Дипломная работа на тему "Анализ и прогнозирование временного ряда на основе данных о продажах акций компании "Coca-cola" с 19 января 1962 года по 19 декабря 2021 года Введение. Постановка целей и задач.

Часть1.

Импорт библиотек, ознакомление с данными. Импорт Датафрейма, библиотек, написание функций.

```
## Загружаем pmdarima
!pip install pmdarima
```

```
Requirement already satisfied: pmdarima in /usr/local/lib/python3.7/dist-packages (1
Requirement already satisfied: numpy>=1.19.3 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: statsmodels!=0.12.0,>=0.11 in /usr/local/lib/python3.7
Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (fro
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in /usr/local/lib/python3
Requirement already satisfied: Cython!=0.29.18,>=0.29 in /usr/local/lib/python3.7/dis
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: scikit-learn>=0.22 in /usr/local/lib/python3.7/dist-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-parts-p
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dis
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (fr
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-
Requirement already satisfied: patsy>=0.5.2 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.7/dist-packaging>=21.3 in /usr/local/lib/python3.7 in /usr/local/lib/python3.7 in /usr/local/lib/python3.7 in /
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/c
```

Загружаем fbprophet
!pip install fbprophet

```
Requirement already satisfied: fbprophet in /usr/local/lib/python3.7/dist-packages (@
Requirement already satisfied: Cython>=0.22 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: cmdstanpy==0.9.5 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: pystan>=2.14 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: numpy>=1.15.4 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: pandas>=1.0.4 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: matplotlib>=2.0.0 in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: LunarCalendar>=0.0.9 in /usr/local/lib/python3.7/dist-
Requirement already satisfied: convertdate>=2.1.2 in /usr/local/lib/python3.7/dist-page 1.0 in /usr/local/lib/pyth
Requirement already satisfied: holidays>=0.10.2 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: setuptools-git>=1.2 in /usr/local/lib/python3.7/dist-r
Requirement already satisfied: python-dateutil>=2.8.0 in /usr/local/lib/python3.7/dis
Requirement already satisfied: tqdm>=4.36.1 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: pymeeus<=1,>=0.3.13 in /usr/local/lib/python3.7/dist-r
Requirement already satisfied: hijri-converter in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from hc
Requirement already satisfied: korean-lunar-calendar in /usr/local/lib/python3.7/dist
Requirement already satisfied: ephem>=3.7.5.3 in /usr/local/lib/python3.7/dist-packas
Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-packages (from I
```

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: typing-extensions requi

```
→
```

Импортируем библиотеки и функции import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt %matplotlib inline

```
## Импорт моделей
```

from statsmodels.tsa.statespace.sarimax import SARIMAX # для модели SARIMAX from statsmodels.tsa.seasonal import seasonal_decompose # для ETS графиков from fbprophet import Prophet # для модели Профет from statsmodels.tsa.holtwinters import ExponentialSmoothing # для модели Экспоненцальное

##from pmdarima import auto_arima

для поиска ARIMA моделей

Метрики

from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from statsmodels.tools.eval_measures import rmse

Здесь импортируем данные с компьютера для работы в колаб from google.colab import files uploaded = files.upload()

Выбрать файлы Файл не выбран Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

```
df = pd.read_csv('COCO COLA.csv', index_col='Date',parse_dates=True)
##data ={'Column 1' :[1., 2., 3., 4., 5., 6.],
## 'Index Title':["Open", "High", "Low", "Close", "Adj Close", "Volume"]}
##df = pd.DataFrame (data)
## Проверим загруженные данные
##df.head
```

df.head

<bound method="" ndframe.head="" of<="" th=""><th>0pen</th><th>High</th><th>Low</th><th>Close</th></bound>				0pen	High	Low	Close
Date							
1962-01-02	0.263021	0.270182	0.263021	0.263021	0.051133	806400	
1962-01-03	0.259115	0.259115	0.253255	0.257161	0.049994	1574400	
1962-01-04	0.257813	0.261068	0.257813	0.259115	0.050374	844800	
1962-01-05	0.259115	0.262370	0.252604	0.253255	0.049234	1420800	
1962-01-08	0.251302	0.251302	0.245768	0.250651	0.048728	2035200	

57.759998

57.759998

31362800

24806600

24923800

24696900

56.959999

2021-12-13 56.980000

```
2021-12-14 57.400002
                           58.169998 57.400002 57.799999 57.799999
     2021-12-15 57.930000
                           58.250000
                                      57.650002
                                                 58.060001
                                                           58.060001
     2021-12-16 57.980000
                           58.880001 57.900002 58.650002
                                                           58.650002
     2021-12-17 58.490002 58.919998 57.700001 57.730000 57.730000 51874400
     [15096 rows x 6 columns]>
## Количество строк в нашем датасете
print(len(df))
    15096
## Проверим общую информацию по датасету
df.info()
     <class 'pandas.core.frame.DataFrame'>
    DatetimeIndex: 15096 entries, 1962-01-02 to 2021-12-17
    Data columns (total 6 columns):
                    Non-Null Count Dtype
         Column
         -----
                    -----
     0
         0pen
                    15096 non-null float64
     1
         High
                    15096 non-null float64
                    15096 non-null float64
     2
         Low
                    15096 non-null float64
     3
         Close
         Adj Close 15096 non-null float64
         Volume
                    15096 non-null int64
     dtypes: float64(5), int64(1)
    memory usage: 825.6 KB
## Проверим датафрейм на наличие пропусков
print(df.isna().any(axis=None))
     False
## Проверим, везде ли отсутствуют пропуски
df check = df.isna()
for i in df_check.columns:
   print(f'Для признака {i} пропуски: ', df check[i].unique())
    Для признака Open пропуски: [False]
    Для признака High пропуски: [False]
    Для признака Low пропуски: [False]
    Для признака Close пропуски: [False]
    Для признака Adj Close пропуски: [False]
     Для признака Volume пропуски: [False]
## Можем заменить на 0, чтобы не прерывать временной ряд
df new = df.fillna(0)
```

57.930000

```
## Проверим тип данных df_new.dtypes
```

Open float64
High float64
Low float64
Close float64
Adj Close float64
Volume int64
dtype: object

Вывод по части 1: Были загружены необходимые библиотеки, функции, модели, метрики. Был загружен датасет. Датасет был рассмотрен на предмет того, что с ним можно работать: что отсутствуют пропуски, проверен формат данных и дата находится в порядке возрастания.

Часть 2.

Знакомство с данными.

Этот блок посвящен первоначальному знакомству с данными

Наша задача - посмотреть на данные методами .info(), а также изучить их визуально.

Возможные метрики для прогнозирования:

- 1) Open это цена, по которой финансовая ценная бумага открывается на рынке, когда начинается торговля
- 2) High максимум-это самая высокая цена, по которой акции торгуются в течение периода.
- 3) Low минимальная цена акции за период.
- 4) Adj Close скорректированная цена закрытия изменяет цену закрытия акции, чтобы отразить стоимость этой акции
- 5) Close цена закрытия обычно относится к последней цене, по которой акции торгуются во время обычной торговой сессии

```
## Смотрим общую информацию о датасете
df new.info()
    <class 'pandas.core.frame.DataFrame'>
    DatetimeIndex: 15096 entries, 1962-01-02 to 2021-12-17
    Data columns (total 6 columns):
     # Column Non-Null Count Dtype
    --- -----
                  -----
                 15096 non-null float64
     0
       0pen
     1 High
                 15096 non-null float64
                 15096 non-null float64
     2 Low
        Close 15096 non-null float64
     3
        Adj Close 15096 non-null float64
```

15096 non-null int64

Volume

dtypes: float64(5), int64(1)
memory usage: 825.6 KB

Смотрим список аналитической информации и выбираем себе необходимую для изучения $df_new.head$

<bound meth<="" th=""><th>od NDFrame.</th><th>head of</th><th>0pen</th><th>High</th><th>Low</th><th>Close</th></bound>	od NDFrame.	head of	0pen	High	Low	Close	
Date							
1962-01-02	0.263021	0.270182	0.263021	0.263021	0.051133	806400	
1962-01-03	0.259115	0.259115	0.253255	0.257161	0.049994	1574400	
1962-01-04	0.257813	0.261068	0.257813	0.259115	0.050374	844800	
1962-01-05	0.259115	0.262370	0.252604	0.253255	0.049234	1420800	
1962-01-08	0.251302	0.251302	0.245768	0.250651	0.048728	2035200	
2021-12-13	56.980000	57.930000	56.959999	57.759998	57.759998	31362800	
2021-12-14	57.400002	58.169998	57.400002	57.799999	57.799999	24806600	
2021-12-15	57.930000	58.250000	57.650002	58.060001	58.060001	24923800	
2021-12-16	57.980000	58.880001	57.900002	58.650002	58.650002	24696900	
2021-12-17	58.490002	58.919998	57.700001	57.730000	57.730000	51874400	
[15096 rows x 6 columns]>							
4							•

Вывод по части 2: Выбираем необходимые для анализа столбцы: Date, Volume

Часть 3. Предобработка данных. Фильтрация данных.

Фильтрую по условию, выбирая признаки по порядку: дата, объем акций.

```
df_new = df[['Volume']]
## Проверяем
df_new.head()
```

Volume

Date	
1962-01-02	806400
1962-01-03	1574400
1962-01-04	844800
1962-01-05	1420800
1962-01-08	2035200

Необходимо для Volume и Date поменять тип данных для корректного считывания и

```
df_new['Volume'] = df_new['Volume'].astype('string')

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarnir
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/us" """Entry point for launching an IPython kernel.

```
## Проверим тип данных

df_new.dtypes

Volume string
 dtype: object

df_new.info()

<class 'pandas.core.frame.DataFrame'>
    DatetimeIndex: 15096 entries, 1962-01-02 to 2021-12-17
    Data columns (total 1 columns):
```

Часть 4

EDA (exploratory data analysis) или разведочный анализ данных.

Цель данного блока: познакомиться "поближе" с данными, которыми мы располагаем.

Задачи данного блока:

dtypes: string(1)
memory usage: 235.9 KB

Вывести статистику по нужным столбцам;

Построить графическое отображение столбцов.

Column Non-Null Count Dtype

Volume 15096 non-null string

```
## Входная выборка для анализа df new.head()
```

Volume

Date

Проведем расчет основных статистических метрик df_new.describe()

	Volume
count	15096
unique	10188
top	537600
freq	65

Замена значений N/A значением 0 df_new = df.fillna(0)

Проведем расчет основных статистических метрик $df_new.describe()$

	0pen	High	Low	Close	Adj Close	ν
count	15096.000000	15096.000000	15096.000000	15096.000000	15096.000000	1.50960
mean	16.056202	16.188428	15.921876	16.060734	11.367487	9.03290
std	16.939301	17.064336	16.811753	16.941712	14.253637	7.93574
min	0.192708	0.193359	0.182292	0.192057	0.037855	7.68000
25%	0.860677	0.869792	0.854167	0.860352	0.242312	2.81280
50%	9.328125	9.398438	9.218750	9.351562	4.642848	7.58520
75%	28.875000	29.167500	28.563125	28.901562	17.251080	1.29127
max	59.810001	60.130001	59.619999	60.130001	58.650002	1.24169

Построим общий график для метрик df_new[['Open','High','Low','Close','Adj Close']].plot(subplots=True, figsize=(15, 3), tit

Цена финансовой ценной бумаги

Промежуточный вывод:

Средняя цена акции практически одинакова, заметное повышение цены наблюдается по данным из графика 'Open', т.е. на время открытия биржи, значительное снижение цены наблюдается по данным из графика 'Adj Close'.

```
## Строим временной ряд по колонке 'Объем' из загруженного датасета

title = 'Цена акции' # название графика
ylabel = 'Объем' # название оси Y
xlabel = '' # по сравнению с ожидаемым результатом не указываем название оси X

df1 = df_new.resample('W').mean()
ax = df_new['Volume'].plot(figsize=(12,6),title=title) # добавлем заголовок
ax.autoscale(axis='x', tight=True)
ax.set(xlabel=xlabel, ylabel=ylabel)
```


Промежуточный вывод: Видим уровень корреляции, между ценой продажи акции в течении одного дня. Также выявлен положительный тренд потребления электроэнергии. Строим гипотезу: будет ли в будущем расти цена акции с учетом появления новых продукции Coca-cola и работы на дому с учетом сезонности.

```
## Построим гистограмму для определения распределения данных df_new.hist()
```


Промежуточный вывод:

Анализ представленного распределения позволяет сделать вывод о пиковых временных отрезках при продаже акций. Это видно на общем графике: 4 пиковых точки продажи. В остальное время продажи осуществляются с более сглаженными всплесками роста.

Построим матрицу корреляции признаков df_new.corr()

	0pen	High	Low	Close	Adj Close	Volume
Open	1.000000	0.999938	0.999929	0.999883	0.971996	0.472328
High	0.999938	1.000000	0.999899	0.999942	0.971578	0.473719
Low	0.999929	0.999899	1.000000	0.999939	0.972530	0.470407
Close	0.999883	0.999942	0.999939	1.000000	0.972004	0.471971
Adj Close	0.971996	0.971578	0.972530	0.972004	1.000000	0.452271
Volume	0.472328	0.473719	0.470407	0.471971	0.452271	1.000000

```
## Построим график зависимости Open от Volume sns.lineplot(data = df_new, x = 'Open', y = 'Volume')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f5bc11cf5d0>

График плотности распределения Open sns.distplot(df_new.Open)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarnin warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5bbeb5ac10>

график плотности распределения Volume sns.distplot(df_new.Volume)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarnin warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5bbeb64bd0>

Промежуточный вывод:

Видим, что величины коэффициентов корреляции у цены акции на время открытия биржи и объемом продажи равны 0, что свидетельствует о том, что переменные не связаны между собой.

Также на графиках KDE видно, что графики распределения отличаются, благодаря этому наблюдению можно сформулировать гипотезу исследования:

Если цена акции снижается, то общий объем продаж остается прежним.

Для этого построим прогнозную модель расчёта.

```
## При снижении цены акции при открытии биржи объем продаж не увеличивается и остается през sns.lineplot(data = df_new, x = 'Date', y = 'Low') sns.lineplot(data = df_new, x = 'Date', y = 'Volume')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f5bbeb63690>

Часть 5 Построение моделей, анализ результатов.

```
## Выделяем выборки, где тестовая размером 1 месяц (20 рабочих дней, время работы биржи в train = df.iloc[:len(df)-20] test = df.iloc[len(df)-20:]
```

Посмотрим на обучающую выборку train.head()

Open High Low Close Adj Close Volume

Date

Посмотрим на тестовую выборку
test.head()

	Open	High	Low	Close	Adj Close	Volume
Date						
2021-11-19	55.439999	55.490002	54.900002	55.130001	54.705769	15813700
2021-11-22	55.099998	56.020000	55.080002	55.470001	55.043152	16905600
2021-11-23	55.660000	56.110001	55.500000	55.880001	55.449997	13835900
2021-11-24	55.709999	55.840000	55.029999	55.430000	55.003460	12598900
2021-11-26	54.590000	54.750000	53.580002	53.730000	53.316540	14754300

Строим декомпозицию временного ряда (ETS декомпозиция) r = seasonal_decompose(df1['Volume'], model='additive') r.plot();


```
## seasonal_decompose в увеличенном виде
fig, (ax1,ax2,ax3,ax4) = plt.subplots(4,1, figsize=(15,8))
r.observed.plot(ax=ax1, legend=True)
r.trend.plot(ax=ax2, legend=True)
r.resid.plot(ax=ax3, legend=True)
r.seasonal.plot(ax=ax4, legend=True)
```


Промежуточный вывод:

На последнем графике наблюдаем цикличные сезонные колебания на протяжении всего периода анализа объема продаж.

Построение моделей. Задачи:

описать модель

подобрать оптимальные параметры

создать модель

обучить модель

сделать прогноз на период тестовой выборки

сравнить прогноз с тестовой выборкой (построить график)

оценить качество прогноза

сделать прогноз на 10-15 дней на будущее

сделать выводы о работе данного метода прогнозирования

▼ 2й метод прогнозирования - PROPHET

```
# подготовим данные для модели
train_prophet = train[['Volume']]
test_prophet = test[['Volume']]
```

#посмотрим на обущающую выборку

train_prophet.head()

Volume

Date	
1962-01-02	806400
1962-01-03	1574400
1962-01-04	844800
1962-01-05	1420800
1962-01-08	2035200

#посмотрим на тестовую выборку test_prophet.head()

Volume

Date	
2021-11-19	15813700
2021-11-22	16905600
2021-11-23	13835900
2021-11-24	12598900
2021-11-26	14754300

train_prophet = train.reset_index() #Индекс сбросим, чтобы работать только с колонками. test_prophet = test.reset_index() #Индекс сбросим, чтобы работать только с колонками.

train_prophet.head() #посмотрим преобразование после сброса индексов

	Date	0pen	High	Low	Close	Adj Close	Volume
0	1962-01-02	0.263021	0.270182	0.263021	0.263021	0.051133	806400
1	1962-01-03	0.259115	0.259115	0.253255	0.257161	0.049994	1574400
2	1962-01-04	0.257813	0.261068	0.257813	0.259115	0.050374	844800
3	1962-01-05	0.259115	0.262370	0.252604	0.253255	0.049234	1420800
4	1962-01-08	0.251302	0.251302	0.245768	0.250651	0.048728	2035200

test_prophet.head() #посмотрим преобразование после сброса индексов

		Date	0pen	High	Low	Close	Adj Close	Volume
	0	2021-11-19	55.439999	55.490002	54.900002	55.130001	54.705769	15813700
	1	2021-11-22	55.099998	56.020000	55.080002	55.470001	55.043152	16905600
	2	2021-11-23	55.660000	56.110001	55.500000	55.880001	55.449997	13835900
<pre>train_prophet_0_new = train_prophet[['Date','Volume']] test_prophet_0_new = test_prophet[['Date','Volume']]</pre>								
	-	ZUZ 1-11-ZU	U-T.UUUUUU	UT.1 UUUUU	00.000002	00.700000	00.010070	17707000

train_prophet_0_new.head()

	Date	Volume
0	1962-01-02	806400
1	1962-01-03	1574400
2	1962-01-04	844800
3	1962-01-05	1420800
4	1962-01-08	2035200

test_prophet_0_new.head()

	Date	Volume
0	2021-11-19	15813700
1	2021-11-22	16905600
2	2021-11-23	13835900
3	2021-11-24	12598900
4	2021-11-26	14754300

Переименуем столбцы в обучающем и тестовом датасетах, чтобы они подходили для использова train_prophet_0_new.columns = ['ds', 'y'] # переименовали столбцы test_prophet_0_new.columns = ['ds', 'y'] # переименовали столбцы

train_prophet_0_new.head()

	ds	у
0	1962-01-02	806400
1	1962-01-03	1574400
2	1962-01-04	844800
3	1962-01-05	1420800
4	1962-01-08	2035200

test prophet 0 new.head()

```
        ds
        y

        0
        2021-11-19
        15813700

        1
        2021-11-22
        16905600

        2
        2021-11-23
        13835900

        3
        2021-11-24
        12598900

        4
        2021-11-26
        14754300
```

```
model = Prophet()
model.fit(train_prophet_0_new) # подогнали модель под наши данные
```

INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True t
<fbprophet.forecaster.Prophet at 0x7f5bc3d7ad90>

Промежуточные выводы:

Алгоритм проигнорировал, выбирая параметры

Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this.

годовую сезонность (для годовой сезонности нам нужно иметь данные минимум за 2 года, чтобы суметь использовать ее в модели) INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.

дневную сезонность (дневная сезонность может использоваться в случае, если данные собираются по часам/минутам, в нашем случае данные представлены по месяцам). Зато он обнаружил недельную сезонность и использовал его при настройке модели.

```
# говорим профету сделать дата-фрейм на 15 дней вперед future = model.make_future_dataframe(periods=15, freq='W') future.tail() # выводим 5 строк с конца
```

	ds
15086	2022-01-30
15087	2022-02-06
15088	2022-02-13
15089	2022-02-20
15090	2022-02-27

[#] предсказываем значения по модели, доверительный интервал по умолчанию 95%

forecast = model.predict(future)
forecast.head() # возвращает много колонок

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	i
0	1962- 01-02	972065.160830	-6.276535e+06	6.567038e+06	972065.160830	972065.160830	
1	1962- 01-03	972052.898636	-6.620535e+06	6.808263e+06	972052.898636	972052.898636	
2	1962- 01-04	972040.636443	-7.051706e+06	6.258448e+06	972040.636443	972040.636443	
3	1962- 01-05	972028.374249	-5.918402e+06	6.878686e+06	972028.374249	972028.374249	
4	1962- 01-08	971991.587667	-6.807430e+06	6.455872e+06	971991.587667	971991.587667	

Основные поля в прогнозе следующие:

ds - дата прогноза

yhat — спрогнозированное значение

yhat_lower — нижняя граница доверительного интервала для прогноза

yhat_upper — верхняя граница доверительного интервала для прогноза

forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail() # оставим только нужные

	ds	yhat	yhat_lower	yhat_upper
15086	2022-01-30	1.221374e+07	5.450933e+06	1.875159e+07
15087	2022-02-06	1.177093e+07	5.052111e+06	1.818367e+07
15088	2022-02-13	1.148307e+07	5.457614e+06	1.791894e+07
15089	2022-02-20	1.171377e+07	4.942068e+06	1.807594e+07
15090	2022-02-27	1.239107e+07	5.786342e+06	1.912836e+07

сравниваем прогноз и тестовую выборку, где черные точки - выборка

model.plot(forecast);

Кроме того, Prophet позволяет также наглядно разложить ряд на основные компоненты — тренд и сезонность:

plot_components() — возвращает несколько графиков, среди которых тренд и столько сезонностей, сколько он найдет.

model.plot_components(forecast);

Промежуточные выводы: Видим, наличие возрастающего тренда стоимости акций и годовую сезонность. Видим каким образом изменяются цены по месяцам.

```
#оцениваем качество модели методом MSE, RMSE, MAE, MAPE
mae_error = mean_absolute_error(test_prophet_0_new['y'], forecast['yhat'].tail(15))
mse_error = mean_squared_error(test_prophet_0_new['y'], forecast['yhat'].tail(52))
rmse_error = rmse(test_prophet_0_new['y'], forecast['yhat'].tail(52))
mape_error = np.mean(np.abs(forecast['yhat'] - test_prophet_0_new['y'])/test_prophet_0_new
print(f'Prophet MAE Error: {mae_error:11.10}')
print(f'Prophet MSE Error: {mse_error:11.10}')
print(f'Prophet RMSE Error: {rmse_error:11.10}')
print(f'Prophet MAPE Error: {mape_error:11.10}')
# делаем прогноз на будущее - 1 год вперед
# обучаем модель на всем датасете
fut_model_prophet = Prophet(seasonality_mode='multiplicative')
fut model prophet.fit(df1)
# говорим профету сделать дата-фрейм на 1 год вперед
fut_future_prophet = fut_model_prophet.make_future_dataframe(periods=52)
fut_fcast_prophet = fut_model_prophet.predict(fut_future_prophet)
# устанавливаем индекс
fut_fcast_prophet.index = fut_fcast_prophet.ds
# убедимся в изменениях
fut fcast prophet.head()
#строим график на будущее
ax = df1['Open'].plot(legend=True, figsize=(10,3),title='Open price')
fut fcast prophet['yhat'].tail(12).plot(legend=True)
ax.autoscale(axis='x',tight=True)
ax.legend(["Open", "PROPHET"]);C
```


Зй метод прогнозирования "Экспоненциальное сглаживание" (Exponential smoothing)

Date

Описание модели Exponential smoothing: to do

Экспоненциальное сглаживание — метод математического преобразования, используемый при прогнозировании временных рядов.

Метод также известен как метод простого экспоненциального сглаживания, или метод Брауна

'lamda': None,

```
'remove bias': False,
      'smoothing_level': 0.2918169471796316,
      'smoothing seasonal': nan,
      'smoothing slope': 0.003272306024537332,
      'use_boxcox': False}
import pandas as pd
#предсказываем значения, передав модели results точку начала и окончания
prediction_exps = model_exps.predict(model_exps.params, start=test.index[0], end=test.inde
test.index[0]
     Timestamp('2021-11-19 00:00:00')
test.index[-1]
     Timestamp('2021-12-17 00:00:00')
prediction_exps
#преобразуем в датафрейм с индексами
prediction_exps = pd.DataFrame(prediction_exps)
prediction_exps.index = pd.date_range("2021-12-10 00:00:00", periods=10, freq="D")
prediction_exps.columns = ['prediction_exps']
#проверим
prediction_exps.head()
#сравниваем прогноз и тестовую выборку
ax = test['Volume'].plot(legend=True, figsize=(12,6),title='Объем продаж')
prediction_exps['prediction_exps'].plot(legend=True)
ax.autoscale(axis='x',tight=True)
#проверим
prediction_exps.head()
#сравниваем прогноз и тестовую выборку
ax = test.plot(legend=True, figsize=(12,6),title='Объем продаж')
prediction_exps['prediction_exps'].plot(legend=True)
ax.autoscale(axis='x',tight=True)
#оцениваем качество модели методом MSE, RMSE, MAE, MAPE
mae_error = mean_absolute_error(test, prediction_exps['prediction_exps'])
mse_error = mean_squared_error(test, prediction_exps['prediction_exps'])
rmse_error = rmse(test, prediction_exps['prediction_exps'])
mape_error = np.mean(np.abs(prediction_exps['prediction_exps'] - test)/test)*100
```

```
print(f'Exponential smoothing MAE Error: {mae error:11.10}')
print(f'Exponential smoothing MSE Error: {mse error:11.10}')
print(f'Exponential smoothing RMSE Error: {rmse_error:11.10}')
print(f'Exponential smoothing MAPE Error: {mape_error:11.10}')
#делаем прогноз на будущее
# обучаем модель на всем датасете
fut_model_exps = ExponentialSmoothing(df1['Open'], seasonal_periods=12, trend = 'add')
fut_model_exps.fit()
#задаем точки будущего
fut_fcast_exps = fut_model_exps.predict(fut_model_exps.params, start=len(df1)-1, end=len(d
#преобразуем в датафрейм с индексами
fut_fcast_exps = pd.DataFrame(fut_fcast_exps)
fut_fcast_exps.index = pd.date_range('2020-02-09 00:00:00', periods=12, freq="W-SUN")
fut_fcast_exps.columns = ['fut_fcast_exps']
#проверим
fut_fcast_exps.head()
```

fut_fcast_exps

2020-02-09	54.908381
2020-02-16	57.774382
2020-02-23	57.792763
2020-03-01	57.811144
2020-03-08	57.829525

```
#строим график на будущее ax = df1['Volume'].plot(legend=True, figsize=(12,6),title='Объем продаж') fut_fcast_exps['fut_fcast_exps'].plot(legend=True) ax.autoscale(axis='x',tight=True)
```


Выводы Проведен анализ данных с использованием современных методов обработки статистической информации.

Рассчитаны основные статистические метрики, позволяющие судить о характере исследуемого явления.

Результаты анализа представленных данных помогли выявить зависимость цены акции на мрмент открытия от объема продаж.

Прогнозная модель позволила зафиксировать что снижение цены имеет слабое влияние на объем продажи акций.

>