动态规划 Dynamic Programming

动态规划

- 动态规划是解决多阶段决策过程最优化的一种方法,由美国数学家贝尔曼(R. Bellman)等人在20世纪50年代初提出。
- 1957年,R.Bellman 发表了该分支领域的第一本专著《动态规划》(Dynamic Programming)
- 针对多阶段决策问题的特点,提出了解决这类问题的最优化原理,并成功地解决了生产管理、工程技术等方面的许多实际问题。

多阶段决策问题

- 可将过程划分为若干互相联系的阶段;
- 在它的每一个阶段都需要作出决策,并且一个阶段的决策确定以后,常影响下一个阶段的决策,从而影响整个过程的活动路线;
- 各个阶段所确定的决策就构成一个决策序列,通常 称为一个策略;
- 每一个阶段可供选择的决策往往不止一个,对应于 一个策略就有确定的活动效果;

举例说明

例1 最短路线问题 给出一个线路网络,从A点要铺设一条管道到G点, 其两点之间连线上的数字表示两点间的距离; 要求选择一条由A到G的铺管线路,使总距离最短。

最短路线问题

- 从A到G可以分为6个阶段。各个阶段的决策不同, 铺管路线就不同。
- 当某段的始点给定时,它直接影响着后面阶段的引进路线和整个路线的长短,而后面各阶段的路线的 发展不受这点以前各段路线的影响。
- 问题的要求是:在各个阶段选取一个恰当的决策, 使由这些决策组成的一个策略所决定的一条路线, 其总路程最短——最优策略

穷举法: 共有2×3×2×2×2×1=48 条路线

- 阶段(Stage)
 - □把所给问题的过程,恰当地划分成若干个相互联系的阶段,以便于求解。
 - □一般是根据时间和空间的自然特征来划分,但要便 于把问题的过程能转化为多阶段决策过程。
 - □阶段变量: 描述阶段的变量, 常用 k 表示。

如例1可分为6个阶段来求解,k分别等于1, 2, 3, 4, 5, 6。

■ 状态(State):表示每个阶段开始所处的自然状况或客观条件,描述了研究问题过程的状况。

例1中,状态就是某阶段的出发位置,既是该段某支路的始点,也是前一段某支路的终点。

□通常一个阶段包含若干个状态。

如例1中,第一阶段有一个状态,就是点A

第二个阶段有两个状态, B_1, B_2

第三个阶段有四个状态, C_1, C_2, C_3, C_4

■ 状态(State):表示每个阶段开始所处的自然状况或客观条件,描述了研究问题过程的状况。

例1中,状态就是某阶段的出发位置,既是该段某支路的始点,也是前一段某支路的终点。

- □通常一个阶段包含若干个状态。
- □ 状态变量: 描述过程状态的变量,常用 s_k 表示在第 k 阶段的某一状态。

第 k 阶段的状态集合可表示为

$$S_k = \{ s_k^{(1)}, s_k^{(2)}, ..., s_k^{(i)}, ..., s_k^{(r)} \}$$

例1中第三阶段的状态集合就可记为

$$S_3 = \{ s_3^{(1)}, s_3^{(2)}, s_3^{(3)}, s_3^{(4)} \} = \{ C_1, C_2, C_3, C_4 \}$$

■ 状态(State):表示每个阶段开始所处的自然状况或客观条件,描述了研究问题过程的状况。

例1中,状态就是某阶段的出发位置,既是该段某支路的始点,也是前一段某支路的终点。

- □通常一个阶段包含若干个状态。
- □ 状态变量: 描述过程状态的变量,常用 s_k 表示在第 k 阶段的某一状态。
- □状态需满足无后效性(马尔科夫性):

如果某阶段状态给定后,则在这阶段以后过程的发展不受这阶段以前各段状态的影响。

- 决策(Decision): 当过程处于某一阶段的某个状态时,可以作出不同的决定(或选择),从而确定下一阶段的状态。
 - □决策变量:描述决策的变量,可以用一个数、一组数或一向量来描述、
- 常用 $u_k(s_k)$ 表示第k阶段当状态处于 s_k 时的决策变量。
- □允许决策集合: 决策变量的取值限制的范围。 通常以 $D_k(s_k)$ 表示第 k 阶段从状态处于 s_k 时的允许决策 集合,显然有 $u_k(s_k)$ ∈ $D_k(s_k)$ 。

例1中第2阶段状态集合 $S_2=\{B_1, B_2\}$; 则从 B_1 出发的允许决策集合 $D_2(B_1)=\{C_1, C_2, C_3\}$; 若选择点 C_2 ,则 $u_2(B_1)=C_2$ 。

- 策略 (Policy): 一个按顺序排列的决策组成的集合
 - □全过程策略:由每段的决策 $u_i(s_i)$ ($i=1,2,\ldots,n$)组成的决策函数序列,简称策略,记为 $p_{1,n}$,即

$$p_{1,n}(s_1) = \{ u_1(s_1), u_2(s_2), \dots, u_n(s_n) \}$$

□后部子过程(或k子过程):由第k段开始到终点的过程,其<u>决策函数序列</u>{ $u_k(s_k)$, ..., $u_n(s_n)$ }称为 k 子过程策略,简称子策略。即

$$p_{k,n}(s_k) = \{u_k(s_k), u_{k+1}(s_{k+2}), \dots, u_n(s_n)\}$$

- 在实际问题中,可供选择的策略有一定的范围,此范围称为允许策略集合,用 *P* 表示。
- 最优策略: 从允许策略中找出达到<u>最优效果</u>的策略

- 状态转移方程:确定过程由一个状态到另一个状态的 演变过程。
 - □若给定第k阶段状态变量 s_k 的值,如果该阶段的决策变量 u_k 一经确定,第k+1阶段的状态变量 s_{k+1} 的值也就完全确定,记为

$$s_{k+1} = T_k(s_k, u_k)$$

如例1中,状态转移方程为 $s_{k+1} = u_k(s_k)$ 。

- 指标函数: 用来衡量过程的优劣的一种数量指标
 - □定义在全过程和所有后部子过程上的确定的数量函数,常用 $V_{k,n}$ 表示,即

$$V_{k,n} = V_{k,n}(s_k, u_k, s_{k+1}, ..., s_{n+1}), k=1, 2, ..., n$$

■ 对于要构成动态规划模型的指标函数,应具有可分 离性,并满足递推关系。

即 $V_{k,n}$ 可以表示为 $s_k, u_k, V_{k+1,n}$ 的函数。记为

$$V_{k, n}(s_k, u_k, s_{k+1}, ..., s_{n+1})$$

=
$$\psi_k(s_k, u_k, V_{k+1, n}(s_{k+1}, u_{k+1}, ..., s_{n+1}))$$

- 指标函数: 用来衡量过程的优劣的一种数量指标
 - □定义在全过程和所有后部子过程上的确定的数量函数,常用 $V_{k,n}$ 表示。即

$$V_{k, n} = V_{k, n}(s_k, u_k, s_{k+1}, ..., s_{n+1}), k=1, 2, ..., n$$

- □不同问题中,指标含义也不同: 距离、利润、成本、产量、资源消耗等。
- 例 1中, $V_{k,n}$ 表示第 k 阶段由点 s_k 至终点 G 的距离;
 - □第 k 阶段由点 s_k 至 $u_k(s_k)$ 的距离为阶段指标(阶段效益),记为 $d_k(s_k, u_k)$ 。

如: $d_5(E_1, F_1) = 3$.

- ■常见的指标函数
 - □过程和它的任一子过程的指标是它所包含的各 阶段的指标的和,即

$$V_{k, n}(s_k, u_k, s_{k+1}, ..., s_{n+1}) = \sum_{j=k}^{n} v_j(s_j, u_j)$$

其中, $v_i(s_i, u_i)$ 表示第j 阶段的阶段指标。

上式可写成

$$V_{k,n}(s_k, u_k, s_{k+1}, ..., s_{n+1})$$

$$= v_k(s_k, u_k) + V_{k+1,n}(s_{k+1}, u_{k+1}, s_{k+2}, ..., s_{n+1}).$$

- ■常见的指标函数
 - □过程和它的任一子过程的指标是它所包含的各 阶段的指标的乘积,即

$$V_{k, n}(s_k, u_k, s_{k+1}, ..., s_{n+1}) = \prod_{j=k}^n v_j(s_j, u_j).$$

上式可写成

$$V_{k,n}(s_k, u_k, s_{k+1}, ..., s_{n+1})$$

$$= v_k(s_k, u_k)V_{k+1,n}(s_{k+1}, u_{k+1}, s_{k+2}, ..., s_{n+1})$$

- 最优值函数: 指标函数的最优值,记为 $f_k(s_k)$
 - □表示从第 k 阶段的<u>状态</u> s_k 开始到第 n 阶段的终止状态的过程,采取最优策略所得到的指标函数值,即 $f_k(s_k) = \text{opt}_{\{u_k,...,u_n\}} V_{k,n}(s_k, u_k, s_{k+1},..., u_n s_{n+1})$

其中,opt可取 min或 max。

例 1 中, $f_k(s_k)$ 表示从第 k 段 s_k 点到终点G的最短距离。如, $f_4(D_1)$ 就表示从第4段中的 D_1 点到G点的最短距离。

动态规划的基本思想和基本方程

■ 例: 最短路线的重要特性

如果最短路线在第k阶段通过点 P_k ,则该最短路线中由点 P_k 出发到达终点的子路线,对于从点 P_k 出发到达终点的所有可能选择的不同路线来说,必定也是最短路线。

■最短路径的子路径也是最短路径

例: $A \rightarrow B_1 \rightarrow C_2 \rightarrow D_1 \rightarrow E_2 \rightarrow F_2 \rightarrow G$ 是从A到G的最短路

径,则 $\mathbf{D_1} \rightarrow \mathbf{E_2} \rightarrow \mathbf{F_2} \rightarrow \mathbf{G}$ 是从 $\mathbf{D_1}$ 到 \mathbf{G} 的最短路径。

从最后一段开始,用由后向前逐步递推的方法, 求出各点到 G 点的最短路径,最后求得由A点到 G点的最短路径。

$$V_{k, n}(s_k, u_k, s_{k+1}, ..., s_{n+1})$$

$$= v_k(s_k, u_k) + V_{k+1, n}(s_{k+1}, u_{k+1}, s_{k+2}, ..., s_{n+1})$$

21

当k=6时,

 $f_6(F_1)$: 第6阶段由 F_1 至G的最短距离,

故 $f_6(F_1) = 4$ 。

同理, $f_6(F_2) = 3$ 。

当k = 5时,出发点有 E_1 , E_2 , E_3 。 若从 E_1 出发,则有两个选择,至 F_1 或 至 F_2 。 则 $f_5(E_1) = \min\{d_5(E_1, F_1) + f_6(F_1), d_5(E_1, F_2) + f_6(F_2)\}$ $= \min\{3 + 4, 5 + 3\} = \min\{7, 8\} = 7$

相应决策为 $u_5(\mathbf{E}_1)=\mathbf{F}_1$ 。

当k = 5时,出发点有 E_1 , E_2 , E_3 。 若从 E_1 出发,则有两个选择,至 F_1 或 至 F_2 。 则 $f_5(E_1) = \min\{d_5(E_1, F_1) + f_6(F_1), d_5(E_1, F_2) + f_6(F_2)\}$ $= \min\{3 + 4, 5 + 3\} = \min\{7, 8\} = 7$

相应决策为 $u_5(\mathbf{E}_1)=\mathbf{F}_1$ 。

当k = 5时,出发点有 E_1 , E_2 , E_3 。 若从 E_2 出发,则有两个选择,至 F_1 或 至 F_2 。 则 $f_5(E_2) = \min\{d_5(E_2, F_1) + f_6(F_1), d_5(E_2, F_2) + f_6(F_2)\}$ $= \min\{5 + 4, 2 + 3\} = \min\{9, 5\} = 5$

相应决策为 $u_5(\mathbf{E}_2)=\mathbf{F}_2$ 。

当k = 5时,出发点有 E_1 , E_2 , E_3 。 若从 E_2 出发,则有两个选择,至 F_1 或 至 F_2 。 则 $f_5(E_2) = \min\{d_5(E_2, F_1) + f_6(F_1), d_5(E_2, F_2) + f_6(F_2)\}$ $= \min\{5 + 4, 2 + 3\} = \min\{9, 5\} = 5$

相应决策为 $u_5(\mathbf{E}_2)=\mathbf{F}_2$ 。

当k = 5时,出发点有 E_1 , E_2 , E_3 。 若从 E_2 出发,则有两个选择,至 F_1 或 至 F_2 。 则 $f_5(E_2) = \min\{d_5(E_2, F_1) + f_6(F_1), d_5(E_2, F_2) + f_6(F_2)\}$ $= \min\{5 + 4, 2 + 3\} = \min\{9, 5\} = 5$

相应决策为 $u_5(E_2)=F_2$ 。同理可得, $f_5(E_3)=9$, $u_5(E_3)=F_2$ 27

当k = 4时,出发点有 D_1 , D_2 , D_3 。 若从 D_1 出发,则有两个选择,至 E_1 或 至 E_2 。

則
$$f_4(\mathbf{D}_1) = \min\{d_4(\mathbf{D}_1, \mathbf{E}_1) + f_5(\mathbf{E}_1), d_4(\mathbf{D}_1, \mathbf{E}_2) + f_5(\mathbf{E}_2)\}$$

= $\min\{2+7, 2+5\} = 7$

相应决策为 $u_4(D_1)=E_2$ 。

当k = 4时,出发点有 D_1 , D_2 , D_3 。 若从 D_1 出发,则有两个选择,至 E_1 或 至 E_2 。 则 f_4 (D_1)= $\min\{d_4$ (D_1 , E_1)+ f_5 (E_1), d_4 (D_1 , E_2)+ f_5 (E_2)} = $\min\{2+7, 2+5\} = 7$

相应决策为 $u_4(D_1)=E_2$ 。

	A	$\mathbf{B_1}$	$\mathbf{B_2}$	C_1	C_2	C_3	C ₄	\mathbf{D}_1	$\mathbf{D_2}$	D_3	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{E_3}$	$\mathbf{F_1}$	$\mathbf{F_2}$	G
f							12	7	6	8	7	5	9	4	3	0
u							D_3	$\mathbf{E_2}$	$\mathbf{E_2}$	$\mathbf{E_2}$	$\overline{\mathbf{F}_1}$	$\mathbf{F_2}$	$\overline{\mathbf{F_2}}$	G	G	0

	A	$\mathbf{B_1}$	$\mathbf{B_2}$	C_1	C_2	C_3	C_4	$\mathbf{D_1}$	$\mathbf{D_2}$	\mathbf{D}_3	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{E_3}$	$\mathbf{F_1}$	$\mathbf{F_2}$	G
f	18	13	16	13	10	9	12	7	6	8	7	5	9	4	3	0
u	$\mathbf{B_1}$	C_2	C_3	\mathbf{D}_1	\mathbf{D}_1	D_2	\mathbf{D}_3	$\mathbf{E_2}$	$\mathbf{E_2}$	$\mathbf{E_2}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_2}$	G	G	0

	A	$\mathbf{B_1}$	$\mathbf{B_2}$	C_1	\mathbb{C}_2	C_3	C_4	\mathbf{D}_1	D_2	D_3	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{E_3}$	$\mathbf{F_1}$	$\mathbf{F_2}$	G
f	18	13	16	13	10	9	12	7	6	8	7	5	9	4	3	0
u	$\mathbf{B_1}$	\mathbb{C}_2	C_3	\mathbf{D}_1	\mathbf{D}_1	$\mathbf{D_2}$	\mathbf{D}_3	$\mathbf{E_2}$	$\mathbf{E_2}$	$\mathbf{E_2}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_2}$	G	G	0

动态规划的函数基本方程

■ 在求解的各个阶段,利用了k阶段与k+1阶段之间的递推关系:

$$f_k(s_k) = \min_{u_k \in D_k(s_k)} \{d_k(s_k, u_k(s_k)) + f_{k+1}(u_k(s_k))\},$$

$$k = 6, 5, 4, 3, 2, 1$$

$$f_7(s_7)=0$$
 (边界条件)

动态规划的递推关系

■ 一般情况下,k 阶段与 k+1阶段的递推关系式可写为

$$f_k(s_k) = \text{opt}_{u_k \in D_k(s_k)} \{ v_k(s_k, u_k(s_k)) + f_{k+1}(u_k(s_k)) \}$$

边界条件为 $f_{n+1}(s_{n+1})=0$ 。

以上递推关系式称为动态规划的基本方程。

动态规划的基本思想

- 关键在于正确写出基本递推关系式和恰当边界条件。
- 将问题的过程分成几个相互联系的阶段,从而把一个 大问题转化成一族同类型的子问题,然后逐个求解。
- 从边界条件开始,逐段递推寻优,在每一个子问题的 求解中,均利用了它前面的子问题的最优化结果。
- 最后一个子问题的最优解,就是整个问题的最优解。

逆序解法与顺序解法

- 规定从A点到G点为顺行方向,由G点到A点为逆 行方向
 - □逆序解法:以A为始端,以G为终端,从G到A的解法(如例1)
 - □顺序解法:以A为始端,以G为终端,从A到G的解法
- 顺序解法和逆序解法只表示行进方向的不同或始端的颠倒。
- 但动态规划方法求最优解时,一般都是在行进方向规定后,均要逆着这个规定的行进方向,从最后一段向前逆推计算,逐段找出最优途径。

■ 减少了计算量

穷举法:

- □ 要对48条路线进行比较,比较运算要进行47次;
- □ 求各条路线的距离(288次加法),即使使用逐段累加方法,也要进行0+6+12+32+48+48=146次加法运算。

动态规划方法:

- □比较运算(从k=5开始向前算)共进行3+3+4+4+1=15次。
- □ 每次比较运算对应两次加法运算,再去掉中间重复两次(即B1→C1,B2→C4各多算了一次),实际只有28次加法运算。

- 丰富了计算结果
 - □得到的不仅仅是由 A 点出发到 G 点的最短路线及相应的最短距离,而且得到了从所有各中间点出发到 G 点的最短路线及相应的距离。
 - □ 求出的不是一个最优策略,而是一族最优策略, 有利于帮助分析所得结果。

	A	$\mathbf{B_1}$	$\mathbf{B_2}$	C_1	C_2	C_3	C ₄	D_1	\mathbf{D}_2	D_3	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{E_3}$	$\mathbf{F_1}$	$\mathbf{F_2}$	G
f	18	13	16	13	10	9	12	7	6	8	7	5	9	4	3	0
и	\mathbf{B}_1	C_2	\mathbb{C}_3	\mathbf{D}_1	\mathbf{D}_1	\mathbf{D}_2	D_3	$\mathbf{E_2}$	$\mathbf{E_2}$	$\mathbf{E_2}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_2}$	G	G	0

- 丰富了计算结果
 - □得到的不仅仅是由 A 点出发到 G 点的最短路线及相应的最短距离,而且得到了从所有各中间点出发到 G 点的最短路线及相应的距离。
 - □ 求出的不是一个最优策略,而是一族最优策略, 有利于帮助分析所得结果。

	A	B_1	$\mathbf{B_2}$	C_1	C_2	\mathbb{C}_3	C ₄	D_1	$\mathbf{D_2}$	D_3	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{E_3}$	$\overline{\mathbf{F_1}}$	$\mathbf{F_2}$	G
f	18	13	16	13	10	9	9	7	6	8	7	5	9	4	3	0
u	B_1	C_2	C_3	\mathbf{D}_1	D_1	$\mathbf{D_2}$	$\mathbf{D_2}$	$\mathbf{E_2}$	$\mathbf{E_2}$	$\mathbf{E_2}$	$\overline{\mathbf{F_1}}$	$\mathbf{F_2}$	$\mathbf{F_2}$	G	G	0

- ■丰富了计算结果
 - □得到的不仅仅是由 A 点出发到 G 点的最短路线及相应的最短距离,而且得到了从所有各中间点出发到G点的最短路线及相应的距离。
 - □求出的不是一个最优策略,而是一族最优策略, 有利于帮助分析所得结果。

	A	B_1	$\mathbf{B_2}$	C_1	C_2	C_3	C ₄	D_1	\mathbf{D}_2	D_3	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{E_3}$	$\mathbf{F_1}$	$\mathbf{F_2}$	G
f	18	13	16	13	10	9	9	7	6	8	7	5	9	4	3	0
u	$\mathbf{B_1}$	C_2	\mathbb{C}_3	\mathbf{D}_1	\mathbf{D}_1	\mathbf{D}_2	$\mathbf{D_2}$	$\mathbf{E_2}$	$\mathbf{E_2}$	$\mathbf{E_2}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_2}$	G	G	0

动态规划的建模

- 将问题的过程划分成恰当的阶段;
- 正确选择状态变量 s_k ,使它既能描述过程的演变,又要满足无后效性;
- 确定决策变量 u_k 及每阶段的允许决策集合 $D_k(s_k)$;
- 正确写出状态转移方程;
- 正确写出指标函数 $V_{k,n}$ 的关系,它应满足三个性质
 - □是定义在全过程和所有后部子过程上的数量函数;
 - □具有可分离性,并满足递推关系
 - $V_{k,n}(s_k, u_k, s_{k+1},..., s_{n+1}) = \psi_k(s_k, uk, V_{k+1, n}(s_{k+1}, u_{k+1},..., s_{n+1}))$
 - □函数 $\psi_k(s_k, uk, V_{k+1, n})$ 对于变量 $V_{k+1, n}$ 要严格单调。

动态规划方程求解

■ 设指标函数是取各阶段指标的和的形式,即

$$V_{k, n}(s_k, u_k, s_{k+1}, ..., s_{n+1}) = \sum_{j=k}^{n} v_j(s_j, u_j)$$

其中 $v_i(s_i, u_i)$ 表示第j段的指标。上式可写成

$$V_{k,n}(s_k, u_k, s_{k+1}, ..., s_{n+1}) = v_k(s_k, u_k) + V_{k+1,n}(s_{k+1}, u_{k+1}, ..., s_{n+1})$$
。
当初始状态给定时,过程的策略就被确定,则指标函数
也就确定了。

因此,指标函数是初始状态和策略的函数,可记为

$$V_{k,n}[s_k,p_{k,n}(s_k)]$$

故上面递推关系又可写成

$$V_{k,n}[s_k, p_{k,n}] = v_k(s_k, u_k) + V_{k+1,n}[s_{k+1}, p_{k+1,n}]$$

动态规划方程求解

故上面递推关系又可写成

$$V_{k,n}[s_k,p_{k,n}]=v_k(s_k,u_k)+V_{k+1,n}[s_{k+1},p_{k+1,n}]$$

其子策略 $p_{k,n}(s_k)$ 可看作是由决策 $u_k(s_k)$ 和 $p_{k+1,n}(s_{k+1})$ 组成而成,即 $p_{k,n}=\{u_k(s_k),p_{k+1,n}(s_{k+1})\}$ 。
用 $p_{k,n}^*(s_k)$ 表示初始状态为 s_k 的后部子过程所有子策略中的最优子策略,则最优值函数为:
 $f_k(s_k)=V_{k,n}[s_k,p_{k,n}^*(s_k)]=\mathrm{opt}_{p_{k,n}}\{V_{k,n}[s_k,p_{k,n}(s_k)]\},$ $=\mathrm{opt}_{\{u_k,p_{k+1,n}\}}\{v_k(s_k,u_k)+V_{k+1,n}[s_{k+1},p_{k+1,n}]\}$
 $=\mathrm{opt}_{u_k}\{v_k(s_k,u_k)+\mathrm{opt}_{p_{k+1,n}}V_{k+1,n}[s_{k+1},p_{k+1,n}]\}$

动态规划方程求解

$$f_k(s_k) = V_{k,n}[s_k, p_{k,n}^*(s_k)]$$

$$= \operatorname{opt}_{u_k} \{ v_k(s_k, u_k) + \operatorname{opt}_{p_{k+1,n}} \{ V_{k+1,n}[s_{k+1}, p_{k+1,n}] \} \}.$$
但 $f_{k+1}(s_{k+1}) = \operatorname{opt}_{p_{k+1,n}} \{ V_{k+1,n}[s_{k+1}, p_{k+1,n}] \},$
因此, $f_k(s_k) = \operatorname{opt}_{u_k \in D_k(s_k)} \{ v_k(s_k, u_k) + f_{k+1}(s_{k+1}) \}$

$$k = n, n-1, \dots, 1$$
边界条件为 $f_{n+1}(s_{n+1}) = 0$ 。 证序求解 师序求解?

边界条件为 $f_{n+1}(s_{n+1}) = 0$ 。 逆序求解 顺序求解? 其中 $s_{k+1} = T_k(s_k, u_k)$ 。

其求解过程,根据边界条件,从k=n开始,由后向前逆推,从而逐步可求得各段的最优决策和相应的最优值,最后求出 $f_1(s_1)$,就得到整个问题的最优解。

动态规划最优性原理

- 动态规划最优性原理
 - "作为整个过程的最优策略具有这样的性质:即无论过去的状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。"
 - R.Bellman等人于20世纪 50年代提出
 - □一个最优策略的子策略总是最优的
 - □但不是动态规划的理论基础
- 反映动态规划基本方程的最优性定理,是策略的最优性的充分必要条件,而最优性原理仅仅是策略最优性的必要条件。

动态规划的最优性定理

设阶段数为n的多阶段决策过程,其阶段编号为 k = 0, 1, 2, ..., n-1。 允许策略 $p_{0,n-1}^* = (u_0^*, u_1^*, ..., u_{n-1}^*)$ 为最优策略的充要条件是对任意一个k, 0 < k < n-1 和 $s_0 \in S_0$,有 $V_{0,n-1}(s_0, p_{0,n-1}^*) =$ $\operatorname{opt}_{p_{0,k-1} \in p_{0,k-1}(s_0)} \{ V_{0,k-1}(s, p_{0,k-1}) +$ $\operatorname{opt}_{p_{k,n-1}\in p_{k,n-1}(\tilde{s}_k)}V_{k,n-1}(\tilde{s}_k,p_{k,n-1})\}$ 其中, $p_{0,n-1}^* = (p_{0,k-1}, p_{k,n-1}), \tilde{s}_k = T_{k-1}(s_{k-1}, u_{k-1})$ 是由给 定初始状态 s_0 和子策略 $p_{0,k-1}$ 所确定的 k 段状态。 当V是效益函数时,opt 取 \max ; 当V是损失函数时,opt **蚁min**。

推论一最优性原理

若允许 $p_{0,n-1}^*$ 是最优策略,则对任意的 k, 0 < k < n-1,它的子策略 $p_{k,n-1}^*$ 对于以 $s_k^* = T_{k-1}(s_{k-1}^*, u_{k-1}^*)$ 为起点的 k 到n-1子过程来说,必是最优策略。

(注意: k 阶段状态 s_k^* 是由 s_0 和 $p_{0,k-1}^*$ 所确定的)

- 从最优性定理可以看出,如果一个决策问题有最优策略,则该问题的最优值函数一定可用动态规划的基本方程来表示,反之亦真。
- 为用动态规划方法去处理决策问题提供了理论依据和 指明方法,就是要充分分析决策问题结构,使它满足 动态规划的条件,正确写出动态规划基本方程。

动态规划和静态规划

- 如线性规划、非线性规划所研究的问题通常是与时间 无关的,故又称它们为静态规划。
- 对于某些静态的问题,可以人为地引入时间因素,看 做是按阶段进行的一个动态规划问题,这就使得动态 规划成为求解某些线性、非线性规划的有效方法。

动态规划应用举例

- ■资源分配问题:将供应量有限的一种或若干种资源 (例如原材料、资金、机器设备、劳力、食品等 等),分配给若干个使用者,而使目标函数为最优。
- 问题描述

设有某种原料,总数量为a,用于生产n种产品。若分配数量 x_i 用于生产第i种产品,其收益为 $g_i(x_i)$ 。问应如何分配,才能使生产n种产品的总收入最大?

可写成静态规划问题:

$$\begin{cases}
\max z = g_1(x_1) + g_2(x_2) + \dots + g_n(x_n) \\
x_1 + x_2 + \dots + x_n = a \\
x_i \ge 0, i = 1, 2, \dots, n
\end{cases}$$

■ 可写成静态规划问题:

$$\begin{cases}
\max z = g_1(x_1) + g_2(x_2) + \dots + g_n(x_n) \\
x_1 + x_2 + \dots + x_n = a \\
x_i \ge 0, i = 1, 2, \dots, n
\end{cases}$$

- 应用动态规划处理这类静态规划问题
 - □阶段: 把资源分配给一个或几个使用者的过程
 - □决策变量:规划问题中的变量
 - □状态变量:将累计的量或随递推过程变化的量

■ 可写成静态规划问题:

$$\begin{cases} \max z = g_1(x_1) + g_2(x_2) + \dots + g_n(x_n) \\ x_1 + x_2 + \dots + x_n = a \\ x_i \ge 0, i = 1, 2, \dots, n \end{cases}$$

- 应用动态规划处理这类静态规划问题
 - □阶段: 把资源分配给一个或几个使用者的过程
 - □决策变量:规划问题中的变量
 - u_k : 分配给生产第k种产品的原料数。
 - □状态变量:将累计的量或随递推过程变化的量
 - s_k : 分配用于生产第k种产品至第n种产品的原料数量。
 - □ 状态转移方程: $S_{k+1} = S_k U_k = S_k X_k$

■ 可写成静态规划问题:

$$\max z = g_1(x_1) + g_2(x_2) + \dots + g_n(x_n)
x_1 + x_2 + \dots + x_n = a
x_i \ge 0, i = 1, 2, \dots, n$$

- 应用动态规划处理这类静态规划问题
 - □ 允许决策集合: $D_k(s_k) = \{ u_k | 0 \le u_k = x_k \le s_k \}$

 $f_k(s_k)$: 以数量为 s_k 的原料分配给第 k种产品至第 n 种产品所得到的最大总收入。

可写出动态规划的递推关系式:

$$f_k(s_k) = \max_{0 \le x_k \le s_k} \{g_k(x_k) + f_{k+1}(s_k - x_k)\}, k=n-1, ..., 2, 1$$
$$f_n(s_n) = \max_{0 \le x_n \le s_n} g_n(x_n)$$

■ 可写成静态规划问题:

$$\begin{cases} \max z = g_1(x_1) + g_2(x_2) + \dots + g_n(x_n) \\ x_1 + x_2 + \dots + x_n = a \\ x_i \ge 0, i = 1, 2, \dots, n \end{cases}$$

- 应用动态规划处理这类静态规划问题
 - □ 允许决策集合: $D_k(s_k) = \{ u_k | 0 \le u_k = x_k \le s_k \}$

 $f_k(s_k)$: 以数量为 s_k 的原料分配给第 k种产品至第 n 种产品所得到的最大总收入。

可写出动态规划的递推关系式:

$$f_k(s_k) = \max_{0 \le x_k \le s_k} \{g_k(x_k) + f_{k+1}(s_k - x_k)\}, k=n, ..., 2, 1$$
$$f_{n+1}(s_{n+1}) = 0$$

例:现将某种高效率设备五台,分配给甲、乙、丙三个 工厂,各工厂若获得这种设备之后的赢利如下表所示。 问:这五台设备如何分配给各工厂,才能赢利最大?

		,	
设备台数	甲	Z	丙
0	0	0	0
1	3	5	4
2	7	10	6
3	9	11	11
4	12	11	12
5	13	11	12

例:现将某种设备n台,分配给m个工厂,若工厂 k 获得 x_k 台设备后的赢利为 $P_k(x_k)$ 。问:这n台设备如何分配给 各工厂,才能赢利最大?

例:现将某种高效率设备五台,分配给甲、乙、丙三个工厂,各工厂若获得这种设备之后的赢利如下表所示。问:这五台设备如何分配给各工厂,才能赢利最大?

解:将问题按工厂分为 m 个阶段。

令 s_k : 分配给第 k 个工厂至第 n 个工厂的设备台数; x_k : 分配给第 k个工厂的设备台数。

则 $s_{k+1} = s_k - x_k$: 分配给第 k+1 个工厂至第n 个工厂的设备台数。

 $P_k(x_k)$: x_k 台设备分配到第 k 个工厂所得的赢利值。 $f_k(s_k)$: s_k 台设备分配给第 k个工厂至第 n 个工厂时所得的最大赢利值。

解: 因而可写出递推关系式为:

$$f_k(s_k) = \max_{0 \le x_k \le s_k} \{ P_k(x_k) + f_{k+1}(s_k - x_k) \}, k = 3, 2, 1$$
$$f_4(s_4) = 0$$

下面从最后一个阶段开始向前逆推计算。

第 3阶段: 将 s_3 台设备全部分配给工厂丙,最大赢利值为 $f_3(s_3) = \max_{x_3} \{P_3(x_3)\}$, 其中, $x_3 = s_3 = 0$, 1, 2, 3, 4, 5.

			P	$_{3}(x_{3})$				
$ s_3 $				x_3			$f_3(s_3)$	x_3^*
	0	1	2	3	4	5		
0	0						0	0
1		4					4	1
2			6				6	2
3				11			11	3
4					12		12	4
5						12	12	5

此时只有一个工厂,因此全部分配给工厂丙, 故它的赢利值就是该段的最大赢利值。 其中, x_3^* 表示使 $f_3(s_3)$ 为最大值时最优决策。 解: (续) 第2阶段: 将 s_2 台设备全部分配给乙和丙,则对每个 s_2 值,有一种最优分配方案,使最大赢利值为 $f_2(s_2) = \max_{x_2} \{P_2(x_2) + f_3(s_2 - x_2)\}$,其中, $x_2, s_2 = 0, 1..., 5, x_2 \le s_2$.

给乙工厂 x_2 台,赢利为 $P_2(x_2)$,余下的 s_2 - x_2 台给工厂丙,则它的赢利最大值为 $f_3(s_2$ - x_2)。

		P	$P_2(x_2) + f_2$	$S_3(s_2 - x_2)$)			
$ s_2 $			x_2				$f_2(s_2)$	$\mid x_2^* \mid$
	0	1	2	3	4	5		
0								
1								
2								
3								
4								
5								

		P	$2(x_2)+f_2$	$s_3(s_2 - x_2)$)			
S_2			x_2				$f_2(s_2)$	x_2^*
	0	1	2	3	4	5		
0	0							
1	0							
2	0							
3	0							
4	0							
5	0							

		P	$f_2(x_2) + f_2$	$S_3(s_2 - x_2)$)			Ψ
s_2	0	1	$\frac{x_2}{2}$	3	4	5	$f_2(s_2)$	x_2^*
0	0+0				<u> </u>			
1	0+4							
2	0+6							
3	0+11							
4	0+12							
5	0+12							

		P	$P_2(x_2) + f_2(x_2)$	$S_3(s_2 - x_2)$)			
S_2		_	x_2				$f_2(s_2)$	x_2^*
	0	1	2	3	4	5		
0	0+0							
1	0+4	5						
2	0+6	5						
3	0+11	5						
4	0+12	5						
5	0+12	5						

		P_{2}	$(x_2) + f$	$S_3(s_2 - x_2)$)			
S_2			\boldsymbol{x}_2	2			$\int f_2(s_2)$	$\mid x_2^* \mid$
	0	1	2	3	4	5		
0	0+0							
1	0+4	5+0						
2	0+6	5+4						
3	0+11	5+6						
4	0+12	5+11						
5	0+12	5+12						

		I	$P_2(x_2) + f$	$S_3(s_2 - x_2)$)			
S_2			x_2	2			$\int f_2(s_2)$	$\mid x_2^* \mid$
	0	1	2	3	4	5		
0	0+0							
1	0+4	5+0						
2	0+6	5+4	10					
3	0+11	5+6	10					
4	0+12	5+11	10					
5	0+12	5+12	10					

		P	$P_2(x_2) + f_2$	$S_3(s_2 - x_2)$)			
S_2			x_2			_	$\int f_2(s_2)$	$ x_2^* $
	0	1	2	3	4	5		
0	0+0							
1	0+4	5+0						
2	0+6	5+4	10+0					
3	0+11	5+6	10+4					
4	0+12	5+11	10+6					
5	0+12	5+12	10+11					

$ s_2 $		_	x_2	2		_	$f_2(s_2)$	$ x_2^* $
	0	1	2	3	4	5		
0	0+0							
1	0+4	5+0						
2	0+6	5+4	10+0					
3	0+11	5+6	10+4	11+0				
4	0+12	5+11	10+6	11+4	11+0			
5	0+12	5+12	10+11	11+6	11+4	11+0		

S_2			x_2	2		_	$\int f_2(s_2)$	$\mid x_2^* \mid$
	0	1	2	3	4	5		
0	0+0						0	
1	0+4	5+0						
2	0+6	5+4	10+0					
3	0+11	5+6	10+4	11+0				
4	0+12	5+11	10+6	11+4	11+0			
5	0+12	5+12	10+11	11+6	11+4	11+0		

$ s_2 $			x_i	2			$f_2(s_2)$	$ x_2^* $
	0	1	2	3	4	5		
0	0+0						0	
1	0+4	5+0					5	
2	0+6	5+4	10+0					
3	0+11	5+6	10+4	11+0				
4	0+12	5+11	10+6	11+4	11+0			
5	0+12	5+12	10+11	11+6	11+4	11+0		

S_2								
		_	x_2	2		_	$\int f_2(s_2)$	$\mid x_2^* \mid$
	0	1	2	3	4	5		
0	0+0						0	
1	0+4	5+0					5	
2	0+6	5+4	10+0				10	
3	0+11	5+6	10+4	11+0				
4	0+12	5+11	10+6	11+4	11+0			
5	0+12	5+12	10+11	11+6	11+4	11+0		

s_2			x_i	2			$f_2(s_2)$	x_2^*
	0	1	2	3	4	5		_
0	0+0						0	
1	0+4	5+0					5	
2	0+6	5+4	10+0				10	
3	0+11	5+6	10+4	11+0			14	
4	0+12	5+11	10+6	11+4	11+0			
5	0+12	5+12	10+11	11+6	11+4	11+0		

解: (续) 第2阶段: 将 s_2 台设备全部分配给乙和丙,则对每个 s_2 值,有一种最优分配方案,使最大赢利值为 $f_2(s_2) = \max_{x_2} \{P_2(x_2) + f_3(s_2 - x_2)\}$,其中, $x_2, s_2 = 0, 1..., 5$.

给乙工厂 x_2 台,赢利为 $P_2(x_2)$,余下的 s_2 - x_2 台给工厂丙,则它的赢利最大值为 $f_3(s_2$ - x_2)。

$ s_2 $		\boldsymbol{x}_2							
	0	1	2	3	4	5			
0	0+0						0		
1	0+4	5+0					5		
2	0+6	5+4	10+0				10		
3	0+11	5+6	10+4	11+0			14		
4	0+12	5+11	10+6	11+4	11+0		16		
5	0+12	5+12	10+11	11+6	11+4	11+0	21		

解: (续) 第2阶段: 将 s_2 台设备全部分配给乙和丙,则对每个 s_2 值,有一种最优分配方案,使最大赢利值为 $f_2(s_2) = \max_{x_2} \{P_2(x_2) + f_3(s_2 - x_2)\}$,其中, $x_2, s_2 = 0, 1..., 5$.

给乙工厂 x_2 台,赢利为 $P_2(x_2)$,余下的 s_2 - x_2 台给工厂丙,则它的赢利最大值为 $f_3(s_2-x_2)$ 。

$ s_2 $			x_2	2			$\int f_2(s_2)$	$\mid x_2^* \mid$
	0	1	2	3	4	5		
0	0+0						0	0
1	0+4	5+0					5	1
2	0+6	5+4	10+0				10	2
3	0+11	5+6	10+4	11+0			14	2
4	0+12	5+11	10+6	11+4	11+0		16	1, 2
5	0+12	5+12	10+11	11+6	11+4	11+0	21	2

解: (续)第1阶段: 将 s_1 (这里只有 s_1 =5)台设备分配给甲、乙和丙,则最大赢利值为 $f_1(s_1)$ =max $\{P_2(x_1) + f_2(5-x_1)\}$ 其中, x_1 =0.1

 $f_1(s_1)=\max_{x_1}\{P_1(x_1)+f_2(5-x_1)\},$ 其中, $x_1=0,1...,5.$ 给用工厂x. 会。 赢利为 $P_1(x_1)$ 、全下的 $s_1=x_1$ 会给了和贡

给甲工厂 x_1 台,赢利为 $P_1(x_1)$,余下的 s_1-x_1 台给乙和丙,则赢利最大值为 $f_2(5-x_1)$ 。

		$P_1(x_1) + f_2(5-x_1)$								
$ s_1 $			x_1				$f_1(5)$	$\mid x_1^* \mid$		
	0	1	2	3	4	5		_		
5										

解: (续) 第1阶段: 将 s_1 (这里只有 s_1 =5) 台设备分配给甲、乙和丙,则最大赢利值为

 $f_1(s_1)=\max_{x_1}\{P_1(x_1)+f_2(5-x_1)\},$ 其中, $x_1=0,1...,5.$

给甲工厂 x_1 台,赢利为 $P_1(x_1)$,余下的 s_1-x_1 台给乙和丙,则赢利最大值为 $f_2(5-x_1)$ 。

		$P_1(x_1) + f_2(5-x_1)$								
$ s_1 $				$f_1(5)$	$\mid x_1^* \mid$					
	0	0 1 2 3 4 5								
5	0	3	13							

解:(续)第1阶段:将 s_1 (这里只有 s_1 =5)台设备分配给甲、乙和丙,则最大赢利值为

 $f_1(s_1) = \max_{x_1} \{P_1(x_1) + f_2(5 - x_1)\},$ 其中, $x_1 = 0, 1..., 5.$

给甲工厂 x_1 台,赢利为 $P_1(x_1)$,余下的 s_1-x_1 台给乙和丙,则赢利最大值为 $f_2(5-x_1)$ 。

		$P_1(x_1) + f_2(5-x_1)$								
$ s_1 $			$f_1(5)$	x_1^*						
	0	5		_						
5	0+21	0+21 3+16 7+14 9+10 12+5 13+0								

解: (续) 第1阶段: 将 s_1 (这里只有 s_1 =5) 台设备分配给甲、乙和丙,则最大赢利值为

 $f_1(s_1)=\max_{x_1}\{P_1(x_1)+f_2(5-x_1)\},$ 其中, $x_1=0,1...,5.$

给甲工厂 x_1 台,赢利为 $P_1(x_1)$,余下的 s_1-x_1 台给乙和丙,则赢利最大值为 $f_2(5-x_1)$ 。

		$P_1(x_1) + f_2(5-x_1)$								
$ s_1 $			$f_1(5)$	$\mid x_1^* \mid$						
	0	1	2	3	4	5				
5	0+21	3+16	13+0	21	0, 2					

		$f_1(5)$	x_1^*					
$\mathbf{s_1}$	0	0 1 2 3 4 5						
5	0+21 3+16 7+14 9+10 12+5 13+0						21	0, 2

			$P_2(x_2) + f_3$	$(s_2 - x_2)$			$f(\mathbf{c})$	x_2^*
S_2	0	1	2	3	4	5	$f_2(s_2)$	λ_2
0	0						0	
1	0+4	5+0					5	1
2	0+6	5+4	10+0				10	2
3	0+11	5+6	10+4	11+0			14	2
4	0+12	5+11	10+6	11+4	11+0		16	1, 2
5	0+12	5+12	10+11	11+6	11+4	11+0	21	2

			P	$g_3(x_3)$			f(a)	*
	0	1	2	3	4	5	$f_3(s_3)$	<i>x</i> ₃ *
0	0						0	
1		4					4	1
2			6				6	2
3				11			11	3
4					12		12	4
5						12	12	5

C		£ (5)	x_1^*					
	0	$J_1(5)$	X_1					
5	0+21	0+21 3+16 7+14 9+10 12+5 13+0						0, 2

			$P_2(x_2) + f_3$	$(s_2 - x_2)$			$f_{s}(\mathbf{s}_{s})$	*
S_2	0	1	2	3	4	5	$f_2(s_2)$	x_2^*
0	0						0	
1	0+4	5+0					5	1
2	0+6	5+4	10+0				10	2
3	0+11	5+6	10+4	11+0			14	2
4	0+12	5+11	10+6	11+4	11+0		16	1, 2
5	0+12	5+12	10+11	11+6	11+4	11+0	21	2

			P	$g_3(x_3)$			f (a)	x_3^*
	0	1	2	3	4	5	$f_3(s_3)$	λ_3
0	0						0	
1		4					4	1
2			6				6	2
3				11			11	3
4					12		12	4
5						12	12	5

最优分配方案1:

$$x_1^*=0$$
,
 $s_2=s_1-x_1^*=5-0=5$,
此时, $x_2^*=2$,
 $s_3=s_2-x_2^*=5-2=3$,
故 $x_3^*=s_3=3$.

甲分配 0台, 乙分配 2台, 丙分配 3台, 总赢利为 21万元。

		£ (5)	*					
S_1	0	$f_1(5)$	$\begin{bmatrix} x_1^* \end{bmatrix}$					
5	0+21	3+16	7+14	9+10	12+5	13+0	21	0, 2

_			$P_2(x_2) + f_3$	$s(s_2 - x_2)$			$f(\mathbf{c})$	*
S_2	0	1	2	3	4	5	$f_2(s_2)$	x_2^*
0	0						0	
1	0+4	5+0					5	1
2	0+6	5+4	10+0				10	2
3	0+11	5+6	10+4	11+0			14	2
4	0+12	5+11	10+6	11+4	11+0		16	1, 2
5	0+12	5+12	10+11	11+6	11+4	11+0	21	2

			P	$y_{3}(x_{3})$			$f_{a}(\mathbf{s}_{a})$	x_3^*
S_3	0	1	2	3	4	5	$f_3(s_3)$	χ_3
0	0						0	
1		4					4	1
2			6				6	2
3				11			11	3
4					12		12	4
5						12	12	5

最优分配方案2:

$$x_1^*=2$$
,
 $s_2=s_1$ - $x_1^*=5$ - 2 = 3 ,
此时, $x_2^*=2$,
 $s_3=s_2$ - $x_2^*=3$ - 2 = 1 ,
故 $x_3^*=s_3$ = 1 .

甲分配 2台, 乙分配 2台, 丙分配 1台, 总赢利为 21万元。

C		f (5)	*				
$ \mathbf{s_1} $	0	1	2	3	4	$f_1(5)$	x_1^*
4	0+16	3+14	7 +10	9+5	12+0	17	1, 2

		f (a)	*					
S_2	0	1	2	3	4	5	$f_2(s_2)$	x_2^*
0	0						0	
1	0+4	5+0					5	1
2	0+6	5+4	10+0				10	2
3	0+11	5+6	10+4	11+0			14	2
4	0+12	5+11	10+6	11+4	11+0		16	1, 2
5	0+12	5+12	10+11	11+6	11+4	11+0	21	2

			f(a)	*				
S_3	0	1	2	$\frac{1}{3}(x_3)$	4	5	$f_3(s_3)$	x_3^*
0	0						0	
1		4					4	1
2			6				6	2
3				11			11	3
4					12		12	4
5						12	12	5

当设备台数为4台时, $x_1^*=1$, $s_2=s_1-x_1^*=4-1=3$,此时, $x_2^*=2$, $s_3=s_2-x_2^*=3-2=1$,故 $x_3^*=s_3=1$.

甲分配 1台, 乙分配 2台, 丙分配 1台, 总赢利为 17万元。

		f (5)	*				
S ₁	0	1	2	3	4	$f_1(5)$	x_1^*
4	0+16	3+14	7 +10	9+5	12+0	17	1, 2

		f (a)	*					
S_2	0	1	2	3	4	5	$f_2(s_2)$	x_2^*
0	0						0	
1	0+4	5+0					5	1
2	0+6	5+4	10+0				10	2
3	0+11	5+6	10+4	11+0			14	2
4	0+12	5+11	10+6	11+4	11+0		16	1, 2
5	0+12	5+12	10+11	11+6	11+4	11+0	21	2

			f (a)	*				
S_3	0	1	2	$\frac{2}{3}(x_3)$	4	5	$f_3(s_3)$	x_3^*
0	0						0	0
1		4					4	1
2			6				6	2
3				11			11	3
4					12		12	4
5						12	12	5

当设备台数为4台时, $x_1^*=2$, $s_2=s_1$ - $x_1^*=4$ -2=2,此时, $x_2^*=2$, $x_3=s_2$ - $x_2^*=2$ -2=0,故 $x_3^*=s_3=0$.

甲分配 2台, 乙分配 2台, 丙分配 0台, 总赢利为 17万元。

- 资源分配问题是决策变量取离散值的一类分配问题
 - □销售店分配问题、投资分配问题、货物的分配问题
 - □ 只分配不考虑回收,又称为资源平行分配问题
- 资源连续分配问题:考虑资源回收利用
 - □决策变量为连续值

设有数量为 s_1 的某种资源,可入 A 和B 两种生产。 <u>第一年</u>若以数量 u_1 投入生产A,剩下的量 s_1 - u_1 就投入 生产 B,则可得收入为 $g(u_1)$ + $h(s_1$ - $u_1)$,其中g 和 h为已 知函数,且 g(0)=h(0)=0。

这种资源在投入A、B生产后,年终还可回收再投入 生产。设年回收率分别为 0 < a < 1 和 0 < b < 1,则在第一年 生产后,回收的资源量合计为 $s_2=au_1+b(s_1-u_1)$ 。<u>第二</u> 年再将资源数量 s_2 中的 u_2 和 s_2-u_2 分别再投入 A、B两 种生产,第二年又可得到收入为 $g(u_2)+h(s_2-u_2)$ 。如此 继续进行n年,应当如何决定每年投入A生产的资源量 $u_1, u_2, ..., u_n$,才使总的收入最大?

■ 此问题写成静态规划问题为

 $0 \le u_i \le s_i, i = 1, 2, ..., n$

$$\max z = g(u_1) + h(s_1 - u_1) + g(u_2) + h(s_2 - u_2) + \dots + g(u_n) + h(s_n - u_n)$$

$$s_2 = au_1 + b(s_1 - u_1)$$

$$s_3 = au_2 + b(s_2 - u_2)$$

$$\dots$$

$$s_n = au_{n-1} + b(s_{n-1} - u_{n-1})$$

下面用动态规划方法来处理。

- 状态变量 s_k : 在第 k 阶段(第 k 年)可投入 A 、B 两种 生产的资源量。
- 决策变量 u_k : 在第 k 阶段(第 k年)用于A生产的资源量,则 $s_k u_k$ 表示用于 B 生产的资源量。
- 状态转移方程: $s_{k+1} = au_k + b(s_k u_k)$
- 最优值函数 $f_k(s_k)$: 有资源量 s_k ,从第 k 阶段至第 n 阶段采取最优分配方案进行生产后所得到的最大总收入。

动态规划递推关系式

■ 因此,可写出动态规划的逆推关系式为

$$f_n(s_n) = \max_{0 \le u_n \le s_n} \{g(u_n) + h(s_n - u_n)\}$$

$$f_k(s_k) = \max_{0 \le u_k \le s_k} \{g(u_k) + h(s_k - u_k) + f_{k+1}[au_k + b(s_k - u_k)]\}$$

$$k = n-1, ..., 2, 1$$

最后求出 $f_1(s_1)$,即为所求问题的最大总收入。

问题举例

- 例2. 某种机器可在高低两种不同的负荷下进行生产。(1) 设机器在高负荷下生产的产量函数为 $g = 8u_1$,其中 u_1 为投入生产的机器数量,年完好率为 a=0.7;
- (2) 在低负荷下生产的产量函数为 h=5y,其中 y为投入生产的机器数量,年完好率为 b=0.9。

假定<u>开始生产时完好的机器数量</u> s_1 =1000 台,试问每年如何安排机器在高、低负荷下的生产,使在<u>五年内</u>生产的总产量最高。

	产量函数	年完好率
高负荷	g = 8u	<i>a</i> =0.7
低负荷	h=5y	<i>b</i> =0.9

动态规划建模

- 问题的动态规划模型:
 - □设阶段序数 k 表示年度。

	产量函数	年完好率
高负荷	g = 8u	a=0.7
低负荷	h=5y	b=0.9

- □ 状态变量 s_k : 第 k 年度初拥有的完好机器数量,亦为第 k-1年度末时的完好机器数量。
- 口决策变量 u_k : 第 k 年度中分配高负荷下生产的机器数量,则 s_k - u_k 为该年度中分配低负荷下生产的机器数量。
- 状态转移方程:

$$s_{k+1} = au_k + b(s_k - u_k) = 0.7u_k + 0.9(s_k - u_k)$$
, $k=1, 2,, 5$

第 k 年度的产量 $v_k(s_k, u_k)$ 为:

$$v_k = 8u_k + 5(s_k - u_k)$$

动态规划建模

■ 状态转移方程为

$$s_{k+1} = au_k + b(s_k - u_k)$$

= $0.7u_k + 0.9(s_k - u_k)$, $k=1, 2,, 5$

■ k 段允许决策集合为

$$D_k(x_k) = \{ u_k | 0 \le u_k \le x_k \}$$

■ 第 k 年度的产量 $v_k(x_k, u_k)$ 为:

$$v_k = 8u_k + 5(x_k - u_k)$$

故,指标函数为

$$V_{1,5} = \sum_{k=1}^{5} v_k(x_k, u_k)$$

动态规划递推式

■ 令 $f_k(s_k)$ 表示由资源量 s_k 出发,从第k年开始到第 5年度结束时所产生的产品的总产量的最大值。因而有逆推关系式:

$$f_6(s_6) = 0$$

$$f_k(s_k) = \max_{u_k \in D_k(s_k)} \{ 8u_k + 5(s_k - u_k) + f_{k+1}[0.7u_k + 0.9(s_k - u_k)] \}$$

$$k = 1, 2, 3, 4, 5$$

$$f_6(s_6) = 0$$

$$f_k(s_k) = \max_{u_k \in D_k(s_k)} \{ 8u_k + 5(s_k - u_k) + f_{k+1}[0.7u_k + 0.9(s_k - u_k)] \}$$

$$k = 1, 2, 3, 4, 5$$

$$k=1,2,3,4,3$$
 $k=5$ 时,有
 $f_5(s_5) = \max_{0 \le u_5 \le s_5} \{ 8u_5 + 5(s_5 - u_5) + f_6[0.7u_5 + 0.9(s_5 - u_5)] \}$
 $= \max_{0 \le u_5 \le s_5} \{ 8u_5 + 5(s_5 - u_5) \}$
 $= \max_{0 \le u_5 \le s_5} \{ 3u_5 + 5s_5 \}$
因为 f_5 是 u_5 的线性单调增函数,得最大解 $u_5^* = s_5$,故相应有 $f_5(s_5) = 8s_5$ 。

```
k=4 时,有
f_4(s_4) = \max_{0 \le u_4 \le s_4} \{ 8u_4 + 5(s_4 - u_4) + 
                         f_{5}[0.7u_{4}+0.9(s_{4}-u_{4})]
= \max_{0 \le u_4 \le s_4} \left\{ 8u_4 + 5(s_4 - u_4) + 8[0.7u_4 + 0.9(s_4 - u_4)] \right\}
= \max_{0 \le u_4 \le s_4} \{ 1.4u_4 + 12.2s_4 \}
得最大解 u_4^* = s_4,故相应有 f_4(s_4) = 13.6s_4。
依次类推,可求得
u_3^* = s_3, 故相应有 f_3(s_3) = 17.5s_3;
u_2^* = 0, 故相应有 f_2(s_2) = 20.8s_2;
u_1^* = 0,故相应有 f_1(s_1) = 23.7s_1.
由 s_1= 1000, 得 f_1(s_1) = 23700台。
最优策略为u_1^* = 0, u_2^* = 0, u_3^* = s_3, u_4^* = s_4, u_5^* = s_5,
即前两年应把年初全部完好机器投入低负荷生产,
后三年应把年初全部完好机器投入高负荷生产,
这样所得的产量最高,其最高产量为23700台。
                                                           101
```

在得到整个问题的最优指标函数值和最优策略后,还需反过来确定每年年初的状态,即从始端向终端递推计算出每年年初完好机器数。

已知 s_1 = 1000,得

$$s_2 = 0.7 \ u_1^* + 0.9 (s_1 - u_1^*) = 0.9 s_1 = 900$$
台;
 $s_3 = 0.7 \ u_2^* + 0.9 (s_2 - u_2^*) = 0.9 s_2 = 810$ 台;
 $s_4 = 0.7 \ u_3^* + 0.9 (s_3 - u_3^*) = 0.7 s_3 = 567$ 台;
 $s_5 = 0.7 \ u_4^* + 0.9 (s_4 - u_4^*) = 0.9 s_4 = 397$ 台;
 $s_6 = 0.7 \ u_5^* + 0.9 (s_5 - u_5^*) = 0.7 s_5 = 278$ 台。

$$s_{k+1} = au_k + b(s_k - u_k)$$

= $0.7u_k + 0.9(s_k - u_k)$, $k=1, 2,, 5$

复合系统工作可靠性问题

- 若某种机器的工作系统由N个部件串联组成,只要有一个部件失灵,整个系统就不能正常工作。为提高系统工作的可靠性,在每一个部件上均装有主要元件的备用件,并且设计了备用元件自动投入装置。
- 显然,备用元件越多,整个系统正常工作的可靠性 越大,但整个系统的成本、重量、体积均相应加大, 工作精度也降低。
- 最优化问题是在考虑上述限制条件下,应如何选择 各部件的备用元件数,使整个系统的工作可靠性最 大?

问题定义

设部件 i (i=1,2,...,n)上装有 u_i 个备用元件时,正常工作的概率为 $p_i(u_i)$ 。

则整个系统正常工作的可靠性,可用它正常工作的概率衡量,即 $P = \prod_{i=1}^{n} p_i(u_i)$ 。

设一个部件i的备用元件费用为 c_i ,重量为 w_i ,要求总费用不超过c,总重量不超过w,

则静态规划模型为:

$$\max P = \prod_{i=1}^{n} p_i(u_i)$$
 $\sum_{i=1}^{n} c_i u_i \leq c$
 $\sum_{i=1}^{n} w_i u_i \leq w$
 $u_i \geq 0$ 且为整数, $i = 1, 2, ..., n$

动态规划模型

■ 状态变量: 两个约束条件,选二维状态变量,采用 两个状态变量符号 x_k , y_k 来表达,其中 x_k : 由第 k 个到第 n 个部件所容许使用的总费用。 y_k : 由第 k 个到第 n 个部件所容许具有的总重量。

- 决策变量: u_k 为部件 k 上装的备用元件数
- 状态转移方程:

$$x_{k+1} = x_k - u_k c_k, \quad y_{k+1} = y_k - u_k w_k \qquad (1 \le k \le n)$$

■ 允许决策集合:

$$D_k(x_k, y_k) = \{u_k \mid 0 \le u_k \le \min([x_k / c_k], [y_k / w_k])\}$$

■ 最优值函数 $f_k(x_k, y_k)$: 由状态 x_k 和 y_k 出发,从部件 k 到部件 n 的系统的最大可靠性。

动态规划基本方程

■ 整机可靠性的动态规划基本方程为:

$$f_k(x_k, y_k)$$

$$= \max_{u_k \in D_k(x_k, y_k)} \{ p_k(u_k) f_{k+1}(x_k - c_k u_k, y_k - w_k u_k) \}$$

$$(k = n, n-1, ..., 1)$$

$$f_{n+1}(x_{n+1}, y_{n+1}) = 1$$

- 边界条件为1: x_{n+1} , y_{n+1} 均为零时,装置不工作,故可靠性为1。
- 最后计算得 $f_1(c, w)$ 即为所求问题的最大可靠性。

复合系统工作可靠性问题

- 该问题的特点是:
 - □指标函数为连乘积形式,而不是连加形式,但 仍满足递推关系;
 - □边界条件为1而不是零,这是由研究对象的特性所决定的。
- 在该问题中,如果静态模型的约束条件增加为三个,例如总体积不超过v,则状态变量就要选为三维的 (x_k, y_k, z_k)
 - □说明静态规划问题的约束条件增加时,对应的 动态规划的状态变量维数也需要增加,而决策 变量维数可以不变。

回顾: 动态规划

动态规划递推式:

$$V_{k,n}[s_k,p_{k,n}]$$
 = $v_k(s_k,u_k)+V_{k+1,n}[s_{k+1},p_{k+1,n}]$, $k=n,n-1,...,1$ 动态规划求解:

$$f_k(s_k) = \text{opt}_{u_k \in D_k(s_k)} \{ v_k(s_k, u_k) + f_{k+1}(s_{k+1}) \}$$

$$k = n, n-1, ..., 1$$

边界条件为 $f_{n+1}(s_{n+1}) = 0$ 。

其中 $s_{k+1} = T_k(s_k, u_k)$ 。

其求解过程,根据边界条件,从k = n开始,由后向前逆推,从而逐步可求得各段最优决策和相应的最优值,最后求出 $f_1(s_1)$,就得到整个问题的最优解。

排序问题

■ 设有n个工件需要在机床A、B 上加工,每个工件都 必须经过先A而后B的两道加工工序。

设工件 $i(1 \le i \le n)$ 在A、B上的加工时间分别为 a_i 和 b_i 。

■ 问: 应如何在两机床上安排各工件加工的顺序,使在机床A上加工第一个工件开始到在机床 B上将最后一个工件加工完为止,所用的加工总时间最少?

机床A 机床B

排序问题分析

■ 当加工顺序取定之后,工件在 A 上加工时没有等待时间,而在 B 上则常常等待。

工件机床	1	2	3	4	5
A	3	7	4	5	7
В	6	2	7	3	4

工件在B上等待时间:

排序问题分析

- 当加工顺序取定之后,工件在 A 上加工时没有等待时间,而在 B 上则常常等待。
- 寻求最优排序方案只有尽量减少在 B上等待时间,才能使总加工时间最短。

工件机床	1	2	3	4	5
A	3	7	4	5	7
В	6	2	7	3	4

时间

工件在B上等待时间:

3+2=5小时

排序问题分析

- 当加工顺序取定之后,工件在 A 上加工时没有等待时间,而在 B 上则常常等待。
- 寻求最优排序方案只有尽量减少在 B上等待时间,才能使总加工时间最短。
- 设第 *i* 个工件在机床 A上加工完毕以后,在B上要经过若干时间才能加工完,故对同个工件来说,在 A, B上总是出现加工完毕的时间差,可用于描述加工状态.

机床A 机床B

排序问题建模

- 以在机床 A上更换工件的时刻作为时段。
- X: 在机床 A 上 等待加工的按取定顺序排列的工件集合。
- x: 不属于 X 的在 A上最后加工完的工件。
- t: 在 A上加工完 x 的时刻算起到在 B上加工完 x 所需的时间。
 - □ x 在 B上的等待时间 + 加工时间。
 - 因此,在A上每加工完一个工件,就有(X, t)与之对应。
- (*X*, *t*): 作为描述机床*A*、*B*在加工过程中的状态变量,则当 *X*包含有 *s* 个工件时,过程尚有*s*段,其时段数已隐含在状态变量之中。

排序问题建模

由状态 (X,t) 出发,

- f(X, t): 对未加工的工件采取最优加工顺序后,将 X 中所有工件加工完所需时间。
- f(X, t, i): 在A上加工工件i,然后再对以后的加工工件采取最优顺序后,把X中工件全部加工完所需要的时间。
- f(X, t, i, j): 在A上相继加工i与j后,对以后的加工工件采取最优顺序后,将X中工件全部加工完所需要的时间。

- (X, t): 机床A上等待加工的工件集合为X,其中X中第一个被执行的为i; 当A上加工完i-1后,到EB上加工完i-1所需时间为t(B上的等待+加工时间),
- 当 $t \le a_i$ (工件 i 在A上的加工时间)时, 当 A上加工完 i 后,此时,i-1 在B上加工完成,i 将 在 B上执行 b_i 时间。

- (X, t): 机床A上等待加工的工件集合为X,其中X中 第一个被执行的为i; 当A上加工完i-1后,到在B上 加工完 i-1 所需时间为 t(B)上的等待+加工时间)
- 当 $t \ge a_i$ (工件 i 在A上的加工时间) 时, 当 A上加工完 i 后,此时,i-1 在B上未加工完成。 i 将在B上等待 $t-a_i$ 时间后,执行 b_i 时间。

动态规划递推式

■ 因此,有递推式

则
$$f(X, t, i) = \begin{cases} a_i + f(X - \{i\}, t - a_i + b_i), \\ a_i + f(X - \{i\}, b_i), \\ \end{cases}$$
 当 $t \le a_i$ 时

$$i \exists z_i(t) = \max(t - a_i, 0) + b_i,$$

上式可合并为 $f(X, t, i) = a_i + f(X - \{i\}, z_i(t))$ 。

由定义,可得

$$f(X, t, i, j) = a_i + a_j + f(X - \{i, j\}, z_{ij}(t))$$

其中 $z_{ij}(t)$ 是在机床A上从X出发相继加工工件i和j,并从A将j加工完的时刻算起,至在B上相继加工工件i和j并将所有工件加工完所需时间。

排序问题

- 故 $(X \{i, j\}, z_{ij}(t))$ 是在 A 加工 i、j后所形成的新状态。即在 A上加工 i,j后由状态 (X, t) 转移至 $(X \{i, j\}, z_{ij}(t))$ 。
- 仿照 $z_i(t)$ 的定义,
 - □以 *X*-{*i*,*j*}代替*X*-{*i*}
 - □以 z_i(t) 代替 t

$$z_i(t) = \max(t - a_i, 0) + b_i$$

□ 以 b_i 代替 b_i ,以 a_i 代替 a_i

可得:
$$z_{ij}(t) = \max(z_i(t) - a_j, 0) + b_j$$

$$= \max[\max(t - a_i, 0) + b_i - a_j, 0] + b_j$$

$$= \max[\max(t - a_i - a_j + b_i, b_i - a_j), 0] + b_j$$

$$= \max[t - a_i - a_j + b_i + b_j, b_i + b_j - a_j, b_j]$$

排序问题

$$f(X, t, i, j) = a_i + a_j + f(X - \{i, j\}, z_{ij}(t))$$

将i、j对调,可得

$$f(X, t, j, i) = a_i + a_j + f(X - \{i, j\}, z_{ji}(t))$$

$$z_{ji}(t) = \max[t - a_i - a_j + b_i + b_j, b_i + b_j - a_i, b_i]$$

由于f(X,t)为t的单调上升函数,故当 $z_{ij}(t) \le z_{ji}(t)$ 时,

$$f(X, t, i, j) \leq f(X, t, j, i)$$

由此,对任意 t,当 $z_{ij}(t) \le z_{ji}(t)$ 时,工件 i 放在工件 j 之前加工可以使总的加工时间更短。

排序问题

$$z_{ij}(t) = \max[t - a_i - a_j + b_i + b_j, b_i + b_j - a_j, b_j]$$

$$z_{ji}(t) = \max[t - a_i - a_j + b_i + b_j, b_i + b_j - a_i, b_i]$$

■ 由 $z_{ii}(t)$ 和 $z_{ii}(t)$ 的表示可知,若

$$\max(b_i + b_j - a_j, b_j) \le \max(b_i + b_j - a_i, b_i)$$

则有 $z_{ij}(t) \leq z_{ji}(t)$ 。

将上式两边同减去 b_i 与 b_i ,得

$$\max(-a_j, -b_i) \leq \max(-a_i, -b_j)$$

即有 $\min(a_i, b_j) \leq \min(a_j, b_i)$,

以上条件就是工件i应该排在工件j之前的条件。

最优排序规则

- 根据以上条件,得到最优排序规则如下:
- 1. 找出 $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ 中的最小数;
- 2. 若最小者为a_i,则将工件 *i* 排在第一位,并从工件集 合中去掉这个工件;
- 3. 若最小者为 b_i ,则将工件 i 排在最后一位,并从工件 集合中去掉这个工件;
- 4. 对剩下的工件重复上述操作,直至工件集合为空。
- 主要思想:尽量减少在机床B上等待加工的时间, 把在机床B上加工时间长的工件先加工,在B上加 工时间短的工件后加工。

工件	加工时间(小时)		
号码	机床A	机床 B	
1	3	6	
2	7	2	
3	4	7	
4	5	3	
5	7	4	

根据最优排序规则,最优加工顺序为

工件	加工时间(小时)		
号码	机床A	机床 B	
1	3	6	
2	7	2	
3	4	7	
4	5	3	
5	7	4	

根据最优排序规则,最优加 工顺序为

2

工件	加工时间(小时)		
号码	机床A	机床 B	
1	3	6	
2	7	2	
3	4	7	
4	5	3	
5	7	4	

根据最优排序规则,最优加 工顺序为

1

工件	加工时间(小时)		
号码	机床A	机床 B	
1	3	6	
2	7	2	
3	4	7	
4	5	3	
5	7	4	

根据最优排序规则,最优加 工顺序为

1 4 2

工件	加工时间(小时)		
号码	机床A	机床 B	
1	3	6	
2	7	2	
3	4	7	
4	5	3	
5	7	4	

根据最优排序规则,最优加 工顺序为

1 3 4 2

工件	加工时间(小时)		
号码	机床A	机床 B	
1	3	6	
2	7	2	
3	4	7	
4	5	3	
5	7	4	

根据最优排序规则,最优加 工顺序为

1 3 5 4 2

设备更新问题

- 在工业和交通运输企业中,经常碰到设备陈旧或损坏需要更新的问题:一种设备应该用多少年后进行更新为最恰当,即更新的最佳策略应该如何,从而使在某一时间内的总收入达到最大(或总费用达到最小)
- 一台设备的使用情况:
 - □随着使用年限的增加,机器的使用效率降低,收入 减少,维修费用增加
 - □使用年限越长,机器本身的价值就越小,因而更新 时所需的净支出费用就越多

- 令t为机器已经使用过的年数(役龄)。
- $I_i(t)$: 在第j年机器役龄为t年的机器运行所得收入。
- $O_j(t)$: 在第j年机器役龄为t年的一台机器运行时所需的运行费用。
- $C_j(t)$: 在第j年机器役龄为t年的一台机器更新时所需更新净费用。
- $g_j(t)$: 在第j年开始使用一个役龄为t年的机器时,从第j年至第n年内的最佳收入。
- $\mathbf{z}_{j}(t)$: 给出 $g_{j}(t)$ 时,在第 j 年开始时的决策(保留或更新)。

- 令 t 为机器已经使用过的年数(役龄)。
- α : 折扣因子($0 \le \alpha \le 1$),表示一年后的单位收入的价值视为现年的 α 单位
- \blacksquare T: 在第一年开始时,正在使用的机器的役龄。
- n: 计划的年限总数

- 分为两种情况:
 - □若在第*j* 年开始时购买了新机器,则有
- 第j年至第n年的总收入=
- 在第j年由新机器获得的收入 $I_i(0)$
- -在第j年中的运行费用 $O_{i}(0)$
- 在第j年开始时役龄为t年的机器的更新净费用 $C_{j}(t)$
- + 在第j+1年开始使用役龄为 1年的机器从第j+1 年至
- 第n年的最佳收入 $\alpha g_{j+1}(1)$
- 表示为: $I_j(0) O_j(0) C_j(t) + \alpha g_{j+1}(1)$

- 分为两种情况:
 - □若在第 j 年开始时继续使用役龄为 t 年的机器,则
- 从第j年至第n年的总收入=
- 在第j年由役龄为t年的机器获得的收入 $I_i(t)$
- -在第j年中役龄为t年的机器的运行费用 $O_{i}(t)$
- + 在第j+1 年开始使用役龄为t+1 年的机器从第i+1 年
- 至第n年的最佳收入 $\alpha g_{j+1}(t+1)$ 。
- 表示为: $I_j(t) O_j(t) + \alpha g_{j+1}(t+1)$
- 比较两种情况的大小,选取大的,并相应得出是更新 还是保留的决策。

动态规划递推式

■ 即递推式为:

$$g_{j}(t) = \max \{ I_{j}(0) - O_{j}(0) - C_{j}(t) + \alpha g_{j+1}(1) ,$$

$$I_{j}(t) - O_{j}(t) - \alpha g_{j+1}(t+1) \}$$

$$j = 1, 2, ..., n; t = 1, 2, ..., j-1, j+ T-1.$$

由于研究的是今后n年的计划,故还要求

$$g_{n+1}(t)=0$$

可基于动态规划思想求解的问题与算法

- 最长公共子序列
- 矩阵链相乘
- 所有点对的最短路径
- 有向图的传递闭包
- 最优二叉查找树问题
- 0/1背包问题

最长公共子序列

- 给定字母表 Σ 上的两个长度为 n和 m的字符串A和B 令 $A = a_1 a_2 ... a_n, B = b_1 b_2 ... b_m$ 。
 - $\square A$ 的一个子序列是一个形如 $a_{i_1}a_{i_2} \dots a_{i_k}$ 的字符串,其中 $1 \le i_1 < i_2 < \dots < i_k \le n$ 。
 - □若一个字符串既是A的子序列又是B的子序列,则称它是A与B的公共子序列。

例: A=z x y x y z, B=x y y z x,

最长公共子序列

- 给定字母表 Σ上的两个长度为 n和 m的字符串A和B令 $A=a_1a_2...a_n, B=b_1b_2...b_m$ 。
 - $\square A$ 的一个子序列是一个形如 $a_{i_1}a_{i_2} \dots a_{i_k}$ 的字符串,其中 $1 \le i_1 < i_2 < \dots < i_k \le n$ 。
 - □若一个字符串既是A的子序列又是B的子序列,则称它是A与B的公共子序列。
- 例: A=z x y x y z, B=x y y z x, $z \in A=B$ 的长度为 1的公共子序列

最长公共子序列

- 给定字母表 Σ上的两个长度为 n和 m的字符串A和B令 $A=a_1a_2...a_n, B=b_1b_2...b_m$ 。
 - $\square A$ 的一个子序列是一个形如 $a_{i_1}a_{i_2} \dots a_{i_k}$ 的字符串,其中 $1 \le i_1 < i_2 < \dots < i_k \le n$ 。
 - □若一个字符串既是A的子序列又是B的子序列,则称它是A与B的公共子序列。
- 例: A=zxyxyz, B=xyyzx, z 是A=B的长度为 1的公共子序列 xyy 是A=B的长度为 3的公共子序列

公共子序列

- 给定字母表 Σ 上的两个长度为 n和 m的字符串A和B 令 $A = a_1a_2...a_n$, $B = b_1b_2...b_m$ 。
 - $\square A$ 的一个子序列是一个形如 $a_{i_1}a_{i_2} \dots a_{i_k}$ 的字符串,其中 $1 \le i_1 < i_2 < \dots < i_k \le n$ 。
 - □若一个字符串既是A的子序列又是B的子序列,则称它是A与B的公共子序列。
- 例: A=z x y x y z, B=x y y z x, $z \in A=B$ 的长度为 1的公共子序列 $xyy \in A=B$ 的长度为 3的公共子序列 $xyyz \in A=B$ 的长度为 4的公共子序列

最长公共子序列问题

■ 输入:字母表 Σ 上的两个字符串 $A = a_1 a_2 ... a_n$,

 $B=b_1b_2...b_m$

■ 输出: A 和 B的最长的公共子序列

例: A=z x y x y z, B=x y y z x, $z \in A = B$ 的长度为 1的公共子序列 $xyy \in A = B$ 的长度为 3的公共子序列 $xyyz \in A = B$ 的长度为 4的公共子序列,也是A = B的最长公共子序列

最长公共子序列问题算法

■ 蛮力搜索的方法

例举A所有的 2^n 个子序列,

对于每一个子序列在 $\Theta(m)$ 时间内来确定它是否也是B的子序列。

此方法的时间复杂性是 $\Theta(m2^n)$ 。

动态规划的递推式

■ 令L[i,j] 表示 $A=a_1a_2...a_i$ 和 $B=b_1b_2...b_j$ 的最长公共子序列的长度。 L[i-1,j-1]+1

L[i,j]

$oldsymbol{A}$	a_1	a_2	•••	a_{i-1}	a_i
B	$oldsymbol{b}_1$	b_2	• • •	b_{j-1}	b_{j}

 $\Box a_i = b_j$

$$\begin{split} &L[i,j] \\ = &\max\{\ L[i-1,j-1]+1, L[i,j-1], L[i-1,j]\ \} \\ &= L[i-1,j-1]+1 \end{split}$$

4	а	а		a	
	19	, 1] ' *		

$oldsymbol{A}$	a_1	$ a_2 $	• • •	a_{i-1}	a_i
B					

L[i,j-1]

$oldsymbol{A}$	a_1	a_2	•••	a_{i-1}	a_i
B					

L[i-1,j]

$oldsymbol{A}$	a_1	a_2	•	a_{i-1}	a_i
				b_{j-1}	

动态规划的递推式

■ 令L[i,j] 表示 $A=a_1a_2...a_i$ 和 $B=b_1b_2...b_j$ 的最长公共子序列的长度。

L[i,j]

$oldsymbol{A}$	a_1	a_2	•••	a_{i-1}	a_i
				b_{j-1}	

 $\Box a_i \neq b_j$

L[i,j]=\max\{L[i,j-1], L[i-1,j]\} L[i,j-1]

$oldsymbol{A}$	a_1	a_2	•••	a_{i-1}	a_i
					$oxed{b_j}$

L[i-1,j]

$oldsymbol{A}$	a_1	a_2	• • •	a_{i-1}	a_i
B					

动态规划的递推式

- 令L[i,j] 表示 $a_1a_2...a_i$ 和 $b_1b_2...b_j$ 的最长公共子序列的长度。
 - □ 如果 i 和 j 都大于0

■ 计算 A和B的最长公共子序列长度的递推式为:

动态规划思想

- 令L[i,j] 表示 $a_1a_2...a_i$ 和 $b_1b_2...b_j$ 的最长公共子序列的长度。
- 计算A和B的最长公共子序列长度的递推式为:

■ 动态规划算法思想 对于任意 i 和j , $0 \le i \le n$ 和 $0 \le j \le m$,用一个 $(n+1) \times (m+1)$ 表计算L[i,j]的值,按照递推式逐行地填 表 L[0...n, 0...m]。

最长公共子序列算法LCS

输入:字母表 Σ 上的两个字符串A和B,长度分别为n和m。

输出: A和B最长公共子序列的长度。

```
1. for i \leftarrow 0 to n
          L[i, 0] \leftarrow 0
3. for j \leftarrow 0 to m
          L[0,j] \leftarrow 0
5. for i \leftarrow 1 to n
          for j \leftarrow 1 to m
                      if a_i = b_j then L[i,j] \leftarrow L[i-1,j-1] + 1
7.
                      else L[i,j] \leftarrow \max\{L[i,j-1], L[i-1,j]\}
8.
                      end if
9.
           end for
```

算法复杂性正好是表的大小 $\Theta(nm)$ 11. end for

12. return L[n, m]

10.

最长公共子序列算法LCS

输入:字母表 Σ 上的两个字符串A和B,长度分别为n和m。

输出: A和B最长公共子序列的长度。

	c	•	Λ	4	
1	for	14	_()	tΛ	n
1.	\mathbf{IUI}	レヽ	v	w	Il

$$2. L[i, 0] \leftarrow 0$$

3. for $j \leftarrow 0$ to m

$$L[0,j] \leftarrow 0$$

5. for $i \leftarrow 1$ to n

6. for $j \leftarrow 1$ to m

7. if
$$a_i = b_j$$
 then $L[i,j] \leftarrow L[i-1,j-1] + 1$

8. else
$$L[i,j] \leftarrow \max\{L[i,j-1], L[i-1,j]\}$$

10. end for

11. end for

算法复杂性正好是表的大小 $\Theta(nm)$

12. return L[n, m]

/ 			
		$oldsymbol{j}$	
	L[i-1,j-1]		
i		L[i,j]	

最长公共子序列算法LCS

输入:字母表 Σ 上的两个字符串A和B,长度分别为n和m。

输出: A和B最长公共子序列的长度。

	c	•	Λ	4	
1	for	14	_(1)	tΛ	n
ı.	$\mathbf{1U1}$	レヽ	v	w	Il

$$2. L[i, 0] \leftarrow 0$$

3. for $j \leftarrow 0$ to m

$$4. L[0,j] \leftarrow 0$$

5. for $i \leftarrow 1$ to n

	• •	4	
6	for <i>j</i> ←1	to n	n
U.	101,/\	to II	

7. if
$$a_i = b_j$$
 then $L[i,j] \leftarrow L[i-1,j-1] + 1$

8. else
$$L[i,j] \leftarrow \max\{L[i,j-1], L[i-1,j]\}$$

10. end for

11. end for

算法复杂性正好是表的大小 $\Theta(nm)$

12. return L[n, m]

		j	
		L[i-1,j]	
i	L[i,j-1]	L[i,j]	

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	1	2	2	2	2	2	2	2	2	2
3	0	0	1	1	2	2	2	3	3	3	3	3	3
4	0												
5	0												
6	0												
7	0												
8	0												
9	0												
10	0												

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	1	2	2	2	2	2	2	2	2	2
3	0	0	1	1	2	2	2	3	3	3	3	3	3
4	0	0	1	1	2	2	2	3	4	4	4	4	4
5	0	1	1	2	2	2	3	3	4	4	4	4	5
6	0	1	2	2	2	2	3	4	4	4	5	5	5
7	0	1	2	2	3	3	3	4	4	5	5	5	5
8	0	1	2	3	3	3	4	4	4	5	5	5	6
9	0	1	2	3	3	3	4	5	5	5	6	6	6
10	0	1	2	3	4	4	4	5	5	6	6	6	6

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	1	2	2	2	2	2	2	2	2	2
3	0	0	1	1	2	2	2	3	3	3	3	3	3
4	0	0	1	1	2	2	2	3	4	4	4	4	4
5	0	1	1	2	2	2	3	3	4	4	4	4	5
6	0	1	2	2	2	2	3	4	4	4	5	5	5
7	0	1	2	2	3	3	3	4	4	5	5	5	5
8	0	1	2	3	3	3	4	4	4	5	5	5	6
9	0	1	2	3	3	3	4	5	5	5	6	6	6
10	0	1	2	3	4	4	4	5	5	6	6	6	6

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	1	2	2	2	2	2	2	2	2	2
3	0	0	1	1	2	2	2	3	3	3	3	3	3
4	0	0	1	1	2	2	2	3	4	4	4	4	4
5	0	1	1	2	2	2	3	3	4	4	4	4	5
6	0	1	2	2	2	2	3	4	4	4	5	5	5
7	0	1	2	2	3	3	3	4	4	5	5	5	5
8	0	1	2	3	3	3	4	4	4	5	5	5	6
9	0	1	2	3	3	3	4	5	5	5	6	6	6
10	0	1	2	3	4	4	4	5	5	6	6	6	6

可基于动态规划思想求解的问题与算法

- 最长公共子序列
- 矩阵链相乘
- 所有点对的最短路径
- 有向图的传递闭包
- 最优二叉查找树问题
- 0/1背包问题

矩阵链相乘

例:给定维数分别是2×10,10×2和2×10的三个矩阵

 M_1 , M_2 , M_3 ,用标准矩阵乘法计算乘积 $M_1M_2M_3$ 。

- $\square (M_1M_2)M_3$: 2×10×2 +2×2×10 = 80次乘法;
- $\square M_1(M_2M_3)$: $10\times 2\times 10 + 2\times 10\times 10 = 400$ 次乘法;
- 执行乘法 $M_1(M_2M_3)$ 耗费的时间是执行乘法

矩阵链相乘

- 一般来说,n个矩阵 $M_1, M_2, ..., M_n$ 链乘法的耗费,取决于 n-1个乘法执行的顺序
- 顺序数等于乘这*n*个矩阵时用每一种可能的途径放置 括弧的方法数。

例:
$$(M_1(M_2(M_3M_4)))$$

 $(M_1((M_2M_3)M_4))$
 $((M_1(M_2M_3))M_4)$
 $((M_1M_2)(M_3M_4))$
 $(((M_1M_2)M_3)M_4)$

矩阵链相乘

■ 设 f(n)是求 n个矩阵乘积的所有放置括弧的方法数,假定要进行以下的乘法**:** $1 \le k \le n-1$

$$(M_1M_2...M_k) (M_{k+1}M_{k+2}...M_n)$$

则,对于前k个矩阵有f(k)种方法放置括弧,

对于后n-k个矩阵有f(n-k)种方法放置括弧。

总共有f(k)f(n-k)种放置括弧的方法。

因此,n个矩阵放置括弧的所有方法数为

$$f(n) = \sum_{k=1}^{n-1} f(k) f(n-k)$$

可以证明
$$f(n) = \frac{1}{n} {2n-2 \choose n-1}$$
 为第 $n-1$ 个Catalan数。

凸多边形三角形剖分方法计数

■ 设 *h_n*表示用下面方法把凸多边形区域分成三角形区域的方法数:

n+1个点 在有n+1条边的口多见形区域内通过插入不相交的 对角线,而把它分成三角形区域。

定义 $h_1=1$ 。

则 h"满足如下递推关系:

$$h_n = h_1 h_{n-1} + h_2 h_{n-2} + \dots + h_{n-1} h_1 = \sum_{k=1}^{n-1} h_k h_{n-k} \ (n \ge 2)$$

该递推关系解为:
$$h_n = \frac{1}{n} {2n-2 \choose n-1}$$
 $(n=1, 2, 3,...)$

Catalan数 C_{n-1}

矩阵链相乘-递推式

$$f(n) = \frac{1}{n} {2n-2 \choose n-1}$$

■ 由Stirling公式:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^n$$
 其中 $e=2.718\ 28...$

有

$$f(n) = \frac{1}{n} {2n-2 \choose n-1} = \frac{(2n-2)!}{n((n-1)!)^2} \approx \frac{4^n}{4\sqrt{\pi}n^{1.5}}$$

五此 $f(n) = \Omega\left(\frac{4^n}{n^{1.5}}\right)$

矩阵链相乘中数量乘法的最少次数

- 对于每个i, $1 \le i < n$, 矩阵 M_i 的列数一定等于矩阵 M_{i+1} 的行数。

 - □用 $M_{i,j}$ 表示乘积 $M_iM_{i+1}...M_j$, $1 \le i < j \le n$
 - 口计算 $M_{i,j}$ 的耗费用数量乘法的次数C[i,j]来测度

$$(M_i ... M_{k-1}) (M_k ... M_j)$$
 $C[i, k-1] + r_i r_k r_{j+1} + C[k, j]$

$$C[i,j] = \min_{i < k \le j} \{C[i,k-1] + C[k,j] + r_i r_k r_{j+1}\}$$

$$C[1, n] = \min_{1 < k \le n} \{C[1, k - 1] + C[k, n] + r_1 r_k r_n\}$$

$$C[i, j] = \min_{i < k \le j} \{C[i, k - 1] + C[k, j] + r_i r_k r_{j+1}\}, 1 \le i < j \le n$$

	1			2		3	4	ļ		5	7
1	C[1,1]	1]	C [1	1, 2]	C[1	, 3]	<i>C</i> [1	, 4]	C [1	l , 5]	<i>C</i> [1, 6]
2			C[2]	2, 2]	<u>C[2</u>	, 3]	<u>C[2</u>	, 4]	<u>C</u> [2	,, 5]	[*] C[2, 6]
3					<i>C</i> [3	, 3]	C[3	, 4]	C[:	, 5]	C[3,6]
4							<i>C</i> [4	, 4]	<i>C</i> [-	, 5]	C[4, 6]
5									C[:	, 5]	C[5, 6]
6											C[6, 6]

$$C[1, n] = \min_{1 < k \le n} \{C[1, k - 1] + C[k, n] + r_1 r_k r_n\}$$

$$C[i, j] = \min_{i < k \le j} \{C[i, k - 1] + C[k, j] + r_i r_k r_{j+1}\}, 1 \le i < j \le n$$

	1	2	3	4	5	6
1	<i>C</i> [1, 1]	<i>C</i> [1, 2]	<i>C</i> [1, 3]	<i>C</i> [1, 4]	<i>C</i> [1, 5]	<i>C</i> [1, 6]
2		C[2, 2]	C[2,3]	C[2, 4]	C[2,5]	C[2, 6]
3			C[3,3]	C[3, 4]	<i>C</i> [3, 5]	<i>C</i> [3, 6]
4				C[4, 4]	<i>C</i> [4, 5]	<i>C</i> [4, 6]
5					C[5,5]	C[5, 6]
6						<i>C</i> [6, 6]

$$C[1, n] = \min_{1 < k \le n} \{C[1, k - 1] + C[k, n] + r_1 r_k r_n\}$$

$$C[i, j] = \min_{i < k \le j} \{C[i, k - 1] + C[k, j] + r_i r_k r_{j+1}\}, 1 \le i < j \le n$$

	1	2	3	4	5	6
1	C[1,1]	C[1,2]	C[1,3]	<i>C</i> [1, 4]	<i>C</i> [1, 5]	<i>C</i> [1, 6]
2		C[2,2]	C[2,3]	C[2,4]	*C[2, 5]	<i>C</i> [2, 6]
3			C[3, 3]	C[3, 4]	<i>C</i> [3, 5]	<i>C</i> [3, 6]
4				C[4, 4]	·C[4, 5]	<i>C</i> [4, 6]
5					C[5, 5]	<i>C</i> [5, 6]
6						<i>C</i> [6, 6]

$$C[1, n] = \min_{1 < k \le n} \{C[1, k - 1] + C[k, n] + r_1 r_k r_n\}$$

$$C[i, j] = \min_{i < k \le j} \{C[i, k - 1] + C[k, j] + r_i r_k r_{j+1}\}, 1 \le i < j \le n$$

	1	2	3	4	5	6
1	<i>C</i> [1, 1]	<i>C</i> [1, 2]	<i>C</i> [1, 3]	<i>C</i> [1, 4]	<i>C</i> [1, 5]	<i>C</i> [1, 6]
2		C[2,2]	C[2,3]	C[2, 4]	C[2,5]	C[2,6]
3			C[3,3]	C[3, 4]	C[3,5]	C[3,6]
4				C[4, 4]	C[4,5]	<i>C</i> [4, 6]
5					C[5,5]	<i>C</i> [5, 6]
6						<i>C</i> [6, 6]

$$C[1, n] = \min_{1 < k \le n} \{C[1, k - 1] + C[k, n] + r_1 r_k r_n\}$$

$$C[i, j] = \min_{i < k \le j} \{C[i, k - 1] + C[k, j] + r_i r_k r_{j+1}\}, 1 \le i < j \le n$$

	1	2	3	4	5	6
1	<i>C</i> [1, 1]	<i>C</i> [1, 2]	<i>C</i> [1, 3]	<i>C</i> [1, 4]	<i>C</i> [1, 5]	<i>C</i> [1, 6]
2		C[2,2]	C[2,3]	C[2, 4]	C[2,5]	<i>C</i> [2, 6]
3			C[3, 3]	<i>C</i> [3, 4]	C[3, 5]	<i>C</i> [3, 6]
4				<i>C</i> [4, 4]	C[4, 5]	<i>C</i> [4, 6]
5					C[5,5]	C[5,6]
6						<i>C</i> [6, 6]

$$C[1, n] = \min_{1 < k \le n} \{C[1, k - 1] + C[k, n] + r_1 r_k r_n\}$$

$$C[i, j] = \min_{i < k \le j} \{C[i, k - 1] + C[k, j] + r_i r_k r_{j+1}\}, 1 \le i < j \le n$$

	1	2	3	4	5	6
1	<i>C</i> [1, 1]	<i>C</i> [1, 2]	<i>C</i> [1, 3]	<i>C</i> [1, 4]	<i>C</i> [1, 5]	<i>C</i> [1, 6]
2		C[2,2]	C[2,3]	C[2,4]	C[2,5]	C[2, 6]
3			C[3, 3]	C[3, 4]	C[3, 5]	C[3,6]
4				C[4,4]	<i>C</i> [4, 5]	<i>C</i> [4, 6]
5					<i>C</i> [5, 5]	<i>C</i> [5, 6]
6						<i>C</i> [6, 6]

$$C[1, n] = \min_{1 < k \le n} \{C[1, k - 1] + C[k, n] + r_1 r_k r_n\}$$

$$C[i, j] = \min_{i < k \le j} \{C[i, k - 1] + C[k, j] + r_i r_k r_{j+1}\}, 1 \le i < j \le n$$

	1	2	3	4	5	6
1	C[1, 1]	C[1, 2]	<i>C</i> [1, 3]	C[1, 4]	<i>C</i> [1, 5]	<i>C</i> [1, 6]
2		C[2,2]	C[2, 3]	C[2, 4]	C[2,5]	C[2,6]
3			C[3, 3]	<i>C</i> [3, 4]	C[3, 5]	C[3,6]
4				C[4, 4]	<i>C</i> [4, 5]	C[4,6]
5					C[5,5]	C[5,6]
6						<i>C</i> [6, 6]

$$C[1, n] = \min_{1 < k \le n} \{C[1, k - 1] + C[k, n] + r_1 r_k r_n\}$$

$$C[i, j] = \min_{i < k \le j} \{C[i, k - 1] + C[k, j] + r_i r_k r_{j+1}\}, 1 \le i < j \le n$$

	1	2	3	4	5	6
1	<i>C</i> [1, 1]	<i>C</i> [1, 2]	<i>C</i> [1, 3]	<i>C</i> [1, 4]	<i>C</i> [1, 5]	<i>C</i> [1, 6]
2		C[2, 2]	C[2,3]	C[2,4]	C[2, 5]	C[2,6]
3			<i>C</i> [3, 3]	C[3,4]	<i>C</i> [3, 5]	<i>C</i> [3, 6]
4		A. F. best Price		<i>C</i> [4, 4]	<i>C</i> [4, 5]	<i>C</i> [4, 6]
5	只有-	一个矩阵	#		<i>C</i> [5, 5]	<i>C</i> [5, 6]
6						<i>C</i> [6, 6]

$$C[1, n] = \min_{1 < k \le n} \{C[1, k - 1] + C[k, n] + r_1 r_k r_n\}$$

$$C[i, j] = \min_{i < k \le j} \{C[i, k - 1] + C[k, j] + r_i r_k r_{j+1}\}, 1 \le i < j \le n$$

	1	2	3	4	5	6	
1	0	C[1,2]	<i>C</i> [1, 3]	C[1,4]	C[1,5]	C[1,6]	d_5
2		θ	C[2,3]	C[2,4]	C[2, 5]	C[2,6]	d_4
3			0.	C[3, 4]	C[3,5]	C[3, 6]	d_3
4			·	· · • · · ·	C[4, 5]	C[4, 6]	d_2
5					θ	C[5,6]	d_1
6						0	d_0

矩阵链相乘动态规划算法

算法MATCHAIN

输入:n个矩阵的链的维数对应于正整数数组r[1...n+1],其中r[1...n]是n个矩阵的行数,

r[n+1]是 M_n 的列数。

输出: n个矩阵相乘的数量乘法的最小次数。

- 1. for i←1 to n \\ 填充对角线 d_0
- 2. $C[i, i] \leftarrow 0$
- 3. end for
- 4. for $d \leftarrow 1$ to n-1 \\ 填充对角线 d_1 到 d_{n-1}
- 5. for i←1to n-d \\ 填充对角线 d_i 的项目
- 6. $j \leftarrow i+d$ \\ 对角线上第 i 行元素的列数
- 7. $C[i,j] \leftarrow \infty$
- 8. for $k \leftarrow i+1$ to j \\ i, j之间的索引
- 9. $C[i, j] \leftarrow \min\{C[i, j], C[i, k-1] + C[k, j] + r[i]r[k]r[j+1]\}$
- 10. end for
- 11. end for
- 12. end for

 $\Theta(n^3)$ 时间

13. return C[1,n]

可基于动态规划思想求解的问题与算法

- 最长公共子序列
- 矩阵链相乘
- 所有点对的最短路径
- 有向图的传递闭包
- 最优二叉查找树问题
- 0/1背包问题

所有点对的最短路径问题

- 输入: 有向图G = (V, E) , 其中每条边 (i, j)有一个非负的长度 I[i, j] ; 如果从顶点 i 到顶点 j 没有边,则 $I[i, j] = \infty$ 。
- 输出:每个顶点到其他所有顶点的距离(从顶点 *i* 到顶点 *j* 的距离是指从 *i* 到 *j* 的最短路径的长度)。
- 性质: i到j的一条经过k的最短路径一定由i到k的一条最短路径和k到j的一条最短路径组成

例:假设 *V* ={1, 2, 3, 4, 5}

可经过的点	路径	最短距离

例:假设 *V* ={1, 2, 3, 4, 5}

可经过的点	路径	最短距离
{1}	1-4	5

例:假设 *V* ={1, 2, 3, 4, 5}

可经过的点	路径	最短距离
{1}	1-4	5
{1, 2}	1-4, 1-2-4	5

例:假设 *V* ={1, 2, 3, 4, 5}

可经过的点	路径	最短距离
{1}	1-4	5
{1, 2}	1-4, 1-2-4	5
{1, 2, 3}	1-4, 1-2-4,	3
	1-3-4	

例:假设 *V* ={1, 2, 3, 4, 5}

可经过的点	路径	最短距离
{1}	1-4	5
{1, 2}	1-4, 1-2-4	5
{1, 2, 3}	1-4, 1-2-4, 1-3-4	3
{1, 2, 3, 4}	1-4, 1-2-4, 1-3-4,	3

例:假设 *V* ={1, 2, 3, 4, 5}

随着可经过的顶点增加,最短路径长度会 加,最短路径长度会 减少或保持不变

可经过的点	路径	最短距离
{1}	1-4	5
{1, 2}	1-4, 1-2-4	5
{1, 2, 3}	1-4, 1-2-4,	3
	1-3-4	
{1, 2, 3, 4}	1-4, 1-2-4,	3
	1-3-4,	
{1, 2, 3, 4, 5}	1-4, 1-2-4,	2
	1-3-4, 1-5-4	

所有点对的最短路径问题

■ 假设 $V=\{1,2,...,n\}$, 设i 和j 是V 中两个不同的顶点。

从 i 到 j 可经过前 k 个点的最短路径

■ 定义 $d_{i,j}^k$ 是从 i 到 j, 并且只经过 { 1, 2, ..., k } 中顶点的最短路径的长度。

 $d_{i,j}^0 = l(i,j)$ $d_{i,j}^n$ 为 顶点 i 到 j 的最短路径的长度

- □如果最短路径不经过 k: $d_{i,j}^k = d_{i,j}^{k-1}$
- □如果最短路径经过k: $d_{i,j}^k = d_{i,k}^{k-1} + d_{k,j}^{k-1}$

动态规划递推式

■ 定义 $d_{i,j}^k$ 是从 i 到 j ,并且只经过 { 1, 2, ..., k } 中顶点的最短路径的长度。

则可递归地计算 $d_{i,j}^k$:

■ Floyd-Warshall算法(1962年分别提出)

Floyd-Warshall算法

```
算法FLOYD
```

```
输入: n \times n维矩阵 l[1...n,1...n], 对应于有向图G=(\{1,2,...,n\},E)中的边(i,j) 的长度为l[i,j]。
```

输出:矩阵D,其中D[i,j]为i到j的距离。

```
1. D \leftarrow l {将输入矩阵 l 复制到D}
```

```
2. for k \leftarrow 1 to n
```

3. for
$$i\leftarrow 1$$
 to n

4. for
$$j\leftarrow 1$$
 to n

5.
$$D[i,j]=\min\{D[i,j],D[i,k]+D[k,j]\}$$

算法的运行时间是 $\Theta(n^3)$.

可基于动态规划思想求解的问题与算法

- 最长公共子序列
- 矩阵链相乘
- 所有点对的最短路径
- 有向图的传递闭包
- 最优二叉查找树问题
- 0/1背包问题

有向图的传递闭包

■ 一个n 顶点有向图的传递闭包可以定义为一个n 阶 布尔矩阵 $T=\{t_{ii}\}$,满足:

如果从第 i 个顶点到第 j 个顶点之间存在一条有 向路径,则矩阵T的第i行($1 \le i \le n$)第j列($1 \le j$ $\leq n$) 的元素为 1, 即 $t_{ii}=1$; 否则, t_{ii} 为 0。

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad T = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

传递闭包

计算有向图的传递闭包

■ 一个n 顶点有向图的传递闭包可以定义为一个n 阶 布尔矩阵 $T=\{t_{ii}\}$,满足:

如果从第i个顶点到第j个顶点之间存在一条有向路径,则矩阵T的第i行($1 \le i \le n$)第j列($1 \le j \le n$)的元素为 1,即 $t_{ij} = 1$;否则, t_{ij} 为 0。

- 可以通过深度优先查找和广度优先查找生成有向图的传递闭包。
- 从顶点 *i*为 起始点都能访问到可达的所有顶点,从 而传递闭包的第 *i* 行的相应列置为 1。
- 但对同一个有向图遍历了多次(需以每个顶点为起点做一次遍历)。

- 1962年,由史蒂芬.沃舍尔(S. Warshall)提出
 - □ 算法思想与所有点对的最短路径的Floyd-Warshall 算法类似

设有向图 G的个顶为 1, 2, ..., n,对任意两个顶点 i, j,从顶点 i 到顶点 j 有向路径 ρ ,可以有以下情况:

- · ρ 不经过中间顶点,即 ρ 是从 i到 j 的边;
- · ρ 的中间顶点仅为 $\{1, 2, ..., k\}$ 中的顶点, k=1, 2, ..., n

■ 定义n行n列的矩阵 $R^{(k)} = (r_{ij}^{(k)})_{n \times n}$ 满足:

 $r_{ij}^{(k)} = 1$ 当且仅当从顶点 i到顶点 j存在一条长度大于0的有向路径且路径的每一个中间顶点的编号不大于k。

- $\square R^{(0)}$ 就是有向图 G 的邻接矩阵。
- □ R⁽¹⁾包含允许使用顶点 1作为中间顶点的路径信息
- □ *R*⁽²⁾包含允许使用顶点 1, 2 作为中间顶点的路径 信息
- $\square R^{(k)}$ 包含允许使用顶点 1, 2, ..., k 作为中间顶点的路径信息, k=1,2,...,n
- \square $R^{(n)}$ 即为有向图 G 的传递闭包。

■ Warshall算法通过一系列 n 阶布尔矩阵来构造一个 给定的 n 个顶点有向图的传递闭包:

$$R^{(0)}, ..., R^{(k-1)}, R^{(k)}, ..., R^{(n)}$$

 $r_{ij}^{(k)}=1 \Leftrightarrow$ 存在一条从顶点 i 到顶点 j 的路径,且路径中每一个中间顶点的编号都不大于 k 两种情况:

- (1) 存在顶点 i 到顶点 j 的一条路径,且每个中间顶点的编号都不大于 k-1: $r_{ij}^{(k-1)}=1$,或者
- (2) 顶点i到顶点j的路径的中间顶点的确包含顶点k:

$$r_{ik}^{(k-1)} = 1 \perp r_{kj}^{(k-1)} = 1$$

■ 如何从矩阵 $R^{(k-1)}$ 的元素生成矩阵 $R^{(k-1)}$ 的元素?

$$r_{ij}^{(k-1)}$$
=1 当且仅当 $r_{ij}^{(k-1)}$ =1, 或 $r_{ik}^{(k-1)}$ =1且 $r_{kj}^{(k-1)}$ =1 得 $r_{ij}^{(k-1)}$ = $r_{ij}^{(k-1)} \lor (r_{ik}^{(k-1)} \land r_{kj}^{(k-1)})$

- 规则:
 - □ 如果一个元素 r_{ij} 在 $R^{(k-1)}$ 中是1,它在 $R^{(k)}$ 中仍然是1。
 - □如果一个元素 r_{ij} 在 $R^{(k-1)}$ 中是 0,它在 $R^{(k)}$ 中为 1当 且仅当矩阵中第 i 行第 k列的元素和第 k行第 j列的元素都是1。

```
//输入: n个顶点有向图的邻接矩阵A
//输出:该有向图的传递闭包
R^{(0)} \leftarrow A
for k \leftarrow 1 to n do
   for i \leftarrow 1 to n do
        for i\leftarrow 1 to n do
           R^{(k)}[i,j] \leftarrow R^{k-1}[i,j] \text{ or } R^{k-1}[i,k] \text{ and } R^{k-1}[k,j]
return R^{(n)}
```

Θ(n³); sparse graph? DFS? BFS? 比特串,位操作语句

可基于动态规划思想求解的问题与算法

- 最长公共子序列
- 矩阵链相乘
- 所有点对的最短路径
- 有向图的传递闭包
- 最优二叉查找树问题
- 0/1背包问题

二叉查找树

- 二叉查找树 T 是一棵二叉树,且满足:对T 的任意一个顶点 x
 - □ x 的键值一定大于其左树中任一顶点的键值
 - □ x 的键值一定小于其右树中任一顶点的键值

最优二叉查找树问题

- 输入: 从小到大排列的互不相等的键 $a_1,...a_n$,其查找概率分别为 $p_1,...,p_n$ 。
- 输出:由键 $a_1,...a_n$ 构成的最优二叉查找树 T_1^n ,即在查找中的平均键值比较次数最低。

例:分别以概率 0.1, 0.2, 0.4, 0.3来查找4个键 a, b, c, d

平均键值比较次数为: 0.1×1+0.2× 2+ 0.4×3+0.3× 4

=2.9

平均键值比较次数为:

$$0.1 \times 2 + 0.2 \times 1 + 0.4 \times 2 + 0.3 \times 3$$

最优二叉查找树:穷举法

- 穷举法不现实
 - □包含 *n*个键的二叉查找树的总数量等于第*n*个 Catalan数

$$C(n) = \frac{1}{n+1} {2n \choose n}, C(0) = 0$$

□以4ⁿ/n^{1.5}的速度逼近无穷大。

1	2	3	4	5	6	7	8	9	10
1	2	5	14	42	132	429	1430	4682	16796

最优二叉查找树: 递推式

- 穷举法不现实
 - □ 包含 *n*个键的二叉查找树的总数量等于第*n*个Catalan数

$$C(n) = \frac{1}{n+1} {2n \choose n}, C(n) = 0$$

□ 以4ⁿ/n^{1.5}的速度逼近无穷大。

(1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796...)

以 a_k 为根的二叉查找树 a_k $a_{k+1}, \dots a_n$ 的最优二 a_k 的最优二 a_k a_k a

- 设 T_i^l 是由键 $a_i, ..., a_j$ 构成的二叉树,C[i,j]是在这棵树中成功查找的最小的平均查找次数, $1 \le i \le j \le n$.
 - $\Box T_1^n$ 是键 $a_1,...a_n$ 构成的最优二叉查找树
 - \square C[1,n] 是 T_1^n 中成功查找的最小的平均查找次数

需考虑从键 a_i , ..., a_j 中选择一个根 a_k 的所有可能的方法

■ 令根节点 a_k 的层数为 0,有下列递推关系式:

设 α_s 为 a_s 在 T_i^{k-1} 中的层数, β_s 为 a_s 在 T_{k+1}^{l} 中的层数。

$$C(i,j) = \min_{i \le k \le j} \{ p_k \times 1 + \sum_{s=i}^{k-1} p_s (\alpha_s + 1) \}$$

$$+\sum_{s=k+1}^{j}p_{s}(\boldsymbol{eta}_{s}+\mathbf{1})$$

■ 令根节点 a_k 的层数为 0,有下列递推关系式:

设 α_s 为 a_s 在 T_i^{k-1} 中的层数, β_s 为 a_s 在 T_{k+1}^{j} 中的层数)

$$C(i,j) = \min_{i \le k \le j} \{ p_k \times 1 + \sum_{s=i}^{k-1} p_s (\alpha_s + 1) + \sum_{s=k+1}^{j} p_s (\beta_s + 1) \}$$

$$= \min_{i \le k \le j} \{ \sum_{s=i}^{k-1} p_s \alpha_s + \sum_{s=k+1}^{j} p_s \beta_s + \sum_{s=i}^{j} p_s \}$$

$$= \min_{i \le k \le j} \{ C(i, k - 1) + C(k + 1, j) \} + \sum_{s=i}^{j} p_s$$

因此,有下列递归式: 当 $1 \le i \le j \le n$ 时,

$$C(i,j) = \min_{i \le k \le j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s$$

因此,有下列递归式: 当 $1 \le i \le j \le n$ 时, $C(i,j) = \min_{i \le k \le j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$

- □ 假设 $1 \le i \le n+1$ 时, C[i, i-1]=0 此时,为空树的比较次数。
- □ 当 $1 \le i \le n$ 时, $C[i, i] = p_i$ 此时,为包含 a_i 的单节点二叉树。

最优二叉查找树-算法

```
算法OptimalBST(P[1..n])
输入:一个n个键的有序列表的查找概率数组P[1..n]
输出:最优BST中成功查找的平均比较次数,以及最优BST中子树的根表 R
for i \leftarrow 1 to n do
    C[i, i-1] \leftarrow 0
    C[i,i] \leftarrow P[i]
    R[i,i] \leftarrow i
C[n+1,n] \leftarrow 0
                                                                      O(n^3)
for d←1 to n-1 do //对角线计数
    for i \leftarrow 1 to n - d do
       j←i+d
       minval \leftarrow \infty
       for k \leftarrow i to j do
           if C[i, k-1] + C[k+1, j] < minval
                minval \leftarrow C[i,k-1] + C[k+1,j]; kmin \leftarrow k
           R[i,j] \leftarrow kmin
           sum \leftarrow P[i];
           for s \leftarrow i+1 to j do sum \leftarrow sum + P[s]
           C[i,j] \leftarrow minval + sum
return C[1,n], R
```

$$C(i,j) = \min_{i \le k \le j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$$

	0	1	• • •	<i>i</i> -1	i	<i>j</i> -1	$oldsymbol{j}$	•••	n
1	0	p_1							C(1, n)
		0							
<i>i</i> -1				p_{i-1}					
i									
i+1									
\mathbf{j}									
j+1									
n									p_n
n+1									0

Ֆ∩ն

$$C(i,j) = \min_{i \le k \le j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$$

	0	1	•••	<i>i</i> -1	i		<i>j</i> -1	\boldsymbol{j}	•••	n
1	0	p_1								C(1,n)
		0								
<i>i</i> -1				p_{i-1}						
i				C(i, i-1)	C(i, i)		C(i,j-1)	C(i,j)		
i+1								C(i+1,j)		
							7			
\mathbf{j}		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	 	• =====================================	• /- /)		1.7	C(j,j)		
j +1 $\Big $,j)需要 列的值以		_		C(j+1,j)		
				下边的行						
n										p_n
n+1										$oxed{0}$

$$C(i,j) = \min_{i \le k \le j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$$

_	0	1	• • •	<i>i</i> -1	i		<i>j</i> -1	$oldsymbol{j}$	• • •	n
1	0	p_1								C(1, n)
		0								
<i>i</i> -1				p_{i-1}						
i				C(i, i-1)	C(i, i)		C(i,j-1)	C(i,j)		
i+1				†	1	1	1	C(i+1,j)		
						+	-			
\mathbf{j}							—	C(j,j)		
j+ 1								C(j+1,j)		
n										p_n
n+1										0

举例说明
$$C(i,j) = \min_{i \le k \le j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$$

键	a	b	c	d
查找概率	0.1	0.2	0.4	0.3

主表

3

0 0.1 0.2 0 0.4 0

4		0	0.3
5			0

根表

	0	1	2	3	4
1		1			
2			2		
3				3	
4					4
5					

$$k=1: C(1, 0)+C(2,3)+p_1+p_2=0+0.2+0.1+0.2=0.5$$

$$k=2: C(1, 1)+C(3,2)+p_1+p_2=0.1+0+0.1+0.2=0.4$$

$$C(1, 2) = \min\{0.5, 0.4\} = 0.4$$

举例说明
$$C(i,j) = \min_{i \le k \le j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$$

键	a	b	c	d
查找概率	0.1	0.2	0.4	0.3

主表

0.1 0.4 0.2 0.4

0.3

根表

$$k=2: C(2, 1)+C(3, 3)+p_2+p_3=0+0.4+0.2+0.4=1.0$$

$$k=3: C(2, 2)+C(4,3)+p_2+p_3=0.2+0+0.2+0.4=0.8$$

$$C(2, 3) = \min\{1.0, 0.8\} = 0.8$$

举例说明
$$C(i,j) = \min_{i \leq k \leq j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$$

键	a	b	c	d
查找概率	0.1	0.2	0.4	0.3

主表

0 0.1 0.4 $0.2 \mid 0.8$ 0

J		V	V•T	
4			0	0.3
5				0

根表

	0	1	2	3	4
1		1	2		
2			2	3	
3				3	
4					4
5					

$$k=2: C(2, 1)+C(3, 3)+p_2+p_3=0+0.4+0.2+0.4=1.0$$

$$k=3: C(2,2)+C(4,3)+p_2+p_3=0.2+0+0.2+0.4=0.8$$

$$C(2, 3) = \min\{1.0, 0.8\} = 0.8$$

举例说明
$$C(i,j) = \min_{i \le k \le j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$$

键	a	b	c	d
查找概率	0.1	0.2	0.4	0.3

主表

0	1	2	3	4

根表

	0	1	2	3	4
1		1	2		
2			2	3	
3				3	3
4					4
5					

$$k=1: C(1, 0)+C(2, 3)+p_1+p_2+p_3=0+0.8+0.1+0.2+0.4=1.5$$

$$k=2: C(3, 1)+C(3,3)+p_1+p_2+p_3=0.1+0.4+0.1+0.2+0.4=1.2$$

$$k=3: C(1, 2)+C(4,3)+p_1+p_2+p_3=0.4+0+0.1+0.2+0.4=1.1$$

举例说明
$$C(i,j) = \min_{i \le k \le j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$$

键	a	b	c	d
查找概率	0.1	0.2	0.4	0.3

主表

0.1 0.4 | 1.1 $0.2 \mid 0.8$

0.4 1.0

0.3

 根表

 $k=1: C(1, 0)+C(2, 3)+p_1+p_2+p_3=0+0.8+0.1+0.2+0.4=1.5$

 $k=2: C(3, 1)+C(3,3)+p_1+p_2+p_3=0.1+0.4+0.1+0.2+0.4=1.2$

 $k=3: C(1, 2)+C(4,3)+p_1+p_2+p_3=0.4+0+0.1+0.2+0.4=1.1$

举例说明
$$C(i,j) = \min_{i \le k \le j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$$

键	a	b	c	d
查找概率	0.1	0.2	0.4	0.3

主表

0.1 0.4 | 1.1

0.2 | 0.8 |

0.4 1.0

0.3

 根表

分别以概率 0.1, 0.2, 0.4, 0.3来查找4个键 a, b, c, d 的最优二叉树的平均键值比较次数等于 1.7

举例说明
$$C(i,j) = \min_{i \leq k \leq j} \{C(i,k-1) + C(k+1,j)\} + \sum_{s=i}^{j} p_s\}$$

键	a	b	c	d
查找概率	0.1	0.2	0.4	0.3

根表

	0	1	2	3	4
1		1	2	3	3
2			2	3	3
3				3	3
4					4
5					

R(1,4)=3, R(1,2)=2, R(4,4)=4

可基于动态规划思想求解的问题与算法

- 最长公共子序列
- 矩阵链相乘
- 所有点对的最短路径
- 有向图的传递闭包
- 最优二叉查找树问题
- 0/1背包问题

0/1 背包问题

- 输入: n 项物品的集合 $U=\{u_1,u_2,...,u_n\}$,其中物品 u_j 的体积为 s_j ,价值为 v_j ($1 \le j \le n$),以及背包容量 C。
- 输出: 物品子集 $S \subseteq U$,满足 S 中的物品的总体积不超过 C,即 $\sum_{u_i \in S} s_j \leq C$,且总价值 $\sum_{u_i \in S} v_j$ 最大。

设有 n 项物品的集合 $U=\{u_1,u_2,...,u_n\}$,其中物品 u_j 的体积为 s_j ,价值为 v_j ($1 \le j \le n$),以及背包容量 C

- V[i,j]: 从前 i 项 $\{u_1, u_2, ..., u_i\}$ 中取出来的装入体积为j 的背包的物品的最大价值, $0 \le i \le n$, $0 \le j \le C$
 - □要寻求的是值V[n, C]。
 - □ V[0,j]=0: 当背包中没有物品, $0 \le j \le C$
 - $\Box V[i, 0] = 0$: 没有物品可放到容积为0的背包里,

$$0 \le i \le n$$

设有 n 项物品的集合 $U=\{u_1,u_2,...,u_n\}$,其中物品 u_j 的体积为 s_i ,价值为 v_i ($1 \le j \le n$),以及背包容量 C

- V[i,j]: 从前 i 项 $\{u_1, u_2, ..., u_i\}$ 中取出来的装入体积为j 的背包的物品的最大价值, $0 \le i \le n$, $0 \le j \le C$
 - □ 当 *i* 和 *j* 都大于0时

设有 n 项物品的集合 $U=\{u_1,u_2,...,u_n\}$,其中物品 u_j 的体积为 s_i ,价值为 v_i ($1 \le j \le n$),以及背包容量 C

- V[i,j]: 从前 i 项 $\{u_1, u_2, ..., u_i\}$ 中取出来的装入体积为j 的背包的物品的最大价值, $0 \le i \le n$, $0 \le j \le C$ □ 当 i 和 j 都大于0时,分为两种情况:
- V[i-1, j]: { u_1 , u_2 , ..., u_{i-1} }的物品去装入体积为 j 的背包所得到的价值最大值;
- $V[i-1,j-s_i]+v_i$: $\{u_1,u_2,...,u_{i-1}\}$ 的物品去装入体积为 $j-s_i$ 的背包所得到的价值最大值加上物品 u_i 的价值。

取两者最大值: $V[i,j]=\max\{V[i-1,j],V[i-1,j-s_i]+v_i\}$

■ 得递推式:

- ■用动态规划来求解。
 - □用一个(n+1)×(C+1)的表来计算V[i,j]的值,只需利用上面的公式逐行地填表V[0...n,0...C]即可。

0/1 背包问题

算法KNAPSACK

输入: 物品集合 $U=\{u_1, u_2, ..., u_n\}$,体积分别为 $v_1, v_2, ..., v_n$,容量为C的背包。

输出: $\sum_{u_j \in S} v_j$ 的最大总价值,且满足 $\sum_{u_j \in S} s_j \leq C$,其中 $S \subseteq U$ 。

```
1. for i \leftarrow 0 to n
```

2.
$$V[i, 0] \leftarrow 0$$

3. for
$$j \leftarrow 0$$
 to C

$$4. \qquad V[0,j] \leftarrow 0$$

5. for $i \leftarrow 1$ to n

6. for
$$j \leftarrow 1$$
 to C

7.
$$V[i,j] \leftarrow V[i-1,j]$$

8. if
$$s_i \le j$$
 then $V[i,j] \leftarrow \text{Max}\{V[i,j],V[i-1,j-s_i]+v_i\}$

9. return V[n, C]

伪多项式时间 算法

 $\Theta(nC)$

总结

- 多阶段决策问题
- 动态规划的最优性定理与最优性原理
- 动态规划的递推关系式
- 重复子问题与最优子问题结构