Завдання 1. Обчислити кратні інтеграли:

- 1. а) $\iint_D x^2 y \, dx dy$, якщо область D обмежена лініями: x = 0, x = 1, $y = x^2 + 1$, y = -x.
 - б) $\iiint_G (x^2 z^3 + y) dx dy dz$, якщо область G, задана нерівностями: $-1 \le x \le 0$, $1 \le y \le 2$, $0 \le z \le 1$.
- 2. a) $\iint_D (x+2y)dxdy$, якщо область D обмежена лініями: $x=0, \ x=2, \ y=x^2, \ y=-1$.
 - б) $\iiint_G x y^2 z \, dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 3$, $-1 \le y \le 2$, $0 \le z \le 1$.
- 3. a) $\iint_D x \, dx dy$, якщо область D обмежена лініями: x = 0, x = 1, $y = 1 x^2$, $y = x^2 3$.
 - б) $\iiint_G (x^2 + y + z) dx dy dz$, якщо область G, задана нерівностями: $-2 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 2$.
- 4. a) $\iint_D (2x-1)dxdy$, якщо область D обмежена лініями: $x=0, \ x=2, \ y=x+1, \ y=-x$.
 - б) $\iiint_G (x+y+4z) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 1, 1 \le y \le 3, 0 \le z \le 2$.
- 5. а) $\iint_D x^4 y dx dy$, якщо область D обмежена лініями: x = 1, x = 2, y = 2x, y = -x.
 - б) $\iiint_G (x^2 z + 2y) dx dy dz$, якщо область G, задана нерівностями: $-1 \le x \le 3$, $0 \le y \le 1$, $0 \le z \le 4$.
- 6. a) $\iint_D (x+4y) dx dy$, якщо область D обмежена лініями: $x=0, \ x=2, \ y=x^2, \ y=-2$.
 - б) $\iiint_G (x^2 + 2yz) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 3, \ 0 \le y \le 2, \ 0 \le z \le 1$.
- 7. а) $\iint_D (x^2 + 2y) dx dy$, якщо область D обмежена лініями: x = 0, x = 1, $y = 2x^2$, y = -1.
 - б) $\iiint_G x y z^2 dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 3, \ 0 \le y \le 1, \ -2 \le z \le 1$.
- 8. а) $\iint_D (2x^2 1) dx dy$, якщо область D обмежена лініями: x = 0, x = 2, $y = x^2 + 1$, $y = -x^2$.
 - б) $\iiint_G (x+2y+2z) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 3$, $1 \le y \le 2$, $0 \le z \le 2$.
- 9. а) $\iint_D (3+2x^2) dxdy$, якщо область D обмежена лініями: $x=0, \ x=1, \ y=3-x^2, \ y=x^2$.
 - б) $\iiint_G x^3 (y + 2z) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 2, -1 \le y \le 2, 0 \le z \le 1$.
- 10. a) $\iint_D x^2 dx dy$, якщо область D обмежена лініями: x = 0, x = 2, $y = x^2 + 1$, y = -x.
 - б) $\iiint_G (x^2z + 4y) dx dy dz$, якщо область G, задана нерівностями: $-1 \le x \le 0$, $1 \le y \le 2$, $0 \le z \le 1$.

- 11. а) $\iint_D (x^3 + 2y) dx dy$, якщо область D обмежена лініями: x = 0, x = 1, $y = x^2$, y = -2.
 - б) $\iiint_G (3x^2 + 2yz) dx dy dz$, якщо область G, задана нерівностями: $-1 \le x \le 3$, $0 \le y \le 1$, $0 \le z \le 2$.
- 12. а) $\iint_D x^2 (2y+1) \, dx dy$, якщо область D обмежена лініями: $x=1, \ x=3, \ y=x$, y=-x.
 - б) $\iiint_G (2xy + z) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 1, 1 \le y \le 3, 0 \le z \le 2$.
- 13. а) $\iint_D x(3y^2+1)dxdy$, якщо область D обмежена лініями: $x=1, \ x=2, \ y=x^2, \ y=-x^2$.
 - б) $\iiint_G (xy+2z)dxdydz$, якщо область G, задана нерівностями: $1 \le x \le 3, \ 0 \le y \le 2, \ 0 \le z \le 1$.
- 14. а) $\iint_D (x^2 + 1) dx dy$, якщо область D обмежена лініями: x = 0, x = 1, $y = 4 x^2$, $y = x^2$.
 - б) $\iiint_G (2y + 3xz^2) dx dy dz$, якщо область G, задана нерівностями: $1 \le x \le 3, \ 0 \le y \le 1, \ 0 \le z \le 2$.
- 15. а) $\iint_D xydxdy$, якщо область D обмежена лініями: $x = 1, x = 2, y = x, y = -x^2$.
 - б) $\iiint_G (x + 2y) z \, dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 1, \ 0 \le y \le 2, \ 1 \le z \le 3$.
- 16. а) $\iint_D x^3 dx dy$, якщо область D обмежена лініями: x = 0, x = 2, $y = x^2 + 2$, y = -x.
 - б) $\iiint_G (2xz+y) \, dx dy dz$, якщо область G, задана нерівностями: $1 \le x \le 3, \ 0 \le y \le 1, \ 0 \le z \le 2$.
- 17. а) $\iint_D x \, dx \, dy$, якщо область D обмежена лініями: x = 0, x = 1, $y = x^2 + 1$, $y = -x^2$.
 - б) $\iiint_G (4xy + z^2) dx dy dz$, якщо область G, задана нерівностями: $1 \le x \le 3, \ 0 \le y \le 1, \ 0 \le z \le 2$.
- 18. а) $\iint_D x^2 y \, dx dy$, якщо область D обмежена лініями: x = 1, x = 2, $y = 2x^2$, $y = -x^2$.
 - б) $\iiint_G (3x + y^2 z) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 3, \ 0 \le y \le 2, 0 \le z \le 1$.
- 19. а) $\iint_D (x^2 1) \, dx dy$, якщо область D обмежена лініями: x = 1, x = 2, $y = x^2$, y = -1.
 - б) $\iiint_G (3xy^2 + z) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 1, \ 0 \le y \le 3, \ 0 \le z \le 2$.
- 20. a) $\iint_D x^3 y \, dx dy$, якщо область D обмежена лініями: x = 0, x = 1, y = 3 x, $y = x^2$.
 - б) $\iiint_G (x + 2yz) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 2, \ 1 \le y \le 3, \ 0 \le z \le 1$.
- 21. a) $\iint_D x^3 y^2 dx dy$, якщо область D обмежена лініями: x = 1, x = 2, y = 2x, $y = -x^2$.
 - б) $\iiint_G (x^2y + 2z) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 3$, $0 \le y \le 1$, $0 \le z \le 2$.

- 22. a) $\iint_D (x^2 + 8y) dx dy$, якщо область D обмежена лініями: x = 0, x = 2, $y = x^2$, y = -1.
 - б) $\iiint_G (x+3y+2z) dx dy dz$, якщо область G, задана нерівностями: $1 \le x \le 3, \ 0 \le y \le 2, \ 0 \le z \le 1$.
- 23. а) $\iint_D (3x + 4y) dx dy$, якщо область D обмежена лініями: x = 0, x = 1, $y = x^3$, y = -2.
 - б) $\iiint_G (x^2 + 2xyz) dx dy dz$, якщо область G, задана нерівностями: $1 \le x \le 2, \ 0 \le y \le 3, \ 0 \le z \le 1$.
- 24. a) $\iint_D x^5 dx dy$, якщо область D обмежена лініями: x = 0, x = 2, $y = x^2 + 1$, y = -x.
 - б) $\iiint_G (8xz + y^3) dxdydz$, якщо область G, задана нерівностями: $1 \le x \le 3, \ 0 \le y \le 2, \ 0 \le z \le 1$.
- 25. а) $\iint_D (5x + 2y) dx dy$, якщо область D обмежена лініями: x = 0, x = 2, $y = x^2$, y = 4.
 - б) $\iiint_G (2xyz + 7)dxdydz$, якщо область G, задана нерівностями: $0 \le x \le 4$, $0 \le y \le 1$, $0 \le z \le 2$.
- 26. а) $\iint_D x^2 (2y+9) dxdy$, якщо область D обмежена лініями: $x=1, \ x=3, \ y=2x$, y=-x.
 - б) $\iiint_C (3x^2 + 2yz) dx dy dz$, якщо область G, задана нерівностями: $-1 \le x \le 2$, $0 \le y \le 1$, $0 \le z \le 3$.
- 27. a) $\iint_D x(2y+1)dxdy$, якщо область D обмежена лініями: $x=0, \ x=2, \ y=x^2, \ y=-x^2$.
 - б) $\iiint_G (xy + 2z^5) dx dy dz$, якщо область G, задана нерівностями: $1 \le x \le 3, \ 0 \le y \le 2, \ 0 \le z \le 1$.
- 28. а) $\iint_D (x^3 + 3y^2) dxdy$, якщо область D обмежена лініями: x = 1, x = 2, y = x, $y = -x^2$.
 - б) $\iiint_G (2xz+y) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 3, \ 0 \le y \le 4, \ 0 \le z \le 2$.
- 29. а) $\iint_{D} (7x + 2y) dx dy$, якщо область D обмежена лініями: x = 0, x = 1, $y = x^{3}$, y = 3.
 - б) $\iiint_G (9xy^2 + 2z) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 3, \ 0 \le y \le 1, \ 0 \le z \le 2$.
- 30. a) $\iint_D (x + 6y^2) dxdy$, якщо область D обмежена лініями: x = 0, x = 2, $y = x^2$, y = -2.
 - б) $\iiint_G (x + 2yz^3) dx dy dz$, якщо область G, задана нерівностями: $1 \le x \le 2, \ 0 \le y \le 3, \ 0 \le z \le 2$.
- 31. а) $\iint_D (x^2 + 2xy) dx dy$, якщо область D обмежена лініями: x = 2, y = x, y = 3x.
 - б) $\iiint_{S} (3x^2z^2 + y) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 1, \ 0 \le y \le 2, \ 0 \le z \le 4$.
- 32. а) $\iint_D (9x^2 + 2y) dx dy$, якщо область D обмежена лініями: x = 0, x = 1, $y = 2x^2$, y = 3.
 - б) $\iiint_G (2x^3z + xy) dx dy dz$, якщо область G, задана нерівностями: $0 \le x \le 3$, $0 \le y \le 4$, $0 \le z \le 2$.

Завдання 2. Обчислити подвійний інтеграл, переходячи до полярних координат:

- 1. $\iint_D (3x+2)dxdy$, область D розташована у першій чверті і обмежена лініями $x^2+y^2=1$, $y=\sqrt{3}x$, y=0.
- 2. $\iint_D (2y+5)dxdy$, область D розташована у третій чверті і обмежена лініями $x^2+y^2=4$, y=x, x=0.
- 3. $\iint_D (2x+y) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 9$, x = 0, $y = \sqrt{3} x$.
- 4. $\iint_D (4x+y)dxdy$, область D розташована у другій чверті і обмежена лініями $x^2+y^2=1,\ y=0,\ y=-x.$
- 5. $\iint_D (x + 3) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 16$, y = x, y = 0.
- 6. $\iint_{D} (2-y) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 1$, y = x, y = 0.
- 7. $\iint_D (2-5x) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 9$, y = x, y = 0.
- 8. $\iint_D (4-3y) dx dy$, область D розташована у другій чверті і обмежена лініями $x^2+y^2=4$, y=-x, x=0.
- 9. $\iint_D (5x+y) dx dy$, область D розташована у третій чверті і обмежена лініями $x^2 + y^2 = 1$, $y = x/\sqrt{3}$, y = 0.
- 10. $\iint_D (8x+3) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 4$, y = x, y = 0.
- 11. $\iint_D (4x + 5y) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 9$, y = x, x = 0.
- 12. $\iint_D (x-3y)dxdy$, область D розташована у другій чверті і обмежена лініями $x^2+y^2=16$, y=0, y=-x.
- 13. $\iint_D (3x + y) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 25$, y = x, y = 0.
- 14. $\iint_D (5-2y) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2+y^2=1,\ y=x,\ x=0.$
- 15. $\iint_D (2-5x) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 4$, y = x, $y = x/\sqrt{3}$.
- 16. $\iint_D (x + 8y) dx dy$, область D розташована у другій чверті і обмежена лініями $x^2 + y^2 = 25$, y = 0, x = 0.

- 17. $\iint_{\Sigma} (5x + 2y) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 1$, y = x, y = 0.
- 18. $\iint_D (x+7) dx dy$, область D розташована у другій чверті і обмежена лініями $x^2 + y^2 = 9$, $y = -x/\sqrt{3}$, x = 0.
- 19. $\iint_D (2x+4y)dxdy$, область D розташована у першій чверті і обмежена лініями $x^2+y^2=1, y=\sqrt{3}x, y=0$.
- 20. $\iint_D (x+9) dx dy$, область D розташована у другій чверті і обмежена лініями $x^2 + y^2 = 4$, y = 0, $y = -\sqrt{3}x$.
- 21. $\iint_D (2y+10) dx dy$, область D розташована у третій чверті і обмежена лініями $x^2 + y^2 = 25$, y = x, x = 0.
- 22. $\iint_D (4x + 7y) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 9$, x = 0, $y = \sqrt{3}x$.
- 23. $\iint_D (3x + 8) dx dy$, область D розташована у другій чверті і обмежена лініями $x^2 + y^2 = 1$, $y = -\sqrt{3}x$, y = 0.
- 24. $\iint_D (x + 12y) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 16$, y = x, y = 0.
- 25. $\iint_D (2-9x) dx dy$, область D розташована у другій чверті і обмежена лініями $x^2 + y^2 = 1$, y = -x, x = 0.
- 26. $\iint_D (4 + 8y) dx dy$, область D розташована у четвертій чверті і обмежена лініями $x^2 + y^2 = 25$, y = 0, x = 0.
- 27. $\iint_D (5x+1)dxdy$, область D розташована у третій чверті і обмежена лініями $x^2 + y^2 = 49$, y = 0, y = x.
- 28. $\iint_D (x 2y) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 4$, $y = \sqrt{3} x$, y = 0.
- 29. $\iint_D (3x + 7y) dx dy$, область D розташована у другій чверті і обмежена лініями $x^2 + y^2 = 36$, y = -x, y = 0.
- 30. $\iint_{\mathbb{R}} (7x + 2y) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 1$, $y = \sqrt{3}x$, x = 0.
- 31. $\iint_D (9y+1) dx dy$, область D розташована у першій чверті і обмежена лініями $x^2 + y^2 = 4$, $y = x/\sqrt{3}$, y = 0.
- 32. $\iint_D (2x+12)dxdy$, область D розташована у третій чверті і обмежена лініями $x^2+y^2=25$, y=x, x=0.

<u>Завдання 3.</u> Обчислити потрійний інтеграл, переходячи до циліндричних або сферичних координат:

- 1. $\iiint_G (x^2 + y^2) dx dy dz$, область G обмежена поверхнями $z = 1 x^2 y^2$, z = 0.
- 2. $\iiint_G (2z+1) dx dy dz$, область G обмежена поверхнями $x^2 + y^2 = 1$, z = 0, z = 3.
- 3. $\iiint_G z dx dy dz$, область G задана нерівностями $x^2+y^2+z^2 \leq 9, x \geq 0, y \geq 0, z \geq 0.$
- 4. $\iiint_G \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz$, область G задана нерівностями $x^2 + y^2 + z^2 \le 1, z \ge 0$.
- 5. $\iiint_G \sqrt{x^2 + y^2} \ dx dy dz$, область G обмежена поверхнями $z = x^2 + y^2$, z = 4.
- 6. $\iiint_G y dx dy dz$, область G задана нерівностями $x^2 + y^2 \le 1, y \ge 0, z \ge 0, z \le 5$.
- 7. $\iiint_G z^2 dx dy dz$, область G задана нерівностями $x^2 + y^2 + z^2 \le 4, x \ge 0, y \ge 0, z \ge 0$.
- 8. $\iiint_G \sqrt{(x^2 + y^2)^3} \, dx dy dz$, область G обмежена поверхнями $2z = x^2 + y^2$, z = 2.
- 9. $\iiint_G x dx dy dz$, область G задана нерівностями $z \le 1 x^2 y^2, \ x \ge 0, y \ge 0, z \ge 0.$
- 10. $\iiint_G (5z+2) dx dy dz$, область G обмежена поверхнями $x^2+y^2=1,\ z=0, z=2.$
- 11. $\iiint_G (x^2 + y^2 + z^2) dx dy dz$, область G задана нерівностями $x^2 + y^2 + z^2 \le 9$, $y \ge 0$, $z \ge 0$.
- 12. $\iiint_G y \, dx dy dz$, область G задана нерівностями $z \geq x^2 + y^2, \ x \geq 0, y \geq 0, z \leq 4$.
- 13. $\iiint_G (x^2 + y^2)^3 dx dy dz$, область G обмежена поверхнями $z = 4 x^2 y^2$, z = 0.
- 14. $\iiint_G x\,dxdydz$, область G задана нерівностями $x^2+y^2\leq 9,\ x\geq 0,\ z\geq 0,\ z\leq 2.$
- 15. $\iiint_G \sqrt{(x^2+y^2+z^2)^3} dx dy dz$, область G задана нерівностями $x^2+y^2+z^2 \le 1$, $y \ge 0$, $z \ge 0$.
- 16. $\iiint_G \sqrt{(x^2+y^2)^5} \, dx dy dz$, область G обмежена поверхнями $3z = x^2 + y^2$, z = 3.

- 17. $\iiint_G (x^2 + y^2) dx dy dz$, область G задана нерівностями $z \ge x^2 + y^2$, $x \ge 0$, $z \le 9$.
- 18. $\iiint_G (x^2 + y^2 + z^2)^3 dx dy dz$, область G задана нерівностями $x^2 + y^2 + z^2 \le 25, y \ge 0$.
- 19. $\iiint_G z(x^2+y^2) dx dy dz$, область G обмежена поверхнями $z=3-x^2-y^2, \ z=0.$
- 20. $\iiint_G x \, dx dy dz$, область G задана нерівностями $x^2 + y^2 \le 9$, $x \ge 0$, $y \ge 0$, $z \ge 0$, $z \le 2$.
- 21. $\iiint_G (2z+5) dx dy dz$, область G обмежена поверхнями $z=\sqrt{x^2+y^2}$, z=3.
- 22. $\iiint_G x dx dy dz$, область G задана нерівностями $x^2 + y^2 + z^2 \le 1, x \ge 0, y \ge 0, z \ge 0.$
- 23. $\iiint_G y dx dy dz$, область G задана нерівностями $x^2 + y^2 \le 4$, $y \ge 0$, $z \ge 0$, $z \le 3$.
- 24. $\iiint_G (3z-2) dx dy dz$, область G обмежена поверхнями $x^2+y^2=1,\ z=0, z=4.$
- 25. $\iiint_G (x^2 + y^2 + z^2 + 2) dx dy dz$, область G задана нерівностями $x^2 + y^2 + z^2 \le 25$, $x \ge 0$.
- 26. $\iiint_G xz dx dy dz$, область G задана нерівностями $z \geq \sqrt{x^2 + y^2}$, $x \geq 0, y \geq 0, z \leq 3$.
- 27. $\iiint_G xydxdydz$, область G задана нерівностями $z \ge x^2 + y^2, \ x \ge 0, y \ge 0, z \le 4.$
- 28. $\iiint_G z \sqrt{x^2 + y^2 + z^2} \, dx dy dz$, область G задана нерівностями $x^2 + y^2 + z^2 \le 9, x \ge 0, y \ge 0, z \ge 0$.
- 29. $\iiint_C z^3 dx dy dz$, область G обмежена поверхнями $z = \sqrt{x^2 + y^2}$, z = 4.
- 30. $\iiint_G \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz$, область G задана нерівностями $x^2 + y^2 + z^2 \le 25$, $x \ge 0$, $y \ge 0$, $z \ge 0$.
- 31. $\iiint_C (x^2 + y^2 + z^2 + 3) dx dy dz$, область G задана нерівностями $x^2 + y^2 + z^2 \le 9$, $y \ge 0$.
- 32. $\iiint_C (1+2z) dx dy dz$, область G обмежена поверхнями $z=x^2+y^2, \ z=1$.

Завдання 4. Розв'язати задачу на застосування подвійного інтеграла:

- 1. Обчислити масу матеріальної пластинки, обмеженої лініями $x=2, y=0, y=x^2$, якщо її густина $\delta(x,y)=x+2y$.
- 2. Обчислити статичний момент відносно осі ординат матеріальної пластинки, обмеженої лініями x = 3, y = 0, y = x, якщо її густина $\delta(x, y) = 5y + 2$.
- 3. Обчислити статичний момент відносно осі абсцис матеріальної пластинки, обмеженої лініями x = 1, y = 0, y = x, якщо її густина $\delta(x, y) = 2x + 3y$.
- 4. Обчислити момент інерції відносно початку координат матеріальної пластинки, обмеженої лініями x = 1, x = 2, y = 0, y = 3, якщо її густина $\delta(x, y) = 2x$.
- 5. Обчислити масу матеріальної пластинки, обмеженої лініями x = 1, y = 0, $y = 2x^2$, якщо її густина $\delta(x, y) = x + y$.
- 6. Обчислити момент інерції відносно осі абсцис матеріальної пластинки, обмеженої лініями x = 1, y = 0, y = 4x, якщо її густина $\delta(x, y) = 2y + 1$.
- 7. Обчислити статичний момент відносно осі ординат матеріальної пластинки, обмеженої лініями x = 2, y = 0, y = 3x, якщо її густина $\delta(x, y) = 5x + y$.
- 8. Обчислити момент інерції відносно початку координат матеріальної пластинки, обмеженої лініями x = 1, x = 3, y = 0, y = 4, якщо її густина $\delta(x, y) = 2x$.
- 9. Обчислити масу матеріальної пластинки, обмеженої лініями $x=2, y=0, y=\frac{1}{2}x^3$, якщо її густина $\delta(x,y)=x+3y^2$.
- 10. Обчислити момент інерції відносно осі ординат матеріальної пластинки, обмеженої лініями x = 1, y = 0, y = 4x, якщо її густина $\delta(x, y) = x + y$.
- 11. Обчислити статичний момент відносно осі абсцис матеріальної пластинки, обмеженої лініями x = 2, y = 0, y = x, якщо її густина $\delta(x, y) = 3xy$.
- 12. Обчислити масу матеріальної пластинки, обмеженої лініями x = 1, y = 0, $y = x^3$, якщо її густина $\delta(x, y) = x + 4y$.
- 13. Обчислити статичний момент відносно осі ординат матеріальної пластинки, обмеженої лініями x = 2, y = 0, y = 2x, якщо її густина $\delta(x, y) = 5x^2$.
- 14. Обчислити момент інерції відносно осі абсцис матеріальної пластинки, обмеженої лініями x = 3, y = 0, y = x, якщо її густина $\delta(x, y) = 2xy$.
- 15. Обчислити момент інерції відносно початку координат матеріальної пластинки, обмеженої лініями x = 1, x = 3, y = 0, y = 2, якщо її густина $\delta(x, y) = 3x$.
- 16. Обчислити статичний момент відносно осі абсцис матеріальної пластинки, обмеженої лініями x = 0, y = 0, y = 1 x, якщо її густина $\delta(x, y) = 3x + 2y$.

- 17. Обчислити масу матеріальної пластинки, обмеженої лініями x = 2, y = 0, $y = \frac{1}{4}x^3$, якщо її густина $\delta(x, y) = x + 3y^2$.
- 18. Обчислити статичний момент відносно осі ординат матеріальної пластинки, обмеженої лініями x = 0, y = 2, y = 2x, якщо її густина $\delta(x, y) = 3y^2$.
- 19. Обчислити момент інерції відносно осі абсцис матеріальної пластинки, обмеженої лініями x = 4, y = 0, y = x, якщо її густина $\delta(x, y) = x^2y + 2$.
- 20. Обчислити масу матеріальної пластинки, обмеженої лініями x = 2, y = 0, $y = x^2$, якщо її густина $\delta(x, y) = x^2 + 4y$.
- 21. Обчислити статичний момент відносно осі ординат матеріальної пластинки, обмеженої лініями x = 2, y = 0, y = 5x, якщо її густина $\delta(x, y) = 1 + 2y$.
- 22. Обчислити момент інерції відносно початку координат матеріальної пластинки, обмеженої лініями x = 1, x = 4, y = 0, y = 2, якщо її густина $\delta(x, y) = x$.
- 23. Обчислити момент інерції відносно осі абсцис матеріальної пластинки, обмеженої лініями x = 5, y = 0, y = x, якщо її густина $\delta(x, y) = x + 4y$.
- 24. Обчислити статичний момент відносно осі абсцис матеріальної пластинки, обмеженої лініями x = 1, y = 0, y = 2x, якщо її густина $\delta(x, y) = 1 + 2x$.
- 25. Обчислити масу матеріальної пластинки, обмеженої лініями $x=1, y=0, y=x^3$, якщо її густина $\delta(x,y)=3+8y$.
- 26. Обчислити статичний момент відносно осі ординат матеріальної пластинки, обмеженої лініями x = 1, x = 3, y = x, y = 2x, якщо її густина $\delta(x, y) = 4xy$.
- 27. Обчислити момент інерції відносно початку координат матеріальної пластинки, обмеженої лініями x = -1, x = 2, y = 1, y = 5, якщо її густина $\delta(x, y) = 12y$.
- 28. Обчислити момент інерції відносно осі абсцис матеріальної пластинки, обмеженої лініями x = 1, x = 2, y = 3, y = x, якщо її густина $\delta(x, y) = 2x^2$.
- 29. Обчислити масу матеріальної пластинки, обмеженої лініями x = 0, x = 2, y = 5, $y = x^2$, якщо її густина $\delta(x, y) = 3y^2$.
- 30. Обчислити статичний момент відносно осі ординат матеріальної пластинки, обмеженої лініями x = 1, x = 2, y = -1, $y = x^3$, якщо її густина $\delta(x, y) = 9x$.
- 31. Обчислити масу матеріальної пластинки, обмеженої лініями x = 1, x = 3, y = 0, $y = x^2$, якщо її густина $\delta(x, y) = 4x + 7$.
- 32. Обчислити момент інерції відносно початку координат матеріальної пластинки, обмеженої лініями x = -2, x = 3, y = -1, y = 2, якщо її густина $\delta(x, y) = 9$.