

2018-19

VERDAD... DE LA BUENA

SEMÁNTICA LÓGICA

Determinar si la estructura lógica de un razonamiento

es correcta, válida

INTERPRETANDO

sus fórmulas lógicas

En un juicio el abogado fiscal argumenta:

"Si el acusado es culpable entonces tenía un cómplice, su amigo Rudolf".

A ello, el abogado defensor responde inmediatamente: "Eso es falso".

El acusado, sorprendido, decide cambiar de abogado. ¿Por qué crees que lo hace?

Α	В	$A \rightarrow B$
V	V	V
V	F (F
F	V	V
F	F	V

Es, demostrar si es **correcto**, o no lo es, **interpretando** las fbfs **premisas y conclusión**

SI SE INTERPRETAN

- >> Premisas verdaderas y conclusión verdadera
- >> Premisas falsas y conclusión falsa
- >> Premisas falsas y conclusión verdadera

SI SE INTERPRETAN

>> Premisas verdaderas y conclusión falsa

A esto me refiero...

Esta interpretación se conoce como CONTRAEJEMPLO

Para verlo vamos a tener en cuenta...

1º Lógica de primer orden >> Lógica bivalente

"Toda proposición se interpreta como

verdadera (V) o falsa (F): valores de verdad

Fbf \rightarrow { V, F }

2º Sea A: proposición

Principio de no contradicción

 $\neg(A \land \neg A)$ es cierto

"Todos los hombres son mortales."

"Algunos hombres no son mortales."

Principio del tercero excluso

Av¬A es cierto

"Todos los hombres son mortales o no lo son"

3º El valor de verdad de las proposiciones moleculares estará en función de los valores de verdad de las <u>proposiciones atómicas y de las conectivas</u> <u>que contienen</u>

```
Ej. A, B: fbf
Si A = V, B = F entonces A \lor B = V pero A \land B = F
```

- >> Si la fbf molecular **siempre** es **V** \rightarrow La fbf es una **tautología**
- >> Si la fbf molecular <u>siempre</u> es F -> La fbf es una contradicción

indeterminación/contingencia

4º Interpretar una fbf es determinar cuándo es <u>V</u>, <u>F</u>, y cuándo es <u>tautología, contradicción o contingencia</u>

Ej. A, B: fbfs
Si
$$A = V$$
, $B = V$ entonces $A \lor B = V$
Si $A = V$, $B = F$ entonces $A \lor B = V$
Si $A = F$, $B = V$ entonces $A \lor B = V$
Si $A = F$, $B = F$ entonces $A \lor B = F$

$$I_1 = \{ A = V, B = V \},$$

 $I_2 = \{ A = V, B = F \},$
 $I_3 = \{ A = F, B = V \},$
 $I_4 = \{ A = F, B = F \},$

$$I_1, I_2, I_3 \Rightarrow$$
 INTERPRETACIONES MODELO

I₄ => INTERPRETACIÓN CONTRAMODELO/CONTRAEJEMPLO

A v B es una CONTINGENCIA

Reglas semánticas para las conectivas

А	В	¬A	A∧B	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
V	V	F	V	V	V	V
	F		F	V	F	F
F	V	V	F	V	V	F
	F		F	F	V	V

TABLA DE VALORES DE VERDAD

Pasos para <u>interpretar</u> un argumento

- 1º Formalizar el argumento
- 2º Conocer las reglas semánticas de las fbfs y de las conectivas
- 3º Aplicar un método semántico para validar el argumento

Métodos semánticos:

- >> Tablas de verdad
- >> Método corto de valoración o del contraejemplo

Método semántico

Tablas de los valores de verdad para interpretar argumentos

R: P1, ...Pn \Rightarrow Q

1º Crear TV con todas las fbfs del argumento según prioridad conectivas.

2º Filas: **2**ⁿ: n: fbfs atómicas diferentes

3º Rellenar columnas con valores de verdad según reglas semánticas.

4º Comprobar si alguna fila es una interpretación contraejemplo.

VALIDAR R: $p v q, \neg p \Rightarrow q con Tabla Verdad$

	р	q	P2: ¬p	P1: pvq	Q: q	R CORRECTO
1	V	V	F	V	V	
2	V	F	F	V	F	
3	F	V	V	V	V	
4	F	F	V	F	F	

Veamos un razonamiento válido ... con premisas falsas

"Me gusta mucho tener

ideas **contradictorias**

porque así,

si siempre estoy **equivocado**,

siempre tengo la <u>razón</u>"

P1: Para que vea la tele (T) es necesario que beba cerveza (C)

P2: Es suficiente que no vea la tele para que me duerma (D)

P3: Ni bebo cerveza ni me duermo

 $R: T \to C, \neg T \to D, \neg C \land \neg D \Rightarrow Fe$

Q: Soy feliz con dos cervezas

	_	D	¬Т	¬C	¬D	P1:	P2:	P3:	Q:
ı		נ	_	ָר	כ	T→C	¬T→D	$\neg C \land \neg D$	Fe
V	V	>	F	F	F	V	V		V
V	V	F	F	F	V	V	V		V
V	F	V	F	V	F	F	V		V
V	F	F	F	V	V	[V	V	V
F	V	V	V	F	F	V	<u> </u>		V
F	V	F	V	F	V	V			V
F	F	٧	V	V	F	V	V	5	V
F	F	F	V	V	V	V		V	V

NO Existe contraejemplo

Regla ECQ A ∧ ¬A ⇒ Q

Estudiar si Fbf-P1: p v q $\rightarrow \neg$ (\neg p $\land \neg$ q) es tautología

Jerarquía: ((p v q) \rightarrow (¬((¬p) \land (¬q))))

	р	q	¬р	¬q	¬p ∧ ¬q	¬(¬p ∧ ¬q)	pvq	$p v q \rightarrow \neg(\neg p \land \neg q)$
1	V	V	F	F	F	V	V	V
2	V	F	F	V	F	V	V	V
3	F	V	V	F	F	V	V	V
4	F	F	V	V	V	F	F	V

Sea R: P1, ...Pn \Rightarrow Q

Si demostramos que Q es una tautología...

¿ puede existir un contraejemplo en R?

¿ Qué podemos afirmar sobre la validez del razonamiento?

R ES CORRECTO, NO EXISTE PI=V, Q=F

Escribe un razonamiento que tenga como conclusión la

fbf : $p \vee q \rightarrow \neg (\neg p \wedge \neg q)$

que es una tautología

Seguimos usando la Tabla de verdad pero... el nº filas se "dispara"

P1: O voy o vengo

P2: Si voy, llego

P3: Si vengo, estoy

Q: Llego o estoy

Fbf-P1: vo v ve

Fbf-P2: $vo \rightarrow II$

Fbf-P3: $ve \rightarrow es$

Fbf- Q: II v es

Filas => 16...!! muchas

 N° filas $>> 2^{n} => n$ es n° de fbfs atómicas diferentes

¿ Pq no buscamos si R tiene un contraejemplo?

Método corto de valoración / contraejemplo

R: P1, ...Pn \Rightarrow Q

1º Se supone que R **admite una interpretación contraejemplo**: prem<u>isas V y conclusión F</u>

2º Se estudia si es posible la existencia de dicha interpretación

Si existe contraejemplo >> R No correcto.

Si NO existe >> R correcto.

Interpreta R: P1,P2,P3 ⇒ Q usando el método del contraejemplo

R

Fbf-P1: vo v ve
$$= V$$

Fbf-P2:
$$vo \rightarrow II = V$$

Fbf-P3:
$$ve \rightarrow es = V$$

$$Fbf-Q: II v es = F$$

Q:
$$II v es = F \gg II = F$$

$$es = F$$

P3:
$$ve \rightarrow es = V$$

$$es = F \gg ve = F$$

P2:
$$\mathbf{vo} \rightarrow \mathbf{II} = \mathbf{V}$$

$$II = F \gg vo = F$$

Concluimos:

Si
$$vo = F$$
, $ve = F >> vo v ve = F # con P1$

No existe contraejemplo >> R correcto

Búsqueda de contraejemplos en fbfs

- > Se supone que la fbf es **falsa**, admite, **al menos**, **un contraejemplo**.
- Se buscan los valores de verdad de sus fbfs atómicas
- > Si los valores se contradicen > llegamos a contradicción
 - > **no** existe interpretación contraejemplo que haga falsa la fbf
 - >> fbf es tautología
- > Si no se contradicen > existe un contraejemplo que hace falsa la fbf
 - >> fbf NO es tautología

Busca un contraejemplo en la fbf y decide sobre su tautología

Decide cómo demostrar la validez y aplica método

P1: "Resuelvo el mapa si me como todos los cocos o falla el sistema"

P2: "Resuelvo el mapa o me como todos los cocos o falla el sistema"

P3: "No me como todos los cocos"

Razona si es cierto que falla el sistema

1º formaliza

MC = { **re**: resuelvo mapa; **co** : como cocos; **fa**: falla sistema }

Fbf-P1: co v fa \rightarrow re

Fbf-P2: re v co v fa

Fbf-P3: ¬co

Fbf-Q: fa

1º aplicamos >> Tabla de verdad. Nº filas: 2³

	fa	ro	-60	-60	-60	co v fa	P1:	P2:	P3:	Q:
СО	Ia	re	¬CO	COVIA	co v fa \rightarrow re	re v co v fa	¬co	fa		
V	\	٧	F	V	V	V	F	V		
V	\	F	F	V	H	V	F	V		
V	F	V	F	F	V	V	F	F		
V	F	F	F	F	V	V	F	F		
F	V	V	V	V	V	V	>	V		
F	V	F	V	V	F	V	V	V		
F	F	V	V	V	V	V	V	F		
F	F	F	V	V	F	F	V	F		

>> R NO CORRECTO, en la fila 7 existe un contraejemplo

2º Demostramos la validez buscando contraejemplo

Fbf-P1: co v fa \rightarrow re = \lor

Fbf-P2: re v co v fa = V

Fbf-P3: $\neg co = V$

Fbf-Q: fa = **F**

P3: >> co = F

 $Q: \gg fa = F$

P1: co v fa = F >> re = V o re = F

P2: re v co v fa = V >> re = V

Concluimos: R no correcto

Existe contraejemplo:

$$I = \{ co = F, fa = F, ve = V \} >> P1, P2, P3 = V$$

$$Q = F$$

P1: Sean A y B lámparas. Si se enciende al menos una, leemos

P2: Se enciende A

Q: Leemos

R:
$$A \lor B \rightarrow L$$
, $A \Rightarrow L$

_	A B L	B L AvB	P1:	P2:	Q:	
	Ь		AVD	$A \lor B \to L$	Α	L
V	V	٧	V	V	>	>
V	V	F	V	F	>	F
V	F	٧	V	V	V	V
V	F	F	V	F	V	F
F	V	\	V	V	F	V
F	V	F	V	F	F	F
F	F	٧	F	V	F	V
F	F	F	F	V	F	F

R es válido

Ya que no existe ninguna interpretación contraejemplo:

premisas **V** y conclusión **F**.