DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf) CUESTIONARIO DE LA OCTAVA PRÁCTICA (Modelo A)

1. La suma
$$s_n$$
 de los n primeros naturales impares es $s_n = \sum_{k=1}^{n} (2k-1) = n^2$

2. Obtén la suma exacta de la serie numérica

$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n^4} = \boxed{\frac{7\pi^4}{720}} \approx \boxed{0.9470328294}$$

La suma $s_{50} = \boxed{0.9470327526}$ proporciona $\boxed{6}$ decimales exactos.

3. Sabiendo que la suma parcial n-ésima de la serie $\sum_{n\geq 1} a_n$ es $s_n = \frac{n}{2n+1}$, determina el término general, a_n , y la suma de la serie en caso de convergencia.

La serie tiene por término general $a_n = \boxed{\frac{1}{4n^2-1}}$, y su suma es $\boxed{\frac{1}{2}}$.

4. Halla el valor exacto para la suma de la serie $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n\cdot 2^n} = \boxed{\log\left(\frac{3}{2}\right)} \approx \boxed{0.4054651081}$

¿Cuántos términos necesitas sumar para aproximar la suma de la serie con 4 decimales exactos? $N=\boxed{12}$ La aproximación que proporciona la suma parcial correspondiente será $\boxed{0.4054586919}$.

5. Halla el polinomio de McLaurin de grado 9 de la función $f(x) = \log\left(\frac{1+x}{1-x}\right)$

$$P_9(x) := \frac{2x^9}{9} + \frac{2x^7}{7} + \frac{2x^5}{5} + \frac{2x^3}{3} + 2x$$

Obtén la aproximación que proporciona el polinomio anterior para $\log(3)$, al sustituir x por $\boxed{\frac{1}{2}}$ en P_9 ,

$$\log(3) \approx \boxed{1.098499503}$$

Mejora la estimación anterior hallando la aproximación que proporciona el polinomio de Taylor de grado 20

$$\log(3) \approx \boxed{1.098612229}$$

Compara este valor con el que calcula Derive y concluye que la aproximación garantiza [7] decimales correctos.

6. Sabiendo que la función $f(x) = \cos(x)$ se puede escribir como

$$f(x) = P_n(x) + R_n(x)$$
 , $x \in \mathbb{R}$

siendo $P_n(x)$ el polinomio de Taylor de grado n y $R_n(x)$ el resto de Lagrange

$$R_n(x) = \frac{f^{(n+1)}(s)}{(n+1)!} (x-a)^{n+1}$$
 , $s \in]a,x[$

Aproxima los 20 primeros decimales de $\cos(0.05)$ utilizando el polinomio de McLaurin de grado 8

$$\cos(0.05) \approx P_8(0.05) = 0.99875026039496624658$$

El error cometido vendrá dado por

$$|R_8(0.05)| = \frac{|\sin(s)|}{9!} (0.05)^9 < 10^{-18}$$

Verifícalo calculando el valor de cos(0.05) con Derive.

APELLIDOS: NOMBRE:	GRUPO:
--------------------	--------

DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf) CUESTIONARIO DE LA OCTAVA PRÁCTICA (Modelo B)

1. Comprueba que la suma de los n primeros cubos de los números naturales coincide con el cuadrado de la suma de los n primeros naturales

$$\sum_{k=1}^{n} \boxed{k^3} = \boxed{\frac{n^2 (n+1)^2}{4}} = \left(\sum_{k=1}^{n} \boxed{k}\right)^2$$

- 2. Obtén la suma exacta de las serie numérica $\sum_{n \ge 3} \frac{(n-1)(2n-5)^2}{5^{n-1}} = \boxed{\frac{93}{160}}$
- 3. Sabiendo que la suma parcial n-ésima de la serie $\sum_{n\geq 1} a_n$ es $s_n = \frac{4n}{8n+1}$, determina el término general, a_n , y la suma de la serie en caso de convergencia.

La serie tiene por término general $a_n = \boxed{\frac{4}{64n^2 - 48n - 7}}$, y su suma es $\boxed{\frac{1}{2}}$.

4. Considera la serie $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n\cdot 3^n}$. Halla el valor exacto para su suma $s=\left\lceil \log\left(\frac{4}{3}\right) \right\rceil \approx \boxed{0.28768207245}$

¿Cuántos términos necesitas sumar para aproximar la suma de la serie con 5 decimales exactos? $N = \boxed{10}$. La aproximación que proporciona la suma parcial correspondiente será $\boxed{0.2876816792}$.

5. Halla el polinomio de McLaurin de grado 6 de la función $f(x) = \log\left(\frac{1}{1-x}\right)$

$$P_6(x) := \frac{x^6}{6} + \frac{x^5}{5} + \frac{x^4}{4} + \frac{x^3}{3} + \frac{x^2}{2} + x$$

Obtén la aproximación que proporciona el polinomio anterior para $\log(2)$, al sustituir x por $\left|\frac{1}{2}\right|$ en P_6 ,

$$\log(2) \approx \boxed{0.6911458333}$$

Mejora la estimación anterior hallando la aproximación que proporciona el polinomio de Taylor de grado 15

$$\log(2) \approx \boxed{0.693145374590}$$

Compara este valor con el que calcula Derive y concluye que la aproximación garantiza 5 decimales correctos.

6. Sabiendo que la función $f(x) = \sin(x)$ se puede escribir como

$$f(x) = P_n(x) + R_n(x)$$
 , $x \in \mathbb{R}$

siendo $P_n(x)$ el polinomio de Taylor de grado n y $R_n(x)$ el resto de Lagrange

$$R_n(x) = \frac{f^{(n+1)}(s)}{(n+1)!} (x-a)^{n+1} , \quad s \in]a, x[$$

Aproxima el valor de sin(1) utilizando el polinomio de McLaurin de grado 9

$$\sin(1) \approx P_9(1) = \boxed{0.84147100970017636684}$$

El error cometido vendrá dado por

$$|R_9(1)| = \frac{|\sin(s)|}{10!} < 10^{-6}$$

Verifícalo aproximando el valor de $\sin(1)$ con Derive.

APELLIDOS: NOMBRE: GRUPO: