UNIVERSIDADE FEDERAL DE OURO PRETO CIÊNCIA DA COMPUTAÇÃO

JULIANA APARECIDA BORGES MARIA CLARA MIRANDA DE SÁ

RELATÓRIO 09

Circuitos Combinacionais e Portas Lógicas Universais

MINAS GERAIS 2022

INTRODUÇÃO

Neste relatório vamos abordar sobre os circuitos combinacionais, que são aqueles constituídos por um conjunto de portas lógicas, as quais determinam os valores das saídas diretamente a partir dos valores atuais das entradas. Com o uso do datasheet de cada porta lógica, iremos montar um circuito, usando fios e as chaves seletoras. Também iremos observar seu comportamento lógico, bem como extrair a sua tabela verdade de acordo com as saídas no Led (ou seja, apagado ou aceso, 0 ou 1) e a sua expressão booleana.

DESENVOLVIMENTO

Prática 01: Tivemos que montar o seguinte circuito:

As portas lógicas usadas foram NOT, NOR e NAND. As equações booleanas para cada saída ficaram assim:

$$S = \overline{((A.B)+C)}$$

$$T = \overline{(A+B).(A.C)}$$

Tabela verdades das portas usadas no circuito:

E a tabela verdade do circuito:

	Eı	ntradas	Saídas		
	Α	В	С	S	Т
0	0	0	0	1	1
1	0	0	1	1	1
2	0	1	0	1	0
3	0	1	1	1	1
4	1	0	0	1	0
5	1	0	1	1	0
6	1	1	0	0	0
7	1	1	1	1	0

A, B e C => Entradas S e T => Saídas

Montamos o circuito da saída S no protoboard e a saída T no tinkercad. Abaixo os resultados de cada saída.

Saída S:

Obs.: Usamos o Led 0 (L0) **CASO 000: LED 0 (L0)**

CASO 001:

CASO 010:

CASO 011:

CASO 100:

CASO 101:

CASO 110:

CASO 111:

Saída T:

CASO 000:

CASO 001:

CASO 010:

CASO 011:

CASO 100:

CASO 101:

CASO 110:

CASO 111:

A saída S e T estão com os resultados iguais ao da tabela verdade.

Prática 02: Montamos no tinkercad um circuito combinacional que a partir de 4 entradas A, B, C e D, produzia uma saída S. Fizemos primeiro a tabela verdade, abaixo:

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

A, B, C e D => Entradas S => Saídas Abaixo os resultados do circuito.

CASO 0000:

CASO 0001:

CASO 0010:

CASO 0011:

CASO 0100:

CASO 0101:

CASO 0110:

CASO 0111:

CASO 1000:

CASO 1001:

CASO 1010:

CASO 1011:

CASO 1100:

CASO 1101:

CASO 1110:

CASO 1111:

CONCLUSÃO:

Ao realizarmos este relatório, conhecemos e aprendemos um pouco sobre os circuitos combinacionais, conseguimos provar que a tabela verdade extraída é semelhante com o resultado observado no Led. Compreendemos a funcionalidade das portas lógicas universais, conhecidas como o conjunto mínimo de portas capazes de gerar qualquer outra função lógica combinacional. Por fim, concluímos que este relatório foi importante para nosso aprendizado.