Important sequences and their limits:

$$\lim_{n\to\infty} \frac{\ln n}{n} = 0$$

$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

3.
$$\lim_{n\to\infty} x^{1/n} = 1 \ (x > 0)$$

4.
$$\lim_{n\to\infty} x^n = 0 \ (|x| < 1)$$

5.
$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x \text{ (any } x)$$

6.
$$\lim_{n\to\infty}\frac{x^n}{n!}=0 \text{ (any } x)$$

$$x = r \cos \theta$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$dxdy = r drd\theta$$
Exponential function ex
$$e = 2.71828 \ 18284$$

$$e^{x} \cdot e^{y} = e^{x} + y, \quad \frac{e^{x}}{e^{y}} = e^{x} - y, \quad (e^{x})^{y} = e^{xy}$$
Natural logarithm /nx or log_ex.
$$ln(xy) = ln \ x + ln \ y, \qquad ln \left(\frac{x}{y}\right) = ln \ x$$

$$e^{lnx} = x, \qquad e^{-lnx} = e^{ln\left(\frac{1}{x}\right)}$$
Logarithm of base ten log₁₀x
$$log_{10} \ x = log \ e \ lnx, \qquad log \ e = 0.4342$$

$$lnx = \frac{1}{log \ e} \ log_{10} \ x, \qquad \frac{1}{log \ e} = 2.3025$$

$$ln(xy) = ln x + ln y,$$

$$ln\left(\frac{x}{y}\right) = ln x - lny, ln (x^n) = n \log x$$

$$e^{lnx} = x,$$

$$e^{-lnx} = e^{ln\left(\frac{1}{x}\right)} = \frac{1}{x}$$

$$log_{10} x = log e lnx,$$

$$log e = 0.43429$$

$$lnx = \frac{1}{log e} log_{10} x,$$

$$log e = 0.43429$$

$$lnx = \frac{1}{log e} = 2.30258$$

$$10^{log_{10}x} = x,$$

$$10^{-log_{10}x} = \frac{1}{x}$$

Sine and Cosine functions

 $\sin x$ and $\cos x$ have period 2π . $\sin (-x) = -\sin x$ and $\cos (-x) = \cos x$ In calculus, angles are measured in radians.

$$= 57.2957795131^{\circ}$$

$$\sin^2 x + \cos^2 x = 1$$

$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$

$$\sin (A - B) = \sin A \cos B - \cos A \sin B$$

$$cos (A + B) = cos A cos B - sin A sin B$$

$$cos (A - B) = cos A cos B + sin A sin B$$

$$\sin 2A = 2 \sin A \cos A$$
, $\cos 2A = \cos^2 A - \sin^2 A$

$$\sin x = \cos \left(\frac{\pi}{2} - x\right) = \cos \left(x - \frac{\pi}{2}\right)$$

$$\cos x = \sin \left(\frac{\pi}{2} + x\right) = \sin \left(\frac{\pi}{2} - x\right)$$

$$\sin (\pi - x) = \sin x$$
, $\cos (\pi - x) = -\cos x$...(9)

$$\cos^2 x = \frac{1}{2} (1 + \cos 2x), \sin^2 x = \frac{1}{2} (1 - \cos 2x)$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2 \cos A \sin B = \sin (A + B) - \sin (A - B)$$

$$2 \cos A \cos B = \cos (A + B) + \cos (A - B)$$

$$2 \sin A \sin B = -\cos (A + B) + \cos (A - B)$$

$$\sin C + \sin D = 2 \sin \left(\frac{C + D}{2}\right) \cos \left(\frac{C - D}{2}\right)$$

Land of the country of the control of

$$\sin C - \sin D = 2 \cos \left(\frac{C + D}{2}\right) \sin \left(\frac{C - D}{2}\right)$$

$$\cos C + \cos D = 2 \cos \left(\frac{C + D}{2}\right) \cos \left(\frac{C - D}{2}\right)$$

$$\cos D - \cos C = 2 \sin \left(\frac{C + D}{2}\right) \sin \left(\frac{C - D}{2}\right)$$

Tangent, Cotangent, Secant, Cosecant

$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x}$, $\sec x = \frac{1}{\cos x}$, $\csc x = \frac{1}{\sin x}$

$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}, \tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Circular and Hyperbolic functions

$$e^{ix} = \cos x + i \sin x, e^{-ix} = \cos x - i \sin x$$

$$\sin x = \frac{e^{ix} - e^{ix}}{2i}, \cos x = \frac{e^{ix} - e^{ix}}{2}$$

$$\sinh x = \frac{1}{2} (e^x - e^{-x}), \cos hx = \frac{1}{2} (e^x + e^{-x})$$

$$\tanh x = \frac{\sin hx}{\cos hx}, \cot hx = \frac{\cos hx}{\sin hx}$$

$$\cosh x + \sin hx = e^x, \cos hx - \sin hx = e^{-x}$$

$$\cosh^2 x - \sin h^2 x = 1$$

$$\sinh^2 x = \frac{1}{2} (\cos h^2 x - 1), \cos h^2 x = \frac{1}{2} (\cos h^2 x + 1)$$

$$\sinh(x \pm y) = \sin hx \cos hy \pm \cos hx \sin hy$$

$$\cosh(x \pm y) = \cos hx \cos hy \pm \sin hx \sin hy$$

$$\tanh(x \pm y) = \frac{\tan hx \pm \tan hy}{1 \pm \tan hx \tan hy}$$

CALCULUS

Limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1,$$

$$\lim_{x \to 0} \cos x = 1,$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e,$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{\frac{1}{x}} = e$$

Differentiation

1.
$$\frac{d}{dx}$$
 (c) = 0 (c constant)

3.
$$\frac{d}{dx} (u + v) = \frac{du}{dx} + \frac{dv}{dx}$$

5.
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

7.
$$\frac{d}{dx}(a^x) = a^x \log_e a$$

9.
$$\frac{d}{dx} (\log_a x) = \frac{1}{x \log_a a}$$

11.
$$\frac{d}{dx} \sin x = \cos x$$

13.
$$\frac{d}{dx} \tan x = \sec^2 x$$

2.
$$\frac{d}{dx}$$
 (cu) = c $\frac{du}{dx}$ (c constant)

4.
$$\frac{d}{dx}$$
 (uv) = $v \frac{du}{dx} + u \frac{dv}{dx}$

6.
$$\frac{d}{dx}(x^n) = n x^{n-1}$$

8.
$$\frac{d}{dx} (e^x) = e^x$$

10.
$$\frac{d}{dx} \log_e x$$
 or $\frac{d}{dx} \ln x = \frac{1}{x}$

12.
$$\frac{d}{dx} \cos x = -\sin x$$

14.
$$\frac{d}{dx} \cot x = -\csc^2 x$$

d sec	x =	sec	x ta	ın x
15. $\frac{d}{dx}$ sec	MAN N			10.19.13

17.
$$\frac{d}{dx} \sin hx = \cos hx$$

19.
$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}$$

21.
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}$$

23.
$$\frac{d}{dx} \sec^{-1} x = \frac{1}{x \sqrt{x^2 - 1}}$$

25.
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
 (Chain rule)

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \ (n \neq -1)$$

3.
$$\int a^x dx = \frac{a^x}{\log_e a} + c$$

5.
$$\int \sin x \, dx = -\cos x + c$$

7.
$$\int \sec^2 x \, dx = \tan x + c$$

9.
$$\int \sec x \tan x dx = \sec x + c$$

11.
$$\int \tan x \, dx = \log |\sec x| + c$$

13.
$$\int \sec x \, dx = \log \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) + c$$
$$= \log (\sec x + \tan x) + c$$

15.
$$\int \sin hx \, dx = \cos hx + c$$

17.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$$

19.
$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left| \frac{x + a}{x - a} \right| + c$$

21.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left| x + \sqrt{(x^2 + a^2)} \right| + c$$

23.
$$\int \sqrt{x^2 + a^2} \ dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{(x^2 + a^2)} \right| + c$$

24.
$$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{(x^2 - a^2)} \right| + c$$

25.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c \quad 26. \quad \int uv \, dx = u \int v dx - \int \left[\frac{du}{dx} \int v \, dx \right] dx + c$$

27.
$$\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$$

28.
$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + c$$

= $\frac{e^{ax}}{\sqrt{a^2 + b^2}} \sin (bx - \phi) + c$, $\phi = \tan^{-1} \frac{b}{a}$

29.
$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + c$$

= $\frac{e^{ax}}{\sqrt{a^2 + b^2}} \cos (bx - \phi) + c, \ \phi = \tan^{-1} \frac{b}{a}$

30.
$$\int_{a}^{b} f(x) dx = [f(x)]_{a}^{b} = F(b) - F(a)$$

16.
$$\frac{d}{dx}$$
 cosec $x = -$ cosec x cot x

18.
$$\frac{d}{dx} \cos hx = \sin hx$$

20.
$$\frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1-x^2}}$$

22.
$$\frac{d}{dx} \cot^{-1} x = -\frac{1}{1+x^2}$$

24.
$$\frac{d}{dx} \csc^{-1} x = -\frac{1}{x \sqrt{x^2 - 1}}$$

$$2. \qquad \int \frac{1}{x} dx = \ln |x| + c$$

$$4. \qquad \int e^x \ dx = e^x + c$$

6.
$$\int \cos x \, dx = \sin x + c$$

8.
$$\int \csc^2 x \, dx = -\cot x + c$$

10.
$$\int \csc x \cot x dx = -\csc x + c$$

12.
$$\int \cot x \, dx = \log |\sin x| + c$$

14.
$$\int \csc x \, dx = \log \tan \frac{x}{2} + c$$
$$= \log (\csc x - \cot x) + c$$

16.
$$\int \cos hx \, dx = \sin hx + c$$

18.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + c$$

20.
$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$$

21.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left| x + \sqrt{(x^2 + a^2)} \right| + c$$
 22. $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left| x + \sqrt{(x^2 - a^2)} \right| + c$

$$\int uv \, dx = u \int v dx - \int \left[\frac{du}{dx} \int v \, dx \right] dx + c$$

$$tan^{-1}$$
 $\frac{b}{a}$

2.

31.
$$\int_{a}^{b} f(x) dx = \int_{b}^{b} f(t) dt$$
32.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
33.
$$\int_{a}^{b} f(x) dx = \int_{a}^{a} f(x) dx + \int_{c}^{b} f(x) dx$$
34.
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$$

35.
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx, \text{ if } f(x) \text{ is even function}$$
$$= 0, \text{ if } f(x) \text{ is odd function.}$$

36.
$$\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a - x) dx$$
 37.
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$$

PROGRESSION AND SERIES

Arithmetic Prgression 1.

a,
$$a + d$$
, $a + 2d...T_n = a + (n - 1)d$, $S_n = \frac{n}{2} [2a + (n - 1)d]$

Geometric Progression 2.

a, ar, ar², ..., arⁿ⁻¹, ...
$$T_n = ar^{n-1}, S_n = \frac{a(r^n - 1)}{r - 1} \text{ if } r > 1$$
$$= \frac{a(1 - r^n)}{1 - r} \text{ if } r < 1.$$

3. (i)
$$1+2+3+...+n=\Sigma n=\frac{n(n+1)}{2}$$

(ii)
$$1^2 + 2^2 + 3^2 + ... + n^2 = \sum n^2 = \frac{n(n+1)(2n+1)}{6}$$

(iii)
$$1^3 + 2^3 + 3^3 + ... + n^3 = \sum n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

GEOMETRIC FORMULAE

1. Volume of the sphere =
$$\frac{4}{3}\pi r^3$$

Surface area of the Sphere =
$$4\pi r^2$$

Volume of the cylinder = πr^2 h

Surface area of the cylinder =
$$2\pi rh$$

3. Volume of the right circular cone =
$$\frac{1}{3} \pi r^2 h$$

Surface area of the right circular cone =
$$\pi r \sqrt{r^2 + h^2}$$

4.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Area of the ellipse =
$$\pi$$
 ab

5. For the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $b^2 = a^2 (1 - e^2)$ 6. For the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, $b^2 = a^2 (e^2 - 1)$ 7. General equation of the

(i) Straight line:
$$ax + by + c = 0$$

(ii) Plane :
$$ax + by + cz + d = 0$$

(iii) Circle
$$x^2 + y^2 + 2gx + 2fy + c = 0$$

Centre $(-g - f)$

Radius :
$$\sqrt{g^2 + f^2} - c$$

(iv) Radius
$$\sqrt{g^2 + f^2 - c}$$

Sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$
Centre $-u, -v, -w$

Radius
$$(-u, -v, -w)$$

 $\sqrt{u^2 + v^2 + w^2 - d}$