MarchenkoSA 25012025-104937

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.508 мм и с волновым сопротивлением 64 Ом;
- 2 толщиной 0.406 мм и с волновым сопротивлением 73 Ом;
- 3 толщиной 0.305 мм и с волновым сопротивлением 39 Ом;
- 4 толщиной 0.203 мм и с волновым сопротивлением 40 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте $4.9~\Gamma\Gamma$ ц с помощью калибровочной меры с названием "короткое замыкание". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения:

-0.59 + 0.81i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 26.3 cm
- 2) 22.8 cm
- 3) 157.4 см
- 4) 137.1 cm

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой $R=150~{\rm Om}.$

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=4.1~\Gamma\Gamma$ ц и $f_{\rm B}=12.9~\Gamma\Gamma$ ц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен 0.26 + j0;
- 3 использован наикратчайший отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\rm H}, f_{\rm B}]$?

Варианты ОТВЕТА:

- 1) 0.8 дБ
- 2) 1.7 дБ
- 3) 0.4 дБ
- 4) 2.1 дБ

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\rm B}$.

 \mathcal{A} ано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\scriptscriptstyle \rm H}=0.71f_{\scriptscriptstyle \rm B}$:

```
s_{11} = -0.224 + 0.163і. (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 71 O_M
- 2) 41 O_M
- 3) 35 O_M
- 4) 90 O_M

Даны значения s-параметров:

Freq	31 STATE N		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
4.5	0.379	147.5	2.921	48.2	0.140	52.2	0.148	-115.5

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который *не может* обеспечить согласование со стороны плеча 1 на частоте 4.5 $\Gamma\Gamma$ ц при наложении следующих ограничений:

1 - W_T больше 31 Ом;

2 - θ_Π меньше $\frac{\pi}{2}$.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 3 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 3 – Различные реализаци и Г-образной цепи согласования