Termografie a termodiagnostika

1. laboratorní cvičení – práce BMT-3

Zadání

- 1. Zaznamenejte si označení a čísla přístrojů, se kterými budete provádět měření.
- 2. Proveď te kontrolu správnosti měření termokamerou a IČ teploměrem při teplotách 20 °C a 50 °C.
- 3. Měření temperované desky termokamerou a IČ teploměrem.
- 4. Měření dynamického děje.
- 5. Vyhodnocení měření

Vypracování

1 Přístroje a jejich nastavení

Kalibrace:

• HYPERION R - 20 °C

• GEMINI R - 50 °C

IČ teploměr:

označení: OPTRIS-LSsériové číslo: 9050023

Termokamera:

označení: FLIRpořadové číslo: 2Temperovaná deska:

pořadové číslo: 3

• pozice (režim) Peltierových článků: D2 (chlazení), C7 (ohřev), G7 (ohřev)

Laboratorní podmínky:

teplota: 24,4 °C

• relativní vlhkost: 35 %

2 Kalibrace

Na kalibračním černém tělese HYPERION byla nastavena teplota 20 °C a na GEMINI 50 °C. Emisivita infračerveného (IČ) teploměru OPTRIS-LS byla nastavena na hodnotu 0,995, emisivita termokamery FLIR 2 na hodnotu 0,99. Po ustálení teplot v dutinách simulujících černé těleso obou kalibračních zařízení bylo IČ teploměrem naměřeno 5 hodnot, které byly následně zprůměrovány a porovnány se skutečnou hodnotou. S termokamerou byly pořízeny termosnímky obou dutin (viz obr. 1) a jejich teplota posléze vyhodnocena v programu FLIR QuickReport, kde byly také upraveny parametry shrnuté v tabulce 1. Porovnání teplot naměřených se skutečnými teplotami kalibračních zařízení je v tabulce 2.

Tabulka 1: Parametry nastavené při vyhodnocení termosnímků dutin ČT v programu FLIR QuicReport.

	hodnota	jednotka	
Emisivita:	0,99	1	
Odražená teplota:	24,4	°C	
Atmosférická teplota:	24,4	°C	
Relativní vlhkost:	0,35	1	
Vzdálenost:	0,5	m	

Obrázek 1: Termosnímky dutin kalibračních zařízení HYPERION R (vlevo) a GEMINI R (vpravo) vyhřáté na 20 a 50 °C před úpravou ovlivňujících parametrů v tabulce 1.

Tabulka 2: Skutečné a naměřené teploty v dutinách kalibračních zařízení a jejich odchylka (absolutní hodnota rozdílu).

	IČ teploměr		termokamera			
teploty (°C)	skutečná	naměřená (průměr)	odchylka	skutečná	naměřená (extrém)	odchylka
HYPERION	20,14	21,6	1,46	20	19,94	0,06
GEMINI	50	51,1	1,10	50	50,45	0,45

Z hodnot odchylek v tabulce 2 lze usoudit, že termokamera je při správném nastavení okolních ovlivňujících podmínek (tab. 1) schopna přesnějších měření než IČ teploměr.

3 Měření temperované desky

Peltierovy články C7 a G7 na desce 3 byly nastaveny na ohřev, zatímco článek D2 na chlazení. IČ teploměr byl spárován s programem Optris Connect a jeho parametr emisivity nastaven na emisivity desky ($\varepsilon=0.96$). Následně byly postupně snímány teploty středu desky a polí s Peltierovými články nejdříve pomocí křížového zaměřovače ze vzdálenosti cca $50~\rm cm$ a poté dvoubodovým zaměřovačem tak, aby pomyslná kružnice mezi body zaměřovače odpovídala vepsané kružnici snímaného pole. Dvoubodovým zaměřovačem byl také zaměřen střed desky ze vzdálenosti cca $6.5~\rm cm$ a celá deska ze vzdálenosti cca $1.5~\rm m$. Termokamerou byla změřena celá deska ze vzdálenosti cca $0.75~\rm m$ a výsledný termogram vyhodnocen v programu FLIR QuicReport (viz obr 2). Naměřené hodnoty jsou shrnuty v tabulce 3.

Tabulka 3: Teploty temperované desky naměřené IČ teploměrem a termokamerou.

	IČ Teploměr		termokamera
teploty (°C)	křížový	dvoubodový	-
střed	27,6	27,5	28,4
D2	16,3	15,8	16,8
C7	54,9	54	54,6
G7	54,3	54,2	54,1
celá	-	28,3	29,8

Obrázek 2: Termosnímek temperované desky vyhodnocený v programu FLIR QuicReport.

V termosnímku na obrázku 2 jsou využity funkce programu FLIR QuicReport pro vyhodnocení teploty (maximální, minimální a průměrné) v dané oblasti (Ar) ke zjištění teplotních extrémů v bodech temperovaných Peltierovými články a následně funkce vyhodnocení teploty bodu (Sp4) pro určení teploty středu desky.

4 Vyhodnocení vybraného termosnímku

Pro tuto úlohu byl zvolen termosnímek oblohy, který byl pořízen kamerou FLIR 2 z okna laboratoře B224 (viz obr. 3).

Obrázek 3: Termosnímek oblohy s mraky snímaný z okna laboratoře.

Obrázek 4: Teplotní profil uhlopříčky Li1 s výřezem z termosnímku pro referenci.

Obrázek 5: Teplotní profil uhlopříčky Li2 s výřezem z termosnímku pro referenci.

V teplotních profilech na obr. 4 a 5 lze pozorovat, že mimo oblasti mraků je IČ záření tak nízké, že naměřená hodnota teploty je rovna $-40\,^{\circ}\text{C}$, což je minimální teplota, kterou je termokamera schopna naměřit a zobrazit. V oblastech s mraky zobrazuje kamera cca $-5\,^{\circ}\text{C}$. Tyto hodnoty však také nebudou příliš přesné, jelikož není k dispozici správná hodnota emisivity a vzdálenost mraků od termokamery. Hodnoty ovlivňujících parametrů, které byly nastaveny při vyhodnocení termosnímku na obr. 3 a teplotních profilů na obr 4 a 5 jsou shrnuty v tabulce 4.

Tabulka 4: Parametry nastavené při vyhodnocení termosnímku oblohy v programu FLIR QuicReport.

	hodnota	jednotka
Emisivita:	0,96	1
Odražená teplota:	12,8 (měla být nižší)	°C
Atmosférická teplota:	12,8	°C
Relativní vlhkost:	0,2	1
Vzdálenost:	1500	m

5 Měření dynamického děje

IČ teploměr byl zaměřen křížovým zaměřovačem na pole D2 s Peltierovým článkem v režimu chlazení. V programu Optris Connect byl spuštěn kontinuální záznam teploty. Článek byl nejprve přepnut z režimu chlazení do režimu topení a po ustálení (cca 40 s) přepnut zpět do režimu chlazení. Výsledná přechodová charakteristika teploty pole D2 je zaznamenána v grafu na obrázku 6.

Obrázek 6: Vývoj teploty pole D2 temperované desky v čase.

Z grafu na obrázku 6 je zřejmé, že temperování pole desky Peltierovým článkém má charakter soustavy 1. řádu, kterou lze jednoznačně popsat zesílením (r_0) a časovou konstantou (T). Při stanovení předpokladu, že přepnutí mezi režimem chlazení/ohřev odpovídá jednotkovému skoku, lze získat zesílení r_0 rozdílem mezi maximální a minimální hodnotou v naměřených hodnotách $(r_0 = y_{max} - y_{min})$. Časovou konstantu lze získat nalezením času, kdy naměřená teplota y dosáhla $\left(1-\frac{1}{e}\right) \cong 63,2$ % ustálené hodnoty. Pro tuto soustavu vyšly parametry následovně:

$$r_0 = 39,2$$

$$T = 10.6 \, \mathrm{s}$$

Dosazením těchto hodnot do výpočetního vztahu hodnot soustavy 1. řádu pro rostoucí trend

$$y = r_0(1 - e^{-\frac{t}{T}})$$

resp. klesající trend

$$y = r_0(e^{-\frac{t}{T}} - 1)$$

lze získat aproximaci vývoje naměřených hodnot soustavou 1. řádu.

Porovnání naměřených hodnot s hodnotami vypočtenými vztahem pro soustavu 1. řádu se získanými parametry lze pozorovat na obr. 7

Obrázek 7: Graf naměřených hodnot (modře) a hodnot vypočtených ze vztahů pro soustavu 1. řádu po dosazení získaných hodnot zesílení a časové konstanty.

Závěr

V práci byly otestovány základní funkce infračerveného teploměru a termokamery a zpracování údajů z nich vystupujících. V kap. 2 byla provedena kontrola správné kalibrace teploměru a termokamery na kalibračních zařízeních HYPERION R a GEMINI R. V kap. 3 byly IČ teploměr a termokamera využity pro měření povrchové teploty na temperované desce s Peltierovými články. V kap. 4 byl využit program FLIR QuickReport pro vyhodnocení termosnímku oblohy s mraky a teplotního profilu na jeho uhlopříčkách. V kap. 5 byl pozorován dynamický přechodový děj při změně režimu Peltierova článku D2 na temperované desce z režimu chlazení na ohřev a zase zpět. Z naměřených dat byl pochod vyhodnocen jako charakteristický přechodový děj soustavy 1. řádu a byla provedena jeho identifikace (nalezení parametrů zesílení a časové konstanty). Posléze byla identifikovaná soustava 1. řádu porovnána s naměřenými hodnotami a vykreslena za pomocí programovacího jazyka Python 3 s moduly pandas a matplotlib.

Příloha

Identifikace zesílení a časové konstanty naměřených dat a jejich vykreslení v programu Python.

```
# -- coding: cp1250 --
import math
import pandas as pd
from matplotlib import pyplot as plt

def load_data(filename, path='./', delimiter='\t', usecols=None):
    """ load the data from filename in specified path"""

    df = pd.read_csv(path + filename, delimiter=delimiter, header=0,
usecols=usecols, encoding='cp1250')
    df['Time'] = pd.to_datetime(df['Time'], format='%M:%S.%f')
    return df
```