Dr. Cherif Salama Faculty of Media Engineering and Technology

CSEN 402 Computer Organization and System Programming Practice Assignment 4 Spring 2014

NOT to be submitted

To be discussed during tutorial sessions

The rest of the chapter's exercises are to be solved by the students for self-evaluation

Exercise 1:

A computer uses a memory unit with 256K words of 32 bits each. A binary instruction code is stored in one word of memory. The instruction has four parts: an indirect bit, an operation code, a register code part to specify one of 64 registers, and an address part (respectively), state:

- a. How many bits are there in the operation code, the register code part, and the address part?
- b. Draw the instruction word format and indicate the number of bits in each part.
- c. How many bits are there in the data and address inputs of the memory?

Solution:

$$256 \text{ K} = 2^8 \times 2^{10} = 2^{18}$$
$$64 = 2^6$$

(a) Address: 18 bits Register code: 6 bits Indirect bit: 1 bit

32 - 25 = 7 bits for opcode.

(b) 1 7 6 18 = 32 bits

I	opcode	Register	Address

(c) Data= 32 bits
Address= 18 bits.

Exercise 2:

What are the two instructions needed in the basic computer in order to set the \mathbb{E} flip-flop to 1?

Solution:

CLE Clear E CME Complement E

Exercise 3:

Consider the instruction formats of the basic computer shown fig 5-5 and the list of instructions given in table 5-2. For each of the following 16-bit instructions, give the equivalent four-digit hexadecimal code and explain in your own words the operation of the instruction that will be performed:

- a) 0001 0000 0010 0100
- b) 1011 0001 0010 0100
- c) 0111 0000 0010 0000

Solution:

- a) 0001 0000 0010 0100 $(1 \quad 0 \quad 2 \quad 4)_{16} \\ ADD \quad (024)_{16} \\ ADD \text{ content of M [024] to AC}$
- b) 1011 0001 0010 0100 (B 1 2 4)₁₆ I STA (124)₁₆ Store AC in M[M[124]]
- c) 0111 0000 0010 0000 $(7 \quad 0 \quad 2 \quad 0)_{16}$ Register Increment AC INC

Exercice 4:

The content of AC in the basic computer is hexadecimal A937 and the initial value of E is 1. Determine the contents of AC, E, PC, AR, and IR in hexadecimal after the execution of CLA instruction. Repeat for the following instructions (*starting each instruction from the initial value*): CLE, CMA, CIR, CIL, INC, SNA, and SZA. The initial value of PC is hexadecimal 021.

Solution:

	Е	AC	PC	AR	IR
Initial	1	A937	021		
CLA	1	0000	022	800	7800
CLE	0	A937	022	400	7400
CMA	1	56C8	022	200	7200
CIR	1	D49B	022	080	7080
CIL	1	526F	022	040	7040
INC	1	A938	022	020	7020
SNA	1	A937	023	008	7008
SZA	1	A937	022	004	7004

Exercise 5:

Draw a timing diagram assuming that SC is cleared to 0 at time \mathbb{T}_3 if control signal \mathbb{C}_7 is active.

$$C_7T_3$$
: SC \leftarrow 0

 C_7 is activated with the positive clock transition associated with T_1 .

Solution:

