

Student Assignment Brief

CONFIDENTIAL DOCUMENT

This document is intended solely for Softwarica College of IT & E-Commerce students for their own use in completing their assessed work for this module. It must not be passed to third parties or posted on any website.

Contents

- Assignment Information
- Assessed Module Learning Outcomes
- Assignment Task
- Marking and Feedback
- Assignment Support and Academic Integrity
- Assessment Marking Criteria

Assignment Information

Module Name:	Security
Module Code:	ST6005CEM
Assignment Title:	Coursework: Individual Report
Assignment Due:	1 August 2025 (11:55 PM)

Assignment Credit:	20 credits
Word Count:	2000 words
Assignment Type:	Coursework
Grading:	50% (Core Assessment)

Assessment Overview

You will be provided with an overall grade between 0% and 100%. You have one opportunity to pass the assignment at or above 40%.

Important Notice

The work you submit for this assignment must be your **own independent work**. More information is available in the 'Assignment Task' section of this assignment brief.

Assessed Module Learning Outcomes

The Learning Outcomes for this module align with the marking criteria which can be found at the end of this brief. Ensure you understand the marking criteria to ensure successful achievement of the assessment task.

- 1. Critically evaluate a range of encryption and authentication methods for a given set of requirements.
- 2. Utilize systematic knowledge to create secure environments at the host or network level.
- 3. Develop and evaluate software that addresses the most common and most severe security concerns.

Assignment Task

Task and Mark distribution: Total Marks 100

Web Application:

Your task is to design and develop a unique and secure web application that caters to a specific user need. The application should be original in concept and implementation, avoiding the use of premade templates or Al-generated content to prevent the introduction of business logic flaws.

Core Features:

1. User-Centric Design:

Design an intuitive interface that enhances the user experience, ensuring accessibility and ease of navigation for all users.

2. User Registration and Authentication:

Implement a secure user registration process with a focus on robust authentication methods, including Multi-Factor Authentication (MFA) and mechanisms to prevent bruteforce attacks, such as account lockout after a specified number of failed login attempts.

3. Customizable User Profiles:

Allow users to personalize their profiles in alignment with the application's purpose, ensuring that these profiles are secure and meet user needs.

4. Secure Transaction Processing:

Ensure secure and encrypted transaction handling through either third-party services like Stripe or a custom-built solution, maintaining data integrity and security during all transactions.

5. Activity Logging:

Implement comprehensive activity logging to support auditing, troubleshooting, and security reviews by maintaining detailed records of all user actions within the application.

Security Features:

1. Password Security:

Enforce a robust password policy that includes the following:

- a. **Password Length and Complexity:** Define minimum and maximum length requirements, and require a mix of uppercase letters, lowercase letters, numbers, and special characters.
- b. **Password Reuse and Expiry:** Prevent users from reusing recent passwords and enforce password expiry to enhance security.
- c. **Real-Time Strength Assessment:** Provide users with feedback on password strength during registration or password changes.

2. Brute-Force Prevention:

Throughout the system, implement mechanisms to prevent brute-force attacks, such as limiting the number of requests a user can make within a specific time frame to protect against repeated unauthorized access attempts.

3. Access Control (RBAC):

Implement Role-Based Access Control to manage user permissions effectively, ensuring that users have access only to the resources they need.

4. Session Management:

Ensure secure session creation, handling, and expiration policies, including the use of secure session headers and automatic session expiration to protect user sessions from hijacking.

5. Encryption:

Store all critical user information, such as passwords and sensitive data, in an encrypted form within the database to safeguard against unauthorized access.

6. Audit and Internal Penetration Testing:

Students must commit their code to GitHub and perform an internal audit, including penetration testing. They must submit a video (any platform) demonstrating the security

measures implemented, along with a Proof of Concept that explains potential vulnerabilities within the application stack.

Additional Security Features:

Students are required to research and implement additional security features beyond those listed above according to their findings. This approach encourages independent exploration and the application of advanced security measures based on current best practices.

Report Requirements

- 1. Cover Page
- 2. Acknowledgment
- 3. Table of Contents
- 4. **Table of Figures** Includes a list of all figures, diagrams, and images used in the report.
- 5. **Table of Abbreviations** A comprehensive list of abbreviations and their meanings used throughout the report.
- 6. **Abstract** A brief summary of the entire project, including its purpose, methods, results, and conclusions.
- 7. **Introduction** Provides an overview of the project and its objectives, explaining the significance of developing a secure web application. It introduces the chosen concept and addresses the specific user need.
- 8. **Software Details** Covers the frameworks and programming languages used (e.g., Node.js, Express, JavaScript, HTML, CSS), details about the database management system (e.g., MongoDB, MySQL), and the steps taken for secure deployment of the web application.
- 9. Design and Implementation This section starts with a system design overview, describing the web application's architecture and key component interactions. It discusses security considerations in the design process, explaining how the principles of "security by design" are integrated. A security analysis of key elements, including potential security issues, is provided, along with code examples. Recommendations for addressing security and data protection issues are offered, explaining how these mitigate risks. The security implementation is demonstrated through specific code examples, focusing on session management, password management, and user access control. This section also includes a detailed account of GitHub commits, with at least 30 commits showcasing security-related code, and an explanation of how each addresses particular security concerns.
- 10. **Proof of Concept** This section includes a video demonstration of the security measures implemented, along with a detailed explanation of potential vulnerabilities within the application stack. It justifies why these vulnerabilities could exist and how they were addressed.
- 11. **Conclusion** Summarizes the project's outcomes, reflects on the importance of security in web application development, and suggests future improvements and additional security features.
- 12. **References** A list of all sources cited in the report, with a minimum of 15 references from diverse sources, including websites, journals, books, and research papers.

Note: Your **proof of concept** (PoC) video must display your face and have clear audio and the screenshots in report must be clear, readable, and deterministic.

Submission Instructions

Requirement	Details
File Naming	NAME_studentID
File Format	.docx/.pdf format
Submission Method	Campus 4.0 platform (submission link provided 2 weeks before deadline)

Marking and Feedback

How will my assignment be marked?

Your assignment will be marked by the Module Team using standardized criteria.

How will I receive grades and feedback?

Provisional marks will be released once internally moderated. Feedback will be provided alongside grades release within 2 weeks (10 working days).

What will I be marked against?

Details of the marking criteria for this task can be found in the Assessment Marking Criteria section at the end of this brief.

Grade Requirements

You must achieve 40% or above to pass this assessment. Ensure you understand the marking criteria for successful completion.

Assignment Support and Academic Integrity

Getting Help

If you have any questions about this assignment, please meet your respective module leader or teacher for more information.

Language Standards

You are expected to use effective, accurate, and appropriate language within this assessment task.

Academic Integrity

The work you submit must be your own. All sources of information need to be acknowledged and attributed; therefore, you must provide references for all sources of information and acknowledge any tools used in the production of your work, **excluding Artificial Intelligence (AI)**.

We use detection software and make routine checks for evidence of academic misconduct. Definitions of academic misconduct, including plagiarism, self-plagiarism, and collusion can be found in Student handbook in Campus 4.0.

All cases of suspected academic misconduct are referred to for investigation, the outcomes of which can have profound consequences to your studies.

Support for Students with Disabilities

If you have a disability, long-term health condition, specific learning difference, mental health diagnosis or symptoms, contact the Student Support Office for assistance.

Unable to Submit on Time?

If events prevent you from submitting on time, guidance on extenuating circumstances is available in the Student Handbook or from the Student Support Office.

Administration of Assessment

Module Leader Name: Arya Pokharel

Module Leader Email:	stw00105@softwarica.edu.np
Assignment Category:	Written
Attempt Type:	Standard
Component Code:	CW2

Marking Criteria

- Report Structure and Document Formatting: 25
- Security Controls and Implementation: 20
- Audit and Security Testing: 20
- Advanced Security Measures: 20
- Proof of Concept: 15

Assessment Criteria

0-39	40-49	50-59	60-69	70-100
The application does	The application	The application meets	The application	The web application is
not meet the basic	addresses some parts of	most task objectives,	effectively meets the	highly aligned with the
objectives of the task,	the task, but there are	with core functionality	task's objectives,	task objectives and
showing major	significant gaps in	included, but some	incorporating key	demonstrates attention
omissions in required	essential security	features such as brute-	features such as secure	to complex security
features such as	measures like access	force prevention or	registration, privacy	mechanisms. All
secure user	control or encryption.	proper session	controls, and secure	major/minor security
registration, brute-		handling is	transaction processing.	features are
force prevention, or	The structure of the	underdeveloped.		implemented and
privacy controls.	report is weak, relying		The report presents a	extended with user-
	heavily on descriptions	The report presents a	well-structured	centric design, robust
The work is mostly	without meaningful	generally clear	argument with	brute-force prevention,
descriptive with no	analysis. The argument	argument but may be	evaluative discussion,	and secure workflows.
critical analysis, and	lacks clarity and fails to	overly descriptive and	although some aspects	
the argument lacks	clearly link security	not consistently	of the implementation	The report is logically
logical structure or	features with their	analytical.	may lack depth.	structured and
coherence.	purpose.			demonstrates in-depth
		Security features like	Core security measures	critical analysis with
Core security features	Implemented security	MFA, RBAC, and	including MFA,	original insights and
like MFA, RBAC,	measures may be	encryption are	encryption, RBAC, and	well-articulated
encryption, or session	incomplete or non-	implemented at a basic	session management	connections between
management are	functional. Evidence of	level, though testing or	are present and mostly	security features.
either completely	testing or internal	auditing may be	well-implemented.	
missing or improperly	review is minimal or	incomplete or lack	There is good evidence	The implementation
implemented.	superficial.	depth.	of testing, auditing, and	includes strong
·			attention to	measures like MFA,
				RBAC, encryption,

There is no evidence of	Research is sparse, and	Research is evident but	vulnerabilities, even if	secure sessions, and
testing, auditing, or	few (if any) additional	limited, and the	not exhaustive.	password policies,
understanding of	security features are	inclusion of additional		supported by extensive
system vulnerabilities.	implemented.	features is minimal.	Research is relevant and	testing, internal audits,
			leads to some additional	and penetration testing.
Minimal or no	Referencing is	Referencing is present	security feature	
research is present,	inconsistent, and the	but may contain errors.	implementation.	Research goes beyond
and referencing is	report demonstrates a	The overall		the baseline and leads
either missing or	limited understanding of	understanding of	Referencing is mostly	to well-justified
incorrect. The	security principles.	security concepts is	correct with minor	additional security
submission reflects a poor grasp of		basic but functional.	issues	implementations.
fundamental security				All references are
concepts.				accurate, and the work
·				reflects a sophisticated
				understanding of
				modern application
				security practices.