МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ

по лабораторной работе №1.13 «Изучение прецессии гироскопа»

> Выполнил: Хороших Дмитрий - Р3217 Преподаватель: Хуснутдинова Наира Рустемовна

Содержание

1	Введение	3
2	Результаты измерений и их обработка	4
3	Вывод	6
4	Приложение	6

1. Введение

1. Цель работы:

Пронаблюдать прецессии гироскопа. Экспериментально подтвердить линейную зависимость периода прецессии гироскопа от частоты вращения гироскопа вокруг оси симметрии. Экспериментально определить момент инерции гироскопа.

2. Задачи:

- 1. Измерить период прецессии гироскопа.
- 2. Измерить частоту вращения гироскопа вокруг своей оси.
- 3. Рассчитать момент инерции гироскопа относительно оси вра- щения, используя данные полученные в ходе экперимента. Сравнить полученный результат с моментом инерции гироскопа, рассчитанным теоретически.

3. Объект исследования:

Установка с гироскопом.

4. Схема установки:

Рис. 1.1: Гироскоп

Параметры гироскопа: масса маховика (m): 1.5 кг; радиус маховика (R): 12.5 см; расстояние от точки опоры оси вращения до места крепления дополнительных грузов (l): 22.5 см.

5. Метод экспериментального исследования:

Многократный прямой замер периодов прецессии и частоты вращения маховика.

6. Рабочие формулы:

Связь периода прецессии с частотой вращения маховика:

$$T_{\rm np} = \frac{2\pi I}{mgl} \omega_{\rm cp} \tag{1}$$

Теоретический момент инерции гироскопа:

$$I_{\text{reop}} = \frac{mR^2}{2} \tag{2}$$

7. Измерительные приборы:

N_0 п/п	Наименование	Тип	Используемый диапазон	Погрешность приб.
1	Тахометр	Электронный	0 - 9999 RPM	1 RPM
2	Секундомер	Электронный	0 - 9999 с	0.01 c
3	Весы	Электронный	0 - 999 г.	0.01 г.

2. Результаты измерений и их обработка

Несколько раз измерим периоды прецессии и частоты вращения маховика для каждого набора грузов (от 1-го до 3-х). Рассчитаем среднюю частоту в ходе прецессии для каждого замера.

m, г	ω_1 , об./мин	ω_2 , об./мин	$\omega_{ m cp},{ m of./}$ мин	$T_{\rm np}, { m c}$
	525.70	472.00	498.85	29.23
	401.80	375.40	388.60	23.43
$m_0 + 1 \cdot m_1$	552.50	506.10	529.30	31.68
	402.30	374.20	388.25	23.42
	354.60	327.80	341.20	21.60
	565.40	523.70	544.55	17.78
$m_0+2\cdotm_1$	599.10	562.90	581.00	18.45
	413.10	393.80	403.45	12.98
	360.30	349.00	354.65	11.80
	513.60	492.80	503.20	16.28
$m_0 + 3 \cdot m_1$	499.10	477.30	488.20	9.38
	589.00	562.40	575.70	12.30
	450.30	430.60	440.45	9.51
	469.60	450.00	459.80	10.33
	561.60	531.80	546.70	11.58

Таблица 1: Результаты прямых измерений частот маховика и периода прецессии.

Построим графики экспериментальной зависимости периода прецессии гироскопа от частоты вращения его маховика для каждого набора грузов.

Рис. 2.1: Графики зависимости периодов прецессии от средней частоты вращения маховика для различных наборов грузов.

Воспользовавшись методом наименьших квадратов найдём угловые коэффициенты $A=\frac{2\pi I}{mgl}$ с учётом погрешности:

$$A_{1 \text{ rpy3}} \approx 0.574 \pm 0.013 (\varepsilon = 2.3\%)$$

$$A_{2 \text{ rpy3a}} \approx 0.309 \pm 0.004 (\varepsilon = 1.4\%)$$

$$A_{3 \ {
m rpy3a}} pprox 0.202 \pm 0.010 (arepsilon = 4.8\%)$$

По полученным коэффициентам рассчитаем экспериментальные значения момента инерции ($I_{\text{эксп}}$):

$$I_{\text{эксп 1}} \approx 0.01089 \pm 0.00025 (\varepsilon = 2.3\%), \text{ kg} \cdot \text{m}^2$$

 $I_{\text{эксп 2}} \approx 0.01129 \pm 0.00016 (\varepsilon = 1.4\%), \text{ kg} \cdot \text{m}^2$
 $I_{\text{эксп 3}} \approx 0.01093 \pm 0.00053 (\varepsilon = 4.8\%), \text{ kg} \cdot \text{m}^2$

Таким образом, среднее экспериментальное значение момента инерции:

$$I_{\text{эксп}} \approx 0.01104 \pm 0.00031 (\varepsilon = 2.8\%), \text{ кг} \cdot \text{м}^2$$

Рассчитаем также теоретическое значение момента инерции:

$$I_{\text{reop}} = \frac{mR^2}{2} = 0.01172, \, \text{kg} \cdot \text{m}^2$$

Абсолютное отклонение экспериментального значения от теоретического в таком случае составляет:

$$|I_{\text{эксп}} - I_{\text{теор}}| = 0.00068, \, \text{kg} \cdot \text{m}^2$$

3. Вывод

Таким образом, в ходе выполнения лабораторной работы удалось, измерив угловые скорости маховика и периоды прецесси для различных моментов силы:

1. Вычислить теоретическое и экспериментальное значения момента инерции гироскопа:

$$I_{\text{эксп}}\approx 0.01104\pm 0.00031,\ \text{kg}\cdot\text{m}$$

$$I_{\text{teop}}=\frac{mR^2}{2}=0.01172,\ \text{kg}\cdot\text{m}$$

При этом полученные значения оказались весьма близки, отличаясь друг от друга по абсолютному значению $|I_{\text{эксп}} - I_{\text{теор}}|$ на 0.00068, то есть менее чем на 6% (от теоретического).

- 2. Экспериментально подтвердить линейную зависимость периода прецессии гироскопа от частоты вращения гироскопа вокруг оси симметрии.
- 3. Проверить, что при увеличении момента силы, оказываемое на гироскоп, происходит уменьшение периода прецессии, а при увеличении частоты вращения маховика период увеличивается.

4. Приложение

Проект этой лабораторной работы, содержащий файлы с Python-кодом, использованным для вычислений и исходные TeX-файлы доступен по - ссылке.