Università degli studi di Verona Corso di Laurea in Informatica/Informatica Multimediale Sistemi Operativi – 30 Settembre 2005

1. Si consideri un sistema con 5 processi, P_0 , P_1 , P_2 , P_3 , P_4 e 4 tipi di risorse A, B, C, D. Si supponga che al tempo T_0 il sistema si trovi nella seguente situazione:

	alloc				max			
Processo	A	B	C	D	A	B	C	D
1	1	0	2	0	3	2	4	2
2	0	3	1	2	3	5	1	2
3	2	4	5	1	2	7	7	5
4	3	0	0	6	5	5	0	8
5	4	2	1	3	6	2	1	4

Si supponga infine che al tempo T_0 siano ancora disponibili 3 risorse di tipo A, 4 di tipo B, 0 di tipo C e 1 di tipo D. Il sistema si trova in uno stato safe? Motivare la risposta mostrando l'esecuzione dell'algoritmo del banchiere passo per passo. [7 punti]

2. Si descriva la tecnica del buddy system per l'allocazione della memoria ai processi.

[5 punti]

3. Si descriva cosa si intende per segmentazione della memoria. Quindi, data la tabella dei segmenti sottostante, si scrivano gli indirizzi fisici corrispondenti ai seguenti indirizzi logici: <0,430>,<4,112>,<3,400>,<1,10>,<2,500>.

Segmento	Base	Limite
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

[4+4 punti]

4. Si consideri il seguente insieme di processi.

1							
Processo	Burst	Priorità	Tempo di arrivo				
1	10	3	0				
2	1	1	5				
3	2	3	2				
4	1	4	1				
5	5	2	7				

Si mostri il diagramma dell'esecuzione dei processi usando gli algoritmi di scheduling FCFS, Round-Robin con quanto=1, e a priorità non preemptive (numeri piccoli indicano priorità più alte. Si calcoli il tempo di risposta, di attesa e di turnaround per ogni processo, e i rispettivi tempi medi su tutti i processi. Si supponga che l'algoritmo RR inserisca i nuovi processi in testa alla ready queue. [7 punti]

5. Si descrivano le tecniche di allocazione contigua, a lista e indicizzata utilizzate nell'implemetazione dei file system. [6 punti]