Decision Tree example

Abhirup Sen

01/06/2021

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
library(caTools)
library(rpart)
```

```
set.seed(1)
split <- sample.split(iris, SplitRatio = 0.7)
split</pre>
```

[1] TRUE TRUE FALSE FALSE TRUE

```
train <- subset(iris, split = "TRUE")
test <- subset(iris, split = "FALSE")
train</pre>
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa

##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	
				1.3		setosa
##	37	5.5	3.5		0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##	51	7.0	3.2	4.7	1.4 ver	sicolor
##	52	6.4	3.2	4.5	1.5 ver	sicolor
##	53	6.9	3.1	4.9	1.5 ver	sicolor
##	54	5.5	2.3	4.0	1.3 ver	sicolor
##	55	6.5	2.8	4.6	1.5 ver	sicolor
##	56	5.7	2.8	4.5	1.3 ver	sicolor
##	57	6.3	3.3	4.7	1.6 ver	sicolor
	58	4.9	2.4	3.3	1.0 ver	sicolor
	59	6.6	2.9	4.6	1.3 ver	
	60	5.2	2.7	3.9	1.4 ver	
	61	5.0	2.0	3.5	1.0 ver	sicolor
	62	5.9	3.0	4.2	1.5 ver	
	63	6.0	2.2	4.0	1.0 ver	
##	64	6.1	2.9	4.7	1.4 ver	
	65	5.6	2.9	3.6	1.3 ver	
##	66	6.7	3.1	4.4	1.4 ver	
	67	5.6	3.0	4.5	1.5 ver	
##	68	5.8	2.7	4.1	1.0 ver	
	69	6.2	2.7		1.5 ver	
	70	5.6	2.5	4.5	1.5 ver	
				3.9		
	71	5.9	3.2	4.8	1.8 ver	
##	12	6.1	2.8	4.0	1.3 ver	sicolor

шш	73	6.3	0 5	4.9	1 5
			2.5		1.5 versicolor
	74	6.1	2.8	4.7	1.2 versicolor
##	75	6.4	2.9	4.3	1.3 versicolor
##	76	6.6	3.0	4.4	1.4 versicolor
##	77	6.8	2.8	4.8	1.4 versicolor
##	78	6.7	3.0	5.0	1.7 versicolor
##	79	6.0	2.9	4.5	1.5 versicolor
##	80	5.7	2.6	3.5	1.0 versicolor
##	81	5.5	2.4	3.8	1.1 versicolor
##	82	5.5	2.4	3.7	1.0 versicolor
##	83	5.8	2.7	3.9	1.2 versicolor
##	84	6.0	2.7	5.1	1.6 versicolor
##	85	5.4	3.0	4.5	1.5 versicolor
##	86	6.0	3.4	4.5	1.6 versicolor
##	87	6.7	3.1	4.7	1.5 versicolor
##	88	6.3	2.3	4.4	1.3 versicolor
##	89	5.6	3.0	4.1	1.3 versicolor
##	90	5.5	2.5	4.0	1.3 versicolor
##	91	5.5	2.6	4.4	1.2 versicolor
##	92	6.1	3.0	4.6	1.4 versicolor
##					
	93	5.8	2.6	4.0	1.2 versicolor
##	94	5.0	2.3	3.3	1.0 versicolor
##	95	5.6	2.7	4.2	1.3 versicolor
##	96	5.7	3.0	4.2	1.2 versicolor
##	97	5.7	2.9	4.2	1.3 versicolor
##	98	6.2	2.9	4.3	1.3 versicolor
##	99	5.1	2.5	3.0	1.1 versicolor
##	100	5.7	2.8	4.1	1.3 versicolor
##	101	6.3	3.3	6.0	2.5 virginica
##	102	5.8	2.7	5.1	1.9 virginica
##	103	7.1	3.0	5.9	2.1 virginica
##	104	6.3	2.9	5.6	1.8 virginica
##	105	6.5	3.0	5.8	2.2 virginica
##	106	7.6	3.0	6.6	2.1 virginica
##	107	4.9	2.5	4.5	1.7 virginica
##	108	7.3	2.9	6.3	1.8 virginica
##	109	6.7	2.5	5.8	1.8 virginica
##	110	7.2	3.6	6.1	2.5 virginica
##	111	6.5	3.2	5.1	2.0 virginica
##	112	6.4	2.7	5.3	1.9 virginica
##	113	6.8	3.0	5.5	2.1 virginica
##	114	5.7	2.5	5.0	2.0 virginica
##	115	5.8	2.8	5.1	2.4 virginica
##	116	6.4	3.2	5.3	2.3 virginica
##	117	6.5	3.0	5.5	1.8 virginica
##	118	7.7	3.8	6.7	2.2 virginica
##	119	7.7	2.6	6.9	2.3 virginica
##	120	6.0	2.2	5.0	1.5 virginica
##	121	6.9	3.2	5.7	2.3 virginica
##	122	5.6	2.8	4.9	_
##	123		2.8	6.7	
		7.7			2.0 virginica
##	124	6.3	2.7	4.9	1.8 virginica
##	125	6.7	3.3	5.7	2.1 virginica
##	126	7.2	3.2	6.0	1.8 virginica

##	127	6.2	2.8	4.8	1.8	virginica
##	128	6.1	3.0	4.9	1.8	virginica
##	129	6.4	2.8	5.6	2.1	virginica
##	130	7.2	3.0	5.8	1.6	virginica
##	131	7.4	2.8	6.1	1.9	virginica
##	132	7.9	3.8	6.4	2.0	virginica
##	133	6.4	2.8	5.6	2.2	virginica
##	134	6.3	2.8	5.1	1.5	virginica
##	135	6.1	2.6	5.6	1.4	virginica
##	136	7.7	3.0	6.1	2.3	virginica
##	137	6.3	3.4	5.6	2.4	virginica
##	138	6.4	3.1	5.5	1.8	virginica
##	139	6.0	3.0	4.8	1.8	virginica
##	140	6.9	3.1	5.4	2.1	virginica
##	141	6.7	3.1	5.6	2.4	virginica
##	142	6.9	3.1	5.1	2.3	virginica
##	143	5.8	2.7	5.1	1.9	virginica
##	144	6.8	3.2	5.9	2.3	virginica
##	145	6.7	3.3	5.7	2.5	virginica
##	146	6.7	3.0	5.2	2.3	virginica
##	147	6.3	2.5	5.0	1.9	virginica
##	148	6.5	3.0	5.2	2.0	virginica
##	149	6.2	3.4	5.4	2.3	virginica
##	150	5.9	3.0	5.1	1.8	virginica

test

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa

##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38		3.6		0.2	
		4.9		1.4		setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##	51	7.0	3.2	4.7	1.4 ve	rsicolor
##	52	6.4	3.2	4.5	1.5 ve	rsicolor
##	53	6.9	3.1	4.9	1.5 ve	rsicolor
##	54	5.5	2.3	4.0	1.3 ve	rsicolor
##	55	6.5	2.8	4.6	1.5 ve	rsicolor
##	56	5.7	2.8	4.5	1.3 ve	rsicolor
##	57	6.3	3.3	4.7	1.6 ve	rsicolor
##	58	4.9	2.4	3.3	1.0 ve	rsicolor
##	59	6.6	2.9	4.6	1.3 ve	rsicolor
##	60	5.2	2.7	3.9	1.4 ve	rsicolor
##	61	5.0	2.0	3.5	1.0 ve	rsicolor
##	62	5.9	3.0	4.2	1.5 ve	rsicolor
##	63	6.0	2.2	4.0	1.0 ve	rsicolor
##	64	6.1	2.9	4.7	1.4 ve	rsicolor
##	65	5.6	2.9	3.6	1.3 ve	rsicolor
##	66	6.7	3.1	4.4	1.4 ve	rsicolor
##		5.6	3.0	4.5		rsicolor
	68	5.8	2.7	4.1		rsicolor
	69	6.2	2.2	4.5		rsicolor
	70	5.6	2.5	3.9		rsicolor
##	71	5.9	3.2	4.8		rsicolor
##	72	6.1	2.8	4.0		rsicolor
	73	6.3	2.5	4.9		rsicolor
##	74	6.1	2.8	4.7		rsicolor
##	75	6.4	2.9	4.3		rsicolor
##	76	6.6	3.0	4.4		rsicolor
##	77	6.8	2.8	4.4		rsicolor
	78	6.7	3.0			rsicolor
				5.0		
	79	6.0	2.9	4.5		rsicolor
##	ou	5.7	2.6	3.5	1.0 ve	rsicolor

##		5.5	2.4	3.8	1.1	versicolor
##	82	5.5	2.4	3.7	1.0	versicolor
##	83	5.8	2.7	3.9	1.2	versicolor
##	84	6.0	2.7	5.1	1.6	versicolor
##	85	5.4	3.0	4.5	1.5	versicolor
##	86	6.0	3.4	4.5		versicolor
##	87	6.7	3.1	4.7		versicolor
##	88	6.3	2.3	4.4		versicolor
##	89	5.6	3.0	4.1		versicolor
##	90	5.5	2.5	4.0		versicolor
##	91	5.5	2.6	4.4		versicolor
##	92	6.1	3.0	4.6		versicolor
##	93	5.8	2.6	4.0		versicolor
	94					
##		5.0	2.3	3.3		versicolor
##	95	5.6	2.7	4.2		versicolor
##	96	5.7	3.0	4.2		versicolor
##	97	5.7	2.9	4.2		versicolor
##	98	6.2	2.9	4.3		versicolor
##	99	5.1	2.5	3.0		versicolor
##	100	5.7	2.8	4.1		versicolor
##	101	6.3	3.3	6.0	2.5	virginica
##	102	5.8	2.7	5.1	1.9	virginica
##	103	7.1	3.0	5.9	2.1	virginica
##	104	6.3	2.9	5.6	1.8	virginica
##	105	6.5	3.0	5.8	2.2	virginica
##	106	7.6	3.0	6.6	2.1	virginica
##	107	4.9	2.5	4.5	1.7	virginica
##	108	7.3	2.9	6.3	1.8	virginica
##	109	6.7	2.5	5.8	1.8	virginica
##	110	7.2	3.6	6.1	2.5	virginica
##	111	6.5	3.2	5.1	2.0	virginica
##	112	6.4	2.7	5.3	1.9	virginica
##	113	6.8	3.0	5.5	2.1	virginica
##	114	5.7	2.5	5.0	2.0	virginica
##	115	5.8	2.8	5.1	2.4	virginica
##	116	6.4	3.2	5.3	2.3	virginica
##	117	6.5	3.0	5.5	1.8	virginica
##	118	7.7	3.8	6.7	2.2	virginica
	119	7.7	2.6	6.9	2.3	virginica
##	120	6.0	2.2	5.0	1.5	virginica
##	121	6.9	3.2	5.7	2.3	virginica
##	122	5.6	2.8	4.9	2.0	virginica
##	123	7.7	2.8	6.7	2.0	virginica
##	124	6.3	2.7	4.9	1.8	virginica
##	125	6.7	3.3	5.7	2.1	virginica
##	126	7.2	3.2	6.0	1.8	virginica
##	127	6.2	2.8	4.8	1.8	virginica
##	128	6.1	3.0	4.9	1.8	virginica
##	129	6.4	2.8	5.6	2.1	_
	130					virginica
##		7.2	3.0	5.8	1.6	virginica
##	131	7.4	2.8	6.1	1.9	virginica
	132	7.9	3.8	6.4	2.0	virginica
	133	6.4	2.8	5.6	2.2	virginica
##	134	6.3	2.8	5.1	1.5	virginica

```
## 135
                6.1
                            2.6
                                         5.6
                                                     1.4 virginica
## 136
                7.7
                            3.0
                                         6.1
                                                     2.3 virginica
                                                     2.4 virginica
## 137
                6.3
                            3.4
                                         5.6
## 138
                            3.1
                6.4
                                         5.5
                                                     1.8 virginica
## 139
                6.0
                            3.0
                                         4.8
                                                     1.8 virginica
## 140
                6.9
                                         5.4
                                                     2.1 virginica
                            3.1
## 141
                6.7
                            3.1
                                                     2.4 virginica
                                         5.6
## 142
                6.9
                            3.1
                                         5.1
                                                     2.3 virginica
## 143
                5.8
                            2.7
                                         5.1
                                                     1.9 virginica
## 144
                                                     2.3 virginica
                6.8
                            3.2
                                         5.9
## 145
                6.7
                            3.3
                                         5.7
                                                     2.5 virginica
## 146
                6.7
                            3.0
                                         5.2
                                                     2.3 virginica
## 147
                6.3
                            2.5
                                         5.0
                                                     1.9 virginica
## 148
                6.5
                            3.0
                                         5.2
                                                     2.0 virginica
## 149
                6.2
                            3.4
                                         5.4
                                                     2.3 virginica
## 150
                5.9
                            3.0
                                         5.1
                                                     1.8 virginica
decision_tree_model <- rpart(Species ~., data = train, method = "class")</pre>
summary(decision_tree_model)
## Call:
## rpart(formula = Species ~ ., data = train, method = "class")
    n = 150
##
##
       CP nsplit rel error xerror
## 1 0.50
               0
                      1.00
                            1.14 0.05230679
## 2 0.44
               1
                      0.50
                             0.60 0.06000000
## 3 0.01
               2
                      0.06
                             0.09 0.02908608
##
## Variable importance
## Petal.Width Petal.Length Sepal.Length Sepal.Width
                          31
##
## Node number 1: 150 observations,
                                       complexity param=0.5
                                 expected loss=0.6666667 P(node) =1
##
     predicted class=setosa
##
       class counts:
                        50
                              50
##
     probabilities: 0.333 0.333 0.333
     left son=2 (50 obs) right son=3 (100 obs)
##
##
     Primary splits:
##
         Petal.Length < 2.45 to the left, improve=50.00000, (0 missing)
##
         Petal.Width < 0.8 to the left, improve=50.00000, (0 missing)
##
         Sepal.Length < 5.45 to the left,
                                           improve=34.16405, (0 missing)
         Sepal.Width < 3.35 to the right, improve=19.03851, (0 missing)
##
##
     Surrogate splits:
##
         Petal.Width < 0.8 to the left, agree=1.000, adj=1.00, (0 split)
##
         Sepal.Length < 5.45 to the left, agree=0.920, adj=0.76, (0 split)
##
         Sepal.Width < 3.35 to the right, agree=0.833, adj=0.50, (0 split)
##
## Node number 2: 50 observations
                                 expected loss=0 P(node) =0.3333333
##
     predicted class=setosa
##
       class counts:
                        50
                               0
##
      probabilities: 1.000 0.000 0.000
##
```

complexity param=0.44

Node number 3: 100 observations,

```
##
     predicted class=versicolor expected loss=0.5 P(node) =0.6666667
##
                         0
                              50
                                    50
       class counts:
##
     probabilities: 0.000 0.500 0.500
##
     left son=6 (54 obs) right son=7 (46 obs)
##
     Primary splits:
##
        Petal.Width < 1.75 to the left, improve=38.969400, (0 missing)
##
         Petal.Length < 4.75 to the left, improve=37.353540, (0 missing)
         Sepal.Length < 6.15 to the left, improve=10.686870, (0 missing)
##
##
         Sepal.Width < 2.45 to the left, improve= 3.555556, (0 missing)
##
     Surrogate splits:
##
         Petal.Length < 4.75 to the left, agree=0.91, adj=0.804, (0 split)
         Sepal.Length < 6.15 to the left, agree=0.73, adj=0.413, (0 split)
##
         Sepal.Width < 2.95 to the left, agree=0.67, adj=0.283, (0 split)
##
##
##
  Node number 6: 54 observations
##
     predicted class=versicolor expected loss=0.09259259 P(node) =0.36
##
       class counts:
                         0
                              49
                                     5
##
      probabilities: 0.000 0.907 0.093
##
## Node number 7: 46 observations
##
     predicted class=virginica
                                 expected loss=0.02173913 P(node) =0.3066667
##
       class counts:
                       0
##
     probabilities: 0.000 0.022 0.978
plot(decision_tree_model,uniform = TRUE , branch = 0.6, margin = 0.1)
text(decision_tree_model, all = TRUE, use.n=TRUE)
```



```
library(rpart.plot)
rpart.plot(decision_tree_model)
```


#predict

test\$Species_predicted<-predict(decision_tree_model,newdata=test,type="class")
table(test\$Species, test\$Species_predicted)</pre>

```
## setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 49 1
## virginica 0 5 45
```

library(caret)

- ## Loading required package: lattice
- ## Loading required package: ggplot2

confusionMatrix(table(test\$Species, test\$Species_predicted))

Confusion Matrix and Statistics

```
##
##
##
                setosa versicolor virginica
                    50
##
                                0
     setosa
##
     versicolor
                     0
                               49
                                           1
     virginica
                     0
                                5
                                          45
##
##
## Overall Statistics
##
##
                  Accuracy: 0.96
##
                    95% CI : (0.915, 0.9852)
##
       No Information Rate: 0.36
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa : 0.94
##
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                        Class: setosa Class: versicolor Class: virginica
## Sensitivity
                              1.0000
                                                  0.9074
## Specificity
                               1.0000
                                                  0.9896
                                                                   0.9519
## Pos Pred Value
                               1.0000
                                                  0.9800
                                                                   0.9000
## Neg Pred Value
                               1.0000
                                                  0.9500
                                                                   0.9900
                                                  0.3600
## Prevalence
                               0.3333
                                                                   0.3067
## Detection Rate
                               0.3333
                                                  0.3267
                                                                   0.3000
## Detection Prevalence
                               0.3333
                                                  0.3333
                                                                   0.3333
## Balanced Accuracy
                               1.0000
                                                  0.9485
                                                                   0.9651
```

Pruning

##

CP nsplit rel error xerror

```
?printcp

## starting httpd help server ... done

printcp(decision_tree_model)

##

## Classification tree:

## rpart(formula = Species ~ ., data = train, method = "class")

##

## Variables actually used in tree construction:

## [1] Petal.Length Petal.Width

##

## Root node error: 100/150 = 0.66667

##

## n= 150

##
```

xstd

plotcp(decision_tree_model)


```
min(decision_tree_model$cptable[,"xerror"])

## [1] 0.09

which.min(decision_tree_model$cptable[,"xerror"])

## 3

## 3

cpmin <- decision_tree_model$cptable[3,"CP"]
decison_tree_pruned = prune(decision_tree_model, cp = cpmin)
rpart.plot(decison_tree_pruned)</pre>
```


#predict based on test data test\$Species_predicted<-predict(decison_tree_pruned,newdata=test,type="class") table(test\$Species, test\$Species_predicted)</pre>

confusionMatrix(table(test\$Species, test\$Species_predicted))

```
## Confusion Matrix and Statistics
##
##
##
                setosa versicolor virginica
                    50
##
     setosa
##
     versicolor
                     0
                                49
                                           1
     virginica
                     0
                                 5
                                          45
##
## Overall Statistics
##
##
                  Accuracy: 0.96
##
                    95% CI: (0.915, 0.9852)
##
       No Information Rate: 0.36
```

```
P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.94
##
##
##
    Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                         Class: setosa Class: versicolor Class: virginica
## Sensitivity
                                1.0000
                                                   0.9074
                                                                     0.9783
## Specificity
                                1.0000
                                                   0.9896
                                                                     0.9519
## Pos Pred Value
                                1.0000
                                                   0.9800
                                                                     0.9000
## Neg Pred Value
                                1.0000
                                                   0.9500
                                                                     0.9900
## Prevalence
                                0.3333
                                                   0.3600
                                                                     0.3067
## Detection Rate
                                0.3333
                                                   0.3267
                                                                     0.3000
## Detection Prevalence
                                0.3333
                                                   0.3333
                                                                     0.3333
## Balanced Accuracy
                                1.0000
                                                   0.9485
                                                                     0.9651
```

#we see minimum error when N=3

plotcp(decision_tree_model)

Size of tree Note that the state of the sta

#find the cp value for which corss validation is minimum

```
min(decision_tree_model$cptable[,"xerror"])
```

[1] 0.09

```
which.min(decision_tree_model$cptable[,"xerror"])

## 3
## 3

cpmin <- decision_tree_model$cptable[3,"CP"]

#prune the tree by setting cp value as Cpmin

decison_tree_pruned = prune(decision_tree_model, cp = cpmin)
rpart.plot(decison_tree_pruned)</pre>
```


#predict based on test data test\$Species_predicted<-predict(decison_tree_pruned,newdata=test,type="class") table(test\$Species, test\$Species_predicted)</pre>

setosa versicolor virginica ## 50 0 setosa 1 ## versicolor 0 49 0 5 45 ## virginica

confusionMatrix(table(test\$Species, test\$Species_predicted))

```
## Confusion Matrix and Statistics
##
##
##
                setosa versicolor virginica
##
     setosa
                                0
##
                     0
                                          1
     versicolor
                               49
##
     virginica
                     0
                                5
                                          45
##
## Overall Statistics
##
##
                  Accuracy: 0.96
                    95% CI : (0.915, 0.9852)
##
##
       No Information Rate: 0.36
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.94
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                        Class: setosa Class: versicolor Class: virginica
## Sensitivity
                               1.0000
                                                  0.9074
                                                                   0.9783
## Specificity
                               1.0000
                                                  0.9896
                                                                   0.9519
## Pos Pred Value
                               1.0000
                                                  0.9800
                                                                   0.9000
## Neg Pred Value
                               1.0000
                                                  0.9500
                                                                   0.9900
## Prevalence
                               0.3333
                                                  0.3600
                                                                   0.3067
## Detection Rate
                               0.3333
                                                  0.3267
                                                                   0.3000
## Detection Prevalence
                                                                   0.3333
                               0.3333
                                                  0.3333
## Balanced Accuracy
                               1.0000
                                                  0.9485
                                                                   0.9651
```