Air Quality Over Nigeria

Eloïse Marais, D. J. Jacob, K. Wecht, C. Lerot, T. P. Kurosu, K. Chance

Population: 170 mill (2.6% y⁻¹)

GDP: USD 273 bill (7% y⁻¹)

Earth Lights (left) **Gas flare hotspots** (right)

IGC6 May 2013

Atmospheric Composition over Nigeria

Space-based observations of CO, NO₂, HCHO, GLYX, CH₄ and AOD

SCIA

1720

1745

CH₄ [ppbv]

MISR

0.2

AOD

0.4

0.6

1770 0.0

GEOS-Chem NMVOCs dominated by biogenic emissions in central Africa

Anthropogenic NMVOC Emissions Scaling

*excludes HCHO and GLYX

→ Scaling in Lagos alone increases emissions in Nigeria by a 20%

Niger Delta fugitive alkane

→ Test alkane emissions using SCIA CH₄ & natural gas composition ratios

Delta natural gas mass ratio:

 $CH_4: C_2H_6: C_3H_8: C_4H_{10} = 100: 4.5: 4.9: 18$ (Sonibare et al., 2004)

Natural NO_x Emissions Scaling

→ Natural emissions represent 68% of all NO_x emissions in Nigeria

Future Work

Parameterize GEOS-Chem lightning NO_x with cruise altitude NO observations on commercial aircraft.

MOZAIC/IAGOS

- Assess impact of Nigerian emissions on local and regional air quality
- Project impact of future Nigerian NO_x emissions on local and regional air quality.

Satellite Look-Up Table

Satellite and species retrieval information with relevant references, links to data, and current GEOS-Chem users to contact with questions.

GEOS-Chem Wiki

http://wiki.seas.harvard.edu/geos-chem/index.php/Satellite_Specifications_Table

General Satellite and Instrument Information

Instrument	Satellite	Launch Date	Orbit	Equator Crossing Time	Footprint	Swath Width	Global Coverage
Global Ozone Monitoring Experiment (GOME)	ERS-2	April 1995		10h30 LT (descending node)	320x40 km2	960 km	< 3 days
Multi-angle Imaging SpectroRadiometer (MISR)	NASA EOS/Terra	December 1999	sun- synchronous	10h30 LT (descending node)	14.6x17.6 km2 (for aerosol properties)	400 km	9 days

Satellite-Observed Species Information

Species (Instrument)	Version	Retrieval Spectrum	Spectral Resolution	DoFS	Uncertainty	Download link	References	Current Data Users
AOD (MISR)	V22 (Level 3)	9 viewing angles each with 4 spectral bands (446, 558, 672, 866 nm)	9252	9242	22.5	http://1.usa.gov/ZWP7RM @ OR http://1.usa.gov/11Wos5U @	Martonchik et al., 2002	Eloïse Marais

Synoptic-scale Meteorology

The West African Monsoon over Nigeria in August

