Nominal GDP = Real GDP * Price Level

	Apples	Oranges
Q_1	50	100
P_1	\$1	\$0.80
Q_2	80	120
P_2	\$1.25	\$1.60

Nominal GDP_1 = (50*1 + 100*0.80) = \$130Nominal GDP_2 = (80*1.25 + 120*1.60) = \$292The ratio of nominal GDP = (292/130-1) = (292/130-1) = (292/130-1)

Real GDP Calculation:

• Assume base year = year 1 \rightarrow

	Apples	Oranges
P_1	\$1	\$0.80

Real GDP_1 = \$(50*1 + 100*0.80) = \$130Real GDP_2 = \$(80*1 + 120*0.80) = \$176The ratio of real GDP, g_1 = (176/130) = 1.354 \rightarrow Change in real GDP = 35.4%

• Assume base year = year 2 \rightarrow

	Apples	Oranges
P_2	\$1.25	\$1.60

Real GDP_1 = \$(50*1.25 + 100*1.60) = \$222.50Real GDP_2 = \$(80*1.25 + 120*1.60) = \$292The ratio of real GDP, g_2 = (292/222.50) = 1.312 \rightarrow Change in real GDP = 31.2%

• The base year matters in this case because the relative price of apple/orange changes from year 1 to year 2. For instance, $RP_1 = 1/0.80 = 1.25$ versus $RP_2 = 1.25/1.60 = 0.78$.

Chain-Weighted Real GDP:

The chain-weighted ratio = $(g_1*g_2)^1/2 = (1.354*1.312)^1/2 = 1.333$ Change in real GDP = 33.3%

If base year = year 1, then Real GDP_1 = \$130

Real_GDP_2 = \$130*1.333 = \$173.29

If base year = year 2, then

Real GDP_2 = \$292

Real_GDP_1 = \$292/1.333 = \$219.05

Measures of the Price Level:

- 1. Implicit Price Deflator = Nominal GDP/Real GDP * 100
- 2. CPI = Cost of base year quantities at current prices/ Cost of base year quantities at base year prices * 100

	Apples	Oranges
Q_1	50	100
P_1	\$1	\$0.80
Q_2	80	120
P_2	\$1.25	\$1.60

Quantity in Year 1:

Year 1 = base year >> P_1 \rightarrow Nominal GDP_1 = Real GDP_1 = (50*1 + 100*0.80) = \$130Year 2 = base year P_2 \rightarrow Real GDP_1 = (50*1.25 + 100*1.60) = \$222.50

Quantity in Year 2:

Year 1 = base year >> P_1 \rightarrow Real GDP_2 = \$(80*1 + 120*0.80) = \$176Year 2 = base year P_2 \rightarrow Nominal GDP_2 = Real GDP_2 = \$(80*1.25 + 120*1.60) = \$292

Implicit Price Deflator = Nominal GDP/Real GDP * 100

	Year 1	Year 2	% Increase
Year 1 = base	130/130*100 = 100	292/176*100 =	[165.9/100 -1]*100
year		165.9	= 65.9
Year $2 = base$	130/222.50*100 =	292/292*100	[100/58.4 -1]*100 =
year	58.4	=100	71.2
Chain-	100	100*1.685 =	[(1.659*1.712)^0.50-
weighting		168.5	1]*100 = 68.5

CPI = Cost of base year quantities at current prices/ Cost of base year quantities at base year prices * 100

 $CPI = 222.5/130 = 171.2 \rightarrow 71.2\%$

