

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V, I_D =130A $R_{DS(ON)}$ =3.7m Ω , typical (TO-220)@ V_{GS} =10V $R_{DS(ON)}$ =3.55m Ω , typical (TO-263)@ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

TO-220C Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity		
VST10N037-T3	VST10N037	TO-220C					
VST10N037-TC	VST10N037	TO-263	-	-	-		

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	130	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	100	Α	
Pulsed Drain Current ^(Note 1)	I _{DM}	520	А	
Maximum Power Dissipation	P _D	210	W	
Derating factor		1.4	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	750	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R ₀ JC	0.71	°C/W	Ì
---	-------------------	------	------	---

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition		Min	Тур	Max	Unit
Off Characteristics	•			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA		100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V		-	-	±100	nA
On Characteristics (Note 3)				I.			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=250\mu A$		2	3	4	V
Danie Course On Otata Basistana		V _{GS} =10V, I _D =65A	TO-220	-	3.7	4.0	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}		TO-263		3.55	4.0	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =6	V _{DS} =5V,I _D =65A		130	-	S
Dynamic Characteristics (Note4)				Į.			•
Input Capacitance	C _{Iss}	V _{DS} =50V,V _{GS} =0V, F=1.0MHz		-	6300	-	PF
Output Capacitance	C _{oss}			-	560	-	PF
Reverse Transfer Capacitance	C _{rss}			-	40	-	PF
Switching Characteristics (Note 4)				Į.			•
Turn-on Delay Time	t _{d(on)}	V _{DD} =50V,I _D =65A,		-	23	-	nS
Turn-on Rise Time	t _r			-	15	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =3 Ω		-	48	-	nS
Turn-Off Fall Time	t _f	-		-	16	-	nS
Total Gate Charge	Qg	- V _{DS} =50V,I _D =65A, - V _{GS} =10V		-	110	-	nC
Gate-Source Charge	Q _{gs}			-	33		nC
Gate-Drain Charge	Q _{gd}			-	30		nC
Drain-Source Diode Characteristics		1		Į.			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =65A		-		1.2	V
Diode Forward Current (Note 2)	Is			-	-	130	А
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =65A		-	70	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)		-	117	-	nC

Notes:

- ${\it 1. Repetitive Rating: Pulse width limited by maximum junction temperature.}\\$
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

T_J-Junction Temperature(°C)

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance