16 Complete *Q*-categories and *Q*-modules.

In the following we let Q indicate the Lawvere quantale ($[0, \infty], \ge, +, 0$). Q can be seen as:

- a category Q_0 with a unique object and morphisms being the elements of Q, with identity 0 and composition +;
- a degenerate category Q_1 with objects the elements of Q, and a morphism between x and y whenever $x \ge y$;
- a 2-category Q_2 with 0-cells and 1-cells as in Q_0 , and 2-cells the morphisms of Q_1 .

These categorical formulations of Q will help us here and there.

We let x-y indicate truncated subtraction. Notice that $x \leq (x-y)+y$ and $(x+y)-y \leq x$. This corresponds to the fact that " $_--y$ ", as a functor from Q_1 to itself, is right-adjoint to the functor " $_-+y$ ". Equivalently, $x+y \geq z$ iff $x \geq z-y$.

QRel is the category of sets and Q-relations, where a Q-relation $R: X \to Y$ is a function $R: X \times Y \to Q$, with identity $1_X: X \to X$ given by

$$1_X(x,y) = \begin{cases} 0 & \text{if } x = y\\ \infty & \text{otherwise} \end{cases}$$

and composition of $R: X \to Y$ and $S: Y \to Z$ given by

$$(S \cdot R)(x, z) = \inf_{y \in Y} R(x, y) + S(y, z)$$

Remark 4. QRel is also a (degenerate) 2-category, where for $R, S: X \to Y$, $R \Rightarrow S$ iff for all $x \in X$, $y \in Y$, $R(x,y) \ge S(x,y)$.

Composition with $R: X \to Y$ in QRel yields a functor

$$R \cdot _: Q \mathsf{Rel}(A, X) \longrightarrow Q \mathsf{Rel}(A, Y)$$

which has a right-adjoint

$$_ \hookrightarrow R : QRel(A, Y) \longrightarrow QRel(A, X)$$

given, for $S:A \rightarrow Y$ by

$$(S \multimap R)(a,x) = \sup_{y \in Y} S(a,y) - R(x,y)$$

16.1 Q-categories.

A Q-category, or generalized (quasi-)metric space is a small Q-enriched category. Concretely, it is given by a pair (X,q) made of a set X and a Q-relation $q:X \to X$ satisfying:

$$q(x,x) = 0 (Q1)$$

$$q(x,z) + q(z,y) \geqslant q(x,y) \tag{Q2}$$

A Q-category is skeletal if it further satisfies

$$q(x,y) = 0 \implies x = y \tag{Q3}$$

and symmetric if it satisfies

$$q(x,y) = q(y,x) \tag{Q4}$$

For simplicity, in the following we indicate the distance function of a Q-category X simply as X(x, y).

Remark 5. In more abstract terms, a Q-category can be identified with a monad in QRel, seen as a 2-category: it is given by a 1-cell $q: X \to X$ together with 2-cells $1_X \Rightarrow q$ and $q \cdot q \Rightarrow q$.

We let $x \simeq y$ indicate the equivalence relation defined by X(x,y) = X(x',y) holds for all $y \in X$. Notice that $x \simeq y$ coincides with x = y precisely when X is skeletal.

Every Q-category X is also a preorder (X, \leq_X) , with $x \leq_X y$ iff X(x, y) = 0. Moreover, if X is skeletal, then \leq_X is an order.

For every Q-category X, the category X^{op} has same objects as X, and $X^{\text{op}}(x,y) = X(y,x)$.

Example 10. Q is a Q-category with the distance Q(x,y) = y-x. The category Q^{op} has distance $Q^{op}(x,y) = Q(y,x)$.

Example 11. For every Q-category X, the distance $S(X)(x,y) = \max\{X(x,y), X^{\operatorname{op}}(x,y)\}$ defines a symmetric Q-category S(X). In the case of Q, S(Q) is just the Euclidean distance.

A functor between Q-categories X and Y is just a non-expansive function $f: X \to Y$, that is, satisfying $Y(f(x), f(y)) \leq X(x, y)$.

Remark 6. Given $f: X \to Q$, f is a functor precisely when for all $x, y \in X$ $f(x) \leq \inf_{x' \in X} f(x') + X(x', x)$. Indeed, if f is a functor then $f(x) \leq f(x') + X(x', x)$, since $f(x) - f(x') = Q(f(x'), f(x)) \leq X(x', x)$. Conversely, if $f(x) \leq f(x') + X(x', x)$ holds for all x', then $Q(f(x), f(x')) = f(x') - f(x) \leq X(x', x)$.

Example 12. For every Q-category X, the Q-category [X,Q] has objects all functors from X to Q (where the latter is seen as a Q-category), and $[X,Q](f,g) = \sup_{x \in X} Q(f(x),g(x))$.

When X has the discrete metric, $[X,Q] = Q^X$ and $S([X,Q])(f,g) = ||f - g||_{\infty}$.

Example 13. For every Q-categories X, Y we can define:

- a Q-category $X \otimes Y$ with $(X \otimes Y)(\langle x, y \rangle, \langle x', y' \rangle) = X(x, x') + Y(y, y')$;
- $a \ Q$ -category $X \times Y \ with \ (X \times Y)(\langle x, y \rangle, \langle x', y' \rangle) = \max\{X(x, x'), Y(y, y')\}.$

16.2 Q-distributors.

A Q-distributor $\Phi: X \to Y$ is a Q-relation $\Phi: X \times Y \to Q$ satisfying

$$\Phi \cdot X \leqslant \Phi \qquad Y \cdot \Phi \leqslant \Phi$$

Remark 7. Using Remark 6, it follows that Φ is a Q-distributor precisely when it is a functor $\Phi: X^{\operatorname{op}} \otimes Y \to Q$: the condition $\Phi(x,y) \leqslant X(x,x') + \Phi(x',y)$ implies that Φ is a functor over X^{op} , while the condition $\Phi(x,y) \leqslant \Phi(x,x') + Y(x',y)$ implies that Φ is a functor over Y. But this implies then $\Phi(x,y) \leqslant X(x,x') + \Phi(x',y') + Y(y',y)$ and thus $Q(\Phi(x',y'),\Phi(x,y)) \leqslant X(x,x') + Y(y',y)$.

The identity distributor $1_X: X \to X$ is given by $(1_X)_{x,y} = X(x,y)$. Distributors $\Phi: X \to Y$ and $\Psi: Y \to Z$ compose via $\Psi \cdot \Phi: X \to Z$. We let QDist indicate the category of Q-categories and Q-distributors.

Remark 8. Usually distributors $\Phi: X \to Y$ are presented as Q-relations $\Phi: Y \times X \to Q$ (notice the inversion of X and Y), that is, as functors $\Phi: X \times Y^{\operatorname{op}} \to Q$. We chose to invert the presentation of distributors for uniformity with the usual notations in models of the differential λ -calculus.

Any functor $f: X \to Y$ induces two adjoint distributors $f^{\circ}: X \to Y$ and $f_{\circ}: Y \to X$ given by $f^{\circ}(x,y) = Y(f(x),y)$ and $f_{\circ}(y,x) = Y(f(y),x)$. Here adjoint means that $1_X \leq f_{\circ} \cdot f^{\circ}$ and $f^{\circ} \cdot f_{\circ} \geq 1_Y$.

Remark 9 (Yoneda embedding). The Yoneda embedding is the faithful functor $\mathcal{Y}: X \to [X, Q]$ given by $\mathcal{Y}(x)(y) = X(y, x)$. The functoriality and faithfulness of \mathcal{Y} follow from

$$[X,Q](\mathcal{Y}(x),\mathcal{Y}(x')) = X(x,x')$$
 (Yoneda)

which is proved as follows: for all $y \in X$ we have

$$Q(\mathcal{Y}(x)(y), \mathcal{Y}(x')(y)) = \mathcal{Y}(x')(y) - \mathcal{Y}(x)(y)$$
$$= X(y, x') - X(y, x) \leqslant X(x, x')$$

where the last step follows from $X(y,x) + X(x,x') \ge X(y,x')$. From this we deduce that $[X,Q](\mathcal{Y}(x),\mathcal{Y}(x')) = \sup_{y \in X} Q(\mathcal{Y}(x)(y),\mathcal{Y}(x')(y)) \le X(x,x')$. For the converse direction, we have

$$\begin{split} X(x,x') &= X(x,x') - 0 \\ &= X(x,x') - X(x,x) \\ &= \mathcal{Y}(x')(x) - \mathcal{Y}(x)(x) = Q(\mathcal{Y}(x)(x), \mathcal{Y}(x')(x)) \\ &\leqslant [X,Q](\mathcal{Y}(x),\mathcal{Y}(x')) \end{split}$$

Remark 10. The opposite Yoneda embedding is the faithful functor \mathcal{Y}^{op} : $X \to [X,Q]^{\text{op}}$ given by $\mathcal{Y}^{\text{op}}(x)(y) = X(x,y)$. The functoriality and faithfulness of \mathcal{Y}^{op} follow from

$$[X,Q](\mathcal{Y}^{\mathrm{op}}(x),\mathcal{Y}^{\mathrm{op}}(x')) = X(x',x)$$
 (Yoneda^{op})

which is proved similarly to the case of \mathcal{Y} .

16.3 cocompleteness

Let $\Phi: Y \to Z$ be a distributor and $f: Y \to X$ be a functor. A functor $g: Z \to X$ is called the Φ -weighted colimit of f if it satisfies, for all $z \in Z$ and $x \in X$,

$$X(g(z),x) \ = \ \sup_{y \in Y} X(f(y),x) - \Phi(y,z)$$

If this colimit exists, we write it as $colim(\Phi, f)$.

A Q-category X is said cocomplete if it admits all weighted colimits, and a functor $f: X \to Y$ of Q-categories is said cocontinuous if it commutes with all weighted colimits, meaning that $f \circ \text{colim}(\Phi, g) = \text{colim}(\Phi, f \circ g)$.

We let $Q\mathsf{CCat}$ indicate the category of skeletal and cocomplete Q-categories and cocontinuous functors.

Proposition 44. Let X be a Q-category. Then X is cocomplete iff the Yoneda embedding has a left-adjoint.

Proof. For all $\mathbf{x} \in [X, Q]$, let $\sup \mathbf{x}$ be defined as a weighted colimit via

$$X(\sup \mathbf{x}, y) = \sup_{z \in X} X(z, y) - \mathbf{x}_z$$

that is, $\sup \mathbf{x} = \operatorname{colim}(\mathbf{x}, \operatorname{id}_X)$, where \mathbf{x} is seen as a distributor $\mathbf{x} : \mathbf{1} \to X$.

Let us check that sup : $[X,Q] \to X$ is a functor. First, let us check the inequality

$$(X \smile \mathbf{y}) \cdot (\mathbf{y} \smile \mathbf{x}) \geqslant (X \smile \mathbf{x}) \tag{1}$$

as follows:

$$((X \sim \mathbf{y}) \cdot (\mathbf{y} \sim \mathbf{x})) (a) = \left(\sup_{b} X(b, a) - \mathbf{y}_{b}\right) + \left(\sup_{b} \mathbf{y}_{b} - \mathbf{x}_{b}\right)$$

$$\geq \sup_{b} (X(b, a) - \mathbf{y}_{b}) + (\mathbf{y}_{b} - \mathbf{x}_{b})$$

$$= \sup_{b} (X(b, a) - \mathbf{y}_{b} + \mathbf{y}_{b}) - \mathbf{x}_{b}$$

$$= \sup_{b} X(b, a) - \mathbf{x}_{a}$$

$$= (X \sim \mathbf{x})(a)$$

From (1) we deduce immediately the inequality below:

$$\mathbf{y} \smile \mathbf{x} \geqslant (X \smile \mathbf{x}) \smile (X \smile \mathbf{y}) \tag{2}$$

and we can now compute:

$$[X, Q](\mathbf{x}, \mathbf{y}) = \sup_{a \in X} \mathbf{y}_{a} - \mathbf{x}_{a}$$

$$\stackrel{(2)}{\geqslant} \sup_{a \in X} \left(\sup_{b \in X} X(b, a) - \mathbf{x}_{a} \right) - \left(\sup_{b \in X} X(b, a) - \mathbf{y}_{a} \right)$$

$$= \sup_{a \in X} X(\sup_{a \in X} \mathbf{x}, a) - X(\sup_{a \in X} \mathbf{y}, a)$$

$$= [X, Q](\mathcal{Y}^{\text{op}}(\sup_{a \in X} \mathbf{y}), \mathcal{Y}^{\text{op}}(\sup_{a \in X} \mathbf{x})) \qquad (\text{Yoneda}^{\text{op}})$$

$$= X(\sup_{a \in X} \mathbf{x}, \sup_{a \in X} \mathbf{y})$$

Then for all $x \in X$, $\sup \mathcal{Y}(x) \simeq x$. Indeed we have

$$X(\sup \mathcal{Y}(x), y) = \sup_{z \in X} X(z, y) - \mathcal{Y}(x)(z)$$
$$= \sup_{z \in X} X(z, y) - X(z, x)$$
$$= X(x, y)$$

Moreover, for all $\mathbf{x} \in [X, Q]$, we have $\mathcal{Y}(\sup \mathbf{x}) \geq \mathbf{x}$:

$$\mathcal{Y}(\sup \mathbf{x})(a) = X(a, \sup \mathbf{x})$$

$$= X(\sup(\mathcal{Y}(a)), \sup \mathbf{x})$$

$$\geq [X, Q](\mathcal{Y}(a), \mathbf{x})$$

$$\geq \mathbf{x}_a - \mathcal{Y}(a)(a)$$

$$= \mathbf{x}_a - X(a, a) = \mathbf{x}_a$$

Conversely, if sup is well-defined and adjoint to \mathcal{Y} , then given $\Phi: Y \to \mathbf{1}$ and $f: Y \to X$, we can define $\operatorname{colim}(\Phi, f) := \sup \Psi$, where $\Psi = f^{\circ} \cdot \Phi: X \to \mathbf{1}$, since

$$\begin{split} X(\sup \Psi, y) &= \sup_{z \in X} X(z, y) - \Psi(z) \\ &= \sup_{z \in X} X(z, y) - \inf_{y \in Y} X(z, f(y)) + \Phi(y) \\ &= \sup_{z \in X} \sup_{y \in Y} X(z, y) - X(z, f(y)) - \Phi(y) \\ &= \sup_{z \in X} X(f(z), y) - \Phi(z) \end{split}$$

Definition 9 (MacNeill Completion). Let X be a Q-category. For all $f: \mathbf{1} \to X$ and $g: X \to \mathbf{1}$, let $f \subset g$ iff $f = X \multimap g$ and $g = f \multimap X$.

The MacNeill completion of X is the Q-category $\mathbf{M}(X)$ made of those $f: \mathbf{1} \to X$ such that $f \circ g$ for some $g: X \to \mathbf{1}$, with $\mathbf{M}(X)(f, f') = [X, Q](f, f')$.

Observe that if $f \circ g$, then $f = X \circ (f \multimap X)$, i.e.:

$$f(x) = \sup_{y \in X} \inf_{z \in X} X(x, y) - X(y, z) + f(z)$$
 (COH)

Proposition 45. Let X be a Q-category. If X is cocomplete, then \mathcal{Y} is an isomorphism between X and $\mathbf{M}(X)$.

Proof. For all $x \in X$, one can check that $\mathcal{Y}(x) \in \mathbf{M}(X)$. Indeed, we can check that $\mathcal{Y}(x) \subset \mathcal{Y}^{\mathrm{op}}(x)$:

$$\begin{aligned} \mathcal{Y}(x)(y) &= X(y,x) \\ &= \sup_{z \in X} X(y,z) - X(x,z) \\ &= \sup_{z \in X} X(y,z) - \mathcal{Y}^{\text{op}}(x)(z) \\ &= (X \backsim \mathcal{Y}^{\text{op}}(x))(y) \end{aligned}$$

Since $\sup \mathcal{Y}(x) \simeq x$ holds, it suffices to show that if $\mathbf{x} \subset \mathbf{y}$, then $\mathcal{Y}(\sup \mathbf{x}) = \mathbf{x}$:

$$\mathcal{Y}(\sup \mathbf{x})(a) = X(a, \sup \mathbf{x})$$

$$= \sup_{b \in X} X(a, b) - X(\sup \mathbf{x}, b)$$

$$= \sup_{b \in X} \inf_{c \in X} X(a, b) - X(b, c) + \mathbf{x}_c$$

$$(COH)$$

$$= \mathbf{x}_a$$

16.4 Tensors and Q-Modules

Among weighted colimits, one is of big importance for us. Any $\epsilon \in Q$ generates a constant distributor $(\epsilon): \mathbf{1} \to \mathbf{1}$, and any point $x \in X$ generates a constant functor $\Delta x: \mathbf{1} \to X$. Given a Q-category X, a point $x \in X$ and $\epsilon \in Q$, the tensor of x and ϵ , if it exists, is defined as

$$\epsilon \otimes x := \operatorname{colim}((\epsilon), \Delta x)$$

A Q-category X is tensored if for all $x \in X$ and $\epsilon \in Q$, it admits the tensor $\epsilon \otimes x$.

Proposition 46. A tensored Q-category X is a Q-module (X, \leq_X, \otimes) . A cocontinuous functor of cocomplete Q-categories is a Q-module morphism between the associated Q-modules.

Proof. We must show that tensors induce a continuous action. Observe that tensors are characterized by the equation

$$X(x \otimes \epsilon, x') = X(x, x') - \epsilon \tag{3}$$

If $\epsilon = 0$, then (3) forces $x \otimes \epsilon \simeq x$. If $\epsilon = \delta + \eta$, then using the fact that $\alpha - (\epsilon + \delta) = (\alpha - \epsilon) - \delta$ we deduce $X((x \otimes \epsilon) \otimes \delta, x') = X(x \otimes \epsilon, x') - \delta = (X(x, x') - \epsilon) - \delta = X(x, x') - (\epsilon + \delta) = X(x \otimes (\epsilon + \delta), x')$, which forces $x \otimes (\epsilon + \delta) \simeq (x \otimes \epsilon) \otimes \delta$.

A cocontinuous functor $f:X\to Y$ commutes with sups and with \otimes , and is thus a Q-module morphism. \square

Lemma 47. i. $\sup_{i \in I} a_i - \epsilon = (\sup_{i \in I} a_i) - \epsilon$.

$$ii. \sup_{i \in I} (a_i - \epsilon) - b_i = (\sup_{i \in I} a_i - b_i) - \epsilon.$$

Proof. Let $A = \sup_{i \in I} a_i - \epsilon$ and $B = (\sup_{i \in I} a_i) - \epsilon$. Let $J \subseteq I$ be the set of indexes j such that $a_j > \epsilon$. If $J = \emptyset$ then A = B = 0. Otherwise, $A = \sup_{j \in J} a_j - \epsilon$ (where "—" can be interpreted as subtraction on \mathbb{R} , and $B = (\sup_{j \in J} a_j) - \epsilon$ (again with "—" being subtraction on \mathbb{R}), so A = B follows from the continuity of "—" on \mathbb{R} .

Let now $A = \sup_{i \in I} (a_i - \epsilon) - b_i$ and $B = (\sup_{i \in I} a_i - b_i) - \epsilon$. Let $J \subseteq I$ be the set of indexes j such that $a_j > b_j + \epsilon$. If $J = \emptyset$, then A = 0; suppose B > 0, then $\sup_{i \in I} a_i - b_i > \epsilon$, but this implies that we can find $i \in I$ with $a_i > b_i + \epsilon$, against the assumption, so also B = 0 holds. If J is non-empty, then $A = \sup_{j \in J} (a_j - \epsilon) - b_j$, where "-" is not subtraction on $\mathbb R$ and $B = (\sup_{j \in J} a_j - b_j) - \epsilon$, again with "-" usual subtraction, so A = B follows from the continuity of "-" on $\mathbb R$.

Lemma 48. In any cocomplete Q-category, $x \otimes \epsilon \simeq \sup(\mathcal{Y}(x) + \epsilon)$. In the cocomplete Q-category [X,Q], $\mathbf{x} \otimes \epsilon = \mathbf{x} + \epsilon$.

Proof. We have

$$X(\sup(\mathcal{Y}(x) + \epsilon), x') = \sup_{y \in X} X(z, x') - (\mathcal{Y}(x)(z) + \epsilon)$$
$$= \sup_{y \in X} X(z, x') - (X(z, x) + \epsilon)$$
$$= (\sup_{y \in X} X(z, x') - X(z, x)) - \epsilon$$
$$= X(x, x') - \epsilon$$

which shows $x \otimes \epsilon = \sup(\mathcal{Y}(x) + \epsilon)$. In [X, Q] we have $[X, Q](\mathbf{x} + \epsilon, \mathbf{x}') = \sup_{a \in X} (\mathbf{x}_a + \epsilon) - \mathbf{x}'_a = (\sup_{a \in X} \mathbf{x}_a - \mathbf{x}'_a) - \epsilon = [X, Q](\mathbf{x}, \mathbf{x}') - \epsilon$, which shows $\mathbf{x} \otimes \epsilon \simeq \mathbf{x} + \epsilon$, and since [X, Q] is skeletal, $\mathbf{x} \otimes \epsilon = \mathbf{x} + \epsilon$.

The dual notion of tensors is the *cotensor* $x \leftarrow \epsilon$. Formally, it is defined as a *weighted limit* (whose definition is dual to that of weighted colimit but we do not give details here), and characterized by the equation

$$X(x', x \smile \epsilon) = X(x', x) - \epsilon$$

In other words, in a tensored and cotensored Q-category we have $X(x \otimes \epsilon, y) = X(x, y \circ - \epsilon)$.

Example 14. The Q-category [X,Q] is cotensored, with $\mathbf{x} \smile \epsilon := \mathbf{x} - \epsilon$. Indeed we have $[X,Q](\mathbf{x},\mathbf{y} \smile \epsilon) = \sup_{a \in X} (\mathbf{y}_a - \epsilon) - \mathbf{x}_a = (\sup_{a \in X} \mathbf{y}_a - \mathbf{x}_a) - \epsilon = [X,Q](\mathbf{x},\mathbf{y}) - \epsilon$.

Definition 10. A Q-category X is order-complete if it is a sup-lattice with respect to the order \leq_X (i.e. all joins exist).

Lemma 49. Let X be a Q-category. If X is order-complete, then

- if X is co-tensored, $X(\bigvee_i x_i, y) = \sup_i X(x_i, y)$;
- if X is tensored, $X(x, \bigvee_i y_i) = \inf_i X(x, y_i)$.

Proof. We only prove the second claim, the first being proved similarly.

Let us show that $z \leq_X z'$ iff for all $w \in X$, $X(w,z') \leq X(w,z)$: on one direction we have $X(w,z') \leq X(w,z) + X(z,z') = X(w,z)$; on the other direction, we have $X(z,z') \leq X(z,z) = 0$.

Using this, since $y_i \leq_X y := \bigvee_i y_i$ we deduce $X(x, y_i) \leq X(x, y)$, and thus $X(x, y) \geq \inf_i X(x, y_i)$.

For the converse direction, we argue as follows: let $X(x,y_i) \leq \epsilon$ hold for all $i \in I$; then $0 = X(x,y_i) - \epsilon = X(x \otimes \epsilon,y_i)$. Thus $x \otimes \epsilon \leq_X y_i$, and thus $x \otimes \epsilon \leq_X y$, that is $X(x \otimes \epsilon,y) = X(x,y) - \epsilon = 0$, and consequently $X(x,y) \leq \epsilon$. By letting $\epsilon := X(x,y_i)$ we conclude then $X(x,y) \leq X(x,y_i)$, and thus $X(x,y) \leq \inf_i X(x,y_i)$.

Proposition 50. If a Q-category X is tensored, cotensored and order-complete, then it is cocomplete.

Proof. For all $\mathbf{x} \in [X,Q]$, let $\sup \mathbf{x} := \bigvee_{a \in X} a \otimes \mathbf{x}_a$. Let us check that $X(\sup \mathbf{x},b) = \sup_{a \in X} X(a,b) - \mathbf{x}_a$, using Lemma 49:

$$\begin{split} X(\sup \mathbf{x}, b) &= \sup_{a \in X} X(a \otimes \mathbf{x}_a, b) \\ &= \sup_{a \in X} X(a, b) - \mathbf{x}_a \end{split}$$

We can thus conclude using Proposition 44.

Proposition 51. Let X, Y be two tensored Q-categories, and $f: X \to Y$ be a function.

- i. f is a functor iff f is order-preserving and for all $x \in X$ and $\epsilon \in Q$, $f(x) \otimes \epsilon \leq_Y f(x \otimes \epsilon)$.
- ii. f is a cocontinuous functor iff f commutes with joins and for all $x \in X$ and $\epsilon \in Q$, $f(x) \otimes \epsilon = f(x \otimes \epsilon)$.

Proof. i. If f is a functor then

$$Y(f(x) \otimes \epsilon, f(x \otimes \epsilon)) = Y(f(x), f(x \otimes \epsilon)) - \epsilon$$

$$\leq X(x, x \otimes \epsilon) - \epsilon$$

$$= X(x \otimes \epsilon, x \otimes \epsilon) = 0$$

so $Y(f(x)\otimes\epsilon, f(x\otimes\epsilon)) = 0$, which implies $f(x)\otimes\epsilon \leq_X f(x\otimes\epsilon)$. Moreover, if $x \leq_X x'$, then $0 \geq X(x,x') \geq Y(f(x),f(x'))$, whence $f(x) \leq_Y f(x')$, so f is order-preserving.

Conversely, for all $x, x' \in X$,

$$X(x \otimes X(x, x'), x') = X(x, x') - X(x, x') = 0$$

thus $x \otimes X(x, x') \leq_X x'$. Since f is order-preserving, it follows that

$$f(x) \otimes X(x,x') \leq_Y f(x \otimes X(x,x')) \leq_Y f(x')$$

which implies that

$$Y(f(x), f(x')) - X(x, x') = Y(f(x) \otimes X(x, x'), f(x')) = 0$$

that is $Y(f(x), f(x')) \leq X(x, x')$, so f is a functor.

ii. Suppose f is a cocontinuous functors, and let $g: Y \to X$, be its right-adjoint, i.e. satisfying Y(f(x), y) = X(x, g(y)). Then

$$Y(f(x \otimes \epsilon), y) = X(x \otimes \epsilon, g(y))$$
$$= X(x, g(y)) - \epsilon$$
$$= Y(f(x), y) - \epsilon$$

which implies that $f(x \otimes \epsilon)$ coincides with the tensor $f(x) \otimes \epsilon$. Moreover, clearly also $f(x) \leq_Y y$ iff $x \leq_X g(y)$ holds, which means that f is left-adjoint to g also with respect to the order.

Conversely, suppose the function $f: X \to Y$ preserves joins and tensors. Since f is order-preserving, by i. it is a functor, so we must only prove that it is cocontinuous. Since f preserves joins there exists a function $g: Y \to X$ which is right-adjoint to f with respect to orders, i.e. $f(x) \leq_Y y$ iff $x \leq_X g(y)$. We need to prove then that f is left-adjoint to g, i.e. that Y(f(x), y) = X(x, g(y)).

On the one hand we have

$$0 = X(x,g(y)) - X(x,g(y)) = X(x \otimes X(x,g(y)),g(y))$$

from which it follows

$$0 = Y(f(x \otimes X(x, g(y)), y) = Y(f(x) \otimes X(x, g(y)), y) = Y(f(x), y) - X(x, g(y))$$

where the first inequality follows from the fact that f and g are adjoint with respect to the order (so Y(f(x), y) = 0 iff X(x, g(y)) = 0). This implies then $Y(f(x), y) \leq X(x, g(y))$.

For the converse inequality,

$$0=Y(f(x),y)-Y(f(x)-y)=Y(f(x)\otimes Y(f(x),y),y)=Y(f(x\otimes Y(f(x),y)),y)$$

and by a similar reasoning we deduce

$$0 = X(x \otimes Y(f(x), y), q(y)) = X(x, q(y)) - Y(f(x), y)$$

whence $X(x, g(y)) \leq Y(f(x), y)$.

Theorem 52. The category QMod of Q-modules and Q-module morphism coincides with the category QCCat of cocomplete skeletal Q-categories and cocontinuous functors.

Proof. We have already seen that any cocomplete skeletal Q-category is a Q-module via tensors, and that cocontinuous functors are Q-module morphisms. Let us now show that any Q-module is a cocomplete skeletal Q-category, and that a Q-module morphism is a cocontinuous functor.

Let then $M = (M, \leq, \star)$ be a Q-module. Define $M(x, y) = \inf\{\delta \mid x \star \delta \geq y\}$. It is clear that M(x, x) = 0. Let us prove $M(x, y) + M(y, z) \geq M(x, z)$: from $x \star M(x, y) \geq y$ and $y \star M(y, z) \geq z$ we deduce $x \star (M(x, y) + M(y, z)) = (x \star M(x, y)) \star M(y, z) \geq y \star M(y, z) \geq z$, and thus $M(x, z) \leq M(x, y) + M(y, z)$. Observe that M(x, y) = 0 iff $x = x \star 0 \geq y$, so the order \leq_M coincides with the order of M.

Let us check that the Q-category M is tensored via $x \otimes \epsilon := x \star \epsilon$. Let $A_{x,y} = \{\delta \mid (x \star \epsilon) \star \delta \geq y \text{ and } B_{x,y} = \{\delta - \epsilon \mid x \star \delta \geq y\}$. Let us show that $A_{x,y} = B_{x,y}$: if $\delta \in A_{x,y}$, then $\delta = (\epsilon + \delta) - \epsilon$ satisfies $x \star (\epsilon + \delta) = (x \star \epsilon) \star \delta \geq y$, whence $\delta \in B_{x,y}$. Conversely, if $\eta = \delta - \epsilon \in B_{x,y}$, then $(x \star \epsilon) \star \eta \geq x \star \delta \geq y$, whence $\eta \in A_{x,y}$. We conclude then that $M(x \star \epsilon, y) = \inf A_{x,y} = \inf B_{x,y} = \inf \{\delta \mid x \star \delta \geq y\} - \epsilon = M(x,y) - \epsilon$.

Let us define the opposite action $x \multimap \epsilon = \bigwedge \{y \mid y \star \epsilon \geqslant x\}$. We must show that M is cotensored via \multimap , for which it suffices to show $M(x \star \epsilon, y) = M(x, y \multimap \epsilon)$. Let $C_{x,y} = \{\delta \mid x \star \delta \geqslant y \multimap \epsilon\}$. We have that $\delta \in A_{x,y}$ iff $(x \star \delta) \star \epsilon = x \star (\delta + \epsilon) = x \star (\epsilon + \delta) = (x \star \epsilon) \star \delta \geqslant y$ which is equivalent to $x \star \delta \geqslant y \multimap \epsilon$. We conclude that $A_{x,y} = C_{x,y}$, from which $M(x \star \epsilon, y) = \inf A_{x,y} = \inf C_{x,y} = M(x, y \multimap \epsilon)$.

Since M, as a Q-category, is order-complete, tensored and cotensored, it is cocomplete by Proposition 50.

To conclude, notice that if $f:X\to Y$ is a cocontinuous functor, then it commutes with tensors and, by Proposition 51 it commutes with joins, so it is a morphism of the respective Q-modules. Conversely, if $f:M\to N$ is a Q-module morphism, then, since M and N are both tensored Q-categories, the tensor coincides with the actions of M and N, f preserves the joins and the tensor, by Proposition 51, it is a cocontinuous functor of the respective Q-categories.

17 QMod is a *-Autonomous Category

Let us first observe that:

- the hom-set Hom(M, N) of two Q-modules is a Q-module with order and action defined pointwise;
- for any Q-module $M = (M, \leq, \star)$, there is a Q-module $M^{\text{op}} = (M, \geq, \sim)$, with \sim defined as in the proof of Theorem 52.

Let M, N be two Q-modules. For all $A \in Q^{M \times N}$, we define the function

$$H_A: Q^M \longrightarrow Q^N$$

via

$$H_A(\mathbf{x})(b) = \inf_{a \in M} \mathbf{x}_a + A(a, b)$$

Lemma 53. $H_A = H_{A'}$ iff A = A'.

Proof. We only need to prove one direction, so suppose $A \neq A'$ and let a, b be such that $A(a,b) \neq A'(a,b)$. Let \mathbf{x} be defined by $\mathbf{x}_a = 1$ and $\mathbf{x}_{a'} = \infty$ for all $a' \neq a$. Then $H_A(\mathbf{x})(b) = A(a,b) \neq A'(a,b) = H_{A'}(\mathbf{x})(b)$.

Proposition 54. $Q^{M \times N}$ and $Hom(Q^M, Q^N)$ are isomorphic Q-modules.

Proof. The map $A \mapsto H_A$ is injective, as shown above. We need to check that it commutes with joins:

$$H_{\bigvee_{i} A_{i}}(\mathbf{x})(b) = \inf_{a} \mathbf{x}_{a} + \bigvee_{i} A_{i}(a, b)$$

$$= \inf_{a} \bigvee_{i} \mathbf{x}_{a} + A_{i}(a, b)$$

$$= \bigvee_{i} \inf_{a} \mathbf{x}_{a} + A_{i}(a, b)$$

$$= \bigvee_{i} H_{A_{i}}(\mathbf{x})(b)$$

(recall that infs are actually joins in Q!)

We must prove that H is surjective: for all $f \in Hom(Q^M, Q^N)$, let $k_f \in Q^{M \times N}$ be given by $k_f(a, b) = f(e_a)(b)$.

Then we have

$$H_{k_f}(\mathbf{x})(b) = \inf_{a} \mathbf{x}_a + k_f(a, b)$$

$$= \inf_{a} \mathbf{x}_a + f(e_a)(b)$$

$$= \left(\inf_{a} \mathbf{x}_a + f(e_a)\right)(b)$$

$$= \left(\inf_{a} f(\mathbf{x}_a + e_a)\right)(b)$$

$$= f(\inf_{a} \mathbf{x}_a + e_a)(b)$$

$$= f(\mathbf{x})(b)$$

and conversely

$$k_{H_A}(a,b) = H_A(e_a)(b) = \inf_{a'}(e_a)_{a'} + A(a',b) = A(a,b)$$

17.1The Tensor Product of Q-Modules

The description of the tensor product of Q-modules requires some work. Let us first recall some important definitions:

Definition 11 (congruence on a sup-lattice). Let (L, \leq) be a sup-lattice. An equivalence relation $R \subseteq L \times L$ is said a congruence if it satisfies the following property:

$$(\forall i \in I \ x_i R y_i) \Rightarrow \left(\bigvee_i x_i\right) R \left(\bigvee_i y_i\right)$$
 (congruence)

Lemma 55. For all suplattices (L, \leq) , if R is a congruence, then $(L/R, \leq_R)$ is a sup-lattice, where $[x] \leq_R [y]$ iff $(x \vee y)Ry$ (i.e. $[x \vee y] = [y]$), and $\bigvee_i [x_i] =$ $[\bigvee_i x_i].$

Proof. Let us check that \leq_R is an order. It is clear that $[x] \leq_R [x]$ holds. If $[x] \leq_R [y]$ and $[y] \leq_R [z]$ both hold, then $(x \vee y)Ry$ and $(y \vee z)Rz$ hold; then, since R is a congruence $((x \vee y) \vee (y \vee z))R(y \vee z)Rz$, and moreover $x \vee (y \vee z)R(x \vee z)$, whence $(x \vee z)R(x \vee y \vee z)Rz$, so $[x] \leq_R [z]$. If $[x] \leq_R [y]$ and $[y] \leq_R [x]$, then $xR(x \vee y)Ry$, thus [x] = [y].

Let us now check the definition of joins. From $[x_i] \vee [\bigvee_i x_i] = [x_i \vee \bigvee_i x_i] =$ $[\bigvee_i x_i]$ we deduce $[x_i] \leq_R [\bigvee x_i]$. Suppose now $[x_i] \leq [y]$ holds for all $i \in I$, that is, $(x_i \vee y)Ry$; then, since R is a congruence, $(\bigvee_i (x_i \vee y))Ry$, that is, $((\bigvee_i x_i) \vee y)Ry$, which implies $[\bigvee_i x_i] \leq_R [y]$. We conclude then that $\bigvee_i [x_i] =$ $[\bigvee_i x_i].$

Lemma 56. Let (L, \leq) be a sup-lattice. For any relation $R \subseteq L \times L$, the relation R^* defined as follows:

$$xR^*y \text{ iff } \exists I \exists x_i y_i \text{ s.t. } \begin{cases} x = \bigvee_{i \in I} x_i \\ y = \bigvee_{i \in I} y_i \\ x_i R y_i \ (\forall i \in I) \end{cases}$$

is a congruence, and is the smallest congruence containing R.

Proof. Suppose $x_i R^* y_i$ holds for all $i \in I$. Then for each $i \in I$ there exists a set

 J_i and sequences x_{ij}, y_{ij} such that $\bigvee_{j \in J_i} x_{ij} = x_i, \bigvee_{j \in J_i} y_{ij} = y_i$ and $x_{ij}Ry_{ij}$. Let then $K = \prod_{i \in I} \{i\} \times J_i$; then for all $(i,j) \in K$, $x_{ij}Ry_{ij}$, so we deduce that $\bigvee_{i \in I} x_i = \bigvee_{(i,j) \in K} x_{ij}R^* \bigvee_{(i,j) \in K} y_{ij} = \bigvee_{i \in I} y_i$, which proves that R^* is a congruence.

Suppose now S is a congruence containing R and let xR^*y . Then there exists a set I so that $x = \bigvee_{i \in I} x_i, y = \bigvee_{i \in I} y_i$ and $x_i R y_i$; now, since S contains R, we deduce $x_i S y_i$ for all $i \in I$, and since S is a congruence, x S y holds, which proves that $R^* \subseteq S$.

We can now introduce the tensor of Q-modules, that will be defined as a suitable quotient lattice.

Definition 12 (tensor of Q-modules). Let M and N be Q-modules. The tensor product $M \otimes_Q N$ of M and N is the Q-module defined as $\mathcal{P}(M \times N)/R^*$, where R^* is the smallest congruence containing the relation R defined by:

$$R' = \left\{ \begin{matrix} ((\bigvee A, y), \bigcup_{a \in A} \{(a, y)\}) \mid A \subseteq M, y \in N \\ ((x, \bigvee B), \bigcup_{b \in B} \{(x, b)\}) \mid B \subseteq N, x \in M \\ (\{(x \star \epsilon, y)\}, \{(x, y \star \epsilon)\}) \mid \epsilon \in Q \end{matrix} \right\}$$

and the action is defined via $[A] \star \epsilon = \bigvee \{ [\{(x \star \epsilon, y)\}] \mid (x, y) \in A \}.$

Let a Q-bimorphism be a map $f: M \times N \to L$ such that f preserves joins in each variable separately, and moreover $f(x, y \star \epsilon) = f(x \star \epsilon, y)$. A Q-bimorphism $f: M \times N \to L$ is universal if for all L' and bimorphism $g: M \times N \to L'$ there is a unique sup-lattice homomorphism $h: L \to L'$ such that $g = h \circ f$.

Proposition 57 (universal property of the tensor product). The tensor product $M \otimes_Q N$ is the codomain of the universal Q-bimorphism $M \times N \to M \otimes_Q N$.

Remark 11. For any $x \in M$ and $y \in N$, we indicate as $x \otimes_Q y$ the image of the pair (x,y) under the universal Q-bimorphism $\tau: M \times N \to M \otimes_Q N$, or equivalently, as the R^* -equivalence class of (x,y). Since joins in $M \otimes_Q N$ are given by $\bigvee_i [A_i] = [\bigcup_i A_i]$, we have then that any element $[A] \in M \otimes_Q N$ can be written as $[A] = \bigvee \{x \otimes y \mid (x,y) \in A\}$.

Lemma 58. • $M \otimes_Q N \simeq N \otimes_Q M$;

• $(M \otimes_Q N) \otimes_Q R \simeq M \otimes_Q (N \otimes_Q R)$.

Proposition 59. $Hom(M \otimes_Q N, R) \simeq Hom(M, Hom(N, R))$ (as an isomorphism of sup-lattices).

Proof. Given $h: M \otimes_Q N \to R$, for all $x \in M$ define $h_x: N \to R$ by $h_x(y) = h(x \otimes_Q y)$. We then have $h_x(\bigvee_i y_i) = h(x \otimes_Q \bigvee_i y_i) = h(\bigvee_i x \otimes_Q y_i) = \bigvee_i h_x(y_i)$ and $h_x(y \star \epsilon) = h(x \otimes_Q (y \star \epsilon)) = h((x \otimes_Q y) \star \epsilon) = h(x \otimes_Q y) \star \epsilon = h_x(y) \star \epsilon$, so $h_x \in Hom(N, R)$. Moreover, by a similar argument we have $h_{\bigvee_i x_i}(y) = \bigvee_i h_{x_i}(y)$ and $h_{x\star\epsilon}(y) = h_x(y) \star \epsilon$, so the map $x \mapsto h_x$ is a Q-module morphism.

Finally, for any family $h_i: M \otimes_Q N \to R$, we have $(\bigvee_i h_i)_x(y) = \bigvee_i h_i(x \otimes_Q y) = \bigvee_i (h_i)_x(y) = (\bigvee_i h_i)_x(x \otimes y)$, and thus we have a sup-lattice homomorphism ζ from $Hom(M \otimes_Q N, R)$ to Hom(M, Hom(N, R)) given by $\zeta(h) = h$.

Let us show that ζ has an inverse: for all $f \in Hom(M, Hom(N, R))$, define $f': M \times N \to R$ by f'(x,y) := f(x)(y). This is clearly a bimorphism, so there is a unique homomorphism $h_{f'}: M \otimes_Q N \to M \times N$ such that $f' = h_{f'} \circ \tau$, i.e. such that $h_{f'}(x \otimes y) = f'(x,y) = f(x)(y)$, and thus $\zeta(h_{f'}) = f$. On the other hand, if $f = \zeta(h)$, then the uniqueness of $h_{f'}$ ensures that $h_{f'} = h$.

Proposition 60. *i.* $Hom(Q, M) \simeq M$.

- ii. $Hom(M, N) \simeq Hom(N^{op}, M^{op})$.
- iii. $Hom(M, Q^{op}) \simeq M^{op}$. (all isomorphisms of sup-lattices).

Proof. Define $\alpha: M \to Hom(Q, M)$ by $\alpha(x)(\epsilon) = x \star \epsilon$ and $\beta: Hom(Q, M) \to A$ M by $\beta(f) = f(0)$. Then we have that $\alpha(\beta(f))(\epsilon) = \alpha(f(0))(\epsilon) = f(0) \star \epsilon = f(\epsilon)$, and $\beta(\alpha(x)) = \beta(\lambda \epsilon.x \star \epsilon) = x \star 0 = x$.

If $f \in Hom(M, N)$, since it preserves joins, it has a right-adjoint $f^* : N^{op} \to M$ M^{op} , such that $f(x) \leq y$ iff $x \leq f^*(y)$.

By i.
$$Hom(Q, M^{op}) \simeq M^{op}$$
 and we conclude by ii.

i. $Hom(M,N) \simeq (M \otimes_Q N^{op})^{op}$ Proposition 61.

ii. $M \otimes_O N \simeq Hom(M, N^{op})^{op}$.

iii.
$$Q \otimes_Q M \simeq M \otimes_Q Q \simeq Q$$
.

Proof. $Hom(M, N) \simeq Hom(M, Hom(N^{op}, Q^{op})) \simeq Hom(M \otimes N^{op}, Q^{op}) \simeq$ $(M \otimes N^{\mathrm{op}})^{\mathrm{op}}$. Claim ii. is proved similarly.

For claim iii.
$$Q \otimes_Q M \simeq M \otimes_Q M \simeq Hom(M, Q^{\operatorname{op}})^{\operatorname{op}} \simeq (M^{\operatorname{op}})^{\operatorname{op}} = M.$$

By putting all previous results together we obtain:

Theorem 62. QMod is a *-autonomous category.

i. $Q^X \otimes_O M \simeq M^X$; Proposition 63.

ii.
$$Q^X \otimes_Q Q^Y \simeq Q^{X \times Y}$$
.

Proof. M^X coincides with the product $\Pi_{x\in X}M$. We have then $Q^X\otimes_Q M\simeq$ $(\Pi_x Q) \otimes_Q M \simeq \Pi_x (Q \otimes_Q M) \simeq \Pi_x M \simeq M^X.$ For ii., using i. we have $Q^X \otimes_Q Q^Y \simeq (Q^Y)^X \simeq Q^{X \times Y}.$

For ii., using i. we have
$$Q^X \otimes_Q Q^Y \simeq (Q^Y)^X \simeq Q^{X \times Y}$$
.

The Tensor Product of Q-Categories 17.2

Thanks to Theorem 52, the *-autonomous structure of QMod translates into a *-autonomous structure for QCCat.

In Met the "tensor product" of two metric spaces X and Y is just their cartesian product, with the "plus" metric. What can we say about the tensor product in QCCat?

The goal of this subsection is to describe the Q-categorical structure of the tensor product explicitly. The main intuition is that the elements of $X \otimes_Q Y$ can be seen as joins of pairs $x \otimes y$ of elements $x \in X$, $y \in Y$. We will then show that the metric coincides with the "plus" metric over pairs $x \otimes y$, and extends continuously to joins.

Lemma 64. For all $m, m' \in M$ and $n, n' \in N$ and $\epsilon \in Q$, $(m \otimes n) \star \epsilon \succeq (m' \otimes n')$ iff there exists δ_1, δ_2 such that $\delta_1 + \delta_2 = \epsilon$, $m + \delta_1 \geq m'$ and $n + \delta_2 \geq n'$.

Proof Sketch. Notice that $(m \otimes n) \star \epsilon = [\{(m \star \epsilon, n)\}] = [\{(m \star \delta_1, n \star \delta_2)\}]$ for all $\delta_1 + \delta_2 = \epsilon$. Hence, $m' \otimes n' \leq (m \otimes n) \star \epsilon$ implies that for some $\delta_1 + \delta_2 = \epsilon$, $(m', n') \vee (m \star \delta_1, n \star \delta_2) = (m' \vee (m \star \delta_1), n' \vee (n \star \delta_2)) = (m \star \delta_1, n' \star \delta_2), \text{ that}$ is, that $m' \leq_M m \star \delta_1$ and $n' \leq_n n \star \delta_2$.

Proposition 65. For all $m, m' \in N$ and $n, n' \in N$,

$$(M \otimes_{\mathcal{O}} N)(m \otimes_{\mathcal{O}} n, m' \otimes_{\mathcal{O}} n') = M(m, m') + N(n, n')$$

More generally,

$$(M \otimes_Q N)([A], [B]) = \sup_{(x,y) \in A} \inf_{(x',y') \in B} M(x,x') + N(y,y')$$

Proof. By definition, $(M \otimes_Q N)(m \otimes_Q n, m' \otimes_Q n')$ is given by $\inf A$, where

$$A = \{ \epsilon \mid (m \otimes_Q n) \star \epsilon \geqslant m' \otimes_Q n' \}$$

Let us show that A coincides with

$$B = \{\delta_1 + \delta_2 \mid m \star \delta_1 \geqslant m', n \star \delta_2 \geqslant n'\}$$

On the one hand, if $\delta_1 + \delta_2 \in B$, it is clear that $\delta_1 + \delta_2 \in A$. Conversely, if $\epsilon \in A$, then by Lemma 64 $\epsilon = \delta_1 + \delta_2$ with $m \star \delta_1 \geqslant m'$ and $n \star \delta_2 \geqslant n'$, whence $\epsilon \in B$. We can now conclude as follows:

$$(M \otimes_Q N)(m \otimes_Q n, m' \otimes_Q n') = \inf A$$

$$= \inf B$$

$$= \inf \{\delta_1 \mid m \star \delta_1 \ge m'\} + \inf \{\delta_2 \mid n \star \delta_2 \ge n'\}$$

$$= M(m, m') + N(n, n').$$

For the second claim, using the fact that $M \otimes_Q N$, as a Q-category, is both tensored and cotensored, using the fact that $[A] = \bigvee_{(x,y) \in A} x \otimes y$ and $[B] = \bigvee_{(x',y') \in B} z \otimes w$, and Lemma 49:

$$\begin{split} (M \otimes_Q N)([A],[B]) &= \sup_{(x,y) \in A} (M \otimes_Q N)(x \otimes y,[B]) \\ &= \sup_{(x,y) \in A} \inf_{(x',y') \in B} (M \otimes_Q N)(x \otimes y,x' \otimes y') \\ &= \sup_{(x,y) \in A} \inf_{(x',y') \in B} M(x,x') + N(y,y'). \end{split}$$