Домашнее задание №1 FPGA

Филиппенко Павел

2 марта 2022 г.

Рис. 1: семисегментное световое табло

В этом задании мы составим логическую схему декодера для семисегментного индикатора. На рис. 1 дано изображение семисегментного индикатора. Пользуясь таблицей истинности табл. 1, не трудно составить принципиальную схему дешифратора.

Прежде всего необходимо составить логическую функцию для каждого из выходов a,b,\ldots,g . Для этого мы воспользуемся СДНФ.

- 1. Выход $a: (X_1 \vee X_2 \vee X_3 \vee \overline{X_4}) \wedge (X_1 \vee \overline{X_2} \vee X_3 \vee X_4)$
- 2. Выход $b: (X_1 \vee \overline{X_2} \vee X_3 \vee \overline{X_4}) \wedge (X_1 \vee \overline{X_2} \vee \overline{X_3} \vee X_4)$
- 3. Выход c: $(X_1 \lor X_2 \lor \overline{X_3} \lor X_4)$
- 4. Выход d: $(X_1 \lor X_2 \lor X_3 \lor \overline{X_4}) \land (X_1 \lor \overline{X_2} \lor X_3 \lor X_4) \land (X_1 \lor \overline{X_2} \lor \overline{X_3} \lor \overline{X_4})$
- 5. Выход e: $(X_1 \lor X_2 \lor X_3 \lor \overline{X_4}) \land (X_1 \lor X_2 \lor \overline{X_3} \lor \overline{X_4}) \land (X_1 \lor \overline{X_2} \lor \overline{X_3} \lor \overline{X_4}) \land (X_1 \lor \overline{X_2} \lor \overline{X_3} \lor \overline{X_4}) \land (X_1 \lor \overline{X_2} \lor \overline{X_3} \lor \overline{X_4}) \land (\overline{X_1} \lor X_2 \lor X_3 \lor \overline{X_4})$
- 6. Выход $f: (X_1 \vee X_2 \vee X_3 \vee \overline{X_4}) \wedge (X_1 \vee X_2 \vee \overline{X_3} \vee X_4) \wedge (X_1 \vee X_2 \vee \overline{X_3} \vee \overline{X_4}) \wedge (X_1 \vee \overline{X_2} \vee \overline{X_3} \vee \overline{X_4})$
- 7. Выход g: $(X_1 \lor X_2 \lor X_3 \lor X_4) \land (X_1 \lor X_2 \lor X_3 \lor \overline{X_4}) \land (X_1 \lor \overline{X_2} \lor \overline{X_3} \lor \overline{X_4})$

Цифра	двоично-десятичный вход				семисегментный выход						
	X1	X2	Х3	X4	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

Таблица 1: Таблица истиности

Заметим, что в логических функциях для разных выходов некоторые логические множетели повторяются. Выпишем для удобства набор уникальных логических полиномов.

$$\begin{array}{c} X_1 \vee X_2 \vee X_3 \vee \overline{X_4} \\ X_1 \vee \overline{X_2} \vee X_3 \vee \overline{X_4} \\ X_1 \vee \overline{X_2} \vee \overline{X_3} \vee \overline{X_4} \\ X_1 \vee \overline{X_2} \vee \overline{X_3} \vee X_4 \\ X_1 \vee \overline{X_2} \vee \overline{X_3} \vee \overline{X_4} \\ X_1 \vee \overline{X_2} \vee \overline{X_3} \vee \overline{X_4} \\ X_1 \vee \overline{X_2} \vee \overline{X_3} \vee \overline{X_4} \\ \overline{X_1} \vee \overline{X_2} \vee \overline{X_3} \vee \overline{X_4} \\ \end{array}$$

Используя составленные логические функции и набор уникальных логических сумм нетрудно нарисовать принципиальную схему, используя базовые логические элементы рис. 2.

Puc. 2: Logic scheme