Credit Risk Analysis based on Customer Behavior

Dongyan Sun

Data Science Institute

October 20, 2023

https://github.com/EmmaSun19902023/Midterm_Project_EmmaSun.git

INTRODUCTION

Predict Credit Card Repayment according to Clients' Background and Payment Information

Data from Kaggle: https://www.kaggle.com/datasets/pradip11/amexpert-codelab-2021/code

Collected by American Express Company

45528 ROWS *19 COLUMNS

```
print(df['credit_card_default'].value_counts())

0   41831
1   3697
Name: credit_card_default, dtype: int64
```


credit_card_default

Past Due on Payment (= I) VS

Pay On Time (=0)

Categorical Feature

Classification Problem

Middle Income Group but Default

Super Rich plt.yscale('log')

Greater Tendency to Default

Financial Crisis Hint

use Credit Card Limit up to 65% - 100%

Yearly Debt Payment (Lower)

Debt Burden (Lower)

Trustworthy

MISSING VALUE

- 7 out of 19 features
- 4.43% of points
- 4 categorical features
- 3 continuous features
- 0.01% 1.70%
- OneHotEncoder

```
data dimensions: (45528, 19)
fraction of missing values in features:
                       0.012015
owns car
no_of_children
                       0.017001
no_of_days_employed
                       0.010170
total_family_members
                       0.001823
migrant_worker
                       0.001911
yearly_debt_payments
                       0.002087
credit_score
                       0.000176
dtype: float64
data types of the features with missing values:
                        object
owns car
no of children
                       float64
no_of_days_employed
                      float64
total_family_members
                       float64
migrant_worker
                       float64
yearly_debt_payments
                      float64
                       float64
credit score
dtype: object
fraction of points with missing values: 0.04434633632050606
```

SPLIT

Imbalanced Data (stratified KFold)

```
y = df['credit_card_default']
customer_id = df['customer_id']
name = df['name']
X = df.drop(columns=['credit_card_default','customer_id','name'])
classes, counts = np.unique(y,return_counts=True)
print(classes, counts)
print('balance:',np.max(counts/len(y)))
```

[0 1] [41831 3697] balance: 0.9187972236865226

Small Data Set

(45528 rows) (60%, 20%, 20%)

i.i.d Data

```
( no group structure )
(no time structure )
```

```
test balance: (array([0, 1]), array([8367, 739]))
new fold
(array([0, 1]), array([25098, 2218]))
(array([0, 1]), array([8366, 740]))
```

PREPROCESS

OrdinalEncoder

OneHotEncoder

gender
owns_car
owns_house
no_of_children
occupation_type
total_family_members
migrant_worker

MinMaxScaler

age
credit_limit_used(%)
credit_score
prev_defaults
default_in_last_6months

4.552800e+04 count 2.006556e+05 mean 6.690740e+05 std 2.717061e+04 min 25% 1.263458e+05 1.717149e+05 50% 2.406038e+05 75% 1.407590e+08 max Name: net_yearly_income, dtype: float64

StandardScaler

net_yearly_income no_of_days_employed yearly_debt_payments credit_limit

PREPROCESS

fit_transform

VS

transform

scikit-learn pipeline

before preprocess

VS

after preprocess

X_train_prep = clf.fit_transform(X_train)
X_val_prep = clf.transform(X_val)
X_test_prep = clf.transform(X_test)

combine preprocessing steps

X_train without preprocess: (27317, 16)
X_train after preprocess: (27317, 59)

avoid leaking statistics

Q&A

EMMA SUN

DONGYAN_SUN@BROWN.EDU

