Vorlesung im Wintersemester 2017

Prof. E.G. Schukat-Talamazzini

Stand: 13. Oktober 2017

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Prädiktion, Regression & Klassifikation

Konzeptlernen

Versionenräume

Naive Bayesregel

Multivariate lineare Regression

Logistische Regression

Ordinale Regression und Präferenzmodelle

Statistische Entscheidungsbäum

7...commonfoccung

Teil IV

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Vorhersage und Kategorisierung

Vorhersage und statistische Abhängigkeit

Charakterisierung der statistischen Unabhängigkeit

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Zwei Variablenmengen $\mathbb{X} = (\mathbb{X}_1, \dots, \mathbb{X}_N)$ und $\mathbb{Y} = (\mathbb{Y}_1, \dots, \mathbb{Y}_M)$ heißen statistisch unabhängig voneinander gdw. gilt:

$$(\forall x)(\forall y)$$
 $P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$

Für Tupel x mit $P(x) \neq 0$ ist das äquivalent zu:

$$P(\mathbb{Y} = y \mid \mathbb{X} = x) = P(\mathbb{Y} = y)$$

$$(x_1, \dots, x_N) \quad \Leftrightarrow \quad \boxed{ \begin{array}{c} \text{Datenmodell} \\ \text{P}(\mathbb{Y} = \mathbf{y} \mid \mathbb{X} = \mathbf{x}) \end{array} } \quad \Leftrightarrow \quad (\hat{y}_1, \dots, \hat{y}_M)$$

Fakt

Im Fall statistischer Abhängigkeit besteht eine Chance, die Werte der **endogenen** Variablen \mathbb{Y}_m aus den Werten der **exogenen** Variablen \mathbb{X}_n zu "erraten".

orhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Statistische Prädiktion von Einzelvariablen

Quellvariable $(\mathbb{X}_1, \dots, \mathbb{X}_N)$ \Rightarrow Zielvariable $\mathbb{Y}_1 =: \mathbb{Y}$

Maschinelles Lernen eines Vorhersagemodells

Entscheidungsfunktion: $f: \mathcal{X}_1 \times \ldots \times \mathcal{X}_N \to \mathcal{Y}$

Kostenfunktion ("loss"): $\mathcal{L}(x, y, \hat{y})$ mit $\hat{y} = f(x)$

Risiko (zu minimieren): $\mathfrak{R}(f) := \mathcal{E}_{\mathrm{P}(\mathbf{x},y)}[\mathcal{L}(\mathbb{X},\mathbb{Y},f(\mathbb{Y}))]$

Y nominal

$$\mathcal{L}(m{x},y,\hat{y}) = c_{y\hat{y}}$$
 $\mathcal{L}(m{x},y,\hat{y}) = c_{y\hat{y}}$ Kostenmatrix $m{C}$ mit $c_{\kappa\kappa} \leq c_{\kappa\lambda}$ Diskrepanzmatrix $m{C}$ mit $c_{k\ell} \leq c_{k'\ell'}$ für $k' < k < \ell < \ell'$

Y kardinal

$$\mathcal{L}(\mathbf{x},y,\hat{y}) = d(y,\hat{y})$$

metrische Distanzmaße
 $d(y,\hat{y}) = |y - \hat{y}|^p, \ p \ge 0$

Spezialfall

$$(\text{Fehlerrate})$$

$$c_{\kappa\lambda} = \begin{cases} 0 & \kappa = \lambda \\ 1 & \kappa \neq \lambda \end{cases}$$

Spezialfall

Y ordinal

(Linearskala)
$$c_{k\ell} = |z_k - z_\ell|$$

Spezialfall

(Quadratmittel)
$$d(y, \hat{y}) = (y - \hat{y})^2$$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART 1

Klassifikationsverfahren

Welche(n) Skalentyp(en) besitzen die exogenen Variablen?

Numerisch

NV-Klassifikator Polynomklassifikator Multilayer-Perzeptron Supportvektormaschine

Diskret

Versionenraumverfahren Kanonische+naive Bayesregel Markovnetze

Metrisch

Nächste-Nachbar-Regeln SVM + Kerneltrick MDS + **numerisch**

Numerisch & diskret

Entscheidungsbäume Loglinearmodelle Bayesnetze (Konversion)

Optimale Prädiktion in den Spezialkonfigurationen

$$\mathfrak{R}(f) = \mathcal{E}[\mathcal{L}(X, Y, f(Y))] = \int \sum_{y} P(x, y) \cdot c_{y, f(x)} dx$$

Klassifikation (Bayesregel)

Y ist nominal Modus

$$\hat{y}(\mathbf{x}) = \underset{\kappa \in \Omega_{\mathbf{y}}}{\operatorname{argmax}} P(\mathbb{Y} = \kappa \mid \mathbf{x})$$

Ordinale Klassifikation

$$\hat{y}(\mathbf{x}) = \underset{\ell \in \Omega_{\mathbf{y}}}{\operatorname{median}} P(\mathbb{Y} = \ell \mid \mathbf{x})$$

Quadratmittel-Regression

Y ist kardinal Mean

$$\hat{y}(\mathbf{x}) = \mathcal{E}_{\mathbb{Y}|\mathbf{x}}[\mathbb{Y}] = \int_{\mathbb{R}} P(y|\mathbf{x}) \cdot y \, dy$$

...

Fehlerrate, Überanpassung & Unteranpassung

Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Was wir schon in der Vorlesung "Mustererkennung" über das Lernen gelernt haben

Lernstichprobe des Klassifikationsverfahrens $\omega = \{\mathbf{x}_1, \dots, \mathbf{x}_T\}$ Fehlerrate auf den Lerndaten $\varepsilon_{\text{lern}}$ Fehlerrate auf den Testdaten (\approx Fehlerwahrscheinlichkeit) $\varepsilon_{\text{test}}$

Bayesfehler — weniger geht nicht Zufallsfehler — mehr muss nicht Grenzfehler — Daten! Daten!!

Bias
Datenmodell •

Varianz Lernprobe •

Konzeptlernen

 $\{\phi \mid \phi: \Omega \to \{0,1\} \text{ terminierender Algorithmus}\}$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Kardinalitätskonflikt

"Worüber man nicht reden kann, darüber soll man schweigen."

Intension

Extension

Potenzmenge $\mathfrak{P}\Omega$

abzählbar unendlich

 $\langle 0 \rangle, \langle 1 \rangle,$ $\langle 00 \rangle$, $\langle 01 \rangle$, $\langle 10 \rangle$, $\langle 11 \rangle$, $\langle 000 \rangle$, $\langle 001 \rangle$, $\langle 010 \rangle$, . . . , $\langle 0000 \rangle$, $\langle 0001 \rangle$, $\langle 0010 \rangle$, ..., (00000),...,(000000),...

überabzählbar unendlich

 $\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \dots$ $\{x_1, x_2\}, \{x_1, x_3\}, ..., \{x_2, x_3\}, ...$ $\{x_1, x_2, x_3\}, \{x_1, x_2, x_4\}, \dots$ $\{x_1, x_2, x_3, x_4\}, \{x_1, x_2, x_3, x_5\}, \dots$

$$\phi \quad \mapsto \quad \mathbf{\Omega}_{\phi} \ \stackrel{\mathsf{def}}{=} \ \{ \mathbf{x} \in \mathbf{\Omega} \mid \phi(\mathbf{x}) = 1 \} \ \in \ \mathfrak{P}\mathbf{\Omega}$$

Begriffe (Konzepte)

Intensionaler Zugehörigkeitstest: $\phi(\mathbf{x}) = \phi(x_1, \dots, x_N) = 1$?

Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Extension eines Begriffs

Mengentheoret. charakterisiert

$$\mathcal{C} \subseteq \Omega$$

 $\mathbf{x} \in \mathcal{C} \iff \mathbf{x}$ "ist" ein \mathcal{C}

Scharf oder unscharf?

Ist dieses Element aus

$$\mathbf{\Omega} = \mathcal{X}_1 \times \mathcal{X}_2 \times \ldots \times \mathcal{X}_N$$

Intension eines Begriffs

Algorithmisch charakterisiert

$$\phi: \ \mathbf{\Omega} \ o \ \{0,1\}$$

"Parser" ϕ entscheidbare Funkt. (→ endlich aufschreibbar)

Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Abstraktion

Konzentration auf die Objekteigenschaften zu Lasten der Objektidentität

Gegeben

ist ein Konzept $\mathcal{C} \subseteq \mathbf{\Omega}$ (extensional)

Gesucht

ist eine "krispe" intensionale Beschreibung $\phi: \mathbf{\Omega} \to \{0,1\}$ mit der Eigenschaft

$$\mathbf{x} \in \mathcal{C} \Leftrightarrow \phi(\mathbf{x}) = 1$$

(\rightsquigarrow Kompatibilität: $\Omega_{\phi} = \mathcal{C}$)

Problem

Nicht jedes Konzept ist abstrahierbar!

Induktion

Verallgemeinerung oder "Lernen aus Beispielen"

Gegeben

Positivbeispiele $\omega^+ \subset \mathbf{\Omega}_{\phi}$ Negativbeispiele $\omega^- \subset \mathbf{\Omega} \setminus \mathbf{\Omega}_{\phi}$

Gesucht

kompatible intensionale Beschreibung ψ :

$$(\forall \mathbf{x} \in \mathbf{\Omega}) \quad \mathbf{x} \in \omega^{+} \quad \Rightarrow \quad \psi(\mathbf{x}) = 1$$

$$(\forall \mathbf{x} \in \mathbf{\Omega}) \quad \mathbf{x} \in \omega^{-} \quad \Rightarrow \quad \psi(\mathbf{x}) = 0$$

Potentielle Kandidaten sind alle ψ mit

$$\omega^+ \subseteq \Omega_{\psi} \subseteq \Omega \setminus \omega^-$$

Lernverfahren

- Hypothesenraum
- Lösungsvielfalt
- Auswahlkriterium

Kategorisierung von Objekten

(a.k.a. "Klassifikation")

Extensionale Charakt. vs.

Mengenpartition $\mathcal{C}_1,\ldots,\mathcal{C}_{\mathcal{K}}\subseteq \mathbf{\Omega}$ mit

$$\bigcup_{\kappa=1}^{K} \mathcal{C}_{\kappa} = \mathbf{\Omega}$$

und für alle $\kappa \neq \lambda$:

$$\mathcal{C}_{\kappa} \cap \mathcal{C}_{\lambda} = \varnothing$$

Spezialfall K=2

Konzept $C_1 = C$ und sein Komplement $\mathcal{C}_2 = \mathbf{\Omega} \setminus \mathcal{C}$

Intensionale Charakterisierung

keine wirklich zwingende Verallgemeinerung:

Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

1. Charakteristische Fkt. $\phi: \mathbf{\Omega} \to \{1, \dots, K\} \subset \mathbb{R}$

2. Konzepttupel

$$\phi: \mathbf{\Omega}
ightarrow \left\{0,1
ight\}^{\mathcal{K}} \mathsf{mit} \; \mathbf{\Omega}_{\phi_{\kappa}} \stackrel{!}{=} \mathcal{C}_{\kappa}$$

3. Diskriminanten

$$\phi: \mathbf{\Omega}
ightarrow \mathrm{I\!R}^{\mathcal{K}}$$
 mit $\mathbf{\emph{x}} \in \mathcal{C}_{\kappa}$ gdw.

$$\phi_{\kappa}(\mathbf{x}) \ge \phi_{\lambda}(\mathbf{x}) \quad (\forall \lambda)$$

4. Nominale Regression

$$P: \mathbf{\Omega} \times \{\xi_1, \dots, \xi_K\} \to \mathbb{R}$$
 plus Bayesregel

Induktionsproblematik

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Lerndaten? Hypothesen? Verfahren?

Übergeneralisierung

Es werden *Oberbegriffe* von ϕ gelernt.

Überspezialisierung

Es werden *Unterbegriffe* von ϕ gelernt.

Fehlgranulation

Überanpassung oder Unteranpassung

Natürlichkeit. Fortsetzbarkeit

Gelernte Verallgemeinerung versagt bei Wiederabruf

Abhilfe

Negativbeispiele bereitstellen

Abhilfe

Repräsentative Positivstichprobe

Abhilfe

Adäquates Sortiment von Hypothesen

Abhilfe

Occam's razor: einfache Erklärung

Versionenräume

Aussagenlogisches Lernen

Begriffe lernen · Klassifikation · Gruppierung

Segel-Szenarium

\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_{4}	\mathcal{X}_{5}	\mathcal{X}_{6}
sky	air	humidity	wind	water	forecast
sunny rainy cloudy	{ warm } cool }	normal high low	{ strong } { weak }	{ warm } cool }	{ same } change}

Single Representation Trick

- z.B. Hypothesen als unvollständige Attributwertspezifikationen
 - **Objekte** $\hat{=}$ Attributbelegungen

 $(\mathit{sunny}, \mathit{warm}, \mathit{normal}, \mathit{strong}, \mathit{warm}, \mathit{same}) \in \Omega$

• **Hypothesen** $\hat{=}$ partielle Attributbelegungen

 $(sunny,?,?,strong,?,?) \in \mathcal{H}$

Vorhersage Konzeptlernen **Versionenräume** Bayesregel Regression Logitmodell Präferenzen CART

Hypothesen und Objektmengen

$$\Omega(h) = \{x \in \Omega \mid h \models x\}$$

Segel-Szenarium

 i_1 : (sunny, warm, high, strong, cool, same) i_2 : (sunny, warm, high, light, warm, same)

h_1 :	(sunny, ?, ?, strong, ?, ?)	$h_2 \supseteq h_1, h_3$
h_2 :	(sunny,?,?,?,?)	bzw.
h ₃ :	(sunny,?,?,?,cool,?)	$h_1, h_3 \Rightarrow h_2$

Hypothesenraum

Konjunktionen positiver Literale (KPL)

Definition

Es sei $\mathbf{\Omega} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_N$ ein Objektraum. Dann heißen die Elemente aus

$$\mathcal{H} = (\mathcal{X}_1 \cup \{?\}) \times \ldots \times (\mathcal{X}_N \cup \{?\})$$

 $\mathsf{KPL}\text{-}\mathsf{Hypothesen}$ über $\Omega.$ Die Menge $\mathcal H$ heißt $\mathsf{KPL}\text{-}\mathsf{Hypothesenraum}$ über $\Omega.$

Ein Beispielobjekt $\mathbf{x} \in \mathbf{\Omega}$ genügt der Hypothese $h \in \mathcal{H}$ (\mathbf{x} erfüllt h bzw. $h \models \mathbf{x}$) genau dann, wenn gilt:

$$\forall i = 1, \ldots, N : (h_i =?) \lor (h_i = x_i)$$

Bemerkung

Vollständige KPL $\hat{=}$ Objekte

Leere KPL $\hat{=}$ Konzept $\mathcal{C} = \Omega$ Definiere h_{\varnothing} $\hat{=}$ Leerkonzept $\mathcal{C} = \varnothing$

Segel-Szenarium Objektraum: $|\Omega|=144$ KPL-Hypothesenraum: $|\mathcal{H}|=1296$ Konzeptraum: $|\mathfrak{P}\Omega|=2^{144}\approx 1000^{14.4}\approx 10^{43}$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Der Verband aller KPL-Hypothesen

Definition

Für jede Hypothese $h \in \mathcal{H}$ sei $\Omega(h) \stackrel{\text{def}}{=} \{x \in \Omega \mid h \models x\}$ (Extension) definiert. Die Menge \mathcal{H} erbt von $\mathfrak{P}\Omega$ die **Inklusionsrelation** (h ist *"allgemeiner"* oder *"genereller"* als h'):

$$h \supseteq h' \iff \forall \mathbf{x} \in \mathbf{\Omega} : (h' \models \mathbf{x} \Rightarrow h \models \mathbf{x})$$

Der Raum aller DNF-Hypothesen (disjunktive Normalform) ist die Boolesche Algebra $(\mathfrak{P}\Omega,\subseteq)$.

Lemma

Der Raum (\mathcal{H},\subseteq) bildet eine Halbordnung.

reflexiv transitiv antisymmetrisch

Die KPL-Hypothesen sind abgeschlossen gegenüber Durchschnittbildung. Die KPL-Hypothesen sind nicht abgeschlossen gegenüber der Mengenvereinigung, es existiert das Supremum je zweier Hypothesen:

$$(h \lor h')_n \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} v & (\exists v \in \mathcal{X}_n) \ h_n = v = h'_n \\ ? & h_n \neq h'_n \\ ? & h_n = ? = h'_n \end{array} \right.$$

Sukzessiver Generalisierungsalgorithmus

Definition

Eine Hypothese $h \in \mathcal{H}$ heißt konsistent mit den Lerndaten (ω^+, ω^-) genau dann wenn gilt:

$$x \in \omega^+ \Rightarrow h \models x$$

 $x \in \omega^- \Rightarrow h \not\models x$

1 INITIALISIERUNG Setze $h \leftarrow h_{\varnothing}$.

GENERALISIERUNG Setze für alle
$$x \in \omega^+$$
:

$$h \leftarrow h \lor x$$

("speziellste Erweiterung" von h um x)

TERMINIERUNG Das Ergebnis ist h.

Bemerkungen

- 1. Konsistenz falls $\omega^+ \subseteq \Omega_h \subseteq \Omega \setminus \omega^-$
- 2. Jedes h ist konsistent mit $(\varnothing, \varnothing)$.
- 3. Kein h ist konsistent wenn $\omega^+ \cap \omega^- \neq \emptyset$.
- 4. Auch für disjunkte (ω^+, ω^-) enthält $\mathcal H$ nicht notwendig eine konsistente Hypothese!

Keine $\mathbf{x} \in \omega^-$ verwendet.

Resultat genügt allen $\mathbf{x} \in \omega^+$. h ist minimal mit dieser Eigenschaft.

Wenn konsistente Hypothese existiert, wird sie gefunden.

Nur für KPL (Supremum!) realisierbar. Für $\mathcal{H}=\mathfrak{P}\Omega$ ist SGA trivial.

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Der Versionenraum

Definition

Die Menge der mit den Lernbeispielen konsistenten Hypothesen

$$\{h \in \mathcal{H} \mid h \text{ konsistent mit } (\omega^+, \omega^-)\}$$

heißt **Versionenraum** von (ω^+, ω^-) bezüglich \mathcal{H} und wird mit $\mathfrak{V}(\mathcal{H}, \omega^+, \omega^-)$ (oder \mathfrak{V}) bezeichnet.

Beispiel

Versionenraum mit 6 Hypothesen

1x minimal

2x maximal

3x weder/noch

Minimale und maximale VR-Elemente

$$\mathfrak{V}_{S} \stackrel{\text{def}}{=} \{ h \in \mathfrak{V} \mid \forall h' \in \mathfrak{V} : h' \subseteq h \Rightarrow h' = h \}$$

$$\mathfrak{V}_{G} \stackrel{\text{def}}{=} \{ h \in \mathfrak{V} \mid \forall h' \in \mathfrak{V} : h \subseteq h' \Rightarrow h' = h \}$$

Kandidateneliminationsalgorithmus

Versionenräume Bayesregel Regression

Suche operiert auf ("Kandidaten"-) Mengen von Hypothesen

- 1 INITIALISIERUNG Setze $H \leftarrow \mathcal{H}$
- 2 GENERALISIERUNG / SPEZIALISIERUNG Eliminiere für alle $\mathbf{x} \in \omega^+ \cup \omega^-$

□ Fall $\mathbf{x} \in \omega^+$: alle $h \in H$ mit $h \not\models \mathbf{x}$ □ Fall $\mathbf{x} \in \omega^-$: alle $h \in H$ mit $h \models \mathbf{x}$

3 TERMINIERUNG
Das Ergebnis ist h, falls $H = \{h\}$ ist.

Am Ende enthält die Kandidatenmenge genau die konsistenten Hypothesen aus \mathcal{H} .

Es gibt keine, eine oder mehrere Lösungen.

Das Verfahren ist aus Aufwandsgründen impraktikabel!

Versionenräume als Halbordnungsintervalle

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Beispiel

Im vollständigen Hypothesenraum $\mathcal{H}=\mathfrak{P}\Omega$ sind die minimalen und die maximalen VR-Elemente eindeutig:

$$\mathfrak{V}_{\mathcal{S}} = \{\omega^{+}\} \quad \text{und} \quad \mathfrak{V}_{\mathcal{G}} = \{\mathbf{\Omega} \setminus \omega^{-}\}$$

Versionenräume besitzen die Gestalt einer Intervalldarstellung:

$$\mathfrak{V}(\mathcal{H},\omega^+,\omega^-) = \{ h \in \mathcal{H} \mid \omega^+ \subseteq h \subseteq \Omega \setminus \omega^- \} = [\mathfrak{V}_S,\mathfrak{V}_G]_{\mathcal{H}}$$

eine VR-Hypothese die kleinste VR-Hypothese

die größte VR-Hypothese

Vorhersage Konzeptlernen **Versionenräume** Bayesregel Regression Logitmodell Präferenzen CART Σ

Der Versionenraum-Darstellungssatz

Die Intervalldarstellung gilt in allen beliebigen Hypothesenräumen

Definition

Sei $\mathcal{H} \subseteq \mathfrak{P}\Omega$; ein **einfaches HO-Intervall** in \mathcal{H} hat die Form:

$$[h_u, h_o]_{\mathcal{H}} \stackrel{\mathsf{def}}{=} \{ h \in \mathcal{H} \mid h_u \subseteq h \subseteq h_o \}$$

Ein verallgemeinertes HO-Intervall in ${\mathcal H}$ hat die Form:

$$[\mathcal{H}_{u}, \mathcal{H}_{o}]_{\mathcal{H}} = \{ h \in \mathcal{H} \mid \exists h_{u} \in \mathcal{H}_{u}, \exists h_{o} \in \mathcal{H}_{o} : h_{u} \subseteq h \subseteq h_{o} \}$$

Satz

Für den Versionenraum $\mathfrak V$ der Beispieldaten ω^+ und ω^- bezüglich $\mathcal H$ gilt eine Intervalldarstellung:

$$\mathfrak{V}(\mathcal{H}, \omega^+, \omega^-) = [\mathfrak{V}_S, \mathfrak{V}_G]_{\mathcal{H}}$$

Dabei sind \mathfrak{V}_S und \mathfrak{V}_G die Mengen der \subseteq -minimalen (\subseteq -maximalen) Elemente des Versionenraums \mathfrak{V} .

Vorhersage Konzeptlernen **Versionenräume** Bayesregel Regression Logitmodell Präferenzen CART Σ

Versionenraum-Kandidateneliminationsalgorithmus

- 1 INITIALISIERUNG Setze $G \leftarrow \{\Omega\}$ und $S \leftarrow \{\emptyset\}$.
- POSITIVE BEISPIELE

 Für alle $x \in \omega^+$:

 Entferne alle $h \in G$ mit $h \not\models x$
 - Entrerne alle $h \in G$ mit $h \not\models x$
 - · Für alle $h \in S$:

Generalisiere h zu h' mit $h' \models x$ Behalte $h' \in S$, falls h' spezieller als G

- · Entferne alle nichtminimalen $h \in S$
- NEGATIVE BEISPIELE Für alle $\mathbf{x} \in \omega^-$:
 - · Entferne alle $h \in S$ mit $h \models x$ · Für alle $h \in G$:

Spezialisiere h zu h' mit $h' \not\models x$ Behalte $h' \in G$, falls h' allgemeiner als S

- · Entferne alle nichtmaximalen $h \in G$
- 3 TERMINIERUNG

 Das Ergebnis ist h, falls $G = \{h\} = S$ ist.

Beweis.

 $[\mathcal{H}_u,\mathcal{H}_o]_{\mathcal{H}} \ = \ igcup_{h_u \in \mathcal{H}_u} igcup_{h_o \in \mathcal{H}_o} [h_u,h_o]_{\mathcal{H}}$

Inklusionsrichtung ⊂:

Sei $h \in \mathfrak{V}$. Sei $G(h) := \{h' \in \mathfrak{V} | h' \supseteq h\}$. Wegen $h \in G(h)$ ist $G(h) \neq \emptyset$.

• Sei h_G ein maximales Element aus G(h). Dann ist $h_G \in \mathfrak{V}_G$ und $h_G \supseteq h$.

(Die Existenz eines $h_S \in \mathfrak{V}_S$ zeigt man/frau analog.)

Inklusionsrichtung ⊇:

Sei $h \in \mathcal{H}$ mit $h \subseteq h_G \in \mathfrak{V}_G$ und $h \supseteq h_S \in \mathfrak{V}_S$. Zu zeigen: h ist konsistent mit (ω^+, ω^-) , d.h. $h \in \mathfrak{V}$.

- 1. Sei $x \in \omega^+$. Wegen $h_S \in \mathfrak{V}_S \subseteq \mathfrak{V}$ gilt $h_S \models x$. Wegen $h \supseteq h_S$ gilt auch $h \models x$.
- 2. Sei $x \in \omega^-$. Wegen $h_G \in \mathfrak{V}_G \subseteq \mathfrak{V}$ gilt $h_G \not\models x$. Wegen $h \subseteq h_G$ gilt auch $h \not\models x$.

Bemerkungen

1. Grundidee: alle Versionenräume werden als "Intervalle" [S,G] abgespeichert, und auch die Hypothesenelimination geschieht auf S,G und nicht auf \mathfrak{V} .

- 2. Es gilt natürlich $\mathcal{H} = [\varnothing, \Omega]_{\mathcal{H}}$.
- 3. Wenn es geeignete Hypothesen mit $\Omega(h_{\varnothing}) = \varnothing$ und $\Omega(h_{\Omega}) = \Omega$ gibt, kann entsprechend initialisiert werden.
- 4. Hypothesen $h \in G$, die einem Positivbeispiel $\mathbf{x} \in \omega^+$ nicht genügen, dürfen ohne weiteres eliminiert werden, da jegliche Spezialisierung von h ebenfalls an \mathbf{x} scheitern würde. Dasselbe gilt für $h \in S$, $\mathbf{x} \in \omega^-$ mit $h \models \mathbf{x}$.
- 5. Gilt jedoch für $x \in \omega^+$ und ein $h \in S$ die Aussage $h \not\models x$, so darf h wegen der Gefährdung des Teilraums [h, G] nicht einfach gelöscht werden!
- 6. Von allen Generalisierungen h' von h mit $h' \models x$ interessieren natürlich nur diejenigen mit $[h', G] \neq \emptyset$, und die auch minimal sind in S mit dieser Eigenschaft.
- 7. Am Ende sind alle Hypothesen aus S und aus G und auch aus [S,G] konsistent mit den Beispieldaten, und [S,G] ist auch diesbezüglich vollständig.

hersage Konzeptlernen **Versionenräume** Bayesregel Regression Logitmodell Präferenzen CART Σ

Beispiel (Segeln im KPL-Hypothesenraum)

Versionenraum nach VRE-Algorithmus

	sky	air	humidity	wind	water	forecast
$h_1 \in S$	sunny	warm	?	strong	?	?
h ₂	sunny	?	?	strong	?	?
h ₃	sunny	warm	?	?	?	?
h ₄	?	warm	?	strong	?	?
$h_5 \in G$	sunny	?	?	?	?	?
$h_5 \in G$ $h_6 \in G$?	warm	?	?	?	?

Unbeobachtete ("neue") Objekte Vorhersage des Konzepts "go_sailing":

							S				G	G
	sky	air	hum	wind	water	fore	h_1	h ₂	h_3	h_4	h ₅	h_6
x ₁	sunny	warm	norm	strong	cool	change	1	1	1	1	1	1
x ₂	rainy		norm	weak	warm	same	0	0	0	0	0	0
x 3	sunny	warm	norm	weak	warm	same	0	0	1	0	1	1

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Die induktive Hülle

Definition

Wir bezeichnen die Menge

$$\overline{\omega^+} \stackrel{\text{def}}{=} \{ \mathbf{x} \in \mathbf{\Omega} \mid h \in \mathfrak{V}(\omega^+, \omega^-) \Rightarrow h \models \mathbf{x} \}$$

als **induktive Hülle** der Positivbeispiele ω^+ und die Menge

$$\overline{\omega^-} \stackrel{\mathsf{def}}{=} \{ \mathbf{x} \in \mathbf{\Omega} \mid h \in \mathfrak{V}(\omega^+, \omega^-) \Rightarrow h \not\models \mathbf{x} \}$$

als induktive Hülle der Negativbeispiele ω^- . Die Elemente aus

$$\omega^?\stackrel{\mathsf{def}}{=} \mathbf{\Omega} \setminus \left(\overline{\omega^+} \cup \overline{\omega^-}\right)$$

heißen ambige Objekte von Ω bezüglich \mathcal{H} , ω^+ und ω^- .

Lemma

Die Operatoren $\omega^+ \mapsto \overline{\omega^+}$ und $\omega^- \mapsto \overline{\omega^-}$ sind tatsächlich Hüllenoperatoren:

1.
$$\omega_1^+ \subseteq \omega_2^+ \Rightarrow \overline{\omega_1^+} \subseteq \overline{\omega_2^+}$$
 (Monotonie)

2. $\omega^+ \subseteq \overline{\omega^+} \text{ und } \omega^- \subseteq \overline{\omega^-}$ (Inklusion)

3.
$$\overline{\omega^{+}} = \overline{\overline{\omega^{+}}} \text{ und } \overline{\omega^{-}} = \overline{\overline{\omega^{-}}}$$
 (Involution)

Parlamentarischer Alltag im Versionenraum

Positiver Konsens

Für alle $h \in \mathfrak{V}$ gilt $h \models x$

Negativer Konsens

Für alle $h \in \mathfrak{V}$ gilt $h \not\models x$

Ambiges Votum

Ex. $h_+, h_- \in \mathfrak{V}$ mit $h_+ \models x$ und $h_- \not\models x$

Bemerkungen

- 1. Alle $h \in \mathfrak{V}$ sind konsistent \Leftrightarrow $\left\{ \begin{array}{l} \text{alle } \mathbf{x} \in \omega^+ \text{ werden einstimmig akzeptiert} \\ \text{alle } \mathbf{x} \in \omega^- \text{ werden einstimmig abgewiesen} \end{array} \right\}$.
- 2. Für $\mathfrak{V}=\varnothing$ folgt $\overline{\omega^+}\cap\overline{\omega^-}=\varnothing$
- 3. Ist $\mathbf{x} \in \Omega$ ambig, so ex. Hypothesen $h^+ \in \mathfrak{V}_G$, $h^- \in \mathfrak{V}_S$ mit $\left\{ egin{align*} h^+ \models \mathbf{x} \\ h^- \not\models \mathbf{x} \end{array} \right\}$.

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Der induktive Bias

Großartiger Lernerfolg durch mangelhafte Ausdrucksfähigkeit

Induktives Schließen

steht und fällt mit dem **Ausdrucksdefizit** des Hypothesenraums \mathcal{H} .

ω^+ ω^+	sunny rainy	warm warm	normal normal	strong weak	warm warm	same same	
\mathfrak{V}_{S}	?	warm	normal	?	warm	same	
$\omega^{?}$	sunny	warm	normal	weak	warm	same	⇒ +

Aussagenlogisch orientierte Hypothesenräume

· Konjunktion positiver Literale

- KPL: $x_i = \xi$ oder ?
- · Konjunktion positiver und negativer Literale $x_i = \xi$ oder $x_i \neq \xi$ oder ?
- · Konjunktion disjunktiver Komplexe

- $x_i \in \mathcal{X}^+$ (dual zu oben)
- Disjunktion positiver (und negativer) Literale
 Disjunktion von Konjunktionen positiver Literale
- $\mathcal{H}=\mathfrak{P}\mathbf{\Omega}$

Lernen einelementiger Versionenräume

Zur Auswahl neuer Lernbeispiele

- Erweiterung von ω^+ um Beispiele aus $\overline{\omega^+}$ ist überflüssig. Erweiterung von ω^- um Beispiele aus $\overline{\omega^-}$ ist überflüssig.
- Erweiterung von ω^+ um Beispiele aus $\overline{\omega^-}$ bewirkt Inkonsistenz. Erweiterung von ω^- um Beispiele aus $\overline{\omega^+}$ bewirkt Inkonsistenz.
- Nur die Erweiterung von (ω^+, ω^-) um ambige Beispiele $\mathbf{x} \in \omega^?$ ist zugleich konsistent und produktiv!

Exploratives Lernen

Sukzessives Akquirieren produktiver neuer Beispiele, bis

- 1. der Versionenraum \mathfrak{V} nur noch ein h enthält oder
- 2. der Versionenraum I leergelaufen ist.

Ambiguität und Rückweisung

Votierungstechniken für die Entscheidungsphase

Faules Lernen

Vorhersage Konzeptlernen

Fallbasiertes Schließen

$$egin{array}{lll} m{x} & \mapsto & \left\{ egin{array}{lll} m{\Omega}^+ & & m{x} \in \omega^+ \ m{\Omega}^- & & m{x} \in \omega^- \ m{\Omega}^? & & \mathsf{sonst} \end{array}
ight.$$

(keine Verallgemeinerung)

Fleißiges Lernen

einer Hypothese ($\mathfrak{V} = \{h^*\}$)

$$x \mapsto \left\{ \begin{array}{ll} \Omega^+ & h^* \models x \\ \Omega^- & h^* \not\models x \end{array} \right.$$

Orakel

Occam's Razor Wahrscheinlichkeiten ...

Einstimmigkeit

Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

$$x \mapsto \left\{ egin{array}{ll} \Omega^+ & h \in \mathfrak{V}_S \Rightarrow h \models x \\ \Omega^- & h \in \mathfrak{V}_G \Rightarrow h \not\models x \\ \Omega^? & \mathsf{sonst} \end{array} \right.$$

$$\begin{array}{ccc} \mathsf{Generalkonsens} & & \\ \mathsf{x} & \mapsto \left\{ \begin{array}{ll} \mathbf{\Omega}^+ & h \in \mathfrak{V}_{\mathsf{G}} \Rightarrow h \models \mathsf{x} \\ \mathbf{\Omega}^- & \mathsf{sonst} \end{array} \right.$$

Mehrheitsvotum

$$\mathbf{x} \mapsto \left\{ egin{array}{ll} \mathbf{\Omega}^+ & |\{h \in \mathfrak{V} \mid h \models \mathbf{x}\}| > |\mathfrak{V}|/2 \\ \mathbf{\Omega}^- & |\{h \in \mathfrak{V} \mid h \models \mathbf{x}\}| < |\mathfrak{V}|/2 \\ \mathbf{\Omega}^? & |\{h \in \mathfrak{V} \mid h \models \mathbf{x}\}| = |\mathfrak{V}|/2 \end{array} \right.$$

Gibbs-Sampling

Auswürfeln von $h^* \in \mathfrak{V}$ und

- INITIALISIERUNG Setze $G \leftarrow \{\Omega\}$ und $S \leftarrow \{\emptyset\}$ und $\omega^? \leftarrow \Omega$.
- EXPLORATIONSSCHRITT Solange $\omega^? \neq \emptyset$ gilt:
 - \bullet Wähle ein Beispiel $\mathbf{x} \in \omega^?$ aus
 - **b** Befrage das Orakel nach $x \in C$
 - Modifiziere den Versionenraum vermöge

$$\mathfrak{V} \leftarrow \mathfrak{V}(\omega^+ \cup \{\boldsymbol{x}\}, \omega^-)$$

im Fall einer positiven Antwort und vermöge

$$\mathfrak{V} \leftarrow \mathfrak{V}(\omega^+, \omega^- \cup \{x\})$$

Versionenräume Bayesregel Regression Logitmodell Präferenzen

im Fall einer negativen Antwort des Orakels.

- \bigcirc Aktualisiere die Menge $\omega^?$ der ambigen Objekte
- TERMINIERUNG Das Ergebnis ist h, falls $G = \{h\} = S$ gilt.

ILP — Induktive logische Programmierung

Hypothesenraumbias wird explizit durch eine logische Theorie \mathcal{B} vorgegeben

Gegeben

Hypothesen $h \in \mathcal{H}$ sind **prädikatenlogische** Formeln Objekte $\mathbf{x} \in \mathbf{\Omega}$ als Singleton-Hypothesen $h_{\mathbf{x}}$ Positive und negative Lerndatensätze $\omega^+, \omega^$ p.l. Formelmenge \mathcal{B} als expliziter Bias ("Sachbereichstheorie")

Gesucht

Eine Hypothese $h \in \mathcal{H}$ mit den Eigenschaften

1. Vollständigkeit

 $\mathcal{B}, h \models \omega^+$

2. Korrektheit

für alle $x \in \omega^-$ gilt $\mathcal{B}, h \not\models x$

3. Konsistenz

 $\mathcal{B}, h, \omega^+, \omega^- \not\models \text{false}$

die zudem ein Gütekriterium $\begin{cases} speziell \\ generell \\ interessant \\ kurz \end{cases}$ optimiert.

nicht entscheidbar in der Prädikatenlogik erster Stufe

Numerisches Beispiel ($\Omega = \mathbb{R}^N$)

Hypothesenraum

$$h = \{ \mathbf{x} \mid a_i \le x_i \le b_i \text{ für alle } i \}$$

Konzeptraum I
$$C_r = \{x \mid \max_i x_i \le$$

Konzeptraum II
$$C_r = \{x \mid ||x|| \le r\}$$

Computational Learning Theory

• Was wird (asymptotisch) gelernt?

- korrektes Quadrat u.U. nichts
- Wie groß ist der erwartete Klassifikationsfehler?

Versionenräume Bayesregel

Regression Logitmodell Präferenzen CART

Sterne und ihre Vereinigung

Lemma

Für jede Hypothese $h \in \mathcal{S}(\mathbf{x}|\omega^{-})$ gilt:

1. h wird von x erfüllt.

$$h \models \flat$$

2. h wird von keinem $\mathbf{y} \in \omega^-$ erfüllt.

$$(\forall \mathbf{y} \in \omega^-) \ h \not\models \mathbf{y}$$

3. h ist maximal mit diesen Eigenschaften, d.h., es gilt:

$$h' \supset h \iff h' \not\models \mathbf{x} \text{ oder ex. } \mathbf{y} \in \omega^- : h' \models \mathbf{y}$$

Lemma

Aus **nichtleeren** Sternen lassen sich konsistente Disjunktionen konstruieren. d.h. die Vereinigungsmenge

$$h^* = \bigcup_{x \in \omega^+} \mathcal{S}(x|\omega^-)$$

ist konsistent mit (ω^+, ω^-) .

 \oplus Disjunktion $\cdot \ominus$ Hypothese

Michalskis Stern

Abgrenzung eines Positivbeispiels gegen alle Negativbeispiele

Problem

Die Menge ω^+ ist schwer gegen ω^- abgrenzbar. ω^+ zerfällt jedoch in einfacher strukturierte Teilmengen.

Definition

Es seien $\omega^+ \subset \Omega$, $\omega^- \subset \Omega$ und $\mathbf{x} \in \omega^+$ ein Positivbeispiel. Die Hypothesenmenge

$$\mathcal{S}(\mathbf{x}|\omega^{-}) \stackrel{\mathsf{def}}{=} \mathfrak{V}_{\mathcal{G}}(\mathcal{H}, \{\mathbf{x}\}, \omega^{-})$$

Achtung!

Der Stern ist keine Hypothese, sondern ein Intervall.

heißt **Stern** von x gegen ω^- .

Versionenräume Bayesregel

Regression Logitmodell

Sternerzeugungsalgorithmus

- ① Wähle zufällig ein $\mathbf{x}^* \in \omega^+$.
- Erzeuge den Stern $S(\mathbf{x}^*|\omega^-) = \mathfrak{V}_G(\mathcal{H}, \{\mathbf{x}^*\}, \omega^-).$
- 3 Wähle eine Vorzugshypothese $h^* \in \mathcal{S}(\mathbf{x}^* | \omega^-)$ mit maximaler Präferenz $\gamma(h^*)$.
- 4 Wenn $h^* \models \mathbf{x}$ für alle $\mathbf{x} \in \omega^+$, so \rightsquigarrow 6.
- Tilge alle $\mathbf{x} \in \omega^+$ mit $h^* \models \mathbf{x}$ und $\rightsquigarrow \mathbf{1}$.
- Bilde die logische Disjunktion

$$h_{\mathsf{dis}} \stackrel{\mathsf{def}}{=} h_1 \vee \ldots \vee h_r$$

aller bislang erzeugten Hypothesen.

Gegeben

 \mathcal{H} , ω^+ , ω^- und eine Präferenzfunktion $\gamma: \mathcal{H} \mapsto \mathbb{R}$

Gesucht

Eine disjunktive Beschreibung $h_1 \vee \ldots \vee h_r$, $h_i \in \mathcal{H}$, die konsistent mit (ω^+,ω^-) ist.

Beispiel — Konzeptualisierung von Krebszellen

Aufgabenstellung

Unterscheide Krebszellen (DNC) von gesunden Zellen (DNN) auf Grundlage numerischer, kategorialer und struktureller Zellmerkmale.

Mensch-Maschine-Mensch-Zyklus

- (1) Definiere relevante Deskriptoren \cdot etikettiere (ω^+, ω^-)
- (2) Lerne induktiv passende Hypothesen für $\mathcal{C} = \mathcal{C}_{DNC}$.
- (3) Evaluiere, analysiere und modifiziere das Szenarium.

Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Beispiel — Konzeptualisierung von Krebszellen

Objektbeschreibung der ersten DNC-Zelle

$$contains(c, b_1, ..., b_6) \land circ(c) = 8 \land pplasm(c) = A$$

 $\land shape(b_1) = ellipse \land texture(b_1) = stripes \land weight(b_1) = 4$

$$\land$$
 orient $(b_1) = NW \land shape(b_2) = circle \land contains(b_2, b_3)$

$$\land$$
 texture $(b_2) = blank \land weight(b_2) = 3 \land \dots$

$$\land \; \textit{shape}(b_6) = \textit{circle} \; \land \; \textit{texture}(b_6) = \textit{shaded} \; \land \; \textit{weight}(b_6) = 5$$

DNC-Charakterisierung durch prädikatenlogische Formel

$$\exists_1 b \ (weight(b) = 5)$$

 $\exists_1 b \ (shape(b) = circle \land texture(b) = shaded \land weight(b) \ge 3)$
 $\exists b_1 \exists b_2 \ (contains(b_1, b_2) \land shape(b_1) = circle \land shape(b_2) = circle)$
... $\land \dots \land \dots$

Beispiel — Konzeptualisierung von Krebszellen

Globale (zellbezogene) Merkmale

1. $circ \in \{1, 2, ..., 10\}$

(Anzahl der Zellsegmente)

2. $pplasm \in \{A, B, C, D\}$

(Protoplasmatyp der Zelle)

Lokale (segmentbezogene) Merkmale

- $shape(i) \in \{triangle, circle, ellipse, heptagon, square, boat, spring\}$ (bzw. eine Baumstruktur dieser Formklassen)
- $texture(i) \in \{blank, shaded, black, grey, stripes, crossed, wavy\}$
- $weight(i) \in \{1, 2, 3, 4, 5\}$
- orient(i) ∈ {N, NE, E, SE, S, SW, W, NW}
- $contains(c, b_1, b_2, ...) \in \{T, F\}$
- hastails $(c, b_1, b_2, ...) \in \{T, F\}$

Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Konzeptuelle Klassifikation

Gegeben

Klassenspezifische Lernstichproben

$$\omega_{\kappa} \subseteq C_{\kappa} \subseteq \mathbf{\Omega} , \quad \kappa = 1, \dots, K$$

für die Konzepte $C_1, \ldots, C_K \in \mathcal{C}$ mit $C_{\kappa} \cap C_{\lambda} = \emptyset$ für $\kappa \neq \lambda$.

Gesucht

Ein konsistentes System $h_1, \ldots, h_K \in \mathcal{H}$, d.h. für alle $1 \le \kappa \le K$ gilt:

$$\begin{cases}
h_{\kappa} \models \mathbf{x} & \mathbf{x} \in \omega_{\kappa} \\
h_{\kappa} \not\models \mathbf{x} & \mathbf{x} \in \omega_{\lambda}, \ \lambda \neq \kappa
\end{cases}$$

und ,,quodlibet" sonst

Versionenraum-Methode

Berechne für jede Objektklasse κ einen diskriminativen VR

$$\mathfrak{V}_{\kappa} = \mathfrak{V}(\mathcal{H}, \omega_{\kappa}, \bigcup_{\lambda \neq \kappa} \omega_{\lambda})$$

Stern-Methode

Berechne für jedes κ eine Sterndisjunktion

$$h_{\kappa}^{\star} = \bigcup_{x \in \omega_{\kappa}} \mathcal{S}(x \mid \omega \setminus \omega_{\kappa})$$

Votierung beim K-Klassen-Problem $\beta(\mathbf{x}) = (\beta_1, \dots, \beta_K) \in \{1, 0, ?\}^K$

Stern-Methode Es gibt keine Fehlanzeigen. Aber es gibt u.U. Konflikte. Und es gibt u.U. Leerrunden. Versionenraum-Methode Es gibt Konflikte & Leerrunden. Es gibt auch Fehlanzeigen: eine FA statt PRO weniger als K-1 CONs (

Marginal 1

Marginal 2

 $P(\mathbf{x}) = \sum_{\kappa=1}^{K} P(\kappa, \mathbf{x})$

 $P(\kappa) = \sum_{\mathbf{x} \in \mathcal{X}} P(\kappa, \mathbf{x})$

Bedingte Vtl.

 $P(\mathbf{x}|\kappa) = P(\kappa,\mathbf{x})/P(\kappa)$

Posterior Vtl.

 $P(\kappa|\mathbf{x}) = P(\kappa,\mathbf{x})/P(\mathbf{x})$

Definition

Sei $\mathcal{A} \subseteq \Omega$. Das Hypothesensystem (h_1, \ldots, h_K) heißt konzeptuelle **Partition** von \mathcal{A} , wenn es für jedes $\mathbf{x} \in \mathcal{A}$ einen Klassenindex κ gibt mit

$$\forall \lambda = 1, \dots, K : (h_{\lambda} \models \mathbf{x} \Leftrightarrow \lambda = \kappa)$$

Bemerkungen

- 1. Ein konsistentes System (h_1, \ldots, h_K) ist konzeptuelle Partition seiner Lerndaten $\bigcup_{\kappa} \omega_{\kappa}$.
- 2. Läßt sich jedes konsistente System zu einer konzeptuellen Partition von Ω erweitern?

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Die Bayesregel

... ist der theoretisch optimale Klassifikator.

Satz

Ist für den Objektraum X und das Klasseninventar $K = \{1, ..., K\}$ die wahre Verbundverteilung $P(\kappa, \mathbf{x})$ bekannt, so liefert die **Bayesentscheidungsregel** (MAP-Regel)

$$\begin{array}{lll} \delta(\mathbf{x}) & = & \underset{\kappa \in \mathcal{K}}{\operatorname{argmax}} \mathrm{P}(\kappa | \mathbf{x}) \\ & = & \underset{\kappa \in \mathcal{K}}{\operatorname{argmax}} \frac{\mathrm{P}(\kappa) \cdot \mathrm{P}(\mathbf{x} | \kappa)}{\mathrm{P}(\mathbf{x})} \end{array}$$

die minimale erwartete Klassifikationsfehlerrate.

Bemerkung

Die Aussage gilt natürlich nur, wenn das korrekte Wahrscheinlichkeitsmodell verwendet wird.

Versionenräume Bayesregel

Naive Bayesregel

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Die Bayesregel für diskrete Attribute

Kanonische multivariat-diskrete Verteilung ("Hypertabelle")

Lemma

Der Objektraum $\mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_N$ enthalte ausschließlich **diskrete** Attribute mit Wertebereichen \mathcal{X}_n der Größe $L_n = |\mathcal{X}_n|$.

1. Die gemeinsame Verteilung $P(\kappa, \mathbf{x})$ ist durch die $K \cdot L_1 \cdot \ldots \cdot L_N$ Einträge

$$p_{\kappa,x_1,...,x_N} = P(\kappa, \mathbf{x}), \quad \kappa \in \mathcal{K}, \mathbf{x} \in \mathcal{X}$$

eines (1 + N)-dimensionalen Hyperwürfels $\mathbf{P} \in [0, 1]^{K \times L_1 \times ... \times L_N}$ charakterisiert.

2. Für einen etikettierten Lerndatensatz $\{(\kappa_t, \mathbf{x}_t) \mid t = 1...T\}$ mit den absoluten Häufigkeiten $T_{\kappa,\mathbf{x}}$, $(\kappa,\mathbf{x}) \in \mathcal{K} \times \mathcal{X}$, lauten die Maximum-Likelihood-Parameter

$$\hat{b}_{\kappa, \mathbf{x_1}, \dots, \mathbf{x_N}} = T_{\kappa, \mathbf{x_1}, \dots, \mathbf{x_N}} / T$$
.

3. Die Bayesentscheidungsregel lautet $\delta(\mathbf{x}) = \operatorname{argmax}_{\kappa \in \mathcal{K}} \hat{b}_{\kappa, x_1, \dots, x_N}$.

Beispiel — kanonische Bayesregel

... mit ML-geschätzten Verteilungsparametern

Lerndatensammlung *Tennis*"

Lerridaterisariffilding "Terrins							
ω	outlook	temp	humid	wind	Tennis?		
01	sunny	hot	high	weak	no		
02	sunny	hot	high	strong	no		
03	overcast	hot	high	weak	yes		
04	rain	mild	high	weak	yes		
05	rain	cool	normal	weak	yes		
06	rain	cool	normal	strong	no		
07	overcast	cool	normal	strong	yes		
08	sunny	mild	high	weak	no		
09	sunny	cool	normal	weak	yes		
010	rain	mild	normal	weak	yes		
o_{11}	sunny	mild	normal	strong	yes		
012	overcast	mild	high	strong	yes		
013	overcast	hot	normal	weak	yes		
014	rain	mild	high	strong	no		
Oneu	sunny	cool	high	strong	?		

Parameter $2\cdot 3^2\cdot 2^2=72$

Einträge

14 Einsen

58 Nullen

Neuzugang Nulleintrag bei (yes, o_{neu}) und $(no, o_{neu}).$

Nennerausdruck

 $\hat{P}(o_{\mathsf{neu}}) = 0$ Dann gilt für die a posteriori Wahrscheinlichkeit:

 $P(no \mid (sunny, cool, high, strong)^{\top}) = undef.$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell

Beispiel — naive Bayesregel

... mit ML-geschätzten Verteilungsparametern

Attribut ..outlook"

	sunny	over	rain	Σ
yes	2	4	3	9
no	3	0	2	5
Σ	5	4	5	14

Attribut "humidity"

	high	normal	Σ
yes	3	6	
no	4	1	
Σ	7	7	14

Attribut "temp"

	hot	mild	cool	Σ
yes	2	4	3	9
no	2	2	1	5
Σ	4	6	4	14

Attribut ..wind"

	weak	strong	Σ
yes	6	3	ç
no	2	3	5
Σ	8	6	14

Parametertabelle und Neuklassifikation (6+6+4+4=20 Einträge)

$$P(no, sunny, cool, high, strong) = \frac{5}{14} \cdot \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} = \frac{180}{8750} = 0.02057$$

$$P(yes, sunny, cool, high, strong) = \frac{9}{14} \cdot \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} = \frac{486}{91854} = 0.005291$$

$$P(no \mid (sunny, cool, high, strong)^{\top}) = \frac{0.02057}{0.02057 + 0.005291} = 0.7954$$

Die naive Bayesregel

Klassenbedingte statistische Unabhängigkeit zwischen allen Objektattributen

NBK-Entscheidungsregel

$$\delta(\mathbf{x}) = \underset{\kappa \in \mathcal{K}}{\operatorname{argmax}} P(\kappa, \mathbf{x}) = \underset{\kappa \in \mathcal{K}}{\operatorname{argmax}} \left\{ P(\kappa) \cdot \prod_{n=1}^{N} P(x_n | \kappa) \right\}$$

(maximale faktorisierte Verbundwahrscheinlichkeit)

Modellparameter und ihre ML-Schätzwerte

$$\hat{a}_{\kappa} = \frac{T_{\kappa}}{T}, \quad \hat{b}_{\xi|\kappa,n} = \frac{T_{\kappa,n,\xi}}{T_{\kappa}}, \quad T_{\kappa} = \sum_{\xi \in \mathcal{X}_{\mathbf{1}}} T_{\kappa,1,\xi}, \quad \begin{cases} \kappa = 1..K \\ n = 1..N \\ \xi = 1..L_{n} \end{cases}$$

Das sind $K \cdot \sum_{n} L_{n}$ Parameter statt $K \cdot \prod_{n} L_{n}$ Parameter!

NTF — Nichtnegative Tensorfaktorisierung

Mischung naiver Verbundverteilungen von $N \in \{2,3\}$ nominalen Attributen

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Matrix $(\Omega_1 \times \Omega_2)$

Verteilungsparameter

$$P(i,j) =: x_{ij}$$

Naive Faktorisierung

$$P(i,j) = p_1(i) \cdot p_2(j)$$

Mischungsmodell

$$P(i,j) = \sum_{m=1}^{M} \underbrace{\pi_m \cdot p_1^{(m)}(i)}_{v_{im}} \cdot \underbrace{p_2^{(m)}(j)}_{a_{im}}$$

Reduktion $L_1 \cdot L_2 \implies M \cdot (1 + L_1 + L_2)$

Würfel $(\Omega_1 \times \Omega_2 \times \Omega_3)$

Verteilungsparameter

$$P(i,j,k) =: x_{ijk}$$

Naive Faktorisierung

$$P(i,j,k) = p_1(i) \cdot p_2(j) \cdot p_3(k)$$

Mischungsmodell

$$P(i,j) = \sum_{m=1}^{M} \underbrace{\pi_m \cdot p_1^{(m)}(i)}_{1} \cdot \underbrace{p_2^{(m)}(j)}_{2} \qquad P(i,j,k) = \sum_{m=1}^{M} \pi_m \cdot p_1^{(m)}(i) \cdot p_2^{(m)}(j) \cdot p_3^{(m)}(k)$$

Reduktion

$$L_1 \cdot L_2 \cdot L_3 \implies M \cdot (1 + L_1 + L_2 + L_3)$$

NTF — Nichtnegative Tensorfaktorisierung

Mischung naiver Verbundverteilungen nominaler Attribute

Wahrscheinlichkeitshyperwürfel $(\Omega_1 \times \Omega_2 \times ... \times \Omega_N)$

Naive Mischung

$$P(x_1,...,x_N) = \sum_{m=1}^{M} \pi_m \cdot \prod_{n=1}^{N} p_n^{(m)}(x_n)$$

Parameter lernen nach EM-Prinzip (expectation-maximization)

Reduktion

$$L_1 \cdot \ldots \cdot L_N \implies M \cdot (1 + L_1 + \ldots + L_N)$$
 $\prod \rightsquigarrow M \cdot \sum$

Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Parametrische (modellgetriebene) Bayesregel

Optimale Entscheidungsregel unter der Annahme $C^* \in \mathcal{H} \neq \mathcal{C}$

Problem

Die Auswahl und exklusive Nutzung der bestpassenden Hypothese aus H ist willkürlich und wegen $|\omega| < \infty$ suboptimal.

Bayestheorie

- 1. Hypothesen sind nicht nur wahr oder falsch
- 2. Hypothesen treffen "weiche" Entscheidungen
- 3. Jedes Lernbeispiel erhöht/vermindert inkrementell die Hypothesenwahrscheinlichkeiten
- 4. Vorwissen läßt sich mit den Lerndaten verzahnen
- 5. Mathematisch abgesicherter Votierungsmechanismus

EM-Algorithmus für das NTF-Modell

1 Initialisierung · 2 E-Schritt · 3 M-Schritt · 4 Abbruch

A posteriori Wahrscheinlichkeiten der Komponentenauswahl

Für jedes Lerndatensatzobjekt x_1, \ldots, x_T berechne

$$\gamma_t(m) \stackrel{\text{def}}{=} P(\mathbb{M} = m \mid \boldsymbol{x}_t, \boldsymbol{\theta}^{\text{alt}}) = \pi_m^{\text{alt}} \cdot \prod_{n=1}^N \theta_{m,n,x_{tn}}^{\text{alt}} / P^{\text{alt}}(\boldsymbol{x}_t)$$

Neuschätzung durch a posteriori Erwartungswerte

$$\hat{\pi}_{m} = \sum_{t=1}^{T} \gamma_{t}(m) / T \quad \text{und} \quad \hat{\theta}_{m,n,\xi} = \sum_{t=1}^{T} \gamma_{t}(m) \cdot \mathbf{I}_{x_{tn}=\xi} / \sum_{t=1}^{T} \gamma_{t}(m)$$

Startparameter

zufällig · wiederholt · lokale Optima

Rechenaufwand $O(I_{\text{max}} \cdot T \cdot M \cdot (N + \sum_{n} L_n))$

Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Hypothesen- und Objektwahrscheinlichkeiten

Lemma (A priori und a posteriori Hypothesenwahrsch'keit)

Für alle Hypothesen $h \in \mathcal{H}$ und gegebene Daten $\omega \subset \Omega$ gilt die folgende Darstellung der a posteriori Hypothesenwahrscheinlichkeit:

$$P(h|\omega) = \frac{P(\omega|h) \cdot P(h)}{P(\omega)}$$

"Deduktion" $\mathbf{P}(h)$ · "Abduktion" $\mathbf{P}(\omega|h)$ · "explaining-away" $\mathbf{P}(\omega)$

Definition

Für ein K-Klassenproblem über Ω mit Hypothesenraum ${\mathcal H}$ und den Lerndaten ω heißt

$$\delta_{\mathsf{Bayes}}(\mathbf{x}) = \underset{\kappa}{\mathsf{argmax}} \sum_{h \in \mathcal{H}} \mathrm{P}(\mathbf{x} \in \mathcal{C}_{\kappa} \mid h) \cdot \mathrm{P}(h | \omega)$$

die Bayes-Entscheidungsregel für das Objekt x.

Bemerkung

Diese Entscheidungsregel realisiert die minimale asymptotische Fehlerrate.

Hypothesenauswahltechniken

MDL-Prinzip

Minimum Description Length (Rissanen'87)

$$\begin{array}{ll} h_{\mathrm{MAP}} & = & \displaystyle \operatorname*{argmax}_{h \in \mathcal{H}} \mathrm{P}(\omega|h) \cdot \mathrm{P}(h) \\ & = & \displaystyle \operatorname*{argmin}_{h \in \mathcal{H}} \left\{ -\log_{2} \mathrm{P}(\omega|h) - \log_{2} \mathrm{P}(h) \right\} \end{array}$$

- Wähle eine Codierung \mathfrak{C}_1 für die Hypothesen
- 2 Wähle eine bedingte Codierung \mathfrak{C}_2 für die Klassen
- Berechne die "kürzeste Erklärung"

$$h_{\mathsf{MDL}} \overset{\mathsf{def}}{=} \underset{h \in \mathcal{H}}{\mathsf{argmin}} \left\{ \ell_{\mathfrak{C}_1}(h) + \ell_{\mathfrak{C}_2}(\omega|h) \right\}$$

der Lerndaten.

ML-Schätzer

 $h_{\mathsf{ML}} = \operatorname*{argmax}_{h \in \mathcal{H}} \mathrm{P}(\omega|h)$

MAP-Schätzer

 $h_{\mathsf{MAP}} = \operatorname*{argmax}_{h \in \mathcal{H}} \mathrm{P}(h|\omega)$

Gibbs-Sampler

 $h_{\mathsf{GS}} \sim \mathrm{P}(h|\omega)$

Versionenraum

 $\mathit{h}_{\mathsf{VR}} \in \mathfrak{V}(\mathcal{H},\omega)$

/orhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Bayesregel für gemischte Attributskalen

$$z = (x, y) \in \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{\Omega' = \mathbb{R}^{N'}} \times \underbrace{\mathcal{X}_1 \times \ldots \times \mathcal{X}_{N''}}_{\Omega''}$$

Normalzerlegung

$$P(z) = P(y) \cdot P(x|y) = P(y_1, ..., y_{N''}) \cdot \mathcal{N}(x \mid \mu_y, S_y)$$

- $L^{\times} = \prod_{n=1}^{N''} L_n$ kanonische W'keitsparameter
- $N' + {N' \choose 2}$ Dichteparameter je NV-Dichte
- \Rightarrow insgesamt $O(K \cdot L^{\times} \cdot N'^2)$ Parameter
- Unabhängigkeitsannahme für Ω'' bringt wenig Vorteile.
- Unabhängigkeit in Ω' reduziert auf $O(K \cdot L^{\times} \cdot N')$ Parameter.

Noiseless Source Coding Theorem

Quellenentropie $\hat{=}$ minimale Bitanzahl nach optimaler Datenkompression

Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Satz (Shannon 1949)

Ein Zufallsprozeß erzeuge Zeichenfolgen über dem Alphabet $\{s_1, \ldots, s_L\}$ mit den Wahrscheinlichkeiten q_1, \ldots, q_L .

- 1. Die **optimale** Codierung dieser Quelle verwendet für jedes Zeichen s_l ein Codewort der Länge $\log_2 q_l$ Bit.
- 2. Ihre mittlere Codewortlänge beträgt $\mathcal{H}(q_1,\ldots,q_L)$ Bit.

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Prädiktion, Regression & Klassifikatio

Konzeptlernei

Versionenräum

Naive Bayesrege

Multivariate lineare Regression

Logistische Regression

Ordinale Regression und Präferenzmodelle

Statistische Entscheidungsbäume

Zusammonfassun

Diskriminative Klassifikatoren

$$\kappa(\mathbf{x}) = \operatorname{argmax}_{\lambda} h_{\lambda}(\mathbf{x})$$

Definition

Es sei C_1, \ldots, C_K ein K-Klassen-Problem über $\Omega = \mathbb{R}^N$. Die Elemente von $\boldsymbol{h} = (h_1, \ldots, h_K)^\top$ mit

$$h_{\kappa}: \mathbb{R}^{N} \to \mathbb{R} , \quad \kappa = 1, \dots, K$$

heißen **Trennfunktionen** der Klassen $\kappa = 1, \dots, K$. Die Abbildungen $\boldsymbol{d} = (d_1, \dots, d_K)^{\top}$ mit

$$d_{\kappa}: \mathbf{x} \mapsto \left\{ egin{array}{ll} 1 & \mathbf{x} \in C_{\kappa} \ 0 & \mathbf{x}
otin C_{\kappa} \end{array}
ight.$$

heißen ideale Trennfunktionen des Problems.

Vorhersage Konzeptlernen Versionenräume Bayesregel **Regression** Logitmodell Präferenzen CAR⁻

Lernen als skalare Regressionsaufgabe

Zerlegung in Zweiklassenprobleme

Für jedes κ ergibt sich das QM-Approximationsproblem

$$h_{\kappa} \quad \approx \quad d_{\kappa} : \mathbf{x} \mapsto \left\{ egin{array}{ll} 1 & \mathbf{x} \in \omega^{+}, \; \omega^{+} = \omega_{\kappa} \ 0 & \mathbf{x} \in \omega^{-}, \; \omega^{-} = igcup_{\lambda
eq \kappa} \omega_{\lambda} \end{array}
ight.$$

Skalares Regressionsproblem

Für die Daten $\left\{ (\boldsymbol{x}_t, y_t) \in \mathbb{R}^N \times \mathbb{R} \mid t = 1, \dots, T \right\}$ finde die Regressionsfunktion $h \in \mathcal{H}$ mit minimalem Fehler

$$\varepsilon(h) \stackrel{\text{def}}{=} \sum_{t=1}^{T} (y_t - h(\mathbf{x}_t))^2$$

$$\left\{ egin{aligned} \mathsf{quadratisches} & \mathsf{Fehlermal} \ & \{0,1\}\text{-}\mathsf{Zielgr\"{o}\mathfrak{g}e} \end{aligned}
ight.$$

Quadratmittelklassifikator

Willkürlicher Zielausdruck — willkürliches Straffunktional

Definition

Es sei C_1,\ldots,C_K ein K-Klassen-Problem über $\Omega={\rm I\!R}^N$ und ${\mathcal H}$ eine Menge von Trennfunktionen. Die Trennfunktion ${\pmb h}\in{\mathcal H}$ mit minimalem erwarteten quadratischen Fehler

$$\varepsilon(\boldsymbol{h}) \stackrel{\text{def}}{=} \mathcal{E}[\|\boldsymbol{h}(\mathbb{X}) - \boldsymbol{d}(\mathbb{X})\|^2]$$

heißt **Quadratmitteldiskriminante**, der zugehörige Klassifikator heißt **Quadratmittelklassifikator**.

Sind ferner die Lerndaten ω_1,\ldots,ω_K gegeben, so heißt der Klassifikator mit minimalem Fehler

$$arepsilon(oldsymbol{h}, \{\omega_{\kappa}\}) \stackrel{\mathsf{def}}{=} \sum_{\kappa=1}^{K} \sum_{oldsymbol{x} \in \omega_{\kappa}} \left\| oldsymbol{h}(oldsymbol{x}) - oldsymbol{e}^{(\kappa)}
ight\|^{2}$$

empirischer QMK. Dabei bezeichne $e^{(\kappa)}$ den κ -ten Einheitsvektor.

Vorhersage Konzeptlernen Versionenräume Bayesregel **Regression** Logitmodell Präferenzen CART **Σ**

Multivariate lineare Regression

Linearer Ansatz

$$h(\mathbf{x}) = \sum_{n} a_n \cdot \mathbf{x}_n = \mathbf{a}^{\top} \mathbf{x}, \quad \mathbf{x}, \mathbf{a} \in \mathbb{R}^N$$

Affiner Ansatz

$$h(\mathbf{x}) = \mathbf{a}_0 + \sum_{\mathbf{n}} \mathbf{a}_{\mathbf{n}} \cdot \mathbf{x}_{\mathbf{n}} = \mathbf{a}^{\top} \mathbf{x}', \qquad \left\{ \begin{array}{l} \mathbf{a} \in \mathbb{R}^{N+1} \\ \mathbf{x}' \stackrel{\text{def}}{=} (1, \mathbf{x}^{\top})^{\top} \end{array} \right.$$

Was heißt hier eigentlich "Regressionsproblem"?

- Datenmodell $\mathbb{Y} = h(\mathbb{X}_1, \dots, \mathbb{X}_N) + \mathbb{E}$ mit Störterm $\mathbb{E} \sim \mathcal{N}(0, \sigma^2)$
- Datenprobe $\{x_t, y_t\}_1^T$ bzw. gemeinsame Datenverteilung $f_{\mathbb{X}, \mathbb{Y}}(\cdot, \cdot)$
- $\hat{h}(x) = \mathcal{E}_{\mathbb{Y}|x}[\mathbb{Y}], \text{ also } \hat{h}(x) = \int f(y|x) \cdot y \, dy$

/orhersage Konzeptlernen Versionenräume Bayesregel **Regression** Logitmodell Präferenzen CART

Linearer vs. affiner Quadratmittelklassifikator

Beispiel: Iris-Datensatz, 2D-Träger für einige (x_i, x_j) -Kombinationen

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenze

Multivariate lineare Regression

Lösen des Systems der Gaußschen Normalengleichungen

Satz

Es seien die Regressionsdaten $(\mathbf{x}_t, y_t) \in \mathbb{R}^N \times \mathbb{R}$, t = 1, ..., T in der Matrixnotation

$$\boldsymbol{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_T)^{\top}, \quad \boldsymbol{y} = (y_1, \dots, y_T)^{\top}$$

dargestellt, und es sei $h: \mathbf{x} \mapsto \mathbf{a}^{\top} \mathbf{x}$ linear. Dann lautet der quadratische Regressionsfehler

 $\varepsilon(h) = \varepsilon(a) = \|\mathbf{y} - \mathbf{X}\mathbf{a}\|^2$

und wird durch jede Lösung a der Gaußschen Normalengleichungen

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{a} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

minimiert.

Linearer versus affiner Ansatz

Lineare Funktionen allein beschreiben wegen $h(\mathbf{0})=0$ ausschließlich Hyperebenen, die durch den Koordinatenursprung verlaufen und sind als Regressionsmodell unzureichend. Affine Funktionen verfügen zusätzlich über den y-Schnittpunkt a_0 (intercept); affine Regression kann aber leicht auf lineare Regression zurückgeführt werden. Wir verwenden wieder die Notation X, y für Datenmatrix und Zielwertevektor und betrachten den Abweichungsvektor $y-a_0\mathbf{1}-Xa$ des affinen Modells sowie den resultierenden quadratischen Fehler:

$$\varepsilon(a_0, \mathbf{a}) = \|\mathbf{y} - a_0 \mathbf{1} - \mathbf{X} \mathbf{a}\|^2
= (\mathbf{y} - a_0 \mathbf{1} - \mathbf{X} \mathbf{a})^{\top} \cdot (\mathbf{y} - a_0 \mathbf{1} - \mathbf{X} \mathbf{a})
= (\mathbf{y}^{\top} - a_0 \mathbf{1}^{\top} - \mathbf{a}^{\top} \mathbf{X}^{\top}) \cdot (\mathbf{y} - a_0 \mathbf{1} - \mathbf{X} \mathbf{a})
= \|\mathbf{y}\|^2 + \underbrace{a_0^2 T - 2a_0 T \mu_y}_{\varepsilon(a_0)} + \underbrace{\mathbf{a}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{a} - 2\mathbf{a}^{\top} \mathbf{X}^{\top} \mathbf{y}}_{\varepsilon(\mathbf{a})} + \underbrace{2a_0 T \mu_x^{\top} \mathbf{a}}_{0}$$

Wenn wir o.B.d.A. mittelwertfreie Vektordaten annehmen ($\mu_{x}=\mathbf{0}$), so verschwindet der Kopplungsterm und wir dürfen a_{0} und a separat optimieren. Für a_{0} ergibt sich nach Nullsetzen der Ableitung

$$\partial \varepsilon(a_0) / \partial a_0 = 2Ta_0 - 2T\mu_y$$

der Minimalwert $a_0 = \mu_y$. Der Fehler $\varepsilon(\mathbf{a})$ und die Konstante $\|\mathbf{y}\|^2$ ergeben zusammen den Minimierungsausdruck der linearen Regressionsaufgabe ...

Beweis.

Zur Lösung des Quadratmittelproblems setzen wir die partiellen Ableitungen der Koeffizienten a_1, \ldots, a_N gleich Null — wir verwenden die Gradientenvektorschreibweise:

$$\nabla_{\boldsymbol{a}}\varepsilon(\boldsymbol{a}) = \nabla_{\boldsymbol{a}}\left\{\|\boldsymbol{y}\|^2 + \boldsymbol{a}^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{a} - 2\boldsymbol{y}^{\top}\boldsymbol{X}\boldsymbol{a}\right\}$$
$$= \mathbf{0} + 2\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{a} - 2\boldsymbol{X}^{\top}\boldsymbol{y}$$
$$= 2 \cdot \left(\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{a} - \boldsymbol{X}^{\top}\boldsymbol{y}\right)$$
$$\stackrel{!}{=} \mathbf{0}$$

Bemerkung

Das LGS $X^{\top}Xa = X^{\top}y$ heißt System der *Gaußschen Normalengleichungen*. Wir schreiben auch kürzer Ra = m; dabei ist R wieder die unzentrierte, unnormierte Kovarianzmatrix der Vektordaten.

'orhersage Konzeptlernen Versionenräume Bayesregel **Regression** Logitmodell Präferenzen CART Σ

Ausgleichsrechnung und Lineare Gleichungssysteme

Was Sie schon immer über lineare Algebra wissen wollten, aber nie zu fragen wagten

mit dem Fehlervektor e := Xa - y

LGS eindeutig Matrix **X** ist quadratisch und vollrangig.

 $f: \mathbf{z} \mapsto \mathbf{X}\mathbf{z}$ bijektiv

 $\mathbf{a} = \mathbf{X}^{-1}\mathbf{y}$ ist die eindeutige Lösung mit Fehler $\mathbf{e} = \mathbf{0}$.

... überbestimmt

Matrix **X** hat den vollen Spaltenrang.

$$oldsymbol{a} = (oldsymbol{X}^{ op} oldsymbol{X})^{-1} \cdot oldsymbol{X}^{ op} oldsymbol{y}$$
 ist eine Lösung mit
minimalem
Gesamtfehler $\|oldsymbol{e}\|$.

 $\dots \ unterbestimmt$

Matrix **X** hat den vollen Zeilenrang.

$$oldsymbol{a} = oldsymbol{X}^{ op} (oldsymbol{X} oldsymbol{X}^{ op})^{-1} \cdot oldsymbol{y}$$
 ist eine Lösung mit
Fehler $oldsymbol{e} = oldsymbol{0}$ und
minimaler Länge $\|oldsymbol{a}\|$.

Bemerkung

Das Gaußsche Normalengleichungssystem ist entweder eindeutig lösbar oder besitzt unendlich viele Lösungen.

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Minimalnormlösung des GNG-Systems

Lemma

Es sei $\mathbf{R} \cdot \mathbf{a} = \mathbf{m}$ bzw. $\mathbf{X}^{\top} \mathbf{X} \cdot \mathbf{a} = \mathbf{X}^{\top} \mathbf{y}$ das GNG-System einer linearen Regressionsaufgabe.

- 1. Die Matrix **R** ist symmetrisch und positiv-semidefinit.
- 2. Das Gleichungssystem hat stets mindestens eine Lösung.
- 3. Ist **R** invertierbar, so existiert eine eindeutige Lösung:

$$a^* = R^{-1} \cdot m$$

4. Ist **X**⁺ die Pseudoinverse der Datenmatrix, so löst

$$a^+ = X^+ \cdot v$$

das Gleichungssystem und besitzt unter allen Lösungen die minimale Norm $\|\mathbf{a}^+\|$.

Die Berechnung der Minimalnormlösung ist **nicht praktikabel**!

System der Gaußschen Normalengleichungen

Linearer Quadratmittelklassifikator (K = 2)

$$\begin{array}{rcl} \boldsymbol{R} \cdot \boldsymbol{a} & = & \boldsymbol{m} \\ & \boldsymbol{R} & = & {}^{1}\!\!/_{T} \cdot \boldsymbol{X}^{\top} \boldsymbol{X} & = & \boldsymbol{S} + \mu \mu^{\top} \\ & \boldsymbol{m} & = & {}^{1}\!\!/_{T} \cdot \boldsymbol{X}^{\top} \boldsymbol{y} & = & {}^{1}\!\!/_{T} \cdot \sum_{\omega^{+}} \boldsymbol{x}_{t} & = & \boldsymbol{p}^{+} \cdot \mu^{+} \end{array}$$

 $p^+ = T^+/T$, μ^+ Positivstatistiken; **R** Momentenmatrix der Gesamtprobe.

Linearer Quadratmittelklassifikator (K > 2)

$$egin{array}{lcl} m{R}\cdotm{a}_1 &=& m{m}_1 \ & dots &=& dots &, & m{m}_\kappa &=& rac{1}{T}\cdot\sum_{\omega_\kappa}m{x}_t &=& m{p}_\kappa\cdotm{\mu}_\kappa \ m{R}\cdotm{a}_K &=& m{m}_K \end{array}$$

Kompaktschreibweise: $\mathbf{R} \cdot \mathbf{A} = \mathbf{M}$ mit $\mathbf{M} = (p_1 \mu_1, \dots, p_K \mu_K)$.

Beweis.

Für eine beliebige Rechteckmatrix mit der SV-Zerlegung ${\pmb X} = {\pmb V} {\pmb D} {\pmb U}^{ op}$ heißt die Matrix

$$\boldsymbol{X}^+ = \boldsymbol{U} \boldsymbol{D}^+ \boldsymbol{V}^\top$$

die Moore-Penrose-Inverse oder Pseudoinverse. Die Pseudoinverse D^+ einer Diagonalmatrix D wiederum enthält auf ihrer Diagonalen die Pseudo-Reziproken:

$$d_n^+ = \left\{ egin{array}{ll} 1/d_n & d_n
eq 0 \\ 0 & d_n = 0 \end{array} \right., \qquad n = 1, \ldots, N$$

Diese Pseudoinverse gehorcht der Moore-Penrose-Gleichung, denn es gilt:

$$\mathbf{X}^{\top}\mathbf{X}\mathbf{X}^{+} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} \cdot \mathbf{V}\mathbf{D}\mathbf{U}^{\top} \cdot \mathbf{U}\mathbf{D}^{+}\mathbf{V}^{\top}$$
$$= \mathbf{U}\mathbf{D}^{2}\mathbf{D}^{+}\mathbf{V}^{\top} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \mathbf{X}^{\top}$$

Folglich löst $a^+ = X^+ y$ auch die Gaußschen Normalengleichungen:

$$T \cdot Ra^+ = X^\top X \cdot X^+ y = X^\top \cdot y = T \cdot m$$

Der Beweis der Minimaleigenschaft erfordert einen Lagrange-Ansatz:

$$\frac{1}{2} \cdot \|\boldsymbol{a}\|^2 + \lambda \cdot \left\| \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{a} - \boldsymbol{X}^\top \boldsymbol{y} \right\|^2 \quad \stackrel{!}{\to} \quad \mathsf{MIN}$$

rhersage Konzeptlernen Versionenräume Bayesregel **Regression** Logitmodell Präferenzen CART **S**

Gratregularisierung

Lemma

Der regularisierte quadratische Regressionsfehler

$$\varepsilon_{\lambda}(\boldsymbol{a}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{a}\|^2 + \lambda \cdot \|\boldsymbol{a}\|^2$$

 $(\lambda>0)$ wird durch die (eindeutige) Lösung

$$a_{\lambda}^{*} = (R_{\lambda})^{-1} \cdot m$$
, $R_{\lambda} \stackrel{\text{def}}{=} R + \lambda E$

minimiert.

Beweis.

Der regularisierte Quadratmittelfehler besitzt den Gradientenvektor

$$\nabla_{\mathbf{a}} \varepsilon_{\lambda}(\mathbf{a}) = \nabla_{\mathbf{a}} \varepsilon(\mathbf{a}) + \lambda \cdot \nabla_{\mathbf{a}} \|\mathbf{a}\|^2 = 2 \cdot (\mathbf{R}\mathbf{a} + \lambda \mathbf{a} - \mathbf{m}) = 2 \cdot (\mathbf{R}_{\lambda} \mathbf{a} - \mathbf{m})$$

Die Gratregularisierungsmatrix ist für $\lambda \neq 0$ stets invertierbar, denn wegen

$$\mathbf{R}_{\lambda} = \mathbf{R} + \lambda \mathbf{E} = \mathbf{U} \mathbf{D}^2 \mathbf{U}^{\top} + \lambda \mathbf{U} \mathbf{E} \mathbf{U}^{\top} = \mathbf{U} \cdot (\mathbf{D}^2 + \lambda \mathbf{E}) \cdot \mathbf{U}^{\top} = \mathbf{U} \cdot (\mathbf{D}^2)_{\lambda} \cdot \mathbf{U}^{\top}$$

besitzen alle Eigenwerte von R_{λ} die Form $d_n^2 + \lambda > 0$.

Vorhersage Konzeptlernen Versionenräume Bayesregel **Regression** Logitmodell Präferenzen CART

Lineare versus nichtlineare QMK

Angriffspunkt: 1.Quellvariable 2.Berechnungsweg 3.Zielvariable

Termexpansion

GNGS für alle Koeffizienten

- Linear & affin $O(N^1)$
- Quadratisch $O(N^2)$
- Kubisch $O(N^3)$
- Polynomansatz $O(\binom{N+p}{p})$

Nominale Attribute

Kontrastmatrizen (L_n-1)

- ohne Interaktionsterme $O(\ell)$, $\ell = \sum_n L_n$
- einfache Interaktionsterme $O(\ell^2)$

Neuronale Berechnungsmodelle

Error Backpropagation

- Mehrschichtenperzeptron
- Radiale Basisfunktionen
- Time-Delay Neural Network

Gelenkfunktion $\phi(y) = x^{\top} a$

Generalized Linear Model

Gewichtete & nichtquadratische Regression

Historische Wurzeln des IRLS: "Iteratively Reweighted Least Squares"

	,,,,		0
Quadratischer Fehler	$\sum_t (\boldsymbol{x}_t^{\top} \boldsymbol{a} - y_t)^2$	=	$\ \boldsymbol{X}\boldsymbol{a}-\boldsymbol{y}\ _2^2$
Allgemeiner L_p -Fehler	$\sum_{t} \left \boldsymbol{x}_{t}^{\top} \boldsymbol{a} - y_{t} \right ^{\boldsymbol{p}}$	=	$\ Xa-y\ _p^p$
Gewichteter Fehler	$\sum_t w_t^2 \cdot (\boldsymbol{x}_t^{\top} \boldsymbol{a} - y_t)^2$	=	$\ \boldsymbol{W}\cdot(\boldsymbol{X}\boldsymbol{a}-\boldsymbol{y})\ _2^2$
			$W = \operatorname{diag}(w_1, \dots, w_T)$

Gewichtete Ausgleichsrechnung

Wegen $\|\boldsymbol{W}\cdot(\boldsymbol{X}\boldsymbol{a}-\boldsymbol{y})\|_2^2 = \|\boldsymbol{W}\boldsymbol{X}\boldsymbol{a}-\boldsymbol{W}\boldsymbol{y}\|_2^2 = \|\tilde{\boldsymbol{X}}\boldsymbol{a}-\tilde{\boldsymbol{y}})\|_2^2$ lautet der Lösungskoeffizientenvektor $\boldsymbol{a}=(\boldsymbol{X}^\top\boldsymbol{W}^\top\boldsymbol{W}\boldsymbol{X})^{-1}\cdot\boldsymbol{X}^\top\boldsymbol{W}^\top\boldsymbol{W}\boldsymbol{y}$

Ausgleichsrechnung in der L_p-Fehlernorm (Betrag/Minimum)

Die Fehlerminimierung kann wegen

$$\|\mathbf{e}\|_{p}^{p} = \sum_{t} |e_{t}|^{p} = \sum_{t} |e_{t}|^{p-2} |e_{t}|^{2} = \sum_{t} w_{t}^{2} e_{t}^{2}$$

auf IRLS mit Gewichten $w_t = |e_t|^{(p-2)/2}$ zurückgeführt werden.

Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Überanpassungseffekt bei Ausgleichpolynomen

Weiß verrauschte Daten zur Kurve $y = 7 + 2x - 3x^2$

Maskierungseffekt

Lineare Quadratmitteldiskriminanten in Mehrklassensituationen

Kollineare

Klassenzentren

$$\mu_{\kappa} = \beta_{\kappa} \mathbf{a} + \mathbf{b}$$
 \Rightarrow kollineare

Diskriminatenvektoren

$$h(\mu_{\kappa}) = \beta_{\kappa} \tilde{a} + \tilde{b}$$

(ideal = κ -te Einheitsvektoren)

Quadratmittel

Minimiere den quadratischen Vorhersagefehler

$$\sum_t (y_t - \boldsymbol{a}^\top \boldsymbol{x}_t)^2$$

- negative Werte!
- nicht normiert!

Logit

Maximiere Datenwahrsch'keit

$$\prod_t \mathrm{P}(y_t|\boldsymbol{x}_t)$$

Probit.

Maximiere Wahrsch'keitssumme

$$\sum_t P(y_t|\boldsymbol{x}_t)$$

mit Posterior-Wahrscheinlichkeiten der logistischen Form $P(\Omega_1|\mathbf{x}) \propto e^{\mathbf{a}^{\top}\mathbf{x}}$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Lineare logistische Regression

Zweiklassenmodell

Lineares Vorhersagemodell für die log-odds

$$\log \frac{P(\Omega_1 \mid \mathbf{x})}{P(\Omega_0 \mid \mathbf{x})} \stackrel{!}{=} h(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x}$$

Mehrklassenmodell

K-1 Modelle für logarithmierte Kontrastwahrscheinlichkeiten

$$\log \frac{P(\Omega_{\lambda} \mid \mathbf{x})}{P(\Omega_{K} \mid \mathbf{x})} \stackrel{!}{=} h_{\lambda}(\mathbf{x}) = \mathbf{a}_{\lambda}^{\top} \mathbf{x}$$

für alle $1 \le \lambda < K$.

Konsistente W'keiten Alle $P(\Omega_{\lambda}|\mathbf{x}) \in [0,1]$. Alle Odds $\in [0, +\infty]$. $Log-odds \in [-\infty, +\infty].$

Umkehrformeln

Alle Klassen $\lambda \neq K$

$$p_{\lambda}(\mathbf{x}) = \frac{\exp(\mathbf{a}_{\lambda}^{\top}\mathbf{x})}{1 + \sum_{\kappa \neq K} \exp(\mathbf{a}_{\kappa}^{\top}\mathbf{x})}$$

Referenzklasse $\lambda = K$

$$ho_{\lambda}(\mathbf{x}) \ = \ rac{1}{1 + \sum_{\kappa
eq K} \exp(\mathbf{a}_{\kappa}^{ op} \mathbf{x})}$$

bzw.
$$p_1(x) = 1 - p_0(x) = \frac{e^{a^\top x}}{(1 + e^{a^\top x})}$$

Logistische Regression

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Logitmodell Präferenzen CART Σ

Maximum-Likelihood-Schätzung

Vereinfachter Fall: K = 2

Lemma

Für das binäre logistische Modell $p_1(x) \propto \exp(a^T x)$ mit den Lerndaten $(x_t, y_t) \in \mathbb{R}^N \times \{1, 0\}, \ t = 1, ..., T \ gilt:$

1. Die ML-Zielgröße besitzt die Darstellung

$$\ell(\boldsymbol{a}) = \log \prod_{t=1}^{T} p_{y_t}(\boldsymbol{x}_t) = \sum_{t=1}^{T} \left\{ y_t \cdot \boldsymbol{a}^{\top} \boldsymbol{x}_t - \log \left[1 + \exp(\boldsymbol{a}^{\top} \boldsymbol{x}_t) \right] \right\} .$$

2. Für ihren Gradientenvektor der partiellen Ableitungen gilt:

$$\nabla_{\mathbf{a}} = \frac{\partial \ell(\mathbf{a})}{\partial \mathbf{a}} = \sum_{t=1}^{T} \mathbf{x}_{t} \cdot (\mathbf{y}_{t} - \mathbf{p}_{1}(\mathbf{x}_{t})) = \mathbf{X}^{\top} \cdot (\mathbf{y} - \mathbf{p})$$

3. Für ihre Hessematrix der gemischten partiellen Ableitungen gilt

$$H_a = \frac{\partial^2 \ell(a)}{\partial a \partial a^{\top}} = -\sum_{t=1}^T x_t x_t^{\top} \cdot p_1(x_t) \cdot (1 - p_1(x_t)) = -\mathbf{X}^{\top} \mathbf{W} \mathbf{X} ,$$

wobei $\mathbf{W} = \operatorname{diag}(w_1, \dots, w_T)$ und $w_t = p_1(x_t) \cdot (1 - p_1(x_t))$ bezeichne.

Der IRLS-Algorithmus

"Iteratively Reweighted Least Squares"

■ INITIALISIERUNG $a \leftarrow 0$

NEWTON-RAPHSON-SCHRITT

$$m{a} \leftarrow m{a} + \left(m{X}^{\top} m{W} m{X} \right)^{-1} \cdot m{X}^{\top} \cdot (m{y} - m{p})$$

Die diagonale Skalierungsmatrix $\boldsymbol{W} \in \mathbb{R}^{T \times T}$ hat Einträge $w_{tt} = p_t \cdot (1 - p_t), \ p_t = \hat{p}_1(\boldsymbol{x}_t).$

3 TERMINIERUNG
Prüfe Abbruchbedingung; gehe → 2 oder ENDE

Newton-Raphson-Optimier ungsschritt

Gradientenaufstieg mit quadratisch berechneter Schrittweite

$$a \leftarrow a - H_a^{-1} \cdot \nabla_a$$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Maximum-Likelihood-Schätzung

Allgemeiner Fall: $K \geq 2$

Lemma

Für das logistische Modell $p_{\lambda}(x) \propto \exp(\mathbf{a}_{\lambda}^{\top}x)$ mit den Lerndaten $(x_t, g_t) \in \mathbb{R}^N \times \{1, \dots, K\}, \ t = 1, \dots, T$ gilt:

1. Die ML-Zielgröße besitzt die Darstellung

$$\ell(\mathbf{A}) = \log \prod_{t=1}^{T} p_{g_t}(\mathbf{x}_t) = \sum_{t=1}^{T} \left\{ \mathbf{a}_{g_t}^{\top} \mathbf{x}_t - \log \sum_{\nu} e^{\mathbf{a}_{\nu}^{\top} \mathbf{x}_t} \right\} , \quad \mathbf{a}_{K} = \mathbf{0} \in \mathbb{R}^{N} .$$

2. Für die K · N partiellen Ableitungen ihrer Gradientenmatrix gilt:

$$\frac{\partial \ell(\mathbf{A})}{\partial a_{\lambda,i}} = \sum_{t=1}^{T} x_{t,i} \cdot (y_{t,\lambda} - p_{\lambda}(x_t))$$

3. Für die $K^2 \cdot N^2$ gemischten partiellen Ableitungen ihres Hessetensors gilt:

$$\frac{\partial \ell^{2}(\mathbf{A})}{\partial a_{\lambda,i} \cdot \partial a_{\kappa,j}} = \sum_{t=1}^{T} x_{t,i} x_{t,j} \cdot (p_{\lambda}(\mathbf{x}_{t}) \cdot p_{\kappa}(\mathbf{x}_{t}) - \delta_{\lambda,\kappa} \cdot p_{\lambda}(\mathbf{x}_{t}))$$

Es bezeichne $y_{t,\lambda} = \delta_{g_t,\lambda}$ die Klassenindikatorfunktion der Lerndaten.

IRLS und Regularisierung

Was heißt eigentlich "wiederholte Neugewichtung"?

Newtonschritt = gewichtete lineare Regression

$$a^* \leftarrow a + \left(X^{\top}WX\right)^{-1} \cdot X^{\top} \cdot (y - p)$$

$$= \left(X^{\top}WX\right)^{-1} \cdot X^{\top}W^{\frac{1}{2}} \cdot W^{\frac{1}{2}} \cdot \underbrace{\left(Xa + W^{-1}(y - p)\right)}_{z}$$

 $m{a}^*$ ist Lösung der **gewichteten** Regressionsaufgabe $\left\|m{W}^{1/2}\cdot(m{z}-m{X}m{a})
ight\|^2\stackrel{!}{ o} \mathsf{MIN}$

WLS-Regularisierung in jedem Newtonschritt

Löse gewichtetes GNG-System $R_W a = m_W$ mit $R_W = X^\top W X$ und $m_W = X^\top W z$ mittels regularisierter Koeffizientenmatrix:

$$oldsymbol{R}_{W,\lambda} \stackrel{\mathsf{def}}{=} (oldsymbol{R}_W)_{\lambda} = oldsymbol{X}^{ op} oldsymbol{W} oldsymbol{X} + \lambda \cdot oldsymbol{E}$$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART X

Das Probit-Modell (K = 2)

Logistisches Wahrscheinlichkeitsmodell

mit einer additiven Zielfunktion

$$p_y(\mathbf{x}) = \frac{e^{\mathbf{y} \cdot \mathbf{a}^{\top} \mathbf{x}}}{1 + e^{\mathbf{a}^{\top} \mathbf{x}}}, \qquad \ell(\mathbf{a}) = \sum_{t=1}^{T} p_{y_t}(\mathbf{x}_t) \stackrel{!}{\rightarrow} \mathsf{MAX}$$

Gradientenvektor_

$$\nabla_{\boldsymbol{a}}\ell(\boldsymbol{a}) = \sum_{t=1} p_{y_t}(\boldsymbol{x}_t) \cdot \{y_t - p_1(\boldsymbol{x}_t)\} \cdot \boldsymbol{x}_t = \boldsymbol{X}^{\top} \boldsymbol{Q}(\boldsymbol{y} - \boldsymbol{p})$$

 $mit \mathbf{Q} = diag(\{p_{y_t}(x_t)\}_t)$

Hessematrix

$$H_a = \sum_{t=1}^{T} \rho_{y_t}(\mathbf{x}_t) \cdot \{(y_t - p_1(\mathbf{x}_t))^2 + p_1^2(\mathbf{x}_t) - p_1(\mathbf{x}_t)\} \cdot \mathbf{x}_t \mathbf{x}_t^{\top} = -\mathbf{X}^{\top} WPX$$

mit
$$W = \text{diag}(\{p_1(x_t) \cdot p_0(x_t)\}_t)$$
 und $P = \text{diag}(\{p_{y_t}(x_t) - p_{1-y_t}(x_t)\}_t)$

Reklassifikationsexperiment — Irisblüten-Datensatz

3 Klassen · 4 numerische Attribute · 50+50+50 Objekte

Quadratmittelmodell

3 affine Prädiktoren $\boldsymbol{a}_{\lambda} \in {\rm I\!R}^5$ Starke Schwankung um 1 und 0 'versicolor' Vertauschungen

Loglinearmodell

2 affine Prädiktoren $\boldsymbol{a}_{\lambda} \in {\rm I\!R}^5$ Fast alle Wahrsch'keiten bei {0,1} Fast perfekte Klassenidentifikation

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Dualisierung der Regressionsaufgabe

Der Schlüssel zum Kerneltrick für Quadratmittel- & logistische Prädiktoren

Definition

Für eine Datenmatrix $\boldsymbol{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_T)^{\top}$ des \mathbb{R}^N bezeichne $\mathrm{Lin}(\boldsymbol{X})$ die lineare Hülle der Vektoren und $\operatorname{Lin}(X^{\perp})$ ihren Orthogonalraum.

Lineare Hülle

Die Menge aller Linearkombinationen der Matrixzeilen x_t ; sie bildet den kleinsten Untervektorraum von \mathbb{R}^N der alle x_t enthält.

$$\operatorname{Lin}(\boldsymbol{X}) = \{ \boldsymbol{X}^{\top} \boldsymbol{a} \mid \boldsymbol{a} \in \mathbb{R}^{T} \}$$

Orthogonalraum

Die Menge aller Vektoren, die auf allen Matrixzeilen x_t senkrecht stehen; sie bildet den größten Untervektorraum von \mathbb{R}^N . der keines der x+ enthält.

$$\operatorname{Lin}(\boldsymbol{X}^{\perp}) = \{ \boldsymbol{z} \in \mathbb{R}^{N} \mid \boldsymbol{X} \boldsymbol{z} = \boldsymbol{0} \}$$

Lemma

Lineare Hülle und Orthogonalraum spannen stets den Gesamtraum auf:

$$IR^N = Lin(\boldsymbol{X}) \oplus Lin(\boldsymbol{X}^{\perp})$$

Reklassifikationsexperiment — Herzkrankheiten-Datensatz

2 Klassen · 13 diskrete & numerische Attribute · 270 Objekte

Auszug Datenfriedhof

1.0 2.0 124.0 261.0 0.0 0.0 141.0 0.0 0.3 1.0 0.0 7.0 2 1.0 4.0 128.0 263.0 0.0 0.0 105.0 1.0 0.2 2.0 1.0 7.0 1 65.0 1.0 4.0 120.0 177.0 0.0 0.0 140.0 0.0 0.4 1.0 0.0 7.0 1 56.0 1.0 3.0 130.0 256.0 1.0 2.0 142.0 1.0 0.6 2.0 1.0 6.0 2

Attribute, Skalen, Werte

1.	age (\mathbb{R})	-0.02511018
2.	sex {male, female}	1.89901910
3.	chest pain $\{A, B, C, D\}$	1.741, 0.784, 2.748
4.	blood pressure $({ m I\!R})$	0.03110868
5.	serum cholestoral (\mathbb{R})	0.00655756
6.	fasting blood sugar $\{T, F\}$	-0.37604461
13	$thal \{\mathit{normal}, \mathit{fixed}, \mathit{defect}\}$	-0.318, 1.468
	intercept	-7.68704469

Regression Logitmodell Präferenzen CART Versionenräume Bayesregel

Darstellungssatz für QM-Lösungen

Endlichdimensionaler Spezialfall des Satzes von Kimeldorf & Wahba (1971)

Satz

Die regularisierten (unregularisierten) und gewichteten (ungewichteten) Quadratmittelaufgaben mit den Normalengleichungen

$$egin{aligned} R \cdot a &= m & (LSE) \ R_{\lambda} \cdot a &= m & (RLSE) \ R_{w} \cdot a &= m_{w} & (WLSE) \ R_{w,\lambda} \cdot a &= m_{w} & (RWLSE) \end{aligned}$$

besitzen jeweils mindestens eine Lösung, die sogar als Linearkombination der Datenvektoren x_1, \ldots, x_T darstellbar ist, d.h. es gilt:

$a^* \in \operatorname{Lin}(X)$

Bezeichnungen

für die nicht normierten und unzentrierten Momente:

$$egin{array}{ll} m{m} &= m{X}^{ op} m{y} \ m{R} &= m{X}^{ op} m{X} \ m{R}_{\lambda} &= m{R} + \lambda m{E} \ m{m}_{w} &= m{X}^{ op} m{W} m{z} \ m{R}_{w} &= m{X}^{ op} m{W} m{X} \ m{R}_{w,\lambda} &= m{R}_{w} + \lambda m{E} \end{array}$$

Beweis.

• REPRÄSENTATION FÜR LSE-LÖSUNG Ist $\pmb{a} = \pmb{a}_0 + \pmb{a}_\perp$ mit $\pmb{a}_0 \in \operatorname{Lin}(\pmb{X})$ und $\pmb{a}_\perp \in \operatorname{Lin}(\pmb{X}^\perp)$ eine Lösung der GNG $\pmb{R}\pmb{a} = \pmb{m}$, so gilt:

$$m = Ra = X^{\top}Xa_0 + X^{\top}Xa_{\perp} = Ra_0$$

Wir können folglich auch eine Lösung in Lin(X) finden.

• REPRÄSENTATION FÜR RLSE-LÖSUNG Ist $a = a_0 + a_{\perp}$ eine Lösung der GNG $R_{\lambda}a = m$, so gilt:

$$\boldsymbol{m} = \boldsymbol{R}_{\lambda} \boldsymbol{a} = \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{a} + \lambda \boldsymbol{a}_{0} + \lambda \boldsymbol{a}_{\perp}$$

Da sowohl $m = \mathbf{X}^{\top} \mathbf{y}$ als auch $\mathbf{X}^{\top} \mathbf{X} \mathbf{a}$ und $\lambda \mathbf{a}_0$ offensichtlich aus $\mathrm{Lin}(\mathbf{X})$ sind, ist das auch für den verbleibenden Ausdruck $\lambda \mathbf{a}_{\perp}$ der Fall. Wegen $\lambda > 0$ folgt $\mathbf{a}_{\perp} = \mathbf{0}$, also ist $\mathbf{a} = \mathbf{a}_0$ zwingend aus der linearen Hülle von \mathbf{X} .

• REPRÄSENTATION FÜR WLSE-LÖSUNG Im IRLS-Schritt sei $\pmb{a} = \pmb{a}_0 + \pmb{a}_\perp$ eine Lösung der GNG $\pmb{R}_w \pmb{a} = \pmb{m}_w$. Dann gilt:

$$m_w = R_w a = X^\top W X \cdot a_0 + X^\top W X \cdot a_\perp = R_w a_0$$

• REPRÄSENTATION FÜR RWLSE-LÖSUNG Für die Lösung $a=a_0+a_\perp$ im regularisierten IRLS-Schritt gilt wie bei RLSE:

$$m_w = R_{w,\lambda} a = (X^\top W X + \lambda E) \cdot (a_0 + a_\perp) = X^\top W X a + \lambda a_0 + \lambda a_\perp$$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Regularisierung dualisierter QM-Aufgaben

Ungewichteter und gewichteter Fall

Lemma

Die Lösungen der dualisierten **LSE-Aufgabe** lauten je nach Regularisierungstechnik:

$$\mathbf{b}^* = \mathbf{G}^{-1} \cdot \mathbf{y} \qquad \qquad \varepsilon(\mathbf{b}) = \|\mathbf{y} - \mathbf{G}\mathbf{b}\|^2$$

$$\mathbf{b}^* = (\mathbf{G} + \lambda \mathbf{E})^{-1} \cdot \mathbf{y} \qquad \qquad \varepsilon_{\lambda}(\mathbf{b}) = \|\mathbf{y} - \mathbf{G}\mathbf{b}\|^2 + \lambda \cdot \|\mathbf{X}^{\top}\mathbf{b}\|^2$$

$$\mathbf{b}^* = (\mathbf{G}^2 + \lambda \mathbf{E})^{-1} \cdot \mathbf{G}\mathbf{y} \qquad \qquad \varepsilon'_{\lambda}(\mathbf{b}) = \|\mathbf{y} - \mathbf{G}\mathbf{b}\|^2 + \lambda \cdot \|\mathbf{b}\|^2$$

Lemma

Die Lösungen der dualisierten **WLSE-Aufgabe** lauten je nach Regularisierungstechnik:

$$\mathbf{b}^* = \mathbf{G}^{-1} \cdot \mathbf{z} \qquad \qquad \varepsilon_{\mathbf{W}}(\mathbf{b}) = \|\mathbf{z} - \mathbf{G}\mathbf{b}\|_{\mathbf{W}}^2$$

$$\mathbf{b}^* = (\mathbf{W}\mathbf{G} + \lambda \mathbf{E})^{-1} \cdot \mathbf{W}\mathbf{z} \qquad \qquad \varepsilon_{\mathbf{W},\lambda}(\mathbf{b}) = \|\mathbf{z} - \mathbf{G}\mathbf{b}\|_{\mathbf{W}}^2 + \lambda \cdot \|\mathbf{X}^{\top}\mathbf{b}\|^2$$

$$\mathbf{b}^* = (\mathbf{G}\mathbf{W}\mathbf{G} + \lambda \mathbf{E})^{-1} \cdot \mathbf{G}\mathbf{W}\mathbf{z} \qquad \qquad \varepsilon'_{\mathbf{W},\lambda}(\mathbf{b}) = \|\mathbf{z} - \mathbf{G}\mathbf{b}\|_{\mathbf{W}}^2 + \lambda \cdot \|\mathbf{b}\|^2$$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

MSE[⊥] — die dualisierte Quadratmittelaufgabe

Speicheraufwand $O(T^2)$ und Rechenaufwand $O(T^3)$

Duale Lösungsdarstellung

als Linearkombination der Objektvektoren:

$$\boldsymbol{a} = \boldsymbol{X}^{\top} \boldsymbol{b} = \sum_{t=1}^{T} b_t \cdot \boldsymbol{x}_t , \quad \boldsymbol{b} \in \mathbb{R}^{T}$$

Duale Regressionsfehlerformel

in Abhängigkeit vom Vektor **b** der Lösungskoeffizienten:

$$\varepsilon(\boldsymbol{b}) = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{X}^{\top} \boldsymbol{b}\|^{2} \stackrel{!}{\rightarrow} MIN$$

Duale Gauß'sche Normalengleichungen

Lineares Gleichungssystem (Dimension $T \times T$) mit Gram'scher Matrix:

$$\mathbf{G}^2 \cdot \mathbf{b} = \mathbf{G} \cdot \mathbf{y} , \quad \mathbf{G} = \mathbf{X} \cdot \mathbf{X}^{\top}$$

Beweis.

 UNREGULARISIERTE LÖSUNG: Der Gradientenvektor der Zielgröße

$$\varepsilon(\boldsymbol{b}) = \|\boldsymbol{y} - \boldsymbol{G}\boldsymbol{b}\|^2 = \boldsymbol{y}^{\top}\boldsymbol{y} - 2 \cdot \boldsymbol{b}^{\top}\boldsymbol{G}\boldsymbol{y} + \boldsymbol{b}^{\top}\boldsymbol{G}^2\boldsymbol{b}$$

lautet

$$\nabla_{\boldsymbol{b}}\varepsilon(\boldsymbol{b}) = \mathbf{0} - 2 \cdot \boldsymbol{G}\boldsymbol{y} + 2 \cdot \boldsymbol{G}^2\boldsymbol{b} .$$

Nullsetzen ergibt die GNG. Unter der Annahme einer regulären Gramschen Matrix ergibt sich die Lösung durch Multiplikation beider Gleichungsseiten mit G^{-2} .

 REGULARISIERTE LÖSUNG I:
 Wir regularisieren im Vektorraum IR^N; der Fehlerterm besitzt den Gradientenvektor

$$\nabla_{\boldsymbol{b}}\varepsilon_{\lambda}(\boldsymbol{b}) = -2\boldsymbol{G}\boldsymbol{y} + 2\boldsymbol{G}^{2}\boldsymbol{b} + 2\lambda \cdot \boldsymbol{G}\boldsymbol{b} = -2\boldsymbol{G} \cdot (\boldsymbol{y} - (\boldsymbol{G} + \lambda \boldsymbol{E}) \cdot \boldsymbol{b})$$

Da \boldsymbol{G}_{λ} regulär ist für $\lambda > 0$ liefert $\boldsymbol{b} = \boldsymbol{G}_{\lambda}^{-1} \boldsymbol{y}$ eine Lösung.

 REGULARISIERTE LÖSUNG II:
 Wir regularisieren im Vektorraum IR^T; der Fehlerterm besitzt den Gradientenvektor

$$\nabla_{\boldsymbol{b}} \varepsilon_{\lambda}(\boldsymbol{b}) = -2\boldsymbol{G}\boldsymbol{y} + 2\boldsymbol{G}^2\boldsymbol{b} + 2\lambda \cdot \boldsymbol{b} = -2 \cdot (\boldsymbol{G}\boldsymbol{y} - (\boldsymbol{G}^2 + \lambda \boldsymbol{E}) \cdot \boldsymbol{b})$$

Da auch $(\mathbf{G}^2)_{\lambda}$ regulär ist für $\lambda > 0$ liefert $\mathbf{b} = (\mathbf{G}^2)_{\lambda}^{-1} \cdot \mathbf{G} \mathbf{y}$ eine Lösung.

Beweis.

Das zweite Lemma dient der schrittweisen Berechnung und Regularisierung im IRLS-Algorithmus für loglineare Modelle.

An Stelle des Fehlerfunktionals $\|y - Gb\|^2$ wird

$$\|\mathbf{z} - \mathbf{G}\mathbf{b}\|_{\mathbf{W}}^2 \stackrel{\mathsf{def}}{=} (\mathbf{z} - \mathbf{G}\mathbf{b})^{\top} \cdot \mathbf{W} \cdot (\mathbf{z} - \mathbf{G}\mathbf{b})$$

minimiert. Wir unterscheiden wieder zwischen der Regularisierung im Raum \mathbb{R}^N und im Raum \mathbb{R}^T .

• Ist **G** invertierbar, so hängt die Lösung $b^* = G^{-1}b$ nicht von der (diagonalen) Gewichtmatrix W ab, denn $z \approx Gb$ wird ja mit exakter Gleichheit erfüllt:

$$\nabla \varepsilon_{W}(b) = -2GWz + 2GWGb = -2GW \cdot (z - Gb)$$

• Bei Regularisierung im Raum \mathbb{R}^N ergibt sich:

$$\nabla \varepsilon_{W,\lambda}(\mathbf{b}) = -2\mathbf{G}W\mathbf{z} + 2\mathbf{G}W\mathbf{G}\mathbf{b} + 2\lambda\mathbf{G}\mathbf{b} = -2\mathbf{G}\cdot(W\mathbf{z} - (W\mathbf{G})_{\lambda}\cdot\mathbf{b})$$

• Bei Regularisierung im Raum \mathbb{R}^T ergibt sich:

$$\nabla \varepsilon'_{W,\lambda}(\mathbf{b}) = -2\mathbf{G}W\mathbf{z} + 2\mathbf{G}W\mathbf{G}\mathbf{b} + 2\lambda\mathbf{b} = -2\cdot(\mathbf{G}W\mathbf{z} - (\mathbf{G}W\mathbf{G})_{\lambda}\cdot\mathbf{b})$$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Ordinale Regression und Präferenzmodelle

Kombinatorische Regression

Aufgabenstellung

Klassifikation von Texten $v \in \mathbf{\Omega} = \mathcal{V}^*$ über Wortschatz

Termexpansion

Binärattribute: Wort-*m*-Tupel oder Wort-*m*-Subsets

$$\phi: \mathbf{\Omega} \rightarrow \left\{0,1\right\}^{\mathcal{V}^{\textit{m}}}$$

$$\operatorname{mit} \, \phi_{\boldsymbol{u}}(x) = \left\{ \begin{array}{ll} 1 & \boldsymbol{u} \in X \\ 0 & \boldsymbol{u} \notin X \end{array} \right.$$

Loglinearmodell

der Dimension L^m bzw. $\binom{L}{m}$

Duales Loglinearmodell

Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Gramsche T²-Matrix mit Einträgen

$$K(x_s, x_t) = \langle \phi(x_s), \phi(x_t) \rangle$$

Kombinat. Kernoperator

$$K(x,y) = \sum_{\boldsymbol{u} \in \mathcal{V}^{\boldsymbol{m}}} \phi_{\boldsymbol{u}}(x) \cdot \phi_{\boldsymbol{u}}(y)$$

$$= \begin{cases} |V_x^{\boldsymbol{m}} \cap V_y^{\boldsymbol{m}}| & \text{Tupel} \\ \left(|V_x^1 \cap V_y^1| \right) & \text{Subsets} \end{cases}$$

Die Zählaufgaben $|V_{x}^{m} \cap V_{y}^{m}|$ sind sehr effizient zu bewältigen.

Ordinale Regression

Reelle Quellattribute $\mathbb{X}_1, \dots, \mathbb{X}_N \Rightarrow$ geordnetes Zielattribut $\mathbb{Y} \in \{1, \dots, L\}$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Nominales Attribut

A posteriori Verteilung

$$p_{\ell}(\mathbf{x}) \stackrel{\mathsf{def}}{=} \mathrm{P}(\mathbb{Y} = \ell \mid \mathbb{X} = \mathbf{x})$$

Normierungsbedingung:

$$\sum_{\ell} p_\ell(\pmb{x}) = 1$$

Nominale Beispiele

RedGreenBlue-Skala: $p = (\frac{1}{2}, \frac{1}{6}, \frac{1}{3})$ Unfairer Würfel: $p = (0, 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2})$

Ordinales Attribut

Kumulative a post. Verteilung

$$q_{\ell}(\mathbf{x}) \stackrel{\mathsf{def}}{=} \mathrm{P}(\mathbb{Y} \leq \ell \mid \mathbb{X} = \mathbf{x})$$

Skalenbindung:

$$\mathbf{x} \leadsto z(\mathbf{x}) \in J_{\ell} \subset \mathbb{R}$$

Ordinale Beispiele

HighMediumLow-Skala: $p = (\frac{1}{2}, \frac{1}{6}, \frac{1}{3})$ Zensurenskala: $p = (\frac{1}{2}, 0, 0, 0, \frac{1}{2}, 0)$

Müssen ordinale Verteilungen zwangsläufig "unimodal" sein?

Postulat der verborgenen dichten Qualitätsskala

"Cumulative link model" — Agresti 2002

Kumulatives Gelenkfunktionsmodell

Latente Variable \mathbb{Z} auf der Skala $-\infty = \zeta_0 < \zeta_1 < \ldots < \zeta_\ell = +\infty$ mit

$$\mathbb{Y} = \ell \Leftrightarrow \mathbb{Z} \in (\zeta_{\ell-1}, \zeta_{\ell}] \quad \text{und} \quad \mathbb{Z} \sim f(\mu = h(\mathbf{x}), \sigma^2 = 1)$$

 $h(\cdot)$ Gelenkfunktion, $f(\cdot)$ Verteilungsgesetz.

Bemerkung

$$\text{Es gilt } q_{\ell}(\textbf{\textit{x}}) = \mathrm{P}(\mathbb{Y} \leq \ell \mid \mathbb{X} = \textbf{\textit{x}}) = \mathrm{P}(\mathbb{Z} \leq \zeta_{\ell} \mid \mathbb{X} = \textbf{\textit{x}}) = F(\zeta_{\ell} - h(\textbf{\textit{x}})).$$

Beispiel — Präsidentschaftswahlen USA'96

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell

http://www.stat.washington.edu/quinn/classes/536/data/nes96r.dat

Datensatz 944 Versuchspersonen 11 Attribute, u.a.:

- ▶ Pol/ID Clinton*
- ♠ Alter Bildungsgrad Einkommen Stimme für ... TV-News/Woche Pol/ID selbst* Pol/ID Dole*
- Pol/IDs in 7 Stufen

POLR-Datenanalyse

Fixiert: 3 TV/Woche, 44 Jahre, 12 Schuljahre, 35-40 Kilodollar

Proportional Odds Linear Regression

Lineares Binomialmodell für die Gelenkfunktion

POLR-Modell

Lineare Vorhersage der logarithmierten Chancenfunktionen:

$$\frac{\log \mathsf{odds}_\ell(\mathbf{x})}{=} \quad \log \frac{q_\ell(\mathbf{x})}{1 - q_\ell(\mathbf{x})} \ = \ \log \frac{\mathrm{P}(\mathbb{Y} \le \ell \mid \mathbb{X} = \mathbf{x})}{\mathrm{P}(\mathbb{Y} > \ell \mid \mathbb{X} = \mathbf{x})} \stackrel{!}{=} \mathbf{a}^\top \mathbf{x} + \zeta_\ell$$

Bemerkungen

1. Normierung

$$\sum_{\ell} p_{\ell}(x) = \sum_{\ell} (q_{\ell}(x) - q_{\ell-1}(x)) = q_{L}(x) - q_{0}(x) = 1 - 0$$

2. Monotonie

$$k \leq \ell \Rightarrow \zeta_k \leq \zeta_\ell \Rightarrow \log_k(x) \leq \log_\ell(x) \Rightarrow q_k(x) \leq q_\ell(x)$$

3. Proportionale Chancen

$$\log \frac{\operatorname{odds}_{\ell}(x)}{\operatorname{odds}_{\ell}(x')} = a^{\top}(x - x')$$
 ist unabhängig von ℓ

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell

Lernen von Präferenzrelationen

Objektive Präferenz

Aus einer Serie gewonnener, verlorener oder unentschiedener Partien $(x_t, y_t) \in \Omega \times \Omega$ ist eine passende Qualitätsrelation (Ω, \prec) zu lernen.

..Tourniermetapher"

Geschlossene Welten

Objektraum Ω und/oder Subjektraum & bilden ein endliches Inventar. (Nominalattribut)

Subjektive Präferenz

Aus einer Serie persönlicher Nennungen, Wertungen oder Reihungen $(s_t, x_t) \in \mathfrak{S} \times \Omega$ ist eine **Schar** passender Qualitätsrelationen $(\Omega, \prec_s)_{s \in \mathfrak{S}}$

"Jurorenmetapher"

Offene Welten

Objekte u/o Subjekte sind durch ihre Eigenschaften charakterisiert. (Attributvektoren)

rhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell **Präferenzen** CART **S**

Objektive Präferenz durch logistische Regression

Bilaterales Ereignismodell

 $\mathbb{X} \hat{=} \mathsf{Objekt} \ \#1 \ (\mathsf{Herausforderer})$

¥ê Objekt #2 (Gegner)

 $\mathbb{Z} \hat{=} \text{ Resultat } \pm \text{,,Sieg'' oder } \pm \text{,,Tor''} \dots$

Logistisch-lineares Erfolgsmodell

$$\log \operatorname{odds}(\boldsymbol{x}, \boldsymbol{y}) = \underbrace{\boldsymbol{a}^{\top} \boldsymbol{x} + \boldsymbol{b}^{\top} \boldsymbol{y} + \zeta}_{g(\boldsymbol{x}) - h(\boldsymbol{y})}$$

Präferenzinterpretation

 \boldsymbol{x} hat immer dann bessere Gewinnchancen als \boldsymbol{y} wenn $g(\boldsymbol{x}) > h(\boldsymbol{y})$ gilt.

Intervallordnung?

Es gilt $p(\mathbf{x}, \mathbf{x}) \leq \frac{1}{2} \iff g_{\mathbf{x}} \leq h_{\mathbf{x}}$.

$$\mathbf{x} \succ \mathbf{y}$$
 gdw. $[g_x, h_x] \supset [g_y, h_y]$

Fußballturnier

GER : BRA 3:1 USA : LBY 0:1 UK : IRAN 2:2

Punktestandbezogen

XGER	X BRA	+
X BRA	XGER	_
XUSA	XLBY	_
XLBY	XUSA	+
XUK	XIRAN	_
XIRAN	x_{UK}	_

Torstandbezogen

XGER	XBRA	+	3
XGER	XBRA	-	87
XBRA	XGER	+	1
XBRA	XGER	-	89
XUK	XIRAN	+	2
XUK	XIRAN	-	88
XIRAN	XUK	+	2
XIRAN	XUK	-	88

Spezielle Form des POLR-Modells

$$\log \operatorname{odds}_{\ell}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{a}^{\top}(\boldsymbol{x} - \boldsymbol{y}) + \begin{cases} -\infty & \ell = 0 \\ -\zeta & \ell = 1 \\ +\zeta & \ell = 2 \\ +\infty & \ell = 3 \end{cases}$$

Beweis.

Aus der strukturellen Symmetrie

$$P(> | x, y) = P(< | y, x)$$
 folgt:

$$\Rightarrow p_1(\mathbf{x}, \mathbf{y}) = p_3(\mathbf{y}, \mathbf{x})$$

$$\Rightarrow q_1(\mathbf{x}, \mathbf{y}) - 0 = 1 - q_2(\mathbf{y}, \mathbf{x})$$

$$\Rightarrow \frac{q_1(\mathbf{x}, \mathbf{y})}{1 - q_1(\mathbf{x}, \mathbf{y})} = \frac{1 - q_2(\mathbf{y}, \mathbf{x})}{q_2(\mathbf{y}, \mathbf{x})}$$

$$\Rightarrow$$
 odds₁(x, y) = odds₂⁻¹(y, x)

$$\Rightarrow$$
 + log odds₁(x , y) = - log odds₂(y , x)

$$\Rightarrow$$
 0 = $\boldsymbol{a}^{\top} \boldsymbol{x} + \boldsymbol{b}^{\top} \boldsymbol{y} + \zeta_1 + \boldsymbol{a}^{\top} \boldsymbol{y} + \boldsymbol{b}^{\top} \boldsymbol{x} + \zeta_2$

$$\Rightarrow$$
 0 = $(\boldsymbol{a} + \boldsymbol{b})^{\top} (\boldsymbol{x} + \boldsymbol{y}) + (\zeta_1 + \zeta_2)$

$$\Rightarrow$$
 $\boldsymbol{b} = -\boldsymbol{a}$ und $\zeta_1 = -\zeta_2$

Objektive Präferenz durch Proportional-Odds Regression

Trilaterales Ereignismodell

 $\mathbb{X} \hat{=} \mathsf{Objekt} \ \#1 \ (\mathsf{Herausforderer})$

¥ê Objekt #2 (Gegner)

 $\mathbb{Z} \hat{=} \text{ Resultat aus } \{\xi_1, \xi_2, \xi_3\} = \{>, \dot{=}, \lessdot\}$

POLR Erfolgsmodell

$$\log \operatorname{odds}_{\ell}(\boldsymbol{x}, \boldsymbol{y}) = \underbrace{\boldsymbol{a}^{\top} \boldsymbol{x} + \boldsymbol{b}^{\top} \boldsymbol{y} + \zeta_{\ell}}_{\boldsymbol{a}^{\top}(\boldsymbol{x} - \boldsymbol{y}) \pm \zeta}$$

Präferenzinterpretation

 \boldsymbol{x} hat immer dann bessere Gewinnchancen als \boldsymbol{y} wenn log odds₁($\boldsymbol{x}, \boldsymbol{y}$) > 0 gilt, also

$$g_{\mathsf{x}} := \boldsymbol{a}^{\top} \boldsymbol{x} > \boldsymbol{a}^{\top} \boldsymbol{y} + \zeta =: h_{\mathsf{y}}$$

Semi-Ordnung!

$$\boldsymbol{x} \succ \boldsymbol{y}$$
 gdw. $[g_x, g_x + \zeta] \supset [g_y, g_y + \zeta]$

Fußballturnier

GER : BRA 3:1 USA : LBY 0:1 UK : IRAN 2:2

Punktestandbezogen

KGER	X BRA	>
K BRA	XGER	<
KUSA	XLBY	<
KLBY	XUSA	>
K UK	XIRAN	Ė
*IRAN	XUK	Ė

Torstandbezogen

XGER	XBRA	3
XGER	XBRA	86
XGER	XBRA	1
XBRA	XGER	1
XBRA	XGER	86
XBRA	XGER	3

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell **Präferenzen** CART Σ

Beispiel — Frauenfußball-WM 2011

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Prädiktion, Regression & Klassifikation

Konzeptlerner

Versionenräume

Naive Bayesregel

Multivariate lineare Regression

Logistische Regression

Ordinale Regression und Präferenzmodelle

Statistische Entscheidungsbäume

7usammenfassung Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen C

Entscheidungsbaum

Hierarchie sequentieller Auswahlfragen ("multiple choice")

Sportwetterempfehlungen

Vier nominale Wetterlagevariablen gegeben

Fragetypus Wertverzweigung

Klassifikationsziel:

"Ist dieses Wetter zum Tennisspielen geeignet?"

Parallelepiped-Klassifikator

Vollständige Konjunktion je zweier Literale $x_n \ge a_n, x_n \le b_n, n = 1, ..., N$

Vorteile

Extrem schnelle Lernphase Effiziente Abrufphase Klassengebiete intuitiv zu deuten Nominalattribute handhabbar[©]

Nachteile

Achsenparallele Grenzen Unimodale Klassengebiete Ausgedehnte Rückweisungszonen Keine Rückschlußwahrsch'keiten

Binärer Entscheidungsbaum

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Hierarchie sequentieller Ja/Nein-Fragen

Diagnose für Herzinfarktpatienten 19 Attribute gemessen bzw. erfragt Patienten 30 Tage unter klinischer Beobachtung Fragetypus Schwellwertdichotomie Zielwertdichotomie

Klassifikationsziel:

"Ist ein zweiter, diesmal tödlicher Infarkt eingetreten?"

Struktur eines Entscheidungsbaumes

 ${\cal B}$ bezeichnet die Menge aller Knoten. Innere Knoten $\beta \in \mathcal{B}$ beherbergen eine Entscheidungsfrage:

$$Q(\beta): \Omega \rightarrow \{1,\ldots,L\}$$

 $\beta_{\triangle} \in \mathcal{B}$ besitzt keinen Vorgänger. In β_{\wedge} beginnt die Befragung des Objekts.

Für $\beta \in \mathcal{B}$ ist β^{\uparrow} der Vorgängerknoten und $\beta^{(1)}, \ldots, \beta^{(L)}$ sind die unmittelbaren Nachfolger.

Die $\beta \in \mathcal{B}_{\ell}$ besitzen keine Nachfolger, aber eine Klassenmarkierung:

$$\delta_{\ell}:\mathcal{B}_{\ell}\longrightarrow\{1,\ldots,K\}$$

Klassifikation eines Objekts

Hierarchisches Interview — "Durchschleusen" bis zum Blattknoten

Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

- INITIALISIERUNG Setze $\beta = \beta_{\wedge}(\mathcal{B})$.
- BEFRAGUNG Reiche x gemäß $Q(\beta)$ an einen Kindknoten weiter:

$$\beta \leftarrow \beta^{(i)}$$
, $i = Q(\beta)(x)$

TERMINIERUNG Ist β ein Blattknoten, so lautet das Resultat:

$$\delta(\mathbf{x}) = \delta_{\ell}(\beta)$$

Andernfalls \rightsquigarrow 2.

Befragung der Attributwerte

Dichotomien ("Yin-Yang"-Fragen) und Wertverzweigungen

Attribut-Wert-Gleichungen

 $x_i = low$

bei nominalen Merkmalen (das negative Literal $x_i \neq low$ ist dazu dual)

Attribut-Wert-Ungleichungen

 $x_i < 3.14$

bei ordinalen Merkmalen (auch $x_i \ge 17$ oder Intervalle $18 \le x_i \le 65$ denkbar)

Wertverzweigungen

 $x_i = red |b|ue|green$

bei Attributen mit kleinem $|\mathcal{X}_n|$ (eine Nachfolgerkante je Attributwert)

Teilmengenzugehörigkeit

 $x_i \in \{cloudy, rainy\}$

bei nominalen Attributen

Reguläre Ausdrücke

 $x_i = ababb * c * ba$

bei Wort- oder Zeichenketten

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Simultanes Schleusen einer Objektmenge

Definition

Ist $(\mathcal{B}, \mathcal{Q}, \delta_{\ell})$ ein Entscheidungsbaum über Ω und $\omega \subset \Omega$ ein Datensatz, so definieren wir die **assoziierten Objektmengen** ω_{β} induktiv durch:

$$\omega(\beta) \stackrel{\mathsf{def}}{=} \left\{ egin{array}{ll} \omega & \beta = eta_{\triangle} \\ \{ oldsymbol{x} \in \omega_{eta} \mid Q(eta)(oldsymbol{x}) = j \} & \beta = eta^{(j)} \end{array} \right.$$

Lemma

Ist $(\mathcal{B}, Q, \delta_{\ell})$ ein Entscheidungsbaum über Ω , so gilt:

$$\mathbf{\Omega} = \biguplus_{eta \in \mathcal{B}_{\ell}} \mathbf{\Omega}(eta)$$

Der Entscheidungsbaum definiert ferner eine vollständige Zerlegung von Ω in Klassengebiete:

$$\Omega \; = \; igoplus_{\kappa=1}^\kappa \Omega_\kappa \; , \qquad \Omega_\kappa \; \stackrel{def}{=} \; igoplus_{\delta_\ell(eta)=\kappa} \Omega(eta)$$

Entscheidungsbäume als Hypothesen

Disjunktionen von Literalkonjunktionen

Beispiel

Intuitiv interpretierbare Klassenentscheidungen:

$$\Omega_h = (\{x_b \not\leq 91\} \land \{x_a \not\leq 62.5\} \land \{x_s \not\leq 0\}) \lor (\{x_b \leq 91\})$$

$$\Omega_{\text{g}} \quad = \quad \left(\{x_{\text{b}} \not \leq 91\} \land \{x_{\text{a}} \not \leq 62.5\} \land \{x_{\text{s}} \leq 0\} \right) \lor \left(\{x_{\text{b}} \not \leq 91\} \land \{x_{\text{a}} \leq 62.5\} \right)$$

mit den Variablen (Merkmalen)

 x_b = minimaler systolischer Blutdruck

 x_a = Alter des Patienten

 x_s = Sinus-Tachycardie? (0 oder 1)

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Lernen eines Entscheidungsbaumes

aus klassenetikettierten Beispielobjekten: $\omega = \omega_1 \uplus \omega_2 \uplus \ldots \uplus \omega_K \subset \Omega$

Trennschärfe

Der Baum soll die Beispiele möglichst korrekt klassifizieren.

♦ Konsistenz

Induktionskraft

Der Baum soll die Beispiele in geeigneter Weise verallgemeinern.

geringe Knotenzahl

Hypothesenraum

Welche Größe? Welche Form? Welches Attribut? Welche Frage?

sigantische Auswahl an E-Bäumen

Vollständige Suche ist NP-hart.

Entscheidungsbäume für numerische Attribute?

Rekursive Halbraumbildung nach sukzessiven Schwellwertabfragen $x_n \leq \theta$

Vom Entscheidungsbaum induzierte Klassengebiete

$$\hat{\Omega}_{\kappa} \ = \ \bigcup_{m=1}^{M_{\kappa}} \hat{\Omega}_{\kappa,m} \ , \qquad \hat{\Omega}_{\kappa,m} \ = \ \bigcap_{l=1}^{M_{\kappa,m}} H_{\kappa,m,l} \ = \ \mathsf{Halbraum} \ \begin{cases} x_d \leq \theta \\ \mathsf{oder} \\ x_d > \theta \end{cases}$$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

TDI-Lernalgorithmus

Gierige Top-Down Induktion von Entscheidungsbäumen

1 INITIALISIERUNG Erzeuge einen Wurzelknoten $\beta = \beta_{\triangle}$ mit den assoziierten Stichproben $\omega_1, \ldots, \omega_K$.

2 STOPPTEST Ist β hinreichend **reinklassig**, so beende die lokale Konstruktion mit der Blattmarkierung

$$\delta_{\ell}(\beta) = \underset{\kappa}{\operatorname{argmax}} |\omega_{\kappa}(\beta)|.$$

FRAGEAUSWAHL
Wähle eine Frage $Q(\beta)$ mit maximaler Reduktion der
Entscheidungsunsicherheit.

EXPANSION
Bilde die Nachfolgerknoten $\beta^{(1)}, \ldots, \beta^{(L)}$ bezüglich $Q(\beta)$ und ihre assoziierten Stichproben

$$\omega_{\kappa}(\beta^{(I)})$$
, $I=1,\ldots,L$.

5 REKURSION
Fahre mit den Nachfolgern $\beta^{(I)}$ von β bei Schritt 2 fort.

rhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART D

Stoppkriterium

Wann endet der Züchtungsvorgang?

Lokale Stoppkriterien

Wann endet die Knotenexpansion in einem Blatt?

- Wenn $\omega(\beta)$ nur noch einen Datenvektor enthält.
- Wenn $\omega(\beta)$ nur noch Daten einer Klasse enthält. \Rightarrow Konsistenz
- Wenn $|\omega(\beta)|$ eine gegebene Schranke unterschreitet.
- Wenn $|\omega(\beta)| \max_{\lambda} |\omega_{\lambda}(\beta)|$ eine Schranke unterschreitet.

Überanpassung an die Lernbeispiele

Gefährlich in großen Bäumen durch Zersplitterung von ω auf die Blattknoten.

- Ist es wirklich weise, einen konsistenten Baum zu konstruieren ?
- globale a posteriori Stoppkriterien a.k.a. Baumbeschneidungstechniken, "pruning"

Auswahlregel für die "beste" nächste Frage

Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen

Vorgehensweise

Welches ist die (lokal) zielführendste Frage?

- 1. Definiere Entscheidungsunsicherheit einer Häufigkeitsverteilung
- 2. Definiere Entscheidungsunsicherheit eines Baumknotens
- 3. Definiere Entscheidungsunsicherheit einer Frage (in β)
- 4. Definiere Entscheidungsunsicherheit eines Teilbaums (unter β)

Relative Klassenhäufigkeit

in der Teilstichprobe ω_{β} zum Knoten $\beta \in \mathcal{B}$:

$$\hat{p}_{\kappa}(\beta) = \frac{\mathsf{Anzahl} \ \mathsf{der} \ \Omega_{\kappa}\mathsf{-Muster} \ \mathsf{in} \ \beta}{\mathsf{Anzahl} \ \mathsf{aller} \ \mathsf{Muster} \ \mathsf{in} \ \beta} = \frac{|\omega_{\kappa}(\beta)|}{\displaystyle\sum_{\lambda=1}^{\kappa} |\omega_{\lambda}(\beta)|}$$

ightharpoonup ML-Schätzwert für $P(\mathbf{x} \in \Omega_{\kappa} \mid \mathbf{x} \in \mathbf{\Omega}_{\beta})$

Die Frage nach der richtigen Frage

... bei Yuichiro Anzai im Autohaus ... (Beispiel)

Japanische Gebrauchtfahrzeuge und ihre Veräußerungschancen am Markt

Objekt	cm ³	Türen	Autom.	Farbe	<i>x</i> ∈ <i>C</i>
<i>x</i> ₁	2000	2 <i>T</i>	ja	hell	+
x ₂	2800	4 <i>T</i>	ja	hell	+
x 3	2000	2 <i>T</i>	nein	dunkel	_
<i>x</i> ₄	1600	4 <i>T</i>	ja	dunkel	_
<i>x</i> ₅	1600	4 <i>T</i>	ja	hell	_
x 6	2800	4 <i>T</i>	ja	dunkel	+
x ₇	2000	4 <i>T</i>	ja	hell	+
x 8	2000	5 <i>T</i>	nein	hell	_
x 9	1600	2 <i>T</i>	nein	hell	+
<i>x</i> ₁₀	2800	5 <i>T</i>	ja	hell	+
x ₁₁	2800	5 <i>T</i>	nein	dunkel	+
x ₁₂	2000	4 <i>T</i>	ja	dunkel	_
<i>x</i> ₁₃	1600	2 <i>T</i>	nein	dunkel	+
<i>x</i> ₁₄	2800	2 <i>T</i>	nein	dunkel	+
x ₁₅	1600	4 <i>T</i>	nein	hell	_
<i>x</i> ₁₆	2000	5 <i>T</i>	ja	dunkel	_

orhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen **CAI**

Entscheidungsunsicherheit

Gütemaß für den Entmischungsgrad einer Verteilung

Definition

Es sei $K \in \mathbb{N}$ und $\{p_{\kappa} \mid \kappa = 1, \dots, K\}$ eine diskrete Wahrscheinlichkeitsverteilung. Eine Abbildung

$$\Im: \{p_1,\ldots,p_K\} \mapsto u \in \mathbb{R}$$

heißt Maß für die **Entscheidungsunsicherheit** (Homogenität, "impurity"), falls gilt:

- 1. Die Größe $\Im(\cdot)$ ist nichtnegativ.
- 2. $\Im(\cdot)$ ist maximal für die Gleichverteilung $p_{\kappa} \equiv 1/K$
- 3. $\Im(\cdot)$ ist minimal für die definiten Verteilungen

$$e_{\lambda} = (\underbrace{0,\ldots,0}_{\lambda-1},1,\underbrace{0,\ldots,0}_{K-\lambda}), \quad \lambda \in \{1,\ldots,K\}$$

Homogenitätsmaße

Extremalwerte

$$\begin{array}{cccc} & \min & \max \\ \Im_m & 0 & \sqrt[1]{\kappa} \\ \Im_p & 0 & \sqrt[1]{\kappa\kappa} \\ \Im_g & 0 & 1 - \sqrt[1]{\mu} \\ \Im_e & 0 & \log_2 K \end{array}$$

Lemma

Die folgenden Abbildungen sind (für festes $K \in \mathbb{N}$) Beispiele für Homogenitätsmaße:

$$\Im_{m}(\mathbf{p}) \stackrel{\text{def}}{=} \min_{\kappa} p_{\kappa} \qquad \qquad \Im_{g}(\mathbf{p}) \stackrel{\text{def}}{=} \sum_{\lambda \neq \kappa} p_{\lambda} \cdot p_{\kappa}$$

$$\Im_{p}(\mathbf{p}) \stackrel{\text{def}}{=} \prod_{\kappa} p_{\kappa} \qquad \qquad \Im_{e}(\mathbf{p}) \stackrel{\text{def}}{=} -\sum_{\kappa} p_{\kappa} \cdot \log_{2} p_{\kappa}$$

Für den Gini-Index gilt $\Im_g(\mathbf{p}) = 1 - \|\mathbf{p}\|^2$.

Rechenbeispiel (Gini-Index)

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Ausgangsknoten β

Der Knoten β beherbergt die Verteilung p = (0.5, 0.3, 0.2), also gilt

$$\Im_{Gini}(\mathbf{p}) = 1 - 0.25 - 0.09 - 0.04 = 0.62$$

Die Entscheidungsunsicherheiten der Q1-Nachfolger lauten

$$\Im_{Gini}(\beta^{(1)} \mid Q_1) = 1 - 0.64 - 0.04 = 0.32$$

 $\Im_{Gini}(\beta^{(2)} \mid Q_1) = 1 - 0.04 - 0.36 - 0.04 = 0.56$

$$\Im_{Gini}(\beta \mid Q_1) = 0.5 \cdot 0.32 + 0.5 \cdot 0.56 = 0.44$$

 $\Delta_{Q_1} \Im_{Gini}(\beta) = 0.62 - 0.44 = 0.18$

Zweite Frage Q₂

Auf dieselbe Weise errechnet sich für die konkurrierende Frage der

$$\Delta_{Q_2} \Im_{Gini}(\beta) = 0.62 - 0.6 \cdot 0.5 - 0.4 \cdot 0.5 = 0.12$$

Folglich ist Q1 der Frage Q2 vorzuziehen.

Homogenitätsmaße

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Drei Ereignisse — Darstellung in der (p_1, p_2) -Ebene

Minimum/Produkt

Geringe Homogenität (Unsicherheit) wird bereits dann signalisiert, wenn nur eines der drei Ereignisse unwahrscheinlich ist.

unbrauchbar

Entropie/Gini

Grundverschiedene Formeln, aber kaum unterschiedliche Funktionswerte.

praktisch äquivalent

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Rechenbeispiel (Entropiemaß)

IRIS-Datensatz

150 Objekte

4 Attribute

3 Kategorien

 $\begin{cases}
50 \\
50 \\
50
\end{cases}$

Wurzelknoten

Berechne für jedes Attribut x_n den EU-minimalen Schwellenwert θ_n

 $Q(\beta): x_3 \stackrel{?}{<} 2.65$

orhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Reduktion der Entscheidungsunsicherheit

Entscheidungsunsicherheit im Knoten β

$$\Im(\beta) \stackrel{\text{def}}{=} \Im(\hat{\boldsymbol{p}}^{(\beta)}), \qquad \hat{p}_{\kappa} \stackrel{\text{def}}{=} \frac{|\omega_{\kappa}(\beta)|}{|\omega(\beta)|}$$

Verzweigungswahrscheinlichkeiten der Frage Q in β

$$\hat{\mathrm{P}}(eta^{(i)}|eta) \stackrel{\mathsf{def}}{=} \frac{|\omega(eta^{(i)})|}{|\omega(eta)|}, \qquad i=1,\ldots,L$$

Entscheidungsunsicherheit nach der Frage Q in β

$$\Im(\beta|Q) \stackrel{\mathsf{def}}{=} \sum_{i} \hat{P}(\beta^{(i)}|\beta) \cdot \Im(\beta^{(i)})$$

Reduktion der Entscheidungsunsicherheit durch Q

$$\Delta_{Q}(\beta) \stackrel{\mathsf{def}}{=} \Im(\beta) - \Im(\beta|Q)$$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen

Aufspüren und Tilgen nutzloser Teilbäume

CART Pruning

Züchtung eines überangepaßten Baumes Lerndaten ω Sukzessive Vergröberung (Entfernen schwacher Äste) Modellstrafterm Auswahl des besten Teilbaums Validierungsdaten $\tilde{\omega}$

Lokaler Resubstitutionsfehler

Relative Anzahl der Fehler bei Entscheidung in β :

$$\mathsf{R}(\beta) \stackrel{\mathsf{def}}{=} \frac{\# \mathsf{ falsch \ klassifiziert \ in \ } \beta}{\# \mathsf{ alle \ Objekte}} = \frac{|\omega(\beta)| - \mathsf{max}_{\kappa} |\omega_{\kappa}(\beta)|}{|\omega(\beta_{\triangle})|}$$

Kumulativer Resubstitutionsfehler

 $\mathcal{B}_{\ell}^{\beta}=$ Menge aller Blattknoten in dem von β dominierten Teilbaum

$$\mathsf{R}^*(eta) \ \stackrel{\mathsf{def}}{=} \ \sum_{eta' \in \mathcal{B}^eta_\ell} \mathsf{R}(eta')$$

Bemerkung Es gilt für alle $\beta \in \mathcal{B}$: $R^*(\beta) \leq R(\beta)$

Überanpassung an die Lernbeispiele

Fragmentierung der Lerndaten

- \mathcal{B} reinklassig $\leadsto \omega$ perfekt klassifiziert
- viele Lerndaten → großer Entscheidungsbaum
- Insignifikante Fragen in unteren Zweigen
- Unzuverlässige Entscheidung in den Blättern
- Stoppregeln sind "kurzsichtig"

Abhilfe

- ,,early stopping"

Strafterme versus Kreuzvalidierung

Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen

Effizienz eines Teilbaums

Gut entmischende Teilbäume werden belohnt, aber zersplitterungsverdächtige Teilbäume werden bestraft!

$$\Delta_{\mathsf{eff}}(\beta) \stackrel{\mathsf{def}}{=} \frac{\mathsf{Fehlerzuwachs\ in\ }\beta}{\#\ \mathsf{eingesparte\ Knoten}} \ = \ \frac{\mathsf{R}(\beta) - \mathsf{R}^*(\beta)}{|\mathcal{B}_\ell^\beta| - 1}$$

Kreuzvalidierungsfehler

Jedem Objekt $\mathbf{x} \in \widetilde{\omega}$ wird durch einen Entscheidungsbaum ein Blattknoten $\beta(\mathbf{x})$ und damit auch eine Klassenmarkierung $\delta_{\ell}(\beta(\mathbf{x}))$ zugeordnet.

$$ilde{arepsilon}(\mathcal{B}) \ \stackrel{\mathsf{def}}{=} \ rac{\displaystyle\sum_{\kappa=1}^{\mathcal{K}} |\{oldsymbol{x} \in ilde{\omega}_{\kappa} \mid \delta_{\ell}(eta(oldsymbol{x}))
eq \kappa\}|}{| ilde{\omega}(eta_{ riangle})|}$$

CART Pruning-Algorithmus

Breiman, Friedman, Olshen & Stone (1984)

- I ZÜCHTEN Expandiere initialen Baum $\mathcal{B}^{(0)}$ mittels Lerndaten $\omega_1, \ldots, \omega_K$ unter Einhaltung des "Reinheitsgebotes".
- 2 SUKZESSIVES ZURÜCKSCHNEIDEN Erzeuge eine Folge gestutzter Teilbäume von $\mathcal{B}^{(0)}$
 - \bullet Setze $i \to 0$.
 - **b** Berechne alle Effizienzwerte $\Delta_{\text{eff}}(\beta)$, $\beta \in \mathcal{B}^{(i)}$.
 - ullet Wähle Knoten $eta^* \in \mathcal{B}^{(i)}$ mit minimaler Effizienz.
 - **IDENTIFY** Kappe den Teilbaum unterhalb β^* .
 - Setze $i \leftarrow i + 1$ und bezeichne gekürzten Baum als $\mathcal{B}^{(i)}$.
 - Ist $\mathcal{B}^{(i)} \neq \{\beta_{\triangle}\}$, dann \rightsquigarrow **b**.
- 3 AUSWAHL NACH VALIDIERUNGSFEHLER Wähle aus $\left\{\mathcal{B}^{(i)} \mid i=0,1,2,\ldots\right\}$ denjenigen Baum mit geringstem Fehler auf den Validierungsdaten $\tilde{\omega}_1,\ldots,\tilde{\omega}_K$.

Beispiel — CART-Algorithmus

5 Klassen · 6 Fragen · 7 Blätter · 100 Objekte

Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen

Lokale Resubstitutionsfehlerraten Kumulative Resubstitutionsfehlerraten Effizienzen — nur innere Knoten werden gezählt

Beispiel — CART-Algorithmus

5 Klassen · 6 Fragen · 7 Blätter · 100 Objekte

Klassenhäufigkeiten je Knoten Bestklassenmerkierung je Knoten

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Kreuzvalidierendes Stutzen der Äste

"Frühe Validierung" — schon zur Bewertung statt erst zur Auswahl

Lokale Fehlerrate

im Knoten β nach Einschleusen der Konterdaten ω :

$$arepsilon(eta) \ \stackrel{\mathsf{def}}{=} \ 1 - rac{|\omega_\kappa(eta)|}{|\omega(eta)|} \quad \mathsf{mit} \ \kappa := \delta_\ell(eta) \ \mathsf{oder} \ \kappa := rgmax \, |\omega_\lambda(eta)|$$

Kumulative Fehlerrate

nach Durchschleusen von ω bis zu den Blättern:

$$\varepsilon^{\star}(\beta) \stackrel{\mathsf{def}}{=} \sum_{\beta' \in \mathcal{B}_{\theta}^{\beta}} \frac{|\omega(\beta')|}{|\omega(\beta)|} \cdot \varepsilon(\beta')$$

Die **Gesamtfehlerrate** ist $\varepsilon(\mathcal{B}) = \varepsilon^*(\beta_\triangle)$

Minimale Fehlerrate

aller Teilbäume \mathcal{B}^{β} unterm Knoten β :

$$\varepsilon^{\forall}(eta) \stackrel{\mathsf{def}}{=} \min \left\{ \varepsilon(\mathcal{B}') \mid \mathcal{B}' \text{ Teilbaum von } \mathcal{B}^{\beta} \right\}$$

rhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Induktive Bottom-Up Beschneidung

Lemma

Sei $(\mathcal{B}, Q, \delta_{\ell})$ ein binärer Entscheidungsbaum über $\Omega = \mathbb{R}^{D}$. Die optimale Fehlerrate des Teilbaums \mathcal{B}^{β} berechnet sich nach folgender Rekursion:

C IC | IED AL :-

Gelfands IEP-Algorithmus

Versionenräume Bayesregel Regression Logitmodell Präferenzen

"Iterative Expansion-Pruning"

- 1 INITIALISIERUNG Setze $i\leftarrow 0$ und $\mathcal{B}^{(0)}\leftarrow \{\beta_{\triangle}\}$.
- 2 ERSTES EXPANDIEREN Expandiere $\mathcal{B}^{(i)}$ mit den Daten ω^a . $\rightsquigarrow \mathcal{B}^{(i+1)}$
- 3 ERSTES STUTZEN Beschneide $\mathcal{B}^{(i+1)}$ mit den Daten ω^b . $\rightsquigarrow \mathcal{B}^{(i+2)}$
- 4 ZWEITES EXPANDIEREN Expandiere $\mathcal{B}^{(i+2)}$ mit den Daten ω^b . $\rightsquigarrow \mathcal{B}^{(i+3)}$
- 5 ZWEITES STUTZEN Beschneide $\mathcal{B}^{(i+3)}$ mit den Daten ω^a . $\leadsto \mathcal{B}^{(i+4)}$
- 6 TERMINIERUNG Falls $\mathcal{B}^{(i+2)} \equiv \mathcal{B}^{(i+4)}$, dann \rightsquigarrow ENDE.
- ✓ WIEDERHOLUNG Setze $i \leftarrow i + 4$ und weiter bei \rightsquigarrow ②.

Wiederholtes Züchten und Beschneiden

Expansionsphase \cdot *top-down*

- 1. Schleuse die Daten ω^a bis zu den Blattknoten von $\mathcal{B}^{(i)}$.
- 2. Bestimme die Mengen $\omega_{\kappa}^{a}(\beta)$ für alle κ , β .
- 3. Züchte für alle Blattknoten $\beta \in \mathcal{B}_{\ell}^{(i)}$ einen Teilbaum unter β mittels $\omega^{a}(\beta)$.

Pruningphase · bottom-up

- 1. Schleuse die Daten ω^a bis zu den Blattknoten von $\mathcal{B}^{(i)}$.
- 2. Markiere alle $\beta \in \mathcal{B}^{(i)}$ mit neuen Klassen $\delta_{\ell}(\beta)$
- 3. Überprüfe alle β durch Vergleich von lokaler und minimaler RFR auf Eliminierbarkeit.

Die Auswahl der besten Frage

Monothetische Knoten → keine Attributkombinationen

Versionenräume Bayesregel Regression Logitmodell Präferenzen

Problem

Die Expansion eines jeden Knotens β im TDI-Algorithmus erfordert die $\Delta_Q(\beta)$ -Bewertung **jeder Frage** Q zu **jedem Attribut** $\mathcal{X}_n!$

Nominale Attribute

Wieviele Zwei- oder Mehrwege-Fragen sind zu testen?

Wertverzweigung

eine Frage/Attribut

Attribut-Wert-Gleichung

 $|\mathcal{X}_n|$ Targets/Attribut

Literalkomplex

 $2^{|\mathcal{X}_n|}/2$ Mengen/Attribut

Numerische und ordinale Attribute

Wieviele Schwellenwert-Fragen sind zu testen?

Ordinale Attribute

 $|\mathcal{X}_n| - 1$ Schwellen/Attribut

Numerische Attribute

 $|\omega(\beta)|-1$ Schwellen/Attribut

Die Befragung nominaler Attribute

Symmetrische Verzweigung $x_n = ?$ versus asymmetrische Verzweigung $x_n \stackrel{?}{=} \xi_{\ell}$

Datenfragmentierung

Die minimal zersplitternde Folge binärer Fragen wird nicht automatisch gefunden.

Unbalancierte Auswahl

Die Maximierung der Entscheidungssicherheit bevorzugt systematisch Fragen mit **hohem** Verzweigungsfaktor.

Gain Ratio Impurity

Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Abhilfe schafft Normierung auf die maximale Entropie:

$$\Delta_Q'(eta) \stackrel{\mathsf{def}}{=} rac{\Im(eta) - \sum\limits_{j=1}^L p_j \cdot \Im(eta_j)}{\mathcal{H}(p_1, \dots, p_L)}$$

Literalkomplexe in Zweiklassen-Szenarien

Auswahl der besten Teilmenge

Aufgabenstellung

Finde zum Attribut \mathcal{X}_n in β diejenige Teilmengenfrage

$$Q: x_n \mapsto \left\{ \begin{array}{ll} 1 & x_n \in U \\ 0 & x_n \notin U \end{array} \right., \quad U \subset \mathcal{X}_n$$

mit der max. Reduktion $\Delta_Q(\beta)$ der Entscheidungsunsicherheit.

Premiumschlitten & Volumenmodelle Objekte = Fahrzeuge · Klassen Ω_1 und Ω_2 · Attribut x_{10} (Hersteller)

\mathcal{X}_{19}	VW	Benz	Alfa	Dacia	BMW	Porsche
Ω_1	112	9	3	1	28	5
Ω_2	112	1	2	4	12	0
$\hat{\mathrm{P}}(1 \xi)$	0.5	0.9	0.6	0.2	0.7	1.0

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen

Der Zwillingssatz ("Twoing Theorem")

Linearer Suchaufwand für entropiegesteuertes Zweiklassen-Lernen

Satz

Es sei $\mathcal{X}_n = \{\xi_1, \dots, \xi_I\}$ der (nominale) Wertebereich des n-ten Attributs, und es zerfalle die Lernstichprobe $\omega \subset \mathbf{\Omega}$ in zwei Klassenbereiche ω_1 , ω_2 . Mit den Bezeichnungen

$$\hat{P}(\kappa|\xi_{\ell}) \stackrel{\text{def}}{=} \frac{|\{\boldsymbol{x} \in \omega_{\kappa} \mid x_{n} = \xi_{\ell}\}|}{|\{\boldsymbol{x} \in \omega \mid x_{n} = \xi_{\ell}\}|}$$

für $\kappa = 1, 2$ und $\ell = 1, \ldots, L$ seien infolge geeigneter Sortierung der ξ_{ℓ} die Häufigkeitsbeziehungen

$$\hat{P}(1|\xi_1) \leq \hat{P}(1|\xi_2) \leq \ldots \leq \hat{P}(1|\xi_L)$$

gültig. Dann besitzt die Teilmengenfrage mit der maximalen Homogenitätsreduktion in Bezug auf das Entropiemaß die Gestalt

$$x_n \in \{\xi_1,\ldots,\xi_\ell\}$$

für ein geeignetes ℓ mit $1 < \ell < L$.

Schwellenwertfragen

Numerische und ordinale Attribute · zwei oder mehr Klassen

Reduzierter Suchaufwand für $\theta \in \mathcal{X}_n = \mathbb{R}$

- Nur $T_{\beta} = |\omega(\beta)|$ Mittelpunktschwellen zu prüfen.
- Nur klassentrennende Schwellen können $\Delta_{\Omega}(\beta)$ -maximal sein.
- Es gibt eine **Rekursionsformel** für $\Delta_{Q,n,\theta}(\beta)$.

Sortierung $O(T \log T)$

Aufsteigendes Sortieren der \mathcal{X}_n -Attributwerte in $\omega(\beta)$:

$$a_1 < a_2 < a_3 \ldots < a_t < \ldots < a_{T_{\beta}}$$

Mittelpunktschwellen

Suffizienter Satz von Schwellenwerten für $Q_{n,\theta}$:

$$a_1 < a_2 < a_3 \ldots < a_t < \ldots < a_{T_{\beta}}$$
 $\theta_t = \frac{a_{t+1} - a_t}{2}, \quad t = 1, 2, \ldots, T_{\beta} - 1$

hersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Separierende Schwellenwerte

Definition

Eine Mittelpunktschwelle θ_t von $\{x_n \mid \mathbf{x} \in \omega(\beta)\}$ heißt **innere Schwelle** von \mathcal{X}_n in β , falls alle Objekte $\mathbf{x} \in \omega(\beta)$ mit $x_n = a_t$ oder $x_n = a_{t+1}$ zu einundderselben Klasse Ω_{κ} gehören.

Andernfalls heißt θ_n separierende Schwelle oder Klassengrenze.

Lemma (Fayyad & Irani, 1992)

Sind $[\theta_t]$ die Mittelpunktschwellen zur assoziierten Stichprobe $[\omega_{\kappa}(\beta)]$ von β zum Attribut \mathcal{X}_n , und gilt

$$\theta_{t^*} = \underset{\theta_t}{\operatorname{argmax}} \Delta_{\{x_n \leq \theta_t\}}(\beta)$$

für die entropiebezogene Entscheidungsunsicherheit, so ist θ_{t^\star} notwendigerweise eine Klassengrenze.

Bemerkung

Je stärker sich die Objekte klassenweise auf der \mathcal{X}_n -Achse häufen, desto weniger Reduktionswerte müssen berechnet werden.

/orhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen

Attribute mit Fehlanzeigen

Imputation

Wenn $x_n = ?$, so setze einen Standardwert $\hat{\xi}$ ein.

- Wähle für $\hat{\xi}$ das globale Attributmittel μ_n .
- Wähle für $\hat{\xi}$ das **lokale** Attributmittel $\mu_n(\beta)$.

Überlagerung

Wenn $x_n = ?$, so folge in der Abrufphase parallel allen Verzeigungen.

 Während der Lernphase werden defiziente Objekte bei der Δ_Q(β)-Berechnung ignoriert oder pejorisiert.

Surrogate Split

Wenn $x_i = ?$, so beantworte in der Abrufphase die/eine Ersatzfrage.

• In der Lernphase merkt man/frau sich die besten Fragen zum zweitbesten Attribut (ggf. weitere Alternativen).

Inkrementelle $\Delta_Q(\beta)$ -Berechnung

Lemma

Es seien $\theta_1 < \theta_2$ zwei benachbarte Klassengrenzen für \mathcal{X}_n in $\omega(\beta)$, zwischen denen genau m Muster der Klasse Ω_κ liegen. Dann gilt die Rekursionsformel

$$\Delta_{\{x_{n} \leq \theta_{2}\}}(\beta) = \Delta_{\{x_{n} \leq \theta_{1}\}}(\beta) + \frac{h(\ell, r) - h(\ell + m, r + m) + h(\ell_{\kappa} + m, r_{\kappa} + m) - h(\ell_{\kappa}, r_{\kappa})}{T}$$

mit den Abkürzungen

$$h(p,q) = p \log_2 p - q \log_2 q$$

und den Zählwerten

$$\begin{array}{rcl} \ell_{\kappa} & = & |\{x_{d} < \theta_{1} \mid \boldsymbol{x} \in \omega_{\kappa}\}| & \qquad \ell & = & \sum_{\kappa} \ell_{\kappa} \\ r_{\kappa} & = & |\{x_{d} > \theta_{1} \mid \boldsymbol{x} \in \omega_{\kappa}\}| & \qquad r & = & \sum_{\kappa} r_{\kappa} \end{array}$$

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Polythetische Entscheidungsfragen

Über das Züchten "schiefer" statt achsenparalleler Entscheidungsbäume Attributübergreifende Dichotomien (linear)

$$a_0 + \sum_{i=1}^N a_i x_i \quad \stackrel{?}{\leq} \quad 0$$

Trennfunktionsparameter mit guter Klassenentmischung!

- CART/LC Gradientenabstieg via $\Delta_a(\beta)$
- **SADT**Simulated Annealing of Decision Trees
- LMDT
 Linear Machine Decision Trees ("ADALINE-Knoten")
- QUEST
 Multivariate Variante des QUEST-Algorithmus

QUEST-Algorithmus

Quick Unbiased Efficient Statistical Tree

- 1 KLASSENBEDINGTE MITTELWERTE Berechne eta-lokale klassenbezogene Mittelwertvektoren $m{\mu}_1,\dots,m{\mu}_K.$
- 2 STATISTISCHER HYPOTHESENTEST Fisher-Test für die Nullhypothesen

$$H_0: \ \mu_1^{(n)} = \mu_2^{(n)} = \ldots = \mu_K^{(n)}$$

- 3 ZENTREN CLUSTERN ("2-means") Partitioniere für das Gewinnerattribut $n^* \in \{1:N\}$ die K Mittelwerte $\mu_1^{(n^*)}, \mu_2^{(n^*)}, \dots, \mu_K^{(n^*)}$.
- 4 KONSTRUIERE TRENNFRAGE Berechne NV-Dichteparameter für die beiden Cluster.

$$\mathcal{N}(x_{n^*} \mid \mu_1, \sigma_1^2) \stackrel{?}{\leq} \mathcal{N}(x_{n^*} \mid \mu_2, \sigma_2^2)$$

Versionenräume Bayesregel Regression Logitmodell Präferenzen

Lineare Interpolation von Klassenprädiktoren

Interpolationsformel für a posteriori-Klassenwahr'keiten

Maximum-Likelihood-Koeffizienten nach EM-Algorithmus

$$\tilde{p}_{\kappa}(\beta_r) = \begin{cases}
1 \cdot \hat{p}_{\kappa}(\beta_{\triangle}) & r = 0 \\
\lambda_r \cdot \hat{p}_{\kappa}(\beta_r) + (1 - \lambda_r) \cdot \tilde{p}_{\kappa}(\beta_{r-1}) & r > 1
\end{cases}$$

Klassenprädiktoren

in den inneren und den Blattknoten des Entscheidungsbaumes

Schleusungspfad

Jedes Objekt $\mathbf{x} \in \mathcal{X}$ beschreibt einen Pfad

$$\beta_{\triangle} = \beta_0(\mathbf{x}) \prec \beta_1(\mathbf{x}) \prec \beta_2(\mathbf{x}) \prec \ldots \prec \beta_{r-1}(\mathbf{x}) \prec \beta_r(\mathbf{x}) = \beta(\mathbf{x})$$

Lokale Prädiktoren

$$\hat{p}_{\kappa}(\beta_{0}) = |\omega_{\kappa}| / |\omega|$$

$$\otimes \qquad \forall | \qquad \forall |$$

$$\hat{p}_{\kappa}(\beta_{1}) = |\omega_{\kappa}(\beta_{1})| / |\omega(\beta_{1})|$$

$$\otimes \qquad \forall | \qquad \forall |$$

$$\hat{p}_{\kappa}(\beta_{2}) = |\omega_{\kappa}(\beta_{2})| / |\omega(\beta_{2})|$$

$$\otimes \qquad \forall | \qquad \forall |$$

$$\otimes \qquad \forall | \qquad \forall |$$

$$\vdots \qquad \forall | \qquad \forall |$$

$$\vdots \qquad \forall | \qquad \forall |$$

$$\hat{p}_{\kappa}(\beta_{r}) = |\omega_{\kappa}(\beta_{r})| / |\omega(\beta_{r})|$$

mit Ersetzen

Leo Breimans Random Forests

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART

Zweifache Ensembletechnik: Objekte (bagging) & Attribute

Lernprobe ω , Wälder $M \in \mathbb{N}$, Auswahl $T_b \leq |\omega|$ und $N_b \ll N$.

LERNPHASE

Erzeuge Bäume $\mathcal{B}^{(m)}$, $m = 1, \ldots, M$:

- Lernprobe $\omega^{(m)} \subset \omega$ via T_b -Bootstrap
- Zufallsbaum $\mathcal{B}^{(m)}$ via TDI-Algorithmus
- EINGESCHRÄNKTE LOKALE FRAGEAUSWAHL: $A_{\beta} \subset \{\mathcal{X}_1, \dots, \mathcal{X}_N\}, |A_{\beta}| = N_b \text{ via } N_b\text{-Bootstrap}$ ohne Ers.
- Kein Zurückstutzen!
- 2 ABRUFPHASE

Mehrheitsentscheidung unter allen Bäumen des Waldes:

$$\kappa^*(\mathbf{x}) = \operatorname{argmax}_{\kappa} |\{\mathcal{B}^{(m)} \mid \delta_{\ell}(\beta^{(m)}(\mathbf{x})) = \kappa\}|$$

Bemerkung

Pro: Effizient, skalierbar (N, T), exzellentes Erkennungsverhalten. Contra: Überanpassung, Reproduzierbarkeit, Präferenz stufenreicher Nominalattribute. Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

Prädiktion, Regression & Klassifikatior

Konzeptlerner

Versionenräume

Naive Bayesrege

Multivariate lineare Regression

Logistische Regression

Ordinale Regression und Präferenzmodelle

Statistische Entscheidungsbäume

Zusammenfassung

Zusammenfassung (4)

1. Der Konzeptraum enthält die zu lernenden, der Hypothesenraum die lernbaren Teilmengen des Objektraums.

Vorhersage Konzeptlernen Versionenräume Bayesregel Regression Logitmodell Präferenzen CART Σ

- 2. Der **Versionenraum** besteht aus allen **konsistenten** Hypothesen und ist als **Halbordnungsintervall** darstellbar.
- 3. Die Hypothesen des **Sterns** grenzen ein Positivbeispiel gegen alle Negativbeispiele ab.
- 4. **Lineare Diskriminanten** approximieren die **ideale Trennfunktion** im Quadratmittelsinn.
- 5. **Loglineare Diskriminanten** approximieren die **a posteriori** Klassenwahr'keiten.
- 6. Beide Lernverfahren lassen sich regularisieren und dualisieren.
- 7. **Entscheidungsbäume** klassifizieren durch hierarchische Befragung **numerischer & diskreter** Attribute.
- 8. Sie werden durch ein **gieriges Top-Down-Verfahren** aus den Daten gelernt.
- 9. Für die lokale Suche nach der maximal **klassenentmischenden** Frage gibt es effiziente Verfahren.