Prof. Dr. T. Schneider

Wintersemester 2017/18

Präsenzübungen

Aufgabe P 5. Analyse einiger Kavalierprojektionen

Untersuchen Sie einige spezielle Kavalierprojektionen (siehe Tafel). Die Bildebene ist jeweils die x_2 - x_3 -Ebene. Die Projektionsrichtung liegt immer in derjenigen Ebene , welche die x_1 -Achse enthält und den Winkel zwischen der x_2 -Achse und der x_3 -Achse halbiert. Diese Ebene ist durch die Gleichung $x_2=x_3$ gegeben. Im Folgenden bezeichne E_1' stets den Schnittpunkt der durch E_1 verlaufenden Projektionsgeraden mit der Bildebene. Bei den hier untersuchten Parallelprojektionen ergibt sich stets $\alpha=45^\circ$, der Skalierungsfaktor s_1 variiert je nachdem, wie flach oder steil die Projektionsrichtung gewählt wird.

- (a) Die Projektionsrichtung sei um 45° zur x_2 - x_3 -Ebene geneigt. Bestimmen Sie die Länge der Strecke $s_1 = \overline{OE'_1}$.
- (b) Die Projektionsgerade habe die Steigung $m_2=\frac{2}{1}$. Bestimmen Sie die Länge der Strecke $s_1=\overline{OE'_1}$ sowie den Neigungswinkel δ_2 der Projektionsgeraden zur x_2 - x_3 -Ebene.
- (c) Die Projektionsgerade habe die Steigung $m_3=\frac{1}{2}$. Bestimmen Sie die Länge der Strecke $s_1=\overline{OE'_1}$ sowie den Neigungswinkel δ_3 der Projektionsgeraden zur x_2 - x_3 -Ebene.
- (d) In der Schule haben Sie zur Darstellung räumlicher Objekte möglicherweise immer wieder eine Axonometrie verwendet, bei der $s_1=\frac{\sqrt{2}}{2}$ und $\alpha=45^\circ$ galt. Welchen Neigungswinkel δ muss die Projektionsgerade zur x_2 - x_3 -Ebene haben, damit sich $s_1=\frac{\sqrt{2}}{2}$ ergibt?

Aufgabe P 6. Fortsetzung der Analyse – Projektion auf verschiedene Ebenen

- (a) Die Bildebene werden nun so "tiefergelegt", dass sie **parallel zur** x_2 - x_3 -Ebene ist und den Punkt (-1,0,0) enthält. Untersuchen Sie, wie die Punkte O, E_1 , E_2 und E_3 projiziert werden, wenn die Projektionsrichtung so ist wie in der ersten Teilaufgabe von P 5. Sind die Skaliserungsfaktoren s_1 , s_2 und s_3 gegenüber P 5 verändert?
- (b) Was verändert sich, wenn Sie die Bildebene π um eine weitere Längeneinheit "tieferlegen", so dass sie den Punkt (-2,0,0) enthält.
- (c) Wiederholen Sie diese Analyse für die Projektionsrichtungen, die in den übrigen Teilaufgaben von P 5 angegeben sind.
- (d) Versuchen Sie einen Ergebnissatz zu formulieren, der die von Ihnen beobachteten Sachverhalte bei Parallelprojektionen zusammenfasst:
 - Wenn man bei gegebenem räumlichen Dreibein $(O; E_1, E_2, E_3)$ und gegebener Projektionsrichtung unterschiedliche zueinander parallel liegende Bildebenen wählt, so verändert sich zwar die Lage ..., die ... bleiben jedoch unverändert.

Aufgabe P 7. Kuboktaeder

Die Einheitslänge in dieser Aufgabe sei $10\,\mathrm{cm}$. Zeichnen Sie einen Würfel mit Einheitskantenlänge $10\,\mathrm{cm}$ in einer Kavalierprojektion. Um Überdeckungen hinten liegender Kanten durch vordere Kanten möglichst zu vermeiden, können Sie zum Beispiel $\overrightarrow{OE_1} = \left(\begin{smallmatrix} 2\,\mathrm{cm} \\ 4\,\mathrm{cm} \end{smallmatrix} \right)$ oder auch $\overrightarrow{OE_1} = \left(\begin{smallmatrix} 4\,\mathrm{cm} \\ 2\,\mathrm{cm} \end{smallmatrix} \right)$ wählen.

- (a) Wie groß ist dann der Skalierungsfaktor s_1 ?
- (b) "Schneiden Sie" die acht Ecken des Würfels durch Ebenen "ab", welche die von den Ecken ausgehenden Kanten halbieren. Wieviele Flächen, Ecken und Kanten besitzt der so entstehende Kuboktaeder?
- (c) Bestimmen Sie die Anzahl e der Ecken, die Anzahl f der Flächen und die Anzahl k der Kanten für den Würfel.
- (d) Überprüfen Sie, ob die Anzahl e der Ecken, die Anzahl f der Flächen und die Anzahl k der Kanten **für den Kuboktaeder** die Eulersche Polyederformel erfüllt:

$$e - k + f = 2.$$

Hausübungen

Aufgabe H 3. Castellum

Im Folgenden sind der Grundriss sowie der Aufriss eines Castells gegeben. Fertigen Sie hieraus eine parallelperspektivische Darstellung in Militärperspektive an.

Aufgabe H 4. Dynamische veränderbare Darstellungen mit Geogebra

Versuchen Sie mit Geogebra eine Datei zur parallelperspektivischen Darstellung des Kuboktaeders von Aufgabe P 7 zu erstellen, die es Ihnen ermöglicht, die axonometrischen Angaben interaktiv zu verändern. Sie können sich der "Schieberegler"bedienen, die Geogegebra zur Verfügung stellt.

Tutoriumsübungen

Aufgabe T 1. Parallelprojektionen in die Aufrissebene

- (a) Zeichnen Sie einen Pyramidenstumpf mit quadratischem Grundriss (die Kantenlänge dürfen Sie wählen), dessen Spitze im Punkte S=(0,0,5) liegt. Der Boden des Pyramidenstumpfs liegt in der x_1 - x_2 -Ebene, der Deckel 3 Einheiten darüber. Verwenden Sie hierzu
 - die Kavalierprojektion mit den axonometrischen Angaben $\alpha=135^\circ$, $\beta=90^\circ$, $s_1=\frac{\sqrt{2}}{2}$, $s_2=1$ und $s_3=1$.
 - die Militärprojektion mit den Angaben $\alpha=135^\circ$, $\beta=135^\circ$, $s_1=1$, $s_2=1$ und $s_3=\frac{1}{2}$.
- (b) Zeichnen Sie separat einen Grundriss des Pyramidenstumpfbodens. Fügen Sie zum Grundrissquadrat einen Inkreis hinzu. Markieren Sie die Punkte, an denen der Kreis das Quadrat berührt.
- (c) Fügen Sie nun zu Ihren zuvor angefertigten parallelperspektivischen Darstellungen die Projektionsbilder des o.g. Kreises hinzu. Hinweis: Dieser Kreis erscheint als Ellipse, die Berührpunkte mit dem Bild des Grundrissquadrats werden "richtig" übertragen.
- (d) Zeichnen Sie nun in einer Ihrer zuvor angefertigten Darstellungen einen Kegelstumpf ein, der nach oben bzw. unten vom Deckel bzw. vom Boden des Pyramidenstumpfes begrenzt wird.

Aufgabe T 2. Parallelprojektionen in die Aufrissebene

Wir wollen ebene Dreibeine (O',E'_1,E'_2,E'_3) untersuchen, die durch Projektion eines kartesischen räumlichen Dreibeins (O,E_1,E_2,E_3) auf die x_2 - x_3 -Ebene entstehen. Im projizierten Bild zeigt die x'_2 -Achse jeweils nach rechts, die x'_3 -Achse nach oben. Um die Projektionsrichtung im Raum anzugeben, verwenden wir "geographische Koordinaten", d.h. den Längengrad φ und den Breitengrad θ des Durchstoßpunktes der Projektionsgeraden durch die im Ursprung zentrierte Einheitskugel (vgl. die Skizze).

(a) Beschreiben Sie, welche Parallelprojektionen das räumliche Dreibein jeweils auf die folgenden ebenen Dreibeine abbilden.

Aufgabe T 3. Günstige und weniger günstige Parallelperspektiven

(a) Skizzieren Sie einen achsenparallelen Quader mit Breite 2, Höhe 1 und Tiefe 3, dessen linke hintere untere Ecke am Punkt (0,2,0) liegt. Verwenden Sie hierzu die Kavalierprojektion mit den axonometrischen Angaben

$$\alpha = 135^{\circ}, \ \beta = 90^{\circ}, \ s_1 = \frac{\sqrt{2}}{2}, \ s_2 = 1, \ s_3 = 1.$$

(b) Skizzieren Sie den Quader nun in Kavalierprojektion mit den axonometrischen Angaben $\alpha=90^\circ$, $\beta=90^\circ$, $s_1=1$, $s_2=1$, $s_3=1$. Ist dies in punkte Anschaulichkeit eine günstige Projektion?

Aufgabe T 4. Koordinatenquader – Koordinatenbestimmung

Übertragen Sie die folgende Figur auf Ihr Papier, zeichnen Sie den Koordinatenquader von P und lesen Sie die Koordinaten des Punktes P ab. Der eingezeichnete Punkt P' soll in der Grundrissebene liegen.

Übertragen Sie die folgende Figur auf Ihr Papier, zeichnen Sie den Koordinatenquader von P und lesen Sie die Koordinaten des Punktes P ab. Der eingezeichnete Punkt P' soll in der Grundrissebene liegen.

