### Machine Learning (CSE 446): Gradient Descent and Stochastic Gradient Descent

Sham M Kakade

© 2018

University of Washington cse446-staff@cs.washington.edu

#### **Announcements**

- ▶ Midterm: Weds, Feb 7th. Policies:
  - ► You may use a single side of a single sheet of handwritten notes that you prepared.
  - ► You must turn your sheet of notes in, with your name on it, in at the conclusion of the exam, even if you never looked at it.
  - ► You may not use electronics devices of any sort.
- ► A few comments on the course difficulty
- ► Today:

New: GD and SGD

### Course difficulty

Why is it difficult/what should we learn?

- homeworks
- exams
- grading

### Review

### Gradient Descent: Convergence

- Denote:
  - $\mathbf{z}^* = \operatorname{argmin}_{\mathbf{z}} F(\mathbf{z})$ : the global minimum  $\mathbf{z}^{(k)}$ : our parameter after k updates.
- ▶ Thm: Suppose F is convex and "L-smooth" (e.g. works for square loss and the logistic loss). Using a **fixed step size**  $\eta \leq \frac{1}{L}$ , we have:

$$F(\mathbf{z}^{(k)}) - F(\mathbf{z}^*) \le \frac{\|\mathbf{z}^{(0)} - \mathbf{z}^*\|^2}{\eta \cdot k}$$

That is the **convergence rate** is  $O(\frac{1}{k})$ .

► A constant learning rate means no parameter tuning!

### Probabilistic machine learning:

Probabilistic machine learning:

- lacktriangle define a probabilistic model relating random variables x to y
- estimate its parameters.

### A Probabilistic Model for Binary Classification: Logistic Regression

- ▶ For  $Y \in \{-1, 1\}$  define  $p_{\mathbf{w}, b}(Y \mid X)$  as:
  - 1. Transform feature vector x via the "activation" function:

$$a = \mathbf{w} \cdot \mathbf{x} + b$$

2. Transform a into a binomial probability by passing it through the logistic function:

$$p_{\mathbf{w},b}(Y = +1 \mid \mathbf{x}) = \frac{1}{1 + \exp{-a}} = \frac{1}{1 + \exp{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$



▶ If we learn  $p_{\mathbf{w},b}(Y \mid \mathbf{x})$ , we can (almost) do whatever we like!

### Maximum Likelihood Estimation and the Log loss

The principle of maximum likelihood estimation is to choose our parameters to make our observed data as likely as possible (under our model).

- ▶ Mathematically: find  $\hat{\mathbf{w}}$  that maximizes the probability of the labels  $y_1, \dots y_n$  given the inputs  $x_1, \dots x_n$ .
- ► The Maximum Likelihood Estimator (the 'MLE') is:

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{n=1}^{N} p_{\mathbf{w}}(y_n \mid \mathbf{x}_n)$$
$$= \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} -\log p_{\mathbf{w}}(y_n \mid \mathbf{x}_n)$$

### The MLE for Logistic Regression

▶ the MLE for the logistic regression model:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} -\log p_{\mathbf{w}}(y_n \mid \mathbf{x}_n) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \log \left(1 + \exp(-y_n \mathbf{w} \cdot \mathbf{x}_n)\right)$$

- ▶ This is the logistic loss function that we saw earlier.
- ▶ How do we find the MLE?

Derivation for Log loss for Logistic Regression: scratch space

# Today

### Linear Regression as a Probabilistic Model

Linear regression defines  $p_{\mathbf{w}}(Y \mid X)$  as follows:

1. Observe the feature vector  $\mathbf{x}$ ; transform it via the activation function:

$$\mu = \mathbf{w} \cdot \mathbf{x}$$

2. Let  $\mu$  be the mean of a normal distribution and define the density:

$$p_{\mathbf{w}}(Y \mid \mathbf{x}) = \frac{1}{\sigma\sqrt{2\pi}} \exp{-\frac{(Y-\mu)^2}{2\sigma^2}}$$

3. Sample Y from  $p_{\mathbf{w}}(Y \mid \mathbf{x})$ .

### Linear Regression-MLE is (Unregularized) Squared Loss Minimization!

$$\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} -\log p_{\mathbf{w}}(y_n \mid \mathbf{x}_n) \equiv \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \underbrace{(y_n - \mathbf{w} \cdot \mathbf{x}_n)^2}_{SquaredLoss_n(\mathbf{w}, b)}$$

Where did the variance go?

What is GD here?

### Loss Minimization & Gradient Descent

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \underbrace{\ell(\mathbf{x}_n, y_n, \mathbf{w})}_{\ell_n(\mathbf{w})} + R(\mathbf{w})$$

What is GD here?

What do we do if N is large?

## Stochastic Gradient Descent (SGD): by example

$$\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w} \cdot \mathbf{x}_n)^2$$

► Gradient descent:

- ▶ Note we are computing an average. What is a crude way to estimate an average?
- Stochastic gradient descent:

Will it converge?

## Stochastic Gradient Descent (SGD): by example

$$\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} (y_n - \mathbf{w} \cdot \mathbf{x}_n)^2$$

► Gradient descent:

- ▶ Note we are computing an average. What is a crude way to estimate an average?
- Stochastic gradient descent:

Will it converge? If the step size in SGD is a constant, we will not converge.

## Stochastic Gradient Descent (SGD) (without regularization)

```
Data: loss functions \ell(\cdot), training data, number of iterations K, step sizes
            \langle \eta^{(1)}, \dots, \eta^{(K)} \rangle
Result: parameters \mathbf{w} \in \mathbb{R}^d
initialize: \mathbf{w}^{(0)} = \mathbf{0}:
for k \in \{1, \ldots, K\} do
 i \sim \text{Uniform}(\{1, \dots, N\});
\mathbf{w}^{(k)} = \mathbf{w}^{(k-1)} - \eta^{(k)} \cdot \nabla_{\mathbf{w}} \ell_i(\mathbf{w}^{(k-1)});
end
return \mathbf{w}^{(K)}:
                                                             Algorithm 1: SGD
```

### Stochastic Gradient Descent: Convergence

$$\mathbf{w}^* = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \ell_n(\mathbf{w})$$

- $\mathbf{w}^{(k)}$ : our parameter after k updates.
- ▶ Thm: Suppose  $\ell(\cdot)$  is convex (and satisfies mild regularity conditions). There exists a way to decrease our step sizes  $\eta^{(k)}$  over time so that our function value,  $F(\mathbf{w}^{(k)})$  will converge to the minimal function value  $F(\mathbf{w}^*)$ .
- ► This Thm is different from GD in that we need to turn down our step sizes over time!