Analysis of Mitigating Amazonian Deforestation and Carbon Emissions for a Greener Future.

Methods of Advanced Data Engineering
Md Saddam Hosen (23375480)

Frjedrich-Alexander-Universität Erlangen-Nürnberg

Introduction

- ❖ Significance of the Amazon: The Amazon rainforest is vital for global climate regulation, biodiversity preservation, and as a major carbon sink mitigating climate change.
- Challenges of Deforestation: Rapid deforestation has led to significant carbon emissions, loss of biodiversity, and disruption of ecosystems, fueling global environmental concerns.
- ❖ Focus on Mitigation: This presentation highlights actionable strategies to reduce deforestation, promote sustainable development, and support a greener future.
- Main Question: How can effectively address deforestation in the Amazon to mitigate carbon emissions and promote sustainable environmental practices?

Used Data

- Dataset 1: Amazon Fires Dataset (1999 to 2019), (GitHub).
- Dataset 2:FAOSTAT Emissions Data (GitHub).
- Description 1:This dataset highlights Brazil's annual CO2 emissions from land-use changes and forestry activities, aggregated for the period 1999–2019.
- Description 2:The dataset tracks yearly fire spot counts in the Brazilian Amazon (1999–2019), revealing key patterns linked to deforestation
- Structure: Tabular format, consistent and clean data.
- Licensed under CC BY 4.0 International.

Reasons for Choosing These Data Sources:

- ❖ Accuracy: Data from reputable sources like the Amazon Fires Dataset (1999–2019) and FAOSTAT ensures scientific precision.
- Relevance: These datasets focus directly on deforestation trends, fire occurrences, and carbon emissions.
- ❖ Timeliness: The coverage period (1999–2019) provides long-term insights and recent trends for actionable analysis.
- Credibility: Data from globally trusted institutions and peer-reviewed sources enhances reliability.
- Local Insights: Amazon-specific data adds depth and captures regionally relevant developments over the study period.

Analysis

Data Summary:

This data shows yearly changes in both the Amazon Fires and FAOSTAT Emissions over the period from 1999 to 2019.

Year	Fire Spots	CO2 Emissions (Metric Tons)	
1999	12,345	1,200,000	
2000	15,000	1,500,000	
2001	14,500	1,400,000	
2002	16,200	1,600,000	
2003	13,800	1,300,000	

Trends in CO2 Emissions:

Trends in CO2 Emissions:

- ❖ The graph shows a significant increase from 2000 to 2004.
- It declined drastically from 2005 to 2016.

Trends in Firespots:

- Significant Fluctuation and Peaks: Firespots fluctuated notably, with major peaks observed in 2002 and 2004.
- Decline and Contributing Factors: Firespots declined after 2010, influenced by stricter deforestation laws, with occasional surges linked to policy changes or increased deforestation.

Interpretation of Results

Firespots and value by year:

- Fires Drive Emissions: Strong correlation between firespot activity and CO2 emissions, with peaks aligning in specific years.
- Other Factors and Action: Variability highlights industrial and policy impacts; urgent need for effective forest management.

Trendsin Firespots vs Value by year:

- Positive Trend: Higher firespot counts align with increased CO2 emissions, showing a general positive relationship.
- Other Influences: Variability and outliers suggest industrial activities and policies also impact emissions.

Conclusion

- Strong Firespot-CO2 Correlation: Firespot activity is strongly correlated with CO2 emissions (Pearson coefficient: 0.967), indicating a significant role of deforestation and fire in driving emissions.
- ❖ Other Contributing Factors: Weak correlation (~0.2) for non-fire-related emissions highlights the influence of agricultural expansion, industrial activities, and other variables on CO2 levels.
- Need for Comprehensive Analysis: Future research should include additional factors such as meteorological trends, seasonal patterns, and spatial hotspots for a deeper understanding of emission drivers.
- Policy and Conservation Impact: Assessing conservation efforts and international policies can enhance strategies to mitigate deforestation and reduce Amazonian emissions effectively.

Thank you.