Introduction to Linear Algebra

Eslam Ahmed

Software Engineer

Vectors

Vectors in Machine Learning

Rating	Area sq. mtr
5	200
7	300
5	325
8	250
6	300
7	350
7.5	250
9	350

What is a vector?

What is a vector?

Cartesian:

$$\vec{V} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Polar:

$$\vec{V} = (r, \theta)$$

Unit Vector

Unit Vector

$$\vec{a} = 3 * \hat{a}$$

 $\vec{a} = 3 * \hat{x} + 3 * \hat{y}$

Vector Arithmetic

Addition

Subtraction

Multiplication

		tatatatatatata		-1-1-1-1-1-1-1	-1-1-1-1-1-1-1-1			
		 				..*.*.*.*.	1.1.1.1.1.1.1.1.1.1.1.	
1-1-1-1-1-1-1-1-		<u> </u>	4		h:-:-:-:-:			
1	100000000000000000000000000000000000000			-1-1-1-1-1-1-1-1-				
1-1-1-1-1-1-1-1-		<u> </u>						
1-1-1-1-1-1-1-1-			3					
			2					
			Z					
1	4:-:-:-:-:							
	1444444444				Hallian Co.			
1								
letetetetete		h:::::::::::::::::::::::::::::::::::::	1					
1::::::::::::::::::::::::::::::::::::::	-							
1-1-1-1-1-1-1-1-		-:-:-::::::::::::::::::::::::::::::::			ki da			
			0	1	,	3	4	.
			0	1	2	3	4	5
			0	1	2	3	4	5
				1	2	3	4	5
				1	2	3	4	5
			-1	1	2	3	4	5
				1	2	3	4	5
				1	2	3	4	5
			-1	1	2	3	4	5
				1	2	3	4	5
			-1	1	2	3	4	5
			-1	1	2	3	4	5
			-1 -2	1	2	3	4	5
			-1 -2	1	2	3	4	5
			-1	1	2	3	4	5
			-1 -2	1	2	3	4	5

$$\overrightarrow{V}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\overrightarrow{V}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\overrightarrow{V}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\vec{V}_1 + \vec{V}_2$$

$$\overrightarrow{V}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\overrightarrow{V}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\vec{V}_1 + \vec{V}_2$$

$$\overrightarrow{V}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\overrightarrow{V}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\vec{V}_1 + \vec{V}_2$$

$$\vec{V}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\overrightarrow{V}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\overrightarrow{V}_1 + \overrightarrow{V}_2 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Vector Subtraction

$$\overrightarrow{\mathbf{V}}_1 = \begin{bmatrix} 3\\2 \end{bmatrix}$$

$$\overrightarrow{\mathbf{V}}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\overrightarrow{\mathbf{V}}_{1} - \overrightarrow{\mathbf{V}}_{2} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Vector Multiplication (Cross Product)

Matrices

What is a Matrix?

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix}$$
 Rows Columns

What is a Matrix?

Datasets treated as Matrix that have many rows, each row represents a feature vector.

Fixed Acidity	Volatile Acidity	Citric Acid	Residual Sugar	Chlorides	Free Sulfur Dioxide	Total Sulfur Dioxide	Density	рН	Sulphates	Alcohol	Quality
7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.8	0.88	0	2.6	0.098	25	67	0.9968	3.2	0.68	9.8	5
7.8	0.76	0.04	2.3	0.092	15	54	0.997	3.26	0.65	9.8	5
11.2	0.28	0.56	1.9	0.075	17	60	0.998	3.16	0.58	9.8	6
7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.4	0.66	0	1.8	0.075	13	40	0.9978	3.51	0.56	9.4	5
7.9	0.6	0.06	1.6	0.069	15	59	0.9964	3.3	0.46	9.4	6
7.3	0.65	0	1.2	0.065	15	21	0.9946	3.39	0.47	10	7
7.8	0.58	0.02	2	0.073	9	18	0.9968	3.36	0.57	9.5	7

Why should we learn Matrices?

Matrix Arithmetic

Addition

Subtraction

Multiplication

Matrix Addition

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix}$$

$$Y = \begin{bmatrix} 1 & 8 & -1 \\ 5 & -2 & -3 \end{bmatrix}$$

$$X + Y = \begin{bmatrix} 2+1 & 3+8 & 4+(-1) \\ 1+5 & 6+(-2) & 7+(-3) \end{bmatrix} = \begin{bmatrix} 3 & 11 & 3 \\ 6 & 4 & 4 \end{bmatrix}$$

Matrix Subtraction

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix}$$

$$Y = \begin{bmatrix} 1 & 8 & -1 \\ 5 & -2 & -3 \end{bmatrix}$$

$$X - Y = \begin{bmatrix} 2 - 1 & 3 - 8 & 4 - (-1) \\ 1 - 5 & 6 - (-2) & 7 - (-3) \end{bmatrix} = \begin{bmatrix} 1 & -5 & 5 \\ -4 & 8 & 10 \end{bmatrix}$$

Matrix Multiplication – Scalar

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix}$$

$$2 * X = 2 * \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \longrightarrow \begin{bmatrix} 4 & 6 & 8 \\ 2 & 12 & 14 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix} \qquad X \cdot A = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$

$$X.A = \begin{bmatrix} - & - & - \\ - & - & - \end{bmatrix}$$

2 X 2

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X.A = \begin{bmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X.A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X.A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 15 \\ 1 & 6 \end{bmatrix}$$

$$(2*2) + (3*1) + (4*2) = 15$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X.A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 15 & 36 \\ 2 & 3 \end{bmatrix}$$

$$(2*3) + (3*6) + (4*3) = 36$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X.A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 15 & 36 \\ 22 \end{bmatrix}$$

$$(1*2) + (6*1) + (7*2) = 22$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X.A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 15 & 36 \\ 22 & 60 \end{bmatrix}$$

$$(1*3) + (6*6) + (7*3) = 60$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix} \qquad X.A = \begin{bmatrix} 15 & 36 \\ \\ 22 & 60 \end{bmatrix}$$

$$X.A = \begin{vmatrix} 15 & 36 \\ X.A = \\ 22 & 60 \end{vmatrix}$$

2 X 2

Matrix Multiplication – Example

	Average Price
Sports Shoes	\$ 40
Formal	\$ 30
Sandals	\$ 20

	2016	2017	2018
Sports Shoes	2	3	3
Formal	3	4	3
Sandals	6	8	9

	2016	2017	2018
Sports Shoes	2 * 40	3 * 40	3 * 40
Formal	3 * 30	4 * 30	3 * 30
Sandals	6 * 20	8 * 20	9 * 20

	2016	2017	2018
Sports Shoes	80	120	120
Formal	90	120	90
Sandals	120	160	180
Total	290	400	390

Matrix Division

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 7 & -3 & 2 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix}$$

$$\frac{A}{X} = A \cdot X^{-1}$$

We will see soon how to get the inverse of a Matrix

Important Matrix Terms

Matrix Terms

Determinant of the Matrix

Inverse of Matrix

Identity Matrix

Transpose of the Matrix

Determinant of a Matrix

Determinant = ad - bc

Inverse of a Matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix}$$

$$1/A = Inverse of A = A^{-1}$$

Identity Matrix

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Identity Matrix

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 1 \\ 2 & 3 & 8 \end{bmatrix}$$

$$A * I = A$$

Transpose of a matrix

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad X^{\mathsf{T}} = \begin{bmatrix} 2 & 1 \\ 3 & 6 \\ 4 & 7 \end{bmatrix}$$

Transpose of a matrix

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad X^{\mathsf{T}} = \begin{bmatrix} 2 & 1 \\ 3 & 6 \\ 4 & 7 \end{bmatrix}$$

Vector Transformation using Matrix

Vector Transformation

Vector Transformation

$$\mathbf{T} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \qquad \overrightarrow{\mathbf{V}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\mathbf{T} \cdot \mathbf{V} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

$$1.5.\overrightarrow{V} = \begin{bmatrix} 4.5 \\ 3 \end{bmatrix}$$

Vector Transformation

$$\mathbf{T} = \begin{bmatrix} 2 & -1 \\ 1 & -0.5 \end{bmatrix} \quad \overrightarrow{\mathbf{V}} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$

$$\mathbf{T} \cdot \overrightarrow{\mathbf{V}} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Vector Transformation Applications

Computer Graphics

Used a lot in computer graphics and video games to process moving objects in 3D space.

Vector Transformation Applications

Dimensions Reduction

Used for dimension reduction techniques like PCA.

Change of Basis

$$\vec{\mathbf{V}} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

Why we are learning this?

Linear Discriminant Analysis

Principal Component Analysis

Eigenvectors and Eigenvalues

Eigenvector and Eigenvalues?

A non-zero vector that changes by a scalar during linear transformation.

Scalar value by which it changes its magnitude is eigenvalue.

Note: Only thing that's changing is our perception of the coordinates.

What is an Eigenvector and Eigenvalues?

 A non-zero vector that changes by a scalar during linear transformation

$$\overrightarrow{T.V} = \lambda \overrightarrow{N}$$

Thank You!