Uma introdução à ferramenta irace

Helen Costa 1

¹Universidade Federal de Ouro Preto (UFOP) PPGCC - DECOM

FERRAMENTA IRACE

- Algoritmos para resolver problemas de otimização envolvem uma grande quantidade de parâmetros específicos que precisam ser cuidadosamente definidos para atingir seu melhor desempenho
- ► Desvantagens da configuração manual de parâmetros:
 - Esforço humano intenso
 - Guiada pela experiência pessoal, podendo ser tendenciosa e difícil de reproduzir
 - Poucas configurações são exploradas
 - ► Instâncias usadas tanto para treino quanto para teste levam a a uma avaliação tendenciosa de desempenho

- ► Houve um crescimento nesta área de configuração automática de parâmetros, tanto em termos de desenvolvimento de novas técnicas quanto em termos de uso por pesquisadores
- ▶ Uso do irace:
 - Algoritmos de otimização multiobjetivo
 - Aprimoramento de trade-offs "tempo-qualidade Aprendizagem de máquina"
 - Design automático de controles (comportamento + transição) para robôs
 - ► Frameworks em geral

- ► Dado um algoritmo parametrizado com *N*^{param} parâmetros, X_d , com $d=1,\ldots,N^{param}$ e cada um deles podendo assumir diferentes valores
- ▶ Uma configuração do algoritmo $\theta = x_1, ..., x_{N^{param}}$ é uma atribuição única de valores dos parâmetros e θ denota o conjunto possivelmente infinito de todas as configurações do algoritmo

Definição do Problema

- ▶ Requer um conjunto \mathcal{I} de instâncias com uma probabilidade associada pelo qual $I = i_1, i_2, \dots$ é selecionado aleatoriamente
- ► Requer também um custo $c(\theta, i)$, que associa um valor a cada configuração aplicada em uma dada instância
- ▶ O critério a ser otimizado é uma função $F(\theta): \Theta \to \mathbb{R}$ de custo da configuração θ em relação à distribuição da variável aleatória \mathcal{I}
- ► O objetivo da configuração automática é encontrar a melhor configuração θ^* que minimiza $F(\theta)$

Passos do método

- ▶ (1) Gerar uma amostra de novas configurações de parâmetros de acordo com uma distribuição específica
- ▶ (2) Selecionar as melhores configurações da amostra atual por meio de corrida
- (3) Atualizar a distribuição de amostragem de forma que restrinja a amostragem ao redor dos valores das melhores configurações
- ► Esses três passos são repetidos até que um critério de parada seja cumprido

00

Fig. 1. Racing for automatic algorithm configuration. Each node is the evaluation of one configuration on one instance. ' \times ' means that no statistical test is performed, '-' means that the test discarded at least one configuration, '-' means that the test did not discard any configuration. In this example, $T^{fint} = 5$ and $T^{each} = 1$.

Algorithm 1 Algorithm outline of iterated racing.

FERRAMENTA IRACE

Require: $I = \{I_1, I_2, ...\} \sim \mathcal{I},$ parameter space: X, cost measure: $C(\theta, i) \in \mathbb{R}$,

- tuning budget: B 1: $\Theta_1 = SampleUniform(X)$
- 2: $\Theta^{\text{elite}} = \text{Race}(\Theta_1, B_1)$
- 3: j = 1
- 4: while $B^{used} \leq B$ do
- j = j + 1
- $\Theta^{\text{new}} = \mathsf{Sample}(X, \Theta^{\text{elite}})$
- $\Theta_i = \Theta^{\text{new}} \cup \Theta^{\text{elite}}$
- $\Theta^{\text{elite}} = \text{Race}(\Theta_j, B_j)$
- 9: end while
- 10: Output: ⊖elite

COMPONENTES DO IRACE (DIRETÓRIO "TUNING")

INSTÂNCIAS

- ► diretório "instances"
- Pode ser passado explicitamente como uma opção para o irace ou a partir de um arquivo de instâncias (trainInstancesFile)
- ► Se a opção **trainInstancesFile** não estiver ativa, o irace considera todos os arquivos encontrados em **trainInstancesDir** como instâncias de treinamento

- ► arquivo "parameters.txt"
- ► Podem ser categóricos (c), inteiros (i), ordinais (o) e reais (r)
- ► Parâmetro condicional (| condição)

```
type values
                                                           [conditions (using R syntax)]
# name
            switch
algorithm
                                     (as, mmas, eas, ras, acs)
localsearch "--localsearch "
                                    (0, 1, 2, 3)
alpha
            "--alpha "
                                   (0.00, 5.00)
beta
            "--beta "
                                   (0.00, 10.00)
            "--rho "
                                   (0.01, 1.00)
rho
                                    (5, 100)
ants
            "--ants "
nnls
            "--nnls "
                                    (5, 50)
                                                           | localsearch %in% c(1, 2, 3)
            "--q0 "
                                                           | algorithm == "acs"
q0
                                    (0.0, 1.0)
dlb
            "--dlb "
                                    (0, 1)
                                                           | localsearch %in% c(1,2,3)
            "--rasranks "
                                    (1, 100)
                                                           | algorithm == "ras"
rasrank
elitistants "--elitistants "
                                    (1, 750)
                                                           | algorithm == "eas"
```

FERRAMENTA IRACE

- ► arquivo "forbidden.txt"
- ► Operadores lógicos válidos: ==,!=,>=,<=,>,<,&,|,!, %in%
- ► Exemplos:

- \bullet (alpha == 0.0&beta == 0.0)
- alpha > 6.0 & theta == "x1"

▶ "scenario.txt"

- digits: número de casas decimais a serem consideradas por parâmetros reais (default: 4)
- maxExperiments: número máximo de execuções do algoritmo a ser configurado (tuning budget)
- ► testType: pode ser tanto o F-test quanto o t-test
- ► firstTest: especifica quantas instâncias vão ser vistas antes do primeiro teste ser feito (*default*: 5)
- eachTest: especifica quantas instâncias vão ser vistas entre testes (default: 1)
- ► O script que chama o algoritmo a ser configurado é o "target-runner" (especificar o diretório do executável do seu algoritmo: EXE = ./bin/ < executavel >

- ► Fazer a instalação do irace e configurar variáveis de ambiente conforme a página: http://iridia.ulb.ac.be/irace/README.html
- ► Pasta com exemplo prático está disponível em: https://www.dropbox.com/sh/ajq4sspzfpa14bc/ AAA4_Gc710b69OustnhFSI5ma?dl=0

- ▶ O problema de partição de números consiste em: dado um conjunto de N números, o objetivo é subdividi-lo em dois subconjuntos (chamados de partições) de tal forma que, a diferença entre os valores das somas dos números dessas duas partições seja a menor possível
- ► Exemplo: considere o seguinte conjunto com quatro números (23, 20, 56, 48), as partições (20,56) e (23,48) consistem no particionamento ótimo para este conjunto e seu valor é 5

```
procedimento GRASP(f(.), g(.), N(.), GRASPmax, s)
    f^{\star} \leftarrow \infty;
    para (Iter = 1, 2, ..., GRASPmax) faça
3
        Construcao(g(.), \alpha, s);
        BuscaLocal(f(.), N(.), s);
5
        se (f(s) < f^*) então
6
             s^{\star} \leftarrow s:
             f^{\star} \leftarrow f(s);
        fim-se;
    fim-para;
10 s \leftarrow s^*:
11 Retorne s:
\mathbf{fim}\ GRASP
```

Copyright (Č) 2003 Mauro Birattari

race: Racing methods for the selection of the best

```
installed at: /usr/local/lib/R/site-library/irace
 called with:
Warning: A default scenario file './scenario.txt' has been found and will be read
 2017-08-23 15:52:03 -03: Initialization
Elitist race
 Elitist new instances: 1
 Elitist limit: 2
 nbIterations: 3
 minNbSurvival: 3
 nbParameters: 2
 seed: 786433
 confidence level: 0.95
 budget: 3000
 mu: 5
 deterministic: FALSE
 2017-08-23 15:52:03 -03: Iteration 1 of 3
 experimentsUsedSoFar: 0
 remainingBudget: 3000
 currentBudget: 1000
 nbConfigurations: 166
 Markers:
    x No test is performed.
    - The test is performed and some configurations are discarded.
    = The test is performed but no configuration is discarded.
    ! The test is performed and configurations could be discarded but elite configurations are preserved
```

NA

FERRAMENTA IRACE

```
Instancel
                     Alivel
                                  Bestl
                                             Mean best | Exp so far | W time | rho | KenW |
                                                                                         Ovar I
                       166
                                           1.000000000
                                                               166[00:00:00]
                                                                               NA
                                                                                    NAI
                                                               332 00:00:00 +1.00 1.00 0.0000
                       166
                                          0.50000000000
                                                               498 00:00:07 +0.00 0.33 0.3313
                       166
                                          0.3333333333
                                                               664 00:00:03 -0.02 0.23 0.5448
                       134
                                          0.5000000000
                                     9
                       134
                                          0.60000000000
                                                               798 00:00:21 -0.08 0.14 0.6455
|=|
             6İ
                                                               932 00:00:03 +0.02 0.18 0.6588
                       134
                                          0.666666667
                                   mean value:
Best configuration:
                                                  0.666666667
Description of the best configuration:
  .ID. grasp max alpha .PARENT.
             400 0.05
                             NA
 2017-08-23 15:52:41 -03: Elite configurations (first number is the configuration ID):
  grasp max alpha
         400 0.05
         400 0.05
         300 0.05
 2017-08-23 15:52:41 -03: Iteration 2 of 3
 experimentsUsedSoFar: 932
 remainingBudget: 2068
 currentBudget: 1034
 nbConfigurations: 150
```

00

```
2017-08-23 15:54:41 -03: Stopped because there is not enough budget left to race more than the minimum (
You may either increase the budget or set 'minNbSurvival' to a lower value
Iteration: 6
nbIterations: 6
experimentsUsedSoFar: 2987
timeUsed: 0
remainingBudget: 13
currentBudget: 13
number of elites: 3
nbConfigurations: 3
Best configurations (first number is the configuration ID)
 grasp_max_alpha
       400 0.05
       400 0.05
       300 0.05
Best configurations as commandlines (first number is the configuration ID)
  -- MAX GRASP 400 -- ALPHA GRASP 0.05
 --MAX GRASP 400 --ALPHA GRASP 0.05
  --MAX GRASP 300 --ALPHA GRASP 0.05
```

```
2017-08-23 19:45:37 -03: Stopped because there is not enough budget left to race more than the mini
You may either increase the budget or set 'minNbSurvival' to a lower value
Iteration: 5
nbIterations: 5
experimentsUsedSoFar: 2998
timeUsed: 0
remainingBudget: 2
currentBudget: 2
number of elites: 3
nbConfigurations: 2
Best configurations (first number is the configuration ID)
 grasp max alpha
       400 0.70
       400 0.13
       400 0.13
Best configurations as commandlines (first number is the configuration ID)
  -- MAX GRASP 400 -- ALPHA GRASP 0.7
  --MAX GRASP 400 --ALPHA GRASP 0.13
 --MAX GRASP 400 --ALPHA GRASP 0.13
```

PERGUNTAS

Motivação

helen.c.s.costa@gmail.com