Step-1

If we take powers of a permutation, then we have to explain that why is some P^k eventually equal to I, and we have to find a 5 by 5 permutation P so that the smallest power to equal I is P^6

Step-2

If the order of matrix is n then, there exist n! permutation matrices

Eventually two powers of permutation matrix *P* must be the same.

If
$$P^r = P^s$$
 then $P^{r-s} = I$

$$\Rightarrow r - s \le n!$$

Step-3

Let
$$P = \begin{pmatrix} P_2 & 0 \\ 0 & P_3 \end{pmatrix}$$
 in 5 by 5 matrices with

$$P_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, P_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Step-4

Then

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Then by using CAS, we get $P^6 = I$

Step-5

So the required *P* is

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$