Regression Analysis of Depression Data

Anton Hung, Bofan Chen, Digvijay Yadav, Kevin Rouse, Joe Gyorda (Team Zoey 101)

Overview

- Introduction and Motivation
- Exploratory Data Analysis
 - Missing values
 - Correlations
 - Distributions
- Identification of Most Informative Predictors
 - Stepwise Regression
 - LASSO Regression
- Comparison of Regression Models
 - o GLM
 - o GLMM
 - o GEE
- Discussion

Introduction and Motivation

Motivation

- Analyzing depression in rural areas
- An estimated 10% of adults suffer from depression globally
- What are some sociodemographic factors that we can target in order to combat the rising rates of depression?

U.S. News. (2022, September 19). Depression Affects Almost 1 in 10 Americans. U.S. News & World Report L.P.

Introduction to Dataset and Depression Analysis

- The dataset was obtained from Kaggle
- Data was collected in 2015 in rural areas in Western Kenya
- The dataset contains 23 variables for 1429 people
 - We are analyzing which variables are most related to depression
- There were only 20 missing values for "no lasting investment"; these individuals were not included in analysis

Exploratory Data Analysis

Proportion of participants who are depressed, married, or female

Age for depressed vs not depressed

Proportion of depressed individuals by education

- Only 6 of the 1429 individuals have 17 or more years of education

Distributions of other Variables by Depression

Identification of Most Informative Predictors

Stepwise Regression

- Data contained 22 different variables (aside from depression variable)
- Used backwards stepwise regression to determine most informative predictors
- Variables were excluded in each step based on AIC
- Found that these variables were: Total members, Ville ID, No lasting investment, Educational Level, Age

LASSO Regression

- Performed LASSO regression to compare to stepwise regression
- Lowest binomial deviance associated with a lambda value where 5 variables were included
- Variables obtained from LASSO were the same besides LASSO excluding ville ID and including durable asset
- Decided to use a combination of results from step and LASSO for a total of 6 variables

Variables of Interest

- Ville ID Unique identifier for the community the person lives in
- Age Age of individual
- Education Level Grade level of highest education level reached
- **Total Members -** Total members in the person's family
- No Lasting Investment Amount of money the person has that is not in long-term investments
- Durable Asset- Indicates the value of durable assets (such as a house or car)
 that the individual owns

Comparison of Regression Models

Generalized Linear Model (GLM)

 Age, education, no lasting investments were significant predictors

```
# Modeling
```{r}
#not including survey-id as it is an identifier col

glm_model = glm(depressed ~ Age + education_level + total_members + no_lasting_investmen + durable_asset,|
family=binomial(link='logit'), data=dep_cleaned)
summary(glm_model)
...
```



Introduction EDA Informative Predictors Regressions Discussion

## Generalized Linear Mixed Model (GLMM)

- Included Ville\_ID as a random effect; same five fixed effects
- Did data-preprocessing including data imputation, convert variable type, scale numeric variables
- Coefficients different from GLM (i.e., odds ratios farther from 1)
- GLMM accounts for random effects and provide info about variability within and between groups

```
GLMM Modeling
```{r}
# Train a GLMM model to predict depression
model <- glmer(depressed ~ Age+ total_members+ durable_asset+no_lasting_investmen+education_level + (1 |
Ville_id) , data = train, family = binomial())
# Print the model summary
summary(model)
...</pre>
```


Generalized Estimating Equations (GEE)

- Used the "exchangeable" and "independence" correlation structures;
 id=Ville_id
- Minimal difference in coefficients between GEE models, same AUC (0.60)

Comparing Regression Model Performance

	GLM (AUC=0.60)	GLMM (AUC=0.651)	GEE (exch.) (AUC=0.60)	GEE (indep.) (AUC=0.60)
Age	1.013*	1.218*	1.014*	1.005*
Education Level	0.934*	0.785**	0.937*	1.027*
Total Family Members	1.072	1.219**	1.072	1.036
Durable Assets	1.000	1.104	1.000	1.000
No Lasting Investment	1.000*	1.133	1.000*	1.000*

Note: Values represent odds ratios (exponentiated model coefficients)

Discussion

Summary of our Analysis

- Out of 23 variables, we identified 6 most informative variables in predicting binary depression status via stepwise and LASSO regression
- We tested three modeling approaches to predict depression: GLM (no random effects), GLMM (random effects for community), and GEE (population-averaged effects)
- The GLM and GEE models gave similar coefficients values, while the GLMM had more extreme coefficients (odds ratios farther from 1, AKA no change)
- Across all models, higher education level associated with lower odds of depression, and higher age/number of family members associated with higher odds of depression
- GLMM achieved the best predictive performance (AUC=0.65)

Thank YOU!

Any questions?