Problème de planification culturale durable *

Ling Ma and Changmin Wu March 27, 2019

Contents

L	Quelques notations	1
2	Une représentation du graphe	2
3	Modélisation PLNE	2
4	Résultat	3
5	Une ré-formulation	3
3	Génération de colonnes	3

1 Quelques notations

- \mathcal{T} : $\{1, \ldots, T\}$ le horizon de planification.
- \mathcal{P} : $\{1,\ldots,P\}$ ensemble des parcelles utilisables.
- s(t): s(t) = 1 temps impair; s(t) = 2 temps pair.
- C(s(t)): ensemble des cultures cultivables au temps t.
- $D_{j,t}$: demande en tonnes de culture j au temps t.
- $\bullet \ (l,a,j)$: état d'une parcelle où
 - -l: le nombre de temps consécutifs de jachère.
 - -a: le nombre de temps consécutifs de culture (si $j \neq 0$).
 - $j\colon\thinspace C\cup\{0\}$ où C l'ensemble des cultures cultivables et 0 la jachère.
- (l', a', i) > (l, a, j): une transition d'une parcelle d'état (l', a', i) à (l, a, j) qui est associé avec un rendement REND(l, a, i, j).

^{*}Ce rapport est destiné au TP7 de cours Recherche Opérationnelle et Développement Durable du programme MPRO encadré par Professeur Agnès Plateau sur le sujet de la planification culturale.

$\mathbf{2}$ Une représentation du graphe

Figure 1 présente un tel graphe dont chaque sommet désigne un état possible de la forme (l, a, j). Un chemin qui commence par (2, 0, 0) (et de longueur 5) est donc une rotation de T=5 sur la parcelle p, par exemple, le chemin (2,0,0)->(2,1,R) - > (2,2,H) - > (1,0,0) - > (1,1,H) - > (1,0,0). Notons que chaque

Figure 1: Graphe G: les arcs rouges correspondent à une rotation possible; Rest riz et H est haricot

arc désigne une transition (l', a', i) - > (l, a, j), on peut donc associer chaque arc un rendement REND_{arc} = REND(l, arc, i, j) où arc = (l', a', i) - > (l, a, j)

3 Modélisation PLNE

Étant donnée la représentation du graphe, on peut modéliser ce problème de planification comme P problème de flot sur P graphe G qui satisfit une

de planification comme
$$P$$
 problème de flot sur P graphe G qui satisfit une contrainte globale.
$$\begin{cases} \min & \sum_{p \in P} \sum_{t=1}^{n} \sum_{arc \in Arcs_{(2,0,0)}^{-}} x_{p,t,arc} \\ \text{s.t.} & \sum_{p \in P} \sum_{arc \in Arcs_{j}^{-}} \text{REND}_{arc} x_{p,t,arc} \geq D_{j,t} & \forall t \in \mathcal{T}, j \in C(s(t)) \\ & \sum_{arc \in Arcs_{v}^{-}} x_{p,t,arc} = \sum_{b \in Arcs_{v}^{+}} x_{p,t+1,b} & \forall t \in \mathcal{T} \setminus \{1,T\}, p \in \mathcal{P}, v \in V(G) \\ & \sum_{arc \in Arcs_{(2,0,0)}^{-}} x_{p,1,arc} \leq 1 & \forall p \in \mathcal{P} \\ & \sum_{arc \notin Arcs_{(2,0,0)}^{-}} x_{p,1,arc} = 0 & \forall p \in \mathcal{P} \\ & \sum_{arc \notin Arcs_{(2,0,0)}^{-}} x_{p,t,arc} \in \{0,1\} & \forall t \in \mathcal{T}, p \in \mathcal{P}, arc \in Arcs \end{cases}$$
 où $x_{p,t,a}$ désigne si la transition représentée par a s'effectue au temps t sur la parcelle p . Arc_{j}^{-} désigne tous arcs de G incident à j et Arc_{j}^{+} les arcs émergent

parcelle p. Arc_j^- désigne tous arcs de G incident à j et Arc_j^+ les arcs émergent

Temps de calcul	Nbr Noeuds développés	Nbr Parcelles Cultivées
2.47s	1344	19

Table 1: Information de la solution trouvée

de j. La première contrainte est la contrainte de la demande. La deuxième contrainte est celui de la conservation du flot et les deux prochaines sont les contraintes d'état initial (tout chemin commence de (2,0,0)).

4 Résultat

Voir tableau 1.

5 Une ré-formulation

Each rotation is a chemin from t=1 to t=T, the objective is to find the chemin which use the least parcelle. And every chemin need to satisfify the demande of every period. To make it more clear, every r has T+1 variable. For example, a solution chemin(rotation) r: (2,0,0)->(2,1,R)->(2,2,H)->(1,0,0)->(1,1,H)->(1,0,0) where $x_r=1$, $r_{t1}=(2,0,0)$, $r_{t2}=(2,1,R),...,r_{t5}=(1,1,H)$ and $r_{t6}=(1,0,0)$. The contraintes is at everytime $t \in T$, the demand D_t is satisfied. We suppose that we can make the rotation r on the one parcelle.

$$(P2) \begin{cases} \min & \sum_{r \in Rotations} x_r \\ \text{s.t.} & \sum_{r \in R} A_{j,t,r} x_r \ge D_{j,t,r} & \forall t \in \mathcal{T}, j \in C(s(t)) \\ & x_r \in \mathbb{Z}_+ & \forall r \end{cases}$$

où r_t est la transition de la rotation r au temps t, $A_{j,r} = REND_{r_t}$ is the rendment at the period t of rotation r.

6 Génération de colonnes

We define a colonne for the path satisfiat all the demand. For example in Quesiton 1,a solution chemin P: (2,0,0)->(2,1,R)->(2,2,H)->(1,0,0)->(1,1,H)->(1,0,0).

Colonne R correspondant à A is [(2,0,0),(2,1,R),(2,2,H),(1,0,0),(1,1,H),(1,0,0)]. Each colonne has T+1 variable. For example, this colonne R has 6 variable.

Algorithem of generation colonne:

Create initial columns; Repeat: Solve master problem find dual[i]; Solve subproblem; Add new column to master problem; Until $z_{sub} \ge 0$

We start from a init solution which can satisfiait all the demand of different of time periode. We define a variable $choose_r$, if $choose_r=1$, that means we choose the colonne, if $choose_r=0$; that means we won't choose the chemin. With the contraintes, demande of every time t is satisfied. the contraintes to dualize is in (P2)

$$(master) \left\{ \min \quad \sum_{r \in Rotations} choose_r \right.$$

We dualize contrainte of the master problem, and put them into dual variable $dual_{j,t}$.

$$(slave)$$
 $\left\{ \min 1 - \sum_{j,t} newcolonne_{j,t} \cdot dual_{j,t} \right.$

Every time when we solve the slave problem, the solution $newcolonne_{j,t}$ we get is a new solution, or we say it, a new chemin réalisable for the master problem.

As the process of algo, we will have more and more colonnes to make a choice among them(every time we generate a new colonne by slave problem, we solve master problem another time).

If the coût réduit is négatif, we can keep on generate new colonne, until the coût réduit ≥ 0 , we stop generate new colonne, and the current solution of master problem is optimal.