

ch4: Bayesian Classification

Bayes Rule(P9)

$$P(C_i|x) = \frac{p(x|C_i)P(C_i)}{p(x)}, \qquad i = 1, 2$$

 $P(C_i)$: prior probability of C_i (before observing x)

 $p(C_i|x)$: posterior probability of C_i (after observing x)

 $p(x | C_i)$: probability of x given C_i (likelihood)

p(x): probability that x will be observed (evidence)

$$p(x) = P(C_1)p(x \mid C_1) + P(C_2)p(x \mid C_2)$$

Bayes Decision Rule(P11)

$$P(\text{error}|x) = \begin{cases} P(C_1|x) & \text{if we decide } C_2 \\ P(C_2|x) & \text{if we decide } C_1 \end{cases}$$

• the average probability of error:

$$P(\text{error}) = \int_{-\infty}^{\infty} P(\text{error}|x)p(x)dx$$

This is minimized if for every x we ensure that P(errorlx) is as small as possible

• the decision rule:

Classify x into
$$C_1$$
 if $P(C_1|x) > P(C_2|x)$

 $P(\text{error} \mid x) = \min(P(C_1 \mid x), P(C_2 \mid x))$

• equivalently, classify x into C₁ if

$$\frac{p(x|C_1)p(C_1)}{p(x)} > \frac{p(x|C_2)p(C_2)}{p(x)}$$

$$p(x|C_1)p(C_1) > p(x|C_2)p(C_2)$$

• Special Cases(P12)

$$p(x|C_1)P(C_1) > p(x|C_2)P(C_2)$$

Special case 1: $p(x|C_1) = p(x|C_2)$

- the observation gives us no information about the state of nature
- decision based entirely on the prior probabilities

Special case 2: $P(C_1) = P(C_2)$

• decision based entirely on the likelihoods

Bayes Rule for K>2 Classes(P13)

 Bayes rule for general case (K mutually exclusive and exhaustive classes):

$$P(C_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C_i)P(C_i)}{p(\mathbf{x})}$$
$$= \frac{p(\mathbf{x} \mid C_i)P(C_i)}{\sum_{k=1}^{K} p(\mathbf{x} \mid C_k)P(C_k)}$$

• Optimal decision rule for Bayes classifier:

Choose
$$C_i$$
 if $P(C_i \mid \mathbf{x}) = \max_k P(C_k \mid \mathbf{x})$

Example(P14)

Question

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, 0.008 of the entire population have this cancer.

Does the patient have cancer or not?

$$P(cancer) = 0.008$$
 $P(\neg cancer) = 0.992$
 $P(+|cancer) = 0.98$ $P(-|cancer) = 0.02$
 $P(+|\neg cancer) = 0.03$ $P(-|\neg cancer) = 0.97$
 $P(+|cancer)P(cancer) = 0.98(0.008) = 0.0078$
 $P(+|\neg cancer)P(\neg cancer) = 0.03(0.992) = 0.0298$
Answer: $\neg cancer$

Answer: ¬*cancer*

Bayesian Networks for Classification(P17-18)

Classification amounts to infer the posterior of class C 分类相当于在贝叶斯网络下推断C类的后验。 under a Bayes network.

• Bayes rule inverts the edge:

$$P(C \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid C)P(C)}{P(\mathbf{x})} \Longrightarrow P(C \mid x_1, x_2, ..., x_d) = \frac{P(x_1, x_2, ..., x_d \mid C)P(C)}{P(x_1, x_2, ..., x_d)}$$

Input:

- a <u>data sample</u> $x = (x_1, x_2, ..., x_d)$
- a fixed set of classes $C = \{C_1, ..., C_j\}$.

Output:

• the most probable class $c \in C$:

$$\begin{split} c_{\text{MAP}} &= \arg\max_{c \in C} P(c|x) \\ &= \arg\max_{c \in C} \frac{P(x|c)P(c)}{P(x)} \\ &= \arg\max_{c \in C} P(x|c)P(c) \\ &= \arg\max_{c \in C} p(x_1, x_2, \dots, x_d|c) P(c) \end{split}$$

Naïve Bayes Independent Assumption:

Conditional Independence: assume the input features x_j are independent given the class c

$$P(x_1,...,x_n|c) = P(x_1|c) \cdot P(x_2|c) \cdot P(x_3|c) \cdot ... \cdot P(x_n|c)$$

$$c_{\text{MAP}} = \arg \max_{c \in C} p(x_1, x_2, ..., x_d | c) P(c)$$

$$c_{\text{NB}} = \arg \max_{c \in C} P(c) \prod_{i=1}^{d} p(x_i|c)$$

Training the Naïve Bayes Classifier(P22)

$$c_{\text{NB}} = \arg \max_{c \in C} P(c) \prod_{i=1}^{d} p(x_i|c)$$

Training amounts to estimating parameters: P(c)'s, $P(x_1|c)$, ..., $P(x_d|c)$ from data.

How to estimate each P(c)?

- Straightforward

How to estimate $P(x_i|c)$ for each c?

$$\widehat{P}(x_i|c) \leftarrow \frac{\operatorname{count}(x_i,c)}{\sum_{x \in |x|} \operatorname{count}(x,c)}$$

training samples for which C=c and $x=x_i$

training samples for which C=c

Question

What if none of the training instances with class c have attribute x_i ?

$$\hat{P}(x_i|c) = 0 \quad \rightarrow \quad \hat{P}(c) \prod_i \hat{P}(x_i|c) = 0$$

no chance to be classified as c, even if all other attributes values suggest c

• Laplace smoothing: add a virtual count of 1 to each attribute value.

$$\hat{P}(x_i|c) \leftarrow \frac{\mathrm{count}(x_i,c) + 1}{\sum_{x \in |x|} (\mathrm{count}(x,c) + 1)}$$

|x| = Vocabulary, which denotes the number of different values of attribute x.

The Naïve Bayes Algorithm(P24)

Naive_Bayes_Learn(examples)

```
begin

| for each class c do | \hat{p}(c) \leftarrow estimate p(c) | for each attribute value x_i of each attribute x do | \hat{p}(x_i|c) \leftarrow estimate p(x_i|c); | end | end | end | end |
```

$Classify_New_Instance(x)$

• Example: Play Tennis(P24-25)

Advantages(P29)

- Fast
 - ⊳ on training, requires only a single pass over the training set
 - ⊳ on testing, also fast
- Competitive performance
 - ⊳ when assumption of independence holds, NB performs better
 - ⊳it also perform well in multi class prediction
- Simple to update upon additions or deletions of training examples

Disadvantages(P30-31)

Conditional Independence Assumption

- Often violated
- But it works surprisingly well anyway!
- Don't need estimated posterior $\hat{P}(c|x)$ to be correct
- Need only that

$$\arg\max_{c\in C} \hat{P}(c) \prod_{i} \hat{P}(x_i|c) = \arg\max_{c\in C} P(c) P(x_1, ..., x_d|c)$$

Underfitting

- The complexity of Naïve Bayes classifier is fixed and low.
- Bayesian (belief) network classifier can relax the assumption.

Applications(P32)

- Real time Prediction: NB is an eager learning classifier and it is sure fast.
- Multi class Prediction: NB can predict the probability of multiple classes of target variable.
- Text classification (e.g., spam filtering/sentiment analysis): NB is mostly used in text classification (due to better result in multi-class problems and independence rule) have higher success rate as compared to other algorithms.

Example: Spam Filtering(P35-39)