

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ³ : G05B 23/02; G06F 11/00 H05K 7/00		A1	(11) International Publication Number: WO 84/ 00829 (43) International Publication Date: 1 March 1984 (01.03.84)
(21) International Application Number: PCT/US83/00586			(81) Designated States: AT (European patent), AU, BE (European patent), BR, CH (European patent), DE (European patent), FI, FR (European patent), GB (European patent), JP, LU (European patent), NL (European patent), SE (European patent).
(22) International Filing Date: 20 April 1983 (20.04.83)			
(31) Priority Application Number: 408,967			
(32) Priority Date: 17 August 1982 (17.08.82)			Published <i>With international search report.</i>
(33) Priority Country: US			
(71) Applicant: THE FOXBORO COMPANY [US/US]; 38 Neponset Avenue, Foxboro, MA 02035 (US).			
(72) Inventors: HALLEE, Donald, O. ; 4 Gilmore Road, North Easton, MA 02356 (US). LAKE, Harold ; 5 Carlton Road, Sharon, MA 02067 (US). JOHANSON, Kenneth, L. ; 114 Old Westboro Road, North Grafton, MA 01536 (US). GRAVES, Thomas, B. ; 8 Pine Street, Norton, MA 02766 (US).			
(74) Agents: WU, Jack, H. et al.; The Foxboro Company, Dept. 187, 38 Neponset Avenue (BP-52), Foxboro, MA 02035 (US).			

(54) Title: PROCESS CONTROL SYSTEM WITH IMPROVED FAULT ISOLATION

(57) Abstract

A process control system includes redundant digital controllers and a plurality of input/output (I/O) modules for interfacing with remote field sensors and actuators. Bi-directional communication between controllers and I/O modules is achieved by a parallel wired, process I/O bus. Failures within the system, including the bus structure itself, that continually keep the bus active (i.e., in a low state) are isolated by a combination of software diagnostic routines for performing bus checkout and a unique quick disconnect feature that readily isolates the fault condition first between the I/O module nest area and the controllers, then, if necessary, to individual I/O modules. During fault isolation procedures, individual I/O modules may be disconnected from the bus while the values of field signals are simultaneously maintained to provide minimum process upset.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	LI	Liechtenstein
AU	Australia	LK	Sri Lanka
BE	Belgium	LU	Luxembourg
BR	Brazil	MC	Monaco
CF	Central African Republic	MG	Madagascar
CG	Congo	MR	Mauritania
CH	Switzerland	MW	Malawi
CM	Cameroon	NL	Netherlands
DE	Germany, Federal Republic of	NO	Norway
DK	Denmark	RO	Romania
FI	Finland	SE	Sweden
FR	France	SN	Senegal
GA	Gabon	SU	Soviet Union
GB	United Kingdom	TD	Chad
HU	Hungary	TG	Togo
JP	Japan	US	United States of America
KP	Democratic People's Republic of Korea		

-1-

1 PROCESS CONTROL SYSTEM WITH IMPROVED FAULT ISOLATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to process control systems
5 and particularly to computer-based systems for providing
direct digital control over industrial processes. More
specifically the invention relates to such systems that
include enhanced means for performing fault isolation
that may be carried out expeditiously and with minimum
10 process disruption.

2. Description of the Prior Art

Direct digital control systems have been used in the
process industries for some time now. With the in-
creased use of digital computers to provide process
15 management and control, there has also been an increased
awareness in the area of system security and reliabili-
ty. One such effort is disclosed in co-pending applica-
tion Serial No. 139,495, assigned to the same assignee
as the present case. That application discloses the use
20 of redundant digital controllers with a shared data
buffer arranged to permit the transfer of data base from
one controller to the other, together with means for the
other controller to examine the integrity of the first
controller before accepting the information being trans-
25 fered.

Usually digital controllers are configured in a
vertical storage assembly, commonly referred to as a
rack, located in a central station (e.g., a control
room). The rack includes, in addition to power sup-
30 plies, provisions for housing the central processing
unit (CPU) and the interface circuitry for communicating
with the process field sensors and actuators. This
field communication interface is typically accomplished

-2-

1 by a series of input/output (I/O) modules located in a
5 connector housing area or nest in one centralized
portion of the digital controller. A parallel bus
structure is often used to transmit commands/data
10 between the I/O modules and the CPU of the controller.
When a parallel bus is used, a wired-conductor (e.g., a
ribbon cable) forms the external bus link between the
controller and the I/O nest, while a backplane in the
nest extends the bus interface through appropriate con-
15 nectors to the individual I/O modules within the nest.

These parallel bus structured systems increase the
difficulty in isolating system failures. In particular,
failed I/O modules or bus line failures that short the
bus to ground are troublesome to locate because the
15 modules and related bus interface components are in
effect "or'ed" together.

One way of troubleshooting such failures is to con-
tinuously run diagnostic programs when a failure is de-
tected and sequentially remove each module from its
20 assigned area in the nest to see which one causes the
problem to disappear. This can be a time consuming pro-
cedure because of the necessity of removing the module
from its connection to the bus backplane, which in some
cases involves unscrewing and disconnecting field ter-
25 minations to permit physical separation of the module
connector from the bus. Removal of the module from its
connector housing area in this manner also would result
in loss of field signal value. Additionally the possi-
bility exists of transferring erroneous control data to
30 the I/O modules during the connect/disconnect process
outlined above.

It is apparent that a need exists to provide better
fault isolation capabilities within process control

-3-

1 systems of the type described above. This is especially
ly so in pinpointing within a minimum time and with a
minimum process upset, failures of individual I/O
modules connected to a parallel I/O bus structure.

5 SUMMARY OF THE INVENTION

In accordance with a preferred embodiment of the present invention, a direct digital control system is disclosed having redundant digital controllers which communicate through a process I/O (PIO) bus to remotely positioned sensors and actuators located within a process field. Interface with these field devices is accomplished by a plurality of I/O modules which gather analog signals representing field measurements and transmit corresponding digitized values along the PIO bus to the controllers. Similarly, commands from the controllers to the field components are sent along the PIO bus to the I/O modules for ultimate transmission to the field. Failures within the system, including the bus structure itself, that continually keep the bus active (i.e., in a low state) are isolated by a combination of software diagnostic routines for performing bus checkout and a unique quick disconnect feature that readily isolates the fault condition first between the I/O module nest area and the controllers, then, if necessary, to individual I/O modules.

A ribbon cable forms the bus link externally of the I/O nests while a backplane is utilized for bus access within the nests themselves. The interface between the ribbon cable and the bus backplane is accomplished by a bus interface module positioned at the bus input to each individual nest. This module is a printed circuit board which extends all the bus lines from the ribbon cable to the PC board contact pads. The interface module is

-4-

1 plugged into a cam actuated connector which provides a
simple mechanical means to quickly disconnect the PIO
bus from the entire array of I/O modules. If the indi-
cation of failure is not removed, the fault lies within
5 the controller or its interface connection with the bus.
Conversely, if the failure indication is removed, the
fault is most likely caused by a failed I/O module
affecting one or more bus lines. In accordance with one
10 important aspect of the invention, each I/O module
within the nest is connected to the bus backplane by a
cam actuated connector similarly arranged as with the
bus interface module to allow disengagement of individu-
al I/O modules from the backplane from the front of the
nest. As software diagnostics are continuously being
15 run, when the module causing the failure is disconnected
from the bus, the indication of failure will be removed.
In this manner, the time necessary for locating a failed
I/O module can be significantly reduced.

20 In accordance with another important aspect of the
invention, the limitations of prior fault detection
techniques of previous process control systems are
overcome by permitting disengagement of individual
I/O modules from the PIO bus while simultaneously
25 maintaining the value of the field signals. Field
power to the module is maintained through a separate
connector at the front of the nest. Since the module
does not have to be physically moved to break the
bus backplane connection, this field connection remains
unbroken. Also, the connect/disconnect procedure
30 for I/O modules (and bus interface) outlined above
is sequenced by the cam actuated connector to
assure minimum disruption of the operation of the
bus.

-6-

1 The architecture of the control system is more clearly depicted in FIG. 2 which is similar to and which functions generally as that system disclosed in the aforementioned co-pending application Serial No. 139,495.

5 The control portion of the system includes a primary controller 11 and a backup controller 12, each communicating with a shared data buffer 22. Details of the transfer of control from the primary to the backup through the data buffer do not form part of the present

10 invention, but if further details are desired, reference may be had to the aforementioned patent application. Each controller contains a central processing unit (CPU), associated read only and random access memory, together with the necessary interfaces to a process I/O

15 (PIO) bus 25. Additionally, each controller includes a security logic module 15 (FIG. 1) and a communications port for communicating over a process data link 24 to a host computer (not shown). When operating in a redundant mode, each controller shares access to the PIO bus

20 from the standpoint of being able to read process data inputted through the I/O nests. This permits the backup controller 12 to track the control over the process. However, the primary controller 11 actually runs the process and it alone is able to output values to the

25 various field-located actuators through commands to the modules within the nests.

 The three I/O nests 16, 17 and 18 located in the bottom half of the rack 20 are each capable of accepting ten I/O modules. These I/O modules are printed circuit (PC) boards (collectively represented in FIG. 1 by reference numeral 19) of various types that serve as the primary communication device between the controllers 11, 12 and the field-located sensors and actuators. Both

-5-

1 BRIEF DESCRIPTION OF THE DRAWINGS

Further advantages and objects of the present invention will become apparent from the following detailed description taken in context with the following drawing
5 figures wherein:

FIG. 1 is a perspective view of a process control system constructed in accordance with the present invention,

10 FIG. 2 is a system block diagram of the control system of FIG. 1,

FIGS. 3 & 4 are perspective views of an I/O module nest of the control system of FIG. 1 cut away to show details of the interconnectivity with the process I/O data bus,

15 FIG. 5 is a detailed view of the bus interface module and its corresponding connector of the system of FIG. 1,

FIGS. 6A, B & C are block diagrams of various diagnostic routines implemented by the system of FIG. 1; and

20 FIG. 7 is a block diagram, partly in pictorial, of a typical I/O module showing the connections to its output channel.

DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 shows in perspective a control system 10 constructed in accordance with the present invention housed in a vertical rack 20. The system consists of three major subassemblies - two identical digital controllers 11, 12, redundant power supply assemblies 13, 14, and three I/O module nests 16, 17 and 18. The controllers are adapted to perform the necessary calculations for performing direct digital control over a variety of industrial processes within process plants.

-7-

1 analog and digital input/output signals as well as
pulsed outputs (i.e., field signals) are processed
through the front termination molding 19A of each PC
board. Bidirectional communication between the con-
5 trollers and the individual PC boards within the I/O
nests is through the PIO bus 25 which interweaves in
daisy chain fashion through each nest.

FIG. 3 provides further details of the structure of
the I/O nest 16. Bus connection between the controllers
10 11, 12 and the nest 16 (as well as interconnection be-
tween individual nests) is through a multi-channel rib-
bon cable 30 which terminates in a bus interface module
32. This module (see also FIG. 5 for further detail)
15 is a component-less PC board having a pattern of conduc-
tor runs 50 that connect with each of the bus lines in
the cable 30 and extend them to a set of contact pads
51 at the edge of the board. The module is inserted at
the bus input side of the nest (left-hand end as viewed
20 in FIG. 4) into a cam actuated connector 33 that elec-
trically connects with a conventional bus backplane (not
shown) mapped onto the rear of the nest. Thus the con-
nector 33 and the bus interface module 32 serve as both
25 a termination point for the ribbon cable portion of the
bus and an interface with the bus backplane. Disconnect-
ing the connector 33 disengages all three nests, and
hence all I/O modules, from the PIO bus. Similar cable
terminations are provided for bus communication with the
other two nests, and the other bus interface module
connector breakpoints are symbolically depicted on
30 FIG. 2 as numerals 34 and 35. Thus disconnecting con-
nector 34 disengages all the I/O modules in the nests
17 and 18 from the PIO bus, while disconnecting connec-
tor 35 disengages just nest 18 from the bus.

-8-

1 Included as part of the top and bottom frame of the
nest 16 is a series of rearwardly extending grooved slide
tracks 36 for guiding and holding the PC boards 19 in
proper position within the nest. Each PC board is pow-
5 ered from two separate connectors. Logic power is
supplied from the bus backplane through a cam actuated
connector 40 (similar to the connector 33) located at
the rear of the slide track adjacent each individual PC
board. Concurrently, field signal power is delivered
10 at the front end of the PC board by a power connector
31. When operatively coupled within the nest, the con-
tact pads (not shown) of the PC board are engaged by the
connector 40, while a connector plug 41 on the board
mates with the power connector 31. As shown more
15 clearly in FIG. 4, wire terminations from the field
connections are brought through a wireway 43 at the
bottom of the nest to the front termination molding 19A
of the PC board. Thus bus access is at the opposite end
of the PC board from that of field signal termination.

20 Turning now to further operational details of the
present process control system that permit rapid isola-
tion of bus related faults, the multi-channel, parallel-
wired PIO bus 25 includes A/D timing lines, data and
identification code lines, control lines and address
25 lines, all of which are necessary for accessing (i.e.,
reading and writing) information to and from individual
PC boards 19. Each controller 11, 12 has its own in-
ternal fault monitoring capabilities, which can, for
example, involve use of threshold detectors for moni-
30 toring power supplies, or utilization of watchdog timers
to provide a check on software operations, or parity
error detection, all of which is well understood by
those of skill in the art. However, failures involving

-9-

1 the PIO bus 25 and its interface circuitry, especially
such failures which tend to keep the bus active (i.e.,
in a low state by shorting the bus to ground) or which
short bus lines together, are difficult to isolate.

5 On-line, self-diagnostic testing is continuously run
as part of the main system operating program to verify
the integrity of the bus lines and their connection to
the individual PC boards 19. A series of diagnostic
registers that enable software checking of the PIO bus
10 25 are contained in the security logic module 15 located
in each controller. In operation, each diagnostic pro-
gram is run independently by both the primary controller
11 and the backup controller 12. Whenever a bus-related
fault is detected for two successive operating control
15 cycles, a fault-indication light 15A is lit on the
security logic module. If the lights on both security
logic modules are lit, then the fault most likely lies
within the PIO bus network. If only one light is on,
the fault is probably within the individual diagnostic
20 registers (or their interface to the PIO bus) on the
security logic module of that controller showing the
failure indication. As stated, these software self-
checks are run on-line each control cycle to assure im-
mediate detection of failures.

25 FIGS. 6A through 6C show the hardware/software im-
plementation of the principal diagnostic routines for
performing fault monitoring of the PIO bus network.

FIG. 6A illustrates how bus data lines are monitored
in conjunction with a data register 54. Each controller
30 generates a distinct sample data pattern which consists
of enabling only the most significant bit of the data
word, and enabling in succeeding cycles the next bit
position until each bit of the entire word has been

-10-

1 exercised. This pattern is written onto the PIO bus 25
and read back at the CPU. Because the CPU expects to
see this "walking bit" in fixed sequence after its
generation, shorted failures within the data lines as
5 well as adjacent lines shorted together will be detected
resulting in an appropriate failure indication being
displayed.

During a process read phase, analog-to-digital (A/D)
conversion is carried out between fixed time intervals
10 as determined by a clock signal generated in each con-
troller's CPU. In between these conversion pulses, a
fixed number of clock pulses is delivered to the I/O
modules to provide the source of integration for the
A/D conversion. A clock register and counter circuit
15 52 shown in FIG. 6B accumulates the total number of
pulses between the beginning and end of conversion
pulses, and the contents of this register are read by
the CPU during each control cycle. Should the number
of pulses detected vary from the fixed number antici-
20 pated (whose value is stored in memory), a fault indica-
tion will be determined and displayed by the light 15A
on both security logic modules 15.

FIG. 6C shows another form of diagnostic check for
detecting address line failures. In this instance, the
25 address generated within the CPU of the controller is
transmitted through an address interface 56 to the PIO
bus 25. The address state generated on the bus is
sensed at checkpoint 57 and sent to an address check
register 58 for storage and ultimate transmission to the
30 CPU. A comparison is made under program control of the
contents of the register 58 with the address generated.
Any deviation will produce an alarm indication via the
light 15A.

-11-

1 The foregoing description of the types of diagnostic
routines is not exhaustive. However, such fault moni-
toring techniques are representative of the more import-
ant areas within the bus network where failures are
5 likely to cause catastrophic system failures.

Assuming the fault-indication light 15A is lit on
the security logic module 15 of both controllers 11, 12,
fault isolation is initiated by disconnecting the con-
nector 33 of the bus interface module 32. As mentioned,
10 this connector is a cam actuated connector and is
mechanically operated by releasing a quarter-turn
fastener 45 located on the top front face of the bus
interface module. Details of the actuation of this
15 connector will be deferred until operation of the cam
actuated connector 40 is discussed presently. Suffice
it to say for now that the connector 33 may be quickly
disengaged, thereby disconnecting all I/O modules in the
three nests 16, 17, and 18 from the PIO bus 25.

If after disengaging the connector 33 the fault-
20 indication lights 15A remain on (remembering that the
diagnostic checks are being continuously run), the
failure will have been isolated between the I/O nests
and the controllers, and specifically to the bus inter-
connection between the connector 33 and one of the
25 diagnostic registers 52, 54, 58 within the controllers.

It will be recalled that in the redundant mode of oper-
ation, such a failure indication could also be surmised
if only one of the lights 15A were lit. However, since
the present invention is also suitably adapted to func-
30 tion with non-redundant systems, this initial quick
disconnect procedure will generally apply and is a good
starting point for fault isolation.

If, on the other hand, the lights 15A turn off, the

-12-

1 failure is in the bus connections beyond the connector
33 to the nests 16, 17, 18. Therefore, connector 33 is
reconnected, and the connector 34 may be readily disen-
gaged to gate off the nests 17 and 18 from the PIO bus
5 25. If the fault indication remains, the fault will
have been isolated to one of the PC boards 19 in the
nest 16; if not, the fault is in nests 17 and 18.
Carrying the above procedure one step further it is
possible to isolate the fault to a particular nest.

10 Once the failed nest has been found, the failure
may be in any one of the ten I/O PC boards 19 assigned
to that nest. The most prudent way of troubleshooting
at this stage is to sequentially disengage each PC
board from the bus backplane. In accordance with the
15 present invention this fault isolation procedure is
readily and rapidly accomplished without having to
physically move the PC board, and importantly without
having to disconnect the PC board from its field power
connection. This is expeditious because a plurality of
20 field connections are typically brought into a nest, and
routing field signal cables to the termination molding
19A and to various other locations within the rack 20
through wireways such as 43 can be cumbersome to the
extent of inhibiting the outward mobility of the PC
25 boards from the nest unless the field cables are un-
screwed from their termination moldings.

Returning once again to FIGS. 3 and 4, the connec-
tion of individual I/O PC boards 19 to the PIO bus 25
is broken by use of the cam actuated connector 40. The
30 connector is remotely actuated from the front of the
rack 20 by means of an actuating rod 46 brought out to
the front termination molding 19A of the PC board. The
actuating rod is connected to a vertical shaft 47 that

-13-

1 extends down through the connector 40 at a bent portion
48 thereof. A spring 49 kept in compression by a
quarter-turn fastener 44 on the front termination mold-
ing 19A holds the connector in contact with the PC board
5 connector pads. Unlocking the fastener a quarter-turn
releases the actuating rod by relaxing the spring 49
which in turn produces rotary movement of the vertical
shaft 47. The vertical shaft rotates a cam (not shown)
within the connector thereby moving the connector con-
10 tacts away from the PC board contact pads so as to dis-
engage the PC board from the PIO bus 25.

Rotary cam actuated connectors of this general type
are commercially available from AMP, Incorporated.
Reconnection to the bus is simply accomplished by lock-
15 ing the quarter-turn fastener 44. When the failed PC
board is disengaged from the bus, the diagnostic
routines will discover that the failure has been re-
moved from the system and correspondingly the fault
isolation lights 15A will be turned off.

20 Because fault isolation is being performed on-line,
removal and replacement of I/O modules (PC boards) can
occur at random times within the system operating cycle
- for example, during a "write" phase to the PIO bus.
Furthermore, maintenance procedures of this type often
25 can result in shorting bus lines together due to the
manner in which the board is removed or inserted, i.e.,
by cocking the board. This would disrupt operation of
the bus and could itself be a source of significant
error for the control system. Although chances of in-
30 advertent shorts are minimized in the present embodiment
as the PC board is not moved to break the bus connec-
tion, the operation of certain components can be ad-
versely affected depending, for example, on the sequence

-14-

1 by which they are powered/unpowered. To avoid any such difficulties the break of the PC board from the PIO bus is achieved in a two-step sequence. The cam within the connector 40 is designed to allow two sets of contacts
5 to open/close as the cam is progressively rotated from either the connector actuated or disengaged positions. The placement of signal conductor runs to the PC board pads is coordinated with this two-stage contact opening/closing of the connector 40 in a manner that avoids
10 transferring erroneous data during this connect/disconnect cycle of the fault isolation procedure. For the embodiment being described, data lines and logic power are disconnected first, followed by the disconnection of control lines and logic common. Of course, when a
15 board is reinserted, the reverse is accomplished.

The connect/disconnect fault isolation feature can influence system operation by disrupting the values of field signals. It is particularly important that the integrity of output values be maintained during a fault
20 isolation procedure; otherwise the process valve could be driven uncontrollably between its open and closed states thereby causing a process upset. FIG. 7, which pictorially gives the outline of a PC board 19, illustrates how field values are preserved. As mentioned,
25 field power is maintained on the PC board during a fault isolation check as connector 41 remains engaged. Meanwhile logic power is interrupted by breaking the connection with the PIO bus 25 when the cam actuated connector 40 is disconnected. The provisions of separate connections for both logic and field power together with in situ disengagement of the PC board from the bus permit
30 the value of the analog field signal to be maintained.

In this example, the PC board 19 represents an out-

-15-

1 put channel for providing an analog signal to a valve
as directed by the primary controller 11. An output
command loads the digital value present on the bus 25
in a 12-bit output register 62 after passing through a
5 bus and register interface circuit 60. Thereafter,
digital-to-analog conversion is performed by a D/A con-
verter circuit 64 and the resultant analog signal is
delivered through the field termination block 19A by a
suitable output drive circuit 66. As shown, the bus and
10 register interface circuit 60 is driven in part from the
logic power supply, while the 12-bit output register 62
obtains its operating power from the field power connec-
tor 41 located at the front of the PC board.

In order to update the register 62, three signals
15 must be low at gate 70. First, a write command must be
initiated by the primary controller 11 and sent to a
control logic circuit 72 on the PC board for routing to
the gate. A low signal level must be received from a
presence of card detector circuit 74 (which can simply
20 include a path for drawing current through the logic power
common connection) and a low signal from a logic power
voltage monitor 76 must also be present. Obviously,
when the PC board is disconnected from the PIO bus 25
both the presence of card detector and the logic power
25 voltage monitor signals are missing; therefore, the
register cannot be updated with a new digital value.
Since, however, the register is powered from the field
connector 41, the prior digital output value remains
stored in the register and hence the valve will be
30 maintained at the last position before the fault isola-
tion procedure on that card was initiated. In the
foregoing example, emphasis was placed on preserving
the state of output signals to field devices, but the

-16-

1 principles illustrated apply equally as well to other field signals.

Although a preferred embodiment has been set forth in detail above, this is only for the purpose of illustration as modifications will become apparent to those of ordinary skill in the art. Accordingly the invention is not to be limited by its illustrated embodiments but only in accordance with the scope of the accompanying claims.

-17-

1 WHAT IS CLAIMED IS:

1. In a control system for providing direct digital control over an industrial process of the type having a digital controller communicating with a plurality of sensors and actuators located within a process field area, said controller including in a first location a central processing unit and associated data storage means for performing operations respecting the condition of said process and in a second location an input/output connector housing area for holding a plurality of input/output modules that receive and send field signals to and from said sensors and actuators, said controller further including a communications bus linking said first and second locations such that said input/output modules are connected in parallel along said bus when inserted in said connector housing area, the improvement in said control system for detecting and isolating failures within said controller comprising:
 - means for detecting a fault condition within said controller;
 - means for providing an indication of said fault condition;
 - means for isolating said fault condition between either said first location or said second location;said last mentioned means including means for rapidly disconnecting said input/output modules from said first location, whereby the absence or continuance of said fault indication pinpoints whether said fault condition is in said first or second location.

2. The system of claim 1 wherein said input/output connector housing area comprises a plurality of connector nests arranged to receive a predetermined

-18-

1 number of said input/output modules for communicating over said bus, each of said nests including a bus interface module for disconnecting all the input/output modules contained therein from said bus.

5 3. The system of claim 2 including a cam actuated connector coupling said bus interface module to said bus.

10 4. The system of claim 2 including a cam actuated connector coupling said input/output modules to said bus.

15 5. The system of claim 4 wherein said connector includes at least a two-stage cam to permit sequenced opening/closing of the connector contacts such that the connection/disconnection to said bus during on-line maintenance is accomplished in accordance with a preestablished sequence to avoid transfer of erroneous data during this connect/disconnect cycle.

20 6. The system of claim 1 wherein said input/output modules include means for disengaging individual input/output modules from said bus while simultaneously maintaining the value of said field signals.

25 7. The system of claim 6 wherein said input/output modules comprise a printed circuit board having field interface and digital circuits electrically powered thereon by two separate power connections, one connection for receiving logic power to drive said digital circuits and the other connection for receiving field power to drive said field interface circuits.

30 8. The system of claim 7 wherein said means for disengaging includes a cam actuated connector coupling said modules to said bus, said logic power being received from said bus.

9. The system of claim 8 including a field

-19-

- 1 power connector remotely positioned from said cam actuated connector for receiving said field power, said cam actuated connector being actuated independently of the connection of said field power connector.
- 5 10. The system of claim 9 including a storage register on said module for storing the value of field signals representing the condition of said process, said register being powered from said field power connector such that when said cam actuated connector is
10 disengaged said field signal value is maintained.
- 15 11. In a control system for providing direct digital control over an industrial process of the type having a digital controller communicating with a plurality of sensors and actuators located within a process field area, said controller including in a first location a central processing unit and associated data storage means for performing operations respecting the condition of said process and in a second location an input/output connector housing area for holding a
20 plurality of input/output modules that receive and send field signals to and from said sensors and actuators, said control unit further including a communications bus linking said first and second locations such that said input/output modules are connected along said data bus
25 when inserted in said connector housing area, said modules being powered from said bus connection and a separate field connection for providing field power to said sensors and actuators, the improvement in said control system comprising:
- 30 means for disengaging said input/output modules from said bus while simultaneously maintaining said field connection.
12. The system of claim 11 wherein said means for disengaging includes a cam actuated connector.

-20-

1 13. The system of claim 12 wherein said cam actuated connector is actuated independently of said field connection.

5 14. The system of claim 12 including means for storing field signal values on said input/output modules, said storing means being powered from said field connection such that when said cam actuated connector is disengaged said field signal values are maintained.

10 15. The system of claim 11 including means for disconnecting said input/output modules from said bus in situ.

15 16. The system of claim 15 wherein said disconnecting means includes a cam actuated connector coupling said modules to said bus.

20 17. In a control system for providing direct digital control over an industrial process of the type having a digital controller communicating with a plurality of sensors and actuators located within a process field area, said controller including in a first location a central processing unit and associated data storage means for performing operations respecting the condition of said process and in a second location an input/output connector housing area for holding a plurality of input/output modules that receive and send field signals to and from said sensors and actuators, said controller further including a communications bus and associated cable means electrically linking said first and second locations such that said input/output 25 modules are connected to said bus when inserted in said connector housing area, said controller also receiving at said modules field signal cables for communicating with said process field area, the improvement in said 30 modules.

-21-

1 control system for detecting and isolating failures
within said controller comprising:

means for disconnecting said input/output
modules from said bus in situ within said connector
5 housing area without altering the position of either
said cable means or said field signal cables.

18. The system of claim 17 wherein said dis-
connecting means includes a cam actuated connector
coupling said modules to said bus.

10 19. The system of claim 17 including means for
maintaining field signal values when said input/output
modules are disconnected from said bus.

20. An improved method for detecting and iso-
lating failures within a direct digital control system
15 of the type having a digital controller communicating
with a plurality of sensors and actuators located within
a process field area, said controller including in a
first location a central processing unit and associated
data storage means for performing operations respecting
20 the condition of said process and in a second location
an input/output connector housing area for holding a
plurality of input/output modules that receive and send
field signals to and from said sensors and actuators,
said controller further including a communications bus
25 linking said first and second locations such that said
input/output modules are connected in parallel along
said bus when inserted in said connector housing area,
comprising the steps of:

30 detecting a fault condition within said con-
troller;

providing an indication of said fault condi-
tion;

isolating said fault condition between either

-22-

1 said first location or said second location by rapidly disconnecting said input/output modules from said first location.

5 21. The method of claim 20 including the further step of isolating faults within said second location by sequentially disconnecting individual input/output modules without moving said modules within said connector housing area.

10 22. The method of claim 21 including the further step of maintaining the value of said field signals when said input/output modules are disconnected from said bus.

15 23. The method of claim 21 wherein said sequential disconnection is accomplished by a cam actuated connector.

20 24. The method of claim 23 including the step of actuating a two-stage cam within said connector to permit sequenced opening/closing of the connector contacts such that the connection/disconnection to said bus during on-line maintenance is accomplished in accordance with a pre-established sequence to avoid transfer of erroneous data during this connect/disconnect cycle.

FIG. 1

FIG. 2

FIG. 5

FIG. 7

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 83/00586

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ³

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC³: G 05 B 23/02; G 06 F 11/00; H 05 K 7/00

II. FIELDS SEARCHED

Minimum Documentation Searched ⁴

Classification System	Classification Symbols
IPC ³	G 05 B 23/02; G 05 B 9/02; G 06 F 11/26; G 06 F 11/22; G 06 F 11/00; G 06 F 15/46; G 06 F 1/00

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁵

III. DOCUMENTS CONSIDERED TO BE RELEVANT ¹⁴

Category ¹⁵	Citation of Document, ¹⁶ with indication, where appropriate, of the relevant passages ¹⁷	Relevant to Claim No. ¹⁸
Y	US, A, 4215386 (PRAGER) 29 July 1980 see column 3, lines 10-19; column 4, lines 11-49; column 11, lines 23-45; figure 1	1,2
Y	EP, A2, 0007153 (GOULD) 23 January 1980 see page 11, lines 1-27; page 14, line 33 - page 15, line 25; page 33, lines 17-35; figures 1,1A,1B	1,2
Y	FR, A, 2444742 (CONSTRUCTIONS ELECTRO-MECANIQUES D'AMIENS) 7 July 1980 see page 7, line 1 - page 8, line 39	1
A	US, A, 4145734 (BIENVENU) 20 March 1979 see column 2, lines 20-36; column 3, lines 12-24	1
A	US, A, 2490366 (ITALTEL) 19 March 1982 see claims; page 8 - page 9, line 5	1

* Special categories of cited documents: ¹⁹

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search ²⁰

12th September 1983

Date of Mailing of this International Search Report ²¹

03 OCT. 1983

International Searching Authority ²²

EUROPEAN PATENT OFFICE

Signature of Authorized Officer ²³

G.L.M. Kruijverberg

ANNEX TO THE INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION NO.

PCT/US 83/00586 (SA

5343)

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 23/09/83

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US-A- 4215386	29/07/80	AU-A-	4464779	06/09/79
		CA-A-	1117210	26/01/82
EP-A- 0007153	23/01/80	AU-A-	4565279	18/10/79
		JP-A-	55023593	20/02/80
		US-A-	4292666	29/09/81
		CA-A-	1134511	26/10/82
		AU-B-	527244	24/02/83
FR-A- 2444742	18/07/80	DE-A-	2949934	03/07/80
		GB-A-	2039677	13/08/80
		JP-A-	55083947	24/06/80
US-A- 4145734	20/03/79	None		
US-A- 2490366		None		

THIS PAGE BLANK (USPTO)