Internetworking

G54ACC

Lecture 14

richard.mortier@nottingham.ac.uk

Internetworking

- So far we have talked about:
 - Moving data between hosts
 - Moving data within a network (administrative domain)
- So what is the Internet then, really?

INTERNET

A series of tubes.

Recall: Routing vs. Forwarding

- Router receives an IP packet: what to do?
 - Drop or forward via an interface
- Deciding which interface is forwarding
 - IP bases this decision (almost) solely on the destination IP address
- Building up the information to do so is routing
 - Where are all the addresses at the moment?

Recall: Longest Prefix Matching

Contents

- Routing
- The Protocol
- Decision Process
- Operations

Contents

- Routing
 - Inter-domain Routing
 - BGPv4
 - Autonomous Systems
- The Protocol
- Decision Process
- Operations

Routing Protocols

- Distribute the data to build forwarding tables
- Examples we saw: OSPF, IS-IS, RIP
 - Link-state, Distance vector
- These are intra-domain routing protocols
 - Or Interior Gateway Protocols
 - Source and destination inside the same network
- What happens between networks?

Inter-domain Routing

- An important distinction: local vs. global
 - Interior vs. Exterior Gateway Protocol (IGP, EGP)
 - Why is this important? Two reasons:
- Dynamics
 - Need to scope information propagation (why?)
- Protection (information hiding)
 - Competition: your goals are not your neighbours'

Border Gateway Protocol, BGPv4

- The Internet inter-domain routing protocol
 - RFC 4271, updating RFC 1771
 - Derives originally from GGP, EGP (1982)
 - Updated over time (RFCs 1105, 1163, 1267)
- Deals in IP prefixes and Autonomous Systems
 - Latter purely administrative
 - Only prefixes matter in the data-plane
- Purpose is to enable policy to be applied

Autonomous Systems, ASs

- Do not map simply onto ISPs or networks
- Currently 410,000 prefixes, 40,000 ASs

Contents

- Routing
- The Protocol
 - Sessions
 - Updates
 - Path Attributes
- Decision Process
- Operations

A Very Simple Protocol

- Exchanges prefixes
 - Uses TCP/179 as transport
 - OPEN, UPDATE, KEEPALIVE,
 NOTIFICATION
- Sessions between peers
 - Simple capability negotiation
 - Manage simultaneous OPEN
 - Lose everything on failure (why?)

Sessions

- BGP peer typically has many sessions
 - -10? 20? 100s?
- Logically, Adj-RIB-In, -Out for each session
 - Advertisements received and to be sent
- Generate Loc-RIB from Adj-RIB-In
 - Routes to use and to distribute
 - Resolved into per-port forwarding tables
- Generate Adj-RIB-Out from Loc-RIB and policy

UPDATES

- Incremental indicate changes to state
 - Withdrawn routes
 - Path attributes, common to all advertised routes
 - Advertised routes, known as NLRI
- There are ~27 path attributes defined
 - Perhaps a dozen or so are in common use
 - Communicate information about prefixes
 - Used to apply policy in BGP decision process

Path Attributes

- Well-known,
 Mandatory
 - Next Hop
 - AS Path
 - Origin

Optional, Transitive

- Aggregator
- Community
- Extended Communities

- Well-known,
 Discretionary
 - Local Preference
 - Atomic Aggregate

- Optional, Non-transitive
 - Multi-Exit Discriminator
 - Originator ID
 - **—** ...

An Example UPDATE

```
[ Thu Apr 1 04:26:25 2010 ]
MRT packet: len: 81, type: PROTOCOL_BGP4MP, subtype: MESSAGE
 AS(src): 39202, AS(dst): 12654
  ifc idx: 0, AFI: IP
  IP(src): 195.66.225.2, IP(dst): 195.66.225.241
 Update (len=65): unfeasible len=0 path attr len=26
   UNFEASIBLE ROUTES:
    PATH ATTRIBUTES:
      ORIGIN: IGP [ transitive ]
     AS_PATH: (SEQUENCE)[ <- 39202 <- 3491 <- 17639 <- 6163 <- 6163 ] [ transitive ]
     NEXT HOP: 195.66.224.167 [ transitive ]
    FEASIBLE ROUTES:
      1: 61.9.0.0/24
     2: 61.9.1.0/24
      3: 61.9.62.0/24
     4: 202.47.132.0/24
```


Contents

- Routing
- The Protocol
- Decision Process
 - Path Vectors
- Operations

Path Vectors – AS_PATH

- Distance vector prefer lowest cost path
 - Need to break loops somehow (how?)

Path Vector

- How do we know if we've seen this advert before?
- Store the list of ASs through which it reached us
- The AS_PATH
- Loops can be broken:
 - If our ASN appears in a received AS_PATH, drop it

Decision Process

- Drop prefix if:
 - NEXT_HOP is unreachable via local routing table
 - Local AS appears in AS_PATH
- Then apply following preference:
 - Higher WEIGHT (local to this router)
 - 2. Highest LOCAL_PREF
 - 3. Shortest AS_PATH (leads to AS padding)
 - 4. Lowest ORIGIN
 - 5. Lowest MED if from same AS why?

- 6. EGP to IGP
- 7. Shortest internal path
- 8. Prefer oldest route
- Lowest Router-ID (usually, highest router IP)
- 10. Lowest interface IP address

Contents

- Routing
- The Protocol
- Decision Process
- Operations
 - Consistency
 - Scaling
 - Confederations
 - Route Reflectors

Consistency

- Learn external routes on EBGP sessions
 - Peers have different ASNs
 - Must ensure every router knows all external routes (why?)
- Redistribute external routes inside network
 - Via IGP only in small networks (why?)
 - Via IBGP gives full control over how
- What's the problem with IBGP?

Scaling

- Can't distribute IBGP routes on IBGP sessions
- Have to maintain N.(N-1)/2 IBGP sessions
 - Each carrying up to 410k routes x 2 tables
- Two solutions
 - Route reflectors:
 supernodes, readvertising IBGP routes
 - AS confederations:split AS up into mini-ASs
 - Both tweak decision process somewhat

Operations

- Handle link failures
 - Bind to loopback
 - Flap damping (but can make things worse!)
- Process failures
 - Out of memory error due to too many routes
- Hijacking, intentional and unintentional
 - Don't believe everything you read
 - http://www.youtube.com/watch?v=IzLPKuAOe50
- Anycast (1:1-of-N)
 - Advertise same prefix in many places. Carefully.

Network Interconnection

- Networks interconnect via EBGP sessions
 - POPs, Points-of-Presence
 - IXs, Internet eXchanges
- Multi-homing
 - Note that this is all logical what about physical diversity?
- How does this all fit together?
 - Public/Private Peering vs. Transit
 - Roughly hierarchical (this is changing)
 - Tier-1/core/backbone vs. the rest
- As ever, business and politics
 - E.g., Level3 vs. Cogent depeering

Simple Example of a Complex Graph

(Policy – example from Level3)

Contents

- Routing
 - Inter-domain Routing
 - BGPv4
 - Autonomous Systems
- The Protocol
 - Sessions
 - Updates
 - Path Attributes
- Decision Process
 - Path Vectors
- Operations
 - Consistency
 - Scaling
 - Confederations
 - Route Reflectors

Summary

- The Internet is inter-connected networks
 - The routing protocols are what hold it together
- BGPv4 is the inter-network routing protocol
 - All about application of policy
 - To meet business needs
- Simple protocol, can be arbitrarily complex
 - Many operational matters make this hard

Quiz (1)

- 1. What information needs to be exchanged between networks to route packets?
- 2. What constraints are different between an IGP and an EGP?
- 3. Why does BGP add path attributes to prefixes?
- 4. What is an AS?
- 5. Why is simultaneous open of BGP sessions an issue, and how is it resolved?
- 6. What might happen if the corresponding tables and routes were not removed on session failure?

Quiz (2)

- 7. What are the 3 types of BGP table, and what are they for?
- 8. In what way(s) is BGP not a distance vector protocol, and why?
- 9. What are the different effects of the stages in the decision process on sl.21?
- 10. Why is redistributing BGP routes via the IGP a problem?
- 11. Draw two diagrams showing how AS confederations and route reflectors address IBGP scalability in different ways.
- 12. What is the difference between peering and transit?

Extras...

So, how do you build an IP network?

1. Buy (lease) routers

\$1m? \$2m? for a new, populated, backbone router!

2. Buy (lease) fibre

Wayleaves = \$\$\$ Be a landowner!

3. Connect them all together

Correctly. For now.

4. Configure routers

Mwuhahaha.

5. Configure end-systems

Someone else's can of worms.

Multiple Router Flavours

- Core
 - OC-12 (622Mbps) and up (to OC-768 ~= 40Gbps)
 - Big, fat, fast, expensive
 - E.g., Cisco HFR, Juniper T-640
 - HFR: 1.2Tbps each, interconnect up to 72 giving 92Tbps, start at \$450k
- Transit/Peering-facing
 - OC-3 and up, good GigE density
 - ACLs, full-on BGP, uRPF, accounting

Multiple Router Flavours

- Customer-facing
 - FR/ATM/...
 - Feature set as above, plus fancy queues, etc
- Broadband aggregator
 - High scalability: sessions, ports, reconnections
 - Feature set as above
- Customer-premises (CPE)
 - 100Mbps, maybe
 - NAT, DHCP, firewall, wireless, VoIP, ...
 - Low cost, low-end, perhaps just software on a PC

Multiple Router Flavours

Cisco CRS-1 Multi-shelf system

Network Design

- Whose network?
 - ISPs, IXs, enterprise, campus
 - POPs, DCs
- Many designs:
 - Flat
 - Hierarchical
 - Hybrids
 - Multiple scales

Network Design Constraints

- Business
 - Backwards compatibility. Who to connect. Peering.
- Technology
 - Power directly (24x7 operation) and indirectly (cooling)
 - Port density vs. raw bandwidth
 - Software reliability
 - Hardware/software capability
 - Addressing schemes for scalability, summarization
 - Can't run feature X with feature Y on vendor C in network size N
- Connectivity/resiliency
 - "All core routers connect to at least 2 other core routers"
 - "All edge routers connect to at least 2 core routers"

Router OS Configuration

Initialization

Name the router, setup boot options, setup authentication options

Configure interfaces

- Loopback, Ethernet, fibre, ATM
- Subnet/mask, filters, static routes
- Shutdown (or not), queuing options, full/half duplex

Router Software Configuration

- Configure routing protocols (OSPF, BGP, &c)
 - Process number, addresses to accept routes from, networks to advertise
 - Access lists, filters, ...
 - Numeric id, permit/deny, subnet/mask, protocol, port
 - Route-maps, matching routes rather than data traffic
- Other configuration aspects: traps, syslog, &c
 - (Oh, and switch configuration is about as painful)

Router Configuration Fragments

```
hostname FOOBAR
boot system flash slot0:a-boot-image.bin
boot system flash bootflash:
                             interface Loopback0
logging buffered 100000 debu
                              description router-1.network.corp.com
logging console informationa
                              ip address 10.65.21.43 255.255.255.255
aaa new-model
aaa authentication login def
                              interface FastEthernet0/0/0
                                                           router ospf 2
authentication login console
                              description Link to New Yor
                                                            log-adjacency-changes
aaa authentication ppp defau
                              ip address 10.65.43.21 255.
                                                            passive-interface FastEthernet0/0/0
aaa authorization network ta
                              ip access-group 175 in
                                                            passive-interface FastEthernet0/1/0
ip tftp source-interface Loo
                              ip helper-address 10.65.12.
                                                            passive-interface FastEthernet1/0/0
no ip domain-lookup
                              ip pim sparse-mode
                                                            passive-interface FastEthernet1/1/0
ip name-server 10.34.56.78
                               ip cqmp
                                                            passive-interface FastEthernet2/0/0
                              ip dvmrp accept-filter 98 n
                                                            passive-interface FastEthernet2/1/0
ip multicast-routing
                              full-duplex
access-list 24 remark Mcast ACL
access-list 24 permit 239.255.255.254
access-list 24 permit 224.0.1.111
access-list 24 permit 239.192.0.0 0.3.255.255
access-list 24 permit 232.192.0.0 0.3.255.255
access-list 24 permit 224.0.0.0 0.0.0.255
                        0000.0000.0000 ffff.ffff.ffff ffff.ffff.ffff 0000.0000.0000 0xD1 2 eq 0x42
access-list 1011 deny
                                                                        FF.FFFF.FFF
tftp-server slot1:some-other-image.bin
tacacs-server host 10.65.0.2
tacacs-server key xxxxxxxx
rmon event 1 trap Trap1 description "CPU Utilization>75%" owner config
rmon event 2 trap Trap2 description "CPU Utilization>95%" owner config
```

Router Configuration

- Lots of large, fragile text files
 - 00s/000s routers, 00s/000s lines per config
 - Errors are hard to find and have non-obvious results
 - Router configuration also editable on-line
 - Order matters!
- How to keep track of them all?
 - Naming schemes, directory trees, CVS, ssh upload and atomic commit to router

This counts

as advanced!

- Perhaps even a proper database
- State of the art is pretty basic
 - Few tools to check consistency, design goals
 - Generally generate configurations from templates and have humanintensive process to control access to running configs