Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет ПИиКТ

ОТЧЁТ

По лабораторной работе №2

«Моделирование компьютерных сетей в среде NetEmul. Локальные сети»

По предмету: Компьютерные сети

Студент:

Степанов М. А.

Группа Р33301

Преподаватель:

Алиев Т. И.

Оглавление

Цели	3
Задачи	3
Формирование варианта	3
Сеть 1. Локальная сеть с концентратором	
Сеть 2. Локальная сеть с коммутатором	8
Сеть 3. Многосегментная локальная сеть	
Топология общая шина	10
Кольцевая топология	11
Топология звезда	12
Выводы	13

Цели

Изучение принципов настройки и функционирования локальных сетей, построенных с использованием концентраторов и коммутаторов, а также процессов передачи данных на основе стека протоколов TCP/IP, с использованием программы моделирования компьютерных сетей NetEmul.

Задачи

- Построить три модели локальной сети: с использованием концентратора, коммутатора и многосегментную сеть;
- Выполнить настройку сети, заключающуюся в присвоении IP-адресов интерфейсам сети;
- Выполнить тестирование разработанных сетей путем проведения экспериментов по передаче данных (пакетов и кадров) на основе протоколов UDP и TCP;
- Проанализировать результаты тестирования и сформулировать выводы об эффективности смоделированных вариантов построения локальных сетей;
- Сохранить разработанные модели локальных сетей для демонстрации процессов передачи данных при защите лабораторной работы.

Формирование варианта

Φ	8
И	6
0	10
H	1
Вариант	14
Пул адресов	203.9.7.14 - 203.9.7.22 (9 адресов, класс С)
N_I	4
N_2	2
N_3	3

Сеть 1. Локальная сеть с концентратором

После добавления компьютеров их таблицы маршрутизации содержали лишь адрес «внутренней петли», указывающий на то же устройство. ARP-таблицы же были пусты, так как никакой информации о других устройствах в сети неизвестно.

Destination	Mask	Gat	teway	Interf	ace	Metric	Source
1 203.9.7.0	255.255.255.0	203.9.7.15		203.9.7.15		0	Connected
Mac-address	lp-address		Record	type	Net	card name	TTL

После назначения IP адреса каждое устройство послало в сеть пакет по широковещательному каналу, с указанием своего нового IP и MAC адресов, чтобы заполнить чужие ARP таблицы и проверить отсутствие дубликатов IP.

В таблицах маршрутизации и ARP появились изменения. В ARP таблицах появились записи об остальных устройствах в сети. В таблице маршрутизации появилась запись о текущем устройстве (внутренняя петля).

	Destination	Mask	Gateway	Interface	Metric	Source
1	203.9.7.0	255.255.255.0	203.9.7.14	203.9.7.14	0	Connected
2	127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	0	Connected

	Mac-address	lp-address	Record type	Netcard name	TTL
	01:1F:EF:56:CA:E3	203.9.7.15	Dinamic	eth0	218
4	01:E6:E5:02:CF:AB	203.9.7.16	Dinamic	eth0	198
:	01:3C:4E:38:D0:F1	203.9.7.17	Dinamic	eth0	161

В процессе назначения IP адресов устройства отправляли типовые запросы. Пример указан ниже. Данные ARP-запросы предназначены для добавления данных в таблицы ARP других устройств.

При передаче данных (10 КБ) по UDP компьютер А отправил 10 пакетов и кадров (по 1 КБ), которые содержали информацию об отправителе и получателе (IP, MAC, порт).

Содержание у всех пакетов и кадров типовые и содержат MAC-адреса отправителя и получателя (внутри кадра на канальном уровне) и IP-адреса отправителя и получателя (внутри пакета на сетевом уровне), а также порты на транспортном уровне. Стоит отметить, что на сетевом уровне указан TTL, который отвечает за предел hop'ов при передаче сообщения, но если посмотреть на пакеты со стороны получателя и отправителя, то данное поле не отличается. В данном случае TTL не изменился потому что коммутаторы и концентраторы работают на канальном уровне, а значит не изменяют сетевые заголовки.

Передача по ТСР протоколу:

Порядок передачи данных по ТСР протоколу:

1) Компьютер А отправляет сегмент с установленным флагом SYN. При этом сегменту присваивается произвольный порядковый номер (ISN), относительно которого будет вестись дальнейший отсчет последовательности сегментов в соединении.

2) Компьютер Б получает запрос и отправляет ответный сегмент с одновременно установленными флагами SYN+ACK, при этом записывает в поле «номер подтверждения» (полученный порядковый номер, а также устанавливает свой порядковый номер, который, как и в SYN-сегменте, выбирается произвольно.

```
received 203.9.7.14 >> 203.9.7.15 Type: TCP

Ethernet, sender: 01:31:75:5D:7B:D3 receiver: 01:1F:EF:56:CA:E3

IP packet, sender: 203.9.7.14, receiver: 203.9.7.15 TTL: 64

TCP, sender port: 7777, receiver port: 7777

ISN 877, ACK 160

flags: SYN, ACK
```

3) После получения компьютером A сегмента с флагами SYN+ACK соединение считается установленным, компьютером A, в свою очередь, отправляет в ответ сегмент с флагом ACK, обновленными номерами последовательности, и не содержащий полезной нагрузки.

```
Esent 203.9.7.15 >> 203.9.7.14 Type: TCP

Ethernet, sender: 01:1F:EF:56:CA:E3 receiver: 01:31:75:5D:7B:D3

IP packet, sender: 203.9.7.15, receiver: 203.9.7.14 TTL: 64

TCP, sender port: 7777, receiver port: 7777

ISN 0, ACK 877

flags: Ack
```

4) Начинается передача данных.

```
ent 203.9.7.15 >> 203.9.7.14 Type: TCP

Ethernet, sender: 01:1F:EF:56:CA:E3 receiver: 01:31:75:5D:7B:D3

IP packet, sender: 203.9.7.15, receiver: 203.9.7.14 TTL: 64

TCP, sender port: 7777, receiver port: 7777

ISN 877, ACK 0

flags: No flags
```

5) Последний сегмент компьютер A помечает флагом FIN, означающим запрос на разрыв соединения.

```
    ⇒ sent 203.9.7.15 >> 203.9.7.14 Type: TCP
    Ethernet, sender: 01:1F:EF:56:CA:E3 receiver: 01:31:75:5D:7B:D3
    IP packet, sender: 203.9.7.15, receiver: 203.9.7.14 TTL: 64
    ⇒ TCP, sender port: 7777, receiver port: 7777
    ISN 886, ACK 0
    flags: Fin
```

6) Компьютер Б получает запрос и отвечает на него пустым сегментом с флагом АСК, после чего разрывает соединение.

```
received 203.9.7.14 >> 203.9.7.15 Type: TCP

Ethernet, sender: 01:31:75:5D:7B:D3 receiver: 01:1F:EF:56:CA:E3

IP packet, sender: 203.9.7.14, receiver: 203.9.7.15 TTL: 64

TCP, sender port: 7777, receiver port: 7777

ISN 0, ACK 887

flags: Ack
```

Основные отличия при передаче сообщений по UDP и TCP:

- Скорость и количество пакетов: UDP быстрее за счет отсутствия служебных сегментов.
- Надёжность: TCP убеждался в готовности собеседника и корректном ISN, чем гарантировал корректную доставку.

Сеть 2. Локальная сеть с коммутатором

Таблица коммутации содержит следующие поля:

- Мас-адрес
- Порт: на какой из портов записан Мас-адрес
- Тип записи: динамический/статический
- Время жизни: запись удаляется при достижении лимита (по умолчанию 300 сек.)

Заполнение таблицы коммутации происходит по мере поступления пакетов в нее – отправитель полученного пакета сразу же добавляется (или обновляется время жизни) в таблицу коммутации. Полностью она заполнится только тогда, когда все устройства за максимальное время жизни секунд успеют прислать хотя бы по одному пакету через коммутатор (протокол не важен). Максимальное количество записей в таблице коммутации зависит от области применения коммутатора, измеряется в тысячах записей.

	Mac-address	Port	Record type	TTL
1	01:8F:D9:4E:A5:6C	LAN1	Dinamic	30
2	01:DB:B5:69:7B:E8	LAN2	Dinamic	2

Пример передачи по TCP при незаполненной таблице коммутации (Компьютер 1 ightarrow Компьютер 2; 5 Кб):

Пример передачи по UDP при незаполненной таблице коммутации (Компьютер 1 \rightarrow Компьютер 2; 5 Кб):

Пример передачи по UDP при заполненной таблице коммутации (Компьютер 1 \rightarrow Компьютер 4; 5 Кб):

В данном примере видно, что использование коммутатора в сетях с 2 компьютерами нецелесообразно, потому что разницы в передаче с заполненной и пустой таблицами нет. В данном случае концентратор будет также передавать сообщения к заданному устройству (второму в сети). Наглядный пример целесообразности использования коммутатора будет представлен в 3 части задания, где необходимо построить подсеть состоящую из коммутатора и 3 устройств.

<u>Сеть 3. Многосегментная локальная сеть</u> Топология общая шина

Нереализуема. При заполненных таблицах маршрутизации внутри подсети с концентратором отправка сообщений невозможна. В случае замены концентратора на коммутатор данная ошибка исчезает. Также реализуема при использовании только концентраторов, но необходимо учитывать, что отправка одного сообщения заполняет всю сеть независимо от нахождения его получателя.

Кольцевая топология

Нереализуема. Появляются коллизии, даже при замене концентратора на коммутатор. При замене коммутаторов на концентраторы будет происходить бесконечная отправка одного сообщения по всем устройствам, потому что данное сообщение будет в крутиться между концентраторами.

Топология звезда

Нереализуема. Также, как и в топологии общей шины, может дублировать сообщения при отправке внутри подсети с концентратором, но при замене его на коммутатор, всё работает правильно. Также, при замене коммутаторов на концентраторы, всё работает корректно.

Таким образом, я считаю, что наилучшим вариантом для приведенной конфигурации является топология звезда и общая шина. Если рассмотреть возможность добавления новых подсетей в сеть, то более удобной топологией будет звезда, потому что при подключении к общему маршрутизатору сокращается количество переходов сообщения между устройствами. Последующее тестирование будет проводиться для топологии звезда.

Передача по UDP:

```
Computer

## X | Computer

## X | Computer

## | received 203.9.7.16 >> 203.9.7.20 Type: UDP Message user

## : received 203.9.7.16 >> 203.9.7.20 Type: UDP Message user

## : received 203.9.7.16 >> 203.9.7.20 Type: UDP Message user

## : received 203.9.7.16 >> 203.9.7.20 Type: UDP Message user

## : received 203.9.7.16 >> 203.9.7.20 Type: UDP Message user

## : sent 203.9.7.16 >> 203.9.7.20 Type: UDP Message user

## : sent 203.9.7.16 >> 203.9.7.20 Type: UDP Message user

## : sent 203.9.7.16 >> 203.9.7.20 Type: UDP Message user

## : sent 203.9.7.16 >> 203.9.7.20 Type: UDP Message user

## : sent 203.9.7.16 >> 203.9.7.20 Type: UDP Message user

## : sent 203.9.7.16 >> 203.9.7.20 Type: UDP Message user
```

Передача по ТСР

Выводы

- Применение концентратора вместо коммутатора иногда может быть целесообразным исходя из экономии средств и наличия малого количества устройств в сети.
- Соединение коммутаторов и концентраторов в одной сети может приводить к ошибкам, для некоторых топологий сети стоит использовать однотипные устройства.
- Концентраторы, несмотря на их простоту и работоспособность при некоторых топологий очень сильно загружает каналы связи из-за чего могут передаваться данные по каналам, которые находятся в совершенно ином сегменте сети. Это может приводить к одновременной передаче данных в обоих направлениях по некоторым каналам, что, конечно приводит к ошибкам.