Name:

IDNo.:

- Lab 4: Time Series Forecasting
- Use the provided data EnergyProduction.csv to answer all the questions in this Notebook

#import the necessary libraries

#import the your data here with date as index and properly formatted data type as below:

∓ *		EnergyIndex
	DATE	
	1970-01-01	43.0869
	1970-02-01	42.5577
	1970-03-01	41.6215
	1970-04-01	40.1982
	1970-05-01	39.9321

plot the below plot using the dataset

 $\mbox{\#}$ Assign a frequency of 'MS' to the DatetimeIndex as below

```
DatetimeIndex(['1970-01-01', '1970-02-01', '1970-03-01', '1970-04-01', '1970-05-01', '1970-06-01', '1970-07-01', '1970-08-01', '1970-09-01', '1970-10-01', '1970-07-01', '1989-05-01', '1989-05-01', '1989-05-01', '1989-06-01', '1989-07-01', '1989-08-01', '1989-09-01', '1989-10-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '1989-11-01', '
```

Decompose Trend, Cyclic and Error as shown below

4. Change the size of the figure to be more clear.

from pylab import rcParams
rcParams["figure.figsize"]= 12,5
result.plot();

5. Apply Forcasting on Energy Index

- $\ensuremath{\text{\#}}$ Apply Forcasting on Energy Index using training data and testing data
- # fit the training model using exponentialSmoothing within a period of 12 months
- $\mbox{\tt\#}$ fit the testing data to 36 months period and rename it to "HW Forecast"
- # produce the below plot as shown

produce the below plot as shown

produce the below plot as shown with specific period of between 1984-01-01 and 1989-01-01

Give your conclusion here