Chapter 9: Computational Complexity and intractability: An Introduction to the Theory of NP

Contents

- 9.1 Intractability
- 9.2 Input Size Revisited
- 9.3 The Three General Categories of Problems
- 9.4 The Theory of NP
 - 9.4.1 The Sets P and NP
 - **9.4.2 NP-Complete Problems**
 - 9.4.3 NP-Hard, NP-Easy, and NP-Equivalent Problems

9.1 Intractability

Def.) polynomial-time algorithm

$$W(n) \in O(p(n))$$

where n: input size, p(n): polynomial in n

Ex. 9.1 n, $n \log n$, $n^k(k)$: constant) not polynomial: 2^n , $2^{\sqrt{n}}$, n!

 A problem is intractable if it is impossible to solve it with a polynomial-time algorithm.

- Def.) Input size
 - The # of characters it takes to write the input
- **Ex**) sort n positive integers $\leq L$

binary encoding $n \log_2 L$ decimal encoding $n \log_{10} L = \underbrace{\log_{10} 2 \cdot n \log_2 L}_{\text{constant}}$

• "reasonable encoding": not affect the determination of whether an algorithm is polynomial-time.

Examples - Prime checking

Same as prime checking

```
bool prime(int n)
  int i; bool switch;
  switch = true;
  i=2;
  while (switch && i <= n^{1/2})
    if(n \% i == 0)
       // % returns the remainder
       // when n is divided by i.
       switch = false;
    else
       i++;
                       n-th Fibonacci number
  return switch;
                       (Algorithm 1.7)
```

```
    Input size \log n = r
    Magnitude n
    Complexity \Theta(2^r) = \Theta(n)
        → not linear
```

```
int fib2 (int n)
{
    index i;
    int f[0..n];
    f[0] = 0;
    if (n > 0) {
        f[1] = 1;
        for (i = 2; i <= n; i++)
            f[i] = f[i - 1] + f[i - 2];
    }
    return f[n];
}</pre>
```


- **Complexity** $\Theta(nW)$
 - n: measure of size (# of items)
 - W: magnitude (log W : size)
 - So polynomial in terms of magnitude and size but exponential in terms of size alone.
- Def.) Pseudopolynomial-time algorithm
 - An algorithm whose worst-case time complexity is bounded above by a polynomial function of its size and magnitude.

9.3 The Categories of Problems

- (1) Problems for which polynomial-time algorithms have been found.
- (2) Intractable problems
 - Nonpolynomial amount of outputs
 - **Ex**) (n-1)! Hamiltonian circuits in K_n
 - Undecidable problems
 - Ex) halting problems
 - Decidable decision problems proven to be intractable
 - Presburger arithmetic
- (3) Problems proven to be neither intractable nor polynomially solved
 - Ex) 0/1 knapsack, TSP, sum-of-subsets, ...

- Decision problem: A problem for which the answer is either zero (no) or one (yes) is called a decision problem.
- **Ex**) TSDP: determine for a given positive d whether there is a tour having total weight $\leq d$.
- **Ex**) 0/1 knapsack DP: determine whether there is a 0/1 assignment of values to x_i s.t. $\sum p_i x_i \ge P$ and $\sum w_i x_i \le W$

Examples – continued

Ex) Graph coloring DP

Chromatic number: min # of colors need to color a graph so that no two adjacent vertices are colored the same color.

Determine, for an integer m, whether there is a coloring that

uses at most *m* colors.

Ex) Clique DP

- Clique: maximal complete subgraph
- Determine, for a positive integer k, whether there is a clique of size $\geq k$
- See Fig. 9.1

- Def.) P is the set of all decision problems that can be solved by polynomial-time algorithms
- Nondeterministic algorithm
 - (1) Guessing (nondeterministic) stage generate some string S (guess a solution)

success à mallones	Output	Reason
$[v_1, v_2, v_3, v_4, v_1]$	False	Total weight is greater than 15
$[v_1, v_4, v_2, v_3, v_1]$	False	S is not a tour
#@12*&%a ₁ \	False	S is not a tour
$[v_1, v_3, v_2, v_4, v_1]$	True	S is a tour with total weight no greater than 15

(2) Verification (deterministic) stage

bool verify(weighted_digraph G, number d, claimed tour S)

if (S is a tour && the total weight of the edges in S is <= d)
 return true;
else
 return false;</pre>

SOutputReason $[v_1, v_2, v_3, v_4, v_1]$ FalseTotal weight is greater than 15 $[v_1, v_4, v_2, v_3, v_1]$ FalseS is not a tour $\#@12*\&\%a_1\$ FalseS is not a tour $[v_1, v_3, v_2, v_4, v_1]$ TrueS is a tour with total weight no greater than 15

Def.) NP is the set of all decision problems that can be solved by polynomial-time nondetermistic algorithms.

- P = NP(?) open
- No one has ever proven that there is a problem in NP that is not in P.

9.4.2 NP-Complete Problems

CNF-satisfiability Problem (SAT)

 x_i : logical (boolean) variable, true or false

 \bar{x}_i : negation of x_i

CNF (Conjunctive Normal Form)

$$\mathbf{ex}) (\overline{x}_{1} \vee x_{2} \vee \overline{x}_{3}) \wedge (x_{1} \vee \overline{x}_{4}) \wedge (\overline{x}_{2} \vee x_{3} \vee x_{4})$$

- To determine whether a formula is true for some assignment of truth values to the variables.
- **Transformation** $(A \propto B)$
 - Want to solve (decision) problem A

Assume we have transformation (algorithm) $I_B = tran(I_A)$

and (decision) algorithm for solving B

Then, we can solve problem A

Figure 9.4 Algorithm tran is a transformation algorithm that maps each instance x of decision problem A to an instance y of decision problem B. Together with the algorithm for decision problem A.

Algorithm for problem A

Theorem 9.1

- If decision problem B is in P and $A \propto B$ then decision problem A is in P.
- **■** (**Proof**)

p: polynomial-time complexity of transformation

q: polynomial-time complexity algorithm for B.

$$I_A$$
 of size $n \xrightarrow{trans} I_B$ of size $\leq p(n) \xrightarrow{\text{algorithm B}} \text{yes/no}$

Note that p(n) + q(p(n)) is polynomial-time in n

4

Definition and Theorems

- A problem B is called NP-complete if
 - 1. It is in NP and
 - 2. $\forall A$ in NP, $A \propto B$
- Theorem 9.2 (Cook's Theorem)
 SAT is NP-complete. (SAT is in P iff P = NP)

- Theorem 9.3 A problem C is NP-complete if
 - 1. $C \in NP$
 - 2. $\exists B \in NP$ complete $B \propto C$
 - (Proof) ∞ is transitive (B can be Sat)

Discussion – The state of NP

 $\mathbf{P} = \mathbf{NP}$

* trivial decision problems that always answers yes(or no) (nontrivial decision problem can't be transformed to it)

 $P \cap NP$ – complete = \emptyset (if not, by Th. 9.1, we could solve any problem in NP in polynomial-time)

4

9.4.3 NP-Hard, NP-Easy, NP-Equivalent Problems

- Extend to general problem
- **Def.**) $A \propto_T B$

If problem A can be solved in polynomial-time using a "hypothetical" polynomial-time algorithm for B, A is polynomial-time Turing reducible to B. (A Turing reduces to B).

 ∞_T is transitive $A \propto B$ implies $A \propto_T B$

■ A problem B is called NP-hard if for some NP-complete problem A, $A \propto_T B$

Every NP-complete problem is NP-hard.

The optimization problem corresponding to any NP-complete problem is NP-hard.

If a problem is NP-hard, it is at least as hard (for finding polynomial-time algorithm) as the NP-complete problems.