二阶柳圆边界值问题的读书报告	1
- 1/1 44412/11/11 10/22 BJV2-11/4/X-0	周漸翔
一、问题引入	,
二. 变分理论	
1.极小化问题与变分方程	
2. Lax-Milgram引理	
三. Sobolev空间	
1.弱导数	
2. 定义与基本性质	
3. Sobolev空间的其他性质	
四. 应用. 求解方程	
卷老文献	
I问题引入	
设 12 为 RN中有界开集, Γ= 2 12, 我们想解决	空下面的两个边界
	$= f in \Omega$
	=9 on [7
我们知道,一个偏微分方程往往是非常观	
而求其次,我们能知道这些方程解是否存在。	•
其实还有一个更加本质的气间题。我们是在什么区域?	
要知道,如果一个空间足够差(如既不完备),那么	
这样的理论将不再优美。	
我们将引入"好的"空间——Sobolev空间	在这个空间上
使用我们的变分解理论,进而达到求解方程的	
存在唯一性)。我们可能会对方程增加一定的约束	
18 1 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 1 B

I 变分理论

我们希望找到一个方程的解,并且希望证明这样的解的存在唯一性。对于一般的方程,这是很难做到的;幸运的是,我们考虑的方程是那特殊的方程,有两个这样的定理来保证.

一当考虑的二次型对称时,我们能找到一个与之相关的泛函,从而由变分理论,找到使其取值最小的元素,证明解的存在唯一性并建立相执应的变分方程与变分不等式(就是我们欲解的方程);

一当考虑的主要空间是Hilbert空间时,我们有对应的Lax-Milgram引擎 下面我们就会分别讨论这两个定理。我们引入如下符号

·(V,11:11)为Banach空间

· a.VxV→IR 为连续=次泛函

· L.V→R 为连续线性泛函

· J·V → R (往往 J(v)= ½ a(v,v)- l(v))

· U为 V的非空闭凸集

1.极小化问题与变分方程.

Thm 2011 - 4 3 50 51

其中a.V×V→R为连续对称双线小生型。

Thm2.1.1. | 符号如上。设在为V-椭圆的连续对称双线性型, J(v)= = a(v,v) - ((v),

. 別 ヨ! u E U s.t J(u) = inf J(v) (极小化问题)

(续)
此时变动L.则u可视作L的函数更.
$l \longrightarrow u$
更为Lipschitzi车线,且
更为线性函数 ⇔ U为V的线性子空间。
Proof. ··a连续,记M= a 则 Yu, NEV, a(u,v) =M u 1 v -
容易验证a为V上的一个内积,且其诱导的范数与V上原先的
范数等价.
YNEV, Ja IINISJA(N,N) STM INII
此时V在该内积下成为Hilbert空间。由Riesz表于定理,
I! c=c(l) eV s.t. YveV, ((v)=a(c,v)
$\psi(z) = \frac{1}{2}\alpha(v,v) - \alpha(c,v) = \frac{1}{2}\alpha(v-c,v-c) - \frac{1}{2}\alpha(c,c)$
由于USV为非空闭凸集,由投影定理,
0=1/ueV st st Viel, a(u-c, u-c)=min a(v-c, v-c)
②映射 CEV -> UEU 为 Lipschitz 连续映射
③映射ceV→ueU为线性映射(>U为V的线性子空间。
由①, I! UEU s.t. J(u)=min Jcv);
LEV'→ C EV为Lipschitz连续 ⇒ 五为Lipschitz连续;
而更为线性映射 OEV - UEV 为线性映射
而更为线性映射 ⇒ CEV → UEU 为线性映射 → U为V的线性子空间。 □
而更加漂亮的结论在于我们可以用等价的公式来描述这个使泛函
极小化的元素!
Thm (变分方程与变分不等式)
假设和记号同上,则
U DEU 为极小化问题的解
$\Rightarrow \forall \forall v \in V, \alpha(u, v - u) \geq l(v - u) \qquad (\overline{g} + \overline{G} + \overline{G} + \overline{G})$
UNVET 87 HOLL NO (UN) = ((V))
网络性空间

Proof 设 C∈V, s.t 对∀v∈V, ((v)=a(c,v)由投影定理,
u为C在U上的投影
⇔ HveU, a(u-c, v-u)>0
\Leftrightarrow 27 $\forall v \in U$, $a(u, v - u) \geq a(c, v - u) = l(v - u)$
当 U为V的线性子空间时
u为 C有在U上的投影
$\Leftrightarrow \exists \forall v \in U, \alpha(u-c, v)=0$
⇔ xt VNEU, a(u,v)=l(v). □ c
Remark. 可以直接计算得到 FIG 2-1
$J(u+w)-J(u)=(a(u,w)-l(w))+\frac{1}{2}a(w,w)$
放在某种意义下,a(u,w)-l(w)为差分J(u+w)-J(w)的线性部分
我们称 a(u, w)-l(w)为泛函 J在 u点处的第一变分。
从这个角度来说,上述定理是相当自然的。
2. Lax-Milgram 引理
给定Hilbert空间V, B V-柳圆的连续双线性泛函
(a(x,1x) >d\d x ²) a: √×√→R, 连续线性泛函 L:V→1R,
我们同样可以考虑下列抽象变分问题。
Q . 是否 $\exists u \in V$ s.t 对 $\forall v \in V$, 有 $\alpha(u, v) = l(v)$?
(W: 76) WEV 3. () WOUND CO.
事实上,我们有如下*定理。
Thm (Lax - Milgram 引理)
假设如上。则关处于以《人的变分问是质
$2 \neq \forall v \in V, \ \alpha(u,v) = ((v)) \qquad (***)$
有且只有一个解u(l),且映射 亚· (eV'→)u(l)eV
为连续线性映射。

Proof. 我们分三步来证明. Step1@将变分方程化为方程 Au=l (或 T(Au-l)=0)。 由 a 连续,记M= ||a||, T: V'→V为内积a所对应的Riesz表示。 可验证 A:V — 为连续线性冷函 $u \mapsto \begin{bmatrix} Au: V \longrightarrow IR \\ v \mapsto a(u,v) \end{bmatrix}$ 且 ||A||_{L(V;V')} < M (由于 ||Au||_V = sup ||Au(v)| < M ||u||) #EBT a(u,v)=((v) => Au=1 (=> T(Au-()=0 Step 2 记户= 点,我们将证明映射 $f_{\rho}: V \longrightarrow V$ $v \mapsto v - \rho_{\tau}(Av - l)$ 为压缩映射,由Banach不动点定理,习以EV为fp的不动点, i.e 满足 工(Au-1)=0,从而解的存在唯一性成立。 : |\n-p\angle Av||2 = |\nu||2 - 2p(\tan, v) + p2 |\tan Av||2 = ||v||2-2pa(v,v)+p2||Av||20 € (1-2p2+p2M2) ||v||2 $= (1 - \frac{\lambda^2}{M^2}) ||v||^2$ 从而力力压缩外数为一些的压缩映射。 Step 3 证明五为连续线性映射。 此时 AEL(V,V')为V至V'的一一映射 -'. 更 =A-'. V'→Vガーー的线性映射且对∀leV'-Po] $||A^{-1}||| = ||u|| = \frac{\lambda ||u||^2}{\lambda ||u||} \leq \frac{\alpha(u,u)}{\lambda ||u||} = \frac{\lfloor (u) \rfloor}{\lambda ||u||} \leq \lambda^{-1} ||u||$ 从而可连续 П

T Sobolev 空间 我们希望得到 Sobolev空间的定义,其中弱导数,将会起到 一个至关重要的地位。所以,让我们先来探索弱导数的定义和 性质,看它是导数在一种什么意义下的推广。 在接下来的章节中,我们会用到以下记号 · D. RN中的某行集 · Lio(1)= FUE L(1) | VI中安集K, NKEL'(K)] 一、弱导数 我们先从导数的一个性质说起 Thm (设meIN+, ve Cm(s2), 2=(d, dn)为多重指, 121<m则 If $V \in D(\Omega)$, $\int_{\Omega} (\partial^{\alpha} v) \varphi dx = (-1)^{|\alpha|} \int_{\Omega} v \partial^{\alpha} \varphi dx$ Proof. 记w(x)= SN(x) P(x) XED 为设施滑函数 XEIR-D to Fa>o s.t Supp wc(-a,a) N;让比时, $\int_{\Omega} \partial_i (v \varphi) dx = \int_{\Omega} \int_{\Omega} u dx$ Fubini / (a diw(x, ... xi,t,xi, ... xn) det) dx, ... dx, ... dx, & / D dilup) dx = / B (div) pdx + / D vd pdx $tx \int_{\Omega} (\partial_i v) \rho dx = -\int_{\Omega} v \partial_i \rho dx$

这就证明了[2]=2时的情况。当[2]>1时,使用相似的方法可以锻]。口

6: (17-14 1) H'HI- 1/4 / 11- 11- 11- 11- 120- 46 16 20.
我们将对其进行推广,从而得到弱导数的定义。
Def ((3 导数)
设V∈Lloc(Ω), d为多重指额标,我们和Nd∈Lloc(Ω)
为心在上的(几)中指标为处的弱导数,若
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
特别地,当为=(0,-,0,1,0,0)时,称Vieloc(几)为V在
Lioc(10)中相在于第1分量的1阶弱器导数,若
$x \neq \forall \varphi \in \mathcal{D}(\Omega), \int_{\Omega} \mathcal{V}_{i} \varphi dx = -\int_{\Omega} \mathcal{V}_{i} \varphi dx$
我们发现到导数满足一些基本的性质;有了这些性质,我们才
自气进行更加深入的研究。
Thm (变分分类的基本引建)
xt WED(n), In v y dx =0
igveLbc(の) 満足 対VPED(の), Sovpdx =0 別v=0 の の の の の の の の の の の の の
Proof. 对 V k > 1, 定义开集列
$\Omega_{k} = \int \times \in \Omega \operatorname{dist}(x, R^{N} - \Omega) > \frac{1}{k} \int \cap B(o, k)$
\mathbb{R}^{j} $\Omega = \mathbb{U}\Omega_{k}$
· 对长江, 豆, 为口中的客子集
· 2+ Vk>2, V/Ox EL'(s)
/2 ε. (k) = 3k >0 s.t x) Vo<ε< ε. (k)
Dak C De: = [xes/dist(x, 12-s) >e]
接下来,定义 $w(x) = se^{- x ^{\frac{1}{2}}}$ $(x <1)$ $(w \in C^{\infty}(\mathbb{R}^{n}))$
$ x \ge 1$
接下来,定义 $\omega(x) = \int e^{-\frac{1}{ x ^{2}-1}} x < 1$ $(\omega \in C^{\infty}(R^{n}))$ $\omega_{\varepsilon}(x) = \int_{\mathbb{R}^{n}} \omega(\frac{x}{\varepsilon})$

$$V_{\epsilon}^{k}(x) = \int_{B(x;\epsilon)} W_{\epsilon}(x-y) V^{k}(y) dy$$

见由老紀理论, $V_{\epsilon}^{k}(x) \in C_{\circ}^{\circ}(\Sigma)$, supp $V_{\epsilon}^{k} \subseteq \Omega_{-2k-\epsilon}$

· (im $\|V_{\epsilon}^{k} - V^{k}\|_{L^{r}(\Omega_{k})} = 0$ (1)

$$\mathcal{F}_{\mathcal{E}} \mathcal{N}_{\mathcal{E}}^{k}(x) = \int_{\mathcal{B}(x;\mathcal{E})} v^{k}(y) w_{\mathcal{E}}(x-y) dy = \int_{\Omega} v(y) w_{\mathcal{E}}(x-y) dy = 0$$

$$\pm (1), \|V\|_{L^{2}(\Omega_{k})} = \lim_{\epsilon \to 0} \|V_{\epsilon}^{k}\|_{L^{2}(\Omega_{k})} = 0$$

FIG 3-1 证明中的各个集合

别,我们还有两个期待的弱导数的性质,在这之后我们可以无歧义地使用这个符号。

Prop. (弱导数的作一)生) $设v \in L_{loc}(\Omega)$, 及为多重指标, $|\Delta| \ge 1$,则

V的指标为·X的弱导数若在在心。作一

特别地,当v.€Cl202时,必=∂2,此时弱导数即扬导数。

Proof. 设心,whE Lloc(Q) 满足对 b(PED(Q),	
$\int_{\Omega} v^{2} \varphi dx = (-1)^{ \alpha } \int_{\Omega} v \partial^{2} \varphi dx = \int_{\Omega} w^{2} \varphi dx$	
则由变分学基本引理,心是一心。	i.
Prop. (常值函数的判别法)	
设立为RN的连通开集、NELloc(Q) sit	
xt YpeD(Q) 1≤i≤n,恒有	
Sa Vdipolx=0 (*)	* .
则ルが常直函数。	
Proof. 证明思路仍然是利用卷积来构造 尤滑起激。	
只需 证明 V在 Q上是局部常值即可。	
VXED, Fr>0 St B(x;r)CD	
$i\partial U = B(x, y)$, $V_{\varepsilon} = V * W_{\varepsilon}$, $\mathcal{P}_{\varepsilon}$	
∃ ε, = ε, (U)>0 s.t. ∀ ο< ε< ε,	
$\overline{U} \subset \Omega_{\varepsilon}$, $V_{\varepsilon} \in P(\Omega_{\varepsilon})$ $\langle : \Omega_{\varepsilon} \rangle$	
· (im VE - V L'(V) = 0	
· di VE(x)= SadiWE(x-y)av(y)dy=0	
(対 YXEDE, 1SiSN) FIG 3-2 各作集合	*2
$\Rightarrow v_{\varepsilon} _{B(x,r)=C} \Rightarrow v _{v=C} \qquad \Box$	
二、定义与基本性质	
这时,我们可以给出 Sobolev 空间的足义	
Def ((Sobolev空间,1)	
18m>1.10 #17EX	ρ.
$W^{m,p}(\Omega) = f v \in L^{p}(\Omega) v f 全部 < m 所 $	(3)
$H^{m}(\Omega):=W^{m,2}(\Omega)$	•

然后,我们给出其基本性质。 说 DCIRN, m>1, 则 Sobolev空间Wm, (a), Hm(a)在下 述定义的范数 $\|V\|_{m,p,\Omega} = \left(\sum_{\alpha \in \mathbb{Z}} \|\partial^{\alpha}v\|^{p} dx \right)^{\frac{1}{p}} = \left(\sum_{\alpha \in \mathbb{Z}} \|\partial^{\alpha}v\|^{p} \|\partial^{\alpha}v\|^{p} \right)^{\frac{1}{p}} \left(1 \leq p < \infty \right)$ $\|V\|_{m,\infty,\Omega} := \max_{|a| \le m} \|\partial^a v\|_{L^{\infty}(\Omega)}$ $\|\mathbf{v}\|_{m,\Omega} = \left(\int_{\Omega} \sum_{|\mathbf{a}| \leq m} |\partial^{\mathbf{a}} \mathbf{v}|^{2} d\mathbf{x}\right)^{\frac{1}{2}} = \left(\sum_{\mathbf{a} \in \mathcal{A}} \|\partial^{\mathbf{a}} \mathbf{v}\|^{2} + \sum_{\mathbf{a} \in \mathcal{A}} \|\partial^{\mathbf{a}}$ 下成为一个Banach空间。且 ·当区p<∞时,Wmp(几)可分; ·当1<p<>时,W^{m,P}(a)自负; · 当p=2时,Hm(a)为Hilbert空间 Proof Step 1. (Banach空间)显然 Wm/(a),Hm(A)为线性空间 我们验证范数满足三角不等式 \$ 1 \(\rightarrow \text{B} \), \(\lambda + \waller \rightarrow \widtharrow \text{W} \rightarrow \rightarrow \vert \rightarrow \rightarro $\frac{\min}{\sum_{k \in \mathcal{K}} \left(\sum_{k \in \mathcal{K}} ||\partial^2 v||_{L^p(\Omega)} \right)^p} + \left(\sum_{k \in \mathcal{K}} ||\partial^2 v||_{L^p(\Omega)} \right)^p$ = [[v||m,p, a+||w||m,p, a 当 p=+の时, ||v+w||m,の, 2= max || み(v+w) ||co(の) < max (11 2 dull 20(0) + 11 2 dull 20(0)) < max 112 2 1/2 (a) + max 112 2 1/2 (b) $= \| \mathbf{v} \|_{\mathbf{m}, \infty, \Omega} + \| \mathbf{w} \|_{\mathbf{m}, \infty, \Omega}$ 范数的另外2条性质是显然的(变分学基本引理),放而对∀1≤p≤t00, ||·||m,p, a成为W^{m,p}(a)的范数。

()	
0	来看完备些设 (<0x, 令(Vk) k=1 为Wm, P(s) 在范数 · m,p, a
<u> </u>	下的Cauchy31, D1 2+ Yo< 121≤m, Yk, 1>1, 有
ā	下的 Cauchy 31, 见了对 $\forall 0 \leq a \leq m$, $\forall k, l \geq 1$, 有 $\ \partial^{d}v_{k} - \partial^{d}v_{l} \ _{L^{p}(\Omega)} \leq \ v_{k} - v_{l} \ _{m,p,\Omega} \xrightarrow{k, l \to +\infty} 0$
	·· L ^P (Q) 完备
	·· · 对 \ < d < m, 习 逐遊
	• ∃ν ∈ L ^P (Ω) s.t. (im ν _k - ν _L P(Ω) = 0
<u></u>	$Claim$. 这里的 $V^d \in LP(\Omega)$ 就是 V 的指标为 λ 的偏导数。此时
_	JEKET VERIW MIP (a) I fim 1/VK-V/mp, 0=0
	to (W ^{m, p} (の), II·ll _{m, p, s}) 为 Banach空间。
<u>-</u>	下证 Claim. 设 $ \leq a \leq m$, ≥ 1 , $\gamma \in \mathcal{D}(\Omega)$, 则(记9为 p 的共轭指标)
_	$V_{K} \in W^{m,p}(\Omega) \Rightarrow \int_{\Omega} (\partial^{2} v_{K}) \varphi dx = (-1)^{[a]} \int_{\Omega} v_{K} \partial^{2} \varphi dx$
	· In (2 dNk) ydx - In Vd ydx Solder 2 dNk - Vd LMa) Y LMa) o
	$ \int_{\Omega} v_{k} \partial^{2} \varphi dx - \int_{\Omega} v \partial^{2} \varphi dx \stackrel{\text{H\"older}}{\leq} v_{k} - v _{L^{p}(\Omega)} \partial^{2} \varphi _{L^{q}(\Omega)} \xrightarrow{k \to +\infty} 0 $
	$\Rightarrow \int_{\Omega} v^2 \rho dx = (-1)^{ a } \int_{\Omega} v \partial^2 \rho dx \qquad \text{AmClaim4Fix.}$
_	Step 2. (可分性+自反性) 我们只考虑加=1的情况,加>2时方法相同。
-	我们又考虑的三日的自己,11/2时方、表相问。
	记(上(几))~+为装备重和范数的观击范线性空间,见以"几间
	自然视作(LP(s2))N+的子空间
	$\left\{ (v_0, v_1, v_n) \in (L^p(\Omega))^{N+1} \middle x \neq \forall y \in D(\Omega), \forall k \in N, \int_{\Omega} v_i y dx = -\int_{\Omega} v_0 \partial_i y dx \right\}$
	当1 ≤p<の时,Lp(の)可分 ⇒(Lp(の)) N+1 可分 ⇒W',p(の)可分
La	而W'P(12)在(LP(12))**中闭, 方文量
	当 1< p<∞ 时, LP(12)自反 ⇒ (LP(12))N+1 自反 ⇒ W''P(12)自反。
A.,	

Step 3 (p=2, Hilbert空间)
$\frac{\mathbb{R}^{k}}{(\cdot,\cdot)_{m,\Omega}} \cdot H^{m}(\Omega) \times H^{m}(\Omega) \longrightarrow \mathbb{R}$ $(u, v) \longrightarrow \sum_{(\lambda \mid Sm/\Omega)} \int_{\Omega} d^{\lambda} u d^{\lambda} v dx$
$(u, v) \longrightarrow \sum_{w \in \mathcal{M}} \int du d^{k} v dx$
对 HM(D)上的内积,且 11·11m, 为该内积下诱导的范数, HM(D)在
· m, 几下完备,故(H ^m (几), · m,几)为Hilbert空间。 []
初方便起见,我们进行如下的补充定义.
Def (Sobolev空间 2)
EX W", (a) = [(a) (1. a,p,a:= 11. LP(a)
$H^{\circ}(\Omega) = L^{\circ}(\Omega)$ $\ \cdot\ _{0}, \Omega := \ \cdot\ _{L^{2}(\Omega)}$
$H^{\circ}(\Omega) = L^{\circ}(\Omega)$ $\ \cdot\ _{o}$, $\Omega := \ \cdot\ _{L^{2}(\Omega)}$ Remark 虽然当与 $P < \infty$ 时, $P(\Omega)$ 在 $P^{\circ}(\Omega)$ 中和密,但一般 $P(\Omega)$ 在
W"、P(12)中是不耦密的。这促使我们引入下列Sololev空间的定
Def! (Sobolev空间 3)
双 1 ≤ p < ∞ , 定义
Wom,P(B) 为O(D)在(Wm,P(D),11.11m,p,D)中的河包;
1 # H. (12): = W. M,2
Remark. 当15pcoolt, 好事好 Wom(几)为可分Banach空间;
·当ICP《时,Wolan)为自反空间;
·当提 p=2时, Hom(2)为Hilbert空间。
三. Sobolev空间的其他性质
1. Poincavé-Fraiedvichs 不等式 被夹 我们称集合Ω⊆IRN为有产限宽的,如果它落在IRN中的
我们称集合Ω⊆IR"为有一限宽的,如果它落在R"中的

两个平行超平面之间。对 ∀m>1,1≤p<∞,我们定义如下的

半茂数: W。m,P(1)中元素 v.的半范数.

$$\begin{split} |V|_{m,p,\Omega} := & \left(\int_{\Omega} \sum_{|\alpha|=m} |\partial^2 v|^p dx\right)^p = \left(\sum_{|\alpha|=m} ||\partial^2 v||^p (\alpha)\right)^p \\ |V|_{m,\Omega} := & \left(\int_{\Omega} \sum_{|\alpha|=m} ||\partial^2 v||^2 dx\right)^2 = \left(\sum_{|\alpha|=m} ||\partial^2 v||^p (\alpha)\right)^p \\ |\dot{z}|_{\infty} \otimes ||\partial z| ||\partial z||^2 dx ||\dot{z}|_{\infty} = \left(\sum_{|\alpha|=m} ||\partial^2 v||^p (\alpha)\right)^p \\ |\dot{z}|_{\infty} \otimes ||\partial z||^2 ||\partial z||^2 dx ||\dot{z}|_{\infty} = \left(\sum_{|\alpha|=m} ||\partial^2 v||^p (\alpha)\right)^p \\ |\dot{z}|_{\infty} \otimes ||\partial z||^2 ||\partial z||^2 dx ||\partial z||^2 \\ |\dot{z}|_{\infty} \otimes ||\partial z||^2 ||\partial z||^2 \\ |\dot{z}|_{\infty} \otimes ||\partial z||^2 ||\partial z||^2 \\ |\dot{z}|_{\infty} \otimes ||\partial z||^2 \\ |\dot{z}|_$$

$L^{2}(\Gamma) := {f. \Gamma \rightarrow \mathbb{R} \mid f \in L(\Gamma), f ^{2} \in L'(\Gamma)} / \alpha.e.}$
赋予范数 If(12-(p):=(fr/dr)=
此时可验证(M)(L'(P), · L'(P))构成 Banach空间。(事实上,
L'(P)亦为Hilbert空间)
我们可以定义迹算子。
$tr. C^{\infty}(\bar{\Omega}) \longrightarrow L^{2}(\Gamma)$
$v \mapsto [tv \cdot \Gamma \longrightarrow R]$
$\left[\begin{array}{ccc} \times & \longmapsto v(\times) \end{array} \right]$
由于c™(瓦)在H'(丘)中稠密且H'(丘)完备,我们可以延拓迹
算于至H'(Ω): tv:H'(Ω) → L'(Γ)
并且我们可以证明 $tr \in L(H'(\Omega), L'(\Gamma))$.
这里我们再介绍一个与变分学基本定理类似的定理.
Thm. 设Ω为有界连通开集, Γ:=2Ω为 C'的.
WeL'(P)满足对∀veH'(s),有 fp,wvdP=0
別w=0。
3. Green 公式
我们将Green公式延拓至Sobolev空间并略去其证明。
Thm 设见 $\leq \mathbb{R}^N$ 为 郁 \mathcal{H} 集, $\Gamma = \partial \Omega \partial C'$ 的, 记
ン=(火)に対治→Ω的範分法向向量场。
那么,对 $\forall u, v \in H'(\Omega), 1 \leq i \leq N, uv \in L'(r)且$
$\int_{\Omega} u \partial_i v dx = -\int_{\Omega} (\partial_i u) v dx + \int_{\Omega} u v \mathcal{V}_i d\Gamma \qquad (# + Coon (x+1))$
N VE 4 Green N
Def 算于△:= [, ∂ii: H²(Ω)→ L²(Ω)为Laplace算子,
函数AU 积为U的Laplacian;
算子→、:= \(\tilde{\chi}\) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
函数 7,11年次为11的外法向导数。

接下来,我们定义一个线性赋范空间

Green公式有许多丰富的变体,如下即为一例。
Thm. 1) 对 YueH'(Q), VeH'(Q), 令 VV:=(DiV);
$\nabla u \cdot \nabla v := \sum_{i=1}^{N} \partial_{i} u \partial_{i} v \qquad \nabla v := \left(\sum_{i=1}^{N} \partial_{i} v ^{2}\right)^{\frac{1}{2}}$
DU Green With This.
$\int_{\Omega} \nabla u \cdot \nabla v dx = -\int_{\Omega} (\Delta u) v dx + \int_{\Gamma} (\partial_{\nu} u) v d\Gamma$
2)对 ∀a∈C'(立), u∈H'(立), 有au∈H'(立),
且有Green公式:对 YVEH'(Q), I < j < N, 恒有
$\int_{\Omega} au \partial_{j} v dx = -\int_{\Omega} (\partial_{j} (au)) v dx + \int_{\Gamma} au v y_{j} d\Gamma$
Proof 1)在基本Green公式中以可以替换U,目有
$\int_{\Omega} \partial_i u \partial_i v dx = -\int_{\Omega} \partial_i (\partial_i u) v dx + \int_{P} \partial_i u v \gamma_i dP$
$\Rightarrow \int_{\Omega} \nabla u \cdot \nabla v dx = -\int_{\Omega} (\Delta u) v dx + \int_{\Gamma} (\partial_{y} u) v d\Gamma$
2) $a \in C'(\overline{\Omega}) \subseteq L^2(\Omega)$ $\Rightarrow au \in L^2(\Omega)$ $u \in H'(\Omega) \subseteq L^2(\Omega)$
Claim: Wy:=(∂ja)u+a(∂ju)∈L²(Ω) 为au的弱导数。
这是由于,当 $u\in C^{\infty}(\overline{\Omega})$ 时,对 $\forall \gamma\in D(\Omega)$,
$\int_{\Omega} au \partial_{j} \varphi dx = -\int_{\Omega} \left[(\partial_{j}a)u \varphi + a(\partial_{j}u) \varphi \right] dx = -\int_{\Omega} w_{j} \varphi dx$
而C [∞] (页)在H'(Ω)中稠密,故Claim成立,得αuEH'(Ω)。
而C [∞] (瓦)在H'(Ω)中稠密,故Claim成立,得αu∈H'(Ω)。 再一次,在基本Green公式中使用αu来替换以,即可得到
$\int_{\Omega} au \partial_{j} v dx = -\int_{\Omega} (\partial_{j} (au)) v dx + \int_{\Omega} au v v d\Gamma$

IV应用。求解方程
现在我们可以回答在开头提出的问题.
Thm. 给定·Ω⊆IRN为有界开集,Γ=∂Ω为连续可C的
$c \in L^{\infty}(\Omega)$ st $c \geq 0$ $f \in L^{2}(\Omega)$
令·V=U=H(Ω) (以下设u,v∈U=H(Ω))
$a(u,v) = \int_{\Omega} (\nabla u \cdot \nabla v + Cuv) dx$
$L(v) := \int_{\Omega} f v dx$
$J(v):=\frac{1}{2}\alpha(v,v)-l(v)=\frac{1}{2}\int_{\Omega}(\nabla v ^2+cv^2)dx-\int_{\Omega}fvdx$
此时存在唯一的ueH。(D)极小化泛函J(W,ie.满足变分程.
$ \sqrt{2} \forall v \in H_o(\Omega), \int_{\Omega} (\nabla u \cdot \nabla v + cuv) dx = \int_{\Omega} f v dx $
而且, 映射 至. L'→H。(Ω) 为连续线性映射
$f \mapsto u \qquad H'(\Omega)$
最后,函数 以满足下列边界值问题,是其中出面冲的唯一解
$S-\Delta u+cu=f$ in Ω $U=0$ on Γ
Proof. 重点是验证Thm 2.1.1+的各个条件,而后即一马平川.
· a(·,·)连续
对 ∀u,v∈H'(Ω), (以下道略)
$ a(u,v) \leq \frac{1}{2} \partial_i u _{0,\Omega} \partial_i v _{0,\Omega} + c _{L^{\infty}(\Omega)} u _{0,\Omega} v _{0,\Omega}$
$ \leq \max \left[1, \left\ c \right\ _{L^{\infty}(\Omega)} \right] \left(\sum_{i=1}^{N} \left\ \partial_{i} u \right\ _{o, \Omega}^{2} + \left\ u \right\ _{o, \Omega}^{2} \right)^{\frac{1}{2}} $
$\left(\sum_{i=1}^{N} \partial_i v _{0,\Omega}^2 + v _{0,\Omega}^2\right)^{\frac{1}{2}}$
= max [1, 1/c/1,000)] u , 2 v , 2
· a为H。'(12)- 柳甸.
$\alpha(v,v) \ge \int_{\Omega} \partial v ^2 dx = v _{v,\Omega}$

·1为连续线,性泛函
x+ ∀ve Ho(s), 1((v) < 1/f 110, s v 0, s ≤ f 0, s v , s
之后便是简单而琐碎的论证。
· 更为连续 映射
由Poincaré-Friedrichs不等式, 司C(a)>0, s.t
xt Yv∈H'(a) (v), 2 ≤C(a) v ,2
$\frac{1}{(C(\Omega))^{2}} \leq \frac{1}{(C(\Omega))^{2}} = \frac{1}{(C(\Omega))$
$\Rightarrow u _{l,\Omega} \leq C(\Omega)^2 f _{l,\Omega} \Rightarrow f \leq C(\Omega)^2$
$-\Delta u + cu = f$ in Ω
由 Green公式,
$\int_{\Omega} \nabla u \cdot \nabla v dx = -\int_{\Omega} (\Delta u) v dx.$
故变分方程 a(u,v)=l(v) (YvED(a)) 可写为
At $\forall v \in \mathcal{D}(\Omega)$, $\int_{\Omega} (-\Delta u + cu - f) v dx = 0$
由变分学基本引理, $-\Delta u + cu = f$ in Ω .
· U=0 on [
由迹定理,ueflo(si)C['(P)满足边界值条件 u=o on [
· 以的唯一性
若以满足 S-dutcuf in 几
U=O on [
则以区从。(几),以满足变分程。
故 4 必唯一。

j	云用类似的方法,我们可以来解另一个方程组.
Thm.	给定·QCIR*为有界开集,P=20分C'的
	$CE[\omega(\Omega)]$ st. $C>CO>O$ in Ω , $f\in L^2(\Omega)$, $g\in L^2(P)$
	今·V=U=H'(Q)(以下设 ∀u,N∈U=H'(Q))
	$a(u,v) = \int_{\Omega} (\nabla u \cdot \nabla v + cuv) dx$
r.	· l(v):= fo fudx+frqvdr
	$J(v) := \frac{1}{2}\alpha(v,v) - l(v)$
	$=\frac{1}{2}\int_{\Omega}(\nabla v ^2+cv^2)dx-\int_{\Omega}fvdx+\int_{\Gamma}gvd\Gamma$
	此时存在唯一的UEH'(公)未及小化泛函J(W),ie满足变分旅程
	H twet/(1), for (vu. ov + cur) dx = for frodx + for grads
	而且,映射 \overline{D} . $L^2(\Omega) \times L^2(\Gamma) \longrightarrow H'(\Omega)$
	$(f,g) \mapsto u$
	为连续线性映射。
	最后, 额外假设 UEH'(a),则堤下列边界值问题的唯一解
_	$S-\Delta u+cu=f$ in Ω $\partial_v u=g$ on Γ
	其中中中的主持JNUELY(P)为U的外法向导数。
Proof.	· a 为连续双线性泛函(同上个定理的证明)
,,,,,	· a为H'(a)-村局
	: a(v,v) > minf1, & co] v , Q (対 Vv EH(D),以下省略
	· 1为连续线性泛函
	1 Spgvd[< 11gl/2'(p) N 2'(p) < 11tr L(H'(D); (2'(p)) g 2'(p) N , s
	f = f + f = f + f = f + f
	(f ₀ ,Ω + tr = L(H'(Ω), L'(P)) g _{L'(P)} v , Ω
	> (11/10,2 +112111) (H(D) + (P)) 11 (-(P)/11011), S

・更连续 同上个定理的证明,可得 $\|u\|_{l,\Omega} \leq (C(\Omega))^2 (\|f\|_{l,\Omega} + \|fr\|_{L(H'(\Omega);L^{\gamma}(\Gamma))} \|g\|_{L^{\gamma}(\Gamma)})$ $\leq C(\Omega)^2 (1+||tr||_{L(H'(\Omega);L'(\Gamma))}) (||f||_{o,\Omega}+||g||_{L'(\Gamma)})$ 以下作致设 ue H'(A) 由Green公式, for Vudx=-fa(Du)vdx+fp(Du)vdr 故变分方升呈 a(u,V)=l(v) (∀v∈H(s))可写为 At $\forall v \in H'(\Omega)$, $\int_{\Omega} (-\Delta u + cu - f) v dx = \int_{\Omega} (g - \partial_{\nu} u) v d\Gamma$ 特别地。 AT YNED(D), / (-su+cu-f) Ndx=0 => 2+ Vve L2(1), for (-au+cu-f) vdx=0 \Rightarrow -su+cu-f=0 in $L^2(\Omega)$ LEBT, RT GNEH(D), / (9-2) WOOD =0 $\Rightarrow g=\partial_{y}u$ in $L^{2}(F)$ 我们引用麻希南老师的语录作结: 发现兴趣,生活愉快。 参考文献 [1] Philippe G. Ciaylet Linear and Nonlinear Functional Analysis with applications. 2013. siam. 2013.