Winning the WAR on Defense

Evaluating the Value Add of defensive players through Sports Info Solutions Data

Collaborators

Matthew Reyers

MSc Student / Data Scientist

SFU / Zelus Analytics

matthew_reyers@sfu.ca

@Stats_By_Matt

Meyappan Subbaiah

Data Scientist

Zelus Analytics

meysubb@gmail.com

@msubbaiah1

Dani ChuQuantitative Analyst
NHL Seattle
danic.stats@gmail.com
@chuurveg

Lucas Wu
PhD Student / Data Scientist
SFU / Zelus Analytics
yifan_wu@sfu.ca
@lucaswu123

What is the most valuable defensive line position and how is value distributed?

The Need

- Counting stats are hard to find on defense
 - Current public data limited to tackle-based counts
- Value is confounded among lineups
 - Limited ability to partition credit
- Teams aren't limited to offense
 - Evaluation of defense players has large team building implications

The Approach

- Leverage SIS data
 - Pressures, gaps, and line arrangements
- Establish logical play baselines
 - Do separately for passing / rushing
- Calculate value per player per play
- Define summary statistic
 - Additional EPA generated
 - Translate to Wins Above Replacement

Value Added

Value added = Predicted value - Observed value

Summary Statistic

- Value Added in terms of additional EPA generated
- Translate to wins
 - Fit basic linear regression as in nflWAR paper (Yurko, Ventura & Horowitz, 2019)
 - Estimate: 1 Win = 38.40 EPA
 - Calculate contributed wins rushing, passing, and combined
 - Per game basis, rushing sample reduced to accommodate Zoo predictions 1st place solution from 2019-2020 NFL Big Data Bowl Competition for predicting yards gained on given rushing plays

Rushing

Baseline

- Incorporate predictions from the winners of the 2019--2020 NFL Big Data Bowl (the Zoo)
 - Gives predicted yards per play at time of handoff
- Translate predicted yards to more robust Expected Points Added

Adjustments

- Use all rush data to estimate Rusher and Offensive Line effects
- Adjust predictions

- Partition play, 4 outcomes
 - Play ends behind LOS

										1.	·····	
		0	τ	0	7	0	ε	0	₽ (0	5	0 7
				1111	1111	1111	 ' iii		.B		FOIB	
	1111	1111	ш	1111	(111	1111	1111	1111			1111	
		1	0	2	0	3	0	4	0	BVF	0	40
3				1111								

- Partition play, 4 outcomes
 - Play ends behind LOS
 - Play ends between LOS and Zoo predicted yards

Predicted yards

1111	1111			1111					Π'	11			····
	0	τ	0	7	0	ε	0	₽	B	0	S	0	Đ
	1111		1111			 ' iii		B	OH OH				
1111	1111	1111	1111	1111	1111	1111	1111			11	1111	1111	111
	1	0	2	0	3	0	4	0		· ·	0	4	0
							1111		(soli) o∎seli				

- Partition play, 4 outcomes
 - Play ends behind LOS
 - Play ends between LOS and Zoo predicted yards
 - Play ends beyond Zoo predicted yards but is not TD

					1111			· · · ·	ТТ	П	·····	
	0	τ	0	Z	0	ε	0	₽		2	0	₽
	1111		1111		1111	 ' <mark>ଡ</mark> ଼	1111	(B)				
1111	1111	1111	1111	1111	1111	1111	1111			1	1111	111
	1	0	2	0	3	0	4	0	WR BWF	ō 0	4	0
1111							1111					

- Partition play, 4 outcomes
 - Play ends behind LOS
 - Play ends between LOS and Zoo predicted yards
 - Play ends beyond Zoo predicted yards but is not TD
 - Play is a TD

ſ	1111		11111						,,,,	7777			
		0	Ţ	0	7	0	ε	0	₽	1 0	S	0	₽
			1111		l				1				
		1	0	2	0	3	0	4	0	(A)	0	4	0
					ļ.,,,		ļ.,.,		ļ.,,	.	ļ	[

Value

- Partition play, 4 outcomes
 - Play ends behind LOS
 - Play ends between LOS and Zoo predicted yards
 - Play ends beyond Zoo predicted yards but is not TD
 - Play is a TD

Involvement

- A player is involved if they record a pressure, tackle, or sack
- A player gains more credit for being involved, less credit for not

WAR Winners: Rushing (Top 20)

Sample Conclusions

Majority of value on rushing plays accrued by DL

Focus is on Interior Lineman

Larger gap between best DL and average DL than between best LB and average LB

Passing

The Details: Passing

Baseline

- Incorporate completion probability model from nflfastR
 - Estimate two completion probabilities per play
 - If QB pressured
 - If QB not pressured
- Establish baseline as weighted EPA based on completion probability and target depth

Adjustments

- Arbitrarily set minimum target depth to 5 yards for value attribution

The Details: Passing

Value

- Partition play, 3 outcomes
 - No pressure generated
 - Pressure generated, no sack
 - Sack

Involvement

- A player is involved if they generate a pressure, sack, pass breakup, or interception

WAR Winners: Passing (Top 20)

Sample Conclusions

Value generated by top-tier Linebackers and Edge Rushers is harder to replace than top-tier Interior DL

Rushing and Passing

WAR Winners: Overall (Top 20)

WAR Winners - Top 4 Defensive Teams (DVOA -FO)

			WAR Winners				
Player	Team	Cluster Assignment	Roster Position	WAR - Rushing	WAR - Passing	WAR - Overall	Overal Rank
DeForest Buckner		2	DT	0.073	0.024	0.097	3
Arik Armstead		5	DE	0.010	0.067	0.076	11
Nick Bosa		1	DE	0.027	0.023	0.049	19
D.J. Jones		6	DT	0.037	-0.001	0.036	38
Solomon Thomas		5	DE	0.002	-0.024	-0.022	140
Sheldon Day		6	DT	-0.006	-0.017	-0.023	142

WAR Winners for Ravens WAR values on a per game basis										
Player	Team	Cluster Assignment	Roster Position	WAR - Rushing	WAR - Passing	WAR - Overall	Overal Rank			
Matt Judon	TE	1	LB	-0.011	0.065	0.054	15			
Tyus Bowser	TE	3	LB	-0.016	0.059	0.043	27			
Jaylon Ferguson	TE	1	LB	0.009	0.014	0.023	47			
Jihad Ward	TE	3	DE	-0.017	0.008	-0.010	102			
Chris Wormley	TE	5	DE	-0.007	-0.011	-0.018	127			
Brandon Williams	TO	2	DT	-0.027	-0.029	-0.056	201			

WAR Winners for Patriots WAR values on a per game basis										
Player	Team	Cluster Assignment	Roster Position	WAR - Rushing	WAR - Passing	WAR - Overall	Overall Rank			
Kyle Van Noy		1	LB	0.044	0.014	0.058	14			
Lawrence Guy		5	DE	0.046	0.007	0.053	16			
Danny Shelton		6	DT	-0.005	-0.004	-0.009	99			
Jamie Collins		1	LB	-0.008	-0.019	-0.027	161			
John Simon	-	1	LB	-0.016	-0.014	-0.030	163			

	WAR Winners for Steelers WAR values on a per game basis										
Player	Team	Cluster Assignment	Roster Position	WAR - Rushing	WAR - Passing	WAR - Overall	Overall Rank				
T.J. Watt	③	1	LB	0.027	0.074	0.101	2				
Bud Dupree	③	1	LB	0.019	0.060	0.079	8				
Cameron Heyward	③	2	DE	0.033	0.030	0.063	12				
Javon Hargrave	③	2	DT	0.014	0.032	0.046	22				
Tyson Alualu	③	5	DE	-0.010	-0.022	-0.032	172				

Sample Conclusions

In our sample, Jonathan Allen, T.J. Watt, and DeForest Buckner were all generating roughly 0.1 WAR per game

Shortcomings of WAR

- Rushing sample size is 3 or 4 games per player
 - Zoo predictions only overlapped with first 4 games of SIS data sample
 - Some teams had Byes during this period
- Not large enough sample size overall to conclude with statistical significance
 - We removed a lot of noise but much remains
- Confounding effect on value attribution
 - We report multiple players from the same team in our top players list
 - All talented in their own right though some may be being pulled upwards by exceptional team play

How do the results change if we redefine Defensive Line Positions?

Relabeling Through Clustering

- , HAKK
- Incorporate purely usage based statistics
 - Gap assignments, play breakdowns, etc
 - Limit to only Players > 20 snaps
 - Ignore production and salary
 - Goal is to find similarly used players
 - These covariates bias clusters

JAH

Hierarchical clustering

- Ward's Method Euclidean Distance
- 6 clusters

Usage Clusters

Adding Context to the Clusters

Cluster	Key Positive Loadings	Key Negative Loadings	Our Labels	Prototype Player(s)
1	C and D gap usage on right side of line, pass play usage	Short yardage	Blindside Rushers	Myles Garrett, Bud Dupree
2	Long yardage, B Gap both sides	Late downs	Early Down Interior	Fletcher Cox, Gerald McCoy
3	D gap usage, rushing plays	Interior assignments	Body on the Edge	Khalil Mack, Shaquil Barrett
4	C gap usage, passing plays	Early downs	Multipurpose Outer DL	Dee Ford, Joey Bosa
5	Short yardage, late downs	Interior assignments	Edge Rush Package	Earl Thomas, Solomon Thomas
6	Early downs, A gap, rushing plays	Short yardage	Early down Nose Tackles	Star Lotulelei, Vita Vea

Redefining Positional Value

Use new clusters, explore distribution of Wins Above Replacement

- Blindside Rushers consistently offer better WAR than other cluster assignments when a replacement player is specified as a generic Defensive Lineman
- Early Down Interiors are championed by elite talent
 - Beyond the elite talent, group is underwhelming
- Edge Rush Packages are well distributed with a few standouts
- Early Down Nose Tackles are the weakest cluster in terms of WAR

In which situations do positional values change?

Situation Dictates Values

- A variety of positions is important to an effective defensive line
- Some valuable situations don't even call for a player who plays the most valuable position that we have identified
- We would like to determine which groups of positions are most effective for each game situation
 - Use newly created clusters
 - Additional cluster for players with too small a sample to do reasonable inference

Process

- Fit a Bayesian Additive Regression Tree (BART) model in order to ask counterfactual questions
- For example: "What would the outcome of the play look like if we used a different defensive line unit on that play"
- We can measure the effect of each defensive line unit to determine which one would be optimal in each situation

Results - 3rd and 2 rush at the 50 start of 2nd Q

Top 3 Units:

Blindside	Early Interior	Multipurpose Outer DL	Body on the Edge	Edge Rush Package	Early Nose Tackle	Low D-Line Snaps
0	2	0	1	0	1	0
0	2	1	1	0	1	0
1	2	0	0	0	1	0

Despite Blindside being the most valuable position the top two units in this situation do not have a blindside rusher on the line.

Results - 3rd and 10 pass at the 50 start of 2nd Q

Top 3 Units:

Blindside	Early Interior	Multipurpose Outer DL	Body on the Edge	Edge Rush Package	Early Nose Tackle	Low D-Line Snaps
0	1	3	0	0	1	0
0	2	2	0	0	1	0
1	2	1	0	0	1	0

When the offense is likely to pass we see a shift to use more Multipurpose Outer DL than early down interior lineman

Conclusions

- Positional value is heavily dependant on situation
- You do not want all of the players on the defensive line to be the same position
- There is value in variety

Overall Shortcomings and Limitations

- Clusters make sense but many players have insufficient sample sizes
 - Two clusters are rather small, many undersampled players would fit these
- With the emergence of tracking data, it would be possible to better cluster DL players
 - Movement patterns and trajectories fit a model-based clustering scheme
 - See "Route Identification in the National Football League" for details
- WAR values are heavily impacted by a few plays due to brevity of data
 - Analysis would be better handled on whole season worth of data
- Baseline predictions for rushing arguably already involve efficacy of players
 - "At time of handoff" means defensive players can influence prediction
 - Downwards pressure on available value for highly talented lines/players
- Win Probability omitted from BART model
 - Possible positivity issues in specific situations

Wrap-up

Leveraging SIS data we created

- An enhanced Wins Above Replacement metric for the often under-analyzed defensive players
- A new classification scheme for defensive players based on their observed usage
- A collective measure of value within these new positions, based on observed production
- An evaluation scheme for causal inference of position groupings for situational considerations

References

Chu, D., Reyers, M., Thomson, J., & Wu, L. Y. (2020). Route identification in the National Football League: An application of model-based curve clustering using the EM algorithm. *Journal of Quantitative Analysis in Sports*, *16*(2), 121-132.

Gordeev, D.1st place solution The Zoo. https://www.kaggle.com/c/nfl-big-data-bowl-2020/discussion/119400. Accessed: 2020-07-19.

Horowitz, M., Yurko, R., and Ventura, S. (2019).nflscrapR: Compiling the NFL play-by-play API for easy use in R. R package version 1.8.3. https://github.com/maksimhorowitz/nflscrapR.

Carl, S., and Baldwin, B. (2020). nflfastR: Functions to Efficiently Scrape NFL Play by Play Data. https://mrcaseb.github.io/nflfastR/.

Schoenfield, D. (2012). "What we Talk about when we Talk about War". URL http://espn.go.com/blog/sweetspot/post/ /id/27050/what-we-talk-about-when-we-talk-about-war. Accessed: 2020-07-19.

Yurko, R., Ventura, S., & Horowitz, M. (2019). nflWAR: a reproducible method for offensive player evaluation in football. *Journal of Quantitative Analysis in Sports*, *15*(3), 163-183.