EE24BTECH11021 - Eshan Ray

Ouestion:

AOBC is a rectangle whose three vertices are (0, -3), (0, 0) and (4, 0). The length of its diagonal is...

Solution:

Variable	Description	Formula
A(0, -3)	coordinates of first point	_
O (0, 0)	coordinates of second point	_
B (4, 0)	coordinates of third point	_
а	side length of OB in $\triangle AOB$	_
b	side length of OA in $\triangle AOB$	_
l	side length of AB in $\triangle AOB$	_

TABLE 0: Input parameters

In a rectangle any 3 adjacent points form a right triangle, where the hypotenuse is the diagonal.

So, in $\triangle AOB$,

$$l = ||\mathbf{A} - \mathbf{B}|| \tag{1}$$

$$\implies l = \sqrt{(\mathbf{A} - \mathbf{B})^{\mathsf{T}} (\mathbf{A} - \mathbf{B})} \tag{2}$$

$$l = ||\mathbf{A} - \mathbf{B}||$$

$$\implies l = \sqrt{(\mathbf{A} - \mathbf{B})^{\top} (\mathbf{A} - \mathbf{B})}$$

$$\implies l = \sqrt{(-4 - 3) \begin{pmatrix} -4 \\ -3 \end{pmatrix}}$$
(2)
$$\implies (3)$$

$$\implies l = \sqrt{25} \tag{4}$$

$$\implies l = 5 \tag{5}$$

$$Similarly, a = ||\mathbf{B} - \mathbf{O}|| \tag{6}$$

$$\implies a = \sqrt{(4^2)} \tag{7}$$

$$\implies a = 4$$
 (8)

$$and, b = \|\mathbf{A} - \mathbf{O}\| \tag{9}$$

$$\implies b = \sqrt{(3^2)} \tag{10}$$

$$\implies b = 3 \tag{11}$$

l = 5 is the greatest length of $\triangle AOB$.

 \therefore The length of diagonal of rectangle AOBC = 5.

Fig. 0