Algebra 1R

by a plebanek fangirl :>
21.03.2137

1.1 Rodziny

Pierscien zbiorow to rodzina $\mathscr{R}\subseteq\mathscr{P}(\mathtt{X})$ taka, ze

 $\hookrightarrow \emptyset \in \mathscr{R}$

 \hookrightarrow A, B $\in \mathscr{R} \implies$ A \cup B, A \setminus B $\in \mathscr{R}$

Cialo zbiorow to pierscien zbiorow, dla ktorego $\mathbf{X} \in \mathcal{R}$

 σ -pierscien zbiorow to rodzina $\mathcal R$ ktora jest pierscieniem zamknietym na przeliczalne sumy. Z tego wynika, ze

$$A_n \in \mathscr{R} \implies \lim_{n \to \infty} \sup A_n$$
, $\lim_{n \to \infty} \inf A_n \in \mathscr{R}$

 $\sigma\text{-cialo}$ zbiorow to $\sigma\text{-pierscien}$ do ktorego nalezy X

Niech $\mathscr{F}\subseteq\mathscr{P}(\mathtt{X})$ bedzie rodzina zbiorow, wowczas

 $\hookrightarrow r(\mathscr{F})$ - pierscien generowany przez rodzine \mathscr{F}

 $\hookrightarrow \mathbf{s}(\mathscr{F}) \ - \ \sigma\text{-pierscien generowany przez}$ rodzine \mathscr{F}

 $\hookrightarrow \mathsf{a}(\mathscr{F})$ - cialo generowane przez \mathscr{F}

 $\hookrightarrow \sigma(\mathscr{F})$ - σ -cialo generowane przez \mathscr{F}

 $\sigma\text{-cialo zbiorow borelowskich}(*)$ [Bor(R)] - najmniejsze cialo zawierajace rodzine wszystkich otwartych podzbiorow R

(*) zbior borelowski - dowolny zbior otwarty (domkniety) uzyskany przez sume/przekroj/dopelnienie przeliczalnie wielu
zbiorow otwartych (domknietych)

Funkcja zbioru – dla ustalonej rodziny \mathscr{R} funkcja postaci_f : $\mathscr{R} \to \mathbb{R}$

Addytywna funkcja zbioru (miara skonczenie addytywna) – dla $\mathscr R$ bedacego pierscieniem zbiorow to funkcja $\mu:\mathscr R\to[\mathfrak 0,\infty]$ spelniajaca:

 $\hookrightarrow \mu(\emptyset) = \emptyset$

$$\hookrightarrow \mathsf{A}, \mathsf{B} \in \mathscr{R} \land \mathsf{A} \cap \mathsf{B} = \emptyset \implies \mu(\mathsf{A} \cup \mathsf{B}) = \mu(\mathsf{A}) + \mu(\mathsf{B})$$

Przeliczalnie addytywna funkcja zbioru μ – jesli dla dowolnego R i A_n takich, ze $(\forall i, j) A_i \cap A_j = \emptyset$ oraz $R = \bigcup_n A_n$ zachodzi wzor

$$\mu(\bigcup_{n} A_{n}) = \sum_{n} \mu(A_{n})$$

Warunek rownowazny: jest ciagla z dolu, czyli dla $A_n \uparrow A$ zachodzi $\lim_{n \to \infty} \mu(A_n) = \mu(A)$ Jesli zbiory A_n nie sa rozlaczne, to

$$\mu(\bigcup_n A_n) \leq \sum_n \mu(A_n)$$