diferenciálnej rovnice.

1.

Vysvetlite pojem analytické riešenie obyčajnej

[2b]

Α

- Načrtnite prechodovú charakteristiku astatického 2. systému prvého rádu. [3b]
- Nájdite analytické riešenie diferenciálnej rovnice pričom 3. y(0) = 2, $\dot{y}(0) = 1$ a u(t) = 0. Použite metódu charakteristickej rovnice. [7b]

$$\ddot{y}(t) + 4\dot{y}(t) + 3y(t) = u(t)$$

S využitím Laplaceovej transformácie nájdite analytické riešenie rovnice pričom $y(0) = y_0$, $\dot{y}(0) = z_0$ a $u(t) = \delta(t)$.

$$\ddot{y}(t) + (a+b)\dot{y}(t) + aby(t) = u(t)$$

Schematicky znázornite dynamický systém daný v tvare 5. diferenciálnej rovnice [3b]

$$\ddot{y}(t) + ay(t) = bu(t) \qquad y(0) = y_0$$

kde a, b sú konštanty a u(t) je známy vstupný signál.

Nasledujúcu diferenciálnu rovnicu druhého rádu prepíšte 6. na sústavu diferenciálnych rovníc prvého rádu. β , m, g a l sú reálne čísla. [4b]

$$ml^2\ddot{\varphi}(t) + \beta\dot{\varphi}(t) + mgl\sin(\varphi(t)) = u(t)$$

Uvažujte statický systém prvého rádu (SS1R) daný 7.prenosovou funkciou v tvare

$$Y(s) = \frac{b}{s+a}U(s)$$

kde $a,b \in \mathbb{R}$ sú parametre systému. Stanovte časovú funkciu, ktorá je analytickým vyjadrením prechodovej charakteristiky tohto systému. [3b]

Uvažujme dynamický systém v tvare 8.

$$\dot{x}(t) = a x(t) + b u(t)$$
$$y(t) = x(t)$$

kde x(t) je stavová veličina systému, u(t) je vstupná veličina systému a y(t) je výstupná veličina systému. Parameter b = 1 a parameter a je neznáma konštanta.

a) Koľkého rádu je systém? [1b]

- Aký je charakteristický polynóm daného b) dynamického systému? [1b]
- Pre ktoré a je systém stabilný a pre ktoré a je c)
- nestabilný? Nájdite intervaly. [1b]

Tabuľka Laplaceových obrazov:			
f(t)	$\mathcal{L}\{f(t)\}$	f(t)	$\mathcal{L}\{f(t)\}$
$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n}$	$s^n F(s) - s^{(n-1)} f(0) \cdots - s^0 \frac{\mathrm{d}^{(n-1)}}{\mathrm{d}t^{(n-1)}} \left(f(0) \right)$	1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$	$\delta(t)$	1