MULTIMEDIA		UNIVERSITY
------------	--	------------

STUDENT ID NO						

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/2019

TMA1101 – Calculus (All sections / Groups)

` 1

12 MARCH 2019 2.30pm - 4.30pm (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 5 pages with 5 questions only excluding the cover page.
- 2. Attempt ALL questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. No calculators are allowed.

QUESTION 1 [10 MARKS]

(a) Find the following limits.

[You must show at least one intermediate step where $\lim_{x\to c}$ is still needed.]

(i)
$$\lim_{x \to 5} \frac{x^2 - 25}{2x - 10}$$

(ii)
$$\lim_{x \to \infty} \frac{3x^2 + \cos x}{2 + x^2}$$

[2 marks]

(b) Given
$$f(x) = \begin{cases} 3+x & x < 4 \\ 2x & x = 4 \\ x^2 - 9 & x > 4 \end{cases}$$

- (i) Find f(4).
- (ii) Determine $\lim_{x\to 4^-} f(x)$ and $\lim_{x\to 4^+} f(x)$.

[For this part, you must show at least one intermediate step where $\lim_{x\to 4^-}$ or $\lim_{x\to 4^+}$ is still needed.]

- (iii) Does $\lim_{x\to 4} f(x)$ exist? Give your reason. If it exists, state its value.
- (iv) Is the function f(x) continuous at x = 4? Give your reason for your answer.

[4.5 marks]

- (c) (i) State the intermediate value theorem (i.e., the full statement including the hypothesis and the conclusion).
 - (ii) Show that there is a root of the equation $2x^3 + 5x^2 x 7 = 0$ in the interval [1, 2]. You must write proper steps to arrive at conclusion; just writing some calculations would not be enough.

[3.5 marks]

QUESTION 2 [10 MARKS]

(a) Use the formal definition of the derivative to compute f'(-2) when f(x) = x(x+2).

You are reminded to write proper steps.

[2.5 marks]

(b) Find $\frac{dy}{dx}$ with y as given.

[Use the product rule or the quotient rule for differentiation; show proper steps.]

- (i) $y = e^{3x} \left(1 + \sqrt{x}\right)$
- (ii) $y = \frac{2 + \sin x}{x^2}$

[3 marks]

(c) The point (2, -1) lies on the curve $3y^2 - 2xy + 5x = 17$.

Use implicit differentiation to obtain $\frac{dy}{dx}$ in terms of x and y.

Then determine the gradient of the tangent to the curve $3y^2 - 2xy + 5x = 17$ at the point (2, -1).

[4.5 marks]

QUESTION 3 [10 MARKS]

- (a) (i) Use $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ and $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$ to find the values of A and B which make the equation $\cos 4\theta \cos 2\theta = A \cos 6\theta + B \cos 2\theta$ an identity.
 - (ii) Evaluate $\int_{0}^{\frac{\pi}{6}} \cos 4x \cos 2x \, dx$

[3.5 marks]

(b) (i) Determine the values of A and B in the following partial fraction decomposition.

$$\frac{5x-8}{x^2-2x-8} = \frac{A}{x+2} + \frac{B}{x-4}$$

(ii) Integrate

$$\int \frac{5x-8}{x^2-2x-8} dx$$

[3 marks]

(c) The figure shows a region bounded by the parabola $y = 2 - x^2$ and the straight line y = -x.

(ii) Write down a definite integral that can be used to find the area of this region and proceed to find the area.

[3.5 marks]

QUESTION 4 [10 MARKS]

(a) Given the sequence $\{a_n\}$ with $a_n = \frac{1+2n^2}{3n^2+5}$.

Determine $\lim_{n\to\infty} a_n$; you are reminded to write proper steps.

Then determine whether the infinite series $\sum_{n=1}^{\infty} \frac{1+2n^2}{3n^2+5}$ is convergent.

Give the reason for your answer.

[2 marks]

(b) Use the ratio test to determine whether the infinite series $\sum_{n=1}^{\infty} \frac{4^n}{n^3}$ is convergent.

[3 marks]

(c) Find the **Maclaurin polynomial** of order 3 for $f(x) = \frac{1}{(1+x)^3}$.

[3 marks]

(d) A periodic function f(x) with period 2π is defined as

$$f(x) = \begin{cases} 0 & -\pi \le x < 0 \\ 2 & 0 \le x < \pi \end{cases}$$

The Fourier series of f(x) has the form $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$.

Determine the value of a_3 .

[2 marks]

QUESTION 5 [10 MARKS]

- (a) Given $F(x,y) = 2y^2 + \sin x e^x \ln y$, find the partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$. [1 mark]
- (b) Solve the first order separable equation $\frac{dy}{dx} = \frac{3x^2 1}{\cos y}$ subject to the initial condition y(2) = 0. You may leave your answer in implicit form.

[2.5 marks]

(c) You are told that e^{3x} is an integrating factor for the first order linear equation $\frac{dy}{dx} + 3y = \frac{7}{e^{3x}}$ subject to the initial condition y(0) = 1.

Solve the equation and give your solution in explicit form.

[3 marks]

- (d) (i) Find the roots of the characteristics equation of the homogeneous differential equation y'' 5y' 14y = 0. Then write down the complementary function y_h of this homogeneous equation.
 - (ii) Find the particular equation of the second order differential equation $y'' 5y' 14y = e^{-2x}$.
 - (iii) Hence, write down the general solution for the differential equation $y'' 5y' 14y = e^{-2x}$ [3.5 marks]

End of Page.

