CASE STUDY ON PORTFOLIO OPTIMIZATION

Dr. Aric LaBarr
Institute for Advanced Analytics

PORTFOLIO OPTIMIZATION

Financial Portfolio

- A portfolio is a collection of assets where the investor chooses the investment amount of each investment in the portfolio.
- Portfolio performance is typically measured by total value of the portfolio at the end of a period of time.
- To determine how much to allocate in each part of a portfolio, two things must be considered – risk and return.

- Return percentage growth in the value of an asset
- Risk variability / volatility associated with the returns on the stock
- We can look at historical data to estimate both risk and return.
 - Example: overall means and variance over a certain period of time.
- We can also forecast this risk with ARCH/GARCH models.
- Goal maximize return while minimizing risk!

- Portfolio of Technology Stocks
 - Want to invest in 5 tech stocks.
 - Apple, Google, Microsoft, Paypal, Ebay
 - High return → High volatility
 - Return:

$$Return = p_1r_1 + p_2r_2 + p_3r_3 + p_4r_4 + p_5r_5$$

- Portfolio of Technology Stocks
 - Want to invest in 5 tech stocks.
 - Apple, Google, Microsoft, Paypal, Ebay
 - High return → High volatility
 - Return:

$$Return = p_1 r_1 + p_2 r_2 + p_3 r_3 + p_4 r_4 + p_5 r_5$$

Average return of each stock

- Portfolio of Technology Stocks
 - Want to invest in 5 tech stocks.
 - Apple, Google, Microsoft, Paypal, Ebay
 - High return → High volatility
 - Return:

Return =
$$p_1 r_1 + p_2 r_2 + p_3 r_3 + p_4 r_4 + p_5 r_5$$

Proportion of wealth in each stock

$$p_1 + p_2 + p_3 + p_4 + p_5 = 1$$

- Portfolio of Technology Stocks
 - Want to invest in 5 tech stocks.
 - Apple, Google, Microsoft, Paypal, Ebay
 - High return → High volatility
 - Return:

$$Return = p_1r_1 + p_2r_2 + p_3r_3 + p_4r_4 + p_5r_5$$

Risk:

$$\sum_{j} \sum_{k} p_{j} * \sigma_{j,k} * p_{k} = p_{1}\sigma_{1,1}p_{1} + p_{1}\sigma_{1,2}p_{2} + \dots + p_{5}\sigma_{5,5}p_{5}$$

- Portfolio of Technology Stocks
 - Want to invest in 5 tech stocks.
 - Apple, Google, Microsoft, Paypal, Ebay
 - High return → High volatility
 - Return:

$$Return = p_1r_1 + p_2r_2 + p_3r_3 + p_4r_4 + p_5r_5$$

Risk:

$$\sum_{j} \sum_{k} p_{j} * \sigma_{j,k} * p_{k} = p_{1}\sigma_{1,1}p_{1} + p_{1}\sigma_{1,2}p_{2} + \dots + p_{5}\sigma_{5,5}p_{5}$$

Proportion of wealth in each stock

- Portfolio of Technology Stocks
 - Want to invest in 5 tech stocks.
 - Apple, Google, Microsoft, Paypal, Ebay
 - High return → High volatility
 - Return:

$$Return = p_1r_1 + p_2r_2 + p_3r_3 + p_4r_4 + p_5r_5$$

• Risk:

$$\sum_{j} \sum_{k} p_{j} * \sigma_{j,k} * p_{k} = p_{1}\sigma_{1,1}p_{1} + p_{1}\sigma_{1,2}p_{2} + \dots + p_{5}\sigma_{5,5}p_{5}$$

Covariance between each stock combination

- Have two choices on what to do:
 - 1. Minimize risk for a given return (typical)
 - 2. Maximize return for a given risk

- Have two choices on what to do:
 - Minimize risk for a given return (typical)
 - 2. Maximize return for a given risk
- There is a trade-off between risk and return!

Efficient Frontier

Estimating Risk

 Risk – variability / volatility associated with the returns on the stock

$$Risk = \sum_{j} \sum_{k} p_{j} * \sigma_{j,k} * p_{k} = p_{1}\sigma_{1,1}p_{1} + p_{1}\sigma_{1,2}p_{2} + \dots + p_{k}\sigma_{k,k}p_{k}$$

Projected covariance between each stock combination

- 3 Different Estimates of Risk
 - 1. Historical Variance / Standard Deviation
 - Capital Asset Pricing Model (CAPM)
 - Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Model

HISTORICAL VARIANCE APPROACH

Constant Volatility?

Use all Data?

Rolling Window Calculation

Rolling Window Calculation

Rolling Window Calculation

Historical Variance Approach

 The historical variance approach uses a rolling window estimate of variance from previous m observations:

$$\sigma_t^2 = \frac{1}{m-1} \sum_{i=1}^m (r_{t-i} - \bar{r})^2$$

Historical Variance Approach

 The historical variance approach uses a rolling window estimate of variance from previous m observations:

$$\sigma_t^2 = \frac{1}{m-1} \sum_{i=1}^m (r_{t-i} - \bar{r})^2$$

Window of Time	Estimate of MSFT Volatility
2/1/2008 – 2/1/2019	0.000308
2/1/2014 — 2/1/2019	0.000215
2/1/2016 — 2/1/2019	0.000199
2/1/2018 – 2/1/2019	0.000339

Estimating Risk

 Risk – variability / volatility associated with the returns on the stock

$$Risk = \sum_{j} \sum_{k} p_{j} * \sigma_{j,k} * p_{k} = p_{1}\sigma_{1,1}p_{1} + p_{1}\sigma_{1,2}p_{2} + \dots + p_{k}\sigma_{k,k}p_{k}$$

Projected covariance between each stock combination

Historical Variance Approach

 The historical variance approach uses a rolling window estimate of variance as well as covariance from previous m observations:

$$\sigma_t^2 = \frac{1}{m-1} \sum_{i=1}^m (r_{t-i} - \bar{r})^2 \qquad \sigma_{j,k} = \frac{1}{m-1} \sum_{i=1}^m (r_{j,t-i} - \bar{r}_j) (r_{k,t-i} - \bar{r}_k)$$

Historical Variance Approach

 The historical variance approach uses a rolling window estimate of variance as well as covariance from previous m observations:

Window of Time	Estimate of MSFT/AAPL Covariance
2/1/2008 – 2/1/2019	0.000168
2/1/2014 - 2/1/2019	0.000121
2/1/2016 – 2/1/2019	0.000124
2/1/2018 – 2/1/2019	0.000261

$$\sigma_{j,k} = \frac{1}{m-1} \sum_{i=1}^{m} (r_{j,t-i} - \bar{r}_j) (r_{k,t-i} - \bar{r}_k)$$

Optimal Portfolio – Historical

CAPM APPROACH

Systematic vs. Specific Risk

- Return percentage growth in the value of an asset
- Risk variability / volatility associated with the returns on the stock
- Goal maximize return while minimizing risk!

$$Return = \sum_{i=1}^{m} p_i \hat{\alpha}_i + \bar{X} \left(\sum_{i=1}^{m} p_i \hat{\beta}_i \right)$$

- Return percentage growth in the value of an asset
- Risk variability / volatility associated with the returns on the stock
- Goal maximize return while minimizing risk!

$$Return = \sum_{i=1}^{m} p_i \hat{\alpha}_i + \bar{X} \left(\sum_{i=1}^{m} p_i \hat{\beta}_i \right)$$

Excess return from assets

- Return percentage growth in the value of an asset
- Risk variability / volatility associated with the returns on the stock
- Goal maximize return while minimizing risk!

$$Return = \sum_{i=1}^{m} p_i \hat{\alpha}_i + \sqrt{X} \left(\sum_{i=1}^{m} p_i \hat{\beta}_i \right)$$

$$Market return$$

- Return percentage growth in the value of an asset
- Risk variability / volatility associated with the returns on the stock
- Goal maximize return while minimizing risk!

$$Return = \sum_{i=1}^{m} p_{i} \hat{\alpha}_{i} + \bar{X} \left(\sum_{i=1}^{m} p_{i} \hat{\beta}_{i} \right)$$

$$Risk = \sum_{i=1}^{m} w_{i} \sigma_{\varepsilon_{i}}^{2} + \sigma_{X}^{2} \left(\sum_{i=1}^{m} w_{i} \hat{\beta}_{i} \right)^{2}$$

- Return percentage growth in the value of an asset
- Risk variability / volatility associated with the returns on the stock
- Goal maximize return while minimizing risk!

$$Return = \sum_{i=1}^{m} p_i \hat{\alpha}_i + \bar{X} \left(\sum_{i=1}^{m} p_i \hat{\beta}_i \right)$$

$$Asset risk$$

$$Risk = \sum_{i=1}^{m} w_i \sigma_{\varepsilon_i}^2 + \sigma_X^2 \left(\sum_{i=1}^{m} w_i \hat{\beta}_i \right)^2$$

- Return percentage growth in the value of an asset
- Risk variability / volatility associated with the returns on the stock
- Goal maximize return while minimizing risk!

$$Return = \sum_{i=1}^{m} p_{i} \hat{\alpha}_{i} + \bar{X} \left(\sum_{i=1}^{m} p_{i} \hat{\beta}_{i} \right)$$

$$Risk = \sum_{i=1}^{m} w_{i} \sigma_{\varepsilon_{i}}^{2} + \left(\sigma_{X}^{2} \left(\sum_{i=1}^{m} w_{i} \hat{\beta}_{i} \right) \right)$$

$$Market risk$$

Optimal Portfolio – CAPM

GARCH APPROACH

Extensions to ARCH / GARCH Models

 Generalized AutoRegressive Conditional Heteroscedasticity (GARCH):

$$\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta_1 \hat{\sigma}_{t-1}^2$$

- Original model assumes normality of returns!
- GARCH-t model assumes t-distribution of returns ©

Extensions to ARCH / GARCH Models

 Generalized AutoRegressive Conditional Heteroscedasticity (GARCH):

$$\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta_1 \hat{\sigma}_{t-1}^2$$

- Original model assumes normality of returns!
- GARCH-t model assumes t-distribution of returns ©
- Original model assumes symmetry of returns (no leverage effect)!
- QGARCH model assumes asymmetry (leverage effect) ☺

Extensions to ARCH / GARCH Models

 Generalized AutoRegressive Conditional Heteroscedasticity (GARCH):

$$\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta_1 \hat{\sigma}_{t-1}^2$$

QGARCH-t combines them both! ☺ ☺

Risk vs. Return

- Return percentage growth in the value of an asset
- Risk variability / volatility associated with the returns on the stock
- Goal maximize return while minimizing risk!

$$Return = p_1 r_1 + p_2 r_2 + p_3 r_3 + \dots + p_k r_k$$

$$Risk = \sum_{j} \sum_{k} p_{j} * \sigma_{j,k} * p_{k} = p_{1}\sigma_{1,1}p_{1} + p_{1}\sigma_{1,2}p_{2} + \dots + p_{k}\sigma_{k,k}p_{k}$$

Forecasted variance and historical covariance

Optimal Portfolio – GARCH

COMPARISON / EVALUATION

Allocation of Wealth Comparison

Return Per Strategy

Strategy	Return
Historical Variance	2.67%
САРМ	2.74%
GARCH	2.26%

Allocation of Wealth Comparison – SAS

Return Per Strategy – SAS

Strategy	Return
Historical Variance	2.66%
САРМ	2.81%
GARCH	2.06%

RISKLESS ASSET EXTENSION

Economics Extension

 What if we do **not** limit ourselves to have the following restriction?

$$p_1 + p_2 + p_3 + p_4 + p_5 = 1$$

Economics Extension

 What if we do **not** limit ourselves to have the following restriction?

$$p_1 + p_2 + p_3 + p_4 + p_5 = 1$$

- If the sum is less than 1 → invest the remainder in riskless asset.
- If the sum is greater than 1 → borrow money at riskless rate, invest, payback to achieve results.

Invest in Riskless Asset

- If the sum is less than 1 → invest the remainder in riskless asset.
 - Invest \$0.88676 into stocks.
 - 2. Invest (1-0.88676) = \$0.11324 in riskless asset (assume 0.5% annual interest).
 - 3. After time period is up, earn return from portfolio (0.88676 + 0.014434) = \$0.901194 and return from riskless asset (0.11324 + 0.0005662) = \$0.11381
 - **4.** \$0.901194 + \$0.11381 = \$1.015

Invest in Riskless Asset

- If the sum is greater than 1 → borrow money at riskless rate, invest, payback to achieve results.
 - 1. Borrow \$0.7767 at riskless rate (assume 0.5% annual interest).
 - 2. Invest (1+0.7767) = \$1.7767 in stocks.
 - 3. After time period is up, earn return from portfolio (1.7767 + 0.028883) = \$1.805583 and payback investment with interest (0.7767 + 0.0038835) = \$0.78058
 - **4.** \$1.805583 \$0.78058 = \$1.025

