Nombre	Descripción	Para qué es	Fórmula
Tromote	Beschperon	Cantidad del fármaco que	
Volumen de	Vd = volumen de	se distribuye al órgano	$Vd = rac{cantidad\ de\ droga\ en\ el\ cuerpo}{concentración\ en\ el\ cuerpo}$
distribución	distribución	blanco. No considera al	concentration on or each po
		tejido intracelular	
Distribución		Distribución del fármaco	
mono		considerando al cuerpo	Dosis * biodisponibilidad
compartamental		como un único	С
		compartimento	P.
Distribución			$V_{-}ss = V_{-}s + \left(vi\frac{F_{ls}}{F_{lt}}\right)$
bicompartamental			$ F_{lt}$
Biodisponiblidad		Grado fraccional de una	$F = rac{cantidad\ que\ llega\ a\ la\ circulación}{cantidad\ del\ fármaco\ administrado}$
	F =	dosis administrada que alcanza su sitio de acción (o	cantidad del fármaco administrado
	biodisponiblidad.	un líquido biológico desde	
	biodispoinondad.	donde tenga acceso a su	
		sitio de acción)	
		Magnitud que cuantifica a	, / Forma ionizada \
pKa		que pH la mitad del	$pKa - pH = \log\left(\frac{Forma\ ionizada}{Forma\ no\ ionizada}\right)$
		fármaco está ionizado y la	A of the to total and
		otra no ionizado	
	CL= aclaramiento		
	Km =	Cantidad que se logra	
	concentración a la	eliminar de un volumen	
	que se alcanza la	determinado de la sangre	$CL = \frac{V_m}{K_m + c}$
Clerance	mitad de la tasa	cuando el fármaco sigue la	$K_m + c$
	máxima de	cinética de primer orden	
	eliminación Vm = tasa	(concentración eliminada	
	máxima de	permanece constante)	
	eliminación		
	ALIC- área baia		Dosis
	AUC= área bajo la curva (tiempo)		$Cl = \frac{Dosis}{AUC}$
	ia cui va (tiempo)		
		Aclaramiento total,	$CL = CL_{renal} + CL_{hep\'atica} + CL_{otros}$
Clerance		considerando el	
		aclaramiento de cada órgano.	
			$\mathit{CL}_{renal} = \mathit{depuraci\'on}\ \mathit{plasm\'atica}$
		Aclaramiento renal	*filtracion renal
		Cantidad de dosis por	,
		administrar	
			$Dt = Dosis f \'armaco \frac{mg}{kg} * peso corporal$
Dosis total		Total de la dosis que se	$\frac{\partial t - Dosis}{kg}$ a muco $\frac{1}{kg}$
		tiene que dar	
Dosis diaria	Dd = dosis diaria		$Dd = Dosis f ármaco \frac{mg}{kg} * peso * frec$
	Peso= peso del	Dosis que se tiene que dar	kg
	paciente	al día	
	Frec= frecuencia de administración		
	ue auministración	Cantidad que se tiene que	_ dosis total
Cantidad por		aplicar por dosis tomando	$ D = {} * ml de presentación $
administrar		en cuenta la presentación	mg en presentacion
		del fármaco.	
L			

Índice terapéutico	LD50 = dosis en la cual el 50% de la muestra muere. ED50 = dosis en la cual se logra el 50% del efecto deseado.	Relación entre la dosis terapéutica y la dosis letal. Si es de 1 con la misma cantidad que la mitad tiene efecto se muere la mitad. Mientras más cercano sea a 1 es menos seguro.	$Indice\ terap\'eutico = rac{LD_{50}}{ED_{50}}$
Concentración en estado de equilibrio	Css= concentración en estado estable	Cantidad por administrar para que la depuración y la absorción del medicamento sean iguales.	$C_{ss} = \frac{F * dosis}{CL * T}$
Dosis de carga	Cp = concentración en plasma. Vss volumen de distribución en estado estable	Dosis que se tiene que administrar para hacer que un fármaco llegue a su concentración en estado estable en la primera dosis	Dosis de carga = $\frac{(Cp \ ideal * V_{ss})}{F}$
Dosis de mantenimiento		Dosis que se tiene que administrar para hacer que un fármaco se mantenga en su concentración en estado estable	Dosis de mantenimiento = $\frac{Cp \ ideal * CL}{F}$