Series-Parallel Resistive Circuits

IDENTIFYING SERIES-PARALLEL RELATIONSHIPS

A series-parallel circuit consists of combinations of both series and parallel current paths. It is important to be able to identify how the components in a circuit are arranged in terms of their series and parallel relationships.

Blue groups are in series. R_4 and R_1 are in series. R_5 R_5 R_6 R_6 R_6 R_6 R_6 R_6 R_6 R_6 R_7 R_8 R_8 R_8

Solution in Class

Solution in Class

Solution in Class

ANALYSIS OF SERIES-PARALLEL RESISTIVE CIRCUITS

Analyze series-parallel circuits

- ◆ Determine total resistance
- ◆ Determine all the currents
- ◆ Determine all the voltage drops

Total Resistance

To find the total resistance () of a series-parallel combination, simply define the series and parallel relationships; then perform the calculations that you have previously learned.

Find the total resistance between the positive and negative terminals of the battery in Figure 17.

Total Current

Once you know the total resistance and the source voltage, you can apply Ohm's law to find the total current in a circuit. Total current is the source voltage divided by the total resistance.

$$I_{\rm T} = \frac{V_{\rm S}}{R_{\rm T}}$$

Branch Currents

Using the current-divider formula, Kirchhoff's current law, Ohm's law, or combinations of these, you can find the current in any branch of a series-parallel circuit. In some cases, it may take repeated application of the formula to find a given current.

Voltage Drops

To find the voltages across certain parts of a series-parallel circuit, you can use the voltage divider formula, Kirchhoff's voltage law, Ohm's law, or combinations of each.

EXAMPLE 11

Determine the voltage drop across each resistor in the circuit of Figure 23.

