# PROYECTO "TITANIC"

# 01

## Objetivo del trabajo

Predecir la supervivencia de pasajeros del Titanic aplicando técnicas de machine learning y comparar modelos de red neuronal.



02

## **Dataset y Variables**

Caracteristicas seleccionadas:

- Categoricas: Sexo, clase, puerto de embarque
- Numéricas: Edad, tarifa, cantidad de familiares a bordo

03

## Pipeline aplicado

#### 1. Preprocesamiento:

- Imputación de valores faltantes (mediana o moda)
- Eliminación de columnas irrelevantes

#### 2. Procesamiento:

- Codigicación one-hot para variables categoricas
- Estandarización de variables númericas

#### 3. Postprocesamiento:

Balanceo de clases mediante sobremuestreo aleatorio

### **Arquitectura de RNA**

| Modelo   | Arquitectura | Activación | Optimizador | LR Init | Épocas | Batch |
|----------|--------------|------------|-------------|---------|--------|-------|
| Modelo A | (16,)        | relu       | adam        | 0,001   | 200    | 32    |
| Modelo B | (32, 16)     | tanh       | sgd         | 0,010   | 300    | 64    |
| Modelo C | (64, 32, 16) | relu       | adam        | 0,0005  | 250    | 16    |

### Resultados del entrenamiento

| Modelo   | Accuracy | Precision | Recall | F1-Score | Tiempo (s) |
|----------|----------|-----------|--------|----------|------------|
| Modelo A | 0,7727   | 0,8191    | 0,7000 | 0,7549   | 0,8200     |
| Modelo B | 0,7818   | 0,7981    | 0,7545 | 0,7757   | 0,9400     |
| Modelo C | 0 7055   | 0.8283    | 0.7455 | 0.7847   | 3 7600     |

objetivo planteado, logrando el mayor F1-score y

precisión, y por lo tanto, se recomienda su uso

para predecir la supervivencia de los pasajeros.

Conclusión

El modelo C es el más eficiente y preciso para el