Motor P

Christian Brunner, Andreas Kölbl, Ricardo Krause, Bernd Krupinski, Andreas Lackner, Michael Schleinkofer, Franz Welker

January 8, 2017

Projekt Start Projekt Start Phase

Projekt Start

- Projekt Auftrag
- Projekt Plan
- Versionsverwaltung
- Kommunikation
- Dokumentenmanagement

Projekt Start Projekt Auftrag

Projekt Start

Kommunikatio

Anforderungen

Entwuri

Implementierun;

MotrXP GU

Entwurf

Implementierur

Ausblick

Simulation

Anfordorungon

Entwurf I

Analysephase II

Regulation & GUI

Projektauftrag - Gr. 3 - MotorXP

Projekttitel:	Entwicklung und Aufbau eines Motorexperimentierplatzes					
Projektnummer:	Gruppe 3					
Projektart:	Entwicklungsprojekt					
Projektleiter/in:	-					
Projektauftraggeber/in:	OTH Regensburg					
Projektkunde(n):	Prof. Roth					
Projektdauer:	Geplanter Beginn: 04.10.2016 Geplantes Ende: 28.01.2016					
Ausgangssituation / Problembeschreibung:	Die Studenten der Technischen Informatik müssen im 6.77. Semester ein Projekt im Rahmen der Vorfesung Datenverarbeitung in der Technik umsetzen. In diesem Projekt sollen im Studium erfernte Techniken und Fählökelten angewandt und verlieft werden.					
	Das zu bearbeitende Projekt befasst sich mit der Konzeption, Implementierung und Integration eines Experimentierplatzes für BLDC-Motoren.					
	Aktuell gibt es in der Fakultät IM keinen Experimentierplatz, welcher diese Anforderungen erfüllt. Eine weitere Verwendung des Experimentierplatzes für die Lehre ist gegebenenfalls angedacht					
Projektgesamtziel:	Das Ziel des Projektes siel die Ernstehkung und der Aufbau Das Ziel des Projektes siel die Ernstehkung und der Aufbau Bande der Bereit der Bereit der Bereit des					

Projekt Start Projekt Auftrag

Projekt Start

	Name	Dauer	Start	Ende	Ressourcen	
1	□Projektvorbereitung	6 tage	04.10.16	11.10.16		٦
2	Projektauftrag erstellen	0,125 tage	04.10.16 0	04.10.16	Ricardo Krause	
3	Projektplan erstellen	0,188 tage	04.10.16 0	04.10.16	Ricardo Krause (50%); Andreas Lackner (50%)	
- 4	GITHubeinrichten	0,125 tage	04.10.16 0	04.10.16	Ricardo Krause	
5	VM Workspace einrichten	0,375 tage	04.10.16 0	04.10.16	Andreas Koelbl	
6	Dropbaxeinrichten	0,125 tage	04.10.16 0	04.10.16	Ricardo Krause	
7	Dokumentenvorlagen erstellen	0,5 tage	04.10.16 0	04.10.16	Ricardo Krause	1
8	Slackeinrichten	0,25 tage	04.10.16 0	04.10.16	Ricardo Krause	
9	Plakat erstellen	1 tag	11.10.16 0	11.10.16	BerndKrupinski	
10	Logo erstellen	1 tag	11.10.16 0	11.10.16	BerndKrupinski	
11	SimulationsUmgebungeinrichten	0,25 tage	04.10.16 0	04.10.16	Franz Welker	
12	□Analysephase	7,5 tage	04.10.16	13.10.16		1
13	Anforderungsanalyse erstel	2 tage	04.10.16	05.10.16		1
14	Motor anforderungen	2 tage	04.10.16 0	05.10.16	Andreas Koelbl; Christian Brunner	
15	Sensor anforderungen	2 tage	04.10.16 0	05.10.16	Andreas Lackner; Christian Brunner	
16	Regelung und Leitsystem anfo	2 tage	04.10.16 0	05.10.16	BerndKrupinski	
17	Kommunikations anforderungen	2 tage	04.10.16 0	05.10.16	MichaelSchleinkofer	
18	Benutzeroberfläche anforderu	2 tage	04.10.16 0	05.10.16	Ricardo Krause	
19	Simulationanforderungen	2 tage	04.10.16 0	05.10.16	Franz Welker	
20	☐Schnittstellen definieren	1,5 tage	12.10.16	13.10.16		
21	Motor	1 tag	12.10.16 0	12.10.16	Andreas Koelbi	
22	Sensor	1 tag	12.10.16 0	12.10.16	Andreas Lackner	1
23	Regelung und Leitsystem	1 tag	12.10.16 0	12.10.16	BerndKrupinski	1
24	Kommunikation	1 tag	12.10.16 0	12.10.16	MichaelSchleinkofer	
25	Benutzeroberfläche	1 tag	12.10.16 0	12.10.16	Ricardo Krause	
26	Simulation	1,5 tage	12.10.16 0	13.10.16	Franz Welker	
27	FEntwurfsphase	2 tage	13.10.16	17.10.16		1
28	⊟Architektur entwurf	1 tag	13.10.16	14.10.16		1
29	Motor	1 tag	13.10.16 1	14.10.16	Andreas Koelbl; Christian Brunner	1
30	Sensor	1 tag	13.10.16 1	14.10.16	Andreas Lackner; Christian Brunner	1
31	Regelung und Leitsystem	1 tag	13.10.16 1	14.10.16	BerndKrupinski	
32	Kommunikation	1 tag	13.10.16 1	14.10.16	MichaelSchleinkofer	ı
33	Benutzeroberfläche	1 tag	13.10.16 1	14.10.16	Ricardo Krause Meteor/R - Seite I	_

Projekt Start

Projekt Star

Projekt Start

Kommunikation

Entwurf

MotrxP G

Anforderung

Implementieru

Ausblick

Simulation

. . .

Entwurf I

Analysephase II

Bewertung des neuen Mode

Projekt Start

Projekt Start

Projekt Start

Kommunikation

Anforderungen

Implementierur

Motrap GC

Anforderung

Implementierur

Simulation

Ommunation

Anforderungen I Entwurf I

Analysephase II

Projekt Start Dropbox

Projekt Start

Projekt Start

Kommunikation

. . .

Entwurf

Implementierun

MotrXP GU

Anforderungen

Entwurf

Implementierur

Simulatio

Simulation

Anforderunge

Entwuri

Analysephase II

Regulation & GIII

Kommunikation

Anforderungen

Anforderungen

- Controller -> PC
 - Sensordaten
 - Wiederholt

 - Erweiterbarkeit
- PC -> Controller
 - Regelungsparameter
 - Sporadisch

Kommunikation Entwurf

Projekt Start

Kommunikation

Kommunikation

Entwurf

Implementierun

MotrXP GL

Anforderungen

Implemention

Implementiers Aushlick

Simulatio

Amoraerang

A 1 1

Analysephase II

Bewertung des neuen Model

- Physical Layer
 - UART-Baustein des μ -Controllers via USB
 - DAVE APP zur Parametrierung
- Data Link Layer
 - Eigens definiertes Frame-Format

Kommunikation Entwurf

Projekt Star

Kommunikation

Anforderungen

Entwurf

Implementierun

MotrXP GU

Anforderungen

Implementieru

Simulation

A C 1

Antorderungen

Analysenhase I

Bewertung des neuen Mode

Regulation & GUI

Restliche Layer

- Keine Adressierung, da genau zwei Teilnehmer
- Keine Sessions
- Keine Flusskontrolle
- Payload: Protocol Buffer Nachricht
 - Flexibilität und Erweiterbarkeit
 - Performance

Kommunikation

MotorXP

Projekt Start

Kommunikation

Kommunikatio

Anforderungen Entwurf

Implementieru

MataVD CI

. . .

Entwurt

Ausblick

Simulation

. . .

Anforderungen

Analysenhase II

Analysephase II

Regulation & GUI

Sensordaten

Parameter

```
//defining the parameter message
message RegParams{
    uint32 target = 1;
    float paraP = 2;
    float paraI = 3;
    float paraD = 4;
    float tgtVal = 5;
}
```

Kommunikation

Implementierung

Projekt Start

Kommunikatio

Kommunikation

Anforderungen

Implementierung

....

MotrXP GI

Anforderunge

Implementieru

Simulation

Anforderungen

Entwurf I

Analysephase II

Regulation & GUI

Frameaufbau für Sensordaten erweitert

Start of Frame	Frame length	Protocol Buffer Payload	CRC-Value

- PC: C#-Bibliothek
 - SerialPort-Objekt
- Controller: C-Funktionen
 - DAVE APP f
 ür UART
 - DAVE APP für CRC

MotrXP GUI Anforderungen

Motor P

Projekt Star

Kommunikatio

Anforderungen

Entwurf

Implementieru

MOTERAP G

Anforderungen

Implementier

Simulatio

Anforderunge

Analysenhase I

Analysephase II

Bewertung des neuen Model

Regulation & GUI

Funktionale Anforderungen:

- Anzeige der Sensordaten
- Regelung der Drehgeschwindigkeit
- Einstellung des PID Reglers

Nicht-Funktionale Anforderungen:

- Modulares erweiterbares System
- Modernes Metro Design

MotrXP GUI Entwurf

Entwurf

- Entwurfsmuster
- DatenStrukturen
- Mockup

MotrXP GUI Implementierung

MotorXP

Projekt Start

Kommunikatio

- Communication

Antorderungen

Implementieru

MotrXP G

Anforderungen

Implementierung

Aushlick

Simulation

. . .

Entwurf I

Analysenhase II

Analysephase II

- MVVM-Light Framework
- MahApps Metro UI Toolkit
- Custom Controls

MotrXP GUI

Projekt Start

Projekt Start

Kommunikation

. . .

Amorderungen

Implementieru

MotrXP GI

WOUNT GO

- .

Implementieru

Ausblick

Simulation

A = 6 = -1 = -1

- - -

A 1 1

Analysephase II

Anforderungen

Projekt Star

Kommunikatio

. . .

Entwurf

Implementierur

MotrXP GI

Anforderunge

Implementier

Simulatio

Anforderungen I

Entwurf I

Analysephase II

Dewertung des neuen woder

- Kommunikation mit GUI
- Simulation in Echtzeit
- Kommunikation mittels serieller Schnittstelle

Continuous

ldeal Switch powergui

Entwurfsphase und Implementierung I

Projekt Star

Kommunikatio

Nominumkatic

Entwerf

Implementieru

MotrXP GI

. . .

F . . .

Implementierur

Ausblick

Anforderunge

Entwurf I

Analysephase II

Bewertung des neuen Modell

Regulation & GUI

Permanent Magnet Synchronous Machine

Analysephase II

Projekt Start

Projekt Start

Kommunikatio

Anfordorungon

Entwurf

Implementierun;

MotrXP GI

Anforderunge

Implementieru

Ausblick

Simulation

Anforderungen

Entwurf I

Analysephase II

Bewertung des neuen Modells

Bewertung

Projekt Star

12 91 41

Kommunikatio

Anforderungen

Entwurf

MotrXP GI

A = 6 = -1 = ---

Entwurf

Implementieru Aushlick

Simulation

Anforderungen

A 1 1 1

Analysephase II

Bewertung des neuen Modells

Regulation & GUI

Resultierendes Spulenfeld

$$\sum_{i=1}^{28} V_{res_i} = \sum_{i=1}^{28} (V_i + R_i) = \sum_{i=1}^{28} V_i + \sum_{i=1}^{28} R_i$$

Simulation Bewertung

Projekt Star

Kommunikatio

Anforderungen

Entwurf

Implementierung

MotrXP GU

Antorderun

Implementierur

Simulation

Simulation

Anforderungen

Analysephase II

Bewertung des neuen Modells

Regulation & GUI Controls Regulation

Projekt Star

12 0 0

Kommunikatio

Anforderungen

Entwurt

Implementierun

MotrXP GU

Anforderungen Entwurf

Implementier Ausblick

Simulation

Anforderunge

Entwurf I

Analysephase II

- Regeln des Motors über Sensor und Zielwerte
- GUI Custom Controls

Regulation & GUI Controls

Regulation - PID Regler

float lastDifferenceValue; // for d regulator.


```
#define REGULATION P REGULATE(crntValue, targetValue, Kp) Kp * (targetValue - crntValue)
#define REGULATION I REGULATE(crntValue, targetValue, regSumPtr, passedTime, Ki) \
     Ki * (*regSumPtr = passedTime * (targetValue - crntValue))
##define REGULATION D REGULATE(crntValue, targetValue, lastDifferencePtr, lastDifferenceValue, passedTime, Kd)\
(Kd * (((*lastDifferencePtr = targetValue-crntValue) - lastDifferenceValue) / passedTime))
#define REGULATION REGULATE SINGLE(regulateVariablesPtr. passedTime. crntValue)\
     REGULATION P REGULATE(crntValue, regulateVariablesPtr->targetValue, regulateVariablesPtr->Kp) + \
     REGULATION_I_REGULATE(crntValue, regulateVariablesPtr->targetValue, &(regulateVariablesPtr->regSum), passedTime, regulateVariablesPtr->Ki) + \
     REGULATION D REGULATE(crntValue, regulateVariablesPtr->targetValue, &(regulateVariablesPtr->lastDifferenceValue).\
             regulateVariablesPtr->lastDifferenceValue, passedTime, regulateVariablesPtr->Kd):
struct Regulation PidValues
     float targetValue; // the desired target value
     float Kp: // degree in how much the p regulator affects the output.
     float Ki; // degree in how much the i regulator affects the output.
     float Kd: // degree in how much the d regulator affects the output.
     float regSum: // for I regulator.
```

Regulation & GUI Controls

Regulation - Main loop

Projekt Star

Projekt Start

Kommunikatio

Anforderungen

Implementierun

MotrXP GU

Anforderunger

Implementierun

Simulation

A C 1

Entwurf I

Controls

Analysephase II

Regulation & GUI

Sensorik Sensordaten einlesen. Auf Basis von neuen Daten. Regulierung neue Motorwerte berechnen Neue Motowerte an Hardware Motorsteuerung Übersetzen. Aktuellen Sensor- und Motorwerte Kommunikation ausgeben. Finkommende Nachrichten bearbeiten.

Regulation & GUI Controls Gauge Control

Projekt Start

Kommunikatio

Kommunikatio

. . .

Implementierur

MotrXP G

Anforderungen

Implementierur

Simulation

Simulation

Antorderunge

Analysephase I

Rewertung des neuen Mode

```
| Temperature |
```

Regulation & GUI Controls Gauge Control

Projekt Start

Projekt Start

Kommunikation

Kommunikatio

Aniorderun

Implementieru

MotrXP G

WOLLXI G

Entremed

Implementieru

Simulation

Simulation

E-t------

A 1 1

Bewertung des neuen Modell

```
4references| Berndix, 45 days ago | 1 author, 1 change
private void RotateNeedle() {
   if (_needleCanvas = null) return;

   var percent = ((Value - MinValue) / (MaxValue - MinValue));
   var angle = MiAngle + (MaxAngle - MinAngle) * percent;
   angle = MiAngle + (MaxAngle - MinAngle) * percent;
   angle = MiAngle + (MaxAngle - MinAngle) * percent;
   var centerY = _needleCanvas.ActualNidth / 2;
   var centerY = _needleCanvas.ActualNidth / 2;
   var rotateTransform = new RotateTransform(angle / Math.PI * 180, centerX, centerY);
   __needleCanvas.RenderTransform = rotateTransform;
}
```


Regulation & GUI Controls LineChart Control - Mehr Pixel als Sample 1

Regulation & GUI Controls LineChart Control - Mehr Pixel als Sample 2

Projekt Start

Kommunikation

Kommunikation

Entwurf

Implementierung

MotrXP GU

Anforderunge

Implementierun

Simulation

Ommanacion

Entwurf I

Analysephase II

Projekt Start

i rojekt Start

mmunikation

Anfordorungon

Entwurf

Implementierun

MotrXP GU

Anforderungen

Implementierur

Ausblick

Jiiiididdo

Anforderunger

Entwurf I

Analysephase II

Bewertung des neuen Modell

Projekt Start

r rojeke Stare

Kommunikation

Anforderungen

Entwurf

Implementierun

MotrXP GUI

Anforderungen

Implementierun

Ausbrick

Jiiiuiatioii

Anforderungen

Entwurf I

Analysephase II

Bewertung des neuen Model

Projekt Start

r rojeke beare

ommunikation

Anforderungen

Entwurf

Implementierun

MotrXP GU

Anforderunge

Implementierur

Ausblick

Simulation

Entwurf I

Analysephase II

Bewertung des neuen Modell

Projekt Start

Projekt Start

Communikation

Anforderungen

Entwurf

Implementierun

MotrXP GU

Anforderungen

Entwuri

Ausblick

Jiiidiacio

Anforderunger

Entwurf I

Analysephase II

Rewerting des neuen Modell

Projekt Start

Communikation

Anforderungen

Entwurf

Implementierun

MotrXP GUI

Anforderunge

Implementierun

Ausblick

Simulation

Anforderungen

Entwurf I

Analysephase II

Rewerting des neuen Modell

Projekt Start

Kommunikation

Anforderungen

Entwurf

Implementierun

MotrXP GUI

Anforderunger

Implementierun

Ausblick

Simulation

Anforderungen

Entwurf I

Controls

Analysephase II

Projekt Start

r rojeke beare

Kommunikation

Anforderungen

Entwurf

Implementierun

MotrXP GUI

Anforderunge

Implementierun

Simulation

. . .

Entwurf I

Analysephase II

Bewertung des neuen Modells

Regulation & GUI Controls

Projekt Start

Kommunikation

. . .

Entwurf

Implementierun

MotrXP GU

Anforderung

Implementierur

Ausblick

Simulation

. . .

Entwurf I

Analysephase II

Bewertung des neuen Modelle

