LSM110A User Manual

Rev 1.3

SJI

JUN. 02, 2022

Contents

1. HARD WARE	3
1.1 EVALUATION KIT COMPONENT	3
1.2 EVB LSM110A BOARD	4
1.3 SCHEMATIC	5
1.4 Connector PIN Description	7
1.5 Antenna Dimension	8
1.6 Return loss & VSWR	9
1.7 2D RADIATION PATTERN	10
1.8 3D EFFICIENCY	
1.9 EVB RADIATION → CONDUCTION CHANGE	12
2. MEMORY MAP	13
3. TEST PROGRAM	14
3.1 EVALUATION BOARD CONNECTION	14
3.2 Program execution	
3.3 TEST PROGRAM DESCRIPTION	15
4. AT COMMAND COMPLETE SET	20
4.1 LORA COMMAND	20
4.2 SIGFOX COMMAND	27

Copyright SJI | All Rights Reserved | www.seongji.co.kr

History

Date	Contents	Version	
2022-04-14	Create	V1.0	
2022-04-18	Change AT Command GUI and Add AT command	V1.1	
2022-05-20	Add LoRa AT command	V1.2	
2022-06-02	Add memory map	V1.3	

SJI CONFIDENTIAL 2 / 31

1. Hard Ware

1.1 Evaluation Kit Component

EVB LSM

[Fig. Evaluation Kit Component]

LSM110A Evaluation Kit Component

1) EVB LSM: 1EA

2) SMA Connector(ST type): 1EA

SJI CONFIDENTIAL 3 / 31

1.2 EVB LSM110A Board

[Fig. EVM LSM]

- RF Connector: RF connector for Antenna
- **LSM:** LoRa Sigfox module
- **Boot Select switch:** Boot mode Low/High switch (↓: Low, ↑: High)
- Module reset switch: EVB LSM H/W reset switch
- Micro USB receptacle: Micro USB connector
 - ① Power supply
 - ② Virtual UART interface
- USB to serial IC: FT2232HL/ FTDI
- Status LED: Debug & Module status LED
- **ST Link:** ST Link connector
- Wake-up switch: wake-up switch
- Module power Jumper: EVB LSM power supply jumper PIN
- Module external power PIN: EVB LSM external power supply PIN (+3.3V supply)

SJI CONFIDENTIAL 4 / 31

1.3 Schematic

SJI CONFIDENTIAL 5 / 31

SJI CONFIDENTIAL 6 / 31

1.4 Connector PIN Description

Connector	Pin No.	Pin name	Module Pin No.	Function
	1	PB2	2	AC/DC In
	2	-	-	-
	3	PA9	3	Inter-Integrated Circuit Serial Clock (SCL)
	4	PA10	4	Inter-Integrated Circuit Serial Data (SDA)
	5	PA11	5	General purpose IO
	6	PA12	6	General purpose IO
	7	PA13	7	Serial Wire Debug Data (FW Download)
11	8	PA14	8	Serial Wire Debug Clock (FW Download)
J1	9	PA15	9	General purpose IO
	10	GND	_	Ground
	11	VDD	11	Power Supply(+1.8V ~ +3.6V)
	12	GND	12	Ground
	13	PA3	13	UART2 Receive Data
	14	PA2	14	UART2 Transmit Data
	15	PA1	15	Wake-up, General purpose IO
	16	-	-	-

Connector	Pin No.	Pin name	Module Pin No.	Function
	1	BOOT	31	IC Boot0
	2	NRST	30	IC Reset
	3	PA4	29	Selectable SPI1 functionality (NSS)
	4	PA5	28	Selectable SPI1 functionality (SCK)
	5	PA6	27	Selectable SPI1 functionality (MISO)
	6	PB5	26	Selectable SPI1 functionality (MOSI)
	7	PA7	25	General purpose IO
J2	8	PA8	24	General purpose IO
	9	PB4	22	General purpose IO
	10	PB3	21	General purpose IO
	11	GND	20	Ground
	12	PB6	19	UART1 Transmit Data
	13	PB7	18	UART1 Receive Data
	14	PB8	17	General purpose IO
	15	PA0	16	General purpose IO
	16	-	-	-

SJI CONFIDENTIAL 7 / 31

1.5 Antenna Dimension

[Antenna Pattern]

[Matching]

SJI CONFIDENTIAL 8 / 31

1.6 Return loss & VSWR

[Return Loss]

[VSWR]

SJI CONFIDENTIAL 9 / 31

1.7 2D Radiation Pattern

[X-Y]

[Y-Z]

[X-Z]

SJI CONFIDENTIAL 10 / 31

1.8 3D Efficiency

Manufacturer	Company Nan	Company Name							
Model Name	Filename							AND DESCRIPTION OF THE PARTY OF	
Tester Name	Airlink							SERVICE SERVICE	
Test Date	2021-08-18 모	후 4:55:34						THE REAL PROPERTY OF THE PERSON OF THE PERSO	DANIEL DE
	100 Hz								
	0.00 dBm							CANAL PROPERTY.	
								9 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
Meas Step	15 `								
Frequency	Efficiency	A۱	verage Ga	in		Max Gain		Max Position	D irectivity
		Ver	Hor	Total	Ver	Hor	Total		
863.000000 MHz		-8.6 dBi	-5.0 dBi	-3.5 dBi	-3.5 dBi	-0.8 dBi	1.0 dBi	Theta105/Pie75	4.49 dB
865.000000 MHz		-8.5 dBi	-4.9 dBi	-3.3 dBi	-3.4 dBi	-0.6 dBi	1.2 dBi	Theta105/Pie75	4.51 dB
868.100000 MHz	48.1 %	-8.3 dBi	-4.8 dBi	-3.2 dBi	-3.2 dBi	-0.5 dBi	1.3 dBi	Theta105/Pie75	4.49 dB
868.130000 MHz	48.1 %	-8.2 dBi	-4.8 dBi	-3.2 dBi	-3.3 dBi	-0.5 dBi	1.3 dBi	Theta105/Pie75	4.49 dB
902.200000 MHz	51.5 %	-7.3 dBi	-4.8 dBi	-2.9 dBi	-2.2 dBi	-0.2 dBi	1.9 dBi	Theta105/Pie75	4.80 dB
908.700000 MHz	49.8 %	-7.3 dBi	-5.0 dBi	-3.0 dBi	-2.1 dBi	-0.3 dBi	1.9 dBi	The ta 105/Pie 75	4.89 dB
916.000000 MHz	45.3 %	-7.6 dBi	-5.5 dBi	-3.4 dBi	-2.3 dBi	-0.8 dBi	1.5 dBi	Theta105/Pie75	4.96 dB
920.800000 MHz	45.5 %	-7.6 dBi	-5.5 dBi	-3.4 dBi	-2.1 dBi	-0.7 dBi	1.6 dBi	The ta 105/Pie 75	5.05 dB
921.600000 MHz		-7.6 dBi	-5.5 dBi	-3.4 dBi	-2.1 dBi	-0.7 dBi	1.7 dBi	Theta105/Pie75	5.04 dB
923.200000 MHz	45.9 %	-7.6 dBi	-5.4 dBi	-3.4 dBi	-2.0 dBi	-0.7 dBi	1.7 dBi	The ta 105/Pie 75	5.05 dB
923.300000 MHz	45.9 %	-7.6 dBi	-5.4 dBi	-3.4 dBi	-2.0 dBi	-0.7 dBi	1.7 dBi	The ta 105/Pie 75	5.05 dB
927.500000 MHz	45.3 %	-7.7 dBi	-5.5 dBi	-3.4 dBi	-2.0 dBi	-0.8 dBi	1.6 dBi	Theta105/Pie75	5.04 dB
928.000000 MHz	45.1 %	-7.7 dBi	-5.5 dBi	-3.5 dBi	-2.0 dBi	-0.8 dBi	1.6 dBi	Theta105/Pie75	5.03 dB
						<u> </u>			
					 	<u>:</u> !			-
						i			

SJI CONFIDENTIAL 11 / 31

1.9 EVB Radiation → **Conduction Change**

SJI CONFIDENTIAL 12 / 31

2. Memory map

- LSM110A F/W version: V1.0.1

- LSM110A IAP(Bootloader)

◆ Start address: 0x08000000

◆ End address: 0x08001FFF

• Size: 0x2000(8,192byte)

◆ Area in IAP

- LSM110A F/W

◆ Start address: 0x08002000

◆ End address: 0x0802FFFF

◆ Size: 0x2E000(188,416byte)

◆ Area in LSM110A F/W

- LoRa user area

◆ Start address: 0x0803A000

◆ End address: 0x0803BFFF

• Size: 0x2000(8,192byte)

◆ Area in LoRa user data

- Sigfox user area

Start address: 0x0803C000

◆ End address: 0x0803DFFF

◆ Size: 0x2000(8,192byte)

◆ Area in Sigfox user data

- Sigfox ID/PAC

◆ Start address: 0x0803E000

◆ Area in Sigfox ID, PAC

0x08040000 Sigfox ID/PAC 0x0803E000 Sigfox user area (0x2000 = 8,192byte)0x0803C000 LoRa user area (0x2000 = 8,192byte)0x0803A000 Unused area 0x08030000 LSM110 F/W (0x30000 = 196,608byte)0x08002000 **IAP** (0x2000 = 8,192byte)0x0800000

The Sigfox ID/PAC(Credentials) is placed at 0x0803E500. (**The Sigfox area must not be erased and modified.**)

Warning: Never erase the entire memory.
Users are responsible for any problems caused by the erase.

SJI CONFIDENTIAL 13 / 31

3. Test Program

3.1 Evaluation board Connection

1) EVBLSM110A connect to Window PC by USB cable.

- ① LSM110A
- ② Micro USB cable
- 3 Windows PC

[Fig. EVBLSM110A connection]

3.2 Program execution

- 1) EVBLSM110A connected serial-poet in Windows PC, and then check the COM-port number in device manager.
 - → USB Serial Port(Com□□)

[Fig. EVBLSM110A serial port]

- 2) Run serial communication program "LSM110_CMD_vXX.exe"
- 3) Write serial port Number in 'DUTCOM' BOX, and then 'connect' click.

[Fig. EVBLSM110A serial port number]

SJI CONFIDENTIAL 14 / 31

3.3 Test program Description

3.3.1 Lora command GUI

[Fig. Screen of execute Test program]

- 1) Write command on AT Command edit box located on left bottom and then click Send button to execute command. Configuration value list is defined on chapter "AT command complete set"
- 2) Instead of the item 1), can click button to execute on each AT command menu package on the right.

Example)

Command: AT+BAND=5 (CR) AT+BAND=? (CR)

[Fig. Region Band ID Set Command]

SJI CONFIDENTIAL 15 / 31

3.3.2 Lora RF Test Description

- Configure RF test
 General Setting
 - * Conf RF Test Setting(Required to set every device reset)

- As in the picture above, enter parameters without spaces and Set

AT+TCONF=<Frequency>:<Power>:<LoRa Bandwidth>:<Lora SF>:<CodingRate>:<Lna>:<PA Boost>:
<Modulation>:<PayloadLen>:<FskDeviation>:<LowDrOpt >:<BTproduct:><CR>
EX) AT+TCONF=915200000:22:4:7:4/5:0:0:1:16:0:2:0

SJI CONFIDENTIAL 16 / 31

2) Tx Test

After selecting Tx in the Packet part, set the number of times to repeat Value and Send.

3) Rx Test

After selecting Rx in the Packet part, set the number of times to repeat Value and Send.

- → if received success display "OnRxDone"
- → if received fail display "OnRxTimeout"

SJI CONFIDENTIAL 17 / 31

3.3.3 Sigfox command GUI

[Fig. Screen of execute Test program]

- 1) Write command on AT Command edit box located on left bottom and then click Send button to execute command. Configuration value list is defined on chapter "AT command complete set"
- 2) Instead of the item 2), can click button to execute on each AT command menu package on the right.

Example)

Command: ATS410=0 (CR) (0: private key 1: public key)

[Fig. Encryption Set Command]

SJI CONFIDENTIAL 18 / 31

3.3.4 Sigfox RF Test Description

1) Input AT Command command to LSM110A used as RX

EX) AT+RL=905200000

- 2) Test Result
 - → if received success display "TEST PASSED"
 - → if received fail display "Wait For End of Rx"

3) Input AT Command command to LSM110A used as TX

EX) AT+CW=902200000

→ Transmit frequency to Continuous wave

SJI CONFIDENTIAL 19 / 31

4. AT command complete set

A typical serial terminal emulator can also be used to control the EVK instead of the proposed test SW. In that case the following parameters should be used:

• Speed: 9600 bauds

Data bits: 8Stop bits: 1Parity: None

The following table gather all AT command available:

4.1 LoRa Command

Command	Name	Description
AT?	Help on all	Help on All Commands.
	<cmd></cmd>	
		Ex) AT? (CR)
ATZ	Reset	Trig a MCU reset.
		Ex) ATZ (CR)
AT+BAT=?	Battery level	Get the battery level (in mV).
		Ex) AT+BAT=? (CR)
AT+VL=level	Verbose level	Set or Get the verbose level.
AT+VL=?		<level>: [0: off ~ 3: High]</level>
		Ex) AT+VL=3 (CR)
AT+MODE=mode	Mode Change	LoRa & Sigfox Mode Change. After a MCU reset.
AT+MODE=?		<mode>: [0: SigFox, 1: LoRa]</mode>
		Ex) AT+MODE=1 (CR)
AT\$SSWVER=?	Software version	Get the Software version.
		Ex) AT\$SSWVER=? (CR)
AT+VER=?	Firmware and	Get the version of firmware and libraries.
	library versions	
		Ex) AT+VER=? (CR)
AT+LTIME=?	Local time in UTC	Get the local time in UTC format.
	format	
		Ex) AT+LTIME=? (CR)

SJI CONFIDENTIAL 20 / 31

AT+LINKC?	Link Check	Piggyback a Link Check Request to the next uplink.
		Ex) AT+LINKC? (CR)
AT+APPEUI=eui	Application EUI	Set or Get the Application EUI.
AT+APPEUI=?		
		Ex) AT+APPEUI=00:00:00:00:00:00:00:07 (CR)
AT+NWKKEY=key	Network Key	Set or Get the Network Key.
AT+NWKKEY=?		F.) AT . NIMIKKEY . 00.44.22.22.44.EF.(C.77.00.00.4 A.P.
		Ex) AT+NWKKEY=00:11:22:33:44:55:66:77:88:99:AA:BB: CC:DD:EE:FF (CR)
AT+APPKEY=key	Application Key	Set or Get the Application Key.
AT+APPKEY=?	Application key	Set of Get the Application key.
ATTACKET		Ex) AT+APPKEY=00:11:22:33:44:55:66:77:88:99:AA:BB:
		CC:DD:EE:FF (CR)
AT+NWKSKEY=key	Network Session	Set or Get the Network Session Key.
AT+NWKSKEY=?	Key	
		Ex) AT+NWKSKEY=00:11:22:33:44:55:66:77:88:99:AA:BB:
		CC:DD:EE:FF (CR)
AT+APPSKEY=key	Application	Set or Get the Application Session Key.
AT+APPSKEY=?	Session Key	
		Ex) AT+APPSKEY=00:11:22:33:44:55:66:77:88:99:AA:BB:
		CC:DD:EE:FF (CR)
AT+DADDR=address	Device address	Set or Get the Device address.
AT+DADDR=?		F.) AT. DADDD 00:11:22:22 (CD)
AT . DELII 2	Davisa FIII	Ex) AT+DADDR=00:11:22:33 (CR)
AT+DEUI=?	Device EUI	Get the Device EUI.
		Ex) AT+DEUI=? (CR)
AT+NWKID=id	Network ID	Set or Get the Network ID.
AT+NWKID=?		<id>: [0 ~ 127].</id>
		Ex) AT+NWKID=100 (CR)
AT+JOIN=mode	Join network with	Join network with Mode.
AT+JOIN=?	Mode	<mode> [0: ABP, 1: OTAA]</mode>
		Ex) AT+JOIN=1 (CR)

SJI CONFIDENTIAL 21 / 31

AT+SEND=port:ack:data	Send binary data	Send binary data with the application <port> [1 ~ 199] <ack> [0: unconfirmed, 1: confirmed]</ack></port>
		Ex) AT+SEND=1:1:123456789012345678901234567890 12345678901234567890123456 (CR)
AT+ADR=mode	Adaptive	Set or Get the Adaptive DataRate setting.
AT+ADR=?	DataRate	<mode>: [0: Off, 1: On]</mode>
		Ex) AT+ADR=0 (CR)
AT+DR=datarate	Tx DataRate	Set or Get the Tx DataRate.
AT+DR=?		Activation when ADR off Only
		<datarate>: [0 ~ 7]</datarate>
		[AU915 : 2 ~ 7 / US915 : 0 ~ 4]
		0: LoRa - SF12 / 125 kHz, bit rate – 250 bit/s
		1: LoRa - SF11 / 125 kHz, bit rate - 440 bit/s
		2: LoRa - SF10 / 125 kHz, bit rate - 980 bit/s
		3: LoRa - SF9 / 125 kHz, bit rate - 1760 bit/s
		4: LoRa - SF8 / 125 kHz, bit rate - 3125 bit/s
		5: LoRa - SF7 / 125 kHz, bit rate - 5470 bit/s
		6: LoRa - SF7 / 250 kHz, bit rate - 11000 bit/s
		7: FSK - 50 kbps, bit rate - 5000 bit/s
		Ex) AT+DR=0 (CR)
AT+TXP=power	Transmit Power	Set or Get the Transmit Power.
AT+TXP=?		(valid range according to region)
		<pre><power>: [0 ~ 15]</power></pre>
		AS923: [0~7] AU915: [0~14] CN779: [0~5]
		EU868: [0~7] KR920: [0~7] IN865: [0~10]
		US915: [0~14] RU864: [0~7]
		Ex) AT+TXP=0 (CR) (in KR920 0: MAX ERP)
AT+BAND=band	Active Region	Set or Get the Active Region Band ID. [0 ~ 9]
AT+BAND=?	Band ID	 <band>: [0: AS923, 1: AU915, 2: CN470, 3: CN779,</band>
		4: EU433, 5: EU868, 6: KR920, 7: IN865, 8: US915, 9: RU864]
		Ex) AT+BAND=0 (CR)

SJI CONFIDENTIAL 22 / 31

AT+CLASS=class	Device Class	Set or Get the Device Class.
AT+CLASS=?		<class>: [A, B, C]</class>
=		
		Ex) AT+CLASS=? (CR)
AT+DCS=mode	ETSI DutyCycle	Set or Get the ETSI DutyCycle.
AT+DCS=?		<mode>: [0: disable, 1: enable] - Only for testing</mode>
		Ex) AT+DCS=0 (CR) (for KR920, AS923, AU915,)
AT+RX2FQ=freq	Rx2 window Freq	Set or Get the Rx2 window.
AT+RX2FQ=?		<freq>: Frequency (in Hz)</freq>
		Ex) AT+RX2FQ=915200000 (CR)
AT+RX2DR=datarate	Rx2 window	Set or Get the Rx2 window DataRate.
AT+RX2DR=?	DataRate	<datarate>: [0 ~ 13]</datarate>
		AS923: [0~7] AU915: [2~13] CN779: [0~7]
		EU868: [0~7] KR920: [0~5] IN865: [0~5]
		US915: [8~13] RU864: [0~7]
		Ex) AT+RX2DR=0 (CR)
AT+RX1DL=delay	Delay between	Set or Get the delay between the end of the Tx and the Rx
AT+RX1DL=?	end of Tx and Rx	Window 1.
	Window 1	<delay>: delay (in ms)</delay>
		Ex) AT+RX1DL=1000 (CR)
AT+RX2DL=delay	Delay between	Set or Get the delay between the end of the Tx and the Rx
AT+RX2DL=?	end of Tx and Rx	Window 2 in ms.
	Window 2	<delay>: delay (in ms)</delay>
		Ex) AT+RX2DL=2000 (CR)
AT+JN1DL=delay	Join Accept Delay	Set or Get the Join Accept Delay between the end of the
AT+JN1DL=?	between end of	Tx and the Join Rx Window 1 in ms.
	Tx and Join Rx	<delay>: delay (in ms)</delay>
	Window 1	
		Ex) AT+JN1DL=5000 (CR)

SJI CONFIDENTIAL 23 / 31

AT+JN2DL=delay	Join Accept Delay	Set or Get the Join Accept Delay between the end of the
AT+JN2DL=?	between end of	Tx and the Join Rx Window 2 in ms.
	Tx and Join Rx	<delay>: delay (in ms)</delay>
	Window 2	
		Ex) AT+JN2DL=6000 (CR)
AT+NWKTYPE=type	Network Type	Set or Get the Network Type setting Type
AT+NWKTYPE=?		<type>: [0: Public, 1: Private]</type>
		Ex) AT+NWKTYPE=1 (CR)
AT+DEVNONCE=0	OTAA DevNonce	Set to 0 or Get the OTAA DevNonce
AT+DEVNONCE=?		
		Ex) AT+DEVNONCE=0 (CR)
AT+CNFRETX=retxnb	Confirmed Uplink	Set or Get Number for the Confirmed Uplink
AT+CNFRETX=?	Retransmission	Retransmission <retxnb>: [1 ~ 15]</retxnb>
		Ex) AT+CNFRETX=1 (CR)
AT+UNCNFRETX=retxnb	Unconfirmed	Set or Get Number for the Unconfirmed Uplink
AT+UNCNFRETX=?	Uplink	Retransmission <retxnb>: [1 ~ 15]</retxnb>
	Retransmission	
		Ex) AT+UNCNFRETX=1 (CR)
AT+PGSLOT=period	Ping Slot	Set or Get the unicast ping slot Period
AT+PGSLOT=?		<pre><period>: [0:1s ~ 7:128s] (=2^Period)</period></pre>
		Ex) AT+PGSLOT=3 (CR)
AT+TTH=fstart:fstop:fdelt	Test Tx Hopping	Starts RF Tx hopping test from Fstart to Fstop in Hz or
a:packetnb		MHz, Fdelta in Hz. Class B test.
AT+TTH=?		<pre><fstart>: frequency (in Hz or MHz)</fstart></pre>
		<pre><fstop>: frequency (in Hz or MHz)</fstop></pre>
		<fdelta>: frequency (in Hz)</fdelta>
		Ex) AT+TTH=915:922:500000:10 (CR)

SJI CONFIDENTIAL 24 / 31

AT+TCONF=frequency:po	Configure RF	Configure RF test.
wer:bandwidth:sf:codingr		
ate:lna:paboost:modulati		<pre><frequency>: [ex: 915200000]Hz</frequency></pre>
on:payloadlen:fskdeviatio		<power>: [-9 ~ 22]dBm</power>
n:lowdropt:btproduct		<bandwidth>: Lora [4: 125, 5: 250, 6: 500]kHz,</bandwidth>
AT+TCONF=?		or FSK: [4800Hz : 467000]Hz
		<sf>: [7 ~ 12] or <fsk>: [600 ~ 300000]</fsk></sf>
		<codingrate>: [4/5, 4/6, 4/7, 4/8]</codingrate>
		<lna>: [0: Off, 1: On]</lna>
		<pa boost="">: [0: Off, 1: On]</pa>
		<modulation>: [0: FSK, 1: LoRa, 2: BPSK]</modulation>
		<payloadlen>: [1 ~ 256]</payloadlen>
		<fskdev>: FSK Only [600 ~ 20000]</fskdev>
		<lowdropt>: Lora Only [0: off, 1: On, 2: Auto]</lowdropt>
		<btproduct>: [0: no Gaussian Filter Applied, 1: BT=0,3, 2:</btproduct>
		BT=0,5, 3: BT=0,7, 4: BT=1]
		Ex) AT+TCONF=915200000:22:4:7:4/5:0:0:1:16:0:2:0 (CR)
AT+TTONE	RF Tx Tone test	Starts RF Tx Tone test (CW Test Mode)
		Ex)AT+TTONE (CR)
AT+TRSSI	RF Rx RSSI test	Starts RF Rx RSSI test.
		Ex) AT+TRSSI (CR)
AT+TTX=packetnb	Test RF Tx	Starts RF Tx test: Nb of packets sent.
		Ex) AT+TTX=16 (CR)
AT+TRX=packetnb	Test RF Rx	Starts RF Rx test: Nb of packets expected.
		Stop by input 'X'
		Ex) AT+TRX=16 (CR)
AT+MTX	Test RF	Starts RF Tx test: Modulation Continuous Wave
	Modulation wave	
		Ex) AT+MTX (CR)
AT+MRX	Test RF	Starts RF Rx test: Continuous receive
	Continuous Rx	Stop by input 'X'
		Ex) AT+MRX (CR)
AT+TOFF	Stop RF test	Stops on-going RF test.
7.11.1011	Stop iti test	Ex) AT+TOFF (CR)
		LA) AT FIOTE (CIT)

SJI CONFIDENTIAL 25 / 31

AT+PCONF=frequency:po	P2P Configure	Set or Get configure P2P.
wer:bandwidth:sf:codingr		
ate:lna:paboost:modulati		<frequency>: [ex: 915200000]Hz</frequency>
on:payloadlen:fskdeviatio		<power>: [-9 ~ 22]dBm Max 22dBm at High Power</power>
n:lowdropt:btproduct		<bandwidth>: Lora [4: 125, 5: 250, 6: 500]kHz,</bandwidth>
		or FSK: [4800Hz : 467000]Hz
		<sf>: [7 ~ 12] or <fsk>: [600 ~ 300000]</fsk></sf>
		<codingrate>: [4/5, 4/6, 4/7, 4/8]</codingrate>
		<lna>: [0: Off, 1: On]</lna>
		<pa boost="">: [0: Off, 1: On]</pa>
		<modulation>: [0: FSK, 1: LoRa, 2: BPSK]</modulation>
		<payloadlen>: [1 ~ 256]</payloadlen>
		<fskdev>: FSK Only [600 ~ 20000]</fskdev>
		<lowdropt>: Lora Only [0: off, 1: On, 2: Auto]</lowdropt>
		<btproduct>: [0: no Gaussian Filter Applied, 1: BT=0,3, 2:</btproduct>
		BT=0,5, 3: BT=0,7, 4: BT=1]
		Ex) AT+PCONF=915200000:22:4:7:4/5:0:0:1:16:0:2:0 (CR)
AT+PSEND=data	P2P Data Send	Send binary data with P2P.
		Ex) AT+PSEND=00112233445566778899AABBCCDDEE (CR)
AT+PRECV	P2P Data Receive	Starts P2P data receive.
		Stop by input 'X'
		Ex) AT+PRECV (CR)

SJI CONFIDENTIAL 26 / 31

4.2 Sigfox Command

Command	Name	Description
AT?	Help on all <cmd></cmd>	Help on All Commands
		Ex) AT? (CR)
ATZ	Reset	Trig a MCU reset.
		E) ATZ (CD)
ATE=mode	Echo mode	Ex) ATZ (CR) Not used except to set echo mode.
AIL-Mode	Leno mode	<pre><mode>: [0: echo ON, 1: echo OFF]</mode></pre>
		Thode >. [0. echo ON, 1. echo OFF]
		Ex) ATE=1 (CR)
		ATE=? (CR) Get echo mode
AT+BAT=?	Battery level	Get the battery level (in mV).
		Ex) AT+BAT=? (CR)
AT+VL=level	Verbose level	Set or Get the verbose level.
AT+VL=?		<level>: [0: off, 1: Low, 2: Meddle, 3: High]</level>
		F.) AT. M. 2 (CD)
		Ex) AT+VL=3 (CR) AT+VL=? (CR) Get level
AT+MODE=mode	Mode Change	LoRa & Sigfox Mode Change. After a MCU reset.
AT+MODE=?		<mode>: [0: SigFox, 1: LoRa]</mode>
		Ex) AT+MODE=1 (CR)
		AT+MODE=? (CR) Get mode
AT\$SSWVER=?	Software version	Get the Software version.
		Ex) AT\$SSWVER=? (CR)
AT+VER=?	Firmware and library	Get the version of firmware and libraries.
	versions	Ev) AT (VED = 2 (CD)
AT\$RFS	Factory settings	Ex) AT+VER=? (CR) Restores the factory setting.
, π.φπ. σ	ractory settings	hestores the factory setting.
		Ex) AT\$RFS (CR)
AT\$ID	Device ID	Get the 32-bit device ID.
		Ex) AT\$ID (CR)

SJI CONFIDENTIAL 27 / 31

t to the Sigfox network.
t to the Sigfox network.
e>: [0 or 1]
ponsewaited > 0: no response waited (default)
oonsewaited> 1: response waited
ag> 0: one Tx frame sent
ag> 1: three Tx frame sent (default)
B=0,1,1 (CR)
I (CR) sends bit 1 with no response waited.
0,1 (CR) sends bit 0 with a response waited.
0,1,1 (CR) sends bit 0 with a response waited
and with three Tx frames sent.
ame to the Sigfox network.
>: [12 bytes maximum in ASCII format (24
racters max)]
oonsewaited>: [0: no response waited
oonsewaited>: [1: response waited]
ag>: [0: one Tx frame sent]
ag>: [1: three Tx frames sent (default)]
=313245,1,1 (CR)
13245 (CR) sends 0x31 0x32 0x45
payload with no response waited.
13245,1 (CR) sends 0x31 0x32 0x45
payload with a response waited.
13245,1,1 (CR) sends 0x31 0x32 0x45
payload with a response
waited and with three Tx
frames sent.

SJI CONFIDENTIAL 28 / 31

AT\$SH=payload_length,	Hexadecimal	Send a Hex frame to the Sigfox network.
payload{,opt_responsewait	payload in bytes	<pre><pre><pre><payload_length>: [length in bytes]</payload_length></pre></pre></pre>
ed}{,opt_txflag}		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
		format]
		<pre><opt_responsewaited>: [0: no response waited</opt_responsewaited></pre>
		(default)]
		<pre><opt_responsewaited>: [1: response waited]</opt_responsewaited></pre>
		<pre><opt_txflag>: [0: one Tx frame sent]</opt_txflag></pre>
		<pre><opt_txflag>: [1: three Tx frames sent (default)]</opt_txflag></pre>
		Ex) AT\$SH=1,A,1 (CR)
		AT\$SH=1,A (CR) sends 0x41 payload with no
		response waited.
		AT\$SH=1,A,1 (CR) sends 0x41 payload with a
		response waited.
AT\$CW=freq	Continuous	Start or stop a continuous unmodulated carrier for
	wave(CW)	test. Run CW Test mode.
		<freq>: frequency (in Hz)</freq>
		Ex) AT\$CW=902200000 (CR)
		AT\$CW=0 (CR) Stop a CW
AT\$PN=freq,bitrate	PRBS9 BPBSK test	Run PRBS9 BPBSK Test mode. Send a continuous
	mode	modulated carrier for test.
		<freq>: frequency (in Hz)</freq>
		<pre></pre>
		Ex) AT\$PN=902200000,100 (CR)
		AT\$PN=0 (CR) Stop a BPBSK

SJI CONFIDENTIAL 29 / 31

AT\$TM=rc,mode	Sigfox test mode	Start a Sigfox test mode.
		<rc></rc>
		SFX_RC1 = 1 SFX_RC2 = 2 SFX_RC3C = 3C
		SFX_RC4 = 4
		SFX_RC7 = 7
		<mode></mode>
		SFX_TEST_MODE_TX_BPSK = 0
		SFX_TEST_MODE_TX_PROTOCOL = 1
		SFX_TEST_MODE_RX_PROTOCOL = 2
		SFX_TEST_MODE_RX_GFSK = 3
		SFX_TEST_MODE_RX_SENSI = 4
		SFX_TEST_MODE_TX_SYNTH = 5
		SFX_TEST_MODE_TX_FREQ_DISTRIBUTION = 6
		SFX_TEST_MODE_TX_BIT = 11
		SFX_TEST_MODE_PUBLIC_KEY = 12
		SFX_TEST_MODE_NVM = 13
		Ex) AT\$TM=2,0 (CR)
AT\$RSSICAL=value	RSSI value in dB	Set or Get the RSSI calibration value in dB.
AT\$RSSICAL=?		<value>: calibration value (in dB)</value>
		Ex) AT\$RSSICAL=0 (CR)
		AT\$RSSICAL=? (CR)
AT\$RL=freq	Listening for a data	Starts listening for a local loop.
	packet	<freq>: frequency (in Hz)</freq>
		Stop by input 'X'
		Ex) AT\$RL=905200000 (CR)
AT\$SL=freq,datarate,count	Send local loop	Send TX packet up to count number for local test.
		<freq>: frequency (in Hz)</freq>
		<datarate>: data rate (in bps)</datarate>
		<count>: send packets counter</count>
		Ex) AT\$SL=905200000,600,10 (CR)

SJI CONFIDENTIAL 30 / 31

AT\$RP2P	P2P RX	Starts listening for the P2P.
		Stop by input 'X'
		Ex) AT\$RP2P (CR)
AT\$SP2P=payload	P2P TX	Send TX packet for the P2P.
		<payload>: [12 bytes maximum in ASCII format (24</payload>
		ASCII characters max)]
		Ex) AT\$SP2P=112233445566778899AABBCC (CR)
ATS300	Out-of-band	Send one keep-alive out-of-band message.
	message	
		Ex) ATS300 (CR)
ATS302=power	Radio output power	Set or Get the radio output power.
ATS302=?		<pre><power> : power (in dBm)</power></pre>
		Ex) ATS302=22 (CR)
		ATS302=? (CR) Get power
ATS400=<8_digit_word0>	Enabled channels for	Configure the enabled channels for FCC.
<8_digit_word1><8_digit_	FCC	F \ ATC 400 000000004000000000000000000000000
word2>,timer_enable		Ex) ATS400=000000004000000000000000,0 (CR)
ATS410=key	Encryption key	Set or Get the configuration of the device encryption
ATS410=?		key. <key>: [0: Use Private key, 1: Use Public key]</key>
		<pre><key>. [0. Ose Filvate key, 1. Ose Fublic key]</key></pre>
		Ex) ATS410=1 (CR)
		ATS410=? (CR) Get the encryption key
ATS411=mode	Payload encryption	Set or Get the device payload encryption mode.
ATS411=?		<mode>: [0:Payload Encryption OFF,</mode>
		1:Payload Encryption ON]
		Ex) ATS411=1 (CR)
		ATS411=? (CR) Get payload encryption

SJI CONFIDENTIAL 31 / 31