Spectral Estimation & ASP Lecture 4: Modern Spectal Estimation

Danilo P. Mandic

Room: 813

Ext: 46271

Department of Electrical and Electronic Engineering Imperial College London, UK

d.mandic@imperial.ac.uk

URL: www.commsp.ee.ic.ac.uk/~mandic

Overview of Spectral Estimation Methods

Periodogram Based Methods

$$\hat{P}_{per}(\omega) = \frac{1}{N} \left| \sum_{n=0}^{N-1} x(n) e^{-jn\omega} \right|^2$$

Windowing

Modified Periodogram

$$\hat{P}_{mod}(\omega) = \frac{1}{NU} \left| \sum_{n=0}^{N-1} w(n)x(n)e^{-jn\omega} \right|^2$$

Averaging

Bartlett's Method

$$\hat{P}_B(\omega) = \frac{1}{N} \sum_{i=0}^{K-1} \left| \sum_{n=0}^{L-1} x(n+iL)e^{-jn\omega} \right|^2$$

+ Overlapping windows

Welch's Method

$$\hat{P}_W(\omega) = \frac{1}{KLU} \sum_{i=0}^{K-1} \left| \sum_{n=0}^{L-1} w(n)x(n+iD)e^{-jn\omega} \right|^2$$

Modified Periodogram

Bartlett's Method

Welch's Method

© Danilo P Mandic

Blackman-Tukey Method

The Periodogram can also be expressed as:

Next: Can we extrapolate the autocorrelation estimates for lags k > M?

Maximum Entropy Method

How can we extrapolate the autocorrelation estimates with imposing the

least amount of structure on the data?

⇒ Maximize the randomness ⇒ Maximize Entropy

Which one has the "flattest" PSD?

Power Spectral Density (PSD)

Maximum Entropy Method

Entropy of Gaussian random process x(n) with PSD $P_{xx}(\omega)$:

$$H(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln P_{xx}(\omega) d\omega$$

Goal: Find extrapolated autocorrelation values $r_e(k)$ to maximize the entropy:

$$\frac{\partial H(x)}{\partial r_e^*(k)} = 0, \text{ for: } |k| > p$$
*Refer to handout for the full derivation

$$\hat{P}_{mem}(\omega) = \frac{\sigma_w^2}{\left|1 + \sum_{k=1}^p \hat{a}_k e^{-\jmath k\omega}\right|^2}$$
 Estimated using the Yule-Walker Method

The MEM method is **identical to the all-pole AR(p) spectrum** although **no assumptions were made** about the model of the data (except Gaussianity).

ARMA Method

$$y(n) = -\sum_{k=1}^{p} a_k y(n-k) + \sum_{k=0}^{q} b_k w(n-k)$$

Autoregressive Moving Average AR(p) MA(q)

$$\hat{P}_{ARMA}(\omega) = \frac{\left|\sum_{k=0}^{q} \hat{b}_k e^{-jk\omega}\right|^2}{\left|1 + \sum_{k=1}^{p} \hat{a}_k e^{-jk\omega}\right|^2}$$

Subspace Methods: Introduction

$$x(n) = A_1 e^{jn\omega_1} + w(n)$$

$$\mathbf{x} = A_1 \mathbf{e}_1 + \mathbf{w}$$

$$A_1 = |A_1|e^{j\Phi}$$

$$w(n) \sim \mathcal{N}(0, \sigma_w^2)$$

$$\mathbf{x} = [x(0), x(1), \dots, x(M-1)]^T$$

$$\mathbf{e}_1 = [1, e^{j\omega_1}, \dots, e^{j\omega_1(M-1)}]^T$$

$$E(\mathbf{x}\mathbf{x}^H) = \mathbf{R}_{xx} = |A_1|^2 \mathbf{e}_1 \mathbf{e}_1^H + \sigma_w^2 \mathbf{I}$$

$$\mathbf{R}_s \qquad \mathbf{R}_n$$

Signal Autocorrelation

Rank 1 Single non-zero Eigenvalue $=M|A_1|^2$

© Danilo P Mandic

Noise Autocorrelation

Rank MAll Eigenvalues = σ_w^2

Decomposing the Autocorrelation Matrix

 $\mathbf{R}_s = |A_1|^2 \mathbf{e}_1 \mathbf{e}_1^H$ is Hermitian. Remaining M-1 eigenvectors are orthogonal to \mathbf{e}_1 $\mathbf{e}_1^H \mathbf{v}_i = 0, \ i = 2, \dots M$

Can we use the idea that $\mathbf{e}_1^H \mathbf{v}_i = 0$, to somehow estimate the power spectrum?

Multiple Sinusoids

Consider: $x(n) = A_1 e^{jn\omega_1} + A_2 e^{jn\omega_2} + w(n)$

Subspace Methods

Extending to p sinusoids.
$$\mathbf{R}_{xx} = \mathbf{E} \mathbf{P} \mathbf{E}^H + \sigma_w^2 \mathbf{I}$$

$$\mathbf{E} = [\mathbf{e}_1, \dots, \mathbf{e}_p], \ \mathbf{P} = \text{diag}(|A_1|^2, \dots, |A_p|^2)$$

Using
$$\mathbf{e}_i^H \mathbf{v}_k = 0$$
 $\begin{cases} i = 1, \dots, p \\ k = p + 1, \dots, M \end{cases}$

PSD estimation can be performed as:
$$\hat{P}_{sub}(\omega) = \frac{1}{\sum_{i=p+1}^{M} \alpha_i \left| \mathbf{e}^H \mathbf{v}_i \right|^2}$$

Pisarenko Harmonic Decomposition

$$\hat{P}_{PHD}(\omega) = \frac{1}{\left|\mathbf{e}^H \mathbf{v}_{\min}\right|^2}$$

EigenVector Method

$$\hat{P}_{EV}(\omega) = \frac{1}{\sum_{i=p+1}^{M} \frac{1}{\lambda_i} \left| \mathbf{e}^H \mathbf{v}_i \right|^2}$$

MUltiple Signal Classification (MUSIC)

$$\hat{P}_{MU}(\omega) = \frac{1}{\sum_{i=p+1}^{M} |\mathbf{e}^{H} \mathbf{v}_{i}|^{2}}$$

Minimum Norm Method

$$\hat{P}_{MN}(\omega) = \frac{1}{\left|\mathbf{e}^H \mathbf{a}\right|^2} \longleftarrow$$

a ∈Noise Subspace & has min. norm

Comparison of the 4 Subspace Methods

Pisarenko

MUSIC

Overlay of 10 different realizations of 4 complex sinusoids in white noise.

Pisarenko only needs a 5 x 5 correlation matrix

A 64 x 64 correlation matrix was used for other methods

Minimum Norm

© Danilo P Mandic

Except for Pisarenko's method, all other estimates are correct!

EigenVector

Principle Components Spectral Estimation

Principal component analysis (PCA) can be used with Blackman— Tukey, maximum entropy method and AR spectrum estimation.

Summary of the Different Methods

