4.26	1.805	14.86	10.345	-11.479	3.855	4.259	1.805	-2.094	0.002	-19.889	
4.26	1.805	15.36	10.383	-11.475	3.919	4.261	1.805	-1.6	0.002	-20.282	
4.26	1.805	15.86	10.421	-11.472	3.982	4.262	1.805	-1.104	0.01	-18.4	
4.261	1.805	16.36	10.454	-11.469	4.045	4.262	1.805	-0.606	0.035	-17.169	
4.262	1.805	16.852	10.482	-11.466	4.105	4.261	1.805	-0.107	0.116	-15.972	
4.262	1.805	17.35	10.513	-11.463	4.165	4.261	1.805	0.391	0.301	-15.015	0.625
4.261	1.805	17.85	10.54	-11.46	4.225	4.261	1.805	0.89	0.933	-13.885	0.943
4.261	1.805	18.35	10.575	-11.457	4.284	4.261	1.805	1.388	1.364	-13.505	1.178
4.251	1.805	23.51	10.525	-11.462	4.849	4.26	1.805	1.886	2.012	-13.116	1.373
4.25	1.805	43.422	11.169	-11.402	6.59	4.26	1.805	2.384	2.798	-12.787	1.544
4.25	1.805	73.3	11.427	-11.379	8.562	4.262	1.805	2.789	3.597	-12.535	1.67
4.251	1.805	98.2	11.57	-11.367	9.91	4.261	1.805	3.282	4.371	-12.34	1.812
4.251	1.805	123.1	11.69	-11.357	11.095	4.259	1.805	3.88	5.1	-12.186	1.97
4.25	1.805	148.0	11.785	-11.349	12.166	4.259	1.805	4.38	5.784	-12.06	2.093
4.251	1.805	172.96	11.868	-11.342	13.151	4.259	1.805	4.88	6.395	-11.96	2.209
4.251	1.805	197.9	11.94	-11.336	14.068	4.258	1.805	5.38	6.937	-11.879	2.319
4.25	1.805	222.76	12.008	-11.33	14.925	4.259	1.805	5.78	7.403	-11.814	2.404
4.25	1.805	247.7	12.07	-11.325	15.738	4.259	1.805	6.38	7.8	-11.761	2.526
4.25	1.805	272.6	12.128	-11.32	16.511	4.259	1.805	6.88	8.13	-11.72	2.623
4.249	1.805	297.5	12.186	-11.315	17.248	4.259	1.805	7.278	8.454	-11.681	2.698
4.249	1.805	317.42	12.238	-11.311	17.816	4.26	1.805	7.876	8.718	-11.65	2.806
4.249	1.805	347.3	12.288	-11.307	18.636	4.26	1.805	8.37	8.957	-11.623	2.893
4.249	1.805	372.2	12.335	-11.303	19.292	4.259	1.805	8.87	9.166	-11.6	2.978
4.249	1.805	397.1	12.379	-11.3	19.927	4.26	1.805	9.37	9.354	-11.58	3.061
4.249	1.805	422.4	12.423	-11.296	20.552	4.26	1.805	9.87	9.508	-11.563	3.142
4.249	1.805	447.4	12.467	-11.292	21.152	4.259	1.805	10.37	9.646	-11.549	3.22
4.249	1.805	472.4	12.512	-11.289	21.735	4.249	1.805	496.4	12.55	-11.286	22.28
4.249	1.805	496.4	12.55	-11.286	22.28						

5.2. Tabulka naměřených a vypočtených hodnot pro $I_f={\bf 1.9~A}$

$U_f[V]$	$I_f[A]$	$U_a[V]$	I_a	$\ln I_a$	$\sqrt{U_a}$	$U_f[V]$	$I_f[A]$	$U_a[V]$	I_a	$\ln I_a$	$\sqrt{U_a}$
4.608	1.905	11.47	25.55	-10.575	3.387	4.625	1.905	-4.98	0.002	-20.077	
4.608	1.905	11.87	25.819	-10.564	3.445	4.627	1.905	-4.49	0.001	-20.851	
4.607	1.905	12.47	26.059	-10.555	3.531	4.624	1.905	-4.09	0.003	-19.75	
4.607	1.905	12.97	26.274	-10.547	3.601	4.624	1.905	-3.99	0.002	-20.001	
4.607	1.905	13.47	26.45	-10.54	3.67	4.626	1.905	-3.49	0.002	-19.912	
4.606	1.905	13.96	26.623	-10.534	3.736	4.626	1.905	-3.088	0.003	-19.554	
4.606	1.905	14.96	26.864	-10.525	3.868	4.626	1.905	-2.493	0.001	-20.831	
4.605	1.905	15.46	26.966	-10.521	3.932	4.627	1.905	-1.991	0.002	-20.307	
4.605	1.905	15.86	27.064	-10.517	3.982	4.626	1.905	-1.493	0.001	-20.647	
4.605	1.905	16.46	27.161	-10.514	4.057	4.626	1.905	-0.995	0.004	-19.421	
4.605	1.905	16.96	27.243	-10.511	4.118	4.627	1.905	-0.496	0.01	-18.407	
4.604	1.905	17.36	27.333	-10.507	4.167	4.625	1.905	-0.099	0.038	-17.075	
4.602	1.905	17.86	27.428	-10.504	4.226	4.625	1.905	0.397	0.161	-15.64	0.63
4.603	1.905	18.452	27.49	-10.502	4.296	4.624	1.905	0.994	0.526	-14.458	0.997
4.603	1.905	18.95	27.554	-10.499	4.353	4.623	1.905	1.393	1.252	-13.591	1.18
4.603	1.905	19.35	27.608	-10.497	4.399	4.624	1.905	1.991	2.41	-12.936	1.411
4.604	1.905	19.95	27.665	-10.495	4.467	4.623	1.905	2.489	4.026	-12.423	1.578
4.612	1.905	25.098	28.119	-10.479	5.01	4.624	1.905	2.988	6.024	-12.02	1.729
4.615	1.905	50.0	29.049	-10.447	7.071	4.623	1.905	3.486	8.209	-11.71	1.867
4.615	1.905	69.92	29.568	-10.429	8.362	4.622	1.905	3.889	10.706	-11.445	1.972
4.615	1.905	99.8	29.927	-10.417	9.99	4.619	1.905	4.486	12.961	-11.254	2.118
4.615	1.905	124.7	30.209	-10.407	11.167	4.617	1.905	4.882	14.645	-11.131	2.21
4.617	1.905	149.6	30.448	-10.4	12.231	4.616	1.905	5.48	16.297	-11.025	2.341
4.622	1.905	174.5	30.661	-10.393	13.21	4.615	1.905	5.98	17.71	-10.941	2.445
4.616	1.905	199.46	30.845	-10.387	14.123	4.614	1.905	6.48	19.009	-10.871	2.546
4.616	1.905	224.3	31.011	-10.381	14.977	4.613	1.905	6.98	20.035	-10.818	2.642
4.614	1.905	249.3	31.175	-10.376	15.789	4.612	1.905	7.38	20.994	-10.771	2.717
4.614	1.905	269.22	31.317	-10.371	16.408	4.613	1.905	7.98	21.837	-10.732	2.825
4.615	1.905	299.1	31.46	-10.367	17.295	4.612	1.905	8.48	22.606	-10.697	2.912
4.613	1.905	324.0	31.589	-10.363	18.0	4.611	1.905	8.974	23.32	-10.666	2.996
4.613	1.905	343.92	31.716	-10.359	18.545	4.61	1.905	9.47	23.892	-10.642	3.077
4.613	1.905	373.8	31.837	-10.355	19.334	4.609	1.905	9.97	24.624	-10.612	3.158
4.613	1.905	399.0	31.949	-10.351	19.975	4.609	1.905	10.47	24.887	-10.601	3.236
4.613	1.905	419.0	32.062	-10.348	20.469	4.609	1.905	10.97	25.234	-10.587	3.312
4.613	1.905	449.0	32.167	-10.345	21.19	4.608	1.905	11.47	25.55	-10.575	3.387
4.615	1.905	488.2	32.373	-10.338	22.095	4.615	1.905	488.2	32.373	-10.338	22.095

5.3. Tabulka naměřených a vypočtených hodnot pro $U_a = 19.95 \text{ V}$

$U_f[V]$	$I_f[A]$	$U_a[V]$	I_a	$\mathbf{R}_f[\Omega]$	T [K]	x [1/K]	У
4.238	1.805	19.95	10.692	2.348	1347.276	7.422	-25.858
4.275	1.815	19.95	11.78	2.355	1351.256	7.401	-25.767
4.31	1.825	19.95	12.982	2.362	1354.859	7.381	-25.675
4.348	1.835	19.95	14.304	2.369	1358.872	7.359	-25.584
4.388	1.845	19.95	15.771	2.378	1363.54	7.334	-25.493
4.427	1.855	19.95	17.347	2.386	1368.155	7.309	-25.404
4.465	1.865	19.95	19.085	2.394	1372.257	7.287	-25.315
4.504	1.875	19.95	20.975	2.402	1376.593	7.264	-25.227
4.541	1.885	19.95	23.027	2.409	1380.591	7.243	-25.139
4.574	1.895	19.95	25.268	2.414	1383.053	7.23	-25.05
4.611	1.905	19.95	27.714	2.42	1386.615	7.212	-24.963