Recovering realistic texture in image super-resolution by deep spatial feature transform

Xintao Wang Ke Yu Chao Dong Liang Lin Chen Change Loy

Issues

1. How to represent the semantic categorical prior?

☐ Our approach: explore semantic segmentation probability maps as the categorical prior up to pixel level.

2. How categorical prior can be incorporated into the reconstruction process effectively?

☐ Our approach: propose a novel **S**patial **F**eature **T**ransform that is capable of altering the network behavior conditioned on other information.

Represent categorical prior

- Contemporary CNN segmentation network^[1]
 - fine-tuned on LR images

Examples on segmentation

Incorporate conditions

 $\widehat{\boldsymbol{y}} = G_{\theta}(\boldsymbol{x}|\boldsymbol{\Psi})$

Spatial Feature Transform

• By learning a mapping function \mathcal{M} , the prior Ψ is modeled by a pair of affine transformation parameters (γ, β) .

$$\mathcal{M}: \Psi \mapsto (\gamma, \beta)$$

• The modulation is then carried out by an affine transformation on feature maps F. $SFT(F|\gamma,\beta) = \gamma \odot F + \beta$

$$\widehat{\boldsymbol{y}} = G_{\theta}(\boldsymbol{x}|\Psi)$$

$$\widehat{\boldsymbol{y}} = G_{\theta}(\boldsymbol{x}|\Psi)$$

$$\widehat{\boldsymbol{y}} = G_{\theta}(\boldsymbol{x}|\gamma,\beta)$$

$$\widehat{\boldsymbol{y}} = G_{\theta}(\boldsymbol{x}|\gamma,\beta)$$

$$\widehat{\boldsymbol{y}} = G_{\theta}(\boldsymbol{x}|\gamma,\beta)$$

Spatial Feature Transform

loss function

Adversarial loss^[1]

 encourage the network to generate images that reside on the manifold of natural images

$$\min_{\theta} \max_{\eta} \mathbb{E}_{y \sim p + R} \log D_{\eta}(y) + \mathbb{E}_{x \sim p + R} \log(1 - D_{\eta}(G_{\theta}(x)))$$

Generator

• Perceptual loss^[2]

use a pre-trained 19-layer VGG network (features before conv54)

✓ optimize a super-resolution model in a feature space

$$\|\phi_{VGG}(\hat{y}) - \phi_{VGG}(y)\|_2^2$$

[1]Goodfelow, lan, et al. Generative adversarial nets. In NIPS. 2014

Spatial condition

• The modulation parameters (γ, β) have a close relationship with probability maps P and contain spatial information.

Results

Conclusion

- Explore semantic segmentation maps as categorical prior for realistic texture recovery.
- Propose a novel Spatial Feature Transform layer to efficiently incorporate the categorical conditions into a CNN-based SR network.
- Extensive comparisons and a user study demonstrate the capability of SFT-Net in generating realistic and visually pleasing textures.