Section 3.2 – Graphing Functions

Increasing and Decreasing Functions

Corollary

Suppose that f is continuous on [a, b] and differentiable on (a, b).

- **1.** If f'(x) > 0 for all x in (a, b), then f is increasing on (a, b)
- **2.** If f'(x) < 0 for all x in (a, b), then f is decreasing on (a, b)
- 3. If f'(x) = 0 for all x in (a, b), then f is constant on (a, b)

Example

Find the open intervals on which the function $f(x) = x^3 - 12x - 5$ is increasing or decreasing

Solution

$$f'(x) = 3x^{2} - 12$$
$$3(x^{2} - 4) = 0 \Rightarrow \boxed{x = \pm 2} \qquad (CN)$$

$-\infty$	-2	2	∞
f'(-3) >	· 0	0) < 0	f'(3) > 0
Increasi	ng Deci	reasing	Increasing

Increasing: $(-\infty, -2)$ and $(2, \infty)$

Decreasing: (-2, 2)

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function $\,f\,$.

1. If f' changes from negative to positive at c, then f has a local minimum (LMIN).

2. If f' changes from positive to negative at c, then f has a local maximum (LMAX).

3. If f' doesn't change sign at c, then f has no local extremum at c.

Example

Find the open intervals on which the function $f(x) = x^{1/3}(x-4)$ is increasing or decreasing

Solution

$$f(x) = x^{4/3} - 4x^{1/3}$$

$$f'(x) = \frac{4}{3}x^{1/3} - \frac{4}{3}x^{-2/3}$$

$$= \frac{4}{3}\left(x^{1/3} - x^{-2/3}\right)\frac{x^{2/3}}{x^{2/3}}$$

$$= \frac{4}{3}\frac{x - 1}{x^{2/3}} = 0$$

$$\Rightarrow \begin{cases} x = 1 \\ x \neq 0 \end{cases} (CN)$$

-∞	0	1 ∞
f'(-1) < 0	f'(0.5) < 0	f'(2) > 0
Decreasing	Decreasing	Increasing

Increasing: $(1, \infty)$

Decreasing: $(-\infty, 1)$

Concavity

Definition

Let f be differentiable on an open interval I. The graph of f is

- **1.** Concave *upward* on *I* if f' is increasing on the interval.
- **2.** Concave *downward* on I if f' is decreasing on the interval.

Test for Concavity

Let f be function whose second derivative exists on an open interval I.

- 1. If f''(x) > 0 for all x in I, then f is **concave up** on I.
- 2. If f''(x) < 0 for all x in I, then f is **concave down** on I.
 - i. Locate the x values @ which f''(x) = 0 or undefined
 - ii. Use these test *x*-value to determine the test intervals
 - iii. Test the sign of f''(x) in each interval

Example

Determine the intervals on which the graph of the function is concave upward or concave downward.

$$f(x) = x^4 - 8x^3 + 18x^2$$

Solution

f is concave upward on $(-\infty, 1)$ and $(3, \infty)$

f is concave downward on (1, 3)

Example

Determine the concavity of $y = 3 + \sin x$ on $[0, 2\pi]$

Solution

$$y' = \cos x$$
$$y'' = -\sin x = 0 \implies \boxed{x = 0, \ \pi, \ 2\pi}$$

The graph y is **concave down** on $(0, \pi)$

The graph y is *concave up* on $(\pi, 2\pi)$

Points of Inflection

Definition

If the graph of a continuous function has a tangent line @ a point where its concavity changes from upward to downward (or down to upward) then the point is a *point of inflection*.

At a point of inflection (c, f(c)), either f''(c) = 0 or f''(c) fails to exist.

f''(0) = 0, and (0, 0) is a point of inflection.

g''(0) = 0, but (0, 0) is not a point of inflection.

Example

A particle is moving along a horizontal coordinate line (positive to the right) with position function

$$s(t) = 2t^3 - 14t^2 + 22t - 5, \quad t \ge 0$$

Find the velocity and acceleration, and describe the motion of the particle.

Solution

The velocity is:
$$v(t) = s'(t) = 6t^2 - 28t + 22 = 0$$
 $\Rightarrow t = 1, \frac{11}{3}$

The acceleration is:
$$a(t) = v'(t) = 12t - 28 = 0 \implies t = \frac{7}{3}$$

0	1	7 3	$\frac{11}{3}$
f'(.5) > 0	f'(2) < 0	f'(4) > 0
Increasing	Decre	asing	Increasing
right	le	ft	right
f"(1) < 0		f''(4) > 0	
Concave down		Concave up	

The particle starts moving to the right while slowing down, and then reverses by moving to the left at t = 1 under the influence of the leftward acceleration over the time interval $\left[0, \frac{7}{3}\right]$. The acceleration then changes direction changes direction at $t = \frac{7}{3}$ but the particles continues moving leftward, while slowing down under the rightward acceleration. At $t = \frac{11}{3}$ the particle reverses direction again; moving to the right in the same direction as the acceleration.

Second Derivative Test for local Extrema

Let f'(c) = 0 and let f'' exist (\exists)

- 1. If f'(c) = 0 and $f''(c) > 0 \Rightarrow f$ is a local Minimum at x = c
- 2. If f'(c) = 0 and $f''(c) < 0 \implies f$ is a local Maximum at x = c
- 3. If f'(c) = 0 and $f''(c) = 0 \Rightarrow \text{Test fails} \rightarrow \text{use } f' \text{ to determine Max, Min.}$

Example

Sketch a graph of the function $f(x) = x^4 - 4x^3 + 10$ using the following steps

- a) Identify where the extrema of f occur
- b) Find the intervals on which f is increasing and decreasing
- c) Find where the graph of f is concave up and down
- d) Sketch the general shape of the graph for f
- *e*) Plot some specific points, such as local maximum and minimum points, points of inflection, and intercepts. Then sketch the curve.

Solution

$$f'(x) = 4x^3 - 12x^2$$

= $4x^2(x-3) = 0 \implies x = 0, 0 \implies x = 3$ (CN)

a) $x = 3 \implies \lfloor y = 3^4 - 4(3)^3 + 10 = -17 \rfloor$

A local minimum at (3, -17)

b) f is decreasing: $(-\infty, 0] \cup [0, 3)$ f is increasing: $(3, \infty)$

c)
$$f''(x) = 12x^2 - 24x = 12x(x-2) = 0$$

$$\Rightarrow \begin{cases} \boxed{x=0} & \to f(0) = 10 \\ \boxed{x=2} & \to f(2) = -6 \end{cases}$$

f is concave up: $(-\infty, 0) \cup (2, \infty)$

f is concave down: (0, 2)

d)
$$f(x=0)=0^4-4(0)^3+10=10$$

<u>-</u> ∞ 0	2	∞
f''(-1) > 0	f''(1) < 0	f''(3) > 0
Concave up	Concave down	Concave up

Example

Sketch the graph of $f(x) = \frac{(x+1)^2}{1+x^2}$

Solution

Domain of f is $(-\infty, \infty)$ **Horizontal Asymptotes** y = 1

RMAX: (1, 2) Decreasing: $(-\infty, -1) \cup (1, \infty)$

RMIN: (-1, 0) *Increasing*: (-1, 1)

Concave down: $\left(-\infty, -\sqrt{3}\right) \cup \left(0, \sqrt{3}\right)$

Concave up: $\left(-\sqrt{3}, 0\right) \cup \left(\sqrt{3}, \infty\right)$

Exercises Section 3.2 – Graphing Functions

Find the critical numbers and the open intervals on which the function is increasing or decreasing.

1.
$$f(x) = x^3 + 3x^2 - 9x + 4$$

4.
$$f(x) = \frac{x}{x^2 + 4}$$

7.
$$f(x) = x^3 - 12x$$

2.
$$f(x) = (x-1)^{2/3}$$

5.
$$f(x) = \frac{x}{x^2 + 1}$$

8.
$$f(x) = x^{2/3}$$

$$3. \qquad f(x) = x\sqrt{x+1}$$

$$6. f(x) = x\sqrt{x+1}$$

Find the open intervals on which the function is increasing and decreasing. Then, identify the function's local and absolute extreme values, if any, saying where they occur.

9.
$$g(t) = -t^2 - 3t + 3$$

13.
$$f(x) = x - 6\sqrt{x - 1}$$

10.
$$h(x) = 2x^3 - 18x$$

14.
$$f(x) = \frac{x^3}{3x^2 + 1}$$

11.
$$f(\theta) = 3\theta^2 - 4\theta^3$$

15.
$$f(x) = x^{1/3}(x+8)$$

12.
$$g(x) = x^4 - 4x^3 + 4x^2$$

Find all relative Extrema as well as where the function is increasing and decreasing

16.
$$f(x) = 2x^3 - 6x + 1$$

20.
$$y = \sqrt{4 - x^2}$$

17.
$$f(x) = 6x^{2/3} - 4x$$

21.
$$f(x) = x\sqrt{x+1}$$

18.
$$f(x) = x^4 - 4x^3$$

22.
$$f(x) = \frac{x}{x^2 + 1}$$

19.
$$f(x) = 3x^{2/3} - 2x$$

23.
$$f(x) = x^4 - 8x^2 + 9$$

Find the local extrema of each function on the given interval, and say where they occur

24.
$$f(x) = \sin 2x \quad 0 \le x \le \pi$$

26.
$$f(x) = \frac{x}{2} - 2\sin\frac{x}{2}$$
 $0 \le x \le 2\pi$

25.
$$f(x) = \sqrt{3}\cos x + \sin x$$
 $0 \le x \le 2\pi$

27.
$$f(x) = \sec^2 x - 2\tan x - \frac{\pi}{2} \le x \le \frac{\pi}{2}$$

Determine the intervals on which the graph of the function is concave upward or concave downward.

28.
$$f(x) = \frac{x^2 - 1}{2x + 1}$$

29.
$$f(x) = -4x^3 - 8x^2 + 32$$
 30. $f(x) = \frac{12}{x^2 + 4}$

$$30. \quad f(x) = \frac{12}{x^2 + 4}$$

31. Find the points of inflection.
$$f(x) = x^3 - 9x^2 + 24x - 18$$

32. Does
$$f(x) = 2x^5 - 10x^4 + 20x^3 + x + 1$$
 have any inflection points? If so, identify them.

33. Find the second derivative of
$$f(x) = -2\sqrt{x}$$
 and discuss the concavity of the graph

- **34.** Find the extrema using the second derivative test $f(x) = \frac{4}{x^2 + 1}$
- **35.** Discuss the concavity of the graph of f and find its points of inflection. $f(x) = x^4 2x^3 + 1$
- **36.** Find all relative extrema of $f(x) = x^4 4x^3 + 1$

Sketch the graph

37.
$$y = x^3 - 3x + 3$$

38.
$$y = -x^4 + 6x^2 - 4$$

39.
$$y = x\left(\frac{x}{2} - 5\right)^4$$

40.
$$y = x + \sin x$$
 $0 \le x \le 2\pi$

41.
$$y = \cos x + \sqrt{3} \sin x$$
 $0 \le x \le 2\pi$

42.
$$y = \frac{x}{\sqrt{x^2 + 1}}$$

43.
$$y = x^2 + \frac{2}{x}$$

44.
$$y = \frac{x^2 - 3}{x - 2}$$

45.
$$y = \frac{5}{x^4 + 5}$$

46.
$$y = \frac{x^2 - 49}{x^2 + 5x - 14}$$

47.
$$y = \frac{x^4 + 1}{x^2}$$

48.
$$y = \frac{x^2 - 4}{x^2 - 1}$$

49.
$$y = -\frac{x^2 - x + 1}{x - 1}$$

50.
$$y = \frac{x^3 - 3x^2 + 3x - 1}{x^2 + x - 2}$$

51.
$$y = \frac{4x}{x^2 + 4}$$

52.
$$f(x) = \frac{x^2 + 4}{2x}$$

53.
$$f(x) = \frac{1}{2}x^4 - 3x^2 + 4x + 1$$

54.
$$f(x) = \frac{3x}{x^2 + 3}$$

55.
$$f(x) = 4\cos(\pi(x-1))$$
 on $[0, 2]$

56.
$$f(x) = \frac{x^2 + x}{4 - x^2}$$

57.
$$f(x) = \sqrt[3]{x} - \sqrt{x} + 2$$

58.
$$f(x) = \frac{\cos \pi x}{1+x^2}$$
 on $[-2, 2]$

59.
$$f(x) = x^{2/3} + (x+2)^{1/3}$$

60.
$$f(x) = x(x-1)e^{-x}$$

61. The revenue *R* generated from sales of a certain product is related to the amount *x* spent on advertising by

$$R(x) = \frac{1}{15,000} \left(600x^2 - x^3 \right), \qquad 0 \le x \le 600$$

Where x and R are in thousands of dollars.

Is there a point of diminishing returns for this function?

62. Find the point of diminishing returns (x, y) for the function

$$R(x) = -x^3 + 45x^2 + 400x + 8000$$
. $0 \le x \le 20$

where R(x) represents revenue in thousands of dollars and x represents the amount spent on advertising in tens of thousands of dollars.

18

63. A county realty group estimates that the number of housing starts per year over the next three years will be

$$H(r) = \frac{300}{1 + 0.03r^2}$$

Where r is the mortgage rate (in percent).

- a) Where is H(r) increasing?
- b) Where is H(r) decreasing?
- **64.** Suppose the total cost C(x) to manufacture a quantity x of insecticide (in hundreds of liters) is given by $C(x) = x^3 27x^2 + 240x + 750$. Where is C(x) decreasing?
- **65.** A manufacturer sells telephones with cost function $C(x) = 6.14x 0.0002x^2$, $0 \le x \le 950$ and revenue function $R(x) = 9.2x 0.002x^2$, $0 \le x \le 950$. Determine the interval(s) on which the profit function is increasing.
- 66. The cost of a computer system increases with increased processor speeds. The cost C of a system as a function of processor speed is estimated as $C(x) = 14x^2 4x + 1200$, where x is the processor speed in MHz. Determine the intervals where the cost function C(x) is decreasing.
- 67. The percent of concentration of a drug in the bloodstream t hours after the drug is administered is given by $K(t) = \frac{t}{t^2 + 36}$. On what time interval is the concentration of the drug increasing?
- **68.** Coughing forces the trachea to contract, this in turn affects the velocity of the air through the trachea. The velocity of the air during coughing can be modeled by: $v = k(R r)r^2$, $0 \le r < R$ where k is a constant, R is the normal radius of the trachea (also a constant) and r is the radius of the trachea during coughing. What radius r will produce the maximum air velocity?
- **69.** $P(x) = -x^3 + 15x^2 48x + 450$, $x \ge 3$ is an approximation to the total profit (in thousands of dollars) from the sale of x hundred thousand tires. Find the number of hundred thousands of tires that must be sold to maximize profit.
- **70.** $P(x) = -x^3 + 3x^2 + 360x + 5000$; $6 \le x \le 20$ is an approximation to the number of salmon swimming upstream to spawn, where x represents the water temperature in degrees Celsius. Find the temperature that produces the maximum number of salmon.