BLOOD DONATION PROJECT

Hamzah Sami Stat 410

Background

Blood donations occupy a unique and fundamental aspect of health. They are integral for ensuring the welfare of individuals when their lives are in peril and require a blood transfusion. Since blood has a short shelf life for donations, a number of healthcare organizations organize frequent blood drives in order to increase the quantity of blood they have in supply. Since blood drives are frequent, there are a set of criteria required of blood donors before multiple donations can be made. These criteria range from tattoo policies to not being allowed to donate while ill. For the sake of this project, these policies will not be addressed and instead the focus will be placed on the time duration between consecutive blood donations. For example, in the United States, one must wait a minimum of six weeks between blood donations. Using this value of time durations along with other predictors, we will attempt to predict the number of donations blood donors make.

Dataset

The dataset used for the purpose of this project is managed by the Blood Transfusion Service Center based in Taiwan. This dataset is used by a number of organizations including the UCI Machine Learning and Information Systems Center to solve classifier problems. The dataset consists of a number of predictors: Months between last and current donation, number of donations, volume of blood donated (ml), months since you first donated, donated in March 2007. Of the four predictors, donated in March 2007 is the only categorical variable while the first four listed are numeric. As stated in the Background section, we will be attempting to predict the number of donations made by blood donors and in order to do so, we will use a zero-truncated negative Binomial model. We chose the model because the number off donations is a non-zero quantity but also because it is a predictor with a high level of variance and as such, the data given for the number of donations reflects this observation.

Results

Parameter Estimates for Truncated Negative Binomial Model						
Effect	marchdonor	Estimate	Standard Error	z Value	Pr > z	
Intercept		0.5977	0.1102	5.43	<.0001	
monthslastdonation		-0.01096	0.006001	-1.83	0.0677	
volume_ch		0.3487	0.03630	9.61	<.0001	
first		0.01068	0.002051	5.21	<.0001	
marchdonor	marchdonor	0.07406	0.08148	0.91	0.3634	
marchdonor	ref	0				
Scale Parameter		0.06600	0.02066			

Obs	deviance	pvalue
1	277.9	0

Fitted Model for a Zero-Truncated Negative Binomial Model:

 $\lambda_hat = exp\{0.5977 - 0.01096(monthslastdonation) + 0.3487(volume_ch) + 0.01068(first) + 0.07406(marchdonor)\} with the dispersion parameter r hat = 1/0.066 = 15.2.$

Significant predictors at the 5% level. Interpretation of coefficients

The significant predictors at the 5% level are volume_ch and first (months between first and last donation) because the p-values for both predictors are less than 0.05. Since the model fits a zero-truncated negative binomial model, there is no easy interpretation of the estimated regression coefficients. As a result, we omit the interpretation.

Based on the Goodness of Fit test, the fitted model has a better fit of the data because the p-value for the deviance statistic is less than 0.05.

Prediction: The predicted number of blood donations made by a blood donor who waited 11 months between blood donations, has donated 1575 ml, waited 60 months between their first and last donations, and did not donate in March 2007 is about 2.47 donations or approximately 3 donations.

```
y^{\circ} = \frac{\exp\{0.5977 - 0.01096(11) + 0.3487(1.575) + 0.01068(60) + 0.07406(0)\}}{1 - (1 + \exp\{0.5977 - 0.01096(11) + 0.3487(1.575) + 0.01068(60) + 0.07406(0)/15.2)^{-15.2}}
```

Obs	p_donations
101	2.47004

Conclusion:

The model actually predicted my data well which indicated that my assumption that the number of donations did fit a zero-truncated negative binomial model. The deviance statistic had a p-value of 0 which seemed skeptical to me but indicated that the fitted model had a perfect fit of the data since the p-value was less than 0.05. The fact the prediction was somewhat accurate did also help to assuage my concern.

In addition, when I ran the same model in R, I ended up getting a similar answer to the one that I got when using SAS. Furthermore, the regression coefficients of the model end up matching in both SAS and R.

From working with this dataset, I was able to gain more experience with applying the stats concepts I had learned in the class to a new dataset of my choice. Having the opportunity to learn and work with the data ended up helping me understand how to use the regression model more effectively. Furthermore, I was also able to gain a greater appreciation for blood donors as well as organizations such as the Red Cross because the work that they do in blood donations is incredibly meaningful and extremely important for those who are sick.

References

- https://www.medicaldaily.com/10-surprising-facts-about-donating-blood-most-needed-blood-type-time-year-most-408705
- https://www.redcrossblood.org/donate-blood/how-to-donate/how-blood-donations-help/blood-needs-blood-supply.html
- https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
- https://www.kaggle.com/bonastreyair/predicting-blood-analysis
- https://www.redcross.sg/news-stories/events/642-dropsoflife2018.html

Appendix A

no yes no yes yes yes no no no

yes no no yes yes no no no no yes yes no no no no no no no no yes no no yes no yes yes yes yes yes no yes yes yes no yes no

SAS Programming

data blooddonors;

input monthslastdonation donations volume first marchdonor\$ @@; cards;

2	12 3000	52	yes	2	15 3750	0 64
			-			
21	7 1750	38	yes	4	1 250	4
4	1 250	4	yes	11	2 50	0 38
			-			
11	11 2750	38	yes	12	! 15 37!	50 71
4	12 3000	34	no	2	13 3250	76
3	21 5250	42	no	11		0 38
4	2 500	4	yes	16	2 50	0 27
14	1 250	14	no	9	4 1000	65
23	2 500	87	yes	21	16 400	00 64
			-			
14	4 1000	64	no	7	10 2500) 47
13	3 750	16	yes	4	1 250	4
			-			
11	7 1750	62	no	11	5 125	0 35
5	11 2750	75	yes	16	4 100	0 23
			-			
4	1 250	4	yes	38	3 1 25	0 38
4	4 1000	26	yes	4	1 250	4
11	1 250	11	yes	23	4 100	0 52
11	6 1500	26	yes	11	7 175	0 64
			-			
7	14 3500	48	yes	14	3 75	0 28
23	14 3500	93	yes	4	11 2750	78
			-			
3	4 1000	29	no	16	4 100	0 33
2	7 1750	29	yes	4	5 1250) 11
4	6 1500	35	yes	38	3 1 25	0 38
5	7 1750	26	no	11	11 27!	50 38
4	1 250	4	no	2	2 500	11
2	3 750	38	no	2	2 500	4
5	14 3500	86	no	2	14 3500	57
2	2 500	11	yes	21	1 25	0 21
14	1 250	14	yes	11	1 25	0 11
4	3 750	16	no	16	2 50	0 26
2	12 3000	52	yes	21	16 400	00 64
4	14 3500	86	yes	2	4 1000	26
	7 4750		-			
23	7 1750	88	yes	4	1 250	4
2	1 250	2	yes	4	2 500	52
			-			
4	7 1750	58	yes	14		
4	2 500	41	no	16	2 50	0 16
11		29	yes	16		
2	2 500	41	no	11	11 27!	50 42
14	1 250	14		4	5 1250	
14			yes			
4	6 1500	28	yes	11	12 300	00 58
4	1 250	4	no	23	8 200	0 64
2	2 500	4	no	4	2 500	4
16	6 1500	35	no	2	1 250	2
16	6 1500	81	no	11	6 150	0 58
2	5 1250	26	no	21	3 75	0 35
14	3 750	31	yes	7	5 1250	35
2	1 250	2	no	11	2 50	0 16
4	4 1000	14	yes	2	4 1000) 11
14	3 750	35	yes	15	16 400	00 82
			•			
14	1 250	14	yes	2	10 2500	0 49
14	5 1250	28	yes	4	1 250	4
			-			
2	14 3500	57	no	16		
5	24 6000	79	yes	9	2 500	16
14	4 1000	23	yes	4	1 250	
4	6 1500	39	no	23	7 175	0 88
23		38	yes	4	8 2000	
11	8 2000	52	no	11	11 27!	50 38
2	7 1750	77		23		
			no			
4	5 1250	11	no	23	1 25	0 23
2	4 1000	35	no	4	7 1750	
_	7 1000	55	110	4	, 1730	20

```
4
     16 4000
                  38
                                                                  11
                                                                           250
                                                                         1
                                                                                    11
                          no
                                                                                             no
2
        500
                         yes
                                                                  12
                                                                        15
                                                                           3750
     2
                 23
                                                                                             no
11
      6 1500
                  58
                                                                  14
                                                                           250
                           no
                                                                         1
                                                                                    14
                                                                                            yes
                          yes
      9 2250
                                                                       6 1500
                                                                                    23
                  26
                                                                                            no
                                                                  9
11
      4 1000
                  34
                          yes
                                                                          2250
                                                                                    16
                                                                                            no
1
     26 6500
                  76
                                                                          750
                                                                                   52
                          no
                                                                                            no
2
     10 2500
                  52
                           no
                                                                  16
                                                                         3 750
                                                                                    50
                                                                                             no
2
                                                                  2
     16 4000
                  81
                                                                       2
                                                                           500
                                                                                   11
                          no
                                                                                            no
4
     6 1500
                  46
                          no
                                                                  4
                                                                       14
                                                                           3500
                                                                                    86
                                                                                             no
11
        500
                  11
                                                                           250
                          no
                                                                                           no
11
         1000
                  34
                           no
                                                                  3
                                                                        4 1000
                                                                                    29
                                                                  23
14
         500
                  14
                                                                           250
                                                                                    23
                          no
                                                                                            yes
      5 1250
3
                  26
                          yes
                                                                  40
                                                                           250
                                                                                    40
                                                                  4
                                                                           250
11
        250
                  11
                          yes
                                                                                           no
                                                                 2
                                                                                    98
11
      3
        750
                  15
                          yes
                                                                       41 10250
4
        250
                                                                  4
                                                                           500
                  4
                                                                       2
                                                                                   52
      1
                         no
                                                                                            nο
                                                                  21
4
        1750
                  58
                          no
                                                                           750
                                                                                    38
                                                                                            yes
                                                                  2
                                                                           750
     2
        500
                         no
                                                                                           no
                                                                  2
11
         250
                                                                       12
                                                                          3000
                                                                                    95
                                                                                            no
11
                                                                  11
                                                                           500
                                                                                    52
        750
      3
                  76
                          no
                                                                         2
                                                                                             no
2
     13 3250
                  32
                                                                           250
                          no
                                                                                           no
2
2
     12 3000
                  98
                                                                  14
                                                                           250
                                                                                    14
                          no
                                                                                            no
     34 8500
                  77
                          no
                                                                  11
                                                                         5 1250
                                                                                     33
                                                                                             no
4
2
2
        250
                  4
                                                                  4
                                                                       9 2250
                                                                                    26
     1
                         no
                                                                                            no
         500
                 11
                         yes
                                                                  16
                                                                           250
                                                                                    16
                                                                                             no
                                                                       16 4000
     7 1750
                 77
                                                                  4
                                                                                    70
                          yes
                                                                                             no
        250
                                                                  14
                                                                           500
                                                                                    14
     1
                         no
                                                                                             no
23
         250
                  23
                                                                  14
                                                                         3
                                                                           750
                                                                                    28
                          yes
                                                                                             no
23
         750
                  35
                          no
                                                                  11
                                                                           250
                                                                                    11
                                                                                            ves
4
      5 1250
                                                                  2
                                                                           250
                  33
                          no
                                                                                    2
                                                                                           no
23
      3 750
                  62
                                                                  14
                                                                           500
                                                                                    14
                          no
                                                                                            yes
2
      1 250
                  2
                         no
                                                                  4
                                                                       23 5750
                                                                                    58
                                                                                            yes
21
                                                                  6
      2 500
                  41
                                                                       3
                                                                           750
                                                                                   26
                          no
                                                                                            no
2
      9 2250
                 22
                         yes
                                                                  16
                                                                           500
                                                                                    16
                                                                                             no
11
      9 2250
                                                                  14
                                                                            500
                                                                                    29
                  33
                           no
                                                                                             no
16
        1500
                  40
                                                                  11
                                                                         7
                                                                           1750
                                                                                     64
                  19
16
      3
         750
                                                                  16
                                                                            250
                                                                                    16
                          no
                                                                         1
                                                                                             no
     15 3750
8
                  77
                          yes
                                                                  21
                                                                         2
                                                                            500
                                                                                    23
                                                                                             no
                                                                         8
                                                                           2000
16
        250
                  16
                                                                  23
                                                                                     46
                                                                                            yes
                          ves
                                                                  23
                                                                         2
                                                                           500
2
     1
        250
                  2
                         no
                                                                                    28
                                                                                            yes
5
     24 6000
                                                                       11 2750
                                                                                    64
                          no
                                                                                             no
/*fitting truncated negative binomial model*/
proc format;
value $marchdonorfmt 'no'='ref' 'yes'='marchdonor';
run;
proc fmm;
class marchdonor;
model donations = monthslastdonation volume first marchdonor/dist=truncnegbin;
format marchdonor $marchdonorfmt.;
run;
/*checking model fit*/
proc fmm;
model donations=/dist=truncnegbin;
run;
data deviance_test;
deviance= 1069.8-791.9;
pvalue=1-probchi(deviance,4);
run;
proc print;
run;
```

```
/*using fitted model for prediction*/
data prediction;
input monthslastdonation volume first marchdonor$;
cards:
11 1.575 60 no
data blooddonors;
set blooddonors prediction;
run;
proc fmm;
class marchdonor:
model donations = monthslastdonation volume first marchdonor/dist=truncnegbin;
output out=outdata pred=p_donations;
run;
proc print data=outdata(firstobs=101 obs=101);
var p_donations;
run;
R Programming
> blood.data = read.csv(file = "./Documents/blood-test.csv", header = TRUE, sep = ",")
> install.packages("VGAM")
trying URL 'https://cran.rstudio.com/bin/macosx/el-capitan/contrib/3.5/VGAM_1.0-6.tgz'
Content type 'application/x-gzip' length 7852157 bytes (7.5 MB)
_____
downloaded 7.5 MB
The downloaded binary packages are in
      /var/folders/xd/_8ybfrln43v0tdn_2w2tdch00000gn/T//RtmpC2RzYX/downloaded_packages
> library(VGAM)
Loading required package: stats4
Loading required package: splines
> blood.data$volume <- blood.data$volume/1000
> #fitting truncated negative binomial model
> summary(fitted.model<- vglm(donations ~ monthslastdonation+volume+monthsfirst+donationmarch,
data=blood.data, family=posnegbinomial()))
Call:
vglm(formula = donations ~ monthslastdonation + volume + monthsfirst +
  donationmarch, family = posnegbinomial(), data = blood.data)
Pearson residuals:
         Min
                1Q Median 3Q Max
loge(munb) -2.889 -0.8717 -0.120 0.5047 2.0157
loge(size) -11.797 -0.4551 0.396 0.7159 0.8467
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
               (Intercept):1
```

```
(Intercept):2
               2.71746  0.38511  7.056  1.71e-12 ***
volume
              monthsfirst
donationmarchyes 0.07405 0.08189 0.904 0.3659
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of linear predictors: 2
Names of linear predictors: loge(munb), loge(size)
Log-likelihood: -395.9334 on 394 degrees of freedom
Number of iterations: 30
Warning: Hauck-Donner effect detected in the following estimate(s):
'(Intercept):2'
Warning message:
In vglm.fitter(x = x, y = y, w = w, offset = offset, Xm2 = Xm2, :
 convergence not obtained in 30 IRLS iterations
> #checking model fit
> intercept.only.model<- vglm(donations ~ 1, data=blood.data,family=posnegbinomial())
> print(deviance<- -2*(logLik(intercept.only.model)-logLik(fitted.model)))
[1] 277.9597
> print(p.value<- pchisq(deviance, df=4, lower.tail=FALSE))
[1] 6.13607e-59
> #using fitted model for prediction
> print(bloo <- predict(fitted.model, data.frame(monthslastdonation = 11, volume = 1.575, monthsfirst = 60,
donationmarch = "no"),type="response"))
   [,1]
```

1 2.424053

Mo	Model Information		
Data Set	WORK.BLOODDONORS		
Response Variable	donations		
Type of Model	Homogeneous Regression Mixture		
Distribution	Truncated Negative Binomial		
Components	1		
Link Function	Log		
Estimation Method	Maximum Likelihood		

Class Level Information				
Class	Levels Values			
marchdonor	2	marchdonor ref		

Number of Observations Read	200
Number of Observations Used	200

Optimization Info	rmation
Optimization Technique	Dual Quasi-Newton
Parameters in Optimization	6
Mean Function Parameters	5
Scale Parameters	1
Lower Boundaries	1
Upper Boundaries	0
Number of Threads	2

Iteration History						
Iteration	Evaluations	Objective Function	Change	Max Gradient		
0	5	565.45841188		49.18234		
1	7	486.38304328	79.07536860	12.14411		
2	3	484.38383765	1.99920564	7.267725		
3	2	483.70428858	0.67954907	9.063922		
4	2	482.75256695	0.95172163	3.876234		
5	3	482.11835994	0.63420701	3.536299		
6	4	480.2892862	1.82907374	11.40184		
7	2	477.13480105	3.15448515	25.61363		
8	7	474.94317648	2.19162457	45.17784		
9	2	472.77364093	2.16953555	70.19499		

	Iteration History						
Iteration	Evaluations	Objective Function	Change	Max Gradient			
10	9	446.87914929	25.89449165	79.87429			
11	2	429.81432741	17.06482187	118.9			
12	5	417.34663742	12.46768999	94.12813			
13	2	411.28677155	6.05986586	1260.179			
14	4	406.77980105	4.50697050	571.3306			
15	2	403.6363867	3.14341436	395.2024			
16	2	399.32291519	4.31347151	262.6971			
17	3	398.8308071	0.49210809	224.1611			
18	2	398.12124019	0.70956691	164.5389			
19	2	397.03747741	1.08376278	116.0991			
20	3	396.38659803	0.65087938	36.50997			
21	3	395.9917301	0.39486793	16.03637			
22	3	395.93580972	0.05592039	1.306962			
23	3	395.93351967	0.00229004	0.769872			
24	3	395.93342369	0.00009598	0.013313			
25	3	395.93342356	0.0000013	0.000809			

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics		
-2 Log Likelihood	791.9	
AIC (Smaller is Better)	803.9	
AICC (Smaller is Better)	804.3	
BIC (Smaller is Better)	823.7	
Pearson Statistic	134.1	

Parameter Estimates for Truncated Negative Binomial Model						
Effect	marchdonor	Estimate	Standard Error	z Value	Pr > z	
Intercept		0.5977	0.1102	5.43	<.0001	
monthslastdonation		-0.01096	0.006001	-1.83	0.0677	
volume_ch		0.3487	0.03630	9.61	<.0001	
first		0.01068	0.002051	5.21	<.0001	
marchdonor	marchdonor	0.07406	0.08148	0.91	0.3634	
marchdonor	ref	0				
Scale Parameter		0.06600	0.02066			

Model Information			
Data Set	WORK.BLOODDONORS		
Response Variable	donations		
Type of Model	Non-Mixture		
Distribution	Truncated Negative Binomial		
Components	1		
Link Function	Log		
Estimation Method	Maximum Likelihood		

Number of Observations Read	200
Number of Observations Used	200

Optimization Information			
Optimization Technique Dual Quasi-Newto			
Parameters in Optimization	2		
Mean Function Parameters	1		
Scale Parameters	1		
Lower Boundaries	1		
Upper Boundaries	0		
Number of Threads	2		

Iteration History				
Iteration	Evaluations	Objective Function	Change	Max Gradient
0	5	563.70602539		39.43064
1	4	541.69203337	22.01399202	21.22587
2	2	539.71299002	1.97904334	10.30861
3	2	538.72003366	0.99295637	1.549716
4	4	538.61643398	0.10359968	2.94643
5	13	535.81468386	2.80175012	12.77112
6	5	535.53460914	0.28007471	7.273163
7	4	534.92239933	0.61220981	1.120118
8	3	534.91403002	0.00836931	0.404488
9	3	534.91328409	0.00074593	0.011157
10	3	534.91326006	0.00002403	0.001939
11	3	534.91326004	0.00000002	9.13E-7

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics			
-2 Log Likelihood	1069.8		
AIC (Smaller is Better)	1073.8		
AICC (Smaller is Better)	1073.9		
BIC (Smaller is Better)	1080.4		
Pearson Statistic	187.7		

Parameter Estimates for Truncated Negative Binomial Model					
Standard Invers Linker Effect Estimate Error z Value Pr > z Estimate Error z Value Pr > z Estimate Error Error					
Intercept	1.4002	0.1504	9.31	<.0001	4.0561
Scale Parameter	1.8687	0.5378			

Obs	deviance	pvalue	
1	277.9	0	

Model Information			
Data Set	WORK.BLOODDONORS		
Response Variable	donations		
Type of Model	Homogeneous Regression Mixture		
Distribution	Truncated Negative Binomial		
Components	1		
Link Function	Log		
Estimation Method	Maximum Likelihood		

Class Level Information				
Class Levels Values				
marchdonor	2	no yes		

Number of Observations Read	201
Number of Observations Used	200

Optimization Information			
Optimization Technique Dual Quasi-Newtor			
Parameters in Optimization	6		
Mean Function Parameters	5		
Scale Parameters	1		
Lower Boundaries	1		
Upper Boundaries	0		
Number of Threads	2		

Iteration History				
Iteration	Evaluations	Objective Function	Change	Max Gradient
0	5	565.45841188		49.18234
1	7	486.38304328	79.07536860	12.14411
2	3	484.38383765	1.99920564	7.267725
3	2	483.70428858	0.67954907	9.063922
4	2	482.75256695	0.95172163	3.876234
5	3	482.11835994	0.63420701	3.536299
6	4	480.2892862	1.82907374	11.40184
7	2	477.13480105	3.15448515	25.61363
8	7	474.94317648	2.19162457	45.17784
9	2	472.77364093	2.16953555	70.19499

Iteration History							
Iteration	Evaluations	Objective Function	Change	Max Gradient			
10	9	446.87914929	25.89449165	79.87429			
11	2	429.81432741	17.06482187	118.9			
12	5	417.34663742	12.46768999	94.12813			
13	2	411.28677155	6.05986586	1260.179			
14	4	406.77980105	4.50697050	571.3306			
15	2	403.6363867	3.14341436	395.2024			
16	2	399.32291519	4.31347151	262.6971			
17	3	398.8308071	0.49210809	224.1611			
18	2	398.12124019	0.70956691	164.5389			
19	2	397.03747741	1.08376278	116.0991			
20	3	396.38659803	0.65087938	36.50997			
21	3	395.9917301	0.39486793	16.03637			
22	3	395.93580972	0.05592039	1.306962			
23	3	395.93351967	0.00229004	0.769872			
24	3	395.93342369	0.00009598	0.013313			
25	3	395.93342356	0.0000013	0.000809			

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics		
-2 Log Likelihood	791.9	
AIC (Smaller is Better)	803.9	
AICC (Smaller is Better)	804.3	
BIC (Smaller is Better)	823.7	
Pearson Statistic	134.1	

Parameter Estimates for Truncated Negative Binomial Model						
Effect	marchdonor	Estimate	Standard Error	z Value	Pr > z	
Intercept		0.6718	0.1199	5.60	<.0001	
monthslastdonation		-0.01096	0.006001	-1.83	0.0677	
volume_ch		0.3487	0.03630	9.61	<.0001	
first		0.01068	0.002051	5.21	<.0001	
marchdonor	no	-0.07406	0.08148	-0.91	0.3634	
marchdonor	yes	0				
Scale Parameter		0.06600	0.02066			

Monday, December 3, 2018 06:59:34 PM **8**

Obs	p_donations
101	2.47004