	import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHoteEncoder from sklearn.preprocessing import Pipeline from sklearn.model_selection import train_test_split from sklearn.motrics import mean_squared_error import statsmodels.api as sm import matplotlib.pyplot as plt
In [170	import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LinearRegression import pandas as pd import numpy as np # Set seed for reproducibility np.random.seed(79725877)
	<pre># Generate sample data n = 10000 # Continuous variables living_area = np.random.normal(loc=2000, scale=500, size=n) num_bedrooms = np.random.poisson(lam=3, size=n) num_bathrooms = np.random.poisson(lam=2, size=n) garage_size = np.random.normal(loc=2, scale=1, size=n) lot_size = np.random.normal(loc=10000, scale=2000, size=n) size = np.random.normal(loc=10000, scale=2000, size=n)</pre>
	<pre>year_built = np.random.normal(loc=1995, scale=20, size=n) # Discrete variables house_style = np.random.choice(["Ranch", "Colonial", "Split-Level"], n) neighborhood = np.random.choice(("Suburban", "Urban"], n) school_district = np.random.choice(["Good", "Average", "Poor"], n) # Interactions living_area_neighborhood = living_area + np.where(neighborhood == "Urban", -500, 500) living_area_garage = living_area * garage_size</pre>
	<pre>num_bedrooms_bathrooms = num_bedrooms * num_bathrooms # Generate response variable house_prices = abs(100000 + (2000 * num_bedrooms + 3000 * num_bathrooms +</pre>
	5000 * np.where(school_district == "Good", 1, -1) + 0.01 * living_area_neighborhood + 0.02 * living_area_garage + 1000 * num_bedrooms_bathrooms + 10 * num_bedrooms_bathrooms ** 2 + np.where(house_style == "Split-Level", -1, 0) * living_area + 1000 * (year_built - 1995) ** 2 * num_bedrooms_bathrooms ** 3) / living_area + np.random.normal(loc=0, scale=10000, size=n)) # Create dataframe house_data = pd.DataFrame({'house_prices': house_prices,
	'living_area': living_area, 'num_bedrooms': num_bedrooms, 'num_bathrooms': num_bathrooms, 'garage_size': garage_size, 'lot_size': lot_size, 'year_built': year_built, 'house_style': house_style, 'neighborhood': neighborhood, 'school_district': school_district})
	# Print the first 10 rows print(house_data.head(10)) # Summary print(house_data.describe()) house_prices living_area num_bedrooms num_bedrooms garage_size \ 10 104650.106324 2750.504829 3 0 3.291452 1 110324.228237 2314.820268 6 1 4.4261236
	2 98600.930281 3066.930023 4 2 2.894254 3 99190.163277 2683.40720 1 5 4.162642 4 116311.643044 2727.317303 3 2 2.894254 5 89500.579184 2729.52787 3 0 0.542204 6 106708.417941 991.579229 2 4 2.067132 7 102137.45480 2710.881596 5 1 2.593453 8 100776.398622 2195.903843 5 2 1.963957 9 111436.088692 2351.727801 3 1 1.745720
	lot_size year_built house_style neighborhood school_district 0 10367.206797 2000.068980 Split_Level Urban Average 1 1275.064128 1991.460825 Split_Level Suburban Average 2 9268.455770 2003.256377 Split_Level Suburban Average 3 11767.268528 1982.502396 Colonial Suburban Good 4 1410.654744 207.30557 Colonial Suburban Average 5 7142.942049 1950.739319 Colonial Suburban Average 6 1698.566270 1999.157207 Colonial Urban Poor 1 10943.253405 2003.914459 Colonial Urban Poor
	10175.05807 1997.4929799 1997.492979
	Tot_size
In [171	1. Outliers There are several ways to identify outliers, and they vary by their flexibility and explainability. Rather than just looking at numerical discriptions of the data alone, it might be easier to first graph the distributions of the quantitative variables of the data. plt.figure(figsize=(12, 8))
	<pre>numerical_features = ['living_area', 'num_bedrooms', 'garage_size', 'lot_size', 'year_built'] # Iterate over numerical features for i, feature in enumerate(numerical_features): plt.subplot(2, 3, i+1) sns.stripplot(x=feature, data=house_data, jitter=True, marker='o', alpha=0.5, color='green') plt.title(feature) plt.xlabel('') plt.tight_layout()</pre>
	living_area num_bedrooms num_bathrooms
	0 500 1000 1500 2000 2500 3000 3500 0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 8 garage_size
In [172	Since Box Plots don't tell the whole story, we decide to use dot plots of each explanatory variable to get a better idea of what the distributions look like for each variable. We see that outliers can range from deviation alone as well as non-sensical values. For example, it does not make sense for garage_size to be in the negatives, or for living_area to have a negative value. We will drop these values from the dataset then proceed with the standardized residual plots. A create a copy of the original dataframe for cleaning Fremove negative living area values Single Plots Fremove negative living area values Fremove negati
	house_data_clean = house_data_clean[vliving_area'] > 0] # remove nonsensical garage size values house_data_clean = house_data_clean[(house_data_clean['garage_size'] >= 0)] In practice, it can be difficult to appropriately identify how a large a residual needs to be before we can consider a point to be an outlier. Therefore, instead of plotting the residuals, we will plot the studentized residuals whose' value exceeds an absolute value of 3 will be considered potential outliers. import statsmodels.api as sm
	explanatory_vars = ['living_area', 'num_bedrooms', 'num_bathrooms', 'garage_size', 'lot_size', 'year_built'] model_cleaned = sm.OLS(house_data_clean['house_prices'], sm.add_constant(house_data_clean[explanatory_vars])) results_cleaned = model_cleaned.fit() # calculate residuals for cleaned data residuals_cleaned = results_cleaned.resid # calculate studentized residuals for cleaned data studentized_residuals_cleaned = results_cleaned.get_influence().resid_studentized_internal
	<pre># plot studentized residuals for cleaned data plt.figure(figsize=(12, 6)) plt.scatter(house_data_clean.index, studentized_residuals_cleaned, alpha=0.5) plt.axhline(y=0, color='r', linestyle='') plt.axhline(y=3, color='g', linestyle='') plt.axhline(y=-3, color='g', linestyle='') plt.title('Studentized Residuals (Cleaned Data)') plt.xlabel('Observation Index') plt.ylabel('Studentized Residuals')</pre>
	Studentized Residuals (Cleaned Data) 40 -
	Signal Si
	# removing the studentized residuals above absolute value 3 from the dataset cleaned_A_indices = np.abs(studentized_residuals_cleaned) <= 3
	house_data_clean_A = house_data_clean_A[cleaned_A_indices] model_cleaned_A = sm.OLS(house_data_clean_A['house_prices'], sm.add_constant(house_data_clean_A[explanatory_vars])) results_cleaned_A = model_cleaned_A.fit() model_cleaned_B = sm.OLS(house_data_clean['house_prices'], sm.add_constant(house_data_clean[explanatory_vars])) results_cleaned_B = model_cleaned_B.fit() # compare R-squared values print ("R-squared (cleaned_A):", results_cleaned_A.rsquared) print ("R-squared (cleaned_B):", results_cleaned_B.rsquared) **Transpace** **T
	# compare Residual Standard Error (RSE) print("RSE (cleaned_A):", np. sqrt(results_cleaned_A.mse_resid)) print("RSE (cleaned_B): ", np. sqrt(results_cleaned_B.mse_resid)) R-squared (cleaned_B): 0.22034069432249914 R-squared (cleaned_B): 0.12764713395635574 RSE (cleaned_B): 481740.57527640974 RSE (cleaned_B): 1522236.3247993554
In [175	We see that removing the possible outliers with studentized residuals greater than 3 in absolute values increases our R^2 as well as decreases our RSE quite significantly. Therefore, we will proceed with using the cleaned data that does not include the possible outliers. 2. Dimensionality Reduction There are many dimensionality reduction techniques, but here we will apply principal component analysis (PCA). from sklearn.decomposition import PCA
	<pre>features = house_data_clean_A.drop(columns=['house_prices', 'house_style', 'neighborhood', 'school_district']) # standardizing features_standardized = (features - features.mean()) / features.std() # performing PCA pca = PCA(n_components=2) pca_result = pca.fit_transform(features_standardized) plt.figure(figsize=(8, 6))</pre>
	plt.scatter(pca_result[:, 0], pca_result[:, 1], c=house_data_clean_A['house_prices'], cmap='coolwarm', alpha=0.5) plt.xlabel('Principal Component 1') plt.title('PCA Visualization of Cleaned Data (cleaned_A)') plt.colorbar(label='House Prices') plt.grid(True) plt.show() PCA Visualization of Cleaned Data (cleaned_A) PCA Visualization of Cleaned Data (cleaned_A) le6
	The state of the s
	-4 -3 -2 -1 0 1 2 3 4 Principal Component 1 from sklearn.cluster import KMeans # using K-means clustering with 4 clusters to find clusters within the data kmeans = KMeans (n_clusters=4, random_state=79725877) cluster_labels = kmeans.fit_predict(pca_result)
	plt.s(atter(pca_result[:, 0], pca_result[:, 1], c=cluster_labels, cmap='coolwarm', alpha=0.5) plt.x(abel('Principal Component 1') plt.y(abel('Principal Component 2') plt.title('K-means Clustering of Cleaned Data (cleaned_A)') plt.colorbar(label='Cluster') plt.colorbar(label='Cluster') plt.show() C:\Users\Connor\anaconda3\Lib\site-packages\sklearn\cluster\kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()check_params_vs_input(X, default_n_init=10)
	K-means Clustering of Cleaned Data (cleaned_A) 3.0 -2.5
	-2.0 -1.5 ID
	Principal Component 1 We can use K-means clustering to identify any clusters in the data. With dimensionality reduction and K-means clustering, we see that the data may not have distinct clusters, evidenced by the circle and its 4 effectively equal slices. The data points are equally spread and clustered around the zero point. 3. Classification
In [177	There are many classification methods at our disposal to estimate if a house is in an urban or suburban neighborhood based on its features. For this scenario, we will employ gradient boosting. from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingClassifier from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import accuracy_score
	<pre># determining target variable X = house_data_clean_A.drop(columns=['neighborhood']) y = house_data_clean_A['neighborhood'] # splitting into training and test data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=79725877) # setting the explanatory variables categorical_features = ['house_style', 'school_district']</pre>
	<pre>numerical_features = ['living_area', 'num_bedrooms', 'num_bathrooms', 'garage_size', 'lot_size', 'year_built', 'house_prices'] numerical_transformer = 'passthrough' # transforming the categorical variables categorical_transformer = OneHotEncoder() preprocessor = ColumnTransformer(transformers=[</pre>
	<pre>model = Pipeline(steps=[</pre>
	<pre>y_pred = model.predict(X_test) # Urban accuracy accuracy_urban = accuracy_score(y_test[y_test == 'Urban'], y_pred[y_test == 'Urban']) # Suburban accuracy accuracy_suburban = accuracy_score(y_test[y_test == 'Suburban'], y_pred[y_test == 'Suburban']) print("Accuracy (Urban):", accuracy_urban) print("Accuracy (Suburban):", accuracy_suburban)</pre>
	<pre># Overall accuracy accuracy = accuracy_score(y_test, y_pred) print("Overall Accuracy:", accuracy) # Feature importance feature_importance = model.named_steps['classifier'].feature_importances_ feature_names = model.named_steps['preprocessor'].transformers_[1][1].get_feature_names_out(categorical_features) importance_df = pd.DataFrame(('Feature': numerical_features), 'Importance': feature_importance)) importance_df = importance_df.sort_values(by='Importance', ascending=False)</pre>
	<pre># Top 10 features print(importance_df.head(10)) plt.figure(figsize=(10, 6)) plt.bar(importance_df['Feature'], importance_df['Importance'], color='green') plt.xlabel('Feature') plt.ylabel('Importance') plt.title('Feature Importances') plt.title('Feature Importances') plt.title(s(rotation=90))</pre>
	Pit.tight_layout() plt.show() Accuracy (Urban): 0.6123949579831933 Accuracy (Suburban): 0.3917004048582996 Overall Accuracy: 0.5
	Verify area
	0.20 - 0.15 - U
	0.05 -
	house_prices - garage_size - living_area - living_area - lot_size
	Feature Above we see the relative "importance" of each predictor with regard to classifying an observation as residing in an urban or suburban neighborhood. According to the output above, house price and garage size tens to have the greatest importance in classifying the neighborhood of a house as urban or suburban. We cannot, however, interpret these variables as causal. For example, while a larger garage size might be highly correlated with houses in suburban neighborhoods, it does not necessarily cause the house to be in a suburban neighborhood. The same logic applies to lot size, the year the house was built, and so on. Additionally, other variables like such as median house income, which could be correlated with a number of these predictors, are omitted from the model.
In [178	4. Random Forest Prediction from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import r2_score We know that the feature importance in the random forest model for house price predictions will vary quite differently from the feature importance we saw in the classification problem with gradient boosting. With random forests, we see that the year the house was built as well as the number of bedrooms and number of bathrooms easily are the most important variables with regard to house
In [179	prices. However, to avoid overfitting, we should also employ techniques like pruning and cross-validation. We limit the depth of the trees to 5, set the number of trees to 100, and perform 5-fold cross-validation and subsequently calculate the R^2 scores for each of those folds. It should be noted that increasing the number of trees will dramatically increase the computation time. Other techniques to address overfitting could be omitting the otherwise irrelevant features and using Lasso. from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.pipeline import Pipeline from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.metrics import train_test_split, cross_val_score from sklearn.metrics import r2_score
	<pre>import pandas as pd import matplotlib.pyplot as plt # determining the target variable X = house_data_clean_A.drop(columns=['house_prices']) y = house_data_clean_A['house_prices'] # setting the explanatory variables categorical_features = ['house_style', 'neighborhood', 'school_district'] numerical_features = ['living_area', 'num_bedrooms', 'quarge_size', 'lot_size', 'year_built']</pre>
	<pre>numerical_transformer = Pipeline(steps=[</pre>
	<pre>preprocessor = ColumnTransformer(transformers=[</pre>
	<pre># cross validation with 5 folds cv_scores = cross_val_score(model, X, y, cv=5, scoring='r2') print("Cross-validated R-squared scores:", cv_scores) print("Mean R-squared:", cv_scores.mean()) model.fit(X, y)</pre>
	<pre># feature_importances feature_importances = model.named_steps['regressor'].feature_importances_ # creating a list of all the feature names categorical_feature_names = model.named_steps['preprocessor'].named_transformers_['cat']['onehot']\</pre>
	<pre>importance_df = importance_df.sort_values(by='Importance', ascending=False) print(importance_df.head(10)) plt.figure(figsize=(10, 6)) plt.bar(importance_df['Feature'], importance_df['Importance'], color='green') plt.xlabel('Feature') plt.ylabel('Importance') plt.ylabel('Importance') plt.xticks(rotation=90)</pre>
	plt.tight_layout() plt.show() Cross-validated R-squared scres: [0.87656378 0.87306388 0.85404932 0.83881672 0.85458556] Mean R-squared: 0.8594158518118917 Mean R-squared: 0.8594158518118917 Feature Feature Umportance 5 year_built 0.414494 1 num_bedrooms 0.274559 2 num_bathrooms 0.222060 0 living_are 0.38588
	1
	0.35 - 0.30 - by 0.25 -
	0.15 - 0.10 - 0.05 - 0.00
	year_built num_bedrooms num_bathrooms living_area lot_size garage_size garage_size garage_size school_district_Average school_district_Average school_district_Good : house_style_Ranch : house_style_Colonial :
	Feature As expected, variables like garage_size are no longer the most important when prediciting house prices as compared to classifying houses as urban or suburban. With so many features not as important as the features like year_built and num_bedrooms, excluding them in the feature could be a possibility.

In [169... # libraries

import numpy as np