Instructions:

- Write your name and EID on every page.
- Put your answers on the last sheet of paper.
- This exam is **only** for students in the 12:30 class.
- No other outside resources, such as books, notes, the internet, or other people, are allowed.
- The max possible score is 105. It will be graded out of 100.
- 1. (6 points) Which of the following is equal to $\frac{4x^{-2}}{r+r^{-2}}$.

- (A) $\frac{4}{x^3} + 4$ (B) $\frac{4}{x^2 1}$ (C) $\frac{4}{x^3 + x}$ (D) $\frac{4}{x^2 + x}$ (E) $\frac{4}{x^3 + x^2}$ (F) $\frac{4}{x^3 + 1}$
- 2. (6 points) The expression $2\left(\frac{1}{4}\right)^{2x-1}$ can be written as $a(2^{bx})$. Which of the following equals 2a+3b?
 - (A) 0
- (B) 4
- (C) 8
- (D) 12
- (E) 16
- (F) 20

- 3. (6 points) The position function of an object moving into Houston is given by $s(t) = t^2 4t$. Find the average velocity $v_{[3,3+h]}$.
 - (A) 3
- (B) 3 + h
- (C) 4
- (D) 4 + h
- (E) 2
- (F) 2 + h

4. (6 points) The graphs of f and g are shown below:

Find $\lim_{x\to 4} [f(x) + g(x)]$

- (A) 0
- (B) 1
- (C) 2
- (D) 3 (E) Does not Exist
- 5. (6 points). Find $\lim_{x\to 3} \frac{x^2 x 3}{x^2 3x + 2}$.
 - (A) $\frac{5}{3}$ (B) 3 (C) $\frac{7}{4}$ (D) 2 (E) $\frac{3}{2}$ (F) 1

- 6. (points) Find $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{x-4x^2}\right)$
- (A) 0 (B) -1 (C) -2 (D) -3 (E) -4

7. (points) The function f(x) is continuous:

$$f(x) \begin{cases} x+a & x<2\\ B & x=2\\ x^2-a & x>2 \end{cases}$$

Find B.

- (A) 2
- (B) 3 (C) -4 (D) -1
- (E) 6
- (F) 0

- 8. (points) Find $\lim_{x\to\infty}\cos\left(\frac{1}{x^2}\right)$

- (A) 1 (B) $\frac{1}{2}$ (C) $\frac{\sqrt{3}}{2}$ (D) 0 (E) Does not Exist

- 9. (points) Find $\lim_{x\to\infty} \left(\sqrt{4x^2+16x}-2x\right)$.
 - (A) 16
- (B) 8
- (C) 4
- (D) 2
- (E) 1
- (F) 0

- 10. (points) Find $\lim_{x \to -\infty} \frac{\sqrt{4x^2 + x + 3}}{3 x}$
- (A) 4 (B) 2 (C) 1
- (D) 0 (E) -1 (F) -2

- 11. (points) Given the function $f(x) = \frac{2}{x} \frac{5}{x^2}$, find f'(x)

- (A) $\frac{6-2x}{x^3}$ (B) $\frac{7-2x}{x^3}$ (C) $\frac{8-2x}{x^3}$ (D) $\frac{9-2x}{x^3}$ (E) $\frac{10-2x}{x^3}$

- 12. (6 points) The function $f(x) = x^5 + 2x$ is a 1-1 function. Find $f^{-1}(-3)$.
 - (A)0
- (B) 1
- (C) -1
- (D) -2
- (E) 3

- 13. (3 points): True or False: If $\lim_{x\to 2} \frac{f(x)-13}{x-2} = 10$, then $\lim_{x\to 2} f(x) = 10$.
- 14. (3 points): True or False: If $f(x) = 3x^3 5x + e^x$, then f'(0) = -5.
- 15. (3 points): True or False: $\lim_{x \to 2^+} \frac{x^2 5}{x 2} = \infty$
- 16. (3 points): True or False: If $f(x) = x^{10}$, then $f'(1) = \lim_{x \to 1} \frac{x^{10} 1}{x 1}$.

17. (11 points) Draw a graph of a function on the interval [-3,3] that has each of the following properties:

1)
$$f(-3) = -2$$

5)
$$\lim_{x \to 2^+} f(x) = f(2) = -3$$

$$2) \lim_{x \to -1} f(x) = 1$$

6)
$$f(3) = 0$$

3)
$$f(-1) = -2$$

7)
$$f(x)$$
 is continuous everywhere except $x = -1, 2$

4)
$$\lim_{x \to 2^{-}} f(x) = 2$$

18. (10 points) The graph of f(x) is on the left. Sketch a graph of f'(x) on the xy-axis on the right.

Multiple Choice (6 points each):

True or False (3 points each):

