Introduction to Additive Combinatorics

Part III

Lectured by Julia Wolf

Artur Avameri

Contents

1 Fourier-analytic techniques

 $\mathbf{2}$

1 Fourier-analytic techniques

19 Jan 2024, Lecture 1

Let $G = \mathbb{F}_p^n$ for p a small fixed prime (usually p = 2, 3, 5) and n is large (often we consider $n \to \infty$).

Notation. Given a finite set B and any function $f: B \to \mathbb{C}$, we write $\mathbb{E}_{x \in B} f(x)$ to mean $\frac{1}{B} \sum_{x \in B} f(x)$. Also write $\omega = e^{2\pi i/p}$ for the p^{th} root of unity. Note that $\sum_{a \in \mathbb{F}_p} \omega^a = 0$.

Definition 1.1. Given $f: \mathbb{F}_p^n: \mathbb{C}$, we define its **Fourier transform** $\hat{f}: \mathbb{F}_p^n \to \mathbb{C}$ by

$$\hat{f}(t) = \mathbb{E}_{x \in \mathbb{F}_p^n} f(x) \omega^{x \cdot t} \ \forall t \in \mathbb{F}_p^n$$

where $x \cdot t$ is the standard scalar product.

It is easy to verify the **inversion formula**:

$$f(x) = \sum_{t \in \mathbb{F}_p^n} \hat{f}(t) \omega^{-x \cdot t} \ \forall x \in \mathbb{F}_p^n.$$

Indeed,

$$\sum_{t \in \mathbb{F}_p^n} \hat{f}(t)\omega^{-x \cdot t} = \sum_{t \in \mathbb{F}_p^n} \left(\mathbb{E}_y f(y)\omega^{y \cdot t} \right) \omega^{-x \cdot t}$$
$$= \mathbb{E}_y f(y) \underbrace{\sum_{t \in \mathbb{F}_p^n} \omega^{(y-x) \cdot t}}_{p^n 1_{\{y=x\}}} = f(x).$$

Remark. We could use an unnormalized sum in our definition and a normalized sum in the inversion formula, or a minus sign in our definition and a plus sign in the inversion formula – this doesn't matter as long as we're consistent.

Given a subset A of a finite group G, write:

- 1_A for the **characteristic function** of A, i.e. $1_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$. This is also called the **indicator function**.
- f_A for the **balanced function** of A, i.e. $f_A(x) = 1_A(x) \alpha$, where $\alpha = \frac{|A|}{|G|}$.
- μ_A for the **characteristic measure** of A, i.e. $\mu_A(x) = \alpha^{-1} 1_A(x)$.

Note $\mathbb{E}_{x \in G} f_A(x) = 0$ and $\mathbb{E}_{x \in G} \mu_A(x) = 1$. Given $A \subset \mathbb{F}_p^n$, we have

$$\hat{1}_A(t) = \mathbb{E}_{x \in \mathbb{F}_p^n} 1_A(x) \omega^{x \cdot t}.$$

At t = 0, we get $\hat{1}_A(0) = \mathbb{E}_{x \in \mathbb{F}_p^n} 1_A(x) = \alpha$.

Writing $-A = \{-a \mid a \in A\}$, we have

$$\hat{1}_{-A}(t) = \mathbb{E}_{x \in \mathbb{F}_p^n} 1_{-A}(x) \omega^{x \cdot t} = \mathbb{E}_{x \in \mathbb{F}_p^n} 1_A(-x) \omega^{x \cdot t}$$

$$\stackrel{y = -x}{=} \mathbb{E}_{y \in \mathbb{F}_p^n} 1_A(y) \omega^{-y \cdot t} = \overline{\mathbb{E}_{y \in \mathbb{F}_p^n} 1_A(y) \omega^{y \cdot t}} = \overline{\hat{1}_A(t)}.$$

Example 1.2. Let $V \leq \mathbb{F}_p^n$. Then

$$\hat{1}_{V}(t) = \mathbb{E}_{x \in \mathbb{F}_{p}^{n}} 1_{V}(x) \omega^{x \cdot t} = \frac{|V|}{p^{n}} 1_{\{x \cdot t = 0 \ \forall x \in V\}} = \frac{|V|}{p^{n}} 1_{V^{\perp}}(t),$$

so $\hat{\mu}_V(t) = 1_{V^{\perp}}(t)$. (Here we use the fact that if $t \notin \{x \cdot t = 0 \ \forall x \in V\}$, then $x \cdot t$ runs over the values uniformly and the sum is zero - details left as exercise).

Example 1.3. Let $R \subset \mathbb{F}_p^n$ be such that each $x \in \mathbb{F}_p^n$ lies in R independently with probability $\frac{1}{2}$. Then with high probability (i.e. $\mathbb{P} \to 1$ as $n \to \infty$),

$$\sup_{t \neq 0} |\widehat{1}_R(t)| = O\left(\sqrt{\frac{\log(p^n)}{p^n}}\right).$$

Proving this is on Ex. Sheet 1. This is proved using a Chernoff-type bound: given complex-valued independent random variables X_1, \ldots, X_n with mean 0, $\forall \theta \geq 0$,

$$\mathbb{P}\left(\left|\sum_{i=1}^n X_i\right| \geq \theta \sqrt{\sum_{i=1}^n ||X_i||_{L^{\infty}(\mathbb{P})}^2}\right) \leq 4 \exp\left(-\theta^2/4\right).$$

Example 1.4. Let $Q = \{x \in \mathbb{F}_p^n \mid x \cdot x = 0\}$. Then $|Q| = \left(\frac{1}{p} + O(p^{-n})\right) p^n$ and $\sup_{t \neq 0} |\hat{1}_Q(t)| = O(p^{-n/2})$. This is again on Ex. Sheet 1.

Notation. Given $f, g : \mathbb{F}_p^n \to \mathbb{C}$, write

$$\langle f, g \rangle = \mathbb{E}_{x \in \mathbb{F}_p^n} f(x) \overline{g(x)}$$

and

$$\langle \hat{f}, \hat{g} \rangle = \sum_{t \in \mathbb{F}_p^n} \hat{f}(t) \overline{\hat{g}(t)}.$$

Consequently, $||f||_2^2 = \mathbb{E}_x |f(x)|^2$ and $||\hat{f}||_2^2 = \sum_t |\hat{f}(t)|^2$.

Lemma 1.5. The following hold for all $f, g : \mathbb{F}_p^n \to \mathbb{C}$:

- (i) $\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$ (Plancherel's identity).
- (ii) $||f||_2 = ||\hat{f}||_2$ (Parseval's identity).

Proof. (ii) follows from (i). For (i), compute

$$\begin{split} \langle \hat{f}, \hat{g} \rangle &= \sum_{t \in \mathbb{F}_p^n} \hat{f}(t) \overline{\hat{g}(t)} = \sum_{t \in \mathbb{F}_p^n} \frac{1}{p^{2n}} \sum_{x \in \mathbb{F}_p^n} f(x) \omega^{x \cdot t} \sum_{y \in \mathbb{F}_p^n} \overline{g(y)} \omega^{y \cdot t} \\ &= \frac{1}{p^{2n}} \sum_{x, y \in \mathbb{F}_p^n} f(x) \overline{g(y)} \sum_{t \in \mathbb{F}_p^n} \omega^{(x-y)t} = \frac{1}{p^{2n}} \sum_{x \in \mathbb{F}_p^n} p^n f(x) \overline{g(x)} = \langle f, g \rangle. \end{split}$$

Definition 1.6. Let $\rho > 0$ and $f : \mathbb{F}_p^n \to \mathbb{C}$. Define the ρ -large spectrum of f to be

$$\operatorname{Spec}_{\rho}(f) = \{ t \in \mathbb{F}_p^n \mid |\hat{f}(t)| \ge \rho ||f||_1 \}.$$

Example 1.7. By Example 1.2, if $f=1_V$ with $V\leq \mathbb{F}_p^n$, then $\forall \rho>0$, $\operatorname{Spec}_{\rho}(f)=V^{\perp}$.

Lemma 1.8. For all $\rho > 0$, $|\operatorname{Spec}_{\rho}(f)| \leq \rho^{-2} \frac{||f||_2^2}{||f||_2^2}$.

Proof. By Parseval,

$$||f||_2^2 = ||\hat{f}||_2^2 \ge \sum_{t \in \operatorname{Spec}_{\rho}(f)} |\hat{f}(t)^2| \ge |\operatorname{Spec}_{\rho}(f)|(\rho||f||_1)^2.$$

22 Jan 2024, Lecture 2

Definition 1.9. Given $f, g : \mathbb{F}_p^n \to \mathbb{C}$, define their **convolution** $f * g : \mathbb{F}_p^n \to \mathbb{C}$ by

$$f * g(x) = \mathbb{E}_{y \in \mathbb{F}_p^n} f(y) g(x - y) \ \forall x \in \mathbb{F}_p^n.$$

Example 1.10. Given $A, B \subset \mathbb{F}_p^n$,

$$\begin{aligned} \mathbf{1}_A * \mathbf{1}_B(x) &= \mathbb{E}_{y \in \mathbb{F}_p^n} \mathbf{1}_A(y) \mathbf{1}_B(x - y) = \frac{1}{p^n} |A \cap (x - B)| \\ &= \frac{1}{p^n} \# \text{ways } x \text{ can be written as } x = a + b \text{ with } a \in A, b \in B. \end{aligned}$$

In particular, the support of $1_A * 1_B$ is the **sum set**

$$A+B=\{a+b\mid a\in A,b\in B\}$$

of A and B.

Lemma 1.11. Given $f, g : \mathbb{F}_p^n \to \mathbb{C}$,

$$\widehat{f * g}(t) = \widehat{f}(t)\widehat{g}(t) \ \forall t \in \mathbb{F}_p^n.$$

Proof. Set u = x - y to get

$$\widehat{f * g}(t) = \mathbb{E}_{x \in \mathbb{F}_p^n} \left(\mathbb{E}_{y \in \mathbb{F}_p^n} f(y) g(x - y) \right) \omega^{x \cdot t}$$

$$= \mathbb{E}_y f(y) \mathbb{E}_u g(u) \omega^{(u+y) \cdot t}$$

$$= \hat{f}(t) \hat{g}(t).$$

Example 1.12. $||\hat{f}||_4^4 = \mathbb{E}_{x+y=z+w} f(x) f(y) \overline{f(z) f(w)}$. This is on Ex. Sheet 1.

Lemma 1.13 (Bogolyubov's Lemma). Given $A \subset \mathbb{F}_p^n$ of density $\alpha > 0$, there exists a subspace $V \leq \mathbb{F}_p^n$ of codimension at most $2\alpha^{-2}$ s.t. $A + A - A - A \supset V$.

Proof. Observe that

$$A + A - A - A = \text{supp}(\underbrace{1_A * 1_A * 1_{-A} * 1_{-A}}_{:=g}).$$

Hence we wish to find $V \leq \mathbb{F}_p^n$ such that $g(x) > 0 \ \forall x \in V$. Let $K = \operatorname{Spec}_{\rho}(1_A)$ with ρ to be determined later and let $V = \langle K \rangle^{\perp}$. By Lemma 1.8, $|K| \leq \rho^{-2}\alpha^{-1}$ and hence $\operatorname{codim}(V) \leq |K| \leq \rho^{-2}\alpha^{-1}$. By the inversion formula,

$$\begin{split} g(x) &= \sum_{t \in \mathbb{F}_p^n} (1_A * 1_A * 1_{-A} * 1_{-A})(t) \omega^{-x \cdot t} \\ &= \sum_{t \in \mathbb{F}_p^n} |\hat{1}_A(t)|^4 \omega^{-x \cdot t} \\ &= \alpha^4 + \sum_{\substack{t \in K \setminus \{0\} \\ (1)}} |\hat{1}_A(t)|^4 \omega^{-x \cdot t} + \sum_{\substack{t \not\in K \\ (2)}} |\hat{1}_A(t)|^4 \omega^{-x \cdot t} \,. \end{split}$$

For (1), we see it is ≥ 0 since $x \cdot t = 0 \ \forall t \in K, x \in V$. (Note we could give better lower bounds but we don't need them).

For (2), we have

$$\begin{aligned} |(2)| &\leq \sum_{t \notin K} |\hat{1}_A(t)|^4 \leq \sup_{t \notin K} |\hat{1}_A(t)|^2 \sum_{t \notin K} |\hat{1}_A(t)|^2 \leq \sup_{t \notin K} |\hat{1}_A(t)|^2 \sum_{t} |\hat{1}_A(t)|^2 \\ &\leq (\rho \alpha)^2 ||1_A||_2^2 = \rho^2 \alpha^3. \end{aligned}$$

Now pick ρ such that $\rho^2 \alpha^3 \leq \frac{\alpha^4}{2}$, e.g. $\rho = \sqrt{\frac{\alpha}{2}}$.

Example 1.14. The set $A = \{x \in \mathbb{F}_2^n \mid |x| \ge \frac{n}{2} + \frac{\sqrt{n}}{2}\}$ has density at least $\frac{1}{4}$,

and there is no coset C of any subspace of codimension at most \sqrt{n} such that $C \subset A + A$. This is on Ex. Sheet 1.

Lemma 1.15. Let $A \subset \mathbb{F}_p^n$ of density α be such that $\exists t \neq 0$ in $\operatorname{Spec}_{\rho}(1_A)$. Then $\exists V \leq \mathbb{F}_p^n$ of codimension 1 and $\exists x \in \mathbb{F}_p^n$ such that

$$|A \cap (x+V)| \ge \alpha \left(1 + \frac{\rho}{2}\right)|V|.$$

Proof. Let $t \neq 0$ be such that $|\hat{1}_A(t)| \geq \rho \alpha$ and let $V = \langle t \rangle^{\perp}$. Write $v_j + V$ for $j \in [p] := \{1, 2, \dots, p\}$ for the cosets of V such that $v_j + V = \{x \in \mathbb{F}_p^n \mid x \cdot t = j\}$. Then

$$\hat{1}_{A}(t) = \hat{f}_{A}(t)$$

$$= \mathbb{E}_{x \in \mathbb{F}_{p}^{n}} (1_{A}(x) - \alpha) \omega^{x \cdot t}$$

$$= \mathbb{E}_{j \in [p]} \underbrace{\mathbb{E}_{x \in v_{j} + V} (1_{A}(x) - \alpha)}_{=:a_{j} = \frac{|A \cap (v_{j} + V)|}{|V|} - \alpha} \omega^{j}.$$

By the triangle inequality, $\mathbb{E}_{j\in[p]}|a_j| \geq \rho\alpha$. Since $\mathbb{E}_{j\in[p]}a_j = 0$, $\mathbb{E}_{j\in[p]}(a_j + |a_j|) \geq \rho\alpha$, so $\exists j\in[p]$ such that $a_j + |a_j| \geq \rho\alpha \implies a_j \geq \frac{\rho\alpha}{2}$.

24 Jan 2024, Lecture 3

Lemma 1.16. Let $p \geq 3$ and $A \subset \mathbb{F}_p^n$ of density $\alpha > 0$ be such that

$$\sup_{t \neq 0} |\hat{1}_A(t)| = o(1).$$

Then A contains $(\alpha^3 + o(1))(p^n)^2$ 3-term arithmetic progressions (3-APs).

In other words, a set with small Fourier coefficients has the same number of 3–APs as a truly random set of the same density.

Notation. Given $f, g, h : \mathbb{F}_p^n \to \mathbb{C}$, $T_3(f, g, h) = \mathbb{E}_{x,d} f(x) g(x+d) h(x+2d)$. Given $A \subset \mathbb{F}_p^n$, write $2 \cdot A = \{2a \mid a \in A\}$. This is different from $2A = A + A = \{a + a' \mid a, a' \in A\}$.

Proof. The number of 3-APs in A is $(p^n)^2$ times $T_3(1_A, 1_A, 1_A)$, where

$$T_{3}(1_{A}, 1_{A}, 1_{A}) = \mathbb{E}_{x,d} 1_{A}(x) 1_{A}(x+d) 1_{A}(x+2d)$$

$$= \mathbb{E}_{x,y} 1_{A}(x) 1_{A}(y) 1_{A}(2y-x) \qquad y = x+d$$

$$= \mathbb{E}_{y} 1_{A}(y) (1_{A} * 1_{A}) (2y)$$

$$= \langle 1_{2 \cdot A}, 1_{A} * 1_{A} \rangle \qquad z = 2y$$

$$= \langle \hat{1}_{2 \cdot A}, \widehat{1_{A} * 1_{A}} \rangle. \qquad \text{by Plancherel.}$$

Continue the last manipulation to get

$$= \langle \hat{1}_{2 \cdot A}, \hat{1}_A^2 \rangle$$
$$= \alpha^3 + \sum_{t \neq 0} \hat{1}_A(t)^2 \overline{\widehat{1}_{2 \cdot A}(t)}.$$

The sum in absolute value is at most

$$\leq \sup_{t \neq 0} |\hat{1}_{A}(t)| \sum_{t \neq 0} |\hat{1}_{A}(t)\hat{1}_{2 \cdot A}(t)|$$

$$\leq \sup_{t \neq 0} |\hat{1}_{A}(t)| \left(\sum_{t} |\hat{1}_{A}(t)|^{2} \right)^{1/2} \left(\sum_{t} |\hat{1}_{2 \cdot A}(t)|^{2} \right)^{1/2}$$

$$\leq \sup_{t \neq 0} |\hat{1}_{A}(t)| \cdot \alpha^{1/2} \cdot \alpha^{1/2}$$

by Parseval.

Using the above two results, we prove:

Theorem 1.17 (Meshulam's Theorem). Let $p \geq 3$ and let $A \subset \mathbb{F}_p^n$ be a set containing no non-trivial 3-APs. Then $|A| = O\left(\frac{p^n}{n \log p}\right)$.

Proof. By assumption, $T_3(1_A, 1_A, 1_A) = \frac{\alpha}{p^n}$, but as in Lemma 1.16,

$$T_3(1_A,1_A,1_A) = \alpha^3 + \sum_{t \neq 0} \hat{1}_A(t) \hat{1}_{2 \cdot A}(t),$$

so provided $p^n \geq 2\alpha^{-2}$, $\left|\frac{\alpha}{p^n} - \alpha^3\right| \leq \sup_{t \neq 0} |\hat{1}_A(t)| \cdot \alpha$, so $\sup_{t \neq 0} |\hat{1}_A(t)| \geq \frac{\alpha^2}{2}$. By Lemma 1.15 with $\rho = \frac{\alpha}{2}$, $\exists V \leq \mathbb{F}_p^n$ of codimension 1 and $x \in \mathbb{F}_p^n$ such that $|A \cap (x+V)| \geq \left(\alpha + \frac{\alpha^2}{4}\right) |V|$.

We iterate this observation. Let $A_0=A, V_0=\mathbb{F}_p^n, \ \alpha_0=\alpha=\frac{|A_0|}{|V_0|}.$ At step i of this iteration, we are given a set $A_{i-1}\subset V_{i-1}$ of density α_{i-1} with no nontrivial 3–APs. Provided that $p^{\dim(V_{i-1})}\geq 2\alpha_{i-1}^{-2},\ \exists V_i\leq V_{i-1}$ of codimension 1 and $x_i\in V_{i-1}$ such that $|A_{i-1}\cap(x_i+V_i)|\geq \left(\alpha_{i-1}+\frac{\alpha_{i-1}^2}{4}\right)|V_i|.$ Set $A_i=A_{i-1}-x$. Note $\alpha_i\geq \alpha_{i-1}+\frac{\alpha_{i-1}^2}{4}$ and A_i is free of nontrivial 3–APs. Through this iteration, the density of A increases from α to 2α in at most $\frac{\alpha}{\alpha^2/4}=4\alpha^{-1}$ steps, from 2α to 4α in at most $\frac{2\alpha}{(2\alpha)^2/4}=2\alpha^{-1}$ steps, etc, which reaches 1 in at most

$$(4\alpha^{-1} + 2\alpha^{-1} + \alpha^{-1} + \ldots) = 8\alpha^{-1}$$

steps. The argument must therefore end with $\dim(V_i) \geq n - 8\alpha^{-1}$, at which

point we must have had $p^{\dim(V_i)} \leq 2\alpha_i^{-2} \leq 2\alpha^{-2}$ (or else we could have continued). But we may assume that $\alpha \geq \sqrt{2}p^{-n/4}$ (else we're done), whence $p^{n-8\alpha^{-1}} \leq p^{n/2}$, i.e. $\frac{n}{2} \leq 8\alpha^{-1}$, so $\alpha \leq \frac{16}{n}$, finishing the proof.

26 Jan 2024, Lecture 4

So for $A \subset \mathbb{F}_3^n$ containing no nontrivial 3–APs, we have $|A| = O\left(\frac{3^n}{n}\right)$. The largest known subset of \mathbb{F}_3^n containing no notrivial 3–APs has size $\geq (2.218)^n$. (Proving 2^n is trivial: take all combinations of zeroes and ones with no twos).

From now on, let G be a finite abelian group. G comes equipped with a set of **characters**, i.e. group homomorphisms $\gamma: G \to \mathbb{C}^{\times}$, which themselves form a group, denoted by \hat{G} , often referred to as the **dual** of G. It turns out that if G is finite and abelian, then $\hat{G} \cong G$. For instance:

- If $G = \mathbb{F}_p^n$, then $\hat{G} = \{ \gamma_t : x \mapsto \omega^{x \cdot t} \mid t \in G \}$.
- If $G = \mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z}$, then $\hat{G} = \{ \gamma_t : x \mapsto \omega^{xt} \mid t \in G \}$.

Definition 1.18. Given $f: G \to \mathbb{C}$, define its **Fourier transform** $\hat{f}: \hat{G} \to \mathbb{C}$ by

$$\hat{f}(\gamma) = \mathbb{E}_{x \in G} f(x) \gamma(x) \ \forall \gamma \in \hat{G}.$$

It is easy to verify that we have an inversion formula, given by

$$f(x) = \sum_{\gamma \in \hat{G}} \hat{f}(\gamma) \overline{\gamma(x)}.$$

We can also check that Definition 1.6 and 1.9, Examples 1.3 and 1.10 and Lemmas 1.5, 1.8 and 1.11 go through in this general context.

Example 1.19. Let p be a prime, let $L \leq p-1$ be even and consider $J = \left[-\frac{L}{2}, \frac{L}{2}\right] \subset \mathbb{Z}_p$. Then $\forall t \neq 0$,

$$|\hat{1}_J(t)| \le \min\left\{\frac{L+1}{p}, \frac{1}{2|t|}\right\}.$$

This is on Ex. Sheet 1.

Theorem 1.20 (Roth's Theorem). Let $A \subset [N] := \{1, 2, ..., N\}$ be a set containing no non–trivial 3–APs. Then $|A| = O\left(\frac{N}{\log \log N}\right)$.

Lemma 1.21. Let $A \subset [N]$ be of density $\alpha > 0$ satisfying $N > 50\alpha^{-2}$ containing no nontrivial 3-APs. Let p be a prime in $\left[\frac{N}{3}, \frac{2N}{3}\right]$ and write $A' = A \cap [p] \subset \mathbb{Z}_p$. Then either

- (i) $\sup_{t\neq 0} |\hat{1}_{A'}(t)| \geq \frac{a^2}{10}$ (where the Fourier coefficient is computed in \mathbb{Z}_p); or
- (ii) \exists interval $J \subset [N]$ of length $\geq \frac{N}{3}$ such that $|A \cap J| \geq \alpha \left(1 + \frac{\alpha}{400}\right) |J|$.

Proof. We may assume that $|A'| = |A \cap [p]| \ge \alpha \left(1 - \frac{\alpha}{200}\right) p$, since otherwise $|A \cap [p+1,N]| \ge \alpha (N-p) + \frac{\alpha^2 p}{200} \ge \alpha \left(1 + \frac{\alpha}{400}\right) (N-p)$, so case (ii) holds with J = [p+1,N].

Let $A'' = A' \cap \left[\frac{p}{3}, \frac{2p}{3}\right]$. Note that all 3–APs of the form $(x, x + d, x + 2d) \in A' \times A'' \times A''$ are in fact proper APs in [N] (and not only in \mathbb{Z}_p , since there's no "wrapping around"). If $|A' \cap [p/3]|$ or $|A' \cap [2p/3, p]|$ are at least $\frac{2|A'|}{5}$, then we are again in case (ii) (details left as exercise). Hence we may assume that $|A''| \geq \frac{|A'|}{5}$. Now as in Lemma 1.16 and Theorem 1.17 with $\alpha' = |A'|/p$, $\alpha'' = |A''|/p$,

$$\frac{\alpha''}{p} = \frac{|A''|}{p^2} = T_3(1_{A'}, 1_{A''}, 1_{A''}) = \alpha' \cdot \alpha''^2 + \sum_{t \neq 0} \hat{1}_{A'}(t) \hat{1}_{A''}(t) \overline{\hat{1}_{2 \cdot A''}(t)},$$

so as before,

$$\frac{\alpha' \cdot \alpha''^2}{2} \le \sup_{t \ne 0} |\hat{1}_{A'}(t)| \cdot \alpha''$$

$$\implies \sup |\hat{1}_{A'}(t)| \ge \frac{\alpha' \cdot \alpha''}{2} \ge \frac{(\alpha')^2}{10}$$

provided that $\frac{\alpha''}{p} \leq \frac{\alpha'(\alpha'')^2}{2}$ which holds by assumption (as $p \geq \frac{N}{3}$ and $N > 50\alpha^{-2}$).