품질경영 과제 2

1. A 회사의 표면처리 공정에서 부적합수 데이터를 나타낸 자료이다. (단위 $1000m^2$) 적절한 관리도를 작성하고 공정상태를 판단하라.

군 번호	시료크기	부적합수	UCL	LCL
1	1.0	2	\bar{u} + 2 \bar{u}	$Mox(\bar{u} - 2 \sqrt{\bar{u}} = 0)$
2	1.0	5	$\bar{u} + 3\sqrt{\frac{\bar{u}}{a_i}}$	$\operatorname{Max}(\bar{u}-3\sqrt{\frac{\bar{u}}{a_i}},0)$
3	1.0	3	$=3.057 + 3\sqrt{\frac{3.057}{1.0}} = 8.3023$	=()
4	1.0	2	$3.037 + 3\sqrt{1.0} = 0.3023$	
5	1.5	1	3.057	0
6	1.5	5	$3.057 + 3 \sqrt{\frac{3.057}{1.5}} = 7.3398$	
7	1.5	2	√ 1.5	
8	1.5	4		
9	1.5	2		
10	1.5	6		
11	1.5	4		
12	1.2	1	3.057	0
13	1.2	11	$3.057 + 3 \sqrt{\frac{3.057}{1.2}} = 7.8453$	
14	1.2	3	√ 1.2	
15	1.2	8		

시료크기가 다르므로 u 관리도를 사용한다. u 관리도의 중심선은 $\bar{u}=\frac{\sum X_i}{\sum a_i}=\frac{2+5+\cdots+8}{1+1+\cdots+1.2}=\frac{59}{19.3}=3.057$

좌측 관리도에서 보는 바와 같이 부분군 13 에서 관리이탈상태이다. 부분군 13 의 이상원인을 찾고 조치를 취한 후 부분군 13 을 제거한 다음 관리한계를 재계산하면 우측 관리도와 같다.

2. 품질특성치는 정규분포를 따르고 공정이 안정상태에서 평균은 μ 이고 표준편차는 σ 이다. 공정이 안정상태인데 불안정상태라고 판단할 확률이 0.025 가 되도록 \bar{X} 관리도의 관리한계를 정하라.

UCL=
$$\mu_0 + L\frac{\sigma}{\sqrt{n}}$$
 이므로 $P(\bar{X} > \mu_0 + L\frac{\sigma}{\sqrt{n}} \mid \mu_0) = 0.0125$ 가 되는 L을 찾아온다. $P(Z>L)=0.0125$ 이므로 L=2.2414 이다.

3. n = 4의 $\bar{x} - R$ 관리도에서 $\bar{x} = 18.5$, $\bar{R} = 3.09$ 로 관리상태이다. 지금 공정평균이 15.49 로 변했다고 하면 다음 표본에서 3 시그마 관리한계를 벗어날 확률은 얼마인가?

$$\hat{\sigma} = \frac{\bar{R}}{d_2} = \frac{3.09}{2.059} = 1.5$$

$$UCL = \bar{x} + A_2 \bar{R} = 18.5 + 0.729 * 3.09 = 20.75$$

$$LCL = \bar{x} - A_2 \bar{R} = 18.5 - 0.729 * 3.09 = 16.25$$

$$P(\bar{x} > UCL) = 15.49 + P(\bar{x} < UCL) = 15.$$

$$P(\bar{x} > UCL|\mu = 15.49) + P(\bar{x} < LCL|\mu = 15.49) = P\left(Z > \frac{20.75 - 15.49}{1.5}\right) + P(Z < \frac{16.25 - 15.49}{1.5})$$

$$= P(Z > 3.51) + P(Z < 0.51) = 0.7$$

- 4. 어떤 기계제조 회사 가공부품 공정의 품질특성치에 대한 데이터를 수집하였다. 크기 n=4인 시료를 택하여 $\bar{x}-R$ 관리도를 작성하고 데이터를 분석한 결과 $\bar{x}=26.0~mm,~\bar{R}=1.02~mm$ 이었다. 다음 물음에 답하라.
 - (a) 군내변동 σ_w^2 를 구하라.

$$\sigma_w = \frac{\bar{R}}{d_2} = \frac{1.02}{2.059} = 0.495$$
 $\sigma_w^2 = 0.245$

(b) $\sigma_{\bar{x}}^2 = 0.225$ 일 때 군간변동 σ_{b}^2 를 구하라.

$$\sigma_b = \sqrt{\sigma_{\bar{x}}^2 - \frac{\sigma_w^2}{5}} = \sqrt{0.225 - \frac{0.245}{5}} = 0.42$$

(c) 관리계수 C_f 를 구하고 평가하라.

$$C_f = rac{\sigma_{\overline{x}}}{\sigma_w} = rac{0.474}{0.495} = 0.958$$
 대체로 관리상태에 있다.

5. 다음 표에는 화학공정의 출력물 농도에 관한 20 개의 관측치가 있다. 1 시간 간격으로 1 개 관측치를 추출하였다. I-MR 관리도를 작성하고 관리상태를 판정하라.

관측번호	농도	관측번호	농도
1	102.0	11	101.3
2	94.8	12	98.7
3	98.3	13	101.1
4	98.4	14	98.4
5	102.0	15	97.0
6	98.5	16	96.7
7	99.0	17	100.3
8	97.7	18	101.4
9	100.0	19	97.2
10	98.1	20	101.0

6. 5 번의 농도자료에 대해 $\lambda = 0.2, L = 3$ 의 EWMA 관리도를 작성하고 관리상태를 판정하라.

7. 5 번의 농도자료에 대해 참조값은 K = 1, 결정구간은 H = 10을 사용하여 CUSUM 관리도를 작성하고 관리상태를 판정하라.

