Отчёт по лабораторной работе №8

Дисциплина: архитектура компьютеров

Терещенкова Маргарита Владимировна

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
	4.1 Реализация циклов в NASM	7
	4.2 Обработка аргументов командной строки	12
	4.3 Самостоятельная работа	18
5	Выводы	22
Сг	Список литературы	

Список иллюстраций

4.1	Создание каталога	7
4.2	Копирование файла	7
4.3	Редактирование файла	8
4.4	Запуск файла	8
4.5	Редактирование файла	9
4.6	Запуск файла	10
4.7	Редактирование файла	11
4.8	Запуск файла	12
4.9	Создание файла	12
4.10	Редактирование файла	13
4.11	Запуск исполняемого файла	13
4.12	Создание файла	14
4.13	Редактирование файла	15
4.14	Запуск исполняемого файла	16
4.15	Редактирование файла	17
4.16	Запуск исполняемого файла	18
4.17	Создание файла	18
4.18	Редактирование файла	19
4.19	Запуск исполняемого файла	20

1 Цель работы

Приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

2 Задание

- 1. Реализация циклов NASM
- 2. Обработка аргументов командной строки
- 3. Задания для самостоятельной работы

3 Теоретическое введение

Стек — это структура данных, организованная по принципу LIFO («Last In — First Out» или «последним пришёл — первым ушёл»). Стек является частью архитектуры процессора и реализован на аппаратном уровне. Для работы со стеком в процессоре есть специальные регистры (ss, bp, sp) и команды. Основной функцией стека является функция сохранения адресов возврата и передачи аргументов при вызове процедур. Кроме того, в нём выделяется память для локальных переменных и могут временно храниться значения регистров.

Стек имеет вершину, адрес последнего добавленного элемента, который хранится в регистре esp (указатель стека). Противоположный конец стека называется дном. Значение, помещённое в стек последним, извлекается первым. При помещении значения в стек указатель стека уменьшается, а при извлечении — увеличивается.

Для стека существует две основные операции:

- добавление элемента в вершину стека (push);
- извлечение элемента из вершины стека (рор).

4 Выполнение лабораторной работы

4.1 Реализация циклов в NASM

Создала каталог для программ лабораторной работы № 8, перешла в него и создала файл lab8-1.asm:

```
mvtereshenkova@margo-pc:-$ mkdir ~/work/study/2024-2025/Архитектура\ компьютера /arch-pc/lab08 mvtereshenkova@margo-pc:-$ cd ~/work/study/2024-2025/Архитектура\ компьютера/arch-pc/lab08/ mvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab08$ touch lab8-1.asm
```

Рис. 4.1: Создание каталога

Копирую в текущий каталог файл in_out.asm с помощью утилиты ср, так как он будет использоваться в других программах. И проверяю наличие файла в данной директории с помощью команды ls.

```
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab08$ cp ~/Загрузки/in_out.asm in_out.asm
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab08$ ls
in_out.asm lab8-1.asm
```

Рис. 4.2: Копирование файла

Ввожу в файл lab8-1.asm текст программы из листинга 8.1.

```
lab8-1.asm
Открыть ~
            Ħ
    lock
                report.md
                              in_out.asm
                                            report.md
SECTION .data
SECTION .bss
N: resb 10
SECTION .text
global _start
mov eax,msg1
call sprint
call sread
mov eax,N
call atoi
mov [N],eax
mov ecx,[N]
label:
mov [N],ecx
mov eax,[N]
call iprintLF
loop label
```

Рис. 4.3: Редактирование файла

Создаю исполняемый файл и запускаю его.

```
mvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la
b08$ nasm -f elf lab8-1.asm
mvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la
b08$ ld -m elf_i386 -o lab8-1 lab8-1.o
mvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la
b08$ ./lab8-1
BBeдите N: 5
5
4
3
2
1
```

Рис. 4.4: Запуск файла

Исполняемый файл работает корректно.

Меняю текст программы добавив изменение значение регистра есх в цикле.

```
lab8-1.asm
Открыть 🗸
                                    0
  lab7-3.asm
                lab7-4.asm
                               lab8.md
                                            lab8-1.asn ×
N: resb 10
SECTION .text
global _start
_start:
mov eax,msg1
call sprint
mov ecx, N
mov edx, 10
call sread
mov eax,N
call atoi
mov [N],eax
mov ecx,[N]
label:
sub ecx, 1
mov [N],ecx
mov eax,[N]
call iprintLF
loop label
call quit
```

Рис. 4.5: Редактирование файла

Создаю исполняемый файл и запускаю его.

```
mvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la b08$ nasm -f elf lab8-1.asm mvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la b08$ ld -m elf_i386 -o lab8-1 lab8-1.o mvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la b08$ ./lab8-1 lab8-1 lab8-1
```

Рис. 4.6: Запуск файла

Данный пример показывает, что использование регистра есх в теле цикла loop может привести к некорректной работе программы. Число проходов не соответствует значению N.

Вношу изменения в текст программы, добавив команды push и pop (добавления в стек и извлечения из стека) для сохранения значения счетчика цикла loop.

```
lab8-1.asm
Открыть ~
            ſŦ
  lab7-3.asm
                lab7-4.asm
                               lab8.md
                                             lab8-1.asn ×
global _start
_start:
mov eax,msg1
call sprint
mov edx, 10
call sread
mov eax,N
call atoi
mov [N],eax
mov ecx,[N]
label:
push ecx
sub ecx,1
mov [N],ecx
mov eax,[N]
call iprintLF
pop ecx
loop label
call quit
```

Рис. 4.7: Редактирование файла

Создаю исполняемый файл и запускаю его.

Рис. 4.8: Запуск файла

В данном случае число проходов цикла соответствует значению N.

4.2 Обработка аргументов командной строки

Создаю файл с названием lab8-2.asm.

```
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/la
b08$ touch lab8-2.asm
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/la
b08$ ls
in_out.asm lab8-1 lab8-1.asm lab8-1.o lab8-2.asm
```

Рис. 4.9: Создание файла

Ввожу в него текст программы из листинга 8.2

```
lab8-2.asm
Открыть 🗸
           ſŦΙ
  lab7-4.asm
                 lab8.md
                              lab8-1.asm
                                             lab8-2.asn
SECTION .data
msg db "Результат: ",0
SECTION .text
global _start
_start:
pop ecx
pop edx
sub ecx,1
mov esi, 0
next:
cmp ecx,0h
jz _end
pop eax
call atoi
add esi,eax
loop next
_end:
mov eax, msg
call sprint
mov eax, esi
call iprintLF
call quit
```

Рис. 4.10: Редактирование файла

Создаю исполняемый файл и запускаю его, указав аргументы.

```
nvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la
1008$ nasm -f elf lab8-2.asm
nvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la
1008$ ld -m elf_i386 -o lab8-2 lab8-2.o
1008$ nasm -f elf lab8-2.asm
1008$ nasm -f e
```

Рис. 4.11: Запуск исполняемого файла

Программа обработала 3 аргумента.

Создаю файл с названием lab8-3.asm.

```
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/la
b08$ touch lab8-3.asm
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/la
b08$ ls
in_out.asm lab8-1.asm lab8-2 lab8-2.o
lab8-1 lab8-1.o lab8-2.asm lab8-3.asm
```

Рис. 4.12: Создание файла

Ввожу в него текст программы из листинга 8.3

```
lab8-3.asm
Открыть 🗸
                                 ſŦ
               lab7-4.asm
  lab7-3.asm
                            • lab8.md
                                         lab8-3.asn ×
SECTION .data
msg db "Результат: ",0
SECTION .text
global _start
start:
рор есх
pop edx
sub ecx,1
next:
cmp ecx,0h
jz _end
pop eax
call atoi
add esi,eax
loop next
end:
mov eax, msg
call sprint
mov eax, esi
call iprintLF
call quit
```

Рис. 4.13: Редактирование файла

Создаю исполняемый файл и запускаю его, указав аргументы.

```
mvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la b08$ nasm -f elf lab8-3.asm mvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la b08$ ld -m elf_i386 -o lab8-3 lab8-3.o mvtereshenkova@margo-pc:-/work/study/2024-2025/Архитектура компьютера/arch-pc/la b08$ ./lab8-3 2 3 4 5 Результат: 14
```

Рис. 4.14: Запуск исполняемого файла

Редактирую текст программы для вычисления произведения аргументов командной строки.

```
lab8-3.asm
~/work/s... pc/lab08
                             lab7-3.asm lab7-4.asm

    lab8.md

                                        lab8-3
SECTION .data
msg db "Результат: ",0
SECTION .text
global _start
_start:
pop ecx
pop edx
sub ecx,1
mov esi, 1
next:
cmp ecx,0h
jz _end
pop eax
call atoi
mul esi
mov esi,eax
loop next
end:
mov eax, msg
call sprint
mov eax, esi
call iprintLF
call quit
```

Рис. 4.15: Редактирование файла

Создаю исполняемый файл и запускаю его, указав аргументы.

```
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab08$ nasm -f elf lab8-3.asm mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab08$ ./lab8-3 2 3 4 5 Результат: 120
```

Рис. 4.16: Запуск исполняемого файла

4.3 Самостоятельная работа

Создаю файл lab8-4.asm.

```
Vmvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/la
b08$ touch lab8-4.asm
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/la
b08$ ls
in_out.asm lab8-1.asm lab8-2 lab8-2.o lab8-3.asm lab8-4.asm
/lab8-1 lab8-1.o lab8-2.asm lab8-3 lab8-3.o
```

Рис. 4.17: Создание файла

Начинаю написание программы, которая будет вычислять сумму значений f(x)=2(x-1).(вариант 4)

```
lab8-4.asm
Открыть 🗸
  lab7-3.asm
               lab7-4.asm
                             • lab8.md
                                           lab8-4.asn
SECTION .data
msg_function db "Функция: f(x) = 2*(x-1)", 0
msg_result db "Результат:", 0
SECTION .text
global _start
_start:
    mov eax, msg_function
    call sprintLF
    pop ecx
    mov esi, 0
    mov edi, 2
next:
    cmp ecx, 0
    jz _end
    pop eax
    call atoi
    sub eax, 1
    mul edi
    add esi, eax
    dec ecx
    jmp next
```

Рис. 4.18: Редактирование файла

Создаю исполняемый файл и запускаю его.

```
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/la b08$ nasm -f elf lab8-4.asm
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/la b08$ ld -m elf_i386 -o lab8-4 lab8-4.o
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/la b08$ ./lab8-4 1 2 3 4
Myнкция: f(x) = 2*(x-1)
Peзультат:10
mvtereshenkova@margo-pc:~/work/study/2024-2025/Архитектура компьютера/arch-pc/la b08$ ./lab8-4 2 5 6 7 8
Функция: f(x) = 2*(x-1)
Peзультат:44
```

Рис. 4.19: Запуск исполняемого файла

Произведя несложные математические вычисления, делаю вывод, что программа работает верно.

Текст программы:

```
%include "in_out.asm"
SECTION .data
msg_function db "Функция: f(x) = 2*(x-1)", 0
msg_result db "Результат:", 0
SECTION .text
global _start
_start:
mov eax, msg_function
call sprintLF
pop ecx
mov esi, 0
mov edi, 2
next:
cmp ecx, 0
jz_end
pop eax
call atoi
sub eax, 1
mul edi
```

add esi, eax

dec ecx

jmp next

_end:

mov eax, msg_result

call sprint

mov eax, esi

call iprintLF

call quit

5 Выводы

Благодаря данной лабораторной работе, приобрела навыки написания программ с использованием циклов и обработкой аргументов командной строки.

Список литературы

1. Архитектура компьютеров