物理实验报告

学号: <u>12311004</u> 姓名: 刘达洲 日期: <u>2025.3.7</u> 时间: 周五下午

1 实验名称:单摆测量重力加速度

2 实验目的

- 利用经典的单摆公式,依据器材和对重力加速度的测量精度要求,进行设计性实验基本方法的训练。
- 学习应用误差均分原则,选用适当的仪器和测量方法,完成设计性实验内容。

3 实验仪器

游标卡尺,钢卷尺,电子秒表,单摆实验仪

4 实验原理

4.1 重力加速度

已知单摆的周期公式为:

$$T=2\pi\sqrt{\frac{L}{g}}$$

从而可推导出重力加速度:

$$g = \frac{4\pi^2 L}{T^2}$$

其中 g 为重力加速度, 1 为摆长, T 为单摆周期, t 为测量时间, N 为周期数。

4.2 精度要求

 Δg 的表达式为

$$\frac{\Delta g}{g} = \frac{\Delta l}{l} + \frac{2\Delta t}{t}$$

根据不确定性均分原理:

$$\frac{\Delta g}{g} < 1\% \Rightarrow \frac{\Delta l}{l} < 0.5\%, \frac{2\Delta t}{t} = \frac{2\Delta t}{NT} < 0.5\%$$

所采用的线长 $\bar{l}=72.048cm$,小球直径为 $\bar{d}=19.968mm$,周期为 $\bar{T}=1.718s$,计算可得 $\Delta_l=0.360cm$, $\Delta_t=0.004s$ 对照表 1 知,钢卷尺和摆球直径可以满足。同时,N>47.059,因此,至少需要 48 个周期。

5 实验内容

- 准备仪器细线、钢球、单摆支架、米尺、游标卡尺、电子秒表。
- 用游标卡尺测量小球的直径, 重复测量 5 次, 并记录数据。

	摆线长度	摆球直径	50 个周期
测量仪器	钢卷尺	游标卡尺	秒表
仪器误差	0.8mm	$0.02 \mathrm{mm}$	0.01s
估计误差	$0.5 \mathrm{mm}$	0.02mm	0.2s
误差分布	正态分布	均匀分布	正态分布
С	3	$\sqrt{3}$	3

表 1: 测量参数与不确定度

- 将细线固定在单摆支架上,并将小球固定在细线的下端,确保细线长度长于 70cm。
- 使用米尺测量细线的长度(不包括小球的半径),重复测量5次,并记录数据。
- 调整细线长度, 使单摆自然下垂, 测量并记录摆长(细线长度加上小球半径)。
- 将单摆拉离平衡位置一个较小的角度(小于5度),然后释放,开始计时。
- 记录单摆完成 50 次全振动所需的时间,并重复测量 5 次,以确保数据的准确性。
- 根据测量的周期和摆长,利用公式计算重力加速度。
- 对测量数据进行误差分析, 计算重力加速度的不确定度。

6 实验数据与分析

6.1 原始数据

绳长 l (cm)	72.08	72.10	72.00	72.02	72.04
50 次周期 t (s)	85.91	85.72	85.85	85.94	85.97
小球直径 d (mm)	20.00	19.96	19.98	19.96	19.94

6.2 加速度计算结果

所采用的线长 $\bar{l}=72.048cm$,小球直径为 $\bar{d}=19.968mm$,周期为 $\bar{T}=1.718s$,计算得 $g=\frac{4\pi^2L}{T^2}=9.775m/s^2$

6.3 不确定度计算

有效摆长计算

绳长 l 与小球直径 D 合成总摆长:

$$L = l + \frac{D}{2} = (740.4 \pm 0.8) \,\mathrm{mm}$$

其中:

- 绳长均值 $l = 72.04 \,\mathrm{cm} = 720.4 \,\mathrm{mm}$
- 直径均值 $D = 19.94 \, \text{mm}$

A 类不确定度计算

$$u_A(l) = \sqrt{\frac{\sum (l_i - \bar{l})^2}{n(n-1)}} = 0.0185 \,\mathrm{cm} = 0.185 \,\mathrm{mm}$$

$$u_A(D) = \sqrt{\frac{\sum (D_i - \bar{D})^2}{n(n-1)}} = 0.0102 \,\mathrm{mm}$$

$$u_A(T) = \sqrt{\frac{\sum (T_i - \bar{T})^2}{n(n-1)}} = 0.0442 \,\mathrm{s}$$

B 类不确定度计算

$$u_B(l) = \frac{\sqrt{\Delta_{f\! l}^2 + \Delta_{f\! l}^2}}{C} = \frac{\sqrt{0.5^2 + 0.8^2}}{\sqrt{3}} = 0.3145 \,\text{mm}$$

$$u_B(D) = \frac{\sqrt{0.02^2 + 0.02^2}}{\sqrt{3}} = 0.0163 \,\text{mm}$$

$$u_B(T) = \frac{\sqrt{0.2^2 + 0.01^2}}{3} = 0.0667 \,\text{s}$$

合成不确定度 (p = 0.95)

$$u(l) = \sqrt{(t_{0.95} \cdot u_A(l))^2 + (k \cdot u_B(l))^2} = \sqrt{(2.78 \times 0.185)^2 + (1.96 \times 0.3145)^2} = 0.8036 \,\text{mm}$$

$$u(D) = \sqrt{(2.78 \times 0.0102)^2 + (1.65 \times 0.0163)^2} = 0.0391 \,\text{mm}$$

$$u(T) = \sqrt{(2.78 \times 0.0442)^2 + (1.96 \times 0.0667)^2} = 0.1795 \,\text{s}$$

总摆长不确定度

$$u(L) = \sqrt{u(l)^2 + \left(\frac{1}{2}u(D)\right)^2} = \sqrt{0.8036^2 + (0.5 \times 0.0391)^2} = 0.8038 \,\mathrm{mm}$$

重力加速度不确定度

通过传播公式计算:

$$\frac{u(g)}{g} = \sqrt{\left(\frac{u(L)}{L}\right)^2 + \left(2\frac{u(T)}{T}\right)^2} = \sqrt{\left(\frac{0.8038}{740.4}\right)^2 + \left(2 \times \frac{0.1795}{85.88}\right)^2}$$

得到 $u(g) = 0.0422 \text{m/s}^2$

最终结果

测量重力加速度为:

$$g = (9.775 \pm 0.042) \,\mathrm{m/s}^2 \quad (p = 0.95)$$

相对不确定度:

$$\frac{\Delta g}{g} = 0.136\% < 1\%$$
 (满足误差分配要求)

- 注 1: $t_{0.95}$ 取 2.78 (n=5) 的 t 分布临界值)
- 注 2: 周期 $T = T_{50}/50 = 85.88/50 = 1.7176 \,\mathrm{s}$

7 误差分析

- **摆角偏差**: 单摆周期公式成立的前提是小角度近似 ($\theta < 5^{\circ}$)。若实验中摆幅较大,实际周期会因摆角增大而偏离理论公式,需引入修正项。
- **空气阻力**:摆球在摆动过程中受到空气阻力,导致振幅逐渐衰减,可能影响周期的测量精度(但对钢球而言,此误差较小)。
- **悬点摩擦**: 摆线与支架悬点间的摩擦会消耗能量,可能使摆动非严格简谐振动,但实验中尼龙线摩擦较小,影响可忽略。
- **摆线质量与伸缩性**:公式假设摆线无质量且不可伸长,实际摆线存在微小质量及伸缩性,可能引入系统误差。

• 仪器误差:

- **摆长测量**:钢卷尺测量线长时,若未从悬点垂直到球心,或未正确测量摆球直径 (需用游标卡尺),会导致摆长误差。
- 周期测量: 秒表启停的人为反应时间($\Delta \lambda = 0.2 \text{ s}$)虽通过测量多个周期均摊(如 50T),但仍可能残留微小误差。

8 实验结论

- **实验方法**: 基于误差均分原理,选用钢卷尺($\Delta = 0.05 \text{ cm}$)测摆线长度 L,游标卡尺($\Delta = 0.002 \text{ cm}$)测摆球直径 d,电子秒表($\Delta = 0.01 \text{ s}$)测量 50 个周期总时间 t,计算单摆周期 T = t/50。通过公式

$$g = \frac{4\pi^2 L}{T^2} \tag{1}$$

计算重力加速度。

- 测量结果:

$$g = (9.775 \pm 0.042) \,\mathrm{m/s}^2 \quad (p = 0.95)$$
 $\frac{\Delta g}{g} = 0.136\% \quad (满足误差分配要求)$

- 结论验证:

- * 相对不确定度 0.136% < 1%, 实验达到设计要求
- * 与深圳标准值 $g = 9.7887 \,\text{m/s}^2$ 对比,百分差为

$$\left| \frac{9.775 - 9.7887}{9.7887} \right| \times 100\% = 0.14\%$$

表明实验结果可靠

- 最终表达:

$$g = (9.775 \pm 0.042) \,\text{m/s}^2$$
 $(k = 2), \frac{\Delta g}{g} = 0.136\%,$ 符合 $\frac{\Delta g}{g} < 1\%$ 的设计要求

9 附表

n p	3	4	5	6	7	8	9	10	∞
0.68	1.32	1.20	1.14	1.11	1.09	1.08	1.07	1.06	1
0.95	4.30	3.18	2.78	2.57	2.46	2.37	2.31	2.26	1.96

表 2: 表一 t 因子与置信概率 p 与测量次数 n 相关

分布类型	p=1	p=0.9973	p=0.99	p=0.95
正态分布	3	3	2.58	1.96
均匀分布	$\sqrt{3}$	1.73	1.71	1.65

表 3: 表二置信概率 p 与包含因子 kp 对应表