A. Montornès¹ P. Casso¹ B. Kosovic² G. Lizcano¹

¹Vortex, ²NCAR–RAL

- ► Experienced Vortex started its technology development in 2005 by former Wind Site engineers, atmospheric physicists and computer experts in a unusual collaborative team of experienced professionals with active researchers.
- Wind industry Vortex provides wind resource maps and series oriented for wind resources assessment and forecasting purposes.

2000s - 2010s

Mesoscale models 2000s - 2010s

$$F = \bar{F} + F'$$

- $\Delta x > 500 \text{ m}$
- ▶ Wind resolved at each grid-point of the domain describes the mean state flow \bar{F} .
- \blacktriangleright Mixing motions F' must be simplified and parameterized.
- Model splits the spatial diffusion
 - ▶ Vertical diffusion → PBL schemes.
 - ► Horizontal diffusion → represented in terms of the deformation of the large-scale flow.

2000s - 2010s

2016: Microscale is here

Large Eddy Simulations

$$F' =$$
Large Eddies $(> \Delta x) +$ Small Eddies $(< \Delta x)$

- ► Turbulence motions are divided in Large Eddies and Small Eddies.
- Large Eddies (> Δx) are solved as a solution of the Navier-Stokes Equations.
- ▶ Small Eddies ($< \Delta x$) need to be parameterized in subgrid-scale models (SGS) and resolved sub-filter scales (SFS).

2016: Real or model?

2016: Real or model?

2016: Real or model?

Limitations in real simulations

Limitations in real simulations

Limitations in real simulations

Vortex approach

Site 1

Metmast: 60 m Period: 1-year

	Bias _{10'}	RMSE ₁₀	R ² _{hourly}	R ² _{daily}
Vortex-3 km	1.0 ms ⁻¹	1.7 ms ⁻¹	0.87	0.95
Vortex-111 m	1.0 ms ⁻¹	1.7 ms ⁻¹	0.86	0.94

Site 1

Metmast:	60 m
Period: 1	-year

	Bias _{10'}	RMSE ₁₀	R ² _{hourly}	R ² _{daily}
Vortex-3 km	1.0 ms ⁻¹	1.7 ms ⁻¹	0.87	0.95
Vortex-111 m	1.0 ms ⁻¹	1.7 ms ⁻¹	0.86	0.94

Site 1

Metmast:	60 m
Period: 1	-year

	Bias _{10'}	RMSE ₁₀	R ² _{hourly}	R ² _{daily}
Vortex-3 km	1.0 ms ⁻¹	1.7 ms ⁻¹	0.87	0.95
Vortex-111 m	1.0 ms ⁻¹	1.7 ms ⁻¹	0.86	0.94

Site 2

Metmast: 70 m Period: 1-year

	Bias _{10'}	RMSE ₁₀	R ² hourly	R ² _{daily}
Vortex-3 km	-0.5 ms ⁻¹	2.9 ms ⁻¹	0.51	0.70
Vortex-111 m	-0.7 ms ⁻¹	2.6 ms ⁻¹	0.62	0.80

Metrics summary

Averaged values				8 sites
	Bias _{10'}	RMSE _{10'}	R^2_{hourly}	R^2_{daily}
Vortex-3 km	0.3 ms ⁻¹	2.6 ms ⁻¹	0.64	0.81
Vortex-111 m	0.3 ms ⁻¹	2.3 ms ⁻¹	0.68	0.84

WRF-LES Challenges

- ► Energy cascade in the terra-incognita is underestimated.
- ► Peak of energy below 1-hour eddies. Stability vs Convective regimes?
- Surface processes must be improved.
- Unaccurate results when real turbines are installed.
- ► The tail in the TI-WS can be improved.

- ► Vortex-LES based on WRF produces accurate results with respect to the current mesoscale outputs.
- WRF-LES generates realistic turbulence.
- ► WRF-PBL underestimates the energy for motions with a characteristic time scale lower than 16 h (it is a mesoscale model!)
- WRF-LES improves the energy cascade for motions ranging from 10-min to 16 h.
- WRF-LES provides reliable and accurate turbulent time series for the wind energy industry.

A. Montornès¹ P. Casso¹ B. Kosovic² G. Lizcano¹

¹Vortex, ²NCAR–RAL

