Input Performance

KLM, Fitts' Law, Pointing Interaction Techniques

Input Performance

1

Input Performance Models

- You're designing an interface and would like to:
 - choose between candidate designs without building them
 - estimate performance with your new design
- Solution: use a model of how people use input devices and interfaces to predict time, error, fatigue, learning, etc.
 - models most often focus on time and error (easiest to measure)

Keystroke Level Model (KLM)

- Describe each task with a sequence of operators
- Sum up times to estimate how long the task takes
- Operator types
 - **K** Keystroke = 0.8 1.2s (based on expertise, type of string)
 - **P** Pointing = 1.10s
 - **B** Button press on mouse = 0.1s
 - **H** Hand move from mouse to/from keyboard = 0.4s
 - **M** Mental preparation = 1.2s
- KLM is simplified GOMS, so sometimes called KLM-GOMS
- Great online resource for KLM (Kieras, 1993):
 - ftp://ai.eecs.umich.edu/people/kieras/GOMS/KLM.pdf
- KLM Time Calculator
 - http://courses.csail.mit.edu/6.831/2009/handouts/ac18-predictiveevaluation/klm.shtml

Input Performance

3

KLM Operators

KLM Example (Only Physical Operators)

 Use KLM to compare the performance time of three different date entry widgets. (assume: hand already on mouse, 40 WPM typist)

Date (MM/DD/YYYY): PBH(Kx10) One text field Op Time 0.3 1.1 (PBPB)x3 0.1 Three Dropdowns May **₹** 22 **₹** 1997 Н 0.4 M 1.2 PBH(Kx10) ■ Three text fields Month Day Year

Input Performance

5

Including Mental Operators (M)

- People need to think about something before doing it
 - identify when people have to stop and think: M
 - difference between actions using cognitive conscious and cognitive unconscious
- Insert an **M** operation when people have to:
 - initiate a task
 - make a strategy decision
 - retrieve a chunk from memory
 - find something on the display (e.g. point to something)
 - think of a task parameter
 - verify that a specification/action is correct (e.g. display changes)
- Can use M to model novice and expert
 - add M in front of any action if they're a novice

KLM Example (Including Mental Operators)

 Use KLM to compare the performance time of three different date entry widgets. (assume: hand already on mouse, 40 WPM typist)

MPBH(K*10) • One text field

M(PBMPB*3) • Three Dropdowns

MPBHKK +
HPBHKK +
HPBHKKKK

Ор	Time
K	0.3
Р	1.1
В	0.1
Н	0.4
М	1.2

Input Performance

7

KLM Exercise

- Use KLM to compare different designs for deleting a file (assume: hand already on mouse, 40 WPM typist, file and trashcan are visible, return to original window when done)
- Do it without, and with, mental operators
- Designs:
 - 1. Select file and drag it trash can
 - 2. Select file and choose File/Delete from main menu
 - 3. Select file and delete with 'Del' shortcut key
 - 4. Select file and choose Delete from right-click context menu
- (solutions to 1,2,3 in <u>ftp://ai.eecs.umich.edu/people/kieras/GOMS/KLM.pdf</u>)

KLM Critique

Benefits?

•

•

.

Drawbacks?

- Some time estimates are out of date
- Some time estimates are inherently variable
- Doesn't model:
 - Errors
 - Learning time
 - etc.

Input Performance

С

KLM Doesn't Model Pointing Very Well

- KLM uses constant 1.1s for pointing, but:
 - some pointing devices are faster than others
 - intuitively, it should take longer to move the mouse a long distance, or point at a small button

Which Takes Longer?

Fitts' Law

- Fitts' Law: a predictive model for pointing time considering device, distance, and target size
 - published 1954
 - based on rapid, aimed movements
 - works for many kinds of pointing "devices": finger, pen, mouse, joystick, foot, ..
- Paul Fitts
 - Psychologist at Ohio State University
 - Early advocate of user-centred design (in terms of matching system to human capabilities)

Distance vs. Size

- The larger the **distance**, the longer the **time**
- The smaller the **size** of the target, the longer the **time**
- So, a proportional relationship between movement time and distance and size:

$$MT \propto \frac{D}{S}$$

- But ...
 - what is meant by target "size"?
 - a proportional relationship isn't a model ...

Input Performance

13

http://husk.eecs.berkeley.edu/projects/fitts/

http://www.simonwallner.at/ext/fitts/

Input Performance

15

· w >

Linear Regression

 Movement time varies according to log of Distance and target "Width" (assume 1 dimension for the moment):

$$MT \propto \log \frac{D}{W}$$

 It's a linear regression, so it has a slope 'b' and intercept 'a' ...

$$MT \propto a + b \log_2 \frac{D}{W}$$

Fitts' Law

$$MT = a + b \log_2 \left(\frac{D}{W} + 1\right)$$

- MT = movement time
- D = distance between the starting point and the centre of the target (D is often shown as 'A' for Amplitude)
- W = Constraining size of the target
- a and b are characteristics of input device

Input Performance

17

Fitts' Law: Index of Difficulty

$$MT = a + b \log_2 \left(\frac{D}{W} + 1\right)$$

$$IP = \text{``Index of Performance''} = 1/b \qquad \text{Difficulty''}$$

Device Characteristics (a and b parameters)

Input Performance

19

a, b, and IP for different devices

Regression Coefficients

		Regression Coefficients				
Device	rª	Intercept, a(ms)	Slope, b (ms/bit>	IP (bits/s) ^b		
*** Pointing ***						
Mouse	.990	-107	223	4.5		
Tablet	.988	-55	204	4.9		
Trackball	.981	75	300	3.3		
*** Dragging ***						
Mouse	.992	135	249	4.0		
Tablet	.992	-27	276	3.6		
Trackball	.923	-349	688	1.5		
			.=======			

^a n = 16, p < .001^b IP (index of performance) = 1/b

Figure 7. Fitts' law models. A regression analysis for each device-task combination shows the correlation (r), intercept (a), slope (b), and index of performance (IP = 1/b). Prediction equations are of the form MT = a + b ID, where $ID = \log_2(A/W + 1)$.

2D Targets?

http://www.yorku.ca/mack/CHI92.html
(remember 'A' = Amplitude = 'D' = Distance)

Input Performance

21

2D Targets: W' as Cross Section Given Approach

• But hard to know approach angle a priori ...

http://www.yorku.ca/mack/CHI92.html
(remember 'A' = Amplitude = 'D' = Distance)

2D Targets: "W" is Minimum of Target W and H

$$MT = a + b \log_2 \left(\frac{D}{\min(W, H)} + 1 \right)$$

... but usually just write W assuming it's the minimum of target W and H

Input Performance

23

Fitts' Law Example

Using a mouse to point (a = -107 and b = 223), what is the movement time to click on a 80 pixel by 32 pixel Cancel button located 400 pixels away?

Menu Target Size in OSX and Windows

Input Performance

25

Context Menus, Pie Menus, Marking Menus

- Context Menu lowers D, but some items closer than others
- Pie Menus near mouse, all items same D (optimal)

context menu

pie menu

http://elementaryos.org/journal/argument-against-pie-menus http://instruct.uwo.ca/english/234e/site/secondlife_2.html

Bubble Cursor (Grossman and Balakrishnan, 2005)

- http://youtu.be/JUBXkD_8ZeQ

Input Performance

27

A General-Purpose Bubble Cursor using Prefab (Dixon et al. 2012)

- https://youtu.be/46EopD_2K_4

OSX Dock Expansion

- OSX Dock expands in visual space, but not motor space ...
- Fitts's law says selecting an expanded target on the dock is no easier than the default small targets

McGuffin, M. J., & Balakrishnan, R. (2005). Fitts' law and expanding targets: Experimental studies and designs for user interfaces. ACM Transactions on Computer-Human Interaction (TOCHI), 12(4), 388-422.

Input Performance

29

Motor Space vs. Screen Space

- Dynamically change CD Gain based on position of cursor
 - Making the cursor move more slowly when over the save button makes it larger in "motor space" even though it looks the same size in "screen space".
 - LOOKS the same on screen, but "Save" button is "sticky".
 - Faster to click "Save" (if Fitts' Law calculated in motor space).

Input Performance

Steering Law

- Steering Law is an adaptation of Fitts' Law
- Developed by Zhai and Acott
- Choose a paradigm which focuses on steering between boundaries
- Applicability?

Figure 1: Self-paced movement with normal constraint

Input Performance

31

Steering Law

Tracking a constrained path takes longer

Steering Law: Goal Passing

- Subjects passed a stylus from one end to the other
 - As fast as possible
 - Between each goal
 - Several trials with different amplitudes (A) and widths (W)
- Result: Same law as Fitts' tapping task

CS 349 - Input Performance

Steering Law: Goal Passing

• With only goals at the endpoints:

$$ID_1 = \log_2\left(\frac{A}{W} + 1\right)$$

Adding N goals:

$$ID_{N} = \log_{2}\left(\frac{A}{N \times W} + 1\right)$$

Steering Law: Goal Passing

- When N approaches infinity, the task approaches steering through a tunnel (hierarchical menu).
- Index of Difficulty:

$$T = \lim_{ ext{N} o \infty} \sum_{ ext{i}=1}^{ ext{N}} b \log_2 \! \left(rac{A/N}{W} + 1
ight) \ T = b rac{A}{W}$$

So difficulty is not related to log(A/W) but just A/W

CS 349 - Input Performance

35

Hierarchical Menus

- Sum the parts of the path:
 - Wide path (but short stopping distance)
 - Narrow path (but wide stopping distance)
 - Wide path (with short stopping distance)

Summary

- We have mathematical models for acquiring a target, both when the path is unconstrained and constrained
 - Larger/closer is faster
- Gives some ideas for speeding things up
 - Keep things close (contextual, pie-menus)
 - Make things larger (bubble cursors)
 - Manipulate motor space to make intended targets stickier