

Praxis: Dijkstra-Algorithmus

Claas de Boer, Tilman Hinnerichs 17. Dezember 2020

Python-Grundlagen

Gliederung

Problemstellung

Das Problem

gegeben:

- ein gerichteter, kantenbewerteter Graph G = (V, E, d)
- · ein Startknoten S

gesucht:

· kürzeste Wege zu den anderen Knoten

Das Problem

Modellierung

- Knotenmenge als Listehier: [1, 2, 3, 4, 5, 6, 7]
- Kantenbewertung als Dictonary: (Knoten, Knoten) \rightarrow Zahl hier: {(1,2):4, (1,3):1, (1,4):4, (2,4):3, (2,5):3, (3,4):2, ...}

Der Dijkstra-Algorithmus

Die Idee

- 1. Initialisierung:
- 2. Schleife:
 - · Wähle erreichbaren Knoten mit minimaler Entfernung
 - · Markiere Knoten als besucht
 - · Aktualisiere die Information der anderen Knoten
- 3. Ausgabe

l_1	l_2	l_3	l_4	l_5	l_6	l_7	p_1	p_2	p_3	p_4	p_5	p_6	p_7
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-

l_1	l_2	l_3	l_4	l_5	l_6	l_7	<i>p</i> ₁	p_2	p_3	p_4	p_5	p_6	p_7
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	-	1	1	1	-	-	-

l_1	l_2	l_3	14	l_5	l_6	l_7	p_1	p_2	p_3	p_4	p_5	p_6	p_7
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
				∞									
*	4	*	3	∞	8	∞	-	1	1	3	-	3	-

	l_2												
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	-	1	1	1	-	-	-
*	4	*	3	∞	8	∞	_	1	1	3	-	3	-
*	4	*	*	8	4	∞	-	1	1	3	4	4	-

l_1	l_2	l_3	l_4	l_5	l_6	l_7	p_1	p_2	p_3	p_4	p_5	p_6	p_7
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	_	1	1	1	-	-	-
*	4	*	3	∞	8	∞	-	1	1	3	-	3	-
*	4	*	*	8	4	∞	-	1	1	3	4	4	-
*	*	*	*	7	4	∞	-	1	1	3	2	4	-

l_1	l_2	l_3	l_4	l_5	l_6	l_7	p ₁	p_2	p_3	<i>p</i> ₄	p_5	p_6	p ₇
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	_	1	1	1	-	-	-
*	4	*	3	∞	8	∞	_	1	1	3	-	3	-
*	4	*	*	8	4	∞	-	1	1	3	4	4	-
*	*	*	*	7	4	∞	-	1	1	3	2	4	-
*	*	*	*	7	*	7	-	1	1	3	2	4	6

l_1	l_2	l_3	14	l_5	l_6	l_7	p_1	p_2	p_3	p ₄	p_5	p_6	<i>p</i> ₇
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	-	1	1	1	-	-	-
*	4	*	3	∞	8	∞	_	1	1	3	-	3	-
*	4	*	*	8	4	∞	-	1	1	3	4	4	-
*	*	*	*	7	4	∞	-	1	1	3	2	4	-
*	*	*	*	7	*	7	-	1	1	3	2	4	6
*	*	*	*	*	*	7	-	1	1	3	2	4	6

l_1	l_2	l_3	l_4	l_5	l_6	l_7	p_1	p_2	p_3	p_4	p_5	p_6	p ₇
0	∞	∞	∞	∞	∞	∞	-	-	-	-	-	-	-
*	4	1	4	∞	∞	∞	_	1	1	1	-	-	-
*	4	*	3	∞	8	∞	_	1	1	3	-	3	-
*	4	*	*	8	4	∞	_	1	1	3	4	4	-
*	*	*	*	7	4	∞	_	1	1	3	2	4	-
*	*	*	*	7	*	7	_	1	1	3	2	4	6
*	*	*	*	*	*	7	_	1	1	3	2	4	6
*	*	*	*	*	*	*	_	1	1	3		4	6

Bezeichner

- Graph G = (V, E, d)
- \cdot Menge K an erreichbaren Knoten
- Startknoten S
- bisher kürzeste Entfernungen l(k) für Knoten $k \in V$
- · derzeitiger Vorgänger p(k) für Knoten $k \in V$

Der Dijkstra-Algorithmus

1. Initialisierung:

- · $l(k) = \infty$ für alle Knoten $k \in V \setminus \{S\}$
- l(S) = 0
- p(k) =None für alle Knoten $k \in V$
- $K = \{S\}$

2. **Schleife:** Solange $K \neq \emptyset$...

- Wähle einen erreichbaren Knoten v mit minimaler Entfernung: $v \in K$ mit $l(v) = min\{l(k) : k \in K\}$
- Markiere Knoten v als besucht: $K := K \setminus \{v\}$
- Aktualisiere die Information der anderen Knoten k ∈ V:
 Wenn l(v) + d(v, k) < l(k):
 dann setze l(k) := l(v) + d(v, k) und p(k) := v
 Füge k ggf. zu K hinzu

3. Ausgabe

Aufgaben

Aufgaben

Implementiert den Dijkstra-Algorithmus!