Universidade Estadual da Paraíba

Centro de Ciências e Tecnologia

Curso de Bacharelado em Estatística/ESA

Métodos Numéricos – Ajuste de Curvas

Introdução

• Ajuste de Curvas – é um processo em que um conjunto de *m* pontos (gerados por uma função desconhecida ou conhecida mas muito complexa) é atravessado por uma curva de perfil conhecido e previamente escolhido (1º., 2º., ..., n-ésimo grau, etc), de modo que tal curva ao passar entre os pontos o faça com o menor erro possível.

Ajuste de Curvas

- Erro Total de Ajuste (D) o critério de minimização do erro comumente usado nas técnicas de ajuste de curvas é o critério dos desvios mínimos quadrados.
- Para cada ponto y_i dos m pontos da tabela, o erro gerado em relação à curva de ajuste y é dado por: $d_i = y_i y(x_i)$.
- Então, o erro total de ajuste é dado pela soma de todas as diferenças acima elevadas ao quadrado:

$$D = \sum_{i=1}^{m} d_i^2 = \sum_{i=1}^{m} (y_i - y(x_i))^2$$

Cuidado! Não confunda a soma ao quadrado de todas as diferenças com a soma de todas as diferenças ao quadrado.

Ajuste de Curvas

Visualização do Erro de Ajuste em Cada Ponto

Ajuste de Curvas

- Calculando o Erro Total de Ajuste
- Ex.: Suponha que um problema de ajuste de curvas efetuado por uma reta (ajuste linear simples) gerou os seguintes dados. Calcule o erro total de ajuste.

x_i	-2,1	-1,5	-1,0	-0,5	0,5	1,0
y_i	-3,5	-1,5	-1,0	0,9	1,5	3,5
y(xi)	-3,08952	-1,86038	-0,8361	0,18819	2,236761	3,261046
di^2	0,16849	0,129875	0,026865	0,506674	0,542816	0,057099
\overline{D}	1,431819					

• Ajuste Polinomial - é o processo de ajustar um conjunto de pontos por meio de uma função polinomial de grau $n, n \ge 2$.

$$\mathbf{x} \rightarrow a_0 + a_1 \mathbf{x} + a_2 \mathbf{x}^2 + \dots + a_n \mathbf{x}^n$$

Assim, o polinômio y de ajuste é

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

Para o polinômio acima, o erro total do ajuste é dado por:

$$D = \sum_{i=1}^{m} (y_i - a_0 - a_1 x - a_2 x^2 - \dots - a_n x^n)^2$$

Ajuste Polinomial

 Aplicando o critério dos desvios mínimos quadrados na determinação dos n coeficientes do polinômio de grau n, temos como resultado o sistema de equações normais cuja solução determina os valores dos coeficientes a₀, a₁, a₂,..., a_n.

$$\begin{bmatrix} m & \sum x_i & \sum x_i^2 & \mathbb{Z} & \mathbb{Z} & \sum x_i^n \\ \sum x_i & \sum x_i^2 & \sum x_i^3 & \mathbb{Z} & \sum x_i^{n+1} \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 & \mathbb{Z} & \sum x_i^{n+2} \\ \sum x_i^n & \sum x_i^{n+1} & \sum x_i^{n+2} & \mathbb{Z} & \sum x_i^{n} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \mathbb{Z} \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum y_i \\ x_i \\ \mathbb{Z} \end{bmatrix}$$

Ajuste Polinomial

$$\begin{bmatrix} m & \sum x_i & \sum x_i^2 & \sum x_i^3 & \sum x_i^{n+1} & a_0 \\ \sum x_i & \sum x_i^2 & \sum x_i^3 & \sum x_i^{n+1} & a_1 & \sum y_i x_i \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 & \mathbb{X} & \sum x_i^{n+2} & a_2 & = \sum y_i x_i^2 \\ \sum x_i^n & \sum x_i^{n+1} & \sum x_i^{n+2} & \mathbb{X} & \sum x_i^{2n} & a_n \end{bmatrix} \begin{bmatrix} \sum y_i \\ \sum y_i x_i \\ a_n \end{bmatrix}$$

 Se o grau do polinômio de ajuste for n deverão ser consideradas n + 1 linhas/colunas no sistema de equações normais.

Ajuste Polinomial

$$\begin{bmatrix} m & \sum x_i & \sum x_i^2 & \boxtimes & \sum x_i^n \\ \sum x_i & \sum x_i^2 & \sum x_i^3 & \boxtimes & \sum x_i^{n+1} & a_1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \begin{bmatrix} \sum y \\ \sum y_i x_i \end{bmatrix}$$

$$\begin{bmatrix} \sum x_i^2 & \sum x_i^3 & \sum x_i^4 & \boxtimes & \sum x_i^{n+2} & a_2 \end{bmatrix} = \begin{bmatrix} \sum y \\ \sum y_i x_i \end{bmatrix}$$

$$\begin{bmatrix} \sum x_i^n & \sum x_i^{n+1} & \sum x_i^{n+2} & \boxtimes & \sum x_i^{2n} & a_n \end{bmatrix} \begin{bmatrix} \sum y \\ \sum y_i x_i \end{bmatrix}$$

Os limites em vermelho são para o sistema de equações normais cuja solução determina os coeficientes da função de ajuste linear simples (isto é, 1º. grau). Enquanto o sistema dos limites em azul são para um polinômio de ajuste do 2º. grau. E assim por diante.

Ajuste Polinomial

- Ex.: Use a tabela de pontos dada no próximo slide e faça o ajuste com um polinômio do 2º. grau. Trace o gráfico do polinômio de ajuste e calcule o erro total. Comente os resultados.
- Solução: como o polinômio de ajuste é de grau 2, o sistema de equações normais terá três linhas/colunas para determinar os coeficientes a_0 , a_1 e a_2 do polinômio abaixo:

$$y = a_0 + a_1 x + a_2 x^2$$

$$\begin{bmatrix} \mathbf{m} & \sum \mathbf{x}_i & \sum \mathbf{x}_i^2 \\ \sum \mathbf{x}_i & \sum \mathbf{x}_i^2 & \sum \mathbf{x}_i^3 \\ \sum \mathbf{x}_i^2 & \sum \mathbf{x}_i^3 & \sum \mathbf{x}_i^4 \end{bmatrix} \begin{bmatrix} \mathbf{a}_0 \\ \mathbf{a}_1 \\ \mathbf{a}_2 \end{bmatrix} = \begin{bmatrix} \sum \mathbf{y}_i \\ \sum \mathbf{y}_i \\ \mathbf{x}_i \\ \sum \mathbf{y}_i \\ \mathbf{x}_i^2 \end{bmatrix}$$

Use o Excel para calcular os somatórios que irão compor o sistema ao lado.

Ajuste Polinomial

Esta é a nossa tabela de pontos:

i	1	2	3	4	5	6
x_i	-2,1	-1,5	-1,0	-0,5	0,5	1,0
y_i	-3,5	-1,5	-1,0	0,9	1,5	3,5

• E os somatorios necessarios resolvidos no ⊏xcei:

m	Σx_i	$\sum x_i^2$	Σx_i^3	Σx_i^4	Σy_i	$\Sigma y_i x_i$	$\Sigma y_i x_i^2$
6	-3,6	9,2	-12,6	26,6	-0,1	14,4	-15,71

Ajuste Polinomial

Os somatórios mostrados na tela anterior:

m	Σx_i	$\sum x_i^2$	$\sum x_i^3$	$\sum x_i^4$	Σy_i	$\Sigma y_i x_i$	$\Sigma y_i x_i^2$
6	-3,6	9,2	-12,6	26,6	-0,1	14,4	-15,71

• E o sistema que teremos de resolver para determinar os coeficientes a_2 , a_1 e a_0 do polinômio de ajuste do 2º. grau.

$$\begin{bmatrix} 6 & -3,6 & 9,2 \\ -3,6 & 9,2 & -12,6 \\ 9,2 & -12,6 & 26,6 \end{bmatrix} \begin{bmatrix} \boldsymbol{a}_0 \\ \boldsymbol{a}_1 \\ \boldsymbol{a}_2 \end{bmatrix} = \begin{bmatrix} -0,1 \\ 14,4 \\ -15,71 \end{bmatrix}$$

Ajuste Polinomial

Resolvendo o sistema de equações, temos;

$$a_2 = -0.21127$$
 $a_1 = 1.82446$ $a_0 = 1.40196$

$$a_1 = 1,82446$$

$$a_0 = 1,40196$$

O polinômio de ajuste do 2º. grau é:

$$y = 1,40196 + 1,82446x - 0,21127x^2$$

 O erro total de ajuste será calculado pelo critério dos mínimos quadrados dado anteriormente, contextualizado para um polinômio do 2º. grau:

$$D = \sum_{i=1}^{m} (y_i - a_0 - a_1 x - a_2 x^2)^2$$

Ajuste Polinomial

 Os parâmetros da tabela a seguir foram avaliados usando o Excel e o cálculo do erro total de ajuste é mostrado a seguir:

x_i	-2,1	-1,5	-1,0	-0,5	0,5	1,0
y_i	-3,5	-1,5	-1,0	0,9	1,5	3,5
$y(x_i)$	-3,36112	-1,81009	-0,63377	0,436912	2,261371	3,015146
d_i^2	0,019289	0,096157	0,134123	0,21445	0,579686	0,235083
D	1,278788					

 Comparando o erro acima com o erro obtido com o ajuste linear simples (1,432767), observamos que o ajuste com o polinômio do 2º. grau é mais preciso (cerca de 12% mais preciso).

Ajuste Linear Simples

 Ex.: Agora vamos ajustar com uma reta os pontos da tabela do slide 11 para ver se geramos a tabela de desvios do slide 5 a fim de justificar a conclusão na comparação dos erros do slide anterior. Esta é a nossa tabela de pontos:

i	1	2	3	4	5	6
x_i	-2,1	-1,5	-1,0	-0,5	0,5	1,0
y_i	-3,5	-1,5	-1,0	0,9	1,5	3,5

Sistema de equações normais para o ajuste linear simples:

$$\begin{bmatrix} m & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum y_i x_i \end{bmatrix} \implies y = a_0 + a_1 x$$

Ajuste Linear Simples

Tabela de pontos

i	1	2	3	4	5	6
x_i	-2,1	-1,5	-1,0	-0,5	0,5	1,0
y_i	-3,5	-1,5	-1,0	0,9	1,5	3,5

Os somatorios necessarios resolvidos no Excei:

m	Σx_i	Σx_i^2	Σy_i	$\Sigma y_i x_i$
6	-3,6	9,2	-0,1	14,4

• O sistema de equagodo com oo valoreo aomia.

$$\begin{bmatrix} 6 & -3.6 \\ -3.6 & 9.2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} -0.1 \\ 14.4 \end{bmatrix}$$

Ajuste Linear Simples

Resolvendo o sistema pela regra de Cramer:

$$\begin{bmatrix} 6 & -3.6 \\ -3.6 & 9.2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} -0.1 \\ 14.4 \end{bmatrix}$$

$$a_{0} = \frac{\det\begin{bmatrix} -0.1 & -3.6 \\ 14.4 & 9.2 \end{bmatrix}}{\det\begin{bmatrix} 6 & -3.6 \\ -3.6 & 9.2 \end{bmatrix}} = \frac{50.92}{42.24} = 1,205492$$

$$y = 1,205492 + 2,036932x$$

$$\det\begin{bmatrix} 6 & -0.1 \\ -3.6 & 14.4 \end{bmatrix} = 22.24$$

$$a_{1} = \frac{\det\begin{bmatrix} 6 & -0.1 \\ -3.6 & 14.4 \end{bmatrix}}{\det\begin{bmatrix} 6 & -3.6 \\ -3.6 & 9.2 \end{bmatrix}} = \frac{86.04}{42.24} = 2,036932$$

Ajuste Linear Simples

 Tabela de desvios calculada pelo Excel comparada com a tabela do slide 5.:

x_i	-2,1	-1,5	-1,0	-0,5	0,5	1,0	
y_i	-3,5	-1,5	-1,0	0,9	1,5	3,5	da
y(xi)	-3,08952	-1,86038	-0,8361	0,18819	2,236761	3,261046	AZ↓
di^2	0,16849	0,129875	0,026865	0,506674	0,542816	0,057099	1
D	1,431819						

	J4		T×				
	Α	В	С	D	E Ba	rra de fórmula	es G
1	3-1						
2	i	1	2	3	4	5	6
3	хi	-2,1	-1,5	-1,0	-0,5	0,5	1,0
4	yi	-3,5	-1,5	-1	0,9	1,5	3,5
5	y(xi)	-3,07207	-1,84991	-0,83144	0,187026	2,223958	3,242424
6	(di)^2	0,183128	0,122434	0,028412	0,508332	0,524115	0,066345
7	D	1,432767					
8							
-							

Ajuste de Curvas

 A seguir os dois polinômios de ajustes mostrados entre o mesmo conjunto de pontos.

$$y = 1,40196 + 1,82446x - 0,21127x^2$$

$$y = 1,205492 + 2,036932x$$

Observação Final

- Por se tratar de uma técnica em que o polinômio de ajuste passa entre os pontos – e não necessariamente sobre cada ponto, como na interpolação – o ajuste de curvas permite que se faça projeções para valores fora do limite da tabela de pontos.
- Em outras palavras, se você pretende fazer projeções para valores menores que o menor x da tabela de pontos ou maior que o maior x, você vai ter que optar pelo ajuste de curvas e não pela interpolação.

Por enquanto é só...

Estão abençoados!