

《并行程序与设计》实验报告

(2023~2024 **学年第一学期**)

实验名称: SSE 编程练习

学 院: 软件学院

姓 名: 陈高楠

学 号: 2112966

指导老师: 孙永谦

目录

1 矩阵乘法的优化	1
1 问题描述	1
2 算法设计与分析	1
2.1 串行算法	1
2.2 Cache 优化算法 ······	2
2.3 SSE 编程 ···································	3
2.4 分片策略	5
3 结果统计与分析	6
3.1 不同策略下矩阵运算运行时间的统计	6
3.2 分片大小的影响	8
4 实验结论及心得体会	9
, , , , , , , , , , , , , , , , , , ,	10
1 问题描述	10
2 算法设计与分析	10
2.1 高斯消元法介绍	10
2.2 串行算法	11
2.3 串行回代求解	12
2.4 并行高斯消元 SSE 编程	13
2.5 并行高斯消元 AVX 编程	14
2.6 并行回代优化 SSE 编程	16
2.7 并行回代优化 AVX 编程	17
3 问题讨论与分析	18
3.1 消元过程中采用向量编程的的性能提升情况如何	18
3.2 回代过程可否向量化,有的话性能提升情况如何	19
3.3 相同算法对于不同问题规模的性能提升是否有影响,影响情况如何	21
3.4 SSE 编程和 AVX 编程性能对比	22
4 实验结论及心得体会	24
3 附录	25

实验一 矩阵乘法的优化

1 问题描述

本次实验分别使用串行算法、Cache 优化算法、SSE 编程和分片策略算法实现了矩阵乘法运算。比较在不同策略算法下矩阵乘法运算的时间差异。本次实验的矩阵的元素值为生成的随机数。每次随机生成的两个矩阵都需要经过四种策略算法的计算,共生成二十次随机矩阵,并记录每次运行时间和二十次运算的平均运行时间。计时采用 QueryPerformance。

2 算法设计与分析

2.1 串行算法

串行算法即不采取任何优化的操作,而直接用矩阵乘法的定义进行运算。矩阵乘法即对矩阵 A 的每一行的元素,矩阵 B 的每一列的元素都要与之相乘,然后相加从而得到结果。所以需要先遍历矩阵 A 一行中的元素,再遍历矩阵 B 一列中的元素,再遍历矩阵 B 中的每一列,再遍历矩阵 A 中的每一行,三层遍历嵌套,时间复杂度 $O(n) = n^3$

```
1 double mul(int n, float a [][maxN], float b [][maxN], float c [][maxN]) {
      LARGE_INTEGER freq;
      LARGE INTEGER beginTime;
     LARGE_INTEGER endTime;
4
5
6
      QueryPerformanceFrequency(&freq);
7
      QueryPerformanceCounter(&beginTime);
       for (int i = 0; i < n; ++i) {
           for (int j = 0; j < n; ++j) {
9
10
               c[i][j] = 0.0;
11
               for (int k = 0; k < n; ++k) {
12
                   c[i][j] += a[i][k] * b[k][j];
```

```
13
               }
14
           }
15
      QueryPerformanceCounter(&endTime);
16
17
18
      double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
      freq.QuadPart;
19
      cout << "串行算法耗时: " << time << "s" << endl;
20
      return time:
21
22 }
```

2.2 Cache **优化算法**

矩阵在进行运算时,当读取的时候按行读取时,该行会进入 cache,缩短数据读取的时间 (C 语言为行主序)。而当读取的时候按列读取时,由于同一列的数据并未同时进入 cache 中,这也导致在读取同一列的数据时,需要从内存而不是从缓存中读取数据,从而需要更长的寻址时间。在矩阵乘法时,矩阵 A 是按行读取的,读取速度快。但是矩阵 B 是按列读取的,读取速度慢 (因为 cache 命中率不高)。所以我们可以优化矩阵 B 的读取,将 B 转置,使得矩阵 B 在进行乘法时按行读取,减少缓存未命中的次数,利用 cache 的高速读取特性来加快运行速度,节省寻址时间。因为算法仍然为三层嵌套,所以算法时间复杂度仍为 $O(n) = n^3$

```
1 double trans_mul(int n, float a [][maxN], float b [][maxN], float c [][maxN]) {...
      // Cache优化 O(n) = n^3
2
      LARGE INTEGER freq;
3
      LARGE_INTEGER beginTime;
     LARGE_INTEGER endTime;
4
5
      QueryPerformanceFrequency(&freq);
6
7
      QueryPerformanceCounter(&beginTime);
8
       for (int i = 0; i < n; ++i)
9
10
           for (int j = 0; j < i; ++j)
11
              swap(b[i][j], b[j][i]);
```

```
12
       for (int i = 0; i < n; ++i) {
13
           for (int j = 0; j < n; ++j) {
14
               c[i][j] = 0.0;
               for (int k = 0; k < n; ++k) {
15
                   c[i][j] += a[i][k] * b[j][k];
16
17
               }
           }
18
19
       } // transposition
       for (int i = 0; i < n; ++i)
20
21
           for (int j = 0; j < i; ++j)
22
               swap(b[i][j], b[j][i]);
23
       QueryPerformanceCounter(&endTime);
24
25
26
       double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
      freq.QuadPart;
27
       cout << "Cache优化耗时: " << time << "s" << endl;
28
       return time ;
29 }
```

2.3 SSE **编程**

SSE 编程能够多个元素同时加载进行并行运算,提高了运行的效率,使得运行时间缩短。由于四个元素同时进行并行运算,时间复杂度为 $O(n)=(n^3)/4$

```
1 double sse_mul(int n, float a [][maxN], float b [][maxN], float c [][maxN]) {
2 //SSE版本 O(n) = (n^3)/4
3
      LARGE_INTEGER freq;
     LARGE_INTEGER beginTime;
4
     LARGE INTEGER endTime;
5
6
7
      QueryPerformanceFrequency(&freq);
8
      QueryPerformanceCounter(&beginTime);
9
10
      _{m128 t1, t2, sum; //_{m128} = float}
```

```
11
        for (int i = 0; i < n; ++i)
12
            for (int j = 0; j < i; ++j)
13
                swap(b[i][j], b[j][i]);
        for (int i = 0; i < n; ++i) {
14
            for (int j = 0; j < n; ++j) {
15
                c[i][j] = 0.0;
16
17
                sum = _mm_setzero_ps(); //Initialize
18
                 for (int k = n - 4; k \ge 0; k = 4) { // sum every 4 elements
19
                     t1 = mm loadu ps(a[i] + k);
                     t2 = \underline{mm}_{loadu_{ps}(b[j] + k)};
20
21
                     t1 = \underline{mm}\underline{mul}\underline{ps}(t1, t2);
22
                     sum = mm \text{ add } ps(sum, t1);
23
                 }
24
                sum = \underline{mm}_hadd\underline{ps}(sum, sum);
25
                sum = mm \text{ hadd } ps(sum, sum);
26
                _{mm\_store\_ss(c[i] + j, sum);}
27
                 for (int k = (n \% 4) - 1; k \ge 0; --k) { // handle the last n\%4...
       elements
                     c[i][j] += a[i][k] * b[j][k];
28
29
                 }
30
            }
       }
31
        for (int i = 0; i < n; ++i)
32
33
            for (int j = 0; j < i; ++j)
34
                swap(b[i][j], b[j][i]);
35
36
       QueryPerformanceCounter(&endTime);
37
38
       double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
       freq.QuadPart;
       cout << "SSE版本耗时: " << time << "s" << endl;
39
40
       return time ;
41 }
```

2.4 分片策略

分片策略利用分块的思想,将矩阵每 T 个分为一个小矩阵块,每一个小矩阵块并行执行矩阵的乘法,时间复杂度 $O(n)=(n^3)$

```
1 double sse_tile(int n, float a[][maxN], float b[][maxN], float c[][maxN], ...
      int T) {
       LARGE INTEGER freq;
3
       LARGE_INTEGER beginTime;
       LARGE INTEGER endTime;
5
6
       QueryPerformanceFrequency(&freq);
7
       QueryPerformanceCounter(&beginTime);
8
9
       m128 t1, t2, sum;
10
       float t:
11
       for (int i = 0; i < n; ++i)
            for (int j = 0; j < i; ++j)
12
13
                swap(b[i][j], b[j][i]);
       for (int r = 0; r < n / T; ++r)
14
            for (int q = 0; q < n / T; ++q) {
15
                for (int i = 0; i < T; ++i)
16
17
                    for (int j = 0; j < T; ++j)
                         c[r * T + i][q * T + j] = 0.0;
18
                for (int p = 0; p < n / T; ++p) {
19
20
                    for (int i = 0; i < T; ++i)
                         for (int j = 0; j < T; ++j) {
21
22
                             sum = _mm_setzero_ps();
23
                             for (int k = T-4; k \ge 0; k -= 4) {
24
                                  t1 = _mm_loadu_ps(a[r * T + i] + p * T + k);
25
                                  t2 = _{mm}loadu_{ps}(b[q * T + j] + p * T + k);
26
                                  t1 = \underline{mm}\underline{mul}\underline{ps}(t1, t2);
27
                                  sum = mm \text{ add } ps(sum, t1);
28
                             }
29
                             sum = \underline{mm}_hadd_ps(sum, sum);
```

```
30
                            sum = \underline{mm}_hadd_ps(sum, sum);
31
                             _{mm\_store\_ss(\&t, sum)};
32
                            c[r * T + i][q * T + j] += t;
                             for (int k = (T \% 4) - 1; k \ge 0; --k) { // handle ...}
33
                                the last n%4elements
34
                                 c[r * T + i][q * T + j] += a[r * T + i][p * T + ...
                                    k] * b[q * T + j][p * T + k];
35
                            }
36
                        }
37
38
                }
39
       for (int i = 0; i < n; ++i)
40
           for (int j = 0; j < i; ++j)
41
42
               swap(b[i][j], b[j][i]);
43
       QueryPerformanceCounter(&endTime);
44
45
       double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
46
          freq.QuadPart;
       cout << "分片策略耗时: " << time << "s" << endl;
47
48
       return time;
49 }
```

3 结果统计与分析

3.1 不同策略下矩阵运算运行时间的统计

以下为不同策略下矩阵运算运行时间的统计,每种矩阵规模下,每种策略均运行二十次 取平均值,减少误差。

矩阵规模	串行	Cache 优化	SSE 并行	矩阵分块并行
128*128	0.0042058s	0.00387835s	0.00162774s	0.00206567s
256*256	0.0342032s	0.0307152s	0.0126819s	0.0175909s
384*384	0.0963745s	0.0866515s	0.037384s	0.0489838s
512*512	0.23331s	0.20333s	0.0897747s	0.117839s
640*640	0.491899s	0.402294s	0.177279s	0.224926s
768*768	0.879674s	0.695461s	0.303479s	0.385212s
896*896	1.3495s	1.11125s	0.490818s	0.617381s
1024*1024	2.00046s	1.66126s	0.739852s	0.916984s
1152*1152	2.84547s	2.42189s	1.06165s	1.35163s
1280*1280	3.73081s	3.23532s	1.4171s	1.81112s
1408*1408	4.93209s	4.35484s	1.91689s	2.42228s
1536*1536	6.55257s	5.61627s	2.47748s	3.14573s
1664*1664	8.4577s	7.27544s	3.1937s	4.06025s
1792*1792	10.793s	9.11793s	3.9997s	5.08599s
1920*1920	13.5604s	11.186s	4.95235s	6.25561s
2048*2048	17.4928s	13.7664s	6.04739s	7.65593

表 1.1: 不同优化方法下的运行时间

通过图表可知,串行算法所耗费的时间是最多的,因为他并没有做出什么优化。而 Cache 优化算法因为采取了 Cache 优化,因此耗费时间比串行时间略少,但提升幅度在矩阵规模较小时并不是很明显,一直到矩阵规模为 768*768 时才开始有差距。SSE 编程在 Cache 优化的

基础上采用了并行计算,极大减少了运行时间,可以从图中看到比串行和 Cache 优化的运行时间少很多,而且在矩阵规模并不大的时候就能体现。而分片策略尽管理论上能提高运行速度,但实际上由于缓存大小的影响,分片的片数,以及分片时多出的分片操作,导致分片策略运行时间甚至比 SSE 编程的还高。

因此,在四种矩阵乘法方法中,性能比较: SSE 编程 > 分片策略 > Cache 优化 > 串行算法。

3.2 分片大小的影响

矩阵大小固定时,测出矩阵乘法在不同分块下运行时间的比较。(测试的分块均能存进一级缓存中) 测得不同分块下运行时间变化曲线如下:

可以看出当分块的矩阵越大时,运行时间也会越来越大。分析:图中的分块都是可以装进 L1 缓存的,但是分块矩阵越大,cache 命中所需的时间越长,这也导致了运行时间的差异。

4 实验结论及心得体会

实验结论: 串行算法的耗费时间最多; Cache 优化对串行算法进行了优化,提高了寻址的速率,缩短了运行时间; SSE 编程使用了并行算法,极大缩短了运行时间;而分片策略因为分块多出来的时间损耗,总运行时间并不如 SSE 编程。分片规模对分片的性能提升也有影响,分片时的分片矩阵不宜过大。

心得体会:本次实验学习了四种矩阵乘法运算的方法,并初步学习了 SSE 的基本语法以及使用方法,对并行程序设计有了更深的认识。

实验二 高斯消元法 SSE/AVX 并行化

1 问题描述

首先熟悉高斯消元法解线性方程组的过程,然后实现 SSE 算法编程。过程中,请自行构造合适的线性方程组,并选取至少 2 个角度,讨论不同算法策略对性能的影响。可选角度包括但不限于以下几种选项:

- 1. 相同算法对于不同问题规模的性能提升是否有影响,影响情况如何;
- 2. 消元过程中采用向量编程的的性能提升情况如何;
- 3. 回代过程可否向量化,有的话性能提升情况如何;
- 4. 数据对齐与不对齐对计算性能有怎样的影响;
- 5.SSE 编程和 AVX 编程性能对比。

本次实验将采用并行的方法来解决高斯消元的问题,并通过三个方面来对高斯消元进行 探讨。计时采用 QueryPerformance。

2 算法设计与分析

2.1 高斯消元法介绍

消元过程:将 Ax=b 按照从上至下、从左至右的顺序化为上三角方程组,中间过程不对矩阵进行交换,主要步骤如下:

Step1: 将第2行至第n行,每行分别与第一行做运算,消掉每行第一个参数。公式如下:

$$a_{11}^{(1)} \neq 0, l_{i1} = \frac{a_{i1}^{(1)}}{a_{11}^{(1)}}$$
 $(i = 2: n),$ \$\mathbf{\math}i\mathred{\tau} + (-l_{i1}) \times \mathbf{\mathred{\mathr

Step2: 从新矩阵的 a22 开始 (a22 不能为 0),以第二行为基准,将第三行至第 n 行分别与第二行做运算,消掉每行第二个参数。公式如下:

$$l_{i2} = \frac{a_{i2}^{(2)}}{a_{22}^{(2)}}$$
 $(i = 3:n)$, 第 i 行加上 $(-l_{i2})$ × 第 2 行 $(i = 3:n)$

Step K: 按照上述方法, 当第 k 步运算时, 公式为:

$$a_{kk}^{(k)} \neq 0, l_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$$
 $(i = k + 1 \rightarrow n),$ \$\mathbf{\pi}i\forall \text{lin}\L(-l_{ik}) \times \mathbf{\pi}k\forall \tau \text{ (i = k + 1 \rightarrow n)}

Step n-1: 经过 n-1 步, 方程组也就转化为了我们希望得到的上三角方程组, 如下:

$$\begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ a_{22}^{(2)} & & \cdots & a_{2n}^{(2)} \\ \vdots & & \ddots & \vdots \\ a_{nn}^{(n)} & & & x_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(2)} \\ \vdots \\ b_n^{(n)} \end{bmatrix}$$

回代过程: 从第 n 行开始,倒序回代前面的行中,即可求解 x_1 到 x_n 的值。

2.2 串行算法

串行高斯消元的方法主要分成两步,第一步就是把要当被减行的行进行放大或缩小使得该行第一个不为 0 的数为 1 (该步骤可以省去,只是后面乘的系数不一样),第二步便是遍历被减行(第 k 行)下面的所有行(k+1 行到 n 行),每一行都减去被减行与一个系数的乘积,即假设现在是 k+1 行 k+1 列,该数减去被减行对应列的值乘以一个系数的乘积,即第 k 行 k+1 列的值乘以 k+1 行 k 列的值,即为更新的值,以此类推。最后再把 k+1 行 k 列设置为 0。

如果省略第一步,那么系数则不为 k+1 行 k 列的值,而是 k+1 行 k 列的值除以 k 行 k 列的值。注意在矩阵遍历的时候,矩阵为 n^* (n+1) 的规模,因为构成的矩阵为增广矩阵。由于循环最多嵌套三层,因此时间复杂度为 $O(n)=n^3$

具体代码如下:

```
1 double LU(int n, float a[][maxN]) {
```

2 LARGE INTEGER freq;

```
3
      LARGE_INTEGER beginTime;
 4
     LARGE_INTEGER endTime;
 5
      QueryPerformanceFrequency(&freq);
 6
 7
      QueryPerformanceCounter(&beginTime);
 8
       for (int i = 0; i < n - 1; i++) //对每一行
9
               for (int j=i+1; j \le n; j++)//对这一行的每一个数
10
11
12
                   a[i][j]=a[i][j]/a[i][i];
13
               }
              a[i][i]=1.0;
14
           for (int j = i + 1; j < n; j++)//每一行的下面的行
15
16
17
               float tem = a[j][i] / a[i][i];
18
               for (int k = i + 1; k \le n; k++) //这个是列, 列是n+1个 (有b)
19
                   a[j][k] -= a[i][k] * tem;
20
21
22
              a[j][i] = 0.00;
23
          }
24
      QueryPerformanceCounter(&endTime);
25
26
27
      double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
      freq.QuadPart;
28
      cout << "普通方法耗时: " << time << "s" << endl;
29
      return time;
30
31
32 }
```

2.3 串行回代求解

这里采用了最普通的求解方法,即从下到上进行回代求解。时间复杂度 $O(n) = n^2$ 具体代码如下:

```
1 double generation (int n, float a [][maxN], float x [])
 2 {
 3
      LARGE_INTEGER freq;
 4
      LARGE INTEGER beginTime;
      LARGE_INTEGER endTime;
 5
 6
       QueryPerformanceFrequency(&freq);
 7
       QueryPerformanceCounter(&beginTime);
 8
       for (int i = n - 1; i \ge 0; i - -) {
           x[i] = a[i][n] / a[i][i];
9
10
           for (int j = i - 1; j \ge 0; j - -) {
               a[j][n] -= x[i] * a[j][i];
11
12
           }
13
       }
14
       QueryPerformanceCounter(&endTime);
15
       double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
16
      freq.QuadPart;
       cout << "普通方法回代: " << time << "s" << endl;
17
18
       return time;
19
20 }
```

2.4 并行高斯消元 SSE 编程

在高斯消元的过程中,对 4 个计算进行并行处理,提高运行速率,时间复杂度 $O(n) = (n^3)$ 。这里采用 SSE 编程。

```
1 double LU_SSE(int n, float a[][maxN]) {
2    LARGE_INTEGER freq;
3    LARGE_INTEGER beginTime;
4    LARGE_INTEGER endTime;
5    QueryPerformanceFrequency(&freq);
6    QueryPerformanceCounter(&beginTime);
7    ___m128 t1, t2, sub, tem2;
```

```
8 for (int i = 0; i \le n - 1; i++) //对每一行
                 for (int j=i+1; j \le n; j++)// 对这一行的每一个数
10
11
                      a[i][j]=a[i][j]/a[i][i];
12
13
                 a[i][i]=1.0;
14
15
             for (int j = i + 1; j < n; j++)//每一行的下面的行
16
17
                 float tem = a[j][i] / a[i][i];
18
                 tem2=\underline{mm}_set1\underline{ps}(tem);
19
                 for (int k = i+1; k \le n; k+=4) //这个是列, 列是n+1个 (有b)
20
21
                 {
                       if (k+3>n) break;
22
                      t1 = \underline{\text{mm}}_{\text{loadu}} ps(a[i] + k);
23
                      t2 = \underline{\text{mm}} [\text{loadu} [\text{ps}(a[j] + k);
24
                      sub = \underline{mm}_sub_ps(t2, \underline{mm}_mul_ps(t1, tem2));
25
                      _{\text{mm\_storeu\_ps}}(a[j] + k, sub);
                 }
26
27
                 for (int k = n - (n - i)\%4 + 1; k \le n; k += 1) {
28
                      a[j][k] -= a[i][k] * tem;
29
                 a[j][i] = 0.00;
30
31
            }
32
33
        QueryPerformanceCounter(&endTime);
        double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
34
            freq.QuadPart;
35
        cout << "SSE耗时: " << time << "s" << endl;
36
        return time;
37 }
```

2.5 并行高斯消元 AVX 编程

在高斯消元的过程中,对 8 个计算进行并行处理,提高运行速率,时间复杂度 $O(n) = (n^3)$ 。这里采用 AVX。具体代码如下:

```
1 double LU_AVX(int n, float a[][maxN]) {
 2
        LARGE_INTEGER freq;
 3
       LARGE_INTEGER beginTime;
 4
       LARGE INTEGER endTime;
 5
 6
       QueryPerformanceFrequency(&freq);
 7
       QueryPerformanceCounter(&beginTime);
            9 for (int i = 0; i \le n - 1; i++) //对每一行
10
                 for (int j=i+1; j \le n; j++)//对这一行的每一个数
11
12
13
                     a[i][j]=a[i][j]/a[i][i];
14
                 }
                 a[i][i]=1.0;
15
16
            for (int j = i + 1; j < n; j++)//每一行的下面的行
17
                 float tem = a[j][i] / a[i][i];
18
19
                 tem2 = _mm256 _set1 _ps(tem);
                 for (int k = i+1; k \le n; k+=8) //这个是列, 列是n+1个 (有b)
20
21
22
                 {
                      if (k+7>n) break;
                     t1 = \underline{mm256}\underline{loadu}\underline{ps(a[i] + k)};
23
                     t2 = \underline{mm256}\underline{loadups(a[j] + k)};
24
                     sub = \underline{mm256}\underline{sub}\underline{ps}(t2, \underline{mm256}\underline{mul}\underline{ps}(t1, tem2));
25
26
                     _{mm256\_storeu\_ps(a[j] + k, sub)};
27
                 }
28
                 for (int k = n - (n - i)\%8 + 1; k \le n; k += 1) {
                     a[j][k] -= a[i][k] * tem;
29
30
                 a[j][i] = 0.00;
31
32
            }
33
       }
       QueryPerformanceCounter(&endTime);
34
35
       double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
36
           freq.QuadPart;
```

2.6 并行回代优化 SSE 编程

这里采用并行的方法对回代进行优化,采取 SSE 编程。时间复杂度 $O(n) = n^2$ 具体代码如下:

```
1 double generation_SSE(int n, float a[][maxN], float x[]) {
 2
 3
        LARGE_INTEGER freq;
 4
        LARGE_INTEGER beginTime;
 5
        LARGE INTEGER endTime;
 6
 7
        QueryPerformanceFrequency(&freq);
        QueryPerformanceCounter(&beginTime);
 8
        \underline{\phantom{a}} m128 t1, t2, t3, sub, tem;
        //转置
10
11
12
13
        for (int i = n - 1; i \ge 0; i - -) {
14
              x[i] = a[i][n];
              for (int j = i + 1; j < n; j += 4) {
15
                   if (j + 3 \ge n) break;
16
                   t1 = \underline{mm}_{load}\underline{ps}(a[i] + j);
17
                   t2 = \underline{\text{mm}}_{\text{load}} ps(x + j);
18
                   t3 = \underline{\text{mm}}\underline{\text{mul}}\underline{\text{ps}}(t1, t2);
19
20
                   t3 = \underline{\text{mm\_hadd\_ps}}(t3, t3);
                   t3 = \underline{mm}_hadd_ps(t3, t3);
21
22
                   x[i] -= _mm_cvtss_f32(t3);
23
24
              }
25
              for (int j = n - (n - i-1) \% 4 ; j < n; j++) {
26
                   x[i] -= a[i][j] * x[j];
27
```

```
28 }
29 QueryPerformanceCounter(&endTime);
30 double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
freq.QuadPart;
31 cout << "SSE方法优化回代:" << time << "s" << endl;
32 return time;
33 }
```

2.7 并行回代优化 AVX 编程

这里采用并行的方法对回代进行优化,采取 AVX 编程。时间复杂度 $O(n) = n^2$ 具体代码如下:

```
1 double generation_AVX(int n, float a[][maxN], float x[]) {
 3
         LARGE_INTEGER freq;
 4
        LARGE INTEGER beginTime;
         LARGE INTEGER endTime;
 6
 7
         QueryPerformanceFrequency(&freq);
 8
         QueryPerformanceCounter(&beginTime);
 9
         \underline{\phantom{a}} m256 t1, t2, t3, tem;
10
11
         for (int i = n - 1; i \ge 0; i - -) {
12
13
              x[i] = a[i][n];
14
               for (int j = i + 1; j < n; j += 8) {
                    if (j + 7 \ge n) break;
15
                    t1 = \underline{mm256}\underline{load}\underline{ps}(a[i] + j);
16
                    t2 = \underline{mm256}\underline{load}\underline{ps(x + j)};
17
                    t3 = _mm256_mul_ps(t1, t2);
18
                    t3 = _{mm256\_hadd\_ps(t3, t3)};
19
                    t3 = mm256 \text{ hadd ps}(t3, t3);
20
21
                    x[i] -= (_mm256_cvtss_f32(t3) + _mm256_cvtss_f32(...
                         \underline{\phantom{a}} mm256\underline{\phantom{a}} permute2f128\underline{\phantom{a}} ps\left(\,t\,3\;,\;\;t\,3\;,\;\;1\right)\,)\,)\,;
22
              }
```

```
23
           for (int j = n - (n - i - 1) \% 8; j < n; j++) {
24
               x[i] -= a[i][j] * x[j];
25
          }
      }
26
27
      QueryPerformanceCounter(&endTime);
28
      double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
          freq.QuadPart;
      cout << "AVX方法优化回代: " << time << "s" << endl;
29
30
      return time;
31 }
```

3 问题讨论与分析

3.1 消元过程中采用向量编程的的性能提升情况如何

这里采用了 QueryPerformance 进行计时,通过生成随机矩阵来对比采用向量编程的的性能提升情况。矩阵的规模从从 128*128 到 2560*2560。

以下是统计的结果。

矩阵规模	串行	SSE 编程	AVX 编程
128*128	0.000909165	0.000556225	0.0010975
256*256	0.0070659	0.00414377	0.0054567
384*384	0.024183	0.0143697	0.0151507
512*512	0.0574497	0.0340906	0.0328093
640*640	0.115604	0.0688632	0.0600911
768*768	0.207282	0.122675	0.098506
896*896	0.311542	0.183689	0.133205
1024*1024	0.449007	0.266695	0.201336
1152*1152	0.649681	0.374257	0.279803
1280*1280	0.893172	0.522936	0.382136
1408*1408	1.19295	0.715037	0.489673
1536*1536	1.57222	0.950008	0.657101
1664*1664	2.03174	1.29849	0.870898
1792*1792	2.43019	1.47337	0.994015
1920*1920	3.05917	1.83142	1.22919
2048*2048	3.65508	2.21836	1.46685
2176*2176	4.21054	2.64181	1.75525
2304*2304	5.03897	3.19913	2.02437
2432*2432	5.89198	3.94339	2.48919
2560*2560	7.27353	4.58284	2.87923

表 2.1: 高斯消元不同方法下的运行时间

从表中可以分析得到,消元过程中采用向量编程在矩阵规模较小时性能提升并不是很明显,当矩阵规模越来越大时提升性能越来越明显。而在向量编程中,一开始矩阵规模比较小的时候,AVX 编程提升的性能是不如 SSE 编程的,推测是因为矩阵规模较小时,AVX 编程有较多元素无法并行计算,因此耗费时间比 SSE 编程长,而在矩阵规模变得很大时,AVX 编程优于 SSE。

3.2 回代过程可否向量化,有的话性能提升情况如何

回代过程中可以向量化。在回代过程中,求 x[i] 时,需要用 n+1 列对应的数减去已经求出的 x 的解与对应 i 行的值的乘积的和,而 x 的解与对应 i 行的值的乘积的和就可以向量化加快计算。这里展示了普通回代,SSE 回代,AVX 回代的数据。

矩阵规模	串行	SSE 编程	AVX 编程
128*128	2.3485e-05	1.3625e-05	0.00011446
256*256	7.786e-05	5.1745e-05	0.000431025
384*384	0.00017528	0.0001238	0.00094853
512*512	0.000304175	0.00022683	0.0018801
640*640	0.00046013	0.00034479	0.0027453
768*768	0.000619155	0.000458805	0.00414327
896*896	0.0007541	0.000592275	0.00490773
1024*1024	0.00107413	0.00076283	0.00667363
1152*1152	0.00130806	0.00096692	0.00870856
1280*1280	0.00147634	0.00112877	0.00995333
1408*1408	0.0020329	0.00155695	0.0146994
1536*1536	0.00231796	0.00171767	0.0173922
1664*1664	0.0027132	0.00213256	0.0208562
1792*1792	0.00303366	0.00226743	0.0217783
1920*1920	0.00330798	0.00262026	0.0267779
2048*2048	0.00402952	0.00295492	0.0269092
2176*2176	0.00503331	0.00402144	0.0369137
2304*2304	0.0047589	0.00350493	0.0339359
2432*2432	0.00586956	0.00415047	0.0409575
2560*2560	0.00764471	0.00499533	0.052693

表 2.2: 回代不同方法下的运行时间

从数据中可以发现, SSE 编程并行计算所耗费的时间比串行减少了一点, 但 AVX 编程进行运算的时间却比串行和 SSE 编程多非常多。经过分析, 有以下两种可能:

- 1. 代码错误。但是代码经过检验后正确性是比较有保证的,在测试数据的时候答案也是正确的。
- 2.AVX 编程在并行的时合并所需操作比 SSE 编程和串行多,且末尾出现冗余的概率也比 SSE 编程和串行概率大。

3.3 相同算法对于不同问题规模的性能提升是否有影响,影响情况如何

相同算法对于不同问题规模的性能提升有影响。当矩阵的规模并不大时,SSE,AVX 编程的性能提升影响并不大,甚至出现性能不如串行的情况。(当矩阵规模 128*128 时,串行比 SSE 和 AVX 都快)。而当矩阵规模越来越大时,并行与串行之间时间差越来越大,但 SSE 和 AVX 性能提升比例并不是越来越大,而是在到某一值后变开始波动。性能提升比例变化曲线见下图。

矩阵规模	SSE 编程	AVX 编程
128*128	40.85%	22.12%
256*256	40.57%	22.12%
384*384	40.66%	37.34%
512*512	40.66%	42.89%
640*640	40.43%	48.01%
768*768	40.81%	52.47%
896*896	41.03%	57.24%
1024*1024	40.60%	55.15%
1152*1152	42.39%	56.93%
1280*1280	41.45%	57.21%
1408*1408	40.06%	58.95%
1536*1536	39.57%	58.20%
1664*1664	36.08%	57.13%
1792*1792	39.37%	59.09%
1920*1920	40.13%	59.81%
2048*2048	39.23%	59.81%
2176*2176	37.25%	58.31%
2304*2304	36.51%	59.82%
2432*2432	33.07%	57.75%
2560*2560	36.99%	60.41%

表 2.3: 不同优化方法下的运行时间

可以看出,SSE 编程性能在矩阵规模较大时能提升百分之四十左右,AVX 编程性能在矩阵规模较大时能提升百分之六十左右。

3.4 SSE 编程和 AVX 编程性能对比

为证明矩阵规模不大的时候,SSE 编程要优于 AVX 编程。统计矩阵规模 10*10 到 100*100 时三种高斯消元方法的计算时间。

矩阵规模	串行	SSE 编程	AVX 编程
10*10	9.5e-07	1.225e-06	5.53e-06
20*20	7.085e-06	5.935e-06	4.3425e-05
30*30	1.3705e-05	8.9e-06	4.8115e-05
40*40	3.052e-05	1.878e-05	8.713e-05
50*50	5.654e-05	3.6565e-05	0.000147415
60*60	9.552e-05	6.136e-05	0.00021511
70*70	0.000171895	0.00011266	0.00033562
80*80	0.00022446	0.00021314	0.000398255
90*90	0.000348925	0.000228055	0.000563335
100*100	0.000428155	0.000269875	0.00064494

表 2.4: 不同优化方法下的运行时间

在矩阵规模不大的时候, SSE 编程要优于 AVX 编程 (甚至串行都比 AVX 编程快)。而当矩阵规模越来越大时, AVX 编程的性能会逐渐超过 SSE 编程。变化曲线详见 3.1。

4 实验结论及心得体会

本次实验学习了高斯消元以及回代的基本步骤,并实现了高斯消元的向量化,对 SSE/AVX 编程有了一个更深刻的认识。

附录

1. 矩阵乘法测试源码

```
1 #include <iostream>
3 #include <stdlib.h>
4 #include <algorithm>
5 #include <windows.h>
6 using namespace std;
7 \text{ const int } \max N = 10000;
8 \text{ const int } T = 32;
9 float a [maxN] [maxN];
10 float b[maxN][maxN];
11 float c [maxN] [maxN];
12 long long head, tail, freq;
13 int n;
14 double mul(int n, float a [] [maxN], float b [] [maxN], float c [] [maxN]) {
15
      LARGE INTEGER freq;
16
      LARGE_INTEGER beginTime;
17
      LARGE_INTEGER endTime;
18
19
       QueryPerformanceFrequency(&freq);
20
       QueryPerformanceCounter(&beginTime);
21
       for (int i = 0; i < n; ++i) {
22
           for (int j = 0; j < n; ++j) {
23
               c[i][j] = 0.0;
24
               for (int k = 0; k < n; ++k) {
25
                   c[i][j] += a[i][k] * b[k][j];
26
               }
           }
27
28
29
       QueryPerformanceCounter(&endTime);
30
31
       double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
          freq.QuadPart;
32
       cout << "串行算法耗时: " << time << "s" << endl;
33
       return time;
```

```
34
35 }
36 double trans_mul(int n, float a[][maxN], float b[][maxN], float c[][maxN]) {...
       // Cache优化 O(n) = n^3
      LARGE_INTEGER freq;
37
38
      LARGE_INTEGER beginTime;
      LARGE\_INTEGER\ endTime;
39
40
41
       QueryPerformanceFrequency(&freq);
42
       QueryPerformanceCounter(&beginTime);
43
       for (int i = 0; i < n; ++i)
44
           for (int j = 0; j < i; ++j)
45
46
               swap(b[i][j], b[j][i]);
47
       for (int i = 0; i < n; ++i) {
           for (int j = 0; j < n; ++j) {
48
49
               c[i][j] = 0.0;
               for (int k = 0; k < n; ++k) {
50
                   c[i][j] += a[i][k] * b[j][k];
51
52
               }
53
           }
54
       } // transposition
55
       for (int i = 0; i < n; ++i)
           for (int j = 0; j < i; ++j)
56
57
               swap(b[i][j], b[j][i]);
58
59
       QueryPerformanceCounter(&endTime);
60
61
       double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
          freq.QuadPart;
       cout << "Cache优化耗时: " << time << "s" << endl;
62
63
       return time;
64 }
65 double sse_mul(int n, float a[][maxN], float b[][maxN], float c[][maxN]) { ...
      //SSE版本 O(n) = (n^3)/4
66
      LARGE_INTEGER freq;
67
      LARGE INTEGER beginTime;
68
      LARGE_INTEGER endTime;
69
70
       QueryPerformanceFrequency(&freq);
71
       QueryPerformanceCounter(&beginTime);
72
       _{m128 t1, t2, sum; //_{m128} = float}
73
```

```
74
        for (int i = 0; i < n; ++i)
75
             for (int j = 0; j < i; ++j)
76
                  swap(b[i][j], b[j][i]);
77
        for (int i = 0; i < n; ++i) {
             for (int j = 0; j < n; ++j) {
78
79
                  c[i][j] = 0.0;
80
                  sum = _mm_setzero_ps(); //Initialize
81
                  for (int k = n - 4; k \ge 0; k -= 4) { // sum every 4 elements
82
                       t1 = \underline{\text{mm}}_{\text{loadu}} ps(a[i] + k);
83
                       t2 = \underline{\text{mm}} [\text{loadu} [\text{ps}(b[j] + k)];
                       t1 = mm \ mul \ ps(t1, t2);
84
85
                      sum = \underline{mm}_{add} ps(sum, t1);
                  }
86
87
                  sum = \underline{mm}_hadd_ps(sum, sum);
88
                  sum = \underline{mm}_hadd\underline{ps}(sum, sum);
89
                  _{\text{mm\_store\_ss}}(c[i] + j, sum);
                  for (int k = (n \% 4) - 1; k \ge 0; --k) { // handle the last n\%4...
90
                      elements
91
                       c[i][j] += a[i][k] * b[j][k];
92
                  }
93
             }
94
95
        for (int i = 0; i < n; ++i)
96
             for (int j = 0; j < i; ++j)
97
                  swap(b[i][j], b[j][i]);
98
99
        QueryPerformanceCounter(&endTime);
100
        double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
101
            freq.QuadPart;
        cout << "SSE版本耗时: " << time << "s" << endl;
102
103
        return time;
104 }
105 double sse_tile(int n, float a[][maxN], float b[][maxN], float c[][maxN], ...
        int T) {
106
        LARGE_INTEGER freq;
107
        LARGE INTEGER beginTime;
108
        LARGE_INTEGER endTime;
109
110
        QueryPerformanceFrequency(&freq);
111
        QueryPerformanceCounter(&beginTime);
112
113
        \underline{\phantom{a}} m128 t1, t2, sum;
```

```
114
        float t;
115
         for (int i = 0; i < n; ++i)
             for (int j = 0; j < i; ++j)
116
117
                  swap(b[i][j], b[j][i]);
        for (int r = 0; r < n / T; ++r)
118
119
             for (int q = 0; q < n / T; ++q) {
120
                  for (int i = 0; i < T; ++i)
121
                       for (int j = 0; j < T; ++j)
122
                           c[r * T + i][q * T + j] = 0.0;
123
                  for (int p = 0; p < n / T; ++p) {
124
                       for (int i = 0; i < T; ++i)
125
                           for (int j = 0; j < T; ++j) {
126
                                sum = _mm_setzero_ps();
127
          for (int k = n - 4; k \ge 0; k -= 4) { // sum every 4 elements
128
                      t1 = \underline{mm} \log (a[i] + k);
129
                      t2 = \underline{\text{mm}} [\text{loadu} [\text{ps}(b[j] + k)];
130
                      t1 = \underline{mm}\underline{mul}\underline{ps}(t1, t2);
131
                      sum = \underline{mm}_{add} ps(sum, t1);
132
                  }
133
                 sum = mm \text{ hadd } ps(sum, sum);
134
                 sum = \underline{mm}_hadd_ps(sum, sum);
135
                 _{mm\_store\_ss(c[i] + j, sum);}
                  for (int k = (n \% 4) - 1; k \ge 0; --k) { // handle the last n\%4...
136
        elements
137
                      c[i][j] += a[i][k] * b[j][k];
138
                  }
139
             }
140
        }
141
         for (int i = 0; i < n; ++i)
142
             for (int j = 0; j < i; ++j)
143
                 swap(b[i][j], b[j][i]);
144
145
        QueryPerformanceCounter(&endTime);
146
147
        double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
        freq.QuadPart;
        cout << "分片策略耗时: " << time << "s" << endl;
148
149
        return time;
150 }
151 int main()
152 {
153
        n = 128;
154
        int guimo = 200;
```

```
155
        int x = 0;
156
        double result [100][4];
        for (int i = 0; i < 100; i++) {
157
158
            for (int j = 0; j < 4; j++)
159
                result[i][j] = 0;
160
        }
161
        while (n \le 2048)
162
163
164
            cout << "矩阵规模为" << n << "*" << n << "时" << endl;
165
            x = 0;
166
167
                while (x++ < 20)
168
                {
169
                     cout << "第" << x << "次矩阵乘法" << endl;
170
                     cout << endl;
171
                     for (int i = 0; i < n; i++)
172
173
                         for (int j = 0; j < n; j++) {
174
                             a[i][j] = rand();
175
                             b[i][j] = rand();
176
                         }
177
178
                     }
179
                     result [n / 128][0] += mul(n, a, b, c);
180
                     result[n / 128][1] += trans_mul(n, a, b, c);
181
                     result[n / 128][2] += sse_mul(n, a, b, c);
182
                     result [n / 128][3] += sse\_tile(n, a, b, c, T);
183
184
                     cout << endl;
185
                }
186
            result [n / 128][0] /= 20;
187
            result [n / 128][1] /= 20;
188
            result [n / 128][2] /= 20;
            result[n / 128][3] /= 20;
189
            cout << result[n / 128][0] << " " << result[n / 128][1] << " " << ...
190
                result[n / 128][2] \ll " " \ll result[n / 128][3] \ll endl;
191
192
193
            n += 128;
194
            cout << endl;
195
196
        }
```

```
197
198
199 return 0;
200
201
202 }
```

2. 高斯消元以及回代测试源码

```
1 #include <iostream>
2 #include <immintrin.h>
3 #include <stdlib.h>
4 #include <algorithm>
5 #include <windows.h>
6 #include <thread>
8 using namespace std;
9 \text{ const int } \max N = 5000;
10 const int N = 8192;
11 float a [maxN] [maxN];
12 float b[maxN][maxN];
13 float c[maxN][maxN];
14 float answer [maxN];
15 float answer2 [maxN];
16 float answer3 [maxN];
17 float x [maxN];
18 double LU(int n, float a[][maxN]) {
19
      LARGE INTEGER freq;
20
      LARGE_INTEGER beginTime;
21
      LARGE_INTEGER endTime;
22
23
       QueryPerformanceFrequency(&freq);
24
       QueryPerformanceCounter(&beginTime);
       for (int i = 0; i ≤ n - 1; i++) //对每一行
25
26
       {
27
           for (int j = i + 1; j \le n; j++)//对这一行的每一个数
28
29
               a[i][j] = a[i][j] / a[i][i];
30
31
           a[i][i] = 1.0;
32
           for (int j = i + 1; j < n; j++)//每一行的下面的行
33
           {
```

```
34
               float tem = a[j][i] / a[i][i];
35
               for (int k = i + 1; k \le n; k++) //这个是列, 列是n+1个 (有b)
36
                   a[j][k] -= a[i][k] * tem;
37
38
39
               a[j][i] = 0.00;
40
           }
41
42
       QueryPerformanceCounter(&endTime);
43
44
       double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
          freq.QuadPart;
       cout << "普通方法耗时: " << time << "s" << endl;
45
46
       return time;
47
48
49 }
50 double generation (int n, float a [] [maxN], float x [])
51 {
52
      LARGE INTEGER freq;
53
      LARGE_INTEGER beginTime;
54
      LARGE_INTEGER endTime;
55
56
       QueryPerformanceFrequency(&freq);
57
       QueryPerformanceCounter(&beginTime);
       for (int i = n - 1; i \ge 0; i - -) {
58
59
           x[i] = a[i][n];
60
           for (int j = i + 1; j < n; j++) {
61
               x[i] -= a[i][j] * x[j];
62
           }
           x[i] /= a[i][i];
63
64
65
       QueryPerformanceCounter(&endTime);
66
67
       double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
          freq.QuadPart;
       cout << "普通方法回代: " << time << "s" << endl;
68
69
       return time;
70
71 }
72 double LU_SSE(int n, float a[][maxN]) {
73
      LARGE_INTEGER freq;
74
      LARGE_INTEGER beginTime;
```

```
75
        LARGE INTEGER endTime;
 76
 77
        QueryPerformanceFrequency(&freq);
 78
        QueryPerformanceCounter(&beginTime);
         \underline{\phantom{a}} m128 t1, t2, sub, tem2;
 79
 80
        for (int i = 0; i \le n - 1; i++) //对每一行
 81
 82
             for (int j = i + 1; j \le n; j++)//对这一行的每一个数
 83
                  a[i][j] = a[i][j] / a[i][i];
 84
 85
             a[i][i] = 1.0;
 86
 87
             for (int j = i + 1; j < n; j++)//每一行的下面的行
88
 89
                  float tem = a[j][i] / a[i][i];
 90
                  tem2 = \underline{mm}_{set1}\underline{ps(tem)};
 91
                  for (int k = i + 1; k \le n; k += 4) //这个是列, 列是n+1个 (有b)
 92
 93
                  {
 94
                      if (k + 3 > n) break;
 95
                      t1 = \underline{\text{mm}} [\text{loadu} [\text{ps}(a[i] + k)];
 96
                      t2 = \underline{\text{mm}}_{\text{loadu}} ps(a[j] + k);
 97
                      sub = \underline{mm}_sub_ps(t2, \underline{mm}_mul_ps(t1, tem2));
 98
                      _{mm\_storeu\_ps(a[j] + k, sub);}
 99
                  }
100
                  for (int k = n - (n - i) \% 4 + 1; k \le n; k += 1) {
101
                      a[j][k] -= a[i][k] * tem;
102
                  }
103
104
                  a[j][i] = 0.00;
105
106
107
             }
108
109
        QueryPerformanceCounter(&endTime);
110
111
        double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
            freq.QuadPart;
112
        cout << "SSE高斯消元耗时: " << time << "s" << endl;
113
        return time;
114
115 }
116 double LU_AVX(int n, float a[][maxN]) {
```

```
117
        LARGE INTEGER freq;
118
        LARGE_INTEGER beginTime;
119
        LARGE_INTEGER endTime;
120
121
        QueryPerformanceFrequency(&freq);
122
        QueryPerformanceCounter(&beginTime);
123
        \underline{\phantom{a}} m256 t1, t2, sub, tem2;
124
        for (int i = 0; i \le n - 1; i++) //对每一行
125
             for (int j = i + 1; j \le n; j++)//对这一行的每一个数
126
127
             {
128
                  a[i][j] = a[i][j] / a[i][i];
129
130
             a[i][i] = 1.0;
131
             for (int j = i + 1; j < n; j++)//每一行的下面的行
132
133
                  float tem = a[j][i] / a[i][i];
                  tem2 = \underline{mm256} \underline{set1} \underline{ps(tem)};
134
135
                  for (int k = i + 1; k \le n; k += 8) //这个是列, 列是n+1个 (有b)
136
137
                  {
138
                       if (k + 7 > n) break;
139
                       t1 = \underline{mm256}\underline{loadu}\underline{ps}(a[i] + k);
140
                       t2 = \underline{mm256}\underline{loadups(a[j] + k)};
141
                       sub = \underline{mm256}\_sub\_ps(t2, \underline{mm256}\_mul\_ps(t1, tem2));
142
                       _{mm256\_storeu\_ps(a[j] + k, sub)};
143
                  }
144
                  for (int k = n - (n - i) \% 8 + 1; k \le n; k += 1) {
                       a[j][k] -= a[i][k] * tem;
145
146
                  }
147
148
                  a[j][i] = 0.00;
149
150
151
             }
152
153
        QueryPerformanceCounter(&endTime);
154
155
        double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
            freq.QuadPart;
        cout << "AVX高斯消元耗时: " << time << "s" << endl;
156
157
         return time;
158
```

```
159 }
160 double generation_SSE(int n, float a[][maxN], float x[]) {
162
         LARGE_INTEGER freq;
163
        LARGE_INTEGER beginTime;
164
        LARGE INTEGER endTime;
165
166
         QueryPerformanceFrequency(&freq);
167
         QueryPerformanceCounter(&beginTime);
168
         \underline{\phantom{a}} m128 t1, t2, t3, sub, tem;
169
         //转置
170
171
172
         for (int i = n - 1; i \ge 0; i - -) {
173
              x[i] = a[i][n];
174
              for (int j = i + 1; j < n; j += 4) {
175
                   if (j + 3 \ge n) break;
176
                  t1 = \underline{\text{mm}}_{\text{load}} ps(a[i] + j);
177
                  t2 = \underline{mm}_{load}\underline{ps}(x + j);
178
                  t3 = mm \text{ mul ps}(t1, t2);
179
                  t3 = \underline{\text{mm\_hadd\_ps}}(t3, t3);
180
                  t3 = \underline{\text{mm\_hadd\_ps}}(t3, t3);
181
                  x[i] -= _mm_cvtss_f32(t3);
182
183
              for (int j = n - (n - i-1) \% 4; j < n; j++) {
184
185
                  x[i] -= a[i][j] * x[j];
186
187
188
              }
189
190
191
192
193
         }
194
195
196
         QueryPerformanceCounter(&endTime);
197
         double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
198
             freq.QuadPart;
199
         cout << "SSE方法优化回代: " << time << "s" << endl;
200
         return time;
```

```
201
202
203
204
205
206
207 \}
208 double generation_AVX(int n, float a[][maxN], float x[]) {
209
210
        LARGE_INTEGER freq;
211
        LARGE_INTEGER beginTime;
212
        LARGE_INTEGER endTime;
213
214
         QueryPerformanceFrequency(&freq);
215
         QueryPerformanceCounter(&beginTime);
216
         \underline{\phantom{a}} m256 t1, t2, t3, tem;
217
218
219
         for (int i = n - 1; i \ge 0; i - -) {
220
              x[i] = a[i][n];
221
              for (int j = i + 1; j < n; j += 8) {
222
                   if (j + 7 \ge n) break;
223
                   t1 = \underline{mm256}\underline{load}\underline{ps(a[i] + j)};
                   t2 = \underline{-mm256\_load\_ps(x + j)};
224
                   t3 = _{mm256} mul_{ps}(t1, t2);
225
226
                   t3 = \underline{mm256}\underline{hadd}\underline{ps}(t3, t3);
227
                   t3 = _{mm256\_hadd\_ps(t3, t3)};
228
                   x[i] -= (_mm256_cvtss_f32(t3) + _mm256_cvtss_f32(...
                       _{mm256\_permute2f128\_ps(t3, t3, 1))};
229
230
              for (int j = n - (n - i - 1) \% 8; j < n; j++) {
231
232
233
                   x[i] -= a[i][j] * x[j];
234
235
              }
236
237
238
239
240
         }
241
242
```

```
243
        QueryPerformanceCounter(&endTime);
244
245
        double time = (double)(endTime.QuadPart - beginTime.QuadPart) / (double)...
           freq.QuadPart;
246
        cout << "AVX方法优化回代: " << time << "s" << endl;
247
        return time;
248
249
250
251
252
253
254 }
255 int main()
256 {
257
       int n;
258
       n = 128;
259
        int x = 0;
260
261
262
        double result [100][8];
263
        for (int i = 0; i < 100; i++) {
264
            for (int j = 0; j < 7; j++)
                result[i][j] = 0;
265
266
267
        while (n \le 2560)
268
        {
269
            cout << "矩阵规模为" << n << "*" << n << "时" << endl;
270
            x = 0;
271
272
273
274
            while (x++ < 20)
275
            {
                cout << "第" << x << "次高斯消元" << endl;
276
277
                cout << endl;
                for (int i = 0; i < n; i++)
278
279
                {
280
                     for (int j = 0; j < n + 1; j++) {
281
                         a[i][j] = (rand() \% 100000) / 100.00;
282
                         b[i][j] = a[i][j];
283
                         c[i][j] = a[i][j];
284
                         answer[j] = 0.0;
```

```
285
                          answer2[j] = 0.0;
286
                          answer3 [j] = 0.0;
287
                      }
288
289
290
                 result [n / 128][0] += LU(n, a);
291
                 result [n / 128][1] += LU_SSE(n, b);
292
                 result [n / 128][2] += LU_AVX(n, c);
293
                 result [n / 128][3] += generation(n, a, answer);
294
                 result[n / 128][4] += generation_SSE(n, b, answer2);
                 result [n / 128][5] += generation AVX(n, c, answer3);
295
296
297
298
             }
299
             result [n / 128][0] /= 20;
300
             result [n / 128][1] /= 20;
             result[n / 128][2] /= 20;
301
302
             result[n / 128][3] /= 20;
303
             result [n / 128][4] /= 20;
304
             result [n / 128][5] /= 20;
305
306
             cout << \ result [n \ / \ 128][0] << \ " \ " << \ result [n \ / \ 128][1] << \ " \ " << ...
                 result[n / 128][2] << " " << result[n / 128][3] << " " << ...
                 result \, [n \ / \ 128][4] \ << \ " \ " \ << \ result \, [n \ / \ 128][5] \ << \ endl;
307
308
309
            n += 128;
310
             cout << endl;
311
312
        }
313
        return 0;
314
315 }
```

3. 高斯消元正确性验证代码以及结果

```
1 int main()
2 {
3     for (int i = 0; i <10; i++)
4         for (int j = 0; j < 11; j++)
5         {
6             cin >> a[i][j];
```

```
7
8
       for (int i = 0; i < 10; i++)
9
            for (int j = 0; j < 11; j++)
10
11
                cout << a [ \ i \ ] [ \ j \ ] << \ " \ ";
12
13
14
15
            cout << endl;
       }
16
17
            cout << endl;
18
       LU\_SSE(10, a);
       for (int i = 0; i < 10; i++)
19
20
21
            for (int j = 0; j < 11; j++)
22
23
                cout << a[i][j] << " ";
24
                b[i][j] = a[i][j];
25
                c[i][j] = a[i][j];
26
            }
27
            cout << endl;</pre>
28
29
       }
30
31
32
33
       generation (10, a, x);
34
       for (int i = 0; i < 10; i++) {
35
            cout << x[i] << " ";
36
            x[i] = 0;
37
       }
38
       cout << endl;
39
40
       generation_AVX(10, b, x);
41
42
       for (int i = 0; i < 10; i++) {
43
            cout << x[i] << "";
            x[i] = 0;
44
45
46
       cout << endl;
47
       generation_SSE(10, c, x);
48
       for (int i = 0; i < 10; i++) {
49
            cout << x[i] << " ";
```

```
2 1 1 3 2 1 4 3 5 1 30

3 2 1 1 4 5 1 2 1 2 23

2 1 3 2 1 3 5 4 2 1 22

1 5 4 3 2 1 2 1 3 4 35

2 4 3 5 1 3 1 2 1 2 28

3 2 1 3 1 5 2 4 1 2 26

1 3 5 2 4 3 1 2 3 1 29

5 3 1 2 1 4 2 1 3 2 32

4 1 2 3 5 2 1 3 2 1 30

3 4 2 1 5 2 3 1 2 3 31

SSE高斯消元耗时: 3.7e-06s

1 0.5 0.5 1.5 1 0.5 2 1.5 2.5 0.5 15

0 1 -1 -7 2 7 -10 -5 -13 1 -44

0 0 1 -0.5 -0.5 1 0.5 0.5 -1.5 0 -4

0 0 0 1 -0.108108 -1.05405 1.10811 0.486486 1.91892 -0.027027 6.75676

0 0 0 0 0 1 -1.65116 2.15504 0.51938 3.68992 0.751938 12.7907

0 0 0 0 0 0 1 1.92212 -0.99377 -2.582567 -0.862929 -10.0841

0 0 0 0 0 0 0 1 1.99807 0.248864 8.43159

0 0 0 0 0 0 0 1 1.99807 0.248864 8.43159

0 0 0 0 0 0 0 0 1 1.54666

普通方法回代: 1.7e-06s

2.2729 2.3904 0.626383 0.573024 0.608086 -0.38576 -0.722437 2.20032 2.92601 1.54666

AVX方法优化回代: 6e-07s

2.27291 2.39039 0.626383 0.573024 0.608086 -0.385759 -0.722437 2.20032 2.92601 1.54666

SSE方法优化回代: 5e-07s

2.27291 2.39039 0.626383 0.573024 0.608087 -0.385759 -0.722437 2.20032 2.92601 1.54666
```

图 2.1: 计算结果

图 2.2: 正确答案