CS 161 Intro. To Artificial Intelligence

Week 8, Discussion 1D

Conditional Probability

Conditional Probability:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

Product rule:

$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

Chain Rule (general product rule):

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= \mathbf{P}(X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n-1}|X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= ...
= .$$

← Note that:

$$P(X_1,...,X_n) = P(X_1 \wedge X_2 \wedge \cdots \wedge X_n)$$

Independence

Independence:

- Independence: $A \perp B$
 - P(A|B) = P(A), or P(B|A) = P(B), or P(A,B) = P(A)P(B)
 - E.g. P(Toothache, Catch, Cavity, Weather)= P(Toothache, Catch, Cavity)P(Weather)
- Conditional independence: A ⊥ B|C
 - $\qquad \mathsf{P}(\mathsf{A},\mathsf{B}|\mathsf{C}) = \mathsf{P}(\mathsf{A}|\mathsf{C})\mathsf{P}(\mathsf{B}|\mathsf{C}), \, \underline{\mathsf{or}} \, \mathsf{P}(\mathsf{A}|\mathsf{B},\mathsf{C}) = \mathsf{P}(\mathsf{A}|\mathsf{C})$
 - This indicates: A and B are independent when the value of C is known and fixed
 - o E.g. Catch is conditionally independent of Toothache given Cavity: P(Catch|Toothache, Cavity) = P(Catch|Cavity) P(Toothache, Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity) = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

Probability Inference – Bayes Rule

Probability inference: inference the probability of one event

How to do it?

- Inference by enumeration
- Inference rule:
 - O Bayes' Rule:

Bayes' Rule can be used in probablity inference when we have P(b|a) but not P(a|b).

Product rule
$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

$$\Rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Bayes Rule

Useful for assessing **diagnostic** probability from **causal** probability:

$$P(Cause | Effect) = \frac{P(Effect | Cause)P(Cause)}{P(Effect)}$$

Naïve Bayes model:

$$P(Cause, Effect_1, \dots, Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)$$

Example:

$$\mathbf{P}(Cavity|toothache \wedge catch) \\
= \alpha \mathbf{P}(toothache \wedge catch|Cavity) \mathbf{P}(Cavity)$$

$$= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$$

Bayesian Network (BN) - Representation

Goal: Represent joint probability over a set of random variables

Facilitate probability computation

Component:

- Graph Structure: a Directed Acyclic Graph (DAG)
 - Nodes: random variables (events)
 - Edges: $y \rightarrow x$ means y causes/influences x
- Local Probability Model
 - Represent the dependence of each variable on its parents
 - $y_1, y_2, ..., y_k \rightarrow x$: conditional probability $p(x \mid y_1, y_2, ..., y_k)$
 - Root variables: marginal probability

BN - Graph Structure

Scenario: A company wants to hire an intelligent student.

- But intelligence cannot be directly measured.
- But the company may have access to the student's SAT and GPA score.
- Based on the observable evidences (SAT and GPA), company can try to infer whether this student is intelligent or not.

BN - Graph Structure

BN - Graph Structure

Independent Random Variables

P(GPA | Intelligence, Difficulty of Courses)

BN- Full Representation

Components of BN:

- Directed, acyclic graph (DAG)
- Conditional distribution for each node given its parents (e.g. $P(X_i|Parents(X_i))$
 - Often represented as conditional probability tables (CPTs)

BN - Independence

Independence: I(Intelligence, Ø, Difficulty)

Parents: GPA – Intelligence, Difficulty;
 SAT – Intelligence

Descendants: Intelligence – SAT, GPA;
 Difficulty – GPA

Non-descendants: nodes that are not descendant nor parents. E.g. non-descendant of GPA is SAT

Markovian Assumption

BN satisfies local Markov property:

- A node is conditionally independent of its non-descendants given its parents.
- It can be represented as: I (V, Parents(V), Non-Descendants(V))
- E.g.
 - I (C, A, B E R)
 - I (R, E, A B C)
 - I (A, B E, R)
 - I (B, Ø, E R)
 - I (E, Ø, B)

Joint Probability

BN models the following joint probability:

$$P(X_1, X_2, ..., X_N) = \prod_{i=1}^{N} P(X_i | \text{parents of } X_i)$$

Reason:

- Without loss of generality, assume $X_1, X_2, ..., X_N$ is a topological ordering
- Chain rule:

$$P(X_1, X_2, ..., X_N) = \prod_{i=1}^{N} P(X_i | X_1, X_2, ..., X_{i-1})$$

- $P(X_i|X_1, X_2, ..., X_n) = P(X_i|\text{parents of } X_i)$
 - Topological ordering => parents are in $X_1, X_2, ..., X_{i-1}$
 - Markovian assumption => given parents, a variable is X_i is independent of other variables in $X_1, X_2, ..., X_{i-1}$

Joint Probability - Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes.

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Joint Probability - Example

e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

=
$$P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$$

= $0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$

$$\approx 0.00063$$

D-separation

D-separation is a graphical test of independence: I (A, Z, B) if A and B are d-separated given Z.

- dsep(A, Z, B) iff every path between a node in A and a node in B is blocked by Z
- A path is blocked by Z iff at least one valve on the path is closed given Z

Three types of valve:

Sequential:

Divergent:

Convergent:

D-separation

A sequential valve is closed iff variable Z is known

A divergent valve is closed iff variable Z is known

A convergent valve is closed iff <u>neither</u> variable Z nor any of its descendant is known

D-separation - Example

Example:

 $Z = \{E, C\} \square known$

Q: dsep(B, E C, R)? \Box Do we have I(B, E C, R)?

Q: dsep(E, B C, R)? \Box Do we have I(E, B C, R)?

D-separation - Example

Example:

- $Z = \{E, C\} \square known$
- Q: dsep(B, E C, R)? \Box Do we have I(B, E C, R)?
 - E closes the only path
- Q: dsep(E, B C, R)? \Box Do we have I(E, B C, R)?
 - C opens the only path

BN Inference - Queries

- Prior marginal: for any variable, compute its distribution
 - E.g. C = yes 3.2%C = No 96.8%
- ☐ This basically means if pick up a person from population, its prob. of getting disease C

- Can be computed from joint prob. table Pr(S, C, T1, T2, A)
- Posterior marginal: given evidence, compute a variable's distribution
 - E.g. Given β : {T1 = +ve, T2 = +ve}

C = yes	45.3%
C = No	54.7%

• Can be computed from joint prob. table Pr(S, C, A| β)

		S	C	$\theta_{c s}$	C	T_1	$\theta_{t_1 c}$
\boldsymbol{S}	θ_s	male	yes	.05	yes	+ve	.80
male	.55	male	no	.95	yes	-ve	.20
female	.45	female	yes	.01	no	+ve	.20
		female	no	.99	no	-ve	.80

S	\boldsymbol{C}	T_2	$\theta_{t_2 c,s}$	T_1	T_2	\boldsymbol{A}	$\theta_{a t_1,t_2}$
male	yes	+ve	.80	+ve	+ve	yes	1
male	yes	-ve	.20	+ve	+ve	no	0
male	no	+ve	.20	+ve	-ve	yes	0
male	no	-ve	.80	+ve	-ve	no	1
female	yes	+ve	.95	-ve	+ve	yes	0
female	yes	-ve	.05	-ve	+ve	no	1
female	no	+ve	.05	-ve	-ve	yes	1
female	no	-ve	.95	-ve	-ve	no	0

BN Inference - Queries

- Most probable explanation (MPE):
 - Find the most probable instantiation of all remaining vars. given evidence
 - E.g. Given A = Yes, what's the most probable instantiation of S, C, T1, T2?
 - In this scenario, we can find Pr(C=No, S=female, T1=-ve, T2=-ve) ~ 47%

- Maximum a posteriori hypothesis (MAP):
 - Similar to MPE, but only find the most probable instantiation of a set of vars. given evidence
 - E.g. Given A = Yes, what's the most likely states of S and C?
 - We can find Pr(C=No, S=male) ~ 49.3%
 - MAP is a general case of MPE, an algorithm solving MAP can work for MPE too if we pass in all remaining vars.

		S	C	$\theta_{c s}$	C	T_1	$\theta_{t_1 c}$
S	θ_s	male	yes	.05	yes	+ve	.80
male	.55	male	no	.95	yes	-ve	.20
female	.45	female	yes	.01	no	+ve	.20
		female	no	.99	no	-ve	.80

S	\boldsymbol{C}	T_2	$\theta_{t_2 c,s}$	T_1	T_2	\boldsymbol{A}	$\theta_{a t_1,t_2}$
male	yes	+ve	.80	+ve	+ve	yes	1
male	yes	-ve	.20	+ve	+ve	no	0
male	no	+ve	.20	+ve	-ve	yes	0
male	no	-ve	.80	+ve	-ve	no	1
female	yes	+ve	.95	-ve	+ve	yes	0
female	yes	-ve	.05	-ve	+ve	no	1
female	no	+ve	.05	-ve	-ve	yes	1
female	no	-ve	.95	-ve	-ve	no	0

BN Inference - Algorithms

Goal: Compute answers to queries without constructing joint probability tables, otherwise it's not practical.

- Two categories of algorithms:
 - Variable elimination
 - Conditioning
- Complexity of algorithms depend on the topology of the graph:
 - n: # of variables; d: # of values (e.g. d=2 for binary values); w: treewidth
 - Complexity of answering prior/posterior marginals = $O(n \cdot d^w)$

BN Inference - Algorithms

- Complexity of algorithms depend on the topology of the graph:
 - on: # of variables; d: # of values (e.g. d=2 for binary values); w: treewidth
 - Complexity of answering prior/posterior marginals = $O(n \cdot d^w)$
- Treewidth of 2 special types of network:

- k: maximum # of parents a node can have
 - Polytree is also called singly-connected network
 - multiple parents per node
 - underlying undirected tree
- (General) DAG is also called multiply-connected network (more general Bayesian network)

Weighted Model Counting

- Weighted Model Counting (WMC):
 - o If a world satisfy a formula, we say it's a **model** for the formula
 - Model counting is counting the satisfiable models for a formula
 - \blacksquare E.g. Δ = (A v B) ^ -C.
 - We then have: SAT □ Yes/No, #SAT □ 3 models
 - WMC is counting models according to their given weights
 - The weight of a world/row is the product of weights assigned to its literals
 - E.g. WMC: 0.04 + 0.1 + 0.00 = 0.1
 - If we compile the formula to a smooth, decomposable and deterministic NNF circuit, we can do WMC in linear time!

Reducing Probabilistic Inference to WMC

BN Modeling

Compactness of BN:

If we have a BN with following parameters:

- n -- variables, k max # parents per node, d max # values per variable
- Complexity is $O(n \cdot d^{k+1}) \rightarrow$ size of BN

Size of BN is much smaller compared with that of joint probability table, which is $O(d^n)$.

BN Modeling

Steps of modeling BN:

- Variables and values
- Edge
- CPTs

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes.

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

BN Modeling - Example

- We can also have query variables and evidence variables based on task
 - E.g. Diagnostic vs predictive tasks
- Ways to construct CPTs (where to obtain numbers):
 - Problem statement
 - Subjective beliefs
 - Learning from data

Example

The flu is an acute disease characterized by fever, body aches and pains, and can be associated with chilling and a sore throat. The cold is a bodily disorder popularly associated with chilling and can cause a sore throat. Tonsillitis is inflammation of the tonsils which leads to a sore throat and can be associated with fever.

BN Modeling

1								
Case	Cold?	Flu?	Tonsillitis?	Chilling?	Bodyache?	Sorethroat?	Fever?	
1	true	false	?	true	false	false	false	
2	false	true	false	true	true	false	true	
3	?	?	true	false	?	true	false	
							· ·	

- Complete data (e.g. 2nd case): if **every** row is complete, dataset is complete □ efficient
- Incomplete data (e.g. 1st case): if **any** row is incomplete, dataset is incomplete
 - Use algorithm such as expectation maximization (EM) to find <u>maximum likelihood parameters</u>
- BN structure + CPTs = BN
 - May come out multiple BNs

 The BN with max score (computed by multiplying prob. assigned to all cases based on each BN) is better
 - It's called <u>maximum likelihood principle</u>

Sensitivity Analysis

Example

-!-

A few weeks after inseminating a cow, we have three possible tests to confirm pregnancy. The first is a scanning test which has a false positive of 1% and a false negative of 10%. The second is a blood test, which detects progesterone with a false positive of 10% and a false negative of 30%. The third test is a urine test, which also detects progesterone with a false positive of 10% and a false negative of 20%. The probability of a detectable progesterone level is 90% given pregnancy, and 1% given no pregnancy. The probability that insemination will impregnate a cow is 87%.

- Given S = -ve, B = -ve, U = -ve
- If we know:

P = yes	10.2%
P = No	89.8%

- Sensitivity analysis tells us what we can change in CPTs to change target our probability value
 - Useful in BN design process to debug the probability value of an existing network

Tips for HW8

- Install Java (JRE or JDK) and set up the Java path in environment variables
 - Environment setup: https://www.tutorialspoint.com/java/java_environment_setup.htm
- Install Samlam:
 - Download from:

http://reasoning.cs.ucla.edu/samiam

- For Windows:
 Amd64 for 64-bit system

 1386 for 32-bit system
- See tutorial videos in:
 Online Help section

