Engenharia de Software

O que é engenharia de software?

- É uma disciplina da engenharia dedicada a todos os aspectos da produção de software.
- Engenheiros de software devem adotar uma abordagem sistemática e organizada para o seu trabalho e usar técnicas e ferramentas apropriadas, de acordo com o problema a ser resolvido, e com as restrições e recursos disponíveis.

Objetivos

 Aplicação de teoria, modelos, formalismos, técnicas e ferramentas da ciência da computação e áreas afins para o desenvolvimento sistemático de software.

 Aplicação de métodos, técnicas e ferramentas para o gerenciamento do processo de desenvolvimento.

• Produção da documentação formal destinada a comunicação entre os membros da equipe de desenvolvimento bem como aos usuários.

Definições de Engenharia de Software

- O estabelecimento e uso de princípios de engenharia para a produção economicamente viável de software de qualidade que funcione em máquinas reais [Bauer, 69]
- A engenharia de software é a disciplina envolvida com a produção e manutenção sistemática de software que são desenvolvidos com custos e prazos estimados.
- Disciplina que aborda a construção de software complexo com muitas partes interconectadas e diferentes versões - por uma equipe de analistas, projetistas, programadores, gerentes, "testadores", etc.

Componentes de Sistemas de Computação

Hardware

Computadores, periféricos e redes

Software

Os programas e arquivos de dados

Informações

 Coleção de informações organizadas e sistematizadas necessárias ao desempenho das tarefas e procedimentos

Usuários

 Usuários e operadores que realizam as tarefas e procedimentos.

Procedimentos

 Atividades realizadas pelos usuários e operadores, bem como pelos programas (procedimentos automatizados).

Documentação

 Manuais e formulários que descrevem as operações do sistema.

Qual a diferença entre engenharia de software e engenharia de sistemas?

• A engenharia de sistemas está interessada em todos os aspectos de um sistema baseado em computador, incluindo hardware software, fatores humanos, informação e o processo. A engenharia de software é parte dela.

Princípios da Engenharia de Software

- Todo engenheiro de software deve desenvolver com:
 - Rigor e Formalidade
 - Separação de interesses
 - Modularidade
 - Abstração
 - Antecipação de mudanças
 - Generalidade
 - Possibilidades de evolução

Conceitos

- Teorias
- Princípios
- Modelos e Formalismos
- Ferramentas e Ambientes
- Métodos e Técnicas
- Metodologias
- Paradigmas

Ciclo de vida

- Fase de definição
 - Análise e Especificação
 - Estudo de Viabilidade
 - Estimativas e Planejamento
- Fase de desenvolvimento
 - Design
 - Implementação e integração
 - Verificação e Validação
- Fase de operação
 - Distribuição, Instalação e Configuração
 - Utilização e administração
 - Manutenção
 - corretiva, evolutiva e adaptativa
- Fase de retirada
 - Migração, reengenharia, engenharia reversa

Ciclo de vida: fases x atividades

O que é um processo de software?

- Um conjunto de atividades realizadas por pessoas cujo objetivo é desenvolvimento ou evolução de software e sua documentação.
- Atividades genéricas em todos os processos:
 - Especificação
 - o que o sistema deve fazer (funcionalidade) e quais as restrições
 - Desenvolvimento
 - produção do software
 - Verificação
 - avaliar correção, validação e outros aspectos de qualidade
 - Manutenção
 - mudanças no software
- Um modelo de processo de software é uma representação abstrata das atividades, papéis e artefatos, cronograma.

Modelo X Processo

- Um modelo é algo teórico, um conjunto de possíveis ações.
- O processo deve determinar ações práticas a serem realizadas pela equipe como prazos definidos e métricas para se avaliar como elas estão sendo realizadas.
- Define quem faz o que, quando e como.

Modelo + Planejamento = Processo

Atividades, Artefatos, Marcos e Entregas

- Um processo é organizado em atividades.
- Atividades são de responsabilidade de um membro da equipe (trabalhador).
- Atividades devem gerar um artefato de saída, que possa ser verificado, e podem requisitar um artefato de entrada.
- Um artefato é um modelo, documento ou código produzido por uma atividade.
- Uma entrega (liberação) é um artefato entregue ao cliente
- Um processo deve estabelecer uma série de marcos.
- Um marco é um ponto final de uma atividade de processo.

Planejamento e Gerenciamento

- Planejamento
 - Previsão de atividades, recursos, custos e prazos
 - Estimativas do produto e processo
- Gerenciamento
 - Controle de acordo com o que foi planejado
 - Verificação da qualidade do produto e do processo

Estrutura analítica de tarefas

- Descrição da rede de tarefas de um projeto, mostrando a dependência entre elas
- Minimizar dependência e maximizar concorrência entre as atividades
 - Concorrência permite uma utilização melhor da força de trabalho da equipe.
 - Dependência gera atrasos em cascata.
- Determinar o caminho crítico.

Tarefa	Duração	Dependências	Responsável
T1	8		Jane
T2	15		Ane
Т3	15	T1(M1)	Jane

Rede de Atividades

Linha de tempo (Diagrama de Gantt)

Alocação pessoa-atividade

Estimativas de custos e prazos

- Objetivo: previsão os custos de um projeto de software.
- Estimativas dos recursos necessários
 - Humanos
 - Tecnológicos
 - Burocráticos
 - Infra-estrutura
- Questões fundamentais
 - Qual o esforço necessário para completar uma atividade?
 - Quanto dias ou meses é necessário para cada atividade?
 - Qual o custo total?
 - Estimativas e elaboração do cronograma são atividades interdependentes.

Estimativas e Métricas

- Estimativas são baseadas em métricas históricas e empíricas
- Métricas históricas
 - Obtidas a partir de experiências anteriores da equipe
- Métricas empíricas
 - Dados estatísticos de diferentes equipes

Métricas

- Planejamento, Gerenciamento e Avaliação são realizados com base em métricas
- A medição possibilita
 - Avaliar a qualidade dos produtos
 - Avaliar a produtividade da equipe
 - Avaliar métodos e ferramentas
 - Realizar estimativas no planejamento
- Métricas do processo
 - Métricas de produtividade
- Métricas do produto
 - Métricas da qualidade e métricas técnicas

Métricas para Planejamento e Gerenciamento

- Objetivos
 - Dimensão dos produtos
- Modelos, protótipos, documentos e software
 - Produtividade
- Quantidade produzida por esforço
 - Esforço de produção
- Pessoas necessárias num período de tempo
 - Defeitos
- Número de erros encontrados
 - Custo de produção
- Valor do esforço de produção e correção de erros
 - Tamanho = 20,7 KLOC
 - Produtividade = 3,6 PM/KLOC (Pessoa-Mês)/(k lines-of-code)
 - Esforço = Produtividade*KLOC(penalidade) = 3,6*20,7 (1,030) = 95 PM

Exercício

• Criar das relatório das funcionalidades da ferramenta Readmine

• Crie uma pasta com o nome resumo no projeto do github e envie o link para o email: a.sousajose@gmail.com com assunto Engenharia1