

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

IMT3410: Métodos para ecuaciones diferenciales

Clase 9

Manuel A. Sánchez 2024.09.04

Márada da Oaladia Diagontino da

Método de Galerkin Discontinuo para

Ecuaciones Diferenciales Ordinarias

DG para ecuaciones diferenciales ordinarias

Las notas de esta clase están basadas en el artículo, origen del los métods DG:

Lesaint, P., & Raviart, P. A. (1974). On a finite element method for solving the neutron transport equation. Publications des séminaires de mathématiques et informatique de Rennes, (S4), 1-40. Link.

Método de Galerkin Discontinuo e Implementación

Considere el problema de valores iniciales dado por:

$$u'(t) = f(t, u(t)), \quad t \ge 0,$$

 $u(t_0) = u_0.$

Sea $t_i = t_0 + ih \operatorname{con} 0 \le i \le N$ e $I_i = [t_i, t_{i+1}] \operatorname{con} 0 \le i \le N - 1$. Aproximaremos u en cada subintervalo por $u_h \in \mathbb{P}_n$, que satisface:

(DG)
$$\begin{cases} (u_h(t_i^+) - u_h(t_i^-)) v(t_i) + \int_{l_i} [u_h'(t) - f(t, u_h(t))] v(t) dt = 0, \quad \forall v \in \mathbb{P}_n \\ u_h(t_0^-) = u_0. \end{cases}$$

Método de Galerkin discontinuo (DG)

Es importante enfatizar de que la función u_h es generalmente **discontinua** en los puntos de la malla t_i . En lo que sigue, (DG) corresponderá al método de Galerkin Discontinuo.

Implementación: Para implementar el método de Galerkin discontinuo, consideremos la fórmula de cuadratura:

$$\int_{I_i} \varphi(t) dt = h \sum_{j=1}^{n+1} w_j \varphi(x_{i,j}) + O(h^{p+1}),$$

donde $x_{i,j} = x_i + \theta_j h$ con $1 \le j \le n+1$ y $\theta_1 = 0$. Además, $(w_j, x_{i,j})$ corresponden a los pesos y nodos de cuadratura en [0, 1].

De esta manera, para todo $v \in \mathbb{P}_n$ se sigue que:

$$[u_h(t_i^+) - u_h(t_i^-)]v(t_i) + h \sum_{j=1}^{n+1} b_j[u'_h(x_{i,j}) - f(x_{i,j}, u_h(x_{i,j}))]v(x_{i,j}) = 0.$$

DG como IRK

A continuación, visualizaremos el método de Galerkin Discontinuo para EDO's como un método de Runge - Kutta Implícito (IRK). Definamos:

$$\begin{cases} u_i = u_h(t_i^-), \\ u_{i,1} = u_h(t_i^+) = u_h(x_{i,1}), \\ u_{i,j} = u_h(x_{i,j}), \quad 2 \leq j \leq n+1. \end{cases}$$

De la Interpolación de Lagrange, sabemos:

$$\ell_j(t) = \prod_{j=2, j \neq i}^{n+1} \frac{t-\theta_j}{\theta_i-\theta_j}, \quad 2 \leq j \leq n+1.$$

El siguiente resultado será clave para vincular el método de Galerkin Discontinuo como método de Runge Kutta Implícito.

DG como IRK

Lema

El Método de Galerkin Discontinuo (DG) es equivalente al siguiente método de Runge Kutta Implícito (IRK):

(IRK)
$$\begin{cases} u_{i,j} = u_i + h \sum_{k=1}^{n+1} a_{jk} f(x_{ik}, u_{ik}), & 1 \leq j \leq n+1, \\ u_{i+1} = u_i + h \sum_{k=1}^{n+1} b_k f(x_{ik}, u_{ik}), & (b_k = w_k). \end{cases}$$

en donde

$$a_{j1} = b_1, \quad 1 \leq j \leq n+1, \quad a_{jk} = \int_0^{\theta_j} [\ell_k(x) \, dx - b_1 \ell_k(\theta_1)],$$

con 1 < j < n+1 y 2 < k < n+1.

Sea $\{v_j\}_{1 \le j \le n+1}$ una base de \mathbb{P}_n definida por:

$$v_j(x_{ik})=\delta_{jk},$$

con $1 \le j, k \le n+1$. Reescribimos (DG) como sigue:

$$\begin{cases} u_h(t_i^+) - u_h(t_i^-) + hb_1(u'_h(x_{i1}) - f(x_{i1}, u_h(x_{i,1}))) = 0 \\ u'_h(x_{ij}) - f(x_{ij}, u_h(x_{ij})) = 0, \quad 2 \le j \le n+1. \end{cases}$$

En I_i , $u'_h \in \mathbb{P}_{n-1}$. Entonces u'_h se reescribe como:

$$u_h'(t) = \sum_{k=2}^{n+1} \ell_k \left(\frac{t-t_i}{h}\right) f(x_{ik}, u_h(x_{ik})).$$

Al evaluar en $t = t_i = x_{i,1}$, obtenemos:

$$u_{i,1} - u_i + hb_1 \left(\sum_{k=2}^{n+1} \ell_k(\theta_1) f(x_{ik}, u_{ik}) - f(x_{i1}, u_{i1}) \right) = 0.$$

Por otro lado, para $2 \le j \le n+1$:

$$u_h(x_{ij}) = u_h(x_{i1}) + \int_{x_{i1}}^{x_{ij}} u'_h(x) dx.$$

Reemplazando, se consique:

$$u_{ij} = u_i + h(b_1 f(x_{i1}, u_{i1})) + \sum_{k=2}^{n+1} \left(\int_0^{\theta_j} \ell_k(x) dx - b_1 \ell_k(\theta_1) f(x_{ik}, u_{ik}) \right).$$

Similarmente, al evaluar en $x = t_{i+1}$ se tiene:

$$u_h(t_{i+1}^-) = u_h(x_{i1}) + \int_L u'(x) dx.$$

Luego:

$$u_{i+1} = u_i + h \left[b_1 f(x_{i1}, u_{i1}) + \sum_{k=2}^{n+1} \left(\int_0^1 \ell_k(x) dx - b_1 \ell_k(\theta_1) \right) f(x_{ik}, u_{ik}) \right].$$

Observe que:

$$\int_0^1 \ell_k(x) \, dx = \sum_{i=1}^{n+1} W_J \ell_k(\theta_j) = w_1 \ell_k(\theta_1) + w_k = b_1 \ell_k(\theta_1 + b_k).$$

Esto nos permite concluir que:

$$u_{i+1} = u_i + h \sum_{k=1}^{n+1} b_k f(x_{ik}, u_{ik}).$$

Orden del método DG

Teorema

El Método de Galerkin Discontinuo (DG) es un método de paso simple de orden p.

Basándonos en lo propuesto por Butcher (Implicit Runge - Kutta process, 1964) y Crouzeix (PhD Thesis, 1974), las condiciones necesarias y suficientes para que un método Runge - Kutta sea de orden p son las siguientes:

$$\text{(IRK)} \quad \begin{cases} \sum_{k=1}^{n+1} b_k \theta_j^l = \frac{1}{l+1}, & 0 \le l \le p-1, \\ \sum_{k=1}^{n+1} a_{jk} \theta_k^l = \frac{\theta_j^{l+1}}{l+1}, & 0 \le l \le n-1, \, 0 \le j \le n+1 \\ \sum_{k=1}^{n+1} b_j a_{jk} \theta_j^l = \frac{b_k (1-\theta_k^{l+1})}{l+1}, & n+l \le p-1, \, 1 \le k \le n+1 \end{cases}$$

A - estabilidad del Método de Galerkin

Discontinuo

A-estabilidad de DG

Antes de analizar la *A* - estabilidad del Método de Galerkin Discontinuo (DG), debemos introducir el siguiente resultado preliminar:

Teorema

El Método de Galerkin Discontinuo (DG) aplicado a la ecuación $u'=\lambda u$ permite obtener

$$u_{i+1} = R(\lambda h)u_i$$
, $R(z) = \frac{P(z)}{Q(z)}$ con $P \in \mathbb{P}_n$ y $Q \in \mathbb{P}_{n+1}$.

Recordemos que para $1 \le j \le n+1$:

$$u_{ij} = u_i + \lambda h \sum_{k=1}^{n+1} a_{jk} u_{ik}, \quad u_{i+1} = u_i + \lambda h \sum_{k=1}^{n+1} b_k u_{ik},$$

 $(I - \lambda h A) u_i = u_{i1},$

en donde $u_i = \begin{bmatrix} u_{i1} & u_{i2} & \dots & u_{i(n+1)} \end{bmatrix}$. Como $a_{j1} = b_1$ para $1 \le j \le n+1$, por la Regla de Cramer se sigue que para $1 \le j \le n+1$:

$$u_{ij} = \frac{P_j(\lambda h)}{Q(\lambda h)}u_i$$
,

en donde $P_1 \in \mathbb{P}_n$ con coeficiente $b_1^{-1} \det(A)$, $P_j \in \mathbb{P}_{n-1}$ con $2 \le j \le n+1$ y $Q \in \mathbb{P}_{n+1}$. Por lo tanto:

$$u_{i+1} = \frac{P(\lambda h)}{Q(\lambda h)}u_i, \quad P(z) = Q(z) - z\sum_{i=1}^{n+1} P_k(z).$$

Note que el coeficiente de z^{n+1} en P(z) es nulo.

A-estabilidad

Para la *A* - estabilidad del Método de Galerkin Discontinuo (DG), considere el siguiente resultado:

Teorema

El Método de Galerkin Discontinuo (DG) es A - estable de orden 2n + 1.

Considere el método de Galerkin Discontinuo (DG) con la regla de cuadratura de Gauss - Radau:

$$\int_0^1 \varphi(x) dx = w_1 \varphi(0) + \sum_{j=2}^{n+1} w_j \varphi(x_j),$$

para todo $\varphi \in \mathbb{P}_{2n+1}$. Por 0.1, sabemos que el método es de orden p=2n+1. De esta manera, el operador es una aproximación racional de la función exponencial:

$$u' = \lambda u \Rightarrow u(t) = e^{\lambda t} \Rightarrow u_{i+1} = R(\lambda h)u_i$$
.

De esta manera:

$$R(z) = e^z + O(z^{2n+2}).$$

Ya sabemos que $R(z) = \frac{P(z)}{Q(z)}$ con $P \in \mathbb{P}_n$ y $Q \in \mathbb{P}_{n+1}$. Entonces R(z) corresponde a una aproximación de Padé subdiagonal.

Según Axelsson (A class of A - stable method, 1969), la aproximación de Padé subdiagonal satisface:

Fuertemente A - estable
$$\left\{ \begin{array}{ll} |R(z)| < 1, & \text{para} \quad \text{Re}(z) < 0, \\ |R(z)| \to 0, & \text{cuando} \quad \text{Re}(z) \to \infty. \end{array} \right.$$

Esto nos permite concluir que el método de Galerkin Discontinuo (DG) más Gauss - Radau es A - estable y de orden 2n + 1.

INSTITUTO DE INGENIERÍA Matemática y computacional

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE