PRACTICE QUESTIONS MATHEMATICS Compulsory Part Question-Answer Book

Instructions

- 1. This paper must be answered in English.
- 2. Unless otherwise specified, all working must be clearly shown.
- 3. Unless otherwise specified, numerical answers must be exact.
- 4. This paper is for **internal use** only.
- 5. All questions are collected from AL/CE/DSE past papers, reference site: https://www.dse.life/ppindex/m2/

2. Let C(k) be the curve $y = \frac{1}{k+1}[2x^2 + (k+7)x + 4]$, where $k \neq -1$. (a) If C(k) cuts the x-axis at two points at P and Q, and PQ = 1, find the value(s) of k. (b) Find the range of values of k such that C(k) does not cut the x-axis. i. Find the points of intersection of the curves C(1) and C(2). ii. Show that C(k) passes through the two points in (c)(i) fro all values of k.

- 3. (a) Let $f(x) = 36x x^2$. Using the method of completing the square, find the coordinates of the vertex of the graph of y = f(x).
 - (b) The length of a piece of string is 108m. A guard cuts the string into two pieces. One piece is used to enclose a rectangular restricted zone of area $A \,\mathrm{m}^2$. The other piece is used to divide this restricted zone into two rectangular regions as shown in the figure.

- i. Express A in terms of x.
- ii. The guard claims that the area of this restricted zone can be greater than 500 m^2 . Do you agree? Explain your answer.

1110	practice paper
_	
_	
_	
_	
-	
_	
_	
_	

4. In the figure, ABCD is a rhombus. The diagonals AC and BD cuts at E.

- (a) Find
 - i. the coordinates of E,
 - ii. the equation of BD.
- (b) It is given that the equation of AD is x + 7y 65 = 0. Find
 - i. the equation of BC,
 - ii. the length of AB.

ii. the length (<i>J</i> 1 <i>Z</i> 1 <i>D</i> .		
-			
		<u> </u>	

5. In the figure, the straight line passing through A and B is perpendicular to the straight line passing through A and C, where C is a point lying on the x-axis.

- (a) Find the equation of the straigh line passing through A and B.
- (b) Find the coordinates of C.
- (c) Find the area of $\triangle ABC$.
- (d) A straight line passing through A and the line segment BC at D such that the area of $\triangle ABD$ is 90 square units. Let BD:DC=r:1. Find the value of r.

F4 Fi	nal practice paper

6.	(a) Factorize $a^4 - 16$ and $a^3 - 8$.
	(b) Find the L.C.M. of $a^4 - 16$ and $a^3 - 8$.
7.	Factorize
	(a) $m^2 + 12mn + 36n^2$.
	(b) $m^2 + 12mn + 36n^2 - s^2$.

0	Tr4:
ð.	Factorize

(a)
$$x^3 + x^2y - 7x^2$$
.

(b)
$$x^3 + x^2y - 7x^2 - x - y + 7$$
.

9. Factorize

- (a) $4m^2 9$.
- (b) $2m^2n + 7mn 15n$.
- (c) $4m^2 9 2m^2n 7mn + 15n$

10.	It is	given that $f(x) = 2x^2 + ax + b$.
	(a)	If $f(x)$ is divided by $(x-1)$, the remainder is -5 . If $f(x)$ is divided by $(x+2)$ the remainder is 4. Find the values of a and b .
	(b)	If $f(x) = 0$, find the values of x .

12.	(a)	Find the quotient when $5x^3 + 12x^2 - 9x - 7$ is divided by $x^2 + 2x - 3$.
	(b)	Let $g(x) = (5x^3 + 12x^2 - 9x - 7) - (ax + b)$, where a and b are constants. It is given that $g(x)$ is divisible by $x^2 + 2x - 3$.
		i. write down the values of a and b .
		ii. Solve the equation when $g(x) = 0$.

F4 Fi	nal practice paper

13.	Simplify and express the following with positive indices
	(a) $\frac{x^3y^2}{x^{-3}y}$.
	(b) $x(\frac{x^{-1}}{y^2})^{-3}$. (c) $\frac{(m^5n^{-2})^6}{m^4n^{-3}}$.
	(c) $\frac{(m^5n^{-2})^6}{m^4n^{-3}}$.

14.	Simplify $\sqrt{\frac{3^{5k+2}}{27^k}}$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.
15.	Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a, b > 0$.

10.	Let $\log z = x$, $\log 3 = y$. Express the following in terms of x and y .
	(a) log 18.
	(b) log 15.
	(c) $\log \sqrt{12}$.
17.	Solve the following without using calculator:
	(a) $3^x = \frac{1}{\sqrt{27}}$;
	(b) $\log x + 2\log 4 = \log 48$.

18. A researcher defined Scale A and Scale B to represent the magnitude of an explosion as shown in the table:

Scale	Formula
A	$M = \log_4 E$
В	$N = \log_8 E$

It is given that M and N are the magnitudes of an explosion on Scale A and Scale B respectively, while E is the relative energy released by the explosion. If the magnitude of an explosion is 6.4 on Scale B , find the magnitude of the explosion on Scale A .

passes through	one point (240	, o, Express w	orinis or y.

20. Solve the following:

(a)
$$\begin{cases} 4^{x-y} = 4 \\ 4^{x+y} = 16 \end{cases}$$
, find x and y .

(b) $3^{2x} + 3^x - 2 = 0$, find x.

(c) $\log_3(x-3) + \log_3(x+3) = 3$, find	d x	find	= 3,	(x + 3)	log_3	+	x - 3	$\log_3(x)$	(c)
--	-----	------	------	---------	---------	---	-------	-------------	-----

-		
<u> </u>		

21. If $2\log_{10} x - \log_{10} y = 0$. Show that $y = x^2$.

22.	Solve the following equations:
	(a) $1 - 2x = \sqrt{2 - x}$.
	(b) $x - \sqrt{x+1} = 5$.
	(c) $x - 5\sqrt{x} - 6 = 0$.

real roots.
The quadratic equations $x^2 - 6x + 2k = 0$ and $x^2 - 5x + k$ have a common root α (i.e. α is a root of both equations.) Show that $\alpha = k$ and hence find the value(s) of

25.	Let α and β be the roots of $x^2 + kx + 1 = 0$, where k is a constant.
	(a) Find, in terms of k ,
	i. $(\alpha + 2) + (\beta + 2)$,
	ii. $(\alpha + 2)(\beta + 2)$.
	(b) Suppose $\alpha + 2$ and $\beta + 2$ are roots of $x^2 + px + q = 0$, where p and q are constants. Find p and q in terms of k .

. If $\frac{1}{m} + \frac{1}{n} = \frac{1}{a}$	and $m+n=b$	o, express the	7 10110 11116 111		ind 0	
(a) mn ,						
(b) $m^2 + n^2$.						
constant. Exp	$dn \beta$ are roots or β are following the following the following the state of the			+2k=0, wh	here $k \ (k \neq 0)$)) is
				+2k=0, wh	here $k \ (k \neq 0)$)) is
constant. Exp (a) $\alpha^2 + \beta^2$,				+2k=0, wh	here $k \ (k \neq 0)$)) is
constant. Exp (a) $\alpha^2 + \beta^2$,				+2k=0, wh	here $k \ (k \neq 0)$)) is
constant. Exp (a) $\alpha^2 + \beta^2$,				+2k=0, wh	here $k \ (k \neq 0)$)) is
constant. Exp (a) $\alpha^2 + \beta^2$,				+2k=0, wh	here $k \ (k \neq 0)$)) is
constant. Exp (a) $\alpha^2 + \beta^2$,				+2k=0, wh	here $k \ (k \neq 0)$)) is
constant. Exp (a) $\alpha^2 + \beta^2$,				+2k=0, wh	here $k \ (k \neq 0)$)) is
constant. Exp (a) $\alpha^2 + \beta^2$,				+2k=0, wh	here $k \ (k \neq 0)$)) is
constant. Exp (a) $\alpha^2 + \beta^2$,				+2k=0, wh	here $k \ (k \neq 0)$)) is
constant. Exp (a) $\alpha^2 + \beta^2$,				+2k=0, wh	here $k \ (k \neq 0)$)) is
(a) $\alpha^2 + \beta^2$,				+2k=0, wh	here $k \ (k \neq 0)$)) is

Express - 1	- + 21					
	$3:4$ and ϵ : c .	i:c=2:	5, find			
(a) a:b			5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			
(a) a:b	: c,		5, find			

In a playground, the ratio of number of adults to the number of children is 13:6. I
9 adults and 24 children enter the playground, then the ratio of the number of
adults to the number of children is 8:7. Find the original number of adults in the
playground.
It is given that z varies directly as x^2 and inversely as y. If $x = 1$ and $y = 2$, then $z = 3$. Find z when $x = 2$ and $y = 3$.

32.	A variable quantity y is the sum of two parts. The first part varies directly as another variable x , while the second part varies directly as x^2 . When $x = 1$, $y = -5$, when $x = 2$, $y = -8$.
	(a) Express y in terms of x .
	(b) Hence, find the value of y when $x = 6$.

33.	In a factory, the production cost of a carpet of perimeter s metres is C . It is given that C is a sum of two parts, one part varies as s and the second part varies as the square of s . When $s=2$, $C=356$; when $s=5$, $C=1250$.
	(a) Find the production cost of a carpet of perimeter 6 metres.
	(b) If the production cost of a carpet is \$539, find the perimeter of the carpet.

34.	It is given that $h(x)$ is partly constant and partly varies as x . Suppose that $h(-2) = -96$ and $h(5) = 72$.
	(a) Find $h(x)$.
	(b) Solve the equation $h(x) = 3x^2$.

	Simplify the following:
	(a) $\frac{1-\cos^2 x}{\sin x}$.
	(b) $\frac{\sin(180^{\circ} - \theta)}{\sin(90^{\circ} + \theta)}.$
	(c) $\sin^2(180^\circ - \phi) + \sin^2(270^\circ + \phi)$.
36.	Solve the following with $0^{\circ} \le \theta < 360^{\circ}$. Give your answer in 3 significant figures if needed.
	(a) $\sin^2 \theta + 7\sin \theta = 5\cos^2 \theta$.
	(a) $\sin^2 \theta + 7 \sin \theta = 5 \cos^2 \theta$. (b) $\sin^2 \theta - 3 \cos \theta - 1 = 0$.

37. In the figure, the bearings of two ships A and B from a light house L are 020° and 110° respectively. B is 20 km and at a bearing of 140° from A.

Find

(a	the	distance	of	L	from	B.
---	---	-----	----------	----	---	------	----

(b) the	bearing	of L	from	B.
----	-------	---------	--------	------	----

 	 <u> </u>	

38. In the figure, AB = 4, AC = 5 and BC = 7. Calculate $\angle A$ to the nearest degree.

_			
_			
_			
_			

39. In the figure, find AB and the area of $\triangle ABC.$

-		

40. In the figure, ABC is an equilateral triangle. AB=2. D,E,F are points on AB,BC,CA respectively such that AD=BE=CF=x.

- (a) By using the cosine formula or otherwise, express DE^2 in terms of x.
- (b) Show that the area of $\triangle DEF = \frac{\sqrt{3}}{4}(3x^2 6x + 4)$.

	4
-	
-	

	nal practice pap	er		