Лабораторная работа 11.3 Измерение контактной разности потенциалов в проводниках

Сажина Екатерина 621 группа

4 марта 2019 г.

Цель работы: определить контактную разность потенциалов p-n-перехода в полупроводниковом диоде по результатам измерений температурной зависимости его сопротивления.

Теоретическое введение

Рис. 1: Энергетическая схема полупроводника: а) n-типа; б) p-типа; в) p-n-перехода, находящегося в равновесии

Вид распределения концентрации носителей заряда вблизи p-n-перехода ведет к появлению разности потенциалов $e\Delta V = 2\left(\mu - \frac{1}{2}E_{\rm c}\right).$

$$n$$
 p
 n_p

Рис. 2: Концентрация электронов и дырок в области р-п-перехода

Если приложить к полупроводнику напряжение $V_{\text{ист}}$, то полный ток окажется равен

$$I\left(V_{\text{\tiny MCT}}\right) = I_0 \left[\exp\left(\frac{eV_{\text{\tiny MCT}}}{k_{\rm B}T}\right) - 1 \right],$$

где I_0 — суммарный ток, переносимый при равновесии всеми носителями заряда. При этом

$$I_0 \propto \exp\left[-e\Delta V/\left(k_{\rm B}T\right)\right]$$
.

Рис. 3: Схема р-п-перехода под напряжением: положительное смещение (а); отрицательное смещение (б)

Следовательно,

$$I\left(V_{\text{\tiny HCT}}\right) = A \exp\left(-rac{e\Delta V}{k_{
m B}T}\right) \left[\exp\left(rac{eV_{\text{\tiny HCT}}}{k_{
m B}T}\right) - 1\right].$$

При комнатных температурах и небольших напряжениях внешнего источника сопротивление перехода

$$R = \frac{V_{\text{\tiny MCT}}}{I} \simeq \frac{k_{\text{\tiny B}}T}{e} \frac{1}{A} \exp\left(\frac{e\Delta V}{k_{\text{\tiny B}}T}\right).$$

Таким образом,

$$\Delta V = \frac{k_{\rm B}}{e} \frac{\Delta(\ln R)}{\Delta(1/T)}$$

Экспериментальная установка

В данной установке сопротивление исследуемого проводникового диода находится как

$$R_{\rm M} = (R_2/R_1) R_{\rm M} = 10 R_{\rm M}.$$

Температура в дью
аре $t=25,0^{\circ}C$, постоянная термопары 0,041 мВ/°C.

Рис. 4: Схема установки

Ход работы и обработка результатов

В работе была получена зависимость сопротивления полупроводникового диода из снятой зависимости сопротивления моста в положении баланса от температуры.

Таблица 1: Результаты измерений сопротивления в зависимости от температуры

V, мВ	$t, {}^{\circ}C$	$1/T, K^{-1}$	$\Delta(1/T), K^{-1}$	$R_{\scriptscriptstyle \rm M}$, Om	R_{A} , Ом	$\ln R_{\rm A}$	$\Delta \ln R_{_{\mathrm{J}}}$
0,04	25,98	0,003345	0,000004	260	2600	7,863	0,004
0,24	30,85	0,003291	0,000004	170	1700	7,438	0,006
0,45	35,98	0,003237	0,000004	110	1100	7,003	0,009
0,65	40,85	0,003186	0,000004	80	800	6,685	0,013
0,86	45,98	0,003135	0,000004	60	600	6,397	0,017
1,06	50,85	0,003088	0,000004	42	420	6,040	0,024
1,27	55,98	0,003040	0,000003	33	330	5,80	0,03
1,47	60,85	$0,\!002995$	0,000003	26	260	5,56	0,04
1,68	$65,\!98$	0,002950	0,000003	21	210	5,35	0,05
1,88	70,85	0,002908	0,000003	17	170	5,14	0,06
2,09	75,98	0,002866	0,000003	13	130	4,87	0,08
2,29	80,85	0,002826	0,000003	12	120	4,79	0,08

Рис. 5: Зависимость сопротивления полупроводника от температуры

По наклону линейной части построенного графика $\ln R_{\rm g}(1/T)$ была посчитана контактная разность потенциалов p-n-перехода:

$$\Delta V = 0.551 \pm 0.016 \text{ B}.$$

Вывод

В работе удалось пронаблюдать температурную зависимость проводимости полупроводника в диапазоне температур $25-80\,^{\circ}C$.

Полученное значение контактной разности потенциалов попадает в диапазон типичных для диодов значений (около 0,5 В).