Карточка – информатор Арксинус, арккосинус, арктангенс

Сформируем важное утверждение, которым удобно пользоваться при решении уравнений.

 $Teopema\ 1.$ (о корне) Пусть функция f возрастает (или убывает) на промежутке I, а число a – любое из значений, принимаемых f на этом промежутке. Тогда уравнение

f(x) = a имеет единственный корень в промежутке I.

Исходя из теоремы о корне можно дать следующее определения: арксинусу, арккосинусу и арктангенсу.

Определение 1. Арксинусом числа a называется такое число из отрезка $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$, синус которого равен a.

Определение 2. Арккосинусом числа a называется такое число из отрезка $[0; \pi]$, косинус которого равен a.

Определение 3. Арктангенсом числа a называется такое число из промежутка $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$, тангенс которого равен a.

Определение 4. Арккотангенсом числа a называется такое число из промежутка $[0; \pi]$, котангенс которого равен a.

Утверждение 1. Для любых чисел x_1 и x_2 из отрезка [-1;1] из неравенства $x_1 < x_2$ следует:

- a) $\arcsin x_1 < \arcsin x_2$;
- δ) arccos $x_1 > \arccos x_2$.

Утверждение 2. Для любых чисел x_1 и x_2 из неравенства $x_1 < x_2$ следует:

- a) arctg $x_1 < \arctan x_2$;
- б) arcctg $x_1 >$ arcctg x_2 .

Карточка – информатор Арксинус, арккосинус, арктангенс

Используя таблицу значений тригонометрических функций, свойства функции и теорему о корне, можно составить таблицу, которая будет помогать при нахождении арксинуса, арккосинуса, арктангенса и арккотангенса (учитывая, конечно, их определения)

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	- 1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos α	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tg α	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	1	$-\sqrt{3}$	- 1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0
ctg α	-	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	- 1	$-\sqrt{3}$	1	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	- 1	$-\sqrt{3}$	-
α*	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π				$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0

Теперь для нахождения арксинуса, арккосинуса, арктангенса и арккотангенса будем использовать α *

<u>Пример 1.</u> Найти значение arcsin $\left(-\frac{\sqrt{2}}{2}\right)$

РЕШЕНИЕ – АЛГОРИТМ

- 1) Так как надо найти arcsin, то в строчке $\sin \alpha$ находим заштрихованное (выделенное) значение $-\frac{\sqrt{2}}{2}$.
- 2) В том же столбце смотрим α^* и получаем: arcsin $(-\frac{\sqrt{2}}{2}) = -\frac{\pi}{4}$ Ответ: $-\frac{\pi}{4}$.

<u>Пример 2.</u> Найти значение $\left(-\frac{1}{2}\right)$

РЕШЕНИЕ – АЛГОРИТМ

1) В строчке $\cos \alpha$ находим заштрихованное (выделенное) значение $-\frac{1}{2}$

2) В том же столбце смотрим
$$\alpha^*$$
 и получаем: arccos $(-\frac{1}{2}) = \frac{2\pi}{3}$

Otbet: $\frac{2\pi}{3}$.

<u>Пример 3.</u> Найти значение выражения: $arctg1 + arcctg(-\sqrt{3})$

РЕШЕНИЕ – АЛГОРИТМ

- Найдем arctg1
 - а) В строчке $tg \alpha$ находим заштрихованное значение 1.
 - б) В том же столбце смотрим α *и получаем: arctg1 = $\frac{\pi}{4}$
- 2) Найдем arcctg $(-\sqrt{3})$
 - а) В строчке ctg α находим заштрихованное значение $-\sqrt{3}$.
 - б) В том же столбце смотрим α^* и получаем: arcctg $(-\sqrt{3}) = \frac{5\pi}{6}$
- 3) Вычисляем значение выражения $\arctan 1 + \arctan (-\sqrt{3}) = \frac{\pi}{4} + \frac{5\pi}{6} =$

$$\frac{\pi \cdot 6 + 5\pi \cdot 4}{4 \cdot 6} = \frac{6\pi + 20\pi}{24} = \frac{26\pi}{24} = \frac{13 \cdot 2\pi}{12 \cdot 2} = \frac{13\pi}{12}$$
Other: $\frac{13\pi}{12}$

<u>Пример 4.</u> Сравнение числа: $\arcsin (-1)$ и $\arccos \frac{\sqrt{2}}{2}$

РЕШЕНИЕ – АЛГОРИТМ

- 1) Найдем arcsin (-1) (смотри пример 1)
- 2) Найдем $\arccos \frac{\sqrt{2}}{2}$ (смотри пример 2)
- 3) Сравним $-\frac{\pi}{2}$ и $\frac{\pi}{4}$; $-\frac{\pi}{2} < \frac{\pi}{4}$, отсюда получаем $\arcsin{(-1)} < \arccos{\frac{\sqrt{2}}{2}}$

Otbet: $\arcsin(-1) < \arccos \frac{\sqrt{2}}{2}$

Пример 5. Вычислите 2 $\arcsin \frac{\sqrt{2}}{2} + 4 \arccos (-1) - 5 \arctan (-\sqrt{3})$.

РЕШЕНИЕ – АЛГОРИТМ

1) Найдем 2
$$\arcsin \frac{\sqrt{2}}{2}$$
; $\arcsin \frac{\sqrt{2}}{2} = \frac{\pi}{4}$; 2 $\arcsin \frac{\sqrt{2}}{2} = 2\frac{\pi}{4} = \frac{\pi}{2}$

2) Найдем 4 arccos (-1); arccos (-1) = π ; 4 arccos (-1) = 4π

3) Найдём 5 arctg
$$(-\sqrt{3})$$
; arctg $(-\sqrt{3}) = -\frac{\pi}{3}$; 5 arctg $(-\sqrt{3}) = 5 \cdot (-\frac{\pi}{3}) = \frac{5}{3} \cdot (-\frac{\pi}{3}) = -\frac{5\pi}{3}$

4)
$$2 \arcsin \frac{\sqrt{2}}{2} + 4 \arccos (-1) - 5 \arctan (-\sqrt{3}) = \frac{\pi}{2} + 4\pi - (-\frac{5\pi}{3}) = \frac{\pi}{2} + \frac{4\pi}{1} + \frac{5\pi}{3} = \frac{3\pi + 24\pi + 10\pi}{6} = \frac{37\pi}{6}$$

Ответ: $\frac{37\pi}{6}$

Пример 6. Расположите числа в порядке возрастания:

- a) $\arcsin \frac{\pi}{6}$; $\arcsin (-0.3)$; $\sin \alpha$
- 6) arcetg (-7); arcetg (-2,5); arctg 1,4

РЕШЕНИЕ – АЛГОРИТМ

а) используя утверждение 1a (см. карточку-информатор) $\frac{\pi}{6} \approx \frac{3}{6} = 0.5$

сравним 0,5; -0,3 и 0,9, получим -0,3 < 0,5 < 0,9 , а значит

 $\arcsin(-0.3) < \arcsin 0.5 < \arcsin 0.9$

$$\arcsin(-0.3) < \arcsin\frac{\pi}{6} < \arcsin 0.9$$

б) используя утверждение 1б (см. карточку-информатор)

сравним -7; -2,5; 1,4, получим -7 < - 2,5 < 1,4, а значит

$$arcctg(-7) > arcctg(-2.5) > arctg(1.4)$$

Так как по условию числа надо расположить в порядке возрастания, то arctg 1,4 < arcctg(-2,5) < arcctg(-7)

Инструкция по самоконтролю

- 1) Таблица значений тригонометрических функций.
- 2) Теорема о корне.
- 3) Определение арксинуса, арккосинуса, арктангенса и арккотангенса.
- 4) Для каких чисел определен арксинус, арккосинус, арктангенс и арккотангенс.
- 5) Уметь находить значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Карточка – тренажер Арксинус, арккосинус, арктангенс

1. Вычислите:

a)
$$\arcsin 0$$
; б) $\arcsin(-\frac{\sqrt{3}}{2})$; B) $\arccos(-\frac{\sqrt{2}}{2})$; г) $\arccos 1$; д) $\arccos(-\sqrt{3})$;

e)
$$\arctan \frac{1}{\sqrt{3}}$$
; ж) $\arctan (-\sqrt{3})$; з) $\arctan \frac{1}{\sqrt{3}}$

Ответы: a) 0; б)
$$-\frac{\pi}{3}$$
; в) $\frac{3\pi}{4}$; г) 0; д) $\frac{5\pi}{6}$; е) $\frac{\pi}{6}$; ж) $-\frac{\pi}{3}$; з) $\frac{\pi}{3}$.

2. Найдите значение выражения.

a)
$$arctg 0 + arccos (-1);$$

6) arcctg
$$\left(-\frac{1}{\sqrt{3}}\right)$$
 - arctg $\left(-\sqrt{3}\right)$;

B)
$$\arcsin\left(-\frac{1}{2}\right) + \arccos\frac{1}{2}$$
.

Ответы: a) π ; б) π ; в) $\frac{\pi}{6}$.

3. Сравните числа:

a)
$$\arcsin \frac{\sqrt{2}}{2}$$
 и $\operatorname{arctg} \sqrt{3}$;

б) arccos
$$\frac{1}{2}$$
 и arcctg 1;

в)
$$\arcsin (-\frac{1}{2})$$
 и $\arctan (-1)$;

$$\Gamma$$
) arccos $\frac{1}{2}$ и arcsin $\frac{\sqrt{3}}{2}$.

Ответы: a)
$$\arcsin \frac{\sqrt{2}}{2} < \arctan \sqrt{3}$$
; б) $\arccos \frac{1}{2} > \arctan 3$;

B)
$$\arcsin(-\frac{1}{2}) > \arctan(-1); \quad \Gamma) \arccos \frac{1}{2} = \arcsin \frac{\sqrt{3}}{2}$$
.

4. Вычислите значение выражения.

a) 2
$$\arcsin \frac{1}{2} + 4 \arccos(-\frac{1}{2}) + \arctan 1$$
;

6)
$$-3\arctan(-\sqrt{3}) + \arctan\sqrt{3} - \arcsin\frac{1}{2}$$
;

B)
$$2 \arccos \frac{1}{2} + \arctan(-\frac{1}{\sqrt{3}}) + \arcsin(-\frac{\sqrt{2}}{2})$$
.

Ответы: a)
$$\frac{13\pi}{4}$$
; б) π ; в) $\frac{\pi}{4}$.

5. Расположите числа в порядке убывания.

- a) $\arccos 0.2$; $\arccos \pi$; $\arccos 1.8$; $\arccos (-2)$;
- δ) arcctg 1,8; arcctg $\frac{\pi}{2}$; arcctg (-0,2); arcctg (-1,2).

Ответы: a) arccos(-2); arccos(0,2); arccos(1,8); $arccos(\pi)$

б) arcctg (-1,2); arcctg (-0,2); arcctg $\frac{\pi}{2}$; arcctg 1,8.

6. Вычислите:

- a) $\cos(\arcsin\frac{1}{2})$;
- δ) tg (arccos $\frac{\sqrt{3}}{2}$);
- B) tg (arcctg $(-\sqrt{3})$).

Ответы: a) $\frac{\sqrt{3}}{2}$; б $\frac{1}{\sqrt{3}}$; в) - $\frac{1}{\sqrt{3}}$.

Карточка с программным обучением

Арксинус, арккосинус, арктангенс

2000000	Ответы										
Задание	A	Б	В	Γ							
Вариант 1.											
1.Арксинусом числа а	OTPANICA	отрезка	интервала	интервала							
называется такое число из,	отрезка	$\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$	$\left(\begin{array}{c}1\\0;\frac{\pi}{2}\end{array}\right)$	$\left(-\frac{\pi}{2};0\right)$							
синус которого равен а.	$[0;\pi]$	$\begin{bmatrix} 1 & \overline{2}' & \overline{2} \end{bmatrix}$	2	$\left(\frac{1}{2},0\right)$							
2. Арккотангенсом числа <i>а</i>	отрезка	интервала	интервала	отрезка							
называется такое число из,	$\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$	$\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$	(0;π)	$\left[-\frac{\pi}{2};\ \pi\right]$							
котангенс которого равен a .	$\begin{bmatrix} 1 & \overline{2}, \overline{2} \end{bmatrix}$	2 2	(0,11)	$\left[\begin{array}{cc} \overline{2}, & n \end{array}\right]$							
3. Вычислите: arccos (-0,5)	$-\frac{2\pi}{-}$	$\frac{\pi}{6}$	$-\frac{\pi}{6}$	$\frac{2\pi}{2\pi}$							
	$\frac{3}{2\pi}$			3							
4. Вычислите: arctg $\left(-\frac{1}{\sqrt{3}}\right)$	$-\frac{2\pi}{3}$	$\frac{\pi}{6}$	$-\frac{\pi}{6}$	$\frac{2\pi}{3}$							
5. Вычислите:	π	π									
$\arcsin \frac{\sqrt{2}}{2} - \arccos \left(-\frac{\sqrt{2}}{2}\right)$	$\frac{3}{2}$	$-{2}$	π	- π							
6.Вычислите: sin (2 arctg(-1))	1	2	0,5	-1							
Вариант 2.											
1.Арккосинусом числа а	отрезка	отрезка	интервала	интервала							
называется такое число из,	[0;π]	$\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$	$\left(\begin{array}{c}1\\0;\frac{\pi}{2}\end{array}\right)$	$\left(-\frac{\pi}{2};0\right)$							
косинус которого равен a .	[0,16]	2 2 2		(2')							
2. Арктангенсом числа а	отрезка	интервала	интервала	отрезка							
называется такое число из,	$\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$	$\left(-\frac{\pi}{-}; \frac{\pi}{-} \right)$	(0;π)	$\left[-\frac{\pi}{2};\ \pi\right]$							
тангенс которого равен а.	2 2 2	$\left[-\frac{1}{2}, \frac{1}{2}\right]$	(0,11)	2, "							
3. Вычислите: arcsin (-0,5)	$-\frac{2\pi}{-}$	$\frac{\pi}{6}$	$-\frac{\pi}{\epsilon}$	$\frac{2\pi}{}$							
	3		6	3							
4. Вычислите: $\operatorname{arcctg}\left(-\frac{1}{\sqrt{3}}\right)$	$-\frac{2\pi}{3}$	$\frac{\pi}{6}$	$-\frac{\pi}{6}$	$\frac{2\pi}{3}$							
5. Вычислите:	π	π									
$\arccos \frac{\sqrt{3}}{2} - \arcsin(-\frac{\sqrt{3}}{2})$	2	_ _ _2	π	- π							
6. Вычислите: $\cos(3\operatorname{arctg}(-\frac{1}{\sqrt{3}}))$	1	0	0,5	-1							

Задачник

Арксинус, арккосинус, арктангенс

1. Вычислите:

a)
$$\arcsin 0$$
; б) $\arcsin(-\frac{\sqrt{3}}{2})$; B) $\arccos(-\frac{\sqrt{2}}{2})$; г) $\arccos 1$; д) $\arccos(-\sqrt{3})$;

e)
$$\arctan \frac{1}{\sqrt{3}}$$
; ж) $\arctan (-\sqrt{3})$; з) $\arctan \frac{1}{\sqrt{3}}$.

2. Найдите значение выражения.

a)
$$\arcsin(-1) + \arcsin\frac{\sqrt{3}}{2} + \arctan(-1)$$
;

б)
$$\arcsin \frac{1}{2} + \arcsin(-\frac{\sqrt{3}}{2}) + \arccos 0;$$

B)
$$\arccos(-1) + \arctan\sqrt{3}$$
;

$$\Gamma$$
) $\arccos \frac{1}{2} + \arcsin \frac{1}{2}$;

д)
$$\operatorname{arctg}(-\sqrt{3}) + \operatorname{arcctg} \frac{1}{\sqrt{3}};$$

e)
$$2 \arcsin(-\frac{\sqrt{3}}{2}) + \arctan(-1) + \arccos\frac{\sqrt{2}}{2}$$

ж) 3 arcsin
$$\frac{1}{2}$$
 + 4 arccos $\left(-\frac{\sqrt{2}}{2}\right)$ - arcctg $\left(-\sqrt{3}\right)$;

3)
$$\operatorname{arctg}(-\sqrt{3}) - \frac{3}{2} \arccos \frac{1}{2} + \arcsin 1$$
.

3. Сравните числа:

a)
$$\arcsin\left(-\frac{1}{2}\right)$$
 и $\arccos\frac{\sqrt{3}}{2}$;

б)
$$\arccos (-\frac{1}{2})$$
 и $\arctan (-1)$;

в) arctg
$$\sqrt{3}$$
 и arcsin 1;

$$\Gamma$$
) arccos $\left(-\frac{\sqrt{3}}{2}\right)$ и arcsin $\frac{1}{2}$;

д) arcsin (-1) и arctg
$$\left(-\frac{1}{\sqrt{3}}\right)$$
;

e)
$$arccos(-\frac{1}{2})$$
 и $arcctg(-\sqrt{3})$.

4. Расположите числа в порядке возрастания.

$$β$$
) arcetg 1,2; arcetg $π$; arcetg (-5).

5. Расположите числа в порядке убывания.

- a) $\arcsin 17$; $\arcsin \frac{5\pi}{2}$; $\arcsin \pi$;
- б) arccos (-1,7); arccos (-2,5); arccos 4.

6. Вычислите значение выражения.

- a) $\sin(\arccos(-\frac{\sqrt{3}}{2}));$ 6) $\cos(\arctan(-\frac{1}{\sqrt{3}}));$
- B) tg (arcsin $\left(-\frac{1}{2}\right)$); Γ) ctg (arcsin $\frac{1}{2}$);
- д) \cos (arcctg $\sqrt{3}$).