Edexcel GCE

Mathematics

Statistics S2 6684

Summer 2005

Final Mark Scheme

advancing learning, changing lives

Mathematics

June 2005 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Ma	rks
1(a)	$X \sim B(n, 0.04)$ Implied	B1	
	E(X) = np $5 = 0.04n$ Use of $np = 5$	M1	
	n = 125	A1	(3)
(b)	E(X) = 3 $np = 3$ $np = 3$	B1	()
	$sd = \sqrt{npq} = \sqrt{3(1 - 0.04)}$ Use of npq	M1	
	$= \sqrt{2.88} = 1.70 $ awrt 1.70	A1 A1	
	1.70		(4) otal 7
2(a)	$f(x) = \frac{1}{4} , \ 2 \le x \le 6 $ $\frac{1}{4} \text{ and range}$	B 1	
	= 0 , otherwise 0 and range	В1	
(b)	E(X) = 4 by symmetry or formula 4	B1	(2) (1)
(c)	Var (X) = $\frac{(6-2)^2}{12}$ Use of formula = $\frac{4}{3}$ 1.3 or $1\frac{1}{3}$ or $\frac{4}{3}$ or 1.33	M1	
	$= \frac{4}{3}$ 1.3 or $1\frac{1}{3}$ or $\frac{4}{3}$ or 1.33	A1	(2)
(d)	$F(x) = \int_{2}^{x} \frac{1}{4} dt = \left[\frac{1}{4} t \right]_{2}^{x}$ Use of $\int f(x) dx$	M 1	
	$=\frac{1}{4}(x-2)$ $\frac{1}{4}(x-2)$ or equiv.	A1	
	$F(x) = \frac{1}{4}(x-2), \ 2 \le x \le 6$ $\frac{1}{4}(x-2)$ and range	B1ft	
	= 1 , x > 6	B1	(4)
(e)	$P(2.3 < X < 3.4) = \frac{1}{4}(3.4 - 2.3)$ Use of area or $F(x)$	M 1	
	$= 0.275$ 0.275 or $\frac{11}{40}$	A1 Tota	(2) al 11

Question Number	Scheme		Mai	rks
3(a)	Misprints are random / independent, occur singly in space and at a constant rate	Context, any 2	B1, B	(2)
(b)	$P(X = 0) = e^{-2.5}$ = 0.08208 = 0.0821	Po (2.5) 0.0821	M1 A1	(2)
(c)	$Y \sim Po (5) \text{ for 2 pages}$ $P(Y > 7) = 1 - P(X \le 7)$ = 1 - 0.8666 = 0.1334	Use of 1 – and correct inequality 0.1334	B1 M1 A1	(3)
(d)	For 20 pages, $Y \sim P_o$ (50) $Y \sim N(50, 50)$ approx	P _o (50) N(50, 50)	B1 B1	
	$P(Y < 40) = P(Y \le 39.5)$ $= P\left(Z \le \frac{39.5 - 50}{\sqrt{50}}\right)$	$ m cc~\pm 0.5$ standardise above all correct	M1 M1 A1	
	$= P (Z \le -1.4849)$ $= 1 - 0.93 = 0.07$	awrt – 1.48 0.07	A1 A1	(7)
			Tot	al 14
4(a)	Individual member or element of the population or s	sampling frame	B 1	(1)
(b) (c)	A <u>list</u> of <u>all</u> sampling units or <u>all</u> the population All possible <u>samples</u> are chosen from a population; associated <u>probabilities</u> is a sampling distribution	the <u>values</u> of a <u>statistic</u> and the	B1 B1 B1	(1)
	1 0			(2)

Question Number	Scheme		Marks
5(a)	$X \sim B(200, 0.02)$ <u>n large, P small</u> so $X \sim Po(np) = Po(4)$	Implied conditions, $P_0(4)$	B1 B1, B1
	$P(X = 5) = \frac{e^{-4}4^{5}}{5!}$ $= 0.1563$	$P(X \le 5) - P(X \le 4)$ 0.1563	M1 A1 (5)
(b)	$P(X < 5) = P(X \le 4)$ = 0.6288	$P(X \le 4)$ 0.6288	M1 A1 (2) Total 7
6(a)	$\int_{0}^{2} k(4x-x^3) \mathrm{d}x = 1$	$\int f(x)dx = 1$, all correct	M1 A1
	$\int_{0}^{2} k(4x - x^{3}) dx = 1$ $k \left[2x^{2} - \frac{1}{4}x^{4} \right]_{0}^{2} = 1$	[*]	A1
	$k(8-4) = 1$ $k = \frac{1}{4}$	cso	A1 (4)
(b)	$E(X) = \int_{0}^{2} x \cdot \frac{1}{4} (4x - x^{3}) dx$	$\int x f(x) dx$	M1
	$= \left[\frac{1}{3}x^3 - \frac{1}{20}x^5\right]_0^2$	[*]	A1
	$=\frac{16}{15}$	1.07 or $1\frac{1}{15}$ or $\frac{16}{15}$ or $1.0\dot{6}$	A1 (3)
(c)	At mode, $f'(x) = 0$ $4 - 3x^2 = 0$	Attempt to differentiate	M1 M1
	$x = \frac{2}{\sqrt{3}}$	$\sqrt{\frac{4}{3}}$ or 1.15 or $\frac{2}{\sqrt{3}}$ or $\frac{2\sqrt{3}}{3}$	A1 (3)
(d)	At median, $\int_{0}^{x} \frac{1}{4} (4t - t^{3}) dt = \frac{1}{2}$	$F(x) = \frac{1}{2} \text{ or } \int f(x) dx = \frac{1}{2}$	M1
	$\frac{1}{4} \left(2x^2 - \frac{1}{4}x^4 \right) = \frac{1}{2}$ $x^4 - 8x^2 + 8 = 0$	Attempt to integrate	M1
	$x^{2} = 4 \pm 2\sqrt{2}$ $x = 1.08$	Attempt to solve quadratic Awrt 1.08	M1 A1 (4)

(e)	mean (1.07) < median (1.08) < mode (1.15) \Rightarrow negative skew	any pair cao	M1 A1 (2)
(f)	f(x)	lines $x<0$ and $x>2$, labels, 0 and 2	B1
		negative skew between 0 and 2	B1 (2)
-	0 2		Total 18
7 (a)	X~B(10, p)	Binomial (10, 0.75)	B1, B1 (2)
(b)	P(X = 6) = 0.9219 - 0.7759 $= 0.1460$	$P(X \le 6) - P(X \le 5)$ 0.1460	M1 A1
(c)	H_0 : $p = 0.75$ (or $p = 0.25$)	Correct H ₀	B1 (2)
	$H_1: p < 0.75 \text{ (or } p > 0.25)$	One tailed H	B1
	Under H_0 , X^* B(20, 0.75) (or Y^* B(20,0.25))	Implied	B1
	$P(X \le 13) = 1 - 0.7858 = 0.2142 \text{ (or } P(Y \ge 7))$ Insufficient evidence to reject H ₀ as 0.2412 > 0.05	$P(X \le 13)$ and 1 -, 0.2142	M1, A1
	Doctor's belief is not supported by the sample	Context	A1
	$(OR\ CR\ P(X \le 12) = 1 - 0.8982 = 0.1018$ $(or\ P(Y \ge 8))$		(6)
	$P(X \le 11) = 1 - 0.9591 = 0.0409$ (or $P(Y \ge 9)$) 13 outside critical region	either	(MI AI)
(d)	$(or 7)$) $P(X \le c) \le 0.01 \text{ for p=0.75}$ $(or P(Y \ge 20-c) \le 0.01 \text{ for p=0.25})$ $P(X \le 9) = 1 - 0.9961 = 0.0039 \text{ (or } P(Y \ge 11))$ $P(X \le 10) = 1 - 0.9861 = 0.0139 \text{ (or } P(Y \ge 10))$ C. R. is [0,9], so greatest no. of patients is 9.	0.9961 or 0.9981 9	M1 A1 B1 B1 (4) Total 14