Einführung in Datenbanksysteme

Tutorium: SQL (DDL & DML)

Tutoren

Mit Folienmaterial aus der Vorlesung und DBPRA

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

- Wiederholung
 - DQL (Data Query Language)
- DDL (Data Description Language)
 - □ Tabellen erstellen und verändern
- DML (Data Manipulation Language)
 - Einfügen, Ändern und Löschen

Wiederholung

- **Grundgerüst:** SELECT ... FROM ... WHERE ...
 - SELECT: Ausgabeformat (Projektion von Attributen in RA)
 - FROM: Abgefragte Tabellen
 - WHERE: Bedingungen für Ergebnistupel (Selektion in RA)
- Join:
 - Implizite Syntax
 - Tabellen in FROM-Klausel listen
 - Join Bedingung in WHERE-Klausel einfügen
 - Explizite Syntax
 - FROM ... JOIN ... ON ...

Wiederholung

- Sortierung
 - □ ORDER BY ... <ASC | DESC>
- Duplikateleminierung
 - □ SELECT DISTINCT ...
- Aggregatfunktionen
 - □ COUNT(), SUM(), AVG(), MIN(), MAX()
- Gruppierung
 - □ GROUP BY ...
- Auswahl von Gruppen
 - □ HAVING ...
- Mengenoperationen
 - □ ... <UNION | INTERSECT | EXCEPT> ...

SQL-Anweisungen

DQL	DML	DDL	DCL	Transaktions- steuerung
SELECT FROM WHERE	INSERT UPDATE DELETE	CREATE DATABASE CREATE TABLE ALTER TABLE	GRANT SELECT ON Tablename TO User 	COMMIT ROLLBACK SAVEPOINT

- DQL (Data Query Language)
- DML (Data Manipulation Language)
- DDL (Data Description Language)
- DCL (Data Control Language)

Beachtet die Unterschiede bei Systemen. Hier durchgehend MySql

DDL: Databank und Tabellen erstellen

Datenbank erstellen

□ CREATE DATABASE dbname (+ optionale Eigenschaften)

Tabellen erstellen

```
CREATE TABLE <IF NOT EXISTS> Tablename (
   spaltenname spaltentyp constraints
)
```

Beispiel

```
CREATE TABLE Person (
   name VARCHAR(30) NOT NULL,
   geburtstag DATE NOT NULL,
   geburtsort VARCHAR(30),
   PRIMARY KEY (name, geburtstag)
)
```


DDL: Zeichensatz & Sortierung angeben

Beispiel:

CREATE DATABASE person CHARACTER SET latin1 COLLATE latin1_german1_ci;

Zeichensatz: latin1 (entspricht ISO-8859-1)

Sortierregeln: latin1_german1_ci

SHOW COLLATION; Alle verfügbaren Zeichensätze anzeigen SHOW VARIABLES; die MySQL-Character-Einstellungen ansehen

Sortierung MySql

Bezeichnung	Bemerkung	MySql-Variante	Sortierregeln
Standard	(schwedisch)	default	ä/ö/ü nach z
General	(englisch)	latin1_general_ci latin1_general_cs	ä/ö/ü/ß nach a/o/u/s
German1	DIN 1, Duden, für Wörter	latin1_german1_ci latin1_german1_cs	ä/ö/ü/ß wie a/o/u/s
German2	DIN 2, Telefonbuch, für Namen	latin1_german2_ci latin1_german2_cs	ä/ö/ü/ß wie ae/oe/ue/ss

"..._ci" bedeutet "Case Insensitive, "..._cs" bedeutet Case Sensitive

Collation anzeigen

SHOW COLLATION;

- Tabellen innerhalb einer Datenbank anzeigen SHOW TABLES;
- Detallierte Infos über Tabellen

SHOW TABLE status;

CREATE Table Query Anzeigen

SHOW CREATE TABLE person;

Tabelle über "SELECT" erstellen

Beispiel:

Relationenschema wird übernommen und Inhalte werden kopiert

```
CREATE TABLE Piraten

AS

SELECT *
FROM Teilnehmer
WHERE Bootsklasse = 'Pirat';
```

Beispiel: Nur die Struktur übernehmen (aber keine Datensätze vorhanden)

```
CREATE TABLE Piraten
AS

SELECT *
FROM Teilnehmer
-- Es gibt keine Tupel mit der Bootsklasse XYZ in der Instanz
WHERE Bootsklasse = 'XYZ';
```


Datentypen (Hier MySql)

Spaltentypen	Beschreibung
INT, INTEGER	Integer normaler Größe.
FLOAT[(M)]	Kleine Fließkommazahl, M ist die Gesamtzahl an Ziffern
DOUBLE[(M)]	Fließkommazahl normaler Größe (mit doppelter Genauigkeit), M ist die maximale Anzahl an Ziffern
DECIMAL[(M)]	G <u>epackte "exakte" Festkommazahl.</u> <i>M</i> ist die Gesamtzahl von Dezimalstellen, Berechnungen haben eine Genauigkeit von 65 Stellen
CHAR(x)	Text-Datentyp mit x Stellen, $0 \le x \le 254$, CHAR(0) für NULL und ,' Belegt immer Speicherplatz für x Stellen!
VARCHAR(x)	Strings variabler Länge. Diese kann zwischen 0 und 65.535 liegen Belegt nur benötigten Speicherplatz!
DATE	Datum-Datentyp FORMAT: _,YYYY-MM-DD
TIME	Zeit-Datentyp, <u>,HH:MM:SS.S'</u>

Aufzählung nicht vollständig!

Constraints

- NOT NULL Keine NULL-Werte
- PRIMARY KEY Primärschlüssel,
 - Maximal ein Primärschlüssel pro Relation
 - Keine NULL-Werte
 - Bei einem Attribut: Deklaration direkt in der Attributliste
 - Bei mehreren Attributen: Deklaration nach den Attributen
- UNIQUE Eindeutige Attributwerte
 - Es darf mehrere UNIQUE-Deklarationen geben pro Relation
 - NULL-Werte werden je nach DB-System akzeptiert

Beispiel

```
CREATE TABLE Person (
   name VARCHAR(30) NOT NULL,
   geburtstag DATE NOT NULL,
   geburtsort VARCHAR(30),
   PRIMARY KEY (name, geburtstag)
)
```


Constraints

- FOREIGN KEY Fremdschlüssel (referentielle Integrität)
 - □ kann NULL sein
 - Die referenzierte Attributmenge muss **unique** oder **primary key** sein.
- CHECK <u>Tabellen-Constraints</u> (Wertebereich eingrenzen)
 - Beispiel

 CREATE TABLE Haustier (CHECK (VKPreis 70)
 - id INT NOT NULL PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 besitzername VARCHAR(30) NOT NULL,
 besitzergeburtstag DATE NOT NULL,
 FOREIGN KEY (besitzername, besitzergeburtstag)

REFERENCES Person (name, geburtstag)

Referentielle Integrität erzwingen

- Was soll passieren, wenn das referenzierte Tupel
 - gelöscht wird (ON DELETE)
 - geändert wird (ON UPDATE)
- Drei Varianten
 - □ **RESTRICT** Verletzende Änderungen ablehnen (SQL default)
 - CASCADE Kaskadierung
 - SET NULL
 Setze Null-Werte für die Foreign Key Attribute
 - □ NO ACTION Alias für RESTRICT (DEFAULT)
- Beispiel
 - CREATE TABLE Haustier (
 ...,
 FOREIGN KEY(besitzername, besitzergeburtstag)
 REFERENCES Person(name, geburtstag)
 ON DELETE CASCADE)

Erstellt folgende Tabellen:

nicht negativ (nicht NULL)

Produkt	ProdNr	VkPreis	Bezeichnung	Abteilung
	88	200.30	Bratpfane	NullBock
	99	55.25	Schnuller	NixDa
	100	23.99	Schuhe	NixDa

Abteilung AbtName
NullBock
NixDa

Constraints:

√ "VkPreis" darf nicht negativ werden

∪ □ "Bezeichnung" darf nicht NULL werden

Wird der "AbtName" geändert, so soll Abteilung in Produkt auch geändert werden.

 Eine "Abteilung" darf nicht gelöscht werden, wenn es dazugehörige Produkte gibt

Lösung

```
CREATE TABLE Abteilung(
    AbtName CHAR(10) PRIMARY KEY
) ENGINE=INNODB;
```

Abteilung	<u>AbtName</u>
	NullBock
	NixDa

Lösung

CREATE TABLE Produkt (

ProdNr INT PRIMARY KEY,

VkPreis <u>DECIMAL(6,2)</u> NOT NULL,

Bezeichnung VARCHAR (30) NOT NULL,

Abteilung char (10) NOT NULL,

CHECK (VkPreis > 0),

FOREIGN KEY (Abteilung) REFERENCES Abteilung (AbtName) ON UPDATE CASCADE) ENGINE=INNODB;

freis 12 m

Produkt	<u>ProdNr</u>	VkPreis	Bezeichnung	Abteilung
	88	200.30	Bratpfane	NullBock
	99	55.25	Schnuller	NixDa
	100	23.99	Schuhe	NixDa

Constraints nachträglich ergänzen


```
CREATE TABLE Abteilung ( CREATE TABLE Produkt ( AbtName CHAR(10) NOT NULL ProdNr INT PRIMARY KEY,  
) ENGINE=InnoDB; VkPreis DECIMAL(6,2) NO
```

CREATE TABLE Produkt(
ProdNr INT PRIMARY KEY,
VkPreis DECIMAL(6,2) NOT NULL,
Bezeichnung VARCHAR(30) NOT NULL,
Abteilung char(10) NOT NULL) ENGINE=InnoDB;

Primärschlüssel für "AbtName"

ALTER TABLE Abteilung

ADD CONSTRAINT pk_abteilung PRIMARY KEY(AbtName);

Fremdschlüssel für "Abteilung" der Tabelle Produkt

ALTER TABLE Produkt

ADD CONSTRAINT fk_abteilung_FOREIGN KEY(Abteilung) REFERENCES Abteilung(AbtName) ON UPDATE CASCADE;

CHECK-Constraint

ALTER TABLE Produkt
ADD CONSTRAINT ck produkt vkPreis CHECK (VkPreis > 0);

INSERD – Datensätze einfügen


```
INSERT INTO Tabellenname

VALUES (value1, value2, value3,...)

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)
```

Beispiel:

INSERT INTO Abteilung VALUES ('NullBock'), ('NixDa');

Abteilung	<u>AbtName</u>
	NullBock
	NixDa

UPDATE, DELETE – Datensätze ändern/löschen

UPDATE (Datensätze, die die WHERE-Klausel erfüllen, ändern)

```
UPDATE Tabellenname
SET Attribut = neuerWert
WHERE Attribut = alterWert;

Beispiel:
UPDATE Abteilung
SET AbtName = 'Sowieso'
WHERE name = 'NullBock';
```

DELETE (Datensätze löschen)

```
DELETE FROM Tabellenname
WHERE Spaltenname = 'Wert'
```

```
Beispiel:
DELETE FROM Person
WHERE AbtName = 'NixDa';
```


Weitere DDL-Anweisungen

- Neue Spalte "EinkaufsPreis" der Tabelle Produkt hinzufügen ALTER TABLE Produkt ADD EinkaufsPreis DECIMAL (6,2);
- Umbenennen eines Attributes

 ALTER TABLE Produkt CHANGE EinkaufsPreis EinkPreis

 DECIMAL(6,2);
- Typ eines Attributs ändern
 ALTER TABLE Produkt MODIFY Bezeichnung VARCHAR (99);
- Attribut löschen
 ALTER TABLE Produkt DROP EinkPreis;
- Tabelle löschen

 DROP TABLE Produkt;

Aufgabe 1

Erstellen Sie das Relationenschema sowie dann den SQL-DDL code zum Anlegen der Tabellen nach dem vorliegenden E/R-Typ-Diagramm (Entwurfsentscheidungen für das Schema!).

MySQL Referenzhandbuch

http://dev.mysql.com/doc/refman/5.1/de/

Erstellen Sie das Relationenschema sowie dann den SQL-DDL code zum Anlegen der Tabellen nach dem vorliegenden E/R-Typ-Diagramm (Entwurfsentscheidungen für das Schema!).

Relationen Schema:

- □ Student (<u>MatNr</u>, Name, Vorname, GebDatum,
 FakNr → Fakultaet)
- □ Pruefungsfach (<u>PNr</u>, Fach, *FakNr* → *Fakultaet*)
- □ Ergebnis (<u>MatNr → Student</u>, <u>PNr → Pruefungsfach</u>, Note, Pruefer, Termin)
- Fakultaet (<u>FakNr</u>, FakName, Dekan)

Tabellen anlegen

```
CREATE TABLE Fakultaet (
FakNr INT PRIMARY KEY,
FakName VARCHAR(10) NOT NULL,
Dekan VARCHAR (30)
) ENGINE=INNODB;
CREATE TABLE Pruefungsfach (
PNr INT PRIMARY KEY,
Fach VARCHAR (10) NOT NULL,
FakNr INT NOT NULL,
FOREIGN KEY (FakNr) REFERENCES Fakultaet (FakNr) ON DELETE
CASCADE) ENGINE=INNODB;
```


Tabellen anlegen:

```
CREATE TABLE Student(
MatNr INT PRIMARY KEY,
Name VARCHAR(30) NOT NULL,
Vorname VARCHAR(20) NOT NULL,
GebDatum DATE NOT NULL,
FakNr INT NOT NULL,
FOREIGN KEY (FakNr) REFERENCES Fakultaet(FakNr) ON DELETE CASCADE) ENGINE=INNODB;
```


Tabellen anlegen:

```
CREATE TABLE Ergebnis (
MatNr INT NOT NULL,
PNr INT NOT NULL,
Pruefer VARCHAR(30),
Termin DATE,
Note DECIMAL(3,1) CHECK (NOTE IN(1.0, 1.3, 1.7, 5.0)),
PRIMARY KEY (MatNr, PNr),
FOREIGN KEY (MatNr) REFERENCES Student(MatNr) ON DELETE CASCADE,
FOREIGN KEY (PNr) REFERENCES Pruefungsfach(PNr) ON DELETE CASCADE
) ENGINE = INNODB;
```

ACHTUNG: "... CHECK(NOTE IN(... "Sollte um die weitere Noten ergänzt werden

Aufgabe 2

Durchschnittliche Einnahmen (ohne zeitliche Einschränkung) der Filialen pro Bundesland, absteigend sortiert nach Einnahmen: Die Einnahmen berechnen sich aus den Verkaufszahlen der Produkte (Anzahl * Verkaufspreis). Ausgegeben werden das Bundesland und die durchschnittlichen Einnahmen, absteigend nach durchschnittlichen Einnahmen sortiert.

Aufgabe 2 - Lösung


```
SELECT s.bundesland, AVG(x.summe) AS avgsumme
FROM Filiale f, Stadt s,
  -- Summierten Einnahmen pro Filiale
  SELECT v.filiale, sum(p.verkaufspreis * v.anzahl) as summe
  FROM produkt p, verkaufszahl v
  WHERE v.produkt = p.pid
  GROUP BY v.filiale
 Х
WHERE f.fid = x.filiale AND f.stadt = s.sid
GROUP BY s.bundesland
ORDER BY avgsumme DESC;
```


Hilfreiche Links

- MySQL 5.1 Referenzhandbuch(Deutsch) http://dev.mysql.com/doc/refman/5.1/de/
- w3schools http://www.w3schools.com/sql/